Package 'moveNT'

February 28, 2020

1 Columny 26, 2020
Title An R package for the analysis of movement data using network theory
Version 0.0.0.9000
Description This package provides a series of functions to analyse movement data using network theory.
Depends R (>= 3.3.2), raster, sp, adehabitatLT
License GPL (>=3)
Encoding UTF-8
LazyData true
RoxygenNote 6.0.1.9000
Imports igraph, mclust, moveHMM, uuid
Author Guillaume Bastille-Rousseau [aut, cre]
Maintainer Guillaume Bastille-Rousseau <gbr@colostate.edu></gbr@colostate.edu>
RemoteType github
RemoteHost https://api.github.com
RemoteRepo moveNT
RemoteUsername BastilleRousseau
RemoteRef master
RemoteSha a3fe40032d9a0db589b31a34090820fd75d0d870
GithubRepo moveNT
GithubUsername BastilleRousseau
GithubRef master
GithubSHA1 a3fe40032d9a0db589b31a34090820fd75d0d870
R topics documented:
adj2stack clustnet clust_stack dot graphmet ind_clust

2 adj2stack

loop		•	•	•	 		•	•	•				•	 •	•	•	•	•				•	•	٠	
mosaic_networl	k.				 															 					
pop_clust					 															 					
pop_overl					 															 					
pop_stack					 															 					
quant					 															 					
sim_mov					 															 					
table_cluster .					 															 					
traj2adj					 															 					
val					 															 					

14

adj2stack

Index

Calculation of network metrics

Description

Transform an adjancency matrix to a series of network metrics at the node-level (weight, degree, betweenness, transitivity, eccenctricity) and graph level (diameter, transitivity, density, and modularity)

Usage

```
adj2stack(adjmov, grph = T, mode = "directed", weighted = T, ...)
```

Arguments

adjmov	Adjacency matrix, need to be an object produced by function traj2adj
grph	Whether node level metrics are to be plotted
mode	Whether the graph should be "directed" or "undirected. Default="directed". See "graph_from_adjacency_matrix" from package "igraph"
weighted	Whether the graph should be weighted (=TRUE) or unweighted (= NULL). Default is weighted. See "graph_from_adjacency_matrix" from package "igraph"

Value

A raster stack object

```
traj1<-sim_mov(type="0U", npatches=3, grph=T)
stck<-adj2stack(traj2adj(traj1, res=100), grph=T)</pre>
```

clustnet 3

clustnet	Normal mixture model for clustering of single node level metric	

Description

Apply a normal mixture model to a single node-level metric

Usage

```
clustnet(stack, id = 2, nclust = 2, grph = T)
```

Arguments

stack	An object produce by the function adj2stack (not compatible with loop or interpolation)
id	Metric to be used (2=Weight, 3=Degree, 4=Betweenness, 5=Transitivity, 6=Eccentricity)
grph	Whether resulting classification should be plotted

Value

A list of object containing a Mclust object and a raster object

Examples

```
traj1<-sim_mov(type="0U", npatches=3, grph=T)
stck<-adj2stack(traj2adj(traj1, res=100), grph=T)
cl<-clustnet(stck, id=2, nclust=2, grph=T)
summary(cl[[1]])</pre>
```

clust_stack

Back-association of population-level clustering to individual clusters

Description

Generate individual-level rasters of population-level clustering. For each individual, the fuction generate a raster stack containing a raster of the most likely cluster, and several rasters giving the probability of observing each cluster.

Usage

```
clust_stack(grid, pop_clust, ind_clust, table)
```

Arguments

grid	The output of the loop function
pop_clust	The output of the pop_clust function
ind_clust	The output of the ind_clust function
table	The output of table_cluster

4 graphmet

Value

A list of raster stack object.

Examples

```
data(albatross)
grid<-loop(albatross, 35000)
table_grid<-table_cluster(albatross, grid)
ls_ind<-ind_clust(table_grid, max.n.clust=8)
pop<-pop_clust(albatross, ls_ind)
clust_stack<-clust_stack(grid, pop, ls_ind, table_grid)
plot(clust_stack[[1]])</pre>
```

dot

dot product

Description

dot product

Usage

```
dot(x, ...)
```

graphmet

Summarize graph-level metrics

Description

Summarize graph-level metrics from an object generated by adj2stack

Usage

```
graphmet(grid)
```

Arguments

grid

An object generated by the function adj2stack

Value

A vector

```
traj1<-sim_mov(type="0U", npatches=3, grph=T)
stck<-adj2stack(traj2adj(traj1, res=quant(traj1)), grph=T)
graphmet(stck)</pre>
```

ind_clust 5

individual teres causering of movement metrics	ind_clust	Individual-level clustering of movement metrics
--	-----------	---

Description

Perform individual-level clustering (first step) of movement metrics. This function uses the output of table_cluster and perform a mixture-model. Users can select which variables will be used and the maximum number of clusters. See also mclust

Usage

```
ind_clust(table, max.n.clust = 8, modelname = "EEV",
  vars = c("Weight", "Degree", "Betweenness", "Speed", "DotP"))
```

Arguments

An output from the table_cluster function

max.n.clust The maximum number of clusters to test, see the documentation for mclust for more information. Default = 8.

modelname The model structure of the clustering, see the documentation for mclust for more information. Default is equal mean and variance for each clusters (EEV).

vars The variable to be included. Default = c("Weight", "Degree", "Betweenness",

"Speed", "DotP")

Value

A list object with each element representing an individual.

Examples

```
data(albatross)
grid<-loop(albatross, 35000)
table_grid<-table_cluster(albatross, grid)
ls_ind<-ind_clust(table_grid, max.n.clust=8)
table(unlist(lapply(ls_ind, function(x) x$G)))</pre>
```

interpolation

Interpolation based on movement steps for all individuals

Description

Use movement steps to linearly interpolate raster produced by loop. User can select if the mean or max is taken when multiple steps overlap in a single pixel. Function need to be applied following the loop function. This process is very slow.

Usage

```
interpolation(traj, ls, wei = mean, deg = mean, bet = max,
  spe = mean, dt = dot)
```

6 loop

Arguments

traj	An object produce by the function adj2stack
ls	An object produced by the loop
wei	Whether mean or max should be used for weight (default = mean)
deg	Whether mean or max should be used for degree (default = mean)
bet	Whether mean or max should be used for betweeness (default = max)
spe	Whether mean or max should be used for speed (default = mean)
dt	Whether mean, max, or dot product should be used for turning angle (default = dot)

Value

A list of object containing a raster stack object for each individual

Examples

```
data(puechabonsp)
locs <- puechabonsp$relocs
xy <- coordinates(locs)
df <- as.data.frame(locs)
da <- as.character(df$Date)
da <- as.POSIXct(strptime(as.character(df$Date),"%y%m%d", tz="Europe/Paris"))
litr <- as.ltraj(xy, da, id = id)
out1<-loop(litr)
out2<-interpolation(litr, out1)</pre>
```

loop

Looping over all individuals

Description

Extract the adjancency matrix and calculate network metrics for all individuals in a trajectory object. Also calculate mean speed, mean direction, and dot product of turning angles

Usage

```
loop(traj, res = 100)
```

Arguments

traj	An object produce by the function adehabitatLT with multiple individuals
res	Grid size, will be apply to all individuals

Value

A list object containing a raster stack object for each individual

mosaic_network 7

Examples

```
data(puechabonsp)
locs <- puechabonsp$relocs
xy <- coordinates(locs)
df <- as.data.frame(locs)
da <- as.character(df$Date)
da <- as.POSIXct(strptime(as.character(df$Date),"%y%m%d", tz="Europe/Paris"))
litr <- as.ltraj(xy, da, id = id)
out1<-loop(litr)</pre>
```

mosaic_network

Mosaic (combine) individual raster together for a given variable

Description

Use output of loop or interpolation and combine all individuals (mosaic) together using the mean or max values.

Usage

```
mosaic_network(ls, index = 2, sc = T, fun = mean)
```

Arguments

ls	An object produced by the loop or interpolate functions
index	Index indicating which layer to take in the stack
sc	Whether to scale all individual rasters (default = TRUE)
fun	Whether mean or max should be used as the mosaic function (default = mean)

Value

A raster layer object.

```
data(puechabonsp)
locs <- puechabonsp$relocs
xy <- coordinates(locs)
df <- as.data.frame(locs)
da <- as.character(df$Date)
da <- as.POSIXct(strptime(as.character(df$Date),"%y%m%d", tz="Europe/Paris"))
litr <- as.ltraj(xy, da, id = id)
out1<-loop(litr)
mean_weight<-mosaic_network(out1, index=2, sc=T, fun=mean) #Perform mean weight (not-interpolated)
plot(mean_weight)</pre>
```

pop_overl

pop_clust	Population-level clustering of movement metrics

Description

Combine individual-level clustering of movement metrics into a population-level clustering (second step). Users can the maximum number of clusters. See also mclust

Usage

```
pop_clust(traj, ls, max.n.clust = 8)
```

Arguments

traj The trajectory object

max.n.clust The maximum number of clusters to test, see the documentation for mclust for

more information. Default = 8.

1s_ind Individual-level clustering object, the output of ind_clust.

Value

A list object with each element representing an individual.

Examples

```
data(albatross)
grid<-loop(albatross, 35000)
table_grid<-table_cluster(albatross, grid)
ls_ind<-ind_clust(table_grid, max.n.clust=8)
pop<-pop_clust(albatross, ls_ind)
pop[[1]]$parameters$mean
pop[[1]]$parameters$pro</pre>
```

pop_overl

Population-level multi-use map

Description

Produce a single map (raster) indicating all types of use found in a cluster.

Usage

```
pop_overl(clust_stack)
```

Arguments

clust_stack The output of clust_stack

Value

A stack object with each raster showing use of each cluster

pop_stack 9

Examples

```
data(albatross)
grid<-loop(albatross, 35000)
table_grid<-table_cluster(albatross, grid)
ls_ind<-ind_clust(table_grid, max.n.clust=8)
pop<-pop_clust(albatross, ls_ind)
clust_stack<-clust_stack(grid, pop, ls_ind, table_grid)
pop_overl<-pop_overl(clust_stack)
table(values(pop_overl))
plot(pop_overl)</pre>
```

pop_stack

Population-level single-use maps of each cluster

Description

Produce maps (raster) indicating if at least one individual is using a pixel as a given cluster

Usage

```
pop_stack(clust_stack)
```

Arguments

```
clust_stack The output of clust_stack
```

Value

A stack object with each raster showing use of each cluster

```
data(albatross)
grid<-loop(albatross, 35000)
table_grid<-table_cluster(albatross, grid)
ls_ind<-ind_clust(table_grid, max.n.clust=8)
pop<-pop_clust(albatross, ls_ind)
clust_stack<-clust_stack(grid, pop, ls_ind, table_grid)
pop_stack<-pop_stack(clust_stack)
plot(pop_stack)</pre>
```

10 sim_mov

quant Sample quantile of distance for la	traj object
--	-------------

Description

Wrapper function that extract the sample quantile of distance of a trajectory object

Usage

```
quant(x, p = 0.5)
```

Arguments

```
x A ltraj object
p Probability, default=0.5 (median)
```

Value

A vector of length p

Examples

```
traj1<-sim_mov(type="0U", npatches=3, grph=T)
stck<-adj2stack(traj2adj(traj1, res=quant(traj1)), grph=T)</pre>
```

sim_mov

 $Simulation\ of\ patch-based\ movement\ trajectory$

Description

Simulate a movement trajectory with a user defined number of patches and interpatch movement

Usage

```
sim_mov(type = c("2states", "OU"), npatches = 5, ratio = 5,
  nswitch = 150, ncore = 200, spacecore = 200,
  seq_visit = sample(1:npatches, nswitch, replace = T),
  stepDist = "gamma", angleDist = "vm", stepPar = c(0.5, 3, 1, 5),
  anglePar = c(pi, 0, 0.5, 2), s = diag(40, 2), grph = F)
```

Arguments

type	whether movement within patches should be based on a 2states process (from package moveHMM) or a Bivariate Ornstein-Uhlenbeck process (OU) (from package adehabitatLT)
npatches	Number of patches, default=5
ratio	Ratio (in percent) of locations associated to interpatch movement, default=5
nswitch	Number of switch/depart from patches, default=150
ncore	Number of locations within a patch per visit, default=200

table_cluster 11

spacecore	Minimum distance between center of patches, default=200
seq_visit	Specify the sequence of visit among patches, default is random sequence
stepDist	Distribution for step length if 2states specified in type, see simData of moveHMM package
angleDist	Distribution for turn angle if 2states specified in type, see simData of moveHMM package
stepPar	Parameters for step length distribution if 2states specified in type, see simData of moveHMM package
anglePar	Parameters for turn angle distribution if 2states specified in type, see simData of moveHMM package
S	Parameters for the OU process, see simm.mou of adehabitatLT package
grph	Whether a graph of the trajectory should be produced, default=F

Value

A ltraj (adehabitatLT) object

Examples

```
traj1<-sim_mov(type="OU", npatches=3, grph=T)
traj2<-sim_mov(type="2states", npatches=2, grph=T)</pre>
```

table_cluster

Convert a list of adj2stack object to a data.frame for clustering

Description

Convert output of loop function to a data.frame.

Usage

```
table_cluster(traj, grid)
```

Arguments

traj The trajectory used in loop (a traj object)

grid The output of the loop function

Value

A data.frame object.

```
data(albatross)
grid<-loop(albatross, 35000)
table_grid<-table_cluster(albatross, grid)
head(table_grid)</pre>
```

12 val

trai	j2adj
LI U	, Zau, j

Generation of adjacency matrix from movement data

Description

Transform an Itraj object to an adjacency matrix using a user-specified grid size

Usage

```
traj2adj(mov, res = 100, grid = NULL)
```

Arguments

mov Movement trajectory, need to be a ltraj object

res Grid size (based on coordinate system of movement trajectory)

grid User specified grid (a raster), needs to have a larger extent than the movement

trajectory

Value

A list of objects containing the adjacency matrix, the grid use, and patch/corridor identification (only useful if sim_mov was used)

Examples

```
traj1<-sim_mov(type="0U", npatches=3, grph=T)
adj<-traj2adj(traj1, res=100)</pre>
```

val

Extract occupied cells in a raster object

Description

Extract only occupied cells in a raster object,

Usage

```
val(grid, id)
```

Arguments

grid An object generated by the function adj2stack

id Metric to be used (2=Weight, 3=Degree, 4=Betweenness, 5=Transitivity, 6=Ec-

centricity)

Value

A vector

val 13

```
traj1<-sim_mov(type="0U", npatches=3, grph=T)
stck<-adj2stack(traj2adj(traj1, res=quant(traj1)), grph=T)
mean(val(stck, 2))</pre>
```

Index

*Topic Mclust clustnet, 3 *Topic adj2stack clust_stack, 3 clustnet, 3 graphmet, 4 ind_clust, 5	<pre>pop_stack, 9 *Topic traj2adj adj2stack, 2 clust_stack, 3 clustnet, 3 ind_clust, 5 interpolation, 5</pre>
<pre>interpolation, 5 loop, 6 mosaic_network, 7 pop_clust, 8 pop_overl, 8 pop_stack, 9 sim_mov, 10 table_cluster, 11</pre>	loop, 6 mosaic_network, 7 pop_clust, 8 pop_overl, 8 pop_stack, 9 sim_mov, 10 table_cluster, 11
traj2adj, 12 val, 12	adj2stack, 2
*Topic ind_clust clust_stack, 3	<pre>clust_stack, 3 clustnet, 3</pre>
pop_clust, 8 pop_overl, 8	dot,4 graphmet,4
<pre>pop_stack, 9 *Topic interpolation mosaic_network, 7</pre>	ind_clust, 5
*Topic loop clust_stack, 3	interpolation, 5
ind_clust, 5 interpolation, 5	loop, 6
mosaic_network, 7 pop_clust, 8	mosaic_network,7
pop_clust, 8 pop_overl, 8 pop_stack, 9 table_cluster, 11	<pre>pop_clust, 8 pop_over1, 8 pop_stack, 9</pre>
*Topic ltraj quant, 10	quant, 10
*Topic pop_clust clust_stack, 3	sim_mov, 10
ind_clust, 5 *Topic table_cluster	table_cluster, 11 traj2adj, 12
<pre>clust_stack, 3 ind_clust, 5 pop_clust, 8 pop_overl, 8</pre>	val, 12