PYTORCH

Ben

INTRODUCTION

- Pytorch is a deep learning framework that puts Python first.
- Based on Torch but write in Python.
- Tensors and Dynamic neural networks in Python with strong GPU acceleration.

COMPONENTS

torch	a Tensor library like NumPy, with strong GPU support
torch.autograd	a tape-based automatic differentiation library that supports all differentiable Tensor operations in torch
torch.nn	a neural networks library deeply integrated with autograd designed for maximum flexibility
torch.multiprocessing	Python multiprocessing, but with magical memory sharing of torch Tensors across processes. Useful for data loading and Hogwild training.
torch.utils	DataLoader, Trainer and other utility functions for convenience
torch.legacy(.nn/.optim)	legacy code that has been ported over from torch for backward compatibility reasons

FEATURES

- A GPU-ready Tensor library
- Dynamic Neural Networks: Tape based autograd
- Python first
- Fast
- Extensions without pain

GPU ACCELERATION

- Based on NVIDIA CUDA
- Use CUDA semantics then run on GPU
- Support multi-GPU on a single machine.

```
dtype = torch.FloatTensor
# dtype = torch.cuda.FloatTensor # Uncomment this to run on GPU
```


DYNAMIC NEURAL NETWORKS

Most frameworks such as TensorFlow, Theano, A graph is created on the fly Caffe and CNTK have a static view of the world.

- One has to build a neural network, and reuse the same structure again and again.
- Changing the way the network behaves means that one has to start from scratch.

With PyTorch, we use a technique called Reverse-mode auto-differentiation, which allows you to change the way your network behaves arbitrarily with zero lag or overhead.

```
from torch.autograd import Variable
x = Variable(torch.randn(1, 10))
prev h = Variable(torch.randn(1, 20))
W h = Variable(torch.randn(20, 20))
W \times = Variable(torch.randn(20, 10))
```


COMPARISON

- TensorFlow is a safe bet for most projects. Not perfect but has huge community, wide usage.
- I(Fei–Fei Li) think Pytorch is **best** for research. However still new, there can be rough patches.
- Use TensorFlow for one graph over many machines
- Consider Caffe, Caffe2, or TensorFlow for production deployment
- Consider TensorFlow or Caffe2 for mobile

CODE COMPARISON

numpy

N, D_in, H, D_out = 64, 1000, 100, 10 x = np.random.randn(N, D_in) y = np.random.randn(N, D_out) w1 = np.random.randn(D_in, H) w2 = np.random.randn(H, D out)

learning_rate = 1e-6 for t in range(500):

h = x.dot(w1) h_relu = np.maximum(h, 0)

y_pred = h_relu.dot(w2)
loss = np.square(y_pred - y).sum()

grad_y_pred = 2.0 * (y_pred - y)
grad_w2 = h_relu.T.dot(grad_y_pred)

grad_h_relu = grad_y_pred.dot(w2.T)

grad_h = grad_h_relu.copy()
grad_h[h < 0] = 0</pre>

grad_w1 = x.T.dot(grad_h)

w1 -= learning_rate * grad_w1

w2 -= learning_rate * grad_w2

tensorflow

```
N, D in, H, D out = 64, 1000, 100, 10
x = tf.placeholder(tf.float32, shape=(None, D_in))
y = tf.placeholder(tf.float32, shape=(None, D_out))
w1 = tf.Variable(tf.random_normal((D_in, H)))
w2 = tf.Variable(tf.random normal((H, D out)))
h = tf.matmul(x, w1)
h relu = tf.maximum(h, tf.zeros(1))
y_pred = tf.matmul(h_relu, w2)
loss = tf.reduce_sum((y - y_pred) ** 2.0)
grad w1, grad w2 = tf.gradients(loss, [w1, w2])
learning rate = 1e-6
new_w1 = w1.assign(w1 - learning_rate * grad_w1)
new w2 = w2.assign(w2 - learning_rate * grad_w2)
with tf.Session() as sess:
  sess.run(tf.global_variables_initializer())
  x value = np.random.randn(N, D in)
  y_value = np.random.randn(N, D_out)
  for _ in range(500):
    loss_value, _, _ = sess.run([loss, new_w1, new_w2
                                feed dict={x: x value
```

pytorch

```
dtype = torch.FloatTensor
N, D_in, H, D_out = 64, 1000, 100, 10
x = Variable(torch.randn(N, D_in).type(dtype),
y = Variable(torch.randn(N, D_out).type(dtype),
w1 = Variable(torch.randn(D_in, H).type(dtype),
w2 = Variable(torch.randn(H, D_out).type(dtype),
learning_rate = 1e-6
for t in range(500):
    y_pred = x.mm(w1).clamp(min=0).mm(w2)
    loss = (y_pred - y).pow(2).sum()
    w1.grad.data.zero_()
    w2.grad.data.zero_()
    loss.backward()
    w1.data -= learning_rate * w1.grad.data
    w2.data -= learning_rate * w2.grad.data
```


DEMO

Classifying Names with a Character-Level RNN

- Preparing the Data
- Turning Names into Tensors
- Creating the Network
- Training the Network
- Evaluating the Results

RESULT

> Dovesky (-0.87) Czech

(-0.88) Russian

(-2.44) Polish

> Jackson

(-0.74) Scottish

(-2.03) English

(-2.21) Polish

> Satoshi

(-0.77) Arabic

(-1.35) Japanese

(-1.81) Polish

HOW TO STUDY IT

- <u>tutorials</u>
- pytorch/examples
- PyTorch doc
- PyTorch Forums

Thanks!

WORKFLOW (APPLICATION)

- 1. Observed data
- **5.** Data cleaning

2. Find feature

6. Engineering

- **3. Design algorithms →** 7. Product feedback

- **▶** 4. Verification
- **8.** To the begin

WORKFLOW (CODING)

A typical training procedure for a neural network is as follows:

- Define the neural network that has some learnable parameters (or weights)
- Iterate over a dataset of inputs
- Process input through the network
- Compute the loss (how far is the output from being correct)
- Propagate gradients back into the network's parameters
- Update the weights of the network, typically using a simple update rule:
 weight = weight + learning_rate * gradient

