Financial Costs of Children, Education Subsidies, and Parental Choices in Equilibrium

Kanato Nakakuni

University of Tokyo

November 2023

1. Introduction

- 2. Background
- 3. Model
- 4. Calibration
- 5. Numerical Analysis
- 6. Literature
- 7. Conclusion
- 8. Appendix

Low Fertility and Pro-natal Policies

Low fertility has driven the recent rise of pro-natal policies in many countries.

- Japan is one of the lowest-fertility countries.
 - Total fertility rate: 1.26, far below the replacement level ($\simeq 2$).
- Suggestive observations (detailed in next section):
 - Financial costs, esp. those for college education, are a key obstacle in JPN.
- Grant-type scholarships for college students have garnered attention and were recently introduced as a pro-natal measure.
- It is unconventional as a pro-natal one, little is known about its consequences. Previous: cash benefits (Kim et al., 2023), in-kind (Bick, 2016), both (Zhou, 2022), parental leave (Erosa et al., 2010).

- 1. Does it increase fertility?
 - In the short run, the answer is probably "yes."
 - Suggestive evidence from empirical studies: reducing the financial costs of children increases fertility. e.g.) Milligan (2005, REStat), Cohen et al. (2013, REStat), Malkova (2018, REStat), etc.
 - In the long run, it may not be the case.
 - Composition effects: Educated parents tend to have fewer children.
 - Taxation effects: That policy requires an additional tax burden.

- 1. Does it increase fertility?
- 2. What are the impacts on the other macro variables? (e.g., education, output)
 - Can be "two birds with one stone" (fertility ↑ + human capital ↑)

- 1. Does it increase fertility?
- 2. What are the impacts on the other macro variables? (e.g., education, output)
- 3. Do the macro implications depend on its target? How different are they?
 - Income-tested/Ability-tested/Unconditional
 - Differences from typical pro-natal transfers (e.g., baby bonuses, child benefits)

- 1. Does it increase fertility?
- 2. What are the impacts on the other macro variables? (e.g., education, output)
- 3. Do the macro implications depend on its target? How different are they?
- \Rightarrow Need for a structural (equilibrium) model with fertility and education choices.

This Paper

- Constructs an incomplete market GE-OLG model:
 - + Fertility + College enrollment + Inter-vivo transfers (IVT) choices.
- Calibrates the model to the Japanese economy using household panel data.
- Validates if the model implies reasonable fertility behavior.
 - The benefit elasticity of fertility (comparison with empirical estimates).
- Examines the macro effects of the grants for college students.

Main Results

- 1. Does it increase fertility (esp. in the long run)?
 - Yes. The introduced grants increase the TFR by 3% via insurance effects.
 - But its eligibility expansion does not increase the TFR further as it **increases** the expected costs of children for some households due to the higher probability of children attending college.
- 2. What are the impacts on the other macro variables?
 - College enrollment rate: 4 p.p. \uparrow . Output: $0.7\% \uparrow$.
 - Fertility margins **amplify** the policy impacts on these variables in the long run.
- 3. How different are the macro effects, depending on its target?
 - Income-tested ones lead to higher fertility (insurance effects are key).
 - Targeting college students can lead to higher fertility and greater output.

- 1. Introduction
- 2. Background
- 3. Model
- 4. Calibration
- 5. Numerical Analysis
- 6. Literature
- 7. Conclusion
- 8. Appendix

Financial costs are a key obstacle to fertility

Non-negligible gap between the "ideal" and "planned" numbers of children. Why? ⇒ "Financial" reason: "Child-raising and education are too expensive."

Figure: Reasons for the gap between the ideal and planned numbers of children by wife's age (NFS, 2015).

Japan's fewer subsidization in tertiary education

- Japan subsidizes a sizable fraction of schooling costs up to secondary education,
- but not for tertiary education, the 2nd lowest in OECD.

Figure: Subsidization rate for each education category (OECD, 2018).

A significant cost gap (HS grad. vs. CL grad.)

Sending a child to college makes a significant jump in total education costs.

Figure: Cumulative education-expenditures. Sources: the SCLE (2021) and the SLS (2018) by the MEXT.

Desired education for children

More than 75% of parents desire a college education for their children.

- College education costs are relevant for most of the parents.

Figure: Wives' intention for children's education attainment (NFS, 2015).

Background: Summary

- Suggestive observations:
 - Financial costs, esp. those for college education, are critical.
- Grant-type scholarship for college students has garnered significant attention.
 - Grants were introduced in 2020 with some income tests.
 - Its eligibility expansion has been actively discussed recently.

- 1. Introduction
- 2. Background
- 3. Model
- 4. Calibration
- 5. Numerical Analysis
- 6. Literature
- 7. Conclusion
- 8. Appendix

Model

Model with fertility choices otherwise standard in (Macro) education literature. Krueger and Ludwig (2016, JME), Abbott et al. (2019, JPE), Matsuda and Mazur (2022, JME), etc.

- Incomplete market GE-OLG framework.
- Production: allows for the imperfect substitutability b/w skilled and unskilled.
- Government subsidizes CL enrollment according to a grant function g(h, I).
- Standard lifecycle + Education + IVT + Fertility

 Literature standard

Production Technology

A representative firm operates with the Cobb-Douglus production technology:

$$Y = ZK^{\alpha}L^{1-\alpha},$$

where

$$L = \left[\omega_{HS} \cdot (L_{HS})^{\chi} + \omega_{CL} \cdot (L_{CL})^{\chi}\right]^{1/\chi}.$$

• L_e : total efficiency labor with skill $e \in \{HS, CL\}$.

Lifecycle

Lifecycle

Lifecycle

Education choices

Born Grad.HS
$$j = 0 \quad j = 18$$

$$Enroll \quad Fertility \quad IVT \quad Retirement \quad Death \quad j = 30 \quad j = 48 \quad j = 66 \quad j = 104$$

$$Grad.CL \quad j = 22$$

Three factors (IG linkages) influence their college enrollment decisions:

- 1. IVTs made by their parents (a_{CL}) .
- 2. Psychic costs of education $(\phi \sim g_{h.e_n}^{\phi})$.
- 3. Their human capital $(h \sim g_{h_p}^h)$.

Budget constraints: college students

Expenditures:

- Tuition fees p_{CL} (exogenous)
- Living expenses c (endogenous/choice)

Revenue:

- Transfers from their parents a_{CL} (parent's choice).
- Labor earnings by themselves (endogenous/choice).
- Loans/Grants provided by the government, depending on h and I.

Education choices

$$V_{g0}(a_{IVT}, \phi, h, I) = \max_{e \in \{0,1\}} \left\{ (1 - e) \cdot \mathbb{E}_{z_0} \left[\underbrace{V^w(a_{IVT}, j = 18, z_0; e = 0, h)}_{\text{Value for high school graduates}} + e \cdot \left[\underbrace{V_{g1}(a_{IVT}; h, I) - \phi}_{\text{Net value for college graduates}} \right] \right\}, \tag{1}$$

where e = 1 represents enrolling in college.

▶ Value functions

Fertility and IVT choices

Inter-vivo transfers

$$V^{IVT}(a, z; \phi_k, h_k, e, h, n) = \max_{c, l, a', a_{IVT}} \left\{ V^w(a - \tilde{a}_{IVT}, j = J_{IVT}, z; e, h) + b(n) \cdot \lambda_a \cdot V_{g0}(a_{IVT}, \phi_k, h_k, I) \right\}$$
s.t.
$$(1 + \tau_c)c + a' + n \cdot a_{IVT} = Y_{IVT},$$

$$a' \ge -\underline{A},$$

where $\tilde{a}_{CL} = \frac{n \cdot a_{CL}}{1 + (1 - \tau)r}$, $I = I(J_{IVT}, z, e, h)$, and Y_{IVT} is the disposable income.

Fertility choices and working stage with children I

The value function at age $j = J_f$:

$$V^{f}(a, z, e, h) = \max_{n \in \{0, 1, \dots, N\}} \left\{ V^{wf}(a, j = J_F, z; e, h, n) \right\}$$

where, for $i = J_F, ..., J_{IVT} - 1$,

$$V^{wf}(a, j, z; e, h, n) = \max_{c, l, q, a'} \{ u(c/\Lambda(n), l) + b(n) \cdot v(q) + \begin{cases} \beta \mathbb{E}_{z'}[V^{wf}(a', j+1, z'; e, h, n)] & \text{if } j < J_{IVT} - 1 \\ \beta \mathbb{E}_{z', \phi_k, h_k}[V^{IVT}(a', z'; \phi_k, h_k, e, h, n)] & \text{if } j = J_{IVT} - 1 \end{cases}$$

s.t.

$$(1 + \tau_c)(c + \mathbf{n} \cdot \mathbf{q}) + a' = Y_{wf},$$

$$a' > -A.$$

Fertility choices and working stage with children II

where

$$Y_{wf} \equiv (1 - \tau_w) w_e \eta_{j,z,e,h} (1 - l - \kappa \cdot n)$$

$$+ n \cdot B + \psi + \begin{cases} (1 + (1 - \tau_a)r)a & \text{if } a \ge 0, \\ (1 + r^-)a & \text{otherwise.} \end{cases}$$

- 1. Introduction
- 2. Background
- 3. Model
- 4. Calibration
- 5. Numerical Analysis
- 6. Literature
- 7. Conclusion
- 8. Appendix

Data

The Japanese Panel Survey of Consumers (JPSC)

- Panel survey of women and their household members.
- Starts in 1993 with 1,500 women aged 24-34.

Sample selection:

- Birth cohort: 1959-69
- Married (1993-2020)

Grants for college students

- As before 2020, I set g(h, I) = 0 for any (h, I) in the benchmark,
- and examine the effects of the introduction using the calibrated model.

Preferences

Instantaneous utility for students and adults:

$$u(c,l) = \frac{(c^{\mu}l^{1-\mu})^{1-\gamma}}{1-\gamma}$$

Instantaneous utility from education spending on children:

$$v(q) = \lambda_q \frac{q^{1-\gamma_q}}{1-\gamma_q}$$

The discount function b(n) takes a non-parametric form (i.e., $b(n) = b_n$).

School taste

- Psychic costs ϕ are given as $\phi = \psi_{CL} \cdot \exp(-h) \cdot \tilde{\phi}$.
 - ψ_{CL} governs the college enrollment rate at the initial steady state.
 - $\tilde{\phi}$ is distributed on [0,1].
- As in Daruich and Kozlowski (2020), the CDF for $\tilde{\phi}$ is given as

$$G_{e^p}^{\tilde{\phi}} = \begin{cases} \tilde{\phi}^{\omega} & \text{if } e^p = 0\\ 1 - (1 - \tilde{\phi})^{\omega} & \text{if } e^p = 1 \end{cases}$$

- Target for ψ_{CL} : the college enrollment rate (37.7%).
- Target for ω : intergenerational transition matrix of education.

Internally determined

Parameter	Value	Moment	Data	Model
μ	0.23	Work hours	0.33	0.30
$rac{\mu}{ar{t}}$	0.8	Income share of labor earnings	0.20	0.17
ι_s	0.055	Share of students using loans	0.44	0.34
ι	0.054	Household share with negative net worth	0.54	0.45
ω_h	0.52	CL-HS wage ratio	1.36	1.48
ψ	0.01	Var(log disposable income)/Var(log gross income)	0.60	0.68
λ_q	0.62	Average transfer / Average income at age 28	0.07	0.07
λ_a	1.03	Average transfer / Average income at age 28	0.27	0.27
ω	1.71	Intergenerational mobility of education	See Table 1	
σ_h	0.65	Variance of log(income) at age 28	0.27	0.24
ψ_{CL}	20.8	College enrollment rate	0.377	0.376
α_{CL}	0.1	Log wage ratio (CL-HS) at age 28	0.34	0.38
β_{CL}	0.1	Var log wage for CL at age 28	0.14	0.24
b_1	0.49	Share of one child	0.16	0.15
b_2	0.53	Share of two children	0.55	0.61
b_3	0.55	Share of three children	0.22	0.24
b_4	0.56	Share of four or more children	0.02	0.00
Z	1.99	Low skill wage	1.0	1.0

 \bullet Avg. expenditure before HS grad. ($\simeq 7$ M yen) and after CL enrollment ($\simeq 5$ M yen).

Education Mobility

Education status is persistent between parents and children.

Parents/Children	HS	CL
HS	0.725 (0.798)	0.275 (0.202)
CL	0.412 (0.423)	0.588 (0.577)

Table: Intergenerational transition matrix of education in the benchmark. Note: (i, j)—th entry of the matrix indicates the probability that children acquire skill j given that their parent's skill is i. Values in parentheses represent the data counterparts (JPSC).

Validation and Non-targeted Moments

- The benefit elasticity of fertility.
 - 1% increase in cash benefits increases fertility rates by 0.1 0.2%. e.g.) Milligan (2005), Cohen et al. (2013), etc.
 - The benchmark model implies the elasticity of 0.13. Detail
- Fertility differential across education (next page).
- Composition of students' revenue.

(IVT:Labor:Loan $\simeq 0.6:0.2:0.2$)

Fertility differential across education

More (less) educated parents have fewer (more) children.

	Data	Model
HS	2.12	2.25
CL	1.92	1.79

Table: Fertility differential across education in the benchmark.

- 1. Introduction
- 2. Background
- 3. Model
- 4. Calibration
- 5. Numerical Analysis
- 6. Literature
- 7. Conclusion
- 8. Appendix

Road Map

- Examining the effects of the existing income-tested grants.
- Setting the higher income threshold for eligibility.
- Different targets:
 - Income-tested vs. Ability-tested vs. Unconditional
 - Targeting college students vs. Typical pro-natal transfers
- Inspecting the mechanism:
 - Behavioral and distributional effects
 - Roles of endogenous fertility

Introducing Subsidies: What I Do

Consider a grant scheme g(h, I) and solve the equilibrium:

$$g(h, I) = \begin{cases} g & \text{if } I \leq \bar{I} \\ 0 & \text{otherwise} \end{cases}$$

- Threshold $\bar{I} \simeq$ the 15 percentile of income dist.
- Amount $g \simeq 2/3$ of the students' average expenses in the benchmark.
- Government budget balanced by adjusting the labor income tax rate.

Results: Education and Fertility

Education:

- College enrollment rate: 4 p.p. ↑
 - Skill premium (w_{CL}/w_{HS}) : 0.02 points \downarrow
- Educational mobility (HS→CL): 2.5 p.p. ↑

Fertility:

- TFR: 3% ↑
- Largely driven by fertility increases among college graduates.

Misc.: Output: 0.7% ↑ (via greater share of working-age and skilled pop.)

Inspecting the mechanism

Changes in the TFR and college enrollment can be driven by changes in:

- 1. Grant function g(h, I) "Direct effects" (short-run effects)
- 2. Prices (w_{CL}, w_{HS}, r) "GE (Price) effects"
- 3. Tax rate τ_l "Taxation effects"
- 4. Distributions (e.g., college graduates share) "Distributional effects"

(in principle, those effects do not add up to the overall effects)

Decomposition: Fertility

	Direct	GE	Tax	Dist.	All
TFR	+2.3%	+0.9%	0.0	-0.4%	+3.0%
HS	+1.0%	0.0	0.0	0.0	+0.4%
CL	+4.5%	+2.5%	0.0	0.0	+10.7%

Table: Decomposing the effects on fertility.

- GE: CL share $\uparrow \Rightarrow w_{CL} \downarrow \Rightarrow$ Opportunity costs $\downarrow \Rightarrow$ Fertility \uparrow
- Dist.: CL share $\uparrow \Rightarrow$ Fertility \downarrow as skilled parents tend to have fewer children.
- What is a direct effect? Is it equivalent to an income effect? Not necessarily.

Decomposition: Fertility

- Note: HHs do not know whether eligible when making fertility choices.
 - A key source of uncertainty: income shocks (z).
- Some skilled parents, whose children are ex-post ineligible, increase fertility.
 - \Rightarrow The grants serve as partial insurance against the risks of having a child.

Grants As Insurance For Parents

- Children as "consumption commitments": Santos and Weiss (2016), Sommer (2016).
 - Irreversible and force parents to spend required amounts of resources.
 - \Rightarrow Income volatility makes parents tend to have fewer children.
- Children of skilled parents are more likely to (be willing to) attend college.
 - Expected costs of children are higher for skilled parents.
 - \Rightarrow They benefit more from the insurance, and their fertility responds strongly.

Expansion: What I Do

Raise the threshold for the grant eligibility to cover students in middle-income HHs.

• Threshold \simeq the x(>15) percentile of income dist.

Expansion: Results

	<u>Threshold</u>			
	15%	40%	50%	60%
CL share $(\Delta \text{ p.p.})$	+3.9	+4.7	+5.6	+6.2
Output $(\Delta\%)$	+0.70	+0.15	+1.07	+1.53
$Tax(\Delta p.p.)$	+0.04	+0.17	+0.23	+0.30

Table: Main results of higher income thresholds.

- College enrollment rate, output, and tax rate all increase with the expansion.
- But this is not the case for the average fertility (next page).

Expansion: Fertility

Fertility Decomposition: Case of Threshold = 60%

High-school-graduate parents: Direct and GE effects explain the fertility decline.

- Higher education mobility \Rightarrow Higher expected costs of children \Rightarrow Fertility \downarrow
- CL share $\uparrow \Rightarrow w_{HS} \uparrow \Rightarrow$ Opportunity costs $\uparrow \Rightarrow$ Fertility \downarrow

Roles of endogenous fertility

So far, we have focused on the policy effects on fertility.

• What are the implications of the fertility responses for other macro variables?

Procedure:

- Solve the equilibrium with each program under exogenous fertility.
- Policy functions for fertility are fixed as in the benchmark.

Exogenous fertility

Considering fertility responses implies:

- Higher college enrollment rates (via hetero. effects on fertility + IG linkages)
- Greater output (via greater share of working-age and skilled pop.)
 - \Rightarrow Fertility margins amplify the effects in the long run.
- Lower tax rate (via greater tax base)

Moments/Threshold	15%	40%	50%	60%
CL share $(\Delta p.p.)$	+3.4 (+3.9)	+3.9 (+4.7)	+4.7 (+5.6)	+5.2 (+6.2)
Output $(\Delta\%)$	+0.65 (+0.70)	+0.55 (+0.15)	+0.85 (+1.07)	+1.23 (+1.53)
$Tax (\Delta p.p.)$	+0.14 (+0.04)	+0.36 (+0.17)	+0.37 (+0.23)	+0.40 (+0.30)

Table: Values in parentheses represent the results under endogenous fertility.

Different macro effects with different target

Consider the following schemes with an expenditure-neutral way:

- Income-tested (the existing scheme).
- +Ability test: for those with I ≤ Ī and h ≥ h:
 h is arbitrarily set to the median of the students' ability dist. in the benchmark.
- Unconditional ($\simeq 1/10$ of students' average expenses)
- Increasing cash benefits to households with children under 18 (6.5% \uparrow).

Results

	Income	+Ability	Uncond.	Cash
CL share $(\Delta p.p.)$	+3.9	+2.6	+5.1	+0.0
TFR $(\Delta\%)$	+3.0	+2.7	+0.4	+1.0

Table: Main results with several schemes with different targets. *Note*: values in each cell indicate changes from the benchmark value.

- Income-tested ones lead to higher fertility (insurance effects are a key).
- Targeting college students can lead to higher fertility and greater output.

- 1. Introduction
- 2. Background
- 3. Model
- 4. Calibration
- 5. Numerical Analysis
- 6. Literature
- 7. Conclusion
- 8. Appendix

Literature

(1) Fertility choices in incomplete market models:

Schoonbroodt and Tertilt (2014, JET), Santos and Weiss (2016, IER), Sommer (2016, JME), etc.

- This paper: Income volatility + Uncertainty about children's characteristics.
- The education subsidies would provide insurance against those multiple sources of uncertainty and increase fertility.

(2) Education subsidies for college students in macro models:

Benabou (2002, Ecta), Krueger and Ludwig (2016, JME), Abbott et al. (2019, JPE), Matsuda and Mazur (2022, JME).

- This paper: + Fertility choices
- Fertility margins amplify the effects on other macro variables.

Literature

(3) Macro effects of pro-natal policies:

Erosa et al. (2010, RED), Hagiwara (2021), Zhou (2022), Kim et al. (2023), Nakakuni (2023), etc.

- This paper: + Education choice (its discreteness matters to fertility choices),
- and investigates the effects of grants for college students on fertility.

(4) Macro models with fertility choices:

De la Croix and Doepke (2003, AER), De la Croix and Doepke (2004, JPubE), Daruich and Kozlowski (2020, RED), etc.

- This paper: + Full lifecycle + GE + uninsurable shocks + IG linkages,
- all crucial to studying the effects of grants for college students.

- 1. Introduction
- 2. Background
- 3. Model
- 4. Calibration
- 5. Numerical Analysis
- 6. Literature
- 7. Conclusion
- 8. Appendix

Conclusion |

- 1. Does it increase fertility?
 - Yes. The introduced grants increase the TFR by 3% via insurance effects.
 - But its eligibility expansion does not increase the TFR as it increases the expected costs of children for some households due to the higher probability of children attending college.
- 2. What are the impacts on the other macro variables?
 - College enrollment rate: 4 p.p. \uparrow . Output: $0.7\% \uparrow$.
 - Fertility margins amplify the policy impacts on these variables.
- 3. How different are the macro effects, depending on its target?
 - Income-tested ones lead to higher fertility (insurance effects are key).
 - Targeting college students can lead to higher fertility and greater output.

- 1. Introduction
- 2. Background
- 3. Model
- 4. Calibration
- 5. Numerical Analysis
- 6. Literature
- 7. Conclusion
- 8. Appendix

Data

The National Fertility Survey:

- Conducted almost every five years by the IPSS.
- Survey questions regarding marriage, childbirth, and child-raising.
- married couples and singles.

Sample selection:

- Year: 2015 (latest among available)
- Married couples.
- Age (wife): 25 39.

Ideal and planned number of children

Figure: Distribution of ideal and planned number of children.

Preliminaries

- Technology
- Demographics
- Preferences
- Labor income
- Financial markets
- Government

Demographics

- The size of new cohort grows at rate g_n .
 - g_n is determined enodgenously.
- Mortality risks after retirement.
 - $\zeta_{j,j+1}$: Survival probability at age j+1 conditional on surviving until age j.
- g_n and $\{\zeta_{j,j+1}\}_{j\geq J_R}$ pin down the age distribution μ_j .

|Preferences

- Households draw utility from consumption c and leisure l according to u(c, l).
- If they have children under 18 (before completing HS), they further draw utility from the "quantity and quality" of children according to $b(n) \cdot v(q)$:
 - n: the number of children.
 - b(n): increasing in $n \in \{0, 1, ..., N\}$ and concave. i.e., marginal utility gains from having additional child diminishes as n increases.
 - q: spending on children's quality.
 - Caveat: the spending does not affect children's human capital.

Preference: IVT

Utility from the IVT for households with n children is given as follows:

$$\underbrace{b(n) \cdot \lambda_a}_{\text{Discounting}} \cdot \underbrace{V_{g0}\big(a_{CL}, \phi_k, h_k, I\big)}_{\text{Value function for children}} \,.$$

Labor income

- Gross labor income is determined by:
 - 1. equilibrium wage rates w_e varying with skill (education levels) e,
 - 2. productivity $\eta_{j,z,e,h}$,
 - 3. hours worked.
- The productivity $\eta_{j,z,e,h}$ depends on:
 - 1. age j,
 - 2. skill e,
 - 3. human capital h,
 - 4. a stochastic component $z \sim \pi(z' \mid z)$.

Financial Markets

- Incomplete market: households can trade only claims for risk-free bonds.
- Households face debt limits that vary over the life-cycle:
 - (1) eligible college students and (2) households aged $j < (J_R 1)$ can borrow.
 - $r^s = r + \iota_s \text{ for } (1).$
 - $r^- = r + \iota \text{ for } (2).$
 - Retired households cannot.

Government: revenue

- Consumption tax: τ_c
- Capital income tax: τ_a
- Labor income tax: τ_w
- ullet Accidental bequests: Q

Government: expenditures

- Public pension: p per household
- Cash benefits for households with children under 17: B per child
- Lump-sum transfers ψ to generate the progressivity for τ_w .
- Education subsidies/loans for college students.
- The other expenditures: S

Financial aid for college students

Grants g(h, I):

- Eligibility and payments can depend on:
 - 1. student' human capital (a proxy of "ability"),
 - 2. household income (I).
- No grants in the benchmark.

Loans:

- Eligible students can access to the subsidized loans with interest rate $r^s \leq r^-$.
- Eligibility is determined by (h, I).
- Government incurs the costs implied by the wedge $b/w r^-$ and r^s .

Government Budget Constraint

$$\tau_c \cdot C + \tau_w \cdot (L_{HS} + L_{CL}) + \tau_a \cdot K + Q = p \cdot \mu_{old} + (\iota - \iota_s) \cdot K_s + G + \psi + B \cdot \mu_{j \le 17} + S, \quad (2)$$

- C: total consumption,
- Q: total accidental bequests,
- μ_{old} : population mass of retired households,
- $\mu_{j \le 17}$: population mass of children under age 17,
- K_s : total amount of borrowing by college students,
- μ_{es} : mass of students eligible for the grants.

Budget constraint for IVT choices

$$(1 + \tau_c)c + a' + na_{IVT} = Y_{IVT},$$

$$a' \ge -\underline{A},$$

where

$$Y_{IVT} \equiv (1 - \tau_w) w_e \eta_{j,z,e,h} (1 - l) + \psi + \begin{cases} (1 + (1 - \tau_a)r)a & \text{if } a \ge 0, \\ (1 + r^-)a & \text{otherwise.} \end{cases}$$

Value functions for college students

$$V_{g1}(a_{IVT}; h, I) = \max_{c,l,a'} \{ u(c, l) + \beta V_{g2}(a'; h, I) \},$$

$$V_{g2}(a; h, I) = \max_{c,l,a'} \{ u(c, l) + \beta \mathbb{E}_{z_0} [V^w(a^s(a'), j = 22, z_0; e = 1, h)] \}.$$

Budget constraints for college students

$$a^{s}(a') = a' \times \frac{r^{s}}{1 - (1 + r^{s})^{-10}} \times \frac{1 - (1 + r^{-})^{-10}}{r^{-}}.$$

Eligible to loans:

$$(1 + \tau_c)c + p_{CL} + a'$$

$$- (1 - \tau_w)w_{HS}(1 - \bar{t} - l) - \psi - g(h, I) = \begin{cases} (1 + (1 - \tau_a)r)a & \text{if } a \ge 0, \\ (1 + r^s)a & \text{otherwise.} \end{cases}$$

$$a' > -A_c.$$
(3)

The rest:

$$(1 + \tau_c)c + p_{CL} + a' = (1 + (1 - \tau_a)r)a + (1 - \tau_w)w_{HS}(1 - \bar{t} - l) + \psi + g(h, I),$$

 $a' > 0.$

$$V^{w}(a, j, z; e, h) = \max_{c,l,a'} \{u(c, l)$$

$$+ \begin{cases} \beta \mathbb{E}_{z'}[V^{f}(a', z', e, h)] & \text{if } j = J_{F} - 1 \\ \beta [V^{r}(a', j + 1)] & \text{if } j = J_{R} - 1 \end{cases}$$

$$+ \begin{cases} \beta \mathbb{E}_{z'}[V^{w}(a', j + 1, z'; e, h)] & \text{otherwise} \end{cases}$$

$$\text{s.t.}$$

$$(1 + \tau_{c})c + a' = (1 - \tau_{w})w_{e}\eta_{j,z,e,h}(1 - l) + \psi + (1 + (1 - \tau_{a})r)a,$$

$$z' \sim \pi(z', z),$$

$$a' \geq \begin{cases} 0 & \text{if } j = J_{R} - 1, \\ -\underline{A} & \text{otherwise.} \end{cases}$$

$$(5)$$

Retirement stage

$$V^{r}(a, j; e) = \max_{c, a'} u(c, 1) + \beta \xi_{j, j+1} V^{r}(a', j+1; e)$$
s.t.
$$(1 + \tau_{c})c + a' = p + (1 + (1 - \tau_{a})r)a + \psi,$$

$$a' \ge 0 \ (a' = 0 \text{ when } j = J).$$

Financial markets

Targets for

- ι : share of negative net worth,
- ι_s : share of students borrowing

Borrowing limits are set outside the model:

- \underline{A}_s : 2.88 million yen.
- \underline{A} : 20 million yen.

Intergenerational transmission of human capital

• The initial draw of human capital:

$$\log(h) = \rho_h \log(h_p) + \varepsilon_h,$$

$$\varepsilon_h \sim N(0, \sigma_h).$$

- $\rho_h = 0.19$ following Daruich and Kozlowski (2020).
- Target for σ_h : Variance of log(income) at age 28-29.

Income Process

• Labor productivity $\eta_{j,z,e,h}$:

$$\log \eta_{j,z,e,h} = \log f^{e}(h) + \gamma_{j,e} + z$$
$$z' = \rho_{z}z + \zeta, \quad \zeta \sim N(0, \sigma_{z}).$$

• $\gamma_{i,e}$: estimate the second-order polynomial of hourly wages on age.

Education returns

• Consider the following human-capital production function of the non-linear form:

$$f^e(h) = h + e \cdot (\alpha_{CL} h^{\beta_{CL}})$$

- Target for α_{CL} : Log(wage) ratio (CL $-\leq$ CL) at age 28-29 (0.34).
- Target for β_{CL} : Variance of log(wage) for college grad. workers (0.14).

Production

- $\chi = 0.39$ following Matsuda and Mazur (2022).
- $\omega_h = 0.52$: to replicate the wage ratio between CL and the rest.
- Z = 1.99: s.t. low skill wage = 1.
- $\alpha = 0.33$.
- $\delta = 0.07$ (annual).

Externally determined

Parameter	Value	Description
\underline{A}_s	2.88 million yen	Borrowing limit for students
<u>A</u>	20 million yen	Borrowing limit
p_{CL}	1.05 million yen/year	Tuition fees
κ	0.044	Time costs
$\xi_{j,j+1}$	=	survival prob.
$ au_c$	0.10	Consumption tax
$ au_a$	0.35	Capital income tax
$ au_w$	0.35	Labor income tax
p	$\pm 160,000/\text{month}$	Pension benefits
b	$\pm 10,000/\text{month}$	Cash transfers
α	0.33	Capital share
δ	0.07	Depreciation rate
χ	0.39	Elasticity of substitution
$ ho_z$	0.95	Persistence
σ_z	0.02	Transitory
ν	1	Education sorting by ability
γ	0.5	Curvature
β	0.98	Discount factor
ρ_h	0.19	Transmission of h

Wage age-profile

	College graduates	The rest
Age	0.048	0.041
$Age^2 \times 10,000$	-5.364	-4.551

Table: Wage age-profile

Validation: Fertility elasticity

- Set the per-child payment $B = B_0 \cdot X$ where $X \in \{1.1, 1.2, ..., 3.0\}$.
- Solve the household decisions with particular X and compute the TFR.
- Compute the implied elasticity for each X, denoted by ξ_X .
- After having $\{\xi_X\}_X$, compute the average elasticity $\bar{\xi}_X$.

Introducing Subsidies: Aggregate Quantity

- Efficiency labor (per-capita): 1.3% ↑
 - Higher CL share \Rightarrow Larger share of skilled workers.
 - Higher TFR \Rightarrow Larger working-age population share.
- Capital (per-capita): 1.8% ↓
 - Reduce saving incentives/Crowd out IVTs.
 - Higher TFR \Rightarrow Larger share of younger generations, who hold fewer assets.
- Output (per-capita): 0.7% ↑

Decomposition: Education

	Direct	Prices	Tax	Dist.	All
CL share $(\Delta \text{ p.p.})$	+2.6	0.0	0.0	+1.9	+4.0

Table: Decomposing the effects on education.

- Direct \Rightarrow The subsidy relaxes the financial constraint (short/long run).
- Dist. ⇒ The effects are amplified in the long run via IG linkages.
 CL share among parents ↑ ⇒ share of children favoring college ↑ ⇒ CL share ↑
- Fertility margins also play roles: College graduates have more children, who are likely to be college graduates.

Fertility Decomposition: Case of Threshold = 60%

	Direct	Prices	Tax	Dist.	All
HS	-0.7%	-1.4%	0.0	0.0	-0.8%
CL	+9.1%	+4.3%	+2.4%	+0.6%	+13.2%

Table: Decomposing the effects on fertility when income threshold = 60%.

