ASSIGNMENT #2

(1) Opposites: Let R be a ring.

(a) Prove that there is an isomorphism $M_n(R^{\text{op}}) \cong M_n(R)^{\text{op}}$.

(b) Prove that there is an isomorphism $\operatorname{End}_R(R) \cong R^{\operatorname{op}}$.

(2) A module is *finitely generated* if it has a finite generating set, and *finitely presented* if it as a finite generating set for which the module of relations is finitely generated. Let

$$0 \to M' \xrightarrow{i} M \xrightarrow{p} M'' \to 0$$

be a short exact sequence of R-modules.

(a) Show that if M' and M'' are finitely generated, then M is finitely generated.

(b*) Show that if M' and M'' are finitely presented, then M is finitely presented.

(3) Fix a field K. The collection of pairs (V,W) where $W \subseteq V$ are vector spaces forms a category \mathscr{C} , where the morphisms from $(V,W) \to (V',W')$ are linear transformations $\phi: V \to V'$ such that $\phi(W) \subseteq W'$. There are covariant functors $F,G:\mathscr{C} \to K-\mathbf{Vect}$ given by

$$F(V, W) = V$$
 $F(\phi) = \phi$ $G(V, W) = W \oplus V/W$ $G(\phi) = \phi|_W \oplus \overline{\phi}$

where $\overline{\phi}: V/W \to V'/W'$ is the induced map $\overline{\phi}(v+W) = \phi(v) + W'$ on the quotient spaces.

(a) Show that for every $(V, W) \in \text{Ob}(\mathscr{C})$, there is an isomorphism of vector spaces $F(V) \cong G(V)$.

(b) Let $W = K \oplus \{0\} \subseteq V = K^2$, and take $\phi : K^2 \to K^2$ to be the map given by the matrix $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$. Check that ϕ is a morphism in \mathscr{C} , and compute $F(\phi)$ and $G(\phi)$.

(c) Show that there is no natural isomorphism ^2 $\eta: F \Rightarrow G.$

(4) A covariant functor $F: R-\mathbf{Mod} \to S-\mathbf{Mod}$ is additive if for every $M, N \in R-\mathbf{Mod}$, the map

$$\operatorname{Hom}_R(M,N) \longrightarrow \operatorname{Hom}_S(F(M),F(N))$$

$$f \longmapsto F(f)$$

is a homomorphism of abelian groups. Show that if F is an additive covariant functor, and

$$0 \to M' \xrightarrow{i} M \xrightarrow{p} M'' \to 0$$

is a split exact sequence, then

$$0 \to F(M') \xrightarrow{F(i)} F(M) \xrightarrow{F(p)} F(M'') \to 0$$

is $exact^3$.

¹Hint: Your map should involve transposes.

 $^2\mathrm{Moral}\colon \mathrm{Every}$ short exact sequence of vector spaces splits, but not naturally!

³Moral: Functors (additive or not) between module categories don't always preserve short exact sequences, but (at least additive functors) always preserve *split* exact sequences.

(5) The localization functor:

Let R be a commutative ring. A subset S of R is multiplicatively closed if $1 \in S$ and $s, t \in S \Rightarrow st \in S$. Define a new ring $S^{-1}R$ as follows:

$$S^{-1}R = \left\{ \frac{r}{s} \mid r \in R, s \in S \right\} / \sim$$

where \sim is the equivalence relation $\frac{r}{s} \sim \frac{r'}{s'}$ if and only if t(rs' - r's) = 0 for some $t \in S$. This⁴ set is a ring (a fact you need not check) with respect to the operations

$$\frac{r}{s} + \frac{r'}{s'} = \frac{rs' + r's}{ss'} \qquad \frac{r}{s} \cdot \frac{r'}{s'} = \frac{rr'}{ss'}.$$

For an R-module M define

$$S^{-1}M = \left\{\frac{m}{s} \mid m \in M, s \in S\right\}/\sim$$

where \sim is the equivalence relation $\frac{m}{s} \sim \frac{m'}{s'}$ if and only if t(ms' - m's) = 0 for some $t \in S$. Then $S^{-1}M$ is an $S^{-1}R$ -module (a fact you need not check) via the operations

$$\frac{m}{s} + \frac{m'}{s'} = \frac{ms' + m's}{ss'} \qquad \frac{r}{s} \cdot \frac{m}{s'} = \frac{rm}{ss'}.$$

- (a) Show that there is a functor $S^{-1}: R-\mathbf{Mod} \to S^{-1}R-\mathbf{Mod}$ that on objects maps $M \mapsto S^{-1}M$ and on morphisms maps $f \mapsto S^{-1}f$ where $(S^{-1}f)(\frac{m}{s}) = \frac{f(m)}{s}$.
- (b) A covariant functor $R \mathbf{Mod} \to S^{-1}R \mathbf{Mod}$ is exact if it is additive and takes short exact sequences to short exact sequences. Show that the localization functor from (a) is exact.
- (6*) (a) We only defined a notion of natural transformation/isomorphism for F, G both covariant or F, G both contravariant. Come up with a definition of natural transformation/isomorphism for F covariant and G contravariant.
 - (b) Show that with this definition, for a field K, the functors $1_{K-\text{vect}}$, $(-)^*: K-\text{vect} \to K-\text{vect}$ are still not naturally isomorphic.
 - (c) Let $K \mathbf{inn}$ where
 - objects are finite dimensional K-vector spaces equipped with a nondegenerate⁵ symmetric bilinear form $\langle -, \rangle_V : V \times V \to K$, and the
 - morphisms are linear maps $\phi: V \to W$ such that $\langle v, v' \rangle_V = \langle \phi(v), \phi(v') \rangle_W$.

Show that the functors $F, G: K - \mathbf{inn} \to K - \mathbf{vect}$ given by

$$F(V) = V$$
 $F(\phi) = \phi$

$$G(V) = V*$$
 $G(\phi) = \phi^*$

are naturally isomorphic.

⁴This generalizes the construction of the fraction field of a domain R, where $S = R \setminus \{0\}$ gives $S^{-1}R = \text{Frac}(R)$.

⁵That is, for every $v \in V \setminus \{0\}$, there is some $v' \in V$ such that $\langle v, v' \rangle_V \neq 0$.