We have seen that every continuous f: [a, b] →IR has the intermetiate value property; i.e. if f(a) < t < f(b) then t=f(xo) for some xe(a,b). when f is diff. on [a,b], then f' is not always continuous. However it always has the intermediate value property! THEOREM 3.11 (Darboux): Let f: I - R be differentiable on the interval I. If a, b ∈ I and f(a) < yo < f(b) then there exists xo ∈ I with f(x) = y. PROOP: Exercise (see book). E.g. Let $g(x) = \begin{cases} 1, & x > 0 \\ x, & x \leqslant 0 \end{cases}$ filR→IR such that f'(x) = g(x) for all $x \in \mathbb{R}$?

The answer is NO.

If g = f' for some $f: \mathbb{R} \to \mathbb{R}$,

Since f(0) = 0 and f(1) = 1, there should exist f(0) = 0 with $f(0) = \frac{1}{2}$.

· CONVEXITY Let f: I - IR be differentiable on the internal I. We say that f is: (i) <u>convex</u> (or concave up) in I if f' is increasing in I. (ii) concave (or concave down) in I if f' is decreasing in I. when f is wnvex, the graph of f is:

· above the tangent at any point (x, f(x)) below any line segment joining two points of the graph. When f is concour on I the graph of fis: . below the tangent at any point above any line segment joining two points of the graph.

E.g. $f(x) = x^2$. f'(x) = 2x, so f' is increasing in IR, so f is convex.

We say that the graph of f: I→IR has an inflection point at Xo ∈ I if:

• Gr has a tangent line at (xo, f(xo))

• there is some \$>0 such that
f is convex on one of the intervals

(Xo-S, Xo), (Xo, Xo+S) and concave
on the other.

Then $f(x) = \frac{1}{1+x^2}$ f is string. in $(-\infty,0]$ and stridecr. in $[0,\infty)$ and G_f has a tangent at (0,0)So (0,0) is an inflection point of f.

THEOREM 3.12: Let $f: I \rightarrow IR$ be twice differentiable.

(a) If f''(x) > 0 for all $x \in I$, then f is convex in I. (b) If f''(x) < D for all $X \in I$, then f is concave in I. (c) If f has an inflection point at x_0 then $f''(x_0) = 0$. The proof follows directly from the definition of concenty and theorem 3. The converse to Theorem 3.12

is not true. Take for example $f(x) = x^4, \quad x \in \mathbb{R}.$ $f'(x) = 4x^3, \quad x \in \mathbb{R}.$ $f' \text{ increasing } \Rightarrow f \text{ convex}$ BUT : f''(0) = 0 $(\text{because } e''(7) = 12x^2)$

BUT: f''(0) = 0(because $f''(x) = 18x^2$). I.e. if f is convex, this does not imply f'(x) > 0 then f''(0) = 0 but f does not have an inflection point at 0,

The requirement that f has a tangent line at (xo, f(xo))
is necessary in the definition of inflection points. of is not defined on The graph of f in the Hour does not have an Infl. at (xo, f(xo)) because the tangent is not defined there. · Also if f has un inflection point at (xo, f(xo)) it is not always differentiable there. (O₁0)

· ASYMPTOTES

We say that: (a) the line X=x0 is a vertical asymptote of the graph of f if

(c) the line $y = a \times +b$ (a $\neq s$)

is an oblique asymptote of the graph of f at $+\infty$ (or $-\infty$) if

 $\lim_{x\to+\infty} (f(x)-ax-b)=0$ (resp. $\lim_{x\to-\infty} (f(x)-ax-b)=0$).

 $\lim_{x\to +\infty} f(x) = y_0$ (resp. $\lim_{x\to -\infty} f(x) = y_0$).

(b) the line y = yo is a horizontal asymptote of the graph of f at + oo (or -oo) if

 $\lim_{x\to x^-} f(x) = \pm \infty$ or $\lim_{x\to x^+} f(x) = \pm \infty$ and also x is not in the domain of f.

E.g.
$$f(x) = \frac{1}{x-1} + 1$$

The line $x = 1$ is a vertical asymptote.

The line $y = 1$ is a horizontal asymptote at $+\infty$ and $-\infty$.

asymptote at
$$+\infty$$
 and $-\infty$.

$$g(x) = \frac{x^2+1}{2x+1}, \quad 2 \in (-\infty, -\frac{1}{2}) \cup (-\frac{1}{2}, +\infty)$$

The line
$$x=-\frac{1}{2}$$
 a vertical asymptote.
 $\lim_{x\to -\frac{1}{2}^{-1}} g(x) = -\infty$ and $\lim_{x\to -\frac{1}{2}^{+1}} g(x) = +\infty$.

We want to look for oblique asymptotes.

$$\lim_{x \to +\infty} \frac{9(x)}{x} = \lim_{x \to +\infty} \frac{x^2 + 1}{2x^2 + x} = \frac{1}{2}$$
and
$$\lim_{x \to +\infty} \left(g(x) - \frac{x}{2} \right) = \lim_{x \to +\infty} \left(\frac{x^2 + 1}{2x + 1} - \frac{x(x + \frac{1}{2})}{2x + 1} \right)$$

$$= \lim_{x \to +\infty} \frac{1 - \frac{x}{2}}{2x + 1} = -\frac{1}{4}$$

 $=-\frac{1}{4}$

We want to look for oblique asy
$$\lim_{x \to -\frac{1}{2}^+} \text{We want to look for oblique asy}$$

$$\lim_{x \to +\infty} \frac{g(x)}{x} = \lim_{x \to +\infty} \frac{x^2 + 1}{2x^2 + x} = \frac{1}{2}$$
and
$$\lim_{x \to -\frac{1}{2}^+} \frac{g(x)}{x} = \lim_{x \to +\infty} \frac{x^2 + 1}{2x^2 + x} = \frac{1}{2}$$

$$\lim_{x \to -\frac{1}{2}^+} \frac{g(x)}{x} = \lim_{x \to -\frac{1}{2}^+} \frac{x^2 + 1}{2x^2 + x} = \frac{1}{2}$$

Therefore $y = \frac{1}{2}x - \frac{1}{4}$ is an oblique asymptote of G_f at $+\infty$.

* If y = ax + b is an oblique asymptote.

If y = ax + b is an oblique asymptote, then $\lim_{x \to +\infty} f(x) = a$, so in order to find the coeff, a, we first calculate $\lim_{x \to +\infty} f(x)$.

The line $y = \frac{1}{2} \times -\frac{1}{4}$ is also an oblique asymptote of G_f at $-\infty$ (vo simply repeat the same procedure but we take limits at $-\infty$ instead of $+\infty$).

· SKETCHING THE GRAPH OF A PUNCTION

In order to draw the graph of a given function f, we find:

1. the domain of f 2. Points of intersection with the axes 3. asymptotes

4. monoticity of & extreme points

(maxima and minima of f)

5. Convexity & inflection points. E.g. Sketch the graph of $f(x) = X e^{-x^2}$

· Domain: Df = R f(0)=0, and f interests with the axes at (0,0).

 $\lim_{X\to +\infty} f(X) = \lim_{X\to +\infty} \frac{X}{e^{X^2}} = 0$

 $\lim_{x\to-\infty} f(x) = \lim_{x\to-\infty} \frac{x}{e^{x^2}} = 0$ So y=0 (the horiz wis) is a horizontal asymptote of f at +00 and -00.

$$f'(x) = (1 - 2x^{2}) e^{-x^{2}}$$

$$f'(x) > 0 \iff -\frac{\sqrt{2}}{2} < x < \frac{\sqrt{2}}{2}$$

$$f'(x) < 0 \iff (x < -\frac{\sqrt{2}}{2}) \text{ or } x > \frac{\sqrt{2}}{2}).$$

$$x \longrightarrow -\frac{\sqrt{2}}{2} \text{ for } x > \frac{\sqrt{2}}{2}$$

$$f'(x) \longrightarrow + 0 \longrightarrow$$

$$f(x) \longrightarrow$$

f has a local minimum at $-\sqrt{2}/2$, the number $f(-\sqrt{2}/2) = -\frac{1}{\sqrt{2}e}$. This is also a global minimum.

f has a local maximum at $\sqrt{2}/2$ the number $f(\sqrt{2}/2) = \frac{1}{\sqrt{2}e}$.
This is also a global maximum.

$$= 4 \times \left(\times -\sqrt{\frac{3}{2}} \right) \left(\times +\sqrt{\frac{3}{2}} \right) e^{-x}$$

$$\times -\infty -\sqrt{\frac{3}{2}} \quad 0 \quad \sqrt{\frac{3}{2}} \quad +\infty$$

$$f''(x) = 0 + 0 + 0$$

$$f(x) \qquad 1 \qquad 1 \qquad 1$$

$$\text{Inflection Points:} \left(-\sqrt{\frac{3}{2}}, f(-\sqrt{\frac{3}{2}}) \right), (0, f(x)), \left(\sqrt{\frac{3}{2}}, f(\sqrt{\frac{3}{2}}) \right)$$

 $(4x^3 - 6x) e^{-x^2}$

$$f'(x) = 0 + 0 = 0 + 0$$

$$f(x) = 0 + 0 = 0 + 0$$

$$f(x) = 0 + 0 = 0 + 0$$

$$f(x) = 0 + 0 = 0 + 0$$

$$f(x) = 0 + 0 = 0 + 0$$

$$f(x) = 0 + 0 = 0 + 0$$

$$f(x) = 0 + 0 = 0 + 0$$

$$f(x) = 0 + 0 = 0 + 0$$

$$f(x) = 0 + 0 = 0 + 0$$

$$f(x) = 0 + 0 = 0 + 0$$

$$f(x) = 0 + 0 = 0 + 0$$

$$f(x) = 0 + 0 = 0 + 0$$

$$f(x) = 0 + 0 = 0 + 0$$

$$f(x) = 0 + 0 = 0 + 0$$

$$f(x) = 0 + 0 = 0 + 0$$

$$f(x) = 0 + 0 = 0 + 0$$

$$f(x) = 0 + 0 = 0 + 0$$

$$f(x) = 0 + 0 = 0 + 0$$

$$f(x) = 0 + 0 = 0 + 0$$

$$f(x) = 0 + 0 = 0 + 0$$

$$f(x) = 0 + 0 = 0 + 0$$

$$f(x) = 0 + 0 = 0 + 0$$

$$f(x) = 0 + 0 = 0 + 0$$

$$f(x) = 0 + 0 = 0 + 0$$

$$f(x) = 0 + 0 = 0 + 0$$

$$f(x) = 0 + 0 = 0 + 0$$

$$f(x) = 0 + 0 = 0 + 0$$

$$f(x) = 0 + 0 = 0 + 0$$

$$f(x) = 0 + 0 = 0 + 0$$

$$f(x) = 0 + 0 = 0 + 0$$

$$f(x) = 0 + 0 = 0 + 0$$

$$f(x) = 0 + 0 = 0 + 0$$

$$f(x) = 0 + 0 = 0 + 0$$

$$f(x) = 0 + 0 = 0 + 0$$

$$f(x) = 0 + 0 + 0 = 0$$

$$f(x) = 0 + 0 + 0 = 0$$

$$f(x) = 0 + 0 + 0 = 0$$

$$f(x) = 0 + 0 + 0 = 0$$

$$f(x) = 0 + 0 + 0 = 0$$

$$f(x) = 0 + 0 + 0 = 0$$

$$f(x) = 0 + 0 + 0 = 0$$

$$f(x) = 0 + 0 + 0 = 0$$

$$f(x) = 0 + 0 + 0 = 0$$

$$f(x) = 0 + 0 + 0 = 0$$

$$f(x) = 0 + 0 + 0 = 0$$

$$f(x) = 0 + 0 + 0 = 0$$

$$f(x) = 0 + 0 + 0 = 0$$

$$f(x) = 0 + 0 + 0 = 0$$

$$f(x) = 0 + 0 + 0 = 0$$

$$f(x) = 0 + 0 + 0 = 0$$

$$f(x) = 0 + 0 + 0 = 0$$

$$f(x) = 0 + 0 + 0 = 0$$

$$f(x) = 0 + 0 + 0 = 0$$

$$f(x) = 0 + 0 + 0 = 0$$

$$f(x) = 0 + 0 + 0 = 0$$

$$f(x) = 0 + 0 + 0 = 0$$

$$f(x) = 0 + 0 + 0 = 0$$

$$f(x) = 0 + 0 + 0 = 0$$

$$f(x) = 0 + 0 + 0 = 0$$

$$f(x) = 0 + 0 + 0 = 0$$

$$f(x) = 0 + 0 + 0 = 0$$

$$f(x) = 0 + 0 + 0 = 0$$

$$f(x) = 0 + 0 + 0 = 0$$

$$f(x) = 0 + 0 + 0 = 0$$

$$f(x) = 0 + 0 + 0 = 0$$

$$f(x) = 0 + 0 + 0 = 0$$

$$f(x) = 0 + 0 + 0 = 0$$

$$f(x) = 0 + 0 + 0 = 0$$

$$f(x) = 0 + 0 + 0 = 0$$

$$f(x) = 0 + 0 + 0 = 0$$

$$f(x) = 0 + 0 + 0 = 0$$

$$f(x) = 0 + 0 + 0 = 0$$

$$f(x) = 0 + 0 + 0 = 0$$

$$f(x) = 0 + 0 + 0 = 0$$

$$f(x) = 0 + 0 + 0 = 0$$

$$f(x) = 0 + 0 + 0 = 0$$

$$f(x) = 0 + 0 + 0 = 0$$

$$f(x) = 0 + 0 + 0 = 0$$

$$f(x) = 0 + 0 + 0 = 0$$

$$f(x) = 0 + 0 + 0 = 0$$

$$f(x) = 0 + 0 + 0 = 0$$

$$f(x) = 0 + 0 + 0 = 0$$

$$f(x) = 0 + 0 + 0 = 0$$

$$f(x) = 0 + 0 + 0 = 0$$

$$f(x) = 0 + 0 + 0 = 0$$

$$f(x) = 0 + 0 + 0 = 0$$

$$f(x) = 0 + 0 + 0 = 0$$

$$f(x) = 0 + 0 + 0 = 0$$

$$f(x) = 0 + 0 + 0 =$$