Table of Contents

Introduction	1.1
Exploratory Data Analysis	1.2
Profiling	1.2.1
Data Preparation	1.3
High Cardinality in Descriptive Stats	1.3.1

OData Science Live Book

0.1A book to learn data science, data analysis and machine learning, suitable for all ages!

0.1.1Last update: 2017-04-21

0.2What does it cover?

This live book (#dsLiveBook) covers common aspects in predictive modeling:

- A. Exploratory Data Analysis
- B. Data Preparation
- C. Selecting Best Variables
- D. Scoring Data
- E. Assessing Model Performance

0.3Upcoming updates

More info about methodological aspects in data preparation.

0.4What programming language do I need?

Most of the concepts are independent from the language, the focus is on general concepts. But when technical example is required it is done in R language, using the funModeling package which you can install by doing: install.packages("funModeling")

0.5Book Focus

- **Stimulate intuition** behind concepts: The explanation of how to interpret results brings a deeper understanding of **what is being done**, boosting the freedom to use that knowledge in other situations regardless of the language.
- Regarding technical aspects.... model creation consumes around 10% of almost any
 predictive modeling project; the Live Book and funModeling will try to cover
 remaining 90%.

Why a live book? Hopefully this book barely has an end, it will be updated periodically. And you can contribute! below the github link.

First published at: livebook.datascienceheroes.com

This book is under Attribution-NonCommercial-ShareAlike 4.0 International license.

1.1Profiling Data

1.1What is this about?

Quantity of zeros, NA, Inf, unique values; as well as the data type may lead to a good or bad model. Here's an approach to cover the very first step in data modeling.

```
## Loading funModeling !
library(funModeling)
library(dplyr)
data(heart_disease)
```

1.1Checking NA, zeros, data type and unique values

```
my_data_status=df_status(heart_disease)
```

##		variable	q_zeros	p_zeros	q_na	p_na	q_inf	p_inf	type
##	1	age	0	0.00	0	0.00	0	Θ	integer
##	2	gender	0	0.00	0	0.00	0	Θ	factor
##	3	chest_pain	0	0.00	0	0.00	0	Θ	factor
##	4	${\tt resting_blood_pressure}$	0	0.00	0	0.00	0	Θ	integer
##	5	serum_cholestoral	0	0.00	0	0.00	0	Θ	integer
##	6	fasting_blood_sugar	258	85.15	0	0.00	0	Θ	factor
##	7	resting_electro	151	49.83	0	0.00	0	0	factor
##	8	max_heart_rate	0	0.00	0	0.00	0	0	integer
##	9	exer_angina	204	67.33	0	0.00	0	0	integer
##	10	oldpeak	99	32.67	0	0.00	0	0	numeric
##	11	slope	0	0.00	0	0.00	0	0	integer
##	12	num_vessels_flour	176	58.09	4	1.32	0	0	integer
##	13	thal	0	0.00	2	0.66	0	Θ	factor
##	14	heart_disease_severity	164	54.13	0	0.00	0	Θ	integer
##	15	exter_angina	204	67.33	0	0.00	0	0	factor
##	16	has_heart_disease	0	0.00	0	0.00	0	Θ	factor
##		unique							
##		41							
##	2	2							
##	3	4							
##	4	50							
##	5	152							
##	6	2							
##		3							
##		91							
##		2							
	10	40							
	11	3							
	12	4							
	13	3							
	14	5							
	15	2							
##	16	2							

- q_zeros : quantity of zeros (p_zeros : in percentage)
- q_inf : quantity of infinite values (p_inf : in percentage)
- q_na : quantity of NA (p_na : in percentage)
- type: factor or numeric
- unique: quantity of unique values

1.0.1Why are these metrics important?

- **Zeros**: Variables with **lots of zeros** may be not useful for modeling, and in some cases it may dramatically bias the model.
- NA: Several models automatically exclude rows with NA (random forest, for

example). As a result, the final model can be biased due to several missing rows because of only one variable. For example, if the data contains only one out of 100 variables with 90% of NAs, the model will be training with only 10% of original rows.

- Inf: Infinite values may lead to an unexpected behavior in some functions in R.
- **Type**: Some variables are encoded as numbers, but they are codes or categories, and the models **don't handle them** in the same way.
- Unique: Factor/categorical variables with a high number of different values (~30), tend to do overfitting if categories have low cardinality, (decision trees, for example).

1.0.2Filtering unwanted cases

The function df_status takes a data frame and returns a the status table to quickly remove unwanted cases.

Removing variables with high number of NA/zeros

```
# Removing variables with 60% of zero values
vars_to_remove=filter(my_data_status, p_zeros > 60) %>% .$variable
vars_to_remove
```

```
## [1] "fasting_blood_sugar" "exer_angina" "exter_angina"

## Keeping all columns except vars_to_remove
```

heart_disease_2=select(heart_disease, -one_of(vars_to_remove))

Ordering data by percentage of zeros

```
arrange(my_data_status, -p_zeros) %>% select(variable, q_zeros, p_zeros)
```

```
##
                  variable q_zeros p_zeros
## 1
        fasting_blood_sugar
                              258
                                    85.15
## 2
               exer_angina
                              204
                                    67.33
              exter_angina
                              204
                                    67.33
## 3
          num_vessels_flour
## 4
                              176
                                    58.09
## 5 heart_disease_severity
                              164
                                    54.13
## 6
           resting_electro
                              151
                                    49.83
                               99
## 7
                   oldpeak
                                    32.67
                                0
                                    0.00
## 8
                       age
## 9
                    gender
                                0
                                  0.00
                chest_pain
                                0
                                     0.00
## 10
                                     0.00
## 11 resting_blood_pressure
                                0
                                0
          serum_cholestoral
                                     0.00
## 12
                                0 0.00
## 13
            max_heart_rate
                                0
## 14
                                     0.00
                     slope
                                     0.00
                                0
## 15
                      thal
                                0
                                     0.00
## 16
      has_heart_disease
```

1.1Profiling categorical variable

Make sure you have the latest funModeling version (>= 1.3).

Frequency or distribution analysis is made simple by the freq function. It retrieves the distribution in a table and a plot (by default) which shows the distribution in absolute and relative numbers.

If you want the distribution for two variables:

```
freq(data=heart_disease, str_input = c('thal','chest_pain'))
## Warning in if (is.na(str_input)) {: the condition has length > 1 and only
## the first element will be used
```


Frequency / (Percentage %)

```
thal frequency percentage cumulative_perc
##
        3
                          55.15
                                            55.15
## 1
                 166
        7
                                           94.02
## 2
                 117
                          38.87
## 3
                  18
                           5.98
                                           100.00
```


Frequency / (Percentage %)

```
##
     chest_pain frequency percentage cumulative_perc
## 1
              4
                       144
                                47.52
                                                 47.52
## 2
              3
                        86
                                 28.38
                                                  75.90
                                                 92.40
## 3
              2
                        50
                                16.50
## 4
                        23
                                  7.59
                                                 100.00
```

[1] "Variables processed: thal, chest_pain"

As well as in the remaining <code>funModeling</code> functions, if <code>str_input</code> is missing it will run for all factor or character variables present in given data frame:

```
freq(data=heart_disease)
```

Also, as the other plot functions in the package, if there is the need of exporting plots, add the path_out parameter (it will create the folder if it's not created yet)

```
freq(data=heart_disease, path_out='my_folder')
```

4High Cardinality Variable in Descriptive Stats

4.1What is this about?

A **high cardinality** variable is one in which it can take *many* different values. For example country.

This chapter will cover cardinality reduction based on Pareto rule, using the freq function which gives a quick view about where the most of values are concentrated and variable distribution.

4.2High Cardinality in Descriptive Statistics

The following example contains a survey of 910 cases, with 3 columns: person, country and has_flu, which indicates having such illness in the last month.

```
library(funModeling)
```

data_country data comes inside funModeling package (please update to release 1.6).

Quick data_country profiling (first 10 rows)

```
# plotting first 10 rows
head(data_country, 10)
```

```
country has_flu
##
      person
## 478
         478
                 France
## 990
         990
                  Brazil
                              no
## 606
         606
                  France
                              no
## 575
         575 Philippines
                              no
## 806
         806
                  France
                              no
## 232
         232
                  France
                              no
## 422
         422
                  Poland
                              no
## 347
         347
                 Romania
                              no
## 858
         858
                 Finland
                              no
## 704
         704
                 France
                              no
```

```
# exploring data, displaying only first 10 rows
head(freq(data_country, "country"), 10)
```

Frequency / (Percentage %

##		country	frequency	percentage	cumulative_perc
##	1	France	288	31.65	31.65
##	2	Turkey	67	7.36	39.01
##	3	China	65	7.14	46.15
##	4	Uruguay	63	6.92	53.07
##	5	United Kingdom	45	4.95	58.02
##	6	Australia	41	4.51	62.53
##	7	Germany	30	3.30	65.83
##	8	Canada	19	2.09	67.92
##	9	Netherlands	19	2.09	70.01
##	10	Japan	18	1.98	71.99

```
# exploring data
freq(data_country, "has_flu")
```


Frequency / (Percentage %)

```
## has_flu frequency percentage cumulative_perc
## 1 no 827 90.88 90.88
## 2 yes 83 9.12 100.00
```

The last table shows there are **70 different countries**, and \sim 9% of people who had flu - has_flu="yes" .

But many of them have almost no participation in the data. This is the *long tail*, so one technique to reduce cardinality is to keep those categories that are present the a high percentahge of data share, for example 70, 80 or 90%, the Pareto principle.

```
# 'freq' function, from 'funModeling' package, retrieves the cumulative_percentage
  that will help to do the cut.
country_freq=freq(data_country, 'country', plot = F)

# Since 'country_freq' is an ordered table by frequency, let's inspect the first 1
0 rows with the most share.
country_freq[1:10,]
```

##		country	frequency	percentage	cumulative_perc
##	1	France	288	31.65	31.65
##	2	Turkey	67	7.36	39.01
##	3	China	65	7.14	46.15
##	4	Uruguay	63	6.92	53.07
##	5	United Kingdom	45	4.95	58.02
##	6	Australia	41	4.51	62.53
##	7	Germany	30	3.30	65.83
##	8	Canada	19	2.09	67.92
##	9	Netherlands	19	2.09	70.01
##	10	Japan	18	1.98	71.99

So 10 countries represent more the 70% of cases. We can assign the category other to the remaining cases and plot:

```
data_country$country_2=ifelse(data_country$country %in% country_freq[1:10, 'country'
], data_country$country, 'other')
freq(data_country, 'country_2')
```


Frequency / (Percentage %)

##		country_2	frequency	percentage	cumulative_perc
##	1	France	288	31.65	31.65
##	2	other	255	28.02	59.67
##	3	Turkey	67	7.36	67.03
##	4	China	65	7.14	74.17
##	5	Uruguay	63	6.92	81.09
##	6	United Kingdom	45	4.95	86.04
##	7	Australia	41	4.51	90.55
##	8	Germany	30	3.30	93.85
##	9	Canada	19	2.09	95.94
##	10	Netherlands	19	2.09	98.03
##	11	Japan	18	1.98	100.00

4.3Final comments

Low representative categories are sometimes errors in data, such as having: <code>Egypt</code>, <code>Eggypt</code>., and may give some evidence in bad habbits collecting data and/or possible errors when collecting from the source.

There is no general rule to shrink data, it depends on each case.

Next recommended chapter: High Cardinality Variable in Predictive Modeling