

Lecture 1: Introduction

-Cryptographic Algorithms and Protocols

Huang, Xiujie (黄秀姐)

Office: Nanhai Building, #411

E-mail: t_xiujie@jnu.edu.cn

Dept. Computer Science 02/24/2022

Outline

▶ 1. Course Information

▶ 2. Evolution of the Cryptography

▶ 3. Intuitions on Cryptographic Algorithms and Protocols

1.1 Books

Textbooks:

• Cryptography: Theory and Practice (4th ed.)

Douglas R. Stinson and Maura B. Paterson

2018, CRC Press

1.2 Main Contents & Calendar

- ▶ 1. Introduction: week 1
- **2.** Classical Cryptography: week 2
- ▶ 3. Shannon's Theory: week 3
- ▶ 4. Block Ciphers: weeks 4-5
- ▶ 5. Hash Functions: weeks 6-8
- ▶ 6. The RSA Cryptosystem: weeks 9-10
- > 7. The ElGamal-like Cryptosystems: weeks 11-12
- ▶ 8. Signature Schemes: weeks 13-14
- ▶ 9. Applications and New Directions: weeks 15-16

1.3 References

Prerequisites:

• Probability, Number Theory, Linear Algebra, Abstract Algebra

References:

- "Introduction to Modern Cryptography", 2nd ed., by J. Katz and Y. Lindell, 2014, CRC Press.
- "Applied Cryptography", 2nd ed., by B. Schneier, 1995, Wiley Press

1.4 Teaching Goals

- Understand how basic cryptographic algorithms and protocols work
 - Basic concepts, basic principles, key terms
 - Classic Schemes and Designs
 - Common designs and security discussions
- ▶ Be able to use algorithms and protocols correctly and analyze their security
 - Can analyze the security of cryptographic constructions
 - Can break insecure constructions

1.5 Evaluation Rules

Grading:

- Attendance and Class behaviors: 20% (3 Absences = 0 !!!)
- Homeworks and Quiz: 20%
- Final exam: 60% (closed book)

Office hours:

- at 10am-11am on every Thursday in N124
- Please make an appointment by Email (t_xiujie@jnu.edu.cn) or QQ in advance

Outline

▶ 1. Course Information

▶ 2. Evolution of the Cryptography

▶ 3. Intuitions on Cryptographic Algorithms and Protocols

Password is not Cryptography

Cryptography can do much more!

Goals of Cryptography

- ▶ Goal 1: Protect Good from Bad
- **Solution:** Make message Meaningless

Goal 2: Be able to Distinguish between Good and Bad

Solution: Identification

Cryptography is everywhere

- Secure communications
 - web traffics: HTTPS
 - wireless traffics: 802.11i WPA2,
- **Encrypting files on disk:**

EFS, TrueCrypt

Content protection:

CSS (DVD), AACS (Blu-ray disk)

User authentication

• • • • •

History

- David Kahn, "The Code Breakers" (1996)
- Simon Singh, "The Code Book" (1999)

Evolution of the Cryptography

Approx. 1900 BC Approx. 110 BC

WW II

1970s

Classical Cryptography

Modern Cryptography

Applications

Secure Communications

Secure Communications

E-cash

Secure Information Retrieval

E-election, E-auction

Secure Storage, Secret Sharing,

Broadcast

Secure outsourcing to Cloud

Secure Computations

.

Classical Cryptography

2.1 Scytale cipher

Around 400 B.C. used in Spartan military

IEUARNMIIANVTJEEIRANSCAIHNTY

2.2 One Ancient Cryptography in China – 阴符密码

- Around 1100 B.C.
- ▶ invented by Jiang Taigong in the time of King Wu of Zhou (周武王)
- ▶ 阴符:
 - 大胜克敌符,长一尺;破军擒将符,长九寸;
 - 降城得邑符,长八寸;却敌报远符,长七寸;
 - 警众坚守符,长六寸;请粮益兵符,长五寸;
 - 败军亡将符,长四寸;失利亡士符,长三寸。

(a substitution cipher)

▶ 阴书: "一合而再离,三发而一知" (a permutation cipher)

2.3 Caesar Cipher

- around 50 B.C.
- named after Julius Caesar

WKH TXLFN EURZQ IRA MXPSV RYHU WKH ODCB GRJ

THE QUICK BROWN FOX JUMPS OVER THE LAZY DOG

2.4 Jin merchants' Cryptography

- Used in Money Orders
- During Ming and Qing Dynasties

2.4 Jin merchants' Cryptography

- Used in Money Orders
- During Ming and Qing Dynasties

1	2	3	4	5	6	7	8	9	0
赵	氏	连	城	璧	由	来	天	下	传

万	千	百	两
国	宝	通	流

三百两

连通流

2.5 Enigma Machine (Mechanical Cryptography)

- Invented by the German engineer Arthur Scherbius in 1918
- Used by the German military before and during World War II

- Cryptanalysis of Enigma
 - The Bombe designed by Alan Turing

Bombe

Alan Turing (1912–1954)

- one of its "100 Most Important People of the20th century" by *Time* magazine (1999)
- **Designs of Turing Machine & Turing Test**
- ► A founding father of artificial intelligence and of modern cognitive science

Turing Award (since 1966)

"Nobel Prize" in Computer Science

A related film - The Imitation Game

Basics of the Cryptography

Our Study

- Classical Cryptography
 - Substitution Ciphers & Permutation Ciphers

- **▶** Modern Cryptography
 - Block Ciphers
 - Public-Key Cryptography

• • • • •

Modern Cryptography

- Symmetric-Key Cryptosystem (SKC):
 - Block Ciphers: DES, AES
 - Steam Ciphers
 - Hash Functions and MACs
 - ...
- Public-Key Cryptography (PKC):
 - RSA
 - ElGamal
 - Signature Schemes

• ...

1) Symmetric-Key Cryptosystem

SKC

- Long history: Scytale Cipher, Caesar Cipher, 阴符密码, 晋商汇票, ...
- Security and Cryptanalysis

• Drawback 29

1) SKC

- Block Cipher
 - Each block (fixed-sized chunk) is encrypted

- Stream Cipher
 - Keystream: has same length as the plaintext

2) Public-Key Cryptography

- **PKC** (Asymmetric-key)
 - since 1976, Diffie-Hellman

Advantages and Disadvantages:

2) PKC

- PKCs can be seen as invariably Block Ciphers
 - RSA
 - ElGamal
 - ID-based Cryptography
 - Signatures
 - •...

3) Hybrid Cryptography

- A combination of SKC and PKC
 - •SKC: faster, to encrypt a "long" message
 - **▶** To encrypt the plaintext

- PKC: slower, to encrypt small amounts of data
 - **▶** To encrypt the secret key

4) Applications: Message Integrity

- Message Integrity
 - Integrity of data
 - Secrecy (confidentiality)
 - Passive adversary v.s. Active adversary
 - **Methods:**
 - Message authentication codes (MACs): SKC
 - Signature schemes: PKC
 - Hash functions

4) Applications: Message Integrity

- MACs: SKC
 - Secret key, tag
 - Encrypt-then-MAC
 - Deniable
- Signature schemes: PKC
 - Signing algorithm, signature, verification algorithm
 - Sign-then-encrypt
 - Nonrepudiation

4) Applications: Message Integrity

- ► Hash Functions: (SKC)
 - Cryptographic has function
 - Message digest
 - Hash-then-sign
 - Hash-then-sign-then-encrypt
- Certificates: PKC

Cryptanalysis

5) Cryptanalysis: Security

- Attack models: Kerckhoffs' Principle
 - Known ciphertext attack
 - Known plaintext attack
 - Chosen plaintext attack
 - Chosen ciphertext attack
- Adversarial goals
- **Security levels:**
 - Computational security
 - Provable security (reductionist security)
 - Unconditional security

Goal: The adversary cannot achieve a weak adversarial gol in a strong attack model, given significant computational resources.

Outline

▶ 1. Course Information

▶ 2. Evolution of the Cryptography

▶ 3. Intuitions on Cryptographic Algorithms and Protocols

3.1 Simple Example1

3.2 Simple Example 2

Course Structures

Questions?

