O'REILLY®

Exam DP-203: Microsoft Azure Data Engineer

Associate Crash Course

Data Engineering on Microsoft Azure

Reza Salehi

Cloud Enthusiast

Course Overview

DP-203

DP-203 Skills Measured

Exam DP-203: Data Engineering on Microsoft Azure

Questions & Resources

- Post questions in the QnA box
- Resources are in the course repository
 - https://github.com/zaalion/oreilly-dp-203

- Reach out:
 - Twitter: @zaalion

DP-203 Candidate Profile

- Microsoft Azure data engineers
 - Integrate, transform, and consolidate data from various structured and unstructured data systems ...
 - Into structures that are suitable for building analytics solutions

DP-203 Candidates

- Azure Data Engineers integrate, transform, and consolidate data:
 - Must have solid knowledge of data processing languages, such as SQL, Python, or Scala
 - And they need to understand parallel processing and data architecture patterns.

DP-203 Skills Measured

• Skills measured:

- Design and implement data storage (40-45%)
- Design and develop data processing (25-30%)
- Design and implement data security (10-15%)
- Monitor and optimize data storage and data processing (10-15%)

Design and Implement Data Storage

Choose the correct data storage solution to meet the technical and

<u>business requirements</u>

Choose the partition distribution type

- Relational databases
- Document databases
- Key/Value databases
- Graph databases
- Column family databases

- Object storage
- File share
- Data analytics databases
- Search Engine databases
- Time Series databases

- Store logs / Azure Cognitive Services output
 - Azure Blob Storage
- Low latency document database
 - Azure Cosmos DB Core API
- Database for social media
 - Azure Cosmos DB Graph API
- Migrating from MongoDB
 - Azure Cosmos MongoDB API

- Building search around your existing data
 - Azure Cognitive Search
- Fast cache store
 - Azure Cache for Redis (Azure Redis)
- Highly relational data
 - Azure SQL Database
- Cheap column database
 - Azure Table Storage

- Structured data
 - Azure SQL Database, MySQL, PostgreSQL, MariaDB
- Unstructured data
 - Azure Cosmos DB, Azure Table Storage
- Blobs / files
 - Azure Blob Storage, Data Lake Gen 2

Azure Data Lake Gen2

- Azure Data Lake Storage Gen2 is a set of capabilities dedicated to big data analytics, built on Azure Blob storage.
 - Hadoop compatible access
 - A superset of POSIX permissions
 - Cost effective
 - Optimized driver

Data Lake Storage Gen2 for big data requirements

Data Lake Storage Gen2 for big data requirements

Data Lake Storage Gen2 for big data requirements

File Types for Storage (Data Lake)

- Avro format
- Binary format
- Delimited text format
- Excel format
- JSON format
- ORC format
- Parquet format
- XML format

File Types for Storage (Data Lake)

- AVRO is a row-based storage format whereas PARQUET is a columnar based storage format.
- The Optimized Row Columnar (ORC) file format provides a highly efficient way to store Hive data.

Data Lake Access Control Model

- Data Lake Storage Gen2 supports the following authorization mechanisms:
 - Shared Key authorization
 - Shared access signature (SAS) authorization
 - Role-based access control (Azure RBAC)
 - Access control lists (ACL)

Data Lake Archiving

- Access tiers for Azure Blob Storage
 - Hot Optimized for storing data that is accessed frequently.
 - Cool Optimized for storing data that is infrequently accessed and stored for at least 30 days.
 - Archive Optimized for storing data that is rarely accessed and stored for at least 180 days with flexible latency requirements, on the order of hours.

Design Non-relational Cloud Data Stores

- <u>Design</u> a solution that uses <u>Cosmos DB</u>, <u>Data Lake Storage Gen2</u>, or <u>Blob</u>
 <u>storage</u>
- Select the appropriate Cosmos DB API
- Design <u>data distribution</u> and <u>partitions</u>
- Design for scale (including <u>multi-region</u>, latency, and <u>throughput</u>)
- Design a <u>disaster</u> recovery <u>strategy</u>
- Design for high availability

Design a Solution That Uses Cosmos DB

https://docs.microsoft.com/en-us/azure/architecture/browse/#databases

Design a Solution That Uses Data Lake Storage Gen2 & Blobs

https://docs.microsoft.com/en-us/azure/architecture/browse/#storage

Select the Appropriate Cosmos DB API

- Cosmos DB APIs
 - Azure Cosmos DB SQL API
 - Azure Cosmos DB's API for MongoDB
 - Azure Cosmos DB Cassandra API
 - Azure Cosmos DB Gremlin API
 - Azure Cosmos DB Table API
 - vs. <u>Azure Table Storage</u>

Cosmos DB Data Distribution

- Cosmos DB Data Distribution
 - Azure Cosmos DB multi-homing APIs
 - Consistency levels in Azure Cosmos DB

Design Relational Cloud Data Stores

- Design data distribution and partitions
- <u>Design</u> for scale (<u>including latency</u>, and throughput)
- Design a solution that uses <u>Azure Synapse Analytics</u>
- Design a disaster recovery strategy
- Design for high availability

Azure Synapse Analytics

• Components:

- Synapse SQL: Complete T-SQL based analytics Generally Available
 - Dedicated SQL pool (pay per DWU provisioned)
 - Serverless SQL pool (pay per TB processed)
- Spark: Deeply integrated Apache Spark
- Synapse Pipelines: Hybrid data integration
- Studio: Unified user experience

Azure Synapse Analytics

Sharding

- A data store hosted by a single server might be subject to the following limitations:
 - Storage space
 - Computing resources
 - Network bandwidth
 - Geography

Sharding

- Solution
 - Divide the data store into horizontal partitions or shards.
 - Each shard has the same schema but holds its own distinct subset of the data.

Azure Synapse Analytics Shard

- Azure Synapse Analytics Storage sharding options:
 - Hash-distributed tables
 - Round-robin distributed tables
 - Replicated Tables

Azure Synapse Distributed Tables (Hash)

Azure Synapse Distributed Tables (Replicated)

Azure Synapse Distributed Tables (Round Robin)

- The simplest table to create
- Delivers fast performance when used as a staging table for loads
- Distributes data evenly across the table

Azure Synapse External Tables

External Tables

- An external table points to data located in Hadoop, Azure Storage blob, or Azure Data Lake Storage.
- External tables are used to read data from files or write data to files in Azure Storage.
- With Synapse SQL, you can use external tables to read external data using dedicated SQL pool or serverless SQL pool.

Design a Solution That Uses Azure Synapse

https://docs.microsoft.com/en-us/azure/architecture/browse/#databases

Why Partition Your Data?

- Data partitioning
 - Improve scalability
 - Improve performance
 - Improve security
 - Provide operational flexibility
 - Match the data store to the pattern of use
 - Improve availability

Choose the Partition Distribution Type

- Data partitioning types
 - Horizontal
 - Vertical
 - Functional

Azure Synapse Star Schema

- Star schema
 - A mature modeling approach widely adopted by relational data warehouses. It requires modelers to classify their model tables as either dimension or fact.
 - Dimension tables
 - Fact tables

Azure Synapse Star Schema

Azure Synapse Star Schema

Slowly Changing Dimensions

- Slowly changing dimension
 - Dimensions in data management and data warehousing contain relatively static data about such entities as geographical locations, customers, or products.
 - Data captured by Slowly Changing Dimensions (SCDs) change slowly but unpredictably, rather than according to a regular schedule.
 - See tutorial

Slowly Changing Dimensions

- Slowly changing dimension types:
 - Type 1 SCD
 - Type 2 SCD
 - Type 3 SCD
 - Type 6 SCD (1+2+3)

Temporal Data

- Temporal Data
 - A temporal database stores data relating to time instances. It offers temporal data types and stores information relating to past, present and future time.
 - Azure SQL Database

Database Normalization

- The process of structuring a database in order to reduce data redundancy and improve data integrity.
 - UNF: Unnormalized form
 - 1NF: First normal form
 - 2NF: <u>Second normal form</u>
 - 3NF: <u>Third normal form</u>

Types of Keys in Data Warehouse

- Primary Key
- Surrogate Key vs. Natural Key (Business key)
- Alternate key (e.g., UNIQUE constraint)
- Foreign Key

Backup and Restore in Azure Synapse

- Data warehouse snapshot
 - Creates a restore point you can leverage to recover or copy your data warehouse to a previous state
 - Snapshots are a built-in feature that creates restore points

Design and Develop Data Processing

Batch Processing Solutions

- Design batch processing solutions that use <u>Data Factory</u> and <u>Azure</u>
 <u>Databricks</u>
- Identify the optimal data ingestion method for a batch processing solution
- Identify where processing should take place, such as at the source, at the destination, or in transit

Incrementally Load Data

Methods

- Delta data loading from database by using a watermark
- Delta data loading from SQL DB by using the Change Tracking technology
- Loading new and changed files only by using LastModifiedDate
- Loading new files only by using time partitioned folder or file name

Using a watermark

Using a watermark

Transform Data using Azure Data Factory

- Azure SQL Database
- Spark activity

Azure Data Factory

- Pipelines
- Activities

Source control in Azure Data Factory

 To provide a better authoring experience, Azure Data Factory allows you to configure a Git repository with either Azure Repos or GitHub.

Azure Data Factory Error Handling

- Handle SQL truncation error
- Troubleshoot Azure Data Factory UX Issues
- Monitor and Alert Data Factory by using Azure Monitor

Design a Solution That Uses Azure Data Factory

https://docs.microsoft.com/en-us/azure/architecture/browse/#analytics

Real-time Processing Solutions

- Design for real-time processing by using <u>Stream Analytics</u> and <u>Azure Databricks</u>
- Design and provision compute resources

Design a Solution That Uses Azure Databricks

- https://docs.microsoft.com/en-us/azure/architecture/browse/#analytics
 - https://docs.microsoft.com/en-us/azure/architecture/referencearchitectures/data/stream-processing-databricks

Azure Databricks Clusters

An Azure Databricks cluster is a set of computation resources and configurations on which you run data engineering, data science, and data analytics workloads, such as production ETL pipelines, streaming analytics, ad-hoc analytics, and machine learning.

Azure Databricks ETL Data

- Using Scala
 - Scala

Azure Stream Analytics

- https://docs.microsoft.com/en-us/azure/architecture/browse/#analytics
 - https://docs.microsoft.com/en-us/azure/architecture/referencearchitectures/data/stream-processing-stream-analytics

Develop Streaming Solutions

- Azure Stream Analytics
 - Ingest and process real-time data
 - Ingest from <u>IoT Hub</u>, <u>Event Hubs</u> and <u>Blob Storage</u>
 - Process using a SQL-like language
 - Output to several services such as Event Hubs, Power BI, Logic Apps, etc.

Azure Stream Analytics

Stream Analytics Windowing Functions

- Window types
 - Tumbling
 - Hopping
 - Sliding
 - Session
 - Snapshot

Stream Analytics Input Types

- Stream input
- Reference input

Time Handling in Azure Stream Analytics

- Time handling, late arriving data
- Event ordering policies
- Out of order and late-arriving events

Azure Batch

- Use <u>Azure Batch</u> to run large-scale parallel and high-performance computing (HPC) batch jobs efficiently in Azure.
 - Azure Batch creates and manages a pool of compute nodes (virtual machines), installs the applications you want to run, and schedules jobs to run on the nodes.

Design and Implement Data Security

Data Security

- Plan for secure endpoints (private/public)
- Choose the appropriate authentication mechanism, such as <u>access keys</u>, <u>shared access, signatures (SAS)</u>, and <u>Azure Active Directory</u> (Azure AD)

Plan for Secure Endpoints

- Secure endpoints:
 - Azure Cosmos DB
 - Azure Storage Account
 - Azure Synapse Analytics
 - Azure Data Factory
 - Azure Databricks

Data Policies and Standards

- Design data encryption for data at rest and in transit
- Design for <u>data auditing</u> and <u>data masking</u>
- Design for data privacy and <u>data classification</u>
- Design a <u>data retention policy</u>
- Plan an <u>archiving strategy</u>
- Plan to <u>purge data</u> based on business requirements

Data Encryption for Data at Rest and in Transit

- Data encryption:
 - Azure Cosmos DB
 - Azure Storage Account
 - Azure Synapse Analytics

Azure compliance documentation

Azure compliance

Monitor and Optimize Data Storage and Data Processing

- Implement logging used by Azure Monitor
- Measure performance of data movement
- Monitor data pipeline performance
- Query Performance Insight for Azure SQL Database
- Monitor cluster performance in Azure HDInsight
- Use Azure Monitor with your Azure Synapse Analytics workspace
- Monitoring Azure Databricks

- Collect custom logs with Log Analytics agent in Azure Monitor
- Azure Monitor Metrics overview
- Data spill, data breach
- GDPR Breach Notification
- Azure and Dynamics 365 breach notification under the GDPR

- Skewness
- Choose a distribution column with data that distributes evenly
- Determine if the table has data skew
- Troubleshoot performance bottlenecks in Azure Databricks
- Automatic tuning in Azure SQL Database and Azure SQL Managed Instance
- Automatic tuning
- Performance tuning with result set caching

- Known issues for Apache Spark cluster on HDInsight
- Troubleshoot Azure Data Factory

The Exam

Questions in DP-203

- 65 questions (watch the time!)
- Questions
 - Multiple choice
 - Drag and drop
 - Scenario based
- There is no hands-on lab (might change)

DP-203

- Exam DP-203: Data Engineering on Microsoft Azure
- Skills measured

DP-203 Main Focus (not limited to)

- Azure Data Lake Gen2
- Azure Stream Analytics
- Azure Synapse Analytics
- Azure Data Factory
- Azure Databricks

Contact us Privacy & Cookies Terms of use Trademarks Accommodations

♣ Incognito :

Course Repository

https://github.com/zaalion/oreilly-dp-203

O'REILLY® Thank you!

Reza Salehi

