Single Source Shortest Path (SSSP)

Definition

Find the shortest path from the source vertex s to every other vertex.

Solved by finding a **shortest path** tree **rooted at s** that contains all the desired shortest paths.

Why do all shortest paths constitute a tree?

- 1. If all shortest paths are unique, then the union of shortest paths is a tree (recall: unique paths towards a root node)
- 2. If there are multiple shortest paths to t, we can pick and choose to make the union a tree, e.g.

<u>Differences between Minimum Spanning Tree (MST) and Shortest Path Tree (SPT)</u>

Clarifying Some Definitions:

A spanning tree of an undirected graph is a connected subgraph that covers all the graph nodes with the minimum possible number of edges.

A **minimum spanning tree** is a spanning tree whose weight is the smallest among all possible spanning trees.

Shortest Path Tree is a spanning tree such that the path from the **source** node *s* to any other node *v* is the **shortest** one in *G*.

Minimum Spanning Tree	Shortest Path Tree
Undirected	Directed
Doesn't have a root	Rooted in the source node
Can be unique	Distinct for different root

Negative Edges

For most shortest path problems, its natural to assume that all edge weights are nonnegative. However, for many applications of shortest-path algorithms, it is also natural to consider edges with negative weights.

Negative edges in a SSSP is problematic and can cause problems.

If a cycle is negative, then the shortest path may not be well defined.
e.g.

NSERT FIGURE 8.3 HERE

Because we need to consider negative weights, this chapter **explicitly considers only directed graphs**. Nevertheless, all of the algorithms described also work for undirected graphs with modifications. BUT that is out of the scope of this course.

The Only SSSP Algorithm

Each vertex v in graph stores two values, which inductively describe a *tentative* shortest path from to s to v.

- dist(v) is the predecessor of v in the tentative shortest path or ∞ if no path exist.
- pred(v) the predecessor of v in the tentative shortest path or NUL if no path exist.

The predecessor pred(v) automatically defines a tree rooted at source s. At the beginning of the algorithm, we initialize the distances and predecessors as follows:

Pseudocode

```
function initSSP(s):
distance = 0
pred(s) = null
for all vertices v != s:
    dist = ∞
    pred(v) = null
```

Algorithm Description

Repeatedly relax tense edges, until no more tense edges.