Introducción a los espacios de Hilbert

Pregunta 1 (2,5 puntos)

Sean \mathcal{H} un espacio prehilbertiano real y $x, y \in \mathcal{H}$. Demuestre que x e y son ortogonales si y sólo si $||x + \alpha y|| \ge ||x||$ para todo $\alpha \in \mathbb{R}$.

Solución: Observemos que

$$||x + \alpha y|| \ge ||x|| \iff ||x + \alpha y||^2 \ge ||x||^2$$

$$\iff ||x||^2 + \alpha^2 ||y||^2 + 2\langle x, \alpha y \rangle \ge ||x||^2$$

$$\iff \alpha^2 ||y||^2 + 2\alpha \langle x, y \rangle \ge 0$$

La desigualdad $\alpha^2 ||y||^2 + 2\alpha \langle x, y \rangle \ge 0$ se cumple para todo $\alpha \in \mathbb{R}$ si y sólo si el discriminante de la ecuación en α , $\alpha^2 ||y||^2 + 2\alpha \langle x, y \rangle = 0$, es menor o igual que cero, es decir,

$$\alpha^2 \|y\|^2 + 2\alpha \langle x, y \rangle \ge 0 \text{ para todo } \alpha \in \mathbb{R} \iff 4\langle x, y \rangle^2 \le 0$$

$$\iff \langle x, y \rangle = 0$$

$$\iff x \in y \text{ son ortogonales}$$

Por tanto, x e y son ortogonales si y sólo si $||x + \alpha y|| \ge ||x||$ para todo $\alpha \in \mathbb{R}$

Pregunta 2 (2,5 puntos)

Sea F el subespacio de $\mathcal{H} = \ell^2$, definido mediante

$$F = \{ \mathbf{x} = \{ x_n \}_{n=1}^{\infty} \in \ell^2 \colon x_1 = x_2 \} .$$

Demuestre que F es cerrado en \mathcal{H} y calcule la distancia mínima de \mathbf{f} a F, siendo $\mathbf{f} = \left\{\frac{1}{n}\right\}_{n=1}^{\infty}$.

Solución: F es cerrado: Sea $\mathbf{g} = \{1, -1, 0, 0, 0, \dots, \} \in \ell^2$. Observemos que $F = \{\mathbf{g}\}^{\perp}$ pues $\forall \mathbf{x} = \{x_n\}_{n=1}^{\infty} \in \ell^2$ se tiene

$$\mathbf{x} = \{x_n\}_{n=1}^{\infty} \in \{\mathbf{g}\}^{\perp} \iff \langle \mathbf{x}, g \rangle = 0 \iff x_1 - x_2 = 0 \iff \mathbf{x} \in F.$$

Por tanto, F es un subespacio vectorial cerrado de ℓ^2 .

Sea \mathbf{h} la proyección ortogonal de \mathbf{f} sobre F. La distancia mínima de \mathbf{f} a F es $\|\mathbf{f} - \mathbf{h}\|$ Escribimos la descomposición ortogonal de \mathbf{f} , $\mathbf{f} = \mathbf{h} + k$ siendo $k \in F^{\perp} = \{\mathbf{g}\}^{\perp \perp} = \operatorname{span}(\mathbf{g})$. Por tanto, $\mathbf{f} = \mathbf{h} + \lambda \mathbf{g}$, esto es,

$$\mathbf{h} = \mathbf{f} - \lambda \mathbf{g} = \left\{ 1 - \lambda, \frac{1}{2} + \lambda, \frac{1}{n} \right\}_{n=3}^{\infty}.$$

De $\mathbf{h} \in F$ resulta que $1 - \lambda = \frac{1}{2} + \lambda$, es decir, $\lambda = \frac{1}{4}$. La distancia mínima de \mathbf{f} a F es $\|\mathbf{f} - \mathbf{h}\| = \lambda \|\mathbf{g}\| = \frac{1}{4}\sqrt{2}$.

Pregunta 3 (2,5 puntos)

Sean \mathcal{H} un espacio de Hilbert separable, $\{x_n\}_{n=1}^{\infty}$ una base ortonormal de \mathcal{H} y $\mathcal{A} = \operatorname{span}\{x_n\}_{n=1}^{\infty}$. Sean $\alpha = \{\alpha_n\}_{n=1}^{\infty} \in \mathbb{C}^{\mathbb{N}}$ y $T \colon \mathcal{A} \longrightarrow \mathcal{H}$ el operador lineal tal que $T(x_n) = \alpha_n x_n$ para todo $n \in \mathbb{N}$.

- a) Demuestre que T es acotado si y sólo si $\alpha \in \ell^{\infty}$.
- b) ¿Bajo qué condiciones se puede asegurar que T se extiende a una proyección ortogonal $\overline{T} \colon \mathcal{H} \longrightarrow \mathcal{H}$?

Solución: a) Tenemos que $||T(x_n)|| = |\alpha_n|||x_n||$. Si T es acotado entonces existe una constante $C \ge 0$ tal que

$$|\alpha_n| = \frac{\|T(x_n)\|}{\|x_n\|} \le C$$
 para todo n .

Por tanto $\alpha \in \ell^{\infty}$ siendo $\|\alpha\|_{\infty} \leq C$.

Recíprocamente supongamos que $\alpha \in \ell^{\infty}$. Para cualquier $x \in \mathcal{A} = \operatorname{span}\{x_n\}_{n=1}^{\infty}$, existe $n \in \mathbb{N}$ y $\{\lambda_i\}_{i=1}^n \in \mathbb{C}^n$ tal que $x = \sum_{i=1}^n \lambda_i x_i$. Teniendo en cuenta que $\{x_n\}_{n=1}^{\infty}$ es una base ortonormal se obtiene

$$||T(x)||^{2} = ||T(\sum_{i=1}^{n} \lambda_{i} x_{i})||^{2} = ||\sum_{i=1}^{n} \lambda_{i} T(x_{i})||^{2} = ||\sum_{i=1}^{n} \lambda_{i} \alpha_{i} x_{i}||^{2} = \sum_{i=1}^{n} |\lambda_{i}|^{2} ||\alpha_{i}||^{2} ||x_{i}||^{2}$$

$$\leq ||\alpha||_{\infty}^{2} \sum_{i=1}^{n} |\lambda_{i}|^{2} = ||\alpha||_{\infty}^{2} ||x||^{2}$$

Por tanto,

$$||T(x)|| \le ||\alpha||_{\infty} ||x||$$
 para todo $x \in \mathcal{A}$

y T es acotado.

b) Recordamos que una proyección ortogonal es un operador lineal autoadjunto tal que $P^2=P$. Por tanto, si existe una extensión \overline{T} que es una proyección, necesariamente se tiene que cumplir que $T^2(x_n)=T(x_n)$ para todo n. En consecuencia, $\alpha_n^2x_n=\alpha_nx_n$ y por tanto $\alpha_n=0$ o $\alpha_n=1$. Es decir, si \overline{T} es una proyección necesariamente

$$\alpha = \{\alpha_n\}_{n=1}^{\infty} \in \{0,1\}^{\mathbb{N}}.$$

Veamos que esta condición es suficiente para que T se extienda a una proyección ortogonal \overline{T} . En efecto si $\alpha = \{\alpha_n\}_{n=1}^{\infty} \in \{0,1\}^{\mathbb{N}}$ entonces $\alpha \in \ell^{\infty}$ y teniendo en cuenta el apartado anterior $T \colon \mathcal{A} \longrightarrow \mathcal{H}$ es un operador lineal acotado. Como \mathcal{A} es denso en \mathcal{H} , existe un único operador lineal acotado $\overline{T} \colon \mathcal{H} \longrightarrow \mathcal{H}$ que extiende a T (teorema 6.3 del texto base). En particular resulta que para cualquier $x \in \mathcal{H}$, desarrollando x en la base ortonormal, $x = \sum_{i=1}^{\infty} \beta_i x_i$ con $\{\beta_i\}_{i=1}^{\infty} \in \ell^2$, se obtiene

$$\overline{T}(x) = \overline{T}\left(\sum_{i=1}^{\infty} \beta_i x_i\right) = \overline{T}\left(\lim_n \sum_{i=1}^n \beta_i x_i\right) = \lim_n T\left(\sum_{i=1}^n \beta_i x_i\right) = \lim_n \sum_{i=1}^n \beta_i T(x_i) = \lim_n \sum_{i=1}^n \beta_i \alpha_i x_i = \sum_{i=1}^{\infty} \beta_i \alpha_i x_i$$

Obsérvese que $\{\beta_i \alpha_i\}_{i=1}^{\infty} \in \ell^2$. Así pues

$$\overline{T}^{2}(x) = \overline{T}\left(\sum_{i=1}^{\infty} \beta_{i} \alpha_{i} x_{i}\right) = \overline{T}\left(\sum_{i=1}^{\infty} \beta_{i} \alpha_{i} x_{i}\right) \sum_{i=1}^{\infty} \beta_{i} \alpha_{i}^{2} x_{i} = \sum_{i=1}^{\infty} \beta_{i} \alpha_{i} x_{i} = \overline{T}(x)$$

Además para todo $x, x' \in \mathcal{H}$ siendo $x = \sum_{i=1}^{\infty} \beta_i x_i$ con $\{\beta_i\}_{i=1}^{\infty} \in \ell^2$ y $x' = \sum_{i=1}^{\infty} \beta_i' x_i$ con $\{\beta_i'\}_{i=1}^{\infty} \in \ell^2$ se tiene

$$\langle \overline{T}(x), x' \rangle = \langle \sum_{i=1}^{\infty} \beta_i \alpha_i x_i, \sum_{i=1}^{\infty} \beta'_i x_i \rangle = \sum_{i=1}^{\infty} \beta_i \alpha_i \overline{\beta'_i}$$

mientras que

$$\langle x, \overline{T}(x') \rangle = \langle \sum_{i=1}^{\infty} \beta_i x_i, \sum_{i=1}^{\infty} \beta'_i \alpha_i x_i \rangle = \sum_{i=1}^{\infty} \beta_i \overline{\alpha_i} \overline{\beta'_i}$$

Teniendo en cuenta que $\overline{\alpha_i} = \alpha_i$ pues $\alpha_i \in \{0,1\}$ resulta que $\langle \overline{T}(x), x' \rangle = \langle x, \overline{T}(x') \rangle$ y en consecuencia, \overline{T} es autoadjunto.

Pregunta 4 (2,5 puntos)

- a) Demuestre, usando la transformada de Fourier, que no existe ninguna función h en $L^1(\mathbb{R})$ tal que f*h=f para todo $f\in L^1(\mathbb{R})$.
- b) Resuelva en $L^1(\mathbb{R})$ la ecuación f * f = f.

Nota: El símbolo * indica el operador de convolución.

Solución: a) Supongamos que existe una función h en $L^1(\mathbb{R})$ tal que f * h = f para todo $f \in L^1(\mathbb{R})$. Aplicando la transformada de Fourier se obtiene

$$\widehat{f*h}(\omega) = \sqrt{2\pi}\widehat{f}(\omega)\widehat{h}(\omega) = \widehat{f}(\omega)$$

para todo $\omega \in \mathbb{R}$. Por tanto, la transformada de Fourier de h es constante, con más precisión,

$$\hat{h}(\omega) = \frac{1}{\sqrt{2\pi}}$$
 para todo $\omega \in \mathbb{R}$.

Por el lema de Riemann-Lebesgue sabemos que si $h \in L^1(\mathbb{R})$ entonces $\lim_{|\omega| \to \infty} \widehat{h}(\omega) = 0$ que contradice el hecho de que \widehat{h} sea una función constante (distinta de cero).

b) Aplicando la transformada de Fourier a la ecuación se obtiene,

$$\widehat{f * f}(\omega) = \sqrt{2\pi} \widehat{f}(\omega) \widehat{f}(\omega) = \widehat{f}(\omega),$$

es decir,

$$\widehat{f}(\omega)\Big(1-\sqrt{2\pi}\widehat{f}(\omega)\Big)=0$$
.

Por tanto, $\widehat{f}(\omega)=0$ o $\widehat{f}(\omega)=1$ Teniendo en cuenta que si $f\in L^1(\mathbb{R})$ entonces \widehat{f} es una función continua necesariamente $\widehat{f}(\omega)=\frac{1}{\sqrt{2\pi}}$ para todo $\omega\in\mathbb{R}$ o $\widehat{f}(\omega)=0$ para todo $\omega\in\mathbb{R}$. El lema de Riemann-Lebesgue nos permite asegurar que $\widehat{f}(\omega)=0$ para todo $\omega\in\mathbb{R}$. Por tanto f=0 en casi todo punto de \mathbb{R} .