1.

a)
$$\left[\frac{1}{6}, 1 + \frac{1}{6}\right]$$

b)
$$\left[\frac{1}{2}, 1 + \frac{1}{2}\right]$$

c) [0, 1]

d)
$$\left[\frac{1}{2}, 1 + \frac{1}{2}\right]$$

2.

{-2, 4}, {-1, 1}, {0, 0}, {1, 1}, {2, 4}

3.

- a) Ei, esim $-1 \to 1$, $-1 \ne 1$
- b) Ei, esim $1 \to 1$, 1 = 1
- c) Ei, esim $2 \rightarrow 4$, $4 \not\rightarrow 2$
- d) Kyllä, esim $1 \rightarrow 1$, $1 \rightarrow 1$ ja 1 = 1
- e) Ei, esim $1 \rightarrow 1$, $1 \rightarrow 1$
- f) Ei, esim $-2 \rightarrow 4$, $2 \rightarrow 4$, $-2 \not\rightarrow 2$
- g) Kyllä.
- h) Ei, koska se ei ole refleksiivinen, symmetrinen ja transitiivinen.

4.

Jotta relaatio ~ olisi ekvivalenssirelaatio, sen täytyy olla refleksiivinen, symmetrinen ja transitiivinen.

Osoitetaan, että relaatio ~ on refleksiivinen

Jotta relaatio on refleksiivinen, täytyy päteä $x \sim x$, eli $x - x \in Q$. Mikä tahansa luku erotettuna itsellään on $0.0 \in Q$, joten relaatio \sim on refleksiivinen

Osoitetaan, että relaatio ~ on symmetrinen

Jotta relaatio on symmetrinen $x \sim y \Rightarrow y \sim x$, eli $x - y \in Q \Rightarrow y - x \in Q$. Rationaalilukuihin Q kuuluu kaikki luvut jotka voidaan esittää muodossa x/y. Tässä tilanteessa jos x - y = a/b,

täytyy olla, että y - x = - a/b, jolloin myös - a/b täytyy kuulua rationaalilukuihin. Relaatio ~ on siis symmetrinen Osoitetaan, että relaatio ~ on transitiivinen Jotta relaatio on transitiivinen täytyy päteä x ~ y, y ~ z ja x ~ z. Erotusta x - y voidaan merkata a/b ja erotusta y - z voidaan merkata b/c. Tällöin (x - y) + (y - z) = a/b + b/c x - z = a/b + b/ckoska kahden rationaaliluvun summa on aina rationaaliluku, x - z on rationaaliluku, eli pätee $x \sim z$

 $x\sim z$ Koska relaatio \sim on refleksiivinen, symmetrinen ja transitiivinen, sen täytyy olla ekvivalenssirelaatio.

5. a)

	Pori	Turku	Helsinki	Tampere	Jyväskylä
Pori	0	1	0	1	0
Turku	1	0	1	0	0
Helsinki	0	1	0	1	0
Tampere	1	1	1	0	1
Jyväskylä	0	0	0	1	0

6.

Osoitetaan, että jonossa $(a_n)^{\infty}_{n=0}$ $a_n \neq \frac{1+\sqrt{5}}{2}$ kaikilla n, kun n ≥ 0 . tehdään ensin alkuaskel, eli n = 0

jonon määrittelyssä $n_0 = 1$, $1 \neq \frac{1+\sqrt{5}}{2}$, joten yhtälö pätee

sitten induktioaskel

$$n = k+1$$

jonossa
$$a_{(k+1)+1} = \frac{1+a_{k+1}}{a_{k+1}}$$

$$jolloin \ a_{k+1} = \frac{1 + a_k}{a_k}$$

tehdään vastaoletus, että $a_{k+1} = \frac{1+\sqrt{5}}{2}$, jolloin

$$\frac{1+a_k}{a_k} = \frac{1+\sqrt{5}}{2}$$

kerrotaan molemmat puolet luvulla 2a_k

$$2(1 + a_k) = (1 + \sqrt{5})a_k$$

$$2 + 2a_k = (1 + \sqrt{5})a_k$$

$$2 = (1 + \sqrt{5})a_k - 2a_k$$

$$2 = (1 + \sqrt{5} - 2)a_k$$

$$2 = (\sqrt{5} - 1)a_k$$

$$a_k = \frac{2}{(\sqrt{5}-1)}$$

$$a_{k} = \frac{2}{(\sqrt{5}-1)} \cdot \frac{(\sqrt{5}-1)}{(\sqrt{5}-1)}$$

$$a_{k} = \frac{2(\sqrt{5}-1)}{\sqrt{5}^{2}-1^{2}}$$

$$a_k = \frac{2(\sqrt{5}-1)}{\sqrt{5}^2 - 1^2}$$

$$a_k = \frac{2(\sqrt{5}-1)}{4}$$

$$a_k = \frac{\sqrt{5} - 1}{2}$$

koska $a_k = \frac{\sqrt{5}-1}{2}$, niin a_{k+1} ei voi olla $\frac{\sqrt{5}-1}{2}$, täten $a_{k+1} \neq \frac{\sqrt{5}-1}{2}$

jolloin $a_n \neq \frac{\sqrt{5}-1}{2}$ on todistettu induktiolla