CSC 225 - Summer 2019

Traversals II

Bill Bird

Department of Computer Science University of Victoria

July 17, 2019

Iterative DFS (1)

```
1: procedure ITERATIVEDFS(r)
         S \leftarrow \mathsf{Empty} \; \mathsf{stack}
 3:
        Parent \leftarrow Parent array, initialized to \times.
 4:
        Push r onto S.
 5:
        Parent[r] \leftarrow r
 6:
        while S is non-empty do
 7:
             v \leftarrow \text{Peek}(S)
             if all neighbours of v have been visited then
 8:
 9:
                 Pop(S)
10:
             else
11:
                 w \leftarrow an unvisited neighbour of v
12:
                 Parent[w] \leftarrow v
                 Push w onto S
13:
14:
             end if
15:
         end while
16:
         return Parent
17: end procedure
```

DFS can be implemented as an iterative algorithm using a stack.

Iterative DFS (2)

```
1: procedure ITERATIVEDFS(r)
         S \leftarrow \mathsf{Empty} \; \mathsf{stack}
 3:
        Parent \leftarrow Parent array, initialized to \times.
 4:
         Push r onto S.
 5:
        Parent[r] \leftarrow r
 6:
        while S is non-empty do
             v \leftarrow \text{Peek}(S)
 7:
             if all neighbours of v have been visited then
 8:
 9:
                 Pop(S)
10:
             else
11:
                 w \leftarrow an unvisited neighbour of v
12:
                 Parent[w] \leftarrow v
                 Push w onto S
13:
14:
             end if
15:
         end while
16:
         return Parent
17: end procedure
```

The pseudocode above takes the root vertex r and returns the parent array of the DFS tree.

Iterative DFS (3)

Consider a DFS traversal using the stack based algorithm starting at vertex v_9 in the graph above.

Iterative DFS (4)

First, push the root vertex v_9 onto the stack.

Iterative DFS (5)

Iterative DFS (6)

Iterative DFS (7)

Iterative DFS (8)

Iterative DFS (9)

Iterative DFS (10)

Iterative DFS (11)

Iterative DFS (12)

Iterative DFS (13)

Iterative DFS (14)

When the algorithm leaves a vertex for the last time, it is popped from the stack.

Iterative DFS (15)

Iterative DFS (16)

Iterative DFS (17)

Iterative DFS (18)

Stack

*V*7 *V*6 v_{17} *V*₁₆ v_{15} v_{14} *V*4 *V*3 *V*2 v_1 V9

Iterative DFS (19)

Stack

Stack	
<i>v</i> ₈	
<i>V</i> 7	
<i>v</i> ₆	
v_{17}	
<i>v</i> ₁₆	
v_{15}	
v_{14}	
<i>V</i> 4	
<i>V</i> 3	
<i>V</i> 2	
v_1	
<i>V</i> 9	

Iterative DFS (20)

Stack

 v_0 *V*6 v_{17} *V*₁₆ v_{15} v_{14} *V*4 *V*3 *V*2 v_1 V9

Iterative DFS (21)

Stack

Stack	
<i>V</i> 5	
v_0	
<i>v</i> ₆	
<i>V</i> ₁₇	
<i>v</i> ₁₆	
v_{15}	
v_{14}	
<i>V</i> 4	
<i>V</i> 3	
<i>V</i> 2	
v_1	
<i>V</i> 9	l

Iterative DFS (22)

```
1: procedure ITERATIVEDFS(r)
         S \leftarrow \mathsf{Empty} \; \mathsf{stack}
 3:
        Parent \leftarrow Parent array, initialized to \times.
 4:
         Push r onto S.
 5:
        Parent[r] \leftarrow r
 6:
        while S is non-empty do
             v \leftarrow \text{Peek}(S)
 7:
             if all neighbours of v have been visited then
 8:
 9:
                 Pop(S)
10:
             else
11:
                 w \leftarrow an unvisited neighbour of v
12:
                 Parent[w] \leftarrow v
                 Push w onto S
13:
14:
             end if
15:
         end while
16:
         return Parent
17: end procedure
```

Question: What if the traversal used a queue instead of a stack?

Breadth-First Search (1)

```
1: procedure BFS(r)
        Q \leftarrow \mathsf{Empty} \; \mathsf{queue}
 3:
        Enqueue r into Q
        Mark r as visited
 4:
 5:
        while Q is non-empty do
 6:
            v \leftarrow \text{Dequeue}(Q)
 7:
            for each neighbour w of v do
                if w is unvisited then
 8:
 9:
                    Mark w as visited
10:
                    Enqueue w in Q
                end if
11:
12:
            end for
13:
        end while
14: end procedure
```

Using a queue produces a traversal called **breadth-first search** or **BFS**.

Breadth-First Search (2)

```
1: procedure GENERATEBFSTREE(r)
        Q \leftarrow \mathsf{Empty} \; \mathsf{queue}
 3:
        Parent \leftarrow Parent array, initialized to \times.
 4:
        Enqueue r into Q.
 5:
        Parent[r] \leftarrow r
 6:
        while Q is non-empty do
             v \leftarrow \text{Dequeue}(Q)
 7:
 8:
             for each neighbour w of v do
                 if Parent[w] = \times then
 9:
10:
                     Parent[w] \leftarrow v
11:
                     Enqueue w in Q
12:
                 end if
13:
             end for
14:
        end while
15:
        return Parent
16: end procedure
```

The pseudocode above generates and returns a BFS tree.

Breadth-First Search (3)

Consider a BFS traversal using the stack based algorithm starting at vertex v_0 in the graph above.

Breadth-First Search (4)

First, enqueue the root vertex v_9 in the queue.

Breadth-First Search (5)

At each iteration of the main loop, the vertex of the front of the queue is removed and all of its unvisited neighbours are added.

Breadth-First Search (6)

(Vertices which are in the queue but have not been visited are shown in red).

Breadth-First Search (7)

Breadth-First Search (8)

Breadth-First Search (9)

Breadth-First Search (10)

Breadth-First Search (11)

Breadth-First Search (12)

Even though v_6 has not been visited yet, it has already been added to the BFS tree (and the queue).

Breadth-First Search (13)

Breadth-First Search (14)

Breadth-First Search (15)

Breadth-First Search (16)

Breadth-First Search (17)

Breadth-First Search (18)

Breadth-First Search (19)

Breadth-First Search (20)

Breadth-First Search (21)

Breadth-First Search (22)

Breadth-First Search (23)

BFS and BFS Trees (1)

BFS is a more 'conservative' traversal and spreads out slowly from the starting vertex.

BFS and BFS Trees (2)

As a result, BFS trees have several valuable properties that DFS trees lack.

BFS and BFS Trees (3)

In particular, the path from any node to the root in a BFS tree is guaranteed to be the shortest path possible.

BFS and BFS Trees (4)

The vertices in level i of the BFS tree are the vertices with minimum distance i from the root of the tree. The root vertex is at level 0.

BFS and BFS Trees (5)

The vertices adjacent to the root are at distance 1.

BFS and BFS Trees (6)

The vertices adjacent to the root are at distance 1.

BFS and BFS Trees (7)

The vertices adjacent to the root are at distance 1.

BFS and BFS Trees (8)

The neighbours of vertices at level 1 have distance 2.

BFS and BFS Trees (9)

Non-tree edges between vertices on different levels are **back edges** (as in DFS).

BFS and BFS Trees (10)

Non-tree edges between vertices on the same level are **cross edges**.

BFS and BFS Trees (11)

BFS can produce cross edges in undirected graphs, unlike DFS (which only produces cross edges in directed graphs).

BFS and BFS Trees (12)

BFS and BFS Trees (13)

BFS and BFS Trees (14)

BFS and BFS Trees (15)

The ordering of vertices in a BFS is equivalent to a level-order traversal of the underlying spanning tree.

BFS and BFS Trees (16)

Note that paths from each node w to the root u are minimum length u-w paths in G.

Running Time of Traversals (1)

Question: What is the running time of DFS or BFS on a graph with n vertices and m edges?

Running Time of Traversals (2)

In both DFS and BFS, each vertex is visited and processed at most once.

When a vertex v is visited, the traversal algorithms iterate over all neighbours of v and traverse any unvisited neighbours. The total running time is then

$$n + \sum_{v \in V(G)} \deg(v) = n + 2m$$

Therefore, the running time of DFS and BFS is

$$\Theta(n+m)$$