```
In [1]: #!pip install pandas
#!pip install matplotlib
#!pip install scikit-learn
```

In [2]: import pandas as pd
import matplotlib.pyplot as plt

In [8]: data=pd.read_csv(r'C:\Users\NARENDRA\Desktop\ML\mobile_price_range_data.csv')

In [9]: data

Out[9]:

_		battery_power	blue	clock_speed	dual_sim	fc	four_g	int_memory	m_dep	mobile_wt	n_
	0	842	0	2.2	0	1	0	7	0.6	188	
	1	1021	1	0.5	1	0	1	53	0.7	136	
	2	563	1	0.5	1	2	1	41	0.9	145	
	3	615	1	2.5	0	0	0	10	0.8	131	
	4	1821	1	1.2	0	13	1	44	0.6	141	
	1995	794	1	0.5	1	0	1	2	0.8	106	
	1996	1965	1	2.6	1	0	0	39	0.2	187	
	1997	1911	0	0.9	1	1	1	36	0.7	108	
	1998	1512	0	0.9	0	4	1	46	0.1	145	
	1999	510	1	2.0	1	5	1	45	0.9	168	

2000 rows × 21 columns

4

In [11]:	data_	mobile_price_	_range	e_data						
Out[11]:		battery_power	blue	clock_speed	dual_sim	fc	four_g	int_memory	m_dep	mobile_wt
	0	842	0	2.2	0	1	0	7	0.6	188
	1	1021	1	0.5	1	0	1	53	0.7	136
	2	563	1	0.5	1	2	1	41	0.9	145
	3	615	1	2.5	0	0	0	10	0.8	131
	4	1821	1	1.2	0	13	1	44	0.6	141
	1995	794	1	0.5	1	0	1	2	0.8	106
	1996	1965	1	2.6	1	0	0	39	0.2	187
	1997	1911	0	0.9	1	1	1	36	0.7	108
	1998	1512	0	0.9	0	4	1	46	0.1	145
	1999	510	1	2.0	1	5	1	45	0.9	168
◀										>

Explortory Data Analysis

```
In [14]: data mobile price range data.shape
Out[14]: (2000, 21)
In [13]: data_mobile_price_range_data.info()
          <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 2000 entries, 0 to 1999
         Data columns (total 21 columns):
               Column
                              Non-Null Count Dtype
          0
               battery_power
                              2000 non-null
                                               int64
          1
                              2000 non-null
                                               int64
          2
               clock_speed
                              2000 non-null
                                               float64
          3
               dual_sim
                              2000 non-null
                                               int64
          4
               fc
                              2000 non-null
                                               int64
          5
               four_g
                              2000 non-null
                                               int64
          6
               int_memory
                              2000 non-null
                                               int64
          7
                              2000 non-null
               m dep
                                               float64
          8
               mobile_wt
                              2000 non-null
                                               int64
          9
                              2000 non-null
                                               int64
               n_cores
          10
               рс
                              2000 non-null
                                               int64
                              2000 non-null
          11
               px_height
                                               int64
          12
               px_width
                              2000 non-null
                                               int64
                              2000 non-null
          13
               ram
                                               int64
```

In [15]: data_mobile_price_range_data.describe()

Out[15]:

	battery_power	blue	clock_speed	dual_sim	fc	four_g	int_memory
count	2000.000000	2000.0000	2000.000000	2000.000000	2000.000000	2000.000000	2000.000000
mean	1238.518500	0.4950	1.522250	0.509500	4.309500	0.521500	32.046500
std	439.418206	0.5001	0.816004	0.500035	4.341444	0.499662	18.145715
min	501.000000	0.0000	0.500000	0.000000	0.000000	0.000000	2.000000
25%	851.750000	0.0000	0.700000	0.000000	1.000000	0.000000	16.000000
50%	1226.000000	0.0000	1.500000	1.000000	3.000000	1.000000	32.000000
75%	1615.250000	1.0000	2.200000	1.000000	7.000000	1.000000	48.000000
max	1998.000000	1.0000	3.000000	1.000000	19.000000	1.000000	64.000000

8 rows × 21 columns

In [17]: data_mobile_price_range_data.plot(x='price_range',y='ram')

Out[17]: <AxesSubplot:xlabel='price_range'>

In [19]: data_mobile_price_range_data.plot(x='price_range',y='battery_power',kind='scatter
plt.show()

In [20]: data_mobile_price_range_data.plot(x='price_range',y='fc',kind='scatter')
 plt.show()

In [21]: data_mobile_price_range_data.plot(x='price_range',y='n_cores',kind='scatter')
plt.show()

In [22]: data_mobile_price_range_data.plot(kind='box',figsize=(20,10))
 plt.show()

In [76]: X=data_mobile_price_range_data.drop('price_range',axis=1)

In [77]: X

_		$r \rightarrow$	_ 7	
/ N	11		_/	
v	u c		/	

	battery_power	blue	clock_speed	dual_sim	fc	four_g	int_memory	m_dep	mobile_wt	n_
0	842	0	2.2	0	1	0	7	0.6	188	
1	1021	1	0.5	1	0	1	53	0.7	136	
2	563	1	0.5	1	2	1	41	0.9	145	
3	615	1	2.5	0	0	0	10	0.8	131	
4	1821	1	1.2	0	13	1	44	0.6	141	
1995	794	1	0.5	1	0	1	2	0.8	106	
1996	1965	1	2.6	1	0	0	39	0.2	187	
1997	1911	0	0.9	1	1	1	36	0.7	108	
1998	1512	0	0.9	0	4	1	46	0.1	145	
1999	510	1	2.0	1	5	1	45	0.9	168	

2000 rows × 20 columns

In [78]: data_mobile_price_range_data.head()

\sim	١.,	-	_	0	
·	ıu	L	-	0	
			ь.	_	

	battery_power	blue	clock_speed	dual_sim	fc	four_g	int_memory	m_dep	mobile_wt	n_co
0	842	0	2.2	0	1	0	7	0.6	188	
1	1021	1	0.5	1	0	1	53	0.7	136	
2	563	1	0.5	1	2	1	41	0.9	145	
3	615	1	2.5	0	0	0	10	0.8	131	
4	1821	1	1.2	0	13	1	44	0.6	141	

5 rows × 21 columns

In [79]: data_mobile_price_range_data.shape

Out[79]: (2000, 21)

In [81]: Y=data_mobile_price_range_data['price_range']

```
In [82]: Y
Out[82]: 0
                  1
                  2
         2
                  2
         3
                  2
                  1
         4
         1995
                  0
         1996
                  2
         1997
                  3
         1998
                  0
         1999
                  3
         Name: price_range, Length: 2000, dtype: int64
```

In [83]: data_mobile_price_range_data.isnull()

Out[83]:		battery_power	blue	clock_speed	dual_sim	fc	four_g	int_memory	m_dep	mobile_wt
	0	False	False	False	False	False	False	False	False	False
	1	False	False	False	False	False	False	False	False	False
	2	False	False	False	False	False	False	False	False	False
	3	False	False	False	False	False	False	False	False	False
	4	False	False	False	False	False	False	False	False	False
	1995	False	False	False	False	False	False	False	False	False
	1996	False	False	False	False	False	False	False	False	False
	1997	False	False	False	False	False	False	False	False	False
	1998	False	False	False	False	False	False	False	False	False
	1999	False	False	False	False	False	False	False	False	False
	2000 r	ows × 21 colum	nns							

```
In [84]: | data mobile price range data.isnull().sum()
Out[84]: battery_power
                           0
          blue
                           0
          clock_speed
                           0
          dual_sim
                           0
          fc
                           0
          four_g
          int_memory
          m_dep
                           0
          mobile_wt
                           0
          n_cores
                           0
          рс
                           0
          px_height
                           0
          px_width
                           0
          ram
          sc h
                           0
          SC_W
                           0
          talk_time
                           0
          three_g
                           0
          touch_screen
          wifi
                           0
          price range
                           0
          dtype: int64
In [99]: data_mobile_price_range_data.shape
Out[99]: (2000, 21)
In [87]: | from sklearn.preprocessing import StandardScaler
          std=StandardScaler()
 In [ ]: # if requard
          # X std=std.fit transform(X)
          # data mobile price range data std=std.transform(data mobile price range data)
In [104]: X std
Out[104]: array([[-0.90259726, -0.9900495 , 0.83077942, ..., -1.78686097,
                  -1.00601811, 0.98609664],
                 [-0.49513857, 1.0100505, -1.2530642, ..., 0.55964063,
                   0.99401789, -1.01409939],
                 [-1.5376865, 1.0100505, -1.2530642, ..., 0.55964063,
                   0.99401789, -1.01409939],
                 [1.53077336, -0.9900495, -0.76274805, ..., 0.55964063,
                   0.99401789, -1.01409939],
                 [0.62252745, -0.9900495, -0.76274805, ..., 0.55964063,
                   0.99401789, 0.98609664],
                 [-1.65833069, 1.0100505, 0.58562134, ..., 0.55964063,
                   0.99401789, 0.98609664]])
```

```
In [ ]:
```

Decision Tree // Traning the model

```
In [93]: from sklearn.tree import DecisionTreeClassifier
           dt=DecisionTreeClassifier()
 In [94]: |dt.fit(X_std,Y)
 Out[94]: DecisionTreeClassifier()
In [111]: | data_mobile_price_range_data
Out[111]:
                 battery_power blue clock_speed dual_sim
                                                         fc four_g int_memory m_dep mobile_wt n_
               0
                          842
                                 0
                                            2.2
                                                       0
                                                          1
                                                                 0
                                                                             7
                                                                                   0.6
                                                                                            188
               1
                         1021
                                            0.5
                                                                            53
                                                                                   0.7
                                                                                            136
                                 1
               2
                          563
                                            0.5
                                                          2
                                                                 1
                                                                            41
                                                                                  0.9
                                                                                            145
                                 1
                                                       1
                                                                 0
               3
                          615
                                            2.5
                                                          0
                                                                            10
                                                                                   8.0
                                                                                            131
                         1821
                                            1.2
                                                       0
                                                         13
                                                                 1
                                                                            44
                                                                                   0.6
                                                                                            141
                                             ...
                                                                                   ...
            1995
                          794
                                            0.5
                                                                             2
                                                                                   8.0
                                                                                            106
                                 1
                                                                 1
                                                                 0
            1996
                         1965
                                            2.6
                                                          0
                                                                            39
                                                                                  0.2
                                                                                            187
            1997
                          1911
                                            0.9
                                                                            36
                                                                                  0.7
                                                                                            108
            1998
                         1512
                                 0
                                            0.9
                                                                 1
                                                                            46
                                                                                  0.1
                                                                                            145
            1999
                          510
                                            2.0
                                                                            45
                                                                                  0.9
                                                                                            168
           2000 rows × 21 columns
In [119]: X_std
Out[119]: array([[-0.90259726, -0.9900495, 0.83077942, ..., -1.78686097,
                    -1.00601811, 0.98609664],
                   [-0.49513857, 1.0100505, -1.2530642, ..., 0.55964063,
                     0.99401789, -1.01409939],
                   [-1.5376865, 1.0100505, -1.2530642, ..., 0.55964063,
                     0.99401789, -1.01409939],
                   [ 1.53077336, -0.9900495 , -0.76274805, ...,
                     0.99401789, -1.01409939],
                   [0.62252745, -0.9900495, -0.76274805, ..., 0.55964063,
                     0.99401789, 0.98609664],
                   [-1.65833069, 1.0100505, 0.58562134, ..., 0.55964063,
                     0.99401789, 0.98609664]])
```

```
In [ ]:
```

KNN

```
from sklearn.neighbors import KNeighborsClassifier
In [123]:
          knn=KNeighborsClassifier()
In [124]: knn.fit(X_std,Y)
Out[124]: KNeighborsClassifier()
In [134]: # if requard
          # knn.predict(data_mobile_price_range_data_std)
In [136]: X_std
Out[136]: array([[-0.90259726, -0.9900495, 0.83077942, ..., -1.78686097,
                  -1.00601811, 0.98609664],
                 [-0.49513857, 1.0100505, -1.2530642, ..., 0.55964063,
                   0.99401789, -1.01409939],
                 [-1.5376865, 1.0100505, -1.2530642, ..., 0.55964063,
                   0.99401789, -1.01409939],
                 [1.53077336, -0.9900495, -0.76274805, ..., 0.55964063,
                   0.99401789, -1.01409939],
                 [0.62252745, -0.9900495, -0.76274805, ..., 0.55964063,
                   0.99401789, 0.98609664],
                 [-1.65833069, 1.0100505, 0.58562134, ..., 0.55964063,
                   0.99401789, 0.98609664]])
  In [ ]:
```

Logistic Regression

```
In [138]: from sklearn.linear_model import LogisticRegression
lr=LogisticRegression()

In [139]: lr.fit(X_std,Y)

Out[139]: LogisticRegression()

In [142]: # if req...
# lr.predict(data_mobile_price_range_data_std)

In []:
```

As we predicted on mobile_price_range_data Data csv, we are not able to plot accuracy score as we dont have Ground Truth.

In []:	
	END
In []:	