

1.

The 30N06 is the highest performance trench N-ch MOSFETs with extreme high cell density, which provide excellent RDSON and gate charge for most of the synchronous buck converter applications. The 30N06 meet the RoHS and Green Product requirenment, 100% EAS guaranteed with full function reliability approved.

- 2. $R_{DS(on)} = 25m\Omega @ V_{DS} = 60V$ Avanced high cell density Trench technology Super Low Gate Charge Excellent Cdv/dt effect decline 100%EAS Guaranteed Green Device Available
 - 3.
 High Frequency Point-of-Load Synchronous Buck Converter
 Networking DC-DC Power System
 Load Switch

4.

Pin	Function		
1	Gate		
2	Drain		
3	Source		
4	Drain		

5. Absolute maximum ratings

Parameter		Symbol	Rating	Units
Drain-source voltage		VDS	60	V
Gate-source voltage		VGS	+20	V
Continuous drain current	, Tc=25°C	- ID	25	Α
V _{GS} @10V ₁	Tc=100°C	טו	18	Α
Pulsed drain current 2		Ірм	50	Α
Single pulse avalanche ene	rgy ₃	Eas	34.5	mJ
Avalanche current		las	22.6	Α
Total power dissipation4	Tc=25 °C	PD	34.7	W
Operation junction temper	ature range	Tı	-55 to150	°C
Storage temperature range		Тѕтс	-55 to150	°C

6. Thermal characteristics

Parameter	Symbol	Тур	Max	Unit
Thermal resistance, Junction-ambient	Rөла		62	°C/W
Thermal resistance,Junction-case1	Rөлс		3.6	C, 11

7. Electrical characteristics

(T_J=25°C,unless otherwise noted

Parameter	Symbol	Test Conditions	Min	Тур	Max	Units
Drain-source breakdown voltage	BVDSS	Vgs=0V,ID=250μA	60	-	-	V
BVpss temperature coefficient	△BVdss/△TJ	Reference to 25 °C, ID=1mA		0.063		V/°C
Static drain-source on-resistance2	RDS(on)	Vgs=10V,Id=15A		25	30	mΩ
		Vgs=4.5V,Ip=10A		30	38	
Gate threshold voltage	V _{GS(th)}	\\\\\\\\\\	1.2		2.5	V
V _{GS(th)} temperature coefficient	$\triangle V$ GS(th)	V _{DS} =V _{GS} , I _D =250µA		-5.24		mV/°C
Drain-source leakage current	lnes	VDS=48V, VGS=0V TJ=25°C			1	μΑ
	ldss	VDS=48V, VGS=0V TJ=55°C			5	μΑ
Gate- source leakage current	lgss	$V_{GS}=+20V$, $V_{DS}=0V$			<u>+</u> 100	nA
Forward transconductance	gfs	VDS=5V, ID=15A		17		S
Gate resistance	Rg	VDS=0V, VGS=0V,f=1MH	z	3.2		Ω
Total gate charge(4.5V)	Qg	V _{DS} =48V, V _{GS} =4.5V	-	12.56		nC
Gate-source charge	Q_{gs}	ID =10A		3.24		
Gate-drain charge	\mathbf{Q}_{gd}	10 – 10A		6.31		
Turn-on delay time	t d(on)			8		
Rise time	tr	$V_{DD}=30V,I_{D}=10A,$		14.2		ns
Turn-off delay time	t d(off)	$R_G=3.3\Omega$, $V_{GS}=10V$		24.4		
Fall time	t f			4.6		
Input capacitance	Ciss	V _{DS} =25V,V _{GS} =0V,		1345		
Output capacitance	Coss	f=1MHz		72.5		pF
Reverse transfer capacitance	Crss			54.4		
Single pulse avalanche energys	EAS	V _{DD} =25V,L=0.1mH, I _{AS} =15A	15.2			mJ
Continuous source current _{1,6}	ls	$V_G = V_{D=} = 0V$,			25	Α
Pulsed source current _{2,6}	lsм	Force current			50	Α
Diode forward voltage2	V sd	Vgs=0V,ls=1A, TJ=25°C			1.2	V

Note:1.The data tested by surface mounted on a 1 inch₂ FR-4 board with 20Z copper.

- 2.The data tested by pulsed, pulse width < 300 µs, duty cycle < 2%
- 3.The EAS data shows Max.rating.The test condition is VDD=25V, VGS=10V,L=0.1mH,IAS=15A
- 4. The power dissipation is limited by 150°C junction temperature
- 5.The Min, value is 100% EAS tested guarantee.
- 6.The data is theoretically the same as ID and IDM, in real applications, should be limited by total power dissipation.

Fig.3 Forward Characteristics of Reverse

V_{SD}, Source-to-Drain Voltage (V)

Fig.5 Normalized V_{GS(th)} v.s T_J

8

10

Fig.4 Gate-Charge characteristics

Fig.6 Normalized RDSON v.s TJ

2

0 0.2

Fig.9 Normalized Maximum Transient Thermal Impedance

t, Pulse Width (s)

0.01

0.001

0.0001

Fig.10 Switching Time Waveform

0.1

Fig.11 Unclamped Inductive Waveform

0.00001