Vorlesung 6

Alexander Mattick Kennung: qi69dube

Kapitel 1

11. Mai 2020

1 Wahrscheinlichkeitsdichte und Verteilungsfunktion

Ziel $A \in \mathcal{A} : P(A) = ?$

 \rightarrow Wahrscheinlichkeitsdichte und Verteilungsfunktion.

Skalieren eines histograms auf relative häufigkeiten: $\sum\limits_{k=0}^{n}h_{n}(k)=1$

 $\Omega=\{1,\dots,n\}$ $P(\{i\})=\frac{1}{n}$ Ω sei eine abzählbare Ergebnismenge und $\mathcal{A}=\mathcal{P}(\Omega)$

1. Ist P ein W-Maß über (Ω, \mathcal{A}) und $f(\omega) = P(\{\omega\})$

$$f(\omega) \ge 0, \sum_{\omega \in \Omega} f(\omega) = 1$$

$$P(A) = \sum_{\omega \in A} f(\omega), \ (A \in \mathcal{A})$$

Jede Abbildung $f:\Omega\to\mathbb{R}$ mit den beiden Eigneschaften ist ein W-Maß auf P mit eigenschaft

$$P(\{\omega\}) = f(\omega)$$

die Abbildung f heißt Zähldichte (Z-Dichte) was ist mit kontinuirlichen Verteilung über z.B. N?

$$f(\omega) \ge 0 \forall \omega \in \Omega$$

$$f: \mathbb{N} \to \mathbb{R}_0^+$$

$$P(\Omega) = P(\mathbb{N}) = P(\sum\limits_{k=1}^{\infty} \{k\}) = \sum\limits_{k=1}^{\infty} P(\{k\})$$

Ein Beispiel wäre $f(k) = cq^k$ mit $q \in (0,1), c \in \mathbb{R}$

i) $P(A) \ge 0, \forall A \in \mathcal{A}$ ii) nichtnegativität $P(\Omega) = 1$ normiertheit iii) sigma-additivität

Binomialverteilung

Sei
$$p + q = 1, p, q \in \mathbb{R}$$
 und $\Omega = \{0, 1, \dots, n\}$

$$f(k) = b(n, p; k) = \binom{n}{k} p^k q^{n-k}$$

1

wobei der graph über k läuft und n/p nur parameter sind.

Beweis:

$$P(\{k\}) \ge 0$$
 $P(\Omega) = \sum_{k=0}^{n} f(k) = \sum_{k=0}^{n} {n \choose k} p^k q^{n-k} = (p+q)^n = 1^n = 1$

additivität folgt aus der Verlauf über \mathbb{R}

$$A \to h_n(A) = \frac{1}{n} \text{Anzahl x mit} x \in A$$

Zähldichte der **empirische Verteilung** von \mathbf{x}

$$f_n^x = \frac{1}{n} \sum_{i=1}^n 1_{x_i}(x) \ x \in \Omega$$

 \rightarrow diskretes Rieman-Integral.

Stetige Dicht:

Eine Riemann-integrierbare Funktion $f: \mathbb{R} \to \mathbb{R}$ mit

$$\forall x. f(x) \ge 0 \text{ und } \int_{-\infty}^{\infty} f(x) dx = 1$$

heißt Riemann-Dichte über $\mathbb R$ oder auch stetige Dichte.

Jeder R-Dichte über $\mathbb R$ definiert eindeutig ein W-Maß p über $(\mathbb R,\mathbb B)$ mit der Eigenschaft

$$P((a,b]) = P([a,b]) = \int_a^b f(x)dx$$

mit
$$a \leq b$$
 und $P(\{\omega\}) = 0$

Fortsetzungssatz:

Ist P auf einem geeigneten erzeuger ε von \mathcal{A} festgelegt und auf ε nicht-negativ, sigma-additiv und normiert, kann man sie eindeutig auf P von \mathcal{A} fortsetzen.

Empirische Verteilungsfunktion

$$\hat{F}_n^x := \frac{1}{n} \sum_{i=1}^n 1_{[x_i, \infty)}(x), \ x \in \mathbb{R}$$

Eine Wahrscheinlichkeitsdichtefunktion muss nicht stetig sein $f(x) = \begin{cases} 0 & x \le a \\ (b-1) & x \le b \\ 0 & x \ge b \end{cases}$

Diese kann stetig gemacht werden, indem man den integral der Riemann-Dichte integriert:

$$P([a,b]) = \int_{b}^{a} f(t)dt$$

2

also ist

$$F(x) = \int_{-\infty}^{x} f(t)dt$$

Ω -abzählbar	Ω -kont
$P(\{\omega\}) = f(\omega)$	$f(x) \ge 0, \int_{-T}^{T} d\tau = 1$
$P(A) = \sum_{\omega \in A} f(\omega)$	$P((a,b]) = \int_a^b f d\tau$
Z-dichte	R-dichte

Ist F die VF (verteilungsfunktion) eines W-Maßes P über (\mathbb{R}, \mathbb{B}) , dann gilt:

- F ist isoton, d.h. monoton nicht fallend (entweder steigend, oder konstant)
- \bullet F ist "normiert", d.h. die grenzwerte sind 0 und ∞
- F ist rechtsseitig stetig
- F besitzt einen linksseitigen Grenzwert $F(x-) = \lim_{h \to 0^+} F(x-h) = P((-\infty,x))$
- Für Einpunktmengen $\{x\}$ gilt: $P(\{x\}) = F(x) F(x-)$