PURDUE UNIVERSITY

Department of Mathematics

GALOIS THEORY HONORS, MA 45401

Homework 7 (Mar 7 – Mar 14)

- 1 (10) Let $K = \mathbb{Q}$, $M = \mathbb{Q}(2^{1/3})$ and $L = \mathbb{Q}(2^{1/3}, \sqrt{3}, i)$. Prove that L : K and L : M are normal but M : K is not normal.
- **2** (10+5) a) Let K-L be algebraic, $\alpha \in L$ and $\sigma : K \to \overline{K}$ be a homomorphism. Prove that μ_{α}^{K} is separable over K iff $\sigma(\mu_{\alpha}^{K})$ is separable over $\sigma(K)$.
 - b) Let L: K be a splitting filed for $f \in K[t]$. Prove that if f is separable, then L: K is separable.
- **3** (10) Let L: K be a splitting field extension for a polynomial $f \in K[t]$. Then L: K is separable iff f is separable over K.
- 4 (15) Let K-M-L be an algebraic extension. Prove that K-L is separable iff K-M and M-L are separable.

Solutions

General remark. If there is a typo in any task, then the maximum score will be awarded for that task.

- 1 (10) Let $K = \mathbb{Q}$, $M = \mathbb{Q}(2^{1/3})$ and $L = \mathbb{Q}(2^{1/3}, \sqrt{3}, i)$. Prove that L : K and L : M are normal but M : K is not normal.
 - **Solution.** Obviously, M: K is not normal (since $\varepsilon_3 \notin M$). Let us show that L: K is a normal extension (it implies that L: M is normal). Consider the polynomial $(t^3-2)(t^2-3)(t^2+1)$. Then all roots of this polynomial are $\pm i, \pm \sqrt{3}, 2^{1/3}\varepsilon_3^k$, where k=0,1,2. We have $\varepsilon_3=(1+i\sqrt{3})/2\in \mathbb{Q}(i,\sqrt{3})$. Hence the splitting field of this polynomial is $\mathbb{Q}(2^{1/3},i,\sqrt{3})$ and all splitting fields are normal.
- **2** (10+5) a) Let K-L be algebraic, $\alpha \in L$ and $\sigma : K \to \overline{K}$ be a homomorphism. Prove that μ_{α}^{K} is separable over K iff $\sigma(\mu_{\alpha}^{K})$ is separable over $\sigma(K)$.
 - b) Let L: K be a splitting filed for $f \in K[t]$. Prove that if f is separable, then L: K is separable.
 - **Solution.** a) We can extend σ to σ : $\overline{K} \to \overline{K}$. Let $\mu_{\alpha}^{K}(t) = \prod_{j} (t \alpha_{j})^{r_{j}}$, where $\alpha_{j} \in \overline{K}$ and $r_{j} \in \mathbb{Z}^{+}$. Then $\sigma(\mu_{\alpha}^{K}(t)) = \prod_{j} (t \sigma(\alpha_{j}))^{r_{j}}$ and all $\sigma(\alpha_{j})$ are distinct (recall that σ is injective). Thus μ_{α}^{K} has multiple roots iff $\sigma(\mu_{\alpha}^{K})$ has multiple roots.
 - b) We have $L = K(\alpha_1, \dots, \alpha_n)$, where α_j are roots of f. Clearly, each $\mu_{\alpha_i}^K$ divides f and since f is separable, we see that all α_i are separable. Applying Theorem 1' of Lecture 14, we see that L: K is separable.
- **3** (10) Let L:K be a splitting field extension for a polynomial $f \in K[t]$. Then L:K is separable iff f is separable over K.
 - **Solution.** If f is separable, then by Question 2.b we know that L:K is separable. Now, let L:K is separable. Then any root of f is a separable and by Theorem 1' of Lecture 14, we see that L:K is separable.
- 4 (15) Let K-M-L be an algebraic extension. Prove that K-L is separable iff K-M and M-L are separable.

Solution. If K - L is separable, then we know (see Lecture 14) that M - L is separable and automatically K - M is separable.

Now suppose that K-M and M-L are both separable and take an arbitrary $\alpha \in L$. Then α is separable over M and therefore μ_{α}^{M} is separable. Adjoint all coefficients of μ_{α}^{M} to K and obtain a subfield $M' \subseteq M$ such that $\mu_{\alpha}^{M'} = \mu_{\alpha}^{M}$ (in particular, $\mu_{\alpha}^{M'}$ is separable over M'). Thus as M': K is finite and separable (by assumption M: K is separable) and hence by the primitive element theorem that there exists $\beta \in M'$ such that $M' = K(\beta)$. Hence using Theorem 1' of Lecture 14, we see that the extension $M'(\alpha): K = K(\alpha, \beta): K$ is separable. Then $\alpha \in K(\alpha, \beta)$ is separable over K.