Translational Embeddings

January 10, 2022

1/12

TransE January 10, 2022

Definition

Let $KG = (V, E, L; \vdash)$ be a **knowledge graph** with a set of vertices V, a set of edges $E \subseteq V \times V$, a label function $L : V \cup E \mapsto Lab$ that assigns labels from a set of labels Lab to vertices and edges, and an inference relation \vdash . A **knowledge graph embedding is a function** $f_n : L(V) \cup L(E) \mapsto \mathbb{R}^n$.

$$Lab$$

$$L(V) \cup L(E)$$

Definition

Let $KG = (V, E, L; \vdash)$ be a **knowledge graph** with a set of vertices V, a set of edges $E \subseteq V \times V$, a label function $L : V \cup E \mapsto Lab$ that assigns labels from a set of labels Lab to vertices and edges, and an inference relation \vdash . A **knowledge graph embedding is a function** $f_n : L(V) \cup L(E) \mapsto \mathbb{R}^n$.

Definition

Let $KG = (V, E, L; \vdash)$ be a **knowledge graph** with a set of vertices V, a set of edges $E \subseteq V \times V$, a label function $L : V \cup E \mapsto Lab$ that assigns labels from a set of labels Lab to vertices and edges, and an inference relation \vdash . **A knowledge graph embedding is a function** $f_n : L(V) \cup L(E) \mapsto \mathbb{R}^n$.

TransE

January 10, 2022

3/12

TransE

Graph as edgelist: set of (h, ℓ, t) statements

Graph as edgelist: set of (h, ℓ, t) statements Idea: $h + \ell \approx t$ (bold symbols represent embeddings)

```
Graph as edgelist: set of (h,\ell,t) statements Idea: \mathbf{h}+\ell \approx \mathbf{t} (bold symbols represent embeddings) Compute dissimilarity: d(\mathbf{h}+\ell,\mathbf{t}) = \|\mathbf{h}+\ell-\mathbf{t}\| (chose your norm, usually L2)
```

Graph as edgelist: set of (h, ℓ, t) statements Idea: $\mathbf{h} + \ell \approx \mathbf{t}$ (bold symbols represent embeddings) Compute dissimilarity: $d(\mathbf{h} + \ell, \mathbf{t}) = \|\mathbf{h} + \ell - \mathbf{t}\|$ (chose your norm, usually L2) Minimize:

$$\mathcal{L} = \sum_{(\textit{h},\ell,\textit{t}) \in \textit{S}(\textit{h}',\ell,\textit{t}') \in \textit{S}'_{(\textit{h},\ell,\textit{t})}} \left[\gamma + \textit{d}(\textit{h} + \ell,\textit{t}) - \textit{d}(\textit{h}' + \ell,\textit{t}') \right]_{+}$$

TransE

3/12

$$\mathcal{L} = \sum_{(\boldsymbol{h}, \ell, \boldsymbol{t}) \in S} \sum_{(\boldsymbol{h}', \ell, \boldsymbol{t}') \in S'_{(\boldsymbol{h}, \ell, \boldsymbol{t})}} \left[\gamma + d(\boldsymbol{h} + \ell, \boldsymbol{t}) - d(\boldsymbol{h}' + \ell, \boldsymbol{t}') \right]_{+}$$

4/12

January 10, 2022

$$\mathcal{L} = \sum_{(h,\ell,t) \in \mathcal{S}} \sum_{(h',\ell,t') \in \mathcal{S}'_{(h,\ell,t)}} \left[\gamma + d(\boldsymbol{h} + \boldsymbol{\ell}, \boldsymbol{t}) - d(\boldsymbol{h'} + \boldsymbol{\ell}, \boldsymbol{t'}) \right]_{+}$$

• $d(\mathbf{h} + \ell, \mathbf{t})$ is score for positive edges (or triples)

TransE

$$\mathcal{L} = \sum_{(\textit{h},\ell,\textit{t}) \in \textit{S}\,(\textit{h}',\ell,\textit{t}') \in \textit{S}'_{(\textit{h},\ell,\textit{t})}} \left[\gamma + \textit{d}(\textit{h} + \ell,\textit{t}) - \textit{d}\left(\textit{h}' + \ell,\textit{t}'\right) \right]_{+}$$

- $d(\mathbf{h} + \ell, \mathbf{t})$ is score for positive edges (or triples)
- $d(h' + \ell, t')$ is score for negative edges (or triples)

TransE

$$\mathcal{L} = \sum_{(\textit{h},\ell,\textit{t}) \in \textit{S}\,(\textit{h}',\ell,\textit{t}') \in \textit{S}'_{(\textit{h},\ell,\textit{t})}} \left[\gamma + \textit{d}(\textit{h} + \ell,\textit{t}) - \textit{d}\left(\textit{h}' + \ell,\textit{t}'\right) \right]_{+}$$

- $d(\mathbf{h} + \ell, \mathbf{t})$ is score for positive edges (or triples)
- $d(h' + \ell, t')$ is score for negative edges (or triples)
- ullet γ is a margin parameter

$$\mathcal{L} = \sum_{(\textit{h},\ell,\textit{t}) \in \textit{S}\,(\textit{h}',\ell,\textit{t}') \in \textit{S}'_{(\textit{h},\ell,\textit{t})}} \left[\gamma + \textit{d}(\textit{h} + \ell,\textit{t}) - \textit{d}\left(\textit{h}' + \ell,\textit{t}'\right) \right]_{+}$$

- $d(\mathbf{h} + \ell, \mathbf{t})$ is score for positive edges (or triples)
- $d(h' + \ell, t')$ is score for negative edges (or triples)
- ullet γ is a margin parameter
- $[x]_+ = \max(0, x)$

TransE

Entity and Relation Space

• FOXP2 + binds = MET

- FOXP2 + binds = MET
- MET + activates = MAPK3

- FOXP2 + binds = MET
- MET + activates = MAPK3
- MET + binds = FOXP2

- FOXP2 + binds = MET
- MET + activates = MAPK3
- MET + binds = FOXP2
- ST7 + hasFunction = G0:0044708

- FOXP2 + binds = MET
- MET + activates = MAPK3
- MET + binds = FOXP2
- ST7 + hasFunction = G0:0044708
- · ...

- FOXP2 + binds MET= 0
- MAP + activates -MAPK3 = 0
- MET + binds FOXP2= 0
- ST7 + hasFunction G0:0044708 = 0
- ...

Some properties of TransE

- graph-based
 - works well on RDF graphs
 - and ontology graphs

Some properties of TransE

- graph-based
 - works well on RDF graphs
 - and ontology graphs
- 1:1 relations only
 - not suitable for hierarchies (1-N relations)
 - not suitable for N-N relations
 - no transitive, symmetric, reflexive relations

TransH deals with the 1-N, N-1 and N-N relationships

Figure: TransE representation

Entity and Relation Space

Figure: TransH representation

TransR: each relation has its own semantic space.

PyKEEN and mOWL

- Python package to generate knowledge graph embeddings
- supports many different graph embedding types: TransE, TransH, TransR, TransD, RESCAL, etc.
- mOWL integration

The End