Treatment of Myocardial Ischemia & Congestive Heart Failure

PHC 721

Winter 2022

Agnieszka Z. Balkowiec

Angina Pectoris: Chest Pain/Discomfort evoked by Myocardial Ischemia

- Exertional (Stable):
- $\uparrow O_2$ demand, \downarrow coronary blood flow (plaque)
- Unstable:

Acute, unexpected: $\uparrow\uparrow\uparrow$ risk of myocardial infarction

Dental Implications:

Inhalation anesthetics (e.g., Isoflurane) lead to systemic vasodilation and the resulting decrease in coronary blood flow ("coronary steal"). In patients with Angina Pectoris, coronary vessels distal to the plaque are maximally dilated, i.e. unable to compensate for the decreased blood flow by vasodilation \Rightarrow risk of Myocardial Infarction.

- Variant (aka Prinzmetal's):
- At rest (often at night), coronary artery spasm
- <u>Microvascular:</u>
 Microvascular disease, vasospasms in microvessels
- Atypical:

Atypical and vague symptoms (chest discomfort rather than pain, back pain, nausea, etc.). More frequent in women.

Myocardial Ischemia:

O₂ Supply

<

O₂ Demand

Treatment of Myocardial Ischemia

Myocardial Ischemia:

O₂ Supply

O₂ Demand

Pharmacological Intervention: $\uparrow O_2$ Supply

 \downarrow O_2 Demand

- Organic Nitrates: Glyceryl trinitrate (Nitroglycerin) Isosorbide dinitrate

Nitric Oxide

β-adrenergic Antagonists (beta-blockers): Propranolol, Bisoprolol Labetalol

- Ca²⁺ channel Antagonists: Verapamil, Dihydropyridines (Nifedipine, Amlodipine)

Nitrovasodilators: Organic Nitrates

Mechanism of Action:

- Release of nitric oxide (NO) \Rightarrow ^cyclic GMP \Rightarrow ^ Protein Kinase G (PKG) and other kinases \Rightarrow ^ Phosphatases \Rightarrow Dephosphorylation of the Myosin Light Chain & \downarrow cytosolic $Ca^{2+} \Rightarrow$ Vascular Smooth M. Relaxation \Rightarrow Vasodilation \Rightarrow ^ Venous Capacitance (\downarrow venous return/pre-load) & \downarrow Peripheral Vascular Resistance (\downarrow after-load) \Rightarrow \downarrow Cardiac O_2 demand & ^ regional blood flow (e.g., restoration of blood flow near endocardium)
- Relaxation of smooth muscle in the respiratory, GI, biliary tracts
 ⇒ relief of biliary, esophageal spasm

Indications:

- Exertional Angina (sublingual application at the time of the attack; tolerance develops following continuous exposure)
- Acute Myocardial Infarction (except patients with hypotension)

Side effects:

- Severe \overline{Hy} potension:
 - in autonomic dysfunction (impaired baroreflexes)
 - in patients treated for erectile dysfunction with phosphodiesterase 5 (PDE 5) inhibitors (e.g., Sildenafil-Viagra; Tadalafil-Cialis).
- Headache, often severe

Congestive Heart Failure

Heart Failure: the heart is unable to pump the amount of blood

that is adequate for the needs of the tissues

Congestion: volume overload (blood backs up in organs):

 \uparrow hydrostatic pressure $\rightarrow \uparrow$ filtration \rightarrow edema: pulmonary edema, hydroperitoneum (ascites), peripheral edema (swelling of feet, ankles, etc)

- Acute (in myocardial infarction, arrhythmia, etc.) - risk of sudden death!

- Chronic (in coronary artery disease, cardiac valve disease, etc.)

- Right ventricle only (Cor Pulmonale) - less common

- Left ventricle or both ventricles - more common

- Systolic dysfunction:

 \checkmark ventricular contraction $\rightarrow \checkmark$ stroke volume $\rightarrow \uparrow$ end-systolic ventricular volume \rightarrow compensatory sympathetic activation and stimulation of the Renin-Angiotensin-Aldosterone System \rightarrow

 \uparrow peripheral vascular resistance, Na⁺ and H₂O retention \rightarrow ↑ end-diastolic volume (preload),

 \uparrow O_2 demand \rightarrow compensatory cardiac hypertrophy \rightarrow eventually dilated cardiomyopathy

- Diastolic dysfunction:

 \downarrow elasticity of the myocardium $\rightarrow \downarrow$ filling during diastole $\rightarrow \downarrow$ stroke volume

Pharmacotherapy of Congestive Heart Failure

Issues: ↑ Preload, ↑ Afterload, ↓ Myocardial Contractility, Pathological Remodeling

Interventions: \downarrow EFV, \downarrow BP, \uparrow Contractility, \downarrow O₂ demand, \downarrow Ventricular stiffness

- Cardiac Glycosides: Digoxin

- Dopaminergic Agonist: Dopamine

- Diuretics:

Furosemide, Hydrochlorothiazide, Spironolactone

- RAA-SYSTEM INHIBITORS:

- <u>Angiotensin-Converting Enzyme (ACE) Inhibitors</u>: *Captopril, Enalapril, Ramipril*

> - <u>Angiotensin II Receptor (AT₁) Antagonists</u>: *Losartan, Valsartan*

> > - <u>Direct Renin Inhibitors</u>: *Aliskiren*

- <u>β-adrenergic Antagonists (beta-blockers)</u>: *Propranolol, Bisoprolol Labetalol*

Vasodilators:

Hydralazine, Sodium Nitroprusside, Organic Nitrates (Nitroglycerin, Isosorbide dinitrate)

Cardiac Glycosides: Digoxin

Mechanism of Action:

Cardiomyocytes: Inhibition of sarcolemmal Na⁺/K⁺-ATPase \Rightarrow cytosolic Na⁺ \Rightarrow \downarrow transmembrane Na⁺ gradient \Rightarrow \downarrow Ca²⁺ efflux \Rightarrow \uparrow Ca²⁺ accumulation in the sarcoplasmic reticulum \Rightarrow \uparrow releasable Ca²⁺ \Rightarrow \uparrow cardiac contractility

Indications:

Congestive Heart Failure, but limited to patients who do not improve on ACE inhibitors and beta-blockers at maximal doses.

Side effects:

- Ventricular Arrhythmias (life-threatening!) when overdosed (e.g., inhibition of P-glycoprotein transporter activity by Verapamil $\Rightarrow \downarrow$ renal tubular elimination)
- Elevated extracellular potassium reduces Digoxin binding to Na⁺/K⁺-ATPase \Rightarrow effectiveness