# MB110-8AC



# Модули ввода аналоговые

руководство по эксплуатации



# Содержание

| 1 назначение прибора                                         | 5  |
|--------------------------------------------------------------|----|
| 2 Технические характеристики и условия эксплуатации          | 6  |
| 2.1 Технические характеристики прибора                       |    |
| 2.2 Условия эксплуатации прибора                             | 9  |
| 3 Устройство прибора                                         |    |
| 3.1 Общие принципы построения прибора                        | 10 |
| 3.2 Аналоговая часть измерительного канала                   | 12 |
| 3.3 Ограничитель скорости изменения измеряемого сигнала      | 13 |
| 3.4 Входной цифровой фильтр                                  |    |
| 3.5 Выходной цифровой фильтр                                 | 16 |
| 3.6 Буфер хранения результатов измерения                     | 17 |
| 3.7 Блок приведения к физической величине                    | 17 |
| 3.8 Защита измерительных входов прибора                      | 19 |
| 3.9 Встроенный источник питания для внешних преобразователей | 19 |
| 3.10 Конструкция прибора                                     |    |
| 3.11 Управление прибором                                     | 20 |
| 4 Работа с прибором                                          | 22 |
| 4.1 Программа «Конфигуратор М110»                            |    |
| 4.2 Восстановление заводских сетевых настроек прибора        | 22 |
| 5 Меры безопасности                                          |    |
| 6 Монтаж и подключение прибора                               | 26 |
| 6.1 Монтаж внешних связей                                    | 26 |
| 6.1.1 Общие требования                                       | 26 |
| 6.1.2 Подключение прибора                                    | 27 |
| 6.2 Отсоединение клемм прибора                               | 27 |

| 6.3 Помехи и методы их подавления                        | 28 |
|----------------------------------------------------------|----|
| 7 Техническое обслуживание                               |    |
| 7.1 Технический осмотр                                   |    |
| 7.2 Поверка                                              |    |
| 8 Маркировка и упаковка                                  |    |
| 9 Транспортирование и хранение                           |    |
| 10 Комплектность                                         |    |
| 11 Гарантийные обязательства                             | 33 |
| Приложение А. Габаритный чертеж                          | 34 |
| Приложение Б. Подключение прибора                        |    |
| Приложение В. Общие сведения о протоколах обмена RS-485  | 40 |
| Приложение Г. Команды управления прибором по сети RS-485 | 43 |
| Приложение Д. Методика юстировки                         | 59 |
| Приложение Е. Отделение клемм от прибора                 |    |
|                                                          |    |

Настоящее руководство по эксплуатации предназначено для ознакомления обслуживающего персонала с устройством, принципом действия, конструкцией, работой и техническим обслуживанием модуля ввода аналогового МВ110-8АС (в дальнейшем по тексту именуемых прибор).

Прибор выпускается согласно ТУ 4217-018-46526536-2009 и имеет декларацию соответствия ТР ТС. Прибор зарегистрирован в Государственном реестре средств измерений, свидетельство RU.C.34.004A №42323.

Прибор изготавливается в двух модификациях, отличающихся друг от друга напряжением питания. Модификации прибора с восемью аналоговыми скоростными входами обозначаются в документации и заказах следующим образом:

#### MB110-X.8AC,

где

X – напряжение питания.

Виды напряжения питания:

**220** – номинальное напряжение питания 220 В переменного тока частотой от 47 до 63 Гц; **24** – номинальное напряжение питания постоянного тока 24 В.

## Термины и аббревиатуры

**АЦП** – аналого-цифровой преобразователь.

**Имя параметра** – набор символов, однозначно определяющий доступ к параметру в приборе.

**Индекс параметра** – числовое значение, отличающее параметры однотипных элементов с одинаковыми именами.

Конфигурация – совокупность значений параметров, определяющих работу прибора.

**Конфигурационные параметры** – параметры, определяющие конфигурацию прибора. Задаются в программе-конфигураторе.

**Мастер сети** – прибор (или ПК), инициирующий обмен данными в сети RS-485 между отправителем и получателем данных.

Оперативные параметры – данные, которые прибор передает по сети RS-485.

**ПК** – персональный компьютер.

Сетевые параметры – служебные параметры, определяющие работу прибора в сети RS-485.

Формат данных – тип значений параметров (например, целое число, число с плавающей точкой).

Формат записи числа «0x00» означает, что число указано в шестнадцатеричном формате счисления. Например, запись «0x1F» означает, что написано шестнадцатеричное число 1F, эквивалентное десятичному числу 31.

## 1 Назначение прибора

Прибор предназначен для преобразования измеряемых аналоговых сигналов в цифровой код и передачи результатов измерения в сеть RS-485. Предназначается для построения автоматизированных систем сбора данных в различных областях промышленности, сельского и коммунального хозяйства, на транспорте.

Аналоговые входы прибора могут работать в следующих режимах:

- измерение тока в диапазоне от 4 до 20 мА;
- измерение тока в диапазоне от 0 до 20 мА;
- измерение тока в диапазоне от 0 до 5 мА;
- измерение напряжения в диапазоне от 0 до 10 В.

## 2 Технические характеристики и условия эксплуатации

#### 2.1 Технические характеристики прибора

Прибор обеспечивает измерение следующих унифицированных сигналов в соответствии с ГОСТ 26.011-80:

- ток от 4 до 20 мА;
- ток от 0 до 20 мА;
- ток от 0 до 5 мА;
- напряжение от 0 до 10 B.

Прибор работает в сети RS-485 по протоколам OBEH, ModBus-RTU, ModBus-ASCII, DCON. Общие сведения о протоколах обмена RS-485 представлены в Приложении В.

Прибор имеет следующие группы гальванически изолированных цепей:

- цепи питания прибора;
- цепи интерфейса RS-485;
- цепи выхода встроенного источника постоянного напряжения 24 В (для МВ110-220.8АС);
- цепи измерительных входов.

Электрическая прочность изоляции всех групп цепей, исключая группу цепей питания, относительно друг друга – 750 В, относительно группы цепей питания – 3000 В.

Прибор не является **Мастером сети**, поэтому сеть RS-485 должна иметь **Мастер сети**, например, ПК с запущенной на нем SCADA-системой, контроллер или регулятор.

К прибору предоставляется бесплатный OPC-драйвер и библиотека стандарта WIN DLL, которые рекомендуется использовать при подключении прибора к SCADA-системам и контроллерам других производителей.

Конфигурирование прибора осуществляется на ПК через адаптер интерфейса RS-485/RS-232 или RS-485/USB (например, OBEH AC3-M или AC4) с помощью программы «Конфигуратор M110», входящей в комплект поставки.

Основные технические характеристики прибора приведены в таблице 2.1.

Таблица 2.1 – Характеристики прибора

| Наименование                                                                | Значение                                                                                        |
|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| Напряжение питания MB110-220.8AC                                            | от 90 до 264 В переменного<br>тока (номинальное<br>напряжение 220 В)<br>частотой от 47 до 63 Гц |
| Напряжение питания МВ110-24.8АС                                             | от 21 до 37,5 В постоянного<br>тока (номинальное<br>напряжение 24 В)                            |
| Потребляемая мощность, ВА, не более                                         |                                                                                                 |
| MB110-220.8AC                                                               | 8                                                                                               |
| MB110-24.8AC                                                                | 6                                                                                               |
| Предел основной приведенной погрешности, %                                  | 0,25                                                                                            |
| Предел дополнительной приведенной погрешности, вызванной                    | 0,12                                                                                            |
| изменением температуры на 10 °C в пределах рабочего диапазона температур, % |                                                                                                 |
| Разрешающая способность:                                                    |                                                                                                 |
| <ul> <li>для диапазонов токов от 4 до 20 мА и от 0 до 20 мА,</li> </ul>     | 4                                                                                               |
| <ul><li>– мкА не более</li></ul>                                            | 1                                                                                               |
| <ul> <li>для диапазона тока от 0 до 5 мА, мкА не более</li> </ul>           | 2                                                                                               |
| <ul> <li>для диапазона напряжения от 1 до 10 В, мВ, не более</li> </ul>     |                                                                                                 |
| Количество аналоговых каналов измерения                                     | 8                                                                                               |
| Разрядность АЦП, бит                                                        | 10                                                                                              |

## Окончание таблицы 2.1

| Наименование                                                                           | Значение                                                          |
|----------------------------------------------------------------------------------------|-------------------------------------------------------------------|
| Входное сопротивление в режиме измерения тока от 0 до 20 мА и от 4 до 20 мА, Ом        | от 130 до 250                                                     |
| Входное сопротивление в режиме измерения тока от 0 до 5 мА, Ом                         | от 130 до 500                                                     |
| Входное сопротивление в режиме измерения напряжения от 0 до 10 В, кОм, не менее        | 200                                                               |
| Период обновления результатов измерения по каждому каналу, мс                          | 5 ± 2 %                                                           |
| Выходное напряжение встроенного источника питания МВ110-220.8AC, В                     | 24 ± 3                                                            |
| Максимальный ток нагрузки встроенного источника питания, А                             | 0,18                                                              |
| Интерфейс связи с мастером сети                                                        | RS-485                                                            |
| Максимальное количество приборов, одновременно<br>подключаемых к сети RS-485, не более | 32                                                                |
| Максимальная скорость обмена по интерфейсу RS-485, бит/с                               | 115200                                                            |
| Протоколы связи, используемые для передачи информации                                  | OBEH; ModBus-RTU;<br>ModBus-ASCII; DCON                           |
| Степень защиты корпуса                                                                 | IP20 со стороны передней панели, IP00 со стороны клеммной колодки |
| Габаритные размеры прибора, мм                                                         | (63×110×75) ±1                                                    |
| Масса прибора, кг, не более                                                            | 0,5                                                               |
| Средний срок службы, лет                                                               | 8                                                                 |

#### 2.2 Условия эксплуатации прибора

Прибор эксплуатируется при следующих условиях:

- закрытые взрывобезопасные помещения без агрессивных паров и газов;
- температура окружающего воздуха от минус 10 до +55 °C;
- верхний предел относительной влажности воздуха 80 % при +35 °C и более низких

температурах без конденсации влаги;

— атмосферное давление от 84 до 106,7 кПа.

По устойчивости к климатическим воздействиям при эксплуатации прибор соответствует группе исполнения В4 по ГОСТ Р 52931-2008.

По устойчивости к воздействию атмосферного давления прибор относится к группе Р1 по ГОСТ Р 52931-2008.

По устойчивости к механическим воздействиям при эксплуатации прибор соответствует группе исполнения N2 по ГОСТ Р 52931-2008.

# 3 Устройство прибора

#### 3.1 Общие принципы построения прибора

Прибор имеет восемь идентичных каналов, обеспечивающих измерение тока в трех диапазонах (от 4 до 20 мA, от 0 до 20 мA и от 0 до 5 мA) и измерение напряжения в диапазоне от 0 до 10 В.

При измерении напряжения входной сигнал масштабируется с помощью резистивного делителя и поступает на вход АЦП, где преобразуется в цифровой код.

При измерении тока используется встроенный резистор, обеспечивающий преобразование тока в напряжение, которое далее с помощью АЦП преобразуется в цифровой код. Схемы измерения тока для диапазонов от 4 до 20 мА, от 0 до 20 мА одинаковы, а для диапазона от 0 до 5 мА, перед подачей на вход АЦП, сигнал с резистора, преобразующего ток в напряжение, усиливается в четыре раза прецизионным усилителем.

Каналы измерения гальванически связаны между собой и имеют общий отрицательный вход.

Результаты измерения по запросу передаются мастеру сети RS-485. Прибор обеспечивает работу в сети RS-485 по протоколам ModBus (RTU и ASCII), Овен и DCON. Тип протокола определяется автоматически.

Конфигурирование прибора поддерживается по протоколам ModBus (RTU и ASCII) и Овен. Структурная схема одного канала измерения приведена на рисунке 3.1.



Рисунок 3.1 - Структурная схема прибора

#### 3.2 Аналоговая часть измерительного канала

Аналоговая часть измерительного канала обеспечивает:

- преобразование тока в напряжение с помощью встроенного резистора;
- фильтрацию входного сигнала RC-фильтром низкой частоты;
- усиление сигнала с выхода резистора, выполняющего преобразование тока в напряжение;
- выбор и подачу на вход АЦП одного из полученных сигналов (напряжение, сигнал с резистора, преобразующего ток в напряжение, выход прецизионного усилителя);
- преобразование сигнала соответствующего диапазона в цифровой код.

При измерении напряжения входной сигнал с входных клемм через фильтр нижних частот поступает на мультиплексор.

При измерении тока к входным клеммам с помощью электронного ключа подключается резистор, преобразующий ток в напряжение. С данного резистора сигнал поступает на фильтр нижних частот и далее на вход мультиплексора и на вход усилителя. Усилитель обеспечивает усиление сигнала с резистора, преобразующего ток в напряжение в четыре раза. С выхода усилителя сигнал поступает на мультиплексор.

Мультиплексор обеспечивает выбор одного из трех входных сигналов и подачу его на вход АЦП.

Управление мультиплексором и ключом, подключающим резистор, преобразующий ток в напряжение к входным клеммам, определяет конфигурационный параметр **In-t** — тип подключаемого датчика.

АЦП обеспечивает преобразование аналогового сигнала в цифровой код. Частота преобразования для каждого канала измерения равна 1600 Гц.

Фильтр нижних частот имеет следующие параметры:

- частота среза, 2 кГц;
- наклон частотной характеристики в дальней зоне минус 40 дБ на декаду.

Номинальное значение сопротивления резистора, преобразующего ток в напряжение равно 133 Ом  $\pm$  0,05 %.

#### 3.3 Ограничитель скорости изменения измеряемого сигнала

Ограничение скорости изменения сигнала обеспечивает эффективную фильтрацию импульсных помех. Работа ограничителя скорости изменения сигнала осуществляется в соответствии с формулой (1):

$$Y_{i} = \begin{cases} X_{i-1} + P & npu \ (X_{i} - Y_{i-1}) > P \\ X_{i-1} - P & npu \ (X_{i} - Y_{i-1}) < -P \end{cases}$$

$$X \quad uhave$$
(1)

где Х<sub>і</sub> – сигнал на входе ограничителя в текущий момент времени;

Y<sub>i</sub> – сигнал на выходе ограничителя;

X<sub>i-1</sub> – сигнал на входе ограничителя в предыдущий такт (5 мс) измерения;

Y<sub>i-1</sub> - сигнал на выходе ограничителя в предыдущий такт (5 мс) измерения;

Р – параметр ограничения скорости, рассчитанный по формуле (2):

$$P = \frac{\text{Peak} \cdot \text{диапазон измерения}}{200} \,. \tag{2}$$

Если порог ограничения скорости выбран правильно, то ограничитель скорости не оказывает влияния на измеряемый сигнал. При поступлении на вход сигнала импульсной помехи амплитуда помехи будет уменьшена в соответствии с установленным параметром ограничения скорости.

Управление ограничением скорости изменения сигнала выполняется с помощью параметра **Peak**. Значение параметра ограничения задается в долях изменения входного сигнала относительно измеряемого диапазона за одну секунду.

При установке параметра **Peak**, равным 4, исключается влияние ограничителя скорости изменения сигнала на полезный сигнал, и, в то же время, обеспечивается эффективная защита от импульсных помех.

Значение параметра **Peak**, равное 200, отключает ограничитель скорости изменения сигнала. По умолчанию значение **Peak** устанавливается равным 200.

#### 3.4 Входной цифровой фильтр

Входной фильтр обеспечивает подавление помех с частотами, кратными частоте промышленной сети 50 Гц, увеличивает за счет усреднения разрешающую способность измерителя и понижает частоту отсчетов измеряемого сигнала с 1600 до 200 Гц.

Управление входным фильтром одновременно для всех восьми измерительных каналов определяет параметр **ComF**.

Параметр может принимать следующие значения.

- **0** фильтр отключен. При отключенном фильтре частота отсчетов на выходе понижается до 200 Гц (из входных отсчетов на выход поступает каждый восьмой отсчет).
- 1 50 Гц, первого порядка. Подключен скользящий фильтр среднего первого порядка длиной 32. Фильтр имеет линейную фазовую характеристику. Групповое время задержки фильтра равно 10 мс. Длительность импульсной характеристики фильтра равна 20 мс.

- 2 50 Гц, второго порядка. Подключен скользящий фильтр среднего второго порядка длиной 32. Фильтр имеет линейную фазовую характеристику. Групповое время задержки фильтра равно 20 мс. Длительность импульсной характеристики фильтра равна 40 мс.
- 3 50 Гц, четвертого порядка. Подключен скользящий фильтр среднего четвертого порядка длиной 32. Фильтр имеет линейную фазовую характеристику. Групповое время задержки фильтра равно 40 мс. Длительность импульсной характеристики фильтра равна 80 мс.
- **4** 200 Гц, первого порядка. Подключен скользящий фильтр первого порядка длиной 8. Фильтр имеет линейную фазовую характеристику. Групповое время задержки фильтра равно 2,5 мс. Длительность импульсной характеристики фильтра равна 5 мс.

Все режимы входного фильтра имеют периодическую частотную характеристику с периодом 1600 Гц. В диапазоне от 800 до 1600 Гц частотная характеристика является зеркальным отображением частотной характеристики с частотами от 0 до 800 Гц.

Первые три фильтра имеют значительное подавление промышленной частоты 50 Гц и ее гармоник. С увеличением порядка фильтра увеличивается подавление и время групповой задержки.

Четвертый фильтр имеет очень малую задержку и не задерживает помехи частотой 50 Гц. Первый нуль такого фильтра расположен на частоте 200 Гц.

Для измерения медленно изменяющихся сигналов, для которых допускается задержка результатов измерения на 80 мс, рекомендуется использовать фильтр четвертого порядка, который обеспечивает более высокое подавление высокочастотных шумов. С увеличением требований к времени групповой задержки сигнала необходимо уменьшать порядок используемого фильтра.

**Внимание!** Прибор обеспечивает параметры точности и разрешающей способности только при использовании фильтров на 50 Гц первого, второго или четвертого порядков, по умолчанию устанавливается фильтр первого порядка на 50 Гц.

Подробнее о функционировании входного цифрового фильтра прибора см. в Справке «Функционирование входного и выходного цифровых фильтров прибора МВ110-АС», размещенной на сайте компании: www.owen.ru.

#### 3.5 Выходной цифровой фильтр

Выходной фильтр обеспечивает формирование частотной характеристики индивидуально для каждого канала. Входной и выходные фильтры включены последовательно, поэтому результирующая частотная характеристика канала измерения является произведением частотных характеристик входного и выходного фильтров. Частотная характеристика аналогового фильтра не оказывает заметного влияния на результирующую частотную характеристику канала измерения.

Частота отсчетов на входе и выходе выходного фильтра одинакова и равна 200 Гц.

Управление выходным фильтром определяет параметр OutF. Параметр OutF задается индивидуально для каждого измерительного канала и может принимать следующие значения.

- 0 выходной фильтр отключен.
- 1 включен фильтр с экспоненциальной импульсной характеристикой (аналог RCфильтра).

Фильтр имеет затухание минус 3 дБ на частоте  $\frac{1}{2-T}$  (Т – постоянная времени фильтра в мс. задаваемая параметром in.Fd.).

Частотная характеристика фильтра имеет наклон минус 20 дБ на декаду.

2...16 – фильтр скользящего среднего первого порядка длиной, соответственно, от 2 до 16. При длине фильтра, кратной четырем, фильтр обеспечивает подавление помех промышленной частоты 50 Гц.

По умолчанию устанавливается значение типа фильтра «отключен», а постоянная времени экспоненциального фильтра 10 мс.

Подробнее о функционировании выходного цифрового фильтра прибора см. в Справке «Функционирование входного и выходного цифровых фильтров прибора МВ110-АС», размещенной на сайте компании: www.owen.ru.

#### 3.6 Буфер хранения результатов измерения

Результаты измерения с выходных фильтров сохраняются в буфере. Буфер хранит последнее измерение для каждого из восьми каналов. Обновление результатов измерения каждого канала происходит с периодом 5 мс. Результаты измерения отдельных каналов сохраняются в порядке от первого до восьмого канала. Интервал времени между сохранением результатов соседних каналов составляет 625 мкс.

Одновременно с сохранением результата измерения первого канала в отдельном регистре буфера сохраняется значение внутреннего таймера. Таймер циклически инкрементируется с периодом 10 мс в диапазоне от 0 до 65535. Период таймера составляет 655,36 с (около 10 минут).

#### 3.7 Блок приведения к физической величине

При поступлении запроса на измеренные данные из сети RS-485 блок приведения извлекает результаты измерения из буфера хранения, преобразовывает их к значению физической величины и отправляет **Мастеру сети**.

Использование приведения измеренного значения к физической величине позволяет пользователю отображать контролируемые физические параметры непосредственно в единицах их измерения (атмосферах, килопаскалях, метрах и т. д.).

Приведение измеренного значения к физической величине производится при установке параметров **Ain.L** – нижней и **Ain.H** – верхней границ диапазона. При этом минимальному

уровню выходного сигнала будет соответствовать значение, заданное в параметре Ain.L, а максимальному уровню — значение, заданное в параметре Ain.H. Дальнейшая обработка сигналов осуществляется в заданных единицах измерения по линейному закону (прямо пропорциональному при Ain.H > Ain.L или обратно пропорциональному при Ain.H < Ain.L).

Для целочисленного типа возвращаемого результата дополнительно используется параметр  ${\bf dP}$ . Параметр определяет увеличение возвращаемого результата в  $10^{({\bf dP})}$  раз. Это позволяет возвращать с помощью целочисленного формата дробные числа. Со стороны Мастера сети полученные данные должны быть, соответственно, уменьшены в  $10^{({\bf dP})}$  раз. Параметр  ${\bf dP}$  может принимать значения от 0 до 4, позволяя с помощью целочисленного формата передавать данные, имеющие дискретность до 0,0001.

По умолчанию устанавливаются значения параметров блока приведения:
— **Ain.L** = 0:

- -**Ain.H** = 100.0:
- -dP = 2.

Пример — При использовании датчика с выходным током от 4 до 20 мА (параметр in-t равен 1), контролирующего давление в диапазоне от 0 до 25 атм, в параметре Ain.L задается значение 00,00, а в параметре Ain.H — значение 25,00. После этого вывод результатов измерения будет выполняться в атмосферах. При значении измеренного тока, равном 4 мА, результат приведения будет равен 00,00, а при значении измеренного тока, равном 20 мА, результат приведения будет равен 25,00. При запросе данных в целочисленном формате и установленном параметре dP, равном 2, для измеренного тока 16 мА будет возвращено значение 1875. После деления принятого результата на 10² получим давление, равное 18,75 атм.

#### 3.8 Защита измерительных входов прибора

Измерительные каналы имеют защиту от подачи на вход напряжений и токов, превышающих рабочий диапазон прибора.

Прибор обеспечивает сохранение своей работоспособности при подаче на его входы напряжений в диапазоне от минус 40 до 40 В как во включенном состоянии прибора, так и в выключенном. При этом происходит ограничение входного тока на уровне не более 35 мА.

## 3.9 Встроенный источник питания для внешних преобразователей

Для питания внешних преобразователей физической величины может использоваться встроенный источник постоянного напряжения с номинальным значением 24 В. Схемы подключения первичных преобразователей к прибору приведены в Приложении Б.

#### 3.10 Конструкция прибора

Прибор выпускается в пластмассовом корпусе, предназначенном для крепления на DINрейку шириной 35 мм или на стену. Габаритный чертеж прибора и установочные размеры для настенного варианта исполнения приведены в Приложении А.

По верхней и нижней сторонам прибора расположены ряды клемм «под винт», предназначенных для подключения проводов питания, интерфейса RS-485, измеряемых сигналов. Схема подключения к клеммам прибора приведена в Приложении Б.

Разъемная конструкция клемм прибора позволяет осуществлять оперативную замену прибора без демонтажа подключенных к нему внешних линий связи (подробное описание замены прибора приведено в п. 6.2).

Прибор имеет три светодиодных индикатора. Они расположены на лицевой панели прибора и имеют надписи «Питание», «RS-485» и «Авария».

Индикатор «Питание» сигнализирует о подаче на прибор питающего напряжения.

Индикатор «**RS-485**» сигнализирует о работе прибора в сети RS-485. При передаче в сеть сообщения, индикатор включается на 30 мс, затем гаснет на 70 мс. При большой частоте опроса индикатор будет мигать с частотой примерно 10 Гц.

Индикатор «**Авария**» включается при обнаружении неисправности прибора встроенной системой контроля. Если при отказе прибора сохраняется способность работы в сети, то в сеть, по запросу, также будет передаваться статус отказа.

#### 3.11 Управление прибором

Управление режимами работы прибора и считывание из прибора результатов измерения выполняется с использованием команд, передаваемых в сети RS-485. Прибор обеспечивает работу в сети RS-485 с использованием следующих протоколов:

- ModBus (RTU), полное управление;
- ModBus (ASCII), полное управление;
- Овен, полное управление;
- DCON, только считывание результатов измерения.

Полное описание команд всех используемых для управления прибором протоколов приведено в Приложении Г.

Команды всех протоколов можно разделить на следующие группы:

- команды управления конфигурацией прибора;
- команды чтения результатов измерения;
- технологические команды.

Команды управления конфигурацией прибора обеспечивают запись и чтение конфигурационных параметров, определяющих режимы работы прибора.

Конфигурационные параметры хранятся в энергонезависимой памяти прибора. Их запись выполняется в два этапа. На первом этапе параметры записываются в оперативную память. На

втором этапе по специальной команде (**Aply** или **INIT**) параметры переписываются в энергонезависимую память. Если в течение 10 минут после последней команды изменения конфигурационного параметра не выполнена команда переписи изменений в энергонезависимую память, то все изменения аннулируются, и выполнение команды перезаписи изменений в энергонезависимую память вызовет ошибку.

Команда **Aply** кроме переписи изменений конфигурационных параметров в энергонезависимую память обеспечивает применение изменений сетевых настроек, что вызывает переход работы прибора на новые сетевые настройки.

Для временного хранения изменений конфигурационных параметров и калибровочных коэффициентов, вычисляемых в процессе юстировки, используется одна и та же область оперативной памяти. Поэтому команды изменения конфигурационных параметров и юстировка прибора должны выполняться в отдельных сеансах. Сеанс изменения конфигурационных параметров завершается командами переписи изменений в энергонезависимую память командами **Aply** или **INIT**, а завершение сеанса юстировки выполняется с помощью команды переписи калибровочных коэффициентов в энергонезависимую память — **UApl**.

Команды чтения результатов измерения позволяют считывать результаты измерений в различных форматах.

Технологические команды обеспечивают юстировку прибора. Методика юстировки прибора описана в Приложении Д.

Управление прибором по протоколу **Овен** реализовано в программе «**Конфигуратор M110**», поставляемой с прибором.

Для работы приборов в составе SCADA-систем с прибором поставляются ОРС-драйверы для работы по протоколам ModBus и Овен.

# 4 Работа с прибором

Считывание, изменение и запись параметров прибора осуществляется с помощью программы «Конфигуратор М110».

# 4.1 Программа «Конфигуратор М110»

Информация о работе с программой «Конфигуратор М110» представлена в руководстве пользователя на диске, поставляемом в комплекте с прибором.

#### 4.2 Восстановление заводских сетевых настроек прибора

Восстановление заводских сетевых настроек прибора используется при установке связи между компьютером и прибором при утере информации о заданных значениях сетевых параметров прибора.

Внимание! Напряжение на некоторых элементах печатной платы прибора МВ110-220.8АС опасно для жизни! Прикосновение к печатной плате, а также попадание посторонних предметов внутрь корпуса недопустимы.

Для восстановления заводских сетевых настроек прибора необходимо выполнить следующие действия:

- отключить питание прибора;
- открыть заглушку на лицевой панели прибора;
- установить перемычку JP1 на соединителе XP1 (см. рисунок 4.1) в положение Зав. настр., при этом прибор перестроится на заводские значения сетевых параметров, но в его памяти сохраняются ранее установленные значения сетевых параметров;



Рисунок 4.1

- включить питание:
- запустить программу «Конфигуратор М110»;
- в окне установки связи задать значения заводских сетевых параметров (в соответствии с данными таблицы 4.1) или нажать кнопку «Заводские сетевые настройки». Связь с прибором установится с заводскими значениями сетевых параметров;
- считать значения сетевых параметров прибора, выбрав команду Прибор | Считать все параметры или открыв папку Сетевые параметры;
- зафиксировать на бумаге значения сетевых параметров прибора, которые были считаны;
- закрыть программу «Конфигуратор М110»;
- отключить питание прибора;
- снять перемычку JP1 и установить ее на контактную пару, соседнюю с контактной парой, отмеченной маркировкой «Зав. настр».

Внимание! Установка перемычки в другое место соединителя XP1 может помешать нормальной работе прибора.

- закрыть заглушку на лицевой панели прибора;
- подключить питание прибора и запустить программу «Конфигуратор М110»;
- установить зафиксированные ранее значения параметров в Окне установки связи с прибором;
- нажать кнопку «Установить связь» и проверить наличие связи с прибором, выбрав команду Прибор | Проверить связь с прибором.

Таблица 4.1 – Заводские значения сетевых параметров прибора

| Параметр | Описание                           | Заводская установка |
|----------|------------------------------------|---------------------|
| bPS      | Скорость обмена данными, бит/с     | 9600                |
| PrtY     | Тип контроля четности слова данных | отсутствует         |
| Sbit     | Количество стоп-битов в посылке    | 1                   |
| A.Len    | Длина сетевого адреса, бит         | 8                   |
| Addr     | Базовый адрес прибора              | 16                  |
| Rs.dl    | Задержка ответа по сети RS-485, мс | 2                   |

## 5 Меры безопасности

- 5.1 По способу защиты от поражения электрическим током прибор MB110-220.8AC соответствует классу II, прибор MB110-24.8AC соответствует классу III по ГОСТ 12.2.007.0-75.
- 5.2 При эксплуатации и техническом обслуживании необходимо соблюдать требования ГОСТ 12.3.019-80, «Правил эксплуатации электроустановок потребителей» и «Правил охраны труда при эксплуатации электроустановок потребителей».
- 5.3 При эксплуатации прибора открытые контакты клеммника находятся под напряжением, опасным для жизни человека. Установку прибора следует производить в специализированных шкафах, доступ внутрь которых разрешен только квалифицированным специалистам.
- 5.4 Любые подключения к прибору и работы по его техническому обслуживанию производить только при отключенном питании прибора и подключенных к нему устройств.
  - 5.5 Модули соответствуют требованиям нормативных документов Ростехнадзора: ПБ 10-574-03. ПБ 10-573-03. ПБ 10-575-03.
- 5.6 Не допускается попадание влаги на контакты выходных разъемов и внутренние элементы модулей.

**Внимание!** Запрещается использование модулей при наличии в атмосфере кислот, щелочей, масел и иных агрессивных веществ.

## 6 Монтаж и подключение прибора

Перед установкой прибора осуществляется подготовка посадочного места в шкафу электрооборудования. Конструкция шкафа должна обеспечивать защиту прибора от попадания в него влаги, грязи и посторонних предметов;

Прибор укрепляется на DIN-рейке или на внутренней стенке щита. При креплении, защелка должна быть направлена вниз.

При размещении прибора следует помнить, что при эксплуатации открытые контакты клемм находятся под напряжением, опасным для человеческой жизни.

Доступ внутрь таких шкафов разрешен только квалифицированным специалистам.

#### 6.1 Монтаж внешних связей

#### 6.1.1 Общие требования

Питание прибора MB110-220.8AC следует осуществлять от сетевого фидера, не связанного непосредственно с питанием мощного силового оборудования. Во внешней цепи рекомендуется установить выключатель, обеспечивающий отключение прибора от сети. Питание каких-либо устройств от сетевых контактов прибора запрещается.

Питание прибора MB110-24.8AC следует осуществлять от локального источника питания подходящей мощности, установленного в том же шкафу электрооборудования, в котором устанавливается прибор.

Связь прибора по интерфейсу RS-485 выполнять по двухпроводной схеме. Длина линии связи должна быть не более 1200 метров. Подключение следует осуществлять витой парой проводов, соблюдая полярность. Провод А подключается к выводу А прибора, аналогично соединяются между собой выводы В. Подключение необходимо производить при отключенном питании обоих устройств.

Для обеспечения надежности электрических соединений рекомендуется использовать кабели с медными многопроволочными жилами, сечением не более 0.75 мм<sup>2</sup>, концы которых

перед подключением следует зачистить и залудить. Зачистку жил кабелей необходимо выполнять с таким расчетом, чтобы срез изоляции плотно прилегал к клеммной колодке, т.е. чтобы оголенные участки провода не выступали за ее пределы.

#### 6.1.2 Подключение прибора

Подключение прибора производится следующим образом.

Готовятся кабели для соединения прибора с датчиками, источником питания и интерфейсом RS-485.

Прибор подключается по схемам, приведенным в Приложении Б, с соблюдением следующей последовательности операций:

- прибор подключается к источнику питания;
- подключаются аналоговые датчики к входам прибора;
- подключаются линии интерфейса RS-485;
- подается питание на прибор.

#### 6.2 Отсоединение клемм прибора

Конструкция клемм прибора позволяет осуществить оперативную замену прибора без демонтажа подключенных к нему внешних линий связи. Последовательность замены прибора следующая:

- обесточиваются все линии связи, подходящие к прибору, в т.ч. линии питания;
- вывинчиваются крепежные винты по краям обеих клемм прибора (у каждой клеммы по два винта);
- съемная часть каждой из клемм отделяется от прибора вместе с подключенными внешними линиями связи при помощи отвертки или другого подходящего инструмента (удаление клемм изображено на рисунке Е.1 в Приложении Е);

- прибор снимается с DIN-рейки (или отвинчивается от внутренней стенки шкафа), а на его место устанавливается другой с предварительно удаленными разъемными частями клемм;
- к установленному прибору подсоединяются разъемные части клемм с подключенными внешними линиями связи;
- завинчиваются крепежные винты по краям обеих клемм.

#### 6.3 Помехи и методы их подавления

На работу прибора могут оказывать влияние внешние помехи:

- помехи, возникающие под действием электромагнитных полей (электромагнитные помехи), наводимые на сам прибор и на линии связи прибора с первичными преобразователями;
- помехи, возникающие в питающей сети.
   Для уменьшения влияния электромагнитных помех необходимо выполнять приведенные
- ниже рекомендации:

   при прокладке длину сигнальных линий от первичных преобразователей следует по
  - возможности уменьшать и выделять их в самостоятельную трассу (или несколько трасс), отделенную(ых) от силовых кабелей;
  - обеспечить надежное экранирование сигнальных линий. Экраны следует электрически изолировать от внешнего оборудования на протяжении всей трассы и подсоединять к заземленному контакту щита управления;
  - прибор рекомендуется устанавливать в металлическом шкафу, внутри которого не должно быть никакого силового оборудования. Корпус шкафа должен быть заземлен.

Для уменьшения **помех**, **возникающих в питающей сети**, следует выполнять следующие рекомендации:

- подключать прибор к питающей сети отдельно от силового оборудования;
- при монтаже системы, в которой работает прибор, следует учитывать правила организации эффективного заземления и прокладки заземленных экранов:
- все заземляющие линии и экраны прокладывать по схеме «звезда», при этом необходимо обеспечить хороший контакт с заземляемым элементом;
- заземляющие цепи выполнять проводами максимально возможного сечения;
- устанавливать фильтры сетевых помех (например, ОВЕН БСФ) в линиях питания прибора;
- устанавливать искрогасящие фильтры в линиях коммутации силового оборудования.

## 7 Техническое обслуживание

#### 7.1 Технический осмотр

Обслуживание прибора при эксплуатации заключается в его техническом осмотре. При выполнении работ пользователь должен соблюдать меры безопасности (Раздел 5 «Меры безопасности»).

Технический осмотр прибора проводится обслуживающим персоналом не реже одного раза в шесть месяцев и включает в себя выполнение следующих операций:

- очистку корпуса прибора, а также его клеммных колодок от пыли, грязи и посторонних предметов;
- проверку качества крепления прибора на DIN-рейке или на стене;
- проверку качества подключения внешних связей.

Обнаруженные при осмотре недостатки следует немедленно устранить.

## 7.2 Поверка

Поверка (калибровка) приборов производится не реже одного раза в два года по методике «Измерители-регуляторы микропроцессорные и устройства для измерения и контроля температуры» МИ 3067-1997. Методика поверки поставляется по требованию заказчика.

## 8 Маркировка и упаковка

На корпус прибора и прикрепленных к нему табличках наносятся:

- наименование прибора;
- степень защиты корпуса по ГОСТ 14254;
- напряжение и частота питания;
- потребляемая мощность;
- класс защиты от поражения электрическим током по ГОСТ 12.2.007.0;
- знак утверждения типа средств измерений;
- единый знак обращения продукции на рынке государств-членов Таможенного союза (EAC):
- страна-изготовитель;
- заводской номер прибора и год выпуска.

На потребительскую тару наносится:

- наименование прибора;
- единый знак обращения продукции на рынке государств-членов Таможенного союза (EAC);
- страна-изготовитель;
- заводской номер прибора и год выпуска.

Упаковка прибора производится в потребительскую тару, выполненную из гофрированного картона.

## 9 Транспортирование и хранение

- 9.1 Приборы транспортируются в закрытом транспорте любого вида. Крепление тары в транспортных средствах должно производиться согласно правилам, действующим на соответствующих видах транспорта.
- 9.2 Условия транспортирования должны соответствовать условиям 5 по ГОСТ 15150-69 при температуре окружающего воздуха от минус 25 до +55 °C с соблюдением мер защиты от ударов и вибраций.
  - 9.3 Перевозку осуществлять в транспортной таре поштучно или в контейнерах.
- 9.4 Условия хранения в таре на складе изготовителя и потребителя должны соответствовать условиям 1 по ГОСТ 15150-69. В воздухе не должны присутствовать агрессивные примеси.

Приборы следует хранить на стеллажах.

#### 10 Комплектность

| 1 шт. |
|-------|
| 1 экз |
| 1 экз |
| 1 шт  |
|       |

**Примечание** — Изготовитель оставляет за собой право внесения дополнений в комплектность изделия.

## 11 Гарантийные обязательства

- 11.1 Изготовитель гарантирует соответствие прибора требованиям технических условий при соблюдении условий эксплуатации, транспортирования, хранения и монтажа.
  - 11.2 Гарантийный срок эксплуатации 24 месяца со дня продажи.
- 11.3 В случае выхода прибора из строя в течение гарантийного срока при соблюдении пользователем условий эксплуатации, транспортирования, хранения и монтажа предприятие изготовитель обязуется осуществить его бесплатный ремонт или замену.
  - 11.4 Порядок передачи изделия в ремонт содержатся в паспорте и в гарантийном талоне.

## Приложение А. Габаритный чертеж

На рисунке A.1 приведены габаритные размеры прибора, на рисунке A.2 – установочные размеры для настенного варианта крепления прибора





## Приложение Б. Подключение прибора

Общий вид прибора с указаниями номеров клемм, расположением перемычки **JP1** и светодиодов представлен на рисунке Б.1, назначение клемм приведено в таблице Б.1.

Перемычка **JP1** предназначена восстановления заводских сетевых настроек.

Заводское положение перемычки – снята (заводские сетевые настройки отключены).



для

Таблица Б.1 – Назначение контактов клеммной колодки прибора

| Номер<br>контакта | Назначение                                                                           | Номер<br>контакта | Назначение                                                                      |
|-------------------|--------------------------------------------------------------------------------------|-------------------|---------------------------------------------------------------------------------|
| 1                 | Питание ~90264 В<br>(для МВ110-220.8AC)/<br>минус питания 24 В<br>(для МВ110-24.8AC) | 13                | RS-485 (B)                                                                      |
| 2                 | Питание ~90264 В<br>(для МВ110-220.8AC)/<br>плюс питания 24 В<br>(для МВ110-24.8AC)  | 14                | RS-485 (A)                                                                      |
| 3                 | Не используется                                                                      | 15                | Выход 24 В (-)<br>(для МВ110-220.8АС)/<br>Не используется<br>(для МВ110-24.8АС) |
| 4                 | Не используется                                                                      | 16                | Выход 24 В (+)<br>для МВ110-220.8АС/<br>Не используется<br>(для МВ110-24.8АС)   |
| 5                 | Вход 1 (-) общий                                                                     | 17                | Вход 5 (-) общий                                                                |
| 6                 | Вход 1 (+)                                                                           | 18                | Вход 5 (+)                                                                      |
| 7                 | Вход 2 (-) общий                                                                     | 19                | Вход 6 (-) общий                                                                |
| 8                 | Вход 2 (+)                                                                           | 20                | Вход 6 (+)                                                                      |
| 9                 | Вход 3 (-) общий                                                                     | 21                | Вход 7 (-) общий                                                                |
| 10                | Вход 3 (+)                                                                           | 22                | Вход 7 (+)                                                                      |
| 11                | Вход 4 (-) общий                                                                     | 23                | Вход 8 (-) общий                                                                |
| 12                | Вход 4 (+)                                                                           | 24                | Вход 8 (+)                                                                      |

К однотипным аналоговым входам прибора можно подключить до восьми первичных преобразователей с питанием их от внешнего или внутреннего источников. Примеры подключения к прибору первичных преобразователей с применением внешнего (верхняя часть схемы) и встроенного (нижняя часть схемы) источников питания приведены на рисунках Б.2 и Б.3.



Рисунок Б.2 – Подключение к прибору двухпроводных ПП

Рисунок Б.3 – Подключение к прибору трехпроводных ПП

#### Примечания

- 1 Общие («минусовые») клеммы входов электрически соединены между собой внутри прибора через сопротивление примерно 0,1 Ом и должны иметь одинаковый потенциал.
- 2 Суммарное потребление активными датчиками тока от встроенного источника 24 В не должно превышать 180 мА.

## Приложение В. Общие сведения о протоколах обмена RS-485

#### В.1 Параметры протокола ОВЕН, индексация параметров

Параметры в приборе разделяются на две группы: конфигурационные и оперативные.

**Конфигурационные параметры** – это параметры, определяющие конфигурацию прибора, значения, которые пользователь присваивает с помощью программы-конфигуратора.

Конфигурационными параметрами настраивается структура прибора, определяются сетевые настройки и т. д.

Установленные значения конфигурационных параметров хранятся в энергонезависимой памяти прибора и сохраняются при выключении питания.

**Оперативные параметры** – это данные, которые прибор получает или передает по сети RS-485. В сеть они передаются компьютером, контроллером или прибором-регулятором. Оперативные параметры отражают текущее состояние регулируемой системы.

Каждый параметр имеет имя, состоящее из латинских букв (до четырех), которые могут быть разделены точками, и название. Например, «Тип подключаемого датчика» In-t, где «Тип подключаемого датчика» – название, In-t – имя.

Конфигурационные параметры имеют также индекс – цифру, отличающую параметры однотипных элементов. Индекс передается вместе со значением параметра. При работе с программой «Конфигуратор М110» пользователь сам не работает с индексами, это делает программа.

Оперативные параметры не имеют индекса. Они индексируются через сетевой адрес. В приборе есть несколько оперативных параметров.

Пример – Для считывания результатов измерения существует оперативный параметр Read. Пусть Базовый адрес прибора (параметр Addr) равен 32. Тогда для считывания результата измерения первого канала необходимо прочитать параметр Read с сетевым

адресом 32, для считывания результата измерения третьего канала необходимо прочитать параметр Read с сетевым адресом 34 и т.д. (см. таблицу В.1)

Таблица В.1

|             | Вход 1  | Вход 2 | Вход 3 | Вход 4 | Вход 5 |     |     | Вход 8 |
|-------------|---------|--------|--------|--------|--------|-----|-----|--------|
| Расчет      | Базовый |        |        |        |        |     |     |        |
| сетевого    | адрес   | Addr+1 | Addr+2 | Addr+3 | Addr+4 |     |     | Addr+7 |
| адреса      | (Addr)  |        |        |        |        |     |     |        |
| Сетевой     | 32      | 33     | 34     | 35     | 36     |     |     | 39     |
| адрес Входа | 32      | J      | 34     | 35     | 30     | ••• | ••• | 39     |

Т.е. восьмиканальный прибор с точки зрения работы с его оперативными параметрами «распадается» на 8 одноканальных приборов.

#### В.2 Базовый адрес прибора в сети RS-485

Каждый прибор в сети RS-485 должен иметь свой уникальный базовый адрес.

Адресация в протоколе ОВЕН

Длина базового адреса определяется параметром **A.Len** при задании сетевых настроек. В адресе может быть 8 либо 11 бит. Соответственно, диапазон значений базового адреса при 8-битной адресации — от 0 до 254, а при 11-битной адресации — от 0 до 2039.

В протоколе ОВЕН предусмотрены широковещательные адреса, при 8-битной адресации – 255. а при 11-битной адресации – от 2040 до 2047.

Базовый адрес прибора задается в программе **«Конфигуратор M110»** (параметр **Addr**).

По умолчанию прибор имеет Базовый адрес = 16.

Базовый адрес каждого следующего прибора в сети задается следующим образом: [базовый адрес предыдущего прибора] **+8**.

Таким образом, под каждый прибор резервируется восемь сетевых адресов, т.к. прибор имеет восемь каналов измерения и рассматривается в сети ОВЕН как восемь одноканальных измерителей.

Адресация в протоколе ModBus

Диапазон значений базового адреса в протоколе ModBus — от 1 до 255.

Широковещательный адрес в протоколе ModBus - 0.

Адресация в протоколе DCON

Диапазон значений базового адреса в протоколе DCON – от 0 до 255.

#### В.3 Мастер сети

Для организации обмена данными в сети по интерфейсу RS-485 необходим **Мастер сети**. Основная функция **Мастера сети** — инициировать обмен данными между **Отправителем** и **Получателем данных**. Прибор не может быть **Мастером сети**, он выступает в роли **Получателя данных**.

В качестве Мастера сети можно использовать:

- программируемые контроллеры ОВЕН ПЛК;
- ПК с подключенным преобразователем RS-232/RS-485 (например, OBEH AC3-M) или USB/RS-485 (например, OBEH AC4).

В протоколе ОВЕН предусмотрен только один Мастер сети.

# Приложение Г. Команды управления прибором по сети RS-485 Г.1 Команды протокола ОВЕН

Команды протокола **ОВЕН** представлены в таблице Г.1.

Таблица Г.1 – Команды протокола ОВЕН

| Команда                                          | HASH                             | Данные записи | Данные чтения                                                                       | Примечание                                                          |  |  |  |
|--------------------------------------------------|----------------------------------|---------------|-------------------------------------------------------------------------------------|---------------------------------------------------------------------|--|--|--|
|                                                  | Общие параметры (нет индексации) |               |                                                                                     |                                                                     |  |  |  |
| Имя прибора <b>dEv</b>                           | D681                             | нет           | Строка ASCII, 8 байт<br>MB110-8C                                                    | Только чтение                                                       |  |  |  |
| Версия программы <b>vEr</b>                      | 2D5B                             | нет           | ASCII, 5 байт Vx.yy<br>X – номер версии,<br>YY– номер<br>подверсии                  | Только чтение.<br>Устанавливается<br>предприятием-<br>изготовителем |  |  |  |
| Причина последнего старта программы прибора exit | 92ED                             | нет           | Byte: 0 – программный сброс; 6 – аппарат. сброс; 7 – вкл. питания; 8 – сброс от WDT | Только чтение.                                                      |  |  |  |

| Команда                            | HASH      | Данные записи/чтения                                                                                                                                        | Примечания                         |
|------------------------------------|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|
| Конф                               | оигурацио | онные параметры сети RS-485 (нет индекса                                                                                                                    | іции)                              |
| Скорость обмена <b>BPS</b>         | B760      | Byte: 0 – 2,4 кбит/с; 1 – 4,8 кбит/с; 2 – 9,6 кбит/с; 3 – 14,4 кбит/с; 4 – 19,2 кбит/с; 5 – 28,8 кбит/с; 6 – 38,4 кбит/с; 7 – 57,6 кбит/с; 8 – 115,2 кбит/с | Запись/Чтение<br>По умолчанию – 2  |
| Тип контроля                       | E8C4      | Byte: 0 – контроля нет;                                                                                                                                     | Запись/Чтение.                     |
| четности<br>PrtY                   |           | 1 — четность;<br>2 — нечетность                                                                                                                             | По умолчанию – 0                   |
| Количество стоп-                   | B72E      | Byte: 0 – один;                                                                                                                                             | Запись/Чтение.                     |
| бит <b>Sbit</b>                    |           | 1 – два                                                                                                                                                     | По умолчанию – 0                   |
| Адрес прибора<br><b>Addr</b>       | 9F62      | Word_16: от 0 до 2047<br>  Если длина адреса (A.Len) равна 8 бит, а                                                                                         | Запись/Чтение.<br>По умолчанию –16 |
| Addi                               |           | адрес больше 255, то прибор не будет отвечать на любые команды в сети                                                                                       | тто умолчанию – то                 |
| Длина адреса                       | 1ED2      | Byte: 0 – 8 бит;                                                                                                                                            | Запись/Чтение.                     |
| A.Len                              |           | 1 – 11 бит                                                                                                                                                  | По умолчанию – 0                   |
| Задержка                           | CBF5      | Byte:                                                                                                                                                       | Запись/Чтение.                     |
| передачи<br>квитанции <b>rS.dL</b> |           | от 0 до 45 мс                                                                                                                                               | По умолчанию – 2                   |

| Команда                                                                               | HASH | Данные записи                                                                                           | Данные чтения                                          | Примечание                                                    |
|---------------------------------------------------------------------------------------|------|---------------------------------------------------------------------------------------------------------|--------------------------------------------------------|---------------------------------------------------------------|
| Запись изменений в энергонезависимую память и переход на новые сетевые настройки Aply | 8403 | Нет                                                                                                     |                                                        | Только запись                                                 |
| Код последней<br>сетевой ошибки<br>n.Err                                              | 0233 | Нет                                                                                                     | Byte: от 0 до 255<br>После<br>включения<br>прибора – 0 | Только чтение.<br>Коды ошибок в<br>описании протокола<br>Овен |
| Конф                                                                                  | 7)   |                                                                                                         |                                                        |                                                               |
| Тип входного фильтра, общего для всех каналов ComF                                    | 0864 | Вуte: 0 – откл;<br>1 – 50 Гц, 1-го по<br>2 – 50 Гц, 2-го по<br>3 – 50 Гц, 4-го по<br>4 – 200 Гц, 1-гопо | ррядка;<br>ррядка;                                     | Запись/Чтение.<br>По умолчанию – 0.<br>Индексации нет         |
| Тип подключаемого<br>датчика<br><b>In-t</b>                                           | 932D | Byte: 0 – канал от<br>1 – от 4 до 2<br>2 – от 0 до 2<br>3 – от 0 до 5<br>4 – от 0 до 1                  | 0 мА;<br>0 мА;<br>мА;                                  | Запись/Чтение.<br>По умолчанию – 1                            |
| Нижняя граница<br>диапазона измерения<br>активного датчика<br>Ain.L                   | 34E0 | Float_32 (IEEE 754                                                                                      | 4)                                                     | Запись/Чтение.<br>По умолчанию –<br>0,0                       |

| Команда                                                                  | HASH | Данные записи/чтения                                                   | Примечания                                |
|--------------------------------------------------------------------------|------|------------------------------------------------------------------------|-------------------------------------------|
| Верхняя граница диапазона измерения активного датчика Ain.H              | E2FD | Float_32 (IEEE 754)                                                    | Запись/Чтение.<br>По умолчанию –<br>100,0 |
| Смещение<br>десятичной точки <b>dP</b>                                   | B3EB | Вуte:<br>от 0 до 4                                                     | Запись/Чтение.<br>По умолчанию – 2        |
| Ограничение скорости изменения измеряемого сигнала (пиковый фильтр) Реак | 6EB5 | Вуte:<br>от 1 до 200 диапазона / сек<br>(в разах)                      | Запись/Чтение.<br>По умолчанию –200       |
| Тип выходного<br>фильтра<br>OutF                                         | 7FC6 | Вуte:<br>0 – Откл;<br>1 – Ехр<br>от 2 до 16 – ск. среднего, L = 2 - 16 | Запись/Чтение.<br>По умолчанию – 0        |
| Постоянная времени для экспоненциального фильтра <b>in.Fd</b>            | 1659 | Word_16: от 10 до 10000 мс                                             | Запись/Чтение.<br>По умолчанию –10        |

## Окончание таблицы Г.1

| Команда                                                                        | HASH       | Данные<br>записи | Данные чтения                                                                                     | Примечание                                                                                                           |
|--------------------------------------------------------------------------------|------------|------------------|---------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| Запись изменений в энергонезависимую память и применение новых параметров INIT | 00E9       | Нет              |                                                                                                   | Только запись. Индексации нет. Аналогична команде <b>Aply</b> , но переход на новые сетевые настройки не выполняется |
| Оперативны                                                                     | не парамет | гры (индекс      | ация в адресе от 0 до 7)                                                                          |                                                                                                                      |
| Измеренное значение <b>iRD</b>                                                 | 3BC3       | Нет              | int_16 (рез.изм. * 10 <sup>аР</sup> .)                                                            | Только чтение                                                                                                        |
| Измеренное значение iRDt                                                       | 7F65       | Нет              | int_16 – рез. изм.* 10 <sup>ав</sup> + Word_16 (метка относительного времени, дискретность 10 мс) | Только чтение                                                                                                        |
| Измеренное значение<br>Read                                                    | 8784       | Нет              | Float_32 (IEEE 754) — рез. изм + Word_16 (метка относительного времени время, дискретность 10 мс) | Только чтение                                                                                                        |
| Чтение статуса результатов измерения <b>SRD</b>                                | 69BE       | Нет              | Byte: Кодирование<br>статуса в табл. Г.2                                                          | Только чтение                                                                                                        |

**Примечание** – При выполнении команд **iRD**, **iRDt и Read**, если результат измерения некорректный, то на команду возвращается сообщение об исключительной ситуации длиной один байт. Кодирование исключительных ситуаций приведено в таблице Г.2.

Таблица Г.2

| Статус измерения                       | Кодирование<br>статуса<br>команды SRD | Код исключительной<br>ситуации для команд<br>iRD, iRDt, Read |
|----------------------------------------|---------------------------------------|--------------------------------------------------------------|
| Измерение успешно                      | 0x00                                  |                                                              |
| Значение заведомо неверно              | 0xF0                                  | 0xF0                                                         |
| Данные не готовы                       | 0xF6                                  | 0xF6                                                         |
| Датчик отключен                        | 0xF7                                  | 0xF7                                                         |
| Измеренное значение слишком велико     | 0xFA                                  | 0xFA                                                         |
| Измеренное значение слишком мало       | 0xFB                                  | 0xFB                                                         |
| Обрыв датчика                          | 0xFD                                  | 0xFD                                                         |
| Некорректный калибровочный коэффициент | 0xFF                                  | 0xFF                                                         |

#### Г.2 Команды протокола ModBus

Для протокола ModBus реализовано выполнение следующих функций:

- 03, 04 (read registers) чтение одного или нескольких регистров;
- 06 (preset single register) запись одного регистра;
- 16 (preset multiple registers) запись нескольких регистров;
- 17 (report slave ID) чтение имени прибора и версии программы;

Если адрес прибора равен нулю, для протокола ModBus это широковещательный адрес, и прибор будет выполнять команды записи, но не будет отправлять квитанции на принятые команды. На адреса более 247 прибор реагировать не будет.

Для функций **03, 04** и **16** допускается запись или чтение регистров, относящихся только к одной команде. При попытке записать или прочитать регистры нескольких команд возвращается ошибка **4** («Failure in associated device»). Исключение составляют регистры оперативных параметров, которые могут быть все считаны одной командой, при этом начальный адрес регистра может быть любым в пределах адресов оперативных параметров.

Для функций **03** и **04** при попытке прочитать регистры, предназначенные только для записи, или при попытке обращения к несуществующим регистрам возвращается ошибка **2** («Illegal data address»).

Для функций **06** и **16** при попытке записать регистры, предназначенные только для чтения, или при попытке обращения к несуществующим регистрам возвращается ошибка **1** («Illegal function»).

Назначения регистров, используемых для функций **03**, **04**, **06** и **16** приведены в таблице Г.З.

Таблица Г.3

| Команда                                          | Адрес    | Данные<br>записи                                        | Данные чтения                                                                                       | Примечание                           |  |
|--------------------------------------------------|----------|---------------------------------------------------------|-----------------------------------------------------------------------------------------------------|--------------------------------------|--|
|                                                  | регистра | Общие парам                                             | l<br>Metnal                                                                                         |                                      |  |
| Причина последнего старта программы прибора exit | 0x88     | Нет                                                     | Word_16:  0 – программный сброс; 6 – аппарат. сброс; 7 – вкл. питания; 8 – сторожевой таймер        | Только чтение                        |  |
| Код последней<br>сетевой ошибки<br>n.Err         | 0x90     | Нет                                                     | Byte: от 0 до 255<br>После включения<br>прибора – 0                                                 | Только чтение                        |  |
| Конфигурационные параметры сети RS-485           |          |                                                         |                                                                                                     |                                      |  |
| Скорость обмена <b>BPS</b>                       | 0x30     | 2 — 9,6 кбит/<br>4 — 19,2 кби                           | с; 1 – 4,8 кбит/с;<br>с; 3 – 14,4 кбит/с;<br>т/с; 5 – 28,8 кбит/с;<br>т/с; 7 – 57,6 кбит/с;<br>ит/с | Запись/Чтение.<br>По<br>умолчанию– 2 |  |
| Тип контроля<br>четности<br>PrtY                 | 0x38     | Word_16:<br>0 – контроля<br>1 – четность<br>2 – нечетно | <b>;</b>                                                                                            | Запись/Чтение.<br>По<br>умолчанию– 0 |  |
| Количество стоп-<br>бит <b>Sbit</b>              | 0x40     | Word_16:<br>0 – один;<br>1 – два                        |                                                                                                     | Запись/Чтение.<br>По<br>умолчанию– 0 |  |

| Команда                | Адрес          | Данные                   | Данные чтения  | Примечание        |
|------------------------|----------------|--------------------------|----------------|-------------------|
|                        | регистра       | записи                   |                |                   |
| Задержка               | 0x48           | Word_16:                 |                | Запись/Чтение.    |
| передачи               |                | от 0 до 45 мс            |                | По умолчанию – 45 |
| квитанции <b>rS.dL</b> |                |                          |                |                   |
| Адрес прибора          | 0x50           | Word_16: от 1            | до 247         | Запись/Чтение.    |
| Addr                   |                | _                        |                | По умолчанию –16  |
| Запись изменений       | 0x78           | Word_16: 0               |                | Только запись     |
| в энерго-              |                |                          |                |                   |
| независимую            |                |                          |                |                   |
| память и               |                |                          |                |                   |
| перестройка            |                |                          |                |                   |
| сетевых                |                |                          |                |                   |
| параметров <b>Aply</b> |                |                          |                |                   |
|                        | Конфі          | игурационные г           | араметры       |                   |
| Тип входного           | 0x28           | Word_16: 0 – c           | ткл;           | Запись/Чтение.    |
| фильтра, общего        |                | 1 – 50 Гц, 1-го          | порядка;       | По умолчанию – 0  |
| для всех каналов       |                | 2 – 50 Гц, 2-го          | порядка;       |                   |
| ComF                   |                | 3 – 50 Гц, 4-го порядка; |                |                   |
|                        |                | 4 – 200 Гц, 1-го         | порядка        |                   |
| Тип                    | 0х00 – 1 канал | Word_16: 0 − κ           | анал откл.;    | Запись/Чтение.    |
| подключаемого          | 0х01 – 2 канал | 1 – 0                    | от 4 до 20 мА; | По умолчанию 1    |
| датчика                |                | 2 – 0                    | от 0 до 20 мА; |                   |
| In-t                   | 0х07 – 8 канал |                          | от 0 до 5 мА;  |                   |
|                        |                | 4 – 0                    | от 0 до 10 В   |                   |

| Команда           | Адрес регистра      | Данные записи/чтения         | Примечание     |
|-------------------|---------------------|------------------------------|----------------|
| Нижняя граница    | 0х58,0х59 – 1 канал | Float_32 (IEEE 754).         | Запись/Чтение. |
| диапазона         | 0x5a,0x5b – 2 канал | Значение хранится в двух     | По умолчанию   |
| измерения         |                     | последовательных регистрах.  | 0,0            |
| активного датчика | 0х66,0х67 – 8 канал | Старшие разряды хранятся в   |                |
| Ain.L             |                     | регистре, имеющем меньший    |                |
|                   |                     | адрес                        |                |
| Верхняя граница   | 0х68,0х69 – 1 канал | Float_32 (IEEE 754).         | Запись/Чтение. |
| диапазона         | 0x6a,0x6b – 2 канал | Значение хранится в двух     | По умолчанию   |
| измерения         |                     | последовательных регистрах.  | 20000,0        |
| активного датчика | 0х76,0х77 – 8 канал | Старшие разряды хранятся в   |                |
| Ain.H             |                     | регистре, имеющем меньший    |                |
|                   |                     | адрес                        |                |
| Смещение          | 0х20 – 1 канал      | Word_16:                     | Запись/Чтение. |
| десятичной точки  | 0х21 – 2 канал      | от 0 до 4                    | По умолчанию–  |
| dP                | ***                 |                              | 0              |
|                   | 0х27 – 8 канал      |                              |                |
| Ограничение       | 0х08 – 1 канал      | Word_16:                     | Запись/Чтение. |
| скорости          | 0х09 – 2 канал      | от 1 до 200 диапазона / сек. | По умолчанию–  |
| изменения         | ***                 | (в разах)                    | 200            |
| измеряемого       | 0x0f – 8 канал      |                              |                |
| сигнала (пиковый  |                     |                              |                |
| фильтр)           |                     |                              |                |
| Peak              |                     |                              |                |

| Команда         | Адрес регистра | Данные           | Данные    | Примечание               |
|-----------------|----------------|------------------|-----------|--------------------------|
|                 |                | записи           | чтения    |                          |
| Тип выходного   | 0х10 – 1 канал | Word_16: 0 – O   | ткл;      | Запись/Чтение.           |
| фильтра         | 0х11 – 2 канал | 1 – Exp          |           | По умолчанию–0           |
| OutF            |                | от 2 до 16 – ск. | среднего, |                          |
|                 | 0х17 – 8 канал | L=2 - 16         |           |                          |
| Постоянная      | 0х18 – 1 канал | Word_16_16:      |           | Запись/Чтение.           |
| времени для     | 0х19 – 2 канал | от 10 до 10000   | MC        | По умолчанию–10          |
| экспоненциально |                |                  |           |                          |
| го фильтра      | 0x1f – 8 канал |                  |           |                          |
| in.Fd           |                |                  |           |                          |
| Запись          | 0x80           | Word_16: 0       | Нет       | Только запись.           |
| изменений в     |                |                  |           | Команда аналогична       |
| энерго-         |                |                  |           | команде <b>Aply</b> , но |
| независимую     |                |                  |           | перестройка              |
| память и        |                |                  |           | сетевых параметров       |
| применение      |                |                  |           | не выполняется           |
| новых           |                |                  |           |                          |
| параметров      |                |                  |           |                          |
| INIT            |                |                  |           |                          |

## Окончание таблицы Г.3

| Команда                                              | Адрес регистра                                                                                      | Данные<br>записи | Данные чтения                                                                                              | Приме-<br>чание  |  |  |  |  |
|------------------------------------------------------|-----------------------------------------------------------------------------------------------------|------------------|------------------------------------------------------------------------------------------------------------|------------------|--|--|--|--|
| Оперативные параметры                                |                                                                                                     |                  |                                                                                                            |                  |  |  |  |  |
| Измеренное<br>значение<br>iRD                        | 0x100 – 1 канал<br>0x101 – 2 канал<br><br>0x107 – 8 канал                                           | Нет              | int_16 —<br>рез. изм * 10 <sup>dP</sup>                                                                    | Только<br>чтение |  |  |  |  |
| Измеренно е значение iRDt                            | 0x108, 0x109 – 1 канал<br>0x10a, 0x10b – 2 канал<br><br>0x116, 0x117 – 8 канал                      | Нет              | int_16–рез. изм*10 <sup>dP</sup> +<br>+Word_16 (метка<br>относительного<br>времени, дискретность<br>10 мс) | Только<br>чтение |  |  |  |  |
| Чтение<br>статуса<br>результатов<br>измерения<br>SRD | 0x118 – 1 канал<br>0x119 – 2 канал<br><br>0x11f – 8 канал                                           | Нет              | int_16:<br>Кодирование статуса в<br>таблице Г.4                                                            | Только<br>чтение |  |  |  |  |
| Измеренное<br>значение<br><b>Read</b>                | 0x120, 0x121, 0x122 – 1 канал<br>0x123, 0x124, 0x125 – 2 канал<br><br>0x135, 0x136, 0x137 – 8 канал | Нет              | Float_32 (IEEE 754) — рез. изм +Word_16 (метка относительного времени, дискретность 10 мс)                 | Только<br>чтение |  |  |  |  |

Примечание – На некорректные данные типа Int\_16 возвращается значение минус 32768. На некорректные данные типа Float\_32 возвращается значение NaN. Причину некорректности измеренных данных выясняют чтением статуса (SRD). Кодирование статуса приведено в таблице Г.4.

Таблица Г.4

| Статус измерения                       | Кодирование статуса SRD |  |  |
|----------------------------------------|-------------------------|--|--|
| Измерение успешно                      | 0x0000                  |  |  |
| Значение заведомо неверно              | 0xF000                  |  |  |
| Данные не готовы                       | 0xF006                  |  |  |
| Датчик отключен                        | 0xF007                  |  |  |
| Измеренное значение слишком велико     | 0xF00A                  |  |  |
| Измеренное значение слишком мало       | 0xF00B                  |  |  |
| Обрыв датчика                          | 0xF00D                  |  |  |
| Некорректный калибровочный коэффициент | 0xF00F                  |  |  |

Структура запроса и ответа для функции 17

Функция позволяет получить имя прибора и версию программного обеспечения.

В таблице Г.5 представлен запрос на чтение имени и версии программного обеспечения прибора с адресом 12.

Таблица Г.5

| Адрес | Функция | Контрольная сумма |
|-------|---------|-------------------|
| 12    | 17      | ZZ                |

Ответ на функцию 17 представлен в таблице Г.б.

Таблица Г.6

| Адрес | Функция | Кол-во байт данных | Данные 15 байт  | Контрольная сумма |
|-------|---------|--------------------|-----------------|-------------------|
| 12    | 17      | 15                 | MB110-8AC VX.YY | ZZ                |

**Примечание** – Поля X и YY определяются предприятием-изготовителем.

#### Г.3 Команды протокола DCON

#### Г.3.1 Групповое считывание данных

Посылка: #AA[CHK](cr),

где **AA** – адрес модуля, от 00 до FF;

[СНК] – контрольная сумма;

**(cr)** – символ перевода строки (0x0D).

Ответ: >(данные)[CHK](cr),

где (данные) — записанные подряд без пробелов результаты измерения по восьми каналам измерений в десятичном представлении. Длина каждой записи об одном измерении равна пяти символам, причем десятичная точка может быть смещена не более чем на два знака. При передаче значений менее 10 в начале значения добавляется 0. На месте недостоверных данных передаётся значение минус 999.9.

Пример - > +100.23+34.050+124.56+07.331-101.45+1038.9-50.501+05.880[СНК](сг).

При синтаксической ошибке или ошибке в контрольной сумме не выдается никакого ответа.

#### Г.3.2 Поканальное считывание данных

Посылка: #AAN[CHK](cr),

где **AA** – адрес модуля, от 00 до FF;

N – номер канала, символы от 0 до 7;

[СНК] – контрольная сумма;

(cr) – символ перевода строки (0x0D).

Ответ: > (данные)[CHK](cr),

где **(данные)** — десятичное представление результата измерения со знаком (пять значащих цифр). На месте недостоверных данных передаётся значение минус 999.9.

Пример - >+120.65.

При запросе данных с несуществующего канала выдается ответ ?АА[СНК](сr).

При синтаксической ошибке или ошибке в контрольной сумме не выдается никакого ответа.

#### Г.3.3 Считывание имени прибора

Посылка: \$AAM[CHK](cr),

где **AA** – адрес модуля, от 00 до FF,

[СНК] – контрольная сумма,

(cr) – символ перевода строки (0x0D).

Ответ: !AA(имя прибора(9 символов))[CHK](cr).

Пример – !AAMB110-8AC[CHK](cr).

При запросе данных с несуществующего канала выдается ответ ?АА[СНК](сr).

При синтаксической ошибке или ошибке в контрольной сумме не выдается никакого ответа.

#### Г.3.4 Считывание версии программы прибора

Посылка: \$ААГ[СНК](сг), где **AA** – адрес модуля, от 00 до FF, [СНК] – контрольная сумма, (ст) – символ перевода строки (0х0D). Ответ: !АА(версия(7 символов))[СНК](сг). Пример -!AAVx.yy[CHK](cr).

При запросе данных с несуществующего канала выдается ответ ?АА[СНК](сr).

При синтаксической ошибке или ошибке в контрольной сумме не выдается никакого ответа.

## Приложение Д. Методика юстировки

Юстировка прибора выполняется с использованием образцовых источников сигналов тока (5 мА и 20 мА) и напряжения (10 В) с классом точности не хуже 0.05%.

Юстировка прибора предполагает последовательное выполнение юстировки для следующих типов датчиков: «ток от 0 до 5 мА», «ток от 0 до 20 мА» и «напряжение от 0 до 10 В».

Для выполнения юстировки необходимо подключить прибор к компьютеру, включить питание прибора и запустить на выполнение программу **«Конфигуратор M110»**. После запуска программы она должна автоматически обнаружить подключенный прибор и в верхней части основного окна вывести название подключенного прибора **«MB110-8AC»**.

Юстировку прибора необходимо выполнять в следующей последовательности:

- в меню программы Режимы программы выбрать пункт Юстировка;
- в открывшемся окне ввести код доступа 171 и кратковременно нажать кнопку «Продолжить»;
- в открывшемся окне выбрать тип юстируемого датчика и кратковременно нажать кнопку «Продолжить»;
- подать на вход первого канала минимальный сигнал юстируемого датчика и кратковременно нажать кнопку «Продолжить». При юстировке токового датчика необходимо вход первого канала оставить отключенным. При юстировке датчика напряжения необходимо вход первого канала закоротить;
- спустя время около двух секунд в окне программы должны появиться результаты юстировки смещения; если юстировка смещения прошла успешно, следует перейти к следующему пункту, если при выполнении юстировки смещения произошла ошибка, необходимо устранить неисправность и кратковременно нажать кнопку «Повторить» (причинами ошибки юстировки смещения могут быть отсутствие связи с прибором, отсутствие на входе первого канала минимального сигнала для юстируемого датчика или отказ прибора);

- после успешной юстировки смещения должно появиться окно с приглашением подать на вход первого канала максимальный сигнал юстируемого датчика (5 мА ± 0.05% – для датчика «0-5 мА», 20 мА ± 0.05% – для датчика «0 - 20 мА» и 10 В± 0.05% – для датчика «0 - 10 В»); после подачи на вход первого канала требуемого сигнала необходимо кратковременно нажать кнопку «Продолжить»;
- спустя время около двух секунд в окне программы должен появиться результат юстировки масштаба; если юстировка масштаба прошла успешно, следует перейти к следующему пункту, если при выполнении юстировки масштаба произошла ошибка, необходимо устранить неисправность и кратковременно нажать кнопку «Повторить» (причинами ошибки юстировки масштаба могут быть отсутствие связи с прибором, отсутствие на входе первого канала требуемого сигнала для юстируемого датчика или отказ прибора);
- после успешной юстировки масштаба должно появиться окно с приглашением записать результаты юстировки в энергонезависимую память; кратковременное нажатие кнопки «Продолжить» вызывает операцию записи результатов юстировки выбранного типа датчика в энергонезависимую память прибора (ошибка выполнения записи результатов юстировки в энергонезависимую память может быть вызвана отсутствием связи с прибором или отказом прибора).

Юстировку прибора на любом этапе можно прервать кратковременным нажатием кнопки «**Отмена**».

Для возврата к предыдущему этапу юстировки необходимо кратковременно нажать кнопку «**Назад**».

После выполнения юстировки для всех трех типов датчиков прибор готов к работе.

## Приложение Е. Отделение клемм от прибора



Рисунок Е.1 – Отделение съемных частей клемм прибора



#### Центральный офис:

111024, Москва, 2-я ул. Энтузиастов, д. 5, корп. 5

Тел.: (495) 221-60-64 (многоканальный)

Факс: (495) 728-41-45 www.owen.ru

Отдел сбыта: sales@owen.ru

Группа тех. поддержки: support@owen.ru

Рег. № 2502 Зак. №