Chapter #: CR Model for Argon I

#.# THE MODEL

The collisional-radiative model for neutral argon (AR I) under evaluation originated in 1988 by J. Vlcek and was extended in 1998 by A. Bogaerts and R. Gijbels. The code implementing this model was received from E. Sciamma who in turn received it from A. Keesee.

The model consists of 65 effective levels. Each model level represents one or more physical levels. All included levels can be seen in Table #.# and Figure #.#. Some levels of similar energy and quantum numbers are grouped together to reduce the amount of atomic data needed and the number of equations needed to solve for the level populations.

The radiative processes included are spontaneous emissions, and recombination from the Ar II ground level. Photo-excitation is accounted for by an escape factor $\Lambda_{i1} \leq 1$ for spontaneous emissions to the ground level which reduces the rate of transitions, and $\Lambda_{ij} = 1$ for $j \neq 1$.

The collisional processes included are electron impact excitation, de-excitation, ionization, two-body and three-body recombination from the Ar II ground state.

Table #.# List of Ar I Model levels [ref]

Effective level number: n	Designation	Excitation energy (eV)	Statistical weight
1	3p ⁶¹ S	0.0	1
2	$4s[3/2]_2$	11.548	5
3	$4s[3/2]_1$	11.624	3
4	$4s'[1/2]_0$	11.723	1
5	$4s'[1/2]_1$	11.828	3
6	$4p[1/2]_1$	12.907	3
7	$4p[3/2]_{1,2}+[5/2]_{2,3}$	13.116	20
8	$4p'[3/2]_{1,2}$	13.295	8
9	$4p'[1/2]_1$	13.328	3
10	$4p[1/2]_0$	13.273	1
11	$4p'[1/2]_0$	13.480	1
12	$3d[1/2]_{0.1}+[3/2]_2$	13.884	9
13	$3d[7/2]_{3.4}$	13.994	16
14	$3d'[3/2]_2 + [5/2]_{2.3}$	14.229	17
15	5s'	14.252	4
16	$3d[3/2]_1 + [5/2]_{2,3} + 5s$	14.090	23
17	$3d'[3/2]_1$	14.304	3
18	5 <i>p</i>	14.509	24
19	5p'	14.690	12
20	4d+6s	14.792	48
21	4d'+6s'	14.976	24
22	4f'	15.083	28
23	4f	14.906	56
24	6p'	15.205	12
25	6 <i>p</i>	15.028	24
26	5d' + 7s'	15.324	24
27	5d+7s	15.153	48
28	5f',g'	15.393	64
29	5f,g	15.215	128
30	7 p'	15.461	12
31	7p	15.282	24
32	6d' + 8s'	15.520	24
33 34	6d + 8s 6f', g', h'	15.347	48
35	6f,g,h	15.560 15.382	108 216
36	8p'	15.600	12
37	8 <i>p</i>	15.423	24
38	7d' + 9s'	15.636	24
39	7d+9s	15.460	48
40	7f',g',h',i'	15.659	160
41	7f,g,h,i	15.482	320
42	8d',f',	15.725	240
43	8d,f,	15.548	480
44	9p',d',f',	15.769	320
45	9p,d,f,	15.592	640
46	10s', p', d', f',	15.801	400
47	10s, p, d, f,	15.624	800
48	$11s', p', d', f', \dots$	15.825	484
49	11s, p, d, f,	15.648	968
50	12s', p', d', f',	15.843	576
51	12s, p, d, f,	15.666	1152
52	$13s', p', d', f', \dots$	15.857	676
53	13s, p, d, f,	15.680	1352
54	14s', p', d', f',	15.868	784
55	$14s, p, d, f, \dots$	15.691	1568
56	$15s', p', d', f', \dots$	15.877	900
57	$15s, p, d, f, \dots$	15.700	1800
58	$16s', p', d', f', \dots$	15.884	1024
59	$16s, p, d, f, \dots$	15.707	2048
60	$17s', p', d', f', \dots$	15.890	1156
61	$17s, p, d, f, \dots$	15.713	2312
62	18s',p',d',f',	15.895	1296
63	$18s, p, d, f, \dots$	15.718	2592
64	$19s', p', d', f', \dots$	15.899	1444
65	19s, p, d, f,	15.722	2888

Figure #.#: Ar I model energy level diagram. [ref]

#.# EQUILIBRIUM

In the Texas Helimak, the neutral-neutral collision time for Argon is estimated to be $(\sqrt{2}n\sigma v_{th})^{-1}=4.6ms$, where $n=10^{12}cm^{-3}$, $\sigma=0.36\times 10^{-18}m^2$ [ref], $v_{th}=\sqrt{3kT/m}$, and T=300K.

The transit time is estimated to be $L/v_{th}=2.4ms\ (L=1m)$. Therefore it is expected that the longest possible time-scale is limited by the transit time. The collisional-radiative model was used to estimate the typical life-time of levels of Argon I seen in figure #.#.

Figure #.#: AR I Level Lifetimes

As can be seen, the ground state has a lifetime much longer than the transit time, while all other levels have lifetimes much shorter than the transit time. Care will be taken to ensure that the model gives sensible results given a true equilibrium cannot be reached between all levels.

The dominate process for each model level (collisional versus radiative) can be determined from figure #.#. For example, given $n_e=10^{10}cm^{-3}$, radiative processes dominate (>90%) the levels below approximately level 20 while collisional processes dominate levels above approximately level 46.

Figure #.#: Dominant Processes

This result indicates that levels above ~46 will not significantly impact this evaluation given that the transitions will be predominantly to the other levels nearby in energy. Whereas the lower lying levels, which have significant radiative transitions, may cause cascade to the levels being measured.

#.# Non-Local Effects

Given that Ar I does not come to a true equilibrium, the code was extended to estimate the magnitude of departure from local equilibrium. This was done by using a single velocity 1D kinetic model described by distribution and source in eq. #.# and #.#, and the boundary condition that atoms coming from the walls are in the ground state in eq. #.# and #.#.

$$\begin{split} f_i &= n_i^+(x) \delta(v - v_{th}) + n_i^-(x) \delta(v + v_{th}) \quad (\#.\#) \\ s_i &= S_i^+(x) \delta(v - v_{th}) + S_i^-(x) \delta(v + v_{th}) \quad (\#.\#) \\ S^\pm &= G_i^\pm - n_i^\pm L_i \\ G_i^\pm &= \Sigma_j n_j^\pm (R_{ji} + \Lambda_{ji} A_{ji}) + \frac{1}{2} n_{ion} (R_i^{2B-recomb} + R_i^{3B-recomb}) \\ L_i &= \Sigma_j (R_{ij} + \Lambda_{ij} A_{ij}) + R_i^{ion} \\ n_i^+(0) &= \frac{1}{2} n_0 \quad (\#.\#) \\ n_i^-(L) &= \frac{1}{2} n_0 \quad (\#.\#) \\ n_0 &= \frac{p}{kT} \end{split}$$

This set of distributions are used with the Boltzmann equation with sources eq. #.#, neglecting force and collision terms, and seeking equilibrium $\frac{\partial f}{\partial t}=0$. This allows the equation to be split the \pm terms into independent equations.

$$\frac{\partial n_i^\pm}{\partial x} v_{th} = S_i^\pm \longrightarrow \frac{\partial n_i^\pm}{\partial x} = \frac{1}{v_{th}} S_i^\pm \quad (\text{\#.\#})$$

For the purpose of this analysis, a triangular profile was used for the electron density and temperature to compute both the kinetic and the local equilibrium solutions seen in Figure #.#.

#.# Comparison to ADAS Ar I Model