Capítulo 1

Medidas de Posição e Dispersão

1.1 Medidas de Posição

Frequentemente é necessário resumir dados por meio de um único número que, a seu modo, descreve todo o conjunto. Por exemplo, em um experimento podemos estar interessados em um valor que descreva o centro dos dados, ou o valor que é ultrapassado por apenas 30% dos dados. As medidas estatísticas que descrevem tais características são chamadas de medidas de localização. Dentre elas, as medidas que indicam o centro dos dados são chamadas de medidas de posição.

1- Média Aritmética (\bar{X}): é o quociente da soma dos valores de uma seqüência $x_1, x_2, ..., x_n$ pelo número total de elemento, isto é,

$$\bar{X} = \frac{\sum_{i=1}^{n} x_i}{n},$$

onde n é o número de elementos da sequência.

1.1- Média para dados agrupados em distribuição de freqüências.

$$\bar{X} = \frac{\sum_{i=1}^{n} x_i f_i}{\sum_{i=1}^{n} f_i},$$

onde n é o número de elementos da seqüência, x_i são os valores da seqüência e f_i são as freqüências dos valores na seqüência.

Exemplo: A tabela mostra o peso (kg) de 37 mercadorias de um depósito.

Classes	f_i	x_i	fac_i
5⊢10	4	7.5	4
$10 \vdash 15$	7	12.5	11
$15 \vdash 20$	11	17.5	22
$20 \vdash 25$	18	22.5	40
$25 \vdash 30$	6	27.5	46
Total	46		

Fonte: Dados fictícios.

A média aritmética será : $\bar{X} = \frac{880}{46} = 19, 13kg$.

1.2- Propriedades sobre a média

a)
$$Y_i = X_i \pm c \Rightarrow \bar{Y} = \bar{X} \pm c$$

b)
$$Y_i = X_i \times c \Rightarrow \bar{Y} = \bar{X} \times c$$

c)
$$Y_i = \frac{X_i}{c} \Rightarrow \bar{Y} = \frac{\bar{X}}{c}$$

Obs: A média é utilizada quando desejamos obter a medida de posição que possui a maior estabilidade.

2- Moda (Mo) : é o valor que ocorre com maior freqüência na seqüência de valores em estudo.

Exemplo: X={ 2, 2, 2, 3, 4, 4, 4, 4, 5, 5, 6}

Logo, Mo=4 (elemento com maior frequência).

2.1 - Moda para dados agrupados em distribuição de freqüências

$$Mo = L_i + \frac{a(f_i - f_{i-1})}{2f_i - (f_{i+1} + f_{i-1})},$$

onde L_i é o limite inferior da classe modal; a é a amplitude da classe modal; f_i é a freqüência absoluta da classe modal; f_{i+1} é a freqüência absoluta da classe modal; f_{i-1} é a freqüência absoluta da classe modal.

Exemplo: Considerando a tabela do exemplo anterior, encontre a moda.

3

Classe modal:
$$20 \vdash 25 \Rightarrow Mo = 20 + \frac{5(18-11)}{2(18)-(11+6)} = 21,84kg$$
.

- 3- Mediana (Me ou Md): é o valor que divide um conjunto de dados ordenados em duas partes iguais, com o mesmo número de elementos de cada lado. Verificamos que, estando ordenados os valores de uma série e sendo n o número de elementos da seqüência, o valor mediano será:
 - o termo de ordem $\frac{n+1}{2}$, se n for impar;
 - \bullet a média aritmética dos termos de ordem $\frac{n}{2}~e~\frac{n+2}{2},$ se n for par.

Exemplo: Seja a sequência $\{4, 5, 7, 8, 11, 12, 15\}$

Temos que n é impar a mediana será encontrada na $4^{\rm a}$ posição . Logo, Me=8

Exemplo : Seja a sequência {5, 6, 9, 12, 13, 17}

Temos que n é par, então a mediana será a média aritmética dos termos que ocupam a 3ª e 4ª posições da seqüência em estudo. Logo, $Me = \frac{9+12}{2} = 10, 5$.

- 3.1- Mediana para dados agrupados em distribuição de freqüências
- 1°) Identificar a classe mediana. Calcula-se $\frac{n}{2}$ e toma-se a freqüência acumulada imediatamente superior ao valor encontrado.
- **2°**) Utiliza-se a fórmula:

$$Me = L_i + \frac{a}{f_i} \left(\frac{n}{2} - fac_{i-1} \right),$$

onde L_i é o limite inferior da classe mediana; a é a amplitude da classe mediana; f_i é a freqüência absoluta da classe mediana; fac_{i-1} é a freqüência acumulada da classe anterior à classe mediana.

Exemplo: Considerando a tabela anterior, calcule a mediana.

Classe mediana:
$$20 \vdash 25 \Rightarrow Me = 20 + \frac{5}{18} \left(\frac{46}{2} - 22 \right) = 20,28kg$$

4- Simetria e Assimetria

Assimetria é o grau de afastamento de uma distribuição da unidade de simetria.

Temos as seguintes curvas de simetria:

Se $\bar{X} = Me = Mo \Rightarrow$ curva simétrica.

Se $Mo < Me < \bar{X} \Rightarrow$ curva assimétrica positiva.

Se $Mo > Me > \bar{X} \Rightarrow$ curva assimétrica negativa.

4- Quantis (Separatrizes)

Quantis: são os valores dos Quartis $(Q_k, k = 1, 2, 3)$, Decis $(D_k, k = 1, 2, ..., 9)$ e Percentis $(P_k, k = 1, 2, ..., 99)$ que dividem um conjunto de dados ORDENADOS em partes iguais conforme veremos a seguir.

Para localizarmos cada medida (quartil, decil, percentil), temos que localizar a posição em que se encontra o valor da medida desejada. Conforme vimos em Mediana, temos a seguinte regra para localizar a posição e, consequentemente, a medida desejada.

4.1- Quartil $(Q_k, k = 1, 2, 3)$

São os valores que dividem uma sequência ordenada em quatro partes iguais, deixando 25% dos dados em cada parte.

- $\bullet\,$ Se n for ímpar a posição é obtida por $\frac{(n+1)k}{4}$;
- Se n for par, as posições são obtidas por $\frac{nk}{4}$ e $\frac{(n+2)k}{4}$. Neste caso, as medidas desejadas são obtidas fazendo a média dos valores que ocupam as posições encontradas.

4.2- Decil $(D_k, k = 1, 2, ..., 9)$

São os valores que dividem uma seqüência ordenada em dez partes iguais, deixando 10% dos dados em cada parte.

- $\bullet\,$ Se n for ímpar a posição é obtida por $\frac{(n+1)k}{10}$;
- Se n for par, as posições são obtidas por $\frac{nk}{10}$ e $\frac{(n+2)k}{10}$. Neste caso, as medidas desejadas são obtidas fazendo a média dos valores que ocupam as posições encontradas.

4.3- Percentil $(P_k, k = 1, 2, ..., 99)$

São os valores que dividem uma sequência ordenada em cem partes iguais, deixando 1% dos dados em cada parte.

- Se n for ímpar a posição é obtida por $\frac{(n+1)k}{100}$;
- Se n for par, as posições são obtidas por $\frac{nk}{100}$ e $\frac{(n+2)k}{100}$. Neste caso, as medidas desejadas são obtidas fazendo a média dos valores que ocupam as posições encontradas.

Exemplo: Seja a sequência $\{2, 2, 3, 3, 3, 4, 5, 7, 7, 11, 12, 12, 12, 13, 13, 14, 15\}$, vamos obter o Q_1 e D_6 . Temos que n = 17 é ímpar.

Então, para Q_1 teremos a posição $\frac{(n+1)k}{4} = \frac{(18)2}{4} = 8^{a}$.

Logo,
$$Q_1 = 7$$
.

Para D_6 , teremos a posição $\frac{(n+1)k}{10} = \frac{(18)6}{10} = 10, 8 \approx 11^a$.

Logo, $D_6 = 12$.

4.4- Cálculo do quartil, decil e percentil para dados agrupados em distribuição de freqüências.

I) Quartil

- 1°) Identificar a classe k- quartil. Calcula-se $\frac{kn}{4}$ e toma-se a freqüência acumulada imediatamente superior ao valor encontrado.
 - 2°) Aplicar a fórmula: $Q_k = L_i + \frac{a}{f_i} \left(\frac{kn}{4} fac_{i-1} \right)$.

II) Decil

- 1°) Identificar a classe k- decil. Calcula-se $\frac{kn}{10}$ e toma-se a freqüência acumulada imediatamente superior ao valor encontrado.
 - 2°) Aplicar a fórmula: $D_k = L_i + \frac{a}{f_i} \left(\frac{kn}{10} fac_{i-1} \right)$.

III) Percentil

- 1°) Identificar a classe k-percentil. Calcula-se $\frac{kn}{100}$ e toma-se a freqüência acumulada imediatamente superior ao valor encontrado.
 - 2°) Aplicar a fórmula: $P_k = L_i + \frac{a}{f_i} \left(\frac{kn}{100} fac_{i-1} \right)$,

onde: L_i é o limite inferior da classe k-quantil; a é a amplitude da classe k-quantil; f_i é a freqüência absoluta da classe k-quantil; fac_{i-1} é a freqüência acumulada da classe anterior à classe k-quantil.

Exemplo: Considerando a tabela abaixo, encontrar Q_1, D_4 e P_{73} .

Classes	f_i	x_i	fac_i
5⊢10	4	7.5	4
$10 \vdash 15$	7	12.5	11
$15 \vdash 20$	11	17.5	22
$20 \vdash 25$	18	22.5	40
$25 \vdash 30$	6	27.5	46
Total	46		

Resolução:

a) Temos que $\frac{kn}{4} = \frac{46}{4} = 11, 5$, logo a classe Q_1 será: $15 \vdash 20$.

$$Q_1 = 15 + \frac{5}{11}(11, 5 - 11) = 15, 23.$$

b) Temos que $\frac{kn}{10} = \frac{4\times46}{10} = 18, 4$, logo a classe D_4 será: $15 \vdash 20$.

$$D_4 = 15 + \frac{5}{11}(18, 4 - 11) = 18, 36.$$

c) Temos que $\frac{kn}{100} = \frac{73 \times 46}{100} = 33,58$, logo a classe P_{73} será: $20 \vdash 25$.

$$P_{73} = 20 + \frac{5}{18}(33, 58 - 22) = 23, 22.$$

5- Medida de Curtose

5.1- Curtose: é o grau de achatamento de uma distribuição em relação a distribuição padrão (curva normal).

5.2- Coeficiente de curtose

$$C = \frac{Q_3 - Q_1}{2(P_{90} - P_{10})}.$$

Se $C = 0,263 \Rightarrow$ a curva será mesocúrtica;

Se $C < 0,263 \Rightarrow$ a curva será leptocúrtica;

Se $C>0,263\Rightarrow$ a curva será platicúrtica.

Exemplo: Sabendo-se que uma distribuição apresenta as seguintes medidas,

$$Q_1 = 15, 23, \quad Q_3 = 23, 47, \quad P_{10} = 10, 43, \quad P_{90} = 26, 17 \quad \text{temos:}$$

$$C = \frac{Q_3 - Q_1}{2(P_{90} - P_{10})} = \frac{23,47 - 15,23}{2 \times (26,17 - 10,43)} = 0,2617 \approx 0,262.$$

Como $C = 0,262 < 0,263 \implies$ a curva é leptocúrtica.

1.1.1 Medidas de Dispersão ou Variabilidade

Resumir um conjunto de dados por uma única medida de posição faz que percamos informações sobre a variabilidade do conjunto de dados. Por exemplo, suponhamos que 3 grupos formados com 5 alunos fizeram um teste de estatística, obtendose as notas:

Grupo 1: 2, 4, 5, 6, 8 $\Rightarrow \bar{X}_1 = 5$.

Grupo 2: 2, 2, 5, 4, 7 $\Rightarrow \bar{X}_2 = 5$.

Grupo 3: 5, 5, 5, 5, 5 $\Rightarrow \bar{X}_3 = 5$.

Os grupos possuem a mesma média aritmética $\bar{X}_1 = \bar{X}_2 = \bar{X}_3 = 5$. Esse resultado nada informa sobre a variabilidade em cada grupo. Assim, é conveniente buscar medidas que informem a variabilidade de um conjunto de dados, segundo algum critério.

Def.: As medidas de dispersão medem o grau de variação dos elementos de uma seqüência de valores com relação a média aritmética dessa seqüência.

1- Amplitude Total (A_T) : É a diferença entre o maior e o menor valor de uma seqüência, isto é:

$$A_T = X_{max} - X_{min}.$$

Exemplo: Seja $X = \{25, 30, 32, 37, 42, 47\}$ então, $A_T = 47 - 25 = 22$.

Obs: A amplitude total não é uma medida dispersão muito utilizada devido ao fato de levar em consideração apenas os valores extremos da seqüência.

2- Desvio Médio (DM):

Desvio é a diferença entre cada valor de uma seqüência e a média aritmética da mesma.

$$d_i = x_i - \bar{X}, \quad i = 1, 2, ..., n.$$

Desvio médio é a soma dos módulos dos desvios dividida pelo número de elementos da seqüência.

$$DM = \frac{\sum_{i=1}^{k} |d_i| f_i}{n} = \frac{\sum_{i=1}^{k} |x_i - \bar{X}| f_i}{n}, \text{sendo } k \text{ o número de classes.}$$

Exemplo: Seja $X : \{25, 30, 32, 37, 42, 47\}$ onde $\bar{X} = 35, 5$.

3- Variância (S^2) e Desvio-Padrão (S)

Trabalhando com a população:

$$S^{2} = \frac{\sum_{i=1}^{k} (x_{i} - \bar{X})^{2} f_{i}}{n} \quad ou \quad S^{2} = \frac{1}{n} \left[\sum_{i=1}^{k} x_{i}^{2} f_{i} - \frac{(\sum_{i=1}^{k} x_{i} f_{i})^{2}}{n} \right].$$

Trabalhando com **amostra**:

$$S^{2} = \frac{\sum_{i=1}^{k} (x_{i} - \bar{X})^{2} f_{i}}{n-1} \quad ou \quad S^{2} = \frac{1}{n-1} \left[\sum_{i=1}^{k} x_{i}^{2} f_{i} - \frac{\left(\sum_{i=1}^{k} x_{i} f_{i}\right)^{2}}{n} \right].$$

Nota-se que a variância é uma soma de quadrados, o que pode causar problemas de interpretação. Dessa forma, se faz necessário definir uma outra medida de dispersão, que é a raiz quadrada da variância denominada desvio-padrão, voltando a unidade de medida original. Importante lembrar que $S^2 \geq 0$ e $S \geq 0$

Então, o **desvio-padrão** é dado por : $S = \sqrt{S^2}$.

Exemplo: Considere a tabela abaixo e calcule a variância e o desvio-padrão.

Classes	f_i	x_i	$x_i f_i$	$x_i^2 f_i$
05⊢10	4	7.5	30	225
$10 \vdash 15$	7	12.5	87,5	1093,75
$15 \vdash 20$	11	17.5	192,5	3368,75
$20 \vdash 25$	18	22.5	405	9112,5
$25 \vdash 30$	6	27.5	165	4537,5
Total	46		880	18337,5

Temos que :

$$S^{2} = \frac{1}{n} \left[\sum_{i=1}^{k} x_{i}^{2} f_{i} - \frac{\left(\sum_{i=1}^{k} x_{i} f_{i}\right)^{2}}{n} \right] = \frac{1}{46} \left[18337, 5 - \frac{(880)^{2}}{46} \right] \approx 32,66 \text{ cm}^{2}.$$

e o desvio-padrão será: $S = \sqrt{32,66} \approx 5,72 \ cm.$

Obs: Quanto menor o desvio-padrão, mais homogênio é um conjunto de dados.

4- Coeficiente de Variação (CV)

Trata-se de uma **medida relativa de dispersão**, útil para a comparação em termos relativos do grau de concentração em torno da média de seqüências distintas. É dado por:

$$CV = \frac{S}{\bar{X}} \times 100.$$

Obs.: A grande utilidade do coeficiente de variação é permitir a comparação das variabilidades de diferentes conjuntos de dados.

Exemplo: Em uma empresa existem dois tipos de parafusos, onde as medidas quanto aos comprimentos são as seguintes:

Parafuso A: $\bar{X} = 5 \ cm$ e $S = 1 \ cm$

Parafuso B: $\bar{X} = 8 \ cm$ e $S = 1, 5 \ cm$

Daí,

$$CV_A = \frac{1}{5} \times 100 = 20\%$$
 e $CV_B = \frac{1,5}{8} \times 100 = 18,75\%.$

Podemos concluir que o parafuso B possui menor dispersão em torno do comprimento médio.

5- Exercícios

1- Dada a seqüência: 1, 1, 2, 2, 3, 4, 6, 6, 6, 7 calcular a média, a mediana e a moda populacional.

2- Para as tabelas de distribuição de freqüência abaixo calcular: (a) média (b) mediana (c) moda (d) 1º quartil (e) 4º decil (f) 68º percentil (g) classifique a curva quanto a assimetria (h) medida de curtose.

(a)

Altura(cm)	160⊢164	164-168	168-172	172⊢176	176⊢180	180⊢184
f_i	6	11	15	22	25	10

(b)

Classes	0⊢25	25-50	50⊢75	75⊢100	100⊢125	125⊢150
f_i	9	12	18	26	25	15

(c)

Peso(kg)	40⊢43	43⊢46	46⊢49	49⊢52	52⊢55	55⊢58
f_i	7	13	19	24	35	28

3) Achar o 3º quartil, o 8º decil e o 81º percentil da distribuição:

Altura(cm)	0⊢1	1⊢2	2⊢3	3⊢4	4⊢5	5 ⊢ 6
f_i	15	27	31	23	10	12

4) Estudar a distribuição abaixo, com respeito à assimetria e à curtose.

Altura(cm)	50⊢100	100⊢150	150⊢200	200-250	250⊢300	300⊢350
f_i	5	16	21	28	19	8

5) Calcular a média, a moda e a mediana da distribuição:

Altura(cm)	6	9	14	17	25	30
f_i	7	11	18	22	20	10

- 6- Para as distribuições do exercício 1, encontrar:
 - a) desvio médio; b) Variância; c) desvio-padrão; d) coeficiente de variação.
- 7- Os dados a seguir referem-se aos graus dos funcionários da UFRRJ em uma recente avaliação: 3;4;4;4;4;1;1;1;1;1;1;1;1;2;3;8;8;8;7;7;8;9;6;5;5;5;5;5;5;10;0;2;3;4;1;9; 9.

Pede-se: a) grau médio b) grau modal c) grau mediano d) amplitude total.

- 8- Para a distribuição do exercício 2:
 - a) Calcule a variância populacional;
 - b) Calcular o coeficiente de curtose.
- 9- Para as distribuições dos exercícios 4 e 5, calcular:
 - a) Variância b) desvio-padrão c) desvio médio d) coeficiente de variação.
- 10- Responda CERTO ou ERRADO para cada uma das afirmativas abaixo. Procedendo os acertos que se façam necessários
- a) A soma dos desvios ou afastamentos tomados a partir da média aritmética nunca será nula.
- b) Se a média aritmética de um conjunto de observações é igual a zero, podemos afirmar que todas observações são iguais a zero.
- c) Em uma distribuição só existe um único valor para a moda.
- d) Em uma distribuição a soma de todas as freqüências absolutas será sempre igual a unidade.
- e) Em uma distribuição ao somarmos ou diminuirmos todas as observações por uma mesma constante, a média, a moda e a mediana ficarão aumentadas ou diminuídas da referida constante.
- f) Em uma distribuição ao multiplicarmos ou dividirmos todas as observações por uma mesma constante, a média aritmética, a moda, a mediana e o desvio médio da nova distribuição formada ficará multiplicada ou dividida pela referida constante.
- g) Se em uma distribuição os valores da média aritmética, da moda e da mediana forem iguais a uma mesma constante, podemos afirmar que todas as observações são iguais a referida constante.
- h) O valor de uma medida de dispersão nunca poderá ser igual ou inferior a zero.
- i) Separatriz é um valor que divide uma distribuição em duas partes quaisquer.
- j) Em uma distribuição sempre o valor do 1º Quartil, da mediana, do 5º Decil e do 50º Percentil serão iguais.

- k) A amplitude total é uma medida de dispersão, porém, a sua utilização como tal não é aconselhável devido ao fato de que em seu calculo são utilizados valores extremos.
- Quando o valor de uma medida de dispersão é igual a zero, significa que o fenômeno em estudo é totalmente homogêneo.
- m) Se em um conjunto de observações a média aritmética, a mediana e a moda são iguais a uma mesma constante, a variância, o desvio padrão, o desvio médio e a amplitude total do conjunto também serão iguais a zero.