Name Vaishnavi kedar 367 c4 batch 202201040045

TITLE -

EDS Practical Assignment no. 4

AIM-

Read any real-life dataset. Store the data in Data Frames. Identify 10 grains for the given dataset.

Implement all 20 grains using Pandas methods

DATA SHEET

GrainName	State	City	Months	Year	Sales
Ragi	Maharashtra	Nagpur	JAN	2023	1000000
Bajra	Panjab	Amritsar	FEB	2023	1500000
Ragi	Maharashtra	Nagpur	JAN	2023	1000000
Bajra	Panjab	Amritsar	FEB	2023	1500000
Ragi	Maharashtra	Nagpur	JAN	2023	1000000
Bajra	Panjab	Amritsar	FEB	2023	1500000
Oats	Hariyana	Gurugram	MARCH	2023	2000000
Sattu	Gujarat	Surat	APRIL	2023	2500000
Sooji	Tamil Nadu	Madurai	MAY	2023	3000000
Brown rice	Telangana	Hyderabad	JUNE	2023	3500000
Wheat	West Bengol	Asansole	JULY	2023	4000000
Corn	UP	Kanpur	AUG	2023	4500000
Ragi	Maharashtra	Nagpur	JAN	2023	1000000
Bajra	Panjab	Amritsar	FEB	2023	1500000
Oats	Hariyana	Gurugram	MARCH	2023	2000000
Sattu	Gujarat	Surat	APRIL	2023	2500000
Sooji	Tamil Nadu	Madurai	MAY	2023	3000000
Brown rice	Telangana	Hyderabad	JUNE	2023	3500000
Wheat	West Bengol	Asansole	JULY	2023	4000000
Corn	UP	Kanpur	AUG	2023	4500000
Sooji	Tamil Nadu	Madurai	MAY	2023	3000000
Brown rice	Telangana	Hyderabad	JUNE	2023	3500000
Wheat	West Bengol	Asansole	JULY	2023	4000000
Corn	UP	Kanpur	AUG	2023	4500000
Ragi	Maharashtra	Nagpur	JAN	2023	1000000
Brown rice	Telangana	Hyderabad	JUNE	2023	3500000
Wheat	West Bengol	Asansole	JULY	2023	4000000

```
↑ ↓ ⊖ 目 ‡ 見 🔋 🗄
import pandas as pd
   df=pd.read_csv('/content/grainsales.csv')
    best month = df.groupby("Months")["Sales"].sum().idxmax()
    earnings = df.groupby("Months")["Sales"].sum().max()
    print("Best month for sales:", best_month)
    print("Earnings for the best month:", earnings)
    Best month for sales: JULY
    Earnings for the best month: 16000000
#2.Which product sold the most? Why do you think it did?
    best_selling_product = df.groupby("GrainName")["Sales"].sum().idxmax()
    print("Best-selling product:", best_selling_product)
Best-selling product: Wheat
[ ] # 3. Which city sold the most products?
     best selling city = df.groupby("City")["Sales"].sum().idxmax()
     print("City with the most sales:", best_selling_city)
     City with the most sales: Asansole
```

```
# 4. What products are most often sold together?
    product_combinations = df.groupby("Months")["GrainName"].apply(lambda x: list(set(x)))
    print("Products most often sold together:")
    print(product_combinations)
Products most often sold together:
    APRIL
                [Sattu ]
    AUG
                 [Corn]
[Bajra]
    FEB
    JAN
                 [Ragi]
[Wheat]
    JULY
           [Brown rice ]
    JUNE
    MARCH
                  [Oats]
                  [Sooji]
    MAY
    Name: GrainName, dtype: object
     earnings_maharashtra = df.loc[df["State"] == "Maharashtra", "Sales"].sum()
     print("Total earnings in Maharashtra:", earnings_maharashtra)
     Total earnings in Maharashtra: 5000000
    best_supplier_wheat = df.loc[df["GrainName"] == "Wheat", "State"].value_counts().idxmax()
    print("Best supplier of wheat:", best_supplier_wheat)
    Best supplier of wheat: West Bengol
```

```
[ ] # 7. Specify the sales for each type of product
    product_sales = df.groupby("GrainName")["Sales"].sum()
    print("Sales for each type of product:")
    print(product_sales)
    Sales for each type of product:
    GrainName
                   6000000
    Bajra
    Brown rice 14000000
Corn 13500000
    Corn
    0ats
                  4000000
                  5000000
    Ragi
    Sattu
                  5000000
9000000
    Sooji
           16000000
    Wheat
    Name: Sales, dtype: int64
```

```
[] # 8. Which was the best sales month for West Bengal?

best_sales_month_wb = df.loc[df["State"] == "West Bengol"].groupby("Months")["Sales"].sum().idxmax()

print("Best sales month for West Bengal:", best_sales_month_wb)

Best sales month for West Bengal: JULY
```

```
[ ] #9. Which state had the highest total sales?
    state_highest_sales = df.groupby("State")["Sales"].sum().idxmax()
    print("State with the highest total sales:", state_highest_sales)

State with the highest total sales: West Bengol
```

```
[ ] #10. What was the average sales value per month?
    average_sales_per_month = df.groupby("Months")["Sales"].mean()
    print("Average sales value per month:")
    print(average_sales_per_month)
    Average sales value per month:
    Months
    APRIL
             2500000.0
    AUG
           4500000.0
    FEB
           1500000.0
    JAN
           1000000.0
    JULY
           4000000.0
    JUNE 3500000.0
    MARCH 2000000.0
            3000000.0
    Name: Sales, dtype: float64
```

```
[22] #11. Which city had the lowest sales?
    city_lowest_sales = df.groupby("City")["Sales"].sum().idxmin()
    print("City with the lowest sales:", city_lowest_sales)

City with the lowest sales: Gurugram
```

```
[23] #12. Did any grain experience a decline in sales over the months?
     grain_sales_decline = df.groupby("GrainName")["Sales"].apply(lambda x: x.diff().lt(0).any())
     print("Grains that experienced a sales decline:")
     print(grain_sales_decline)
    Grains that experienced a sales decline:
    GrainName
                  False
    Bajra
    Brown rice False
    Corn
                  False
    0ats
    Ragi
                 False
    Sattu
    Sooji
                 False
    Wheat
                  False
    Name: Sales, dtype: bool
```

```
[24] #13. Which month had the lowest sales overall?
      month_lowest_sales = df.groupby("Months")["Sales"].sum().idxmin()
      print("Month with the lowest sales overall:", month_lowest_sales)
      Month with the lowest sales overall: MARCH
[15] #14. How many different types of grains were sold?
       grain types = df["GrainName"].nunique()
       print("Number of different grain types sold:", grain_types)
       Number of different grain types sold: 8
[16] #15. What was the total sales for all grains in the month of April 2023?
    total_sales_april_2023 = df.loc[(df["Months"] == "APRIL") & (df["Year"] == 2023), "Sales"].sum()
    print("Total sales for all grains in April 2023:", total_sales_april_2023)
    Total sales for all grains in April 2023: 5000000
[17] #16. Which city had the highest sales for Ragi?
    city_highest_sales_ragi = df.loc[df["GrainName"] == "Ragi"].groupby("City")["Sales"].sum().idxmax()
    print("City with the highest sales for Ragi:", city_highest_sales_ragi)
    City with the highest sales for Ragi: Nagpur
[18] #17. Did any grain show a seasonal sales pattern?
    grain_seasonal_sales = df.groupby("GrainName")["Sales"].apply(lambda x: x.diff().abs().sum() > 0)
    print("Grains that show a seasonal sales pattern:")
    print(grain seasonal sales)
    Grains that show a seasonal sales pattern:
    GrainName
    Bajra
                 False
                False
    Brown rice
                False
    Corn
                False
    0ats
    Ragi
                False
    Sattu
               False
    Sooji
                False
    Wheat
                False
    Name: Sales, dtype: bool
```

```
[19] #18. Which month had the highest sales for Bajra?
    month_highest_sales_bajra = df.loc[df["GrainName"] == "Bajra"].groupby("Months")["Sales"].sum().idxmax()
    print("Month with the highest sales for Bajra:", month_highest_sales_bajra)

Month with the highest sales for Bajra: FEB
```

```
[20] #19 What is the total sales for all grains combined?
    total_sales_all_grains = df["Sales"].sum()
    print("Total sales for all grains combined:", total_sales_all_grains)

Total sales for all grains combined: 72500000
```

```
[21] #20. Which state had the highest sales for Sooji?
    state_highest_sales_sooji = df.loc[df["GrainName"] == "Sooji"].groupby("State")["Sales"].sum().idxmax()
    print("State with the highest sales for Sooji:", state_highest_sales_sooji)

State with the highest sales for Sooji: Tamil Nadu
```