

Algoritmos Convolucionais

Prof. Dr. Diego Bruno

Education Tech Lead na DIO Doutor em Robótica e *Machine Learning* pelo ICMC-USP

Algoritmos Convolucionais

Machine Learning

Algoritmos Convolucionais

→ As convoluções funcionam como filtros que trabalham em pequenos quadrados e vão percorrendo por toda a imagem captando os traços mais marcantes:

Algoritmos Convolucionais

→ Exemplo: uma imagem 32x32x3 e um filtro que cobre uma área de 5x5 da imagem, o filtro passará pela imagem inteira, por cada um dos canais, formando no final um *feature map* ou *activation map* de 28x28x1.

input neurons	
000000000000000000000000000000000000000	first hidden layer

A matemática por trás disso tudo...

→ Matematicamente, uma convolução é uma **operação linear que a partir de duas funções**, gera uma terceira (normalmente chamada de *feature map*):

A matemática por trás disso tudo...

→ No contexto de imagens, podemos entender esse processo como um **filtro/kernel** que transforma uma imagem de entrada.

A matemática por trás disso tudo...

→ Um **kernel** é uma matrix utilizada para uma operação de multiplicação de matrizes. Esta operação é aplicada diversas vezes em diferentes regiões da imagem. A cada aplicação, a região é alterada por um parâmetro conhecido como stride.

1x1	1x0	1x1	0	0
0x0	1x1	1x0	1	0
0x1	0x0	1x1	1	1
0	0	1	1	0
0	1	1	0	0

→ Extração de *Features*:

Obrigado!

Machine Learning

Prof. Dr. Diego Bruno