Matemáticas

ESTRUCTURAS ALGEBRAICAS

Hoja 3: Grupos III: Subgrupos. Subgrupos normales. Teoremas de Isomorfía. Construcción de homomorfismos.

1. Subgrupos de \mathbb{Z} .

- a) Demuestra que todo subgrupo de \mathbb{Z} es cíclico, de la forma $k\mathbb{Z}$ para algún entero k.
- b) Demuestra que hay tantos subgrupos en \mathbb{Z} como enteros positivos.
- c) Dados dos enteros positivos r, s, demuestra que $r\mathbb{Z} \subset s\mathbb{Z}$ si y sólo si r es un múltiplo de s.
- d) Halla todos los subgrupos de \mathbb{Z} que contienen a $6\mathbb{Z}$.

2. Otra presentación del grupo Q_8 de cuaterniones. Definimos:

$$Q_8 := \{1, i, j, k, -1, -i, -j, -k\}$$

con las relaciones:

$$i^2 = j^2 = k^2 = -1 = ijk.$$

a) Observa que Q_8 también se puede presentar como

$$Q_8 := \{1, i, j, k, -1, -i, -j, -k\}$$

con las relaciones:

$$i^2 = j^2 = k^2 = -1; ij = k, jk = i, ki = j, ji = -k, kj = -i, ik = -j.$$

- b) Halla el orden de cada elemento de Q_8 .
- c) Observa que $(-1)i = i^3 = i(-1)$, y que -1 conmuta con i con j y con k.
- **d)** Observa que $Z(Q_8) = \{1, -1\}.$
- e) Halla el retículo de los subgrupos de Q_8 .
- f) Observa que todo subgrupo H de Q_8 es normal. Estudia los distintos grupos Q_8/H .

3. Algunas propiedades de los subgrupos normales.

- a) Demuestra que si H y K son normales en G, entonces $H \cap K$ también lo es.
- **b)** Si $N \subseteq G$ y $N \subseteq H \subseteq G$, demuestra que:
- (i) $N \leq H$;
- (ii) H/N es un subgrupo de G/N;
- (iii) $H/N \leq G/N$ si y sólo si $H \leq G$.
 - c) Supongamos que $N \subseteq G$ y $N \subseteq H \subseteq G$. Demuestra que

$$|G:H| = |G/N:H/N|.$$

4. El producto de dos subgrupos.

- a) Encuentra en S_3 dos subgrupos H, K tales que HK no sea subgrupo de G.
- b) Sea (G, *) un grupo y sean H < G y $K \triangleleft G$. Demuestra que HK = KH y que HK < G. Compara este resultado con el apartado anterior.
- **5.** Encuentra todos los subgrupos normales de S_3 y de D_4 .
- 6. Homomorfismos de grupos: propiedades básicas. Sea $f:G\to H$ un homomorfismo de grupos. Usando la notación multiplicativa demuestra que:
 - a) f(e) = e', donde e denota el neutro de G y e' es el neutro de H.
 - **b)** $f(a^{-1}) = f(a)^{-1}$ para todo $a \in G$.
 - c) Si $a^k = e$ entonces $f(a)^k = e'$ y concluye que |f(a)| divide a |a|.
- d) Sean $f, g: G \to H$ dos homomorfismos de grupos. Suponemos que $G = \langle S \rangle$. Demostrar que si f(s) = g(s) para cualquier $s \in S$, entonces f = g.
- 7. Se define $f: D_3 \to \{\pm 1\}$ mediante: f(g) = 1 si g es una rotación y f(g) = -1 si g es una simetría. Demuestra que f es un homomorfismo de grupos. Calcula el núcleo de f.
- **8.** Si (G, \cdot) es un grupo, definimos una nueva operación en G escribiendo $x * y := y \cdot x$. Demuestra que (G, *) es un grupo y que (G, *) y (G, \cdot) son isomorfos.

9. Homomorfismos de \mathbb{Z} en otros grupos, y de otros grupos en \mathbb{Z} .

- a) Demuestra que todo homomorfismo $f: \mathbb{Z} \to G$ queda determinado por el valor f(1).
- **b)** Demuestra que para cada elemento $a \in G$ se puede definir un homomorfismo $f : \mathbb{Z} \to G$ tal que f(1) = a.
 - c) Si G es finito, el único homomorfismo $f: G \to \mathbb{Z}$ es el trivial.

10. Subgrupos de C_n .

- a) Halla todos los subgrupos de C_6 . Sugerencia: usa el segundo teorema de isomorfía.
- b) Demuestra que todo subgrupo de C_n es cíclico.
- c) Indica cuántos subgrupos tiene C_{100} .

11. Homomorfismos de C_n en otros grupos.

- a) Observa que el grupo C_n está generado por $\overline{1}$.
- (i) Si $f: C_n \to G$ es un homomorfismo de grupos, demuestra que la función queda determinada por el valor $f(\overline{1})$, y $f(\overline{1})$ es un elemento de G cuyo orden divide a n.
- (ii) Recíprocamente, demuestra que si $g \in G$ es un elemento cuyo orden divide a n, entonces existe un (único) homomorfismo de grupos $h: C_n \to G$ que cumple que $h(\overline{1}) = g$.
 - b) Halla todos los homomorfismos de grupos de C_6 en C_4 .
 - c) Halla todos los homomorfismos de grupos de C_4 en C_6 .
 - d) Halla todos los homomorfismos de grupos de C_6 en D_4 .
- e) Decide de manera razonada si la correspondencia $x \to 3x$ de C_{12} a C_{10} es un homomorfismo de grupos.
 - f) Decide de manera razonada el número de homomorfismos sobreyectivos de C_{20} a C_8 . ¿Cuántos hay

si no pedimos que los homomorfismos sean sobreyectivos?

12. Usando las propiedades de los homomorfismos de grupos demuestra que...

- a) Si G es finito de orden 17, el único homomorfismo de G en el grupo de permutaciones S_6 es el trivial, y el único homomorfismo de S_6 en G es el trivial.
 - b) Sea G un grupo cíclico. Demuestra que $G \cong \mathbb{Z}$ ó $G \cong C_n$.
 - c) Si p es un primo y |G| = p, demuestra que $G \cong C_p$.
- 13. Homomorfismos de D_4 en otros grupos. Recuerda que el grupo D_4 está generado por dos elementos A y B que complen las condiciones $A^4 = Id$, $B^2 = Id$, y $AB = BA^{-1}$.
- a) Si $f: D_4 \to G$ es un homomorfismo de grupos demuestra que $f(A)^4 = e$, $f(B)^2 = e$, y $f(A)f(B) = f(B)f(A)^{-1}$.
- **b)** Recíprocamente, si a y b son dos elementos de G que cumplen las propiedades: $a^4 = e$, $b^2 = e$, y $ab = ba^{-1}$, demuestra que existe un (único) homomorfismo de grupos $h: D_4 \to G$ que cumple que h(A) = a y h(B) = b.
 - c) Halla todos los homomorfismos de grupos de D_4 en C_6 .
- 14. Demuestra que S_3 y D_3 son isomorfos. Describe un homomorfismo inyectivo de D_n en S_n .
- 15. Demuestra que el grupo D_4 no es isomorfo al grupo de cuaterniones. Sugerencia: Calcula el número de elementos de orden 2 que tiene cada grupo.
- **16.** Si |X| = |Y|, demuestra que $S_X \cong S_Y$.

17. El grupo de automorfismos de un grupo.

- a) Demuestra que la composición de homomorfismos de grupos es un homomorfismo de grupos.
- b) Si $f:G\to H$ es un isomorfismo de grupos, demuestra que $f^{-1}:H\to G$ es un isomorfismo. Así, si $G\cong H$, entonces $H\cong G$.
 - c) Si $G \cong H$ y $H \cong K$, demuestra que $G \cong K$.
- d) Sea Aut(G) el conjunto de todos automorfismos de G. Demuestra que Aut(G) es un grupo con la composición.
 - e) Demuestra que $\operatorname{Aut}(\mathbb{Z}) \cong C_2$.
 - f) Sea G un grupo, sea $x \in G$ y sea $\alpha \in Aut(G)$. Demuestra que x y $\alpha(x)$ tienen el mismo orden.
 - g) Sea $g \in G$. Demuestra que la aplicación:

$$\varphi_x: G \longrightarrow G$$
$$g \mapsto xgx^{-1}$$

es un automorfismo de G.

- **h)** Se define el *interior de* G, Int(G), como el subconjunto de los automorfismos de G que son de la forma descrita en el apartado anterior. Demuestra que Int(G) es un subgrupo normal de Aut(G).
 - i) Describe $Int(D_3)$.
 - j) Demuestra que Int(G) es isomorfo a un cociente de G por algún subgrupo normal H de G.