Compito di MDAL

12 Gennaio 2017

Cognome e nome:
Numero di matricola:
IMPORTANTE: Non si possono consultare libri e appunti. Non si possono usare calcolatrici, computer o altri dispositivi elettronici. Non si può scrivere con il lapis. Motivare in modo chiaro le risposte.
Esercizio 1. Dopo aver mostrato che $\mathcal{B} = \langle x^2 - 1, x, x^2 + 1 \rangle$ è una base di $\mathbb{R}[x]^{\leq 2}$ (polinomi di grado ≤ 2) si risponda alle seguenti domande:
1. si calcolino i coefficienti c_1, c_2, c_3 del polinomio $P(x) = 3x^2 + 2x + 1$ nella base \mathcal{B} (ovvero si scriva $P(x)$ nella forma $c_1(x^2 - 1) + c_2x + c_3(x^2 + 1)$);
2. si consideri l'applicazione lineare $D: \mathbb{R}[x]^{\leq 2} \to \mathbb{R}[x]^{\leq 2}$ definita ponendo $D(ax^2 + bx + c) = 2ax + b$ e si scriva la matrice associata a D rispetto alla base \mathcal{B} in partenza e in arrivo;
3. Calcolare la dimensione del nucleo e dell'immagine di D ;

4. Stabilire se D è diagonalizzabile.

Esercizio 2. Sia V il sottospazio di \mathbb{R}^3 definito dall'equazione 3x+5y=0 e sia W il sottospazio definito dall'equazione z=0.

- 1. Si calcoli la dimensione di $V \cap W$;
- 2. Si trovi una base ortogonale di V;
- 3. Si trovi un'applicazione lineare invertibile $L: \mathbb{R}^3 \to \mathbb{R}^3$ che manda W in V.

Esercizio 3. a) Risolvere la congruenza

$$84x \equiv 1540 \quad (455)$$

b) Per quali valori del numero intero positivo \boldsymbol{m} la congruenza

$$84x \equiv 770 \quad (175m)$$

ammette soluzione?

Esercizio 4. a) Quante sono le soluzioni in $\mathbb Z$ dell'equazione x+y+z=33 con $x\geq 0, y\geq 0, z\geq 0$?

b) Quante sono le soluzioni in $\mathbb Z$ dell'equazione x+y+z=33 soggette ai vincoli $x\geq 2, y\geq 3, z\geq 4$?