Advanced information, computation, communication I EPFL - Fall semester 2021-2022

Week 5 October 22, 2021

1 Open Questions

Exercise 1. (**) Let \sim be the relation on $\mathbf{R} \times \mathbf{R}$ defined by $(a,b) \sim (c,d)$ if and only if a+d=b+c.

- 1. Prove that it is an equivalence relation.
- 2. Prove that the set of equivalence classes of \sim is uncountable.

Exercise 2. (***) A relation R on a finite set X can be represented by a directed graph: the elements of X are vertices, and there is an edge from a vertex $a \in X$ to $b \in X$ if and only if aRb. A path from a to b in the graph is a sequence $a = x_0, x_1, x_2, \ldots, x_{k-1}, x_k = b$ such that $x_i R x_{i+1}$ for any $0 \le i < k$. Such a path is of length k. The distance d(a, b) from a to b is the length of the shortest path from a to b (the distance from a to a is a).

- 1. Prove that if R is symmetric, then d(a,b) = d(b,a) for any $a,b \in X$.
- 2. Prove that if R is transitive, then $d(a,b) \in \{0,1\}$ for any $a,b \in X$.

Exercise 3. (*) Draw the Hasse diagram for divisibility on the set:

- 1. {1, 2, 3, 4, 5, 6, 7, 8}
- 2. {1, 2, 3, 5, 7, 11, 13}
- $3. \{1, 2, 4, 8, 16, 32, 64\}$

Exercise 4. (**) Suppose that (S, \leq_1) and (T, \leq_2) are posets. Show that $(S \times T, \leq)$ is a poset where $(s,t) \leq (u,v)$ if and only if $s \leq_1 u$ and $t \leq_2 v$.

Exercise 5. (**)

Determine whether these posets are lattices.

- 1. (1,3,6,9,12,|)
- 2. (1, 5, 25, 125, |):
- 3. (Z, \geq) :
- 4. $(P(S), \supseteq)$, where P(S) is the power set of a set S

Exercise 6. (*) Suppose that the number of bacteria in a colony triples every hour.

1. Set up a recurrence relation for the number of bacteria after n hours have elapsed

2. If 100 bacteria are used to begin a new colony, how many bacteria will be in the colony in 10 hours?

Exercise 7. (*) For each of these sequences find a recurrence relation satisfied by this sequence. (The answers are not unique because there are infinitely many different recurrence relations satisfied by any sequence.)

- 1. $a_n = 3$
- $2. \ a_n = 2n$
- 3. $a_n = 2n + 3$
- 4. $a_n = 5^n$
- 5. $a_n = n^2$
- $6. \ a_n = n^2 + n$
- 7. $a_n = n + (-1)^n$
- 8. $a_n = n!$

Exercise 8. (*) What are the values of the following products

- 1. $\prod_{i=0}^{10} i$
- $2. \prod_{i=1}^{100} (-1)^i$
- 3. $\prod_{i=0}^{10} 2^{i}$

Exercise 9. (*) Use the identity $\frac{1}{k(k+1)} = \frac{1}{k} - \frac{1}{k+1}$ to compute $\sum_{k=1}^{n} \frac{1}{k(k+1)}$

2 Exam Questions

Exercise 10. (*) Which of the following statements is **incorrect**?

- The Cartesian product of finitely many countable sets is countable.
- O Any subset of infinite cardinality of an uncountable set is uncountable.
- \bigcirc **N** \cup { $x \mid x \in \mathbf{R}, 0 < x < 1$ } is uncountable.
- O The intersection of two uncountable sets can be countably infinite.

Exercise 11. (**)

(français) Soit B l'ensemble des nombres réels avec un nombre fini de uns dans leur représentation binaire, et soit D l'ensemble des nombres réels avec un nombre fini de uns dans leur représentation décimale. Laquelle des propositions suivantes est correcte?

2

(Eng	lish)	Let	B l	oe t	he s	et o	of re	al n	umb	ers	with	a fir	$_{ m ite}$	num	ber	of	ones	s in	thei	r b	inary	re	eprese	$_{ m ntati}$	on,
	and	let I	Эb	e tl	ie se	t o	f rea	ıl nu	$\mathrm{imb}\epsilon$	ers v	vith	a fini	te 1	numb	er o	of o	nes	in t	heir	de	$_{\rm cimal}$	l re	eprese	$_{ m ntati}$	on.
	Whi	ich of	f th	e fo	llow	ing	stat	teme	ents	is c	orrec	t?													

○ { B est dénombrable et D ne l'est pas. B is countable and D is uncountable.
 ○ { B et D sont dénombrables tous les deux. B and D are both countable.
 ○ { B et D ne sont pas dénombrables. B and D are both uncountable.

 $\bigcirc \ \left\{ \begin{array}{l} B \ \textit{n'est pas d'enombrable mais D est d'enombrable}. \\ B \ \textit{is uncountable but D is countable}. \end{array} \right.$

Exercise 12. (***) Let F be the set of real numbers with decimal representation consisting of all fours (and possiby a single decimal point). Examples of numbers contained in F are 4, 44, 4444444, 444.44444, ... etc.

- \bigcirc The set F is countable and the set G is not countable.
- \bigcirc The sets F and G are both countable.
- \bigcirc The set G is countable and the set F is not countable.
- \bigcirc The sets F and G are both not countable.

Exercise 13. (**) Let $S = \{0, 1\}$. Let $A = \bigcup_{i=1}^{\infty} \mathbf{S}^{i}$, and let $B = \mathbf{S}^{*}$ be the set of infinite sequences of bits. Which of the following statements is correct?

- \bigcirc A is countable and B is not countable.
- \bigcirc A and B are both countable.
- \bigcirc A and B are both uncountable.
- \bigcirc A is uncountable but B is countable.

^{*=} easy exercise, everyone should solve it rapidly

^{** =} moderately difficult exercise, can be solved with standard approaches

 $^{*** =} difficult \ exercise, \ requires \ some \ idea \ or \ intuition \ or \ complex \ reasoning$