Fitting time series models

ARIMA MODELS IN PYTHON

James Fulton
Climate informatics researcher

Creating a model

```
from statsmodels.tsa.arima_model import ARMA
```

```
model = ARMA(timeseries, order=(p,q))
```


Creating AR and MA models

```
ar_model = ARMA(timeseries, order=(p,0))
```

```
ma_model = ARMA(timeseries, order=(0,q))
```

Fitting the model and fit summary

```
model = ARMA(timeseries, order=(2,1))
results = model.fit()

print(results.summary())
```

Fit summary

		ARMA Mo	del Resu			
Dep. Variable	:		' No. (bservations:		1000
Model:		ARMA(2, 1)	Log L	ikelihood.		148.580
Method:		css-mle	S.D.	of innovations		0.208
Date:	Th	u, 25 Apr 2019	AIC			-287.159
Time:		22:57:00	BIC			-262.621
Sample:		6	HQIC			-277.833
	coef	std err	z	P> z	====== [0.025	0.975]
const	-0.0017	0.012	-0.147	0.883	-0.025	0.021
ar.L1.y	0.5253	0.054	9.807	0.000	0.420	0.630
ar.L2.y	-0.2909	0.042	-6.850	0.000	-0.374	-0.208
ma.L1.y	0.3679	0.052	7.100	0.000	0.266	0.469
			loots			
	Real	Real Imaginary		Modulus		Frequency
AR.1	0.9029	-1.6194j		1 . 8541		-0.1690
AR.2	0.9029	+1.6	194j	1.8541		0.1690
MA.1	-2.7184	+0.0000j		2.7184		0.5000

Fit summary

	ARMA Mode	el Results	
Dep. Variable:	у	No. Observations:	1000
Model:	ARMA(2, 1)	Log Likelihood	148.580
Method:	css-mle	S.D. of innovations	0.208
Date:	Thu, 25 Apr 2019	AIC	-287.159
Time:	22:57:00	BIC	-262.621
Sample:	0	HQIC	-277.833

Fit summary

	=========	========	========	========	========	=======
	coef	std err	Z 	P> z	[0.025	0.975]
const	-0.0017	0.012	-0.147	0.883	-0.025	0.021
ar.L1.y	0.5253	0.054	9.807	0.000	0.420	0.630
ar.L2.y	-0.2909	0.042	-6.850	0.000	-0.374	-0.208
ma.L1.y	0.3679	0.052	7.100	0.000	0.266	0.469
- mar = 1 · y	3	0. 002	, , ,	0,000	31233	3.13

Introduction to ARMAX models

- Exogenous ARMA
- Use external variables as well as time series
- ARMAX = ARMA + linear regression

We model the time series using other independent variables as well as the time series itself.

ARMAX equation

ARMA(1,1) model:

$$y_t = a_1 y_{t-1} + m_1 \epsilon_{t-1} + \epsilon_t$$

ARMAX(1,1) model:

$$y_t = x_1 z_t + a_1 y_{t-1} + m_1 \epsilon_{t-1} + \epsilon_t$$

ARMAX example

ARMAX example

Fitting ARMAX

```
# Instantiate the model
model = ARMA(df['productivity'], order=(2,1), exog=df['hours_sleep'])

# Fit the model
results = model.fit()
```

ARMAX summary

=======	========	========	========	:=======	:=======	=======
	coef	std err	Z	P> z	[0.025	0.975]
const	-0.1936	0.092	-2.098	0.041	-0.375	-0.013
x1	0.1131	0.013	8.602	0.000	0.087	0.139
ar.L1.y	0.1917	0.252	0.760	0.450	-0.302	0.686
ar.L2.y	-0.3740	0.121	-3.079	0.003	-0.612	-0.136
ma.L1.y	-0.0740	0.259	-0.286	0.776	-0.581	0.433

Let's practice!

ARIMA MODELS IN PYTHON

Forecasting

ARIMA MODELS IN PYTHON

James Fulton
Climate informatics researcher

Predicting the next value

Take an AR(1) model

$$y_t = a_1 y_{t-1} + \epsilon_t$$

Predict next value

$$y_t = 0.6 \times 10 + \epsilon_t$$

$$y_t = 6.0 + \epsilon_t$$

Uncertainty on prediction

$$5.0 < y_t < 7.0$$

One-step-ahead predictions

Statsmodels SARIMAX class

```
\label{from:models:tsa:statespace.sarimax} \textbf{import} \ SARIMAX \mbox{\# Just an } ARMA(p,q) \ model \mbox{model = SARIMAX(df, order=(p,0,q))} \ \ ^{an \ additional \ model \ order}
```

Statsmodels SARIMAX class

```
from statsmodels.tsa.statespace.sarimax import SARIMAX

# An ARMA(p,q) + constant model

model = SARIMAX(df, order=(p,0,q), trend='c')

If the time series isn't centered around zero this is a must.
```

Making one-step-ahead predictions

```
# Make predictions for last 25 values
results = model.fit()

# Make in-sample prediction
forecast = results.get_prediction(start=-25)
how many steps back to begin the forecast
```

Making one-step-ahead predictions

```
# Make predictions for last 25 values
results = model.fit()

# Make in-sample prediction
forecast = results.get_prediction(start=-25)

# forecast mean
mean_forecast = forecast.predicted_mean
```

Predicted mean is a pandas series

Confidence intervals

```
# Get confidence intervals of forecasts
confidence_intervals = forecast.conf_int()
```

Confidence interval method returns pandas DataFrame

	lower y	upper y
2013-09-28	-4.720471	-0.815384
2013-09-29	-5.069875	0.112505
2013-09-30	-5.232837	0.766300
2013-10-01	-5.305814	1.282935
2013-10-02	-5.326956	1.703974

Plotting predictions

```
plt.figure()
# Plot prediction
plt.plot(dates,
         mean_forecast.values,
         color='red',
         label='forecast')
# Shade uncertainty area
plt.fill_between(dates, lower_limits, upper_limits, color='pink')
plt.show()
```

Plotting predictions

Dynamic predictions

Making dynamic predictions

```
results = model.fit()
forecast = results.get_prediction(start=-25, dynamic=True)
# forecast mean
mean_forecast = forecast.predicted_mean
# Get confidence intervals of forecasts
confidence_intervals = forecast.conf_int()
```

Forecasting out of sample

```
forecast = results.get_forecast(steps=20)

# forecast mean
mean_forecast = forecast.predicted_mean

# Get confidence intervals of forecasts
confidence_intervals = forecast.conf_int()
```

Forecasting out of sample

forecast = results.get_forecast(steps=20)

Let's practice!

ARIMA MODELS IN PYTHON

Introduction to ARIMA models

ARIMA MODELS IN PYTHON

James Fulton
Climate informatics researcher

Non-stationary time series recap

Non-stationary time series recap

Forecast of differenced time series

Reconstructing original time series after differencing

```
diff_forecast = results.get_forecast(steps=10).predicted_mean
from numpy import cumsum
mean_forecast = cumsum(diff_forecast)
```

Reconstructing original time series after differencing

Reconstructing original time series after differencing

The ARIMA model

- Take the difference
- Fit ARMA model
- Integrate forecast

Can we avoid doing so much work?

Yes!

ARIMA - Autoregressive Integrated Moving Average

Using the ARIMA model

from statsmodels.tsa.statespace.sarimax import SARIMAX
model = SARIMAX(df, order =(p,d,q))

- p number of autoregressive lags
- d order of differencing
- q number of moving average lags

ARMA(p, 0, q) = ARMA(p, q)

Using the ARIMA model

```
# Create model
model = SARIMAX(df, order=(2,1,1))
# Fit model
model.fit()
# Make forecast
mean_forecast = results.get_forecast(steps=10).predicted_mean
```

Using the ARIMA model

```
# Make forecast
mean_forecast = results.get_forecast(steps=steps).predicted_mean
```


Picking the difference order

```
adf = adfuller(df.iloc[:,0])
print('ADF Statistic:', adf[0])
print('p-value:', adf[1])
```

```
ADF Statistic: -2.674
p-value: 0.0784

adf = adfuller(df.diff().dropna().iloc[:,0])
print('ADF Statistic:', adf[0])
```

```
ADF Statistic: -4.978
p-value: 2.44e-05
```


print('p-value:', adf[1])

Picking the difference order

model = SARIMAX(df, order=(p,1,q))

Let's practice!

ARIMA MODELS IN PYTHON

