Marigation I full altonomy centrolled by humans. ophima/ approache Hewistic. apprach * Requires more *poent need environment complete environment * planning is achieved through block diagrams autonomous System: optimization plane. legceive Sour Interpret data Track objets phyria sollect data Creak a patty to the annot vehicle to follow word about the environment - Build models path. - Coalisation Estimating position and orientation of a mobile robot using a garricle pood reckon If a future position is calculated using its relative measurements like velocity etc. of shorter time frames distribution fast position and Mory laday Kalman Estimated filher Moiso odomety

most cames in Coalization we don't get Gaumian distributed retimated state. This is the Cocalization problem!
Estimated state. This is the Cocalization production.
11 1 Calabration
Adaptive Monte Coulo Cocalization (AMCL) Adaptive Monte Coulo Cocalization (AMCL) So loulates the north pourticles after each gent so that your are not
INTO I here we
Here comes SLAM. Simultaneous localisation And Mapping Simultaneous localisation And Mapping One Stimultaneous localisation And Mapping One Stimultane
Cyrill Own
maple and modeling
la Localisation: - Stimate the robot's posses given landmarks.
out the rebot's foas.
Mapping! - astimate the landmarks given the robot's pors.

robots Controls: - 41: T = { U1, U2, U3..., U7} Marked map of environment -m Poth of robot 20:7 = {20, 24, ... 27} Probabilistic approach: use the probability theory to explicitly represent the uncentainty. b (no:T, m | Z1:T, U1:T) ands. gravisoly, we consepresent as which quantity instruence the other (Vt+1)

SLAM Problems! -

full scam vs. Online scam. Le complète trajectory estimation p(NO:T, m/2,T, U:T) tell avvent pos. p(21/ m) 21/ +, U/17) no nt-1 solve the integral reconsively Motion model derribes the relative motion of robot distribution men pose given pose control.

Taussian model > Non Gaussian model. Homogenous Coordinates (H-C)

A.c. used in projective geometry.
A single matrix cour represent affine transformation 4 projective trows formation. represent the same object for 1 \$0... $x - \begin{bmatrix} x - y \\ y \end{bmatrix} - \begin{bmatrix} wy \\ w \end{bmatrix} - \begin{bmatrix} y \\ y \end{bmatrix}$

Purpositely Distant objects infiniteively distant points with finite It is possible to explicitly model great tool when working with ovordinates bearing -only sensors such as 3D points: $X = \begin{cases} v \\ v \\ t \end{cases} = \begin{cases} v/t \\ v/t \\ v/t \end{cases} = 7 \begin{cases} v/t \\ v/t \\ v/t \end{cases}$ Projective transformation [x'=MX]wb (1) 3 Imb (P) = Mx $M = I \int I t$ $\int I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ $I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ $I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ $I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ $I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ Potohian: 3 parlameters > Rotation making $R_{z}^{3D}(K_{1}) = \begin{bmatrix} \cos(K_{1}) & -\sin(K_{1}) & 0 \\ \sin(K_{1}) & -\cos(K_{1}) & 0 \\ 0 & 0 & 1 \end{bmatrix}$ Rotation works (RECAP) $R^{2}P(0) = \begin{bmatrix} \cos 0 & -\sin 0 \\ \sin 0 & \cos 0 \end{bmatrix}$ $R_{n}^{30}(20) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos(\omega) & \sin(\omega) \end{bmatrix} \begin{bmatrix} 20 \\ R(\omega, \phi, \kappa) & = R_{2}^{3} (2\kappa) R_{3}^{3} (2\phi) R_{3}^{3$

Cambining transation and rotation! - $M = A \begin{bmatrix} R & t \\ 67 & 1 \end{bmatrix} \Rightarrow \begin{pmatrix} Rigid & body \end{pmatrix}$ Similarity transformation: 7 paramy.

M=1 mr to]

OT 1] (3 mans + 3 rot + 3 scale + 3 shew) Bayes filter P(n/z,u) controls state observation Resursive Bayes follow-1 bel (24) = p(2+ | zi: +, 4:+) Bayes rule bel (nt) = p(nt /zi:t (U1:t) Velo = y p(z+| n+, z,t+1,U11t) x P(2+121:t-1, U1:t) y p(zt | 2t) p(2t) z1:E1, U1:t) = np(zt/nt) f(nt/nt-1, zit+1 Uit) p(nt-1/2/1t-1/d nt-1 Can of total probability

 $= \frac{\text{Mankov assumption}}{\text{mankov assumption}}$ $= \frac{1}{2} \frac{p(z_t | x_t)}{p(x_t | x_{t-1}, v_t)} \frac{p(x_{t-1}|z_{1:t-1}, v_{1:t-1})}{p(x_{t-1}|z_{1:t-1}, v_{1:t-1})} \frac{dx_{t-1}}{dx_{t-1}}$ $= \frac{1}{2} \frac{p(z_t | x_t)}{p(x_t | x_{t-1}, v_t)} \frac{p(x_{t-1}|z_{1:t-1}, v_{1:t-1})}{p(x_{t-1}|z_{1:t-1}, v_{1:t-1})} \frac{dx_{t-1}}{dx_{t-1}}$ below) = 4 p (2+ 124) | p(n+ | n+-1, v+) bel (n+-1) d n++ Bayes filter is a tous step process-Prediction step! - bel(2+) = Sp(2+)ut, 2+) bel(2+-1)d2+-1 correction step: - bel (nx) = np(zx/nx) bel (nx) nor or model. Kalman filkus & friends · Gaussian, linearged models, Particle filter · Non-parametric · Arbitrary models (sampling required) Velocity model robot moves from (2/1/0) to (2/1/0)
velocity information u = (v, w)

 \mathcal{X}_{t-1}

Sensor based model asseming later range bel(nt) = yp(zt/nt) bel (nt) KALMAN FILTERS Plane is a state estimation problem.

Baye's filter is one tool for state estimation. recap: - Prediction bel (nt) = [p(nt|ut,nt-1) bel (nb-1)dnb correction bel(24) = np(zt/nt) le/(24)
Iralman filter is a implementation of Baye's filter.

Assumptions!— modele are linear

Distributions are gaussians. wery thing Properties: Marginalization and Conditioning Grun $n = \binom{n_0}{n_h} p(n) = N$ The marginals are Gaurian dishibutin)

p(na) = (N) f(ns) = N as well as the Conditionals P(xa/xb) = M P(xb/na) = Nlineau model motion and observation model are linear functions.

how world charges with zero ip) $u = A_t n_{t-1} + B_t u_t + ft \rightarrow noise$ AX SERVER 2t = (t) nt + (t) how to obtain expected observation given at

At > (mxn) matrix, dencibes horo state evolves from t-140+)
without controls or noise. Bi > matrix (nxl), describes how to the control ut changes the state from t-1 to t. 1 -> dimensionality of own odomany (+ > (KKn) ->, describes how to map the state not to an Galmennianof observation observation Zt. et > nandom voulable representing the process and measurement noise that are assumed to be independent and normally distributed with covariance Rt and Ot respectively. p(ny/Ut, my) = Nexp[1/2 [mt-Axt-Bt4])

Ry -> describes noise. Coneau motion model, Motion den Ganssian noire leads to Unear observation mode/ p(74/44) = nexp[= (24-4xt)] Kalman filter algorithm Qt - describes noise. 1. Kalman filten (Mb-1, Σt -1, Mt, Zt): 2. $M_t = A_t M_{t-1} + B_t U_t$? Prediction steps 3. $\overline{\Sigma}_t = A_t \Sigma_{t-1} A_t^{T+R_t}$ 4. $K_t = \overline{E}_t C_t^T (C_t \overline{E}_t C_t^T + Q_t)^{-1}$ 5. $M_t = \overline{M}_t + K_t (z_t - C_t \overline{M}_t)$ correction steps. 6. $\mathcal{E}_{t} = (I - K_{t}C_{t})\overline{\mathcal{E}}_{t}$ 7. retwin Ut, Et uncertainty (conomiance madix)

EKF Lineaugation: 1st order toylor Expansion
Prediction:
g(Ut, nt-1) ~ g(Ut, Mt-1) + 2g(Ut, Mt-1) (nt-1-16
=:Gt
Correction:
$u(n_t) \approx h(\overline{u_t}) + \frac{2h(\overline{u_t})}{2n_t} (n_t - \overline{u_t})$ Jacobian marries
=! Ht
Jacobian matrix Snew saynavu matrix $m \times n$ in gonval given a vector valued funit $g(n) = \begin{pmatrix} g_1(n) \\ g_2(n) \end{pmatrix}$ Jacobian matrix in $\frac{\partial g_1}{\partial n_1} \frac{\partial g_1}{\partial n_2} \frac{\partial g_1}{\partial n_1}$ $\frac{\partial g_2}{\partial n_1} \frac{\partial g_2}{\partial n_2} \frac{\partial g_2}{\partial n_1}$
Jam

Oxfended Kalman filter algorithm 1: artended Kalman filten (Uti, Et-1, 24, zt): 2. Mt = g(2+, M+1) $K_t = \overline{\Sigma}_t H_t^{\mathsf{T}} (H_t \overline{\Sigma}_t H_t^{\mathsf{T}} + Q_t)^{-1}$ GL HA Ut = Ut + Kt (Zt - h(It)) what we conserve = what we expect to observe $\Sigma_t = (T - 4H_t) \Sigma_t$ return Ut, Et (1) Application g EKF to SLAM,

(2) astimate robol s pose 4 locations g, land marks in en vivonment. (3) Assumption: Rucion correspondences. (4) State space (for 2D plane) is ., mgn , mn, y) T $n_t = \langle n_1 y_1 0, m_1 n, m_1 y_2 \rangle$ randmark n. landmark 1 robots pose Filter Cycle State prediction (1) State prediction (2) Measurement prediction (3) Meas weement (4) Data association Enemi ... Eremn (5) Update. Emine Emini ... Emmi Z (corruiance)

prodiction steps in linear in no of landmarks.
Prediction steps in lineau in noid landmarks. [Proone Complexity]
To Have in any course update, it is really expensive operation it
If there many sensor update, it is really expensive operation if state space is lauge.
Concrete Example settle
Robot moves in the 20 plane. Velocity - based motion model. Robot observes point landmarks (n,y).
Velocity-based motion model.
3 Robot observes point landmarks (119).
/4) Kninge - become
a known alto corse
(6) Known number of will will be
Puitialization
(1) Robot stants in its own reference frame (all landmarks unknown)
1-1 2N+3 almemons
$\mu_0 = (0)$
$\sum_{i=1}^{n} = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 &$
7 = 000000
00000
(0000
at t=1
$T = \alpha(2l_1, M_1, 1) = \alpha(2l_1, M_2)$
$\mathcal{I}_{t} = g(\mathcal{U}_{t}, \mathcal{U}_{t-1}) = g(\mathcal{U}_{t}, \mathcal{U}_{0})$

In velocity model, goal :- Update state space based on the robot's motion. gn, y, o (2/1 (2/4/0) T) eN+3 dimensional space land marks positions are untouched while robots pose in updated. So It = 9(424, M+1) & done! $\mathcal{E}_{t} = G_{t} \mathcal{E}_{t-1} G_{t}^{T} + \mathcal{R}_{t} \rightarrow ginun$ Now moving to as said earlier refunction g'only affects the robot's motion and not the land marks.

Tacobian g motion Gt = (Gtn O)

Identity (2N X2N)

$$G_{t}^{N} = \frac{\partial}{\partial(x_{1}y_{1},0)} T \begin{bmatrix} y \\ y \end{bmatrix} + \begin{pmatrix} A \\ A \end{pmatrix}$$

$$G_{t}^{N} = I + \frac{\partial}{\partial(x_{1}y_{1},0)} T \begin{bmatrix} -\frac{v_{1}x_{1}x_{0}}{\omega t} & +\frac{v_{1}}{\omega t} \sin(0+\omega_{1}st) \\ \frac{v_{1}}{\omega t} & 0 & -\frac{v_{1}}{\omega t} \cos(0+\omega_{1}st) \\ -\frac{v_{1}}{\omega t} \cos(0+\omega_{1}st) \end{bmatrix}$$

$$= I + \begin{pmatrix} 0 & -\frac{v_{1}}{\omega t} \cos(0+\omega_{1}st) \\ 0 & -\frac{v_{1}}{\omega t} \cos(0+\omega_{1}st) \\ 0 & -\frac{v_{1}}{\omega t} \sin(0+\omega_{1}st) \\ 0 & 1 & -\frac{v_{1}}{\omega t} \sin(0+\omega_{1}st) \\ 0 & 0 & 1 \end{pmatrix}$$

$$G_{t}^{N} = \begin{pmatrix} 1 & 0 & -\frac{v_{1}}{\omega t} \cos(0+\omega_{1}st) \\ 0 & 1 & -\frac{v_{1}}{\omega t} \sin(0+\omega_{1}st) \\ 0 & 0 & 1 \end{pmatrix}$$

$$= G_{t}^{N} C_{t} C_{t}^{N} C_{t}^{N}$$

O restrieur of prediction skps (Ut-1, Eb-1, 2t, Zt, Ct, Rt): $F_{n} = \begin{pmatrix} 1 & 0 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 1 & 0 & \cdots & 0 \end{pmatrix}$ $\frac{3}{1} I_{t} = \mathcal{U}_{t-1} + F_{n}^{T} / \frac{-v_{t}}{w_{t}} \sin(\mathcal{U}_{t-1,0}) + \frac{v_{t}}{w_{t}} \sin(\mathcal{U}_{t-1,0} + w_{t}\Delta t)$ $\frac{v_{t} \cos(\mathcal{U}_{t-1,0}) - v_{t} \cos(\mathcal{U}_{t-1,0} + w_{t}\Delta t)}{w_{t}}$

G $G_t = I + F_n T \begin{pmatrix} 0 & 0 & -\frac{v_t}{w_t} \omega_s \mathcal{U}_{t-1,0} + \frac{v_t \sin(\mathcal{U}_{t-1,0} + w_t s_t)}{\omega_t} \\ 0 & 0 & -\frac{v_t \sin(\mathcal{U}_{t-1,0}) - v_t}{\omega_t} \sin(\mathcal{U}_{t-1,0} + w_t s_t)} \\ 0 & 0 & -\frac{v_t \sin(\mathcal{U}_{t-1,0}) - v_t}{\omega_t} \sin(\mathcal{U}_{t-1,0} + w_t s_t)}{\omega_t} \end{pmatrix}$

5 Et = Gt Et-1Gt + In TRings

Correction Step.

known data association, cti = jo i-th measurement at fince to begin ves the land mark

Initialize landmank if unobserved. (y) Compute the expected absenvation.

3 compute the Jacobian of h 3 Proceed with computing the Kalman gain,

How does an observation looks $z_{\underline{t}} = (\gamma_{\underline{t}}, \phi_{\underline{t}})'$ Ranger beauting observation hasnotheeu Djin = (III) + (rticos (\$\psi^i + Utio))

hasnotheeu obsenved. (Ujiy) = (Utiy) + (rtisin (\$\psi^i + Utio)) observed estimated robots location relative measurement. Expected observation: Compute expected observation according to current estimate. $S = \left(\frac{Sn}{Sy}\right) + \left(\frac{U_{j,n} - U_{t,n}}{U_{j,y} - U_{j,y}}\right)$ 9= 8 TS = square cuclidian distance. $\hat{Z}_{t}^{i} = \begin{pmatrix} \sqrt{2} \\ \tan^{2}(.sy, sn) - \mathcal{U}_{to} \end{pmatrix} = h(\mathcal{U}_{t})$ Campule the Jacobian. kny = 2h (IIt)

burdim. & face (a, y, o, mj, n, mj, y)

= \[
\begin{align*}
\frac{\frac}

$$\frac{\sqrt{av}}{\sqrt{an}} = \left(\frac{1}{\sqrt{av}}\right) 2 \delta n(-1) = \frac{1}{\sqrt{av}} (-\sqrt{av}) \delta n$$

$$\frac{\sqrt{av}}{\sqrt{av}} = \frac{2h(\sqrt{ut})}{\sqrt{ut}} = \left(\frac{1}{\sqrt{v}}\right) \left(\frac{\sqrt{av}}{\sqrt{ut}}\right) - \sqrt{av} \delta n - \sqrt{av} \delta v - \delta n$$

$$\frac{\sqrt{av}}{\sqrt{ut}} = \frac{2h(\sqrt{ut})}{\sqrt{ut}} = \frac{\sqrt{av}}{\sqrt{uv}} \left(\frac{\sqrt{av}}{\sqrt{uv}}\right) - \frac{\sqrt{av}}{\sqrt{uv}} \left(\frac{\sqrt{uv}}{\sqrt{uv}}\right) - \frac{\sqrt{uv}}{\sqrt{uv}} \left(\frac{uv}{\sqrt{uv}}\right) - \frac{\sqrt{uv}}{\sqrt{uv}} \left(\frac{uv}{\sqrt{uv}}\right) - \frac{uv}{\sqrt{uv}} \left(\frac{uv}{\sqrt{u$$

 $M_t = M_t + K_t (Z_t - h(M_t))$ Et = Et + (1- K+4) DONE!

Overview of Correction step (a) St = (0,2 0)

(b) for all observed features Zt = (rti, bt) do (9) if land mark j never seen before (10) $\left(\frac{\overline{U_{i,m}}}{\overline{U_{j,y}}}\right) = \left(\frac{\overline{U_{t,m}}}{\overline{U_{t,y}}}\right) + \left(\frac{r_{t}^{2} \cos(4t^{2} + \overline{U_{t,0}})}{r_{t}^{2} \sin(4t^{2} + \overline{U_{t,0}})}\right)$ $\delta = \begin{pmatrix} \delta_n \\ \delta_y \end{pmatrix} = \begin{pmatrix} \mathcal{U}_{jm} - \overline{\mathcal{U}}_{4n} \\ \overline{\mathcal{U}}_{jy} - \overline{\mathcal{U}}_{4y} \end{pmatrix}$ $\frac{1}{2} = \int \sqrt{9} dt = \int \sqrt{10} dt = \int \sqrt{10}$ Le Frij, Hti = low Hti x Frijs Kti, Ut, Et retwen Ut Et