ASD-TDR-62-762
O VOL 1
O
O
O
O

GED BY AS

403 697

AN EXPERIMENTAL INVESTIGATION OF THE SURFACE PRESSURE AND THE LAMINAR BOUNDARY LAYER ON A BLUNT FLAT PLATE IN HYPERSONIC FLOW

Vol I. Surface Pressure Distributions on a Blunted Flat Plate

TECHNICAL DOCUMENTARY REPORT NO. ASD-TDR-62-792, VOLUME I

March 1963

Flight Dynamics Laboratory
Aeronautical Systems Division
Air Force Systems Command
Wright-Patterson Air Force Base, Ohio

Project No. 1366, Task No. 136606

(Prepared under Contract No. AF 33(616)-7827 by
 The Ohio State University, Columbus, Ohio;
 G. M. Gregorek, T. C. Nark, J. D. Lee, authors)

NOTICES

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

Qualified requesters may obtain copies of this report from the Armed Services Technical Information Agency, (ASTIA), Arlington Hall Station, Arlington 12, Virginia.

This report has been released to the Office of Technical Services, U.S. Department of Commerce, Washington 25, D.C., in stock quantities for sale to the general public.

Copies of this report should not be returned to the Aeronautical Systems Division unless return is required by security considerations, contractual obligations, or notice on a specific document.

FOREWORD

This report was prepared by the Aerodynamic Laboratory of the Ohio State University, Columbus, Ohio on Air Force Contract AF 33(616)-7827 under Task 136606 "Hypersonic Boundary Layer Properties" on Project No. 1366 "Aerodynamics and Flight Mechanics". This Task and Project are a part of Air Force System Command's Applied Research Program, 750A, "Mechanics of Flight". The work was administered under the direction of Flight Dynamics Laboratory, Aeronautical Systems Division. Mr. M. L. Buck and Captain H. Grubbs were project engineers for the Laboratory.

The study was initiated in January, 1961, and was completed in August, 1962. The final report is in two volumes: Volume I presents the surface pressure distributions on a blunted flat plate; Volume II presents the laminar boundary layer profiles on the flat plate.

This report concludes the work done by the Aerodynamic Laboratory on Contract AF 33(616)-7827.

ABSTRACT

Pressures were measured over the surface of an unswept blunt flat plate having a cylindrical leading edge 1/2-inc. in diameter under the following conditions:

M = 7	$7500 \le \text{Re}_{D} \le 20,600$	
M = 10	$8300 \le \text{Re}_{D} \le 15,000$ $9000 \le \text{Re}_{D} \le 21,300$	Angles-of-attack $15^{\circ} \le \alpha \le -15^{\circ}$
M = 12	$9000 \le \text{Re}_{D} \le 21,300$	$15^{\circ} \leq \alpha \leq -15^{\circ}$
M = 14	12700 ≤ Re _D ≤ 16,000	

The flat plate was side-mounted in the ALOSU 12-inch continuous hypersonic wind tunnel. Separate tests were conducted with cylinders in order to obtain detailed data for the leading-edge. Stagnation temperatures were sufficiently high to eliminate condensation effects.

The leading-edge and cylinder pressure ratios were noted to be independent of both Mach number and Reynolds number. The flat plate pressure ratios show a small dependence on Mach number. Reynolds number effects on the plate pressure ratios were small except at the lower levels of Reynolds number where the interaction of the thickened boundary layer caused increases in pressure.

Boundary layer profiles, obtained during the same program, are reported in Volume II of this report.

This report has been reviewed and is approved.

PHILE P. ANTONATOS Chief. Flight Branch

Flight Dynamics Laboratory

TABLE OF CONTENTS

SECTION		PAGE
I	INTRODUCTION	1
II	EXPERIMENTAL EQUIPMENT	2
	A. Test Facility B. Models C. Instrumentation	2 2 3
III	RESULTS	4
	A. Flat Plate Pressure Distributions B. Leading-Edge and Cylinder Pressures C. Temperature Distributions	4 55
IV	DISCUSSION OF RESULTS	б
	A. Effects of Mach and Reynolds Numbers on the Plate Pressures	ó
	B. Independence of Leading-Edge Region from Mach and Reynolds NumbersC. Estimate of Errors	6 7
v	SUMMARY	9
	REFERENCES	10

LIST OF TABLES

T	Flat Plate Test Conditions	Page
	Distributions of Pressure and Temperature on the Blunt Flat Plate at M = 7	15
III	Distributions of Pressure and Temperature on the Blunt Flat Plate at M \Rightarrow 10	24
IV	Distributions of Pressure and Temperature on the Blunt Flat Plate at $M=12$	36
v	Distribution of Pressure and Temperature on the Blunt Flat Plate at $M = 14$	53
VI	Cylinder Test Conditions	61
VII	Pressure Distributions on the Cylinders at $M = 10.5$	62
VIII	Pressure Distributions on the Cylinders at $M = 12$	65
IX	Pressure Distributions on the Cylinders at $M = 15$	63

LIST OF FIGURES

Figure		Page
1	The Ohio State University 12-Inch Hypersonic Wind Tunnel Schematic	64
2	Flat Plate Dimensions	65
3	Flat Plate Orifice and Thermocouple Locations	66
4	The Completed Flat Plate Model	67
5	Model Installation	68
6	Cylinder Dimensions	69
7	The Cylinder	70
8	Inclinable Manometer Board	71
9	Nozzle Calibrations at Model Leading Edge	72
10	Co-ordinate Systems used for the Flat Plate and the Cylinder	73
11	Pressure Distribution over the Flat Plate $M = 7$, $Re_D = 7500$	74
12	Pressure Distribution over the Flat Plate $M = 7$, $Re_D = 20,600$	75
13	Pressure Distribution over the Flat Plate $M = 10$, $Re_D = 8,300$	76
14	Pressure Distribution over the Flat Plate M = 10, Re _D = 15,000	77
15	Pressure Distribution over the Flat Plate $M = 12$, $Re_D = 9000$	7 8
16	Pressure Distribution over the Flat Plate M = 12, Rep = 13,700	7 9
17	Pressure Distribution over the Flat Plate $M = 12$, $Re_D = 21,300$	80
18	Pressure Distribution over the Flat Plate M = 14. Rep = 12.700	81

Figure		Page
19	Pressure Distribution over the Flat Plate $M = 14$, $Re_D = 16,000$	82
20	Spanwise Pressure Distribution on the Flat Plate	83
21	Effect of Reynolds Number on Pressure Distribution	84
22	Effect of Mach Number on Pressure Distributions for $M = 7$, 10, 12	85
23	Effect of Mach Number on Pressure Distributions for $M = 10$, 12 , 14	86
24	Tunnel Interference on Flat Plate Distributions	87
25	Pressure Distribution on the Nose of the Flat Plate M = 7, Re_D = 7500	88
2 6	Pressure Distribution on the Nose of the Flat Plate M = 7, Re_D = 20,600	89
27	Pressure Distribution on the Nose of the Flat Plate $M=10$, $Re_D=8300$	90
28	Pressure Distribution on the Nose of the Flat Plate M = 10, $Re_D^2 = 15,000$	91
29	Pressure Distribution on the Nose of the Flat Plate M = 12, Re_D = 9000	92
30	Pressure Distribution on the Nose of the Flat Plate $M=12$, $Re_D=13$,700	93
31	Pressure Distribution on the Nose of the Flat Plate $M=12$, $Re_D=21$,300	94
32	Pressure Distribution on the Nose of the Flat Plate M = 14, Re_D = 12,700	95
33	Pressure Distribution on the Nose of the Flat Plate $M=14$, $Re_D=16$,000	96
34	Pressure Distribution about Cylinder M = 10	97
35	Pressure Distribution about Cylinder M = 12	98
36	Pressure Distribution about Cylinder M = 15	99

Figure		Page
37	Effect of Mach Number on Pressure Distribution about Cylinder, Re _D = 11,000	100
38	Effect of Mach Number on Pressure Distribution about a Cylinder, $Re_D = 4000$	101
39	Tunnel Interference on Cylinder Distributions	102
40	Typical Temperature Distribution on the Flat Plate	103
41	Comparison of Modified Creager Theory with Experiment	104

LIST OF SYMBOLS

Symbol		Dimension
u	Velocity	ft/sec
D	Diameter of hemicylinder	ft
M	Mach number	
P	Static Pressure	nm Hg abs
P_{o}	Stagnation Pressure	lbs/in ²
P_{t_2}	Total pressure behind normal shock	mm HS abs
Re_{D}	Reynolds number (based on free stream conditions) = puD	
S	Distance along surface from tip of model	ft
S¹	Distance along surface from stagnation point	ft
$\mathbf{T}_{\mathbf{W}}$	Wall temperature	\circ_{R}
\mathtt{T}_{O}	Stagnation temperature	° _R
a	Angle-of-attack	Degrees
ρ	Density	Slugs/ft3
м	Viscosity	1b sec ft2
θ	Peripheral angle on cylindrical surface	Degrees

SECTION I

INTRODUCTION

There is presently a great need for detailed information about the flow fields surrounding blunt bodies moving at hypersonic speeds. A variety of theoretical approaches have been proposed for the prediction of surface pressures, skin friction, heat transfer, and flow field temperature but experimental verification is lacking in many instances. This study was undertaken to provide information about the surface pressures and the nature of the boundary layer on an unswept blunt flat plate and the results are reported in two volumes.

* The flat plate had a cylindrical leading edge 1/2-inch in diameter. It was side-mounted, fully spanning the semifree jet of the wind tunnel in order to depress interference from the support and from the tunnel walls. Pressure orifices were arranged in three streamwise rows and thermocouples were embedded under the surface. No forced cooling was provided, but radiation and conduction maintained the model temperatures well below recovery temperature. In order to obtain more detailed information about the pressures on the leading edge, separate cylindrical models were also tested.

Experiments were conducted at nominal Mach numbers of 7, 10, 12, and 14 with the Reynolds number (based on the leading-edge diameter) ranging from 7500 to 21,300. Data were obtained at several angles-of-attack through the range +15°. Table I lists the test conditions in detail.

This part of the report (Volume I) deals with the pressure distributions obtained from the flat plate and the cylinder models. The facility, models and instrumentation are briefly described and the results from the many tests are tabulated. Representative data were selected and plotted to illustrate the effects of angle-of-attack, Mach number and Reynolds number on the pressure distributions.

Volume II describes the boundary layer surveys, taken at three streamwise stations on the plate by means of a pitot probe and a sonic-pneumatic total temperature probe.

Manuscript released by authors 17 August 1962 for publication as an ASD Technical Documentary Report.

ASD-TDR-62-792, Vol. I

SECTION II

EXPERIMENTAL EQUIPMENT

A. Test Facilities

The major portion of this investigation was conducted in the ALOSU 12-inch hypersonic wind tunnel which is described in some detail in references 1 and 2. This is a continuous-flow, free-jet tunnel utilizing an electric resistance-type air heater which can deliver stagnation temperatures to 2800°R. Axisymmetric contoured nozzles are used for nominal flow Mach numbers of 6, 7, 8, 10, 12 and 14. A diagram of the facility is presented in Figure 1.

For some of the leading-edge data, tests of a small cylinder model were conducted in a four-inch hypersonic tunnel. Except for size, the configuration of this tunnel and its capabilities are essentially the same as that of the larger tunnel.

B. Models

The flat plate model was constructed from stainless steel. Static pressure orifices of 0.060" diameter, were arranged along three parallel streamwise rows so that any departure from two-dimensional flow could be ascertained. For reference purposes, two rows of chromel-alumel thermocouples were located on either side of the centerline to measure surface temperatures. Plate dimensions are given in Figure 2; the locations of the orifices and of the thermocouples are shown on the diagram of Figure 3. A photograph of the model after initial testing, Figure 4, indicates the surface discoloration due to the elevated temperatures of the tests. It should be pointed out that although plate temperatures reached 800°F during some tests and the surface discolored, the smoothness of the surface was not altered, nor was any distortion of the plate observed.

Figure 5 shows the flat plate mounted in the wind tunnel test chamber, seen from the nozzle end. The model is surrounded by a cylindrical "scoop", leading into the diffuser; this arrangement was found by initial tests to be most favorable in depressing tunnel interference, especially at large angle-of-attack. For the same reason, small wedges were added to the ends of the plate. During the starting and shut-down procedures, the model was retracted from the jet through a slot in the scoop. For changes in angle-of-attack,

the model could be rotated about its leading edge without stopping the tunnel flow.

The cylinder models were also fabricated from stainless steel; the basic dimensions of the cylinders are given in Figure 6. These models, which fully spanned the jet, could be rotated about their axes to obtain detailed pressure distributions and were retracted from the jet to ease tunnel starts. Photographs of the two models are shown in Figure 7.

C. Instrumentation

Pressure data from the flat plate were obtained on three inclinable manometer boards of the type shown in Figure 8. Each board consisted of eighteen U-tubes containing Dow Corning No. 200 Silicone Fluid. One side of each U-tube was connected by tubing to a model pressure orifice; the other side was coupled, through a manifold, to a vacuum pump which held the back pressure to 1 to 2 microns of mercury. To determine the reference levels of each tube, to degas and to leak check the measuring system, the two legs of the U-tube could be connected together. High reading accuracy was maintained by properly matching the slope of the boards with the pressure levels to be measured. The manometer system required an average time of 10 minutes to stabilize; however, as the plate temperature required a period of the same order to stabilize, this response was not considered excessive.

The pressure distributions on the cylinders were sensed with a veriable reluctance, differential pressure transducer. For these tests, the cylinder attitude indicator and the pressure transducer were connected to the analogue computer of the laboratory for direct on-line reduction and plotting.

The tunnel supply conditions were measured by means of standard wind tunnel instrumentation, i.e., a thermocouple with a Brown Recorder for stagnation temperature and a Bourdon-type pressure gage for stagnation pressure. The Nach number at the model leading edge for each test condition was determined by an impact probe calibration. With the model retracted, a single pitot probe was traversed across the nozzle while its pressure and position were plotted. Real air corrections, although generally small, were made when reducing this pressure data to Mach number distributions; typical calibrations are plotted in Figure 9.

SECTION III

RESULTS

A. Flat Plate Pressure Distributions

Plate pressures and the associated surface temperatures measured during the test program have been tabulated and some typical data plotted to illustrate trends. Table I indicates the test conditions for the series; Table II through V contain the surface pressures, raticed to the stagnation point pressure. It should be noted from Figure 10, that the distance S is the surface distance measured from the front of the model leading edge and does not coincide with the distance from the stagnation point, S', except at an angle-of-attack of zero. As described below, wind tunnel interference effects were noted in a number of cases; this influenced data has been deleted from the record and only that data considered valid are tabulated.

Typical plots of the measurements from the model centerline taps are presented in Figures 11 through 19, indicating the trend of the pressures with angle-of-attack. Note that only $\alpha=0^\circ$ and $\alpha=\pm10^\circ$ are shown. Figure 20 is representative of data from the three rows of orifices and indicates that the flow was essentially two dimensional; the greatest deviation, for $\alpha=10^\circ$ compression, is less than 1% of the impact pressure. The typical dependence upon Reynolds number at a fixed Mach number is shown in Figure 21. Figures 22 and 23 illustrate the small dependence upon stream Mach numbers when conditions downstream of the normal shock were held constant.

Data presented in Figure 24 is typical of the tunnel interference found at low Reynolds numbers and at angle-of-attack. Apparently, bow shock interaction with the tunnel boundary layer or an opening of the model wake (or, in some cases, a combination of both effects) produced a rise in the model pressures and a departure from two-dimensional flow. The point of deviation progressed forward as angle-of-attack was increased and as Reynolds number was decreased, eventually leading to a collapse of the tunnel flow. Comparisons indicate that the measurements were valid up to the point of minimum pressure; data downstream of this point have been deleted from the tabulated results.

B. Leading Edge and Cylinder Pressures

A number of pressure orifices were installed around the leading edge of the flat plate but it was felt that more detailed information should be obtained from that region. Accordingly, these data were supplemented by obtaining pressure measurements from two cylinder models. One cylinder had a diameter of 1/2-inch, the same as the plate leading edge, and was tested in the 12-inch tunnel. The other, having a diameter of 0.2 inch, was tested in the 4-inch tunnel. Thus, it was possible to obtain pressure data over a wide range of Reynolds and Mach numbers and to examine the influence of body geometry. In addition, backside pressures were also obtained from the cylinders.

Results from these measurements are plotted in Figures 25 through 39; it should be noted that the correlations are with the dimensionless surface distance to the stagnation point, S¹/D, as the abscissa. Figures 25 through 33 show the pressure ratios from the leading edge of the flat plate while those from the cylinders are presented in Figures 34, 35 and 36 and in Tables VI through IX. Repeated data in Figures 37 and 38 show the influence of Mach number.

During some of these tests, tunnel interference produced an opening of the wake, with the backside pressures being increased; Figure 39 illustrates the typical observed effect.

C. Temperature Distribution

Tabulated values of the record temperatures are presented in Tables II to V for the flat plate and in Table VI for the cylinders. A typical flat plate temperature distribution is shown in Figure 40. As the measurements of wall temperature obtained from the two rows of thermocouples differed by less than 10°F, the plotted values are averaged temperature readings. The surface temperatures of the cylinders ranged from 750°R to 1500°R, depending upon test conditions, but within +15°R around the cylinder in a particular test; hence, the cylInder may be considered as essentially an isothermal body at the temperature presented in the table.

SECTION IV

DISCUSSION OF RESULTS

A. Effect of Mach and Reynolds Numbers on the Plate Pressures

Whenever possible, the tunnel test conditions were chosen such that the stagnation temperature, T_0 , and the stagnation pressure behind the normal shock, P_{t2} , would be repeated at different stream Mach numbers. In this manner, there should be a near-similarity of flows over the model, including the boundary layer, as the model temperatures were also nearly repeated at such conditions. Comparisons like those in Figures 22 and 23 will then permit the small effects of stream Mach number to be separated.

In Figure 22, the influence of Mach number on the pressure distributions at M = 7, 10, and 12 is shown for a total pressure behind the normal shock of approximately 45 mm Hg. The surface pressures are observed to decrease as Mach number increases from 7 to 12. Figure 23 is a similar plot for M = 10, 12, and 14 at impact pressures close to 25 mm Hg. At this pressure level, the distributions do not show the Mach number trend of the previous figure; the M = 14 data are above the M = 12 pressures. However, at this low level of Reynolds number, viscous interaction is quite evident and the discrepancy may be due to the fact that the nose pressures were not exactly duplicated; further testing seems advisable to resolve the apparent disagreement.

While testing in a nozzle of given nominal Mach number, the stream Mach number was different at each Reynolds number because of changes in the boundary layer thickness on the nozzle walls. These changes in Mach number, of the order of 1%, were too small to produce any significant effects on the pressures, as may be noted from Figure 22. Hence, the increase in pressures observed on the plate with stagnation pressure, in Figure 21, can be interpreted as being caused only by Reynolds number, i.e., by viscous interaction. This same figure also indicates that the data obtained at the high Reynolds number is very close to the inviscid distributions.

B. Independence of Leading-Edge Region from Mach and Reynolds Numbers

The data taken from the cylinders show an independence from both stream Mach number and Reynolds number, in the range tested. In Reference 4, an empirical expression is

given which adequately describes the pressure distribution about cylinders in supersonic flow. A modification of this expression to the form

$$\frac{P}{P_{t2}} = 0.320 + 0.455 \cos \theta + 0.195 \cos 2\theta + 0.035 \cos 3\theta \\ - 0.005 \cos 4\theta$$
 (1)

applies to all the data obtained on the cylinders in the present test series with a maximum deviation of 2.5%.

Equation (1) has been plotted with the data of the leading-edge region, Figures 25 to 33; the agreement is excellent, even when the model is pitched through its angle-of-attack range. The close agreement between the cylinder data and the plate leading edge data, besides revealing its independence to Mach and Reynolds number, indicate no effect of the afterbody on the nose region. For example the pressure measured at the shoulder when the model is pitched to 15° on the expansion side, corresponds to the cylinder data at $\theta = 105^{\circ}$. Similarly, on the compression side, the leading-edge distribution follows the cylinder data closely until the departure due to the plate angle-of-attack. Therefore, Equation (1) may be used to describe the leading edge region of the cylindrical-nosed flat plate with excellent accuracy over the wide range of Mach number and Reynolds number examined in this study.

C. Estimate of Errors

In an experimental program, an estimate of the possible errors in the data is required. The wide range of pressures measured in the study, from 80.00 to 0.30 mm of mercury, make a percentage estimate of error difficult. However, the standard manometer techniques used during the tests should produce data accurate to within 1% at pressure levels down to 2.00 mm Hg abs. Below this pressure, a more realistic estimate of the errors may be obtained by assuming a relatively constant error of + .025 mm Hg. This value is felt to be appropriate, despite the care used in the manometry-e.g., copper pressure leads, silver soldered joints, inclined boards, long stabilization periods, periodic leak checks, etc. Hence, the percentage error of the pressure on the plate may vary from less than 1% near the nose to almost 10% near the trailing edge and/or at high expansion angles.

The temperature measurements on the plate have a maximum possible error of $+10^{\circ}R$; therefore, as surface temperatures varied from $750^{\circ}R$ to $1500^{\circ}R$, the maximum percentage errors ranged between 1 1/3% and 2/3%.

The wind tunnel test conditions were determined from the laboratory instruments, which are estimated to give the following maximum possible errors:

P_{O}	± 0.25%
$\mathtt{T_{O}}$	± 0.50%
М	± 0.50%
α	± 0.1°

SECTION V

SUMMARY

A series of tests has been conducted at nominal Mach numbers of 7, 10, 12 and 14 on a flat plate having a cylindrical leading-edge at several angles-of-attack ranging through +15° for several Reynolds numbers. The results of the tests are summarized by the following comments:

- (1) Wind tunnel interference occasionally limited the data validity at angles-of-attack. The interference effects were confined near the trailing edge and the data ahead of the influenced region were valid. These data are presented in tabular form while typical parts are plotted.
- (2) The spanwise distribution of the three rows of streamwise taps indicated two-dimensional flow, the pressure variation across the span being less than 1% of the impact pressure at the nose.
- (3) When the wall temperatures and the conditions behind the normal shock are matched, the plate distributions are found to be only slightly influenced by Mach number, the trend being towards lowered pressure ratios with increasing Mach number.
- (4) At a given Mach number, the pressure ratios increased with decreasing Reynolds number, indicating some viscous interaction effects were encountered.
- (5) Pressures on the leading edge of the plate and on the cylinders were found to be independent of Mach number and Reynolds number. In both cases, pressure distributions were accurately described by an empirical relation, Equation 1.
- (6) As this investigation was solely of an experimental nature, no attempt was made to correlate the results with the available theories. However, an extensive program, based on the modified Creager method of Reference 5, is being carried out by the Flight Dynamics Laboratory of the Aeronautical System Division. A preliminary result of the program, showing the excellent agreement of the theory with the experimental data is presented in Figure 41.

REPERENCES

- 1. Gregorek, G. M., Nark, T. C., and Lee, J. D., An Experimental Investigation of the Surface Pressure and the Laminar Boundary Layer on a Blunt Plate in Hypersonic Flow: Volume II ASD-TDR-62-792, September, 1962
- 2. Thomas, R. E., and Lee, J. D., The Ohio State University 12-inch Hypersonic Wind Tunnel, TW(ALOSU)559-2; The Ohio State University Research Foundation, Technical Report to WADC on Contract AF 33(616)-5593, July, 1959
- 3. Lee, J. D., <u>Axisymmetric Noszles for Hypersonic Flows</u> TN(ALOSU)459-1; The Ohio State University Research Foundation, Technical Report to WADC on Contract AF 33(616)-5593, July, 1959
- 4. Tewfik, O. K., and Giedt, W. H., Heat Transfer, Recovery Factor and Pressure Distributions Around a Cylinder Hornal to a Supersonic Rarefled Airstream Part I, Experimental Data, University of California Tech Report HE-150-162, January, 1959
- 5. Buck, M. L., and McLaughlin, E. J., An Aerodynamic Prediction Technique for Hypersonic Winged Re-entry Vehicles Part I Analysis. Flight Dynamics Laboratory ASHMDF TM-62-5, February, 1962

TABLE I

Flat Plate Test Conditions

Cond.	Mach No.	P _o PSIA	To oR	$R_{\mathbf{e_D}}$	Pta mm Hg
A B C D E F G H I	6.96 7.01 9.85 9.95 12.16 12.20 12.28 14.2	58.7 104.7 164.7 306.7 339.7 514.7 814.7 714.7	2060 1560 2060 2060 2090 2060 2060 1910 1910	7,500 20,600 8,300 15,000 9,000 13,700 21,300 12,700 16,000	44.6 79.4 26.0 46.2 19.8 29.7 45.5 19.9 24.8

TABLE II

Distributions of Pressure and Temperature on the Blunt Flat Plate at M = 7

Condition A

M = 6.96		R _{eD} =	7500	Pta =	44.6 mm Hg
		α:	<u>°</u>	•	
	P	/Pte		Temp.	~°F
8/D	L	С	R	L	R
0.26	.871		••		_
0	•	1.000			7
0.26	.816		••		3
0.52			.428		9
0.79		.142			野野
1.29	.094	••	.096	9	5
1.79		.083			
3.79	.063		.065	this Test	<u>a</u>
4.79	-	.056	••	5	Ş
6.29	.050		.049	9	2
6.79		.047		, i	#
8.79	.042	.041	.042	•	본
11.29	.035	.03 8	.034		8
13.79	.031	.034	.030		8
16.29	.027	.031	.027		3
18.79	.026	.028	.025		Inoperative
21.29	••	.027	.022		3
22.79		.024	••		
23.79	.020	.023	.020		

TABLE II (CONTINUED) Condition A $\alpha = 5^{\circ}$ Exp

P/P _{tg}			Temp.	~ °F	
s/d	L	C	R	L	R
0.26	1.005				
0		1.088	••		
0.26	. 756				
0.52			. 358		
0.79		.111	-		***
1.29	.071		40 40	857	
1.79		.061	••		
3.79	.045		.047	710	722
4.79		.03 6			
6.29	.036		.036	630	645
6.79		.034			-
8.79	.030	.029	.029	600	590
11.29	.024	.020	.025	56 8	580
13.79	.021	.023	.020	549	556
16.29	.01 9	.021	.017	530	
18.79	.017	.01 9	.017	520	527
21.29		.017	.015	51 5	520
22.79		.015			
23.79	.014	.014	.012		

TABLE II (CONTINUED) Condition A $C = 10^{\circ}$ Exp

	P/	Temp. ∼ °F			
s/d	L	C	R	L	R
0.26	•953		Ad 60		
0		.968			
0.26	. 679		**		
0.52			.297	***	
0.79		.0 89			
1.2 9	.054		.055	8 78	
1.79		.046			
3.79	.034		.035	743	752
4.79		.031			175
6.29	.026	••	.026	680	690
6.79		.023	••	•••	
3.79	.022	.021	.022	641	651 624
11.29	.017	.017	.017	615	FOL
13.79	.015	.015	.014	59 7	607
16.29	.014	.014	.012	589	
18.79	.013	.013	.011	589	597
21.29		.012	.011	600	604
22.79		.010			

TABLE II (CONTINUED) Condition A

$\alpha = 15^{\circ}$ Exp

	P/1	Temp.	~°F		
s/D	L	C	R	L	R
0.26	.984		••		
Ö		.964			
0.26	.602				
0.52			.238		
0.79		.071			
1.29	.041		.041	667	
1.79		.035			
3.79	.026		.0 2 6	757	172
4.79		.021			
6.29	.020		.01 9	699	711
6.79	••	.018	-		
8.79	.013	.015	.016	ઇઇ4	674
11.29	.014	.013	.013	640	650
13.79	.013	.011	.011	527	637
16.29				623	
18.79			••	629	640 650
21.29				∂ 42	650

TABLE II (CONTINUED) Condition A $\alpha = 5^{\circ}$ Comp

$\mathtt{P}/\mathtt{P}_{\mathbf{\hat{\upsilon}_{\mathbf{g}}}}$				Teim. ~ °F	
s/D	L	C	R	i.	R
0.26	.805				
O		·257			
u.2 6	.673				
0.52			• 504		
0.79		.177	••		
1.29	.122		.126	jol	
1.79		.107			
3.79	.064		.036	77.	732
4.79		.051			
6.29	. 06 9	••	.06 පි	715	722
6.79		.૦ઇ4	••	•••	
8.79	.060	.059	.059	ن <i>ن</i> د د	6 85
11.29	.053	.054	.052	655	660
13.79	.048	.050	.047	641	642
16.29	• O4·4	.048	.043	ن30 、	
18.79	.041	• 044	·OHO	624	ර2 7 රැදි
21.29		.042	.038	á 12	රැද්
22.79		.040	••		
23.79	.035	.035	.033		

TABLE II (CONTINUED) Condition A $\alpha = 10^{\circ}$ Comp

P/Pt _s			Temp ∼ °F		
8/D	L	C	R	L	R
0.26	.744		••		
0	-	.985			
0.26	.920				
0.52		••	. 581		
0.79		.219			
1.29	.159		.163	911	
1.79	••	.137			
2.79	••				
3.79	.114		.115	<i>7</i> 83	784
4.79		.102			
6.29	.097		.097	724	730
6.79		.092			
8.79	.088	.087	.088	6 86	693
11.29	.081	.084	.079	665	668
13.79	.075	.080	.074	650	650
16.29	.073	.077	.070	640	
18.79	.070	.075	.068	631	635
21.29		.072	.067	620	625
22.79		.071	•••		
23.79	.065	·	.063		

TABLE II (CONTINUED)

Condition B

M = 7.01

 $R_{e_{D}} = 20,600$

Pta = 79.4 = Hg

 $\alpha = 0^{\circ}$

P/Pt ₂				Temp. ∼ °F		
8/0	L	C	R	L	R	
0.26				_		
0		1.00				
0.26						
0.52			.405			
0.79		.125	.40)			
1.29	.086		.087	697		
1.79		.076	.001	971		
3.79	.059	.010	.060	 		
4.79		.055		599	604	
6.29	.041	.0))	.046			
6.79		.043		547	553	
8.79	.038	.038	000			
11.29	.034	.034	.039	508	519	
13.79	.029	.034	.027	487	497	
16.29	.029	.031	.022	469	479	
18.79	.025	.029	.025	457		
20.79	.024	.026	.023	448	458	
21.29		.024	.022	PHO	449	
22.79		.023				
23.79	.019	.022	.018			

TABLE II (CONTINUED) Condition B

$\alpha = 10^{\circ}$ Rxp

$\mathtt{P}/\mathtt{P_{t_{\mathbf{g}}}}$			Temp. ∼°F		
S/D	L	C	R	L	R
0.26					
0		.989	•••		
0.26			-		
0.52			.282		
0.79		.079			
1.29	.048		.048	712	
1.79		.043			
3.79	.032		.032	624	629
4.79		.027			
6.29	.024		.025	579	584
6.79		.022			
8.79	.020	.019	.020	5 51	557
11.29	.016	.017	.017	533	535
13.79	.014	.015	.013	519	520
16.29	.012	.013	.012	514	
18.79	.011	.012	.010	508	508
21.29		.011	.010	502	502
22.79		.010			
23.79					

TABLE II (CONTINUED)

Condition B $\alpha = 10^{\circ}$ Comp

P/P _{tg}			Temp. ∼ °F		
8/D	L	С	R	L	R
0.26					
0		.989			
0.26		•309			
0.52					
		**	•569		
0.79		.202			
1.29	.149		.152	707	
1.79		.132	/-	727	
3.79	.108		100		
4.79			.109	651	651
6.29	.092	.097			
6.79	.092		.093	610	610
0.19	-01	.087			
8.79	.084	.082	.083	584	588
11.29	.078	.078	.076	568	568
13.79	.073	.075	.068		
16.29	.069	.074	.067	559	558
18.79	.067			549	
21.29	•	.072	.065	544	544
22.70		.069	.061	537	538
22.79		••			75-
23.79	.060	. 365	.057		

TABLE II (CONTINUED) Condition B

$\alpha = 5^{\circ}$ Exp

${\tt P/P_{t_2}}$			Temp. ∼°F		
S/D	L	С	R	L	R
0.26					
0		•995			
0.26					
0.52			• 339		
0.79		.099			
1.29	.064		.065	702	
1.79		.057			
3.79	.043		.044	617	619
4.79		.037			
6.29	.033		.033	5 6 8	571
6.79		.031			
8.79	.027	.027	.027	539	543
11.29	.023	.023	.022	518	520
13.79	.020	.021	.019	507	508
16.29	.017	.019	.016	497	
18.79	.015	.017	.015	489	491
21.29		.016	.014	487	488
22.79		.015			
23.79	.012	.013	.012		

TABLE II (CONTINUED) Condition B $\alpha = 5^{\circ}$ Comp

P/P _{ta}				Temp. ∼°F	
s/d	L	C	R	L	R
0.26					
0		•99 5			
0.26					
0.52			.481		
0.79		.164	. 401		
1.29	.113	-20-	.115	706	
1.79		.100		726	
3.79	.078	.100	070	Ch o	
4.79	.0,0	.069	.079	643	644
6.29	.064	.009	06).		
6.79		.060	•064	599	602
8.79	.055				
11.29	. 055	.055	.055	576	579 5 60
	.049	.051	.048	560	560
13.79	.045	.047	• 0,41,4	5 5 0	550
16.29	.041	.045	.040	543	
18.79	.039	.042	.038	543 5 3 8	5 3 8
21.29		.040	.035	532	532
22.79		.039			
23.79	.033	.036	.032		

TABLE II (CONTINUED) Condition B $\alpha = 15^{\circ}$ Exp

	P/	Temp. \sim °F			
8/D	L	C	R -	L	R
0.26				***	
0		.966			
0.26					
0.52			.234		
0.79		.063			
1.29	.036		.036	711	
1.79		.031			
3.79	.023		.024	632	636
4.79		.021			
6.29	.018		.018	58 9	598
6.79		.017			
8.79	.014	.014	.015	565	568
11.29	.013	.012	.012	548	549
13.79	.012	.011	.010	537	538
16.29	.012	.010	.009	533	
18.79				537	537
21.29				548	548
22.79					
23.79					

TABLE III

Distributions of Pressure and Temperature
on the Blunt Flat Plate at M = 10

Condition C

 $R_{e_{\overline{D}}} = 8,300$ $P_{t_2} = 26 \text{ mm Hg}$ M = 9.85 $\alpha = 0^{\circ}$ P/P_{t2} Temp. \sim °F 8/D L C R L R 0.26 .882 1.00 0 .804 0.26 0.52 .150 --0.79 1.29 1.79 3.79 4.79 6.29 6.79 11.29 13.79 .139 .092 791 .093 .075 ~-665 673 .057 .056 .047 61.1 .043 .042 601 .041 ------.036 .035 .034 559 **569** .031 .028 .028 551 554 519 512 .024 .023 .027 501 16.29 18.79 .021 .023 .020 ---486 491 487 487 .020 .019 21.29 22.79 .017 23.79

TABLE III (CONTINUED) Condition C

$\alpha = 5^{\circ}$ Comp

	P/Pt ₂			P/P _{t2} · Temp. ~ °I			~°P
S/D	L	C	R	L	R		
0.26	.803						
0		•997					
0.26	.860						
0.52			.493				
0.79		.174					
1.29	.123		.121	805			
1.79		.100					
3.79	.078		.077	691	690		
4.79		.064					
6.29	.060		.058	630	632		
6.79		.056	•••				
8.79	.051	.052	.048	563	599		
11.29	.043	.045	.042	551	562		
13.79	.038	.041	.038	549	550		
16.29	.036	.038	.033	534			
18.79				5 2 8	530		
21.29	••	.034	.032	518	520		
22.79		.031					
23.79	.029	.028	.028				

TABLE III (CONTINUED) Condition C

$\alpha = 10^{\circ}$ Comp

P/Pt _a				Temp. ∼°F	
s/d	L	· C	R	L	R
0.26	.728				
0		.983			
0.26	.908	-,-,-			
0.52	-,		.300		
0.79		.217	. 500		
1.29	.156	• === (156	On 1.	
1.79		.131	.156	814	
3.79	.091	_			
4.79			.089	<i>6</i> 98	702
7.13		.091	-0		
6.29	.086		.085	639	641
6.79		.081			
8.79	.078	.077	.074	601	609
11.29	.071	.071	.068	575	576
13.79	.066	.069	.066	560	562
16.29	-		***	555	
18.79		-		542	
21.29					550 542
22.79				530	
23.79					

TABLE III (CONTINUED) Condition C $\alpha = 5^{\circ}$ Exp

	P/	Temp.	~ °F		
8/D	L	C	R	L	R
0.26	1.340				
0		•997			
0.26	•737				
0.52			. 348		
0.79		.110			
1.29	.073		.070	7 83	
1.79		.060			
3.79	.042		.042	658	671
4.79		.035			
6.29	.031		.025	591	601
6.79		.029			
8.79	.018	.025	.024	550	560
11.29	.021	.022	.020	521	524
13.79	.016	.018	.017	502	509
16.29	.014	.016	.014	489	
18.79	.014	.014	.012	481	487
21.29	-		••	481	479
22.79					
23.79	.011	.011	.011		

$\alpha = 10^{\circ}$ Exp

	P/Pt _e				Temp. ∼°F		
8/D	L	C	R	L	R		
0.26	.947						
0		•993					
0.26	.666						
0.52	**		.267		***		
0.79		.081					
1.29	.054		.053	763			
1.79	-	.042					
3.79	.032		.029	631	643		
4.79		.027					
6.29	.024		.024	611	623		
6.79		.021					
8.79	.018	.018	.018	513	527		
11.29	.015	.016	.014	482	491		
13.78	.012	.013	.011	461	473		
16.29	.011	.ori	.011	451			
18.79				443	451		
21.29			••	450	449		
22.79							
23.79							

$\alpha = 15^{\circ}$ Exp

	P/1	Pt ₂		Temp.	~ °F
s/d	L	C	R	L.	R
0.26	.988				
0		.9 6 9			
0.26	.591				
0.52			.236		
0.79		.067			
1.29	.041		.039	722	
1.79		.031			
3.79	.022		.022	573	591
4.79		.018			
6.29	.018		.018	491	511
6.79		.015			
8.79	.014	.014	.014	432	451
11.29	.013	.011	.013	419	410
13.79				1400	414
16.29				391	
18.79				391	402
21.29				388	413
22.79				-	
23.79					

TABLE III (CONTINUED)

Condition D

M = 9.95Ptp = 46.2 mm Hg $R_{e_D} = 15,000$ $\alpha = 0^{\circ}$ P/Pt2 Temp. ~ °F 8/D L C R L R 0.26 .861 0 1.00 0.26 .791 0.52 1.79 1.79 3.79 4.79 6.29 6.79 11.29 13.79 16.29 18.79 .410 .131 .089 .088 885 .074 ---.056 .047 .055 750 754 --.042 .040 683 690 .039 .034 .031 .026 .034 .033 .020 650 618 603 642 619 603 592 583 575 .028 .024 .023 .021 .023 .021 .021 .020 583 575 .019 .018 21.29 22.79 .017 .019 --.017 .015 23.79 .015

TABLE III (CONTINUED)

a = 5° Comp

	P/	Temp. ∼ °F			
8/D	L	C	R	L	R
0.26	.913				
0		.998	**		
0.26	.847				
0.52			.486		
0.79		.167			
1.29	.116		.116	892	
1.79		.099		-/-	
3.79	.075		.076	757	762
4.79		.065		171	
6.29	.058		.058	693	698
6.79		.055			
8.79	.0 49	.049	.047	651	661
11.29	.043	.045	.041	626	627
13.79	.038̃	.040	.035	610	610
16.29	.035	.037	.033	605 -	
18.79	.032	.035	.030	590	599
21.29		.033	.028	584	582
22.79		.031			,~c
23.79	.026	.028	.024		

TABLE III (CONTINUED)

$\alpha = 10^{\circ}$ Comp

	P/	Temp. ∼ °F			
S/D	L	C	R	L	R
0.26	.724				
0		.988			
0.26	.897	• 500			
0.52	.051				
			. 560		
0.79	-1-	. 204			
1.29	.149		.149	834	
1.79		.128	••		
3.79	.101		.101	744	
4.79	~~	.088			751
6.29	.083				
6.79	-		.081	684	692
9.79		.079			
8.79	.073	.073	.071	648	654
11.29	.067	.069	.064	623	623
13.79	.063	.066	.058		धा
16.29	.060	.063	.056		
18.79	.058	.060	.055		
21.29					
22.79		.058	.055		
23.79	.053	.053	.055		

α = 15° Ετο

	P/Pt _a				~ ° y
s/D	L	C	R	L	R
0.26	.801				
0		.994			
0.26	. 587				
0.52			.225		
0.79		.062			
1.29	.037		.036	7 95	
1.79		.029			
3.79	.022		.022	682	693
4.79		.018			
6.29	.016		.015	599	613
6.79		.015			
8.79	.013	.013	.013	544	555 5 2 8
11.29	.010	.011	.010	505	528
13.79	.008	.009	.008	481	492
16.29	.009	.008	.007	470	
18.79	.009			471	479
10.19				48 9	493
21.29					
22.79					
23.79					

TABLE III (CONTINUED) Condition D $\alpha = 5^{\circ}$ Exp

	P,	Temp. ∼ °F			
S/D	L	C	R	L	R
0.26	.885	••			
0		1.006	-		
0.26	.730				
0.52			. 340		
0.79		.104			
1.29	.067		.066	879	
1.79		.056			
3.79	.041		.042	742	752
4.79		.034			
6.29	.031		.029	674	683
6.79		.028			
8.79	.025	.024	.024	634	642
11.29	.020	.021	.019	610	612
13.79	.017	.017	.016	593	594
16.29	.015	.016	.013	587	
18.79	.012	.014	.012	572	581
21.29		.014	.010	563	564
22.79		.009			
23.79					

$\alpha = 10^{\circ}$ Exp

	P/	Temp.	~ °F		
8/D	L	C	R	L	R
0.26	.920				
0		1.000			
0.26	. 661				
0.52			.280		
J.79		.081	***		
1.29	.050		.049	819	
1.79		.041			
3.79	.031		.030	714	724
4.79		.025	-		
6.29	.023		.021	654	661
6.79		.021			
8.79	.018	.017	.016	610	618
11.29	.014	.016	.013	582	587
13.79	.011	.012	.011	561	57i
16.29	.010	.010	.009	553	
18.79	.009	.010	.008	549	551
21.29		.010	.008	540	542
22.79		.009			
23.79	.008	.008	.008	C3 28 30°	

TABLE IV

Distributions of Pressure and Temperature on the Blunt Flat Plate at M = 12

Condition E

M = 12.16 $Re_D = 9,000$ $Pt_2 = 19.8 \text{ mm Hg}$

 $\alpha = 0^{\circ}$

	P/	Temp. ∼°F			
x/đ	L	C	R	L	R
0.26	.866			-	
0		1.000			
0.26	.809				
0.52			.413		
0.79		.138			
1.29	.092		.093	762	757
1.79		.075			
3.79 4.79	.058		.056	639	650
4.79		.047			
6.29	.041		.043	579	590
6.79		.041	••		
8.79	.034	.036	.034	538	550
11.29	.034	.032	.030	514	524
13.79	.025	.025	.028	514 497	503
16.29	.022	.022	.027	483	
18.79	.020		.020	472	480
21.29					
22.79				~~-	
23.79			••		

$\alpha = 5^{\circ}$ Exp

	P,	Pt ₂		Temp. ∼ °F
x/đ	L	C	R	L R
0.26	.919			13
0		1.000		
0.26	.742			💆
0.52			. 346	7
0.79		.110		g
1.29	.073		.073	88
1.79		.058		# 2
3.79	.043		.043	
4.79		.034		e cord
6.29	.030		.032	
6.79		.030		()
8.79	.026	.025	.026	Inop
11.29	.023	.023	.038	용
13.79	.017	.015	.017	9
16.29	.015	.014	.015	#
18.79	.015	.014	.012	<u>j</u>
21.29		.017	.014	
22.79		.012	••	
23.79				

TABLE IV (CONTINUED)

Condition F

M = 12	$R_{e_{D}} = 13,700$			Pta ·	= 29.7 ==	Hg
		α.	00			
	P	/Pt _e		Temp.	~ °7	
x/d	L	C	R	L	R	
0.26	.875			***		
0		1.000				
0.26	.813					
0.52			.404			
0.79		.135				
1.29	.086	-	.085	797		
1.79		.072	•••			
3-7 9	-054		.054	687	702	
4.79		.045				
6.29	.040		.040	633	646	
6.79		.035				
8.79	.032	.032	.029	59 9 578	610 588	
11.29	.026	.028	.025	578	588	
13.79	.021	.025	.020	56 3	570	
16.29	.020	.022	.018	552		
18.79	.018	.020	.017	548	553	
21.29		.018	.017	546	548	
22.79		.017				
23.79	.014	.017	.014	-		

TABLE IV (CONTINUED) Condition F $\alpha = 10^{\circ}$ Exp

	P/ 2	Temp.	~°F		
x/d	L	c	R	L	R
0.26	•955				
0		.983			
0.26	. 6 65				
0.52			.283		
0.79		.085			
1.29	.047		.064	765	761
1.79		.036			
3.79	.032		.032	6 5 8	670
4.79		.026			
6.29	.023		.025	602	614
6.79		.023			
8.79	.021	.019	.01 9	570	580
11.29	.017	.017	.015	550	558
13.79	.015	.012	.013	5 3 9	549
16.29		.010	.012	5 2 8	

TABLE IV (COMPTHUED) Condition F

$\alpha = 5^{\circ}$ Comp

$ exttt{P/P}_{ exttt{t}_{\mathbf{S}}}$			Temp. ∼°F		
x/d	L	C	R	L	R
0.26	.805				
0		.994			
0.26	.875				
0.52			.471		
0.79	•	.1 6 6			
1.29	.109		.109	83 6	819
1.79	-	.090			
3.79	.072		.072	70 8	715
4.79		.059			
6.29			.053	652	660
6.79	••	.049	**		
8.79	• 0##	·Off	• 074	618	625
11.29	.038	.038	.037	598	600
13.79	.034	.037	.034	583	585
16.29	.032	.0418	.032	570	
18.79	.032	.032	.032	566	569
21.29		.026	.029	55 9	559
22.79		.o 2 8			
23.79	.028	.025	.029		

$\alpha = 10^{\circ}$ Comp

P/P _{t2}			Temp. ∼°F		
x/đ	L	C	R	L	R
0.26	.731		**		
0	••	.978			
0.26	.92 4				
0.52			• 554		
0.79		.212			
1.29	.143		.143	807	800
1.79		.120			
3.79	.096		.097	675	68 3
4.79		.081			
6.29	.076		.078	610	618
6.79		.072			
8.79	• .068	.067	.065	56 5	578
11.29	.061	.062	.059	537	546
13.79				517	520
16.29				500	
18.79				484	489
21.29				475	479
22.79					
23.79					

$\alpha = 15^{\circ}$ Comp

$\mathtt{P/P_{t_2}}$			Temp. ∼°F		
x /đ	L	C	R	L	R
0.26	. 652			년	3
0		.948		8	
0.26	.964			7	
0.52			.633	3	
0.79		.259		8	
1.29	.182		.184	e di	
1.79		.158		•	
3.79	.138		.140	this Tes	
4.79		.126		~ §	
6.29	.144		.143	9 G	
6.79		.165	•==	6	
0.15		.20)			

TABLE IV (CONTINUED) Condition F $\alpha = 15^{\circ}$ Exp

	P/:	Temp. ∼ °F			
x/d	L	C	R	L	R
0.26	.983				
0		-945			
0.26	.568	-			
0.52			.221		
0.79		.058			
1.29	.037		.046	824	
1.79		.031			
3.79	.017		.022	710	727
4.79		.020			
6.29	.014		.019	657	673
6.79		.013			
8.79	.011	.011	.013	62 පි	643
11.29	.011		.014	614	628
13.79				612	622

TABLE IV (CONTINUED) Condition F $\alpha = 5^{\circ}$ Exp

P/P _{t2}				Temp.	~ °F
x/d	L	C	R	L	R
0.26	.921		40.40		;
0	-	.996			₽
0.26	.738				ĝ
0.52	••		• 333		#
0.79		.103		o	Ę
1.29	.065		.064	g	•
1.79		.053		g	7
3.79	.040		.041	🗠	8
4.79		.032		13	Z
6.29	.028		.028	5	·
6.79		.026		÷	H
8.79	.022	.023	.022		8
11.29	.019	.019	.029		7
13.79	.018	.020	.014		7
16.29	.015	.018	.017		#
18.79	.014	.014	.014		3

TABLE IV (CONTINUED) Condition F $\alpha = 10^{\circ}$ Exp

	P/	Temp. ∼°F			
x/đ	L	С	R	L	R
0.26	.962				
0		.986			
0.26	.660				
0.52			.277		
0.79		.082			
1.29	.049		.049	804	800
1.79		.040		~~~	
3.79	.031		.029	677	686
4.79		.025			
6.29	.019		.022	616	62 8
6.79		.019			
8.79	.016	.017	.016	579	588
11.29	.014	.013	.014	551	560
13.79	.012	.012	.011	536	545
16.29	.012	.011	.011	525	
18.79	.011	.009	.008	517	523
21.29				51.1	518

TABLE IV (CONTINUED)

Condition G

 $R_{\rm e_D} = 21,300$ $P_{t_2} = 45.5 \text{ mm Hg}$ M = 12.28 $\alpha = 0^{\circ}$ P/Pta Temp. ~ °F s/d C R L R L .882 0.26 1.00 0.26 .806 0.52 . 397 --.126 .082 .082 857 859 1.29 1.79 3.79 4.79 6.29 6.79 8.79 11.29 13.79 16.29 --.069 738 .052 .053 721 .043 670 --.038 .039 656 --

.030

.024

.020 .018 625 598 568

540 528

.035

.031

.025 .023 .021

--

.031

.025

.021

.018

18.79 21.29

$\alpha = 5^{\circ}$ Comp

$\mathtt{P/P_{t_2}}$				Temp. ∼ °F	
s/d	L	C	R	L	R
0.26	.819				
0		1.002			
0.26	.879				
0.52			.473		
0.79		.160			
1.29	.106		.107	862	862
1.79		.091			
3.79	.070		.070	722	742
4.79		.059			
6.29	.053		.053	65 8	672
6.79		.049			
8.79	.044	.044	.043	615	630
11.29	.038	.0૩ઠ	.037	588	597
13.79	.034	.037	.032	567	575
16.29	.033	.037	.030	5 5 0	
18.79	.030	.030	.02 8	540	548
21.29		.026	.026	530	537
22.79		.024			
23.79	.023	.023	.022		

$\alpha = 10^{\circ}$ Comp

	P/1	Temp. ∼ °F			
s/d	L	C	R	L	R
0.26	• 747				
0		.988			
0.26	.946				
0.52	-		•553		
0.79		.203			
1.29	.139		.141	8 <i>6</i> 8	845
1.79		.115			
3.79	.096		.096	716	730
4.79		.082			
6.29	.077		.077	650	660
6.79		.072			
8.79	.067	.066	.066	600	612
11.29	.06i	.062	.060	5 6 9	579
13.79				549	552
16.29				530	
18.79				521	526
21.29				511	518

$\alpha = 15^{\circ}$ Comp

$\mathtt{P}/\mathtt{P_{t_2}}$			Temp.	~ °F	
s/d	L	C	R	L	R
0.26 0.26 0.52 0.79 1.29 1.79 3.79 4.79 6.29 6.79 8.79	.645 .976 .176 .129 .111 .105 .116	.940 .248 .153 .112 .113 .113	.176 .127 .111 .105	op	Temperature Recorder Inoperative

TABLE IV (CONTINUED) Condition G $\alpha = 15^{\circ}$ Exp

P/P _{t2}				Temp. \sim °F		
s/d	L	C	R	L	R	
0.26	.968		~~			
0		.924				
0.26	.560					
0.52			.224			
0.79		.060				
1.29	.083		.035	859	860	
1.79		.028				
3.79	.021		.022	737	756	
4.79		.019				
6.29	.014		.015	<i>6</i> 80	699	
6.79		.013				
8.79	.011	.011	.011	650	665	
11.29	.010	.009	.010	630	644	
13.79				620	631	
16.29				620		
18.79	••			630	640	
21.29				650	651	

$\alpha = 5^{\circ}$ Exco

P/P _{ta}				Temp. ~	°F
s/d	L	С	R	L	R
0.26	.926			<u>1</u> 3	
0		.972		@	
0.26	.727			5	
0.52			·33o	empera	
0.79		.254		&	
1.29	.071		.062	<u>`</u> ë	
1.79		.051		50	
3.79	.03 8		.039	c+td	
4.79		.031		Rec	
6.29	.027		.028	68	
6.79		.025			
8.79	.021	.022	.020	Test	
11.29	.018	.017	.017	ct.	
13.79	.014	.016	.013	E	
16.29	.013	.013	.012		
18.79	.011	.012	.010	Opera	
21.29		.012	.092	3	
22.79		.010			
17					

$\alpha = 10^{\circ}$ Exp

P/P _{t2}			P/P_{t_2} Temp. \sim °F		
s/d	L	c	R	L	R
0.26	.956				
0		.956			
0.26	.647				
0.52			· 2 73		
0.79					
1.29	.046		.047	869	870
1.79		.038			
3.79	.0 2 8		.029	745	763
4.79		.023			
6.29	.019		.020	690	703
6.79		.018			
8.79	.016	.016	.015	660	670
11.29	.012	.012	.012	641	650
13.79	.012	.011	.009	630	635
16.29	.009	.009	.009	620	
18.79				615	620
21.29		.008		610	615

TABLE V

Distributions of Pressure and Temperature on the Blunt Flat Plate at M = 14

Condition H

M = 14.2

 $R_{\rm e_D} = 12,700$

Pt₂ = 19.9 mm Hg

 $\alpha = 0^{\circ}$

	P/	Pt _s		Temp. ∼°	F
s/đ	L	c	R	L	R
0.26	1.364			뉡	
0		1.000		Ě	
0.26	.782			Tempera or	
0.52			· 399	on ra	
0.79		1.365			
1.29	.093		.094	th1	
1.79		.074		this	
3.79	.057		.057	្តីង្គ	İ
4.79		.0 49		Recorder Test	
6.29	· Ojł jł		.042	a c	
6.79	••	.042		" <u>č</u>	•
8.79	.036	.037	.034	អ៊ី	
11.29	.031	.034	.029	 	ł
13.79	.027	.030	.027	ğ	-
16.29	.024	.026	.022	ğ	,
18.79	.023	.024	.020	Inoperative)
21.29		.023	.021	, pr	i >
22.79		.023		ij	
23.79	.020	.020	.019	6	; •

$\alpha = 5^{\circ}$ Comp

P/P _{t2}			Temp. \sim °F	
s/đ	L	С	R	L R
0.26 0.26 0.52 0.79 1.29 1.79 3.79 4.79 6.29 6.79 8.79 11.29	1.466 .831 .121 .078 .062 .053 .047	.999 .171 .098 .066 .060 .053 .048	.474 .124 .077 .059 .049 .047	Temperature Recorder Inc on this Test
				Inoperative

$\alpha = 5^{\circ}$ Exp

	P,	Pt ₂		Temp. ∼ °F
x/d	L	C	R	L R
0.26 0 0.26 0.52 0.79 1.29 1.79 3.79 4.79 6.29 6.79 8.79	1.579 .734 .072 .044 .034 .027	1.003 .117 .056 .038 .033 .027	 -339 .072 .045 .033 .025 .039	Temperature Recorder I on this Test
13.79 16.29 18.79	.019 .017 .017	.021 .018 .016	.019 .015 .014	Inoperative

TABLE V (CONTINUED)

Condition I

 $P_{t_2} = 24.8 \text{ mm Hg}$ $R_{e_{D}} = 16,000$ M = 14.28 $\alpha = 0^{\circ}$ P/Pt₂ Temp. \sim °F L R R s/d L .943 0.26 1.000 0 0.26 0.52 0.79 1.29 1.79 3.79 4.79 .796 --.125 .092 665 .089 --.070 --503 521 .053 .053 --.047 ---6.29 6.79 8.79 11.29 13.79 16.29 18.79 21.29 427 **40**9 .040 .039 .040 -----360 340 298 266 .031 .033 .027 .024 .036 .027 .024 .023 .017 .031 316 279 245 .024 .021 232 225 245 .020 .020 232

.016

--

22.79

$\alpha = 5^{\circ}$ Comp

	P/1	Temp.			
s/d	L	c	R	L	R
0.26	.965			45.40 40	
0		.996			
0.26	.846				
0.52			.450		
0.79		.159			
1.29	.115	,	.118	720	
1.79		.096	-		
3.79	.074		.071	574	582
4.79	•	.064	-		
6.29	.056		.055	491	500
6.79		.05ó			
8.79	· O//	.036	.046	430	445
11.29	.042	.044	.040	390	400
13.79	.036	.034	.037	359	369

TABLE V (CONTINUED)

Condition I $\alpha = 10^{\circ}$ Comp

	P/	Pta		Temp.	~°F
s/d	L	C	R	L	R
0.26	.944				
0		.981			
0.26	.904				
0.52			.529		
0.79		.204			
1.29	.163		.171	762	
1.79		.130			
3.79	.100		.097	6 2 8	634
4.79		.067			
6.29	.084		.080	55 8	562
6.79		.081			
8.79	.074	.077	.074	504	518
11.29	.072	.072	.071	472	481
13.79	.068	.067	.069	450	453

$\alpha = 5^{\circ}$ Exp

	$\mathtt{P/P_{t_2}}$				~°F
s/d	L	C	R	L	R
0.26 0	1.119	1.000			
0.26	.741				
0.52			.317		
0.79		.142			
1.29	.068		.069	754	
1.79		.055			
3.79	.043		.040	630	640
4.79		.034			
6.29	.030		.030	5 6 6	572
6.79		.030			
8.79	.015	.024	.024	5 21	5 3 0
11.29	.033	.022	.034	492	500
13.79	.017	.016	.017	472	480
16.29	.016	.017	.016	460	***
18.79	.015	.015	.014	450	452

$\alpha = 10^{\circ}$ Exp

	P/ 1	Temp. ∼°F			
s/d	L	С	R	L	R
0.26	1.17	***	•		
0		.99 2			
0.26	. 684				
0.52			.26 9		
0.79		.091			
1.29	.052		.055	7ól	
1.79		.042			
3.79	.031		.030	6 3 9	648
4.79		.027			
6.29	.022		.022	577	586
6.79		.024			
8.79	.017	.018	.015	53 8	543
11.29				510	519
13.79				492	500
16.29				481	
18.79				474	480
21.29				470	476

TABLE VI

Cylinder Test Conditions

Condition	Mach No.	P _o psia	To oR	Tw op	P(0) mm/Hg	R _{eD}
A	10.45	117	1960	735	14.06	1,905
В	10.61	150	1860	690	16.94	3,130
C	10.37	190	1965	820	23.50	3,770
D	10.71	150	1460	505	16.82	4,120
E	10.60	400	1470	570	46.87	11,142
F	10.86	600	1080	300	63.74	22,797
G	11.76	250	1960	715	17.27	3,418
H	12.11	303	1965	720	18.20	3,75
J	12.37	790	1970	920	42.94	9,140
K	12.10	362	1975	725	30.40	11,000
L	14.44	875	2450	1050	21.40	4,564
M	15.37	1485	1810	810	28.47	9,072
N	15.00	1495	1700	730	32.70	10,768

TABLE VII

Pressure Distributions on the Cylinders at M = 10.5

Condition	A	В	C	D	E	F
Moo	10.45	10.61	10.37	10.71	10.60	10.86
ReD	1,905	3,130	3,770	4,120	11,142	22,797
θ			P(0)	/P(0)		
0	1.000	1.000	1.000	1.000	1.000	1.000
5	0.992	0.997	-	0.996	0.996	•
10		-	0.976	0.984	0.981	0.989
15	0.946	0.951		0.962	0.953	
20	- Cho	0.050	0.908	0.920	0.916	0.928
25 20	0.849	0.870	0.805	0.874 0.813	0.866 0.814	0.825
30 35	0.738	0.746	0.005	0.753	0.014	0.025
#0 25	0.750	0.140	0.670	0.681	0.682	0.695
45	0.602	0.606	0.010	0.612	0.002	-
50	-	•	0.519	0.528	0.519	0.537
55	0.457	0.458	-	0.462	-	-
60	-	_	0.381	0.388	0.371	0.372
65	0.323	0.31 9	-	0.327	-	-
70	-	-	0.260	0.272	0.247	0.247
75	0.223	0.221	-	0.227	-	-
80	-	-	0.179	0.184	0.164	0.160
85	0.142	0.143	-	0.149	0.128	
90	0.08 9	-	0.122	0.120	0.104	0.099
95 100	0.069	0.092	0.086	0.097	0.083 0.067	0.063
105	0.054	0.056	0.000	0.076 0.061	0.055	0.003
110	0.054	0.000	0.067	0.048	0.045	0.041
115	0.033	0.034	0.00,	0.038	0.038	0.042
120	-	-	0.057	0.030	0.034	0.029
125	0.022	0.023	-	0.026	0.031	-
130	•	-	0.052	0.021	0.029	0.0228
135	0.017	0.020	_	0.020	0.0277	-
140	- '	•	0.0503	0.019	0.0274	0.0221
145	0.017	0.020	-	0.020	0.0276	•
150	-	-	0.0505	0.021	0.028	0.024
155	0.020	0.021	•	0.023	0.029	
160	•		0.053	0.025	0.031	0.025
165	0.024	0.027	-	0.026	0.032	A 004
170	0.006	A AAC	0.055	0.028	0.032	0.026
175 180	0.026	0.027	0.055	0.029	0.033	0.027
180	-	•	0.055	•	0.033	0.027

TABLE VIII

TABLE IX

Pressure Distributions on Cylinders at M = 12

Pressure Distributions on Cylinders at M = 15

Condition	G	H	J	K	L	М	N
Yes	11.76	12.11	12.37	12.10	14.44	15.37	15.
R _{eD}	3,418	3,758	9,140	11,000	4,564	9,072	10,
θ	P(θ)/P(0)				P(θ)/P(0)		
0	1.000	1.000	1.000	1.000	1.000	1.000	1.0
5	-	0.995	0.999	1.000	0.994	0.998	•
10	0.982	0.985	0.988	0.990	0.978	0.984	0.9
15	-	0.970	0.966	0.970	0.952	0.953	
20	0.926	0.951	0.936	0.937	0.918	0.920	0.9
25	•	0.923	0.893	0.888	0.875	0.87 0	
30	0.827	0.858	0.845	-	0.828	0.822	0.8
35 40		0.783	•	0.768	-	-	•
40	0.706	0.699	0.723	-	0.705	0.691	0.6
45	-	0.618	-	0.622	-	•	
50	6.561	-	0.572	•	0.574	0.5 3 8	0.
55		0.451	-	0.465	_	-	
55 60	0.420		0.420	-	0.445	0.395	0.
65	•	0.315	-	0.331	-	-	•
70	0.294	-	0.267	-	0.326	0.268	0.2
75	-	0.211	-	0.224	-		
75 80	0.188	-	0.194	0.184	0.238	0.186	0.1
85	•	0.139	-	0.150	• •	•	
90	0.122	0.237	0.125	0.118	0.159	0.122	0.1
95	0.222	0.089	-	0.095	-	-	•
100	0.078	0.009	0.073	0.076	0.101	0.080	0.0
105	0.0,0	0.061	0.056	0.058	0.089	-	•
110	0.049	0.001	0.044	0.044	0.075	0.051	0.0
115	0.043	0.044	0.034	0.036	0.064	-	
120	0.031	J. 07-7	0.025	-	0.059	0.031	0.0
125	-	0.037	0.019	0.021	0.0587		
130	0.021	0.034	0.015	J. 0ET	0.0534	0.022	0.0
	J. 021	0.033	0.012	0.018	0.062	0.021	
135	0.016	0.032	0.012	J.010	0.065	0.020	0.0
140	0.010	0.032	0.009	0.013	J.00)	0.021	٠.٠
145	0.031	0.030		0.013	0.073	0.022	0.0
150	0.014	0.029	0.010	0.016	0.013	0.022	۷.۱
155		0.030	0.011	0.070	0.034	0.027	0.0
160	0.015	-	0.012	0.018	0.086	0.021	0.1
165	-	0.031	0.014			0.030	0.0
170	0.017	•	0.016	0.020	0.091	0.030	٠.١
175	-	0.033	0.017	-	-	0.000	^ ′
180	0.018	-	0.018	-	0.093	0.032	0.0

Figure 1 The Ohio State University 12 Inch Hypersonic Wind Tunnel Schematic

Figure 2 Flat Plate Dimensions

Figure 3 Flat Plate Orifice And Thermocouple Locations

Figure 4 The Completed Flat Plate Model

Figure 5 Model Installation

0.20" O.D. Cylinder Model

Figure 6 Cylinder Dimensions

Figure 7 The Cylinders

Figure 8 Inclinable Manometer Board

Figure 9 Nozzle Calibrations At Model Leading Edge

Figure 10 Coordinate Systems Used For The Flat Plate And The Cylinder

Figure 12 Pressure Distribution Over The Flat Plate-M = 7 , Re_{D} = 20,600

Figure 15 Pressure Distribution Over The Flat Plate — M=12, Re_D = 9000

Pressure Distribution Over The Flat Plate - M = 14, Re 5 = 16,000 Figure 19

Effect Of Mach Number On Pressure Distributions For M = 7, 10, 12 Figure 22

Figure 24 Tunnel Interference On Flat Plate Distribution

Pressure Distribution On The Nose Of The Flat Plate — M = 12, Rep = 9000 Figure 29

Pressure Distribution On The Nose Of The Flat Plate — M=12, Re_D=21,300 Figure 31

Pressure Distribution On The Nose Of The Flat Plate — M = 14, Re_D = 16,000 Figure 33

Figure 34 Pressure Distribution About Cylinder M=10

Figure 35 Pressure Distribution About Cylinder — M = 12

Figure 36 Pressure Distribution About Cylinder M = 15

Figure 37 Effect Of Mach Number On Pressure
Distribution About Cylinder — Rep = 11,000

Figure 38 Effect Of Mach Number On Pressure
Distribution About A Cylinder, Re_D = 4000

Figure 39 Tunnel Interference On Cylinder Distributions

1. Boundary layer 2. Rypersonic flow 3. Lawiner boundary layer 4. Compressible flow 5. Rypersonic wind tun- sals 1. ANSC Project 1366, Tak 13666 II. Confrect A 33(616)- TRY III. Onlo Site University, Columbus, Onlo IV. G. M. Cregoraf, T. C. Mari fr Ors V. Aval fr Ors V. In AFTA sollection	
Astromentiaal Systems Division, Dir/Astromechanias, Flight Bramise Lab, Wright-Patterson AFP, Ohlo. By He ASD-THE-62-72, Vol 1. AN EXPERIMENTAL IN-YESTGANTON OF HIS SUPPLICE PRESENTE AND THE LACTION BOURNAY LAYER ON A KLURY FLAT FLAT HIS TERRESONIC FLOW BARRIES FROM THE FROM A KLURY FLAT FLAT HIS PRESENTE AND THE PRESENTE AND THE PRESENTE AND THE PRESENTE AND THE PROPERTY OF FACT FLAT FLATS IN HIPPERCHICAL OF HE MAN SHADES, 5 refs. The Plate. Final report, Nor 63 104p. inel 111us., tables, 5 refs. The Plate. Final report, Nor 63 104p. inel 111us., tables, 5 refs. The Plate. Final report, Nor 63 104p. inel 111us., tables, 5 refs. The Plate. Final report, Nor 63 104p. inel 111us., tables. 5 refs. The Plate Nor Shade Shades and The Following conditions and the stables of th	The flat plate was side-mounted in the ALOSU 12- inab continuous hypersonic vind tunnel. Separate tests were conducted with cylinders in order to ob- tain detailed data for the leading-edge. Stagnation condensations erforts. The leading-edge and cylinder pressure ration were noted to be independent of both Mach manber and Horolds number. The flat plate pressure ration was simil dependent of both when manber and reported to be independent of the both washer were also we simil dependence on Mesh num- bor. Reynolds number effects on the plate pressure ratios were small can get at the lower levels of ratios were small can get in the lower levels of each boundary layer profiles, obtained during the same program, are reported in Volume II of this report.
1. Boundary layer 2. Repersonic flow 3. Laminar boundary Layer 4. Coupressible flow 5. Repersonic wind tun- mals 1. AFEC Project 1366, Take 13666 II. Contrast AF 33(616)- TRY Columba, Ohio IV. G. M. Gregorak, T. C. Mark, J. D. Lee V. Aral fr CTS VI. In ASTIA collection	
Arrowalteal System Division, Dir/Arromechanise, 714ght Brandes Lab, Wright-Patterson AP, Ohio. Not be ASD-THE-62-792, Vol I. AN EXPERIMENTAL IN- WHITHCATCH OF HE SUFFACE PRESENTE AND THE LANDRA DOMINATE AND THE LANDRA DOMINATE AND THE LANDRA HAND IN TART PLATE IN STPENSOUTO TART PLATE IN STPENSOUTO THE PLATE LANDRA DATE PLATE IN STRESSOUTO THE PLATE. THE STATES OF STRESSOUTO THE STATES OF STRESSOUTO THE GRAND OF THE STATES OF AN UN- WHITE PLATE, FARM TOPOUT, May 6 3 104pp. incl illus, tables, 5 refs. Theorem search of the baring a cylimbrical leading edge 1/2-inch in dismeter under the following con- dition. H = 1 7500 S Rep 5 20,600 H = 14 12700 S Rep 5 15,000 H = 14 12700 S Rep 5 15,000 H = 14 12700 S Rep 5 15,000	The flat plate was mide-monuted tunnel. Separate tests were conducted with apliaders in order to obtain detailed data for the leading-edge. Stagmation tails detailed data for the leading-edge. Stagmation demonstrate were auficiently high to climinate emainments affects. The leading-edge and epilader presenter retion were noted to be independent of both Meak number and Reynolds number. The flat plate presence retion was a Manil dependence on Meah number. Reynolds number offerts on the plate presence retion was small dependence on Meah number. May make mumber where small dependence on Meah number. May make number where she is the locar levels of the brink-cond boundary layer sensed instruction of the think-boundary layer sensed instruction of the think-boundary layer sensed instruction of the report.