Reactions in Basic Solution

Balance the following redox equations. Assume that all reactions take place in a basic environment where OH^- and H_2O are readily available.

575.
$$CO_2 + NH_2OH \rightarrow CO + N_2 + H_2O$$

576. Bi(OH)₃ + K₂SnO₂
$$\rightarrow$$
 Bi + K₂SnO₃

(Both of the potassium-tin-oxygen compounds dissociate into potassium ions and tin-oxygen ions.)

Mixed Review

Balance each of the following redox equations. Unless stated otherwise, assume that the reaction occurs in acidic solution.

577. Mg +
$$N_2 \rightarrow Mg_3N_2$$

578.
$$SO_2 + Br_2 + H_2O \rightarrow HBr + H_2SO_4$$

579.
$$H_2S + Cl_2 \rightarrow S + HCl$$

580.
$$PbO_2 + HBr \rightarrow PbBr_2 + Br_2 + H_2O$$

581. S + HNO₃
$$\rightarrow$$
 NO₂ + H₂SO₄ + H₂O

582. NaIO₃ + N₂H₄ + HCl
$$\rightarrow$$
 N₂ + NaICl₂ + H₂O (N₂H₄ is hydrazine; do not separate it into ions.)

583.
$$MnO_2 + H_2O_2 + HCl \rightarrow MnCl_2 + O_2 + H_2O$$

585.
$$K_2Cr_2O_7 + H_2C_2O_4 + HCl \rightarrow CrCl_3 + CO_2 + KCl + H_2O (H_2C_2O_4 is oxalic acid; it can be treated as $2H^+ + C_2O_4^{2-}$.)$$

586.
$$Hg(NO_3)_2 \xrightarrow{heat} HgO + NO_2 + O_2$$
 (The reaction is not in solution.)

587. HAuCl₄ + N₂H₄
$$\rightarrow$$
 Au + N₂ + HCl (HAuCl₄ can be considered as H⁺ + AuCl₄⁻.)

588.
$$Sb_2(SO_4)_3 + KMnO_4 + H_2O \rightarrow H_3SbO_4 + K_2SO_4 + MnSO_4 + H_2SO_4$$

589.
$$Mn(NO_3)_2 + NaBiO_3 + HNO_3 \rightarrow Bi(NO_3)_2 + HMnO_4 + NaNO_3 + H_2O_3$$

590.
$$H_3AsO_4 + Zn + HCl \rightarrow AsH_3 + ZnCl_2 + H_2O$$

591.
$$KClO_3 + HCl \rightarrow Cl_2 + H_2O + KCl$$

592. The same reactants as in item 591 can combine in the following way when more KClO₃ is present. Balance the equation.

$$KClO_3 + HCl \rightarrow Cl_2 + ClO_2 + H_2O + KCl$$

593.
$$MnCl_3 + H_2O \rightarrow MnCl_2 + MnO_2 + HCl$$

594. NaOH +
$$H_2O + Al \rightarrow NaAl(OH)_4 + H_2$$
 in basic solution

595. Br₂ + Ca(OH)₂
$$\rightarrow$$
 CaBr₂ + Ca(BrO₃)₂ + H₂O in basic solution

596.
$$N_2O + NaClO + NaOH \rightarrow NaCl + NaNO_2 + H_2O$$
 in basic solution

597. Balance the following reaction, which can be used to prepare bromine in the laboratory:

$$HBr + MnO_2 \rightarrow MnBr_2 + H_2O + Br_2$$

598. The following reaction occurs when gold is dissolved in *aqua regia*. Balance the equation.

$$Au + HCl + HNO_3 \rightarrow HAuCl_4 + NO + H_2O$$

Electrochemistry: Chap. 20, Sec. 2

Use the reduction potentials in the table on page 915 to determine whether the following reactions are spontaneous as written. Report the E_{cell}^0 for the reactions.

599.
$$Cu^{2+} + Fe \rightarrow Fe^{2+} + Cu$$

600.
$$Pb^{2+} + Fe^{2+} \rightarrow Fe^{3+} + Pb$$

601.
$$Mn^{2+} + 4H_2O + Sn^{2+} \rightarrow MnO_4^- + 8H^+ + Sn$$

602.
$$MnO_4^{2-} + Cl_2 \rightarrow MnO_4^{-} + 2Cl^{-}$$

603.
$$Hg_2^{2^+} + 2MnO_4^{2^-} \rightarrow 2Hg + 2MnO_4^-$$

604.
$$2Li^+ + Pb \rightarrow 2Li + Pb^{2+}$$

605.
$$Br_2 + 2Cl^- \rightarrow 2Br^- + Cl_2$$

606. S + 2I⁻
$$\rightarrow$$
 S²⁻ + I₂

If a cell is constructed in which the following pairs of reactions are possible, what would be the cathode reaction, the anode reaction, and the overall cell voltage?

607.
$$Ca^{2+} + 2e^{-} \rightleftharpoons Ca$$

$$Fe^{3+} + 3e^{-} \rightleftharpoons Fe$$

608.
$$Ag^+ + e^- \rightleftharpoons Ag$$

 $S + 2H^+ + 2e^- \rightleftharpoons H_2S$

609.
$$\operatorname{Fe}^{3+} + e^{-} \rightleftharpoons \operatorname{Fe}^{2+}$$

 $\operatorname{Sn}^{2+} + 2e^{-} \rightleftharpoons \operatorname{Sn}$

610.
$$Cu^{2+} + 2e^- \rightleftharpoons Cu$$

 $Au^{3+} + 3e^- \rightleftharpoons Au$

Mixed Review

Use reduction potentials to determine whether the reactions in the following 10 problems are spontaneous

611. Ba + Sn²⁺
$$\rightarrow$$
 Ba²⁺ + Sn

612. Ni + Hg²⁺
$$\rightarrow$$
 Ni²⁺ + Hg

613.
$$2Cr^{3+} + 7 H_2O + 6Fe^{3+} \rightarrow Cr_2O_7^{2-} + 14H^+ + 6Fe^{2+}$$

614.
$$Cl_2 + Sn \rightarrow 2Cl^- + Sn^{2+}$$

615. Al +
$$3Ag^+ \rightarrow Al^{3+} + 3Ag$$

616.
$$Hg_2^{2^+} + S^{2^-} \rightarrow 2Hg + S$$

617. Ba +
$$2Ag^+ \rightarrow Ba^{2+} + 2Ag$$

618.
$$2I^- + Ca^{2+} \rightarrow I_2 + Ca$$

619. Zn + 2MnO₄⁻
$$\rightarrow$$
 Zn²⁺ + 2MnO₄²⁻

620.
$$2Cr^{3+} + 3Mg^{2+} + 7H_2O \rightarrow Cr_2O_7^{2-} + 14H^+ + 3Mg$$