Zagadnienie przydziału – algorytm (metoda) węgierska

Zadanie 1

- Utwórz zespół 3 (4)-osobowy
- Zaimplementuj jedną z podprocedur
 - o Redukcja macierzy, schemat ogólny algorytmu
 - Algorytm wyznaczania zer niezależnych
 - o Algorytm wykreślania zer macierzy minimalną liczbą linii
- Zadanie obliczeniowe macierz kosztów przydziału 6 (min) zadań/maszyn

Zadanie 2

 Wykonaj obliczenia dla zadania – pokaż macierze: początkową, pośrednie (każda zmiana), rozwiązanie końcowe i optymalny koszt przydziału

Zadanie 3

- Czy wynik redukcji jest zależny od kolejności (wiersze-kolumny/ kolumny-wiersze)
 uzyskamy zawsze tą samą macierz / sumaryczną wielkość redukcji?
- Jak jest możliwa minimalna / maksymalna liczba zer niezależnych w macierzy zredukowanej?
- Czy wykreślanie zer macierzy jest prawidłowa (zawsze) jeśli będziemy wykreślać kolejno linie (wiesz/kolumna) z największą liczbą nieskreślonych zer?
- Jak się ma minimalna liczba linii (wykreślająca zera) i liczba (maksymalna) zer niezależnych?
- Czy procedura zwiększająca liczbę zer niezależnych zawsze jest skuteczna / o ile może zmienić się ich liczba?

Uwagi:

- Jako sprawozdanie wstępne umieścić na UPEL efekt działań z zajęć (indywidualnie).
- Sprawozdanie (końcowe) jedno na cały zespół proszę podać skład zespołu i zrealizowane działania

Algorytm węgierski

- Krok przygotowawczy
 - w każdym wierszu macierzy A odejmujemy najmniejszy element wiersza i tworzymy nową macierz:

$$\begin{split} A^1 &= \left[a^1{}_{ij}\right] = \left[a_{ij} \,-\, y_i\right]\!,\\ \text{gdzie } y_i &= \min_{j=1,\dots,n} a_{ij} \end{split}$$

 W każdej kolumnie macierzy A odnajdujemy najmniejszy element kolumny i tworzymy nową macierz

$$\begin{split} A^2 &= \left[a^2{}_{ij}\right] = \left[a^1{}_{ij} \; - \; z_j\right]\!,\\ \text{gdzie} \; z_j &= \min_{i=1,\ldots,n} a_{ij} \end{split}$$

- c. Sumaryczna redukcja jest dolnym ograniczeniem wartości funkcji celu φ
- Poszukiwanie kompletnego przydziału.
 Wyznaczamy zbiór zer niezależnych 0*- dokonujemy przydziału dla jednego zera w każdym wierszu lub kolumnie.

Jeśli $|0^*|=n$ to znaleźliśmy rozwiązanie optymalne, z kosztem $\varphi=$ "wielkości redukcji macierzy" i otrzymaliśmy kompletny przydział.

Jeśli nie, to zera nie będące zerami niezależnymi oznaczamy jako zależne (\varnothing).

- 3. Sprawdzenie liczby zer niezależnych (*ALG. 1) Wykreślamy (zakreślamy) minimalną liczbę linii poziomych oraz pionowych wszystkie zera w macierzy A. Jeżeli liczba linii jest równa n, to znaleziono zbiór zer niezależnych |0*| = n. Odczytaj przydział i STOP. W p.p. → idź do kroku 4.
- 4. Próba powiększenia zbioru zer niezależnych.
 - Znajdź najmniejszy nieprzykryty przez linie element macierzy A.
 - b. Odejmij ten element od wszystkich, nie przykrytych liniami elementów A.
 - Dodaj element najmniejszy do elementów macierzy A, które są przykryte dwoma liniami
 - d. Zwiększ wartość φ o krotność elementu minimalnego i przejdź do kroku \rightarrow 2.

ALG. 1

Algorytm wyznaczający minimalny zbiór linii wykreślających wszystkie zera w macierzy.

- 1. Poszukiwanie maksymalnego skojarzenia.
 - a. Oznaczyć symbolem \mathbf{x} każdy wiersz <u>nie posiadający</u> niezależnego zera $0^* = (0)$
 - Oznaczyć symbolem \mathbf{x} każda kolumnę <u>mającą zero zależne 0'</u> = (przekreślone \varnothing) <u>w oznaczonym wierszu</u>
 - c. Oznaczyć symbolem \mathbf{x} każdy wiersz mający w oznakowanej kolumnie niezależne zero $0*/(\boxed{0}) \rightarrow (b)$.

Pętle należy kontynuować tak długo, aż nie jest możliwe dalsze oznakowanie.

2. Poszukiwanie minimalnego pokrycia wierzchołkowego.

Pokrycie wierzchołkowe jest zbiorem minimalnym wierszy i kolumn zawierających wszystkie zera w macierzy. Aby go uzyskać przekreślamy wszystkie nieoznakowane wiersze oraz oznakowane kolumny.