1. Исходные данные для самолета Ил-76

 $m_{\text{пуст}}=86000$ кг, $m_{\text{топл}}=60000$ кг, $m_{\text{поле}}=20000$ кг При интегрировании по формулам (1) $m_{\text{к}}=116000$ кг, $m_{\text{н}}=166000$ кг.

2. Исследование характеристик транспортного самолета при выполнении эшелонирования

2.1. Постановка задачи

В работе исследуется задача минимизации километрового расхода топлива в крейсерском полете на заданную дальность путем оптимизации вертикальной трактории и скоростного режима.

2.2. Расчетные формулы

$$q_{\text{\tiny Y}} = PCe, \ q_{\text{\tiny KM}} = \frac{q_{\text{\tiny Y}}}{3.6V}, \ L_{\text{\tiny KC}} = \int_{m_{\text{\tiny K}}}^{m_{\text{\tiny H}}} \frac{dm}{q_{\text{\tiny KM}}}, \ T_{\text{\tiny KC}} = \int_{m_{\text{\tiny K}}}^{m_{\text{\tiny H}}} \frac{dm}{q_{\text{\tiny Y}}},$$
 (1)

$$P_{\Pi} = \frac{mg}{K} \tag{2}$$

$$P_{p}(M, H, \bar{R}) = \frac{mg}{K}$$

$$P_{p}(M, H, \bar{R}) = C_{xa} \frac{\rho a_{_{3B}}^{2}}{2} M^{2} S$$

$$q_{\rm \tiny H} = Ce \frac{mg}{K}, \; q_{\rm \tiny KM} = \frac{mgCe}{3.6KV}, \; L_{\rm \tiny KC} = \frac{3.6}{g} \int_{m_{\rm \tiny K}}^{m_{\rm \tiny H}} \frac{KV}{Cem} \, dm, \; T_{\rm \tiny KC} = \frac{1}{g} \int_{m_{\rm \tiny K}}^{m_{\rm \tiny H}} \frac{K}{Cem} \, dm$$

 C_{ya}, C_{xa} из курсовой работы №1 по динамике полета.

2.3. Задачи

По мере уменьшения массы из-за выгорания топлива в крейсерском полете будет уменьшаться P_{π} из формулы (2), что ведет к уменьшению расхода топлива. Провдем такие количественные анализы:

- 1. Влияние массы на изменение экономической скорости.
- 2. Оптимальную траекторию с учетом выгорания топлива.
- 3. Найти моменты смены эшелона для перехода на экономиечески выгодный эшелон.
- 4. Разница в расходах топлива при полете на постоянной высоте и со сменой высоты.

2.4. Результаты

Результаты расчетов по нахождению $q_{km_{min}}$ минимального километрового расхода топлива сведены в таблицу 2

- 1. Исходя из расчетов по мере уменьшения массы скорость уменьшается, а высота для поддержания $q_{km_{min}}$ увеличивается.
- 2. Оптимальная траектория набора представлена на рисунке 1.
- 3. Моменты смены эшелона выбрали, если между оптимальной и текущей траекторией разница в расходах топлива будет больше 1.5%, так получилась псевдо оптимальная траектория полета рисунки 3, 4.
- 4. Разницы в максимальной дальности полета, которые зависят от километрового расход топлива представлены на таблице 1

Режим	L, km	T	$q_{km_{ m cp}},rac{{ m K}\Gamma}{{ m K}{ m M}}$
Полет по оптимальной траектории рис. 1	4738	6 ч. 12 мин.	18.4617
Полет по псевдо оптимальной траектории рис.3	4712	6 ч. 23 мин.	18.5261
Полет на $H=7500\mathrm{m}$	4648	6 ч. 35 мин.	18.6890
Полет на $H=11000\mathrm{m}$	4453	5 ч. 43 мин.	19.5844

Таблица 1 — Результаты расчетов

Рисунок 1 — Оптимальная траектория набора

Рисунок 2 — Оптимальное изменение скорости

Рисунок 3 — Псевдо оптимальная траектория набора

Рисунок 4 — Псевдо оптимальное изменение скорости

m, тонн		H, M							
		9000	9500	10000	10500	11000	11500	12000	12500
125.0	M	0.708	0.75	0.75	0.73	0.723	0.717	0.714	0.731
	q_{km}	8.499	8.142	7.794	7.468	7.244	7.026	7.214	7.683
	V	215.0	226.0	225.0	217.0	213.0	212.0	211.0	216.0
130.0	M	0.75	0.75	0.75	0.735	0.742	0.709	0.735	0.75
	q_{km}	8.775	8.418	8.074	7.744	7.528	7.337	7.57	8.12
	V	228.0	226.0	225.0	219.0	219.0	209.0	217.0	221.0
140.0	M	0.75	0.75	0.75	0.748	0.75	0.733	0.75	-
	q_{km}	9.329	8.983	8.646	8.313	8.111	8.028	8.336	-
	V	228.0	226.0	225.0	222.0	221.0	216.0	221.0	-
150.0	M	0.75	0.75	0.75	0.75	0.75	0.75	0.75	-
	q_{km}	9.899	9.565	9.238	8.907	8.728	8.752	9.232	-
	V	228.0	226.0	225.0	223.0	221.0	221.0	221.0	-
160.0	M	0.754	0.75	0.783	0.75	0.75	0.75	0.75	-
	q_{km}	10.503	10.169	9.849	9.535	9.377	9.543	10.24	-
	V	229.0	226.0	235.0	223.0	221.0	221.0	221.0	=
170.0	M	0.759	0.75	0.784	0.75	0.75	0.75	0.75	=
	q_{km}	11.124	10.795	10.464	10.197	10.059	10.408	11.366	-
	V	231.0	226.0	235.0	223.0	221.0	221.0	221.0	=
180.0	M	0.761	0.75	0.781	0.75	0.75	0.75	=	=
	q_{km}	11.76	11.445	11.099	10.892	10.77	11.348	=	=
	V	231.0	226.0	234.0	223.0	221.0	221.0	=	=
190.0	M	0.761	0.8	0.775	0.75	0.75	0.75	=	=
	q_{km}	12.413	12.104	11.761	11.618	11.651	12.452	=	=
	V	231.0	241.0	232.0	223.0	221.0	221.0	=	=
200.0	M	0.759	0.8	0.765	0.763	0.75	0.75	=	=
	q_{km}	13.086	12.762	12.458	12.37	12.613	13.7	-	-
	V	231.0	241.0	229.0	227.0	221.0	221.0	-	-

Таблица $2-q_{km}\left[\frac{\mathrm{K}\Gamma}{\mathrm{K}\mathrm{M}}\right],V\left[\frac{\mathrm{M}}{\mathrm{c}}\right]$