Set of real numbers

The set of rational numbers, denoted as \mathbb{Q} , is defined as

$$\mathbb{Q} = \left\{ \frac{p}{q} : \quad p \in \mathbb{Z}, \quad q \in \mathbb{Z}^* \right\}.$$

Let $m \in \mathbb{N}$, the number \sqrt{m} is defined as a solution of $x^2 = m$. We consider the case where m is prime and we suppose that $\sqrt{m} \in \mathbb{Q}$; thus, there exists $a \in \mathbb{N}$ and $b \in \mathbb{N}^*$ such that a, b are coprime and $\sqrt{m} = a/b$. Therefore

$$a^2 = mb^2. (1.1)$$

Since m is prime and divide mb^2 then m divides a. Hence, $a = m\alpha$ for some $\alpha \in \mathbb{N}$. This transforms (1.1) to $m\alpha^2 = b^2$. Again, m is prime and divides $m\alpha^2 = b^2$; thus, m divides b. This is a contradiction since a and b are coprime. Therefore, $x = \sqrt{m}$ is not rational.

Proposition 1.1. Let $m \in \mathbb{N}$ be a prime number. Then, \sqrt{m} is irrational.

We define the set \mathbb{R} as the set formed by all rational and irrational numbers.

```
\begin{array}{lll} \mathbb{R}^* = \{x \in \mathbb{R}: & x \neq 0\}, \ \mathbb{R}_+ = \{x \in \mathbb{R}: & x \geq 0\}, \\ \mathbb{N}^* = \{x \in \mathbb{N}: & n \neq 0\}, \ \mathbb{N}^*_n = \{x \in \mathbb{N}: & 1 \leq x \leq n\}, \ \mathbb{N}_n = \{x \in \mathbb{R}: & 0 \leq n \leq 0\}. \end{array}
```

1.1. Algebraic structure of the set of real numbers.

The set \mathbb{R} equipped with the binary operations "+" and "·" is a field since it satisfies the following properties :

- Commutativity: x + y = y + x and $x \cdot y = y \cdot x$ for any $x, y \in \mathbb{R}$.
- Associativity: (x + y) + z = x + (y + z) and $(x \cdot y) \cdot z = x \cdot (y \cdot z)$ for any $x, y, z \in \mathbb{R}$.
- Identity element for "+": There exists an element denoted 0 such that x + 0 = 0 + x = x for any $x \in \mathbb{R}$.
- Additive inverse: For any x in \mathbb{R} , there exists an element -x such that x + (-x) = 0.
- Identity element for ".": There exists an element denoted 1, such as $x \cdot 1 = 1 \cdot x = x$ for any $x \in \mathbb{R}$.
- Multiplicative inverse: For any $x \in \mathbb{R}^*$, there exists an element denoted x^{-1} (or 1/x) such that $x \cdot x^{-1} = 1$.
- Distributivity : $x \cdot (y + z) = x \cdot y + x \cdot z$ for any $\forall x, y, z \in \mathbb{R}$.

The set \mathbb{R} is totally ordered with respect to the natural order " \leq ". In other words; for any $x, y \in \mathbb{R}$ we have $x \leq y$ or $y \leq x$. The total order relation satisfies the following properties:

- Reflexivity: $x \le x$ for any $x \in \mathbb{R}$.
- Antisymmetry: for $x, y \in \mathbb{R}$, if $x \le y$ and $y \le x$ then x = y.
- Transitivity: for $x, y, z \in \mathbb{R}$, if $x \le y$ and $y \le z$ then $x \le z$.
- Compatibility of " \leq " and "+": for $x, y, z, w \in \mathbb{R}$, if $x \leq y$ and $z \leq w$ then $x + z \leq y + w$.
- Compatibility of " \leq " and " \cdot ": for $x, y \in \mathbb{R}$ and $z \in \mathbb{R}_+$, if $x \leq y$ then $z \cdot x \leq z \cdot y$.

1. Set of real numbers

Definition 1.1 (Absolute Value). The set \mathbb{R} is valuable in the sense that it can be equipped with the absolute value function defined as follows:

$$|\cdot|: \mathbb{R} \longrightarrow \mathbb{R}_{+}$$

$$x \longmapsto |x| = \begin{cases} x & si & x \ge 0 \\ -x & si & x \le 0 \end{cases}$$
(1.2)

Proposition 1.2. The absolute value function is said to be non-negative (meaning that $|x| \ge 0$ for any $x \in \mathbb{R}$) and |x| = 0 if and only if x = 0. Moreover, for any $x, y \in \mathbb{R}$ we have

$$|x \cdot y| = |x| \cdot |y|$$
, $|x + y| \le |x| + |y|$, $|x| - |y| \le |x + y|$, $|x| - |y| \le |x - y|$.

Proof.

- Let $x \in \mathbb{R}$ such that |x| = 0, bu using the definition of the absolute value given by (1.2) we get x = 0.
- A discussion based on the sign of x and y combined with (1.2) yields $|x \cdot y| = |x| \cdot |y|$.
- Let $z \in \mathbb{R}$, we have |z| = z if $z \ge 0$, and $|z| = -z \ge z$ if $z \le 0$; thus, $z \le |z|$ for any $z \in \mathbb{R}$. Let $x, y \in \mathbb{R}$
 - In the case where $x + y \ge 0$, we get $|x + y| = x + y \le |x| + |y|$.
 - In the case where x + y < 0, we get $|x + y| = -x y \le |-x| + |-y| = |x| + |y|$.

In conclusion : $|x + y| \le |x| + |y|$ for any $x, y \in \mathbb{R}$.

- We have already shown that $|V + W| \le |V| + |W|$ for any $V, W \in \mathbb{R}$, hence

$$|V + W| - |W| \le |V|. \tag{1.3}$$

Let's consider the specific case where V = x + y and W = -y, this yields:

$$|x| - |y| \le |x + y|. \tag{1.4}$$

Hence, the third assertion of the proposition. Let now V = x + y and W = -x, the condition (1.3) gives:

$$|y| - |x| \le |x + y|. \tag{1.5}$$

The conditions (1.4)-(1.5) provide the fourth assertion.

Theorem 1.1 (Newton's binomial formula). Let $a, b \in \mathbb{R}$ and $n \in \mathbb{N}^* \setminus \{1\}$. Then

$$(a+b)^n = \sum_{k=0}^n C_n^k a^{n-k} b^k.$$
 (1.6)

such that $C_n^k = \frac{n!}{k!(n-k)!}$ for any $(n,k) \in \mathbb{N} \times \mathbb{N}$ with $k \le n$.

Proof. by induction on the integer n:

- For n = 2: we have $(a + b)^2 = a^2 + 2ab + b^2$, since $C_2^0 = C_2^2 = 1$ and $C_2^1 = 2$ we obtain

$$(a+b)^{2} = C_{2}^{0}a^{2} + C_{2}^{1}ab + C_{2}^{2}b^{2} = \sum_{k=0}^{2} C_{2}^{k}a^{2-k}b^{k}.$$

- Assume that for some $n \in \mathbb{N}^* \setminus \{1\}$ we have (1.6). Using the fact that $(a+b)^{n+1} = (a+b)(a+b)^n$ and the induction hypothesis (1.6) we get

$$(a+b)^{n+1} = \left(\sum_{k=0}^{n} C_n^k a^{n-k+1} b^k\right) + \left(\sum_{k=0}^{n} C_n^k a^{n-k} b^{k+1}\right).$$

Δ

Using the change of index l = k + 1 at the level of the second sum of the previous equation, we get

$$(a+b)^{n+1} = \left(\sum_{k=0}^{n} C_n^k a^{n-k+1} b^k\right) + \left(\sum_{l=1}^{n+1} C_n^{l-1} a^{n-l+1} b^l\right)$$
$$= C_n^0 a^{n+1} b^0 + \left(\sum_{k=1}^{n} \left(C_n^k + C_n^{k+1}\right) a^{n-k+1} b^k\right) + C_n^n a^0 b^{n+1}. \tag{1.7}$$

Since $C_n^0=C_{n+1}^0$, $C_n^k+C_n^{k+1}=C_{n+1}^k$ and $C_n^n=C_{n+1}^{n+1}$; the expression (1.7) becomes as

$$(a+b)^{n+1} = C_{n+1}^0 a^{n+1} b^0 + \left(\sum_{k=1}^n C_{n+1}^k a^{n-k+1} b^k\right) + C_{n+1}^{n+1} a^0 b^{n+1} = \sum_{k=0}^{n+1} C_{n+1}^k a^{n-k+1} b^k.$$

- In conclusion : we have (1.6) for any $k \in \mathbb{N}^* \setminus \{1\}$.

Example 1.1. The calculus yields

$$\sum_{k=1}^{n} (k+1)^3 = \left(\sum_{k=1}^{n} k^3\right) + 3\left(\sum_{k=1}^{n} k^2\right) + 3\left(\sum_{k=1}^{n} k\right) + \left(\sum_{k=1}^{n} 1\right),$$

using the index change m = k + 1 at the left of the previous equation, we get

$$\sum_{m=2}^{n+1} m^3 = \left(\sum_{k=1}^n k^3\right) + 3\left(\sum_{k=1}^n k^2\right) + 3\frac{n(n+1)}{2} + n,$$

therefore

$$(n+1)^3 + \sum_{m=2}^n m^3 = 1 + \left(\sum_{k=2}^n k^3\right) + 3\left(\sum_{k=1}^n k^2\right) + 3\frac{n(n+1)}{2} + n,$$

finally

$$\sum_{k=1}^{n} k^2 = \frac{1}{3} \left[(n+1)^3 - 1 - 3 \frac{n(n+1)}{2} - n \right] = \frac{(2n+1)(n+1)n}{6}.$$

1.2. Maximum, minimum and integer part.

The upper and lower bounds of a given subset of \mathbb{R} is an essential notion in analysis and calculus, not only for describing the structure of the set of real numbers but also for studying numerical sequences and functions.

Definition 1.2. Let $\mathbb{E} \subset \mathbb{R}$ be non-empty set, and let $\alpha \in \mathbb{R}$.

- We say that α is an upper bound of \mathbb{E} (or that \mathbb{E} is upper bounded* by α) if $x \leq \alpha$ for every $x \in \mathbb{E}$.
- We say that α is lower bound of \mathbb{E} (or that \mathbb{E} is lower bounded* by α) if $\alpha \leq x$ for every $x \in \mathbb{E}$.
- We call the supremum of \mathbb{E} , denoted $Sup(\mathbb{E})$, the smallest upper bound of the set \mathbb{E} .
- We call the infimum of \mathbb{E} , denoted $Inf(\mathbb{E})$, the largest lower bound of the set \mathbb{E} .
- We say that \mathbb{E} is bounded if it is upper and lower bounded.

Example 1.2. For instance, the set A = [0, 2[has $[2, +\infty[$ as the set of upper bounds, $] - \infty, 0]$ as the set of lower bounds, the supremum of A is 2, and the infimum is 0 (see Figure 1.1).

^{*} In some books, the terminology "upper bounded" (respectively "lower bounded") is replaced by "bounded above" (respectively "bounded below")

4 1. Set of real numbers

FIGURE 1.1

Proposition 1.3. *Let* $\mathbb{E} \subset \mathbb{R}$ *non-empty set. Then*

- *M* is the supremum of \mathbb{E} if and only if for any $\varepsilon > 0$ there exists $x \in \mathbb{E}$ such as $M \varepsilon \leq x$.
- *m is the infimum of* \mathbb{E} *if and only if for any* $\varepsilon > 0$ *there exists* $x \in \mathbb{E}$ *such as* $m + \varepsilon \geq x$.

Proof. Both statements can be proved using proof by contradiction :

- Proof of the first statement: Assume that for some $\varepsilon > 0$ and for any $x \in \mathbb{E}$ we have $M \varepsilon > x$; hence, $M \varepsilon$ is an upper bound of \mathbb{E} . Therefore, $M = \sup \mathbb{E} < M \varepsilon$, which is absurd.
- Proof of the second statement: Assume that for some $\varepsilon > 0$ and for any $x \in \mathbb{E}$ we have $m + \varepsilon < x$; hence, $m + \varepsilon$ is a lower bound of \mathbb{E} . Therefore, $m = \text{Inf } \mathbb{E} > m + \varepsilon$, which is absurd.

Proposition 1.4. Let $\mathbb{E} \subset \mathbb{R}$ non-empty. Then, $Sup(\mathbb{E})$ and $Inf(\mathbb{E})$ (when exist) are unique.

Axiom 1.1 (completeness axiom). Any upper-bounded (respectively lower-bounded) non-empty subset of \mathbb{R} has a supremum (respectively an infimum).

Definition 1.3. Let $\mathbb{E} \subset \mathbb{R}$ non-empty, in the case where $Sup(\mathbb{E}) \in \mathbb{E}$ (respectively $Inf(\mathbb{E}) \in \mathbb{E}$) we call $Sup(\mathbb{E})$ the maximum (respectively the minimum) of \mathbb{E} , and we denote it $Max(\mathbb{E})$ (respectively $Min(\mathbb{E})$).

Example 1.3. Let A be the set defined as

$$\mathcal{A} = \left\{ x_n = (-1)^n + \frac{1}{n}; \quad n \in \mathbb{N}^* \right\}.$$

We have two situations, n even or n odd, hence

$$\mathcal{A} = \underbrace{\left\{x_{2p} = 1 + \frac{1}{2p}; \quad p \in \mathbb{N}^*\right\}}_{\mathscr{C}_1} \underbrace{\left\{x_{2p+1} = -1 + \frac{1}{2p+1}; \quad p \in \mathbb{N}\right\}}_{\mathscr{C}_2},$$

- The case of the set \mathcal{C}_1 : the function 1 + 1/(2p) is decreasing, so

$$\sup \mathcal{C}_1 = 1 + \frac{1}{2p} \Big|_{p=1} = \frac{3}{2}, \quad \inf \mathcal{C}_1 = \lim_{n \to +\infty} 1 + \frac{1}{2p} = 1.$$

Thus Min \mathcal{C}_1 does not exists and Max $\mathcal{C}_2 = 3/2$.

- The case of the set \mathcal{C}_2 : the function 1 - 1/(2p + 1) is increasing, therefore

$$\operatorname{Inf} \mathscr{C}_2 = 1 - \frac{1}{2p+1} \Big|_{p=0} = 0, \quad \operatorname{Sup} \mathscr{C}_2 = \lim_{n \to +\infty} 1 - \frac{1}{2p+1} = 1.$$

this gives $\min \mathscr{C}_2 = 0$ and $\max \mathscr{C}_2 = \not\exists$.

In conclusion, we have the following table:

	Inf	Sup	Min	Max
\mathscr{C}_1	1	3/2	∄	3/2
\mathscr{C}_2	0	1	0	Æ
\mathcal{A}	0	3/2	0	3/2

Δ

Δ

Proposition 1.5 (Archimede's axiom). Let \mathbb{N} be the set of the natural integer. Then

$$\forall x \in \mathbb{R}_+, \quad \exists m \in \mathbb{N}: \quad m \geq x.$$

Proof. By contradiction, assume that

$$\exists x \in \mathbb{R}_+, \quad \forall m \in \mathbb{N}: \quad m < x,$$

hence \mathbb{N} is upper bounded by x; thus, \mathbb{N} has a supremum (see Axiom 1.1). Proposition 1.3 ensures the existence of $n \in \mathbb{N}$ such that $Sup(\mathbb{N}) - 1 < n$; Tterefore, $Sup(\mathbb{N}) < n + 1$. Or $n + 1 \in \mathbb{N}$, hence the contradiction.

Proposition 1.6. Let $x \in \mathbb{R}$, then there exists a unique integer $n \in \mathbb{Z}$ such that $n \le x < n + 1$.

Definition 1.4 (The integer part *). The integer part of $x \in \mathbb{R}$ is the integer floor $(x) \in \mathbb{Z}$ satisfies

$$floor(x) \le x < floor(x) + 1.$$

Example 1.4. Let x = 1 + 2/m with $m \in \mathbb{N}^*$, we have $1 \le 1 + 2/m < 2$ for any $m \ge 3$. Then, for $m \in \mathbb{N}^*$ with $m \ge 3$ we have floor(1 + 2/m) = 1. In the case where m = 1 we obtain x = 3, thus floor(x) = 3. The case where m = 2 leads to x = 2, so floor(x) = 2.

FIGURE 1.2: floor(·) over [-3, +3]

FIGURE 1.3: $ceil(\cdot) = floor(\cdot) + 1 \text{ over } [-3, +3]$

Proposition 1.7. *For any* $x \in \mathbb{R}$ *we have*

- $floor(x) \le x < floor(x+1)$.
- floor(x + 1) = floor(x) + 1.
- $floor(x) + floor(y) \le floor(x + y) \le floor(x) + floor(y) + 1$.
- $x 1 < \text{floor}(x) \le x$.

Proof.

- Let $x \in \mathbb{R}$, the definition of the integer part of x + 1 leads to

$$floor(x+1) \le x+1 < floor(x+1)+1. \tag{1.8}$$

hence x < floor(x + 1). Combining this with the definition of the integer part of x, we obtain the first assertion of the proposition.

- For any $x \in \mathbb{R}$ we have $floor(x) \le x < floor(x) + 1$, thus

$$floor(x) + 1 \le x + 1 < (floor(x) + 1) + 1, \tag{1.9}$$

Since there is no integer in]floor(z), z[and in]z, floor(z)[, the constraints (1.8)–(1.9) give

$$floor(x) + 1 \le floor(x + 1), \quad floor(x + 1) + 1 \le (floor(x) + 1) + 1.$$

This ensures the second assertion of the proposition.

^{*} The integer part of x (or floor function) can be denoted as [x] as well as [x]. The function ceil(x) = floor(x) + 1, denoted as well [x], is called the ceiling function.

1. Set of real numbers

- For any $x, y \in \mathbb{R}$, we have $floor(x) \le x < floor(x) + 1$, $floor(y) \le y < floor(y) + 1$; hence

$$floor(x+y) \le x + y < floor(x+y) + 2, \tag{1.10}$$

moreover thus

$$floor(x+y) \le x + y < floor(x+y) + 1 \tag{1.11}$$

Since there is no integer in]floor(z), z[and in]z, floor(z)[, the conditions (1.10)-(1.11) provide

$$floor(x) + floor(y) \le floor(x + y), \quad floor(x) + floor(y) + 1 \ge floor(x + y) + 1.$$

Hence, the third assertion of the proposition.

- For $x \in \mathbb{R}$ we have floor(x) ≤ x < floor(x) + 1, thus floor(x) ≤ x and x - 1 ≤ floor(x). Hence the fourth assertion of the proposition.

Proposition 1.8. The set of rational numbers \mathbb{Q} is dense in \mathbb{R} , which means

$$\forall x, y \in \mathbb{R}: \quad x < y, \quad \exists r \in \mathbb{Q}: \quad x < r < y.$$

Proof. Let $x, y \in \mathbb{R}$ such that x < y. Achimede's axiome (Proposition 1.5) gives the existence of $\eta \in \mathbb{N}$ such as $\eta > 1/(y-x) > 0$, this leads to $y > x + 1/\eta$. Since $\eta x - 1 < \rho \le \eta x$ with $\rho = \text{floor}(\eta x)$, we get

$$\begin{cases} \rho \le \eta x \\ \eta x - 1 < \rho \end{cases} \Longrightarrow \begin{cases} \frac{\rho + 1}{\eta} \le x + \frac{1}{\eta} \\ x < \frac{\rho + 1}{\eta} \end{cases} \Longrightarrow \begin{cases} \frac{\rho + 1}{\eta} < y \\ x < \frac{\rho + 1}{\eta} \end{cases}.$$

Therefore, x < r < y with $r = (\rho + 1)/\eta \in \mathbb{Q}$. This finishes the proof.