The Claims

- 1. A glass sheet intended to be thermally toughened, comprising a silica-soda matrix, wherein said sheet has an expansion coefficient α of greater than 100 x 10⁻⁷ K⁻¹, a Young's modulus E of greater than 60 GPa and a thermal conductivity k of less than 0.9 W/m.K.
- The glass sheet of claim 1, wherein said sheet has a Poisson's ratio of greater than 0.21.
 - 3. The glass sheet of claim 2, wherein said sheet has a specific heat of greater than 7.40 J/kg.K.
 - 4. The glass sheet of claim 1, wherein said sheet has a specific heat of greater than 7.40 J/kg.K.
 - 5. The glass sheet of claim 1, wherein said sheet has a density of greater than 2520 kg/m^3 .
 - 6. The glass sheet of claim 1, wherein said sheet satisfies the relationship:

$$\alpha \cdot E / K > 8000$$
.

7. The glass sheet of claim 1, wherein said matrix comprises, in percentages by weight, the following constituents:

SiO ₂	45-69%		
Al_2O_3	0-14%		
CaO	0-22%		
MgO	0-10%		
Na ₂ O	6-24%		

30

K_2O	0-10%
BaO	0-12%
B_2O_3	0-6%
ZnO	0-10%

5 and satisfies the relationships:

$$Na_2O + K_2O > 20\%$$

 $Na_2O + K_2O + CaO > 27\%$.

The glass sheet of claim 1, wherein said matrix comprises, in percentages by 8. weight, the following constituents:

A		SiO ₂	45-69%
		Al_2O_3	0-14%
		CaO	0-22%
الم		MgO	0-10%
15		Na ₂ O	6-24%
		K_2O	0-10%
		BaO	0-12%
		B_2O_3	0-6%
		ZnO	0-10%
20	and satisfies the relation	onships:	

$$Na_2O + K_2O > 17\%$$

 $Na_2O + K_2O + CaO > 35\%$.

The glass sheet of claim 1, wherein said matrix comprises, in percentages by weight, at least one of Na₂O and K₂O in amounts which satisfy the following relationship: $Na_2O + K_2O > 7\%$.

10. The glass sheet of claim 1, wherein said matrix comprises, in percentages by weight, the following constituents:

30

10

SiO₂

45-69%

Al_2O_3	0-14%
CaO	0-22%
MgO	0-10%
Na ₂ O	6-24%
K_2O	0-10%
BaO	0-12%
B_2O_3	0-6%
ZnO	0-10%

and satisfies the relationships:

10 (a)
$$Na_2O + K_2O > 17\%$$
, and

- (b) Na₂O + K₂O + CaO > 29% when at least one of Na₂O > 18%, K₂O > 5%, and Al₂O₃ < 3%.
- 11. The glass sheet of claim 9, wherein said matrix comprises, in percentages by weight, at least one of TiO₂ and Al₂O₃ in amounts which satisfy the relationship:

$$TiO_2 + Al_2O_3 < 3\%$$
.

- 12. The glass sheet of claim 1, wherein said matrix comprises, in percentages by weight, at least one of Na₂O, K₂O, CaO, and Al₂O₃ in amounts which satisfy the following relationships:
- (a) $Na_2O + K_2O > 17\%$, and
- (b) $Na_2O + K_2O + CaO > 29\%$ when at least one of $Na_2O > 18\%$, $K_2O > 5\%$, and $Al_2O_3 < 3\%$.
- 25 13. The glass sheet according to claim 1, wherein said sheet has a thickness of less than 2.5 mm and is thermally toughened.
 - 14. The glass sheet of claim 1, wherein said matrix comprises Na₂O and optionally one or more of K₂O, CaO or Al₂O₃ in amounts which satisfy the following relationship:

$$Na_2O + K_2O + CaO > 29 \text{ wt}\%$$

5

when at least one of $Na_2O > 18$ wt%, $K_2O > 5$ wt%, and $Al_2O_3 < 3$ wt%.

15. The glass sheet of claim 1, wherein said matrix has a CaO content of 10.4 to 22 wt%.

16. A glass sheet intended to be thermally toughened, comprising a silica-soda matrix, wherein said sheet has an expansion coefficient α of greater than 100 x 10⁻⁷ K⁻¹, a Young's modulus E of greater than 60 GPa and a thermal conductivity k of less than 0.9 W/m.K and said matrix has a SiO₂ content of 45 to 65 wt%, wherein said matrix comprises Na₂O-and-optionally-K₂O in amounts which satisfy the following relationship:

$$Na_2O + K_2O > 20 \text{ wt}\%.$$

17. A glass composition comprising, in percentages by weight:

1 1 .		
	SiO ₂	45-69%
	Al_2O_3	0-14%
	CaO	0-22%
	MgO	0-10%
	Na ₂ O	6-24%
i D	K ₂ O	0-10%
Tribut.	BaO	0-12%
	B_2O_3	0-6%
	ZnO	0-10%,

wherein the glass has a viscosity η in poise, a forming temperature at which $\log \eta$ =3.5, and a liquidus temperature which is less than or equal to the forming temperature.

- 18. The glass composition of claim 17, wherein the liquidus temperature is between 10°C and 30°C less than the forming temperature.
- 19. The glass composition of claim 18, wherein the glass has an expansion coefficient of greater than $100 \times 10^{-7} \text{ K}^{-1}$.

5

25

30

5

21. The glass composition of claim 19, wherein the glass has a thermal conductivity of less than 0.9 W/m.K.