Let E be a vector space over \mathbb{C} .

Definition 0.1 (Hermitian) A map $A \in End E$ is Hermitian iff

$$\langle Ax, y \rangle = \langle x, Ay \rangle$$

Theorem 0.2 (finite spectral theorem) Suppose $E \cong \mathbb{C}^n$ is hermitian. Then

- E has eigenvectors that are an orthonormal basis of E.
- All eigenvalues of E are real.

Proof. By the fundamental theorem of algebra, the characterestic polynomial

$$|A - \chi I|$$

has a root. Hence A has an eigenvalue-eigenvector pair λ , e. Hence

$$\lambda \langle e, e \rangle = \langle e, Ae \rangle = \langle Ae, e \rangle = \overline{\lambda} \langle e, e \rangle$$

thus $\lambda = \overline{\lambda}$. Ergo, $\lambda \in \mathbb{R}$.

Now consider $A|e^{\perp}$. Suppose $\langle x,e\rangle=0$. Then

$$0 = \lambda \langle x, e \rangle = \langle x, Ae \rangle = \langle Ax, e \rangle$$

Hence $A|e^{\perp} \in End(e^{\perp})$. Induction on dimension proves the theorem.

1

Let • denote pointwise multiplication.

Corollary 0.3 (diagonalization) If $A \in End E$, then

$$A = P^{-1}DP$$

where P is unitary and D = $\nu \bullet$ for some real $\nu \in P(E)$.

Definition 0.4 (standard part of operator)

st: End E
$$\rightarrow$$
 E
(st T)(x) := st(T(*x))

Theorem 0.5 (infinite spectral theorem) If $A \in \text{End } E$, then

$$(E, A) \cong (\tilde{E}, v \bullet _)$$

where $v \in \tilde{E}$ and \bullet is pointwise multiplication.

Proof. Consider a nonstandard model of functional analysis with large enough saturation. Consider the hyperfinite-dimensional subspace F such that

$$\operatorname{span}^{\sigma} E \subseteq F \subseteq {}^{*}E$$

There is some hermetian $B \in End\ F$ such that $B|^{\sigma}E = {}^*A|^{\sigma}E$. This B simultaneously satisfies hermitian-ness and $B({}^*e) = {}^*(Ae)$ for each e in some (standard) basis of E. Such a B exists, internal to a sufficiently saturated model.

By transferring diagonalization, there is some unitary $P:F\xrightarrow{\sim}\tilde{F}$ and real $\nu\in\tilde{F}$ such that

$$B = P^{-1}(v \bullet _)P \tag{1}$$

By construction, $B({}^{\sigma}E) \subseteq {}^{\sigma}E$. Permuting rows of the matrices $\nu \bullet _$ and P if necessary, assume (without loss of generality) that $P({}^{\sigma}E) \subseteq {}^{\sigma}E$.

Then

$$(st P)^{-1} = st(P^{-1})$$

similarly,

$$(st(v \bullet _))(x) = st(v \bullet *x) = stv \bullet x = (stv \bullet _)x$$

By construction, st B = A, hence eq. (1) becomes

$$A = st(P)^{-1}(stv \bullet) st(P)$$

consequently

$$\operatorname{st} P: (E, A) \xrightarrow{\sim} \left((\operatorname{st} P)(E), \operatorname{st} v \bullet_{-} \right)$$