Classification of Age groups in Social network CS4090 Project

Final Presentation

B Haranath, G Mallesh, P Santhosh kumar Guided By: Sreenu Naik Bhukya

May 1, 2018

Outline

Introduction

Problem Statement

Literature Survey

Work Done

Design

Design

Implementation

Results and Analysis

Future Work and Conclusion

References

Introduction

- ► Nowadays with the constant use of the Internet users spend hours on social media platforms on the activities like
 - Browsing on e-commerce sites
 - Reading news about sports, journalism and entertainment
 - Expressing their opinions and sentiments in the form of comments
- Most of users do not provide their personnel details like age, gender etc

- There is so much concern and a great effort to analyze data from on-line social networks to predict information that may reflect different aspects of the current reality.
- Mainly age and gender plays the important roles in the predictions
- Furthermore, several machine learning algorithms such as Multilayer perceptron, Random forest were tested and Deep Convolutional Neural Network was found to exhibit higher performance.

Problem Statement

- To determine the characteristics of teenager and adults age groups, considering the writing style and both users history and profile.
- ► To show parameters used in this research can reach a high accuracy for determining age groups of twitter users.
- Validate the usefulness of the proposed model for classifying age groups.

- Classifying the age groups methods falls into three categories.
 - Relation between the age groups and the characteristics of the writing
 - Sentiment analysis
 - Machine learning

- Relation between the age groups and the characteristics of the writing.
 - "Gender classification of twitter data based on textual meta-attributes extraction" [1]
 - ► The age could actually alter the results of several analysis, some research have worked on trying to predict it
 - On Twitter, informing the age in pro le description is not a common habit and therefore these studies would not provide reliable results

Sentiment analysis

- There are many studies about sentiment analysis, but the majority does not consider the user pro le such as the Sentimeter-Br2 metric that is based on a lexicon dictionary, in which each word has a positive or negative value of sentiment.
- ANEW- It was studied how the presence or not of gender information would affect the final result.
- ► The eSM is another sentiment metric, which considered the characteristics of the user's profile, amongst them, the gender, level of education, geographic location and age are mentioned.

Machine learning

- ▶ Journal: Recurrent convolutional neural networks for text classi cation[2]
- Recursive neural network used in some studies obtained good results in constructing sentence representations by building a tree structure.
- ► This can reduce the effectiveness to capture the semantics of a whole sentence
- ► The DCNN captures better the semantic of texts compared to Recursive neural network

Work Done

- Collected the Data Set through Facebook data crawler.
- Converted the dataset into .csv format (pre processing).
- Train the model with Training Data Set.
- Predicting the accuracy using test data set.

Data Extraction

Figure: Data Extraction[3]

Extracting Features

- Message Length
- Number of Posts
- ► Total Post Likes
- Total comments
- Number of Friends
- Number of Page Likes
- Number of Emoji's
- Number of Hashtag's
- Label

Design

Figure: Training

Figure: Testing

Design

Figure: Convolutional neural network[4]

Design

- ► In the above figure, C1 ,C2 are Convolution Layers and S1,S2 are Max-pooling Layers.
- Proposed model for classifying the age groups have two phases
 - Data treatment extracted from social networks
 - Classification phase

Steps in CNN Model

- ▶ STEP 1: Convolution Layer (Activation: ReLU)
- STEP 2; Max Pooling
- STEP 3: Convolution Layer (Activation: ReLU)
- STEP 4: Max Pooling
- STEP 5: Fully Connected Layer
- STEP 6: Output Layer (Activation: Sigmoid)

1-D Convolutions

1D Convolutions

When we add zero padding, we normally do so on both sides of the sequence (as in image padding)

Figure: 1-D Convolution[5]

Activation Function

- Activation Function introduce non linear properties to our Network. Their main purpose is to convert a input signal to a A-NN output signal. A Neural Network without Activation Function would simply a linear Regression Model.
- ► RELU:
 - ▶ It's just R(x) = max(0,x) i.e if $x \neq 0$, R(x) = 0 and if if $x \neq 0$, R(x) = x.
- Sigmoid or Logistic Activation Function:
 - It is a activation function of form $f(x) = 1 / 1 + \exp(-x)$. Its Range is between 0 and 1.
 - ▶ It is a activation function of form f(x) = 1 / 1 + exp(-x). Its Range is between 0 and 1.

Graphs of ReLu and Sigmoid Functions

Figure: Activation functions[6]

- RELU is applied to the Hidden layers
- ▶ SIGMOID is applied to the Output Layer for Classification

Pooling

Figure: Pooling[7]

- ► Consider max pooling in which maximum value from a group of neurons is used in the next layer.
- Similarly average pooling takes the average value from group of neurons.

Fully Connected Layer

Figure: Fully Connected Layer[8]

n fully connected neural network each neuron in one layer is connected to every neuron in the next layer

Implementation

Anaconda

- ▶ It is a Python IDE.
- It provides large selection of packages and commercial support.

Tensorflow

- TensorFlow is an machine learning library, which can be used for high-level implementation of various ML algorithms in Python.
- However, it is used primarily for deep learning, Because Because most deep learning uses GPUs, it is common to use deep learning frameworks that implement common operations in GPUs

Implementations

Keras

- ► Keras is an open source neural machine learning library written in Python.
- ▶ Deep Learning frameworks operate at 2 levels of abstraction
- ▶ Lower Level; This is where frameworks like Tensorflow, Theano, and PyTorch sit. This is the level where mathematical operations like Generalized Matrix-Matrix multiplication and Neural Network primitives like Convolutional operations are implemented.
- ► **Higher Level:** This is where frameworks like Keras sit. Generally, at this level model training are also implemented.

Parameters

PARAMETER	VALUE
Learning Rate	0.001
Number of Hidden Layers	5
Number of Neurons in a Layer	8
Epochs	50
Classifier	Sigmoid and ReLu

Figure: Parameters

Results

MODEL	ACCURACY
Deep Convolutional Neural Networks (DCNN)	94.25%
Multilayer Perceptron(MLP)	92.00%

Figure: Results

Performance

Table 4. Precision, Recall and F- measure of Proposed Model

Algorithm	Precision	Recall	F-measure
DCNN	0.9425	0.9424	0.9425
MLP	0.917	0.718	0.805

Table 5 Precision, Recall and F- measure of Reference Project

Algorithm	Precision	Recall	F-measure
DCNN	0.929	0.936	0.930
MLP	0.882	0.869	0.880

Figure: Results

Future Work and Conclusion

- ▶ At present, we are dealing with 1-D arrays. But already, Deep Learning (Convolutional Neural Networks) is dealing with images and showed an enormous progress in the field of image recognization field.
- ► Hence, it is more effective to implement Convnets on images rather than 1-D arrays.
- Data scientists are trying all possible chances to convert every unstructured data to structured data to achieve high progress since Convnets gives best performance for structured data.

References

- [1] J. Huang, J. Lu and C. X. Ling. Comparing Naive Bayes, Decision Trees, and SVM with AUC and Accuracy, Proceedings of Third IEEE ICDM, 19-22 November 2003, pp. 553-556. doi:10.1109/ICDM.2003.1250975.
- [2] P. S. Vadivu and V. K. David. "Enhancing and Deriving Actionable Knowledge from Decision Trees,, IJCSIS, Vol. 8, No. 9, 2010, pp. 230-236
- [3] https://www.semanticscholar.org/paper/Age-Groups-Classification-in-Social-Network-Using-Guimarx00E3es-Rosa/04d67280aadec8c60506e93e7d0aeef831d9e928/figure/2
- [4] https://www.semanticscholar.org/paper/Age-Groups-Classification-in-Social-Network-Using-Guimarx00E3es-Rosa/04d67280aadec8c60506e93e7d0aeef831d9e928/figure/0

- [5] https://qph.ec.quoracdn.net/main-qimg-523434af0d21bb0b59454aa9563cc90b.webp
- [6] https://cdn-images-1.medium.com/max/1600/1*XxxiA0jJvPrHEJHD4z893g.png
- [7] https://qph.ec.quoracdn.net/main-qimg-8afedfb2f82f279781bfefa269bc6a90.webp
- [8] https://www.packtpub.com/sites/default/files/Article-Images/B05478; mage001.png