Polynôme interpolateur de Lagrange

Rappels : Représenter un graphe de fonction

■ Bibliothèque matplotlib.pyplot

import matplotlib.pyplot as plt

Pour tracer la courbe représentative de f sur un segment [a,b]:

1 Pour le vecteur des abscisses : X = np.linspace(a,b,n)

Rappel : ceci crée un vecteur composé de n points uniforméments répartis entre a et b. On choisira typiquement n = 100 ou 1000.

2 Pour le vecteur des ordonnées : Y = f(X)

Remplacer directement f(X) par l'expression voulue. Exemple, pour représenter la foncction $f: x \mapsto e^{-x^2}: Y = \text{np.exp}(-X ** 2)$.

Relier les points avec plt.plot(X,Y) puis afficher la représentation avec plt.show().

Exercice 1

La théorie.

Soit $n \in \mathbb{N}$ et $x_0 < x_1 < \ldots < x_n$ des réels distincts.

On définit les polynômes :

$$\forall i \in [\![0,n]\!], \ L_i(X) = \prod_{j \in [\![0,n]\!] \setminus \{i\}} \frac{X - x_j}{x_i - x_j}$$

1. Pour tous $i, k \in [0, n]$, compléter les valeurs suivantes :

Si
$$k \neq i$$
, $L_i(x_k) = \dots$ Si $k = i$, $L_i(x_i) = \dots$

2. Soit un polynôme P de la forme $P(X) = \sum_{k=0}^{n} \lambda_k L_k(X)$ avec $\lambda_0, \dots, \lambda_n \in \mathbb{R}$.

Compléter les valeurs suivantes :

$$P(x_0) = \dots, P(x_1) = \dots, P(x_n) = \dots$$

- 3. Compléter la preuve que $\mathcal{B} = (L_0, L_1, \dots, L_n)$ est une base de $\mathbb{R}_n[X]$:

il suffit de montrer que

- Soient $\lambda_0, \ldots, \lambda_n \in \mathbb{R}$. On suppose que $\sum_{k=0}^n \lambda_k L_k(X) = 0$ (égalité dans $\mathbb{R}[X]$).
- En évaluant en on obtient :
- En évaluant en on obtient :

etc

- En évaluant en on obtient :

On a montré que $\lambda_0 = \lambda_1 = \ldots = \lambda_n = 0$, CQFD.

4. Ainsi, tout $P \in \mathbb{R}_n[X]$ se décompose (de manière unique) dans la base \mathcal{B} . Préciser quelle est cette décomposition :

$$P(X) = \sum_{k=0}^{n} \dots L_k(X)$$

5. On en déduit que si $x_0 < x_1 < \ldots < x_n$ et si $y_0, y_1, \ldots, y_n \in \mathbb{R}$, il existe un unique polynôme P de degré $\leq n$ satisfaisant : $\forall k \in [0, n], \ P(x_k) = y_k$. Précisément, on peut donner la forme de ce polynôme : il s'agit de

$$P(X) = \dots$$

On l'appelle le **polynôme interpolateur de Lagrange** pour les points (x_0, y_0) , (x_1, y_2) , ... (x_n, y_n) .

♠ Exercice 2

La pratique.

- 1. Compléter la définition de la fonction poly_L qui prend en entrée :
- Une liste $x = [x_0, x_1, \dots, x_n]$ de réels deux à deux distincts,
- Un entier $i \in [0, n]$,
- Un réel t,

et renvoie la valeur du réel $L_i(t)$, où L_i est le polynôme défini précédemment.

Rappel: len(A) permet d'accéder au nombre d'éléments d'une liste A.

- 2. Compléter la définition de la fonction ${\tt poly_P}$ qui prend en entrée :
- Une liste $x = [x_0, x_1, \dots, x_n]$ de réels deux à deux distincts,
- Une liste $y = [y_0, y_1, \dots, y_n]$ de réels,
- Un réel t,

et renvoie la valeur de P(t),

où P est le polynôme interpolateur de Lagrange défini précédemment.

ECG1 Maths Appro. - Angelo Rosello

3. Compléter et taper le programme suivant pour afficher le graphe du polynôme interpolateur de Lagrange (avec les points spécifiés) sur l'intervalle [0, 5].

On pourra modifier les listes de points à interpoler, en ajouter / en retirer, et constater les modifications sur le polynôme affiché.