

Teoría de Grafos

Juan David Rojas Gacha

2020 - II

Árboles de expansión mínima

Grafo ponderado

Un grafo ponderado o grafo con peso es un grafo con etiquetas numéricas en las aristas denominadas pesos de las aristas.

Árboles de expansión mínima

Grafo ponderado

Un grafo ponderado o grafo con peso es un grafo con etiquetas numéricas en las aristas denominadas pesos de las aristas.

Árbol de expansión mínima

Un **árbol de expansión mínima** en un grafo ponderado conexo es un árbol de expansión que tiene la menor suma de los pesos de sus aristas.

Algoritmo de Kruskal

Input: Un grafo ponderado conexo *G* con *n* vértices.

Output: Un árbol de expansión mínima T.

- 1. V(T) = V(G)
- 2. $E(T) = \emptyset$
- 3. Mientras T sea disconexo
 - a. Seleccione e una arista en G con peso mínimo que une dos componentes de T.
 - b. $T = T \cup \{e\}$

Algoritmo de Prim

Input: Un grafo ponderado conexo *G*.

Output: Un árbol de expansión mínima T.

- 1. $V(T) = \{x\}$
- 2. $E(T) = \emptyset$
- 3. Para i = 1 hasta n 1
 - a. Seleccione $e = uv : u \in V(T), v \notin V(T)$ una arista en G con peso mínimo.
 - b. $V(T) = V(T) \cup \{v\}$
 - c. $E(T) = E(T) \cup \{e\}$

Problema de ruta mínima

Distancia mínima

La distancia mínima d(u,z) en un grafo ponderado es la mínima suma de los pesos de las aristas de un u,z-camino. También se denomina la **longitud** mínima.

Problema de ruta mínima

Distancia mínima

La distancia mínima d(u,z) en un grafo ponderado es la mínima suma de los pesos de las aristas de un u,z-camino. También se denomina la **longitud** mínima.

Problema de ruta mínima

El **problema de ruta mínima** en un grafo ponderado consiste en encontrar el camino de longitud mínima entre un par de vértices (u, z).

Algoritmo de Dijkstra

Input: Un grafo o digrafo ponderado G con pesos no negativos. w(u, v) es el peso de la arista (u, v), sea $w(u, v) = \infty$ si $(u, v) \notin E(G)$.

Output: L(z) la distancia mínima de u a z.

- 1. L(u) = 0
- 2. Para todos los vértices $v \neq u$:
 - a. $L(v) = \infty$
- 3. $S = \emptyset$
- 4. Mientras $z \notin S$
 - a. Seleccione un vértice $x \notin S$ con L(x) mínimo.
 - b. $S = S \cup \{x\}$
 - c. Para todo $v \notin S$

	U	Α	В	С	D	Е	Z
ſ							

U	Α	В	С	D	Е	Z	
0	∞	∞	∞	∞	∞	∞	

U	Α	В	C D		Е	Z
0	∞	∞	∞	∞	∞	∞
_	2^{U}	5 ^U	4 ^{<i>U</i>}	∞	∞	∞

0	Α	В	C	D	E	Ζ
0	∞	∞	∞	∞	∞	∞
_	2^{U}	5 ^{<i>U</i>}	4 ^{<i>U</i>}	∞	∞	∞
_	_	(4) ^A	$(4)^U$	9 ^A	∞	∞

U	Α	В	С	D	Е	Z
0	∞	∞	∞	∞	∞	∞
_	2^{U}	5 ^U	4 ^{<i>U</i>}	∞	∞	∞
_	_	(4) ^A	(4) ^U	9 ^{<i>A</i>}	∞	∞
	_	_	_	8 ^B	\bigcirc^B	∞

U	А	В	С	D	Е	Z
0	∞	∞	∞	∞	∞	∞
_	\bigcirc^U	5 ^{<i>U</i>}	4 ^{<i>U</i>}	∞	∞	∞
	_	(4) ^A	$\left 4^{U} \right $	9 ^{<i>A</i>}	∞	∞
_	_	_	_	8 ^B	7^B	∞
_	_	_	_	8 ^{B,E}	_	14 ^E

U	А	В	С	D	Е	Z	
0	∞	∞	∞	∞	∞	∞	
_	\bigcirc^U	5 ^{<i>U</i>}	4 ^{<i>U</i>}	∞	∞	∞	
_	_	(4) ^A	$4^{\prime\prime}$	9 ^A	∞	∞	
_	_	_	_	8 ^B	(7) ^B	∞	
_	_	_	_	8 ^{B,E}	_	14 ^E	
_	_	_	_	_	_	$(13)^D$	

$$U - A - B - D - Z$$

$$U - A - B - E - D - Z$$

Algoritmo de Floyd - Warshall

Input: Un grafo o digrafo ponderado G con pesos no negativos.

Output: L_n matriz de distancia mínima cuya entrada ij representa la longitud del camino más corto entre los vértices v_i y v_j .

1.
$$W_{ij} := \begin{cases} w(i,j) & \text{si } v_i \text{ y } v_j \text{ son ayacentes} \\ 0 & \text{si } v_i \text{ y } v_j \text{ no son ayacentes} \end{cases}$$

2.
$$L_0 := \begin{cases} \infty & \text{si } w_{ij} = 0, \ i \neq j \\ w_{ij} & \text{en otro caso} \end{cases}$$

- 3. Para k = 1 hasta n(G)
 - a. $L_k = (I_k(i,j))$ donde

$$I_k(i,j) = \min\{I_{k-1}(i,j), I_{k-1}(i,k) + I_{k-1}(k,j)\}$$

$$W = \left[\begin{array}{cccc} 0 & 3 & 4 & 2 \\ 3 & 0 & 0 & 5 \\ 4 & 0 & 0 & 1 \\ 2 & 5 & 1 & 0 \end{array} \right]$$

$$W = \left| \begin{array}{cccc} 0 & 3 & 4 & 2 \\ 3 & 0 & 0 & 5 \\ 4 & 0 & 0 & 1 \\ 2 & 5 & 1 & 0 \end{array} \right|$$

$$W = \left[egin{array}{cccc} 0 & 3 & 4 & 2 \ 3 & 0 & 0 & 5 \ 4 & 0 & 0 & 1 \ 2 & 5 & 1 & 0 \end{array}
ight] \qquad \qquad L_0 = \left[egin{array}{cccc} 0 & 3 & 4 & 2 \ 3 & 0 & \infty & 5 \ 4 & \infty & 0 & 1 \ 2 & 5 & 1 & 0 \end{array}
ight]$$

$$L_1 = \left[\begin{array}{cccc} 0 & 3 & 4 & 2 \\ 3 & 0 & 7 & 5 \\ 4 & 7 & 0 & 1 \\ 2 & 5 & 1 & 0 \end{array} \right]$$

$$L_1 = \begin{bmatrix} 0 & 3 & 4 & 2 \\ 3 & 0 & 7 & 5 \\ 4 & 7 & 0 & 1 \\ 2 & 5 & 1 & 0 \end{bmatrix} \qquad L_2 = \begin{bmatrix} 0 & 3 & 4 & 2 \\ 3 & 0 & 7 & 5 \\ 4 & 7 & 0 & 1 \\ 2 & 5 & 1 & 0 \end{bmatrix}$$

$$L_2 = \begin{bmatrix} 0 & 3 & 4 & 2 \\ 3 & 0 & 7 & 5 \\ 4 & 7 & 0 & 1 \\ 2 & 5 & 1 & 0 \end{bmatrix}$$

$$L_3 = \left[\begin{array}{cccc} 0 & 3 & 4 & 2 \\ 3 & 0 & 7 & 5 \\ 4 & 7 & 0 & 1 \\ 2 & 5 & 1 & 0 \end{array} \right]$$

$$L_1 = \begin{bmatrix} 0 & 3 & 4 & 2 \\ 3 & 0 & 7 & 5 \\ 4 & 7 & 0 & 1 \\ 2 & 5 & 1 & 0 \end{bmatrix} \qquad L_2 = \begin{bmatrix} 0 & 3 & 4 & 2 \\ 3 & 0 & 7 & 5 \\ 4 & 7 & 0 & 1 \\ 2 & 5 & 1 & 0 \end{bmatrix}$$

$$L_2 = \begin{bmatrix} 0 & 3 & 4 & 2 \\ 3 & 0 & 7 & 5 \\ 4 & 7 & 0 & 1 \\ 2 & 5 & 1 & 0 \end{bmatrix}$$

$$L_3 = \begin{bmatrix} 0 & 3 & 4 & 2 \\ 3 & 0 & 7 & 5 \\ 4 & 7 & 0 & 1 \\ 2 & 5 & 1 & 0 \end{bmatrix} \qquad L_4 = \begin{bmatrix} 0 & 3 & 3 & 2 \\ 3 & 0 & 6 & 5 \\ 3 & 6 & 0 & 1 \\ 2 & 5 & 1 & 0 \end{bmatrix}$$

$$L_4 = \begin{bmatrix} 0 & 3 & 3 & 2 \\ 3 & 0 & 6 & 5 \\ 3 & 6 & 0 & 1 \\ 2 & 5 & 1 & 0 \end{bmatrix}$$

$$\begin{bmatrix} - & AB & ADC & AD \\ BA & - & BDC & BD \\ CDA & CDB & - & CD \\ DA & DB & DC & - \end{bmatrix}$$

Código Huffman

Código de longitud fija

Un código de longitud fija es un código en el que cada carácter es codificado con una cadena de bits de longitud fija.

- El código ASCII (American Standard Code for Information Interchange) representa 128 caracteres usando cadenas de longitud 7.
- El código ASCII extendido representa 256 caracteres usando cadenas de longitud 8.

Byte	Cod.	Char	Byte	Cod.	Char	Byte	Cod.	Char	Byte	Cod.	Chai
00000000	0	Null	00100000	32	Spc	01000000	64	(a)	01100000	96	
00000001	1	Start of heading	00100001	33	!	01000001	65	Ă	01100001	97	a
00000010	2	Start of text	00100010	34	"	01000010	66	В	01100010	98	b
00000011	3	End of text	00100011	35	#	01000011	67	C	01100011	99	c
00000100	4	End of transmit	00100100	36	\$	01000100	68	D	01100100	100	d
00000101	5	Enquiry	00100101	37	%	01000101	69	E	01100101	101	е
00000110	6	Acknowledge	00100110	38	&	01000110	70	F	01100110	102	f
00000111	7	Audible bell	00100111	39	,	01000111	71	G	01100111	103	g
00001000	8	Backspace	00101000	40	(01001000	72	H	01101000	104	ĥ
00001001	9	Horizontal tab	00101001	41	1	01001001	73	I	01101001	105	i
00001010	10	Line feed	00101010	42	*	01001010	74	J	01101010	106	i
00001011	11	Vertical tab	00101011	43	+	01001011	75	ĸ	01101011	107	k
0001100	12	Form Feed	00101100	44		01001100	76	T.	01101100	108	1
00001101	13	Carriage return	00101101	45	-	01001101	77	M	01101101	109	m
00001110	14	Shift out	00101110	46		01001110	78	N	01101110	110	n
00001111	15	Shift in	00101111	47	1	01001111	79	0	01101111	111	0
00010000	16	Data link escape	00110000	48	0	01010000	80	p	01110000	112	p
00010001	17	Device control 1	00110001	49	1	01010001	81	0	01110001	113	q
00010010	18	Device control 2	00110010	50	2	01010010	82	Ř	01110010	114	r
00010011	19	Device control 3	00110011	51	3	01010011	83	S	01110011	115	s
00010100	20	Device control 4	00110100	52	4	01010100	84	т	01110100	116	t
00010101	21	Neg. acknowledge	00110101	53	5	01010101	85	Ī	01110101	117	u
00010110	22	Synchronous idle	00110110	54	6	01010110	86	v	01110110	118	v
00010111	23	End trans, block	00110111	55	7	01010111	87	w	01110111	119	w
00011000	24	Cancel	00111000	56	8	01011000	88	x	01111000	120	x
00011001	25	End of medium	00111001	57	9	01011001	89	v	01111001	121	v
00011010	26	Substitution	00111010	58		01011010	90	ž	01111010	122	Z
00011011	27	Escape	00111011	59	;	01011011	91	1	01111011	123	-
00011100	28		00111100	60	2	01011100	92	1	01111100	124	ì
00011101	29		00111101	61	=	01011101	93	1	01111101	125	1
00011110	30	Record Separator	00111110	62	>	01011110	94	Α.	01111110	126	2
00011111		Unit separator	00111111	63	9	01011111	95		01111111	127	Del

Nota

Un código de longitud fija para 2^n caracteres se construye con un árbol binario completo de altura n, cada hoja almacena una cadena de longitud n.

Código Huffman

Un **código Huffman** es un código óptimo de longitud variable que codifica los caracteres en función de su frecuencia.

- Los caracteres de mayor frecuencia son codificados con cadenas de menor longitud.
- Los caracteres de menor frecuencia son codificados con cadenas de mayor longitud.
- La longitud esperada de una cadena es $\sum p_i l_i$ donde el *i*-ésimo carácter tiene probabilidad p_i y su código tiene longitud l_i .

Entropía

Sea $X = \{x_1, \ldots, x_n\}$ un experimento formado por un número finito de eventos x_i con probabilidades p_1, \ldots, p_n . X es una variable aleatoria discreta en un alfabeto A. La **entropía** H(X) de la variable aleatoria X se define como

$$H(X) := -\sum_{x_i \in X} p_i \log_{|\mathcal{A}|} p_i.$$

Entropía

Sea $X = \{x_1, \ldots, x_n\}$ un experimento formado por un número finito de eventos x_i con probabilidades p_1, \ldots, p_n . X es una variable aleatoria discreta en un alfabeto \mathcal{A} . La **entropía** H(X) de la variable aleatoria X se define como

$$H(X) := -\sum_{x_i \in X} p_i \log_{|\mathcal{A}|} p_i.$$

Teorema (Shannon)

Para todo código binario la longitud esperada es mayor o igual que la entropía: $-\sum p_i \log_2 p_i$. Cuando cada p_i es potencia de 1/2 se tiene la igualdad.

Algoritmo de Huffman

Input: n símbolos a_i con frecuencias w_i

 $\label{eq:output: Tun arbol con raíz que define un código de Huffman óptimo.}$

- 1. *F* : un bosque de *n* árboles con raíz, cada uno consiste en un vértice *a_i* y un peso *w_i* asignado a la raíz.
- 2. Mientras que F no sea un árbol
 - a. Reemplace los árboles con raíz T y T' de menor peso en F $(w(T) \le w(T'))$ por un nuevo árbol T^* con subárbol izquierdo T y subárbol derecho T'.
 - b. Asigne $w(T^*) = w(T) + w(T')$.
 - c. Etiquete la nueva arista hacia T con 0 y la nueva arista hacia T' con 1.
- 3. El código de Huffman para el símbolo a_i es la concatenación de las etiquetas de la aristas en el camino de la raíz al vértice a_i .

Carácter	Frecuencia
А	2
В	3
С	7
D	8
E	12

Codificar: ABACEDC

• Decodificar: 1101000100000100

Recorrido de árboles

Algoritmos de recorrido

Los procedimientos para el recorrido sistemático de los vértices de un árbol ordenado con raíz se denominan **algoritmos de recorrido de árboles.**

Recorrido de árboles

Algoritmos de recorrido

Los procedimientos para el recorrido sistemático de los vértices de un árbol ordenado con raíz se denominan **algoritmos de recorrido de árboles.**

- Recorrido preorden.
- Recorrido postorden.
- Recorrido inorden.

Algoritmo de recorrido preorden

Preorden(T)

Input: T un árbol ordenado con raíz.

Output: v_1, v_2, \ldots, v_n una enumeración de los vértices de T.

Iteración:

1. *r* : raíz de *T* .

2. Enumerar r.

3. Para cada hijo c de r de izquierda a derecha

a. T(c): subárbol de raíz c.

b. Preorden(T(c)).

Algoritmo de recorrido inorden

Inorden(T)

Input: T un árbol ordenado con raíz.

Output: v_1, v_2, \ldots, v_n una enumeración de los vértices de T.

Iteración:

- 1. r: raíz de T.
- 2. Si r es una hoja
 - a. Enumerar r.
- 3. Si no
 - a. 1: primer hijo de izquierda a derecha
 - b. T(I): subárbol de raíz I.
 - c. Inorden(T(I)).
 - d. Enumerar *r*.
 - e. Para cada hijo $c \neq l$ de r de izquierda a derecha
 - 1. T(I): subárbol de raíz c.
 - 2. Inorden(T(c)).

Algoritmo de recorrido postorden

Postorden(T)

Input: T un árbol ordenado con raíz.

Output: v_1, v_2, \ldots, v_n una enumeración de los vértices de T.

Iteración:

1. *r* : raíz de *T* .

2. Para cada hijo c de r de izquierda a derecha

a. T(c): subárbol de raíz c.

b. Postorden(T(c)).

3. Enumerar *r*.

j n o p k e f b c l m g h i d o f

• Infija: $((x + y) \uparrow 2) + ((x - 4)/3)$

• Infija: $((x + y) \uparrow 2) + ((x - 4)/3)$

• Infija: $((x + y) \uparrow 2) + ((x - 4)/3)$

• Prefija: $+ \uparrow + x y 2 / - x 4 3$

• Infija: $((x + y) \uparrow 2) + ((x - 4)/3)$

- Prefija: $+ \uparrow + x y 2 / x 4 3$
- Postfija: $x y + 2 \uparrow x 4 3 / +$

Evaluación de una fórmula prefija

Evaluación de una fórmula postfija

• Fórmula Infija: $(\neg(p \land q)) \leftrightarrow ((\neg p) \lor (\neg q))$

• Fórmula Infija: $(\neg(p \land q)) \leftrightarrow ((\neg p) \lor (\neg q))$

• Fórmula Infija: $(\neg(p \land q)) \leftrightarrow ((\neg p) \lor (\neg q))$

• Fórmula Prefija: $\leftrightarrow \neg \land pq \lor \neg p \neg q$

• Fórmula Infija: $(\neg(p \land q)) \leftrightarrow ((\neg p) \lor (\neg q))$

• Fórmula Prefija: $\leftrightarrow \neg \land pq \lor \neg p \neg q$

• Fórmula Infija: $(\neg(p \land q)) \leftrightarrow ((\neg p) \lor (\neg q))$

• Fórmula Infija: $(\neg(p \land q)) \leftrightarrow ((\neg p) \lor (\neg q))$

Bibliografía

Douglas B. West Introduction to graph theory. Pearson. (2005).

Kenneth Rosen

Discrete Mathematics and its Applications McGraw Hill. (2012).

Bibliografía 61