Physikpraktikum für Naturwissenschaftler

Versuch: Oberflächenspannung

Durchgeführt am 08. November 2018 Betreuerin: Sabrina Hartmann

Gruppe 13

Felix Burr: felix.burr@uni-ulm.de Johannes Spindler: johannes.spindler@uni-ulm.de

Wir bestätigen hiermit, das Protokoll selbstständig erarbeitet zu haben und in genauer Kenntnis über dessen Inhalt zu sein.

Felix Burr

Johannes Spindler

Inhaltsverzeichnis

1	Einl	eitung	3			
2		Oberflächenspannung von Wasser, Ethanol und Kochsalzlösung (Abreißmethode)				
	2.1	Versuchsdurchführung	3			
	2.2	Messwerte und Ergebnisse	3			
		2.2.1 Messungen bei Wasser	3			
		2.2.2 Messungen bei Ethanol	3			
		2.2.3 Messungen bei Kochsalzlösung	4			
	2.3	Fehlerrechnung	4			
		2.3.1 Standardabweichung und Größtfehler von σ bei Wasser	4			
		2.3.2 Standardabweichung und Größtfehler von σ bei Ethanol	4			
		$2.3.3$ Standardabweichung und Größtfehler von σ bei Kochsalzlösung	4			
	2.4	Ergebnisdiskussion	5			
3	Obe	erflächenspannung von Tensidlösungen	5			
	3.1	Versuchsdurchführung	5			
	3.2	Messwerte und Ergebnisse	5			
	3.3	Ergebnisdiskussion	5			
4 Oberflächenspannung von Wasser und einer SDS-Lösung (erflächenspannung von Wasser und einer SDS-Lösung (Kapillarmethode)	5			
	4.1	Versuchsdurchführung	5			
	4.2	Messwerte und Ergebnisse	5			
	4.3	Ergebnisdiskussion	5			
5	Ben	Benetzung von Oberflächen				
	5.1	Versuchsdurchführung	5			
	5.2	Messwerte und Ergebnisse				
	5.3	Ergebnisdiskussion				

1 Einleitung

2 Oberflächenspannung von Wasser, Ethanol und Kochsalzlösung (Abreißmethode)

2.1 Versuchsdurchführung

$$\sigma = \frac{\Delta W}{\Delta O} \tag{1}$$

$$\Delta W = F \cdot \Delta h \tag{2}$$

$$\Delta O = 2A = 2(2\pi r \cdot \Delta h) = 4\pi r \cdot \Delta h \tag{3}$$

$$\sigma = \frac{F \cdot \Delta h}{4\pi r \cdot \Delta h} = \frac{F}{4\pi r} \tag{4}$$

2.2 Messwerte und Ergebnisse

2.2.1 Messungen bei Wasser

Tabelle 1: Kraft F und Oberflächenspannung σ bei Wasser

Messung	F [mN]	$\sigma [\mathrm{N/m}]$
1	24,0	0,0588
2	24,0	0,0588
3	25,5	0,0624
Mittelwert	24,5	0,0600

2.2.2 Messungen bei Ethanol

Tabelle 2: Kraft F und Oberflächenspannung σ bei Ethanol Messung | F [mN] | σ [N/m]

Messung	F' [mN]	$\sigma [N/m]$
1	7,0	0,0171
2	7,0	0,0171
3	7,0	0,0171 0,0171
Mittelwert	7,0	0,0171

2.2.3 Messungen bei Kochsalzlösung

Tabelle 3: Kraft F und Oberflächenspannung σ bei Kochsalzlösung

Messung	F [mN]	$\sigma [\mathrm{N/m}]$
1	22,0	0,0539
2	20,0	0,0490
3	19,0	0,0465
Mittelwert	20,3	0,0498

2.3 Fehlerrechnung

Aus Gleichung 3 folgt für σ , das von den Messgrößen F und r abhängt, der Größtfehler

$$\Delta \sigma = \left| \frac{\partial \sigma}{\partial F} \right| \Delta F + \left| \frac{\partial \sigma}{\partial r} \right| \Delta r = \left| \frac{1}{4\pi r} \right| \Delta F + \frac{F}{4\pi} \left| -\frac{1}{r^2} \right| \Delta r = \frac{1}{4\pi r} \Delta F + \frac{F}{4\pi r^2} \Delta r$$

Da die Skala auf dem Kraftmesser in Abständen von einem Milli-Newton aufgetragen ist und zum Messen des Ringradius eine Schieblehre verwendet wurde, werden $\Delta F = 1mN, \Delta r = 0,05mm$ als Größtfehler angenommen.

2.3.1 Standardabweichung und Größtfehler von σ bei Wasser

Aus Tabelle 1 folgt eine Standardabweichung von 0,0021. Mit den Mittelwerten $F = 24,5mN, \sigma = 0,0600N/m$ ergibt sich der Größtfehler von σ :

$$\Delta = \sigma \frac{1}{4\pi \cdot 0.0325m} 0,0010N + \frac{0.0245N}{4\pi (0.0325m)^2} 5 \cdot 10^{-5}m = 0,00254N$$

2.3.2 Standardabweichung und Größtfehler von σ bei Ethanol

Wie in Tabelle 2 zu sehen ist, wurde in allen drei Messungen derselbe Wert für die Kraft gemessen, weshalb die Standardabweichung Null beträgt. Mit den Mittelwerten $F = 7,0mN, \sigma = 0,0171N/m$ ergibt sich der Größtfehler von σ :

$$\Delta = \sigma \frac{1}{4\pi \cdot 0.0325m} 0.0010N + \frac{0.0070N}{4\pi (0.0325m)^2} 5 \cdot 10^{-5} m = 0.00247N$$

2.3.3 Standardabweichung und Größtfehler von σ bei Kochsalzlösung

Aus Tabelle 3 folgt eine Standardabweichung von 0,0037. Mit den Mittelwerten $F = 20, 3mN, \sigma = 0,0498N/m$ ergibt sich der Größtfehler von σ :

$$\Delta = \sigma \frac{1}{4\pi \cdot 0,0325m} 0,0010N + \frac{0,0203N}{4\pi (0,0325m)^2} 5 \cdot 10^{-5} m = 0,00253N$$

- 2.4 Ergebnisdiskussion
- 3 Oberflächenspannung von Tensidlösungen
- 3.1 Versuchsdurchführung
- 3.2 Messwerte und Ergebnisse
- 3.3 Ergebnisdiskussion
- 4 Oberflächenspannung von Wasser und einer SDS-Lösung (Kapillarmethode)
- 4.1 Versuchsdurchführung
- 4.2 Messwerte und Ergebnisse
- 4.3 Ergebnisdiskussion
- 5 Benetzung von Oberflächen
- 5.1 Versuchsdurchführung
- 5.2 Messwerte und Ergebnisse
- 5.3 Ergebnisdiskussion