

UVSHIELD

Final Presentation

DEVICE CONSTRUCTION

DEVICE ASSEMBLY

DEVICE FLOW CHART

0

PROJECT STATE

1. Boot Process

 Completed as intended, device properly boots to our logo, loading bar, then to the live video feed.

2. Proper UV filtration

- The device displays areas that are properly covered by sunscreen successfully.
- Powerful filter made for indoor use difficult as video brightness was affected.

3. UV LEDs

- UV light bar was implemented as intended.
- Lights are not as powerful as hoped with the final UV filter.

4. Application Multiprocessing

 Able to successfully run live video feed, GPIO, and touch screen inputs at the same time.

- 1. Handling multiple processes +
 - Software application had to run a video feed, touch screen functionality, and GPIO input/outputs at the same time.
 - No prior experience with multiprocessing.
 - Found success by using threads, a topic taught in COP4600 Operating Systems.

+

- 2. Adjusting the device's boot process
 - Boot process was slow and displayed a blank screen which may indicate to a user that the device has frozen.
 - Removing Raspberry's boot logo, adding our own designed logo, and adding a loading bar to show end users that the device was working on loading up.
 - Found success by researching Linux file changes, used experience from OS.

SUCCESSES

- 3. Building a case from scratch +
 - No prior 3D printing experience.
 - Measurements had to be accurate down to the millimeter for aligning holes on hardware so that it could be put together appropriately.
 - Found success by taking the time to slowly build the final case design based on implemented hardware.

1. Team Collaboration

- Why?
 - 5 members
 - Some members lived an hour away from one another
 - Only one device to start with
 - Remote work was difficult
- Resolution:
 - Ordered a second set of components so that more than one person could work on hardware at a time.
 - Set up consistent days where the team could meet to handoff needed hardware.

CHALLENGES

2. Prototyping costs / time consumption

- Why?
 - Had to test numerous filters before determining the right one.
 - 3D printing was time consuming, expensive, and had flaws.
- Resolution:
 - Spent more time than we originally planned testing UV filtration and doing research on UV/IR spectrums.
 - Sourced 3D printing through friends, rather than UF's library.

3. Hardware Hurdles

- Why?
 - Original Raspberry Pi Zero's computer power was not enough once more features were added to the project.
 - Raspberry OS software corrupted twice having to defrag, repair, and reinstall software on SD card.
 - Multiple UV filters proved to not do as specified.
- Resolution:
 - Obtained a Raspberry Pi 3 B+ with more computing power.
 - Used a Kolari UV filter, more expensive but highly trusted UV filter company.

Thank you!