第4章 数值表示及转换

何宾 2018.03

定点数表示

定点数就是二进制小数点在固定位置的数。二进制小数点左边部分的位被定义为整数位,而该点右边部分的位被定义成小数位。通常表示为Qm.n格式,即:

- m为整数部分的二进制的位数。
 - □ m越大,表示数的动态范围越大;
 - □ m越小,表示数的范围越小;
- n为小数部分的二进制的位数。
 - □ n越大,表示数的精度越高;
 - □ n越小,表示数的精度就越低;

定点数表示

【例】将十进制数-28.65625用定点二进制的形式表示。

使用前面所介绍的比较法,将-28.65625表示成Q7.5定点二进制数1100010.01011B。

转换的数	-28.65625	35. 34375	3. 34375	3. 34375	3. 34375	3. 34375
权值	-26	2^{5}	2^{4}	2^{3}	2^2	21
二进制数	1	1	0	0	0	1
余数	35. 34375	3. 34375	3. 34375	3. 34375	3. 34375	1. 34375
				1		
转换的数	1.34375	0. 34375	0. 34375	0. 09375	0. 09375	0. 03125
权值	2^{0}	2^{-1}	2^{-2}	2^{-3}	2^{-4}	2^{-5}
二进制数	0	0	1	0	1	1
余数	0. 34375	0. 34375	0.09375	0.09375	0. 03125	0

大多数的浮点数都遵循单精度或双精度的IEEE浮点标准。

■ 标准浮点数字长由一个符号位S,指数e和无符号(小数)的规格 化尾数m构成,如下所示。

S 指数e 无符号尾数m

■ 浮点数可以用下式描述:

$$X = (-1)^{S} 1.m \cdot 2^{e-bias}$$

浮点数表示

对于IEEE-754标准来说,还有下面的约定:

- □ 当指数e=0, 尾数m=0时, 表示0;
- □ 当指数e=255, 尾数m=0时, 表示无穷大;
- □ 当指数e=255, 尾数m≠0时, 表示NaN (Not a Number, 不是一个数)。

浮点数表示

IEEE的单精度和双精度格式的参数

	单精度	双精度
字长	32	64
尾数	23	52
指数	8	11
偏置	127	1023