Name: Mulia Widjaja (Noble)

Instructor: Dr. Kai Lukoff

51282 Computer Engineering 12L: Abstract Data Types & Structures Lab

12/2/2022

Lab 5 Report: Sorting Algorithm Runtime Analyses

In this lab, I was instructed to analyze a runtimes of quadratic $(\Theta(n^2))$ and linearithmic $(\Theta(n \log n))$. I chose Selection Sort for the Quadratic runtime. On the other hand, I chose Merge Sort for the Linearithmic Runtime. This document represents the 2-page compilations of analysis along with a table of each algorithm with different numbers or rows of data, referred to as n. The variable n ranges from 10 to 1,000,000. Here are the table below:

	Θ(n log n) algorithm	Θ(n²) algorithm
	(Merge Sort)	(Selection Sort)
n = 10	0.254 sec	0.249 sec
n = 100	0.263 sec	0.256 sec
n = 1,000	0.267 sec	0.269 sec
n = 10,000	0.298 sec	0.348 sec
n = 100,000	0.744 sec	5.597 sec
n = 1,000,000	5.246 sec	8 min 16.374 sec

The code for the Selection Sort with $\Theta(n^2)$ is apparently simpler, especially with the for loop. Nevertheless, based on these observations above, the Merge Sort method for $\Theta(n \log n)$ is far more efficient than $\Theta(n^2)$ with the Selection Sort one.

With $\Theta(n^2)$ algorithm (Selection Sort), while the number of data is 10,000 or less, the data could have been sorted in less than 1 second. Moreover, a data amount of

100,000 demonstrates that the code can be implemented in approximately 5 seconds. By the time it reaches 1,000,000, it takes over 8 minutes for the code to be implemented.

Contrariwise, with $\Theta(n \log n)$ algorithm (Merge Sort), while the number of data is 100,000 or less, the data could have been sorted in less than 1 second. By the time it reaches 1,000,000, it still takes solely approximately 5 seconds for the code to be executed. It vividly demonstrates that the code for the Merge Sort method with $\Theta(n \log n)$ algorithm is much more efficient compared to the Selection Sort one.