

CS 6375 Introduction to Machine Learning

Rishabh Iyer
University of Texas at Dallas

Course Info.

Instructor: Rishabh Iyer

Office: ECSS 3.405

Office hours:

Mondays, 3 PM – 3:45 PM

• By Appointment (Extra Office Hours): Wednesdays, 3 PM – 3:45 PM

TA: Will be Announced

Course website:

https://github.com/rishabhk108/MLClass/tree/master/Fall2025

Prerequisites

- CS3345, Data Structures and Algorithms
- CS3341, Probability and Statistics in Computer Science
- "Mathematical sophistication"
 - Basic probability
 - Linear algebra: eigenvalues/vectors, matrices, vectors, etc.
 - Multivariate calculus: derivatives, gradients, etc.
- I'll review some concepts as we come to them, but you should brush up on areas that you aren't as comfortable

Grading

- 3-4 problem sets (30%)
 - Mix of theory and programming (in Python)
 - Available and turned in on eLearning
 - Approximately one assignment every 2-3 weeks
- Midterm Exam (30%)
- Final Project (30%)
- Class Participation (10%)

-subject to change-

Course Topics

Supervised Learning

- SVMs & kernel methods
- Decision trees, Random Forests, Gradient Boosted Trees
- Nearest Neighbor: KNN Classifiers
- Logistic Regression
- Neural networks
- Probabilistic models: Bayesian networks, Naïve Bayes

Unsupervised Learning

- Clustering: k-means & spectral clustering
- Dimensionality reduction

Parameter estimation

 Bayesian methods, MAP estimation, maximum likelihood estimation, expectation maximization, ...

Evaluation

AOC, cross-validation, precision/recall

Ensemble & Statistical Methods

- Boosting, bagging, bootstrapping
- Sampling

Other Forms of Learning

Reinforcement Learning, Semi-supervised Learning, Active Learning,

What is Machine Learning?

- ☐ Programming:
 - ☐ A human writes a program (set of rules/conditions/algorithm) to do a specific task
 - ☐ For a given input, the program generates an output
- Machine Learning Paradigm:
 - Generate training data consisting of ("input", "output") pairs
 - ☐ The "ML Model" automatically generates a program (set of rules/conditions) to generate an output for a new (unseen) input

Human Created

Basic Machine Learning Paradigm

Matrices and Matrix Vector Product

If $A \in \mathbb{R}^{m \times n}$ and $x \in \mathbb{R}^n$, we can define y = Ax where $y \in \mathbb{R}^m$ is a m dimensional vector.

Matrix vector product is defined as below:

$$A\mathbf{x} = egin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \ a_{21} & a_{22} & \dots & a_{2n} \ dots & dots & \ddots & dots \ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix} egin{bmatrix} x_1 \ x_2 \ dots \ x_n \end{bmatrix} = egin{bmatrix} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n \ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n \ dots \ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n \end{bmatrix}$$

Matrix Vector Product Example

For example, if

$$A = egin{bmatrix} 1 & -1 & 2 \ 0 & -3 & 1 \end{bmatrix}$$

and $\mathbf{x} = (2, 1, 0)$, then

$$egin{aligned} A\mathbf{x} &= egin{bmatrix} 1 & -1 & 2 \ 0 & -3 & 1 \end{bmatrix} egin{bmatrix} 2 \ 1 \ 0 \end{bmatrix} \ &= egin{bmatrix} 2 \cdot 1 - 1 \cdot 1 + 0 \cdot 2 \ 2 \cdot 0 - 1 \cdot 3 + 0 \cdot 1 \end{bmatrix} \ &= egin{bmatrix} 1 \ -3 \end{bmatrix}. \end{aligned}$$

Matrix Matrix Product

$$AXB = C$$
 mxP $PX2$ $mx2$

A: n rows p columns

 $C = A \times B : n \text{ rows } q \text{ columns}$

Types of Machine Learning

Axis One: What is the Output?

Axis Two: Amount of Labeled Data for training and how is

it available to us

Types of Machine Learning

Types of Machine Learning

Supervised Learning

- Input: $(x^{(1)}, y^{(1)}), ..., (x^{(M)}, y^{(M)})$
 - $x^{(m)}$ is the m^{th} data item and $y^{(m)}$ is the m^{th} label
- Goal: find a function f such that $f(x^{(m)})$ is a "good approximation" to $y^{(m)}$
 - Can use it to predict y values for previously unseen x values

Supervised Learning

Classification vs Regression

- Input: pairs of points $(x^{(1)}, y^{(1)}), ..., (x^{(M)}, y^{(M)})$ with $x^{(m)} \in \mathbb{R}$
- Regression case: $y^{(m)} \in \mathbb{R}$
- Classification case: $y^{(m)} \in [0, k-1]$ [k-class classification]
- If k = 2, we get Binary classification

Examples of Supervised Learning

Classification

- Spam email detection
- Handwritten digit recognition
- Medical Diagnosis
- Fraud Detection
- Face Recognition

Regression

- Housing Price Prediction
- Stock Market Prediction
- Weather Prediction
- Market Analysis and Business Trends

Classification – Medical Diagnosis

Classification – Digit Recognition

Classification – Spam

Regression – Housing Price Prediction

Home Facts

Status	Active	Time on Redfin	2 days
Property Type	Residential, Single Family	HOA Dues	\$4/month
Year Built	1969	Style	Single Detached, Mid-Century Modern, Ranch, Traditional
Community	Canyon Creek Country Club 9	Lot Size	10,019 Sq. Ft.
MLS#	14375892		

Ranking – Search Engines

Recommendation – Movie Recommendations

Friends' Favorites

Watched by your friends

Unsupervised Learning

- Input: $x^{(1)}, ..., x^{(M)}$
 - $x^{(m)}$ is the m^{th} data item
 - No Label!
- Goal: find a clustering/grouping of data points into k clusters so that each cluster consists of similar points

Applications of Unsupervised Learning

- Item Categorization
- Clustering Customers
- Similar Item Recommendation
- Outlier Detection

Reinforcement Learning

Reinforcement Learning – Robocup Soccer

Other Types of Learning

- Semi-supervised
 - Training Labeled + Unlabeled Data Jointly
- Active learning
 - Semi-supervised learning where the algorithm can ask for the correct outputs for specifically chosen data points
- Online Learning
 - Data and Labels coming in a stream
- Reinforcement learning
 - The learner interacts with the world via allowable actions which change the state of the world and result in rewards
 - The learner attempts to maximize rewards through trial and error

Terminology

Terminology

- Training Example: <x,y>
 - x: <u>feature vector</u> (describes the attributes of something)
 - **y**: <u>label</u> (continous values for regression problems: [1,2,...,k] for classification problems)
- Training set A set of training examples drawn randomly from $P(\mathbf{x},\mathbf{y}) \rightarrow \left\{ \left(\chi^{(1)}, y^{(1)} \right) , \left(\chi^{(2)}, y^{(2)} \right) , \dots \left(\chi^{(m)}, y^{(m)} \right) \right\}$
 - <u>Key Assumption:</u> Independent and identically distributed. i.e., all the examples are drawn from the same distribution but are drawn independent of one another
- <u>Target function</u> True mapping from x to y
- <u>Hypothesis:</u> A function h considered by the learning algorithm to be similar to the target function
- <u>Test set:</u> A set of examples drawn from P(x,y) to evaluate the "goodness of h"
- Hypothesis Space: The space of all hypotheses that can in principle be considered and returned by the learning algorithm

Supervised Learning

- **Given**: Training examples (x, f(x)) for some unknown function f.
- Find: A good approximation to f. _ nypothess h
- Situations where there is no human expert
 - x: bond graph of a new molecule
 - f(x): predicted binding strength to AIDS protease molecule
- Situations where humans can perform the task but can't describe how they do it
 - x: picture of a hand-written character
 - f(x): ascii code of the character
- Situations where the desired function is changing frequently
 - x: description of stock prices and trades for last 10 days
 - f(x): recommended stock transactions
- Situations where each user needs a customized function f
 - x: incoming email message
 - f(x): importance score for presenting to the user (or deleting without presenting)

Supervised Learning Workflow

- •**Testing:** Given a new point (x_t, y_t) drawn from P, the classifier is given x and predicts $\hat{y}_t = f(x_t)$
- Evaluation: Measure the error $Err(\hat{y}_t, y_t)$ often same as L

Linear Regression

- Simple linear regression
 - Input: pairs of points $(x^{(1)}, y^{(1)}), ..., (x^{(M)}, y^{(M)})$ with $x^{(m)} \in \mathbb{R}^d$ and $y^{(m)} \in \mathbb{R}$ (Regression)
 - Hypothesis space: set of linear functions $f(x) = a^T x + b$ with $a \in \mathbb{R}^d$, $b \in \mathbb{R}$
 - Error metric and Loss Function: squared difference between the predicted value and the actual value

$$\begin{bmatrix} a_1 & a_2 & \cdots & a_n \end{bmatrix} = \begin{bmatrix} a_1 & a_1 & a_2 & a_2 \\ a_1 & a_2 & \cdots & a_n \end{bmatrix} = \begin{bmatrix} a_1 & a_1 & a_2 & a_2 \\ \vdots & \vdots & \vdots & \vdots \\ a_n & a_n & a_n \end{bmatrix}$$

$$a = \begin{cases} a_1 \\ a_2 \end{cases}$$

$$a = \begin{cases} a_1 \\ a_2 \end{cases}$$

Regression

Regression

How do we compute the error of a specific hypothesis?

Linear Classification

- Simple linear classification
 - Input: pairs of points $(x^{(1)}, y^{(1)}), ..., (x^{(M)}, y^{(M)})$ with $\overline{x^{(m)}} \in \mathbb{R}^d$ and $y^{(m)} \in [0, k-1]$ (Classification)
 - Hypothesis space: set of linear functions f(x) = $sign(a^Tx + b)$ with $a \in \mathbb{R}^d$, $b \in \mathbb{R}$ • Error metric: Accuracy (or more complex like AUC, ...)

 - Loss Function: Log Loss, Hinge Loss, Perceptron Loss...

Linear Classification

Binary Classification

- Regression operates over a continuous set of outcomes
- Suppose that we want to learn a function $f: X \to \{0,1\}$
- As an example:

	x_1	x_2	x_3	у
1	0	0	1	0
2	0	1	0	1
3	1	1	0	1
4	1	1	1	0

How many functions with three binary inputs and one binary output are there?

Binary Classification

	x_1	x_2	x_3	у
	0	0	0	?
1	0	0	1	0
2	0	1	0	1
	0	1	1	?
	1	0	0	?
	1	0	1	?
3	1	1	0	1
4	1	1	1	0

28 possible functions

2⁴ are consistent with the observations

How do we choose the best one?

What if the observations are noisy?

Challenges in ML

- How to choose the right hypothesis space?
 - Number of factors influence this decision: difficulty of learning over the chosen space, how expressive the space is,
- How to evaluate the quality of our learned hypothesis?
 - Prefer "simpler" hypotheses (to prevent overfitting)
 - Want the outcome of learning to generalize to unseen data
- Computational Tractability
- Can we trust the results? Explainability!

Challenges in ML

- How do we find the best hypothesis?
 - This can be an NP-hard problem!
 - Need fast, scalable algorithms if they are to be applicable to real-world scenarios

Muenshi Approaches
Poly have Algos