

Microeconomics III: Problem Set 8^a

Thor Donsby Noe (thor.noe@econ.ku.dk) & Christopher Borberg (christopher.borberg@econ.ku.dk) November 13 2019

Department of Economics, University of Copenhagen

^aSlides created for exercise class 3 and 4, with reservation for possible errors.

Outline

```
PS8, Ex. 1 (A):
PS8, Ex. 2 (A):
PS8, Ex. 3 (A):
PS8, Ex. 4:
PS8, Ex. 5: The dating game (Bayesian Nash Equilibria)
PS8, Ex. 6:
Code examples
```

1

PS8, Ex. 1 (A):

PS8, Ex. 1 (A):

PS8, Ex. 1 (A):

PS8, Ex. 2 (A):

PS8, Ex. 2 (A):

PS8, Ex. 2.a (A):

PS8, Ex. 3 (A):

PS8, Ex. 3 (A):

PS8, Ex. 3.a (A):

PS8, Ex. 4:

PS8, Ex. 4.a:

PS8, Ex. 5: The dating game (Bayesian Nash Equilibria)

PS8, Ex. 5: The dating game (Bayesian Nash Equilibria)

Consider the 'dating game'. In this game, player 1 wants to meet with player 2, even if player 2 is of type t_2 , who does not want to meet with player 1. Player 2's types have equal probability.

Now suppose we construct an alternative version of the game, where player 1 has self respect, and only wants to meet up with player 2 if player 2 also wants to meet up (i.e. if player 2 is of type t_1). Otherwise, player 1 prefers to *miscoordinate* (i.e. not to meet up) as well. Player 1 still has the same preference for going to football versus the opera.

- (a) Write up this new game. Use the same payoffs as before (0,1, and 2) such that the payoff matrix when player 2's type is t_1 is the same as in the slides.
- (b) Find the set of (pure strategy) Bayesian Nash Equilibria of this game.

PS8, Ex. 5.a: The dating game (Bayesian Nash Equilibria)

PS8, Ex. 6:

PS8, Ex. 6:

Difficult. Consider the public goods game from lecture 7. Suppose now instead that there is two-sided incomplete information. In particular, the cost of writing the reference is uniformly distributed between 0 and 2:

$$c_i \sim u(0,2)$$
 for $i = 1,2$

In this setting, we can show that the players optimally follow a 'cutoff' strategy. Thus, the equilibrium strategies take the form

$$s_{1}^{*}(c_{1}) = \begin{cases} & \textit{Write} & \text{if} & c_{1} \leq c_{1}^{*} \\ & \textit{Don't} & \text{if} & c_{1} > c_{1}^{*} \end{cases}$$

$$s_{2}^{*}(c_{2}) = \begin{cases} & \textit{Write} & \text{if} & c_{2} \leq c_{2}^{*} \\ & \textit{Don't} & \text{if} & c_{2} > c_{2}^{*} \end{cases}$$

(a) Let $z_{-i}^* = \mathbb{P}(s_{-i}^* = \textit{Write})$, i.e. the probability that the other player plays 'Write' in equilibrium. Argue that $1 - c_i^* = z_{-i}^*$ (1)

Hint: Calculate i's expected payoff from writing the reference and from not writing the reference, conditional on z_{-i}^* .

- (b) A standard result on uniform distributions gives the following: if $x \sim u(0,2)$, then $\mathbb{P}(x < a) = \frac{a}{2}$. Use this to find z_i^* . Hint: Use the equilibrium strategy and your knowledge of the distribution of c_{-i} .
- (c) Use the result from (b) together with eq. (1) to find (c_1^*, c_2^*) .
- (d) What's the probability of underinvestment (i.e. that nobody writes the reference)? What's the prob. of overinvestment (i.e. both write)?

PS8, Ex. 6.a:

Code examples

Code examples

Matrix, no player names:

Matrix, no colors:

Matrix, with colors: