Cyber Physical Systems Project
Author: Aanchal Chaturvedi
Water Leak Detection System
created by using - UCTronics Ultimate Starter
Kit for Arduino
Design Specifications for this sketch -
This sketch
is designed to determin water leaks in building and detect humidity and temperature
at the time of leakage.
The data recorded from the sensors is sent to Adafruit
Cloud
Parts required:
- 1 Mega2560 R3
- 1 ESP8266 Module
- 1 DHT-11 Sensor Module
- 1 Grove Water Level Sensor Module
- Male
to Male Jumper Wires
- Male to Female Jumper Wires
- 1 830 Tie Point Breadboard
Library Used:
Wifi Esp

```
https://www.arduino.cc/reference/en/libraries/wifiesp/
 Adafruit MQTT
 https://www.arduino.cc/reference/en/libraries/adafruit-mqtt-library/
 DHT Sensor Library
 https://www.arduino.cc/reference/en/libraries/dht-sensor-library/
 References:
https://github.com/UCTRONICS/uctronics_arduino_kits/blob/master/Code/Lesson_25_water_level_
detection_sensor_module/Lesson_25_water_level_detection_sensor_module.ino
Arduino Examples > Adafruit MQTT Library > mqtt_esp8266 https://github.com/esp8266/Arduino
*/
#include "WiFiEsp.h"
#include "Adafruit_MQTT.h"
#include
 "Adafruit_MQTT_Client.h"
#include <DHT.h>
#include <DHT_U.h>
DHT Pin Settings **************************/
//Input pin for DHT Sensor
is Pin 7
```

#define DHTPIN A1

```
//We are using is DHT 11 type of DHT sensor
 Module
#define DHTTYPE DHT11
//create a DHT object/instance
//DHTPIN -
source pin for DHT sensor on the microcontroller
//DHTTYPE - type of DHT Sensor
 Module
DHT dht(DHTPIN, DHTTYPE);
/*************Water Level Sensor
// Configuration for the Water Level
Sensor analog input and output
#define WL_POWER_PIN 3
#define WL_SIGNAL_PIN
A0
/******************Active Buzzer pin ***********************/
int
buzzerPin = 4; //definition digital 8 pins as pin to control the buzzer
WiFi Settings ***************************/
char ssid[] = "********;
     // your network SSID (name)
```

```
char password[] = "******"; //
your network password
int status = WL_IDLE_STATUS; // the Wifi radio's status
Adafruit.io Setup ***********************/
#define AIO_SERVER "io.adafruit.com"
#define
AIO_SERVERPORT 1883 // use 8883 for SSL
#define AIO_USERNAME
 "********
#define AIO_KEY "**********
WiFiEspClient
client;
// Setup the MQTT client class by passing in the WiFi client and
 MQTT server and login details.
Adafruit_MQTT_Client mqtt(&client, AIO_SERVER,
AIO_SERVERPORT, AIO_USERNAME, AIO_KEY);
//publish to temperature feed located
 at aanchal0431/feeds/WaterLevel
Adafruit_MQTT_Publish inputWaterLevel = Adafruit_MQTT_Publish(&mqtt,
AIO_USERNAME "/feeds/WaterLevel");
//publish to humidity feed located at aanchal0431/feeds/humidity
Adafruit_MQTT_Publish
inputHumidity = Adafruit_MQTT_Publish(&mqtt, AIO_USERNAME "/feeds/humidity");
//publish
to temperature feed located at aanchal0431/feeds/temperature
```

```
Adafruit_MQTT_Publish
 inputTemperature = Adafruit_MQTT_Publish(&mqtt, AIO_USERNAME "/feeds/temperature");
//publish
 to temperature feed located at aanchal0431/feeds/temperature
Adafruit_MQTT_Publish
 inputonoff = Adafruit_MQTT_Publish(&mqtt, AIO_USERNAME "/feeds/onoff");
void
setup() {
//baud rate for mega board
 Serial.begin(115200);
//The serial connection at RX1, TX1 is open and 9600 is the baud rate for ESP8266
 Serial1.begin(9600);
 Serial.println("Cyber Physical Systems Project
 - Water Leakage Detection Sensor");
 delay(2000);
// Connect to WiFi
 Serial.println();
 WiFi.init(&Serial1);
// check for the presence of
the shield
 if (WiFi.status() == WL_NO_SHIELD) {
  Serial.println("WiFi
 shield not present");
```

```
// don't continue
}
if (status != WL_CONNECTED)
{
// attempt to connect to WiFi network
 Serial.print("Attempting
to connect to WPA SSID: ");
 Serial.println(ssid);
 // Connect to WPA/WPA2
network//
 status = WiFi.begin(ssid, password);
 while (WiFi.status()
!= WL_CONNECTED) {
  delay(500);
 }
 Serial.println("You're
connected to the network");
}
//setup for Water Level Sensor
pinMode(WL_POWER_PIN, OUTPUT); // configure pin as an OUTPUT
//initialization
for DHT sensor
dht.begin();
//buzzer pin mode
pinMode(buzzerPin,
```

```
OUTPUT);
}
void loop() {
 MQTT_connect();
 delay(10000);//1
 seconds delay between each run
//Humidity and Temperature Sensor code
 float humidity = dht.readHumidity();
 float temperature = dht.readTemperature(true);
// Water Level Sensor Code
long waterLevel = getWaterLevel();
Serial.println("Water
 Level is: " + waterLevel);
//calibrations for humidity and temperature
 reading is based on the average of
//the readings before
humidity = humidity
 + 14;
 temperature = temperature - 2;
 if (! inputWaterLevel.publish(waterLevel))
  Serial.println(F("Failed"));
```

```
} else {
 Serial.println(F("OK!"));
}
if (! inputHumidity.publish(humidity)) {
 Serial.println(F("Failed"));
} else {
 Serial.println(F("OK!"));
}
if (! inputTemperature.publish(temperature))
{
 Serial.println(F("Failed"));
} else {
 Serial.println(F("OK!"));
}
// validate water level values
if (isnan(waterLevel)) {
 Serial.println("Unable
to read from the Water Level sensor!");
 //end loop without executing the
remaining code
 return;
}
//validate temperature and humidity
values
if (isnan(humidity) | | isnan(temperature)) {
```

```
Serial.println("Unable
to read from the DHT sensor!");
 //end loop without executing the remaining
code
 return;
}
if (waterLevel > 0 && waterLevel <= 100) {
 long onStatus = 10;
 soundAlarm();
 if (! inputonoff.publish(onStatus))
{
  Serial.println(F("Failed"));
 } else {
  Serial.println(F("OK!"));
 }
} else {
long onStatus = 0;
if (! inputonoff.publish(onStatus))
  Serial.println(F("Failed"));
 } else {
  Serial.println(F("OK!"));
 }
}
//Print Humidity and Temperature sensor readings and Water
Level Sensor in serial monitor
```

```
Serial.print("Water Level = ");
 Serial.print(waterLevel);
 Serial.print(" ");
 Serial.print("Humidity = ");
 Serial.print(humidity);
 Serial.print("% ");
 Serial.print("Temperature = ");
 Serial.print(temperature);
 Serial.println("F");
}
void MQTT_connect() {
 int8_t ret;
 // Stop if already connected.
 if (mqtt.connected()) {
  return;
 }
 Serial.print("Connecting to MQTT... ");
 uint8_t retries = 3;
 while ((ret = mqtt.connect()) != 0) { // connect will return 0 for connected
  Serial.println(mqtt.connectErrorString(ret));
  Serial.println("Retrying
 MQTT connection in 5 seconds...");
```

```
mqtt.disconnect();
  delay(5000);
// wait 5 seconds
  retries--;
  if (retries == 0) {
   // basically
 die and wait for reset
   while (1);
  }
}
Serial.println("MQTT
Connected!");
}
void soundAlarm(){
  digitalWrite(buzzerPin, HIGH);
//Set PIN 8 feet as HIG67890]\\H = 5 v
  delay(2000);
                        //Set
 the delay time2000ms
  digitalWrite(buzzerPin, LOW); //Set PIN 8 feet for LOW
 = 0 v
  delay(2000);
                        //Set the delay time2000ms
}
long
 getWaterLevel(){
 digitalWrite(WL_POWER_PIN, HIGH); // turn the sensor ON
                       // wait 10 milliseconds
 delay(10);
```

```
long waterLevel
= analogRead(WL_SIGNAL_PIN); // read the analog value from sensor
digitalWrite(WL_POWER_PIN,
LOW); // turn the sensor OFF
return waterLevel;
}
```