Welcome to CS106L

Reid Watson (rawatson@stanford.edu)

Lecture 0: The Weird One

- Administrivia
- Why CS106L
 - Why do we have a special class about C++?
- C++
 - What does the universe of programming languages look like?
 - What role does C++ fill?

Lecture 0: The Weird One

- Administrivia
- Why CS106L
 - Why do we have a special class about C++?
- C++
 - What does the universe of programming languages look like?
 - O What role does C++ fill?

Administrivia

Staff

- Instructor: Reid Watson (rawatson@stanford.edu)
- Don't be afraid to get in touch, I love hearing from students!
- TAs are still being determined

Office hours

- Tuesday, Thursday: 5:05 6:00 PM
- There will also be CS106L specific LaIR hours

Prerequisites

 You should either be enrolled in CS106B/X right now, or have successfully completed it in an earlier quarter

Administrivia

- One unit, Credit/No Credit
- Assignments
 - 3 programming assignments, no exams/sections
- Website
 - cs106l.stanford.edu (L as in lima)
 - Everything is there
- Late Policy
 - You will get three 24 hour late days this quarter
 - You can use one late day per assignment
- Honor Code
 - Same as CS106B/X

Lecture 0: The Weird One

- Administrivia
- Why CS106L
 - Why do we have a special class about C++?
- C++
 - What does the universe of programming languages look like?
 - O What role does C++ fill?

What Exactly is CS106L?

- CS106B/X: Learn how to model and solve complex problems with computers
 - Explore common abstractions for representing problems
 - Harness recursion and think about problems recursively
 - Quantitatively analyze different approaches for solving problems
- CS106B/X uses C++ as a means to an end

What Exactly is CS106L?

- CS106L: Learn how and why to write clear, efficient, and powerful C++ code
 - Understand industry standard C++ coding practices
 - Become a better programmer by practicing these skills
 - Understand the world of programming a bit better by studying C++

"Industry Standard C++"

- C++ allows us to solve the same problem many different ways
- Understanding why you should write code a certain way is key to being a good C++ programmer
- To understand why this matters, let's look at how we write "hello world" in C++

Hello World in C++

```
#include <iostream>
using namespace std;
int main() {
   cout << "Hello World!" << endl;
}</pre>
```

Hello World in C++

```
#include <stdio.h>
#include <stdlib.h>
int main(int argc, char *argv[]) {
   puts("Hello world");
   return EXIT_SUCCESS;
}
```

Why C++?

- Why does CS106B/X use C++?
- Why don't we learn {language X} instead?
- Why do programmers use C++?
- Is C++ going to be useful to me?
- Can I get a job using C++?

To answer these questions, we'll need to understand C++ a little bit better...

Lecture 0: The Weird One

- Administrivia
- Why CS106L
 - Why do we have a special class about C++?
- C++
 - What does the universe of programming languages look like?
 - What role does C++ fill?

The Universe of Programming

"If you wish to make an apple pie from scratch, you must first invent the universe"

-- Carl Sagan

The Universe of Programming

"If you wish to understand C++, you must first invent the universe"

-- Carl Sagan

The Universe of Programming

To understand the universe of programming, we'll start by looking at the most basic programming language used, assembly.

Here's an example of a "hello world" program in assembly.

```
section
            .text
global
           start
                                                 ;must be declared for linker (ld)
start:
                                                 ;tell linker entry point
            edx,len
                                                 ;message length
    mov
                                                 ;message to write
            ecx, msg
    mov
            ebx,1
                                                 ;file descriptor (stdout)
    mov
                                                 ;system call number (sys write)
            eax,4
    mov
            0x80
                                                 ;call kernel
    int
            eax,1
                                                 ;system call number (sys exit)
    mov
                                                 ;call kernel
    int
            0x80
section
            .data
        db 'Hello, world!',0xa
                                                 ;our dear string
msg
       equ $ - msg
                                                 ;length of our dear string
len
```

- Computers operate by executing a series of instructions.
 - Instructions are things like "add two numbers", or "store this value into memory"
- Assembly language describes exactly which instruction the computer should execute
- When you write assembly, you have complete control over your program
- You'll learn more about assembly in CS107

- Well written assembly is extremely fast
 - Any construct which the computer can execute can be expressed in assembly

If all computer programs **can** be written in assembly, why don't we just learn assembly?

- Assembly code can be extremely difficult to understand
 - Specifying exactly what the computer should do can take a very long time!
 - A 5 line C++ program might involve hundreds of lines of assembly code
- Assembly code written for one type of computer might not work on another
 - Laptops typically use a set of instructions called x86, while phones typically use ARM

- Writing assembly is too difficult
- Source code is written in a programming language like Java or C++.
- Compilers transform source code into assembly

Compiler

Source Code

```
#include <iostream>
using namespace std;
int main() {
    cout << "Hello
World!";
    cout << endl;
}</pre>
```

Assembly

```
section
           .text
global
           start
start:
           edx,len
   mov
   mov
           ecx, msg
           ebx,1
   mov
           eax,4
   mov
           0x80
   int
   mov
           eax,1
           0x80
   int
           .data
section
       db 'Hello World!',
msg
0xa
       equ $ - msg
len
```

- What should source code look like?
 - How should the idea of a function be represented in source code?
 - Should a programming language offer a large standard library, or a small one?
 - What syntax should we use to represent various operations

- There are a lot of programming languages because people have very different ideas what source code should look like
 - Some languages are better at producing code which executes quickly
 - Some languages try and make it easy to express complex ideas in a simple manner
 - Some languages are designed with a specific application in mind

History of C++: C

- The C programming language was released in 1972
- C was a big hit -- it made writing efficient code which worked on different machines very easy
- Take CS107 to learn more!

Ken Thompson and Dennis Ritchie, creators of the C programming language

Hello World in C

```
#include <stdio.h>
#include <stdlib.h>
int main() {
   puts("Hello world");
   return EXIT_SUCCESS;
}
```

History of C++: C

- C was popular in part because it was a "simple" language
- C wasn't that much more complicated than assembly language
 - Writing good C code doesn't require memorizing a lot of unusual syntax
 - Creating a C compiler for a system wasn't too complicated (relatively speaking)
 - C code would work on any system which had a C compiler

History of C++: C

- C was criticized in part because it was a "simple" language
 - The C language doesn't provide things like maps and objects.
 - Some parts of C (C strings especially) are difficult to work with and C doesn't provide any alternatives

Introducing C++

- Bjarne Stroustrup created C++ in 1983 to add new features to C
- C++ was also a massive hit, and quickly became one of the most popular languages

Bjarne Stroustrup, living large and creating C++

What is C++ Anyway?

C++ is a programming language which simplifies complex tasks without sacrificing performance

What is C++ Anyway?

- (Almost) all C code is valid C++
- What constitutes valid C++ code is defined by the ~1400 page C++ standard
 - C++ is definitely not a "simple" language!
- We're going to focus on the important parts of C++ in CS106L
- But first, let's answer the original question:
 - Why is C++ so popular / used in CS106B / important enough to deserve its own class?

Why C++: Performance

Well written C++ offers some of the highest performance of any language currently used

Why C++: Performance

Facebook began using C++ and C++ based tools to help them handle the huge amounts of traffic they get every day

Why C++: Users

C++ is one of the most widely used languages in the world.

Let's peek at some examples...

Why C++: Users (companies)

Why C++: Users (web browsers)

Why C++: Users (software)

Windows

*: BlackBerry

Why C++: Users (games)

Why C++: Users (cool things)

The F-35 Lightning II (Joint Strike Fighter) relies extensively on C++

The Spirit rover was operational for over 6 years when the mission was only planned to run for around 3 months

Why C++: Users (Java)

The most widely used Java runtime is written in C++

Why C++: The Big Picture

C++ is a great way to understand how to model complex ideas in a straightforward manner

You can learn a lot about computer programming by studying why things are the way they are in C++

Tomorrow

- We start writing real code!
- C++ streams and stream manipulation
- Check the website for more information