Exercise Sheet 2

Mengxuan Wu

September 26, 2023

Question 2

Question 2.1

$$3n^2 + 5n - 2 = \Theta(n^2)$$
 $c_1 = 2$ $c_2 = 4$ $n_0 = 5$ $42 = \Theta(1)$ $c_1 = 41$ $c_2 = 43$ $n_0 = 1$ $4n^2 \cdot (1 + \log n) - 2n^2 = \Theta(n^2 \log n)$ $c_1 = 3$ $c_2 = 5$ $n_0 = 4$

Question 2.2

f(n)	g(n)	0	0	Ω	ω	Θ
$\log n$	\sqrt{n}	yes	yes	no	no	no
n	\sqrt{n}	no	no	yes	yes	no
n	$n \log n$	yes	yes	no	no	no
n^2	$n^2 + (\log n)^3$	yes	no	yes	no	yes
2^n	n^3	no	no	yes	yes	no
$2^{n/2}$	2^n	yes	yes	no	no	no
$\log_2 n$	$\log_{10} n$	yes	no	yes	no	yes

Question 2.3

For algorithm A, line 1 is executed once and line 4, 5 and 6 are executed n^2-2n times each. The number of foo operation is $3n^2-6n+1=\Theta(n^2)$, as $2n^2 \leq 3n^2-6n+1 \leq 4n^2$ for all $n \geq 6$.

For algorithm B, line 1 is executed once, line 3 is executed n times and line 5 and 6 are executed n/2 times each. The number of foo operation is $2n+1=\Theta(n)$, as $n\leq 2n+1\leq 3n$ for all $n\geq 1$.

For algorithm C, line 1 and 6 are executed once each, line 4 is executed n(n+1)/2 times and line 5 is executed n times. The number of foo operation is $\frac{1}{2}n^2 + \frac{3}{2}n + 2 = \Theta(n^2)$, as $\frac{1}{2}n^2 \leq \frac{1}{2}n^2 + \frac{3}{2}n + 2 \leq n^2$ for all $n \geq 4$.

Question 2.4

1. True.

Proof. For all $f(n) \in O(\sqrt{n})$, there exists some $c, n_0 > 0$ that satisfy $0 \le f(n) \le c\sqrt{n}$ for all $n \ge n_0$. Since $0 \le c\sqrt{n} \le cn$ holds for all positive integer n, we can infer that $0 \le f(n) \le c\sqrt{n} \le cn$ for all $n \ge n_0$, with the same c and n_0 . Hence, we have $f(n) \in O(n)$.

2. False.

Proof. Since $n = o(n^2)$ holds, we can infer that $n + n = 2n = \omega(n)$. However, $\lim_{n \to \infty} \frac{2n}{n} = 2 \neq \infty$. There is a contradiction.

3. True.

Proof. Firstly, we will proof $3n \log n + O(n) = O(n \log n)$. Since there exists some $c_0, n_0 > 0$ that satisfy $0 \le 3n \log n + O(n) \le 3n \log n + c_0 n$ for all $n \ge n_0$, we can deduce that $0 \le 3n \log n + O(n) \le 3n \log n + c_0 n \log n = (3 + c_0)n \log n$. Hence, we have $3n \log n + O(n) = O(n \log n)$, with $c_1 = c_0 + 3$ and $n_1 = n_0$.

Secondly, we will proof $3n \log n + O(n) = \Omega(n \log n)$. Since O(n) has a nonnegative value, we can infer that $0 \le 3n \log n \le 3n \log n + O(n)$. Hence, we have $3n \log n + O(n) = \Omega(n \log n)$, with $c_2 = 3$ and $c_2 = n_0$.

Finally, with two conclusions above, we can proof $3n \log n + O(n) = \Theta(n \log n)$.

4. The statement "The running time of Algorithm A is at least $O(n^2)$ " is meaningless. Because notation O means "at most" already, it contradicts "at least" before it.

Question 2.5

Matrix-Multiply (A,B)	Runtime(in one iteration)		
1: for $i = 1$ to n do	$n+1 = \Theta(n)$		
2: for $j = 1$ to n do	$n+1 = \Theta(n)$		
3: C[i,j] = 0	$1 = \Theta(1)$		
4: for $k = 1$ to n do	$n+1 = \Theta(n)$		
5: $C[i, j] = C[i, j] + A[i, k] \cdot B[k, j]$	$1 = \Theta(1)$		
6: return C	$1 = \Theta(1)$		

The total runtime of MATRIX-MULTIPLY is

$$\Theta(n) \cdot \Theta(n) \cdot (\Theta(1) + \Theta(n) \cdot \Theta(1)) + \Theta(1) = \Theta(n^3)$$