Linear Algebra 1. *Injective* iff f(x1) = f(x2)implies that x1 = x2. 2. Surjective iff for all $u \in Y$ there exists $x \in X$ such that y = f(x). 3. Bijective iff it is both injective and surjective, i.e. for all $y \in Y$ there exists a unique $x \in X$ such that y =1. f has a left inverse iff it is injective. 2. f has a right inverse iff it is surjective. 3. f is invertible iff it is bijective. 4. If f is invertible then any two inverses (left-, right- or both) coincide. Group (G, *): 1. Associative $\forall a, b, c \in G, a * (b * c) = (a * b) * c$. 2. $Identity: \exists e \in G, \forall a \in G, a * e = e * a = a.$ 3. Inverse: $\forall a \in G, \exists a^{-1} \in G, a * a^{-1} = a^{-1} * a = e$. (G, *) is commutative (or Abelian) iff in addition to 1-3: 4. Commutative: $\forall a, b \in G, a * b = b * a$. Ring $(R, +, \cdot)$: +: associative, identity, inverse, communitative \cdot : associative, identity $distributive: a \cdot (b+c) = a \cdot b + a \cdot cand(b+c) \cdot a = b \cdot a + c \cdot a$ Field is a communitative Ring that in addition satisfies Multiplication inverse. Linear Space (V, F, \oplus, \odot) : \oplus : associative, identity, inverse, communitative(V!!) \odot : associative $\forall a, b \in F, x \in V, a \odot (b \odot x) = (a \cdot b) \odot x$ $inverse \forall x \in V, 1 \odot x = x$ Distributive: $\forall a, b \in F, \forall x, y \in V, (a + b) \odot x =$ $(a \odot x) \oplus (b \odot x)$ and $(a \odot (x \oplus y) = (a \odot x) \oplus (a \odot y)$ **Product Space** $If(V, F, \oplus V, \odot V) and(W, F, \oplus W, \odot W)$ are linear spaces over the same field, the product space $(V \times W, F, \oplus, \odot)$ is the linear space comprising all pairs $(v, w) \in V \times W$ with \oplus defined by $(v1, w1) \oplus (v2, w2) =$ $(v1 \oplus v2, w1 \oplus w2), and \odot defined by a \odot (v, w) =$ $(a \odot Vv, a \odot Ww).$ **Subspace** Let (V, F) be a linear space and $W \subseteq V$. (W, F) is a linear subspace of V iff it's a L.S. i.e. $\forall w_1, w_2 \in W, a_1, a_2 \in F$, we have $a_1w_1 + a_2w_2 \in W$. *In \mathbb{R}^3 , all subspaces are \mathbb{R}^3 , 2D planes through the origin, 1D lines through the origin, {0}. $\begin{aligned} & \mathbf{SPAN}(\mathbf{S}) = \{\sum_{i=1}^{n} a_i v_i | a_i \in F, v_i \in S, i = 1...n\} \\ & \mathbf{Let}\ (V, F) \text{ a L.S.. A set of vectors } S \subseteq V \text{ is a basis of} \end{aligned}$ (V, F) iff linearly independent and Span(S) = V. If a basis of (V, F) with a finite number of elements exists, the number of elements of this basis is dimension of (V, F) and (V, F) is finite dimensional. Otherwise, infinite dimensional. **Linear Map:** Given (U, F) and (V, F), the function $A: U \to V$ is a linear map iff $\forall u_1, u_2 \in U, a_1, a_2 \in F$, we have $A(a_1u_1 + a_2u_2) = a_1A(u_1) + a_2A(u_2)$. Let $\mathcal{A}:U\to V$ linear. $\mathbf{NULL}(\mathcal{A}) = \{ u \in U | \mathcal{A}(u) = \theta_V \} \subset U \text{ (Nullity)}$ **RANGE** $(A) = \{v \in V | \exists u \in U : v = A(u)\} \subseteq V \text{ (rank)}$ *1. A vector $u \in U$ s.t. $\mathcal{A}(u) = b$ exists iff $b \in RANGE(A).A$ is surjective iff RANGE(A) = V. *2. If $b \in RANGE(A)$ and for some $u_0 \in U$ we have that $\mathcal{A}(u_0) = b$ then for all $u \in U : \mathcal{A}(u) = b \Leftrightarrow$ $u = u_0 + z$ with $z \in NULL(A)$ *3. \mathcal{A} is injective iff $NULL(\mathcal{A}) = \{\theta_U\}$ **Rank** and **Nullity**: Let $A \in F^{n \times m}$ and $B \in F^{m \times p}$. 1. $RANK(A) + \tilde{N}ULLITY(A) = m$. 2. $0 \leq RANK(A) \leq min\{m, n\}$. 3. $RANK(A) + RANK(B) - m \le RANK(AB) \le$ $min\{RANK(\mathcal{A}), RANK(\mathcal{B})\}.$ 4. If $P \in F^{m \times m, Q \in F^{n \times n}}$ are invertible,

 $RANK(A) = RANK(AP) = \overline{RANK(QA)} =$

5. If A(x) = Ax, $A \in F^{n \times n}$, we have A invertible \Leftrightarrow bijective \Leftrightarrow injective \Leftrightarrow surjective $\Leftrightarrow RANK(A) = n$.

RANK(QAP) (also Nullity)

Eigenvector: 1. There exists $v \in \mathbb{C}^n$ s.t. $v \neq 0$ and $Av = \lambda v$. v is called **right eigenvector**. 2. There exists $\eta \in \mathbb{C}^n$ s.t. $\eta \neq 0$ and $\eta^T A = \lambda \eta^T$. η is called left eigenvector. $\mathbf{SPEC}[A] = \{\lambda_1,, \lambda_n\}.$