最优行之か近別。

の min R(α_i [[x]) = R(α_i [[x]) 米取 α_i 行立か (λ_{11} - λ_{12}) P(α_i [[x]) 米取 α_i 行立か (λ_{11} - λ_{12}) P(α_i [x]) + λ_{12} (λ_{21} - λ_{22}) P(α_i [x]) + (λ_{22} - λ_{12}) J P(α_i [x]) $\leq \lambda_{22}$ - λ_{12} 分情况 i t ϵ - ϵ -

问题:在实际的观测A中,时常出现A无法从物理意义上 指明或从数据统计上指数与与行动a,、a,的养系从 观测中发现PCAICXI) E [d.B] E [0,1] 时无法判定采取 何种行动最优 设 L (PCAICXI)) = mon (R (a,1[x]), R, (0,1[x]))

根军粗彩音集。在许多情况下、知晓与前状况并不明朝采取 专门的手段应付能够大幅降纸粮失、例如患病的诊性个(进一岁的检查授失小于下判断患病与正常的指束) 设存在的作(a, a, a, 3与根系名 已和 PCA [x]) 相交的风险为

> R(ailx)= Xit PCA(CX)) + Xiz PCAC(CX)) =(\(\cappa_1 - \(\cappa_{i2}\) P(A|(\tau) +\(\cappa_{i2}\) = (\(\lambda_i^2 - \lambda_{i1}\) \pc Ac \([x]\) +\(\lambda_{i1}\)

取代行文力注则:[预设:当工EA日扩采取Q,行动,当R工《A时 行动、与无法确定×与A之间的关系时采取Qxx 比较明确为是(\(\lambda_{11} - \lambda_{2}) \(\lambda_{21} - \lambda_{22}\) \(\lambda_{11} - \lambda_{12}\) \(\lambda_{21} - \lambda_{22}\)

 $\lambda_{32} \leq \lambda_{22} \leq \lambda_{12} \leq \lambda_{31} \approx \lambda_{31} \approx \lambda_{21} \approx \lambda_{31}$

O 采取 α, 行 云力, 当 R(α, |x)≤ R(α, |x) Λ R(α, |x)≤ R(α, |x)

也里で有[(入1,一入1,2) - (入21一入22)] P(A|[オ]) ミ入22一入12

[(λη-λ21) + (λ22-λ12)] P(Α [[x]) ≤λ22-λ12

 $[(\lambda_{31}-\lambda_{01})+(\lambda_{12}-\lambda_{32})]P(A|[x]) \leq \lambda_{12}-\lambda_{32}$

 $P(A|[x]) = \frac{\lambda_{12} - \lambda_{32}}{[(\lambda_{31} - \lambda_{11}) + (\lambda_{12} - \lambda_{32})]} = \checkmark$

②采取az行àb,与R(az|x) < R(a,|x); R(az|x) ≤ R(az|x)

 $\frac{\left[(\lambda_{21} - \lambda_{31}) + (\lambda_{12} - \lambda_{22})\right] P(A|x) \leq \lambda_{12} - \lambda_{22}}{P(A|x) \leq \frac{\lambda_{12} - \lambda_{22}}{\left[(\lambda_{21} - \lambda_{31}) + (\lambda_{32} - \lambda_{22})\right] P(A|x) \leq \lambda_{32} - \lambda_{22}}{\left[(\lambda_{21} - \lambda_{31}) + (\lambda_{32} - \lambda_{22})\right] P(A|x) \leq \lambda_{32} - \lambda_{22}}$

[(\lambda_31 - \lambda_21) + (\lambda_22 - \lambda_{32})] P(A|I) > \lambda_{22} - \lambda_{32}

```
\frac{P(A|[x])}{P(A|[x])} = \frac{\lambda_{22} - \lambda_{21}}{P(\lambda_{21} - \lambda_{21}) + P(\lambda_{21} - \lambda_{22})} = B
③采取a, 3f àb, 与Rca31x) SR(a,1x); R(a31x) SR(a21x)
                           [(\lambda_{11} - \lambda_{11}) + (\lambda_{12} - \lambda_{12})] P(A|I) \le \lambda_{12} - \lambda_{22}
                                        \frac{\Pr(A|[x]) \leq \frac{\lambda_{12} - \lambda_{32}}{\lceil (\lambda_{21} - \lambda_{10}) + (\lambda_{12} - \lambda_{22}) \rceil} =
                        [(\lambda_{31} - \lambda_{21}) + (\lambda_{22} - \lambda_{32})] P(A|X) \leq \lambda_{22} - \lambda_{32}
                                      P(A|[x]) \leq \frac{\lambda_{22} - \lambda_{32}}{[(\lambda_{31} - \lambda_{21}) + (\lambda_{32} - \lambda_{32})]} = \gamma

\frac{2 \pm 0 \quad (\lambda_{11} - \lambda_{12}) \leq (\lambda_{21} - \lambda_{22})}{\pi + \frac{\lambda_{12} - \lambda_{22}}{(\lambda_{21} - \lambda_{11}) + (\lambda_{12} - \lambda_{22})}} + \frac{\lambda_{12} - \lambda_{32}}{(\lambda_{31} - \lambda_{11}) + (\lambda_{12} - \lambda_{32})} + \frac{\lambda_{12} - \lambda_{32}}{(\lambda_{31} - \lambda_{11}) + (\lambda_{12} - \lambda_{32})}

                \beta = \frac{\lambda_{22} - \lambda_{31}}{\left[(\lambda_{31} - \lambda_{21}) + (\lambda_{22} - \lambda_{32})\right]}
    \beta - \alpha = (\lambda_{22} - \lambda_{32}) \left[ (\lambda_{21} - \lambda_{11} + (\lambda_{12} - \lambda_{22}) \right]
                  + (\(\lambda_{12} - \lambda_{12}\) [(\(\lambda_{31} - \lambda_{21}\) + (\(\lambda_{22} - \lambda_{32}\)]
                = \22[(\3[-\])+(\\12-\32)]
                    + 132 [( /1 - /2, ) + ( /22 - /12)]
                    + > 12 [ ( \( \lambda_{21} - \lambda_{21} \) + ( \( \lambda_{22} - \lambda_{22} \) ]
               = \lambda_{22} (\lambda_{31} - \lambda_{11}) + \lambda_{22} (\lambda_{12} - \lambda_{32}) - \lambda_{32} (\lambda_{21} - \lambda_{11}) - \lambda_{32} (\lambda_{12} - \lambda_{22})
                     -\lambda_{12}(\lambda_{31}-\lambda_{21})-\lambda_{12}(\lambda_{22}-\lambda_{32})
               = 122/31 - 122/11 + 22/12 1,2/32 - 1,2/21 + 132/11 - 1,2/12 + 1,32/22
                    - A12/31 + A2/21 - A12/22 + A12/32
              = \(\lambda_1 (\lambda_{32} - \lambda_{22}) + (\lambda_{11} - \lambda_{21})\lambda_{21} + \lambda_{31} (\lambda_{22} - \lambda_{12})
             = \lambda_{11}(\lambda_{32} - \lambda_{21}) + (\lambda_{12} - \lambda_{22} + \lambda_{21} - \lambda_{32}) \lambda_{21} + \lambda_{31}(\lambda_{12} - \lambda_{12})
              = (\lambda_{21} - \lambda_{11}) (\lambda_{22} - \lambda_{32}) + (\lambda_{21} - \lambda_{31}) (\lambda_{12} - \lambda_{12})
               = (入21-入11) (入22-入32) - (入31-入21) (入12-入22) 用几何面积积
```

 $\lambda_{i} + \lambda_{j}$

$\frac{\lambda_{21}}{\lambda_{22}} > \frac{\frac{\lambda_{12} + \lambda_{12}}{\lambda_{12}}}{\lambda_{12}}$	$\lambda_{21} > \frac{1}{2}$	
	λ_{22} 7 $\frac{\lambda_{12} + \lambda_{32}}{\lambda_{12}}$	