COMTEK3,CCT3 & ESD3: ALGORITHMS INTRODUCTION TO GRAPH ALGORITHMS, BFS & DFS

Ramoni Adeogun

Associate Professor and Head of the AI for Communication Group
Wireless Communication Networks Section (WCN)

Email: ra@es.aau.dk

October, 2023

Outline

- Introduction to Graphs
 - Representation of Graphs
 - Walks, Cycles, Paths and Loops
 - Degrees of vertices
 - Operations on Graphs
- BFS and DFS
 - Length of Paths and Distances on Graphs
 - Breadth-First-Search
 - Depth-First-Search
 - Topological Sort
- Summary

I: INTRODUCTION TO GRAPHS

Introduction to Graphs

- A graph is a mathematical construct used to describe connections/relations between objects of all kinds
- Graphs can be:
 - undirected (graph): vertices are connected by edges without orientation
 - directed (digraph): vertices are connected by edges with orientation

Introduction to Graphs 2

- Graphs can represent many different situations, e.g.,
 - Computer networks
 - Social networks
 - Cities and roads on a map
 - Systems of equations with many variables
 - Factorization of functions, e.g.:

$$f(x_1,x_2,x_3,x_4)=f_a(x_1,x_2)f_b(x_1,x_3)f_c(x_2,x_3,x_4)f_d(x_4)$$

- In the situations above, what would the edges and vertices represent?
- Can you sketch a graph representing the factorization of function example?

Algorithm

Representation of Graphs

- Mathematically, definitions:
 - A graph G=(V,E) is a structure consisting of a set of **vertices** $V=(v_1,v_2,\ldots)$ and a set of edges $E=(e_1,e_2,\ldots)$; each edge $e\in E$ has two endpoints which are vertices in V.
 - A digraph is a graph G=(V,E) in which each edge have ordered endpoints: a start vertex and an end vertex

Can you identify the following kind of edges in each of the graphs?

- 1. Loop (self-loop)
- 2. Parallel edges
- 3. Antiparallel edges

Algorithms

Representation of Graphs

- Graphs can be represented in many ways:
 - Diagram
 - Human readable, but not good for computers
 - Best for small graphs
 - Adjacency list

 - Lookup requires linear search in a list O(|V|) Memory efficient for sparse graphs $|E|<<|V|^2$
 - Adjacency matrix
 - Easy lookup with O(1) time
 - Large memory requirement $O(|V|^2)$
 - Best for dense graphs with $|E| pprox |V|^2$
 - Cannot represent parallel edges (but loops are ok)

Representation of Graphs

	1	2	3	4	5
	0				
2	1	0	1	1	1
3	0	1	0	1	
4	0	1	1	0	
5	1	1	0	1	0

	1	2	3	4	5	6
1	0	1	0	1	0	0
2	0	0	0	0	1	0
3	0	0	0	0	1	1
4	0	1	0	0	0	0
5	0	0	0	1	0	0
6	0	1 0 0 1 0	0	0	0	1

Weighted Graphs

- Vertices have an associated numeric value (weight)
 - Can be used to represent: available/used link capacity, geographical distance, cost of decision, etc.
- Representation with adjacency-list and adjacency matrix is straight-forward:
 - Weight of edge between vertices u and v: w(u,v)

Simple Graphs

- A graph with no parallel edges is called a simple graph.
- Edges in a simple graph are taken to be pair of start and end vertices, i.e., $e=\left(v_{start},v_{end}\right)$
 - For simple graphs, we write $\,E \subset V^2$
- For undirected simple graphs, $(v_1,v_2)=(v_2,v_1)$

Walks, Cycles, Paths and Loops

• A walk in a graph G=(V,E) is an alternating sequence of vertices and edges:

$$w=(u_1,e_1,u_2,e_2,\ldots,u_k,e_k,u_{k+1});\,e_k=(u_k,u_{k+1})$$

- ullet w is referred to as a $u_1 u_{k+1}$ walk
- A walk is often written as a list of only the edges or vertices it traverses.
- A path is a walk in which no vertices are repeated
- A walk forms a cycle if $u_1=u_{k+1}$ and u_1,u_2,\ldots,u_k are all distinct
- A loop is a cycle containing only one edge

Degrees of Vertices

• The degree of a vertex v is the number of edges incident to v

Handshaking Lemma:

For graph
$$\,G \,=\, (V,E)$$
 , $\,\, \sum_{v \in V} \deg{(v)} \,=\, 2|E|$

vertex	\deg	\deg_i	\deg_o
S	2	1	1
\mathbf{t}	3	1	2
\mathbf{u}	2	2	0
v	4	3	1
\mathbf{w}	3	0	3

Useful Graph Properties

- Adjacency matrix can be used to calculate
 - Degree
 - Summing the ith row gives the out degree of vertex i: $\deg_o\left(i\right)$
 - Summing the jth column gives the in degree of vertex j: $\deg_i(j)$
 - Sum of the ith column and ith row gives deg(i)
 - Number of i j walks
 - Theorem: Let A be the adjacency matrix of a simple graph G = (V, E), then the (i,j)th entry of A^k , $k \geq 1$ is the number of different $v_i v_j$ walks
 - Proof: we use mathematical induction

Operations on a Graph

- Many operations can be defined to transform a graph G=(V,E) into another G'=(V',E'), e.g.,
 - Add edge e to G: $G' = G + e = (V, Eu\{e\})$
 - Delete edge e from G: $G' = G e = (V, E \setminus \{e\})$
 - Add vertex v to G: $G' = G + v = (Vu\{v\}, E)$
 - Delete vertex v from G: $G' = G v = (V \setminus \{v\}, E')$
 - Contraction of edge e: $G' = G \div e = (V', E')$
 - Step 1: G e
 - Step 2: Replace v and μ in the result

Algorithms

II: BFS and DFS

Length of Path, Distance & Shortest Path

- The length of a path is the number of edges in the path
 - A path of length k has k edges and at most k+1 vertices.
 - A simple path has exactly k+1 vertices
- The distance $\delta(s,v)$ from vertex s to v in a graph G=(V,E) is the minimum length of a path from s to v in G.
 - Note: The shortest s-v path has length $\delta(s,v)$ and may not be unique
- A vertex v is reachable from s if there is a finite-length path from s to v.
 - If v is not reachable from s, we set $\,\delta(s,v)=\,\infty\,$

Distance Classes

- A distance class is the set of vertices with same distance from a particular vertex s.
 - the distance class $\mathcal{D}_i(s)$ is the set of vertices in a graph such that $\delta(s,v)=i\,orall v\in\mathcal{D}_i(s)$
- A graph can be divided according to distances:

- A vertex $v \in \mathcal{D}_i(s)$ can be reached in i steps from vertex s
 - There is a length i path from s to v

Searching in Graphs

- The two fundamental search approaches are:
 - Breadth-first
 - Explores all nodes in 1-step distance, then 2-step distance, ...
 - Depth-first
 - Explores a deep path when possible
- Other graph algorithms can be seen as extensions/hybrids of these

Breadth-First-Search (BFS)

- Given a graph or digraph, BFS finds
 - all vertices reachable from a "source" vertex s.
 - all distances from s to all reachable vertices
 - a "breadth- first tree" with root, s that contains all reachable vertices
- BFS is called so because
 - it searches a graph breadth- wise, discovering all vertices of distance k from s before moving on to those at distance k+1.
 - Thus it finds all vertices in distance class $\mathcal{D}_k(s)$ and then moves on to distance class $\mathcal{D}_{k+1}(s)$

Breadth-First-Search (BFS) 2

- BFS tracks its progress by coloring and recoloring vertices as the algorithm moves forward:
 - all vertices start as white
 - when a vertex is discovered it is colored gray
 - when done visiting a vertex it is colored black
- BFS uses on a FIFO queue with operations Enqueue & Dequeue

```
PRINT-PATH(G, s, v)

1 if v == s

2 print s

3 elseif v.\pi == \text{NIL}

4 print "no path from" s "to" v "exists"

5 else PRINT-PATH(G, s, v.\pi)

6 print v
```

```
BFS(G,s)
    for each vertex u \in G. V - \{s\}
        u.color = WHITE
        u.d = \infty
        u.\pi = NIL
 5 \quad s. color = GRAY
 6 \, s.d = 0
    s.\pi = NIL
    O = \emptyset
    Enqueue(Q,s)
    while Q \neq \emptyset
        u = \text{DEQUEUE}(Q)
        for each vertex v in G.Adj[u]
             if v.color == WHITE
                 v.color = GRAY
                 v.d = u.d + 1
16
                 v.\pi = u
                 Enqueue(Q, v)
        u.color = BLACK
```


Breadth-First-Tree

For a connected graph G=(V,E) with source $s\in V$, a predecessor subgraph $G_\pi=(V_\pi,E_\pi)$ is defined as:

$$egin{aligned} V_\pi &= \{v \in V: \, v.\, \pi \,
eq NIL \} U\{s\} \ E_\pi &= \{(v\pi,v)\, v \,
eq V_\pi ackslash \{s\} \} \end{aligned}$$

- A predecessor subgraph is a breadth-first-tree if
 - ullet V_{π} consists of vertices reachable from s, and
 - for all $v \in V_\pi$, G_π contains a unique simple path from s to v, which is also a shortest path from s to v in G
- G_π is a tree since it is connected and $|E_\pi| = |V_\pi| 1$

Note: BFS returns a breadth first tree

Algorithi

BFS - Example

Can you sketch the BFS tree for this example?

Depth-First-Search (DFS)

- DFS
 - explores a graph by searching "deeper" into it whenever possible
 - explores edges out of the most recently discovered vertex v which still has unexplored edges leaving it
 - when all v's edges have been explored, DFS "backtracks" to explore edges leaving the vertex from which v was discovered
 - continues until all reachable vertices are discovered.
 - If any undiscovered vertices remain
 - DFS selects one and repeats with that as source, until all vertices have been discovered

Note: Since DFS is run from (possibly) multiple sources, its predecessor graph may consist of more than one tree => forms a <u>depth-first-forest</u>.

Depth-First-Search (DFS)

DFS gives the following attributes to vertices:

- v.color:
 - All vertices starts as white
 - when a vertex is discovered, it is grayed
 - When a vertex is finished, it is blacked
- v.d: discovery time-stamp
- v.f: finishing time-stamp

A time-stamp is an integer between 1 and 2|V|

• $v.\,\pi$: predecessor of v

```
DFS(G)
 1 for each vertex u \in G.V
        u.color = WHITE
        u.\pi = NIL
 4 \quad time = 0
   for each vertex u \in G, V
        if u, color == WHITE
            DFS-VISIT(G, u)
DFS-VISIT(G, u)
                                 // white vertex u has just been discovered
 1 time = time + 1
 2. u.d = time
 3 \quad u.color = GRAY
   for each vertex v in G. Adi[u] // explore each edge (u, v)
        if v.color == WHITE
            v.\pi = u
            DFS-VISIT(G, v)
   time = time + 1
   u.f = time
   u.color = BLACK
                                 // blacken u: it is finished
```


DFS - Example

Topological Sort

- DFS can be used to linearly order vertices of a directed acyclic graph (DAG), such that if $(u,v)\in E$,then u comes before v.
 - Such an ordering is called topological sort and can be obtained used a simple algorithm

 TOPOLOGICAL-SORT(G)
 - 1 call DFS(G) to compute finish times v.f for each vertex v
 - 2 as each vertex is finished, insert it onto the front of a linked list
 - 3 return the linked list of vertices

Example: Bumstead Getting Dressed

Summary

- Graphs are useful in many applications
 - can be represented using
 - diagrams, adjacency lists, adjacency matrices, etc
 - different operations can be defined from graph transformation
- BFS searches all vertices that are reachable from a specified source
 - its output is the so called Breadth-First-Tree
- DFS combines deep exploration with backtracking
 - it result in a Depth-First-Forest

