Big Data Infrastructures

Philippe Cudre-Mauroux Fall 2018

Lecture 5 – NoSQL

On Today's Menu...

Go BIG!

- Parallel DBMS
- CAP
- NoSQL intro
- Column-Family Stores
- Lab!
 - Hadoop bundle
 - HBase

What's wrong with my old DBMS?

- Managing Big Data is hard...
 - ... extremely hard
 - Traditional DBMSs are 30 years old, were not meant for Big Data
 - 1. New queries (analytics, clustering, prediction, etc.)
 - 2. New data types (text, images, social graphs, sensor data, etc.)
 - 3. Impractical logical guarantees (ACID)

Parallel DBMSs

Goal

Improve performance by executing multiple operations in parallel

Key benefit

 Cheaper to scale than relying on a single increasingly more powerful processor

Key challenges

- ACID compliance
- Ensure overhead and contention do not kill performance

Linear v.s. Non-linear Speedup

Architectures for Parallel Databases

- Shared memory
- Shared disk
- Shared nothing

Shared Memory

Shared Disk

Shared Nothing

Shared Nothing

- Most scalable architecture
 - Minimizes interference by minimizing resource sharing
 - Can use commodity hardware
- Also most difficult to program and manage
- Processor = server = node
- P = number of nodes

We will focus on shared nothing

Horizontal Data Partitioning

- A.k.a. Sharding (mySQL, Google)
- Typical shared-nothing parallelization
- Relation R split into P chunks R₀, ..., R_{P-1}, stored at the P nodes
- Round robin: tuple t_i to chunk (i mod P)
- Hash based partitioning on attribute A:
 - Tuple t to chunk h(t.A) mod P
- Range based partitioning on attribute A:
 - Tuple t to chunk i if $v_{i-1} < t.A < v_i$

Parallel Selection

Compute $\sigma_{A=v}(R)$, or $\sigma_{v1< A< v2}(R)$

- On a conventional database: cost = B(R)
- Q: What is the cost on a parallel database with P servers?
 - Round robin
 - Hash partitioned
 - Range partitioned

Parallel Selection

Answer:

- Round robin: B(R); all servers do the work in parallel
- Hash: B(R)/P for $\sigma_{A=v}(R)$; one server works only B(R) for $\sigma_{v1< A< v2}(R)$; all servers work in parallel
- Range: (assuming relatively small range)
 B(R)/P; one server works only

Data Partitioning Revisited

What are the pros and cons?

- Round robin
 - Good load balance but always needs to read all the data
- Hash based partitioning
 - Good load balance but works only for equality predicates and full scans
- Range based partitioning
 - Works well for range predicates but can suffer from data skew

Parallel Group By

- Compute $\gamma_{A, sum(B)}(R)$
- Step 1: server i partitions chunk R_i using a hash function h(t.A) mod P: R_{i0}, R_{i1}, ..., R_{i,P-1}
- Step 2: server i sends partition R_{ij} to server j
- Step 3: server j computes $\gamma_{A, sum(B)}$ on $R_{0j}, R_{1j}, ..., R_{P-1,j}$

Parallel Join

- Simplest implementation:
- Step 1
 - For all servers in [0,k], server i partitions chunk R_i using a hash function h(t.A) mod P: R_{i0}, R_{i1}, ..., R_{i,P-1}
 - For all servers in [k+1,P-1], server j partitions chunk S_j using a hash function h(t.A) mod P: S_{j0}, S_{j1}, ..., R_{j,P-1}
- Step 2:
 - Server i sends partition R_{iu} to server u
 - Server j sends partition S_{ju} to server u
- Steps 3: Server u computes the join of R_{iu} with S_{ju}

ACID Properties (Standard DB)

- Atomicity: Either all changes performed by transaction occur or none occurs
- Consistency: A transaction as a whole does not violate integrity constraints (only valid tuples are written)
- Isolation: Transactions appear to execute one after the other in sequence
- Durability: If a transaction commits, its changes will survive failures

Q: Benefits & drawbacks of providing ACID transactions?

CAP Properties

CAP Conjecture

- It is impossible for a distributed computer system to simultaneously provide all three guarantees
 - Pick at most two properties

CAP Tradeoffs

- While it is impossible to provide all three properties, any two of those three properties can be achieved!
 Trivial examples for the asynchronous model:
 - CA: centralized RDBMS
 - CP: ignore all incoming requests
 - AP: always return initial value

Visual Guide to Recent Systems

CP: Google BigTable, Hbase, Berkeley

DB, MemcachDB, MongoDB

http://blog.nahurst.com/visual-guide-to-nosql-systems; classification subject to discussion...

Weak Consistency Models

- Following the CAP theorem, systems started to appear providing weaker consistency models
 - failures are unavoidable in large scale systems
 - availability is a must for many services
 - compromise on consistency!
- Example: t-Connected Consistency (Lynch)
 - in the presence of no partitions, the system is consistent
 - in the presence of partitions, stale data can be returned
 - once a partition heals, there is a time limit on how long it takes for consistency to return
 - ⇒ "Eventual" consistency in many noSQL systems

NoSQL / NewSQL Solutions

- The end of one-size-fits-all! [Stonebraker]
- Specialized solutions to ensure efficiency
 - Premium Data Warehousing [e.g., Teradata]
 - Column-stores [e.g., Vertica]
 - Wide columns [e.g., Cassandra]
 - Document Stores [e.g., MongoDB]
 - Graphs [e.g.,neo4j]
 - Arrays [e.g., SciDB]
 - Streams [e.g., Storm]
 - Etc.

A Concrete Example: Zynga

Key-Value (Column-Family) Store: Google BigTable

Many different types of data to manage today

- Structured data
 - All data conforms to a strict schema. Ex: business data
- Semi-structured data
 - Some structure in the data but implicit and/or irregular
 - Ex: resume, ads, the Web in general
- Unstructured data
 - All other data. Ex: text, sound, video, images
 - They actually do have some structure, but not for DBMSs!

Column-Family Store

- Distributed storage system storing (complex) key-value pairs
 - Key: (row+column) / value: (String)
- Designed to
 - Hold widely heterogeneous semi-structured data
 - Scale to thousands of servers
 - Store up to several hundred terabytes (maybe even petabytes)
 - Perform backend bulk processing
 - Perform real-time data serving
- To scale, Bigtable has a limited set of features and data types

Bigtable Data Model

Sparse, multidimensional sorted map

(row:string, column:string, time:int64) → string
Notice how everything but time is a string

• Example: Columns are grouped into families

Above: storing Web pages and references

Other Key Facts about Big Table

- Read/writes of data under single row key is atomic
 - Only single-row transactions!
- Data is stored in lexicographical order
 - Improves data access locality
- Column families are unit of access control
- Data is versioned (old versions can be garbage-collected)
 - Example: most recent three crawls of each page, with times
- Current open-source systems (Apache Cassandra, Hadoop's HBase, etc.) are directly inspired from BigTable