

DIGITAL DESIGN AND COMPUTER ORGANIZATION

Muxes, Decoders, Shifters - 1

Reetinder Sidhu

Department of Computer Science and Engineering

DIGITAL DESIGN AND COMPUTER ORGANIZATION

Muxes, Decoders, Shifters - 1

Reetinder Sidhu

Department of Computer Science and Engineering

Course Outline

- Digital Design
 - Combinational logic design
 - ★ Muxes, Decoders, Shifters 1
 - Sequential logic design
- Computer Organization
 - Architecture (microprocessor instruction set)
 - Microarchitecure (microprocessor operation)

Concepts covered

Multiplexers

Muxes, Decoders, Shifters - 1 2:1 Multiplexer

• A multiplexer (also called a mux) multiplexes many inputs onto a single output

2:1 Mux

Muxes, Decoders, Shifters - 1 2:1 Multiplexer

• A multiplexer (also called a mux) multiplexes many inputs onto a single output

2:1 Mux

• 2:1 mux truth table:

10	I_1	Ĵ	y
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

Muxes, Decoders, Shifters - 1 2:1 Multiplexer

• A multiplexer (also called a mux) multiplexes many inputs onto a single output

2:1 Mux

• 2:1 mux truth table:

i_0	i_1	j	У
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

• 2:1 mux Boolean formula:

$$o=\bar{j}\;i_0+j\;i_1$$

2:1 Multiplexer

• A multiplexer (also called a mux) multiplexes many inputs onto a single output

2:1 Mux

• 2:1 mux truth table:

i_0	i_1	j	y
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

• 2:1 mux logic circuit:

• 2:1 mux Boolean formula:

$$o=\overline{j}\ i_0+j\ i_1$$

2:1 Multiplexer

• A multiplexer (also called a mux) multiplexes many inputs onto a single output

2:1 Mux

• 2:1 mux truth table:

i ₀	i_1	j	У
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

2:1 mux Boolean formula:

$$o = \bar{j} i_0 + j i_1$$

2:1 mux logic circuit:

2:1 mux symbol:

► Data inputs: i₀, i₁

2:1 Multiplexer

• A multiplexer (also called a mux) multiplexes many inputs onto a single output

2:1 Mux

• 2:1 mux truth table:

i ₀	i_1	j	У
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

2:1 mux Boolean formula:

$$o=\bar{j}\ i_0+j\ i_1$$

2:1 mux logic circuit:

2:1 mux symbol:

Data inputs: i_0 , i_1

2:1 Multiplexer

• A multiplexer (also called a mux) multiplexes many inputs onto a single output

2:1 Mux

• 2:1 mux truth table:

i_0	i_1	j	y
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

2:1 mux Boolean formula:

$$o=\bar{j}\ i_0+j\ i_1$$

• 2:1 mux logic circuit:

2:1 mux symbol:

Data inputs: i_0 , i_1

2:1 Multiplexer

• A multiplexer (also called a mux) multiplexes many inputs onto a single output

2:1 Mux

• 2:1 mux truth table:

i ₀	i_1	j	У
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

2:1 mux Boolean formula:

$$o = \bar{j} i_0 + j i_1$$

2:1 mux logic circuit:

2:1 mux symbol:

► Data inputs: i₀, i₁

4:1 Mux

Muxes, Decoders, Shifters - 1 4:1 Multiplexer

4:1 Mux

- 4:1 mux symbol:
- *i*₀ 00
 - i_1 01

0

*i*₂ — 10

iз

in in

11

- Data inputs: *i*₀, *i*₁, *i*₂, *i*₃
- Control inputs: j_0, j_1

Data inputs: i_0 , i_1 , i_2 , i_3 Control inputs: j_0 , j_1

4:1 Multiplexer

- 4:1 mux
 - symbol:
- i_0 00 01
- is 10 iз 11

4:1 mux Boolean formula:

*j*1 *j*0

 $o = \overline{j_1} \, \overline{j_0} \, i_0 + \overline{j_1} \, j_0 \, i_1 + j_1 \, \overline{j_0} \, i_2 + j_1 \, j_0 \, i_3$

4:1 Multiplexer

4:1 mux symbol: i_0 00 01 is 10 iз

11

 j_1 j_0

- Data inputs: i_0 , i_1 , i_2 , i_3
- Control inputs: j_0 , j_1

- 4:1 mux Boolean formula:
 - $o = \overline{j_1} \, \overline{j_0} \, i_0 + \overline{j_1} \, j_0 \, i_1 + j_1 \, \overline{j_0} \, i_2 + j_1 \, j_0 \, i_3$

PES UNIVERSITY

4:1 Multiplexer

• 4:1 mux symbol:

i₀ — 00

i₁ — 01

i₂ — 10

i₃ — 11

*j*1 *j*0

- Data inputs: i_0 , i_1 , i_2 , i_3
- Control inputs: j_0 , j_1

- 4:1 mux Boolean formula:
 - $o = \overline{j_1} \, \overline{j_0} \, i_0 + \overline{j_1} \, j_0 \, i_1 + j_1 \, \overline{j_0} \, i_2 + j_1 \, j_0 \, i_3$

 4:1 mux logic circuit using 2:1 muxes:

Muxes, Decoders, Shifters - 1 n:1 Multiplexer

n:1 Multiplexer

n:1 Mux

A combinational logic circuit having n data inputs, $\lceil \log_2 n \rceil$ control inputs and one output, that connects the data input indicated by the control inputs to the output

Think About It

- What is the Boolean formula for a 3:1 mux?
- Construct a 3:1 mux using
 - 2:1 muxes
 - ► AND, OR and NOT gates