Численное решение задачи Коши для обыкновенного дифференциального уравнения первого порядка. Вариант 11.

Содержание

Получение таблицы значений решения задачи Коши
Метод Эйлера
С шагом h
Алгоритм
Реализация
Результат работы
С шагом
Алгоритм
Реализация
Результат работы
Уточнение по Ричардсону
Построение графиков таблично заданных функций
Метод Рунге - Кутты четвертого порядка
Алгоритм
Реализация
Результат работы
Экстраполяционный метод Адамса
Алгоритм
Реализация
Результат работы
Интерполяционный метод Адамса
Алгоритм
Реализация
Результат работы
Таблица погрешностей

Получение таблицы значений решения задачи Коши

Воспользуемся встроенными методами языка Matlab

Определим шаг

h = 0.1000

```
h = 0.1
```

Определим вектор х

```
x0=0

xn = 1

xn = 1

x=x0:h:xn;

y0 = 0
```

```
y0 = 0
```

```
[xacc,y_math] = ode113(@(x,y) (0.6-y^2)*cos(x)+0.2*y,x,y0)
```

```
xacc = 11 \times 1
    0.1000
    0.2000
    0.3000
    0.4000
    0.5000
    0.6000
    0.7000
    0.8000
    0.9000
y_math = 11 \times 1
    0.0604
    0.1207
    0.1796
    0.2360
    0.2890
    0.3380
    0.3826
    0.4227
    0.4583
```

Метод Эйлера

С шагом h

Алгоритм

Для поиска решения применим формулу $y_{m+1} = y_m + h f(x_m, y_m), m = 0, \dots, N-1$

Реализация

Реализация алгоритма находится в функции Euler.m

Результат работы

y_Euler=Euler(xacc(xacc<=0.5),y0,h)</pre>

```
y_Euler = 6×1
0
0.0600
0.1205
0.1803
0.2382
0.2930
```

С шагом

Алгоритм

Для поиска решения применим формулы

$$\hat{y}_{m+1} = y_m + hf(x_m, y_m)$$

$$y_{m+1} = y_m + \frac{h}{2} (f(x_m, y_m) + f(x_{m+1}, \hat{y}_{m+1})), m = 0, \dots, N-1$$

Реализация

Реализация алгоритма находится в функции advancedEuler.m

Результат работы

Уточнение по Ричардсону

Найдем главный член погрешности

Уточним решение

Построение графиков таблично заданных функций

Построим графики таблично заданных функций в одних осях координат

```
labels = {'Точное значение', 'Метод Эйлера', 'Усовершенствованный метод Эйлера', 'Уточненное по labels = 1×4 cell 'Точное значение' 'Метод Эйлера' 'Усовершенствованный метод Э... 'Уточненно ...
```

```
acc_plot = plot(xacc(xacc<=0.5),y_math(1:6))</pre>
acc_plot =
 Line with properties:
              Color: [0 0.4470 0.7410]
         LineStyle: '-'
          LineWidth: 0.5000
            Marker: 'none'
        MarkerSize: 6
   MarkerFaceColor: 'none'
              XData: [0 0.1000 0.2000 0.3000 0.4000 0.5000]
              YData: [0 0.0604 0.1207 0.1796 0.2360 0.2890]
             ZData: [1x0 double]
 Show all properties
hold on
euler_plot=plot(xacc(xacc<=0.5),y_Euler)
euler plot =
 Line with properties:
              Color: [0.8500 0.3250 0.0980]
         LineStyle: '-'
         LineWidth: 0.5000
            Marker: 'none'
         MarkerSize: 6
   MarkerFaceColor: 'none'
             XData: [0 0.1000 0.2000 0.3000 0.4000 0.5000]
             YData: [0 0.0600 0.1205 0.1803 0.2382 0.2930]
             ZData: [1x0 double]
 Show all properties
adv_euler_plot=plot(xacc(xacc<=0.5),y_adv_Euler)</pre>
adv_euler_plot =
 Line with properties:
              Color: [0.9290 0.6940 0.1250]
          LineStyle: '-'
          LineWidth: 0.5000
            Marker: 'none'
        MarkerSize: 6
   MarkerFaceColor: 'none'
              XData: [0 0.1000 0.2000 0.3000 0.4000 0.5000]
             YData: [0 0.0603 0.1204 0.1792 0.2356 0.2885]
             ZData: [1x0 double]
 Show all properties
richardson_plot=plot(xacc(xacc<=0.5),y_rev)</pre>
richardson_plot =
 Line with properties:
             Color: [0.4940 0.1840 0.5560]
          LineStyle: '-'
          LineWidth: 0.5000
            Marker: 'none'
```

Show all properties

```
hold off

set(gca,'XGrid','on','YGrid','off')

xlim('auto')
ylim('auto')
grid on
legend(labels,'Location','northwest')
```



```
Y = [y_math(1:6),y_Euler,y_adv_Euler,y_rev]
```

```
Y = 6 \times 4
         0
                    0
                               0
                                         0
              0.0600
    0.0604
                         0.0603
                                    0.0604
              0.1205
                         0.1204
                                    0.1204
    0.1207
    0.1796
              0.1803
                         0.1792
                                    0.1789
    0.2360
              0.2382
                         0.2356
                                    0.2347
    0.2890
              0.2930
                         0.2885
                                    0.2871
```

stackedplot(xacc(1:6),Y,'DisplayLabels',labels)

Метод Рунге - Кутты четвертого порядка

Алгоритм

Расчетные формулы метода:

$$y_{m+1} = y_m + \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4)$$

$$k_1 = hf(x_m, y_m)$$

$$k_2 = hf(x_m + \frac{h}{2}, y_m + \frac{k_1}{2})$$

$$k_3 = hf(x_m + \frac{h}{2}, y_m + \frac{k_2}{2})$$

$$k_4 = hf(x_m + h, y_m + k_3), m = 0, ..., N - 1$$

Реализация

Реализация алгоритма находится в функции rungeCutt.m

Результат работы

$$x_RK = 11 \times 1$$

```
0
0.1000
0.2000
0.3000
0.4000
0.5000
0.6000
0.7000
0.8000
0.9000
```

y_RK = rungeCutt(x_RK,y0,h)

```
y_RK = 11×1
0
0.0604
0.1207
0.1796
0.2360
0.2890
0.3380
0.3826
0.4227
0.4583
```

Экстраполяционный метод Адамса

Алгоритм

Расчетная формула имеет следующий вид:

$$y_{m+1} = y_m + \sum_{j=0}^{k} b_{kj} q_{m-j}$$

где
$$b_{kj}=rac{(-1)^j}{j!(k-j)!}\int\limits_0^1rac{t(t+1)\dots(t+k)}{t+j}dt,\,j=0,\dots,k$$
 , $q_{m-j}=hf(x_{m-j},y_{m-j})$

В нашем случае k = 4. В качестве первых k приближений используем значения y, полученные ранее методом Рунге - Кутты.

Реализация

Реализация алгоритма описана в функции AdamsIn.m

Результат работы

$$y_Ad_ex = adamsEx(x_RK, y_RK(1:5), h)$$

```
y_Ad_ex = 11×1
0
0.0604
0.1207
0.1796
0.2360
0.2890
```

```
0.3380
0.3827
0.4227
0.4583
```

Интерполяционный метод Адамса

Алгоритм

В качестве начального приближения $y_{m+1}^{(0)}$ возьмем y_{m+1} , полученный с помощью экстраполяционного метода Адамса. Будем применять формулу

$$y_{m+1}^{(k+1)} = y_m^{(k)} + \sum_{j=-1}^{k-1} b_{kj}^* q_{m-j}^{(k)}$$

$$b_{kj}^* = \frac{(-1)^{j+1}}{(j+1)!(k-j-1)!} \int\limits_0^1 \frac{(t-1)t\dots(t+k-1)}{t+j} dt, \ j = -1,\dots,k-1 \ , \ q_{m-j}^{(k)} = hf(x_{m-j}^{(k)},y_{m-j}^{(k)}),$$

пока не будет выполнено условие $\left|y^{(k+1)}-y^{(k)}\right|<\epsilon$

Реализация

Реализация алгоритма находится в функции adamsIn.m

Результат работы

```
y_Ad_in = adamsIn(x_RK,y_Ad_ex,h)
```

```
y_Ad_in = 11×1
0
0.0604
0.1207
0.1796
0.2360
0.2890
0.3380
0.3826
0.4227
0.4583
```

Таблица погрешностей

labels = {'Точное значение', 'Метод Рунге-Кутты', 'Экстраполяционный метод Адамса', 'Интерполяцеттаble = table(y_math, y_math - y_RK,y_math - y_Ad_ex,y_math - y_Ad_in,'VariableNames',labels

errTable = 11×4 table

	Точное значение	Метод Рунге-Кутты	Экстраполяционный метод Адамса
1	0	0	0
2	0.0604	1.7860e-08	1.7860e-08

	Точное значение	Метод Рунге-Кутты	Экстраполяционный метод Адамса
3	0.1207	1.5591e-08	1.5591e-08
4	0.1796	-5.6264e-08	-5.6264e-08
5	0.2360	-2.0391e-07	-2.0391e-07
6	0.2890	-3.5626e-07	-1.0832e-05
7	0.3380	-4.3008e-07	-2.2478e-05
8	0.3826	-3.9909e-07	-3.2941e-05
9	0.4227	-2.9143e-07	-3.9595e-05
10	0.4583	-2.2825e-07	-4.2386e-05
11	0.4896	-2.1684e-07	-4.1806e-05