

ACCESS AND TRANSPORT NETWORKS Introduction

ACCESS AND TRANSPORT NETWORKS Introduction

0. introduction

- course staff
- course content
- learning outcome
- lectures and tutorials
- learning methods
- learning materials
- assignments

Reference groups needed: E-mail Stud.Ass. responsible

Elissar Khloussy and Steinar Bjørnstad

Introduction

Course Staff

0. introduction

Course responsible (Faglærer)

Norvald Stol (Norvald.stol@ntnu.no)

Course lecturers (Forelesere)

- Elissar Khloussy (elissar.khloussy@ntnu.no)
- Steinar Bjørnstad (<u>steinar.bjornstad@ntnu.no</u>)
- (E-mail communication preferred)

Teaching assistant responsible

• Kalpanie (kalpanie.mendis@ntnu.no)

Introduction

0. introduction

Course Content

The course has focus on concepts and technologies which are used in:

- Wireless Access Networks
- Optical Access and Transport Networks.

General

Wireless Access

Optical Networks

ACCESS AND TRANSPORT NETWORKS Introduction

- Access network: Connects end systems to the first ISP (or Telecom) router on the path from the end system
- Metro network: Consists of components and links that perform data switching between the access points.
- <u>Transport network</u>: Consists of components and links that perform data switching between the metro networks and other transport networks. National and international connections.

Introduction

0. introduction

Course Content

General:

- Architecture and functions of communication networks
- Capacity and transmission characteristics of different mediums
- Application (services) examples and their requirements of Quality of Service

Introduction

Course Content

0. introduction

Access networks

- Radio as communication medium
- Frequency band, Modulation, Multiplexing, Antennas, Coverage, Propagation,...
- Approaches to address the wireless channel impairments
- Medium Access Control
- Wireless Local Area Network & Wireless Personal Networks
- Cellular networks
- Fixed communication medium (characteristics, availability)
- Fiber based access and its applications, active/passive FTTH
- Optical network components

Introduction

Course Content

0. introduction

Transport Networks

- Optical switching (ROADM, WSS)
- Control and traffic management
- Protection switching and survivability
- Optical Transport Networks (OTN)
- Carrier Ethernet
- Research topics in optical communication

Introduction

0. introduction

Learning Outcome

Knowledge

- To understand which components, functions and principles are required for the realization of optical networks and wireless access
- To gain inside into a selection of the most used wireless and optical network technologies

Skills

 To be able to reuse ideas, technologies and components of previous networks to build new networks

Introduction

Learning Methods

0. introduction

For the complete training course:

- On Wednesdays there will be live lecturing in GL-KH KJL 2 from 12:15
 14:00
- There will be quizzes or lectures on Wednesdays in GL-KH KJL 2 from 15:15 - 17:00
- There will be two assignments, the first will be available after the second lecture, but introduction is given in week 39.
- On Fridays the Teaching Assistants will be available for questions from 14:15 - 16:00 in GL-GEL EL5.
- Questions can be asked during the lectures.
- Lectures will not be streamed or recorded.

Introduction

0. introduction

Lectures, Forum and Assignments

General: (Elissar and Steinar)	week 34
Course introduction and overview	week 34
Important background knowledge topics	week 35/36
Wireless transmission	week 37
Multiplexing & Medium Access control	week 38
WLAN & Bluetooth	week 36
Optical Networks (Steinar)	week 39
Optical components and transmission	week 39
Optical access networks	week 40
Cellular networks	week 41
Optical circuit switched networks	week 42
Guest lecture	week 43
Carrier Ethernet	week 43
Optical Transport Networks (OTN)	week 44
Optical network management/	week 44
Optical Protection switching	week 45
Guest lecture	week 46
Review of curriculum/	week 46
Information about exam	

Introduction

Learning Material

0. introduction

Optical network syllabus based on:

- Selected articles
- Lecture slides

Wireless network syllabus based on:

- Books:
- Mobile Communication, by J. Schiller
- Wireless Communication Networks and Systems, by C. Beard & W. Stallings

Blackboard:

Blackboard is the place to find information and course material

Introduction

There will be two assignments

0. introduction

For both assignments there will be groups of three students Follow announcements on blackboard

Assignment1: Access Networks

- Design of Wireless and optical access network
- Setting: The company you work would like to deploy an network.
- YOU are the network specialist and is given the design task.
- Key topics in access networks are covered

Introduction

0. introduction

Assignments

Assignment2: Designing networks

- Design of optical network and wireless networks
- Setting: The company you work would like to deploy a network.
- YOU are the network specialist and is given the design task.

Introduction

0. introduction

Grading

Assignment 1:

Assignment 2:

Written Exam:

Required to pass

Required to pass

100%

What are the key benefits of optical fibre communication?

- Is it fast or slow?
 - How do we define fast and slow?
- Is it expensive?
- Is it a thick cable?
- Is it susceptible to electromagnetic interference?

Optical fibre, characteristic

- Large bandwidth (theoretical 50 THz)
- Low attenuation (0,2 dB/km at 1550nm)
- Physical size beneficial, light and thin, simplifies installation
- Splicing and mounting connectors more complex
- Immune to electromagnetic interference
- Environmentally friendly material (sand!).
- Easy to break

Where in the network is fiber currently being used?

- Within houses?
- Connecting buildings/houses?
- Connecting cities?
- Connecting countries?
- Connecting continents?

Access Networks

• Examples:

- Home access: DSL, Cable, FTTH
- Enterprise access: Ethernet
- Enterprise and Home Access: WiFi
- Wide-area wireless access: 3G, LTE, 5G

- Wireless is increasingly prevalent!
 - Health, IoT, Smart Home, Vehicular Networks, ...
 - Challenge: To provide high-quality high-speed wireless access services

How Do Wireless and Wired Networks differ?

- Wireless is less reliable. Increased bit error rate due to:
 - ➤ Obstacles between Tx and Rx
 - **≻**Interference
- Multi-path propagation
 - ➤ Signal bounces on surfaces
 - >Can be destructive or constructive
- Mobility
 - ➤ Affects the quality of the transmission
 - ➤ Worst case: outages

Milestones in Wireless Communications

Main Challenges in Wireless Communications

- Attenuation or Signal Loss
 - The farther they travel, the more wireless signals begin to lose their strength
- Always shared medium
 - ➤ How do you coordinate access to the medium?
- Security
 - The broadcasting nature of the wireless transmission makes the transmitted information vulnerable
- Resource and spectrum utilization
 - The spectrum suitable for wireless communications is becoming increasingly scarce, which motivate the exploration of new spectrum bands

Optical fibre has unique properties

- 25 THz bandwidth available with low loss
- Enables Terabits of bandwidth over thousands of kilometers

Transmission capacity in optical fiber (lab)

D.J. Richardson et al., Nature Photonics, v. 7 p. 354, 1

Transmission capacity in optical fiber (lab)

Multicore fibre is next? Current record is: Pb/s

Future Wireless Systems Requirements

Many technical challenges are to be addressed in order to <u>satisfy</u> stringent requirements for future wireless systems:

- Very high spectral efficiency
- Very low latency
- Massive device connectivity
- Very high achievable data rate
- Ultra-high reliability
- High throughput
- Diverse quality-of-service
- Energy efficiency
- Cost reduction

Major factors	6G	5G
Peak data rate	> 100Gb/s	10[20] Gb/s
User experience data rate	> 10Gb/s	1Gb/s
Traffic density	> 100Tb/s/km ²	10Tb/s/km ²
Connection density	> 10million/km²	1million/km ²
Delay	< 1ms	ms level
Mobility	> 1000km/h	350km/h
Spectrum efficiency	> 3x relative to 5G	3~5x relative to 4G
Energy efficiency	> 10x relative to 5G	1000x relative to 4G
Coverage percent	> 99%	About 70%
Reliability	>99.999%	About 99.9%
Positioning precision	Centimeter level	Meter level
Receiver sensitivity	<-130dBm	About -120dBm
TABLE 1. Possible capabilities of 6G in comparison with 5G.		

ACCESS AND TRANSPORT NETWORKS Introduction

A taste of optical core and access networking Why optical networks?

TTM4105 NTNU

Core Networks

ACCESS AND TRANSPORT NETWORKS Introduction

- Access network: Connects end systems to the first ISP (or Telecom) router on the path from the end system
- Metro network: Consists of components and links that perform data switching between the access points.
- <u>Transport network</u>: Consists of components and links that perform data switching between the metro networks and other transport networks. National and international connections.

ACCESS AND TRANSPORT NETWORKS Introduction

Core Networks - Key Technologies

Multiplexing

- Switching
 - Known as layer 1 and 2 in protocol stack
- Routing
 - Known as layer 3 in protocol stack

Tampnet business areas

We deliver unparalleled connectivity for your business critical operations.

Oil & Gas

Offshore Wind

Maritime

International Carrier

Redundant fibre connectivity is key

Tampnet: Cables to England and Scotland with multiple fibres pairs: 20 Tb/pair

Optical Telecom networks

From long distance transport to 5G radio access network

Market drivers optical networks

- Fibre to the Home (FTTH)
 - Video applications (E.g. Netflix)
- Mobile networks
 - Increased density of mobile base stations
 - Fibre to the base-station
- Datacenter communication
 - Between datacenters
 - Datacenter to customers
 - Connecting the datacenter to Internet