

Поиск нетеплового излучения в скоплении галактик Волосы Вероники

(Выпускная квалификационная работа на степень бакалавра)

Студент: Данилов Е.С.

Научный руководитель: к.ф.-м.н. Кривонос Р.А.

Межгалактическая среда

Полностью ионизированная плазма с $T \sim 10^7 - 10^8 \text{ K}$

Нетепловое излучение

Релятивистские электроны

Обратное комптоновское рассеяние

Синхротронное излучение

$$\hbar\omega_X \sim \frac{4}{3} \gamma^2 \hbar\omega_{CMB} \sim 75 \text{ кэВ}$$

$$\hbar\omega_r \sim 0.29 \frac{3}{4\pi} \frac{eBsin\theta}{m_e c} \gamma^2 \sim 1.4 \ \Gamma \Gamma$$
ц

$$\gamma_X \sim 9 \times 10^3$$

$$\gamma_r \sim 10^4$$

Исследование

Фильтрация шумов

Радиальный профиль

 $r_{\text{ист}} \sim 30 \text{ угл. минут}$

 $r_{\text{ист}} > \text{PSF} - \text{протяженный источник}$

s(t) определяется физикой источника

β-модель

$$\frac{\nabla P}{\rho} = -\nabla \varphi$$

$$\frac{n_{gas}(r)}{n_{gas}(0)} = \left[\frac{\rho_{DM}(r)}{\rho_{DM}(0)}\right]^{\beta}$$

β-модель

$$\frac{\nabla P}{\rho} = -\nabla \varphi$$

$$\frac{n_{gas}(r)}{n_{gas}(0)} = \left[\frac{\rho_{DM}(r)}{\rho_{DM}(0)}\right]^{\beta}$$

$$\rho_{DM}(r) = \rho_{DM}(0) \left[1 + \left(\frac{r}{r_c} \right)^2 \right]^{-3/2} \qquad n_{gas}(r) = n_{gas}(0) \left[1 + \left(\frac{r}{r_c} \right)^2 \right]^{-3\beta/2}$$

Кривая роста

$$\mathsf{PSF} = e^{-\frac{r^2}{2\sigma^2}}$$

$$S_{\beta}(r) = S_{\beta}(0) \left[1 + \left(\frac{r}{r_c} \right)^2 \right]^{0.5 - 3\beta}$$

Результаты фильтрации

Модели излучения

Тормозное излучение			ение	Обр. комптоновское рассеяние		
Т, кэВ	Обилие	Z	Apec norm	Γ	Powerlaw norm	
8.2	0.25	0.0231	?	2	?	

Результаты аппроксимации

	sdd 19-Jun-2020 16:38
$F_{20-80}^{\text{тепл}}$, $10^{-11} \frac{\text{Эрг}}{\text{см}^2 \text{с}}$	предел $F_{20-80}^{\text{нетепл}}$, $10^{-11} \frac{\text{Эрг}}{\text{см}^2\text{с}}$
4.13	1.69

Однородное магнитное поле

$$\gamma_X \sim 10^4 \sim \gamma_r$$

$$F_X = \left[F_r C(p) \left(\frac{v_r}{v_X} \right)^{\alpha} T_{CMB}^{\alpha+3} \right] B^{-\alpha-1}$$

$$B_{\text{одн}} \ge 0.15 \; \mu G$$

Неоднородное магнитное поле

$$B^{2}(r) = B_{0}^{2} [\rho(r)/\rho_{0}]^{a}$$

$$\frac{F_X}{F_{X.0}} \propto f(a) = \frac{\int Y_r(r)(B/B_0)^{-\alpha-1} r^2 dr}{\int Y_r(r) r^2 dr} \stackrel{?}{\underset{\times}{\longrightarrow}} {}^{\frac{7}{5}}$$

$$Y_{\rm r}(r) \propto \left[1 + \left(\frac{r}{r_{c,r}}\right)^2\right]^{-3\beta_r}$$

Магнитное поле

Однородное м.п.

 $B_{\text{одн}} \ge 0.15 \; \mu G$

Неоднородное м.п.

$$B(r) = B_0 [1 + (r/r_c)^2]^{-3a\beta/4}$$

$$B_0 \ge \varphi(a) \times B_{\text{одн}}$$

Модель распределения газа

$$n_{gas}(r) = n_{gas}(0) \left[1 + \left(\frac{r}{r_c}\right)^2 \right]^{-3\beta/2}$$

$$\beta = 0.741$$

$$r_c = 10.7'$$

Результаты аппроксимации

Получены параметры рентгеновского излучения					
предел $F_{20-80}^{\rm Hetenn}$, $10^{-11} \frac{\rm Эрг}{\rm cm^2 c}$	$F_{20-80}^{\text{тепл}}$, $10^{-11} \frac{Эрг}{см^2 c}$	Т, кэВ	Γ	Обилие	Z
1.1	5.5 ± 0.6	8.2	2	0.25	0.0231

Магнитное поле

Однородное м.п.

$$B_{\text{одн}} \ge 0.15 \; \mu G$$

Неоднородное м.п

$$B(r) = B_0 [1 + (r/r_c)^2]^{-3a\beta/4}$$

$$B_0 \ge \varphi(a) \times B_{\text{одн}}$$

 $\varphi(a) \in [1, 2.8]$

Продолжение исследования

Анализ полученных карт фотонов

Уточнение значений потоков по новым данным

$$B^{2}(r) = B_{0}^{2} [\rho(r)/\rho_{0}]^{a}$$

Спасибо за внимание!

Результаты исследования

Подтверждена модель распределения газа $n_{gas}(r) = n_{gas}(0) \left[1 + \left(\frac{r}{r_c}\right)^2\right]^{-3\beta/2}$

Получены параметры рентгеновского излучения					
предел $F_{20-80}^{\text{нетепл}}$, $10^{-11} \frac{\text{Эрг}}{\text{см}^2 \text{с}}$	$F_{20-80}^{\text{тепл}}$, $10^{-11} \frac{Эрг}{см^2 c}$	Т, кэВ	Γ	Обилие	Z
1.1	5.5 ± 0.6	8.2	2	0.25	0.0231

Вычислены минимальные значения магнитного поля скопления			
Однородное м.п.	Неоднородное м.п		
$B_{ ext{ogh}} \geq 0.15 \; \mu G$	$B_0^{\scriptscriptstyle{ ext{MUH}}} \epsilon \ [0.15 \ \mu G, 0.42 \ \mu G]$		

Ошибки в кривой роста

Извлечение потока

Один физ. пиксель – 12`

Один пиксель изображения – 12`

Отрицательные потоки

Сравнения масштабов

 $r_{\rm ист} \sim 30$ угл. минут

 $r_{\text{ист}} > \sigma - протяженный ист.$

 $r_{\rm ист} < 3 R_{\rm p.c.}$ - изображение не искажено

