Serie 4, Aufgabe 2

Let (X, \mathfrak{M}, μ) be a measure space and $f: X \to Y$ a map. Define

$$\mathfrak{N}:=\{A\subset Y: f^{-1}(A)\in\mathfrak{M}\},\quad \nu(A):=\mu(f^{-1}(A)), A\in\mathfrak{N}.$$

Show that (Y, \mathfrak{N}, ν) is a measure space. Find all \mathfrak{N} -measurable maps $g: Y \to \mathbb{C}$ and show that

$$\int_{Y} g \, \mathrm{d}\nu = \int_{Y} g \circ f \, \mathrm{d}\mu,$$

if either side exists.

Proof. \mathfrak{N} is a σ -algebra (Def. 1.3):

- (i) $f^{-1}(Y) = X \in \mathfrak{M} \Rightarrow Y \in \mathfrak{N}$.
- (ii) $A \in \mathfrak{N} \Rightarrow f^{-1}(A) \in \mathfrak{M} \Rightarrow (f^{-1}(A))^c = f^{-1}(A^c) \in \mathfrak{M} \Rightarrow A^C \in \mathfrak{N}$.
- (iii) $A_i \in \mathfrak{N}, i \in \mathbb{N} \Rightarrow f^{-1}(A_i) \in \mathfrak{M}, i \in \mathbb{N} \Rightarrow \bigcup_{n=1}^{\infty} f^{-1}(A_i) = f^{-1}(\bigcup_{n=1}^{\infty} A_i) \in \mathfrak{M} \Rightarrow \bigcup_{n=1}^{\infty} A_i \in \mathfrak{N}.$ ν is a measure on \mathfrak{N} (Def. 2.1):
 - (i) Let $A_1, A_2, \dots \in \mathfrak{N}$ be disjoint. Then $f^{-1}(A_1), f^{-1}(A_2), \dots \in \mathfrak{M}$ are also disjoint. Hence:

$$\nu\left(\bigcup_{i=1}^{\infty}A_i\right) = \mu\left(f^{-1}\left(\bigcup_{i=1}^{\infty}A_i\right)\right) = \mu\left(\bigcup_{i=1}^{\infty}f^{-1}(A_i)\right) = \sum_{i=1}^{\infty}\mu(f^{-1}(A_i)) = \sum_{i=1}^{\infty}\nu(A_i).$$

(ii) $f^{-1}(\emptyset_Y) = \emptyset_X \in \mathfrak{M}. \ \mu(\emptyset_X) = 0.$ Hence $\nu(\emptyset_Y) = 0 < \infty.$

Let $V \in \mathbb{C}$ be open. Then

$$g:Y\to\mathbb{C}$$
 is measurable $\Leftrightarrow g^{-1}(V)\in\mathfrak{N}$
$$\Leftrightarrow f^{-1}(g^{-1})(V)=(g\circ f)^{-1}(V)\in\mathfrak{M}.$$

So $g:Y\to\mathbb{C}$ is measurable iff $g\circ f:X\to\mathbb{C}$ is measurable.

If $\int_{V} g \, d\nu$ exists, then

$$\int_Y g \, \mathrm{d}\nu = \int_Y (\mathrm{Re} \ g)^+ \, \mathrm{d}\nu - \int_Y (\mathrm{Re} \ g)^- \, \mathrm{d}\nu + \mathrm{i} \left(\int_Y (\mathrm{Im} \ g)^+ \, \mathrm{d}\nu - \int_Y (\mathrm{Im} \ g)^- \, \mathrm{d}\nu \right).$$

Now consider a simple measurable s with $0 \le s \le \text{Re}(g)^+$, $s = \sum_{i=1}^n \alpha_i \chi_{A_i}$, $\alpha_i \in \mathbb{R}^+$, $A_i \in \mathfrak{N}$. Then $0 \le s \circ f \le \text{Re}(g \circ f)^+$ is also simple and measurable. Since $\chi_{f^{-1}(A)} = \chi_A \circ f$:

$$\int_{Y} s \, d\nu = \int_{Y} \sum_{i=1}^{n} \alpha_{i} \nu(A_{i}) = \sum_{i=1}^{n} \alpha_{i} \mu(f^{-1}(A_{i}))$$

$$= \int_{f^{-1}(Y)} \sum_{i=1}^{n} \alpha_{i} \chi_{f^{-1}(A_{i})} \, d\mu$$

$$= \int_{X} \sum_{i=1}^{n} \alpha_{i} \chi_{A_{i}} \circ f \, d\mu$$

$$= \int_{X} s \circ f \, d\mu.$$

From this, $\int_Y (\operatorname{Re} g)^+ d\nu \leq \int_X (\operatorname{Re} g \circ f)^+ d\mu$. Since $Y \supset f(X)$, ' \geq ' holds, too. Hence $\int_Y (\operatorname{Re} g)^+ d\nu = \int_X (\operatorname{Re} g \circ f)^+ d\mu$. Proceed analogously for the other terms that make up $\int_Y g d\nu$.