3.2 恒星光谱及其相关性质

太阳的光谱是红、 橙、黄、绿、青、靛、 紫七色,原因是什么 呢?

一、光谱概念的物理基础

天文学包括天体力学、天体物理学等数十个分支,量子力学的建立,使人们能正确地认识微观世界,爱 因斯坦狭义相对论和广义相对论的建立改变了人们对 时间和空间本质的认识,同时也给了天文学家更深入 认识恒星和天体的一个理论工具。 量子力学创立于20世纪初,是研究电子、质子、中子以及原子和分子内其他亚原子粒子运动的一门科学。相对于量子力学,牛顿力学称为经典力学。利用牛顿力学,人们认识了太阳系。同样,人们想象一个原子就是一个小太阳系:核在中心,电子在固定的轨道绕核"公转"。但按照量子力学的说法,原子中没有电子运动的轨道,只能说电子可能出现在什么地方。

按照量子力学的说法,光既是波也是粒子,称为波粒二象性。不仅光是如此,任何看似粒子的物质都具有波动性。

关于量子力学中的不确定性,有两种对立的见解,以玻尔为首的哥本哈根学派认为这是最后的、基本的规律,以后只能靠获得不确定性更详细的知识来丰富量子力学。而以爱因斯坦为代表的一些科学家则反对这种观点,他们认为这是目前知识不完备的结果,将来会有新的理论来恢复严格的决定论。

二恒星光谱与氢原子谱线

光谱有连续光谱,线光谱和带光谱。

太阳光谱其实并不是一条连续的光带,而是带有许多暗线条

三光谱在恒星研究中的应用

1、确定恒星的化学组成

2、确定恒星的温度

3、确定恒星的视向速度和自转

四、恒星的光谱、颜色和表面温度之间的关系

恒星的光谱型与颜色、表面温度的关系

光谱型	颜色	表面温度(开)	典型星
O	蓝	40 000~25 000	参宿一
В	蓝白	25 000~12 000	参宿五
A	白	11 500~ 7 700	织女星
F	黄白	7 600~ 6 100	小犬座α
G	黄	6 000~ 5 000	太阳
K	橙	4 900~ 3 700	牧夫座α
M	红	3 600~ 2 600	心宿二

五、恒星的赫罗图

3.3 变星和新星

亮度在较短时期内有显著变化的星为变星。

有少数星的亮度可在几天内猛增几万倍,较原有星等减少10-14等,把这些突然爆发的星称为新星。

一造父变星

造父变星又称长周期造 父变星或经典造父变星,是 脉动变星的一种,这类变星 的亮度变化是周期性的,一 般周期在1.5~80天之间。

周光关系:周期和绝对 星等之间的关系。造父变星 的平均绝对星等M与其周期 的对数 I gP近似成直线关系。

周光关系

二、新星和超新星

新星

亮度会在很短的时间内迅速增加,达到极大后慢慢减弱,几年或几十年后恢复到原来的亮度,这种星叫新星。

Kepler's Supernova Remnant • SN 1604

有些恒星爆发时规模比新星更巨大,光度增加1亿倍, 这种星称为超新星。

超新星