Double sparsity in high-dimensional Gaussian mixture estimation and clustering Subject Overview

Laboratory Supervisor: A.S. Dalalyan PHd Student: M. Sebbar

March 3, 2015

Contents

1	Introduction		
	1.1	The Gaussian mixture model	2
	1.2	The EM Algorithm	3
2	A structural analysis on Σ approach		
	2.1	Graphical Lasso	4
	2.2	Column-Wise Lasso	5
3	Comments		5
4	Ref	erences	5

1 Introduction

The broad goal of this thesis is to tackle a clustering problem in the scope of mixtures model framework. More precisely, we will study the clustering of points drawn from high-dimensional Gaussian mixtures distributions. Thus, in the first part of this section we study the gaussian mixture model and the second part we describe the well know algorithm Expectation-Maximization (EM) and the limitations in high-dimensional setting.

1.1 The Gaussian mixture model

The Gaussian mixture model is an important framework where the components are Gaussian distributions with parameters (μ_i, Σ_i) . We obtain the following distribution:

$$p(x|\theta) = \sum_{i=1}^{K} \pi_i \frac{1}{(2\pi)^{d/2} |\Sigma_i|^{1/2}} \exp^{-\frac{1}{2}(x-\mu_i)^T \Sigma_i^{-1}(x-\mu_i)} = \sum_{i=1}^{K} \pi_i \mathcal{N}(x|\mu_i, \Sigma_i)$$

with
$$\theta = \{\pi_1, \dots, \pi_K, \mu_1, \dots, \mu_K, \Sigma_1, \dots, \Sigma_K\}$$
 and $\forall i, \pi_i > 0$ and $\sum_{i=1}^K = 1$

In the clustering problem, we would like to calculate the probability of the latent variable Z conditioned on X in order to assign X to a cluster. We denote $\tau_k = P(z_k = 1|x, \theta)$, from Bayes's rule we have:

$$\tau_k = \frac{P(x|z_k = 1, \theta)P(z_k = 1)}{P(x)} = \frac{\pi_k \mathcal{N}(x|\mu_k, \Sigma_k)}{\sum_{i=1}^K \mathcal{N}(x|\mu_i, \Sigma_i)}$$

where $\pi_i = P(z_i = 1)$ the prior probability and τ_i the posterior.

We would like to estimate θ from a set of iid observations X_1, \ldots, X_N . The related graphical model is:

The log-likelihood is:

$$l(\theta|D) = \sum_{n=1}^{\infty} N \log p(x_n|\theta)$$

Here we have the log of a sum (contrary to exponential family distribution where the log acts on a simple probability distribution) and the maximization of the log-likelihood is a non-linear problem.

An approach for the estimation of the maximum of log-likelihood is the Expectation-Maximization Algorithm.

1.2 The EM Algorithm

We will infer the values of $\{z_n\}$ conditioned to the data $\{x_n\}$. A natural approach to estimate the parameters θ is to estimate the mean of each class by deriving the log-likelihood:

$$\widehat{\mu}_i = \frac{\sum_{n=1}^N \tau_n^i x_n}{\sum_{n=1}^N \tau_n^i}$$

However, as seen in ?, τ_n^i depends on the parameter estimates which depends on τ_n^i . An idea would be to initialize the parameters and iterate. We calculate the posterior probability and then estimate the parameter θ . This is the idea of the EM algorithm.

The EM algorithm for Gaussian Mixtures would be:

- 0. Init parameters
- 1. Calculate (Expectation Step): $\tau_n^i(t+1)$
- 2. Calculate (Maximization Step):
 - $\mu_i(t+1) =$
 - $\Sigma_i(t+1) =$

•
$$\pi_i(t+1) =$$

#Explain why complicated, pro and cons with p large

2 A structural analysis on Σ approach

We consider a multivariate Gaussian distribution with mean $\boldsymbol{\mu}^*$ and covariance $\boldsymbol{\Sigma}^*$ and $Y_1, \ldots, Y_N \in \mathbb{R}^p$ iid drawn from this distribution. We would like to estimate $\boldsymbol{\mu}^*$ and $\boldsymbol{\Sigma}^*$. We know that $\widehat{\boldsymbol{\mu}}_n = \bar{Y}_n$, then WLOG we consider $\boldsymbol{\mu}^* = 0$, the problem is to estimate $\boldsymbol{\Sigma}^*$. We will study the precision matrix and consider that Σ^{-1} is sparse. We note $\Sigma^{-1} = \Omega$.

If $\Sigma_{ij}^{-1} = 0 \Rightarrow Y_i \perp \!\!\!\perp Y_j$ conditionally to $Y_{l \neq \{i,j\}}$. Thus, it makes sense to impose a L_1 penalty on Σ^{-1} to increase its sparsity.

2.1 Graphical Lasso

$$\mathcal{N}(x|\mu^*, \Sigma^*) = \frac{1}{(2\pi)^{d/2} |\Sigma^*|^{1/2}} \exp^{-\frac{1}{2}(x-\mu^*)^T \Sigma^{-1*}(x-\mu^*)}$$

The log-likelihood, with $\mu = 0$ is given by:

$$\mathcal{L}(\Sigma) = \log \left(\prod_{n=1}^{N} \frac{1}{(2\pi)^{d/2} |\Sigma|^{1/2}} \exp^{-\frac{1}{2}(x_n)^T \Sigma^{-1}(x_n)} \right)$$

write eqs

$$L(\Sigma) = C + \frac{N}{2} \log |\Sigma^{-1}| - \frac{1}{2} tr(S_n \Sigma^{-1})$$

Thus, considering the sparsity of Ω , we impose a penalization to the maximum likelihood estimator of Σ^{-1}

$$\widehat{\Omega} \in argmin \{ \log(|\Omega|) - tr(S_n\Omega) - \lambda ||\Omega||_1 \}$$

A reason to use the L_1 penalization instead of the ridge is that for an L_p penalization, the problem is convex for $p \geq 1$ and we have parsimonious property for $p \leq 1$.

- 2.2 Column-Wise Lasso
- 3 Comments
- 4 References