10. GRUPIŲ TEORIJOS ELEMENTAI

Multiplikacinės grupės G kairiuoju (dešiniuoju) sluoksniu pagal pogrupį H vadinama aibė

$$gH = \{gh \mid h \in H\} \ (Hg = \{hg \mid h \in H\}).$$

Grupės G pogrupis H vadinamas jos normaliuoju dalikliu, kai tos grupės kairiųjų sluoksnių pagal pogrupį H aibė sutampa su dešiniųjų sluoksnių pagal tą pogrupį aibe.

Normaliojo daliklio požymiai:

1 teorema. Multiplikacinės grupės G pogrupis H yra normalusis daliklis tada ir tik tada, kai

$$gH = Hg \ (\forall g \in G).$$

2 teorema. Multiplikacinės grupės G pogrupis H yra normalusis daliklis tada ir tik tada, kai tam pogrupiui priklauso jo elementams jungtiniai elementai.

Multiplikacinės grupės G homomorfrizmu multiplikacinėjė grupėje G' vadinamas atvaizdis: $\varphi: G \to G'$, kai su kiekviena grupės G elementų pora a, b yra teisinga lygybė

$$\varphi(ab) = \varphi(a)\varphi(b).$$

3 teorema (pagrindinė homomorfizmų teorema).

- 1. Jei φ yra grupės G homomorfizmas grupėje G', tai to homomorfizmo branduolys $\operatorname{Ker} \varphi$ yra grupės G normalusis daliklis ir faktorgrupė $G/_{\operatorname{Ker} \varphi}$ izomorfiška vaizdui $\operatorname{Im} \varphi$.
- 2. Jei H yra grupės G normalusis daliklis, tai egzistuoja surjekcinis homomorfizmas $\varphi: G \to G/_H$, kurio branduolys $\operatorname{Ker} \varphi$ sutampa su pogrupiu H.

Multiplikacinė grupė G vadinama savo pogrupių A ir B tiesiogine sandauga, kai:

- 1) grupė G lygi pogrupių A ir B sandaugai;
- 2) pogrupiai A ir B yra grupės G normalieji dalikliai;
- 3) sankirtai $A \cap B$ priklauso tik grupės G vienetinis elementas.

Tiesioginės sandaugos požymis:

4 teorema. Multiplikacinė grupė G yra savo pogrupių A ir B tiesioginė sandauga tada ir tik tada, kai kiekvieną jos elementą g galima vienareikšmiškai išreikšti sandauga g=ab $(a \in A, b \in B)$ ir xy=yx $(\forall x \in A, \forall y \in B)$.

Baigtinių Abelio grupių struktūra:

- **5 teorema.** 1) Kiekvieną baigtinę multiplikacinę Abelio grupę galima išreikšti primariųjų grupių tiesiogine sandauga. Dvi tos grupės išraiškos gali skirtis tik tiesioginių dauginamųjų tvarka;
- 2) baigtinė primarioji Abelio grupė yra jos primariųjų ciklinių pogrupių tiesioginė sandauga;

3) jei baigtinę primariąją Abelio grupę galima dvejopai išreikšti primariųjų ciklinių pogrupių tiesiogine sandauga, tai tiesioginių dauginamųjų skaičius kiekvienoje išraiškoje yra tas pats, o dauginamuosius galima taip sutvarkyti, kad pirmosios išraiškos bet kurio dauginamojo eilė būtų lygi antrosios išraiškos atitinkamo dauginamojo eilei.

Sakome, kad multiplikacinė grupė G veikia aibę A, kai yra apibrėžtas atvaizdis $G \times A \to A \quad \big((g,a) \to ga \big)$, turintis savybes:

- 1) $ea = a \quad (\forall a \in A);$
- 2) $(gh)a = g(ha) \quad (\forall g, h \in G, \forall a \in A).$

Aibė $Ga=\{ga\,|\,g\in G\}$ yra vadinama G-orbita, o aibė $St(a)=\{g\in G\,|\,ga=a\}$ – elemento a stabilizatoriumi.

Išraiška $[x,y]=xyx^{-1}y^{-1}$ yra vadinama grupės G elementų x ir y komutatoriumi.

Grupės G komutantu vadinamas pogrupis [G,G], generuotas visų tos grupės komutatorių.

6 teorema. Grupės G pogrupis H, kuriam priklauso komutantas [G,G], yra tos grupės normalusis daliklis. Be to, faktorgrupė G/[G,G] komutatyvi ir komutantas [G,G] yra poaibis bet kurio normaliojo daliklio H, su kuriuo faktorgrupė G/H komutatyvi.

Grupė G vadinama *išsprendžiamąja grupe*, kai komutantų seka

$$G \supseteq [G, G] = G^{(1)} \supseteq [G^{(1)}, G^{(1)}] = G^{(2)} \supseteq \dots \supseteq [G^{(m-1)}, G^{(m-1)}] = G^{(m)} \supseteq \dots$$

yra baigtinė.

PAVYZDŽIAI

1. Įrodysime, kad specialioji tiesinė grupė

$$SL(2,Q) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mid ad - bc = 1, a, b, c, d \in Q \right\}$$

yra tiesinės grupės

$$GL(2,Q) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mid ad - bc \neq 0, a, b, c, d \in Q \right\}$$

normalusis daliklis ir sudarysime grupės GL(2,Q) faktorgrupę pagal pogrupį SL(2,Q).

Parodysime, kad su kiekvienu pogrupio SL(2,Q) elementu

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

visi jo jungtinia
i $TAT^{-1}\in SL(2,Q)$ (čia $T=\begin{pmatrix}x&y\\u&v\end{pmatrix}$ - bet kuris grupė
sGL(2,Q)elementis jo jungtiniai TAT^{-1}

tas). Iš tikrųjų, matricos TAT^{-1} elementai yra racionalieji skaičiai ir jos determinantas $|TAT^{-1}| = |T||A||T^{-1}| = |T||T^{-1}| = 1$. Todėl iš normaliojo daliklio požymio išplaukia, kad pogrupis SL(2,Q) yra grupės GL(2,Q) normalusis daliklis.

Sudarysime grupės GL(2,Q) faktorgrupę pagal pogrupį SL(2,Q).

Dvi grupės GL(2,Q) matricos T_1 ir T_2 priklauso vienam sluoksniui, kai $T_1^{-1}T_2 \in SL(2,Q)$. Kadangi $|T_1^{-1}T_2|=1$, išplaukia, kad matricų T_1 ir T_2 determinantai yra lygūs.

Dvi matricos T_1 ir T_2 su lygiais determinantais priklauso vienam sluoksniui, nes $|T_1^{-1}T_2|=1$. Taigi vienam sluoksniui ir tik jam priklauso matricos su lygiais determinantais. Todėl

$$GL(2,Q)/_{SL(2,Q)} = \left\{ \begin{pmatrix} a & 0 \\ 0 & 1 \end{pmatrix} SL(2,Q) \mid a \in Q^* \right\}.$$

2. Irodysime, kad faktorgrupė $GL(2,Q)/_{SL(2,Q)}$ yra izomorfoška multiplikacinei racionaliųjų skaičių grupei Q^* , pasinaudoję pagrindine grupių homomorfizmų teorema.

Apibrėžiame grupės GL(2,Q) atvaizdį grupėje Q^* tokiu būdu:

$$\varphi(T) = |T| \quad (\forall T \in GL(2, Q)).$$

Šis atvaizdis yra surjekcinis homomorfizmas. Iš tikrųjų:

- 1) $\varphi(T_1T_2) = |T_1T_2| = |T_1||T_2| = \varphi(T_1)\varphi(T_2) \ (\forall T_1, T_2 \in GL(2, Q));$
- 2) su kiekvienu $a\in Q^*$ jo pirmvaizdis yra, pavyzdžiui, matrica $T=\begin{pmatrix} a&0\\0&1\end{pmatrix}$, nes $\varphi(T)=|T|=a.$

Iš pagrindinės homomorfizmų teoremos išplaukia, kad faktorgrupė $GL(2,Q)/_{\mathrm{Ker}\,\varphi}$ yra izomorfiška Q^* . Įrodysime, kad branduolys $\mathrm{Ker}\,\varphi$ sutampa su pogrupiu SL(2,Q).

Tarkime, $T \in \text{Ker } \varphi$. Iš branduolio apibrėžimo išplaukia lygybė $\varphi(T) = 1$. Bet $\varphi(T) = |T|$. Vadinasi, |T| = 1 ir $T \in SL(2, Q)$.

Tarkime, $T \in SL(2,Q)$. Tada |T|=1, ir iš čia išplaukia $\varphi(T)=|T|=1$. Vadinasi, $T \in \operatorname{Ker} \varphi$.

Taigi Ker $\varphi = SL(2,Q)$ ir faktorgrupė $GL(2,Q)/\!\!\!/_{\!\!SL(2,Q)}$ yra izomorfiška racionaliųjų skaičių multiplikacinei grupei Q^* .

3. Išreikšime 3150-osios eilės adicinę ciklinę grupę < a> jos ciklinių pogrupių tiesiogine suma.

Užrašome skaičiaus 3150 kanoninį skaidinį – 3150 = $2 \cdot 3^2 \cdot 5^2 \cdot 7$. Pažymėję simboliu A_p p-primariąją grupę, iš struktūrinės baigtinių Abelio grupių teoremos turime $\langle a \rangle = A_2 \oplus A_3 \oplus A_5 \oplus A_7$. Kadangi ciklinės grupės pogrupiai yra cikliniai, p-primariosios grupės A_p yra ciklinės. Vadinasi, jos yra neskaidžios.

Pogrupį A_2 generuoja 2-osios eilės elementas 1575a, A_3 – 9-osios eilės elementas 350a, A_5 – 25-osios eilės elementas 126a, A_7 – 7-osios eilės elementas 450a. Taigi

$$< a > = < 1575a > \oplus < 350a > \oplus < 126a > \oplus < 450a > .$$

4. Užrašysime visas neizomorfiškas 675-osios eilės Abelio grupes.

Kadangi $675 = 3^3 \cdot 5^2$, nurodytosios eilės Abelio grupę išreiškiame p-primariųjų grupių tiesiogine suma $A = A_3 \oplus A_5$.

Taikydami struktūrinės Abelio grupių teoremos 3)-iąją dalį, užrašome visas neizomorfiškas 27-osios eilės 3-primariąsias grupes A_3 bei 25-osios eilės 5-primariąsias grupes A_5 :

$$Z_{27}, Z_9 \oplus Z_3, Z_3 \oplus Z_3 \oplus Z_3;$$

 $Z_{25}, Z_5 \oplus Z_5.$

(čia Z_n yra n-osios eilės neskaidi ciklinė grupė).

Vadinasi, visos galimos 675-osios eilės neizomorfiškos Abelio grupės yra

$$Z_{27} \oplus Z_{25}, Z_{27} \oplus Z_5 \oplus Z_5, Z_9 \oplus Z_3 \oplus Z_{25}, Z_9 \oplus Z_3 \oplus Z_5 \oplus Z_5, Z_3 \oplus Z_3 \oplus Z_3 \oplus Z_25, Z_3 \oplus Z_3 \oplus Z_3 \oplus Z_5 \oplus Z_5.$$

UŽDAVINIAI

- 10.1. Irodykite, kad begalinė ciklinė grupė izomorfiška sveikųjų skaičių adicinei grupei.
- 10.2. Tarkime, φ yra grupių G ir G' izomorfizmas ir $\varphi(g) = g'$. Irodykite, kad g ir g' yra tos pačios eilės elementai.
- 10.3. Raskite visas neizomorfiškas antrosios ir trečiosios eilės grupes.
- 10.4. Pateikite dviejų neizomorfiškų tos pačios eilės grupių pavyzdžius.
- 10.5. Įrodykite, kad realiųjų skaičių adicinė grupė izomorfiška teigiamų realiųjų skaičių multiplikacinei grupei.
- 10.6. Įrodykite, kad ciklinių grupių Z_m ir Z_n tiesioginė sandauga izomorfiška grupei Z_{mn} tada ir tik tada, kai skaičiai m ir n yra tarpusavy pirminiai.
- 10.7. Tarkime, natūralusis skaičius m yra natūraliojo skaičiaus n daliklis. Pateikite pavyzdį n-osios eilės grupės, turinčios pogrupį, izomorfišką nurodytai m-osios eilės grupei.
- 10.8. Raskite visas neizomorfiškas ketvirtosios, šeštosios, aštuntosios eilių grupes.
- 10.9. Įrodykite, kad indekso 2 pogrupis yra normalusis daliklis toje grupėje.
- 10.10. Įrodykite, kad grupės normaliųjų daliklių sankirta yra normalusis daliklis.
- 10.11. Aibė Z(G) grupės G elementų, komutuojančių su visais tos grupės elementais, vadinama grupės centru. Įrodykite, kad centras yra tos grupės normalusis daliklis.
- 10.12. Tarkime, pogrupis H_i yra grupės G_i normalusis daliklis (i=1,2). Įrodykite, kad pogrupis $H_1 \times H_2$ yra grupės $G_1 \times G_2$ normalusis daliklis.
- 10.13. Raskite visus grupės $Z_2 \times Z_2$ normaliuosius daliklius.
- 10.14. Įrodykite, kad grupės komutantas yra normalusis daliklis.
- 10.15. Įrodykite, kad grupės G komutantas yra vienetinis pogrupis tada ir tik tada, kai grupė G komutatyvi.
- 10.16. Įrodykite, kad grupės G faktorgrupė pagal komutantą yra komutatyvi.
- 10.17. Raskite visus simetrinių grupių S_3 ir S_4 normaliuosius daliklius.

- 10.18. Jei dviejų grupės G kairiųjų sluoksnių pagal pogrupį H sandauga yra kairysis sluoksnis, tai pogrupis H yra grupės G normalusis daliklis. Įrodykite.
- 10.19. Įrodykite, kad kompleksinių skaičių multiplikacinė grupė yra izomorfiška neišsigimusių realiųjų matricų $\begin{pmatrix} a & b \\ -b & a \end{pmatrix}$ multiplikacinei grupei.
- 10.20. Įrodykite, kad racionaliųjų skaičių adicinė grupė neturi tikrinių baigtinio indekso pogrupių.
- 10.21. Įrodykite, kad baigtinio skaičiaus baigtinio indekso pogrupių sankirta yra baigtinio indekso pogrupis.
- 10.22. Jei A ir B yra multiplikacinės grupės G normalieji dalikliai, tai AB yra taip pat tos grupės normalusis daliklis. Įrodykite.
- 10.23. Jei A yra grupės B normalusis daliklis, o B yra grupės C normalusis daliklis, tai ar būtinai A yra grupės C normalusis daliklis?
- 10.24. Irodykite, kad jungtinių elementų eilės sutampa.
- 10.25. Jei H yra multiplikacinės grupės G baigtinio indekso pogrupis, tai sankirta $A = \bigcap_{g \in G} gHg^{-1}$ yra baigtinio indekso normalusis daliklis. Įrodykite.
- 10.26. Aibė $C_H(A) = \{g \in H \mid aga^{-1} = g \ \forall a \in A\}$ vadinama aibės A centralizatoriumi multiplikacinės grupės G pogrupyje H. Įrodykite, kad normaliojo daliklio centralizatorius yra normalusis daliklis pogrupyje H.
- 10.27. Įrodykite, kad baigtinio normaliojo daliklio H centralizatorius grupėje G yra baigtinio indekso pogrupis toje grupėje.
- 10.28. Įrodykite, kad multiplikacinės grupės G pogrupių A ir B sandauga AB yra tos grupės pogrupis tada ir tik tada, kai AB = BA.
- 10.29. Įrodykite, kad simetrinė grupė S_3 yra izomorfiška savo vidinių automorfizmų grupei.
- 10.30. Jei H yra multiplikacinės kompleksinių skaičių grupės C^* pogrupis, sudarytas iš skaičių, kurių modulis lygus 1, tai faktorgrupė $C^*/_H$ yra izomorfiška teigiamų realiųjų skaičių multiplikacinei grupei. Įrodykite.
- 10.31. Nurodykite pavyzdį dviejų neizomorfiškų grupių, turinčių izomorfiškus nornaliuosius daliklius ir izomorfiškas faktorgrupes pagal tuos normaliuosius daliklius.
- 10.32. Nurodykite pavyzdį grupės, turinčios izomorfiškus normaliuosius daliklius ir neizomorfiškas faktorgrupes pagal tuos normaliuosius daliklius.
- 10.33. Nurodykite pavyzdį grupės, turinčios neizomorfiškus normaliuosius daliklius ir izomorfiškas faktorgrupes pagal tuos normaliuosius daliklius.
- 10.34. Įrodykite, kad simetrinės grupės S_3 ir S_4 yra išsprendžiamos.
- 10.35. Jei grupė G nekomutatyvi ir neturi tikrinių normaliųjų pogrupių, tai G neišsprendžiamoji grupė. Įrodykite.
- 10.36. Įrodykite, kad išsprendžiamosios grupės pogrupis yra išsprendžiamas.
- 10.37. Tarkime, φ yra grupės G surjekcinis homomorfizmas grupėje G'. Jei grupė G išsprendžiama, tai ir jos homomorfinis vaizdas yra išsprendžiama grupė. Įrodykite.
- 10.38. Nurodykite pavyzdį neišsprendžiamosios grupės, kurios homomorfinis vaizdas yra išsprendžiamoji grupė.

- 10.39. Jei H yra išsprendžiamosios grupės normalusis daliklis, tai faktorgrupė $G/_{\!\!H}$ yra išsprendžiama. Įrodykite.
- 10.40. Jei grupės H ir $G/_H$ yra išsprendžiamos, tai ir grupė G yra išsprendžiama. Įrodykite.
- 10.41. Išsprendžiamų grupių A ir B Dekarto sandauga $A \times B$ yra išsprendžiama grupė. Įrodykite.
- 10.42. Įrodykite, kad kompleksinių skaičių adicinė grupė C yra tiesioginė suma realiųjų skaičių pogrupio R ir grynai menamųjų skaičių pogrupio iR.
- 10.43. Įrodykite, kad racionaliųjų skaičių adicinė grupė Q negali būti užrašyta tikrinių pogrupių tiesiogine suma.
- 10.44. Įrodykite, kad sveikųjų skaičių adicinė grupė Z negali būti užrašyta tikrinių pogrupių tiesiogine suma.
- 10.45. Įrodykite, kad grupių A ir B tiesioginės sandaugos centras $Z(A \otimes B)$ yra lygus tų grupių centrų tiesioginei sandaugai $Z(A) \otimes Z(B)$.
- 10.46. n-osios eilės ciklinę adicinę grupę < a > užrašykite jos ciklinių pogrupių tiesiogine suma, kai:
 - 1) n = 18; 2) n = 54; 3) n = 64; 4) n = 216.
- 10.47. Užrašykite visas neizomorfiškas *n*-osios eilės Abelio grupes, kai
 - 1) n = 48; 2) n = 64; 3) n = 1000; 4) n = 24500.

ATSAKYMAI

- 10.3. $\{Z_2\}, \{Z_3\}.$
- 10.4. Pvz., $\{Z_4\}$, $\{Z_2 \times Z_2\}$.
- 10.7. Pvz., jei |H| = m ir n = mk, tai $G = H \times Z_k$.
- 10.8. 1) Z_4 , $Z_2 \times Z_2$; 2) Z_6 ir trikampio simetrijų grupė;
 - 3) Z_8 , $Z_4 \times Z_2$, $Z_2 \times Z_2 \times Z_2$, kvadrato simetrijų grupė, kvaternijonų grupė.
- 10.13. Jei $Z_2 \times Z_2 = \{e_1, a\} \times \{e_2, b\}$, tai normalieji dalikliai yra šie:
 - i) $\{(e_1, e_2), (a, e_2)\};$ ii) $\{(e_1, e_2), (e_1, b)\};$ iii) $\{(e_1, e_2), (a, b)\}.$
- 10.17. 1) $\{(1)\}, \{(1), (123), (132)\}, S_3;$
 - 2) $\{(1)\}$, alternatyvioji grupė A_4 , $\{(1), (12)(34), (13)(24), (14)(23)\}$, S_4 .
- 10.23. Nebūtinai.
- 10.31. Pvz., Z_4 , $Z_2 \times Z_2$.
- 10.32. Pvz., $Z_4 \times Z_2$.
- 10.33. Pvz., $Z_4 \times Z_2$.
- $10.46. \ 1) < 2a > \oplus < 9a >; \ 2) < 2a > \oplus < 27a >;$
 - 3) < a >; 4) $< 8a > \oplus < 27a >$.
- 10.47. 1) $Z_3 \oplus Z_{16}$, $Z_3 \oplus Z_8 \oplus Z_2$, $Z_3 \oplus Z_4 \oplus Z_4$, $Z_3 \oplus Z_4 \oplus Z_2 \oplus Z_2$;

- 2) Z_{64} , $Z_{32} \oplus Z_2$, $Z_{16} \oplus Z_4$, $Z_{16} \oplus Z_2 \oplus Z_2$, $Z_8 \oplus Z_8$, $Z_8 \oplus Z_4 \oplus Z_2$, $Z_8 \oplus Z_2 \oplus Z_2 \oplus Z_2$, $Z_4 \oplus Z_4 \oplus Z_4$, $Z_4 \oplus Z_4 \oplus Z_2 \oplus Z_2 \oplus Z_2$, $Z_2 \oplus Z_2 \oplus Z_2 \oplus Z_2 \oplus Z_2 \oplus Z_2 \oplus Z_2 \oplus Z_2$;
- 3) $Z_8 \oplus Z_{125}$, $Z_8 \oplus Z_{25} \oplus Z_5$, $Z_8 \oplus Z_5 \oplus Z_5 \oplus Z_5$, $Z_4 \oplus Z_2 \oplus Z_{125}$, $Z_4 \oplus Z_2 \oplus Z_{25} \oplus Z_5$, $Z_4 \oplus Z_2 \oplus Z_5 \oplus Z_5 \oplus Z_5$, $Z_2 \oplus Z_2 \oplus Z_2 \oplus Z_{125}$, $Z_2 \oplus Z_2 \oplus Z_2 \oplus Z_2 \oplus Z_3 \oplus Z_5$;
- 4) $Z_4 \oplus Z_{125} \oplus Z_{49}$, $Z_4 \oplus Z_{125} \oplus Z_7 \oplus Z_7$, $Z_4 \oplus Z_{25} \oplus Z_5 \oplus Z_{49}$, $Z_4 \oplus Z_{25} \oplus Z_5 \oplus Z_7 \oplus Z_7$, $Z_4 \oplus Z_5 \oplus Z_5 \oplus Z_5 \oplus Z_{49}$, $Z_4 \oplus Z_5 \oplus Z_5 \oplus Z_5 \oplus Z_7 \oplus Z_7$, $Z_2 \oplus Z_2 \oplus Z_{125} \oplus Z_{49}$, $Z_2 \oplus Z_2 \oplus Z_{125} \oplus Z_7 \oplus Z_7$, $Z_2 \oplus Z_2 \oplus Z_{25} \oplus Z_5 \oplus Z_{49}$, $Z_2 \oplus Z_2 \oplus Z_{25} \oplus Z_5 \oplus Z_5 \oplus Z_7 \oplus Z_7$, $Z_2 \oplus Z_2 \oplus Z_2 \oplus Z_5 \oplus Z_5 \oplus Z_5 \oplus Z_49$, $Z_2 \oplus Z_2 \oplus Z_5 \oplus Z_5 \oplus Z_5 \oplus Z_5 \oplus Z_7 \oplus Z_7$.