THE UNIVERSITY OF SYDNEY MATH2022 LINEAR AND ABSTRACT ALGEBRA

Semester 1

Exercises for Week 3

Important Ideas and Useful Facts:

(i) Systems of equations and augmented matrices: A system of m linear equations in n variables x_1, x_2, \ldots, x_n over a field F has the form

where $a_{i,j}, b_i \in F$ are constants, for $1 \le i \le m$ and $1 \le j \le n$, with augmented matrix

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} & b_1 \\ a_{21} & a_{22} & \cdots & a_{2n} & b_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} & b_m \end{bmatrix}.$$

The system is homogeneous if $b_1 = b_2 = \ldots = b_m = 0$.

- (ii) Elementary row operations: There are three types of elementary row operations performed on (augmented) matrices:
 - (a) interchanging the *i*th and *j*th rows (denoted by $R_i \leftrightarrow R_j$)
 - (b) multiplying the *i*th row through by a nonzero constant λ (denoted by $R_i \to \lambda R_i$)
 - (c) adding a multiple of the jth row to the ith row (denoted by $R_i \to R_i + \lambda R_j$)
- (iii) Row echelon form: A matrix is in row echelon form if
 - (a) rows of zeros appear at the bottom,
 - (b) first nonzero (leading) entries of consecutive rows appear further to the right,
 - (c) leading entries of rows are equal to 1;
 - and in reduced row echelon form if, in addition,
 - (d) entries above (and below) leading entries are zero.
- (iv) Gaussian elimination and back substitution: The process of Gaussian elimination applies elementary row operations (row reduction) to transform the augmented matrix of a system into row echelon form, after which the associated system is solved using back substitution:
 - (a) the *leading variables* corresponding to leading entries are evaluated one equation at a time from the bottom towards the top,
 - (b) parameters are assigned to each nonleading variable (if any).
- (v) Inconsistency: A system is inconsistent (that is, has no solution) if and only if at some stage in the process of row reduction a row of the following form is produced for some nonzero scalar k:

$$0 \quad 0 \quad \cdots \quad 0 \quad | \quad k$$

(vi) Uniqueness of reduced row echelon form: A given matrix can be row reduced to one and only one matrix in reduced row echelon form.

(vii) Injective, surjective and bijective functions: Consider a function $f: A \to B$ with domain A and codomain B. We say that f is *injective* if it is one-one, that is, different inputs yield different outputs,

$$(\forall x_1, x_2 \in A)$$
 $x_1 \neq x_2$ implies $f(x_1) \neq f(x_2)$,

or, equivalently (taking the contrapositive), the same outputs come from the same inputs,

$$(\forall x_1, x_2 \in A)$$
 $f(x_1) = f(x_2)$ implies $x_1 = x_2$.

We say that f is *surjective* if it is onto, that is, every element of the codomain arises as a value of the function,

$$(\forall y \in B)(\exists x \in A) \quad y = f(x) .$$

We say that f is bijective if it is both injective and surjective. If f is bijective then the inverse function $f^{-1}: B \to A$ exists, whose rule is defined by undoing the rule for f, that is,

$$(\forall x \in A)(\forall y \in B)$$
 $y = f(x)$ if and only if $x = f^{-1}(y)$.

(viii) Permutations and the symmetric group: A permutation is a bijective function $f: X \to X$, where the domain and codomain coincide. The composition of two permutations is a permutation, and composition is often executed from left to right (preferred by most algebraists), rather than right to left (preferred by most analysts). Thus, if $\alpha: X \to X$ and $\beta: X \to X$ are permutations of X then the composite $\alpha\beta: X \to X$ is a permutation, where, using the algebraist's notation,

$$(\forall x \in X) \quad x(\alpha\beta) = ((x\alpha)\beta) .$$

We call

$$S_X = \{\text{permutations of } X\}$$

the symmetric group on X, which becomes a group with respect to composition of permutations. The identity element of S_X is the identity permutation that fixes all elements of X, and inverses in the group are the usual inverses as bijections. If $X = \{1, \ldots, n\}$, where $n \geq 1$, then it is usual to write S_n for S_X .

- (ix) Cycles and cycle notation: Let $\phi: X \to X$ be a permutation. Elements of X are called letters. Call ϕ a cycle if every letter that is moved by ϕ can be reached from every other letter that is moved by ϕ , by repeating ϕ often enough. Every permutation can be expressed as a composite (product) of disjoint cycles, that is, cycles where the sets of letters that are moved by the cycles are disjoint. To express ϕ using cycle notation, perform the following steps (assuming X is nonempty):
 - (a) Write a left bracket followed by any letter of X.
 - (b) Write down letters in order as produced by applying ϕ , until the first repetition, closing off with a right bracket.
 - (c) Choose a new letter and repeat, until all letters of X have been exhausted.
 - (d) Ignore singleton cycles (and denote the identity permutation by 1).

Questions labelled with an asterisk are suitable for students aiming for a distinction or higher.

Tutorial Exercises:

1. Look at the corner of the room. The walls are two planes meeting in a line. Follow the line to the ceiling. Where it meets the ceiling is the point of intersection of the three planes. Find the point $(x, y, z) \in \mathbb{R}^3$ of intersection of the following three planes:

$$2x + 3y + 4z = -4$$

 $5x + 5y + 6z = -3$
 $3x + y + 2z = -1$

2. Solve the following systems of linear equations over \mathbb{R} and over \mathbb{Z}_7 :

3. Working over \mathbb{R} and \mathbb{Z}_5 , find the respective values of λ such that the following system is inconsistent, has more than one solution, or has a unique solution:

4. Express the following permutations of $\{1, 2, 3, 4, 5, 6\}$ using cycle notation:

$$\alpha : 1 \mapsto 3, 2 \mapsto 5, 3 \mapsto 6, 4 \mapsto 2, 5 \mapsto 1, 6 \mapsto 4$$
 $\beta : 1 \mapsto 2, 2 \mapsto 1, 3 \mapsto 3, 4 \mapsto 6, 5 \mapsto 5, 6 \mapsto 4$
 $\gamma : 1 \mapsto 4, 2 \mapsto 3, 3 \mapsto 6, 4 \mapsto 5, 5 \mapsto 1, 6 \mapsto 2$

- **5.** Find the composites $\alpha\beta$, $\alpha\gamma$ and $\beta\gamma$ where α , β and γ are the permutations defined in the previous question. Express the inverses of α , β , γ as positive powers of α , β , γ respectively.
- **6.*** Recall that $\mathbb{Z}_2 = \{0, 1\}$ with usual addition and multiplication except that 1+1=0.
 - (a) List all 2×2 matrices with entries from \mathbb{Z}_2 that have nonzero determinant (so are invertible).
 - (b) A column vector is called *nonzero* if at least one of its entries is nonzero. Let A be an invertible $n \times n$ matrix. Prove that $\phi : \mathbf{v} \mapsto A\mathbf{v}$ is a permutation of $X = \{\mathbf{v} \mid \mathbf{v} \text{ is a nonzero column vector with } n \text{ entries } \}$.
 - (c) Draw an equilateral triangle and label the vertices (in any order) by

$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \quad \mathbf{v}_3 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}.$$

By (b) each of the matrices in (a) permutes $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ by premultiplication. Describe the geometric effect on the triangle achieved in each case.

3

Further Exercises:

7. For each of the following augmented matrices, working over \mathbb{R} and \mathbb{Z}_5 , decide whether the system of equations to which it corresponds has no solution, a unique solution, finitely many solutions (but more than one), or infinitely many solutions.

(a)
$$\begin{bmatrix} 1 & 2 & 3 & 3 \\ 1 & 2 & -2 & 0 \\ -2 & -4 & 4 & 0 \end{bmatrix}$$
(b)
$$\begin{bmatrix} 1 & 2 & 3 & 3 \\ -1 & -2 & 2 & 0 \\ 1 & 3 & 3 & 3 \end{bmatrix}$$
(c)
$$\begin{bmatrix} 1 & 2 & 3 & 3 \\ 1 & 2 & -2 & 3 \\ -1 & -2 & 2 & 2 \end{bmatrix}$$
(d)
$$\begin{bmatrix} 1 & 1 & -2 & 3 & 1 & -1 \\ -2 & -2 & 4 & 3 & 1 & 0 \\ 0 & 0 & 0 & -3 & -1 & 4 \end{bmatrix}$$

8. Find constants A, B, C, D that satisfy the following:

$$\frac{x^3}{(x-1)^4} = \frac{A}{x-1} + \frac{B}{(x-1)^2} + \frac{C}{(x-1)^3} + \frac{D}{(x-1)^4}$$

What happens if the coefficients of the polynomials come from the fields \mathbb{Z}_3 or \mathbb{Z}_2 ?

9. A real cubic polynomial p(x) with derivative p'(x) satisfies the following conditions:

(a)
$$p(1) = p'(1) = 4$$
, (b) $p(2) = 14$, (c) $p'(2) = 17$.

Find p(x). What happens, in each case, if condition (c) is removed, condition (b) is removed, or condition (a) is removed?

- 10.* Use row reduction on augmented matrices to show that the lines ax + by = k and $cx + dy = \ell$ in the real plane intersect in a single point if and only if $ad bc \neq 0$.
- 11.* Let $\alpha: 1 \mapsto 2 \mapsto 3 \mapsto 1$ and $\beta: 1 \mapsto 1$, $2 \mapsto 3 \mapsto 2$. Verify the following equations (where 1 denotes the identity permutation):

$$\alpha^3 = \beta^2 = 1$$
, $\beta \alpha = \alpha^2 \beta$, $\beta \alpha \beta = \alpha^{-1}$.

Put $G = \langle \alpha, \beta \rangle$, the group generated by α and β . Deduce that

$$G = \{ \alpha^i \beta^j \mid 0 \le i \le 2, \ 0 \le j \le 1 \}.$$

If the letters 1, 2, 3 are vertices of an equilateral triangle, interpret elements of G in terms of their geometric effects on the triangle. How many different interpretations of the symbol 1 appear in this exercise? Are you bothered by this?

12.* Let $\phi, \psi : \mathbb{R} \setminus \{0, 1\} \to \mathbb{R} \setminus \{0, 1\}$ where, for each $x \in \mathbb{R} \setminus \{0, 1\}$,

$$x\phi = \frac{1}{1-x}, \quad x\psi = \frac{1}{x}.$$

Verify that ϕ and ψ are sensibly defined permutations and

$$\phi^3 = \psi^2 = 1 , \quad \psi \phi = \phi^2 \psi .$$

4

Put $H = \langle \phi, \psi \rangle$. How does H relate to G of the previous question?