a) First generation languages (Machine languages): Languages which are at a very low level of abstraction, consisting of only binary numbers. Ex: 0101101110

Second generation languages (Assembly languages): Languages which gave us the option to give variables and operations somewhat understandable names. Ex: ADD #4

Third generation languages (High-level languages): Languages which are independent of the processor and resemble human languages. They are portable, meaning code developed on one system could be transferred and executed on another. Ex: FORTRAN, C++, Java

Fourth generation languages (Very high-level languages): Languages which are improved based on 3GLs, designed and developed to reduce the time, cost and effort needed to develop different types of software applications. Ex: Ruby, SQL, MatLab

Fifth generation languages (Artificial intelligence languages): Languages which mainly focus on constraint programming. These languages are mostly used in AI and ML research, and will "solve the problem for you". Ex: Mercury, OPS5, Prolog

b)

Imperative	Object-oriented	Declarative
Develop a sequence of	Programs are objects and	Programs are description of
imperative commands that	controlled through predefined	the problems to be solved
manipulates the data to obtain	methods	
the desired result		
The structure of the program	Foundation of most OOP	Declarative algorithms are non
can be clarified by dividing it	languages is imperative	deterministic, so the execution
to subprograms called		order of phases of
procedures. Procedures can		the algorithm is not typically
be executed sequentially or		known.
concurrently		
Examples: C, Ada, Pascal,	Examples: C++, Java, Python	Examples: Prolog , SQL
FORTRAN, Basic, Cobol,		

2. Several languages belong exclusively to one paradigm; however, they might have functions in other paradigms.

Languages	Imperative	Functional	Object-oriented	Declarative
С	X		X	
Java	X	X	X	
Matlab	X	X	X	
C++	X	X	X	
Prolog				Х
Python	X	X	X	
Rust	X	X	X	
Lisp	X	X	X	
R	X	X	X	
Perl	Х	X	Х	
SQL				Х
JavaScript	X	Х	Х	
PHP	X		Х	
C#	X		Х	

- a) If all of the objective functions and restrictions in a mathematical programming model are represented by linear equations, the model is called a linear model. A nonlinear model is one in which one or more of the objective functions or constraints are represented by a nonlinear equation.
- b) A dynamic model accounts for changes in the state of the system over time, whereas a static (or steady-state) model calculates the system in equilibrium and is thus time-invariant. Differential equations or difference equations are commonly used to represent dynamic models.
- c) A deterministic model is one in which each set of variable states is determined uniquely by model parameters and sets of prior values of these variables; as a result, a deterministic model always performs the same way for a given set of initial conditions. In a stochastic model, randomness is present, and variable states are characterized by probability distributions rather than unique values.

4.

```
input count
import RunningFree
while true loop
    print "Loop " + count
    play(RunningFree.intro)
    play(RunningFree.verse1)
    play(RunningFree.chorus)
    play(RunningFree.chorus)
```