KEY RISK MEASURES

Dr. Aric LaBarr
Institute for Advanced Analytics

INTRODUCTION TO RISK

Key Risk Characteristics

- Risk is an uncertainty that affects a system in an unknown fashion and brings great fluctuation in value and outcome.
- Risk is the outcome of uncertainty fluctuations can be measured in a probabilistic sense.
- Risk has a time horizon.
- Risk measurement has to be set against a benchmark.

Statistics of Risk

- Risk analysis is using some of the "typical" statistical measures.
 - Mean
 - Variance
 - Skewness
 - Kurtosis used for catastrophic, extreme tail events

- There are some common measures that are used in risk analysis:
 - 1. Probability of Occurrence
 - Standard Deviation / Variance / Coefficient of Variation
 - Semi-standard Deviation
 - 4. Volatility
 - 5. Value at Risk (VaR)
 - Expected Shortfall (ES)

- Probability of Occurrence
 - Examples Probability of failure of a project, probability of default, migration probabilities, transition matrices.
- Standard Deviation, Variance, Coefficient of Variation
 - Two-sided measures
 - Sufficient only under normality or maybe symmetry

- Semi-standard Deviation (Downside Risk)
 - Measure of dispersion for the values falling below the mean.

$$\sigma_{semi} = \sqrt{\frac{1}{T} \sum_{t=1}^{T} \min(X_t - \bar{X}, 0)^2}$$

- Volatility
 - Standard deviation of an asset's logarithmic returns

$$\sigma_{volatility} = \sqrt{\frac{1}{T} \sum_{t=1}^{T} \ln\left(\frac{X_t}{X_{t-1}}\right)^2}$$

Value at Risk – VaR

- The amount of capital reserves at risk given a particular holding period at a particular probability of loss
- Example 1 year 99.9% VaR

Expected Shortfall – ES

 The expected capital reserve given a particular holding period in the worst q% of the cases

VALUE AT RISK

History of VaR

- Developed in the early 1990's by JP Morgan
- The "4:15pm" report
- JP Morgan launched RiskMetrics® (1994)
- VaR has been widely used since that time
- Currently, researchers are looking into more advanced "VaR-like" measures.

Definition

- The VaR calculation is aimed at making a statement of the following form:
 - We are 99% certain that we will not lose more than \$10,000 in the next 3 days.
 - \$10,000 is the 3-day 99% VaR
- VaR is the maximum amount at risk to be lost...
 - ...over a period of time...
 - ...at a particular level of confidence.

Focus on the Tail

- The Value at Risk is associated with a percentile (quantile) of a distribution.
- Focused on the tail of the distribution.

Visualizing VaR – Left Tail

Distribution of change in portfolio's value (1 year horizon)

Visualizing VaR – Right Tail

VaR Estimation

Main Steps:

- 1. Identify the variable of interest (asset value, portfolio value, credit losses, insurance claims, etc.)
- Identify the key risk factors that impact the variable of interest (assets prices, interest rates, duration, volatility, default probabilities, etc.)
- 3. Perform deviations in the risk factors to calculate the impact in the variable of interest

Visualizing VaR – Left Tail

Distribution of change in portfolio's value (1 year horizon) How do we estimate this distribution? 1% VaR 99% 1% -0.5 Millions of Dollars

VaR Estimation

- How do we estimate this distribution?
- 3 Main Approaches
 - Delta-Normal or Variance-Covariance Approach
 - 2. Historical Simulation (variety of approaches)
 - Monte Carlo Simulation

EXPECTED SHORTFALL

Drawbacks of VaR – Magnitude

- VaR ignores the distribution of a portfolio's return beyond its VaR.
- Example:
 - The 99.9% VaR for an investment in stock A is \$100K.
 The 99.9% VaR for an investment in stock B is \$100K.
 - Are you indifferent between the two?

Drawbacks of VaR – Magnitude

- VaR ignores the distribution of a portfolio's return beyond its VaR.
- Example:
 - The 99.9% VaR for an investment in stock A is \$100K.
 The 99.9% VaR for an investment in stock B is \$100K.
 - Are you indifferent between the two?
- Stock A: The loss can be up to \$250K
- Stock B: The loss can be up to \$950K
- VaR ignores the magnitude of the worst returns.

Drawbacks of VaR - Diversification

- Under non-normality, VaR may not capture diversification.
- VaR fails to satisfy the subadditivity property.

$$Risk(A + B) \le Risk(A) + Risk(B)$$

 The VaR of a portfolio with two securities may be larger than the sum of the VaR's of the securities in the portfolio.

VaR Alternative – CVaR

- The Conditional Value at Risk (CVaR) or Expected Shortfall (ES) is a measure that doesn't have the two drawbacks of the VaR.
- Given a confidence level and a time horizon, a portfolio's CVaR is the expected loss one suffers given that a "bad" event occurs.
- The CVaR is a conditional expectation.
- If my loss exceeds the VaR level, what should I expect it to be equal to?

Visualizing CVaR (ES) – Left Tail

Visualizing CVaR (ES) – Left Tail

Distribution of change in portfolio's value (1 year horizon) How do we estimate this distribution? 1% VaR 99% 1% Millions of Dollars

CVaR (ES) Estimation

- How do we estimate this distribution?
- 3 Main Approaches
 - Delta-Normal or Variance-Covariance Approach
 - 2. Historical Simulation (variety of approaches)
 - 3. Monte Carlo Simulation

CALCULATING RETURNS

Returns on Assets

- A lot of the calculations we will be making in this course will revolve around calculating the returns on assets.
- There are 2 main methods for calculating returns:
 - Arithmetic Return
 - Geometric Return

Basic Notation

- Here is the basic notation needed to calculate returns:
 - Return (r_t) return at a period t (holding an asset from period t-1 to period t)
 - Price (P_t) price at a given time period t
 - Lag Price (P_{t-1}) price a time period t-1
 - Dividend (D_t) dividend payment at time period t

Basic Notation

- Here is the basic notation needed to calculate returns:
 - Return (r_t) return at a period t (holding an asset from period t-1 to period t)
 - Price (P_t) price at a given time period t
 - Lag Price (P_{t-1}) price a time period t-1
 - Dividend (D_t) dividend payment at time period t
 - For small time periods we typically ignore dividend (set equal to 0)
 - Equivalently: P_t is the price of an asset where dividends are fully reinvested (and thus reflected in P_t itself)

• If $r_1 = 5\%$ and $r_2 = -5\%$, what is the total return of the two days?

• If $r_1 = 5\%$ and $r_2 = -5\%$, what is the total return of the two days? **NOT ZERO!**

- If $r_1 = 5\%$ and $r_2 = -5\%$, what is the total return of the two days?
- How do we get $r_{0,2}$ as a function of r_1 and r_2 ?

$$r_{t} = \frac{P_{t} + D_{t} - P_{t-1}}{P_{t-1}}$$

$$D_{t} = 0$$

$$r_{t} = \frac{P_{t} - P_{t-1}}{P_{t-1}}$$

- If $r_1 = 5\%$ and $r_2 = -5\%$, what is the total return of the two days?
- How do we get $r_{0,2}$ as a function of r_1 and r_2 ?

$$r_{0,2} = \frac{P_2 - P_0}{P_0} = \dots = \frac{P_1}{P_0} r_2 + r_1 \neq r_2 + r_1$$

Arithmetic Return

- If $r_1 = 5\%$ and $r_2 = -5\%$, what is the total return of the two days?
- How do we get $r_{0,2}$ as a function of r_1 and r_2 ?

$$P_0 = 1$$
 $P_1 = 1.05$ $r_1 = 5\%$

Arithmetic Return

- If $r_1 = 5\%$ and $r_2 = -5\%$, what is the total return of the two days?
- How do we get $r_{0,2}$ as a function of r_1 and r_2 ?

$$P_0 = 1$$
 $P_1 = 1.05$ $P_2 = 0.9975$ $r_1 = 5\%$ $r_2 = -5\%$

Arithmetic Return

- If $r_1 = 5\%$ and $r_2 = -5\%$, what is the total return of the two days?
- How do we get $r_{0.2}$ as a function of r_1 and r_2 ?

$$P_0 = 1$$
 $P_1 = 1.05$ $P_2 = 0.9975$ $r_1 = 5\%$ $r_2 = -5\%$

$$r_{0,2} = \frac{P_2 - P_0}{P_0} = \frac{0.9975 - 1}{1} = -0.0025 = -0.25\%$$

$$D_t = \ln\left(\frac{P_t + D_t}{P_{t-1}}\right)$$

$$R_t = \ln\left(\frac{P_t}{P_{t-1}}\right) = \ln(P_t) - \ln(P_{t-1})$$

- If $R_1 = 5\%$ and $R_2 = -5\%$, what is the total return of the two days?
- How do we get $R_{0,2}$ as a function of R_1 and R_2 ?

$$R_{0,2} = \ln\left(\frac{P_2}{P_0}\right) = \ln\left(\frac{P_2}{P_1} \times \frac{P_1}{P_0}\right) = \ln\left(\frac{P_2}{P_1}\right) + \ln\left(\frac{P_1}{P_0}\right) = R_2 + R_1$$

- What if we took the same prices and measured returns geometrically instead?
- How do we get $R_{0.2}$ as a function of R_1 and R_2 ?

$$P_0 = 1$$
 $P_1 = 1.05$ $R_1 = 4.88\%$

- What if we took the same prices and measured returns geometrically instead?
- How do we get $R_{0.2}$ as a function of R_1 and R_2 ?

$$P_0 = 1$$
 $P_1 = 1.05$ $P_2 = 0.9975$ $R_1 = 4.88\%$ $R_2 = -5.13\%$

- What if we took the same prices and measured returns geometrically instead?
- How do we get $R_{0.2}$ as a function of R_1 and R_2 ?

$$P_0 = 1$$
 $P_1 = 1.05$ $P_2 = 0.9975$ $R_1 = 4.88\%$ $R_2 = -5.13\%$

$$R_{0,2} = \ln\left(\frac{P_2}{P_0}\right) = -0.25\% = 4.88\% - 5.13\%$$

Mathematical Relation

What is the difference between the two?

$$\begin{split} R_t &= \ln\left(\frac{P_t}{P_{t-1}}\right) = \ln\left(\frac{P_t - P_{t-1}}{P_{t-1}} + 1\right) = \ln(1 + r_t) \\ &= r_t - \frac{r_t^2}{2} + \frac{r_t^3}{3} - \dots \approx r_t \text{ when } r_t \text{ small} \end{split}$$

• For a typical **daily** return, the difference between R_t and r_t is very close to 0.

Mathematical Relation

What is the difference between the two?

$$\begin{aligned} R_t &= \ln\left(\frac{P_t}{P_{t-1}}\right) = \ln\left(\frac{P_t - P_{t-1}}{P_{t-1}} + 1\right) = \ln(1 + r_t) \\ &= r_t - \frac{r_t^2}{2} + \frac{r_t^3}{3} - \dots \approx r_t \text{ when } r_t \text{ small} \end{aligned}$$

• For a typical **daily** return, the difference between R_t and r_t is very close to 0.

$$r_{0,2} = \frac{P_2 - P_0}{P_0} = \frac{0.9975 - 1}{1} = -0.0025 = -0.25\%$$

$$R_{0,2} = \ln\left(\frac{P_2}{P_0}\right) = -0.250313\%$$

Mathematical Relation

What is the difference between the two?

$$\begin{split} R_t &= \ln\left(\frac{P_t}{P_{t-1}}\right) = \ln\left(\frac{P_t - P_{t-1}}{P_{t-1}} + 1\right) = \ln(1 + r_t) \\ &= r_t - \frac{r_t^2}{2} + \frac{r_t^3}{3} - \dots \approx r_t \quad \text{when } r_t \text{ small} \end{split}$$

• For a typical **daily** return, the difference between R_t and r_t is very close to 0.

$$r_{0,2} = \frac{P_2 - P_0}{P_0} = \frac{0.9975 - 1}{1} = -0.0025 = -0.25\%$$
 $R_{0,2} = \ln\left(\frac{P_2}{P_0}\right) = -0.250313\%$
VERY CLOSE!

Empirical Relation (Google Inc.)

Date	Close	Arithmetic Return	Geometric Return
10/4/2018	1168.19	-	-
10/5/2018	1157.35	-0.928%	-0.932%
10/6/2018	1148.97	-0.724%	-0.727%
10/7/2018	1138.82	-0.883%	-0.887%
10/8/2018	1081.22	-5.058%	-5.190%
10/9/2018	1079.32	-0.176%	-0.176%
10/10/2018	1110.08	2.850%	2.810%
10/11/2018	1100.92	-0.825%	-0.829%

