Лекция 15

Дифференцирование сложных функций.

Пусть функция u = f(x, y, z) определена в окрестности точки $P_0(x_0, y_0, z_0) \in \mathbb{R}^3$..

Теорема. Пусть функция f(x,y,z) дифференцируема в точке $P_0(x_0,y_0,z_0)$, а функции $x = \varphi(t)$, $y = \psi(t)$, $z = \chi(t)$, зависящие от скалярного параметра t, имеют производную в точке t_0 такой, что $x_0 = \varphi(t_0)$, $y_0 = \psi(t_0)$, $z_0 = \varphi(t_0)$. Тогда производная по t в точке t_0 от сложной функции $u = F(t) = f(\varphi(t), \psi(t), \chi(t))$ вычисляется по формуле

$$\left. \frac{du}{dt} \right|_{t_0} = F'(t_0) = \frac{\partial f}{\partial x} \bigg|_{P_0} \varphi'(t_0) + \frac{\partial f}{\partial y} \bigg|_{P_0} \psi'(t_0) + \frac{\partial f}{\partial z} \bigg|_{P_0} \chi'(t_0).$$

Замечание. Заменим t_0 на t в формуле (1). Более короткая запись формулы (1) имеет вид

$$\frac{du}{dt} = \frac{\partial f}{\partial x} \cdot \frac{dx}{dt} + \frac{\partial f}{\partial y} \cdot \frac{dy}{dt} + \frac{\partial f}{\partial z} \cdot \frac{dz}{dt}.$$

Следствие 1. Пусть z = f(x, y) — дифференцируемая функция переменных x и y , а x = x(t), y = y(t) — дифференцируемые функции независимой переменной t. Тогда сложная функция z = f(x(t), y(t)) является дифференцируемой функцией переменной t , производная которой находится по формуле

$$\frac{dz}{dt} = \frac{\partial z}{\partial x} \cdot \frac{dx}{dt} + \frac{\partial z}{\partial y} \cdot \frac{dy}{dt}.$$

Следствие 2. Если z = f(x, y), y = y(x) – дифференцируемая функция, то для производной сложной функции z = f(x, y(x)) получаем формулу

$$\frac{dz}{dx} = \frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} \cdot \frac{dy}{dx}.$$

Производная $\frac{dz}{dx}$ в левой части формулы (5) называется *полной производной* функции $z = f\left(x,y\right)$ по переменной x (в отличие от частной производной $\frac{\partial z}{\partial x}$).

Замечание. Если z = f(u,v) – дифференцируемая функция переменных u и v, которые сами являются дифференцируемыми функциями u = u(x,y), v = v(x,y) переменных x и y, то z = f(u(x,y),v(x,y)) становится сложной функцией переменных x и y. Частные производные первого порядка вычисляются тогда по формулам:

$$\frac{\partial z}{\partial x} = \frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial x} + \frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial x},$$
$$\frac{\partial z}{\partial y} = \frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial y} + \frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial y}.$$

При этом выражение для дифференциала первого порядка

$$dz = \frac{\partial z}{\partial u} \cdot du + \frac{\partial z}{\partial v} dv$$

сохраняет свой вид – свойство инвариантности формы первого дифференциала.

Пример. $z = u + v^2$, $u = x^2 + \sin y$, $v = \ln(x + y)$. Найти $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial v}$ и dz.

◀Воспользуемся формулой (6).

$$dz = \frac{\partial z}{\partial u} \cdot du + \frac{\partial z}{\partial v} dv = du + 2v dv = \left(2x dx + \cos y dy\right) + 2\ln\left(x + y\right) \left(\frac{1}{x + y} dx + \frac{1}{x + y} dy\right) =$$

$$= \left(2x + \frac{2\ln\left(x + y\right)}{x + y}\right) dx + \left(\cos y + \frac{2\ln\left(x + y\right)}{x + y}\right) dy,$$

$$\frac{\partial z}{\partial x} = 2x + \frac{2\ln\left(x + y\right)}{x + y}, \frac{\partial z}{\partial y} = \cos y + \frac{2\ln\left(x + y\right)}{x + y}.$$

Дифференцирование неявных функций

Пусть F(x,y)— произвольная функция двух переменных x и y. Рассмотрим уравнение

$$F(x,y) = 0. (1)$$

Теорема. Пусть задано уравнение (1). Пусть функция F(x,y) определена в окрестности U точки (x_0,y_0) и непрерывна в U вместе со своими частными производными первого порядка $\frac{\partial F}{\partial x}u$ $\frac{\partial F}{\partial y}$. Пусть $F(x_0,y_0)=0$ u

$$\left. \frac{\partial F}{\partial y} \right|_{(x_0, y_0)} \neq 0. \tag{2}$$

Тогда $\forall x \in (x_0 - a, x_0 + a)$

$$f'(x) = -\frac{\frac{\partial F}{\partial x}}{\frac{\partial F}{\partial y}} = -\frac{F_x'(x, f(x))}{F_y'(x, f(x))}.$$

Пример . $x^2 + y^2 - 1 = 0$ (уравнение окружности).

$$\blacktriangleleft F(x,y) = x^2 + y^2 - 1, \frac{\partial F}{\partial x} = 2x, \frac{\partial F}{\partial y} = 2y, \frac{\partial F}{\partial y} \neq 0$$
 при $y \neq 0$.

$$y'(x) = f'(x) = -\frac{2x}{2y} = -\frac{x}{y}$$
 при $y \neq 0.$

Пример. $e^x - e^y + xy = 0$, $(x_0, y_0) = (0,0)$.

$$\blacktriangleleft F(x,y) = e^{y} - e^{x} + xy, \ \frac{\partial F}{\partial x} = -e^{x} + y, \ \frac{\partial F}{\partial y} = e^{y} + x, \ \frac{\partial F}{\partial y}\Big|_{(0,0)} = 1.$$

$$y'(x) = f'(x) = -\frac{-e^x + y}{e^y + x} = \frac{e^x - y}{e^y + x}$$
.

Пусть $F(x_1, x_2, ..., x_n, y)$ — произвольная функция переменных $x = (x_1, x_2, ..., x_n)$ и y. Рассмотрим уравнение

$$F(x_1, x_2, ..., x_n, y) = 0. (5)$$

Теорема. Пусть уравнение F(x,y,z)=0 задает неявную функцию z=f(x,y) в окрестности U точки $P_0(x_0,y_0,z_0)$, где $F(x_0,y_0,z_0)=0$. Пусть функции F(x,y,z), F_x' , F_y' , F_z' непрерывны в окрестности U, причем $F_z'(P_0)\neq 0$. Тогда

$$\frac{\partial z}{\partial x} = -\frac{F_x'}{F_z'}, \frac{\partial z}{\partial y} = -\frac{F_y'}{F_z'}.$$
 (10)

Пример. $z^3 - 4xz + y^2 - 4 = 0$, $P_0(1, -2, 2)$.

◄ Здесь $F(x, y, z) = z^3 - 4xz + y^2 - 4$, неявная функция z = f(x, y). Найдем $\frac{\partial z}{\partial x}$ и $\frac{\partial z}{\partial y}$ в точке $P_0(1, -2, 2)$ по формулам (10)

$$\left. \frac{\partial z}{\partial x} \right|_{P_0} = -\frac{F_x'(P_0)}{F_z'(P_0)}, \left. \frac{\partial z}{\partial y} \right|_{P_0} = -\frac{F_y'(P_0)}{F_z'(P_0)}.$$

Вычисляем

$$F_x' = -4z, F_y' = 2y, F_z' = 3z^2 - 4x,$$

$$F_{x}'(P_{0}) = -8, F_{y}'(P_{0}) = -4, F_{z}'(P_{0}) = 8,$$

$$\frac{\partial z}{\partial x}\Big|_{P_{0}} = 1, \frac{\partial z}{\partial y}\Big|_{P_{0}} = \frac{1}{2}. \blacktriangleright$$

Касательная плоскость и нормаль к поверхности

Определение. *Касательной плоскостью* к поверхности F(x,y,z)=0 в ее точке $P_0(x_0,y_0,z_0)$ (точка касания) называется плоскость, содержащая в себе все касательные к кривым, проведенным на поверхности через эту точку.

Определение. *Нормалью* к поверхности F(x,y,z)=0 называется прямая, перпендикулярная к касательной плоскости и проходящая через точку касания $P_0(x_0,y_0,z_0)$.

Уравнение касательной плоскости к поверхности F(x,y,z)=0 в ее точке $P_0(x_0,y_0,z_0)$ имеет вид:

$$F_x'(P_0)(x-x_0)+F_y'(P_0)(y-y_0)+F_z'(P_0)(z-z_0)=0$$
.

Уравнения нормали к поверхности F(x,y,z)=0 в ее точке $P_0(x_0,y_0,z_0)$ имеют вид:

$$\frac{x - x_0}{F_x'(P_0)} = \frac{y - y_0}{F_y'(P_0)} = \frac{z - z_0}{F_z'(P_0)}.$$

Пример. Составить уравнения касательной плоскости и нормали к поверхности $2x^2 - y^2 + 2z^2 + xy + xz - 3 = 0$ в точке $P_0(1,2,1)$.

◀ Находим частные производные:

$$F_x' = 4x + y + z$$
, $F_x'(1,2,1) = 7$;

$$F_y' = -2y + x$$
, $F_y'(1,2,1) = -3$;
 $F_z' = 4z + x$, $F_z'(1,2,1) = 5$;

Уравнение касательной плоскости:

$$7(x-1)-3(y-2)+5(z-1)=0.$$

Уравнения нормали:

$$\frac{x-1}{7} = \frac{y-2}{-3} = \frac{z-1}{5}$$
.

Производная по направлению. Градиент, его направление и модуль

Все рассмотрения проводим в трехмерном евклидовом пространстве \mathbb{R}^3 с декартовыми прямоугольными координатами x,y,z. Пусть \vec{i},\vec{j},\vec{k} — орты координатных осей.

Пусть функция $u = f\left(x,y,z\right)$ определена и непрерывна в области D. Тогда е частные производные $\frac{\partial u}{\partial x}; \frac{\partial u}{\partial y}; \frac{\partial u}{\partial z}$ выражают скорость изменения функции по направлению координатных осей. Представляет интерес скорость изменения функции $u = f\left(x,y,z\right)$ по любому заданному направлению.

Пусть $\vec{s} = \cos \alpha \cdot \vec{i} + \cos \beta \cdot \vec{j} + \cos \gamma \cdot \vec{k}$ — единичный вектор заданного направления \vec{s} , $\cos \alpha$, $\cos \beta$, $\cos \gamma$ — направляющие косинусы этого вектора, $|\vec{s}| = 1$. Предположим, что функция u = f(x, y, z) определена в некоторой окрестности точки $P_0(x_0, y_0, z_0)$.

Определение. Производной $\left. \frac{\partial u}{\partial \vec{s}} \right|_{P_0} \, функции \, u = f\left(x,y,z\right) \, в \, mочке \, P_0\left(x_0,y_0,z_0\right) \, no$ направлению \vec{s} называется предел

$$\left. \frac{\partial u}{\partial \vec{s}} \right|_{P_0} = \lim_{\substack{t \to 0 \\ t > 0}} \frac{f(P_1) - f(P_0)}{t},$$

 \vec{c} \vec{c} $\vec{OP_1} = \vec{OP} + t\vec{s}$ (точка P_1 получена из точки P_0 \vec{c} двигом на вектор $t\vec{s}$).

Замечание. Производная $\frac{\partial u}{\partial \vec{s}}\Big|_{P_0}$ характеризует скорость изменения функции u = f(x, y, z) в точке $P_0(x_0, y_0, z_0)$ в направлении орта \vec{s} .

Теорема. Если функция $u=f\left(P\right)$ дифференцируема в точке P_0 , то в этой точке существует производная по направлению любого орта $\vec{s}=\cos\alpha\cdot\vec{i}+\cos\beta\cdot\vec{j}+\cos\gamma\cdot\vec{k}$, причем

$$\left. \frac{\partial u}{\partial \vec{s}} \right|_{P_0} = \left. \frac{\partial u}{\partial x} \right|_{P_0} \cos \alpha + \left. \frac{\partial u}{\partial y} \right|_{P_0} \cos \beta + \left. \frac{\partial u}{\partial z} \right|_{P_0} \cos \gamma.$$

Определение. *Градиентом* функции u = f(x, y, z), обозначаемым символом gradu, называется вектор, координатами которого являются соответствующие частные производные функции u = f(x, y, z), т.е.

grad
$$u = \frac{\partial u}{\partial x} \cdot \vec{i} + \frac{\partial u}{\partial y} \cdot \vec{j} + \frac{\partial u}{\partial z} \cdot \vec{k}$$
.

Следствие. Производная по направлению $\frac{\partial u}{\partial \vec{s}}\Big|_{P_0}$ равна скалярному произведению градиента на единичный вектор данного направления:

$$\left. \frac{\partial u}{\partial \vec{s}} \right|_{P_0} = \operatorname{grad} u \cdot \vec{s} .$$

Теорема. Пусть gradu $\Big|_{P_0} \neq 0$. Тогда вектор gradu $\Big|_{P_0}$ направлен в сторону наибыстрейшего возрастания функции в точке P_0 . Модуль градиента $\Big| \operatorname{gradu} \Big|_{P_0} \Big|$ (длина вектора $\operatorname{gradu} \Big|_{P_0}$) равен величине максимальной скорости возрастания функции в точке P_0 .

◀Доказательство. Действительно,

$$\frac{\partial u}{\partial \vec{s}}\Big|_{P_0} = \operatorname{grad} u \cdot \vec{s} \le |\operatorname{grad} u| \cdot |\vec{s}| = |\operatorname{grad} u|,$$

причем равенство достигается, когда вектор $\operatorname{grad} u$ сонаправлен с вектором \vec{s} .

Замечание. Если grad $u\big|_{P_0}=0$, то $\frac{\partial u}{\partial \vec{s}}\Big|_{P_0}=0$ для любого направления.