Министерство науки и высшего образования Российской Федерации

Калужский филиал

федерального государственного бюджетного образовательного учреждения высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (КФ МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ	ИУК «Информатика и управление»		
КАФЕДРА	ИУК4 «Программное обеспечение ЭВМ,		
информационные технологии»			

Лабораторная работа №2

«Разложение сигналов»

ДИСЦИПЛИНА: «Цифровая обработка сигналов»

Выполнил: студент гр. ИУК4-72Б		
(подпись)		(Ф.И.О.)
	(Тронов К.А.
(подпись)		(Ф.И.О.)
алльная оценка:		
ценка:		
	(подпись)	(подпись) (

Цель работы: формирование практических навыков разложения сигналов различными способами.

Постановка задачи

Для определенного сигнала провести дискретизацию и выполнить указанные разложения.

Вариант 14

$$f(t) = 8 \cdot cos(5 \cdot t), N = 32$$

Листинг программы

```
N = 32;
f = @(t) 8*cos(5*t);
T = 2*pi/5;
h = T/(N - 1);
X = 0:h:T;
F = f(X);
amplitude = 8;
%% Импульсное разложение
values = zeros(N, N);
for i=1:N
    for j=1:N
        if (j==i)
            values(i, i) = F(i);
        end
    end
end
for k=1:N
    subplot(4, 8, k);
    plot(X, values(:,k), '.-black', 'LineWidth', 1);
    axis([0 T -amplitude amplitude]);
sgtitle("Импульсное разложение");
%% Ступенчатое разложение
decomposition = zeros(N);
for i=2:N
    difference = F(i) - F(i - 1);
    for j=i:N
        decomposition(i, j) = difference;
    end
end
for k=1:N
    subplot(4, 8, k);
    plot(X, decomposition(k,:), '.-black', 'LineWidth', 1);
    axis([0 T -2 2]);
end
sqtitle("Ступенчатое разложение");
%% Чётно-нечётное разложение
even = zeros(N, 1);
uneven = zeros(N, 1);
for k=1:N
    even(k) = (F(k) + F(N-k+1)) / 2;
end
```

```
subplot(2, 1, 1);
plot(X, even, '.-black', 'LineWidth', 1);
axis([0 T -amplitude amplitude]);
legend("Чётная симметрия");
for k=1:N
    uneven(k) = (F(k) - F(N-k+1)) / 2;
end
subplot(2, 1, 2);
plot(X, uneven, '.-black', 'LineWidth', 1);
axis([0 T -amplitude amplitude]);
legend("Нечётная симметрия");
sgtitle("Чётно-нечётное разложение");
%% Чередующееся разложение
subplot(2, 1, 1);
F1 = F;
F2 = F;
for k = 1:(N)
    if mod(k, 2) == 0
        F1(k) = 0;
    end
end
plot(X, F1, '.-black');
grid;
axis([0 T -amplitude amplitude]);
legend("Нечётные выборки");
subplot(2, 1, 2);
for k = 1:(N)
    if mod(k, 2) \sim = 0
        F2(k) = 0;
    end
end
plot(X, F2, '.-black');
grid;
axis([0 T -amplitude amplitude])
legend("Чётные выборки");
sgtitle("Чередующееся разложение");
```

Результаты выполнения программы

Рисунок 1 – Импульсное разложение

Рисунок 2 — Ступенчатое разложение

Рисунок 3 — Чётно-нечётное разложение

Рисунок 4 — Чередующееся разложение

Вывод: в ходе выполнения лабораторной работы были выполнены импульсное, ступенчатое, четно-нечетное и чередующееся разложения сигналов для одного периода заданного сигнала.