Técnicas fundamentales de análisis

Teoría de Circuitos II

Autor: Luis Badesa Bernardo

(basado en las diapositivas de Óscar Perpiñán Lamigueiro)

- 1 Leyes de Kirchhoff
- Métodos de análisis

Definiciones

Nudo unión de 3 o más conductores (en la figura, los puntos A, B, C y D)

Rama elementos conectados entre dos nudos consecutivos

(A-B, A-C, A-D, B-C, B-D y C-D)

Lazo conjunto de ramas que forman un camino cerrado

(ACDA, ACBDA, ACDBA, ABCDA, ABCA, ABDA, BCDB)

Malla lazo que no contiene ningún otro en su interior (ABCA, ABDA, BCDB)

Primera Ley de Kirchhoff (1LK)

► La 1LK es el principio de conservación de la carga aplicado a los circuitos eléctricos:

La suma de las corrientes que llegan a un nudo es igual a la suma de las que salen

$$\sum_{j=1}^{n} i_j(t) = 0$$

$$i_1(t) - i_2(t) + i_3(t) - i_4(t) + i_5(t) = 0$$

Segunda Ley de Kirchhoff (2LK)

La 2LK es el principio de conservación de la energía aplicado a los circuitos:

La suma (con signo) de las tensiones a lo largo de un camino cerrado es cero

$$-u_1(t) - u_2(t) + u_3(t) + u_4(t) - u_5(t) = 0$$

- Leyes de Kirchhoff
 Asociación de condensadores
- Métodos de análisis

Zona aislada

En una asociación de condensadores aparecen **zonas aisladas** (puntos a los que no se puede llegar sin atravesar un condensador)

¿Cómo calcular el potencial en una zona aislada?

- El potencial en estas zonas aisladas no puede determinarse directamente
- Caso más simple:

Si la carga inicial de todos los condensadores es nula y la asociación puede sustituirse por un **condensador equivalente**, C_{eq} :

- $ightharpoonup C_{eq}$ se calcula a partir de la tensión de la asociación
- Asociaciones **serie**: ver diapositivas de Teoría de Circuitos I y ejercicio 1.11
- Asociaciones **paralelo**: ver diapositivas de Teoría de Circuitos I y ejercicio 1.11
- ▶ El **resto de casos** se resuelven combinando ecs. de **nudos** y **mallas**

1^{er} paso: se asignan polaridades arbitrarias a los condensadores

2º paso: la suma de cargas en una zona aislada es igual a la suma total de las cargas iniciales (nula si los condensadores no tienen carga inicial)

(C)
$$q_1 + q_5 + q_3 = 0$$

(D)
$$q_5 - q_2 - q_4 = 0$$

Resulta de aplicar **1LK** en C y D

(recordatorio:
$$i(t) = \frac{d q(t)}{dt}$$
)

Si los condensadores tuvieran carga inicial: la suma de cargas sería igual a la carga inicial que hubiera en dicha zona aislada

3^{er} **paso**: se aplica **2LK** a las mallas que sean necesarias para completar el **sistema de ecs.** (usando $u_{Ci} = q_i/C_i$)

$$(ACDA) \quad \frac{q_1}{C_1} - \frac{q_5}{C_5} - \frac{q_2}{C_2} = 0$$

(CBDC)
$$-\frac{q_3}{C_3} + \frac{q_4}{C_4} + \frac{q_5}{C_5} = 0$$

$$(ACBA) \quad \frac{q_1}{C_1} - \frac{q_3}{C_3} - u_{AB} = 0$$

 4° paso: se resuelve el sistema de ecs. para obtener los valores de q_i

$$q_{1} + q_{5} + q_{3} = 0$$

$$q_{5} - q_{2} - q_{4} = 0$$

$$\frac{q_{1}}{C_{1}} - \frac{q_{5}}{C_{5}} - \frac{q_{2}}{C_{2}} = 0$$

$$-\frac{q_{3}}{C_{3}} + \frac{q_{4}}{C_{4}} + \frac{q_{5}}{C_{5}} = 0$$

$$\frac{q_{1}}{C_{1}} - \frac{q_{3}}{C_{3}} = u_{AB}$$

Si alguna carga resulta negativa, significa que la polaridad es contraria a la que se asignó

Capacidad equivalente

De la ec. de definición del condensador:

$$C_{eq} = \frac{1}{U_{AB}(t)} \int_{-\infty}^{t} i(\tau) d\tau = \frac{q_{\text{tot}}(t)}{U_{AB}(t)}$$

Aplicando 1LK en los puntos A o B:

$$q_{\text{tot}} = q_1 + q_2 = q_3 + q_4$$

$$\boxed{C_{eq} = rac{q_{ ext{tot}}}{U_{AB}}} = rac{q_1 + q_2}{U_{AB}} = rac{q_3 + q_4}{U_{AB}}$$

- 1 Leyes de Kirchhoff
- 2 Métodos de análisis

- 1 Leyes de Kirchhoff
- 2 Métodos de análisis
 - Método de las mallas

Método de los nudos

$$\begin{bmatrix}
\sum \overline{Z}_{aa} & \pm \sum \overline{Z}_{ab} & \dots & \pm \sum \overline{Z}_{an} \\
\pm \sum \overline{Z}_{ba} & \sum \overline{Z}_{bb} & \dots & \pm \sum \overline{Z}_{bn} \\
\vdots & \vdots & \ddots & \vdots \\
\pm \sum \overline{Z}_{na} & \pm \sum \overline{Z}_{nb} & \dots & \sum \overline{Z}_{nn}
\end{bmatrix} \cdot \begin{bmatrix} \overline{I}_{a} \\
\overline{I}_{b} \\
\vdots \\
\overline{I}_{n} \end{bmatrix} = \begin{bmatrix} \pm \sum \overline{\epsilon}_{a} \\
\pm \sum \overline{\epsilon}_{b} \\
\vdots \\
\pm \sum \overline{\epsilon}_{n} \end{bmatrix}$$
matriz simétrica, $n \times n$ $(n = n^{\circ} \text{ mallas})$

- $\sum \overline{Z}_{xx}$ suma de las impedancias incluidas en la malla de \overline{I}_x
- $\sum \overline{Z}_{xy}$ suma de las impedancias incluidas en ramas compartidas por las mallas de \overline{I}_x e \overline{I}_y ('+' si las corrientes \overline{I}_x e \overline{I}_y van en el mismo sentido en esa rama, '-' en caso contrario)
 - $\sum \overline{e}_x$ suma algebraica de las fuerzas electromotrices de los generadores de la malla de \overline{I}_x ('+' si \overline{I}_x sale por el + de la fuente, '-' en caso contrario)

Procedimiento para el método de las mallas

- 1 Identificar las corrientes de rama
- 2 Asignar un sentido a las corrientes de malla
- 3 Relacionar corrientes de rama con corrientes de malla
- 4 Escribir sistema de ecuaciones de mallas
- **6** Resolver el sistema de ecs., obteniendo las corrientes de malla
- 6 Obtener las corrientes de rama a partir de las relaciones del punto 3

Importante: todos los generadores deben ser fuentes de tensión

Admitancia generalizada

$$\begin{bmatrix} \overline{Z}_{11} & \overline{Z}_{12} & \dots & \overline{Z}_{1n} \\ \overline{Z}_{21} & \overline{Z}_{22} & \dots & \overline{Z}_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \overline{Z}_{n1} & \overline{Z}_{n2} & \dots & \overline{Z}_{nn} \end{bmatrix} \cdot \begin{bmatrix} \overline{I}_1 \\ \overline{I}_2 \\ \vdots \\ \overline{I}_n \end{bmatrix} = \begin{bmatrix} \overline{\epsilon}_1 \\ \overline{\epsilon}_2 \\ \vdots \\ \overline{\epsilon}_n \end{bmatrix}$$

Aplicando la regla de Cramer:

$$\bar{I}_k = \bar{\epsilon}_1 \frac{\Delta_{1k}}{|Z|} + \bar{\epsilon}_2 \frac{\Delta_{2k}}{|Z|} + \ldots + \bar{\epsilon}_n \frac{\Delta_{nk}}{|Z|}$$
 donde $\left| \frac{\Delta_{jk}}{|Z|} \right|$ es la admitancia generalizada

siendo Δ_{ij} el adjunto del elemento ij de la matriz Z:

$$\Delta_{ij} = (-1)^{i+j} \cdot |M_{ij}|$$

donde M_{ij} es la matriz resultante de eliminar la fila i y la columna j de la matriz Z

Admitancia generalizada

Esta expresión indica que las respuestas del circuito (I_k) dependen de todas las excitaciones que existan (ϵ_i):

$$\bar{I}_k = \bar{\epsilon}_1 \frac{\Delta_{1k}}{|Z|} + \bar{\epsilon}_2 \frac{\Delta_{2k}}{|Z|} + \ldots + \bar{\epsilon}_n \frac{\Delta_{nk}}{|Z|}$$

Donde se puede definir la admitancia generalizada entre dos partes del circuito:

$$\overline{Y}_{ik} = \frac{\overline{I}_k}{\overline{\epsilon}_i} = \frac{\Delta_{ik}}{|Z|}$$

Impedancia de entrada

A partir de esta expresión se puede calcular la **impedancia** de entrada **vista por una fuente** que alimenta un **circuito pasivo**:

(todas las fuentes independientes salvo la de entrada son nulas en la expresión anterior)

$$\bar{I}_1 = \bar{\epsilon}_1 \frac{\Delta_{11}}{|Z|} + 0 \cdot \frac{\Delta_{21}}{|Z|} + \ldots + 0 \cdot \frac{\Delta_{n1}}{|Z|}$$

Por tanto:

$$\overline{Z}_{in} = \frac{\overline{\epsilon}_1}{\overline{I}_1} = \frac{|Z|}{\Delta_{11}}$$

Impedancia de transferencia

La **impedancia de transferencia** (\overline{Z}_T) entre dos partes de un **circuito pasivo**, en las que la primera está alimentada por una fuente y la segunda está cortocircuitada es:

(todas las fuentes independientes salvo la de interés están apagadas)

$$\bar{I}_k = 0 \cdot \frac{\Delta_{1k}}{|Z|} + \ldots + \bar{\epsilon}_j \frac{\Delta_{jk}}{|Z|} + 0 \cdot \frac{\Delta_{nk}}{|Z|}$$

Por tanto:

$$\overline{Z}_{T_{jk}} = \frac{\overline{\epsilon}_j}{\overline{I}_k} = \frac{|Z|}{\Delta_{jk}}$$

Mallas con fuentes dependientes

- 1 Se plantean las ecuaciones de mallas considerando las fuentes dependientes **como cualquier otra fuente** de tensión
- 2 Se reordena el sistema de ecs. para dejar las incógnitas en el lado izquierdo

Nota: la matriz de impedancias deja de ser simétrica

Ejemplo: ejercicio 4.7 de TC I

Mallas con fuentes de intensidad ideales

Las fuentes de corriente ideales **no pueden transformarse** a fuentes de tensión para resolver por mallas

El **método** que debe usarse en estos casos es:

▶ Si la fuente de corriente está en una rama que pertenece a una única malla:

Se **fija la corriente** de dicha malla igual a la corriente de la fuente (desaparece una incógnita)

Mallas con fuentes de intensidad ideales

Las fuentes de corriente ideales **no pueden transformarse** a fuentes de tensión para resolver por mallas

El **método** que debe usarse en estos casos es:

- ► Si la fuente de corriente está en una rama que pertenece a dos mallas:
 - 1 Se introduce la tensión en la fuente de corriente como variable adicional
 - 2 Se plantean las ecuaciones del método de mallas
 - 3 La variable adicional (tensión de la fuente) se elimina sumando las dos ecs. de las mallas afectadas
 - 4 Se añade una ec. que relaciona la corriente de la fuente con las dos corrientes de malla

Mallas con fuentes de intensidad ideales

Las fuentes de corriente ideales **no pueden transformarse** a fuentes de tensión para resolver por mallas

Una **alternativa** es usar **movilidad de fuentes** (explicado en el Tema 1) para obtener generadores reales de corriente que **puedan transformarse** a generadores reales de tensión, y entonces aplicar el método de las mallas en forma clásica

- 1 Leyes de Kirchhoff
- 2 Métodos de análisis

Método de las mallas

Método de los nudos

$$\begin{bmatrix}
\sum \overline{Y}_{AA} & -\sum \overline{Y}_{AB} & \dots & -\sum \overline{Y}_{AN} \\
-\sum \overline{Y}_{BA} & \sum \overline{Y}_{BB} & \dots & -\sum \overline{Y}_{BN} \\
\vdots & \vdots & \ddots & \vdots \\
-\sum \overline{Y}_{NA} & -\sum \overline{Y}_{NB} & \dots & \sum \overline{Y}_{NN}
\end{bmatrix} \cdot \begin{bmatrix}
\overline{U}_{A} \\
\overline{U}_{B} \\
\vdots \\
\overline{U}_{N}
\end{bmatrix} = \begin{bmatrix}
\pm \sum \overline{I}_{g_{A}} \\
\pm \sum \overline{I}_{g_{B}} \\
\vdots \\
\pm \sum \overline{I}_{g_{N}}
\end{bmatrix}$$
matriz simétrica, $N \times N$ $(N=\mathbf{n}^{\circ} \text{ nudos}-1)$

 $\sum \overline{Y}_{XX}$ Suma de las admitancias conectadas al nudo X

 $\sum \overline{Y}_{XY}$ Suma de las admitancias conectadas entre los nudos X e Y

 $\sum \bar{I}_{g_X}$ Suma algebraica de las corrientes de los generadores conectados al nudo X ('+' si el generador inyecta corriente en el nudo, '-' en caso contrario)

Impedancia generalizada

$$\begin{bmatrix} \overline{Y}_{11} & \overline{Y}_{12} & \dots & \overline{Y}_{1n} \\ \overline{Y}_{21} & \overline{Y}_{22} & \dots & \overline{Y}_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \overline{Y}_{n1} & \overline{Y}_{n2} & \dots & \overline{Y}_{nn} \end{bmatrix} \cdot \begin{bmatrix} \overline{V}_1 \\ \overline{V}_2 \\ \vdots \\ \overline{V}_n \end{bmatrix} = \begin{bmatrix} \overline{I}_{g1} \\ \overline{I}_{g2} \\ \vdots \\ \overline{I}_{gn} \end{bmatrix}$$

Aplicando la regla de Cramer:

$$\overline{V}_k = \overline{I}_{g1} \frac{\Delta_{1k}}{|Y|} + \overline{I}_{g2} \frac{\Delta_{2k}}{|Y|} + \ldots + \overline{I}_{gn} \frac{\Delta_{nk}}{|Y|}$$
 donde $\left\lfloor \frac{\Delta_{jk}}{|Y|} \right\rfloor$ es la impedancia generalizada

siendo Δ_{ij} el adjunto del elemento ij de la matriz Y:

$$\Delta_{ij} = (-1)^{i+j} \cdot |M_{ij}|$$

donde M_{ij} es la matriz resultante de eliminar la fila i y la columna j de la matriz Y

Impedancia generalizada

Esta expresión indica que las respuestas del circuito (V_k) dependen de todas las excitaciones que existan (I_{gi}) :

$$\overline{V}_k = \overline{I}_{g1} \frac{\Delta_{1k}}{|Y|} + \overline{I}_{g2} \frac{\Delta_{2k}}{|Y|} + \ldots + \overline{I}_{gn} \frac{\Delta_{nk}}{|Y|}$$

Donde se puede definir la impedancia generalizada entre dos partes del circuito:

$$\overline{Z}_{ik} = \frac{\overline{V}_k}{\overline{I}_{gi}} = \frac{\Delta_{ik}}{|Y|}$$

Admitancia de entrada

A partir de esta expresión se puede calcular la **admitancia** de entrada **vista por una fuente** que alimenta un **circuito pasivo**:

(todas las fuentes independientes salvo la de entrada son nulas en la expresión anterior)

$$\overline{V}_1 = \overline{I}_{g1} \frac{\Delta_{11}}{|Y|} + 0 \cdot \frac{\Delta_{21}}{|Y|} + \ldots + 0 \cdot \frac{\Delta_{n1}}{|Y|}$$

Por tanto:

$$\overline{Y}_{\text{in}} = \frac{\overline{I}_{g1}}{\overline{V}_{1}} = \frac{|Y|}{\Delta_{11}}$$

Admitancia de transferencia

La **admitancia de transferencia** (\overline{Y}_T) entre dos partes de un **circuito pasivo**, en las que la primera está alimentada por una fuente y la segunda está en abierto:

(todas las fuentes independientes salvo la de interés están apagadas)

$$\overline{V}_k = 0 \cdot \frac{\Delta_{1k}}{|Y|} + \ldots + \overline{I}_{g_j} \frac{\Delta_{jk}}{|Y|} + 0 \cdot \frac{\Delta_{nk}}{|Y|}$$

Por tanto:

$$\overline{Y}_{T_{jk}} = rac{\overline{I}_{g_j}}{\overline{V}_k} = rac{|Y|}{\Delta_{jk}}$$

Nudos con fuentes dependientes

- 1 Se plantean las ecuaciones de nudos considerando las fuentes dependientes como cualquier otra fuente de corriente
- 2 Se reordena el sistema de ecs. para dejar las incógnitas en el lado izquierdo

Nota: la matriz de admitancias deja de ser simétrica

Nudos con fuentes de tensión ideales

Las fuentes de tensión ideales **no pueden transformarse** a fuentes de corriente para resolver por nudos

El **método** que debe usarse en estos casos es:

Si la fuente de tensión está conectada entre el nudo de referencia y otro nudo cualquiera:

Se **fija el potencial** de este último nudo igual a la tensión de la fuente (desaparece una incógnita)

Nudos con fuentes de tensión ideales

Las fuentes de tensión ideales **no pueden transformarse** a fuentes de corriente para resolver por nudos

El **método** que debe usarse en estos casos es:

- ➤ Si la fuente de tensión está conectada entre dos nudos, no siendo ninguno de ellos el de referencia:
 - 1 Se introduce la corriente que atraviesa la fuente como variable adicional
 - 2 Se plantean las ecuaciones del método de nudos
 - 3 Se elimina la variable adicional (corriente de la fuente de tensión) sumando las ecuaciones de nudos afectadas
 - 4 Se añade una ec. que relaciona la tensión de la fuente con las dos tensiones nodales

Nudos con fuentes de tensión ideales

Las fuentes de tensión ideales **no pueden transformarse** a fuentes de corriente para resolver por nudos

Una **alternativa** es usar **movilidad de fuentes** (explicado en el Tema 1) para obtener generadores reales de tensión que **puedan transformarse** a generadores reales de corriente, y entonces aplicar el método de los nudos en forma clásica

Nudos con fuentes de tensión ideales: supernudos

Si la fuente de tensión está **conectada entre** dos nudos, no siendo ninguno de ellos el de referencia, estos dos nudos se pueden considerar como un único **supernudo**:

- Este supernudo no tiene tensión propia
- Se plantean las ecuaciones de nudos incluyendo el supernudo (pero diferenciando los nudos implicados en el supernudo)
- El supernudo aporta una ecuación adicional, la tensión de la fuente que contiene

Ejemplo de supernudo

$$V_a \cdot (\frac{1}{R_1} + \frac{1}{R_2}) - V_b \cdot \frac{1}{R_2} - V_c \cdot \frac{1}{R_1} = -I_{g1} - I_{g2}$$

$$+ V_b \cdot (\frac{1}{R_1} + \frac{1}{R_2}) + V_c \cdot (\frac{1}{R_1} + \frac{1}{R_2}) = I_{\sigma1} + I_{\sigma3}$$
(BC)

 $V_c - V_h = \epsilon_o$

$$V_a \cdot (\frac{1}{R_1} + \frac{1}{R_2}) - V_b \cdot \frac{1}{R_2} - V_c \cdot \frac{1}{R_1} = -I_{g1} - I_{g2}$$
$$-V_a \cdot (\frac{1}{R_1} + \frac{1}{R_2}) + V_b \cdot (\frac{1}{R_2} + \frac{1}{R_3}) + V_c \cdot (\frac{1}{R_1} + \frac{1}{R_4}) = I_{g1} + I_{g3}$$