

รายงาน

เรื่อง Virtual LAN

วิชา ปฏิบัติการโครงข่ายสื่อสาร (Communication Network Lab)

เสนอ

อาจารย์ ดร. พิสิฐ วนิชชานันท์

จัดทำโดย

นายโสภณ สุขสมบูรณ์ รหัสนักศึกษา 6201011631188 นักศึกษาชั้นปีที่3 สาขาวิชาวิศวกรรมไฟฟ้า (โทรคมนาคม)

วันที่ 1 เมษายน 2565

วิชา ปฏิบัติการโครงข่ายสื่อสาร ประจำภาคการศึกษา 2/2564 สาขาวิชาวิศวกรรมไฟฟ้า(โทรคมนาคม) ภาควิชาวิศวกรรมไฟฟ้าและคอมพิวเตอร์ คณะวิศวกรรมศาสตร์ มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าพระนครเหนือ

วัตถุประสงค์ของการทดลอง

- เพื่อทำความเข้าใจเกี่ยวกับ Virtual Local Area Network หรือ VLAN
- เพื่อเข้าใจการตั้งค่าภายในตัวของ Switch เมื่อเราต้องการตั้งค่าสำหรับการสื่อสารระหว่างกลุ่มที่ ใช้ VLAN เดียวกันเท่านั้น
- เพื่อศึกษาการทำงานของระบบ Network ที่มี Switch ต่อร่วมกับ Switch เข้าใจการตั้งค่า ภายในรวมทั้งการใช้สายสำหรับการต่อระหว่างอุปกรณ์อย่างเหมาะสม

รายละเอียดของโครงข่าย

อุปกรณ์ที่ต้องใช้สำหรับการทดลองนี้

อุปกรณ์/สายเชื่อม	จำนวน		
Switch เบอร์ 2690 IOS15	2		
PC-PT	8		
สายต่อพอร์ตชนิด Straight-Through	8		
สายต่อพอร์ตชนิด Cross-Over	1		

Addressing Table

Device	IP Address	Subnet Mask	Default Gateway	VLAN
PC0	192.168.1.1	255.255.255.0	N/A	2
PC1	192.168.1.2	255.255.255.0	N/A	2
PC2	192.168.1.3	255.255.255.0	N/A	3
PC3	192.168.1.4	255.255.255.0	N/A	3
PC4	192.168.1.5	255.255.255.0	N/A	2
PC5	192.168.1.6	255.255.255.0	N/A	2
PC6	192.168.1.7	255.255.255.0	N/A	3
PC7	192.168.1.8	255.255.255.0	N/A	3

^{**}หากไม่กำหนด VLAN ให้กับ Port จะถูกกำหนดให้เป็น VLAN1 หรือ Native VLAN โดยอัตโนมัติ (By Default) ดังภาพ**

Device Name: Switch:	1			
Custom Device Model	: 2960	IOS15		
Hostname: Switch	_			
Port	Link	VLAN	IP Address	MAC Address
FastEthernet0/1	Up	1		00D0.FF45.2E01
FastEthernet0/2	Uр	1		00D0.FF45.2E02
FastEthernet0/3	Up	1		00D0.FF45.2E03
FastEthernet0/4	Up	1		00D0.FF45.2E04
FastEthernet0/5	Up	1		00D0.FF45.2E05
FastEthernet0/6	Down	1		00D0.FF45.2E06
FastEthernet0/7	Down	1		00D0.FF45.2E07
FastEthernet0/8	Down	1		00D0.FF45.2E08
FastEthernet0/9	Down	1		00D0.FF45.2E09
FastEthernet0/10	Down	1		00D0.FF45.2E0A
FastEthernet0/11	Down	1		00D0.FF45.2E0B
FastEthernet0/12	Down	1		00D0.FF45.2E0C
FastEthernet0/13	Down	1		00D0.FF45.2E0D
FastEthernet0/14	Down	1		00D0.FF45.2E0E
FastEthernet0/15	Down	1		00D0.FF45.2E0F
FastEthernet0/16	Down	1		00D0.FF45.2E10
FastEthernet0/17	Down	1		00D0.FF45.2E11
FastEthernet0/18	Down	1		00D0.FF45.2E12
FastEthernet0/19	Down	1		00D0.FF45.2E13
FastEthernet0/20	Down	1		00D0.FF45.2E14
FastEthernet0/21	Down	1		00D0.FF45.2E15
FastEthernet0/22	Down	1		00D0.FF45.2E16
FastEthernet0/23	Down	1		00D0.FF45.2E17
astEthernet0/24	Down	1		00D0.FF45.2E18
GigabitEthernet0/1	Down	1		00D0.FF45.2E19
GigabitEthernet0/2	Down	1		00D0.FF45.2E1A
Vlan1	Down	1	<not set=""></not>	00D0.BA20.674C

Physical Location: Intercity > Home City > Corporate Office > Main Wiring Closet > Rack > Switch1

การตั้งค่า (Configuration)

ขั้นตอนการตั้งค่าสำหรับ PC

1.ให้ Double Click ไปที่ ตัวอุปกรณ์ แล้วคลิกไปที่ Config เลือก FastEthernet0 ทำตามตั้งค่า IPv4 Address ตามตารางที่เรากำหนดไว้ข้างต้น ทำเช่นนี้กับ PC1 – PC7 เป็นอันจบการตั้งค่าใน ส่วนของ PC

ขั้นตอนการตั้งค่าสำหรับ Switch

1.ให้ Double Click ไปที่อุปกรณ์ Switch ไปที่หน้า CLI ดังภาพที่แสดง

เมื่อระบบพร้อมทำงาน เราจะมาอยู่ที่โหมด User EXAC Mode ดังที่เห็น

2. ให้พิมพ์คำสั่ง *Enable* เพื่อเข้าสู่โหมด Privileges EXAC Mode แล้วตามด้วยคำสั่ง *Configure Terminal* เพื่อเข้าสู่โหมด Global Configuration Mode ดังภาพที่แสดง

3.หลังจากเข้าสู่ Global Configuration Mode แล้ว ให้เราพิมพ์คำสั่ง *vlan [หมายเลข]* ใน ขั้นตอนนี้เราจะเข้าสู่โหมด Specific Configuration Mode สำหรับการตั้งค่า VLAN ให้เราพิมพ์ คำสั่ง *name [ชื่อที่ต้องการตั้ง]* จากการทดลอง ได้การกำหนด VLAN มา 2 วง ได้แก่ VLAN 2 และ VLAN 3 โดยเราจะกำหนดให้ VLAN 2 ชื่อว่า admin และ VLAN 3 ชื่อว่า user ดังภาพที่ แสดง

```
Switch>enable
Switch#configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)#vlan 2
Switch(config-vlan)#name admin
Switch(config-vlan)#vlan 3
Switch(config-vlan)#name user
Switch(config-vlan)#
```

4. ให้เราพิมพ์คำสั่ง exit เพื่อออกจากโหมด Specific Configuration Mode สำหรับการตั้งค่า VLAN หลังจากนั้นให้พิมพ์คำสั่ง *interface [ชื่อของพอร์ต]*

```
Switch (config-vlan) #name user
Switch (config-vlan) #exit
Switch (config) #interface f0/2
```

** f ในที่นี้หมายถึง FastEthernet 0/2 port **

5.หลังจากเราเข้าสู่โหมด Specific Configuration Mode สำหรับการตั้งค่า interface แล้ว ให้ พิมพ์คำสั่ง *switchport mode access* เพื่อเตรียมตั้งค่า vlan สำหรับ PC กด Enter 1 ครั้งแล้ว ตามด้วยคำสั่ง *switchport access vlan [หมายเลข]* ปิดท้ายด้วยคำสั่ง *no shutdown* เพื่อให้ พอร์ต Active (การต่อพอร์ตระหว่าง Switch กับ PC จะเรียกว่า Access Port)

```
Switch(config-vlan) #exit
Switch(config) #interface f0/2
Switch(config-if) #switchport mode access
Switch(config-if) #switchport access vlan 2
Switch(config-if) #no shut
Switch(config-if) #
```

6.ทำข้อ 5. ซ้ำ สำหรับ Interface f0/3- f0/5 ของ Switch0 โดยวง VLAN สามารถดูได้จาก ตารางที่กำหนดไว้

```
Switch(config)#interface f0/2
Switch(config-if) #switchport mode access
Switch(config-if) #switchport access vlan 2
Switch (config-if) #no shut
Switch(config-if) #interface f0/3
Switch(config-if) #switchport mode access
Switch(config-if) #switchport access vlan 2
Switch(config-if) #no shut
Switch(config-if) #interface f0/4
Switch(config-if) #switchport mode access
Switch(config-if) #switchport access vlan 3
Switch (config-if) #no shut
Switch(config-if)#interface f0/5
Switch(config-if) #switchport mode access
Switch(config-if) #switchport access vlan 3
Switch (config-if) #no shut
Switch(config-if)#
```

7.ขั้นตอนต่อมาเราจะทำการตั้งค่า interface FastEthernet 0/1 ของ Switch0 โดยสายที่เชื่อม ระหว่าง Switch-Switch เราเรียกว่า Trunk Port โดยคำสั่งที่ใช้คือ *interface fastethernet0/1* ตามด้วยคำสั่ง *switchport mode trunk* จบด้วยคำสั่ง *no shutdown* เป็นอันเสร็จสิ้นการตั้ง ค่าของ Switch

```
Switch(config-if) #int f0/1
Switch(config-if) #switchport mode trunk

Switch(config-if) #
%LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/1, changed state to down

%LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/1, changed state to up

Switch(config-if) #no shut
Switch(config-if) #no shut
```

8.ให้ทำขั้นตอนที่ 1-7 กับ Switch1

ผลการทดสอบ

ทำการทดสอบโดยใช้คำสั่ง *ping [IP Address]* โดยเริ่มต้นจาก PC0 ปิงไปยัง PC0 , PC1 , PC4 , PC5 ตามลำดับ ซึ่งใช้วง VLAN เดียวกัน และ PC2 , PC3 , PC6 และ PC7 ซึ่งใช้คนละวง VLAN

- PC0-to-PC0 (IP 192.168.1.1, VLAN 2)

```
C:\>ping 192.168.1.1

Pinging 192.168.1.1 with 32 bytes of data:

Reply from 192.168.1.1: bytes=32 time=8ms TTL=128
Reply from 192.168.1.1: bytes=32 time=5ms TTL=128
Reply from 192.168.1.1: bytes=32 time=5ms TTL=128
Reply from 192.168.1.1: bytes=32 time=5ms TTL=128
Ping statistics for 192.168.1.1:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
    Minimum = 5ms, Maximum = 8ms, Average = 5ms
```

- PC0-to-PC1 (IP 192.168.1.2, VLAN 2)

```
C:\>ping 192.168.1.2

Pinging 192.168.1.2 with 32 bytes of data:

Reply from 192.168.1.2: bytes=32 time<lms TTL=128
Ping statistics for 192.168.1.2:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
    Minimum = 0ms, Maximum = 0ms, Average = 0ms</pre>
```

- PC0-to-PC4 (IP 192.168.1.5, VLAN 2)

```
C:\>ping 192.168.1.5

Pinging 192.168.1.5 with 32 bytes of data:

Reply from 192.168.1.5: bytes=32 time=lms TTL=128
Reply from 192.168.1.5: bytes=32 time<lms TTL=128

Ping statistics for 192.168.1.5:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
    Minimum = 0ms, Maximum = 1ms, Average = 0ms</pre>
```

- PC0-to-PC5 (IP 192.168.1.6, VLAN 2)

```
C:\>ping 192.168.1.6

Pinging 192.168.1.6 with 32 bytes of data:

Reply from 192.168.1.6: bytes=32 time<lms TTL=128

Ping statistics for 192.168.1.6:

Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),

Approximate round trip times in milli-seconds:

Minimum = 0ms, Maximum = 0ms, Average = 0ms
```

- PC0-to-PC2 (IP 192.168.1.3, VLAN 3)

```
C:\>ping 192.168.1.3

Pinging 192.168.1.3 with 32 bytes of data:

Request timed out.
Request timed out.
Request timed out.
Request timed out.
Ping statistics for 192.168.1.3:
    Packets: Sent = 4, Received = 0, Lost = 4 (100% loss),
```

- PC0-to-PC3 (IP 192.168.1.4, VLAN 3)

```
C:\>ping 192.168.1.4

Pinging 192.168.1.4 with 32 bytes of data:

Request timed out.

Request timed out.

Request timed out.

Request timed out.

Ping statistics for 192.168.1.4:

Packets: Sent = 4, Received = 0, Lost = 4 (100% loss),
```

- PC0-to-PC6 (IP 192.168.1.7, VLAN 3)

```
C:\>ping 192.168.1.7

Pinging 192.168.1.7 with 32 bytes of data:

Request timed out.
Request timed out.
Request timed out.
Request timed out.
Ping statistics for 192.168.1.7:
    Packets: Sent = 4, Received = 0, Lost = 4 (100% loss),
```

- PC0-to-PC7 (IP 192.168.1.8, VLAN 3)

```
C:\>ping 192.168.1.8

Pinging 192.168.1.8 with 32 bytes of data:

Request timed out.

Request timed out.

Request timed out.

Request timed out.

Ping statistics for 192.168.1.8:

Packets: Sent = 4, Received = 0, Lost = 4 (100% loss),
```

ตารางสรุปผลการทดสอบโดยการส่ง Packets ไปยังอุปกรณ์ต่างๆ

อุปกรณ์	PC0	PC1	PC2	PC3	PC4	PC5	PC6	PC7
PC0	Received	Received	Lost	Lost	Received	Received	Lost	Lost
PC1	Received	Received	Lost	Lost	Received	Received	Lost	Lost
PC2	Lost	Lost	Received	Received	Lost	Lost	Received	Received
PC3	Lost	Lost	Received	Received	Lost	Lost	Received	Received
PC4	Received	Received	Lost	Lost	Received	Received	Lost	Lost
PC5	Received	Received	Lost	Lost	Received	Received	Lost	Lost
PC6	Lost	Lost	Received	Received	Lost	Lost	Received	Received
PC7	Lost	Lost	Received	Received	Lost	Lost	Received	Received

สรุปผลการทดลอง

จากการทดลองทำให้เราทราบว่าเมื่อเราไม่ได้กำหนดวง VLAN กับ Port มันจะถูกกำหนดค่า เริ่มต้นให้เป็น VLAN 1 หรือ Native VLAN (By default) โดยการกำหนดวง VLAN ให้กับ Port มีผลอย่างมาก โดยเราจะไม่สามารถรับ-ส่งข้อมูลนอกวง VLAN ได้เลย แต่นั่นก็คือว่าเป็นข้อดี สำหรับบางกรณีเช่น ในบริษัทหากเราไม่ทำการแยกวง VLAN ในการทำงานของแต่ละแผนก โดย ผู้ใช้งานแผนก A ต้องการส่งข้อมูลหนึ่ง ๆ ไปให้กับบุคคลในแผนก A ทั้งหมด ในทางปฏิบัติคงไม่มี ใครจะทำการส่งข้อมูลทีละคน ดังนั้น เมื่อเราไม่มีการแยกใช้วง VLAN กัน อาจจะทำให้เราได้รับ ข้อมูลของแผนก A มาซึ่งถือว่าเป็นปัญหาเมื่อเป็นข้อมูลลับเฉพาะ หรือ ข้อมูลเฉพาะแผนก ทำให้มี ความปลอดภัยมากขึ้น เพราะมั่นใจได้ว่าจะไม่มีการสื่อสารข้ามวง VLAN ได้ ดังนั้น เราจึงใช้เรื่อง ของ VLAN มาแก้ปัญหาดังกล่าว