Cyber-Physical Systems (CSC.T431)

Asynchronous Model (1)

Instructor: Takuo Watanabe (Department of Computer Science)

1

Agenda

Asynchronous Model (1)

Course Support & Material

- Slides: OCW-i
- Course Web: https://titech-cps.github.io
- Course Slack: titech-cps.slack.com

Asynchronous Model

Asynchronous Processes

- An asynchronous process interacts with other asynchrinous processes via input/output channels and maintains its internal state
- The execution speeds of different processes are independent.
 - The reception of inputs is decoupled from the production of outputs.
 - Any internal computation takes an unknown but nonzero amount of time.

Synchronous Model

Lock-Step Execution

Asynchronous Model

Asynchronous Process

Ex. Buffer

```
 \begin{array}{c|c} & & & \\ \hline  & bool \ in & \\ \hline & A_i: \ x := in \\ & A_o: \ x \neq \text{null} \rightarrow \{out; = x; \ x = \text{null}\} \\ \end{array}
```

- in: Boolean input channel
- out : Boolean output channel
- x: state variable of type $\{0,1,\text{null}\}\ (=\text{bool} \cup \{\text{null}\})$, initialized as null.
- A_i : input task
- A_o : output task

Input and Output Channels

- An asynchronous process has a set of typed input channels and a set of typed output channels.
- x?v: We write x?v to denote an *input* from an input channel x, where v is a value of the type of x. It can also be interpreted as *receiving* v *on* x.
- y!v: We write y!v to denote an *output* to an output channel y, where v is a value of the type of y. It can also be interpreted as *sending* v *on* y.
- In each computational step (corresponds to a round in synch. model), a
 process can handle at most one input or output, even when the process has
 multiple input/output channels.

Input Tasks

- Processing of an input is called an *input action*, written as $s \stackrel{x?v}{\rightarrow} t$.
 - In an input action, the process can only update its state and does not produce outputs.
- An input action is specified by an input task.
 - Each input task is associated with a single input channel.
 - A_x denotes the set of input tasks associated with the input channel x.
- An input task $A \in \mathbf{A}_{x}$ can be described as $Guard \to Update$ where:
 - Guard: a condition on the states, defining $[Guard] \subseteq Q_S$.
 - Update: description of the updates of the states. If $s \in [Guard]$ and x?v is an input, then $(s[x \mapsto v], t) \in [Update]$ for some $t \in Q_S$. This corresponds to $s \stackrel{x?v}{\to} t$.

Output Tasks

- Producing an output is called an *output action*, written as $s \stackrel{x!v}{\rightarrow} t$.
 - In an output action, the process can only update its state and does not process inputs.
- An output action is specified by an output task.
 - Each output task is associated with a single output channel.
 - ${\bf A}_y$ denotes the set of output tasks associated with the output channel y.
- An output task $A \in \mathbf{A}_y$ can be described as $Guard \to Update$ where:
 - Guard: a condition on the states, defining [Guard] $\subseteq Q_S$.
 - Update: description of the updates of the states. If $s \in [Guard]$ and x!v is an output, then $(s, t[y \mapsto v]) \in [Update]$ for some $t \in Q_S$. This corresponds to $s \stackrel{x!v}{\to} t$.

Ex. Buffer

- Input Channels: $\{in\}$, defining the set of inputs $\{in?0,in?1\}$.
- Output Channels: $\{out\}$, defining the set of outputs $\{out!0, out!1\}$.
- State Variables: $\{x\}$, defining the set of states $Q_S = \{0, 1, \text{null}\}$.
- Initialization: $\{0,1,\text{null}\}\ x := \text{null}, \text{ defining the set of initial states } \{\text{null}\}.$
- Input Tasks: $\mathbf{A}_{in} = \{A_i\}$, where $A_i: 1 \to x := in$, defining the set of input actions $\{s \xrightarrow{in?v} v \mid s \in Q_S\}$.
- Output Tasks: $\mathbf{A}_{out} = \{A_o\}$, where $A_o: x \neq \text{null} \rightarrow \{out := x; \ x := \text{null}\}$, defining the set of output actions $\{v \xrightarrow{out!v} \text{null} \mid v \neq \text{null}\}$.

Internal Tasks

Ex. AsyncInc

nat
$$x := 0; y := 0$$

$$A_x : x := x + 1$$

$$A_y : y := y + 1$$

- The process AsyncInc does not have input/output channels.
- Tasks that neither process inputs nor produce outputs are called internal tasks.
 - A_{χ} and A_{χ} in AsyncInc are internal tasks.
- Internal tasks describe *internal actions*, written as $s \stackrel{\varepsilon}{\to} t$.
 - $A_x: x := x + 1$ defines the set of internal actions $\{(i,j) \xrightarrow{\varepsilon} (i+1,j) \mid i,j \in \mathbb{N}\}$.
 - $A_y: y:=y+1$ defines the set of internal actions $\{(i,j) \xrightarrow{\varepsilon} (i,j+1) \mid i,j \in \mathbb{N}\}$.
 - The set of internal actions is $\{(i,j) \xrightarrow{\varepsilon} (i+1,j) \mid i,j \in \mathbb{N}\} \cup \{(i,j) \xrightarrow{\varepsilon} (i,j+1) \mid i,j \in \mathbb{N}\}.$

Enabled Tasks

- Let $A: Guard \rightarrow Update$ is a task (input, output, or internal). If a state s satisfies Guard, A is said to be *enabled* in s.
- Note again that Guard is a condition over the states of the process. This means that it should not refer to input/output channels.
- If A is an input task, Update may read at most one input channel.
- If A is an output task, Update may update at most one output channel.
- If A is an internal task, Update may only update state variables.

Ex. Merge

- If $Full(x_1) \wedge Full(x_2)$, no input tasks can be executed until an output action happens.
- If $Empty(x_1) \land Empty(x_2)$, no output tasks can be executed until an input action happens.
- If $\neg \text{Full}(x_1) \land \neg \text{Full}(x_1)$, one of A_i^1 and A_i^2 is nondeterministically chosen and executed.
- If $\neg \text{Empty}(x_1) \land \neg \text{Empty}(x_1)$, one of A_o^1 and A_o^2 is nondeterministically chosen and executed.

Asynchronous Process

Formal Definition

- An asynchronous process $P = (I, O, S, Init, \mathcal{A}_I, \mathcal{A}_O, \mathbf{A})$ consists of:
 - I: a finite set of typed *input channels*
 - O: a finite set of typed output channels
 - S: a finite set of typed state variables
 - Init: a description of the initialization defining the set $[[Init]] \subseteq Q_S$ of initial states
 - $\mathcal{A}_I = \{ \mathbf{A}_x \mid x \in I \}$ where \mathbf{A}_x is the set of *input tasks* for input channel x

 - A : set of internal tasks

Tasks

- Input Tasks: $\mathcal{A}_I = \{A_x \mid x \in I\}$
 - An input task $A \in A_x$ can be described as $Guard \to Update$, where $[\![Guard]\!] \subseteq Q_S$ and $[\![Update]\!] \subseteq Q_{S \cup \{x\}} \times Q_S$, defining the set of input actions $\{s \xrightarrow{x?v} t \mid s \in [\![Guard]\!] \land (s[x \mapsto v], t) \in [\![Update]\!]\}.$
- Output Tasks: $\mathcal{A}_O = \{\mathbf{A}_y \mid y \in O\}$
 - An output task $A \in \mathbf{A}_y$ can be described as $Guard \to Update$, where $[\![Guard]\!] \subseteq Q_S$ and $[\![Update]\!] \subseteq Q_S \times Q_{S \cup \{y\}}$, defining the set of output actions $\{s \xrightarrow{y!v} t \mid s \in [\![Guard]\!] \land (s,t[y \mapsto v]\!] \in [\![Update]\!]\}.$
- Internal Tasks: A
 - An internal task $A \in \mathbf{A}$ can be described as $Guard \to Update$, where $[\![Guard]\!] \subseteq Q_S$ and $[\![Update]\!] \subseteq Q_S \times Q_S$, defining the set of internal actions $\{s \xrightarrow{\varepsilon} t \mid s \in [\![Guard]\!] \land (s,t) \in [\![Update]\!]\}.$

Formalizing Examples

- Buffer = $(\{in\}, \{out\}, \{x\}, Init, \{\{A_i\}\}, \{\{A_o\}\}, \emptyset)$
 - $Init: \{0,1,null\} \ x := null, \ A_i: x := in, \ A_o: out := x; \ x := null \}$
- AsyncInc = $(\emptyset, \emptyset, \{x, y\}, Init, \emptyset, \emptyset, \{A_x, A_y\})$
 - Init: nat x:=0; y:=0, $A_x:$ x:=x+1, $A_y:$ y:=y+1
- Merge = $\{\{in_1, in_2\}, \{out\}, \{x_1, x_2\}, Init, \{\{A_i^1\}, \{A_i^2\}\}, \{\{A_o^1, A_o^2\}\}, \emptyset\}$
 - Init: queue(msg) x_1 := null; x_2 := null,
 - $-A_i^1: \neg Full(x_1) \rightarrow Enqueue(in_1, x_1), A_i^2: \neg Full(x_2) \rightarrow Enqueue(in_2, x_2)$
 - A_o^1 : $\neg \text{Empty}(x_1) \rightarrow out := \text{Dequeue}(x_1), A_o^2$: $\neg \text{Empty}(x_2) \rightarrow out := \text{Dequeue}(x_2)$

Executions of an Asynchronous Process

Interleaving Semantics

- An execution starts from an initial state.
- At every step, only one of the enabled tasks in the current state is nondeterministically chosen and executed.
 - The order in which different tasks are executed is totally unconstrained.
- Such semantics is called the interleaving semantics.
- eA finite execution of an asynchronous process $P = (I, O, S, Init, \mathcal{A}_I, \mathcal{A}_O, \mathbf{A})$ consists of a sequence

$$s_0 \xrightarrow{l_1} s_1 \xrightarrow{l_2} s_2 \xrightarrow{l_3} \cdots \xrightarrow{l_{k-1}} s_{k-1} \xrightarrow{l_k} s_k$$

 $s_0 \overset{l_1}{\to} s_1 \overset{l_2}{\to} s_2 \overset{l_3}{\to} \cdots \overset{l_{k-1}}{\to} s_{k-1} \overset{l_k}{\to} s_k$ where $s_j \in Q_S$ for $0 \le j \le k$, $s_0 \in \llbracket Init \rrbracket$, and $s_{j-1} \overset{l_j}{\to} s_j$ is an input, output, or internal action for $1 \leq j \leq k$.

Executions of an Asynchronous Process

Examples

Buffer

- $\operatorname{null} \xrightarrow{in?1} 1 \xrightarrow{out?1} \operatorname{null} \xrightarrow{in?0} 0 \xrightarrow{in?1} 1 \xrightarrow{in?1} 1 \xrightarrow{out?1} \operatorname{null}$

AsyncInc

- The figure on the right shows possible executions.

Merge

- (null, null) $\xrightarrow{in_1?0}$ ([0], null) $\xrightarrow{in_1?2}$ ([02], null) $\xrightarrow{in_2?5}$ ([02], [5]) $\xrightarrow{out?5}$ ([02], null) $\xrightarrow{in_2,3}$ ([02], [3]) $\xrightarrow{out,0}$ ([2], [3]) $\xrightarrow{out,3}$ ([2], null) $\xrightarrow{in_1,0}$ ([20], null)

Ex. AsyncNot

Description using an Extended-State Machine

A possible execution

$$(\mathsf{stable}, 0) \xrightarrow{out!0} (\mathsf{stable}, 0) \xrightarrow{in!0} (\mathsf{unstable}, 0) \xrightarrow{in!0} (\mathsf{unstable}, 0) \xrightarrow{\varepsilon} (\mathsf{stable}, 1) \xrightarrow{out!1} (\mathsf{stable}, 1) \xrightarrow{in!1} (\mathsf{unstable}, 1) \xrightarrow{in!0} (\mathsf{hazard}, 1) \xrightarrow{out!0} (\mathsf{hazard}, 1) \xrightarrow{out!1} (\mathsf{hazard}, 1) \xrightarrow{in!0} (\mathsf{hazard}, 1)$$

Conditional Mode-Switch

- Note that Guard cannot refer to any input channels but Test can.
 - We cannot replace the conditional mode-switches in AsyncNot with ordinary mode-switches.

Ex. AsyncNot

Description using sets of tasks

```
AsyncNot = \{in\}, \{out\}, \{mode, x\}, Init, \{\{A_1, A_3, A_6\}\}, \{\{A_2, A_4, A_7, A_8\}\}, \{A_5\}\}
        Init: {stable, unstable, hazard} mode := stable; bool x := 0
                     mode = stable \rightarrow if in = x then mode := unstable
        A_1:
        A_2:
                     mode = stable \rightarrow out ! x
        A_3:
                  mode = unstable \rightarrow if \neg (in = x) then mode := hazard
                  mode = unstable \rightarrow out!x
        A_4:
                  mode = unstable \rightarrow x := \neg x
        A_5:
                    mode = hazard \rightarrow local bool tmp; tmp := in
        A_6:
                    mode = hazard \rightarrow out!0
        A_7:
                    mode = hazard \rightarrow out!1
        A_8:
```

Composing Asynchronous Processes

Ex. DoubleBuffer

- DoubleBuffer = (Buffer[$out \mapsto temp$] | Buffer[$in \mapsto temp$]) \ temp
- The composition of asynchronous processes can be defined similarly as in the case of synchronous reactive components.
 - Renaming of input/output channels
 - Parallel composition
 - Output hiding

Parallel Composition

- We write $P_1 \, | \, P_2$ to denote the parallel composition of two asynchronous processes P_1 and P_2 .
- No name conflicts concerning state variables happen.
- The two sets of output channels are disjoint.
- An input channel of one process can be an input/output channel of the other.
 - We don't need to consider the problem of mutually cyclic await-dependencies.
 - Production of an output is a separate step from processing an input.
- The state of $P_1 \mid P_2$ can be expressed as (s_1, s_2) where s_1 and s_2 are the states of P_1 and P_2 , respectively.

Combined Tasks of $P_1 \mid P_2$

Case 1: x is a common input channel of both P_1 and P_2

- If $s_1 \stackrel{x?v}{\longrightarrow} t_1$ and $s_2 \stackrel{x?v}{\longrightarrow} t_2$ are input actions of P_1 and P_2 respectively, then $(s_1,s_2) \stackrel{x?v}{\longrightarrow} (t_1,t_2)$ is an input action of $P_1 \mid P_2$.
 - If $A_1: Guard_1 \to Update_1$ and $A_2: Guard_2 \to Update_2$ are respective input tasks of P_1 and P_2 , both associated with x, then the combined input task A_{12} of $P_1 \mid P_2$ can be defined as $Guard_1 \wedge Guard_2 \to Update_1$; $Update_2$. The order of updates does not matter.
 - If $s_1 \in [\![Guard_1]\!], s_2 \in [\![Guard_2]\!], (s_1[x \mapsto v], t_1) \in [\![Update_1]\!],$ and $(s_2[x \mapsto v], t_2) \in [\![Update_2]\!]$ for an input value v, then $((s_1[x \mapsto v], s_2[x \mapsto v]), (t_1, t_2)) \in [\![Update_1]\!], Update_2]\!].$
 - If P_1 and/or P_2 have multiple input tasks associated with x, $P_1 \mid P_2$ has input tasks corresponding to all possible pairings of such tasks.

Combined Tasks of $P_1 \mid P_2$

Case 2: x is an output channel of P_1 and an input channel of P_2

- If $s_1 \stackrel{x!v}{\to} t_1$ is an output action of P_1 and $s_2 \stackrel{x?v}{\to} t_2$ is an input action of P_2 , then $(s_1, s_2) \stackrel{x!v}{\to} (t_1, t_2)$ is an output action of $P_1 \mid P_2$.
 - If $A_1: Guard_1 \to Update_1$ is an output task of P_1 and $A_2: Guard_2 \to Update_2$ is an input task of P_2 , both associated with x, then the combined input task A_{12} of $P_1 \mid P_2$ can be defined as $Guard_1 \wedge Guard_2 \to Update_1$; $Update_2$. The order of updates is significant.
 - If $s_1 \in [[Guard_1]], s_2 \in [[Guard_2]], (s_1, t_1[x \mapsto v]) \in [[Update_1]],$ and $(s_2[x \mapsto v], t_2) \in [[Update_2]]$ for a value v, then $((s_1, s_2[x \mapsto v]), (t_1[x \mapsto v], t_2)) \in [[Update_1; Update_2]].$
 - If P_1 and/or P_2 have multiple output/input tasks associated with x, $P_1 \mid P_2$ has output tasks corresponding to all possible pairings of such tasks.

Combined Tasks of $P_1 \mid P_2$ Case 3: x is a channel of P_1 but not of P_2

- If $s_1 \xrightarrow{x?v} t_1$ is an input action of P_1 and s is a state of P_2 , then $(s_1, s) \xrightarrow{x?v} (t_1, s)$ is an input action of $P_1 \mid P_2$.
 - If A is an input task of P_1 associated with x which is not a channel of P_2 , then A is also an input task of $P_1 \mid P_2$.
- If $s_1 \stackrel{x!v}{\to} t_1$ is an output action of P_1 and s is a state of P_2 , then $(s_1, s) \stackrel{x!v}{\to} (t_1, s)$ is an output action of $P_1 \mid P_2$.
 - If A is an output task of P_1 associated with x which is not a channel of P_2 , then A is also an output task of $P_1 \mid P_2$.
- Symmetric cases exist.

Combined Tasks of $P_1 \mid P_2$

Case 4: internal tasks

- If $s_1 \stackrel{\varepsilon}{\to} t_1$ is an internal action of P_1 and s is a state of P_2 , then $(s_1, s) \stackrel{\varepsilon}{\to} (t_1, s)$ is an internal action of $P_1 \mid P_2$.
 - If $A_1: Guard_1 \to Update_1$ is an internal task of P_1 , then it is an internal task of $P_1 \mid P_2$.
- Symmetric case exists.

Parallel Composition

Ex. Buffer[$out \mapsto temp$] | Buffer[$in \mapsto temp$]

```
 \begin{array}{c} \text{bool } in \\ \hline \\ A_i: \ x_1 := in \\ A_t: \ (x_1 \neq \text{null}) \rightarrow \{temp := x_1; \ x_1 := \text{null}; \ x_2 := temp\} \\ \hline \\ A_o: \ (x_2 \neq \text{null}) \rightarrow \{out := x_2; \ x_2 := \text{null}\} \\ \end{array}
```

- The output task of Buffer[$out \mapsto temp$] and the input task of Buffer[$in \mapsto temp$] are combined into an output task A_t .
 - The input channel temp of Buffer[$in \mapsto temp$] is no longer an input channel in the combined process.
 - The output channel temp of $Buffer[out \mapsto temp]$ remains as an output channel in the combined process.

Asynchronous Process Composition

Definition (1/3)

- Let P_1 and P_2 be asynchronous processes such that $O_1 \cap O_2 = \emptyset$.
 - $P_1 = (I_1, O_1, S_1, Init_1, \{A_x^1 \mid x \in I_1\}, \{A_y^1 \mid y \in O_1\}, A_1)$
 - $P_2 = (I_2, O_2, S_2, Init_2, \{\mathbf{A}_x^2 \mid x \in I_2\}, \{\mathbf{A}_y^2 \mid y \in O_2\}, \mathbf{A}_2)$
- The parallel composition $P_1 | P_2$ is the asynchronous process $P = (I, O, S, Init, \{\mathbf{A}_x \mid x \in I\}, \{\mathbf{A}_y \mid y \in O\}, \mathbf{A}\}$ defined by:
- $S = S_1 \cup S_2$, $O = O_1 \cup O_2$, $I = (I_1 \cup I_2) \setminus O$
- $Init = Init_1$; $Init_2$
- $\mathbf{A} = \mathbf{A}_1 \cup \mathbf{A}_2$

Asynchronous Process Composition

Definition (2/3)

- For each $x \in I$,
 - (1) if $x \notin I_2$, then $\mathbf{A}_x = \mathbf{A}_x^1$;
 - (2) if $x \notin I_1$, then $\mathbf{A}_x = \mathbf{A}_x^2$; and
 - (3) if $x \in I_1 \cap I_2$, then for each $A_1 \in \mathbf{A}^1_x$ and $A_2 \in \mathbf{A}^2_x$, \mathbf{A}_x contains the task described by $Guard_1 \wedge Guard_2 \rightarrow Update_1$; $Update_2$, where $Guard_1 \rightarrow Update_1$ is the description of A_1 and $Guard_2 \rightarrow Update_2$ is the description of A_2 .

Asynchronous Process Composition

Definition (3/3)

- For each $y \in O$,
 - (1) if $y \in O_1 \setminus I_2$, then $A_y = A_y^1$;
 - (2) if $y \in O_2 \setminus I_1$, then $\mathbf{A}_y = \mathbf{A}_y^2$; and
 - (3) if $y \in O_1 \cap I_2$, then for each $A_1 \in \mathbf{A}^1_y$ and $A_2 \in \mathbf{A}^2_y$, \mathbf{A}_y contains the task described by $Guard_1 \wedge Guard_2 \rightarrow Update_1$; $Update_2$, where $Guard_1 \rightarrow Update_1$ is the description of A_1 and $Guard_2 \rightarrow Update_2$ is the description of A_2 .
 - (4) Symmetric case of (3)

Output Hiding

Ex. DoubleBuffer

- DoubleBuffer = $(Buffer[out \mapsto temp] | Buffer[in \mapsto temp]) \setminus temp$
 - The output channel temp of $Buffer[out \mapsto temp] \mid Buffer[in \mapsto temp]$ is hidden by applying $\setminus temp$.
- The output task A_t of Buffer[$out \mapsto temp$] | Buffer[$in \mapsto temp$] becomes an internal task by replacing it with:

```
A_t: x_1 \neq \text{null} \rightarrow \{\text{local bool } temp; temp := x_1; x_1 := \text{null}; x_2 := temp\}
```

- In this task, *temp* is now a local variable.

Safety Requirements

- We can define a transition system T for an asynchronous process P.
 - The set of state variables S of P is also the set of state variables in T.
 - The initialization specification Init of P is also the initialization specification in T.
 - If $s \stackrel{l}{\to} t$ is an action in P, then $s \to t$ is a transition in T.
- The definitions of properties, (inductive) invariants, reachability for transition systems defined from SRCs can naturally extended for the transition systems defined above.
- The notions of safety monitors, enumerative and symbolic reachability can also be applied to the transition systems defined above.

Summary

- Asynchronous Model (1)
 - Asynchronous Process
 - Input/Output Channels, Input/Output/Internal Tasks, Enabled Tasks
 - Conditional Mode-Switch
 - Parallel Composition