Operadores			
Aritméticos	De comparación	Logicos	
Suma: +	Igualdad: = =	Y lógico: &	
Diferencia: -	Distinto: !=	No lógico: !	
Producto: *	Menor que: <	O lógico:	
División: /	Mayor que: >		
Potencia: ^	Menor o igual: <=		
	Mayor o igual: >=		

Menús de R-Commander usados más habitualmente en las prácticas

- Fusionar conjuntos de datos: Datos → Fusionar conjuntos de datos.
- Filtrar datos del conjunto de datos activo:
 Datos → Conjunto de datos activo → Filtrar el conjunto de datos activo.
- Resumen descriptivo del conjunto de datos: Estadísticos → Resúmenes → Conjunto de datos activo.
- Transformar una variable numérica en cualitativa:
 Datos → Modificar variables del conjunto de datos activo → Convertir variable numérica en factor.
- Recodificación de variables:
 - o Datos → Modificar variables del conjunto de datos activo → Recodificar variables.
- Construir variables nuevas a partir de otras existentes:
 - o Datos → Modificar variables del conjunto de datos activo → Calcular una nueva variable.
- Resúmenes numéricos del conjunto de datos activo: Estadísticos → Resúmenes → Resúmenes numéricos.
- Frecuencias absolutas y relativas de variables cualitativas:
 - Estadisticos → Resúmenes → Distribución de frecuencias.
- Estadísticos descriptivos de una variable de tipo numérico según modalidades definidas por una o más variables cualitativas:
 - Estadísticos → Resúmenes → Tabla de estadísticas.
- Tablas de doble entrada:
 - o Estadísticos → Tablas de contingencia → Tabla de doble entrada.
 - Estadísticos → Tablas de contingencia → Tabla de entradas múltiples.
- Test de Shapiro-Wilk: Estadísticos → Resúmenes → Test de normalidad.
- Contraste sobre la media de una población normal / Intervalo de confianza para la media:
 Estadísticos → Medias → Test t para una muestra.
- Contraste sobre la diferencia de medias de poblaciones normales / Intervalo de confianza para la diferencia de medias:
 - Estadísticos → Medias → Test t para muestras independientes.
- Contraste sobre la media para muestras pareadas / Intervalo de confianza:
 - Estadísticos → Medias → Test t para datos relacionados.

- Análisis de regresión lineal: Estadísticos → Ajuste de modelos → Regresión lineal.
- Intervalos de confianza para los parámetros del modelo de regresión activo:
 - Modelos → Intervalos de confianza.
- Ajuste de modelos de regresión no lineales:

nls(ecuación del modelo, data=nombre del conjunto de datos, start=list(valores iniciales de los parámetros))

- Función para la resolución de problemas de programación lineal:
 - o lp(dirección, vec_obj, mat_rest, signo rest, vec_rec)
 - o dirección: variable de cadena de caracteres que indica el sentido de la optimización (min/max).
 - o vec_obj: vector numérico con los coeficientes de la función objetivo.
 - o mat_rest: matriz que contiene los coeficientes de las restricciones.
 - o signo_rest: vector de cadenas de caracteres con los signos de las restricciones, (>=, =, <=).
 - o vec rec: vector de recursos.
 - Definición de una matriz:
 - matrix(vector de componentes de la matriz por filas, nrow=número de filas, byrow=TRUE)
 - O Componentes de la salida de la función *lp*:
 - \$objval: valor óptimo de la función objetivo \$solution: valor "optimo" de las variables

Distribuciones	Interpretación	Esperanza y Varianza	Relación con otras variables
Binomial B(n,p)	Número de éxitos en la realización de <i>n</i> experimentos de Bernouilli independientes.		
Binomial Negativo $B^-(r, p)$	Número de realizaciones de un experimento de Bernouilli hasta la obtención del r-ésimo éxito.	$E[X] = r/p$ $Var[X] = rq/p^2$	Si r=1 se obtiene el modelo geométrico
Geométrica Ge(p)	Número de ensayos hasta la obtención del primer éxito en una sucesión de experimentos de Bernouilli.	$E[X]=1/p$ $Var[X]=q/p^2$	
Poisson $P(\lambda)$	Número de ocurrencias de un fenómeno en un intervalo de tiempo o región del espacio.	$E[X] = \lambda$ $Var[X] = \lambda$	Si $X_1 \sim P(\lambda_1)$ y $X_2 \sim P(\lambda_2)$ independientes, entonces $X_1 + X_2 \sim P(\lambda_1 + \lambda_2)$
$\begin{aligned} & \text{Hipergeom\'etrica} \\ & & \text{H(N, N_1, n)} \\ & & \text{n} \leq N \end{aligned}$	En un conjunto de N objetos de dos tipos, N ₁ del primero y N ₂ del segundo, la variable representa el número de objetos del primer tipo que aparecen entre n objetos seleccionados del conjunto, al azar.		
Exponencial Exp(λ)	Tiempo entre ocurrencias de un determinado fenómeno.	$E[X] = \frac{1}{\lambda}$ $Var[X] = \frac{1}{\lambda^2}$	
Normal N(μ , σ^2)		$E[X] = \mu$ $Var[X] = \sigma^2$	Si $X_1 \sim N(\mu_1, \sigma_{1}^2)$ y $X_2 \sim N(\mu_2, \sigma_{2}^2)$ independientes, entonces $aX_1 + bX_2 + c \sim$ $\sim N(a\mu_1 + b\mu_2 + c, a^2\sigma_{1}^2 + b^2\sigma_{2}^2)$
Gamma G(a,p)	Tiempo requerido para observar k ocurrencias de un evento de tipo Poisson	E[X] = p/a $Var[X] = p/a2$	Si X1,,Xn son variables aleatorias independientes tales que $X_i \sim Exp(\lambda)$ entonces $\sum_{i=1}^n X_i \sim G(\lambda, n)$