ELETTRONICA DIGITALE

Corso di Laurea in Ingegneria Informatica

Prova scritta del 13 settembre 2018

Esercizio A

$R_1 = 10 \text{ k}\Omega$	$R_9 = 36 \text{ k}\Omega$
$R_2 = 13750 \ \Omega$	$R_{10}=10\;k\Omega$
$R_4=18900\;\Omega$	$R_{11}=20\;k\Omega$
$R_5 = 75 \Omega$	$R_{12} = 3 \text{ k}\Omega$
$R_6 = 1700 \Omega$	$R_{13} = 1 k\Omega$
$R_7 = 11400 \Omega$	$R_{14}=20~k\Omega$
$R_8 = 200 \Omega$	$V_{CC} = 18 \text{ V}$

 Q_1 è un transistore BJT BC109B resistivo con $h_{re} = h_{oe} = 0$; Q_2 è un transistore MOS a canale n resistivo con $V_T = 1$ V con la corrente di drain in saturazione data da $I_D = k(V_{GS} - V_T)^2$ con k = 0.5 mA/V². Con riferimento al circuito in figura:

- 1) Calcolare il valore della resistenza R_3 in modo che, in condizioni di riposo, la tensione sul drain di Q_2 sia 12 V. Determinare, inoltre, il punto di riposo dei due transistori e verificare la saturazione di Q_2 . (R: $R_3 = 7481 \Omega$)
- 2) Determinare l'espressione e il valore di V_U/V_i alle frequenze per le quali C_1 , C_2 e C_3 possono essere considerati dei corto circuiti. (R: $V_U/V_i = -7.18$)

Esercizio B

Progettare una porta logica in tecnologia CMOS, utilizzando la tecnica della pull-up network e della pull-down network, che implementi la funzione logica:

$$Y = \left(\overline{A + \overline{B}}\right) \left(\overline{C} + \overline{D}E\right) + B\left(\overline{A}C + A\overline{D}E\right) + \overline{C}\overline{E} + \overline{C}D$$

Determinare il numero dei transistori necessari e disegnarne lo schema completo. Dimensionare inoltre il rapporto (W/L) di tutti i transistori, assumendo, per l'inverter di base, W/L pari a 2 per il MOS a canale n e pari a 5 per quello a canale p. Si specifichino i dettagli della procedura di dimensionamento dei transistori. (R: N = 20)

Esercizio C

$R_1 = 400 \Omega$	$R_5 = 4 \text{ k}\Omega$
$R_2=4~k\Omega$	$R_6 = 4 \text{ k}\Omega$
$R_3 = 1 \text{ k}\Omega$	C = 470 nF
$R_4=2~k\Omega$	$V_{CC} = 6 \text{ V}$

Il circuito IC_1 è un NE555 alimentato a $V_{CC} = 6$ V; Q_1 ha una $R_{on} = 0$ e $V_T = -1$ V; l'inverter è ideale. Determinare la frequenza del segnale di uscita del multivibratore in figura. (R: f = 901.54 Hz)