SUMMARY OF TESTS FOR SERIES

Test	Series	Condition(s) of Convergence	Condition(s) of Divergence	Comment
nth-Term	$\sum_{n=1}^{\infty} a_n$		$\lim_{n\to\infty}a_n\neq 0$	This test cannot be used to show convergence.
Geometric Series $(r \neq 0)$	$\sum_{n=0}^{\infty} ar^n$	r < 1	$ r \ge 1$	Sum: $S = \frac{a}{1 - r}$
Telescoping Series	$\sum_{n=1}^{\infty} (b_n - b_{n+1})$	$\lim_{n\to\infty}b_n=L$		Sum: $S = b_1 - L$
<i>p</i> -Series	$\sum_{n=1}^{\infty} \frac{1}{n^p}$	<i>p</i> > 1	0	
Alternating Series $(a_n > 0)$	$\sum_{n=1}^{\infty} (-1)^{n-1} a_n$	$a_{n+1} \le a_n$ and $\lim_{n \to \infty} a_n = 0$		Remainder: $ R_N \le a_{N+1}$
Integral (f is continuous, positive, and decreasing)	$\sum_{n=1}^{\infty} a_n, a_n = f(n) \ge 0$	$\int_{1}^{\infty} f(x) dx $ converges	$\int_{1}^{\infty} f(x) dx \text{ diverges}$	Remainder: $0 < R_N < \int_N^\infty f(x) dx$
Root	$\sum_{n=1}^{\infty} a_n$	$\lim_{n\to\infty} \sqrt[n]{ a_n } < 1$	$\lim_{n \to \infty} \sqrt[n]{ a_n } > 1 \text{ or}$ $= \infty$	Test is inconclusive when $\lim_{n\to\infty} \sqrt[n]{ a_n } = 1.$
Ratio	$\sum_{n=1}^{\infty} a_n$	$\lim_{n\to\infty} \left \frac{a_{n+1}}{a_n} \right < 1$	$\lim_{n \to \infty} \left \frac{a_{n+1}}{a_n} \right > 1 \text{ or }$ $= \infty$	Test is inconclusive when $\lim_{n \to \infty} \left \frac{a_{n+1}}{a_n} \right = 1.$
Direct Comparison $(a_n, b_n > 0)$	$\sum_{n=1}^{\infty} a_n$	$0 < a_n \le b_n$ and $\sum_{n=1}^{\infty} b_n$ converges	$0 < b_n \le a_n$ and $\sum_{n=1}^{\infty} b_n \text{ diverges}$	
Limit Comparison $(a_n, b_n > 0)$	$\sum_{n=1}^{\infty} a_n$	$\lim_{n \to \infty} \frac{a_n}{b_n} = L > 0$ and $\sum_{n=1}^{\infty} b_n \text{ converges}$	$\lim_{n \to \infty} \frac{a_n}{b_n} = L > 0$ and $\sum_{n=1}^{\infty} b_n \text{ diverges}$	

POWER SERIES FOR ELEMENTARY FUNCTIONS

Function	Interval of Convergence
$\frac{1}{x} = 1 - (x - 1) + (x - 1)^2 - (x - 1)^3 + (x - 1)^4 - \dots + (-1)^n (x - 1)^n + \dots$	0 < x < 2
$\frac{1}{1+x} = 1 - x + x^2 - x^3 + x^4 - x^5 + \dots + (-1)^n x^n + \dots$	-1 < x < 1
$\ln x = (x-1) - \frac{(x-1)^2}{2} + \frac{(x-1)^3}{3} - \frac{(x-1)^4}{4} + \dots + \frac{(-1)^{n-1}(x-1)^n}{n} + \dots$	$0 < x \le 2$
$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \frac{x^5}{5!} + \dots + \frac{x^n}{n!} + \dots$	$-\infty < x < \infty$
$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \frac{x^9}{9!} - \dots + \frac{(-1)^n x^{2n+1}}{(2n+1)!} + \dots$	$-\infty < x < \infty$
$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \frac{x^8}{8!} - \dots + \frac{(-1)^n x^{2n}}{(2n)!} + \dots$	$-\infty < x < \infty$
$\arctan x = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \frac{x^9}{9} - \dots + \frac{(-1)^n x^{2n+1}}{2n+1} + \dots$	$-1 \le x \le 1$
$\arcsin x = x + \frac{x^3}{2 \cdot 3} + \frac{1 \cdot 3x^5}{2 \cdot 4 \cdot 5} + \frac{1 \cdot 3 \cdot 5x^7}{2 \cdot 4 \cdot 6 \cdot 7} + \dots + \frac{(2n)! x^{2n+1}}{(2^n n!)^2 (2n+1)} + \dots$	$-1 \le x \le 1$
$(1+x)^k = 1 + kx + \frac{k(k-1)x^2}{2!} + \frac{k(k-1)(k-2)x^3}{3!} + \dots + \frac{k(k-1)\cdots(k-n+1)x^n}{n!} + \dots$	$-1 < x < 1^*$
* The convergence at $x = \pm 1$ depends on the value of k.	

^{*} The convergence at $x = \pm 1$ depends on the value of k.