

Modelowanie ryzyka niespłacalności

Zastosowanie analizy szeregów czasowych

Dorota Kowalczyk Risk Modelling & Analytics Specialist

Agenda

Sekcja 1	Prognozowanie strat kredytowych w testach stresu	2
Sekcja 1 Sekcja 2	Wybrane elementy analizy szeregów czasowych	
,		4
Sekcja 3	Charakterystyka hipotetycznego portfela	6
Sekcja 4	Analiza szeregów czasowych w R	8

Prognozowanie strat kredytowych w testach stresu

Prognozowanie strat kredytowych w testach stresu

Wprowadzenie i charakterystyka

Test stresu:

- technika pomiaru wrażliwości portfela, instytucji finansowej lub całego systemu finansowego na zmiany w otoczeniu rynkowym i makroekonomicznym
- w bankach jest to narzędzie o potencjalnie szerokim spektrum zastosowania w zarządzaniu ryzykiem
- narzędzie wykorzystywane przez banki centralne, organy nadzoru finansowego i agencje międzynarodowe do identyfikacji potencjalnych słabości i narastających ryzyk w sektorze finansowym
- Ryzyko kredytowe niebezpieczeństwo, iż strona transakcji (kredytobiorca) nie wywiąże się ze zobowiązań zawartych w umowie narażając drugą stronę (kredytodawcę) na straty, np. brak spłaty kredytu*

Elementem prognozowania prawdopodobieństwa niewypłacalności (ang. probability of default, PD) w ramach testów stresu jest sprawdzenie wrażliwości PD na zmiany w otoczeniu rynkowym i makroekonomicznym

^{*}Źródło: www.nbportal.pl/slownik/pozycje-slownika/ryzyko-kredytowe

Wybrane elementy analizy szeregów czasowych

Wybrane elementy

- definicja szeregów czasowych
- szereg czasowy ściśle stacjonarny i słabo stacjonarny
- testy pierwiastka jednostkowego (unit root tests)
 - Test Dickeya Fullera
 - Test Phillipsa Perrona
 - Test KPSS
 - Test Elliota, Rothenberga i Stocka
 - Test Zivota i Andrewsa
- regresja pozorna
- kointegracja

Charakterystyka hipotetycznego portfela

Zmienne

quarters

Zmienne

Zmienne

Zmienne

Zmienne

Analiza szeregów czasowych w R

Residuals

Autocorrelations of Residuals Partial Autocorrelations of Residu

ADF Test Variable	Test Statistic			Critical Values			Stationary		
	None	Drift	Trend	None	Drift	Trend	None	Drift	Trend
Level_Default Index	-1.18	-1.26	-3.00	-1.95	-2.93	-3.50	NO	NO	NO
Level_HPI QoQ	-1.78	-1.80	-2.66	-1.95	-2.93	-3.50	NO	NO	NO
Level_HPI YoY	-2.14	-2.15	-3.46	-1.95	-2.93	-3.50	YES	NO	NO
Level_UR	-0.65	-1.62	-3.48	-1.95	-2.93	-3.50	NO	NO	NO
Diff_Default Index	-3.25	-3.29	NA	-1.95	-2.93	NA	YES	YES	NA
Diff_HPI QoQ	-5.78	-5.81	NA	-1.95	-2.93	NA	YES	YES	NA
Diff_HPI YoY	-3.28	-3.38	NA	-1.95	-2.93	NA	YES	YES	NA
Diff_UR	-1.75	-1.73	NA	-1.95	-2.93	NA	NO	NO	NA

KPSS Test	Test Statistic		Critica	al Value	Stationary	
Variable	Drift	Trend	Drift	Trend	Drift	Trend
Level_Default Index	0.80	0.10	0.46	0.15	NO	YES
Diff_Default Index	0.19		0.46		YES	
Level_HPI QoQ	0.80	0.15	0.46	0.15	NO	YES
Diff_HPI QoQ	0.09		0.46		YES	
Level_HPI YoY	0.82	0.13	0.46	0.15	NO	YES
Diff_HPI YoY	0.10		0.46		YES	
Level_UR	0.46	0.22	0.46	0.15	NO	NO
Diff_UR	0.33		0.46		YES	

Diagram of fit for model with intercept and trend

Residuals

Autocorrelations of Residuals

0 5 10 15

Partial Autocorrelations of Residuals

Zivot and Andrews Unit Root Test

Zivot and Andrews Unit Root Test

Literatura

- B. Pfaff, Analysis of Integrated and Cointegrated Time Series with R, 2nd Edition, Springer-Verlag, 2008.
- W. Enders, Applied Econometric Time Series, 4th Edition, Wiley, 2015.
- R. Tsay, Analysis of Financial Time Series, 2nd Edition, Wiley, 2005.
- Materiały dot. analizy wymogów kapitałowych w kontekście testów stresu (CCAR) w amerykańskim systemie bankowym dostepne na stronie www.federalreserve.gov/supervisionreg/ccar.htm i stronach powiązanych
- P. Jorion, Financial Risk Manager Handbook, 5th Edition, Wiley Finance, 2009.
- M. Borsuk, K. Klupa, Testy warunków skrajnych jako metoda pomiaru ryzyka banków, Bezpieczny Bank nr. 3(64)/2016, 2016.

Informacje kontaktowe

Dorota Kowalczyk
Risk Modelling & Analytics Specialist
dorota.kowalczyk@ubs.com

www.ubs.com

