Random Sample

1. Exponential Distribution

- 1. 自行實作 指數分布的隨機數產生器(要能自訂發生的速率 λ),禁止使用 NumPy、SciPy 或其他模組內建的指數/泊 松分布抽樣函數。
- 2. 產生 1000 個指數分布的隨機數,並計算它們的均值 (mean) 與變異數 (variance),檢查是否接近理論值。
- 3. 畫出直方圖,觀察數據是否符合指數分布的形狀。
- 4. 提示:可以用 Inverse Transform Sampling。

2. 驗證 Exponential Distribution 與 Poisson Distribution 的關係

背景知識

Poisson Distribution 描述的是**固定時間內發生的事件數量**。而指數分布描述的是**事件之間的時間間隔**,如果事件是根據 Poisson Distribution 發生的,那麼**事件發生的間隔時間**服從 Exponential Distribution。換句話說,泊松分布與指數分布存在以下關係:

- 如果事件發生的時間間隔服從指數分布,那麼在單位時間內發生的事件數量就會服從泊松分布。
- 也就是說,如果我們產生很多指數分布的隨機數,並將它們累積起來,統計某段時間內發生的事件數量,那麼這些數據應該會符合泊松分布。

實驗設計

請按照以下步驟進行實驗, 並驗證泊松分布與指數分布的關係:

- 1. 使用內建函數(NumPy 或 SciPy)產生泊松分布與指數分布的隨機數:
 - 產生 1000 個泊松分布的隨機數(使用 numpy.random.poisson(λ, size))。
 - 產生 1000 個指數分布的隨機數(使用 numpy.random.exponential(1/λ, size))。
- 2. 驗證指數分布的間隔時間能夠模擬泊松分布:
 - 產生 10000 個指數分布的隨機數,將這些數字看成是事件發生的間隔時間。
 - 透過累積間隔時間,計算在單位時間內發生的事件數,這些數據應該符合泊松分布。
 - 計算這些數據的均值與變異數,與泊松分布的理論值 $E[X]=\lambda$, $Var(X)=\lambda$ 比較。
- 3. 畫出直方圖,觀察分布形狀:
 - 繪製泊松分布與指數分布的直方圖,檢查它們的形狀是否符合理論分布。
 - 繪製指數分布累積後得到的泊松分布直方圖,檢查其是否與內建的泊松分布相似。

模擬結果

程式連結

+ 							[mean, variance]
•	random_sample_exponential		0	Ι			[1.0000, 1.0000]
<pre>(theoretical)</pre>	random_sample_exponential		0		2		[0.5000, 0.2500]
<pre>(theoretical)</pre>	random_sample_exponential		0		3		[0.3333, 0.1111]
1	random_sample_exponential		1000	1	1		[1.0123, 1.0005]
1	random_sample_exponential		1000	1	2		[0.5062, 0.2501]
l	random_sample_exponential	1	1000	1	3	I	[0.3374, 0.1112]

結論

- 第1題:採樣的隨機數符合指數分佈,均值與變異數接近理論值。
 - 例如當速率 $\lambda=2$ 時,採樣 1000 個隨機數的平均數約為 0.5062,與理論值 0.5 的相對誤差約為 0.0124 (符合理論);變異數約為 0.2501,與理論值 0.25 的相對誤差約為 0.0004 (符合理論)。經驗分佈函式 Empirical (Rate = 2, Size = 1000) 也符合機率密度函式 Theoretical (Rate = 2) 的形狀。
- 第2題: