

GRUP A - Sessió 05

Tema 1 - Sistemes de representació numèrica

EXERCICI 3

- Donat el nombre 586₁₀ expressar-lo en binari natural i base 7.
- 2. Donat el nombre **1110010**, expressar-lo en base **octal** i **hexadecimal**.
- 3. Donat el nombre CAFEh expressar-lo en base 8, base 2 i base 3.
- 4. Un monstre de 124_8 caps i 60_{10} dents per cap va al dentista i li troben càries en $3F6_{16}$ dents diferents.

Pregunta: Quantes dents sanes li queden en base 3?

- Donat el nombre 26₇ expressar-lo en codi Johnson del menor nombre de bits possible, i després en un codi de 20 bits.
- 2. Donat el nombre 13_{10} expressar-lo en **codi Gray** del menor nombre de bits possible.
- 3. Donat el nombre **77₁₀ expressar-lo en codi Gray de 6 bits**. És factible?

Solució

EXERCICI 3

Donat el nombre 586₁₀ expressar-lo en binari natural i base 7.

EXERCICI 3

2. Donat el nombre **1110010**₂ expressar-lo en base **octal** i **hexadecimal**.

$$1110010_2 \rightarrow 001110010_2 = 162_8$$

 $1110010_2 \rightarrow 01110010_2 = 72_{16}$

3. Donat el nombre CAFEh expressar-lo en base 8, base 2, i base 3.

EXERCICI 3

KERCICI 3

Donat el nombre CAFEh expressar-lo en base 8, base 2, i base 3.

51966
$$\boxed{3}$$
 \Rightarrow 21 2202 1200 $_3$

0 17322 $\boxed{3}$

2 1924 $\boxed{3}$

2 213 $\boxed{3}$

0 71 $\boxed{3}$

2 2 3 $\boxed{3}$

1 2 $\boxed{3}$

2 7 $\boxed{3}$

1 2 $\boxed{3}$

2 0

EXERCICI 3

Un monstre de 124_8 caps i 60_{10} dents per cap va al dentista i li troben càries en **3F6**₁₆ dents diferents.

Pregunta: Quantes dents sanes li queden en base 3?

$$124_8 = 1(8^2) + 2(8^1) + 4(8^0) = 64 + 16 + 4 = 84_{10}$$
 (Caps)
 $3F6_{16} = 3 \cdot (16^2) + F \cdot (16^1) + 6 \cdot (16^0) = 768 + 240 + 6 = 1014_{10}$ (dents amb caries)

Total dents = $84*60 = 5040 \rightarrow \text{Total dents sanes} = 5040 - 1014 = 4026_{10}$

EXERCICI 3

5. Donat el nombre **26**₇ expressar-lo en **codi Johnson** del menor nombre de bits possible (A), i després en un codi de **20 bits** (B).

$$26_7 = 2(7^1) + 6(7^0) = 14 + 6 = 20_{10}$$

A
$$\begin{cases} N = \text{ número de bits per la representació} \rightarrow [0 \dots 2 \cdot N - 1] \\ \text{Valor: } 20 \leq \text{ límit: } 2 \cdot N - 1 \rightarrow 20 / 2 + 1 \leq N \rightarrow N \geq 11 \rightarrow 2 \cdot (11) - 1 = 21 \text{ (últim)} \\ 20 = 110 0000 0000 \text{ (penúltim)} \leftarrow 11 \text{ dígits} \end{cases}$$

B
$$\begin{cases} 20 \text{ bits } \Rightarrow [0 ... 2 \cdot \text{N-1}] \Rightarrow [0..39] \Rightarrow 20_{10} \le 39_{10} \text{ (ok)} \\ \text{Meitat } \Rightarrow [0..39] \Rightarrow 40/2 = 20 \text{ (meitat)} - 20 \text{ (valor)} = 0 \\ \text{Número de 0s } = 0 \\ 20_{10} \Rightarrow 1111 \ 1111 \ 1111 \ 1111 \ 1111 \\ 20 \text{ bits} \end{cases}$$

EXERCICI 3

6. Donat el nombre **13**₁₀ expressar-lo en **codi Gray** del menor nombre de bits possible.

	0	opgo	
1	1	0 001	
	2	0011	
	3	0010	
	4	0110	
	5	0111	
	6	0101	
	7	0100	
	8	1100	
	9	1101	
	10	1111	
	11	1110	
	12	1010	
	13	1011	
	14	1001	
	15	1000	

- Convertir el valor a binari natural (mètode de les divisions).
- 2. Aplicant operació **X-OR** amb el mateix nombre desplaçat un bit a la dreta.

$$13_{10} \rightarrow 1101_2$$
 (divisions)

EXERCICI 3

7. Donat el nombre **77**₁₀ expressar-lo en codi **Gray de 6 bits**. És factible?

El codi gray té el mateix número bits que el codi binari, per tant si 77_{10} en binari és $1001101_2 \rightarrow 7$ bits > 6 bits = No és factible

BN
$$\rightarrow$$
 1001101₂
100110₂ (shiftar \rightarrow)
Gray \rightarrow 1101011₂ (XOR)

FI TEMA 1

