Übung "Grundbegriffe der Informatik"

19.10.2012 Willkommen zur ersten Übung Grundbegriffe der Informatik

Matthias Janke email: matthias.janke ät kit.edu

Überblick

Organisatorisches

Organisatorisches zu den Prüfunger

Relationen, Abbildunger

Hörsaalkapazität

- ▶ Bitte nutzen Sie die Hörsaalplätze möglichst lückenlos
- Wer im Audimax keinen Sitzplatz findet:
 - ▶ ... geht bitte in Hörsaal -101, -102 oder -120 im 1. UG in 50.34
 - ca. 5 Gehminuten
 - ▶ Sie finden A3-Plakate mit Hinweisen und Beschilderungen
- Wir starten die eigentliche Übung erst in ein paar Minuten (Sie haben also jetzt die Chance in einen der Hörsäle zu wechseln ohne Inhalte zu verpassen)

Was bedeutet das? - Live Stream

- ▶ Die Vorlesung/Übung wird live in alle oben genannten Hörsäle gestreamt
 - Folien,
 - ▶ Bild + Ton
 - Medien-Audio
 - Der Stream wird NICHT aufgezeichnet
- ► Fragen aus den entfernten Hörsälen sind mittels Chat möglich
- Dominic Telaar hier im Audimax moderiert den Chat und leitet Fragen weiter
- ▶ Der Service ist personal- und kostenintensiv ...
- ▶ Daher kann dieser Service nur solange aufrechterhalten werden, wie notwendig
- ▶ Weder realisierbar noch finanzierbar für alle Vorlesungen
- •
- ▶ Ihre Rückmeldung zu diesem Service ist sehr erwünscht

Hinweise für Erstsemester ohne Matrikelnummer

Sollten Sie noch keine MatrNr/Zugang zum Studi-Portal und KIT-Card haben:

Vergessen den Zulassungsbescheid zurückzusenden?

- ► Falls ja: Umgehend bei Frau Kurz melden:
 - ► Daniela.Kurz(ät)kit.edu
 - ▶ Sprechstunden: Do 15:00 16:00 Uhr, Raum: 059, Geb. 10.12
 - ► Tel.: +49 721 608-42075

Überblick

Organisatorisches

Organisatorisches zu den Prüfungen

Relationen, Abbildunger

Modul "Grundbegriffe der Informatik"

- es gibt zwei Modulteilprüfungen, jedenfalls
 - ▶ im Studiengang Bachelor Informatik
 - ▶ im Studiengang Bachelor Informationswirtschaft und, so war es zumindest im vergangenen Wintersemester, auch
 - im Studiengang Bachelor Physik

Welche (Modulteil-)Prüfungen

- zwei Prüfungen ...
 - den Übungsschein
 - ▶ die Klausur
- Prüfungen sind unabhängig voneinander
 - Der Übungsschein ist nicht Voraussetzung für Klausurteilnahme.
 - Für den Übungsschein gibt es keine Bonuspunkte o.ä. bei der Klausur.
- Kriterien
 - ▶ Übungsschein: mindestens 50% der erreichbaren Hausaufgabenpunkte
 - ► Klausur: mindestens 50%—x der erreichbaren Klausurpunkte
 - ▶ in den letzten Jahren: x > 0
 - den genauen Wert überlegen wir uns nach der Korrektur

Klausur

- zwei Termine:
 - ▶ 7. März 2013, 14 Uhr
 - ▶ irgendwann im September 2013
- dringend empfohlen: Klausur im März
- ▶ 120 Minuten Bearbeitungszeit
- ▶ für voraussichtlich 5–7 Aufgaben

Orientierungsprüfung

"Grundbegriffe der Informatik" ist für Bachelor Informatik und Bachelor Informationswirtschaft Orientierungsprüfung. Das heißt:

- spätestens nach dem 2. Semester muss man es versucht haben
- spätestens nach dem 3. Semester muss man es geschafft haben

Wichtige Termine

- Übungsschein:
 - Anmeldebeginn: demnächst
 - Anmeldeende: Ende März 2013
 - Abmeldeende: sinnlos (Sie können es immer wieder versuchen)
- Klausur "Grundbegriffe der Informatik"
 - Mittwoch, 7. März 2013, 14:00 16:00 Uhr
 - Anmeldebeginn: voraussichtlich 1. November 2012
 - ► Anmeldeende: 1. März 2013
 - ► Abmeldeende: 5. März 2013

Wer muss welche Prüfung(en) machen?

- Bachelor Informatik und Bachelor Informationswirtschaft:
 - für Orientierungsprüfung "Grundbegriffe der Informatik" beide Prüfungen, Übungsschein und Klausur notwendig
- ► Stand von vergangenem Wintersemester:
 - Physiker brauchen beide Prüfungen
 - Mathematiker nur die Klausur

Überblick

Organisatorisches

Organisatorisches zu den Prüfunger

Relationen, Abbildungen

- ▶ Eine Relation von A in B ist eine Teilmenge des kartesischen Produkts $A \times B$.
- ▶ Zur Erinnerung: Das kartesische Produkt $A \times B$ ist die Menge aller geordneten Paare (a, b) mit $a \in A$ und $b \in B$.
- ▶ Also: $A \times B = \{(a, b) \mid a \in A \text{ und } b \in B\}$

- ▶ Eine Relation von A in B ist eine Teilmenge des kartesischen Produkts $A \times B$.
- ▶ Zur Erinnerung: Das kartesische Produkt $A \times B$ ist die Menge aller geordneten Paare (a, b) mit $a \in A$ und $b \in B$.
- ▶ Also: $A \times B = \{(a, b) \mid a \in A \text{ und } b \in B\}$

- ▶ Eine Relation von A in B ist eine Teilmenge des kartesischen Produkts $A \times B$.
- ▶ Zur Erinnerung: Das kartesische Produkt $A \times B$ ist die Menge aller geordneten Paare (a, b) mit $a \in A$ und $b \in B$.
- ▶ Also: $A \times B = \{(a, b) \mid a \in A \text{ und } b \in B\}$

Kurzer Einschub: Mengen

▶ Durchschnitt zweier Mengen $A \cap B$: Menge aller Elemente, die in A und in B enthalten sind

$$\{x \mid x \in A \text{ und } x \in B\}$$

▶ Vereinigung zweier Mengen $A \cup B$: Menge aller Elemente, die in A oder in B enthalten sind

Kurzer Einschub: Mengen

▶ Durchschnitt zweier Mengen $A \cap B$: Menge aller Elemente, die in A und in B enthalten sind

$$\{x \mid x \in A \text{ und } x \in B\}$$

▶ Vereinigung zweier Mengen $A \cup B$: Menge aller Elemente, die in A oder in B enthalten sind

Schreibweisen

$$(a,b) \in R \iff aRb.$$

Bei Abbildungen f auch möglich:

$$(a,b) \in f \iff afb \iff f(a) = b$$

Man beachte die Umstellung der Zeichen!

Abbildungen

Was war nochmal eine Abbildung?

Eine Abbildung ist eine Relation, die *linkstotal* und *rechtseindeutig* ist.

Abbildungen

Was war nochmal eine Abbildung?

Eine Abbildung ist eine Relation, die *linkstotal* und *rechtseindeutig* ist.

Ist das linkstotal und rechtseindeutig?

Abbildungen

Was war nochmal eine Abbildung?

Eine Abbildung ist eine Relation, die *linkstotal* und *rechtseindeutig* ist.

linkstotal, aber nicht rechtseindeutig

Abbildungen

Wie viele Abbildungen sehen Sie hier?

Abbildungen

Wie viele Abbildungen sehen Sie hier?

Falsche Antwort: 5

Abbildungen

Wie viele Funktionen sehen Sie hier?

Abbildungen

Wie viele Funktionen sehen Sie hier?

Antwort: 1

Abbildungen

- Surjektiv?
- □ JA
- □ NEIN

Abbildungen

Surjektiv?

- □ JA
- ⋈ NEIN

Abbildungen

Injektiv?

- □ JA
- □ NEIN

Abbildungen

Injektiv?

□ JA

⋈ NEIN

Abbildungen

Injektiv?

□ JA

⋈ NEIN

Ein wenig Zählen ...

A und B endliche Mengen.

- ▶ Wie groß ist $A \times B$?
- ▶ Wie viele Relationen von A in B gibt es?
- ▶ Wie viele Funktionen von A nach B gibt es?

Wie groß ist $A \times B$?

Antwort: $|A| \cdot |B|$.

Erklärung:

 \rightarrow "Rechteck" mit $|A| \cdot |B|$ Einträgen.

Wie viele Relationen von A in B gibt es?

Wie viele Relationen von A in B gibt es?

Antwort: $2^{|A|\cdot |B|}$.

Erklärung:

Jedes Paar kann in Relation sein (1) oder nicht (0), unabhängig von allen anderen Paaren.

- \to Binärzahlen von 0 bis 111. . . 1 $\approx 2^{|A|\cdot|B|}-1$ beschreiben jeweils eine Relation.
- $ightarrow 2^{|A|\cdot|B|}$ Zahlen entsprechen $2^{|A|\cdot|B|}$ Relationen.

Wie viele Funktionen von A nach B gibt es?

Wie viele Funktionen von A nach B gibt es?

Antwort: $|B|^{|A|}$.

Erklärung:

Für a_1 gibt es |B| Möglichkeiten, für a_2 gibt es |B| Möglichkeiten,

. .

Multiplizieren: $|B| \cdot |B| \cdots |B| = |B|^{|A|}$

- a) Geben Sie (graphisch) eine Relation $R_a \subseteq \mathbb{G}_4 \times \mathbb{G}_2$ an, so dass R_a rechtstotal und rechtseindeutig, aber nicht linkstotal und nicht linkseindeutig ist.
- b) Wie viele solcher Relationen R_a gibt es?

- a) Geben Sie (graphisch) eine Relation $R_a \subseteq \mathbb{G}_4 \times \mathbb{G}_2$ an, so dass R_a rechtstotal und rechtseindeutig, aber nicht linkstotal und nicht linkseindeutig ist.
- b) Wie viele solcher Relationen R_a gibt es?

- a) Geben Sie (graphisch) eine Relation $R_a \subseteq \mathbb{G}_4 \times \mathbb{G}_2$ an, so dass R_a rechtstotal und rechtseindeutig, aber nicht linkstotal und nicht linkseindeutig ist.
- b) Wie viele solcher Relationen R_a gibt es?

- a) Wie viele solcher Relationen R_a gibt es?
 - lacksquare 4 Möglichkeiten ein Element in \mathbb{G}_4 frei zu lassen
 - ▶ 3 Möglichkeiten 2 Elemente (von den übrigen 3 aus G₄) mit einem aus G₂ zu verbinden.
 - ▶ 2 Möglichkeiten für die Zuweisungen in G₂.

- a) Wie viele solcher Relationen R_a gibt es?
 - ightharpoonup 4 Möglichkeiten ein Element in \mathbb{G}_4 frei zu lassen
 - ▶ 3 Möglichkeiten 2 Elemente (von den übrigen 3 aus ℂ₄) mit einem aus ℂ₂ zu verbinden.
 - ▶ 2 Möglichkeiten für die Zuweisungen in G₂.

- a) Wie viele solcher Relationen R_a gibt es?
 - ightharpoonup 4 Möglichkeiten ein Element in \mathbb{G}_4 frei zu lassen
 - ▶ 3 Möglichkeiten 2 Elemente (von den übrigen 3 aus ℂ₄) mit einem aus ℂ₂ zu verbinden.
 - ▶ 2 Möglichkeiten für die Zuweisungen in \mathbb{G}_2 .

- a) Wie viele solcher Relationen R_a gibt es?
 - ▶ 4 Möglichkeiten ein Element in \mathbb{G}_4 frei zu lassen
 - ▶ 3 Möglichkeiten 2 Elemente (von den übrigen 3 aus ℂ₄) mit einem aus ℂ₂ zu verbinden.
 - ▶ 2 Möglichkeiten für die Zuweisungen in \mathbb{G}_2 .

Also gibt es $4 \cdot 3 \cdot 2 = 24$ solcher Relationen.

Das wars für heute...

Themen für das erste Übungsblatt:

- Relationen und ihre Eigenschaften
- Mengen

Schönes Wochenende!