Warmup/Interlude recall: gen'lized μ -eigenspace bigcup_n ker((T - μ)^n)

three cases where V is a single gen'lized eigensp.

what's the dim of the actual µ-eigenspace?

smallest k s.t. $ker((T - \mu)^k) = V$?

in general: V = sum_i W_i
for gen'lized eigenspaces W_1, ..., W_ℓ
with eigenvals λ 1, ..., λ ℓ

for each,
$$k_i$$
 s.t. $ker((T - \lambda_i)^k) = W_i$
= k_i s.t. $(T - \lambda_i)|_{W_i}^k$ is zero

in this case k_i ≤ dim W_i

Thm above, prod_i
$$(T - \lambda_i)^k(k_i)$$
 is zero on V

(Axler, §5B)		<u>Rem</u>	these are examples where deg < dim V
<u>Df</u>	the minimal polynomial of T is the monic poly p(z) of minimal deg s.t. p(T) is zero denoted minpoly_T(z) in C[z]	Rem	min poly still exists with deg ≤ dim V even when F = R (will defer proof to HW or later lecture)
(monic = the coeff of the highest power of z is 1)		(Axler,	for gen'lized eigenspace W with eigenval λ
<u>Cor</u>	if F = C and V is fin. dim., then 1) minpoly_T(z) exists		observe: T _W – λ is nilpotent
	2) deg minpoly_T(z) ≤ dim V	<u>Thm</u>	for any F and W fin. dim.: if S : W to W is nilpotent
<u>Ex</u>	if $T = id_V$, then minpoly_ $T(z) = z - 1$		then S has a matrix with 1's and 0's on the super-diagonal
<u>Ex</u>	if $T = zero op$, then minpoly_ $T(z) = z$		0's everywhere else

T| W has a matrix with Cor 1's and 0's on the super-diagonal λ's on the diagonal 0's everywhere else e.g. above: called Jordan blocks

each Jordan block J corresponds to a T-stable linear subspace W_J sub W

 W_J has a basis $e_1, ..., e_d$ s.t. $T|_{W_J}e_1 = \lambda e_1$ $T|_{W_J}e_i = \lambda e_i + e_{i-1}$ for $1 < i \le d$

Df a sequence e_d \rightarrow ... \rightarrow e_1 of max len obeying these identities is called a Jordan chain for T of length d with eigenval λ

thus: T has a Jordan chain of len d, eigenval λ iff

T has a matrix with a d x d Jordan block with diagonal entries all λ

[now, can restate thm for nilpotent ops in terms of Jordan chains]

Thm for any F and W fin. dim.:

if S: W to W is nilpotent
then there is a basis for W that is
a disj union of Jordan chains for S,
all with eigenval 0

Jordan chains:
$$\begin{array}{ccc} e_2 \rightarrow e_1, \\ e_3, \\ e_6 \rightarrow e_5 \rightarrow e_4 \end{array}$$

im(S) is T-stable:

Jordan chains for T_{im(S)}: e_1
 e_5
$$\rightarrow$$
 e_4

just need two steps to bootstrap from im(S) to W:

- 1) extend each Jordan chain in im(S) by one elt
- add a Jordan chain of length 1
 for each e_i in ker(S) s.t. e_i notin im(S)

then check that the result is indeed a basis for W

<u>Pf</u> if $W = \{0\}$, then done induct on dim W

else: ker(S) ≠ {0} as some power of S is zero so dim im(S) < dim W and im(S) is S-stable (by stability lem) so by the inductive hypothesis, im(S) has a basis that is a disj union of Jordan chains all with eigenval 0

for some w_1, w_2, ..., w_s in im(S)

note: since this is a basis for im(S), {S^{d_1} w_1, ..., S^{d_s} w_s} is a basis for ker(S|_{im(S)}) [why? linearly independent and span]

[steps described earlier:]

- 1) pick f_1, ..., f_s in W s.t. Se_i = w_i
- 2) extend above basis for ker(S|_{im(S)}) to a basis for ker(S)

say, {S^{d_1} w_1, ..., S^{d_s} w_s, u_1, ..., u_t}

claim: bigcup_i {f_i, S f_i, ..., S^{d_1 + 1} f_i} cup {u_1, ..., u_t} is a basis for W [the S^k f_i's give the Jordan chains of len ≥ 2] [the u_j's give the Jordan chains of len 1]

by PS3, #1, suffices to show:

- # of vectors = dim W
- linear independence

of vectors:
$$(d_1 + 2) + ... + (d_s + 2) + t$$

= $(d_1 + 1) + ... + (d_s + 1) + s + t$
= dim im(S) + s + t
= dim im(S) + dim ker(S)
= dim W

linear independence: pick a_{i, k}, b_j s.t. $sum_{i, k} a_{i, k} S^k f_i + sum_{j, u_j} = 0$ applying S to both sides: sum_{i, k} a_{i, k} S^k w_i + sum_i b_i 0 = 0

so by inductive hypothesis, a_{i} , k = 0 for all i, k so now, sum_j b_j u_j = **0** but the u_j's were constructed as part of a basis so b_j = 0 for all j \Box