OUTPUT PENTODE PENTHODE DE SORTIE ENDPENTODE

Heating: indirect by A.C. or D.C.;

parallel supply

Chauffage: indirect par C.A. ou C.C.; alimentation en parallèle

Heizung: indirekt durch Wechsel-

oder Gleichstrom:

Parallelspeisung

6,3 A I_r = 0,76 A

Dimensions in mm en mm Dimensions Abmessungen in mm

Base, culot, Sockel: NOVAL

Capacitances Capacités Kapazitäten

= 10,8 pF = 6,5 pF C_{ag1} < 0,5 pF $C_{g1f} < 0.25 pF$

٧a	=			250			v
V _{g2}	=			250			V
V _{g1}	2			-7,3			٧
R _k	=			135			Ω
Ra	=			5,2			kΩ
v _i	=	0	0,3	3,4	4,3	4,7 ²)	Veff
I_a	=	48	_	_	49,5	49,2	mA
Ig2	=	5,5	_	_	10,8	11,6	mA
ร	=	11,3	-	_	-	_	mA/V
Ri	=	38	_	_	_	_	kΩ
µg2g1	=	19	_	_	_	_	
W ₀ 1)	=	0	0,05	4,5	5,7	6,0	W
dtot 1)	=	-	_	6,8	10	-	%
d ₂ 1)	=	_	_	3,0	2,0	_	%
a ₃ 1)	=	-	-	5,8	9,5	-	%
٧a	=			250			٧
v_{g2}	=			250			٧
Vg1	=			-7,3			٧
Rk	=			135			Ω
Ra	=			4,5			kΩ
٧ı	=	0	0,3	3,5	4,4	4,8 2)	Veff
Ιa	=	48	-	-	50,6	50,5	mA
Ig2	=	5,5	-		10	11	m.A
S	3	11,3	-	-	-	-	mA/V
Ri	=	38	-	-	-	-	kΩ
1g2g1	=	19		-	-	-	
Wo 1)	=	0	0,05	4,5	5,7	6,0	W
dtot 1)	3	-		7,5	10	-	%
d ₂ 1)	=	-	-	5,7	5,0	-	%
d ₃ 1)	=	-	-	4,5	8	_	%

mesure avec polarisation fixe
Gemessen mit fester Gittervorspannung

2) Ig1 = +0,3

A

Operating characteristics class A (continued) Caractéristiques d'utilisation classe A (continuation) Betriebsdaten Klasse A (Fortsetzung)						
Betrie	bsda.	ten Klass	e A (For	tsetzung)		
V _a	=			250		V
v_{g2}	=			250		V
Vg1	3			-8,4		V
$R_{\mathbf{k}}$	=			210		Ω
Ra	=			,7		kΩ
V ₁	=	0	0,3	3,5	5,5 ²) V _{eff}
Ia	=	36	_	36,8	36	m A.
Ig2	=	4,1	-	8,5	14,6	m A
s	2	10	_	-	_	mA/V
Rį	2	40	-	_	_	kΩ
µg2g1	=	19	-	-	_	
W ₀ 1) =	0	0,05	4,2	5,6	W
) =	-	_	10	-	%
٠.) =	_	-	1,7	-	%
d3 1) =	-	-	8,7	-	%
v _a	=			250		٧
v_{g2}	=			210		A
Vg1	=			-6,4		V
Rk	=			160		Ω
R_a	=			.7		kΩ
v ₁	=	0	0,3	3,4	3,8 ²	Veff
Ia	2	36	-	36,6	36,5	mA
I_{g2}	=	3,9	-	7,3	8,0	mA
s	-	10,4	-	-	-	mA/V
Ri	=	40	-	-	-	kΩ
μ _g 2g1 ₁	=	19		-	-	
W ₀) =	0	0,05	4,3	4,7	W
d _{tot} 1) =	-	-	10	-	76
	,	-	-	1,8	-	%
<u></u>	<u></u>			9,3	-	*
1)Measured with fixed bias Mesuré avec polarisation fixe Gemessen mit fester Cittervorspannung						
2)Ig1	= +0,	3 μΑ				

PHILIPS

Operating characteristics class B, two tubes Caractéristiques d'utilisation classe B, deux tubes Betriebsdaten Klasse B, zwei Röhren

$v_{\mathbf{a}}$	=	25	50	300	٧
Vg2.	=	25	50	300	V
V _{g1}	=	-11,	,6	-14,7	V
Raa	=		8	. 8	kΩ
٧į	=		8	0	10 Veff
Ia	=	2 x10	2 x 37,5	2 x 7,5	2x46 mA
Ig2	=	2x1,1	2 x7,5	2 x 0,8	2x11 mA
Wo	=	0	11	0	17 W
dtot	=	_	3	_	4 %

Operating characteristics class AB, two tubes Caractéristiques d'utilisation classe AB, deux tubes Betriebsdaten Klasse AB, zwei Röhren

V _a	=	2	250	300	v
v_{g2}	=	2	250	300	v
R_k	=	1	130	130	Ω
Raa	=		. 8	. 8	kΩ
$v_{\mathtt{i}}$	=	0	8		10 Veff
Ia	*	2x31	2x37,5	2 x 36	2x46 mA
I _{g2}	=	2x3,5	2x7,5	2x4	2x11 mA
₩o	=	0	11	0	17 W
dtot	=	-	. 3	-	4 %

EL 84

Operating characteristics in triode connection, class A (screen grid connected to anode) Caractéristiques d'utilisation en montage triode, classe A (grille-ecran reliée à l'anode) Betriebsdaten in Triodenschaltung, Klasse A (Schirmgitter verbunden mit Anode)

$v_{\mathbf{a}}$	=		250	Ψ
$R_{\mathbf{k}}$	=		270	Ω
R_a	=		3,5	kΩ
v ₁	=	0	1,0	6,7 Veff
Ia	=	34	-	36 mA
Wo	=	-	0,05	1,95 W
$a_{ ext{tot}}$	=	-	_	9 %

Operating characteristics two tubes class AB in triode connection (Screen grid connected to anode) Caractéristiques d'utilisation deux tubes en classe AB en montage triode (Grille-ècran reliée à l'anode) Betriebsdaten zwei Röhren in Klasse AB in Triodenschaltung (Schirmgitter verbunden mit Anode)

νa	=		250		300	V
$R_{\mathbf{k}}$	=		270		270	Ω
Raa	=				10	kΩ
٧į	æ′	0	8,3	0		10 Veff
I_a	=	2x20	2 x 21,7	2 x 24		2x26 mA
Wo	=	0	3,4	0		5,2 ₩
dtot	=	, -	2,5	-		2,5 %
$V_1 (W_0 = 50)$	mW)⇒		0,95		0,9	V _{eff}

PHILIPS

limiting values Caractéristiques limites Grenzdaten

```
Vao
                               550 V
                     = max.
                               300 V 1)
 ٧g
                     = max.
                                 12 W 1)
 Wa
                     = max.
                               550 ¥
 Vg2o
                     = max.
                               300 V 1
 V22
                     = max.
                                  2 W
 Wg2
                     = max.
                                  4 W
                     = max.
 Wg2p
-V<sub>21</sub>
                     = max.
                               100 V
-V_{g1}(I_{g1}=+0,3\mu A) = max.
                               1.3 V
                               65 mA
                     = max.
                                  1 MQ2
 R_{g1}
                     = max.
                             0,3 MΩ<sup>3</sup>)
 R_{\sigma 1}
                     = max.
                     = max. 100 V
 Vrf
                                 20 kΩ
 Rkf
                     = max.
```

When the heater and positive voltages are obtained from a storage battery by means of a vibrator, the max. values of Va and Vg2 are 250 V and that of Wa is 9 W.

Si la tension de chauffage et les tensions positives sont obtenues d'un accumulateur par moyen d'un vibreur,les valeurs max. de $\rm V_{B}$ et $\rm V_{g2}$ sont de 250 V et celle de Wa est de 9 W.

Wenn die Heizspannung und die positiven Spannungen mittels eines Wechselrichters von einem Akkumulator erhalten werden, sind die Grenzwerte von V_a und V_{g2} 250 V und von W_a 9 W.

With automatic grid bias Avec polarisation automatique Bei automatischer Gittervorspannung

³⁾ With fixed bias
Avec polarisation fixe
Bei fester Gittervorspannung

	EL84	
page	sheet	date
1	1	1955.03.03
2	2	1955.03.03
3	3	1953.11.11
4	4	1953.11.11
5	5	1955.03.03
6	6	1955.03.03
7	Α	1955.03.03
8	В	1955.03.03
9	С	1957.10.10
10	E	1957.10.10
11	E	1957.10.10
12	F	1957.10.10
13	G	1957.10.10
14	Н	1957.10.10
15	1	1957.10.10
16	J	1957.10.10
17	K	1957.10.10
18	L	1957.10.10
19	M	1957.10.10