RM1: State-of-the-Art Multimodality

Preparation Materials and Schedule

Instructors: Wim Pouw & Babajide Owoyele

Donders Institute / Hasso Plattner Institute

Winter School 2025 Centre for Language Studies Radboud University Nijmegen

> January 13-17, 2025 11:15-13:15 daily

Contents

I	Course Overview	2
	1.1 Vision and Objectives	2
	1.2 Prerequisites	2
2	Course Structure	2
3	Daily Schedule	3
4	Assessment and Deliverables	3
	4.1 Daily Assignments	3
	4.2 Grading Criteria	3
5	Technical Requirements	3
	5.1 Software Installation	3
6		4
	6.1 Required Reading	4
	6.2 Online Resources	4
7	Contact Information	4
8	T T	4
	8.1 Troubleshooting Guide	4
	8.2 Code Templates	4
	8.3 Assessment Rubrics	4

1 Course Overview

1.1 Vision and Objectives

This course provides an immersive, hands-on learning experience bridging theoretical understanding with practical applications in multimodal research. Students will develop skills in:

- Computational analysis of gesture-speech coordination
- Implementation of open science practices
- Application of EnvisionBOX tools for multimodal analysis
- Development of reproducible research pipelines

1.2 Prerequisites

- First year Research Master's students in Linguistics
- Basic understanding of linguistics principles
- No extensive programming experience required for general understanding of the course, but experience in python would be beneficial

2 Course Structure

Each daily session (2 hours) follows this template:

- Opening discussion & concept check (15 min)
- Core concept introduction (30 min)
- Hands-on practice (45 min)
- Group work & discussion (30 min)

3 Daily Schedule

Monday: Foundations & Overview

Morning Preparation

- Installation instructions
- Setup troubleshooting guide

Session Content

- 1. Interactive Opening
 - Research interest introductions
 - Programming experience survey
- 2. Core Concepts
 - Gesture-speech coordination examples
 - Research case studies
 - Tool demonstrations
- 3. Hands-on Introduction
 - EnvisionBOX basics
 - Environment setup
 - Initial analysis exercise

4 Assessment and Deliverables

4.1 Daily Assignments

- Monday: Environment setup verification
- Tuesday: Basic video analysis submission
- Wednesday: Custom pipeline development
- Thursday: Research proposal draft
- Friday: Final project presentation

4.2 Grading Criteria

- Daily assignment completion (40%)
- Class participation (20%)
- Final project (40%)

5 Technical Requirements

5.1 Software Installation

Python 3.9

- Jupyter Notebook
- EnvisionBOX platform
- Required Python packages:
 - numpy
 - pandas
 - opency-python
 - mediapipe

6 Resources

6.1 Required Reading

- 1. Pouw, W., Trujillo, J. P., & Dixon, J. A. (2020). The quantification of gesture–speech synchrony: A tutorial and validation of multimodal data acquisition using device-based and video-based motion tracking.
- 2. Pouw, W., Dingemanse, M., Motamedi, Y., Özyürek, A. (2021). A systematic investigation of gesture kinematics in evolving manual languages in the lab.
- 3. Gregori, A., et al. (2023). A roadmap for technological innovation in multimodal communication research.

6.2 Online Resources

- EnvisionBOX Documentation: https://envisionbox.org
- Course Materials Repository
- Tutorial Videos
- Sample Datasets

7 Contact Information

- Wim Pouw: wim.pouw@donders.ru.nl
- Babajide Owoyele: babajide.owoyele@hpi.de
- Course Website: https://wimpouw.com

8 Appendices

- 8.1 Troubleshooting Guide
- 8.2 Code Templates
- 8.3 Assessment Rubrics