

FEATURES

- Guaranteed maximum frequency > 4GHz
- 3.3V and 5V power supply options
- Guaranteed propagation delay <440ps over temperature
- Internal 75K Ω input pull-down resistors
- Wide operating temperature range: -40°C to +85°C
- Available in 8-pin MSOP and SOIC packages

Pin	Function
CLK, /CLK	ECL Clock Inputs
Reset	ECL Asynchronous Reset
V_{BB}	Reference Voltage Output
Q, /Q	ECL Data Outputs

TRUTH TABLE(1)

CLK	/CLK	RESET	Q	/Q
Х	Х	Z	L	Н
Z	/Z	Ĺ	F	F

Note 1: Z = LOW-to-HIGH Transition /Z = HIGH-to-LOW Transition F = Divide by 2 function.

DESCRIPTION

The SY10/100EP32V is an integrated ÷2 divider with differential clock inputs.

The V_{BB} pin, an internally generated voltage supply, is available to this device only. For single-ended input conditions, the unused differential input is connected to V_{BB} as a switching reference voltage. V_{BB} may also rebias AC-coupled inputs. When used, decouple V_{BB} and V_{CC} via a $0.01\mu F$ capacitor and limit current sourcing or sinking to 0.5mA. When not used, V_{BB} should be left open.

The reset pin is asynchronous and is asserted on the rising edge. Upon power-up, the internal flip-flops will attain a random state; the reset allows for the synchronous use of multiple EP32's in a system.

The 100k series includes internal temperature compensation circuitry.

PACKAGE/ORDERING INFORMATION

8-Pin SOIC (Z8-1) 8-Pin MSOP (K8-1)

Ordering Information⁽¹⁾

Part Number	Package Type	Operating Range	Package Marking	Lead Finish
SY10EP32VZC	Z8-1	Commercial	HEP32V	Sn-Pb
SY10EP32VZCTR ⁽²⁾	Z8-1	Commercial	HEP32V	Sn-Pb
SY100EP32VZC	Z8-1	Commercial	XEP32V	Sn-Pb
SY100EP32VZCTR ⁽²⁾	Z8-1	Commercial	XEP32V	Sn-Pb
SY10EP32VKC	K8-1	Commercial	HP32	Sn-Pb
SY10EP32VKCTR ⁽²⁾	K8-1	Commercial	HP32	Sn-Pb
SY100EP32VKC	K8-1	Commercial	XP32	Sn-Pb
SY100EP32VKCTR ⁽²⁾	K8-1	Commercial	XP32	Sn-Pb
SY10EP32VZI	Z8-1	Industrial	HEP32V	Sn-Pb
SY10EP32VZITR ⁽²⁾	Z8-1	Industrial	HEP32V	Sn-Pb
SY100EP32VZI	Z8-1	Industrial	XEP32V	Sn-Pb
SY100EP32VZITR ⁽²⁾	Z8-1	Industrial	XEP32V	Sn-Pb
SY10EP32VKI	K8-1	Industrial	HP32	Sn-Pb
SY10EP32VKITR ⁽²⁾	K8-1	Industrial	HP32	Sn-Pb
SY100EP32VKI	K8-1	Industrial	XP32	Sn-Pb
SY100EP32VKITR ⁽²⁾	K8-1	Industrial	XP32	Sn-Pb
SY10EP32VZG ⁽³⁾	Z8-1	Industrial	HEP32V with Pb-Free bar-line indicator	NiPdAu Pb-Free
SY10EP32VZGTR ^(2, 3)	Z8-1	Industrial	HEP32V with Pb-Free bar-line indicator	NiPdAu Pb-Free
SY100EP32VZG ⁽³⁾	Z8-1	Industrial	XEP32V with Pb-Free bar-line indicator	NiPdAu Pb-Free
SY100EP32VZGTR ^(2, 3)	Z8-1	Industrial	XEP32V with Pb-Free bar-line indicator	NiPdAu Pb-Free
SY10EP32VKG ⁽³⁾	K8-1	Industrial	HP32 with Pb-Free bar-line indicator	NiPdAu Pb-Free
SY10EP32VKGTR ^(2, 3)	K8-1	Industrial	HP32 with Pb-Free bar-line indicator	NiPdAu Pb-Free
SY100EP32VKG ⁽³⁾	K8-1	Industrial	XP32 with Pb-Free bar-line indicator	NiPdAu Pb-Free
SY100EP32VKGTR ^(2, 3)	K8-1	Industrial	XP32 with Pb-Free bar-line indicator	NiPdAu Pb-Free

Notes:

- 1. Contact factory for die availability. Dice are guaranteed at $T_A = 25^{\circ}C$, DC Electricals only.
- 2. Tape and Reel.
- 3. Pb-Free package is recommended for new designs.

ABSOLUTE MAXIMUM RATINGS(1)

Symbol	Rating		Value	Unit
V _{CC} — V _{EE}	Power Supply Voltage		+6.0	V
V _{IN}	Input Voltage ($V_{CC} = 0V$, V_{IN} not more negative voltage ($V_{EE} = 0V$, V_{IN} not more positive voltage)		-6.0 to 0 +6.0 to 0	V V
I _{OUT}	Output Current	50 100	mA	
I _{BB}	V _{BB} Sink/Source Current ⁽²⁾	±0.5	mA	
T _A	Operating Temperature Range		-40 to +85	°C
T _{STORE}	Storage Temperature Range		-65 to +150	°C
T _{LEAD}	Lead Temperature (soldering, 20 sec.)		+260	°C
θ_{JA}	Package Thermal Resistance (Junction-to-Ambient)	-Still Air SOIC -Still Air MSOP -multi-layer PCB	160 206	°C/W °C/W
θЈС	Package Thermal Resistance (Junction-to-Case)	SOIC MSOP	39 39	°C/W °C/W

- **Note 1.** Permanent device damage may occur if absolute maximum ratings are exceeded. This is a stress rating only and functional operation is not implied at conditions other than those detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
- Note 2. Due to the limited drive capability, the VBB reference should only be used for inputs from the same packge device (i.e., do not sue for other devices).

(10EP) LVPECL DC ELECTRICAL CHARACTERISTICS(1)

 $V_{CC} = 3.3V \pm 10\%; V_{FF} = 0V^{(2)}$

			1	$T_A = -40^\circ$	С	-	Γ _A = +25°	C	1			
Symbol	Parameter		Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Unit
I _{EE}	Power Supply Current		_	30	37	_	30	37	_	30	37	mA
V _{OH}	Output HIGH Voltage ⁽³⁾		2165	2290	2415	2230	2355	2480	2290	2415	2540	mV
V _{OL}	Output LOW Voltage(3)		1365	1490	1615	1430	1555	1680	1490	1615	1740	mV
V _{IH}	Input HIGH Voltage (Single-Ended)		2090	_	2415	2155	_	2480	2215	_	2540	mV
V _{IL}	Input LOW Voltage (Single-Ended)		1365	_	1690	1430	_	1755	1490	_	1815	mV
V _{BB}	Output Voltage		1790	1890	1990	1855	1955	2055	1915	2015	2115	mV
V _{IHCMR}	Input HIGH Voltage ⁽⁴⁾ Common Mode Range (Differential)		2.0	_	V _{CC}	2.0	_	V _{CC}	2.0	_	V _{CC}	V
I _{IH}	Input HIGH Current		_	_	150	_	_	150	_	_	150	μΑ
I _{IL}	Input LOW Current	CLK /CLK	0.5 -150		_	0.5 -150	_	_	0.5 -150	_		μΑ

- **Note 1.** 10EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and traverse airflow greater than 500lfpm is maintained.
- Note 2. Input and output parameters vary 1:1 with V_{CC}.
- Note 3. All loading with 50 Ω to V_{CC} –2.0V.
- Note 4. The V_{IHCMR} range is referenced to the most positive side of the differential input signal.

(10EP) PECL DC ELECTRICAL CHARACTERISTICS(1)

 $V_{CC} = 5.0V \pm 10\%; V_{EE} = 0V^{(2)}$

			1	$\Gamma_{A} = -40^{\circ}$	С	-	Γ _A = +25°	C	1	Γ _A = +85°	С	
Symbol	Parameter		Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Unit
I _{EE}	Power Supply Current		_	_	37	_	30	37	_	_	37	mA
V _{OH}	Output HIGH Voltage ⁽³⁾		3865	3990	4115	3930	4055	4180	3990	4115	4240	mV
V _{OL}	Output LOW Voltage ⁽³⁾		3065	3190	3315	3130	3255	3380	3190	3315	3440	mV
V _{IH}	Input HIGH Voltage (Single-Ended)		3790	_	4115	3855	_	4180	3915	_	4240	mV
V _{IL}	Input LOW Voltage (Single-Ended)		3065	_	3390	3130	_	3455	3190	_	3515	mV
V _{BB}	Output Voltage		3490	3590	3690	3555	3655	3755	3615	3715	3815	mV
V _{IHCMR}	Input HIGH Voltage ⁽⁴⁾ Common Mode Range (Differential)		2.0	_	V _{CC}	2.0	_	V _{CC}	2.0	_	V _{CC}	V
I _{IH}	Input HIGH Current		_	_	150		_	150		_	150	μΑ
I _{IL}	Input LOW Current	CLK /CLK	0.5 -150	_	_	0.5 -150	_	_	0.5 -150	_ _		μΑ

- **Note 1.** 10EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and traverse airflow greater than 500lfpm is maintained.
- Note 2. Input and output parameters vary 1:1 with V_{CC}.
- Note 3. All loading with 50Ω to V_{CC} –2.0V.
- Note 4. The V_{IHCMR} range is referenced to the most positive side of the differential input signal.

(10EP) ECL/LVECL DC ELECTRICAL CHARACTERISTICS⁽¹⁾

 $V_{CC} = 0V$; $V_{FF} = -3.3V$ to 5.0V $\pm 10\%^{(2)}$

			$T_A = -40^\circ$	С		T _A = +25°	C C	1	Γ _A = +85°	C	
Symbol	Parameter	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Unit
I _{EE}	Power Supply Current		_	37	_	30	37	_	_	37	mA
V _{OH}	Output HIGH Voltage ⁽³⁾	-1135	-1010	-885	-1070	-945	-820	-1010	-885	-760	mV
V _{OL}	Output LOW Voltage ⁽³⁾	-1935	-1810	-1685	-1870	-1745	-1620	-1810	-1685	-1560	mV
V _{IH}	Input HIGH Voltage (Single-Ended)	-1210	_	-885	-1145	_	-820	-1085	_	-760	mV
V _{IL}	Input LOW Voltage (Single-Ended)	-1935	_	-1610	-1870	_	-1545	-1810	_	-1485	mV
V _{BB}	Output Voltage	-1510	-1410	-1310	-1445	-1345	-1245	-1385	-1285	-1185	mV
V _{IHCMR}	Input HIGH Voltage ⁽⁴⁾ Common Mode Range (Differential)	V _{EE}	+2.0	0.0	V _{EE} .	+2.0	0.0	V _{EE}	+2.0	0.0	V
I _{IH}	Input HIGH Current	_	_	150		_	150	_		150	μΑ
I _{IL}	Input LOW Current CL /CL				0.5 -150			0.5 -150		_	μА

- **Note 1.** 10EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and traverse airflow greater than 500lfpm is maintained.
- Note 2. Input and output parameters vary 1:1 with V_{CC} .
- **Note 3.** All loading with 50Ω to $V_{CC} 2.0V$.
- Note 4. V_{IHCMR} (min) varies 1:1 with V_{EE} . The V_{IHCMR} range is referenced to the most positive side of the differential input signal.

(100EP) LVPECL DC ELECTRICAL CHARACTERISTICS(1)

 $V_{CC} = +3.3V \pm 10\%; V_{EE} = 0V^{(2)}$

			ī	$\Gamma_{A} = -40^{\circ}$	С	-	Γ _A = +25°	C	1	$\Gamma_{A} = +85^{\circ}$	С	
Symbol	Parameter		Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Unit
I _{EE}	Power Supply Current			_	37	_	30	37	_	_	42	mA
V _{OH}	Output HIGH Voltage ⁽³⁾		2155	2280	2405	2155	2280	2405	2155	2280	2405	mV
V _{OL}	Output LOW Voltage ⁽³⁾		1355	1480	1605	1355	1480	1605	1355	1480	1605	mV
V _{IH}	Input HIGH Voltage (Single-Ended)		2075	_	2420	2075	_	2420	2075	_	2420	mV
V _{IL}	Input LOW Voltage (Single-Ended)		1355	_	1675	1355	_	1675	1355	_	1675	mV
V_{BB}	Output Voltage		1775	1875	1975	1775	1875	1975	1775	1875	1975	mV
V _{IHCMR}	Input HIGH Voltage ⁽⁴⁾ Common Mode Range (Differential)		2.0	_	V _{CC}	2.0	_	V _{CC}	2.0	_	V _{CC}	V
I _{IH}	Input HIGH Current			_	150	_	_	150		_	150	μΑ
I _{IL}	Input LOW Current	CLK /CLK	0.5 -150			0.5 -150			0.5 -150			μΑ

- **Note 1.** 100EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and traverse airflow greater than 500lfpm is maintained.
- Note 2. Input and output parameters vary 1:1 with V_{CC}.
- Note 3. All loading with 50Ω to V_{CC} -2.0V.
- $\textbf{Note 4.} \quad \text{The V}_{\text{IHCMR}} \text{ range is referenced to the most positive side of the differential input signal.}$

(100EP) PECL DC ELECTRICAL CHARACTERISTICS(1)

 $V_{CC} = +5.0V \pm 10\%; V_{EE} = 0V^{(2)}$

			1	$\Gamma_{A} = -40^{\circ}$	С		T _A = +25°	C	1	$\Gamma_A = +85^{\circ}$	С	
Symbol	Parameter		Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Unit
I _{EE}	Power Supply Current		_	_	37	_	30	37	_	_	42	mA
V _{OH}	Output HIGH Voltage ⁽³⁾		3855	3980	4105	3855	3980	4105	3855	3980	4105	mV
V _{OL}	Output LOW Voltage ⁽³⁾		3055	3180	3305	3055	3180	3305	3055	3180	3305	mV
V _{IH}	Input HIGH Voltage (Single-Ended)		3775	_	4120	3775	_	4120	3775	_	4120	mV
V _{IL}	Input LOW Voltage (Single-Ended)		3055	_	3375	3055	_	3375	3055	_	3375	mV
V _{BB}	Output Voltage		3475	3575	3675	3475	3575	3675	3475	3575	3675	mV
V _{IHCMR}	Input HIGH Voltage ⁽⁴⁾ Common Mode Range (Differential)		2.0	_	V _{CC}	2.0	_	V _{CC}	2.0	_	V _{CC}	V
I _{IH}	Input HIGH Current			_	150	_	_	150	_	_	150	μΑ
I _{IL}	Input LOW Current	CLK /CLK	0.5 -150			0.5 -150			0.5 -150			μΑ

- **Note 1.** 100EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and traverse airflow greater than 500lfpm is maintained.
- Note 2. Input and output parameters vary 1:1 with V_{CC} .
- Note 3. All loading with 50Ω to V_{CC} -2.0V.
- Note 4. The V_{IHCMR} range is referenced to the most positive side of the differential input signal.

(100EP) ECL/LVECL DC ELECTRICAL CHARACTERISTICS(1)

 $V_{CC} = 0V$; $V_{EE} = -3.3V$ to $-5.0V \pm 10\%^{(2)}$

			T	_A = -40°	С		Γ _A = +25°	С	1	T _A = +85°	С	
Symbol	Parameter		Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Unit
I _{EE}	Power Supply Current		_	_	37	_	30	37	_	_	42	mA
V _{OH}	Output HIGH Voltage ⁽³⁾		-1145	-1020	-895	-1145	-1020	-895	-1145	-1020	-895	mV
V _{OL}	Output LOW Voltage ⁽³⁾		-1945	-1820	-1695	-1945	-1820	-1695	-1945	-1820	-1695	mV
V _{IH}	Input HIGH Voltage (Single-Ended)		-1225	_	-880	-1225	_	-880	-1225	_	-880	mV
V _{IL}	Input LOW Voltage (Single-Ended)		-1945	_	-1625	-1945	_	-1625	-1945	_	-1625	mV
V _{BB}	Output Voltage		-1525	-1425	-1325	-1525	-1425	-1325	-1525	-1425	-1325	mV
V _{IHCMR}	Input HIGH Voltage ⁽⁴⁾ Common Mode Range (Differential)		V _{EE}	+2.0	0.0	V _{EE} -	+2.0	0.0	V _{EE}	+2.0	0.0	V
I _{IH}	Input HIGH Current				150	_	_	150	_	_	150	μΑ
I _{IL}		CLK CLK	0.5 -150			0.5 -150			0.5 -150	_	_	μА

- **Note 1.** 100EP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and traverse airflow greater than 500lfpm is maintained.
- Note 2. Input and output parameters vary 1:1 with V_{CC} .
- **Note 3.** All loading with 50Ω to V_{CC} –2.0V.
- Note 4. V_{IHCMR} (min) varies 1:1 with V_{EE} . The V_{IHCMR} range is referenced to the most positive side of the differential input signal.

TIMING DIAGRAM

AC ELECTRICAL CHARACTERISTICS(1)

NECL: $V_{CC} = 0V$, $V_{EE} = -3.3V$ to $-5.0V \pm 10\%$; PECL: $V_{EE} = 0V$, $V_{CC} = +3.3V$ to $+5.0V \pm 10\%$

		1	$T_A = -40^{\circ}C$			Γ _A = +25°	C.	1			
Symbol	Parameter	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Unit
f _{MAX}	Maximum Frequency ⁽³⁾	4	_	_	4	_	_	4	_		GHz
t _{PLH} t _{PHL}	Propagation Delay to Output Differential RESET, CLK → Q, /Q	250	330	420	260	275	430	280	400	440	ps
t _{RR}	Set/Reset Recovery	200	_	_	200	100	_	200	_	_	ps
t _{PW}	Minimum Pulse Width RESET	550	_	_	550	200	_	550	_	_	ps
t _{JITTER}	Cycle-to-Cycle RMS Jitter ⁽²⁾	_	0.2	< 1	_	0.2	< 1	_	0.2	< 1	ps(rms)
V _{PP}	Input Voltage Swing (Differential)	150	800	1200	150	800	1200	150	800	1200	mV
t _r	Output Rise/Fall Times Q, /Q (20% to 80%)	50	100	150	50	100	160	50	100	160	ps

- Note 1. Measured using a 750mV source, 50% duty cycle clock source. All loading with 50 Ω to V_{CC} –2.0V.
- Note 2. See Figure 1. f_{MAX} Jitter below.
- Note 3. f_{MAX} guaranteed for functionality only. V_{OL} and V_{OH} levels are guaranteed at DC only.

Figure 1. $f_{\mbox{\scriptsize MAX}}$ and RMS Jitter

8 LEAD MSOP (K8-1)

0.55 ±0.15 (0.022±0.006)

4. +2.

DETAIL A

Rev. 01

8 LEAD SOIC .150" WIDE (Z8-1)

MICREL, INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA

TEL + 1 (408) 944-0800 FAX + 1 (408) 474-1000 WEB http://www.micrel.com

The information furnished by Micrel in this datasheet is believed to be accurate and reliable. However, no responsibility is assumed by Micrel for its use.

Micrel reserves the right to change circuitry and specifications at any time without notification to the customer.

Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser's use or sale of Micrel Products for use in life support appliances, devices or systems is at Purchaser's own risk and Purchaser agrees to fully indemnify Micrel for any damages resulting from such use or sale.

© 2005 Micrel, Incorporated.