データの読み込み

```
In [1]:
        # This Python 3 environment comes with many helpful analytics libraries ins
        talled
        # It is defined by the kaggle/python docker image: https://github.com/kaggl
        e/docker-python
        # For example, here's several helpful packages to load in
        import numpy as np # linear algebra
        import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
        # Input data files are available in the "../input/" directory.
        # For example, running this (by clicking run or pressing Shift+Enter) will
         list the files in the input directory
        import os
        print(os.listdir("../input"))
        import seaborn as sns
        # Any results you write to the current directory are saved as output.
        ['DSS_DMC_Description.pdf', 'carInsurance_train.csv', 'carInsurance_test.
        csv']
In [2]:
        train = pd.read_csv('../input/carInsurance_train.csv')
        test = pd.read_csv('../input/carInsurance_test.csv')
```

In [3]:

train.head()

Out[3]:

	ld	Age	Job	Marital	Education	Default	Balance	HHInsurance	CarLoan	Communica
0	1	32	management	single	tertiary	0	1218	1	0	telephone
1	2	32	blue-collar	married	primary	0	1156	1	0	NaN
2	3	29	management	single	tertiary	0	637	1	0	cellular
3	4	25	student	single	primary	0	373	1	0	cellular
4	5	30	management	married	tertiary	0	2694	0	0	cellular
4	◆									

In [4]:

test.head()

Out[4]:

	ld	Age	Job	Marital	Education	Default	Balance	HHInsurance	CarLoan	Commu
0	4001	25	admin.	single	secondary	0	1	1	1	NaN
1	4002	40	management	married	tertiary	0	0	1	1	cellular
2	4003	44	management	single	tertiary	0	-1313	1	1	cellular
3	4004	27	services	single	secondary	0	6279	1	0	cellular
4	4005	53	technician	married	secondary	0	7984	1	0	cellular
4	•									

データの確認

In [5]: train.isna().sum() Out[5]: Ιd 0 0 Age Job 19 Marital 0 Education 169 Default 0 Balance 0 HHInsurance 0 CarLoan 0 Communication 902 LastContactDay 0 LastContactMonth 0 NoOfContacts 0 DaysPassed 0 PrevAttempts 0 Outcome 3042 CallStart 0 CallEnd 0 CarInsurance 0

dtype: int64

```
In [6]:
        test.isna().sum()
Out[6]:
         Id
                                  0
         Age
                                  0
         Job
                                  5
         Marital
                                  0
         Education
                                 47
         Default
                                  0
         Balance
                                  0
         HHInsurance
                                  0
         CarLoan
                                  0
         Communication
                                221
         LastContactDay
                                  0
         LastContactMonth
                                  0
         NoOfContacts
         DaysPassed
                                  0
         PrevAttempts
                                  0
         Outcome
                                757
         CallStart
                                  0
         CallEnd
                                  0
         CarInsurance
                               1000
         dtype: int64
In [7]:
         train.shape
Out[7]:
         (4000, 19)
In [8]:
         test.shape
Out[8]:
         (1000, 19)
```

欠損値の対応

	ld	Age	Job	Marital	Education	Default	Balance	HHInsurance	CarLoan	Communicatio
27	28	45	NaN	divorced	NaN	0	0	0	0	cellular
239	240	41	NaN	single	NaN	0	942	0	0	cellular
486	487	54	NaN	married	primary	0	981	0	0	cellular
536	537	33	NaN	single	secondary	0	1522	0	1	cellular
605	606	53	NaN	married	primary	0	732	0	0	cellular
4	4									>

```
In [11]:
    train.Job.fillna('unknown', inplace=True)
    test.Job.fillna('unknown', inplace=True)
```

```
In [12]:
    train.Education.unique()
```

```
In [13]:
         train.Education.fillna('other', inplace=True)
         test.Education.fillna('other', inplace=True)
In [14]:
         train.Communication.fillna('other', inplace=True)
         test.Communication.fillna('other', inplace=True)
In [15]:
         train.Outcome.fillna('unknwon', inplace=True)
         test.Outcome.fillna('unknwon', inplace=True)
In [16]:
         train.dtypes
Out[16]:
         Id
                               int64
                               int64
         Age
         Job
                              object
         Marital
                              object
         Education
                              object
         Default
                               int64
         Balance
                               int64
         HHInsurance
                               int64
         CarLoan
                               int64
         Communication
                              object
         LastContactDay
                               int64
                              object
         LastContactMonth
         NoOfContacts
                               int64
         DaysPassed
                               int64
         PrevAttempts
                               int64
         Outcome
                              object
         CallStart
                              object
         CallEnd
                              object
         CarInsurance
                               int64
         dtype: object
```

```
In [18]:
    from sklearn.preprocessing import LabelEncoder
    le = LabelEncoder()
    for col in cat_cols:
        train[col] = le.fit_transform(train[col])
```

```
In [19]:
    train.head()
```

Out[19]:

	ld	Age	Job	Marital	Education	Default	Balance	HHInsurance	CarLoan	Communication	Las
0	1	32	4	2	3	0	1218	1	0	2	28
1	2	32	1	1	1	0	1156	1	0	1	26
2	3	29	4	2	3	0	637	1	0	0	3
3	4	25	8	2	1	0	373	1	0	0	11
4	5	30	4	1	3	0	2694	0	0	0	3
4	◆										

```
In [20]:
    X = train.drop('CarInsurance', axis=1)
    y = train.CarInsurance
```

```
In [21]:
    from sklearn.model_selection import train_test_split
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3,
    random_state=0)
```

```
import xgboost as xgb
dtrain = xgb.DMatrix(X_train, y_train)
dval = xgb.DMatrix(X_test, y_test)
eval_list = [(dval, 'eval'), (dtrain, 'train')]
```

```
In [23]:
    param = {'max_depth': 3,
        'eta': 0.3,
        'silent': 1,
        'objective': 'binary:logistic',
        'nthread': 4,
        'eval_metric': 'auc'}
```

In [24]:

num_round = 250
bst = xgb.train(param, dtrain, num_round, eval_list, early_stopping_round
s=2)

[0] eval-auc:0.695181 train-auc:0.697895
Multiple eval metrics have been passed: 'train-auc' will be used for earl
y stopping.

```
Will train until train-auc hasn't improved in 2 rounds.
[1]
        eval-auc:0.716765
                                 train-auc:0.717916
[2]
        eval-auc:0.719608
                                 train-auc:0.720543
[3]
        eval-auc:0.729629
                                 train-auc:0.733879
[4]
        eval-auc:0.736563
                                 train-auc:0.749381
[5]
        eval-auc:0.743144
                                 train-auc:0.754882
        eval-auc:0.749341
[6]
                                 train-auc:0.758067
[7]
        eval-auc:0.748643
                                 train-auc:0.768482
[8]
        eval-auc:0.744592
                                 train-auc:0.773661
[9]
        eval-auc:0.746565
                                 train-auc:0.78172
[10]
        eval-auc:0.752592
                                 train-auc:0.787233
[11]
        eval-auc:0.754994
                                 train-auc:0.788592
[12]
        eval-auc:0.756681
                                 train-auc:0.792386
        eval-auc:0.759272
                                 train-auc:0.804491
[13]
[14]
        eval-auc:0.760326
                                 train-auc:0.809091
[15]
        eval-auc:0.762587
                                 train-auc:0.813732
[16]
        eval-auc:0.762656
                                 train-auc:0.81744
        eval-auc:0.760549
[17]
                                 train-auc:0.820491
[18]
        eval-auc:0.760891
                                 train-auc:0.822419
[19]
        eval-auc:0.762532
                                 train-auc:0.825748
                                 train-auc:0.828178
        eval-auc:0.763818
[20]
        eval-auc:0.765721
                                 train-auc:0.835211
[21]
        eval-auc:0.768948
[22]
                                 train-auc:0.83791
[23]
        eval-auc:0.770859
                                 train-auc:0.841895
[24]
        eval-auc:0.771118
                                 train-auc:0.843803
[25]
        eval-auc:0.770528
                                 train-auc:0.84554
[26]
        eval-auc:0.774272
                                 train-auc:0.847045
[27]
        eval-auc:0.775409
                                 train-auc:0.847526
        eval-auc:0.774368
                                 train-auc:0.851024
[28]
[29]
        eval-auc:0.776482
                                 train-auc:0.854434
                                 train-auc:0.855469
[30]
        eval-auc:0.777776
[31]
        eval-auc:0.774903
                                 train-auc:0.857863
[32]
        eval-auc:0.777768
                                 train-auc:0.862475
[33]
        eval-auc:0.78054
                                 train-auc:0.868367
[34]
        eval-auc:0.779721
                                 train-auc:0.869234
        eval-auc:0.780736
                                 train-auc:0.870733
[35]
        eval-auc:0.780802
[36]
                                 train-auc:0.871111
```

		'
[37]	eval-auc:0.780696	train-auc:0.871691
[38]	eval-auc:0.781193	train-auc:0.872157
[39]	eval-auc:0.785282	train-auc:0.878938
[40]	eval-auc:0.785719	train-auc:0.879086
[41]	eval-auc:0.788003	train-auc:0.8816
[42]	eval-auc:0.789107	train-auc:0.884406
[43]	eval-auc:0.792159	train-auc:0.886732
[44]	eval-auc:0.793712	train-auc:0.887952
[45]	eval-auc:0.793683	train-auc:0.89024
[46]	eval-auc:0.793962	train-auc:0.890456
[47]	eval-auc:0.795044	train-auc:0.89139
[48]	eval-auc:0.795015	train-auc:0.892265
[49]	eval-auc:0.795886	train-auc:0.893102
[50]	eval-auc:0.795012	train-auc:0.894438
[51]	eval-auc:0.793657	train-auc:0.89577
[52]	eval-auc:0.792455	train-auc:0.896475
[53]	eval-auc:0.792009	train-auc:0.89688
[54]	eval-auc:0.794986	train-auc:0.898259
[55]	eval-auc:0.798415	train-auc:0.901852
[56]	eval-auc:0.799062	train-auc:0.902795
[57]	eval-auc:0.799223	train-auc:0.905375
[58]	eval-auc:0.798961	train-auc:0.906283
[59]	eval-auc:0.799082	train-auc:0.906397
[60]	eval-auc:0.799968	train-auc:0.908464
[61]	eval-auc:0.804492	train-auc:0.912678
[62]	eval-auc:0.805033	train-auc:0.913046
[63]	eval-auc:0.805246	train-auc:0.913231
[64]	eval-auc:0.807371	train-auc:0.915818
[65]	eval-auc:0.80734	train-auc:0.917287
[66]	eval-auc:0.808812	train-auc:0.918779
[67]	eval-auc:0.807915	train-auc:0.91947
[68]	eval-auc:0.808027	train-auc:0.920107
[69]	eval-auc:0.808332	train-auc:0.921876
[70]	eval-auc:0.807072	train-auc:0.922467
[71]	eval-auc:0.806802	train-auc:0.922621
[72]	eval-auc:0.807222	train-auc:0.924367
[73]	eval-auc:0.806983	train-auc:0.924595
[74]	eval-auc:0.807112	train-auc:0.926076
[75]	eval-auc:0.809157	train-auc:0.926806
[76]	eval-auc:0.808559	train-auc:0.928867
[77]	eval-auc:0.808254	train-auc:0.929176
[78]	eval-auc:0.80748	train-auc:0.930279

[79]	eval-auc:0.808303	train-auc:0.930843
[80]	eval-auc:0.807938	train-auc:0.931084
[81]	eval-auc:0.813164	train-auc:0.933673
[82]	eval-auc:0.813592	train-auc:0.934851
[83]	eval-auc:0.814191	train-auc:0.934973
[84]	eval-auc:0.814944	train-auc:0.936082
[85]	eval-auc:0.815485	train-auc:0.937128
[86]	eval-auc:0.815414	train-auc:0.937518
[87]	eval-auc:0.815604	train-auc:0.937653
[88]	eval-auc:0.815128	train-auc:0.939501
[89]	eval-auc:0.814179	train-auc:0.941096
[90]	eval-auc:0.815094	train-auc:0.941662
[91]	eval-auc:0.815706	train-auc:0.94207
[92]	eval-auc:0.81715	train-auc:0.944309
[93]	eval-auc:0.822414	train-auc:0.947442
[94]	eval-auc:0.823559	train-auc:0.94873
[95]	eval-auc:0.822923	train-auc:0.949173
[96]	eval-auc:0.824591	train-auc:0.951035
[97]	eval-auc:0.824134	train-auc:0.951356
[98]	eval-auc:0.824418	train-auc:0.951512
[99]	eval-auc:0.824531	train-auc:0.951993
[100]	eval-auc:0.824367	train-auc:0.952391
[101]	eval-auc:0.822969	train-auc:0.953228
[102]	eval-auc:0.821715	train-auc:0.953477
[103]	eval-auc:0.822931	train-auc:0.954154
[104]	eval-auc:0.823182	train-auc:0.954344
[105]	eval-auc:0.822693	train-auc:0.955018
[106]	eval-auc:0.826035	train-auc:0.956926
[107]	eval-auc:0.826302	train-auc:0.956933
[108]	eval-auc:0.827418	train-auc:0.958314
[109]	eval-auc:0.827473	train-auc:0.959437
[110]	eval-auc:0.828005	train-auc:0.960222
[111]	eval-auc:0.82856	train-auc:0.960485
[112]	eval-auc:0.828721	train-auc:0.960666
[113]	eval-auc:0.829561	train-auc:0.961082
[114]	eval-auc:0.830293	train-auc:0.962139
[115]	eval-auc:0.830438	train-auc:0.962489
[116]	eval-auc:0.831514	train-auc:0.96279
[117]	eval-auc:0.832305	train-auc:0.963713
[118]	eval-auc:0.833225	train-auc:0.964755
[119]	eval-auc:0.833858	train-auc:0.965132
[120]	eval-auc:0.834232	train-auc:0.965139

	_	
[121]	eval-auc:0.83456	train-auc:0.965365
[122]	eval-auc:0.833666	train-auc:0.965891
[123]	eval-auc:0.834244	train-auc:0.966339
[124]	eval-auc:0.835176	train-auc:0.966881
[125]	eval-auc:0.835026	train-auc:0.966951
[126]	eval-auc:0.835035	train-auc:0.967118
[127]	eval-auc:0.834813	train-auc:0.968371
[128]	eval-auc:0.832886	train-auc:0.969248
[129]	eval-auc:0.832774	train-auc:0.969466
[130]	eval-auc:0.836657	train-auc:0.971034
[131]	eval-auc:0.836763	train-auc:0.971208
[132]	eval-auc:0.835204	train-auc:0.97146
[133]	eval-auc:0.83527	train-auc:0.972203
[134]	eval-auc:0.836082	train-auc:0.972473
[135]	eval-auc:0.836211	train-auc:0.972891
[136]	eval-auc:0.837445	train-auc:0.973243
[137]	eval-auc:0.838256	train-auc:0.973903
[138]	eval-auc:0.838662	train-auc:0.974633
[139]	eval-auc:0.841313	train-auc:0.975875
[140]	eval-auc:0.83997	train-auc:0.9762
[141]	eval-auc:0.840819	train-auc:0.976585
[142]	eval-auc:0.842403	train-auc:0.977549
[143]	eval-auc:0.840781	train-auc:0.977851
[144]	eval-auc:0.841748	train-auc:0.978645
[145]	eval-auc:0.841437	train-auc:0.979061
[146]	eval-auc:0.842389	train-auc:0.979404
[147]	eval-auc:0.842752	train-auc:0.979594
[148]	eval-auc:0.842872	train-auc:0.980057
[149]	eval-auc:0.843169	train-auc:0.98027
[150]	eval-auc:0.843801	train-auc:0.980336
[151]	eval-auc:0.84379	train-auc:0.980378
[152]	eval-auc:0.843194	train-auc:0.980438
[153]	eval-auc:0.842775	train-auc:0.980534
[154]	eval-auc:0.842933	train-auc:0.980654
[155]	eval-auc:0.842596	train-auc:0.980933
[156]	eval-auc:0.842268	train-auc:0.980957
[157]	eval-auc:0.842383	train-auc:0.981218
[158]	eval-auc:0.843968	train-auc:0.981196
[159]	eval-auc:0.842987	train-auc:0.981407
[160]	eval-auc:0.843197	train-auc:0.981558
[161]	eval-auc:0.843171	train-auc:0.981657
[162]	eval-auc:0.842619	train-auc:0.981642

[163]	eval-auc:0.842438	train-auc:0.981931
[164]	eval-auc:0.841595	train-auc:0.982045
[165]	eval-auc:0.841736	train-auc:0.982354
[166]	eval-auc:0.84182	train-auc:0.982449
[167]	eval-auc:0.841679	train-auc:0.982654
[168]	eval-auc:0.84295	train-auc:0.983102
[169]	eval-auc:0.842907	train-auc:0.983235
[170]	eval-auc:0.843876	train-auc:0.983465
[171]	eval-auc:0.844932	train-auc:0.984307
[172]	eval-auc:0.845432	train-auc:0.98495
[173]	eval-auc:0.845774	train-auc:0.985269
[174]	eval-auc:0.845283	train-auc:0.98555
[175]	eval-auc:0.845582	train-auc:0.985811
[176]	eval-auc:0.845271	train-auc:0.985785
[177]	eval-auc:0.846853	train-auc:0.986212
[178]	eval-auc:0.846347	train-auc:0.986379
[179]	eval-auc:0.846281	train-auc:0.986476
[180]	eval-auc:0.844365	train-auc:0.986599
[181]	eval-auc:0.845234	train-auc:0.986931
[182]	eval-auc:0.845055	train-auc:0.98702
[183]	eval-auc:0.845271	train-auc:0.98712
[184]	eval-auc:0.845613	train-auc:0.987229
[185]	eval-auc:0.845461	train-auc:0.98731
[186]	eval-auc:0.845866	train-auc:0.987417
[187]	eval-auc:0.846298	train-auc:0.987602
[188]	eval-auc:0.846928	train-auc:0.987732
[189]	eval-auc:0.846801	train-auc:0.987731
[190]	eval-auc:0.84666	train-auc:0.987911
[191]	eval-auc:0.84639	train-auc:0.987988
[192]	eval-auc:0.845947	train-auc:0.988237
[193]	eval-auc:0.845726	train-auc:0.988308
[194]	eval-auc:0.84559	train-auc:0.988511
[195]	eval-auc:0.845636	train-auc:0.988753
[196]	eval-auc:0.844779	train-auc:0.988883
[197]	eval-auc:0.844584	train-auc:0.988891
[198]	eval-auc:0.844425	train-auc:0.989016
[199]	eval-auc:0.844995	train-auc:0.989119
[200]	eval-auc:0.844811	train-auc:0.989369
[201]	eval-auc:0.845113	train-auc:0.98974
[202]	eval-auc:0.846203	train-auc:0.990066
[203]	eval-auc:0.84574	train-auc:0.990109
[204]	eval-auc:0.846902	train-auc:0.990421

```
[205]
        eval-auc:0.847509
                                 train-auc:0.990742
[206]
        eval-auc:0.848173
                                 train-auc:0.990919
[207]
        eval-auc:0.84851
                                 train-auc:0.990924
[208]
        eval-auc:0.848976
                                 train-auc:0.991109
[209]
        eval-auc:0.849301
                                 train-auc:0.991292
[210]
        eval-auc:0.849818
                                 train-auc:0.991461
        eval-auc:0.84922
[211]
                                 train-auc:0.991518
                                 train-auc:0.991459
[212]
        eval-auc:0.848861
[213]
        eval-auc:0.84897
                                 train-auc:0.991507
Stopping. Best iteration:
[211]
        eval-auc:0.84922
                                 train-auc:0.991518
```

特徴エンジニアリング

```
In [25]:
    def read_and_fillna():
        train = pd.read_csv('../input/carInsurance_train.csv')
        test = pd.read_csv('../input/carInsurance_test.csv')
        train.Job.fillna('unknown', inplace=True)
        test.Job.fillna('unknown', inplace=True)
        train.Education.fillna('other', inplace=True)
        test.Education.fillna('other', inplace=True)
        train.Communication.fillna('other', inplace=True)
        test.Communication.fillna('other', inplace=True)
        train.Outcome.fillna('unknwon', inplace=True)
        test.Outcome.fillna('unknwon', inplace=True)
        return train, test
```

```
In [26]:
         def make_model(train, cat_cols):
             from sklearn.preprocessing import LabelEncoder
             from sklearn.model_selection import train_test_split
             import xgboost as xgb
             le = LabelEncoder()
             for col in cat_cols:
                 train[col] = le.fit_transform(train[col])
             X = train.drop('CarInsurance', axis=1)
             y = train.CarInsurance
             X_train, X_test, y_train, y_test = train_test_split(X, y,
                                                                  test_size=0.3, ra
         ndom_state=0)
             dtrain = xgb.DMatrix(X_train, y_train)
             dval = xgb.DMatrix(X_test, y_test)
             eval_list = [(dval, 'eval'), (dtrain, 'train')]
             param = {'max_depth': 3,
                      'eta': 0.3,
                      'silent': 1,
                      'objective': 'binary:logistic',
                      'nthread' : 4,
                      'eval_metric' : 'auc'}
             num_round = 250
             bst = xgb.train(param, dtrain, num_round, eval_list, early_stopping_r
         ounds=2)
```

```
In [27]:
    train, test = read_and_fillna()
```

Age

```
In [28]:
            train.Age.describe()
Out[28]:
            count
                        4000.000000
                           41.214750
            mean
            std
                           11.550194
                           18.000000
            min
            25%
                           32.000000
                           39.000000
            50%
            75%
                           49.000000
                           95.000000
            max
            Name: Age, dtype: float64
In [29]:
            def make_AgeGroup(df):
                 df["AgeGroup"] = df.Age.apply(lambda x : 0 if x >= 10 and x <= 19 els
            е
                                                             (1 \text{ if } x >= 20 \text{ and } x <= 29 \text{ else}
                                                              (2 \text{ if } x >= 30 \text{ and } x <= 39 \text{ else}
                                                                (3 \text{ if } x >= 40 \text{ and } x <= 49 \text{ else}
                                                                 (4 \text{ if } x >= 50 \text{ and } x <= 59 \text{ else}
                                                                  (5 \text{ if } x >= 60 \text{ and } x <= 69 \text{ else}
                                                                    (6 if x >= 70 and x <= 79 else
                                                                     (7 \text{ if } x >= 80 \text{ and } x <= 80 \text{ else}
           8))))))))
```

```
In [30]:
    make_AgeGroup(train)
    make_AgeGroup(test)
```

```
In [31]:
    pd.pivot_table(train[['AgeGroup', 'CarInsurance', 'Age']], columns=['CarI
    nsurance'], index=['AgeGroup'], aggfunc=['count'])
```

Out[31]:

	count		
	Age		
Carlnsurance	0	1	
AgeGroup			
0	4	11	
1	257	261	
2	980	558	
3	635	353	
4	454	247	
5	44	114	
6	17	43	
7	2	7	
8	3	10	

Job

```
In [33]:
```

pd.pivot_table(train[['Job', 'CarInsurance', 'Age']], columns=['CarInsura nce'], index=['Job'], aggfunc=['count'])

Out[33]:

	count	
	Age	
Carlnsurance	0	1
Job		
admin.	274	185
blue-collar	540	219
entrepreneur	86	35
housemaid	72	37
management	501	392
retired	103	146
self-employed	86	54
services	218	112
student	44	87
technician	406	254
unemployed	56	74
unknown	10	9

```
In [35]:
    make_isWork(train)
    make_isWork(test)
```

```
In [36]:
    train.drop('Job', axis=1, inplace=True)
    test.drop('Job', axis=1, inplace=True)
```

Martial

```
In [37]:
    pd.pivot_table(train[['Marital', 'CarInsurance', 'Age']], columns=['CarIn
    surance'], index=['Marital'], aggfunc=['count'])
```

Out[37]:

	count	
	Age	
Carlnsurance	0	1
Marital		
divorced	273	210
married	1471	833
single	652	561

Education

```
In [38]:
    pd.pivot_table(train[['Education', 'CarInsurance', 'Age']], columns=['Car
    Insurance'], index=['Education'], aggfunc=['count'])
```

Out[38]:

	count		
	Age		
Carlnsurance	0	1	
Education			
other	90	79	
primary	366	195	
secondary	1258	730	
tertiary	682	600	

Balance

```
In [39]:
    train.Balance = train.Balance.astype('float')
    test.Balance = test.Balance.astype('float')
```

In [40]:
 sns.distplot(train.Balance.values, kde=False, rug=False, bins=25)

Out[40]:

<matplotlib.axes._subplots.AxesSubplot at 0x7ff4daa4b7b8>


```
In [41]:
    sns.jointplot('Balance', 'CarInsurance', data=train)
```

/opt/conda/lib/python3.6/site-packages/scipy/stats/stats.py:1713: FutureW arning: Using a non-tuple sequence for multidimensional indexing is depre cated; use `arr[tuple(seq)]` instead of `arr[seq]`. In the future this will be interpreted as an array index, `arr[np.array(seq)]`, which will result either in an error or a different result.

return np.add.reduce(sorted[indexer] * weights, axis=axis) / sumval

Out[41]: <seaborn.axisgrid.JointGrid at 0x7ff4d918acf8>


```
In [42]:
    from sklearn.preprocessing import StandardScaler
    sc = StandardScaler()
    train.Balance = sc.fit_transform(train.Balance.values.reshape(-1, 1))
    test.Balance = sc.fit_transform(test.Balance.values.reshape(-1, 1))
```

```
In [43]:
    sns.distplot(train.Balance.values, kde=False, rug=False, bins=25)
```

Out[43]:

<matplotlib.axes._subplots.AxesSubplot at 0x7ff4d8775cc0>


```
In [44]:
         train.Balance.describe()
Out[44]:
                   4.000000e+03
         count
                   4.639344e-17
         mean
                   1.000125e+00
         std
                  -1.307582e+00
         min
         25%
                  -4.049934e-01
         50%
                  -2.795310e-01
         75%
                   2.451222e-02
                   2.759433e+01
         max
```

Name: Balance, dtype: float64

Communication

```
In [45]:
         train.Communication.unique()
Out[45]:
         array(['telephone', 'other', 'cellular'], dtype=object)
In [46]:
         pd.pivot_table(train[['Communication', 'CarInsurance', 'Age']], columns=[
         'CarInsurance'], index=['Communication'], aggfunc=['count'])
Out[46]:
```

	count	
	Age	
Carlnsurance	0	1
Communication		
cellular	1518	1313
other	734	168
telephone	144	123

```
In [47]:
         train["isMobile"] = train.Communication.apply(lambda x : 1 if x == "Cellu")
         lar" or x == "telephone" else 0)
         test["isMobile"] = test.Communication.apply(lambda x : 1 if x == "Cellula")
         r" or x == "telephone" else 0)
```

LastContactDay & Month

```
In [48]:
```

```
pd.pivot_table(train[['LastContactMonth', 'CarInsurance', 'Age']], column
s=['CarInsurance'], index=['LastContactMonth'], aggfunc=['count'])
```

Out[48]:

	count	
	Age	
Carlnsurance	0	1
LastContactMonth		
apr	150	156
aug	342	194
dec	7	34
feb	129	133
jan	86	48
jul	364	209
jun	283	171
mar	15	64
may	760	289
nov	215	132
oct	27	91
sep	18	83

NoOfContacts

Out[49]:

count	
Age	
0	1
912.0	773.0
671.0	414.0
311.0	205.0
156.0	81.0
114.0	52.0
62.0	26.0
34.0	15.0
27.0	14.0
18.0	2.0
13.0	5.0
7.0	8.0
11.0	NaN
6.0	2.0
6.0	1.0
2.0	1.0
3.0	NaN
9.0	2.0
3.0	NaN
3.0	NaN
4.0	NaN
3.0	1.0
3.0	NaN
3.0	NaN
2.0	1.0
4.0	NaN
1.0	NaN
1.0	NaN
1.0	NaN
	Age 0 912.0 671.0 114.0 62.0 34.0 27.0 11.0 6.0 11.0 6.0 2.0 3.0 9.0 3.0 3.0 4.0 3.0 3.0 4.0 1.0 1.0

	count	
	Age	
Carlnsurance	0	1
NoOfContacts		
29	NaN	1.0
30	1.0	NaN
32	1.0	NaN
34	1.0	NaN
38	1.0	NaN
41	1.0	NaN
43	1.0	NaN

DaysPassed

In [50]:

train.DaysPassed.value_counts()

Out[50]:

-1	3042
92	38
182	33
91	24
183	24
93	16
95	16
94	14
97	13
181	13
189	12
184	12
90	11
178	10
370	10
105	9
196	9
104	8
350	8
185	8
188	8
98	8
169	8
195	7
187	7
176	6
175	6
88	6
168	6
343	6
310	1
308	1
474	1
532	1
127	1
544	1
121	1
115	1
73	1
71	1

Name: DaysPassed, Length: 330, dtype: int64

```
In [51]:
    sns.jointplot('DaysPassed', 'CarInsurance', data=train)
```

/opt/conda/lib/python3.6/site-packages/scipy/stats/stats.py:1713: FutureW arning: Using a non-tuple sequence for multidimensional indexing is depre cated; use `arr[tuple(seq)]` instead of `arr[seq]`. In the future this will be interpreted as an array index, `arr[np.array(seq)]`, which will result either in an error or a different result.

return np.add.reduce(sorted[indexer] * weights, axis=axis) / sumval

Out[51]: <seaborn.axisgrid.JointGrid at 0x7ff4d8731320>

PrevAttempts

```
In [52]:
          train.PrevAttempts.value_counts()
Out[52]:
          0
                 3042
                  335
          1
          2
                  251
          3
                  125
          4
                   79
          5
                   60
          6
                   25
          7
                   21
          8
                   18
          10
                   10
          9
                    9
                    5
          14
                    5
          12
          13
                    4
          19
                    4
                    3
          11
          23
                     1
          18
                    1
          58
                     1
          30
                     1
```

Name: PrevAttempts, dtype: int64

```
In [53]:
```

pd.pivot_table(train[['PrevAttempts', 'CarInsurance', 'Age']], columns=[
'CarInsurance'], index=['PrevAttempts'], aggfunc=['count'])

Out[53]:

	count	
	Age	
Carlnsurance	0	1
PrevAttempts		
0	1997.0	1045.0
1	149.0	186.0
2	109.0	142.0
3	47.0	78.0
4	33.0	46.0
5	26.0	34.0
6	9.0	16.0
7	6.0	15.0
8	4.0	14.0
9	5.0	4.0
10	NaN	10.0
11	1.0	2.0
12	1.0	4.0
13	2.0	2.0
14	3.0	2.0
18	1.0	NaN
19	2.0	2.0
23	1.0	NaN
30	NaN	1.0
58	NaN	1.0

Outcom

```
In [54]:
         train.Outcome.unique()
Out[54]:
         array(['unknwon', 'failure', 'other', 'success'], dtype=object)
In [55]:
         pd.pivot_table(train[['Outcome', 'CarInsurance', 'Age']], columns=['CarIn
         surance'], index=['Outcome'], aggfunc=['count'])
Out[55]:
```

	count	
	Age	
Carlnsurance	0	1
Outcome		
failure	261	176
other	103	92
success	35	291
unknwon	1997	1045

Time

```
In [56]:
    train['isCallStart'] = 0
    train['isCallEnd'] = 0
    test['isCallEnd'] = 0

for idx, time in enumerate(train.CallStart):
        (h, m, s) = time.split(':')
        result = int(h) * 3600 + int(m) * 60 + int(s)
        train.loc[idx, 'isCallStart'] = result

for idx, time in enumerate(train.CallEnd):
        (h, m, s) = time.split(':')
        result = int(h) * 3600 + int(m) * 60 + int(s)
        train.loc[idx, 'isCallEnd'] = result
```

```
In [57]:
    def make_time_column(df):
        df["diffTime"] = df.isCallStart - df.isCallEnd
        df[['isCallStart', 'isCallEnd', 'diffTime']] = df[['isCallStart', 'is
        CallEnd', 'diffTime']].astype("float")
        df.drop(['CallStart', 'CallEnd'], axis=1, inplace=True)
```

```
In [58]:
    make_time_column(train)
    make_time_column(test)
```

```
In [59]:
    from sklearn.preprocessing import StandardScaler
    sc = StandardScaler()
    train[['isCallStart', 'isCallEnd', 'diffTime']] = sc.fit_transform(train
    [['isCallStart', 'isCallEnd', 'diffTime']])
    test[['isCallStart', 'isCallEnd', 'diffTime']] = sc.fit_transform(test[[
    'isCallStart', 'isCallEnd', 'diffTime']])
```

[0] eval-auc:0.805461 train-auc:0.843845
Multiple eval metrics have been passed: 'train-auc' will be used for earl
y stopping.

Will train until train-auc hasn't improved in 2 rounds. [1] eval-auc:0.854935 train-auc:0.878551 [2] eval-auc:0.861044 train-auc:0.887408 [3] eval-auc:0.862193 train-auc:0.88986 [4] eval-auc:0.86773 train-auc:0.898391 [5] eval-auc:0.873595 train-auc:0.903397 eval-auc:0.875166 train-auc:0.905741 [6] [7] eval-auc:0.879566 train-auc:0.909439 [8] eval-auc:0.885511 train-auc:0.914387 [9] eval-auc:0.886972 train-auc:0.917139 [10] eval-auc:0.88952 train-auc:0.918847 eval-auc:0.890745 train-auc:0.921649 [11] eval-auc:0.892542 train-auc:0.923362 [12] eval-auc:0.893384 train-auc:0.924535 [13] [14] eval-auc:0.895435 train-auc:0.927988 [15] eval-auc:0.897425 train-auc:0.929414 [16] eval-auc:0.897631 train-auc:0.930781 [17] eval-auc:0.897595 train-auc:0.932208 [18] eval-auc:0.89748 train-auc:0.93341 [19] eval-auc:0.898585 train-auc:0.934499 eval-auc:0.901816 [20] train-auc:0.937007 eval-auc:0.902859 train-auc:0.938091 [21] eval-auc:0.90287 [22] train-auc:0.939094 [23] eval-auc:0.904182 train-auc:0.941049 [24] eval-auc:0.904511 train-auc:0.942365 [25] eval-auc:0.905828 train-auc:0.943278 eval-auc:0.905926 train-auc:0.94393 [26] [27] eval-auc:0.905302 train-auc:0.945311 eval-auc:0.905516 train-auc:0.945758 [28] [29] eval-auc:0.905237 train-auc:0.946369 [30] eval-auc:0.905542 train-auc:0.946539 [31] eval-auc:0.905686 train-auc:0.947442 [32] eval-auc:0.905301 train-auc:0.948264 [33] eval-auc:0.905076 train-auc:0.949809 [34] eval-auc:0.906362 train-auc:0.950933 eval-auc:0.906819 train-auc:0.951552 [35] [36] eval-auc:0.906471 train-auc:0.952219

[37]	eval-auc:0.906581	train-auc:0.953686
[38]	eval-auc:0.906885	train-auc:0.954887
[39]	eval-auc:0.90738	train-auc:0.955329
[40]	eval-auc:0.907521	train-auc:0.955581
[41]	eval-auc:0.909183	train-auc:0.95686
[42]	eval-auc:0.909503	train-auc:0.957208
[43]	eval-auc:0.909126	train-auc:0.958158
[44]	eval-auc:0.909629	train-auc:0.959115
[45]	eval-auc:0.90977	train-auc:0.959549
[46]	eval-auc:0.910553	train-auc:0.960308
[47]	eval-auc:0.911131	train-auc:0.961035
[48]	eval-auc:0.911602	train-auc:0.961608
[49]	eval-auc:0.911832	train-auc:0.962787
[50]	eval-auc:0.911404	train-auc:0.963231
[51]	eval-auc:0.9108 train-a	uc:0.96373
[52]	eval-auc:0.910699	train-auc:0.964128
[53]	eval-auc:0.910403	train-auc:0.965209
[54]	eval-auc:0.910676	train-auc:0.965479
[55]	eval-auc:0.910578	train-auc:0.966197
[56]	eval-auc:0.910351	train-auc:0.966588
[57]	eval-auc:0.910794	train-auc:0.966703
[58]	eval-auc:0.911059	train-auc:0.966934
[59]	eval-auc:0.911076	train-auc:0.96708
[60]	eval-auc:0.910823	train-auc:0.967371
[61]	eval-auc:0.911047	train-auc:0.96787
[62]	eval-auc:0.911502	train-auc:0.96834
[63]	eval-auc:0.912839	train-auc:0.968949
[64]	eval-auc:0.913187	train-auc:0.969706
[65]	eval-auc:0.913662	train-auc:0.970076
[66]	eval-auc:0.913552	train-auc:0.970497
[67]	eval-auc:0.913271	train-auc:0.970919
[68]	eval-auc:0.913458	train-auc:0.971182
[69]	eval-auc:0.913458	train-auc:0.971419
[70]	eval-auc:0.913291	train-auc:0.971667
[71]	eval-auc:0.913656	train-auc:0.971884
[72]	eval-auc:0.91411	train-auc:0.972523
[73]	eval-auc:0.914024	train-auc:0.973027
[74]	eval-auc:0.91399	train-auc:0.973126
[75]	eval-auc:0.914059	train-auc:0.973415
[76]	eval-auc:0.914953	train-auc:0.973651
[77]	eval-auc:0.914976	train-auc:0.973998
[78]	eval-auc:0.915123	train-auc:0.974454

[79]	eval-auc:0.914712	train-auc:0.975192
[80]	eval-auc:0.914712	train-auc:0.975625
[81]	eval-auc:0.914729	train-auc:0.976236
[82]	eval-auc:0.914576	train-auc:0.976249
[83]	eval-auc:0.914576	train-auc:0.976395
[84]	eval-auc:0.914131	train-auc:0.976689
	eval-auc:0.914309	train-auc:0.97674
[85]		
[86]	eval-auc:0.914407	train-auc:0.977268
[87]	eval-auc:0.91443	train-auc:0.977814
[88]	eval-auc:0.915039	train-auc:0.978037
[89]	eval-auc:0.915034	train-auc:0.978582
[90]	eval-auc:0.915014	train-auc:0.978975
[91]	eval-auc:0.914438	train-auc:0.979451
[92]	eval-auc:0.914548	train-auc:0.979831
[93]	eval-auc:0.915062	train-auc:0.98008
[94]	eval-auc:0.914804	train-auc:0.980339
[95]	eval-auc:0.914864	train-auc:0.980585
[96]	eval-auc:0.914976	train-auc:0.98073
[97]	eval-auc:0.914973	train-auc:0.980925
[98]	eval-auc:0.914674	train-auc:0.981273
[99]	eval-auc:0.914326	train-auc:0.981357
[100]	eval-auc:0.913961	train-auc:0.981714
[101]	eval-auc:0.913952	train-auc:0.982042
[102]	eval-auc:0.913877	train-auc:0.982463
[103]	eval-auc:0.91401	train-auc:0.982884
[104]	eval-auc:0.913564	train-auc:0.983217
[105]	eval-auc:0.913411	train-auc:0.983539
[106]	eval-auc:0.913245	train-auc:0.984032
[107]	eval-auc:0.913161	train-auc:0.984507
[108]	eval-auc:0.912879	train-auc:0.98477
[109]	eval-auc:0.912623	train-auc:0.98514
[110]	eval-auc:0.912796	train-auc:0.985322
[111]	eval-auc:0.913325	train-auc:0.985503
[112]	eval-auc:0.913294	train-auc:0.985796
[113]	eval-auc:0.913601	train-auc:0.986048
[114]	eval-auc:0.914041	train-auc:0.986233
[115]	eval-auc:0.913734	train-auc:0.986426
[116]	eval-auc:0.913472	train-auc:0.986495
[117]	eval-auc:0.913565	train-auc:0.986901
[118]	eval-auc:0.913514	train-auc:0.987268
[119]	eval-auc:0.913404	train-auc:0.987481
	eval-auc:0.913163	train-auc:0.98764
[120]	Eva1-anc.0.313103	ci a±ii-au0.0.90/04

		'
[121]	eval-auc:0.912674	train-auc:0.98779
[122]	eval-auc:0.912818	train-auc:0.987881
[123]	eval-auc:0.912772	train-auc:0.988072
[124]	eval-auc:0.912774	train-auc:0.988223
[125]	eval-auc:0.913432	train-auc:0.98833
[126]	eval-auc:0.913504	train-auc:0.988357
[127]	eval-auc:0.91365	train-auc:0.9887
[128]	eval-auc:0.913285	train-auc:0.988878
[129]	eval-auc:0.912917	train-auc:0.989188
[130]	eval-auc:0.91275	train-auc:0.989312
[131]	eval-auc:0.912434	train-auc:0.989549
[132]	eval-auc:0.912739	train-auc:0.98971
[133]	eval-auc:0.912816	train-auc:0.989802
[134]	eval-auc:0.912552	train-auc:0.989806
[135]	eval-auc:0.91298	train-auc:0.98998
[136]	eval-auc:0.913144	train-auc:0.990115
[137]	eval-auc:0.913213	train-auc:0.990296
[138]	eval-auc:0.913322	train-auc:0.990307
[139]	eval-auc:0.913202	train-auc:0.990428
[140]	eval-auc:0.91342	train-auc:0.990678
[141]	eval-auc:0.913371	train-auc:0.990774
[142]	eval-auc:0.91397	train-auc:0.990966
[143]	eval-auc:0.914171	train-auc:0.991238
[144]	eval-auc:0.91397	train-auc:0.991414
[145]	eval-auc:0.91401	train-auc:0.99149
[146]	eval-auc:0.9139 train	-auc:0.991781
[147]	eval-auc:0.913967	train-auc:0.991849
[148]	eval-auc:0.914228	train-auc:0.99188
[149]	eval-auc:0.914294	train-auc:0.992087
[150]	eval-auc:0.914067	train-auc:0.992253
[151]	eval-auc:0.914565	train-auc:0.992425
[152]	eval-auc:0.914332	train-auc:0.992583
[153]	eval-auc:0.914596	train-auc:0.992739
[154]	eval-auc:0.914645	train-auc:0.992979
[155]	eval-auc:0.91472	train-auc:0.993045
[156]	eval-auc:0.914766	train-auc:0.993114
[157]	eval-auc:0.914389	train-auc:0.993178
[158]	eval-auc:0.914231	train-auc:0.99341
[159]	eval-auc:0.914631	train-auc:0.993534
[160]	eval-auc:0.91453	train-auc:0.993744
[161]	eval-auc:0.913955	train-auc:0.993844
[162]	eval-auc:0.91384	train-auc:0.993891

[163]	eval-auc:0.91334	train-auc:0.993993
[164]	eval-auc:0.913207	train-auc:0.994064
[165]	eval-auc:0.912971	train-auc:0.994087
[166]	eval-auc:0.91279	train-auc:0.994177
[167]	eval-auc:0.912641	train-auc:0.994285
[168]	eval-auc:0.91229	train-auc:0.994369
[169]	eval-auc:0.912413	train-auc:0.994427
[170]	eval-auc:0.91208	train-auc:0.99451
[171]	eval-auc:0.911873	train-auc:0.99461
[172]	eval-auc:0.911758	train-auc:0.994659
[173]	eval-auc:0.912005	train-auc:0.994814
[174]	eval-auc:0.911973	train-auc:0.994932
[175]	eval-auc:0.911706	train-auc:0.995033
[176]	eval-auc:0.911677	train-auc:0.995099
[177]	eval-auc:0.911542	train-auc:0.995217
[178]	eval-auc:0.911257	train-auc:0.995333
[179]	eval-auc:0.911251	train-auc:0.995369
[180]	eval-auc:0.911372	train-auc:0.995495
[181]	eval-auc:0.911424	train-auc:0.995529
[182]	eval-auc:0.911323	train-auc:0.995625
[183]	eval-auc:0.911338	train-auc:0.995676
[184]	eval-auc:0.911162	train-auc:0.995733
[185]	eval-auc:0.911323	train-auc:0.99574
[186]	eval-auc:0.911217	train-auc:0.995766
[187]	eval-auc:0.911349	train-auc:0.995791
[188]	eval-auc:0.911838	train-auc:0.995835
[189]	eval-auc:0.911821	train-auc:0.995996
[190]	eval-auc:0.911392	train-auc:0.996046
[191]	eval-auc:0.911657	train-auc:0.996067
[192]	eval-auc:0.911666	train-auc:0.996119
[193]	eval-auc:0.9117 train	-auc:0.996124
[194]	eval-auc:0.911706	train-auc:0.996237
[195]	eval-auc:0.91162	train-auc:0.996395
[196]	eval-auc:0.911519	train-auc:0.996499
[197]	eval-auc:0.911364	train-auc:0.996578
[198]	eval-auc:0.91103	train-auc:0.996764
[199]	eval-auc:0.911493	train-auc:0.996839
[200]	eval-auc:0.911387	train-auc:0.996847
[201]	eval-auc:0.91128	train-auc:0.99688
[202]	eval-auc:0.911116	train-auc:0.996968
[203]	eval-auc:0.911375	train-auc:0.997098
[204]	eval-auc:0.911413	train-auc:0.997213

[205]	eval-auc:0.911404	train-auc:0.997273
[206]	eval-auc:0.911758	train-auc:0.997307
[207]	eval-auc:0.911755	train-auc:0.997325
[208]	eval-auc:0.911775	train-auc:0.997392
[209]	eval-auc:0.911283	train-auc:0.997469
[210]	eval-auc:0.911323	train-auc:0.997464
[211]	eval-auc:0.91097	train-auc:0.997533
[212]	eval-auc:0.910869	train-auc:0.997584
[213]	eval-auc:0.91086	train-auc:0.997643
[214]	eval-auc:0.910509	train-auc:0.997707
[215]	eval-auc:0.910734	train-auc:0.997765
[216]	eval-auc:0.910662	train-auc:0.997818
[217]	eval-auc:0.910765	train-auc:0.997831
[218]	eval-auc:0.910852	train-auc:0.997916
[219]	eval-auc:0.910929	train-auc:0.997948
[220]	eval-auc:0.910826	train-auc:0.997963
[221]	eval-auc:0.910906	train-auc:0.997982
[222]	eval-auc:0.910714	train-auc:0.997974
[223]	eval-auc:0.910811	train-auc:0.998037
[224]	eval-auc:0.910734	train-auc:0.99805
[225]	eval-auc:0.910734	train-auc:0.998053
[226]	eval-auc:0.910659	train-auc:0.998092
[227]	eval-auc:0.910512	train-auc:0.998103
[228]	eval-auc:0.910386	train-auc:0.99811
[229]	eval-auc:0.910478	train-auc:0.99815
[230]	eval-auc:0.910415	train-auc:0.998232
[231]	eval-auc:0.91032	train-auc:0.998274
[232]	eval-auc:0.910242	train-auc:0.99828
[233]	eval-auc:0.910627	train-auc:0.99834
[234]	eval-auc:0.910553	train-auc:0.998371
[235]	eval-auc:0.910003	train-auc:0.99841
[236]	eval-auc:0.910058	train-auc:0.998438
[237]	eval-auc:0.910256	train-auc:0.998543
[238]	eval-auc:0.910187	train-auc:0.99856
[239]	eval-auc:0.910276	train-auc:0.998609
[240]	eval-auc:0.910285	train-auc:0.998617
[241]	eval-auc:0.910075	train-auc:0.998671
[242]	eval-auc:0.909747	train-auc:0.998732
[243]	eval-auc:0.909773	train-auc:0.99878
[244]	eval-auc:0.909629	train-auc:0.998835
[245]	eval-auc:0.909678	train-auc:0.998866
[246]	eval-auc:0.909822	train-auc:0.998892

[247] eval-auc:0.909923 train-auc:0.998888 [248] eval-auc:0.909908 train-auc:0.998873

Stopping. Best iteration:

[246] eval-auc:0.909822 train-auc:0.998892

In [61]:
 train.head()

Out[61]:

	ld	Age	Marital	Education	Default	Balance	HHInsurance	CarLoan	Communication	LastCor
0	1	32	2	3	0	-0.089700	1	0	2	28
1	2	32	1	1	0	-0.107359	1	0	1	26
2	3	29	2	3	0	-0.255179	1	0	0	3
3	4	25	2	1	0	-0.330371	1	0	0	11
4	5	30	1	3	0	0.330692	0	0	0	3
4										•

モデル作成

```
In [62]:
         def make_model(train, cat_cols, dtrain, dval):
             eval_list = [(dval, 'eval'), (dtrain, 'train')]
             param = {'max_depth': 4,
                       'min_child_weight' : 1,
                       'gamma' : 1,
                       'subsample' : 1,
                       'colsample_bytree' : 1,
                       'alpha' : 0.5,
                       'labmda' : 0.5,
                       'nthread' : 5,
                       'eta': 0.15,
                       'silent': 1,
                       'objective': 'binary:logistic',
                       'eval_metric' : 'auc'}
             num_round = 300
             bst = xgb.train(param, dtrain, num_round, eval_list, early_stopping_r
         ounds=2)
             return bst
```

```
In [63]:
    from sklearn.preprocessing import LabelEncoder
    from sklearn.model_selection import train_test_split
    le = LabelEncoder()
    for col in cat_cols:
        train[col] = le.fit_transform(train[col])
        test[col] = le.fit_transform(test[col])
```

```
In [65]:
```

```
test_id = X_test.Id.values
test_carInsurance = X_test.CarInsurance.values
X_train.drop(['Id', 'CarInsurance'], axis=1, inplace=True)
X_test.drop(['Id', 'CarInsurance'], axis=1, inplace=True)
```

/opt/conda/lib/python3.6/site-packages/pandas/core/frame.py:3697: Setting WithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copyerrors=errors)

In [66]:

```
import xgboost as xgb
dtrain = xgb.DMatrix(X_train, y_train)
dval = xgb.DMatrix(X_test, y_test)
```

[0] eval-auc:0.843711 train-auc:0.873992
Multiple eval metrics have been passed: 'train-auc' will be used for earl
y stopping.

Will train until train-auc hasn't improved in 2 rounds. [1] eval-auc:0.857401 train-auc:0.888068 [2] train-auc:0.889743 eval-auc:0.858789 [3] eval-auc:0.868222 train-auc:0.898518 [4] eval-auc:0.86839 train-auc:0.900772 [5] eval-auc:0.868581 train-auc:0.902292 eval-auc:0.869914 train-auc:0.90469 [6] [7] eval-auc:0.87459 train-auc:0.908159 [8] eval-auc:0.880214 train-auc:0.911055 [9] eval-auc:0.882404 train-auc:0.914217 [10] eval-auc:0.882466 train-auc:0.914551 eval-auc:0.883489 train-auc:0.915835 [11] eval-auc:0.885043 train-auc:0.918721 [12] eval-auc:0.885757 train-auc:0.919617 [13] [14] eval-auc:0.887242 train-auc:0.920942 train-auc:0.922525 [15] eval-auc:0.888807 [16] eval-auc:0.890478 train-auc:0.924871 [17] eval-auc:0.891534 train-auc:0.926951 [18] eval-auc:0.892957 train-auc:0.928164 [19] eval-auc:0.895962 train-auc:0.930997 eval-auc:0.897326 train-auc:0.932759 [20] eval-auc:0.897847 train-auc:0.93358 [21] eval-auc:0.898956 [22] train-auc:0.934713 [23] eval-auc:0.901668 train-auc:0.937263 [24] eval-auc:0.901987 train-auc:0.938511 [25] eval-auc:0.902735 train-auc:0.939382 eval-auc:0.903814 train-auc:0.940139 [26] [27] eval-auc:0.904308 train-auc:0.941018 eval-auc:0.904941 train-auc:0.943245 [28] [29] eval-auc:0.90524 train-auc:0.943767 train-auc:0.9445 [30] eval-auc:0.906739 [31] eval-auc:0.90758 train-auc:0.945211 [32] eval-auc:0.907701 train-auc:0.945981 [33] eval-auc:0.907763 train-auc:0.946823 [34] eval-auc:0.908723 train-auc:0.948778 eval-auc:0.909281 train-auc:0.949077 [35] [36] eval-auc:0.909593 train-auc:0.949645

	_	
[37]	eval-auc:0.909997	train-auc:0.950733
[38]	eval-auc:0.909675	train-auc:0.951515
[39]	eval-auc:0.910371	train-auc:0.952047
[40]	eval-auc:0.910199	train-auc:0.953082
[41]	eval-auc:0.909999	train-auc:0.953735
[42]	eval-auc:0.910571	train-auc:0.954585
[43]	eval-auc:0.910761	train-auc:0.954991
[44]	eval-auc:0.910699	train-auc:0.95594
[45]	eval-auc:0.910288	train-auc:0.956393
[46]	eval-auc:0.910279	train-auc:0.956551
[47]	eval-auc:0.910285	train-auc:0.956867
[48]	eval-auc:0.910929	train-auc:0.957337
[49]	eval-auc:0.911182	train-auc:0.958014
[50]	eval-auc:0.911919	train-auc:0.958921
[51]	eval-auc:0.911936	train-auc:0.9594
[52]	eval-auc:0.912264	train-auc:0.960366
[53]	eval-auc:0.912376	train-auc:0.960858
[54]	eval-auc:0.913394	train-auc:0.961732
[55]	eval-auc:0.913947	train-auc:0.962622
[56]	eval-auc:0.914018	train-auc:0.963339
[57]	eval-auc:0.914254	train-auc:0.963866
[58]	eval-auc:0.914999	train-auc:0.964656
[59]	eval-auc:0.914545	train-auc:0.965208
[60]	eval-auc:0.914818	train-auc:0.966004
[61]	eval-auc:0.91485	train-auc:0.966996
[62]	eval-auc:0.915008	train-auc:0.967428
[63]	eval-auc:0.915643	train-auc:0.967847
[64]	eval-auc:0.915402	train-auc:0.968195
[65]	eval-auc:0.915764	train-auc:0.968901
[66]	eval-auc:0.915917	train-auc:0.969333
[67]	eval-auc:0.916017	train-auc:0.970077
[68]	eval-auc:0.916072	train-auc:0.970568
[69]	eval-auc:0.916069	train-auc:0.971027
[70]	eval-auc:0.915563	train-auc:0.971239
[71]	eval-auc:0.915802	train-auc:0.971581
[72]	eval-auc:0.915678	train-auc:0.971815
[73]	eval-auc:0.915707	train-auc:0.972114
[74]	eval-auc:0.916662	train-auc:0.972333
[75]	eval-auc:0.91776	train-auc:0.972977
[76]	eval-auc:0.918137	train-auc:0.973599
[77]	eval-auc:0.918894	train-auc:0.974045
[78]	eval-auc:0.918994	train-auc:0.974389

```
[79]
        eval-auc:0.918779
                                 train-auc:0.974714
[80]
        eval-auc:0.918813
                                 train-auc:0.974739
[81]
        eval-auc:0.919342
                                 train-auc:0.975209
        eval-auc:0.919368
[82]
                                 train-auc:0.975879
[83]
        eval-auc:0.918925
                                 train-auc:0.976141
[84]
        eval-auc:0.918868
                                 train-auc:0.976303
[85]
        eval-auc:0.918738
                                 train-auc:0.976604
[86]
        eval-auc:0.918839
                                 train-auc:0.976744
[87]
        eval-auc:0.918764
                                 train-auc:0.97708
[88]
        eval-auc:0.918865
                                 train-auc:0.977625
[89]
        eval-auc:0.919029
                                 train-auc:0.97817
[90]
        eval-auc:0.918954
                                 train-auc:0.978305
[91]
        eval-auc:0.918856
                                 train-auc:0.978581
[92]
        eval-auc:0.918894
                                 train-auc:0.978676
[93]
        eval-auc:0.918684
                                 train-auc:0.978837
[94]
        eval-auc:0.918525
                                 train-auc:0.978995
[95]
        eval-auc:0.918468
                                 train-auc:0.979489
[96]
        eval-auc:0.918707
                                 train-auc:0.979805
[97]
        eval-auc:0.919011
                                 train-auc:0.980142
[98]
        eval-auc:0.919109
                                 train-auc:0.980201
[99]
        eval-auc:0.919104
                                 train-auc:0.980199
[100]
        eval-auc:0.919457
                                 train-auc:0.980567
[101]
        eval-auc:0.919472
                                 train-auc:0.981132
[102]
        eval-auc:0.919627
                                 train-auc:0.981391
[103]
        eval-auc:0.919673
                                 train-auc:0.981657
                                 train-auc:0.981915
[104]
        eval-auc:0.919748
        eval-auc:0.91965
[105]
                                 train-auc:0.982071
[106]
        eval-auc:0.920076
                                 train-auc:0.982203
[107]
        eval-auc:0.920622
                                 train-auc:0.982273
[108]
        eval-auc:0.920507
                                 train-auc:0.982462
[109]
        eval-auc:0.920455
                                 train-auc:0.982735
        eval-auc:0.920455
                                 train-auc:0.982735
[110]
        eval-auc:0.920455
                                 train-auc:0.982735
[111]
Stopping. Best iteration:
[109]
        eval-auc:0.920455
                                 train-auc:0.982735
```

```
In [68]:
    dtest = xgb.DMatrix(X_test)
    predict = bst.predict(dtest)
```

```
In [69]:
    submissions = pd.DataFrame({"Id" : test_id, "PredValue" : predict, 'CarIn
    surance' : test_carInsurance})
```

```
In [70]:
    submissions.to_csv("./submissions.csv", index=False)
```

In [71]: def make_model_optuna(trial): from sklearn.preprocessing import LabelEncoder from sklearn.model_selection import train_test_split import xgboost as xgb import sklearn.datasets import sklearn.metrics le = LabelEncoder() for col in cat_cols: train[col] = le.fit_transform(train[col]) test[col] = le.fit_transform(test[col]) X = train.drop(['Id', 'CarInsurance'], axis=1) y = train.CarInsurance X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, ra ndom_state=0) dtrain = xgb.DMatrix(X_train, y_train) dval = xgb.DMatrix(X_test, y_test) # eval_list = [(dval, 'eval'), (dtrain, 'train')] n_round = trial.suggest_int('n_round', 1, 9) param = {'silent': 1, 'objective': 'binary:logistic', 'booster': trial.suggest_categorical('booster', ['gbtree', 'gblinear', 'dart']), 'lambda': trial.suggest_loguniform('lambda', 1e-8, 1.0), 'alpha': trial.suggest_loguniform('alpha', 1e-8, 1.0), 'eval_metric' : 'auc' } if param['booster'] == 'gbtree' or param['booster'] == 'dart': param['max_depth'] = trial.suggest_int('max_depth', 1, 9) param['ets'] = trial.suggest_loguniform('eta', 1e-8, 1.0) param['gamma'] = trial.suggest_loguniform('gamma', 1e-8, 1.0) param['grow_policy'] = trial.suggest_categorical('grow_policy', ['depthwise', 'lossguide']) if param['booster'] == 'dart': param['sample_type'] = trial.suggest_categorical('sample_type', [

```
In [72]:
    import optuna
    study = optuna.create_study()
    study.optimize(make_model_optuna, n_trials=100)
    """
```

Out[72]:

'\nimport optuna\nstudy = optuna.create_study()\nstudy.optimize(make_mode l_optuna, n_trials=100)\n'