1 - Signals

Projection Theorem

- I. The Fundamental Problem: Signal Approximation
 - Question: Given a signal x in an N-dimensional space (\mathbb{C}^N), how can we find the **best possible** approximation of x using only a smaller set of K basis vectors (where K < N)?
 - This smaller set of K orthogonal basis vectors, u_k , spans a **subspace** \mathcal{P} .
 - "Best" is defined as the approximation \tilde{x} that **minimizes the squared error** (or Euclidean distance) $||x-\tilde{x}||^2$.

• II. The Projection Theorem

- Statement: The best approximation \tilde{x} of a signal x in a subspace \mathcal{P} is the **orthogonal** projection of x onto \mathcal{P} .
- The Formula: This projection is constructed by summing the individual projections of x onto each of the K orthogonal basis vectors that span the subspace:

$$ilde{x} = \sum_{k=0}^{K-1} X_k u_k$$

where the coefficients X_k are found by:

$$X_k = rac{(u_k,x)}{||u_k||^2} = rac{u_k^H x}{u_k^H u_k}$$

- Key Property (Orthogonality of Error): The error vector $e=x-\tilde{x}$ is orthogonal to the approximation \tilde{x} and to every vector in the subspace \mathcal{P} .
- **Geometric Interpretation:** Finding the best approximation is like "dropping a perpendicular" from the tip of the vector x onto the subspace \mathcal{P} . The point where it lands is \tilde{x} , and the perpendicular line itself is the error vector e.

• III. How to Choose the "Best" Subspace?

- \circ The theorem tells us how to project onto a *given* subspace, but how do we choose the K basis vectors that create the "best" subspace for approximation?
- Two Approaches:
 - 1. Fixed Basis (e.g., Fourier, DCT): Start with a complete basis. Calculate all N expansion coefficients X_k . Then, select the K basis vectors corresponding to the K coefficients with the largest magnitudes. This subspace captures the most signal energy.
 - 2. **Signal-Dependent Basis (e.g., KLT/PCA):** Use techniques like Principal Component Analysis (PCA) to derive a **custom basis** tailored to the statistical properties of the signal class. The first K vectors of this basis are guaranteed to span the K-dimensional subspace that minimizes the mean square approximation error, making it the theoretical optimum.

• IV. Consequences and Importance

• The Projection Theorem is a cornerstone concept with wide-ranging applications.

- \circ **Data Compression:** It is the theoretical foundation for lossy compression. By keeping only the K most significant coefficients, we can represent the signal with fewer bits. The theorem guarantees this reconstruction has the minimum possible error for that K.
- **Noise Reduction:** If we assume the signal lies in a known subspace \mathcal{P} and noise is spread across all dimensions, projecting the noisy signal onto \mathcal{P} can effectively filter out the noise components that are orthogonal to the subspace.
- Feature Extraction: The coefficients X_k of the projection can be seen as the most significant features of the signal with respect to the chosen basis.
- **Basis for Advanced Algorithms:** The principle is fundamental to least squares estimation and PCA.

2 - Spectral Analysis

Time-Frequency Analysis: Spectrogram and Scalogram

- I. The Problem: Limitations of Global Fourier Transform
 - The standard Fourier Transform (FT) or DFT provides a **global** frequency representation.
 - It reveals **what** frequencies are present in a signal, but provides no information about **when** they occur.
 - This is a major drawback for **non-stationary signals** (like music or speech) where frequency content changes over time.
- II. The Spectrogram (via Short-Time Fourier Transform STFT)
 - Core Idea: Analyze the frequency content of small, localized time segments of the signal.
 - Process (STFT):
 - 1. **Divide:** Split the signal into small, overlapping chunks of length N.
 - 2. **Window:** Apply a window function w[n] to each chunk to reduce spectral leakage.
 - 3. Transform: Compute the DFT for each windowed chunk.
 - STFT Formula:

$$S[k,m] = \sum_{n=0}^{N-1} x[mM+n]w[n]e^{-j2\pi nk/N}$$

where m is the time-chunk index and k is the frequency index.

- The Spectrogram: It is the visual representation of the squared magnitude of the STFT coefficients: $|S[k,m]|^2$. It's a 2D plot showing energy distribution across time (x-axis) and frequency (y-axis).
- Fundamental Limitation: The Time-Frequency Trade-off (Uncertainty Principle)
 - **Time Resolution** is determined by the window size N. A short window (small N) gives good time resolution.
 - Frequency Resolution is F_s/N . A long window (large N) gives good frequency resolution.
 - The Trade-off: You cannot simultaneously have high resolution in both time and frequency. The STFT uses a fixed window size, meaning the resolution is the same for all frequencies.

- III. The Scalogram (via Continuous Wavelet Transform CWT)
 - Motivation: To overcome the fixed-resolution limitation of the STFT.
 - Core Idea: Multi-Resolution Analysis.
 - Use short windows (compressed wavelets) for high frequencies to get good time resolution.
 - Use long windows (stretched wavelets) for low frequencies to get good frequency resolution.
 - Process (CWT):
 - 1. Mother Wavelet h(t): A prototype function that is localized in both time and frequency.
 - 2. Wavelet Family $h_{a,\tau}(t)$: Generated by scaling (by a) and translating (by τ) the mother wavelet.
 - 3. **The CWT:** An inner product that measures the similarity between the signal x(t) and the wavelet at a specific scale a and time au.
 - The Scalogram: The squared magnitude of the CWT coefficients: $|CWT(\tau,a)|^2$. It describes how the signal's energy is distributed over the **time-scale plane**.
- IV. Comparison: Spectrogram vs. Scalogram
 - **Time-Frequency Tiling:** This is the key difference, visualized in the diagrams.
 - **Spectrogram (STFT):** Has a **uniform tiling** of the time-frequency plane. Resolution is fixed for all frequencies.
 - Scalogram (CWT): Has an adaptive, non-uniform tiling.
 - At high frequencies: Tiles are narrow in time and wide in frequency (good time res, poor freq res).
 - At low frequencies: Tiles are wide in time and narrow in frequency (poor time res, good freq res).
 - **Conclusion:** The Scalogram's adaptive analysis is better suited for signals with both transient bursts and long, stationary components.

Comparing DTFT and DFT

- I. Introduction
 - Both the Discrete-Time Fourier Transform (DTFT) and the Discrete Fourier Transform (DFT) are tools for analyzing the frequency content of discrete-time signals.
 - The DTFT is a theoretical tool, while the DFT is a practical, computable tool that can be seen as a sampled version of the DTFT.
- II. Definitions and Formulas
 - Discrete-Time Fourier Transform (DTFT):
 - Formula:

$$X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n] e^{-j\omega n}$$

• Input: An infinite-length (or zero-padded) discrete-time sequence x[n].

- Output: $X(e^{j\omega})$, a continuous and periodic function of the normalized angular frequency ω . The period is 2π .
- Discrete Fourier Transform (DFT):
 - Formula:

$$X[k] = \sum_{n=0}^{N-1} x[n] e^{-j2\pi k n/N}$$

- Input: A finite-length N-point discrete-time sequence x[n].
- ullet Output: X[k], a discrete sequence of N frequency coefficients.
- III. Key Differences (Summary Table)

Feature	Discrete-Time Fourier Transform (DTFT)	Discrete Fourier Transform (DFT)
Input Signal	Infinite or finite discrete-time sequence $x[n]$	Finite-length (N-point) sequence $x[n]$
Time Domain	Generally Aperiodic	Implicitly Periodic with period N
Frequency Domain	Continuous function of frequency	Discrete sequence of N frequency samples
Spectrum Period	Periodic with period 2π (for ω) or F_s (for f)	Periodic with period N (for index k)
Computability	Theoretical tool; not directly computed in its entirety	Directly computable (via Fast Fourier Transform - FFT)
Represents	The "true" spectrum of a discrete-time sequence	Samples of one period of the DTFT of the N-point sequence

IV. Relationship through Sampling and Periodization

- The DFT is fundamentally linked to the DTFT through the operations of sampling and periodization.
- \circ **The Bridge:** The N coefficients of the DFT, X[k], are exactly equal to N samples of one period of the DTFT, $X(e^{j\omega})$, evaluated at the discrete frequencies $\omega=2\pi k/N$. $X[k]=X(e^{j\omega})|_{\omega=2\pi k/N}$
- Implicit Periodicity: The DFT operates on a finite N-point sequence x[n]. However, because its basis functions $(e^{j2\pi kn/N})$ are periodic with period N, the DFT inherently treats the input signal x[n] as if it were one period of an infinitely periodic signal.
 - Consequence 1 (Time Domain): This assumed periodicity is what leads to circular convolution when multiplying DFTs.
 - Consequence 2 (Frequency Domain): Treating the time-domain signal as periodic is equivalent to **sampling** its continuous spectrum (the DTFT). This is why the DFT output X[k] is a discrete set of frequency samples.

• V. Conclusion

• The DTFT provides the complete, continuous spectrum of a discrete-time sequence, serving as a vital theoretical concept. The DFT provides a discrete, finite, and computable set of samples of that spectrum, making it the practical workhorse for digital spectral analysis, implemented efficiently via the FFT algorithm.

Linking Continuous and Discrete Time Spectra: Sampling and Periodization

I. Introduction

- The relationship between the continuous-time Fourier Transform (FT) and the Discrete Fourier Transform (DFT) is not arbitrary. It is governed by the dual operations of sampling and periodization.
- A fundamental duality exists: what happens in the time domain has a corresponding, inverse effect in the frequency domain.

• II. The Sampling Property: Time Sampling → Frequency Periodization

- Operation (Time Domain): A continuous-time signal x(t) is sampled at a rate of $F_s=1/T$, creating a discrete sequence of impulse strengths x(kT).
- Effect (Frequency Domain): The spectrum of the sampled signal, $X_s(f)$, becomes a **periodic** replication of the original continuous spectrum X(f). The replicas are centered at integer multiples of the sampling frequency F_s .
- Formula:

$$X_s(f) = F_s \sum_{k=-\infty}^{\infty} X(f-kF_s)$$

- Mantra: Sampling in the time domain leads to periodization in the frequency domain.
- \circ Consequence: This is the foundation of the Nyquist-Shannon Sampling Theorem. If F_s is high enough ($\geq 2B$), the replicas don't overlap (no aliasing), and the original signal can be recovered.

• III. The Periodization Property: Time Periodization → Frequency Discretization

- Operation (Time Domain): A finite-support (or single period) signal g(t) is made **periodic** by summing infinite, shifted copies of itself with a period T.
- Effect (Frequency Domain): The spectrum of the resulting periodic signal x(t) is no longer continuous. It becomes a **discrete spectrum**, consisting of a series of impulses (Dirac deltas).
- \circ The impulses are located at discrete frequencies f=k/T, which are integer multiples (harmonics) of the fundamental frequency 1/T.
- The amplitude of each impulse is proportional to the value of the original continuous spectrum G(f) sampled at that harmonic frequency: $\frac{1}{T}G(k/T)$.
- Mantra: Periodization in the time domain leads to discretization (sampling) in the frequency domain.
- **Consequence:** This is the mathematical basis for **Fourier Series**, which represents a periodic signal as a sum of discrete frequency components (harmonics).

• IV. Synthesis: The Four Fourier Representations

- The interplay between these two properties is key to understanding the different Fourier transforms.
 - 1. **Continuous & Aperiodic (FT):** A continuous, aperiodic signal s(t) has a continuous, aperiodic spectrum S(f).
 - 2. Continuous & Periodic (Fourier Series): Making s(t) periodic in time discretizes its spectrum into harmonics S(k).
 - 3. **Discrete & Aperiodic (DTFT):** Sampling s(t) in time makes its spectrum **periodic**, $S_{1/T}(f)$.
 - 4. **Discrete & Periodic (DFT):** The DFT operates on a finite N-point sequence, which is **implicitly periodic**. Therefore, its spectrum is both **discrete** (from the time periodicity) and **periodic** (from the time sampling).

V. Conclusion

 \circ The DFT, the main tool for digital spectral analysis, can be understood as the result of applying both sampling and periodization to a continuous signal. The sampling operation makes the spectrum periodic, and the implicit periodicity of the DFT operation discretizes that periodic spectrum, resulting in the finite set of N coefficients we compute.

3 - Data Compression

Block Transform Coding for Data Compression

- I. Motivation for Compression
 - **Problem:** Uncompressed signals, especially images and video, require massive amounts of storage. A 2-hour movie could be ~224 GB.
 - **Solution: Source Encoding (Compression).** This is possible because signals contain **redundancy**.
 - **Spatial Redundancy:** Adjacent pixels are often similar.
 - Irrelevant Information: Data that is imperceptible to human senses.
 - **Goal:** Reduce the number of bits (b') needed to represent the signal compared to the original (b), measured by the compression ratio c = b/b'.

• II. The General Compression Framework

- Encoder: Input -> Mapper -> Quantizer -> Symbol Coder -> Compressed Data.
 - Mapper: Transforms data to a new format to reduce redundancy (e.g., decorrelate data).
 - Quantizer: Reduces the precision of the data, which is the primary source of lossy compression. It discards less important information.
 - **Symbol Coder:** Assigns codes (often variable-length) to the quantized data.
- Decoder: Reverses the process: Symbol Decoder -> Inverse Mapper -> Reconstructed Image.

• III. Block Transform Coding: A Specific Method

- This is a popular method that fits the general framework, with JPEG being a prime example.
- \circ Core Idea: Divide the image into small blocks (e.g., 8×8 pixels) and process each independently.

Step-by-Step Process (Encoder):

- 1. **Image Division:** The input image is divided into $n \times n$ subimages (blocks).
- 2. Forward Transform (The Mapper): A transform like the Discrete Cosine Transform (DCT) is applied to each block.
 - ullet Goal: This transform compacts the energy of the block into a few coefficients (mostly low-frequency). The T(0,0) or DC coefficient represents the average intensity, while others (AC coefficients) represent details.
- 3. Quantization: This is the crucial lossy step. Each transform coefficient T(u,v) is divided by a value from a quantization table Z(u,v) and rounded.
 - Z(u,v) has larger values for high-frequency coefficients, quantizing them more coarsely (discarding fine details).
- 4. **Symbol Encoding:** The quantized coefficients are encoded.
 - **Zigzag Scan:** The 2D block of coefficients is reordered into a 1D sequence using a zigzag pattern. This groups the more significant low-frequency coefficients first, followed by long runs of zeros.
 - **Coding:** Run-Length Encoding (RLE) is used for the runs of zeros, and Huffman or arithmetic coding is used for the remaining values.

IV. Zonal vs. Threshold Coding (Quantization Strategies)

- Zonal Coding:
 - **Principle:** Assumes the most important information (high variance coefficients) is always in a fixed, predefined "zone," typically the low-frequency region.
 - **Implementation:** A **zonal mask** is used to keep coefficients inside the zone and discard those outside.
- Threshold Coding:
 - Principle: Assumes the most important coefficients are those with the largest magnitudes, regardless of their location.
 - **Implementation:** A threshold is set. Coefficients with magnitudes above the threshold are kept; those below are discarded.
 - Advantage: More adaptive to block content. If a block has important high-frequency details (like an edge), this method can preserve them. JPEG's quantization table method is a form of location-dependent thresholding.

V. Conclusion

 Block Transform Coding is an effective and widely used compression strategy. It works by transforming spatial data into a frequency domain where energy is compacted, allowing for aggressive but perceptually-guided information removal through quantization, followed by efficient lossless coding.

4 - Linear Processing

Characterization and Analysis of LTI Systems

- I. System Definition and Key Properties
 - A **system** transforms an input signal x(t) into an output signal y(t).

- **Linear Time-Invariant (LTI)** systems are a crucial class because they are easy to analyze. They must satisfy two properties:
 - 1. **Linearity:** The system obeys the superposition principle. The response to a weighted sum of inputs is the weighted sum of the individual responses. $\mathcal{L}(a_1x_1(t) + a_2x_2(t)) = a_1\mathcal{L}(x_1(t)) + a_2\mathcal{L}(x_2(t))$.
 - 2. **Time-Invariance:** The system's behavior does not change over time. A time-shifted input $x(t-t_0)$ produces a correspondingly time-shifted output $y(t-t_0)$.

• II. Time-Domain Characterization

- Impulse Response h(t): An LTI system is completely characterized in the time domain by its impulse response.
- **Definition:** h(t) is the output of the system when the input is a Dirac delta function $\delta(t)$. $h(t) = \mathcal{L}\delta(t)$.
- Convolution: The output y(t) for any arbitrary input x(t) is found by convolving the input with the system's impulse response.
 - Formula:

$$y(t) = x(t) * h(t) = \int_{-\infty}^{\infty} x(au) h(t- au) d au$$

• Significance: Knowing h(t) provides a complete external description of the system's behavior, without needing to know its internal structure.

• III. Frequency-Domain Characterization

- Frequency Response H(f): An LTI system is completely characterized in the frequency domain by its frequency response.
- ullet Definition: H(f) is the Fourier Transform of the impulse response h(t) . $H(f)=\mathcal{F}h(t)$.
- \circ Input-Output Relationship: The Fourier transform of the output Y(f) is the product of the Fourier transform of the input X(f) and the system's frequency response H(f).
 - $\qquad \qquad \mathbf{Formula:} \ Y(f) = H(f)X(f).$
- The Convolution Property: This simple multiplication in frequency is a direct consequence of the convolution property of the Fourier Transform: convolution in the time domain becomes multiplication in the frequency domain.
- \circ Interpretation of H(f):
 - Magnitude |H(f)|: Represents the gain of the system. It shows how much the system amplifies or attenuates each frequency component f.
 - Phase $\angle H(f)$: Represents the phase shift the system introduces at each frequency f.

• IV. Application: Filters

- \circ Filters are a primary application of LTI systems, designed to selectively pass or block frequencies. Their behavior is defined by their frequency response H(f).
- Ideal Low-Pass Filter: Passes frequencies below a cutoff B (|H(f)|=1) and blocks frequencies above B (|H(f)|=0). Its h(t) is a sinc function.
- \circ **Ideal High-Pass Filter:** Blocks frequencies below B and passes those above.
- Ideal Band-Pass Filter: Passes only a specific band of frequencies.

• V. Discrete-Time LTI Systems

- The same concepts apply directly to discrete signals x[n].
- Time Domain: The output is a discrete convolution:

$$y[n] = \sum_{k=-\infty}^{\infty} h[k]x[n-k]$$

- . h[n] is the response to a Kronecker delta $\delta[n]$.
- Frequency Domain (DFT): The output spectrum is the product of the input spectrum and the system's frequency response: Y[k] = H[k]X[k].
- **Important Note:** For finite-length signals using the DFT, this multiplication corresponds to **circular convolution** in the time domain, not linear convolution.

Sampling Theorem

- I. Motivation: From Continuous to Discrete
 - Physical signals are often continuous-time (analog).
 - To process them on a computer, they must be converted to discrete-time signals.
 - This is done via **sampling**: observing the signal x(t) at discrete, uniformly spaced time instants nT, creating the sequence x[n] = x(nT).
 - The Central Question: Is it possible to perfectly recover the original analog signal x(t) from its samples x[n]?

• II. The Nyquist-Shannon Sampling Theorem

- Statement: If a signal x(t) is band-limited to B Hz (contains no frequencies higher than B), it can be completely determined by its samples if the sampling rate F_s is at least 2B samples per second.
- Nyquist Rate: The minimum required sampling rate, 2B, is called the Nyquist rate.
- **Nyquist Interval:** The maximum time between samples, T=1/(2B).

• III. Frequency Domain Perspective: The Effect of Sampling

- **Key Property:** Sampling a signal in the time domain causes its spectrum to become **periodic** in the frequency domain.
- The spectrum of the sampled signal, $X_s(f)$, consists of replicas of the original spectrum X(f) repeated at integer multiples of the sampling frequency F_s .
- Three Scenarios:
 - 1. $F_s \geq 2B$ (Correct Sampling): The spectral replicas do not overlap. The original spectrum can be perfectly recovered by applying an ideal low-pass filter to isolate the central replica.
 - 2. $F_s < 2B$ (Undersampling): The spectral replicas overlap. This phenomenon is called aliasing. High frequencies from the original signal "disguise" themselves as lower frequencies, and information is irretrievably lost. Perfect reconstruction is impossible.
 - 3. **Non-Band-limited Signal:** The spectrum extends infinitely, so aliasing is **inevitable** regardless of the sampling rate. In practice, an **anti-aliasing filter** (a low-pass filter) is applied to the analog signal *before* sampling to forcibly band-limit it.
- IV. Time Domain Perspective: Signal Reconstruction

- Interpolation: The process of reconstructing the continuous signal from its samples.
- **Reconstruction Formula:** The theorem provides the formula for perfect reconstruction, which is a **sinc interpolation**:

$$x(t) = \sum_{n=-\infty}^{\infty} x\left(rac{n}{2B}
ight) \mathrm{sinc}\left(2\pi B\left(t-rac{n}{2B}
ight)
ight)$$

• Interpretation: The original signal is reconstructed by summing an infinite series of sinc functions. Each sinc function is scaled by a sample value x[n] and centered at the sample's time location nT. The sinc function acts as the **ideal interpolation kernel**, which corresponds to the impulse response of an ideal low-pass filter.

• V. Conclusion

• The Sampling Theorem is a cornerstone of digital signal processing. It provides the theoretical justification for analog-to-digital conversion, defining the conditions under which the conversion can be performed without loss of information.