```
from sklearn.cluster import KMeans
import pandas as pd
from sklearn.preprocessing import MinMaxScaler
from matplotlib import pyplot as plt
# %matplotlib inline
```

df = pd.read_csv('/CC GENERAL.csv')
df.head()

	CUST_ID	BALANCE	BALANCE_FREQUENCY	PURCHASES	ONEOFF_PURCHASES	INSTALLMENTS_PURCHASES	CASH_ADVANCE	PURCHASES_FREQUENCY	(
0	C10001	40.900749	0.818182	95.40	0.00	95.4	0.000000	0.166667	
1	C10002	3202.467416	0.909091	0.00	0.00	0.0	6442.945483	0.000000	
2	C10003	2495.148862	1.000000	773.17	773.17	0.0	0.000000	1.000000	
3	C10004	1666.670542	0.636364	1499.00	1499.00	0.0	205.788017	0.083333	
4	C10005	817.714335	1.000000	16.00	16.00	0.0	0.000000	0.083333	

df.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 100 entries, 0 to 99 Data columns (total 18 columns):

	Data	cordinis (cocar to cordinis).				
	#	Column	Non-Null Count	Dtype		
	0	CUST_ID	100 non-null	object		
	1	BALANCE	100 non-null	float64		
	2	BALANCE_FREQUENCY	100 non-null	float64		
	3	PURCHASES	100 non-null	float64		
	4	ONEOFF_PURCHASES	100 non-null	float64		
	5	INSTALLMENTS_PURCHASES	100 non-null	float64		
	6	CASH_ADVANCE	100 non-null	float64		
	7	PURCHASES_FREQUENCY	100 non-null	float64		
	8	ONEOFF_PURCHASES_FREQUENCY	100 non-null	float64		
	9	PURCHASES_INSTALLMENTS_FREQUENCY	100 non-null	float64		
	10	CASH_ADVANCE_FREQUENCY	100 non-null	float64		
	11	CASH_ADVANCE_TRX	100 non-null	int64		
	12	PURCHASES_TRX	100 non-null	int64		
	13	CREDIT_LIMIT	100 non-null	int64		
	14	PAYMENTS	100 non-null	float64		
	15	MINIMUM_PAYMENTS	89 non-null	float64		
	16	PRC_FULL_PAYMENT	100 non-null	float64		
	17	TENURE	100 non-null	int64		
<pre>dtypes: float64(13), int64(4), object(1)</pre>						

memory usage: 14.2+ KB

plt.scatter(df.PAYMENTS,df.BALANCE)
plt.xlabel('Payments')
plt.ylabel('Balance')


```
km = KMeans(n_clusters=4)
y_predicted = km.fit_predict(df[['PAYMENTS','BALANCE']])
```

y_predicted

df['cluster']=y_predicted
df.head()

	CUST_ID	BALANCE	BALANCE_FREQUENCY	PURCHASES	ONEOFF_PURCHASES	INSTALLMENTS_PURCHASES	CASH_ADVANCE	PURCHASES_FREQUENCY	(
0	C10001	40.900749	0.818182	95.40	0.00	95.4	0.000000	0.166667	
1	C10002	3202.467416	0.909091	0.00	0.00	0.0	6442.945483	0.000000	
2	C10003	2495.148862	1.000000	773.17	773.17	0.0	0.000000	1.000000	
3	C10004	1666.670542	0.636364	1499.00	1499.00	0.0	205.788017	0.083333	
4	C10005	817.714335	1.000000	16.00	16.00	0.0	0.000000	0.083333	

```
df1 = df[df.cluster==0]
df2 = df[df.cluster==1]
df3 = df[df.cluster==2]
df4 = df[df.cluster==3]
plt.scatter(df1.PAYMENTS,df1.BALANCE,color='blue');
plt.scatter(df2.PAYMENTS,df2.BALANCE,color='green');
plt.scatter(df3.PAYMENTS,df3.BALANCE,color='red');
plt.scatter(df4.PAYMENTS,df4.BALANCE,color='red');
plt.scatter(df4.PAYMENTS,df4.BALANCE,color='yellow');
plt.scatter(km.cluster_centers_[:,0],km.cluster_centers_[:,1],color='purple',marker='*')
plt.xlabel('Payments')
plt.ylabel('Balance')
plt.legend()
```

WARNING:matplotlib.legend:No artists with labels found to put in legend. Note that <matplotlib.legend.Legend at 0x7d745f012a40>


```
scaler = MinMaxScaler()
scaler.fit(df[['BALANCE']])
df['BALANCE'] = scaler.transform(df[['BALANCE']])
scaler.fit(df[['PAYMENTS']])
df['PAYMENTS'] = scaler.transform(df[['PAYMENTS']])

sse = []
k_rng = range(1,10)
for k in k_rng:
km = KMeans(n_clusters=k)
km.fit(df[['PAYMENTS','BALANCE']])
sse.append(km.inertia_)
```

```
/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will change fr
 warnings.warn(
/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will change fr
 warnings.warn(
/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will change fr
 warnings.warn(
/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will change fr
 warnings.warn(
/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will change fr
 warnings.warn(
/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will change fr
 warnings.warn(
/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will change fr
 warnings.warn(
/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will change fr
 warnings.warn(
/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will change fr
 warnings.warn(
```

plt.xlabel('K')
plt.ylabel('sum of squared error')

plt.plot(k_rng,sse)

[<matplotlib.lines.Line2D at 0x7d745a67e200>]

