Синтез МАИ и табличного метода в задачах принятия решений

Шубников Алексей Юрьевич, гр. 522

Санкт-Петербургский государственный университет Математико-механический факультет Кафедра статистического моделирования

Научный руководитель: д.ф.-м.н., профессор Сушков Ю.А. Рецензент: асп. Кушербаева В.Т.

Санкт-Петербург 2010г.

Основные определения

- ullet $A = a_1, a_2, ..., a_n$ множество альтернатив
- ullet $H = h_1, h_2, ..., h_n$ множество критериев

Типы рассматриваемых задач:

- ullet $(a_1,a_2,...,a_n) o (s_1,s_2,...,s_n)$ задача упорядочения
- ullet $(a_1,a_2,...,a_n) o (w_1,w_2,...,w_n)$, где $w_i>0$,

$$\sum_{i=1}^{n} (w_i) = 1$$

- задача распределения весов
- ullet $(a_1,a_2,...,a_n) o (a_{s_1},a_{s_2},...,a_{s_d}),$ где $a_{s_1},...,a_{s_d} \subset A$ задача сокращения альтернатив

Основные определения

• $K = k_1, k_2, ..., k_n$ - множество экспертов

Через $k_i(a_p)$ обозначим оценку эксперта k_i альтернативы a_p . Введем отношение порядка на множестве оценок.

Определение

Если эксперт k_i предпочитает альтернативу a_l альтернативе a_p , будем обозначать это как $k_i(a_p) \prec k_i(a_l)$.

$$\forall a_p, a_l \in A \& \forall k_i \in K$$
$$k_i(a_p) \prec k_i(a_l) \bigvee k_i(a_p) \succ k_i(a_l)$$

Определение

 $k_i(A) = (s_1, s_2, ..., s_n)$ - вектор предпочтений эксперта $k_i, s_1, s_2, ..., s_n$ получаются перестановкой множества 1, 2, ..., n.

Для вектора предпочтений выполнено:

$$\forall h, j \in 1..n, h < j \left(k_i(a_{s_h}) \succ k_i(a_{s_j}) \right)$$

Определение

$$K(a_p) = (k_1(a_p), k_2(a_p), ..., k_m(a_p))$$
 - оценочный вектор альтернативы a_p

Среди множества альтернатив А можно ввести отношение порядка следующим образом:

$$a_i \succ a_j \Leftrightarrow \forall l \in 1 : m \left(k_l(a_i) \succ k_l(a_j) \right).$$

Определение

$$WP(A) = \left\{ a^* \middle| \exists a \in A \bigg(\forall i \in 1 : m \Big(k_i(a^*) \succ k_i(a) \Big) \right) \right\}$$
 - множество Паретто несравнимых альтернатив.

Определение

Границей называется вектор $B = (b_1, b_2, ..., b_m)$

Определение

$$A_2 = \left\{ a \in A | \exists i \in 1 : m \left(k_i(a) \prec k_i(a_{s_{c_i}}) \right) \right\}$$
 - множество недопустимых альтернатив

Определение

 $A_1 = A \backslash A_2$ - множество допустимых альтернатив

Метод анализа иерархий

Метод анализа иерархий основан на двух принципах - построение иерархии заданной задачи и попарные сравнения элементов иерархии нижнего уровня по критерию иерархии верхнего уровня.

Рис.: МАИ

Табличный метод

Рассмотрим матрицу, составленную из векторов предпочтений экспертов и границу

•
$$M(K, WP(A)) = \{(k_1(WP(A)))^T (k_2(WP(A)))^T ... (k_m(WP(A)))^T \}$$

•
$$B = (b_1, b_2, ..., b_m)$$

Эксперт 1	Эксперт 2	 Эксперт т
Альтернатива 1.1	Альтернатива 2.1	 Альтернатива m. 1
Альтернатива 1.2	Альтернатива 2.2	 Альтернатива m.2
		 •••
Альтернатива 1.n	Альтернатива 2.п	 Альтернатива m.n

Рис.: Табличный метод

Синтез МАИ и табличного метода

Основная задача

Критерий 1 Критерий 2 ...

Эксперт 1	Эксперт 2	•••	Эксперт т
Альтернатива 1	Альтернатива 1		Альтернатива 1
Альтернатива 2	Альтернатива 2		Альтернатива 2
Альтернатива n	Альтернатива n		Альтернатива n

Рис.: Синтез МАИ и табличного метода

Критерий k

Синтез МАИ и табличного метода

Рассмотрим следующую функцию:

$$g:A\to R$$

$$g(a) = \sum_{i=1}^{m} ((c_i - k_i(a)) \cdot w_i)$$

Задача усиления границы сводится к задаче:

$$g(a) \to min, a \in WP(A)_1$$

Задача ослабления границы сводится к задаче:

$$g(a) \to max, a \in WP(A)_2$$

Обозначим $\omega_i = f(a_i) + n - 1.$ Весом альтернативы a_i будет являться в таком случае

$$w_i = \frac{\omega_i}{\sum_{j=1}^n \omega_j}$$

Начало работы

Рис.: Начало работы

Реализация МАИ

Рис.: Реализация МАИ

Рис.: Расширенный табличный метод

Рис.: Расширенный табличный метод

Рис.: Расширенный табличный метод

Рис.: Распределение весов