

Tania López Ibarra, ID: 336673

Materia: Graficación

Tarea 2

1-Selección de imágenes binarios de la siguiente pagina:

https://dabi.temple.edu/external/shape/MPEG7/dataset.html

Flower_six.gif T	omato.gif	Heart.gif Tri	iangle.gif (Crown-1.gif
Z V				
Turtle-1.gif F	rog-1.gif F	Flatfish-1.gif Dev	vice8-1.gif D	evice0-1.gif

2-Calculo de 1-pixeles:

Los píxeles con valores mayores o iguales a 128 se consideran blancos (valor 1), y los menores a 128, negros (valor 0). Así se forma una **matriz binaria B**.El área del objeto se define como la suma de todos los píxeles blancos en la imagen:

$$A = \sum_{i=1}^m \sum_{j=1}^n B_{i,j}$$

- -M y n son las dimensiones de la imagen,
- -B, donde es 1 si el píxel es blanco, 0 si es negro.

Este proceso se aplica a todas las imágenes y los valores se almacenan para su posterior uso como matrices de 1 y 0

Imagen	1-Pixeles	0-Pixeles	Resolución	Total de pixeles
crown	160,763	169,030	623 x 521	329,793
device0-1	79,096	183,048	512 x 512	262,144
device8-1	88,636	222,728	558 x 558	311,364
Flatfish-1	98,532	203,064	613 x 492	301,596
Flower_six	71,589	190,555	512 x 512	262,144
Frog-1	41,779	36,311	285 x 264	78,090
heart	116,621	61,555	464 x 384	178,176
Tomato	28,279	37,257	256 x 256	65,536
Triangle	84,957	226,407	558 x 558	311,364
Turtle-1	25,343	65,233	306 x 296	90,576

3 - Transformaciones de escala

Se sumaron la cantidad de unos pixeles y se obtuvo el promedio de esta suma , el cual fue un valor de 79559.5 el cual se redondeo a 79559 con la intención de mejorar la precisión de los cálculos siguientes. La formula utilizada para obtener el factor escala es la siguiente:

$$a = \sqrt{rac{ ext{rgammarea} ext{area deseada}}{ ext{rgammarea} ext{actual}}}$$

$$\mathrm{Suma\ total} = \sum_{i=1}^n P_i$$

Donde:

- P_i es la cantidad de píxeles del objeto (unos) en la imagen i,
- n es el número total de imágenes.

Objeto	α
crown	0.7035
device0-1	1.0029
device8-1	0.9474
Flatfish-1	0.8986
Flower_six	1.0542
Frog-1	1.3800
heart	0.8260
Tomato	1.6773
Triangle	0.9677
Turtle-1	1.7718

Los resultados obtenidos fueron los siguientes, solo preservamos el objeto escalado tal cual sin hacer otro tipo de procesamiento, se confirmo que la cantidad de uno pixeles se acerca a el área deseada para todas las imagenes

4- Calculo de invariante de escala

En esta etapa se calcularon los momentos normalizados para cada imagen binaria, tanto en su forma original como después del escalamiento realizado en la parte anterior. Estos momentos permiten describir propiedades geométricas del objeto (como forma, orientación y distribución espacial) de manera invariante ante traslaciones y escalas, lo cual es útil para comparar la estructura de los objetos antes y después de transformarlos. Para ello se localizó el centroide (\bar{x} , \bar{y}) de los píxeles con valor 1, se calcularon los momentos centrales desplazando los píxeles respecto al centroide y se normalizaron los momentos usando la fórmula:

$$\eta_{pq} = rac{\mu_{pq}}{\mu_{00}^{\gamma}} \quad ext{con } \gamma = rac{p+q}{2} + 1$$

Imagen	ηpq antes del escalamiento	ηρq después del escalamiento
crown-1.gif	η01 = -0.000000	η01 = -0.000000
	η02 = 0.185567	η02 = 0.232815
	η10 = -0.000000	η10 = 0.000000
	η11 = 0.011993	η11 = 0.028643
	η12 = 0.004632	η12 = 0.013436
	η20 = 0.284018	η20 = 0.322772
	η21 = 0.009305	n21 = 0.021379
	$\eta 22 = 0.045571$	η22 = 0.069884
device0-1.gif	n01 = -0.000000	n01 = 0.000000
4011000 11811	n02 = 0.149984	n02 = 0.183949
	n10 = 0.000000	n10 = -0.000000
	n11 = 0.000032	η11 = -0.000228
	·	·
	$\eta 12 = -0.000095$	η12 = -0.000384
	η20 = 0.149967	$\eta 20 = 0.201186$
	$\eta 21 = -0.000114$	η21 = -0.004068
	η22 = 0.019617	η22 = 0.033705
device8-1.gif	η01 = 0.000000	η01 = 0.000000
	η02 = 0.140269	η02 = 0.075087
	η10 = 0.000000	η10 = -0.000000
	η11 = 0.000367	η11 = 0.001103
	η12 = 0.000624	η12 = -0.000338
	η20 = 0.144366	η20 = 0.276970
	η21 = -0.000655	η21 = -0.006181
	η22 = 0.017782	η22 = 0.021038
flatfish-1.gif	η01 = -0.000000	η01 = -0.000000
J	η02 = 0.133206	η02 = 0.177212
	η10 = -0.000000	η10 = -0.000000
	n11 = 0.008891	n11 = 0.083893
	n12 = -0.000340	n12 = 0.001509
	n20 = 0.195186	η20 = 0.514380
	n21 = 0.000156	n21 = -0.004907
	n22 = 0.021886	n22 = 0.078778
	1122 - 0.021880	1/22 - 0.078778
flower_six.gif	ŋ01 = -0.000000	n01 = 0.000000
itowci_six.gii	n02 = 0.139005	$\eta_0 = 0.000000$
	η10 = 0.000000	$\eta 10 = -0.000000$
	1 .	•
	η11 = -0.000018	η11 = -0.000005
	$\eta 12 = 0.000101$	η12 = 0.000099
	η20 = 0.138279	η20 = 0.177529
	$\eta 21 = -0.000046$	η21 = 0.000192
	η22 = 0.017342	η22 = 0.020682
frog-1.gif	η01 = -0.000000	η01 = -0.000000
	η02 = 0.200321	η02 = 0.239071
	η10 = -0.000000	η10 = -0.000000
	η11 = -0.029321	η11 = -0.058081
	η12 = -0.004701	η12 = -0.006848

	η20 = 0.286456	η20 = 0.296118
	η21 = 0.020709	η21 = 0.013332
	η22 = 0.055112	η22 = 0.067208
heart.gif	η01 = -0.000000	η01 = 0.000000
	η02 = 0.296134	η02 = 0.296107
	η10 = 0.000000	η10 = 0.000000
	η11 = -0.026050	η11 = -0.026005
	η12 = 0.022427	η12 = 0.022371
	η20 = 0.396549	η20 = 0.396627
	η21 = 0.021052	η21 = 0.021041
	η22 = 0.090236	η22 = 0.090235
tomato.gif	η01 = 0.000000	η01 = 0.000000
	η02 = 0.209880	η02 = 0.461808
	η10 = -0.000000	η10 = -0.000000
	η11 = -0.001921	η11 = 0.001152
	η12 = -0.007958	η12 = -0.002081
	η20 = 0.205378	η20 = 0.403595
	η21 = -0.003227	η21 = 0.052356
	η22 = 0.036096	η22 = 0.193524
triangle.gif	η01 = 0.000000	η01 = -0.000000
	η02 = 0.137778	η02 = 0.150963
	η10 = -0.000000	η10 = -0.000000
	η11 = 0.001449	η11 = 0.003251
	η12 = -0.000818	η12 = -0.000407
	η20 = 0.144974	η20 = 0.363135
	η21 = 0.003980	η21 = 0.034568
	η22 = 0.017412	η22 = 0.060710
turtle-1.gif	η01 = -0.000000	η01 = -0.000000
	η02 = 0.144424	η02 = 0.154031
	η10 = -0.000000	η10 = -0.000000
	η11 = -0.006885	η11 = -0.048870
	η12 = 0.002339	η12 = 0.028154
	η20 = 0.142576	η20 = -0.032646
	η21 = -0.001679	η21 = -0.002089
	η22 = 0.017850	η22 = 0.052987

5 - Graficos de resolución de 1 - pixeles

Para los contornos se utilizo una escala pero aun así el tiempo de procesamiento era alto y la textura de las imágenes se ve como en la imagen 1.1, a continuación todas las figuras procesadas de acuerdo a ello :

6 - Contornos

7- Centro de masa y momentos centrales

Objeto trasladado	Momentos Centrales	Centro masa (x,y)
	 m00: 156501 m01: 0 m10: 0 m11: -3.95093e+08 m02: 1.91556e+09 m20: 2.69542e+09 m12: 3.33430e+10 m21: 9.47729e+08 m22: 2.63709e+13 	390.74 316.40

	 m00: 78186 m01: 0 m10: 0 m11: -6.48326e+06 m02: 6.73959e+08 m20: 6.86028e+08 m12: 2.34519e+08 m21: 7.26272e+08 m22: 4.73165e+12 	303.61	302.85
	 m00: 88636 m01: 0 m10: 0 m11: 2.24050e+07 m02: 9.44860e+08 m20: 9.07883e+08 m12: 1.49471e+09 m21: -5.78365e+10 m22: 6.30402e+12 	337.21	290.85
	 m00: 97849 m01: 0 m10: 0 m11: -3.58810e+08 m02: 5.89146e+08 m20: 1.34592e+09 m12: -8.62759e+08 m21: -8.69949e+09 m22: 7.09111e+12 	350.83	294.78
*	 m00: 70197 m01: 0 m10: 0 m11: 1.40525e+06 m02: 6.71959e+08 m20: 6.41356e+08 m12: 1.72576e+09 m21: -1.94136e+08 m22: 5.00049e+12 	302.20	304.31
	 m00: 32103 m01: 0 m10: 0 m11: 2.83736e+07 m02: 1.15526e+08 m20: 9.17105e+07 m12: -1.62582e+09 m21: 1.58798e+09 m22: 2.98710e+11 	174.42	183.09
	 m00: 105957 m01: 0 m10: 0 m11: 1.55122e+08 m02: 7.42538e+08 m20: 1.36022e+09 m12: 2.94647e+09 m21: -3.14864e+10 m22: 8.64354e+12 	269.20	214.32

 m00: 27518 m01: 0 m10: 0 m11: -7.33684e+05 m02: 6.05971e+07 m20: 6.25964e+07 m12: 1.16636e+08 m21: 2.46506e+08 m22: 9.36953e+10 	163.79	170.57
 m00: 84957 m01: 0 m10: 0 m11: 6.84543e+06 m02: 6.43580e+08 m20: 6.29885e+08 m12: 5.36817e+08 m21: 2.37276e+10 m22: 3.58475e+12 	316.21	384.99
 m00: 24190 m01: 0 m10: 0 m11: 2.80297e+07 m02: 4.12908e+07 m20: 8.43920e+07 m12: 1.35592e+08 m21: -3.43503e+08 m22: 1.87616e+11 	206.31	185.77

8- Momentos y rotaciones

Imagen	Phi
	φ ₁ antes: 1.17696 × 10 ⁹
	φ ₁ después: 1.17728 × 10 ⁹
	φ₂ antes: 6.59404 × 10 ¹⁶
	φ₂ después: 6.59218 × 10 ¹⁶
	ϕ_3 antes: 9.34042 × 10 ²⁰
	φ₃ después: 9.32157 × 10²0
	φ ₁ antes: 1.41893 × 10 ⁹
	φ ₁ después: 1.41842 × 10 ⁹
	ϕ_2 antes: 2.74758 × 10 ¹²
	φ₂ después: 1.71010 × 10¹²
	ϕ_3 antes: 1.59177 × 10 ¹⁸
	φ₃ después: 1.73036 × 10 ¹⁸

	ϕ_1 antes: 1.48398 × 10 9
	φ ₁ después: 1.47891 × 10 ⁹
	ϕ_2 antes: 1.93049 × 10^{15}
	φ₂ después: 2.10651 × 10 ¹⁵
	ϕ_3 antes: 3.57851 $ imes$ 10^{22}
	φ ₃ después: 3.55396 × 10 ²²
	φ ₁ antes: 1.28834 × 10 ⁹
	ϕ_1 después: 1.28795 × 10 9
	ϕ_2 antes: 4.97378×10^{17}
	ϕ_2 después: 4.97188 × 10 ¹⁷
	ϕ_3 antes: 8.75284 × 10 ²⁰
	φ₃ después: 8.68891 × 10²0
	φ ₁ antes: 1.69914 × 10 ⁹
	φ ₁ después: 1.69825 × 10 ⁹
*	ϕ_2 antes: 1.13283 \times 10 ¹⁵
	φ₂ después: 1.16713 × 10¹⁵
	ϕ_3 antes: 1.60993 × 10 ¹⁹
	ϕ_3 después: 1.74143 × 10 ¹⁹
	φ ₁ antes: 1.22562 × 10 ⁹
	φ ₁ después: 1.22628 × 10 ⁹
	φ₂ antes: 1.63736 × 10 ¹⁷
	φ₂ después: 1.64548 × 10 ¹⁷
	φ ₃ antes: 6.28225 × 10 ²¹
	φ₃ después: 6.29766 × 10 ²¹
	φ ₁ antes: 1.18991 × 10 ⁹
	φ_1 después: 1.19036 × 10 9
	φ₂ antes: 1.57179 × 10 ¹⁷
	φ₂ después: 1.57085 × 10 ¹⁷
	ϕ_3 antes: 3.82921×10^{21}
	ϕ_3 después: 3.83267 × 10^{21}
	φ ₁ antes: 1.02202 × 10 ⁹
	φ ₁ después: 1.02316 × 10 ⁹
	ϕ_2 antes: 1.94923 × 10 ¹⁴
	φ₂ después: 1.93195 × 10 ¹⁴
	φ ₃ antes: 1.46064 × 10 ²⁰
	φ₃ después: 1.46702 × 10²0

	ϕ_1 antes: 1.10880 \times 10° ϕ_1 después: 1.10933 \times 10° ϕ_2 antes: 2.83340 \times 10¹4 ϕ_2 después: 2.67889 \times 10¹4
	$φ_3$ antes: 6.37893 \times 10 ²¹ $φ_3$ después: 6.39004 \times 10 ²¹
	$φ_1$ antes: 1.38112 × 10 9 $φ_1$ después: 1.38229 × 10 9
•	$φ_2$ antes: 6.89420×10^{17} $φ_2$ después: 6.90236×10^{17}
	ϕ_3 antes: 9.04167 × 10 20 ϕ_3 después: 9.01197 × 10 20

9- Aplicación de corrección de imagen por medio de operadores morfológicos

10- Conclusiones

Las transformaciones realizadas en esta práctica permitieron comprobar empíricamente el comportamiento de los momentos ante distintos cambios geométricos. Se observó que los momentos normalizados (Ecuación 1) se mantuvieron estables antes y después del escalamiento, confirmando su invariancia ante cambios de tamaño. Al realizar traslaciones, los momentos centrales (Ecuación 2) variaron con respecto al origen, pero al calcularlos respecto al nuevo centro de masa, los resultados fueron coherentes, lo cual respalda su validez. En el caso de la rotación, los momentos invariantes de Hu (Ecuación 3) conservaron valores similares antes y después de aplicar un ángulo de 45°, demostrando su invariancia ante este tipo de transformación. Por último, se notó que las operaciones morfológicas alteran la forma de los objetos y, en consecuencia, pueden afectar los momentos si se modifica significativamente la estructura original. En conjunto, la práctica validó las propiedades teóricas de las ecuaciones utilizadas.