Name: SOLUTIONS Student #: Signature: ______

Time limit: 30 minutes. Calculators not allowed.

1. (3 marks) Using the attached data sheet for the SN5400 NAND gate, determine what the worst-case noise margin is when these NAND gates are interfaced together in a circuit.

 $V_{OH} - V_{IH} = 2.4V - 2V = 0.4V$ and $V_{IL} - V_{OL} = 0.8V - 0.4V = 0.4V$, therefore worst-case noise margin is 0.4V

(4 marks) Interface the switch to the input of the NAND gate and the LED to the output of
the NAND gate such that the switch controls the LED. Assume that OUT 2 from the Lab Dev
Board is currently a logic high. Make use of the provided data sheet for the SN5400 and use
any necessary resistors. Note the forward voltage drop of the LED and the current required
by the LED.

Name:	SOLUTIONS	Student #:	Signature:	
-------	-----------	------------	------------	--

3. The following 3 assembly language instructions have been used to set **OUT 2** to a logic high. Where register 2 holds the address of the output port (OUT 0 to OUT 7) and register 5 holds the value to be written to the outputs (ie: the 3rd bit from the right corresponds to OUT 2). Register 0 = 0x0000.

ori r5, r0, 0x0027 #set outputs 0, 1, 2, and 5 high, while outputs 3, 4, 6, and 7 are low sthio r5, 0(r2) # this will update the outputs with the value stored in register 5.

(4 marks) Write out the binary machine language for the second assembly language instruction:

Referring to the provided Table 8-1:

OP of ori = 0x14, rA = r0, rB = r5, and IMM16 = 0x0027, therefore the binary machine language instruction is:

5 bits	5bits	16 bits	6 bits
rA	rB	IMM16	OP
00000	00101	000000000100111	010100

(2 marks) Convert the binary machine language instruction to HEX:

Binary Machine Language Instruction: 0000 0001 0100 0000 0000 1001 1101 0100

Machine langue instruction in HEX: 0x014009D4

Namo:	SOLUTIONS	Student #.	Signature:	
vame:	30LU HUNS	Student #:	Signature:	

4. (2 marks) We must disable the switch from being able to activate the LED by setting OUT 2 low. Fill in the assembly language instruction below to update register 5 with the instruction and immediate value. The outputs must be updated so that only OUT 2 is changed (to low) while the other outputs are not affected.

andi r5, r5, OxFFFB # set output 2 low while not changing outputs 0, 1, 3, 4, 5, 6, and 7 sthio r5, O(r2) # this will update the outputs with the value stored in register 5.

BONUS mark: Using the remaining NAND gates in the SN5400 package, show how the circuit can be updated to allow the switch to control all 3 LEDs shown below.

NOTES:

- the switch must still be interfaced to the input of the SN5400 NAND gate and the LEDs must still be controlled by the output of the SN5400 NAND gate.
- OUT 2 is once again set to a logic high
- Additional resistors may be used if necessary.
- There are a total of 4 NAND gates in an SN5400.

SN5400, SN54LS00, SN54S00 SN7400, SN74LS00, SN74S00

SDLS025D - DECEMBER 1983-REVISED MAY 2017

SNx400, SNx4LS00, and SNx4S00 Quadruple 2-Input Positive-NAND Gates

Features

- Package Options Include:
 - Plastic Small-Outline (D, NS, PS)
 - Shrink Small-Outline (DB)
 - Ceramic Flat (W)
 - Ceramic Chip Carriers (FK)
 - Standard Plastic (N)
 - Ceramic (J)
- Also Available as Dual 2-Input Positive-NAND Gate in Small-Outline (PS) Package
- Inputs Are TTL Compliant; V_{IH} = 2 V and $V_{II} = 0.8 \text{ V}$
- Inputs Can Accept 3.3-V or 2.5-V Logic Inputs
- SN5400, SN54LS00, and SN54S00 are Characterized For Operation Over the Full Military Temperature Range of -55°C to 125°C

2 Applications

- **AV Receivers**
- Portable Audio Docks
- Blu-Ray Players
- Home Theater
- MP3 Players or Recorders
- Personal Digital Assistants (PDAs)

3 Description

The SNx4xx00 devices contain four independent, 2-input NAND gates. The devices perform the Boolean function $Y = \overline{A} \cdot \overline{B}$ or $Y = \overline{A} + \overline{B}$ in positive

Device Information⁽¹⁾

PART NUMBER	PACKAGE	BODY SIZE (NOM)
SN74LS00DB	SSOP (14)	6.20 mm × 5.30 mm
SN7400D, SN74LS00D, SN74S00D	SOIC (14)	8.65 mm × 3.91 mm
SN74LS00NSR	PDIP (14)	19.30 × 6.35 mm
SNJ5400J, SNJ54LS00J, SNJ54S00J	CDIP (14)	19.56 mm × 6.67 mm
SNJ5400W, SNJ54LS00W, SNJ54S00W	CFP (14)	9.21 mm × 5.97 mm
SN54LS00FK, SN54S00FK	LCCC (20)	8.89 mm × 8.89 mm
SN7400NS, SN74LS00NS, SN74S00NS	SO (14)	10.30 mm × 5.30 mm
SN7400PS, SN74LS00PS	SO (8)	6.20 mm × 5.30 mm

⁽¹⁾ For all available packages, see the orderable addendum at the end of the data sheet.

Logic Diagram, Each Gate (Positive Logic)

Pin Functions (continued)

	PIN					
NAME	CDIP, CFP, SOIC, PDIP, SO, SSOP	SO (SN74xx00)	CFP (SN5400)	LCCC	I/O	DESCRIPTION
3Y	8	_	8	12	0	Gate 3 output
4A	13	_	12	18	I	Gate 4 input
4B	12	_	13	19	I	Gate 4 input
4Y	11	_	14	16	0	Gate 4 output
GND	7	4	11	10	_	Ground
NC	_	_	_	1, 5, 7, 11, 15, 17	_	No connect
V _{CC}	14	8	4	20	_	Power supply

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

		M	N MAX	UNIT
Supply voltage, V _{CC} ⁽²⁾			7	V
Innut voltage	SNx400 and SNxS400		5.5	
Input voitage	st voltage SNx400 and SNxS400 SNx4LS00 ction temperature, T _J		7	V
Junction temperature, T _J	•		150	°C
Storage temperature, T _{stg}		-6	55 150	°C

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

6.2 ESD Ratings: SN74LS00

			VALUE	UNIT
\/	Electrostatic	Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 (1)	±500	V
V _(ESD)	discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101 (2)	±2000	V

⁽¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Manufacturing with less than 500-V HBM is possible with the necessary precautions.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

			MIN	NOM	MAX	UNIT	
V _{CC} Supply voltage	SN54xx00	4.5	5	5.5	V		
V _{CC}	v _{CC} oupply voltage	SN74xx00	4.75	5	5.25	V	
V_{IH}	High-level input voltage		2			V	
V Low lovel input veltage		SNx400, SN7LS400, and SNx4S00			0.8	V	
VIL	V _{IL} Low-level input voltage	SN54LS00			0.7	V	
		SN5400, SN54LS00, and SN74LS00			-0.4	A	
ІОН	High-level output current	SNx4S00			-1	mA	
		SNx400			16		
	I _{OL} Low-level output current	SN5LS400			4	mA	
IOL		SN7LS400			8 m		
		SNx4S00			20		

Submit Documentation Feedback

⁽²⁾ Voltage values are with respect to network ground terminal.

⁽²⁾ JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Manufacturing with less than 250-V CDM is possible with the necessary precautions. Pins listed as ±2000 V may actually have higher performance. ESD Tested on SN74LS00N package.

6.4 Thermal Information

		SN74LS00					
	THERMAL METRIC ⁽¹⁾⁽²⁾	D (SOIC)	DB (SSOP)	N (PDIP)	NS (SO)	UNIT	
		14 PINS	14 PINS	14 PINS	14 PINS		
$R_{\theta JA}$	Junction-to-ambient thermal resistance	90.9	102.8	54.8	89.7	°C/W	
$R_{\theta JC(top)}$	Junction-to-case (top) thermal resistance	51.9	53.3	42.1	48.1	°C/W	
$R_{\theta JB}$	Junction-to-board thermal resistance	48	53.4	34.8	50.1	°C/W	
ΨЈТ	Junction-to-top characterization parameter	18.6	16.5	26.9	16.7	°C/W	
ΨЈВ	Junction-to-board characterization parameter	47.8	52.9	34.7	49.8	°C/W	

For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

6.5 Electrical Characteristics: SNx400

over operating free-air temperature range (unless otherwise noted)

PARAMETER	Т	EST CONDITIONS	MIN	TYP	MAX	UNIT
V_{IK}	$V_{CC} = MIN \text{ and } I_I = -1$	2 mA			-1.5	V
V _{OH}	$V_{CC} = MIN, V_{IL} = 0.8 $	$V_{\rm CC}$ = MIN, $V_{\rm IL}$ = 0.8 V, and $I_{\rm OH}$ = -0.4 mA		3.4		V
V _{OL}	$V_{CC} = MIN, V_{IH} = 2 V,$	$V_{CC} = MIN, V_{IH} = 2 V, and I_{OL} = 16 mA$		0.2	0.4	V
I _I	$V_{CC} = MAX \text{ and } V_I = 5$	$V_{CC} = MAX$ and $V_I = 5.5 V$			1	mA
I _{IH}	$V_{CC} = MAX \text{ and } V_I = 2$	$V_{CC} = MAX$ and $V_I = 2.4 \text{ V}$			40	μΑ
I _{IL}	$V_{CC} = MAX \text{ and } V_I = 0$	$V_{CC} = MAX$ and $V_I = 0.4 \text{ V}$			-1.6	mA
	\/ NAA\/	SN5400	-20		-55	A
I _{OS} V _C	V _{CC} = MAX	V _{CC} = MAX SN7400			-55	mA
I _{CCH}	$V_{CC} = MAX \text{ and } V_I = 0$	V		4	8	mA
I _{CCL}	$V_{CC} = MAX \text{ and } V_I = 4$.5 V		12	22	mA

6.6 Electrical Characteristics: SNx4LS00

over operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST	CONDITIONS	MIN	TYP	MAX	UNIT
V _{IK}	$V_{CC} = MIN \text{ and } I_I = -18 \text{ m/s}$	$V_{CC} = MIN$ and $I_I = -18$ mA			-1.5	V
V _{OH}	V _{CC} = MIN, V _{IL} = MAX, and	d I _{OH} = -0.4 mA	2.5	3.4		V
V	$v_{CC} = MIN \text{ and } v_{IH} = 2 \text{ V}$	I _{OL} = 4 mA		0.25	0.4	V
V_{OL}		I _{OL} = 8 mA (SN74LS00)		0.35	0.5	
I _I	$V_{CC} = MAX$ and $V_I = 7 V$				0.1	mA
I _{IH}	$V_{CC} = MAX$ and $V_I = 2.7 V$				20	μΑ
I _{IL}	$V_{CC} = MAX$ and $V_I = 0.4 V$				-0.4	mA
los	$V_{CC} = MAX$		-20		-100	mA
Іссн	$V_{CC} = MAX$ and $V_I = 0 V$	V _{CC} = MAX and V _I = 0 V		0.8	1.6	mA
I _{CCL}	$V_{CC} = MAX$ and $V_I = 4.5 V$			2.4	4.4	mA

6.7 Electrical Characteristics: SNx4S00

over operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V _{IK}	V_{CC} = MIN and I_I = -18 mA			-1.2	V
V _{OH}	V_{CC} = MIN, V_{IL} = 0.8 V, and I_{OH} = -1 mA	2.5	3.4		V
V _{OL}	V_{CC} = MIN, V_{IH} = 2 V, and I_{OL} = 20 mA			0.5	V
I _I	V_{CC} = MAX and V_I = 5.5 V			1	mA
I _{IH}	V_{CC} = MAX and V_I = 2.7 V			50	μΑ
I _{IL}	V _{CC} = MAX and V _I = 0.5 V			-2	mA

Submit Documentation Feedback

⁽²⁾ The package thermal impedance is calculated in accordance with JESD 51-7.

Category	Instruction	1			Meaning
Category			7	2	
A	addi	rB,	,	imm	$rB \leftarrow rA + imm_s$
Arithmetic	add	rC,	•	rB	$rC \leftarrow rA + rB$
	sub	rC,	rA,	rB	rC ← rA − rB
	and	rC,	rA,	rB	$\mathtt{rC} \leftarrow \mathtt{rA} \ and \ \mathtt{rB}$
	andi	rB,	rA,	imm	$\mathtt{rB} \leftarrow \mathtt{rA} \ and \ \mathtt{imm}_u$
	or	rC,	rA,	rB	$\mathtt{rC} \leftarrow \mathtt{rA} \ or \ \mathtt{rB}$
Logical	ori	rB,	rA,	imm	$\mathtt{rB} \leftarrow \mathtt{rA} \ or \ \mathtt{imm}_u$
	xor	rC,	rA,	rB	$\texttt{rC} \leftarrow \texttt{rA} \ xor \ \texttt{rB}$
	xori	rB,	rA,	imm	$\mathtt{rB} \leftarrow \mathtt{rA} \ xor \ \mathtt{imm}_u$
	nor	rC,	rA,	rB	$\texttt{rC} \leftarrow \texttt{rA} \ nor \ \texttt{rB}$
	cmpgei	rB,	rA,	imm	$\mathtt{rB} \leftarrow (\mathtt{rA} \geq \mathtt{imm}_s)? \ 1:0$
	cmplti	rB,	rA,	imm	$\texttt{rB} \leftarrow (\texttt{rA} < \texttt{imm}_s)? \ 1:0$
	cmpnei	rB,	rA,	imm	$rB \leftarrow (rA \neq imm_s)? 1:0$
	cmpeqi	rB,	rA,	imm	$rB \leftarrow (rA = imm_s)? 1:0$
	cmpgeui	rB,	rA,	imm	$\mathtt{rB} \leftarrow (\mathtt{rA}_u \geq \mathtt{imm}_u)? \ 1:0$
Comparator	cmpltui	rB,	rA,	imm	$\mathtt{rB} \leftarrow (\mathtt{rA}_u < \mathtt{imm}_u)? \ 1:0$
Comparator	cmpge	rC,	rA,	rB	$\mathtt{rC} \leftarrow (\mathtt{rA} \geq \mathtt{rB})? \ 1:0$
	cmplt	rC,	rA,	rB	$\texttt{rC} \leftarrow (\texttt{rA} < \texttt{rB})? \ 1:0$
	cmpne	rC,	rA,	rB	$\texttt{rC} \leftarrow (\texttt{rA} \neq \texttt{rB})? \ 1:0$
	cmpeq	rC,	rA,	rB	$\texttt{rC} \leftarrow (\texttt{rA} = \texttt{rB})? \ 1:0$
	cmpgeu	rC,	rA,	rB	$\mathtt{rC} \leftarrow (\mathtt{rA}_u \geq \mathtt{rB}_u)? \ 1:0$
	cmpltu	rC,	rA,	rB	$\mathtt{rC} \leftarrow (\mathtt{rA}_u < \mathtt{rB}_u)? \ 1:0$
	sll	rC,	rA,	rB	$\mathtt{rC} \leftarrow \mathtt{rA} \ll \mathtt{rB}_{40}$
	slli	rC,	rA,	imm	$\mathtt{rC} \leftarrow \mathtt{rA} \ll \mathtt{imm}_{40}$
	srl	rC,	rA,	rB	$\mathtt{rC} \leftarrow \mathtt{rA}_u \gg \mathtt{rB}_{40}$
	srli	rC,	rA,	imm	$\mathtt{rC} \leftarrow \mathtt{rA}_u \gg \mathtt{imm}_{40}$
Shift	sra	rC,	rA,	rB	$\mathtt{rC} \leftarrow \mathtt{rA}_s \gg \mathtt{rB}_{40}$
	srai	rC,	rA,	imm	$\mathtt{rC} \leftarrow \mathtt{rA}_s \gg \mathtt{imm}_{40}$
	rol	rC,	rA,	rB	$\mathtt{rC} \leftarrow \mathtt{rA}\ rol\ \mathtt{rB}_{40}$
	ror		rA,		$\mathtt{rC} \leftarrow \mathtt{rA}\ ror\ \mathtt{rB}_{40}$
	roli	rC,	rA,	imm	$\mathtt{rC} \leftarrow \mathtt{rA}\ rol\ \mathtt{imm}_{40}$
	ldw	rB,	imm	(rA)	$rB \leftarrow MEM[imm_s + rA]$
Memory	stw	rB,	imm	(rA)	$MEM[imm_s + rA] \leftarrow rB$
	br	imm			goto PC+4+imm _s
	bge	rA,	rB,	imm	if (rA \geq rB) goto PC+4+imm _s
	blt	rA,		imm	if (rA < rB) goto PC+4+imm _s
Branch	bne	rA,	-		if $(rA \neq rB)$ goto $PC+4+imm_s$
	beq	rA,	•		if $(rA = rB)$ goto $PC+4+imm_s$
	bgeu	rA,		imm	if $(rA_u \ge rB_u)$ goto PC+4+imm _s
	bltu	rA,	-		if $(rA_u < rB_u)$ goto PC+4+imm _s
	call	imm			$\texttt{goto} \; \texttt{imm} \ll 2; \; \texttt{ra} \leftarrow \texttt{PC+4}$
	callr	rA			goto rA; ra ← PC+4
Jump	ret				goto ra
,r	jmp	rA			goto rA
	jmpi	imm			goto imm $\ll 2$
	J 1 -				0 "
Misc	break				stops the processor ²

²This is not the official function of the instruction.

Table 8–1. OP Encodings							
OP	Instruction	OP	Instruction	OP.	Instruction	OP	Instruction
0 x 00	call	0x10	cmplti	0x20	cmpeqi	0 x 30	cmpltui
0x01		0x11		0x21		0x31	
0 x 02		0x12		0x22		0x32	custom
0x03	ldbu	0x13		0x23	ldbuio	0x33	initd
0x04	addi	0x14	ori	0x24	muli	0x34	orhi
0x05	stb	0x15	stw	0x25	stbio	0x35	stwio
0 x 06	br	0x16	blt	0x26	beq	0x36	bltu
0x07	ldb	0x17	ldw	0x27	ldbio	0x37	ldwio
0x08	cmpgei	0x18	cmpnei	0x28	cmpgeui	0x38	
0x09		0x19		0x29		0x39	
A0x0		0x1A		0x2A		0x3A	R-Type
0x0B	ldhu	0x1B	flushda	0x2B	ldhuio	0x3B	flushd
0x0C	andi	0x1C	xori	0x2C	andhi	0x3C	xorhi
0x0D	sth	0x1D		0x2D	sthio	0x3D	
0x0E	bge	0x1E	bne	0x2E	bgeu	0x3E	
0x0F	ldh	0x1F		0x2F	ldhio	0x3F	

5 bits	5 bits	16 bits	6 bits
rA	rB	IMM16	OP

ori

bitwise logical or immediate

Operation: $rB \leftarrow rA \mid (0x0000 : IMM16)$ **Assembler Syntax:** ori rB, rA, IMM16 **Example:** ori r6, r7, 100

Description: Calculates the bitwise logical OR of rA and (0x0000 : IMM16) and stores the result in rB.

Table 8–2. OPX Encodings for R-Type Instructions										
ОРХ	Instruction		ОРХ	Instruction		ОРХ	Instruction		OPX	Instruction
0x00			0x10	cmplt		0x20	cmpeq		0x30	cmpltu
0x01	eret		0x11			0x21			0x31	add
0x02	roli		0x12	slli]	0x22			0x32	
0x03	rol		0x13	sll		0x23			0x33	
0x04	flushp		0x14			0x24	divu		0x34	break
0x05	ret		0x15			0x25	div		0x35	
0x06	nor		0x16	or		0x26	rdctl		0x36	sync
0x07	mulxuu		0x17	mulxsu]	0x27	mul		0x37	
0x08	cmpge		0x18	cmpne		0x28	cmpgeu		0x38	
0x09	bret		0x19			0x29	initi		0x39	sub
0x0A			0x1A	srli		0x2A			0x3A	srai
0x0B	ror		0x1B	srl		0x2B			0x3B	sra
0x0C	flushi		0x1C	nextpc	1	0x2C			0x3C	
0x0D	jmp		0x1D	callr	1	0x2D	trap		0x3D	
0x0E	and		0x1E	xor	1	0x2E	wrctl		0x3E	
0x0F			0x1F	mulxss	1	0x2F			0x3F	

5 bits	5 bits	5 bits	6 bits	5 bits	6 bits
rA	rB	rC	OPX	IMM5	0x3A

or

bitwise logical or

Operation: $rC \leftarrow rA \mid rB$ Assembler Syntax: or rC, rA, rB
Example: or r6, r7, r8

Description: Calculates the bitwise logical OR of rA and rB and stores the result in rC.