Série d'exercices N° 4

Exercice 1. Reprendre Série 3, exercice 3, question 1). Pour améliorer la précision, utiliser la méthode de réduction de variance « méthode des variables antithétiques ». Est-ce qu'on observe vraiment une réduction de la variance.

Exercice 2. Nous cherchons à estimer

$$I = \int_0^1 \exp(x^2) dx.$$

- 1. a) Proposer un estimateur \widehat{I}_N de I par la méthode de Monté Carlo.
 - b) Calculer la variance théorique de \widehat{I}_N .
- 2. a) Proposer un estimateur $\widehat{f_N}$ de I par la méthode de la variable de contrôle.
 - b) Calculer la variance théorique de $\widehat{J_N}$.
- 3. a) Proposer un nouvel estimateur $\widehat{\theta_N}$ de I en utilisant la méthode des variables antithétiques.
 - b) Calculer la variance théorique de $\widehat{\theta_N}$.
- 4. Comparer les estimateurs de *I* introduits, pour $N = 10^4$.

Exercice 3. Nous voulons estimer l'intégrale

$$I = \int_{2}^{+\infty} \exp\left(x - \frac{x^2}{2}\right) dx.$$

- 1. a) Proposer un estimateur $\widehat{I}_1(N)$ de I par méthodes de Monte Carlo de I basé sur N variables aléatoires de loi $\mathcal{N}(0,1)$.
 - b) Calculer la variance de $\widehat{I}_1(N)$.
- 2. a) Proposer un estimateur $\widehat{I}_2(N)$ de I par échantillonnage préférentiel de I basé sur N variables aléatoires de loi $\mathcal{N}(1,1)$.
 - b) Calculer la variance de $\widehat{I}_2(N)$.
- 3. Comparer les estimateurs de *I* introduits, pour $N = 10^6$.