Prova scritta di Algebra per Informatica, 24/10/2022 – prof. P. Papi

Nome, Cognome, Numero di Matricola:

- 1. Non sono ammessi appunti, libri di testo, calcolatrici né l'uso del computer (al di fuori di exam.net)
- 2. Spiegare il procedimento ed i calcoli eseguiti, e giustificare ogni risposta. La valutazione terrà conto della presentazione: leggibilità, grammatica, sintassi, ordine, chiarezza, capacità di sintesi.
 - 3. Una risposta giusta con giustificazione sbagliata viene valutata ≤ 0 .
 - 4. Per gli esercizi da 1 a 4, riportare la risposta sintetica nella colonna centrale della tabella sottostante.
 - 5. Il tempo a disposizione è due ore.

Esercizio	Risposta sintetica	Valutazione
1		
2.a		
2.b		
3.a		
3.b		
4.a		
4.b		

Esercizio 1.

Determinare tutti gli interi con esattamente tre cifre decimali che verificano il sistema di congruenze

$$\begin{cases} 5x \equiv 2 \mod 11 \\ 3x \equiv 2 \mod 7 \\ x \equiv 3 \mod 35 \end{cases}$$

Purham il & stema rec france structured $X = \frac{1}{2}$ and $\frac{1}{2}$ $X = \frac{1}{2}$ $X = \frac{1}{2}$ X

$$X = 3 + 5 k$$

 $3 + 5 k = 3$ and $+$

$$R = 0 \text{ mol} + 1$$

$$X = 3 + 35h$$

$$X = 3 + 35h$$

$$X = 7 \text{ mol} + 1$$

2h = 4 ml 11 h = 2 mol 11

$$h = 2 + MS$$
 $\times = 3 + 35 h = 3 + 35 (2 + KS)$
 $x = 73 + 38 \le S$ Dugue $X = 658$ $\times = 863$
 $\times = 4843, 658, -312, -697$

Esercizio 2.

- **a)** Esibire un isomorfismo tra il sottogruppo H del gruppo simmetrico S_9 generato da $(1\,3\,4\,7)$ e $(2\,5\,8)$ e $\mathbb{Z}_4 \times \mathbb{Z}_3$.
- **b)** Dimostrare che H è ciclico, e calcolare il numero dei suoi generatori.

a) Sie 6 =
$$(1347)$$
, $C = (238)$.
Rimbu $62 = 26$, $o(2) = 3$, $o(6) = 4$.
Bilei $(o(2), o(6)) = 1$, $o(62) = 12$.
e Jupi $H = (62)$.
U muses 2 generation 4 H e $(12) = 4$

Silvente Zux Zz = Ziz, per il tereme cinese dei cert. Allore la eneppe 67 H > (7,7) Si estende en modo reico a ecce spenafro H = Zu x Zz **Esercizio 3.** Si consideri l'applicazione lineare $L_A : \mathbb{R}^3 \to \mathbb{R}^4$, $L_A(X) = AX$ ove:

- 1. Determinare una base per $Ker L_A$ e una base per $Im L_A$.
- 2. Determinare equazioni cartesiane per $Im L_A$.

per la gossa righe s'At

 $\operatorname{Lu} L_{A} = \operatorname{R} \left(\frac{1}{2} \right) \operatorname{O} \operatorname{R} \left(\frac{3}{2} \right)$

b) Equation continue pu by by a etterpore imposed la comprise pu by the second stand of the second stand of the second se

Britogre find impose I seemla mento a titi: i con con proofine 3. So alterizano dere con d'huri un fre destre pol esempo $\int -2 \times (-1) \times (-$

7

Esercizio 4. L'applicazione lineare $T: \mathbb{R}^3 \to \mathbb{R}^2$ soddisfa:

• ker
$$T$$
 è generato dal vettore $\begin{pmatrix} 1\\1\\0 \end{pmatrix}$;

•
$$T \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \quad T \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}.$$

- 1. Scrivere la matrice A associata a T utilizzando le basi canoniche sia in partenza che in arrivo.
- 2. Dire se $S: \mathbb{R}^2 \to \mathbb{R}^2$, $S(X) = AA^tX$ è diagonalizzabile.

1. I the webs
$$\begin{bmatrix} 3 \\ 3 \end{bmatrix}$$
, $\begin{bmatrix} 4 \\ 1 \end{bmatrix}$, $\begin{bmatrix} 9 \\ 4 \end{bmatrix}$ four luncounts and partially prod $T \in M$ in societable of the $T = \frac{1}{2} = \frac{1}{$

Duge
$$A = \begin{pmatrix} -1 & 1 & 0 \\ -2 & 2 & -1 \end{pmatrix}$$

Essent pli œutheler reali « Listat., S e dispuelitieble

Esercizio 5.

- 1. Dare la definizione di vettori linearmente indipendenti in uno spazio vettoriale di dimensione finita.
- 2. Dimostrare che un gruppo ciclico infinito è isomorfo a \mathbb{Z} .
- 3. Vero o falso ? Se vero dimostrare, altrimenti esibire un controesempio: sia V uno spazio vettoriale di dimensione finita e siano W_1, W_2 sottospazi di V. Se $\mathcal{B}_1, \mathcal{B}_2$ sono basi di W_1, W_2 , rispettivamente, allora $\mathcal{B}_1 \cup \mathcal{B}_2$ è una base di $W_1 + W_2$.

BRUTTA COPIA