MINUTEMAN STAGE III OPERATIONAL SURVEILLANCE PROGRAM SEVEN-YEAR TESTING B. (U) MORTON THIOKOL INC BRIGHAM CITY UT MASATCH DIV M R KNIGHT DEC 85 TMR-32333 F42600-86-C-0001 F/G 21/9 AD-R164 288 1/2 UNCLASSIFIED F/G 21/9. 2 NL



MICROCOPY RESOLUTION TEST CHART

# Minuteman Stage I Operational Surveil Program Seven-Year Testing Bondline Aging Stu Minuteman Stage III **Operational Surveillance**

**Bondline Aging Study** 

December 1985



MORTON THIOKOL, INC.

**Wasatch Operations** 

P.O. Box 524, Brigham City, Utah 84302 (801)863-3511

DISTRIBUTION STATEMENT A

Approved for public releases Distribution Unlimited

#### MINUTEMAN STAGE III OPERATIONAL SURVEILLANCE PROGRAM

#### SEVEN-YEAR TESTING BONDLINE AGING STUDY

DECEMBER 1985

Contract F42600-86-C-0001 DELIVERY ORDER: A003

PREPARED BY:

Michael R. Knight
Mechanical Properties Section

SELECTE FEB 1 4 1986

В

APPROVED BY:

Dr. R. D. Taylor, Supervisor Mechanical Properties Section

Leroy C. Porter, Program Manager

Minuteman Programs

Dr. R. L. Carpenter, Manager
Propellant Development Department

MORTON THIOKOL, INC./WASATCH OPERATIONS
P. O. BOX 524
BRIGHAM CITY, UTAH 84302

Approved for public releases

Distribution Unlimited

### TABLE OF CONTENTS

|     |                                                             | Page |
|-----|-------------------------------------------------------------|------|
| 1.0 | Introduction                                                | . 1  |
| 1.1 | Twelve-Year Bondline Aging Study                            | . 1  |
| 1.2 | Testing/Monitoring of Motor TC 30024                        |      |
| 1.3 | Material Properties Testing of Dissected Motor 30072        |      |
| 2.0 | Objectives                                                  | . 3  |
| 2.1 | Twelve-Year Bondline Aging Study and Excise Sample Testing. | . 3  |
| 2.2 | Testing/Monitoring of Motor TC 30024                        | . 3  |
| 2.3 | Material Properties Testing of Dissected Motor TC 30072     |      |
| 3.0 | Summary and Conclusions                                     | 4    |
| 3.1 | Twelve-Year Bondline Aging Study                            | 4    |
| 3.2 | Testing/Monitoring of Motor TC 30024                        | . 4  |
| 3.3 | Material Properties Testing of Dissected Motor TC 30072     |      |
| 4.0 | Methods                                                     | . 6  |
| 4.1 | Material Properties Testing                                 | . 6  |
| 4.2 | Twelve-Year Bondline Aging Study                            | . 8  |
| 4.3 | Testing/Monitoring of Motor TC 30024                        |      |
| 4.4 | Material Properties Testing of Dissected Motor TC 30072     |      |
| 5.0 | Results                                                     | . 10 |
| 5.1 | Twelve-Year Bondline Aging Study                            | 10   |
| 5.2 | Testing/Monitoring of Motor TC 30024                        | 11   |
| 5.3 | Material Properties Testing of Dissected Motor TC 30072     | . 11 |

| Accession F | or                                    |
|-------------|---------------------------------------|
| NTIS GRARI  |                                       |
| DTIC TAB    | C;                                    |
| Unerhounced |                                       |
| Jumpificati |                                       |
| PER L       | ETTER                                 |
| Distributio | -,1                                   |
| 45 1105135  | জি উন্সৰ্ভ                            |
| Asset       | £90/02                                |
| Dist pro    | 2.00                                  |
| A-1         | · · · · · · · · · · · · · · · · · · · |



DOC TWR-32333

REVISION ....

# ILLUSTRATIONS

| Figure |                                                                                                         |   | Page |
|--------|---------------------------------------------------------------------------------------------------------|---|------|
| 1      | Definition Flowchart for Stage III Surveillance Program                                                 | • | 13   |
| 2      | Motor Segment Layout                                                                                    | • | 14   |
| 3      | Effect of Storage Conditions Upon Mini DPT Bond Strength in the Forward Flap and at the Forward Equator | • | 15   |
| 4      | Effect of Storage Conditions Upon Liner Swell Ratio at the Forward Flap and at the Forward Equator      |   | 16   |
| 5      | Effect of Storage Conditions Upon Liner Gel Fraction at the Forward Flap and at the Forward Equator     |   | 17   |
| 6      | Effect of Storage Conditions Upon Mini DPT Bond Strength<br>Near the Forward Equator                    |   | 18   |
| 7      | Effect of Storage Conditions Upon Liner Swell Ratio Near the Forward Equator                            |   | 19   |
| 8      | Effect of Storage Conditions Upon Liner Gel Fraction Near the Forward Equator                           |   | 20   |
| 9      | Effect of Storage Conditions Upon Propellant Relaxation Modulus in the Forward Flap Area                | • | 21   |
| 10     | Effect of Storage Conditions Upon Propellant Relaxation Modulus at the Forward Equator                  |   | 22   |
| 11     | Mini DPT Bond Strength at Various Motor Locations                                                       |   | 23   |
| 12     | Liner Swell Ratio at Various Motor Locations                                                            |   | 24   |
| 13     | Liner Gel Fraction at Various Motor Locations                                                           |   | 25   |
| 14     | Liner Moisture at Various Motor Locations                                                               |   | 26   |
| 15     | Motor TC 30005 Relaxation Modulus of ANB-3066 Propellant at the Forward Equator                         |   | 27   |
| 16     | Motor TC 30019 Relaxation Modulus of ANB-3066 Propellant at the Forward Equator                         |   | 28   |
| 17     | Motor TC 30033 Relaxation Modulus of ANB-3066 Propellant at the Forward Equator                         | • | 29   |

REVISION .



| Figure |                                                                                                                                             | Page |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------|------|
| 18     | Shore A Hardness Gradient of ANB-3066 Propellant at the Forward Equator                                                                     | 30   |
| 19     | Motor TC 30005 Relaxation Modulus of ANB-3066 Propellant in the Forward Flap Area                                                           | 31   |
| 20     | Motor TC 30019 Relaxation Modulus of ANB-3066 Propellant in the Forward Flap Area                                                           | 32   |
| 21     | Motor TC 30033 Relaxation Modulus of ANB-3066 Propellant in the Forward Flap Area                                                           | 33   |
| 22     | Shore A Hardness Gradient of ANB-3066 Propellant in the Forward Flap, Area A                                                                | 34   |
| 23     | Shore A Hardness Gradient of ANB-3066 Propellant in the Forward Flap, Area B                                                                | 35   |
| 24     | Shore A Hardness Gradient of ANB-3066 Propellant in the Forward Flap, Area C                                                                | 36   |
| 25     | Excise Sample Diagram                                                                                                                       | 37   |
| 26     | Liner Bond Tensile Strength at Various Motor Locations: Motor TC 30050 Segments at the Time of Firing of Motor TC 30106 and 5.5 Years Later | 38   |
| 27     | Liner Gel Fraction at Various Motor Locations: Motor TC 30050 Segments at Time of Firing of Motor TC 30106 and 5.5 Years Later              | 39   |
| 28     | Liner Swell Ratio at Various Motor Locations: Motor TC 30050 Segments at Time of Firing of Motor TC 30106 and 5.5 Years Later               | 40   |
| 29     | Shore A Hardness of Bore Propellant: Motor TC 30050 Segments at Time of Firing of Motor TC 30106 and 5.5 Years Later                        | 41   |
| 30     | Modulus of Mini Tensile Specimens from Bore Propellant:<br>Motor TC 30050 Segments at Time of Firing of Motor                               |      |
|        | TC 30106 and 5.5 Years Later                                                                                                                | 42   |

DOC NO. TWR-32333 VOL PAGE

REVISION \_\_\_\_

STATE OF CONTRACTOR OF THE STATE OF THE STAT

| Figure |                                                                                                                                                          | Page |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 31     | Maximum Stress of Mini Tensile Specimens from Bore Propellant: Motor TC 30050 Segments at Time of Firing of Motor TC 30106 and 5.5 Years Later           | 43   |
| 32     | Strain at Maximum Stress of Mini Tensile Specimens from Bore Propellant: Motor TC 30050 Segments at Time of Firing of Motor TC 30106 and 5.5 Years Later | 44   |
| 33     | Strain at Failure of Mini Tensile Specimens from Bore Propellant: Motor TC 30050 Segments at Time of Firing of Motor TC 30106 and 5.5 Years Later        | 45   |
| 34     | Motor Sectioning Cuts                                                                                                                                    | 46   |
| 35     | Segment Cuts for Section 1                                                                                                                               | 47   |
| 36     | Segment Cuts for Section 2                                                                                                                               | 48   |
| 37     | Segment Cuts for Sections 3, 4, and 5                                                                                                                    | 49   |
| 38     | Segment Cuts for Section 6                                                                                                                               | 50   |
| 39     | Additional Cutting and Typical Marking of Section 1 Segments                                                                                             | 51   |
| 40     | Mini DPT Bond Strength in Motor TC 30072 at Various Motor Locations                                                                                      | 52   |
| 41     | Mini DPT Bond Strength in Motor TC 30072 at Various Motor Locations                                                                                      | 53   |
| 42     | Effect of Storage Conditions Upon Liner Swell Ratio at Various Motor Locations in Motor TC 30072                                                         | 54   |
| 43     | Effect of Storage Conditions Upon Liner Swell Ratio at Various Motor Locations in Motor TC 30072                                                         | 55   |
| 44     | Effect of Storage Conditions Upon Mini DPT Bond Strength Near the Aft Equator of Motor TC 30072                                                          | 56   |
| 45     | Effect of Storage Conditions Upon Liner Swell Ratio Near the Aft Equator of Motor TC 30072                                                               | 57   |

DOC NO TWR-32333 VOL

| Figure |                                                                                                                | Page |
|--------|----------------------------------------------------------------------------------------------------------------|------|
| 46     | Mini DPT Bond Strength at Various Motor Locations in Motor TC 30072                                            | . 58 |
| 47     | Liner Swell Ratio at Various Motor Locations in Motor TC 30072                                                 | . 59 |
| 48     | Liner Gel Fraction at Various Motor Locations in Motor TC 30072                                                | . 60 |
| 49     | Motor TC 30072 Relaxation Modulus Gradient of ANB-3066 Propellant at the Forward Flap Area                     | . 61 |
| 50     | Motor TC 30072 Relaxation Modulus Gradient of ANB-3066 Propellant in the Barrel Area, Between Grounding Straps | . 62 |
| 51     | Motor TC 30072 Relaxation Modulus Gradient of ANB-3066 Propellant in the Barrel Area, Under Grounding Straps   | . 63 |
| 52     | Motor TC 30072 Relaxation Modulus Gradient of ANB-3066 Propellant at the Forward Nipple Area                   | . 64 |
| 53     | Motor TC 30072 Relaxation Modulus Gradient of ANB-3066 Propellant at the Forward Equator, Area A               | . 65 |
| 54     | Motor TC 30072 Relaxation Modulus Gradient of ANB-3066 Propellant at the Forward Equator, Area B               | . 66 |
| 55     | Motor TC 30072 Relaxation Modulus Gradient of ANB-3066 Propellant at the Forward Equator, Area C               | . 67 |
| 56     | Motor TC 30072 Relaxation Modulus Gradient of ANB-3066 Propellant at the Aft Equator, Area A                   | . 68 |
| 57     | Motor TC 30072 Relaxation Modulus Gradient of ANB-3066 Propelaint at the Aft Equator, Area B                   | . 69 |
| 58     | Motor TC 30072 Relaxation Modulus Gradient of ANB-3066 Propellant at the Aft Equator, Area C                   | . 70 |
| 59     | Motor TC 30072 Relaxation Modulus Gradient of ANB-3066 Propellant at the Aft Flap, Area D                      | . 71 |

NO. TWR-32333 VOL

| Figure |                                                                                                  | Page |
|--------|--------------------------------------------------------------------------------------------------|------|
| 60     | Motor TC 30072 Relaxation Modulus Gradient of ANB-3066<br>Propellant at the Aft Flap, Area E     | . 72 |
| 61     | Motor TC 30072 Relaxation Modulus Gradient of ANB-3066<br>Propellant at the Aft Flap, Area F     | . 73 |
| 62     | Motor TC 30072 Liner C=0/C=C (Vinyl and Stretching) Absorbance Ratios at Various Motor Locations | . 74 |

DOC NO. TWR-32333 VOL

# **TABLES**

| Table |                                                                                                                                  | Page |
|-------|----------------------------------------------------------------------------------------------------------------------------------|------|
| 1     | Segment Usage by Test Date                                                                                                       | 75   |
| 2     | Matrix for Minuteman Stage III Bondline Aging Program                                                                            | 76   |
| 3     | Motor TC 30005 Material Properties Data, Forward Equator Area, Segment 2L2, 7-Year (1985) Results                                | 78   |
| 4     | Motor TC 30019 Material Properties Data, Forward Equator Area, Segment 2L2, 7-Year (1985) Results                                | 79   |
| 5     | Motor TC 30033 Material Properties Data, Forward Equator Area, Segment 2L2, 7-Year (1985) Results                                | 80   |
| 6     | Motor TC 30005 Stress Relaxation Gradient, ANB-3066 Propellant Forward Equator Area, Ambient, Segment 2L2, 7-Year (1985) Results | 81   |
| 7     | Motor TC 30019 Stress Relaxation Gradient, ANB-3066 Propellant Forward Equator Area, Ambient, Segment 2L2, 7-Year (1985) Results | 82   |
| 8     | Motor TC 30033 Stress Relaxation Gradient, ANB-3066 Propellant Forward Equator Area, Ambient, Segment 2L2, 7-Year (1985) Results | 83   |
| 9     | Propellant Shore A Hardness, 15-Second Readings, Forward Flap Area, Segment 1B6, Area A, 7-Year (1985) Results                   | 84   |
| 10    | Propellant Shore A Hardness, 15-Second Readings, Forward Flap Area, Segment 1B6, Area B, 7-Year (1985) Results                   | 85   |
| 11    | Propellant Shore A Hardness, 15-Second Readings, Forward Flap Area, Segment 1B6, Area C, 7-Year (1985) Results                   | 86   |
| 12    | V-45 Rubber Material Properties Data, Forward Flap Area, Segment 1B6, 7-Year (1985) Results                                      | 87   |
| 13    | Motor TC 30005 Material Properties Data 7-Year (1985) Results                                                                    | 88   |
| 14    | Motor TC 30019 Material Properties Data 7-Year (1985) Results                                                                    | 89   |

NO. TWR-32333 VOL

REVISION \_\_\_\_

# TABLES

REVISION\_

| Table |                                                                                                                                                          | Page |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 15    | Motor TC 30033 Material Properties Data 7-Year (1985) Results                                                                                            | 90   |
| 16    | Motor TC 30005 Liner Penetrometer Data, Forward Equator Profile, Segment 2L2, 10-Sec Readings, 76°F, 7-Year (1985) .                                     | 91   |
| 17    | Motor TC 30019 Liner penetrometer Data, Forward Equator Profile, Segment 2L2, 10-Sec Readings, 76°F, 7-Year (1985) Results                               | 92   |
| 18    | Motor TC 30033 Liner Penetrometer Data, Forward Equator Profile, Segment 2L2, 10-Sec Readings, 76°F, 7-Year (1985) Results                               | 93   |
| 19    | Motor TC 30005 Stress Relaxation Gradient, ANB-3066 Propellant, Forward Flap Area, Ambient, Individual Results, Segment 1B6, 7-Year (1985) Results       | 94   |
| 20    | Motor TC 30019 Stress Relaxation Gradient, ANB-3066<br>Propellant, Forward Flap Area, Ambient, Individual Results,<br>Segment 1B6, 7-Year (1985) Results | 95   |
| 21    | Motor TC 30033 Stress Relaxation Gradient, ANB-3066 Propellant, Forward Flap Area, Ambient, Individual Results, Segment 1B6, 7-Year (1985) Results       | 96   |
| 22    | Propellant Shore A Hardness, 15-Second Readings, Forward Equator Area, Segment 2L2, 7-Year (1985) Results                                                | 97   |
| 23    | Matrix for Surveillance Testing of Stage III Minuteman Motor TC 30024                                                                                    | 98   |
| 24    | Material Properties of SAT-Conditioned Motor TC 30050 Segments: Stored with Motor TC 30024, Test at 2-Year Intervals                                     | 99   |
| 25    | Mini DPT Bond Strength Profile of Motor TC 30050 SAT Segments at Firing of Motor TC 30106 and 5.5 Years Later                                            | 100  |
| 26    | Liner Gel Fraction and Swell Ratio Profiles of Motor TC 3005<br>SAT Segments at Firing of Motor TC 30106 and 5.5 Years<br>Later                          |      |

# TABLES (CONTINUED)

| Table |                                                                                                                                        | Page |
|-------|----------------------------------------------------------------------------------------------------------------------------------------|------|
| 27    | Bore Propellant Mini Tensile and Shore A Gradients of Motor TC 30050 SAT Segments at Firing of Motor TC 30106 and 5.5 Years Later      | 104  |
| 28    | Dissected Motor TC 30072 Segment Test Dates                                                                                            | 105  |
| 29    | Material Properties Testing of Dissected Operational Motor Segments                                                                    | 106  |
| 30    | Material Property Tests for Dissected Motor Segments                                                                                   | 107  |
| 31    | Material Properties (Baseline Tests Only) of Segments from Dissected Motor                                                             | 108  |
| 32    | Motor TC 30072 Bond Strength and Liner Properties in Forward Nipple and Forward Flap Areas, 2-Year (1985) Results                      | 109  |
| 33    | Motor TC 30072 Bond Strength and Liner Properties in Forward Equator Area, Segment 2L, Between Grounding Straps, 2-Year (1985) Results | 110  |
| 34    | Motor TC 30072 Bond Strength and Liner Properties in Barrel Area, Segment 2L, Between Grounding Straps, 2-Year (1985) Results          | 112  |
| 35    | Motor TC 30072 Bond Strength and Liner Properties in Aft Equator Area, Segment 51, Between Grounding Straps, 2-Year (1985) Results     | 113  |
| 36    | Motor TC 30072 Bond Strength and Liner Properties in Aft Equator Area, Segment 51, Between Grounding Straps, 2-Year (1985) Results     | 114  |
| 37    | Motor TC 30072 Bond Strength and Liner Properties in Aft Flap Area, Segment 6A, 2-Year (1985) Results                                  | 115  |
| 38    | Motor TC 30072 Stress Relaxation Gradient of Propellant in Forward Flap Area, Segment 1AI, 2-Year (1985) Results                       | 117  |
| 39    | Motor TC 30072 Stress Relaxation Gradient of Propellant in Forward Nipple Area, Segment 2A, 2-Year (1985) Results                      | 118  |

DOC TWR-32333 VOL

# TABLES (CONTINUED)

| Table |                                                                                                                                               | Page |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------|------|
| 40    | Motor TC 30072 Stress Relaxation Gradient of Propellant in Forward Equator Area, Segment 2L, 2-Year (1985) Results                            | 119  |
| 41    | Motor TC 30072 Stress Relaxation Gradient of Propellant in Barrel Area, Segment 3A, Between and Under Grounding Straps, 2-Year (1985) Results | 121  |
| 42    | Motor TC 30072 Stress Relaxation Gradient of Propellant in Aft Equator Area, Segment 5I, 2-Year (1985) Results                                | 122  |
| 43    | Motor TC 30072 Stress Relaxation Gradient of Propellant in Aft Flap Area, Segment 6A, 2-Year (1985) Results                                   | 124  |
| 44    | Motor TC 30072 Stress Relaxation of V-45 Insulation in Forward Nipple and Forward Flap Areas, 2-Year (1985) Results                           | 126  |
| 45    | Motor TC 30072 Stress Relaxation of V-45 Insulation in Forward and Aft Equator Areas, Between Grounding Straps, 2-Year (1985) Results         | 127  |
| 46    | Motor TC 30072 V-45 Insulation Properties in Forward Nipple and Aft and Forward Flap Areas, 2-Year (1985) Results                             | 128  |
| 47    | Motor TC 30072 V-45 Insulation Properties in Forward and Aft Equator Areas Between Grounding Straps, 2-Year (1985) Results                    | 129  |
| 48    | Motor TC 30072 V-45 Insulation Properties in Barrel Area,<br>Between and Under Grounding Straps, 2-Year (1985) Results                        | 130  |

DOC TWR-32333 VOL SEC PAGE

#### 1.0 INTRODUCTION

This report contains results of the yearly material properties testing of Stage III motor segments in the 12-year bondline aging study. Also reported are the results obtained in the continued testing/monitoring of Motor TC 30024 (LRSLA Simulated Aging Test Motor No. 3), as are the second-year results of tests upon the bondline materials and propellant obtained from dissected Stage III segments of Motor TC 30072. Tests on the excise samples from motors TOP-19, -20, and -21 were not performed this year because the test specimens were not delivered. Figure 1 is a general summary of the tests to be performed.

The testing reported herein was performed during the period of 1 December 1984 through 30 September 1985. The testing of segments from motors TC 30005, TC 30019, and TC 30033 took place during August and September 1985. Second-year tests of the motor TC 30072 segments were conducted in the June-September 1985 time period. The effort was accomplished in accordance with TWR-20946, "Test Plan, Minuteman Stage III Operational Surveillance Program," October 1978, and its Addendum No. 1, dated January 1981, and Addendum No. 2, May 1983.

# 1.1 Twelve-Year Bondline Aging Study

This phase of the Minuteman Stage III Surveillance Program uses segments removed from three in-process reject motors: TC 30005, TC 30019, and TC 30033. All three motors were cast in 1971 and were rejected due to apex voids. Segments maintained at silo conditions are being used to track bondline aging of Stage III motors with testing of material properties being performed at one-year intervals to 1990. This report contains the data from the seven-year aging test interval. The actual time between baseline or zero-time testing and this test period is about 78 months.

NO TWR-32333 VOL

## 1.2 Testing/Monitoring of Motor TC 30024

۲

Motor TC 30024 was earlier conditioned for 16 months at 110°F and 80 percent RH as LRSLA Simulated Aging Test Motor No. 3, wherein the liner at the forward flap was brought to a fully degraded condition. Between the end of conditioning and August 1981, a period of 23 months, motor TC 30024 was kept in storage in a horizontal position at approximately 70°F and ambient RH. Since then, it has been in vertical storage, aft end down, at 70°F and 50 percent RH interrupted only for brief periods to allow radiographic and visual inspection at regular intervals to monitor the existing forward and aft bondline separations and other areas of the motor. In addition, motor TC 30050 segments that accompanied this motor during the Simulated Aging Test are being tested at two-year intervals (in 1981, 1983, and 1985) to give an indication of the present material properties of motor TC 30024.

## 1.3 Material Properties Testing of Dissected Motor TC 30072

Motor TC 30072 was cast on 8 December 1971, spent most of its life in the operational force, and then was fully dissected by Wasatch Operations personnel during April and May 1983. Following dissection, extensive material properties testing of the propellant/liner/insulation bond system was performed on motor segments from preselected locations. The remaining motor segments will be tested at one-year intervals over the next five years. Prior to testing, the segments are being stored at nominal silo conditions. The second-year test results are reported herein, representing the motor condition at about 165 months of age.

NO. TWR-32333 VOL

BELTINION

#### 2.0 OBJECTIVES

#### 2.1 Twelve-Year Bondline Aging Study and Excise Sample Testing

The program objective is to provide material properties aging data at silo conditions (70° + 5° F, 50 + 5 percent RH) for liner bond strength,

ANB-3066 propellant, SD-851-2 liner, and V-45 insulation from selected locations of three Minuteman Stage III motors. These data are to be used to relate the conditions of the dissected motors to those of operational motors (via excise samples) and to compare and adjust the age of all of these to the Stage II nominal liner degradation curve.

#### 2.2 Testing/Monitoring of Motor TC 30024

The monitoring of motor TC 30024 and testing of accompanying motor segments are intended to determine if continued storage of motor TC 30024 will result in the worsening or healing of the liner condition and existing bondline separations in the motor.

#### 2.3 Material Properties Testing of Dissected Motor TC 30072

The dissection of a Stage III motor from the operational force and testing of its material properties are intended to allow verification of motor aging predictions related to liner degradation by a determination of the longitudinal and circumferential bond strength profiles. Measurement of the bore surface propellant properties is used to verify satisfactory strain capability.

DOC NO. TWR-32333 VOL

#### 3.0 SUMMARY AND CONCLUSIONS

### 3.1 Twelve-Year Bondling Aging Study

Testing for the seven-year interval was performed on the forward flap and forward equator motor segments. As in the earlier test intervals, the results and trends were confirmed. The propellant/liner/insulation bond strength continues to decline with motor age. The rate of decline in the forward flap area has slowed with the mini DPT bond strength being about 34 psi. The decline in the forward equator was much greater than previous values, being down to approximately 51 psi from last year's value of 64 psi. A continuing increase in liner swell ratios and decline in liner gel fraction are further evidence of continued liner degradation. An additional decline in the relaxation modulus of propellant, particularly immediately adjacent to the liner interface, is again noted. Increases in the separation from termination in the bore to the aft flap hinge were observed. Separations at the 300 to 330 degree locations showed no appreciable changes, while inspection of the 20 to 290 degree motor locations show increases of +6 to +10.1 inches from the 64-month data.

#### 3.2 Testing/Monitoring of Motor TC 30024

The visual and radiographic inspections of motor TC 30024 reveal moderate changes in the condition of the propellant/liner/insulation bondline during approximately two years of storage and monitoring at silo conditions.

#### 3.3 Material Properties Testing of Dissected Motor TC 30072

Material properties of motor TC 30072 show the same trends as the three surveillance dissect motors. Liner degradation is evidenced by a decrease in mini DPT bond strength, increase in liner swell ratio, and decrease in

NO. TWR-32333 VOL

BEVIEW

liner gel fraction. The bond strength (see Tables 32 to 37) follows the usual trends of being highest near the equator, lowest in the flap areas, and much better under and between the grounding straps.

Stress relaxation data for the propellant near the liner interface show a correlation between liner bond strength and relaxation modulus. The higher the bond strength, the higher the relaxation modulus.

Material properties of V-45 insulation from various motor locations were determined. The relaxation modulus is higher in the equator areas and lower near the flaps. V-45 swell ratios appear to be similar at all motor locations tested. V-45 moisture analysis showed a greater increase in percent moisture in the aft flap and forward equator regions with moisture content being lowest in the barrel area, between and under the grounding straps.

NO. TWR-32333 VOL.

BEVIEWA

#### 4.0 METHOD

#### 4.1 Material Properties Testing

Insofar as possible, all testing of motor segment or excise sample material properties throughout the bondline study has been carried out in a uniform fashion and according to the following test methods.

#### 4.1.1 Segment Sampling

The foil/epoxy seal and any interfering fiberglass case material is removed from the motor segments prior to test sample preparation using these procedures:

DP 2413-018, Cutting of Stage III Minuteman Segments for Lab Sample Preparation

DP 2413-021, Minuteman Stage III Fiberglass Case Removal From Motor Segments by Grit Blasting

### 4.1.2 Mechanical Property Test Methods

#### 4.1.2.1 Mini DPT Bond Tensile

DP 2413-008, Preparation of Mini Double Plated Tensile (Mini DPT) Bond Strength Specimens

DP 2413-013, Testing of Mini Double Plated Tensile (Mini DPT) Bond Strength Specimens

#### 4.1.2.2 Propellant Relaxation Modulus

DAP 0270, Determination of Relaxation Modulus of Propellant by Use of Mini Tensile Specimens

DP 2413-015, Stress Relaxation Testing Using the Instron Tensile Tester

#### 4.1.2.3 Shore A Hardness (15-Second)

SOP 325, Section 6

#### 4.1.2.4 Propellant Mini Tensile

SLP-528, Mechanical Forming of Propellant Specimens

DP-2413, Operation of Instron Tensile Testing Instruments

NO. TWR-32333 VOL

4.1.2.5 V-45 Relaxation Modulus

LTP-2413-0151, Preparation of Rubber Stress Relaxation Specimens from Motor Segments

DP 2413-015, Stress Relaxation Testing Using the Instron Tensile Tester

4.1.2.6 SD-851-2 Liner Relaxation Modulus

SLP-472, Penetrometer Hardness Testing of Liner Propellent Bond

- 4.1.3 Chemical Property Test Methods
- 4.1.3.1 SD-851-2 Liner Moisture

  DAP 0269, Determination of Moisture in SD-851-2 Liner
- 4.1.3.2 SD-851-2 Liner Solvent Swell Ratio

DAP 0197, Determination of Solvent Swell Ratio of Cured Liner from MM III Stage Samples

4.1.3.3 SD-851-2 Liner Gel Fraction

DAP 0254, Determination of Minuteman III Stage Liner Gel Fraction

- 4.1.3.4 V-45 Moisture Content
- 4.1.3.4.1 Azeotropic Distillation

DAP 0321, Determination of Moisture in Rubber by Azeotropic Distillation

4.1.3.4.2 DuPont Moisture Analysis

DAP 0317, Determination of Moisture in V-45 and C-4 Insulation by DuPont Moisture Evolution Analyzer

4.1.3.5 V-45 Swell Ratio

DAP 0197, Determination of Solvent Swell Ratio of Cured Liner from MM III Stage Samples

4.1.3.6 V-45 DOP Content

DAP 0300, Determination of DOP in V-45 Rubber

4.1.3.7 SD-851-2 Liner C=O/C=C Absorbance Ratio

DAP 0399. Infrared Analysis Using the Nicolet 7199 FTIR

NO. TWR-32333 VOL

#### 4.1.4 Evaluation of Material Properties Test Results

Once the testing of the motor segments was accomplished, results were compared with those from earlier test intervals or other aging and surveil-lance motors. This was done largely through the use of plots of measured values versus conditioning time or motor location.

### 4.2 Twelve-Year Bondline Aging Study

As at earlier test intervals, the designated segments (see Figure 2 and Table 1) were removed singly from conditioning, the foil/epoxy seal was removed, and lab specimens were prepared and tested in accordance with Table 2 and the above cited methods. While awaiting testing, the specimens were kept tightly sealed in aluminum foil to minimize loss of moisture.

#### 4.3 Testing/Monitoring of Motor TC 30024

Simulated silo conditioning of motor TC 30024 at  $70^{\circ} \pm 5^{\circ}$ F and  $50 \pm 5^{\circ}$ 

Additional information as to the present condition of the bondline and propellant in motor TC 30024 is being obtained by periodic testing of the material properties of segments from motor TC 30050 (see test matrix in Table 24). These segments accompanied motor TC 30024 throughout the LRSLA SAT conditioning, and in that accelerated aging test, motor TC 30050

DOC NO. TWR-32333 VOL

segments were laboratory tested to verify that the liner in the forward flap region of the intact motors, TC 30024 and TC 30106, was fully degraded. The first testing of these segments under the surveillance program was performed in September 1981, after additional storage with motor TC 30024 at silo conditions for about 1.5 years. All tests at the present and at earlier times were performed in accordance with the test procedures cited in Section 4.1.

#### 4.4 Material Properties Testing of Dissected Motor TC 30072

The full dissection and material properties testing of Stage III motors from the operational force was first proposed in 1981<sup>1</sup>, but the first such motor, TC 30072, did not become available until early 1983. With its availability came a request that the test plan be revised to provide for additional material properties testing to track the bondline condition to at least 17 years of motor age. Without making changes in the original dissection plan or deleting any of the originally planned material properties testing, the test plan was revised<sup>2</sup>. The current plan makes use of motor segments that would have otherwise gone unused and provides for annual testing to 1989 (Table 28), or about 17.5 years of age for motor TC 30072.

Following dissection of motor TC 30072 by Operations personnel, further subsectioning of the motor segments and preparation and testing of laboratory specimens was performed by workers in the Research and Development Laboratories. This testing was performed in accordance with the methods cited above, and results are presented in Section 5.2.

NO. TWR-32333 VOL

DEVISION

<sup>1</sup>TWR-20946, "Test Plan, Minuteman Stage III, Operational Surveillance Program, Addenum No. 1," January 1981.

<sup>&</sup>lt;sup>2</sup>TWR-20946, "Test Plan, Minuteman Operational Surveillance Program, Addendum No. 2," May 1983.

### 5.0 RESULTS

# 5.1 Twelve-Year Bondline Aging Study

The plan for motor segment use and the material properties test matrix for the 12-year (1978 to 1990) bondline aging study using motors TC 30005, TC 30019, and TC 30033 are shown in Tables 1 and 2. The motor segment layout is in Figure 2. The results of the material properties testing at the seven-year test interval (actually 76 months of conditioning at 70°F and 50 percent RH) are summarized in Figures 3 to 24 and Tables 3 to 22. In the latest testing, only the forward flap and forward equator segments were tested, as planned. Earlier trends and results tend to be confirmed. As noted in previous test intervals, the motor-to-motor differences in general are small.

The propellant/liner/insulation bond tensile strength continues to drop off with increasing motor age or conditioning time. At the 76-month interval, the bond strength (34 psi) is approximately the same as the 64-month data in the forward flap area (see Figure 3). In the forward equator, bond strength has dropped from 64 psi at 64 months to 51 psi at 76 months. In the forward flap area, the liner swell ratio has increased to a value of 2.13, and the liner gel fraction has decreased to a value of 0.40. These results confirm that degradation continues to be least in the most protected locations, that is where moisture enters with difficulty, as at the forward equator and two inches aft of the forward equator.

Propellant relaxation modulus has declined with storage time, particularly immediately adjacent to the liner interface. This effect can be caused by moisture effects and migration of DOP plasticizer from the V-45 insulation: the amount of contribution of each to the degradation has not been identified.

NO. TWR-32333 VOL

#### 5.2 Testing/Monitoring of Motor TC 30024

#### 5.2.1 Motor Inspection

Radiographic inspections of motor TC 30024 revealed evidence of further liner degradation in some areas while other areas showed no appreciable change. More degradation was evident in the flap bulb area. The separations that were found between the aft polar boss insulation and glass at the aft tip have not changed. There was also no evidence of change in the forward flap area. However, new separations from the in bore to 12 inches aft of the aft flap bulb hinge were detected in Area A at 172 deg angular location.

Visual inspections of motor TC 30024 have shown no trends in the physical measurements to indicate significant changes in either the motor bore diameter or the forward gap area. There is also no apparent hardening of the propellant surface in the aft bore. The latest Shore A readings ranged from 74-79, slightly lower than values for August 1981.

#### 5.2.2 Segment Testing

The results of material properties testing of the motor TC 30050 segments that have accompanied motor TC 30024 since the LRSLA Simulated Aging Test conditioning are summarized in Figures 26 to 32 and Tables 25 to 27. The bond strength and liner gel fraction show a slight decrease in values as compared to baseline data. Liner swell ratios also follow a similar trend with a slight increase in swell ratio values.

#### 5.3 Material Properties Testing of Dissected Motor TC 30072

The plans for baseline and later testing of the material properties of dissected operational motor TC 30072 are shown in Tables 28 to 31. The designation of specific motor segments is obtained from Figures 34 to 39. The results of the 1985 material properties testing are summarized in Figures 40 to 62 and Tables 32 to 48.

| NO. TWR-32333 |      | vor |
|---------------|------|-----|
| SEC           | PAGE |     |
|               | 1 1  | 1   |

#### 5.3.1 Bond Strength and Liner Properties

The motor TC 30072 propellant/liner/insulation bond strength and liner properties test results are summarized in Figures 40 to 48 and Tables 32 to 37.

The effects of motor location and crosshead test rate on mini DPT bond strength are seen in Figures 40 and 41. The bond strength is highest in the barrel region and near the equators where there is the lowest moisture penetration. Also evident is the existence of lower bond strength in the forward end of the motor than in the aft end. The motor profiles of liner gel fraction and liner swell ratio show a trend for a decrease in gel fraction and increase in swell ratio values. Liner swell ratio values show a decrease in the more protected barrel region.

#### 5.3.2 Relaxation Modulus of Propellant at the Bondline

Stress relaxation testing results for motor TC 30072 are shown in Figures 49 to 61 and Tables 38 to 45. The previously noted trend of lower propellant stress relaxation modulus in the forward end of the motor and higher modulus in the barrel near the equators and under the grounding straps is still in evidence. This correlation suggests the relationship of bond strength to propellant relaxation modulus.

#### 5.3.3 V-45 Insulation Material Properties

The relaxation modulus, moisture content, dioetylphthalate (DOP)
plasticizer content, and swell ratio of V-45 insulation were determined
in various locations of motor TC 30072. The V-45 relaxation modulus is
typically lowest in the equator region and highest in the forward and aft
flaps. The V-45 moisture content results show that the percent moisture
is lowest in the barrel region. The test results are summarized in Tables
44 to 48.

NO. TWR-32333 VOL.

, 50 40



T,

<u>۔</u>

.

Definition Flowchart for Minuteman Stage III Surveillance Program Figure 1.



igure 2. Motor Segment Layout





Effect of Storage Conditions Upon Mini DPT Bond Strength in the Forward Flap and at the Forward Equator Figure 3.

DOC NO. TWR-32333 VOL SEC PAGE

REVISION \_\_\_\_

design escretary reservation according according Nation

À

.



Effect of Storage Conditions Upon Liner Swell Ratio at the Forward Flap and Forward Equator Figure 4.

DOC NO. TWR-32333 VOL SEC PAGE 16

REVISION \_\_\_\_



Effect of Storage Conditions Upon Liner Gel Fraction at the Forward Flap and at the Forward Equator Figure 5.

DOC NO. TWR-32333 VOL PAGE 17

REVISION \_\_\_\_

1

Ĭ

E



Effect of Storage Conditions Upon Mini DPT Bond Strength Near the Forward Equator Figure 6.

DOC NO. TWR-32333 VOL SEC PAGE 18

REVISION \_\_\_\_

Ü



Storage Conditions Upon Liner Swell Ratio Near the Forward Equator Effect of Figure 7.

NO. TWR-32333 VOL

REVISION \_\_\_\_\_

2.

D

337



DOC NO. TWR-32333 VOL SEC PAGE 20

REVISION \_\_\_\_

CONTRACTOR OF THE PROPERTY OF

•



Effect of Storage Conditions Upon Propellant Relaxation Modulus in the Forward Flap Area Figure 9.

DOC NO. TWR-32333 VOL SEC PAGE 21

REVISION \_\_\_\_

: .

. .

D



Effect of Storage Conditions Upon Propellant Relaxation Modulus at the Forward Equator Figure 10.

DOC NO. TWR-32333 VOL.

SEC PAGE 22

REVISION \_\_\_\_

シストの トラインスのの 自己としていると 自己のからない



Figure 11. Mini DPT Bond Strength at Various Motor Locations

DOC NO. TWR-32333 VOL SEC PAGE 23

REVISION \_\_\_\_

2

Á



Figure 12. Liner Swell Ratio at Various Motor Locations

TWR-32333

 $\Xi$ 

D



Liner Gel Fraction at Various Motor Locations Figure 13.

TWR-32333

REVISION

Ė

Ä



<u>M</u>

.

17.75

5

1

ľ

Figure 14. Liner Moisture at Various Motor Locations

REVISION \_\_\_\_\_ PAGE 26



Motor TC 30005 Relaxation Modulus of ANB-3066 Propellant at the Forward Equator Figure 15.

REVISION \_\_\_\_

Ů



Figure 16. Motor TC 30019 Relaxation Modulus of ANB-3066 Propellant at the Forward Equator

NO. TWR-32333 VOL.

REVISION \_\_\_\_



Motor TC 30033 Relaxation Modulus of ANB-3066 Propellant at the Forward Equator Figure 17.

NO. TWR-32333 VOL.

SEC PAGE
29

REVISION \_\_\_\_

D



Š

Figure 18. Shore A Hardness Gradient of ANB-3066 Propellant at the Forward Equator

\_\_\_\_\_ DOC NO. TWR-32333

REVISION

TWR-32333 vol.



Figure 19. Notor TC 30005 Relaxation Modulus of ANB-3066 Propellant in the Forward Flap Area

DOC TWR-32333 VOL SEC PAGE 31

REVISION \_\_\_\_\_

COST CONTRACTOR CONTRACTOR



Motor TC 30019 Relaxation Modulus of ANB-3066 Propellant in the Forward Flap Area Figure 20.

NO. TWR-32333 VOL

REVISION \_\_\_\_

Ď



Motor TC 30033 Relaxation Modulus of ANB-3066 Propellant in the Forward Flap Area Figure 21.

NO. TWR-32333 VOL.

REVISION \_\_\_\_

and reconstruction of the party of the production

Ì



Shore A Hardness Gradient of ANB-3066 Propellant in the Forward Flap, Area A Figure 22.

DOC NO. TWR-32333 VOL SEC PAGE

REVISION \_\_\_\_



Shore A Hardness Gradient of ANB-3066 Propellant in the Forward Flap, Area B Figure 23.

DOC TWR-32333 VOL SEC PAGE 35

REVISION \_\_\_\_

â

1



Shore A Hardness Gradient of ANB-3066 Propellant in the Forward Flap, Area C Figure 24.

81ON \_\_\_\_\_





NO. SEC

TWP.-32333

37

j

.

Figure 25. Excixe Sample Diagram



Liner Bond Tensile Strength at Various Motor Locations: Motor TC 30050 Segments at Time of Firing of Motor TC 30106 and 5.5 Years Later Figure 26.

DOC NO. TWR-32333 VOL.

REVISION \_\_\_\_

Ž



Motor TC 30050 Segments at Time of Firing of Motor TC 30106 and 5.5 Years Later Liner Gel Fraction at Various Motor Locations: Figure 27.

DOC NO TWR-32333 VOL SEC PAGE 39

REVISION \_\_\_\_

Ď

•



Liner Swell Ratio at Various Motor Locations: Motor TC 30050 Segments at Time of Firing of Motor TC 30106 and 5.5 Years Later Figure 28.

DOC TWR-32333 VOL SEC PAGE 40

REVISION \_\_\_\_

D



Shore A Hardness of Bore Propellant: Motor TC 30050 Segments at Time of Firing of Motor TC 30106 and 5.5 Years Later Figure 29.

| DOC<br>NO. | TWR-32333 |      | VOT. |
|------------|-----------|------|------|
| SEC        |           | PAGE |      |

41

REVISION \_\_\_\_

のは、見られたからのなるというないというとしているというというと

<u>.</u>

.,

• •

•



Motor IC 30050 Segments Modulus of Mini Tensile Specimens from Bore Propellant: at Time of Firing of Motor TC 30106 and 5.5 Years Later Figure 30.

DOC NO. TWR-32333 VOL SEC PAGE 42

REVISION \_\_\_\_

THE TOUGHT OF THE PROPERTY OF THE PARTY OF T

N

-



Maximum Stress of Mini Tensile Specimens from Bore Propellant: Motor TC 30050 Segments at Time of Firing of Motor TC 30106, 3.5 and 5.5 Years Later Figure 31.

DOC NO. TWR-32333 VOL SEC PAGE 43

REVISION \_\_\_\_

Ď

1

F



STRAIN AT MAXIMUM STRESS

Strain at Maximum Stress of Mini Tensile Specimens from Bore Propellant: Motor TC 30050 Segments at Time of Firing of Motor TC 30106, 3.5 and 5.5 Years Later Figure 32.

REVISION \_\_\_\_

CONTROL PROPERTY OF THE PROPERTY AND THE PROPERTY OF THE PROPE

I.

DOC TWR-32333 VOL SEC PAGE 44

REVISION \_\_\_\_\_ DOC TWR-32333 VOL SEC PAGE 45

STRAIN AT FAILURE



<u>;</u>

D

Strain at Failure of Mini Tensile Specimens from Bore Propellant: Motor TC 30050 Segments at Time of Firing of Motor TC 30106, 3.5 and 5.5 Years Later Figure 33.



THE PROPERTY OF THE PROPERTY OF

D



Figure 35. Segment Cuts for Section 1

NO. TNR-32333 VOL SEC PAGE 47

REVISION \_\_\_\_



Figure 36. Segment Cuts for Section 2

## PAGE 48

REVISION \_\_\_\_

•



VIEW FROM AFT LOOKING FORWARD

Figure 37. Segment Cuts for Sections 3, 4, and 5

NO. TWR-32333 VOL

REVISION \_\_\_\_



## VIEW FROM AFT LOOKING FORWARD

Figure 38. Segment Cuts for Section 6

00C NO. TWR-32333 VOL.
SEC PAGE 50

REVISION \_



VIEW LOOKING AFT

Figure 39. Additional Cutting and Typical Marking of Section 1 Segments

NO. TWR-32333 VOL



Figure 40. Mini DPT Bond Strength in Motor TC 30072 at Various Motor Locations

DOC NO. TWR-32333 VOL SEC PAGE 52

REVISION \_\_\_\_



Mini DPT Bond Strength in Motor TC 30072 at Various Motor Locations Figure 41.

| NO. TWR-32333 | VOL  |  |
|---------------|------|--|
| SEC           | PAGE |  |
|               | 1 53 |  |

REVISION \_\_\_\_

Á



DOC TWR-32333 VOL.
SEC PAGE 54

REVISION \_\_\_\_

<u>.</u>

1

. . . . .

;-\ •



Effect of Storage Conditions Upon Liner Swell Ratio at Various Motor Locations in Motor TC 30072Figure 43.

DOC NO. TWR-32333 VOL SEC PAGE 55

REVISION \_\_\_\_

and the property of the proper

, 7.

r

ſ,



Effect of Storage Conditions Upon Mini DPT Bond Strength Near the Aft Equator of Motor TC 30072Figure 44.

DOC NO. TWR-32333 VOL SEC PAGE 56

REVISION \_\_\_\_

Ú



Effect of Storage Conditions Upon Liner Swell Ratio Near the Aft Equator of Motor IC 30072Figure 45.

DOC NO. TWR-32333 VOL PAGE 57

REVISION \_\_\_\_

Ď

*\$*:



Figure 46. Mini DPT Bond Strength at Various Motor Locations in Motor TC 30072

DOC NO. TWR~32333 VOL.

SEC PAGE 58

REVISION \_\_\_\_

THE SECTION STATES OF THE PASS

,

Ź



Figure 47. Liner Swell Ratio at Various Motor Locations in Motor TC 30072

NO. TWR-32333 VOL

REVISION \_\_\_\_

Ď



NO. TWR-32333

Ď



Motor TC 30072 Relaxation Modulus Gradient of ANB-3066 Propellant at the Forward Flap, Segment 1Al Figure 49.

REVISION \_\_\_\_

1

DOC NO. TWR-32333 VOL SEC PAGE 61



Motor TC 30072 Relaxation Modulus Gradient of ANB-3066 Propellant in the Barrel Area, Under the Grounding Straps Figure 50.

DOC NO. TWR-32333 VOL.

SEC PAGE 62

REVISION ....

3

Ď

15.5

<u>.</u>



Notor TC 30072 Relaxation Modulus Gradient of ANB-3066 Propellant in the Barrel, Under Grounding Straps Figure 51.

NO. TWR-32333 VOL

REVISION \_\_\_\_

r



Motor TC 30072 Relaxation Modulus Gradient of ANB-3066 Propellant at the Forward Nipple Area Figure 52.

DOC NO. TWR-32333 VOL PAGE 64

REVISION \_\_\_



RELAXATION MODULUS (PSI)

Motor TC 30072 Relaxation Modulus Gradient of ANB-3066 Propellant at the Forward Equator, Area A Figure 53.

REVISION \_\_\_\_

Ď

355

1

| NO. | TWR-32333 |      | VOL |
|-----|-----------|------|-----|
| SEC |           | PAGE |     |
|     |           | J 6  | 5   |

from Bondline 2; 8 0 13.1 LOG TIME (MIN) 700 500 300

RELAXATION MODULUS (PSI)

Motor TC 30072 Relaxation Modulus Gradient of ANB-3066 Propellant at the Forward Equator, Area B Figure 54.

REVISION \_\_\_\_\_

+

1

DOC NO. TWR-32333 VOL PAGE



DOC NO. SEC

TWR-32333

67

ij

Ü

W.



DOC NO. SEC

68

Motor TC 30072 Relaxation Modulus Gradient of ANB-3066 Propellant at the Aft Equator, Area A Figure 56.

REVISION \_\_\_\_\_

THE MANUAL PROPERTY WASHINGTON



NO. SEC

Motor TC 30072 Relaxation Modulus Gradient of ANB-3066 Propellant at the Aft Equator, Area B Figure 57.

REVISION \_\_\_\_

THE PROPERTY OF THE

A TOTAL STREET, A

1

j

C



Notor TC 30072 Relaxation Gradient of ANB-3066 Propellant at the Aft Equator, Area C Figure 58.

REVISION \_\_\_\_\_

Ü

DOC NO. TWR-32333 VOL SEC PAGE 70



Û

-

Motor TC 30072 Relaxation Modulus Gradient of ANB-3066 Propellant at the Aft Flap, Area D Figure 59.

NO. TWR-32333 VOL



Motor TC 30072 Relaxation Modulus Gradient of ANB-3066 Propellant at the Aft Flap, Area E Figure 60.

DOC NO. TWR-32333 | VOL SEC | PAGE | 72

REVISION \_\_\_\_

...

the second wastered by

Ú



RELAXATION MODULUS (PSI)

Motor TC 30072 Relaxation Modulus Gradient of ANB-3066 Propellant at the Aft Flap, Area F Figure 61.

DOC TWR-32333 VOL PAGE 73

REVISION \_\_\_\_

Ŋ

Ü



Motor TC 30072 Liner C=0/C=C (Vinyl and Stretching) Absorbance Ratio at Various Motor Locations Figure 62.

DOC NO. TWR-32333 VOL SEC PAGE 74

REVISION \_\_\_\_

TABLE 1

Ü

SECHENT USAGE BY TEST DATE

|              |                                    | Identification                   | Identification of Motor Segments* | *81                   |               |
|--------------|------------------------------------|----------------------------------|-----------------------------------|-----------------------|---------------|
| Test<br>Date | Berrel, Between<br>Aluminum Straps | Barrel, Under<br>Aluminum Straps | Forward<br>Equator                | Aft Flap<br>Near Bore | Flap          |
| 1978         | 3D, 4D                             | 30, 40                           | 201                               | <b>89</b>             | 181           |
| 1979         | 3H**                               | 36                               | 2H1                               | None                  | 125           |
| 1980         | 31                                 | 3K                               | 21.1                              | None                  | 138           |
| 1961         | None                               | None                             | 201                               |                       | 183           |
| 1982         | 43                                 | 14                               | 231                               | None                  | 126           |
| 1983         | None                               | None                             | 281                               | None                  | 184           |
| 1984         | 45                                 | <b>H</b> 7                       | 27.1                              | ပ္                    | 123           |
| 1985         | None                               | None                             | 21.2                              | None                  | 186           |
| 1986         | 75                                 | 4K                               | 202                               | None                  | 128           |
| 1987         | None                               | None                             | 232                               | 67                    | 182           |
| 1988         | 38                                 | *                                | . 282                             | None                  | 154           |
| 1989         | None                               | None                             | 27.2                              | None                  | 185           |
| 1990         | Н7                                 | 94                               | 2H2                               | 9                     | 121           |
| Spare        | 3P**, 3J, 4B                       | 3E, 31, 4A                       | 2A1, 2E1, 2G1,<br>2I1, 2K1        | \$                    | 187, 1E2, 1E7 |
|              | 1                                  |                                  |                                   |                       |               |

DOC NO. TWR-32333 VOL SEC PAGE 75

REVISION

TABLE 2

Server Conservation Conservation

MATRIX FOR MINITERAN STAGE III BONDLINE AGING PROGRAM

| Number/<br>Notor       | •                                  | •                       | m            | 22                          | <b>ოოოო</b>                                   | •                                | ๓๓๓๓                                          |
|------------------------|------------------------------------|-------------------------|--------------|-----------------------------|-----------------------------------------------|----------------------------------|-----------------------------------------------|
| Specimen               | Poker Chip                         | Round Flap              | Mini-DPT     | Mini-Tensile<br>(Shore A)   | Penetrometer                                  | Poker Chip                       | Penetrometer                                  |
| Test<br>Conditions (1) | Constant Strain<br>Rate            | Constant Strain<br>Rate | 0,5 in/min   | 2.0% Strain<br>15 sec.      | 10 sec.                                       | Constant Strain<br>Rate          | 10 sec.                                       |
| Haterial<br>Property   | Bond Shear                         | Bond Tensile(2)         | Bond Tensile | En Profile (3) Hardness (4) | ER<br>Swell Ratio<br>Gel Fraction<br>Moisture | Bond Shear                       | PR<br>Swell Ratio<br>Gel Fraction<br>Moisture |
| Materiels              | ANB-3066/<br>SD-851-2/V-45         |                         |              | ANB-3066                    | \$D-851-2                                     | ANB-3066/<br>SD-851-2/v-45       | SD-851-2                                      |
| Sample Area            | Barrel, Between<br>Aluminum Straps |                         |              |                             |                                               | Barrel, Under<br>Aluminum Straps |                                               |

(1)All tests at 77°F, 0 psi.

(2)See text, Sections 4.2.1.1 and 4.2.1.2. (3)0.1, 0.5, 1.0, and 2.0 in. from bondline.

DOC 1WR-32333 VOL 18EC PAGE 76

REVISION

TABLE 2 (CONT)

D

MATRIX FOR MINITERAN STACE III BONDLING ACING PROGRAM

| Sample Area                    | Materials                  | Material<br>Property                                          | Test (1)               | Specimen                    | Member/<br>Motor |
|--------------------------------|----------------------------|---------------------------------------------------------------|------------------------|-----------------------------|------------------|
| Forvard Equator                | ANB-3066/<br>SD-851-2/V-45 | Bond Tensile<br>Profile (5)                                   | 0.5 in./aia.           | Mint-DFT                    | 21               |
|                                | ANB-3066                   | E <sub>R</sub> Gradient (6)<br>Hardness (4)                   | 2.0% Strain<br>15 Sec. | Mini-Tensile<br>(Shore A)   | 22               |
|                                | \$D-851-2                  | ER (S)<br>Swell Ratio (S)<br>Gel Fraction (S)<br>Moisture (S) | 10 sec.                | Penetrometer                | 2222             |
| Aft Flap<br>Hear bore area (7) | ANB-3066/<br>SD-851-2/V-45 | Bond Tensile (B)                                              | 0.5 in./sin.           | Mat-DFT                     | •                |
|                                | ANB-3066                   | ER Gradient (9)                                               | 2.0% Strain            | Mini-Tensile                | •                |
|                                | SD-851-2                   | Svell Ratio (8)                                               | ;<br>; ; ;             | (v 370m)                    | 1 A Ø            |
|                                | A-45                       | Moisture                                                      |                        |                             | • • •            |
|                                |                            | Margness<br>Er                                                | 2.0% Strain            | (Shore A)<br>0.05 x 0.5 x 4 | <b>1</b> M       |
|                                |                            | DOP Content                                                   | :                      | :                           | n (              |
|                                |                            | Swell Ratio                                                   | :                      | :                           | •                |

Forward Flap Testing will be identical to aft flap.

(S)2 in. forward to 10 in. aft of forward equator in 2 in. increments, 7 locations (between aluminum

(6) 11, 0.5, 1.0, and 2.0 in. from bondline at equator only.

(7) Sample at 3 year intervals.

(9) Taken from 3 separate locations along the sample.
(9) Test at 0.1, 0.3, and 0.5 in. from bond interface.

DOC NO. TWR-32333 VOL SEC PAGE 77

REVISION

TABLE 3

というかではないなかない。

MOTOR TC 30005 MATERIAL PROPERTIES DATA FORWARD EQUATOR AREA, SEGMENT 2L2

REVISION

|                       |                         |               |                                  |                                  |                                  | SEC                                                                       |                                                                           | PAGE 7.8                                                               |                                                                           |
|-----------------------|-------------------------|---------------|----------------------------------|----------------------------------|----------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------|------------------------------------------------------------------------|---------------------------------------------------------------------------|
| /ISION                | _                       |               |                                  |                                  |                                  | DOC<br>NO. TWR                                                            | -32333                                                                    | VOL                                                                    |                                                                           |
|                       | Distance Aft of Forward | Equator (in.) | -2                               | 0                                | 2                                | 4                                                                         | 9                                                                         | ω                                                                      | 10                                                                        |
|                       | Maximum<br>Stress       | (psi)         | 22<br>24<br>33<br>26             | 45<br>43<br>43                   | 74<br>82<br>72<br>76             | 61<br>48<br>51                                                            | 48<br>34<br>47                                                            | 60<br>58<br>47<br>55                                                   | 34<br>53<br>43                                                            |
|                       | Failu                   | APL           | សសស                              | 70<br>27                         | 75<br>80<br>80                   | 80 80                                                                     | 09<br>07<br>07                                                            | 80<br>80<br>80                                                         | 09                                                                        |
| 7                     | Failure Mode (%)        | 티             | 95<br>95<br>95                   | 30                               | 25<br>20<br>20                   | 20<br>20<br>20                                                            | 50<br>50<br>40                                                            | 20<br>20<br>20                                                         | 07<br>07<br>07                                                            |
| 7-YEAR                | (%)                     | CF1           | 1 1 1                            | i 1                              | 1 1 1                            | 1 1 1                                                                     | 10                                                                        | 1 1 3                                                                  | 1 1 1                                                                     |
| 7-YEAR (1985) RESULTS | Liner<br>Moisture       | (%)           | 0.26                             | 0.56                             | 09.0                             | 1.02                                                                      | 0.64                                                                      | 0.35                                                                   | 0.49                                                                      |
|                       | Distance Aft of Forward | Equator (in.) | 7                                |                                  | က                                | 'n                                                                        | 7                                                                         | 6                                                                      | 11                                                                        |
|                       | Liner<br>Swell          | Ratio         | 2.20<br>2.13<br>2.20<br>2.18     | 1.84<br>1.85<br>1.83<br>1.84     | 1.94<br>2.00<br>2.00<br>1.98     | $\begin{array}{c} 2.16 \\ 2.13 \\ \hline 2.09 \\ \hline 2.13 \end{array}$ | $\begin{array}{c} 1.88 \\ 1.88 \\ \hline 1.93 \\ \hline 1.90 \end{array}$ | 2.06<br>2.00<br>2.00<br>2.02                                           | $\begin{array}{c} 2.07 \\ 2.00 \\ \hline 2.07 \\ \hline 2.05 \end{array}$ |
|                       | Liner<br>Gel            | Fraction      | 0.395<br>0.431<br>0.440<br>0.422 | 0.626<br>0.609<br>0.610<br>0.615 | 0.565<br>0.593<br>0.566<br>0.575 | 0.508<br>0.502<br>0.490<br>0.500                                          | $\begin{array}{c} 0.585 \\ 0.577 \\ 0.511 \\ \hline 0.558 \end{array}$    | $\begin{array}{c} 0.513 \\ 0.518 \\ 0.534 \\ \hline 0.522 \end{array}$ | 0.463<br>0.480<br>0.432<br>0.459                                          |

TABLE 4

Ü

MOTOR TC 30019 MATERIAL PROPERTIES DATA FORWARD EQUATOR AREA, SEGMENT 2L2 7-YFAR (1985) RESHITS

|                       |                                       |                                  |                                  |                                  | SEC                                                             |                              | PAGE 70                          |                              |
|-----------------------|---------------------------------------|----------------------------------|----------------------------------|----------------------------------|-----------------------------------------------------------------|------------------------------|----------------------------------|------------------------------|
| BION                  | _                                     |                                  |                                  |                                  | DOC<br>NO. TWR                                                  | -32333                       | VOL                              |                              |
|                       | Distance Aft of Forward Equator (in.) | -2                               | 0                                | 2                                | 4                                                               | 9                            | ∞                                | 10                           |
|                       | Maximum<br>Stress<br>(psi)            | 30<br>24<br>27                   | 66<br>66<br>66<br>66<br>66       | 94<br>90<br>97                   | 83<br>83<br>83                                                  | 63<br>80<br>71<br>71         | 52<br>45<br><u>64</u><br>54      | 57<br>77<br>50<br>61         |
|                       | Failt                                 | i i                              | 75<br>90<br>80                   | 80<br>80<br>80                   | 95<br>95<br>90                                                  | 95<br>95<br>95               | 80<br>70<br>80                   | 80<br>80<br>80               |
|                       | Failure Mode (%) APL CL CLI           | 100<br>100<br>95                 | 25<br>10<br>20                   | 20<br>20<br>20                   | 5 20                                                            | יט יט יט                     | 20<br>20<br>20                   | 20<br>20<br>20               |
| 7-year                | (%)<br>CLI                            | 1 1                              | 1 1 1                            | 1 1 1                            | 1 1 1                                                           | 1 1 1                        | 1 1 1                            | 1 1 1                        |
| 7-year (1985) results | Liner<br>Moisture<br>(%)              | 0.16                             | 0.52                             | 0.28                             | 0.31                                                            | 0.34                         | 0.26                             | 0.33                         |
|                       | Distance Aft of Forward Equator (in.) | -1                               | г                                | m                                | 'n                                                              | 7                            | <b>o</b> s                       | п                            |
|                       | Liner<br>Swell<br>Ratio               | 2.11<br>2.17<br>2.11<br>2.13     | 1.83<br>1.89<br>1.78<br>1.83     | 1.86<br>1.83<br>1.83             | 2.00<br>1.88<br>1.88                                            | 1.92<br>1.92<br>1.92<br>1.92 | 1.87<br>2.00<br>2.00<br>1.96     | 2.24<br>2.24<br>2.19<br>2.22 |
|                       | Liner<br>Gel<br>Fraction              | 0.449<br>0.426<br>0.430<br>0.435 | 0.577<br>0.568<br>0.561<br>0.561 | 0.573<br>0.536<br>0.554<br>0.553 | $\begin{array}{c} 0.524 \\ 0.510 \\ 0.483 \\ 0.505 \end{array}$ | 0.457<br>0.444<br>0.453      | 0.462<br>0.443<br>0.494<br>0.466 | 0.441<br>0.423<br>0.432      |

TABLE 5

e≦ k

MOTOR TC 30033 MATERIAL PROPERTIES DATA FORWARD EQUATOR AREA, SEGMENT 2L2 7-YEAR (1985) RESULTS

|                                       |                                  |                                  |                                                                               | SEC                     | · <u>-</u> · · · · · · · · · · · · · · · · · · · | PAGE 80                          | <del>"</del>                     |
|---------------------------------------|----------------------------------|----------------------------------|-------------------------------------------------------------------------------|-------------------------|--------------------------------------------------|----------------------------------|----------------------------------|
| <u>-</u>                              |                                  |                                  |                                                                               | DOC<br>NO. TWI          | R-32333                                          | VOL                              |                                  |
| Distance Aft of Forward Equator (in.) | -2                               | 0                                | 2                                                                             | 4                       | vo                                               | <b>0</b> 0                       | 10                               |
| Maximum<br>Stress<br>(psi)            | 36<br>29<br>19<br>29             | 41<br>47<br>47<br>45             | 77<br>77<br>69<br>74                                                          | 42<br>40<br>59<br>47    | 33<br>39<br>51<br>41                             | 59<br>41<br>45                   | 37<br>45<br>-                    |
| Failu                                 | 10                               | 60<br>90<br>70                   | 95<br>95<br>95                                                                | 95<br>80<br>80          | 90<br>90<br>95                                   | 90<br>95<br>95                   | 06                               |
| Failure Mode (%) APL CL CLI           | 90<br>100<br>100                 | 40<br>30                         | ភេសស                                                                          | 20<br>20                | 10<br>10<br>5                                    | 10<br>5                          | 10                               |
| (%)                                   | 1 1 1                            | 1 1 1                            | 1 1 1                                                                         | 1 ( (                   | 1 1 1                                            | 1 1 1                            | 1-1-1                            |
| Liner<br>Moisture<br>(%)              | 1                                | ı                                | ı                                                                             | i                       | 1                                                | 1                                | 1                                |
| Distance Aft of Forward Equator (in.) | -1                               | т                                | ĸ                                                                             | 'n                      | 7                                                | σ                                | 11                               |
| Liner<br>Swell<br>Ratio               | 1.91<br>1.95<br>1.93             | 1.78<br>1.65<br>1.70<br>1.71     | 1.93<br>2.00<br>1.93<br>1.95                                                  | 1.93<br>1.93<br>1.93    | 1.93<br>1.93<br>1.97<br>1.94                     | 2.00<br>2.00<br>2.00<br>2.00     | 2.06<br>2.13<br>2.06<br>2.08     |
| Liner<br>Gel<br>Fraction              | 0.416<br>0.374<br>0.339<br>0.376 | 0.582<br>0.615<br>0.614<br>0.605 | $\begin{array}{c} 0.525 \\ 0.513 \\ \hline 0.517 \\ \hline 0.518 \end{array}$ | 0.524<br>0.549<br>0.527 | 0.535<br>0.540<br>0.524<br>0.533                 | 0.485<br>0.511<br>0.517<br>0.504 | 0.455<br>0.468<br>0.381<br>0.435 |

TABLE 6

Server and the server

MOTOR TC 30005 STRESS RELAXATION GRADIENT ANB-3066 PROPELLANT, FORWARD EQUATOR AREA, AMBIENT SEGMENT 2L2 7-YEAR (1985) RESULTS

| 1.30                                                    | 398                      | 477                    | 387                          | 377                          |
|---------------------------------------------------------|--------------------------|------------------------|------------------------------|------------------------------|
|                                                         | 455                      | 446                    | 357                          | 417                          |
|                                                         | 672                      | -                      | 378                          | 459                          |
|                                                         | 508                      | -                      | 374                          | 417                          |
| (ps1)                                                   | 441                      | 528                    | 429                          | 419                          |
|                                                         | 502                      | 496                    | 398                          | 470                          |
|                                                         | 746                      | -                      | 423                          | 512                          |
|                                                         | 563                      | 512                    | 417                          | 467                          |
| Relaxation Modulus (psi) Log Time (min) -0.34 0.20 0.80 | 518                      | 615                    | 507                          | 488                          |
|                                                         | 579                      | 571                    | 453                          | 551                          |
|                                                         | 857                      | -                      | 496                          | 596                          |
|                                                         | 651                      | 593                    | 485                          | 545                          |
| Relaxatio<br>Log                                        | 607<br>666<br>978<br>750 | 714<br>662<br>-<br>688 | 663<br>519<br>584<br>589     | 577<br>644<br>698<br>640     |
| -0.93                                                   | 753                      | 867                    | 742                          | 716                          |
|                                                         | 808                      | 801                    | 636                          | 795                          |
|                                                         | 1160                     | -                      | 722                          | <u>856</u>                   |
|                                                         | 907                      | 834                    | 700                          | 789                          |
| Strain (%)                                              | 2.00                     | $\frac{1.99}{2.00}$    | 2.01<br>2.00<br>2.00<br>2.00 | 2.01<br>1.99<br>1.99<br>2.00 |
| Time From Cutting (hrs)                                 | 2.3<br>3.0<br>3.1        | 2.9<br>3.1             | 3.1<br>3.1                   | 2.5<br>3.6<br>3.6            |
| Distance From Bondline (in.)                            | 0.1                      | 0.5                    | 1.0                          | 2.0                          |

TWR-32333

PAGE

TABLE 7

CONTRACT LABORATOR SOCIOODS CONTRACT

MOTOR TC 30019 STRESS RELAXATION GRADIENT ANB-3066 PROPELLANT, FORWARD EQUATOR AREA, AMBIENT SEGMENT 2L2 7-YEAR (1985) RESULTS

| 1.30                                                    | 606  | 567   | 357  | 394   |
|---------------------------------------------------------|------|-------|------|-------|
|                                                         | 720  | 446   | 387  | 494   |
|                                                         | 723  | 338   | 387  | 451   |
|                                                         | 683  | 450   | 377  | 446   |
| (ps1)                                                   | 667  | 633   | 401  | 442   |
|                                                         | 803  | 498   | 435  | 552   |
|                                                         | 805  | 378   | 433  | 503   |
|                                                         | 758  | 503   | 423  | 499   |
| elaxation Modulus Log Time (min                         | 771  | 727   | 472  | 512   |
|                                                         | 924  | 576   | 504  | 633   |
|                                                         | 930  | 441   | 501  | 578   |
|                                                         | 875  | 581   | 492  | 574   |
| Relaxation Modulus (ps1) Log Time (min) -0.34 0.20 0.80 | 884  | 851   | 557  | 594   |
|                                                         | 1050 | 663   | 583  | 728   |
|                                                         | 1060 | 511   | 585  | 662   |
|                                                         | 998  | 675   | 575  | 661   |
| -0.93                                                   | 1000 | 1000  | 699  | 729   |
|                                                         | 1250 | 808   | 720  | 879   |
|                                                         | 1250 | 635   | 721  | 794   |
|                                                         | 1167 | 814   | 713  | 801   |
| Strain (%)                                              | 2.01 | 2.00  | 1.99 | 1.98  |
|                                                         | 2.01 | 2.00  | 2.00 | 2.01  |
|                                                         | 2.00 | 2.00  | 2.00 | 2.00  |
|                                                         | 2.01 | 2.00  | 2.00 | 2.00  |
| Time From Cutting (hrs)                                 | 2.01 | 1 1 1 | 1    | 1 1 1 |
| Distance From Bondline (in.)                            | 0.1  | 0.5   | 1.0  | 2.0   |

DOC NO. SEC

TWR-32333

VOL

82

PAGE

TABLE 8

8

MOTOR TC 30033 STRESS RELAXATION GRADIENT ANB-3066 PROPELLANT, FORWARD EQUATOR AREA, AMBIENT SEGMENT 2L2 7-YEAR (1985) RESULTS

| 1.30                                                    | 223     | 737<br>461  | 488                 | 476  | 644  | 335  | 420  | 285  | 327  | $\frac{337}{316}$ |             | 342  | 385  | 382                 |
|---------------------------------------------------------|---------|-------------|---------------------|------|------|------|------|------|------|-------------------|-------------|------|------|---------------------|
| (psi)                                                   | 27.0    | 57.5<br>511 | 543<br>475          | 533  | 667  | 370  | 467  | 320  | 363  | 376               | }           | 382  | 413  | 481                 |
| Log Time (min                                           | 23.0    | 430<br>583  | 623<br>545          | 919  | 575  | 438  | 543  | 375  | 426  | $\frac{433}{411}$ | !           | 777  | 493  | 252<br>496          |
| Relaxation Modulus (psi) Log Time (min) -0.34 0.20 0.86 | 70,     | 668         | 705<br>623          | 782  | 658  | 492  | 779  | 439  | 503  | 502<br>481        | ļ           | 516  | 5/0  | 635<br>574          |
| -0.03                                                   | 611     | 800         | 841<br>751          | 936  | 804  | 621  | 787  | 554  | 663  | 618               | !<br>!<br>• | 635  | 00/  | 702                 |
| Strain<br>(2)                                           |         | 2.00        | $\frac{2.00}{2.00}$ | 1.99 | 2.01 | 2.00 | 2.00 | 2.00 | 2.01 | 2.00              | )<br>       | 1.98 | 2.00 | $\frac{2.01}{2.00}$ |
| Time From Cutting (hrs)                                 | (III.9) | ı           |                     | 1    |      |      |      | l    |      |                   |             | ı    |      |                     |
| Distance From Bondline (in.)                            | 100     | 1.0         |                     | 0.5  |      |      |      | 1.0  |      |                   |             | 2.0  |      |                     |

DOC NO. TWR-32333 VOL SEC PAGE 83

TOTAL TOTAL RESIDENCE TOTAL SECTION OF

REVISION ....

TABLE 9

PROPELLANT SHORE A HARDNESS, 15-SECOND READINGS FORWARD FLAP AREA, SEGMENT 1B6, AREA A 7-YEAR (1985) RESULTS

| Distance From  |                     | Motor    |          |
|----------------|---------------------|----------|----------|
| Bondline (in.) | TC 30005            | TC 30019 | TC 30033 |
| 0.1            | 44±1.1 <sup>1</sup> | 44±1.0   | 50±1.53  |
| 0.2            | 50±1.0              | 47±0.0   | 55±1.1   |
| 0.3            | 51±0.6              | 48±0.6   | 57±0.6   |
| 0.4            | 52±0.6              | 46±0.0   | 60±1.1   |
| 0.5            | 51±1.0              | 48±0.0   | 60±1.0   |
| 0.6            | 53±0.6              | 48±1.5   | 62±0.6   |
| 0.7            | 60±0.0              | 50±2.1   | 63±1.0   |
| 0.8            | 61±0.6              | 51±1.1   | 64±0.6   |
| 0.9            | 60±0.6              | 51±1.1   | 63±0.6   |
| 1.0            | 61±0.6              | 53±1.5   | 64±1.0   |
| 1.1            | 61±0.6              | 57±1.5   | 64±1.0   |
| 1.2            | 60±1.0              | 58±2.0   | 64±1.0   |
| 1.3            | 59±1.0              | 59±0.6   | 64±0.6   |
| 1.4            | 58±0.6              | 61±1.7   | 66±0.6   |
| 1.5            | 55±0.6              | 63±1.0   | 65±0.0   |
| 1.6            | 52±0.6              | 63±0.6   | 63±0.6   |
| 1.7            | 50±0.0              | 64±0.6   | 62±1.0   |
| 1.8            | 49±1.5              | 63±1.0   | 61±1.1   |
| 1.9            | 46±0.6              | 64±0.6   | 60±0.0   |
| 2.0            | 45±1.0              | 64±0.6   | 61±0.6   |
|                |                     |          |          |

<sup>&</sup>lt;sup>1</sup>Standard Deviation for Triplicate Tests

DOC TWR-32333 VOL SEC PAGE 84

ARTHER PRODUCTION AREA COMPANY TO AREA TO AREA

REVISION \_\_\_\_





MICROCOPY RESOLUTION TEST CHART

TABLE 10

## PROPELLANT SHORE A HARDNESS, 15-SECOND READINGS FORWARD FLAP AREA, SEGMENT 1B6, AREA B 7-YEAR (1985) RESULTS

| Distance From  |                     | Motor    |          |
|----------------|---------------------|----------|----------|
| Bondline (in.) | TC 30005            | TC 30019 | TC 30033 |
| 0.1            | 65±0.6 <sup>1</sup> | 57±0.6   | 59±1.1   |
| 0.2            | 65±1.1              | 59±1.0   | 61±0.6   |
| 0.3            | 65±0.6              | 59±1.1   | 62±1.0   |
| 0.4            | 64±1.0              | 57±1.0   | 61±0.6   |
| 0.5            | 65±2.1              | 57±0.6   | 59±1.0   |
| 0.6            | 64±1.0              | 55±0.6   | 58±0.6   |
| 0.7            | 65±0.6              | 54±0.6   | 56±0.6   |
| 0.8            | 62±0.6              | 56±2.1   | 55±0.0   |
| 0.9            | 60±0.6              | 55±0.6   | 56±0.6   |
| 1.0            | 60±0.6              | 55±0.6   | 55±0.0   |
| 1.1            | 59±0.6              | 56±1.0   | 56±0.6   |
| 1.2            | 58±0.0              | 56±0.6   | 55±0.6   |
| 1.3            | 57±0.0              | 57±1.1   | 54±0.6   |
| 1.4            | 58±0.6              | 56±1.0   | 52±0.0   |
| 1.5            | 58±0.6              | 58±0.6   | 53±0.6   |
| 1.6            | 56±0.0              | 60±1.0   | 50±0.6   |
| 1.7            | 54±0.6              | 60±0.6   | 49±0.0   |
| 1.8            | 54±0.6              | 59±0.6   | 47±0.6   |
| 1.9            | 54±0.0              | 60±0.6   | 47±1.0   |
| 2.0            | 52±0.0              | 60±1.0   | 46±0.6   |

<sup>&</sup>lt;sup>1</sup>Standard Deviation for Triplicate Tests

DOC NO. TWR-32333 VOL 8EC PAGE 85

REVISION \_\_\_\_

TABLE 11

PROPELLANT SHORE A HARDNESS, 15-SECOND READINGS
FORWARD FLAP AREA, SEGMENT 1B6, AREA C
7-YEAR (1985) RESULTS

| Distance From  |                     | Motor    |          |
|----------------|---------------------|----------|----------|
| Bondline (in.) | TC 30005            | TC 30019 | TC 30053 |
| 0.1            | 54±0.6 <sup>1</sup> | 60±0.6   | 57±2.3   |
| 0.2            | 53±0.0              | 64±0.6   | 59±0.6   |
| 0.3            | 50±0.0              | 67±0.6   | 58±1.0   |
| 0.4            | 45±0.6              | 67±0.6   | 58±0.6   |
| 0.5            | 43±0.6              | 65±0.6   | 58±0.6   |
| 0.6            | 41±0.6              | 61±0.6   | 59±0.6   |
| 0.7            | 42±0.0              | 60±0.6   | 61±0.6   |
| 0.8            | 41±0.6              | 58±0.6   | 62±0.0   |
| 0.9            | 42±0.6              | 58±0.6   | 64±0.6   |
| 1.0            | 43±0.0              | 56±1.0   | 67±0.0   |
| 1.1            | 43±0.6              | 55±0.6   | 67±0.6   |
| 1.2            | 43±0.6              | 54±0.6   | 66±0.6   |
| 1.3            | 40±0.6              | 55±0.6   | 65±0.6   |
| 1.4            | 39±0.6              | 56±0.6   | 65±0.0   |
| 1.5            | 38±0.6              | 55±0.6   | 63±0.6   |
| 1.5            | 40±0.6              | 56±0.6   | 60±0.6   |
| 1.7            | 39±0.6              | 57±0.6   | 57±0.0   |
| 1.8            | 41±0.6              | 56±0.6   | 55±0.6   |
| 1.9            | 42±0.6              | 57±0.6   | 54±1.0   |
| 2.0            | 43±0.6              | 57±0.6   | 52±0.6   |
|                |                     |          |          |

Standard Deviation for Triplicate Tests

DOC TWR-32333 VOL SEC PAGE 86

REVISION \_\_\_\_

V-45 RUBBER MATERIAL PROPERTIES DATA FORWARD FLAP AREA, SEGMENT 186 7-YEAR (1985) RESULTS

| × |                                  |                                              |                                                               | NO. THRE 32333               | PAGE 87              |
|---|----------------------------------|----------------------------------------------|---------------------------------------------------------------|------------------------------|----------------------|
|   | Motor<br>No.                     | TC 30005                                     | TC 30019                                                      | € TWR-32333                  | اسا                  |
|   | V-45<br>Swell<br>Ratio           | 1.56<br>1.61<br>1.32<br>1.27<br>1.27<br>1.39 | 1.30<br>1.33<br>1.36<br>1.37                                  | 1.35<br>1.37<br>1.37<br>1.37 | 1.34<br>1.35<br>1.35 |
|   | V-45 Moisture (%) (Azocotropic)  | 1 1 1                                        | 1 1 1                                                         | 1 1 1                        |                      |
|   | V-45<br>Moisture (%)<br>(Dupont) | 1.46 1.22 $\frac{1.12}{1.27}$                | 1.45<br>1.31<br>1.43<br>1.40                                  | 1.09<br>1.10<br>1.25         | 1.15                 |
|   | V-45<br>DOP<br>(2)               | 1.21<br>1.17<br>1.15<br>1.18                 | $ \begin{array}{c} 1.14 \\ 1.21 \\ 1.17 \\ 1.17 \end{array} $ | 1.19<br>1.27<br>1.30         | 1.25                 |
| : | V-4> 15-Second Shore A Hardness  | 61<br>62<br>62                               | 65<br>88<br>86<br>86                                          | 65<br>67                     | 99                   |

TABLE 13

The month of the second of the

1

MOTOR TC 30005 MATERIAL PROPERTIES DATA 7-YEAR (1985) RESULTS

|                 | Mir          | Mini DPT          |                  |         | Liner | Liner    | Liner        |
|-----------------|--------------|-------------------|------------------|---------|-------|----------|--------------|
|                 | Maximum      | Failu             | Failure Mode (%) | e (%)   | Swel1 | Ge1      | Moisture     |
| Sample Area     | Stress (ps1) | APL               | 리                | GL      | Ratio | Fraction | (%)          |
|                 | 77           | 20                | 80               |         | 1.82  | 0.443    | Not Required |
| Segment 1B6     | 77           | 40                | 09               |         | 1.88  | 0.457    | i            |
|                 | 23           | 0                 | 100              |         | 1.88  | 0,440    |              |
|                 | 29           | 0                 | 100              |         | 1.94  | 0.337    |              |
|                 | 31           | 0                 | 100              |         | 1.94  | 0.466    |              |
|                 | 33           | 30                | 70               |         | 1.94  | 0.412    |              |
|                 | 35           |                   |                  |         | 2.13  | 0.375    |              |
|                 |              |                   |                  |         | 2.06  | 0.374    |              |
|                 |              |                   |                  |         | 2.13  | 0.385    |              |
|                 |              |                   |                  |         | )     |          |              |
| Barrel, Between |              | Not Required This | red Th           | is Year |       |          |              |

Barrel, Between Not Required This Year
Ground Straps
Barrel, Under Not Required This Year
Ground Straps

Not Required This Year

Aft Flap

TABLE 14

Į.

・こうりつ 間のこれのなな

MOTOR TC 30019 MATERIAL PROPERTIES DATA 7-YEAR (1985) RESULTS

| Liner    | Moisture                 | (%)                     | Not Required | •           |            |            |       |                       |       |                                  |                                |
|----------|--------------------------|-------------------------|--------------|-------------|------------|------------|-------|-----------------------|-------|----------------------------------|--------------------------------|
| Liner    | Ge1                      | Fraction                | 0.413        | 0.405       | 0.383      | 0.414      | 0.347 | 0.313                 | 0.260 |                                  |                                |
| Liner    | Swell                    | Ratio                   | 2.26         | 2.19        | 2.26       | 2.11       | 2.06  | 2.08                  | 2.25  |                                  |                                |
| Mini DPT | Maximum Failure Mode (%) | Stress (psi) APL CL CLI | 34 0 100 -   | 26 0 100 -  | 38 0 100 - | 36 0 100 - | 0     | $\frac{41}{}$ 0 100 - | 34    | Not Required This Year           | Not Required This Year         |
|          |                          | Sample Area             | Forward Flap | Segment 1B6 |            |            |       |                       |       | Barrel, Between<br>Ground Straps | Barrel, Under<br>Ground Straps |

NO. TWR-32333

Aft Flap

Not Required This Year

**ε** 

TABLE 15

i.

Ì

には、

MOTOR TC 30033 MATERIAL PROPERTIES DATA 7-YEAR (1985) RESULTS

| Liner    | Moisture         | (%)          | Not Required |             |       |         |         |         |             |
|----------|------------------|--------------|--------------|-------------|-------|---------|---------|---------|-------------|
| Liner    | Ge1              | Fraction     | 0.404        | 0.432       | 0.417 | 0.395   | 0.548   | 0.465   |             |
| Liner    | Swel1            | Ratio        | 2.47         | 2.47        | 2.11  | 2.16    | 2.00    | 2.05    | i<br>i<br>i |
| Mini DPT | Failure Mode (%) | APL CL CLI   | 0 100 -      | 0 100 -     |       | 10 90 - | 0 100 - | 0 100 - |             |
| M        | Maximum          | Stress (psi) | 35           | 35          | 45    | 26      | 22      | 39      | \$          |
|          |                  | Sample Area  | Forward Flap | Segment 1B6 | ı     |         |         |         |             |

Barrel, Between Ground Straps

Not Required This Year

Barrel, Under Ground Straps Not Required This Year

Not Required This Year

DOC TWR-32333

VOL

90

PAGE

**BEVIEWA** 

TABLE 16

## MOTOR TC 30005 LINER PENETROMETER DATA FORWARD EQUATOR PROFILE, SEGMENT 2L2, 10-SEC READINGS 76°F, 7-YEAR (1985) RESULTS

|               | 1        | Penetration (10 |             |
|---------------|----------|-----------------|-------------|
| Distance      | Standard |                 | Fine Needle |
| Aft of        | 100g     | No              | No          |
| Equator (in.) | Weight   | Weight          | Weight      |
| -1            | 68       | 37              | 51          |
| 1             | 32       | 17              | 22          |
| 3             | 48       | 29              | 32          |
| 5             | 62       | 34              | 35          |
| 7             | 53       | 31              | 31          |
| 9             | 60       | 33              | 37          |
| 11            | 76       | 39              | 47          |

DOC NO. TWR-32333 VOL PAGE 91

REVISION \_\_\_\_

Ü

TABLE 17

## MOTOR TC 30019 LINER PENETROMETER DATA FORWARD EQUATOR PROFILE, SEGMENT 2L2, 10-SEC READINGS 76°F, 7-YEAR (1985) RESULTS

|               | 1        | Penetration (10 | ) mm)       |
|---------------|----------|-----------------|-------------|
| Distance      | Standard | Needle          | Fine Needle |
| Aft of        | 100g     | No              | No          |
| Equator (in.) | Weight   | Weight          | Weight      |
| -1            | 42       | 32              | 35          |
| 1             | 33       | 18              | 21          |
| 3             | 48       | 22              | 31          |
| 5             | 47       | 21              | 29          |
| 7             | 58       | 34              | 41          |
| 9             | 59       | 34              | 36          |
| 11            | 68       | 39              | 46          |

DOC NO. TWR-32333 VOL SEC PAGE

REVISION \_\_\_\_\_

TABLE 18

### MOTOR TC 30033 LINER PENETROMETER DATA FORWARD EQUATOR PROFILE, SEGMENT 2L2, 10-SEC READINGS 76°F, 7-YEAR (1985) RESULTS

|               | I        | Penetration (10 | ) <sup>-1</sup> mm) |
|---------------|----------|-----------------|---------------------|
| Distance      | Standard | Needle          | Fine Needle         |
| Aft of        | 100g     | No              | No                  |
| Equator (in.) | Weight   | Weight          | Weight              |
| , -1          | 48       | 30              | 49                  |
| 1             | 44       | 23              | 24                  |
| 3             | 53       | 30              | 35                  |
| 5             | 59       | 33              | 34                  |
| 7             | 58       | 32              | 38                  |
| 9             | 57       | 27              | 33                  |
| 11            | 68       | 38              | 44                  |

DOC NO. TWR-32333 VOL PAGE 93

REVISION \_\_\_\_

TABLE 19

Ŋ

MOTOR TC 30005 STRESS RELAXATION GRADIENT ANB-3066 PROPELLANT, FORWARD FLAP AREA, AMBIENT INDIVIDUAL RESULTS, SEGMENT 1B6 7-YEAR (1985) TESTS

|                                            | 1.30  | 352<br>396 | 349                 | 447  | 494<br>451<br>464 | 500<br>541  | $\frac{531}{524}$   |
|--------------------------------------------|-------|------------|---------------------|------|-------------------|-------------|---------------------|
| s (ps1)                                    | 0.80  | 401        | 398<br>416          | 510  | 513<br>528        | 562<br>609  | 579<br>583          |
| Relaxation Modulus (ps1)<br>Log Time (min) | 0.20  | 477 526    | 470                 | 596  | 608<br>620        | 659<br>712  | $\frac{673}{681}$   |
| Relaxati                                   | -0.34 | 567<br>620 | 561<br>583          | 700  | 723<br>731        | 769<br>806  | 780<br>785          |
|                                            | -0.93 | 590        | 713                 | 862  | 944<br>901<br>902 | 940         | 956<br>957          |
| Strain                                     | (%)   | 2.00       | $\frac{2.01}{2.00}$ | 2.00 | 2.00              | 2.00        | $\frac{1.99}{2.00}$ |
| Time From<br>Cutting                       | (hr)  | 2.2        | 3.0                 | 2.8  | 3.2               | 3.01<br>3.8 | 3.8                 |
| Distance From<br>Bondline                  | (in.) | 0.1        |                     | 0.3  |                   | 0.5         |                     |

DOC NO. TWR-32333 VOL SEC PAGE 94

REVISION ....

TABLE 20

Ď

ANB-3066 PROPELLANT, FORWARD FLAP AREA, AMBIENT INDIVIDUAL RESULTS, SEGMENT 1B6
7-YEAR (1985) TESTS

| Distance From<br>Bondline | Time From<br>Cutting | Strain                     | Ì     | Relaxation Modulus (Log Time (min) | Relaxation Modulus (psi)<br>Log Time (min) | (psi) |             |
|---------------------------|----------------------|----------------------------|-------|------------------------------------|--------------------------------------------|-------|-------------|
| (in.)                     | (fr)                 | $\overline{(\frac{7}{8})}$ | -0.93 | -0.34                              | 0.20                                       | 0.80  | 1.30        |
| 0.1                       | 3.1                  | 2.00                       | 1010  | 676                                | 685                                        | 578   | 506         |
|                           | 3.1                  | 2.00                       | 905   | 717                                | 602                                        | 502   | 451         |
|                           | 1.5                  | •                          | 866   | 684                                | 578                                        | 491   | 435         |
|                           |                      | 2.00                       | 926   | 783                                | 622                                        | 524   | 797         |
| 0.3                       | 3.7                  | 1.99                       | 1120  | 915                                | 782                                        | 661   | 591         |
|                           | 3.7                  | 1.98                       | 984   | 797                                | 619                                        | 610   | 909         |
|                           | 2.1                  | 2.01                       | 1030  | 841                                | 721                                        | 618   | 549         |
|                           |                      | 2.00                       | 1045  | 851                                | 727                                        | 630   | 249         |
| 0.5                       | ı                    | •                          | 1150  | 943                                | 814                                        | 269   | 628         |
|                           | 3.9                  | 2.01                       | 991   | 814                                | 703                                        | 909   | 240         |
|                           | 2.3                  | 2.02                       | 1060  | 868                                | 748                                        | 645   | <u>561</u>  |
|                           |                      | 7.01                       | 7007  | ۵/۶                                | (2)                                        | 649   | <b>۲/</b> ۲ |

REVISION \_\_\_\_

DOC NO. TWR-32333 VOL SEC PAGE 95

MOTOR TC 30033 STRESS RELAXATION GRADIENT ANB-3066 PROPELLANT, FORWARD FALP AREA, AMBIENT INDIVIDUAL RESULTS, SEGMENT 1B6 7-YEAR (1985) TESTS

REVISION

|                                            | 1.30  | 312  | 308            | 416  | 421  | <u>549</u><br>462   | 489  | 490  | 491<br>490          |
|--------------------------------------------|-------|------|----------------|------|------|---------------------|------|------|---------------------|
| (psi)                                      | 1     |      | 337            |      |      |                     |      |      |                     |
| Relaxation Modulus (psi)<br>Log Time (min) | 0.20  | 452  | 1 427<br>3 432 | 565  | 561  | $\frac{739}{622}$   | 651  | 565  | 647<br>621          |
| Relaxatio                                  | -0.34 | 544  | 521<br>523     | 871  | 299  | 882<br>807          | 762  | 743  | 738                 |
|                                            | -0.93 | 708  | 683<br>681     | 778  | 821  | 1110<br>925         | 935  | 904  | 935<br>925          |
| Strain                                     | (%)   | 2.00 | 2.01           | 1.90 | 1.99 | $\frac{2.00}{1.99}$ | 1.98 | 2.02 | $\frac{2.00}{2.00}$ |
| Time From Cutting                          | (hr)  | 2.0  | 2.2            | 2.2  | 2.7  | 2.9                 | 3.0  | 3.0  | ı                   |
| Distance From<br>Bondline                  | (in.) | 0.1  |                | 0.3  |      |                     | 0.5  |      |                     |

| NO TWR-32333 | VOL     |
|--------------|---------|
| SEC          | PAGE 96 |

TABLE 22

PROPELLANT SHORE A HARDNESS, 15-SECOND READINGS
FORWARD EQUATOR AREA, SEGMENT 2L2
7-YEAR (1985) RESULTS

| Distance From  |                     | Motor    |          |
|----------------|---------------------|----------|----------|
| Bondline (in.) | TC 30005            | TC 30019 | TC 30033 |
|                |                     |          |          |
| 0.1            | 66±0.6 <sup>1</sup> | 61±1.5   | 62±0.0   |
| 0.2            | 63±1.0              | 63±1.1   | 61±1.0   |
| 0.3            | 63±1.0              | 57±0.6   | 60±0.6   |
| 0.4            | 64±0.6              | 56±1.5   | 59±1.0   |
| 0.5            | 61±1.1              | 52±0.6   | 56±1.0   |
| 0.6            | 60±0.6              | 50±0.6   | 55±0.6   |
| 0.7            | 57±0.6              | 50±0.6   | 54±0.0   |
| 0.8            | 57±0.6              | 48±0.6   | 53±0.0   |
| 0.9            | 57±0.0              | 48±1.0   | 52±1.0   |
| 1.0            | 57±0.6              | 48±0.6   | 53±1.1   |
| 1.1            | 58±0.6              | 50±0.6   | 53±1.1   |
| 1.2            | 57±1.0              | 50±0.6   | 54±1.1   |
| 1.3            | 56±1.1              | 52±0.6   | 53±0.0   |
| 1.4            | 57±1.5              | 53±1.0   | 54±0.0   |
| 1.5            | 57±1.0              | 53±0.6   | 54±0.6   |
| 1.6            | 57±1.0              | 53±0.6   | 54±0.6   |
| 1.7            | 58±0.6              | 55±0.0   | 54±1.0   |
| 1.8            | 58±0.6              | 55±0.6   | 54±0.6   |
| 1.9            | 59±1.5              | 54±0.0   | 55±0.0   |
| 2.0            | 59±1.0              | 55±0.6   | 55±0.0   |
|                |                     |          |          |

 $<sup>^{\</sup>mathrm{l}}$  Standard Deviation for Triplicate Tests

DOC NO. TV/R-32333 VOL PAGE 97

REVISION

ر. ر

Ø

1.

# MATRIX FOR SURVEILLANCE TESTING OF STAGE III MINUTEMAN MOTOR TC 30024

| Test Schedule  | Monthly                  | Honthly                      | Monthly                       | Every 6 months            | Every 6 months                           | Inspection monthly                |
|----------------|--------------------------|------------------------------|-------------------------------|---------------------------|------------------------------------------|-----------------------------------|
| Tests          | Forward gap measurement  | Mipple movement <sup>2</sup> | Aft bore diameter measurement | Radiographic inspection 4 | Shore A propellant readings <sup>5</sup> | Liner runs (document as required) |
| Test Condition | Temperature<br>70 + 5°P. | Bunidity<br>50 + 5% RH.      | Motor stored<br>in vertical   | mode, aft end<br>down     |                                          |                                   |

Every 90 degrees

Observed, measured, and documented as required

Ressured two places 90 degrees apart

Saft end of motor nozzle well every 60 degrees, 5 places (omit excise sample location at 60 degrees) Angent line bonds, forward and aft separations, x-ray in two modes aft down, forward down

6 Document (photograph) as required. Weigh significant accumulations as required.

DOC NO. SEC TWR-32333

TABLE 24

Ć

MATERIAL PROPERTIES OF SAT-CONDITIONED MOTOR TC 30050 SECHENTS: STORE WITH MOTOR TC 30024, TEST AT 2-YEAR INTERVALS

| # # # # # # # # # # # # # # # # # # #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Motor                          | Segment Identification<br>and Test Date                       | Material                       | Material<br>Property                     | Test<br>Conditions | Specimen     | Number/<br>Interval |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|---------------------------------------------------------------|--------------------------------|------------------------------------------|--------------------|--------------|---------------------|
| B6C3 in 1981, B6C4 in 1983, B6C4 in 1981, B6C4 in 1983, B6C4 in 1983, B6C4 in 1981, B6C4 in 1983, B6C4 in 1981, B6C4 in 1983, B6C4 in 1983, B6C4 in 1983, B6C5 in 1983, B7C6 in 1983, B7C7 in 1983, B7 | Forward<br>Equator<br>Between  | A2E (1/3) in 1981,<br>A2E (1/3) in 1983,<br>A2E (1/3) in 1985 | ANB-3066/<br>SD-851-2/<br>V-45 | Bond Tensile<br>Profile                  | 0.5 in/min         | Mini DPT     | 71                  |
| B6C3 in 1981, ANB-3066/ Bond Tensile 0.5 in/min 2064 in 1983, V-45 B6C4 in 1983, V-45 B6C4 in 1983, V-45 BCC4 in 1983, SD-851-2/ Profile 0.5 in/min 2064 in 1981, ANB-3066/ Bond Tensile 0.5 in/min 2064 in 1981, ANB-3066/ Bond Tensile 0.5 in/min 2064 in 1981, ANB-3066 Uniaxial 1.0 in/min 2068 in 1983, SD-851-2 Swell Ratio 2 Gel Fraction 2 Gel Fraction 2 Gel Fraction 2 Gel Fraction 2 Shore A4 15-Second 2 Sho | Grounding<br>Straps            |                                                               | SD-851-2                       | Swell Ratio                              | ;                  | •            | ដ                   |
| B6C3 in 1981, SD-851-2/ Profile B6A3 in 1983, SD-851-2/ Profile B6C4 in 1985, V-45  BCC4 in 1985, V-45  BCC4 in 1985, SD-851-2 Gel Fraction BC3F (1/2) in 1981, ANB-3066/ Bond Tensile 0.5 in/min BC3F (1/2) in 1985 V-45  Ce F4B1 in 1981, ANB-3066 Uniaxial F4F1 in 1981, ANB-3066 Uniaxial F4F1 in 1983, SD-851-2 Swell Ratio Gel Fraction <sup>2</sup> F4B2 in 1983, SD-851-2 Swell Ratio Gel Fraction <sup>2</sup> F4B2 in 1983, SD-851-2 Swell Ratio Gel Fraction <sup>2</sup> F4B2 in 1983, SD-851-2 Swell Ratio Gel Fraction <sup>2</sup> F4B2 in 1983, SD-851-2 Swell Ratio F4B2 in 1985, SD-851-2 Swell Ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                |                                                               |                                | Gel Fraction<br>Profile <sup>2</sup>     | :                  | :            | \$2                 |
| DE3F (1/2) in 1981, ANB-3066/ Bond Tensile 0.5 in/min DE3F (1/2) in 1983 SD-851-2/ DE3F (1/2) in 1985 V-45  Ce F4B1 in 1981, ANB-3066 Untaxial 1.0 in/min F4B1 in 1983, Shore A <sup>4</sup> 15-Second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Aft Flap                       | B6C3 in 1981,<br>B6A3 in 1983,<br>B6C4 in 1985                | ANB-3066/<br>SD-851-2/<br>V-45 | Bond Tensile<br>Profile                  | 0.5 in/min         | Mtnf DPT     | 13                  |
| DE3F (1/2) in 1981, ANB-3066/ Bond Tensile 0.5 in/min 2E4B1 in 1983 SD-851-2/ Swell Ratio Gel Fraction <sup>2</sup> Ce F4B1 in 1981, ANB-3066 Uniaxial 1.0 in/min F4B1 in 1983, Shore A <sup>4</sup> 15-Second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                |                                                               | SD-851-2                       | Gel Fraction<br>Profile <sup>3</sup>     | :                  | :            | <b>1</b> 2          |
| Ce F4B1 in 1981, ANB-3066 Uniaxial 1.0 in/min F4B2 in 1983, Shore A <sup>4</sup> 15-Second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Barrel<br>Between<br>and Under |                                                               | ANB-3066/<br>SD-851-2/<br>V-45 | Bond Tensile                             | 0,5 in/min         | Man DPT      | •                   |
| in 1981, AMB-3066 Uniaxial 1.0 in/min in 1983, Tensile <sup>4</sup> is 15-Second in 1985                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Grounding<br>Straps            |                                                               | SD-851-2                       | Swell Ratio<br>Gel Fraction <sup>2</sup> |                    |              | 12                  |
| in 1985 15-Second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Bore Surfac                    |                                                               | ANB-3066                       | Uniexial<br>Tensile <sup>4</sup>         | 1.0 in/min         | Mini Tensile | 21                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                | F4B2 in 1985                                                  |                                | Shore A4                                 | 15-Second          | •            | 21                  |

All tests at 77°F, ambient pressure.

99

DOC NO. SEC

TWR-32333

Obtain from swell ratio specimens where possible and also from tested mini DFT specimens.

30btain from tested mini DPT specimens where possible.

<sup>4</sup>Test 3 each at 0.1, 0.2, 0.3, 0.4, 0.5, 1, and 2 in. from bore surface.

TABLE 25

Ü

MINI DPT BOND STRENGTH PROFILE OF MOTOR TC 30050 SAT SEGMENTS AT FIRING OF MOTOR TC 30106 AND 5.5 YEARS LATER

| Í                    | CLI        | Later         | ı       | ſ        | 1       | ſ         | 1      | ı   | ı   | ı   | •   | ı  | ı  | ı  | ı       | ,        | 1                        | 1           | į        | 1                   |
|----------------------|------------|---------------|---------|----------|---------|-----------|--------|-----|-----|-----|-----|----|----|----|---------|----------|--------------------------|-------------|----------|---------------------|
|                      | Į          | A.F.          | ı       | ,        | 1       | ı         | ı      | ı   | j   | ı   | 30  | 20 | 15 | 15 | 1       | 1        | 10                       | 20          | 10       | 10                  |
| e Mode               | ١          | Later         | ì       | 100      | 100     | 100       | 100    | 100 | 100 | 100 | 100 | 20 | 20 | 20 | 100     | 100      | 100                      | 30          | 20       | 10                  |
| Failure Mode         | IJ         | A.F.          | 100     | 100      | 100     | 100       | 100    | 100 | 100 | 40  | ı   | ı  | ,  | ,  | 100     | 06       | 45                       | J           | 1        | ı                   |
|                      | APL        | Later         | ı       | ı        | ı       | ı         | ı      | ı   | ı   | ı   | ı   | 80 | 80 | 20 | ı       | ı        | 1                        | 70          | 80       | 06                  |
|                      |            | A.F.          | 1       | ı        | ı       | ١         | í      | 1   | ı   | 09  | 70  | 80 | 85 | 85 | ı       | 10       | 45                       | 80          | 90       | 06                  |
| Maximum Stress (psi) | 5.5 Years  | Later         | 1       | 16       | 17      | 11        | 14     | 18  | 14  | 18  | 34  | 89 | 59 | 50 | 14      | 16       | 22<br>17                 | 83          | 85       | 85<br>84            |
| Maximum S            | At         | Firing        | 11      | 17       | 14      | 18        | 10     | 7   | 12  | 37  | 61  | 91 | 98 | 89 | 37      | 48       | 4 <u>7</u><br>4 <u>7</u> | 66          | 91       | 76<br>89            |
| Distance Aft         | of Forward | Equator (in.) | -7      | 9-       | -5      | <b>7-</b> | -3     | -5  | 7   | 0   | 7   | 2  | 3  | 4  | 25 A.F. | 14 Later |                          | 25 A.F.,    | 14 Later |                     |
|                      |            | Location      | Forward | Equator, | Between | Grounding | Straps |     |     |     |     |    |    |    | Barrel, | Between  | Grounding<br>Straps      | Barrel,     | Under    | Grounding<br>Straps |
|                      |            |               |         |          |         |           |        |     |     |     |     |    |    |    |         | 0        | oc<br>o. TWI             | <u>-3</u> 2 | 23:      | 33                  |

BEC

PAGE

TABLE 25 (CONTINUED)

Į

MINI DPT BOND STRENGTH PROFILE OF MOTOR TC 30050 SAT SEGMENTS AT FIRING OF MOTOR TC 30106 AND 5.5 YEARS LATER

|          | Distance Aft  | MaximixeM | tress (psi)  |      |          | Failu | Failure Mode | !        | İ     |
|----------|---------------|-----------|--------------|------|----------|-------|--------------|----------|-------|
|          | of Forward    | At        | 5.5 Years    | 1    | .PL      | To    |              |          | CLI   |
| Location | Equator (in.) | Firing    | Firing Later | A.F. | T. Later | A.F.  | Later        | A.F. Lat | Later |
| Aft Flap | -11           | 1         | 15           | ı    | í        | ı     | 100          | •        | •     |
|          | -10           | ı         | 15           | •    | í        | 1     | 100          | ı        | ı     |
|          | 6-1           | 1         | 19           | ı    | 1        | ι     | 100          | 1        | 1     |
|          | . φ           | ī         | 25           | 1    | ı        | 1     | 100          | 1        | t     |
|          | 7-            | •         | 10           | 1    | ı        | ı     | 100          | ı        | •     |
|          | 91            | 1         | 7            | 1    | ı        | 1     | 100          | ı        | t     |
|          | - 5           | 1         | 7            | 1    | 1        | 1     | 100          | ı        | 1     |
|          | · m           | 1         | 13           | ı    | ł        | 1     | 100          | 1        | ı     |
|          | *0            | ı         | ı            | ı    | •        | 1     | 1            | ı        | i     |
|          | 2*            | ı         | ı            | 1    | ı        | 1     | ı            | 1        | 1     |
|          | <b>%</b> *    | ı         | ı            | t    | 1        | ı     | ı            | ı        | 1     |
|          | **            | •         | ı            | •    | ,        | 1     | •            | 1        | 1     |

\*Liner too degraded to test.

NOTE: All aft flap sample liner had degraded.

| DOC<br>NO. | TWR-32333 |      | <b>VOL</b> |  |
|------------|-----------|------|------------|--|
| SEC        |           | PAGE | 101        |  |

TABLE 26

Ç

LINER GEL FRACTION AND SWELL RATIO PROFILES OF MOTOR TC 30050 SAT SEGMENTS AT FIRING OF MOTOR TC 30106 AND 5.5 YEARS LATER

| Liner Swell Ratio At 5.5 Years     | Later              | *       | *        | *       | *         | *      | *     | *     | 2.08  | 1.88  | 2.08  | 2.18  | *        |          |                       | *       |          |           |
|------------------------------------|--------------------|---------|----------|---------|-----------|--------|-------|-------|-------|-------|-------|-------|----------|----------|-----------------------|---------|----------|-----------|
| Liner S<br>At                      | Firing             | *       | *        | *       | *         | *      | *     | 1.97  | 1.85  | 1.73  | 1.82  | 1.91  | *        |          |                       | 1.90    | 1.91     | 1.94      |
| Liner Gel Fraction 5.5 Years Later | From Swell Samples | 0.184   | 0.185    | 0.304   | 0.275     | 0.291  | 0.079 | 0.299 | ı     | ı     | 1     | 1     | 0.340    | 0.153    | $\frac{0.253}{0.249}$ | 0.557   | 0.469    | 0.446     |
| Liner Ge                           | From Mini DPTs     | 0.240   | 0.250    | 0.234   | 0.229     | 0.239  | 0.052 | 0.329 | 0.466 | 0.562 | 0.517 | 0.488 | 0.622    | 0.464    | 0.435                 | 0.597   | 0.615    | 0.608     |
| At                                 | Firing             | 0.139   | 0.140    | 0.051   | 0.047     | 0.062  | 0.127 | 0.419 | 0.522 | 0.617 | 0.550 | 0.518 | 0.222    | 0.257    | $\frac{0.251}{0.243}$ | 0.552   | 0.563    | 0.535     |
| Distance Aft of Forward            | Equator (in.)      | 9-      | -5       | 7-      | ۳-        | -2     | 7     | 0     | 1     | 2     | m     | 7     | 25 A.F., | 14 Later |                       | 25 A.F. | 14 Later |           |
|                                    | Location           | Forward | Equator, | Between | Grounding | Straps |       |       |       |       |       |       | Barrel,  | Between  | Grounding<br>Straps   | Barrel. | Under    | Grounding |
| •                                  |                    |         |          |         |           |        |       |       |       |       |       |       |          |          | DOC<br>NO.            | TWR     | -3       | 233       |

TABLE 26 (CONTINUED)

14名 **- 天**夏

Ŋ

LINER GEL FRACTION AND SWELL RATIO PROFILES OF MOTOR TC 30050 SAT SEGMENTS AT FIRING OF MOTOR TC 30106 AND 5.5 YEARS LATER

REVISION

| Liner Swell Ratio At 5.5 Years Tring Later                           | *          |       |       |       |       |       |       |       |       |       |       |       |
|----------------------------------------------------------------------|------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Liner S<br>At<br>Firing                                              | 1 1        | 1     | ı     | 1     | 1     | ı     | •     | ı     | 1     | 1     | 1     | ı     |
| Liner Gel Fraction 5.5 Years Later From Mini DPTs From Swell Samples | *          |       |       |       |       |       |       |       |       |       |       |       |
| Liner Ge<br>5.5 Ye<br>From Mini DPTs                                 | 0.056      | 0.044 | 0.037 | 0.050 | 0.035 | 0.036 | 0.087 | 0.257 | 0.084 | 0.069 | 0.073 | 0.080 |
| At<br>Firing                                                         | 1 1        | ı     | ι     | ı     | ı     | ı     | 1     | 1     | ſ     | ı     | ı     | ı     |
| Distance Aft of Forward Equator (in.)                                | -11<br>-10 | 6-    | 891   | -7    | 9-    | -5    | -3    | -     | 2     | m     | 7     | 2     |
| Location                                                             | Aft Flap   |       |       |       |       |       |       |       |       |       |       |       |

\*Liner too degraded to test.

| DOC<br>NO. | TWR-32333 |      | VOI. |  |
|------------|-----------|------|------|--|
| SEC        |           | PAGE | 103  |  |

TABLE 27

BORE PROPELLANT MINI TENSILE AND SHORE A GRADIENTS OF MOTOR TC 30050 SAT SEGMENTS AT FIRING OF MOTOR TC 30106 AND 5.5 YEARS LATER

| Distance<br>From Bore | E1.0            | E <sup>1.0</sup> (psi)        | α) <b>"</b> β  | si)    | £3.0   | (%)           | 1.0           | (%)           | 15-Sec 8      | hore A        |
|-----------------------|-----------------|-------------------------------|----------------|--------|--------|---------------|---------------|---------------|---------------|---------------|
| Surface (in.)         | A.F.            | Later                         | A.F. Later     | Later  | A.F.   | A.F. Later    | A.F. Later    | Later         | A.F. Later    | Later         |
| 0.1                   | $1800\pm62^{1}$ | 1800±62 <sup>1</sup> 1811±528 | 153±4.0 162±54 | 162±54 | 17±0.6 | 17±0.6 14±0.8 | 20±1.1        | 20±1.1 20±2.9 | 71±2.6        | 71±2.6 67±0.6 |
| 0.2                   | 1820±85         | 1525±217                      | 151±2.3 134±18 | 134±18 | 15±0.0 | 15±0.0 14±0.2 | 19±1.5 20±2.0 | 20±2.0        | 74±0.6        | 74±0.6 68±0.6 |
| 0.3                   | 1760±87         | 1443±423                      | 151±5.1 132±33 | 132±33 | 15±0.0 | 15±0.0 15±0.2 | 18±0.0 20±0.1 | 20±0.1        | 73±1.0        | 73±1.0 67±0.0 |
| 0.4                   | 1700±20         | 1507±77                       | 154±3.5 150±2  | 150±2  | 15±0.0 | 15±0.0 15±0.4 | 18±0.6 18±0.9 | 18±0.9        | 72±0.0        | 72±0.0 68±1.5 |
| 0.5                   | 1650±111        | 1436±73                       | 155±4.0 152±3  | 152±3  | 15±0.6 | 15±0.6 15±0.3 | 19±0.0 19±0.6 | 19±0.6        | 72±0.6        | 72±0.6 66±2.0 |
| 1.0                   | 1340±56         | 878±86                        | 141±3.2 132±3  | 132±3  | 20+0.0 | 20±0.0 22±1.3 | 25±0.6 27±1.5 | 27±1.5        | 68±1.0        | 68±1.0 63±0.6 |
| 2.0                   | 1220±15         | 565±20                        | 134±2.0 110±3  | 110±3  | 24±0.6 | 24±0.6 29±0.4 | 28±3.2        | 28±3.2 40±2.1 | 63±0.6 60±0.6 | 9.0±09        |

<sup>1</sup>Standard Deviations for Triplicate Tests



REVISION \_\_\_\_

Ä

DISSECTED MOTOR IC 30072 SECMENT TEST DATES

| Aft<br>Flap                               | 6B, 6D, 6F | None          | <b>V9</b>  | None      | ວ9    | None .    | <b>3</b> 9 |
|-------------------------------------------|------------|---------------|------------|-----------|-------|-----------|------------|
| Aft<br>Equator*                           | 5B, 5E, 5H | 5D            | 51         | <b>SG</b> | 50    | <b>5A</b> | 58         |
| Barrel Between, Under<br>and Bore Surface | 3B, 3E, 3H | 37            | 3A         | Н7        | 30    | 48        | 36         |
| Forward                                   | 2B, 2F, 2J | None          | 2 <b>L</b> | None      | 2Ω    | None      | 24         |
| Forward Flap*                             | 101        | 1C2           | 141        | 1E2       | 101   | 181       | 121        |
| Forward                                   | 18, 1D, 1F | None          | 14         | None      | 10    | None      | 1E         |
| Years From<br>Dissection                  | Baseline** | ч             | 2          | e         | 7     | 'n        | \$         |
| Test                                      | 1983       | <b>*</b> 7861 | 1985*      | 1986*     | 1987* | 1988*     | 1989*      |

\*Denotes tests not included in Addendum #1

\*\*Except for testing of Forward Flap Segment, baseline testing will be at three locations, namely 60, 180 and 300 degrees.

DOC NO. SEC TWR-32333 MGE 105

REVISION

TABLE 29

MATERIAL PROPERTIES TESTING OF DISSECTED OPERATIONAL MOTOR SECHENTS

| V-45<br>Swell Retto                       | t          | 1 Area       | Areas A                           | 1                        | ł                      | 1            | Areas A<br>and C              | Area 7   |
|-------------------------------------------|------------|--------------|-----------------------------------|--------------------------|------------------------|--------------|-------------------------------|----------|
| V-45<br>Plasticizer                       | 1 Area     | 1 Area       | Afeas A<br>and C                  | ı                        | i                      | ł            | Areas A<br>and C              | Area P   |
| V-45<br>Moisture                          |            |              | Areas A<br>and C                  | 1 Area <sup>3</sup>      | 1 Area                 | 1            | Areas A<br>and C              | Area F   |
| 272                                       | 1 Area     | 1 AFEA       | 3 Areas                           | 1                        | 1                      | 1            | 3 Areas                       | Area 7   |
| Propellanc<br>Shore A<br>Gradient         | ;          | 1            | t                                 | 1                        | ı                      | 1 Area       | 1                             | ı        |
| Propellant<br>Mini<br>Tensile<br>Gradient |            | 1            | 1                                 | 1                        | 1                      | 1 Area       | 1                             | 1        |
| Propellant<br>Er Gradient                 | 1 Area     | 1 Area       | 3 Areas                           | 1 Area                   | 1 Area                 | 1            | 3 Acres                       | 3 Areas  |
| Liner<br>C=0/C=C<br>Ratio                 | 1 Area     | 1 Area       | Profile1                          | 1 Area <sup>5</sup>      | 1 Area <sup>5</sup>    | 1            | Profile <sup>3</sup>          | 3 Areas  |
| Liner<br>Swell Ratio                      | ł          | 1 Area       | Profile1                          | 1 Area <sup>5</sup>      | 1 Area <sup>5</sup>    | ı            | Profile3                      | Profile. |
| Liner<br>Cel Fraction                     | 1 Area     | 1 Area       | Profile 1                         | 1 Area 1 Area            | 1 Area <sup>5</sup>    | ł            | Profile <sup>3</sup>          | Profile  |
| i                                         |            | 1 AFEA       | Profile                           | 1 Area                   | 1 Areas                | 1            | Profile <sup>3</sup>          | Profile. |
| 1                                         | Alan Lines | Forused Flap | Forward Equator<br>Between Strape | Barrel Between<br>Straps | Barrel Under<br>Scraps | Bore Surface | Aft Equator<br>Between Strape | Aft Plap |

At 1-inch intervals from 7 inches forward to 4 inches aft. TWR-32333

DOC NO SEC

Plus hinge bulb gradient.

At 1-inch intervals from 4 inches forward to 7 inches aft.

PAGE

At 1-inch intervals from tip to il inches forward.

baseline tests at 60-degree location will be a profile at 1-inch intervals from center of grounding strip to center of area between grounding atribe.

**VO**Ł

TABLE 29

D

ない 見が ため かき 送れ

を記し置い、大学の一年の

,

MATERIAL PROPERTIES TESTING OF DISSECTED OPERATIONAL MOTOR SECRENTS

|                                   |                      |                       |                      |                      |                           |                     | Propellant          |            | 1                | :       |                  |
|-----------------------------------|----------------------|-----------------------|----------------------|----------------------|---------------------------|---------------------|---------------------|------------|------------------|---------|------------------|
|                                   |                      | Liner<br>Cel Fraction | Liner<br>Swell Racto | C=0/C=C              | Propellant<br>Er Gradient | Tenaile<br>Gradient | Shore A<br>Gradient | V-45<br>Er | V-45<br>Molsture | 닖       | Swell Ratio      |
| Motor Location                    | שומי מני             |                       |                      |                      |                           |                     |                     |            | . 4              | Area    | ;                |
| Forward Nipple                    | ł                    | 1 Area                | 1                    | 1 Area               | 1 Area                    | i                   |                     | 1 160      |                  | !<br>:  |                  |
| Forward Flap                      | 1 ATOR               | 1 Area                | 1 Area               | I Area               | 1 Area                    | ı                   | í                   | 1 Area     | 1 Arcs           | 1 AFRE  | l Area           |
| Forward Equator<br>Between Strape | Profile <sup>1</sup> | Profile.              | Profile <sup>1</sup> | Profile1             |                           | t                   | ŧ                   | 3 AFOAS    | Areas A          | Areas A | Areas A          |
| Barrel Between<br>Straps          | 1 Area               | 1 Area                | 1 Area <sup>5</sup>  | 1 Area <sup>5</sup>  | 1 Area                    | ı                   | ŧ                   | 1          | 1 Areas          | i       | 1                |
| Barrel Under<br>Straps            | 1 Area               | 1 Area <sup>5</sup>   | 1 Area <sup>5</sup>  | 1 Area <sup>5</sup>  | 1 Area                    | ı                   | ı                   | ţ          | 1 Area           |         | l                |
| Bore Surface                      | 1                    | ı                     | i                    | ŧ                    | 1                         | 1 Area              | 1 Area              | ;          |                  | I       | 1                |
| Afc Equator<br>Between Straps     | Profile <sup>3</sup> | Profile <sup>3</sup>  | Profile <sup>3</sup> | Profile <sup>3</sup> | 3 Areas                   | 1                   | 1                   | 3 Areas 2  | Areas A<br>and C | Areas A | Areas A<br>and C |
| Aft Flap                          | Profile              | Profile <sup>4</sup>  | Profile*             | 3 Areas              | 3 Areas                   | 1                   | ł                   | Area 7     | Area F           | AFEA P  | Ared P           |
|                                   |                      |                       |                      |                      |                           |                     |                     |            |                  |         |                  |

At 1-inch intervals from 7 inches forward to 6 inches aft.

DOC NO.

TWR-32333

Plus hinge bulb gradient.

3c 1-inch intervals from 4 inches forward to 7 inches aft.

PAGE

106

At 1-inch intervals from tip to 11 inches forward.

Sassifue tests at 60-degree location will be a profile at 1-inch intervals from center of grounding strip to center of area between grounding stripe.

TABLE 30

.

Ü

MATERIAL PROPERTY TESTS FOR DISSECTED MOTOR SEGMENTS (1)

| cimens           | BOIL          | m                              | က            | ო           | -                            | 01                                  | 21                   | 21                   | က                                      | ო                                      | က                    | ო                   | က           | 0,4, 0.5, 1 and stee, in middle                                                                                                                                    |
|------------------|---------------|--------------------------------|--------------|-------------|------------------------------|-------------------------------------|----------------------|----------------------|----------------------------------------|----------------------------------------|----------------------|---------------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Number Specimens | Froirie       | 96                             | 13           | 77          | 77                           | 1                                   | ţ                    | ;                    | 1                                      | ł                                      | 13                   | ł                   |             | 0.3.<br>irface<br>iterface<br>ipilit                                                                                                                               |
|                  | Specimen Type | Mini DPT                       | ţ            | i           | 1                            | Mini Er<br>(0.1x0.5x2 in.)          | Mini Tensile         | ţ                    | Mini E <sub>r</sub><br>(th.x0.5x4 in.) | Mini E <sub>r</sub><br>(0.lx0.5x4 in.) | ł                    | ł                   | 1           | Test at 0.1, 0.2, 0.3, 0.4, 2 in. from bore surface Test near liner interface, of bulb and near split By Dupont Moisture Analyzer                                  |
|                  | Conditions    | 0.002, 0.5,<br>20 in/min       | 1            | ;           | ;                            | 2% strain                           | 1 in./min.           | 15 sec               | 2% strain                              | <b>8</b>                               | ;                    | 3                   | •           | (5)<br>from (7)                                                                                                                                                    |
|                  | lest lype     | Bond Tensile                   | Gel Fraction | Swell Ratio | C-0/C-C Ratio <sup>(2)</sup> | Stress Relaxation<br>Gradient (3,4) | Uniaxial Tensil63,5) | Shore A Gradient (5) | Stress Relaxation (3)                  | Stress Relaxation<br>Gradient (6)      | Moisture Content (7) | Plasticizer Content | Swell Ratio | All tests at 77°F, 0 paig  By ATR/FIR using tested mini DFT specimens  Test samples in hoop orientation  Test at 0.1, 0.3, 0.5, 1, and 2 in. from  liner interface |
| •                | Material      | ANB-3066/<br>SD-851-2/<br>V-45 | SD-851-2     |             |                              | ANB-3066                            |                      |                      | V-45                                   |                                        |                      |                     |             | (1) All tes<br>(2) By ATR/F<br>(3) Test sa<br>(4) Test at<br>liner i                                                                                               |
| REVIS            | BION _        |                                |              |             |                              |                                     |                      |                      | Di<br>No                               | oc<br>TWR-                             | 3233                 | 3                   |             | vor                                                                                                                                                                |

MATERIAL PROPERTIES (BASELINE TESTS ONLY, OF SEGMENTS FROM DISSECTED MOTOR

Ú

| Number of       | m                                         | 375 3              | 75 2                       | en<br>en                    | E<br>A                       | m                                       |
|-----------------|-------------------------------------------|--------------------|----------------------------|-----------------------------|------------------------------|-----------------------------------------|
| Specimen Type   | 4 x 0.5 x 0.5<br>Tab End                  | 2 x 0.375 x 0.375  | 4 x 0.75 x 0.75<br>Tab End | JANNAF Class B              | JANNAF Class B               | Disk Tab End                            |
| Test Conditions | -30 <sup>o</sup> F, 2% strain,<br>600 psi | 0° to 145°F, 0 ps1 | 77°F, O psi                | 180°F, 0.002 in/min, 0 psi  | 30°F, 200 in/min,<br>600 psi | 30°F, 20 in/min,<br>400 psi             |
| Test Type       | Relaxation Modulus                        | TCLE               | Poisson's Ratio            | Strain at Maximum<br>Stress | Strain at Rupture            | Bond Shear Strength                     |
| Material        | ANB-3066 Propellant<br>(Bore Area)        |                    |                            |                             |                              | V-45/EC2216/V-45<br>(Tangent Line Area) |

 DOC NO
 TWR-32333
 VOI

 SEC
 PAGE
 108

REVISION \_\_\_\_

MOTOR TC 30072 BOND STRENGTH AND LINER PROPERTIES IN FORWARD NIPPLE AND FORWARD FALP AREAS 2-YEAR (1985) RESULTS

| REVISION _      |                    | MOIOK IC 30072 BOND SIKENCIH AND LINEK PROPEKTIES<br>IN FORWARD NIPPLE AND FORWARD FALP AREAS<br>2-YEAR (1985) RESULTS | 7072 BOND<br>VARD NIPP<br>2-YEA | BOND SIKENCIH AND LIR<br>NIPPLE AND FORWARD F4<br>2-YEAR (1985) RESULTS | H AND L<br>ORWARD<br>RESULT | K 1C 30072 BOND SIRENGIH AND LINER PROPE.<br>IN FORWARD NIPPLE AND FORWARD FALP AREAS<br>2-YEAR (1985) RESULTS | RTIES                                                       |                      |              |
|-----------------|--------------------|------------------------------------------------------------------------------------------------------------------------|---------------------------------|-------------------------------------------------------------------------|-----------------------------|----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|----------------------|--------------|
|                 | Mini               | Mini DPT Bond Strength (psi)                                                                                           | Strength                        | (psi)                                                                   |                             | Liner                                                                                                          | Liner                                                       | Liner C=0/C≈C Ratios | Ratios       |
| Motor Location  | Rate<br>(in./min)  | σm<br>(psi)                                                                                                            | Failu<br>APL                    | Failure Mode (%) PL CL CL                                               | (%)<br>CLI                  | Gel<br>Fraction                                                                                                | Swell<br>Ratio                                              | C=C<br>Stretching    | C=C<br>Vinyl |
| Forward Nipple: |                    |                                                                                                                        |                                 |                                                                         |                             |                                                                                                                |                                                             |                      |              |
| Segment 1A      |                    | Not Required                                                                                                           | juired                          |                                                                         |                             | 0.524<br>0.535<br>0.495<br>0.518                                                                               | Not Required                                                | 0.559                | 0.116        |
| Forward Flap:   |                    |                                                                                                                        |                                 |                                                                         |                             |                                                                                                                |                                                             |                      |              |
| Segment 1A1     | 0.002<br>0.5<br>20 | 20<br>45<br>74                                                                                                         | 100                             | 100                                                                     | 1 1 1                       | 0.479<br>0.499<br>0.436<br>0.470                                                                               | $\begin{array}{c} 1.89 \\ 1.94 \\ 1.97 \\ 1.93 \end{array}$ | 0.568                | 0.117        |

DOC NO. TWR-32333 VOL PAGE 109

TABLE 33

K (

5

MOTOR IC 30072 BOND STRENGTH AND LINER PROPERTIES IN FORWARD EQUATOR AREA, SEGMENT 2L, BETWEEN GROUNDING STRAPS 2-YEAR (1985) RESULTS

| C Ratios<br>C=C<br>Vinyl                                         | 0.101              | 0.101              | 0.111              | 0.130              | 0.118              | 0.120              | 0.144              |
|------------------------------------------------------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|
| Liner C=0/C=C Ratios<br>C=C C=C<br>Stretching Vinyl              | 0.512              | 0.501              | 0.519              | 0.560              | 0.560              | 0.587              | 0.701              |
| Liner<br>Swell<br>Ratio                                          | 2.25±0.0           | 2.31±0.03          | 2.29±0.01          | 2.10±0.01          | 2.24±0.01          | 2.18±0.05          | 2.27±0.12          |
| Liner<br>Gel<br>Fraction                                         | $0.445\pm0.06^{1}$ | 0.437±0.04         | 0.425±0.03         | 0.561±0.07         | 0.483±0.04         | 0.516±0.02         | 0.476±0.02         |
| (%)<br>CLI                                                       | 1 1 1              | 1 1 1              | 1 1 1              | 1 1 1              | 1 1 1              | 1 1 1              | 1 1 1              |
| Strength<br>Failure Mode<br>APL CL                               | 100<br>100<br>20   | 100<br>100<br>100  | 100<br>100<br>10   | 95<br>80<br>50     | 90 40              | 30<br>10           | 06 1 1             |
| Failu<br>APL                                                     | - 1 80             | 1 1 1              | 1 1 06             | 5<br>20<br>50      | 10<br>60<br>100    | 40<br>70<br>80     | 10<br>100<br>100   |
| OPT Bon<br>Om<br>(psi)                                           | 10<br>30<br>73     | 15<br>35<br>68     | 13<br>33<br>75     | 19<br>34<br>77     | 23<br>41<br>75     | 21<br>49<br>82     | 22<br>40<br>73     |
| Mini DPT Bond Strength Rate om Failure Mo (in./min) (psi) APL CL | 0.002<br>0.5<br>20 |
| Distance Forward of Forward Equator (in.)                        | 7                  | 9                  | ď                  | 4                  | က                  | 2                  | 1                  |
|                                                                  |                    |                    |                    | DOC<br>NO.<br>SEC  | TWR-3233           | 3 PAGE             | 110                |

<sup>1</sup>Standard Deviation for Triplicate Tests

TABLE 33 (CONTINUED)

MOTOR TC 30072 BOND STRENGTH AND LINER PROPERTIES
IN FORWARD EQUATOR AREA, SEGMENT 2L, BETWEEN GROUNDING STRAPS
2-YEAR (1985) RESULTS

| C Ratios<br>C=C<br>Vinyl                            | 0.162              | 0.188              | 0.151              | 0.155              | 0.127              |
|-----------------------------------------------------|--------------------|--------------------|--------------------|--------------------|--------------------|
| Liner C=0/C=C Ratios<br>C=C C=C<br>Stretching Vinyl | 0.734              | 0.714              | 0.727              | 0.729              | 0.671              |
| Liner<br>Swell<br>Ratio                             | 2.01±0.02          | 1.88±0.04          | 1.78±0.02          | 1.89±0.01          | 2.00±0.03          |
| Liner<br>Gel<br>Fraction                            | 0.569±0.031        | 0.644±0.01         | 0.710±0.03         | 0.645±0.03         | 0.564±0.07         |
| (%)<br>CLI                                          | 1 1 1              | i i i              | 1 1 1              | 1 1 1              | 1 1 1              |
| Strength Failure Mode (%) APL CL                    | 1 1 1              | 06   1             | 20<br>40<br>25     | 06 1 1             | 100                |
| Failu                                               | 100<br>100<br>100  | 10<br>100<br>100   | 80<br>60<br>75     | 10<br>100<br>100   | 100<br>100         |
| Mini DPT Bond Strength  Om Failure M  (psi) APL CL  | 34<br>59<br>103    | 42<br>75<br>124    | 55<br>79<br>129    | 47<br>78<br>94     | 38<br>42<br>112    |
| Mini<br>Rate<br>(in./min)                           | 0.002<br>0.5<br>20 | 0.002<br>0.5<br>20 | 0.002<br>0.5<br>20 | 0.002<br>0.5<br>20 | 0.002<br>0.5<br>20 |
| Distance Forward of Forward Equator (in.)           | 0                  | 7                  | <b>-5</b>          | -3                 | 4-                 |
|                                                     |                    |                    |                    | DOC                | מנות מואת          |

<sup>1</sup>Standard Deviation for Triplicate Tests

DOC TWR-32333 VOL PAGE 111

TABLE 34

行気 佐留 なる 奏い

MOTOR TC 30072 BOND STRENGTH AND LINER PROPERTIES IN BARREL AREA, SEGMENT 2L, BETWEEN AND UNDER GROUNDING STRAPS 2-YEAR (1985) RESULTS

|                    | Min       | DPT Bor | nd Str | ength | -    |     | Liner                              |               | Liner C=0/C=0    | Ratios |
|--------------------|-----------|---------|--------|-------|------|-----|------------------------------------|---------------|------------------|--------|
|                    | Rate      | ď       | Fail   | ire l | fode | (%) | Gel                                |               | D=0              | )=O    |
| Motor Location     | (in./min) | (psi)   | APL    | 티     | CLI  | 8   | (min) (psi) APL CL CLI CP Fraction | Ratio         | Stretching Vinyl | Viny1  |
| Between Grounding  | 0.002     | 20      | 50     | 50    | í    | 1   | $0.586\pm0.01^{1}$                 | $1.86\pm0.02$ | 0.635            | 0.147  |
| Straps, Segment 3A | 0.5       | 99      | 20     | 20    | ı    | 1   |                                    |               |                  |        |
|                    | 20        | 116     | 20     | 20    | t    | 1   |                                    |               |                  |        |
| Under Grounding    | 0.002     | 59      | 50     | 50    | ŧ    | ı   | 0.614±0.00                         | $1.72\pm0.01$ | 0.717            | 0.138  |
| Straps, Segment 3A | 0.5       | 79      | 20     | 20    | ı    | ı   |                                    |               |                  |        |
|                    | 20        | 148     | 20     | 20    | 1    | ı   |                                    |               |                  |        |

1Standard Deviation for Triplicate Tests.

DOC TWR-32333 VOL SEC MAGE 112

BEVIRION

TABLE 35

MOTOR TC 30072 BOND STRENGTH AND LINER PROPERTIES IN AFT EQUATOR AREA, SEGMENT 51, BETWEEN GROUNDING STRAPS 2-YEAR (1985) RESULTS

|                                       |               |                    |    |               |     |    |            |     |    |            | _   | OC<br>O.<br>EC | TWR-           | -3  | 2333 | 3              | F≈  | AGE |
|---------------------------------------|---------------|--------------------|----|---------------|-----|----|------------|-----|----|------------|-----|----------------|----------------|-----|------|----------------|-----|-----|
| Distance Aft<br>of Aft                | Equator (in.) | 7-                 |    | -3            |     |    | -2         |     |    | 7          |     |                | 0              |     |      | 2              |     |     |
| Min                                   | (in./min)     | 0.002              | 20 | 0.002         | 0.5 | 20 | 0.002      | 0.5 | 20 | 0.002      | 0.5 | 20             | 0.002          | 0.5 | 20   | 0.002          | 0.5 | 20  |
| ini DPT Bond Strength<br>σ_ Failure M | (psi)         | 28<br>54           | 69 | 77            | 29  | 99 | 52         | 88  | 29 | 58         | 86  | 70             | 39             | 99  | 98   | 22             | 51  | 91  |
| nd Stren<br>Failur                    | APL           | 09                 | 95 | 09            | 95  | 95 | 80         | 90  | 95 | 40         | 20  | 90             | 50             | 9   | 06   | 75             | 75  | 100 |
| Strength<br>Failure Mode (%)          | 립             | 40                 | 2  | 70            | ς   | Ŋ  | 20         | 10  | Ŋ  | 09         | 30  | 10             | 20             | 10  | 10   | 25             | 25  | 1   |
| (%)                                   | CLI           | 1 1                | ı  | ı             | ı   | ı  | 1          | 1   | ı  | ı          | ı   | 1              | ı              | 1   | ı    | ı              | ſ   | 1   |
| Liner<br>Gel                          | Fraction      | $0.453\pm0.02^{1}$ |    | 0.514±0.02    |     |    | 0.579±0.01 |     |    | 0.601±0.01 |     |                | $0.543\pm0.02$ |     |      | $0.494\pm0.01$ |     |     |
| Liner<br>Swell                        | Ratio         | 2.01±0.02          |    | $2.05\pm0.03$ |     |    | 1.80±0.03  |     |    | 1.81±0.03  |     |                | 2.00±0.0       |     |      | $2.06\pm0.03$  |     |     |
| Liner C=0/C=C Ratios<br>C=C C=C       | Stretching    | 0.579              |    | 0.420         |     |    | 0.610      |     |    | 0.469      |     |                | 0.650          |     |      | 0.549          |     |     |
| C=C                                   | Viny1         | 0.107              |    | 0.076         |     |    | 0.130      |     |    | 0.087      |     |                | 0.120          |     |      | 0.105          |     |     |

Standard Deviation for Triplicate Tests

VOL

113

TABLE 36

MOTOR TC 30072 BOND STRENGTH AND LINER PROPERTIES IN AFT EQUATOR AREA, SEGMENT 51, BETWEEN GROUNDING STRAPS 2-YEAR (1985) RESULTS

| C Ratios<br>C=C<br>Vinyl                            | 0.108              | 0.073              | 0.107              | 0.122              |
|-----------------------------------------------------|--------------------|--------------------|--------------------|--------------------|
| Liner C=0/C=C Ratios C=C C=C Stretching Vinyl       | 0.585              | 0.395              | 0.564              | 0.634              |
| Liner<br>Swell<br>Ratio                             | 2.07±0.03          | 2.09±0.03          | 2.17±0.0           | 2.12±0.03          |
| Liner<br>Gel<br>Fraction                            | $0.417\pm0.02^{1}$ | 0.444±0.04         | 0.506±0.02         | 0.424±0.07         |
| (%) a                                               | f f f              | 1 1 1              | 1 1 1              | 1 1 1              |
| Strength<br>  Failure Mode (%   APL   CL   CL       | 75<br>60<br>10     | 90<br>25<br>5      | 30                 | 25<br>10           |
| Failu<br>Failu                                      | 25<br>40<br>90     | 10<br>75<br>95     | 70<br>95<br>95     | 75<br>90<br>100    |
| Mini DPT Bond Strength  Gm Failure Mc  (psi) APL CL | 19<br>40<br>87     | 16<br>50<br>77     | 25<br>53<br>89     | 18<br>58<br>79     |
| Mare<br>(in./min)                                   | 0.002<br>0.5<br>20 | 0.002<br>0.5<br>20 | 0.002<br>0.5<br>20 | 0.002<br>0.5<br>20 |
| Distance Aft of Aft Equator (in.)                   | E                  | 4                  | \$                 | 9                  |

Standard Deviation for Triplicate Tests

DOC TWR-32333 VOL SEC PAGE 114

REVISION \_

TABLE 37

22.5

MOTOR IC 30072 BOND STRENGTH AND LINER PROPERTIES IN AFT FLAP AREA, SEGMENT 64, 2-YEAR (1985) RESULTS

REVISION

| C Ratios<br>C=C<br>Vinyl                                         | 0.108              | uired              | 0.120              | uired              | uired              | luired             | uired              |
|------------------------------------------------------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|
| Liner C=O/C=C Ratios<br>C=C C=C<br>Stretching Vinyl              | 0.549              | Not Required       | 0.501              | Not Required       | Not Required       | Not Required       | Not Required       |
| Liner<br>Swell<br>Ratio                                          | 2.16±0.03          | 2.20±0.14          | 2.10±0.0           | 2.10±0.0           | 2.19±0.05          | 2.14±0.03          | 2.08±0.03          |
| Liner<br>Gel<br>Fraction                                         | $0.447\pm0.02^{1}$ | 0.442±0.00         | 0.538±0.07         | 0.533±0.04         | 0.511±0.04         | 0.502±0.03         | 0.542±0.03         |
| (%)<br>CLI                                                       | 1 1 1              | 1 1 1              | 1 1 1              | 1 1 1              | 20                 | 09                 | 09                 |
| Strength<br>Failure Mode<br>APL CL                               | 25<br>75<br>50     | 75<br>50<br>5      | 60<br>25<br>10     | 60<br>20<br>5      | 50                 | 40<br>5            | 7 1 1              |
| Failu<br>APL                                                     | 25<br>25<br>50     | 25<br>50<br>95     | 40<br>75<br>90     | 40<br>80<br>95     | 90                 | -<br>95<br>100     | 100<br>100         |
| i DPT Bor<br>Gm<br>(psi)                                         | 17<br>30<br>42     | 19<br>34<br>74     | 19<br>33<br>58     | 21<br>39<br>71     | 25<br>43<br>64     | 18<br>43<br>66     | 29<br>52<br>79     |
| Mini DPT Bond Strength Rate Gm Failure Mo (in./min) (psi) APL CL | 0.002<br>0.5<br>20 |
| Distance Aft of Aft Equator (in.)                                | 7                  | ٣                  | 4                  | \$                 | 9                  | 7                  | œ                  |

DOC TWR-32333

PAGE

<sup>1</sup>Standard Deviation for Triplicate Tests

TABLE 37 (CONTINUED)

Ď

MOTOR TC 30072 BOND STRENGTH AND LINER PROPERTIES IN AFT FLAP AREA, SEGMENT 64, 2-YEAR (1985) RESULTS

REVISION

|                      | Mini                                       | i DPT Bor      | nd Stre        | ngth                       |       | Liner              | Liner          | Liner C=0/C=C Ratios | Ratios       |
|----------------------|--------------------------------------------|----------------|----------------|----------------------------|-------|--------------------|----------------|----------------------|--------------|
| of Aft Equator (in.) | Rate om Failure Mod (in./min) (psi) APL CL | σm<br>(psi)    | Failu          | Failure Mode (%) APL CL CL |       | Gel<br>Fraction    | Swell<br>Ratio | C=C<br>Stretching    | C=C<br>Vinyl |
| 6                    | 0.002<br>0.5<br>20                         | 28<br>56<br>74 | 90<br>95<br>95 | 10<br>10<br>5              | 1 1 1 | $0.548\pm0.01^{1}$ | 2.17±0.04      | Not Required         | ired         |
| 10                   | 0.002<br>0.5<br>20                         | 30<br>51<br>78 | -<br>90<br>100 | 50<br>10                   | 20    | 0.543±0.01         | 2.11±0.06      | 0.367                | 0.073        |
| 11                   | 0.002<br>0.5<br>20                         | 26<br>51<br>73 | -<br>95<br>100 | 40<br>5                    | 9 1 1 | 0.550±0.04         | 2.16±0.14      | Not Required         | ired         |

1Standard Deviation for Triplicate Tests

| DOC<br>NO. | TWR-32333 | _    | VOL |   |
|------------|-----------|------|-----|---|
| SEC        |           | PAGE |     | _ |
|            |           | Ī    | 116 |   |

TABLE 38

MOTOR TC 30072 STRESS RELAXATION GRADIENT OF PROPELLANT
IN FORWARD FLAP AREA, SEGMENT 1A1
2-YEAR (1985) RESULTS

|                |               |                     | Re         | elaxation         | n Modulu          | ıs (psi) | )                 |
|----------------|---------------|---------------------|------------|-------------------|-------------------|----------|-------------------|
| Distance From  | Time From     | Strain              |            | Log               | Time (mi          |          |                   |
| Bondline (in.) | Cutting (hrs) | (%)                 | -0.93      | -0.34             | 0.20              | 0.80     | 1.30              |
| 0.1            | 2.1           | 2.00                | 397        | 302               | 251               | 206      | 177               |
|                |               | 2.00                | 455<br>426 | <u>349</u>        | 291               | 242      | 212               |
|                |               | 2.00                | 426        | 326               | 271               | 224      | $\frac{212}{194}$ |
| 0.3            | 2.4           | 1.99                | 318        | 229               | 184               | 149      | 124               |
|                | 2.8           | 2.00                | 323        | 238               | 191               | 156      | 134               |
|                |               | 2.00                | 320        | 234               | 188               | 152      | 129               |
| 0.5            | 3.0           | 2.00                | 347        | 259               | 211               | 172      | 147               |
|                | 3.1           | 2.00                | 347        |                   | 208               | 172      | 150               |
|                |               | 2.00                | 347        | $\frac{253}{256}$ | 210               | 172      | 148               |
| 1.0            | 2.6           | 1.98                | 330        | 245               | 198               | 161      | 136               |
| 274            | 2.0           | 2.00                | 293        |                   | 178               | 146      | 135               |
|                | 2.0           | 1.99                | 312        | $\frac{218}{232}$ | 188               | 154      | $\overline{136}$  |
| 2.0            | 3.3           | 2.00                | 369        | 278               | 227               | 188      | 164               |
| _,,            | 5.0           | 2.00                | 358        | 269               | 222               | 184      | 162               |
|                | 3.0           | $\frac{2.00}{2.00}$ | 364        | $\frac{205}{274}$ | $\frac{222}{224}$ | 186      | 163               |

DOC NO. TWR-32333 VOL SEC PAGE 117

REVISION \_\_\_\_

MOTOR TC 30072 STRESS RELAXATION GRADIENT OF PROPELLANT IN FORWARD NIPPLE AREA, SEGMENT 1A 2-YEAR (1985) RESULTS

|                |               |                     | Re                | elaxatio | n Moduli | ıs (psi) | )_   |
|----------------|---------------|---------------------|-------------------|----------|----------|----------|------|
| Distance From  | Time From     | Strain              |                   | Log      | Time (m: |          |      |
| Bondline (in.) | Cutting (hrs) | (%)                 | -0.93             | -0.34    | 0.20     | 0.80     | 1.30 |
| 0.1            | 3.1           | 2.00                | 306               | 235      | 198      | 168      | 148  |
|                | 3.0           | 2.00                | 317               | 229      | 184      | 150      | 129  |
|                |               | 2.00                | 312               | 232      | 191      | 159      | 138  |
| 0.3            | 3.4           | 2.00                | 330               | 248      | 201      | 163      | 1 37 |
|                | 2.9           | 1.99                | 333               | 246      | 199      | 162      | 137  |
|                |               | 2.00                | 332               | 247      | 200      | 162      | 1 37 |
| 0.5            | 3.7           | 1.99                | 410               | 309      | 256      | 210      | 182  |
|                | 3.4           | 2.01                | 376               | 280      | 231      | 187      | 158  |
|                |               | 2.00                | 393               | 294      | 244      | 198      | 170  |
| 1.0            | 3.0           | 2.00                | 404               | 305      | 254      | 210      | 182  |
|                | 3.8           | 2.00                | 393               | 292      | 243      | 204      | 180  |
|                |               | 2.00                | 398               | 298      | 248      | 207      | 181  |
| 2.0            | 3.3           | 1.98                | 268               | 189      | 149      | 118      | 98   |
|                | 4.2           | 2.01                | 290               | 207      | 165      | 132      | 111  |
|                |               | $\frac{2.00}{2.00}$ | $\frac{279}{279}$ | 198      | 157      | 125      | 104  |

## TWR-32333 | VOL | PAGE | 118

REVISION ...

TABLE 40

MOTOR TC 30072 STRESS RELAXATION GRADIENT OF PROPELLANT IN FORWARD EQUATOR AREA, SEGMENT 2L 2-YEAR (1985) RESULTS

|                      | Distance<br>From | Time<br>From |                     | Re    | elaxatio          |                   |      |            |
|----------------------|------------------|--------------|---------------------|-------|-------------------|-------------------|------|------------|
| Motor                | Bondline         | Cutting      | Strain              |       | Log '             | Cime (mi          | in)  |            |
| Location             | (in.)            | (hrs)        | (%)                 | -0.93 | -0.34             | 0.20              | 0.80 | 1.30       |
| Area A               | 0.1              | 2.9          | 2.00                | 671   | 545               | 479               | 415  | 372        |
| (Aft of              |                  | 4.3          | 2.00                | 710   | 682               | 527               | 468  | 418        |
| Equator,<br>Between  |                  |              | 2.00                | 691   | 614               | 503               | 411  | 395        |
| Grounding            | 0.3              | 3.3          | _                   | 460   | 364               | 317               | 279  | 255        |
| Straps)              | 0.3              | 3.7          | _                   | 467   | 382               | 333               | 294  | 266        |
| Straps)              |                  | 3.7          |                     | 463   | 373               | 325               | 286  | 260        |
|                      | 0.5              | 3.7          | 1.99                | 493   | 400               | 346               | 302  | 271        |
|                      |                  |              | 2.01                | 472   | 388               | <u>337</u>        | 295  | <u>270</u> |
|                      |                  |              | 2.00                | 482   | 394               | 341               | 298  | 270        |
|                      | 1.0              | 3.8          | 1.99                | 354   | 241               | 198               | 167  | 149        |
|                      | 1.0              | 4.5          | 1.99                | 494   | 363               | 306               | 260  | 229        |
|                      |                  | 4.5          | $\frac{1.99}{1.99}$ | 424   | 302               | 252               | 213  | 189        |
|                      | 2.0              | 4.0          | 2.01                | 406   | 317               | 269               | 238  | 212        |
|                      | 2.0              | 4.3          | 2.00                | 464   | 365               | 320               | 287  | 257        |
|                      |                  | 4.3          | $\frac{2.00}{2.00}$ | 435   | $\frac{363}{341}$ | 294               | 262  | 234        |
| Area B               | 0.1              | 4.6          | _                   | 586   | 492               | 436               | 383  | 349        |
| (At Equator          |                  | 3.5          | _                   | 606   | 496               | 433               | 374  | 335        |
| Between<br>Grounding | ,                | •            |                     | 596   | 494               | 434               | 378  | 342        |
| Straps)              | 0.3              | 5.0          | 1.99                | 443   | 458               | 411               | 368  | 338        |
| Scraps)              | 0.3              | 3.9          | 2.02                | 545   | 362               | 315               | 275  | 247        |
|                      |                  | 3.,          | 2.00                | 494   | 410               | 363               | 321  | 292        |
|                      | 0.5              | 3.5          | 2.00                | 439   | 350               | 301               | 260  | 233        |
|                      |                  | 4.3          | 2.00                | 503   | 426               | 356               | 310  | 280        |
|                      |                  |              | 2.00                | 471   | 388               | 328               | 285  | 256        |
|                      | 1.0              | 3.8          | 2.00                | 295   | 219               | 179               | 147  | 129        |
|                      | 1.0              | 3.4          | 2.00                | 402   | 339               | 270               | 233  | 208        |
|                      |                  | J.4          | $\frac{2.00}{2.00}$ | 348   | <del>279</del>    | $\frac{270}{224}$ | 190  | 168        |
|                      | 2.0              | 4.2          | 2.00                | 342   | 260               | 218               | 184  | 164        |
|                      | 2.0              | 3.8          | 2.00                | 449   | 351               | 298               | 254  | 226        |
|                      |                  | 3.0          | $\frac{2.00}{2.00}$ | 395   | 305               | 258               | 219  | 194        |
|                      |                  |              |                     |       |                   |                   |      |            |

DOC TWR-32333 VOL SEC PAGE 119

REVISION \_\_\_\_

TABLE 40 (CONTINUED)

# MOTOR TC 30072 STRESS RELAXATION GRADIENT OF PROPELLANT IN FORWARD EQUATOR AREA, SEGMENT 2L 2-YEAR (1985) RESULTS

|                    | Distance<br>From | Time<br>From |                     | Re                | elaxatio          |                   |                   | )                 |
|--------------------|------------------|--------------|---------------------|-------------------|-------------------|-------------------|-------------------|-------------------|
| Motor              | Bondline         | Cutting      | Strain              |                   | Log '             | rime (m:          | in)               |                   |
| Location           | (in.)            | (hrs)        | (%)                 | -0.93             | -0.34             | 0.20              | 0.80              | 1.30              |
| Area C             | 0.1              | 4.1          | 2.00                | 374               | 286               | 239               | <b>20</b> 2       | 179               |
| (Forward           |                  | 2.5          | 2.00                | 449               | 351               | 297               | 255               | 228               |
| of Equator in Flap |                  |              | 2.00                | 411               | 318               | 268               | 228               | 203               |
| Area)              | 0.3              | 3.5          | 1.99                | 337               | 258               | 414               | 181               | 159               |
|                    |                  | 2.8          | 2.01                | 354               | 273               | 229               | 194               | 171               |
|                    |                  |              | 2.00                | 345               | 265               | 321               | 187               | 165               |
|                    | 0.5              | 3.8          | 1.99                | 316               | 248               | 208               | 177               | 156               |
|                    |                  | 1.9          | 2.00                | 362               | 282               | 239               | 204               | 180               |
|                    |                  |              | 1.99                | 339               | 265               | 223               | 190               | 168               |
|                    | 1.0              | 4.3          | 2.00                | 468               | 372               | 318               | 274               | 244               |
|                    |                  | 2.3          | 2.00                | 455               | 362               | 310               | 266               | 235               |
|                    |                  | 213          | $\frac{2.00}{2.00}$ | $\frac{461}{461}$ | 367               | 314               | 2 <del>70</del>   | $\frac{235}{239}$ |
|                    | 2.0              | 2.1          | 2.00                | 247               | 183               | 152               | 127               | 112               |
|                    |                  | 2.7          | 2.00                | 310               | 227               | 186               | 154               | 137               |
|                    |                  | 2.,          | $\frac{2.00}{2.00}$ | $\frac{310}{278}$ | $\frac{227}{205}$ | $\frac{160}{169}$ | $\frac{134}{140}$ | $\frac{137}{124}$ |

DOC TWR-32333 VOL SEC PAGE 120

REVISION \_\_\_\_

TABLE 41

MOTOR TC 30072 STRESS RELAXATION GRADIENT OF PROPELLANT
IN BARREL AREA, SEGMENT 3A, BETWEEN AND UNDER GROUNDING STRAPS
2-YEAR (1985) RESULTS

|                      | Distance<br>From | Time<br>From |                     | D                 | elaxatio            | n Maduli            | is (noi)          |                   |
|----------------------|------------------|--------------|---------------------|-------------------|---------------------|---------------------|-------------------|-------------------|
| Motor                | Bondline         | Cutting      | Strain              |                   |                     | Time (m:            |                   |                   |
| Location             | (in.)            | (hrs)        | (%)                 | -0.93             | -0.34               | 0.20                | 0.80              | 1.30              |
| Between<br>Grounding | 0.1              | 3.2<br>4.0   | 2.00<br>2.00        | 724<br>797        | 633<br>703          | 567<br>609          | 495<br>529        | 437<br>478        |
| Straps               |                  | 4.0          | $\frac{2.00}{2.00}$ | 760               | 668                 | 588                 | 512               | 457               |
|                      | 0.3              | 3.6<br>2.3   | 2.00<br>2.00        | 621<br>621        | 516<br>533          | 456<br>460          | 404<br>402        | 366<br>358        |
|                      |                  | 2.3          | $\frac{2.00}{2.00}$ | $\frac{621}{621}$ | 524                 | 458                 | 402               | 362               |
|                      | 0.5              | 3.8<br>2.8   | 1.99                | 474               | 375                 | 325                 | 281               | 252               |
|                      |                  | 2.8          | $\frac{2.00}{1.99}$ | 437<br>455        | 355<br>365          | $\frac{312}{318}$   | $\frac{258}{269}$ | $\frac{226}{239}$ |
|                      | 1.0              | 3.3<br>2.9   | 2.01                | 468               | 351                 | 281                 | 228               | 177               |
|                      |                  | 2.9          | $\frac{2.00}{2.00}$ | 393<br>430        | 296<br>323          | $\frac{249}{265}$   | $\frac{206}{217}$ | $\frac{183}{180}$ |
|                      | 2.0              | 3.7<br>3.5   | <u>-</u>            | 450<br>437        | 337<br>324          | 278                 | 234<br>213        | 205               |
|                      |                  | 3.3          | _                   | 443               | 330                 | $\frac{262}{270}$   | $\frac{213}{223}$ | $\frac{179}{192}$ |
| Under<br>Grounding   | 0.1              | 3.0<br>3.9   | 1.99<br>1.98        | 1360<br>1550      | 1170<br>1310        | 1040<br>1170        | 930               | 859               |
| Straps               |                  | 3.9          | 1.98                | 1455              | $\frac{1310}{1240}$ | $\frac{1170}{1105}$ | 1010<br>970       | <u>899</u><br>879 |
|                      | 0.3              | 3.3<br>4.2   | 2.00<br>2.00        | 924<br>1020       | 774<br>861          | 684                 | 608               | 563               |
|                      |                  | 4.2          | 2.00                | 972               | 817                 | 752<br>718          | 644<br>626        | <u>569</u><br>566 |
|                      | 0.5              | 3.6<br>2.9   | 1.99                | 869               | 748                 | 665                 | 597               | 536               |
|                      |                  | 2.9          | $\frac{2.01}{2.00}$ | 820<br>844        | 702<br>725          | 628<br>646          | <u>554</u><br>575 | 495<br>515        |
|                      | 1.0              | 2.8<br>3.2   | 2.00                | 623               | 506                 | 428                 | 366               | 319               |
|                      |                  | 3. 4         | $\frac{2.00}{2.00}$ | 575<br>599        | 451<br>478          | 3 <u>89</u><br>408  | $\frac{315}{340}$ | $\frac{269}{294}$ |
|                      | 2.0              | 3.0          | 2.00                | 552               | 433                 | 355                 | 309               | 273               |
|                      |                  | 3.5          | $\frac{2.00}{2.00}$ | $\frac{607}{579}$ | <u>465</u><br>449   | 384<br>375          | $\frac{315}{312}$ | $\frac{269}{271}$ |

DOC NO. TWR-32333 VOL SEC PAGE

REVISION \_\_\_\_

TABLE 42

MOTOR TC 30072 STRESS RELAXATION GRADIENT OF PROPELLANT
IN AFT EQUATOR AREA, SEGMENT 51
2-YEAR (1985) RESULTS

|                        | Distance<br>From | Time<br>From |                     | R     | elaxation  | n Modul  | ıs (psi) | )    |
|------------------------|------------------|--------------|---------------------|-------|------------|----------|----------|------|
| Motor                  | Bondline         | Cutting      | Strain              |       | Log        | lime (m: | in)      |      |
| Location               | (in.)            | (hrs)        | (%)                 | -0.93 | -0.34      | 0.20     | 0.80     | 1.30 |
| Area A                 | 0.1              | 3.0          | 2.00                | 747   | 616        | 540      | 471      | 430  |
| (Forward               |                  |              | 2.00                | 790   | <u>645</u> | 562      | 496      | 430  |
| of Equator,<br>Between |                  |              | 2.00                | 768   | 630        | 551      | 483      | 430  |
| Grounding              | 0.3              | 3.4          | 1.99                | 731   | 601        | 527      | 445      | 439  |
| Straps)                | 0.3              | 3.3          | 2.00                | 868   | 745        | 638      | 559      | 488  |
| Scraps)                |                  | 3.3          | $\frac{2.00}{2.00}$ | 799   | 673        | 582      | 502      | 463  |
|                        | 0.5              | 3.7          | 2.01                | 864   | 726        | 620      | 542      | 487  |
|                        |                  | 3.6          | 2.00                | 951   | 794        | 696      | 607      | 539  |
|                        |                  |              | 2.00                | 907   | 760        | 658      | 574      | 513  |
|                        | 1.0              | 3.0          | 1.99                | 713   | 563        | 476      | 402      | 354  |
|                        | 1.0              | 3.9          | 1.99                | 742   | 594        | 483      | 393      | 341  |
|                        |                  | 3.7          | $\frac{1.99}{1.99}$ | 727   | 578        | 479      | 397      | 347  |
|                        | 2.0              | 3.3          | 2.00                | 843   | 681        | 564      | 462      | 396  |
|                        |                  | 3.2          | 2.00                | 750   | 594        | 514      | 442      | 386  |
|                        |                  |              | 2.00                | 796   | 637        | 539      | 452      | 391  |
| Area B                 | 0.1              | 3.5          | 2.00                | 1500  | 1250       | 1090     | 925      | 816  |
| (At Equator            |                  | 4.1          | 2.00                | 1350  | 1110       | 956      | 795      | 683  |
| Between<br>Grounding   | •                |              | 2.00                | 1425  | 1180       | 1023     | 860      | 749  |
| Straps)                | 0.3              | 4.0          | 2.00                | 1140  | 927        | 793      | 673      | 598  |
| 561-7-7                |                  | 3.5          | 2.00                | 1270  | 1260       | 851      | 900      | 592  |
|                        |                  |              | 2.00                | 1205  | 1093       | 822      | 786      | 595  |
|                        | 0.5              | 3.3          | 2.00                | 1460  | 882        | 759      | 637      | 556  |
|                        |                  | 3.7          | 2.00                | 1160  | 928        | 773      | 626      | 528  |
|                        |                  |              | 2.00                | 1310  | 905        | 766      | 631      | 542  |
|                        | 1.0              | 3.6          | 2.00                | 894   | 686        | 554      | 443      | 370  |
|                        |                  | 2.4          | 2.00                | 1010  | 794        | 654      | 544      | 463  |
|                        |                  |              | 2.00                | 952   | 740        | 604      | 493      | 416  |
|                        | 2.0              | 3.9          | 2.00                | 912   | 727        | 613      | 527      | 456  |
|                        |                  | 2.8          | 2.00                | 758   | 633        | 534      | 442      | 375  |
|                        |                  |              | 2.00                | 835   | 680        | 573      | 484      | 415  |

DOC NO. TWR-32333 VOL SEC PAGE 122

REVISION

TABLE 42 (CONTINUED)

### MOTOR TC 30072 STRESS RELAXATION GRADIENT OF PROPELLANT IN AFT EQUATOR AREA, SEGMENT 51 2-YEAR (1985) RESULTS

|                                          | Distance<br>From | Time<br>From |                                         | Re                       | elaxatio                 | n_Modul                  | ıs (psi                  | )                                   |
|------------------------------------------|------------------|--------------|-----------------------------------------|--------------------------|--------------------------|--------------------------|--------------------------|-------------------------------------|
| Motor                                    | Bondline         | Cutting      | Strain                                  |                          | Log '                    | Time (m:                 | in)                      |                                     |
| Location                                 | (in.)            | (hrs)        | (%)                                     | -0.93                    | -0.34                    | 0.20                     | 0.80                     | 1.30                                |
| Area C<br>(Aft of<br>Equator,<br>in Flap | 0.1              | 3.0<br>3.7   | $\frac{2.00}{2.00}$                     | 941<br>891<br>916        | 757<br>677<br>717        | 654<br>549<br>601        | 544<br>394<br>469        | 478<br>351<br>414                   |
| Area)                                    | 0.3              | 3.0<br>4.0   | $\frac{1.98}{2.00}$ $\frac{1.99}{1.99}$ | 745<br><u>851</u><br>798 | 606<br>642<br>624        | 504<br>519<br>511        | 424<br>404<br>414        | 365<br>325<br>345                   |
|                                          | 0.5              | 3.3<br>2.8   | $\frac{2.01}{2.00}$                     | 944<br>929<br>936        | 749<br>738<br>743        | 616<br>627<br>623        | 547<br><u>526</u><br>536 | 475<br>461<br>468                   |
|                                          | 1.0              | 3.6<br>3.1   | $\frac{2.02}{1.99}$ $\frac{2.00}{2.00}$ | 1230<br>2160<br>1245     | 948<br><u>951</u><br>949 | 759<br><u>747</u><br>753 | 591<br><u>556</u><br>573 | 467<br>423<br>445                   |
|                                          | 2.0              | 3.4<br>3.4   | $\frac{2.00}{2.00}$                     | 786<br>1030<br>908       | 607<br>675<br>641        | 507<br><u>546</u><br>526 | 421<br>445<br>433        | $\frac{350}{374}$ $\frac{362}{362}$ |

DOC NO. TWR-32333 VOL SEC PAGE 123

REVISION \_\_\_\_

TABLE 43

MOTOR TC 30072 STRESS RELAXATION GRADIENT OF PROPELLANT
IN AFT FLAP AREA, SEGMENT 6A
2-YEAR (1985) RESULTS

|                                 | Distance<br>From | Time<br>From |                     | Relaxation Modulus (psi) Log Time (min) |                   |                   | )                 |                   |
|---------------------------------|------------------|--------------|---------------------|-----------------------------------------|-------------------|-------------------|-------------------|-------------------|
| Motor                           | Bondline         | Cutting      | Strain              |                                         |                   |                   |                   |                   |
| Location                        | (in.)            | (hrs)        | (%)                 | -0.93                                   | -0.34             | 0.20              | 0.80              | 1.30              |
| Area D                          | 0.1              | 4.3<br>3.3   | 2.00                | 475                                     | 382               | 331               | 280               | 265               |
| (End of<br>Flap Near<br>Nozzle) |                  | 3.3          | $\frac{2.00}{2.00}$ | 331<br>394                              | 254<br>318        | 210<br>270        | 175<br>228        | $\frac{158}{212}$ |
|                                 | 0.3              | 4.2          | 1.99                | 492                                     | 388               | 330               | 283               | 254               |
|                                 |                  | 3.7          | $\frac{2.01}{2.00}$ | <u>506</u><br>499                       | 404<br>396        | 342<br>336        | 287<br>285        | $\frac{272}{263}$ |
|                                 | 0.5              | 4.6          | 2.00                | 528                                     | 418               | 355               | 303               | 266               |
|                                 |                  | 2.6          | $\frac{2.00}{2.00}$ | 506<br>517                              | 404<br>411        | 342<br>349        | 287<br>295        | 272<br>269        |
|                                 | 1.0              | 5.3          | 1.99                | 506                                     | 407               | 346               | 292               | 251               |
|                                 |                  | 2.9          | $\frac{2.00}{1.99}$ | <u>555</u>                              | 444               | <u>390</u>        | 348               | 326               |
|                                 | 2.0              | 3.0          | 2.00                | 497                                     | 411               | 362               | 318               | 287               |
|                                 |                  | -            | $\frac{2.00}{2.00}$ | 524<br>511                              | $\frac{419}{415}$ | $\frac{362}{362}$ | $\frac{311}{315}$ | 282<br>285        |
| Area E                          | 0.1              | 3.7          | 2.00                | 563                                     | 455               | 392               | 340               | 309               |
| (Apex<br>Area)                  |                  |              | $\frac{2.00}{2.00}$ | 600<br>582                              | $\frac{487}{471}$ | 410<br>401        | 389<br>365        | 351<br>330        |
|                                 | 0.3              | 3.5          | 2.00                | 621                                     | 500               | 432               | 371               | 296               |
|                                 |                  | 2.9          | $\frac{2.00}{2.00}$ | 537<br>579                              | $\frac{421}{461}$ | 355<br>394        | 305<br>338        | 270<br>283        |
|                                 | 0.5              | 3.2          | 2.00                | _                                       | -                 | _                 | _                 | _                 |
|                                 |                  | 3.6          | $\frac{2.00}{2.00}$ | 573<br>573                              | 457<br>457        | <u>392</u><br>392 | 334<br>334        | 301<br>301        |
|                                 | 1.0              | 4.1          | 2.00                | 542                                     | 433               | 376               | 322               | 289               |
|                                 |                  | 4.0          | $\frac{2.00}{2.00}$ | <u>585</u><br>564                       | <u>486</u><br>460 | 426<br>401        | 380<br>351        | $\frac{342}{316}$ |
|                                 | 2.0              | 4.5          | 2.00                | 484                                     | 395               | 342               | 302               | 275               |
|                                 |                  | 3.9          | $\frac{2.00}{2.00}$ | 606<br>545                              | 501<br>448        | $\frac{441}{392}$ | 389<br>346        | $\frac{351}{313}$ |

PAGE 124

REVISION \_\_\_\_

TABLE 43 (CONTINUED)

# MOTOR TC 30072 STRESS RELAXATION GRADIENT OF PROPELLANT IN AFT FLAP AREA, SEGMENT 6A 2-YEAR (1985) RESULTS

|          | Distance<br>From | Time<br>From |        | R              | elaxatio | n Moduli | us (psi) | )    |
|----------|------------------|--------------|--------|----------------|----------|----------|----------|------|
| Motor    | Bondline         | Cutting      | Strain | Log Time (min) |          |          |          |      |
| Location | (in.)            | (hrs)        | (%)    | -0.93          | -0.34    | 0.20     | 0.80     | 1.30 |
| Area F   | 0.1              | -            | 2.00   | 635            | 534      | 470      | 418      | 370  |
| (Toward  |                  | 2.9          | 2.00   |                |          | _        | _=_      | _    |
| Equator) |                  |              | 2.00   | 635            | 534      | 470      | 418      | 370  |
|          | 0.3              | -            | 2.00   | 680            | 639      | 528      | 449      | 398  |
|          |                  | 2.3          | 2.00   | 843            | 674      | 584      | 494      | 427  |
|          |                  |              | 2.00   | 762            | 657      | 556      | 472      | 413  |
|          | 0.5              | 2.4          | 1.99   | 811            | 665      | 570      | 493      | 438  |
|          |                  | 2.7          | 2.01   | 860            | 696      | 614      | 522      | 471  |
|          |                  |              | 2.00   | 836            | 681      | 592      | 508      | 455  |
|          | 1.0              | 2.1          | 2.01   | 799            | 658      | 571      | 492      | 439  |
|          |                  | 3.0          | 2.00   | 905            | 751      | 650      | 573      | 503  |
|          |                  |              | 2.00   | 852            | 705      | 611      | 533      | 471  |
|          | 2.0              | 2.4          | 2.00   | 671            | 559      | 492      | 425      | 380  |
|          |                  | 2.2          | 2.00   | 745            | 602      | 526      | 466      | 414  |
|          |                  |              | 2.00   | 708            | 581      | 509      | 446      | 397  |

DOC NO. TWR-32333 VOL PAGE 125

REVISION

TABLE 44

MOTOR TC 30072 STRESS RELAXATION OF V-45 INSULATION
IN FORWARD NIPPLE AND FORWARD AND AFT FLAP AREAS
2-YEAR (1985) RESULTS

|                |                                     | Re1                                 | Relaxation Modulus (psi)     |                              |                                     |  |
|----------------|-------------------------------------|-------------------------------------|------------------------------|------------------------------|-------------------------------------|--|
|                | Strain                              |                                     | Log_Time                     | e (min)                      |                                     |  |
| Motor Location | (%)                                 | -0.34                               | 0.20                         | 0.80                         | 1.30                                |  |
| Forward Nipple |                                     |                                     |                              |                              |                                     |  |
| Segment 1A     | 2.00<br>2.00<br>1.99<br>2.00        | 2760<br>2270<br>1990<br>2340        | 2250<br>2080<br>1830<br>2053 | 2060<br>1870<br>1660<br>1863 | 1920<br>1740<br><u>1550</u><br>1737 |  |
| Forward Flap   |                                     |                                     |                              |                              |                                     |  |
| Segment 1A1    | 2.00<br>1.98<br>2.00<br>2.00        | 2350<br>2320<br>2230<br>2300        | 2140<br>2120<br>2040<br>2100 | 1970<br>1950<br>1850<br>1923 | 1830<br>1820<br>1730<br>1793        |  |
| Aft Flap       |                                     |                                     |                              |                              |                                     |  |
| Segment 6A     | 2.00<br>1.99<br><u>2.00</u><br>2.00 | 3310<br>3040<br><u>2540</u><br>2963 | 3040<br>2760<br>2350<br>2717 | 2790<br>2480<br>2180<br>2483 | 2610<br>2280<br>2040<br>2310        |  |

 
 DOC NO.
 TWR-32333
 VOL

 SEC
 PAGE 126

REVISION \_\_\_\_

TABLE 45

MOTOR TC 30072 STRESS RELAXATION OF V-45 INSULATION
IN FORWARD AND AFT EQUATOR AREAS BETWEEN GROUNDING STRAPS
2-YEAR (1985) RESULTS

|                  |        | Rel   | Relaxation Modulus (psi) |         |      |
|------------------|--------|-------|--------------------------|---------|------|
|                  | Strain |       | Log Tim                  | e (min) |      |
| Motor Location   | (%)    | -0.34 | 0.20                     | 0.80    | 1.30 |
| Forward Equator: |        |       |                          |         |      |
| Area B           | 2.00   | 1080  | 997                      | 919     | 866  |
| (Near Case)      | 2.01   | 1250  | 1140                     | 1050    | 987  |
|                  | 2.00   | 1280  | 1180                     | 1100    | 1030 |
|                  | 2.00   | 1203  | 1106                     | 1023    | 961  |
| Area C           | 2.00   | 2410  | 2210                     | 2030    | 1860 |
| (Forward of      | 2.01   | 2580  | 2350                     | 2140    | 2000 |
| Equator, in      | 2.00   | 2630  | 2410                     | 2210    | 2050 |
| Flap Area)       | 2.00   | 2540  | 2323                     | 2127    | 1970 |
| Area A           | 2.01   | 1480  | 1340                     | 1200    | 1100 |
| (Aft of Equator) | 2.00   | 1520  | 1390                     | 1230    | 1140 |
| <u>-</u>         | 2.01   | 1470  | 1330                     | 1230    | 1140 |
|                  | 2.01   | 1490  | 1353                     | 1220    | 1127 |
| Aft Equator:     |        |       |                          |         |      |
| Segment 5I       | 2.00   | 1070  | 979                      | 900     | 827  |
| Area B           | 2.01   | 1660  | 1520                     | 1400    | 1330 |
|                  | 2.00   | 1320  | 1260                     | 1150    | 1020 |
|                  | 2.00   | 1350  | 1253                     | 1150    | 1059 |
| Area C           | 2.00   | 2560  | 2330                     | 2040    | 1830 |
| (Aft of Equator  | 2.00   | 2090  | 1840                     | 1580    | 1370 |
| in Flap Area)    | 2.01   | 2570  | 2320                     | 2070    | 1870 |
| ·                | 2.00   | 2407  | 2163                     | 1897    | 1690 |
| Area A           | 2.00   | 1470  | 1340                     | 1220    | 1150 |
| (Forward of      | 2.01   | 1740  | 1600                     | 1430    | 1350 |
| Equator)         | 2.00   | 1780  | 1630                     | 1450    | 1340 |
| -                | 2.00   | 1663  | 1523                     | 1367    | 1280 |

DOC NO. TWR-32333 VOL PAGE 127

REVISION \_\_\_\_

TABLE 46

### MOTOR TC 30072 V-45 INSULATION PROPERTIES IN FORWARD NIPPLE AND AFT AND FORWARD FLAP AREAS 2-YEAR (1985) RESULTS

| Motor Location               | V-45<br>Moisture<br>(%)                                                                                  | V-45<br>DOP<br>(%)          | V-45<br>Swell<br>Ratio                                                                                   |
|------------------------------|----------------------------------------------------------------------------------------------------------|-----------------------------|----------------------------------------------------------------------------------------------------------|
| Forward Nipple<br>Segment IA | 1.38<br>1.52<br><u>1.66</u><br>1.52                                                                      | 3.30<br>-<br>-<br>-<br>3.30 | Not Required                                                                                             |
| Forward Flap<br>Segment 1A1  | $   \begin{array}{r}     1.24 \\     1.22 \\     \underline{1.52} \\     \overline{1.33}   \end{array} $ | 1.17<br>-<br>-<br>-<br>1.17 | $   \begin{array}{r}     1.35 \\     1.37 \\     \underline{1.35} \\     \overline{1.36}   \end{array} $ |
| Aft Flap<br>Segment 6A       | 1.85<br>1.96<br><u>1.62</u><br>1.81                                                                      | 1.34<br>-<br>-<br>-<br>1.34 | 1.33<br>1.35<br>1.35                                                                                     |

DOC NO. TWR-32333 VOL SEC PAGE 128

REVISION \_\_\_\_

TABLE 47

### MOTOR TC 30072 V-45 INSULATION PROPERTIES IN FORWARD AND AFT EQUATOR AREAS BETWEEN GROUNDING STRAPS 2-YEAR (1985) RESULTS

| Motor Location                                                | V-45<br>Moisture<br>(%)             | V-45<br>DOP<br>(%)          | V-45<br>Swell<br>Ratio                                                                                  |
|---------------------------------------------------------------|-------------------------------------|-----------------------------|---------------------------------------------------------------------------------------------------------|
| Forward Equator                                               |                                     |                             |                                                                                                         |
| Segment 2L<br>Area C (Forward<br>of Equator, in<br>Flap Area) | 1.85<br>0.64<br>2.33<br>1.61        | 1.53<br>-<br>-<br>-<br>1.53 | $   \begin{array}{c}     1.33 \\     1.33 \\     \underline{1.33} \\     1.33   \end{array} $           |
| Area A (Aft of<br>Equator, Between<br>Grounding Straps)       | 1.39<br>1.49<br><u>1.47</u><br>1.45 | 3.11<br>-<br>-<br>-<br>3.11 | 1.33<br>1.37<br><u>1.37</u><br>1.36                                                                     |
| Aft Equator                                                   |                                     |                             |                                                                                                         |
| Segment 5I<br>Area C (Aft<br>of Equator, in<br>Flap Area)     | 0.96<br>1.09<br>1.21<br>1.08        | 1.96<br>-<br>-<br>-<br>1.96 | $   \begin{array}{r}     1.35 \\     1.34 \\     \hline     1.34 \\     \hline     1.34   \end{array} $ |
| Area A (Forward of Equator, Between Grounding Straps)         | 1.08<br>1.10<br><u>1.06</u><br>1.08 | 1.78<br>-<br>-<br>-<br>1.78 | 1.37 $1.35$ $1.36$                                                                                      |

DOC NO. TWR-32333 VOL PAGE 129

me vision

TABLE 48

MOTOR TC 30072 V-45 INSULATION PROPERTIES IN BARREL AREA BETWEEN AND UNDER GROUNDING STRAPS 2-YEAR (1985) RESULTS

| Motor Location                | V-45<br>Moisture<br>(%)             | v-45<br>pop<br>(%)_ | V-45<br>Swell<br><u>Ratio</u> |
|-------------------------------|-------------------------------------|---------------------|-------------------------------|
| Segment 3A,<br>Between Straps | 0.91<br>0.71<br><u>0.86</u><br>0.83 | Not Required        | Not Required                  |
| Segment 3A,<br>Under Straps   | 0.86<br>0.90<br>0.78<br>0.83        | Not Required        | Not Required                  |

DOC TWR-32333 VOL SEC PAGE 130

REVISION \_\_\_\_

1

### DISTRIBUTION

No. of Copies 2 Ogden ALC Hill AFB, UT 84056 Attn: MMWRM Ogden ALC 1 H111 AFB, UT 84056 Attn: MMWRC (Mr. W. Leary) Ogden ALC 1 Hill AFB, UT 84056 Attn: MMGRM AFPRO Morton Thiokol, Inc. 1 Wasatch Operations Brigham City, UT 84302 Morton Thiokol, Inc. Wasatch Operations Brigham City, UT 84302 Attn:

3

R. Yeakey
F. Larsen
Data Management
W. McLeod
M. Knight (+2 unbound)
R. Beard

J. Hilden R. Davis

L. C. Porter

# END

FILMED

3-86

DTIC