Chapitre 39

Déterminants.

Sommaire.

1	La théorie dans un \mathbb{K} -ev de dimension $n \in \mathbb{N}^*$.	
	1.1 Formes n -linéaires alternées	
	1.2 Déterminant d'une famille de vecteurs dans une base	
	1.3 Déterminant d'un endomorphisme en dimension finie	
	1.4 Déterminant d'une matrice carrée	
	La pratique.	
	2.1 Échelonner	
	2.2 Développer selon une colonne ou une ligne	
	2.3 Complément théorique : la comatrice	

Les propositions marquées de \star sont au programme de colles.

La théorie dans un \mathbb{K} -ev de dimension $n \in \mathbb{N}^*$.

1.1Formes *n*-linéaires alternées.

Définition 1

Une forme n-linéaire sur E est une fonction $f: E^n \to \mathbb{K}$ telle que

$$\forall j \in [1, n], \ \forall (a_1, ..., a_{j-1}, a_{j+1}, ..., a_n) \in E^{n-1}, \ x \mapsto f(a_1, ..., a_{j-1}, x, a_{j+1}, ..., a_n)$$
 est linéaire.

Proposition 2

Soit $f: E^n \to \mathbb{K}$ n-linéaire.

- 1. $\forall (x_1,...,x_n) \in E^n, \ \forall \lambda \in \mathbb{K}, \ f(\lambda x_1,...,\lambda x_n) = \lambda^n f(x_1,...,x_n).$
- 2. Soit $(x_1,...,x_n) \in E^n$ tel que l'un des x_i est nul, alors $f(x_1,...,x_n) = 0$.

Preuve:

- 1. λ est factorisé n fois par n-linéarité.
- $\underline{2.} f(x_1, ..., 0_E, ..., x_n) = f(x_1, ..., 0_{\mathbb{K}} \cdot 0_E, ..., x_n) = 0_{\mathbb{K}} f(x_1, ..., x_n) = 0.$

Définition 3

Soit $f: E^n \to \mathbb{K}$ n-linéaire. On dit que f est alternée si elle s'annule sur tous les n-uplets contenant deux vecteurs égaux.

Proposition 4

Soit $f: E^n \to \mathbb{K}$ une forme n-linéaire alternée $(n \geq 2)$ et $(x_1, ..., x_n) \in E^n$.

- 1. On ne change pas la valeur prise par f sur $(x_1,...,x_n)$ en ajoutant à l'un des vecteurs une combinaison linéaire des autres.
- 2. Si $(x_1, ..., x_n)$ est liée, alors $f(x_1, ..., x_n) = 0$.

4. Effet d'une permutation. Pour tout $\sigma \in S_n$,

3. Effet d'une transposition. Soit $\{i, j\}$ avec i < j. On a :

$$f(...,x_{i-1},\overline{x_j},x_{i+1},...,x_{j-1},\overline{x_i},x_{j+1},...) = -f(...,x_{i-1},\overline{x_i},x_{i+1},...,x_{j-1},\overline{x_j},x_{j+1},...)$$

L'échange de x_i et x_j provoque un changement de signe.

$$f(x_{\sigma(1)},...,x_{\sigma(n)}) = \varepsilon(\sigma)f(x_1,...,x_n)$$

Où $\varepsilon: S_n \to \{-1,1\}$ la signature de σ l'unique morphisme non trivial de (S_n, \circ) dans $(\{-1,1\}, \times)$

Preuve:

1. Soit $j \in [1, n]$, $(\lambda_i)_{i \neq j} \in \mathbb{K}^{n-1}$.

On a
$$f(x_1,...,x_j + \sum_{i\neq j} \lambda_i x_i,...,x_n) = f(x_1,...,x_n) + \underbrace{\sum_{i\neq j} \lambda_i f(x_1,...,x_i,...,x_n)}_{=0 \text{ car altern\'ee et deux fois } x_i}$$

2. Supposons
$$(x_1, ..., x_n)$$
 liée, alors $\exists j \in [1, n], \ \exists (\lambda_i)_{i \neq j} \mid x_j = \sum_{i \neq j} \lambda_i x_i$.

Alors
$$f(x_1, ..., x_j, ..., x_n) \stackrel{(1)}{=} f(x_1, ..., x_j - \sum_{i \neq j} \lambda_i x_i, ..., x_n) = f(x_1, ..., 0_E, ..., x_n) = 0_{\mathbb{K}}.$$

3. On a;

$$f(...,x_{j},...,x_{i},...) = f(...,x_{j} + x_{i},...,x_{i},...) = f(...,x_{j} + x_{i},...,x_{i} - (x_{j} + x_{i}),...,x_{i} - (x_{j} + x_{i}),...)$$

$$= f(...,x_{j} + x_{i},...,-x_{j},...) = (-1)f(...,x_{j} + x_{i},...,x_{j},...)$$

$$= (-1)f(...,x_{i},...,x_{j},...)$$

4. $\exists p \in \mathbb{N}^*, \ \exists \tau_1, ..., \tau_p \text{ transpositions } | \sigma = \tau_1 \circ ... \circ \tau_p. \text{ Alors } :$

$$\begin{split} f(x_{\sigma(1)},...,x_{\sigma(n)}) &= f(x_{\tau_1 \circ ... \circ \tau_p(1)},...,x_{\tau_1 \circ ... \circ \tau_p(n)}) \\ &= (-1)f(x_{\tau_2 ... \tau_p(1)},...,x_{\tau_2 ... \tau_p(n)}) \quad \text{et } (-1) = \varepsilon(\tau_1) \\ &= \varepsilon(\tau_1)...\varepsilon(\tau_p)f(x_1,...,x_n) \\ &= \varepsilon(\sigma)f(x_1,...,x_n) \end{split}$$

Déterminant d'une famille de vecteurs dans une base. 1.2

Théorème 5

L'ensemble des formes n-linéaires alternées sur E est une droite vectorielle.

Si $\mathscr{B} = (e_1, ..., e_n)$ est une base de E, alors il existe une unique forme n-linéaire alternée qui prend la valeur 1 sur \mathcal{B} . On l'appelle **déterminant dans la base** \mathcal{B} et on note $\det_{\mathcal{B}}$. On a:

$$\forall (x_1, ..., x_n) \in E^n \quad \det_{\mathscr{B}}(x_1, ..., x_n) = \sum_{\sigma \in S_n} \varepsilon(\sigma) \prod_{j=1}^n e_{\sigma(j)}^*(x_j).$$

Preuve:

Analyse. Soit $f: E^n \to \mathbb{K}$ une forme n-linéaire alternée. Soit $(x_1, ..., x_n) \in E^n$. Alors

$$f(x_1, ..., x_n) = f\left(\sum_{i_1=1}^n e_{i_1}^*(x_1)e_{i_1}, ..., \sum_{i_n=1}^n e_{i_n}^*(x_n)e_{i_n}\right)$$

$$= \sum_{i_1=1}^n ... \sum_{i_n=1}^n \prod_{j=1}^n e_{i_j}^*(x_j)f(e_{i_1}, ..., e_{i_n})$$

$$= \sum_{(i_1, ..., i_n) \in \mathscr{A}_n(\llbracket 1, n \rrbracket)} \left(\prod_{j=1}^n e_{i_j}^*(x_j)\right) f(e_{i_1}, ..., e_{i_n})$$

Où $(i_1,...,i_n) \in [1 \mapsto (\sigma_i(k) \mapsto i_k)]$ bijection de $\mathscr{A}_n([1,n]) \to S_n$.

$$f(x_1, ..., x_n) = \sum_{\sigma \in S_n} \prod_{j=1}^n e_{\sigma(j)}^*(x_j) f(e_{s(1)}, ..., e_{s(n)})$$
$$= f(e_1, ..., e_n) \sum_{\sigma \in S_n} \varepsilon(\sigma) \prod_{j=1}^n e_{\sigma(j)}^*(x_j)$$

Supposons que $f(e_1,...,e_n)=1$, il reste un unique candidat. **Synthèse.** Posons $\det_{\mathscr{B}}: (x_1,...,x_n)\mapsto \sum\limits_{\sigma\in S_n}\varepsilon(\sigma)\prod\limits_{j=1}e^*_{\sigma(j)}(x_j)$. Vérifions qu'elle convient. • Soit $k\in [\![1,n]\!]$ et $(x_1,...,x_{k-1},x_{k+1},x_n)\in E^{n-1}$ et $x\in E$. Alors $\det_{\mathscr{B}}(x_1,...,x_n)=\sum\limits_{\sigma\in S_n}\varepsilon(\sigma)\left(\prod\limits_{j\neq k}e^*_{\sigma(j)}(x_j)\right)e^*_{\sigma(k)}(x)$ linéaire car combinaison linéaire de linéaires.

• Soit $1 \le k < l \le n$, et $(x_1, ..., x_n) \mid x_k = x_l$.

Alors $\det_{\mathscr{B}}(x_1,...,x_n) = \sum_{\sigma \in S_n} \varepsilon(\sigma) \prod_{j=1}^n e_{\sigma(j)}^*(x_j)$. Posons $\tau = (k \ l)$ qui échange k et l.

Alors $\det_{\mathscr{B}}(x_1,...,x_n) = \sum_{\sigma \in S_n} \varepsilon(\sigma) \prod_{j=1}^n e_{\sigma(\tau(j))}^*(x_j) = \sum_{\varphi \in S_n} \varepsilon(\varphi\tau) \prod_{j=1}^n e_{\varphi(j)}^*(x_j)$ où $\varphi = \sigma\tau$. Donc $\det_{\mathscr{B}}(x_1,...,x_n) = -\sum_{\varphi \in S_n} \varepsilon(\varphi) \prod_{j=1}^n e_{\varphi(j)}^*(x_j) = -\det_{\mathscr{B}}(x_1,...,x_n)$.

Donc $\det_{\mathscr{B}}(x_1,...,x_n)=0.$

• $\det_{\mathscr{B}}(\mathscr{B}) = \det_{\mathscr{B}}(e_1, ..., e_n) = \sum_{\sigma \in S_n} \varepsilon(\sigma) \prod_{j=1}^n e_{\sigma(j)}^*(e_j) = \sum_{\sigma \in S_n} \varepsilon(\sigma) \prod_{j=1}^n \delta_{j,\sigma(j)} = \varepsilon(\mathrm{id}) = 1.$

Corrolaire 6

Si f est une forme n-linéaire alternée et si \mathscr{B} est une base de E, alors $\exists \lambda \in \mathbb{K} \mid f = \lambda \det_{\mathscr{B}}$

Définition 7

Soit $\mathscr{B} = (e_1, ..., e_n)$ base de E et $(x_1, ..., x_n) \in E^n$.

Le nombre $\det_{\mathscr{B}}(x_1,...,x_n)$ est appelé **déterminant dans la base** \mathscr{B} de $(x_1,...,x_n)$.

Théorème 8: Caractérisation des bases.

Soit $\mathscr{B} = (e_1, ..., e_n)$ une base de E et $(x_1, ..., x_n) \in E^n$.

$$(x_1,...,x_n)$$
 est base de E \iff $\det_{\mathscr{B}}(x_1,...,x_n)\neq 0$

Preuve:

 \sqsubseteq Supposons que le déterminant est différent de 0, alors $(x_1,...,x_n)$ libre, c'est une base car $\dim E=n$.

Supposons que $\mathscr{B}' = (x_1, ..., x_n)$ est base de E. Alors $\det_{\mathscr{B}'}$ existe, c'est une forme n-linéaire alternée.

Par théorème, $\exists \lambda \in \mathbb{K} \mid \det_{\mathscr{B}'} = \lambda \det_{\mathscr{B}}$. Alors $\det_{\mathscr{B}'}(\mathscr{B}') = \lambda \det_{\mathscr{B}}(\mathscr{B}') = 1$ donc $\det_{\mathscr{B}}(\mathscr{B}') \neq 0$.

Exemple 9: Interprétation géométrique.

- Si $E = \mathbb{R}^2$ et \mathscr{B} est la base canonique de \mathbb{R}^2 , pour $(\overrightarrow{u_1}, \overrightarrow{u_2})$ un couple de vecteurs, le nombre $\det_{\mathscr{B}}(\overrightarrow{u_1}, \overrightarrow{u_2})$ peut être vu comme l'aire orientée du parallélogramme engendré par $(\overrightarrow{u_1}, \overrightarrow{u_2})$.
- Si $E = \mathbb{R}^3$ et \mathscr{B} est la base canonique de \mathbb{R}^3 , pour $(\overrightarrow{u_1}, \overrightarrow{u_2}, \overrightarrow{u_3})$ un triplet de vecteurs, le nombre $\det_{\mathscr{B}}(\overrightarrow{u_1}, \overrightarrow{u_2}, \overrightarrow{u_3})$ peut être vu comme le volume orienté du parallélépipède engendré par $(\overrightarrow{u_1}, \overrightarrow{u_2}, \overrightarrow{u_3})$.

1.3 Déterminant d'un endomorphisme en dimension finie.

Lemme 10

Soit $u \in \mathcal{L}(E)$.

Le nombre $\det_{\mathscr{B}}(u(e_1),...,u(e_n))$ ne dépend pas de la base $\mathscr{B}=(e_1,...,e_n)$ considérée.

Preuve:

Soit $f \in \Lambda_n(E)$ une forme n-linéaire alternée.

Déformons la à l'aide de $u \in \mathcal{L}(E)$: $(x_1,...,x_n) \mapsto f(u(x_1),...,u(x_n))$ est n-linéaire alternée.

Notons-la $\varphi_u(f) \in \Lambda_n(E)$. On pose $\varphi_u : f \mapsto \varphi_u(f)$ de $\Lambda_n(E) \to \Lambda_n(E)$ linéaire, c'est une homothétie.

Alors $\exists \lambda_u \in \mathbb{K} \mid \varphi_u = \lambda_u \mathrm{id}_{\Lambda_n(E)}$.

On a prouvé que $\exists \lambda_u \in \mathbb{K} \quad \forall f \in \Lambda_n(E) \quad \forall (x_1, ..., x_n) \in E \quad f(u(x_1), ..., u(x_n)) = \lambda_u f(x_1, ..., x_n).$

En particulier, $\det_{\mathscr{B}}(u(x_1),...,u(x_n)) = \lambda_u \det_{\mathscr{B}}(x_1,...,x_n)$ est vrai pour tous x_i .

En particulier, $\det_{\mathscr{B}}(u_{\ell}\mathscr{B}) = \lambda_u \det_{\mathscr{B}}(\mathscr{B}) = \lambda_u$, ne dépend pas de \mathscr{B} .

Définition 11

Soi $u \in \mathcal{L}(E)$. On appelle **déterminant** de u et on note $\det(u)$ le nombre

$$\det(u) = \det_{\mathscr{B}}(\mathscr{B}),$$

où $\mathscr{B} = (e_1, ..., e_n)$ une base quelconque de E.

Proposition 12

Soit $u \in \mathcal{L}(E)$, \mathcal{B} une base de E et $(x_1, ..., x_n) \in E^n$. On a

$$\det_{\mathscr{B}}(u(x_1),...,u(x_n)) = \det(u) \times \det_{\mathscr{B}}(x_1,...,x_n)$$

Preuve:

L'application $(x_1,...,x_n) \mapsto \det_{\mathscr{B}}(u(x_1),...u(x_n))$ est n-linéaire alternée : elle est dans $\operatorname{Vect}(\det_{\mathscr{B}})$.

Il existe donc $\lambda \in \mathbb{K} \mid \forall (x_1, ..., x_n) \in E^n$, $\det_{\mathscr{B}}(u(x_1), ..., u(x_n)) = \lambda \det_{\mathscr{B}}(x_1, ..., x_n)$.

En particulier, $\det_{\mathscr{B}}(u(\mathscr{B})) = \lambda \det_{\mathscr{B}}(\mathscr{B})$ donc $\det(u) = \lambda$.

On a bien $\det_{\mathscr{B}}(u(x_1),...,u(x_n)) = \det(u) \det_{\mathscr{B}}(x_1,...,x_n)$.

Proposition 13

Soit E un \mathbb{K} -espace vectoriel de dimension finie.

- 1. $\det(\mathrm{id}_E) = 1$.
- 2. $\forall u \in \mathcal{L}(E), \ \forall \lambda \in \mathbb{K}, \ \det(\lambda u) = \lambda^n \det(u)$
- 3. $\forall (u, v) \in \mathcal{L}(E)^2$, $\det(u \circ v) = \det(u) \det(v)$
- 4. Pour tout $u \in \mathcal{L}(E)$, u est un automorphisme de E si et seulement si $\det(u) \neq 0$. Alors:

$$\det(u^{-1}) = \det(u)^{-1}$$

Remarque: Rien à dire sur det(u+v).

Preuve:

Soit $\mathscr{B} = (e_1, ..., e_n)$ une base de E.

- 1. $\det(\mathrm{id}_E) = \det_{\mathscr{B}}(\mathrm{id}(e_1), ..., \mathrm{id}(e_n)) = \det_{\mathscr{B}}(\mathscr{B}) = 1.$
- $\overline{2}$. Soit $u \in \mathcal{L}(E)$ et $\lambda \in \mathbb{K}$, alors $\det(\lambda u) = \det_{\mathscr{B}}(\lambda u(e_1), ..., \lambda u(e_n)) = \lambda^n \det_{\mathscr{B}}(u(e_1), ..., u(e_n)) = \lambda^n \det(u)$.
- $\boxed{3}$. Soient $u, v \in \mathcal{L}(E)$.

Alors: $\det(u \circ v) = \det_{\mathscr{B}}(u(v(e_1)), ..., u(v(e_n))) = \det(u) \det(v(e_1), ..., v(e_n)) = \det(u) \det(v) \det(v) \det(v) \det(v)$

4. Soit $u \in \mathcal{L}(E)$. u est bijectif ssi l'image de \mathcal{B} par u est une base ssi son déterminant dans B est non nul (8).

Alors pour un automorphisme u, on a $u \circ u^{-1} = \mathrm{id}_E$ et $\det(u \circ u^{-1}) = \det(\mathrm{id}_E) = 1$ donc $\det(u^{-1}) = \det(u)^{-1}$.

Corrolaire 14

Si E est de dimension finie, det induit un morphisme de groupes entre GL(E) et \mathbb{K}^* .

Exemple 15: Déterminant d'une symétrie vectorielle.

Que dire de det(s) si s est une symétrie vectorielle de E?

Solution:

Soit $s \in \mathcal{L}(E)$ une symétrie vectorielle.

Alors $s^2 = \mathrm{id}_E$ donc $\det(s^2) = \det(\mathrm{id}_E) = 1$. Alors $\det(s)^2 = 1$ donc $\det(s) = \pm 1$.

On sait que $E = \text{Ker}(s - \text{id}_E) \oplus \text{Ker}(s + \text{id}_E)$.

Prenons une base adaptée à ces deux supplémentaires.

Notons $p = \dim \operatorname{Ker}(s - \operatorname{id}_E)$ et prenons $(e_1, ..., e_p)$ une de ses bases, et $(e_{p+1}, ..., e_n)$ base de $\operatorname{Ker}(s + \operatorname{id}_E)$.

Notons $B = (e_1, ..., e_p, ...e_n)$. Alors :

$$\begin{split} \det(s) &= \det_{\mathscr{B}}(s(e_1), ..., s(e_p), ..., s(e_n)) = \det_{\mathscr{B}}(e_1, ..., e_p, -e_{p+1}, ..., -e_n) \\ &= (-1)^{n-p} \det_{\mathscr{B}}(\mathscr{B}) = (-1)^{n-p}. \end{split}$$

- 1.4 Déterminant d'une matrice carrée.
- $\mathbf{2}$ La pratique.
- 2.1 Échelonner.
- 2.2Développer selon une colonne ou une ligne.
- Complément théorique : la comatrice. 2.3