

McKendrik-von Foerster equation

density of weight w individuals of species i

sum over prey

weight by preference

multiply by search rate of predator

energy encountered

limited eating rate

energy costs for movement and metabolism

energy for reproduction

growth

Recruitment

$$R_i = \frac{R_{p.i} R_{max.i}}{R_{p.i} + R_{max.i}}$$

$$R_{p.i} = \frac{\epsilon_i}{2w_{0.i}} \int_0^\infty N_i(w) E_{r.i}(w) \psi_i(w).dw$$

Hold recruitment fixed at $R_{f.i}$

Evolve system to steady state

Choose reproduction efficiency ϵ_i so

$$R_{f.i} = \frac{\epsilon_i}{2w_{0.i}} \int_0^\infty N_i(w) E_{r.i}(w) \psi_i(w).dw$$

With SRR Without SRR

$$R_{p.i} = \frac{\epsilon_i}{2w_{0.i}} \int_0^\infty N_i(w) E_{r.i}(w) \psi_i(w).dw$$

energy available for growth and reproduction

fraction of energy diverted into reproduction

prefered predator-prey mass ratio preference level prey size

predator size

width of prey distribution

energy encountered

abundance of background resources at weight w_p

preference level of weight w predator for weight w_p prey

$N_i(w)$ =density of weight w individuals of species i

 $\int_A^B N_i(w)dw$ = number of individuals with weight between A and B

Size Spectrum Modelling Gustav Delius, Richard Southwell