- So, now do we avoidly go about finding a general solution to $\chi'(t) = A_{\chi}(t)$
- Let $A = [a_{ij}]$ be an nxn constant matrix. The eigenvalue of A are those numbers (real or complex) numbers r for which (A-rI)u=0 has at least one nontrival (real or complex) solution to u
- · The corresponding nontraine solutions a are called the eigenvironing of A associated with r
- Theorem 5: Suppose the nxn constant matrix A has n linearly intependent eigenvectors $u_1, u_2, u_3, ..., u_n$, and let r_i be the eigenvalue corresponding to u_i . Then, $\left\{e^{r_i t}u_i, e^{r_2 t}u_2, e^{r_3 t}u_3, ..., e^{r_n t}u_n\right\}$ is a fundamental solution set and $\chi(t) = \left[e^{r_i t}u_i, e^{r_2 t}u_2, ..., e^{r_n t}u_n\right]$ is a fundamental matrix on $(-\infty, \infty)$ for homogeness system $\chi' = A\chi$.

Thus, our general solution of x' = Ax is: $x(t) = c_1 e^{c_1 t} u_1 + c_2 e^{c_1 t} u_2 + ...$ Che end up the orem G: Tf in an eigenvalue of the matrix A and u_i is an eigenvalue associated with r_i , then u_1 , ... u_m are linearly independent

· When solving for eigeniales, always have left site "alore"