Logic, Sequence & Induction (L)

	Chapter	Lecture	Assignment		
Propositional logic	2	2			
Predicate logic	3	3	4		
Sequence	5	5	l		
Induction	5	6, 7			

10. (12 pts) Consider the following compound proposition:

$$(q \land p) \lor ((\sim q) \to (p \lor q))$$

- (a) Construct the truth table of the above compound proposition *including all subex*pressions.
- (b) Is this compound proposition a tautology, a contradiction, or neither a tautology nor a contradiction?

11. (12 pts) Consider the following compound proposition:

$$(q \land p) \land (q \rightarrow \sim (p \lor q))$$

- (a) Construct the truth table of the above compound proposition *including all subex*pressions.
- (b) Is this compound proposition a tautology, a contradiction, or neither a tautology nor a contradiction?

10. (12 pts) Consider the following compound proposition:

$$(q \land p) \lor ((\sim q) \to (p \lor q))$$

(a) Construct the truth table of the above compound proposition including all subexpressions.

Solution:

p	q	$q \wedge p$	$p \lor q$	$\sim q$	$\sim q \to (p \lor q)$	$ (q \land p) \lor (\sim q \to (p \lor q)) $
\mathbf{T}		\mathbf{T}	\mathbf{T}	\mathbf{F}	\mathbf{T}	\mathbf{T}
$ \mathbf{T} $	\mathbf{F}	\mathbf{F}	\mathbf{T}	\mathbf{T}	$ $	\mathbf{T}
$ \mathbf{F} $	$ \mathbf{T} $	F	\mathbf{T}	\mathbf{F}	$ $	\mathbf{T}
\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{T}	\mathbf{F}	\mathbf{F}

(b) Is this compound proposition a tautology, a contradiction, or neither a tautology nor a contradiction?

Solution: Because the compound proposition is false for some values of the propositional variables and true for others, it is neither a tautology nor contradiction.

11. (12 pts) Consider the following compound proposition:

$$(q \land p) \land (q \rightarrow \sim (p \lor q))$$

(a) Construct the truth table of the above compound proposition *including all subex-pressions*.

Solution:

p	q	$q \wedge p$	$p \lor q$	$\sim (p \lor q)$	$q \to \sim (p \lor q)$	$(q \land p) \land (q \to \sim (p \lor q))$
\mathbf{T}	$ \mathbf{T} $	\mathbf{T}	\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{F}
$ \mathbf{T} $	$ \mathbf{F} $	\mathbf{F}	\mathbf{T}	\mathbf{F}	\mathbf{T}	\mathbf{F}
$ \mathbf{F} $	$ \mathbf{T} $	\mathbf{F}	\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{F}
\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{F}	T	T	\mathbf{F}

(b) Is this compound proposition a tautology, a contradiction, or neither a tautology nor a contradiction?

Solution: Because the compound proposition is false for all values of the propositional variables, it is a contradiction.

1. (12 pts) Show that $\sim (q \to p) \leftrightarrow (\sim p \land q)$ is a tautology by constructing a truth table 1. (12 pts) Show that $\sim (q \to p) \leftrightarrow (\sim p \land q)$ is a tautology by constructing a truth table for all subexpressions.

Solution:

p	q	$\sim p$	$q \rightarrow p$	$\sim p \wedge q$	$\sim (q \to p)$	$ \sim (q \to p) \leftrightarrow (\sim p \land q) $
\mathbf{T}	$ \mathbf{T} $	\mathbf{F}	\mathbf{T}	\mathbf{F}	\mathbf{F}	T
$ \mathbf{T} $	$ \mathbf{F} $	\mathbf{F}	\mathbf{T}	\mathbf{F}	\mathbf{F}	T
\mathbf{F}	$ \mathbf{T} $	\mathbf{T}	\mathbf{F}	\mathbf{T}	\mathbf{T}	\mathbf{T}
\mathbf{F}	\mathbf{F}	\mathbf{T}	\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{T}

11. (12 pts) Show that $(q \land p) \land (p \rightarrow \sim (p \lor q))$ is a contradiction by constructing a truth 11. (12 pts) Show that $(q \land p) \land (p \rightarrow \sim (p \lor q))$ is a contradiction by constructing a truth table for all subexpressions.

Solution:

•							
	p	q	$q \wedge p$	$p \lor q$	$\sim (p \lor q)$	$p \to \sim (p \lor q)$	$(q \land p) \land (p \to \sim (p \lor q))$
	\mathbf{T}	\mathbf{T}	T	\mathbf{T}	F	F	F
	\mathbf{T}	\mathbf{F}	F	\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{F}
	F	\mathbf{T}	F	\mathbf{T}	\mathbf{F}	\mathbf{T}	\mathbf{F}
	\mathbf{F}	\mathbf{F}	F	F	\mathbf{T}	\mathbf{T}	${f F}$
	p	q	$q \wedge p$	$p \lor q$	$\sim (p \lor q)$	$p \to \sim (p \lor q)$	$(q \land p) \land (p \to \sim (p \lor q))$
	\mathbf{T}	\mathbf{T}	T	\mathbf{T}	F	F	F
	\mathbf{F}	$ \mathbf{T} $	F	\mathbf{T}	\mathbf{F}	\mathbf{T}	\mathbf{F}
	\mathbf{T}	\mathbf{F}	F	\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{F}
	\mathbf{F}	\mathbf{F}	F	F	\mathbf{T}	\mathbf{T}	\mathbf{F}

11. (4 pts) Show that $\neg((q \to p) \to (p \lor \neg q))$ is a contradiction by constructing a truth 11. Show that $\neg((q \to p) \to (p \lor \neg q))$ is a contradiction by constructing a truth table for all sub expressions.

Solution:

Since $\neg((q \to p) \to (p \lor \neg q))$ always is false for all true values of p og q the proposition is a contradiction.

lence:

$$(p \to q) \land p \equiv q \land p$$

In each step, indicate (by number) which equivalence from page 11 you used.

11. (12 pts) Using the logical equivalences on page 11, prove the following logical equivalence:

$$(p \to q) \land p \equiv q \land p$$

In each step, indicate (by number) which equivalence from page 10 you used. Solution:

$$(p \to q) \land p$$

$$\equiv (\sim p \lor q) \land p \tag{12}$$

$$\equiv p \land (\sim p \lor q) \tag{1}$$

$$\equiv (p \land \sim p) \lor (p \land q) \tag{3}$$

$$\equiv \mathbf{c} \vee (p \wedge q) \tag{5}$$

$$\equiv (p \land q) \lor \mathbf{c} \tag{1}$$

$$\equiv p \wedge q$$
 (4)

$$\equiv q \wedge p$$
 (1)

lence:

$$(q \lor p) \to p \equiv p \lor \sim q$$

In each step, indicate (by number) which equivalence from page 9 you have used.

10. (12 pts) Using the logical equivalences on page 9, prove the following logical equivalence:

$$(q \lor p) \to p \equiv p \lor \sim q$$

In each step, indicate (by number) which equivalence from page 8 you have used. Solution:

$$(q \lor p) \to p$$

$$\equiv \sim (q \vee p) \vee p \tag{12}$$

$$\equiv (\sim q \land \sim p) \lor p \tag{9}$$

$$\equiv p \lor (\sim q \land \sim p) \tag{1}$$

$$\equiv (p \lor \sim q) \land (p \lor \sim p) \tag{3}$$

$$\equiv (p \lor \sim q) \land \mathbf{t} \tag{5}$$

$$\equiv p \lor \sim q$$
 (4)

11. (12 pts) Using the logical equivalences on page 10, prove the following logical equivalence:

$$p \to (q \to r) \equiv (q \land p) \to r$$

In each step, indicate (by number) which equivalence from page 10 you used (only use one per step).

lence:

$$p \to (q \to r) \equiv (q \land p) \to r$$

In each step, indicate (by number) which equivalence from page 10 you used (only use one per step).

$$p \to (q \to r)$$

$$\equiv p \to (\sim q \lor r) \tag{12}$$

$$\equiv \sim p \lor (\sim q \lor r) \tag{12}$$

$$\equiv (\sim p \vee \sim q) \vee r \tag{2}$$

$$\equiv \sim (p \land q) \lor r \tag{9}$$

$$\equiv (p \land q) \to r \tag{12}$$

$$\equiv (q \land p) \to r \tag{1}$$

11.	$(12\mathrm{pts})$	Using	the	logical	equivalences	on	page	10,	prove	the	following	logical	equiva
	lence:												

$$(p \land \sim q) \to q \equiv p \to q$$

In each step, indicate (by number) which equivalence from page 10 you used.

6. (6 pts) One of the compound propositions below is logically equivalent to the compound proposition $\sim q \wedge p$. Which one?

 $\square (q \wedge p) \wedge \sim q$

 $q \lor \sim (\sim p \lor q)$

 $\square \sim (\sim q \vee \sim p).$

6. (6 pts) One of the compound propositions below is logically equivalent to the compound proposition $\sim p \vee q$. Which one?

 $\square (q \lor p) \to q$

 $\square (q \wedge p) \wedge \sim q$

 $\square \ (\sim p \lor q) \to q$

11. (12 pts) Using the logical equivalences on page 8, prove the following logical equivalence:

$$(p \wedge {\sim} q) \to q \equiv p \to q$$

In each step, indicate (by number) which equivalence from page 8 you used. Solution:

$$(p \land \sim q) \to q$$

$$\equiv \sim (p \land \sim q) \lor q$$
(12)

$$\equiv (\sim p \lor \sim (\sim q)) \lor q \tag{9}$$

$$\equiv (\sim p \lor q) \lor q \tag{6}$$

$$\equiv \sim p \lor (q \lor q) \tag{2}$$

$$\equiv p \to (q \lor q) \tag{12}$$

$$\equiv p \to q \tag{7}$$

6. (6 pts) One of the compound propositions below is logically equivalent to the compound proposition $\sim q \wedge p$. Which one?

A $(q \land p) \land \sim q$

 $\boxed{\mathbf{B}} \ q \lor \sim (\sim p \lor q)$

 $\bigcirc (q \lor p) \land \sim q$

 $\square \sim (\sim q \vee \sim p).$

Solution:

$$(q \lor p) \land \sim q$$

$$\equiv (q \land \sim q) \lor (p \land \sim q)$$

$$\equiv \mathbf{f} \lor (p \land \sim q)$$

$$\equiv p \land \sim q$$

$$\equiv \sim q \land p$$

6. (6 pts) One of the compound propositions below is logically equivalent to the compound proposition $\sim p \vee q$. Which one?

$$(q \lor p) \to q$$

$$\mathbb{B}(q \wedge p) \wedge \sim q$$

$$\mathbb{C}$$
 $(\sim p \lor q) \to q$

$$\mathbb{D}(q \vee p) \wedge \sim q$$

Solution:

$$(q \lor p) \to q$$

$$\equiv \sim (q \lor p) \lor q$$

$$\equiv (\sim q \land \sim p) \lor q$$

$$\equiv (\sim q \lor q) \land (\sim p \lor q)$$

$$\equiv \mathbf{t} \land (\sim p \lor q)$$

$$\equiv \sim p \lor q$$

4. (6 pts) Let the sequence a_1, a_2, a_3, \ldots be recursively defined by

$$a_k = a_{k-1} + k \quad \text{for all } k > 1$$

$$a_1 = 1$$

Which of the following equations is **true** for all n > 0?

- $\Box a_n = \frac{n(n-1)}{2}$
- $\Box a_n = \frac{n(n+1)}{2}$
- $\square a_n = n!$
- $a_n = \sum_{i=1}^n n \cdot i$

4. (6 pts) Let the sequence a_1, a_2, a_3, \ldots be recursively defined by

$$a_k = a_{k-1} + k \quad \text{for all } k > 1$$

$$a_1 = 1$$

Which of the following equations is **true** for all n > 0?

$$\boxed{\mathbf{A}} \ a_n = \frac{n(n-1)}{2}$$

$$\mathbf{P} a_n = \frac{n(n+1)}{2}$$

$$\mathbb{C}$$
 $a_n = n!$

$$\boxed{\mathbb{D}} a_n = \sum_{i=1}^n n \cdot i$$

Solution: A cannot be true since $a_1=1$ but $\frac{1(1-1)}{2}=0$; C cannot be true since $a_2=1+2=3$ but $2!=2\cdot 1=2$; D cannot be true since $a_2=1+2=3$ but $\sum_{i=1}^2 2i=2\cdot 1+2\cdot 2=6$.

Moreover, we can check that B is true by showing that it satisfies the initial condition and the recurrence. First, consider the initial condition:

$$a_1 = \frac{1(1+1)}{2} = 1$$

Secondly, we show that the recurrence is satisfied. That is we must prove the following equation:

$$\frac{k(k+1)}{2} = \frac{(k-1)((k-1)+1)}{2} + k$$

To this end, we simplify both sides and show that they are equal. For the left-hand side, we have:

$$\frac{k(k+1)}{2} = \frac{k^2 + k}{2}$$

For the right-hand side, we have:

$$\frac{(k-1)((k-1)+1)}{2} + k = \frac{k^2 - k}{2} + \frac{2k}{2} = \frac{k^2 + k}{2}$$

6. (6 pts) Let the sequence a_1, a_2, a_3, \ldots be recursively defined by

$$a_k = a_{k-1} + k$$
 for all $k > 1$
 $a_1 = 1$

Which of the following equations is **true** for all n > 0?

- $\Box a_n = n(n+1)$
- $\Box a_n = \sum_{i=1}^n i$
- $\Box a_n = \prod_{i=1}^n i$
- **9.** (6 pts) Let the sequence a_0, a_1, a_2, \ldots be recursively defined by

$$a_k = a_{k-1} + 2^k \quad \text{for all } k > 0$$

$$a_0 = 1$$

Which of the following equations is **true** for all $n \geq 0$?

- $a_n = \sum_{i=0}^n 2^i$
- $\Box a_n = n!$
- $a_n = 2^n$
- $a_n = n \cdot (n+1) + 1$
- **4.** (6 pts) Let the sequence a_1, a_2, a_3, \ldots be recursively defined by

$$a_k = a_{k-1} + 2 \cdot k \quad \text{for all } k > 1$$

$$a_1 = 2$$

Which of the following equations is **true** for all n > 0?

- $\square a_n = n(n+1)$
- $\square a_n = \frac{n(n+1)}{2}$
- $\square \ a_n = 2 \cdot n!$
- $a_n = \prod_{i=1}^n i$

6. (6 pts) Let the sequence a_1, a_2, a_3, \ldots be recursively defined by

$$a_k = a_{k-1} + k$$
 for all $k > 1$
 $a_1 = 1$

Which of the following equations is **true** for all n > 0?

$$\underline{\mathbf{A}} \ a_n = n(n+1)$$

$$\mathbf{P} a_n = \sum_{i=1}^n i$$

$$C a_n = 2^{n-1}$$

Solution: A cannot be true since $a_1 = 1$ but 1(1+1) = 2; C cannot be true since $a_2 = 1+2=3$ but $2^{2-1}=2$; D cannot be true since $a_2 = 3$ but but $\prod_{i=1}^2 i = 1 \cdot 2 = 2$.

9. (6 pts) Let the sequence a_0, a_1, a_2, \ldots be recursively defined by

$$a_k = a_{k-1} + 2^k \quad \text{for all } k > 0$$

$$a_0 = 1$$

Which of the following equations is **true** for all $n \geq 0$?

$$\mathbf{A} a_n = \sum_{i=0}^n 2^i$$

- $\boxed{\mathbf{B}} a_n = n!$
- $\boxed{\mathbf{C}} a_n = 2^n$

Solution: B cannot be true since $a_1 = 3$, but 2! = 2; C cannot be true since $a_1 = 3$, but $2^1 = 2$; D cannot be true since $a_3 = 15$, but $3(3+1) + 1 = 3 \cdot 4 + 1 = 13$.

4. (6 pts) Let the sequence a_1, a_2, a_3, \ldots be recursively defined by

$$a_k = a_{k-1} + 2 \cdot k \quad \text{for all } k > 1$$

$$a_1 = 2$$

Which of the following equations is **true** for all n > 0?

$$a_n = n(n+1)$$

$$\mathbf{B} a_n = \frac{n(n+1)}{2}$$

$$\boxed{\mathbf{D}} a_n = \prod_{i=1}^n i$$

Solution: B cannot be true since $a_1 = 0$ but $\frac{1(1+1)}{2} = 1$; C cannot be true since $a_2 = 2+4=6$ but $2 \cdot 2! = 2 \cdot 2 \cdot 1 = 4$; D cannot be true since $a_1 = 2$ but $\prod_{i=1}^{1} i = 1$.

10. (12 pts) Let the sequence a_0, a_1, a_2, \ldots be given by the following recursive definition 10. (12 pts) Let the sequence a_0, a_1, a_2, \ldots be given by the following recursive definition

$$a_k = 2a_{k-1} + 1 \qquad \text{for all } k \ge 1$$

$$a_0 = 1$$

Prove by mathematical induction that $a_n = 2^{n+1} - 1$ for all $n \ge 0$.

$$a_k = 2a_{k-1} + 1 \qquad \text{for all } k \ge 1$$

$$a_0 = 1$$

Prove by mathematical induction that $a_n = 2^{n+1} - 1$ for all $n \ge 0$.

Solution: We want to prove the statement

$$a_n = 2^{n+1} - 1 (P(n))$$

for all $n \geq 0$.

Basis step: Let n = 0. We have

$$2^{0+1} - 1 = 2^1 - 1 = 2 - 1 = 1$$

and, by definition $a_0 = 1$. Hence, the basis step is verified.

Inductive step:

Suppose that $k \geq 0$ and that P(k) holds, that is,

$$a_k = 2^{k+1} - 1$$
 (inductive hypothesis)

We must show that P(k+1) holds, that is,

$$a_{k+1} = 2^{(k+1)+1} - 1 (P(k+1))$$

The following calculation shows that P(k+1) holds:

$$a_{k+1}=2a_k+1$$
 (by definition of the sequence)
 $=2(2^{k+1}-1)+1$ (inductive hypothesis)
 $=2\cdot 2^{k+1}-2+1$
 $=2\cdot 2^{k+1}-1$
 $=2^{(k+1)+1}-1$

12. (12 pts) Let the sequence a_0, a_1, a_2, \ldots be given by the following recursive definition 12. (12 pts) Let the sequence a_0, a_1, a_2, \ldots be given by the following recursive definition

$$a_k = 3a_{k-1} - 1 \qquad \text{for all } k \ge 1$$

$$a_0 = 1$$

Prove by mathematical induction that $a_n = \frac{3^n+1}{2}$ for all $n \geq 0$.

$$a_k = 3a_{k-1} - 1 \qquad \text{for all } k \ge 1$$

$$a_0 = 1$$

Prove by mathematical induction that $a_n = \frac{3^n+1}{2}$ for all $n \ge 0$. Solution: We want to prove the statement

$$a_n = \frac{3^n + 1}{2} \tag{P(n)}$$

for all $n \geq 0$.

Basis step: Let n = 0. We have

$$\frac{3^0+1}{2} = \frac{1+1}{2} = 1$$

and, by definition $a_0 = 1$. Hence, the basis step is verified.

Inductive step:

Suppose that $k \geq 0$ and that P(k) holds, that is,

$$a_k = \frac{3^k + 1}{2}$$
 (inductive hypothesis)

We must show that P(k+1) holds, that is,

$$a_{k+1} = \frac{3^{k+1} + 1}{2} \tag{P(k+1)}$$

The following calculation shows that P(k+1) holds:

$$a_{k+1}=3a_k-1$$
 (by definition of the sequence)
 $=3\frac{3^k+1}{2}-1$ (inductive hypothesis)
 $=\frac{3^{k+1}+3}{2}-\frac{2}{2}$
 $=\frac{3^{k+1}+1}{2}$

2. (12 pts) Let the sequence a_0, a_1, a_2, \ldots be given by the following recursive definition

$$a_k = a_{k-1} + 2k + 1$$
 for all $k \ge 1$
 $a_0 = 0$

Prove by mathematical induction that $a_n = n(n+2)$ for all $n \ge 0$.

$$a_k = a_{k-1} + 2k + 1 \qquad \text{for all } k \ge 1$$

$$a_0 = 0$$

Prove by mathematical induction that $a_n = n(n+2)$ for all $n \ge 0$.

Solution: We want to prove the statement

$$a_n = n(n+2) \tag{P(n)}$$

for all $n \geq 0$.

Basis step: Let n = 0. We have

$$0(0+2) = 0 \cdot 2 = 0$$

and, by definition $a_0 = 0$. Hence, the basis step is verified.

Inductive step:

Suppose that k > 0 and that P(k) holds, that is,

$$a_k = k(k+2)$$
 (inductive hypothesis)

We must show that P(k+1) holds, that is,

$$a_{k+1} = (k+1)(k+3)$$
 $(P(k+1))$

We will show that the left-hand side of P(k+1) equals the right-hand side. We start with the right-hand side:

$$(k+1)(k+3) = k^2 + 3k + 1k + 3 = k^2 + 4k + 3$$

For the left-hand side of P(k+1) we have:

$$a_{k+1} = a_k + 2(k+1) + 1$$
 (by definition of the sequence)
 $= k(k+2) + 2(k+1) + 1$ (inductive hypothesis)
 $= k^2 + 2k + 2k + 2 + 1$
 $= k^2 + 4k + 3$

That shows that both sides of P(k+1) are equal.

12. (12 pts) Let the sequence a_0, a_1, a_2, \ldots be given by the following recursive definition

$$a_k = 2a_{k-1} + 1 \qquad \text{for all } k \ge 1$$

$$a_0 = 1$$

Prove by mathematical induction that $a_n = 2^{n+1} - 1$ for all $n \ge 0$.

$$a_k = 2a_{k-1} + 1 \qquad \text{for all } k \ge 1$$

$$a_0 = 1$$

Prove by mathematical induction that $a_n = 2^{n+1} - 1$ for all $n \ge 0$. Solution: We want to prove the statement

$$a_n = 2^{n+1} - 1 (P(n))$$

for all $n \geq 0$.

Basis step: Let n = 0. We have

$$2^{0+1} - 1 = 2^1 - 1 = 2 - 1 = 1$$

and, by definition $a_0 = 1$. Hence, the basis step is verified.

Inductive step:

Suppose that $k \geq 0$ and that P(k) holds, that is,

$$a_k = 2^{k+1} - 1$$
 (inductive hypothesis)

We must show that P(k+1) holds, that is,

$$a_{k+1} = 2^{(k+1)+1} - 1$$
 $(P(k+1))$

The following calculation shows that P(k+1) holds:

$$a_{k+1}=2a_k+1$$
 (by definition of the sequence)
 $=2(2^{k+1}-1)+1$ (inductive hypothesis)
 $=2\cdot 2^{k+1}-2+1$
 $=2\cdot 2^{k+1}-1$
 $=2^{(k+1)+1}-1$

10. (12 pts) Prove using mathematical induction that

$$\sum_{i=0}^{n} (2i+1) = (n+1)^{2} \quad \text{for all } n \ge 0$$

10. (12 pts) Prove using mathematical induction that

$$\sum_{i=0}^{n} (2i+1) = (n+1)^{2} \quad \text{for all } n \ge 0$$

Solution: We want to prove the statement

$$\sum_{i=0}^{n} (2i+1) = (n+1)^{2} \qquad (P(n))$$

for all $n \geq 0$.

Basis step: Let n = 0. The left-hand side of P(0) simplifies to

$$\sum_{i=0}^{0} (2 \cdot i + 1) = 2 \cdot 0 + 1 = 1$$

and the right-hand side of P(0) simplifies to

$$(0+1)^2=1$$

Inductive step:

Suppose that $k \geq 0$ and that P(k) holds, that is,

$$\sum_{i=0}^{k} (2i+1) = (k+1)^2$$

We must show that P(k+1) holds, that is,

$$\sum_{i=0}^{k+1} (2i+1) = (k+2)^2$$

The following derivation proves this equation:

$$\sum_{i=0}^{k+1} (2i+1)$$

$$= \sum_{i=0}^{k} (2i+1) + (2(k+1)+1) \qquad \text{(write last summand separately)}$$

$$= (k+1)^2 + (2(k+1)+1) \qquad \text{(inductive hypothesis)}$$

$$= (k^2 + 2k + 1) + (2k + 3) \qquad \text{(binomial theorem \& distributivity)}$$

$$= k^2 + 4k + 4 \qquad \text{(associativity \& factorisation)}$$

$$= (k+2)^2 \qquad \text{(binomial theorem)}$$

11. (12 pts) Prove the following statement by mathematical induction:

$$\sum_{i=1}^{n} (10i - 8) = 5n^2 - 3n \quad \text{for all } n \ge 1$$

11. (12 pts) Prove the following statement by mathematical induction:

$$\sum_{i=1}^{n} (10i - 8) = 5n^2 - 3n \quad \text{for all } n \ge 1$$

Solution: We want to prove the statement

$$\sum_{i=1}^{n} (10i - 8) = 5n^2 - 3n$$

for all $n \geq 1$.

Basis step: Let n = 1. The left-hand side of P(1) simplifies to

$$\sum_{i=1}^{1} (10i - 8) = 10 \cdot 1 - 8 = 2$$

and the right-hand side of P(1) simplifies to

$$5 \cdot 1^2 - 3 \cdot 1 = 5 - 3 = 2$$

<u>Inductive step</u>:

Suppose that $k \geq 1$ and that P(k) holds, that is,

$$\sum_{i=1}^{k} (10i - 8) = 5k^2 - 3k$$

We must show that P(k+1) holds, that is,

$$\sum_{i=1}^{k+1} (10i - 8) = 5(k+1)^2 - 3(k+1)$$

The following derivation proves this equation:

$$\sum_{i=1}^{k+1} (10i-8)$$

$$= \sum_{i=1}^{k} (10i-8) + (10(k+1)-8) \qquad \text{(write last summand separately)}$$

$$= 5k^2 - 3k + 10(k+1) - 8 \qquad \text{(inductive hypothesis)}$$

$$= 5k^2 - 3k + 10k + 10 - 8 \qquad \text{(distributivity)}$$

$$= 5k^2 + 10k + 5 - 3k - 3 \qquad \text{(10 - 8 = 2 = 5 - 3)}$$

$$= 5(k^2 + 2k + 1) - 3k - 3 \qquad \text{(factorisation)}$$

$$= 5(k+1)^2 - 3(k+1) \qquad \text{(binomial theorem)}$$

- 10. (12 pts) Prove by mathematical induction that $n^3 + 5n$ is divisible by 3 for all integers 10. (12 pts) Prove by mathematical induction that $n^3 + 5n$ is divisible by 3 for all integers $n \geq 0$.
 - n > 0.

Solution: We want to prove the statement

$$3 \mid n^3 + 5n$$

for all n > 0.

Basis step: Let n = 0. We have

$$0(0^2+5)=0$$

and 3 divides 0 since $0 \cdot 3 = 0$.

Inductive step:

Suppose that $k \geq 0$ and that P(k) holds, that is,

$$3 \mid k^3 + 5k$$

We must show that P(k+1) holds, that is,

$$3 | (k+1)^3 + 5(k+1)$$

We have that

$$(k+1)^3 + 5(k+1) = k^3 + 3k^2 + 3k + 1 + 5k + 5$$
$$= k^3 + 5k + 3k^2 + 3k + 6$$
$$= k^3 + 5k + 3(k^2 + k + 3)$$

By induction hypothesis we have that 3 divides $k^3 + 5k$, and by definition 3 divides $3(k^2+k+3)$. Hence, by Theorem 1, 3 also divides $k^3+5k+3(k^2+k+3)$. By the above calculation the latter is equal to $(k+1)^3 + 5(k+1)$, which is therefore also divisible by 3.

- 11. (12 pts) Prove, using mathematical induction, that 3 divides $n^3 + 2n$ for all integers 11. (12 pts) Prove, using mathematical induction, that 3 divides $n^3 + 2n$ for all integers n > 0.
 - n > 0.

Solution: We want to prove the statement

$$3 \mid (n^3 + 2n) \tag{P(n)}$$

for all n > 0.

Basis step: Let n = 0. We have

$$0^3 + 2 \cdot 0 = 0 + 2 \cdot 0 = 0$$

and 3 divides 0. Hence, the basis step is verified.

Inductive step:

Suppose that $k \geq 0$ and that P(k) holds, that is,

$$3 \mid k^3 + 2k$$
 (inductive hypothesis)

We must show that P(k+1) holds, that is,

$$3 | (k+1)^3 + 2(k+1)$$

By the binomial theorem

$$(k+1)^3 = k^3 + 3k^2 + 3k + 1$$

Hence, we can rewrite the term $(k+1)^3 + 2(k+1)$ as follows:

$$(k+1)^3 + 2(k+1) = k^3 + 3k^2 + 3k + 1 + 2(k+1)$$
 (binomial theorem)
 $= k^3 + 3k^2 + 3k + 1 + 2k + 2$ (distributivity)
 $= k^3 + 2k + 3k^2 + 3k + 3$ (commutativity of +)
 $= (k^3 + 2k) + 3(k^2 + k + 1)$

According to the inductive hypothesis, 3 divides $k^3 + 2k$. Moreover, 3 also divides $3(k^2+k+1)$. Hence, 3 also divides the whole sum $(k^3+2k)+3(k^2+k+1)$. Here we use the fact that given $a \mid b$ and $a \mid c$, we can conclude $a \mid (b + c)$.

12. (4 pts) Prove, using induction, that

$$\sum_{i=1}^{n} \left(i - \frac{1}{2} \right) = \frac{n^2}{2}$$

for all integers n > 1.

12. Prove, using induction, that

$$\sum_{i=1}^{n} \left(i - \frac{1}{2} \right) = \frac{n^2}{2}$$

for all integers $n \geq 1$.

Solution: We want to verify the statement

$$P(n) := \sum_{i=1}^{n} \left(i - \frac{1}{2}\right) = \frac{n^2}{2}$$

where n is an integer of value at least 1. So our base case is when n = 1.

Base case: Let n = 1. We have

$$\sum_{i=1}^{1} \left(i - \frac{1}{2} \right) = \left(1 - \frac{1}{2} \right) = \frac{1}{2} = \frac{1^{2}}{2}.$$

Induction step: Suppose we know that P(n) is true for some integer n that is equal or greater than 1. We now show that this implies P(n+1) is true. We have that

$$\sum_{i=1}^{n+1} \left(i - \frac{1}{2} \right) = \left(\sum_{i=1}^{n} \left(i - \frac{1}{2} \right) \right) + \left((n+1) - \frac{1}{2} \right) = \frac{n^2}{2} + \frac{2n+1}{2} = \frac{(n+1)^2}{2}.$$