1 Expected value of kth element of an ordered sequence of elements from some interval

1.1 Question:

Let each ordered sequence of n unique elements X_1, \ldots, X_n from the interval (a, b) be equally probable. What is the expected value of the element X_k ?

1.2 Answer:

Consider random variables Y_1, \ldots, Y_n sampled from a uniform distribution over (a, b) such that no two Y_i are equal. First, we show that any ordered sequence made from Y_1, \ldots, Y_n is equally probable.

Let $X_1 = Y_{i_1}, \ldots, X_n = Y_{i_n}$ be the ordered sequence made from our random variables Y_1, \ldots, Y_n . Then we see the probability density function, f, at a specific random sequence is

$$f_X([X_1,\ldots,X_n]) = \sum_{\substack{Y_1,\ldots,Y_n \in (a,b)^n; Y_i \text{ unique}}} P(Y_1,\ldots,Y_n)$$
$$= \sum_{\substack{Y_1,\ldots,Y_n \in (a,b)^n; Y_i \text{ unique}}} f_{Y_1}(Y_1) \cdots f_{Y_n}(Y_n)$$

Note that the value of a uniform probability density does not change if we introduce a finite number of holes, thus:

$$f_{Y_i}(Y_i) = \begin{cases} 1, & \text{if } Y_i \in (a,b) \text{ and } Y_i \neq Y_j \text{ for } j \neq i \\ 0, & \text{otherwise} \end{cases}$$
 (1)

To see this