МИНИСТЕРСТВО ОБЩЕГО И ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Физический факультет Кафедра общей физики

ОПИСАНИЕ ЛАБОРАТОРНЫХ РАБОТ

Часть 5. Радиооптика

Лабораторная работа 6.5

ТУННЕЛЬНЫЙ ЭФФЕКТ ПРИ ПОЛНОМ ВНУТРЕННЕМ ОТРАЖЕНИИ

Для пояснения сути работы рассмотрим простейшие оценки амплитуды электромагнитной волны, выходящей за границу раздела двух диэлектрических сред с показателям преломления n_1 , n_2 ($n_1/n_2 \equiv n > 1$), при полном внутреннем отражении. Более подробные расчеты приведены в Приложении 3.

Пусть плоская монохроматическая волна из источника 1 падает на границу раздела 2 двух сред под углом ф к нормали (рис.1).

Рис. 1. Схема эксперимента по изучению поля волны, выходящей за границу диэлектрика при полном внутреннем отражении: 1 -источник СВЧ излучения; 2 - призма; 3 - СВЧ - диод; 4 - микроамперметр.

Граничные условия на поверхности раздела удовлетворятся, если составляющие волнового вектора \vec{K} , параллельные границе раздела, равны друг другу во всех трех волнах - падающей, отраженной и преломленной. С другой стороны, модуль волнового вектора в преломленной волне $|\vec{K}|$; выражается через модуль волнового вектора в падающей волне $|\vec{K}_0|$ и показатель преломления n

$$K_2 = K_0/n_{1}(1)$$

откуда следует, что нормальная составляющая волнового вектора в преломленной волне

$$K_{21}^{2} = K_{2}^{2} - K_{211}^{2} = \frac{K_{0}^{2}}{n^{2}} - K_{011}^{2} = K_{0}^{2} \left(\frac{1}{n^{2}} - \sin^{2}\varphi\right). (2)$$

При $\sin^2 \varphi > 1/n^2$ нормальная составляющая волновом вектора в преломленной волне становится чисто мнимой. Это означает, что напряженность поля в преломленной

волне убывает при удалении от границы раздела, как $e^{xp(-x_{2l}Z)}$. Если $n_{i}=n$, $n_{2}=1$ то (2) можно переписать в виде

$$K_{21} = \pm i \frac{2\pi}{\lambda} \sqrt{n^2 \sin^2 \psi - 1}$$
, (3)

где 2 - 2 $^{\pi}$ / $^{\kappa}$ - длина волны в вакууме. Амплитуда электромагнитного поля убывает вдоль оси Z, перпендикулярной границе раздела, как

$$E(z) \sim E_o \exp\left(-\frac{2\pi z}{\lambda} \sqrt{n^2 \sin^2 \varphi - 1}\right)$$

Расстояние, на котором электрическое поле убывает в e раз, равно

$$\partial = \frac{1}{2\pi \sqrt{n^2 \sin^2 \varphi - 1}} . (5)$$

Теперь рассмотрим несколько более сложную задачу. Поместим на расстоянии d от границы раздела призму с тем же самым показателем преломления n (рис. 2).

Рис. 2. Схема эксперимента по изучению туннельного эффекта: 1 - источник СВЧ излучения; 2 - призмы; 3 - СВЧ диод; 4 - микроамперметр.

В этом случае затухающая волна (4), выходящая из первой призмы, поступает во вторую призму и эффект полного внутреннего отражения "исчезает". В первом приближении можно считать, что коэффициент прохождения T электромагнитной волны, равный отражению интенсивности прошедшей волны к интенсивности падающей, определяется выражением, которое следует из (4,5):

$$T \approx E^{2}(z=d)/E_{o}^{2} = \exp(-2d/\delta)$$
 (6)

Точный расчет, проведенный в Приложении 3, дает следующие результаты:

$$T_{E} = \left[ch^{2} \left(\frac{d}{\delta} \right) + \frac{\left(n^{2} + 1 - 2n^{2} \sin^{2} \varphi \right)^{2}}{4 n^{2} \cos^{2} \varphi \left(n^{2} \sin^{2} \varphi - 1 \right)} sh^{2} \left(\frac{d}{\delta} \right) \right]^{-1},$$

$$T_{M} = \left[ch^{2} \left(\frac{d}{\delta} \right) + \frac{\left[n^{2} + 1 - \left(n^{4} + 1 \right) \sin^{2} \varphi \right]^{2}}{4 n^{2} \cos^{2} \varphi \left(n^{2} \sin^{2} \varphi - 1 \right)} sh^{2} \left(\frac{d}{\delta} \right) \right]^{-1}.$$
(8)

Здесь $T_{\rm M}$, $T_{\rm E}$, - коэффициенты прохождения волны, поляризованной в плоскости падания и перпендикулярно ей соответственно. При $\phi=\pi/4$, $n=1,5\,$ из (7) и (8) получим

$$T_{E} = \frac{1}{ch^{2}(\frac{d}{d}) + \frac{16}{9}sh^{2}(\frac{d}{d})}, (9)$$

$$T_{M} = \frac{1}{ch^{2}(\frac{d}{d}) + \frac{49}{576}sh^{2}(\frac{d}{d})}, (10)$$

Задание 1

Экспериментальная проверка выхода поля электромагнитной волны за границу диэлектрика при полном внутреннем отражении. Для выполнения работы соберите схему по рис.1.

- 1. Произведите измерения зависимости интенсивности волны выходящей за границу диэлектрика, от расстояния до границы призмы при $\phi = 45^{\circ}$.
- 2. Измерьте интенсивность волны вдоль границы призмы при фиксированном расстоянии СВЧ диода от грани призмы.

Контрольные вопросы

- 1. Оцените показатель преломления призмы по полученным экспериментальным результатам.
- 2. Оцените влияние многократных отражений от граней призмы на результаты измерений.

Задание 2

Туннельный эффект. Для выполнения работы соберите схему по рис. 2.

- 1. Снимите зависимость интенсивности электромагнитной волны, выходящей из второй призмы, от расстояния между призмами для волн, поляризованных в плоскости падения и перпендикулярно плоскости падания.
 - 2. Сравните полученные результаты с теоретическими предсказаниями.

Интернет версия подготовлена на основе издания: Описание лабораторных работ. Часть 5. Радиооптика. Новосибирск: Изд-во, НГУ, 1986

- © Физический факультет НГУ, 1999
- © Лаборатория оптики НГУ, 1999, http://www.phys.nsu.ru/optics/