

Algorithmen II Vorlesung am 14.11.2013

Kreisbasen, Matroide & Greedy Algorithmen

Kreisbasen

- Man kann aus wenigen Kreisen viele zusammensetzen.
- Wie viele braucht man, um alle Kreise zu erzeugen?

- Man kann aus wenigen Kreisen viele zusammensetzen.
- Wie viele braucht man, um alle Kreise zu erzeugen?

- Man kann aus wenigen Kreisen viele zusammensetzen.
- Wie viele braucht man, um alle Kreise zu erzeugen?

- Man kann aus wenigen Kreisen viele zusammensetzen.
- Wie viele braucht man, um alle Kreise zu erzeugen?

- Man kann aus wenigen Kreisen viele zusammensetzen.
- Wie viele braucht man, um alle Kreise zu erzeugen?

- Man kann aus wenigen Kreisen viele zusammensetzen.
- Wie viele braucht man, um alle Kreise zu erzeugen?

- Man kann aus wenigen Kreisen viele zusammensetzen.
- Wie viele braucht man, um alle Kreise zu erzeugen?

- Man kann aus wenigen Kreisen viele zusammensetzen.
- Wie viele braucht man, um alle Kreise zu erzeugen?

- Man kann aus wenigen Kreisen viele zusammensetzen.
- Wie viele braucht man, um alle Kreise zu erzeugen?

- Man kann aus wenigen Kreisen viele zusammensetzen.
- Wie viele braucht man, um alle Kreise zu erzeugen?

- Man kann aus wenigen Kreisen viele zusammensetzen.
- Wie viele braucht man, um alle Kreise zu erzeugen?

- Man kann aus wenigen Kreisen viele zusammensetzen.
- Wie viele braucht man, um alle Kreise zu erzeugen?

Kreise in Graphen

Definition: Kreis

(Definition 5.1)

Ein Teilgraph $C = (V_C, E_C)$ von G = (V, E) (d.h. $V_C \subseteq V, E_C \subseteq E$) heißt *Kreis* in G, falls alle Knoten aus V_C in C geraden Grad haben. Falls C zusammenhängend ist und alle Knoten aus V_C Grad zwei haben, so heißt C einfacher Kreis.

Kreise in Graphen

Definition: Kreis

(Definition 5.1)

Ein Teilgraph $C = (V_C, E_C)$ von G = (V, E) (d.h. $V_c \subseteq V, E_c \subseteq E$) heißt Kreis in G, falls alle Knoten aus V_C in C geraden Grad haben. Falls C zusammenhängend ist und alle Knoten aus V_C Grad zwei haben, so heißt C einfacher Kreis.

kein Kreis

Fasse Kreis als Kantenmenge $E' \subseteq E = \{e_1, \ldots, e_m\}$ auf und kodiere E' als Vektor $X^{E'}$ mit

$$X_i^{E'} := \begin{cases} 1, & \text{falls } e_i \in E' \\ 0, & \text{sonst} \end{cases}$$

Kreisraum

Definition: Kreisraum

Sei \mathcal{C} die Menge aller Kreise in G = (V, E). Dann induziert \mathcal{C} den Vektorraum der Vektoren X^c , $c \in \mathcal{C}$ über dem Körper GF(2), genannt *Kreisraum* von G.

Erinnerung: GF(2) ist der Körper mit zwei Elementen $\{0, 1\}$ und den Verknüpfun-

gen + und · mit

+	0	1	_	•	0	1
0	0	1		0	0	0
1	1	0		1	0	1

Kreisraum

Definition: Kreisraum

Sei \mathcal{C} die Menge aller Kreise in G = (V, E). Dann induziert \mathcal{C} den Vektorraum der Vektoren X^c , $c \in \mathcal{C}$ über dem Körper GF(2), genannt *Kreisraum* von G.

Erinnerung: GF(2) ist der Körper mit zwei Elementen $\{0,1\}$ und den Verknüpfun-

+	0	1	_	•	0	1
0	0	1		0	0	0
1	1	0		1	0	1

Definition: Summe von Kreisen – symmetrische Differenz

Die Addition im Kreisraum von G induziert eine Operation \oplus auf C durch $c_1 \oplus c_2 = (E_{c_1} \cup E_{c_2}) \setminus (E_{c_1} \cap E_{c_2})$. Dies ist die *symmetrische Differenz* beider Kantenmengen.

= `

Ist wieder ein Kreis!

Bemerkungen

 Die Begriffe Dimension des Kreisraums, linear unabhängige bzw. abhängige Menge von Kreisen sowie der Begriff der Kreisbasis ergeben sich in kanonischer Weise.

Bemerkungen

- Die Begriffe Dimension des Kreisraums, linear unabhängige bzw. abhängige Menge von Kreisen sowie der Begriff der Kreisbasis ergeben sich in kanonischer Weise.
- Man kann eine Kreisbasis wie folgt erhalten:
 - (i) Betrachte aufspannenden Baum T von G (bzw. aufspannenden Wald, falls G unzusammenhängend ist).
 - (ii) Für jede Nichtbaumkante $e_i = \{u, v\} \in E$ sei $C_i = P(u, v) \cup \{\{u, v\}\}\}$ der Fundamentalkreis zu e_i , wobei P(u, v) der einfache Weg von u zu v in T ist.
 - (iii) Die Menge aller Fundamentalkreise heißt *Fundamentalbasis* zu *T* und ist eine Kreisbasis.

Bemerkungen

- Die Begriffe Dimension des Kreisraums, linear unabhängige bzw. abhängige Menge von Kreisen sowie der Begriff der Kreisbasis ergeben sich in kanonischer Weise.
- Man kann eine Kreisbasis wie folgt erhalten:
 - (i) Betrachte aufspannenden Baum T von G (bzw. aufspannenden Wald, falls G unzusammenhängend ist).
 - (ii) Für jede Nichtbaumkante $e_i = \{u, v\} \in E$ sei $C_i = P(u, v) \cup \{\{u, v\}\}\}$ der Fundamentalkreis zu e_i , wobei P(u, v) der einfache Weg von u zu v in T ist.
 - (iii) Die Menge aller Fundamentalkreise heißt Fundamentalbasis zu T und ist eine Kreisbasis.
- Die Dimension des Kreisraums von G = (V, E) ist $m n + \mathcal{K}(G)$, wobei n = |V|, m = |E| und $\mathcal{K}(G)$ die Anzahl der Zusammenhangskomponenten in G ist.

Spannbaum *T*:

Spannbaum *T*:

Kante *e*₉ induziert Kreis:

$$e_1 - e_7 - e_9 - e_{10} - e_2$$

Spannbaum *T*:

Kante *e*₉ induziert Kreis:

$$e_1 - e_7 - e_9 - e_{10} - e_2$$

Kante *e*₈ induziert Kreis:

$$e_1 - e_7 - e_8 - e_4$$

Spannbaum *T*:

Kante *e*₉ induziert Kreis:

$$e_1 - e_7 - e_9 - e_{10} - e_2$$

Kante *e*₈ induziert Kreis:

$$e_1 - e_7 - e_8 - e_4$$

Kante *e*₅ induziert Kreis:

$$e_1 - e_5 - e_4$$

Spannbaum *T*:

Kante *e*₉ induziert Kreis:

$$e_1 - e_7 - e_9 - e_{10} - e_2$$

Kante *e*₈ induziert Kreis:

$$e_1 - e_7 - e_8 - e_4$$

Kante *e*₅ induziert Kreis:

$$e_1 - e_5 - e_4$$

Kante *e*₆ induziert Kreis:

$$e_2 - e_4 - e_6$$

Spannbaum *T*:

Kante *e*₉ induziert Kreis:

$$e_1 - e_7 - e_9 - e_{10} - e_2$$

Kante *e*₈ induziert Kreis:

$$e_1 - e_7 - e_8 - e_4$$

Kante *e*₅ induziert Kreis:

$$e_1 - e_5 - e_4$$

Kante *e*₆ induziert Kreis:

$$e_2 - e_4 - e_6$$

Kante *e*₃ induziert Kreis:

$$e_1 - e_3 - e_2$$

Kreisbasis

Dimension des Kreisraums:

$$m - n + 1 = 5$$

Spannbaum *T*:

Kante *e*₉ induziert Kreis:

$$e_1 - e_7 - e_9 - e_{10} - e_2$$

Kante *e*₈ induziert Kreis:

$$e_1 - e_7 - e_8 - e_4$$

Kante *e*₅ induziert Kreis:

$$e_1 - e_5 - e_4$$

Kante *e*₆ induziert Kreis:

$$e_2 - e_4 - e_6$$

Kante *e*₃ induziert Kreis:

$$e_1 - e_3 - e_2$$

Kreisbasis

Dimension des Kreisraums:

$$m - n + 1 = 5$$

Darstellung anderer Kreise bezüglich der gewählten Basis:

$$e_3 - e_7 - e_8 - e_6 = e_1 - e_7 - e_8 - e_4 \oplus e_2 - e_4 - e_6 \oplus e_1 - e_3 - e_2$$

Problem - MINIMUM CYCLE BASIS

Definition: Gewicht einer Kreisbasis

Sei zu G = (V, E) die Kantengewichtsfunktion $w \colon E \longrightarrow \mathbb{R}_0^+$ gegeben. Das Ge-wicht einer Kreisbasis \mathcal{B} von G ist definiert als

$$w(\mathcal{B}) = \sum_{C \in \mathcal{B}} w(C) = \sum_{C \in \mathcal{B}} \sum_{e \in C} w(e)$$

Problem: MCB

Gegeben sei ein Graph G = (V, E) und eine Gewichtsfunktion $w \colon E \longrightarrow \mathbb{R}_0^+$. Finde eine Kreisbasis \mathcal{B} von G mit minimalem Gewicht.

Algorithmus zur Bestimmung einer MCB: → nächste Vorlesung

Matroide & Greedy Algorithmen

Unabhängigkeitssysteme

Definition: Unabhängigkeitssystem

(Definition 2.8)

Ein Tupel (M, \mathcal{U}) , wobei $\mathcal{U} \subset 2^M$ ein Mengensystem über einer endlichen Menge M ist, heißt Unabhängigkeitssystem, wenn

- lacksquare $\emptyset \in \mathcal{U}$ und

Die Mengen $I \subseteq M$ mit $I \in \mathcal{U}$ werden *unabhängig*, alle anderen Mengen $I \subseteq M$ abhängig genannt.

Bemerkung: Für einen Vektorraum V und die Menge \mathcal{U} aller linear unabhängigen Teilmengen von V ist (V, \mathcal{U}) ein Unabhängigkeitssystem. (gilt auch für den Kreisraum)

Unabhängigkeitssysteme

Definition: Unabhängigkeitssystem

(Definition 2.8)

Ein Tupel (M, \mathcal{U}) , wobei $\mathcal{U} \subset 2^M$ ein Mengensystem über einer endlichen Menge M ist, heißt Unabhängigkeitssystem, wenn

- lacksquare $\emptyset \in \mathcal{U}$ und

Die Mengen $I \subseteq M$ mit $I \in \mathcal{U}$ werden *unabhängig*, alle anderen Mengen $I \subseteq M$ *abhängig* genannt.

Bemerkung: Für einen Vektorraum V und die Menge \mathcal{U} aller linear unabhängigen Teilmengen von V ist (V, \mathcal{U}) ein Unabhängigkeitssystem. (gilt auch für den Kreisraum)

Definition: Basis, Basissystem & Rang

(Definition 2.9)

Sei (M, \mathcal{U}) ein Unabhängigkeitssystem. Für $F \subseteq M$ ist jede unabhängige Menge $U \in \mathcal{U}$, $U \subseteq F$ die bezüglich \subseteq maximal ist eine *Basis* von F. Eine Basis von M wird auch *Basis des Unabhängigkeitssystems* genannt. Die Menge aller Basen von (M, \mathcal{U}) heißt *Basissystem von* (M, \mathcal{U}) .

Für $F \subseteq M$ heißt $r(F) := max\{|B| : B \text{ ist Basis von } F\}$ der Rang von F. Der Rang von M wird auch Rang des Unabhängigkeitssystems genannt.

Optimierungsprobleme

Sei (M, \mathcal{U}) ein Unabhängigkeitssystem mit Basissystem \mathcal{B} und Gewichtsfunktion $w: M \longrightarrow \mathbb{R}$.

Problem: Optimierungsproblem über dem Unabhängigkeitssystem (M, \mathcal{U})

Finde unabhängige Menge $U^* \in \mathcal{U}$ sodass $w(U^*)$ maximal ist. (Definition 2.11)

Problem: Optimierungsproblem über dem Basissystem ${\cal B}$

Finde Basis $B^* \in \mathcal{B}$ sodass $w(B^*)$ minimal ist.

(Definition 2.11)

Optimierungsprobleme

Sei (M, \mathcal{U}) ein Unabhängigkeitssystem mit Basissystem \mathcal{B} und Gewichtsfunktion $w: M \longrightarrow \mathbb{R}$.

Problem: Optimierungsproblem über dem Unabhängigkeitssystem (M, \mathcal{U})

Finde unabhängige Menge $U^* \in \mathcal{U}$ sodass $w(U^*)$ maximal ist. (Definition 2.11)

Problem: Optimierungsproblem über dem Basissystem ${\mathcal B}$

Finde Basis $B^* \in \mathcal{B}$ sodass $w(B^*)$ minimal ist.

(Definition 2.11)

Mögliche Lösungsstrategie für diese Probleme: Greedy

GREEDY-METHODE für Optimierungsproblem Π

Sortiere M aufsteigend (absteigend), falls Π Optimierungsproblem über Basissystem (Unabhängigkeitessystem) ist, sei $\ell_1, \ldots, \ell_{|M|}$ die Sortierung.

$$I^{\star} \leftarrow \emptyset$$

for
$$i = 1$$
 to $|M|$ do
 $| if I^* \cup \{\ell_i\} \in \mathcal{U}$ then
 $| I^* \leftarrow I^* \cup \{\ell_i\}$

Optimierungsprobleme

Sei (M, \mathcal{U}) ein Unabhängigkeitssystem mit Basissystem \mathcal{B} und Gewichtsfunktion $w: M \longrightarrow \mathbb{R}$.

Problem: Optimierungsproblem über dem Unabhängigkeitssystem (M, \mathcal{U})

Finde unabhängige Menge $U^* \in \mathcal{U}$ sodass $w(U^*)$ maximal ist. (Definition 2.11)

Problem: Optimierungsproblem über dem Basissystem ${\mathcal B}$

Finde Basis $B^* \in \mathcal{B}$ sodass $w(B^*)$ minimal ist.

(Definition 2.11)

Mögliche Lösungsstrategie für diese Probleme: Greedy

GREEDY-METHODE für Optimierungsproblem Π

Sortiere M aufsteigend (absteigend), falls Π Optimierungsproblem über Basissystem (Unabhängigkeitessystem) ist, sei $\ell_1, \ldots, \ell_{|M|}$ die Sortierung.

$$I^{\star} \leftarrow \emptyset$$

for
$$i = 1$$
 to $|M|$ do

$$| if I^* \cup \{\ell_i\} \in \mathcal{U} \text{ then}$$

$$| I^* \leftarrow I^* \cup \{\ell_i\}$$

Wann liefert das eine optimale Lösung?

Definition: Matroid

(Definition 2.13)

Ein Unabhängigkeitssystem (M, \mathcal{U}) heißt *Matroid*, wenn für alle $I, J \in \mathcal{U}$ mit |I| < |J|, ein $e \in J \setminus I$ existiert, sodass $I \cup \{e\} \in \mathcal{U}$.

Äquivalent kann statt |I| < |J| auch |I| + 1 = |J| gefordert werden

Definition: Matroid

(Definition 2.13)

Ein Unabhängigkeitssystem (M, \mathcal{U}) heißt *Matroid*, wenn für alle $I, J \in \mathcal{U}$ mit |I| < |J|, ein $e \in J \setminus I$ existiert, sodass $I \cup \{e\} \in \mathcal{U}$.

Äquivalent kann statt |I| < |J| auch |I| + 1 = |J| gefordert werden

Beispiel 1: Jeder Vektorraum ist ein Matroid, denn:

Falls I und J linear unabhängig mit |I| < |J|, dann kann nicht jeder Vektor in J als Linearkombination von Vektoren aus I dargestellt werden.

 \Rightarrow Der Kreisraum eines Graphen G bildet einen Matroid, den Kreismatroid von G.

Definition: Matroid

(Definition 2.13)

Ein Unabhängigkeitssystem (M, \mathcal{U}) heißt *Matroid*, wenn für alle $I, J \in \mathcal{U}$ mit |I| < |J|, ein $e \in J \setminus I$ existiert, sodass $I \cup \{e\} \in \mathcal{U}$.

Äquivalent kann statt |I| < |J| auch |I| + 1 = |J| gefordert werden

Beispiel 1: Jeder Vektorraum ist ein Matroid, denn:

Falls I und J linear unabhängig mit |I| < |J|, dann kann nicht jeder Vektor in J als Linearkombination von Vektoren aus I dargestellt werden.

 \Rightarrow Der Kreisraum eines Graphen G bildet einen Matroid, den Kreismatroid von G.

Beispiel 2: Sei G = (V, E) ein zusammenhängender Graph. Das Mengensystem (E, \mathcal{U}) mit $\mathcal{U} = \{E' \subseteq E : E' \text{ induziert einen Wald in } G\}$ ist ein Matroid.

Definition: Matroid

(Definition 2.13)

Ein Unabhängigkeitssystem (M, \mathcal{U}) heißt *Matroid*, wenn für alle $I, J \in \mathcal{U}$ mit |I| < |J|, ein $e \in J \setminus I$ existiert, sodass $I \cup \{e\} \in \mathcal{U}$.

Äquivalent kann statt |I| < |J| auch |I| + 1 = |J| gefordert werden

Beispiel 1: Jeder Vektorraum ist ein Matroid, denn:

Falls I und J linear unabhängig mit |I| < |J|, dann kann nicht jeder Vektor in J als Linearkombination von Vektoren aus I dargestellt werden.

 \Rightarrow Der Kreisraum eines Graphen G bildet einen Matroid, den Kreismatroid von G.

Beispiel 2: Sei G = (V, E) ein zusammenhängender Graph. Das Mengensystem (E, \mathcal{U}) mit $\mathcal{U} = \{E' \subseteq E : E' \text{ induziert einen Wald in } G\}$ ist ein Matroid.

Beispiel 3: Es sei G = (V, E). Das Mengensystem (V, \mathcal{J}) , wobei $\mathcal{J} = \{V' \subseteq V \mid V' \text{ unabhängige Knotenmenge in } G, \text{ d.h. } \forall u, v \in V' \text{ gilt } \{u, v\} \notin E\}$ ist ein Unabhängigkeitsystem, aber **kein** Matroid.

|I| < |J| $I \in \mathcal{J}$

Definition: Matroid

(Definition 2.13)

Ein Unabhängigkeitssystem (M, \mathcal{U}) heißt *Matroid*, wenn für alle $I, J \in \mathcal{U}$ mit |I| < |J|, ein $e \in J \setminus I$ existiert, sodass $I \cup \{e\} \in \mathcal{U}$.

Satz: Maximierungsprobleme auf Matroiden

(Satz 2.16)

Für ein Unabhängigkeitssystem (M, \mathcal{U}) sind folgende Aussagen äquivalent:

- (a) Die Greedy-Methode liefert eine Optimallösung für das Optimierungsproblem über dem Unabhängigkeitssystem (M, \mathcal{U}) .
- (b) (M, \mathcal{U}) ist ein Matroid.
- (c) Für eine beliebige Menge $F \subseteq M$ und beliebige inklusionsmaximale unabhängige Mengen $I_1, I_2 \subseteq F$ gilt: $|I_1| = |I_2|$.

Erinnerung:

Problem: Optimierungsproblem über dem Unabhängigkeitssystem (M, \mathcal{U})

Finde unabhängige Menge $U^* \in \mathcal{U}$ sodass $w(U^*)$ maximal ist.

Beweis: Wir zeigen: $(a) \Rightarrow (b) \Rightarrow (c) \Rightarrow (a)$

Beweis: Wir zeigen: $(a) \Rightarrow (b) \Rightarrow (c) \Rightarrow (a)$

- (a) Die Greedy-Methode liefert eine Optimallösung für das Optimierungsproblem über dem Unabhängigkeitssystem (M, \mathcal{U}) .
- \Rightarrow (b) (M, \mathcal{U}) ist ein Matroid.

Annahme: Greedy liefert Optimallösung, aber (M, \mathcal{U}) ist **kein** Matroid.

■ Es gibt U, $W \in \mathcal{U}$ mit |U| = |W| + 1, sodass $W \cup \{e\} \notin \mathcal{U}$ für alle $e \in U \setminus W$.

Negation der Matroideigenschaft

Erinnerung:

Problem: Optimierungsproblem über dem Unabhängigkeitssystem (M, \mathcal{U}) Finde unabhängige Menge $U^* \in \mathcal{U}$ sodass $w(U^*)$ maximal ist.

Beweis: Wir zeigen: (a) \Rightarrow (b) \Rightarrow (c) \Rightarrow (a)

(a) Die Greedy-Methode liefert eine Optimallösung für das Optimierungsproblem über dem Unabhängigkeitssystem (M, \mathcal{U}) .

 \Rightarrow (b) (M, \mathcal{U}) ist ein Matroid.

Annahme: Greedy liefert Optimallösung, aber (M, \mathcal{U}) ist **kein** Matroid.

- Es gibt U, $W \in \mathcal{U}$ mit |U| = |W| + 1, sodass $W \cup \{e\} \notin \mathcal{U}$ für alle $e \in U \setminus W$.
- Setze Gewichte wie folgt:

$$w(e) = \begin{cases} |W| + 2 \text{ falls } e \in W \\ |W| + 1 \text{ falls } e \in U \setminus W \\ -1 \text{ sonst} \end{cases}$$

Erinnerung:

Problem: Optimierungsproblem über dem Unabhängigkeitssystem (M, \mathcal{U}) Finde unabhängige Menge $U^* \in \mathcal{U}$ sodass $w(U^*)$ maximal ist.

Beweis: Wir zeigen: (a) \Rightarrow (b) \Rightarrow (c) \Rightarrow (a)

- (a) Die Greedy-Methode liefert eine Optimallösung für das Optimierungsproblem über dem Unabhängigkeitssystem (M, \mathcal{U}) .
- \Rightarrow (b) (M, \mathcal{U}) ist ein Matroid.

Annahme: Greedy liefert Optimallösung, aber (M, \mathcal{U}) ist **kein** Matroid.

- Es gibt U, $W \in \mathcal{U}$ mit |U| = |W| + 1, sodass $W \cup \{e\} \notin \mathcal{U}$ für alle $e \in U \setminus W$.
- Setze Gewichte wie folgt:

$$w(e) = \begin{cases} |W| + 2 \text{ falls } e \in W \\ |W| + 1 \text{ falls } e \in U \setminus W \\ -1 \text{ sonst} \end{cases}$$

- Greedy-Methode findet: W mit $w(W) = |W| \cdot (|W| + 2) = |W|^2 + 2|W|$
- Besser wäre: U mit $w(U) \ge (|W| + 1) \cdot (|W| + 1) = |W|^2 + 2|W| + 1$

Erinnerung:

Problem: Optimierungsproblem über dem Unabhängigkeitssystem (M, \mathcal{U}) Finde unabhängige Menge $U^* \in \mathcal{U}$ sodass $w(U^*)$ maximal ist.

Beweis: Wir zeigen: $(a) \Rightarrow (b) \Rightarrow (c) \Rightarrow (a)$

- $(b) (M, \mathcal{U})$ ist ein Matroid.
- (c) Für eine beliebige Menge $F \subseteq M$ und beliebige inklusionsmaximale unabhängige Mengen $I_1, I_2 \subseteq F$ gilt: $|I_1| = |I_2|$.

Annahme: (M, \mathcal{U}) ist Matroid, aber $I_1, I_2 \subseteq F$ sind inklusionsmaximale unabhängige Menge $(I_1, I_2 \in \mathcal{U})$ mit $|I_1| < |I_2|$.

■ Es gibt ein Element $e \in I_2 \setminus I_1$, sodass $I'_1 = I_1 \cup \{e\} \in \mathcal{U}$.

Matroideigenschaft

- $e \in I_2 \subseteq F \Rightarrow I'_1 \subseteq F$
- I_1 ist nicht inklusionsmaximal.

Beweis: Wir zeigen: $(a) \Rightarrow (b) \Rightarrow (c) \Rightarrow (a)$

(c) Für eine beliebige Menge $F \subseteq M$ und beliebige inklusionsmaximale unabhängige Mengen $I_1, I_2 \subseteq F$ gilt: $|I_1| = |I_2|$.

(a) Die Greedy-Methode liefert eine Optimallösung für das Optimierungsproblem über dem Unabhängigkeitssystem (M, \mathcal{U}) .

Annahme: Greedy liefert I, aber es gibt $J \in \mathcal{U}$ mit w(I) < w(J).

o.B.d.A.: $I, J \subseteq F = \{e \in M \mid w(e) > 0\}$ und I, J sind inklusionsmaximal und

unabhängig in *F*.

$$w(e_1) \geq w(e_2) \geq \ldots \geq w(e_k) \geq \ldots \geq w(e_i)$$

|I| = |J| (da (c) gilt)

$$V \longrightarrow O$$
 $W(e'_1) \geq w(e'_2) \geq \cdots \geq w(e'_k) \geq \cdots \geq w(e'_i)$

Aus Annahme w(I) < w(J) folgt: es gibt ein k, sodass $w(e_k) < w(e'_k)$

Beweis: Wir zeigen: $(a) \Rightarrow (b) \Rightarrow (c) \Rightarrow (a)$

- (c) Für eine beliebige Menge $F \subseteq M$ und beliebige inklusionsmaximale unabhängige Mengen $I_1, I_2 \subseteq F$ gilt: $|I_1| = |I_2|$.
 - (a) Die Greedy-Methode liefert eine Optimallösung für das Optimierungsproblem über dem Unabhängigkeitssystem (M, \mathcal{U}) .

Annahme: Greedy liefert I, aber es gibt $J \in \mathcal{U}$ mit w(I) < w(J).

• o.B.d.A.: $I, J \subseteq F = \{e \in M \mid w(e) > 0\}$ und I, J sind inklusionsmaximal und

unabhängig in F.

$$|I| = |J| \text{ (da } (c) \text{ gilt)}$$

$$|V| = |J| \text{ (da } (c) \text{ gilt)}$$

$$|V| = |J| \text{ (da } (c) \text{ gilt)}$$

$$|V| = |J| \text{ (da } (c) \text{ gilt)}$$

$$|V| = |J| \text{ (da } (c) \text{ gilt)}$$

$$|V| = |J| \text{ (da } (c) \text{ gilt)}$$

$$|V| = |J| \text{ (da } (c) \text{ gilt)}$$

$$|V| = |J| \text{ (da } (c) \text{ gilt)}$$

$$|V| = |J| \text{ (da } (c) \text{ gilt)}$$

$$|V| = |J| \text{ (da } (c) \text{ gilt)}$$

$$|V| = |J| \text{ (da } (c) \text{ gilt)}$$

$$|V| = |J| \text{ (da } (c) \text{ gilt)}$$

$$|V| = |J| \text{ (da } (c) \text{ gilt)}$$

$$|V| = |J| \text{ (da } (c) \text{ gilt)}$$

$$|V| = |J| \text{ (da } (c) \text{ gilt)}$$

$$|V| = |J| \text{ (da } (c) \text{ gilt)}$$

$$|V| = |J| \text{ (da } (c) \text{ gilt)}$$

$$|V| = |J| \text{ (da } (c) \text{ gilt)}$$

$$|V| = |J| \text{ (da } (c) \text{ gilt)}$$

$$|V| = |J| \text{ (da } (c) \text{ gilt)}$$

- Aus Annahme w(I) < w(J) folgt: es gibt ein k, sodass $w(e_k) < w(e'_k)$
- Betrachte Menge $F' = \{e \in M \mid w(e) \ge w(e'_k)\}$, sei $I' = I \cap F'$ und $J' = J \cap F'$.
- Es gibt kein $e \in F' \setminus I'$ mit $I' \cup \{e\} \in \mathcal{U}$, da Greedy sonst e vor e_k gewählt hätte.
 - \Rightarrow I' ist inklusionsmaximal unabhängig in F'.
- **Es gilt aber:** $|I'| < |J'| \Rightarrow (c)$ ist nicht erfüllt.

Definition: Matroid

(Definition 2.13)

Ein Unabhängigkeitssystem (M, \mathcal{U}) heißt *Matroid*, wenn für alle $I, J \in \mathcal{U}$ mit |I| < |J|, ein $e \in J \setminus I$ existiert, sodass $I \cup \{e\} \in \mathcal{U}$.

Satz: Maximierungsprobleme auf Matroiden

(Satz 2.16)

Für ein Unabhängigkeitssystem (M, \mathcal{U}) sind folgende Aussagen äquivalent:

- (a) Die Greedy-Methode liefert eine Optimallösung für das Optimierungsproblem über dem Unabhängigkeitssystem (M, \mathcal{U}) .
- (b) (M, \mathcal{U}) ist ein Matroid.
- (c) Für eine beliebige Menge $F \subseteq M$ und beliebige inklusionsmaximale unabhängige Mengen $I_1, I_2 \subseteq F$ gilt: $|I_1| = |I_2|$.

Erinnerung:

Problem: Optimierungsproblem über dem Unabhängigkeitssystem (M, \mathcal{U})

Finde unabhängige Menge $U^* \in \mathcal{U}$ sodass $w(U^*)$ maximal ist.

Beweis: Gerade gezeigt: $(a) \Rightarrow (b) \Rightarrow (c) \Rightarrow (a)$

Definition: Matroid

(Definition 2.13)

Ein Unabhängigkeitssystem (M, \mathcal{U}) heißt *Matroid*, wenn für alle $I, J \in \mathcal{U}$ mit |I| < |J|, ein $e \in J \setminus I$ existiert, sodass $I \cup \{e\} \in \mathcal{U}$.

Satz: Minimierungsprobleme auf Matroiden

(Satz 2.17)

Für ein Unabhängigkeitssystem (M, \mathcal{U}) mit Basissystem \mathcal{B} sind äquivalent:

- (a) Die Greedy-Methode liefert eine Optimallösung für das Optimierungsproblem über dem Basissystem \mathcal{B} . Erinnerung: \mathcal{B} enthält genau die unabhängigen Mengen, die inklusionsmaximal sind.
- (b) (M, \mathcal{U}) ist ein Matroid.
- (c) Die Greedy-Methode liefert eine Optimallösung für das Optimierungsproblem über dem Unabhängigkeitssystem (M, \mathcal{U}) .

Erinnerung:

Problem: Optimierungsproblem über dem Unabhängigkeitssystem (M,\mathcal{U})

Finde unabhängige Menge $U^* \in \mathcal{U}$ sodass $w(U^*)$ maximal ist.

Problem: Optimierungsproblem über dem Basissystem \mathcal{B} Finde Basis $B^* \in \mathcal{B}$ sodass $w(B^*)$ minimal ist.

Beweis: $(b) \Leftrightarrow (c)$ wurde schon gezeigt. Wir zeigen: $(a) \Leftrightarrow (c)$.

Beweis: $(b) \Leftrightarrow (c)$ wurde schon gezeigt. Wir zeigen: $(a) \Leftrightarrow (c)$.

(a) Die Greedy-Methode liefert eine Optimallösung für das Optimierungsproblem über dem Basissystem \mathcal{B} .

Problem Max

Problem MIN

- (c) Die Greedy-Methode liefert eine Optimallösung für das Optimierungsproblem über dem Unabhängigkeitssystem (M, \mathcal{U}) .
- Sei $(M = \{e_1, \dots, e_n\}, \mathcal{U})$ Unabhängigkeitssystem mit $w(e_1) \ge \dots \ge w(e_n)$.
- Betrachte Basissystem B mit folgenden Gewichten:

$$w'(e) = \begin{cases} -w(e) \text{ wenn } w(e) > 0 \\ 0 \text{ sonst} \end{cases}$$

$$\Rightarrow w'(e_1) \leq \cdots \leq w'(e_n)$$

• (a) gilt \Rightarrow Greedy für MIN liefert minimale Basis $B^* \in \mathcal{B}$

Beweis: $(b) \Leftrightarrow (c)$ wurde schon gezeigt. Wir zeigen: $(a) \Leftrightarrow (c)$.

(a) Die Greedy-Methode liefert eine Optimallösung für das Optimierungsproblem über dem Basissystem B.

Problem Max

Problem MIN

- (c) Die Greedy-Methode liefert eine Optimallösung für das Optimierungsproblem über dem Unabhängigkeitssystem (M, \mathcal{U}) .
- Sei $(M = \{e_1, \ldots, e_n\}, \mathcal{U})$ Unabhängigkeitssystem mit $w(e_1) \ge \cdots \ge w(e_n)$.
- Betrachte Basissystem B mit folgenden Gewichten:

$$w'(e) = \begin{cases} -w(e) \text{ wenn } w(e) > 0 \\ 0 \text{ sonst} \end{cases}$$

$$\Rightarrow w'(e_1) \leq \cdots \leq w'(e_n)$$

- (a) gilt \Rightarrow Greedy für MIN liefert minimale Basis $B^* \in \mathcal{B}$
- Greedy für Max liefert $I = \{e \in B^* \mid w(e) > 0\}$, da $B^* \in \mathcal{U}$ und \mathcal{L}

Annahme: Es gibt $I' \in \mathcal{U}$ mit w(I') > w(I) (I ist also nicht maximal)

- o.B.d.A. enthält I' nur Elemente mit w(e) > 0.
- Es folgt: $w'(I') < w'(I) = w'(B^*)$.
- Da $I' \in \mathcal{U}$ gilt, ist I' in einer Basis B' enthalten mit $w'(B') < w'(B^*)$.

Beweis: $(b) \Leftrightarrow (c)$ wurde schon gezeigt. Wir zeigen: $(a) \Leftrightarrow (c)$.

(a) Die Greedy-Methode liefert eine Optimallösung für das Optimierungsproblem über dem Basissystem B.

Problem Max

Problem MIN

- (c) Die Greedy-Methode liefert eine Optimallösung für das Optimierungsproblem über dem Unabhängigkeitssystem (M, \mathcal{U}) .
- Sei $(M = \{e_1, \ldots, e_n\}, \mathcal{U})$ Unabhängigkeitssystem mit $w(e_1) \leq \cdots \leq w(e_n)$.
- Betrachte Problem Max mit folgenden Gewichten:

$$w'(e) = m - w(e) \text{ mit } m = \max_{e \in M} \{ w(e) + 1 \}$$
 $\Rightarrow w'(e_1) \ge \cdots \ge w'(e_n) > 0$

lacktriangle lacktriangl

Beweis: $(b) \Leftrightarrow (c)$ wurde schon gezeigt. Wir zeigen: $(a) \Leftrightarrow (c)$.

(a) Die Greedy-Methode liefert eine Optimallösung für das Optimierungsproblem über dem Basissystem \mathcal{B} .

Problem Max

Problem MIN

- (c) Die Greedy-Methode liefert eine Optimallösung für das Optimierungsproblem über dem Unabhängigkeitssystem (M, \mathcal{U}) .
- Sei $(M = \{e_1, \ldots, e_n\}, \mathcal{U})$ Unabhängigkeitssystem mit $w(e_1) \leq \cdots \leq w(e_n)$.
- Betrachte Problem Max mit folgenden Gewichten:

$$w'(e) = m - w(e)$$
 mit $m = \max_{e \in M} \{w(e) + 1\}$ $\Rightarrow w'(e_1) \geq \cdots \geq w'(e_n) > 0$

- (c) gilt \Rightarrow Greedy für Max liefert maximales $I^* \in \mathcal{U}$
- Greedy für MIN liefert ebenfalls $B^* = I^*$ da $I^* \in \mathcal{B}$ und =
- Für alle $B \in \mathcal{B}$ gilt: $w(B) = \sum_{e \in B} (m w'(e)) = |B| \cdot m w'(B)$

Beweis: $(b) \Leftrightarrow (c)$ wurde schon gezeigt. Wir zeigen: $(a) \Leftrightarrow (c)$.

(a) Die Greedy-Methode liefert eine Optimallösung für das Optimierungsproblem über dem Basissystem \mathcal{B} .

Problem Max

Problem MIN

- (c) Die Greedy-Methode liefert eine Optimallösung für das Optimierungsproblem über dem Unabhängigkeitssystem (M, \mathcal{U}) .
- Sei $(M = \{e_1, \ldots, e_n\}, \mathcal{U})$ Unabhängigkeitssystem mit $w(e_1) \leq \cdots \leq w(e_n)$.
- Betrachte Problem Max mit folgenden Gewichten:

$$w'(e) = m - w(e) \text{ mit } m = \max_{e \in M} \{w(e) + 1\}$$
 $\Rightarrow w'(e_1) \ge \cdots \ge w'(e_n) > 0$

- (c) gilt \Rightarrow Greedy für MAX liefert maximales $I^{\star} \in \mathcal{U}$
- Greedy für MIN liefert ebenfalls $B^* = I^*$ da $I^* \in \mathcal{B}$ und

Für alle
$$B \in \mathcal{B}$$
 gilt: $w(B) = \sum_{e \in B} (m - w'(e)) = |B| \cdot m$

(w'(e) > 0)

Lösung von Greedy ist optimal

 $|B| \cdot m - w'(B)$ maximal für $B = I^* = B^*$ konstant, da alle Basen gleich groß minimal für $B = I^* = B^*$

Beispiele

Beispiel 1: Das Finden einer minimalen Kreisbasis eines Graphen *G* entspricht dem Optimierungsproblem über dem Basissystem des Kreismatroids: Gesucht ist eine Kreisbasis minimalen Gewichts.

⇒ MCB kann mittels Greedy-Algorithmus gelöst werden

Beispiele

Beispiel 1: Das Finden einer minimalen Kreisbasis eines Graphen *G* entspricht dem Optimierungsproblem über dem Basissystem des Kreismatroids: Gesucht ist eine Kreisbasis minimalen Gewichts.

⇒ MCB kann mittels Greedy-Algorithmus gelöst werden

Beispiel 2: Sei G = (V, E) ein zusammenhängender Graph. Das Mengensystem (E, \mathcal{U}) mit $\mathcal{U} = \{E' \subseteq E : E' \text{ induziert einen Wald in } G\}$ ist ein Matroid.

Die Basen dieses Matroids sind gerade Spannbäume.

⇒ Das Optimierungsproblem über dem Basissystem entspricht also dem Problem einen minimalen Spannbaum (MST) in *G* zu finden.

Die Korrektheit vieler MST-Algorithmen beruht darauf, dass die Greedy-Methode eine optimale Lösung liefert.