

ECE3623 Embedded System Design Laboratory

Dennis Silage, PhD silage @temple.edu

IP in Vivado HDL

In this Laboratory you will utilize the embedded development of Vivado to configure an Intellectual Property (IP) block using Verilog HDL. The reference for this Laboratory is the *Zynq Book Tutorials* pages 94-117 for IP creation as Exercise 4A.

The tasks for this Laboratory are as follows:

1. Complete and verify the performance of the template project *led_controller* with the hardware design of the IP block and the SDK software *led_controller_test_tut_4A.c*

2. Modify the simple Verilog code from the template project to perform a new logical function. Initially the Verilog code only continuously assigns the input from the AXI bus in the IP as the 32-bit slv_reg0 (or slave register 0) to the 4-bit LEDs_out port in the template code led_controller_v1_S00_AXI.v:

```
// Add user logic here
assign LEDs_out = slv_reg0;
// User logic ends
```

Here you are to perform the following logical function in the *Add user logic here* section of *led_controller_v1_S00_AXI.v* with final the assignment to *LEDs_out* port register. The 4-bit *LEDs_out* port is to display in binary the number of 1's (0 – 15) in the least significant 15 bits of the slv_reg0.

Note that the 4-bit *LEDs_out* port is not a register and a local 4-bit register for the LEDs must be used instead. Continuously assign that register to the LED port for the display.

The initial contents of the 32-bit slv_reg0 should be set to a local Verilog 32-bit register first for the analysis and other registers for the logical function.

Local registers of 1-bit, 4-bit and 32-bit can be defined in Verilog as below within the *Add user logic here* section of *led_controller_v1_S00_AXI.v.*

reg localreg; reg [3:0] localreg4; reg [31: 0] localreg32;

The SDK template program is to be modified to write a sequence of 10 integers up to 32767 (111 1111

1111 1111) of your choice to the new *led_controller* IP with an adequate delay between the display to verify performance. The number 32767 has 15 1's and the LEDs would all be ON (1111).

```
Project Summary
                  x Package IP - led controller
                                                  led_controller_v1_0_$00_AXI.v *
c:/Zynq_Book_Tutorial_Projects/ip_repo/led_controller_1.0/hdl/led_controller_v1_0_S00_AXI.v
                                394 🖨
395
                     axi_rdata <= reg_data_out;</pre>
                                                      // register read data
396 🖨
                   end
397 🗀
               end
398 🗀
           end
399
400 □
           // Add user logic here
401
402 🗀
          // User logic ends
403
404 🗀
           endmodule
405
```

This Laboratory is for the week of April 13th and due no later than Sunday April 19th 11:59 PM with an upload to Canvas of the Project Report with documentation of task completion.