# **Exploration Strategies in Reinforcement Learning**

Maximum Entropy optimisation applied to chaotic PDE control

R. Hosseinkhan Boucher, O. Semeraro, L. Mathelin

Laboratoire Interdisciplinaire des Sciences du Numérique, Université Paris-Saclay, CNRS

**SIAM 2023** 

Amsterdam

Financed by Agence National de la Recherche (ANR) under project ANR-21-CE46-0008 Reinforcement Learning as Optimal control for Shear Flows (REASON)









# **Table of contents**

## Introduction: Real-world applications require robustness



Von Kármán vortex street in the wake of a cylinder with Re=32 (top) and Re=102 (bottom). The adaptation of models to the evolution of the underlying dynamic is a property of robust models.

Real-world applications require **robustness** 

### Origin of disturbances

- Noise
- Non-stationarity
- Stochasticity
- Partial Observability

Recent theoretical works about robustness in Reinforcement Learning <sup>1</sup>

So far applied on Robotics, what about PDE control?

<sup>&</sup>lt;sup>1</sup>B. Eysenbach, S. Levine. "Maximum Entropy RL (Provably) Solves Some Robust RL Problems", International Conference on Learning Representations (2022)

# **Controlled Kuramoto-Sivashinksy**

Controlled KS: 
$$\frac{\partial v}{\partial t}(x,t) + v(x,t)\frac{\partial v}{\partial x}(x,t) = -\frac{\partial^2 v}{\partial x^2}(x,t) - \frac{\partial^4 v}{\partial x^4}(x,t) + \phi(x) * \frac{u(t)}{u(t)}$$

### Equation is controlled through $\phi * \mathbf{u}$

 $\phi$  is a given convolution kernel,  $\boldsymbol{u}$  is the unknown

### **Properties**

- Spatio-temporal chaos, 4th order non-linear
- Equilibria, relative equilibria, symmetries

#### Previous work

Extanding our previous work with *Deterministic* 

Policy Gradient 1



Time evolution of the Kuramoto Sivashinsky equation with L=100

v(x + L, t) = v(x, t) and  $(x, t) \in [0, L] \times [0, T]$ 

100

# **Maximum Entropy Objective**

Suppose u is a **stochastic control** with distribution  $\pi(du)$ 

### **Quadratic Objective**

$$J(u) = \int_0^T (\|v(x,t)\|^2 + \|u(x,t)\|^2) dt$$

### **Maximum Entropy Quadratic Objective**

$$J(u) = \int_0^T (\|v(x,t)\|^2 + \|u(x,t)\|^2) dt - \alpha \mathcal{H}(\pi(du))$$

where  ${\cal H}$  denotes the **Entropy**.

# Question

What is the impact of considering the Maximum Entropy objective over the classic objective with Reinforcement Learning?



## **Modelling as Markov Decision Process**

Controlled Dynamical System  $x_{t+1} = G(x_t, u_t), u_t \in \mathcal{U}, x_t \in \mathcal{X}$ .

### Markov Decision Process representation

Consider G as a **stochastic process**  $X_{t+1} = G(X_t, U_t)$ 

### **Transition Probability**

 $P((x_t,u_t),dx_{t+1})$  is a distribution over  $\mathcal X$  given  $(x_t,u_t)\in\mathcal X imes\mathcal U$ 

### **Example (Deterministic case)**

 $P((x_t, u_t), dx_{t+1}) = \delta_{G(x_t, u_t)}(dx_{t+1})$ , the transition is determined by G

### **Policy**

 $\pi(x, du)$  is a distribution over  $\mathcal{U}$  given  $x \in \mathcal{X}$ 

Deterministic PDE: randomness is induced by the control  $oldsymbol{U}$  !

# Standard Objective vs. Maximum Entropy Objective

#### **Policy**

 $\pi(x, du)$  is a distribution over  $\mathcal{U}$  given  $x \in \mathcal{X}$ 

### **Example (Gaussian)**

$$\pi(x, du) \sim \mathcal{N}(\mu_x, \sigma_x^2)$$

### Cost-per-step

$$c: \mathcal{X} \times \mathcal{A} \rightarrow \mathbb{R}_+$$

### **Example (energy)**

$$c(x, a) = ||x||^2 + ||u||^2$$

#### Standard Objective

Max Entropy Objective

$$J_x^{\pi} := \mathbb{E}_x^{\pi} \left[ \sum_{t=1}^{\infty} \gamma^t c\left( X_t, U_t \right) \right] \qquad \qquad J_x^{\pi} := \mathbb{E}_x^{\pi} \left[ \sum_{t=1}^{\infty} \gamma^t c\left( X_t, U_t \right) \right] - \alpha \mathcal{H}(\pi(x, du))$$

## **Optimal policy**

$$\pi^* := \operatorname*{arg\;min}_{\pi \in \Pi} J^\pi$$

Goal: find a policy  $\pi^*$  such that an objective is minimised

## **Functional approximation**

### **Parametric Statistics**

Distribution is parametrised by  $\theta \in \Theta$ ,  $\pi := \pi_{\theta}$ 

Objective 
$$J^{\pi}:=J^{\pi_{\theta}}=J(\theta)$$

Optimal policy 
$$\pi_{\theta^*}$$
 where  $\theta^* = \underset{\theta \in \Theta}{\operatorname{argmin}} J_{\theta}(x)$ 

Trajectories are sampled to estimate the process distribution

### Monte Carlo method (Estimation)

$$h^i = (x_1^i, u_1^i, x_2^i, \dots, x_{T-1}^i, u_{T-1}^i, x_T^i)$$

$$J_x(\theta) = E_x^{\pi} \left[ \sum_{t=0}^{\infty} \alpha^t c\left(x_t, a_t\right) \right] \simeq \frac{1}{N} \sum_{i=1}^{N} \left[ \sum_{t=0}^{\infty} \alpha^t c\left(x_t^i, a_t^i\right) \right]$$

## **Optimisation (Gradient Descent)**

$$\theta_{t+1} = \theta_t - \eta \nabla J(\theta_t)$$



# Reinforcement Learning: Kuramoto-Sivashinsky setting

### State and control spaces

$$\mathcal{X} = L^2([0, L]) \simeq \mathbb{R}^d$$

$$\mathcal{U} = L^2([-a, a]) \simeq [-a, a]^b$$

with  $d,b \in \mathbb{N}$ , discretization dimensions (e.g. d=64)

### Cost is the energy of the system

$$c(x) = \lambda ||x||_2^2 + \beta ||u||_2^2$$

Control is a gaussian mixture weighted by  $U_{t} \sim \pi\left(X_{t},\cdot\right)$ 

$$\phi(x) * U(t) = \sum_{i=1}^{b} U_i \frac{1}{2\pi\sigma} \exp\left(-\frac{\left(x - x_i^{\mathrm{a}}\right)^2}{2\sigma^2}\right)$$

System evolution: spatial discretisation with exponential time-differencing.



# **Experiments 1: Stabilising the dynamics**

With spatial domain  $x \in [0, 22]$ , the PDE has 4 steady-state solutions  $E_i(x)$ ,  $i = 0, \dots, 3$ 

#### **Task**

Minimise 
$$J_x^{\pi} := \mathbb{E}_x^{\pi} \left[ \sum_{t=1}^{\infty} \gamma^t c\left(X_t, U_t\right) \right] - \alpha \mathcal{H}(\pi(x, du))$$
  
with  $c(x) = \lambda \|x\|_2^2 + \beta \|u\|_2^2$ 

### Configuration

**Method** Proximal Policy Optimisation<sup>1</sup>(PPO) **Time horizon**  $t \in [0, 20]$ 

**Data** 2000 trajectories from random initial conditions with shifting distribution



Fourier representation of time-independant solutions  $E_i(x)$  with random (left) and optimal (right) controlled trajectories.

Representation of the equilibria  $E_0$ ,  $E_1$ ,  $E_2$ ,  $E_3$ 

9

# **Experiment 1: Stabilising the dynamics**

### **Objective**

Minimise 
$$J_x^{\pi} := \mathbb{E}_x^{\pi} \left[ \sum_{t=1}^{\infty} \gamma^t c(X_t, U_t) \right] - \alpha \mathcal{H}(\pi(x, du))$$
  
with  $c(x) = \lambda ||x||_2^2 + \beta ||u||_2^2$ 

Random initial condition  $X_0 \sim \mathcal{N}(E_2, \sigma^2)$ 

**Control the state**  $x_t$  towards the equlibrium  $E_0 = 0$ 

### **Experiment**

- $\bullet$  Fix 3 different levels of entropy  $\alpha$
- ullet Optimise 10 seeds (decrease incertainty) for each of the lpha
- Entropy linear decay during optimisation
- Test policy on new initial condition distribution  $X_0 \sim \mathcal{N}(E_3, \sigma^2)$



# Result 1: Maximising Entropy improves generalisation



**Optimal**  $\mathbb{E}_{x}^{\pi}\left[\sum_{t=1}^{\infty}\gamma^{t}\left\|X_{t}\right\|^{2}+\left\|U_{t}\right\|^{2}\right]$  for different levels of  $\alpha$ 

Black curve:  $\alpha = 0$ Blue curves:  $\alpha > 0$ 

Average over 10 models for each of the  $\alpha$  (total 40 models  $\theta^*$ )

#### **Observations**

- No-entropy objective converges faster
- Entropy improves **generalisation** performances (lower energy on **out of sample** distribution)

# **Experiment 2: Policy evaluation under noisy observations**

Controlled KS: 
$$\frac{\partial v}{\partial t}(x,t) + v(x,t)\frac{\partial v}{\partial x}(x,t) = -\frac{\partial^2 v}{\partial x^2}(x,t) - \frac{\partial^4 v}{\partial x^4}(x,t) + \phi(x) * u(t)$$

### In practice: partial observability

PDE controlling term 
$$\phi(\mathbf{v}) * u(t)$$

Noisy observable 
$$y(x) = \psi * v(x) + \epsilon(x)$$

Sensor noise 
$$\epsilon(x) \sim \mathcal{N}(x, \sigma^2)$$

## Hypothesis

Maximum entropy solutions are robust to noise

Observation noise decreases performances

- Test policy with different level of noise  $\sigma$  on y
- Compare evolution of  $J_{\sigma}^{\pi^*}$  w.r.t.  $J^{\pi^*}$ :

$$\psi(x) \\ y(x) = \psi * v(x) + \epsilon(x)$$

$$\epsilon(x) \sim \mathcal{N}(x, \sigma^2)$$
Noisy observable

with  $J_{\sigma}^{\pi^*} = \mathbb{E}_{\mathbf{x}}^{\pi} \left[ \sum_{t=1}^{\infty} \gamma^t \|\mathbf{X}_t\|^2 + \|\mathbf{U}_t\|^2 \right]$  and  $J_{\sigma}^{\pi^*}$  same quantity evaluated with noisy observables

## Result 2: Entropy improves noise robustness



Variation of the objective to minimise after noise introduction

Blue bars: 
$$\alpha = 0$$

Average over 10 models  $\text{for each of the } \alpha \\ \text{(total 40 models } \theta^*\text{)}$ 

Noisy observable 
$$y(x) = \psi * v(x) + \epsilon(x)$$
  
Sensor noise  $\epsilon(x) \sim \mathcal{N}(x, \sigma^2)$ 

#### **Observations**

- Noise introduction globally increases the cost function
- The classic objective is the more sensitive to noise (up to 3x.)
- Adding the entropy constraint  $\alpha$  improves robustness

# Conclusion: Entropy Objective defines a Robustness/Performance trade-off

**Performance** Penalised objective  $\neq$  standard objective

**Generalisation** State space exploration

Robustness Noise introduction

Further work Model regularity properties (Lipschitz continuity),

#### **Related References**

- T. Haarnoja et al. "Reinforcement Learning with Deep Energy-Based Policies", International Conference on Machine Learning (2017)
- Z. Ahmed et al. "Understanding the Impact of Entropy on Policy Optimization", International Conference on Machine Learning (2019)
- B. Eysenbach, S. Levine. "Maximum Entropy RL (Provably) Solves Some Robust RL Problems", *International Conference on Learning Representations* (2022)

## Modelling as Markov Decision Process

Controlled Dynamical System  $x_{t+1} = G(x_t, u_t), u_t \in \mathcal{U}, x_t \in \mathcal{X}$ .

### Markov Decision Process representation

Consider G as a **stochastic process**  $X_{t+1} = G(X_t, U_t)$ 

### **Transition Probability**

 $P((x_t, u_t), dx_{t+1})$  is a distribution over  $\mathcal{X}$  given  $(x_t, u_t) \in \mathcal{X} \times \mathcal{U}$ 

### **Example (Deterministic case)**

$$P((x_t, u_t), dx_{t+1}) = \delta_{G(x_t, u_t)}(dx_{t+1})$$

### **Policy**

 $\pi(x, du)$  is a distribution over  $\mathcal{U}$  given  $x \in \mathcal{X}$ 

#### **Process Distribution**

$$P^{\pi}(dx_{0}, du_{0}, dx_{1}, du_{1} \dots, dx_{t}) = \nu(dx_{0}) \pi(x_{0}, du_{0}) P(dx_{2} \mid x_{1}, u_{1}) \pi(x_{2}, du_{2}) \dots$$
$$\pi(x_{t-1}, du_{t-1}) P(dx_{t} \mid x_{t-1}, u_{t-1})$$