일반물리학실험 보고서

전류가 만드는 자기장

학과 :

학번 :

이름 :

공동실험자 :

담당 교수 :

담당 조교 :

실험 날짜 : 2019.11.18(월)

제출 날짜 : 2019.11.25.(월)

1. 실험 목적

교류 전류가 흐르는 도선에서 발생하는 자기장을 탐지 코일에 유도되는 기전력을 측정하여 구한다. 이로부터 직선 도선, 원형 도선 주변 및 솔레노이드 내부의 자기장 세기의 분포를 구하고 Faraday 유도 법칙과 Biot-Savart 법칙에 대해 배운다.

2. 실험 원리

(1) 전류가 만드는 자기장

Ampere 고리 내부의 알짜 전류를 i_{enc} 라고 하면 Ampere 법칙은 다음과 같다.

$$\oint \vec{B} \cdot d\vec{s} = \mu_0 i_{enc}$$

여기서 μ_0 는 진공에서의 투자율이며, 그 값은 $4\pi imes 10^{-7} T$ • m/A 이다.

(참고로 공기에서의 투자율을 μ_{air} 라 하면 $\frac{\mu_{air}}{\mu_0} = 1.00000037$ 이다.)

1) 긴 직선 도선에 흐르는 전류가 만드는 자기장

그림1과 같이 전류 i가 흐르는 무한히 긴 직선 도 선을 중심으로 반지름이 r인 Ampere 고리에서 자기장의 크기 B는 고리 위의 모든 점에서 같다. 길이 요소 ds의 방향을 그림과 같이 잡고 반시계 방향으로 적분하여 Ampere 법칙을 적용하면 $B(2\pi r)=\mu_0 i$ 를 얻는다. 즉,

$$B = \frac{\mu_0 i}{2\pi r}$$

2) 원형 전류 고리가 만드는 자기장

전류 i가 흐르는 반지름 R인 원형 도선의 뒤쪽 반에서, Biot-Savart 법칙과 오른손 법칙에 의하면 P점에서 전류 요소 ids가 만드는 자기장 dB는 ds와 r에 모두 수직이므로 지면과 같은 평면에 있고 같은 방향을 갖는다.

dB를 중심축으로 평행한 성분 dB_{\parallel} 과 수직한 성분 dB_{\perp} 로 나누면 고리의 모든 전류 요소에 대해 수직 성분 dB_{\perp} 의 합은 대칭성에 의해 0이 된다. 따라서 P점에서의 자기장은 축에 평행한 성분만 남는다. ds에 대하여 Biot-Savart 법칙을 적용하면 자기장은

$$dB = \frac{\mu_0}{4\pi} \frac{ids \sin 90^{\circ}}{r^2}$$

이며 $dB_{\parallel}=dB{\cos}lpha$ 이므로

$$dB_{\parallel} = \frac{\mu_0 i \cos \alpha \, ds}{4\pi r^2}$$

이다. r 과 lpha를 z 로 표현하여 위 식에 대입하면 dB_{\parallel} 는

$$dB_{\parallel} = \frac{\mu_0 i R}{4\pi (R^2 + z^2)^{3/2}} ds$$

가 되며 i, R, z가 모든 ds에 대해 같은 값을 가지고, $\int ds = 2\pi R$ 이므로 적분하면

$$B(z) = \frac{\mu_0 i R^2}{2(R^2 + z^2)^{3/2}}$$

이 된다.

(2) 탐지 코일을 이용한 교류 자기장의 측정

각진동수 ω 로 시간에 따라 크기가 변하는 자기장 B(t) 속에 자기장의 방향과 나란하게 탐지코일(probe coil)이 놓여 있다고 하면, 탐지 코일을 지나는 자기다발 $\pmb{\Phi}_B(t)$ 의 크기는

$$\varepsilon(t) = -\frac{d\boldsymbol{\Phi}_{B}(t)}{dt} = -\frac{d}{dt}(N_{p}A_{p}B_{0}\sin\omega t) = -\omega N_{p}A_{p}B_{0}\cos\omega t$$

가 된다. 따라서 유도 기전력의 진폭 $arepsilon_0$ 는 $arepsilon_0 = \omega N_p A_p B_0$ 가 되고 이를 자기장에 대해 다시 고쳐 표현 하면

$$B_0 = \frac{\varepsilon_0}{\omega N_p A_p}$$

가 된다. 한편 유도 기전력의 실효값을 $arepsilon_{ac}$ 라고 하면 알고자 하는 교류 자기장의 실효값 B_{ac} 는

$$B_{ac} = \frac{\varepsilon_{ac}}{\omega N_p A_p}$$

가 되므로 탐지 코일에 유도되는 유도 기전력을 측정하면 교류 자기장을 계산할 수 있다.

(3) Biot-Savart 법칙

움직이는 전하의 자기장은 다음과 같다.

$$\overrightarrow{B}_{point\,charge} = rac{\mu_0}{4\pi} rac{\overrightarrow{qv} imes \widehat{r}}{r^2} = rac{\mu_0}{4\pi} rac{qv\sin heta}{r^2} \widehat{r}$$

여기서 r은 전하로부터의 거리이고, θ 는 v,r사이의 각이며 \hat{r} 은 r의 단위 벡터이다.

- 위 식을 Biot-Savart 법칙이라한다.
- 위 식을 전류에 대한 식으로 나타내면

$$(\Delta Q)\overrightarrow{v} = (\Delta Q)\frac{\Delta \overrightarrow{s}}{\Delta t} = \frac{\Delta Q}{\Delta t}\Delta \overrightarrow{s} = I\Delta \overrightarrow{s}$$
 이므로

$$\overrightarrow{B}_{current\,segment} = rac{\mu_0}{4\pi} rac{I \overrightarrow{arDelta_S} imes \widehat{r}}{r^2}$$

로 표현할 수 있다.

<그림1 : 직선 전류 주위의 자기장>

3. 실험 기구 및 재료

탐지 코일, 탐지 코일 이동 장치, 원형 전류 고리, 직선 전류 고리, 솔레노이드 코일, 교류 전원 장치, 멀티미터 1대, 자

4. 실험 방법

- (1)직선 전류에 의한 자기장
- ① 장치를 연결하고 자기장을 측정할 수 있도록 탐지 코일의 위치와 방향을 맞춘다.
- ②교류 전원 장치의 진동수를 500Hz로 맞춘다.
- ③탐지 코일의 바깥지름 및 안지름을 측정하여 평균 단면적을 계산한다(평균
- 반지름=(바깥지름+안지름)/4, 탐지 코일의 감은 횟수=6000).
- ④탐지 코일을 직선 전류 고리의 수직 도선과 최대한 가까이 하고 탐지 코일의 중심축과 수직 도선이 서로 직각이 되도록 위치 조정을 한다.
- ⑤전류를 0.5A씩 최대 2.5A까지 올리면서 유도 기전력을 측정하고 자기장을 계산하여 전류와 자기장 그래프를 그린다.
- ⑥전류를 2.0A로 고정하고, 수직 도선과 탐지 코일 중심축과의 거리(r)를 5mm씩 증가시키면서 유도 기전력의 변화를 측정하고 1/r과 자기장(B_{ac})의 그래프를 그린다.

(2)원형 전류 고리에 의한 자기장

- ①직선 전류 고리를 원형 전류 고리로 바꾸고 자기장을 측정할 수 있도록 탐지 코일의 위치와 방향을 맞춘다.
- ②탐지 코일을 원현 전류 고리의 중심에 위치시키고 탐지 코일의 중심축과 전류 고리의 축이 일치하도록 위치 조정을 한다.
- ③전류를 0.5A씩 최대 2.5A까지 올리면서 유도 기전력을 측정하고 자기장을 계산하여 전류와 자기장의 그래프를 그린다.

④전류를 2.0A로 고정하고 탐지 코일과 전류 고리 중심과의 거리(z)를 5mm씩 증가시키면서 유도 기전력의 변화를 측정한다. 그리고 $(R^2+z^2)^{-3/2}$ 와 자기장 (B_{ac}) 과의 그래프를 그린다.

5. 측정값

탐지 코일의 평균 반지름 :7mm

탐지 코일의 평균 단면적 :153.93804 mm²

탐지 코일의 감은 횟수: 6000회

(1) 실험1 : 직선 전류에 의한 자기장

탐지 코일 축과 직선 도선과의 거리: 60mm

$I_{ac}(A)$	$arepsilon_{ac}(mV)$	$B_{ac}(\mu T)$	B_{ac 이론 (μT)
0	0	0.000	0.000
0.5	2.3	0.793	1.667
1	4.7	1.620	3.333
1.5	7.1	2.447	5.000
2	9.5	3.274	6.667
2.5	11.8	4.067	8.333

<표1 : 직선 전류에 의한 자기장 : 전류와 자기장의 측정값과 이론값>

전류 I_{ac} =2A

r(mm)	$1/r(mm^{-1})$	$arepsilon_{ac}({\sf mV})$	$B_{ac}(\muT)$	B_{ac 이론 (μT)
60	0.0167	9.3	3.205	6.667
65	0.0154	8.6	2.964	6.154
70	0.0143	8.1	2.792	5.714
75	0.0133	7.3	2.516	5.333
80	0.0125	6.6	2.275	5.000
85	0.0118	6	2.068	4.706
90	0.0111	5.2	1.792	4.444
95	0.0105	4.6	1.585	4.211
100	0.01	4.3	1.482	4.000
105	0.0095	3.8	1.310	3.810
110	0.0091	3.5	1.206	3.636
115	0.0087	3.2	1.103	3.478
120	0.0083	3	1.034	3.333
125	0.008	2.7	0.931	3.200
130	0.0077	2.5	0.862	3.077
135	0.0074	2.4	0.827	2.963
140	0.0071	2.3	0.793	2.857
145	0.0069	2.2	0.758	2.759

150	0.0067	1.9	0.655	2.667
155	0.0065	1.8	0.620	2.581

(2)원형 전류 고리에 의한 자기장 원형 고리의 반경(R)=90mm

$I_{ac}(A)$	$arepsilon_{ac}(ext{mV})$	$B_{ac}(\mu T)$	B_{ac 이론 (μT)
0	0	0.000	0.000
0.5	7.8	2.688	3.491
1	15.6	5.376	6.981
1.5	23.3	8.030	10.472
2	31.3	10.787	13.963
2.5	38.8	13.372	17.453

<표3 : 원형 전류 고리에 의한 자기장 : 전류와 자기장의 측정값과 이론값>

전류 I_{ac} =2A

Z(mm)	$(R^2+z^2)^{-3/2}(mm^{-3})$	$arepsilon_{ac}(exttt{mV})$	$B_{ac}(\mu T)$	B_{ac 이론}(μT)
0	1.372E-06	30.5	10.511	13.963
5	1.365E-06	30.1	10.373	13.898
10	1.347E-06	29.5	10.167	13.708
15	1.317E-06	28.4	9.787	13.400
20	1.276E-06	27.5	9.477	12.989
25	1.227E-06	26.2	9.029	12.490
30	1.171E-06	24.9	8.581	11.922
35	1.111E-06	23.5	8.099	11.304
40	1.047E-06	21.9	7.547	10.655
45	9.815E-07	20.5	7.065	9.991
50	9.163E-07	19.2	6.617	9.327
55	8.522E-07	17.8	6.134	8.675
60	7.902E-07	16.5	5.686	8.043
65	7.308E-07	15.2	5.238	7.439
70	6.747E-07	13.9	4.790	6.867
75	6.219E-07	12.8	4.411	6.330
80	5.727E-07	11.9	4.101	5.830
85	5.271E-07	10.9	3.756	5.365
90	4.850E-07	10	3.446	4.937
95	4.462E-07	9.3	3.205	4.542

<표4 : 원형 전류 고리에 의한 자기장 : Z(mm), $(R^2+z^2)^{-3/2}(mm^{-3})$ 와 자기장의 측정값과 이론값>

6. 실험 결과

(1) 실험1 : 직선 전류에 의한 자기장

탐지 코일 축과 직선 도선과의 거리: 60mm

$I_{ac}(A)$	$B_{ac}(\mu T)$	B_{ac 이론 (μT)	이론 대비 측정값
0	0.000	0.000	0.00%
0.5	0.793	1.667	-52.44%
1	1.620	3.333	-51.41%
1.5	2.447	5.000	-51.06%
2	3.274	6.667	-50.89%
2.5	4.067	8.333	-51.20%

<표5 : 직선 전류에 의한 자기장 : 전류와 자기장의 이론값 대비 측정값>

전류 I_{ac} =2A

r(mm)	$1/r(mm^{-1})$	$B_{ac}(\mu T)$	B_{ac 이론 (μT)	이론 대비 측정값
60	0.0167	3.205	6.667	-51.92%
65	0.0154	2.964	6.154	-51.84%
70	0.0143	2.792	5.714	-51.15%
75	0.0133	2.516	5.333	-52.83%
80	0.0125	2.275	5.000	-54.51%
85	0.0118	2.068	4.706	-56.06%
90	0.0111	1.792	4.444	-59.68%
95	0.0105	1.585	4.211	-62.35%
100	0.01	1.482	4.000	-62.95%
105	0.0095	1.310	3.810	-65.62%
110	0.0091	1.206	3.636	-66.83%
115	0.0087	1.103	3.478	-68.29%
120	0.0083	1.034	3.333	-68.98%
125	0.008	0.931	3.200	-70.92%
130	0.0077	0.862	3.077	-72.00%
135	0.0074	0.827	2.963	-72.08%
140	0.0071	0.793	2.857	-72.26%
145	0.0069	0.758	2.759	-72.52%
150	0.0067	0.655	2.667	-75.45%
155	0.0065	0.620	2.581	-75.96%

<표6 : 직선 전류에 의한 자기장 : 거리(r)과 자기장의 이론값 대비 측정값>

•앞으로 나올 그래프에서 uT의 의미는 $\mu T (= 10^{-6} N/(A \cdot m))$ 를 의미한다.

<그림2 : 직선 전류에 의한 자기장 : 전류(A)와 자기장(μT). 이론값의 추세선 식(왼쪽 위)은 y=3.333x-2E-15이고, 측정값의 추세선 식(오른쪽 아래)은 y=1.6345x-0.0098이며 이론 추세선 기울기 대비 측정값 추세선 기울기는 -50.965% 차이 난다.>

<그림3 : 직선 전류에 의한 자기장 : $1/r(mm^-1)$ 와 자기장(μT). 이론값의 추세선 식(왼쪽 위)은 y=400x-2E-15이고, 측정값의 추세선 식(오른쪽 아래)은 y=269.81x-1.1792이며 이론 추세선 기울기 대비 측정값 추세선 기울기는 -32.548% 차이 난다.>

(2)원형 전류 고리에 의한 자기장 원형 고리의 반경(R)=90mm

$I_{ac}(A)$	$B_{ac}(\mu T)$	B_{ac 이론 (μT)	이론 대비 측정값
0	0.000	0.000	0%
0.5	2.688	3.491	-22.99%
1	5.376	6.981	-22.99%
1.5	8.030	10.472	-23.32%
2	10.787	13.963	-22.74%
2.5	13.372	17.453	-23.39%

<표7 : 원형 전류 고리에 의한 자기장 : 전류와 자기장의 이론값 대비 측정값>

전류 I_{ac} =2A

Z(mm)	$(R^2+z^2)^{-3/2}(mm^{-3})$	$B_{ac}(T)$	B_{ac 이론 (T)	이론 대비
0	1.372E-06	1.05112E-05	1.39626E-05	-24.72%
5	1.365E-06	1.03734E-05	1.38982E-05	-25.36%
10	1.347E-06	1.01666E-05	1.3708E-05	-25.83%
15	1.317E-06	9.78749E-06	1.34004E-05	-26.96%
20	1.276E-06	9.47732E-06	1.29887E-05	-27.03%
25	1.227E-06	9.0293E-06	1.24895E-05	-27.71%
30	1.171E-06	8.58128E-06	1.19215E-05	-28.02%
35	1.111E-06	8.0988E-06	1.13037E-05	-28.35%
40	1.047E-06	7.54739E-06	1.06546E-05	-29.16%
45	9.815E-07	7.06491E-06	9.99085E-06	-29.29%
50	9.163E-07	6.61689E-06	9.32687E-06	-29.06%
55	8.522E-07	6.13441E-06	8.67451E-06	-29.28%
60	7.902E-07	5.68639E-06	8.04296E-06	-29.30%
65	7.308E-07	5.23837E-06	7.439E-06	-29.58%
70	6.747E-07	4.79036E-06	6.8672E-06	-30.24%
75	6.219E-07	4.41126E-06	6.33033E-06	-30.32%
80	5.727E-07	4.1011E-06	5.82966E-06	-29.65%
85	5.271E-07	3.75647E-06	5.3653E-06	-29.99%
90	4.850E-07	3.4463E-06	4.93654E-06	-30.19%
95	4.462E-07	3.20506E-06	4.54202E-06	-29.44%

<표8 : 원형 전류 고리에 의한 자기장 : Z(mm), $(R^2+z^2)^{-3/2}(mm^{-3})$ 와 자기장의 이론값 대비 측정값>

<그림4 : 원형 전류 고리에 의한 자기장 : 전류(A)와 자기장(μT). 이론값의 추세선 식(왼쪽 위)은 y=6.9813x-4E-15이고, 측정값의 추세선 식(오른쪽 아래)은 y=5.3605x+0.0082이며 이론 추세선 기울기 대비 측정값 추세선 기울기는 -23.216% 차이 난다.>

<그림5 : 원형 전류 고리에 의한 자기장 : $(R^2+z^2)^{-3/2}(mm^{-3})$ 와 자기장 (μT) . 이론값의 추세선 식(왼쪽 위)은 y=10.179x-2E-20이고, 측정값의 추세선 식(오른쪽 아래)은 y=7.7628x-4E-07이며 이론 추세선

기울기 대비 측정값 추세선 기울기는 -23.737% 차이 난다.>

7. 결과에 대한 논의

(1) 실험1: 직선 전류에 의한 자기장

직선 전류에 의한 자기장에 대한 식은 다음과 같다고 알려져 있다(유도는 부록 참고).

$$B_{wire} = rac{\mu_0 Ir}{4\pi} \left[rac{x}{r^2 (x^2 + r^2)^{1/2}}
ight]_{x_i}^{x_f}$$

여기서 r은 도선으로부터의 거리이고, x는 도선의 좌표이다.

무한히 긴 도선의 경우 x_f, x_i 에 각각 $\infty, -\infty$ 를 대입하여 얻은 식이 실험 원리에서 논의한

$$B_{\infty\, wire} = rac{\mu_0 i}{2\pi r}$$

이다.

그러나 실험에서 사용한 실제 도선은 유한하므로, 오차가 발생할 수 밖에 없다.

$$B_{wire} = rac{\mu_0 Ir}{4\pi} [rac{x}{r^2 (x^2 + r^2)^{1/2}}]_{x_i}^{x_f}$$
 식에서 도선의 길이가 30cm이고 코일이 도선 중간에 위치해

있었다고 가정하면(그림6 참고) 실제 자기장은

$$\begin{split} B_{wire} &= \frac{\mu_0 I r}{4\pi} \left[\frac{x}{r^2 (x^2 + r^2)^{1/2}} \right]_{-0.15}^{0.15} = \frac{\mu_0 I r}{4\pi} \left(\frac{0.15}{r^2 (0.15^2 + r^2)^{1/2}} + \frac{0.15}{r^2 (0.15^2 + r^2)^{1/2}} \right) \\ &= \frac{\mu_0 I r}{4\pi} \left(\frac{0.3}{r^2 (0.15^2 + r^2)^{1/2}} \right) = \frac{\mu_0 I}{4\pi} \left(\frac{0.3}{r (0.15^2 + r^2)^{1/2}} \right) \end{split}$$

따라서 이론 자기장 $(B_{\infty\,wire}=rac{\mu_0 i}{2\pi r})$ 대비 실제 자기장 $(rac{\mu_0 I}{4\pi}(rac{0.3}{r(0.15^2+r^2)^{1/2}}))$ 은 다음과 같다.

$$B_{\rm Apol} = \frac{\frac{\mu_0 i}{4\pi} \frac{0.3}{r\sqrt{0.15^2 + r^2}} - \frac{\mu_0 i}{2\pi r}}{\frac{\mu_0 i}{2\pi r}} = \frac{1}{2} \frac{0.3}{\sqrt{0.15^2 + r^2}} - 1$$

따라서 거리가 멀어질수록 오차가 많이 발생한다는 것을 알 수 있으며 표로 만들면 표9와 같다.

r(mm)	도선길이 30cm, 코일은 도선 위쪽 끝에서부터 20cm에 있음(x=20cm)	도선길이 30cm, 코일은 도선 위쪽 끝에서부터 15cm에 있음(x=15cm)	도선길이 30cm, 코일은 도선 위쪽 끝에서부터 30cm에 있음(x=30cm)	도선길이 30cm, 코일은 도선 위쪽 끝에서부터 36cm에 있음(x=36cm)
60	-28.163%	-7.152%	-50.971%	-58.900%
65	-28.672%	-8.244%	-51.134%	-58.996%
70	-29.211%	-9.382%	-51.308%	-59.099%
75	-29.775%	-10.557%	-51.493%	-59.209%

80	-30.364%	-11.765%	-51.688%	-59.326%
85	-30.975%	-12.998%	-51.894%	-59.448%
90	-31.606%	-14.251%	-52.109%	-59.577%
95	-32.254%	-15.518%	-52.333%	-59.712%
100	-32.918%	-16.795%	-52.566%	-59.853%
105	-33.595%	-18.077%	-52.807%	-60.000%
110	-34.284%	-19.360%	-53.056%	-60.152%
115	-34.982%	-20.639%	-53.313%	-60.309%
120	-35.688%	-21.913%	-53.576%	-60.472%
125	-36.400%	-23.178%	-53.846%	-60.639%
130	-37.117%	-24.431%	-54.122%	-60.810%
135	-37.836%	-25.671%	-54.404%	-60.986%
140	-38.558%	-26.894%	-54.691%	-61.166%
145	-39.279%	-28.101%	-54.983%	-61.351%
150	-40.000%	-29.289%	-55.279%	-61.538%
155	-40.719%	-30.458%	-55.579%	-61.730%

<표9 : 직선 전류에 의한 자기장에서 거리(r)에 따른 오차>

전류가 흐르는 도선

<그림6 : 직선 도선에서의 자기장의 측정>

그림2와 그림3에서 이론 대비 실제 추세선의 기울기가 -50.965%, -32.548%임이 나왔는데 이는 표9에서 알 수 있듯이, 실험에서 사용한 도선과 자기장의 이론값을 계산할 때의 도선이 달랐기 때문이다.

다른 부수적인 오차 요인으로는, 직선 도선과 코일 거리(r)을 정확하게 측정하지 않음, 진공과 공기 투자율의 차이, 멀티미터의 오차($\pm 0.5\%$) 등을 예로 들 수 있다.

따라서 오차를 고려하면 자기장이 전류에 비례하고 1/r에 비례함을 볼 때 실험원리에서 논의한 식

$$B = \frac{\mu_0 i}{2\pi r}$$

가 실제로 성립함을 알 수 있으며, 이 식은 Ampere 법칙

$$\oint \vec{B} \cdot d\vec{s} = \mu_0 i_{enc}$$

또는

$$\overrightarrow{B}_{current\,segment} = rac{\mu_0}{4\pi} rac{\overrightarrow{IJs} \times \hat{r}}{r^2}$$

Biot-Savart 법칙에서 유도할 수 있으며(부록 참고)

Ampere 법칙과 Biot-Savart 법칙이 실제로 성립함을 알 수 있다.

(2) 실험2 : 원형 전류 고리에 의한 자기장

그림4에서 자기장 측정값이 자기장 이론값 대비 -23.216% 차이난다.

원형 도선 중간에 있어야할 코일이 중심에서 벗어났기 때문에 이런 오차가 발생한다고 이야기 할 수 있다.

오차는 다음과 같이 구할 수 있다.

실험원리에서 알 수 있듯, 원형 도선 중심에서의 자기장은 다음과 같다.

$$B = \frac{\mu_0 i}{2R}$$

따라서 오차는

$$B_{\rm Binol} = \frac{\frac{\mu_0 i R^2}{2 (R^2 + z^2)^{3/2}} - \frac{\mu_0 i}{2 R}}{\frac{\mu_0 i}{2 R}} = \frac{R^3}{(R^2 + z^2)^{3/2}} - 1$$

R=0.09m이므로 대입하면

$$B_{
m B,ol} = rac{0.09^3}{(0.09^2 + z^2)^{3/2}} - 1 = -0.23216$$

$$\therefore z = 0.0395m = 3.95cm$$

따라서 원형 도선 중심이 아니라 중심에서 z방향으로 3.95cm 정도 벗어났음을 알 수 있다.(물론 후술할 오차의 원인으로 인해 z는 계산한값 보다 작을 것이다.)

다른 부수적인 오차의 원인으로는 코일이 원형 도선 중심이 아닐 수 있다는 점(코일이 z=0이지만 x,y=(0,0)에 있지 않을 수 있다는 점), 실제 사용한 원형 도선은 이상적인 원형 도선이 아니라는 점, 진공과 공기의 투자율 차이, 멀티미터의 오차($\pm 0.5\%$)가 있다.

따라서 오차를 고려하면 원형 전류 고리에서 자기장은 전류와 $(R^2+z^2)^{-3/2}(mm^{-3})$ 에 비례함을 알 수 있고, 따라서

$$B(z) = \frac{\mu_0 i R^2}{2(R^2 + z^2)^{3/2}}$$

가 실제로 성립함을 알 수 있으며, 이는 Biot-Savart 법칙

$$\overrightarrow{B}_{current \, segment} = rac{\mu_0}{4\pi} rac{I \overrightarrow{Js} imes \widehat{r}}{r^2}$$

에서 유도한 것으로, Biot-Savart 법칙이 실제로 성립함을 알 수 있다.

(그림5에서 이론값 추세선 기울기 대비 측정값 추세선 기울기가 약 -23.737%차이나는데, 이것도 위

설명으로 설명할 수 있다.)

8. 결론

직선 전류와 원형 전류 고리에서 r 또는 z만큼 떨어진 곳의 자기장을 탐지 코일에 생기는 유도 기전력을 측정하여 구하였으며, 자기장의 이론값과 비교하였다. 측정 결과 직선 전류에서 자기장이 도선에 흐르는 전류와 1/r에 비례하였으며,

$$B = \frac{\mu_0 i}{2\pi r}$$

이 성립함을 알 수 있고,

$$\oint \vec{B} \cdot \vec{ds} = \mu_0 i_{enc}$$

가 성립함을 알 수 있었다.

오차의 원인은 실험에서 사용한 도선이 이상적인 도선(무한히 길고 직선인 도선)이 아님, 직선 도선과 코일 거리(r)을 정확하게 측정하지 않음, 진공과 공기 투자율의 차이, 멀티미터의 오차($\pm 0.5\%$)등이다.

원형 전류 고리에서는 자기장이 도선에 흐르는 전류와 $(R^2+z^2)^{-3/2}(mm^{-3})$ 에 비례함을 알 수 있고, 따라서

$$B(z) = rac{\mu_0 i R^2}{2(R^2 + z^2)^{3/2}}$$

가 실제로 성립함을 알 수 있으며 또, Biot-Savart 법칙

$$\vec{B}_{current \, segment} = \frac{\mu_0}{4\pi} \frac{\vec{I} \vec{J} \vec{s} \times \hat{r}}{r^2} \quad (\text{E} = \vec{B}_{point \, charge} = \frac{\mu_0}{4\pi} \frac{\vec{q} \vec{v} \times \hat{r}}{r^2} = \frac{\mu_0}{4\pi} \frac{\vec{q} v \sin \theta}{r^2} \hat{r})$$

이 실제로 성립함을 알 수 있다.

오차의 원인은 탐지 코일이 원형 전류 고리의 중심에서 r방향, z방향으로 벗어난 것, 실제 사용한 원형 도선은 이상적인 원형 도선이 아니라는 점, 진공과 공기의 투자율 차이, 멀티미터의 오차($\pm 0.5\%$)등이다.

9. 부록

(1) 길고 곧은 도선의 자기장 계산하기

<그림7 : 전류 I가 흐르는 곧은 도선의 자기장, 전류는 오른쪽으로 흐르고 있다.>

그림7에서 Biot-Savart 법칙을 사용하면 p점에서 Δx 에 의해 생기는 자기장은

$$B_i = \frac{\mu_0}{4\pi} \frac{I \Delta x \sin \theta}{r^2} = \frac{\mu_0}{4\pi} \frac{I \Delta x \sin \theta}{(x^2 + y^2)}$$

이때

$$\sin\theta = \frac{y}{r} = \frac{y}{\sqrt{x^2 + y^2}}$$

따라서 자기장은

$$B_i = rac{\mu_0}{4\pi} rac{Iy \Delta x}{(x^2 + y^2)^{3/2}}$$

이것을 x에 대해 적분하면

$$B_{wireatp} = rac{\mu_0 I y}{4\pi} \int_{x_-}^{x_f} rac{1}{(x^2 + y^2)^{3/2}} dx$$

이따

$$\int \frac{dx}{(x^2 \pm a^2)^{3/2}} = \frac{\pm x}{a^2 \sqrt{x^2 \pm a^2}} + C$$

이므로

$$B_{wireatp} = rac{\mu_0 I y}{4\pi} [rac{x}{y^2 (x^2 + y^2)^{1/2}}]_{x_i}^{x_f}$$

y를 r로 바꾸면

$$B_{wireatp} = rac{\mu_0 I r}{4\pi} \left[rac{x}{r^2 (x^2 + r^2)^{1/2}}
ight]_{x_i}^{x_f}$$

이고 만약 무한이 길고 곧은 직선이라면 $x_f = \infty, x_i = -\infty$ 대입하여

$$B_{\infty \, wire \, at \, p} = rac{\mu_0 i}{2\pi r}$$

를 얻을 수 있다.

10. 참고 문헌

- (1)일반물리학실험, 5판, 부산대학교 물리학교재편찬위원회, 청문각,2019
- (2)대학물리학,4판, Randall D.Knight(심경무 외 옮김),청문각,2019
- (3)완자 고등 물리 2, 비상교육 편집부, 비상교육, 2013
- (4)부산대학교 일반물리학실험실, https://gplab.pusan.ac.kr/gplab/index..do
- (5)연세대학교 일반물리학실험실, http://phylab.yonsei.ac.kr/
- (6)xl380l manual,

https://usefulldata.com/manual-guide-multimeter-xl830l-with-pdf-instructions/

(7)Tesla (unit), Wikipedia

https://en.wikipedia.org/wiki/Tesla_(unit)