3º Exercício Programa de PMR 3401 Data de entrega: 03/07/20 Método de Elementos Finitos (MEF)

1) Torres de turbinas eólicas são sujeitas a carregamentos dinâmicos que podem induzir comportametos vibracionais indesejáves.

(ver: https://www.youtube.com/watch?v=H4GXjpMgHFE)

Figura 1 – (a) Ilustração de uma torre de turbina eólica sob ação do vendo. (b)Estrutura da torre: carregamentos e condições de contorno do problema. (c) Domínio do problema: dimensões da torre.

A figura 1.a ilustra a torre de uma turbina eólica sob ação do vento. A torre é modelada por pórticos sob ação de dois carregamentos dinâmicos: $\overrightarrow{F_1(t)}$ que é a força de desbalanceamento do rotor e $\overrightarrow{F_2(t)}$ que é a força de arrasto do vento na torre, dados por :

$$\overrightarrow{F_1(t)} = 2.F.\sin(2\pi t)\overrightarrow{j}$$

$$\overrightarrow{F_2(t)} = \begin{cases} 5.D\vec{i} & \text{se } t_1 \le t \le t_2 \\ 0 & \text{se } t < t_1 \text{ ou } t > t_2 \end{cases}$$

A geometria da estrutura é apresentada na figura 1.c sendo que as pórticos tem seção vazada circular. Todas as pórticos internas (em linhas finas) tem seção com diâmetro interno e externo, d_{1i} e d_{1e} menores do que as demais pórticos (em linhas espessas) de diâmetros interno e externo d_{2i} e d_{2e} , ver figura 2. A tabela 1 lista todos os parâmetros do problema com **unidades no S.I**:

F	D	t_1	t_2	L_1	L_2	υ
8000	2000	2,0	8,0	2,0	3,0	0,29
d_{1i}	d_{1e}	d_{2i}	d_{2e}	L_3	E	ρ
0,072	0,080	0,090	0,100	4,0	210.10^9	7650

Tabela I – Parâmetros do problemas (todas as unidades em S.I).

Figura 2: Seções transversais das pórticos.

- a) Utilizando o software ANSYS ou similar e evitando gráficos de <u>fundo preto</u>:
 - **a.1**) Obtenha e plote os 6 primeiros modos de vibrar e frequências de ressonância da estrutura (sem amortecimento);
 - a.2) Obtenha a resposta transiente da estrutura utilizando o método direto Newmark β . Considere os coeficientes de amortecimento do modelo de Rayleigh $\alpha = 3x10^{-1}$ e $\beta = 3x10^{-2}$ ([C]= α [M]+ β [K]). Plote em um mesmo gráfico as tensões mecânicas σ nos pontos A e B (da viga que ascende da esquerda para direita) e em outro gráfico os deslocamentos u nos pontos D e E (ambos no centro do pórtico) indicados na figura em função do tempo. Condição inicial: velocidade e deslocamentos nulos:
 - **a.3**) Obtenha o diagrama de resposta em frequência da norma dos deslocamentos nas direções x e y ($\|\mathbf{u}\|$ vs f) para B e C (da viga que ascende da esquerda para direita) de forma que sejam observados os picos de ressonância correspondentes às três primeiras frequências obtidas em (a.1) (sem amortecimento). Sendo $\|\mathbf{u}\| = \left| \left| \sqrt{u_x^2 + u_y^2} \right| \right|$ a amplitude de deslocamento.
 - **a.4**) Discuta a influência da discretização da malha nos valores de frequência de ressonância e da discretização do tempo Δt no deslocamento do ponto A.
- **b)** Utilizando o software SCILAB (ou MATLAB):
 - **b.1**) Desenvolva um **programa específico** de MEF para resolver o problema acima, itens **a.1** até **a.3**, baseando-se nos programas listados na apostila *a13-3401.doc*;
 - **b.2**) Compare os resultados do ANSYS (ou similar) com os resultados do seu programa (por exemplo, plote ambos os resultados no mesmo gráfico).

2) Considere a peça simétrica da figura abaixo.

Resolva o problema usando o programa ANSYS (ou similar) considerando estado plano de tensões ("plane stress"), ou seja:

- a) Plote a estrutura deformada e identifique o máximo valor de deslocamento e onde ocorre;
- b) Plote as tensões mecânicas de von Mises na estrutura e obtenha os valores de tensão nos pontos A, B e C. Verifique a influência da discretização da malha nos resultados;
- c) Identifique o máximo valor de tensão de von Mises e onde ocorre, bem como os demais pontos onde ocorrem concentração de tensões na estrutura. Sugira modificações na estrutura para reduzir a concentração de tensões;