ITM426, Final Exam, 2022 Fall

Solution and Grading

 $\bullet\,$ ITM 426 Engineering Mathematics

• Dec 16, 2022
• Duration: 90 minutes
• Weights: 30%
• 5 Questions
• Name:
• Student ID:
• E-mail:@seoultech.ac.kr
• Write legibly.
• Justification is necessary unless stated otherwise.

• Partial points are given only sparingly for the most problems because you are expected to 1) carry

out proper sanity check and 2) correct your mistake by doing so.

1	25
2	10
3	20
4	15
5	30
Total	100

#1. Mark True or False. No justification is necessary. [Each 5pt]

- For a square matrix A, vectors in Col A are orthogonal to vectors in Nul A.
- For a $m \times n$ matrix A, vectors in the null space of A are orthogonal to vectors in the row space of A.
- Cholesky decomposition is always possible for a covariance matrix.
- Users must be able to evaluate the value of derivative function in order to use the Newton's method.
- In general, fixed point algorithm exhibits the faster convergence compared to Newton's method.

Difficulty: Easy

Amount of work: 25% Suggested answer:

- True. See Theorem 6.1.3.
- True. Because a proper covariance matrix is always psd, which allows Cholesky decomposition as defined in the class note.
- True. See the lecture note.
- False. In general, Newton's method is faster.

#2. Suppose a vector \mathbf{y} is orthogonal to vectors \mathbf{u} and \mathbf{v} . Show that \mathbf{y} is orthogonal to the vector $\mathbf{u} + \mathbf{v}$. [10pt]

Difficulty: Easy

Amount of work: 10%

Suggested answer: $\mathbf{y} \cdot (\mathbf{u} + \mathbf{v}) = \mathbf{y} \cdot \mathbf{u} + \mathbf{y} \cdot \mathbf{v} = 0 + 0 = 0$. Thus, \mathbf{y} is orthogonal to $\mathbf{u} + \mathbf{v}$.

#3. What is the distance between the point \mathbf{y} and the subspace spanned by \mathbf{v}_1 and \mathbf{v}_2 ? [20pt]

$$\mathbf{y} = \begin{bmatrix} 3 \\ 1 \\ 5 \\ 1 \end{bmatrix}, \mathbf{v}_1 = \begin{bmatrix} 3 \\ 1 \\ -1 \\ 1 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} 1 \\ -1 \\ 1 \\ -1 \end{bmatrix}$$

Difficulty: Medium Amount of work: 20% Suggested answer:

Note that \mathbf{v}_1 and \mathbf{v}_2 are orthogonal. The Best Approximation Theorem says that $\hat{\mathbf{y}}$, which is the orthogonal projection of \mathbf{y} onto $W = \mathrm{Span}\{\mathbf{v}_1, \mathbf{v}_2\}$, is the closest point to \mathbf{y} in W. This vector is

$$\hat{\mathbf{y}} = \frac{\mathbf{y} \cdot \mathbf{v}_1}{\mathbf{v}_1 \cdot \mathbf{v}_1} \mathbf{v}_1 + \frac{\mathbf{y} \cdot \mathbf{v}_2}{\mathbf{v}_2 \cdot \mathbf{v}_2} \mathbf{v}_2 = \frac{1}{2} \mathbf{v}_1 + \frac{3}{2} \mathbf{v}_2 = \begin{bmatrix} 3 \\ -1 \\ 1 \\ -1 \end{bmatrix}.$$

Thus, the distance between the point and the plane is $\sqrt{2^2+4^2+2^2}=\sqrt{24}$.

#4. Find an orthogonal basis for the column space of the following matrix. [15pt]

$$\begin{bmatrix} 3 & -5 & 1 \\ 1 & 1 & 1 \\ -1 & 5 & -2 \\ 3 & -7 & 8 \end{bmatrix}$$

Difficulty: Medium Amount of work: 20% Suggested answer:

Call the columns of the matrix \mathbf{x}_1 , \mathbf{x}_2 , and \mathbf{x}_3 and perform the Gram-Schmidt process on these vectors:

$$\mathbf{v}_1 = \mathbf{x}_1$$

$$\mathbf{v}_2 = \mathbf{x}_2 - \frac{\mathbf{x}_2 \cdot \mathbf{v}_1}{\mathbf{v}_1 \cdot \mathbf{v}_1} \mathbf{v}_1 = \mathbf{x}_2 - (-2)\mathbf{v}_1 = \begin{bmatrix} 1\\3\\3\\-1 \end{bmatrix}$$

$$\mathbf{v}_3 = \mathbf{x}_3 - \frac{\mathbf{x}_3 \cdot \mathbf{v}_1}{\mathbf{v}_1 \cdot \mathbf{v}_1} \mathbf{v}_1 - \frac{\mathbf{x}_3 \cdot \mathbf{v}_2}{\mathbf{v}_2 \cdot \mathbf{v}_2} \mathbf{v}_2 = \mathbf{x}_3 - \frac{3}{2} \mathbf{v}_1 - \left(-\frac{1}{2}\right) \mathbf{v}_2 = \begin{bmatrix} -3\\1\\1\\3 \end{bmatrix}$$

Thus an orthogonal basis for W is $\left\{ \begin{bmatrix} 3\\1\\-1\\3 \end{bmatrix}, \begin{bmatrix} 1\\3\\3\\-1 \end{bmatrix}, \begin{bmatrix} -3\\1\\1\\3 \end{bmatrix} \right\}$.

#5. From an experiment, four observations of two variables x and y are collected: (2,3),(3,2),(5,1), and (6,0), answer the following.

- (a) Construct a sample covariance matrix.[15pt]
- (b) Find the equation $y = \beta_0 + \beta_1 x$ of the least-square line. [15pt]

Difficulty: Medium-Hard Amount of work: 30% Suggested answer:

(a)
$$X = \begin{bmatrix} 2 & 3 & 5 & 6 \\ 3 & 2 & 1 & 0 \end{bmatrix}$$
, $M = \begin{bmatrix} 4 & 4 & 4 & 4 \\ 1.5 & 1.5 & 1.5 & 1.5 \end{bmatrix}$, $S = (X - M)(X - M)^t/(4 - 1) = (1/3)\begin{bmatrix} 10 & -7 \\ -7 & 5 \end{bmatrix}$. (b)

The design matrix X and the observation vector \mathbf{y} are $X = \begin{bmatrix} 1 & 2 \\ 1 & 3 \\ 1 & 5 \\ 1 & 6 \end{bmatrix}$, $\mathbf{y} = \begin{bmatrix} 3 \\ 2 \\ 1 \\ 0 \end{bmatrix}$, and one can compute

$$X^{T}X = \begin{bmatrix} 4 & 16 \\ 16 & 74 \end{bmatrix}, X^{T}\mathbf{y} = \begin{bmatrix} 6 \\ 17 \end{bmatrix}, \hat{\boldsymbol{\beta}} = (X^{T}X)^{-1}X^{T}\mathbf{y} = \begin{bmatrix} 4.3 \\ -.7 \end{bmatrix}.$$
 The least-squares line $y = \beta_0 + \beta_1 x$ is thus $y = 4.3 - .7x$.

Write your name before detaching this page.	Your Name:
---	------------