

## Legend

Elements (14 equations)

- Processes (12 equations)

MR mixing fix-rate in mixing box (2 eq.)

CC perfect cooling coil (4 eq.)

MX mixing process in cooling coil (2 eq.)

TZ thermal zone (2 eq.) BL building (2 eq.)

- Proportional controllers (1 equations)

 $K_{\theta}$  indoor air temperature (1 eq.)

Non-linear (least squares) controller (1 equation)
Is supply air temperature (1 eq.)

Others

D controlled by-pass damper

F fan

 $\Psi$  psychrometric function,  $w = \Psi(\varphi)$ 

mass flow rate, temperature and moist ratio

heat flow ratemass flow rate

information flow

Unknowns (14 values.)

- Variables (13 values)

M, s, S, I air states  $(\theta_k, w_k)|_{k=1..5}$  (8 vals.)

 $\dot{Q}_{tCC}$  total heat of cooling coil (1 val.)

 $\dot{Q}_{sCC}$  sensible heat of cooling coil (1 val.)

 $\dot{Q}_{lCC}$  latent heat of cooling coil (1 val.)

 $\dot{Q}_{STZ}$  sensible heat of thermal zone (1 val.)

 $\dot{Q}_{lTZ}$  latent heat of thermal (1 val.)

- Parameter (1 values)

 $\beta$  by-pass factor of the cooling coil (1 val.)

Given

- Inputs

 $\theta_o$ ,  $\varphi_o$  outdoor air conditions

 $\theta_{\mathit{I},\mathit{sp}},\; \varphi_{\mathit{I},\mathit{sp}} \quad \text{indoor air conditions set-points} \\ \dot{m}_o \qquad \qquad \text{mass flow rate of outdoor air}$ 

- Parameters

 $\dot{m}$  mass flow rate of supply air

 $K_{\theta}$  proportional controller gains