Long-Short Term Memory

Neural Networks Design And Application

Recurrent neural networks

$$h_t = f \begin{bmatrix} w * \begin{pmatrix} h_{t-1} \\ x_t \end{bmatrix} \end{pmatrix}$$
 $f = \tanh(\cdot)$
 $h_t = f_W(h_{t-1}, x_t)$
new state \int old state input vector at some time step some function with parameters W

Recurrent neural networks

$$h_t = f egin{bmatrix} h_{t-1} & f = anh(\cdot) \ h_t = f_W(h_{t-1}, x_t) \ ext{new state} & ext{old state input vector at some time step} \ ext{some function with parameters W}$$

Q: what issue will we have?

Q: what issue will we have?

Gradient vanish

ResNet: shortcut connection

implication: same dimension

Long-short term memory (LSTM) networks

Composition of all $\{h_t\}$

Pointwise Operation

Elementwise multiplication/addition

$$f_t = \sigma\left(W_f \cdot [h_{t-1}, x_t] + b_f\right)$$

$$f_t = \sigma\left(W_f \cdot [h_{t-1}, x_t] + b_f\right)$$

Forget gate:

Whether to erase cell

$$f_t = \sigma\left(W_f \cdot [h_{t-1}, x_t] + b_f\right)$$

Input gate

$$i_t = \sigma\left(W_i \cdot [h_{t-1}, x_t] + b_i\right)$$

$$i_t = \sigma (W_i \cdot [h_{t-1}, x_t] + b_i)$$

$$\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$$

cell input activation vector

$$C_t = f_t * C_{t-1} + i_t * \tilde{C}_t$$

Cell state

Output gate

$$o_t = \sigma (W_o [h_{t-1}, x_t] + b_o)$$
$$h_t = o_t * \tanh (C_t)$$

$$C_t = f_t * C_{t-1} + i_t * \tilde{C}_t$$

$$f_t = \sigma \left(W_f \cdot [h_{t-1}, x_t] + b_f \right)$$

 $C_t = f_t * C_{t-1} + i_t * \tilde{C}_t = f_t * f_{t-1} * C_{t-2} + others$ $f_t = \sigma (W_f \cdot [h_{t-1}, x_t] + b_f)$

$$\begin{split} C_t &= f_t * C_{t-1} + i_t * \tilde{C}_t = \textbf{\textit{f}}_t * \textbf{\textit{f}}_{t-1} * C_{t-2} + others \\ f_t &= \sigma \left(W_f \cdot [h_{t-1}, x_t] \ + \ b_f \right) \ \text{Not multiplication of weights } \prod W_t \end{split}$$

Image from Fig 8.10.1 of Dive into Deep Learning at https://classic.d2l.ai/chapter_recurrent-neural-networks/deep-rnn.html

Image from Fig 8.10.1 of Dive into Deep Learning at https://classic.d2l.ai/chapter_recurrent-neural-networks/deep-rnn.html

For each unit: a mapping

 $\mathsf{RNN}: h_t^{l-1}, h_{t-1}^l \to h_t^l$

 $h_t^l \in \mathbb{R}^n$

Image from Fig 8.10.1 of Dive into Deep Learning at https://classic.d2l.ai/chapter_recurrent-neural-networks/deep-rnn.html

For each unit: a mapping

 $\text{RNN}: h_t^{l-1}, h_{t-1}^l \to h_t^l \qquad \quad h_t^l \in \mathbb{R}^n$

 $h_t^l = f(T_{n,n}h_t^{l-1} + T_{n,n}h_{t-1}^l)$, where $f \in \{\text{sigm}, \text{tanh}\}$

Image from Fig 8.10.1 of Dive into Deep Learning at https://classic.d2l.ai/chapter_recurrent-neural-networks/deep-rnn.html

For each unit: a mapping

$$\text{RNN}: h_t^{l-1}, h_{t-1}^l \to h_t^l \qquad \quad h_t^l \in \mathbb{R}^n$$

$$h_t^l = f(T_{n,n}h_t^{l-1} + T_{n,n}h_{t-1}^l)$$
, where $f \in \{\text{sigm, tanh}\}$ $T_{n,m}: \mathbb{R}^n \to \mathbb{R}^m$

Image from Fig 8.10.1 of *Dive into Deep Learning* at https://classic.d2l.ai/chapter_recurrent-neural-networks/deep-rnn.html

For each unit: a mapping

$$\text{RNN}: h_t^{l-1}, h_{t-1}^l \to h_t^l \qquad \quad h_t^l \in \mathbb{R}^n$$

$$h_t^l=f(T_{n,n}h_t^{l-1}+T_{n,n}h_{t-1}^l), ext{ where } f\in \{ ext{sigm, tanh}\}$$
 $T_{n,m}:\mathbb{R}^n o\mathbb{R}^m ext{ (a mapping function)}$

Image from Fig 8.10.1 of *Dive into Deep Learning* at https://classic.d2l.ai/chapter_recurrent-neural-networks/deep-rnn.html

For each unit: a mapping

$$\text{RNN}: h_t^{l-1}, h_{t-1}^l \to h_t^l \qquad \quad h_t^l \in \mathbb{R}^n$$

$$h_t^l=f(T_{n,n}h_t^{l-1}+T_{n,n}h_{t-1}^l),$$
 where $f\in\{ ext{sigm, tanh}\}$ $T_{n,m}:\mathbb{R}^n o\mathbb{R}^m$ (a mapping function) $Wx+b$

Image from Fig 8.10.1 of *Dive into Deep Learning* at https://classic.d2l.ai/chapter_recurrent-neural-networks/deep-rnn.html

For each unit: a mapping

$$\text{RNN}: h_t^{l-1}, h_{t-1}^l \to h_t^l \qquad \quad h_t^l \in \mathbb{R}^n$$

 $x \in \mathbb{R}^n, W \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m$

$$h_t^l=f(T_{n,n}h_t^{l-1}+T_{n,n}h_{t-1}^l),$$
 where $f\in\{\mathrm{sigm,tanh}\}$ $T_{n,m}:\mathbb{R}^n\to\mathbb{R}^m$ (a mapping function) $Wx+b$

Image from Fig 8.10.1 of Dive into Deep Learning at https://classic.d2l.ai/chapter_recurrent-neural-networks/deep-rnn.html

For each unit: a mapping

$$\text{RNN}: h_t^{l-1}, h_{t-1}^l \to h_t^l \qquad \quad h_t^l \in \mathbb{R}^n$$

 $x \in \mathbb{R}^n, W \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m$

$$h_t^l = f(T_{n,n}h_t^{l-1} + T_{n,n}h_{t-1}^l)$$
, where $f \in \{\text{sigm, tanh}\}$ $T_{n,m}: \mathbb{R}^n \to \mathbb{R}^m$ (a mapping function)

Image from Fig 8.10.1 of Dive into Deep Learning at https://classic.d2l.ai/chapter_recurrent-neural-networks/deep-rnn.html

For each unit: a mapping $\text{RNN}: h_t^{l-1}, h_{t-1}^l \to h_t^l \qquad h_t^l \in \mathbb{R}^n$ $h_t^l = f(T_{n,n}h_t^{l-1} + T_{n,n}h_{t-1}^l), \text{ where } f \in \{\text{sigm, tanh}\}$ $T_{n,m}: \mathbb{R}^n \to \mathbb{R}^m \text{ (a mapping function)}$ Wx + b $x \in R^n, W \in R^{m \times n}, b \in R^m$

Image from Fig 8.10.1 of *Dive into Deep Learning* at https://classic.d2l.ai/chapter_recurrent-neural-networks/deep-rnn.html

$$h_t = f \left[\mathbf{W} * \begin{pmatrix} h_{t-1} \\ x_t \end{pmatrix} \right]$$

For each unit: a mapping

$$RNN: h_t^{l-1}, h_{t-1}^l \to h_t^l \qquad h_t^l \in \mathbb{R}^n$$

$$h_t^l=f(T_{n,n}h_t^{l-1}+T_{n,n}h_{t-1}^l), ext{ where } f\in \{ ext{sigm, tanh}\}$$

$$T_{n,m}:\mathbb{R}^n\to\mathbb{R}^m ext{ (a mapping function)}$$

$$Wx+b$$

$$x\in R^n, W\in R^{m\times n}, b\in R^m$$

Image from Fig 8.10.1 of *Dive into Deep Learning* at https://classic.d2l.ai/chapter_recurrent-neural-networks/deep-rnn.html

$$h_t = f \begin{bmatrix} h_{t-1} \\ x_t \end{bmatrix}$$
 $f = \tanh(\cdot)$

For each unit: a mapping

$$RNN: h_t^{l-1}, h_{t-1}^l \to h_t^l \qquad h_t^l \in \mathbb{R}^n$$

$$h_t^l=f(T_{n,n}h_t^{l-1}+T_{n,n}h_{t-1}^l), ext{ where } f\in \{ ext{sigm, tanh}\}$$

$$T_{n,m}:\mathbb{R}^n\to\mathbb{R}^m ext{ (a mapping function)}$$

$$Wx+b$$

$$x\in R^n, W\in R^{m\times n}, b\in R^m$$

Image from Fig 8.10.1 of *Dive into Deep Learning* at https://classic.d2l.ai/chapter_recurrent-neural-networks/deep-rnn.html

For each unit: a mapping

$$RNN: h_t^{l-1}, h_{t-1}^l \to h_t^l \qquad h_t^l \in \mathbb{R}^n$$

$$h_t^l=f(T_{n,n}h_t^{l-1}+T_{n,n}h_{t-1}^l),$$
 where $f\in\{\mathrm{sigm,tanh}\}$
$$T_{n,m}:\mathbb{R}^n\to\mathbb{R}^m \text{ (a mapping function)}$$

$$Wx+b$$
 $x\in R^n,W\in R^{m\times n},b\in R^m$

Image from Fig 8.10.1 of Dive into Deep Learning at https://classic.d2l.ai/chapter_recurrent-neural-networks/deep-rnn.html

For each unit: a mapping

$$RNN: h_t^{l-1}, h_{t-1}^l \to h_t^l \qquad h_t^l \in \mathbb{R}^n$$

$$h_t^l=f(T_{n,n}h_t^{l-1}+T_{n,n}h_{t-1}^l),$$
 where $f\in\{\mathrm{sigm,tanh}\}$
$$T_{n,m}:\mathbb{R}^n\to\mathbb{R}^m \text{ (a mapping function)}$$

$$Wx+b$$
 $x\in R^n,W\in R^{m\times n},b\in R^m$

Image from Fig 8.10.1 of *Dive into Deep Learning* at https://classic.d2l.ai/chapter_recurrent-neural-networks/deep-rnn.html

 $\text{LSTM}: h_t^{l-1}, h_{t-1}^{l}, c_{t-1}^{l} \to h_t^{l}, c_t^{l}$

Image from Fig 8.10.1 of Dive into Deep Learning at https://classic.d2l.ai/chapter_recurrent-neural-networks/deep-rnn.html

$$\mathbf{LSTM}: h_t^{l-1}, h_{t-1}^l, c_{t-1}^l \to h_t^l, c_t^l \qquad \qquad h_t^l \in \mathbb{R}^n$$

Image from Fig 8.10.1 of *Dive into Deep Learning* at https://classic.d2l.ai/chapter_recurrent-neural-networks/deep-rnn.html

$$\begin{aligned} & c_t^l \in \mathbb{R}^n \\ & \text{LSTM}: h_t^{l-1}, h_{t-1}^l, c_{t-1}^l \rightarrow h_t^l, c_t^l \\ & \begin{pmatrix} i \\ f \\ o \\ g \end{pmatrix} = \begin{pmatrix} \text{sigm} \\ \text{sigm} \\ \text{sigm} \\ \text{tanh} \end{pmatrix} T_{2n,4n} \begin{pmatrix} h_t^{l-1} \\ h_{t-1}^l \end{pmatrix} \\ & c_t^l = f \odot c_{t-1}^l + i \odot g \\ & h_t^l = o \odot \tanh(c_t^l) \end{aligned}$$

Image from Fig 8.10.1 of *Dive into Deep Learning* at https://classic.d2l.ai/chapter_recurrent-neural-networks/deep-rnn.html

$$\begin{aligned} & \text{LSTM}: h_t^{l-1}, h_{t-1}^l, c_{t-1}^l \rightarrow \begin{matrix} h_t^l, c_t^l \\ h_t^l \in \mathbb{R}^n \\ \begin{pmatrix} i \\ o \\ g \end{pmatrix} = \begin{pmatrix} \text{sigm} \\ \text{sigm} \\ \text{sigm} \\ \text{tanh} \end{pmatrix} T_{2n,4n} \begin{pmatrix} h_t^{l-1} \\ h_{t-1}^l \end{pmatrix} \\ & c_t^l = f \odot c_{t-1}^l + i \odot g \\ & h_t^l = o \odot \tanh(c_t^l) \end{aligned}$$

Image from Fig 8.10.1 of *Dive into Deep Learning* at https://classic.d2l.ai/chapter_recurrent-neural-networks/deep-rnn.html

$$\begin{aligned} & c_t^l \in \mathbb{R}^n \\ & \text{LSTM}: h_t^{l-1}, h_{t-1}^l, c_{t-1}^l \rightarrow h_t^l, c_t^l \\ & b_t^l \in \mathbb{R}^n \\ & \begin{pmatrix} i \\ f \\ o \\ g \end{pmatrix} = \begin{pmatrix} \text{sigm} \\ \text{sigm} \\ \text{sigm} \\ \text{tanh} \end{pmatrix} T_{2n,4n} \begin{pmatrix} h_t^{l-1} \\ h_t^l \\ h_{t-1} \end{pmatrix} \\ & c_t^l = f \odot c_{t-1}^l + i \odot g \\ & h_t^l = o \odot \tanh(\rho_t^l) \end{aligned}$$
 weights

Image from Fig 8.10.1 of *Dive into Deep Learning* at https://classic.d2l.ai/chapter_recurrent-neural-networks/deep-rnn.html

Variants: peephole connections

$$f_t = \sigma \left(W_f \cdot [\boldsymbol{C_{t-1}}, h_{t-1}, x_t] + b_f \right)$$

$$i_t = \sigma \left(W_i \cdot [\boldsymbol{C_{t-1}}, h_{t-1}, x_t] + b_i \right)$$

$$o_t = \sigma \left(W_o \cdot [\boldsymbol{C_t}, h_{t-1}, x_t] + b_o \right)$$

Variants: peephole connections

Variant: gated recurrent unit (GRU)

Weighted average

Variant: gated recurrent unit (GRU)

Reading

- Deep learning book
 - Section 10.2.2, 10.7, 10.10
- Blog: understanding LSTM
 - https://colah.github.io/posts/2015-08-Understanding-LSTMs/