Лабораторная работа 8

ИЗМЕРЕНИЕ ПЕРИОДА ДИФРАКЦИОННОЙ РЕШЕТКИ

Цель работы: ознакомление с явлением дифракции света и использованием его для измерения периода дифракционной решетки.

Дифракционную решетку используют в качестве спектрального прибора для измерения длин волн излучения видимого диапазона. При этом она должна быть аттестована. Аттестация заключается в измерении периода дифракционной решетки d с помощью квазимонохроматического излучения, для которого средняя длина волны λ известна с точностью, превышающей точность спектральных измерений.

В данной работе период дифракционной решетки, изготовленной голографическим методом, измеряется с помощью излучения гелий-неонового лазера, для которого λ =0,6328 мкм.

Принципиальная схема измерительной установки изображена на рисунке.

где 1- гелий-неоновый лазер, 2 — голографическая дифракционная решетка, установленная на держателе, 3 — экран наблюдения с измерительной шкалой. Все элементы измерительной установки располагаются на оптической скамье.

На экране наблюдается дифракционная картина, получаемая после прохождения лазерного луча через дифракционную решетку и состоящая из ряда ярких точек, соответствующих максимумам порядков $m=0,\pm 1,\pm 2$. Угловые положения максимумов описываются формулой, полученной из условия, чтобы разность хода от любых двух соседних щелей решетки до точки наблюдения была бы кратна длине волны:

$$\sin\theta_{\rm m} = m\lambda / d$$
, $m=0,\pm 1,\pm 2$. (1)

Отсюда по известным значениям λ, m и sinθ можно найти d.

Перед выполнением измерений необходимо провести юстировку (наладку) оптической системы. Экран наблюдения устанавливается таким образом, чтобы в отсутствие дифракционной решетки лазерный луч попадал в центр измерительной шкалы. После этого на оптическую скамью устанавливается держатель с дифракционной решеткой. Меняя расположение дифракционной решетки, следует добиться попадания луча лазера в ее центр. Плоскость дифракционной решетки должна быть перпендикулярна лазерному лучу. При таком положении световой луч, отраженный от стеклянной подложки дифракционной решетки, распространяется строго по освещающему ее лазерному лучу.

Выполнение измерений

1. Измерить расстояние L между дифракционной решеткой и экраном наблюдения.

- 2. Измерить расстояние r_m между максимумом нулевого порядка m=0 и максимумами порядков $m=0,\pm 1,\pm 2.$
- 3. Вычислить $\sin\theta_m = r_m / \sqrt{r_m^2 + L^2}$.
- 4. Вычислить период дифракционной решетки d=m λ / sin θ_m .
- 5. Провести измерения для двух значений L.
- 6. Определить среднее значение d и оценить погрешность измерения Δd .
- 7. Полученные измерения занести в таблицу:

No	L	m	$r_{\rm m}$	$sin\theta_m$	d

Контрольные вопросы

- 1. Сформулируйте принцип Гюйгенса Френеля.
- 2. Считая, что каждая щель дифракционной решетки является источником вторичных волн, выведите формулу (1).
- 3. Как объяснить уменьшение интенсивности дифракционных максимумов с ростом их порядкового номера m?

Список рекомендуемой литературы

- 1. Савельев И.В. Курс общей физики. Т.2. М.: Наука, 1982.
- 2. Сивухин Д.В. Общий курс физики. Т.4. Оптика. М.: Наука, 1980.