

NPTEL ONLINE CERTIFICATION COURSES

Course Name: Deep Learning

Faculty Name: Prof. P. K. Biswas

Department: E & ECE, IIT Kharagpur

Topic

Lecture 25: Back propagation Learning – Examples

CONCEPTS COVERED

Concepts Covered:

- ☐ Back Propagation Learning in MLP
- ☐ Different Loss Functions
- ☐ Back Propagation Learning Example
- Back Propagation Node Level

Back Propagation Learning an Example

Multilayer Perceptron

Multilayer

Perceptron

W_{01}^{1}	W_{11}^{1}	W_{21}^{1}
0.5	1.5	0.8
W_{02}^{1}	W_{12}^{1}	W_{22}^{1}
02	1.12	77 22

W_{01}^2 0.9	W ₁₁ ² -1.7	W ₂₁ ² 1.6
W_{02}^{2} 1.2	W ₁₂ ² 2.1	W ₂₂ ² -0.2

$$X = \begin{bmatrix} 0.7 \\ 1.2 \end{bmatrix}$$
from category $1 \Rightarrow t = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$

Feed Forward

Pass

$$\mathbf{W}^{1}$$
 \mathbf{X}_{i}^{0} $\theta_{j}^{1} = \sum W_{ij}^{1} x_{i}^{0}$ $x_{j}^{1} = \frac{1}{1 + e^{-\theta_{j}^{1}}}$

$$\begin{bmatrix} 0.5 & 1.5 & 0.8 \\ 0.8 & 0.2 & -1.6 \end{bmatrix} \begin{bmatrix} 1 \\ 0.7 \\ 1.2 \end{bmatrix} = \begin{bmatrix} 2.51 \\ -9.8 \end{bmatrix} \implies \begin{bmatrix} 0.92 \\ 0.27 \end{bmatrix}$$

$$x_{2} = \begin{bmatrix} w_{12} \\ w_{21}^{1} \\ 0.27 \end{bmatrix}$$

$$W^2$$

$$\chi_i^1$$
 $\theta_j^2 = \sum_i W_{ij}^2 x_i^1$ $\chi_j^2 = \frac{1}{1 + e^{-\theta_j^2}}$

$$\begin{bmatrix} 0.9 & -1.7 & 1.6 \\ 1.2 & 2.1 & -1.-0.26 \end{bmatrix} \begin{bmatrix} 1 \\ 0.92 \\ 0.27 \end{bmatrix} = \begin{bmatrix} -0.232 \\ 3.057 \end{bmatrix} \Rightarrow \begin{bmatrix} 0.44 \\ 0.95 \end{bmatrix}$$

Back Propagation Learning: Output Layer

$$E = \frac{1}{2} \sum_{i=1}^{2} (x_j^2 - t_j)^2 \qquad x_j^2 = \frac{1}{1 + e^{-\theta_j^2}} \qquad \theta_j^2 = \sum_{i=0}^{2} W_{ij}^2 x_i^1$$

$$\frac{\partial E}{\partial W_{ij}^2} = \frac{\partial E}{\partial x_j^2} \cdot \frac{\partial x_j^2}{\partial \theta_j^2} \cdot \frac{\partial \theta_j^2}{\partial W_{ij}^2} = (x_j^2 - t_j) x_j^2 (1 - x_j^2) x_i^1$$

We set
$$\left[\delta_j^2 = x_j^2 (1 - x_j^2)(x_j^2 - t_j)\right] \Rightarrow \frac{\partial E}{\partial W_{ij}^2} = \delta_j^2 x_i^1$$

$$W_{ij}^2 \leftarrow W_{ij}^2 - \eta \frac{\partial E}{\partial W_{ij}^2}$$

NPTEL ONLINE CERTIFICATION COURSES

Thank you