ЛЕКЦИЯ № 14

14. Тепловые двигатели и их КПД. Цикл Карно

Из первого закона термодинамики следует возможность совершения системой частиц механической работы за счет тепла, полученного от тела с большей температурой — «нагревателя».

Для возвращения системы в исходное состояние нужно часть тепла отдавать телу с меньшей температурой – «холодильнику» (при этом система совершает замкнутый цикл).

 Q_1 – подводимое тепло от «нагревателя»;

 Q_2 -- отдаваемое тепло «холодильнику»

Демонстрации:

№21. Модель тепловой машины.

№22. Модель теплового двигателя.

Так как не все полученное от «нагревателя» тепло Q_1 идет на работу машины, значит, любая тепловая машина обладает КПД:

КПД =
$$\eta = \frac{A}{Q_1} = \frac{Q_1 - Q_2}{Q_1} = 1 - \frac{Q_2}{Q_1}$$
 (14-1)

КПД теплового двигателя всегда < 100%

(– тепловые электростанции $\eta \sim 35-40\%$,

- двигатели внутреннего сгорания $\eta \sim 40-50\%$).

Основная задача при разработке тепловых двигателей – повышение КПД!

Французский физик и теплотехник Сади Карно предложил в качество рабочего вещества использовать идеальный газ, а замкнутый цикл составить из двух изотермических и двух адиабатных процессов.

- 1-2 изотермическое расширение T_1 = const

- 4-1 адиабатное сжатие

1-2 — изотермическое расширение T_1 = const

$$Q_1 = A_{T_1} = \nu R T_1 \ln \frac{V_2}{V_1}$$

2-3 – адиабатное расширение

$$\frac{T_1}{T_2} = \left(\frac{V_3}{V_2}\right)^{\gamma - 1}, \quad A_{23} = -\Delta W_{\text{BH}23} = -\frac{i}{2} \nu R \left(T_2 - T_1\right)$$

3-4 — изотермическое сжатие T_2 = const

$$A_{T_2} = \nu R T_2 \ln \frac{V_4}{V_3}$$

4-1 – адиабатное сжатие

$$\frac{T_1}{T_2} = \left(\frac{V_4}{V_1}\right)^{\gamma - 1}, \quad A_{41} = -\Delta W_{\text{вн41}} = -\frac{i}{2} \nu R \left(T_1 - T_2\right)$$

$$\frac{V_3}{V_2} = \frac{V_4}{V_1} \quad \rightarrow \quad \frac{V_2}{V_1} = \frac{V_3}{V_4} \quad \rightarrow \quad A_{T_2} < 0$$

Тогда КПД тепловой машины, работающей по замкнутому циклу Карно,

$$\eta_{C} = \frac{A}{Q_{1}} = \frac{A_{12} + A_{23} + A_{34} + A_{41}}{Q_{1}} = \frac{\nu R T_{1} \ln \frac{V_{2}}{V_{1}} + \nu R T_{2} \ln \frac{V_{4}}{V_{3}}}{\nu R T_{1} \ln \frac{V_{2}}{V_{1}}},$$

$$\eta_{C} = \frac{T_{1} - T_{2}}{T_{1}} = 1 - \frac{T_{2}}{T_{1}} \tag{14-2}$$

т. е. КПД такой машины зависит только от температур «нагревателя» и «холодильника».

$$\eta = 1 - \frac{Q_2}{Q_1} < \eta_C = 1 - \frac{T_2}{T_1}.$$

Тепловую машину, использующую в качестве рабочего вещества идеальный газ и работающую по замкнутому циклу Карно, состоящего из двух изотермических и двух адиабатных процессов, называют <u>идеальной тепловой машиной Карно</u>.

Из первого закона термодинамики

$$Q = \Delta W_{\rm BH} + A$$

следует, что для замкнутого цикла $\oint dW_{\rm BH} = 0$, тогда A = Q, т. е. работу можно произвести за счет получаемого тепла.

При этом видно, что нельзя совершать работу по величине больше, чем полученная тепловая энергия $(A \le Q)$.

Если бы это было возможным, то такая тепловая машина была бы вечным двигателем – вечный двигатель І-го рода.

Тогда первый закон термодинамики можно сформулировать: <u>вечный дви-гатель I-го рода невозможен</u>!

Чтобы КПД тепловой машины стал 100%, казалось, нужно не отдавать тепло «холодильнику»...

Тепловая машина, работающая только за счет полученного от «нагревателя» тепла (например, от мирового океана), называется $\underline{\textit{вечным двигателем}}$ $\underline{\textit{II-го рода}}$.

Объем воды в мировом океане $V \sim 10^{18} \text{ м}^3 \rightarrow m = \rho V \sim 10^{21} \text{ кг.}$

Если воду охладить на 1°, то выделится количество тепла

$$Q = mc\Delta T \sim 10^{21} \cdot 10^3 \cdot 1 \sim 10^{24}$$
 Дж.

Для получения такого же количества тепла нужно сжечь каменный уголь массой

$$m_{\text{угля}} = \frac{Q}{q_{\text{угля}}} = \frac{10^{24}}{10^7} \sim 10^{17} \text{ кг.}$$

Масса одного вагона с углем ~ 70 т = $7 \cdot 10^4$ кг, тогда потребуется ~ 10^{12} вагонов !!!

 ℓ_{1 вагона ~ 20 м \rightarrow $L \sim 10^{13}$ м = 10^{10} км ~ это размер нашей Солнечной системы!!!

Значит, $\mathbf{Q}_2 \neq 0$ вечный двигатель II -го рода невозможен!

15. Второй закон (второе начало) термодинамики и его статистический смысл

Первый закон (первое начало) термодинамики — это фактически закон сохранения энергии в тепловых процессах. Он не дает ответа на вопрос о направленности тепловых процессов в природе.

Первому закону не противоречил бы, например, процесс, в котором бы тепло от менее нагретого тела переходило бы к более нагретому телу $(-\Delta W_{\rm BH1} = +\Delta W_{\rm BH2})$, т. е. при этом на сколько энергия первого тела уменьшится, на столько же энергия второго тела должна возрасти). Но такой процесс самопроизвольно протекать не может.

Ответ на вопрос о направленности тепловых процессов в природе дает второй закон термодинамики. Определяющее значение в формулировке второго закона термодинамики играет энтропия.

Термодинамика не дает ответа на вопрос «что такое энтропия?», она лишь связывает изменение энтропии dS с приведенной теплотой $\frac{\delta Q}{T}$.

Более глубокий смысл энтропии выясняется в статистической физике: энтропия связывается с термодинамической вероятностью состояния системы.

<u>Термодинамической вероятностью состояния</u> (или <u>статистическим весом</u>) системы частиц G называется количество микросостояний, которыми можно реализовать данное макросостояние системы, т. е. статистический вес фактически определяет насколько система частиц упорядочена.

Австрийский физик-теоретик Л. Больцман теоретически показал, что энтропия системы частиц связана со статистическим весом формулой

$$S = k_B \ln G, \tag{14-3}$$

т. е. энтропия пропорциональна статистическому весу, значит, энтропия является количественной мерой упорядоченности (беспорядка) в системе частиц (с ростом G растет беспорядок в системе частиц, значит, это приводит к росту энтропии S и, наоборот, с уменьшением G будет уменьшаться и энтропия S).

Итак, с точки зрения термодинамики и статистической физики изменение энтропии определяется приведенной теплотой и при этом происходит изменение статистического веса системы:

$$\Delta S = \int_{1}^{2} \frac{\delta Q}{T}; \qquad \Delta S = k_B \ln \frac{G_2}{G_1}.$$

Если система частиц не теплоизолирована, то при подведении к ней тепловой энергии ее энтропия будет нарастать $\Delta S > 0$, а при отведении тепла – убывать $\Delta S < 0$.

Если же система частиц теплоизолирована ($\delta Q = 0$), то если в ней протекают *равновесные процессы* (например, адиабатный, где S = const), тогда $\Delta S = 0$, а если в теплоизолированной системе возникает какое-либо неравновесное состояние (неравенство давлений, температур и т. п.), это приводит к появлению неравновесных процессов (диффузия, теплопроводность и др.), в которых статистический вес, а значит и энтропия будут нарастать, и по достижению положения равновесия $S = S_{max}$ и далее не будет меняться.

Т. о. в теплоизолированной системе частиц возможны только такие тепловые процессы, в которых энтропия не убывает, т. е.

$$\Delta S \ge 0 \tag{14-4}$$

(при протекании равновесного (обратимого) процесса G = const и S = const, тогда ΔS = 0, а при протекании неравновесного (необратимого) процесса G возрастает, значит S возрастает, тогда $\Delta S > 0$).

Это утверждение называют современной формулировкой второго закона (второго начала) термодинамики или законом возрастания энтропии.

Если энергия в замкнутой системе не может ни производиться, ни уничтожаться (W = const), то <u>энтропия может создаваться!</u> И она действительно создается (увеличивается) во всяком процессе перехода из неравновесного состояния в равновесное.

Значит, <u>энтропия является количественной мерой беспорядка в системе частии!</u>

Для молекул H_2O можно написать:

$$S_{\rm пара} > S_{\rm воды} > S_{
m льда}$$
.

Если распространить формулировку второго закона термодинамики на всякие процессы, происходящие во Вселенной, то тогда любой неравновесный процесс, стремящийся к равновесию, будет увеличивать энтропию Вселенной, а достигнув максимума, энтропия далее будет оставаться постоянной (с ростом энтропии возрастает хаос в системе). Значит, в будущем Вселенную ожидает полный хаос во всем! Всякие направленные процессы (в том числе и в общественной жизни) прекратятся!

Это состояние Вселенной было названо «тепловой смертью Вселенной»!

<u>Л. Больцман</u> – Вселенная – незамкнутая система, в ней происходят флуктуационные процессы, в которых энтропия может и убывать и увеличиваться!

Другой предельный случай: система максимально упорядочена, например, кристаллическое тело при T=0 К (всякое движение частиц прекращено). В этом случае есть только единственный микроспособ реализовать такую систему $G_{min}=1$, тогда

при
$$T \rightarrow 0$$
, $S \rightarrow 0!$

При стремлении абсолютной температуры системы частиц к нулю, энтропия такой системы тоже стремится к нулю.

Это утверждение называют <u>теоремой Нернста</u> или, иногда, <u>третьим</u> <u>законом (третьим началом) термодинамики</u>.

Исторически, второй закон термодинамики имел несколько других формулировок:

Томсон (1851 г.):

Невозможен *круговой процесс*, *единственным результатом* которого было бы производство работы за счет тепла, полученного от нагревателя.

Планк конкретизировал, в чем должно выражаться производство работы:

Невозможно построить <u>периодически</u> работающую машину, <u>единственным результатом</u> которой было бы поднятие груза только за счет тепла, полученного от нагревателя.

Если бы такое было возможно, это был бы вечный двигатель! \rightarrow вечный двигатель второго рода!

Т. о. второй закон термодинамики можно сформулировать и так: вечный двигатель второго рода невозможен!

Клаузиус (1850 г.):

Невозможен процесс, при котором тепло *самопроизвольно* переходит от тела менее нагретого к телу более нагретому.

$$egin{aligned} egin{aligned} eg$$

т. е., тепло самопроизвольно пойдет от более нагретого тела к менее нагретому.

<u>«холодильник»</u>!

Работа бытового холодильника, в котором тепло переходит от холодной морозильной камеры к теплому окружающему воздуху, *не противоречит* второму закону термодинамики, т. к. холодильник — не замкнутая система, он подключен к электрической сети.

Для замкнутого равновесного (обратимого) цикла Карно, по которому работает идеальная тепловая машина, можно записать:

$$\eta = 1 - \frac{Q_2}{Q_1} = 1 - \frac{T_2}{T_1} \rightarrow \frac{Q_1}{T_1} - \frac{Q_2}{T_2} = 0$$

Но если в замкнутом цикле есть необратимые (неравновесные) процессы, тогда

$$1 - \frac{Q_2}{Q_1} < 1 - \frac{T_2}{T_1} \rightarrow \frac{Q_1}{T_1} - \frac{Q_2}{T_2} < 0$$

Объединяя эти два соотношения, можно записать, что для замкнутого цикла

$$\oint \frac{\delta Q}{T} = \frac{Q_1}{T_1} - \frac{Q_2}{T_2} \le 0$$
(14-5)

Это соотношение, являющееся общим выражением второго закона термодинамики, называется *неравенством Клаузиуса*.

Если
$$dS = \frac{\delta Q}{T}$$
, тогда

$$\Delta S = S_2 - S_1 \ge \oint \frac{\delta Q}{T}.$$

В изолированной системе ($\delta Q = 0$) энтропия либо не меняется $\Delta S = 0$ (для равновесных процессов), либо увеличивается $\Delta S > 0$ (для неравновесных процессов).

Для неизолированной системы ($\delta Q \neq 0$) для равновесных процессов $dS = \frac{\delta Q}{T}$, а для неравновесных процессов $dS > \frac{\delta Q}{T}$ (энтропия возрастает за счет подводимого тепла и за счет перехода системы из неравновесного состояния в равновесное).