

ĐỆ QUY

- 1. TS. Nguyễn Tấn Trần Minh Khang
- 2. ThS. Võ Duy Nguyên
- 3. Nguyễn Trần Phúc An Source code
- 4. Nguyễn Đức Anh Phúc Source code.

KHÁI NIỆM

Khái niệm đệ quy

– Khái niệm: Một hàm được gọi là đệ quy nếu bên trong thân của hàm có lời gọi hàm lại chính nó một cách tường minh hay tiềm ẩn.

- Hình vẽ

Hình ảnh của một hàm đệ quy tường minh

Khái niệm

 Khái niệm: Một hàm được gọi là đệ quy nếu bên trong thân của hàm có lời gọi hàm lại chính nó một cách tường minh hay tiềm

<mark>ẩn.</mark>

- Hình vẽ

Hình ảnh của một hàm đệ quy tiềm ẩn

Chúc các bạn học tốt Thân ái chào tạm biệt các bạn

ĐẠI HỌC QUỐC GIA TP.HCM TRƯỜNG ĐẠI HỌC CÔNG NGHỆ THÔNG TIN TP.HCM TOÀN DIỆN – SÁNG TẠO – PHỤNG SỰ

2. PHÂN LOẠI ĐỆ QUY

Phân loại đệ quy

Các hàm đệ quy được chia làm 4 loại như sau:

Loại 1: đệ quy tuyến tính.

Loại 2: đệ quy nhị phân.

Loại 3: Đệ quy hỗ tương.

Loại 4: đệ quy phi tuyến.

ĐỆ QUY TUYẾN TÍNH

Đệ quy tuyến tính

- Khái niệm: Một hàm được gọi là đệ quy tuyến tính khi bên trong thân hàm có duy nhất một lời gọi hàm lại chính nó một cách tường minh.
- Hình vẽ minh họa.

Đệ quy tuyến tính

Đệ quy tuyến tính

- Định nghĩa hàm đệ qui tính $S(n) = 1 + 2 + 3 + \cdots + n$. Bài làm
- Ta có:
 - + $S(n) = 1 + 2 + \dots + (n-1) + n$.
 - + $S(n-1) = 1 + 2 + \cdots + (n-1)$.
- Suy ra:
 - + S(n) = S(n-1) + n.
- Điều kiện dừng.
 - + S(0) = 0.
- Định nghĩa hàm.

Đệ quy tuyến tính

- Định nghĩa hàm đệ qui tính $S(n) = 1 + 2 + 3 + \cdots + n$.
- Công thức đệ quy: S(n) = S(n-1) + n.

Bài làm

```
1. int Tong(int n)
2. {
3.    if(n==0)
4.    return 0;
5.    int s = Tong(n-1);
6.    return (s+n);
7. }
```

```
- Ta có:

+ S(n) = 1 + 2 + \dots + (n-1) + n.

+ S(n-1) = 1 + 2 + \dots + (n-1).

- Suy ra:

+ S(n) = S(n-1) + n.

- Điều kiện dừng.

+ S(0) = 0.
```


Chúc các bạn học tốt Thân ái chào tạm biệt các bạn

ĐẠI HỌC QUỐC GIA TP.HCM TRƯỜNG ĐẠI HỌC CÔNG NGHỆ THÔNG TIN TP.HCM TOÀN DIỆN – SÁNG TẠO – PHỤNG SỰ

ĐỆ QUY NHỊ PHÂN

- Khái niệm: Một hàm được gọi là đệ quy nhị phân khi bên trong thân hàm của nó có đúng hai lời gọi hàm lại chính nó.
- Hình vẽ minh họa.

Đệ quy nhị phân

— Ví dụ: Định nghĩa hàm tính số hạng thứ n của dãy fibonaci.

$$\begin{cases} f(0) = 1 \\ f(1) = 1 \\ f(n) = f(n-1) + f(n-2) \text{ v\'oi } n \ge 2 \end{cases}$$

— Ví dụ: Định nghĩa hàm tính số hạng thứ n của dãy fibonaci.

$$\begin{cases} f(0) = 1 \\ f(1) = 1 \\ f(n) = f(n-1) + f(n-2) \text{ v\'oi } n \ge 2 \end{cases}$$

— Ví dụ: Định nghĩa hàm tính số hạng thứ n của dãy fibonaci.

$$\begin{cases} f(0) = 1 \\ f(1) = 1 \\ f(n) = f(n-1) + f(n-2) \text{ v\'oi } n \ge 2 \end{cases}$$

— Ví dụ: Định nghĩa hàm tính số hạng thứ n của dãy fibonaci.

$$\begin{cases} f(0) = 1 \\ f(1) = 1 \\ f(n) = f(n-1) + f(n-2) \text{ v\'oi } n \ge 2 \end{cases}$$

- Tính f(8)

n

— Ví dụ: Định nghĩa hàm tính số hạng thứ n của dãy fibonaci.

$$\begin{cases} f(0) = 1 \\ f(1) = 1 \\ f(n) = f(n-1) + f(n-2) \text{ v\'oi } n \ge 2 \end{cases}$$

```
    n
    0
    1
    2
    3
    4
    5
    6
    7
    8
```


— Ví dụ: Định nghĩa hàm tính số hạng thứ n của dãy fibonaci.

$$\begin{cases} f(0) = 1 \\ f(1) = 1 \\ f(n) = f(n-1) + f(n-2) \text{ v\'oi } n \ge 2 \end{cases}$$

— Ví dụ: Định nghĩa hàm tính số hạng thứ n của dãy fibonaci.

$$\begin{cases} f(0) = 1 \\ f(1) = 1 \\ f(n) = f(n-1) + f(n-2) \text{ v\'oi } n \ge 2 \end{cases}$$

— Ví dụ: Định nghĩa hàm tính số hạng thứ n của dãy fibonaci.

$$\begin{cases} f(0) = 1 \\ f(1) = 1 \\ f(n) = f(n-1) + f(n-2) \text{ v\'oi } n \ge 2 \end{cases}$$

— Ví dụ: Định nghĩa hàm tính số hạng thứ n của dãy fibonaci.

$$\begin{cases} f(0) = 1 \\ f(1) = 1 \\ f(n) = f(n-1) + f(n-2) \text{ v\'oi } n \ge 2 \end{cases}$$

— Ví dụ: Định nghĩa hàm tính số hạng thứ n của dãy fibonaci.

$$\begin{cases} f(0) = 1 \\ f(1) = 1 \\ f(n) = f(n-1) + f(n-2) \text{ v\'oi } n \ge 2 \end{cases}$$

— Ví dụ: Định nghĩa hàm tính số hạng thứ n của dãy fibonaci.

$$\begin{cases} f(0) = 1 \\ f(1) = 1 \\ f(n) = f(n-1) + f(n-2) \text{ v\'oi } n \ge 2 \end{cases}$$

— Ví dụ: Định nghĩa hàm tính số hạng thứ n của dãy fibonaci.

$$\begin{cases}
f(0) = 1 \\
f(1) = 1 \\
f(n) = f(n-1) + f(n-2) \text{ v\'oi } n \ge 2
\end{cases}$$

— Ví dụ: Định nghĩa hàm tính số hạng thứ n của dãy fibonaci.

$$\begin{cases} f(0) = 1 \\ f(1) = 1 \\ f(n) = f(n-1) + f(n-2) \text{ v\'oi } n \ge 2 \end{cases}$$

— Ví dụ: Định nghĩa hàm tính số hạng thứ n của dãy fibonaci.

$$\begin{cases}
f(0) = 1 \\
f(1) = 1 \\
f(n) = f(n-1) + f(n-2) \text{ v\'oi } n \ge 2
\end{cases}$$

— Ví dụ: Định nghĩa hàm tính số hạng thứ n của dãy fibonaci.

$$\begin{cases} f(0) = 1 \\ f(1) = 1 \\ f(n) = f(n-1) + f(n-2) \text{ v\'oi } n \ge 2 \end{cases}$$

n	0	1	2	3	4	5	6	7	8
f(n)	01	01	02	03	05	08	13	21	34

Ví dụ: Định nghĩa hàm tính số — Định nghĩa hàm.
 hạng thứ n của dãy 10. long fibo (int ribonaci.

```
\begin{cases} f(0) = 1\\ f(1) = 1\\ f(n) = f(n-1) + f(n-2) \text{ v\'oi } n \ge 2 \end{cases}
```

```
10. long fibo(int n)
 11.{
        if(n==0)
 12.
13.
            return 1;
 14.
        if(n==1)
15.
            return 1;
        long a = fibo(n-1);
 16.
        long b = fibo(n-2);
 17.
        return (a+b);
 18.
19.}
```


Chúc các bạn học tốt Thân ái chào tạm biệt các bạn

ĐẠI HỌC QUỐC GIA TP.HCM TRƯỜNG ĐẠI HỌC CÔNG NGHỆ THÔNG TIN TP.HCM TOÀN DIỆN – SÁNG TẠO – PHỤNG SỰ

ĐỆ QUY HỖ TƯƠNG

– Khái niệm: Hai hàm được gọi là đệ quy hỗ tương khi bên trong thân hàm thứ 1 có lời gọi hàm tới hàm thứ 2 và bên trong thân hàm thứ 2 cũng có lời gọi hàm tới hàm thứ 1.

Hình vẽ minh họa.
 Đệ quy hỗ tương

— Ví dụ: Định nghĩa hàm tính số hạng thứ n của 2 dãy số sau:

$$\begin{cases} x(0) = 1 \\ y(0) = 0 \\ x(n) = x(n-1) + y(n-1) \\ y(n) = 3x(n-1) + 2y(n-1) \end{cases}$$

- Ví dụ: Tính x(5), y(5).

— Ví dụ: Định nghĩa hàm tính số hạng thứ n của 2 dãy số sau:

$$\begin{cases} x(0) = 1 \\ y(0) = 0 \\ x(n) = x(n-1) + y(n-1) \\ y(n) = 3x(n-1) + 2y(n-1) \end{cases}$$

- Ví dụ: Tính x(5), y(5).

— Ví dụ: Định nghĩa hàm tính số hạng thứ n của 2 dãy số sau:

$$\begin{cases} x(0) = 1 \\ y(0) = 0 \\ x(n) = x(n-1) + y(n-1) \\ y(n) = 3x(n-1) + 2y(n-1) \end{cases}$$

- Ví dụ: Tính x(5), y(5).

— Ví dụ: Định nghĩa hàm tính số hạng thứ n của 2 dãy số sau:

$$\begin{cases} x(0) = 1 \\ y(0) = 0 \\ x(n) = x(n-1) + y(n-1) \\ y(n) = 3x(n-1) + 2y(n-1) \end{cases}$$

n	0	1	2	3	4	5

— Ví dụ: Định nghĩa hàm tính số hạng thứ n của 2 dãy số sau:

$$\begin{cases} x(0) = 1 \\ y(0) = 0 \\ x(n) = x(n-1) + y(n-1) \\ y(n) = 3x(n-1) + 2y(n-1) \end{cases}$$

n	0	1	2	3	4	5
x(n)						

— Ví dụ: Định nghĩa hàm tính số hạng thứ n của 2 dãy số sau:

$$\begin{cases} x(0) = 1 \\ y(0) = 0 \\ x(n) = x(n-1) + y(n-1) \\ y(n) = 3x(n-1) + 2y(n-1) \end{cases}$$

n	0	1	2	3	4	5
x(n)						
y(n)						

— Ví dụ: Định nghĩa hàm tính số hạng thứ n của 2 dãy số sau:

$$\begin{cases} x(0) = 1 \\ y(0) = 0 \\ x(n) = x(n-1) + y(n-1) \\ y(n) = 3x(n-1) + 2y(n-1) \end{cases}$$

n	0	1	2	3	4	5
x(n)	1					
y(n)						

— Ví dụ: Định nghĩa hàm tính số hạng thứ n của 2 dãy số sau:

$$\begin{cases} x(0) = 1 \\ y(0) = 0 \\ x(n) = x(n-1) + y(n-1) \\ y(n) = 3x(n-1) + 2y(n-1) \end{cases}$$

n	0	1	2	3	4	5
x(n)	1					
y(n)	0					

— Ví dụ: Định nghĩa hàm tính số hạng thứ n của 2 dãy số sau:

$$\begin{cases} x(0) = 1 \\ y(0) = 0 \\ x(n) = x(n-1) + y(n-1) \\ y(n) = 3x(n-1) + 2y(n-1) \end{cases}$$

n	0	1	2	3	4	5
x(n)	1	1				
y(n)	0					

— Ví dụ: Định nghĩa hàm tính số hạng thứ n của 2 dãy số sau:

$$\begin{cases} x(0) = 1 \\ y(0) = 0 \\ x(n) = x(n-1) + y(n-1) \\ y(n) = 3x(n-1) + 2y(n-1) \end{cases}$$

n	0	1	2	3	4	5
x(n)	1	1				
y(n)	0	3				

— Ví dụ: Định nghĩa hàm tính số hạng thứ n của 2 dãy số sau:

$$\begin{cases} x(0) = 1 \\ y(0) = 0 \\ x(n) = x(n-1) + y(n-1) \\ y(n) = 3x(n-1) + 2y(n-1) \end{cases}$$

n	0	1	2	3	4	5
x(n)	1	1	4			
y(n)	0	3				

— Ví dụ: Định nghĩa hàm tính số hạng thứ n của 2 dãy số sau:

$$\begin{cases} x(0) = 1 \\ y(0) = 0 \\ x(n) = x(n-1) + y(n-1) \\ y(n) = 3x(n-1) + 2y(n-1) \end{cases}$$

n	0	1	2	3	4	5
x(n)	1	1	4			
y(n)	0	3	9			

— Ví dụ: Định nghĩa hàm tính số hạng thứ n của 2 dãy số sau:

$$\begin{cases} x(0) = 1 \\ y(0) = 0 \\ x(n) = x(n-1) + y(n-1) \\ y(n) = 3x(n-1) + 2y(n-1) \end{cases}$$

n	0	1	2	3	4	5
x(n)	1	1	4	13		
y(n)	0	3	9			

— Ví dụ: Định nghĩa hàm tính số hạng thứ n của 2 dãy số sau:

$$\begin{cases} x(0) = 1 \\ y(0) = 0 \\ x(n) = x(n-1) + y(n-1) \\ y(n) = 3x(n-1) + 2y(n-1) \end{cases}$$

n	0	1	2	3	4	5
x(n)	1	1	4	13		
y(n)	0	3	9	30		

— Ví dụ: Định nghĩa hàm tính số hạng thứ n của 2 dãy số sau:

$$\begin{cases} x(0) = 1 \\ y(0) = 0 \\ x(n) = x(n-1) + y(n-1) \\ y(n) = 3x(n-1) + 2y(n-1) \end{cases}$$

n	0	1	2	3	4	5
x(n)	1	1	4	13	43	
y(n)	0	3	9	30		

— Ví dụ: Định nghĩa hàm tính số hạng thứ n của 2 dãy số sau:

$$\begin{cases} x(0) = 1 \\ y(0) = 0 \\ x(n) = x(n-1) + y(n-1) \\ y(n) = 3x(n-1) + 2y(n-1) \end{cases}$$

n	0	1	2	3	4	5
x(n)	1	1	4	13	43	
y(n)	0	3	9	30	99	

— Ví dụ: Định nghĩa hàm tính số hạng thứ n của 2 dãy số sau:

$$\begin{cases} x(0) = 1 \\ y(0) = 0 \\ x(n) = x(n-1) + y(n-1) \\ y(n) = 3x(n-1) + 2y(n-1) \end{cases}$$

n	0	1	2	3	4	5
x(n)	1	1	4	13	43	142
y(n)	0	3	9	30	99	

— Ví dụ: Định nghĩa hàm tính số hạng thứ n của 2 dãy số sau:

$$\begin{cases} x(0) = 1 \\ y(0) = 0 \\ x(n) = x(n-1) + y(n-1) \\ y(n) = 3x(n-1) + 2y(n-1) \end{cases}$$

n	0	1	2	3	4	5
x(n)	1	1	4	13	43	142
y(n)	0	3	9	30	99	327


```
    Định nghĩa hàm.

11. long Tinhxn(int n)
12.{
13.
      if(n==0)
         return 1;
14.
15.
      long a = Tinhxn(n-1);
      long b = Tinhyn(n-1);
16.
      return (a+b);
17.
18.}
```

```
– Định nghĩa hàm.

19. long Tinhyn(int n)
20.{
21.
      if(n==0)
         return 0;
22.
      long a = Tinhxn(n-1);
23.
      long b = Tinhyn(n-1);
24.
      return (3*a+2*b);
25.
26.}
```


Chúc các bạn học tốt Thân ái chào tạm biệt các bạn

ĐẠI HỌC QUỐC GIA TP.HCM TRƯỜNG ĐẠI HỌC CÔNG NGHỆ THÔNG TIN TP.HCM TOÀN DIỆN – SÁNG TẠO – PHỤNG SỰ

ĐỆ QUY PHI TUYẾN

- Khái niệm: Một hàm được gọi là đệ quy phi tuyến khi bên trong thân của hàm, lời gọi hàm lại chính nó được đặt bên trong thân của một vòng lặp.
- Hình vẽ minh họa.

Đệ quy phi tuyến

 Ví dụ: Định nghĩa hàm tính số hạng thứ n của dãy sau.

$$\begin{cases} x_0 = 1 \\ x_n = n^2 x_0 + (n-1)^2 x_1 + \dots + 2^2 x_{n-2} + x_{n-1} \end{cases}$$

- Tính x_5 .

+
$$x_0 = 1$$
.
+ $x_1 = 1^2 x_0 = 1(1) = 1$.
+ $x_2 = 2^2 x_0 + 1^2 x_1 = 4(1) + 1(1) = 5$.

- Tính x_5 .

+
$$x_3 = 3^2x_0 + 2^2x_1 + 1^2x_2$$

+ $x_3 = 9(1) + 4(1) + 1(5) = 18$.

+
$$x_4 = 4^2x_0 + 3^2x_1 + 2^2x_2 + 1^2x_3$$

+ $x_4 = 16(1) + 9(1) + 4(5) + 1(18) = 63$.

+
$$x_5 = 5^2x_0 + 4^2x_1 + 3^2x_2 + 2^2x_3 + 1^2x_4$$

+ $x_5 = 25(1)+16(1)+9(5)+4(18)+1(63)$.
+ $x_5 = 25 + 16 + 45 + 72 + 63$.
+ $x_5 = 221$.

 Ví dụ: Định nghĩa hàm tính số hạng thứ n của dãy sau.

$$\begin{cases} x_0 = 1 \\ x_n = n^2 x_0 + (n-1)^2 x_1 + \dots + 2^2 x_{n-2} + x_{n-1} \end{cases}$$

— Cách 01: Tính x_n theo biểu thức trên đi từ trái qua phải ta lần lượt phải tính x_0 , x_1 , x_2 ,..., x_{n-1} .

```
10. long Tinhxn(int n)
11.{
       if(n==0)
12.
13.
          return 1;
       long s = 0;
14.
15.
        for(int i=0; i<=n-1; i++)
16.
17.
          long xi = Tinhxn(i);
          s = s + (n-i)*(n-i)*xi;
18.
19.
20.
       return s;
21.}
```


 Ví dụ: Định nghĩa hàm tính số hạng thứ n của dãy sau.

$$\begin{cases} x_0 = 1 \\ x_n = n^2 x_0 + (n-1)^2 x_1 + \dots + 2^2 x_{n-2} + x_{n-1} \end{cases}$$

— Cách 02: Tính x_n theo biểu thức trên đi từ trái qua phải ta lần lượt có các hệ số lần lượt là n²,(n-1)²,...,2²,1².

```
10. long Tinhxn(int n)
11.{
       if(n==0)
12.
13.
           return 1;
       long s = 0;
14.
        for(int i=n; i>=1; i--)
15.
16.
17.
           long xi = Tinhxn(n-i);
          s = s + i*i*xi;
18.
19.
20.
       return s;
21.}
```


Chúc các bạn học tốt Thân ái chào tạm biệt các bạn

ĐẠI HỌC QUỐC GIA TP.HCM TRƯỜNG ĐẠI HỌC CÔNG NGHỆ THÔNG TIN TP.HCM TOÀN DIỆN – SÁNG TẠO – PHỤNG SỰ