В решениях используются обозначения

Линейная оболочка (linear span):

$$Span(v_1, v_2, v_3) = \{\alpha_1 v_1 + \alpha_2 v_2 + \alpha_3 v_3 \mid \alpha_1 \in \mathbb{R}, \alpha_2 \in \mathbb{R}, \alpha_3 \in \mathbb{R}\}$$

Конус (cone):

Cone
$$(v_1, v_2, v_3) = \{\alpha_1 v_1 + \alpha_2 v_2 + \alpha_3 v_3 \mid \alpha_1 \ge 0, \alpha_2 \ge 0, \alpha_3 \ge 0\}$$

Выпуклая линейная оболочка (convex linear hull):

$$\text{Hull}(v_1, v_2, v_3) = \text{Convex}(v_1, v_2, v_3) = \left\{ \alpha_1 v_1 + \alpha_2 v_2 + \alpha_3 v_3 \mid \alpha_1 \ge 0, \alpha_2 \ge 0, \alpha_3 \ge 0, \sum \alpha_i = 1 \right\}$$

Графические методы

1. a) Оптимум: $(x_1 = 5, x_2 = 6), z = 21.$

б)

$$3a_1 - 3b_1 + x_2 \rightarrow \max$$

$$2a_1 - 2b_1 + x_2 - x_3 = 8$$

$$-2a_1 + 2b_1 + x_2 - x_4 = -4$$

$$a_1 - b_1 + x_2 + x_5 = 11$$

$$a_1 \ge 0, b_1 \ge 0, x_2 \ge 0, x_3 \ge 0, x_4 \ge 0, x_5 \ge 0$$

2. a) Оптимум: $(x_1 = 2, x_2 = 6)$, z = 2.

$$\begin{aligned} x_1 + x_2 &\to \max \\ -x_1 + x_2 + x_3 &= 4 \\ -x_1 - 2x_2 + x_4 &= -14 \\ x_1 + x_2 + x_5 &= 10 \\ x_1 - 2x_2 + x_6 &= 10 \\ x_1 &\geq 0, x_2 \geq 0, x_3 \geq 0, x_4 \geq 0, x_5 \geq 0, x_6 \geq 0 \end{aligned}$$

- 3. a) $P_1 = (4,8) \in \text{Hull}(A,B,C), P_2 = (2,7) \in \text{Hull}(A,B,C), P_3 = (5,7) \in \text{Hull}(A,B,C), P_4 = (9,3) \notin \text{Hull}(A,B,C), P_5 = (8,4) \in \text{Hull}(A,B,C), P_6 = (5,6) \in \text{Hull}(A,B,C).$
 - б) Допустимое множество $\operatorname{Hull}(A,B,C)$, A=(2,7), B=(4,8), C=(8,4) является треугольником. Все точки из множества $\operatorname{Hull}(A,B,C)$ могут быть представлены в виде выпуклой линейной комбинации единственным образом.
 - в) При c>3 оптимум находится в точке B. При c<3 оптимум находится в точке C. При c=3 оптимум находится на отрезке [B,C].
 - г) При $a \le -2$ задача является неограниченной. При a > -2 задача является ограниченной.
 - д) Найдём наклоны прямых-ограничений, $k_1=1/2,\,k_2=-1/a,\,k_3=-1/2.$ Наклон линии уровня целевой функции равен k=-3/2. Если $k=k_2$, то решение задачи неединственно. При a=2/3 задача имеет неединственное решение. При a=2/3 допустимое множество равно $\mathrm{Hull}(A,B,C)$, где $A=(2,7),\,B=(6,9),\,C=(1,3).$ Оптимум находится на отрезке [B,C]:

$$[B, C] = \left\{ t \cdot \begin{pmatrix} 6 \\ 9 \end{pmatrix} + (1 - t) \cdot \begin{pmatrix} 10 \\ 3 \end{pmatrix} \mid t \in [0; 1] \right\}$$

- 4. a) $P_1 = (4,0) \notin \operatorname{Hull}(A,B,C), P_2 = (1,8) \in \operatorname{Hull}(A,B,C), P_3 = (2,4) \in \operatorname{Hull}(A,B,C), P_4 = (3,8) \in \operatorname{Hull}(A,B,C), P_5 = (-3,13) \notin \operatorname{Hull}(A,B,C), P_6 = (4,4) \in \operatorname{Hull}(A,B,C).$
 - б) Допустимое множество $\operatorname{Hull}(A,B,C), A=(-3,14), B=(5,6), C=(3,2)$ является треугольником. Все точки из множества $\operatorname{Hull}(A,B,C)$ могут быть представлены в виде выпуклой линейной комбинации единственным образом.
 - в) При c>2 оптимум находится в точке B. При c<2 оптимум находится в точке A. При c=2 оптимум находится на отрезке [A,B].
 - г) При $a \le -2$ задача является неограниченной. При a > -2 задача является ограниченной или недопустимой.
 - д) Найдём наклоны прямых-ограничений, $k_1=-2,\,k_2=+2,\,k_3=-a$. Наклон линии уровня целевой функции равен k=-1. Если $k=k_3$, то решение задачи неединственно. При a=1 задача имеет неединственное решение. При a=1 допустимое множество равно Hull(A,B,C,D), где $A=(3,2),\,B=(5,6),\,C=(11,0),\,D=(4,0)$. Оптимум находится на отрезке [B,C]:

$$[B, C] = \left\{ t \cdot {5 \choose 6} + (1 - t) \cdot {11 \choose 0} \mid t \in [0; 1] \right\}$$

- 5. a) $P_1 = (0,1) = C \in \text{Hull}(A,B,C), P_2 = (8,9) = B \in \text{Hull}(A,B,C), P_3 = (5,8) \notin \text{Hull}(A,B,C), P_4 = (4,7) \in \text{Hull}(A,B,C), P_5 = (3,5) \in \text{Hull}(A,B,C), P_6 = (0,5) = A \in \text{Hull}(A,B,C).$
 - б) Допустимое множество $\operatorname{Hull}(A,B,C), A=(0,5), B=(8,9), C=(0,1)$ является треугольником. Все точки из множества $\operatorname{Hull}(A,B,C)$ могут быть представлены в виде выпуклой линейной комбинации единственным образом.
 - в) При c>-1/2 оптимум находится в точке B. При c<-1/2 оптимум находится в точке A. При c=-1/2 оптимум находится на отрезке [A,B].
 - г) При $a \le -6$ задача является неограниченной. При a > -6 задача является ограниченной.
 - д) Найдём наклоны прямых-ограничений, $k_1=1/2,\,k_2=-b/3,\,k_3=1.$ Наклон линии уровня целевой функции равен k=-2. Если $k=k_2$, то решение задачи неединственно.

Ответ: при b = 6 решение задачи неединственно.

6.

7.

8. Обозначим список пересекаемых множеств буквой \mathcal{F} , в этой задаче $\mathcal{F} = \{D_1, D_2, D_3, D_4\}$.

Пересечение всех множеств равно

$$S = \cap_{D \in \mathcal{F}} D$$
.

Рассмотрим произвольные точки A и B из множества S.

По определению пересечения множеств, точки A и B лежат в любом из пересекаемых множеств $D \in \mathcal{F}$. Любое множество $D \in \mathcal{F}$ по условию задачи выпуклое, поэтому $[A,B] \subseteq D$.

Отрезок [A,B] лежит в любом множестве $D\in\mathcal{F}$, поэтому отрезок [A,B] лежит в пересечении множеств S.

9.

10. Допустимое множество: Hull(A, B, C, D).

Канонический вид:

$$x_1 + 2x_2 + x_3 = 6$$

$$4x_1 + x_2 + x_4 = 12$$

$$-x_1 + x_2 + x_5 = 1$$

$$x_1 \ge 0, x_2 \ge 0, x_3 \ge 0, x_4 \ge 0, x_5 \ge 0$$

Соответствие:

$$A = (0,1) \leftrightarrow x = (0,1,3,11,0)$$

$$B = (4/3,7/3) \leftrightarrow x = (4/3,7/3,0,13/3,0)$$

$$C = (18/7,12/7) \leftrightarrow x = (18/7,12/7,0,0,13/7)$$

$$D = (3,0) \leftrightarrow x = (3,0,3,0,4)$$

11. Допустимое множество: Hull(A, B, C).

Канонический вид:

$$4x_1 + x_2 - x_3 = 4$$

$$x_1 + 3x_2 + x_4 = 9$$

$$x_1 \ge 0, x_2 \ge 0, x_3 \ge 0, x_4 \ge 0$$

Соответствие:

$$A = (1,0) \leftrightarrow x = (1,0,0,8)$$

$$B = (3/11,32/11) \leftrightarrow x = (3/11,32/11,0,0)$$

$$C = (9,0) \leftrightarrow x = (9,0,32,0)$$

Симплекс метод

1.

Двойственность

1.

Транспортная задача

1.