Esame di Ricerca Operativa del 16/01/18

(Cognome)	(Nome)	(Numero di Matricola)

Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare:

$$\begin{cases} \min \ 3 \ y_1 + 9 \ y_2 + 9 \ y_3 + 7 \ y_4 + y_5 + 10 \ y_6 \\ -3 \ y_1 + 3 \ y_2 + 3 \ y_3 - y_4 - y_5 + 2 \ y_6 = 7 \\ -2 \ y_1 - 2 \ y_2 + y_3 + 3 \ y_4 + y_6 = 8 \\ y \ge 0 \end{cases}$$

Base	Soluzione di base	Ammissibile (si/no)	Degenere
		(81/110)	(81/110)
$\{1, 2\}$	x =		
$\{1, 5\}$	y =		

Esercizio 2. Effettuare due iterazioni dell'algoritmo del simplesso duale per il problema dell'esercizio 1.

	Base	x	y	Indice	Rapporti	Indice
				entrante		uscente
1° iterazione	{5,6}					
2° iterazione						

Esercizio 3. Un'azienda vinicola produce due tipi di vino (A e B) i cui prezzi di vendita al litro sono rispettivamente di 2.30 euro e di 4.20 euro. La produzione dei vini richiede due tipi di uve (Cabernet e Sangiovese) che l'azienda acquista rispettivamente al costo di 0.45 euro/kg e 0.30 euro/kg. La manodopera è disponibile in al più 700 ore-uomo con un costo di 15 euro/ora. La tabella seguente indica i kg di uva e le ore di manodopera necessarie per la produzione di un litro di ciascun tipo di vino.

	vino A	vino B
Cabernet	0.8	0.7
Sangiovese	0.5	0.4
manodopera	0.03	0.06

Sapendo che il budget disponibile per l'acquisto delle uve e della manodopera è pari a 140000 euro e supponendo che tutto il vino prodotto sia venduto, si determini la produzione di vino A e di vino B che massimizzi il profitto dell'azienda. (Usare un'equivalenza 1kg=1L)

en azienaa. (Obaro un equivarenza 118 12)	
variabili decisionali:	
modello:	

COMANDI DI MATLAB						
c=	intlinprog=					
A=	b=					
Aeq=	beq=					
lb=	ub=					

Esercizio 4. Completare la seguente tabella considerando il problema di flusso di costo minimo sulla seguente rete (su ogni nodo è indicato il bilancio e su ogni arco sono indicati, nell'ordine, il costo e la capacità).

Archi di T	Archi di U	Soluzione di base	Ammissibile	Degenere
			(si/no)	(si/no)
(1,2) $(1,4)$ $(2,5)$				
(3,5) $(4,6)$ $(6,7)$	(4,3)	x =		
(1,2) (3,2) (3,5)				
(3,7) $(4,3)$ $(6,7)$	(2,5)	$\pi = (0,$		

Esercizio 5. Effettuare due iterazioni dell'algoritmo del simplesso su reti per il problema dell'esercizio 4.

	1° iterazione	2° iterazione
Archi di T	(1,4) (3,2) (3,5) (4,6) (5,7) (6,7)	
Archi di U	(2,5)	
x		
π		
Arco entrante		
ϑ^+,ϑ^-		
Arco uscente		

Esercizio 6. Si consideri il seguente problema di programmazione lineare intera:

$$\begin{cases} \max 13 \ x_1 + 5 \ x_2 \\ 13 \ x_1 + 11 \ x_2 \le 68 \\ 11 \ x_1 + 18 \ x_2 \le 61 \\ x_1 \ge 0 \\ x_2 \ge 0 \\ x_1, x_2 \in \mathbb{Z} \end{cases}$$

a) Calcolare una valutazione superiore del valore ottimo risolvendo il rilassamento continuo.

sol. ottima del rilassamento = $v_S(P) =$

b) Calcolare una valutazione inferiore del valore ottimo arrotondando la soluzione ottima del rilassamento.

sol. ammissibile = $v_I(P) =$

c) Calcolare un taglio di Gomory.

r = taglio:

Esercizio 7. a) Applicare l'algoritmo di Dijkstra per trovare l'albero dei cammini minimi di radice 1 sulla seguente rete.

	ite	r 1	ite	r 2	ite	r 3	ite	r 4	ite	r 5	ite	r 6	ite	r 7
	π	p												
nodo visitato														
nodo 2														
nodo 3														
nodo 4														
nodo 5														
nodo 6														
nodo 7														
insieme Q														

b) Applicare l'algoritmo FFEK per trovare il flusso massimo tra il nodo 1 ed il nodo 7 sulla seguente rete.

cammino aumentante	δ	x	v

Taglio di capacità minima: $N_s =$

Esercizio 8. Si consideri il problema di caricare un container di volume pari a 503 metri cubi, cercando di massimizzare il valore dei beni inseriti (ogni bene può essere inserito al massimo una volta).

Beni	1	2	3	4	5	6	7
Valori	14	15	6	5	8	7	22
Volumi	136	105	47	49	456	439	262

a) Calcolare una valutazione inferiore del valore ottimo applicando l'algoritmo greedy.

sol. ammissibile =	$v_I(P) =$

b) Calcolare una valutazione superiore del valore ottimo risolvendo il rilassamento continuo.

sol.	ottima del rilassamento =	$v_S(P) =$

c) Risolvere il problema applicando il metodo del *Branch and Bound*. Effettuare la visita dell'albero per ampiezza e in ogni nodo istanziare l'eventuale variabile frazionaria.

Esercizio 9. Trovare massimi e minimi della funzione $f(x_1, x_2) = x_1$ sull'insieme

$$\{x \in \mathbb{R}^2 : x_1 \cdot x_2 \le 0, \quad x_1^2 - 2x_1x_2 + x_2^2 - 1 \le 0\}.$$

Soluzioni del	sistema LK	Γ	Mass	Massimo		mo	Sella
x	λ	μ	globale	locale	globale	locale	
(-1,0)							
(0,1)							
(0,-1)							
(1,0)							

Esercizio 10. Si consideri il seguente problema:

$$\begin{cases} \min -2 x_1 x_2 - 9 x_1 + x_2 \\ x \in P \end{cases}$$

e i vertici di P sono (1,-2) , (-2,4) , (1,4) e (-4,-1). Fare un passo del metodo del gradiente proiettato.

Punto	Matrice M	Matrice H	Direzione	Max spostamento possibile	Passo	Nuovo punto
(1,2)						

Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare:

$$\begin{cases} \min & 3 \ y_1 + 9 \ y_2 + 9 \ y_3 + 7 \ y_4 + y_5 + 10 \ y_6 \\ -3 \ y_1 + 3 \ y_2 + 3 \ y_3 - y_4 - y_5 + 2 \ y_6 = 7 \\ -2 \ y_1 - 2 \ y_2 + y_3 + 3 \ y_4 + y_6 = 8 \\ y \ge 0 \end{cases}$$

Base	Soluzione di base	Ammissibile (si/no)	Degenere (si/no)
{1, 2}	x = (1, -3)	SI	NO
{1, 5}	y = (-4, 0, 0, 0, 5, 0)	NO	NO

Esercizio 2. Effettuare due iterazioni dell'algoritmo del simplesso duale per il problema dell'esercizio 1.

	Base	x	y	Indice	Rapporti	Indice
				entrante		uscente
1° iterazione	{5, 6}	(-1, 12)	$(0, \ 0, \ 0, \ 0, \ 9, \ 8)$	4	$\frac{9}{7}, \frac{8}{3}$	5
2° iterazione	{4, 6}	$\left(\frac{23}{7}, \frac{24}{7}\right)$	$\left(0,\ 0,\ 0,\ \frac{9}{7},\ 0,\ \frac{29}{7}\right)$	3	$\frac{29}{10}$	6

Esercizio 3.

$$\left\{\begin{array}{l} \max\left(2.3x_A+4.2x_B\right)-\left(0.45x_A+0.9x_B\right)-\left(0.36x_A+0.315x_B\right)-\left(0.15x_A+0.12x_B\right) \\ 0.03x_A+0.06x_B \leq 700 \\ \left(0.45x_A+0.9x_B\right)+\left(0.36x_A+0.315x_B\right)+\left(0.15x_A+0.12x_B\right) \leq 140000 \end{array}\right.$$

Le spese sono: $(0.45x_A + 0.9x_B)$ (manodopera) $(0.36x_A + 0.315x_B)$ (cabernet) $(0.15x_A + 0.12x_B)$ (sangiovese)

 $0.8 \times 0.45 = 0.36, 0.7 \times 0.45 = 0.315$ (cabernet) $0.5 \times 0.3 = 0.15, 0.4 \times 0.3 = 0.12$ (sangiovese)

Esercizio 4. Completare la tabella considerando il problema di flusso di costo minimo sulla seguente rete (su ogni nodo è indicato il bilancio e su ogni arco sono indicati, nell'ordine, il costo e la capacità).

Archi di T	Archi di U	Soluzione di base	Ammissibile	Degenere
			(si/no)	(si/no)
(1,2) (1,4) (2,5)				
(3,5) $(4,6)$ $(6,7)$	(4,3)	x = (-19, 0, 25, -12, 0, 18, 0, 12, 10, 0, 7)	NO	SI
(1,2) (3,2) (3,5)				
(3,7) $(4,3)$ $(6,7)$	(2,5)	$\pi = (0, 10, 4, -6, 14, -2, 7)$	SI	SI

Esercizio 5. Effettuare due iterazioni dell'algoritmo del simplesso su reti per il problema dell'esercizio 4.

	1° iterazione	2° iterazione		
Archi di T	(1,4) (3,2) (3,5) (4,6) (5,7) (6,7)	(1,4) (3,2) (3,7) (4,6) (5,7) (6,7)		
Archi di U	(2,5)	(2,5)		
x	(0, 0, 6, 9, 2, 4, 0, 0, 3, 7, 0)	(0, 0, 6, 9, 2, 0, 4, 0, 3, 3, 0)		
π	(0, 4, -2, 5, 8, 9, 18)	(0, 21, 15, 5, 8, 9, 18)		
Arco entrante	(3,7)	(1,2)		
ϑ^+,ϑ^-	9, 4	5, 0		
Arco uscente	(3,5)	(6,7)		

Esercizio 6. Si consideri il seguente problema di programmazione lineare intera:

$$\begin{cases} \max 13 \ x_1 + 5 \ x_2 \\ 13 \ x_1 + 11 \ x_2 \le 68 \\ 11 \ x_1 + 18 \ x_2 \le 61 \\ x_1 \ge 0 \\ x_2 \ge 0 \\ x_1, x_2 \in \mathbb{Z} \end{cases}$$

a) Calcolare una valutazione superiore del valore ottimo risolvendo il rilassamento continuo.

sol. ottima del rilassamento =
$$\left(\frac{68}{13}, 0\right)$$
 $v_S(P) = 68$

b) Calcolare una valutazione inferiore del valore ottimo arrotondando la soluzione ottima del rilassamento.

sol. ammissibile =
$$(5,0)$$

c) Calcolare un taglio di Gomory.

Esercizio 7. a) Applicare l'algoritmo di Dijkstra per trovare l'albero dei cammini minimi di radice 1 sulla seguente rete

	iter	1	iter	2	iter	. 3	ite	r 4	ite	r 5	ite	r 6	ite	r 7
	π	p	π	p	π	p	π	p	π	p	π	p	π	p
nodo visitato	1		2		3		4	1		Ď	(5	7	7
nodo 2	6	1	6	1	6	1	6	1	6	1	6	1	6	1
nodo 3	6	1	6	1	6	1	6	1	6	1	6	1	6	1
nodo 4	12	1	12	1	12	1	12	1	12	1	12	1	12	1
nodo 5	$+\infty$	-1	19	2	12	3	12	3	12	3	12	3	12	3
nodo 6	$+\infty$	-1	$+\infty$	-1	$+\infty$	-1	15	4	15	4	15	4	15	4
nodo 7	$+\infty$	-1	$+\infty$	-1	23	3	23	3	21	5	19	6	19	6
$\begin{matrix} \text{insieme} \\ Q \end{matrix}$	2, 3	, 4	3, 4	, 5	4, 5	, 7	5, 6	5, 7	6,	7	7	7	Q	Ď

b) Applicare l'algoritmo di Ford-Fulkerson (con la procedura di Edmonds-Karp per la ricerca del cammino aumentante) per trovare il flusso massimo tra il nodo 1 ed il nodo 7 sulla seguente rete.

cammino aumentante	δ	x	v
1 - 3 - 7	8	(0, 8, 0, 0, 0, 0, 8, 0, 0, 0, 0)	8
1 - 2 - 5 - 7	7	(7, 8, 0, 0, 7, 0, 8, 0, 0, 7, 0)	15
1 - 4 - 6 - 7	5	(7, 8, 5, 0, 7, 0, 8, 0, 5, 7, 5)	20

Taglio di capacità minima: $N_s = \{1, 2, 3, 5\}$ $N_t = \{4, 6, 7\}$

Esercizio 8. Si consideri il problema di caricare un container di volume pari a 503 metri cubi, cercando di massimizzare il valore dei beni inseriti (ogni bene può essere inserito al massimo una volta).

Beni	1	2	3	4	5	6	7
Valori	14	15	6	5	8	7	22
Volumi	136	105	47	49	456	439	262

a) Calcolare una valutazione inferiore del valore ottimo applicando l'algoritmo greedy.

sol. ammissibile =
$$(1, 1, 1, 1, 0, 0, 0)$$

 $v_I(P) = 40$

 $v_S(P) = 53$

b) Calcolare una valutazione superiore del valore ottimo risolvendo il rilassamento continuo.

sol. ottima del rilassamento =
$$\left(1, 1, 1, 1, 0, 0, \frac{83}{131}\right)$$

c) Risolvere il problema applicando il metodo del *Branch and Bound*. Effettuare la visita dell'albero per ampiezza e in ogni nodo istanziare l'eventuale variabile frazionaria.

soluzione ottima = (1, 1, 0, 0, 0, 0, 1)

valore ottimo = 51

Esercizio 9. Trovare massimi e minimi della funzione $f(x_1, x_2) = x_1$ sull'insieme

$$\{x \in \mathbb{R}^2 : x_1 x_2 \le 0, \quad x_1^2 - 2x_1 x_2 + x_2^2 - 1 \le 0\}.$$

Soluzioni del	sistema LKT	Massimo		Mini	Sella		
x	λ	μ	globale	locale	globale	locale	
(-1, 0)	$\left(1,\frac{1}{2}\right)$		NO	NO	SI	SI	NO
(0, 1)	(-1,0)		NO	SI	NO	NO	NO
(0, -1)	(1,0)		NO	NO	NO	SI	NO
(1, 0)	$\left(-1,-\frac{1}{2}\right)$		SI	SI	NO	NO	NO

Esercizio 10. Si consideri il seguente problema:

$$\begin{cases} \min & -2x_1x_2 - 9x_1 + x_2 \\ x \in P \end{cases}$$

dove P è il poliedro di vertici (1,-2), (-2,4), (1,4) e (-4,-1). Fare una iterazione del metodo del gradiente proiettato.

Punto	Matrice M	Matrice H	Direzione	Max spostamento possibile	Passo	Nuovo punto
(1, 2)	(1,0)	$\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$	(0,1)	2	2	(1,4)