таких элементов x выберем наименьший. Тогда соответствующее ему множество и будет наименьшим. \triangleright

Следствием доказанных теорем является то, что любые два вполне упорядоченных множества сравнимы по мощности (одно равномощно подмножеству другого). Сейчас мы увидим, что всякое множество может быть вполне упорядочено (теорема Цермело), и, следовательно, любые два множества сравнимы по мощности.

2.6. Теорема Цермело

Теорема 24 (Цермело). Всякое множество может быть вполне упорядочено.

Объясним, в какой форме используется аксиома выбора. Пусть A — данное нам множество. Мы принимаем, что существует функция φ , определённая на всех подмножествах множества A, кроме самого́ A, которая указывает один из элементов вне этого подмножества:

$$X \subsetneq A \Rightarrow \varphi(X) \in A \setminus X$$
.

После того, как такая функция фиксирована, можно построить полный порядок на A, и в этом построении уже нет никакой неоднозначности. Вот как это делается.

Наименьшим элементом множества A мы объявим элемент $a_0 = \varphi(\varnothing)$. За ним идёт элемент $a_1 = \varphi(\{a_0\})$; по построению он отличается от a_0 . Далее следует элемент $a_2 = \varphi(\{a_0, a_1\})$. Если множество A бесконечно, то такой процесс можно продолжать и получить последовательность $\{a_0, a_1, \ldots\}$ элементов множества A. Если после этого остаются ещё не использованные элементы множества A, рассмотрим элемент $a_\omega = \varphi(\{a_0, a_1, a_2, \ldots\})$