

Lab 3. Fourier Series Representation of Periodic Signals

Cheng PENG

Department of Biomedical Engineering

pengc@sustech.edu.cn

Fall 2020

Overview

- In this tutorial, you will learn
 - 1. How to calculate the frequency response of DT LTI system

(frequency domain)

- 2. How to calculate the output of CT LTI system via Matlab (time domain)
- 3. How to calculate the DTFS of signal via Matlab

Calculating the frequency response of DT LTI system

Complex Exponentials

- The *Only* Eigenfunctions of *Any* LTI Systems

$$x(t) = e^{st} - h(t) - y(t) = \int_{-\infty}^{+\infty} h(\tau)e^{s(t-\tau)}d\tau$$

$$= \left[\int_{-\infty}^{+\infty} h(\tau)e^{-s\tau}d\tau\right]e^{st}$$

$$= H(s)e^{st}$$
For each s (each ω), eigenvalue eigenfunction

$$H(s)$$
 or $H(e^{j\omega})$ – frequency response

 $s = j\omega$ - purely imaginary, i.e. signals of the form $e^{j\omega t}$

DT LTI System

LTI System by Difference Equation

Reading assignment: textbook 2.4

 Causal DT LTI system can be specified by a linear constantcoefficient difference equation

$$\sum_{k=0}^{K} a_k y[n-k] = \sum_{m=0}^{M} b_m x[n-m]$$

- For example:
 - y[n]=0.5x[n]+x[n-1]+2x[n-2]; h[n]=? Finite Impulse Response (FIR)
 - y[n]-0.8y[n-1]=2x[n]; h[n]=? Infinite Impulse Response (IIR)

• Causal DT LTI system is uniquely specified by two vectors

$$A=[a_0 \ a_1 \ a_2 \ ... \ a_K] \ and \ B=[b_0 \ b_1 \ ... \ b_M]$$

- A=[1] B=[0.5 1 2]
- A=[1-0.8] B=[2]

Frequency Response: freqz()

• freqz(): generate system frequency response

[H omega] = freqz(b, a, N);

$$H(e^{j\omega_k})$$
 $\omega_k = \left(\frac{\pi}{N}\right)k, 0 \le k \le N-1$

[H omega] = freqz(b, a, N, 'whole');

$$H(e^{j\omega_k})$$
 $\omega_k = \left(\frac{2\pi}{N}\right)k, 0 \le k \le N-1$

Example

- Consider LTI System: y[n]-0.8y[n-1]=2x[n]-x[n-2]
 - Define the vector of coefficients:

```
A=[1 -0.8];
B=[2 0 -1];
```

• Plot the frequency response:

```
[H omega] = freqz(B, A, 40, 'whole');

subplot(211);plot(omega, abs(H), '*-');

xlabel('\omega');

ylabel('|H(e^{j\omega})|'); grid;

subplot(212);plot(omega, angle(H), '*-');

xlabel ('\omega');

ylabel('phase'); grid;
```


Search 'Greek Letters and Special Characters' in Matlab Help Documents

```
A=[1 -0.8];
B=[2 0 -1];
figure;
freqz(B,A,40, 'whole')
```

A=[1 -0.8]; B=[2 0 -1]; figure; freqz(B,A,40)

Time to Call the Roll

china.com

当前位置: 新闻 > 社会新闻 > 社会新闻更多页面 > 正文

逃课没戏了!高校老师研发人脸识别无人机课堂点名

2018-05-24 16:15:02 封面新闻-华西都市报 参与评论()人

"上课的学生不知道有这节目,Spurise!"因独特的教学方式,学术圈网红教授,四川大学 计算机系主任,魏骁勇又"作妖"了。这次搞了个升级版基于人脸识别的上课点名——无人机点 名+巡堂。除了增加教学的趣味和参与度,也让学生在参与的过程中学会发现和解决新问题。

从利用徒手劈砖技能讲解物理原理,到"刷脸神器"打考勤,"刷女神器"帮联谊。魏骁勇 教授6年来,一直变着花样的带给课堂惊喜。5月23日下午,在四川大学江安校区的教室里,魏

Calculating the output of CT LTI system

CT LTI System by Differential Equation

- Reading assignment: textbook 2.4.1
- Causal CT LTI system can be specified by a linear constantcoefficient differential equation

$$\sum_{k=0}^{K} a_k \frac{d^k y(t)}{dt^k} = \sum_{m=0}^{M} b_m \frac{d^m x(t)}{dt^m}$$

Coefficient vectors:

- $A = [a_K, a_{K-1}, ... a_0]$
- $B = [b_M, b_{M-1}, ... b_0]$

CT LTI system by differential equation

•
$$\sum_{k=0}^{K} a_k \frac{d^k y(t)}{dt^k} = \sum_{m=0}^{M} b_m \frac{d^m x(t)}{dt^m}$$

•
$$A = [a_K, a_{K-1}, ... a_0]$$

•
$$B = [b_M, b_{M-1}, ... b_0]$$

DT LTI system by difference equation

•
$$\sum_{k=0}^{K} a_k y[n-k] = \sum_{m=0}^{M} b_m x[n-m]$$

•
$$A = [a_0, a_1, ... a_K]$$

•
$$B = [b_0, b_1, ... b_M]$$

Coefficient vector A and B of system 0.3y(t)+dy(t)/dt = 3x(t) are:

$$A=3; B = [1, 0.3];$$

$$A=3; B = [0.3, 1];$$

$$\sum_{k=0}^{K} a_k \frac{d^k y(t)}{dt^k} = \sum_{m=0}^{M} b_m \frac{d^m x(t)}{dt^m}$$

$$A = [a_K, a_{K-1}, \dots a_0]$$

$$B = [b_M, b_{M-1}, \dots b_0]$$

Differential Equation and Transfer Function

$$\sum_{k=0}^{K} a_k \frac{d^k y(t)}{dt^k} = \sum_{m=0}^{M} b_m \frac{d^m x(t)}{dt^m} \qquad A = [a_K, a_{K-1}, \dots a_0]$$

$$\sum_{k=0}^{K} a_k s^k Y(s) = \sum_{m=0}^{M} b_m s^m X(s) \qquad s = j\omega$$

$$H(s) = \frac{Y(s)}{X(s)} = \sum_{k=0}^{M} a_k s^k \qquad \text{System function or Transfer function}$$

$$H(s) = \frac{B(s)}{A(s)} = \frac{b_M s^M + b_{M-1} s^{M-1} + \dots + b_1 s^1 + b_0}{a_K s^K + a_{K-1} s^{K-1} + \dots + a_1 s^1 + a_0}$$

- How to simulate CT systems via Matlab?
 - lsim(): generate sampled output according to sampled input signal and CT system function:
 - Syntax: lsim(B, A, x, t)
 - Coefficient vector:

•
$$A = [a_K, a_{K-1}, ... a_0]$$

•
$$B = [b_M, b_{M-1}, \dots b_0]$$

- Sampled input signal
 - Vector of sampling time: t
 - Vector of sampled value: x

• lsim(B,A,x,t)

• Consider LTI System: 0.3y(t)+dy(t)/dt = 3x(t)

```
A=[1 0.3];
B=3;
```

• Sample the input signal x=cos(t):

```
t=0:0.1:2*pi;

x=cos(t);

y=lsim(B,A,x,t)';

subplot(2,1,1), plot(t,x);

xlim([0 2*pi]);

subplot(2,1,2), plot(t,y);

xlim([0 2*pi]);
```


Lab Assignment 3 – part (a)

- Read tutorial 3.1, 3.2, 3.3 (and 2.3) by yourself
- 3.8 part (a)(b) & 3.9
- Submission: TBA in next week

Several parts of this exercise require you to generate vectors which should be purely real, but have very small imaginary parts due to roundoff errors. Use *real* to remove these residual imaginary parts from these vectors.

Hints – A correction

• 3.9(c)

Advanced Problems

(c). Analytically calculate the CTFS for the square wave x2. You may find it helpful to first find a relationship between the signal $x_2(t)$ and the signal s(t) defined in Eq. (3.9). Use the ten lowest frequency nonzero CTFS coefficients of x2 to create the first 5 harmonic components individually. For example if you have the positive and

$$s(t) = \begin{cases} 1, & |t| < T/4, \\ 0, & T/4 \le |t| \le T/2 \end{cases}$$
 (3.9)

Eq. (3.9) is provided in section 3.7

CTFS coefficients a_k given by

$$a_k = \frac{\sin\left(\pi k/2\right)}{\pi k}.$$

Example 3.5 in your textbook by Oppenheim
- 2nd Edition

Hint: Properties of CTFS – Linearity, Time Shifting,