# Discrete Optimization

Assignments: Traveling Salesman

# Traveling Salesman Problem (TSP)







# Traveling Salesman Problem (TSP)







$$d_{ij} = \sqrt{(x_i - x_j)^2 + (y_i - y_j)^2}$$

$$\begin{array}{c} \mathbf{0} \\ \bullet \langle 17, 27 \rangle \\ \mathbf{1} \\ \bullet \langle 36, 39 \rangle \end{array} \quad \begin{array}{c} \mathbf{2} \\ \bullet \langle 57, 35 \rangle \\ \end{array}$$

$$egin{array}{cccc} 20,54 \\ 3 \\ 4 \\ \end{array}$$

$$d_{ij} = \sqrt{(x_i - x_j)^2 + (y_i - y_j)^2}$$



$$d_{ij} = \sqrt{(x_i - x_j)^2 + (y_i - y_j)^2}$$



$$d_{ij} = \sqrt{(x_i - x_j)^2 + (y_i - y_j)^2}$$

$$d_{04} = \sqrt{(17 - 42)^2 + (27 - 56)^2} = 38.288...$$



Point List 
$$\langle 17, 27 \rangle$$
  $\langle 36, 39 \rangle$   $\langle 57, 35 \rangle$   $\langle 20, 54 \rangle$   $\langle 42, 56 \rangle$ 

$$d_{ij} = \sqrt{(x_i - x_j)^2 + (y_i - y_j)^2}$$

$$d_{04} = \sqrt{(17 - 42)^2 + (27 - 56)^2} = 38.288...$$

- ► n Nodes
- Points list
- ► V<sub>i</sub> the visitation order

minimize: 
$$\sum_{i \in 0...n-2} \sqrt{(x_{v_i} - x_{v_{i+1}})^2 + (y_{v_i} - y_{v_{i+1}})^2} + \sqrt{(x_{v_{n-1}} - x_{v_0})^2 + (y_{v_{n-1}} - y_{v_0})^2}$$

subject to:

 $v_i$  are a permutation of N

$$\sum_{i \in 0...n-2} \sqrt{(x_{v_i} - x_{v_{i+1}})^2 + (y_{v_i} - y_{v_{i+1}})^2} + \sqrt{(x_{v_{n-1}} - x_{v_0})^2 + (y_{v_{n-1}} - y_{v_0})^2}$$

subject to:

 $v_i$  are a permutation of N

#### Input

#### Output

$$\sum_{i \in 0...n-2} \sqrt{(x_{v_i} - x_{v_{i+1}})^2 + (y_{v_i} - y_{v_{i+1}})^2} + \sqrt{(x_{v_{n-1}} - x_{v_0})^2 + (y_{v_{n-1}} - y_{v_0})^2}$$

subject to:

 $v_i$  are a permutation of N

#### Input



#### Output

5.2 0 0 4 1 3 2

#### Input

5 0 0 0 0.5 0 1 1 1 1 0

#### Output

5.2 0 0 **4** 1 3 2





#### Input

5 0 0 0 0.5 0 1 1 1 1 0

#### Output

5.2 0 0 **4** 1 3 2



#### Input



#### Output

4.0 0 0 1 2 4 3

# Assignment Tips

- ► FAST neighborhood computation
- Symmetries
- Do you need every edge
- Complete search / Lower bounds
- Look at the solution

## Have Fun!