An Invitation to Pharmacostatics

Gilles Gnacadja

http://math.GillesGnacadja.info/

AMGEN

South San Francisco, California, USA

Society for Mathematical Biology

2017 Annual Meeting

Minisymposium on Recent Advances in the Analysis of Biochemical Reaction Systems

> University of Utah Salt Lake City, Utah, USA 17-20 July 2017

Pharmacostatics?

Pharmacology:

Studying interactions between biological processes and therapeutic agents

- ✓ Pharmacokinetics (PK):

 How drugs distribute and metabolize in biological systems
- ✓ Pharmacodynamics (PD):
 How biological systems respond to drugs
 - ? Pharmacostatics (PS)

Pharmacostatics

Pharmacostatics:

- Pharmacology in discovery-stage drug research
- Characterization of equilibrium parameters and states of core interactions of physiologic and therapeutic interest
- ▶ Do "things" stick, how strongly, how much, etc?

Two Interesting Math Problems in Pharmacostatics

Problem I

Calculate binding equilibrium

Problem II

Anticipate non-monotone dose-response curves

Background: Chemical Networks of Reversible Binding Reactions

This Presentation

Background:

Networks of Reversible Binding Reactions

► Problem I:

Calculate binding equilibrium

Problem II:

Anticipate non-monotone dose-response curves

Networks of Reversible Binding Reactions – Examples

$$R + L \rightleftharpoons RL$$

$$\begin{array}{c} R + L \rightleftharpoons RL \\ + \\ A \\ \downarrow \\ RA \end{array}$$

$$R + L \rightleftharpoons RL$$

$$+ +$$

$$A + T \rightleftharpoons AT$$

$$\parallel \qquad \parallel$$

$$RA \qquad LT$$

Reversible binding of a ligand L to a receptor R

Reversible orthosteric binding of a ligand L and an antagonist to a receptor R

Ligand L and antagonist A competing for the same site on receptor R and likewise on decoy receptor (or trap) T

$$R + L \Leftrightarrow RL$$

 $R + A \Leftrightarrow RA$
 $R + L + A \Leftrightarrow RLA$

Reversible allosteric binding of a ligand *L* and modulator *A* to a receptor *R*

"Normalized" network for equilibrium calculation

Elementary Species, Composite Species, Composition

Elementary species: R, L, A

Composite species: RL, RA, RLA

Composition: RL: (1,1,0)

RA: (1,0,1)

RLA: (1, 1, 1)

Elementary Species, Composite Species, Composition

$$R + L \rightleftharpoons RL$$

$$+ +$$

$$A + T \rightleftharpoons AT$$

$$\parallel \qquad \parallel$$

$$RA \qquad LT$$

Elementary species: R, L, A, T

Composite species: RL, RA, LT, AT

Composition: RL: (1,1,0,0)

RA: (1,0,1,0)

LT: (0, 1, 0, 1)

AT: (0,0,1,1)

Networks of Reversible Binding Reactions – Formalism

Normal Networks of Reversible Binding Reactions

- ▶ Elementary species $X_1, ..., X_n$; $n \in \mathbb{Z}_{\geq 1}$
- ▶ Composite species Y_{α} of composition α with respect to (X_1, \ldots, X_n) ; $\alpha \in I$, I nonempty finite $\subseteq \mathbb{Z}_{\geqslant 0}^n \setminus \{0_n, e_{n,1}, \ldots, e_{n,n}\}$
- ▶ For each $\alpha = (\alpha_1, ..., \alpha_n) \in I$, the binding-dissociation reaction pair $\sum_{i=1}^{n} \alpha_i X_i \rightleftharpoons Y_{\alpha}$ and its equilibrium binding constant a_{α}

Complete Networks of Reversible Binding Reactions

Sensibly support composite species as reactants in binding reactions

- Conservation of composition
- Detailed-balance equilibrium

Dose-Response Functions

Dose-response function in general:

$$[X]_{\mathsf{Total}} \mapsto [Y]_{\mathsf{Equil}} \quad \mathsf{or} \quad [X]_{\mathsf{Total}} \mapsto [X']_{\mathsf{Equil}_\mathsf{Total}_\mathsf{Bound}}$$

X: An elementary species, the dose species

Y: The response species, usually composite

X': An elementary species, usually one whose effect one seeks to antagonize

Monotonicity of Dose-Response Functions

Dose-response functions usually are monotone with a sigmoid profile...

...but non-monotone dose-response functions do occur

- Rare in published pharmacostatics work
- More awareness in toxicology area

Monotonicity of interleukin-1 receptor—ligand binding with respect to antagonist in the presence of decoy receptor
Gilles Gnacadja . Alex Shoshitaishvili . Michael J. Gresser . Brian Varnum .
David Balaban . Mark Durst , Chris Vezina , Yu Li

$$R + L \rightleftharpoons RL$$

$$+ +$$

$$A + T \rightleftharpoons AT$$

$$\parallel \qquad \parallel$$

$$RA = LT$$

$$[A]_{\mathsf{Total}} \mapsto [RL]_{\mathsf{Equil}}$$

$$R + L \rightleftharpoons RL$$

$$+ +$$

$$A + T \rightleftharpoons AT$$

$$\parallel \qquad \parallel$$

$$RA \qquad LT$$

The bump frontier:

- ► A hypersurface in the 7-dimensional space with coordinate system (*K_{RL}*, *K_{RA}*, *K_{LT}*, *K_{AT}*, [*R*]_{Total}, [*L*]_{Total}, [*T*]_{Total})
- Shown here is the 2-dimensional slice resulting from fixing K_{RL}, K_{RA}, K_{LT}, K_{AT}, [R]_{Total} as specified
- ▶ Bump threshold $\tau_0 = K_{LT}K_{AT}/(K_{RA} K_{AT})$; No bump if $[T]_{Total} \leq \tau_0$, regardless how much L there is
- ▶ No bump if $K_{BA} \leq K_{AT}$

Other Work on Non-Monotone Dose-Response

Applicable to functions of the kind $[X]_{Total} \mapsto [Y]_{Equil}$

Algebraic-combinatorial technique and algorithm

Multivariate analysis and algorithm

Anecdotal reports of investigative molecules having been discarded because of unexplainable dose-response curves

Problem II: Anticipate non-monotone dose-response

Problem II

Characterize the complete networks of reversible binding reactions that are capable of producing non-monotone dose-response functions, and the precise conditions under which non-monotonicity does occur (i.e. something akin to the bump frontier).

Considerations for problem scope reduction

- "Complete networks" is small in the reaction network universe, but still quite large.
- Even in applicable networks, not all species would be worthy dose species.
- Short of a fully characterized bump frontier, a bump threshold would still be of interest.

Two Interesting Math Problems in Pharmacostatics

Problem I

Calculate binding equilibrium

Problem II

Anticipate non-monotone dose-response curves

Background: Chemical Networks of Reversible Binding Reactions