Everett Hilden-

Motivation

Example

Definitio

Deduction

Conclusio

Matching Logic

Grigore Rosu

Everett Hildenbrandt

Everett Hilden-

Motivation

Example

Doduction

Conclusio

Motivation

Just Add Logic!

Separation logic allows reasoning about small "heaplets" at a time, which simplifies the formulae for proving properties of programs. It does this by introducing several things into the logic itself, listed here:

- Theories of integers and booleans
- lacksquare Memory maps $E\mapsto F$
- Predicates isatom?(E) and isloc?(E)
- Spatial connectives emp, P * Q, $P \rightsquigarrow Q$

Matching Logic

- Separation logic expressible without extra primitives in matching logic.
- Reasoning about locations, values, and storage left to programming language semantics.

Matching Logic[2][3]

Matching Logic

Everett Hilden

Motivation

Lxampic

Definitio

Conclusi

No Extra Logic

Separation logic isn't the only culprit of the "Just Add Logic!" camp. Matching logic allows for reasoning about *anything* structured without adding to matching logic itself. Thus, matching logic's sound and complete proof system can be used for *any* programming language without modification.

Clean Syntactic Reasoning

Matching logic also lends itself well to syntactic execution.¹

- Patterns specify sets of elements from a model.
- No need to generate the sets of elements; the pattern itself suffices for reasoning and execution.
- Ex: pattern $\exists x.succ(x)$ grabs all the elements that can be generated by the succ symbol.

¹Because we can reason about matching logic using only the syntax of matching logic expressions, we can write down its proof system as a rewriting logic specification. Rewriting logic is a logic of execution.

Everet

Hilden brandt

Motivatio

Examples

Delinition

Doductio

Conclusio

Examples

Peano Naturals

Matching Logic

Everett Hildenbrandt

Motivatio

Examples

Definition

Deductio

Conclusi

Signature (S, Σ)

S: {Nat}

 Σ : $\{0_{Nat}, succ_{Nat,Nat}, plus_{Nat \times Nat,Nat}\}$

 $Var: \{x_{Nat}, y_{Nat}, z_{Nat}\}$

Axioms F

In order to specify *exactly* the Peano Naturals, we add axioms F that an admissible model M must satisfy, $M \models F$.

```
0 total func: \exists y.0 = y
succ total func: \exists y.succ(x) = y
```

succ inj. func: $succ(x) = succ(y) \rightarrow x = y$

Only 0 or succ: $0 \lor \exists x.succ(x)$

plus defn: $plus(x, y) = (x = 0 \land y \lor \exists z.succ(z) = x \land succ(plus(z, y)))$

The matching logic specification is the triple (S, Σ, F) .

Signature (S, Σ)

$$S: \{Nat, Seq, Map\}$$

$$\Sigma: \{\epsilon_{Seq}, emp_{Map}, _\cdot__{Nat \times Seq, Seq}, _ \mapsto __{Nat \times Nat, Map}, _ \mapsto [_]_{Nat \times Seq, Map}$$

$$_*__{Map \times Map, Map}, Iist_{Nat \times Seq, Map}\}$$

$$Var: \{a_{Nat}, b_{Nat}, S_{Seq}\} \cup Var_{Peano}$$

Axioms F

0 not key:
$$\neg (0 \mapsto a)$$

Unique keys: $(x \mapsto a * y \mapsto b) \rightarrow x \neq y$
Empty Map : $x \mapsto [\epsilon] = emp$
 Map "cons": $x \mapsto [a \cdot S] = x \mapsto a * succ(x) \mapsto [S]$
Empty $list$: $list(0, \epsilon) = emp$
 $list$ "cons": $list(x, a \cdot S) = \exists z.x \mapsto [a \cdot z \cdot \epsilon] * list(z, S)$

Everett Hilden

Motivation

Example

Definitions

Dad...etc...

Conclusion

Definitions

Signatures and Patterns

Matching Logic

Everett Hilden-

Motivatio

Definitions

D-4.....

Conclus

Signature (S, Σ) and Variables

- Set of sorts
- Σ : Sort-indexed set of symbols $\Sigma = \{\Sigma_{s_1...s_n,s}\}_{s_1,...,s_n,s\in S}$
- *Var*: Sort-indexed set of symbols $Var = \{Var_s\}_{s \in S}$

Patterns (Formulae) ϕ_s

$$\phi_{s}: x \in Var_{s} \mid \sigma(\phi_{s_{1}},...,\phi_{s_{n}}) \mid \neg \phi_{s} \mid \phi_{s} \wedge \phi_{s} \mid \exists y.\phi_{s}$$
 with $\sigma(\phi_{s_{1}},...,\phi_{s_{n}}) \in \Sigma_{s_{1}...s_{n},s}$ and $y \in Var$

- $x: s \equiv x \in Var_s$
- \blacksquare \lor , \rightarrow , \leftrightarrow , and \forall defined in the normal FOL ways.

PATTERN: Sort-indexed set of patterns $PATTERN = \{PATTERN_s\}_{s \in S}$. We can say $\phi_s \in PATTERN_s$.

Definitions

(S, Σ) Model M

Carrier set M^2 : Sort-indexed set $\{M_s\}_{s\in S}$ is carrier set of sort s in M.

Functions σ_M : For each $\sigma_{s_1...s_n,s} \in \Sigma$, define a function

 $\sigma_M: M_{s_1} \times ... \times M_{s_n} \to \mathcal{P}(M_s)$, the interperetation of σ in M.

We may smoothly and usefully say that

 $\sigma_M(A_1,...,A_n) = \bigcup \{\sigma_M(a_1,...,a_n) \mid a_1 \in A_1,...,a_n \in A_n\}$ with

 $A_1 \subseteq M_{s_1}, \dots, A_n \subseteq M_{s_n}$

M-valuation ρ

M-valuation $\rho: \rho: Var \to M$ selects an element $m \in M_s$ for each $x \in Var_s$. Extension to $\overline{\rho}$: $\overline{\rho}$: PATTERN $\rightarrow \mathcal{P}(M)$ returns elements of M which "match" the given pattern with M-valuation ρ .

²With restriction $M_s \neq \emptyset$ for all $s \in S$.

We have defined the M-valuation $\rho: Var \to M$, and hinted at its extension $\overline{\rho}: PATTERN \to \mathcal{P}(M)$. Intuitively, $\overline{\rho}$ takes a pattern ϕ_s and returns all elements of M_s which match the pattern given ρ .

Definition of $\overline{\rho}$

 $\overline{
ho}$ is defined recursively on the structure of patterns $\phi_s.$

- $\overline{\rho}(x) = {\rho(x)}, \text{ for } x \in Var$
- $\overline{
 ho}(\neg\phi_s)=M_s\setminus\overline{
 ho}(\phi_s)$
- $\overline{\rho}(\sigma(\phi_1,...,\phi_n)) = \sigma_M(\overline{\rho}(\phi_1),...,\overline{\rho}(\phi_n))$
- $\overline{\rho}(\phi_1 \wedge \phi_2) = \overline{\rho}(\phi_1) \cap \overline{\rho}(\phi_2)$
- $\overline{\rho}(\exists x.\phi) = \cup \{ \overline{\rho'}(\phi) \mid \rho' : Var \to M, \rho' \big|_{FV(\phi) \setminus \{x\}} = \rho \big|_{FV(\phi) \setminus \{x\}} \}$

 $M_s \setminus \overline{\rho}(\phi_s)$ is set difference $\{m \in M_s \mid m \notin \overline{\rho}(\phi_s)\}$. $\rho \Big|_{FV(\phi)}$ is ρ with domain restricted to free vars of ϕ .

Everett Hildenbrandt

Motivation

Example

Definitions

D-4.....

. .

Conclus

Model Satisfaction $M \models \phi_s$

M satisfies ϕ_s : $M \models \phi_s$ iff $\overline{\rho}(\phi_s) = M_s$ for all $\rho : Var \to M$.

- What does $M \models x$ mean?
- And $M \models \exists x.\sigma(\phi_1,x) \lor \neg \phi_2$?

 ϕ_s valid: $\models \phi_s$ iff $M \models \phi_s$ for all M.

M satisfies *F*: $M \models F$ for $F \subseteq PATTERN$ iff $M \models \phi$ for all $\phi \in F$.

F entails ϕ : $F \models \phi$ iff $M \models F$ implies $M \models \phi$.

Matching Logic Specification (S, Σ, F)

A matching logic specification (S, Σ, F) is S a set of sorts, Σ a set of sort-indexed symbols, and F a set of patterns.

Conclus

$$M \models \phi_1 = \phi_2$$

Equality in matching logic acts as a predicate on the patterns being tested. Two patterns ϕ_1 and ϕ_2 should be equal in a model when they always produce the same elements from the model's carrier set, regardless of ρ .

$$\overline{
ho}(\phi_1=\phi_2)=M$$
 if $(\overline{
ho}(\phi_1)=\overline{
ho}(\phi_2)$ for all $ho)$ else \emptyset

What about $M \models \phi_1 \leftrightarrow \phi_2$?

Consider for example the case of natural numbers - what interperatations does the axiom $\exists y.succ(x) \leftrightarrow y$ allow for $succ_M$? It actually allows for succ to be a total, partial, or non-function!

We need the stronger =, with the axiom $\exists y.succ(x) = y$, to specify that succ is actually a total function.

Hilden brandt

Motivation

Example

Definition

Deduction

Conclusion

Deduction

Proof System

Matching Logic

Everet Hilden brandt

Motivat

Examp

Definition

Deduction

_

Substi

FOL Axioms and Rules

- ⊢ propositional tautologies
- Modus ponens: $\vdash \phi_1$ and $\vdash \phi_1 \rightarrow \phi_2$ imply $\vdash \phi_2$
- $\blacksquare \vdash (\forall x.\phi_1 \rightarrow \phi_2) \rightarrow (\phi_1 \rightarrow \forall x.\phi_2) \text{ when } x \notin FV(\phi_1)$
- Universal generalization: $\vdash \phi$ implies $\vdash \forall x.\phi$
- Substitution: $\vdash (\forall x.\phi) \land (\exists y.\phi' = y) \rightarrow \phi[\phi'/x]$
- Equality introduction: $\vdash \phi = \phi$
- Equality elimination: $\vdash \phi_1 = \phi_2 \land \phi[\phi_1/x] \rightarrow \phi[\phi_2/x]$

Membership Axioms and Rules

- $\vdash \forall x.x \in \phi \text{ iff } \vdash \phi$
- $\blacksquare \vdash x \in y = (x = y) \text{ when } x, y \in Var$
- $\blacksquare \vdash x \in \neg \phi = \neg (x \in \phi)$
- $\blacksquare \vdash x \in \phi_1 \land \phi_2 = (x \in \phi_1) \land (x \in \phi_2)$
- \blacktriangleright $(x \in \exists y. \phi) = \exists y. (x \in \phi)$ with x and y distinct
- $\vdash x \in \sigma(\phi_1, ..., \phi_{i-1}, \phi_i, \phi_{i+1}, ..., \phi_n) = \exists y. (y \in \phi_i \land x \in \sigma(\phi_1, ..., \phi_{i-1}, y, \phi_{i+1}, ..., \phi_n))$

Everett Hilden-

Motivation

Example

Delilition

Deduction

Conclusion

Conclusion

Matching Logic

Everet Hilden brandt

Motivatio

Example

Definition:

Deduction

Conclusion

Has

- Sound and complete proof system of its own.
- Intuitive reductions to predicate logic and first order logic with equality.
- Good executability properties.

Doesn't Have

- Extra symbols or definitions specific to the programming language (or structure) that you are reasoning about.
- Restrictions on the types of structure you can reason about.

References

Matching Logic

Everett Hildenbrandt

Motivation

Exampl

Definitio

Conclusion

Thanks for listening everyone!

- [1] P. O'Hearn, J. Reynolds, and H. Yang, "Local reasoning about programs that alter data structures." 2001.
- [2] G. Rosu, "Matching Logic A Logic for Structural Reasoning." 2014.
- [3] G. Rosu, "Matching Logic Extended Abstract." 2015.