CS 181u Applied Logic

Lecture 15

Symbolic Model Checking Using Py-Z3

Represent \mathcal{M} using Boolean logic. Check $\mathcal{M} \models \phi$ by logic manipulations.

Variable Replacement

We often need to replace variables with other expressions. For a formula f, variable v, and expression e, we write f[e/v] to indicate a new formula that is the same as f but with all occurrences of v replaced by e.

Example:
$$f = \neg x \land \neg y$$

 $f[z/x] = \neg z \land \neg y$
 $f[T/x] = \neg T \land \neg y \equiv F \land \neg y \equiv F$
 $f[F/y] = \neg x \land \neg F \equiv \neg x \land T \equiv \neg x$

We can do several variables at once:

$$f[(\neg w, F)/(x, y)] = \neg \neg w \land \neg F = w$$

For a formula f, we can "get rid" of a variable v by

- 1. writing $\exists v : f$
- 2. plugging in all possible values of v into f and taking a disjunction.

For a formula f, we can "get rid" of a variable v by

- 1. writing $\exists v : f$
- 2. plugging in all possible values of v into f and taking a disjunction.

For Boolean formulas:

$$\exists v : f \equiv f[T/v] \lor f[F/v]$$

For a formula f, we can "get rid" of a variable v by

- 1. writing $\exists v : f$
- 2. plugging in all possible values of v into f and taking a disjunction.

For Boolean formulas:

$$\exists v : f \equiv f[T/v] \lor f[F/v]$$

Example: $f = \neg x \land \neg y$

For a formula f, we can "get rid" of a variable v by

- 1. writing $\exists v : f$
- 2. plugging in all possible values of v into f and taking a disjunction.

For Boolean formulas:

$$\exists v : f \equiv f[T/v] \lor f[F/v]$$

Example: $f = \neg x \land \neg y$

 $\exists y : f \equiv : f[T/y] \lor f[F/y]$

For a formula f, we can "get rid" of a variable v by

- 1. writing $\exists v : f$
- 2. plugging in all possible values of v into f and taking a disjunction.

For Boolean formulas:

$$\exists v : f \equiv f[T/v] \lor f[F/v]$$

Example: $f = \neg x \land \neg y$

$$\exists y : f \equiv : f[T/y] \lor f[F/y]$$

$$\equiv (\neg x \land \neg T) \lor (\neg x \land \neg F)$$

For a formula f, we can "get rid" of a variable v by

- 1. writing $\exists v : f$
- 2. plugging in all possible values of v into f and taking a disjunction.

For Boolean formulas:

$$\exists v : f \equiv f[T/v] \lor f[F/v]$$

Example: $f = \neg x \land \neg y$

$$\exists y : f \equiv : f[T/y] \lor f[F/y]$$

$$\equiv (\neg x \land \neg T) \lor (\neg x \land \neg F)$$

$$\equiv F \lor \neg x \equiv \neg x$$

The transition system \mathcal{M} is specified by literally listing out all of the pieces.

The transition system \mathcal{M} is specified by literally listing out all of the pieces.

The transition system \mathcal{M} is specified by literally listing out all of the pieces.

States: $S = \{0, 1, 2, 3\}$

The transition system \mathcal{M} is specified by literally listing out all of the pieces.

States:
$$S = \{0, 1, 2, 3\}$$

Initial States:
$$I = \{0\}$$

The transition system \mathcal{M} is specified by literally listing out all of the pieces.

States:
$$S = \{0, 1, 2, 3\}$$

Initial States: $I = \{0\}$

Transitions:

$$R = \left\{ \begin{array}{ll} (0,1) & (0,2) & (1,3) & (2,3) \\ (1,0) & (2,0) & (3,1) & (3,2) \end{array} \right\}$$

The transition system \mathcal{M} is specified by literally listing out all of the pieces.

States:
$$S = \{0, 1, 2, 3\}$$

Initial States: $I = \{0\}$

Transitions:

$$R = \left\{ \begin{array}{ll} (0,1) & (0,2) & (1,3) & (2,3) \\ (1,0) & (2,0) & (3,1) & (3,2) \end{array} \right\}$$

Atomic Propositions: $AP = \{p, q, r\}$

The transition system \mathcal{M} is specified by literally listing out all of the pieces.

States:
$$S = \{0, 1, 2, 3\}$$

Initial States:
$$I = \{0\}$$

Transitions:

$$R = \left\{ \begin{array}{ll} (0,1) & (0,2) & (1,3) & (2,3) \\ (1,0) & (2,0) & (3,1) & (3,2) \end{array} \right\}$$

Atomic Propositions:
$$AP = \{p, q, r\}$$

Labelling Function
$$\mathcal{L}: S \to \mathcal{P}(AP)$$

$$\mathcal{L}(0) = \{r\} \qquad \mathcal{L}(2) = \{r, q\}$$

$$\mathcal{L}(1) = \{r\} \qquad \mathcal{L}(1) = \{p, q\}$$

States		
0		
1		
2		
3		

States	binary		
	X	l y	
0	0	0	
1	0	1	
2	1	0	
3	1	1	

States	bin	ary	truth values		
	X	y	X	y	
0	0	0	F	F	
1	0	1	F	T	
2	1	0	T	F	
3	1	1	T	$\mid T \mid$	

Represent \mathcal{M} using Booelan logic.

Boolean state variables

$$V = \{x, y\}$$

States	bin	ary	truth	values	
	X	l y	X	y	
0	0	0	F	F	
1	0	1	F	T	
2	1	0	T	F	
3	1	1	T	T	

Represent \mathcal{M} using Booelan logic.

Boolean state variables

$$V = \{x, y\}$$

States	binary		truth values		Boolean formula
	X	y	X	y	
0	0	0	F	F	$\neg x \land \neg y$
1	0	1	F		$\neg x \wedge y$
2	1	0	T	F	$x \wedge \neg y$
3	1	1	<i>T</i>	$\mid T \mid$	$x \wedge y$

States	bin	ary	truth values		Boolean formula
	X	y	X	y	
0	0	0	F	F	$\neg x \wedge \neg y$
1	0	1	F	T	$\neg x \wedge y$
2	1	0	<i>T</i>	F	$x \wedge \neg y$
3	1	1	<i>T</i>	T	$x \wedge y$

Represent \mathcal{M} using Boolean logic.

Initial State: $\neg x \land \neg y$

States	bin	ary	truth values		Boolean formula
	X	l y	X	y	
0	0	0	F	F	$\neg x \land \neg y$
1	0	1	F	T	$\neg x \wedge y$
2	1	0	T	F	$x \wedge \neg y$
3	1	1	<i>T</i>	T	$x \wedge y$

Represent \mathcal{M} using Boolean logic.

Initial State: $\neg x \land \neg y$

Atomic Propositions: $AP = \{p, q, r\}$

States	bin	ary	truth	values	Boolean formula
	X	y	X	y	
0	0	0	F	F	$\neg x \wedge \neg y$
1	0	1	F	T	$\neg x \wedge y$
2	1	0	T	F	$x \wedge \neg y$
3	1	1	<i>T</i>	T	$x \wedge y$

Represent \mathcal{M} using Boolean logic.

Initial State: $\neg x \land \neg y$

Atomic Propositions: $AP = \{p, q, r\}$

Labelling Function $\mathcal{L}: S \to \mathcal{P}(AP)$

States	bin	ary	truth	values	Boolean formula
	X	y	X	y	
0	0	0	F	F	$\neg x \wedge \neg y$
1	0	1	F	$\mid T \mid$	$\neg x \wedge y$
2	1	0	T	F	$x \wedge \neg y$
3	1	1	<i>T</i>	$\mid T \mid$	$x \wedge y$

Represent \mathcal{M} using Boolean logic.

Initial State: $\neg x \land \neg y$

Atomic Propositions: $AP = \{p, q, r\}$

Labelling Function $\mathcal{L}: S \rightarrow \mathcal{P}(AP)$

States	bin	ary	truth	values	Boolean formula
	X	y	X	y	
0	0	0	F	F	$\neg x \wedge \neg y$
1	0	1	F	$\mid T \mid$	$\neg x \wedge y$
2	1	0	T	F	$x \wedge \neg y$
3	1	1	<i>T</i>	$\mid T \mid$	$x \wedge y$

Represent \mathcal{M} using Boolean logic.

Initial State: $\neg x \land \neg y$

Atomic Propositions: $AP = \{p, q, r\}$

Labelling Function $\mathcal{L}: S \rightarrow \mathcal{P}(AP)$

 $\mathcal{L}:AP\to\mathcal{F}(x,y)$

States	bin	ary	truth	values	Boolean formula
	X	y	X	y	
0	0	0	F	F	$\neg x \wedge \neg y$
1	0	1	F	T	$\neg x \wedge y$
2	1	0	T	F	$x \wedge \neg y$
3	1	1	<i>T</i>	T	$x \wedge y$

Initial State:
$$\neg x \land \neg y$$

Atomic Propositions:
$$AP = \{p, q, r\}$$

Labelling Function
$$\mathcal{L}: S \rightarrow \mathcal{P}(AP)$$

$$\mathcal{L}: AP \to \mathcal{F}(x, y) \qquad \begin{array}{l} p \equiv x \wedge y \\ q \equiv x \\ r \equiv \neg(x \wedge y) \equiv \neg p \end{array}$$

States	bin	ary	truth	values	Boolean formula
	X	y	X	y	
0	0	0	F	F	$\neg x \wedge \neg y$
1	0	1	F	T	$\neg x \wedge y$
2	1	0	T	F	$x \wedge \neg y$
3	1	1	<i>T</i>	T	$x \wedge y$

Represent \mathcal{M} using Boolean logic.

Transitions:

Let the "next" state variables be $V' = \{x', y'\}$

Represent \mathcal{M} using Boolean logic.

Transitions:

Let the "next" state variables be $V' = \{x', y'\}$

$$R \equiv (x' = x \land y' = \neg y) \lor (x' = \neg x \land y' = y)$$

Represent \mathcal{M} using Boolean logic.

Transitions:

Let the "next" state variables be $V' = \{x', y'\}$

$$R \equiv (x' = x \land y' = \neg y) \lor (x' = \neg x \land y' = y)$$

"we can get from one state to the next by keeping one variable the same and negating the other"

Represent \mathcal{M} using Boolean logic.

Transitions:

Let the "next" state variables be $V' = \{x', y'\}$

$$R \equiv (x' = x \land y' = \neg y) \lor (x' = \neg x \land y' = y)$$

Explicit (0,1) (2,3) (1,3) (0,2) transitions (1,0) (3,2) (3,1) (2,0)

"we can get from one state to the next by keeping one variable the same and negating the other"

Represent \mathcal{M} using Boolean logic. Check $\mathcal{M} \models \phi$ by logic manipulations.

The Algorithm for $EX \phi$

After labelling all states s that satisfy ϕ , label and state s' with $EX\phi$ if there is a transition from s' to s.

The Algorithm for $EX \phi$

After labelling all states s that satisfy ϕ , label and state s' with $EX\phi$ if there is a transition from s' to s.

The Algorithm for $EX \phi$

After labelling all states s that satisfy ϕ , label and state s' with $EX\phi$ if there is a transition from s' to s.

Call this process $SAT_{EX}(\phi)$

How to compute $EX \phi$ symbolically.

How to compute $EX \phi$ symbolically.

$$EX \phi \equiv \exists V' \ R \land \phi [\ V' \ / \ V]$$

How to compute $EX \phi$ symbolically.

$$EX \phi \equiv \exists V' \ R \land \phi[\ V' \ / \ V]$$

exists a path where ϕ holds in the next state

How to compute $EX \phi$ symbolically.

$$EX \phi \equiv \exists V' \ R \land \phi[\ V' \ / \ V]$$

exists a path where ϕ holds in the next state

there is some assignment for the next state variables

How to compute $EX \phi$ symbolically.

exists a path where ϕ holds in the next state

there is some assignment for the next state variables

obeys the transition relation

How to compute $EX \phi$ symbolically.

$$EX \ \phi \equiv \exists V' \ R \ \land \ \phi[\ V' \ / \ V]$$

exists a path where ϕ holds in the next state

there is some assignment for the next state variables

obeys the transition relation

 ϕ holds when variables are updated with the new state variables

Initial State: $\neg x \land \neg y$ Atomic Propositions: $AP = \{p, q, r\}$ Labelling Function $\mathcal{L}: AP \to \mathcal{F}(x, y)$ $p \equiv x \land y$ $q \equiv x$ $r \equiv \neg(x \land y)$ Transition Relation: $R \equiv (x' = x \land y' = \neg y) \lor (x' = \neg x \land y' = y)$


```
Initial State: \neg x \land \neg y
Atomic Propositions: AP = \{p, q, r\}
Labelling Function \mathcal{L}: AP \to \mathcal{F}(x, y)
p \equiv x \land y q \equiv x r \equiv \neg(x \land y)
Transition Relation:
R \equiv (x' = x \land y' = \neg y) \lor (x' = \neg x \land y' = y)
Let's compute EX p
```


Initial State: $\neg x \land \neg y$ Atomic Propositions: $AP = \{p, q, r\}$ Labelling Function $\mathcal{L}: AP \to \mathcal{F}(x, y)$ $p \equiv x \land y$ $q \equiv x$ $r \equiv \neg(x \land y)$ Transition Relation:

 $R \equiv (x' = x \land y' = \neg y) \lor (x' = \neg x \land y' = y)$ Let's compute EX p

Initial State:
$$\neg x \land \neg y$$

Atomic Propositions:
$$AP = \{p, q, r\}$$

Labelling Function
$$\mathcal{L}: AP \to \mathcal{F}(x, y)$$

$$p \equiv x \wedge y$$
 $q \equiv x$ $r \equiv \neg(x \wedge y)$

Transition Relation:

$$R \equiv (x' = x \land y' = \neg y) \lor (x' = \neg x \land y' = y)$$

Let's compute EX p

$$EX p \equiv \exists V' R \land p[V'/V]$$

Initial State: $\neg x \land \neg y$

Atomic Propositions: $AP = \{p, q, r\}$

Labelling Function $\mathcal{L}: AP \to \mathcal{F}(x, y)$

 $p \equiv x \wedge y$ $q \equiv x$ $r \equiv \neg(x \wedge y)$

Transition Relation:

$$R \equiv (x' = x \land y' = \neg y) \lor (x' = \neg x \land y' = y)$$

Let's compute EX p

$$EX \ p \equiv \exists V' \ R \land p[\ V' \ /V \]$$

$$EX \ p \equiv \exists x', y' \ (x' = x \land y' = \neg y) \lor (x' = \neg x \land y' = y) \land (x' \land y')$$

Initial State: $\neg x \land \neg y$

Atomic Propositions: $AP = \{p, q, r\}$

Labelling Function $\mathcal{L}: AP \to \mathcal{F}(x, y)$ $p \equiv x \land y$ $q \equiv x$ $r \equiv \neg(x \land y)$

Transition Relation:

 $R \equiv (x' = x \land y' = \neg y) \lor (x' = \neg x \land y' = y)$

Let's compute EX p

$$EX \ p \equiv \exists V' \ R \land p[\ V' \ / V \]$$

$$EX \ p \equiv \exists x', y' \ (x' = x \land y' = \neg y) \lor (x' = \neg x \land y' = y) \land (x' \land y')$$
... some Boolean simplifications ...

Initial State: $\neg x \land \neg y$

Atomic Propositions: $AP = \{p, q, r\}$

Labelling Function $\mathcal{L}: AP \to \mathcal{F}(x, y)$ $p \equiv x \land y$ $q \equiv x$ $r \equiv \neg(x \land y)$

Transition Relation:

$$R \equiv (x' = x \land y' = \neg y) \lor (x' = \neg x \land y' = y)$$

Let's compute EX p

$$EX \ p \equiv \exists V' \ R \land p[\ V' \ / V \]$$

$$EX \ p \equiv \exists x', y' \ (x' = x \land y' = \neg y) \lor (x' = \neg x \land y' = y) \land (x' \land y')$$
... some Boolean simplifications ...

 $EX \ p \equiv \exists x', y' \ (x' \land x \land y' \land \neg y) \lor (x' \land \neg x \land y' \land y)$

Initial State: $\neg x \land \neg y$

Atomic Propositions: $AP = \{p, q, r\}$

Labelling Function $\mathcal{L}: AP \to \mathcal{F}(x, y)$ $p \equiv x \land y$ $q \equiv x$ $r \equiv \neg(x \land y)$

Transition Relation:

$$R \equiv (x' = x \land y' = \neg y) \lor (x' = \neg x \land y' = y)$$

Let's compute EX p

$$EX p \equiv \exists V' R \land p[V'/V]$$

$$EX \ p \equiv \exists x', y' \ (x' = x \land y' = \neg y) \lor (x' = \neg x \land y' = y) \land (x' \land y')$$

... some Boolean simplifications ...

$$EX \ p \equiv \exists x', y' \ (x' \land x \land y' \land \neg y) \lor (x' \land \neg x \land y' \land y)$$

... existential quantifer elimination ...

Initial State: $\neg x \land \neg y$

Atomic Propositions: $AP = \{p, q, r\}$

Labelling Function $\mathcal{L}: AP \to \mathcal{F}(x, y)$ $p \equiv x \land y$ $q \equiv x$ $r \equiv \neg(x \land y)$

Transition Relation:

$$R \equiv (x' = x \land y' = \neg y) \lor (x' = \neg x \land y' = y)$$

Let's compute EX p

$$EX \ p \equiv \exists V' \ R \land p[\ V' \ /V\]$$

$$EX \ p \equiv \exists x', y' \ (x' = x \land y' = \neg y) \lor (x' = \neg x \land y' = y) \land (x' \land y')$$

... some Boolean simplifications ...

$$EX p \equiv \exists x', y' \ (x' \land x \land y' \land \neg y) \lor (x' \land \neg x \land y' \land y)$$

... existential quantifer elimination ...

$$EX \ p \equiv (x \land \neg y) \lor (\neg x \land y)$$

Initial State:
$$\neg x \land \neg y$$

Atomic Propositions:
$$AP = \{p, q, r\}$$

Labelling Function
$$\mathcal{L}: AP \to \mathcal{F}(x, y)$$

 $p \equiv x \land y$ $q \equiv x$ $r \equiv \neg(x \land y)$

Transition Relation:

$$R \equiv (x' = x \land y' = \neg y) \lor (x' = \neg x \land y' = y)$$

Let's compute EX p

$$EX p \equiv \exists V' R \land p[V'/V]$$

$$EX \ p \equiv \exists x', y' \ (x' = x \land y' = \neg y) \lor (x' = \neg x \land y' = y) \ \land \ (x' \land y')$$

... some Boolean simplifications ...

$$EX \ p \equiv \exists x', y' \ (x' \land x \land y' \land \neg y) \lor (x' \land \neg x \land y' \land y)$$

... existential quantifer elimination ...

$$EX p \equiv (x \land \neg y) \lor (\neg x \land y)$$

Which states does this formula represent?

Initial State: $\neg x \land \neg y$

Atomic Propositions: $AP = \{p, q, r\}$

Labelling Function $\mathcal{L}:AP \to \mathcal{F}(x,y)$ $p \equiv x \land y$ $q \equiv x$ $r \equiv \neg(x \land y)$

Transition Relation:

$$R \equiv (x' = x \land y' = \neg y) \lor (x' = \neg x \land y' = y)$$

Let's compute EX p

$$EX p \equiv \exists V' R \land p[V'/V]$$

$$EX \ p \equiv \exists x', y' \ (x' = x \land y' = \neg y) \lor (x' = \neg x \land y' = y) \ \land \ (x' \land y')$$

... some Boolean simplifications ...

$$EX \ p \equiv \exists x', y' \ (x' \land x \land y' \land \neg y) \lor (x' \land \neg x \land y' \land y)$$

... existential quantifer elimination ...

$$EX p \equiv (x \land \neg y) \lor (\neg x \land y)$$

Which states does this formula represent?

All of the boolean operations we have described for performing symbolic model checking (conjunction, disjunction, existential variable elimination) can be accomplished by:

- 1. Boolean algebra
- 2. Using BDDs
- 3. Using a theorem prover

We can translate the $EX \phi$ formula into Z3. $EX \phi \equiv \exists V' \ R \land \phi [\ V' \ / \ V]$ Example: $R \equiv (x' = x \land y' = \neg y) \lor (x' = \neg x \land y' = y)$ $\phi \equiv p \equiv x \wedge y$ (declare-const x Bool) (declare-const y Bool) (assert (exists ((x_ Bool) (y_ Bool)) (and (or $(and (= x_x) (= y_n (not y)))$ $(and (= x_{(not x)}) (= y_{(y)}))$ (and x_ y_)))) (apply qe) (check-sat)

We can translate the $EX \phi$ formula into Z3. $EX \phi \equiv \exists V' \mid R \land \phi [V' \mid V]$ Example: $R \equiv (x' = x \land y' = \neg y) \lor (x' = \neg x \land y' = y)$ $\phi \equiv p \equiv x \wedge y$ (declare-const x Bool) (declare-const y Bool) (assert (exists ((x_ Bool) (y_ Bool)) (and (or $(and (= x_x) (= y_n (not y)))$ $(and (= x_{n} (not x)) (= y_{n} y)))$ $(and x_ y_)))$ (apply qe) (check-sat)

We can translate the $EX \phi$ formula into Z3. $EX \phi \equiv \exists V' R \land \phi V' / V$ Example: $R \equiv (x' = x \land y' = \neg y) \lor (x' = \neg x \land y' = y)$ $\phi \equiv p \equiv x \wedge y$ (declare-const x Bool) (declare-const y Bool) (assert (exists ((x_ Bool) (y_ Bool)) (and $(and (= x_x) (= y_n (not y)))$ $(and (= x_{(not x)}) (= y_{(y)}))$ $(and x_ y_)))$ (apply qe) (check-sat)

We can translate the $EX \phi$ formula into Z3. $EX \phi \equiv \exists V' R \wedge \phi [V' / V]$ Example: $R \equiv (x' = x \land y' = \neg y) \lor (x' = \neg x \land y' = y)$ $\phi \equiv p \equiv x \wedge y$ (declare-const x Bool) (declare-const y Bool) (assert (exists ((x_ Bool) (y_ Bool)) (and (or $(and (= x_x) (= y_n (not y)))$ $(and (= x_{n} (not x)) (= y_{n} y)))$ (and x_ y_)))) (apply qe) (check-sat)

We can translate the $EX \phi$ formula into Z3. $EX \phi \equiv \exists V' R \land \phi [V' / V]$ Example: $R \equiv (x' = x \land y' = \neg y) \lor (x' = \neg x \land y' = y)$ $\phi \equiv p \equiv x \wedge y$ (declare-const x Bool) (declare-const y Bool) (assert (exists ((x_ Bool) (y_ Bool)) (and (or $(and (= x_x) (= y_n (not y)))$ $(and (= x_{n} (not x)) (= y_{n} y)))$ (and x_ y_)))) (apply qe) (check-sat)

We can translate the $EX \phi$ formula into Z3. $EX \phi \equiv \exists V' \ R \land \phi [\ V' \ / \ V]$ Example: $R \equiv (x' = x \land y' = \neg y) \lor (x' = \neg x \land y' = y)$ $\phi \equiv p \equiv x \wedge y$ (declare-const x Bool) (declare-const y Bool) (assert (exists ((x_ Bool) (y_ Bool)) (and (or $(and (= x_x) (= y_n (not y)))$ $(and (= x_{(not x)}) (= y_{(y)}))$ (and x_ y_)))) (apply qe) check-sat)