PATENT ABSTRACTS OF JAPAN

(11)Publication number:

10-073927

(43)Date of publication of application: 17.03.1998

(51)Int.CI.

GO3F 7/095

C23F 1/00

7/038 GO3F

GO3F 7/26

H01L 21/027

// H01L 21/3065

(21)Application number: 09-080940

(71)Applicant: MITSUBISHI ELECTRIC CORP

(22)Date of filing:

31.03.1997

(72)Inventor: ISHIBASHI TAKEO

TOYOSHIMA TOSHIYUKI KATAYAMA KEIICHI

MINAMIDE AYUMI

(30)Priority

Priority number: 08176851

Priority date: 05.07.1996 Priority country: JP

(54) FINE PATTERN FORMING MATERIAL, MANUFACTURE OF SEMICONDUCTOR DEVICE USING SAME, AND SEMICONDUCTOR DEVICE

and the first of the control of the

(57)Abstract:

PROBLEM TO BE SOLVED: To perform a pattern formation exceeding the wavelength limit in fining of a separating pattern or hole pattern by using a fine pattern forming material which mainly contains a water-soluble resin, a mixture of water-soluble resins, or a copolymer of water-soluble resins, and causes a crosslinking reaction in the presence of acid.

SOLUTION: A fine pattern forming material which mainly contains one water-soluble resin, a mixture of two or more of water-soluble resins, or a copolymer of two or more of water-soluble resins, and causes a crosslinking reaction in

(a)

(=1

the presence of acid is used. In the manufacture of a semiconductor device, a resist pattern 1a containing a material generating acid by exposure is covered with a resist 2 containing a material crosslinked in the presence of acid. The acid is generated in the resist pattern 1a by heating or exposure, and a crosslinked layer 4 generated on the

interface is formed as the covering layer of the resist pattern 1a to thicken the resist pattern 1a. Thus, the resist hole diameter and the separating width can be reduced.

LEGAL STATUS

[Date of request for examination]

22.02.1999

[Date of sending the examiner's decision of rejection]

· [Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

3071401

[Date of registration]

26.05.2000

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

* NOTICES *

JPO and NCIPI are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

CLAIMS

[Claim(s)]

[Claim 1] The detailed pattern formation ingredient which uses one kind of water soluble resin, or two kinds or more of said water soluble resin of mixture, or the copolymerization object by two or more kinds of said water soluble resin as a principal component, and is characterized by producing crosslinking reaction by existence of an acid.

[Claim 2] The detailed pattern formation ingredient according to claim 1 characterized by using one kind in polyacrylic acid, a polyvinyl acetal, a polyvinyl pyrrolidone, polyvinyl alcohol, polyethyleneimine, polyethylene oxide, a styrene maleic anhydride copolymer, a polyvinyl amine, the poly allylamine, oxazoline radical content water soluble resin, water—soluble melamine resin, a water—soluble urea—resin, an alkyd resin, and a sulfonamide, or these two kinds or more of mixture, or these salts as a principal component as said water soluble resin.

[Claim 3] The detailed pattern formation ingredient which uses one kind of a water-soluble cross linking agent, or two kinds or more of said water-soluble cross linking agent of mixture as a principal component, and is characterized by producing crosslinking reaction by existence of an acid. [Claim 4] The detailed pattern formation ingredient according to claim 3 characterized by using one kind or these two kinds or more of mixture of a melamine derivative, a urea derivative,

benzoguanamine, and the glycoluryl as a principal component as said water-soluble cross linking agent.

[Claim 5] The detailed pattern formation ingredient according to claim 4 characterized by using one kind or such mixture of a melamine and the alkoxy methylene melamines as a principal component as said melamine derivative.

[Claim 6] The detailed pattern formation ingredient according to claim 4 characterized by using one kind or these two kinds or more of mixture of a urea, alkoxy methyleneurea, N-alkoxy methyleneurea, an ethylene urea, and an ethylene urea carboxylic acid as a principal component as said urea derivative.

[Claim 7] The detailed pattern formation ingredient which uses one kind of water soluble resin or two kinds or more, one kind of a water-soluble cross linking agent, or two kinds or more of mixture as a principal component, and is characterized by producing crosslinking reaction by existence of an acid.

[Claim 8] The detailed pattern formation ingredient according to claim 7 characterized by using either of the mixture of a melamine derivative, a urea derivative or a melamine derivative, and a urea derivative as said water-soluble cross linking agent, using either of the mixture of a polyvinyl acetal, polyvinyl alcohol or polyvinyl alcohol, and a polyvinyl acetal as said water soluble resin.

[Claim 9] The detailed pattern formation ingredient according to claim 1 to 8 characterized by including a plasticizer as an additive.

[Claim 10] The detailed pattern formation ingredient according to claim 1 to 8 characterized by including a surfactant as an additive.

[Claim 11] The process which forms the 1st resist pattern which may generate an acid on a semi-conductor base material by the 1st resist, The process which forms the 2nd resist which causes crosslinking reaction by existence of an acid on said 1st resist pattern, Down stream processing which forms the bridge formation film in the part which touches said 1st resist pattern of said 2nd resist by supply of the acid from said 1st resist pattern, The manufacture approach of the semiconductor device characterized by including the process which exfoliates the part of said 2nd resist non-constructing a bridge, and forms the 2nd resist pattern, and the process which etches said semi-conductor base material by using this 2nd resist pattern as a mask.

[Claim 12] The manufacture approach of the semiconductor device according to claim 11 characterized by forming said 1st resist pattern by the resist which generates an acid by heat-treatment.

[Claim 13] The manufacture approach of the semiconductor device according to claim 11 characterized by forming said 1st resist pattern by the resist which generates an acid by exposure.

[Claim 14] The manufacture approach of the semiconductor device according to claim 11 characterized by forming said 1st resist pattern by the resist containing an acid.

[Claim 15] The manufacture approach of the semiconductor device according to claim 11 characterized by forming said 1st resist pattern by the resist which performed surface preparation by the acid liquid or acid gases.

[Claim 16] The manufacture approach of the semiconductor device according to claim 11 to 15 characterized by using the resist which uses novolak resin and mixture of a naphthoquinonediazide system sensitization agent as a principal component as said 1st resist.

[Claim 17] The manufacture approach of the semiconductor device according to claim 11 to 15 characterized by using the chemistry magnification mold resist which has the device in which an acid is generated, as said 1st resist.

[Claim 18] The manufacture approach of the semiconductor device according to claim 11 characterized by using said detailed pattern formation ingredient according to claim 1 to 10 as said 2nd resist.

[Claim 19] The manufacture approach of the semiconductor device according to claim 11 characterized by controlling reacting weight with said 1st resist by adjusting the amount of mixing of said water soluble resin and said water—soluble cross linking agent, using said detailed pattern formation ingredient according to claim 7 as said 2nd resist.

[Claim 20] The manufacture approach of the semiconductor device according to claim 11 characterized by controlling reacting weight with said 1st resist by adjusting the degree of acetalization of said polyvinyl acetal, using said detailed pattern formation ingredient according to claim 8 as the 2nd resist.

[Claim 21] The manufacture approach of the semiconductor device according to claim 11 to 20 characterized by using water or a water-soluble mixed solvent as a solvent of said 2nd resist. [Claim 22] The manufacture approach of a semiconductor device given in claim 11 characterized by forming said bridge formation film in contact with the front face of said 1st resist pattern by heat-treating said 1st resist pattern and said 2nd resist formed on said 1st resist pattern thru/or any 1 term of 21.

[Claim 23] By exposing a predetermined field from on said 2nd resist formed on said 1st resist pattern and said 1st resist pattern, there is nothing to claim 11 characterized by forming said bridge formation film in said predetermined field of said 1st resist pattern, and it is the manufacture approach of a semiconductor device given in either of 21.

[Claim 24] There is nothing to claim 11 which carries out electron beam irradiation of except for the

4/27/2006 3:46 PM

predetermined field of said 1st resist pattern, and is characterized by forming said 2nd resist on this 1st resist pattern by which electron beam irradiation was carried out, and forming said bridge formation film in said predetermined field of said 1st resist pattern, and it is the manufacture approach of a semiconductor device given in either of 21.

[Claim 25] The semiconductor device characterized by manufacturing by the manufacture approach of the semiconductor device indicated to said claim 11 thru/or either of 24.

[Translation done.]

4/27/2006 3:46 PM

* NOTICES *

JPO and NCIPI are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

DETAILED DESCRIPTION

[Detailed Description of the Invention]

[Field of the Invention] In a semi-conductor process, in case this invention forms a resist pattern, it relates to the formation approach of the ingredient for detailed separation resist patterns which reduces the separation size or hole opening size of a pattern, and the detailed separation pattern using it, the manufacture approach of the semiconductor device using this detailed separation resist pattern further, and the semiconductor device manufactured by this manufacture approach. [0002]

[Description of the Prior Art] Wiring and separation width of face which are required of a manufacture process are made detailed very much with high integration of a semiconductor device. Generally, formation of a detailed pattern forms a resist pattern with a photolithography technique, and is performed by the approach of etching the various thin films of a substrate by using the formed resist pattern as a mask after that.

[0003] Therefore, in formation of a detailed pattern, a photolithography technique becomes very important. The photolithography technique consists of resist spreading, mask alignment, exposure, and development, and the limitation has produced it from constraint of exposure wavelength in detailed-ization to detailed-izing. Furthermore, it was difficult to control the etching-proof nature of a resist by the conventional lithography process, and it was impossible to have controlled the shape of surface type, such as to carry out surface roughening of the pattern side-attachment-wall front face after etching, by control of etching-proof nature.

[Problem(s) to be Solved by the Invention] As explained above, formation of the detailed resist pattern which exceeds the limitation of the wavelength with the photolithography technique by the conventional exposure was difficult. This invention offers the detailed separation resist pattern formation technique using this, and offers the technique to which control carries out surface roughening of the shape of pattern side-attachment-wall surface type after difficult etching with the conventional lithography technique in detailed-izing of a separation pattern and a hole pattern while it offers the water-soluble ingredient which does not dissolve the substrate resist which realizes detailed separation resist pattern formation which makes pattern formation exceeding a wavelength limitation possible. Furthermore the manufacture approach of the semiconductor device using that detailed separation resist pattern formation technique tends to be offered, and it is going to offer the semiconductor device manufactured by this manufacture approach.

[Means for Solving the Problem] The detailed pattern formation ingredient of this invention uses one kind of water soluble resin, or two kinds or more of said water soluble resin of mixture, or the

copolymerization object by two or more kinds of said water soluble resin as a principal component, and is characterized by producing crosslinking reaction by existence of an acid.

[0006] Moreover, the detailed pattern formation ingredient of this invention is characterized by using one kind in polyacrylic acid, a polyvinyl acetal, a polyvinyl pyrrolidone, polyvinyl alcohol, polyethyleneimine, polyethylene oxide, a styrene maleic anhydride copolymer, a polyvinyl amine, the poly allylamine, oxazoline radical content water soluble resin, water-soluble melamine resin, a water-soluble urea-resin, an alkyd resin, and a sulfonamide, or these two kinds or more of mixture, or these salts as a principal component as said water soluble resin.

[0007] Moreover, the detailed pattern formation ingredient of this invention uses one kind of a water-soluble cross linking agent, or two kinds or more of said water-soluble cross linking agent of mixture as a principal component, and is characterized by producing crosslinking reaction by existence of an acid. Moreover, the detailed pattern formation ingredient of this invention is characterized by using one kind or these two kinds or more of mixture of a melamine derivative, a urea derivative, benzoguanamine, and the glycoluryl as a principal component as said water-soluble cross linking agent.

[0008] Moreover, the detailed pattern formation ingredient of this invention is characterized by using one kind or such mixture of a melamine and the alkoxy methylene melamines as a principal component as said melamine derivative. Moreover, the detailed pattern formation ingredient of this invention is characterized by using one kind or these two kinds or more of mixture of a urea, alkoxy methyleneurea, N-alkoxy methyleneurea, an ethylene urea, and an ethylene urea carboxylic acid as a principal component as said urea derivative.

[0009] Moreover, the detailed pattern formation ingredient of this invention uses one kind of water soluble resin or two kinds or more, one kind of a water-soluble cross linking agent, or two kinds or more of mixture as a principal component, and is characterized by producing crosslinking reaction by existence of an acid. Moreover, the detailed pattern formation ingredient of this invention is characterized by using either of the mixture of a melamine derivative, a urea derivative or a melamine derivative, and a urea derivative as said water-soluble cross linking agent, using either of the mixture of a polyvinyl acetal, polyvinyl alcohol or polyvinyl alcohol, and a polyvinyl acetal as said water soluble resin.

[0010] Moreover, the detailed pattern formation ingredient of this invention is characterized by including a plasticizer as an additive. Moreover, the detailed pattern formation ingredient of this invention is characterized by including a surfactant as an additive.

[0011] Next, the process in which the manufacture approach of the semiconductor device this invention forms the 1st resist pattern which may generate an acid on a semi-conductor base material by the 1st resist, The process which forms the 2nd resist which causes crosslinking reaction by existence of an acid on said 1st resist pattern, Down stream processing which forms the bridge formation film in the part which touches said 1st resist pattern of said 2nd resist by supply of the acid from said 1st resist pattern, It is characterized by including the process which exfoliates the part of said 2nd resist non-constructing a bridge, and forms the 2nd resist pattern, and the process which etches said semi-conductor base material by using this 2nd resist pattern as a mask. [0012] Moreover, the manufacture approach of the semiconductor device this invention is characterized by forming said 1st resist pattern by the resist which generates an acid by heat-treatment. Moreover, the manufacture approach of the semiconductor device this invention is characterized by forming said 1st resist pattern by the resist which generates an acid by exposure. [0013] Moreover, the manufacture approach of the semiconductor device this invention is characterized by forming said 1st resist pattern by the resist containing an acid. Moreover, the manufacture approach of the semiconductor device this invention is characterized by forming said 1st resist pattern by the resist which performed surface preparation by the acid liquid or acid gases.

/ 16

[0014] Moreover, the manufacture approach of the semiconductor device this invention is characterized by using the resist which uses novolak resin and mixture of a naphthoquinonediazide system sensitization agent as a principal component as said 1st resist. Moreover, the manufacture approach of the semiconductor device this invention is characterized by using the chemistry magnification mold resist which has the device in which an acid is generated, as said 1st resist. [0015] Moreover, the manufacture approach of the semiconductor device this invention is characterized by using said detailed pattern formation ingredient according to claim 1 to 11 as said 2nd resist. Moreover, the manufacture approach of the semiconductor device this invention is characterized by controlling reacting weight with said 1st resist by adjusting the amount of mixing of said water soluble resin and said water—soluble cross linking agent, using said detailed pattern formation ingredient according to claim 7 as said 2nd resist.

[0016] Moreover, the manufacture approach of the semiconductor device this invention is characterized by controlling reacting weight with said 1st resist by adjusting the degree of acetalization of said polyvinyl acetal, using said detailed pattern formation ingredient according to claim 8 or 9 as the 2nd resist. Moreover, the manufacture approach of the semiconductor device this invention is characterized by using water or a water-soluble mixed solvent as a solvent of said 2nd resist.

[0017] Moreover, the manufacture approach of the semiconductor device this invention is characterized by forming said bridge formation film in contact with the front face of said 1st resist pattern by heat-treating said 1st resist pattern and said 2nd resist formed on said 1st resist pattern. Moreover, the manufacture approach of the semiconductor device this invention is characterized by forming said bridge formation film in said predetermined field of said 1st resist pattern by exposing a predetermined field from Kami of said 2nd resist formed on said 1st resist pattern and said 1st resist pattern.

[0018] Moreover, the manufacture approach of the semiconductor device this invention carries out electron beam irradiation of except for the predetermined field of said 1st resist pattern, and is characterized by forming said 2nd resist on this 1st resist pattern by which electron beam irradiation was carried out, and forming said bridge formation film in said predetermined field of said 1st resist pattern. Moreover, the semiconductor device of this invention is characterized by manufacturing by the manufacture approach of each aforementioned semiconductor device.

[0019]

[Embodiment of the Invention]

Gestalt 1. <u>drawing 1</u> of operation is drawing showing the example of the mask pattern for forming the target resist pattern by which detailed separation was carried out by this invention, in <u>drawing 1</u> (a), the mask pattern 100 of a detailed hole and <u>drawing 1</u> (b) show the mask pattern 200 of a detailed tooth space, and <u>drawing 1</u> (c) shows the pattern 300 of the remnants of isolation. <u>Drawing 2</u> – <u>drawing 7</u> are the process-flow Figs. for explaining the detailed separation resist pattern formation approach of the gestalt 1 implementation this invention.

[0020] First, the detailed separation resist pattern formation approach of the gestalt this operation and the manufacture approach of the semiconductor device using this are explained, referring to drawing 1 and drawing 2. First, as drawing 2 (a) shows, the 1st resist 1 which has the device in which an acid is generated inside by suitable heat-treatment in the semi-conductor substrate (semi-conductor wafer) 3 is applied (about 0.7-1.0 micrometers in for example, thickness). This 1st resist 1 is applied with a spin coat etc. on the semi-conductor substrate 3, next gives Puri **-KU (it is heat treatment for about 1 minute at 70-110 degrees C), and evaporates the solvent in the 1st resist 1.

[0021] Next, in order to form the 1st resist pattern, g line, i line or Deep-UV, a KrF excimer, an ArF

excimer, EB (electron ray), X-ray, etc. carry out projection exposure using the mask containing a pattern as shown in <u>drawing 1</u> using the light source corresponding to the sensibility wavelength of the 1st applied resist 1.

[0022] Either a positive type or negative resist is [that what is necessary is just a resist using the device which an acidic component generates inside a resist by suitable heat-treatment] OK as the ingredient of the 1st resist 1 used here. For example, as the 1st resist, the positive resist which consists of novolak resin and a naphthoquinonediazide system sensitization agent is mentioned. Furthermore, as the 1st resist, application of the chemistry magnification mold resist using the device in which an acid is generated may also be possible, and other things may be used as long as it is a resist ingredient using the system of reaction which generates an acid with heating. [0023] After exposing the 1st resist 1, if needed, PEB (exposure afterbaking) is performed (for example, PEB temperature: 50-130 degrees C), and the resolution of a resist 1 is raised. Next, negatives are developed using about 0.05 to 3.0 wt% [, such as TMAH (tetramethylammonium hydroxide),] alkali water bath liquid. Drawing 2 (b) shows 1st resist pattern 1a formed in this way. [0024] After performing a development, postdeveloping BEKU may be performed if needed (baking temperature is 60-120 degrees C and about 60 seconds). Since this heat treatment influences a next mixing reaction, it is desirable to combine with the 1st resist to be used or the 2nd resist ingredient, and to set it as suitable temperature. The above is the same as that of formation of the resist pattern by the general resist process as a process, if the point of using the 1st resist 1 which generates an acid is set aside.

[0025] Next, as shown in <u>drawing 2</u> (c), the ingredient of cross-linking which constructs a bridge by existence of an acid on the semi-conductor substrate 1 is used as a principal component, and the 2nd resist 2 dissolved in the solvent which does not dissolve the resist 1 of <u>drawing 1</u> is applied. If spreading to homogeneity is possible for the method of application of the 2nd resist 2 on 1st resist pattern 1a, it can also be applied by not being limited especially and immersed into spreading by the spray, rotation spreading, or the 2nd resist solution (dipping). Next, this is prebaked after spreading of the 2nd resist 2 if needed (for example, 85 degrees C, about 60 seconds), and the 2nd resist layer 2 is formed.

[0026] Next, as shown in drawing 2 (d), 1st resist pattern 1a formed in the semi-conductor substrate 1 and the 2nd resist 2 formed on this are heat-treated (it is written as MB mixing BEKU and if needed [following].). 85 degrees C - 150 degrees C whenever [stoving temperature] is carried out, for example, diffusion of an acid is promoted from the 1st resist pattern 1a, it supplies into the 2nd resist 2, and crosslinking reaction is generated in the interface of the 2nd resist 2 and 1st resist pattern 1a. What is necessary is for the mixing baking temperature / time amount in this case to be 85 degree-C-150 degree-C/60-120sec(s), and just to set it as the optimal conditions with the class of resist ingredient to be used, and the thickness of the reaction layer to need. It is formed into the 2nd resist 2 so that the bridge formation layer 4 which caused crosslinking reaction may cover 1st resist pattern 1a with this mixing BEKU.

[0027] Next, as shown in <u>drawing 2</u> (e), development exfoliation of the 2nd resist 2 which is not constructing a bridge is carried out using the developer of alkali water solutions, such as water or TMAH, and 2nd resist pattern 2a is formed. It becomes possible to obtain the resist pattern to which the hole bore of a hole pattern or the separation width of face of the Rhine pattern was reduced, or the area of an isolated remnants pattern was expanded by the above processing. **.

[0028] In the above, by the formation approach of the detailed resist pattern explained with reference to drawing 2, after forming the 2nd resist layer 2 on 1st resist pattern 1a, the acid was generated in 1st resist pattern 1a by suitable heat-treatment, and how to diffuse to the 2nd resist 2 was explained. Below, instead of this heat-treatment, how to make an acid emit by exposure is explained in advance of heat-treatment. Drawing 3 is a process-flow Fig. for explaining the formation

approach of the detailed separation resist pattern in this case. First, since the process of $\frac{3}{2}$ (a) – (c) is the same as that of $\frac{3}{2}$ (a) – (c), it omits explanation. In addition, as the 1st resist 1, application of the chemistry magnification mold resist using the device in which an acid is generated by exposure is also possible in this case. In a chemistry magnification mold resist, the magnification reaction which the generation reaction of the acid catalyst by light, an electron ray, an X-ray, etc. occurs, and is triggered by the catalyst of the generated acid is used.

[0029] Next, as shown in <u>drawing 3</u> (d), the semi-conductor substrate 1 is again exposed completely by g line or i line of Hg lamp, an acid is generated in 1st resist pattern 1a, and after forming the 2nd resist layer 2 shown by <u>drawing 3</u> (c), this forms the bridge formation layer 4 near the interface of the 2nd resist 2 which touches 1st resist pattern 1a, as shown in <u>drawing 3</u> (e).

[0030] What is necessary is the light source used for the exposure at this time to be possible also for using Hg lamp, a KrF excimer, an ArF excimer, etc., and not to be limited by exposure especially if generating of an acid is possible for it, and just to expose it using the light source and light exposure according to the sensitization wavelength of the 1st used resist 1 according to the sensitization wavelength of the 1st resist 1.

[0031] Thus, it exposes after spreading of the 2nd resist 2, and an acid is generated in 1st resist pattern 1a, and by adjustment of light exposure, since the amount of the acid generated in 1st resist pattern 1a in order to expose 1st resist pattern 1a in the condition of having been covered with the 2nd resist 2 is correctly controllable in the large range, the thickness of the reaction layer 4 can control it with a sufficient precision by the example of <u>drawing 3</u>.

[0032] Next, the semi-conductor substrate 1 is heat-treated if needed (for example, 60-130 degrees C, mixing BEKU). By this, the acid from the 1st resist pattern 1a is diffused, it supplies into the 2nd resist 2, and crosslinking reaction is promoted in the interface of the 2nd resist 2 and 1st resist pattern 1a. What is necessary is for the mixing baking temperature / time amount in this case to be 60-130 degree-C/60-120sec(s), and just to set it as the optimal conditions with the class of resist ingredient to be used, and the thickness of the reaction layer to need. It is formed into the 2nd resist 2 so that the bridge formation layer 4 which caused crosslinking reaction may cover 1st resist pattern 1a with this mixing BEKU.

[0033] Next, the process of <u>drawing 3</u> (f) is the same as that of <u>drawing 2</u> (e). It becomes possible to obtain the resist pattern to which a hole bore or the separation width of face of the Rhine pattern was reduced, or the area of an isolated remnants pattern was expanded by the above processing. [0034] In addition, like the example of the approach explained with reference to <u>drawing 3</u>, the process which generates an acid component in 1st resist pattern 1a by exposure is suitable, when the 1st resist 1 and 2nd resist 2 to apply have comparatively low reactivity, when the thickness of the bridge formation layer to need is comparatively thick, or especially when equalizing crosslinking reaction.

[0035] Here, the ingredient used for the 2nd resist 2 is explained. As the 2nd resist, the independence of the water soluble resin of cross-linking or two or more kinds of those mixture can be used. Moreover, the independence of a water-soluble cross linking agent or two or more kinds of those mixture are used. Furthermore, the mixture of these water soluble resin and a water-soluble cross linking agent is used. When using mixture as the 2nd resist, those ingredient presentations are not limited by the 1st resist ingredient to apply or the set-up reaction condition that what is necessary is just to especially set up the optimal presentation.

[0036] As an example of the water-soluble-resin constituent used for the 2nd resist Polyacrylic acid as shown in <u>drawing 4</u>, a polyvinyl acetal, a polyvinyl pyrrolidone, Polyvinyl alcohol, polyethyleneimine, polyethylene oxide, A styrene-maleic-acid copolymer, polyvinyl amineresin, the poly allylamine, Oxazoline radical content water soluble resin, water-soluble melamine resin, a water-soluble urea-resin, If a water-soluble cross linking agent and mixing are possible when an

alkyd resin, sulfonamide resin, etc. can apply effectively, crosslinking reaction is produced under acidic component existence or it does not produce crosslinking reaction, it will not be limited especially. Moreover, it is effective even if it uses these independently, and it uses as mixture. [0037] You may use as one kind or two kinds or more of mixture, and these water soluble resin can be suitably adjusted by reacting weight with the 1st resist 1 of a substrate, a reaction condition, etc. Moreover, it is the purpose which raises the solubility to water, and you may use by making these water soluble resin into salts, such as a hydrochloride.

[0038] Next, specifically as a water-soluble cross linking agent which can be used for the 2nd resist, amino system cross linking agents, such as melamine system cross linking agents, such as urea system cross linking agents, such as a urea as shown in drawing 5, alkoxy methyleneurea, N-alkoxy methyleneurea, an ethylene urea, and an ethylene urea carboxylic acid, a melamine, and an alkoxy methylene melamine, benzoguanamine, and glycoluryl, etc. are applicable. However, it will not be limited especially if it is the water-soluble cross linking agent which produces bridge formation not with the thing limited to especially an amino system cross linking agent but with an acid. [0039] As a water-soluble concrete resist ingredient furthermore used for the 2nd resist, it is effective independent or independent or to also mix and use of water soluble resin which was mentioned above / of a water-soluble cross linking agent which was similarly mentioned above into mixture] mixture mutually. For example, specifically, mixing and using a methoxy methylol melamine or an ethylene urea as a water-soluble cross linking agent as the 2nd resist, using polyvinyl-acetal resin as a water-soluble-resin constituent etc. is mentioned. In this case, since water solubility is high, the preservation stability of a mixed solution is excellent. In addition, it will not be limited especially if it is the ingredient which is meltable to water solubility or the water-soluble solvent which does not dissolve the 1st resist pattern as for the ingredient applied to the 2nd resist, and produces crosslinking reaction under existence of an acid component.

[0040] In addition, although it is as having explained previously that acid generating by the re-exposure to 1st resist pattern 1a is not performed, but crosslinking reaction can be realized only by heat-treatment, it is desirable to choose a suitable reactant high ingredient as the 2nd resist 2 in this case, and to perform suitable heat-treatment (for example, 85 degrees C - 150 degrees C). It is effective to specifically use for polyvinyl-acetal resin an ethylene urea, polyvinyl alcohol and an ethylene urea, or the water-soluble ingredient constituent that mixed these at a suitable rate as 2nd resist ingredient in this case.

[0041] Next, in this invention, it is important to control the crosslinking reaction of the 1st resist 1 and the 2nd resist 2, and to control the thickness of the bridge formation layer 4 formed on 1st resist pattern 1a. As for control of crosslinking reaction, it is desirable to optimize according to the reactivity of the 1st resist 1 and the 2nd resist 2 to apply, the configuration of 1st resist pattern 1a, the thickness of the crosslinking reaction layer 4 to need, etc.

[0042] Control of the crosslinking reaction of the 1st resist and the 2nd resist has the technique by adjustment of process conditions, and the technique of adjusting the presentation of the 2nd resist ingredient, as the process control technique of crosslinking reaction — (1) — the technique of adjusting (2) MB (mixing BEKU) temperature and the processing time which adjust the light exposure to 1st resist pattern 1a is effective. Especially, it heats, and by adjusting the time amount (MB time amount) which constructs a bridge, it is possible to control the thickness of a bridge formation layer, and it can be called the technique in which a reaction controllability is very high. Moreover, the technique of controlling reacting weight with the 1st resist from the field of the ingredient presentation used for the 2nd resist by mixing the suitable, water—soluble cross linking agent for (3) (4) which controls reacting weight with 1st resist by mixing two or more kinds of suitable water soluble resin, and adjusting the mixing ratio is effective.

/ 16

[0043] the thickness of the bridge formation layer which does not opt for control of such crosslinking reaction unitary, and (3) 3 [the configuration of the reactivity of the 2nd resist ingredient and the 1st resist ingredient to apply, and the (1) (2) 1st resist pattern, thickness, and] need and (4) — it is necessary to take into consideration and determine conditions with various usable exposure conditions or MB conditions, (5) spreading conditions, etc. [however,] When, especially as for the reactivity of the 1st resist and the 2nd resist, the presentation of the 1st resist ingredient shows being influenced, therefore it actually applies this invention, it is desirable to take into consideration the factor mentioned above and to optimize the 2nd resist ingredient constituent. Therefore, especially the class and its presentation ratio of the water—soluble ingredient used for the 2nd resist are not limited, and are optimized and used according to the class of ingredient to be used, heat treatment conditions, etc.

[0044] In addition, plasticizers, such as ethylene glycol, a glycerol, and triethylene glycol, may be added to the 2nd resist ingredient with an additive. moreover, the 2nd resist ingredient — being related — a purpose [top / membrane formation disposition] — carrying out — the surfactant by 3M company, for example, Fluorad, and Mitsuhiro — formation — water—soluble surfactants, such as shrine NONIPORU, may be added as an additive.

[0045] Next, the solvent used for the 2nd resist is explained. Although it is required for the solvent used for the 2nd resist not to dissolve the pattern of the 1st resist and to fully dissolve a water-soluble ingredient further, it will not be limited especially if it is the solvent which fills this. For example, what is necessary is just to use the independence of water-soluble organic solvents, such as alcoholic solvent, such as water (pure water) or water, and IPA, or N-methyl pyrrolidone, or a mixed solution as a solvent of the 2nd resist.

[0046] What is necessary is it to be possible to use alcohols, such as ethanol, a methanol, and isopropyl alcohol, gamma-PUCHIRO lactone, an acetone, etc., and just to mix in the range which does not dissolve the 1st resist pattern as a solvent mixed in water, according to the solubility of the ingredient used for the 2nd resist, if it is water solubility, and it is not limited especially and an example is given.

[0047] Now, although the above example explained how to form a detailed resist pattern all over the semi-conductor substrate 1, how to form a detailed resist pattern alternatively only in the request field of the semi-conductor substrate 1 next is explained. Drawing 6 R> 6 is the process-flow Fig. of the manufacture approach in this case. First, the process of drawing 6 (a) - (c) is the same as that of drawing 3 (a) - (c). Like drawing 6 (c), after forming the 2nd resist layer 2 next, as shown in drawing 6 (d), it shades with a gobo 5, some semi-conductor substrates 3 are again exposed by g line or i line of Hg lamp to the selected field, and an acid is generated in 1st resist pattern 1a. This forms the bridge formation layer 4 near the interface of the 2nd resist 2 which touches 1st resist pattern 1a in the exposed part, as shown in drawing 6 (e).

[0048] Since the process of subsequent drawing 6 (f) is the same as the process of drawing 3 (f), explanation is omitted. Thus, in the field in which the semi-conductor substrate 3 was chosen, the bridge formation layer 4 is formed on 1st resist pattern 1a, and it can avoid forming a bridge formation layer in the 1st resist pattern in other fields, as shown in drawing 6 (f). According to such a formation approach, by using a suitable exposure mask, it can expose alternatively on the semi-conductor substrate 1, a part for an exposure part and an unexposed part can be distinguished, and the 2nd resist pattern can form the field which constructs a bridge in a boundary part with the 1st resist pattern, and the field which does not construct a bridge. Thereby, the detailed hole or detailed tooth space of a different dimension on the same semi-conductor substrate can be formed.

[0049] <u>Drawing 7</u> is the process-flow Fig. of other formation approaches for forming a detailed resist pattern alternatively only in the request field of the semi-conductor substrate 1. First, the process

of <u>drawing 7</u> (a) – (c) is the same as that of <u>drawing 2</u> (a) – (c). Like <u>drawing 7</u> R> 7 (c), after forming the 2nd resist layer 2 next, as shown in <u>drawing 7</u> (d), the field where the semi-conductor substrate 3 was chosen is covered with the electron ray shield 6, and an electron ray is irradiated to other fields. Next, if it heat-treats at the process of <u>drawing 7</u> (e), a bridge formation layer will not be formed in the field which irradiated the electron ray, but a bridge formation layer will be formed only in the predetermined field which covered electron beam irradiation.

[0050] Since the process of subsequent <u>drawing 7</u> (f) is the same as the process of <u>drawing 2</u> (f), explanation is omitted. Thus, in the field in which the semi-conductor substrate 3 was chosen, the bridge formation layer 4 is formed on 1st resist pattern 1a, and it can avoid forming a bridge formation layer in the 1st resist pattern in other fields, as shown in <u>drawing 7</u> (f). Thereby, the detailed hole or detailed tooth space of a different dimension on the same semi-conductor substrate can be formed.

[0051] As mentioned above, although the formation approach which forms a detailed separation resist pattern upwards at the semi-conductor substrate 3 was explained to the detail, the detailed separation resist pattern of this invention may not be restricted on the semi-conductor substrate 3, may be formed on insulating layers, such as silicon oxide, according to the manufacture process of a semiconductor device, and may be formed on conductive layers, such as polish recon film. Thus, formation of the detailed separation resist pattern of this invention is not restrained by the substrate film, if it is on the base material which can form a resist pattern, in which case, will be applicable and will be formed on a base material as occasion demands. Suppose that these are named generically and a semi-conductor base material is called.

[0052] Moreover, in this invention, semi-conductor base materials, such as a semi-conductor substrate of a substrate or various thin films, are etched by using as a mask the detailed separation resist pattern formed as mentioned above, a detailed tooth space or a detailed hole is formed in a semi-conductor base material, and a semiconductor device is manufactured. Moreover, it is effective in surface roughening of the base material pattern side-attachment-wall front face after etching being carried out by setting up appropriately the ingredient of the 2nd resist and an ingredient presentation, or MB temperature, and etching a semi-conductor base material by using as a mask the detailed separation resist pattern which formed the bridge formation layer on the 1st resist, and was obtained.

[0053] Gestalt 2. <u>drawing 8</u> of operation is a process-flow Fig. for explaining the detailed separation resist pattern formation approach of the gestalt 2 implementation this invention. With reference to <u>drawing 1</u> and <u>drawing 8</u>, the formation approach of the detailed separation resist pattern of the gestalt 2 this operation and the manufacture approach of the semiconductor device using this are explained.

[0054] First, as shown in <u>drawing 8</u> (a), the 1st resist 11 which contains some acid inside is applied to the semi-conductor substrate 3. The 1st resist 11 carries out projection exposure using the mask containing a pattern like <u>drawing 1</u> using g line or i line of Hg lamp, after prebaking (it is heat treatment for about 1 minute at 70–100 degrees C) (it is omitting in<u>drawing 8</u>). <u>Drawing 8</u> (b) shows 1st resist pattern 11a formed in this way. As an ingredient of the 1st resist 11 used here, what was explained with the gestalt 1 of operation is used effectively. The detailed explanation is omitted in order to avoid duplication. Moreover, specifically as an acid included in the 1st resist 11, the low-molecular acid of a carboxylic-acid system etc. is suitable.

[0055] Then, after heat-treating by PEB (10-130 degrees C) and raising the resolution of a resist if needed, negatives are developed using about 2.0% dilution water bath liquid of TMAH (tetramethylammonium hydroxide). Then, postdeveloping BEKU may be performed if needed. Since this heat treatment influences a next mixing reaction, it is necessary to set it as suitable temperature. The above is the same as that of formation of the resist pattern by the conventional

resist process as a process, if the point of using the resist 11 containing an acid is set aside. [0056] Next, as shown in <u>drawing 8</u> (c) after the pattern formation of <u>drawing 8</u> (b), the cross-linking ingredient which constructs a bridge by existence of an acid on the semi-conductor substrate 3 is used as a principal component, and the 2nd resist 12 melted by the solvent which does not dissolve the 1st resist 11 is applied. The ingredient of the 2nd resist 12 used here and its solvent can apply what was stated with the gestalt 1 of operation, and the same thing, and are effective. The detailed explanation is omitted in order to exclude duplication. Next, this is prebaked after spreading of the 2nd resist 12 if needed. Since this heat treatment influences a next mixing reaction, it is desirable to set it as suitable temperature.

[0057] Next, the semi-conductor substrate 3 is heat-treated (60-130 degrees C), and crosslinking reaction is made to cause near the interface with 1st resist pattern 11a of the 2nd resist 12 by supply of the acid from some acid contained in 1st resist pattern 11a, as shown in drawing 8 (d). The bridge formation layer 14 which caused crosslinking reaction by this so that 1st resist pattern 11a might be covered is formed into the 2nd resist 12.

[0058] Next, as shown in <u>drawing 8</u> (f), development exfoliation of the part over which the 2nd resist 12 is not constructing a bridge using developers, such as water or TMAH, is carried out. It becomes possible to obtain the resist pattern which reduced the hole bore of a hole pattern, or the separation width of face of the Rhine pattern, or the resist pattern to which the area of an isolated remnants pattern was expanded by the above processing.

[0059] As mentioned above, the 1st resist 11 in the gestalt 2 of this operation does not have the need of generating an acid by exposure, and it diffuses that acid by heat treatment, and he is trying to make it it to be adjusted so that an acid may be included in resist film 11 the very thing, and construct a bridge. As an acid included in this 1st resist 11, although the low-molecular acid of a carboxylic-acid system etc. is suitable, if mixing in a resist solution is possible, especially limitation will not be carried out.

[0060] Moreover, it is the same as that of the gestalt 1 of the operation described previously to form this detailed separation resist pattern on various kinds of semi-conductor base materials, and to form [hole / a detailed separation tooth space or / detailed] it on a semi-conductor base material, using this as a mask.

[0061] Gestalt 3. <u>drawing 9</u> of operation is a process-flow Fig. for explaining the formation approach of the detailed separation resist pattern of the gestalt 3 implementation this invention. With reference to <u>drawing 1</u> and <u>drawing 9</u>, the formation approach of the detailed separation resist pattern of the gestalt 3 this operation and the manufacture approach of the semiconductor device using this are explained.

[0062] First, as shown in drawing 9 (a), the 1st resist 21 is applied to the semi-conductor substrate 3. After prebaking to the 1st resist 21 (it is heat treatment for about 1 minute at 70 to 100 degree C), projection exposure is carried out using the mask containing a pattern like drawing 1 R> 1 using g line or i line of Hg lamp, corresponding to the sensitization wavelength of the 1st resist 21 (illustration is omitted in drawing 9). As an ingredient of the 1st resist 21 used here, what was explained with the gestalt 1 of operation is used effectively. The detailed explanation is omitted in order to avoid duplication.

[0063] Next, after it heat—treats by PEB (10-130 degrees C) and a resist carries out improvement in resolution if needed, negatives are developed using about 2.0% dilution water solution of TMAH (tetramethylammonium hydroxide). <u>Drawing 9</u> (b) shows pattern 21a of the 1st resist formed in this way. Then, postdeveloping BEKU may be performed if needed. Since this heat treatment influences a next mixing reaction, it is necessary to set it as suitable temperature. The above is the same as that of formation of the resist pattern by the conventional resist process as a process.

[0064] As shown after the pattern formation of drawing 9 (b), next in drawing 9 (c), immersion

processing of the semi-conductor substrate 3 is carried out with an acidic solution. The art is good in the method of the usual paddle development. Moreover, you may carry out by the vapor rise (blasting) of an acidic solution. Moreover, surface treatment may be carried out by the sour gas. Any of an organic acid and an inorganic acid are sufficient as the acidic solution or sour gas in this case. Specifically, a low-concentration acetic acid is mentioned as a suitable example. In this process, an acid sinks in near the interface of 1st resist pattern 21a, and the film containing an acid is formed. Then, a rinse is carried out using pure water if needed.

[0065] Then, as shown in drawing 9 (e), the cross-linking ingredient which constructs a bridge by existence of an acid on the 1st resist pattern 21 is used as a principal component, and the 2nd resist 22 melted by the solvent which does not dissolve the 1st resist 21 is applied. What has the ingredient of the 2nd resist 22 used here and its solvent be [the same as that of what was stated with the gestalt 1 of operation] it is used effectively. In order to avoid duplication, the detailed explanation is omitted. Next, the 2nd resist 22 is prebaked after spreading of the 2nd resist 22 if needed. Since this heat treatment influences a next mixing reaction, it is set as suitable temperature.

[0066] Next, the semi-conductor substrate 3 is heat-treated (60-130 degrees C), bridge formation BEKU is performed, and crosslinking reaction is made to cause by supply of the acid from the 1st resist pattern 21a near the interface with 1st resist pattern 21a of the 2nd resist 22, as shown in drawing 9 (f). The bridge formation layer 4 which caused crosslinking reaction by this so that 1st resist pattern 21a might be covered is formed into the 2nd resist 22.

[0067] Next, as shown in <u>drawing 9</u> (g), development exfoliation of the part over which the 2nd resist 22 is not constructing a bridge using developers, such as water or TMAH, is carried out. It becomes possible to obtain the resist pattern which reduced the hole bore of a hole pattern, or the separation width of face of the Rhine pattern by the above processing.

[0068] As mentioned above, before not needing the process which generates an acid for the 1st resist but forming the 2nd resist 22 on 1st resist pattern 21a by exposure processing, surface treatment by the acid liquid or the sour gas is performed, and an acid is diffused by heat treatment at a next process, and it is made to construct a bridge according to the gestalt 3 of this operation. [0069] Moreover, it is the same as that of the gestalten 1 and 2 of the operation described previously to form the detailed separation resist pattern which carried out in this way and was formed on various kinds of semi-conductor substrates, to form a detailed separation tooth space or a detailed detailed hole etc. on a semi-conductor substrate by making this into a mask, and to manufacture a semiconductor device.

[0070]

[Example] Next, the example relevant to the gestalten 1-3 of each aforementioned operation is explained. Since one example may be related to the gestalt of one or more operations, it explains collectively. First, the examples 1-5 about the 1st resist ingredient are explained.

As the example 1. 1st resist, it consisted of novolak resin and naphthoquinonediazide and the resist pattern was formed using i line resist using ethyl lactate and propylene glycol monoethyl acetate as a solvent. First, said resist was dropped on Si wafer, after carrying out rotation spreading, it prebaked in 85 degrees C / 70 seconds, the solvent in a resist was evaporated, and the 1st resist was formed by about 1.0 micrometers of thickness. Next, the 1st resist was exposed as an exposure mask using the mask as shown in <u>drawing 1</u>, using i line contraction projection aligner as an aligner. Next, PEB processing was performed in 120 degrees C / 70 seconds, then negatives were developed using the alkali developer (the TOKYO OHKA KOGYO CO., LTD. make, NMD3), and the resist pattern with separation size as shown in <u>drawing 10</u> was obtained.

[0071] As the example 2. 1st resist, it consisted of novolak resin and naphthoquinonediazide and the resist pattern was formed using i line resist using 2-heptanone as a solvent. First, said resist was

formed so that it might become about 0.8 micrometers of thickness by dropping and rotation spreading on Si wafer. Next, it prebaked in 85 degrees C / 70 seconds, and the solvent in a resist was dried. Then, it exposed using the mask as shown in <u>drawing 1</u> using i line contraction projection aligner. Next, PEB processing was performed in 120 degrees C / 70 seconds, then negatives were developed using the alkali developer (Tokyo adaptation shrine make, NMD3), and the resist pattern with separation size as shown in <u>drawing 10</u> was obtained.

[0072] As the example 3. 1st resist, it consisted of novolak resin and naphthoquinonediazide and the resist pattern was formed using i line resist using the mixed solvent of ethyl lactate and butyl acetate as a solvent. First, said resist was formed so that it might become about 1.0 micrometers of thickness by dropping and rotation spreading on Si wafer. Next, it prebaked in 100 degrees C / 90 seconds, and the solvent in a resist was dried. Then, it exposed using the mask as shown indrawing 1 R> 1 using SUTEBBA by NIKON CORP. Next, PEB processing was performed in 110 degrees C / 60 seconds, then negatives were developed using the alkali developer (Tokyo adaptation shrine make, NMD3), and the resist pattern as shown in drawing 10 was obtained.

[0073] as the example 4. 1st resist — Tokyo — adaptation — the resist pattern was formed using the shrine chemistry magnification mold excimer resist. First, said resist was formed so that it might become about 0.8 micrometers of thickness by dropping and rotation spreading on Si wafer. Next, it prebaked in 90 degrees C / 90 seconds, and the solvent in a resist was dried. Then, it exposed using the mask as shown in <u>drawing 1</u> using the KrF excimer contraction projection aligner. Next, PEB processing was performed in 100 degrees C / 90 seconds, then negatives were developed using the alkali developer (Tokyo adaptation shrine make, NMD-W), and the resist pattern as shown in <u>drawing 11</u> was obtained.

[0074] As the example 5. 1st resist, the resist pattern was formed using the chemistry magnification mold resist (2773 MELKER, J.Vac.Sci.Technol., B11 (6) 1993) by Ryoden Kasei CO., LTD. which consists of t-Boc-ized polyhydroxy styrene and an acid generator. First, said resist was formed so that it might become about 0.52 micrometers of thickness by dropping and rotation spreading on Si wafer. Next, **-KU was performed in 120 degrees C / 180 seconds, and the solvent in a resist was dried, then, this resist top — as the antistatic film — the Showa Denko K.K. make — after carrying out rotation spreading of S pay sir ESP-100 similarly, **-KU was performed in 80 degrees C / 120 seconds. Next, it drew by 17.4microC/cm2 using EB drawing equipment. Next, after performing PEB in 80 degrees C / 120 seconds, pure water was used, and the resist pattern was continuously exfoliation and developed using the TMAH alkali developer (Tokyo adaptation shrine NMD-W) in the antistatic film. Consequently, about 0.2-micrometer EB resist pattern as shown in drawing 12 was obtained.

[0075] Next, the examples 6–13 about the 2nd resist ingredient are explained. example 6. — as the 2nd resist ingredient — 1L measuring flask — using — 20wt% water—solution: of the polyvinyl—acetal resin S leks KW3 and KW1 by Sekisui Chemical Co., Ltd. — pure—water:400g was added to 100g, respectively, stirring mixing was carried out at the room temperature for 6 hours, and the 5wt% water solution of polyvinyl—acetal resin KW3 and KW1 was obtained, respectively. [0076] example 7. — as 2nd resist ingredient, it replaced with the polyvinyl—acetal resin of an example 6, and each 5wt% water solution was obtained like the example 6 using polyvinyl alcohol resin, oxazoline content water soluble resin (the NIPPON SHOKUBAI Co., Ltd. make, the EPO cross WS 500), and a styrene maleic anhydride copolymer (the product made from ARCOchemical, SMA 1000 and 1440H).

[0077] example 8. — using 1L measuring flask as 2nd resist ingredient, stirring mixing of methoxy methylol melamine (product [made from Mitsui SAINAMIDO], Cymel 370):100g, pure-water:780g, and the IPA:40g was carried out at the room temperature for 6 hours, and the about 10 wt(s)% methylol melamine water solution was obtained.

[0078] example 9. — using 1L measuring flask as 2nd resist ingredient, in methoxy (N-methoxymethyl) ethylene urea:100g, hydroxy (N-methoxymethyl) ethylene urea:100g, and N-methoxymethyl urea:100g, stirring mixing of pure-water:860g and the IPA:40g was carried out at the room temperature for 6 hours, and the about 10 wt(s)% ethylene urea water solution was obtained, respectively.

[0079] example 10. — stirring mixing of KW3 water—solution:160g of the polyvinyl acetal obtained in the example 6 and methoxy methylol melamine water—solution:20g obtained in the example 8 and the pure-water:20g was carried out at the room temperature as 2nd resist ingredient for 6 hours, and water soluble resin and the mixed solution of a water—soluble cross linking agent were obtained. [0080] example 11. — as 2nd resist ingredient, in KW3 water—solution:160g of the polyvinyl acetal obtained in the example 6, methoxy (N-methoxymethyl) ethylene urea water—solution:20g obtained in the example 9, hydroxy (N-methoxymethyl) ethylene urea:20g, and N-methoxymethyl urea:20g, stirring mixing of the pure—water:20g was carried out at the room temperature for 6 hours, and water soluble resin and the mixed solution of a water—soluble cross linking agent were obtained, respectively.

[0081] example 12. — each was mixed for KW3 water-solution:160g of the polyvinyl acetal obtained in the example 6, and 10g, 20g, 30g of the methoxy ethylene urea water solution obtained in the example 9, and pure-water:20g under the room temperature as 2nd resist ingredient for 6 hours. Consequently, the concentration of the methoxy ethylene urea which is a water-soluble cross linking agent to polyvinyl-acetal resin obtained three kinds of 2nd 27wt% resist water solution 20wt% about 1 lwt%.

[0082] As the example 13. 2nd resist, stirring mixing of the 5wt% water solution of polyvinyl alcohol resin was carried out under the room temperature by mixing 0g, 35.3g, and 72.2g for 6 hours among the water-soluble-resin solutions obtained in the example 7 to 100g of the 5wt(s)% polyvinyl-acetal resin water solution obtained in the example 6, and three kinds of mixed solutions with which the mixing ratios of polyvinyl-acetal resin and polyvinyl alcohol resin differ were obtained. [0083] Next, the examples 14-22 of detailed resist pattern formation are explained. On Si wafer with which the 1st resist pattern obtained in the example 14. example 3 was formed, after dropping and carrying out the spin coat of the 2nd resist ingredient obtained in the example 12, it prebaked in 85 degrees C / 70 seconds, and the 2nd resist film was formed. Next, mixing BEKU (MB) was performed in 120 degrees C / 90 seconds, and crosslinking reaction was advanced. Next, by developing negatives using pure water, carrying out development exfoliation of the layer non-constructing a bridge, and performing postbake in next 90 degrees C / 90 seconds, the 2nd resist bridge formation layer was formed on the 1st resist pattern, and as shown in drawing 13, the 2nd resist pattern was formed. In <u>drawing 13</u>, the mixing ratio of water soluble resin was changed by having made the diameter of a hole of the 2nd resist pattern into the length measurement location, and the resist pattern size after the bridge formation stratification was measured. This result is shown in the table of drawing 14 R> 4. In this case, by changing the amount of mixing of polyvinyl-acetal resin and polyvinyl alcohol resin shows that it is possible to control the thickness of the bridge formation layer formed on the 1st resist.

[0084] On Si wafer with which the 1st resist pattern obtained in the example 15. example 2 was formed, after the resin water solution of KW1 obtained in the example 6 was dropped as 2nd resist ingredient and carried out the spin coat, it prebaked in 85 degrees C / 70 seconds, and the 2nd resist film was formed. Next, complete exposure was performed to the wafer using i line aligner. Furthermore, mixing BEKU (MB) was performed in 150 degrees C / 90 seconds, and crosslinking reaction was advanced. Next, negatives were developed using pure water, development exfoliation of the layer non-constructing a bridge was carried out, and the 2nd resist bridge formation layer was formed on the hole pattern which is the 1st resist pattern like what was shown indrawing 13 by

performing postbake in 110 degrees C / 90 seconds continuously. The resist pattern size after the bridge formation stratification was measured about the case where it does not consider as the case where complete exposure is carried out by making into a length measurement location the diameter of a hole of the 2nd resist pattern shown in drawing 13. This result is shown in the table of drawing 1515. When the 1st resist hole pattern size of 0.4 micrometers before forming a bridge formation layer performed complete exposure by this and about 0.14 micrometers and complete exposure were not performed, it was reducing by about 0.11 micrometers. In this case, by performing complete exposure before MB **-KU, compared with the case where it does not carry out, crosslinking reaction advanced more and the bridge formation layer was thickly formed in the 1st resist front face

[0085] On Si wafer with which the 1st resist pattern obtained in the example 16. example 2 was formed, the mixed solution of the polyvinyl-acetal resin obtained in the example 11 and an ethylene urea was used as the 2nd resist. After dropping and carrying out the spin coat of the 2nd resist ingredient, it prebaked in 85 degrees C / 70 seconds, and the 2nd resist film was formed. Next, for 105 degrees C / 90 seconds, for 115 degrees C / 90 seconds, mixing BEKU (MB) was performed on three kinds of conditions for 125 degrees C / 90 seconds, and crosslinking reaction was performed. Next, negatives were developed using pure water and development exfoliation of the non-cross linking agent was carried out, and by performing postbake in 90 degrees C / 90 seconds continuously, as shown in drawing 16, the 2nd resist bridge formation layer was formed on the 1st resist pattern. The temperature of mixing BEKU (MB) was changed by having made into the length measurement location the tooth space in the diameter of a hole, the Rhine pattern, and isolated remnants pattern of the 2nd resist pattern shown in drawing 16, and the resist pattern size after the bridge formation stratification was measured. This result is shown in the table of drawing 17. Consequently, with the resist pattern after the bridge formation stratification, the size of the tooth space in the bore of a hole pattern, and the Rhine pattern and an isolated remnants pattern of 0.4-micrometer size formed in the example 2 is reduced, as shown in drawing 17, and the amount of contraction is increasing while MB temperature becomes high. From this, the temperature control of MB shows that control of crosslinking reaction is possible with a sufficient precision. [0086] On Si wafer with which the 1st resist pattern obtained in the example 17, example 3 was formed, the mixed solution from which the concentration of an ethylene urea differs with the polyvinyl-acetal water solution obtained in the example 6, the polyvinyl-acetal resin obtained in the example 12 and an ethylene urea mixed water solution, and polyvinyl alcohol resin and an ethylene urea mixed water solution was used as the 2nd resist. After dropping and carrying out the spin coat of the 2nd resist ingredient, it prebaked in 85 degrees C / 70 seconds, and the 2nd resist film was formed. Next, mixing BEKU (MB) was performed in 65 degrees C / 70 +100 degrees C / per second, and 90 seconds, and crosslinking reaction was performed. Next, negatives were developed using pure water, development exfoliation of the layer non-constructing a bridge was carried out, and the 2nd resist bridge formation layer was formed on the 1st resist pattern like what was shown in drawing 13 by performing postbake in 90 degrees C / 90 seconds continuously. The amount of mixing of a water-soluble cross linking agent was changed by having made into the length measurement location the diameter of a hole of the 2nd resist pattern shown indrawing 13, and the resist pattern size after the bridge formation stratification was measured. This result is shown in the table of drawing 18. Consequently, the bore of the hole pattern of about 0.4-micrometer size formed in the example 3 is reduced as shown in <u>drawing 18</u> , and the amount of contraction becomes so large that the amount of mixing of a water-soluble cross linking agent increases. From this, by adjusting the mixing ratio of a water-soluble ingredient shows that control of crosslinking reaction is possible with a sufficient precision. Moreover, but by [with the same amount of cross linking agents I changing the class of water soluble resin shows that it is possible to control the

3 / 16

amount of contraction.

[0087] On Si wafer with which the 1st resist pattern obtained in the example 18. example 3 was formed, the polyvinyl-acetal water solution obtained in the example 6, the polyvinyl-acetal resin water solution obtained in the example 11, and the mixed solution of the N-methoxymethyl-methoxy ethylene urea mixed water solution which is a water-soluble cross linking agent, a hydroxy (N-methoxymethyl) ethylene urea, and N-methoxymethyl urea were used as the 2nd resist. After dropping and carrying out the spin coat of the 2nd resist ingredient, it prebaked in 85 degrees C / 70 seconds, and the 2nd resist film was formed. Next, mixing BEKU (MB) was performed in 65 degrees C / 70 +100 degrees C / per second, and 90 seconds, and crosslinking reaction was performed. Next, negatives were developed using pure water, development exfoliation of the layer non-constructing a bridge was carried out, and the 2nd resist bridge formation layer was formed on the 1st resist pattern like what was shown in drawing 13 by performing postbake in 90 degrees C / 90 seconds continuously. The water-soluble cross linking agent was changed by having made into the length measurement location the diameter of a hole of the 2nd resist pattern shown indrawing 1313, and the resist pattern size after the bridge formation stratification was measured. This result is shown in the table of drawing 19. Consequently, the bore of the hole pattern of about 0.4-micrometer size formed in the example 3 is reduced as shown in drawing 19, and as for the amount of contraction, a difference is accepted by the difference in a water-soluble cross linking agent, From this, the difference in the class of water-soluble ingredient to mix shows that control of crosslinking reaction is possible.

[0088] On Si wafer with which the 1st resist pattern obtained in the example 19, example 4 was formed, the polyvinyl-acetal water solution obtained in the example 6, and the polyvinyl-acetal resin water solution obtained in the example 11 and the methoxy ethylene urea mixed water solution which is a water-soluble cross linking agent were used as the 2nd resist. After dropping and carrying out the spin coat of the 2nd resist ingredient, it prebaked in 85 degrees C / 70 seconds, and the 2nd resist film was formed. Next, mixing BEKU for 90 seconds (MB) was performed at predetermined temperature, and crosslinking reaction was performed. Next, negatives were developed using pure water, development exfoliation of the layer non-constructing a bridge was carried out, and the 2nd resist bridge formation layer was formed on the 1st resist pattern like what was shown in<u>drawing 13</u> by performing postbake in 90 degrees C / 90 seconds continuously. The amount of a water-soluble cross linking agent and reaction temperature were changed by having made into the length measurement location the diameter of a hole of the 2nd resist pattern shown in<u>drawing 13</u> , and the resist pattern size after the bridge formation stratification was measured. This result is shown in the table of drawing 20. Consequently, the resist pattern size of about 0.3 micrometers formed in the example 4 is reduced as shown in <u>drawing 20</u>, and a difference is accepted with the amount of water-soluble cross linking agents, and reaction temperature. Also when the chemistry magnification mold resist which generates an acid by optical exposure is used from this, it turns out that control of the resist pattern size by crosslinking reaction is possible.

[0089] On Si wafer with which the 1st resist pattern obtained in the example 20. example 5 was formed, the polyvinyl-acetal water solution obtained in the example 6, and the polyvinyl-acetal resin water solution obtained in the example 11 and the methoxy ethylene urea mixed water solution which is a water-soluble cross linking agent were used as the 2nd resist. After dropping and carrying out the spin coat of the 2nd resist ingredient, it prebaked in 85 degrees C / 70 seconds, and the 2nd resist film was formed. Next, mixing BEKU (MB) was performed in 105 or 115 degrees C / 90 seconds, and crosslinking reaction was performed. Next, negatives were developed using pure water and development exfoliation of the layer non-constructing a bridge was carried out, and by performing postbake in 90 degrees C / 90 seconds continuously, as shown in drawing 13, the 2nd resist bridge formation layer was formed on the 1st resist pattern. The amount of a water-soluble

cross linking agent and reaction temperature were changed by having made into the length measurement location the diameter of a hole of the 2nd resist pattern shown in drawing 13, and the resist pattern size after the bridge formation stratification was measured. This result is shown in the table of drawing 21. Consequently, the size of the resist pattern of about 0.2-micrometer size formed in the example 5 is reduced as shown in drawing 21 R> 1, and as for the amount of contraction, a difference is accepted by the difference in a water-soluble ingredient, and the difference in MB temperature. Also when EB resist of the chemistry magnification mold which consists of t-Boc-ized polyhydroxy styrene and an acid generator is used from this, it turns out that control of the resist pattern size by crosslinking reaction is possible.

[0090] On the 1st resist pattern obtained in the example 21. example 2, the electron ray was irradiated alternatively. The exposure of an electron ray irradiated 50microC/cm2. Next, the polyvinyl-acetal resin water solution obtained in the example 11 and the methoxy ethylene urea mixed water solution which is a water-soluble cross linking agent were applied as the 2nd resist on the 1st resist pattern which irradiated the electron ray. Spreading trickled the 2nd resist ingredient, and performed the spin coat, then prebaked in 85 degrees C / 70 seconds, and formed the 2nd resist film. Furthermore, mixing BEKU (MB) was performed in 120 degrees C / 90 seconds, and crosslinking reaction was performed. The 2nd resist bridge formation film was alternatively formed on the 1st resist pattern like what was shown in drawing 13 by developing negatives by using pure water finally, carrying out development exfoliation of the layer non-constructing a bridge, and performing postbake in next 110 degrees C / 70 seconds. The resist pattern size after the bridge formation stratification was measured about the exposure part of an electron ray, and the non-irradiated part by making into a length measurement location the diameter of a hole of the 2nd resist pattern shown in drawing 13. This result is shown in the table of drawing 22. Consequently, in the part which did not irradiate an electron ray, about 0.4-micrometer resist pattern formed in the example 2 was reduced, as shown in drawing 22, about the part which irradiated the electron ray alternatively, crosslinking reaction did not occur and contraction of hole size was not seen. By the pattern of the part irradiated by irradiating an electron ray alternatively after forming a resist pattern from this, since a reaction does not arise, it turns out that size control of an alternative resist pattern is possible.

[0091] The 1st resist pattern obtained in the example 22. example 2 was formed on Si wafer with which the oxide film was formed, and the 1st resist pattern as shown in drawing 23 was formed. Next, after dropping and carrying out the spin coat of the 2nd resist ingredient obtained in the example 12 and prebaking in 85 degrees C / 70 seconds, the 2nd resist bridge formation layer was formed on the 1st resist pattern by carrying out development exfoliation of the layer non-constructing a bridge with pure water, performing mixing BEKU in 105 degrees C / 90 seconds, and performing postbake in 90 degrees C / 90 seconds continuously. Furthermore, the substrate oxide film was etched using the etching system, and the pattern configuration after etching was observed. Moreover, it etched similarly about the wafer in which the 1st resist pattern shown in drawing 23 which does not process this invention as an example of a comparison was formed. Consequently, while separation width of face was reduced as shown in drawing 24 (b) and (c) when this invention was applied as compared with drawing 24 (a) when not applying this invention, the oxide-film pattern with which surface roughening of the side attachment wall was carried out was obtained. Moreover, it turns out that extent of surface roughening is controllable by the amount of mixing of a cross linking agent.

[0092]

[Effect of the Invention] As mentioned above, as explained to the detail, according to this invention, the charge of detailed separation resist pattern formation material which makes pattern formation exceeding a wavelength limitation possible, and the detailed pattern formation approach using it are

acquired in detailed-izing of the separation pattern of a resist, and a hole pattern. Thereby, the diameter of a hole of a Hall system resist pattern can be reduced conventionally, and the separation width of face of a SU **-SU system resist pattern can be reduced conventionally. moreover, the tooth space by which detailed separation was carried out on the semi-conductor base material, using as a mask the detailed separation resist pattern which carried out in this way and was formed — or hole formation can be carried out. Moreover, the semiconductor device which has the tooth space or hole by which detailed separation was carried out by such manufacture approach can be obtained.

[Translation done.]

* NOTICES *

JPO and NCIPI are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

DESCRIPTION OF DRAWINGS

[Brief Description of the Drawings]

[Drawing 1] Drawing of the mask pattern for explaining the resist pattern formation approach of the gestalt 1 implementation this invention.

[Drawing 2] The process flow Fig. for explaining the resist pattern formation approach of the gestalt 1 implementation this invention.

[Drawing 3] The process flow Fig. for explaining the resist pattern formation approach of the gestalt 1 implementation this invention.

[Drawing 4] The process flow Fig. for explaining the resist pattern formation approach of the gestalt 1 implementation this invention.

[Drawing 5] The process flow Fig. for explaining the resist pattern formation approach of the gestalt 1 implementation this invention.

[Drawing 6] The process flow Fig. for explaining the resist pattern formation approach of the gestalt 1 implementation this invention.

[Drawing 7] The process flow Fig. for explaining the resist pattern formation approach of the gestalt 1 implementation this invention.

[Drawing 8] The process flow Fig. for explaining the resist pattern formation approach of the gestalt 2 implementation this invention.

[Drawing 9] The process flow Fig. for explaining the resist pattern formation approach of the gestalt 3 implementation this invention.

[Drawing 10] The 1st resist pattern in the examples 1, 2, and 3 of this invention.

[Drawing 11] The 1st resist pattern in the example 4 of this invention.

[Drawing 12] The 1st resist pattern in the example 5 of this invention.

[Drawing 13] The 2nd resist pattern in the example 14 of this invention.

[Drawing 14] Drawing showing the mixing ratio of the water soluble resin in the example 14 of this invention, and the resist pattern size after the bridge formation stratification.

[Drawing 15] Drawing showing the resist pattern size after the existence of the exposure in the example 15 of this invention, and the bridge formation stratification.

[Drawing 16] The 2nd resist pattern in the example 16 of this invention

[Drawing 17] Drawing showing the mixing baking temperature in the example 16 of this invention, and the resist pattern size after the bridge formation stratification.

[Drawing 18] Drawing showing the mixing ratio of the water-soluble ingredient in the example 17 of this invention, and the resist pattern size after the bridge formation stratification.

[Drawing 19] Drawing showing the resist pattern size after the class of water-soluble ingredient in the example 18 of this invention, and the bridge formation stratification.

[Drawing 20] Drawing showing the amount of the water-soluble ingredient in the example 19 of this

invention, and mixing baking temperature and the resist pattern size after the bridge formation stratification.

[Drawing 21] Drawing showing the resist pattern size after the class of water-soluble ingredient in the example 20 of this invention, and the bridge formation stratification.

[Drawing 22] Drawing showing the resist pattern size after the existence of the electron beam irradiation in the example 21 of this invention, and the bridge formation stratification.

[Drawing 23] Drawing showing the 2nd resist pattern in the example 22 of this invention.

[Drawing 24] Drawing showing the pattern configuration after etching of the substrate oxide film in the example 22 of this invention.

[Description of Notations]

1, 11, 21 The 1st resist 1a, 2a, 3a The 1st resist pattern 2, 12, 22 The 2nd resist 2a, 12a, 22a The 2nd resist pattern 3 Semi-conductor substrate (semi-conductor base material) 4, 14, 24 Bridge formation layer.

[Translation done.]

* NOTICES *

JPO and NCIPI are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

CORRECTION OR AMENDMENT

[Kind of official gazette] Printing of amendment by the convention of 2 of Article 17 of Patent Law [Section partition] The 2nd partition of the 6th section [Publication date] November 5, Heisei 11 (1999)

[Publication No.] Publication number 10-73927
[Date of Publication] March 17, Heisei 10 (1998)
[Annual volume number] Open patent official report 10-740
[Application number] Japanese Patent Application No. 9-80940
[International Patent Classification (6th Edition)]

```
G03F 7/095
C23F 1/00 102
G03F 7/038 601
7/26 511
H01L 21/027
// H01L 21/3065
```

[FI]

```
G03F 7/095
C23F 1/00 102
G03F 7/038 601
7/26 511
H01L 21/30 502 R
573
21/302 H
```

[Procedure revision]
[Filing Date] February 22, Heisei 11
[Procedure amendment 1]
[Document to be Amended] Specification
[Item(s) to be Amended] Whole sentence
[Method of Amendment] Modification
[Proposed Amendment]

[Document Name] Specification

[Title of the Invention] It is a semiconductor device to a detailed pattern formation ingredient and the manufacture approach list of the semiconductor device using this.

[Claim 1] The detailed pattern formation ingredient which uses one kind of water soluble resin, or two kinds or more of said water soluble resin of mixture, or the copolymerization object by two or more kinds of said water soluble resin as a principal component, and is characterized by producing crosslinking reaction by existence of an acid.

[Claim 2] The detailed pattern formation ingredient which uses one kind of a water-soluble cross linking agent, or two kinds or more of said water-soluble cross linking agent of mixture as a principal component, and is characterized by producing crosslinking reaction by existence of an acid. [Claim 3] The detailed pattern formation ingredient which uses one kind of water soluble resin or two kinds or more, one kind of a water-soluble cross linking agent, or two kinds or more of mixture as a principal component, and is characterized by producing crosslinking reaction by existence of an acid.

[Claim 4] The detailed pattern formation ingredient according to claim 1 to 3 characterized by including a surfactant as an additive.

[Claim 5] The manufacture approach of a semiconductor device characterized by providing the following The process which forms the 1st resist pattern which may generate an acid on a semi-conductor base material by the 1st resist The process which forms the 2nd resist which causes crosslinking reaction by existence of an acid on said 1st resist pattern Down stream processing which forms the bridge formation film in the part which touches said 1st resist pattern of said 2nd resist by supply of the acid from said 1st resist pattern The process which exfoliates the part of said 2nd resist non-constructing a bridge, and forms the 2nd resist pattern, and the process which etches said semi-conductor base material by using this 2nd resist pattern as a mask [Claim 6] The manufacture approach of the semiconductor device according to claim 5 characterized by using said detailed pattern formation ingredient according to claim 1 to 4 as said 2nd resist.

[Claim 7] The manufacture approach of the semiconductor device according to claim 5 characterized by controlling reacting weight with said 1st resist by adjusting the amount of mixing of said water soluble resin and said water-soluble cross linking agent, using said detailed pattern formation ingredient according to claim 3 as said 2nd resist.

[Claim 8] The manufacture approach of the semiconductor device according to claim 5 characterized by controlling reacting weight with said 1st resist by adjusting the degree of acetalization of said polyvinyl acetal as the 2nd resist using said detailed pattern formation ingredient according to claim 3 which used the polyvinyl acetal as water soluble resin.

[Claim 9] The manufacture approach of the semiconductor device according to claim 5 to 8 characterized by forming said bridge formation film in contact with the front face of said 1st resist pattern by heat-treating said 1st resist pattern and said 2nd resist formed on said 1st resist pattern.

[Claim 10] The manufacture approach of the semiconductor device according to claim 5 to 8 characterized by forming said bridge formation film in said predetermined field of said 1st resist pattern by exposing a predetermined field from on said 2nd resist formed on said 1st resist pattern and said 1st resist pattern.

[Claim 11] The manufacture approach of the semiconductor device according to claim 5 to 8 which carries out electron beam irradiation of except for the predetermined field of said 1st resist pattern, and is characterized by forming said 2nd resist on this 1st resist pattern by which electron beam irradiation was carried out, and forming said bridge formation film in said predetermined field of said

1st resist pattern.

[Claim 12] The semiconductor device characterized by manufacturing by the manufacture approach of the semiconductor device indicated to said claim 5 thru/or either of 11.

[Detailed Description of the Invention]

[0001]

[Field of the Invention] In a semi-conductor process, in case this invention forms a resist pattern, it relates to the formation approach of the ingredient for detailed separation resist patterns which reduces the separation size or hole opening size of a pattern, and the detailed separation pattern using it, the manufacture approach of the semiconductor device using this detailed separation resist pattern further, and the semiconductor device manufactured by this manufacture approach. [0002]

[Description of the Prior Art] Wiring and separation width of face which are required of a manufacture process are made detailed very much with high integration of a semiconductor device. Generally, formation of a detailed pattern forms a resist pattern with a photolithography technique, and is performed by the approach of etching the various thin films of a substrate by using the formed resist pattern as a mask after that.

[0003] Therefore, in formation of a detailed pattern, a photolithography technique becomes very important. The photolithography technique consists of resist spreading, mask alignment, exposure, and development, and the limitation has produced it from constraint of exposure wavelength in detailed-ization to detailed-izing. Furthermore, it was difficult to control the etching-proof nature of a resist by the conventional lithography process, and it was impossible to have controlled the shape of surface type, such as to carry out surface roughening of the pattern side-attachment-wall front face after etching, by control of etching-proof nature.

[0004]

[Problem(s) to be Solved by the Invention] As explained above, formation of the detailed resist pattern which exceeds the limitation of the wavelength with the photolithography technique by the conventional exposure was difficult. This invention offers the detailed separation resist pattern formation technique using this, and offers the technique to which control carries out surface roughening of the shape of pattern side-attachment-wall surface type after difficult etching with the conventional lithography technique in detailed-izing of a separation pattern and a hole pattern while it offers the water-soluble ingredient which does not dissolve the substrate resist which realizes detailed separation resist pattern formation which makes pattern formation exceeding a wavelength limitation possible. Furthermore the manufacture approach of the semiconductor device using that detailed separation resist pattern formation technique tends to be offered, and it is going to offer the semiconductor device manufactured by this manufacture approach.

[0005]

[Means for Solving the Problem] The detailed pattern formation ingredient concerning claim 1 of this invention uses one kind of water soluble resin, or two kinds or more of said water soluble resin of mixture, or the copolymerization object by two or more kinds of said water soluble resin as a principal component, and is characterized by producing crosslinking reaction by existence of an acid.

[0006] Moreover, the detailed pattern formation ingredient concerning claim 2 of this invention uses one kind of a water-soluble cross linking agent, or two kinds or more of said water-soluble cross linking agent of mixture as a principal component, and is characterized by producing crosslinking reaction by existence of an acid.

[0007] Moreover, the detailed pattern formation ingredient concerning claim 3 of this invention uses one kind of water soluble resin or two kinds or more, one kind of a water-soluble cross linking agent, or two kinds or more of mixture as a principal component, and is characterized by producing

crosslinking reaction by existence of an acid.

[0008] Moreover, the detailed pattern formation ingredient concerning claim 4 of this invention is characterized by including a surfactant as an additive.

[0009] Next, this invention is characterized by providing the following in the manufacture approach of the semiconductor device concerning claim 5. The process which forms the 1st resist pattern which may generate an acid on a semi-conductor base material by the 1st resist The process which forms the 2nd resist which causes crosslinking reaction by existence of an acid on said 1st resist pattern Down stream processing which forms the bridge formation film in the part which touches said 1st resist pattern of said 2nd resist by supply of the acid from said 1st resist pattern The process which exfoliates the part of said 2nd resist non-constructing a bridge, and forms the 2nd resist pattern, and the process which etches said semi-conductor base material by using this 2nd resist pattern as a mask

[0010] Moreover, the manufacture approach of the semiconductor device concerning claim 6 of this invention is characterized by using said detailed pattern formation ingredient according to claim 1 to 4 as said 2nd resist.

[0011] Moreover, the manufacture approach of the semiconductor device concerning claim 7 of this invention is characterized by controlling reacting weight with said 1st resist by adjusting the amount of mixing of said water soluble resin and said water-soluble cross linking agent, using said detailed pattern formation ingredient according to claim 3 as said 2nd resist.

[0012] Moreover, the manufacture approach of the semiconductor device concerning claim 8 of this invention is characterized by controlling reacting weight with said 1st resist by adjusting the degree of acetalization of said polyvinyl acetal as the 2nd resist using said detailed pattern formation ingredient according to claim 3 which used the polyvinyl acetal as water soluble resin.

[0013] Moreover, the manufacture approach of the semiconductor device concerning claim 9 of this invention is characterized by forming said bridge formation film in contact with the front face of said 1st resist pattern by heat-treating said 1st resist pattern and said 2nd resist formed on said 1st resist pattern.

[0014] Moreover, the manufacture approach of the semiconductor device concerning claim 10 of this invention is characterized by forming said bridge formation film in said predetermined field of said 1st resist pattern by exposing a predetermined field from on said 2nd resist formed on said 1st resist pattern and said 1st resist pattern.

[0015] Moreover, the manufacture approach of the semiconductor device concerning claim 11 of this invention carries out electron beam irradiation of except for the predetermined field of said 1st resist pattern, and is characterized by forming said 2nd resist on this 1st resist pattern by which electron beam irradiation was carried out, and forming said bridge formation film in said predetermined field of said 1st resist pattern.

[0016] Moreover, the semiconductor device concerning claim 12 of this invention is characterized by manufacturing by the manufacture approach of each aforementioned semiconductor device.
[0017]

[Embodiment of the Invention] Gestalt 1. drawing 1 of operation is drawing showing the example of the mask pattern for forming the target resist pattern by which detailed separation was carried out by this invention, in drawing 1 (a), the mask pattern 100 of a detailed hole and drawing 1 (b) show the mask pattern 200 of a detailed tooth space, and drawing 1 (c) shows the pattern 300 of the remnants of isolation. Drawing 2 – drawing 7 are the process–flow Figs. for explaining the detailed separation resist pattern formation approach of the gestalt 1 implementation this invention. [0018] First, the detailed separation resist pattern formation approach of the gestalt this operation and the manufacture approach of the semiconductor device using this are explained, referring to drawing 1 and drawing 2. First, as drawing 2 (a) shows, the 1st resist 1 which has the device in which

an acid is generated inside by suitable heat-treatment in the semi-conductor substrate (semi-conductor wafer) 3 is applied (about 0.7-1.0 micrometers in for example, thickness). This 1st resist 1 is applied with a spin coat etc. on the semi-conductor substrate 3, next gives Puri **-KU (it is heat treatment for about 1 minute at 70-110 degrees C), and evaporates the solvent in the 1st resist 1.

[0019] Next, in order to form the 1st resist pattern, g line, i line or Deep-UV, a KrF excimer, an ArF excimer, EB (electron ray), X-ray, etc. carry out projection exposure using the mask containing a pattern as shown in drawing 1 using the light source corresponding to the sensibility wavelength of the 1st applied resist 1.

[0020] Either a positive type or negative resist is [that what is necessary is just a resist using the device which an acidic component generates inside a resist by suitable heat-treatment] OK as the ingredient of the 1st resist 1 used here. For example, as the 1st resist, the positive resist which consists of mixture of novolak resin and a naphthoquinonediazide system sensitization agent is mentioned. Furthermore, as the 1st resist, application of the chemistry magnification mold resist using the device in which an acid is generated may also be possible, and other things may be used as long as it is a resist ingredient using the system of reaction which generates an acid with heating. [0021] After exposing the 1st resist 1, if needed, PEB (exposure afterbaking) is performed (for example, PEB temperature: 50-130 degrees C), and the resolution of a resist 1 is raised. Next, negatives are developed using about 0.05 to 3.0 wt% [, such as TMAH (tetramethylammonium hydroxide),] alkali water bath liquid. Drawing 2 (b) shows 1st resist pattern 1a formed in this way. [0022] After performing a development, postdeveloping BEKU may be performed if needed (baking temperature is 60-120 degrees C and about 60 seconds). Since this heat treatment influences a next mixing reaction, it is desirable to combine with the 1st resist to be used or the 2nd resist ingredient, and to set it as suitable temperature. The above is the same as that of formation of the resist pattern by the general resist process as a process, if the point of using the 1st resist 1 which generates an acid is set aside.

[0023] Next, as shown in drawing 2 (c), the ingredient of cross-linking which constructs a bridge by existence of an acid on the semi-conductor substrate 3 is used as a principal component, and the 2nd resist 2 dissolved in the solvent which does not dissolve the resist 1 of drawing 1 is applied. If spreading to homogeneity is possible for the method of application of the 2nd resist 2 on 1st resist pattern 1a, it can also be applied by not being limited especially and immersed into spreading by the spray, rotation spreading, or the 2nd resist solution (dipping). Next, this is prebaked after spreading of the 2nd resist 2 if needed (for example, 85 degrees C, about 60 seconds), and the 2nd resist layer 2 is formed.

[0024] Next, as shown in drawing 2 (d), 1st resist pattern 1a formed in the semi-conductor substrate 1 and the 2nd resist 2 formed on this are heat-treated (it is written as MB mixing BEKU and if needed [following].). 85 degrees C - 150 degrees C whenever [stoving temperature] is carried out, for example, diffusion of an acid is promoted from the 1st resist pattern 1a, it supplies into the 2nd resist 2, and crosslinking reaction is generated in the interface of the 2nd resist 2 and 1st resist pattern 1a. What is necessary is for the mixing baking temperature / time amount in this case to be 85 degree-C-150 degree-C/60-120sec(s), and just to set it as the optimal conditions with the class of resist ingredient to be used, and the thickness of the reaction layer to need. It is formed into the 2nd resist 2 so that the bridge formation layer 4 which caused crosslinking reaction may cover 1st resist pattern 1a with this mixing BEKU.

[0025] Next, as shown in drawing 2 (e), development exfoliation of the 2nd resist 2 which is not constructing a bridge is carried out using the developer of alkali water solutions, such as water or TMAH, and 2nd resist pattern 2a is formed. It becomes possible to obtain the resist pattern to which the hole bore of a hole pattern or the separation width of face of the Rhine pattern was reduced, or

19

5/1/2006 5:19 PM

the area of an isolated remnants pattern was expanded by the above processing. **. [0026] In the above, by the formation approach of the detailed resist pattern explained with reference to drawing 2, after forming the 2nd resist layer 2 on 1st resist pattern 1a, the acid was generated in 1st resist pattern 1a by suitable heat-treatment, and how to diffuse to the 2nd resist 2 was explained. Below, instead of this heat-treatment, how to make an acid emit by exposure is explained in advance of heat-treatment. Drawing 3 is a process-flow Fig. for explaining the formation approach of the detailed separation resist pattern in this case. First, since the process of drawing 3 (a) – (c) is the same as that of drawing 2 (a) – (c), it omits explanation. In addition, as the 1st resist 1, application of the chemistry magnification mold resist using the device in which an acid is generated by exposure is also possible in this case. In a chemistry magnification mold resist, the magnification reaction which the generation reaction of the acid catalyst by light, an electron ray, an X-ray, etc. occurs, and is triggered by the catalyst of the generated acid is used.

[0027] Next, as shown in drawing 3 (d), the semi-conductor substrate 3 is again exposed completely by g line or i line of Hg lamp, an acid is generated in 1st resist pattern 1a, and after forming the 2nd resist layer 2 shown by drawing 3 (c), this forms the bridge formation layer 4 near the interface of the 2nd resist 2 which touches 1st resist pattern 1a, as shown in drawing 3 (e).

[0028] What is necessary is the light source used for the exposure at this time to be possible also for using Hg lamp, a KrF excimer, an ArF excimer, etc., and not to be limited by exposure especially if generating of an acid is possible for it, and just to expose it using the light source and light exposure according to the sensitization wavelength of the 1st used resist 1 according to the sensitization wavelength of the 1st resist 1.

[0029] Thus, it exposes after spreading of the 2nd resist 2, and an acid is generated in 1st resist pattern 1a, and by adjustment of light exposure, since the amount of the acid generated in 1st resist pattern 1a in order to expose 1st resist pattern 1a in the condition of having been covered with the 2nd resist 2 is correctly controllable in the large range, the thickness of the reaction layer 4 can control it with a sufficient precision by the example of drawing 3.

[0030] Next, the semi-conductor substrate 3 is heat-treated if needed (for example, 60-130 degrees C, mixing BEKU). By this, the acid from the 1st resist pattern 1a is diffused, it supplies into the 2nd resist 2, and crosslinking reaction is promoted in the interface of the 2nd resist 2 and 1st resist pattern 1a. What is necessary is for the mixing baking temperature / time amount in this case to be 60-130 degree-C/60-120sec(s), and just to set it as the optimal conditions with the class of resist ingredient to be used, and the thickness of the reaction layer to need. It is formed into the 2nd resist 2 so that the bridge formation layer 4 which caused crosslinking reaction may cover 1st resist pattern 1a with this mixing BEKU.

[0031] Next, the process of drawing 3 (f) is the same as that of drawing 2 (e). It becomes possible to obtain the resist pattern to which a hole bore or the separation width of face of the Rhine pattern was reduced, or the area of an isolated remnants pattern was expanded by the above processing. [0032] In addition, like the example of the approach explained with reference to drawing 3, the process which generates an acid component in 1st resist pattern 1a by exposure is suitable, when the 1st resist 1 and 2nd resist 2 to apply have comparatively low reactivity, when the thickness of the bridge formation layer to need is comparatively thick, or especially when equalizing crosslinking reaction.

[0033] Here, the ingredient used for the 2nd resist 2 is explained. As the 2nd resist, the independence of the water soluble resin of cross-linking or two or more kinds of those mixture can be used. Moreover, the independence of a water-soluble cross linking agent or two or more kinds of those mixture are used. Furthermore, the mixture of these water soluble resin and a water-soluble cross linking agent is used. When using mixture as the 2nd resist, those ingredient presentations are not limited by the 1st resist ingredient to apply or the set-up reaction condition that what is

necessary is just to especially set up the optimal presentation.

[0034] As an example of the water-soluble-resin constituent used for the 2nd resist Polyacrylic acid as shown in drawing 4, a polyvinyl acetal, a polyvinyl pyrrolidone, Polyvinyl alcohol, polyethyleneimine, polyethylene oxide, A styrene-maleic-acid copolymer, polyvinyl amineresin, the poly allylamine, Oxazoline radical content water soluble resin, water-soluble melamine resin, a water-soluble urea-resin, If it is the constituent in which a water-soluble cross linking agent and mixing are possible when not producing the constituent which an alkyd resin, sulfonamide resin, etc. can apply effectively, and produces crosslinking reaction under acidic component existence, or crosslinking reaction, it will not be limited especially. Moreover, it is effective even if it uses these independently, and it uses as mixture.

[0035] You may use as one kind or two kinds or more of mixture, and these water soluble resin can be suitably adjusted by reacting weight with the 1st resist 1 of a substrate, a reaction condition, etc. Moreover, it is the purpose which raises the solubility to water, and you may use by making these water soluble resin into salts, such as a hydrochloride.

[0036] Next, specifically as a water-soluble cross linking agent which can be used for the 2nd resist, amino system cross linking agents, such as melamine system cross linking agents, such as urea system cross linking agents, such as a urea as shown in drawing 5, alkoxy methyleneurea, N-alkoxy methyleneurea, an ethylene urea, and an ethylene urea carboxylic acid, a melamine, and an alkoxy methylene melamine, benzoguanamine, and glycoluryl, etc. are applicable. However, it will not be limited especially if it is the water-soluble cross linking agent which produces bridge formation not with the thing limited to especially an amino system cross linking agent but with an acid. [0037] As a water-soluble concrete resist ingredient furthermore used for the 2nd resist, it is effective independent or independent or to also mix and use [of water soluble resin which was mentioned above / of a water-soluble cross linking agent which was similarly mentioned above into mixture] mixture mutually. For example, specifically, mixing and using a methoxy methylol melamine or an ethylene urea as a water-soluble cross linking agent as the 2nd resist, using polyvinyl-acetal resin as a water-soluble-resin constituent etc. is mentioned. In this case, since water solubility is high, the preservation stability of a mixed solution is excellent. In addition, it will not be limited especially if it is the ingredient which is meltable to water solubility or the water-soluble solvent which does not dissolve the 1st resist pattern as for the ingredient applied to the 2nd resist, and produces crosslinking reaction under existence of an acid component.

[0038] In addition, although it is as having explained previously that acid generating by the re-exposure to 1st resist pattern 1a is not performed, but crosslinking reaction can be realized only by heat-treatment, it is desirable to choose a suitable reactant high ingredient as the 2nd resist 2 in this case, and to perform suitable heat-treatment (for example, 85 degrees C - 150 degrees C). It is effective to specifically use the mixture of polyvinyl-acetal resin and an ethylene urea, the mixture of polyvinyl alcohol and an ethylene urea, or the water-soluble ingredient constituent that mixed these at a suitable rate as 2nd resist ingredient in this case.

[0039] Next, in this invention, it is important to control the crosslinking reaction of the 1st resist 1 and the 2nd resist 2, and to control the thickness of the bridge formation layer 4 formed on 1st resist pattern 1a. As for control of crosslinking reaction, it is desirable to optimize according to the reactivity of the 1st resist 1 and the 2nd resist 2 to apply, the configuration of 1st resist pattern 1a, the thickness of the crosslinking reaction layer 4 to need, etc.

[0040] Control of the crosslinking reaction of the 1st resist and the 2nd resist has the technique by adjustment of process conditions, and the technique of adjusting the presentation of the 2nd resist ingredient. as the process control technique of crosslinking reaction — (1) — the technique of adjusting (2) MB (mixing BEKU) temperature and the processing time which adjust the light exposure to 1st resist pattern 1a is effective. Especially, it heats, and by adjusting the time amount (MB time

amount) which constructs a bridge, it is possible to control the thickness of a bridge formation layer, and it can be called the technique in which a reaction controllability is very high. Moreover, the technique of controlling reacting weight with the 1st resist from the field of the ingredient presentation used for the 2nd resist by mixing the suitable, water—soluble cross linking agent for (3) (4) which controls reacting weight with 1st resist by mixing two or more kinds of suitable water soluble resin, and adjusting the mixing ratio water soluble resin, and adjusting the mixing ratio is effective.

[0041] the thickness of the bridge formation layer which does not opt for control of such crosslinking reaction unitary, and (3) 3 [the configuration of the reactivity of the 2nd resist ingredient and the 1st resist ingredient to apply, and the (1) (2) 1st resist pattern, thickness, and] need and (4) — it is necessary to take into consideration and determine conditions with various usable exposure conditions or MB conditions, (5) spreading conditions, etc. [however,] When, especially as for the reactivity of the 1st resist and the 2nd resist, the presentation of the 1st resist ingredient shows being influenced, therefore it actually applies this invention, it is desirable to take into consideration the factor mentioned above and to optimize the 2nd resist ingredient constituent. Therefore, especially the class and its presentation ratio of the water—soluble ingredient used for the 2nd resist are not limited, and are optimized and used according to the class of ingredient to be used, heat treatment conditions, etc.

[0042] In addition, plasticizers, such as ethylene glycol, a glycerol, and triethylene glycol, may be added to the 2nd resist ingredient with an additive. moreover, the 2nd resist ingredient — being related — a purpose [top / membrane formation disposition] — carrying out — the surfactant by 3M company, for example, Fluorad, and Mitsuhiro — formation — water—soluble surfactants, such as shrine NONIPORU, may be added as an additive.

[0043] Next, the solvent used for the 2nd resist is explained. Although it is required for the solvent used for the 2nd resist not to dissolve the pattern of the 1st resist and to fully dissolve a water-soluble ingredient further, it will not be limited especially if it is the solvent which fills this. For example, what is necessary is just to use the independence of water-soluble organic solvents, such as alcoholic solvent, such as water (pure water) or water, and IPA, or N-methyl pyrrolidone, or a mixed solution as a solvent of the 2nd resist.

[0044] What is necessary is it to be possible to use alcohols, such as ethanol, a methanol, and isopropyl alcohol, gamma-butyrolactone, an acetone, etc., and just to mix in the range which does not dissolve the 1st resist pattern as a solvent mixed in water, according to the solubility of the ingredient used for the 2nd resist, if it is water solubility, and it is not limited especially and an example is given.

[0045] Now, although the above example explained how to form a detailed resist pattern all over the semi-conductor substrate 3, how to form a detailed resist pattern alternatively only in the request field of the semi-conductor substrate 3 next is explained. Drawing 6 is the process-flow Fig. of the manufacture approach in this case. First, the process of drawing 6 (a) - (c) is the same as that of drawing 3 (a) - (c). Like drawing 6 (c), after forming the 2nd resist layer 2 next, as shown in drawing 6 (d), it shades with a gobo 5, some semi-conductor substrates 3 are again exposed by g line or i line of Hg lamp to the selected field, and an acid is generated in 1st resist pattern 1a. This forms the bridge formation layer 4 near the interface of the 2nd resist 2 which touches 1st resist pattern 1a in the exposed part, as shown in drawing 6 (e).

[0046] Since the process of subsequent drawing 6 (f) is the same as the process of drawing 3 (f), explanation is omitted. Thus, in the field in which the semi-conductor substrate 3 was chosen, the bridge formation layer 4 is formed on 1st resist pattern 1a, and it can avoid forming a bridge formation layer in the 1st resist pattern in other fields, as shown in drawing 6 (f). According to such a formation approach, by using a suitable exposure mask, it can expose alternatively on the

19

semi-conductor substrate 1, a part for an exposure part and an unexposed part can be distinguished, and the 2nd resist pattern can form the field which constructs a bridge in a boundary part with the 1st resist pattern, and the field which does not construct a bridge. Thereby, the detailed hole or detailed tooth space of a different dimension on the same semi-conductor substrate can be formed.

[0047] Drawing 7 is the process-flow Fig. of other formation approaches for forming a detailed resist pattern alternatively only in the request field of the semi-conductor substrate 1. First, the process of drawing 7 (a) – (c) is the same as that of drawing 2 (a) – (c). Like drawing 7 (c), after forming the 2nd resist layer 2 next, as shown in drawing 7 (d), the field where the semi-conductor substrate 3 was chosen is covered with the electron ray shield 6, and an electron ray is irradiated to other fields. Next, if it heat-treats at the process of drawing 7 (e), a bridge formation layer will not be formed in the field which irradiated the electron ray, but a bridge formation layer will be formed only in the predetermined field which covered electron beam irradiation.

[0048] Since the process of subsequent drawing 7 (f) is the same as the process of drawing 2 (f), explanation is omitted. Thus, in the field in which the semi-conductor substrate 3 was chosen, the bridge formation layer 4 is formed on 1st resist pattern 1a, and it can avoid forming a bridge formation layer in the 1st resist pattern in other fields, as shown in drawing 7 (f). Thereby, the detailed hole or detailed tooth space of a different dimension on the same semi-conductor substrate can be formed.

[0049] As mentioned above, although the formation approach which forms a detailed separation resist pattern upwards at the semi-conductor substrate 3 was explained to the detail, the detailed separation resist pattern of this invention may not be restricted on the semi-conductor substrate 3, may be formed on insulating layers, such as silicon oxide, according to the manufacture process of a semiconductor device, and may be formed on conductive layers, such as polish recon film. Thus, formation of the detailed separation resist pattern of this invention is not restrained by the substrate film, if it is on the base material which can form a resist pattern, in which case, will be applicable and will be formed on a base material as occasion demands. Suppose that these are named generically and a semi-conductor base material is called.

[0050] Moreover, in this invention, semi-conductor base materials, such as a semi-conductor substrate of a substrate or various thin films, are etched by using as a mask the detailed separation resist pattern formed as mentioned above, a detailed tooth space or a detailed hole is formed in a semi-conductor base material, and a semiconductor device is manufactured. Moreover, it is effective in surface roughening of the base material pattern side-attachment-wall front face after etching being carried out by setting up appropriately the ingredient of the 2nd resist and an ingredient presentation, or MB temperature, and etching a semi-conductor base material by using as a mask the detailed separation resist pattern which formed the bridge formation layer on the 1st resist, and was obtained.

[0051] Gestalt 2. drawing 8 of operation is a process-flow Fig. for explaining the detailed separation resist pattern formation approach of the gestalt 2 implementation this invention. With reference to drawing 1 and drawing 8, the formation approach of the detailed separation resist pattern of the gestalt 2 this operation and the manufacture approach of the semiconductor device using this are explained.

[0052] First, as shown in drawing 8 (a), the 1st resist 11 which contains some acid inside is applied to the semi-conductor substrate 3. The 1st resist 11 carries out projection exposure using the mask containing a pattern like drawing 1 using g line or i line of Hg lamp, after prebaking (it is heat treatment for about 1 minute at 70-100 degrees C) (it is omitting in drawing 8). Drawing 8 (b) shows 1st resist pattern 11a formed in this way. As an ingredient of the 1st resist 11 used here, what was explained with the gestalt 1 of operation is used effectively. The detailed explanation is omitted in

order to avoid duplication. Moreover, specifically as an acid included in the 1st resist 11, the low-molecular acid of a carboxylic-acid system etc. is suitable.

[0053] Then, after heat-treating by PEB (10-130 degrees C) and raising the resolution of a resist if needed, negatives are developed using about 2.0% dilution water bath liquid of TMAH (tetramethylammonium hydroxide). Then, postdeveloping BEKU may be performed if needed. Since this heat treatment influences a next mixing reaction, it is necessary to set it as suitable temperature. The above is the same as that of formation of the resist pattern by the conventional resist process as a process, if the point of using the resist 11 containing an acid is set aside. [0054] Next, as shown in drawing 8 (c) after the pattern formation of drawing 8 (b), the cross-linking ingredient which constructs a bridge by existence of an acid on the semi-conductor substrate 3 is used as a principal component, and the 2nd resist 12 melted by the solvent which does not dissolve the 1st resist 11 is applied. The ingredient of the 2nd resist 12 used here and its solvent can apply what was stated with the gestalt 1 of operation, and the same thing, and are effective. The detailed explanation is omitted in order to exclude duplication. Next, this is prebaked after spreading of the 2nd resist 12 if needed. Since this heat treatment influences a next mixing reaction, it is desirable to set it as suitable temperature.

[0055] Next, the semi-conductor substrate 3 is heat-treated (60-130 degrees C), and crosslinking reaction is made to cause near the interface with 1st resist pattern 11a of the 2nd resist 12 by supply of the acid from some acid contained in 1st resist pattern 11a, as shown in drawing 8 (d). The bridge formation layer 14 which caused crosslinking reaction by this so that 1st resist pattern 11a might be covered is formed into the 2nd resist 12.

[0056] Next, as shown in drawing 8 (e), development exfoliation of the part over which the 2nd resist 12 is not constructing a bridge using developers, such as water or TMAH, is carried out. It becomes possible to obtain the resist pattern which reduced the hole bore of a hole pattern, or the separation width of face of the Rhine pattern, or the resist pattern to which the area of an isolated remnants pattern was expanded by the above processing.

[0057] As mentioned above, the 1st resist 11 in the gestalt 2 of this operation does not have the need of generating an acid by exposure, and it diffuses that acid by heat treatment, and he is trying to make it it to be adjusted so that an acid may be included in resist film 11 the very thing, and construct a bridge. As an acid included in this 1st resist 11, although the low-molecular acid of a carboxylic-acid system etc. is suitable, if mixing in a resist solution is possible, especially limitation will not be carried out.

[0058] Moreover, it is the same as that of the gestalt 1 of the operation described previously to form this detailed separation resist pattern on various kinds of semi-conductor base materials, and to form [hole / a detailed separation tooth space or / detailed] it on a semi-conductor base material, using this as a mask.

[0059] Gestalt 3. drawing 9 of operation is a process-flow Fig. for explaining the formation approach of the detailed separation resist pattern of the gestalt 3 implementation this invention. With reference to drawing 1 and drawing 9, the formation approach of the detailed separation resist pattern of the gestalt 3 this operation and the manufacture approach of the semiconductor device using this are explained.

[0060] First, as shown in drawing 9 (a), the 1st resist 21 is applied to the semi-conductor substrate 3. After prebaking to the 1st resist 21 (it is heat treatment for about 1 minute at 70 to 100 degree C), projection exposure is carried out using the mask containing a pattern like drawing 1 using g line or i line of Hg lamp, corresponding to the sensitization wavelength of the 1st resist 21 (illustration is omitted in drawing 9). As an ingredient of the 1st resist 21 used here, what was explained with the gestalt 1 of operation is used effectively. The detailed explanation is omitted in order to avoid duplication.

[0061] Next, after it heat-treats by PEB (10-130 degrees C) and a resist carries out improvement in resolution if needed, negatives are developed using about 2.0% dilution water solution of TMAH (tetramethylammonium hydroxide). Drawing 9 (b) shows pattern 21a of the 1st resist formed in this way. Then, postdeveloping BEKU may be performed if needed. Since this heat treatment influences a next mixing reaction, it is necessary to set it as suitable temperature. The above is the same as that of formation of the resist pattern by the conventional resist process as a process.

[0062] As shown after the pattern formation of drawing 9 (b), next in drawing 9 (c), immersion processing of the semi-conductor substrate 3 is carried out with an acidic solution. The art is good in the method of the usual paddle development. Moreover, you may carry out by the vapor rise (blasting) of an acidic solution. Moreover, surface treatment may be carried out by the sour gas. Any of an organic acid and an inorganic acid are sufficient as the acidic solution or sour gas in this case. Specifically, a low-concentration acetic acid is mentioned as a suitable example. In this process, an acid sinks in near the interface of 1st resist pattern 21a, and the film containing an acid is formed. Then, a rinse is carried out using pure water if needed.

[0063] Then, as shown in drawing 9 (e), the cross-linking ingredient which constructs a bridge by existence of an acid on the 1st resist pattern 21 is used as a principal component, and the 2nd resist 22 melted by the solvent which does not dissolve the 1st resist 21 is applied. What has the ingredient of the 2nd resist 22 used here and its solvent be [the same as that of what was stated with the gestalt 1 of operation] it is used effectively. In order to avoid duplication, the detailed explanation is omitted. Next, the 2nd resist 22 is prebaked after spreading of the 2nd resist 22 if needed. Since this heat treatment influences a next mixing reaction, it is set as suitable temperature.

[0064] Next, the semi-conductor substrate 3 is heat-treated (60-130 degrees C), bridge formation BEKU is performed, and crosslinking reaction is made to cause by supply of the acid from the 1st resist pattern 21a near the interface with 1st resist pattern 21a of the 2nd resist 22, as shown in drawing 9 (f). The bridge formation layer 24 which caused crosslinking reaction by this so that 1st resist pattern 21a might be covered is formed into the 2nd resist 22.

[0065] Next, as shown in drawing 9 (g), development exfoliation of the part over which the 2nd resist 22 is not constructing a bridge using developers, such as water or TMAH, is carried out. It becomes possible to obtain the resist pattern which reduced the hole bore of a hole pattern, or the separation width of face of the Rhine pattern by the above processing.

[0066] As mentioned above, before not needing the process which generates an acid for the 1st resist but forming the 2nd resist 22 on 1st resist pattern 21a by exposure processing, surface treatment by the acid liquid or the sour gas is performed, and an acid is diffused by heat treatment at a next process, and it is made to construct a bridge according to the gestalt 3 of this operation. [0067] Moreover, it is the same as that of the gestalten 1 and 2 of the operation described previously to form the detailed separation resist pattern which carried out in this way and was formed on various kinds of semi-conductor substrates, to form a detailed separation tooth space or a detailed detailed hole etc. on a semi-conductor substrate by making this into a mask, and to manufacture a semiconductor device.

[0068]

[Example] Next, the example relevant to the gestalten 1-3 of each aforementioned operation is explained. Since one example may be related to the gestalt of one or more operations, it explains collectively. First, the examples 1-5 about the 1st resist ingredient are explained.

As the example 1. 1st resist, it consisted of novolak resin and naphthoquinonediazide and the resist pattern was formed using i line resist using ethyl lactate and propylene glycol monoethyl acetate as a solvent. First, said resist was dropped on Si wafer, after carrying out rotation spreading, it prebaked in 85 degrees $\rm C / 70$ seconds, the solvent in a resist was evaporated, and the 1st resist

was formed by about 1.0 micrometers of thickness. Next, the 1st resist was exposed as an exposure mask using the mask as shown in drawing 1, using i line contraction projection aligner as an aligner. Next, PEB processing was performed in 120 degrees C / 70 seconds, then negatives were developed using the alkali developer (the TOKYO OHKA KOGYO CO., LTD. make, NMD3), and the resist pattern with separation size as shown in drawing 10 was obtained.

[0069] As the example 2. 1st resist, it consisted of novolak resin and naphthoquinonediazide and the resist pattern was formed using i line resist using 2-heptanone as a solvent. First, said resist was formed so that it might become about 0.8 micrometers of thickness by dropping and rotation spreading on Si wafer. Next, it prebaked in 85 degrees C / 70 seconds, and the solvent in a resist was dried. Then, it exposed using the mask as shown in drawing 1 using i line contraction projection aligner. Next, PEB processing was performed in 120 degrees C / 70 seconds, then negatives were developed using the alkali developer (Tokyo adaptation shrine make, NMD3), and the resist pattern with separation size as shown in drawing 10 was obtained.

[0070] As the example 3. 1st resist, it consisted of novolak resin and naphthoquinonediazide and the resist pattern was formed using i line resist using the mixed solvent of ethyl lactate and butyl acetate as a solvent. First, said resist was formed so that it might become about 1.0 micrometers of thickness by dropping and rotation spreading on Si wafer. Next, it prebaked in 100 degrees C / 90 seconds, and the solvent in a resist was dried. Then, it exposed using the mask as shown in drawing 1 using SUTEBBA by NIKON CORP. Next, PEB processing was performed in 110 degrees C / 60 seconds, then negatives were developed using the alkali developer (Tokyò adaptation shrine make, NMD3), and the resist pattern as shown in drawing 10 was obtained.

[0071] as the example 4. 1st resist — Tokyo — adaptation — the resist pattern was formed using the shrine chemistry magnification mold excimer resist. First, said resist was formed so that it might become about 0.8 micrometers of thickness by dropping and rotation spreading on Si wafer. Next, it prebaked in 90 degrees C / 90 seconds, and the solvent in a resist was dried. Then, it exposed using the mask as shown in drawing 1 using the KrF excimer contraction projection aligner. Next, PEB processing was performed in 100 degrees C / 90 seconds, then negatives were developed using the alkali developer (Tokyo adaptation shrine make, NMD-W), and the resist pattern as shown in drawing 11 was obtained.

[0072] As the example 5. 1st resist, the resist pattern was formed using the chemistry magnification mold resist (2773 MELKER, J.Vac.Sci.Technol., B11 (6) 1993) by Ryoden Kasei CO., LTD. which consists of t–Boc–ized polyhydroxy styrene and an acid generator. First, said resist was formed so that it might become about 0.52 micrometers of thickness by dropping and rotation spreading on Si wafer. Next, **–KU was performed in 120 degrees C / 180 seconds, and the solvent in a resist was dried, then, this resist top — as the antistatic film — the Showa Denko K.K. make — after carrying out rotation spreading of S pay sir ESP–100 similarly, **–KU was performed in 80 degrees C / 120 seconds. Next, it drew by 17.4microC/cm2 using EB drawing equipment. Next, after performing PEB in 80 degrees C / 120 seconds, pure water was used, and the resist pattern was continuously exfoliation and developed using the TMAH alkali developer (Tokyo adaptation shrine NMD–W) in the antistatic film. Consequently, about 0.2–micrometer EB resist pattern as shown in drawing 12 was obtained.

[0073] Next, the examples 6-13 about the 2nd resist ingredient are explained. example 6. — as the 2nd resist ingredient — 1L measuring flask — using — 20wt% water-solution: of the polyvinyl-acetal resin S leks KW3 and KW1 by Sekisui Chemical Co., Ltd. — pure-water:400g was added to 100g, respectively, stirring mixing was carried out at the room temperature for 6 hours, and the 5wt% water solution of polyvinyl-acetal resin KW3 and KW1 was obtained, respectively. [0074] example 7. — as 2nd resist ingredient, it replaced with the polyvinyl-acetal resin of an example 6, and each 5wt% water solution was obtained like the example 6 using polyvinyl alcohol

resin, oxazoline content water soluble resin (the NIPPON SHOKUBAI Co., Ltd. make, the EPO cross WS 500), and a styrene maleic anhydride copolymer (the product made from ARCOchemical, SMA 1000 and 1440H).

[0075] example 8. — using 1L measuring flask as 2nd resist ingredient, stirring mixing of methoxy methylol melamine (product [made from Mitsui SAINAMIDO], Cymel 370):100g, pure-water:780g, and the IPA:40g was carried out at the room temperature for 6 hours, and the about 10 wt(s)% methylol melamine water solution was obtained.

[0076] example 9. — using 1L measuring flask as 2nd resist ingredient, in methoxy (N-methoxymethyl) ethylene urea:100g, hydroxy (N-methoxymethyl) ethylene urea:100g, and N-methoxymethyl urea:100g, stirring mixing of pure-water:860g and the IPA:40g was carried out at the room temperature for 6 hours, and the about 10 wt(s)% ethylene urea water solution was obtained, respectively.

[0077] example 10. — stirring mixing of KW3 water-solution:160g of the polyvinyl acetal obtained in the example 6 and methoxy methylol melamine water-solution:20g obtained in the example 8 and the pure-water:20g was carried out at the room temperature as 2nd resist ingredient for 6 hours, and water soluble resin and the mixed solution of a water-soluble cross linking agent were obtained. [0078] example 11. — as 2nd resist ingredient, in KW3 water-solution:160g of the polyvinyl acetal obtained in the example 6, methoxy (N-methoxymethyl) ethylene urea water-solution:20g obtained in the example 9, hydroxy (N-methoxymethyl) ethylene urea water-solution:20g, and N-methoxymethyl urea water-solution:20g, stirring mixing of the pure-water:20g was carried out at the room temperature for 6 hours, and water soluble resin and the mixed solution of a water-soluble cross linking agent were obtained, respectively.

[0079] example 12. — each was mixed for KW3 water—solution:160g of the polyvinyl acetal obtained in the example 6, and 10g, 20g, 30g of the methoxy ethylene urea water solution obtained in the example 9, and pure-water:20g under the room temperature as 2nd resist ingredient for 6 hours. Consequently, the concentration of the methoxy ethylene urea which is a water-soluble cross linking agent to polyvinyl-acetal resin obtained three kinds of 2nd 27wt% resist water solution 20wt% about 1 lwt%.

[0080] As the example 13. 2nd resist, stirring mixing of the 5wt% water solution of polyvinyl alcohol resin was carried out under the room temperature by mixing 0g, 35.3g, and 72.2g for 6 hours among the water-soluble-resin solutions obtained in the example 7 to 100g of the 5wt(s)% polyvinyl-acetal resin water solution obtained in the example 6, and three kinds of mixed solutions with which the mixing ratios of polyvinyl-acetal resin and polyvinyl alcohol resin differ were obtained. [0081] Next, the examples 14–22 of detailed resist pattern formation are explained. On Si wafer with which the 1st resist pattern obtained in the example 14. example 3 was formed, after dropping and carrying out the spin coat of the 2nd resist ingredient obtained in the example 12, it prebaked in 85 degrees C / 70 seconds, and the 2nd resist film was formed. Next, mixing BEKU (MB) was performed in 120 degrees C / 90 seconds, and crosslinking reaction was advanced. Next, by developing negatives using pure water, carrying out development exfoliation of the layer non-constructing a bridge, and performing postbake in next 90 degrees C / 90 seconds, the 2nd resist bridge formation layer was formed on the 1st resist pattern, and as shown in drawing 13, the 2nd resist pattern was formed. In drawing 13, the mixing ratio of water soluble resin was changed by having made the diameter of a hole of the 2nd resist pattern into the length measurement location, and the resist pattern size after the bridge formation stratification was measured. This result is shown in the table of drawing 14. In this case, by changing the amount of mixing of polyvinyl-acetal resin and polyvinyl alcohol resin shows that it is possible to control the thickness of the bridge formation layer formed on the 1st resist.

[0082] On Si wafer with which the 1st resist pattern obtained in the example 15. example 2 was

formed, after the resin water solution of KW1 obtained in the example 6 was dropped as 2nd resist ingredient and carried out the spin coat, it prebaked in 85 degrees C / 70 seconds, and the 2nd resist film was formed. Next, complete exposure was performed to the wafer using i line aligner. Furthermore, mixing BEKU (MB) was performed in 150 degrees C / 90 seconds, and crosslinking reaction was advanced. Next, negatives were developed using pure water, development exfoliation of the layer non-constructing a bridge was carried out, and the 2nd resist bridge formation layer was formed on the hole pattern which is the 1st resist pattern like what was shown in drawing 13 by performing postbake in 110 degrees C / 90 seconds continuously. The resist pattern size after the bridge formation stratification was measured about the case where it does not consider as the case where complete exposure is carried out by making into a length measurement location the diameter of a hole of the 2nd resist pattern shown in drawing 13. This result is shown in the table of drawing 15. When the 1st resist hole pattern size of 0.4 micrometers before forming a bridge formation layer performed complete exposure by this and about 0.14 micrometers and complete exposure were not performed, it was reducing by about 0.11 micrometers. In this case, by performing complete exposure before MB **-KU, compared with the case where it does not carry out, crosslinking reaction advanced more and the bridge formation layer was thickly formed in the 1st resist front face.

[0083] On Si wafer with which the 1st resist pattern obtained in the example 16. example 2 was formed, the mixed solution of the polyvinyl-acetal resin obtained in the example 11 and an ethylene urea was used as the 2nd resist. After dropping and carrying out the spin coat of the 2nd resist ingredient, it prebaked in 85 degrees C / 70 seconds, and the 2nd resist film was formed. Next, for 105 degrees C / 90 seconds, for 115 degrees C / 90 seconds, mixing BEKU (MB) was performed on three kinds of conditions for 125 degrees C / 90 seconds, and crosslinking reaction was performed. Next, negatives were developed using pure water and development exfoliation of the non-cross linking agent was carried out, and by performing postbake in 90 degrees C / 90 seconds continuously, as shown in drawing 16, the 2nd resist bridge formation layer was formed on the 1st resist pattern. The temperature of mixing BEKU (MB) was changed by having made into the length measurement location the tooth space in the diameter of a hole, the Rhine pattern, and isolated remnants pattern of the 2nd resist pattern shown in drawing 16, and the resist pattern size after the bridge formation stratification was measured. This result is shown in the table of drawing 17. Consequently, with the resist pattern after the bridge formation stratification, the size of the tooth space in the bore of a hole pattern, and the Rhine pattern and an isolated remnants pattern of 0.4-micrometer size formed in the example 2 is reduced, as shown in drawing 17, and the amount of contraction is increasing while MB temperature becomes high. From this, the temperature control of MB shows that control of crosslinking reaction is possible with a sufficient precision. [0084] On Si wafer with which the 1st resist pattern obtained in the example 17. example 3 was formed, the mixed solution from which the concentration of an ethylene urea differs with the polyvinyl-acetal water solution obtained in the example 6, the polyvinyl-acetal resin obtained in the example 12 and an ethylene urea mixed water solution, and polyvinyl alcohol resin and an ethylene urea mixed water solution was used as the 2nd resist. After dropping and carrying out the spin coat of the 2nd resist ingredient, it prebaked in 85 degrees C / 70 seconds, and the 2nd resist film was formed. Next, mixing BEKU (MB) was performed in 65 degrees C / 70 +100 degrees C / per second, and 90 seconds, and crosslinking reaction was performed. Next, negatives were developed using pure water, development exfoliation of the layer non-constructing a bridge was carried out, and the 2nd resist bridge formation layer was formed on the 1st resist pattern like what was shown in drawing 13 by performing postbake in 90 degrees C / 90 seconds continuously. The amount of mixing of a water-soluble cross linking agent was changed by having made into the length measurement location the diameter of a hole of the 2nd resist pattern shown in drawing 13, and the

/ 19

5/1/2006 5:19 PM

resist pattern size after the bridge formation stratification was measured. This result is shown in the table of drawing 18. Consequently, the bore of the hole pattern of about 0.4-micrometer size formed in the example 3 is reduced as shown in drawing 18, and the amount of contraction becomes so large that the amount of mixing of a water-soluble cross linking agent increases. From this, by adjusting the mixing ratio of a water-soluble ingredient shows that control of crosslinking reaction is possible with a sufficient precision. Moreover, but by [with the same amount of cross linking agents] changing the class of water soluble resin shows that it is possible to control the amount of contraction.

[0085] On Si wafer with which the 1st resist pattern obtained in the example 18. example 3 was formed, the polyvinyl-acetal water solution obtained in the example 6, the polyvinyl-acetal resin water solution obtained in the example 11, and the mixed solution of the N-methoxymethyl-methoxy ethylene urea mixed water solution which is a water-soluble cross linking agent, a hydroxy (N-methoxymethyl) ethylene urea, and N-methoxymethyl urea were used as the 2nd resist. After dropping and carrying out the spin coat of the 2nd resist ingredient, it prebaked in 85 degrees C / 70 seconds, and the 2nd resist film was formed. Next, mixing BEKU (MB) was performed in 65 degrees C / 70 +100 degrees C / per second, and 90 seconds, and crosslinking reaction was performed. Next, negatives were developed using pure water, development exfoliation of the layer non-constructing a bridge was carried out, and the 2nd resist bridge formation layer was formed on the 1st resist pattern like what was shown in drawing 13 by performing postbake in 90 degrees C / 90 seconds continuously. The water-soluble cross linking agent was changed by having made into the length measurement location the diameter of a hole of the 2nd resist pattern shown in drawing 13, and the resist pattern size after the bridge formation stratification was measured. This result is shown in the table of drawing 19. Consequently, the bore of the hole pattern of about 0.4-micrometer size formed in the example 3 is reduced as shown in drawing 19, and as for the amount of contraction, a difference is accepted by the difference in a water-soluble cross linking agent. From this, the difference in the class of water-soluble ingredient to mix shows that control of crosslinking reaction is possible.

[0086] On Si wafer with which the 1st resist pattern obtained in the example 19, example 4 was formed, the polyvinyl-acetal water solution obtained in the example 6, and the polyvinyl-acetal resin water solution obtained in the example 11 and the methoxy ethylene urea mixed water solution which is a water-soluble cross linking agent were used as the 2nd resist. After dropping and carrying out the spin coat of the 2nd resist ingredient, it prebaked in 85 degrees C / 70 seconds, and the 2nd resist film was formed. Next, mixing BEKU for 90 seconds (MB) was performed at predetermined temperature, and crosslinking reaction was performed. Next, negatives were developed using pure water, development exfoliation of the layer non-constructing a bridge was carried out, and the 2nd resist bridge formation layer was formed on the 1st resist pattern like what was shown in drawing 13 by performing postbake in 90 degrees C / 90 seconds continuously. The amount of a water-soluble cross linking agent and reaction temperature were changed by having made into the length measurement location the diameter of a hole of the 2nd resist pattern shown in drawing 13, and the resist pattern size after the bridge formation stratification was measured. This result is shown in the table of drawing 20. Consequently, the resist pattern size of about 0.3 micrometers formed in the example 4 is reduced as shown in drawing 20, and a difference is accepted with the amount of water-soluble cross linking agents, and reaction temperature. Also when the chemistry magnification mold resist which generates an acid by optical exposure is used from this, it turns out that control of the resist pattern size by crosslinking reaction is possible.

[0087] On Si wafer with which the 1st resist pattern obtained in the example 20. example 5 was formed, the polyvinyl-acetal water solution obtained in the example 6, and the polyvinyl-acetal resin water solution obtained in the example 11 and the methoxy ethylene urea mixed water solution

which is a water-soluble cross linking agent were used as the 2nd resist. After dropping and carrying out the spin coat of the 2nd resist ingredient, it prebaked in 85 degrees C / 70 seconds, and the 2nd resist film was formed. Next, mixing BEKU (MB) was performed in 105 or 115 degrees C / 90 seconds, and crosslinking reaction was performed. Next, negatives were developed using pure water and development exfoliation of the layer non-constructing a bridge was carried out, and by performing postbake in 90 degrees C / 90 seconds continuously, as shown in drawing 13, the 2nd resist bridge formation layer was formed on the 1st resist pattern. The amount of a water-soluble cross linking agent and reaction temperature were changed by having made into the length measurement location the diameter of a hole of the 2nd resist pattern shown in drawing 13, and the resist pattern size after the bridge formation stratification was measured. This result is shown in the table of drawing 21. Consequently, the size of the resist pattern of about 0.2-micrometer size formed in the example 5 is reduced as shown in drawing 21, and as for the amount of contraction, a difference is accepted by the difference in a water-soluble ingredient, and the difference in MB temperature. Also when EB resist of the chemistry magnification mold which consists of t-Boc-ized polyhydroxy styrene and an acid generator is used from this, it turns out that control of the resist pattern size by crosslinking reaction is possible.

[0088] On the 1st resist pattern obtained in the example 21. example 2, the electron ray was irradiated alternatively. The exposure of an electron ray irradiated 50microC/cm2. Next, the polyvinyl-acetal resin water solution obtained in the example 11 and the methoxy ethylene urea mixed water solution which is a water-soluble cross linking agent were applied as the 2nd resist on the 1st resist pattern which irradiated the electron ray. Spreading trickled the 2nd resist ingredient, and performed the spin coat, then prebaked in 85 degrees C m / 70 seconds, and formed the 2nd resist film. Furthermore, mixing BEKU (MB) was performed in 120 degrees C / 90 seconds, and crosslinking reaction was performed. The 2nd resist bridge formation film was alternatively formed on the 1st resist pattern like what was shown in drawing 13 by developing negatives by using pure water finally, carrying out development exfoliation of the layer non-constructing a bridge, and performing postbake in next 110 degrees C / 70 seconds. The resist pattern size after the bridge formation stratification was measured about the exposure part of an electron ray, and the non-irradiated part by making into a length measurement location the diameter of a hole of the 2nd resist pattern shown in drawing 13. This result is shown in the table of drawing 22. Consequently, in the part which did not irradiate an electron ray, about 0.4-micrometer resist pattern formed in the example 2 was reduced, as shown in drawing 22, about the part which irradiated the electron ray alternatively, crosslinking reaction did not occur and contraction of hole size was not seen. By the pattern of the part irradiated by irradiating an electron ray alternatively after forming a resist pattern from this, since a reaction does not arise, it turns out that size control of an alternative resist pattern is possible.

[0089] The 1st resist pattern obtained in the example 22. example 2 was formed on Si wafer with which the oxide film was formed, and the 1st resist pattern as shown in drawing 23 was formed. Next, after dropping and carrying out the spin coat of the 2nd resist ingredient obtained in the example 12 and prebaking in 85 degrees C / 70 seconds, the 2nd resist bridge formation layer was formed on the 1st resist pattern by carrying out development exfoliation of the layer non-constructing a bridge with pure water, performing mixing BEKU in 105 degrees C / 90 seconds, and performing postbake in 90 degrees C / 90 seconds continuously. Furthermore, the substrate oxide film was etched using the etching system, and the pattern configuration after etching was observed. Moreover, it etched similarly about the wafer in which the 1st resist pattern shown in drawing 23 which does not process this invention as an example of a comparison was formed. Consequently, while separation width of face was reduced as shown in drawing 24 (b) and (c) when this invention was applied as compared with drawing 24 (a) when not applying this invention, the

119

oxide-film pattern with which surface roughening of the side attachment wall was carried out was obtained. Moreover, it turns out that extent of surface roughening is controllable by the amount of mixing of a cross linking agent.

[0090] In addition, this application also includes the following invention besides invention indicated to the claim, as explained to the detail above. Other invention of this application is one kind in polyacrylic acid, a polyvinyl acetal, a polyvinyl pyrrolidone, polyvinyl alcohol, polyethyleneimine, polyethylene oxide, a styrene maleic anhydride copolymer, a polyvinyl amine, the poly allylamine, oxazoline radical content water soluble resin, water-soluble melamine resin, a water-soluble urea-resin, an alkyd resin, and a sulfonamide, or these two kinds or more of mixture, or a detailed pattern formation ingredient characterized by using these salts as a principal component as said water soluble resin in a thing according to claim 1.

[0091] Moreover, other invention of this application is detailed pattern formation ingredients characterized by using one kind or these two kinds or more of mixture of a melamine derivative, a urea derivative, benzoguanamine, and the glycoluryl as a principal component as said water-soluble cross linking agent in a thing according to claim 2.

[0092] Moreover, other invention of this application is detailed pattern formation ingredients characterized by using one kind or such mixture of a melamine and the alkoxy methylene melamines as a principal component as said melamine derivative in a thing according to claim 2.

[0093] Moreover, other invention of this application is detailed pattern formation ingredients characterized by using one kind or these two kinds or more of mixture of a urea, alkoxy methyleneurea, N-alkoxy methyleneurea, an ethylene urea, and an ethylene urea carboxylic acid as a principal component as said urea derivative in a thing according to claim 2.

[0094] Moreover, other invention of this application is detailed pattern formation ingredients characterized by using either of the mixture of a melamine derivative, a urea derivative or a melamine derivative, and a urea derivative as said water-soluble cross linking agent, using either of the mixture of a polyvinyl acetal, polyvinyl alcohol or polyvinyl alcohol, and a polyvinyl acetal as said water soluble resin in a thing according to claim 3.

[0095] Moreover, other invention of this application is detailed pattern formation ingredients characterized by including a plasticizer as an additive in a thing according to claim 3.

[0096] Moreover, other invention of this application is the manufacture approaches of the semiconductor device characterized by forming said 1st resist pattern by the resist which generates an acid by heat-treatment in a thing according to claim 5.

[0097] Moreover, other invention of this application is the manufacture approaches of the semiconductor device characterized by forming said 1st resist pattern by the resist which generates an acid by exposure in a thing according to claim 5.

[0098] Moreover, other invention of this application is the manufacture approaches of the semiconductor device characterized by forming said 1st resist pattern by the resist containing an acid in a thing according to claim 5.

[0099] Moreover, other invention of this application is the manufacture approaches of the semiconductor device characterized by forming said 1st resist pattern by the resist which performed surface preparation by the acid liquid or acid gases in a thing according to claim 5.

[0100] Moreover, other invention of this application is the manufacture approaches of the semiconductor device characterized by using the resist which uses novolak resin and mixture of a naphthoquinonediazide system sensitization agent as a principal component as said 1st resist in a thing according to claim 5.

[0101] Moreover, other invention of this application is the manufacture approaches of the semiconductor device characterized by using the chemistry magnification mold resist which has the device in which an acid is generated, as said 1st resist in a thing according to claim 5.

' 19 5/1/2006 5:19 PM

[0102] Moreover, other invention of this application is the manufacture approaches of the semiconductor device characterized by using water or a water-soluble mixed solvent as a solvent of said 2nd resist in a thing according to claim 8.

[0103]

[Effect of the Invention] As mentioned above, as explained to the detail, according to this invention, the charge of detailed separation resist pattern formation material which makes pattern formation exceeding a wavelength limitation possible, and the detailed pattern formation approach using it are acquired in detailed-izing of the separation pattern of a resist, and a hole pattern. Thereby, the diameter of a hole of a Hall system resist pattern can be reduced conventionally, and the separation width of face of a SU **-SU system resist pattern can be reduced conventionally. moreover, the tooth space by which detailed separation was carried out on the semi-conductor base material, using as a mask the detailed separation resist pattern which carried out in this way and was formed — or hole formation can be carried out. Moreover, the semiconductor device which has the tooth space or hole by which detailed separation was carried out by such manufacture approach can be obtained.

[Brief Description of the Drawings]

[Drawing 1] Drawing of the mask pattern for explaining the resist pattern formation approach of the gestalt 1 implementation this invention.

[Drawing 2] The process flow Fig. for explaining the resist pattern formation approach of the gestalt 1 implementation this invention.

[Drawing 3] The process flow Fig. for explaining the resist pattern formation approach of the gestalt 1 implementation this invention.

[Drawing 4] Drawing showing the example of the water-soluble-resin constituent used by the resist pattern formation approach of the gestalt 1 implementation this invention.

[Drawing 5] Drawing showing the example of the water-soluble cross linking agent used by the resist pattern formation approach of the gestalt 1 implementation this invention.

[Drawing 6] The process flow Fig. for explaining the resist pattern formation approach of the gestalt 1 implementation this invention.

[Drawing 7] The process flow Fig. for explaining the resist pattern formation approach of the gestalt 1 implementation this invention.

[Drawing 8] The process flow Fig. for explaining the resist pattern formation approach of the gestalt 2 implementation this invention.

[Drawing 9] The process flow Fig. for explaining the resist pattern formation approach of the gestalt 3 implementation this invention.

[Drawing 10] The 1st resist pattern in the examples 1, 2, and 3 of this invention.

[Drawing 11] The 1st resist pattern in the example 4 of this invention.

[Drawing 12] The 1st resist pattern in the example 5 of this invention.

[Drawing 13] The 2nd resist pattern in the example 14 of this invention.

[Drawing 14] Drawing showing the mixing ratio of the water soluble resin in the example 14 of this invention, and the resist pattern size after the bridge formation stratification.

[Drawing 15] Drawing showing the resist pattern size after the existence of the exposure in the example 15 of this invention, and the bridge formation stratification.

[Drawing 16] The 2nd resist pattern in the example 16 of this invention

[Drawing 17] Drawing showing the mixing baking temperature in the example 16 of this invention, and the resist pattern size after the bridge formation stratification.

[Drawing 18] Drawing showing the mixing ratio of the water-soluble ingredient in the example 17 of this invention, and the resist pattern size after the bridge formation stratification.

[Drawing 19] Drawing showing the resist pattern size after the class of water-soluble ingredient in

the example 18 of this invention, and the bridge formation stratification.

[Drawing 20] Drawing showing the amount of the water-soluble ingredient in the example 19 of this invention, and mixing baking temperature and the resist pattern size after the bridge formation stratification.

[Drawing 21] Drawing showing the resist pattern size after the class of water-soluble ingredient in the example 20 of this invention, and the bridge formation stratification.

[Drawing 22] Drawing showing the resist pattern size after the existence of the electron beam irradiation in the example 21 of this invention, and the bridge formation stratification.

[Drawing 23] Drawing showing the 2nd resist pattern in the example 22 of this invention.

[Drawing 24] Drawing showing the pattern configuration after etching of the substrate oxide film in the example 22 of this invention.

[Description of Notations]

1, 11, 21 The 1st resist 1a, 2a, 3a The 1st resist pattern 2, 12, 22 The 2nd resist 2a, 12a, 22a The 2nd resist pattern 3 Semi-conductor substrate (semi-conductor base material) 4, 14, 24 Bridge formation layer.

[Translation done.]

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平10-73927

(43)公開日 平成10年(1998) 3月17日

(51) Int.Cl. ⁶	識別記号	庁内整理番号	FΙ				技術表示箇所
G 0 3 F 7/095			G03F	7/095			
C 2 3 F 1/00	102		C 2 3 F	1/00		102	
G 0 3 F 7/038	601	7055-2H	G 0 3 F	7/038		601	
7/26	5 1 1			7/26		511	
H01L 21/027			HOlL	•		502R	
		審査請求	未請求 請求	-	OL	(全 17 頁)	最終頁に続く
(21)出願番号	特願平9-80940		(71)出願	٠	013		
				三菱電	機株式	会社	
(22)出顧日	平成9年(1997)3	月31日				ーー 区丸の内二丁	月2番3号
			(72)発明者				
(31)優先権主張番号	特願平8-176851					ズ丸の内二丁!	目2番3号 三
(32)優先日	平8 (1996) 7月5	Ħ		菱電機			шодо-у
(33)優先権主張国	日本 (JP)		(72)発明者				
				東京都	千代田(文丸の内二丁!	目2番3号 三
			1	菱電機			45 A O O O
			(74)代理人			一·· 守 (外14	ጀ)
				7		1 0121	,
							最終頁に続く

(54) 【発明の名称】 微細パターン形成材料及びこれを用いた半導体装置の製造方法並びに半導体装置

(57)【要約】

【課題】 露光によるレジストパターンの形成においては、波長による微細化の限界があり、これを超える必要がある。

【解決手段】 露光により酸を発生する材料を含むレジストパターンの上を、酸の存在で架橋する材料を含むレジストで覆う。加熱又は露光によりレジストパターン中に酸を発生させ、界面に生じた架橋層をレジストパターンの被覆層として形成し、レジストパターンを太らせる。これにより、レジストのホール径の縮小、分離幅の縮小ができる。

2

【特許請求の範囲】

【請求項1】 水溶性樹脂の1種類、又は前記水溶性樹 脂の2種類以上の混合物、あるいは前記水溶性樹脂の2 種類以上による共重合物を主成分とし、酸の存在により 架橋反応を生じることを特徴とする微細パターン形成材 料。

1

【請求項2】 前記水溶性樹脂として、ポリアクリル 酸、ポリビニルアセタール、ポリビニルピロリドン、ポ リビニルアルコール、ポリエチレンイミン、ポリエチレ ンオキシド、スチレンー無水マレイン酸共重合体、ポリ 10 ビニルアミン、ポリアリルアミン、オキサゾリン基含有 水溶性樹脂、水溶性メラミン樹脂、水溶性尿素樹脂、ア ルキッド樹脂、スルホンアミドのうちの1種類、又はこ れらの2種類以上の混合物、或いはこれらの塩を主成分 とすることを特徴とする請求項1に記載の微細パターン 形成材料。

【請求項3】 水溶性架橋剤の1種類又は前記水溶性架 橋剤の2種類以上の混合物を主成分とし、酸の存在によ り架橋反応を生じることを特徴とする微細パターン形成 材料。

【請求項4】 前記水溶性架橋剤として、メラミン誘導 体、尿素誘導体、ベンゾグアナミン、グリコールウリル のうちの1種類又はこれらの2種類以上の混合物を主成 分とすることを特徴とする請求項3に記載の微細パター ン形成材料。

【請求項5】 前記メラミン誘導体として、メラミン、 アルコキシメチレンメラミンのうちの1種類又はこれら の混合物を主成分とすることを特徴とする請求項4に記 載の微細パターン形成材料。

【請求項6】 前記尿素誘導体として、尿素、アルコキ 30 シメチレン尿素、N-アルコキシメチレン尿素、エチレ ン尿素、エチレン尿素カルボン酸の1種類又はこれらの 2種類以上の混合物を主成分とすることを特徴とする請 求項4に記載の微細パターン形成材料。

【請求項7】 水溶性樹脂の1種類又は2種類以上と水 溶性架橋剤の1種類または2種類以上との混合物を主成 分とし、酸の存在により架橋反応を生じることを特徴と する微細パターン形成材料。

【請求項8】 前記水溶性樹脂としてポリビニルアセタ ール、ポリビニルアルコール、又はポリビニルアルコー 40 ルとポリビニルアセタールとの混合物のいずれかを用 い、前記水溶性架橋剤としてメラミン誘導体、尿素誘導 体、又はメラミン誘導体と尿素誘導体との混合物のいず れかを用いることを特徴とする請求項7に記載の微細パ ターン形成材料。

【請求項9】 可塑剤を添加剤として含むことを特徴と する請求項1ないし8のいずれかに記載の微細パターン 形成材料。

【請求項10】 界面活性剤を添加剤として含むことを 特徴とする請求項1ないし8のいずれかに記載の微細パ 50 ターン形成材料。

【請求項11】 第1のレジストにより半導体基材上に 酸を発生し得る第1のレジストパターンを形成する工程 と、前記第1のレジストパターンの上に酸の存在により 架橋反応を起こす第2のレジストを形成する工程と、前 記第1のレジストパターンからの酸の供給により前記第 2のレジストの前記第1のレジストパターンに接する部 分に架橋膜を形成する処理工程と、前記第2のレジスト の非架橋部分を剥離して第2のレジストパターンを形成 する工程と、この第2のレジストパターンをマスクとし て前記半導体基材をエッチングする工程とを含むことを 特徴とする半導体装置の製造方法。

【請求項12】 前記第1のレジストパターンを加熱処 理により酸を発生するレジストで形成したことを特徴と する請求項11に記載の半導体装置の製造方法。

【請求項13】 前記第1のレジストパターンを露光に より酸を発生するレジストで形成したことを特徴とする 請求項11に記載の半導体装置の製造方法。

【請求項14】 前記第1のレジストパターンを酸を含 有するレジストで形成したことを特徴とする請求項11 20 に記載の半導体装置の製造方法。

【請求項15】 前記第1のレジストパターンを酸性液 体又は酸性気体により表面処理を施したレジストで形成 したことを特徴とする請求項11に記載の半導体装置の 製造方法。

【請求項16】 前記第1のレジストとして、ノボラッ ク樹脂とナフトキノンジアジド系感光剤の混合物を主成 分とするレジストを用いることを特徴とする請求項11 ないし15のいずれかに記載の半導体装置の製造方法。

【請求項17】 前記第1のレジストとして、酸を発生 する機構を有する化学増幅型レジストを用いることを特 徴とする請求項11ないし15のいずれかに記載の半導 体装置の製造方法。

【請求項18】 前記第2のレジストとして、前記請求 項1ないし10のいずれかに記載の微細パターン形成材 料を用いることを特徴とする請求項11に記載の半導体 装置の製造方法。

【請求項19】 前記第2のレジストとして、前記請求 項7に記載の微細パターン形成材料を用い、前記水溶性 樹脂と前記水溶性架橋剤との混合量を調整することによ り、前記第1のレジストとの反応量を制御することを特 徴とする請求項11に記載の半導体装置の製造方法。

【請求項20】 第2のレジストとして、前記請求項8 に記載の微細パターン形成材料を用い、前記ポリビニル アセタールのアセタール化度を調整することにより、前 記第1のレジストとの反応量を制御することを特徴とす る請求項11に記載の半導体装置の製造方法。

【請求項21】 前記第2のレジストの溶媒として、水 又は水溶性の混合溶媒を用いることを特徴とする請求項 11ないし20のいずれかに記載の半導体装置の製造方

法。

【請求項22】 前記第1のレジストパターンと、前記第1のレジストパターンの上に形成された前記第2のレジストとを加熱処理することにより、前記第1のレジストパターンの表面に接して前記架橋膜を形成するようにしたことを特徴とする請求項11ないし21のいずれか1項に記載の半導体装置の製造方法。

【請求項23】 前記第1のレジストパターンと、前記第1のレジストパターンの上に形成された前記第2のレジストの上から所定領域を露光することにより、前記第1のレジストパターンの前記所定領域で前記架橋膜を形成するようにしたことを特徴とする請求項11にないし21のいずれかに記載の半導体装置の製造方法。

【請求項24】 前記第1のレジストパターンの所定領域以外を電子線照射し、この電子線照射された第1のレジストパターンの上に前記第2のレジストを形成し、前記第1のレジストパターンの前記所定領域で前記架橋膜を形成するようにしたことを特徴とする請求項11にないし21のいずれかに記載の半導体装置の製造方法。

【請求項25】 前記請求項11ないし24のいずれか 20 に記載した半導体装置の製造方法によって製造したことを特徴とする半導体装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、半導体プロセスにおいて、レジストパターンを形成する際にパターンの分離サイズ又はホール開口サイズを縮小する微細分離レジストパターン用の材料と、それを用いた微細分離パターンの形成方法、さらにはこの微細分離レジストパターンを用いた半導体装置の製造方法、ならびにこの製造方法 30によって製造された半導体装置に関するものである。

[0002]

【従来の技術】半導体デバイスの高集積化に伴って、製造プロセスに要求される配線及び分離幅は、非常に微細化されている。一般的に、微細パターンの形成は、フォトリソグラフィ技術によりレジストパターンを形成し、その後に、形成したレジストパターンをマスクとして、下地の各種薄膜をエッチングする方法により行われている。

【0003】そのため、微細パターンの形成においては、フォトリソグラフィー技術が非常に重要となる。フォトリソグラフィー技術は、レジスト塗布、マスク合わせ、露光、現像で構成されており、微細化に対しては露光波長の制約から、微細化には限界が生じている。さらに、従来のリソグラフィプロセスでは、レジストの耐エッチング性を制御することが困難であり、耐エッチング性の制御により、エッチング後のパターン側壁表面を相面化するなど、表面形状を制御することは不可能であった。

[0004]

【発明が解決しようとする課題】以上説明したように、従来の露光によるフォトリソグラフィ技術では、その波長の限界を超える微細なレジストパターンの形成は困難であった。本発明は、分離パターン、ホールパターンの微細化に於て、波長限界を超えるパターン形成を可能とする微細分離レジストパターン形成を実現する、下地レジストを溶解しない水溶性の材料を提供するとともに、これを用いた微細分離レジストパターン形成技術を提供するものであり、また、従来のリソグラフィ技術では制御が困難であったエッチング後のパターン側壁表面形状を粗面化する手法を提供するものである。さらにはその微細分離レジストパターン形成技術を用いた半導体装置の製造方法を提供するものであり、またこの製造方法を提供するものであり、またこの製造方法を提供するものであり、またこの製造方法を提供するものであり、またこの製造方法を提供するものであり、またこの製造方法を提供するものであり、またこの製造方法を提供するものであり、またこの製造方法を提供するものであり、またこの製造方法を提供しようとするものである。

[0005]

40

【課題を解決するための手段】この発明の微細パターン形成材料は、水溶性樹脂の1種類、又は前記水溶性樹脂の2種類以上の混合物、あるいは前記水溶性樹脂の2種類以上による共重合物を主成分とし、酸の存在により架橋反応を生じることを特徴とするものである。

【0006】また、この発明の微細パターン形成材料は、前記水溶性樹脂として、ポリアクリル酸、ポリビニルアセタール、ポリビニルピロリドン、ポリビニルアルコール、ポリエチレンイミン、ポリエチレンオキシド、スチレンー無水マレイン酸共重合体、ポリビニルアミン、ポリアリルアミン、オキサゾリン基含有水溶性樹脂、水溶性メラミン樹脂、水溶性尿素樹脂、アルキッド樹脂、スルホンアミドのうちの1種類、又はこれらの2種類以上の混合物、或いはこれらの塩を主成分とすることを特徴とするものである。

【0007】また、この発明の微細パターン形成材料は、水溶性架橋剤の1種類又は前記水溶性架橋剤の2種類以上の混合物を主成分とし、酸の存在により架橋反応を生じることを特徴とするものである。また、この発明の微細パターン形成材料は、前記水溶性架橋剤として、メラミン誘導体、尿素誘導体、ベンゾグアナミン、グリコールウリルのうちの1種類又はこれらの2種類以上の混合物を主成分とすることを特徴とするものである。

【0008】また、この発明の微細パターン形成材料は、前記メラミン誘導体として、メラミン、アルコキシメチレンメラミンのうちの1種類又はこれらの混合物を主成分とすることを特徴とするものである。また、この発明の微細パターン形成材料は、前記尿素誘導体として、尿素、アルコキシメチレン尿素、N-アルコキシメチレン尿素、エチレン尿素、エチレン尿素、エチレン尿素力ルボン酸の1種類又はこれらの2種類以上の混合物を主成分とすることを特徴とするものである。

【0009】また、この発明の微細パターン形成材料 50 は、水溶性樹脂の1種類又は2種類以上と水溶性架橋剤 10

の1種類または2種類以上との混合物を主成分とし、酸の存在により架橋反応を生じることを特徴とするものである。また、この発明の微細パターン形成材料は、前記水溶性樹脂としてポリビニルアセタール、ポリビニルアレコール、又はポリビニルアルコールとポリビニルアセタールとの混合物のいずれかを用い、前記水溶性架橋剤としてメラミン誘導体、尿素誘導体、又はメラミン誘導体と尿素誘導体との混合物のいずれかを用いることを特徴とするものである。

【0010】また、この発明の微細パターン形成材料は、可塑剤を添加剤として含むことを特徴とするものである。また、この発明の微細パターン形成材料は、界面活性剤を添加剤として含むことを特徴とするものである。

【0011】次に、この発明の半導体装置の製造方法は、第1のレジストにより半導体基材上に酸を発生し得る第1のレジストパターンを形成する工程と、前記第1のレジストパターンの上に酸の存在により架橋反応を起こす第2のレジストを形成する工程と、前記第1のレジストパターンからの酸の供給により前記第2のレジストの前記第1のレジストパターンに接する部分に架橋膜を形成する処理工程と、前記第2のレジストの非架橋部分を剥離して第2のレジストパターンを形成する工程と、この第2のレジストパターンをマスクとして前記半導体基材をエッチングする工程とを含むことを特徴とする。

【0012】また、この発明の半導体装置の製造方法は、前記第1のレジストパターンを加熱処理により酸を発生するレジストで形成したことを特徴とするものである。また、この発明の半導体装置の製造方法は、前記第1のレジストパターンを露光により酸を発生するレジス 30トで形成したことを特徴とするものである。

【0013】また、この発明の半導体装置の製造方法は、前記第1のレジストパターンを酸を含有するレジストで形成したことを特徴とするものである。また、この発明の半導体装置の製造方法は、前記第1のレジストパターンを酸性液体又は酸性気体により表面処理を施したレジストで形成したことを特徴とするものである。

【0014】また、この発明の半導体装置の製造方法は、前記第1のレジストとして、ノボラック樹脂とナフトキノンジアジド系感光剤の混合物を主成分とするレジ 40ストを用いることを特徴とするものである。また、この発明の半導体装置の製造方法は、前記第1のレジストとして、酸を発生する機構を有する化学増幅型レジストを用いることを特徴とするものである。

【0015】また、この発明の半導体装置の製造方法は、前記第2のレジストとして、前記請求項1ないし1 1のいずれかに記載の微細パターン形成材料を用いることを特徴とするものである。また、この発明の半導体装置の製造方法は、前記第2のレジストとして、前記請求項7に記載の微細パターン形成材料を用い、前記水溶性 50 樹脂と前記水溶性架橋剤との混合量を調整することにより、前記第1のレジストとの反応量を制御することを特徴とするものである。

【0016】また、この発明の半導体装置の製造方法は、第2のレジストとして、前記請求項8または9に記載の微細パターン形成材料を用い、前記ポリビニルアセタールのアセタール化度を調整することにより、前記第1のレジストとの反応量を制御することを特徴とするものである。また、この発明の半導体装置の製造方法は、前記第2のレジストの溶媒として、水又は水溶性の混合溶媒を用いることを特徴とするものである。

【0017】また、この発明の半導体装置の製造方法は、前記第1のレジストパターンと、前記第1のレジストパターンの上に形成された前記第2のレジストとを加熱処理することにより、前記第1のレジストパターンの表面に接して前記架橋膜を形成するようにしたことを特徴とするものである。また、この発明の半導体装置の製造方法は、前記第1のレジストパターンと、前記第1のレジストパターンの上に形成された前記第2のレジストの上から所定領域を露光することにより、前記第1のレジストパターンの前記所定領域で前記架橋膜を形成するようにしたことを特徴とするものである。

【0018】また、この発明の半導体装置の製造方法は、前記第1のレジストパターンの所定領域以外を電子線照射し、この電子線照射された第1のレジストパターンの上に前記第2のレジストを形成し、前記第1のレジストパターンの前記所定領域で前記架橋膜を形成するようにしたことを特徴とするものである。また、この発明の半導体装置は、前記のそれぞれの半導体装置の製造方法によって製造したことを特徴とするものである。

[0019]

【発明の実施の形態】

実施の形態1.図1は、この発明で対象とする微細分離されたレジストパターンを形成するためのマスクパターンの例を示す図で、図1(a)は微細ホールのマスクパターン100、図1(b)は微細スペースのマスクパターン200、図1(c)は、孤立の残しのパターン300を示す。図2~図7は、この発明の実施の形態1の微細分離レジストパターン形成方法を説明するためのプロセスフロー図である。

【0020】先ず、図1及び図2を参照しながら、この実施の形態の微細分離レジストパターン形成方法、ならびにこれを用いた半導体装置の製造方法を説明する。まず、図2(a)で示すように、半導体基板(半導体ウェハー)3に、適当な加熱処理により内部に酸を発生する機構をもつ第1のレジスト1を塗布する(例えば、厚さ0.7~1.0 μ m程度)。この第1のレジスト1は、半導体基板3上にスピンコートなどにより塗布し、次に、プリベーク(70~110℃で1分程度の熱処理)を施して第1のレジスト1中の溶剤を蒸発させる。

【0021】次に、第1のレジストパターンを形成するために、g線、i線、または、Deep-UV、KrFエキシマ、ArFエキシマ、EB(電子線)、X-rayなど、適用した第1のレジスト1の感度波長に対応した光源を用い、図1に示すようなパターンを含むマスクを用い投影露光する。

【0022】ここで用いる第1のレジスト1の材料は、適当な加熱処理により、レジスト内部に酸性成分が発生する機構を用いたレジストであればよく、また、ボジ型、ネガ型レジストのどちらでもよい。例えば、第1のレジストとしては、ノボラック樹脂、ナフトキノンジアジド系感光剤から構成されるポジ型レジストなどが挙げられる。さらに、第1のレジストとしては、酸を発生する機構を用いた化学増幅型レジストの適用も可能であり、加熱により酸を発生する反応系を利用したレジスト材料であれば、その他のものでもよい。

【0023】第1のレジスト1の露光を行った後、必要に応じて、PEB(露光後加熱)を行い(例えば、PEB温度:50~130℃)、レジスト1の解像度を向上させる。次に、TMAH(テトラメチルアンモニウムハ 20イドロオキサイド)などの約0.05~3.0 w t %のアルカリ水浴液を用いて現像する。図2(b)は、こうして形成された第1のレジストパターン1aを示す。

【0024】現像処理を行った後、必要に応じて、ポストデベロッピングベークを行う場合もある(例えば、ベーク温度は60~120℃、60秒程度)。この熱処理は、後のミキシング反応に影響する為、用いる第1のレジスト、あるいは第2のレジスト材料に併せて、適切な温度に設定することが望ましい。以上は、酸を発生する第1のレジスト1を用いるという点を別にすれば、プロセスとしては、一般的なレジストプロセスによるレジストパターンの形成と同様である。

【0025】次に、図2(c)に示すように、半導体基板1上に、酸の存在により架橋する架橋性の材料を主成分とし、図1のレジスト1を溶解しない溶剤に溶解された第2のレジスト2を塗布する。第2のレジスト2の塗布方法は、第1のレジストパターン1a上に均一に塗布可能であれば、特に限定されるものではなく、スプレーによる塗布、回転塗布、あるいは第2のレジスト溶液中に浸漬(ディッピング)することにより塗布することも可能である。次に、第2のレジスト2の塗布後、必要に応じてこれをプリベークし(例えば、85℃、60秒程度)、第2のレジスト層2を形成する。

【0026】次に、図2(d)に示すように、半導体基板1に形成された第1のレジストパターン1 a と、この上に形成された第2のレジスト2とを加熱処理(10年) ングベーク、以下必要に応じMBと略記する。加熱温度は、例えば10年) し、第10 レジストパターン11 a から酸の拡散を促進させ、第10 レジストパターン 11 ないら酸の拡散を促進させ、第10 レジストパターン 11 ないら酸の拡散を促進させ、第11 のレジストパターン

1 a との界面において、架橋反応を発生させる。この場合のミキシングベーク温度/時間は、例えば85℃~150℃/60~120secであり、用いるレジスト材料の種類、必要とする反応層の厚みにより、最適な条件に設定すれば良い。このミキシングベークにより、架橋反応を起こした架橋層4が、第1のレジストパターン1aを被覆するように第2のレジスト2の中に形成される。

【0027】次に、図2 (e) に示すように、水、ある 10~いはTMAH等のアルカリ水溶液の現像液を用いて、架 橋していない第2のレジスト2を現像剥離し、第2のレ ジストパターン2aを形成する。以上の処理により、ホ ールパターンのホール内径、またはラインパターンの分 離幅を縮小し、あるいは、孤立残しパターンの面積を拡 大したレジストパターンを得ることが可能となる。る。 【0028】以上、図2を参照して説明した微細レジス トパターンの形成方法では、第1のレジストパターン1 a上に第2のレジスト層2を形成した後に、適当な加熱 処理により第1のレジストパターン1a中で酸を発生さ せ、第2のレジスト2へ拡散させる方法について説明し た。つぎに、この加熱処理に代わって、あるいは加熱処 理に先立って、露光により酸を発させる方法について説 明する。図3は、この場合の微細分離レジストパターン の形成方法を説明するためのプロセスフロー図である。 先ず、図3 (a) ~ (c) の工程は、図2 (a) ~

(c) と同様であるから、説明を省略する。なお、この場合に、第1のレジスト1としては、露光により酸を発生する機構を用いた化学増幅型レジストの適用も可能である。化学増幅型レジストでは、光や電子線、X線などによる酸触媒の生成反応が起り、生成した酸の触媒により引き起こされる増幅反応を利用する。

【0029】次に、図3 (c)で示される第2のレジスト層2を形成した後、図3 (d)に示すように、再度Hgランプのg線またはi線で半導体基板1を全面露光し、第1のレジストパターン1a中に酸を発生させ、これにより、図3 (e)に示すように、第1レジストパターン1aに接する第2のレジスト2の界面付近に架橋層4を形成する。

【0030】この時の露光に用いる光源は、第1のレジスト1の感光波長に応じて、Hgランプ、KrFエキシマ、ArFエキシマなどを用いることも可能であり、露光により酸の発生が可能であれば特に限定されるものではなく、用いた第1のレジスト1の感光波長に応じた光源、露光量を用いて露光すれば良い。

【0031】このように、図3の例では、第2のレジスト2の塗布後に露光し、第1のレジストパターン1aの中に酸を発生させるものであり、第1のレジストパターン1aを、第2のレジスト2に覆われた状態で露光するため、第1のレジストパターン1a中で発生する酸の量を露光量の調整により、広い範囲で正確に制御できるた

め、反応層4の膜厚が精度良く制御できる。

【0032】次に、必要に応じ、半導体基板1を熱処理 (例えば60~130℃、ミキシングベーク) する。こ れにより、第1のレジストパターン1 a からの酸を拡散 させ、第2のレジスト2中へ供給し、第2のレジスト2 と第1のレジストパターン1aとの界面において、架橋 反応を促進させる。この場合のミキシングベーク温度/ 時間は、60~130℃/60~120secであり、 用いるレジスト材料の種類、必要とする反応層の厚みに より、最適な条件に設定すれば良い。このミキシングベ 10 ークにより、架橋反応を起こした架橋層4が、第1のレ ジストパターン1aを被覆するように第2のレジスト2 の中に形成される。

【0033】次に、図3(f)の工程は、図2(e)と 同様である。以上の処理により、ホール内径、またはラ インパターンの分離幅を縮小し、あるいは、孤立残しパ ターンの面積を拡大したレジストパターンを得ることが 可能となる。

【0034】なお、図3を参照して説明した方法の例の ように、露光により第1のレジストパターン1a中に酸 20 成分を発生させる工程は、適用する第1のレジスト1と 第2のレジスト2とも反応性が比較的低い場合、あるい は、必要とする架橋層の厚みが比較的厚い場合、または 架橋反応を均一化する場合に特に適する。

【0035】ここで、第2のレジスト2に用いられる材 料について説明する。第2のレジストとしては、架橋性 の水溶性樹脂の単独、あるいはそれらの2種類以上の混 合物を用いることができる。また、水溶性架橋剤の単 独、あるいはそれらの2種類以上の混合物が用いられ る。さらに、これら水溶性樹脂と水溶性架橋剤との混合 物が用いられる。第2のレジストとして混合物を用いる 場合には、それらの材料組成は、適用する第1のレジス ト材料、あるいは設定した反応条件などにより、最適な 組成を設定すれば良く特に限定されるものではない。

【0036】第2のレジストに用いられる水溶性樹脂組 成物の具体例としては、図4に示すような、ポリアクリ ル酸、ポリビニルアセタール、ポリビニルピロリドン、 ポリビニルアルコール、ポリエチレンイミン、ポリエチ レンオキシド、スチレンーマレイン酸共重合体、ポリビ ニルアミン樹脂、ポリアリルアミン、オキサゾリン基含 40 有水溶性樹脂、水溶性メラミン樹脂、水溶性尿素樹脂、 アルキッド樹脂、スルホンアミド樹脂、などが有効に適 用可能であり、また、酸性成分存在下で架橋反応を生じ る、あるいは、架橋反応を生じない場合には、水溶性の 架橋剤と混合が可能であれば、特に限定されない。ま た、これらを単独で用いても、混合物として用いても有 効である。

【0037】これらの水溶性樹脂は、1種類、あるいは 2種類以上の混合物として用いてもよく、下地の第1の

することが可能である。また、これらの水溶性樹脂は、 水への溶解性を向上させる目的で、塩酸塩などの塩にし て用いても良い。

10

【0038】次に、第2のレジストに用いることができ る水溶性架橋剤としては、具体的には、図5に示すよう な尿素、アルコキシメチレン尿素、N-アルコキシメチ レン尿素、エチレン尿素、エチレン尿素カルボン酸など の尿素系架橋剤、メラミン、アルコキシメチレンメラミ ン、などのメラミン系架橋剤、ベンゾグアナミン、グリ コールウリル等のアミノ系架橋剤などが適用可能であ る。しかし、アミノ系架橋剤に特に限定されるものでは なく、酸によって架橋を生じる水溶性の架橋剤であれば 特に限定されるものではない。

【0039】さらに第2のレジストに用いられる具体的 な水溶性レジスト材料としては、上述したような水溶性 樹脂の単独あるいは混合物に、同じく上述したような水 溶性架橋剤の単独又は混合物を、相互に混合して用いる ことも有効である。例えば、具体的には、第2のレジス トとして、水溶性樹脂組成物としてはポリビニルアセタ ール樹脂を用い、水溶性架橋剤としてはメトキシメチロ ールメラミン、あるいはエチレン尿素などを混合して用 いることなどが挙げられる。この場合、水溶性が高いた め、混合溶液の保存安定性が優れている。なお、第2の レジストに適用される材料は、水溶性あるいは、第1の レジストパターンを溶解しない水溶性溶媒に可溶であ り、かつ、酸成分の存在下で、架橋反応を生じる材料で あれば特に限定されるものではない。

【0040】なお、第1のレジストパターン1aへの再 露光による酸発生を行わず、加熱処理だけで、架橋反応 を実現できることは先に説明したとおりであるが、この 場合には、第2のレジスト2として、反応性の高い適当 な材料を選択し、適当な加熱処理(例えば、85℃~1 50℃)を行うことが望ましい。この場合、例えば、具 体的には、第2のレジスト材料として、ポリビニルアセ タール樹脂に、エチレン尿素、ポリビニルアルコールと エチレン尿素、あるいは、これらを適当な割合で混合し た水溶性材料組成物を用いることが有効である。

【0041】次に、本発明においては、第1のレジスト 1と第2のレジスト2との架橋反応を制御し、第1のレ ジストパターン1a上に形成される架橋層4の厚みを制 御することが重要である。架橋反応の制御は、適用する 第1のレジスト1と第2のレジスト2との反応性、第1 のレジストパターン1aの形状、必要とする架橋反応層 4の厚み、などに応じて、最適化することが望ましい。 【0042】第1のレジストと第2のレジストとの架橋 反応の制御は、プロセス条件の調整による手法と、第2 のレジスト材料の組成を調整する手法がある。架橋反応 のプロセス的な制御手法としては、(1) 第1のレジス トパターン1aへの露光量を調整する、(2) MB(ミ レジスト1との反応量、反応条件などにより、適宜調整 50 キシングベーク)温度、処理時間を調整する、などの手

法が有効である。特に、加熱して架橋する時間 (MB時 間) を調整することにより、架橋層の厚みを制御するこ とが可能であり、非常に反応制御性の高い手法といえ る。また、第2のレジストに用いる材料組成の面から は、(3)適当な2種類以上の水溶性樹脂を混合し、そ の混合比を調整することにより、第1のレジストとの反 応量を制御する、(4)水溶性樹脂に、適当な水溶性架 橋剤を混合し、その混合比を調整することにより、第1 のレジストとの反応量を制御する、などの手法が有効で ある。

【0043】しかしながら、これらの架橋反応の制御 は、一元的に決定されるものではなく、(1)第2のレ ジスト材料と適用する第1のレジスト材料との反応性、 (2) 第1のレジストパターンの形状、膜厚、(3) 必 要とする架橋層の膜厚、(4)使用可能な露光条件、あ るいはMB条件、(5)塗布条件、などのさまざまな条 件を勘案して決定する必要がある。特に、第1のレジス トと第2のレジストとの反応性は、第1のレジスト材料 の組成により、影響を受けることが分かっており、その ため、実際に本発明を適用する場合には、上述した要因 20 を勘案し、第2のレジスト材料組成物を最適化すること が望ましい。従って、第2のレジストに用いられる水溶 性材料の種類とその組成比は、特に限定されるものでは なく、用いる材料の種類、熱処理条件などに応じて、最 適化して用いる。

【0044】なお、第2のレジスト材料に、エチレング リコール、グリセリン、トリエチレングリコールなどの 可塑剤を添加剤と加えてもよい。また、第2のレジスト 材料に関して、成膜性向上を目的として、界面活性剤、 例えば、3M社製のフロラード、三洋化成社製のノニポ 30 ールなどの水溶性の界面活性剤を添加剤として加えても よい。

【0045】次に、第2のレジストに用いられる溶媒に ついて説明する。第2のレジストに用いる溶媒には、第 1のレジストのパターンを溶解させないこと、さらに水 溶性材料を十分に溶解させることが必要であるが、これ を満たす溶媒であれば特に限定されるものではない。例 えば、第2のレジストの溶媒としては、水 (純水)、ま たは水とIPAなどのアルコール系溶媒、あるいはN-メチルピロリドンなどの水溶性有機溶媒の単独、あるい は混合溶液を用いればよい。

【0046】水に混合する溶媒としては、水溶性であれ ば、特に限定されるものではなく、例を挙げるとエタノ ール、メタノール、イソプロピルアルコールなどのアル コール類、γープチロラクトン、アセトン、などを用い ることが可能であり、第2のレジストに用いる材料の溶 解性に合わせて、第1のレジストパターンを溶解しない 範囲で混合すれば良い。

【0047】さて、以上の例では、半導体基板1の全面

たが、次に半導体基板1の所望領域でのみ選択的に微細 レジストパターンを形成する方法について説明する。図 6は、この場合の製造方法のプロセスフロー図である。 先ず、図6 (a) ~ (c) の工程は、図3 (a) ~ (c) と同様である。図6 (c) のように、第2のレジ スト層2を形成した後、次に、図6 (d) に示すよう に、半導体基板3の一部を遮光板5で遮光し、選択され た領域に対して、再度Hgランプのg線またはi線で露 光し、第1のレジストパターン1a中に酸を発生させ 10 る。これにより、図6 (e) に示すように、露光された 部分において、第1のレジストパターン1aに接する第 2のレジスト2の界面付近に架橋層4を形成する。

12

【0048】その後の図6(f)の工程は、図3(f) の工程と同様であるから、説明は省略する。このように して、図6 (f) に示すように、半導体基板3の選択さ れた領域では、第1のレジストパターン1aの上に架橋 層4を形成し、その他の領域では第1のレジストパター ンに架橋層を形成しないようにすることができる。この ような形成方法によれば、適当な露光マスクを用いるこ とにより、半導体基板1上で選択的に露光して、露光部 分と未露光部分を区別し、第2のレジストパターンが第 1のレジストパターンとの境界部分において、架橋する 領域と架橋しない領域とを形成することができる。これ により、同一半導体基板上において、異なる寸法の微細 ホールまたは、微細スペースを形成することができる。

【0049】図7は、半導体基板1の所望領域でのみ選 択的に微細レジストパターンを形成するための他の形成 方法のプロセスフロー図である。先ず、図7 (a) ~ (c)の工程は、図2(a)~(c)と同様である。図 7 (c) のように、第2のレジスト層2を形成した後、 次に、図7 (d) に示すように、半導体基板3の選択さ れた領域を電子線遮蔽板6で遮蔽し、その他の領域に対 して、電子線を照射する。次に、図7 (e) の工程で、 加熱処理を行うと、電子線を照射した領域では架橋層が 形成されず、電子線照射を遮蔽した所定領域でのみ架橋 層が形成される。

【0050】その後の図7 (f) の工程は、図2 (f) の工程と同様であるから、説明は省略する。このように して、図7(f)に示すように、半導体基板3の選択さ れた領域では、第1のレジストパターン1aの上に架橋 層4を形成し、その他の領域では第1のレジストパター ンに架橋層を形成しないようにすることができる。これ により、同一半導体基板上において、異なる寸法の微細 ホールまたは、微細スペースを形成することができる。 【0051】以上、半導体基板3に上に微細分離レジス トパターンを形成する形成方法について詳細に説明した が、本発明の微細分離レジストパターンは、半導体基板 3の上に限られず、半導体装置の製造プロセスに応じ て、シリコン酸化膜などの絶縁層の上に形成する場合も で微細レジストパターンを形成する方法について説明し 50 あり、またポリシリコン膜などの導電層の上に形成する

こともある。このように、本発明の微細分離レジストパターンの形成は、下地膜に制約されるものではなく、レジストパターンを形成できる基材上であれば、どの場合においても適用可能であり、必要に応じた基材の上に形成されるものである。これらを総称して、半導体基材と称することとする。

【0052】また、本発明においては、上述のように形成した微細分離レジストパターンをマスクとして、下地の半導体基板あるいは各種薄膜などの半導体基材をエッチングし、半導体基材に微細スペース、あるいは微細ホ 10ールなどを形成して、半導体装置を製造するものである。また、第2のレジストの材料、及び材料組成、あるいはMB温度を適切に設定し、第1のレジスト上に架橋層を形成して得られた微細分離レジストパターンをマスクとして、半導体基材をエッチングすることにより、エッチング後の基材パターン側壁表面が粗面化される効果がある。

【0053】実施の形態2.図8は、この発明の実施の 形態2の微細分離レジストパターン形成方法を説明する ためのプロセスフロー図である。図1および図8を参照 20 して、この実施の形態2の微細分離レジストパターンの 形成方法、ならびにこれを用いた半導体装置の製造方法 を説明する。

【0054】先ず、図8(a)に示すように、半導体基板3に、内部に若干の酸性物質を含有する第1のレジスト11はプリベーク(70~100℃で1分程度の熱処理)を施した後、Hgランプのg線またはi線を用い、図1の様なパターンを含むマスクを用い投影露光する(図8では省略している)。図8(b)はこうして形成された第1のレジスト30パターン11aを示す。ここで用いる第1のレジスト11の材料としては、実施の形態1で説明したものが有効に用いられる。その詳細な説明は、重複を避けるため省略する。また、第1のレジスト11に含ませる酸としては、具体的には、カルボン酸系の低分子酸等が好適である。

【0055】この後、必要に応じ、PEB(10~130℃)で熱処理し、レジストの解像度を向上させた後、TMAH(テトラメチルアンモニウムハイドロオキサイド)の約2.0%希釈水浴液を用いて現像する。この後、必要に応じポストデベロッピングベークを行う場合もある。この熱処理は後のミキシング反応に影響する為、適切な温度に設定する必要がある。以上は、酸を含むレジスト11を用いるという点を別にすれば、プロセスとしては、従来のレジストプロセスによるレジストパターンの形成と同様である。

【0056】次に図8(b)のパターン形成後、図8 1の様なパターンを含むマスクを用いて投影露光する(c)に示すように、半導体基板3上に、酸の存在により架橋する架橋性材料を主成分とし、第1のレジスト1 レジスト21の材料としては、実施の形態1で説明した1を溶解しない溶剤に溶かされた第2のレジスト12を 50 ものが有効に用いられる。その詳細な説明は、重複を避

塗布する。ここで用いる第2のレジスト12の材料およびその溶媒は、実施の形態1で述べたものと同様のものが適用でき、また有効である。その詳細な説明は、重複を省くため省略する。。次に、第2のレジスト12の塗布後、必要に応じこれをプリベークする。この熱処理は、後のミキシング反応に影響するため、適切な温度に設定することが望ましい。

14

【0057】次に図8(d)に示すように、半導体基板3を熱処理(60~130℃)し、第1のレジストパターン11aに含まれる若干の酸性物質からの酸の供給により、第2のレジスト12の第1のレジストパターン11aとの界面近傍で架橋反応を起こさせる。これにより、第1のレジストパターン11aを被覆するように架橋反応を起こした架橋層14が第2のレジスト12中に形成される。

【0058】次に、図8(f)に示すように、水または、TMAH等の現像液を用いて第2のレジスト12の架橋していない部分を現像剥離する。以上の処理により、ホールパターンのホール内径または、ラインパターンの分離幅を縮小したレジストパターン、あるいは、孤立残しパターンの面積を拡大したレジストパターンを得ることが可能となる。

【0059】以上のように、この実施の形態2における第1のレジスト11は、露光によって酸を発生させる必要が無く、レジスト膜11自体に酸を含むように調整されており、熱処理によりその酸を拡散させて架橋させるようにしている。この第1のレジスト11に含ませる酸としては、カルボン酸系の低分子酸等が好適であるが、レジスト溶液に混合することが可能であれば特に限定はされない。

【0060】また、この微細分離レジストパターンを、各種の半導体基材の上に形成し、これをマスクとして、半導体基材上に微細な分離スペースあるいは微細なホールなど形成することは、先に述べた実施の形態1と同様である。

【0061】実施の形態3. 図9は、この発明の実施の 形態3の微細分離レジストパターンの形成方法を説明す るためのプロセスフロー図である。図1及び図9を参照 してこの実施の形態3の微細分離レジストパターンの形 成方法、ならびにこれを用いた半導体装置の製造方法を 説明する。

【0062】先ず、図9(a)に示すように、半導体基板3に、第1のレジスト21を塗布する。第1のレジスト21にプリベーク(70-100℃で1分程度の熱処理)を施した後、第1のレジスト21の感光波長に応じて、例えば、Hgランプのg線、またはi線を用い、図1の様なパターンを含むマスクを用いて投影露光する(図9では図示を省略している)。ここで用いる第1のレジスト21の材料としては、実施の形態1で説明したものが有効に用いられる。その詳細な説明は、重複を避

けるため省略する。

【0063】次に、必要に応じて、PEB (10~13 O°C) で熱処理しレジストの解像度向上させた後、TM AH(テトラメチルアンモニウムハイドロオキサイド)の 約2.0%希釈水溶液を用い現像する。図9 (b) は、こ うして形成された第1のレジストのパターン21aを示 す。この後、必要に応じポストデベロッピングベークを 行う場合もある。この熱処理は後のミキシング反応に影 響する為、適切な温度に設定する必要がある。以上は、 プロセスとしては、従来のレジストプロセスによるレジ 10 ストパターンの形成と同様である。

【0064】図9(b)のパターン形成後、次に、図9 (c) に示すように、半導体基板3を酸性溶液で浸漬処 理する。その処理方法は、通常のパドル現像の方式でよ い。また、酸性溶液のベーパライズ(吹き付け)で行っ ても良い。また、酸性ガスで表面処理をしてもよい。こ の場合の酸性溶液または酸性ガスは、有機酸、無機酸の いずれでもよい。具体的には、例えば、低濃度の酢酸が 好適な例として挙げられる。この工程において、酸が第 1のレジストパターン21aの界面近傍に染み込み、酸 20 を含む薄い層が形成される。この後、必要に応じて純水 を用いてリンスする。

【0065】その後、図9 (e) に示すように、第1の レジストパターン21の上に、酸の存在により架橋する 架橋性材料を主成分とし、第1のレジスト21を溶解し ない溶剤に溶かされた第2のレジスト22を塗布する。 ここで用いる第2のレジスト22の材料およびその溶媒 は、実施の形態1で述べたものと同様のものが有効に用 いられる。重複を避けるため、その詳細な説明は省略す る。次に、第2のレジスト22の塗布後、必要に応じ、 第2のレジスト22をプリベークする。この熱処理は、 後のミキシング反応に影響するため、適切な温度に設定 する。

【0066】次に、図9 (f) に示すように、半導体基 板 3 を熱処理 (60~130℃) して、架橋ベークを行 い、第1のレジストパターン21aからの酸の供給で、 第2のレジスト22の第1のレジストパターン21aと の界面近傍で架橋反応を起こさせる。これにより、第1 のレジストパターン21aを被覆するように架橋反応を 起こした架橋層4が第2のレジスト22中に形成され る。

【0067】次に、図9(g)に示すように、水また は、TMAH等の現像液を用いて第2のレジスト22の 架橋していない部分を現像剥離する。以上の処理によ り、ホールパターンのホール内径または、ラインパター ンの分離幅を縮小したレジストパターンを得ることが可 能となる。

【0068】以上のように、この実施の形態3によれ ば、露光処理により、第1のレジストに酸を発生させる 工程を必要とせず、第1のレジストパターン21a上に 50 第2のレジスト22を成膜する前に、酸性液体又は酸性 ガスによる表面処理を施しておき、後の工程での熱処理 により酸を拡散させて架橋するようにするものである。 【0069】また、このようにして形成した微細分離レ ジストパターンを、各種の半導体基板上に形成し、これ

をマスクとして、半導体基板上に微細な分離スペースあ るいは、微細ホールなどを形成し、半導体装置を製造す ることは、先に述べた実施の形態1および2と同様であ

[0070]

【実施例】次に、前記の各実施の形態1~3に関連した 実施例について説明する。一つの実施例が、一つ以上の 実施の形態に関係する場合があるので、まとめて説明す る。先ず、第1のレジスト材料に関する実施例1~5を 説明する。

実施例1.第1のレジストとして、ノボラック樹脂とナ フトキノンジアジドから構成され、溶媒として乳酸エチ ルとプロピレングリコールモノエチルアセテートを用い たi線レジストを用い、レジストパターンを形成した。 まず、前記レジストを、Siウェハー上に滴下、回転塗 布した後、85℃/70秒でプリベークを行い、レジス ト中の溶媒を蒸発させて第1のレジストを膜厚約1.0 μmで形成した。次に、露光装置として、i線縮小投影 露光装置を用い、露光マスクとして、図1に示すような マスクを用いて、第1のレジストを露光した。次に、1 20℃/70秒でPEB処理を行い、続いて、アルカリ 現像液(東京応化工業社製、NMD3)を用いて現像を 行い、図10に示すような分離サイズをもつレジストパ ターンを得た。

【0071】実施例2.第1のレジストとして、ノボラ 30 ック樹脂とナフトキノンジアジドから構成され、溶媒と して2-ヘプタノンを用いたi線レジストを用い、レジ ストパターンを形成した。まず、前記レジストを、Si ウェハー上に滴下、回転塗布により膜厚約0.8μmと なるように成膜した。次に、85℃/70秒でプリベー クを行い、レジスト中の溶媒を乾燥させた。続いて、i 線縮小投影露光装置を用い、図1に示すようなマスクを 用いて、露光を行った。次に、120℃/70秒でPE B処理を行い、続いて、アルカリ現像液(東京応化社 40 製、NMD3)を用いて現像を行い、図10に示すよう

【0072】実施例3.第1のレジストとして、ノボラ ック樹脂とナフトキノンジアジドから構成され、溶媒と して乳酸エチルと酢酸ブチルの混合溶媒を用いたi線レ ジストを用い、レジストパターンを形成した。まず、前 記レジストを、Siウェハー上に滴下、回転塗布により 膜厚約1.0μmとなるように成膜した。次に、100 ℃/90秒でプリベークを行い、レジスト中の溶媒を乾 燥させた。続いて、ニコン社製ステッバーを用いて、図 1に示すようなマスクを用いて、露光を行った。次に、

な分離サイズを持つレジストパターンを得た。

110℃/60秒でPEB処理を行い、続いて、アルカ リ現像液(東京応化社製、NMD3)を用いて現像を行 い、図10に示すようなレジストパターンを得た。

17

【0073】実施例4. 第1のレジストとして、東京応 化社製の化学増幅型エキシマレジストを用い、レジスト パターンを形成した。まず、前記レジストを、Siウェ ハー上に滴下、回転塗布により膜厚約0. 8μmとなる ように成膜した。次に、90℃/90秒でプリベークを 行い、レジスト中の溶媒を乾燥させた。続いて、KrF エキシマ縮小投影露光装置を用いて、図1に示すような 10 約10wt%のエチレン尿素水溶液を得た。 マスクを用いて、露光を行った。次に、100℃/90 秒でPEB処理を行い、続いて、アルカリ現像液(東京 応化社製、NMD-W)を用いて現像を行い、図11に 示すようなレジストパターンを得た。

【0074】実施例5. 第1のレジストとして、t-B oc化ポリヒドロキシスチレンと酸発生剤から構成され る菱電化成社製の化学増幅型レジスト(MELKER、 J. Vac. Sci. Technol., B11 (6) 2773, 1993) を用い、レジストパターンを形成 した。まず、前記レジストを、Siウェハー上に滴下、 回転塗布により膜厚約0.52μmとなるように成膜し た。次に、120℃/180秒でベークを行い、レジス ト中の溶媒を乾燥させた。続いて、このレジスト上に、 帯電防止膜として、昭和電工社製エスペイサーESP・ 100を同様にして回転塗布した後、80℃/120秒 でベークを行った。次に、EB描画装置を用いて、1 7. 4 µ C / c m⁴ で描画を行なった。次に、80℃/ 120秒でPEBを行ったのち、純水を用いて帯電防止 膜を剥離、続いてTMAHアルカリ現像液(東京応化社 製NMD-W)を用いてレジストパターンの現像を行っ 30 た。その結果、図12に示すような、約0.2μmのE Bレジストパターンを得た。

【0075】次に、第2のレジスト材料に関する実施例 6~13について説明する。

実施例6. 第2のレジスト材料として、1 Lメスフラス コを用い、積水化学社製のポリビニルアセタール樹脂エ スレックKW3およびKW1の20wt%水溶液:それ ぞれ100gに純水:400gを加え、室温で6時間攪 拌混合し、ポリビニルアセタール樹脂KW3, KW1の 5 w t %水溶液をそれぞれ得た。

【0076】実施例7.第2のレジスト材料として、実 施例6のポリビニルアセタール樹脂に代えて、ポリビニ ルアルコール樹脂、オキサゾリン含有水溶性樹脂(日本 触媒社製、エポクロスWS500)、スチレン-無水マ レイン酸共重合体(ARCOchemical社製、S MA1000、1440H) を用いて、実施例6と同様 にして、それぞれの5wt%水溶液を得た。

【0077】実施例8. 第2のレジスト材料として、1 Lメスフラスコを用いて、メトキシメチロールメラミン

純水:780g、IPA:40gを室温にて6時間攪拌 混合し、約10mt%のメチロールメラミン水溶液を得 た。

【0078】実施例9. 第2のレジスト材料として、1 Lメスフラスコを用いて、(N-メトキシメチル)メト キシエチレン尿素:100g、(N-メトキシメチル) ヒドロキシエチレン尿素:100g、Nーメトキシメチ ル尿素:100g中に、それぞれ、純水:860g、I PA: 40gを室温にて6時間攪拌混合し、それぞれ、

【0079】実施例10. 第2のレジスト材料として、 実施例6で得たポリビニルアセタールのKW3水溶液: 160gと、実施例8で得たメトキシメチロールメラミ ン水溶液:20g、純水:20gを室温で6時間撹伴混 合し、水溶性樹脂と水溶性架橋剤の混合溶液を得た。

【0080】実施例11. 第2のレジスト材料として、 実施例6で得たポリビニルアセタールのKW3水溶液: 160gと、実施例9で得た (N-メトキシメチル) メ トキシエチレン尿素水溶液:20g、(N-メトキシメ チル) ヒドロキシエチレン尿素:20g、N-メトキシ メチル尿素:20g中に、それぞれ、純水:20gを室 温で6時間撹伴混合し、水溶性樹脂と水溶性架橋剤の混 合溶液を得た。

【0081】実施例12. 第2のレジスト材料として、 実施例6で得たポリビニルアセタールのKW3水溶液: 160gと、実施例9で得たメトキシエチレン尿素水溶 液の10g、20g、30gと純水:20gをそれぞれ を室温下で6時間混合した。その結果、ポリビニルアセ タール樹脂に対する水溶性架橋剤であるメトキシエチレ ン尿素の濃度が、約11wt%、20wt%、27wt %の3種類の第2のレジスト水溶液を得た。

【0082】実施例13. 第2のレジストとして、実施 例6で得た5wt%のポリビニルアセタール樹脂水溶液 の100gに、実施例7で得た水溶性樹脂溶液のうち、 ポリビニルアルコール樹脂の5wt%水溶液を0g、3 5. 3g、72. 2gを混合し、室温下で、6時間攪拌 混合して、ポリビニルアセタール樹脂とポリビニルアル コール樹脂の混合比の異なる3種類の混合溶液を得た。

【0083】次に、微細レジストパターン形成の実施例 40 14~22について説明する。

実施例14.実施例3で得た第1のレジストパターンが 形成されたSiウェハー上に、実施例12で得た第2の ,レジスト材料を、滴下し、スピンコートした後、85℃ /70秒でプリベークを行い、第2のレジスト膜を形成 した。次に、120℃/90秒でミキシングベーク (M B) を行い、架橋反応を進行させた。次に、純水を用い て現像を行い、非架橋層を現像剥離し、続く90℃/9 .0秒でポストベークを行うことにより、第1のレジスト パターン上に第2のレジスト架橋層を形成し、図13に (三井サイナミド社製、サイメル370):100gと 50 示すように、第2のレジストパターンを形成した。図1

20

3において、第2のレジストパターンのホール径を測長 場所として、水溶性樹脂の混合比を変えて架橋層形成後 のレジストパターンサイズを測定した。この結果を図1 4のテーブルに示す。この場合、ポリビニルアセタール 樹脂とポリビニルアルコール樹脂の混合量を変えること により、第1のレジスト上に形成される架橋層の厚みを 制御することが可能であることがわかる。

【0084】実施例15.実施例2で得た第1のレジス トパターンが形成されたSiウェハー上に、実施例6で 得たKW1の樹脂水溶液を第2のレジスト材料として滴 10 下し、スピンコートした後、85℃/70秒でプリベー クを行い、第2のレジスト膜を形成した。次に、 i 線露 光装置を用いて、ウェハーに全面露光を行った。さら に、150℃/90秒でミキシングベーク (MB) を行 い、架橋反応を進行させた。次に、純水を用いて現像を 行い、非架橋層を現像剥離し、続いて110℃/90秒 でポストベークを行うことにより、図13に示したもの と同様に、第1のレジストパターンであるホールパター ン上に第2のレジスト架橋層を形成した。図13に示す 第2のレジストパターンのホール径を測長場所として、 全面露光をした場合としない場合について、架橋層形成 後のレジストパターンサイズを測定した。この結果を図 15のテーブルに示す。これにより、架橋層を形成する 前の第1の0.4μmのレジストホールパターンサイズ が、全面露光を行った場合には、約0.14μm、全面 露光を行わない場合には、約0.11 μm縮小してい た。この場合、MBベーク前に全面露光を行うことによ り、行わない場合に較べて、架橋反応がより進行し、第 1のレジスト表面に架橋層が厚く形成された。

【0085】実施例16.実施例2で得た第1のレジス 30 トパターンが形成されたSiウェハー上に、実施例11 で得たポリビニルアセタール樹脂とエチレン尿素の混合 溶液を第2のレジストとして用いた。第2のレジスト材 料を滴下し、スピンコートした後、85℃/70秒でプ リベークを行い、第2のレジスト膜を形成した。次に、 105℃/90秒、115℃/90秒、125℃/90 秒の三種類の条件でミキシングベーク (MB) を行い、 架橋反応を行った。次に、純水を用いて現像を行い、非 架橋剤を現像剥離し、続いて90℃/90秒でポストベ ークを行うことにより、図16に示すように、第1のレ ジストパターン上に第2のレジスト架橋層を形成した。 図16に示す第2のレジストパターンのホール径、ライ ンパターン及び孤立残しパターンにおけるスペースを測 長場所として、ミキシングベーク (MB) の温度を変え て、架橋層形成後のレジストパターンサイズを測定し た。この結果を図17のテーブルに示す。その結果、実 施例2で形成した0. 4 µ mサイズのホールパターンの 内径、および、ラインパターンと孤立残しパターンにお けるスペースのサイズが、架橋層形成後のレジストパタ ーンでは、図17に示すように縮小されており、その縮 50 小量は、MB温度が高くなるとともに増大している。こ のことから、MBの温度制御により、精度良く架橋反応 の制御が可能であることが分かる。

【0086】実施例17. 実施例3で得た第1のレジス トパターンが形成されたSiウェハー上に、実施例6で 得たポリビニルアセタール水溶液、実施例12で得たポ リビニルアセタール樹脂とエチレン尿素混合水溶液、お よび、ポリビニルアルコール樹脂とエチレン尿素混合水 溶液でエチレン尿素の濃度が異なる混合溶液を第2のレ ジストとして用いた。第2のレジスト材料を滴下し、ス ピンコートした後、85℃/70秒でプリベークを行 い、第2のレジスト膜を形成した。次に、65℃/70 秒+100℃/90秒でミキシングベーク(MB)を行 い、架橋反応を行った。次に、純水を用いて現像を行 い、非架橋層を現像剥離し、続いて90℃/90秒でポ ストベークを行うことにより、図13に示したものと同 様に、第1のレジストパターン上に第2のレジスト架橋 層を形成した。図13に示す第2のレジストパターンの ホール径を測長場所として、水溶性架橋剤の混合量を変 えて、架橋層形成後のレジストパターンサイズを測定し た。この結果を図18のテーブルに示す。その結果、実 施例3で形成した約0.4 μ mサイズのホールパターン の内径は、図18に示すように縮小されており、その縮 小量は、水溶性架橋剤の混合量が増加するほど大きくな る。このことから、水溶性材料の混合比を調整すること により、精度良く架橋反応の制御が可能であることが分 かる。また、架橋剤量が同じでも、水溶性樹脂の種類を 変更することにより、その縮小量を制御することが可能 であることが分かる。

【0087】実施例18.実施例3で得た第1のレジス トパターンが形成されたSiウェハー上に、実施例6で 得たポリビニルアセタール水溶液、実施例11で得たポ リビニルアセタール樹脂水溶液と水溶性架橋剤であるN ーメトキシメチルーメトキシエチレン尿素混合水溶液、 (Nーメトキシメチル) ヒドロキシエチレン尿素、N-メトキシメチル尿素の混合溶液を第2のレジストとして 用いた。第2のレジスト材料を滴下し、スピンコートし た後、85℃/70秒でプリベークを行い、第2のレジ スト膜を形成した。次に、65℃/70秒+100℃/ 90秒でミキシングベーク (MB) を行い、架橋反応を 行った。次に、純水を用いて現像を行い、非架橋層を現 像剥離し、続いて90℃/90秒でポストベークを行う ことにより、図13に示したものと同様に、第1のレジ ストパターン上に第2のレジスト架橋層を形成した。図 13に示す第2のレジストパターンのホール径を測長場 所として、水溶性架橋剤を変えて、架橋層形成後のレジ ストパターンサイズを測定した。この結果を図19のテ ーブルに示す。その結果、実施例3で形成した約0.4 μmサイズのホールパターンの内径は、図19に示すよ うに縮小されており、その縮小量は、水溶性架橋剤の違

20

40

いにより差が認められる。このことから、混合する水溶 性材料の種類の違いにより、架橋反応の制御が可能であ ることが分かる。

【0088】実施例19. 実施例4で得た第1のレジス トパターンが形成されたSiウェハー上に、実施例6で 得たポリビニルアセタール水溶液、実施例11で得たポ リビニルアセタール樹脂水溶液と水溶性架橋剤であるメ トキシエチレン尿素混合水溶液を第2のレジストとして 用いた。第2のレジスト材料を滴下し、スピンコートし た後、85℃/70秒でプリベークを行い、第2のレジ スト膜を形成した。次に、所定の温度にて90秒のミキ シングベーク(MB)を行い、架橋反応を行った。次 に、純水を用いて現像を行い、非架橋層を現像剥離し、 続いて90℃/90秒でポストベークを行うことによ り、図13に示したものと同様に、第1のレジストパタ ーン上に第2のレジスト架橋層を形成した。図13に示 す第2のレジストパターンのホール径を測長場所とし て、水溶性架橋剤の量と、反応温度とを変えて、架橋層 形成後のレジストパターンサイズを測定した。この結果 を図20のテーブルに示す。その結果、実施例4で形成 した約0. 3 μ m の レジストパターンサイズは、図20 に示すように縮小されており、水溶性架橋剤量、反応温 度により差が認められる。このことから、光照射により 酸を発生する化学増幅型レジストを用いた場合にも、架 橋反応によるレジストパターンサイズの制御が可能であ ることが分かる。

【0089】実施例20.実施例5で得た第1のレジス トパターンが形成されたSiウェハー上に、実施例6で 得たポリビニルアセタール水溶液、実施例11で得たポ リビニルアセタール樹脂水溶液と水溶性架橋剤であるメ トキシエチレン尿素混合水溶液を第2のレジストとして 用いた。第2のレジスト材料を滴下し、スピンコートし た後、85℃/70秒でプリベークを行い、第2のレジ スト膜を形成した。次に、105、115℃/90秒で ミキシングベーク(MB)を行い、架橋反応を行った。 次に、純水を用いて現像を行い、非架橋層を現像剥離 し、続いて90℃/90秒でポストベークを行うことに より、図13に示すように、第1のレジストパターン上 に第2のレジスト架橋層を形成した。図13に示す第2 のレジストパターンのホール径を測長場所として、水溶 性架橋剤の量と、反応温度とを変えて、架橋層形成後の レジストパターンサイズを測定した。この結果を図21 のテーブルに示す。その結果、実施例5で形成した約 2μmサイズのレジストパターンのサイズは、図2 1に示すように縮小されており、その縮小量は、水溶性 材料の違いと、MB温度の違いにより差が認められる。 このことから、t-Boc化ポリヒドロキシスチレンと 酸発生剤から構成される化学増幅型のEBレジストを用 いた場合にも、架橋反応によるレジストパターンサイズ の制御が可能であることがわかる。

【0090】実施例21、実施例2で得た第1のレジス トパターン上に、選択的に電子線を照射した。電子線の 照射量は、50μC/cm²を照射した。次に、実施例 11で得たポリビニルアセタール樹脂水溶液と水溶性架 橋剤であるメトキシエチレン尿素混合水溶液を第 2のレ ジストとして、電子線を照射した第1のレジストパター ン上に塗布した。塗布は、第2のレジスト材料を滴下 し、スピンコートを行い、続いて、85℃/70秒でプ リベークを行い、第2のレジスト膜を形成した。さら に、120℃/90秒でミキシングベーク (MB) を行 い、架橋反応を行った。最後に、純水を用いて現像を行 い、非架橋層を現像剥離し、続く110℃/70秒でポ ストベークを行うことにより、図13に示したものと同 様に、第1のレジストパターン上に選択的に第2のレジ スト架橋膜を形成した。図13に示す第2のレジストパ ターンのホール径を測長場所として、電子線の照射部分 と未照射部分とについて、架橋層形成後のレジストパタ ーンサイズを測定した。この結果を図22のテーブルに 示す。その結果、実施例2で形成した約0.4 μ mのレ ジストパターンは、電子線を照射しなかった部分におい ては、図22に示すよう縮小されており、選択的に電子 線を照射した部分については、架橋反応が発生せず、ホ ールサイズの縮小が見られなかった。このことから、レ ジストパターンを形成後、選択的に電子線を照射するこ とにより、照射した部分のパターンでは、反応が生じな いため、選択的なレジストパターンのサイズ制御が可能 であることが分かる。

【0091】実施例22. 実施例2で得た第1のレジス トパターンを酸化膜が形成されたSiウェハー上に形成 し、図23に示すような第1のレジストパターンを形成 した。次に、実施例12で得た第2のレジスト材料を、 滴下し、スピンコートした後、85℃/70秒でプリベ ークを行った後、105℃/90秒でミキシングベーク を行い、非架橋層を純水で現像剥離し、続いて90℃/ 90秒でポストベークを行うことにより、第1のレジス トパターン上に第2のレジスト架橋層を形成した。さら に、エッチング装置を用いて下地酸化膜をエッチング し、エッチング後のパターン形状を観察した。また、比 較例として、本発明の処理を施さない図23に示した第 1のレジストパターンを形成したウェハーについても同 様にエッチングを行った。その結果、本発明を適用しな い場合の図24(a)と比較して、本発明を適用した場 合には、図24(b), (c)に示すように分離幅が縮 小されると同時に、側壁が粗面化された酸化膜パターン が得られた。また、粗面化の程度が架橋剤の混合量によ って制御可能であることが分かる。

[0092]

【発明の効果】以上、詳細に説明したように、本発明によれば、レジストの分離パターン、ホールパターンの微50 細化に於て、波長限界を越えるパターン形成を可能とす

る微細分離レジストパターン形成用材料と、それを用い た微細パターン形成方法が得られる。これにより、ホー ル系レジストパターンのホール径を従来より縮小するこ とができ、またスペース系レジストパターンの分離幅を 従来より縮小することができる。また、このようにして 形成した微細分離レジストパターンをマスクとして用い て、半導体基材上に微細分離されたスペースあるいはホ ール形成することができる。また、このような製造方法 により、微細分離されたスペースあるいはホールを有す る半導体装置を得ることができる。

【図面の簡単な説明】

【図1】 この発明の実施の形態1のレジストパターン 形成方法を説明するためのマスクパターンの図。

この発明の実施の形態1のレジストパターン 形成方法を説明するための工程フロー図。

【図3】 この発明の実施の形態1のレジストパターン 形成方法を説明するための工程フロー図。

[図4] この発明の実施の形態1のレジストパターン 形成方法を説明するための工程フロー図。

【図5】 この発明の実施の形態1のレジストパターン 20 形成方法を説明するための工程フロー図。

[図6] この発明の実施の形態1のレジストパターン 形成方法を説明するための工程フロー図。

【図7】 この発明の実施の形態1のレジストパターン 形成方法を説明するための工程フロー図。

この発明の実施の形態2のレジストパターン 形成方法を説明するための工程フロー図。

この発明の実施の形態3のレジストパターン 形成方法を説明するための工程フロー図。

【図10】 この発明の実施例1、2及び3における第 30 のエッチング後のパターン形状を示す図。 1のレジストパターン。

【図11】 この発明の実施例4における第1のレジス トパターン。

【図12】 この発明の実施例5における第1のレジス トパターン。

【図13】 この発明の実施例14における第2のレジ*

*ストパターン。

【図14】 この発明の実施例14における水溶性樹脂 の混合比と架橋層形成後のレジストパターンサイズを示 す図。

【図15】 この発明の実施例15における露光の有無 と架橋層形成後のレジストパターンサイズを示す図。

【図16】 この発明の実施例16における第2のレジ ストパターン

【図17】 この発明の実施例16におけるミキシング 10 ベーク温度と架橋層形成後のレジストパターンサイズを 示す図。

【図18】 この発明の実施例17における水溶性材料 の混合比と架橋層形成後のレジストパターンサイズを示 す図。

【図19】 この発明の実施例18における水溶性材料 の種類と架橋層形成後のレジストパターンサイズを示す 図。

【図20】 この発明の実施例19における水溶性材料 の量及びミキシングベーク温度と架橋層形成後のレジス トパターンサイズを示す図。

【図21】 この発明の実施例20における水溶性材料 の種類と架橋層形成後のレジストパターンサイズを示す

【図22】 この発明の実施例21における電子線照射 の有無と架橋層形成後のレジストパターンサイズを示す

【図23】 この発明の実施例22における第2のレジ ストパターンを示す図。

【図24】 この発明の実施例22における下地酸化膜

【符号の説明】

1, 11, 21 第1のレジスト、 1a, 2a, 3a 第1のレジストパターン、 2, 12, 22 第2の レジスト、 2a, 12a, 22a 第2のレジストパ ターン、 3 半導体基板 (半導体基材) 、 4, 1 4,24 架橋層。

【図10】

【図11】

	レジストパターンサイス	処理後の レジストペターンサイス
実施例 2	. 0.39	
実施例21	電子線照射部分	0.39
	電子線未照射部分	0.25

【図14】

混合	比(wt)	
ポリピニルアセタール	木リピニルアルコール	ホールサイズ (μ m)
0	0	0.44 -> 0.44
1	0	0.43 0.35
5	1.8	0.42 0.40
5	3.7	0.40 0.42
0	1	0.35 → 0.43

【図16】

[図23] WZXH

(a)	(b)	(c)	レジストボターン
	ポケーン 関長部分	図 図 図 測長部分 長部分図 7 図 図 図 図	0.4 д в

【図17】

MB温度(℃)		\$ - £サイス' (μm)	ラインスペース (μm)	孤立残しスペース (µm)
実施例2	レジストのみ	0.39	0.40	0.40
105		0.30	0.33	0.32
115		0.29	0.32	0.28
125		0.25	0.30	0.25

【図18】

		MB温度(*C)	
	がキシエチレン尿素 の濃度(wt%)	100	110
	実施例3	0.41	0.41
ネリビニルアセタール	0	0.40	0.39
	11	0.38	0.38
	20	0.34	0.31
	27	0.30	0.28
	0		0.41
ポリビニルアルコール	20		0.38
· · · · · · · · · · · · · · · · · · ·	40		0.34

(a) (a) (a) (b) (c) (c) (d) (d) (e) (d) (d) (d) (d) (e) (d) (d) (e) (d) (e) (e) (fine the second sec

【図19】

(f)

水溶性材料	‡− ዶ ኇイスˆ(μ m)
実施例 3	0.38
ボリビニルアセタール樹脂のみ	0.37
ボリビニルアセタール樹脂 + Nートトキシメテルートトキシメテレン尿素	0.29
ポリビニルアセタール樹脂 + トーメトキシメテルーヒト゚ロキシメテレン尿素	0.35
ポリピニルアセタール樹脂 + ハーメトキシメテルー尿素	0.25

【図20】

	レジストバターン	処理後のパタ	-ンサイス (μm)
上層剤		ミキシングへ	一力温度
	(初期性 μm)	105°C	115°C
ポリピニルアセタール + エチレン尿素(10wt%)	0.30	0.28	0.23
ポリピニルアセタール + エチレン尿素(20wt%)	0.30	0.24	0.20
#"Ut"=#729-# + #"Ut"=#7#3-#(10wt6)	0.30	0.29	0.29

(a)

【図21】

	レジストバターン	処理後のパタ	− ン ቻイズ(μm)
上層和	サイス・	ミキシングイ	一个温度
	(初期徒、µm)	105°C	115℃
*リピニルアセタール + メトキシ尿薬(10wt0)	0.22	0.21	0.17
ボリビニルアセタール + メトキン尿素(20wt%)	0.22	0.17	0.13
本 [*] ゾピ [*] ニルアセタール + 本 [*] ゾピ [*] ニルアルコール(10wtK)	0.22	0.21	0.21

[図24]

(c)

(b)

0.4μ =	0. 32 μ m	0.5
a/ za	2 2 4	p p/

フロントページの続き

(51) Int. Cl. 6

識別記号 庁内整理番号

FΙ

技術表示箇所

// HO1L 21/3065

H 0 1 L 21/30

5 7 3

21/302

Η

(72) 発明者 片山 圭一

兵庫県伊丹市瑞原四丁目1番地 菱電セミ コンダクタシステムエンジニアリング株式 会社内

(72)発明者 南出 あゆみ

東京都千代田区丸の内二丁目2番3号 三

菱電機株式会社内

【公報種別】特許法第17条の2の規定による補正の掲載 【部門区分】第6部門第2区分 【発行日】平成11年(1999)11月5日

【公開番号】特開平10-73927

【公開日】平成10年(1998)3月17日

【年通号数】公開特許公報10-740

【出願番号】特願平9-80940

【国際特許分類第6版】

G03F 7/095 C23F 1/00 102 G03F 7/038 601 7/26 H01L 21/027 // H01L 21/3065 [FI] G03F 7/095 C23F 1/00 102 G03F 7/038 601 7/26 511 H01L 21/30 502 R 573

【手続補正書】

【提出日】平成11年2月22日

【手続補正1】

【補正対象書類名】明細書

21/302

【補正対象項目名】全文

【補正方法】変更

【補正内容】

【書類名】 明細書

【発明の名称】 微細パターン形成材料及びこれを用いた半導体装置の製造方法並びに半導体装置

Н

【特許請求の範囲】

【請求項1】 水溶性樹脂の1種類、又は前記水溶性樹脂の2種類以上の混合物、あるいは前記水溶性樹脂の2種類以上による共重合物を主成分とし、酸の存在により架橋反応を生じることを特徴とする微細パターン形成材料。

【請求項2】 水溶性架橋剤の1種類又は前記水溶性架 橋剤の2種類以上の混合物を主成分とし、酸の存在によ り架橋反応を生じることを特徴とする</u>微細パターン形成 材料。

【請求項3】 水溶性樹脂の1種類又は2種類以上と水 溶性架橋剤の1種類または2種類以上との混合物を主成 分とし、酸の存在により架橋反応を生じることを特徴と する微細パターン形成材料。

【請求項4】 <u>界面活性剤を添加剤として含むことを特</u> 懲とする請求項1ないし3のいずれかに記載の微細パタ

ーン形成材料。

【請求項5】 第1のレジストにより半導体基材上に酸を発生し得る第1のレジストパターンを形成する工程と、前記第1のレジストパターンの上に酸の存在により架橋反応を起こす第2のレジストを形成する工程と、前記第1のレジストパターンからの酸の供給により前記第2のレジストの前記第1のレジストパターンに接する部分に架橋膜を形成する処理工程と、前記第2のレジストの非架橋部分を剥離して第2のレジストパターンを形成する工程と、この第2のレジストパターンを形成する工程と、この第2のレジストパターンをでスクとして前記半導体基材をエッチングする工程とを含むことを特徴とする半導体装置の製造方法。

【請求項6】 <u>前記第2のレジストとして、前記請求項</u> 1ないし4のいずれかに記載の微細パターン形成材料を 用いることを特徴とする請求項5に記載の半導体装置の 製造方法。

【請求項7】 前記第2のレジストとして、前記請求項3に記載の微細パターン形成材料を用い、前記水溶性樹脂と前記水溶性架橋剤との混合量を調整することにより、前記第1のレジストとの反応量を制御することを特徴とする請求項5に記載の半導体装置の製造方法。

【請求項8】 第2のレジストとして、水溶性樹脂としてポリビニルアセタールを用いた前記請求項3に記載の 微細パターン形成材料を用い、前記ポリビニルアセター ルのアセタール化度を調整することにより、前記第1の <u>レジストとの反応量を制御することを特徴とする請求項</u> <u>5に記載の半導体装置の製造方法。</u>

【請求項9】 前記第1のレジストパターンと、前記第1のレジストパターンの上に形成された前記第2のレジストとを加熱処理することにより、前記第1のレジストパターンの表面に接して前記架橋膜を形成するようにしたことを特徴とする請求項5ないし8のいずれかに記載の半導体装置の製造方法。

【請求項10】 <u>前記第1のレジストパターンと、前記第1のレジストパターンの上に形成された前記第2のレジストの上から所定領域を露光することにより、前記第1のレジストパターンの前記所定領域で前記架橋膜を形成するようにしたことを特徴とする請求項5ないし8のいずれかに記載の半導体装置の製造方法。</u>

【請求項11】 <u>前記第1のレジストパターンの所定領域以外を電子線照射し、この電子線照射された第1のレジストパターンの上に前記第2のレジストを形成し、前記第1のレジストパターンの前記所定領域で前記架橋膜を形成するようにしたことを特徴とする請求項5ないし</u>8のいずれかに記載の半導体装置の製造方法。

【請求項12】 <u>前記請求項5ないし11のいずれかに</u> 記載した半導体装置の製造方法によって製造したことを 特徴とする半導体装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、半導体プロセスにおいて、レジストパターンを形成する際にパターンの分離サイズ又はホール開口サイズを縮小する微細分離レジストパターン用の材料と、それを用いた微細分離パターンの形成方法、さらにはこの微細分離レジストパターンを用いた半導体装置の製造方法、ならびにこの製造方法によって製造された半導体装置に関するものである。

[0002]

【従来の技術】半導体デバイスの高集積化に伴って、製造プロセスに要求される配線及び分離幅は、非常に微細化されている。一般的に、微細パターンの形成は、フォトリソグラフィ技術によりレジストパターンを形成し、その後に、形成したレジストパターンをマスクとして、下地の各種薄膜をエッチングする方法により行われている。

【0003】そのため、微細パターンの形成においては、フォトリソグラフィー技術が非常に重要となる。フォトリソグラフィー技術は、レジスト塗布、マスク合わせ、露光、現像で構成されており、微細化に対しては露光波長の制約から、微細化には限界が生じている。さらに、従来のリソグラフィプロセスでは、レジストの耐エッチング性を制御することが困難であり、耐エッチング性の制御により、エッチング後のパターン側壁表面を粗面化するなど、表面形状を制御することは不可能であった。

[0004]

【発明が解決しようとする課題】以上説明したように、 従来の露光によるフォトリソグラフィ技術では、その波 長の限界を超える微細なレジストパターンの形成は困難 であった。本発明は、分離パターン、ホールパターンの 微細化に於て、波長限界を超えるパターン形成を可能と する微細分離レジストパターン形成を実現する、下地レ ジストを溶解しない水溶性の材料を提供するとともに、 これを用いた微細分離レジストパターン形成技術を提供 するものであり、また、従来のリソグラフィ技術では制 御が困難であったエッチング後のパターン側壁表面形状 を粗面化する手法を提供するものである。さらにはその 微細分離レジストパターン形成技術を用いた半導体装置 の製造方法を提供するものであり、またこの製造方法によって製造した半導体装置を提供しようとするものであ る。

[0005]

徴とするものである。

【課題を解決するための手段】この発明の<u>請求項1にかかる</u>微細パターン形成材料は、水溶性樹脂の1種類、又は前記水溶性樹脂の2種類以上の混合物、あるいは前記水溶性樹脂の2種類以上による共重合物を主成分とし、酸の存在により架橋反応を生じることを特徴とするものである。

【0006】また、この発明の<u>請求項2にかかる</u>微細パターン形成材料は、水溶性架橋剤の1種類又は前記水溶性架橋剤の2種類以上の混合物を主成分とし、酸の存在により架橋反応を生じることを特徴とするものである。 【0007】また、この発明の<u>請求項3にかかる</u>微細パターン形成材料は、<u>水溶性樹脂の1種類又は2種類以上と水溶性架橋剤の1種類または2種類以上との混合物を</u>

【0008】また、この発明の<u>請求項4にかかる</u>微細パターン形成材料は、<u>界面活性剤を添加剤として含む</u>ことを特徴とするものである。

主成分とし、酸の存在により架橋反応を生じることを特

【0009】次に、この発明の請求項5にかかる半導体装置の製造方法は、第1のレジストにより半導体基材上に酸を発生し得る第1のレジストパターンを形成する工程と、前記第1のレジストパターンの上に酸の存在により架橋反応を起こす第2のレジストを形成する工程と、前記第1のレジストパターンからの酸の供給により前記第2のレジストの前記第1のレジストパターンに接する部分に架橋膜を形成する処理工程と、前記第2のレジストの非架橋部分を剥離して第2のレジストパターンを形成する工程と、この第2のレジストパターンを形成する工程と、この第2のレジストパターンを形成する工程と、この第2のレジストパターンをマスクとして前記半導体基材をエッチングする工程とを含むことを特徴とするものである。

【0010】また、この発明の<u>請求項6にかかる半導体</u> 装置の製造方法は、前記第2のレジストとして、前記請 求項1ないし4のいずれかに記載の微細パターン形成材 料を用いることを特徴とするものである。

【0011】また、この発明の請求項7にかかる半導体 装置の製造方法は、前記第2のレジストとして、前記請 求項3に記載の微細パターン形成材料を用い、前記水溶 性樹脂と前記水溶性架橋剤との混合量を調整することに より、前記第1のレジストとの反応量を制御することを 特徴とするものである。

【0012】また、この発明の請求項8にかかる半導体装置の製造方法は、第2のレジストとして、水溶性樹脂としてポリビニルアセタールを用いた前記請求項3に記載の微細パターン形成材料を用い、前記ポリビニルアセタールのアセタール化度を調整することにより、前記第1のレジストとの反応量を制御することを特徴とするものである。

【0013】また、この発明の<u>請求項9にかかる半導体</u> 装置の製造方法は、前記第1のレジストパターンと、前 記第1のレジストパターンの上に形成された前記第2の レジストとを加熱処理することにより、前記第1のレジストパターンの表面に接して前記架橋膜を形成するよう にしたことを特徴とするものである。

【0014】また、この発明の請求項10にかかる半導体装置の製造方法は、前記第1のレジストパターンと、前記第1のレジストパターンと、前記第1のレジストパターンの上に形成された前記第2のレジストの上から所定領域を露光することにより、前記第1のレジストパターンの前記所定領域で前記架橋膜を形成するようにしたことを特徴とするものである。

【0015】また、この発明の請求項11にかかる半導体装置の製造方法は、前記第1のレジストパターンの所定領域以外を電子線照射し、この電子線照射された第1のレジストパターンの上に前記第2のレジストを形成し、前記第1のレジストパターンの前記所定領域で前記架橋膜を形成するようにしたことを特徴とするものである。

【0016】また、この発明の<u>請求項12にかかる</u>半導体装置は、前記のそれぞれの半導体装置の製造方法によって製造したことを特徴とするものである。

[0017]

【発明の実施の形態】実施の形態1.図1は、この発明で対象とする微細分離されたレジストパターンを形成するためのマスクパターンの例を示す図で、図1 (a)は微細ホールのマスクパターン100、図1 (b)は微細スペースのマスクパターン200、図1 (c)は、孤立の残しのパターン300を示す。図2~図7は、この発明の実施の形態1の微細分離レジストパターン形成方法を説明するためのプロセスフロー図である。

【0018】先ず、図1及び図2を参照しながら、この 実施の形態の微細分離レジストパターン形成方法、なら びにこれを用いた半導体装置の製造方法を説明する。ま ず、図2(a)で示すように、半導体基板(半導体ウェ ハー)3に、適当な加熱処理により内部に酸を発生する 機構をもつ第1のレジスト1を塗布する(例えば、厚さ 0.7~1.0μm程度)。この第1のレジスト1は、半 導体基板3上にスピンコートなどにより塗布し、次に、 プリベーク(70~110℃で1分程度の熱処理)を施 して第1のレジスト1中の溶剤を蒸発させる。

【0019】次に、第1のレジストパターンを形成するために、g線、i線、または、Deep-UV、KrFエキシマ、ArFエキシマ、EB(電子線)、X-rayなど、適用した第1のレジスト1の感度波長に対応した光源を用い、図1に示すようなパターンを含むマスクを用い投影露光する。

【0020】ここで用いる第1のレジスト1の材料は、適当な加熱処理により、レジスト内部に酸性成分が発生する機構を用いたレジストであればよく、また、ポジ型、ネガ型レジストのどちらでもよい。例えば、第1のレジストとしては、ノボラック樹脂、ナフトキノンジアジド系感光剤<u>の混合物</u>から構成されるポジ型レジストなどが挙げられる。さらに、第1のレジストとしては、酸を発生する機構を用いた化学増幅型レジストの適用も可能であり、加熱により酸を発生する反応系を利用したレジスト材料であれば、その他のものでもよい。

【0021】第1のレジスト1の露光を行った後、必要に応じて、PEB(露光後加熱)を行い(例えば、PEB温度:50~130℃)、レジスト1の解像度を向上させる。次に、TMAH(テトラメチルアンモニウムハイドロオキサイド)などの約0.05~3.0 w t %のアルカリ水浴液を用いて現像する。図2(b)は、こうして形成された第1のレジストパターン1aを示す。

【0022】現像処理を行った後、必要に応じて、ポストデベロッピングベークを行う場合もある(例えば、ベーク温度は60~120℃、60秒程度)。この熱処理は、後のミキシング反応に影響する為、用いる第1のレジスト、あるいは第2のレジスト材料に併せて、適切な温度に設定することが望ましい。以上は、酸を発生する第1のレジスト1を用いるという点を別にすれば、プロセスとしては、一般的なレジストプロセスによるレジストパターンの形成と同様である。

【0023】次に、図2(c)に示すように、半導体基板3上に、酸の存在により架橋する架橋性の材料を主成分とし、図1のレジスト1を溶解しない溶剤に溶解された第2のレジスト2を塗布する。第2のレジスト2の塗布方法は、第1のレジストパターン1a上に均一に塗布可能であれば、特に限定されるものではなく、スプレーによる塗布、回転塗布、あるいは第2のレジスト溶液中に浸漬(ディッピング)することにより塗布することも可能である。次に、第2のレジスト2の塗布後、必要に応じてこれをプリベークし(例えば、85℃、60秒程度)、第2のレジスト層2を形成する。

【0024】次に、図2(d)に示すように、半導体基板1に形成された第1のレジストパターン1aと、この

上に形成された第2のレジスト2とを加熱処理(ミキシングベーク、以下必要に応じMBと略記する。加熱温度は、例えば85℃~150℃)し、第1のレジストパターン1aから酸の拡散を促進させ、第2のレジスト2中へ供給し、第2のレジスト2と第1のレジストパターン1aとの界面において、架橋反応を発生させる。この場合のミキシングベーク温度/時間は、例えば85℃~150℃/60~120secであり、用いるレジスト材料の種類、必要とする反応層の厚みにより、最適な条件に設定すれば良い。このミキシングベークにより、架橋反応を起こした架橋層4が、第1のレジストパターン1aを被覆するように第2のレジスト2の中に形成される。

【0025】次に、図2 (e) に示すように、水、ある いはTMAH等のアルカリ水溶液の現像液を用いて、架 橋していない第2のレジスト2を現像剥離し、第2のレ ジストパターン2aを形成する。以上の処理により、ホ ールパターンのホール内径、またはラインパターンの分 離幅を縮小し、あるいは、孤立残しパターンの面積を拡 大したレジストパターンを得ることが可能となる。る。 【0026】以上、図2を参照して説明した微細レジス トパターンの形成方法では、第1のレジストパターン1 a上に第2のレジスト層2を形成した後に、適当な加熱 処理により第1のレジストパターン1 a 中で酸を発生さ せ、第2のレジスト2へ拡散させる方法について説明し た。つぎに、この加熱処理に代わって、あるいは加熱処 理に先立って、露光により酸を発させる方法について説 明する。図3は、この場合の微細分離レジストパターン の形成方法を説明するためのプロセスフロー図である。 先ず、図3 (a) ~ (c) の工程は、図2 (a) ~

(c) と同様であるから、説明を省略する。なお、この場合に、第1のレジスト1としては、露光により酸を発生する機構を用いた化学増幅型レジストの適用も可能である。化学増幅型レジストでは、光や電子線、X線などによる酸触媒の生成反応が起り、生成した酸の触媒により引き起こされる増幅反応を利用する。

【0027】次に、図3(c)で示される第2のレジスト層2を形成した後、図3(d)に示すように、再度Hgランプのg線またはi線で半導体基板3を全面露光し、第1のレジストパターン1a中に酸を発生させ、これにより、図3(e)に示すように、第1レジストパターン1aに接する第2のレジスト2の界面付近に架橋層4を形成する。

【0028】この時の露光に用いる光源は、第1のレジスト1の感光波長に応じて、Hgランプ、KrFエキシマ、ArFエキシマなどを用いることも可能であり、露光により酸の発生が可能であれば特に限定されるものではなく、用いた第1のレジスト1の感光波長に応じた光源、露光量を用いて露光すれば良い。

【0029】このように、図3の例では、第2のレジス

ト2の塗布後に露光し、第1のレジストパターン1aの中に酸を発生させるものであり、第1のレジストパターン1aを、第2のレジスト2に覆われた状態で露光するため、第1のレジストパターン1a中で発生する酸の量を露光量の調整により、広い範囲で正確に制御できるため、反応層4の膜厚が精度良く制御できる。

【0030】次に、必要に応じ、半導体基板3を熱処理(例えば60~130℃、ミキシングベーク)する。これにより、第1のレジストパターン1aからの酸を拡散させ、第2のレジスト2中へ供給し、第2のレジスト2と第1のレジストパターン1aとの界面において、架橋反応を促進させる。この場合のミキシングベーク温度/時間は、60~130℃/60~120secであり、用いるレジスト材料の種類、必要とする反応層の厚みにより、最適な条件に設定すれば良い。このミキシングベークにより、架橋反応を起こした架橋層4が、第1のレジストパターン1aを被覆するように第2のレジスト2の中に形成される。

【0031】次に、図3(f)の工程は、図2(e)と同様である。以上の処理により、ホール内径、またはラインパターンの分離幅を縮小し、あるいは、孤立残しパーターンの面積を拡大したレジストパターンを得ることが可能となる。

【0032】なお、図3を参照して説明した方法の例のように、露光により第1のレジストパターン1a中に酸成分を発生させる工程は、適用する第1のレジスト1と第2のレジスト2とも反応性が比較的低い場合、あるいは、必要とする架橋層の厚みが比較的厚い場合、または架橋反応を均一化する場合に特に適する。

【0033】ここで、第2のレジスト2に用いられる材料について説明する。第2のレジストとしては、架橋性の水溶性樹脂の単独、あるいはそれらの2種類以上の混合物を用いることができる。また、水溶性架橋剤の単独、あるいはそれらの2種類以上の混合物が用いられる。さらに、これら水溶性樹脂と水溶性架橋剤との混合物が用いられる。第2のレジストとして混合物を用いる場合には、それらの材料組成は、適用する第1のレジスト材料、あるいは設定した反応条件などにより、最適な組成を設定すれば良く特に限定されるものではない。

【0034】第2のレジストに用いられる水溶性樹脂組成物の具体例としては、図4に示すような、ポリアクリル酸、ポリビニルアセタール、ポリビニルピロリドン、ポリビニルアルコール、ポリエチレンイミン、ポリビニルアルコール、ポリエチレンイミン、ポリンカキシド、スチレンーマレイン酸共重合体、ポリビニルアミン樹脂、ポリアリルアミン、オキサゾリン基含有水溶性樹脂、水溶性メラミン樹脂、水溶性尿素樹脂、アルキッド樹脂、スルホンアミド樹脂、などが有効に適用可能であり、また、酸性成分存在下で架橋反応を生じない場合には、水溶性の架橋剤と混合が可能な組成物であれば、特に限定

されない。また、これらを単独で用いても、混合物として用いても有効である。

【0035】これらの水溶性樹脂は、1種類、あるいは 2種類以上の混合物として用いてもよく、下地の第1の レジスト1との反応量、反応条件などにより、適宜調整 することが可能である。また、これらの水溶性樹脂は、 水への溶解性を向上させる目的で、塩酸塩などの塩にし て用いても良い。

【0036】次に、第2のレジストに用いることができる水溶性架橋剤としては、具体的には、図5に示すような尿素、アルコキシメチレン尿素、N-アルコキシメチレン尿素、エチレン尿素、エチレン尿素カルボン酸などの尿素系架橋剤、メラミン、アルコキシメチレンメラミン、などのメラミン系架橋剤、ベンゾグアナミン、グリコールウリル等のアミノ系架橋剤などが適用可能である。しかし、アミノ系架橋剤に特に限定されるものではなく、酸によって架橋を生じる水溶性の架橋剤であれば特に限定されるものではない。

【0037】さらに第2のレジストに用いられる具体的な水溶性レジスト材料としては、上述したような水溶性樹脂の単独あるいは混合物に、同じく上述したような水溶性架橋剤の単独又は混合物を、相互に混合して用いることも有効である。例えば、具体的には、第2のレジストとして、水溶性樹脂組成物としてはポリビニルアセタール樹脂を用い、水溶性架橋剤としてはメトキシメチロールメラミン、あるいはエチレン尿素などを混合してルメラミン、あるいはエチレン尿素などを混合しいの、混合溶液の保存安定性が優れている。なお、第2のレジストに適用される材料は、水溶性あるいは、第1のレジストパターンを溶解しない水溶性溶媒に可溶であり、かつ、酸成分の存在下で、架橋反応を生じる材料であれば特に限定されるものではない。

【0038】なお、第1のレジストパターン1aへの再露光による酸発生を行わず、加熱処理だけで、架橋反応を実現できることは先に説明したとおりであるが、この場合には、第2のレジスト2として、反応性の高い適当な材料を選択し、適当な加熱処理(例えば、85℃~150℃)を行うことが望ましい。この場合、例えば、具体的には、第2のレジスト材料として、ポリビニルアセタール樹脂とエチレン尿素との混合物、ポリビニルアルコールとエチレン尿素との混合物、あるいは、これらを適当な割合で混合した水溶性材料組成物を用いることが有効である。

【0039】次に、本発明においては、第1のレジスト1と第2のレジスト2との架橋反応を制御し、第1のレジストパターン1a上に形成される架橋層4の厚みを制御することが重要である。架橋反応の制御は、適用する第1のレジスト1と第2のレジスト2との反応性、第1のレジストパターン1aの形状、必要とする架橋反応層4の厚み、などに応じて、最適化することが望ましい。

【0040】第1のレジストと第2のレジストとの架橋 反応の制御は、プロセス条件の調整による手法と、第2 のレジスト材料の組成を調整する手法がある。架橋反応 のプロセス的な制御手法としては、(1)第1のレジスト トパターン1aへの露光量を調整する、(2)MB(ミ キシングベーク)温度、処理時間を調整する、などの手 法が有効である。特に、加熱して架橋する時間(MB時間)を調整することにより、架橋層の厚みを制御することが可能であり、非常に反応制御性の高い手法といえる。また、第2のレジストに用いる材料組成の面から は、(3)適当な2種類以上の水溶性樹脂を混合し、その混合比を調整することにより、第1のレジストとの反応量を制御する、などの手法が有効で ある。

は、一元的に決定されるものではなく、(1)第2のレジスト材料と適用する第1のレジスト材料との反応性、(2)第1のレジストパターンの形状、膜厚、(3)必要とする架橋層の膜厚、(4)使用可能な露光条件、あるいはMB条件、(5)塗布条件、などのさまざまな条件を勘案して決定する必要がある。特に、第1のレジストと第2のレジストとの反応性は、第1のレジスト材料の組成により、影響を受けることが分かっており、そのため、実際に本発明を適用する場合には、上述した要因を勘案し、第2のレジスト材料組成物を最適化することが望ましい。従って、第2のレジストに用いられる水溶

【0041】しかしながら、これらの架橋反応の制御

【0042】なお、第2のレジスト材料に、エチレングリコール、グリセリン、トリエチレングリコールなどの可塑剤を添加剤と加えてもよい。また、第2のレジスト材料に関して、成膜性向上を目的として、界面活性剤、例えば、3M社製のフロラード、三洋化成社製のノニポールなどの水溶性の界面活性剤を添加剤として加えてもよい。

性材料の種類とその組成比は、特に限定されるものでは

なく、用いる材料の種類、熱処理条件などに応じて、最

適化して用いる。

【0043】次に、第2のレジストに用いられる溶媒について説明する。第2のレジストに用いる溶媒には、第1のレジストのパターンを溶解させないこと、さらに水溶性材料を十分に溶解させることが必要であるが、これを満たす溶媒であれば特に限定されるものではない。例えば、第2のレジストの溶媒としては、水(純水)、または水とIPAなどのアルコール系溶媒、あるいはNーメチルピロリドンなどの水溶性有機溶媒の単独、あるいは混合溶液を用いればよい。

【0044】水に混合する溶媒としては、水溶性であれば、特に限定されるものではなく、例を挙げるとエタノール、メタノール、イソプロピルアルコールなどのアル

コール類、 y ー<u>ブ</u>チロラクトン、アセトン、などを用いることが可能であり、第2のレジストに用いる材料の溶解性に合わせて、第1のレジストパターンを溶解しない範囲で混合すれば良い。

【0045】さて、以上の例では、半導体基板3の全面で微細レジストパターンを形成する方法について説明はたが、次に半導体基板3の所望領域でのみ選択的に微細レジストパターンを形成する方法について説明する。図6は、この場合の製造方法のプロセスフロー図である。先ず、図6(a)~(c)の工程は、図3(a)~(c)と同様である。図6(c)のように、第2のレジスト層2を形成した後、次に、図6(d)に示すように、半導体基板3の一部を遮光板5で遮光し、選択で露光し、第1のレジストパターン1a中に酸を発生された領域に対して、再度Hgランプのg線またはi線で露光し、第1のレジストパターン1a中に酸を発生された3。これにより、図6(e)に示すように、露光された3のレジストパターン1aに接する第2のレジスト2の界面付近に架橋層4を形成する。

【0046】その後の図6(f)の工程は、図3(f)の工程と同様であるから、説明は省略する。このようにして、図6(f)に示すように、半導体基板3の選択された領域では、第1のレジストパターン1aの上に架橋層4を形成し、その他の領域では第1のレジストパターンに架橋層を形成しないようにすることができる。このような形成方法によれば、適当な露光マスクを用いることにより、半導体基板1上で選択的に露光して、露光部分を区別し、第2のレジストパターンが第1のレジストパターンとの境界部分において、架橋する領域と架橋しない領域とを形成することができる。これにより、同一半導体基板上において、異なる寸法の微細ホールまたは、微細スペースを形成することができる。【0047】図7は、半導体基板1の所望領域でのみ選

択的に微細レジストパターンを形成するための他の形成 方法のプロセスフロー図である。先ず、図7(a)~ (c)の工程は、図2(a)~(c)と同様である。図 7(c)のように、第2のレジスト層2を形成した後、 次に、図7(d)に示すように、半導体基板3の選択された領域を電子線遮蔽板6で遮蔽し、その他の領域に対して、電子線を照射する。次に、図7(e)の工程で、加熱処理を行うと、電子線を照射した領域では架橋層が 形成されず、電子線照射を遮蔽した所定領域でのみ架橋 層が形成される。

【0048】その後の図7(f)の工程は、図2(f)の工程と同様であるから、説明は省略する。このようにして、図7(f)に示すように、半導体基板3の選択された領域では、第1のレジストパターン1aの上に架橋層4を形成し、その他の領域では第1のレジストパターンに架橋層を形成しないようにすることができる。これにより、同一半導体基板上において、異なる寸法の微細ホールまたは、微細スペースを形成することができる。

【0049】以上、半導体基板3に上に微細分離レジストパターンを形成する形成方法について詳細に説明したが、本発明の微細分離レジストパターンは、半導体基板3の上に限られず、半導体装置の製造プロセスに応じて、シリコン酸化膜などの絶縁層の上に形成する場合もあり、またポリシリコン膜などの導電層の上に形成する場合もあり、またポリシリコン膜などの導電層の上に形成することもある。このように、本発明の微細分離レジストパターンの形成は、下地膜に制約されるものではなく、レジストパターンを形成できる基材上であれば、どの場合においても適用可能であり、必要に応じた基材の上に形成されるものである。これらを総称して、半導体基材と称することとする。

【0050】また、本発明においては、上述のように形成した微細分離レジストパターンをマスクとして、下地の半導体基板あるいは各種薄膜などの半導体基材をエッチングし、半導体基材に微細スペース、あるいは微細ホールなどを形成して、半導体装置を製造するものである。また、第2のレジストの材料、及び材料組成、あるいはMB温度を適切に設定し、第1のレジスト上に架橋層を形成して得られた微細分離レジストパターンをマスクとして、半導体基材をエッチングすることにより、エッチング後の基材パターン側壁表面が粗面化される効果がある。

【0051】実施の形態2.図8は、この発明の実施の形態2の微細分離レジストパターン形成方法を説明するためのプロセスフロー図である。図1および図8を参照して、この実施の形態2の微細分離レジストパターンの形成方法、ならびにこれを用いた半導体装置の製造方法を説明する。

【0052】先ず、図8 (a)に示すように、半導体基板3に、内部に若干の酸性物質を含有する第1のレジスト11はプリベーク(70~100℃で1分程度の熱処理)を施した後、Hgランプのg線またはi線を用い、図1の様なパターンを含むマスクを用い投影露光する(図8では省略している)。図8 (b) はこうして形成された第1のレジストパターン11aを示す。ここで用いる第1のレジスト1の材料としては、実施の形態1で説明したものが有効に用いられる。その詳細な説明は、重複を避けるため省略する。また、第1のレジスト11に含ませる酸としては、具体的には、カルボン酸系の低分子酸等が好適である。

【0053】この後、必要に応じ、PEB(10~130℃)で熱処理し、レジストの解像度を向上させた後、TMAH(テトラメチルアンモニウムハイドロオキサイド)の約2.0%希釈水浴液を用いて現像する。この後、必要に応じポストデベロッピングベークを行う場合もある。この熱処理は後のミキシング反応に影響する為、適切な温度に設定する必要がある。以上は、酸を含むレジスト11を用いるという点を別にすれば、プロセスとし

ては、従来のレジストプロセスによるレジストパターン の形成と同様である。

【0054】次に図8(b)のパターン形成後、図8(c)に示すように、半導体基板3上に、酸の存在により架橋する架橋性材料を主成分とし、第1のレジスト11を溶解しない溶剤に溶かされた第2のレジスト12を塗布する。ここで用いる第2のレジスト12の材料およびその溶媒は、実施の形態1で述べたものと同様のものが適用でき、また有効である。その詳細な説明は、重複を省くため省略する。。次に、第2のレジスト12の塗布後、必要に応じこれをプリベークする。この熱処理は、後のミキシング反応に影響するため、適切な温度に設定することが望ましい。

【0055】次に図8(d)に示すように、半導体基板3を熱処理(60~130℃)し、第1のレジストパターン11aに含まれる若干の酸性物質からの酸の供給により、第2のレジスト12の第1のレジストパターン11aとの界面近傍で架橋反応を起こさせる。これにより、第1のレジストパターン11aを被覆するように架橋反応を起こした架橋層14が第2のレジスト12中に形成される。

【0056】次に、図8(e)に示すように、水または、TMAH等の現像液を用いて第2のレジスト12の架橋していない部分を現像剥離する。以上の処理により、ホールパターンのホール内径または、ラインパターンの分離幅を縮小したレジストパターン、あるいは、孤立残しパターンの面積を拡大したレジストパターンを得ることが可能となる。

【0057】以上のように、この実施の形態2における第1のレジスト11は、露光によって酸を発生させる必要が無く、レジスト膜11自体に酸を含むように調整されており、熱処理によりその酸を拡散させて架橋させるようにしている。この第1のレジスト11に含ませる酸としては、カルボン酸系の低分子酸等が好適であるが、レジスト溶液に混合することが可能であれば特に限定はされない。

【0058】また、この微細分離レジストパターンを、各種の半導体基材の上に形成し、これをマスクとして、半導体基材上に微細な分離スペースあるいは微細なホールなど形成することは、先に述べた実施の形態1と同様である。

【0059】実施の形態3.図9は、この発明の実施の 形態3の微細分離レジストパターンの形成方法を説明す るためのプロセスフロー図である。図1及び図9を参照 してこの実施の形態3の微細分離レジストパターンの形 成方法、ならびにこれを用いた半導体装置の製造方法を 説明する。

【0060】先ず、図9(a)に示すように、半導体基板3に、第1のレジスト21を塗布する。第1のレジスト21にプリベーク(70−100℃で1分程度の熱処

理)を施した後、第1のレジスト21の感光波長に応じて、例えば、Hgランプのg線、またはi線を用い、図1の様なパターンを含むマスクを用いて投影露光する(図9では図示を省略している)。ここで用いる第1のレジスト21の材料としては、実施の形態1で説明したものが有効に用いられる。その詳細な説明は、重複を避

けるため省略する。

【0061】次に、必要に応じて、PEB(10~130℃)で熱処理しレジストの解像度向上させた後、TMAH(テトラメチルアンモニウムハイドロオキサイド)の約2.0%希釈水溶液を用い現像する。図9(b)は、こうして形成された第1のレジストのパターン21aを示す。この後、必要に応じポストデベロッピングベークを行う場合もある。この熱処理は後のミキシング反応に影響する為、適切な温度に設定する必要がある。以上は、プロセスとしては、従来のレジストプロセスによるレジストパターンの形成と同様である。

【0062】図9(b)のパターン形成後、次に、図9(c)に示すように、半導体基板3を酸性溶液で浸漬処理する。その処理方法は、通常のパドル現像の方式でよい。また、酸性溶液のベーパライズ(吹き付け)で行っても良い。また、酸性ガスで表面処理をしてもよい。この場合の酸性溶液または酸性ガスは、有機酸、無機酸のいずれでもよい。具体的には、例えば、低濃度の酢酸が好適な例として挙げられる。この工程において、酸が第1のレジストパターン21aの界面近傍に染み込み、酸を含む薄い層が形成される。この後、必要に応じて純水を用いてリンスする。

【0063】その後、図9(e)に示すように、第1のレジストパターン21の上に、酸の存在により架橋する架橋性材料を主成分とし、第1のレジスト21を溶解しない溶剤に溶かされた第2のレジスト22を塗布する。ここで用いる第2のレジスト22の材料およびその溶媒は、実施の形態1で述べたものと同様のものが有効に用いられる。重複を避けるため、その詳細な説明は省略する。次に、第2のレジスト22をプリベークする。この熱処理は、後のミキシング反応に影響するため、適切な温度に設定する。

【0064】次に、図9(f)に示すように、半導体基板3を熱処理(60~130℃)して、架橋ベークを行い、第1のレジストパターン21aからの酸の供給で、第2のレジスト22の第1のレジストパターン21aとの界面近傍で架橋反応を起こさせる。これにより、第1のレジストパターン21aを被覆するように架橋屋24が第2のレジスト22中に形成される

【0065】次に、図9(g)に示すように、水または、TMAH等の現像液を用いて第2のレジスト22の架橋していない部分を現像剥離する。以上の処理によ

り、ホールパターンのホール内径または、ラインパターンの分離幅を縮小したレジストパターンを得ることが可能となる。

【0066】以上のように、この実施の形態3によれば、露光処理により、第1のレジストに酸を発生させる工程を必要とせず、第1のレジストパターン21a上に第2のレジスト22を成膜する前に、酸性液体又は酸性ガスによる表面処理を施しておき、後の工程での熱処理により酸を拡散させて架橋するようにするものである。

【0067】また、このようにして形成した微細分離レジストパターンを、各種の半導体基板上に形成し、これをマスクとして、半導体基板上に微細な分離スペースあるいは、微細ホールなどを形成し、半導体装置を製造することは、先に述べた実施の形態1および2と同様である。

[0068]

【実施例】次に、前記の各実施の形態1~3に関連した 実施例について説明する。一つの実施例が、一つ以上の 実施の形態に関係する場合があるので、まとめて説明す る。先ず、第1のレジスト材料に関する実施例1~5を 説明する。

実施例1. 第1のレジストとして、ノボラック樹脂とナフトキノンジアジドから構成され、溶媒として乳酸エチルとプロピレングリコールモノエチルアセテートを用いた i 線レジストを用い、レジストパターンを形成した。まず、前記レジストを、Siウェハー上に滴下、回転塗布した後、85℃/70秒でプリベークを行い、レジスト中の溶媒を蒸発させて第1のレジストを膜厚約1.0μmで形成した。次に、露光装置として、i 線縮小投影露光装置を用い、露光マスクとして、図1に示すようなマスクを用いて、第1のレジストを露光した。次に、120℃/70秒でPEB処理を行い、続いて、アルカリ現像液(東京応化工業社製、NMD3)を用いて現像を行い、図10に示すような分離サイズをもつレジストパターンを得た。

【0069】実施例2.第1のレジストとして、ノボラック樹脂とナフトキノンジアジドから構成され、溶媒として2ーヘプタノンを用いたi線レジストを用い、Siとストパターンを形成した。まず、前記レジストを、Siウェハー上に滴下、回転塗布により膜厚約0.8μmとなるように成膜した。次に、85℃/70秒でプリベークを行い、レジスト中の溶媒を乾燥させた。続いて、i線縮小投影露光装置を用い、図1に示すようなマスクを用いて、露光を行った。次に、120℃/70秒でPEB処理を行い、続いて、アルカリ現像液(東京応化社製、NMD3)を用いて現像を行い、図10に示すような分離サイズを持つレジストパターンを得た。

【0070】実施例3. 第1のレジストとして、ノボラック樹脂とナフトキノンジアジドから構成され、溶媒として乳酸エチルと酢酸ブチルの混合溶媒を用いたi線レ

ジストを用い、レジストパターンを形成した。まず、前記レジストを、Siウェハー上に滴下、回転塗布により膜厚約 1.0μ mとなるように成膜した。次に、100℃/90秒でプリベークを行い、レジスト中の溶媒を乾燥させた。続いて、ニコン社製ステッバーを用いて、図1に示すようなマスクを用いて、露光を行った。次に、110℃/60秒でPEB処理を行い、続いて、アルカリ現像液(東京応化社製、NMD3)を用いて現像を行い、図10に示すようなレジストパターンを得た。

【0071】実施例4.第1のレジストとして、東京応化社製の化学増幅型エキシマレジストを用い、レジストパターンを形成した。まず、前記レジストを、Siウェハー上に滴下、回転塗布により膜厚約0.8μmとなるように成膜した。次に、90℃/90秒でプリベークを行い、レジスト中の溶媒を乾燥させた。続いて、KrFエキシマ縮小投影露光装置を用いて、図1に示すようなマスクを用いて、露光を行った。次に、100℃/90秒でPEB処理を行い、続いて、アルカリ現像液(東京応化社製、NMD-W)を用いて現像を行い、図11に示すようなレジストパターンを得た。

【0072】実施例5. 第1のレジストとして、t-B o c 化ポリヒドロキシスチレンと酸発生剤から構成され る菱電化成社製の化学増幅型レジスト (MELKER、 J. Vac. Sci. Technol., B11 (6) 2773, 1993) を用い、レジストパターンを形成 した。まず、前記レジストを、Siウェハー上に滴下、 回転塗布により膜厚約0.52μmとなるように成膜し た。次に、120℃/180秒でベークを行い、レジス ト中の溶媒を乾燥させた。続いて、このレジスト上に、 帯電防止膜として、昭和電工社製エスペイサーESP-100を同様にして回転塗布した後、80℃/120秒 でベークを行った。次に、EB描画装置を用いて、1 7. 4 µ C / c m * で描画を行なった。次に、80 ℃ / 120秒でPEBを行ったのち、純水を用いて帯電防止 膜を剥離、続いてTMAHアルカリ現像液(東京応化社 製NMD-W)を用いてレジストパターンの現像を行っ た。その結果、図12に示すような、約0.2μmのE Bレジストパターンを得た。

【0073】次に、第2のレジスト材料に関する実施例6~13について説明する。

実施例6.第2のレジスト材料として、1Lメスフラスコを用い、積水化学社製のポリビニルアセタール樹脂エスレックKW3およびKW1の20wt%水溶液:それぞれ100gに純水:400gを加え、室温で6時間攪拌混合し、ポリビニルアセタール樹脂KW3,KW1の5wt%水溶液をそれぞれ得た。

【0074】実施例7. 第2のレジスト材料として、実施例6のポリビニルアセタール樹脂に代えて、ポリビニルアルコール樹脂、オキサゾリン含有水溶性樹脂(日本触媒社製、エポクロスWS500)、スチレンー無水マ

レイン酸共重合体 (ARCOchemical社製、S MA1000、1440H) を用いて、実施例6と同様 にして、それぞれの5wt%水溶液を得た。

【0075】実施例8. 第2のレジスト材料として、1 Lメスフラスコを用いて、メトキシメチロールメラミン (三井サイナミド社製、サイメル370):100gと 純水:780g、IPA:40gを室温にて6時間攪拌 混合し、約10wt%のメチロールメラミン水溶液を得た。

【0076】実施例9. 第2のレジスト材料として、1 Lメスフラスコを用いて、(Nーメトキシメチル)メト キシエチレン尿素:100g、(Nーメトキシメチル) ヒドロキシエチレン尿素:100g、Nーメトキシメチ ル尿素:100g中に、それぞれ、純水:860g、I PA:40gを室温にて6時間攪拌混合し、それぞれ、 約10wt%のエチレン尿素水溶液を得た。

【0077】実施例10.第2のレジスト材料として、 実施例6で得たポリビニルアセタールのKW3水溶液: 160gと、実施例8で得たメトキシメチロールメラミン水溶液:20g、純水:20gを室温で6時間撹伴混合し、水溶性樹脂と水溶性架橋剤の混合溶液を得た。

【0078】実施例11.第2のレジスト材料として、実施例6で得たポリビニルアセタールのKW3水溶液:160gと、実施例9で得た(Nーメトキシメチル)メトキシエチレン尿素水溶液:20g、(Nーメトキシメチル)ヒドロキシエチレン尿素水溶液:20g、Nーメトキシメチル尿素水溶液:20g中に、それぞれ、純水:20gを室温で6時間撹伴混合し、水溶性樹脂と水溶性架橋剤の混合溶液を得た。

【0079】実施例12.第2のレジスト材料として、実施例6で得たポリビニルアセタールのKW3水溶液: 160gと、実施例9で得たメトキシエチレン尿素水溶液の10g、20g、30gと純水:20gをそれぞれを室温下で6時間混合した。その結果、ポリビニルアセタール樹脂に対する水溶性架橋剤であるメトキシエチレン尿素の濃度が、約11wt%、20wt%、27wt%の3種類の第2のレジスト水溶液を得た。

【0080】実施例13.第2のレジストとして、実施例6で得た5wt%のポリビニルアセタール樹脂水溶液の100gに、実施例7で得た水溶性樹脂溶液のうち、ポリビニルアルコール樹脂の5wt%水溶液を0g、35.3g、72.2gを混合し、室温下で、6時間攪拌混合して、ポリビニルアセタール樹脂とポリビニルアルコール樹脂の混合比の異なる3種類の混合溶液を得た。

【0081】次に、微細レジストパターン形成の実施例 14~22について説明する。

実施例14. 実施例3で得た第1のレジストパターンが 形成されたSiウェハー上に、実施例12で得た第2の レジスト材料を、滴下し、スピンコートした後、85℃ /70秒でプリベークを行い、第2のレジスト膜を形成 した。次に、120℃/90秒でミキシングベーク(MB)を行い、架橋反応を進行させた。次に、純水を用いて現像を行い、非架橋層を現像剥離し、続く90℃/90秒でポストベークを行うことにより、第1のレジストパターン上に第2のレジストパターンを形成した。図13において、第2のレジストパターンのホール径を測しまり、第1のレジストパターンのホール径を測した。次容性樹脂の混合比を変えて架橋層形成後のレジストパターンサイズを測定した。この結果を図14のテーブルに示す。この場合、ポリビニルアセタール樹脂とポリビニルアルコール樹脂の混合量を変えることにより、第1のレジスト上に形成される架橋層の厚みを制御することが可能であることがわかる。

【0082】実施例15.実施例2で得た第1のレジス トパターンが形成されたSiウェハー上に、実施例6で 得たKW1の樹脂水溶液を第2のレジスト材料として滴 下し、スピンコートした後、85℃/70秒でプリベー クを行い、第2のレジスト膜を形成した。次に、i線露 光装置を用いて、ウェハーに全面露光を行った。さら に、150℃/90秒でミキシングベーク (MB) を行 い、架橋反応を進行させた。次に、純水を用いて現像を 行い、非架橋層を現像剥離し、続いて110℃/90秒 でポストベークを行うことにより、図13に示したもの と同様に、第1のレジストパターンであるホールパター ン上に第2のレジスト架橋層を形成した。図13に示す 第2のレジストパターンのホール径を測長場所として、 全面露光をした場合としない場合について、架橋層形成 後のレジストパターンサイズを測定した。この結果を図 15のテーブルに示す。これにより、架橋層を形成する 前の第1の0.4μmのレジストホールパターンサイズ が、全面露光を行った場合には、約0.14μm、全面 露光を行わない場合には、約0.11μm縮小してい た。この場合、MBベーク前に全面露光を行うことによ り、行わない場合に較べて、架橋反応がより進行し、第 1のレジスト表面に架橋層が厚く形成された。

【0083】実施例16.実施例2で得た第1のレジストパターンが形成されたSiウェハー上に、実施例11で得たポリビニルアセタール樹脂とエチレン尿素の混合溶液を第2のレジストとして用いた。第2のレジスト材料を滴下し、スピンコートした後、85℃/70秒でプリベークを行い、第2のレジスト膜を形成した。次に、105℃/90秒、125℃/90秒、125℃/90秒の三種類の条件でミキシングベーク(MB)を行い、架橋反応を行った。次に、純水を用いて現像を行い、非架橋剤を現像剥離し、続いて90℃/90秒でポストルックを行うことにより、図16に示すように、第1のレジストパターン上に第2のレジスト架橋層を形成した。図16に示す第2のレジストパターンのホール径、ラインパターン及び孤立残しパターンにおけるスペースを測長場所として、ミキシングベーク(MB)の温度を変え

て、架橋層形成後のレジストパターンサイズを測定した。この結果を図17のテーブルに示す。その結果、実施例2で形成した0. 4μ mサイズのホールパターンの内径、および、ラインパターンと孤立残しパターンにおけるスペースのサイズが、架橋層形成後のレジストパターンでは、図17に示すように縮小されており、その縮小量は、MB温度が高くなるとともに増大している。このことから、MBの温度制御により、精度良く架橋反応の制御が可能であることが分かる。

【0084】実施例17. 実施例3で得た第1のレジス トパターンが形成されたSiウェハー上に、実施例6で 得たポリビニルアセタール水溶液、実施例12で得たポ リビニルアセタール樹脂とエチレン尿素混合水溶液、お よび、ポリビニルアルコール樹脂とエチレン尿素混合水 溶液でエチレン尿素の濃度が異なる混合溶液を第2のレ ジストとして用いた。第2のレジスト材料を滴下し、ス ピンコートした後、85℃/70秒でプリベークを行 い、第2のレジスト膜を形成した。次に、65℃/70 秒+100℃/90秒でミキシングベーク(MB)を行 い、架橋反応を行った。次に、純水を用いて現像を行 い、非架橋層を現像剥離し、続いて90℃/90秒でポ ストベークを行うことにより、図13に示したものと同 様に、第1のレジストパターン上に第2のレジスト架橋 層を形成した。図13に示す第2のレジストパターンの ホール径を測長場所として、水溶性架橋剤の混合量を変 えて、架橋層形成後のレジストパターンサイズを測定し た。この結果を図18のテーブルに示す。その結果、実 施例3で形成した約0.4μmサイズのホールパターン の内径は、図18に示すように縮小されており、その縮 小量は、水溶性架橋剤の混合量が増加するほど大きくな る。このことから、水溶性材料の混合比を調整すること により、精度良く架橋反応の制御が可能であることが分 かる。また、架橋剤量が同じでも、水溶性樹脂の種類を 変更することにより、その縮小量を制御することが可能 であることが分かる。

【0085】実施例18. 実施例3で得た第1のレジストパターンが形成されたSiウェハー上に、実施例6で得たポリビニルアセタール水溶液、実施例11で得たポリビニルアセタール樹脂水溶液と水溶性架橋剤であるNーメトキシメチルーメトキシエチレン尿素混合水溶液、Nーメトキシメチル)ヒドロキシエチレン尿素、Nーメトキシメチル尿素の混合溶液を第2のレジストとした。第2のレジスト材料を滴下し、スピンコのでプリベークを行い、第2のレジスト膜を形成した。次に、65℃/70秒+100℃/20秒でミキシングベーク(MB)を行い、架橋唇を形成した。次に、統水を用いて現像を行い、非架橋層を形成した。図13に示したものと同様に、第1のレジストパターン上に第2のレジスト架橋層を形成した。図

13に示す第2のレジストパターンのホール径を測長場所として、水溶性架橋剤を変えて、架橋層形成後のレジストパターンサイズを測定した。この結果を図19のテーブルに示す。その結果、実施例3で形成した約0.4μmサイズのホールパターンの内径は、図19に示すように縮小されており、その縮小量は、水溶性架橋剤の違いにより差が認められる。このことから、混合する水溶性材料の種類の違いにより、架橋反応の制御が可能であることが分かる。

【0086】実施例19.実施例4で得た第1のレジス トパターンが形成されたSiウェハー上に、実施例6で 得たポリビニルアセタール水溶液、実施例11で得たポ リビニルアセタール樹脂水溶液と水溶性架橋剤であるメ トキシエチレン尿素混合水溶液を第2のレジストとして 用いた。第2のレジスト材料を滴下し、スピンコートし た後、85℃/70秒でプリベークを行い、第2のレジ スト膜を形成した。次に、所定の温度にて90秒のミキ シングベーク(MB)を行い、架橋反応を行った。次 に、純水を用いて現像を行い、非架橋層を現像剥離し、 続いて90℃/90秒でポストベークを行うことによ り、図13に示したものと同様に、第1のレジストパタ ーン上に第2のレジスト架橋層を形成した。図13に示 す第2のレジストパターンのホール径を測長場所とし て、水溶性架橋剤の量と、反応温度とを変えて、架橋層 形成後のレジストパターンサイズを測定した。この結果 を図20のテーブルに示す。その結果、実施例4で形成 した約0. 3μmのレジストパターンサイズは、図20 に示すように縮小されており、水溶性架橋剤量、反応温 度により差が認められる。このことから、光照射により 酸を発生する化学増幅型レジストを用いた場合にも、架 橋反応によるレジストパターンサイズの制御が可能であ ることが分かる。

【0087】実施例20.実施例5で得た第1のレジス トパターンが形成されたSiウェハー上に、実施例6で 得たポリビニルアセタール水溶液、実施例11で得たポ リビニルアセタール樹脂水溶液と水溶性架橋剤であるメ トキシエチレン尿素混合水溶液を第2のレジストとして 用いた。第2のレジスト材料を滴下し、スピンコートし た後、85℃/70秒でプリベークを行い、第2のレジ スト膜を形成した。次に、105、115℃/90秒で ミキシングベーク(MB)を行い、架橋反応を行った。 次に、純水を用いて現像を行い、非架橋層を現像剥離 し、続いて90℃/90秒でポストベークを行うことに より、図13に示すように、第1のレジストパターン上 に第2のレジスト架橋層を形成した。図13に示す第2 のレジストパターンのホール径を測長場所として、水溶 性架橋剤の量と、反応温度とを変えて、架橋層形成後の レジストパターンサイズを測定した。この結果を図21 のテーブルに示す。その結果、実施例5で形成した約 $0.2 \mu m$ サイズのレジストパターンのサイズは、図2

1に示すように縮小されており、その縮小量は、水溶性 材料の違いと、MB温度の違いにより差が認められる。 このことから、t-Boc化ポリヒドロキシスチレンと 酸発生剤から構成される化学増幅型のEBレジストを用 いた場合にも、架橋反応によるレジストパターンサイズ の制御が可能であることがわかる。

【0088】実施例21. 実施例2で得た第1のレジス トパターン上に、選択的に電子線を照射した。電子線の 照射量は、50 μ C / c m を照射した。次に、実施例 11で得たポリビニルアセタール樹脂水溶液と水溶性架 橋剤であるメトキシエチレン尿素混合水溶液を第2のレ ジストとして、電子線を照射した第1のレジストパター ン上に塗布した。塗布は、第2のレジスト材料を滴下 し、スピンコートを行い、続いて、85℃/70秒でプ リベークを行い、第2のレジスト膜を形成した。さら に、120℃/90秒でミキシングベーク (MB) を行 い、架橋反応を行った。最後に、純水を用いて現像を行 い、非架橋層を現像剥離し、続く110℃/70秒でポ ストベークを行うことにより、図13に示したものと同 様に、第1のレジストパターン上に選択的に第2のレジ スト架橋膜を形成した。図13に示す第2のレジストパ ターンのホール径を測長場所として、電子線の照射部分 と未照射部分とについて、架橋層形成後のレジストパタ ーンサイズを測定した。この結果を図22のテーブルに 示す。その結果、実施例2で形成した約0.4μmのレ ジストパターンは、電子線を照射しなかった部分におい ては、図22に示すよう縮小されており、選択的に電子 線を照射した部分については、架橋反応が発生せず、ホ ールサイズの縮小が見られなかった。このことから、レ ジストパターンを形成後、選択的に電子線を照射するこ とにより、照射した部分のパターンでは、反応が生じな いため、選択的なレジストパターンのサイズ制御が可能 であることが分かる。

【0089】実施例22.実施例2で得た第1のレジス トパターンを酸化膜が形成されたSiウェハー上に形成 し、図23に示すような第1のレジストパターンを形成 した。次に、実施例12で得た第2のレジスト材料を、 滴下し、スピンコートした後、85℃/70秒でプリベ ークを行った後、105℃/90秒でミキシングベーク を行い、非架橋層を純水で現像剥離し、続いて90℃/ 90秒でポストベークを行うことにより、第1のレジス トパターン上に第2のレジスト架橋層を形成した。さら に、エッチング装置を用いて下地酸化膜をエッチング し、エッチング後のパターン形状を観察した。また、比 較例として、本発明の処理を施さない図23に示した第 1のレジストパターンを形成したウェハーについても同 様にエッチングを行った。その結果、本発明を適用しな い場合の図24(a)と比較して、本発明を適用した場 合には、図24(b),(c)に示すように分離幅が縮 小されると同時に、側壁が粗面化された酸化膜パターン

が得られた。また、粗面化の程度が架橋剤の混合量によって制御可能であることが分かる。

【0090】なお、本願は以上詳細に説明したように、特許請求の範囲に記載した発明のほかに、以下のような発明をも含むものである。本願の他の発明は、請求項1に記載のものにおいて、前記水溶性樹脂として、ポリアクリル酸、ポリビニルアセタール、ポリビニルピロリドン、ポリビニルアルコール、ポリエチレンイミン、ポリエチレンオキシド、スチレンー無水マレイン酸共重合体、ポリビニルアミン、ポリアリルアミン、オキサゾリン基含有水溶性樹脂、水溶性メラミン樹脂、水溶性尿素樹脂、アルキッド樹脂、スルホンアミドのうちの1種類、又はこれらの2種類以上の混合物、或いはこれらの塩を主成分とすることを特徴とする微細パターン形成材料である。

【0091】また、本願の他の発明は、請求項2に記載のものにおいて、前記水溶性架橋剤として、メラミン誘導体、尿素誘導体、ベンソグアナミン、グリコールウリルのうちの1種類又はこれらの2種類以上の混合物を主成分とすることを特徴とする微細パターン形成材料である。

【0092】また、本願の他の発明は、請求項2に記載のものにおいて、前記メラミン誘導体として、メラミン、アルコキシメチレンメラミンのうちの1種類又はこれらの混合物を主成分とすることを特徴とする微細パターン形成材料である。

【0093】また、本願の他の発明は、請求項2に記載のものにおいて、前記尿素誘導体として、尿素、アルコキシメチレン尿素、N-アルコキシメチレン尿素、エチレン尿素、エチレン尿素、エチレン尿素カルボン酸の1種類又はこれらの2種類以上の混合物を主成分とすることを特徴とする微細パターン形成材料である。

【0094】また、本願の他の発明は、請求項3に記載のものにおいて、前記水溶性樹脂としてポリビニルアセタール、ポリビニルアルコール、又はポリビニルアルコールとポリビニルアセタールとの混合物のいずれかを用い、前記水溶性架橋剤としてメラミン誘導体、尿素誘導体、又はメラミン誘導体と尿素誘導体との混合物のいずれかを用いることを特徴とする微細パターン形成材料である。

【0095】また、本願の他の発明は、請求項3に記載 のものにおいて、可塑剤を添加剤として含むことを特徴 とする微細パターン形成材料である。

【0096】また、本願の他の発明は、請求項5に記載のものにおいて、前記第1のレジストパターンを加熱処理により酸を発生するレジストで形成したことを特徴とする半導体装置の製造方法である。

【0097】また、本願の他の発明は、請求項5に記載 のものにおいて、前記第1のレジストパターンを露光に より酸を発生するレジストで形成したことを特徴とする 半導体装置の製造方法である。

【0098】また、本願の他の発明は、請求項5に記載 のものにおいて、前記第1のレジストパターンを酸を含 有するレジストで形成したことを特徴とする半導体装置 の製造方法である。

【0099】<u>また、本願の他の発明は、請求項5に記載のものにおいて、前記第1のレジストパターンを酸性液体又は酸性気体により表面処理を施したレジストで形成したことを特徴とする半導体装置の製造方法である。</u>

【0100】また、本願の他の発明は、請求項5に記載のものにおいて、前記第1のレジストとして、ノボラック樹脂とナフトキノンジアジド系感光剤の混合物を主成分とするレジストを用いることを特徴とする半導体装置の製造方法である。

【0101】また、本願の他の発明は、請求項5に記載のものにおいて、前記第1のレジストとして、酸を発生する機構を有する化学増幅型レジストを用いることを特徴とする半導体装置の製造方法である。

【0102】また、本願の他の発明は、請求項8に記載のものにおいて、前記第2のレジストの溶媒として、水 又は水溶性の混合溶媒を用いることを特徴とする半導体 装置の製造方法である。

[0103]

【発明の効果】以上、詳細に説明したように、本発明によれば、レジストの分離パターン、ホールパターンの微細化に於て、波長限界を越えるパターン形成を可能とする微細分離レジストパターン形成用材料と、それを用いた微細パターン形成方法が得られる。これにより、ホール系レジストパターンのホール径を従来より縮小することができる。また、このようにして形成した微細分離レジストパターンをマスクとして用いて、半導体基材上に微細分離されたスペースあるいはホール形成することができる。また、このような製造方法により、微細分離されたスペースあるいはホールを有する半導体装置を得ることができる。

【図面の簡単な説明】

【図1】 この発明の実施の形態1のレジストパターン 形成方法を説明するためのマスクパターンの図。

【図2】 この発明の実施の形態1のレジストパターン 形成方法を説明するための工程フロー図。

【図3】 この発明の実施の形態1のレジストパターン 形成方法を説明するための工程フロー図。

【図4】 この発明の実施の形態1のレジストパターン 形成方法で<u>用いられる水溶性樹脂組成物の例を示す図</u>。

【図5】 この発明の実施の形態1のレジストパターン 形成方法で<u>用いられる水溶性架橋剤の例を示す図</u>。

【図6】 この発明の実施の形態1のレジストパターン 形成方法を説明するための工程フロー図。 【図7】 この発明の実施の形態1のレジストパターン 形成方法を説明するための工程フロー図。

【図8】 この発明の実施の形態2のレジストパターン 形成方法を説明するための工程フロー図。

【図9】 この発明の実施の形態3のレジストパターン 形成方法を説明するための工程フロー図。

【図10】 この発明の実施例1、2及び3における第 1のレジストパターン。

【図11】 この発明の実施例4における第1のレジストパターン。

【図12】 この発明の実施例5における第1のレジストパターン。

【図13】 この発明の実施例14における第2のレジストパターン。

【図14】 この発明の実施例14における水溶性樹脂の混合比と架橋層形成後のレジストパターンサイズを示す図。

【図15】 この発明の実施例15における露光の有無と架橋層形成後のレジストパターンサイズを示す図。

【図16】 この発明の実施例16における第2のレジストパターン

【図17】 この発明の実施例16におけるミキシング ベーク温度と架橋層形成後のレジストパターンサイズを 示す図。

【図18】 この発明の実施例17における水溶性材料の混合比と架橋層形成後のレジストパターンサイズを示す図。

【図19】 この発明の実施例18における水溶性材料の種類と架橋層形成後のレジストパターンサイズを示す図。

【図20】 この発明の実施例19における水溶性材料の量及びミキシングベーク温度と架橋層形成後のレジストパターンサイズを示す図。

【図21】 この発明の実施例20における水溶性材料の種類と架橋層形成後のレジストパターンサイズを示す図。

【図22】 この発明の実施例21における電子線照射の有無と架橋層形成後のレジストパターンサイズを示す図。

【図23】 この発明の実施例22における第2のレジストパターンを示す図。

【図24】 この発明の実施例22における下地酸化膜のエッチング後のパターン形状を示す図。

【符号の説明】

1, 11, 21 第1のレジスト、 1a, 2a, 3a 第1のレジストパターン、 2, 12, 22 第2の レジスト、 2a, 12a, 22a 第2のレジストパ ターン、 3 半導体基板(半導体基材)、 4, 1 4, 24 架橋層。