DRAFT

Treatability Study in Support of Remediation by Natural Attenuation for Groundwater at Site ST-24

Columbus Air Force Base Columbus, Mississippi

Prepared For

Air Force Center for Environmental Excellence
Technology Transfer Division
Brooks Air Force Base
San Antonio, Texas

and

Columbus Air Force Base Columbus, Mississippi

20000831 037

DISTRIBUTION STATEMENT A

Approved for Public Release Distribution Unlimited

July 1997

Walton, Norman

From: Hansen, Jerry E, Mr, HQAFCEE [Jerry.Hansen@HQAFCEE.brooks.af.mil]

Sent: Tuesday, August 08, 2000 10:16 AM

To: 'nwalton@dtic.mil'

Subject: Distribution statement for AFCEE/ERT reports

Norman, This is a followup to our phone call. The eight boxes of reports you received from us are all for unlimited distribution. If you have any questions, you can contact me at DSN 240-4353.

DRAFT

TREATABILITY STUDY IN SUPPORT OF REMEDIATION BY NATURAL ATTENUATION FOR GROUNDWATER AT SITE ST-24

at

COLUMBUS AIR FORCE BASE COLUMBUS, MISSISSIPPI

JULY 1997

Prepared for:

AIR FORCE CENTER FOR ENVIRONMENTAL EXCELLENCE
TECHNOLOGY TRANSFER DIVISION
BROOKS AIR FORCE BASE
SAN ANTONIO, TEXAS

and

COLUMBUS AIR FORCE BASE COLUMBUS, MISSISSIPPI

Prepared by:

PARSONS ENGINEERING SCIENCE, INC. 1700 BROADWAY, SUITE 900 DENVER, COLORADO 80290

TABLE OF CONTENTS

SECTION 1 - INTRODUCTION	,		Page
1.1 Scope and Objectives	ACRO	ONYMS	vii
1.2 Facility Background	SECT	TION 1 - INTRODUCTION	1-1
1.2 Facility Background	1.1	Scope and Objectives	1-2
2.1 Drilling, Soil Sampling, And Monitoring Point Installation	1.2	Facility Background	1-3
2.1.1 Geoprobe® Operation 2-	SECT	ΓΙΟΝ 2 - SITE CHARACTERIZATION ACTIVITIES	2-1
2.1.1 Geoprobe® Operation 2-	2 1	Drilling Soil Sampling And Monitoring Point Installation	2-2
2.1.1.1 Pre-Drilling Activities 2- 2.1.1.2 Equipment Decontamination Procedures 2- 2.1.1.3 Drilling and Soil Sampling 2- 2.1.2 Temporary Monitoring Point Installation 2- 2.1.2.1 Monitoring Point Materials Decontamination 2- 2.1.2.2 Monitoring Point Casing and Screen 2- 2.1.2.3 Sand Filter Pack and Annular Sealant 2-1 2.1.2.4 Protective Cover 2-1 2.1.3 Well Development 2-1 2.2 Groundwater Sampling 2-1 2.2.1 Preparation for Sampling 2-1 2.2.2 Well/Point Purging and Sample Collection 2-1 2.2.3 Onsite Chemical Parameter Measurement 2-1 2.2.4 Sample Handling 2-1 2.3 Aquifer Testing 2-1 2.4 Surveying 2-1 SECTION 3 - PHYSICAL CHARACTERISTICS OF THE STUDY AREA 3 3.1.1 Topography 3 3.1.2 Surface Water Hydrology 3	2.1	2.1.1 Geographe® Operation	2-2
2.1.1.2 Equipment Decontamination Procedures 2- 2.1.1.3 Drilling and Soil Sampling 2- 2.1.2 Temporary Monitoring Point Installation 2- 2.1.2.1 Monitoring Point Materials Decontamination 2- 2.1.2.2 Monitoring Point Casing and Screen 2- 2.1.2.3 Sand Filter Pack and Annular Sealant 2-1 2.1.2.4 Protective Cover 2-1 2.1.3 Well Development 2-1 2.2 Groundwater Sampling 2-1 2.2.1 Preparation for Sampling 2-1 2.2.2 Well/Point Purging and Sample Collection 2-1 2.2.3 Onsite Chemical Parameter Measurement 2-1 2.2.4 Sample Handling 2-1 2.3 Aquifer Testing 2-1 2.4 Surveying 2-1 SECTION 3 - PHYSICAL CHARACTERISTICS OF THE STUDY AREA 3 3.1 Surface Features 3 3.1.1 Topography 3 3.1.2 Surface Water Hydrology 3		2.1.1 Ocopioce Operation	2-5
2.1.1.3 Drilling and Soil Sampling 2- 2.1.2 Temporary Monitoring Point Installation 2- 2.1.2.1 Monitoring Point Materials Decontamination 2- 2.1.2.2 Monitoring Point Casing and Screen 2- 2.1.2.3 Sand Filter Pack and Annular Sealant 2-1 2.1.2.4 Protective Cover 2-1 2.1.3 Well Development 2-1 2.2.1 Preparation for Sampling 2-1 2.2.2 Well/Point Purging and Sample Collection 2-1 2.2.2 Onsite Chemical Parameter Measurement 2-1 2.2.4 Sample Handling 2-1 2.3 Aquifer Testing 2-1 2.4 Surveying 2-1 SECTION 3 - PHYSICAL CHARACTERISTICS OF THE STUDY AREA 3 3.1 Surface Features 3 3.1.1 Topography 3 3.1.2 Surface Water Hydrology 3		2 1 1 2 Fauinment Decontamination Procedures	2-5
2.1.2 Temporary Monitoring Point Installation 2- 2.1.2.1 Monitoring Point Materials Decontamination 2- 2.1.2.2 Monitoring Point Casing and Screen 2- 2.1.2.3 Sand Filter Pack and Annular Sealant 2-1 2.1.2.4 Protective Cover 2-1 2.1.3 Well Development 2-1 2.2.1 Preparation for Sampling 2-1 2.2.2 Well/Point Purging and Sample Collection 2-1 2.2.3 Onsite Chemical Parameter Measurement 2-1 2.2.4 Sample Handling 2-1 2.3 Aquifer Testing 2-1 2.4 Surveying 2-1 SECTION 3 - PHYSICAL CHARACTERISTICS OF THE STUDY AREA 3 3.1 Surface Features 3 3.1.1 Topography 3 3.1.2 Surface Water Hydrology 3		2 1 1 3 Drilling and Soil Sampling	2-5
2.1.2.1 Monitoring Point Materials Decontamination 2- 2.1.2.2 Monitoring Point Casing and Screen 2- 2.1.2.3 Sand Filter Pack and Annular Sealant 2-1 2.1.2.4 Protective Cover 2-1 2.1.3 Well Development 2-1 2.2 Groundwater Sampling 2-1 2.2.1 Preparation for Sampling 2-1 2.2.2 Well/Point Purging and Sample Collection 2-1 2.2.3 Onsite Chemical Parameter Measurement 2-1 2.2.4 Sample Handling 2-1 2.3 Aquifer Testing 2-1 2.4 Surveying 2-1 SECTION 3 - PHYSICAL CHARACTERISTICS OF THE STUDY AREA 3 3.1 Surface Features 3 3.1.1 Topography 3 3.1.2 Surface Water Hydrology 3		2.1.2 Temporary Monitoring Point Installation	2-9
2.1.2.2 Monitoring Point Casing and Screen .2- 2.1.2.3 Sand Filter Pack and Annular Sealant .2-1 2.1.2.4 Protective Cover .2-1 2.1.3 Well Development .2-1 2.2 Groundwater Sampling .2-1 2.2.1 Preparation for Sampling .2-1 2.2.2 Well/Point Purging and Sample Collection .2-1 2.2.3 Onsite Chemical Parameter Measurement .2-1 2.2.4 Sample Handling .2-1 2.3 Aquifer Testing .2-1 2.4 Surveying .2-1 SECTION 3 - PHYSICAL CHARACTERISTICS OF THE STUDY AREA .3 3.1 Surface Features .3 3.1.1 Topography .3 3.1.2 Surface Water Hydrology .3		2.1.2.1 Monitoring Point Materials Decontamination	2-9
2.1.2.3 Sand Filter Pack and Annular Sealant 2-1 2.1.2.4 Protective Cover 2-1 2.1.3 Well Development 2-1 2.2 Groundwater Sampling 2-1 2.2.1 Preparation for Sampling 2-1 2.2.2 Well/Point Purging and Sample Collection 2-1 2.2.3 Onsite Chemical Parameter Measurement 2-1 2.2.4 Sample Handling 2-1 2.3 Aquifer Testing 2-1 2.4 Surveying 2-1 SECTION 3 - PHYSICAL CHARACTERISTICS OF THE STUDY AREA 3 3.1 Surface Features 3 3.1.1 Topography 3 3.1.2 Surface Water Hydrology 3		2.1.2.2 Monitoring Point Casing and Screen	2-9
2.1.2.4 Protective Cover. 2-1 2.1.3 Well Development. 2-1 2.2 Groundwater Sampling 2-1 2.2.1 Preparation for Sampling 2-1 2.2.2 Well/Point Purging and Sample Collection 2-1 2.2.3 Onsite Chemical Parameter Measurement 2-1 2.2.4 Sample Handling 2-1 2.3 Aquifer Testing 2-1 2.4 Surveying 2-1 SECTION 3 - PHYSICAL CHARACTERISTICS OF THE STUDY AREA 3 3.1 Surface Features 3 3.1.1 Topography 3 3.1.2 Surface Water Hydrology 3		2.1.2.3 Sand Filter Pack and Annular Sealant	2-10
2.1.3 Well Development. 2-1 2.2 Groundwater Sampling 2-1 2.2.1 Preparation for Sampling 2-1 2.2.2 Well/Point Purging and Sample Collection 2-1 2.2.3 Onsite Chemical Parameter Measurement 2-1 2.2.4 Sample Handling 2-1 2.3 Aquifer Testing 2-1 2.4 Surveying 2-1 SECTION 3 - PHYSICAL CHARACTERISTICS OF THE STUDY AREA 3 3.1 Surface Features 3 3.1.1 Topography 3 3.1.2 Surface Water Hydrology 3		2.1.2.4 Protective Cover	2-10
2.2.1 Preparation for Sampling 2-1 2.2.2 Well/Point Purging and Sample Collection 2-1 2.2.3 Onsite Chemical Parameter Measurement 2-1 2.2.4 Sample Handling 2-1 2.3 Aquifer Testing 2-1 2.4 Surveying 2-1 SECTION 3 - PHYSICAL CHARACTERISTICS OF THE STUDY AREA 3-1 3.1 Surface Features 3-1 3.1.1 Topography 3-1 3.1.2 Surface Water Hydrology 3-3		2.1.3 Well Development	2-11
2.2.2 Well/Point Purging and Sample Collection	2.2	Groundwater Sampling	2-11
2.2.3 Onsite Chemical Parameter Measurement 2-1 2.2.4 Sample Handling 2-1 2.3 Aquifer Testing 2-1 2.4 Surveying 2-1 SECTION 3 - PHYSICAL CHARACTERISTICS OF THE STUDY AREA 3-1 3.1 Surface Features 3-3 3.1.1 Topography 3-3 3.1.2 Surface Water Hydrology 3-3		2.2.1 Preparation for Sampling	2-12
2.2.4 Sample Handling		2.2.2 Well/Point Purging and Sample Collection	2-13
2.3 Aquifer Testing			
2.4 Surveying		2.2.4 Sample Handling	2-15
SECTION 3 - PHYSICAL CHARACTERISTICS OF THE STUDY AREA		Aquifer Testing	2-16
3.1 Surface Features	2.4	Surveying	2-17
3.1.1 Topography	SEC	TION 3 - PHYSICAL CHARACTERISTICS OF THE STUDY AREA	3-1
3.1.1 Topography	3 1	Surface Features	3 _1
3.1.2 Surface Water Hydrology	J. 1		
3.2 Regional Geology And Hydrogeology		3 1 2 Surface Water Hydrology	3_1 3_1
	3.2	Regional Geology And Hydrogeology	3-7
3.3 Site Geology And Hydrogeology		Site Geology And Hydrogeology	3-
3.3.1 Lithology and Stratigraphic Relationships		3.3.1 Lithology and Stratigraphic Relationships	3-5

•			Page
	3 3 2	Groundwater Hydraulics	3-6
	3.3.2	3 3 2 1 Flow Direction and Gradlent	
		Figure 3.2 Locations of Hydrogeologic Cross-Sections	3-7
		Figure 3.3 Hydrogeologic Cross-SectionA-A'	3-8
		Figure 3.4 Hydrogeologic Cross-Section B-B'	3-9
		3 3 2 2 Hydraulic Conductivity	3-12
	•	2 2 2 3 Effective Porosity	
		2 2 2 A Advective Groundwater Velocity	
		2 2 2 5 Preferential Flow Paths	3-13
	333	Groundwater Use	3-14
3.4	Clima	de	3-14
SECT	TION 4	- NATURE AND EXTENT OF CONTAMINATION	
		GROUNDWATER AND SOIL AND GEOCHEMISTRY	4-1
	G	e Of Contamination	4-1
4.1	Sourc	Chemistry	4-1
4.2	3011 (Soil BTEX	4-2
	4.2.1	Total Organic Carbon	4-2
4.3	4.2.2	ndwater Chemistry	4-4
4.3	droui	Dissolved Hydrocarbon Contamination	4-4
	4.3.1	Chlorinated Solvent Contamination	4-9
	4.3.2	Inorganic Chemistry and Geochemical Indicators of BTEX	
	4.5.5	Biodegradation	4-10
		4.3.3.1 Dissolved Oxygen	4-17
		4.3.3.2 Nitrate/Nitrite	4-18
		4.3.3.3 Ferrous Iron	4-20
		4.3.3.5 Soluble Manganese	4-22
		4.3.3.6 Sulfate	4-24
		4.3.3.7 Ammonium	4-26
		4.3.3.8 Methane in Groundwater	4-28
		4.3.3.9 Alkalinity and Carbon Dioxide Evolution	4-30
		4.3.3.10 Reduction/Oxidation Potential	4-31
		4.3.3.11 pH	4-35
	,	4.3.3.12 Temperature	4-37
	437	4 Expressed Assimilative Capacity	4-37
	7.J.	+ Expressed resummente Capacity	

		Page
SECT	TION 5 - GROUNDWATER MODELING	5-1
5.1	General Overview	5-1
5.2	Conceptual Model Design And Assumptions	5-4
5.3	Initial Model Setup	5-4
	5.3.1 Groundwater Gradient	5-5
	5.3.2 BTEX Concentrations	5-5
	5.3.3 Degradation Rates	5-5
	5.3.3.1 Trimethylbenzene Tracer Method	5-6
	5.3.3.2 Method of Buscheck and Alcantar	5-8
	5.3.3.3 Selection of a Decay Rate Constant	
5.4	Model Calibration	5-11
5.5	Sensitivity Analysis	
SECT	ΓΙΟΝ 6 - COMPARATIVE ANALYSIS OF REMEDIAL ALTERNATIVE	
6.1	Remedial Alternative Evaluation Criteria	6-1
012	6.1.1 Long-Term Effectiveness and Permanence	6-2
	6.1.2 Implementability	6-2
	6.1.3 Cost	6-3
6.2	Factors Influencing Alternatives Development	6-3
	6.2.1 Program Objectives	6-3
	6.2.2 Contaminant Properties	6-4
	6.2.3 Site-Specific Conditions	6-7
	6.2.3.1 Physical Characteristics	6-7
	6.2.3.2 Geochemical Characteristics	6-8
	6.2.3.3 Potential Receptor Exposure Pathways	6-10
	6.2.3.4 Remediation Goals for Shallow Groundwater	6-12
	6.2.4 Summary of Remedial Option Screening	
6.3	Brief Description Of Remedial Alternatives	
	6.3.1 Alternative 1 - RNA and Institutional Controls with Long-Term	
	Groundwater Monitoring	6-17
	6.3.2 Alternative 2 - Biosparging with Soil Vapor Extraction In and	
	Downgradient from the Source Area, RNA, and Institutional	
	Controls with Long-Term Groundwater Monitoring	6-19
	6.3.3 Alternative 3 - Groundwater Extraction, RNA, and Institutional	
	Controls with Long-Term Groundwater Monitoring	6-20

			Page			
6.4	Evalua	ation of Alternatives	6-21			
	6.4.1 Alternative 1 - RNA and Institutional Controls with Long-Term					
		Groundwater Monitoring	6-21			
		6.4.1.1 Effectiveness	6-21			
		6.4.1.2 Implementability				
		6.4.1.3 Cost	6-24			
	6.4.2	Alternative 2 - Biosparging with Soil Vapor Extraction In and				
		Downgradient from the Source Area, RNA, Institutional Controls,				
		and Long-Term Groundwater Monitoring	6-25			
		6.4.2.1 Effectiveness	6-25			
		6.4.2.2 Implementability				
		6.4.2.3 Cost	6-27			
	6.4.3	Alternative 3 - Groundwater Extraction, RNA, and Institutional				
		Controls with Long-Term Groundwater Water Monitoring	6-28			
		6.4.3.1 Effectiveness	6-28			
		6.4.3.2 Implementability				
		6.4.3.3 Cost				
6.5	Recon	nmended Remedial Approach				
SEC	rion 7	- LONG-TERM MONITORING PLAN	7-1			
7.1	Overv	riew	7-1			
7.2	Monit	oring Networks	7-2			
	7 2 1	Long-Term Monitoring Wells	7-2			
		Sentry Wells				
7.3	Groun	ndwater Sampling	7-8			
	7.3.1	Analytical Protocol	7-9			
	7.3.2		7-9			
SEC	rion 8	- CONCLUSIONS AND RECOMMENDATIONS	8-1			
SEC	ΓΊΩΝ 0	- REFERENCES	9-1			

LIST OF TABLES

No.	Title	Page
2.1	Monitoring Point and Monitoring Well Completion Data	2-4
2.2	Analytical Protocols for Groundwater and Soil Samples	2-8
3.1	Summary of Groundwater Elevation Data	3-10
3.2	November 1996 Slug Test Results	
4.1	Soil Analytical Data	
4.2	Groundwater Quality Data Summary for Fuel Hydrocarbons	
4.3	Coupled Oxidation Reactions for BTEX Compounds	
4.4	Geochemical Data	
4.5	Expressed Assimilative Capacity Of Site Groundwater	4-38
5.1	First-Order Rate Constant Calculation using 1,2,4-TMB as a Conservative	
	Tracer	5-9
5.2	First-Order Rate Constant Calculation Using the Method of Buscheck and	
	Alcantar (1995)	5-10
6.1	Groundwater Quality Standards	6-12
6.2	Initial Technical Implementability Screening of Technologies and Process	
()	Options for Groundwater Remediation	
6.3	Alternative 1 - Cost Estimate	6-25
6.4	Alternative 2 - Cost Estimate	6-28
6.5	Alternative 3 - Cost Estimate	6-30
6.6	Summary of Remedial Alternatives Evaluation for Groundwater	
7 1	Remediation	6-31
7.1	Long-Term Monitoring Analytical Protocol	7-5
7.2	Point-of-Compliance Monitoring Analytical Protocol	7-7
•	LIST OF FIGURES	
No.	Title	Page
1.1	Location of Columbus AFB	1-6
1.2	Site Map Site ST-24	1 0 1-7
2.1	Groundwater and Soil Sampling Locations	2-3
3.1	Topographic Map of the Columbus AFB Area	2-3 ス_ク
3.5	Water Table Elevations November 1996	3_11
4.1	Total Dissolved BTEX Isopleth Map November 1996	4-5
	1	

LIST OF FIGURES (Continued)

No.	Title	Page
4.2	TVH in Groundwater Isopleth Map November 1996	4-8
4.3	Dissolved Oxygen Isopleth Map November 1996	4-16
4.4	Nitrate (as N) in Groundwater Isopleth Map November 1996	4-19
4.5	Ferrous Iron in Groundwater Isopleth Map November 1996	4-21
4.6	Soluble Manganese is Groundwater Isopleth Map November 1996	4-23
4.7	Sulfate in Groundwater Isopleth Map November 1996	4-25
4.8	Ammonium (as N) in Groundwater Isopleth Map November 1996	4-27
4.9	Methane in Groundwater Isopleth Map November 1996	4-29
4.10	Carbon Dioxide in Groundwater Isopleth Map November 1996	4-32
4.11	Total Alkalinity in Groundwater Isopleth Map November 1996	4-33
4.11	Redox Potential in Groundwater November 1996	4-34
	Sequence of Microbially Mediated Redox Processes	4-36
4.13	Described I sections For Long Torm Monitoring and Point-of-Compliance	
7.1	Proposed Locations For Long-Term Monitoring and Point-of-Compliance Wells	7-4
	Wells	/

ACRONYMS

AAFES Army and Air Force Exchange Services

AETC Air Education and Training Command

AFB Air Force Base

AFCEE United States Air Force Center for Environmental Excellence

ASCII American Standard Code for Information Interchange

ATC Air Training Command

atm-m³/mol atmospheres-cubic meters per mole

BEIA Biomedical and Environmental Information Analysis

bgs below ground surface

BRAC Base Realignment and Closure

BTEX benzene, toluene, ethylbenzene, and xylenes

°C degrees Celsius

CaCO₃ calcium carbonate

DO dissolved oxygen

ft/day feet per day

ft/ft foot per foot

ft/yr feet per year

HDPE high density polyethylene

Hg mercury

ID inside diameter

kg kilogram(s)

L liter(s)

LNAPL light nonaqueous-phase liquid

LTM long-term monitoring

 μg microgram(s)

MDEQ Mississippi Department of Environmental Quality

mg milligram(s)

mm millimeter(s)

msl mean sea level

mV millivolt(s)

Parsons ES Parsons Engineering Science, Inc.

PID photoionization detector

POC point of compliance

QC quality control

RAO remedial action objective

redox reduction/oxidation

RNA remediation by natural attenuation

SAC Strategic Air Command

SAP sampling and analysis plan

SVE soil vapor extraction

TCE trichloroethene

TetraMB tetramethylbenzene

TEX toluene, ethylbenzene, and xylenes

TMB trimetheylbenzene

TOC total organic carbon

TPH total petroleum hydrocarbons

TRPH total recoverable petroleum hydrocarbons

TS Treatability Study

TVA Tennessee Valley Authority

TVH total volatile hydrocarbons

USACE United States Army Corps of Engineers

USAF United States Air Force

USEPA United States Environmental Protection Agency

UST underground storage tanks

VOC volatile organic compound

EXECUTIVE SUMMARY

This report presents the results of a treatability study (TS) performed by Parsons Engineering Science, Inc. (Parsons ES) at Site ST-24, Columbus Air Force Base, Mississippi, to evaluate remediation by natural attenuation (RNA) of dissolved fuel-hydrocarbons in groundwater. The TS focused on the fate and transport of dissolved benzene, toluene, ethylbenzene, and xylenes (BTEX) in the shallow groundwater at Site ST-24. No mobile light, non-aqueous-phase liquid (LNAPL) or residual LNAPL above the water table was observed at Site ST-24. Samples also were analyzed for dissolved chlorinated solvents; however, the presence of dissolved chlorinated solvents, detected during a previous sampling event, was not confirmed. The site history and the results of the soil and groundwater investigations conducted previously also are summarized in this report.

Comparison of BTEX, electron acceptor, and biodegradation byproduct isopleth maps for ST-24 provides strong qualitative evidence of biodegradation of dissolved BTEX compounds. These geochemical data strongly suggest that biodegradation of dissolved fuel hydrocarbons is occurring at the site via aerobic respiration and the anaerobic processes of denitrification, iron reduction, sulfate reduction, nitrogen fixation and methanogenesis. Redox conditions and site geochemical parameters suggest that the dominant natural attenuation mechanism is nitrogen fixation. Patterns observed in the distribution of hydrocarbons, electron acceptors, and biodegradation byproducts further indicate that biodegradation is reducing dissolved BTEX concentrations in site groundwater.

An important component of this study was an assessment of the potential for contamination in groundwater to migrate from the source areas to potential receptor exposure points (i.e., beneath Base housing located to the west of Site ST-24). An analytical model was used to evaluate the fate and transport of dissolved BTEX in the

shallow groundwater under the influence of advection, dispersion, sorption, and biodegradation. Input parameters for the model were obtained from site data collected by Parsons ES. Model parameters that were not measured at the site were estimated using reasonable literature values.

The results of this demonstration suggest that RNA of dissolved BTEX contamination is occurring at Site ST-24; furthermore, the estimated rates of biodegradation, when coupled with sorption, dispersion, and dilution, should be sufficient to reduce and maintain dissolved BTEX concentrations to levels below current regulatory guidelines long before potential downgradient receptors could be adversely affected. Conservative modeling suggests that under current conditions, the dissolved BTEX will not migrate beyond the current plume extent, and dissolved BTEX contamination throughout the plume will be reduced by 85-percent by the year 2027. Future site activities will not change, and the risk to any Base personnel would be minimal, provided institutional controls for soil and groundwater are maintained. Institutional controls such as restrictions on shallow groundwater use at the site would prevent completion of receptor exposure pathways until RNA is complete. The Air Force therefore recommends implementation of RNA and long-term monitoring (LTM) with institutional controls.

To verify model predictions, and to ensure that the selected technologies are meeting objectives, the Air Force recommends using 7 LTM wells and 3 sentry wells to monitor the long-term migration and degradation of the dissolved BTEX plume. In addition to analyses used to verify the effectiveness of RNA, the groundwater samples should be analyzed for BTEX compounds by US Environmental Protection Agency (USEPA) Method SW8020. If data collected under the LTM program indicate that the selected remedial system is not sufficient to reduce BTEX concentrations at downgradient well locations to levels considered protective of human health and the environment, additional corrective actions may be required to remediate groundwater at the site.

SECTION 1

INTRODUCTION

This report was prepared by Parsons Engineering Science, Inc. (Parsons ES), and presents the results of a Treatability Study (TS) conducted to evaluate remediation by natural attenuation (RNA) of fuel-hydrocarbon contaminated groundwater at the former Army and Air Force Exchange Services (AAFES) Station (Site ST-24) at Columbus Air Force Base (AFB), Mississippi. The main emphasis of the work described herein was to evaluate the effectiveness of natural attenuation mechanisms in reducing dissolved fuel-hydrocarbon concentrations in groundwater.

As used in this report, RNA refers to a management strategy that relies on natural attenuation mechanisms to remediate contaminants dissolved in groundwater and to control receptor exposure risks associated with contaminants in the subsurface. The United States Environmental Protection Agency (USEPA) defines natural attenuation as (Wilson, 1996):

The naturally-occurring processes in soil and groundwater environments that act without human intervention to reduce the mass, toxicity, mobility, volume, or concentration of contaminants in those media. These in-situ processes include biodegradation, dispersion, dilution, adsorption, volatilization, and chemical or biological stabilization or destruction of contaminants.

As suggested by this definition, mechanisms for natural attenuation of benzene and other organic compounds include advection, dispersion, dilution from recharge, sorption, volatilization, and biodegradation. Of these processes, biodegradation is the only mechanism working to transform contaminants into innocuous byproducts. Contaminant

destruction occurs through biodegradation when indigenous microorganisms work to bring about a reduction in the total mass of contamination in the subsurface without artificial intervention (e.g., the addition of nutrients). Patterns and rates of natural attenuation can vary markedly from site to site, and within a single contaminant plume at a given site, depending on governing physical and chemical processes.

1.1 Scope and Objectives

Parsons ES was retained by the United States Air Force Center for Environmental Excellence (AFCEE) Technology Transfer Division to conduct site characterization and groundwater modeling to evaluate the scientific defensibility of RNA with long-term monitoring (LTM) as a component of remediation for contaminated groundwater at Columbus AFB. The primary objective of this project was to determine whether natural attenuation processes for fuel hydrocarbons are occurring in groundwater at the site. These objectives were accomplished by:

- Reviewing previously reported hydrogeologic, soil, and groundwater data for the site;
- Conducting supplemental site characterization activities to determine the nature and extent of soil and groundwater contamination;
- Collecting geochemical data in support of RNA;
- Developing a conceptual hydrogeologic model of the shallow saturated zone, including the current distribution of contaminants;
- Evaluating site-specific data to determine whether natural processes of contaminant attenuation and destruction are occurring in groundwater for dissolved concentrations of fuel hydrocarbon compounds at the site;

- Designing and executing an analytical groundwater flow and contaminant fate and transport model for site hydrogeologic conditions;
- Simulating the fate and transport of benzene, toluene, ethylbenzene, and xylenes (BTEX) in groundwater under the influence of biodegradation, advection, dispersion, and adsorption using the calibrated flow and transport model;
- Evaluating a range of model input parameters to determine the sensitivity of the model to those parameters and to consider several contaminant fate and transport scenarios;
- Determining if natural processes are sufficient to reduce dissolved hydrocarbon plume expansion so that water quality standards can be met at a downgradient point (sentry well location);
- Developing remedial action objectives (RAOs) and reviewing available remedial technologies;
- Using the results of modeling to recommend the most appropriate remedial option based on specific effectiveness, implementability, and cost criteria; and
- Providing a LTM plan that includes LTM and sentry well locations and a sampling and analysis plan.

The field work conducted under this program was oriented toward collecting the supplementary hydrogeological and chemical data necessary to document and model natural attenuation mechanisms currently operating at the site. During November 1996, site characterization activities included use of the Geoprobe[®] direct-push technology for soil sample collection and temporary monitoring point installation; aquifer testing; and sampling and analysis of groundwater from temporary groundwater monitoring points and previously installed monitoring wells. Much of the hydrogeological and groundwater

chemical data necessary to evaluate RNA were available from previous investigations conducted at this site, from other sites with similar characteristics, or from technical literature.

Site-specific data were used to develop an analytical fate and transport model for the site to evaluate processes of natural attenuation. The modeling effort was used to simulate the movement of dissolved BTEX in the shallow saturated zone under the influence of biodegradation, advection, dispersion, and sorption. Results of the model were used to assess the potential for completion of other exposure pathways involving groundwater and to determine whether RNA with LTM is an appropriate and defensible remedial option for contaminated groundwater. The modeling results will be used to provide technical support for RNA with LTM remedial option during regulatory negotiations, as appropriate.

This report contains nine sections, including this introduction, and five appendices. Section 2 summarizes site characterization activities. Section 3 summarizes the physical characteristics of the study area. Section 4 describes the nature and extent of soil and groundwater contamination and the geochemistry of soil and groundwater at the site. Section 5 describes the fate and transport model and design of the conceptual model for the site, lists model assumptions and input parameters, and describes the sensitivity analysis. Section 6 presents a comparative analysis of remedial alternatives and model results. Section 7 presents the LTM plan for the site. Section 8 presents the conclusions of this work and provides recommendations for further work at the site. Section 9 lists the references used to develop this document. Appendix A contains Geoprobe® borehole logs, monitoring point installation records, and slug test results. Appendix B presents soil and groundwater analytical results. Appendix C contains model input and output. Appendix D contains calculations for remedial option design and costing.

1.2 Facility Background

Columbus AFB is in northeastern Mississippi, in the northwestern portion of Lowndes County (Figure 1.1). The Base covers approximately 4,411 acres in a lightly urbanized area 10 miles north of Columbus, Mississippi. Columbus AFB was initially activated on February 9, 1942 as a pilot training facility. It was closed in 1946 and remained inactive until 1951, when it was reopened as a contract flying school operated by California Eastern Airways, Inc. On April 1, 1955, the United States Air Force (USAF) Air Training Command (ATC) transferred the Base to the Second Air Force of the Strategic Air Command (SAC). An active building program was instituted by SAC to prepare the Base for its mission as the home of a B-52 squadron and a KC-135 tanker squadron, both of which arrived in 1959. ATC regained jurisdiction of the Base on July 1, 1969. The current training missions at Columbus AFB require the use and maintenance of T-1, T-37, T-38, and AT-38 training aircraft. ATC became the Air Education and Training Command (AETC) on July 1, 1993. Base Realignment and Closure (BRAC) decisions in 1991, 1993, and 1995 continue to impact the mission and structure of the Base (Spencer, 1996b).

Site ST-24, the former AAFES Service Station, is located east of Independence Avenue between First and Second Streets in the central portion of the Base (Figure 1.2). The site contained three 10,000-gallon underground storage tanks (USTs), three fueling islands, and distribution lines for the refueling of privately owned vehicles. The USTs contained leaded, unleaded regular, and unleaded premium gasoline. The facility also had an oil UST that reportedly leaked. On December 10, 1988, the gasoline USTs failed a tightness test, and subsequently were taken out of service. All four USTs and associated piping were removed in 1989. Based upon the analyses of soil samples taken in the area of the former USTs, Parsons ES has assumed that all of the contaminated soil was removed from this area to just above the water table; however, this has not been documented. Contamination from the oil tank was observed during the UST removal, but all of the oil-

LOCATION OF COLUMBUS AFB

Site ST-24 RNA TS Columbus AFB, Mississippi

PARSONS ENGINEERING SCIENCE, INC.

Denver, Colorado

contaminated soil was not removed at that time (Spencer, 1996b). In May 1993, the remaining oil-contaminated soil was removed by the US Army Corps of Engineers (USACE) (CH2M Hill, 1995). The site has been restored, and is currently an open grassy field; there is no surface evidence of the former service station. There are currently nine groundwater wells located in the immediate vicinity of Site ST-24 (Figure 1.2)

SECTION 2

SITE CHARACTERIZATION ACTIVITIES

This section presents the methods used by Parsons ES personnel to collect site-specific data at Site ST-24 at Columbus AFB, Mississippi. To meet the requirements of the RNA demonstration, data were collected in one site characterization event. The site characterization was performed in November 1996, and consisted of monitoring point installation, soil and groundwater sampling, and aquifer testing to evaluate near-surface geology and geochemistry, aquifer properties, and the extent of soil and groundwater contamination for the area surrounding ST-24. Temporary groundwater monitoring point installation and soil sampling were accomplished during this investigation using the Geoprobe® direct-push system. Groundwater sampling was accomplished during this investigation using both temporary monitoring points and previously installed monitoring wells. Hydraulic conductivity (slug) tests were conducted at several of the site monitoring wells. Previously collected data were integrated with data collected as described above to develop the conceptual site model and to aid in the interpretation of the physical setting (Section 3) and contaminant distribution (Section 4).

The following sections describe the procedures that were followed when collecting site-specific data. Additional details regarding investigative activities are presented in the work plan (Parsons ES, 1996).

2.1 DRILLING, SOIL SAMPLING, AND MONITORING POINT INSTALLATION

Drilling-related field work occurred between November 8 and November 16, 1996, and consisted of soil sampling and temporary groundwater monitoring point installation. Eighteen temporary groundwater monitoring points were installed at 14 locations to assist in the characterization of the shallow groundwater flow system at Site ST-24. These monitoring points were identified as MPA, MPB(s), MPB(d), MPD(s), MPD(d), MPE, MPF, MPG, MPH(s), MPH(d), MPI, MPJ, MPK(s), MPK(d), MPL, MPM, W70(d), and W77(d). The new points were installed in the locations shown on Figure 2.1. Table 2.1 presents monitoring well/point completion details. The nested points were installed adjacent to each other, with one point (designated by the suffix "s") screened near the water table surface, and with the deeper point (designated by the suffix "d") screened at the base of the unconsolidated shallow aquifer, immediately above a semi-impervious clay layer. A second monitoring point, MPM, was installed at the same location and depth as MPC because MPC could not be developed or sampled. The monitoring point locations were selected to provide the hydrogeologic data necessary for successful implementation of the fate and transport model and to support the RNA demonstration. These activities were performed according to the procedures described in the work plan (Parsons ES, 1996) and summarized in the following sections.

2.1.1 Geoprobe® Operation

The Geoprobe® system is a hydraulically powered percussion/probing machine used to advance sampling tools through unconsolidated soils. This system provides for the rapid collection of soil, soil gas, and groundwater samples at shallow depths while minimizing the generation of investigation-derived waste materials. For convenience, throughout this report, operation of the Geoprobe® is referred to as "drilling".

TABLE 2.1 MONITORING POINT AND MONITORING WELL COMPLETION DATA SITE ST-24 RNA TS

COLUMBUS AIR FORCE BASE, MISSISSIPPI

		Well Inside	Screened	Survey	Survey	Top of Casing	
Well	Installation	Diameter	Interval	Northing	Easting	Elevation	Elevation
Identification	Date	(Inches)	(Feet bgs) ^{a/}	(State Plane)b/	(State Plane)	(Feet msl) ^{c/}	Datum
New Monitoring Poin							
MPA	11/9/96	0.375	19.1-19.6	1443457.9769	615624.9014	209.0	Top of Tubing
MPB(s)	11/9/96	0.375	18.9-19.4	1443418.8592	615610.0118	209.0	Top of Tubing
MPB(d)	11/9/96	0.375	28.4-28.9	1443418.8592	615610.0118	209.0	Top of Tubing
MPD(s)	11/9/96	0.375	19-19.5	1443368.9037	615614.2654	208.4	Top of Tubing
MPD(d)	11/9/96	0.375	28.6-29.1	1443368.9037	615614.2654	208.4	Top of Tubing
MPE	11/10/96	0.375	18.9-19.4	1443418.7517	615728.0933	208.2	Top of Tubing
MPF	11/10/96	0.375	19-19.5	1443197.2292	615631.9702	208.4	Top of Tubing
MPG	11/10/96	0.375	19-19.5	1443429.2569	615565.7435	209.1	Top of Tubing
MPH(s)	11/10/96	0.375	19.2-19.7	1443323.9337	615567.4470	208.3	Top of Tubing
MPH(d)	11/10/96	0.375	29-29.5	1443323.9337	615567.4470	208.5	Top of Tubing
MPI	11/10/96	0.375	18-18.5	1443319.1459	615435.8379	206.9	Top of Tubing
МРЈ	11/16/96	0.375	20.6-21.1	1443217.3471	615444.3941	206.2	Top of Tubing
MPK(s)	11/10/96	0.375	17.7-18.2	1443431.3740	615794.4663	207.7	Top of Tubing
MPK(d)	11/10/96	0.375	26.5-27	1443431.3740	615794.4663	207.6	Top of Tubing
PL	11/14/96	0.375	18.0-18.5	1443252.5809	615538.1359	206.5	Top of Tubing
PM (MPC)	11/9/96	0.375	18.0-18.5	1443370.2946	615613.4789	208.8	Top of Tubing
W70(d)	11/10/96	0.375	27.5-28	1443398.2369	615647.1944	209.5	Top of Tubing
W77(d)	11/10/96	0.375	29-29.5	1443381.8863	615570.7410	209.0	Top of Tubing
Pre-Existing Monitor	ring Wells						
W68	5/15/89	2.0	10-20	1443590.6141	615643.5132	207.5	Top of PVC Casing
W69	5/19/89	2.0	5-20	1443502.8884	615642.5652		Top of PVC Casing
W70(s)	5/23/89	2.0	5-20	1443399.8006	615642.6427	The state of the s	Top of PVC Casing
W71	5/23/89	2.0	5-20	1443306.1899	615655.4957		Top of PVC Casing
W72	5/18/89	2.0	5-20		615736.1057		Top of PVC Casing
W73	5/16/89	2.0	5-20	1443473.8001	615721.4309		Top of PVC Casing
W74	5/12/89	2.0	12-22	1443190.1939	615710.9057		Top of PVC Casing
W76	5/12/89	2.0	8-18	1443250.9041	615530.6381		Top of PVC Casing
W77(s)	5/16/89	2.0	6-16	1443379.8400	615566.7325	207.9	Top of PVC Casing

^{a/} Feet bgs = feet below ground surface.

b/ State Plane = State of Mississippi Plane Coordinate System.

c/ Feet msl = feet above mean sea level.

2.1.1.1 Pre-Drilling Activities

All subsurface utility lines or other man-made subsurface features were located, and proposed drilling locations were cleared and approved by the Base prior to any drilling activities. Water used in equipment cleaning or grouting was obtained from a potable water supply designated by the Base. Suitability of the water source was verified by field personnel.

2.1.1.2 Equipment Decontamination Procedures

Prior to arriving at the site, and between each drilling location, all probe rods, tips, sleeves, pushrods, samplers, tools, and other downhole equipment were decontaminated using an Alconox® detergent and potable water solution followed by a potable water wash. Fittings, tips, and samplers also underwent an additional rinse with isopropyl alcohol followed by a final rinse with deionized water. Precautions were taken to minimize impact to the areas surrounding decontamination operations. All decontamination activities were conducted in a manner so that the excess water was controlled and not allowed to flow into any open borehole.

All decontamination fluids were collected and contained in 55-gallon drums. The contents of the drums were inspected prior to disposal. Because none of the water exhibited any signs of contamination, Base Civil Engineering was so notified, and the water was released to the sanitary sewer.

2.1.1.3 Drilling and Soil Sampling

Drilling was accomplished using the Geoprobe® direct-push technology. The boreholes were sampled continuously to the total depth of the borehole. Where two points were installed adjacent to each other (i.e., nested), only the deeper point was logged and sampled. The Geoprobe®-collected soil samples were obtained using 4-foot by 1.5-inch inside-diameter (ID) and 2-foot by 1-1/16 inch-ID sampling devices. The large sampler was used for the initial 10 feet of soil. The smaller sampler was then

used for the remainder of the borehole in an attempt to minimize the smearing of surface contamination into deeper portions of the borehole. A probe-drive sampler attached to the leading end of the probe rods serves as both the driving point and the sample collection device. To collect a soil sample, the sampler was pushed or driven to the desired sampling depth, the drive point was retracted to open the sampling barrel, and the sampler was subsequently pushed into the undisturbed soils. The soil cores were retained within a clear acetate liner inside the sampling barrel. The probe rods were then retracted, bringing the sampling device to the surface. The soil sample was then extruded from the liners for visual lithologic logging, photoionization detector (PID) headspace screening, and collection for chemical testing.

The Parsons ES field geologist observed drilling and monitoring point installation activities and maintained a detailed descriptive log of recovered subsurface materials. Final geologic borehole logs are presented in Appendix A. These logs contain:

- Sampled interval (top and bottom depth);
- Presence or absence of contamination based on odor, staining, and/or PID readings;
- Soil description, including color, major textural constituents, minor constituents, relative moisture content, plasticity of fines, cohesiveness, grain size, structure or stratification, and any other significant observations; and
- Lithologic contacts, with the depth to contacts and/or significant textural changes recorded to the nearest 0.1 foot.

Bags containing soil samples collected for the headspace screening procedure were quickly sealed and stored for 15 minutes or longer at the ambient temperature. Semiquantitative measurements were made by puncturing the bag seal with the PID probe and reading the concentration of the headspace gases. The PID relates the

concentration of total volatile organic compounds (VOCs) in the sample to an isobutylene calibration standard. The PID also was used to monitor for VOCs in the worker breathing zone.

Soil samples were collected from boreholes MPA, MPC, MPD, and MPF. Where no elevated PID headspace readings were encountered, samples were collected from immediately above the water table. Where PID readings were elevated, one of the samples submitted for laboratory analysis was from the interval giving the highest reading. Analytical sample containers and appropriate container lids were provided by Evergreen Analytical, Inc. of Wheat Ridge, Colorado. Personnel from Parsons ES performed the soil sampling.

The sample containers were filled completely to minimize headspace. The containers were sealed with Teflon[®] tape, and lids were placed over the tape and tightly closed. A sample label was firmly attached to the container side, and the following information was legibly and indelibly written on the label:

- Sample identification;
- Requested analyses;
- Sample depth;
- · Sampling date; and
- Sample collector's initials.

After the samples were sealed and labeled, they were placed in a cooler with ice and held for transport to the laboratory. Soil samples were analyzed for the parameters listed in Table 2.2.

TABLE 2.2 ANALYTICAL PROTOCOLS FOR GROUNDWATER AND SOIL SAMPLES

SITE ST-24 RNA TS COLUMBUS AFB, MISSISSIPPI

MATRIX Analyte	МЕТНОD	FIELD (F) OR ANALYTICAL LABORATORY (L)
WATER		
Total Iron	Colorimetric, Hach Method 8008 (or similar)	F
Ferrous Iron (Fe+2)	Colorimetric, Hach Method 8146 (or similar)	F
Ferric Iron (Fe+3)	Difference between total and ferrous iron	F
Manganese	Colorimetric, Hach Method 8034 (or similar)	F
Sulfide	Colorimetric, Hach Method 8131 (or similar)	F
Sulfate	Colorimetric, Hach Method 8051 (or similar)	F
Nitrate	Titrimetric, Hach Method 8039 (or similar)	F
Nitrite	Titrimetric, Hach Method 8507 (or similar)	F
Redox Potential	A2580B, direct-reading meter	F
Oxygen	Direct-reading meter	F
pН	E150.1/SW9040, direct-reading meter	F
Conductivity	E120.1/SW9050, direct-reading meter	F
Temperature	E170.1	F
Alkalinity (Carbonate [CO3-2] and Bicarbonate [HCO3-1])	Titrimetric, Hach Method 8221 (or similar)	F
Carbon Dioxide	CHEMetrics Method 4500	F
Nitrate	E300 or SW9056	L
Nitrite	E300 or SW9056	L
Chloride	E300 or SW9056	L
Sulfate	E300 or SW9056	L
Alkalinity	E150.1	L
Methane	RSKSOP 175 ^{a/} or EAL-SOP-GC404	L
Total Organic Carbon	SW9060	L
Aromatic Hydrocarbons	SW8020A	L
(Including Trimethylbenzene		
and Tetramethylbenzene)		
Total Volatile Hydrocarbons	SW8015 Modified	L
Volatile Organic Compounds	SW8240B	L
SOIL		
Total Organic Carbon	SW9060	L
Moisture	ASTM D-2216	L
Aromatic Hydrocarbons	SW8020	L
Total Hydrocarbons	SW8015	L
Volatile Organic Compounds	SW8240B	L

^{a/}RSKSOP = National Risk Management Laboratory standard operating procedure.

2.1.2 Temporary Monitoring Point Installation

Temporary groundwater monitoring points were installed in 18 boreholes at 14 locations under this program (Figure 2.1). Detailed monitoring point installation procedures are described in the following paragraphs.

2.1.2.1 Monitoring Point Materials Decontamination

Monitoring point completion materials were inspected by the field geologist and determined to be clean and acceptable prior to use. All monitoring point completion materials were factory sealed in plastic wrap. Pre-packaged casing, sand, and bentonite were used in well construction, and were inspected for possible external contamination before use. Materials that could not be cleaned to the satisfaction of the field geologist were not used.

2.1.2.2 Monitoring Point Casing and Screen

Upon completion of Geoprobe® soil sampling to the proper borehole termination depth, a temporary monitoring point was installed. The temporary monitoring points were constructed using Teflon®-lined, high-density, polyethylene (HDPE) tubing threaded through the center of the drive rods. The tube was attached to a 0.5-footlong, 0.375-inch-diameter stainless steel, double-woven wire screen with 0.145-millimeter (0.037-inch) slot size. The screen was threaded into a dedicated stainless steel drive point/implant anchor that remained in place after the drive rods were removed. Purging and sampling followed directly.

For shallow monitoring points, the 6-inch screen was placed within the water table. Because of the very short screen length, it was not realistic to attempt to screen across the water table so that mobile light nonaqueous-phase liquid (LNAPL) could be detected (if present). Deep monitoring points were screened just above the base of the semi-confining clay layer. Screen positions were selected by the field hydrogeologist

after consideration was given to the geology and hydraulic characteristics of the stratum in which the monitoring points were screened.

Monitoring point construction details were noted on a monitoring point installation record and are summarized in Table 2.1. This information became part of the permanent field record for the site. Monitoring point installation records for ST-24 are presented in Appendix A.

2.1.2.3 Sand Filter Pack and Annular Sealant

Placement of a filter pack around the monitoring point casing screens was not possible (or necessary) because the sand borehole walls collapsed. Therefore, the temporary monitoring points were naturally sand-packed with the formation materials. Due to the sandy nature of the formation materials, well development and purging activities were accomplished without difficulty. A filter pack seal of sodium bentonite chips or grout was placed in the portion of the hole that remained open following collapse of the sandy borehole walls. This was typically the top 2 to 3 feet of the borehole.

2.1.2.4 Protective Cover

For all temporary monitoring points, protective 8-inch-diameter, flush-mount casings were set into a 2-foot-square concrete pad to a depth of 0.5 to 1.0 foot below ground surface (bgs). The casings were cemented in place with the bottom anchored in a 6-inch thick gravel pad in order to facilitate drainage of precipitation penetrating the protective casing. The tops of the covers were placed approximately at ground surface. Monitoring point identifications were permanently inscribed on the point casings and protective covers.

2.1.3 Well Development

Prior to sampling, the temporary monitoring points were developed. Typically, development removes sediment from inside the well casing and flushes fines, cuttings, and drilling fluids from the sand pack and the portion of the formation adjacent to the well screen. Use of the Geoprobe® system to place monitoring points eliminates cuttings and drilling fluids. Therefore, development of monitoring points is primarily intended to minimize the amount of fine sediment that might accumulate in the casing.

Monitoring point development was accomplished using a peristaltic pump with dedicated silicon tubing. The silicon tubing was attached to the Teflon®-lined tubing comprising the monitoring point casing, and directed through the peristaltic pump head. Development was continued until a minimum of 10 casing volumes of water were removed from the point and the groundwater pH, temperature, conductivity, and dissolved oxygen concentrations had stabilized. All development water was placed in 55-gallon drums. Drums were visually inspected prior to disposal. Because none of the development water exhibited any signs of contamination, Base Civil Engineering was so notified, and the water was released to the sanitary sewer.

2.2 GROUNDWATER SAMPLING

This section describes the procedures used for collecting groundwater samples. In order to maintain a high degree of quality control (QC) during this sampling event, the procedures described in the site work plan (Parsons ES, 1996) and summarized in this section were followed.

Groundwater sampling from 14 newly installed temporary monitoring points and the 9 existing monitoring wells (Figure 2.1) occurred between November 8 and 18, 1996. Monitoring well W76 was not sampled because an unknown object was blocking the inner casing. In addition, four deep monitoring points were not sampled in November 1996 because of poor recovery. Groundwater sampling forms were used to document

the specific details of the sampling event for each location. Groundwater samples were analyzed for the parameters listed in Table 2.2. Groundwater samples were analyzed by Parsons ES personnel in the field for alkalinity, ferrous iron, free carbon dioxide, pH, reduction/oxidation (redox) potential, soluble manganese, sulfide, sulfate, nitrite, nitrate, chloride, and temperature. Laboratory analyses for methane, nitrate and nitrite, sulfate, purgeable aromatic hydrocarbons, and total fuel carbon were performed by Evergreen Analytical, Inc.

2.2.1 Preparation for Sampling

All equipment used for sampling was assembled and properly cleaned and calibrated (if required) prior to arriving in the field. In addition, all record-keeping materials were gathered prior to leaving the office. Special care was taken to prevent contamination of the groundwater and extracted samples through cross contamination from improperly cleaned equipment; therefore, water level indicators and sampling equipment were thoroughly cleaned before and after field use and between uses at different sampling locations. In addition, a clean pair of new, disposable gloves was worn each time a different well/point was sampled.

All portions of sampling and test equipment that contacted the sample were thoroughly cleaned before use. This equipment included the water level probe and cable, equipment for measuring onsite groundwater chemical parameters, and other equipment that contacted the samples. All peristaltic pump tubing was dedicated to each sampling location. The following cleaning protocol was used:

- Clean with potable water and phosphate-free laboratory detergent;
- · Rinse with potable water;
- Rinse with isopropyl alcohol;
- · Rinse with distilled or deionized water; and

Air dry prior to use.

Any deviations from these procedures were documented in the field scientist's field notebook and on the groundwater sampling form. Decontamination fluids were contained and managed as described in Section 2.1.1.2.

As required, field analytical equipment was calibrated according to the manufacturers' specifications prior to field use. This requirement applied specifically to onsite chemical measurements of dissolved oxygen (DO), temperature, conductivity, and pH.

Prior to removing any water from the existing monitoring wells, the static water level was measured. An electrical water level probe was used to measure the depth to groundwater below the well datum to the nearest 0.01 foot. After measurement of the static water level, the water level probe was lowered to the bottom of the well for measurement of total well depth (recorded to the nearest 0.01 foot). Mobile LNAPL (i.e., free product) was not encountered at ST-24. Based on these measurements, the volume of water to be purged from the monitoring wells was calculated. For the temporary monitoring points, the volume of water to be purged was estimated from the total depth of the monitoring point.

2.2.2 Well/Point Purging and Sample Collection

A peristaltic pump was used for well evacuation. For monitoring wells, both dedicated HDPE and silicon tubing were used. For monitoring points, dedicated silicon tubing was attached directly to the Teflon®-lined HDPE tubing used for the point casing. Purging consisted of removing at least three times the calculated casing volume prior to sample collection. Once three casing volumes were removed from the well, purging continued until the DO, temperature, and conductivity readings had

stabilized. Purge water was placed in 55-gallon drums and disposed of in the same manner as development water and decontamination fluids.

The same peristaltic pump and dedicated tubing arrangement was used to extract groundwater samples from each well or Geoprobe® point. The groundwater sample was transferred directly into the appropriate sample container. The water was carefully poured down the inner walls of the sample bottle to minimize aeration of the sample. Sample bottles for BTEX and total fuel carbon analysis were filled so that there was no headspace or air bubbles within the container. Table 2.2 lists the analyses performed on collected groundwater samples.

2.2.3 Onsite Chemical Parameter Measurement

Measurement of DO, pH, specific conductance, redox potential, and temperature was performed at the sampling location at the time of sample collection. All other field parameters were measured onsite by Parsons ES personnel at their temporary laboratory immediately following sample collection.

DO measurements were taken using a YSI-55® DO meter in a HDPE beaker at the outlet of the peristaltic pump. DO concentrations were recorded after the readings stabilized, and in all cases represent the lowest DO concentration observed.

Because the specific conductance, pH, redox potential, and temperature of groundwater can change significantly within a short time following sample acquisition, parameters were measured in the same beaker used for DO measurements. Conductivity and temperature were measured using an Extech® meter. Redox potential and pH were measured using an Orion® 250A meter.

An onsite laboratory staffed by Parsons ES personnel was used to analyze for several indicator parameters in groundwater samples collected from pre-existing monitoring wells and newly installed monitoring points (Table 2.1). A Hach® DR/700 colorimeter

was used to measure ferrous iron (Fe⁺²), total iron (Fe), manganese (Mn⁺²), and sulfide (S²). Titrations using Hach® reagents were conducted to measure alkalinity [as milligrams per liter (mg/L) calcium carbonate (CaCO₃)] and chloride (CI); and CHEMtric® color tests were used to measure ammonia (NH₃) and carbon dioxide (CO₂). These analyses were completed for each groundwater sample after all sample containers had been filled. The sample to be analyzed was poured into a clean glass container, capped, and transported to the Parsons ES on-Base laboratory for analysis. Special care was taken to avoid aerating the sample in the sample container, which could influence the concentration of reduced species. The field holding time for each sample did not exceed 0.5 hour. Care was taken to minimize sample temperature changes and exposure to sunlight. Concentrations of these indicator parameters were not measured in soil samples.

2.2.4 Sample Handling

Evergreen Analytical, Inc. provided appropriate pre-preserved sample containers. Samples were delivered to the Parsons ES temporary laboratory within minutes of sample collection. Samples for those analyses not performed at the temporary laboratory were appropriately packaged and shipped by the Parsons ES field personnel to Evergreen Analytical, Inc. in Wheat Ridge, Colorado for analysis. The associated chain-of-custody documentation for the fixed-base laboratory was completed by the Parsons ES field personnel.

The sample containers were filled as described in Sections 2.2.3, and the container lids were tightly closed. The sample label was firmly attached to the container side, and the following information was legibly and indelibly written on the label:

- · Facility name;
- · Sample identification;

- Requested analysis;
- Sample type (groundwater);
- Sampling date;
- Sampling time;
- Preservatives added; and
- Sample collector's initials.

2.3 AQUIFER TESTING

Slug tests were performed by Parsons ES in November 1996 in wells W68, W69, W70, W71, W74, and W77 (Figure 2.1) to provide estimates for the hydraulic conductivity of the shallow saturated zone in the vicinity of ST-24. Slug tests are single-well hydraulic tests used to estimate the hydraulic conductivity of an aquifer in the immediate vicinity of the tested well. Slug testing can be performed using either a rising head or a falling head test. Both rising head and falling head tests were used at this site. Detailed slug testing procedures are presented in the Technical Protocol for Implementing Intrinsic Remediation with Long-Term Monitoring for Natural Attenuation of Fuel Contamination Dissolved in Groundwater (Wiedemeier et al., 1995), hereafter referred to as the technical protocol document.

Data obtained during slug testing were analyzed using the computer program AQTESOLV[®] (Geraghty & Miller, Inc., 1994) and the methods of Bouwer and Rice (1976) and Bouwer (1989) for unconfined conditions. The results of slug testing are presented in Section 3.3 and Appendix A.

2.4 SURVEYING

After completion of field work in November 1996, the locations and elevations of all new monitoring points were surveyed by CH₂M Hill, a company licensed to perform land surveying. The horizontal locations and elevations of the measurement datum (top of well casing or top of outer casing) were measured relative to existing control points referenced to the Mississippi State plane coordinate system. Horizontal locations were surveyed to the nearest 0.5 foot. Measurement datum and ground surface elevations were surveyed to the nearest 0.1 foot and referenced to mean sea level (msl) elevation. Survey data are presented in Table 2.1 and Appendix A.

SECTION 3

PHYSICAL CHARACTERISTICS OF THE STUDY AREA

This section describes the physical characteristics of Site ST-24 as determined from data collected by Parsons ES in November 1996, in conjunction with data documented in previous reports on ST-24 and Columbus AFB (CH2M Hill, 1989 and 1995; Spencer, 1996a and 1996b). Investigative techniques used by Parsons ES to determine the physical characteristics of the site are discussed in Section 2.

3.1 SURFACE FEATURES

3.1.1 Topography

Columbus AFB is located in northeastern Mississippi and lies in the Tombigbee and Tennessee River Hills physiographic district of the Gulf Coastal Plain (CH2M Hill, 1989). This area is characterized by a low, relatively flat terrain. Land surface elevations in the vicinity of Columbus AFB range from 180 to 220 feet above msl. A topographic map of Columbus AFB is presented as Figure 3.1.

3.1.2 Surface Water Hydrology

Columbus AFB is bounded to the west and north by the Tombigbee River and the Buttahatchie River, respectively. Surface water runoff from the Base primarily drains into the Tombigbee River, with exception of the northeastern portion of the Base, which drains into the Buttahatchie River. The northwestern corner of the Base lies within the 100-year floodplain of both rivers and occasionally floods (CH2M Hill, 1995).

,

3.2 REGIONAL GEOLOGY AND HYDROGEOLOGY

The shallow subsurface geology in northeastern Mississippi consists of Cretaceous Gulf Coastal Plain sediments overlain by Quaternary alluvial sediments (CH2M Hill, 1989). The Cretaceous coastal plain sediments unconformably overlie an irregular surface of Paleozoic basement rocks (CH2M Hill, 1989).

Unconsolidated sediments comprise the upper 40 feet of subsurface geology at the Base. These sediments are alluvial and lower terrace deposits composed of sand and gravel overlying clay and sandy clay. Upper units of the Cretaceous Coastal Plain sediments consist of sand, silt, gravel, clay, and calcareous marine strata. Lower units of the Cretaceous Series comprise a southward-thickening wedge of sand, clay, shale, gravel, and calcareous strata of marine origin (CH2M Hill, 1989). The upper units of the Coastal Plain sediments that crop out in the vicinity of Columbus AFB lie on the eastern flank of the Mississippian Embayment, a southward-plunging structural syncline. The embayment is essentially a large trough that subsided as Cretaceous sediments were deposited in a shallow inland sea. Stratigraphic units in the vicinity of the Base slope toward the axis of the embayment syncline, though the southwest dip of strata is less than 20 feet per mile (CH2M Hill, 1989). This structural control has resulted in north-south trending outcrop belts in areas surrounding the Base. Paleozoic basement rocks crop out only in the northeastern corner of the state as Devonian and Mississippian sedimentary units.

Sandy Cretaceous sediments are the most important source of groundwater in Lowndes County. Recharge to these aquifers occurs mainly by downward infiltration of rainwater in outcrop areas (CH2M Hill, 1989). The regional hydrogeology within Lowndes County consists of two major hydrogeologic units: a surficial, unconfined alluvial aquifer and the deeper, confined to semi-confined Eutaw Aquifer. The surficial aquifer is part of the Upper Eutaw Formation, and includes the Tombigbee

sand member when present. The Eutaw Formation is generally identified by the presence of glauconitic sediments (Spencer, 1996a). The surficial aquifer averages less than 40 feet in thickness and consists of alluvial sand, silty clay, and gravel deposits. Previous studies show the regional hydraulic conductivity of the surficial aquifer to vary between 3.8 and 570 feet per day (ft/day) (CH2M Hill, 1989).

The semi-confining layer that separates the upper, surficial aquifer and the deeper, confined to semi-confined Eutaw Aquifer is estimated to be approximately 5 to 90 feet thick across the Base (CH2M Hill, 1995). This layer primarily consists of low-permeability silt and clay interlayered with sand and has hydraulic conductivities ranging from 1.9×10^{-2} ft/day to 1.7×10^{-4} ft/day (CH2M Hill, 1989). Eutaw sediments of the confining layer have been identified as greenish-gray, finely laminated clay in the vicinity of the Base (Spencer, 1996a).

The confined to semi-confined Eutaw Aquifer consists of both Eutaw Formation and Tuscaloosa Group sediments. The confined Eutaw Aquifer is about 150 feet thick in the vicinity of the Base and receives most of its recharge north of the Base at the formation outcrop (CH2M Hill, 1989). The regional groundwater flow direction within the Eutaw Aquifer in the vicinity of the Base is toward the west-southwest, coinciding with the regional dip of the Formation. The Eutaw Aquifer consists of tan to brown sand (called Tuscaloosa sand) with coarse gravel and lenses of clay (CH2M Hill, 1989). Previous studies show the hydraulic conductivity of the Eutaw Aquifer within the Base to vary between 2 and 30 ft/day, and to average 7 ft/day (Spencer, 1996a). Beneath the Eutaw Formation is the Tuscaloosa Group, which consists of coarse sand and gravel deposits. Columbus AFB operates three potable water supply wells completed in the Tuscaloosa Group, at depths of approximately 400 feet bgs (CH2M Hill, 1995).

Shallow groundwater in the vicinity of the Base is typically present within the surficial aquifer at approximately 15 feet bgs. However, it is reported that groundwater elevations in the surficial aquifer may vary seasonally by as much as 10 feet, depending on rainfall patterns (CH2M Hill, 1989). Aquifer recharge occurs by downward infiltration of rainwater through the relatively permeable alluvial deposits. Shallow groundwater within the northern section of the Base generally flows to the northwest toward the Buttahatchie River, while groundwater within the southern half of the Base, generally flows to the west-southwest toward the Tombigbee River (CH2M Hill, 1995; Spencer, 1996b).

3.3 SITE GEOLOGY AND HYDROGEOLOGY

Characterization of the subsurface sediments at Site ST-24 has been the objective of several investigations; the site geology and hydrogeology descriptions presented below were principally derived from a previous site inspection report (CH2M Hill, 1995) and the current investigation. There are currently nine groundwater monitoring wells associated with ST-24. As part of the current investigation, 18 monitoring points were installed at 14 locations using a Geoprobe[®], including monitoring points at locations W77 and W70 (Figure 2.1).

3.3.1 Lithology and Stratigraphic Relationships

Surface soils at the site primarily consist of the upper terrace Prentiss-Rosella-Steens Association, which is composed of sand, silt, and clay loams, and the lower floodplain Cahaba-Prentiss-Guyton Association, which is composed of silty and clayey loams. The respective soil associations cover approximately equal areas of the Base, with the upper terrace soils more common in the southeastern half of the Base, and the lower floodplain soils more common in the northwestern section. Two to 10 feet of soil overlies approximately 40 feet of unconsolidated sediments composed of alluvial sand

and gravel. In turn, the unconsolidated sediments overly coastal plain clay and sandy clay deposits.

To illustrate these stratigraphic relationships, hydrogeologic sections have been developed from subsurface data derived from logs of previously installed monitoring wells and from the November 1996 Geoprobe® investigation. Figure 3.2 shows the locations of these sections. Because site groundwater flows in a southwesterly direction, both cross sections were developed to trace this flow path. Figure 3.3 presents hydrogeologic section A-A', and Figure 3.4 presents hydrogeologic section B-B'. In general, hydrogeologic sections A-A' and B-B' depict 2 to 10 feet of silty and clayey soils covering 3 to 10 feet of sand to sandy silt, which in turn, overly sandy to silty gravel. A dark gray clay was encountered at a depth of 24 feet bgs at MPJ, in the southwest portion of the state.

3.3.2 Groundwater Hydraulics

The water table at the site is located in the sediments of the surficial unconfined aquifer. Depth to groundwater is approximately 11 to 16 feet bgs across the site. A summary of groundwater measurements from November 1996 is presented in Table 3.1. Construction details for temporary monitoring points are presented in Table 2.1 and Appendix A.

3.3.2.1 Flow Direction and Gradient

Figure 3.5 shows groundwater elevations for ST-24 in November 1996. Due to anomalous water level measurements, MPF and W71 were not used for contouring. For nested monitoring point pairs, the shallow monitoring point groundwater elevation was used for contouring. Groundwater flows to the southwest with a nonuniform gradient ranging from 0.005 to 0.017 foot per foot (ft/ft), and averages 0.01 ft/ft across the site. These gradients are consistent with values observed in February 1995,

TABLE 3.1 SUMMARY OF GROUNDWATER ELEVATION DATA NOVEMBER 1996

SITE ST-24 RNA TS COLUMBUS AFB, MISSISSIPPI

	Elevation of Reference Point	Depth to	Groundwater
Well/Point	for Measurements	Groundwater	Elevation
Identification	(feet msl) ^{a/}	(feet btc) ^{b/}	(feet msl)
W69	208.9	14.5	194.4
W70 (s)	208.3	14.5	193.8
W70 (d)	209.5	16.5	193.0
W71	207.8	14.0	193.8
W72	206.8	13.3	193.5
W73	207.3	13.4	193.9
W74	206.3	13.2	193.1
W77 (s)	207.9	14.1	193.8
W77 (d)	209.0	17.8	191.2
MPA	209.0	14.9	194.1
MPB (s)	209.0	16.1	192.9
MPB (d)	209.0	14.2	194.8
MPM (MPC)	208.8	15.5	193.3
MPD (s)	208.4	15.4	193.0
MPD (d)	208.4	15.0	193.4
MPE	208.2	14.5	193.7
MPF	208.4	11.4	197.0
MPG	209.1	15.9	193.2
MPH (s)	208.3	15.5	192.8
MPH (d)	208.5	15.6	192.9
MPI	206.9	13.4	193.5
MPJ	206.2	13.2	193.0
MPK (s)	207.7	12.6	195.1
MPK (d)	207.6	12.5	195.1
MPL	206.5	13.4	193.1

a/ Feet msl = feet above mean sea level.

b/ Feet btc = feet below top of casing.

with a general southwest flow direction. However, local variations in groundwater direction are inconsistent between the two sampling events. In November 1996, a localized groundwater low was located near monitoring points MPG and MPB(s). The observed heads from November 1996 also were approximately 6 feet lower than the previous two sampling events in February and August. This variation may be due to seasonal fluctuations in recharge.

Four groundwater monitoring point pairs installed for this investigation were used to evaluate vertical hydraulic gradients at Site ST-24. Groundwater elevation data collected in November 1996 indicate upward vertical gradients of 0.147 ft/ft, 0.052 ft/ft, and 0.020 ft/ft for monitoring point pairs MPB(s)/MPB(d), MPD(s)/MPD(d), and MPH(s)/MPH(d), respectively. These upward gradients may be a result of semi-confining aquifer conditions, or a result of water level measurement error.

3.3.2.2 Hydraulic Conductivity

In November 1996, Parsons ES conducted falling and rising head slug tests at wells W68, W69, W70, W71, W74, and W77. Hydraulic conductivity was calculated using the method of Bower and Rice (1976), as described in Section 2. The results of these slug tests are summarized in Table 3.2. Hydraulic conductivities ranged from 35 ft/day to 81 ft/day, with an average hydraulic conductivity of 58 ft/day. The slug-test analyses are presented in Appendix A.

TABLE 3.2 NOVEMBER 1996 SLUG TEST RESULTS SITE ST-24 RNA TS COLUMBUS AFB. MISSISSIPPI

	HYDRAULIC CONDUCTIVITY	HYDRAULIC CONDUCTIVITY
WELL	(ft/min)	(ft/day)
W68	0.024	35
W69	0.051	73
W70	0.030	43
W71	0.055	79
W74	0.056	81
W.77	0.024	35

3.3.2.3 Effective Porosity

Because of the difficulty involved in accurately determining effective porosity, published literature values for soil types comprising the shallow saturated zone were referenced (Walton, 1988; Domenico and Schwartz, 1990). Estimates of effective porosity for gravelly sand range from 0.20 to 0.35. An average effective porosity of 0.30 was assumed for the surficial aquifer at Site ST-24.

3.3.2.4 Advective Groundwater Velocity

The advective velocity of groundwater in the direction parallel to groundwater flow is given by:

$$\overline{v} = \frac{K}{n_{\star}} \frac{dH}{dL}$$

Where:

 \bar{v} = Average advective groundwater velocity [L/T]

K = Hydraulic conductivity [L/T] (58 ft/day)

dH/dL = Gradient [L/L] (0.01 ft/ft)

 n_e = Effective porosity (0.30).

Using this relationship in conjunction with site-specific data, the average advective groundwater velocity at the site in November 1996 was 1.9 ft/day, or approximately 700 feet per year (ft/yr).

3.3.2.5 Preferential Flow Paths

No preferential contaminant migration pathways were identified during the field work phase of this project. There are a storm drainage system, electrical distribution system, water supply system, and some Base housing west of the site. It is unclear if the groundwater elevation lows at MPG and MPB(s) are a result of man-made features, but overall, man-made features are not anticipated to influence migration pathways.

3.3.3 Groundwater Use

Groundwater in the shallow aquifer is not used as a local source of potable water within the vicinity of the site, although there may be shallow wells that provide industrial water to the Base (Stewart, 1997). There are five deep on-Base wells that provide potable water to Columbus AFB, none of which are downgradient from the site. Three of these wells, Wells 363, 604, and 865, are screened at depths of 386 ft to 426 ft bgs, 396 ft to 443 ft bgs, and 430 ft to 470 ft bgs, respectively, within the Tuscaloosa Group of the Eutaw Aquifer. These wells are located approximately 4,050 feet, 3,800 feet, and 2,350 feet, respectively, southeast of the site. Columbus AFB plans to connect to the City of Columbus water system in 1997, and subsequently abandon these three wells (Stewart, 1997). Two other wells of unknown depth, Wells 1812 and 2052, also supply drinking water to individual buildings on the Base. These wells are located approximately 5,050 feet northwest and 8,200 feet northeast of the site. The four closest off-Base private wells, Wells R-83, R-84, R-85, and R-15, are located 3,300 feet east, 5,100 feet southeast, 5,350 feet southeast, and 6,450 feet south of the site, respectively. These wells are screened in the Eutaw Aquifer (CH2M Hill, 1989).

3.4 CLIMATE

The climate in northeastern Mississippi is typified by short, cool winters and hot, humid summers. Precipitation averages 56 inches per year, and is evenly distributed throughout the year.

SECTION 4

NATURE AND EXTENT OF CONTAMINATION GROUNDWATER AND SOIL AND GEOCHEMISTRY

4.1 SOURCE OF CONTAMINATION

The periodic releases of gasoline and oil from the four former USTs and associated piping have been identified as the source of contamination at Site ST-24. However, neither the duration nor the volume of fuel leakage into the soil is known. Currently at Site ST-24, no visibly contaminated surface soils or stressed vegetation is present.

4.2 SOIL CHEMISTRY

During the November 1996 investigation, four soil samples were collected from four locations at Site ST-24. These soil sampling locations were identified as MPA, MPC, MPD, and MPF (Figure 2.1). Three of the samples (MPA, MPC, MPD) were analyzed for BTEX, trimethylbenzenes (TMBs), total recoverable petroleum hydrocarbons (TRPH), and VOCs. The fourth sample, MPF, was analyzed for TRPH, chlorinated VOCs, and total organic carbon (TOC) only. Samples taken from locations MPA, MPC, and MPD were collected from soils just above the groundwater table. The MPF soil sample was taken from below the groundwater table surface. Site soils were previously characterized in November 1994 (CH2M Hill, 1995), when soil samples were collected from 11 locations at depths of 4 and 9 feet bgs. The 1994 samples were analyzed for BTEX, total petroleum hydrocarbons (TPH), lead, and trichloroethene (TCE). Analytical results from the 1994 soil investigation suggest that low levels of fuel hydrocarbon, lead, and chlorinated solvent contamination exists throughout the shallow soils. Specific results of the CH₂M Hill soil investigation are

provided in Appendix B. The observed low concentrations of soil contaminants suggest that residual soil contamination is no longer a significant source for dissolved groundwater contamination at ST-24.

4.2.1 Soil BTEX

In November 1996, detectable concentrations of BTEX, TMB, and 1,2,3,4tetramethylbenzene (TEMB) compounds were present in the soil samples collected from MPA and MPC. Elevated soil concentrations of TMB and TEMB compounds indicate that selective mass reduction of BTEX compounds has occurred in site soils. At MPA, the only BTEX compound detected above method detection limits was total xylenes. Of all the BTEX compounds, xylenes sorb the most strongly to soils; in addition, xylenes are less soluble in water than benzene, toluene, and ethylbenzene. combined effects of high sorptivity, low solubility, and higher initial mass fraction, would result in a longer residence time for xylenes in the solid matrix than the other BTEX compounds. This explains the lone xylenes observation in the soil sample taken Elevated TRPH results from the MPA sample suggest that fuel from MPA. hydrocarbons other than the BTEX compounds are present in site capillary fringe soils near MPA. The majority of compounds included in the TRPH grouping also are more sorptive and less soluble than benzene. Soil analytical results from the November 1996 sampling event are presented in Table 4.1.

4.2.2 Total Organic Carbon

TOC concentrations are used to estimate the amount of organic matter sorbed to soil particles or trapped in the interstitial passages of a soil matrix. The TOC concentration in the saturated zone is an important parameter used to estimate the amount of contaminant that could potentially be sorbed to the aquifer matrix. Sorption results in retardation of the contaminant plume relative to the average advective groundwater velocity. In addition, TOC can be used as a gross indicator of organic compounds that are available as a source of carbon and electrons (i.e., substrate) for microbial activity.

SOIL ANALYTICAL DATA SITE ST-24 RNA TS COLUMBUS AFB, MISSISSIPPI

						Total	Total	1,3,5-	1,2,4-	1,2,3-	1,2,3,4-		
Sample	Date	Depth	Benzene	Toluene	Ethylbenzene	Xylenes	BTEX	TMB	TMB	TMB	TetraMB	CAHs	TRPH
ID	Sampled	(feet bgs)	(µg/kg)		(µg/kg)	(µg/kg)	(µg/kg)	(µg/kg)	(μg/kg)	(µg/kg)	(µg/kg)	(µg/kg)	(mg/kg)
MPA	11/11/96	9-11	ND^{g}	QN		30	30	390	840 E b'	310	120	ND	7.9
MPC	11/8/96	10-12	N N	QN		Q.	QN	0.7	ND	2.5	20	N	NΩ
MPD	11/7/96	10-12	ND	ND	QN	ND	QN	N	ND	QN	QN	ND	ND
MPF	11/7/96	16-18	$NA^{c'}$	NA	NA	NA	NA	NA	NA	NA	NA	ND	ND
a/ NID -	VID - Applyte not detected	datactad											

 4 ND = Analyte not detected.

b' E = Extrapolated value.

 ω' NA = Not analyzed.

TOC content was analyzed for in the sample collected from an upgradient location (MPF (9-12 feet bgs)). TOC was not detected above the laboratory detection limit of 0.6 percent. However, this detection limit is high, suggesting that contaminant retardation could be significant in site soils.

4.3 GROUNDWATER CHEMISTRY

Three lines of evidence can be used to document the occurrence of natural attenuation: 1) geochemical evidence; 2) documented loss of contaminant mass at the field scale; and 3) microcosm studies. The first line of evidence (geochemical evidence) is the one used in this TS to support the occurrence of natural attenuation at Site ST-24. Because this line of evidence strongly suggests that natural attenuation is occurring at this site, and contaminant loss can be documented through long-term groundwater monitoring, a microcosm study was not deemed necessary.

4.3.1 Dissolved Hydrocarbon Contamination

The areal distribution of total dissolved BTEX in groundwater for November 1996 is presented on Figure 4.1. At monitoring well/point clusters, isopleths are drawn on the basis of the highest observed concentration, which at all locations was from the shallower groundwater monitoring well/point (Table 4.2). However, due to poor recovery from some of the deeper monitoring points not all of the 18 newly installed point were sampled in November 1996. The areal extent of the dissolved BTEX plume defined by the 10-microgram-per-liter (µg/L) contour is approximately 48,750 square feet (1.1 acres). Because of advective/dispersive transport mechanisms associated with groundwater flow (Figure 3.5), the dissolved BTEX plume is migrating from the source area along a south to southwest flow path toward Buildings 8696 and 8697.

The vertical distribution of dissolved BTEX along the main axis of the plume, approximately parallel to the direction of groundwater flow, is presently unknown. Within the source area, a total BTEX concentration of 601 mg/L was detected in a

TABLE 4.2
GROUNDWATER QUALITY DATA SUMMARY
FOR FUEL HYDROCARBONS
SITE ST-24 RNA TS
COLUMBUS AFB, MISSISSIPPI

				Ethyl-	Total	Total	1,3,5-	1,2,4-	1,2,3-	1,2,3,4-	TVH-
	Date	Benzene	Toluene	benzene	Xylenes	BTEX	TMB	TMB	TMB	TetraMB	Gasoline
Sample ID	Sampled	(μg/L)	(μg/L)	(μg/L)	(µg/L)	(μg/L)	(μg/L)	(μg/L)	(μg/L)	(µg/L)	(mg/L)
W68	96/8/11	ND _a ,	ON	ON	ND	ND	ND	ND	ON	ND	ND
69M	11/10/96	QN	ND	N Q	ND	QN	QN	ND	QN	ND	ND
W70(S)	11/10/96	190	2700	480	2500	5870	950	2700	029	280	26
W75 ^{b/}	11/10/96	220	2700	470	2400	5790	096	2700	029	290	26
W70(D)	11/11/96	230	=	120	240	601	54	270	09	31	2.8
W7.1	11/10/96	140	009	420	086	2140	310	1200	350	150	10
W72	11/8/96	18	QN	10	ND	28	QN	N	ON	15	0.2
W73	11/8/96	6.9	13	12	41	72.9	11.0	41.0	13.0	3.7	0.3
W74	11/8/96	QN	ND	QN	ΩN	QN	QN	QN	QN	ND	ND
W77	11/10/96	23	ND	QN ON	ND	23	QN	ND	QN	11	0.1
MPA	11/11/96	43	470	45	140	869	23	70	21	9.6	2.0
MPB(S)	11/12/96	920	2000	1000	4800	11720	280	1900	540	180	30
MPD(S)	11/13/96	46	5.7	200	47	298.7	19	54	18	96	3.1
MPE	11/11/96	73	2.0	66	1.2	175.2	1.7	2.2	1.3	89	1.5
MPF	11/12/96	ND	0.7	9.0	ND	1.3	ND	QN	N Q	15	0.1
MPG	11/11/96	ND	ND	QN	ND	QN	QN	QN	ND	ND	ND
MPH(S)	11/13/96	18	9.0	15	8.0	34.4	ND	QN	N Q	80	1.0
MPI	11/12/96	ND	ΝΩ	ND	ΩN	ND	ND	QN	ND	QN	ND
MPJ	11/18/96	ND	ND	ND	ΩN	QN	ON	ND	ND	ND	ND
MPK(S)	11/10/96	ND	ND	ND	ND	QN	ND	QN	QN	ND	ND
MPK(D)	11/11/96	ND	ND	QN	QN	N	QN	ND	QN	ND	ND
MPL	11/18/96	15	1.5	2.5	3.2	22.2	QN	N	7.7	26	0.4
MPM	11/18/96	350	11000	1500	8100	20950	1400	4200	1200	ND	55
, /B	•	•									

a ND = Analyte not detected.

b' W75 is a duplicate sample of W70(S).

groundwater sample from W70(d), which is screened at approximately 27 to 27.5 feet bgs. W70(d) is the only well screened below 20 feet that was sampled for BTEX compounds; several other deep monitoring points were installed in November 1996; however, those monitoring points exhibited very low recovery. A clayey layer of undetermined thickness was encountered just below W70(d). A comparison of total BTEX concentrations in samples collected from W70(s) and W70(d) show that dissolved BTEX concentrations in the deep well decreased to approximately 10 percent of the total BTEX concentration observed in the shallow well. However, benzene concentrations in both the shallow and deep well are comparable, suggesting that at the plume core, degradation processes are not as effective at removing benzene from the system as the other BTEX compounds.

Total BTEX concentrations in groundwater ranged from not detected at wells W68, W69, W74, MPG, MPI, MPJ, and MPK (s and d) to 20,950 µg/L at MPC/MPM. Well MPC/MPM is adjacent to Independence Avenue, just west of the former service station (Figure 4.1). This area is reported by Base personnel to have formerly housed the three gasoline USTs and fuel dispensers. At MPF, just downgradient from where the waste oil UST was located, a low total dissolved BTEX concentration of 1.3 µg/L was detected. Total volatile hydrocarbons (TVH) (normalized to a gasoline standard) were analyzed for in all November 1996 groundwater samples. The results of the TVH analyses are shown on Figure 4.2 and are listed in Table 4.2. Concentrations of BTEX were detected in all groundwater samples where TVH was detected. Dissolved TVH concentrations ranged from 0.1 to 55 mg/L. As with the vertical delineation described above, benzene does not appear to be degrading as quickly as the other BTEX compounds. Benzene is approximately 1.5 to 8 percent of total dissolved BTEX at monitoring points MPM and MPB (the source area). However, further downgradient at monitoring points MPL and MPH, benzene is approximately 52 to 68 percent of total dissolved BTEX contamination. This difference in the mass fraction of benzene

suggests that dissolved toluene, ethylbenzene, and xylenes are being preferentially attenuated over benzene at the site.

Although the areas of dissolved contamination correlate between the 1994 and the November 1996 sampling events, a more thorough comparison of historical dissolved BTEX concentrations to data collected in November 1996 is not performed in this TS for several important reasons. First, observed dissolved BTEX concentrations in groundwater monitoring wells in November 1996 are generally higher than reported historical concentrations. The increase in dissolved BTEX concentrations is not believed to indicate an actual increase in dissolved contaminant mass, but rather to reflect the result of differing sampling techniques from sampling event to sampling event. Parsons ES minimized sample disturbance by using a micropurge technique, as described in Section 2. Purging and sampling at a low flow rate with a peristaltic pump minimizes evaporation (boiling) of the water in the suction line due to decreased pressures, minimizes excess mixing and aeration in the sample container, and ensures that the well does not become dry (entrain air in the suction line). In addition, although monitoring points installed in November 1996 were placed approximately in the location of Geoprobe® grab samples taken in 1994 (CH2M Hill, 1995) actual screened intervals do not correspond well enough with the 1994 grab sample intervals to support direct comparison of observed dissolved BTEX concentrations from the two sampling events.

4.3.2 Chlorinated Solvent Contamination

Although low concentrations of chlorinated solvents have previously been documented in soil and groundwater at the site, groundwater and soil samples collected in November 1996 do not confirm the earlier reported widespread, low levels of chlorinated solvent contamination. All soil and groundwater samples collected at Site ST-24 were analyzed for non-fuel-related VOCs; however no chlorinated solvents or

other VOCs were detected above the corresponding soil and groundwater detection limits.

4.3.3 Inorganic Chemistry and Geochemical Indicators of BTEX Biodegradation

Numerous laboratory and field studies have shown that hydrocarbon-degrading bacteria can participate in the degradation of many of the chemical components of jet fuel and gasoline, including the BTEX compounds (e.g., Jamison et al., 1975; Atlas, 1981, 1984, and 1988; Gibson and Subramanian, 1984; Reinhard et al., 1984; Young, 1984; Bartha, 1986; Wilson et al., 1986, 1987, and 1990; Barker et al., 1987; Baedecker et al., 1988; Lee, 1988; Chiang et al., 1989; Grbic-Galic, 1989 and 1990; Cozzarelli et al., 1990; Leahy and Colewell, 1990; Altenschmidt and Fuchs, 1991; Alvarez and Vogel, 1991; Baedecker and Cozzarelli, 1991; Ball et al., 1991; Bauman, 1991; Borden, 1991; Brown et al., 1991; Edwards et al., 1991 and 1992; Evans et al., 1991a and 1991b; Haag et al., 1991; Hutchins and Wilson, 1991; Hutchins et al., 1991a and 1991b; Beller et al., 1992; Bouwer, 1992; Edwards and Grbic-Galic, 1992; Thierrin et al., 1992; Malone et al., 1993; Davis et al., 1994). Biodegradation of fuel hydrocarbons can occur when an indigenous population of hydrocarbon-degrading microorganisms is present in the aquifer and sufficient concentrations of electron acceptors, nutrients, and electron donors such as fuel hydrocarbons, are available to these organisms.

Microorganisms obtain energy for cell production and maintenance by facilitating thermodynamically advantageous redox reactions involving the transfer of electrons from electron donors to available electron acceptors. This results in the oxidation of the electron donor and the reduction of the electron acceptor. Electron donors at the site are natural organic carbon and fuel hydrocarbon compounds. Fuel hydrocarbons are completely degraded or detoxified if they are utilized as the primary electron donor for microbial metabolism (Bouwer, 1992). Electron acceptors are elements or

compounds that occur in relatively oxidized states, and include oxygen, nitrate, ferric iron, sulfate, manganese, nitrogen gas, and carbon dioxide.

The driving force of BTEX degradation is electron transfer, which is quantified by the Gibbs free energy of the reaction (ΔG°_{r}) (Stumm and Morgan, 1981; Godsey, 1994). The value of ΔG°_{r} represents the quantity of free energy consumed or yielded to the system during the reaction. Table 4.3 lists stoichiometry of the redox equations involving BTEX and the resulting ΔG°_{r} . Although thermodynamically favorable, most of the reactions involved in BTEX oxidation cannot proceed abiotically because of the lack of activation energy. Microorganisms are capable of providing the necessary activation energy; however, they will facilitate only those redox reactions that have a net yield of energy (i.e., $\Delta G^{\circ}_{r} < 0$). Microorganisms preferentially utilize electron acceptors while metabolizing fuel hydrocarbons (Bouwer, 1992). DO is utilized first as the prime electron acceptor. After the DO is consumed, anaerobic microorganisms use electron acceptors in the following order of preference: nitrate, manganese, ferric iron hydroxide, sulfate, nitrogen gas, and finally carbon dioxide.

Depending on the types and concentrations of electron acceptors present (e.g., nitrate, sulfate, carbon dioxide), pH conditions, and redox potential, anaerobic biodegradation can occur by denitrification, ferric iron reduction, sulfate reduction, or methanogenesis. Other, less common anaerobic degradation mechanisms such as manganese reduction, nitrogen fixation, or nitrate reduction may dominate if the physical and chemical conditions in the subsurface favor use of these electron acceptors or processes. Anaerobic destruction of the BTEX compounds is associated with the accumulation of fatty acids, production of methane and ammonium, solubilization of iron and manganese, and reduction of nitrate and sulfate (Cozzarelli *et al.*, 1990; Wilson *et al.*, 1990). Environmental conditions and microbial competition ultimately determine which processes will dominate. Vroblesky and Chapelle (1994) show that

TABLE 4.3 COUPLED OXIDATION REACTIONS FOR BTEX COMPOUNDS SITE ST-24 RNA TS COLUMBUS AFB, MISSISSIPPI

Coupled Benzene Oxidation Reactions	ΔG° _r (kcal/mole Benzene)	ΔG° _r (kJ/mole Benzene)	Stoichiometric Mass Ratio of Electron Acceptor/Byproduct to Compound
$7.5O_2 + C_6H_6 \Rightarrow 6CO_{2,g} + 3H_2O$ Benzene oxidation /aerobic respiration	-765.34	-3202	3.07:1
$6NO_3 + 6H^+ + C_6H_6 \Rightarrow 6CO_{2,g} + 6H_2O + 3N_{2,g}$ Benzene oxidation / denitrification	-775.75	-3245	4.77:1
$3.75 \text{ NO}_3^+ + C_6H_6^+ + 7.5 \text{ H}^+ + 0.75 \text{ H}_2O \Longrightarrow 6 \text{ CO}_2^- + 3.75 \text{ NH}_4^+$ Benzene oxidation / nitrate reduction	-524.1	-2193	2.98:1
$60H^{+} + 30Fe(OH)_{3,a} + C_{6}H_{6} \Rightarrow 6CO_{2} + 30Fe^{2+} + 78H_{2}O$ Benzene oxidation / iron reduction	-560.10	-2343	21.5:1
$30H^{+} + 15\underline{MnO_{2}} + C_{6}H_{6} \Rightarrow 6CO_{2g} + 15\underline{Mn^{2+}} + 18H_{2}O$ Benzene oxidation / manganese reduction	-765.45	-3202	10.56:1
$7.5H^+ + 3.75SO_4^{2-} + C_6H_6 \Rightarrow 6CO_{2,g} + 3.75H_2S^o + 3H_2O$ Benzene oxidation / sulfate reduction	-122.93	-514.3	4.61:1
$5 N_2 + C_6 H_6 + 10 H^+ + 12 H_2 O \Longrightarrow 6 CO_2 + 10 NH_4^+$ Benzene oxidation / nitrogen fixation	-104.8	-437.9	2.31:1
$4.5 H_2O + C_6H_6 \Rightarrow 2.25 CO_{2,g} + 3.75 CH_4$ Benzene oxidation / methanogenesis	-32.40	-135.6	0.77:1

Coupled Toluene Oxidation Reactions	ΔG° _r (kcal/mole Toluene)	ΔG° _r (kJ/mole Toluene)	Stoichiometric Mass Ratio of Electron Acceptor/Byproduct to Compound
$9O_2 + C_6H_5CH_3 \Rightarrow 7CO_{2,g} + 4H_2O$ Toluene oxidation /aerobic respiration	-913.76	-3823	3.13:1
7.2 NO ₃ + 7.2 H ⁺ + $C_6H_5CH_3 \Rightarrow 7CO_{2,g} + 7.6H_2O + 3.6N_{2,g}$ Toluene oxidation / denitrification	-926.31	-3875	4.85:1
$4.5NO_3^- + 9H^+ + 0.5H_2O + C_6H_5CH_3 \Rightarrow 7CO_2 + 4.5NH_4^+$ Toluene oxidation / nitrate reduction	-624.24	-2609	3.03:1
$72H^{+} + 36Fe(OH)_{3,a} + C_{6}H_{5}CH_{3} \Rightarrow 7CO_{2} + 36Fe^{2+} + 94H_{2}O$ Toluene oxidation / iron reduction	-667.21	-2792	21.86:1
$36 H^{+} + 18 \underline{MnO_{2}} + C_{6} H_{5} CH_{3} \Rightarrow 7 CO_{2g} + 18 Mn^{2+} + 22 H_{2} O$ Toluene oxidation / manganese reduction	-913.89	-3824	10.74:1
$9H^+ + 4.5SO_4^{2-} + C_6H_5CH_3 \Rightarrow 7CO_{2,g} + 4.5H_2S^{\circ} + 4H_2O$ Toluene oxidation / sulfate reduction	-142.86	-597.7	4.7:1
$6 N_2 + C_6 H_5 CH_3 + 12 H^+ + 14 H_2 O \Longrightarrow 7 CO_2 + 12 NH_4^+$ Toluene oxidation / nitrogen fixation	-121.0	-505.8	2.35:1
$5H_2O + C_6H_5CH_3 \Rightarrow 2.5CO_{2,g} + 4.5CH_4$ Toluene oxidation / methanogenesis	-34.08	-142.6	0.78:1

TABLE 4.3 (CONTINUED) COUPLED OXIDATION REACTIONS FOR BTEX COMPOUNDS SITE ST-24 RNA TS

COLUMBUS AFB, MISSISSIPPI

Coupled Ethylbenzene Oxidation reactions	ΔG° _r (kcal/mole Ethyl- benzene)	ΔG° _r (kJ/mole Ethyl- benzene)	Stoichiometric Mass Ratio of Electron Acceptor/Byproduct to Compound
$10.5O_2 + C_6H_5C_2H_5 \Rightarrow 8CO_{2,g} + 5H_2O$ Ethylbenzene oxidation /aerobic respiration	-1066.13	-4461	3.17:1
$8.4NO_3 + 8.4H^+ + C_6H_5C_2H_5 \Rightarrow 8CO_{2,g} + 9.2H_2O + 4.2N_{2,g}$ Ethylbenzene oxidation / denitrification	-1080.76	-4522	4.92:1
$5.25NO_3^- + 10.5H^+ + 0.25H_2O + C_6H_5C_2H_5 \Rightarrow 8CO_2 + 5.25NH_4^+$ Ethylbenzene oxidation / nitrate reduction	-746.04	-3118	3.07:1
$84H^{+} + 42Fe(OH)_{3,a} + C_{6}H_{5}C_{2}H_{5} \Rightarrow 8CO_{2} + 42Fe^{2+} + 110H_{2}O$ Ethylbenzene oxidation / iron reduction	-778.48	-3257	22:1
$46 H^{+} + 22 \underline{MnO_{2}} + C_{6} H_{5} C_{2} H_{5} \Rightarrow 8 CO_{2,g} + 22 Mn^{2+} + 28 H_{2} O$ Ethylbenzene oxidation / manganese reduction	-1066.27	-4461	11.39:1
$10.5H^+ + 5.25SO_4^2 + C_6H_5C_2H_5 \Rightarrow 8CO_{2,g} + 5.25H_2S^o + 5H_2O$ Ethylbenzene oxidation / sulfate reduction	-166.75	-697.7	4.75:1
$7 N_2 + C_6 H_5 C_2 H_5 + 14 H^+ + 16 H_2 O \Longrightarrow 8 CO_2 + 14 N H_4^+$ Ethylbenzene oxidation / nitrogen fixation	-138.4	-578.5	2.38:1
$5.5 H_2O + C_6H_5C_2H_5 \Rightarrow 2.75 CO_{2,g} + 5.25 CH_4$ Ethylbenzene oxidation / methanogenesis	-39.83	-166.7	0.79:1

Coupled m-Xylene Oxidation Reactions	ΔG° _r (kcal/mole <i>m</i> -xylene)	ΔG° _r (kJ/mole <i>m</i> -xylene)	Stoichiometric Mass Ratio of Electron Acceptor/Byproduct to Compound
$10.5O_2 + C_6H_4(CH_3)_2 \Rightarrow 8CO_{2,g} + 5H_2O$ m-Xylene oxidation /aerobic respiration	-1063.25	-4448	3.17:1
$8.4NO_3 + 8.4H^+ + C_6H_4(CH_3)_2 \Rightarrow 8CO_{2,g} + 9.2H_2O + 4.2N_{2,g}$ m-Xylene oxidation / denitrification	-1077.81	-4509	4.92:1
$5.25NO_3^- + 10.5H^+ + 0.25H_2O + C_0H_4(CH_3)_2 \Rightarrow 8CO_2 + 5.25NH_4^+$ m-Xylene oxidation / nitrate reduction	-743.52	-3108	3.07:1
$84H^{+} + 42Fe(OH)_{3,a} + C_{6}H_{4}(CH_{3})_{2} \Rightarrow 8CO_{2} + 42Fe^{2+} + 110H_{2}O$ $m-Xylene oxidation / iron reduction$	-775.61	-3245	22:1
$46 H^{+} + 22MnO_{2} + C_{6}H_{4}(CH_{3})_{2} \Rightarrow 8CO_{2} + 22 Mn^{2} + 28 H_{2}O$ m-Xylene oxidation / manganese reduction	-1063.39	-4449	11.39:1
$10.5H^+ + 5.25SO_4^2 + C_6H_4(CH_3)_2 \Rightarrow 8CO_{2,g} + 5.25H_2S^o + 5H_2O$ m-Xylene oxidation / sulfate reduction	-163.87	-685.6	4.75:1
$7 N_2 + C_6 H_4 (CH_3)_2 + 14 H^+ + 16 H_2 O \Longrightarrow 8 CO_2 + 14 NH_4^+$ m-Xylene oxidation / nitrogen fixation	-141.3	-590.6	2.38:1
$5.5 H_2O + C_6H_4(CH_3)_2 \Rightarrow 2.75 CO_{2,g} + 5.25 CH_4$ m-Xylene oxidation / methanogenesis	-36.95	-154.6	0.79:1

the dominant terminal electron accepting process can vary both temporally and spatially in an aquifer with fuel hydrocarbon contamination.

The November 1996 groundwater samples were analyzed for the geochemical parameters listed in Table 2.1. Results for these analyses are presented in Table 4.4. Site groundwater data for DO suggest that natural attenuation of hydrocarbons in the shallow aquifer is occurring by aerobic biodegradation. In addition, data for nitrate/nitrite, ferrous iron, soluble manganese, sulfate, ammonium, and methane suggest that anaerobic degradation via denitrification, iron reduction, manganese reduction, sulfate reduction, nitrogen fixation, and methanogenesis is occurring. Geochemical parameters for site groundwater are discussed in the following sections.

In the following sections, the assumption that BTEX can be treated as a given ratio of the constituent compounds has been made for two important reasons. First, overall biodegradation rates for each of the compounds are very similar to each other. Second, while degradation pathways are relatively well known for fuel hydrocarbons, the preferential degradation of one BTEX compound over another is difficult to predict from site to site, spatially or temporally. For instance, at Site ST-24, while toluene, ethylbenzene, and xylenes (TEX) appear to attenuate more rapidly than benzene within the anaerobic regions of the contaminant plume, it is not possible to draw conclusions regarding the individual TEX compounds. Furthermore, benzene attenuation appears to vary throughout the plume, with higher rates observed toward the aerobic plume fringes. In order to avoid making inaccurate conclusions on which BTEX compounds are degraded and when or where they are degraded in any given groundwater system, the compounds are treated as a ratio. This ratio provides a basis for more reliable conclusions about the spatial and temporal biodegradation of BTEX as one contaminant.

SITE ST-24 RNA TS COLUMBUS AFB, MISSISSIPPI GEOCHEMICAL DATA TABLE 4.4

big Date Temp Conductivity Alkalinity Potential Oxygen Dioxide Chloride Sulfate Nof- Inpl. Inpl. (mg/L)							Redox	Dissolved	Carbon					Ferrous				
UD Sampled (°C) pH (µS/cm) (mg/L)	Sample	Date	Temp	•	Conductivity	Alkalinity	Potential	Oxygen	Dioxide	Chloride	Sulfate	NO ₂ -	NO ₃	Iron	$\mathrm{Mn}^{2^{+}}$	NH,	Methane	TOC
W68 11/896 2.08 4.6 5.0 4.6 0.43 ND ⁴ 2.1 0.01 ND W69 11/10/96 1.6 4.7 7.0 5 338 5.33 5.0 10.2 1.68 ND 0.57 ND ND 0.0 ND ND <th>Œ</th> <th>Sampled</th> <th></th> <th>hd</th> <th>(mS/cm)</th> <th>(mg/L)</th> <th>(mV)</th> <th>(mg/L)</th>	Œ	Sampled		hd	(mS/cm)	(mg/L)	(mV)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
11/10/96 16.9 4.7 70 5 338 5.33 50 10.2 1.68 ND 0.57 ND 0.2 ND 11/10/96 20.0 6.2 160 44 -27 3.11 105 2.3 0.76 ND ND 24.5 0.6 2 11/10/96 20.0 6.0 190 82 -31 0.35 140 6.1 2.92 ND ND 16.4 2.5 2 11/10/96 20.0 6.0 190 82 -31 0.35 140 6.1 2.92 ND ND 16.4 2.5 2 11/10/96 20.0 4.9 60 10 274 1.44 100 2.8 0.59 ND 1.1 0.01 1.8 0.1 1.1 1.1 0.01 1.8 0.1 1.1 0.04 1.8 0.1 1.1 0.04 1.8 0.1 1.1 0.04 1.8 0.1 0.04 0.1 0.1 0.04 0.1 0.1 0.04 0.1 0.04 0.1 0.04 0.1 0.1 0.04 0.1 0.1 0.04 0.1 0.04 0.1 0.04 0.1 0.04 0.1 0.1 0.04 0.1 0.1 0.04 0.1	W68	11/8/96	20.8	4.6	50	<5	263	5.29	70	4.6	0.43	ND^{a}	2.1	0.01	0.01	ND	N	ND^g
	69M	11/10/96	16.9	4.7	70	5	338	5.33	20	10.2	1.68	ND	0.57	QX	0.2	ND	ND	$NA^{b'}$
11/11/96 20.0 6.2 160 44 -27 3.11 105 2.3 0.76 ND ND 16.4 2.5 2 11/11/96 20.0 6.0 190 82 -31 0.35 140 6.1 2.92 ND ND 34.2 1.5 5 11/18/96 17.6 5.8 120 49 122 5.48 70 4 2.60 ND 0.12 0.21 5.4 1 0 11/18/96 2.0.0 4.5 3.0 4.5 2.74 4.48 70 2.8 0.59 ND 1.1 0.01 1.8 0.1 0.11 0.01 1.8 0.1 0.11 0.01 1.8 0.1 0.11 0.01 1.8 0.1 0.11 0.01 1.8 0.1 0.11 0.01 0.1 0.01 0.1 0.01 0.1 0.01 0.1 0.01 0.1 0.01 0.1 0.01 0	W70(S)	11/10/96	21.1	5.8	150	55	-140	0.23	130	7.4	0.97	QN	N	24.5	9.0	7	0.02	NA
11/18/96 20.0 6.0 190 82 -31 0.35 140 6.1 2.92 ND ND 34.2 1.5 5 11/18/96 17.6 5.8 120 49 122 5.48 70 4 2.60 ND 0.12 0.21 5.4 1 0.1 11/18/96 22.0 4.9 60 10 274 1.44 100 2.8 0.59 ND 1.1 0.01 1.8 0.1 0.1 1.8 0.1 0.1 1.8 0.1 0.1 1.8 0.1	W70(D)	11/11/96	20.0	6.2	160	44	-27	3.11	105	2.3	92.0	ND	QN	16.4	2.5	2	0.093	NA
11/8/96 17.6 5.8 120 49 122 5.48 70 4 2.60 ND 0.12 0.21 5.4 1 11/8/96 22.0 4.9 60 10 274 1.44 100 2.8 0.59 ND 1.1 0.01 1.8 0.1 11/8/96 2.10 4.6 30 4.5 274 4.85 70 2 3.78 ND 1.1 0.04 ND 0.1 1.8 0.1 11/11/96 2.11 4.6 90 <1	W71	11/10/96	20.0	0.9	190	82	-31	0.35	140	6.1	2.92	ND	ND	34.2	1.5	5	1.76	NA
11/8/96 22.0 4.9 60 10 274 1.44 100 2.8 0.59 ND 1.1 0.01 1.8 0.1 11/8/96 21.0 4.6 30 4.5 274 4.85 70 2 3.78 ND 1.0 0.04 ND 1.0 ND 1.0 1.0 ND 1.0 0.0 1.0 0.0<	W72	11/8/96		5.8	120	49	122	5.48	70	4	2.60	ND	0.12	0.21	5.4	_	0.039	NA
11/8/96 21.0 4.6 30 4.5 274 4.85 70 2 3.78 ND 1 0.04 ND ND 11/10/96 21.1 4.6 90 <1	W73	11/8/96		4.9	09	10	274	1.44	100	2.8	0.59	ND	1.1	0.01	1.8	0.1	QN	3.8
11/10/96 21.1 4.6 90 <1	W74	11/8/96		4.6	30	4.5	274	4.85	70	7	3.78	ND		0.04	ND	ND	0.031	NO
11/11/96 22.1 5.8 NA 30 -95 0.27 90 11.2 3.30 ND ND 13.25 ND 0.8 11/12/96 21.8 6.4 340 168 -129 0.23 200 3.5 6.54 ND ND 63.75 1.9 > 10 11/13/96 20.2 6.1 184 80 -23 0.31 110 4.2 1.03 ND ND 19.25 4.3 1 11/11/96 20.7 6.3 190 65 -144 0.33 110 4.2 1.03 ND ND 19.25 4.3 1 11/11/96 20.7 6.0 1.4 0.37 120 3.5 0.38 ND 1.0 0.1 0.1 0.2 0.2 1.1 1.0 3.7 1.41 ND ND 1.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1<	W77	11/10/96		4.6	06	~	198	0.82	130	4.2	16.22	ND	0.99	0.03	0.1	ND	0.28	NA
11/12/96 21.8 6.4 340 168 -129 0.23 200 3.5 6.54 ND ND 63.75 1.9 > 10 11/13/96 20.2 6.1 184 80 -23 0.31 110 4.2 1.03 ND ND 19.25 4.3 1 11/11/96 20.7 6.3 190 65 -144 0.33 110 3.8 3.95 ND ND 19.25 4.3 1 11/11/96 20.7 140 4.16 100 3.5 1.78 ND ND 2.8 0.6 3.1 1 8 0.6 1 0.1 1.0 3.5 1.78 ND 1.1 8 0.6 1.0 4.16 100 3.7 1.41 ND 1.0 2.8 0.6 1.0 1.1 ND 1.1 0.1 ND 1.1 0.1 ND 1.1 0.1 ND 1.1 0.1 ND <t< td=""><td>MPA</td><td>11/11/96</td><td></td><td>5.8</td><td>NA</td><td>30</td><td>-95</td><td>0.27</td><td>96</td><td>11.2</td><td>3.30</td><td>ND</td><td>ND</td><td>13.25</td><td>ND</td><td>8.0</td><td>0.12</td><td>NA</td></t<>	MPA	11/11/96		5.8	NA	30	-95	0.27	96	11.2	3.30	ND	ND	13.25	ND	8.0	0.12	NA
11/13/96 20.2 6.1 184 80 -23 0.31 110 4.2 1.03 ND ND 19.25 4.3 1 11/11/96 20.7 6.3 190 65 -144 0.33 110 3.8 3.95 ND ND 29.6 3.1 8 11/12/96 20.7 140 45 -13 0.37 120 3.5 1.78 ND 13.0 2.8 0.6 11/11/96 23.5 4.7 50 2.5 140 4.16 100 3.7 1.41 ND 13.0 2.8 ND 13.0 2.9 2.9 2 11/13/96 1.14 ND 1.5 0.10 0.1 ND 11/13/96 1.5 0.10 ND 1.5 0.0 0.1 ND 1.1 ND 1.5 0.10 0.1 ND 1.1 ND 1.2 0.0 ND 1.1 ND 1.1 ND 1.2 0.0	MPB(S)	11/12/96		6.4	340	168	-129	0.23	200	3.5	6.54	ND	ND	63.75	1.9	> 10	1.26	NA
11/11/96 20.7 6.3 190 65 -144 0.33 110 3.8 3.95 ND ND 29.6 3.1 8 11/12/96 22.0 5.7 140 45 -13 0.37 120 3.5 1.78 ND 13.0 2.8 0.6 11/12/96 23.5 4.7 50 2.5 140 4.16 100 3.7 1.41 ND 13.0 2.8 0.0 1.13 0.21 160 3.7 1.41 ND 1.5 0.10 0.1 ND 1.14 ND 1.5 0.10 0.1 ND 1.14 ND 1.5 0.10 0.1 ND 1.14 ND 1.14 ND 1.14 ND 1.14 ND 1.15 0.10 0.10 ND 1.14 ND 1.14 ND 1.14 0.15 0.10 0.11 ND 1.14 ND 1.14 ND 1.14 0.14 0.14 0.1	MPD(S)	11/13/96		6.1	184	80	-23	0.31	110	4.2	1.03	ND	QN	19.25	4.3	_	5.06	۲ ۲
11/12/96 22.0 5.7 140 45 -13 0.37 120 3.5 1.78 ND ND 13.0 2.8 0.6 11/11/96 23.5 4.7 50 2.5 140 4.16 100 3.5 0.38 ND 2.1 0.12 0.3 ND 11/12/96 21.0 6.1 235 108 -35 0.21 160 3.7 1.41 ND ND 25.5 2.9 2 2 11/12/96 21.7 5.0 60 10 131 5.23 70 4.8 1.03 ND 1.5 0.10 0.1 ND ND 11/18/96 20.5 5.3 56 13 120 2.11 70 3.4 0.85 ND 1.5 0.06 ND ND ND 11/11/96 18.3 5.0 40 5 188 8.52 30 2 0.86 ND ND 1.7 0.12 0.1 ND ND 11/18/96 20.5 5.6 109 42 -234 0.19 160 4 2.54 ND ND 15.55 1.1 1 1 1 1 1 1 1 1	MPE	11/11/96		6.3	190	9	-144	0.33	110	3.8	3.95	NO	ND	29.6	3.1	8	0.043	Ν
S) 11/11/96 23.5 4.7 50 2.5 140 4.16 100 3.5 0.38 ND 2.1 0.12 0.3 ND 11/11/96 21.0 6.1 235 108 -35 0.21 160 3.7 1.41 ND ND 25.5 2.9 2 11/11/96 20.5 5.3 56 13 120 2.11 70 3.4 0.85 ND 1.5 0.06 ND ND 5) 11/11/96 18.3 5.0 40 5 188 8.52 30 20 0.86 ND ND 1.7 0.12 0.1 ND ND 11/11/96 20.5 5.6 109 42 -234 0.19 160 4 2.54 ND ND 15.55 1.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	MPF	11/12/96		5.7	140	45	-13	0.37	120	3.5	1.78	QN	ΩN	13.0	2.8	9.0	0.14	NA
11/13/96 21.0 6.1 235 108 -35 0.21 160 3.7 1.41 ND ND 25.5 2.9 2 11/12/96 21.7 5.0 60 10 131 5.23 70 4.8 1.03 ND 1.5 0.10 0.1 ND 11/12/96 20.5 5.3 56 13 120 2.11 70 2 0.65 ND 1.5 0.06 ND ND 11/10/96 20.0 5.1 40 8 108 6.24 70 2 0.65 ND 11/18/96 0.65 ND ND 11/18/96 0.65 ND ND 11/18/96 0.65 ND ND 11/18/96 0.65 ND 11/18/96 0.65 ND 11/1 0.12 0.11	MPG	96/11/11		4.7	50	2.5	140	4.16	100	3.5	0.38	ND	2.1	0.12	0.3	ΩN	ND	NA
11/12/96 21.7 5.0 60 10 131 5.23 70 4.8 1.03 ND 1.5 0.10 0.1 ND 11/18/96 20.5 5.3 56 13 120 2.11 70 3.4 0.85 ND 1.5 0.06 ND	MPH(S)	11/13/96		6.1	235	108	-35	0.21	160	3.7	1.41	N	QN	25.5	2.9	7	1.87	N A
S) 11/18/96 20.5 5.3 56 13 120 2.11 70 3.4 0.85 ND 1.5 0.06 ND ND OS 11/10/96 20.0 5.1 40 8 108 6.24 70 2 0.65 ND 0.53 0.07 ND ND OS 11/11/96 18.3 5.0 40 5 188 8.52 30 2 0.86 ND 1.7 0.12 0.1 ND OS 11/18/96 20.5 5.6 109 42 -234 0.19 160 4 2.54 ND ND 8.65 2.2 0.6 11/18/96 210 5.8 160 55 -158 0.58 140 5 2.29 ND ND 15.55 1.1 1	MPI	11/12/96		5.0	09	01	131	5.23	20	4.8	1.03	ND	1.5	0.10	0.1	QN	QN	NA
S) 11/10/96 20.0 5.1 40 8 108 6.24 70 2 0.65 ND 0.53 0.07 ND ND D) 11/11/96 18.3 5.0 40 5 188 8.52 30 2 0.86 ND 1.7 0.12 0.1 ND D) 11/11/96 18.3 5.0 40 42 -234 0.19 160 4 2.54 ND ND 8.65 2.2 0.6 11/18/96 21.0 5.8 160 55 -158 0.58 140 5 2.29 ND ND 15.55 1.1 1	MPJ	11/18/96		5.3	26	13	120	2.11	70	3.4	0.85	ND	1.5	90.0	ND	ND	0.014	NA
(D) 11/11/96 18.3 5.0 40 5 188 8.52 30 2 0.86 ND 1.7 0.12 0.1 ND 11/18/96 20.5 5.6 109 42 -234 0.19 160 4 2.54 ND ND 8.65 2.2 0.6 11/18/96 21.0 5.8 160 55 -158 0.58 140 5 2.29 ND ND 15.55 1.1 1	MPK(S)	11/10/96		5.1	40	∞	108	6.24	70	7	0.65	ND	0.53	0.07	ND	ND	QN	ND
11/18/96 20.5 5.6 109 42 -234 0.19 160 4 2.54 ND ND 8.65 2.2 0.6	MPK(D)	96/11/11	18.3	5.0	40	5	188	8.52	30	2	98.0	ND	1.7	0.12	0.1	ΩN	NO	N
11/18/96 210 58 160 55 -158 0.58 140 5 2.29 ND ND 15.55 1.1 1	MPL	11/18/96	20.5	9.6	109	42	-234	0.19	160	4	2.54	ND	ND	8.65	2.2	9.0	0.33	NA
	MPM	11/18/96	21.0	5.8	160	55	-158	0.58	140	5	2.29	ND	ND	15.55	1.1		0.16	NA

* ND = Analyte not detected. $^{\text{h/}}$ NA \approx Not analyzed.

4.3.3.1 Dissolved Oxygen

DO concentrations measured in groundwater samples from monitoring wells and points in November 1996 ranged from 0.19 mg/L to 8.52 mg/L (Table 4.4). Figure 4.3 is an isopleth map showing the distribution of DO concentrations in shallow groundwater. Comparison of Figures 4.1 and 4.3 reveals that the area of depleted DO corresponds to the area of dissolved BTEX, thereby providing strong evidence that aerobic biodegradation of BTEX compounds is occurring at Site ST-24. Given that groundwater samples upgradient, downgradient, and cross-gradient from the source area had high DO levels, it is likely that DO is an important electron acceptor at this site.

The stoichiometry of BTEX mineralization to carbon dioxide and water caused by aerobic microbial biodegradation is presented in Table 4.3. The average mass ratio of oxygen to total BTEX is approximately 3.14 to 1. This translates to the mineralization of approximately 0.32 mg of BTEX for every 1.0 mg of DO consumed. With a site background DO concentration of approximately 6.2 milligrams per liter (mg/L) measured at MPK(s) and a decreased DO concentration in the source area of approximately 0.2 mg/L, the shallow groundwater at this site has the capacity to assimilate 1.93 mg/L (1,930 µg/L) of total BTEX through aerobic biodegradation. This is a conservative estimate of the assimilative capacity of DO because the recharge of oxygen through upgradient sources and precipitation infiltration has not been considered.

Furthermore, as a microbial population in the groundwater grows in response to the introduction of fuel hydrocarbons into the groundwater, new cell mass is generated. When cell mass production is accounted for, the mineralization of benzene to carbon dioxide and water is given by:

$$C_6H_6 + 2.5O_2 + HCO_3 + NH_4 \rightarrow C_5H_7O_2N + 2CO_2 + 2H_2O$$

This equation indicates that 5.0 fewer moles of DO are required to mineralize 1 mole of benzene when cell mass production is taken into account. On the basis of these stoichiometric relationships, 1.03 mg of oxygen are required to mineralize 1 mg of benzene, if cell mass production is taken into account. Similar calculations can be made for toluene, ethylbenzene, and the xylenes. These relationships show that on average, approximately 0.95 mg of BTEX is mineralized to carbon dioxide and water for every 1.0 mg of DO consumed.

Although this process results in more efficient utilization of electron acceptors, it is only applicable as the net cell mass of the microbial population continues to grow. Because groundwater contamination has been present at Site ST-24 for several years, it is expected that biomass production represents only a small percentage of the overall energy use because the assimilation of BTEX has reached steady-state. Therefore, the cell mass reaction equations no longer applies, and the assimilative capacity estimate based on no biomass production is considered more accurate. The steady-state production of cell mass as applied to anaerobic mechanisms is also likely, and the following estimates of anaerobic assimilative capacity given in the following subsections assume steady-state microbial populations (i.e., biomass production represents a very small fraction of energy use).

4.3.3.2 Nitrate/Nitrite

Concentrations of nitrate/nitrite [as nitrogen (N)] were measured in groundwater samples collected in November 1996. Table 4.4 summarizes measured nitrate/nitrite (as N) concentrations. Nitrite was not measured above the detection limit in any site groundwater sample. Figure 4.4 presents the distribution of nitrate (as N) in groundwater. The data suggest that reduced nitrate concentrations correspond to areas of groundwater BTEX contamination, and that nitrate is an electron acceptor at this site. Detectable nitrate concentrations at the site ranged from 0.1 to 2.5 mg/L.

In the absence of microbial cell production, the stoichiometry of BTEX mineralization to carbon dioxide, water, and nitrogen through denitrification is presented in Table 4.3. The average mass ratio of nitrate to total BTEX is approximately 4.9 to 1. This translates to the mineralization of approximately 0.20 mg of BTEX for every 1.0 mg of nitrate consumed. This ratio of nitrate consumption assumes that nitrate/nitrogen is reported as nitrate (NO₃) rather than elemental nitrogen (N). The nitrate nitrogen concentrations shown in Table 4.4 are reported as N, and must be multiplied by 4.42 to be converted into nitrate nitrogen concentrations as NO₃.

Assuming a background concentration from upgradient well W68 of 2.5 mg/L (as N) or 11.1 mg/L (as NO₃) and a source area nitrate concentration of 0.1 mg/L (as N) or 0.4 mg/L (as NO₃), the shallow groundwater has the capacity to assimilate 2.14 mg/L (2,140 mg/L) of total BTEX through denitrification. Because biomass accumulation is not considered, the actual assimilative capacity attributable to denitrification could be somewhat higher.

4.3.3.3 Ferrous Iron

Ferrous iron (Fe²⁺) concentrations were measured in groundwater samples collected in November 1996. Measured ferrous iron concentrations range from not detected to 63.75 mg/L. Table 4.4 summarizes ferrous iron concentrations, and Figure 4.5 presents an isopleth map showing the distribution of ferrous iron in groundwater. Comparison of Figures 4.1, 4.3, and 4.5 indicates that ferrous iron is being produced in the anaerobic portion of the BTEX plume due to the reduction of ferric iron hydroxide (Fe³⁺) during anaerobic biodegradation of BTEX compounds. Background ferrous iron concentrations are less than 0.01 mg/L, as measured at wells with little or no BTEX concentration. Groundwater from monitoring MPB(s) had the highest observed ferrous iron concentration of 63.75 mg/L of Fe²⁺. Elevated ferrous iron concentrations are a strong indication that anaerobic biodegradation of BTEX compounds is occurring in the shallow groundwater through iron reduction.

The stoichiometry of BTEX oxidation to carbon dioxide, ferrous iron, and water by microbial iron reduction is presented in Table 4.3. On average 37.5 moles of ferric iron hydroxide are required to metabolize one mole of total BTEX. Conversely, an average of 37.5 moles of ferrous iron are produced for each mole of total BTEX consumed. On a mass basis, this translates to approximately 21.8 mg ferrous iron produced for each 1 mg of total BTEX metabolized. Given a background ferrous iron concentration of less than 0.01 mg/L and a maximum observed ferrous iron concentration of 63.8 mg/L, the groundwater at Site ST-24 has the capacity to assimilate 2.93 mg/L (2,930 μ g/L) of total BTEX through iron reduction. This is a conservative estimate of the assimilative capacity of iron because the calculation is based on observed ferrous iron concentrations and not on the amount of ferric hydroxide available in the aquifer. Therefore, iron assimilative capacity could be much higher.

Research suggests that the reduction of ferric iron to ferrous iron cannot proceed at all without microbial mediation (Lovley and Phillips, 1988; Lovley et al., 1991; Chapelle, 1993). None of the common organic compounds found in low-temperature, neutral, reducing groundwater could reduce ferric oxyhydroxides to ferrous iron under sterile laboratory conditions (Lovley et al., 1991). This means that the reduction of ferric iron requires microbial mediation by microorganisms with the appropriate enzymatic capabilities. Because the reduction of ferric iron cannot proceed without microbial intervention, the elevated concentrations of ferrous iron that were measured in the contaminated groundwater at the site are very strong indicators of microbial activity.

4.3.3.5 Soluble Manganese

Soluble manganese (Mn²⁺) concentrations were measured in groundwater samples collected in November 1996. Table 4.4 summarizes soluble manganese concentrations, which ranged from below instrument detection limits to 5.4 mg/L in the groundwater

samples collected from Site ST-24. Figure 4.6 is an isopleth map showing the areal extent of soluble manganese in shallow groundwater. Comparison of Figures 4.6 and 4.1 shows graphically that soluble manganese is elevated above 1 mg/L within and southwest of the areas with the highest BTEX concentrations. Soluble manganese concentrations in shallow groundwater were most elevated in the downgradient southwest portion of the dissolved BTEX plume. Background concentrations of soluble manganese in the aquifer are generally less than 0.1 mg/L.

The stoichiometry of BTEX oxidation to carbon dioxide, soluble manganese, and water by manganese reduction through anaerobic microbial biodegradation is presented in Table 4.3. On average, 19 moles of manganese are required to metabolize one mole of total BTEX. Conversely, an average of 19 moles of soluble manganese are produced for each mole of total BTEX consumed. On a mass basis, this translates to approximately 11 mg of soluble manganese produced for each 1 mg of total BTEX metabolized. Given a background soluble manganese concentration of less than 0.1 mg/L and a maximum detected soluble manganese concentration in the source area of 5.4 mg/L, the shallow groundwater has the capacity to assimilate approximately 0.49 mg/L (490 μ g/L) of total BTEX through manganese reduction. This assimilative capacity is a conservative estimate because calculations are based on observed soluble manganese concentrations and not on the amount of manganese dioxide available in the aquifer. Therefore, BTEX assimilative capacity through this process could be much higher.

4.3.3.6 Sulfate

Sulfate concentrations were measured in groundwater samples collected in November 1996. Sulfate concentrations at the site ranged from not detected to 14.6 mg/L. Table 4.4 summarizes measured sulfate concentrations. Figure 4.7 is an isopleth map showing the areal extent of sulfate in groundwater. Comparison of Figures 4.7 and 4.1 shows graphically that the areas of depleted sulfate concentrations

coincide with areas of groundwater BTEX contamination. This relationship is a strong indication that anaerobic biodegradation of BTEX compounds is occurring in the shallow groundwater through the microbially mediated process of sulfate reduction.

The stoichiometry of BTEX mineralization to carbon dioxide, sulfur, and water by sulfate reduction through anaerobic microbial biodegradation is presented in Table 4.3. The average mass ratio of sulfate to total BTEX is approximately 4.7 to 1. This translates to the mineralization of approximately 0.21 mg of total BTEX for every 1.0 mg of sulfate consumed. Shallow sulfate concentrations at several upgradient and side gradient locations ranged from 3.5 mg/L to 1.3 mg/L, with an average concentration of approximately 2.0 mg/L. Assuming a background sulfate concentration of 2.0 mg/L and a minimum sulfate concentration in the source area of less than 0.1 mg/L, the shallow groundwater at this site has the capacity to assimilate 0.42 mg/L (420 mg/L) of total BTEX through sulfate reduction.

4.3.3.7 Ammonium

The presence of ammonium in groundwater can result from either nitrate reduction (facilitated by microbes) or fixing of atmospheric nitrogen (also a microbial process). The production of cell mass is expected to be minimal as a result of the plume age; however, the fixation of atmospheric nitrogen may occur under the strongly anaerobic, methanogenic conditions observed at the site. The presence of ammonium in groundwater is a strong indication of microbial activity.

Ammonium (as N) concentrations measured in groundwater samples collected in November 1996 are summarized in Table 4.4. Figure 4.8 presents the areal extent of dissolved ammonium (as N) observed at Site ST-24. The average background ammonium concentration at Site ST-24 was less than 0.1 mg/L, whereas source area concentrations were measured in excess of 10 mg/L at MPB(s). Based on simple stochiometric calculations, the background nitrate concentrations are not high enough to

produce 10 mg/L of ammonium via nitrate reduction; therefore, nitrogen fixation must be occurring at Site ST-24.

The stoichiometry of BTEX oxidation to carbon dioxide and ammonium by microbial nitrogen fixation is presented in Table 4.3. On average 6.5 moles of nitrogen gas (N₂) are required to metabolize one mole of total BTEX. Conversely, an average of 13 moles of ammonium are produced for each mole of total BTEX consumed. On a mass basis, this translates to approximately 2.4 mg of ammonium produced for each 1 mg of total BTEX metabolized. This ratio of ammonium production assumes that ammonium/nitrogen is reported as ammonium (NH₄⁺) rather than elemental nitrogen (N). The ammonium nitrogen concentrations shown in Table 4.4 are reported as N, and must be multiplied by 1.29 to be converted into ammonium concentrations as NH₄⁺. Given a background ammonium (as NH₄⁺) concentration of less than 0.13 mg/L and a maximum observed ammonium concentration of 12.9 mg/L (as NH₄⁺), the groundwater at Site ST-24 has the capacity to assimilate 5.38 mg/L $(5,380 \mu g/L)$ of total BTEX through nitrogen fixation. This is a conservative estimate of the assimilative capacity of nitrogen fixation because the calculation is based on observed ammonium concentrations and not on the amount of nitrogen gas available in Therefore, the nitrogen fixation assimilative capacity could be much the aquifer. higher.

4.3.3.8 Methane in Groundwater

Methane concentrations were measured in groundwater samples collected in November 1996. Table 4.4 summarizes methane concentrations, which ranged from below the method detection limit to 2.06 mg/L at the site. Figure 4.9 is an isopleth map showing the distribution of methane in groundwater. Comparison of Figures 4.9 and 4.1 shows graphically that elevated methane concentrations occur in areas with high dissolved BTEX concentrations. The highest methane concentrations were

detected at MPD(s) and MPH(s), which suggests that carbon dioxide becomes a more favorable electron acceptor approximately 100 feet downgradient from the source.

The stoichiometry of BTEX oxidation to carbon dioxide and methane by methanogenesis is presented in Table 4.3. On average, approximately 1 mg of total BTEX is degraded for every 0.78 mg of methane produced. Given a maximum detected methane concentration of 2.06 mg/L and the assumption of negligible methane concentrations in background groundwater, the shallow groundwater has the expressed capacity to assimilate approximately 2.6 mg/L (2,600 µg/L) of total BTEX through methanogenesis. This is a conservative estimate of the assimilative capacity through methanogenesis because these calculations are based on observed methane concentrations and not on the amount of carbon dioxide (the electron acceptor in methanogenesis) available in the aquifer. As methanogenesis produces more carbon dioxide than it consumes (Table 4.3), an unlimited supply of carbon dioxide is theoretically available once the process of methanogenesis has been initiated. Methanogenesis is limited by the rate of reaction rather than the source of electron receptors. This estimate of assimilative capacity also conservatively assumes that all of the produced methane remains in solution; however, this assumption is not realistic as the solubility limit of methane in water is approached.

4.3.3.9 Alkalinity and Carbon Dioxide Evolution

Carbon dioxide is produced during the biodegradation of petroleum hydrocarbons. In aquifers that have carbonate minerals as part of the matrix, carbon dioxide forms carbonic acid, which dissolves these minerals, increasing the alkalinity of the groundwater. Alkalinity is a measure of the ability of groundwater to buffer changes in pH caused by the addition of biologically generated acids. An increase in alkalinity (measured as CaCO₃) in an area with BTEX concentrations elevated above background conditions can be used to infer the amount of petroleum hydrocarbon destroyed through aerobic respiration, denitrification, ferric iron reduction, and sulfate reduction. In

addition, carbon dioxide produced in these aerobic and anaerobic reactions can be cycled in the methanogenic reactions to continue BTEX biodegradation through methanogenesis.

Free carbon dioxide and total alkalinity (as CaCO₃) both were measured in groundwater samples collected in November 1996. Carbon dioxide and alkalinity concentrations are summarized in Table 4.4 and presented on Figures 4.10 and 4.11. Free carbon dioxide at Site ST-24 ranged from 50 to 200 mg/L. Comparison of Figures 4.1 and 4.10 show that areas with elevated dissolved BTEX concentration coincide with areas of elevated carbon dioxide concentrations. alkalinity at the site varied from less than 1 mg/L to 168 mg/L. This range of alkalinity may be sufficient to buffer potential changes in pH caused by biologically mediated BTEX oxidation reactions; therefore, data support the inference that aerobic and/or anaerobic biodegradation processes can occur without detrimental shifts in pH. Comparison of Figures 4.11 and 4.1 show increased alkalinity in locations characterized by elevated BTEX concentrations and in locations just downgradient from high BTEX contamination. Both trends suggest that groundwater contamination is being reduced to CO₂ via natural attenuation mechanisms. The CO₂ then flows downgradient and is incorporated in the groundwater system thus increasing the buffer capacity, or alkalinity.

4.3.3.10 Reduction/Oxidation Potential

Redox potential was measured at groundwater monitoring wells and points in November 1996. Redox potential is a measure of the relative tendency of a solution to accept or transfer electrons. The redox potential of a groundwater system depends on which electron acceptors are being reduced by microbes during BTEX oxidation. The redox potentials at the site range from 338 millivolts (mV) to -234 mV. Table 4.4 summarizes available redox potential data. The distribution of redox potentials is illustrated graphically on Figure 4.12. As expected, areas at the site with low redox

potentials appear to coincide with areas of elevated BTEX contamination, decreased DO, decreased nitrate/nitrite concentrations, elevated soluble manganese and iron, low sulfate concentrations, high dissolved ammonium concentrations, and elevated methane concentrations (compare Figure 4.12 with Figures 4.1, 4.3, 4.4, 4.8 and 4.9).

Figure 4.13 presents the redox potential range (expressed as potential energy, pE) for Site ST-24. The pE range observed at the site may be higher than the theoretical optimum pE for various electron acceptor reactions (Norris et al., 1994). This discrepancy is a common problem associated with measuring oxidizing potential using field instruments. It is likely that the platinum electrode probes are not sensitive to some of the redox couples (e.g., sulfate/sulfide, CO₂/methane). Many authors have noted that field-measured redox data alone cannot be used to reliably predict the electron acceptors that may be operating at a site (Stumm and Morgan, 1981; Godsey, 1994; Lovley et al., 1994). Integrating redox measurements with analytical data on reduced and oxidized chemical species allows a more thorough and reasonable interpretation of which electron acceptors are being used to biodegrade site contaminants.

4.3.3.11 pH

pH was measured for groundwater samples collected from groundwater monitoring points and monitoring wells in November 1996. These measurements are summarized in Table 4.4. The pH of a solution is the negative logarithm of the hydrogen ion concentration [H⁺]. Groundwater pH measured at the site ranges from 4.6 to 6.4 standard units. This range of pH overlaps the optimal range for BTEX-degrading microbes; however, a significant number of observed pHs were below the optimal range. This may retard the rate of biodegradation; nevertheless, other geochemical indicators (discussed in prior subsections) demonstrate that biodegradation is occurring. Alkalinity measurements also suggested that groundwater CaCO₃ levels are sufficient to completely buffer changes in pH. In addition, as groundwater pH becomes

Notes

- 1. These reactions would be expected to occur in sequence if the system is moving toward equilibrium.
- These redox processes occur in order of their energy-yielding potential (provided microorganisms are available to mediate a specific reaction).
 Reduction of a highly oxidized species decreases the pE of the system.
- 3. The pE of the system determines which electron acceptors are available for oxidation.
- 4. Redox sequence is paralleled by an ecological succession of biological mediators.

FIGURE 4.13

SEQUENCE OF MICROBIALLY MEDIATED REDOX PROCESSES

Site ST-24 RNA TS Columbus AFB, Mississippi

PARSONS ENGINEERING SCIENCE, INC.

Denver, Colorado

Adapted from Stumm and Morgan, 1981.

increasingly acidic, fungi may predominate over bacteria in successfully biodegrading hydrocarbons (Atlas, 1988; Brock et al., 1994).

4.3.3.12 Temperature

Groundwater temperature was measured at groundwater monitoring points and monitoring wells in November 1996. Table 4.4 summarizes groundwater temperature readings. Temperature affects the types and growth rates of bacteria that can be supported in the groundwater environment, with higher temperatures generally resulting in higher growth rates. Temperatures in the groundwater varied from 16.9 degrees Celsius (°C) to 22.1°C. These temperatures span a range that is optimal for psychrophilic, hydrocarbon-degrading microorganisms.

4.3.4 Expressed Assimilative Capacity

The data presented in the preceding sections suggest that mineralization of BTEX compounds is occurring through the microbially mediated processes of aerobic biodegradation, denitrification, iron reduction, nitrogen fixation, methanogenesis, and, to a limited extent, sulfate and manganese reduction. Unexpectedly, nitrogen fixation at this particular site appears to be dominating natural attenuation processes. On the basis of the stoichiometry presented in Table 4.4 and observed background electron acceptors, the expressed BTEX assimilative capacity of groundwater at Site ST-24 is at least 15,890 µg/L (Table 4.5).

A closed system with 2 liters of water can be used to help visualize the physical meaning of assimilative capacity. Assume that the first liter contains no fuel hydrocarbons, but it contains fuel degrading microorganisms and has an assimilative capacity of exactly "x" µg of fuel hydrocarbons. The second liter has no assimilative capacity; however, it contains fuel hydrocarbons. As long as these 2 liters of water are kept separate, biodegradation of the fuel hydrocarbons will not occur. If these 2 liters are combined in a closed system, biodegradation will commence and continue until the

fuel hydrocarbons are depleted, the electron acceptors are depleted, or the environment becomes acutely toxic to the fuel degrading microorganisms. Assuming a nonlethal environment, if fewer than "x" μ g of fuel hydrocarbons were in the second liter, all of the fuel hydrocarbons would eventually degrade given a sufficient time; likewise, if greater than "x" μ g of fuel hydrocarbons were in the second liter of water, only "x" μ g of fuel hydrocarbons would ultimately degrade.

TABLE 4.5
EXPRESSED ASSIMILATIVE CAPACITY OF SITE GROUNDWATER
SITE ST-24 RNA TS
COLUMBUS AFB, MISSISSIPPI

Electron Acceptor or Process	Expressed BTEX Assimilative Capacity (µg/L)
Aerobic Respiration	1,930
Denitrification	2,140
Iron Reduction	2,930
Manganese Reduction	490
Sulfate Reduction	420
Nitrogen Fixation	5,380
Methanogenesis	2,600
Expressed Assimilative Capacity	15,890

The groundwater beneath Site ST-24 is an open system, which continually receives additional electron receptors from upgradient and from the percolation of precipitation. This means that the assimilative capacity is not fixed as it is in a closed system, and therefore cannot be compared directly to contaminant concentrations in the groundwater. Rather, the expressed assimilative capacity of groundwater is intended to serve as a qualitative tool. Although the expressed assimilative capacity at this site is less than the highest measured total BTEX concentration (20,950 μ g/L), the fate of BTEX in groundwater and the potential impact on receptors is dependent on the relationship between the kinetics of biodegradation and the solute transport velocity (Chappelle, 1994). This significant expressed assimilative capacity is a strong indicator that biodegradation is occurring and is sufficient to limit migration of the contaminant plume.

At Site ST-24 natural attenuation mechanisms could eliminate all groundwater BTEX contamination if the current concentrations of electron acceptors are maintained. Clean, upgradient groundwater and precipitation recharge could provide this continuous source of electron acceptors to the microbial population. Furthermore, the probable contaminant source (the service station and associated USTs) has been removed, preventing future introduction of additional soil and groundwater contaminants. Because groundwater advective velocity at ST-24 is 700 ft/yr, and because dissolved BTEX has not been observed in monitoring locations approximately 200 feet downgradient from the source area (MPG, MPI, MPJ), it is suggested that natural attenuation processes are controlling further downgradient migration of the dissolved contaminant plume. RNA of BTEX in groundwater should, therefore, be considered an effective option when selecting a final remedial solution for contaminated groundwater at Site ST-24.

SECTION 5

GROUNDWATER MODELING

5.1 GENERAL OVERVIEW

To help estimate degradation rates for dissolved BTEX at ST-24 and to help predict the future migration of these compounds, Parsons ES modeled the fate and transport of the dissolved BTEX plume. The modeling effort had three primary objectives: (1) predict the future extent and concentration of the dissolved contaminant plume by modeling the combined effects of advection, dispersion, sorption, and biodegradation; (2) assess the potential for exposure of downgradient receptors to contaminant concentrations that exceed regulatory standards intended to be protective of human health and the environment; and (3) provide technical support for the RNA option at post-modeling regulatory negotiations. The model was developed using site-specific data and conservative assumptions about governing physical and chemical processes. Because of the conservative nature of model input, the reduction in contaminant mass caused by natural attenuation is expected to exceed model predictions. This analysis is not intended to represent an assessment of potential risks posed by site contamination.

Partial differential equations that describe groundwater flow and/or solute transport can be solved analytically or numerically. Analytical methods (models) provide exact, closed-form solutions, and numerical methods (models) provide approximate solutions. The type of model selected to simulate site conditions depends on the complexity of the problem, the amount of available data, the importance of the decisions that will be based upon the model, and project scope. Analytical models are the simplest to set up

and solve, allowing the user to evaluate many scenarios in a relatively short time. However, analytical models are restricted in the nature of the problems for which they can be used, and for some transport problems they may become so complex and unwieldy that the use of numerical methods may be more efficient. Numerical methods are more efficient for those systems that are too complex for analytical methods. Theoretically there are no limits on the characteristics of the hydrogeological system and the properties of the solute(s) that can be simulated using a numerical model code. There are, however, practical limits on the ways in which the system and any reactions within it can be represented. The basic input parameters for both types of models typically include groundwater seepage velocity, hydraulic conductivity, saturated thickness of the aquifer, porosity, source area configuration, source area contaminant concentrations, leakage rates, dispersion coefficients, solute retardation values, and solute decay rates.

If limited data are available, or the hydrogeologic conditions are simple, an analytical model can be selected to simulate contaminant fate and transport. Analytical models provide exact, closed-form solutions to the governing advection/dispersion equation by making significant simplifying assumptions. The more closely the actual system approximates these assumptions, the more accurate the analytical model will be at predicting groundwater flow and solute fate and transport. Because of the nature of the simplifying assumptions, analytical models may overestimate or underestimate the spread of contamination. By making assumptions that will ensure the model will overpredict contaminant concentrations and travel distances (or at least not underpredict them), the model predictions will be conservative. The more conservative a model is, the more confidence there should be that potential downgradient receptors will not be impacted by site contamination. Analytical solutions are generally limited to steady, uniform flow or radial flow conditions, and should not be used for groundwater flow or

solute transport problems in strongly anisotropic flow conditions or heterogeneous media.

Numerical solutions provide approximate solutions to the advection/dispersion equation. Numerical models are less burdened by simplifying assumptions and are capable of addressing more complicated problems. Unlike analytical models, numerical models allow subsurface heterogenieties and varying aquifer parameters to be simulated, as well as transient conditions (i.e., one or more properties or conditions change over time), if the requisite data are available. Many of the assumptions required for the analytical solutions are not necessary when numerical techniques are used to solve the governing solute transport equation. However, a greater amount of site-specific data is needed to implement a numerical model, and the solutions are inexact numerical approximations. The added complexity of performing a numerical model typically is not warranted unless the spatial distribution of input parameters is well documented.

Analytical models were selected to evaluate contaminant fate and transport at ST-24. Analytical models were determined to be appropriate for this site because hydrogeologic conditions are uniform, limited spatial geochemical and contaminant concentration information is available, and remediation of vadose zone soils within the site source area has already been performed. The models used with ST-24 data provided first-order solute decay solutions for a semi-infinite system with a point source of diminishing concentration (van Genuchten and Alves, 1982). The models assume a homogeneous, isotropic aquifer; a uniform, constant-velocity flow field in the x-direction only; a constant longitudinal hydrodynamic dispersion; a first-order rate of decay for biodegradation of site contaminants; and a linear sorption rate.

5.2 CONCEPTUAL MODEL DESIGN AND ASSUMPTIONS

Before developing a groundwater model, it is important to develop a reasonable interpretation of aquifer conditions. On the basis of the data presented in Section 3, the shallow saturated zone was conceptualized and modeled as a shallow unconfined, aquifer composed of sandy to silty gravel with some clay (Figure 3.3). Water level data suggest a relatively uniform local groundwater flow system with a slight upward vertical component.

Geochemical data presented in Section 4 suggest that biodegradation of site contaminants is occurring. In particular, BTEX compounds are being degraded by aerobic respiration and the anaerobic processes of denitrification, ferric iron reduction, manganese reduction, sulfate reduction, nitrogen fixation, and methanogenesis. Current analytical data on dissolved BTEX concentrations and implemented remedial actions were used for model calibration and to support source reduction assumptions. Furthermore, the maximum downgradient BTEX concentration is below state and federal groundwater guidelines, suggesting that dissolved BTEX concentrations above the Mississippi Department of Environmental Quality (MDEQ, 1991) standards are not migrating beneath Base housing located west of Site ST-24. In addition, due to prior remediation of site soils, the lack of residual soil LNAPL above the groundwater table and the absence of mobile LNAPL suggest there is not a significant continuing source of dissolved BTEX contamination at Site ST-24.

5.3 INITIAL MODEL SETUP

Where possible, the initial setup for the models was based on site data. Where site-specific data were not available (e.g., for effective porosity), reasonable assumptions were made on the basis of widely accepted literature values. The analytical model solution is based on calculations for retarded flow with biodegradation and a decaying source (van Genuchten and Alves, 1982). The following sections describe the basic

model setup. The analytical model parameters that were varied during model calibration are discussed in Section 5.4.

5.3.1 Groundwater Gradient

The November 1996 water table elevation map presented on Figure 3.5 was used to determine the hydraulic gradient. Groundwater flow in the vicinity of the site is to the south with an average gradient of approximately 0.01 ft/ft. In the absence of historical groundwater elevation data, it was assumed that the November 1996 water levels and gradient are representative of steady-state conditions. Groundwater data, also collected in November 1996, suggest a slight upward vertical gradient, indicative of a semi-confining aquifer.

5.3.2 BTEX Concentrations

The total dissolved BTEX concentrations obtained from laboratory analytical results were used for model development. Table 4.2 presents November 1996 dissolved BTEX concentration data. Figure 4.1 shows the areal distribution of dissolved groundwater BTEX in November 1996. The shape and distribution of the total BTEX plume are the result of advective-dispersive transport and biodegradation of dissolved BTEX contamination originating from the source areas at ST-24. The BTEX concentrations from the November 1996 site investigation were used in the models to project future downgradient concentrations.

5.3.3 Degradation Rates

Available data strongly suggest that aerobic and anaerobic biodegradation of dissolved BTEX is occurring at the site. In November 1996, combined anaerobic processes accounted for more than 85 percent of the assimilative capacity of site groundwater (Table 4.5). As with a large number of biological processes, biodegradation can generally be described using a first-order rate constant and the equation:

$$\frac{C}{C_0} = e^{-kt}$$

where:

C = Contaminant Concentration at Time t

 C_0 = Initial Contaminant Concentration

k = Coefficient of Anaerobic Decay (anaerobic rate constant)

t = time

Two methods of calculating rate constants are currently available to quantify rates of biodegradation at the field scale and are applicable for use with available site data. The first method involves the use of a biologically recalcitrant compound found in the dissolved BTEX plume that can be used as a conservative tracer. The second method, proposed by Buscheck and Alcantar (1995), involves interpretation of a steady-state contaminant plume configuration and is based on the one-dimensional steady-state analytical solution to the advection/dispersion equation presented by Bear (1979).

5.3.3.1 Trimethylbenzene Tracer Method

To calculate rate constants, the apparent degradation rate must be normalized for the effects of dilution caused by advective/dispersive processes and sorption. This can be accomplished by normalizing the concentration of each contaminant to the concentration of a component of gasoline (a tracer) that has similar sorptive properties but that is fairly recalcitrant to biodegradation. Observed BTEX concentration data can be normalized to 1,3,5-TMB, 1,2,4-TMB, and/or 1,2,3-TMB or another tracer with similar physiochemical properties. The TMB compounds can serve as good tracers because they can be biologically recalcitrant under anaerobic conditions, and they have sorptive properties similar to the BTEX compounds (Cozzarelli *et al.*, 1990 and 1994). Thus, TMBs are assumed to respond similarly to the processes of advection, dispersion, and sorption without experiencing a reduction in concentration due to biodegradation. Under aerobic conditions, TMB compounds are less recalcitrant, leading to reduction in TMB concentrations by biological processes in addition to dispersion, dilution, and

sorption. This in turn results in the calculation of an overly low, albeit conservative, rate constant.

The normalized (corrected) concentration of a compound is the concentration of the compound that would be expected at one point (B) located downgradient from another point (A) after correcting for the effects of dispersion, dilution, and sorption between points A and B. One relationship that can be used to calculate the corrected contaminant concentration is:

$$C_{B,Corr} = C_B(TMB_A/TMB_B)$$

where:

 $C_{B,Corr}$ = Corrected concentration of compound at Point B C_B = Measured concentration of compound at Point B TMB_A = Measured TMB concentration at Point A TMB_B = Measured TMB concentration at Point B

A log-linear plot of the corrected contaminant concentrations along a flow path versus e travel time from the source can be used to determine whether the data set can be described using a first-order exponential equation (i.e., r^2 is greater than approximately 0.9). When this occurs, the exponential slope can be used as the rate constant. Once again, if aerobic conditions exist along the selected flow path, the rate constant calculation will be conservative because TMBs are not recalcitrant under aerobic conditions.

An average rate constant for BTEX decay at Site ST-24 was determined from November 1996 BTEX and TMB data. The selected flow path (from MPC/MPM through W71 to MPL) is anaerobic. Table 5.1 presents the data for a first-order rate constant calculation for BTEX using 1,2,4-TMB as a conservative tracer. The TMB-corrected total BTEX concentration represents the theoretical BTEX concentration at a point if biodegradation were the only process affecting BTEX concentrations. The

graph that accompanies the table illustrates that a rate constant of 0.044 day⁻¹ is predicted. TMB should serve as a conservative tracer because TMB is not completely recalcitrant under anaerobic conditions. Therefore, the rate constant is expected to be higher than calculated using this technique. Furthermore, downgradient from well MPL, the biodegradation rate constant would be expected to increase because the aquifer becomes aerobic. Typically, aerobic degradation rates exceed anaerobic degradation rates (Borden and Bedient, 1986).

5.3.3.2 Method of Buscheck and Alcantar

Buscheck and Alcantar (1995) derive a relationship that allows calculation of first-order decay rate constants for steady-state plumes. This method involves coupling the regression of contaminant concentration (plotted on a logarithmic scale) versus distance downgradient (plotted on a linear scale) to an analytical solution for one-dimensional, steady-state, contaminant transport that includes advection, dispersion, sorption, and biodegradation. For a steady-state plume, the first-order decay rate is given by (Buscheck and Alcantar, 1995):

$$\lambda = \frac{v_c}{4\alpha_x} \left[\left[1 + 2\alpha_x \left(\frac{k}{v_x} \right) \right]^2 - 1 \right]$$

where: λ = first-order decay rate

 v_c = retarded contaminant velocity in the x-direction

 $\alpha_r = \text{dispersivity}$

 k/v_x = slope of line determined from a log-linear plot of contaminant

concentration versus distance downgradient along flow path

The first-order decay rate includes biodegradation resulting from both aerobic and anaerobic processes; however, in the absence of oxygen, the first-order rate is equivalent to the anaerobic decay rate. Table 5.2 presents the data for a first-order rate constant calculation for BTEX using November 1996 data at ST-24 and the method

TABLE 5.1 FIRST-ORDER RATE CONSTANT CALCULATION USING 1,2,4-TMB AS A CONSERVATIVE TRACER

SITE ST-24 RNA TS COLUMBUS AFB, MISSISSIPPI

Point	Distance Downgradient (ft)	Travel Time Between Upgradient and Downgradient Points (days)	Measured Total BTEX Concentration (μg/L)	Measured 1,2,4- Trimethylbenzene Concentration (µg/L)	Trimethylbenzene- Corrected Total BTEX Concentration (µg/L)
MPC/MPM	0	0	20,950	6800	20,950
W71	73	49	2,140	1860	2,879
MPL	208	139	22.2	8	46

 $v_c = 1.5$ ft/day (for benzene)

PLOT OF TMB-CORRECTED TOTAL BTEX CONCENTRATION VERSUS TRAVEL TIME

TABLE 5.2
FIRST-ORDER RATE CONSTANT CALCULATION
USING THE METHOD OF BUSCHECK AND ALCANTAR (1995)

SITE ST-24 RNA TS COLUMBUS AFB, MISSISSIPPI

	Distance	
	Downgradient	Total BTEX (µg/L)
Point	from Source (ft)	Oct-96
MPC/MPM	0	20,950
W71	73	2,140
MPL	208	22.2

PLOT OF TOTAL BTEX CONCENTRATION VERSUS DISTANCE

$$\lambda = v_c/4\alpha_x([1+2\alpha_x(k/v_x)]^2-1)$$

where $v_c =$	1.5000	ft/day
$\alpha_{\mathbf{x}} =$	20	ft
k/v =	0.033	ft ⁻¹
therefore $\lambda =$	0.082	day-1

proposed by Buscheck and Alcantar (1995). An exponential fit to the data estimates a log-linear slope of 0.033. This value translates to a decay constant of 0.082 day⁻¹

5.3.3.3 Selection of a Decay Rate Constant

A review of recent literature indicates that higher rate constants generally have been observed in anaerobic plumes at other sites. For example, Chapelle (1994) reported that at two different sites with anaerobic groundwater conditions the rate constants were both approximately 0.01 day⁻¹. Wilson *et al.* (1994) report first-order anaerobic biodegradation rates of 0.05 to 1.3 week⁻¹ (0.007 to 0.185 day⁻¹); Buscheck *et al.* (1993) report first-order attenuation rates in a range of 0.001 to 0.01 day⁻¹; andStauffer *et al.* (1994) report rate constants of 0.01 and 0.018 day⁻¹ for benzene and *p*-xylene, respectively. A first-order rate constant of 0.08 day⁻¹ was used in the two analytical models run for this site.

5.4 MODEL CALIBRATION

Calibration of the contaminant fate and transport model is an important component in the development of a defensible groundwater model. It demonstrates that the model is capable of predicting observed hydraulic and contaminant conditions given conditions observed in the past. The analytical flow models presented herein were calibrated using current analytical data for initial contaminant concentrations and altering source input, source decay rates, and solute decay rates until modeled data matched current observed BTEX concentrations. The model was calibrated over a 4-year period spanning the time from the removal of site contaminated soils to November 1996 using a hydraulic gradient of 0.01 ft/ft, hydraulic conductivity of 58 ft/day, and effective porosity of 0.3.

To calibrate the model, an 8-percent annual source decay rate and an 8-percent daily solute decay rate were used. An 8-percent annual source decay rate may be an accurate

representation of site conditions because a rate of this magnitude could account for natural degradation of the source (residual LNAPL below the water table) as well as dissolution of the source into groundwater. The 0.08-day⁻¹ solute decay rate was selected on the basis of calculations presented in Section 5.3.3. The calibrated model also assumes a source input term of 46.5 mg/L per year of BTEX, attributable to residual LNAPL in site soils below the water table, and uses the source area BTEX concentration of 20,950 mg/L measured in November 1996.

TOC was not measured above the 0.06-percent method detection limit in the soil sample collected from the saturated zone, upgradient from the source area. Using the method detection limit as an approximation of TOC levels in site soils, contaminant migration was modeled with retardation resulting from sorption. Modeled contaminant (i.e., benzene) velocities were approximately two-thirds of the advective groundwater velocity. Even though it is unclear whether soil TOC levels are significantly less than 0.06 percent, it is expected that some sorption, and therefore some contaminant retardation with respect to groundwater velocity, is occurring.

Using these input parameters, the model successfully reproduced November 1996 BTEX concentrations observed at the source area (point MPC/MPM), 72 feet downgradient from the source area (well W71), and along the leading plume edge (point MPL). Where the calibrated model differed from the observed BTEX concentrations, modeled concentration were slightly higher. Consequently, the total dissolved contaminant mass predicted from the models is approximately equal to or slightly higher than the mass estimated from the observed contaminant concentrations. Thus, the model is considered conservative. Model input and output are included in Appendix C.

5.5 SENSITIVITY ANALYSIS

The purpose of the sensitivity analysis is to determine the effect of varying model input parameters on model output. The sensitivity analysis for the analytical models was conducted on individual runs of the calibrated model by varying hydraulic conductivity (±2 times), the TOC content (±10 times), effective porosity (±25%), dispersivity (±2 times), and the solute decay rate (±2 times). The annual rate of source decay is varied to duplicate effects of certain remedial alternative in Section 6. To perform the sensitivity analyses, the model was run with the same input as the calibrated model except for the tested parameter. The models were run for a 4-year period so the effects could be compared to November 1996 plume conditions simulated by the calibrated model, also using a 4-year period. Model output data from the sensitivity analysis are presented in Appendix C.

The results of the sensitivity analysis suggest that the calibrated model is most sensitive to hydraulic conductivity, solute decay, and TOC, and less sensitive to effective porosity and dispersivity. Increasing hydraulic conductivity significantly increased the distance of plume migration, and the downgradient concentrations of dissolved contaminants, because advective/dispersive mechanisms are more significant with the higher groundwater velocity that results from a higher hydraulic conductivity. Conversely, decreasing the hydraulic conductivity to half the observed value decreased the distance of plume migration and the dissolved contaminant concentrations to below observed conditions in November 1996. Increasing the TOC content of the aquifer matrix decreased the distance of plume migration below the observed conditions in November 1996, and decreased dissolved BTEX concentrations throughout the plume to below those levels observed in late 1996. Decreasing the TOC content had the opposite effects on the modeled BTEX plume. Changes in the modeled dissolved BTEX plume due to increases and decreases in effective porosity are similar to the

changes observed with varying TOC; however effective porosity changes had a noticeably smaller effect on the predicted plume than changing TOC values. Increases and decreases in dispersivity values had a similar, but less pronounced, effect on the predicted contaminant plume as did changes in the hydraulic conductivity. Increasing the solute decay rate by two caused the model to produce a contaminant plume of much less size and mass than observed in November 1996. Decreasing the solute decay rate made the predicted 1996 plume much larger and more contaminated than the observed plume in November 1996.

The hydraulic conductivity, dispersivity, and effective porosity values used in the calibrated model are valid because they are similar to documented or widely accepted values. Based on sensitivity analysis, the ranges for other model input parameters used to produce the simulated BTEX plumes are feasible, given the observed BTEX concentrations, the conservative assumptions made in constructing the simulation, and the strong geochemical evidence of aerobic and anaerobic biodegradation. The models were calibrated to known endpoints in a continuum of known past contaminant levels. Results of predictive models are presented in Section 6.

SECTION 6

COMPARATIVE ANALYSIS OF REMEDIAL ALTERNATIVES

This section presents the development and comparative analysis of groundwater remedial alternatives for contaminated groundwater at Site ST-24. The intent of this evaluation is to determine if RNA of groundwater is an appropriate and cost-effective remedial approach to consider when developing final remedial strategies for the study area, especially when combined with other remedial technologies.

Section 6.1 presents the criteria used to evaluate groundwater remedial alternatives. Section 6.2 discusses the development of remedial alternatives considered as part of this demonstration project. Section 6.3 provides a brief description of each of these remedial alternatives. Section 6.4 provides a more detailed analysis of the remedial alternatives using the defined remedial alternative evaluation criteria. The results of this evaluation process are summarized in Section 6.5.

6.1 REMEDIAL ALTERNATIVE EVALUATION CRITERIA

The evaluation criteria used to identify appropriate remedial alternatives for shallow groundwater contamination at the site were evaluated based on 1) long-term effectiveness and permanence, 2) technical and administrative implementability, and 3) relative cost. The following sections briefly describe the scope and purpose of each evaluation criterion. This report focuses on the potential use of RNA and source reduction technologies to reduce dissolved BTEX concentrations in the shallow groundwater below Mississippi State regulatory action levels (MDEQ Office of

Pollution Control, Groundwater Division, Groundwater Quality Standards, Section 3, Numerical Groundwater Standards, 1991).

6.1.1 Long-Term Effectiveness and Permanence

Each remedial technology or remedial alternative (which can be a combination of remedial approaches such as RNA and institutional controls) was analyzed to determine how effectively it will minimize groundwater plume expansion so that groundwater quality standards can be achieved at downgradient sentry wells. The expected technical effectiveness based on case histories from other sites with similar conditions also is evaluated. The ability to minimize potential impacts on surrounding facilities and operations is considered. Also, the ability of each remedial alternative to protect both current and potential future receptors from potential risks associated with potentially completed exposure pathways is qualitatively assessed. This evaluation criterion also includes permanence and the ability to reduce contaminant mass, toxicity, and volume. Time to implementation and time until protection is achieved are described. Long-term reliability for providing continued protection, including an assessment of potential for failure of the technology and the potential threats resulting from such a failure, also is evaluated.

6.1.2 Implementability

The technical implementation of each remedial technology or remedial alternative was evaluated in terms of technical feasibility and availability. Potential shortcomings and difficulties in construction, operations, and monitoring are presented and weighed against perceived benefits. Requirements for any post-implementation site controls such as LTM and land use restrictions are described. Details on administrative feasibility in terms of the likelihood of public acceptance and the ability to obtain necessary approvals are discussed.

6.1.3 Cost

The total cost (adjusted to present worth) of each remedial alternative was estimated for relative comparison. An estimate of capital costs, and operating and post-implementation costs for site monitoring and controls is included. An annual adjustment factor of 7 percent was assumed in present-worth calculations. The annual adjustment factor, or discount rate, is the difference between the rate of inflation and the cost of money (USEPA, 1993).

6.2 FACTORS INFLUENCING ALTERNATIVES DEVELOPMENT

Several factors were considered during the identification and screening of remedial technologies for addressing shallow groundwater contamination at the site. Factors considered included the objectives of the AFCEE natural attenuation demonstration program; site-specific contaminant, groundwater, and soil properties; current and future land uses; and potential receptors and exposure pathways. The following section briefly describes each of these factors and how they were used to narrow the list of potentially applicable remedial technologies to the final remedial alternatives considered for the study area.

6.2.1 Program Objectives

The intent of the RNA demonstration program sponsored by AFCEE is to develop a systematic process for scientifically investigating and documenting natural subsurface attenuation processes that can be factored into overall site remediation plans. The objective of this program and the specific demonstration at Columbus AFB is to provide solid evidence of RNA of dissolved fuel hydrocarbons so that this information can be used to develop an effective groundwater remediation strategy. A secondary goal of this multi-site initiative is to provide a series of regional case studies that demonstrate that natural processes of contaminant degradation can often reduce

contaminant concentrations in groundwater below acceptable cleanup standards before completion of potential receptor exposure pathways.

Because the objective of this program is to study natural processes in the saturated zone rather than all contaminated media (e.g., soil, soil gas, etc.), technologies have been evaluated based primarily on their potential impact on shallow groundwater and phreatic soils. Technologies that can reduce vadose zone contamination and partitioning of contaminants into groundwater also have been evaluated. Many of the source removal technologies evaluated in this section also will reduce soil and soil gas contamination, but it is important to emphasize that the remedial alternatives developed in this document are not intended to remediate all contaminated media. Additional program objectives set forth by AFCEE include cost effectiveness and minimization of Technologies that may best meet these AFCEE criteria include institutional controls, soil vapor extraction (SVE), bioventing, bioslurping, passive drain collection, Under this program, slurry walls, sheet piling, carbon biosparging, and RNA. adsorption, and groundwater extraction with ex situ biological or chemical treatment of groundwater are not considered attractive technologies.

6.2.2 Contaminant Properties

The site-related contaminants considered as part of this demonstration in the study area are the BTEX compounds. The primary source of contamination at Site ST-24 is the release into site soils of fuel products from four leaky USTs and their associated distribution lines. The USTs contained leaded gasoline, unleaded regular gasoline, unleaded premium gasoline, and heating oil. The four USTs, three fueling islands, and distribution lines were removed in 1989. At this time, not all contaminated soil was excavated. In May 1993, the remaining contaminated soil was removed by USACE (CH2M Hill, 1995). The physiochemical characteristics of gasoline and the individual BTEX compounds will greatly influence the effectiveness and selection of a remedial technology.

Gasoline is classified as an LNAPL with a liquid density of approximately 0.73 g/cc at 20°C [Biomedical and Environmental Information Analysis (BEIA), 1989]. Because gasoline is less dense than water, the LNAPL may become concentrated in the capillary fringe. Some of the individual gasoline constituents sorb very well to the soil matrix, others dissolve quickly into percolating groundwater, and yet others may volatilize into soil vapor. This "weathering" process results in a variable distribution of individual gasoline components in the soil, soil atmosphere, and groundwater with time and distance from the release (BEIA, 1989). Constituents in gasoline range from slightly to highly soluble in water. Overall solubility is approximately 300 mg/L. Gasoline also can act as a primary substrate for biological metabolism. Simultaneous biodegradation of aliphatic, aromatic, and alicyclic hydrocarbons has been observed. In fact, mineralization rates of hydrocarbons in mixtures, such as gasoline, may be faster than mineralization of the individual constituents as a result of cometabolic pathways (Jamison et al., 1975; Perry, 1984).

The BTEX compounds are generally volatile, highly soluble in water, and adsorb less strongly to soil than other hydrocarbons in a petroleum mixture. These characteristics allow the BTEX compounds to leach more rapidly from contaminated soil into groundwater, and to migrate as dissolved contamination (Lyman *et al.*, 1992). All of the BTEX compounds are highly susceptible to *in situ* degradation by both biotic and abiotic mechanisms.

Benzene is very volatile, with a vapor pressure of 76 millimeters of mercury (mm Hg) at 20°C and a Henry's Law Constant of approximately 0.0054 atmosphere-cubic meters per mole (atm-m³/mol) at 25°C (Hine and Mookerjee, 1975; Jury *et al.*, 1984). The solubility of pure benzene in water at 20°C has been reported to be 1,780 mg/L (Verschueren, 1983). Benzene is normally biodegraded to carbon dioxide, with catechol as a short-lived intermediate (Hopper, 1978; Ribbons and Eaton, 1992).

Toluene is also volatile, with a vapor pressure of 22 mm Hg at 20°C and a Henry's Law Constant of about 0.0067 atm-m³/mol at 25°C (Pankow and Rosen, 1988; Hine and Mookerjee, 1975). Toluene sorbs more readily to soil media relative to benzene, but still is very mobile. The solubility of pure toluene in water at 20°C is approximately 515 mg/L at 20°C (Verschueren, 1983). Toluene has been shown to degrade to pyruvate, caetaldehyde, and completely to carbon dioxide via the intermediate catechol (Hopper, 1978; Wilson et al., 1986; Ribbons and Eaton, 1992).

Ethylbenzene has a vapor pressure of 7 mm Hg at 20°C and a Henry's Law Constant of 0.0066 atm-m³/mol (Pankow and Rosen, 1988; Valsaraj, 1988). Ethylbenzene sorbs more strongly to soils than benzene and toluene (Kenaga and Goring, 1980; Means et al., 1980; Hassett et al., 1983; Fetter, 1993). Pure ethylbenzene is also less soluble than benzene and toluene in water at 152 mg/L at 20°C (Verschueren, 1983; Miller et al., 1985). Ethylbenzene ultimately degrades to carbon dioxide via its intermediate 3-ethylcatechol (Hopper, 1978; Ribbons and Eaton, 1992).

The three isomers of xylene have vapor pressures ranging from 7 to 9 mm Hg at 20°C and Henry's Law Constants of between 0.005 and 0.007 atm-m³/mol at 25°C (Mackay and Wolkoff, 1973; Hine and Mookerjee, 1975; Pankow and Rosen, 1988). A compilation of literature values for sorption coefficients suggests that xylenes sorb to soil with approximately the same strength as ethylbenzene (Wiedemeier *et al.*, 1995). Pure xylenes have water solubilities of 152 to 160 mg/L at 20°C (Bohon and Claussen, 1951; Mackay and Shiu, 1981; Isnard and Lambert, 1988). Xylenes can degrade to carbon dioxide via pyruvate carbonyl intermediates (Hopper, 1978; Ribbons and Eaton, 1992).

On the basis of these physiochemical characteristics, RNA, bioventing, SVE, and biosparging could all be effective options for collecting, destroying, and/or treating

BTEX at Site ST-24. Some of these options are considered less desirable after considering site-specific conditions (Section 6.2.3).

6.2.3 Site-Specific Conditions

Three general categories of site-specific characteristics were considered when identifying remedial approaches for comparative evaluation as part of this demonstration. The first category was physical characteristics such as groundwater depth, hydraulic conductivity, gradient, flow direction, and soil type. The second category was the site geochemistry, or how the site contaminants are interacting with electron acceptors, microorganisms, and other site contaminants. Both of these categories influence the types of remedial technologies most appropriate for the site. The third category involved assumptions about future land use and potential receptor exposure pathways. Each of these site-specific characteristics has influenced the development of remedial alternatives included in the comparative evaluation.

6.2.3.1 Physical Characteristics

Site geology and hydrogeology have a profound effect on the transport of contaminants and the effectiveness and scope of required remedial technologies at a given site. Hydraulic conductivity is perhaps the most important aquifer parameter governing groundwater flow and contaminant transport in the subsurface. The velocity of the groundwater and dissolved contamination is directly related to the hydraulic conductivity of the saturated zone. The estimated average hydraulic conductivity at ST-24 is 0.0403 ft/min (58 ft/day) (Section 3.3.2.2), which is characteristic of clean, fine- to medium-grained sand (Freeze and Cherry, 1979). This contributes to a moderately high advective groundwater velocity, estimated at 700 ft/yr.

Although the relatively high hydraulic conductivities of the study area can result in greater plume expansion and migration, this same characteristic also can enhance the effectiveness of other remedial technologies, such as groundwater extraction,

biosparging, and RNA. For example, it should be less expensive and time-consuming to capture and treat a contaminant plume using a network of extraction wells in an area of high hydraulic conductivity because each well could envelope a larger area of influence and sustain a higher flow rate. The effectiveness of biosparging also may be increased in highly conductive and/or homogeneous aquifers because of reduced entry pressures and short-circuiting, and increased mixing of sparge air and groundwater. In addition, greater hydraulic conductivity would increase the amount of contaminant mass traveling through a biosparging network. Given a moderately high groundwater velocity, the effectiveness of natural attenuation can increase as a result of enhanced dilution and dispersion of the contaminant mass. The movement of contaminant mass within the subsurface away from the source area also can bring contaminants into contact with a larger mass of electron acceptors, thereby increasing rates of biodegradation.

Like hydraulic conductivity, the organic carbon content of native phreatic zone soils can affect the effectiveness of remedial alternatives. Soils across the phreatic surface in the study area have a low TOC content (less than 0.06 percent), and therefore, the soils have a correspondingly low sorptive potential. However, sorptive capacity is sufficient to cause a difference in the groundwater and contaminant velocities. The difference between contaminant and groundwater velocity increases the effectiveness of biodegradation in the source area because there are fresh electron acceptors flowing past the slower moving dissolved contaminant mass.

6.2.3.2 Geochemical Characteristics

To satisfy the requirements of indigenous microbial activity and RNA, the aquifer also must provide an adequate and available carbon or energy source (e.g., fuel hydrocarbon contamination), electron acceptors, essential nutrients, and proper ranges of pH, temperature, and redox potential. Data collected as part of the field work phase of this demonstration project, and described in Sections 3 and 4 of this TS, indicate that

this site is characterized by adequate and available carbon/energy sources and electron acceptors to support measurable biodegradation of fuel hydrocarbon contamination by indigenous microorganisms. DO, nitrate, ferric iron, sulfate, carbon dioxide, and dissolved nitrogen represent sources of significant electron acceptor capacity for the biodegradation of BTEX compounds at Site ST-24 (Table 4.6). The average pH in shallow site groundwater ranged between 4.6 and 6.4 standard units in November 1996. This is lower than the optimal range for biodegradation of 6 to 8 standard pH units and bacteria populations can be expected to decrease, in turn reducing the rate of BTEX biodegradation (Wiedemeier et al., 1995). Nevertheless, biodegradation has been observed to be occurring at a fairly high rate at this site. Redox potentials ranged from 338 to -234 mV in November 1996 (Figure 4.8), and suggest a groundwater environment that is both oxidizing and reducing. The changes in geochemical parameters at the site suggest that aerobic biodegradation, nitrate reduction, iron reduction, sulfate reduction, nitrogen fixation, and methanogenesis (consistent with observed geochemical indicator trends discussed in Section 4), are reducing fuel contamination in groundwater. Groundwater data presented in Section 4 strongly support this conclusion.

Microbe addition was not considered a viable remedial approach for this site on the basis of observed geochemical trends that suggest that significant microbial activity is likely occurring. Fuel-hydrocarbon-degrading microorganisms are ubiquitous in the subsurface, and as many as 28 hydrocarbon-degrading isolates (bacteria and fungi) have been discovered in different soil environments (Davies and Westlake, 1979; Jones and Eddington, 1968). Indigenous microorganisms have a distinct advantage over microorganisms injected into the subsurface to enhance biodegradation because indigenous microorganisms are well adapted to the physical and chemical conditions of the subsurface in which they reside (Goldstein *et al.*, 1985).

6.2.3.3 Potential Receptor Exposure Pathways

A pathways analysis identifies the potential human and ecological receptors that could come into contact with site-related contamination and the pathways through which these receptors might be exposed. To have a completed exposure pathway, there must be a source of contamination, a potential mechanism of release, a pathway of transport to an exposure point, an exposure point, and a receptor. If any of these elements do not exist, the exposure pathway is considered incomplete, and receptors will not come into contact with site-related contamination. Evaluation of the potential long-term effectiveness of any remedial technology or remedial alternative as part of this demonstration project includes determining the potential for pathway completion. If a completed exposure pathway exists (e.g., surface water contact), potential long-term remedial options still may be sufficient to maintain exposure concentrations below regulatory action levels. Establishing site-specific, risk-based cleanup levels is beyond the scope of this TS.

Assumptions about current and future land uses at a site form the basis for identifying potential receptors, potential exposure pathways, reasonable exposure scenarios, and appropriate remediation goals. USEPA (1991) advises that the land use associated with the highest (most conservative) potential level of exposure and risk that can reasonably be expected to occur should be used to guide the identification of potential exposure pathways and to determine the level to which a site must be remediated.

Site ST-24 is currently used as a recreational (open space) area. The site is surrounded by Base housing to the west of the site and recreational areas (e.g., open spaces, softball fields) to the north, south, and east sides of the site. In the hydraulically connected downgradient direction (southwest), recreational areas and Base housing extend for at least 3,000 feet. There are no downgradient on-Base wells that provide potable water to Columbus AFB. The closest off-Base private wells are

located 3,300 feet to the east and 5,100 feet to the southeast of Site ST-24. Observed BTEX concentrations (Figure 4.1) and modeling results (Section 5) suggest that contaminant concentrations emanating from Site ST-24 are attenuated long before reaching the downgradient Base boundary, located 1,000 feet southwest of Site ST-24.

Under reasonable current land use assumptions, potential receptors include Base intrusive workers and possibly downgradient Base residents, because the model results suggest that the dissolved BTEX plume will not migrate far enough to pose a threat to potential receptors exposed at the nearest downgradient off-Base well. Workers could be exposed to site-related contamination in shallow groundwater or soils beneath the water table if these materials are removed or exposed during future construction excavations or remedial activities. Residents could possibly be exposed to groundwater VOCs that have migrated beneath Base housing and volatilized into contaminated soil vapors that could seep into housing basements via cracks in the foundation. However, modeling presented in Section 5 suggest that under current conditions contaminated groundwater will not migrate beneath Base housing. Groundwater from the shallow aquifer downgradient from Site ST-24 is not currently used to meet any demands at Columbus AFB. Currently, there are five deep on-Base wells that provide potable water to Columbus AFB, none of which are downgradient from the site. Columbus AFB plans to connect to the City of Columbus water system in 1997.

The potential future exposure pathways involving Base workers are identical to those under current conditions. Given the current and future land use scenarios, the use of RNA at this site will require that the source area be maintained as recreational property, and that restrictions on shallow groundwater use be enforced in areas downgradient from the site until RNA and/or engineered source removal can reduce contaminants to regulatory action levels. If source reduction technologies such as SVE, bioventing, or excavation are implemented, they will have some impact on the short-

and long-term land use options, and some level of institutional control and worker protection during remediation may be required.

6.2.3.4 Remediation Goals for Shallow Groundwater

The federal MCLs for BTEX and other VOCs (MDEQ,1991) are adopted as the state water quality MCLs by the MDEQ (MDEQ Office of Pollution Control, Groundwater Division, Groundwater Quality Standards, Section 3, Numerical Groundwater Standards, 1991). MCLs for the BTEX compounds are presented in Table 6.1. Although it is unlikely that groundwater from Site ST-24 would be ingested by humans because there are no current downgradient water supplies in close proximity to the site and the Base is converting to a City supply system in the near future, the state MCL of 5 μ g/L for benzene will be used to evaluate the effectiveness, implementability, and cost of remedial alternatives in this TS.

TABLE 6.1
GROUNDWATER QUALITY STANDARDS
SITE ST-24 RNA TS
COLUMBUS AFR MISSISSIPPI

fd, M1331331FF1
State Maximum
Contaminant Level
$(\mu g/L)^{a/}$
5
1,000
700
10,000

Source: MDEQ Office of Pollution Control, Groundwater Division, Groundwater Quality Standards, Section 3, Numerical Groundwater Standards, 1991.

For this TS, the primary remedial action objective (RAO) for evaluation of remediation technologies for shallow groundwater is to reduce contaminant concentrations in groundwater to below state regulatory criteria at downgradient sentry wells. To accomplish this, remedial alternatives focus on limiting migration of the

dissolved contaminant plume away from Site ST-24 toward Base housing, while relying on RNA to reduce contaminant concentrations throughout the plume.

Viable remedial alternatives must be able to achieve MCLs or other risk-based standards that are protective of human health and the environment. Use of risk-based cleanup goals developed specifically for Site ST-24 groundwater may allow compliance with less stringent groundwater quality standards. If groundwater concentrations protective of human health and the environment can be negotiated with the state on the basis of site-specific exposure scenarios, the time and cost of the proposed remedial alternative (Section 6.5) could potentially be decreased.

In summary, available data suggest that completed exposure pathways involving human and ecological receptors exposed to contaminated groundwater do not exist under current conditions. The site is currently used as a recreational area, and no intrusive activities are planned in the near future. The required period of any groundwater and soil institutional controls associated with the selected remedial technology is likely to expire before any anticipated future land use changes.

6.2.4 Summary of Remedial Option Screening

Several remedial options have been identified and screened for use in treating the shallow groundwater at the site. Table 6.2 identifies the initial remedial technologies and approaches considered as part of this demonstration and those retained for detailed comparative analysis. Screening was conducted systematically by considering the program objectives of the AFCEE RNA demonstration, physiochemical properties of BTEX, and other site-specific characteristics such as hydrogeology, geochemistry, land use assumptions, potential receptor exposure pathways, and appropriate remediation goals. All of these factors will influence the technical effectiveness, implementation, and relative cost of technologies for remediating shallow groundwater underlying and migrating from the site. The remedial options retained for development of remedial

TECHNOLOGIES AND PROCESS OPTIONS FOR GROUNDWATER REMEDIATION INITIAL TECHNICAL IMPLEMENTABILITY SCREENING OF TABLE 6.2

SITE ST-24 RNA TS COLUMBUS AFB, MISSISSIPPI

Retain	Yes	Yes	Yes	No No	No	Yes	S _O	Yes	S S	No	No
Relative Cost	Low	Low	Low	Low	Moderate	Low	Moderate	Moderate	High	High	High
Effectiveness	Necessary for all remedia-tion strategies	Necessary	Necessary	Not required at this site	Poor	Necessary	Low	Moderate	Low	Low	Moderate
Implementability	Many wells and monitoring points are available to confirm the progress of remediation. Sufficient space exists for additional wells.	Sufficient distance exists between the plume and point-of-compliance to locate several wells.	The plume lies within the Base boundary, and land and groundwater use are under Base jurisdiction.	No production wells are known to exist in the current or predicted plume area.	No shallow groundwater is extracted from the plume area for any use.	Base public relations and environmental management offices have many information avenues to workers and residents.	No likely receptors downgradient of site. Groundwater gradients are low. Hydraulic conductivity of site soils favors pumping.	Would prevent downgradient migration of dissolved contaminants beneath Base housing; however, only marginally complies with program objectives.	Although implementable, the technology would be costly and ineffective because of high groundwater velocity and consequently large groundwater volume.	Although implementable, the technology would be costly and ineffective because of high groundwater velocity and consequently large groundwater volume.	Degradation of BTEX can be stimulated by allowing groundwater to flow through a nutrient-rich barrier. Although implementable, the technology is new and unproven.
Process Option	Confirmation Wells	Point-of- Compliance Wells	Land Use Control/Regulate Well Permits	Seal/Abandon Existing Wells	Point-of-Use Treatment	Meetings/ Newsletters	Interceptor Trench Collection	Groundwater Extraction	Slurry Walls/Grout Curtains	Sheet Piling	Biologically Active Zones
Technology Type	Periodic Groundwater Monitoring	·	Groundwater Use Control			Public Education	Hydraulic Controls		Physical Controls		Reactive/ Semi- Permeable Barriers
General Response Action	Long-Term Monitoring	4 0-7	Institutional Controls	···			Containment of Plume				

TABLE 6.2 (continued) INITIAL TECHNICAL IMPLEMENTABILITY SCREENING OF

[]	Technology Type	Process Option	Implementability	Effective- ness	Relative Cost	Retain
	Biological	Oxygen and/or Nutrient Enhanced Biodegradation (Biosparging)	Nutrients are injected downgradient of plume to limit plume migration by enhancing biodegradation and reducing BTEX concentrations. Implementable, and technology may enhance natural attenuation processes.	Moderate	Low	Yes
L	Chemical/ Physical	Natural Attenuation	A combination of natural biological, chemical, and physical removal mechanisms which occur to varying degrees on every site. Groundwater sampling at Site ST-24 indicates that this is an ongoing remediation process.	High	Low	Yes
		Air Sparging (Volatilization)	Injection of air into contaminated aquifer creating a mass transfer of BTEX into air bubbles and vadose zone. Similar to biosparging in effectiveness; however, more mass is transferred rather than destroyed.	Moderate	Low	S S
Source Removal/ Groundwater Remediation	Groundwater Extraction	Vertical Pumping Wells	Source area of groundwater plume is pumped by installing submersible pumps in source area wells. Limited by contaminant mass transfer rates into the groundwater; therefore, for steady-state or shrinking plumes it is comparable to RNA in effectiveness.	Moderate	Moderate	No O
Aboveground Groundwater Treatment	Biological	Bioreactors	High flow rates require excessive retention times and large reactors. BTEX is often volatilized in these systems.	Moderate	High	S S
	Chemical/ Physical	Air Stripping	Cost-effective technology for removing BTEX from groundwater at high flow rates. Potential permitting for air emissions.	High	Moderate	Yes
		Activated Carbon	Cost prohibitive for more concentrated BTEX. Creates a carbon disposal problem.	Moderate	High (O&M)	N _o
		Direct Discharge to Industrial Waste Water Treatment Plant (IWWTP)	Implementable option only when an IWWTP is readily available and capable of handling BTEX, TPH, chlorinated solvent, and hydraulic loading. IWWTP not available for this site.	High	Low	o N
\exists		tors	High flow rates require lengthy retention times and large, costly reactors.	Moderate	High	%

TECHNOLOGIES AND PROCESS OPTIONS FOR GROUNDWATER REMEDIATION INITIAL TECHNICAL IMPLEMENTABILITY SCREENING OF TABLE 6.2 (concluded)

SITE ST-24 RNA TS COLUMBUS AFB, MISSISSIPPI

Retain	No	Yes	No	No	Yes	No	No	No	Yes	Yes	No No
Relative Cost	Low	Low	Moderate	Moderate	Low	Moderate	Moderate	High	Low	Low to Moderate	High
Effectiveness	High	High	Moderate	Moderate	High	Moderate	Moderate	Moderate	Moderate to High	High	Low
Implementability	Implementable option only when an IWWTP is available and capable of handling hydraulic loading. IWWTP is not available.	Implementable option only when access to a sanitary sewer exists and hydraulic loading is acceptable.	Injection wells subject to clogging, high maintenance, and permitting.	Requires large trenches and can be subject to injection well permitting.	Generally requires NPDES or other discharge permit	Excavation has already been performed at this site. For reasons of risk and cost reduction, in-situ methods preferable when possible.	Excavation has already been performed at this site. For reasons of risk and cost reduction, <i>in-situ</i> methods preferable when possible.	Excavation has already been performed at this site. For reasons of risk and cost reduction, <i>in-situ</i> methods preferable when possible.	Air injection/extraction to increase soil oxygen levels and stimulate biodegradation of fuel residuals.	Vapor extraction has been successfully implemented at other sites. Highly implementable in sandy soils and effective for BTEX in unsaturated soils. May be subject to air permitting.	Water and/or surfactant solution are forced through zones of residual contamination to enhance contaminant partitioning into the groundwater. Most effective in homogeneous sandy soils.
Process Option	IWWTP	Sanitary Sewer	Vertical Injection Wells	Injection Trenches	Storm Drains	Landfilling	Biological Landfarming	Thermal Desorption	Bioventing	Soil Vapor Extraction	Soil Washing
Technology Type	Discharge to IWWTP or	Sanitary Sewer	Treated Groundwater	Reinjection	Discharge to Surface Waters	Excavation/ Treatment			In Situ		
General Response Action	Treated Groundwater	Disposal				Source Removal/Soil	Remediation				

alternatives and comparative analysis include institutional controls, RNA, LTM, biosparging/SVE, and groundwater pumping.

6.3 BRIEF DESCRIPTION OF REMEDIAL ALTERNATIVES

This section describes how remedial technologies retained from the screening process were combined into three remedial alternatives for the study area. Sufficient information on each remedial alternative is provided to facilitate a comparative analysis of effectiveness, implementability, and cost in Section 6.4.

6.3.1 Alternative 1 - RNA and Institutional Controls with Long-Term Groundwater Monitoring

RNA is achieved when natural attenuation mechanisms bring about a reduction in the total mass of a contaminant in the soil or dissolved in groundwater. RNA results from the integration of several subsurface attenuation mechanisms that are classified as either destructive or nondestructive. Destructive attenuation mechanisms include biodegradation, abiotic oxidation, and hydrolysis. Nondestructive attenuation mechanisms include sorption, dilution (caused by dispersion and infiltration), and volatilization. In some cases, RNA will reduce dissolved contaminant concentrations below numerical concentration goals intended to be protective of human health and the environment. As indicated by the evidence of RNA described in Section 4, these processes are occurring in the vicinity of Site ST-24 and will continue to reduce contaminant mass in the plume area.

Implementation of Alternative 1 would require the use of institutional controls such as land use restrictions and LTM. Land use restrictions may include placing long-term restrictions on soil excavation within the source area and long-term restrictions on groundwater well installations within and downgradient from the plume area. The intent of these restrictions would be to reduce potential receptor exposure to

contaminants by legally restricting activities within areas affected by site-related contamination.

Long-term monitoring would be performed at a regular frequency and would consist of sampling a set of wells, including upgradient, source area, plume extent, and sentry monitoring wells. The site- and alternative-specific LTM strategy is provided in Section 7. On the basis of predictive contaminant fate and transport model results (Section 6.4), it is unlikely that contaminant concentrations exceeding MDEQ groundwater MCLs would approach a potential receptor exposure point. Nevertheless, LTM is the technical mechanism used to evaluate the progress of natural attenuation processes and to ensure that remedial objectives are being met. Detection of benzene in excess of the MDEQ MCL of 5 μ g/L at any sentry well may require additional evaluation to assess BTEX migration and to determine the probable extent of migration, or to determine if additional corrective action is necessary. Regulatory standards for other detected fuel compounds are much higher; therefore, it is unlikely that these standards would be exceeded sooner than would the benzene standard. In either case, land use restrictions would require reevaluation.

Public education on the selected alternative would be developed to inform Base personnel and residents of the scientific principles underlying source reduction and RNA. This education could be accomplished through public meetings, presentations, press releases, and posting of signs where appropriate. Periodic site reviews also could be conducted every year using data collected from the long-term groundwater monitoring program. The purpose of these periodic reviews would be to evaluate the extent of contamination, assess contaminant migration and attenuation through time, document the effectiveness of source removal and/or institutional controls at the site, and reevaluate the need for additional remedial actions at the site.

6.3.2 Alternative 2 - Biosparging with Soil Vapor Extraction In and Downgradient from the Source Area, RNA, and Institutional Controls with Long-Term Groundwater Monitoring

This alternative is identical to Alternative 1 except that a biosparging system would be used to enhance the biodegradation of organic contaminants in subsurface soils and groundwater by supplying oxygen to indigenous microbes using low-flow air injection in the ST-24 source area. The biosparging system would also be used to minimize downgradient migration of dissolved contamination by placing a line of sparging wells perpendicular to the observed groundwater flow direction just upgradient from the Base housing to the west of site ST-24. The biosparging system is intended to be operated at a low rate of air injection that significantly reduces emissions into the atmosphere while maximizing *in situ* biodegradation. An SVE system could be used in conjunction with the biosparging system to prevent migration of contaminated soil gas toward the nearby Base housing. If it is determined that the efficiency of the biosparging system would be improved by substantially increasing the air injection rate, the SVE system also could be expanded to recover virtually all injected gases and displaced soil vapors prior to discharge to the atmosphere.

On the basis of Parsons ES experience in the application of biosparging technology, two vertical air injection wells installed within the source area, defined as the area of contaminated vadose zone soils and groundwater, should be sufficient to remediate the contamination surrounding the former USTs and fuel distribution systems. Another three air injection wells would be installed west of Independence Avenue in order to prevent dissolved groundwater contamination from migrating beneath the Base housing located west of the site. Approximately five shallow vapor monitoring points also would be installed for measurement of the effectiveness of the injection wells. The SVE component of the biosparging system also is designed in two portions. Five vapor extraction points would be located between Independence Avenue and just downgradient from the proposed biosparging curtain to intercept the migration of any

potential contaminated soil gas toward the on-Base residences. Another two SVE points would be placed in the source area to prevent migration of contaminated vapors to the recreational area just above the source area.

The conceptual design assumes that biosparging points would be 30 feet deep with 10 feet of screen located approximately 15 feet beneath the water table. Biosparging well are also assumed to have an approximate radius of influence of 25 feet. SVE points would be 15 feet deep with no more than 10 feet of screen. The conceptual radius of influence for each SVE point is 35 feet. To conservatively estimate the cost of remediation, it was assumed that the biosparging system coupled with SVE would be operated for 5 years.

As with Alternative 1, institutional controls and LTM would be required. LTM wells would be the same as described for Alternative 1.

6.3.3 Alternative 3 - Groundwater Extraction, RNA, and Institutional Controls with Long-Term Groundwater Monitoring

Groundwater extraction at Site ST-24 would be performed for plume containment rather than source reduction. Two 8-inch-diameter groundwater extraction wells would be placed just downgradient from the source and just upgradient from the Base housing along Independence Avenue in the observed groundwater flow direction. The groundwater extraction wells will prevent contaminated groundwater from migrating beneath any Base housing just west of ST-24 and prevent completion of any potential receptor pathways. Because groundwater extraction is not proposed for source reduction it would not appreciably reduce the predicted length of time required for RNA to complete groundwater remediation. In addition, because the groundwater extraction system potentially generates a large volume of waste requiring treatment and disposal, the alternative does not comply well with objectives of the AFCEE initiative.

As with Alternative 1, institutional controls and LTM would be required. LTM wells would be the same as described for Alternative 1.

6.4 Evaluation of Alternatives

This section provides a comparative analysis of each of the remedial alternatives based on the effectiveness, implementability, and cost criteria. A summary of this evaluation is presented in Section 6.5.

6.4.1 Alternative 1 - RNA and Institutional Controls with Long-Term Groundwater Monitoring

6.4.1.1 Effectiveness

Alternative 1 is based on the effectiveness of natural processes that minimize contaminant migration and reduce contaminant mass over time, and the effectiveness of institutional controls. Model-NA was used to simulate the migration and biodegradation of the BTEX plume assuming that only natural physical weathering (e.g., dissolution, volatilization) decreases BTEX loading in the source areas. Model-NA assumes that site remediation relies entirely on natural attenuation mechanisms. Model results predicted that natural attenuation mechanisms will continue to limit BTEX migration and reduce contaminant mass and toxicity. BTEX (and specifically benzene) concentrations should not exceed state MCLs at the sentry wells. Groundwater monitoring at the LTM and sentry wells will allow for continued evaluation of BTEX migration and ensure the safety of this alternative. However, while this alternative would not cease to be protective if the BTEX plume were intercepted by the sentry wells, such an instance would indicate that site conditions should be reevaluated.

The calibrated model (Section 5) was used as the foundation for predicting future plume migration assuming natural attenuation processes alone were working to reduce the dissolved contaminant mass at Site ST-24. The future predictions based on the

calibrated model input terms is called Model-NA. Model-NA is intended to predict the fate and transport of dissolved BTEX compounds if engineered remedial action is not implemented at Site ST-24.

Because the fuel spill and site history of ST-24 is not well documented, the model assumed a source of 46.5 mg/L that was conservatively decayed at an annual rate of 8 percent to approximate the plume shape observed in November 1996. This decay rate is conservative because weathering and natural attenuation processes both will steadily decrease the amount of BTEX in both the source area and throughout the dissolved contaminant plume. Therefore, Model-NA is considered to be the "worst case-scenario" for dissolved contaminants at Site ST-24.

Contaminant plume migration predictions from Model-NA suggest a relatively slow plume recession with total dissolved BTEX concentrations falling below 5 μ g/L after 107 years. Assuming that benzene remains approximately 5 percent of the total dissolved BTEX in the source area, benzene concentrations should fall below 5 μ g/L in 70 years. Assuming an 8-percent annual source decay rate, Model-NA predicts that more than 95 percent of the total dissolved contaminant mass will be degraded in 40 years (by 2037), and more than 85 percent of the dissolved contaminant mass would be degraded in 30 years (by 2027). Model outputs, including graphs of total dissolved BTEX concentration versus time and distance, are provided in Appendix C.

The effectiveness of this remedial alternative requires that future intrusive site activities or construction activities within the source area be conducted only by properly protected site workers. Reasonable land use assumptions for the plume area indicate that exposure is unlikely unless excavation or drilling activities bring saturated soil to the surface. Long-term land use restrictions would be required to ensure that shallow groundwater is not pumped or removed for potable use within a radius of approximately 500 feet from the margins of the existing BTEX plume. Existing health

and safety plans should be enforced to reduce worker exposures during any site excavation or installing and monitoring additional wells.

Compliance with program goals is one component of the long-term effectiveness evaluation criterion. Alternative 1 would satisfy program objectives designed to promote RNA as a component of site remediation and to scientifically document natural processes. Limited drill cuttings would be generated during construction of new monitoring wells. This alternative also satisfies program goals for cost effectiveness and waste minimization.

Apart from the administrative concerns associated with the enforcement of long-term land use restrictions and long-term groundwater monitoring programs, this remedial alternative should provide reliable, continued protection. For costing purposes, it is assumed that the model is overly conservative and that dissolved benzene concentrations will exceed state and federal criteria throughout the plume for approximately 30 years under Alternative 1. Furthermore, it is assumed that sampling will be performed for 30 years, annually for 5 years and every second year for the next 25 to demonstrate that RNA will uniformly reduce all dissolved BTEX compounds to levels below regulatory criteria.

6.4.1.2 Implementability

Alternative 1 is not technically difficult to implement. Installation of any additional LTM and sentry wells and monitoring of groundwater are standard procedures. Long-term management efforts would be required to ensure proper sampling and analysis procedures are followed. Periodic site reviews should be conducted to confirm the adequacy and completeness of LTM data and verify the effectiveness of this remediation approach. There also may be administrative concerns associated with long-term enforcement of groundwater use restrictions. In summary, the use of RNA at this site will require that the source area be maintained as recreational property, and

that restrictions on shallow groundwater use be enforced in areas downgradient from the site until the site has been remediated. Therefore, with the exception of any subsurface work at the site, the potential risk of exposure to fuel hydrocarbons for Base personnel will remain the same. If required, the public and the regulators would have to be informed of the benefits and limitations of the RNA option. Educational programs are not difficult to implement. Where the effectiveness of this option has been demonstrated, the initial regulatory reaction to this alternative has been positive.

6.4.1.3 Cost

The cost of Alternative 1 is summarized in Table 6.3. Capital costs are limited to the construction of five new LTM wells and three new sentry wells. Included in the \$232,212 total present-worth cost estimate for Alternative 1 are the costs of maintaining institutional controls and long-term groundwater monitoring at 10 LTM and sentry wells for 30 years, annually for 5 years and every second year for 25 more years. If after 30 years the contaminant plume has not been completely attenuated, LTM would be continued. It is recommended that conditions at ST-24 be reevaluated after 20 years of LTM because model predictions of the fate and transport of groundwater contamination at the study area are conservative, and groundwater remediation may be faster than predicted (Section 5.7). If the groundwater plume at the site recedes more rapidly than predicted or disappears, then monitoring may be eliminated.

TABLE 6.3 ALTERNATIVE 1 - COST ESTIMATE SITE ST-24 RNA TS COLUMBUS AFB, MISSISSIPPI

Capital Costs	Cost
Design/Construct 8 LTM/Sentry Wells	\$20,761
Monitoring Costs (per Sampling Event)	Cost per Event
Conduct Groundwater Sampling at 10 wells	\$11,410
(annually for 5 years, every other year for 25 more years)	,
Maintain Institutional Controls/Public Education (30 years)	\$5,000
Project Management and Reporting (30 years)	\$4,747
Present Worth of Alternative 1 a/	\$232,212

^a/ Based on an annual adjustment factor of 7 percent (USEPA, 1993).

6.4.2 Alternative 2 - Biosparging with Soil Vapor Extraction In and Downgradient from the Source Area, RNA, Institutional Controls, and Long-Term Groundwater Monitoring

6.4.2.1 Effectiveness

The effectiveness of RNA and institutional controls with LTM is discussed for Alternative 1 in Section 6.4.1.1. Biosparging is an established technology for reducing source contamination and controlling plume migration. The goal of biosparging would be to effect the removal of BTEX from the source area so that RNA of dissolved contaminants in the groundwater could proceed without the continual infusion of additional contaminants. In addition, a downgradient biosparging curtain just west of Independence Avenue would prevent any migration of dissolved contaminants beneath Base housing. SVE would be coupled with biosparging to prevent migration of contaminated vapors into on-Base housing and recreation areas. The model suggests that reduction of the source would enhance the effectiveness of RNA, expedite the decrease in the size of the BTEX plume, and prevent migration of contaminated groundwater beneath Base housing.

To estimate the impact of biosparging on the fate and transport of dissolved BTEX in the shallow groundwater, a model that incorporated a conservative source decay rate of 50-percent per year was performed. Model results (Model-BB) suggest that maximum dissolved BTEX concentrations will rapidly decrease both in the source area and at the leading edge of the contaminant plume. Approximately 5 years after implementation of biosparging (calendar year 2004), Model-BB predicts that more than 95 percent of the dissolved contaminant mass will have been completely degraded. Model-BB predicts the complete degradation of the dissolved BTEX contamination in just over 17 years. Model output, including graphs of concentration versus time and distance, are provided in Appendix C.

Alternative 2 should provide reliable, continuous protection with little risk from temporary system failures. This alternative also complies with AFCEE program goals because RNA remains the predominant remediation method for fuel hydrocarbons dissolved in groundwater at the site. This remedial alternative, however, will result in the generation of additional contaminated drill cuttings that may require treatment and/or disposal. Furthermore, off-gas from the SVE system may require expensive treatment prior to atmospheric release.

6.4.2.2 Implementability

Installing and operating a biosparging/SVE system to reduce residual fuel hydrocarbons in the source areas is more complex than Alternative 1; however, major obstacles are not anticipated. Installation of the biosparging/SVE system involves standard engineering design and construction, including the installation of air injection wells, vapor extraction wells, a regenerative blower system (2 blowers), electrical supply, and system integration.

Installation and operation of a biosparging/SVE system would require an increased commitment of labor hours and other resources to maintain and monitor the system.

Periodic maintenance would be required for the regenerative blowers. Weekly system checks are recommended, and operating data such as injection pressures or extraction vacuum and flow rates would be manually recorded. It is conservatively estimated that the biosparging/SVE system would be operational for 5 years. In addition, an SVE air emissions permit may need to be obtained prior to system start-up. The technical and administrative implementability concerns associated with the natural attenuation and LTM components of this remedial alternative are similar to those discussed for Alternative 1.

6.4.2.3 Cost

The estimated capital and operating costs of Alternative 2 are shown in Table 6.4. The total present-worth cost of Alternative 2 is \$552,802. The cost of Alternative 2 is increased from the cost of Alternative 1 by the addition of the biosparging and SVE systems, including system design, construction, operation, and maintenance (including SVE off-gas treatment using carbon). It is assumed that the biosparging/SVE system would operate for 5 years after installation. LTM is assumed to occur annually for 5 years and every other year for 5 more years to ensure that natural attenuation is reducing BTEX concentrations to below regulatory criteria throughout the groundwater plume and to verify that contamination does not reach the sentry wells. The capital expense and annual costs for LTM and institutional controls are assumed to be the same as for Alternative 1.

TABLE 6.4 ALTERNATIVE 2 - COST ESTIMATE SITE ST-24 RNA TS COLUMBUS AFB, MISSISSIPPI

Capital Costs	Cost
Design/Construct 8 LTM/Sentry Wells	\$20,761
Design/Construct 5-Well Biosparging System and 7-Well SVE System	\$169,443
Operation, Maintenance, and Monitoring Costs Operate and Maintain Biosparging/SVE System with Off-gas Treatment (5 years)	Cost per annum or event \$54,440
Annual Report (5 years)	\$5,676
Conduct Groundwater Sampling at 10 wells (annually for 5 years, every other year for 5 years)	\$11,410
Maintain Institutional Controls/Public Education (10 years)	\$5,000
Project Management and Reporting (10 years)	\$4,747
Present Worth of Alternative 2 a/	\$552,802

^a Based on an annual adjustment factor of 7 percent (USEPA, 1993).

6.4.3 Alternative 3 - Groundwater Extraction, RNA, and Institutional Controls with Long-Term Groundwater Water Monitoring

6.4.3.1 Effectiveness

Groundwater extraction is an established technology for controlling plume migration. The extraction of contaminated groundwater will prevent plume migration beneath Base housing located to the west of Site ST-24, thereby preventing any completion of potential exposure pathways. Simulation of the effect of groundwater extraction was not performed; however, because source reduction is not occurring, remediation time is the same as predicted for Model-NA.

Alternative 3 should provide reliable, continuous protection for downgradient receptors. This alternative, however, does not comply well with all of the AFCEE program goals because of the generation of soil and water waste requiring treatment and disposal. In addition, contaminants are not destroyed, rather transferred to another phase still requiring more treatment. As with Alternatives 1 and 2, this alternative would require RNA with LTM and institutional controls to remediate the contaminated groundwater.

6.4.3.2 Implementability

Groundwater extraction would be labor intensive and expensive to implement. The option would require additional site investigation, design and engineering, installation, and a weekly commitment to operate and maintain the extraction and air stripper systems. Treated groundwater may be disposed of in the sanitary sewer at minimal cost, however, if treated groundwater does not meet the requirements for disposal in the sewer more expensive methods of disposal may have to be considered. In addition, an air emissions permit may need to be obtained for the air stripper prior to system start-up. The technical and administrative implementability concerns associated with the RNA, LTM, and institutional controls of this remedial alternative are similar to those discussed for Alternatives 1 and 2.

6.4.3.3 Cost

The estimated capital and operating costs of Alternative 3 are shown in Table 6.5. The total present-worth cost of Alternative 3 is \$844,162. The cost of Alternative 3 is more than the costs of Alternative 2 because it is assumed that groundwater extraction be performed for 15 years (half the assumed RNA time) and will not lessen remediation time or long-term monitoring requirements. However, the cost could be significantly higher if off-gas treatment for the air stripper is required. The present-worth cost for LTM and institutional controls is the same as Alternative 1 because it is assumed that the groundwater extraction systems contains the contaminant plume without treating the

source. The annual costs for LTM and institutional controls are assumed to be the same as for Alternatives 1 and/or 2.

6.5 RECOMMENDED REMEDIAL APPROACH

Three remedial alternatives have been evaluated for remediation of the shallow groundwater at the study area. Components of the alternatives evaluated include biosparging/SVE, groundwater extraction, RNA with LTM of groundwater, and institutional controls. Table 6.6 summarizes the results of the evaluation based upon effectiveness, implementability, and cost criteria. Despite the increase in estimated remediation time from Alternative 2, the Air Force recommends Alternative 1 as the most cost-effective option for risk reduction at the study area.

TABLE 6.5
ALTERNATIVE 3 - COST ESTIMATE
SITE ST-24 RNA TS
COLUMBUS AFB, MISSISSIPPI

Carital Casta	COLUMBUS AT	,		~
Capital Costs				Cost
Design/Construct 8 LTM/S	Sentry Wells			\$20,761
	•			420,701
D : 10	~ .			
Design/Construct/Install	Groundwater	Extraction	and	\$165,008
Treatment System				ŕ
,				
0				
Operation, Maintenance, and				Cost per annum or event
Conduct Groundwater Sam	pling at 10 wells	4,		\$11,410
(annually for 5 years and e				Ψ11,410
(aimuaily for 5 years and e	very officer year i	or 25 years))		
Maintain Groundwater Ext	raction System (1	5 years)		\$44,120
		o jours)		Ψ++,120
361.1 7				
Maintain Institutional Cont	rols/Public Educ	ation (30 years	3)	\$5,000
		-		·
Project Management and R	enorting (30 year	-a)		¢4 747
1 Toject Wallagement and K	cporning (30 year	13)		\$4,747
D 4 TT 41 6 4 1	9/			
Present Worth of Alterna	tive 3			\$884,162
Present Worth of Alterna	tive 3 a/			\$884,162

^{a/} Based on an annual adjustment factor of 7 percent (USEPA, 1993).

SUMMARY OF REMEDIAL ALTERNATIVES EVALUATION FOR GROUNDWATER REMEDIATION SITE ST-24 RNA TS COLUMBUS AFB, MISSISSIPPI

Remedial Alternative	Effectiveness	Implementability	Present-Worth Cost Estimate
Alternative 1			
- Natural Attenuation - Long-Term Monitoring	Contaminant mass, volume, and toxicity will be significantly reduced	Readily implementable. Long-term management, groundwater use controls, and	\$232,212
- Institutional Controls	and plume leading edge would continue to recede. MCLs for BTEX	monitoring required for an estimated 30 years. If MCLs are exceeded at POC, additional	
	are not likely to be exceeded at POC wells.	remedial work may be required.	
Alternative 2			
- Biosparging with SVE	Similar to Alternative 1, with the	Readily implementable. Installation of	\$552,802
- Natural Attenuation	addition of biosparging and SVE	biosparging/SVE system should present no	
- Long-Term Monitoring	systems. BTEX mass, volume, and	problems. Biosparging estimated to continue	
 Institutional Controls 	toxicity would be reduced more	for 5 years. Long-term management,	
	rapidly than in Alternative 1, and SVE	groundwater controls, and monitoring required	
	system would treat contaminated	for an estimated 10 years. If MCLs are	
	vapors forced into soils from	exceeded at POC, additional remedial work may	
	biosparging activities.	be required.	
Alternative 3			
- Groundwater Extraction	Similar to Alternative 1, with the	Readily implementable. Installation and	\$844,162
- Natural Attenuation	addition of a groundwater extraction	operation of groundwater extraction system will	
- Long-Term Monitoring	system. BTEX mass, volume, and	be costly and labor intensive. Groundwater	
- Institutional Controls	toxicity will not be reduced more	extraction estimated to continue for 15 years.	
	rapidly than in Alternative 1; however,	Long-term management, groundwater controls,	
	migration of dissolved contaminants	and monitoring required for an estimated 30	
	beneath Base housing will be	years. If MCLs are exceeded at POC, additional	
	prevented.	remedial work may be required.	

All three alternatives make use of natural attenuation mechanisms to reduce dissolved BTEX mass, migration, and toxicity. In addition, Alternative 2 would use active *in situ* techniques to reduce the magnitude of continuing sources and prevent migration of contaminated groundwater from migrating beneath Base housing. Implementation of Alternative 2 would substantially decrease the time frame for BTEX remediation, but would require greater capital expenditures. Alternative 3 would not decrease remediation time for dissolved BTEX compounds because it interrupts a potential exposure pathway without eliminating the source. Alternative 3 also would require greater capital expenditures than RNA with or without a biosparging/SVE system. Alternative 3 is considered the least favorable of the three evaluated alternatives because groundwater extraction simply transfers contaminants to another phase, which then requires further treatment and disposal. Furthermore, Alternative 3 is no more effective at reducing the remediation time frame or eliminating contaminant mass than Alternative 1.

All three remedial alternatives are implementable and effectively reduce potential hydrocarbon migration and toxicity in the groundwater. All three alternatives should be acceptable to the public and regulatory agencies because they are protective of human health and the environment and reduce groundwater contamination. Implementation of any of the three alternatives will require land use and groundwater use controls to be enforced. Groundwater monitoring would be required for the respective projected cleanup periods. Because of conservative modeling assumptions, overly conservative remediation time model estimates, and the lack of mobile LNAPL and residual LNAPL above the water table, the assumed 30-year remediation time for Alternative 1 is considered to be conservative. Because the 30-year estimate is believed to be conservative, the proposed LTM period is consistent with federal recommendations that proposed or implemented remedial activities at a site should not exceed 30 years in duration (USEPA, 1988).

The final evaluation criterion used to compare each of the remedial alternatives was cost. It is the opinion of the Air Force that the additional cost of Alternative 2 does not justify the reduced risk resulting from the decrease in the time required to remediate the dissolved BTEX plume and the residual soil contamination below the water table. In addition, the costs of Alternative 3 are not considered justifiable because future exposure to potential receptors at the site will be stemming from of the lack of plume migration. Alternative 1 will cost effectively reduce the level of contamination and maintain the necessary degree of protection to potential receptors at the site, and is the recommended remedial alternative for Site ST-24. If risk assessment demonstrates an unacceptable risk as a result of contaminant migration toward the Base residential housing, the Air Force would recommend Alternative 2 over Alternative 3 because of the source reduction provided by the biosparging/SVE system. A LTM plan for groundwater, including a generic sampling and analysis plan, is provided in Section 7.

SECTION 7

LONG-TERM MONITORING PLAN

7.1 OVERVIEW

In keeping with the requirements of the selected remedial alternative for Site ST-24 at Columbus AFB (RNA with institutional controls and LTM), a long-term groundwater monitoring plan has been developed. The purpose of this component of the suggested remedial alternative for the site is to assess site conditions over time, confirm the effectiveness of natural processes at reducing contaminant mass and minimizing contaminant migration, assess compliance with regulatory cleanup goals, and evaluate the need for additional remediation.

The LTM plan consists of identifying the location of two separate groundwater monitoring networks and developing a groundwater sampling and analysis strategy to demonstrate attainment of site-specific remediation goals and to verify the predictions of the model developed for ST-24. The strategy described in this section is designed to monitor plume migration over time and to verify that RNA is occurring at rates sufficient to protect potential receptors. In the event that data collected under this LTM program indicate that natural processes are insufficient to protect human health and the environment, contingency controls to augment the beneficial effects of RNA would be necessary.

7.2 MONITORING NETWORKS

Two separate sets of wells will be utilized at the site as part of the LTM component of the remedial alternative. The first set will consist of seven LTM wells located in, upgradient from, and downgradient from the observed contaminant plume to verify that natural attenuation is occurring at rates sufficient to minimize plume expansion and reduce BTEX concentrations. This network of wells will consist of five monitoring wells screened across the water table (shallow wells) to provide short-term confirmation of the effectiveness of natural attenuation. The remaining two wells will be screened in deeper saturated intervals of the surficial aquifer. These deeper wells will be screened immediately above the silty clay layer at approximately 30 feet bgs. The second set of wells will consist of three sentry wells at locations along a line perpendicular to the general direction of groundwater flow, approximately 150 feet southwest of monitoring point MPL. The purpose of the sentry wells is to verify that no BTEX concentrations exceeding state criteria migrate beyond the area under institutional control. Conservative model results suggest that the BTEX plume front should not reach the sentry wells. The proposed LTM and sentry well locations are presented on Figure 7.1

7.2.1 Long-Term Monitoring Wells

At five locations, groundwater wells within, upgradient from, and downgradient from the current BTEX plume will be used to monitor the effectiveness of RNA in reducing total contaminant mass and minimizing contaminant migration at Site ST-24. Of the seven wells proposed for the LTM network, two (W69 and W71) have been installed during previous investigations. The remaining five wells would be installed upon implementation of this plan. Figure 7.1 identifies the proposed locations for wells to be used for LTM. This well network will supplement the three proposed sentry wells (see Section 7.2.2) to provide evidence of continuing RNA and to allow additional response time if site conditions change.

Existing well W69 is proposed for monitoring the background groundwater quality in the shallow portion of the surficial aguifer. A nested pair of wells is proposed to replace the MPC/MPM monitoring point nest to monitor the shallow and deep groundwater at the location of the highest dissolved BTEX concentration observed in November 1996. A new well is proposed for installation in the shallow saturated interval between Building 8695, Building 8696, and Independence Avenue, to monitor plume migration in the direction of these residences. Typically, downgradient wells are installed within the anaerobic and aerobic treatment zones; however, because the aerobic treatment zone appears to be minimal at this site, monitoring will occur at the downgradient plume extent. Existing monitoring well W71 is proposed to monitor the contaminant plume's anaerobic core, while a cluster nested pair of wells is proposed for approximately 50 feet south-southeast of MPL to monitor dissolved contaminant concentrations near the plumes leading edge. The remaining existing wells (W68, W70, W72, W73, W74, and W77) would not be used for LTM because they are either upgradient of the source area or they are not in the direct flow path downgradient from the source area.

The five new LTM monitoring wells will have 10-foot screened intervals. Shallow wells will be screened across the water table with approximately 8 feet of the 10-foot screen positioned below the water table. Deeper wells will be screened in the sandy to silty gravel overlying the silty clay at a depth of approximately 30 feet. At least 1 foot of screen will be installed in the clay unit to ensure that the deepest portion of the surficial aquifer is within the screened interval. However, to verify the continuity of the clay unit beneath Site ST-24, it is suggested that the clay unit is tagged during installation of all new LTM and sentry wells. Sampling frequency and analytical parameters to be monitored are discussed in Section 7.3.

TABLE 7.1 LONG-TERM MONITORING ANALYTICAL PROTOCOL SITE ST-24 RNA TS COLUMBUS AFB, MISSISSIPPI

				Recommended	Sample Volume, Sample	Field or
Analyte	Method/Reference	Comments	Data Use	Frequency of Analysis	Container, Sample Preservation	Fixed-Base Laboratory
Ferrous Iron (Fe ²⁺)	Colorimetric A3500-Fe D	Field only	Elevated ferrous iron concentrations may be indicative of the anaerobic biodegradation process of iron reduction	Annually for 5 Years, Every Other Year for 25 more Years	Collect 100 mL of water in a glass container; acidify with hydrochloric acid per method	Field
Ferrous Iron (Fe ²⁺)	Colorimetric HACH 25140-25	Alternate method; field only	Same as above.	Annually for 5 Years, Every Other Year for 25 more Years	Collect 100 mL of water in a glass container	Field
Temperature	E170.1	Field only	Metabolism rates for microorganisms depend on temperature	Annually for 5 Years, Every Other Year for 25 more Years	N/A	Field
Dissolved Oxygen	Dissolved oxygen meter	Refer to Method A4500 for a comparable laboratory procedure	The oxygen concentration is a data input to the Bioplume II model; concentrations less than I mg/L generally indicate an anaerobic pathway	Annually for 5 Years, Every Other Year for 25 more Years	Collect 300 mL of water in biochemical oxygen demand bottles; analyze immediately; alternately, measure dissolved oxygen in situ	Field
Hd	E150.1/SW9040, direct reading meter	Protocols/Handbook methods≝	Aerobic and anaerobic processes are pH-sensitive	Annually for 5 Years, Every Other Year for 25 more Years	Collect 100–250 mL of water in a glass or plastic container; analyze immediately	Field
Conductivity	E120.1/SW9050, direct reading meter	Protocols/Handbook methods	General water quality parameter used as a marker to verify that site samples are obtained from the same groundwater system	Annually for 5 Years, Every Other Year for 25 more Years	Collect 100–250 mL of water in a glass or plastic container	Field
Nitrate (NO ₃ -')	IC method E300 or method SW9056; colorimetric, method E353.2	Method E300 is a Handbook method; method SW9056 is an equivalent USEPA procedure	Substrate for microbial respiration if oxygen is depleted	Annually for 5 Years, Every Other Year for 25 more Years	Collect up to 40 mL of water in a glass or plastic container; cool to 4°C; analyze within 48 hours	Fixed-base
Ammonium (NI1,*)	Colorimetric CHEMetrics K-1510	Field only	Confirm nitrogen fixation and/or nitrate reduction	Annually for 5 Years, Every Other Year for 25 more Years	Collect 100–250 mL of water in a glass or plastic container; analyze immediately	Field

TABLE 7.1 (concluded) LONG-TERM MONITORING ANALYTICAL PROTOCOL SITE ST-24 RNA TS COLUMBUS AFB, MISSISSIPPI

Analyte	Method/Reference	Comments	Data Use	Recommended Frequency of Analysis	Sample Volume, Sample Container, Sample Preservation	Field or Fixed-Base Laboratory
Sulfate (SO ₄ ²-)	IC method E300 or method SW9056 or Hach SulfaVer 4 method	Method E300 is a Handbook method; method SW9056 is an equivalent procedure. Hach	Substrate for anaerobic microbial respiration	Annually for 5 Years, Every Other Year for 25 more Years	Collect up to 40 mL of water in a glass or plastic container; cool to 4°C	Fixed-base or field (for Hach method)
Redox potential	A2580 B	method is Photometric Measurements are made with electrodes; results are displayed on a meter; samples should be protected from exposure to	The redox potential of groundwater influences and is influenced by biologically mediated reactions; the redox potential of groundwater may range from more than 200 mV to less than -400 mV	Annually for 5 Years, Every Other Year for 25 more Years	Collect 100–250 mL of water in a glass container, filling container from bottom; analyze immediately	Field
Methane	RSKSOP-114 modified to analyze water samples for methane by headspace sampling with dual thermal conductivity and flame ionization detection.	atmospheric oxygen Method published and used by the USEPA Natural Risk Management Research Laboratory	The presence of methane suggests BTEX degradation via an anaerobic pathway utilizing carbon dioxide (carbonate) as the electron acceptor (methanogenesis). The presence of ethane and ethene suggest that cometabolism of vinyl chloride is occurring	Annually for 5 Years, Every Other Year for 25 more Years	Collect water samples in 40 mL volatile organic analysis (VOA) vials with butyl gray/Teflon-lined caps (zero headspace); cool to 4°C	Fixed-base
Aromatic hydrocarbons (BTEX)	Purge and trap GC method SW8020.	Handbook method; analysis may be extended to higher molecular weight alkylbenzenes	BTEX is the primary target analyte for monitoring natural attenuation; BTEX concentrations must also be measured for regulatory compliance	Annually for 5 Years, Every Other Year for 25 more Years	Collect water samples in a 40 mL VOA vial with zero headspace; cool to 4°C; add hydrochloric acid to pH ≤2	Fixed-base

a/ Analytical methods from the Air Force protocol document and the AFCEE Handbook are presented by Wiedemeier et al. (1995).

TABLE 7.2 POINT-OF-COMPLIANCE MONITORING ANALYTICAL PROTOCOL SITE ST-24 RNA TS COLUMBUS AFB, MISSISSIPPI

				Recommended	Sample Volume, Sample	Field or
				Frequency of	Container, Sample Preservation	Fixed-Base
Analyte	Method/Reference	Comments	Data Use	Analysis		Laboratory
Temperature	E170.1	Field only	Well development	Annually for 5	N/A	Field
•				Years, Every Other		
				Year for 25 more		
				Years		
Dissolved	Dissolved oxygen	Refer to method A4500	The oxygen concentration is a	Annually for 5	Collect 300 mL of water in	Field
Oxygen	meter	for a comparable	data input to the Bioplume model;	Years, Every Other	biochemical oxygen demand	
)		laboratory procedure	concentrations less than 1 mg/L	Year for 25 more	bottles; analyze immediately;	
			generally indicate an anaerobic	Years	alternately, measure dissolved	
			pathway		oxygen in situ	
pH	E150.1/SW9040,	Protocols/Handbook	Aerobic and anaerobic processes	Annually for 5	Collect 100-250 mL of water in a	Field
	direct reading meter	methods ^{a/}	are pH-sensitive	Years, Every Other	glass or plastic container; analyze	
				Year for 25 more	immediately	
				Years		
Conductivity	E120.1/SW9050,	Protocols/Handbook	General water quality parameter	Annually for 5	Collect 100-250 mL of water in a	Field
	direct reading meter	methods	used as a marker to verify that site	Years, Every Other	glass or plastic container	
			samples are obtained from the	Year for 25 more		
			same groundwater system	Years		
Aromatic	Purge and trap GC	Handbook method;	BTEX is the primary target	Annually for 5	Collect water samples in a 40 mL	Fixed-base
hydrocarbons	method SW8020	analysis may be	analyte for monitoring natural	Years, Every Other	VOA vial with zero headspace;	
(BTEX)		extended to higher	attenuation; BTEX concentrations	Year for 25 more	cool to 4°C; add hydrochloric acid	
		molecular weight	must also be measured for	Years	to pH ≤2	
		alkylbenzenes	regulatory compliance			

a/ Analytical methods from the Air Force protocol document and the AFCEE Handbook are presented by Wiedemeier et al. (1995).

7.2.2 Sentry Wells

Three sentry monitoring wells are proposed for installation at the site (Figure 7.1). These locations, however, should be considered tentative because of numerous aboveground housing units and underground utility corridors. It is recommended that the sentry well locations be finalized upon implementation of this plan. The locations presented on Figure 7.1 are approximately 150 (see Section 7.2) feet downgradient from the current leading edge of the BTEX plume. The sentry wells are more than 1,000 feet from the southwestern Base boundary.

The purpose of sentry wells is to verify that no contaminated groundwater exceeding state criteria migrates beyond the area under institutional control. Although model results strongly suggest that the contaminant plume will not migrate beyond this area at concentrations exceeding chemical-specific state MCLs (Table 6.1), these sentry wells are the technical mechanisms used to demonstrate protection of human health and the environment and compliance with site-specific numerical RAOs. These wells will be installed and monitored to assure that the selected remedy is providing the anticipated level of risk reduction and remediation at the site. Sampling frequency and analytical parameters to be monitored are discussed in Section 7.3.

As with the LTM wells, the sentry wells will be screened in the same hydrogeologic units as the contaminant plume. Data presented in this report concerning the nature and extent of contamination at the site suggest that a 10-foot screen with approximately 8 feet of screen below the groundwater surface will be sufficient to intercept the dissolved BTEX plume in the shallow groundwater at this site.

7.3 GROUNDWATER SAMPLING

To ensure that sufficient contaminant removal is occurring at Site ST-24 to meet site RAOs, the long-term groundwater monitoring plan includes a comprehensive sampling

and analysis plan (SAP). Groundwater samples will be collected and analyzed from LTM and sentry wells to verify that natural processes are effectively reducing contaminant mass and mobility. Reductions in toxicity will be implied by mass reduction. The SAP also is aimed at assuring RNA can achieve regulatory action levels for dissolved BTEX compounds.

7.3.1 Analytical Protocol

All LTM and sentry wells in the LTM program will be sampled and analyzed to determine compliance with chemical-specific remediation goals and to verify the effectiveness of RNA at the site. Water level measurements will be made during each sampling event. Groundwater samples from the LTM and sentry wells will be analyzed for the parameters listed in Tables 7.1 and 7.2, respectively. A site-specific groundwater SAP should be prepared prior to initiating the LTM program.

7.3.2 Sampling Frequency

Each of the 10 LTM and sentry wells will be sampled annually for the first 5 years of LTM. Thereafter, review meetings could be scheduled to determine future LTM frequency. For example, if LTM demonstrates the effectiveness of the proposed remedial alternative at this site, the sampling frequency could be reduced to once every two years or sampling could be eliminated. For the purpose of projecting costs in Section 6, it was assumed that LTM would proceed at a frequency of every other year for years 6 through 30 (calendar years 2003 through 2027). Conversely, if the data collected at any time during the monitoring period indicate the need for additional remedial activities at the site as a result of significant plume expansion or eminent pathway completion, the sampling frequency should be adjusted accordingly.

SECTION 8

CONCLUSIONS AND RECOMMENDATIONS

This report presents the results of a TS conducted to evaluate RNA of fuel-hydrocarbon-contaminated groundwater at Site ST-24, Columbus AFB, Mississippi. Specifically, analytical models were used in conjunction with site-specific geologic, hydrologic, and laboratory analytical data to evaluate the migration and biodegradation of BTEX compounds dissolved in groundwater.

A geochemical line of evidence was used to document RNA at ST-24. Comparison of BTEX, electron acceptor, and biodegradation byproduct isopleth maps for groundwater at Site ST-24 provides strong geochemical evidence of BTEX biodegradation. Geochemical data strongly suggest that biodegradation of fuel hydrocarbons is occurring at the site via aerobic respiration and the anaerobic processes of denitrification, iron reduction, sulfate reduction, nitrogen fixation, and methanogenesis. Rates of biodegradation were estimated from observed contaminant concentrations and the method of Buscheck and Alcantar (1995).

To obtain the data necessary for the RNA demonstration, Parsons ES collected and analyzed soil and groundwater samples from the site. Site-specific geologic, hydrologic, and chemical data were then used in the analytical groundwater model to simulate the effects of advection, dispersion, sorption, and biodegradation on the fate and transport of the dissolved BTEX plume. Extensive site-specific data were used for model implementation. Model parameters that could not be obtained from existing site data were estimated using widely accepted literature values for aquifer materials similar

to those found at the site. Conservative aquifer parameters were used to construct the flow model for this site. Therefore, the model results presented herein represent conservative predictions of groundwater BTEX plume fate and transport.

For one model simulation (Model-NA), it was assumed that conditions that produced the calibrated model would persist for the duration of the simulation. Model-NA included a solute decay rate (i.e., biodegradation rate) of 8 percent per day, and a source decay rate of 8 percent per year. This scenario suggests that the plume is stable/shrinking and therefore will not migrate beyond the November 1996 extent. The model predicts 85 percent of the dissolved contaminant mass will be lost in 30 years via natural attenuation processes. Model-BB assumed a contaminant source reduction through use of a biosparging/SVE system, using a geometric source decay rate of 50 percent per year for 5 years. Results for this model suggest that the contaminant plume will rapidly recede after the start of biosparging activities and source area dissolved BTEX concentrations will be below the 5-µg/L state MCL for benzene 10 years after the implementation of the biosparging/SVE remedial alternative. A third remedial alternative, groundwater extraction, was evaluated but not modeled because it would be a plume containment technology not a source reduction technology; therefore, the groundwater extraction alternative assumed a cleanup time identical to that predicted with Model-NA.

The results of this study suggest that RNA of dissolved BTEX compounds is occurring at Site ST-24. Given that the models predict no impact to known receptors at the modeled rates of BTEX plume migration, the Air Force is recommending RNA, institutional controls, and LTM to remediate site groundwater impacted by BTEX. Because the site is located on an active, secured installation, all future site activities will occur under the direct supervision of the Air Force. The estimated rates of biodegradation, when coupled with sorption, dispersion, and dilution, should be more than sufficient to reduce and maintain dissolved BTEX concentrations to levels below

current regulatory standards long before potential downgradient receptors could be adversely affected. Construction activities in the plume area, and groundwater use in and downgradient from the plume area, should be restricted until groundwater contaminant concentrations decrease below state MCLs for BTEX. Currently, the toluene concentrations in all Site ST-24 groundwater samples are below the state MCL for toluene. Ethylbenzene and total xylenes exceeded their respective state MCLs in a groundwater sample from one sampling location within the source area. In all remaining groundwater samples, ethylbenzene and xylene were below the MCLs. Benzene was detected above the state MCL in several groundwater samples. Therefore, benzene will likely be the only BTEX compound of concern with respect to any closure activities.

To verify the results of the modeling effort, and to ensure that RNA is occurring at rates sufficient to protect potential downgradient receptors, groundwater from seven LTM wells should be sampled and analyzed for the parameters listed in Table 7.1. In addition, three sentry wells should be installed downgradient from the BTEX plume and sampled for the parameters listed in Table 7.2. Figure 7.1 shows suggested locations for the LTM and sentry wells. Each of the 10 LTM and sentry wells will be sampled annually for the first 5 years of LTM. After five years, the results from LTM should be evaluated to determine whether sampling will cease, will decrease in frequency, or will continue at the rate of every year. If dissolved BTEX concentrations in groundwater collected from the sentry wells exceed regulatory criteria, additional evaluation or corrective action may be necessary at this site.

SECTION 9

REFERENCES

- Altenschmidt, U. and Fuchs, G., 1991, Anaerobic degradation of toluene in denitrifying Pseudomonas sp.: Indication for toluene methylhydroxylation and benzoyl-CoA as central aromatic intermediate: Arch. Microbial., vol. 156, p. 152-158.
- Alvarez, P.J.J., and Vogel, T.M., 1991, Substrate interactions of benzene, toluene, and para-xylene during microbial degradation by pure cultures and mixed culture aquifer slurries: Applied Environmental Microbiology, vol. 57, p. 2981-2985.
- Atlas, R.M., 1981, Microbial degradation of petroleum hydrocarbons an environmental perspective: Microbiological Reviews, vol. 45, no. 1, p. 180-209.
- Atlas, R.M., 1984, Petroleum Microbiology: Macmillan Publishing Company, New York.
- Atlas, R.M., 1988, Microbiology Fundamentals and Applications: Macmillan Publishing Company, New York.
- Baedecker, M.J., Siegel, D.I., Bennett, P.C., Cozzarelli, I.M., 1988, The fate and effects of crude oil in a shallow aquifer: I. The distribution of chemical species and geochemical facies, In: G.E. Mallard, and S.E. Ragone, editors, U.S. Geological Survey Toxic Substances Hydrology Program, Proceedings of the Technical Meeting, Phoenix, Arizona, September 26-30, 1988: U.S. Geological Survey Water-Resources Investigations Report 88-42320, p. 29-22.

- Baedecker, M.J., and Cozzarelli, I.M., 1991, Geochemical modeling of organic degradation reactions in an Aquifer contaminated with Crude Oil: U.S. Geological Survey Water-Resources Investigations Report 91-4034. Reston, VA. p 627-632.
- Ball, H.A., Reinhard, M., and McCarty, P.L., 1991, Biotransformation of monoaromatic hydrocarbons under anoxic conditions, In: In Situ Bioreclamation, Applications and Investigations for Hydrocarbon and Contaminated Site Remediation. Eds. R.E. Hinchee and R.F. Olfenbuttel. Butterworth-Heinemann. Boston, MA. p. 458-463.
- Barker, J.F., Patrick, G.C., and Major, D., 1987, Natural attenuation of aromatic hydrocarbons in a shallow sand aquifer: Ground Water Monitoring Review, Winter, 1987, p. 64-71.
- Bartha, R., 1986, Biotechnology of petroleum pollutant biodegradation: Microbial Ecology, vol. 12, p. 155-172.
- Bauman, B., 1991, Biodegradation research of the American Petroleum Institute.

 Presented at: In Situ Bioreclamation: Application and Investigation for Hydrocarbons and Contaminated Site Remediation. San Diego, CA. March 19-21, 1991.
- Bear, J., 1979, Hydraulics of Groundwater. McGraw-Hill, Inc., New York, New York, 569p.
- Beller, H.R. Reinhard, M., and Grbic-Galic, D., 1992, Metabolic byproducts of anaerobic toluene degradation by sulfate-reducing enrichment cultures: Appl. Environ. Microbiol., vol. 58, p. 3192-3195.
- Biomedical and Environmental Information Analysis (BEIA), 1989, The Installation Restoration Program Toxicology Guide, Health and Safety Research Division, Oak Ridge National Laboratory.

- Bohon, R.L., and Claussen, W.F., 1951, The solubility of aromatic hydrocarbons in water: Journal of American Chemical Society, vol. 73, no. 4, p.1571-1578.
- Borden, R.C., 1991, Simulation of enhanced in situ biorestoration of petroleum hydrocarbons. In: In Situ bioreclamation: Application and Investigation for Hydrocarbons and contaminated Site Remediation. Eds., R.E. Hinchee and R. F. Olfenbuttel. Butterworth-Heinemann. p. 529-534.
- Borden, R.C., and Bedient, P.B., 1986, Transport of dissolved hydrocarbons influenced by oxygen limited biodegradation theoretical development: Water Resources Research, vol. 22, no. 13, p. 1973-1982.
- Bouwer, E.J., 1992, Bioremediation of Subsurface Contaminants, In: Mitchell, R., ed.: Environmental Microbiology. Wiley-Liss, New York, New York.
- Bouwer, H., 1989, The Bouwer and Rice slug test an update: Ground Water, 27(3), p. 304-309.
- Bouwer, H., and Rice, R.C., 1976, A slug test for determining hydraulic conductivity of unconfined aquifers with completely or partially penetrating wells: Water Resources Research, 12(3), p. 423-428.
- Brock, T.D., Madigan, M.T., Martinko, J.M., Parker, J., 1994, Biology of Microorganisms: Prentice Hall, New Jersey.
- Brown, R.A., Dey, J.C. and McFarland, W.E., 1991, Integrated site remediation combining groundwater treatment, soil vapor extraction, and bioremediation, In: In Situ Bioreclamation: Application and Investigation for Hydrocarbons and Contaminated Site Remediation. Eds., R.E. Hinchee and R. F. Olfenbuttel. Butterworth-Heinemann. p. 444-449.

- Buscheck, T. E., O'Reilly, K. T., and Nelson, S. N., 1993, Evaluation of Intrinsic Bioremediation at Field Sites: Proceedings, Petroleum Hydrocarbons and Organic Chemicals in Ground Water: Prevention, Detection, and Restoration, pp. 367-381.

 National Ground Water Association/API, Houston, TX.
- Buscheck, T. E., and Alcantar, C. M., 1995, Regression Techniques and Analytical Solutions to Demonstrate Intrinsic Bioremediation. In: Proceedings of the 1995 Battelle International Symposium on In Situ and On-Site Bioreclamation, April 1995.
- CH2M Hill, 1989, Air Force Installation Restoration Program Remedial Investigation Report, Columbus Air Force Base, Mississippi, prepared for Headquarters Air Training Command/DDEV, December 1989.
- CH2M Hill, 1995, Air Force Installation Restoration Program Site Inspection Report, Final, Columbus Air Force Base, Mississippi, prepared for Headquarters Air Education and Training Command/CEVR, June 1995.
- Chapelle, F.H., 1993, Ground-water Microbiology and Geochemistry. John Wiley and Sons, Inc., New York, NY.
- Chapelle, F.H., 1994, Assessing the Efficiency of Intrinsic Bioremediation, in Proceedings of the Symposium on Intrinsic Bioremediation of Ground Water, August 30 September 1, 1994: US Environmental Protection Agency, p. 171.
- Chiang, C.Y., Salanitro, H.P., Chai, E.Y., Colthart, H.D., and Klein, C.L., 1989, Aerobic biodegradation of benzene, toluene, and xylene in a sandy aquifer data analysis and computer modeling: Ground Water, vol. 27, no. 6, p. 823-834.
- Cozzarelli, I.M., Eganhouse, R.P., and Baedecker, M.J., 1990, Transformation of monoaromatic hydrocarbons to organic acids in anoxic ground water environment: Environmental and Geological Water Science, vol. 16.

- Cozzarelli, I.M., Baedecker, M.J., Eganhouse, R.P., and Goerlitz, D.F., 1994, The geochemical evolution of low-molecular-weight organic acids derived from the degradation of petroleum contaminants in groundwater: Geochimica et Cosmochimica Acta, v. 58, no. 2, p. 863-877.
- Davies, J.S., and Westlake, D.W.S., 1979, Crude Oil Utilization by Fungi: Canadian Journal of Microbiology, v. 25, p. 146-156.
- Davis, J.W., Klier, N.J., and Carpenter, 1994, Natural biological attenuation of benzene in ground water beneath a manufacturing facility: Ground Water, vol. 32, no. 2, p. 215-226.
- Domenico, P.A., and Schwartz, F.W., 1990, Physical and Chemical Hydrogeology. John Wiley and Sons, New York, New York, 824p.
- Edwards, E., Wills, L.E., Grbic-Galic, D., and Reinhard, M., 1991, Anaerobic degradation of toluene and xylene--evidence for sulfate as the terminal electron acceptor, In: In Situ Bioreclamation, Applications and Investigations for Hydrocarbon and Contaminated Site Remediation. Eds. R.E. Hinchee and R.F. Olfenbuttel. Butterworth-Heinemann. Boston, MA. p. 463-471.
- Edwards, E.A., and Grbic-Galic, D., 1992, Complete mineralization of benzene by aquifer microorganisms under strictly anaerobic conditions: Appl. Environ. Microbiol., vol. 58, p. 2663-2666.
- Edwards, E.A., Wells, L.E., Reinhard, M., and Grbic-Galic, D., 1992, Anaerobic degradation of toluene and xylene by aquifer microorganisms under sulfate-reducing conditions: Appl. Environ. Microbiol., vol. 58, p. 794-800.

- Evans, P.J., Mang, D.T., and Young, L.Y., 1991a, Degradation of toluene and m-xylene and transformation of o-xylene by denitrifying enrichment cultures: Appl. Environ. Microbiol., vol. 57, p.450-454.
- Evans, P.J., Mang. D.T., Kim, K.S., and Young, L.Y., 1991b, Anaerobic degradation of toluene by a dentrifying bacterium: Appl. Environ. Microbiol., vol. 57, p. 1139-1145.
- Fetter, C.W., 1993, Contaminant Hydrogeology: MacMillan, New York, New York, 458p.
- Freeze, R.A., and Cherry, J.A., 1979, Groundwater. Prentice-Hall, Inc., Englewood Cliffs, New Jersey.
- Geraghty & Miller, Inc., 1994, AQTESOLV® Aquifer Test Solver, Version 2.0. Millersville, Maryland, October.
- Gibson, D.T., and Subramanian, V., 1984, Microbial degradation of aromatic hydrocarbons, In: Gibson, D.T., ed: Microbial Degradation of Organic Compounds, Marcel Dekker, Inc., p. 181-252.
- Godsey, E.M., 1994, Microbiological and geochemical degradation processes, In: Symposium on Intrinsic Bioremediation in Ground Water. Denver, CO. August 30 September 1, 1994, p.35-40.
- Goldstein, R.M., Mallory, L.M., and Alexander, M., 1985, Reasons for Possible Failure of Inoculation to Enhance Biodegradation: Applied Environmental Microbiology, vol. 50, no. 4, p. 977-983.
- Grbic '-Galic', D., 1989, Microbial degradation of homocyclic and heterocyclic aromatic hydrocarbons under conditions: Dev. Ind. Microbiol., vol. 30, p. 237-253.

- Grbic'-Galic', D., 1990, Anaerobic microbial transformation of nonoxygenated aromatic and alicyclic compounds in soil, subsurface, and freshwater sediments, In: Bollag, J.M., and Stotzky, G., eds.: Soil Biochemistry: Marcel Dekker, Inc., New York, NY. p. 117-189.
- Haag, F., Reinhard, M., and McCarty, P.L., 1991, Degradation of toluene and p-xylene in an anaerobic microcosms: Evidence for sulfate as a terminal electron acceptor: Environ. Toxicol. Chem., vol. 10, p. 1379-1389.
- Hassett, J.J., Banwart, W.L., and Griffin, R.A., 1983, Correlation of compound properties with sorption characteristics of nonpolar compounds by soils and sediments; concepts and limitations, In, C.W. Francis and S.I. Auerbach, editors, Environment and Solid Wastes: Butterworths, Boston, p. 161-178.
- Hine, J., and Mookerjee, P.K., 1975, The Intrinsic Hydrophilic Character of Organic Compounds. Correlations in Terms of Structural Contributions: Journal or Organic Chemistry, 40(3):292-298.
- Hopper, D.J., 1978, Microbial Degradation of Aromatic Hydrocarbons, In: R.J. Watkinson (editor), Developments in Biodegradation of Hydrocarbons, I: Applied Science Publishers, Ltd., London.
- Hutchins, S.R., and Wilson, J.T., 1991, Laboratory and field studies on BTEX biodegradation in a fuel-contaminated aquifer under denitrifying conditions, In: In Situ Bioreclamation, Applications and Investigations for Hydrocarbon and Contaminated Site Remediation. Eds. R.E. Hinchee and R.F. Olfenbuttel. Butterworth-Heinemann. Boston, MA. p. 157-172.
- Hutchins, S.R., Sewell, G.W., Sewell, D.A., Kovacs, D.A., and Smith, G.A., 1991a, Biodegradation of monoaromatic hydrocarbons by aquifer microorganisms using

- oxygen, nitrate, or nitrous oxide as the terminal electron acceptor: Environ. Sci. Technol., vol. 25, no. 1, p. 68-76.
- Hutchins, S.R., Downs, W.C., Smith, G.B., Smith, J.T., Wilson, D.J., Hendrix, D.J.,
 Fine, D.D., Kovacs, D.A., Douglass, R.H., and Blaha, F.A., 1991b, Nitrate for
 Biorestoration of an Aquifer Contaminated with Jet Fuel. U.S. Environmental
 Protection Agency. Robert S. Kerr Environmental Research Laboratory. Ada,
 Oklahoma. epa/600/2-91/009. April, 1991.
- Isnard, S., and Lambert, S., 1988, Estimating Bioconcentration Factors from Octanol-Water Partition Coefficient and Aqueous Solubility: Chemosphere, vol. 17, no. 1, p. 21-34.
- Jamison, V.W., Raymond, R.L., and Hudson, J.O. Jr., 1975, Biodegredation of high-octane gasoline in ground water: Developments in Industrial Microbiology, vol. 16.
- Jones, J.G., and Eddington, M.A., 1968, An Ecological Survey of Hydrocarbon-Oxidizing Microorganisms: Journal of General Microbiology, v. 52, p. 381-390.
- Jury, W.A., Spencer, W.F., and Farmer, W.J., 1984, Behavior Assessment Model for Trace Organics in Soil: III, Application of Screening Model: Journal of Environmental Quality, 13(4):573-579.
- Kenaga, E.E., and Goring, C.A.I., 1980, ASTM Special Technical Publication 707: American Society for Testing Materials, Washington, D.C.
- Konikow, L.F., and Bredehoeft, J.D., 1978, Computer model of two-dimensional solute transport and dispersion in ground water: United States Geological Survey, Techniques of Water Resources Investigations of the United States Geological Survey, Book 7, Chapter C2, 90 p.

- Leahy, J.G., and Colewell, R.R., 1990, Microbial degradation of hydrocarbons in the environment: Microbiolgical Reviews, vol. 53, no. 3, p. 305-315.
- Lee, M.D., 1988, Biorestoration of Aquifers Contaminated with Organic Compounds: CRC Critical Reviews in Environmental Control. vol. 18. p. 29-89.
- Lovley, D.R., Baedecker, M.J., Lonergan, D.J., Cozzarelli, I.M., Phillips, E.J.P., and Siegel, D.I., 1989, Oxidation of aromatic contaminants coupled to microbial iron reduction: Nature, vol. 339, p. 297-299.
- Lovley, D.R., and Phillips, E.J.P., 1988, Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese: Applied and Environmental Microbiology, v. 54, no. 6, p. 1472 1480.
- Lovley, D.R., Phillips, E.J.P., and Lonergan, D.J., 1991, Enzymatic versus nonenzymatic mechanisms for Fe(III) reduction in aquatic sediments: Environmental Science and Technology, v. 26, no. 6, p. 1062 1067.
- Lovley, D.R., F.H. Chapelle, and J.C. Woodward. 1994. Use of dissolved H2 concentrations to determine distribution of microbially catalyzed redox reactions in anoxic groundwater. Environmental Science and Technology, v. 28, no. 7., p. 1205-1210.
- Lyman, W.J., Reidy, P.J., and Levy, B., 1992, Mobility and Degradation of Organic Contaminants in Subsurface Environments. C.K. Smoley, Inc., Chelsea, MI.
- Mackay, D., and Wolkoff, A.W., 1973, Rate of Evaporation of Low-Solubility Contaminants from Water Bodies to Atmosphere: Environmental Science and Technology, vol. 7, no. 7, p. 611-614.

- Mackay, D., and Shiu, W.Y., 1981, A Critical Review of Henry's Law Constants for Chemicals of Environmental Interest: Journal of Physical Chemistry Reference Data, vol. 10, no. 4, p. 1175-1199.
- Malone, D.R., Kao, C.M., and Borden, R.C., 1993, Dissolution and biorestoration of nonaqueous phase hydrocarbons models development and laboratory evaluation: Water Resources Research, vol. 29, no. 7, p. 2003-2213.
- Means, J.C., Wood, S.G., Hassett, J.J., and Banwart, W.L., 1980, Sorption of polynuclear aromatic hydrocarbons by sediments and soils: Environmental Science and Technology, v. 14, no., 12, p. 1524-1528.
- Miller, M.M., Wasik, S.P., Huang, G.L., Shiu, W.Y., and Mackay, D., 1985, Relationships Between Octanol-Water Partition Coefficient and Aqueous Solubility: Environmental Science and Technology, v. 19, no. 6, p. 522-529.
- Mississippi Department of Environmental Quality (MDEQ). 1991. Office of Pollution Control, Groundwater Division, Groundwater Quality Standards, Section 3, Numerical Groundwater Standards.
- Montgomery, J.H., and Welkom, L.M., 1990, Groundwater Chemicals Desk Reference, Lewis Publishers, 640 p.
- Norris, R.D., Hinchee, R.E., Brown, R., McCarty, P.L, Semprini, L., Wilson, J.T., Kampbell, D.H., Reinhard, M., Bouwer, E.J., Borden, R.C., Vogel, T.M., Thomas, J.M., and Ward, C.H., 1994, Handbook of Bioremediation: Lewis Publishers, Inc., 257 p.
- Pankow, J.F., and Rosen, M.E., 1988, Determination of Volatile Compounds in Water by Purging Directly to a Capillary Column with Whole Column Cryotrapping: Environmental Science and Technology, vol. 22, no. 4, p. 398-405.

- Parsons Engineering Science (Parsons ES), 1996, Work Plan for a Treatibility Study for RNA of At Sites ST-24 and LF-06, Columbus AFB, Mississippi, September.
- Perry, J.J., 1984, Microbial Metabolism of Cyclic Alkanes, In: Atlas, R.M. ed.: Petroleum Microbiology. Macmillan Publishing Co., New York, New York.
- Reinhard, M., Goodman, N.L., and Barker, J.F., 1984, Occurrence and distribution of organic chemicals in two landfill leachate plumes: Environ. Sci. Technol., vol. 18, no. 12, p. 953-961.
- Ribbons, D.W., and Eaton, R.W., 1992, Chemical Transformations of Aromatic Hydrocarbons that Support the Growth of Microorganisms, In: Mitchell, R., ed.: Environmental Microbiology. Wiley-Liss, New York, NY.
- Spencer, Robert H., 1996a, 1995 Initial Monoitoring Report for Long Term Monitoring Program, Columbus Air Force Base, Columbus, Mississippi, prepared for US Army Corps of Engineers Mobile District, March 1996.
- Spencer, Robert H., 1996b, Well Assessment Report for Long Term Monitoring Program, Columbus Air Force Base, Columbus, Mississippi, prepared for US Army Corps of Engineers Mobile District, May 1996.
- Stauffer, T.B., Antworth, T.B., Boggs, J.M., and MacIntyre, W.G., 1994, A Natural Gradient Tracer Experiment in a Heterogeneous Aquifer with Measured In Situ Biodegradation Rates: A Case for Natural Attenuation, in Proceedings of the Symposium on Intrinsic Bioremediation of Ground Water, August 30 September 1, 1994: US Environmental Protection Agency, p. 73 84.
- Stewart, T. 1997, Personal communication. Environmental Engineer, 14 CES/CEV, Columbus AFB. RE: Groundwater use near Site ST-24. April.

- Stumm, W. and Morgan, J.J., 1981, Aquatic Chemistry. John Wiley & Sons, New York, NY.
- Thierrin, J., Davis, G.B., Barber, C., Patterson, B.M., Pribac, F., Power, T.R., and Lambert, M., 1992, Natural degradation rates of BTEX compounds and naphthalene in a sulfate-reducing ground water environment, In: In-Situ Bioremediation Symposium "92". Niagara-on-the-Lake, Ontario, Canada. September 20-24, 1992: In Press.
- US Environmental Protection Agency (USEPA), 1988, Guidance for Conducting Remedial Investigations and Feasibility Studies (RI/FS) Under CERCLA. OSWER Directive 9355.3-01.
- USEPA, 1993, Revisions to the OMB Circular A-94 on Guidelines and Discount Rates for Benefit Cost Analysis, OSWER Directive 9355.3-20, June.
- US Geological Survey (USGS), 1987, 7.5 Minute Quadrangle Map of the Columbus North and Hamilton Quadrangles, Mississippi.
- Valsaraj, K.T., 1988, On the Physio-Chemical Aspects of Partitioning of Non-Polar Hydrophobic Organics at the Air-Water Interface: Chemosphere, vol. 17, no. 5, p. 875-887.
- van Genuchten, M. T., and Alves, W. J., 1982, Analytical Solutions of the One-Dimensional Convective-Dispersive Solute Transport Equation: US Department of Agriculture, Technical Bulletin Number 1661, 151p.
- Verschueren, K., 1983, Handbook of Environmental Data on Organic Chemicals. Van Nostrand Reinhold Co., New York, New York.

- Vroblesky, D.A., and Chapelle, F.H., 1994, Temporal and spatial changes of terminal electron-accepting processes in a petroleum hydrocarbon-contaminated aquifer and the significance for contaminant biodegradation: Water Resources Research, v. 30, no. 5, p. 1561-1570.
- Walton, W.C., 1988, Practical Aspects of Ground Water Modeling. National Water Well Association, Worthington, Ohio, 587 p.
- Wiedemeier, T.H., Wilson, J.T., Kampbell, D.H., Miller, R.N., and Hansen, J.E., 1995, Technical Protocol for Implementing Intrinsic Remediation with Long-term Monitoring for Natural Attenuation of Fuel Contamination Dissolved in Ground Water. Prepared by the Air Force Center for Environmental Excellence.
- Wilson, B.H., Smith, G.B., and Rees, J.F., 1986, Biotransformations of Selected Alkylbenzenes and Halogenated Aliphatic Hydrocarbons in Methanogenic Aquifer Material: A Microcosm Study: Environmental Science and Technology, 20(10):997-1002.
- Wilson, B.H., Bledsoe, B., and Kampbell, D., 1987, Biological processes occurring at an aviation gasoline spill site, In: R.C. Averett and D.M. McKnight editors, Chemical Quality of Water and the Hydrologic Cycle. Lewis Publishers, Chelsea, Michigan, p.125-137.
- Wilson, B.H., Wilson, J.T., Kampbell, D.H., Bledsoe, B.E., and Armstrong, J.M., 1990, Biotransformation of Monoaromatic and Chlorinated Hydrocarbons at an Aviation Gasoline Spill Site: Geomicrobiology Journal, 8:225-240.
- Wilson, B.H., Wilson, J.T., Kampbell, D.H., and Bledsoe, B.E., 1994, Traverse City: Geochemistry and Intrinsic Bioremediation of BTEX Compounds, In: Proceedings

- of the Symposium on Intrinsic Bioremediation of Ground Water. August 30 September 1, 1994. US Environmental Protection Agency, p. 94 102.
- Wilson, J.T., 1996, Personal communication between John Wilson of the USEPA NRMRL and Todd Wiedemeier of Parsons ES regarding USEPA definition of the term "natural attenuation", citing USEPA guidance undergoing internal review.
- Young, L.Y., 1984, Anaerobic degradation of aromatic compounds, In: Gibson, D.R., ed.: Microbial Degradation of Aromatic Compounds. Marcel-Dekker, New York.

APPENDIX A

APPENDIX A-1 GEOLOGIC BORING LOGS

		<u>GEOLOGI</u>	C BORING I	LOG	Sheet 1 of 1
BORING NO.	ST-24 MPC	_CONTRACTOR:		DATE SPUD:	11/6/96
CLIENT:	AFCEE	_RIG_TYPE:		DATE CMPL .	11/6/96
JOB NO.:	729691	DRLG METHOD	· COEDPILOBÉ	ELEVATION:	
LOCATION:	COLUMBUS AFB	BORING DIA.:	1.5"	TEMP:	<u> 16°</u>
GEOLOGIST:	J. Hartfelder	_DRLG FLUID:	***	WEATHER:	partly clardy
COMENTS:		·			

Elev	Depth	Pro-	US		\$	omple	Sample	Danat			TOT "	TD:-
(ft)	(ft)	file	CS	Geologic Description			Type	Res	PIO(nom)	II War	TOTAL BTEX(ppm)	TPH (nam)
				0-21 Silty Clay, readish bruin			1,700	.,,,,	& gan	ייייון	O'LA(PPIR)	(ppm)
	- 1 -								0			
				2-4' SATT				:				
							-		٥			
	- 5 -			4-6' Sand, red sameblk								
			(7-4"	ARA BARASAA		$\langle \cdot \rangle$			0			
			9-101	gail Stone with sand, brown, moist		$\geq \leq$						
			,	, , , , , , , , , , , , , , , , , , , ,					0 ~0			
	10								 -			
	-10-			10-12' Stone with Sand, brown, moist, odor	•		t l					
									200	-		
				12-14 Sand and gravel in clay matrix, real to brown, wet, moderate hydrocarbon cour								
				reason braces, wet, moderate hydrocarbus cour	*				3266			
	-15-											
		,				1						
									<u> </u>	ļ		
	20					1						
	-20-					1				-		
											 	
						'						
	-25-											
					l					<u> </u>	 	
,			ĺ				1		<u> </u>	<u> </u>	ļ	<u> </u>
											ļ	
	70											
	-30-						1		·	 	 	
										 	 	
										1	†	
										-		
	L35_				'		1			1		

NOTES

bgs — Below Ground Surface

GS - Ground Surface

TOC - Top of Casing

NS - Not Sampled

SAA - Same As Above

SAMPLE TYPE

D - DRIVE

C - CORE

G - GRAB

▼ Water level drilled

FIGURE 3.4

GEOLOGIC BORING LOG

Sites ST-24 and LF-06 Intrinsic Remediation TS Columbus AFB, Mississippi

PARSONS ENGINEERING SCIENCE, INC.

Denver, Colorado

			C BORING		Sheet 1 of 1
BORING NO.:	<u> 57-24</u>	MPD (North)CONTRACTOR:	Parsons Es	DATE SPUD:	11/7/96
CLIENT:	AFCEE	RIG TYPE:	Geoprobe	DATE CMPL.:	11/7/96
JOB NO.:	729691			ELEVATION:	<u></u>
LOCATION:	COLUMB	US AFB BORING DIA.:	1.5"	TEMP:	600
GEOLOGIST:	<u>J. Ha</u>	rtfelder DRLG FLUID:	NA	WEATHER:	Cloudy/Rainy
COMENTS:					
Elev Depth	Pro- US		So	ample Sample Penet	TOTAL TPH
(ft) (ft)	file CS	Geologic Description			DE VOCALITY

) Cir	104-										_
	Depth		US		Sample Sample				TOTAL	TPH	
(ft)	(ft)	file	CS	Geologic Description	No. Depth (it) Type	Res	PID(ppm)	TLV(ppm)	BIEX(ppm)	(ppm)	
	- 1 -		دا	0-2' SILT W Clay, brown, moist, noodor 2-4' CLAY, readish brown, moist, no ador 4-4' SILTY CLAY, readish brown, moist, no coor, tightly packed 6-8' Sitt Some clay, readish brown, moist, no ador	THE SHAPE THE TABLE	nes	36.2 42.0 54.6	т түрип)	orcA(ppm)	(ppm)	
-	-10-	Fark		the sand sill, groves week, no order to moist, petroleum one, no order to moist, petroleum one, no order to			45, 3 92,27				1-1-1-1
	-15-		54 5W	14-16 GRAVEL, send, silt, conflict eny matrix, wet. strong hydrocarbon oder 16-18 SAMEAS ABOVE			716,00	o O			411
	-20-			20-22' SAA 22-24' No recovery			125 100				
	-25-			·							
	-30-										

NOTES

bgs - Below Ground Surface

GS - Ground Surface

TOC - Top of Casing

NS - Not Sampled

SAA - Same As Above

SAMPLE TYPE

D - DRIVE

C - CORE

G - GRAB

▼ Water level drilled

FIGURE 3.4

GEOLOGIC BORING LOG

Sites ST-24 and LF-06 Intrinsic Remediation TS Columbus AFB, Mississippi

PARSONS ENGINEERING SCIENCE, INC.

Denver, Colorado

5TZ4 **GEOLOGIC BORING LOG** Sheet 1 of 1 1 1/7/96 17P-F Parsons ES DATE SPUD: BORING NO .: _ CONTRACTOR: CHEPROBE DATE CMPL .: **AFCEE** CLIENT: RIG TYPE: PUSH 729691 JOB NO.: DRLG METHOD: _ **ELEVATION:** LOCATION: COLUMBUS AFB BORING DIA.: TEMP: BRAD LEWSDRLG FLUID: GEOLOGIST: WEATHER: OVERCUST COMENTS:

Elev Depth Pro	Geologic Description O-d' SILT w/ Clay, brown moist, organics, no	Sample Sample Penet No. Depth (it) Type Res	PID(ppm) ILV(ppm) BIEX(ppm) (ppm)
(ft) (ft) file CS	Geologic Description O-d' SILT w/ Clay, brown moist, organics, no	44 0 14 /41) 7	PID(ppm) ILV(ppm) BTEX(ppm) (ppm)
-1 	moist, organics, no		
10	MOTET W Clay, brown motest, organies, no hydrocarbon odor A-4' (Lty, brown, noist, no odor 4-5' state to tour 5-6' SILT, brown, tight, no odor 6-8' SILT, brown, tight, no odor motest 5-10 SHEF same as above 10-10.5 SAME 10.5-12 LIMMUEL AND SAND TW LIMMOTHMIX. SOMO PERBUS CUEN 11 CAMMOTER. NOIST NO ODON 12-14 SAMD W CANVEZ, MOTE, 13-14 SAME BUT WET	▼	75.d 13d 73.d 77.3 70.3
-20- -25- -30-	16-18 SAMEAS ABOUT	TOC	

NOTES

bgs - Below Ground Surface

GS - Ground Surface

TOC - Top of Casing

NS - Not Sampled

SAA - Same As Above

SAMPLE TYPE

D - DRIVE

C - CORE

G - GRAB

▼ Water level drilled

FIGURE 3.4

GEOLOGIC BORING LOG

Sites ST-24 and LF-06 Intrinsic Remediation TS Columbus AFB, Mississippi

PARSONS ENGINEERING SCIENCE, INC.

Denver, Colorado

APPENDIX A-2 MONITORING POINT DEVELOPMENT FORMS

Job Number: 7296 Location Columb			Job Name: Alby RN/JH/C	FCEE RN	A Date: 11	. 1996	
Well Number		T24)	_Measurement		Date	1990	
Pre-Development I	Information	ŕ	Time	e (Start):_	1145	= 163	<u> </u>
Water Lev	vel:			Total	Depth of We	II: 37	
Water Cha	aracteristics						
		NWW	Clea				
	Odor: None Any Film <u>s or Immisc</u> it	Weak ble Material		lerate	Strong		
	ы <u>5.97</u>		ature(°C)	17.			
S	Specific Conductance(μS/cm)	710				
Ţ	Disolved Oxygen (mg/	/L) 6.	75				
Interim Water Cha	racteristics				0.3		
mermi water ena	<u>ractoristics</u>	1		Ö	كدم	104	
Gallons R	temoved	10.1	0.15	1000 A	9143		
pH	****	5.88	5.90	100	6.06	6.08	
Temperat	ure (°C)	17.6	20.3	20.1	20.3	17:7 X	2.4
Specific C	Conductance(µS/cm)_	160	160	153	150	150	
Disolved	Oxygen (mg/L)	5.28	250/2	1.66	2.45	2.41	
	·			-1			
					,	70.1	
Post-Development	Information		Tim	e (Finish):		700	
Water Le	vol.		Т-4-	d Danish a	C 33.7 - 11 -	239	
. Water Le	vei		10ta	al Depth of	weii:		
Approxim	nate Volume Removed	d:	0,4	94	<i></i>		
Water Ch	aracteristics	•	1	halat	cloudy	,	
(Color H D	rown	Clea	•			
	Odor: None	Weak	Mod	derate	Strong	•	
	Any Films or Immissi	ble Material		(0 C)	-		
-	pH	(uS/cm)	_Temperature	(°C)	10	. '	
	Disolved Oxygen (mg		. 44			•	
Comments:	76	,	• • • •				

l:\forms\develop.doc

Job Number: 729691.32020 Job Name: AFCEE-RNA
Location Columbus AFB, ST24 by RN/JH/CS/R1 Date: 1/1/ 1996
Well Number / (S124) Measurement Datum
Pre-Development Information Time (Start): 1300
Water Level: Total Depth of Well: 19-2
Water Characteristics
ColorBNOWN Clear Cloudy
Odor: None Weak Moderate Strong
Any Films or Immiscible Material
pH 6.0 5 Temperature(°C) 20.2
Specific Conductance(μS/cm) 170
Disolved Oxygen (mg/L) / クタ
Interim Water Characteristics
Gallons Removed 0.2 0.4 0.8 1.0 -2
pH 583 5.81 5.81 5.83 5.85
Temperature (°C) 21.6 21.8 22.1 22.1 22.1
2 3 4 4 5 8
Specific Conductance (µS/cm) 530 790 1,600 2,390 2,160 \$
Disolved Oxygen (mg/L) 1.33 1.04 0.55 0.40
1315
Post-Development Information Time (Finish): 1315
Water Level: Total Depth of Well: 19-2
Approximate Volume Removed:
Water Characteristics
Water Characteristics
Clear Coudy
Odor: None Weak Moderate Strong
Any Films or Immiscible Material Temperature(%C) 3 1
remperature(C)
Specific Conductance(µS/cm) 2,800 Disolved Oxygen (mg/L) 0-35
Comments:
* CONDUCTIVITY METER PROBEMAY
Mandandarda - X M M X 1 1 2 A 1 1/-
1.\forms\develop.doc St MALFUNGIONING

Job Number: 729691.32020 Location Columbus AFB ST24 by RN/JH/CS/BL Date: 1 / / L	1006
Well Number M F 3 (5) ST24 Measurement Datum	1996
Pre-Development Information Time (Start): 1515	-
Water Level: Total Depth of Well:	19-2/
Water Characteristics	
Color ONANGE ROWN Clear Cloudy Odor: None Weak Moderate Strong Any Films or Immiscible Material pH 6 2 A Temperature (°C) 19 2 Specific Conductance (µS/cm) 470 Disolved Oxygen (mg/L) 0.35	. -
Interim Water Characteristics	
Gallons Removed 103 (0.6; 0.9)	
pH 6.22 6.33	,
Temperature (°C) 21.3 21.5 21.9	
Specific Conductance(µS/cm) 390 380 350	
Disolved Oxygen (mg/L) 0.33 0.27 0.24 C	
Post-Development Information Time (Finish): 1530	
Water Level: Total Depth of Well:	
Approximate Volume Removed:	
Water Characteristics	
Color Suspended Solidear Cloudy Odor: None Weak Moderate Strong Any Films or Immiscible Material pH 6 3 7 Temperature(°C) 2 1- 8 Specific Conductance(µS/cm) 3 0 Disolved Oxygen (mg/L) 0 - 25 Comments:	,

1:\forms\develop.doc

Job Number: <u>729691.32020</u>	Job Name: AFCEE-RNA
Location Columbus AFB, ST24	by RN/JH/CS/BLRMH Date: 11/12 , 1996
Well Number STZY MPB(D)	Measurement Datum
Pre-Development Information	Time (Start): 1555
Water Level: NA	Total Depth of Well:
Water Characteristics	Well Died not
pHTempera	Clear Cloudy develop - no worker Moderate Strong progred. ature(°C)
Interim Water Characteristics	
Galions Removed	
Temperature (°C)Specific Conductance(µS/cm)	
Post-Development Information	Time (Finish):
1 Oct Dovolophiche Amormation	Time (Funsii).
Water Level:	Total Depth of Well:
Approximate Volume Removed:	
Water Characteristics	•
ColorOdor: None Weak Any Films or Immiscible Material pH	Clear Cloudy Moderate Strong
Specific Conductance(µS/cm)	
Disolved Oxygen (mg/L)	
Comments:	

Job Number: 72 Location Colu Well Number	29691.32020 mbus AFB, ST24 MPC (ST24)	Job Name: AFCEE-RNA by <u>RN/JH/CS/BL</u> _Measurement Datum	_Date: _!	, 1996
Pre-Developme				-
Water	Level:	Total D	epth of We	11:
Water	Characteristics			Did Not
	ColorOdor: None Weak Any Films or Immiscible Material pHTemper	Moderate	Strong	Develop
	Specific Conductance(µS/cm) Disolved Oxygen (mg/L)	· · · · · · · · · · · · · · · · · · ·		
Interim Water (Characteristics			
Gallon	s Removed			
pH				
Tempe	erature (°C)	 		
Specif	ic Conductance(μS/cm)			
Disolv	red Oxygen (mg/L)			
Post-Developm	ent Information	Time (Finish):_	···	
Water	Level:	Total Depth of V	Well:	
Appro	ximate Volume Removed:		· .	
Water	Characteristics			•
	ColorOdor: None Weak Any Films or Immiscible Material pH		Strong	
	Specific Conductance(µS/cm)			•
Comments:	Disolved Oxygen (mg/L)			

Job Number: <u>729691.32020</u> Job Name: AFCEE-RNA		
Location Columbus AFB, ST24 by RN/JH/CS/BL Date: 1/13, 1996		
Well Number S A 4 D(D) Measurement Datum		
Pre-Development Information (Start): 0700		
Water Level: Total Depth of Well: 229		
Water Characteristics		
Color Clear Cloudy Odor: None Weak Moderate Strong Any Films or Immiscible Material pH 6. Temperature (°C) 18.7 Specific Conductance (µS/cm) 23 Disolved Oxygen (mg/L) 1:05		
Interim Water Characteristics		
1		
Gallons Removed 0.2 0.4 0.6 0.8 1.0		
pH 6.09 6.07 6.09 6.09 6.09		
Temperature (°C) 19.5 19.8 (1.9 20.0 20.0		
Specific Conductance(μS/cm) 187 186 185 185 185		
Disolved Oxygen (mg/L) 1-30 10.74 0.55 0.48 0.47		
·		
Post-Development Information Time (Finish): 0718		
Water Level: Total Depth of Well:		
Approximate Volume Removed:		
Water Characteristics		
Color Hone Weak Moderate Strong		
Any Films or Immiscible Material		
pH 0 0 7 Temperature(°C) 10 0		
Specific Conductance(µS/cm) [84] Disolved Oxygen (mg/L) [7.4]		
Comments:		

Job Number: <u>729691.32020</u> Job Name: AFCEE-RNA
Location Columbus AFB, ST24 by RN/JH/CS/BL Date: 1 1996
Well Number MPKE (ST24) Measurement Datum
Pre-Development Information Time (Start): 0930
Water Level: Total Depth of Well: 49-21
Water Characteristics
Color BWW Clear Cloudy Odor: None Weak Moderate Strong Any Films or Immiscible Material WSW pH 6 20 Temperature(°C) 15-3 Specific Conductance(µS/cm) 22 O Disolved Oxygen (mg/L) O. 67
Interim Water Characteristics
Gallons Removed 0.2 0.4 0.7 0.9
pH 6.29 630 6.27 6.26
Temperature (°C) 19.9 20.2 20.3 20.4
Specific Conductance(µS/cm) 200 200 200 190
Disolved Oxygen (mg/L) 1.22 1.29 0.88 0.70
Post-Development Information Time (Finish): 0945
Water Level: Total Depth of Well: 19-2
Approximate Volume Removed:
Water Characteristics .
Color LINT (CODY Clear Cloudy Odor: None Weak) Moderate Strong Any Films or Immiscible Material pH (2.29 Temperature(°C) & C.5 Specific Conductance(µS/cm) 190 Disolved Oxygen (mg/L) Comments:

Job Number: 729691.32020 Job Name: AFCEE-RNA		
Location Columbus AFB, ST24 by RN/JH/CS/BL Date: 1/12, 1996		
Well Number MPF (ST24) Measurement Datum		
Pre-Development Information Time (Start): 0750		
Water Level: Total Depth of Well: 19-人		
Water Characteristics		
Color Show Clear Cloudy Odor: None Weak Moderate Strong Any Films or Immiscible Material pH 5.67 Temperature(°C) 18.5 Specific Conductance(µS/cm) 250 Disolved Oxygen (mg/L) 1.51		
Interim Water Characteristics		
$\alpha \gamma \alpha + 1001 \gamma 11$		
Gallons Removed 5.54 5.55 5.62 5.69 5.7		
P44		
Temperature (°C) 20-8 21-1 21-5 21-7 21-8		
Specific Conductance (µS/cm 150 140 140 140 140		
Disolved Oxygen (mg/L) 377 227 1.29 0.50		
Post-Development Information Time (Finish): 0820		
Water Level: Total Depth of Well: 19-2		
Approximate Volume Removed:		
Water Characteristics		
Color Clear Cloudy Odor: None Weak Moderate Strong Any Films or Immiscible Material pH 5-7 Temperature(°C) 2 8 Specific Conductance(µS/cm) 1 4 0 Disolved Oxygen (mg/L) 0-4 9 Comments:		

Job Number: <u>729691.32020</u> Jo	ob Name: AFCEE-RNA
Location Columbus AFB, ST24 by	y RN/JH/CS/BD Date: 1996
Well Number / N P G	1easurement Datum
Pre-Development Information	Time (Start): 1445
Water Level:	Total Depth of Well: 19 - 2
Water Characteristics	
Color	re(°C) - 2 1. 4 20
Interim Water Characteristics	
Gallons Removed 0.3	0.6 0.9 1.1
	1.73 4-75 4.78
	3.0 23.2 23.2
	50 50 50
Disolved Oxygen (mg/L) 4,58 4	.33 4.21 4.20
	•
Post-Development Information	Time (Finish): 1500
Water Level:	Total Depth of Well: 19-2
Approximate Volume Removed:	
Water Characteristics	120105
	Clear Cloudy Moderate Strong emperature(°C) 2-3. 2 5 0

	Job Name: AFCEE-RNA by RN/JH/CS/BI) Date: 11 (13 , 1996
Well Number S (24 - MPH(5)	Measurement Datum
Pre-Development Information	Time (Start): 945
Water Level: ~15' (estimated)	Total Depth of Well: 1-19.5
Water Characteristics	
Color S/ Hy - brown Odor: None Weak Any Films or Immiscible Material pH 4.78 Tempera Specific Conductance(\(\mu S/cm\)) Disolved Oxygen (mg/L) 0.5	ture(°C)_20_2
Interim Water Characteristics	
Gallons Removed 0, 5	9:50
pH_ 4.06	
Temperature (°C) 20,9	
Specific Conductance(µS/cm) 2.38	
Disolved Oxygen (mg/L) 0.34	Redox
Post-Development Information	Time (Finish): 952
Water Level:	Total Depth of Well:
Approximate Volume Removed:	I gall
Water Characteristics	
Color brown - 15h7 Odor: None Weak Any Films or Immiscible Material pH 6.06 Specific Conductance(µS/cm) Disolved Oxygen (mg/L) Comments:	Clear Cloudy Moderate Strong Temperature(°C) 21.0

Job Number: <u>729691,32020</u>	Job Name: AFCEE-RNA				
Location Columbus AFB, ST24	by RN/JH/CS/BL Date: 1//2 1996				
Well Number MPJ (STZY)	Measurement Datum				
Pre-Development Information		Т	ime (Start):_	0940	
Water Level:			Total	Depth of Well:	
Water Characteristics					
Color On ANC Odor: None Any Films or Immiscil pH 5.\3 Specific Conductance	ble Material Temper (μS/cm)	rature(°C)_ 7 0			-
Disolved Oxygen (mg	/L) <u> </u>	Δ >			
Interim Water Characteristics					
Gallons Removed	0.3	0.6	0.9	1.2	
pH	4.84	5.10	5.08	5.03	-
Temperature (°C)	20.9	21-3	21.6	21-7	
Specific Conductance(μS/cm)_	<u> </u>	60	bo.	60	
Disolved Oxygen (mg/L)	5.44	<u>5.32</u>	5.28	5.26	
Post-Development Information		Т	ime (Finish)	0955	
Water Level:		_ т	otal Depth o	f Well:	
Approximate Volume Removed	i:				
Water Characteristics					
Color Cone Odor: None Any Films or Immiscil pH 5-0-3 Specific Conductance(Disolved Oxygen (mg)	μS/cm) <u>6</u>	Temperate	Clear Cloud Moderate	Strong V. 7	

Job Number: <u>729691.32020</u>	Job Name: AFCEE-RNA
Location Columbus AFB, ST24	by <u>RN/JH/CS/BL</u> Date: 1/8, 1996
Well Number MPJ (5724)	Measurement Datum
Pre-Development Information	Time (Start): 0940
Water Level:	Total Depth of Well:
Water Characteristics	
Color Brown	Clear Cloudy
Color Rone Weak	Moderate Strong
Any Films or Immiscible Material pHTempe	N_0
pH	rature(°C) 19,7
Specific Conductance(μS/cm)	
Disolved Oxygen (mg/L)	.78
Interim Water Characteristics	_
Gallons Removed / gallon pH	Time 9:50
pH	
Temperature (°C) 20.4	 .
Specific Conductance(µS/cm) 56	
Disolved Oxygen (mg/L) 2.15	
Relox 120	
	$a \subset C$
Post-Development Information	Time (Finish): 955
Water Level:	Total Depth of Well:
Approximate Volume Removed:	5 gallors
Water Characteristics	,
Color	Clear Cloudy
Odor: None Weak	Moderate Strong
Any Films or Immiscible Material	
pH 5.33	Temperature(°C) 20,5
Specific Conductance(µS/cm) 5	6
Disolved Oxygen (mg/L)	
Comments: Redox 120	

Job Number: 729691.32020 Location Columbus AFB, ST24	Job Name: AFCEE RNA 1/10/96 by RNJHCSBL Date: 10/10/96			
Well Number MPK(S) STEH	Measurement Datum			
Pre-Development Information	Time (Start): 1447			
Water Level:_≈ 15.00'	Total Depth of Well: ≃ \(\tau - 21'\)			
Water Characteristics				
Color None Weak Any Films or Immiscible Materia pH 5 16 Tempo Specific Conductance(µS/cm) Disolved Oxygen (mg/L)	al Nc erature(°C) 18.3			
Interim Water Characteristics				
Gallons Removed 0.2	0.3 0.5			
pH5. 21	5.13 5.12			
Temperature (°C) 19-3	19.5 19.4			
Specific Conductance(µS/cm)	40 40			
Disolved Oxygen (mg/L) 6-20	6.31 6.42			
Post-Development Information Water Level: unknown	Time (Finish): 1458 Total Depth of Well: 9-21'			
Approximate Volume Removed:	,5 gal			
Water Characteristics				
Color None Weak Odor: None Weak Any Films or Immiscible Materia pH 5-12 Specific Conductance(\(\mu S/cm\) Disolved Oxygen (mg/L) 6 Comments:	Moderate Strong al <u>No</u> Temperature(°C) 19・9			

I:\forms\develop.doc

Job Number: 729691.32020 Job Name: AFCEE-RNA
Location Columbus AFB, ST24 by RN/JH/CS/BL Date: 1/11 1996
Well Number MPK(D) 5724 Measurement Datum
Pre-Development Information Time (Start): 0710
Water Level: Total Depth of Well: 229
Water Characteristics
Color Clear Cloudy Odor: None Weak Moderate Strong Any Films or Immiscible Material Many Temperature (°C) 16 G Specific Conductance (µS/cm) 16 G Disolved Oxygen (mg/L) 3 G
Interim Water Characteristics
Gallons Removed 0.2 0.4 0.5 0.6 5.33 4.93 4.87 4.84
pH
Temperature (°C) 18.0 18.8 18.5 18.5 Specific Conductance (μS/cm) 50 40 40 40
Disolved Oxygen (mg/L) 7.51 7.73 8.17 8.15
Post-Development Information Time (Finish): 0740
Water Level: Total Depth of Well: 239
Approximate Volume Removed: (). 6
Water Characteristics
Color

Job Number: 729	9691.32020	Job Name: AFCEE-RNA
Location <u>Colum</u> Well Number	1051.32020 10bus AFB, LF6 5724	by <u>RN/JH/CS/BL</u> Date: 11/18, 1996
well Number	70(1)	Measurement Datum
Pre-Developmen	t Information	Time (Start): 0805
Water L	evel:	Total Depth of Well:
Water C	Characteristics	
	Color Odor: None Weak Any Films or Immiscible Material pH 5,74 Temper Specific Conductance(µS/cm) Disolved Oxygen (mg/L)	rature(°C) Cc!
Interim Water Cl	haracteristics	
Gallons	Removed 1.5	
pH	5.63	
Temper	ature (°C)20,5	
Specific	Conductance(μS/cm) 10 q	
Disolve	d Oxygen (mg/L) 0.23	2
Post-Developme		Time (Finish): 0850
	imate Volume Removed:	// ^ : //
-	Characteristics) (((n))
•		6
0830 Comments:	ColorOdor: None Weak Any Films or Immiscible Material pH	Clear Cloudy Moderate Strong Temperature(°C) 20.5 10.9
Johnnyhld.	No Sh	een, Moderate Color

I:\forms\develop.doc

Job Number: 729691.32020 Location Columbus AFB ST24 Location Columbus AFB ST24 Job Name: AFCEF-RNA by RN/JH/CS/BL Date: 1996	
Well Number Measurement Datum	
Pre-Development Information Time (Start): 065 0	
Water Level: Total Depth of Well:	
Water Characteristics	
Color ONAN (1) E Blow/Clear Cloudy Odor: None Weak Moderate Strong Any Films or Immiscible Material pH	
Interim Water Characteristics	
Gallons Removed 0.3	
pH5.82	
Temperature (°C) 20.6	
Specific Conductance(µS/cm) 158	
Disolved Oxygen (mg/L) 2, 40	
Post-Development Information Time (Finish): 070 Water Level: Total Depth of Well:	
Approximate Volume Removed:	
Water Characteristics	
Color	

APPENDIX A-3 GROUNDWATER SAMPLING FORMS

Groundwater Sampling Record Monitoring Well No. WbB (Cont'd) SAMPLE EXTRACTION METHOD: 5[] [] Bailer made of:__ [] Pump, type:__ [] Other, describe:_ Sample obtained is [X] GRAB; [] COMPOSITE SAMPLE 6[] **ON-SITE MEASUREMENTS:** Time 6759 D805 Meausred with Temp (°C) O. 7 pН 4.65 4.60 Cond 50 (µS/cm) 5.31 DO (mg/L) Redox (mV) 252.4 Salinity Nitrate Sulfate Ferrous Iron SAMPLE CONTAINERS (material, number, size):_ VOAS 7[] 14ml ON-SITE SAMPLE TREATMENT: 8[] ____ Containers: [] Filtration: Method Method Containers: Method _ Containers:___ [] Preservatives added: Method __ Containers:__ Method __ Containers:___ Method Containers: Method____ _____ Containers: 9[] CONTAINER HANDLING: Container Sides Labeled Container Lids Taped [] Containers Placed in Ice Chest 10[] OTHER COMMENTS:

GROUND W	ATER SAMPLING RECORD - MONIT	ORING WELL WEG (STZ4))
REASON FO DATE AND SAMPLE CO	R SAMPLING: [X] Regular Sampling: FIME OF SAMPLING: \\/\i\/\i\/\i\\ LLECTED BY \(\frac{JH/BL/CS/RN}{JH/BL/CS/RN}\) of \(\frac{Parso}{Parso}\) 3247 Partly Charles R WATER DEPTH MEASUREMENT (; [] Special Sampling; _, 1996 <u>720</u> (a.m)/p.m. ons ES	(number)
MONITORIN	IG WELL CONDITION:		
	[] LOCKED:	M UNLOCKED	
	WELL NUMBER (IS -(IS NOT))APPA	ARENT	
	STEEL CASING CONDITION IS:		
	INNER PVC CASING CONDITION I		
	WATER DEPTH MEASUREMENT I [] DEFICIENCIES CORRECTED B		
	MONITORING WELL REQUIRE		
		.2 1 (deserted). <u></u>	
Check-off			
1[]	•	JSE WITH	
	items Cleaned (List):		
2[]	PRODUCT DEPTH		FT. BELOW DATUM
•	. Measured with:	•	
	WATER DEPTH \S.03'		FT. BELOW DATUM
	Measured with: tota	1 depth = 20.71	r1. below DATOM
3[]	WATER-CONDITION BEFORE WE	•	
	Appearance:	•	
	Odor		
	Other Comments.		
4[]	WELL EVACUATION:		
	Method:		
	Volume Removed:2		
		(slightly - very) cloudy	•
		level (rose - feil - no change)	
		odors:	
	Oulei	commissio.	

Groundwater	Sam	pling	Reco	rd
-------------	-----	-------	------	----

5[]		TRACTION	N METHO	D: (STZ4)		
	· •						
	İ	[] Bailer i	made of:	istilic	····		
		Other,	type.42000. describe:	٠٠٠،٠٠.			
	:	Sample obta	ined is [X	GRAB;	[] COMPO	OSITE SAMPLE	
5[]	ON-SITE ME	CASUREME	ENTS:				
	Time	654	101	707	यह	Meausred with	
•	Temp (°C)	19.3	19-6	18.6	16.9		
	pН	4.23	4.65	4.67	4,66		
	Cond (µS/cm)	72	70	70	70		
	DO (mg/L)	प. ⁶ ॥	4.45	4.56	5.33		
	Redox (mV)	243-1	355.8	359,7	338.0		
	Salinity			<u> </u>			
	Nitrate			<u> </u>	1		
	Sulfate	1		2	100		
punjill	Estrous-Iron	0.5	1.5	1 4	2.5		
	ON-SITE SAMPLE TREATMENT:						
8[]	ON-SITE SA	MPLE TRE	ATMENT	•			
3[]						Containers:	
8[]		MPLE TRE	Met	hod		_ Containers:	
[]			Met Met	hod hod		Containers: Containers: Containers:	
3[]	[]	Filtration:	Met Met Met	hod hod		_ Containers:	
8[]	[]		Met Met Met es added:	hod hod hod		Containers:	
8[]	[]	Filtration:	Met Met Met es added:	hod hod hod		Containers:	
	[]	Filtration:	Met Met Met es added: Met Met	hodhodhodHC_hod		Containers: VEAS Containers: VEAS	
	[]	Filtration:	Met Met Met es added: Met Met Met	hodhodhodhodhod		Containers: Containers: Containers: Containers: Containers: Containers:	
	[]	Filtration: Preservative	Met Met Met es added: Met Met Met	hodhodhodHC_hod		Containers: VEAS Containers: VEAS	
		Filtration: Preservative	Met Met Met es added: Met Met Met	hodhodhodhodhod		Containers: Containers: Containers: Containers: Containers: Containers:	
	[]	Filtration: Preservative R HANDLI Cont. Cont.	Met Met Met es added: Met Met Met	hodhodhodhodhodhod		Containers: Containers: Containers: Containers: Containers: Containers:	
9[]	[]	Filtration: Preservative R HANDLE Cont. Cont. Cont.	Met Met es added: Met Met Met NG: ainer Sides ainer Lids	hodhodhodhodhods Labeled Taped ed in Ice C	hest	Containers: Containers: Containers: Containers: Containers: Containers:	
	[]	Filtration: Preservative R HANDLE Cont. Cont. Cont.	Met Met es added: Met Met Met NG: ainer Sides ainer Lids	hodhodhodhodhods Labeled Taped ed in Ice C	hest	Containers: Containers: Containers: Containers: Containers: Containers:	
9[]	[]	Filtration: Preservative R HANDLE Cont. Cont. Cont.	Met Met es added: Met Met Met NG: ainer Sides ainer Lids	hodhodhodhodhods Labeled Taped ed in Ice C	hest	Containers: Containers: Containers: Containers: Containers: Containers:	
	[]	Filtration: Preservative R HANDLE Cont. Cont. Cont.	Met Met es added: Met Met Met NG: ainer Sides ainer Lids	hodhodhodhodhods Labeled Taped ed in Ice C	hest	Containers: Containers: Containers: Containers: Containers: Containers:	

ATER SAMPLING RECORD - MONITORING WELL W70 (5724)	
DR SAMPLING: [X] Regular Sampling; [] Special Sampling; TIME OF SAMPLING: 11/10/96, 1996 1345 a.m./p.m. DLLECTED BY: 1H/BL/CS/RN of Parsons ES SOF SURRY R WATER DEPTH MEASUREMENT (Describe):	(number)
NG WELL CONDITION:	
[] LOCKED: UNLOCKED WELL NUMBER (IS - (S NOT) APPARENT STEEL CASING CONDITION IS: 0	
INNER PVC CASING CONDITION IS:	
WATER DEPTH MEASUREMENT DATUM (IS - IS NOT) APPARENT [] DEFICIENCIES CORRECTED BY SAMPLE COLLECTOR [] MONITORING WELL REQUIRED REPAIR (describe): Lich Cracker	1
EQUIPMENT CLEANED BEFORE USE WITH	
PRODUCT DEPTH	FT. BELOW DATUM
WATER DEPTH 14.95 Measured with: total depth 20.1	FT. BELOW DATUM
WATER-CONDITION BEFORE WELL EVACUATION (Describe): Appearance: Odor: Other Comments:	
WELL EVACUATION: Method: Volume Removed: Observations: Water (slightly - very) cloudy Water level (rose - fell - no change) Water odors:Strong	OY
	DR SAMPLING: [X] Regular Sampling; [] Special Sampling; TIME OF SAMPLING: 11/10/96 , 1996 1345 a.m./p.m. DLLECTED BY: 1H/BL/CS/RN of Parsons ES SOF SURVY R WATER DEPTH MEASUREMENT (Describe): ING WELL CONDITION: [] LOCKED: WELL NUMBER (IS - S NOT) APPARENT STEEL CASING CONDITION IS: 016 INNER PVC CASING CONDITION IS: 016 WATER DEPTH MEASUREMENT DATUM (IS - S NOT) APPARENT [] DEFICIENCIES CORRECTED BY SAMPLE COLLECTOR [] MONITORING WELL REQUIRED REPAIR (describe): 11 d cracical EQUIPMENT CLEANED BEFORE USE WITH Items Cleaned (List): PRODUCT DEPTH Measured with: 19-101 depth 20-1 WATER-CONDITION BEFORE WELL EVACUATION (Describe): Appearance: Odor: Other Comments: WELL EVACUATION: Method: Volume Removed: Observations: Water (slightly - very) cloudy Water level (rose - fell - no change) Water odors: Strong Locaco Col

Monitoring Well No. W70 (Cont'd) SAMPLE EXTRACTION METHOD: 5[] [] Bailer made of:___ Pump, type: Darastalic Other, describe: Sample obtained is [X] GRAB; [] COMPOSITE SAMPLE 6[] **ON-SITE MEASUREMENTS:** 1326 Time 1311 Meausred with 1319 Temp (°C) 21.0 20.7 70.9 21.1 5,73 pН 5.82 5,84 5.84 130 grit Cond 130 150 (µS/cm) 110 DO (mg/L) 0.33 0.23 0-27 6.25 Redox (mV) -107.3 -134.1 - 140.3 Salinity Nitrate Sulfate Ferrous Iron 1.5 2,5 purge volume SAMPLE CONTAINERS (material, number, size): 16 VOAS VOCS, methode, BTEX/TVH-G-7[] 1 125ml plastic anions 7 VOAS VOCS, BTEX/TVH-6 (at 645) Publicate Sample W.75 8[] ON-SITE SAMPLE TREATMENT: Method []Filtration: Containers: Method _____Containers: Method __ Containers:___ [] Preservatives added: HCI Containers: VOAS Method Method ____ Containers:____ Method Containers:___ Method__ Containers:____ 9[] CONTAINER HANDLING: Container Sides Labeled Container Lids Taped [] Containers Placed in Ice Chest 10[] OTHER COMMENTS:____

Groundwater Sampling Record

GROUND V	VATER SAMPLING RECORD - MONITORING WELL W +1 (STZ4)
DATE AND SAMPLE CO WEATHER	(number) OR SAMPLING: [X] Regular Sampling; [] Special Sampling; TIME OF SAMPLING: 11/10/96 , 1996 0850 a.m./p.m. OLLECTED BY JH/BL/CS/RN of Parsons ES
MONITORI	NO WELL COMPLETON
MONITORI	NG WELL CONDITION: [] LOCKED: WELL NUMBER (IS - IS NOT) APPARENT STEEL CASING CONDITION IS: O'C
	INNER PVC CASING CONDITION IS:
	WATER DEPTH MEASUREMENT DATUM (IS (S NOT) APPARENT [] DEFICIENCIES CORRECTED BY SAMPLE COLLECTOR [] MONITORING WELL REQUIRED REPAIR (describe):
Check-off	
1[]	EQUIPMENT CLEANED BEFORE USE WITH
2[]	PRODUCT DEPTHFT. BELOW DATUM Measured with:
	WATER DEPTH. 15.48' Measured with: total depth - 19.5' FT. BELOW DATUM
3[]	WATER-CONDITION BEFORE WELL EVACUATION (Describe): Appearance: Odor: Other Comments:
4[]	WELL EVACUATION: Method: Volume Removed:
•	Water level (rose - fell -no change) Water odors:

Groundwater	Sam	pling	Reco	rd
-------------	-----	-------	------	----

		Mon	itoring We	ll No. V	N 71	(Cont'd)		
5[]	SAMPLE EX	TRACTIO	N METHO	D: (N71 ST24)	_ (
		[] Bailer	made of:					
		[X] Pump,	type:_pc.r.c	Stalti C				
		[] Other,	describe:_					
	;	Sample obta	ained is [X	() GRAB;	[] COMP	OSITE SAM	1PLE	
6[]	ON-SITE ME	ASUREME	ENTS:				•	
	Time	829	834	939	843		Meausred with	1
	Temp (°C) 19.	725ين	19,9	20.0	20.0			
	pН	6.04	6.00	6.02	6,01			
	Cond (μS/cm)	190	190	190	190			
	DO (mg/L)	0.40	0.39	C (36	0.35			
,	Redox (mV)	-13-7	-32.4	~ 71.C	-31.0.			
	Salinity Nitrate			<u> </u>				ž
•	Sulfate				 			
amount purged	Ferrous Iron	0.5	1.0	1.5	2			
7[] 8[]	SAMPLE CO				ze):			
	[] I	Filtration:	Meti	hod		Containe	rs:	
	[]	Preservative	s added:					
			Metl	nod nod		Container Container	rs:	
9[]	CONTAINER	HANDLIN	lG:					
	[] Conta	iner Sides iner Lids I iners Place		est			•
10[]	OTHER COM	MENTS:_						
					*			
								
			W					

GROUND W	/ATER SAMPLING RECORD - MONITORING WELL W72 (ST2	4)
		(number)
REASON FO	OR SAMPLING: [X] Regular Sampling; [] Special Sampling;	
DATE AND	TIME OF SAMPLING: 1/8/96 , 1996 0850 a.m./p.m.	
SAMPLE CO	OLLECTED BY (JH/BL/CS/RN) of Parsons ES	
WEATHER:	400 Eartly auxy	
DATUM FO	R WATER DEPTH MEASUREMENT (Describe):	
NON UTODE	NO WELL CONDITION.	
MONITORI	NG WELL CONDITION: [] LOCKED: [X UNLOCKED]	
	[] LOCKED: [/], UNLOCKED WELL NUMBER (IS US NOT) APPARENT	
	STEEL CASING CONDITION IS: Poor	
	INNER PVC CASING CONDITION IS: OIC	
	WATER DEPTH MEASUREMENT DATUM (IS - (S NOT) APPARENT	
	DEFICIENCIES CORRECTED BY SAMPLE COLLECTOR	
	MONITORING WELL REQUIRED REPAIR (describe): No IId	
	MONITORING WELL REQUIRED REPAIR (describe).	,
	,	· · · · · · · · · · · · · · · · · · ·
Check-off		
1 []	EQUIPMENT CLEANED BEFORE USE WITH	
* L J	Items Cleaned (List):	
		TT DELOW DATEM
2[]	PRODUCT DEPTH	FT. BELOW DATUM
	Measured with:	
	WATER DEPTH 13.801 Total Dooth = 201 ANH	ET BELOW DATIM
	WATER DEPTH 13.80' Total Depth = 20' gath Measured with:	PT. DELOW DATOM
	Measured with.	
3[]	WATER-CONDITION BEFORE WELL EVACUATION (Describe):	•
2 ()	Appearance:	
	Odor:	
	Other Comments:	
4[]	WELL EVACUATION:	
	Method:	
	Volume Removed: 2500 yeth 1.5cm	
	Observations: Water (slightly - very) cloudy	
	Water level (rose - fell - no change)	•
	Water odors: hydrocarton odor slight	
	Other comments:	

Groundwater Sampling Record Monitoring Well No. ____ W72 (Cont'd) (STZY) 5[] SAMPLE EXTRACTION METHOD: [] Bailer made of:_ [] Pump, type:__ [] Other, describe: Sample obtained is [X] GRAB; [] COMPOSITE SAMPLE 6[] **ON-SITE MEASUREMENTS:** Time 1624 1640 1646 Meausred with Temp (°C) 19.3 18,0 17.6 pΗ 5,67 5,80 5,83 Cond 120 110 120 (µS/cm) DO (mg/L)* 4.27 5.12 5.48 126.9 117,8 122.0 Salinity Nitrate Sulfate Eerrous Iron O.Sgal Igai Amount Purged SAMPLE CONTAINERS (material, number, size): 10 YOAS Nethane, UCCS, Brex/TVH-G-7[] 1-125 ml plastic Anions 8[] ON-SITE SAMPLE TREATMENT: [] Filtration: Method Containers: Method __ Containers:__ Method_ Containers:_ [] Preservatives added: HCI Method Containers: VAS Method Containers:_ Method Containers: Method_ Containers: 9[] CONTAINER HANDLING: [] Container Sides Labeled

Container Lids Taped

Containers Placed in Ice Chest

OTHER COMMENTS! areated sample to wall went dry, constant buildes

[]

[]

10[]

GROUND W	'ATER SAMPLING RECORD - N	MONITORING WELL W+3 (ST	24)
REASON FO	DP SAMPI ING: [Y] Regular Sar	nnling: [] Special Sampling:	(number)
DATEAND	TIME OF CAMPIING: 11/8/	16 , 1996 1 (a.m.)p.m.	
DATE AND	DLLECTED BY: UH/BL/CS/RN C	f Darrong ES	
WEATHER:	50°F Sunny	TO	
DATUM FO	R WATER DEPTH MEASUREM	ENT (Describe): 100	Miles Marie
MONITORI	NG WELL CONDITION:		
	[] LOCKED:	M UNLOCKED	
	WELL NUMBER (IS (IS NOT		
	STEEL CASING CONDITION		
	INNER PVC CASING CONDI	TION IS: c⊬	
		ENT DATUM (IS - IS NOT) APPARENT	
		TED BY SAMPLE COLLECTOR	
		QUIRED REPAIR (describe):	
	[] Montroiding week its	QUITADO TADA TITA (GOSOFIOO).	
Check-off			
1[]	EQUIPMENT CLEANED BEF	ORE USE WITH	
		st):	
	40.000.00		
2[]	PRODUCT DEPTH 14.00	TD = 18.01	FT RELOW DATUM
211			
**	Wedsured with		
	WATER DEPTH		FT. BELOW DATUM
3[]		E WELL EVACUATION (Describe):	•
		un	
	Odor:		-
	Other Comments:		
4[]	WELL EVACUATION:		
	Volume Removed		
	Observations:	Water (slightly - very) cloudy	
		Water level (rose - fell - no change)	•
		Water odors:	
		Other comments:	

				Sampling Re			
5[]	SAMPLE EX			W73 (STZ4)	(Cont a)	•	
	(Other, de		わと AB; [] COME			
6[]	ON-SITE ME	ASUREMEN	ITS:				
	Time Temp (°C) pH Cond (μS/cm) DO (mg/L)		1051 22.0 4.41 60			Meausred with	
Purge Amount	Redox (mV) Salinity Nitrate Sulfate Entrous from		19al			·	
7[]	SAMPLE CO	NTAINERS	(material, numb 5 ml plostic for 145 ml glass -	- anions		methane, 4-	BTEX/TVH-G
8[]	ON-SITE SA	MPLE TREA	ATMENT:				
	[]	Filtration:	Method Method Method		Contai		
	K	Preservatives	added:				
			Method Method Method Method		Contai	ners: VOAS ners: 149 ml e ners:	
9[]	CONTAINE	R HANDLIN	G:				
		[] Conta	iner Sides Labe iner Lids Taped iners Placed in	l			•

OTHER COMMENTS: pumped well dry after removing ~1 gai

10[]

GROUND W	ATER SAMPLING RECORD - M	IONITORING WELL W74	(>TZY)
			(number)
REASON FO	R SAMPLING: [X] Regular Sam	pling; [] Special Sampling;	
DATE AND	TIME OF SAMPLING: 11/8/96	1996 1515 a.m./p.m.	
SAMPLE CO	LLECTED BY: (H/BL)CS/RN of	Parsons ES	•
WEATHER:	Sunny 500 F		
DATUM FO	R WATER DEPTH MEASUREMI	ENT (Describe): 100	
MONITORI	NG WELL CONDITION:	5/4/m520***	
MONTOKI	[] LOCKED:	[X] UNLOCKE	ED.
	WELL NUMBER (IS - (IS NOT)		
	STEEL CASING CONDITION	is. or	
	DANIED DVC CARDIC CONDIT	TONIES OF	
	WATER DEPTH MEASUREM	ENT DATUM (IS - (S NOT) APPAR	RENT
	1 DEFICIENCIES CORRECT	ED BY SAMPLE COLLECTOR	
		UIRED REPAIR (describe): ho con	ier
	K) Montroland week to	(01.65 16111111111111111111111111111111111	
Check-off			
1[]	EQUIPMENT CLEANED BEFO	ORE USE WITH	
	Items Cleaned (Lis	t):	
263	DRODUCT DEPTH	7 A 1 (21) - 7 (21) A 1 (21	ET DELOW DATIM
2[]			
•	WATER DEPTH 13,77	Total Depth: 22,70	FT. BELOW DATUM
	Measured with:		
3[]	WATER-CONDITION BEFOR	E WELL EVACUATION (Describe)):
•	Appearance:		
		# 14 M 14	
			•
4[]	WELL EVACUATION:		
	Method:		
	Volume Removed		·
		Water (slightly - very) cloudy	
		Water level (rose - fell - no change)	
		Water odors: no odor	
	•	Other comments:	

5[]	SAMPLE EX	TRACTION	иметног	D :	(5724))		
	1] Bailer i	nade of:					
		Pump, Other,	type: Scrol	static				
	i	J Ouler,	describe:					
	;	Sample obta	ined is [X]	GRAB;	[] COMP	OSITE S	AMPLE	
6[]	ON-SITE ME	ASUREME	ENTS:					
	Time	1439	1447	1456	1505		Meausred with	
	Temp (°C)	21.1	21.2	21.1	λ1.0			}
	pH	4.34	4.43	4,43	4.59			
	Cond (μS/cm)	30	30	<i>3</i> 0	30			·
	DO (mg/L)	4.74	4,75	4.79	4.85			
	Redox (mV)	270-4	270.4	272,3	273.5			
	Salinity	<u> </u>			<u> </u>	-	<u> </u>	
	Nitrate Sulfate				<u> </u>			
	Ferrous Iron	100	261		461			
amount purged	T OTTOGO TION	1 gal	Lyan	3901	17.75all		1	1 .
7[]	SAMPLE CO	ntainer: r 6-vac	S (material, MS/MSD	number, si	ize): 3-YOC 1005, 1-T	, 3-N	ethone, 4-BTEX	/TUH-G VOAs
)	•							
8[]	ON-SITE SA	MPLE TRE	ATMENT:				•	
	[]	Filtration:	Meth	10d	•	_ Conta	iners:	
	•		Meth	10d		Conta	ainers:	
			Meth	nod		Conta	ainers:	
	PS.	Preservative	es added:					
			Metl	nod IACI		Contr	ainers: No VOCs	Mothere, BTEX/TUH
			Metl	10d H2 500	4	Conta	ainers: 1 ToC	manufacture, 12 - Carp 1 - 11
					1		ainers:	
				nod			ainers:	

[X]Container Sides Labeled

CONTAINER HANDLING:

[]

Container Lids Taped Containers Placed in Ice Chest [×]

OTHER COMMENTS: MS/MSD samples as lected for VOLS 10[]

9[]

GROUND W	WATER SAMPLING RECORD - MONITORING WELL W +1	(STZ4)
		(number)
REASON FO	OR SAMPLING: [X] Regular Sampling; [] Special Sampling;	,
DATE AND	OTIME OF SAMPLING: 11/16/96 , 1996 1030 a.m./p.m.	
SAMPLE CO	OLLECTED BY (JH/BL/CS/RN of Parsons ES	
WEATHER:		
DATUM FO	OR WATER DEPTH MEASUREMENT (Describe):	
MONITORI	ING WELL CONDITION:	
	[] LOCKED: [A UNLOCK	ED
	WELL NUMBER (IS - (S NOT) APPARENT	
	STEEL CASING CONDITION IS: CK	
	INNER PVC CASING CONDITION IS: OF	
	WATER DEPTH MEASUREMENT DATUM (IS - (S NOT) APPA	RENT
	[] DEFICIENCIES CORRECTED BY SAMPLE COLLECTOR	
	[] MONITORING WELL REQUIRED REPAIR (describe):	
Check-off		
1[]	EQUIPMENT CLEANED BEFORE USE WITH	
•	Items Cleaned (List):	
2[]	PRODUCT DEPTH	
2()	Measured with:	
•	Wicasurca with.	
	WATER DEPTH 14.52'	FT. BELOW DATUM
	Measured with: 10th depth = 19.2	II. BEEGW BATOW
	Moddied Willi.	
3 []	WATER-CONDITION BEFORE WELL EVACUATION (Describe	e):
	Appearance:	
·	Odor:	
	Other Comments:	
4[]	WELL EVACUATION:	
• •	Method:	
	Volume Removed:	
	Observations: Water (slightly - very) cloudy	
	Water level (rose - fell - no change)	
	Water odors:	
•	Other comments:	

Groundwater Sampling Record Monitoring Well No. W77 (Cont'd) 5[]. SAMPLE EXTRACTION METHOD: [] Bailer made of:_ Pump, type: parastantic Other, describe: Sample obtained is [X] GRAB; [] COMPOSITE SAMPLE 6[] **ON-SITE MEASUREMENTS:** Time 959 1005 1009 1014 1018 Meausred with Temp (°C) 2014 20,9 20.0 21.1 21,1 pН 4.62 4,60 4,61 4.62 4.61 Cond 90 40 90 90 90 (µS/cm) DO (mg/L) 1,86 1.16 1.04 0,88 0.82 Redox (mV) 161,8 189.7 192.0 199,3 197.6 Salinity Nitrate Sulfate Rerrous Iron 0.5 1.5 215 SAMPLE CONTAINERS (material, number, size): 10 VOAS BIEY TPH-6, VO(s, nethane 7[] 8[] ON-SITE SAMPLE TREATMENT: [] Filtration: Method _____ Containers: Method _____ Containers: Method_ _ Containers:___ [] Preservatives added: HCI Containers: VUC Method_ Method_ Containers: Method _ Containers:___ Method_ ____ Containers:__ 9[] CONTAINER HANDLING: Container Sides Labeled Container Lids Taped Containers Placed in Ice Chest 10[] OTHER COMMENTS:_

Sampling Location <u>Columbus AFB - ST24</u> Sampling Dates <u>11/04/96-11/24/96</u>

GROUND W	VATER SAMPLING RECORD - MONITORING WELL	
	(5-74)	(number)
REASON FO	OR SAMPLING: [X] Regular Sampling; [] Special Sampling; TIME OF SAMPLING: , 1996, 1996, 1996	
DATE AND	TIME OF SAMPLING: 1996 1996 a.m./p.m.	
WFATHER.	OLLECTED BY: JHBUCS/RN of Parsons ES	
	OR WATER DEPTH MEASUREMENT (Describe):	
MONITORD	NG WELL CONDITION:	
MONTORI	[] LOCKED: [] UNLOCKED	
	WELL NUMBER (IS - IS NOT) APPARENT	
	STEEL CASING CONDITION IS:	
	INNER PVC CASING CONDITION IS:	
	WATER DEPTH MEASUREMENT DATUM (IS - IS NOT) APPARENT [] DEFICIENCIES CORRECTED BY SAMPLE COLLECTOR	
	MONITORING WELL REQUIRED REPAIR (describe):	
Check-off 1 []	EQUIPMENT CLEANED BEFORE USE WITH	
1[]	Items Cleaned (List):	
2.6.3	PRODUCT DEPTH	ET BELOW DATIM
2[]	Measured with:	_11. BELOW DATOM
	WATER DEPTH	_FT. BELOW DATUM
	Measured with:	
3 []	WATER-CONDITION BEFORE WELL EVACUATION (Describe):	·
- ()	Appearance:	
	Odor:	
	Other Comments:	
4[]	WELL EVACUATION: Method:	
713	Method: Peristal ne	·····
	Volume Removed:	
	Observations: Water (slightly - very) cloudy	•
	Water level (rose - fell - no change) Water odors:	
	Other comments:	

Groundwater Sampling Record Monitoring Well No. **N70** (Cont'd) SAMPLE EXTRACTION METHOD: 5[] [] Bailer made of:_____ [] Pump, type:__ [] Other, describe:_ Sample obtained is [X] GRAB; [] COMPOSITE SAMPLE 6[] **ON-SITE MEASUREMENTS:** Meausred with Time Temp (°C) pН Cond (µS/cm) DO (mg/L) Redox (mV) Salinity Nitrate Sulfate Ferrous Iron SAMPLE CONTAINERS (material, number, size). 7[] 8[] ON-SITE SAMPLE TREATMENT: Method_ [] Filtration: Containers:_ Method___ Containers:___ Method_ Containers:___ [] Preservatives added: Method_ Containers:_ Method_ Containers:___ Method_ Containers:___ Method_ Containers: 9[] CONTAINER HANDLING: Container Sides Labeled Container Lids Taped

Containers Placed in Ice Chest

OTHER COMMENTS:____

10[]

GROUND W	/ATER SAMPLING RECORD - MONITORING WELL 57みリMP/	4
DATE AND SAMPLE CO WEATHER:	OR SAMPLING: [X] Regular Sampling; [] Special Sampling; TIME OF SAMPLING: (\(\(\left(\reft(\left(\left(\left(\left(\left(\left(\left(\left(\reft(\left(\reft(\reft(\left(\left(\left(\reft(\left(\reft(\reft(\reft(\reft(\reft(\left(\left(\left(\reft((number)
MONITORD	NO WELL COMPANION	
MONITORI	NG WELL CONDITION: [] LOCKED: WELL NUMBER (IS - IS NOT) APPARENT STEEL CASING CONDITION IS:	
.*	INNER PVC CASING CONDITION IS: WATER DEPTH MEASUREMENT DATUM (IS - IS NOT) APPARENT DEFICIENCIES CORRECTED BY SAMPLE COLLECTOR MONITORING WELL REQUIRED REPAIR (describe):	•
Check-off	EQUIPMENT CLEANED BEFORE USE WITH	
2[]	PRODUCT DEPTH	FT. BELOW DATUM
	WATER DEPTH	FT. BELOW DATUM
3[]	WATER-CONDITION BEFORE WELL EVACUATION (Describe): Appearance: Odor: Other Comments:	
4[]	WELL EVACUATION: Method: Volume Removed: Observations: Water (slightly - very) cloudy Water level (rose - fell - no change) Water odors: Other comments:	•

Groundwater Sampling Record

Monitoring Well No. STLYMP (Cont'd)

MethodContainers:	5[]	SAMPLE EX	TRACTION METHOD:	
		,	1 Bailer made of	
Other, describe: Sample obtained is [X] GRAB; [] COMPOSITE SAMPLE			_	
Sample obtained is [X] GRAB; [] COMPOSITE SAMPLE				
ON-SITE MEASUREMENTS: Time				
Time			Sample obtained is [X] GRAB; [] COMPOSI	ITE SAMPLE
Temp (*C) 22. 2 23. 3	6[]	ON-SITE MI	ASUREMENTS:	
Temp (°C) 22.2 23		Time	1318 1321 1325 1327	Meausred with
PH		Temp (°C)		
Cond (LIS/cm)			 	
DO (mg/L) 0.31 0.30 0.37 0.37				lon
Redox (mV) -9.7.5 -95.0 -94.1 -94.7 Salinity Nitrate Sulfate Entroue Iron 0. \(\) 0. \(\) 0. \(\) 1. \(\) 3 MTILLAND 8[] SAMPLE CONTAINERS (material, number, size): \(\) 1 TAX[DI] f -fg 3 MTILLAND 8[] ON-SITE SAMPLE TREATMENT: [] Filtration: Method Containers: Method			0.31 0.30 0.27 0.27	
Salinity Nitrate Sulfate Ferrous-Iron O. \(\) O. \(\) O. \(\) I. \(\) SAMPLE CONTAINERS (material, number, size): SAMPLE CONTAINERS: Method Containers: M	4.0			
Nitrate Sulfate Ferrous Iron 0. \(\) 0.				
Sulfate Eerrous-Iron O. N. O. 4 O. 8 1. 0 SAMPLE CONTAINERS (material, number, size): SAMPLE CONTAINERS (mate				
Ferrous Iron O. \				
SAMPLE CONTAINERS (material, number, size): STEX Dulf - for start Stex	1/	Ferrous Iron	0.2 0.4 08 1.0	
8[] ON-SITE SAMPLE TREATMENT: [] Filtration: Method Containers: Method	Sallon	7		
[] Filtration: Method Containers:	7[]	SAMPLE CO	NTAINERS (material, number, size):	BTEX/TUIT-G
[] Filtration: Method Containers:				MOTHANO
[] Filtration: Method Containers:) VOCS
[] Filtration: Method				1 ANIONS
MethodContainers:	8[]	ON-SITE SA	MPLE TREATMENT:	
MethodContainers:		rı	Eiltration: Mathod	Containara
Method Containers:		ſĵ		
MethodContainers:				
Method Containers: Method Containers: Method Containers: Method Containers: Method Containers: Method Containers: 10 [] Container Sides Labeled [] Container Lids Taped [] Containers Placed in Ice Chest			iviouiou	Containers.
Method Containers: Method Containers: Method Containers: Method Containers: 9 [] CONTAINER HANDLING: [] Container Sides Labeled [] Container Lids Taped [] Containers Placed in Ice Chest 10 [] OTHER COMMENTS:		[]	Preservatives added:	
Method Containers: Method Containers: Method Containers: Method Containers: Method Containers: 9 [] CONTAINER HANDLING: [] Container Sides Labeled [] Container Lids Taped [] Container Placed in Ice Chest 10 [] OTHER COMMENTS:			Method	Containers
Method Containers: Method Containers: 9 [] CONTAINER HANDLING: [] Container Sides Labeled [] Container Lids Taped [] Container Placed in Ice Chest 10 [] OTHER COMMENTS:			<u> </u>	
Method Containers:				
[] Container Sides Labeled [] Container Lids Taped [] Containers Placed in Ice Chest 10 [] OTHER COMMENTS:	•			
[] Container Sides Labeled [] Container Lids Taped [] Containers Placed in Ice Chest 10 [] OTHER COMMENTS:	9[]	CONTAINE	R HANDLING:	
[] Container Lids Taped [] Containers Placed in Ice Chest 10 [] OTHER COMMENTS:				•
[] Containers Placed in Ice Chest 10 [] OTHER COMMENTS:			4 3	
10 [] OTHER COMMENTS:				
			[] Containers Placed in Ice Chest	
	10[]	OTHER CO	MMENTS:	

Groundwater Sampling Record

Monitoring Well No ST. 4 M P. (Cont'd)

5[]	SAMPLE EX	TRACTION	METHO	D:					
	r] Bailer	made of:						
		Danci i				-			
	ı	[] O,							
	5	Sample obta	ained is [X] GRAB; []	COMPO	SITE SA	MPLE		
6[]	ON-SITE ME	ASUREMI	ENTS:						
	Time	1530	1532	1535			Meausred with	7	
	Temp (°C)	21.8	21-8	3-8				1	
	pH	6.37	6.37	6.38]	
	Cond			340				1	
	(μS/cm)	340	340	1290				_	
	DO (mg/L)	0.25	0-24	0.23				_	
•	Redox (mV)	-126.4	-U7. 2	-1285			·	_	. *
	Salinity							_	
	Nitrate							_	
(Sulfate							_	
cholla	Ferrous Iron	0.9	0.4	0-6				┛.	
						Ц	40 m	.)	12 DEX/1
7[]	SAMPLE CO	ONTAINER	S (material	l, number, size):		40 m1	5165	BIEX/I
						<u>ر</u> 3	40 MI	-5105S	1616
						د	125 1	7/455	ANG
						· · · · · · · · · · · · · · · · · · ·	(~) 111	Piasin	
8[]	ON-SITE SA	MPLE TRI	FATMENT	•					
0[]	011 011 011	25 110							
	[]	Filtration:	Me	thod			iners:		
				thod			iners:		
			Me	thod		_ Contai	iners:		
	[]	Preservativ	es added:						
						.	•		
* .				thod		_	iners: iners:		
				thod thod		_	iners:		
				thod			iners:		
			1410						
9[]	CONTAINE	R HANDI.	ING:			٠			
/ L J	CONTINUE							• .	
		[] Cor	ntainer Side	s Labeled			•		
		[] Cor	ntainer Lids	Taped					
		[] Cor	ntainers Pla	ced in Ice Che	st				
10[]	OTHER CO	MMENTS:							
		<u>.</u>							
									
									

GROUND W	VATER SAMPLING RECORD -	MONITORING WELL <u> </u>	MIDDE WED(2)
			(number)
SEASONEO	OR SAMPLING: [X] Regular Sa	mpling: [] Special Sampling:	Bull
CEASON IC	TIME OF SAMPING: 11	1996 074 O am/nm	III zileio)
DATE AND	OLI POTED DV. HI/DI /CC/DI/	of <u>Parsons ES</u>	
SAMPLE CO	LECTED BY: TH/BL/CSARDY	or <u>Farsons ES</u>	NOTE: MPD(B) and
WEATHER:	D WATER DEPTH MEASURE	MENT (Describe):	MPD(S) were
DATUM FO	OR WATER DEPTH MEASURE	WENT (Describe).	mislabelect in
			tre-freis. The
MONITORI	NG WELL CONDITION:		نبعلا بنين بها
	[] LOCKED:	[] UNLOCKED	or intenta
	WELL NUMBER (IS - IS NO		
		N IS:	
	INNER PVC CASING COND		
	INNER PVC CASING COND	MENT DATUM (IS - IS NOT) APPARENT	
	WATER DEPTH MEASURE	WENT DATOW (IS - IS NOT) ATTAKENT	. •
	[] DEFICIENCIES CORREC	CTED BY SAMPLE COLLECTOR	
	[] MONITORING WELL RI	EQUIRED REPAIR (describe):	
•			
01 - 166			-
Check-off	DOLUM CONTROL FAMED DE	FORE USE WITH	•
1[]			
	.,	ist):	
•			
2[]	PRODUCT DEPTH		FT. BELOW DATUM
2()	Measured with		
	Wicasured With		
	WATER DEPTH		FT. BELOW DATUM
	Washing Measured with.		
•	Measured with		
3[]	WATER-CONDITION BEFO	RE WELL EVACUATION (Describe):	
~ ()			•
		S:	
	Other Commone	J	
4[]	WELL EVACUATION:	7:50	
" L J	Method:	MUNISTACITU	
	Volume Remove	PENISTACTIC	
	Observations:	Water (slightly - very) cloudy	·
	Ouser various.	Water level (rose - fell - no change)	
		Water odors: Mon Change	
		Other comments:	

Groundwater Sampling Record

	•	Mon			4 MF		1)		
5[]	SAMPLE EX				WPE				
		[] Pump,	type:						-
		Sample obta	ained is [X] GRAB;	[] COMP	OSITE SA	AMPLE		-
6[]	ON-SITE MEASUREMENTS:								
	Time	0722		10728	0730		Meausred with]	
	Temp (°C)	20.1	20.1	30.2	20.2]	
	Cond	6.08	6.09	6.09	6.08			-{	
	(μS/cm)	184	184	184	184				
	DO (mg/L)	0.35	0-36		0.31]	
	Redox (mV) Salinity	一入0.4	-22.4	-79-3	-22-8	, .		- -	. •
•	Nitrate							⊣ ′	
M. C. D. L.	Sulfate								
allons of	Ferrous Iron	10.1	0.3	10.5	0-7				
7[]	SAMPLE CO	ONTAINER	S (material	, number, s	ize):	<u>4</u>	40 ml	BETY / TU	4-67
		•				3	Uconl	vocs	<u>-</u>
		·					17221	ANUNS	-
8[]	ON-SITE SA	AMPLE TRE	EATMENT	:					
	[]	Filtration: Method					iners:		-
		•		hod hod	· · · · · · · · · · · · · · · · · · ·		iners:iners:		-
			17100			Contai			-
•	[]	Preservative	es added:					•	
			Met	hod		Contai	iners:		
		•	Met	hod			iners:		- -
									-
•			Met	1100		Conta	iners:		-
9[]	CONTAINER HANDLING:								
		[] Cont	ainer Sides ainer Lids ainers Plac	Taped	hest			•	
10 []	OTHER CO	MMENTS:							

GROUND W	/ATER SAMPLING RECORD - MONITORING WELL <u>5724</u> ー ロア む	HS) MPD(D)
DATE AND SAMPLE CO WEATHER:	OR SAMPLING: [X] Regular Sampling; [] Special Sampling; TIME OF SAMPLING:	(number) RMH
MONITORI	NG WELL CONDITION:	
	[] LOCKED: WELL NUMBER (IS - IS NOT) APPARENT STEEL CASING CONDITION IS: 9000	
	INNER PVC CASING CONDITION IS: NA WATER DEPTH MEASUREMENT DATUM (IS - S NOT) APPARENT [] DEFICIENCIES CORRECTED BY SAMPLE COLLECTOR [] MONITORING WELL REQUIRED REPAIR (describe):	
Check-off	EQUIPMENT CLEANED BEFORE USE WITH Soproposed + dist	tilled water
2[]	PRODUCT DEPTH — Measured with: —	FT. BELOW DATUM
	WATER DEPTH estimate 15' Measured with:	FT. BELOW DATUM
3[]	WATER-CONDITION BEFORE WELL EVACUATION (Describe): Appearance: Odor: Other Comments:	
4[]	WELL EVACUATION: Method: Peristaltic pump Volume Removed: Observations: Water (slightly - very) cloudy Water level (rose - fell - no change) Water odors: Other comments:	

Groundwater Sampling Record

Monitoring Well No. 5724- 100(5) (Cont'd)

2[]	SAMPLE EXTRACTION	ON METHOD:	Wb P(p)
	[] Baile	r made of: , type: Ferisfaltic	
	[X] Pump	o, type: Terisfoltic	
	[] Other	, describe:	
	Sample of	otained is [X] GRAB; []	COMPOSITE SAMPLE
	Sample of	danied is [X] GIAD, []	COMPOSITE SAMPLE
6[]	ON-SITE MEASUREN	MENTS:	
	Time		Meausred with
	Temp (°C)		4SI5S
	pH		Orion 250%
	Cond		
	(μS/cm)		
	DO (mg/L)		45I 55
	Redox (mV)		Drond SCH
	Salinity		-
	Nitrate		
	Sulfate		
	Ferrous Iron		
	<u> </u>	ly	
8[]	ON-SITE SAMPLE TR	EATMENT:	
	[] Filtration:	Method	Contribute
	t i tattation.	Method	Containers:Containers:
		Method	Containers:
	[] Preservati	ves added:	
		13	
	•	Method HCI	Containers: UOAS
		Method	Containers:
		Method	Containers:
		Method	Containers: Containers: Containers:
9[]	CONTAINER HANDL	Method	Containers:
9[]	CONTAINER HANDL	Method	Containers:
9[]	\ .	Method	Containers:
9[]	[X] Cor	Method Method ING: stainer Sides Labeled stainer Lids Taped	Containers:
9[]	[X] Cor	Method Method ING: stainer Sides Labeled	Containers:
	[X] Cor	Method Method ING: Itainer Sides Labeled Itainer Lids Taped Itainers Placed in Ice Chest	Containers: Containers:
9[]	[X] Cor	Method Method ING: Itainer Sides Labeled Itainer Lids Taped Itainers Placed in Ice Chest	Containers:
	OTHER COMMENTS:	Method Method ING: Itainer Sides Labeled Itainer Lids Taped Itainers Placed in Ice Chest	Containers: Containers:

GROUND W	/ATER SAMPLING RECORD - MONITORING WELL らんしゅう	E
DATE AND SAMPLE CO WEATHER:	OR SAMPLING: [X] Regular Sampling; [] Special Sampling; TIME OF SAMPLING: <u>[リリー</u> , 1996 <u>/ C 〇〇 (a.m</u> /p.m. OLLECTED BY: JH/BL/CS/RN of Parsons ES	(number)
DATUM FO	R WATER DEPTH MEASUREMENT (Describe): TMPLAWT	
MONITORIN	NG WELL CONDITION: [] LOCKED: [] UNLOCKED WELL NUMBER (IS - IS NOT) APPARENT STEEL CASING CONDITION IS:	
	INNER PVC CASING CONDITION IS: WATER DEPTH MEASUREMENT DATUM (IS - IS NOT) APPARENT [] DEFICIENCIES CORRECTED BY SAMPLE COLLECTOR [] MONITORING WELL REQUIRED REPAIR (describe):	
Check-off 1 []	EQUIPMENT CLEANED BEFORE USE WITH	
2[]	PRODUCT DEPTH	FT. BELOW DATUM
	WATER DEPTH Measured with:	FT. BELOW DATUM
3[]	WATER-CONDITION BEFORE WELL EVACUATION (Describe): Appearance: Odor: Other Comments:	
4[]	WELL EVACUATION: Method: Volume Removed: Observations: Water (slightly - very) cloudy Water level (rose - fell - no change) Water odors: Other comments:	

	Groundwater Sampling Record Monitoring Well NoMPU(Cont'd)	
5[]	SAMPLE EXTRACTION METHOD: (ST 24)	
	[] Bailer made of	
6[]	ON-SITE MEASUREMENTS:	
·	Time	
7[]	SAMPLE CONTAINERS (material, number, size): 4 40m/ BTEX TVIT SAMPLE CONTAINERS (material, numb	
8[]	ON-SITE SAMPLE TREATMENT:	
	[] Filtration: Method Containers:	
	[] Preservatives added:	
	MethodContainers:MethodContainers:MethodContainers:MethodContainers:	
9[]	CONTAINER HANDLING:	
	[] Container Sides Labeled [] Container Lids Taped [] Containers Placed in Ice Chest	
10[]	OTHER COMMENTS:	

Sampling Location <u>Columbus AFB - ST24</u> Sampling Dates <u>11/04/96-11/24/96</u>

GROUND WA	ATER SAMPLING RECORD - MONITORING WELL	<u></u>
REASON FOR DATE AND TO SAMPLE CONTRACTOR WEATHER:	R SAMPLING: [X] Regular Sampling; [] Special Sampling; IME OF SAMPLING:, 1996 O S 40 a.m./p.m. LLECTED BY: JHBDYCS/RN of Parsons ES ANTE COURT US WATER DEPTH MEASUREMENT (Describe):	(number)
MONITORIN	IG WELL CONDITION: [] LOCKED: - [] UNLOCKED WELL NUMBER (IS - IS NOT) APPARENT STEEL CASING CONDITION IS:	
	WATER DEPTH MEASUREMENT DATUM (IS - IS NOT) APPARENT [] DEFICIENCIES CORRECTED BY SAMPLE COLLECTOR [] MONITORING WELL REQUIRED REPAIR (describe):	
Check-off 1 []	EQUIPMENT CLEANED BEFORE USE WITH	
2[]	PRODUCT DEPTH	FT. BELOW DATUM
	WATER DEPTH	FT. BELOW DATUM
3[]	WATER-CONDITION BEFORE WELL EVACUATION (Describe): Appearance: Odor: Other Comments:	
4.[]	WELL EVACUATION: Method: Volume Removed: Observations: Water (slightly - very) cloudy Water level (rose - fell - no change) Water odors: Other comments:	•

Groundwater Sampling Record
Monitoring Well No. 5724MPF (Cont'd)

5[]	SAMPLE EX	TRACTION	METHO	D:					
		[] Bailer	made of:						
		[] Pump,							
		[] Other,	describe:_		······································				
		Sample obta	sinad is IV	1 CDAD.	[] COMI	OCITE	EAMDLE		
		Sample out	Allieu is [A	ij GRAD,	[] COMI	COLLE	DAMILLE		
6[]	ON-SITE ME	EASUREMI	ENTS:						
	Time 21.4	10835	0827	0829	0831		Meausred	with	
	Temp (°C)	1500	21.9	22.0	T				
	pН	5-75	5.72	9-72	5-73				
	Cond	140	140	140	140				
	(μS/cm) DO (mg/L)	0.43		0.37	0.37	ļ			
	Redox (mV)	1712.7		-12·3	-12.6				
	Salinity		100	1,7,1,2	1			-	
	Nitrate								
. 1	Sulfate			<u> </u>		ļ			
Sallons	"Ferrous Iro n	0.2	03	10.4	0.5	<u> </u>			
7[]	SAMPLE CO	NTAINFR	S (material	l number s	ize)·	4	4021	BRXITU	11-6
, ()	SAMI EL CO	MIMINUM	o (material	, number, s	120)	3	11.	METHAN	
						3	,)	VOC	
							17221	ANION	<u> </u>
8[]	ON-SITE SA	MPLE TRI	EATMENT	:					
	[]	Filtration:	Me	thad		Con	tainerc:		
		i iluation.							
							tainers:		
		_	••••						
	[]	Preservativ	es added:						
			Me	thod		Con	tainers:		
								·	
			Me	thod		Con	tainers:		
9[]	CONTAINE	R HANDLI	NG:						
- []	4 4 1 1 1 1 1 1 1 1 1 1							•	
			tainer Side						
			tainer Lids		Y				
		[] Con	tainers Pla	ced in Ice C	nest				
10[]	OTHER CO	MMENTS:							
								······································	

Sampling Location Columbus AFB - ST24
Sampling Dates 11/04/96-11/24/96

GROUND W	ATER SAMPLING RECORD - MONITORING WELL 5724 MPG	
REASON FO DATE AND SAMPLE CO WEATHER:	OR SAMPLING: [X] Regular Sampling; [] Special Sampling; TIME OF SAMPLING:! / /, 1996 _/ 5 (5 a.m./p.m. OLLECTED BY: JH/BL/CS/RN of Parsons ES 55	(number)
MONITOPD	NG WELL CONDITION:	
MONTORI	[] LOCKED: [] UNLOCKED WELL NUMBER (IS - IS NOT) APPARENT STEEL CASING CONDITION IS:	
	INNER PVC CASING CONDITION IS:	
	WATER DEPTH MEASUREMENT DATUM (IS - IS NOT) APPARENT [] DEFICIENCIES CORRECTED BY SAMPLE COLLECTOR [] MONITORING WELL REQUIRED REPAIR (describe):	
Check-off	EQUIPMENT CLEANED BEFORE USE WITH	
2[]	PRODUCT DEPTH	_FT. BELOW DATUM
	WATER DEPTH	FT. BELOW DATUM
3[]	WATER-CONDITION BEFORE WELL EVACUATION (Describe): Appearance: Odor: Other Comments:	
4[]	WELL EVACUATION: Method: Volume Removed: Observations: Water (slightly - very) cloudy Water level (rose - fell - no change) Water odors: Other comments:	1

Groundwater Sampling Record Monitoring Well No. <u>らんり から</u> (Cont'd)

2[]	SAMPLE EX	KTRACTIO	N МЕТНО	D:						
	·	[] Pump,	type:							
		Sample obt	ained is [X	GRAB;	[] COM	POSITE S	AMPLE			
6[]	ON-SITE M	EASUREM	ENTS:							
	Time	1502	1506	1510			Meausred with			
	Temp (°C)	23.3	234	23.5						
	pН	4.78	4.73	4.74						
	Cond (μS/cm)	50	50	50						
	DO (mg/L)	4.15	4.13	4.16				-		
	Redox (mV)	126.5		139.5						
	Salinity					•				
	Nitrate		<u> </u>							
gallons	Sulfate Ferrous Iron	0.2	0.5	0.9		-		_		
	Terrous from	10.1	10.5	10.9						
7[]	SAMPLE CO	ONTAINER	S (material	, number, siz	ze):	<u>4</u> 3	40m1	15で人/ブレリナー		
							40 11	MOTHANG		
						3	48 ··· /885 ··	ANIONS		
							100	7. 50 (0.1 5		
8[]	ON-SITE SA	MPLE TRE	EATMENT	:						
	[]	Filtration:	Mat	had		Comto				
	l J	i iluation.	Met	Method Containers Method Containers						
•			Met	hod		Conta	iners:			
	Method Containers:									
	[] Preservatives added:									
			Met	hod		Containers:				
			Met	hod		Containers:				
				hod						
			Met	hod		Conta	iners:			
9[]	CONTAINE	R HANDLI	NG:		٠					
								1		
			ainer Sides							
			tainer Lids	тареа ed in Ice Ch	est					
		[] Con	amicis i lac	ca in ice cir	CSL					
10[]	OTHER CO	MMENTS:_								
						·				
						 				
				78-00-00-00-00-00-00-00-00-00-00-00-00-00						

Sampling Location Columbus AFB - ST24
Sampling Dates 11/04/96-11/24/96

GROUND W	ATER SAMPLING RECORD - MONITOR	UNG WELL STAU-MP	H (2)
REASON FO	OR SAMPLING: [X] Regular Sampling; [TIME OF SAMPLING:	1 Special Sampling:	(number)
WEATHER:	50° Overcost acco	1/0000	
DATUM FO	R WATER DEPTH MEASUREMENT (Des	scribe):	
		······	
· · · · · · · · · · · · · · · · · · ·			
MONITORI	NG WELL CONDITION:		
	[] LOCKED:	[] UNLOCKED	
	WELL NUMBER (IS - IS NOT) APPARE		
	STEEL CASING CONDITION IS:		
	INNER PVC CASING CONDITION IS:_		
	WATER DEPTH MEASUREMENT DAT	UM (IS - IS NOT) APPARENT	•
	[] DEFICIENCIES CORRECTED BY S	AMPLE COLLECTOR	
	[] MONITORING WELL REQUIRED I	tEPAIR (describe):	

Check-off			
1 []	EQUIPMENT CLEANED BEFORE USE	Marii .	
· ()			
	items Cleaned (List)		
2[]	PRODUCT DEPTH		FT. BELOW DATUM
	Measured with:		1. DLLOW DATOM
	WATER DEPTH		FT. BELOW DATUM
	Measured with:		
3[]	WATER-CONDITION BEFORE WELL I	EVACUATION (Describe):	
	Appearance:	, ,	
	Odor:		
	Other Comments:		
4[]	WELL EVACUATION:		
411	Method:		
	Volume Removed:		
		htler war Valanda	•
٠	Observations: Water (slig	(ntiy - very) cloudy I (rose - fell - no change)	
	Other com	rs:	
	Other com	neno	

Groundwater Sampling Record
Monitoring Well No. MPH(s)-57>4(Cont'd)

	SAMPLE EXTRACTION METHOD:	
	[] Bailer made of: [Pump, type: Peristalia [Other, describe:	
	Sample obtained is [X] GRAB; [] COMPOSITE SAMPLE	
ε[]	ON-SITE MEASUREMENTS:	
	Time 945 950 954 958 1007 Meausred with	
	Temp (°C) 20.2 20.9 21.0 20.8 21.0 45T55	
	pH 4.83 606 6.06 6.10 6.10 Orion 2504	
	Cond (μS/cm) 2.78 238 237 236 235 HACH Moder	_
	(μS/cm) 2,78 2-38 237 236 235 HACH Moter DO (mg/L) 0,38 0.34 0,28 0.75 0.26 451 55	
	Redox (mV) -41.9 -35.6-34.8 -33.7 -34.9 Orion 350A	
	Salinity Salinity	•
	Nitrate	
	Sulfate	
	Ferrous Iron	
8[]	ON-SITE SAMPLE TREATMENT: [] Filtration: Method Containers:	
	Method Containers:	
	Method Containers: Method Containers:	
	Method Containers:	
9[]	Method Containers: Preservatives added: Method HC Containers: 100A:3 Method Containers: Method Containers: Method Containers:	
9[]	Method Containers: Preservatives added: Method HC Containers: 1/0A:3 Method Containers: Method Containers: Method Containers: Containers: Method Containers: Metho	
	Method Containers: Method HC Containers: 10 A S	
9[] 10[]	Method Containers: Preservatives added: Method HC Containers: Method Containers:	
	Method Containers: Method HC Containers: 10 A S	

Sampling Location Columbus AFB - ST24
Sampling Dates 11/04/96-11/24/96

GROUND W	ATER SAMPLING RECORD - MONITORING WELL 5124 MP	I						
	OR SAMPLING: [X] Regular Sampling; [] Special Sampling;	(number)						
DATE AND	DATE AND TIME OF SAMPLING: 11/12, 1996 1010 a.m./p.m.							
SAMPLECO	DLLECTED BY: JH/BDCS/RN of Parsons ES							
WEATHER.	OVER AST USOF							
-	R WATER DEPTH MEASUREMENT (Describe):							
Diri olur i o	K WATER DEI III MEADOREMENT (Describe).							
MONITORI	NG WELL CONDITION:							
	[] LOCKED: [] UNLOCKED							
	WELL NUMBER (IS - IS NOT) APPARENT							
	STEEL CASING CONDITION IS:	· · · · · · · · · · · · · · · · · · ·						
	INNER PVC CASING CONDITION IS:							
	WATER DEPTH MEASUREMENT DATUM (IS - IS NOT) APPARENT							
	[] DEFICIENCIES CORRECTED BY SAMPLE COLLECTOR							
	[] MONITORING WELL REQUIRED REPAIR (describe):							
C1 1 C2								
Check-off	FOUNDATION OF TAXABLE PROPERTY OF THE PROPERTY							
1[]	EQUIPMENT CLEANED BEFORE USE WITH							
•	Items Cleaned (List):							
	,							
2[]	PRODUCT DEPTH	FT. BELOW DATUM						
	PRODUCT DEPTH							
	WATER DEPTH							
	WATER DEPTH	FT. BELOW DATUM						
	Measured with:							
3[]	WATER-CONDITION BEFORE WELL EVACUATION (Describe):							
	Appearance:							
	Odor:							
	Other Comments:							
4[]	WELL EVACUATION: 5 / //							
	Method: Perzylaliz							
	Volume Removed:							
	Observations: Water (slightly - very) cloudy	ı						
	Water level (rose - fell - no change)	•						
	Water odors: NONE							
	Other comments:							

Groundwater Sampling Record
Monitoring Well No. 5124 MP I (Cont'd)

5[]	SAMPLE EX	TRACTIO	METHO	D:				
		[] Pump,	type:					
		Sample obta	ained is [X] GRAB; []	COMPOSITE S	AMPLE		
6[]	ON-SITE ME	EASUREM	ENTS:					
	Time	0956	0958	1000		Meausred with		
	Temp (°C)	21.7	21.6	ストフ			· 	
	pН	5.05	9.03	5-01				
	Cond (µS/cm)	60	60	60				
•	DO (mg/L) Redox (mV)	5.28		5.23				
	Salinity	+110.Z	+112.8	130.7				
	Nitrate	<u> </u>					•	
	Sulfate							
	Ferrous Iron	0. እ	0.4	0-6				
7[]	SAMPLE CO	NTAINER	S (material,	number, size):_	4 0	rom1 slass	BTEK/TUH G	
					<u> </u>	(1) (1)	METHANE	
							ANIONS	
8[]	ON-SITE SA	MPLE TRE	ATMENT:	:				
	[]	Filtration:	Metl Metl	nod	Conta	niners:		
			Meth	10d	Conta	Containers:		
	[]	Preservative	es added:				•	
			Meth	nod	Conta	niners:		
			Metl	nod	Conta	ainers:		
			Meth	nod	Conta	ainers:		
			Meti	nod	Conta	ainers:		
9[]	CONTAINE	R HANDLII	NG:					
		[] Cont	ainer Sides ainer Lids 7 ainers Place					
10[]	OTHER COM	AMENTS.						
- · · · · ·		·						
	-		 .					

Sampling Location Columbus AFB - ST24
Sampling Dates 11/04/96-11/24/96

GROUND W	ATER SAMPLING RECORD - MONITORING WELL	(5724)
DATE AND SAMPLE CO WEATHER:	R SAMPLING: [X] Regular Sampling; [] Special Sampling; FIME OF SAMPLING: 1/8/96 1996 955 (a.m./p.m. LLECTED BY: 1H/BLKS/RN of Parsons E9 (000 Overcook R WATER DEPTH MEASUREMENT (Describe): Implement	(number)
MONITORIN	WELL CONDITION: Incomplete [] LOCKED: WELL NUMBER (IS IS NOT) APPARENT STEEL CASING CONDITION IS: COOL	
. •	INNER PVC CASING CONDITION'S:	
	WATER DEPTH MEASUREMENT DATUM (IS - IS NOT) APPAREN [] DEFICIENCIES CORRECTED BY SAMPLE COLLECTOR [] MONITORING WELL REQUIRED REPAIR (describe):	T
Check-off	EQUIPMENT CLEANED BEFORE USE WITH distilled	waty
	Items Cleaned (List): Probes	
2[]	PRODUCT DEPTH	FT. BELOW DATUM
	Measured with:	I. BBBO W BITTOW
	WATER DEPTH Measured with:	FT. BELOW DATUM
3[]	WATER-CONDITION BEFORE WELL EVACUATION (Describe): Appearance: Clained brown Odor: Down Other Comments:	
4[]	WELL EVACUATION: Method: Volume Removed: Observations: Water (slightly very) cloudy Water level (rose - fell - no change) Water odors: Other comments:	

	Groundwater Sampling Record Monitoring Well No. MP J (Cont'd)								
5[]	SAMPLE EXTRACTION METHOD: (ST24)								
	[] Bailer made of: [N] Pump, type: Peristaltic [] Other, describe: Sample obtained is [X] GRAB; [] COMPOSITE SAMPLE								
6[]	ON-SITE MEASUREMENTS:								
	Time 940 345 958 955 Meausred with Temp (°C) 19.7 20.4 20.4 20.5 95± 55 PH 5.68 5.38 5.30 5.33 Orion 050A Cond (μS/cm) 71 56 56 56 Hack Mater DO (mg/L) 1.78 2.20 2.15 2.01 95± 55 Redox (mV) 124 120 120 Orion 050A Orion 050A Salinity Nitrate Sulfate Ferrous Iron								
7[]	SAMPLE CONTAINERS (material, number, size):								
	Poly								
8[]	ON-SITE SAMPLE TREATMENT:								
	[] Filtration: Method Containers:								
	Method Containers: Method Containers:								
	Preservatives added: Method Containers: VOAS Method Containers: Method Containers: Method Containers: Method Containers:								
9[.]	CONTAINER HANDLING:								
	Container Sides Labeled Container Lids Taped Containers Placed in Ice Chest								
10[]	OTHER COMMENTS:								

Sampling Location <u>Columbus AFB - ST24</u>
Sampling Dates <u>11/04/96-11/24/96</u>

GROUND V	VATER SAMPLING RECORD - MONITORING WELL ン1 み 4 ベヤド	51
REASON FOR DATE AND SAMPLE CONTROL	OR SAMPLING: [X] Regular Sampling; [] Special Sampling; TIME OF SAMPLING:, 1996 a.m./p.m. OLLECTED BY: JH/BD/CS/RN of Parsons ES	(number)
DATUM FO	R WATER DEPTH MEASUREMENT (Describe):	
-		
MONITORI	NG WELL CONDITION:	
	[] LOCKED: [] UNLOCKED	
	WELL NUMBER (IS - IS NOT) APPARENT	
	STEEL CASING CONDITION IS:	
	INNER PVC CASING CONDITION IS: WATER DEPTH MEASUREMENT DATUM (IS - IS NOT) APPARENT	
	[] DEFICIENCIES CORRECTED BY SAMPLE COLLECTOR	
	[] MONITORING WELL REQUIRED REPAIR (describe):	
	(0.000.00)	
Check-off		
1[.]	EQUIPMENT CLEANED BEFORE USE WITH	
•	Items Cleaned (List):	
•	PRODUCT DEPTH	
2[]	PRODUCT DEPTH	FT BELOW DATUM
	PRODUCT DEPTH	1. DEEOW DATOM
	1144 Am N 30	
	WATER DEPTH UNKNOWN 10 = 19-21	FT. BELOW DATUM
	Measured with:	
3 []	WATER-CONDITION BEFORE WELL EVACUATION (Describe):	
2 f]	Appearance:	
	Odor:	
	Other Comments:	
	•	
4[]	WELL EVACUATION: Method: Peristalta	
•	Volume Removed:	
	Observations: Water (slightly - very) cloudy	•
	Water level (rose - fell - no change) Water odors:	
	Other comments:	·

Groundwater Sampling Record
Monitoring Well No. 5124 Place (Cont'd)

5[]	SAMPLE EXTR	ACTION M	IETHOI	D:					
	[]	Pump, typ	e:						
	Sam	ple obtaine	d is [X] GRAB;	[] COM	IPOSITE SA	AMPLE		
6[]	ON-SITE MEAS	UREMENT	rs:						
			505	1508			Meausred with		
			0.1	200					
	pH 5	.08 5	.09	5.11					
	(μS/cm)	10 1	10	40					
		16 6	.26	624					
	Redox (mV)	14.1 T	08.1	108.3					
	Salinity							•	
	Nitrate ,	ام ا	3gal	.5gal					
	Ferrous Iron						<u> </u>		
	Terrous from	<u> </u>				. 1			
7[]	SAMPLE CONT	AINERS (n	naterial,	number, si	ze):	4	40 ml glace	ss BIZX/IU	it le
		.				<u> </u>	40 ml glac	5 METHAN	vc
			•			<u> </u>	125ml plusta	<u>5 VOC</u>	
						1	145ml Ans.	a due To	_
8[]	ON-SITE SAMP	LE TREAT	MENT:	:		•	(,) M .) / MS.	7 5 ass 10	<u></u>
	f 3 - 79%	.•				_			
	[] Filt	ration:	Method		Conta	Containers:			
				Method		Conta	Containers: Containers:		
	[] Pres	servatives a	.dded:						
			Metl	nod		Conto	inara		
						Conta	iners:		
				hod			iners:		
			Meth	hod			iners:		
9[]	CONTAINER H	ANDLING	:		•				
•	[]	Containe							
	[]	Containe		raped ed in Ice Ch	est				
	()	Contain	org r race	oa III 100 OI	iost				
10[]	OTHER COMM	ENTS:							
	CONTRACT OF THE CONTRACT OF TH					· · · · · · · · · · · · · · · · · · ·			

Sampling Location <u>Columbus AFB - ST24</u> Sampling Dates <u>11/04/96-11/24/96</u>

GROUND W	ATER SAMPLING RECORD - MONITORING WELL > 1 み 4 ゅうく()
SAMPLE CO	OR SAMPLING: [X] Regular Sampling; [] Special Sampling; TIME OF SAMPLING: //// , 1996 <u>O 7 5 0</u> a.m./p.m. OLLECTED BY: JH/BL/CS/RN of Parsons ES FARILY CLO.ADY 40° F
	R WATER DEPTH MEASUREMENT (Describe): JMPLANT NO WATER LEVEL
MONITORIA	NG WELL CONDITION:
MONTORI	[] LOCKED: WELL NUMBER (IS - IS NOT) APPARENT STEEL CASING CONDITION IS:
	INNER PVC CASING CONDITION IS: WATER DEPTH MEASUREMENT DATUM (IS - IS NOT) APPARENT [] DEFICIENCIES CORRECTED BY SAMPLE COLLECTOR [] MONITORING WELL REQUIRED REPAIR (describe):
Check-off	
1[]	EQUIPMENT CLEANED BEFORE USE WITH
2[]	PRODUCT DEPTHFT_BELOW DATUM Measured with:
	WATER DEPTHFT. BELOW DATUM Measured with:
3[]	WATER-CONDITION BEFORE WELL EVACUATION (Describe): Appearance:
4[]	WELL EVACUATION: Method: Volume Removed: Observations: Water (slightly - very) cloudy Water level (rose - fell - no change) Water odors: Other comments:

Groundwater Sampling Record
Monitoring Well No. 57244 PX (Cont'd)

5[]	SAMPLE	EXTRACTION METHOD:
		Bailer made of:
		Pump, type:
		Other, describe:
		Sample obtained is [X] GRAB; [] COMPOSITE SAMPLE
6[]	ON-SITE	MEASUREMENTS:
	Time	0742 0744 0.747 Meausred with
	Temp (°C)	
	pH	4.89 4.97 4.95
	Cond	
	(μS/cm)	
	DO (mg/L	
	Redox (m)	v) 149.1 191.3 [87.6
	Salinity Nitrate	
	Sulfate	
	Ferrous Iro	on 0. 0. 2 0. 3
	541	
7[]		CONTAINERS (material, number, size): 4 40m glass BDX/7011 C
•		3 HUND GUY METHANE
		3 HUNT GLASS METHANE 3 HUNT GLASS VOC 1 IL SM Plustic 4 WLONS
•	٠	1 / S MI MUSIC 4 VICKS
8[]	ON-SITE	SAMPLE TREATMENT:
	•	
	[]	Filtration: Method Containers:
		Method Containers:
		Method Containers:
	[]	Preservatives added:
ř		
		Method Containers:
		Method Containers:
		Method Containers: Containers:
		· Containers.
9[]	CONTAI	NER HANDLING:
		[] Container Sides Labeled
		[] Container Lids Taped [] Containers Placed in Ice Chest
		[] Containers Placed in Ice Chest
10[]	OTHER C	COMMENTS:
		
	•	
L		·

Sampling Location Columbus AFB - ST24
Sampling Dates 11/04/96-11/24/96

GROUND W	ATER SAMPLING RECORD - MONITORING WELL MPL	(5724)
DATE AND SAMPLE CO WEATHER:	R SAMPLING: [X] Regular Sampling; [] Special Sampling; IIME OF SAMPLING: / / / / / , 1996 0.235 a.m./p.m. LLECTED BY: JH/BL/CS/RN of Parsons ES Over 044 (00° F R WATER DEPTH MEASUREMENT (Describe):	(number)
	With State and the state and t	
MONITORIN	IG WELL CONDITION: [] LOCKED: WELL NUMBER (IS - IS NOT) APPARENT STEEL CASING CONDITION IS:	
	INNER PVC CASING CONDITION IS: WATER DEPTH MEASUREMENT DATUM (IS - IS NOT) APPARENT [] DEFICIENCIES CORRECTED BY SAMPLE COLLECTOR [] MONITORING WELL REQUIRED REPAIR (describe):	
Check-off	EQUIPMENT CLEANED BEFORE USE WITH D:56: 11.	Water
2[]	PRODUCT DEPTH	FT. BELOW DATUM
÷	WATER DEPTH	FT. BELOW DATUM
3[]	WATER-CONDITION BEFORE WELL EVACUATION (Describe): Appearance: Cloudy hrown Odor: 51.44 Other Comments:	
4[]	WELL EVACUATION: Method: Volume Removed: Water (slightly - very) cloudy Water level (rose - fell - no change) Water odors: Other comments:	

Groundwater Sampling Record
Monitoring Well No. _____(Cont'd)

2[]	SAMPLE EXTRACTION METHOD:
	[] Bailer made of:
	Sample obtained is [X] GRAB; [] COMPOSITE SAMPLE
6[]	ON-SITE MEASUREMENTS: 20.4 CBJ
	Time 08/4/08/8/0822 0826 0830 Meausred with Temp (°C) 25-0 20.4 20.5 20.5
	pH 5.64 5.63 5.65 5.63
	Cond (µS/cm)
	DO (mg/L) 0.25 0.23 0.22 0.21 0.19
	Redox (mV) -289.3 -215.4 -258.1 -242.9 - 234.1
	Salinity Nitrate
	Sulfate
	Ferrous Iron
7[]	Gullons 0.5 1.0 1.5 2.0 2.5 SAMPLE CONTAINERS (material, number, size): MPL
	VOA - 4 BTEX/TVH-G *
	VOA - 3 VOCS
	Plastic 1 - Anians
8[]	ON-SITE SAMPLE TREATMENT:
	[] Filtration: Method Containers:
	Method Containers: Method Containers:
	[] Preservatives added:
	Method HCL Containers: VOAs
	Method Containers:
	Method Containers: Method Containers:
9[]	CONTAINER HANDLING:
	Container Lids Taped Containers Placed in Ice Chest
10[]	OTHER COMMENTS: Puplicate W3 Collected at MPL at 084
	1/0A - 3 VOC 5
	BOHLO BOTEX/TVH Sumply (milected approximately 15 minutes
	after other 3 MPL ATEX/TUH-G Bottles
	- Purging prematurely terminated
L:\forms\gwsa	for approximately 2 minutes before collect the had
	for approximately 2 minutes before called the 1 wil

Sampling Location <u>Columbus AFB - ST24</u>
Sampling Dates <u>11/04/96-11/24/96</u>

GROUND W	VATER SAMPLING RECORD - MONITORING WELL STAY MRM	
DATE AND SAMPLE CO	(number) OR SAMPLING: [X] Regular Sampling; [] Special Sampling; TIME OF SAMPLING: 1 6 7 5 a.m./p.m. OLLECTED BY: JH/BD/CS/RN of Parsons ES OUGACAST 6 () R WATER DEPTH MEASUREMENT (Describe): 4 4 4 4 4 4 4 4 4 4	
MONUTORE	NO WELL GOVERNMENT	_
MONITORI	NG WELL CONDITION: [] LOCKED: WELL NUMBER (IS - IS NOT) APPARENT STEEL CASING CONDITION IS:	
	INNER PVC CASING CONDITION IS: WATER DEPTH MEASUREMENT DATUM (IS - IS NOT) APPARENT [] DEFICIENCIES CORRECTED BY SAMPLE COLLECTOR [] MONITORING WELL REQUIRED REPAIR (describe):	
Check-off	EQUIPMENT CLEANED BEFORE USE WITH	
2[]	PRODUCT DEPTHFT. BELOW DATU Measured with:	JM
	WATER DEPTHFT. BELOW DATU	ЛМ
3[]	WATER-CONDITION BEFORE WELL EVACUATION (Describe): Appearance: Odor: Other Comments:	
4[]	WELL EVACUATION: Method: Volume Removed: Observations: Water (slightly - very) cloudy Water level (rose - fell - no change) Water odors: Other comments: SITEM	

Groundwater Sampling Record Monitoring Well No. MPM (Cont'd)

5[]	SAMPLE E	EXTRACTION M	ETHOD:							
		[] Bailer mad	le of:							
	Pump, type:_PEN(SINE)(() Other, describe:									
		Sample obtaine	d is [X] GRAB	[] COM	IPOSITE SA	MPLE				
6[]	ON-SITE N	MEASUREMENT	S:							
	Time	0700 0	707 0713	0718	0722	Meausred with]			
	Temp (°C).			21.0	710	45155				
	рН	5,70 5.	81 5-82	5.80	5-81	1-A-HOPIC	Naso			
	Cond (µS/cm)	158 1	60 160	160	160	HACH				
	DO (mg/L)		54 0.99		0.58	45155	1			
•	Redox (mV) -38.8 -6	13.267.1	-141,4	-158 a	DR10N 250				
	Salinity Nitrate						-			
	Sulfate									
	Ferrous Iro	n					1			
		0.3 0	.5 0.7	0-9	1.0	()				
7[]	SAMPLE (CONTAINERS (n	naterial, number,	size):O	(125°					
					(m pory				
	•									
0.5.3										
8[]	ON-SITE S	SAMPLE TREAT	MENI:				•			
	[]	Filtration:	Method		Conta	iners:				
	Method Containers:									
			Method		Conta	iners:				
	[]	Preservatives a	dded: 146.							
	Method fre added Containers: 40ml ver Method Containers:									
			Method Method		Conta	iners:				
,			Method		Conta	iners: iners:				
9[]	CONTAIN	IER HANDLING	:							
		[] Contains	er Sides Labeled				•			
			er Lids Taped							
•			ers Placed in Ice	Chest						
1057	0.000	0. 0. (D. 100)	< 4/2	EN	D1/	WATER	>			
10[]	OTHER C	OMMENTS:	<u>ال ک</u>		<u> </u>	0-71101	<u> </u>			

ON-SITE MEASUREMENTS HACH AND CHEMets ANALYSES COLUMBUS AIR FORCE BASE, VA, M9

SAMPLE DATE 11/8/96				Direct Meter Measurements:				
	. ,			Temp			°C/°F (circle)	
SAMPLE I.	D.	METTHOD OU OF WA	BLANIC		pН			SU
					Conductivity			μS/cm
FILTERED	(circle)	YES	NO		ved Oxygen		1/21/	mg/L
COLOR (O	DOD.			Red	ox Potential	L		m∇
COLOR / O	DUR:							
HACH DR/	700 Maasuu	raments.						
HACH DIO	/ VV IVICASui	emens.		Time				
				Reagent	Time			,
Analyte	Program	Range	Dilution	Mixed	Measured	Readi	nσ	Blank*/,b/
Ferrous	50.01.1		1	1029	1034	0.00	mg/L	
					1022		mg/L	
							mg/L	•
Nitrite	50.08.1	0 - 0.350 mg/L	(1023	1033	0.002	mg/L	sample
							mg/L	sample
Nitrate	50.05.1	0 - 30.0 mg/L		1025	1034	0.2	mg/L	sample
							mg/L	4 *
Total Iron	50.03.1	0 - 5.10 mg/L		1026	1034	0.01	mg/L	-
Sulfate	45 000	0 100		1070	10(1)	0.30	mg/L	•
Sunate	45.000	0 - 100 mg/L		1037	1042	0.27		DI or 50mg/L
Chloride	45.02.1	0 - 20.0 mg/L		Same	lassnare	-	mg/L	DI or 50mg/L DI
Calcingo	75.02.1	0 · 20.0 mg.		- James	sulfide	a(S	mg/L	1
Manganese	52.13.1	0 - 20.0 mg/L	('	1031	1041	-0.0		4
_		Ū					mg/L	•
Sulfide	61.12.1	0 - 0.600 mg/L	1	1025	1028	-0.000		
			·				mg/L	DI
HACH Titr								le sa .
Alkalinity		ze = (OO)		Digit Multiplie	x = O, 1	3€	digits	,
	Titrate wit	th O.16 NH	₂SO₄					
CHEMet Co	olon Toctor				,			
Ammonia	noi i cais.							1
CO ₂	(mI.	A-1910 added fo	r sulfide inter	ference)		010	ppm	1
2	· //	1710 88300 10	- Julius Billi	10101100)			ppm	I
		Technician:	BL					
						•		
-1 -								

Sulfate, sulfide, and chloride blanks contain respective reagents;Ferrous iron, total iron, nitrate, nitrite, and manganese blanks are without reagents.

by Ferrous, total iron and manganese blanks should be diluted accordingly if samples are diluted.

ON-SITE MEASUREMENTS HACH AND CHEMets ANALYSES COLUMBUS AIR FORCE BASE, WA M 5

SAMPLE DATE 11/10/94			,	Direct Meter Measurements:				
		, ,			Temp			°C/°F (circle)
SAMPLE I.	D.	MSON	DI		pН			su
					Conductivity			μS/cm
FILTERED	(circle)	YES	NO		ved Oxygen			mg/L
COLOR / O	DOR:			Red	ox Potential			JmV
0020117 0	DOM.							
HACH DR/	700 Measur	rements:						
				Time				
				Reagent	Time			
Analyte	Program	Range	Dilution	Mixed	Measured	Read	ing	Blank* ^{/,b/}
Ferrous	50.01.1	0 - 5.10 mg/L					mg/L	sample
							mg/L	. sample
							mg/L	• • •
Nitrite	50.08.1	0 - 0.350 mg/L	 				mg/L	1 * 1
NT:	50.05.1	0 000 7		- 000			mg/L	1 - :
Nitrate 5 NGL	50.05.1	0 - 30.0 mg/L		0872	0832	5.9	mg/L	1 * 1
Total Iron	50.02.1	0 510 7		<u> </u>	055	1.57	mg/L	4 * :
	50.03.1	0 - 5.10 mg/L		<u> </u>	0838	1.26	mg/L	sample
Zne/L Sulfate	45.000	0 - 100 mg/L	<u> ७५२</u>	0870	0826	27.14	mg/L	sample
asmyl	43.000	0 - 100 mg/L	0320	USAU	0026	26.00	mg/L	DI or 50mg/L D) or 50mg/L
Chloride	45.02.1	0 - 20.0 mg/L				126.00	mg/L	
	.5.02.1	0 2010 11192					mg/L	1 :
Manganese	52.13.1	0 - 20.0 mg/L		0845	0847	13	mg/L	1
Manganese えんらん		J				1	mg/L	• • •
Sulfide	61.12.1	0 - 0.600 mg/L					mg/L	DI
		_					mg/L	DI
			_			<u> </u>		<u> </u>
HACH Titra								_
Alkalinity	Sample Size			Digit Multiplie	er =		digits	
	Titrate wit	h NH	₂SO₄					-
CHEMet Co	olor Tests:							
Ammonia							ppm	Ì
CO ₂	(mL	A-1910 added fo	r sulfide inter	ference)			ppm	ŀ
-	•	,				L	Phur	Į
		Technician:				_		

Sulfate, sulfide, and chloride blanks contain respective reagents; Ferrous iron, total iron, nitrate, nitrite, and manganese blanks are without reagents.

by Ferrous, total iron and manganese blanks should be diluted accordingly if samples are diluted.

ON-SITE MEASUREMENTS HACH AND CHEMets ANALYSES COLUMBUS AIR FORCE BASE, VA M9

SAMPLE D	ATE	11/10/96		Direct Meter Measurements:			
					Temp		°C/°F (circle)
SAMPLE I.	D.	MSD ON DI			рH		su
					Conductivity		μS/cm
FILTERED	(circle)	YES	NO		ved Oxygen		mg/L
				Red	ox Potential]mV
COLOR / OI	DOR:						
HACH DR/	700 Measur	ements:					
				Time			
				Reagent	Time		
Analyte	Program	Range	Dilution	Mixed	Measured	Reading	Blank ^{4/,b/}
Ferrous	50.01.1	0 - 5.10 mg/L	1			mg/L	sample
		_ [mg/L	1
						mg/L	1 - 1
Nitrite	50.08.1	0 - 0.350 mg/L				mg/L	sample
		ļ				mg/L	sample
Nitrate	50.05.1	0 - 30.0 mg/L		0825	0832	5-7 mg/L	sample
5 mg/C						mg/L	sample
Total Iron	50.03.1	0 - 5.10 mg/L		6834	0838	1,07 mg/L	sample
2mg/L	45.000	0 100 7		1000	0. 2.	mg/L	sample
Sulfaté 25mg/L	45.000	0 - 100 mg/L		0820	0826	27.35 mg/L	
Chloride	45.00.1	0 200 77					Dor 50mg/L
Спопае	45.02.1	0 - 20.0 mg/L				mg/L	DI
Manganese	52.13.1	0 - 20.0 mg/L		05116	SCUS	mg/L	DI
ZWy/	32.13.1	0 - 20.0 mg/L		0845	0847	1,3 mg/L	1 - 1
Sulfide	61.12.1	0 - 0.600 mg/L				mg/L	sample
Dunico	01.12.1	0 - 0.000 mg/L				mg/L	DI DI
		į.		1	L	mg/L	<u> </u>
HACH Titra	ations:						
Alkalinity	Sample Siz	ze =	I	Digit Multiplie	T =	digits	Ī
•	Titrate wit			B	-	<u> </u>	l
		- -					
CHEMet Co	olor Tests:						
Ammonia						ppm	
CO ₂	(mL	A-1910 added for	r sulfide interi	ference)		ppm	
		The standard and		·			ı
		Technician:				•	
N C-16 1	e		. •				

Sulfate, sulfide, and chloride blanks contain respective reagents;
Ferrous iron, total iron, nitrate, nitrite, and manganese blanks are without reagents.

by Ferrous, total iron and manganese blanks should be diluted accordingly if samples are diluted.

ON-SITE MEASUREMENTS HACH AND CHEMets ANALYSES COLUMBUS AIR FORCE BASE, WAY 1

SAMPLE DATE 11/8/96			,	Direct Meter Measurements:				
					Temp		°C/°F (circle)	
SAMPLE I.I	Э.	W68			pH Conductivity		SU	
FILTERED (circle)	YES	NO		Conductivity ved Oxygen		_μS/cm mg/L	
TILILICED (ch cic)	113			ox Potential		mV	
COLOR / OD	OR: CLO	zen/M	0000	-			 ,	
HACH DR/7	'00 Measur	ements:						
				Time				
				Reagent	Time			
Analyte	Program	Range	Dilution	Mixed	Measured	Reading	Blank ^{4,b}	
Ferrous	50.01.1	0 - 5.10 mg/L		10907	1905	0.01 mg/1	-	
						mg/l		
5.7 1. 1.	50.00.1	0.0250		0000	100.0	mg/l		
Nitrite	50.08.1	0 - 0.350 mg/L		0909	0919	1.002 mg/1		
Nitrate	50.05.1	0 - 30.0 mg/L	i	0917	00923	2 5 mg/l	-	
Niuate	30.03.1	0 - 30.0 mg/L		10911	100442	2.5 mg/l mg/l		
Total Iron	50.03.1	0 - 5.10 mg/L	1	0918	1690	()-05 mg/	_	
roun non	50.05.1	0 3.10 11.92	· · · · · · · · · · · · · · · · · · ·	0939	0944	0.16 mg/		
Sulfate	45.000	0 - 100 mg/L	1-1	19926	0924		L DI or 50mg/L	
			7				DI or 50mg/L	
Chloride	45.02.1	0 - 20.0 mg/L	(1900	1004	6.2 mg/	_	
		·				mg/	DI DI	
Manganese	52.13.1	0 - 20.0 mg/L		0926	0929	0.06 mg/	sample	
		, ,			 	mg/	-	
Sulfide	61.12.1	0 - 0.600 mg/L		1008	1014	0.008 mg/		
					<u> </u>	mg/	L DI	
HACH Titra Alkalinity	Sample Si	ze = 100 th 1.6 NH	sSO₄	Digit Multipli	er = 1,0	5 digi	s	
CHEMet Co Ammonia CO ₂		A-1910 added fo		ference)		70 ppi	 [
		Technician:				-		

Sulfate, sulfide, and chloride blanks contain respective reagents;
Ferrous iron, total iron, nitrate, nitrite, and manganese blanks are without reagents.

^{b/} Ferrous, total iron and manganese blanks should be diluted accordingly if samples are diluted.

ON-SITE MEASUREMENTS HACH AND CHEMets ANALYSES COLUMBUS AIR FORCE BASE, YA

SAMPLE DATE 11/8/96				Direct Meter Measurements:					
		•			Temp		C/°F (circle)		
SAMPLE I.D.		WOS DU	PULLIE		рH		SU		
				C	Conductivity		µS/cm		
FILTERED (circle)	YES	(NO)		ved Oxygen		mg/L		
					ox Potential		mV		
COLOR / OD	OR:	Exn / 1	00	27					
HACH DR/7	00 Measur	ements:		T:					
				Time	Ti				
	_	~	5 011 .:	Reagent	Time	.	n: :4/b/		
Analyte	Program	Range	Dilution	Mixed	Measured	Reading	Blank ^{a/,b/}		
Ferrous	50.01.1	0 - 5.10 mg/L	1	0902	0905	€.00 mg/			
					 	mg/			
Nitrite	50.08.1	0 - 0.350 mg/L		2626	0919	mg/			
Niulte	30.06.1	ן בולשווו טככים - ט		0909		0.00(mg/			
Nitrate	50.05.1	0 - 30.0 mg/L		0917	0923	mg/			
Nuale	30.03.1	0 - 30.0 mg/L		01.	0900				
Total Iron	50.03.1	0 - 5.10 mg/L	(0918	0921	mg/ 			
Total Boll	50.05.1	0 - 5.10 mg/L		0713	0121	- 0.16 mg/			
Sulfate	45.000	0 - 100 mg/L	,	0926	0924		L DI or 50mg/L		
Dunuw	15.000	0 100g,		0 120	0.12.1	 	L DI or 50mg/L		
Chloride	45.02.1	0 - 20.0 mg/L		1000	1002	5.7 mg/	_		
		·		1000	1	mg.			
Manganese	52.13.1	0 - 20.0 mg/L	1	0926	0919	0,01 mg			
•		_				mg			
Sulfide	61.12.1	0 - 0.600 mg/L	(1008	1014	0.00\mg			
						mg,	L DI		
HACH Titra	tions:	100	1				_		
Alkalinity	Sample Si	ze = 100 n	•	Digit Multipli	er = 0.1	30 digi	ts		
	Titrate wi	th 0.16 NH	₂SO₄						
arres						•			
CHEMet Co	lor Tests:						_		
Ammonia				_		O pp	m		
CO ₂	(D mL	A-1910 added fo	r sulfide inte	rference)		20 bb	m]		
		Technician:	130	-		_			
-1						-			
" Sulfate cul	fide and ch	loride blanks cor	tain rechecti	va rangante.					

Sulfate, sulfide, and chloride blanks contain respective reagents;
Ferrous iron, total iron, nitrate, nitrite, and manganese blanks are without reagents.

^{b/} Ferrous, total iron and manganese blanks should be diluted accordingly if samples are diluted.

ON-SITE MEASUREMENTS HACH AND CHEMets ANALYSES COLUMBUS AIR FORCE BASE, VALANCE ANALYSES

SAMPLE DATE 11/10/96			Direct Meter Measurements:				
		- ''			Temp	°C/°F (circle)	
SAMPLE I.	D.	W 69		_	pН		SU
****		\sim			Conductivity		μS/cm
FILTERED	(circle)	YES	NO		ved Oxygen		mg/L
COLOR / OI	OOR: ((EAR/ NO	0001	Keu	ox Potential	L]mV
HACH DR/	700 Measur	ements:					
				Time			
				Reagent	Time		
Analyte	Program	Range	Dilution	Mixed	Measured	Reading	Blank*',b/
Ferrous	50.01.1	0 - 5.10 mg/L	/	0744	0748	O.Oつ mg/L	sample
						mg/L	- - 1
					<u> </u>	mg/L	
Nitrite	50.08.1	0 - 0.350 mg/L		0750	0800	0.005 mg/L	4 - 1
.	#0.0# 4				0 - 0 1	mg/L	(
Nitrate	50.05.1	0 - 30.0 mg/L		0755	10801	0.9 mg/L	-
Total Iron	50.03.1	0 - 5.10 mg/L	- , - 	0.70%	0801	mg/L ひみ mg/L	1
Total Holl	30.03.1	0-5.10 mg/L		0758	0001	<u>()、0 み</u> mg/L mg/L	sample sample
Sulfate	45.000	0 - 100 mg/L	1	0807	0812		DI or Orag/L
	.5.000	0 100 92			00.0		DI or 50mg/L
Chloride	45.02.1	0 - 20.0 mg/L	1	0809	0811	12.0 nig/L	
		. [mg/L	DI [
Manganese	52.13.1	0 - 20.0 mg/L	(0802	0804	O. A mg/L	sample
						mg/L	I
Sulfide	61.12.1	0 - 0.600 mg/L		0810	0815	O.OIA mg/L	
	•	į			}	l mg/L	, DI
HACH Titra Alkalinity	10 digits]					
CHEMet Co	olor Tests						
Ammonia	,,,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					O ppm	.7
CO ₂	(i) mL	A-1910 added for	r sulfide inter	ference)		⟨⊘ ppm	7
				,			ı
		Technician:	BC			_	
							

Sulfate, sulfide, and chloride blanks contain respective reagents;Ferrous iron, total iron, nitrate, nitrite, and manganese blanks are without reagents.

b/ Ferrous, total iron and manganese blanks should be diluted accordingly if samples are diluted.

ON-SITE MEASUREMENTS HACH AND CHEMets ANALYSES COLUMBUS AIR FORCE BASE, VA M5

SAMPLE DATE 11/10/96.				Direct Meter Measurements:				
· · · · · · · · · · · · · · · · · · ·				Temp				°C/°F (circle)
SAMPLE I.D. W70						pН		su
				Conductivity			μS/cm	
FILTERED	(circle)	(YES)	NO		Dissol	ved Oxygen		mg/L
			12062	1.6	Red	ox Potential]mV
COLOR / OI	DOR:	vone/ -	ر می اور در	111	DIZUCA	RBON		
COLOR/ODOR: NONE/ STANKA INDROCARBON HACH DR/700 Measurements:								
HACH DR/	/ou measur	ements:						
					Time	Time		
Analyte	Dunama	Range	Dilution		Reagent		.	1 h/
Ferrous	Program 50.01.1		Dilution		Mixed 1401	Measured	Reading 490 mg/L	Blank ^{4/,b/}
1 Cirous	30.01.1	0 - 3.10 mg/L			1701	1404		sample
				-			mg/L mg/L	f - 1
Nitrite	50.08.1	0 - 0.350 mg/L	1		1404	14/6	O. OOY mg/L	sample sample
	20.00.2	0.550			101	1 1/48	mg/L	sample
Nitrate	50.05.1	0 - 30.0 mg/L	1		1912	1418	O. 4 mg/L	, - I
		J					mg/L	sample
Total Iron	50.03.1	0 - 5.10 mg/L	10		1414	1417.	2,79 mg/L	sample
							mg/L	sample
Sulfate-	45.000	0 - 100 mg/L			1422	1428	-0.16 mg/L	DI or Org/L
							0.97 mg/L	DI or 50mg/L
Chloride	45.02.1	0 - 20.0 mg/L)		1425	1427	id . d mg/L	DI
M	50 10 1	0.000			144.64		mg/L	DI
Manganese	52.13.1	0 - 20.0 mg/L			1419	1421	0.6 mg/L	sample
Sulfide	61.12.1	0 - 0.600 mg/L			1426	1431	mg/L	sample
Sunice	01.12.1	0 - 0.000 mg/L			1 126	1931	0.045 mg/L	DI
•			<u> </u>		I	<u> </u>	mg/L	DI
HACH Titrations: Alkalinity Sample Size = 100 m Digit Multiplier = 1.0 SS digits Titrate with 1.6 N H ₂ SO ₄								I
CHEMet Co	lor Tests:							
Ammonia							み ppm	
CO ₂	(\bigcirc mL.	A-1910 added fo	r sulfide inter	fen	ence)		130 ppm	
		Technician:	BI				130	

Sulfate, sulfide, and chloride blanks contain respective reagents; Ferrous iron, total iron, nitrate, nitrite, and manganese blanks are without reagents.

by Ferrous, total iron and manganese blanks should be diluted accordingly if samples are diluted.

ON-SITE MEASUREMENTS HACH AND CHEMets ANALYSES COLUMBUS AIR FORCE BASE, WA

SAMPLE D	ATE	1/11/9	6		Direct Me	ter Measur	ements:	_
		7 /				Temp		°C/°F (circle)
SAMPLE I.	D.	LWZOD		l		pН		su
EN AEDED						Conductivity		μS/cm
FILTERED	(circle)	YES	NO			ved Oxygen		mg/L
COLOB (O	DOD.	1	_		Red	ox Potential		JmV
COLOR / O	DUK:	CLEAN!	400 EN	A	REIFY	MACAM	80W 200	1/4
HACH DR/	700 Measui	rements:			(1 ()) V (
					Time			
					Reagent	Time		
Analyte	Program	Range	Dilution		Mixed	Measured	Reading	Blank ^{a/,b/}
Ferrous	50.01.1	0 - 5.10 mg/L	5 \$		1808	1811	3.28 mg/L	sample
							mg/L	sample
							mg/L	sample
Nitrite	50.08.1	0 - 0.350 mg/L	(1810	1820	(2.00/ mg/L	sample
							mg/L	sample
Nitrate	50.05.1	0 - 30.0 mg/L	1		1816	1828	<i>⊙</i> . 5 mg/L	sample
m	*** • • • • •						mg/L	sample
Total Iron	50.03.1	0 - 5.10 mg/L	5		1819	1889	3.29 mg/L	sample
Sulfate	45 000	0 100 #				1.377	mg/L	sample
Sunate	45.000	0 - 100 mg/L			1829	1834	-0.65 mg/L	
Chloride	45.02.1	0 - 20.0 mg/L			7.	1513 5		Dor 50mg/L
CHOTIC	43.02.1	0 - 20.0 mg/L		\dashv	1831	1833	3 3 mg/L	DI
Manganese	52.13.1	0 - 20.0 mg/L	1	-	1828	1830	mg/L スい mg/L	DI sample
	0-11011	0 20.0			18 3	1070	スロ mg/L mg/L	sample
Sulfide	61.12.1	0 - 0.600 mg/L	(1832	1837	0.014 mg/L	DI
							mg/L	DI
HACH Titrations: Alkalinity Sample Size = 50 Titrate with 1.6 N H ₂ SO ₄ Digit Multiplier = 2 22 digits								
CHEMet Color Tests: Ammonia CO ₂ (OmL A-1910 added for sulfide interference) Technician: 3								

Sulfate, sulfide, and chloride blanks contain respective reagents; Ferrous iron, total iron, nitrate, nitrite, and manganese blanks are without reagents.

b/ Ferrous, total iron and manganese blanks should be diluted accordingly if samples are diluted.

ON-SITE MEASUREMENTS HACH AND CHEMEIS ANALYSES COLUMBUS AIR FORCE BASE, WALM 9

	SAMPLE D	ATE	11/10/96		Direct Meter Measurements:					
	a	_	-/ /			Temp		°C/°F (circle)		
	SAMPLE I.	D.	W71		_	pН		Jsu		
	EII TEDED	(aimala)	3/000	(110)		Conductivity		μS/cm		
	FILTERED	(circle)	YES	(NO)		ved Oxygen		mg/L		
	COLOR / OI	OOR: CL	EAR/STAD	uch .	,000	ox Potential]mV		
	HACH DR/	700 Measur	rements:	r Algrand	, , ,					
					Time					
					Reagent	Time				
	Analyte	Program	Range	Dilution	Mixed	Measured	Reading	Blank*/,b/		
	Ferrous	50.01.1	0 - 5.10 mg/L	[0]	0917	0920	mg/L			
							3.28 mg/L	_		
							mg/L			
	Nitrite	50.08.1	0 - 0.350 mg/L		10928	0933	().00 7 mg/L	sample		
	NT	50 OF 1				- 2.55	mg/L	sample		
	Nitrate	50.05.1	0 - 30.0 mg/L		0930	0937	M. 4 mg/L	1 -		
	Total Iron	50.03.1	0 5107	10	40931	267	mg/L	4 .		
	Total Hon	30.03.1	0 - 5.10 mg/L	10	10171	0934	3.53 mg/L	· -		
	Sulfate	45.000	0 - 100 mg/L		+ 3	1005	mg/L	•		
	Dunuw	1 3.000	0 - 100 mg/L		1000	1005	2.00 mg/L 2.9み mg/L	DI or@mg/L DI or 50mg/L		
	Chloride	45.02.1	0 - 20.0 mg/L	-	1002	1004		ייסונטן or somg/L DI		
6			·		1,000	1001	/ <i>() -</i>	4		
4	Manganese	52.13.1	0 - 20.0 mg/L	,	0940	0942	0-> mg/L	1		
	_				1014	1017	1.5 mg/L			
	Sulfide	61.12.1	0 - 0.600 mg/L	1	1003	1008	0.028 mg/L	DI		
							mg/L	DI		
			_							
	HACH Titra		1.0.0							
	Alkalinity	Sample Siz			Digit Multiplie	r = 1.0	79 digits			
		Titrate with	$h \cdot 1.6 NH_2$	SO₄				•		
	CHEMet Co	lor Tests:						_		
	Ammonia	, A .					'Υ ppm			
	CO₂	(U mL	A-1910 added for	sulfide inter	ference)		130 ppm			
			m 1 · ·	771						
			Technician:	171						
	Sulfate, sulfide, and chloride blanks contain respective reagents;									
	Ferrous iron	n total iron	oride blanks con nitrate, nitrite, a	nd managener	e reagents;	· ·				
	b/ Ferrous tot	al iron and -	nanganasa kiset	a chould be a	c dialiks are wi	iulout reage	nts.			
_	Ferrous, total iron and manganese blanks should be diluted accordingly if samples are diluted.									
(SAMPLE TURNED YET AETEN REAGENT ADDITION									

ON-SITE MEASUREMENTS HACH AND CHEMets ANALYSES COLUMBUS AIR FORCE BASE, *** " 5

SAMPLE DAT	E	11/10/96		Direct Meter Measurements:						
				•	Temp		C/°F (circle)			
SAMPLE I.D.		W71 Dup	LICATE		pН		SU			
	1->	1000	(a)		Conductivity		μS/cm			
FILTERED (cir	•	YES	NO		lved Oxygen lox Potential		mg/L			
COLOR (ODO	D. (1	EANLISTM	d. W. IL	Keo	JmV					
COLOR, ODO	π. ς ι		00(1) [T]							
HACH DR/700) Measur	ements:		00	on					
				Time						
				Reagent	Time					
Analyte	Program	Range	Dilution	Mixed	Measured	Reading	Blank*/,b/			
Ferrous	50.01.1	0 - 5.10 mg/L	10	0917	0920	3.42 mg/L				
						mg/L	- - ,			
						mg/I	sample			
Nitrite	50.08.1	0 - 0.350 mg/L	1	0923	0937	0.003 mg/L				
) Transaction	50.05.					mg/L	-			
Nitrate	50.05.1	0 - 30.0 mg/L		0930	0937	0.5 mg/L	~ .			
Total Iron	EO 02 1	0.5107			1.5.77	mg/L	,			
TOTAL HOIL	50.03.1	0 - 5.10 mg/L	10	0931	0934	3.49 mg/L				
Sulfate	45.000	0 - 100 mg/L		(000	1005	mg/L				
Junac	43.000	0 - 100 mg/L		(808	100>		DI or Somg/L			
Chloride	45.02.1	0 - 20.0 mg/L	1	1000	1004		DI or 50mg/L			
	.5.02.1	0 20.0		1,004	1007	10.5 mg/L mg/L	7			
Manganese	52.13.1	0 - 20.0 mg/L	,	0940	5941	1. / mg/L	- 1			
G				1014	1017	1.5 mg/L	1			
Sulfide	61.12.1	0 - 0.600 mg/L	ı	1003	1008	20-02 7 mg/L				
		[mg/L	=1			
		_								
HACH Titratio		10-	1				_			
	ample Siz			Digit Multiplie	er = 1.0	EL digits				
T	itrate wit	h 1.6 NH2	SO₄				_			
CHEMet Color	- T4									
Ammonia	ा हाराः						7			
CO ₂ (O mī	A-1910 added for		-		<u>S</u> ppm	4			
		W-1310 added 101	sumae inter	nerence)		/くろ ppm]			
		Technician:		3C						
		recinicizat.		<u>/</u>						
*/ Sulfate, sulfide	e, and chi	oride blanks con	tain recnactiv	e reggente						
Sulfate, sulfide, and chloride blanks contain respective reagents; Ferrous iron, total iron, nitrate, nitrite, and manganese blanks are without reagents.										

& SAMPLE TUNNED YELDOW ATTER DEAGENT ADDITION, NOT VIOLET

b/ Ferrous, total iron and manganese blanks should be diluted accordingly if samples are diluted.

ON-SITE MEASUREMENTS HACH AND CHEMets ANALYSES COLUMBUS AIR FORCE BASE, WAL ^^ 5

SAMPLE DA	TE	11/8/7	6	Direct Meter Measurements:				
		, , ,		Ì	Temp		°C/°F (circle)	
SAMPLE I.D	•	LW72		_	pН		SU	
EII TEDED (a	inala)	YES	NO		Conductivity		μS/cm	
FILTERED (c	,		NO		ved Oxygen		mg/L	
COLOR / ODO	∩ ₽∙ /	11041/61	16 HT	Redox Potential mV				
COLOR, OD	JIC. (Le gry > C	in a 2 to	720N				
HACH DR/70	0 Measur	CLEAU SI	WILDER!	2000				
				Time				
				Reagent	Time			
Analyte	Program	Range	Dilution	Mixed	Measured	Reading	Blank*/,b/	
Ferrous	50.01.1	0 - 5.10 mg/L		1735	1738	O.A mg/L	sample	
						mg/L	sample	
				1-3-3-	 	mg/L	sample	
Nitrite	50.08.1	0 - 0.350 mg/L		1738	1748	O.∞≥mg/L	sample	
Nitrate	50.05.1	0.200		7117	17166	mg/L	sample	
Niuale	30.03.1	0 - 30.0 mg/L		1743	1749	U.S mg/L	sample	
Total Iron	50.03.1	0 - 5.10 mg/L		1746	1749	mg/L O; 礼4 mg/L	sample	
Total Holi	50.05.1	0 - 3.10 mg/L		1716	7771	0,24 mg/L 3.73 mg/L	sample sam <u>pl</u> e	
Sulfate	45.000	0 - 100 mg/L	1	1954	1759		DI or Comg/L	
			-				DI or 50mg/L	
Chloride	45.02.1	0 - 20.0 mg/L	1	1755	1758	5.9 mg/L	DI	
						mg/L	DI	
Manganese	52.13.1	0 - 20.0 mg/L		1751	1753	5.4 mg/L	sample	
0.151	<i></i>					mg/L	sample	
Sulfide	61.12.1	0 - 0.600 mg/L		1757	1803	0-05 mg/L	DI	
		l				mg/L	DI	
HACH Titrations: Alkalinity Sample Size = 50 M Digit Multiplier = 0. A RUS digits Titrate with NH2SO4								
CHEMet Colo	or Tests:							
Ammonia	n rww.				i).() ppm	•	
CO ₂	(<i>D</i> mL.	A-1910 added for	r sulfide inter	ference)		1・O ppm フロ ppm	ki	
-			_	- · -		ppin	I	
		Technician:	30					
		_				•		

Sulfate, sulfide, and chloride blanks contain respective reagents;
Ferrous iron, total iron, nitrate, nitrite, and manganese blanks are without reagents.

by Ferrous, total iron and manganese blanks should be diluted accordingly if samples are diluted.

ON-SITE MEASUREMENTS HACH AND CHEMets ANALYSES COLUMBUS AIR FORCE BASE, VA. M. 9

SAMPLE DATE 11/8/96			<i>Έ</i>	Direct Meter Measurements:					
a	_	()			Temp		°C/°F (circle)		
SAMPLE I.I	О.	L w 7	>	_	pН		_su		
FILTERED (circle)	YES	NO		Conductivity		μS/cm		
i iiii Ekeb (CHCIC)		NO		ved Oxygen ox Potential		mg/L		
COLOR / OD	OR: ((DAM BA	s open	- Kai	ox Potential		JmV		
				T ITYDAX	MBON				
HACH DR/7	00 Measui								
				Time					
				Reagent	Time				
Analyte	Program	Range	Dilution	Mixed	Measured	Reading	Blank* ^{/,b/}		
Ferrous	50.01.1	0 - 5.10 mg/L		1738	1241	O,OI mg/L			
						mg/L	9 1		
Nitrite	50.08.1	0 - 0.350 mg/L	-	1243	13.65	mg/L	- - 1		
Multo	30.08.1	Jagin occ.o - o		1243	US3	0.004 mg/L			
Nitrate	50.05.1	0 - 30.0 mg/L	1	1250	1256	mg/L 1, 4 mg/L	- - i		
		0 00.0 92		100	1230	1, 4 mg/L mg/L	7 - 1		
Total Iron	50.03.1	0 - 5.10 mg/L	7	1251	1254	O.oy mg/L	9		
						mg/L	sample		
Sulfate	45.000	0 - 100 mg/L	1	1300	1305		DI or Omg/L		
<i>~</i>	15.00.4						(D) or 50mg/L		
Chloride	45.02.1	0 - 20.0 mg/L		1308	1304	3. 5 mg/L	− I		
Manganese	52.13.1	0 200		1.500		mg/L	٦		
Manganese	32.13.1	0 - 20.0 mg/L		1253	1257	18 mg/L	4 <u>-</u> (
Sulfide	61.12.1	0 - 0.600 mg/L	- , 	303	1308	0.013 mg/L	4		
	01.12.1	0 - 0.000 mg/L			7508	O.OL3 mg/L mg/L	DI DI		
		L			l	IIIg/L	<u> </u>		
HACH Titra									
		ze = 50	1	Digit Multiplie	$x = 0. \lambda$	50 digits	1		
	Titrate wit	h O.16 NH2	SO₄	-			•		
	_								
CHEMet Col	or Tests:			_					
Ammonia	(S	. 1010 11 16				O ppm			
CO ₂	(C) mL	A-1910 added for	sulfide interi	terence)		100 ppm]		
		Technician:	73U						
No. 10. 10			_						

Sulfate, sulfide, and chloride blanks contain respective reagents;
Ferrous iron, total iron, nitrate, nitrite, and manganese blanks are without reagents.

by Ferrous, total iron and manganese blanks should be diluted accordingly if samples are diluted.

ON-SITE MEASUREMENTS HACH AND CHEMets ANALYSES COLUMBUS AIR FORCE BASE, ♥№ 9

SAMPLE DATE 1/8/96			6	Direct Meter Measurements:					
		19			Temp)	°C/°F (circle)		
SAMPLE I.I).	LW74			pН		SU		
			\mathcal{E}		Conductivity		μS/cm		
FILTERED (circle)	YES	(NO)		lved Oxyger		_mg/L .		
COLOD (OD	200	17111	^	Red	Redox Potential				
COLOR/OD	KOR: (LEAR NO	D SOON C						
HACH DR/7	00 Measu	ements:							
		•		Time					
•				Reagent	Time				
Analyte	Program	Range	Dilution	Mixed	Measured	Reading	Blank* ^{/,b/}		
Ferrous	50.01.1	0 - 5.10 mg/L		1542	1545	0.04 mg/L			
	•					mg/L	_		
						mg/L	sample		
Nitrite	50.08.1	0 - 0.350 mg/L	1	1545	1555	O.JOZmg/L	sample		
						mg/L	- ·		
Nitrate	50.05.1	0 - 30.0 mg/L		1550	1556	0.7 mg/L	sample		
Translation	50.00.1					mg/L	sample		
Total Iron	50.03.1	0 - 5.10 mg/L		1552	1555	0.26 mg/L			
Sulfate	45.000	0 100		1606	14 . /	mg/L			
Junate	43.000	0 - 100 mg/L		1601	1606	3.78 mg/L	DI or @g/L		
Chloride	45.02.1	0 - 20.0 mg/L	(1600	1/0/6		ODor 50mg/L		
Ciuorido	43.02.1	0 - 20.0 mg/L		1804	1604	2.9 mg/L	-		
Manganese	52.13.1	0 - 20.0 mg/L	-, +	1558	1600	mg/L	-1		
33	0-11-011	J 20.0		1008	7600	() ← mg/L mg/L	-		
Sulfide	61.12.1	0 - 0.600 mg/L		1604	1609	0.039 mg/L	-		
				10-1	1001	mg/L	DI		
		_			1 <u></u>	1 mg/L	<u> </u>		
HACH Titra	tions:	: _							
Alkalinity	Sample Siz	ze = 100 h 0.16 NH ₂]	Digit Multiplie	er = O.	45 digits	.]		
	Titrate wit	h 0.16 n H2	SO₄	_			_		
CHEMet Col	or Tests:						_		
Ammonia	. a -					ppm			
CO ₂	(mL	A-1910 added for	sulfide interf	ference)		70 ppm	1		
		m	30	,			·		
		Technician:	ارا			•			

Sulfate, sulfide, and chloride blanks contain respective reagents;
Ferrous iron, total iron, nitrate, nitrite, and manganese blanks are without reagents.

b/ Ferrous, total iron and manganese blanks should be diluted accordingly if samples are diluted.

ON-SITE MEASUREMENTS HACH AND CHEMets ANALYSES COLUMBUS AIR FORCE BASE, 344 M 9

SAMPLE DA	ATE	11/10/	16	Direct Meter Measurements:					
		' /				Temp		°C/°F (circle)	
SAMPLE I.	D.	LW77		ł		pН		SU	
						Conductivity		μS/cm	
FILTERED	(circle)	YES	(NO)		Dissol	ved Oxygen		mg/L	
GOT 07 / 07			$\overline{}$		Red	ox Potential]mV	
COLOR / OI	OOR: (LEAU/,	NO ON	10					
HACH DR/				٠. ر	-				
		cincinus.			Time				
					Reagent	Time			
Analyte	Program	Range	Dilution		Mixed	Measured	Reading	Blank* ^{/,b/}	
Ferrous		0 - 5.10 mg/L	/		1248	1051	Reading O.U3 mg/L		
						107,	mg/L	4 -	
							mg/L	7. ·	
Nitrite	50.08.1	0 - 0.350 mg/L	7		105d	1102	O. OOYmg/L	sample	
							mg/L	3	
Nitrate	50.05.1	0 - 30.0 mg/L	1		1058	1104	1.4 mg/L	4 -	
							mg/L	•	
Total Iron	50.03.1	0 - 5.10 mg/L			1100	1103	の20 mg/L	1 1	
							mg/L	sample	
Sulfate	45.000	0 - 100 mg/L	1		1110	1115	14.97 mg/L	DI or Opre/L	
							16-22 mg/L	DI or 50mg/L	
Chloride	45.02.1	0 - 20.0 mg/L			1112	1114	5.9 mg/L	DI	
							mg/L	DI	
Manganese	52.13.1	0 - 20.0 mg/L	(1105	1107	0-1 mg/L	sample	
015.1.	(1.10.1						mg/L	1 -	
Sulfide	61.12.1	0 - 0.600 mg/L			1113	1118	0.013 mg/L	•	
		Į				<u> </u>	mg/L	DI	
HACH Titra	tiona								
Alkalinity		ze = 100		D:-	.:.		(10 "	1	
Aikamuty		hOlb NH	50	פות	it Multiplie	$x = U \cdot 1$	(10 digits]	
	Tiuale Wil	11 € 10 11 H ₂	,3∪₄						
CHEMet Co	lor Tests:								
Ammonia							() nnm	1	
CO ₂	(O mL	A-1910 added for	r sulfide inter	rfere	encel		D ppm		
	, 🔾		. Junio ditoi		,		130 ppm	I	
		Technician:	30						
							•		

Sulfate, sulfide, and chloride blanks contain respective reagents;
Ferrous iron, total iron, nitrate, nitrite, and manganese blanks are without reagents.

b/ Ferrous, total iron and manganese blanks should be diluted accordingly if samples are diluted.

ON-SITE MEASUREMENTS HACH AND CHEMets ANALYSES COLUMBUS AIR FORCE BASE, **A* /^ >

SAMPLE D	ter Measur	ements:							
0.1.1.00x = x	_	7 7 5		1		Temp			°C/°F (circle)
SAMPLE I.	D.	STAYMP	A]	_	pН			SU
						Conductivity			μS/cm
FILTERED	(circle)	(YES)	NO	:		ved Oxygen			mg/L ·
		· 1			Red	ox Potential	<u></u>		mV
COLOR / O	DOR: (LEN / 1	100 EN AT	TE	ittDi	20x4nB	5~ OD	ON	
HACH DR/	700 Measui	rements:							
					Time				
					Reagent	Time			
Analyte	Program	Range	Dilution		Mixed	Measured	Reading	g	Blank* ^{/,b/}
Ferrous	50.01.1	0 - 5.10 mg/L	5		1355	1358	2.65 n	ng/L	sample
								ng/L	sample
		[ng/L	sample
Nitrite	50.08.1	0 - 0.350 mg/L	1		1356	1406	0.0041		sample
		[ng/L	sample
Nitrate	50.05.1	0 - 30.0 mg/L	1		1403	1409		ng/L	sample
		[·				ng/L	sample
Total Iron	50.03.1	0 - 5.10 mg/L	5		1405	1408		ng/L	sample
							n	ng/L	sample
Sulfate	45.000	0 - 100 mg/L			1414	1420			DI or 50mg/L
		[DI or 50mg/L
Chloride	45.02.1	0 - 20.0 mg/L	t		1417	1419		ng/L	DI
M								ng/L	DI
Manganese	52.13.1	0 - 20.0 mg/L			1410	1472		ng/L	sample
								ng/L	sample
Sulfide	61.12.1	0 - 0.600 mg/L	1		1418	1423	0.034 n	ng/L	DΪ
		[ng/L	DI
		•							
HACH Titra		_							
Alkalinity		ze = 50		Dig	it Multiplie	x = 0, a	120 q	igits	
	Titrate wit	th 0.16 NH2	SO₄	-	-	, -,			
CHEMet Co	olor Tests:								
Ammonia						!	0.8	ppm	
CO ₂	(/ mL	A-1910 added for	r sulfide inter	rfere	ence)		<i>_</i> .	ppm	•
		Technician:	7-1						
	.*·	recinician.	.,				•		
4 Sulfate cul	fide and ch	lorida blanks con	tain racmaatis		oo ganta.				

& SAMPLE TURNED YELLOW AFTER REACTION ADDITION, NOT VIOLET

Sulfate, sulfide, and chloride blanks contain respective reagents;
Ferrous iron, total iron, nitrate, nitrite, and manganese blanks are without reagents.

by Ferrous, total iron and manganese blanks should be diluted accordingly if samples are diluted.

	SAMPLE DA	TE	11/12/96		Direct Met	er Measure	ements:	
			[· · · /			Temp		°C/°F (circle)
	SAMPLE I.I	Э.	STAYMPI	<u> </u>		pH on dustinition		SU
	FILTERED (circle)	(YES)	NO		onductivity ved Oxygen		μS/cm mg/L
141/		•			Redo	x Potential		mV
44	COLOR/OD	OR: (LEAN/SIL	Paul H	400001A	ARTAL.	-2026	•
	HACH DR/7				, (2. 00)			
					Time			
					Reagent	Time		
	Analyte	Program	Range	Dilution	Mixed	Measured	Reading	Blank* ^{I,bl}
	Ferrous	50.01.1	0 - 5.10 mg/L	10	1555	1558	25.1 mg/L	
				A5	1600	1603	2.55 mg/L	
	Nitrite	50.08.1	0 - 0.350 mg/L		1588	1608	(),000 mg/L	1 - 1
			Č				mg/L	1 - 1
	Nitrate	50.05.1	0 - 30.0 mg/L	(1607	1613	-0.2 mg/L	9 - 1
							mg/L	
	Total Iron	50.03.1	0 - 5.10 mg/L	a5	1611	1614	2.99 mg/L	•
	Sulfate	45.000	0 - 100 mg/L		14820	1626	mg/L 4:33 mg/L	
	Odnaw	45.000	0 - 100 mg/L		1906	1026		DI or 50mg/L DI or 50mg/L
	Chloride	45.02.1	0 - 20.0 mg/L	1	1622	1624	9,4 mg/L	4 - 1
M	1						mg/L	DI
Ċ,	Manganese	52.13.1	0 - 20.0 mg/L		1616	160821	1.9 mg/L	
	Sulfide	<i>(</i> 1 10 1	0 0 000 17		1/2//	14 \ 6.	mg/L	
	Sunide	61.12.1	0 - 0.600 mg/L		1624	1629	0-014 mg/L	DI DI
					<u> </u>		mg/L	<u> </u>
	HACH Titra		4					_
	•	-	ze = 100		Digit Multiplie	r =	168 digits	
		Titrate wit	h 1.6 NH	₂SO₄				
	CHEMet Col	lor Tests:				,		_
	Ammonia	. 6 .					>10 ppm	
	CO ₂	(\bigcirc mL	A-1910 added fo	r sulfide interf	erence)		製りの ppm	'
			Technician:	13	<u>ٽ</u>			
	[⋆] Sulfate, sulf	ide, and ch	loride blanks cor	tain respective	e reagents:			
	Ferrous iron, total iron, nitrate, nitrite, and manganese blanks are without reagents.							
N./	b/ Ferrous, tota	al iron and	manganese blank	s should be di	luted accordin	gly if sampl	es are diluted.	
\ \								ADDITTUN,
را يار	OIODE	1 104	on came	TITU	12 3-4	MINA	Tes	
X Ø	SAMP	ビ けん	D TURNE	D PA	はでとい	cow L	u/o An.	,
	100 ED	REA	GEND				,	

ON-SITE MEASUREMENTS HACH AND CHEMets ANALYSES COLUMBUS AIR FORCE BASE, *** ^/

SAMPLE DA	ATE .	1(/13/96		Direct Meter Measurements:				
CANDIE		125177			Temp			°C/°F (circle)
SAMPLE I.I	J.	STLYMP	DB-(5)	. A.	рH			SU
FILTERED (circle)	NEC	NO BY	Dissol	Conductivity			μS/cm
TILITERALD (cucie)	(IE)	NO ("	Vissoi Ded	ox Potential	l		mg/L
COLOR / OD	MR∙ .	- (Keu	ox Potential			mV
COLOR, OL	OIC.	COAN M	00000	FITTO	20ctn	7878	<i>~</i> .	•
HACH DR/7	00 Measu	rements:			(<i>X</i> ,	09	0/(
				Time				
				Reagent	Time			
Analyte	Program	Range	Dilution	Mixed	Measured	Readi	na	Blank*,b/
Ferrous	50.01.1		5	0751	0754	15 67	mg/L	sample
				- 	1077	7.05	mg/L	sample
						 	mg/L	sample
Nitrite	50.08.1	0 - 0.350 mg/L	1	08753	0504	O.002		sample
							mg/L	sample
Nitrate	50.05.1	0 - 30.0 mg/L		0803	0808	0.2	mg/L	sample
							mg/L	sample
Total Iron	50.03.1	0 - 5.10 mg/L	5	0804	0807	3.7/	mg/L	sample
				_			mg/L	sample
Sulfate	45.000	0 - 100 mg/L		0810	0817			DI or Omg/L
Chi	45.00.1							DLor 50mg/L
Chloride	45.02.1	0 - 20.0 mg/L		0813	0816	5.7	mg/L	DI
Mongonoso	52.13.1	0.000				// =	mg/L	DI
Manganese	32.13.1	0 - 20.0 mg/L		0806	0808	4.3	mg/L	sample
Sulfide	61 12 1	0 - 0.600 mg/L		07111	0010	(2 - 2 -	mg/L	sample
Sunde	01.12.1	0 - 0.000 mg/L		0814	0819	0.020		DI
		Į.			<u> </u>	<u> </u>	mg/L	DI
HACH Titra	tions: /							
Alkalinity	Sample Si	ze = 50ml	1	Digit Multiplie	- J	40	digits	1
,	Titrate wit	th 1.6 NH	so.	Digit ividiaphe	1 – 01	_,0_	ugus	
		(10) 1111	,504					
CHEMet Col	lor Tests:			•				
Ammonia						1	ppm	ı
CO ₂	(nmL	A-1910 added for	r sulfide inter	ference)		110	ppm	,
	U			,			PP···	
		Technician:	17-			-		
*/ a . s			_					

Sulfate, sulfide, and chloride blanks contain respective reagents;
Ferrous iron, total iron, nitrate, nitrite, and manganese blanks are without reagents.

b/ Ferrous, total iron and manganese blanks should be diluted accordingly if samples are diluted.

ON-SITE MEASUREMENTS HACH AND CHEMets ANALYSES COLUMBUS AIR FORCE BASE, **A M 9

SAMPLE DA	TE	11/11/9	6	Direct Me	ter Measur	ements:	_		
		, ,	<u> </u>		Temp		°C/°F (circle)		
SAMPLE I.D).	STAYM	PE		pH Conductivity		SU		
EIL TEDED (-:1-\	(SEE)	NO		µS/cm				
FILTERED (circie)	(YES)	NO		ved Oxygen		mg/L		
COI OD 10D	OD. (10 11	_	Red	ox Potential	L	mV		
COLOR / OD	OK: (EBAR/A	10)ENA	RE ITY	1200 AG	220N	200N		
HACH DR/7	00 Measur	rements:				-,(
				Time					
				Reagent	Time				
Analyte	Program	Range	Dilution	Mixed	Measured	Reading	Blank*/,b/		
Ferrous	50.01.1		I	1628	Moderated	mg/			
			10	1034	1037	2.96 mg/			
				1031	7 7 7	mg/			
Nitrite	50.08.1	0 - 0.350 mg/L	(1040	1052	0 003 mg/			
					1022	mg/			
Nitrate	50.05.1	0 - 30.0 mg/L	l	1048	1054	0.9 mg/			
		_				mg/			
Total Iron	50.03.1	0 - 5.10 mg/L	10	(050	1053	3,04 mg/			
						mg/			
Sulfate	45.000	0 - 100 mg/L		1102	1108		L DI or Somg/L		
						3.03 mg/			
Chloride	45.02.1	0 - 20.0 mg/L		1104	1106	7.4 mg/			
		İ				mg/	L DI		
Manganese	52.13.1	0 - 20.0 mg/L	1	1058	1100	2,9 mg/	L sample		
						mg/			
Sulfide	61.12.1	0 - 0.600 mg/L		1106	1111	O.03≥ mg/			
		Į.			<u> </u>	mg/	L DI		
HACH Titrations: Alkalinity Sample Size = 20 m \ Titrate with 1-6 N H ₂ SO ₄ Digit Multiplier = 5 13 digits									
CHEMet Col	or Tests:								
Ammonia	.0					8 ppi	n		
CO ₂	(() mL	A-1910 added for	r sulfide inter	ference)		100 ppr	n		
		Technician:	721						
	Technician: 3L								
2/ 20 20 20			_						

Sulfate, sulfide, and chloride blanks contain respective reagents;
Ferrous iron, total iron, nitrate, nitrite, and manganese blanks are without reagents.

b/ Ferrous, total iron and manganese blanks should be diluted accordingly if samples are diluted.

ON-SITE MEASUREMENTS HACH AND CHEMets ANALYSES COLUMBUS AIR FORCE BASE, VA

SAMPLE I.D. STA YAPE DAPL ATT Depth SU Conductivity pH SU SI Conductivity pS/cm mg/L mg/L mw COLOR / ODOR: / LEAN / MODER ATE HT O WOLAR WOL	SAMPLE D	LE DATE 11/11/96		6.	Direct Meter Measurements:					
STAMPLE I.D. STAMPLE DAPL ATT pH		_	_ ' / '		_		Temp			°C/°F (circle)
Filtered (circle)	SAMPLE I.	D.	STYAND	<u>E Dupi</u>	CA	7E				SU
Redox Potential										μS/cm
HACH DR/700 Measurements: Time Reagent Time Mixed Measured Reading Blank Mixed Measured Reading Sample	FILTERED	(circle)	YES	NO						
HACH DR/700 Measurements: Time Reagent Time Mixed Measured Reading Blank**/N Sample	COLOD (O	DOD: 417	- / .			Red	ox Potential			mV
HACH DR/700 Measurements: Time Reagent Time Reading Blank*\(^{1/2}\)	COLOR / O.	DOR: 7 [6	in / Mol	DENATE	= (TYDA	OCANBO	~ 00	000	
Analyte Program Range Dilution Mixed Measured Reading Blank** Sumple Sum										
Analyte Program Range Dilution Mixed Measured Reading Blank*\(^{1/2}\)						Time				
Ferrous						Reagent	Time			
Sufficience Substitute Su				Dilution		Mixed	Measured	Readi	ng	Blank*/,b/
Nitrite 50.08.1 0 - 0.350 mg/L	Ferrous	50.01.1	0 - 5.10 mg/L							
Nitrite 50.08.1 0 - 0.350 mg/L				10		1034	103>	2.80		•
Nitrate 50.08.1 0 - 0.350 mg/L									mg/L	
Nitrate 50.05.1 0 - 30.0 mg/L	Nitrite	50.08.1	0 - 0.350 mg/L						mg/L	
Total Iron 50.03.1 0 - 5.10 mg/L	NT's	50.05.1			\sqcup		1057	0.004	mg/L	sample
Total Iron 50.03.1 0 - 5.10 mg/L	Nitrate	50.05.1	0 - 30.0 mg/L		<u> </u>	loug	1054	0.7	mg/L	sample
Sulfate 45.000 0 - 100 mg/L	Total Ison	60.02.1	0 5 10 7	/ 5					mg/L	sample
Sulfate 45.000 0 - 100 mg/L	rotal fron	30.03.1	U - 3.10 mg/L	70	\vdash	1050	1053			-
Chloride 45.02.1 0 - 20.0 mg/L	Sulfate	45 000	0 100 7		\vdash	1103				
Manganese 52.13.1 0 - 20.0 mg/L 10 - 4 10 - 6 7.	Juliate	43.000	0 - 100 mg/L		-	110a	1107	3.95	mg/L	DI of 50phg/L
Manganese 52.13.1 0 - 20.0 mg/L (Chloride	45 02 1	0-200 mg/f		\vdash	115.6		5.03		
Manganese 52.13.1 0 - 20.0 mg/L (Cinoriac	73.02.1	0 - 20.0 mg/L		╌	1109	1106			
Sulfide 61.12.1 0 - 0.600 mg/L (106 1111 0.03 mg/L DI	Manganese	52.13.1	0 - 20 0 mg/I			1554	1100	_		
Sulfide 61.12.1 0-0.600 mg/L HACH Titrations: Alkalinity Sample Size = 20 m Digit Multiplier = 0.5 123 digits Titrate with 0.16 N H ₂ SO ₄ CHEMet Color Tests: Ammonia CO ₂ (6 mL A-1910 added for sulfide interference) 1/0 ppm		<i>5</i> –1.511	0 20.0 Mg/L		\vdash	1028	1100			_
HACH Titrations: Alkalinity Sample Size = 20 m Digit Multiplier = 0.5 123 digits Titrate with 0.16 N H ₂ SO ₄ CHEMet Color Tests: Ammonia CO ₂ (6 mL A-1910 added for sulfide interference) Response 1/0 ppm	Sulfide	61.12.1	0 - 0.600 mg/L	((106	11.71			-
HACH Titrations: Alkalinity Sample Size = 20 m Digit Multiplier = 0.5 123 digits Titrate with 0.16 N H ₂ SO ₄ CHEMet Color Tests: Ammonia CO ₂ (6 mL A-1910 added for sulfide interference) 2 ppm 1/0 ppm				`		1.00				
Alkalinity Sample Size = 20 m Digit Multiplier = 0.5 123 digits Titrate with 0.16 N H ₂ SO ₄ CHEMet Color Tests: Ammonia CO ₂ (6 mL A-1910 added for sulfide interference) 2 ppm 1/0 ppm	II A CHI M'A		L		LL				mg/L	DI
Titrate with 0.16 N H ₂ SO ₄ CHEMet Color Tests: Ammonia CO ₂ (6 mL A-1910 added for sulfide interference) 2 ppm 1/0 ppm		itions:	. 20 4	1						
CHEMet Color Tests: Ammonia CO ₂ (6 mL A-1910 added for sulfide interference) 2 ppm 1/6 ppm	Aikaminty	Sample Si	$ze = \lambda - \nu \gamma$	1	Digi	t Multiplie	T = 0.5	123	digits	
Ammonia CO ₂ (6 mL A-1910 added for sulfide interference) 8 ppm 1/0 ppm		i itrate wit	л <i>U.1</i> 6 N H ₂	SO₄						
Ammonia CO ₂ (6 mL A-1910 added for sulfide interference) 8 ppm 1/0 ppm										
Ammonia CO ₂ (6 mL A-1910 added for sulfide interference) 8 ppm 1/0 ppm	CHEMet Co	lor Tests:								
CO ₂ (6 mL A-1910 added for sulfide interference) 1/5 ppm							1	6		
Technician: 13 C	CO ₂	(6 mL	A-1910 added for	sulfide inter	rferei	nce)		1/0		
			Technician:	BC						

Sulfate, sulfide, and chloride blanks contain respective reagents; Ferrous iron, total iron, nitrate, nitrite, and manganese blanks are without reagents.

b/ Ferrous, total iron and manganese blanks should be diluted accordingly if samples are diluted.

ON-SITE MEASUREMENTS HACH AND CHEMets ANALYSES COLUMBUS AIR FORCE BASE, WAY MS

SAMPLE DATE [\\]] \\ [\]			Direct Meter Measurements:					
	_			1	Temp		°C/°F (circle)	
SAMPLE I	.D.	STAY MP	F		pH		SU	
EII TEDED	(ainala)	650	NO	D :	Conductivity		μS/cm	
FILTERED	(circie)	(YES)	NO		olved Oxygen		mg/L	
COLOR/O	ראס			Re	dox Potential		JmV	
COLOR / O	DOK. ((EAN WE	AIC 114	Drocky	130N C	None		
HACH DR/	700 Measu	rements:				50 -		
	70011100050			Time				
				Reagent	Time			
Analyte	Program	Range	Dilution	Mixed	Measured	Reading	Blank*/,b/	
Ferrous		0 - 5.10 mg/L	5	0900		2,60 mg/L	T	
				1000	100	mg/L	•	
						mg/L	4. *	
Nitrite	50.08.1	0 - 0.350 mg/L		0902	19914	(2.60 > mg/L	•	
						mg/L	1 -	
Nitrate	50.05.1	0 - 30.0 mg/L		0911	10917	O. 8 mg/L	_	
						mg/L	sample	
Total Iron	50.03.1	0 - 5.10 mg/L	5	0913	0916	2.53 mg/L	sample	
						mg/L		
Sulfate	45.000	0 - 100 mg/L		0179	0927		DI or Ong/L	
Chlorida	45.00.1	0.000 7			-		Of 50mg/L	
Chloride	45.02.1	0 - 20.0 mg/L		0924	0926	5. > mg/L	• :	
Manganese	52.13.1	0.200		0.6	1	mg/L		
Manganese	32.13.1	0 - 20.0 mg/L		0917	0919	2.8 mg/L	4 - 1	
Sulfide	61 12 1	0 - 0.600 mg/L	1	6626	- 093-	mg/L	1 -	
Junide	01.12.1	0 - 0.000 mg/L		6935	0930		4	
	•			<u> </u>		mg/L	DI	
HACH Titr	ations:							
Alkalinity		$ze = \lambda O$		Digit Multipl	ier = C	4 digits	1	
y	Titrate wi	th L NH		2.git Mulupi	IGI - 3	ugis]	
		(-0						
CHEMet Co	olor Tests:							
Ammonia						0.6 ppm]	
CO ₂	(OmL)	A-1910 added fo	r sulfide inter	rference)		130 ppm		
			7	. 1				
		Technician:	0	BL .		•		
¥ Sulfate cul	lfide and ch	loride blanks con	tain ramaatis	10 F00 Comto				

Sulfate, sulfide, and chloride blanks contain respective reagents;
Ferrous iron, total iron, nitrate, nitrite, and manganese blanks are without reagents.

by Ferrous, total iron and manganese blanks should be diluted accordingly if samples are diluted.

ON-SITE MEASUREMENTS HACH AND CHEMEIS ANALYSES COLUMBUS AIR FORCE BASE, WA MS

SAMPLE DATE [[/[/96			6	Direct Meter Measurements:					
SAMPLE I	D	572411	2/2	[Temp		°C/°F (circle)		
Ordiva DE 1.	.D.	L 3/47/1		ا (pΗ		SU		
FILTERED	(circle)	(VES)	NO		Conductivity ved Oxygen		μS/cm		
	(02010),_		110		ox Potential		mg/L		
COLOR / O	DOR:			Radi	OX I OCHUA	·	 mV		
HACH DR/	700 Measur	rements:							
				Time					
				Reagent	Time				
Analyte	Program	Range	Dilution	Mixed	Measured	Reading	Blank*'.b/		
Ferrous	50.01.1	0 - 5.10 mg/L	1	1533	1536	(2.12 mg/			
						mg/			
>** . •.						mg/			
Nitrite	50.08.1	0 - 0.350 mg/L	(1535	1545	0.002 mg/	L sample		
Nitrate	50.05.1	0 200 7				mg/	L sample		
Nittate	50.05.1	0 - 30.0 mg/L		1540	1546	2.2 mg/	_		
Total Iron	50.03.1	0 - 5.10 mg/L		1	(. (mg/			
Total Hon	30.03.1	0-3.10 mg/L		1543	1546	().12 mg/			
Sulfate	45.000	0 - 100 mg/L	-	1549	1554	mg/			
	131000	· IOOMg2		/>٩-١	1227	-0 3 / mg/	LDI of SOmg/L		
Chloride	45.02.1	0 - 20.0 mg/L		1551	1553		LDI or 50mg/L		
				1321	123 2	나, 6 mg/. mg/			
Manganese	52.13.1	0 - 20.0 mg/L	(1547	1550				
						mg/			
Sulfide	61.12.1	0 - 0.600 mg/L		1552	1557	6.010 mg/	L DI		
		[mg/			
HACH Titrations: Alkalinity Sample Size = 100 ~ Digit Multiplier = 0.1 25 digits Titrate with 0.16 N H ₂ SO ₄									
CHEMet Co	lor Tests								
Ammonia	noi Tww.				1		٦		
CO ₂	(OmL	A-1910 added for	sulfide inter	ference)		<u> </u>	7		
		Technician:	36						

Sulfate, sulfide, and chloride blanks contain respective reagents; Ferrous iron, total iron, nitrate, nitrite, and manganese blanks are without reagents.

b/ Ferrous, total iron and manganese blanks should be diluted accordingly if samples are diluted.

ON-SITE MEASUREMENTS HACH AND CHEMets ANALYSES COLUMBUS AIR FORCE BASE, VA MS

SAMPLE D	ATE	11/19/9	6	Direct Me	rect Meter Measurements:			
CANONE	_	·			Temp		°C/°F (circle)	
SAMPLE I	.D.	STA 4MP	HS		pH		su	
FILTERED	(airala)	(YES)	NO		Conductivity		µS/cm	
	-				ved Oxygen		mg/L	
COLOR (O	DOR:	hop ENATE	- 11c	$\Omega \Lambda \Omega C \Lambda \Lambda$	ox Potential	L	_]mV	
COLOR, O	DOM.	WID C (77 10	- (DICOCAAC	BUNC	DOOR		
HACH DR	700 Measu	rements:						
				Time				
				Reagent	Time			
Analyte	Program	Range	Dilution	Mixed	Measured	Reading	Blank*',b/	
Ferrous	50.01.1	0 - 5.10 mg/L	10	1017	1020	2.55 mg/		
						mg/		
						mg/	L sample	
Nitrite	50.08.1	0 - 0.350 mg/L		1014	1024	0.003mg/	L sample	
Numer	50.05.1					mg/	L sample	
Nitrate	50.05.1	0 - 30.0 mg/L		1020	1026	0. 7- mg/	_ •	
Total Iron	50.03.1	0 - 5.10 mg/L		(0)	103.5	mg/	-	
Total Holl	70.03.1	0 - 3.10 mg/L	10	(099	1025	2.60 mg/		
Sulfate	45.000	0 - 100 mg/L		102	1027	mg/	L sample	
	45.000	0 - 100 mg.L		1032	1037	1.41 mg/	L DI or Omg/L	
Chloride	45.02.1	0 - 20.0 mg/L	1	1036	1038	5.4 mg/	L/DI or 50mg/L L DI	
				1000	1038	mg/		
Manganese	52.13.1	0 - 20.0 mg/L	1	1029	1031	2.9 mg/	_	
						mg/		
Sulfide	61.12.1	0 - 0.600 mg/L	(1039	1044	0.022 mg/	-	
		Į.	`			mg/	L DI	
HACH Titra Alkalinity	ations: Sample Si Titrate wi	π= λ	SY digit	s				
CHEMet Co	olor Tests:				ı			
CO ₂	(O mL	A-1910 added for	sulfide inter	ference)		2 ppr 160 ppr	7	
		Technician:	3-					
√ Culfota mil	fide and at	lorido blanka son	•aim					

Sulfate, sulfide, and chloride blanks contain respective reagents;
Ferrous iron, total iron, nitrate, nitrite, and manganese blanks are without reagents.

^b/ Ferrous, total iron and manganese blanks should be diluted accordingly if samples are diluted.

ON-SITE MEASUREMENTS HACH AND CHEMets ANALYSES COLUMBUS AIR FORCE BASE, **4 4. 9

SAMPLE DA	ME	111/11/26	Direct Meter Measurements:							
SAMPLE I.I). 5T	HYMPI]	Temp pH			°C/°F (circle)		
	/ /			•	Conductivity			μS/cm		
FILTERED (circle)	(YE)	NO		lved Oxygen			mg/L		
					lox Potential			mV		
COLOR / OD	OR: C	LEAN / NO	20001] 4		
HACH DR/7										
				Time						
				Reagent	Time					
Analyte	Program		Dilution	Mixed	Measured	Read	ing	Blank ^{√,b/}		
Ferrous	50.01.1	0 - 5.10 mg/L		1033	1036	0.10	mg/L	sample		
							mg/L	•		
***. *.							mg/L	sample		
Nitrite	50.08.1	0 - 0.350 mg/L	ſ	1037	1047	0.00	³mg/L	sample		
.							mg/L	sample		
Nitrate	50.05.1	0 - 30.0 mg/L	(1043	1049	1.9	mg/L	sample		
m . 1 .							mg/L	sample		
Total Iron	50.03.1	0 - 5.10 mg/L	(-	1045	1048	0.13	mg/L	sample		
0.10		}					mg/L	sample		
Sulfate	45.000	0 - 100 mg/L		1100	1106	12-27	mg/L	DI of 50mg/L		
<i>α</i>	45.00.4					0.92	mg/L	DI or 50mg/L		
Chloride	45.02.1	0 - 20.0 mg/L		1103	1106	6.5	mg/L) DI		
N C	50.10.1						mg/L	DI		
Manganese	52.13.1	0 - 20.0 mg/L		1053	1055	0.0	mg/L	sample		
C1E.4.	<i>(</i> 1.10.1						mg/L	sample		
Sulfide	61.12.1	0 - 0.600 mg/L	-	1105	1110	0.021	mg/L	DI		
		L					mg/L	DI		
Alkalinity	HACH Titrations:									
CHEMet Col	or Tests:									
Ammonia					ſ	0	ppm			
CO ₂	(OmL	A-1910 added for	sulfide inter	ference)	Ì	70	ppm			
		Technician:	· 3	,(
^{*/} Sulfate, sulfi	de, and ch	loride blanks com	tain recnectiv	A reagants						

Sulfate, sulfide, and chloride blanks contain respective reagents;
Ferrous iron, total iron, nitrate, nitrite, and manganese blanks are without reagents.

^{b/} Ferrous, total iron and manganese blanks should be diluted accordingly if samples are diluted.

ON-SITE MEASUREMENTS HACH AND CHEMets ANALYSES COLUMBUS AIR FORCE BASE, X4 M/9

SAMPLE D	ATE	11/12/96		Direct Meter Measurements:							
		, ,			Temp		°C/°F (circle)				
SAMPLE I.	D.	STAYMPI	DUPLICATI		pН		su				
EII TEDED	(ainala)	VEC.	NO		Conductivity		μS/cm				
FILTERED	(circle)	ES	NO		ved Oxygen ox Potential		mg/L				
COLOR / OI	DOR: C	LEAR /	10000		ox Polential	<u> </u>	JmV				
HACH DR/	700 Measui	ements:									
				Time							
				Reagent	Time						
Analyte	Program	Range	Dilution	Mixed	Measured	Reading	Blank* ^{/,b/}				
Ferrous	50.01.1	0 - 5.10 mg/L		(033	1036	0.10 mg/L	sample				
						mg/L	4 1				
Nitrite	60 00 1	0 0 250 7				mg/L	3 - 1				
Nimte	50.08.1	0 - 0.350 mg/L		037	1047	1.00 \ mg/L	• • •				
Nitrate	50.05.1	0 - 30.0 mg/L		1043	1049	mg/L	1 - 1				
Mate	50.05.1	0 - 30.0 mg/L		10+3	7047	mg/L	sample sample				
Total Iron	50.03.1	0 - 5.10 mg/L		1045	1048	O.13 mg/L	sample				
				1,0	, x	mg/L	sample				
Sulfate	45.000	0 - 100 mg/L	ı	1100	1106		DI of 30mg/L				
							ODor 50mg/L				
Chloride	45.02.1	0 - 20.0 mg/L		1103	1106	6.6 mg/L	DI				
		ļ				mg/L	DI				
Manganese	52.13.1	0 - 20.0 mg/L		1055	1023	O. 1 mg/L	1 - 1				
C. 16.1.	(1.10.1	0 0 600 7				mg/L	sample				
Sulfide	61.12.1	0 - 0.600 mg/L	1105	11505	1110	り.030 mg/L	•				
		Į				mg/L	DI				
HACH Titra Alkalinity	ations: Sample Si Titrate wi	19 digits]								
CHEMet Co	olor Tests:										
Ammonia						O ppm	j				
CO ₂	(O mL	A-1910 added for	r sulfide inter	rference)		70 ppm	ļ.				
		Technician:	3								
∜ Sulfata au	V Sulfate guilfide and ablaside blaste access										

Sulfate, sulfide, and chloride blanks contain respective reagents;
Ferrous iron, total iron, nitrate, nitrite, and manganese blanks are without reagents.

by Ferrous, total iron and manganese blanks should be diluted accordingly if samples are diluted.

ON-SITE MEASUREMENTS HACH AND CHEMets ANALYSES COLUMBUS AIR FORCE BASE, MISSISSIPPI

SAMPLE DA	TE	11/18/9	6	Direct Meter Measurements:					
				_	Temp			°C/°F (circle)	
SAMPLE I.I	Э.	STA4 - 1	NPJ		pН			SU	
		6		C	onductivity			μS/cm	
FILTERED (circle)	(YÈS)	NO	Dissolv	ved Oxygen			mg/L	
				Rede	ox Potential			mV	
COLOR / OD	OR: (CLEAR (,	40 OD	20		,		•	
			_	_					
HACH DR/7	00 Measur	ements:							
				Time					
				Reagent	Time				
Analyte	Program	Range	Dilution	Mixed	Measured	Readi	ing	Blank ^{a/,b/}	
Ferrous	50.01.1	0 - 5.10 mg/L		060)	1013	0.06	mg/L	sample	
							mg/L	sample	
		·					mg/L	sample	
Nitrite	50.08.1	0 - 0.350 mg/L	1	1022	103a	0.002	mg/L	sample	
		į					mg/L	sample	
Nitrate	50.05.1	0 - 30.0 mg/L	(1018	1034	1.3	mg/L	sample	
			•				mg/L	sample	
Total Iron	50.03.1	0 - 5.10 mg/L	. ((030	1033	0.07	· mg/L	sample	
		:					mg/L	sample	
Sulfate	45.000	0 - 100 mg/L	1	1037	1042	0.85	mg/L	DI on Song/L	
	•					0.84	mg/L(DI or 50mg/L	
Manganese	52.13.1	0 - 20.0 mg/L	(1034	1036	0.0	mg/L	sample	
	•						mg/L	sample	
Sulfide	61.12.1	0 - 0.600 mg/L	(1040	1045	0.016	mg/L	DI	
chlorid		_		<u> </u>		<u> </u>	mg/L	DI	
	-			1039	1041	5.0			
HACH Titra	itions:	20		N 4				•	
Alkalinity	Sample Siz	ze = 20		DA	4=0,5	25	digits	1	
-0:1		•						7	
Chloride	Sample St	ze =				<u> </u>	digits	4	
CHIENC									
CHEMet Co	lor Tests:	•						1	
Ammonia	0.		1.77				ppm	1	
CO ₂	(mL	A-1910 added fo	r sulfide inte	rterence)		70	ppm		
		m1	-	3C					
		Technician:	- 1						

Sulfate and sulfide blanks contain respective reagents;
 Ferrous iron, total iron, nitrate, nitrite, and manganese blanks are without reagents.
 Ferrous, total iron and manganese blanks should be diluted accordingly if samples are diluted.

ON-SITE MEASUREMENTS HACH AND CHEMets ANALYSES COLUMBUS AIR FORCE BASE, WA MY

SAMPLE D	ATE	11/10/9	6	Direct Meter Measurements:					
	_			•	Temp		°C/°F (circle)		
SAMPLE I.	D.	STAYM	P1(5		pН]su		
	,				Conductivity		μS/cm		
FILTERED	(circle)	(YES)	NO		ved Oxygen		mg/L		
GOT OF 101				Red	ox Potential]mV		
COLOR / OI	JOR: 54	& CLEAN	NOO	DON.					
HACH DR/	700 Measu	rements.							
inicii bio	, oo madasa	cincuis.		Time					
				Reagent	Time				
Analyte	Program	Range	Dilution	Mixed	Measured	Reading	D11-4/b/		
Ferrous		0 - 5.10 mg/L	Dilation	1529	1/532	0.07 mg/L	Blank* ^{/,b/}		
	0000	0 3.10 mg/L		100	1332	mg/L			
						mg/L			
Nitrite	50.08.1	0 - 0.350 mg/L	1	1530	1540	0.00≥ mg/L			
						mg/L	-		
Nitrate	50.05.1	0 - 30.0 mg/L	1	1536	1542	O. 7-mg/L	4 *		
						mg/L	• •		
Total Iron	50.03.1	0 - 5.10 mg/L		1539	1542	0.10 mg/L	• •		
					•	mg/L	•		
Sulfate	45.000	0 - 100 mg/L	1	1946	1551		DI or Omg/L		
		_				0.65 mg/L	DI or 50mg/L		
Chloride	45.02.1	0 - 20.0 mg/L		14548	1550	ス. 7 mg/L	DI		
	60.10.1					mg/L	DI		
Manganese	52.13.1	0 - 20.0 mg/L	((542	1544	(2) . O mg/L	sample		
Sulfide	61 10 1	0 0 600 7		-		mg/L	sample		
Sunide	01.12.1	0 - 0.600 mg/L		1549	i554	O.OIAmg/L	DI		
		l	1		l	mg/L	DI		
HACH Titra Alkalinity	Sample Si	ze= 100 M th 1.6 NH		Digit Multiplie	•	128 digits			
CHEMet Co	lor Tests								
Ammonia	101 1615:				i		1		
CO ₂	(A-1910 added for	r gulfida into-	ference)		O ppm			
	· O iii	71-1710 added 10	i sumue milei	referice)		70 ppm	ļ		
		Technician:	30						

Sulfate, sulfide, and chloride blanks contain respective reagents;
 Ferrous iron, total iron, nitrate, nitrite, and manganese blanks are without reagents.
 Ferrous, total iron and manganese blanks should be diluted accordingly if samples are diluted.

ON-SITE MEASUREMENTS HACH AND CHEMets ANALYSES COLUMBUS AIR FORCE BASE, VA MG

SAMPLE DA	TE	11/11/96		Direct Meter Measurements:				
					Temp			°C/°F (circle)
SAMPLE I.D).	STAY MPI		_	pН			SU
		(T)	N O	Conductivity				μS/cm
FILTERED (circie)	(YES)	NO		Dissolved Oxygen Redox Potential			mg/L
COLOR/OD	OR: ((FAR / NE	0000	- Reu	ox Potential	<u> </u>		mV
HACH DR/7	00 Measur	ements:						
				Time				
				Reagent	Time			
Analyte	Program	Range	Dilution	Mixed	Measured	Readi	ing	Blank*/.b/
Ferrous	50.01.1	0 - 5.10 mg/L		0841	0844	0.12	mg/L	sample
							mg/L	sample
							mg/L	sample
Nitrite	50.08.1	0 - 0.350 mg/L		0843	0853	0-007		sample
Nieman	£0.0£ 1	0. 200				ļ, <u> </u>	mg/L	sample
Nitrate	50.05.1	0 - 30.0 mg/L	/	0849	0855	1. +	mg/L	sample
Total Iron	50.03.1	0 - 5.10 mg/L		06.57	00.50	0 1/1	mg/L	sample
Total Hon	30.03.1	0 - 5.10 mg/L		0851	0854	0.14	mg/L mg/L	sample
Sulfate	45.000	0 - 100 mg/L	,	0858	0904	-1.L3		sample DI or 60mg/L
Junua	13.000	0 100 mgL		-08>8	0 10 1	0.86	mo/L	DI or 50mg/L
Chloride	45.02.1	0 - 20.0 mg/L		0901	0903	3.0	mg/L	DI
							mg/L	DI
Manganese	52.13.1	0 - 20.0 mg/L		0856	0858	0.1	mg/L	sample
							mg/L	sample
Sulfide	61.12.1	0 - 0.600 mg/L	1	0902	0907	0.011	mg/L	DI
							mg/L	DI
HACH Titrations: Alkalinity Sample Size = 50m \ Titrate with 0. 16 N H ₂ SO ₄ Digit Multiplier = 0, 2 digits								
CHEMet Col	or Tests:							
Ammonia			0	ppm				
CO ₂	(OmL	A-1910 added fo	r sulfide inter	ference)		30	ppm	
			. כיל					-
		Technician:	BC			•		
		loride blanks cor		re reagents;				

Ferrous iron, total iron, nitrate, nitrite, and manganese blanks are without reagents.

by Ferrous, total iron and manganese blanks should be diluted accordingly if samples are diluted.

ON-SITE MEASUREMENTS HACH AND CHEMets ANALYSES COLUMBUS AIR FORCE BASE, *** M/7

SAMPLE DA	SAMPLE DATE 1/18/96 Direct Meter Measurements:										
C 4 1 (D) D 1 1	_	(5)		W76 12 EDLA	Temp		°C/°F (circle)				
SAMPLE I.I	D.	15724 :	MPC (_ su				
	·-•1->	-60	N O		Conductivity		_µS/cm				
FILTERED ((E)	NO		ved Oxygen		_mg/L				
COLOD (OF	NOD: /	16.1		Red	ox Potential	L	_ mV				
COLOR / OI	OR: (CLEAN/ S	7110NC	9000L							
HACH DR/7											
				Time							
				Reagent	Time						
Analyte	Program	Range	Dilution	Mixed	Measured	Reading	Blank*',b/				
Ferrous	50.01.1	0 - 5.10 mg/L	5	10929	0932	11.73 mg/					
						mg/l	- , -				
						mg/l	 				
Nitrite	50.08.1	0 - 0.350 mg/L	1	0931	0945	0.002 mg/l					
						mg/l					
Nitrate	50.05.1	0 - 30.0 mg/L		6938	0944	0.5 mg/1					
		į				mg/l					
Total Iron	50.03.1	0 - 5.10 mg/L	5	0940	0943	1,72 mg/1	sample				
						mg/l	sample				
Sulfate	45.000	0 - 100 mg/L		0953	0958		DI or 50mg/L				
~						1.69 mg/1	DI or 50mg/L				
Chloride	45.02.1	0 - 20.0 mg/L	(0955	0957	5.0 mg/l	_ DI				
16.	50 10 1				26	mg/I	⊒ DI				
Manganese	52.13.1	0 - 20.0 mg/L		0947	0949	2.0 mg/1	1				
C16.4.	(1.10.1	0.000			10 - 1	mg/I					
Sulfide	61.12.1	0 - 0.600 mg/L		0956	1001	0.009 mg/I	¬ .				
		į	1		<u> </u>	mg/I	_ DI				
HACH Titra Alkalinity	tions: Sample Si Titrate wit	er = 5	7 digit	s							
CHEMet Co	lor Tests:										
Ammonia						0.6 ppn	7				
CO ₂	(0 mL	A-1910 added for	r sulfide inter	ference)		160 ppn	7				
		Technician:	BL								
		-				•					
N C-15											

Sulfate, sulfide, and chloride blanks contain respective reagents;
Ferrous iron, total iron, nitrate, nitrite, and manganese blanks are without reagents.

by Ferrous, total iron and manganese blanks should be diluted accordingly if samples are diluted.

ON-SITE MEASUREMENTS HACH AND CHEMets ANALYSES COLUMBUS AIR FORCE BASE, MISSISSIPPI

SAMPLE DA	AIE.	11118176	2	Direct	vieter ivieas	urements:		•
				_	Temp			°C/°F (circle)
SAMPLE I.	D.	STAY 11	PL DUPL	CATE	pН			SU
				(Conductivity			μS/cm
FILTERED ((cirçle)	(ES)	NO	Dissol	ved Oxygen			mg/L
		,		Red	ox Potential			mV
COLOR / OI	DOR:	(EAN) S	Thora	0000	1			,
HACH DR/	700 Measur	ements:						
				Time				
				Reagent	Time			
Analyte	Program	Range	Dilution	Mixed	Measured	Readi	ng	Blank ^{a/,b/}
Ferrous	50.01.1	0 - 5.10 mg/L	5	6929	0932	1.53	mg/L	sample
							mg/L	sample
							mg/L	sample
Nitrite	50.08.1	0 - 0.350 mg/L	1	0931	0942	0002	mg/L	sample
							mg/L	sample
Nitrate	50.05.1	0 - 30.0 mg/L	(0938	0944.	0.5	mg/L	sample
							mg/L	sample
Total Iron	50.03.1	0 - 5.10 mg/L	ر ح	0940	0943	1.70	mg/L	sample
						1.44	mg/L	sample
Sulfate	45.000	0 - 100 mg/L		0953	0628	डेन्से		DI or 50mg/L
					ļ	0.60	mg/L	DI or 50mg/L
Manganese	52.13.1	0 - 20.0 mg/L	1	0947	0949	7. d	mg/L	sample
					<u>ļ.</u>		mg/L	sample
Sulfide	61.12.1.	0 - 0.600 mg/L	(0956	1001	0.009		DI
011	1_			<u> </u>	<u> </u>	<u> </u>	mg/L	DI
Chloric			1	0955	0957	5. d		
HACH Titr		100		7 14	_ 1			7
Alkalinity	Sample Siz	ze = 100 1.6 N		DM	= 1	42	digits]
Chloride	Cample Ci							
Chioride	Sample Si	78 = 		····			digits	1
CHEMet Co	Nor Toster							
Ammonia) 101 1 E2(2;	•			-	10 X	<u> </u>	1
CO ₂	(1) m ^I	A-1910 added fo	r culfida inta	rforencel		<u> </u>	ppm	1
CO ₂	(LZ_IIIL	A-1910 auucu 10	a suttine litte	a referice)		120	ppm	
		Technician:	`	BL				
						-		

Ferrous iron, total iron, nitrate, nitrite, and manganese blanks are without reagents.

Sulfate and sulfide blanks contain respective reagents;

Ferrous, total iron and manganese blanks should be diluted accordingly if samples are diluted.

ON-SITE MEASUREMENTS HACH AND CHEMets ANALYSES COLUMBUS AIR FORCE BASE, **A ^^5

SAMPLE DA	TE	11/16/91		Direct Meter Measurements:					
					Temp		°C/°F (circle)		
SAMPLE I.I).	3124 M	M		pН]su		
					Conductivity		μS/cm		
FILTERED (circle)	(YES)	NO		lved Oxygen		mg/L		
				Red	lox Potential]mV		
COLOR/OD	OR: ((EAN/STM	WNG 17	MONOCA	MBON				
HACH DR/7				opon			٠		
nach ba/	VV MEASUI	ements.		Time	•				
				Reagent	Time				
Analyte	Program	Range	Dilution	Mixed	Measured	Reading	Blank ^{a/,b/}		
Ferrous		0 - 5.10 mg/L	5	10754	0757	3.11 mg/L	~~~~		
	50.01.1	0 50 g =				mg/L			
		Ì				mg/L	7		
Nitrite	50.08.1	0 - 0.350 mg/L	(0756	0807	0.003mg/L	sample		
		_ [mg/L	sample		
Nitrate	50.05.1	0 - 30.0 mg/L	1	0804	0810	の、4 mg/L	sample		
						mg/L	sample		
Total Iron	50.03.1	0 - 5.10 mg/L	- 5	0805	0809	3.07 mg/L			
						2.04 mg/L			
Sulfate	45.000	0 - 100 mg/L		0817	0823	mg/L			
				0130	1.023	6 1 1 -	Dior 50mg/L		
Chloride	45.02.1	0 - 20.0 mg/L		0870	0859	6. 4 mg/L	- [
M	50 12 1	0 200 7		0814	0817	mg/L	4		
Manganese	32.13.1	0 - 20.0 mg/L		108.4	1081 6	mg/L	_		
Sulfide	61 12 1	0 - 0.600 mg/L		० हरे।	0827	0.019 mg/L	7		
Sunide	01.12.1	0 - 0.000 mg/L		1000	1000	mg/L	7		
				<u> </u>			1		
HACH Titra	ations:	~ - (
Alkalinity	Sample Si	ize = 20m th 1.6 NH		Digit Multipl	ier = _5	// digits	3		
	Titrate wi	th 1.4 NH	SO₄				-		
			•						
						•			
CHEMet Co	olor Tests:						_		
Ammonia						/ ppm	1		
CO ₂	(O mL	A-1910 added fo	r sulfide inte	erference)		140 ppm	r		
			71						
		Technician:	<u> 3</u> C			_			

Sulfate, sulfide, and chloride blanks contain respective reagents;
Ferrous iron, total iron, nitrate, nitrite, and manganese blanks are without reagents.

by Ferrous, total iron and manganese blanks should be diluted accordingly if samples are diluted.

APPENDIX A-4 SLUG TEST RESULTS

APPENDIX B SOIL AND GROUNDWATER ANALYTICAL RESULTS

CASE NARRATIVE

Evergreen Analytical Laboratory (EAL) Projects: 96-3990, 96-3996, 96-4004, 96-4020, 96-4033, 96-4047, 96-4058, 96-4064 and 96-4081

Parsons Engineering Science, Inc. (PES) Project:

Columbus AFB 729691.32010

Sample Receipt

Soil and groundwater samples were received between November 9 and 19, 1996 from Columbus AFB for analysis under Subcontract 729691.00000. Refer to the check-in portion of the EAL Chain of Custody for specific information regarding the condition of samples upon receipt. Refer to the EAL Work Order Summary for log-in information and cross-reference of EAL and PES sample identifications.

Data Package

All data are reported in one comprehensive package that is segregated based upon EAL project number. Each EAL project represents a group of samples received on a given day. The EAL Work Order Summary lists the samples represented in each EAL project.

A separate invoice for each EAL project number will be generated.

Quality assurance data may overlap from one EAL project to another. All required matrix spike/matrix spike duplicate (MS/MSD) and laboratory control samples (LCS) were analyzed when required and also are included in the data package.

BTEX, Method SW8020/Total Volatile Petroleum Hydrocarbons TVPH, Method SW8015M All samples were analyzed for BTEX/TVPH within holding time.

Several samples were analyzed at dilutions ranging from a dilution factor of 5 to 200 due to elevated levels of contaminants. The reporting limits have been raised accordingly.

Case Narrative
Parsons Engineering Science, Inc.
Page Three

Total Organic Carbon in Soil

Total Organic Carbon (TOC) in soils was analyzed by Huffman Laboratories of Golden Colorado. TOC was determined by analyzing for total carbon (TC) and inorganic (carbonate) carbon (CC), then calculating the difference as TOC. The reports from Huffman are included.

Disk Deliverables

The disk deliverables are included with the hard copy data package. MS/MSD and LCS results are not included on the disk. Please note that blank spaces in the laboratory detection limit and/or practical quantitation limit (PQL) column indicate that there is no detection limit or PQL for that analyte.

Reporting limits have been adjusted to reflect percent moisture in all soil samples or increases due to dilutions.

A hard copy of each spreadsheet from the diskette is included. The name for each spreadsheet is located in the top left corner on the first page of each printout.

Patricia A. McClellan, Program Manager 12/6/96

WORK ORDER Summary

Report To: Dave Moutoux

Parsons Engineering Science 1700 Broadway Suite 900 Denver, CO 80290

15-Nov-96

Client Project ID: 729691.32010

Phone: (303) 831-8100 **FAX:** (303) 831-8208

Comments:

Sample ID	Client Sample ID	Analysis	*	Matrix	Loc	Collection	Received	Due	HT
96-3990-01A	ST24-MPC(10'-12')	% Moisture for dry weight calculation		Soil	7	96-NoV-80	11-Nov-96	25-Nov-96	06-Dec-96
96-3990-02B	LF6-MPJ(18')	% Moisture for dry weight calculation			6			25-Nov-96	06-Dec-96
96-3990-03B	ST24-MPF(16-18)	% Moisture for dry weight calculation				07-Nov-96		25-Nov-96	05-Dec-96
96-3990-04A	ST24-MPD(10-12)	% Moisture for dry weight calculation			7			25-Nov-96	05-Dec-96
150-066E-96	W68	Anions by IC CI,NO2,NO3,SO4		Groundwater	ਰ	96-NoN-80		25-Nov-96	10-Nov-96
190-0662-96	W73	Anions by IC CI,NO2,NO3,SO4						25-Nov-96 10-Nov-96	10-Nov-96
120-06-396	W74	Anions by IC CI,NO2,NO3,SO4						25-Nov-96	10-Nov-96
180-0662-96	W72	Anions by IC CI,NO2,NO3,SO4						25-Nov-96	10-Nov-96
96-3990-01A	ST24-MPC(10'-12')	BTEX (Parsons List)		Soil	7		11-Nov-96	25-Nov-96	22-Nov-96
96-3990-01C	ST24-MPC(10-12') MS	BTEX (Parsons List) Take from Bottle A			6			25-Nov-96	22-Nov-96
96-3990-01D	ST24-MPC(10'-12') MSD BTEX (Parsons)	BTEX (Parsons List) Take from Bottle A						25-Nov-96	22-Nov-96
96-3990-04A	ST24-MPD(10-12)	BTEX (Parsons List)			2	07-Nov-96		25-Nov-96	21-Nov-96
96-3990-05A	W68	BTEX (Parsons List)		Groundwater		08-Nov-96		25-Nov-96	22-Nov-96
96-3990-06A	W73	BTEX (Parsons List)						25-Nov-96	22-Nov-96
96-3990-07A	W74	BTEX (Parsons List)						25-Nov-96	22-Nov-96
96-3990-07M		BTEX (Parsons List)						25-Nov-96	22-Nov-96
NL0-066E-96	-	BTEX (Parsons List)						25-Nov-96	22-Nov-96
96-3990-08A	W72	BTEX (Parsons List)						25-Nov-96	22-Nov-96

^{# =} Special list. See sample comments or test information. HT = Holding Time expiration date.

Evergreen Analytical, Inc.

WORK ORDER Summary

15-Nov-96

Report To: Dave Moutoux

Parsons Engineering Science 1700 Broadway Suite 900 Denver, CO 80290

Client Project ID: 729691.32010

Phone: (303) 831-8100 **FAX:** (303) 831-8208

Comments:

Sample ID	Client Sample D	Analysis	*	Matrix	Šč	Collection	Received	Due	HT
96-3990-051	W68	Methane		Groundwater	7	96-voN-80	11-Nov-96	25-Nov-96	22-Nov-96
96-3990-061	W73	Methane						25-Nov-96	22-Nov-96
96-3990-071	W74	Methane						25-Nov-96	22-Nov-96
96-3990-07K	W74 MS	Methane						25-Nov-96	22-Nov-96
96-3990-07L	W74 MSD	Methane	 					25-Nov-96	22-Nov-96
96-3990-081	W72	Methane						25-Nov-96	22-Nov-96
96-3990-01B	ST24-MPC(10'-12')	Purgeable Halocarbons 8010		Soil	6		11-Nov-96	25-Nov-96	22-Nov-96
96-3990-01C	ST24-MPC(10'-12') MS	Purgeable Halocarbons 8010 Take from Bottle A						25-Nov-96	22-Nov-96
96-3990-01D	ST24-MPC(10'-12') MSD	ST24-MPC(10-12') MSD Purgeable Halocarbons 8010 Take from Bottle A						25-Nov-96	22-Nov-96
96-3990-02B.	LF6-MPJ(18')	Purgeable Halocarbons 8010						25-Nov-96	22-Nov-96
96-3990-03B	ST24-MPF(16-18)	Purgeable Halocarbons 8010				07-Nov-96		25-Nov-96	21-Nov-96
96-3990-04B	ST24-MPD(10-12)	Purgeable Halocarbons 8010						25-Nov-96	21-Nov-96
96-3990-05F	W68	Purgeable Halocarbons 8010		Groundwater		08-Nov-96		25-Nov-96	22-Nov-96
96-3990-06F	W73	Purgeable Halocarbons 8010						25-Nov-96	22-Nov-96
96-3990-07F	W74	Purgeable Halocarbons 8010						25-Nov-96	22-Nov-96
96-3990-07P	W74 MS	Purgeable Halocarbons 8010						25-Nov-96	22-Nov-96
96-3990-07Q	W74 MSD	Purgeable Halocarbons 8010						25-Nov-96	22-Nov-96
96-3990-08E	W72	Purgeable Halocarbons 8010			ļ			25-Nov-96	22-Nov-96
96-3990-02A	LF6-MPJ(18')	Total Organic Carbon		Soil	ਰ			25-Nov-96	15-Nov-96
96-3990-03A	ST24-MPF(16-18)	Total Organic Carbon			2	07-Nov-96		25-Nov-96	14-Nov-96
96-3990-0	W68	Total Organic Carbon		Groundwater	5	08-Nov-96		25-Nov-96	96-5

 $\#=S_1$ 1181. See sample comments or test information. If $T=Hordine\ Time\ expiration\ date$

Evergreen Analytical, Inc.

WORK ORDER Summary

Report To: Dave Moutoux

Parsons Engineering Science 1700 Broadway Suite 900 Denver, CO 80290

15-Nov-96

Client Project ID: 729691.32010

Phone: (303) 831-8100 **FAX:** (303) 831-8208

Comments:

Sample ID	Client Sample ID	Analysis	*	Matrix	Loc	Loc Collection	Received	Due	H
96-3990-06E	W73	Total Organic Carbon		Groundwater Cl1 08-Nov-96	ᇙ	96-voN-80	11-Nov-96	25-Nov-96 06-Dec-96	06-Dec-96
96-3990-07E	W74	Total Organic Carbon						25-Nov-96	25-Nov-96 06-Dec-96
96-3990-01A	ST24-MPC(10'-12')	ТКРН		Soil	7			25-Nov-96 06-Dec-96	06-Dec-96
96-3990-02A	LF6-MPJ(18')	ТКРН			ਰ			25-Nov-96 06-Dec-96	06-Dec-96
96-3990-03A	ST24-MPF(16-18)	ТКРН			7	07-Nov-96		25-Nov-96 05-Dec-96	05-Dec-96
96-3990-04A	ST24-MPD(10-12)	ТКРН						25-Nov-96 05-Dec-96	05-Dec-96
96-3990-05A	W68	TVH (Gasoline)		Groundwater		08-Nov-96		25-Nov-96 22-Nov-96	22-Nov-96
96-3990-06A	W73	TVH (Gasoline)			ļ.			25-Nov-96 22-Nov-96	22-Nov-96
96-3990-07A	W74	TVH (Gasoline)						25-Nov-96 22-Nov-96	22-Nov-96
96-3990-08A	W72	TVH (Gasoline)						25-Nov-96 22-Nov-96	22-Nov-96

CHAIN OF CUSTODY RECORD / ANALYTICAL SERVICES REQUEST

Page L of L CLIENT CONTACT (print) Jenny Hart-felder CLIENT PROJ. I.D. 729691, 32010 EAL. QUOTE # P.O.# 729691, 32010 TURNAROUND REQUIRED* A STD (2 wks) UST Other (Specify)* **Expedited turnaround subject to additional fee	OK,	W.O. # GE - 3790 W.O. # GE - 3790 W.O. # GE - 3790 W.O. # GE - 3790 CS (1) - 1 - C - C - C - C - C - C - C - C - C	X / 2/8 S///		XX		X X	X X X X X X X X X X X X X X X X X X X	XXX OO XX	1		12 C 11 2 C 11		INTOINED for B	
033	SIS REQUESTED	TEPH 8015mod. (Diesel) Jotal Metals-DW / NPDES / SW846 Circle & list metals below) Oil & Grease 413.1 Oil & Grease 413.1	XXX	X	×	*	× .	× >	- 				be 5010;	45 m mygg	Date/Time
Evergreen Analytical Inc. 4036 Younglield St. 4036 Younglield St. Wheat Ridge, Colorado 80033 (303) 425-6021 FAX (303) 425-6854 (800) 845-7400 FAX RESULTS Y / N	ANALYSIS	BNA 8270/625 (circle) Pesticides 8080/608 (circle) PCB Screen Herbicides 8150/515 (circle) Herbicides 8150/515 (circle) APP 8015mod (Gasana)	×			*	X	< × ×	X	2	X (1)	July William	for 8260 should	pmatin.	
.90 FAX# (303)83-82	MATRIX	Mo. of Containers Water-Drinking/Discharge/fround (circle) Soil / Solid / Air / Gas Oil / Sludge / Multi-phase TCLP VOA/BNA/Pest/Het-iv		× (6	2		<u> </u>	(8 X X	× :		Compo Eraction	7	All regulat	3/27	acomedoy: (Signature)
COMPANY PASONS ES ADDRESS TO Broodway SUTE 900 CITY BENNEY STATE CO ZIP 802 PHONE# (303) 831-8100 Sampler Name:	print) Jehnifer Hartfelder	PRINT all information: CLIENT SAMPLE DATE IDENTIFICATION SAMPLED TIME	124- MPC(10-12) 11/8/96 1000	FG-MOJ(18') 11/8/96 1700	124-MPF(16-18) 11/7-196 0900	PD(10-12) 11/79/96	080 96/8/W 89M	49/8/V			VIP DIWAN		1000 Blank 12 8020/BHINE 8010	24-111K(1 1115/1115D	completed by:

	Company of the Company			
		/-	افرو اوران افرو مران	
RUS	$H \wedge Y$	/ * i	N	
			<u>ر</u> لا ا	

 $w + 4g^{-6}$

Note:

and a graph and the second of the second

And the second s And the state of t

Project Revision Notice

Project Revision Notice New Project Request	
The state of the s	; s, •
	i .
Date: 11/11/9 (e)	
Start new project: Y N	
Reason for revision:	
Due Date Modified	
Method Revision	
Additional analygo	
Additional analyses requested on original project	
Soils are TRPH 1181 GTO 1 - CTO 1 - COLOR OF SOID, 8020/801	15
for 8010 & BTEX. W74 needs ms/msD for BTEX, 8010, methane	
THE BIEN, 8010, methane	۰
Description of changes:	
	Ž,
A CONTRACT OF THE PROPERTY OF	
The state of the s	
HACE SCOTING	
Client Contact. Con. Ha. 11-11	
EAL Contact: Patry Due Date: 11/25/96	
* Only include additional analyses on original project if the project is still open.	
25 Still Open.	
CC: JDPSWT WKH MAB MSM	
SX.REC X QA/QC X SALES X FILE (Orig)	
The state of the Control of the Cont	

Originator must identify persons to receive the Notice/Request.

Methods 602/8020 and 5030/8015 Modified Data Report Method Blank Report

Method Blank Number

: MB3111296

Client Project Number

729691.32010

Date Prepared

: 11/12/96

Lab Project Number

96-3990

Dilution Factor

: 1.0

Matrix

Water

Lab File Number

TVB31111025

Compound Name	Cas Number	Analysis Date	Sample		
TVH-Gasoline			Concentration	RL	Units
		11/12/96	U	0.1	mg/L
Benzene	71-43-2	11/12/96	U	0.4	ug/L
Toluene	108-88-3	11/12/96	U	0.4	ug/L
Chlorobenzene	108-90-7	11/12/96	U	0.4	ug/L
Ethyl Benzene	100-41-4	11/12/96	U	0.4	ug/L
Total Xylenes (m,p,o)	1330-20-7	11/12/96	U	0.4	ug/L
1,3,5-Trimethylbenzene	108-67-8	11/12/96	U	0.4	ug/L
1,2,4-Trimethylbenzene	95-63-6	11/12/96	U	0.4	ug/L
1,2,3-Trimethylbenzene	526-73-8	11/12/96	Ü	0.4	ug/L
1,2,3,4-Tetramethylbenzene	488-23-3	11/12/96	U	0.5	ug/L ug/L
FID Surrogate Recovery:		97%		70% 120%	
PID Surrogate Recovery:		100%		70%-130% 70%-123%	(Lir.

Notes: Total Xylenes consist of three isomers, two of which co-elute. The Xylene RL is for a single peak.

Comments:	i

QUALIFIERS and DEFINITIONS:

E = Extrapolated value. Value exceeds calibration range.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

J = Indicates an estimated value when the compound is detected, but is below the Reporting Limit.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

PID = Photoionization detector.

FID = Flame ionization detector.

TVH = Total Volatile Hydrocarbons.

Analyst

K. Hollman

Approved

Methods 602/8020 and 5030/8015 Modified Data Report Method Blank Report

Method Blank Number

: MB3111396

Client Project Number

729691.32010

Date Prepared

: 11/13/96

Lab Project Number

96-3990

Dilution Factor

: 1.0

Matrix

WATER

Lab File Number

TVB31111055

_		Analysis	Sample		
Compound Name	Cas Number	Date	Concentration	RL	Units
TVH-Gasoline		11/13/96	U	0.1	mg/L
Benzene	71-43-2	11/13/96	U	0.4	ug/L
Toluene	108-88-3	11/13/96	Ü	0.4	ug/L
Chlorobenzene	108-90-7	11/13/96	U	0.4	ug/L
Ethyl Benzene	100-41-4	11/13/96	U	0.4	ug/L
Total Xylenes (m,p,o)	1330-20-7	11/13/96	U	0.4	ug/L
1,3,5-Trimethylbenzene	108-67-8	11/13/96	U	0.4	ug/L
1,2,4-Trimethylbenzene	95-63-6	11/13/96	U	0.4	ug/L
1,2,3-Trimethylbenzene	526-73-8	11/13/96	Ü	0.4	ug/L
1,2,3,4-Tetramethylbenzene	488-23-3	11/13/96	U	0.5	ug/L ug/L
					- 3
Surrogate Recovery:		97%		70%-130%	(Limits)
Surrogate Recovery:		98%		70%-123%	(Limits)

Notes: Total Xylenes consist of three isomers, two of which co-elute. The Xylene RL is for a single peak.

Comments:	

QUALIFIERS and DEFINITIONS:

E = Extrapolated value. Value exceeds calibration range.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

J = Indicates an estimated value when the compound is detected, but is below the Reporting Limit.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

PID = Photoionization detector.

FID = Flame ionization detector.

YH = Total Volatile Hydrocarbons.

lyst

Approved

Client Sample Number : ST24-MPC(10'-12') Client Project Number 729691.32010 Lab Sample Number : 96-3990-01 Lab Project Number 96-3990

Date Sampled : 11/8/96 Matrix Soil

Date Received : 11/9/96 Lab File Number(s) TVB31111037 Date Prepared : 11/12/96 Method Blank MB3111296 FID Dilution Factor

: 1.0 Soil Extracted? NO PID Dilution Factor : 1.0 Soil Moisture 8.10%

Compound Name	Cas Number	Analysis Date	Sample*		
TVH-Gasoline			Concentration	RL*	Units
		NA NA	NA NA	NA NA	NA
Benzene	71-43-2	11/12/96	U	0.4	ug/kg
Toluene	108-88-3	11/12/96	Ü	0.4	ug/kg
Chlorobenzene	108-90-7	11/12/96	Ü	0.4	
Ethyl Benzene	100-41-4	11/12/96	U	·	ug/kg
Total Xylenes (m,p,o)	1330-20-7	11/12/96	<u> </u>	0.4	ug/kg
1,3,5-Trimethylbenzene	108-67-8	11/12/96	0.7	0.4	ug/kg
1,2,4-Trimethylbenzene	95-63-6	11/12/96	0.7	0.4	ug/kg
1,2,3-Trimethylbenzene	526-73-8		U	0.4	ug/kg
1,2,3,4-Tetramethylbenzene		11/12/96	2.5	0.4	ug/kg
1,2,5,4-Tetramethylbenzene	488-23-3	11/12/96	20	0.5	g
FID Surrogate Recovery:		JA			
PID Surrogate Recovery:	1/			50%-125%	(Lin. ,
canagata nadovary.		91%		50%-115%	(Limits)

Notes: Total Xylenes consist of three isomers, two of which co-elute. The Xylene RL is for a single peak.

Comments:	* = Dry Basis	

QUALIFIERS and DEFINITIONS:

E = Extrapolated value. Value exceeds calibration range.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

J = Indicates an estimated value when the compound is detected, but is below the Reporting Limit.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

PID = Photoionization detector.

FID = Flame ionization detector.

TVH = Total Volatile Hydrocarbons.

Methods 602/8020 and 5030/8015 Modified Data Report

Client Sample Number : ST24-MPD(10'-12') Client Project Number 729691.32010 Lab Sample Number : 96-3990-04 Lab Project Number 96-3990 Date Sampled : 11/7/96 Matrix Soil Date Received : 11/9/96 Lab File Number(s) TVB31111040 Date Prepared : 11/12/96 Method Blank MB3111296 FID Dilution Factor : 1.0 Soil Extracted? NO PID Dilution Factor : 1.0 Soil Moisture 10.10%

		Analysis	Sample*		
Compound Name	Cas Number		Concentration	RL*	Units
TVH-Gasoline	NA	NA	NA		NA
Benzene	71-43-2	11/12/96	U	0.4	ug/kg
Toluene	108-88-3	11/12/96	U	0.4	ug/kg
Chlorobenzene	108-90-7	11/12/96	U	0.4	ug/kg
Ethyl Benzene	100-41-4	11/12/96	Ü	0.4	ug/kg
Total Xylenes (m,p,o)	1330-20-7	11/12/96	U	0.4	ug/kg ug/kg
1,3,5-Trimethylbenzene	108-67-8	11/12/96	U	0.4	ug/kg ug/kg
1,2,4-Trimethylbenzene	95-63-6	11/12/96	U	0.4	ug/kg ug/kg
1,2,3-Trimethylbenzene	526-73-8	11/12/96	U	0.4	ug/kg ug/kg
1,2,3,4-Tetramethylbenzene	488-23-3	11/12/96	U	0.6	ug/kg ug/kg
			<u>~</u>	0.0	ug/kg
D Surrogate Recovery:		NA AV		50%-125%	(Limits)
PID Surrogate Recovery:		88%		50%-115%	(Limits)

Notes: Total Xylenes consist of three isomers, two of which co-elute. The Xylene RL is for a single peak.

Comments: * = Dry Basis	

QUALIFIERS and DEFINITIONS:

E = Extrapolated value. Value exceeds calibration range.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

J = Indicates an estimated value when the compound is detected, but is below the Reporting Limit.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

PID = Photoionization detector.

= Flame ionization detector.

i = Total Volatile Hydrocarbons.

Analyst

HHLMAN Approved

Methods 602/8020 and 5030/8015 Modified Data Report

Client Sample Number

: W68

Client Project Number

729691.32010

Lab Sample Number

: 96-3990-05

Lab Project Number

96-3990

Date Sampled

: 11/8/96

Matrix

Water

Date Received Date Prepared : 11/9/96

Lab File Number(s)

TVB31111041

FID Dilution Factor

: 11/12/96

Method Blank

MB3111296

: 1.0 PID Dilution Factor : 1.0

		Analysis	Sample		
Compound Name	pound Name Cas Number		Concentration	RL	Units
TVH-Gasoline		11/12/96	U	0.1	mg/L
Benzene	71-43-2 11/12/96		U	0.4	ug/L
Toluene	108-88-3	11/12/96	U	0.4	ug/L
Chlorobenzene	108-90-7	11/12/96	U	0.4	ug/L
Ethyl Benzene	100-41-4	11/12/96	U	0.4	ug/L
Total Xylenes (m,p,o)	1330-20-7	11/12/96	U	0.4	ug/L
1,3,5-Trimethylbenzene	108-67-8	11/12/96	U	0.4	ug/L
1,2,4-Trimethylbenzene	95-63-6	11/12/96	U	0.4	ug/L
1,2,3-Trimethylbenzene	526-73-8	11/12/96	U	0.4	ug/L
1,2,3,4-Tetramethylbenzene	488-23-3	11/12/96	U	0.5	u-g/u
FID Surrogate Recovery:		91%		70%-130%	(Lin:
PID Surrogate Recovery:		94%		70%-130%	(Limits)

Notes: Total Xylenes consist of three isomers, two of which co-elute. The Xylene RL is for a single peak.

Comments:	

QUALIFIERS and DEFINITIONS:

E = Extrapolated value. Value exceeds calibration range.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

J = Indicates an estimated value when the compound is detected, but is below the Reporting Limit.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

PID = Photoionization detector.

FID = Flame ionization detector.

TVH = Total Volatile Hydrocarbons.

Methods 602/8020 and 5030/8015 Modified Data Report

Client Sample Number

: W73

Client Project Number

729691.32010

Lab Sample Number

: 96-3990-06

Lab Project Number

96-3990

Date Sampled

: 11/8/96

Matrix

Water

Date Received

: 11/9/96

Lab File Number(s)

TVB31111042

Date Prepared

: 11/12/96

Method Blank

MB3111296

FID Dilution Factor

: 1.0

PID Dilution Factor

: 1.0

		Analysis	Sample		
Compound Name	Cas Number	Date	Concentration	RL	Units
TVH-Gasoline		11/12/96	0.3	0.1	mg/L
Benzene	71-43-2	11/12/96	6.9	0.4	ug/L
Toluene	108-88-3	11/12/96	13	0.4	ug/L
Chlorobenzene	108-90-7	11/12/96	U	0.4	ug/L
Ethyl Benzene	100-41-4	11/12/96	12	0.4	ug/L
Total Xylenes (m,p,o)	1330-20-7	11/12/96	41	0.4	ug/L
1,3,5-Trimethylbenzene	108-67-8	11/12/96	11	0.4	ug/L
1,2,4-Trimethylbenzene	95-63-6	11/12/96	41	0.4	ug/L
1,2,3-Trimethylbenzene	526-73-8	11/12/96	13	0.4	ug/L
1,2,3,4-Tetramethylbenzene	488-23-3	11/12/96	3.7	0.5	ug/L
ID Surrogate Recovery:		102%		70%-130%	(Limits)
PID Surrogate Recovery:		97%		70%-123%	(Limits)

Notes: Total Xylenes consist of three isomers, two of which co-elute. The Xylene RL is for a single peak.

Comments:		
	,	

QUALIFIERS and DEFINITIONS:

E = Extrapolated value. Value exceeds calibration range.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

J = Indicates an estimated value when the compound is detected, but is below the Reporting Limit.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

PID = Photoionization detector.

= Flame ionization detector.

H = Total Volatile Hydrocarbons.

Analyst

Approved

Methods 602/8020 and 5030/8015 Modified Data Report

Client Sample Number

: W74

Client Project Number

729691.32010

Lab Sample Number

: 96-3990-07

Lab Project Number

96-3990

Date Sampled

: 11/8/96

Matrix

Water

Date Received

: 11/9/96

Lab File Number(s)

TVB31111043

Date Prepared

: 11/12/96

Method Blank

MB3111296

FID Dilution Factor : 1.0 PID Dilution Factor : 1.0

Compound Name	Cas Number	Analysis Date	Sample Concentration	RL	Units
TVH-Gasoline		11/12/96	U	0.1	
Benzene	71-43-2	11/12/96	Ü	0.4	mg/L
Toluene	108-88-3	11/12/96	U	0.4	ug/L
Chlorobenzene	108-90-7	11/12/96	U	0.4	ug/L
Ethyl Benzene	100-41-4	11/12/96	11	0.4	ug/L
Total Xylenes (m,p,o)	1330-20-7	11/12/96	Ü	0.4	ug/L
1,3,5-Trimethylbenzene	108-67-8	11/12/96	Ü	0.4	ug/L
1,2,4-Trimethylbenzene	95-63-6	11/12/96	Ü	0.4	ug/L ug/L
1,2,3-Trimethylbenzene	526-73-8	11/12/96	Ü	0.4	
1,2,3,4-Tetramethylbenzene	488-23-3	11/12/96	Ü	0.5	ug/L ا/سبر
				- 0.0	
FID Surrogate Recovery:		100%		70%-130%	
PID Surrogate Recovery:		95%		70%-130%	(Limits)

Notes: Total Xylenes consist of three isomers, two of which co-elute. The Xylene RL is for a single peak.

Comments:	

QUALIFIERS and DEFINITIONS:

E = Extrapolated value. Value exceeds calibration range.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

J = Indicates an estimated value when the compound is detected, but is below the Reporting Limit.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

PID = Photoionization detector.

FID = Flame ionization detector.

TVH = Total Volatile Hydrocarbons.

Methods 602/8020 and 5030/8015 Modified Data Report

Client Sample Number

: W72

Client Project Number

729691.32010

Lab Sample Number

: 96-3990-08

Lab Project Number

96-3990

Date Sampled

: 11/8/96

Matrix

Water

Date Received

: 11/9/96

Lab File Number(s)

TVB31111044

Date Prepared

: 11/12/96

Method Blank

MB3111296

FID Dilution Factor

: 1.0 PID Dilution Factor : 1.0

		Analysis	Sample		
Compound Name	Cas Number	Date	Concentration	RL	Units
TVH-Gasoline		11/12/96	0.2	0.1	mg/L
Benzene	71-43-2	11/12/96	18	0.4	ug/L
Toluene	108-88-3	11/12/96	U	0.4	ug/L
Chlorobenzene	108-90-7	11/12/96	U	0.4	ug/L
Ethyl Benzene	100-41-4	11/12/96	10	0.4	ug/L
Total Xylenes (m,p,o)	1330-20-7	11/12/96	U	0.4	ug/L
1,3,5-Trimethylbenzene	108-67-8	11/12/96	U	0.4	ug/L
1,2,4-Trimethylbenzene	95-63-6	11/12/96	U	0.4	ug/L
1,2,3-Trimethylbenzene	526-73-8	11/12/96	Ū	0.4	ug/L
1,2,3,4-Tetramethylbenzene	488-23-3	11/12/96	15	0.5	ug/L
ID Surrogate Recovery:		96%	:	70%-130%	(Limits
PID Surrogate Recovery:		96%		70%-123%	(Limits

Notes: Total Xylenes consist of three isomers, two of which co-elute. The Xylene RL is for a single peak.

Comments:	 			
-	 		 	

QUALIFIERS and DEFINITIONS:

E = Extrapolated value. Value exceeds calibration range.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

J = Indicates an estimated value when the compound is detected, but is below the Reporting Limit.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

PID = Photoionization detector.

P = Flame ionization detector.

H = Total Volatile Hydrocarbons.

Methods 602/8020 and 5030/8015 Modified Data Report

Client Sample Number

: Trip Blank

Client Project Number

729691.32010

Lab Sample Number

: 96-3990-09

Lab Project Number

96-3990

Date Sampled Date Received

: NA

Matrix

Water

Date Prepared

: 11/9/96

Lab File Number(s)

TVB31111035

FID Dilution Factor

: 11/12/96

Method Blank

MB3111296

: 1.0 PID Dilution Factor : 1.0

71-43-2 108-88-3 108-90-7	Date 11/12/96 11/12/96 11/12/96 11/12/96	Concentration U U U U U	RL 0.1 0.4 0.4	Units mg/L ug/L ug/L
71-43-2 108-88-3 108-90-7	11/12/96 11/12/96	Ü	0.4	ug/L
108-88-3 108-90-7	11/12/96	U	0.4	ug/L
108-90-7		 	0.4	
	11/12/96	· 11		l ug/L
100 11 1			0.4	ug/L
100-41-4	11/12/96		·	
1330-20-7				ug/L
108-67-8	·	<u> </u>		ug/L
95-63-6			·	ug/L
		<u> </u>		ug/L
		<u> </u>		ug/L
	117.12700	0	0.5	ug"
	95%		700/ 1000/	
				(Limits)
	1330-20-7	1330-20-7 11/12/96 108-67-8 11/12/96 95-63-6 11/12/96 526-73-8 11/12/96	1330-20-7	1330-20-7 11/12/96 U 0.4 108-67-8 11/12/96 U 0.4 95-63-6 11/12/96 U 0.4 526-73-8 11/12/96 U 0.4 488-23-3 11/12/96 U 0.5

Notes: Total Xylenes consist of three isomers, two of which co-elute. The Xylene RL is for a single peak.

Comments:

QUALIFIERS and DEFINITIONS:

E = Extrapolated value. Value exceeds calibration range.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

J = Indicates an estimated value when the compound is detected, but is below the Reporting Limit.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

PID = Photoionization detector.

FID = Flame ionization detector.

TVH = Total Volatile Hydrocarbons.

Evergreen Analytical, Inc. 4036 Youngfield, Wheat Ridge, CO 80033 (303) 425-6021

EPA 602/8020 Matrix Spike/Matrix Spike Duplicate Data Report

Client Sample No. ST24-MPC(10'-12') Client Project No. : 729691.32010 Lab Sample No. 96-3990-01 Lab Work Order 96-3990 **Date Sampled** 11/8/96 EPA Method No. 602/8020 **Date Received** : 11/9/96 Matrix : Soil **Date Prepared** 11/13/96 Lab File Number(s) TVB31111056,58 **Date Analyzed** 11/13/96 Method Blank : MB3111396 **Instrument Name TVHBTEX3 Dilution Factor** : 1.0

Compound	Spike Added (ug/kg)	Sample Concentration (ug/kg)		centration ug/kg)	
Benzene	20.0	0.0	19.6	MSD 19.7	Comments
Toluene	20.0	0.0	19.4	19.8	
Chlorobenzene	20.0	0.0	19.4	19.5	
Ethylbenzene	20.0	0.0	19.4	19.4	
m,p-Xylene	20.0	0.0	19.3	19.3	
o-Xylene	20.0	0.0	19.6	19.5	
1,3,5-TMB	20.0	0.7	20.1	20.1	
1,2,4-TMB	20.0	0.0	18.8	19.1	
1,2,3-TMB	20.0	2.3	20.0	20.5	
1,2,3,4-TeMB	20.0	18.6	30.6	27.9	
Surrogate	100.0	91%	88%	89%	% RECOVERY

	MS	MSD			QC
Compound	%	%			Limits
	RECOVERY	RECOVERY	RPD	RPD	%REC
Benzene	98.0	98.5	0.5	25	39 - 150
Toluene	97.0	99.0	2.0	25	46 - 148
Chlorobenzene	97.0	97.5	0.5	25	55 - 135
Ethylbenzene	97.0	97.0	0.0	25	32 - 160
m,p-Xylene	96.5	96.5	0.0	25	25 - 150
o-Xylene	98.0	97.5	0.5	25	25 - 150
1,3,5-TMB	97.0	97.0	0.0	25	25 - 150
1,2,4-TMB	94.0	95.5	1.6	25	25 - 150
1,2,3-TMB	88.5	91.0	2.8	25	25 - 150
1,2,3,4-TeMB	60.0	46.5	25	25	25 - 150
Surrogate	88.0	89.0	NA	NA	50 - 150

*= Values outsid	e of QC li	mits.		
RPD: Spike Recovery:	0			outside limits.
Comments:		_ 001 01 (2	.0,	outside mints.
Comments:				

Analyst

M. Blecha

Approved

Evergreen Analytical, Inc. 4036 Youngfield, Wheat Ridge, CO 80033 (303) 425-6021

EPA 602/8020 Matrix Spike/Matrix Spike Duplicate Data Report

Client Sample No.	: W74	Client Project No.	: 729691.32010
Lab Sample No.	: 96-3990-07	Lab Work Order	: 96-3990
Date Sampled	: 11/8/96	EPA Method No.	: 602/8020
Date Received	: 11/9/96	Matrix	: Water
Date Prepared	: 11/13/96	Lab File Number(s)	: TVB31111059,60
Date Analyzed	: 11/13/96	Method Blank	: MB3111396
Instrument Name	: TVHBTEX3	Dilution Factor	: 1.0

Compound	Spike Added	Sample Concentration		Concentration (ug/L)	
	(ug/L)	(ug/L)	MS	MSD	Comments
Benzene	20.0	0.0	20.0	19.7	
Toluene	20.0	0.0	19.8	19.6	
Chlorobenzene	20.0	0.0	20.0	19.7	
Ethylbenzene	20.0	0.0	19.9	19.7	
m,p-Xylene	20.0	0.0	19.4	19.2	
o-Xylene	20.0	0.0	19.6	19.4	
1,3,5-TMB	20.0	0.0	20.4	20.0	
1,2,4-TMB	20.0	0.0	20.0	19.5	
1,2,3-TMB	20.0	0.0	19.9	19.4	
1,2,3,4-TeMB	20.0	0.0	20.1	19.0	
Surrogate	100.0	95%	93%	92%	% RECOVERY

	MS	MSD			QC
Compound	%	%		ŀ	Limits
	RECOVERY	RECOVERY	RPD	RPD	%REC
Benzene	100.0	98.5	1.5	25	39 - 150
Toluene	99.0	98.0	1.0	25	46 - 148
Chlorobenzene	100.0	98.5	1.5	25	55 - 135
Ethylbenzene	99.5	98.5	1.0	25	32 - 160
m,p-Xylene	97.0	96.0	1.0	25	25 - 150
o-Xylene	98.0	97.0	1.0	25	25 - 150
1,3,5-TMB	102.0	100.0	2.0	25	25 - 150
1,2,4-TMB	100.0	97.5	2.5	25	25 - 150
1,2,3-TMB	99.5	97.0	2.5	25	25 - 150
1,2,3,4-TeMB	100.5	95.0	5.6	25	25 - 150
Surrogate	93.0	92.0	NA	NA	70 - 130

* = Values outside of QC limits.							
RPD: Spike Recovery:	out of (10) outside limits. out of (20) outside limits.						
Comments:							
in/ () ()	N	1 1 60					

Analyst

Evergreen Analytical, Inc. 4036 Youngfield, Wheat Ridge, CO 80033 (303) 425-6021

TOTAL VOLATILE HYDROCARBONS (TVH as Gasoline) TVH Matrix Spike/Matrix Spike Duplicate Data Report

Client Sample No.	: W74	Client Project No.	: 729691.32010
Lab Sample No.	: 96-3990-07	Lab Work Order	: 96-3990
Date Sampled	: 11/8/96	EPA Method No.	: 5030/8015 Modified
Date Received	: 11/9/96	Matrix	: Water
Date Prepared	: 11/12/96	Lab File Number(s)	: TVB31111045,46
Date Analyzed	: 11/12/96	Method Blank	: MB3111296
Instrument Name	: TVHBTEX3	Dilution Factor	: 1.0

Compound	Spike Added (mg/L)	Sample Concentration (mg/L)	MS Concentration (mg/L)	MS %REC	QC (#) Limits %REC
Gasoline	2.00	0.00	1.66	83.0%	55 - 128
Surrogate **		***		87%	70 - 130

Compound	Spike Added	MSD Concentration	MSD %REC	RPD	QC Limits	
	(mg/L) (mg/L)	(mg/L)			RPD	%REC
Gasoline	2.00	1.65	82.5%	0.6	50	50 - 150
Surrogate **			89%	NA	NA	70 - 130

RPD:	0	out of	(1) outside limits.
Spike Recovery:	0	out of	(2) outside limits.

Notes:

NA = Not analyzed/not applicable.

- * = Values outside of QC limits.
- ** = 1,2,4-Trichlorobenzene

Comments:		 	-

M. Weeks

Approved

EPA 602/8020 Data Report **Laboratory Control Sample (LCS)**

LCS Number : LCS3111396-BTEX Date Extracted/Prepared : 11/13/96 Date Analyzed : 11/13/96 Spike Amount (ug/L) : 20.0

Dilution Factor 1.00 Method 602/8020

Matrix Water

Lab File No. TVB31111054

Lab File No.	: TVB31111054
LCS %	QC Limit
Recovery	% Recovery
95.5	50 - 150 50 - 150
88.0	50 - 150
95.0	50 - 150
93.5	50 - 150
94.5	50 - 1
100.0	50 - 150
97.5	50 - 150
89.5	50 - 150
109.5	50 - 150
95.5	50 - 150

NOTES:

m,p-xylene = 40.0 ppb spike.

QUALIFIERS:

E = Extrapolated value. Value exceeds that of the calibration range.

U = Compound analyzed for, but not detected.

B = Compound found in blank and sample. Compare blank and sample data.

NA = Not available/Not analyzed.

EPA 602/8020 Data Report Laboratory Control Sample (LCS)

LCS Number
Date Extracted/Prepared
Date Analyzed
Spike Amount (ug/L)

: LCS3111496-BTEX : 11/14/96 : 11/14/96

: 20.0

Dilution Factor Method

1.00

Matrix

602/8020 Water

Lab File No.

TVB31111086

Compound Name	Cas Number	LCS Concentration (ug/L)	LCS % Recovery	QC Limit % Recovery
Benzene	71-43-2	18.8	94.0	50 - 150
Toluene	108-88-3	18.5	92.5	50 - 150
Chlorobenzene	108-90-7	17.5	87.5	50 - 150
Ethyl Benzene	100-41-4	18.8	94.0	50 - 150
m,p-Xylene	108-38-3	40.0	100.0	50 - 150
	106-42-3			30 - 130
ne .	95-47-6	18.8	94.0	50 - 150
MTBE	1634-04-4	20.2	101.0	50 - 150
1,3,5-Trimethylbenzene	108-67-8	19.6	98.0	50 - 150
1,2,4-Trimethylbenzene	95-63-6	18.0	90.0	50 - 150
1,2,3-Trimethylbenzene	526-73-8	21.9	109.5	50 - 150
1,2,3,4-Tetramethylbenzene	488-23-3	19.9	99.5	50 - 150
Surrogate Recovery:		99%		70 - 130

NOTES:

m,p-xylene = 40.0 ppb spike.

QUALIFIERS:

E = Extrapolated value. Value exceeds that of the calibration range.

U = Compound analyzed for, but not detected.

B = Compound found in blank and sample. Compare blank and sample data.

Not available/Not analyzed.

Analyst DUMA

Approved

Method 601/8010 Chlorinated VOC's Method Blank Report

Method Blank

: RB111896

Client Project No.

: 729691.32010

Date Prepared

: 11/18/96

Lab Project No.

: 96-3990

Date Analyzed

: 11/18/96

Lab File No.

: HALL1118\012F0101

Compound	CAS#	Concentration (ug/L)	517 41
Vinyl Chloride	75-01-4	11	RL(ug/L)
Chloroethane	75-00-3	11	0.4
1,1-Dichloroethene	75-35-4	Ü	0.4
Dichloromethane	75-09-2		0.4
trans-1,2-Dichloroethene	156-60-5	U 11	0.4
1,1-Dichloroethane	75-34-3	<u> </u>	0.4
cis-1,2-Dichloroethene	156-59-4	Ü	0.4
1,1,1-Trichloroethane	71-55-6	U	0.4
Carbon Tetrachloride	56-23-5	U	0.4
Trichloroethene	79-01-6	U 11	0.4
1,1,2-Trichloroethane	79-00-5	U U	0.4
Tetrachloroethene	127-18-4	U	0.4
1,1,1,2-Tetrachioroethane	79-00-5	U II	0.4
Chiorobenzene	108-90-7	11	0.4
1,1,2,2-Tetrachloroethane	79-34-5		0.42
2-Chlorotoluene	95-49-8	<u>U</u>	0.54
4-Chlorotoluene	106-49-8	11	9
1,3-Dichlorobenzene	541-73-1	11	
1,2-Dichlorobenzene	95-50-1	Ü	0.4 0.4

Surrogate Recovery (1-Chloro-2-Fluoro-Benzene): 88% 70% - 130% (QC limits)

QUALIFIERS:

U = Compound analyzed for, but not detected above the Reporting Limit.

B = Compound in blank and sample. Compare blank and sample data.

E = Extrapolated value. Concentration exceeds the upper limit of the calibration.

RL = Reporting Limit (at or above method detection limit).

NOTES:

Approved
HLW3990.XLS; 11/25/96

Method 8010 Chlorinated VOC's Method Blank Report

 Method Blank
 : RB112096
 Client Project No.
 : 729691.32010

 Date Prepared
 : 11/20/96
 Lab Project No.
 : 96-3990

Compound	CAS #	Concentration (ug/L)	RL(ug/L)
Vinyl Chloride	75-01-4	U	0.4
Chloroethane	75-00-3	Ú	0.4
1,1-Dichloroethene	75-35-4	U	0.4
Dichloromethane	75-09-2	Ü	0.4
trans-1,2-Dichloroethene	156-60-5	U	0.4
1,1-Dichloroethane	75-34-3	U	0.4
cis-1,2-Dichloroethene	156-59-4	U	0.4
1,1,1-Trichloroethane	71-55-6	U	0.4
Carbon Tetrachloride	56-23-5	U	0.4
Trichloroethene	79-01-6	Ü	0.4
1,1,2-Trichloroethane	79-00-5	U	0.4
Tetrachloroethene	127-18-4	U	0.4
1,1,1,2-Tetrachloroethane	79-00-5	U	0.4
Chlorobenzene	108-90-7	U	0.42
1,1,2,2-Tetrachloroethane	79-34-5	U	0.54
Chiorotoluene	95-49-8	U	0.4
Chlorotoluene	106-49-8	U	0.4
7,3-Dichlorobenzene	541-73-1	U	0.4
1,2-Dichlorobenzene	95-50-1	U	0.4

Surrogate Recovery	(1-Chloro-2-Fluoro-Benzene):	88%	70% - 130% (QC limits)

QUALIFIERS:

U = Compound analyzed for, but not detected above the Reporting Limit.

B = Compound in blank and sample. Compare blank and sample data.

E = Extrapolated value. Concentration exceeds the upper limit of the calibration.

RL = Reporting Limit (at or above method detection limit).

NOTES:	
	10
///	
Adakst	Approved

HLW3990.XLS; 11/25/96

Method 601/8010 Chlorinated VOC's Sample Report

Date Sampled : 11/08/96 Matrix : Soil

Date Prepared : 11/20/96 Method Blank : RB112096

Date Analyzed : 11/20/96 Dilution Factor : 1.1

Percent Moisture : 8.1

Compound	CAS #	Concentration(ug/Kg)	RL(ug/Kg)
Vinyl Chloride	75-01-4	U	0.43
Chloroethane	75-00-3	Ŭ	0.43
1,1-Dichloroethene	75-35-4	Ü	0.43
Dichloromethane	75-09-2	Ü	0.43
trans-1,2-Dichloroethene	156-60-5	Ŭ	0.43
1,1-Dichloroethane	75-34-3	U	0.43
cis-1,2-Dichloroethene	156-59-4	Ū	0.43
1,1,1-Trichloroethane	71-55-6	Ü	0.43
Carbon Tetrachloride	56-23-5	Ü	0.43
Trichloroethene	79-01-6	Ŭ	0.43
1,1,2-Trichloroethane	79-00-5	Ü	0.43
Tetrachloroethene	127-18-4	Ü	0.43
1,1,1,2-Tetrachloroethane	79-00-5	Ŭ	0.43
Chlorobenzene	108-90-7	Ü	0.46
1,1,2,2-Tetrachloroethane	79-34-5	Ü	9
2-Chlorotoluene	95-49-8	U	
4-Chlorotoluene	106-49-8	ŭ	G. .3
1,3-Dichlorobenzene	541-73-1	Ü	0.43
1,2-Dichlorobenzene	95-50-1	บั	0.43

Surrogate Recovery (1-Chloro-2-Fluoro-Benzene): 89% 70% - 130% (QC limits)

QUALIFIERS:

U = Compound analyzed for, but not detected above the Reporting Limit.

B = Compound in blank and sample. Compare blank and sample data.

E = Extrapolated value. Concentration exceeds the upper limit of the calibration.

RL = Reporting Limit (at or above method detection limit).

AVAIVST Approved
HLW3990.XLS; 11/25/96

Method 601/8010 Chlorinated VOC's Sample Report

: 1.1

Client Sample No. : ST24-MPF(16-18') Client Project No. : 729691.32010 Lab Sample No. : 96-3990-03 Lab Project No. : 96-3990

Date Sampled : 11/07/96 Matrix : Soil

Date Received : 11/11/96 Lab File No. : HALL1120\009F0101

Date Prepared : 11/20/96 Method Blank : RB112096 Date Analyzed : 11/20/96 **Dilution Factor**

Percent Moisture

Percent Moisture : 10.6			
Compound	CAS#	Concentration(ug/Kg)	RL(ug/Kg)
Vinyl Chloride	75-01-4	U	0.45
Chloroethane	75-00-3	Ū	0.45
1,1-Dichloroethene	75-35-4	Ū	0.45
Dichloromethane	75-09-2	Ü	0.45
trans-1,2-Dichloroethene	156-60-5	Ü	0.45
1,1-Dichloroethane	75-34-3	U	0.45
cis-1,2-Dichloroethene	156-59-4	U	0.45
1,1,1-Trichloroethane	71-55-6	U	0.45
Carbon Tetrachloride	56-23-5	Ü	0.45
Trichloroethene	79-01-6	Ü	0.45
1,1,2-Trichloroethane	79-00-5	U	0.45
Tetrachloroethene	127-18-4	Ū	0.45
1,1,1,2-Tetrachloroethane	79-00-5	Ü	0.45
Chlorobenzene	108-90-7	U	0.47
1,1,2,2-Tetrachloroethane	79-34-5	Ū	0.61
-Chlorotoluene	95-49-8	U	0.45
4-Chlorotoluene	106-49-8	U	0.45
1,3-Dichlorobenzene	541-73-1	Ü	0.45
1,2-Dichlorobenzene	95-50-1	Ū	0.45

Surrogate Recovery (1-Chloro-2-Fluoro-Benzene): 90% 70% - 130% (QC limits)

QUALIFIERS:

U = Compound analyzed for, but not detected above the Reporting Limit.

B = Compound in blank and sample. Compare blank and sample data.

E = Extrapolated value. Concentration exceeds the upper limit of the calibration.

TES:	
	11
0,	
1/1	
Anavist	Approved
// / //	HLW3990.XLS: 11

Method 601/8010 Chlorinated VOC's Sample Report

Client Sample No. : ST24-MPD(10-12') Client Project No. 729691.32010 Lab Sample No. : 96-3990-04 Lab Project No. 96-3990

Date Sampled : 11/07/96 Matrix Soil

Date Received : 11/11/96 Lab File No. : HALL1120\010F0101

Date Prepared : 11/20/96 Method Blank : RB112096 Date Analyzed : 11/20/96 **Dilution Factor** : 1.1

Percent Moisture

CAS#	Concentration(ug/Kg)	RL(ug/Kg)
75-01-4	U	0.44
75-00-3	Ü	0.44
75-35-4	Ü	0.44
75-09-2	Ŭ	0.44
156-60-5	Ü	0.44
75-34-3	U	0.44
156-59-4	Ü	0.44
71-55-6	Ü	0.44
56-23-5	-	0.44
79-01-6	Ü	0.44
79-00-5	U	0.44
127-18-4	Ū	0.44
79-00-5	Ü	0.44
108-90-7	U	0.46
79-34-5	Ü	6
95-49-8	U	
106-49-8	U	
541-73-1	U	0.44
95-50-1	U	0.44
	CAS # 75-01-4 75-00-3 75-35-4 75-09-2 156-60-5 75-34-3 156-59-4 71-55-6 56-23-5 79-01-6 79-00-5 127-18-4 79-00-5 108-90-7 79-34-5 95-49-8 106-49-8 541-73-1	CAS # Concentration(ug/Kg) 75-01-4 U 75-00-3 U 75-35-4 U 75-09-2 U 156-60-5 U 75-34-3 U 156-59-4 U 71-55-6 U 56-23-5 U 79-01-6 U 79-00-5 U 127-18-4 U 79-00-5 U 108-90-7 U 95-49-8 U 106-49-8 U 541-73-1 U

Surrogate Recovery	(1-Chloro-2-Fluoro-Benzene):	88%	70% - 130% (QC limits)

QUALIFIERS:

U = Compound analyzed for, but not detected above the Reporting Limit.

B = Compound in blank and sample. Compare blank and sample data.

E = Extrapolated value. Concentration exceeds the upper limit of the calibration.

NOTES:	
$ \Delta / -$	
Analyst	Approved HLW3990.XLS; 11/25/96

Method 601/8010 Chlorinated VOC's Sample Report

Date Analyzed : 11/18/96 Dilution Factor : 1.0

Compound	CAS#	Concentration (ug/L)	RL (ug/L)
Vinyl Chloride	75-01-4	U	0.4
Chloroethane	75-00-3	Ŭ	0.4
1,1-Dichloroethene	75-35-4	Ü	0.4
Dichloromethane	75-09-2	Ŭ	0.4
trans-1,2-Dichloroethene	156-60-5	Ü	0.4
1,1-Dichloroethane	75-34-3	Ŭ	0.4
cis-1,2-Dichloroethene	156-59-4	Ü	0.4
1,1,1-Trichloroethane	71-55-6	Ü	0.4
Carbon Tetrachloride	56-23-5	Ŭ	0.4
Trichloroethene	79-01-6	Ü	0.4
1,1,2-Trichloroethane	79-00-5	U	0.4
Tetrachloroethene	127-18-4	บ	0.4
1,1,1,2-Tetrachloroethane	79-00-5	Ū	0.4
Chlorobenzene	108-90-7	Ü	0.42
1,1,2,2-Tetrachloroethane	79-34-5	Ü	0.54
-Chiorotoluene	95-49-8	Ü	0.4
4-Chlorotoluene	106-49-8	Ü	0.4
1,3-Dichlorobenzene	541-73-1	Ū	0.4
1,2-Dichlorobenzene	95-50-1	Ü	0.4

Surrogate Recovery	(1-Chloro-2-Fluoro-Benzene):	89%	70% - 130% (OC limits)

QUALIFIERS:

U = Compound analyzed for, but not detected above the Reporting Limit.

B = Compound in blank and sample. Compare blank and sample data.

E = Extrapolated value. Concentration exceeds the upper limit of the calibration.

NOTES:	
_ ///	
Analysi	Approved
	HLW3990.XLS; 11/25/96

Method 601/8010 Chlorinated VOC's Sample Report

Client Sample No. : W73 Client Project No. : 729691.32010
Lab Sample No. : 96-3990-06 Lab Project No. : 96-3990

Date Received : 11/09/96 Lab File No. : HALL1118\01/2 3103

Date Prepared : 11/18/96 Method Blank : RB111896
Date Analyzed : 11/18/96 Dilution Factor : 1.0

Compound	CAS#	Concentration (ug/L)	D1 4 (1.)
Vinyl Chloride	75-01-4	U	RL (ug/L)
Chloroethane	75-00-3	ii	0.4
1,1-Dichloroethene	75-35-4	ii	0.4
Dichloromethane	75-09-2	ŭ	0.4
trans-1,2-Dichloroethene	156-60-5	Ü	0.4
1,1-Dichloroethane	75-34-3	Ü	0.4
cis-1,2-Dichloroethene	156-59-4		0.4
1,1,1-Trichloroethane	71-55-6	0	0.4
Carbon Tetrachloride	56-23-5	11	0.4
Trichloroethene	79-01-6	Ü	0.4
1,1,2-Trichloroethane	79-00-5	U U	0.4
Tetrachloroethene	127-18-4		0.4
1,1,1,2-Tetrachloroethane	79-00-5	0	0.4
Chlorobenzene	108-90-7	U	0.4
1,1,2,2-Tetrachloroethane	79-34-5	U II	0.42
2-Chlorotoluene	95-49-8	U	0.54
4-Chlorotoluene	106-49-8	Ü	.01
1,3-Dichlorobenzene	541-73-1	Ü	0.4
1,2-Dichlorobenzene	95-50-1	ŭ	0.4
		U	0.4

<u> </u>			
Surrogate Recovery	(1-Chioro-2-Fluoro-Benzene):	84%	700/ 4000/ 100 #
•		0470	70% - 130% (OC limits)

QUALIFIERS:

U = Compound analyzed for, but not detected above the Reporting Limit.

B = Compound in blank and sample. Compare blank and sample data.

E = Extrapolated value. Concentration exceeds the upper limit of the calibration.

NOTES:	
	\mathcal{A}
$\Delta \Omega$	
Ayalyst	
	Approved HLW3990.XLS; 11/25/96

Method 601/8010 Chlorinated VOC's Sample Report

Client Sample No. : W74 Client Project No. : 729691.32010 Lab Sample No.

: 96-3990-07 Lab Project No. 96-3990 Date Sampled : 11/08/96 Matrix WATER

Date Received : 11/09/96 Lab File No. HALL1118\015F0101

Date Prepared : 11/18/96 Method Blank RB111896 Date Analyzed : 11/18/96 **Dilution Factor** : 1.0

Compound CAS# Concentration (ug/L) RL (ug/L) Vinyl Chloride 75-01-4 U 0.4 Chloroethane 75-00-3 U 0.4 1,1-Dichloroethene 75-35-4 U 0.4 Dichloromethane 75-09-2 U 0.4 trans-1,2-Dichloroethene 156-60-5 U 0.4 1.1-Dichloroethane 75-34-3 Ū 0.4 cis-1,2-Dichloroethene 156-59-4 U 0.4 1,1,1-Trichloroethane 71-55-6 U 0.4 Carbon Tetrachloride 56-23-5 U 0.4 Trichloroethene 79-01-6 U 0.4 1,1,2-Trichloroethane 79-00-5 Ū 0.4 Tetrachloroethene 127-18-4 U 0.4 1,1,1,2-Tetrachloroethane 79-00-5 U 0.4 Chlorobenzene 108-90-7 U 0.42 1,1,2,2-Tetrachloroethane 79-34-5 U 0.54 -Chlorotoluene 95-49-8 Ū 0.4 4-Chlorotoluene 106-49-8 U 0.4 1,3-Dichlorobenzene 541-73-1 U 0.4 1,2-Dichlorobenzene 95-50-1 U

0.4

Surrogate Recovery (1-Chloro-2-Fluoro-Benzene): 85% 70% - 130% (QC limits)

QUALIFIERS:

U = Compound analyzed for, but not detected above the Reporting Limit.

B = Compound in blank and sample. Compare blank and sample data.

E = Extrapolated value. Concentration exceeds the upper limit of the calibration.

RL = Reporting Limit (at or above method detection limit).

NOTES: Approved HLW3990.XLS; 11/25/96

Method 601/8010 Chlorinated VOC's Sample Report

Client Sample No. : W72 Client Project No. : 729691.32010 Lab Sample No. : 96-3990-08

Lab Project No. : 96-3990 Date Sampled : 11/08/96 Matrix : WATER

Date Received : 11/11/96 Lab File No. : HALL1118\019F0101 Date Prepared : 11/18/96 Method Blank : RB111896

Date Analyzed : 11/18/96

Dilution Factor : 1.0

Compound	CAS#	Concentration (ug/L)	_RL (ug/L)
Vinyl Chloride	75-01-4	U	0.4
Chloroethane	75-00-3	U	0.4
1,1-Dichloroethene	75-35-4	U	0.4
Dichloromethane	75-09-2	Ü	0.4
trans-1,2-Dichloroethene	156-60-5	Ü	0.4
1,1-Dichloroethane	75-34-3	U	0.4
cis-1,2-Dichloroethene	156-59-4	U	0.4
1,1,1-Trichloroethane	71- 55-6	U	0.4
Carbon Tetrachloride	56-23-5	U	0.4
Trichloroethene	79-01-6	Ū	0.4
1,1,2-Trichloroethane	79-00-5	U	0.4
Tetrachloroethene	127-18-4	Ŭ	0.4
1,1,1,2-Tetrachloroethane	79-00-5	U	0.4
Chlorobenzene	108-90-7	U	0.42
1,1,2,2-Tetrachloroethane	79-34-5	U	0.5
2-Chlorotoluene	95-49-8	U	
4-Chlorotoluene	106-49-8	U	0.4
1,3-Dichlorobenzene	541-73-1	U	0.4
1,2-Dichlorobenzene	95-50-1	U	0.4

Surrogate Recovery (1-Chloro-2-Fluoro-Benzene): 88% 70% - 130% (QC limits)

QUALIFIERS:

U = Compound analyzed for, but not detected above the Reporting Limit.

B = Compound in blank and sample. Compare blank and sample data.

E = Extrapolated value. Concentration exceeds the upper limit of the calibration.

RL = Reporting Limit (at or above method detection limit).

NOTES: Approved HLW3990.XLS; 11/25/96

Method 601/8010 Chlorinated VOC's Sample Report

Client Sample No. : Trip Blank

Client Project No.

: 729691.32010

Lab Sample No.

: 96-3990-09

Lab Project No.

96-3990

Date Sampled **Date Received** : NA

Matrix

WATER

: 11/09/96

Lab File No.

: HALL1118\020F0101

Date Prepared

: 11/18/96

Method Blank

: RB111896

Date Analyzed

: 11/18/96

Dilution Factor

: 1.0

Compound	CAS#	Concentration (ug/L)	RL (ug/L)
Vinyl Chloride	75-01-4	U	0.4
Chloroethane	75-00-3	Ü	0.4
1,1-Dichloroethene	75-35-4	Ü	0.4
Dichloromethane	75-09-2	บ	0.4
trans-1,2-Dichloroethene	156-60-5	Ü	0.4
1,1-Dichloroethane	75-34-3	U	0.4
cis-1,2-Dichloroethene	156-59-4	Ü	0.4
1,1,1-Trichloroethane	71-55-6	Ŭ	0.4
Carbon Tetrachloride	56-23-5	Ū	0.4
Trichloroethene	79-01-6	Ū	0.4
1,1,2-Trichloroethane	79-00-5	U	0.4
Tetrachloroethene	127-18-4	Ü	0.4
1,1,1,2-Tetrachloroethane	79-00-5	ŭ	0.4
Chlorobenzene	108-90-7	ŭ	0.42
1,1,2,2-Tetrachloroethane	79-34-5	Ü	0.54
2-Chlorotoluene	95-49-8	U	0.4
4-Chlorotoluene	106-49-8	ŭ	0.4
1,3-Dichlorobenzene	541-73-1	Ü	0.4
1,2-Dichlorobenzene	95-50-1	ũ	0.4

Surrogate Recovery (1-Chloro-2-Fluoro-Benzene):

78%

70% - 130% (QC limits)

QUALIFIERS:

U = Compound analyzed for, but not detected above the Reporting Limit.

B = Compound in blank and sample. Compare blank and sample data.

E = Extrapolated value. Concentration exceeds the upper limit of the calibration.

RL = Reporting Limit (at or above method detection limit).

NOTES:

Approved

HLW3990.XLS; 11/25/96

Method 8010 Quality Control Samples

11/18/96 Date Performed:

Reference Standard: V832

	_	Method	Method Sample Sample	Samula	Spile	- London	I called I	_	_	•	•	=	
Analyte	Σ			Spike	Dub.	Spike	Spire Amt	200	Sample	Spike Recoveries	-	`	QC Recovery Range
Vinyl Chloride	3			16 908	18 044	47 240	5		Sample	٦;	3	- 1 % - 1 %	Low - High
Chlomethane	*			0000	10.044	17.048	20.0	7.0	82%	82%	87%	28 - 163	5.60 - 32.60
4 4 Distinct	1			16.852	17.301	18.449	20.0	2.6	84%	81%	85%	46 - 137	920 - 27 40
I, I-Dicilordemene	•			16.967	17.135	19.201	20.0	1.0	82%	86%	%96	28 - 167	
Dichloromethane	•			19.389	19.307	19.726	20.0	0.4	826	%26	%66	۱	•
trans-1,2-Dichloroethene	•			16.676	16.507	17.237	20.0	1.0	83%	83%	86%	۱	•
1,1-Dichloroethane	٠			20.436	20.185	21.513	20.0	1.2	102%	101%	108%	٠ ١	•
cis-1,2-Dichloroethene	٠			21.203	20.514	21.552	20.0	3.3	406%	103%	108%	٠ ١	9.40 - 20.40
1,1,1-Trichlomethane	*			21.151	20.698	21.173	20.0	22	106%	103%	406%	44 420	•
Carbon Tetrachloride	*			20.66	19.898	21.854	20.0	38	103%	7000	100%	•	•
Trichloroethene	3			21 399	21 064	22 804	200	4	1070/	02.07	0.601	•	8.50 - 28.50
1.1.2-Trichlomethane	3			21 040	10012	20.404	20.0	2	%/01	%C01	114%	35 - 146	7.00 - 29.20
Tetrachlomethene	•			21.343	41.324	22.131	20.0	0.0	110%	110%	111%	39 - 136	7.80 - 27.20
1 Cuacilloloculeila	1			21.056	19.822	20.891	20.0	6.0	105%	%66	104%	26 - 162	5 20 - 32 40
1,1,1,2-letrachloroethane				20.201	19.398	20.183	20.0	4.1	101%	82%	101%	•	١.
Chlorobenzene	•			20.949	19.881	20.386	20.0	5.2	105%	%66	102%	1 - 150	0.48 20.00
1,1,2,2-Tetrachloroethane	٠			23.623	22.065	22.525	20.0	8.8	118%	110%	113%	787	•
2-Chlorotoluene	*			20.615	19.38	20.854	20.0	6.2	103%	87%	104%	۱ ۱	00.00
4-Chlorotoluene	•			20.152	18.279	21.977	20.0	9.7	101%	91%	110%		
1,3-Dichlorobenzene	*			19.035	18.923	19.267	20.0	9.0	95%	85%	%96	7 - 187	1 40 - 37 40
1,2-Dichlorobenzene	٠			18.104	18.004	19.627	20.0	9.0	91%	%08	%86	٠ ١	٠ ٠
												1	

M = Applicable matrices. (* = Soil and Water. w = Water only.)

= Marks a spike recovery out of limits.

If recovery is outside method limit, marked with "".

If recovery is outside a guideline, marked with "~".

If the sample spike recovery is outside the limit and the control spike is outside the limit also, the control is marked with "*** or "~~".

Notes on recovery limits:

All spiked analytes must be detected even if low limit is 0.

For analytes not listed in the method, recovery limits of 50-150% will be used as guidelines until limits can be established.

Corrective Actions:

Unacceptable sample spike recovery requires acceptable control spike recovery. If both recoveries are outside limits, corrective action Repeated failure requires corrective action. One recovery outside limits and the other acceptable, is a wy ide guidelines should be compared to historical data availai must be 🗘 Recove

Date Performed: 11/20/96

Reference Standard: V832

	-	Method	Method Sample	Sample	Spike	Control	Spike		Š	Spike Recoveries	veries	-	ဗ	Recov	QC Recovery Range	90
Analyte	Σ	Blank		Spike	Dup.	Spike	Amt	RPD	Sample	Dup #	# Control	*	. 1%	- H %	Low .	· High
Vinyl Chloride	}			17.226	18.778	16.256	20.0	8.6	%98	94%	81%		28 -	163	5.60 -	32.60
Chloroethane	٠			19.441	20.379	17.960	20.0	4.7	%26	102%	%06		46 -	137	9.20	27.40
1,1-Dichloroethene	•			20.375	20.645	18.587	20.0	1.3	102%	103%	83%		28 -	167	5.60 -	33.40
Dichloromethane	*			18.521	18.937	16.707	20.0	2.2	% 86	82%	84%		25 -	162	5.00 -	32.40
trans-1,2-Dichloroethene	*			21.022	18.231	22.187	20.0	14.2	105%	91%	111%		38 -	155	7.60	31.00
1,1-Dichloroethane	•			21.856	21.82	19.615	20.0	0.2	109%	109%	%86		- 74	132	9.40 -	26.40
cis-1,2-Dichloroethene	*			21.822	22.318	20.357	20.0	2.2	409%	112%	102%		•		•	
1,1,1-Trichloroethane	*			22.424	22.204	20.021	20.0	1.0	112%	111%	100%		41 -	138	8.20 -	27.60
Carbon Tetrachloride	*			22.141	22.265	20.392	20.0	9.0	111%	111%	102%		43 -	143	8.60 -	28.60
Trichloroethene	≩			23.375	21.741	21.927	20.0	7.2	117%	109%	110%		35 -	146	7.00	29.20
1,1,2-Trichloroethane	}			20.396	20.983	20.658	20.0	2.8	102%	105%	103%		39 -	136	7.80 -	27.20
Tetrachloroethene	٠			21.021	21.906	19.818	20.0	4.1	105%	110%	%66		26 -	162	5.20 -	32.40
1,1,1,2-Tetrachloroethane	٠			19.417	19.696	19.055	20.0	1.4	826	%86	82%		٠		•	
Chlorobenzene	*			20.605	20.827	20.203	20.0	1.1	103%	104%	101%		-	150	0.16 -	30.00
1,1,2,2-Tetrachloroethane	•			16.705	18.018	20.856	20.0	9.7	84%	%06	104%		ω	184	1.60	36.80
2-Chlorotoluene	٠			20.776	20.362	18.851	20.0	2.0	104%	102%	94%	_	•		•	
4-Chlorotoluene	•			19.41	19.097	19.178	20.0	1.6	81%	82%	%96		•		•	
1,3-Dichlorobenzene	٠			18.359	18.772	18.187	20.0	2.2	85%	84%	91%		7 - 1	187	1.40	37.40
1,2-Dichlorobenzene	\exists			17.172 17.6	17.647	15.926	20.0	2.7	86%	88%	80%		0	208	0.00	41.60

M = Applicable matrices. (* = Soil and Water. w = Water only.)

= Marks a spike recovery out of limits.

If recovery is outside method limit, marked with """.

If recovery is outside a guideline, marked with "~".

If the sample spike recovery is outside the limit and the control spike is outside the limit also, the control is marked with "**" or "~~".

Notes on recovery limits:

All spiked analytes must be detected even if low limit is 0.

For analytes not listed in the method, recovery limits of 50-150% will be used as guidelines until limits can be established.

Corrective Actions:

Unacceptable sample spike recovery requires acceptable control spike recovery. If both recoveries are outside limits, corrective action must be taken. One recovery outside limits and the other acceptable, is a waming. Repeated failure requires corrective action. Recoveries outside guidelines should be compared to historical data available to determine if corrective action is required.

Methane Report Form Method Blank Report

Method Blank Number Date Extracted/Prepared

: GB111496

Client Project No.

: 729691.32010

Date Analyzed

: 11/14/96

Lab Work Order

: 96-3990

: 11/14/96

Dilution Factor Method

: 1.00 : RSKSOP-175M

Matrix

: Water

Lab File No.

: GAS1114002

Compound Name	Cas Number	Sample Concentration mg/L	RL mg/L
Methane	74-82-8	U	0.002

Qualifiers

E = Extrapolated value.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

Approved

Methane Report Form

Client Sample Number	: W68	Client Project No.	: 729691.32010
Lab Sample Number	: 96-3990-05	Lab Work Order	: 96-3990
Date Sampled	: 11/8/96	Dilution Factor	: 1.00
Date Received	: 11/9/96	Method	: RSKSOP-175M
Date Extracted/Prepared	: 11/14/96	Matrix	: Water
Date Analyzed	: 11/14/96	Lab File No.	: GAS1114012

Compound Name	Sample Cas Number Concentration mg/L		RL mg/L
Methane	74-82-8	U	0.002

	·					
perature	:	71 F	Saturation	Meth		n
Amount Injected		0.5 ml	Concentration		***	-
Total Volume of Sample	;	43 ml	Concentration	Meth		0
Head space created	:	4 ml	in Head Space			Ť
Methane Area	:	<u>0</u> ug				_
		-				

Atomic weight(Methane) : ______ 16 g

Qualifiers

E = Extrapolated value.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

RL = Reporting Limit.

Not Available/Not Applicable.

Analyst

Anaraud

Methane Report Form

Compound Name	Cas Number	Sample Concentration mg/L	RL mg/L
Methane	74-82-8	U	0.002

Temperature	:	<u>71.1</u> F	Saturation	Meth	
Amount Injected	:	0.5 ml	Concentration		-
Total Volume of Sample	:	43 ml	Concentration	Meth	
Head space created *	:	2.5 ml	in Head Space		
Methane Area	:	<u>0</u> ug			

Atomic weight(Methane) : _____ g

Qualifiers

E = Extrapolated value.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

Approved

^{* =} Could not displace 4mls of water do to sample matrix.

Methane Report Form

Client Sample Number Lab Sample Number Date Sampled Date Received Date Extracted/Prepared	: W74 : 96-3990-07 : 11/8/96 : 11/9/96 : 11/14/96	Client Project No. Lab Work Order Dilution Factor Method Matrix	: 729691.32010 : 96-3990 : 1.00 : RSKSOP-175M : Water
Date Analyzed	: 11/14/96	Lab File No.	: GAS1114014

Compound Name	Cas Number	Sample Concentration mg/L	RL mg/L
Methane	74-82-8	0.031	0.002

perature Comount Injected	:	71.2 F 0.5 ml	Saturation Concentration	Meth	0.007351393
Total Volume of Sample Head space created	:	43 ml	Concentration	Meth	0.023197542
	·	4_ml	in Head Space		
Methane Area	:	170.953 ug			

Atomic weight(Methane) : _____ g

Qualifiers

E = Extrapolated value.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

RL = Reporting Limit.

Not Available/Not Applicable.

Approved

Methane Report Form

Compound Name	Cas Number	Sample Concentration mg/L	RL mg/L
Methane	74-82-8	0.039	0.002

Temperature Amount Injected	:	71.6 F 0.5 ml	Saturation Concentration	Meth	0.0
Total Volume of Sample	:	43 ml	Concentration	Meth	0.0296290
Head space created	:	4 ml	in Head Space		0.0200200
Methane Area	:	218.514 ug			
		- 			

16 g

Qualifiers

E = Extrapolated value.

Atomic weight(Methane)

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

Approved

AF3990.XLS

Evergreen Analytical, Inc. 4036 Youngfield, Wheat Ridge, CO 80033 (303) 425-6021

RSKSOP-175M Gas Method Methane, Ethane, Ethene LCS Report Form

LCS No.

: LCS111496

EPA Method No.

: RSKSOP-175M

Date Prepared

: 11/14/96

Matrix

: Water

Date Analyzed

: 11/14/96

Method Blank

: GB111496

E.A. LCS Source No.

: 1719

Lab File No.

: GAS1114010

Compound	Spike Added (ug)	Method Blank Concentration (ug)	LCS Concentration (ug)	LCS %REC	QC Limits %REC
Methane Gas	500	0	370	74	64-90
Ethene Gas	500	0	213	43	37-58
Ethane Gas	500	0	321	64	53-83

Spike Recovery:

U

out of (3) outside limits.

Note: The LCS was made by taking the sample and displacing 4ml of headspace with a 1% methane, ethane, ethene gas and shaking the VOA for 5 minutes. Then injecting 50 ul from the headspace into the GC resulting in a theoretical concentration of 500 ug.

Notes

* = Values outside of QC limits.

NA = Not analyzed/not available.

Analyst

Approved

LCS1114.XLS; 11/15/96

4036 Youngfield St. Wheat Ridge, CO 80033 (303) 425-6021

Anion Report

Date Sampled Date Received Date Prepared Date Analyzed	: 11/08/96 : 11/09/96 : 11/09/96 : 11/09/96	Lab Project Number Method	:	729691.32010 96-3990 EPA 300.0 0.25 mg/L
---	--	------------------------------	---	---

Evergreen Sample #	Client Sample ID.	<u>Matrix</u>	<u>Chloride</u> mg/L	Dilution <u>Factor</u>
96-3990-05	W68	Water	4.6	1
96-3990-05 Duplicate	W68 Duplicate	Water	4.6	1 .
96-3990-06	W73	Water	2.8	1
96-3990-07	W74	Water	2.0	1
96-3990-08	W72	Water	4.0	1
			,	
Method Blank	(11/09/96)	Water	<0.25	

Quality Assurance

		Spike Amount (mg/L)	Sample Result (mg/L)	Spike Result (mg/L)	% Recovery
96-3990-05	W68 Matrix Spike	10.0	4.6	14.9	103
96-3990-05	W68 Matrix Spike Du	up 10.0	4.6	14.4	98
MS/MSD RP	D				4.8

4036 Youngfield St. Wheat Ridge, CO 80033 (303) 425-6021

Anion Report

Date Sampled Date Received Date Prepared Date Analyzed	: 11/08/96 : 11/09/96 : 11/09/96 : 11/09/96	Lab Project Number Method	: :	EPA 300.0
Date Allalyzeu	: 11/09/90	Detection Limit	:	0.076 mg/L

Evergreen Sample #	Client Sample ID.	<u>Matrix</u>	<u>Nitrite-N</u> mg/L	Dilution <u>Factor</u>
96-3990-05	W68	Water	<0.076	1
96-3990-05 Duplicate	W68 Duplicate	Water	<0.076	1
96-3990-06	W73	Water	<0.076	1
96-3990-07	W74	Water	<0.076	1
96-3990-08	W72	Water	<0.076	1
Method Blank	(11/09/96)	Water	<0.076	

Quality Assurance *

		Spike Amount (mg/L)	Sample Result (mg/L)	Spike Result (mg/L)	% Recovery
96-3990-05	W68 Matrix Spike	10.0	<0.25	9.8	98
96-3990-05	W68 Matrix Spike Du	ир 10.0	<0.25	9.6	96
MS/MSD RP	D				1.7

Quality assurance results reported as Nitrite (NO₂).

/// /fole
Analyst

4036 Youngfield St. Wheat Ridge, CO 80033 (303) 425-6021

Anion Report

Date Sampled Date Received Date Prepared Date Analyzed	: 11/08/96 : 11/09/96 : 11/09/96 : 11/09/96	Client Project ID. : 729691.32010 Lab Project Number : 96-3990 Method : EPA 300.0 Detection Limit : 0.056 mg/L
--	--	---

Evergreen Sample #	Client Sample ID.	<u>Matrix</u>	<u>Nitrate-N</u> mg/L	Dilution <u>Factor</u>
96-3990-05	W68	Water	2.1	1
96-3990-05 Duplicate	W68 Duplicate	Water	. 2.1	1
96-3990-06	W73	Water	1.1	1
96-3990-07	W74	Water	1.0	1
96-3990-08	W72	Water	0.12	1
Method Blank	(11/09/96)	Water	<0.056	

Quality Assurance *

		Spike Amount (mg/L)	Sample Result (mg/L)	Spike Result (mg/L)	% Recovery
96-3990-05	W68 Matrix Spike	10.0	9.2	19.3	101
96-3990-05	W68 Matrix Spike Du	p 10.0	9.2	19.1	99
MS/MSD RP	D				1.9

^{* =} Quality assurance results reported as Nitrate (NO₃).

Analyst

4036 Youngfield St. Wheat Ridge, CO 80033 (303) 425-6021

Anion Report ...

Date Sampled Date Received Date Prepared Date Analyzed	: 11/08/96 : 11/09/96 : 11/09/96 : 11/09/96	Lab Project Number Method	:	729691.32010 96-3990 EPA 300.0 0.25 mg/L
--	--	------------------------------	---	---

Evergreen Sample #	Client Sample ID.	<u>Matrix</u>	<u>Sulfate</u> mg/L	Dilution <u>Factor</u>
96-3990-05	W68	Water	1.7	1
96-3990-05 Duplicate	W68 Duplicate	Water	1.7	1
96-3990-06	W73	Water	2.2	1
96-3990-07	W74	Water	1.3	1
96-3990-08	W72	Water	, 2.4	1
Method Blank	(11/09/96)	Water	<0.25	

Quality Assurance

		Spike Amount (mg/L)	Sample Result (mg/L)	Spike Result (mg/L)	% Recovery
96-3990-05	W68 Matrix Spike	10.0	1.7	10.9	93
96-3990-05	W68 Matrix Spike Du	up 10.0	1.7	10.8	91
MS/MSD RP	D				2.1

Analyst

4036 Youngfield St. Wheat Ridge, CO 80033 (303) 425-6021

Total Recoverable Petroleum Hydrocarbons

Date Sampled : 11/7,8/96

Client Project ID.

: 729691-32010

Date Received

: 11/8/96

Lab Project Number: 96-3990

Date Prepared

: 11/13/96

Method

Soil

Soil

Soil

: EPA 418.1

Date Analyzed

: 11/13/96

Evergreen Client Sample # Sample ID.

96-3990-01 ST24-MPC (10'-12')

96-3990-02 LF6-MPJ (18')

96-3990-03 ST24-MPF (16'-18') 96-3990-03 ST24-MPF (16'-18')

Duplicate Duplicate 96-3990-04 ST24-MPD (10'-12') **Matrix TRPH** Units

< 3.6 mg/Kg Soil < 3.9 mg/Kg

> < 3.7 mg/Kg

> > mg/Kg

Soil < 3.7 mg/Kg

<3.7

Method Blank (11/13/96) subtracted

3.4 mg/Kg

Results reported on a dry weight basis.

Analyst

4036 Youngfield St. Wheat Ridge, CO 80033 (303) 425-6021

Total Organic Carbon

Date Sampled Date Received Date Prepared Date Analyzed	: 11/9/96 : 11/11/96	Lab Project Number Method	:	729691-32010 96-3990 EPA 415.1 1.0 mg C/L
Date Analyzed	: 11/11/96	Detection Limit	:	1.0 mg C/L

Evergreen Sample #	Client Sample ID.	<u>Matrix</u>	TOC (r	Dilution mg C/L) <u>Factor</u>
96-3990-05	W68	Water	<1.0	1
96-3990-06	W73	Water	3.8	1
96-3990-07	W74	Water	<1.0	. 1
96-3990-07 Duplicate	W74 Duplicate	Water	<1.0 ,	. 1

Method Blank (11/11/96)

<1.0

Quality Assurance

		Spike Amount (mgC/L)	Sample Result (mgC/L)	Spike Result (mgC/L)	% Recovery
96-3990-07	W74 Matrix Spike	10.0	<1.0	10.5	105
96-3990-07	W74 Matrix Spike Do	10.0 up	<1.0	11.2	112
MS/MSD RP	D		•		6.8

Analyst

HUFFMAN

LABORATORIES, INC.

Quality Analytical Services Since 1936

4630 Indiana Street • Golden, CO 80403 Phone: (303) 278-4455 • FAX: (303) 278-7012 DATE 12/4/06

DEC 0 1996

LAB# 234 P.O. SEE CD 11/20/96

ANALYSIS REPORT

PATTY MC CLELLEN EVERGREEN ANALYTICAL, INC 4036 YOUNGFIELD STREET WHEAT RIDGE CO 80033

P.O. # 013549 & 013550/PROJ 96-3990 & 96-3996

SEQUENCE/ 01 02 03
SAMPLE ID LF6-MPJ (18') LF6-MPL (14-18) ST24-MPF(16-18)

CARBONATE C---% - - - <0.02 - - - - <0.02 - - - - <0.02
TOTAL CARBON--% - - <0.05 - - - - <0.05 - - - - <0.05
ORGANIC C----% - - <0.05 - - - - <0.05

THE SAMPLES ARE NOT HOMOGENEOUS.

CUSTOMER #:

02604

LABORATORIES, INC.

Quality Analytical Services Since 1936

4630 Indiana Street • Golden, CO 80403 Phone: (303) 278-4455 • FAX: (303) 278-7012 DATE 12/4/96 LAB# 234196 P.O. SEE BELC RECD 11/20/96

ANALYSIS REPORT

PATTY MC CLELLEN EVERGREEN ANALYTICAL, INC 4036 YOUNGFIELD STREET WHEAT RIDGE CO 80033

P.O. # 013549 & 013550/PROJ 96-3990 & 96-3996

	96-3990-02	96-3996-09	96-3990-03
SEQUENCE/ SAMPLE ID	01 LF6-MPJ (18')	02 LF6-MPL (14-18)	03 ST24-MPF(16-18)
CARBONATE C \$ TOTAL CARBON \$ ORGANIC C \$			
SAMPLES ARE	NOT HOMOGENEOUS.		
Percent Moisture	15.3%	14.09%	10.6%
Dn Wt. Result	< D.06	< 0.06	۷0.06

4036 Youngfield St. Wheat Ridge, CO 80033 (303) 425-6021

Analysis Report

 Date Sampled
 : 11/8/96
 Client Project ID.
 : 729691-32010

 Date Received
 : 11/9/96
 Lab Project Number
 : 96-3990

 Date Prepared
 : 11/14/96
 Method
 : EPA 310.1

 Date Analyzed
 : 11/14/96
 Detection Limit
 : 5.0 mg CaCO₃/L

Evergreen Sample #	Client Sample ID.	<u>Matrix</u>	Total <u>Alkalinity</u> (mg CaCO ₃ /L)	Dilution <u>Factor</u>
96-3990-05	W68	Water	<5.0	1
96-3990-06	W73	Water	7.2	1
96-3990-07	W74	Water	<5.0	1
96-3990-07 Duplicate	W74 Duplicate	Water	<5.0	1

Method Blank (11/14/96)

< 5.0

Quality Assurance

Reference	<u>True Value</u> (mgCaCO ₃ /L)	<u>Result</u> (mgCaCO ₃ /L)	% Recovery
ERA Minerals	120	112	94

Lot # 0725-96-11

Analyst

WORK ORDER Summary

Report To: Dave Moutoux

Parsons Engineering Science 1700 Broadway Suite 900 Denver, CO 80290

18-Nov-96

Client Project ID: 729691-32010

Phone: (303) 831-8100 **FAX:** (303) 831-8208

Comments:

Sample ID	Client Sample ID	Analysis	#	Matrix	ន្ត	Collection	Received	Due	HT
96-3996-09A	LF6-MPL(14-18)	% Moisture for dry weight calculation		Soil	⊼	09-Nov-96	11-Nov-96	25-Nov-96	07-Dec-96
96-3996-02K	W69	Anions by IC CI,NO2,NO3,SO4		Groundwater		10-Nov-96		25-Nov-96	12-Nov-96
96-3996-03K	W71	Anions by IC CI,NO2,NO3,SO4						25-Nov-96	12-Nov-96
96-3996-04K	TLM	Anions by IC CI,NO2,NO3,SO4						25-Nov-96	12-Nov-96
96-3996-06K	W70	Anions by IC CI,NO2,NO3,SO4						25-Nov-96	12-Nov-96
96-3996-08K	ST24 MPKS	Anions by IC CI,NO2,NO3,SO4						25-Nov-96	12-Nov-96
96-3996-01A	W75	BTEX (Parsons List)			2.			25-Nov-96	24-Nov-96
96-3996-02A	W69	BTEX (Parsons List)						25-Nov-96	24-Nov-96
96-3996-03A	W71	BTEX (Parsons List)						25-Nov-96	24-Nov-96
96-3996-04A	77W	BTEX (Parsons List)						25-Nov-96	24-Nov-96
96-3996-06A	W70	BTEX (Parsons List)						25-Nov-96	24-Nov-96
96-3996-08A	ST24 MPKS	BTEX (Parsons List)						25-Nov-96	24-Nov-96
96-3996-09A	LF6-MPL(14-18)	BTEX (Parsons List)		Soil	ום	09-Nov-96		25-Nov-96	23-Nov-96
369-966-96	LF6-MPL(14-18) MS	BTEX (Parsons List)						25-Nov-96	23-Nov-96
O60-966E-96	LF6-MPL(14-18) MSD	BTEX (Parsons List)						25-Nov-96	23-Nov-96
96-3996-02H	W69	Methane		Groundwater	2	10-Nov-96		25-Nov-96	24-Nov-96
HE0-966E-96	W71	Methane						25-Nov-96	24-Nov-96
96-3996-04H	W77	Methane						25-Nov-96	24-Nov-96
H90-966E-96	W70	Methane						25-Nov-96	24-Nov-96

= Special list. See sample comments or test information. HT = Holding Time expiration date.

Evergreen Analytical, Inc.

WORK ORDER Summary

Report To: Dave Moutoux

Parsons Engineering Science 1700 Broadway Suite 900 Denver, CO 80290

Comments:

18-Nov-96

Client Project ID: 729691-32010

Phone: (303) 831-8100 **FAX:** (303) 831-8208

Sample ID	Client Sample ID	Analysis	#					
H80-966E-96	ST24 MPKS	Mathons	# Matrix	Loc	Collection	Received	Due	HT
96-3996-01E	W75	Modulatic	Groundwater	r 2	10-Nov-96	11-Nov. 06	20.30	
2005 2006		Furgeable Halocarbons 8010		٥		00-101-1	06-40N-C7	24-Nov-96
370-0666-06	W69	Purgeable Halocarbons 8010					25-Nov-96	24-Nov-96
96-3996-03E	W71	Purgeable Halocarbons 8010					25-Nov-96	24-Nov-96
96-3996-04E	W77	Purgeable Halocarbons 8010					25-Nov-96	24-Nov-96
96-3996-05A	Field Blank-1	Purpeable Halocarbons 6010					25-Nov-96	24-Nov-96
96-3996-06E	W70	Purgeable Halocarbons 8010	Water				25-Nov-96	24-Nov-96
96-3996-07A	Trip Blank-2	Purgeable Halocarbone 0010	Groundwater				25-Nov-96	24-Nov-96
96-3996-08E	ST24 MPKS	Purgeable Halocathe conto	Water				25-Nov-96	24-Nov-96
96-3996-09A	LF6-MPL(14-18)	Purashle Usland	Groundwater				25-Nov-96	24-Now-06
36-3996-09C	LF6-MPL(14-18) MS	Phreealle University	Soil	ΙΩ	09-Nov-96		1	23-Nov-96
O60-966-96	LF6-MPL(14-18) MSD	Purashly Usiani						23-Nov-06
96-3996-08K	ST24 MPKS	Time gravite Halocarbons 8010					1	22-1101-50
96.300K 00D	177	10tal Alkalinity	Groundwater		10-Moy 06		ł	73-Nov-96
040-046-04D	Lro-MPL(14-18)	Total Alkalinity	17.00		06-404-00		25-Nov-96	24-Nov-96
780-966-96	ST24 MPKS	Total Organic Carbon	1100		09-Nov-96		25-Nov-96	07-Dec-96
96-3996-09B	LF6-MPL(14-18)	Total Organic Carbon	Groundwater		10-Nov-96		1	08-Dec-96
		TRPH	Soil		96-voN-60		ļ	16-Nov-96
96-3996-01A	W75	TVH (Gasoline)				•	ļ	07-Dec-96
96-3996-02A	W69	TVH (Gasoline)	Groundwater	7	10-Nov-96		l	24-Nov-96
96-3996-03A	W71	TVH (Gasoline)					04.Nov.06 2	24-Nov-96
96-3996-04A	W77	TVH (Gasoline)					25-Nov-96 2	24-Nov-96
96-3996-06A	W70	TVH (Gasoline)					25-Nov-96 2	24-Nov-96
8A	ST24 MPKS	TVH (Gasoline)					25-Nov-96 2	24-Nov-96
# = Speci	See sample comments or test information	information					25-Nov-96	96-1
	ime expiration date.					<u>d</u>	Page 2c	

ALYTICAL SERVICES REQUEST CHAIN OF CUSTODY RECORD /

		0	
_	_		
		B	•
•	Ų	•	

Evergreen Arralytical Inc. ADDRESS 1700 Broadway Suit 900 COMPANY PAYSONS ES

FAX # (303) 831- 8208

ZIP 80 290

STATE CO

CITY LEPINEY

(303) 831-8100

PHONE#_

(signature) Service Plante

Sampler Name:

Wheat Ridge, Colorado 80033 (303) 425-6021 FAX (303) 425-6854 (800) 845-7400 FAX RESULTS Y / N 4036 Youngfield St.

EAL. QUOTE #_

CLIENT CONTACT (print) Jenny Hart Felder CLIENT PROJ. I.D. 729691. 32010

PO.# 729691. 32010 TURNAROUND REQUIRED* 🎉 STD (2 wks) 🛚 UST

Other (Specify)* expedited turnaround subject to additional fee

For Laboratory	W.O. # Gle. 3996 B.O.E. # ANA W.O. C/S (0) NIA W.O. C/S (0) Sign C/S (1) C/S () . Q	Samples Pres. (Orto). Headspace Y/ (Orto).		02	1 C	700	שע	70	00	0.0			6	7777X				1,000
	وم ا		MSMS[1								\$		12. 12. 12. 12.					and hive Cinna
	5158 NO3, Sy	500 4 2007	Migns C	V	×	×	×		 > >		X	< ^{'%}	Į.	4 P	4 5	3			Date/Time Receiv
JESTED	948WS / Wole	7,700	Circle & list of the Circle &		/×	X	×	Ž 	1>	√ ××××××××××××××××××××××××××××××××××××	< >	\X X	1		3 3	M			Date
ANALYSIS REQUESTED	PDES / SW846	nod. (Di DW / N netals h	Total Metals- circle & list r																Vanature)
ANALY	e)/MTBE (circle)	US (circil	Herbicides 8 BTEX(802) BYPH 8015n TPPH 8015n	×	×	×	×		×		×	××		A8 (44)		S TANSIAM S			Date/IIMe Helinquished by: (<i>Signature</i>)
	(eircle) 802/8 (circle)	309/0808	PCB Screen Pest/PCBs 8																nevinne i Heim
	101	24/524. 325 (circ	8/0026 BNA 8270/6													الادرادة المالية	The last	-	- -
MATRIX	as phase	Air / G: -isluM \	Water-Drink (circle) Goil Solid A Sludge									×		Sample Fraction		Solo son plane	1700	Signature	(A.M.M.)
	C bruony/egrend		No. of Cont	7 X	<u>~</u> =	×	<u> </u>	<u>ح</u> ک	<u>۷</u>	×	12 X		=	nple F	Container	⊗		ed by: (
			TIME	0645	02450	388	030		1345		1510	900 2		Sar	Sor	A CISM	1 3	Date/Time Received by: (Signature)	
-Felder	F	ation:	DATE SAMPLED	96/01/11	11/10/96	11/10/96	11/10/96	1/10/96/11/2	11/10/46	11/10/96	11/10/96	11/9/96				MS	[=		
(print) Jeon fer Hartfelder	N d aseald	all information:	CLIENT SAMPLE IDENTIFICATION	W 75	_	FA	443	Field Blank-1	A.A.	Trip Blank-2,	STZYMPKS	LFG-MPL(14-18)			Instructions:	1. F(0- MPL (14-18)	Charles to the state	Relinquished by: (Signature)	

Date/Time 26))]

Date/Time | Received by: (Signature)

Date/Time Relinquished by: (Signature)

RUSH Y N

Project Revision Notice New Project Request

Date: 11/11/96 Time:	3:00 Project # 96-3996	· .
Start new project: Y N		
Reason for revision:		"···
: Due Date Modi	fied	
Method Revision	on .	
Additional ana	alyses requested on original project	
Miscellaneous	(specify): Analyze ms/msD for sample LFG-MH (14.18),	
Description of changes: All	samples should be 8010 not 82	60
		480
Client Name: Avacos 35	Client Contact: Jenn Hartfe	lder
EAL Contact: Lathy	Due Date:	
* Only include additional anal is still open.	lyses on original project if the proje	
SX.REC X QA/QC X SALES_	MSM _X_FILE_(orig)	
	·	<u>-</u>

Originator must identify persons to receive the Notice/Request.

Methods 602/8020 and 5030/8015 Modified Data Report Method Blank Report

Method Blank Number

: MB1111396

Client Project Number

729691.32010

Date Prepared

: 11/13/96

Lab Work Order

96-3996

Dilution Factor

: 1.0

Matrix

WATER

Lab File Number

TVB11113005

•		Analysis	Sample		
Compound Name	Cas Number	Date	Concentration	RL	Units
TVH-Gasoline		11/13/96	U	0.1	mg/L
Benzene	71-43-2	11/13/96	11	0.4	ug/L
Toluene	108-88-3	11/13/96	11	0.4	†
Chlorobenzene	108-90-7	11/13/96	11	0.4	ug/L
Ethyl Benzene	100-41-4	11/13/96		0.4	ug/L
Total Xylenes (m,p,o)	1330-20-7	11/13/96		0.4	ug/L
1,3,5-Trimethylbenzene	108-67-8	11/13/96		0.4	ug/L
1,2,4-Trimethylbenzene	95-63-6	11/13/96	11	0.4	ug/L
1,2,3-Trimethylbenzene	526-73-8	11/13/96	U		ug/L
1,2,3,4-Tetramethylbenzene	488-23-3	11/13/96	U	0.4	ug/L
			U	0.5	ug/L
FID Surrogate Recovery:		100%		FO0/ 1500/	(1.1.1.1
ID Surrogate Recovery:	·	108%	***************************************	50%-150% 50%-150%	(Limits) (Limits)

Notes: Total Xylenes consist of three isomers, two of which co-elute. The Xylene RL is for a single peak.

Comments:

QUALIFIERS and DEFINITIONS:

E = Extrapolated value. Value exceeds calibration range.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

J = Indicates an estimated value when the compound is detected, but is below the Reporting Limit.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

PID = Photoionization detector.

FID = Flame ionization detector.

TVH = Total Volatile Hydrocarbons.

V. Dune Mulls
Analyst

Methods 602/8020 and 5030/8015 Modified Data Report Method Blank Report

Method Blank Number

: MB1111496

Client Project Number

729691.32010

Date Prepared

: 11/14/96

Lab Work Order

96-3996

Dilution Factor

: 1.0

Matrix

WATER

Lab File Number

TVB11113029

Compound Name		Analysis	Sample		
TVH-Gasoline	Cas Number	Date	Concentration	RL	Units
***************************************		11/14/96	11	0.1	-
Benzene	71-43-2	11/14/96			mg/l
Toluene	108-88-3	11/14/96	U	0.4	ug/L
Chlorobenzene	108-90-7	11/14/96	U	0.4	ug/L
Ethyl Benzene	100-41-4	********	U	0.4	ug/L
Total Xylenes (m,p,o)	1330-20-7	11/14/96	U	0.4	ug/L
1,3,5-Trimethylbenzene	108-67-8	11/14/96	<u>U</u>	0.4	ug/L
1,2,4-Trimethylbenzene		11/14/96	U	0.4	ug/L
1,2,3-Trimethylbenzene	95-63-6	11/14/96	U	0.4	ug/L
1,2,3,4-Tetramethylbenzene	526-73-8	11/14/96	U	0.4	ug/L
1,2,0,4 redametrybenzene	488-23-3	11/14/96	U	0.5	ug/L
ID Surrogate Recovery:				***************************************	
PID Surrogate Recovery:	***************************************	102%		50%-150%	1
D currogate necovery:		102%		50%-150%	

Notes: Total Xylenes consist of three isomers, two of which co-elute. The Xylene RL is for a single peak.

Comments:

QUALIFIERS and DEFINITIONS:

E = Extrapolated value. Value exceeds calibration range.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

J = Indicates an estimated value when the compound is detected, but is below the Reporting Limit.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

PID = Photoionization detector.

FID = Flame ionization detector.

TVH = Total Volatile Hydrocarbons.

Methods 602/8020 and 5030/8015 Modified Data Report

Client Sample Number : W75

: 96-3996-01

Client Project Number

729691.32010

Lab Sample Number Date Sampled

: 11/10/96

Lab Work Order Matrix

96-3996 WATER

Date Received

: 11/11/96

Lab File Number(s)

TVB11113012,31

Date Prepared

: 11/13,14/96 : 50 Method Blank

MB1111496

FID Dilution Factor

: 50

MB1111396

PID Dilution Factor : 50; 5.0

Con Normalism	Analysis	Sample		
Cas Number	Date	Concentration	RL	Units
***************************************	11/14/96	26	5.0	mg/L
71-43-2	11/14/96	220	20	ug/L
108-88-3	11/14/96	2700	• • • • • • • • • • • • • • • • • • • •	ug/L
108-90-7	11/13/96	U		ug/L
100-41-4	11/14/96	470	***************************************	ug/L
1330-20-7	11/14/96	2400		ug/L
108-67-8	11/14/96	960	***************************************	······
95-63-6	*******		************************	ug/L
526-73-8			************************	ug/L
488-23-3	******	290		ug/L ug/L
***************************************			20	ug/L
D Surrogate Recovery: 103%				
***************************************		98 44 B 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		(Limits) (Limits)
	108-88-3 108-90-7 100-41-4 1330-20-7 108-67-8 95-63-6 526-73-8	Cas Number Date 11/14/96 71-43-2 11/14/96 108-88-3 11/14/96 108-90-7 11/13/96 100-41-4 11/14/96 1330-20-7 11/14/96 108-67-8 11/14/96 95-63-6 11/14/96 526-73-8 11/14/96	Cas Number Date Concentration 11/14/96 26 71-43-2 11/14/96 220 108-88-3 11/14/96 2700 108-90-7 11/13/96 U 100-41-4 11/14/96 470 1330-20-7 11/14/96 2400 108-67-8 11/14/96 960 95-63-6 11/14/96 2700 526-73-8 11/14/96 670 488-23-3 11/14/96 290	Cas Number Date Concentration RL 11/14/96 26 5.0 71-43-2 11/14/96 220 20 108-88-3 11/14/96 2700 20 108-90-7 11/13/96 U 2.0 100-41-4 11/14/96 470 20 1330-20-7 11/14/96 2400 20 108-67-8 11/14/96 960 20 95-63-6 11/14/96 2700 20 526-73-8 11/14/96 670 20 488-23-3 11/14/96 290 25 103% 50%-150%

Notes: Total Xylenes consist of three isomers, two of which co-elute. The Xylene RL is for a single peak.

Comments:

QUALIFIERS and DEFINITIONS:

E = Extrapolated value. Value exceeds calibration range.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

J = Indicates an estimated value when the compound is detected, but is below the Reporting Limit.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

PID = Photoionization detector.

FID = Flame ionization detector.

¥H = Total Volatile Hydrocarbons.

Analyst

AnClella

Methods 602/8020 and 5030/8015 Modified Data Report

Client Sample Number : W69 Client Project Number : 729691.32010
Lab Sample Number : 96-3996-02 Lab Work Order : 96-3996

 Lab Sample Number
 : 96-3996-02
 Lab Work Order
 : 96-3996

 Date Sampled
 : 11/10/96
 Matrix
 : WATER

 Date Received
 : 11/11/96
 Lab File Number(s)
 : TVB11113013

 Date Prepared
 : 11/13/96
 Method Blank
 : MB1111396

FID Dilution Factor : 1.0
PID Dilution Factor : 1.0

		Analysis	Sample		ī
Compound Name	Cas Number	Date	Concentration	RL	Units
TVH-Gasoline		11/13/96	U	0.1	mg/L
Benzene	71-43-2	11/13/96	U	0.4	ug/L
Toluene	108-88-3	11/13/96	U	0.4	ug/L
Chlorobenzene	108-90-7	11/13/96	U	0.4	ug/L
Ethyl Benzene	100-41-4	11/13/96	U	0.4	ug/L
Total Xylenes (m,p,o)	1330-20-7	11/13/96	U	0.4	ug/L
1,3,5-Trimethylbenzene	108-67-8	11/13/96	U	0.4	ug/L
1,2,4-Trimethylbenzene	95-63-6	11/13/96	U	0.4	ug/L
1,2,3-Trimethylbenzene	526-73-8	11/13/96	U	0.4	ug/L
1,2,3,4-Tetramethylbenzene	488-23-3	11/13/96	U	0.5	ug/L
FID Surrogate Recovery:		98%		50%-150%	
PID Surrogate Recovery:		96%		50%-150%	(Linus)

Notes: Total Xylenes consist of three isomers, two of which co-elute. The Xylene RL is for a single peak.

Comments:	
	_

QUALIFIERS and DEFINITIONS:

E = Extrapolated value. Value exceeds calibration range.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

J = Indicates an estimated value when the compound is detected, but is below the Reporting Limit.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

PID = Photoionization detector.

FID = Flame ionization detector.

TVH = Total Volatile Hydrocarbons.

Deane Muls
Analyst

Methods 602/8020 and 5030/8015 Modified Data Report

Client Sample Number

: W71

Client Project Number

729691.32010

Lab Sample Number

: 96-3996-03

Lab Work Order

96-3996

Date Sampled Date Received

: 11/10/96

Matrix

WATER

Date Prepared

: 11/11/96

Lab File Number(s)

TVB11113020,41 MB1111496

FID Dilution Factor

: 11/13,14/96 : 20

Method Blank

PID Dilution Factor

: 20; 5.0

MB1111396

		Analysis	Sample		
Compound Name	Cas Number	Date	Concentration	RL	Units
TVH-Gasoline		11/14/96	10	2.0	mg/L
Benzene	71-43-2	11/14/96	140	8.0	ug/L
Toluene	108-88-3	11/14/96	600	8.0	ug/L
Chlorobenzene	108-90-7	11/13/96	U	2.0	ug/L
Ethyl Benzene	100-41-4	11/14/96	420	8.0	ug/L
Total Xylenes (m,p,o)	1330-20-7	11/14/96	980	8.0	ug/L
1,3,5-Trimethylbenzene	108-67-8	11/14/96	310	8.0	ug/L
1,2,4-Trimethylbenzene	95-63-6	11/14/96	1200	8.0	ug/L
1,2,3-Trimethylbenzene	526-73-8	11/14/96	350	8.0	ug/L
1,2,3,4-Tetramethylbenzene	488-23-3	11/14/96	150	10	ug/L
		***************************************	***************************************		
5 Surrogate Recovery:		97%	<u> </u>	50%-150%	(Limits)
PID Surrogate Recovery:		97%; 98%	************************************	50%-150%	(Limits)

Notes: Total Xylenes consist of three isomers, two of which co-elute. The Xylene RL is for a single peak.

Comments:	

QUALIFIERS and DEFINITIONS:

E = Extrapolated value. Value exceeds calibration range.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

J = Indicates an estimated value when the compound is detected, but is below the Reporting Limit.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

PID = Photoionization detector.

FID = Flame ionization detector.

(H = Total Volatile Hydrocarbons.

Methods 602/8020 and 5030/8015 Modified Data Report

Client Sample Number : W77 Client Project Number 729691.32010 Lab Sample Number : 96-3996-04 Lab Work Order

96-3996 Date Sampled : 11/10/96 Matrix **WATER Date Received**

: 11/11/96 Lab File Number(s) TVB11113030 Date Prepared : 11/14/96 Method Blank MB1111496

FID Dilution Factor : 1.0 PID Dilution Factor : 1.0

Compound Name	Cas Number	Analysis Date	Sample Concentration	RL	Units
TVH-Gasoline		11/14/96	0.1	0.1	
Benzene	71-43-2	11/14/96	23		mg/L
Toluene	108-88-3	11/14/96	23	0.4	ug/L
Chlorobenzene	108-90-7	11/14/96	U	0.4	ug/L
Ethyl Benzene	100-41-4	*******	<u>U</u>	0.4	ug/L
Total Xylenes (m,p,o)	1330-20-7	11/14/96	<u>U</u>	0.4	ug/L
1,3,5-Trimethylbenzene	108-67-8	11/14/96	U	0.4	ug/L
1,2,4-Trimethylbenzene		11/14/96	U	0.4	ug/L
1,2,3-Trimethylbenzene	95-63-6	11/14/96	U	0.4	ug/L
	526-73-8	11/14/96	U	0.4	ug/L
1,2,3,4-Tetramethylbenzene	488-23-3	11/14/96	11	0.5	ug/L
FID Surrogate Becovery	_1			***************************************	
FID Surrogate Recovery:	***************************************	103%		50%-150%	•
PID Surrogate Recovery:		103%		50%-150%	(Linnes)

Notes: Total Xylenes consist of three isomers, two of which co-elute. The Xylene RL is for a single peak.

Comments:		
	•	

QUALIFIERS and DEFINITIONS:

E = Extrapolated value. Value exceeds calibration range.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

J = Indicates an estimated value when the compound is detected, but is below the Reporting Limit.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

PID = Photoionization detector.

FID = Flame ionization detector.

TVH = Total Volatile Hydrocarbons.

Methods 602/8020 and 5030/8015 Modified Data Report

Client Sample Number : W70 Client Project Number
Lab Sample Number : 96-3996-06 Lab Work Order

 Date Received
 : 11/11/96
 Lab File Number(s)
 : TVB11113034,43

 Date Prepared
 : 11/14/96
 Method Blank
 : MB1111496

FID Dilution Factor : 50 PID Dilution Factor : 50; 5.0

		Analysis	Sample		
Compound Name	Cas Number	Date	Concentration	RL	Units
TVH-Gasoline		11/14/96	26	5.0	mg/L
Benzene	71-43-2	11/14/96	190	20	ug/L
Toluene	108-88-3	11/14/96	2700	20	ug/L
Chlorobenzene	108-90-7	11/14/96		2.0	ug/L
Ethyl Benzene	100-41-4	11/14/96	480	20	ug/L
Total Xylenes (m,p,o)	1330-20-7	11/14/96	2500	20	ug/L
1,3,5-Trimethylbenzene	108-67-8	11/14/96	950	20	ug/L
1,2,4-Trimethylbenzene	95-63-6	11/14/96	2700	20	ug/L
1,2,3-Trimethylbenzene	526-73-8	11/14/96	670	20	ug/L
1,2,3,4-Tetramethylbenzene	488-23-3	11/14/96	280	25	ug/L
5 Surrogate Recovery:					
	***************************************	101%	************************	50%-150%	(Limits)
PID Surrogate Recovery:		101%; 98%		50%-150%	(Limits)

Notes: Total Xylenes consist of three isomers, two of which co-elute. The Xylene RL is for a single peak.

Comments:	

QUALIFIERS and DEFINITIONS:

E = Extrapolated value. Value exceeds calibration range.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

J = Indicates an estimated value when the compound is detected, but is below the Reporting Limit.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

PID = Photoionization detector.

FID = Flame ionization detector.

H = Total Volatile Hydrocarbons.

Hill Mun Analyst

Approved

729691.32010

Methods 602/8020 and 5030/8015 Modified Data Report

Lab Sample Number: 96-3996-07Lab Work Order: 96/3996Date Sampled: NAMatrix: V TER

 Date Received
 : 11/11/96
 Lab File Number(s)
 : TVB11113042

 Date Prepared
 : 11/14/96
 Method Blank
 : MB1111496

FID Dilution Factor : 1.0
PID Dilution Factor : 1.0

		Analysis	Sample		
Compound Name	Cas Number	Date	Concentration	RL	Units
TVH-Gasoline		11/14/96	U	0.1	mg/L
Benzene	71-43-2	11/14/96	ľ	0.4	ug/L
Toluene	108-88-3	11/14/96	Ü	0.4	ug/L
Chlorobenzene	108-90-7	11/14/96	U	0.4	ug/L
Ethyl Benzene	100-41-4	11/14/96	U	0.4	ug/L
Total Xylenes (m,p,o)	1330-20-7	11/14/96	U	0.4	ug/L
1,3,5-Trimethylbenzene	108-67-8	11/14/96	Ü	0.4	ug/L
1,2,4-Trimethylbenzene	95-63-6	11/14/96	Ü	0.4	ug/L
1,2,3-Trimethylbenzene	526-73-8	11/14/96	Ü	0.4	ug/L
1,2,3,4-Tetramethylbenzene	488-23-3	11/14/96	U	0.5	ug/L
FID Surrogate Recovery:		101%		50%-150%	
PID Surrogate Recovery:	***************************************	98%		50%-150%	Lin.

Notes: Total Xylenes consist of three isomers, two of which co-elute. The Xylene RL is for a single peak.

Comments:	•

QUALIFIERS and DEFINITIONS:

E = Extrapolated value. Value exceeds calibration range.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

J = Indicates an estimated value when the compound is detected, but is below the Reporting Limit.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

PID = Photoionization detector.

FID = Flame ionization detector.

TVH = Total Volatile Hydrocarbons.

Methods 602/8020 and 5030/8015 Modified Data Report

Client Sample Number : ST24MPKS Client Project Number 729691.32010 Lab Sample Number : 96-3996-08 Lab Work Order 96-3996 Date Sampled : 11/10/96 Matrix WATER **Date Received** : 11/11/96 Lab File Number(s) TVB11113035

Date Prepared : 11/14/96 Method Blank : FID Dilution Factor : 1.0
PID Dilution Factor : 1.0

_		Analysis	Sample		
Compound Name .	Cas Number	Date	Concentration	RL	Units
TVH-Gasoline		11/14/96	U	0.1	mg/L
Benzene	71-43-2	11/14/96	11	0.4	ug/L
Toluene	108-88-3	11/14/96		0.4	ug/L ug/L
Chlorobenzene	108-90-7	11/14/96		0.4	ug/L ug/L
Ethyl Benzene	100-41-4	11/14/96		0.4	ug/L ug/L
Total Xylenes (m,p,o)	1330-20-7	11/14/96	11	0.4	ug/L ug/L
1,3,5-Trimethylbenzene	108-67-8	11/14/96		0.4	ug/L ug/L
1,2,4-Trimethylbenzene	95-63-6	11/14/96		0.4	ug/L
1,2,3-Trimethylbenzene	526-73-8	11/14/96		0.4	ug/L
1,2,3,4-Tetramethylbenzene	488-23-3	11/14/96		0.5	ug/L
	***************************************	*******	***************************************	······	ug/L
Surrogate Recovery:		103%		50%-150%	(Limits)
PID Surrogate Recovery:		98%	***************************************	50%-150%	(Limits)

Notes: Total Xylenes consist of three isomers, two of which co-elute. The Xylene RL is for a single peak.

Comments:	

QUALIFIERS and DEFINITIONS:

E = Extrapolated value. Value exceeds calibration range.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

J = Indicates an estimated value when the compound is detected, but is below the Reporting Limit.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

PID = Photoionization detector.

FID = Flame ionization detector.

H = Total Volatile Hydrocarbons.

HUMAN Analyst Approved

MB1111496

Evergreen Analytical, Inc. 4036 Youngfield, Wheat Ridge, CO 80033 (303) 425-6021

EPA 602/8020 Matrix Spike/Matrix Spike Duplicate Data Report

Client Sample No.	: W69	Client Project No.	: 729691.32010
Lab Sample No.	: 96-3996-02	Lab Work Order	: 96-3996
Date Sampled	: 11/10/96	EPA Method No.	: 602/8020
Date Received	: 11/11/96	Matrix	: WATER
Date Prepared	: 11/13/96	Lab File Number(s)	: TVB11113016, 17
Date Analyzed	: 11/13/96	Method Blank	: MB1111396

Instrument Name : TVHBTEX1 Dilution Factor : 1.0

monament Name	•	TVIIBIEXT	Dilution ractor		: 1.0
_	Spike	Sample		Concentration	
Compound	Added	Concentration	(u	g/L)	
	(ug/L)	(ug/L)	MS	MSD	Comments
Benzene	20.0	0.0	19.1	20.3	
Toluene	20.0	0.0	17.7	18.9	
Chlorobenzene	20.0	0.0	18.2	19.6	
Ethylbenzene	20.0	0.0	18.3	19.5	
m,p-Xylene	20.0	0.0	18.0	18.9	
o-Xylene	20.0	0.0	18.1	19.5	
1,3,5-TMB	20.0	0.0	18.5	18.6	
1,2,4-TMB	20.0	0.0	18.1	18.2	
1,2,3-TMB	20.0	0.0	18.5	18.9	
1,2,3,4-TeMB	20.0	0.0	17.4	17.5	
Surrogate	100.0	96%	94%	96%	% RECOVERY
		MS	MSD		QC#
Compound		%	%		Limits
		RECOVERY	RECOVERY	RPD	RPD %REC

	MS	MSD			QC#
Compound	%	%			Limits
	RECOVERY	RECOVERY	RPD	RPD	%REC
Benzene	95.5	101.5	6.1	18	62 - 129
Toluene	88.5	94.5	6.6	25	55 - 133
Chlorobenzene	91.0	98.0	7.4	9	66 - 122
Ethylbenzene	91.5	97.5	6.3	15	60 - 127
m,p-Xylene	90.0	94.5	4.9	20	44 - 146
o-Xylene	90.5	97.5	7.4	16	57 - 131
1,3,5-TMB	92.5	93.0	0.5	16	63 - 129
1,2,4-TMB	90.5	91.0	0.6	16	55 - 136
1,2,3-TMB	92.5	94.5	2.1	13	64 - 127
1,2,3,4-TeMB	87.0	87.5	0.6	23	53 - 132
Surrogate	94.0	96.0	NA	NA	82 - 115

#=	Limits	extabl	ished	10/	1/96,H	DIVI
----	--------	--------	-------	-----	--------	------

*= Values outside of QC limits.						
RPD:	0	out of	(10)	outside limits.		
Spike Recovery:	0	out of	(20)	outside limits.		

Comments:	
K. Hillman	PmClill
Analyst	Approved

MSBTMB1;MSB3996A.XLS; 11/18/96

Evergreen Analytical, Inc. 4036 Youngfield, Wheat Ridge, CO 80033 (303) 425-6021

TOTAL VOLATILE HYDROCARBONS (TVH as Gasoline) TVH Matrix Spike/Matrix Spike Duplicate Data Report

Client Sample No.	: <u>W69</u>	Client Project No	: 729691.32010
Lab Sample No.	: 96-3996-02	Lab Work Order	: 96-3996
Date Sampled	: 11/10/96	EPA Method No.	: 5030/8015 Modified
Date Received	: 11/11/96	Matrix	: WATER
Date Prepared	: 11/13/96	Lab File Number(s)	- Table 1 - Carlotte 1 - Carlot
Date Analyzed	: 11/13/96	Method Blank	: TVB11113014, 15
Instrument Name	: TVHBTEX1	Dilution Factor	: MB1111396
		Sildtion i detoi	: 1.0

Compound	Spike Added (mg/L)	Sample Concentration (mg/L)	MS Concentration (mg/L)	MS %REC	QC (#) Limits %REC
Gasoline	2.00	0.00	1.81	90.5%	62 - 126
Surrogate **				100%	70 - 121

Compound	Spike Added	Concentration		RPD	QC (#) Limits	
	(mg/L)	(mg/L)	%REC		RPD	%REC
Gasoline	2.00	1.79	89.5%	1.1	42.3	62 - 126
Surrogate **			94%	NA	NA	70 - 121

RPD:	0	out of (1) outside limits.			
Spike Recovery:	0	_	2) outside limits.			
•			_,			
Notes:						
NA = Not analyzed	/not applica	ble.				
* = Values outside						
** = 1,2,4-Trichlor						
# = Limits establish		KGH				
	104 10/2/00	, Kon				
Comments:	-					
				· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	

RPD:

EPA 602/8020 Data Report **Laboratory Control Sample (LCS)**

LCS Number : LCS1111396 Date Extracted/Prepared 11/13/96 **Date Analyzed** : 11/13/96 Spike Amount (ug/L) 20.0

Dilution Factor Method

1.00 602/8020

Matrix

Water

Lab File No.

TVB11113006

Compound Name	Cas Number	LCS Concentration (ug/L)	LCS % Recovery	QC Limit**
Benzene	71-43-2	21.8	109.0	% Recovery 75 - 110
Toluene	108-88-3	20.4	102.0	75 - 110
Chlorobenzene	108-90-7	19.2	96.0	69 - 110
Ethyl Benzene	100-41-4	21.0	105.0	74 - 110
m,p-Xylene	108-38-3 106-42-3	40.3	100.8	73 - 110
o-Xylene	95-47-6	22.4	112.0	74 - 11
MTBE	1634-04-4	18.6	93.0	59 - 129
1,3,5-Trimethylbenzene	108-67-8	21.8	109.0	70 - 110
1,2,4-Trimethylbenzene	95-63-6	19.7	98.5	73 - 110
1,2,3-Trimethylbenzene	526-73-8	23.7	118.5	84 - 122
1,2,3,4-Tetramethylbenzene	488-23-3	21.6	108.0	67 - 116
Surrogate Recovery:		102%		82 - 115

NOTES:

m,p-xylene = 40.0 ppb spike.

QUALIFIERS:

E = Extrapolated value. Value exceeds that of the calibration range.

U = Compound analyzed for, but not detected.

B = Compound found in blank and sample. Compare blank and sample data.

NA =Not available/Not analyzed.

** = Limits updated 10/02/96 for TVHBTEX1. SWT

1. Dune miles

TOTAL VOLATILE HYDROCARBONS (TVH as Gasoline) Laboratory Control Sample (LCS)

LCS Number Date Prepared Date Analyzed Lab File Number(s)	: LCS1111396 : 11/13/96 : 11/13/96 : TVB11113008	Matrix Method Numbers Instrument Name	: WATER : EPA 5030/86 : TVHBTEX1	015 Modified
Compound Name	Theoretical Concentration (mg/L)	LCS Concentration (mg/L)	LCS % Recovery	QC Limit _% Recovery
Gasoline	2.00	1.78	89.0	83 - 120
Surrogate Recovery:		106%		70 - 121

QUALIFIERS

B = TVH as Gasoline found in blank also.

E = Extrapolated value. Value exceeds calibration range.

NA = Not Available/Not Applicable.

** = Limits established 9/24/96 for TVHBTEX1. HDM

XI. Diane Mills Analyst

Approved

LCCTVIII I COTTATA O MICE

TOTAL VOLATILE HYDROCARBONS (TVH as Gasoline) Laboratory Control Sample (LCS)

LCS Number Date Prepared Date Analyzed Lab File Number(s)	: LCS1111496 : 11/14/96 : 11/14/96 : TVB11113036	Matrix Method Numbers Instrument Name	: WATER : EPA 5030/8 : TVHBTEX1	015 Modified
Compound Name	Theoretical Concentration (mg/L)	LCS Concentration (mg/L)	LCS % _Recovery	QC Limit
Gasoline	2.00	2.11	105.5	% Recovery
Surrogate Recovery:		107%		70 - 12

QUALIFIERS

B = TVH as Gasoline found in blank also.

E = Extrapolated value. Value exceeds calibration range.

NA = Not Available/Not Applicable.

** = Limits established 9/24/96 for TVHBTEX1. HDM

V. Deane Mills

EPA 602/8020 Data Report **Laboratory Control Sample (LCS)**

Date Extracted/Prepared

Date Analyzed

Spike Amount (ug/L)

LCS Number

: LCS1111496

11/14/96

: 11/14/96 : 20.0

Dilution Factor

1.00

Method Matrix

602/8020

Water

Lab File No. TVB11113037

Compound Name	Cas Number	LCS Concentration (ug/L)	LCS % Recovery	QC Limit** % Recovery
Benzene	71-43-2	19.6	98.0	75 - 110
Toluene	108-88-3	18.4	92.0	75 - 110
Chlorobenzene	108-90-7	16.9	84.5	69 - 110
Ethyl Benzene	100-41-4	18.2	91.0	74 - 110
m,p-Xylene	108-38-3	35.2	88.0	73 - 110
ene	106-42-3			, , , , ,
	95-47-6	18.3	91.5	74 - 114
MTBE	1634-04-4	13.1	65.5	59 - 129
1,3,5-Trimethylbenzene	108-67-8	19.0	95.0	70 - 110
1,2,4-Trimethylbenzene	95-63-6	17.6	88.0	73 - 110
1,2,3-Trimethylbenzene	526-73-8	21.5	107.5	84 - 122
1,2,3,4-Tetramethylbenzene	488-23-3	19.3	96.5	67 - 116
Surrogate Recovery:		98%		82 - 115

NOTES:

m,p-xylene = 40.0 ppb spike.

QUALIFIERS:

E = Extrapolated value. Value exceeds that of the calibration range.

U = Compound analyzed for, but not detected.

B = Compound found in blank and sample. Compare blank and sample data.

NATE Not available/Not analyzed.

Limits updated 10/02/96 for TVHBTEX1. SWT

Deane Mills

Method 8010 Chlorinated VOC's Method Blank Report

Method Blank

: RB111896

Client Project No.

: 729691-32010

Date Prepared

: 11/18/96

Lab Project No.

: 96-3996

Date Analyzed

: 11/18/96

Lab File No.

: HALL1118\012F0101

Compound	CAS#	Concentration (ug/L)	RL(ug/L)
Vinyl Chloride	75-01-4	U	0.4
Chloroethane	75-00-3	ii	0.4
1,1-Dichloroethene	75-35-4	Ü	
Dichloromethane	75-09-2	Ĭ	0.4
trans-1,2-Dichloroethene	156-60-5	Ü	0.4 0.4
1,1-Dichloroethane	75-34-3	U	0.4
cis-1,2-Dichloroethene	156-59-4	Ŭ	0.4
1,1,1-Trichloroethane	71-55-6	ŭ .	
Carbon Tetrachloride	56-23-5	Ü	0.4
Trichloroethene	79-01-6	ŭ	0.4
1,1,2-Trichloroethane	79-00-5	Ŭ.	0.4
Tetrachloroethene	127-18-4	. Ŭ	0.4
1,1,1,2-Tetrachloroethane	79-00-5	ŭ	
Chlorobenzene	108-90-7	ü	0.4
1,1,2,2-Tetrachloroethane	79-34-5	Ŭ	0.42 0.54
2-Chlorotoluene	95-49-8	Ü	0.54
4-Chlorotoluene	106-49-8	Ü	
1,3-Dichlorobenzene	541-73-1	ŭ	
1,2-Dichlorobenzene	95-50-1	Ŭ	0.4

Surrogate Recovery (1-Chloro-2-Fluoro-Benzene):

88%

70% - 130% (QC limits)

QUALIFIERS:

U = Compound analyzed for, but not detected above the Reporting Limit.

B = Compound in blank and sample. Compare blank and sample data.

E = Extrapolated value. Concentration exceeds the upper limit of the calibration.

RL = Reporting Limit (at or above method detection limit).

NOTES:

Anak

Approved

HLW3996.XLS; 11/25/96

Method 601/8010 Chlorinated VOC's Method Blank Report

Method Blank

: RB112096

Client Project No.

: 729691-32010

Date Prepared

: 11/20/96

Lab Project No.

: 96-3996

Date Analyzed

: 11/20/96

Lab File No.

: HALL1120\004F0101

Compound	CAS#	Concentration (ug/L)	RL(ug/L)
Vinyl Chloride	75-01-4	11	0.4
Chloroethane	75-00-3	ij	0.4
1,1-Dichloroethene	75-35-4	ü	
Dichloromethane	75-09-2	Ŭ	0.4
trans-1,2-Dichloroethene	156-60-5	Ŭ	0.4
1,1-Dichloroethane	75-34-3	U	0.4
cis-1,2-Dichloroethene	156-59-4	Ü	0.4
1,1,1-Trichloroethane	71-55-6	ŭ	0.4
Carbon Tetrachloride	56-23-5	Ü	0.4
Trichloroethene	79-01-6	Ü	0.4
1,1,2-Trichloroethane	79-00-5	Ü	0.4
Tetrachloroethene	127-18-4	Ü	0.4
1,1,1,2-Tetrachloroethane	79-00-5	Ŭ	0.4
Chlorobenzene	108-90-7	Ŭ	0.4
1,1,2,2-Tetrachloroethane	79-34-5	ŭ	0.42
2-Chlorotoluene	95-49-8	Ü	0.54
-Chlorotoluene	106-49-8	·	0.4
7,3-Dichlorobenzene	541-73-1		0.4
1,2-Dichlorobenzene	95-50-1	11	0.4
.,	00 00-1	U	0.4

Surrogate Recovery (1-Chloro-2-Fluoro-Benzene):

88%

70% - 130% (QC limits)

QUALIFIERS:

U = Compound analyzed for, but not detected above the Reporting Limit.

B = Compound in blank and sample. Compare blank and sample data.

E = Extrapolated value. Concentration exceeds the upper limit of the calibration.

RL = Reporting Limit (at or above method detection limit).

NOTES:

Approved

HLW3996.XLS; 11/25/96

Method 601/8010 Chlorinated VOC's Sample Report

Client Sample No. : W75 Client Project No. 729691-32010 Lab Sample No. : 96-3996-01

Lab Project No. 96-3996 Date Sampled : 11/10/96 Matrix : Water

Date Received : 11/11/96 Lab File No. : HALL1118\021F0101 Date Prepared

: 11/18/96 Method Blank : RB111896

Date Analyzed : 11/19/96 **Dilution Factor** : 1.0

Compound	CAS#	Concentration (ug/L)	DI Inchi
Vinyl Chloride	75-01-4	11	RL (ug/L)
Chloroethane	75-00-3	ŭ	0.4
1,1-Dichloroethene	75-35-4	ŭ	0.4
Dichloromethane	75-09-2		0.4
trans-1,2-Dichloroethene	156-60-5	Ü	0.4
1,1-Dichloroethane	75-34-3	Ü	0.4
cis-1,2-Dichloroethene	156-59-4	ŭ	0.4
1,1,1-Trichloroethane	71-55-6	11	0.4
Carbon Tetrachloride	56-23-5		0.4
Trichloroethene	79-01-6	()	0.4
1,1,2-Trichloroethane	79-00-5	U	0.4
Tetrachloroethene	127-18-4	U	0.4
1,1,1,2-Tetrachloroethane	79-00-5	Ü	0.4
Chlorobenzene	108-90-7	U	0.4
1,1,2,2-Tetrachloroethane	79-34-5	<u>U</u>	0.42
2-Chlorotoluene	95-49-8	U	54
4-Chlorotoluene	106-49-8	U	
1,3-Dichlorobenzene	541-73-1	Ü	
1,2-Dichlorobenzene		Ü	0.4
1/2 510111010061126116	95-50-1	U	0.4

Surrogate Recovery (1-Chloro-2-Fluoro-Benzene):	76%	70% - 130% (QC limits)
----------------------	-----------------------------	-----	------------------------

QUALIFIERS:

U = Compound analyzed for, but not detected above the Reporting Limit.

B = Compound in blank and sample. Compare blank and sample data.

E = Extrapolated value. Concentration exceeds the upper limit of the calibration.

RL = Reporting Limit (at or above method detection limit).

NOTES: nalyst Approved HLW3996.XLS; 11/25/96

Method 601/8010 Chlorinated VOC's Sample Report

Client Sample No. : W69 Client Project No. : 729691-32010

Date Prepared : 11/18/96 Method Blank : RB111896
Date Analyzed : 11/19/96 Dilution Factor : 1.0

Compound	CAS#	Concentration (ug/L)	D 1 ((1)
Vinyl Chloride	75-01-4	II	RL (ug/L)
Chloroethane	75-00-3	ii	0.4
1,1-Dichloroethene	75-35-4	Ĭi	0.4
Dichloromethane	75-09-2	ii	0.4
trans-1,2-Dichloroethene	156-60-5	ı Ü	0.4
1,1-Dichloroethane	75-34-3	ii -	0.4
cis-1,2-Dichloroethene	156-59-4	ii	0.4
1,1,1-Trichloroethane	71-55-6	ŭ	0.4
Carbon Tetrachloride	56-23-5	Ü	0.4
Trichloroethene	79-01-6	· ŭ	0.4
1,1,2-Trichloroethane	79-00-5	Ū U	0.4
Tetrachloroethene	127-18-4	ŭ	0.4
1,1,1,2-Tetrachloroethane	79-00-5	ii	0.4
Chlorobenzene	108-90-7	ii	0.4
1,1,2,2-Tetrachloroethane	79-34-5	ij	0.42
-Chlorotoluene	95-49-8	Ŭ	0.54
-Chlorotoluene	106-49-8	ii	0.4
1,3-Dichlorobenzene	541-73-1	ŭ	0.4
1,2-Dichlorobenzene	95-50-1	ŭ	0.4
		U	0.4

Surrogate Recovery	(1-Chloro-2-Fluoro-Benzene):	85%	70% - 130% (QC limits)

QUALIFIERS:

U = Compound analyzed for, but not detected above the Reporting Limit.

B = Compound in blank and sample. Compare blank and sample data.

E = Extrapolated value. Concentration exceeds the upper limit of the calibration.

RL = Reporting Limit (at or above method detection limit).

NOTES:

Approved

HLW3996.XLS; 11/25/96

Method 601/8010 Chlorinated VOC's Sample Report

 Client Sample No.
 : W71
 Client Project No.
 : 729691-32010

 Lab Sample No.
 : 96-3996-03
 Lab Project No.
 : 96-3996

 Date Sampled
 : 11/10/96
 Matrix
 : Water

Date Prepared : 11/18/96 Method Blank : RB111896

Date Analyzed : 11/19/96 Dilution Factor : 1.0

Compound	CAS#	Concentration (ug/L)	RL (ug/L)
Vinyl Chloride	75-01-4	U	0.4
Chloroethane	75-00-3	Ü	0.4
1,1-Dichloroethene	75-35-4	ŭ	0.4
Dichloromethane	75-09-2	Ŭ	0.4
trans-1,2-Dichloroethene	156-60-5	ŭ	0.4
1,1-Dichloroethane	75-34-3	U	0.4
cis-1,2-Dichloroethene	156-59-4	Ü	0.4
1,1,1-Trichloroethane	71-55-6	Ü	0.4
Carbon Tetrachloride	56-23-5	ŭ	0.4
Trichloroethene	79-01-6	Ü	0.4
1,1,2-Trichloroethane	79-00-5	U	0.4
Tetrachloroethene	127-18-4	ii	0.4
1,1,1,2-Tetrachloroethane	79-00-5	Ü	0.4
Chlorobenzene	108-90-7	Ü	0.42
1,1,2,2-Tetrachloroethane	79-34-5	Ü	0.42 0. 5 4
2-Chlorotoluene	95-49-8	Ü	
4-Chlorotoluene	106-49-8	Ü	
1,3-Dichlorobenzene	541-73-1	ŭ	0.4
1,2-Dichlorobenzene	95-50-1	Ü	0.4

~			
Surrogate Recovery	(1-Chloro-2-Fluoro-Benzene):	81%	70% - 130% (QC limits)
		= . • -	10070 (40 1111111111111111111111111111111111

QUALIFIERS:

U = Compound analyzed for, but not detected above the Reporting Limit.

B = Compound in blank and sample. Compare blank and sample data.

E = Extrapolated value. Concentration exceeds the upper limit of the calibration.

RL = Reporting Limit (at or above method detection limit).

NOTES:	
$\int \int $	
Analys	Approved
	U HLW3996.XLS; 11/25/96

Method 601/8010 Chlorinated VOC's Sample Report

Lab Sample No. : 96-3996-04 Lab Project No. : 96-3996 Date Sampled : 11/10/96 Matrix : Water

Date Received : 11/11/96 Lab File No. : HALL1118\024F0101
Date Prepared : 11/18/96 Method Blank : PR111906

Date Prepared : 11/18/96 Method Blank : RB111896
Date Analyzed : 11/19/96 Dilution Factor : 1.0

Compound CAS# Concentration (ug/L) RL (ug/L) Vinyl Chloride 75-01-4 0.4 Chloroethane 75-00-3 U 0.4 1,1-Dichloroethene 75-35-4 U 0.4 Dichloromethane 75-09-2 U 0.4 trans-1,2-Dichloroethene 156-60-5 U 0.4 1,1-Dichloroethane 75-34-3 Ū 0.4 cis-1,2-Dichloroethene 156-59-4 U 0.4 1,1,1-Trichloroethane 71-55-6 U 0.4 Carbon Tetrachloride 56-23-5 U 0.4 Trichloroethene 79-01-6 U 0.4 1,1,2-Trichloroethane 79-00-5 Ū 0.4 Tetrachloroethene 127-18-4 U 0.4 1,1,1,2-Tetrachloroethane 79-00-5 U 0.4 Chlorobenzene 108-90-7 U 0.42 1,1,2,2-Tetrachloroethane 79-34-5 U 0.54 -Chlorotoluene 95-49-8 Ü 0.4 -Chlorotoluene 106-49-8 U 0.4 1,3-Dichlorobenzene 541-73-1 U 0.4 1,2-Dichlorobenzene 95-50-1 U 0.4

Surrogate Recovery (1-Chloro-2-Fluoro-Benzene): 93% 70% - 130% (QC	limits)

QUALIFIERS:

U = Compound analyzed for, but not detected above the Reporting Limit.

B = Compound in blank and sample. Compare blank and sample data.

E = Extrapolated value. Concentration exceeds the upper limit of the calibration.

RL = Reporting Limit (at or above method detection limit).

/ NA/ 1/7
////Approved
HLW3996.XLS; 11/25/96

Method 601/8010 Chlorinated VOC's Sample Report

Client Sample No. : Field Blank-1 Client Project No. : 729691-32010
Lab Sample No. : 96-3996-05 Lab Project No. : 96-3996
Date Sampled : 11/10/96 Matrix : Water

Date Prepared : 11/20/96 Method Blank : RB112096

Date Analyzed : 11/20/96 Dilution Factor : 1.0

Compound	CAS#	Concentration (ug/L)	_RL (ug/L)
Vinyl Chloride	75-01-4	U	0.4
Chloroethane	75-00-3	Ū	0.4
1,1-Dichloroethene	75-35-4	ŭ	0.4
Dichloromethane	75-09-2	Ü	0.4
trans-1,2-Dichloroethene	156-60-5	ŭ	0.4
1,1-Dichloroethane	75-34-3	Ü	0.4
cis-1,2-Dichloroethene	156-59-4	ŭ	0.4
1,1,1-Trichloroethane	71-55-6	ü	0.4
Carbon Tetrachloride	56-23-5	ü	0.4
Trichloroethene	79-01-6	Ü	0.4
1,1,2-Trichloroethane	79-00-5	U	0.4
Tetrachloroethene	127-18-4	Ü	0.4
1,1,1,2-Tetrachloroethane	79-00-5	Ü	0.4
Chlorobenzene	108-90-7	Ŭ	0.42
1,1,2,2-Tetrachloroethane	79-34-5	Ü	0.42
2-Chlorotoluene	95-49-8	U	
4-Chlorotoluene	106-49-8	Ü	
1,3-Dichlorobenzene	541-73-1	Ü	0.4
1,2-Dichlorobenzene	95-50-1	Ū	0.4

Surrogate Recovery (1-Chloro-2-Fluoro-Benzene): 87% 70% - 130% (QC limits)

QUALIFIERS:

U = Compound analyzed for, but not detected above the Reporting Limit.

B = Compound in blank and sample. Compare blank and sample data.

E = Extrapolated value. Concentration exceeds the upper limit of the calibration.

RL = Reporting Limit (at or above method detection limit).

NOTES:

Approved

HLW3996.XLS; 11/25/96

Method 601/8010 Chlorinated VOC's Sample Report

Date Sampled : 11/10/96 Matrix : Water

Date Prepared : 11/18/96 Method Blank : RB111896
Date Analyzed : 11/19/96 Dilution Factor : 1.0

Compound	CAS#	Concentration (ug/L)	RL (ug/L)
Vinyl Chloride	75-01-4	U	0.4
Chloroethane	75-00-3	Ü	0.4
1,1-Dichloroethene	75-35-4	ŭ	0.4
Dichloromethane	75-09-2	Ŭ	0.4
trans-1,2-Dichloroethene	156-60-5	Ŭ	0.4
1,1-Dichloroethane	75-34-3	Ü	0.4
cis-1,2-Dichloroethene	156-59-4	ŭ	0.4
1,1,1-Trichloroethane	71-55-6	ŭ	0.4
Carbon Tetrachloride	56-23-5	Ŭ	0.4
Trichloroethene	79-01-6	Ü	0.4
1,1,2-Trichloroethane	79-00-5	Ü	0.4
Tetrachloroethene	127-18-4	ŭ	0.4
1,1,1,2-Tetrachloroethane	79-00-5	ŭ	0.4
Chlorobenzene	108-90-7	Ü	0.42
1,1,2,2-Tetrachloroethane	79-34-5	ű	
-Chiorotoluene	95-49-8	<u> </u>	0.54
4-Chlorotoluene	106-49-8	ŭ	0.4
1,3-Dichlorobenzene	541-73-1	ŭ	0.4
1,2-Dichlorobenzene	95-50-1	ŭ	0.4

Surrogate Recovery (1-Chloro-2-Fluoro-Benzene): 90% 70% - 130% (QC limits)

QUALIFIERS:

U = Compound analyzed for, but not detected above the Reporting Limit.

B = Compound in blank and sample. Compare blank and sample data.

E = Extrapolated value. Concentration exceeds the upper limit of the calibration.

RL = Reporting Limit (at or above method detection limit).

NOTES:

Approved

HLW3996.XLS; 11/25/96

Method 601/8010 Chlorinated VOC's Sample Report

Client Sample No. : Trip Blank-2 Client Project No. : 729691-32010

 Lab Sample No.
 : 96-3996-07
 Lab Project No.
 : 96-3996

 Date Sampled
 : 11/10/96
 Matrix
 : Water

Date Prepared : 11/20/96 Method Blank : RB112096

Date Analyzed : 11/20/96 Dilution Factor : 1.0

Compound	CAS#	Concentration (ug/L)	RL (ug/L)
Vinyl Chloride	75-01-4	U	0.4
Chloroethane	75-00-3	Ü	0.4
1,1-Dichloroethene	75-35-4	Ü	0.4
Dichloromethane	75-09-2	บั	0.4
trans-1,2-Dichloroethene	156-60-5	Ŭ	0.4
1,1-Dichloroethane	75-34-3	U	0.4
cis-1,2-Dichloroethene	156-59-4	บ	0.4
1,1,1-Trichloroethane	71-55-6	บ	0.4
Carbon Tetrachloride	56-23-5	Ü	0.4
Trichloroethene	79-01-6	ŭ	0.4
1,1,2-Trichloroethane	79-00-5	U	0.4
Tetrachloroethene	127-18-4	Ŭ	0.4
1,1,1,2-Tetrachloroethane	79-00-5	Ŭ	0.4
Chlorobenzene	108-90-7	Ŭ	0.42
1,1,2,2-Tetrachloroethane	79-34-5	Ū	0.5
2-Chlorotoluene	95-49-8	U	
4-Chlorotoluene	106-49-8	U	
1,3-Dichlorobenzene	541-73-1	Ü	0.4
1,2-Dichlorobenzene	95-50-1	Ū	0.4

Surrogate Recovery	(1-Chloro-2-Fluoro-Benzene):	78%	70% - 130% (QC limits)

QUALIFIERS:

U = Compound analyzed for, but not detected above the Reporting Limit.

B = Compound in blank and sample. Compare blank and sample data.

E = Extrapolated value. Concentration exceeds the upper limit of the calibration.

RL = Reporting Limit (at or above method detection limit).

NOTES:

Approved
HLW3996.XLS; 11/25/96

Method 601/8010 Chlorinated VOC's Sample Report

Client Sample No. : ST24 MPKS Client Project No. : 729691-32010 Lab Sample No. : 96-3996-08 Lab Project No. : 96-3996

Date Analyzed : 11/21/96 Dilution Factor : 1.0

Compound	CAS#	Concentration (ug/L)	DI /1.0/11
Vinyl Chloride	75-01-4	(1	RL (ug/L)
Chloroethane	75-00-3	Ŭ	0.4 0.4
1,1-Dichloroethene	75-35-4	บ้	0.4
Dichloromethane	75-09-2	Ü	0.4
trans-1,2-Dichloroethene	156-60-5	ű	0.4
1,1-Dichloroethane	75-34-3	Ü	0.4
cis-1,2-Dichloroethene	156-59-4	Ü	0.4
1,1,1-Trichloroethane	71-55-6	Ŭ	0.4
Carbon Tetrachloride	56-23-5	Ü	0.4
Trichloroethene	79-01-6	Ü	0.4
1,1,2-Trichloroethane	79-00-5	Ü	0.4
Tetrachloroethene	127-18-4	Ü	
1,1,1,2-Tetrachloroethane	79-00-5	Ü	0.4
Chlorobenzene	108-90-7	Ü	0.4
1,1,2,2-Tetrachloroethane	79-34-5	Ü	0.42
Chlorotoluene	95-49-8	U	0.54
4-Chlorotoluene	106-49-8	Ü	0.4
1,3-Dichlorobenzene	541-73-1	Ü	0.4 0.4
1,2-Dichlorobenzene	95-50-1	Ü	0.4
		•	0.4

Surrogate Recovery (1-Chloro-2-Fluoro-Benzene): 73% 70% - 130% (QC limits)

QUALIFIERS:

U = Compound analyzed for, but not detected above the Reporting Limit.

B = Compound in blank and sample. Compare blank and sample data.

E = Extrapolated value. Concentration exceeds the upper limit of the calibration.

RL = Reporting Limit (at or above method detection limit).

NOTES:

Approved

HLW3996.XLS; 11/25/96

Method 8010 Quality Control Samples

11/20/96 Date Performed:

Reference Standard: V832

		Method	Method Sample	Sample	Spike	Control	Spike		Š	Snike Recoveries	veries	-	200	avo je	OC Recovery Range	9
Analyte	Σ			Spike	Dup.	Spike	Amt	RPD	Sample	# dnQ	# Control	*	% - 7%	%H	Low	- High
Vinyl Chloride	3			18.178	18.291	16.256	20.0	9.0	91%	91%	81%	 	28 - 16	163		32.60
Chloroethane	٠			19.363	18.68	17.960	20.0	3.6	826	83%	%06	+	46 - 13	137	9.20	27.40
1,1-Dichloroethene	٠			20.216	19.612	18.587	20.0	3.0	101%	%86	83%	 	28 - 16	167	5.60 -	33.40
Dichloromethane	٠			19.494	18.851	18.707	20.0	3.4	82%	94%	84%	\vdash	25 - 16	162	5.00 -	32.40
trans-1,2-Dichloroethene	•			22.478	17.459	22.187	20.0	25.1	112%	87%	111%	\vdash	38 - 15	155	7.60 -	31.00
1,1-Dichloroethane	•			21.974	21.272	19.615	20.0	3.2	110%	106%	%86	-	47 - 13	132	9.40 -	26.40
cis-1,2-Dichloroethene	٠			21.962	21.508	20.357	20.0	2.1	110%	108%	102%			_	•	
1,1,1-Trichloroethane	٠			22.33	21.586	20.021	20.0	3.4	112%	108%	100%	<u> </u>	41 - 13	138	8.20 -	27.60
Carbon Tetrachloride	٠			22.959	21.401	20.392	20.0	7.0	115%	107%	102%	-	43 - 14	143	8.60 -	28.60
Trichloroethene	₹			22.35	21.795	21.927	20.0	2.5	112%	109%	110%	\vdash	35 - 14	146	7.00 -	29.20
1,1,2-Trichloroethane	≩			19.81	19.718	20.658	20.0	0.5	%66	%66	103%	_	39 - 13	136	7.80 -	27.20
Tetrachloroethene	•			22.146	21.483	19.818	20.0	3.0	111%	107%	%66		26 - 16	162	5.20 -	32.40
1,1,1,2-Tetrachloroethane	٠			20.194	18.999	19.055	20.0	6.1	101%	82%	85%	_	•		•	
Chlorobenzene	٠			21.615	20.557	20.203	20.0	5.0	108%	103%	101%	-	1 - 150	-	0.16 -	30.00
1,1,2,2-Tetrachloroethane	٠			16.539	17.403	20.856	20.0	5.1	83%	87%	104%	_	8 - 184	*	1.60	36.80
2-Chlorotoluene	•			20.328	20.224	18.851	20.0	0.5	102%	101%	84%	_			•	
4-Chlorotofuene	•			19.25	18.381	19.178	20.0	4.6	%98	85%	%96	-		_	•	
1,3-Dichlorobenzene	٠			20.885	18.201	18.187	20.0	13.7	104%	91%	91%	_	7 - 187	_	1.40 -	37.40
1,2-Dichlorobenzene	-			18.319	16.784	15.928	20.0	8.7	85%	84%	80%		0 - 208	-	0.00	41.60

M = Applicable matrices. (* = Soil and Water, w = Water only.)

= Marks a spike recovery out of limits.

If recovery is outside method limit, marked with ***,

If recovery is outside a guideline, marked with "~".

If the sample spike recovery is outside the limit and the control spike is outside the limit also, the control is marked with "**" or "~~".

Notes on recovery limits:

All spiked analytes must be detected even if low limit is 0.

For analytes not listed in the method, recovery limits of 50-150% will be used as guidelines until limits can be established.

Corrective Actions:

Unacceptable sample spike recovery requires acceptable control spike recovery. If both recoveries are outside limits, corrective action One recovery outside limits and the other acceptable, is a ' Iside guidelines should be compared to historical data availa. Recov must b

. Repeated failure requires corrective action. determine if corrective action is required.

Methane Report Form Method Blank Report

Method Blank Number Date Extracted/Prepared

: GB111496 : 11/14/96

Client Project No.

: 729691.32010

Date Analyzed

: 11/14/96

Lab Work Order Dilution Factor

: 96-3996

Method

: 1.00

Matrix

: RSKSOP-175M

0.002

: Water

Lab File No.

: GAS1114002

Compound Name	Cas Number	Sample Concentration mg/L	RL mg/L
Methane	74-82-8	U	0.002

Qualifiers

E = Extrapolated value.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

RL = Reporting Limit.

Not Available/Not Applicable.

Methane Report Form

Client Sample Number Lab Sample Number Date Sampled Date Received Date Extracted/Prepared Date Analyzed	: W69 : 96-3996-02 : 11/10/96 : 11/11/96 : 11/14/96 : 11/14/96	Client Project No. Lab Work Order Dilution Factor Method Matrix	: 729691.32010 : 96-3996 : 1.00 : RSKSOP-175M : Water
Date Analyzed	: 11/14/96	Lab File No.	: GAS111401

Compound Name	Cas Number	Sample Concentration mg/L	RL mg/L
Methane	74-82-8	U	0.002

Temperature Amount Injected Total Volume of Sample Head space created	:	5 ml Conce 3 ml Conce	ration ntration ntration d Space	Meth Meth	
Methane Area	:	<u>0</u> ug			

Atomic weight(Methane) : _____ 16 g

Qualifiers

E = Extrapolated value.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

Approve

Methane Report Form

Client Sample Number Lab Sample Number Date Sampled Date Received Date Extracted/Prepared	: W71 : 96-3996-03 : 11/10/96 : 11/11/96 : 11/14/96	Client Project No. Lab Work Order Dilution Factor Method Matrix	: 729691.32010 : 96-3996 : 20.00 : RSKSOP-175M : Water
Date Analyzed	: 11/14/96	Lab File No.	: GAS1114018

Compound Name	Cas Number	Sample Concentration mg/L	RL mg/L
Methane	74-82-8	1.76	0.04

perature	•	71.3 F	Saturation	Meth	0.42339496
Amount Injected	:	0.025 ml	Concentration		0.12000400
Total Volume of Sample	:	43 ml	Concentration	Meth	1.335783833
Head space created	:	4 ml	in Head Space		
Methane Area	:	492.292 ug			

16 g

Qualifiers

E = Extrapolated value.

Atomic weight(Methane)

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

RL = Reporting Limit.

= Not Available/Not Applicable.

Analyst

Approved

Methane Report Form

Compound Name	Cas Number	Sample Concentration mg/L	RL mg/L
Methane	74-82-8	1.80	0.04

Temperature Amount Injected Total Volume of Sample Head space created Methane Area	· :	71.4 F 0.025 ml	Saturation Concentration	Meth	0.4
	:	43 ml	Concentration in Head Space	Meth	1.3661118:
	:	503.564 ug	iii ficad Space		

Atomic weight(Methane) : ______ 16 g

Qualifiers

E = Extrapolated value.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

Approved

Methane Report Form

Client Sample Number Lab Sample Number	: W77	Client Project No.	: 729691.32010
	: 96-3996-04	Lab Work Order	: 96-3996
Date Sampled Date Received	: 11/10/96	Dilution Factor	: 20.00
	: 11/11/96	Method	: RSKSOP-175M
Date Extracted/Prepared Date Analyzed	: 11/14/96	Matrix	: Water
	: 11/14/96	Lab File No.	: GAS1114020

Compound Name	Cas Number	Sample Concentration mg/L	RL mg/L
Methane	74-82-8	0.28	0.04

nperature	:	71.5 F	Saturation	Meth	0.068180339
Amount Injected	:	0.025 ml	Concentration		
Total Volume of Sample	:	43 ml	Concentration	Meth	0.215023545
Head space created	:	4 ml	in Head Space		
Methane Area	:	79.275 ug			

16 g

Qualifiers

E = Extrapolated value.

Atomic weight(Methane)

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

RL = Reporting Limit.

= Not Available/Not Applicable.

Approved

Methane Report Form

Client Sample Number Lab Sample Number Date Sampled Date Received Date Extracted/Prepared	: W70 : 96-3996-06 : 11/10/96 : 11/11/96 : 11/14/96	Lab Work Order Dilution Factor Method	729691.32010 96-3996 5.00 RSKSOP-175M
Date Extracted/Prepared Date Analyzed	: 11/14/96 : 11/14/96		Water GAS1114021

Compound Name	Cas Number	Sample Concentration mg/L	RL mg/L
Methane	74-82-8	0.02	0.01

Temperature	:	71.8 F	Saturation	Meth	0.00
Amount Injected	:	0.1 ml	Concentration		
Total Volume of Sample		43 ml	Concentration	Meth	0.01627861
Head space created	:	4 ml	in Head Space		
Methane Area	:	24.02 ug			

Atomic weight(Methane) : 16 g

Qualifiers

E = Extrapolated value.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

Methane Report Form

Client Sample Number	: ST24MPKS	Client Project No.	: 729691.32010
Lab Sample Number	: 96-3996-08	Lab Work Order	: 96-3996
Date Sampled	: 11/10/96	Dilution Factor	: 1.00
Date Received	: 11/11/96	Method	: RSKSOP-175M
Date Extracted/Prepared	: 11/14/96	Matrix	: Water
Date Analyzed	: 11/14/96	Lab File No.	: GAS1114022

Compound Name	Cas Number	Sample Concentration mg/L	RL mg/L
Methane	74-82-8	U	0.002

perature	:	72 F	Saturation	Meth	0
Amount Injected	:	0.5 ml	Concentration		
Total Volume of Sample	:	43 ml	Concentration	Meth	0
Head space created	:	4 ml	in Head Space		
Methane Area	:	0 ug			

Atomic weight(Methane) : _____ 16 g

Qualifiers

E = Extrapolated value.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

RL = Reporting Limit.

Not Available/Not Applicable.

Analyst

Evergreen Analytical, Inc. 4036 Youngfield, Wheat Ridge, CO 80033 (303) 425-6021

RSKSOP-175M Gas Method Methane Gas Matrix Spike / Matrix Spike Duplicate Report

Client Sample No. Lab Sample No.

: ST24MPKS : 96-3996-08

Client Project No.

: 729691.32010

Date Sampled

: 11/10/96

Lab Work Order EPA Method No.

: 96-3996

Date Received

: 11/11/96

Matrix

: RSKSOP-175M : Water

Date Prepared

: 11/14/96

Method Blank

: GB111496

Date Analyzed

: 11/14/96

Lab File No's.

: GAS1114023,024

E.A. MS/MSD Spike Source N	lo. :	1886
----------------------------	-------	------

Compound	Spike Added (ug)	Sample Concentration (ug)	MS Concentration (ug)	MS %REC	QC Limits %REC
Methane Gas	500	0	406	81	47-88

Compound	Spike MSD Compound Added Concentration (ug) (ug)		MSD %REC	RPD	Lin	OC Limits RPD	
Methane Gas	500					%REU	
I Wethane das	300	411	82	1.2	0-16.4	47-88	

RPD:	
Spike	Recovery:

out of (1) outside limits. out of (2) outside limits.

Notes

* = Values outside of QC limits.

NA = Not analyzed/not available

Note: The Spike was made by taking the sample and displacing 4ml of headspace with a 1%methane gas and shaking the VOA for 5 minutes. Then injecting 50 ul from the headspace into the GC resulting in a theoretical concentration of 500 ug.

MS3996.XLS; 11/15/96

Evergreen Analytical, Inc. 4036 Youngfield, Wheat Ridge, CO 80033 (303) 425-6021

RSKSOP-175M Gas Method Methane, Ethane, Ethene LCS Report Form

LCS No.

: LCS111496

EPA Method No.

: RSKSOP-175M

Date Prepared

: 11/14/96

Matrix

: Water

Date Analyzed

: 11/14/96

Method Blank

: GB111496

E.A. LCS Source No.

: 1719

Lab File No.

: GAS1114010

Compound	Spike Added (ug)	Method Blank Concentration (ug)	LCS Concentration (ug)	LCS %REC	QC Limits %REC
Methane Gas	500	0	370	74	64-90
Ethene Gas	500	0	213	43	37-58
Ethane Gas	500	0	321	64	53-83

outside limits.

Spike Recovery:

0	out	of	(3)

Note: The LCS was made by taking the sample and displacing 4ml of headspace with a 1% methane, ethane, ethene gas and shaking the VOA for 5 minutes. Then injecting 50 ul from the headspace into the GC resulting in a theoretical concentration of 500 ug.

Notes

* = Values outside of QC limits.

NA = Not analyzed/not available.

Analyst Valen

Approved

LCS1114.XLS; 11/15/96

4036 Youngfield St. Wheat Ridge, CO 80033 (303) 425-6021

Anion Report

Date Sampled Date Received Date Prepared Date Analyzed	: 11/10/96 : 11/11/96 : 11/11/96 : 11/11/96	Lab Project Number Method	: :	729691.32010 96-3996 EPA 300.0 0.25 mg/L
--	--	------------------------------	--------	---

Evergreen Sample #	Client Sample ID.	<u>Matrix</u>	<u>Chloride</u> mg/L	Dilution <u>Factor</u>
96-3996-02	W69	Water	10.2	1
96-3996-02 Duplicate	W69 Duplicate	Water	10.5	1
96-3996-03	W71	Water	6.1	1
96-3996-04	W77	Water	4.2	1
96-3996-06	W70	Water	7.4	1
96-3996-08	ST24MPKS	Water	2.0	1
Method Blank	(11/11/96)	Water	<0.25	

Quality Assurance

		Spike Amount (mg/L)	Sample Result (mg/L)	Spike Result (mg/L)	% Recovery
96-3996-02	W69 Matrix Spike	10.0	10.2	20.5	103
96-3996-02	W69 Matrix Spike Du	p 10.0	10.2	20.2	100
MS/MSD RP	D				3.2

/// Hole___

4036 Youngfield St. Wheat Ridge, CO 80033 (303) 425-6021

Anion Report

Evergreen Sample #	Client Sample ID.	<u>Matrix</u>	Nitrite-N mg/L	Dilution <u>Factor</u>
96-3996-02	W69	Water	<0.076	1
96-3996-02 Duplicate	W69 Duplicate	Water	<0.076	1
96-3996-03	W71	Water	<0.076	1
96-3996-04	W77	Water	<0.076	1
96-3996-06	W70	Water	<0.076	1
96-3996-08	ST24MPKS	Water	<0.076	1
Method Blank	(11/11/96)	Water	<0.076	

Quality Assurance *

		Spike Amount (mg/L)	Sample Result (mg/L)	Spike Result (mg/L)	% Recovery
96-3996-02	W69 Matrix Spike	10.0	<0.25	9.4	94
96-3996-02	W69 Matrix Spike Du	up 10.0	<0.25	9.5	95
MS/MSD RP	D				1.4

Quality assurance results reported as Nitrite (NO₂).

In Hole

4036 Youngfield St. Wheat Ridge, CO 80033 (303) 425-6021

Anion Report

Date Sampled	: 11/10/96	Client Project ID.	:	729691.32010
Date Received	: 11/11/96	Lab Project Number	:	96-3996
Date Prepared	: 11/11/96	Method	:	EPA 300.0
Date Analyzed	: 11/11/96	Detection Limit	:	0.056 mg/L

Evergreen Sample #	Client Sample ID.	<u>Matrix</u>	<u>Nitrate-N</u> mg/L	Dilution <u>Factor</u>
96-3996-02	W69	Water	0.57	1
96-3996-02 Duplicate	W69 Duplicate	Water	0.57	1
96-3996-03	W71	Water	<0.0 56	1 ·
96-3996-04	W77	Water	0.99	1
96-3996-06	W70	Water	<0.056	1
96-3996-08	ST24MPKS	Water	0.53	1
Method Blank	(11/11/96)	Water	<0.056	

Quality Assurance *

	<u> </u>	Spike Amount (mg/L)	Sample Result (mg/L)	Spike Result (mg/L)	% Recovery
96-3996-02	W69 Matrix Spike	10.0	2.5	11.4	89
96-3996-02	W69 Matrix Spike Du _l	p 10.0	2.5 .	11.6	91
MS/MSD RP	D				2.2

^{* =} Quality assurance results reported as Nitrate (NO₃).

Analyst

4036 Youngfield St. Wheat Ridge, CO 80033 (303) 425-6021

Anion Report

Date Sampled	: 11/10/96	Client Project ID. : 729691.32010
Date Received	: 11/11/96	Lab Project Number : 96-3996
Date Prepared Date Analyzed	: 11/11/96 : 11/11/96	Method : EPA 300.0 Detection Limit : 0.25 mg/L

Evergreen Sample #	Client Sample ID.	<u>Matrix</u>	Sulfate mg/L	Dilution <u>Factor</u>
96-3996-02	W69	Water	3.5	1
96-3996-02 Duplicate	W69 Duplicate	Water	3.6	1
96-3996-03	W71	Water	<0.25	1
96-3996-04	W77	Water	14.6	1
96-3996-06	W70	Water	<0.25	1
96-3996-08	ST24MPKS	Water	1.7	1
Method Blank	(11/11/96)	Water	<0.25	

Quality Assurance

	<u>\$</u>	Spike Amount (mg/L)	Sample Result (mg/L)	Spike Result (mg/L)	% Recovery
96-3996-02	W69 Matrix Spike	10.0	3.5	12.7	92
96-3996-02	W69 Matrix Spike Du	p 10.0	3.5	12.8	93
MS/MSD RP	D				1.2

Hell Hell Hanalyst

4036 Youngfield St. Wheat Ridge, CO 80033 (303) 425-6021

Total Organic Carbon

Date Sampled	: 11/10/96	Client Project ID. : 729691.32010
Date Received	: 11/11/96	Lab Project Number: 96-3996
Date Prepared	: 11/21/96	Method : EPA 415.1
Date Analyzed	: 11/21/96	Detection Limit : 1.0 mg C/L

Evergreen Sample #	Client Sample ID.	<u>Matrix</u>	TOC mg C/L	Dilution <u>Factor</u>
96-3996-08	ST24 MPKS	Water	<1.0	1
96-3996-08 Duplicate	ST24 MPKS	Water	<1.0	1

Method Blank (11/21/96)

<1.0

Quality Assurance

	Spike Amount (mgC/L)	Sample Result (mgC/L)	Spike Result (mgC/L)	% Recovery
96-3996-08 ST24 MPI Matrix Spi		<1.0	10.3	103
96-3996-08 ST24 MPF Matrix Spike		<1.0	10.4	104
MS/MSD RPD				1.3

Analyst

Approved \

CUSTOMER #:

LABORATORIES, INC.

Quality Analytical Services Since 1936

4630 Indiana Street • Golden, CO 80403 Phone: (303) 278-4455 • FAX: (303) 278-7012 DATE 12/4/96 LAB# 234196 P.O. SEE BELOT RECD 11/20/96

ANALYSIS REPORT

PATTY MC CLELLEN EVERGREEN ANALYTICAL, INC 4036 YOUNGFIELD STREET WHEAT RIDGE CO 80033

P.O. # 013549 & 013550/PROJ 96-3990 & 96-3996

•	46-3990-02	96-3996-09	96-3990-03
SEQUENCE/ SAMPLE ID			03 ST24-MPF(16-18)
CARBONATE C \$ TOTAL CARBON \$ ORGANIC C \$	<0.05	<0.05 <0.05	<0.02 <0.05 <0.05
	OT HOMOGENEOUS.		
Percent Moisture	15.3%	14.09%	10.6%
DN Wt. Result	< D.06°	(0.06	<i>۷</i> 0.06

4036 Youngfield St. Wheat Ridge, CO 80033 (303) 425-6021

Analysis Report

 Date Sampled
 : 11/10/96
 Client Project ID.
 : 729691.32010

 Date Received
 : 11/11/96
 Lab Project Number
 : 96-3996

 Date Prepared
 : 11/14/96
 Method
 : EPA 310.1

 Date Analyzed
 : 11/14/96
 Detection Limit
 : 5.0 mg CaCO₃/L

Evergreen Sample #	Client Sample ID.	<u>Matrix</u>	Total <u>Alkalinity</u> (mg CaCO ₃ /L)	Dilution <u>Factor</u>
96-3996-08	ST24MPKS	Water	9.8	1
96-3996-08 Duplicate	ST24MPKS Duplicate	Water	9.9	1

Method Blank (11/14/96)

< 5.0

Quality Assurance

Reference	True Value (mgCaCO ₃ /L)	<u>Result</u> (mgCaCO ₃ /L)	% Recovery
ERA Minerals	120	112	94

Lot # 0725-96-11

Analyst

WORK ORDER Summary

Report To: Dave Moutoux

Parsons Engineering Science

1700 Broadway Suite 900 Denver, CO 80290

15-Nov-96

Client Project ID: 729691-32010

Phone: (303) 831-8100 **FAX:** (303) 831-8208

Comments:

Sample ID	Client Sample ID	Analysis	*	Matrix	<u>3</u>	Loc Collection	Received	Due	Ħ
96-4004-02A	ST24-MPA(9'-11')	% Moisture for dry weight calculation		Soil	D2	11-Nov-96	12-Nov-96	26-Nov-96	09-Dec-96
96-4004-01H	ST24-MPK(D)	Anions by IC Ci,NO2,NO3,SO4		Water				26-Nov-96	13-Nov-96
96-4004-03H	ST24-MPE	Anions by IC Cl,NO2,NO3,SO4						26-Nov-96	13-Nov-96
96-4004-04H	ST24-MPA	Anions by IC Cl,NO2,NO3,SO4						26-Nov-96	13-Nov-96
96-4004-05H	ST24-MPG	Anions by IC CI,NO2,NO3,SO4						26-Nov-96	13-Nov-96
96-4004-06H	ST24-W70(D)	Anions by IC CI,NO2,NO3,SO4						26-Nov-96	13-Nov-96
96-4004-01D	ST24-MPK(D)	BTEX (Parsons List)			2			26-Nov-96	25-Nov-96
96-4004-02A	ST24-MPA(9'-11')	BTEX (Parsons List)		Soil	22			26-Nov-96	25-Nov-96
96-4004-03D	ST24-MPE	BTEX (Parsons List)		Water 2	7			26-Nov-96	25-Nov-96
96-4004-04D	ST24-MPA	BTEX (Parsons List)						26-Nov-96	25-Nov-96
96-4004-05D	ST24-MPG	BTEX (Parsons List)						26-Nov-96	25-Nov-96
96-4004-06D	ST24-W70(D)	BTEX (Parsons List)						26-Nov-96	25-Nov-96
96-4004-07A	Trip Blank #3	BTEX (Parsons List)		6	6			26-Nov-96	25-Nov-96
96-4004-01I	ST24-MPK(D)	Methane		2				26-Nov-96	25-Nov-96
96-4004-03I	ST24-MPE	Methane						26-Nov-96	25-Nov-96
96-4004-041	ST24-MPA	Methane						26-Nov-96	25-Nov-96
96-4004-051	ST24-MPG	Methane						26-Nov-96	25-Nov-96
96-4004-06I	ST24-W70(D)	Methane						26-Nov-96	25-Nov-96
96-4004-01A	ST24-MPK(D)	Purgeable Halocarbons 8010		6				26-Nov-96	25-Nov-96

= Special list. See sample comments or test information. HT = Holding Time expiration date.

Evergreen Analytical, Inc.

WORK ORDER Summary

Report To: Dave Moutoux

Parsons Engineering Science 1700 Broadway Suite 900 Denver, CO 80290

15-Nov-96

Client Project ID: 729691-32010

Phone: (303) 831-8100 **FAX:** (303) 831-8208

ţ
e
畐
Ħ
ŭ

Sample ID	Client Sample ID	Analysis	*	Matrix	ş	Loc Collection	Received	Due	HT
96-4004-02A	ST24-MPA(9'-11')	Purgeable Halocarbons 8010		Soil	D2	11-Nov-96	12-Nov-96	26-Nov-96	26-Nov-96 25-Nov-96
96-4004-03A	ST24-MPE	Purgeable Halocarbons 8010		Water	6			26-Nov-96	25-Nov-96
96-4004-04A	ST24-MPA	Purgeable Halocarbons 8010						26-Nov-96	25-Nov-96
96-4004-05A	ST24-MPG	Purgeable Halocarbons 8010						26-Nov-96	25-Nov-96
96-4004-06A	ST24-W70(D)	Purgeable Halocarbons 8010						26-Nov-96	26-Nov-96 25-Nov-96
96-4004-07A	Trip Blank #3	Purgeable Halocarbons 8010						26-Nov-96	25-Nov-96
96-4004-01L	ST24-MPK(D)	Total Alkalinity			DZ		-	26-Nov-96	26-Nov-96 25-Nov-96
!		Total Organic Carbon						26-Nov-96	26-Nov-96 09-Dec-96
96-4004-02C	ST24-MPA(9'-11')	ТКРН		Soil				26-Nov-96	09-Dec-96
96-4004-01D	ST24-MPK(D)	TVH (Gasoline)		Water	7			26-Nov-96	26-Nov-96 25-Nov-96
96-4004-03D	ST24-MPE	TVH (Gasoline)						26-Nov-96	26-Nov-96 25-Nov-96
96-4004-04D	ST24-MPA	TVH (Gasoline)						26-Nov-96	26-Nov-96 25-Nov-96
96-4004-05D	ST24-MPG	TVH (Gasoline)						26-Nov-96 25-Nov-96	25-Nov-96
96-4004-06D	ST24-W70(D)	TVH (Gasoline)						26-Nov-96	25-Nov-96

P.O.# 729691-3201 Date/Time der Samples Press 19/ N / NA in shaded area Seals Intact Y / N (NA) Headspace Y/N/NA EAL use only 14.0.#26-5N Do not write 🔀 STD (2 wks) 🗅 UST Cooler Temp. °C_ c/s(1)_(1/3 233010 C/Z (0) 5/3 CLIENT CONTACT (print) JEHNY thr Other (Specify)* <u>و</u> 0 00 03 3 B,O,F, # expedited turnaround subject to additional fee Court / <u></u> ဗ္ဂ Date/Time | Received by: (Signature) CLIENT PROJ. I.D. 72969 TURNAROUND REQUIRED* CHAIN OF CUSTODY RECORD / **!ALYTICAL SERVICES REQUEST EAL. QUOTE # **ANALYSIS REQUESTED** 1.814 H9AT Oil & Grease 413.1 iotal Metals-DW / NPDES / SW8 (circle & list metals below) Dissolved Metals - DW / SW846 (circle & list metals below) Wheat Ridge, Colorado 80033 Date/Time | Relinquished by: (Signature) TEPH 8015mod. (Diesel) z Istical Inc. 5.134- W70(D (Gasoline) (303) 425-6021 FAX (303) 425-6854 (800) 845-7400 FAX RESULTS Y 4036 Youngfield St. BTEX 8020/602 (circle)/MTBE (circle) Herbicides 8150/515 (circle) 0,0,0 Evergreen A Pest/PCBs 8080/608/508 (circle) Pesticides 808/608 (circle) À (303) 831-1208 S BNA 8270/625 (circle) Olog(elos) labels VOA/BNA/Pest/Herb/Metals X 3 Marked 1254 Pe MATRIX esanq-illuM \ egbul2 \ liO Sample Fraction Saite 900 Soil / Solid / Air / Gas 10 FAX # Sample 80290 11 9221 No. of Containers ST24-MPK(D) 0730 97.50 80 SAMPLED TIME <u>ک</u> Broad way 11/96 95/ 11/96 196 75/11 96 DATE to \mathcal{S} Please PRINT Parsons ES 831-8100 all information: (三人の)メルターてた」 トレスー MPA(G'ally) Orchy 5(3) ST24-670(D) Relinquished by: (Signature) # DENTIFICATION 700 Star-MPG STOY-MPA 10,02 (303) TZ4-MPE SAMPLE CITY DEADER r. & Blank Sampler Name; CLIENT STAY nstructions: (print) Br. ADDRESS COMPANY 3 Vais (signature) PHONE#

Methods 602/8020 and 5030/8015 Modified Data Report Method Blank Report

Method Blank Number

: MB2111396

Client Project Number

729691-32010

Date Prepared

: 11/13/96

Lab Work Order

96-4004

Dilution Factor

: 1.0

Matrix

WATER

Lab File Number

TVB2113007

		Analysis	Sample		
Compound Name	Cas Number	Date	Concentration	RL	Units
TVH-Gasoline		11/13/96	U	0.1	mg/L
Benzene	71-43-2	11/13/96	U	0.4	ug/L
Toluene	108-88-3	11/13/96	Ū	0.4	ug/L
Chlorobenzene	108-90-7	11/13/96	U	0.4	ug/L
Ethyl Benzene	100-41-4	11/13/96	U	0.4	ug/L
Total Xylenes (m,p,o)	1330-20-7	11/13/96	U	0.4	ug/L
1,3,5-Trimethylbenzene	108-67-8	11/13/96	U	0.4	ug/L
1,2,4-Trimethylbenzene	95-63-6	11/13/96	U	0.4	ug/L
1,2,3-Trimethylbenzene	526-73-8	11/13/96	U	0.4	ug/L ug/L
1,2,3,4-Tetramethylbenzene	488-23-3	11/13/96	U	0.5	ug/L
FID Surrogate Recovery:		100%		70%-126%	
PID Surrogate Recovery:		101%		76%-120%	

Notes: Total Xylenes consist of three isomers, two of which co-elute. The Xylene RL is for a single peak.

Comments:	
	_
	_

QUALIFIERS and DEFINITIONS:

E = Extrapolated value. Value exceeds calibration range.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

J = Indicates an estimated value when the compound is detected, but is below the Reporting Limit.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

PID = Photoionization detector.

FID = Flame ionization detector.

TVH = Total Volatile Hydrocarbons.

K Hollman Approved

....

Methods 602/8020 and 5030/8015 Modified Data Report Method Blank Report

Method Blank Number

: MB2111496

Client Project Number

729691-32010

Date Prepared

: 11/14/96

Lab Work Order

96-4004

Dilution Factor

: 1.0

Matrix

WATER

Lab File Number

TVB2113021

j	Analysis	Sample		
Cas Number	Date	Concentration	RI	Units
	11/14/96		·	mg/L
71-43-2	11/14/96			ug/L
108-88-3	11/14/96			ug/L
108-90-7	11/14/96			ug/L
100-41-4				
1330-20-7			·	ug/L
108-67-8				ug/L
95-63-6			 	ug/L
526-73-8				ug/L
			+	ug/L
	117.1,00		0.5	ug/L
	88%		70% 100%	
				(Limits)
	71-43-2 108-88-3 108-90-7 100-41-4 1330-20-7 108-67-8 95-63-6	Cas Number Date 11/14/96 71-43-2 11/14/96 108-88-3 11/14/96 108-90-7 11/14/96 100-41-4 11/14/96 1330-20-7 11/14/96 108-67-8 11/14/96 95-63-6 11/14/96 526-73-8 11/14/96	Cas Number Date Concentration	Cas Number Date Concentration RL 11/14/96 U 0.1 71-43-2 11/14/96 U 0.4 108-88-3 11/14/96 U 0.4 108-90-7 11/14/96 U 0.4 100-41-4 11/14/96 U 0.4 1330-20-7 11/14/96 U 0.4 108-67-8 11/14/96 U 0.4 95-63-6 11/14/96 U 0.4 526-73-8 11/14/96 U 0.4 488-23-3 11/14/96 U 0.5

Notes: Total Xylenes consist of three isomers, two of which co-elute. The Xylene RL is for a single peak.

Comments:	

QUALIFIERS and DEFINITIONS:

E = Extrapolated value. Value exceeds calibration range.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

J = Indicates an estimated value when the compound is detected, but is below the Reporting Limit.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

PID = Photoionization detector.

FID = Flame ionization detector.

H = Total Volatile Hydrocarbons.

Analyst

K Hollman Approved

Methods 602/8020 and 5030/8015 Modified Data Report Method Blank Report

Method Blank Number

: MB3111396

Client Project Number

729691-32010

Date Prepared

: 11/13/96

Lab Work Order

96-4004

Dilution Factor

: 1.0

Matrix

WATER

Lab File Number

TVB31111055

		Analysis	Sample		
Compound Name	Cas Number	Date	Concentration	RL.	Units
TVH-Gasoline		NA	NA	NA	mg/L
Benzene	71-43-2	11/13/96	U	0.4	ug/L
Toluene	108-88-3	11/13/96	U	0.4	ug/L
Chlorobenzene	108-90-7	11/13/96	U	0.4	ug/L
Ethyl Benzene	100-41-4	11/13/96	U	0.4	ug/L
Total Xylenes (m,p,o)	1330-20-7	11/13/96	U	0.4	ug/L
1,3,5-Trimethylbenzene	108-67-8	11/13/96	U	0.4	ug/L
1,2,4-Trimethylbenzene	95-63-6	11/13/96	Ü	0.4	ug/L
1,2,3-Trimethylbenzene	526-73-8	11/13/96	U	0.4	ug/L
1,2,3,4-Tetramethylbenzene	488-23-3	11/13/96	U	0.5	ug/L
FID Surrogate Recovery:		NA		70%-126%	(Lip
PID Surrogate Recovery:		98%		76%-127%	(Li.

Notes: Total Xylenes consist of three isomers, two of which co-elute. The Xylene RL is for a single peak.

Comments:			

QUALIFIERS and DEFINITIONS:

E = Extrapolated value. Value exceeds calibration range.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

J = Indicates an estimated value when the compound is detected, but is below the Reporting Limit.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

PID = Photoionization detector.

FID = Flame ionization detector.

TVH = Total Volatile Hydrocarbons.

Analyst

. Allman

Methods 602/8020 and 5030/8015 Modified Data Report Method Blank Report

Method Blank Number

: MEB111496

Client Project Number

729691-32010

Date Prepared

: 11/14/96

Lab Work Order

96-4004

Dilution Factor

: 125

Matrix

WATER/MeOH

Lab File Number

TVB31111084

		Analysis	Sample		
Compound Name	Cas Number	Date	Concentration	RL	Units
TVH-Gasoline		NA	NA	NA	NA
Benzene	71-43-2	11/14/96	U	500	ug/kg
Toluene	108-88-3	11/14/96	U	500	ug/kg
Chlorobenzene	108-90-7	11/14/96	U	500	ug/kg
Ethyl Benzene	100-41-4	11/14/96	U	500	ug/kg
Total Xylenes (m,p,o)	1330-20-7	11/14/96	· U	500	ug/kg
1,3,5-Trimethylbenzene	108-67-8	11/14/96	U	500	ug/kg
1,2,4-Trimethylbenzene	95-63-6	11/14/96	U	500	ug/kg
1,2,3-Trimethylbenzene	526-73-8	11/14/96	U	500	ug/kg
1,2,3,4-Tetramethylbenzene	488-23-3	11/14/96	Ū	625	ug/kg ug/kg
					ug/kg
Surrogate Recovery:		NA		50%-150%	(Limits)
Surrogate Recovery:		93%		50%-150%	(Limits)

Notes: Total Xylenes consist of three isomers, two of which co-elute. The Xylene RL is for a single peak.

Comments:	
	

QUALIFIERS and DEFINITIONS:

E = Extrapolated value. Value exceeds calibration range.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

J = Indicates an estimated value when the compound is detected, but is below the Reporting Limit.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

PID = Photoionization detector.

FID = Flame ionization detector.

= Total Volatile Hydrocarbons.

Methods 602/8020 and 5030/8015 Modified Data Report

Client Sample Number

: ST24-MPK(D)

Client Project Number

729691-32010

Lab Sample Number

: 96-4004-01

Lab Work Order

96-4004

Date Sampled **Date Received**

: 11/11/96

Matrix

WATER

:

Date Prepared

: 11/12/96 : 11/13/96 Lab File Number(s)

93%

98%

TVB2113008

70%-126%

76%-127%

(Limits)

FID Dilution Factor

Method Blank

MB2111396

PID Dilution Factor

: 1.0 : 1.0

_		Analysis	Sample		
Compound Name	Cas Number	Date	Concentration	RL	Units
TVH-Gasoline		11/13/96	U	0.1	mg/L
Benzene	71-43-2	11/13/96	U	0.4	ug/L
Toluene	108-88-3	11/13/96	Ü	0.4	ug/L
Chlorobenzene	108-90-7	11/13/96	Ü	0.4	ug/L
Ethyl Benzene	100-41-4	11/13/96	U	0.4	ug/L
Total Xylenes (m,p,o)	1330-20-7	11/13/96	Ü	0.4	ug/L ug/L
1,3,5-Trimethylbenzene	108-67-8	11/13/96	U	0.4	ug/L
1,2,4-Trimethylbenzene	95-63-6	11/13/96	Ü	0.4	
1,2,3-Trimethylbenzene	526-73-8	11/13/96	U U	0.4	ug/L
1,2,3,4-Tetramethylbenzene	488-23-3	11/13/96	U U	0.5	ug/L
·/=/o/ · · octumetry/bonzene	+00-23-3	11/13/90	U	0.5	

Notes: Total Xylenes consist of three isomers, two of which co-elute. The Xylene RL is for a single peak.

Comments:			
		-	

QUALIFIERS and DEFINITIONS:

FID Surrogate Recovery:

PID Surrogate Recovery:

E = Extrapolated value. Value exceeds calibration range.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

J = Indicates an estimated value when the compound is detected, but is below the Reporting Limit.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

PID = Photoionization detector.

FID = Flame ionization detector.

TVH = Total Volatile Hydrocarbons.

Methods 602/8020 and 5030/8015 Modified Data Report

Client Sample Number : ST24-MPA(9'-11') Client Project Number : 729691-32010

 Lab Sample Number
 : 96-4004-02
 Lab Work Order
 : 96-4004

 Date Sampled
 : 11/11/96
 Matrix
 : SOIL

 Date Received
 : 11/12/96
 Lab File Number(s)
 : TVB31111071

 Date Prepared
 : 11/13/96
 Method Blank
 : MB3111196

FID Dilution Factor : 5.0 Soil Extracted? : NO
PID Dilution Factor : 5.0 Soil moisture : 10.71%

		Analysis	Sample#		
Compound Name	Cas Number	Date	Concentration	RL#	Units
TVH-Gasoline		NA	NA		NA
Benzene	71-43-2	11/13/96	U	2.0	ug/kg
Toluene	108-88-3	11/13/96	U	2.0	ug/kg
Chlorobenzene	108-90-7	11/13/96	U	2.0	ug/kg
Ethyl Benzene	100-41-4	11/13/96	U	2.0	ug/kg
Total Xylenes (m,p,o)	1330-20-7	11/13/96	30	2.0	ug/kg
1,3,5-Trimethylbenzene	108-67-8	11/13/96	390	2.0	ug/kg
1,2,4-Trimethylbenzene	95-63-6	11/13/96	840 E+	·	ug/kg
1,2,3-Trimethylbenzene	526-73-8	11/13/96	310	2.0	ug/kg
2,3,4-Tetramethylbenzene	488-23-3	11/13/96	120	2.5	ug/kg
D Surrogate Recovery:	<u> </u>	NA NA		50%-150%	(Limits)
PID Surrogate Recovery:		123%		50%-150%	(Limits)

Notes: Total Xylenes consist of three isomers, two of which co-elute. The Xylene RL is for a single peak.

Comments: += 1,2,4-TMB was reanalyzed at DF=125 (TVB31111085/MEB111496) resulting

in undetected (U) results. The sample was probably not homogeneous.

Based on dry weight.

QUALIFIERS and DEFINITIONS:

E = Extrapolated value. Value exceeds calibration range.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

J = Indicates an estimated value when the compound is detected, but is below the Reporting Limit.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

PID = Photoionization detector.

= Flame ionization detector.

I = Total Volatile Hydrocarbons.

Analyst

Annroyed

SAMPLE Number

: ST24-MPA(9'-11')

% WET SOIL

: 10.71% /

Dilution Factor

: 5.0

Lab File No.

: 96-4/004-02

0

Compound Name

Tompound Hunte			
	Number	ug/Kg	% DRY
TVH-Gasoline		1400.0	1567.9 15.84 -16
Benzene	71-43-2	,	0.0
Toluene	108-88-3	0.4	95 U@ ZD
Chlorobenzene	108-90-7		0.0
Ethyl Benzene	100-41-4	1/1	1,8 U.C.2.Q
m,p-Xylene	108-38-3	16.0 /	18.0
	106-42-3		
o-Xylene	95-47-6	10.3	11.6
TOTAL XYLENE		,	(29.6)
1,3,5-Trimethylbenzene	108-67-8	345.0	386.4
1,2,4-Trimethylbenzene	95-63-6	752.1 /	842.3
1,2,3-Trimethylbenzene	526-73-8	280.1 /	313.7
1,2,3,4-Tetramethylbenzene	488-23-3	110.0 /	123.2

Methods 602/8020 and 5030/8015 Modified Data Report

Client Sample Number

: ST24-MPE

Client Project Number

729691-32010

Lab Sample Number

: 96-4004-03

Lab Work Order Matrix

96-4004WATER

Date Sampled Date Received

: 11/11/96 : 11/12/96

Lab File Number(s)

TVB2113011,025

Date Prepared

: 11/13,14/96

Method Blanks

MB2111396,

FID Dilution Factor

: 1.0

lethod Blanks

MB2111496

PID Dilution Factor

: 1.0; 10

		Analysis	Sample		
Compound Name	Cas Number	Date	Concentration	RL	Units
TVH-Gasoline		11/13/96	1.5	0.1	mg/L
Benzene	71-43-2	11/13/96	73	0.4	ug/L
Toluene	108-88-3	11/13/96	2.0	0.4	ug/L
Chlorobenzene	108-90-7	11/13/96	τ		ug/L
Ethyl Benzene	100-41-4	11/14/96	99	4.0	ug/L
Total Xylenes (m,p,o)	1330-20-7	11/13/96	1.2	0.4	ug/L
1,3,5-Trimethylbenzene	108-67-8	11/13/96	1.7	0.4	ug/L
1,2,4-Trimethylbenzene	95-63-6	11/13/96	2.2	0.4	ug/L
1,2,3-Trimethylbenzene	526-73-8	11/13/96	1.3	0.4	ug/L
2,3,4-Tetramethylbenzene	488-23-3	11/13/96	68	0.5	ug/L
<u></u>					
PID Surrogate Recovery:		145% *		70%-126%	(Limits)
PID Surrogate Recovery:		133% *; 98%		76%-127%	(Limits)

Notes: Total Xylenes consist of three isomers, two of which co-elute. The Xylene RL is for a single peak.

Comments:	* =	High	Surrogate	Recovery	due to	hydrocarbon	interference.

QUALIFIERS and DEFINITIONS:

E = Extrapolated value. Value exceeds calibration range.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

J = Indicates an estimated value when the compound is detected, but is below the Reporting Limit.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

PID = Photoionization detector.

= Flame ionization detector.

I = Total Volatile Hydrocarbons.

Analyst

Annroyed

Methods 602/8020 and 5030/8015 Modified Data Report

Client Sample Number Lab Sample Number

: ST24-MPA

Client Project Number

729691-32010

: 96-4004-04

Lab Work Order

96-4004

Date Sampled Date Received

: 11/11/96 : 11/12/96

Matrix Lab File Number(s)

WATER TVB2113013,026

Date Prepared

MB2111396,

FID Dilution Factor

: 11/13,14/96 : 1.0

Method Blanks

PID Dilution Factor

: 1.0; 100

MB2111496

		Analysis	Sample		
Compound Name	Cas Number	Date	Concentration	RL	Units
TVH-Gasoline	****	11/14/96	2.0	0.1	mg/L
Benzene	71-43-2	11/14/96	43	0.4	ug/L
Toluene	108-88-3	11/14/96	470	40	ug/L
Chlorobenzene	108-90-7	11/14/96	U	0.4	ug/L
Ethyl Benzene	100-41-4	11/14/96	45	0.4	ug/L
Total Xylenes (m,p,o)	1330-20-7	11/14/96	140	40	ug/L ug/L
1,3,5-Trimethylbenzene	108-67-8	11/14/96	23	0.4	ug/L
1,2,4-Trimethylbenzene	95-63-6	11/14/96	70	0.4	ug/L
1,2,3-Trimethylbenzene	526-73-8	11/14/96	21	0.4	ug/L
1,2,3,4-Tetramethylbenzene	488-23-3	11/14/96	9.6	0.5	ug/L
FID Surrogate Recovery:		104%		70%-126%	/l :
PID Surrogate Recovery:		104%; 97%		76%-126%	(Lim.

Notes: Total Xylenes consist of three isomers, two of which co-elute. The Xylene RL is for a single peak.

Comments:			
		N	

QUALIFIERS and DEFINITIONS:

E = Extrapolated value. Value exceeds calibration range.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

J = Indicates an estimated value when the compound is detected, but is below the Reporting Limit.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

PID = Photoionization detector.

FID = Flame ionization detector.

TVH = Total Volatile Hydrocarbons.

Methods 602/8020 and 5030/8015 Modified Data Report

Client Sample Number

: ST24-MPG

Client Project Number

729691-32010

Lab Sample Number

: 96-4004-05

Lab Work Order

96-4004

Date Sampled **Date Received**

: 11/11/96 : 11/12/96

Matrix Lab File Number(s)

WATER

Date Prepared

: 11/13/96

Method Blank

TVB2113014

FID Dilution Factor

: 1.0

MB2111396

PID Dilution Factor

: 1.0

Compound Name	Coo Normalia	Analysis	Sample		
	Cas Number	Date	Concentration	RL	Units
TVH-Gasoline		11/14/96	U	0.1	mg/L
Benzene	71-43-2	11/14/96	U	0.4	ug/L
Toluene	108-88-3	11/14/96	U	0.4	ug/L
Chlorobenzene	108-90-7	11/14/96	Ü	0.4	ug/L
Ethyl Benzene	100-41-4	11/14/96	U	0.4	ug/L
Total Xylenes (m,p,o)	1330-20-7	11/14/96	Ü	0.4	ug/L
1,3,5-Trimethylbenzene	108-67-8	11/14/96	U	0.4	
1,2,4-Trimethylbenzene	95-63-6	11/14/96	U	0.4	ug/L
1,2,3-Trimethylbenzene	526-73-8	11/14/96	U	0.4	ug/L
1,2,3,4-Tetramethylbenzene	488-23-3	11/14/96	U	0.4	ug/L
		1.77.1700	U U	0.5	ug/L
FID Surrogate Recovery:		99%	<u> </u>	700/ 1000/	
PID Surrogate Recovery:				70%-126%	(Limits)
The Currogate Recovery.		101%		76%-127%	(Limits)

Notes: Total Xylenes consist of three isomers, two of which co-elute. The Xylene RL is for a single peak.

Comments:	

QUALIFIERS and DEFINITIONS:

E = Extrapolated value. Value exceeds calibration range.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

J = Indicates an estimated value when the compound is detected, but is below the Reporting Limit.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

PID = Photoionization detector.

P = Flame ionization detector.

H = Total Volatile Hydrocarbons.

Methods 602/8020 and 5030/8015 Modified Data Report

Client Sample Number : ST24-W70(D) Client Project Number : 729691-32010 Lab Sample Number : 96-4004-06 Lab Work Order : 96-4004

Date Sampled : 11/11/96 Matrix : WATER

 Date Received
 : 11/12/96
 Lab File Number(s)
 : TVB2113019,28

 Date Prepared
 : 11/13,14/96
 Method Blanks
 : MB2111396,

 FID Dilution Factor
 : 1.0
 MB2111496

PID Dilution Factor : 1.0; 100

		Analysis	Sample		
Compound Name	Cas Number	Date	Concentration	RL	Units
TVH-Gasoline		11/14/96	2.8	0.1	mg/L
Benzene	71-43-2	11/14/96	230	40	ug/L
Toluene	108-88-3	11/14/96	11	0.4	ug/L
Chlorobenzene	108-90-7	11/14/96	U	0.4	ug/L
Ethyl Benzene	100-41-4	11/14/96	120	40	ug/L
Total Xylenes (m,p,o)	1330-20-7	11/14/96	240	40	ug/L
1,3,5-Trimethylbenzene	108-67-8	11/14/96	54	0.4	ug/L
1,2,4-Trimethylbenzene	95-63-6	11/14/96	270	40	ug/L
1,2,3-Trimethylbenzene	526-73-8	11/14/96	60	0.4	ug/L
1,2,3,4-Tetramethylbenzene	488-23-3	11/14/96	31	0.5	-
FID Surrogate Recovery:		114%		70%-126%	(1
PID Surrogate Recovery:		106%; 97%		76%-127%	(Limits)

Notes: Total Xylenes consist of three isomers, two of which co-elute. The Xylene RL is for a single peak.

Comments:			

QUALIFIERS and DEFINITIONS:

E = Extrapolated value. Value exceeds calibration range.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

J = Indicates an estimated value when the compound is detected, but is below the Reporting Limit.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

PID = Photoionization detector.

FID = Flame ionization detector.

TVH = Total Volatile Hydrocarbons.

Approved

Methods 602/8020 and 5030/8015 Modified Data Report

Client Sample Number

: TRIP BLANK#3

Client Project Number

729691-32010

Lab Sample Number

: 96-4004-07

Lab Work Order

96-4004

Date Sampled

: NA

Matrix

WATER

Date Received

: 11/12/96

Lab File Number(s)

TVB2113024

Date Prepared

: 11/14/96

Method Blank

FID Dilution Factor

: 1.0

MB2111496

PID Dilution Factor

: 1.0

_		Analysis	Sample		
Compound Name	Cas Number	Date	Concentration	RL	Units
TVH-Gasoline		11/14/96	U	0.1	mg/L
Benzene	71-43-2	11/14/96	U	0.4	ug/L
Toluene	108-88-3	11/14/96	U	0.4	ug/L
Chlorobenzene	108-90-7	11/14/96	U	0.4	ug/L
Ethyl Benzene	100-41-4	11/14/96	U	0.4	ug/L
Total Xylenes (m,p,o)	1330-20-7	11/14/96	U	0.4	ug/L
1,3,5-Trimethylbenzene	108-67-8	11/14/96	U	0.4	ug/L
1,2,4-Trimethylbenzene	95-63-6	11/14/96	U	0.4	ug/L
1,2,3-Trimethylbenzene	526-73-8	11/14/96	U	0.4	ug/L
1.2,3,4-Tetramethylbenzene	488-23-3	11/14/96	U	0.5	ug/L
D Surrogate Recovery:		88%	<u> </u>	70%-126%	(Limits)
PID Surrogate Recovery:		97%		76%-127%	(Limits)

Notes: Total Xylenes consist of three isomers, two of which co-elute. The Xylene RL is for a single peak.

Comments:		

QUALIFIERS and DEFINITIONS:

E = Extrapolated value. Value exceeds calibration range.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

J = Indicates an estimated value when the compound is detected, but is below the Reporting Limit.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

PID = Photoionization detector.

D = Flame ionization detector.

H = Total Volatile Hydrocarbons.

Evergreen Analytical, Inc. 4036 Youngfield, Wheat Ridge, CO 80033 (303) 425-6021

TOTAL VOLATILE HYDROCARBONS (TVH as Gasoline) TVH Matrix Spike/Matrix Spike Duplicate Data Report

Compound	Spike Added (mg/L)	Sample Concentration (mg/L)	MS Concentration (mg/L)	MS %REC	QC (#) Limits %REC
Gasoline	2.00	0.00	1.92	96.1%	55 - 128
Surrogate **				109%	70 - 130

Compound	Spike MSD Added Concentration (mg/L)	Concentration	MSD RPD			QC Limits
		%REC		RPD	%REC	
Gasoline	2.00	2.00	100.1%	4.0	50	50 - 150
Surrogate **		•••	112%	NA	NA	70 - 130

RPD:	0	out of	(1) outside limits.
Spike Recovery:	0	out of	(2) outside limits.

Notes:

NA = Not analyzed/not applicable.

- * = Values outside of QC limits.
- ** = 1,2,4-Trichlorobenzene

Comments:	

Analyst

Evergreen Analytical, Inc. 4036 Youngfield, Wheat Ridge, CO 80033 (303) 425-6021

EPA 602/8020 Matrix Spike/Matrix Spike Duplicate Data Report

Client Sample No. : ST24-MPG Client Project No. : 729691-32010 Lab Sample No. : 96-4004-05 Lab Work Order : 96-4004 Date Sampled : 11/11/96 **EPA Method No.** : 602/8020 **Date Received** : 11/12/96 Matrix : WATER **Date Prepared** 11/13,14/96 Lab File Number(s) TVB2113022,16 Date Analyzed : 11/14/96 Method Blanks : MB21113/1496 **Instrument Name** : TVHBTEX2 **Dilution Factor** : 1.0

Compound	Spike Added	Sample Concentration	1	Concentration (ug/L)	
	(ug/L)	(ug/L)	MS	MSD	Comments
Benzene	20.0	0.0	21.7	20.5	
Toluene	20.0	0.0	21.0	19.8	
Chlorobenzene	20.0	0.0	20.9	19.5	
Ethylbenzene	20.0	0.0	21.1	19.8	
m,p-Xylene	20.0	0.0	21.1	19.8	
o-Xylene	20.0	0.0	20.9	19.6	
1,3,5-TMB	20.0	0.0	14.4	11.1	
1,2,4-TMB	20.0	0.0	20.2	18.7	
1,2,3-TMB	20.0	0.0	20.9	19.1	
1,2,3,4-TeMB	20.0	0.0	20.2	18.1	
Surrogate	100.0	101%	102%	92%	% RECOVERY

	MS	MSD			Γ		QC#	ŧ	
Compound	%	%					Limit	s	
	RECOVERY	RECOVERY		RPD		RPD	%	R	EC
Benzene	108.5	102.5	П	5.7	T	17	61	T-	129
Toluene	105.0	99.0		5.9	Т	18	61	-	127
Chlorobenzene	104.5	97.5	П	6.9	Т	16	68	-	122
Ethylbenzene	105.5	99.0	П	6.4		18	63	-	126
m,p-Xylene	105.5	99.0		6.4	Т	18	60	-	130
o-Xylene	104.5	98.0		6.4	П	18	62	-	128
1,3,5-TMB	72.0	55.5	*	25.9	*	18	69	-	117
1,2,4-TMB	101.0	93.5	П	7.7	П	23	69	-	119
1,2,3-TMB	104.5	95.5		9.0	П	16	71	-	440
1,2,3,4-TeMB	101.0	90.5		11.0	П	27	67		125
Surrogate	102.0	92.0		NA	П	NA	76	_	4.5.

#=	Limits	aetal	hlichad	10/1	5/96	KCH

RPD:	1	out of	(10)	outside limits.
Spike Recovery:	1	out of	(20)	outside limits.

Comments:

* = Spike was reanalyzed with a similar low recovery.

See LCS2111396-BTEX and LCS2111496-BTEX.

M. Blecha

Annroyed

^{* =} Values outside of QC limits.

EPA 602/8020 Data Report **Laboratory Control Sample (LCS)**

LCS Number : LCS3111396-BTEX Date Extracted/Prepared : 11/13/96 Date Analyzed : 11/13/96 Spike Amount (ug/L)

: 20.0

Dilution Factor 1.00 Method 602/8020

Matrix Water

Lab File No. TVB31111054

				11004
Compound Name	Cas Number	LCS Concentration (ug/L)	LCS %	QC Limit
Benzene	71-43-2	19.1	Recovery	% Recovery
Toluene .	108-88-3	18.9	95.5	50 - 150 50 - 150
Chlorobenzene	108-90-7	17.6	88.0	50 - 150
Ethyl Benzene	100-41-4	19.0	95.0	50 - 150
m,p-Xylene	108-38-3	37.4	93.5	50 - 150
o-Xylene	106-42-3 95-47-6	18.9	94.5	50 - 15
МТВЕ	1634-04-4	20.0	100.0	50 - 150
1,3,5-Trimethylbenzene	108-67-8	19.5	97.5	50 - 150
1,2,4-Trimethylbenzene	95-63-6	17.9	89.5	50 - 150
1,2,3-Trimethylbenzene	526-73-8	21.9	109.5	50 - 150
1,2,3,4-Tetramethylbenzene	488-23-3	19.1	95.5	50 - 150
Surrogate Recovery:		88%		70 - 130
				70 - 130

NOTES:

m,p-xylene = 40.0 ppb spike.

QUALIFIERS:

E = Extrapolated value. Value exceeds that of the calibration range.

U = Compound analyzed for, but not detected.

B = Compound found in blank and sample. Compare blank and sample data.

NA =Not available/Not analyzed.

EPA 602/8020 Data Report **Laboratory Control Sample (LCS)**

LCS Number : LCS3111496-BTEX Date Extracted/Prepared : 11/14/96 Date Analyzed : 11/14/96 Spike Amount (ug/L)

20.0

Dilution Factor Method

1.00

Matrix

602/8020 Water

Lab File No.

TVB31111086

Compound Name	Cas Number	LCS Concentration (ug/L)	LCS '% Recovery	QC Limit % Recovery
Benzene	71-43-2	18.8	94.0	50 - 150
Toluene	108-88-3	18.5	92.5	50 - 150
Chlorobenzene	108-90-7	17.5	87.5	50 - 150
Ethyl Benzene	100-41-4	18.8	94.0	50 - 150
m,p-Xylene	108-38-3	40.0	100.0	50 - 1 50
ne	106-42-3 95-47-6	18.8	94.0	50 - 150
MTBE	1634-04-4	20.2	101.0	50 - 150
1,3,5-Trimethylbenzene	108-67-8	19.6	98.0	50 - 150
1,2,4-Trimethylbenzene	95-63-6	18.0	90.0	50 - 150
1,2,3-Trimethylbenzene	526-73-8	21.9	109.5	50 - 150
1,2,3,4-Tetramethylbenzene	488-23-3	19.9	99.5	50 - 150
Surrogate Recovery:		99%		70 - 130

NOTES:

m,p-xylene = 40.0 ppb spike.

QUALIFIERS:

E = Extrapolated value. Value exceeds that of the calibration range.

U = Compound analyzed for, but not detected.

Compound found in blank and sample. Compare blank and sample data.

lot available/Not analyzed.

TOTAL VOLATILE HYDROCARBONS (TVH as Gasoline) Laboratory Control Sample (LCS)

LCS Number Date Prepared Date Analyzed Lab File Number(s)	: LCS2111396-GAS : 11/13/96 : 11/13/96 : TVB2113003	Matrix Method Numbers Instrument Name	: WATER : EPA 5030/6. : TVHBTEX2	015 Modified
Compound Name	Theoretical Concentration (mg/L)	LCS Concentration (mg/L)	LCS % _Recovery	QC Limit % Recovery
Gasoline	2.00	2.16	108.0	81 - 128
Surrogate Recovery:		123%		70 - 126

QUALIFIERS

B = TVH as Gasoline found in blank also.

E = Extrapolated value. Value exceeds calibration range.

NA = Not Available/Not Applicable.

** = Limits established 10/1/96 for TVHBTEX2. MAB

Analyst

EPA 602/8020 Data Report **Laboratory Control Sample (LCS)**

LCS Number Date Extracted/Prepared

Date Analyzed

Spike Amount (ug/L)

: LCS2111396-BTEX

11/13/96 : 11/13/96

: 20.0

Dilution Factor

1.00

Method

602/8020

Matrix

Water

Lab File No.

TVB2113004

Compound Name	Cas Number	LCS Concentration (ug/L)	LCS % Recovery	QC Limit** % Recovery
Benzene	71-43-2	20.8	104.0	75 - 116
Toluene	108-88-3	20.3	101.5	75 - 118
Chlorobenzene	108-90-7	18.3	91.5	73 - 115
Ethyl Benzene	100-41-4	19.9	99.5	80 - 122
m,p-Xylene	108-38-3	38.6	96.5	76 - 120
ne .	106-42-3 95-47-6	20.1	100.5	76 - 118
MTBE	1634-04-4	21.4	107.0	75 - 115
1,3,5-Trimethylbenzene	108-67-8	19.8	99.0	64 - 118
1,2,4-Trimethylbenzene	95-63-6	18.2	91.0	75 - 111
1,2,3-Trimethylbenzene	526-73-8	22.6	113.0	82 - 127
1,2,3,4-Tetramethylbenzene	488-23-3	20.7	103.5	72 - 131
Surrogate Recovery:		106%		76 - 127

NOTES:

m,p-xylene = 40.0 ppb spike.

QUALIFIERS:

E = Extrapolated value. Value exceeds that of the calibration range.

U = Compound analyzed for, but not detected.

B = Compound found in blank and sample. Compare blank and sample data.

Not available/Not analyzed.

Limits established 10/1/96 for TVHBTEX2. MAB

TOTAL VOLATILE HYDROCARBONS (TVH as Gasoline) Laboratory Control Sample (LCS)

LCS Number Date Prepared Date Analyzed Lab File Number(s)	: LCS2111496-GAS : 11/14/96 : 11/14/96 : TVB2113030	Matrix Method Numbers Instrument Name	: WATER : EPA 5030/8 : TVHBTEX2	015 Modified
Compound Name	Theoretical Concentration (mg/L)	LCS Concentration (mg/L)	LCS % _Recovery	QC Limit
Gasoline	2.00	2.26	112.9	81 - 128
Surrogate Recovery:		87%		70 - 126

QUALIFIERS

B = TVH as Gasoline found in blank also.

E = Extrapolated value. Value exceeds calibration range.

NA = Not Available/Not Applicable.

** = Limits established 10/1/96 for TVHBTEX2. MAB

EPA 602/8020 Data Report **Laboratory Control Sample (LCS)**

LCS Number Date Extracted/Prepared

Date Analyzed

Spike Amount (ug/L)

: LCS2111496-BTEX

11/14/96 : 11/14/96

20.0

Dilution Factor

1.00

Method Matrix

602/8020

Water

Lab File No. TVB2113031

Compound Name	Cas Number	LCS Concentration (ug/L)	LCS % Recovery	QC Limit** % Recovery
Benzene	71-43-2	21.1	105.5	75 - 116
Toluene	108-88-3	20.5	102.5	75 - 118
Chlorobenzene	108-90-7	18.7	93.5	· 73 - 115
Ethyl Benzene	100-41-4	20.3	101.5	80 - 122
m,p-Xylene	108-38-3	39.4	98.5	76 - 120
	106-42-3			70 - 120
ne	95-47-6	20.6	103.0	76 - 118
MTBE	1634-04-4	20.1	100.5	75 - 115
1,3,5-Trimethylbenzene	108-67-8	20.9	104.5	64 - 118
1,2,4-Trimethylbenzene	95-63-6	18.6	93.0	75 - 111
1,2,3-Trimethylbenzene	526-73-8	23.1	115.5	82 - 127
1,2,3,4-Tetramethylbenzene	488-23-3	21.0	105.0	72 - 131
Surrogate Recovery:		100%		76 - 127

NOTES:

m,p-xylene = 40.0 ppb spike.

QUALIFIERS:

E = Extrapolated value. Value exceeds that of the calibration range.

U = Compound analyzed for, but not detected.

B = Compound found in blank and sample. Compare blank and sample data.

lot available/Not analyzed.

imits established 10/1/96 for TVHBTEX2. MAB

Method 8010 Chlorinated VOC's Method Blank Report

Method Blank

: RB111896

Client Project No.

: 729691-32010

Date Prepared

: 11/18/96

Lab Project No.

: 96-4004

Date Analyzed

: 11/18/96

Lab File No.

: HALL1118\012F0101

Compound	CAS #	Concentration (ug/L)	RL(ug/L)
Vinyl Chloride	75-01-4	U	0.4
Chloroethane	75-00-3	Ü	0.4
1,1-Dichloroethene	75-35-4	U	0.4
Dichloromethane	75-09-2	U	0.4
trans-1,2-Dichloroethene	156-60-5	Ü	0.4
1,1-Dichloroethane	75-34-3	U	0.4
cis-1,2-Dichloroethene	156-59-4	U	0.4
1,1,1-Trichloroethane	71-55-6	U	0.4
Carbon Tetrachloride	56-23-5	U	0.4
Trichloroethene	79-01-6	U	0.4
1,1,2-Trichloroethane	79-00-5	U	0.4
Tetrachloroethene	127-18-4	U	0.4
1,1,1,2-Tetrachloroethane	79-00-5	U	0.4
Chlorobenzene	108-90-7	U	0.42
1,1,2,2-Tetrachloroethane	79-34-5	U	0.54
2-Chlorotoluene	95-49-8	U	0-4
4-Chlorotoluene	106-49-8	U	
1,3-Dichlorobenzene	541-73-1	U	
1,2-Dichlorobenzene	95-50-1	U	0.4

Surrogate Recovery (1-Chloro-2-Fluoro-Benzene):

88%

70% - 130% (QC limits)

QUALIFIERS:

U = Compound analyzed for, but not detected above the Reporting Limit.

B = Compound in blank and sample. Compare blank and sample data.

E = Extrapolated value. Concentration exceeds the upper limit of the calibration.

RL = Reporting Limit (at or above method detection limit).

NOTES:

Approved

HLW4004.XLS; 11/25/96

Method 601/8010 Chlorinated VOC's Method Blank Report

Method Blank

: RB112096

Client Project No.

: 729691-32010

Date Prepared

: 11/20/96

Lab Project No.

: 96-4004

Date Analyzed

: 11/20/96

Lab File No.

: HALL1120\004F0101

Compound	CAS#	Concentration (ug/L)	RL(ug/L)
Vinyl Chloride	75-01-4		
Chloroethane	75-00-3	Ü	0.4
1,1-Dichloroethene	75-35-4	11	0.4
Dichloromethane	75-09-2	Ŭ	0.4
trans-1,2-Dichloroethene	156-60-5	Ü	0.4
1,1-Dichloroethane	75-34-3	V	0.4
cis-1,2-Dichloroethene	156-59-4	ü	0.4
1,1,1-Trichloroethane	71-55-6	Ü	0.4
Carbon Tetrachloride	56-23-5	ii	0.4
Trichloroethene	79-01-6	ŭ	0.4
1,1,2-Trichloroethane	79-00-5	Ŭ	0.4
Tetrachloroethene	127-18-4	Ŭ	0.4
1,1,1,2-Tetrachloroethane	79-00-5	ŭ	0.4
Chlorobenzene	108-90-7	11	0.4
1,1,2,2-Tetrachloroethane	79-34-5	ŭ	0.42
2-Chlorotoluene	95-49-8	Ü	0.54
-Chlorotoluene	106-49-8	Ŭ	0.4
1,3-Dichlorobenzene	541-73-1	11	0.4
1,2-Dichlorobenzene	95-50-1	Ŭ	0.4 0.4

Surrogate Recovery (1-Chloro-2-Fluoro-Benzene):

88%

70% - 130% (QC limits)

QUALIFIERS:

U = Compound analyzed for, but not detected above the Reporting Limit.

B = Compound in blank and sample. Compare blank and sample data.

E = Extrapolated value. Concentration exceeds the upper limit of the calibration.

RL = Reporting Limit (at or above method detection limit).

NOTES:

Approved

HLW4004.XLS; 11/25/96

Method 601/8010 Chlorinated VOC's Sample Report

Date Analyzed : 11/20/96 Dilution Factor : 1.0

Compound	CAS#	Concentration (ug/L)	RL (ug/L)
Vinyl Chloride	75-01-4	U	0.4
Chloroethane	75-00-3	Ü	0.4
1,1-Dichloroethene	75-35-4	Ü	0.4
Dichloromethane	75-09-2	Ŭ	0.4
trans-1,2-Dichloroethene	156-60-5	Ü	0.4
1,1-Dichloroethane	75-34-3	U	0.4
cis-1,2-Dichloroethene	156-59-4	Ü	0.4
1,1,1-Trichloroethane	71- 55-6	Ü	0.4
Carbon Tetrachloride	56-23-5	ŭ	0.4
Trichloroethene	79-01-6	Ŭ	0.4
1,1,2-Trichloroethane	79-00-5	U	0.4
Tetrachloroethene	127-18-4	· ū	0.4
1,1,1,2-Tetrachloroethane	79-00-5	ii	0.4
Chlorobenzene	108-90-7	Ü	0.42
1,1,2,2-Tetrachloroethane	79-34-5	Ŭ	0.54
2-Chlorotoluene	95-49-8	Ü	0.4
4-Chlorotoluene	106-49-8	Ŭ	0.4
1,3-Dichlorobenzene	541-73-1	Ŭ	
1,2-Dichlorobenzene	95-50-1	ŭ	0.4 0.4

Corresponde Deservation	44 014 0 51 5		
Surrogate Recovery	(1-Chloro-2-Fluoro-Benzene):	76%	70% - 130% (QC limits)

QUALIFIERS:

U = Compound analyzed for, but not detected above the Reporting Limit.

B = Compound in blank and sample. Compare blank and sample data.

E = Extrapolated value. Concentration exceeds the upper limit of the calibration.

Approved HLW4004.XLS; 11/25/96

Method 601/8010 Chlorinated VOC's Sample Report

Date Analyzed : 11/20/96 Dilution Factor : 1.1

Percent Moisture : 10.71

Percent Moisture : 10.71			
Compound	CAS#	Concentration(ug/Kg)	RL(ug/Kg)
Vinyl Chloride	75-01-4	[]	0.45
Chloroethane	75-00-3	· Ü	
1,1-Dichloroethene	75-35-4	Ü	0.45
Dichloromethane	75-09-2	ij	0.45
trans-1,2-Dichloroethene	156-60-5	Ŭ	0.45 0.45
1,1-Dichloroethane	75-34-3	U	0.45
cis-1,2-Dichloroethene	156-59-4	Ŭ ·	0.45
1,1,1-Trichloroethane	71-55-6	Ü	
Carbon Tetrachloride	56-23-5	Ü	0.45
Trichloroethene	79-01-6	Ŭ	0.45
1,1,2-Trichloroethane	79-00-5	Ŭ	0.45
Tetrachloroethene	127-18-4	ŭ	0.45
1,1,1,2-Tetrachloroethane	79-00-5	Ŭ	0.45
Chlorobenzene	108-90-7	ŭ	0.45
1,1,2,2-Tetrachloroethane	79-34-5	Ŭ	0.47
2-Chlorotoluene	95-49-8	U	0.6
4-Chlorotoluene	106-49-8	ŭ	0.45
1,3-Dichlorobenzene	541-73-1	Ŭ	0.45
1,2-Dichlorobenzene	95-50-1	Ŭ	0.45
· · · · · · · · · · · · · · · · · · ·		U	0.45

			•
Surrogate Recovery	(1-Chloro-2-Fluoro-Benzene):	88%	700/ 4000/ 100
Deriogate Hederery	(1 Chiolo-Z-1 lautu-Delizelle);	QQ 70	70% - 130% (OC limits)

QUALIFIERS:

U = Compound analyzed for, but not detected above the Reporting Limit.

B = Compound in blank and sample. Compare blank and sample data.

E = Extrapolated value. Concentration exceeds the upper limit of the calibration.

; A /
Approved
HLW4004.XLS; 11/25/96

Method 601/8010 Chlorinated VOC's Sample Report

Client Sample No. : ST24-MPE Client Project No. : 729691-32010

 Lab Sample No.
 : 96-4004-03
 Lab Project No.
 : 96-4004

 Date Sampled
 : 11/11/96
 Matrix
 : Water

Date Prepared : 11/18/96 Method Blank : RB111896

Date Analyzed : 11/19/96 Dilution Factor : 1.0

Compound	CAS#	Concentration (ug/L)	RL (ug/L)
Vinyl Chloride	75-01-4	U	0.4
Chloroethane	75-00-3	U	0.4
1,1-Dichloroethene	75-35-4	U	0.4
Dichloromethane	75-09-2	U	0.4
trans-1,2-Dichloroethene	156-60-5	Ū	0.4
1,1-Dichloroethane	75-34-3	U	0.4
cis-1,2-Dichloroethene	156-59-4	Ū	0.4
1,1,1-Trichloroethane	71-55-6	Ū	0.4
Carbon Tetrachloride	56-23-5	Ŭ	0.4
Trichloroethene	79-01-6	Ü	0.4
1,1,2-Trichloroethane	79-00-5	U	0.4
Tetrachloroethene	127-18-4	Ü	0.4
1,1,1,2-Tetrachloroethane	79-00-5	U	0.4
Chlorobenzene	108-90-7	U	0.42
1,1,2,2-Tetrachloroethane	79-34 -5	U	<u> </u>
2-Chlorotoluene	95-49-8	U	
4-Chlorotoluene	106-49-8	U	
1,3-Dichlorobenzene	541-73-1	U	0.4
1,2-Dichlorobenzene	95-50-1	U	0.4

Surrogate Recovery (1-Chloro-2-Fluoro-Benzene): 85% 70% - 130% (QC limits)

QUALIFIERS:

U = Compound analyzed for, but not detected above the Reporting Limit.

B = Compound in blank and sample. Compare blank and sample data.

E = Extrapolated value. Concentration exceeds the upper limit of the calibration.

NOTES:			
Analyst	Approved HLW4004.XLS; 11/25/96		

Method 601/8010 Chlorinated VOC's Sample Report

 Lab Sample No.
 : 96-4004-04
 Lab Project No.
 : 96-4004

 Date Sampled
 : 11/11/96
 Matrix
 : Water

 Date Received
 : 11/12/96
 Lab File No.
 : HALL 111

Date Analyzed : 11/19/96 Dilution Factor : 1.0

Compound	CAS #	Concentration (ug/L)	RL (ug/L)
Vinyl Chloride	75-01-4	U	0.4
Chloroethane	75-00-3	Ū	0.4
1,1-Dichloroethene	75-35-4	Ü	0.4
Dichloromethane	75-09-2	Ü	0.4
trans-1,2-Dichloroethene	156-60-5	Ü	0.4
1,1-Dichloroethane	75-34-3	U	0.4
cis-1,2-Dichloroethene	156-59-4	Ü	0.4
1,1,1-Trichloroethane	71-55-6	Ü	0.4
Carbon Tetrachloride	56-23-5	Ü	0.4
Trichloroethene	79-01-6	Ü	0.4
1,1,2-Trichloroethane	79-00-5	Ū	0.4
Tetrachloroethene	127-18-4	Ū	0.4
1,1,1,2-Tetrachloroethane	79-00-5	Ŭ ·	0.4
Chlorobenzene	108-90-7	Ü	0.42
1,1,2,2-Tetrachloroethane	79-34-5	Ü	0.54
-Chlorotoluene	95-49-8	Ŭ	0.54
4-Chlorotoluene	106-49-8	Ü	0.4
1,3-Dichlorobenzene	541-73-1	ŭ	
1,2-Dichlorobenzene	95-50-1	ŭ	0.4 0.4

Surrogate Recovery (1-Chloro-2-Fluoro-Benzene): 81% 70% - 130% (QC limits)

QUALIFIERS:

U = Compound analyzed for, but not detected above the Reporting Limit.

B = Compound in blank and sample. Compare blank and sample data.

E = Extrapolated value. Concentration exceeds the upper limit of the calibration.

NOTES:			
	()		1
	Analysu	// Approved	
	$\sim \eta$	HLW4004.XLS; 11/25/96	i

Method 601/8010 Chlorinated VOC's Sample Report

 Client Sample No.
 : ST24-MPG
 Client Project No.
 : 729691-32010

 Lab Sample No.
 : 96-4004-05
 Lab Project No.
 : 96-4004

 Date Sampled
 : 11/11/96
 Matrix
 : Water

Date Prepared : 11/18/96 Method Blank : RB111896

Date Analyzed : 11/19/96 Dilution Factor : 1.0

Compound	CAS#	Concentration (ug/L)	RL (ug/L)
Vinyl Chloride	75-01-4	U	0.4
Chloroethane	75-00-3	Ü	0.4
1,1-Dichloroethene	75-35-4	Ü	0.4
Dichloromethane	75-09-2	Ü	0.4
trans-1,2-Dichloroethene	156-60-5	Ü	
1,1-Dichloroethane	75-34-3	U	0.4
cis-1,2-Dichloroethene	156-59-4	Ü	0.4
1,1,1-Trichloroethane	71-55-6	Ü	0.4
Carbon Tetrachloride	56-23-5	Ü	0.4
Trichloroethene	79-01-6	Ü	0.4
1,1,2-Trichloroethane	79-00-5	Ū	0.4
Tetrachloroethene	127-18-4	Ü	
1,1,1,2-Tetrachloroethane	79-00-5	Ŭ	0.4
Chlorobenzene	108-90-7	Ü	0.4 0.42
1,1,2,2-Tetrachloroethane	79-34-5	Ŭ	0.42 0 <u>.54</u>
2-Chlorotoluene	95-49-8	U	
4-Chlorotoluene	106-49-8	Ü	
1,3-Dichlorobenzene	541-73-1	Ü	0.4
1,2-Dichlorobenzene	95-50-1	Ŭ	0.4

Surrogate Recovery (1-Chloro-2-Fluoro-Benzene): 84% 70% - 130% (QC limits)

QUALIFIERS:

U = Compound analyzed for, but not detected above the Reporting Limit.

B = Compound in blank and sample. Compare blank and sample data.

E = Extrapolated value. Concentration exceeds the upper limit of the calibration.

NOTES:	
·	
O(l)	
///	
Aga ji/a t	Approved
/////	HLW4004.XLS; 11/25/96

Method 601/8010 Chlorinated VOC's Sample Report

Lab Sample No. : 96-4004-06 Lab Project No. : 96-4004

Date Sampled : 11/11/96 Matrix : Water

Date Prepared : 11/18/96 Method Blank : RB111896

Date Analyzed : 11/19/96 Dilution Factor : 1.0

Compound	CAS#	Concentration (ug/L)	RL (ug/L)
Vinyl Chloride	75-01-4	U	0.4
Chloroethane	75-00-3	U	0.4
1,1-Dichloroethene	75-35-4	Ü	0.4
Dichloromethane	75-09-2	Ū	0.4
trans-1,2-Dichloroethene	156-60-5	Ü	0.4
1,1-Dichloroethane	75-34-3	U	0.4
cis-1,2-Dichloroethene	156-59-4	Ü	- 0.4
1,1,1-Trichloroethane	71-55-6	Ū	0.4
Carbon Tetrachloride	56-23-5	Ū	0.4
Trichloroethene	79-01-6	Ü	0.4
1,1,2-Trichloroethane	79-00-5	U	0.4
Tetrachloroethene	127-18-4	Ü	0.4
1,1,1,2-Tetrachloroethane	79-00-5	Ū	0.4
Chlorobenzene	108-90-7	Ū	0.42
1,2,2-Tetrachloroethane	79-34-5	Ū	0.54
Chlorotoluene	95-49-8	U	0.4
4-Chlorotoluene	106-49-8	· Ű	0.4
1,3-Dichlorobenzene	541-73-1	Ű	0.4
1,2-Dichlorobenzene	95-50-1	Ũ	0.4

Surrogate Recovery (1-Chloro-2-Fluoro-Benzene): 82% 70% - 130% (QC limits)

QUALIFIERS:

U = Compound analyzed for, but not detected above the Reporting Limit.

B = Compound in blank and sample. Compare blank and sample data.

E = Extrapolated value. Concentration exceeds the upper limit of the calibration.

RL = Reporting Limit (at or above method detection limit).

NOTES:

Approved

HLW4004.XLS; 11/25/96

Method 601/8010 Chlorinated VOC's Sample Report

Client Sample No. : Trip Blank #3 Client Project No. : 729691-32010 Lab Sample No. : 96-4004-07 Lab Project No. : 96-4004

Date Analyzed : 11/20/96 Dilution Factor : 1.0

Compound	CAS#	Concentration (ug/L)	RL (ug/L)
Vinyl Chloride	75-01-4	U	0.4
Chloroethane	75-00-3	U	0.4
1,1-Dichloroethene	75-35-4	Ü	0.4
Dichloromethane	75-09-2	Ŭ	0.4
trans-1,2-Dichloroethene	156-60-5	Ū	0.4
1,1-Dichloroethane	75-34-3	U	0.4
cis-1,2-Dichloroethene	156-59-4	Ŭ	0.4
1,1,1-Trichloroethane	71- 55-6	Ŭ	0.4
Carbon Tetrachloride	56-23-5	Ū	0.4
Trichloroethene	79-01-6	Ü	0.4
1,1,2-Trichloroethane	79-00-5	U	0.4
Tetrachloroethene	127-18-4	Ŭ	0.4
1,1,1,2-Tetrachloroethane	79-00-5	Ŭ	0.4
Chlorobenzene	108-90-7	Ü	0.42
1,1,2,2-Tetrachloroethane	79-34-5	Ú	0.54
2-Chlorotoluene	95-49-8	Ŭ	0.0
4-Chlorotoluene	106-49-8	Ú	0.4
1,3-Dichlorobenzene	541-73-1	Ŭ	0.4
1,2-Dichlorobenzene	95-50-1	Ü	0.4

Surrogate Recovery (1-Chloro-2-Fluoro-Benzene): 80% 70% - 130% (QC limits)

QUALIFIERS:

U = Compound analyzed for, but not detected above the Reporting Limit.

B = Compound in blank and sample. Compare blank and sample data.

E = Extrapolated value. Concentration exceeds the upper limit of the calibration.

RL = Reporting Limit (at or above method detection limit).

Approved
HLW4004.XLS; 11/25/96

Methane Report Form **Method Blank Report**

Method Blank Number Date Extracted/Prepared

: GB111496 : 11/14/96

Client Project No. Lab Work Order

: 729691.32010

Date Analyzed

: 11/14/96

Dilution Factor

: 96-4004

Method

: 1.00

Matrix

: RSKSOP-175M

: Water

Lab File No.

: GAS1114002

Sample **Compound Name** Cas Number Concentration RL mg/L mg/L Methane 74-82-8 U 0.002

Qualifiers

E = Extrapolated value.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

RL = Reporting Limit.

Not Available/Not Applicable.

Approved

Methane Report Form

Client Sample Number : ST24-M Lab Sample Number : 96-4004 Date Sampled : 11/11/9 Date Received : 11/12/9 Date Extracted/Prepared : 11/14/9 Date Analyzed : 11/14/9	4-01 Lab Work Order 96 Dilution Factor 96 Method 96 Matrix	: 729691.32010 : 96-4004 : 1.00 : RSKSOP-175M : Water : GAS1114029
--	--	---

Compound Name	Cas Number	Sample Concentration mg/L	RL mg/L
Methane	74-82-8	U	0.002

Temperature Amount Injected Total Volume of Sample Head space created Methane Area		71.6 F 0.5 ml 43 ml 4 ml 0 ug	Saturation Concentration Concentration in Head Space	Meth Meth	
Atomic weight(Methane)	:	16 g			

Qualifiers

E = Extrapolated value.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

Approved

Methane Report Form

Client Sample Number : ST24-MPE Lab Sample Number : 96-4004-03 Date Sampled : 11/11/96 Date Received : 11/12/96 Date Extracted/Prepared : 11/14/96 Date Analyzed : 11/14/96	Client Project No. : 729691.32010 Lab Work Order : 96-4004 Dilution Factor : 1.00 Method : RSKSOP-175M Matrix : Water Lab File No. : GAS1114030
---	---

Compound Name	Cas Number	Sample Cas Number Concentration mg/L	
Methane	74-82-8	0.043	0.002

perature	:	71.7 F	Saturation	Meth	0.010383236
Amount Injected	:	0.5 ml	Concentration	-	
Total Volume of Sample	:	43 ml	Concentration	Meth	0.032733768
Head space created	•	4 ml	in Head Space	-	
Methane Area	:	241.457 ug			

Atomic weight(Methane) : _____ g

Qualifiers

E = Extrapolated value.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

RL = Reporting Limit.

Not Available/Not Applicable.

Approved

Methane Report Form

Client Sample Number Lab Sample Number Date Sampled Date Received Date Extracted/Prepared	: ST24-MPA	Client Project No.	: 729691.32010
	: 96-4004-04	Lab Work Order	: 96-4004
	: 11/11/96	Dilution Factor	: 1.00
	: 11/12/96	Method	: RSKSOP-175M
	: 11/14/96	Matrix	: Water
Date Analyzed	: 11/14/96	Lab File No.	: vvater : GAS1114031

Compound Name	Cas Number	Sample Concentration mg/L	RL mg/L
Methane	74-82-8	0.120	0.002

Temperature Amount Injected	:	72 F 0.5 ml	Saturation Concentration	Meth	0.02
Total Volume of Sample	:	43 ml	Concentration	Meth	0.0910251
Head space created	:	4 ml	in Head Space		
Methane Area	;	671.816 ug			

Atomic weight(Methane) : _____ g

Qualifiers

E = Extrapolated value.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

Approved

Methane Report Form

Client Sample Number Lab Sample Number Date Sampled Date Received Date Extracted/Prepared Date Analyzed	: ST24-MPA : 96-4004-04Dup : 11/11/96 : 11/12/96 : 11/14/96 : 11/14/96	Client Project No. Lab Work Order Dilution Factor Method Matrix Lab File No.	: 729691.32010 : 96-4004 : 1.00 : RSKSOP-175M : Water : GAS1114032
---	---	--	---

Compound Name	Cas Number	Sample Concentration mg/L	RL mg/L	
Methane	74-82-8	0.119	0.002	

perature	•	71.9 F	Saturation	Meth	0.02861394
Amount Injected	:	0.5 ml	Concentration		
Total Volume of Sample	:	43 ml	Concentration	Meth	0.09017319
Head space created	:	4 ml	in Head Space		
Methane Area	:66	5.403 ug			

Atomic weight(Methane) : ______ g

Qualifiers

E = Extrapolated value.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

RL = Reporting Limit.

Not Available/Not Applicable.

Analyst

Approved

Methane Report Form

Client Sample Number	: ST24-MPG	Client Project No.	: 729 91.32010
Lab Sample Number	: 96-4004-05	Lab Work Order	: 96-/-)04
Date Sampled	: 11/11/96	Dilution Factor	: 1.00
Date Received	: 11/12/96	Method	: RSESOP-175M
Date Extracted/Prepared	: 11/14/96	Matrix	: Water
Date Analyzed	: 11/14/96	Lab File No.	: GAS1114033

Compound Name	Cas Number	Sample Concentration mg/L	RL mg/L
Methane	74-82-8	U	0.002

Temperature	•	72.4 F	Saturation	Meth	
Amount Injected	:	0.5 ml	Concentration		
Total Volume of Sample	:	43 ml	Concentration	Meth	
Head space created	:	4 ml	in Head Space		
Methane Area	:	0 ug			

16 g

Qualifiers

E = Extrapolated value.

Atomic weight(Methane)

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

Methane Report Form

Client Sample Number : ST24-W70(D Lab Sample Number : 96-4004-06 Date Sampled : 11/11/96 Date Received : 11/12/96 Date Extracted/Prepared : 11/14/96 Date Analyzed : 11/14/96	. 723031.32010
--	----------------

Compound Name	Cas Number	Sample Concentration mg/L	RL mg/L
Methane	74-82-8	0.093	0.002

erature	:	73.3 F	Saturation	Meth	0.022485321
Amount Injected	:	0.5 ml	Concentration		
Total Volume of Sample	:	43 ml	Concentration	Meth	0.0706734
Head space created	:	4 ml	in Head Space		
Methane Area	•	522.885 ug			

Atomic weight(Methane) : _____ 16 g

Qualifiers

E = Extrapolated value.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

RL = Reporting Limit.

Not Available/Not Applicable.

M / Lhener Analyst

Approved

Evergreen Analytical, Inc. 4036 Youngfield, Wheat Ridge, CO 80033 (303) 425-6021

RSKSOP-175M Gas Method Methane, Ethane, Ethene LCS Report Form

LCS No.

: LCS111496

EPA Method No.

: RSKSOP-175M

Date Prepared

: 11/14/96

Matrix

: Water

Date Analyzed

: 11/14/96

Method Blank

: GB111496

E.A. LCS Source No.

: 1719

Lab File No.

: GAS1114010

Compound	Spike Added (ug)	Method Blank Concentration (ug)	LCS Concentration (ug)	LCS %REC	QC Limits %REC
Methane Gas	500	0	370	74	64-90
Ethene Gas	500	0	213	43	37-58
Ethane Gas	500	0	321	64	53-83

Spike Recovery:

0

out of (3) outside limits.

Note: The LCS was made by taking the sample and displacing 4ml of headspace with a 1% methane, ethane, ethene gas and shaking the VOA for 5 minutes. Then injecting 50 ul from the headspace into the GC resulting in a theoretical concentration of 500 ug.

Notes

Values outside of QC limits.

NA = Not analyzed/not available.

Approved

LCS1114.XLS; 11/15/96

4036 Youngfield St. Wheat Ridge, CO 80033 (303) 425-6021

Anion Report

 Date Sampled
 : 11/11/96
 Client Project ID.
 : 729691.32010

 Date Received
 : 11/12/96
 Lab Project Number
 : 96-4004

 Date Prepared
 : 11/12/96
 Method
 : EPA 300.0

 Date Analyzed
 : 11/12/96
 Detection Limit
 : 0.25 mg/L

Evergreen Sample #	Client Sample ID.	<u>Matrix</u>	<u>Chloride</u> mg/L	Dilution <u>Factor</u>
96-4004-01	ST24-MPK(D)	Water	2.0	1
96-4004-03	ST24-MPE	Water	3.8	1
96-4004-04	ST24-MPA	Water	11.2	1
96-4004-04 Duplicate	ST24-MPA Duplicate	Water	10.9	1
96-4004-05	ST24-MPG	Water	3.5	1
96-4004-06	ST24-W70(D)	Water	, 2 .3	1
Method Blank	(11/12/96)	Water	<0.25	

Quality Assurance

		Spike Amount (mg/L)	Sample Result (mg/L)	Spike Result (mg/L)	% Recovery
96-4004-04	ST24-MPA Matrix Spike	10.0	11.2	20.5	93
96-4004-04	ST24-MPA Matrix Spike Du	ир 10.0	11.2	20.9	97
MS/MSD RP	D				4.1

MAnalyst

4036 Youngfield St. Wheat Ridge, CO 80033 (303) 425-6021

Anion Report

Date Sampled	: 11/11/96	•		729691.32010
Date Received	: 11/12/96	Lab Project Number	:	96-4004
Date Prepared .	: 11/12/96	Method	:	EPA 300.0
Date Analyzed	: 11/12/96	Detection Limit	:	0.076 mg/L

Evergreen Sample #	Client Sample ID.	<u>Matrix</u>	<u>Nitrite-N</u> mg/L	Dilution <u>Factor</u>
96-4004-01	ST24-MPK(D)	Water	<0.076	1
96-4004-03	ST24-MPE	Water	<0.076	1
96-4004-04	ST24-MPA	Water	<0.076	1
96-4004-04 Duplicate	ST24-MPA Duplicate	Water	<0.076	1
96-4004-05	ST24-MPG	Water	<0.076	1
96-4004-06	ST24-W70(D)	Water	<0.076	1
Method Blank	(11/12/96)	Water	<0.076	

Quality Assurance * ,

	<u> </u>	Spike Amount (mg/L)	Sample Result (mg/L)	Spike Result (mg/L)	% Recovery
96-4004-04	ST24-MPA Matrix Spike	10.0	<0.25	9.2	92
96-4004-04	ST24-MPA Matrix Spike Du	p 10.0	<0.25	9.4	94
MS/MSD RP	D				2.2

^{* =} Quality assurance results reported as Nitrite (NO₂).

MAnalyst

4036 Youngfield St. Wheat Ridge, CO 80033 (303) 425-6021

Anion Report

 Date Sampled
 : 11/11/96
 Client Project ID.
 : 729691.32010

 Date Received
 : 11/12/96
 Lab Project Number
 : 96-4004

 Date Prepared
 : 11/12/96
 Method
 : EPA 300.0

 Date Analyzed
 : 11/12/96
 Detection Limit
 : 0.056 mg/L

Evergreen Sample #	Client Sample ID.	<u>Matrix</u>	<u>Nitrate-N</u> mg/L	Dilution <u>Factor</u>
96-4004-01	ST24-MPK(D)	Water	1.7	1
96-4004-03	ST24-MPE	Water	<0.056	1
96-4004-04	ST24-MPA	Water	´<0.056	1
96-4004-04 Duplicate	ST24-MPA Duplicate	Water	<0.056	1
96-4004-05	ST24-MPG	Water	2.1	1
96-4004-06	ST24-W70(D)	Water	<0.056	1
Method Blank	(11/12/96)	Water	<0.056	

Quality Assurance *

		Spike Amount (mg/L)	Sample Result (mg/L)	Spike Result (mg/L)	% Recovery
96-4004-04	ST24-MPA Matrix Spike	10.0	<0.25	9.3	93
96-4004-04	ST24-MPA Matrix Spike Du	ıp 10.0	<0.25	9.2	92
MS/MSD RP	D				0.6

Quality assurance results reported as Nitrate (NO₃).

My Hol Analyst

4036 Youngfield St. Wheat Ridge, CO 80033 (303) 425-6021

Anion Report

Date Sampled	: 11/11/96	Client Project ID.	: 729691.3201	0
Date Received	: 11/12/96	Lab Project Number	: 96-4004	Ī
Date Prepared	: 11/12/96	Method	: EPA 300.0	
Date Analyzed	: 11/12/96	Detection Limit	: 0.25 mg/L	

Evergreen Sample #	Client Sample ID.	<u>Matrix</u>	<u>Sulfate</u> mg/L	Dilution <u>Factor</u>
96-4004-01	ST24-MPK(D)	Water	0.42	1
96-4004-03	ST24-MPE	Water	1.5	1
96-4004-04	ST24-MPA	Water	1.8	1
96-4004-04 Duplicate	ST24-MPA Duplicate	Water	1.8	1
96-4004-05	ST24-MPG	Water	0.45	1
96-4004-06	ST24-W70(D)	Water	´<0.25	1
Method Blank	(11/12/96)	Water	<0.25	

Quality Assurance

		Spike Amount (mg/L)	Sample Result (mg/L)	Spike Result (mg/L)	% Recovery
96-4004-04	ST24-MPA Matrix Spike	10.0	1.8	10.5	88
96-4004-04	ST24-MPA Matrix Spike Du	p 10.0	1.8	10.5	88
MS/MSD RP	D				0

Analyst

4036 Youngfield St. Wheat Ridge, CO 80033 (303) 425-6021

Total Recoverable Petroleum Hydrocarbons

Date Sampled

: 11/11/96

Client Project ID.

: 729691-32010

Date Received

: 11/12/96

Lab Project Number: 96-4004

Date Prepared

: 11/13/96

: EPA 418.1

Date Analyzed

: 11/13/96

Method

Evergreen Sample #

Client

Sample ID.

<u>Matrix</u>

TRPH

<u>Units</u>

mg/Kg

mg/Kg

96-4004-02

ST24-MPA(9'-11')

Soil

7.9

96-4004-02

ST24-MPA(9'-11')

Soil

6.9

Duplicate

Duplicate

Method Blank (11/13/96) subtracted

3.4

mg/Kg

Results reported on a dry weight basis.

m

4036 Youngfield St. Wheat Ridge, CO 80033 (303) 425-6021

Total Organic Carbon

Date Sampled	: 11/11/96	Client Project ID.	:	729691.32010
Date Received	: 11/12/96	Lab Project Number	:	96-4004
Date Prepared	: 11/21/96	Method	:	EPA 415.1
Date Analyzed	: 11/21/96	Detection Limit	:	1.0 mg C/L

Evergreen Sample #	Client Sample ID.	<u>Matrix</u>	TOC	mg C/L	Dilution <u>Factor</u>
96-4004-01	ST24-MPK (D)	Water	<1.0		1
96-4004-01 Duplicate	ST24-MPK (D) Duplicate	Water	<1.0	•	1

Method Blank (11/21/96)

<1.0

Quality Assurance

96-3996		Spike Amount (mgC/L)	Sample Result (mgC/L)	Spike Result (mgC/L)	% Recovery
96-3996-08	ST24 MPKS Matrix Spike		<1.0	10.3	103
96-3996-08	ST24 MPKS Matrix Spike D	10.0 up	<1.0	10.4	104
MS/MSD RP	D				1.3

Analyst

4036 Youngfield St. Wheat Ridge, CO 80033 (303) 425-6021

Analysis Report

Date Sampled : 11/11/96 Date Received : 11/12/96 Date Prepared : 11/14/96 Date Analyzed : 11/14/96	Client Project ID. : 729691-32010 Lab Project Number : 96-4004 Method : EPA 310.1 Detection Limit : 5.0 mg CaCO ₃
---	--

Evergreen Sample #	Client <u>Sample ID.</u>	<u>Matrix</u>	Total <u>Alkalinity</u> (mg CaCO ₃ /L)	Dilution <u>Factor</u>
96-4004-01	ST24-MPK (D)	Water	<5.0	1
96-4004-01 Duplicate	ST24-MPK (D) Duplicate	Water	<5.0	1

Method Blank (11/14/96)

< 5.0

Quality Assurance

Reference	True Value (mgCaCO ₃ /L)	<u>Result</u> (mgCaCO ₃ /L)	% Recovery
ERA Minerals	120	112	94

Lot # 0725-96-11

Analyst

WORK ORDER Summary

Report To: Dave Moutoux

Parsons Engineering Science

1700 Broadway Suite 900 Denver, CO 80290

15-Nov-96

Client Project ID: 729691-32010

Phone: (303) 831-8100 **FAX:** (303) 831-8208

Comments:

Sample ID	Client Sample ID	Analysis #	#	Matrix Lo	ညိ	Loc Collection	Received	Due	HT
96-4020-01G	ST24 MPF	Anions by IC CI,NO2,NO3,SO4		Water Di	D3 12	12-Nov-96	13-Nov-96	27-Nov-96 14-Nov-96	14-Nov-96
96-4020-02G	ST24 MPI	Anions by IC CI.NO2.NO3.SO4						27-Nov-96 14-Nov-96	14-Nov-96
96-4020-03G	ST24 MPBS	Anions by IC CI,NO2,NO3,SO4						27-Nov-96	14-Nov-96
96-4020-01D	ST24 MPF	BTEX (Parsons List)		2				27.Nov-96	26_Nov_06
96-4020-02D	ST24 MPI	BTEX (Parsons List)						27-Now-06	26-Now 96
96-4020-03D	ST24 MPBS	BTEX (Parsons List)						27-Nov-96	26-Nov-96
96-4020-04A	Trip Blank #3	BTEX (Parsons List)						27-Nov-96	26-Now-96
96-4020-01H	ST24 MPF	Methane						27.Now-06	26 Now 96
96-4020-02H	ST24 MPI	Methane						27 Nov 06	26 Mar. 96
96-4020-03H	ST24 MPBS	Methane				1		27 Morr 06	26 Mair 06
96-4020-01A	ST24 MPF	Purgeable Halocarbons 8010		6				07-Nov. 06	26 Now 96
96-4020-02A	ST24 MPI	Purgeable Halocarbons 8010						27-Nov-96	26-Nov-06
96-4020-03A	ST24 MPBS	Purgeable Halocarbons 8010						27-Now-96	26-Now-96
96-4020-04A	Trip Blank #3	Purgeable Halocarbons 8010		2				- 1	26-Nor. 96
96-4020-01D	ST24 MPF	TVH (Gasoline)						ı	26 Nor. 96
96-4020-02D	ST24 MPI	TVH (Gasoline)						27 Mon 06	26 May 06
96-4020-03D	ST24 MPBS	TVH (Gasoline)						27 Mon 06	26 Mar. 06
96-4020-04A	Trip Blank #3	TVH (Gasoline)						06-101-77	06-404-07
		* * * * (Cuborate)						27-Nov-96	26-Nov-96

CHAIN OF CUSTODY RECORD / ANALYTICAL SERVICES REQUEST

T (print) Jenny fartelolo D. 7296917-32010 P.O.# 724691-32010 REQUIRED X STD (2 wks) UST	expedited tumaround subject to additional fee	For Laboratory use only	W.O. #96-4030 B.O.F. # C/S (0) 7/7/20 C/S (0) 7/7/20 Cooler Temp. °C 3 Seals Intact Y IN (WA)	Samples Pres NINA Headspace YININA By La I	(0)	CO	03	A 40				Les 2 Lt D		8010, 8020/8015M PM	ia der	Date/Time Received by: (Signature)
CLIENT CONTACT (print) CLIENT PROJ. I.D. 7 > EAL. QUOTE # TURNAROUND REQUIRED*	*expedited turnar	REQUESTED	413.1	Coircle & list Oul & Grease Oul & Grease TRPH 418.1	X	×	メメ					-		p blank for	-	Date/Time 8
Evergreen Analytical Inc. 4036 Younglield St. Wheat Ridge, Colorado 80033 (303) 425-6021 FAX (303) 425-6854 (800) 845-7400 I - 87005 FAX RESULTS Y / N		ANALYSIS REC	1150/515 (circle) 502 (circle)/MTBE (circle) 503 (Gasoline) 504 (Gasoline) 505 (Diesel)	Herbicides 8 8020/6 TVPH 8015/6 ××	XX	×	XX					OFF	Analyze trip		quished by: (Signature)	
Evergreen A 4036 4036 Whe (303 52 - 8,2005, FA (800			(elcricle) 808\0808	BNA 8270/6	×	×	×	\ \times				707	<u></u>	abeled #4,	E de la companya de l	Date/Tim
1 SUITE 100 10890 FW# (303)		MATRIX	ing/Discharge/Ground Air / Gas / Multi-phase	Mo. of Conta Water-Drink (circle) Soil / Solid / Oil / Sludge	× :	× = 0	X					Sample Fraction	Container	Blank #3 La		Uate/Ilme Heceived by: (Signature)
6040 810	1/2	(Laus	se PRINT	DATE SAMPLED TIME	01/17/16/0840	11/12/96/1010	5451 16/21/11	3 11/11/16						for Thip	Ì	
COMPANY PAINSON ADDRESS (700 B) CITY DEAUGRSTATE PHONE# (303) \$31-	Sampler Name: Sampler (signature)	Side	Please PRIN all information:	CLIENT SAMPLE IDENTIFICATION	STAY MPI-	STAY MIT	STAMMBS	TRIPBLANG#3					Instructions:	Sample bottle		delinquished by:

Methods 602/8020 and 5030/8015 Modified Data Report Method Blank Report

Method Blank Number

: MB1111496

Client Project Number

729691.32010

Date Prepared

: 11/14/96

Lab Work Order

96-4020

Dilution Factor

: 1.0

Matrix

Water

Lab File Number

TVB11113029

Compound Name	Cas Number	Analysis Date	Sample Concentration	RL	Units
TVH-Gasoline		11/14/96	U	0.1	mg/L
Benzene	71-43-2	11/14/96	11	0.4	ug/L
Toluene	108-88-3	11/14/96	11	0.4	ug/L ug/L
Chlorobenzene	108-90-7	11/14/96	<u>-</u>	0.4	ug/L ug/L
Ethyl Benzene	100-41-4	11/14/96	<u>-</u>	0.4	····
Total Xylenes (m,p,o)	1330-20-7	11/14/96		0.4	ug/L ug/L
1,3,5-Trimethylbenzene	108-67-8	11/14/96	<u></u>	0.4	· · · · · · · · · · · · · · · · · · ·
1,2,4-Trimethylbenzene	95-63-6	11/14/96	<u></u>	0.4	ug/L ug/L
1,2,3-Trimethylbenzene	526-73-8	11/14/96	<u>.</u>	0.4	***************************************
1,2,3,4-Tetramethylbenzene	488-23-3	11/14/96	ŭ	0.5	ug/L ug/L
SID Surrogate Recovery:		102%		50%-150%	(Limits)
D Surrogate Recovery:	***************************************	102%	***************************************	50%-150%	(Limits)

Notes: Total Xylenes consist of three isomers, two of which co-elute. The Xylene RL is for a single peak.

QUALIFIERS and DEFINITIONS:

E = Extrapolated value. Value exceeds calibration range.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

J = Indicates an estimated value when the compound is detected, but is below the Reporting Limit.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

PID = Photoionization detector.

FID = Flame ionization detector.

TVH = Total Volatile Hydrocarbons.

Analyst

K. Hollman

Methods 602/8020 and 5030/8015 Modified Data Report Method Blank Report

Method Blank Number : MB1111596

Client Project Number

729691.32010

Date Prepared Dilution Factor

: 11/15/96

: 1.0

Lab Work Order Matrix

96-4020 Water

Lab File Number

TVB11113058

	·	Analysis	Sample		
Compound Name	Cas Number	Date	Concentration	RL	Units
TVH-Gasoline		11/15/96	U	0.1	mg/L
Benzene	71-43-2	11/15/96	U	0.4	ug/L
Toluene	108-88-3	11/15/96	Ü	0.4	ug/L
Chlorobenzene	108-90-7	11/15/96	U	0.4	ug/L
Ethyl Benzene	100-41-4	11/15/96	U	0.4	ug/L
Total Xylenes (m,p,o)	1330-20-7	11/15/96	Ü	0.4	ug/L
1,3,5-Trimethylbenzene	108-67-8	11/15/96	U	0.4	ug/L
1,2,4-Trimethylbenzene	95-63-6	11/15/96	U	0.4	ug/L
1,2,3-Trimethylbenzene	526-73-8	11/15/96	Ü	0.4	ug/L
1,2,3,4-Tetramethylbenzene	488-23-3	11/15/96	U	0.5	ug/L
FID Surrogate Recovery:		94%		50%-150%	(Limits)
PID Surrogate Recovery:		94%	***********************************	50%-150%	

Notes: Total Xylenes consist of three isomers, two of which co-elute. The Xylene RL is for a single peak.

Comments:		

QUALIFIERS and DEFINITIONS:

E = Extrapolated value. Value exceeds calibration range.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

J = Indicates an estimated value when the compound is detected, but is below the Reporting Limit.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

PID = Photoionization detector.

FID = Flame ionization detector.

TVH = Total Volatile Hydrocarbons.

Analyst

K, Hillman Approved

Methods 602/8020 and 5030/8015 Modified Data Report Method Blank Report

Method Blank Number

: MB1111896

Client Project Number

729691.32010

Date Prepared

: 11/18/96

Lab Work Order

96-4020

Dilution Factor

: 1.0

Matrix

Water

Lab File Number

TVB11118005

		Analysis	Sample		
Compound Name	Cas Number	Date	Concentration	RL	Units
TVH-Gasoline		11/18/96	U	0.1	mg/L
Benzene	71-43-2	11/18/96	U	0.4	ug/L
Toluene	108-88-3	11/18/96		0.4	ug/L
Chlorobenzene	108-90-7	11/18/96		0.4	ug/L
Ethyl Benzene	100-41-4	11/18/96		0.4	ug/L
Total Xylenes (m,p,o)	1330-20-7	11/18/96	U	0.4	ug/L
1,3,5-Trimethylbenzene	108-67-8	11/18/96	Ü	0.4	ug/L
1,2,4-Trimethylbenzene	95-63-6	11/18/96	Ü	0.4	ug/L
1,2,3-Trimethylbenzene	526-73-8	11/18/96		0.4	ug/L
1,2,3,4-Tetramethylbenzene	488-23-3	11/18/96	U	0.5	ug/L

D Surrogate Recovery:	***************************************	115%		50%-150%	(Limits)
Surrogate Recovery:	•	118%		50%-150%	(Limits)

Notes: Total Xylenes consist of three isomers, two of which co-elute. The Xylene RL is for a single peak.

Comments:	

QUALIFIERS and DEFINITIONS:

E = Extrapolated value. Value exceeds calibration range.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

J = Indicates an estimated value when the compound is detected, but is below the Reporting Limit.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

PID = Photoionization detector.

FID = Flame ionization detector.

TVH = Total Volatile Hydrocarbons.

Analyst

Methods 602/8020 and 5030/8015 Modified Data Report

Client Sample Number : ST24 MPF Client Project Number : 72:391.32010
Lab Sample Number : 96-4020-01 Lab Work Order : 96-320

 Lab Sample Number
 : 96-4020-01
 Lab Work Order
 : 96-020

 Date Sampled
 : 11/12/96
 Matrix
 : W :r

 Date Received
 : 11/13/96
 Lab File Number(s)
 : TV-11113044

 Date Prepared
 : 11/14/96
 Method Blank
 : MC.1111496

FID Dilution Factor : 1.0
PID Dilution Factor : 1.0

		Analysis	Sample		
Compound Name	Cas Number	Date	Concentration	RL	Units
TVH-Gasoline		11/14/96	0.1	0.1	mg/L
Benzene	71-43-2	11/14/96	Ū	0.4	ug/L
Toluene	108-88-3	11/14/96	0.7	0.4	ug/L
Chlorobenzene	108-90-7	11/14/96	U	0.4	ug/L
Ethyl Benzene	100-41-4	11/14/96	0.6	0.4	ug/L
Total Xylenes (m,p,o)	1330-20-7	11/14/96	U	0.4	ug/L
1,3,5-Trimethylbenzene	108-67-8	11/14/96	U	0.4	ug/L
1,2,4-Trimethylbenzene	95-63-6	11/14/96	U	0.4	ug/L
1,2,3-Trimethylbenzene	526-73-8	11/14/96	U	0.4	ug/L
1,2,3,4-Tetramethylbenzene	488-23-3	11/14/96	15	0.5	ug/L
FID Surrogate Recovery:		102%		50%-150%	(1
PID Surrogate Recovery:		99%	***************************************	50%-150%	(Lilinus)

Notes: Total Xylenes consist of three isomers, two of which co-elute. The Xylene RL is for a single peak.

Comments:

QUALIFIERS and DEFINITIONS:

E = Extrapolated value. Value exceeds calibration range.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

J = Indicates an estimated value when the compound is detected, but is below the Reporting Limit.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

PID = Photoionization detector.

FID = Flame ionization detector.

TVH = Total Volatile Hydrocarbons.

Analyst

K Hollman
Approved

Methods 602/8020 and 5030/8015 Modified Data Report

Client Sample Number

: ST24 MPI

Client Project Number

729691.32010

Lab Sample Number

: 96-4020-02

Lab Work Order

96-4020

Date Sampled

: 11/12/96

Matrix

Water

Date Received Date Prepared

: 11/13/96 : 11/14/96 Lab File Number(s)

TVB11113051

FID Dilution Factor

Method Blank

MB1111496

: 1.0

PID Dilution Factor : 1.0

Compound Name	Cas Number	Analysis Date	Sample Concentration	RL	Units
TVH-Gasoline		11/15/96	U	0.1	mg/L
Benzene	71-43-2	11/15/96	Ü	0.4	ug/L
Toluene	108-88-3	11/15/96	· · · · · · · · · · · · · · · · · · ·	0.4	ug/L
Chlorobenzene	108-90-7	11/15/96	l U	0.4	ug/L
Ethyl Benzene	100-41-4	11/15/96	Ü	0.4	ug/L
Total Xylenes (m,p,o)	1330-20-7	11/15/96	Ü	0.4	ug/L
1,3,5-Trimethylbenzene	108-67-8	11/15/96		0.4	ug/L ug/L
1,2,4-Trimethylbenzene	95-63-6	11/15/96	U	0.4	ug/L
1,2,3-Trimethylbenzene	526-73-8	11/15/96		0.4	ug/L
1,2,3,4-Tetramethylbenzene	488-23-3	11/15/96	Ü.	0.5	
/	***************************************			0.5	ug/L
D Surrogate Recovery:		96%	L.,	50%-150%	(Limits)
PID Surrogate Recovery:	***************************************	95%	************************************	50%-150%	(Limits)

Notes: Total Xylenes consist of three isomers, two of which co-elute. The Xylene RL is for a single peak.

Comments:	

QUALIFIERS and DEFINITIONS:

E = Extrapolated value. Value exceeds calibration range.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

J = Indicates an estimated value when the compound is detected, but is below the Reporting Limit.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

PID = Photoionization detector.

FID = Flame ionization detector.

H = Total Volatile Hydrocarbons.

Methods 602/8020 and 5030/8015 Modified Data Report

Client Sample Number : ST24 MPBS Client Project Number 729691.32010 Lab Sample Number : 96-4020-03

Lab Work Order 96-4020 Date Sampled : 11/12/96 Matrix Water

Date Received : 11/13/96 Lab File Number(s) TVB11113062,52

Date Prepared : 11/14,15/96 Method Blank MB1111596 FID Dilution Factor : 50 MB1111496

PID Dilution Factor : 50;1.0

		Analysis	Sample	T T	
Compound Name	Cas Number	Date	Concentration	RL	Units
TVH-Gasoline		11/15/96	30	5.0	mg/L
Benzene	71-43-2	11/15/96	920	20	ug/L
Toluene	108-88-3	11/15/96	5000	20	ug/L
Chlorobenzene	108-90-7	11/15/96	Ü	0.4	ug/L
Ethyl Benzene	100-41-4	11/15/96	1000	20	ug/L
Total Xylenes (m,p,o)	1330-20-7	11/15/96	4800	20	ug/L
1,3,5-Trimethylbenzene	108-67-8	11/15/96	580	20	ug/L
1,2,4-Trimethylbenzene	95-63-6	11/15/96	1900	20	ug/L
1,2,3-Trimethylbenzene	526-73-8	11/15/96	540	20	ug/L
1,2,3,4-Tetramethylbenzene	488-23-3	11/15/96	180	25	ug/L
FID Surrogate Recovery:	***************************************	105%		50%-150%	(Lir
PID Surrogate Recovery:		105%;85%		50%-150%	(Limite)

Notes: Total Xylenes consist of three isomers, two of which co-elute. The Xylene RL is for a single peak.

Comments:	

QUALIFIERS and DEFINITIONS:

E = Extrapolated value. Value exceeds calibration range.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

J = Indicates an estimated value when the compound is detected, but is below the Reporting Limit.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

PID = Photoionization detector.

FID = Flame ionization detector.

TVH = Total Volatile Hydrocarbons.

Methods 602/8020 and 5030/8015 Modified Data Report

Client Sample Number

: Trip Blank #3

Client Project Number

729691.32010

Lab Sample Number

: 96-4020-04

Lab Work Order

96-4020

Date Sampled

: NA

Matrix

Water

Date Received

: 11/13/96

Lab File Number(s)

TVB11118022

Date Prepared

: 11/18/96

Method Blank

MB1111896

FID Dilution Factor

: 1.0

PID Dilution Factor

: 1.0

·		Analysis	Sample		
Compound Name	Cas Number	Date	Concentration	RL	Units
TVH-Gasoline		11/18/96	U	0.1	mg/L
Benzene	71-43-2	11/18/96	U	0.4	ug/L
Toluene	108-88-3	11/18/96	U	0.4	ug/L
Chlorobenzene	108-90-7	11/18/96	U	0.4	ug/L
Ethyl Benzene	100-41-4	11/18/96	U	0.4	ug/L
Total Xylenes (m,p,o)	1330-20-7	11/18/96	Ü	0.4	ug/L
1,3,5-Trimethylbenzene	108-67-8	11/18/96	U	0.4	ug/L
1,2,4-Trimethylbenzene	95-63-6	11/18/96	U	0.4	ug/L
1,2,3-Trimethylbenzene	526-73-8	11/18/96	U	0.4	ug/L
1,2,3,4-Tetramethylbenzene	488-23-3	11/18/96	U	0.5	ug/L
				- 0.0	ugit
D Surrogate Recovery:		97%		50%-150%	(Limits)
PID Surrogate Recovery:		94%		50%-150%	(Limits)

Notes: Total Xylenes consist of three isomers, two of which co-elute. The Xylene RL is for a single peak.

Comments:		<u> </u>	
	<u></u>		

QUALIFIERS and DEFINITIONS:

E = Extrapolated value. Value exceeds calibration range.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

J = Indicates an estimated value when the compound is detected, but is below the Reporting Limit.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

PID = Photoionization detector.

ED = Flame ionization detector.

H = Total Volatile Hydrocarbons.

LMM Analyst

Approved

TVBXWS1P;TVB4020.XLS; 11/22/96; 5

Evergreen Analytical, Inc. 4036 Youngfield, Wheat Ridge, CO 80033 (303) 425-6021

TOTAL VOLATILE HYDROCARBONS (TVH as Gasoline) TVH Matrix Spike/Matrix Spike Duplicate Data Report

Compound	Spike Added (mg/L)	Sample Concentration (mg/L)	MS Concentration (mg/L)	MS %REC	QC (#) Limits %REC	
Gasoline	2.00	0.11	1.93	91.0%	62 - 126	
Surrogate **				101%	70 - 121	

Compound	Spike Added	MSD Concentration	MSD	RPD	1	QC (#) Limits
	(mg/L)	(mg/L)	%REC		RPD	%REC
Gasoline	2.00	1.92	90.5%	0.6	42.3	62 - 126
Surrogate **			102%	NA ·	NA	70 - 121

RPD:	out of (1) outside limits. out of (2) outside limits.
Notes: NA = Not analyzed/not a * = Values outside of O ** = 1,2,4-Trichloroben: # = Limits established 10	C limits. zene
Comments:	

Analyst

Evergreen Analytical, Inc. 4036 Youngfield, Wheat Ridge, CO 80033 (303) 425-6021

EPA 602/8020 Matrix Spike/Matrix Spike Duplicate Data Report

Client Sample No.	: ST24 MPF	Client Project No.	: 729691.32010
Lab Sample No.	: 96-4020-01	Lab Work Order	: 96-4020
Date Sampled	: 11/12/96	EPA Method No.	: 602
Date Received	: 11/13/96	Matrix	: Water
Date Prepared	: 11/14/96	Lab File Number(s)	
Date Analyzed	: 11/14/96	Method Blank	: TVB11113047,48
Instrument Name	: TVHBTEX1	Dilution Factor	: MB1111496 : 1.0

Compound	Spike Added	Sample Concentration	1	Concentration (ug/L)	
	(ug/L)	(ug/L)	MS	MSD	Comments
Benzene	20.0	0.0	20.8	20.4	
Toluene	20.0	0.7	18.3	18.1	
Chlorobenzene	20.0	0.0	17.7	17.4	
Ethylbenzene	20.0	0.6	18.0	17.8	
m,p-Xylene	20.0	0.0	18.1	17.9	
o-Xylene	20.0	0.0	18.2	17.8	
1,3,5-TMB	20.0	0.0	17.5	17.5	
1,2,4-TMB	20.0	0.0	16.8	17.2	
1,2,3-TMB	20.0	0.0	17.6	17.5	
1,2,3,4-TeMB	20.0	14.6	30.3	30.4	
Surrogate	100.0	99%	94%	99%	% RECOVERY

Compound	MS	MSD			QC#
Compound	%	%			Limits
	RECOVERY	RECOVERY	RPD	RPD	%REC
Benzene	104.0	102.0	1.9	18	62 - 129
Toluene	88.0	87.0	1.1	25	55 - 133
Chlorobenzene	88.5	87.0	1.7	9	66 - 122
Ethylbenzene	87.0	86.0	1.2	15	60 - 127
m,p-Xylene	90.5	89.5	1.1	20	44 - 146
o-Xylene	91.0	89.0	2.2	16	57 - 131
1,3,5-TMB	87.5	87.5	0.0	16	63 - 129
1,2,4-TMB	84.0	86.0	2.4	16	55 - 136
1,2,3-TMB	. 88.0	87.5	0.6	13	64 - 127
1,2,3,4-TeMB	78.5	79.0	0.6	23	
Surrogate	94.0	99.0	NA NA	NA.	53 - 132 82 - 115

#=	Limite	extablis	had 10	1/1/06	HDM

* = Values outside	of QC lin	nits.		
RPD:	0	out of	(10)	outside limits.
Spike Recovery:	0	out of	(20)	outside limits.

(Comments:	

Analyst

TOTAL VOLATILE HYDROCARBONS (TVH as Gasoline) Laboratory Control Sample (LCS)

LCS Number Date Prepared Date Analyzed Lab File Number(s)	: LCS1111496 : 11/14/96 : 11/14/96 : TVB11113036	Matrix Method Numbers Instrument Name	: WATER : EPA 5030/8 : TVHBTEX1	015 Modified
Compound Name	Theoretical Concentration (mg/L)	LCS - Concentration (mg/L)	LCS % _Recovery	QC Limit
Gasoline	2.00	2.11	105.5	83 - 120
Surrogate Recovery:		107%		70 - 121

QUALIFIERS

B = TVH as Gasoline found in blank also.

E = Extrapolated value. Value exceeds calibration range.

NA = Not Available/Not Applicable.

** = Limits established 9/24/96 for TVHBTEX1. HDM

H. Deane Mills
Analyst

EPA 602/8020 Data Report **Laboratory Control Sample (LCS)**

LCS Number Date Extracted/Prepared

: LCS1111496

Dilution Factor

1.00

Date Analyzed

: 11/14/96

Method Matrix

602/8020

Spike Amount (ug/L)

: 11/14/96 20.0

Water

Lab File No.

TVB11113037

Compound Name	Cas Number	LCS Concentration (ug/L)	LCS % Recovery	QC Limit** % Recovery
Benzene	71-43-2	19.6	98.0	75 - 110
Toluene	108-88-3	18.4	92.0	75 - 110
Chlorobenzene	108-90-7	16.9	84.5	69 - 110
Ethyl Benzene	100-41-4	18.2	91.0	74 - 110
m,p-Xylene	. 108-38-3 106-42-3	35.2	88.0	73 - 110
ene	95-47-6	18.3	91.5	74 - 114
MIBE	1634-04-4	13.1	65.5	59 - 129
1,3,5-Trimethylbenzene	108-67-8	19.0	95.0	70 - 110
1,2,4-Trimethylbenzene	95-63-6	17.6	88.0	73 - 110
1,2,3-Trimethylbenzene	526-73-8	21.5	107.5	84 - 122
1,2,3,4-Tetramethylbenzene	488-23-3	19.3	96.5	67 - 116
Surrogate Recovery:		98%		82 - 115

NOTES:

m,p-xylene = 40.0 ppb spike.

QUALIFIERS:

E = Extrapolated value. Value exceeds that of the calibration range.

U = Compound analyzed for, but not detected.

B = Compound found in blank and sample. Compare blank and sample data.

NA = Not available/Not analyzed.

Limits updated 10/02/96 for TVHBTEX1. SWT

TOTAL VOLATILE HYDROCARBONS (TVH as Gasoline) Laboratory Control Sample (LCS)

LCS Number Date Prepared Date Analyzed Lab File Number(s)	: LCS1111896 : 11/18/96 : 11/18/96 : TVB11118008	Matrix Method Numbers Instrument Name	: WATER : EPA 5030/80 : TVHBTEX1	015 Modified
Compound Name	Theoretical Concentration (mg/L)	LCS Concentration (mg/L)	LCS % _Recovery	QC Limit
Gasoline	2.00	2.09	104.5	83 - 120
Surrogate Recovery:		121%		70 - 121

QUALIFIERS

B = TVH as Gasoline found in blank also.

E = Extrapolated value. Value exceeds calibration range.

NA = Not Available/Not Applicable.

** = Limits established 9/24/96 for TVHBTEX1. HDM

Analyst

EPA 602/8020 Data Report Laboratory Control Sample (LCS)

LCS Number
Date Extracted/Prepared
Date Applyand

: LCS1111896 : 11/18/96

Dilution Factor Method

1.00

Date Analyzed

: 11/18/96

Matrix

602/8020 Water

Spike Amount (ug/L)

: 20.0

Lab File No.

TVB11118021

Compound Name Benzene	Cas Number	LCS Concentration (ug/L)	LCS % Recovery	QC Limit**% Recovery
Delizerie	71-43-2	19.1	95.5	75 - 110
Toluene	108-88-3	18.1	90.5	75 - 110
Chlorobenzene	108-90-7	17.1	85.5	69 - 110
Ethyl Benzene	100-41-4	18.3	91.5	74 - 110
m,p-Xylene	108-38-3 106-42-3	35.0	87.5	73 - 110
o-Yvlene ·	95-47-6	19.0	95.0	74 - 114
tonedE	1634-04-4	19.2	96.0	59 - 129
1,3,5-Trimethylbenzene	108-67-8	18.9	94.5	70 - 110
1,2,4-Trimethylbenzene	95-63-6	17.5	87.5	73 - 110
1,2,3-Trimethylbenzene	526-73-8	21.0	105.0	84 - 122
1,2,3,4-Tetramethylbenzene	488-23-3	18.7	93.5	67 - 116
Surrogate Recovery:		92%		67 - 116 82 - 115

NOTES:

m,p-xylene = 40.0 ppb spike.

QUALIFIERS:

E = Extrapolated value. Value exceeds that of the calibration range.

U = Compound analyzed for, but not detected.

B = Compound found in blank and sample. Compare blank and sample data.

NA =Not available/Not analyzed.

Limits updated 10/02/96 for TVHBTEX1. SWT

V. Dune-miles

Approved

LCSBXWS1;LSB11118.XLS: 11/22/96

Method 8010 Chlorinated VOC's Method Blank Report

Method Blank

: RB112096

Client Project No.

729691-32010

Date Prepared

: 11/20/96

Lab Project No.

: 96-4020

Date	Analyzed	: 11/20/96

Lab File No.

: HALL1120\004F0101

Compound	CAS#	Concentration (ug/L)	RL(ug/L)
Vinyl Chloride	75-01-4	U	0.4
Chloroethane	75-00-3	Ŭ	0.4
1,1-Dichloroethene	75-35-4	บ	0.4
Dichloromethane	75-09-2	บ	0.4
trans-1,2-Dichloroethene	156-60-5	Ü	0.4
1,1-Dichloroethane	75-34-3	V	0.4
cis-1,2-Dichloroethene	156-59-4	Ŭ	0.4
1,1,1-Trichloroethane	71-55-6	ŭ	0.4
Carbon Tetrachloride	56-23-5	Ü	0.4
Trichloroethene	79-01-6	Ü	0.4
1,1,2-Trichloroethane	79-00-5	Ū	0.4
Tetrachloroethene	127-18-4	Ŭ	0.4
1,1,1,2-Tetrachloroethane	79-00-5	Ü	0.4
Chlorobenzene	108-90-7	Ü	0.42
1,1,2,2-Tetrachloroethane	79-34-5	Ü	0.54
2-Chlorotoluene	95-49-8	Ü	0.4
4-Chiorotoluene	106-49-8	ŭ	0.4
1,3-Dichlorobenzene	541-73-1	Ŭ	
1,2-Dichlorobenzene	95-50-1	Ŭ	0.4

Surrogate Recovery (1-Chloro-2-Fluoro-Benzene):

88%

70% - 130% (QC limits)

QUALIFIERS:

U = Compound analyzed for, but not detected above the Reporting Limit.

B = Compound in blank and sample. Compare blank and sample data.

E = Extrapolated value. Concentration exceeds the upper limit of the calibration.

RL = Reporting Limit (at or above method detection limit).

NOTES:

Approved

PAR8010W.XLS; 11/25/96

Method 601/8010 Chlorinated VOC's Method Blank Report

Method Blank

: RB112196

Client Project No.

: 729691-32010

Date Prepared

: 11/21/96

Lab Project No.

: 96-4020

Date Analyzed

: 11/21/96

Lab File No.

: HALL1121\004F0101

Compound	CAS#	Concentration (ug/L)	_RL(ug/L)
Vinyl Chloride	75-01-4	U	0.4
Chloroethane	75-00-3	Ŭ	0.4
1,1-Dichloroethene	75-35-4	Ŭ	0.4
Dichloromethane	75-09-2	Ü	0.4
trans-1,2-Dichloroethene	156-60-5	Ü	0.4
1,1-Dichloroethane	75-34-3	Ü	0.4
cis-1,2-Dichloroethene	156-59-4	Ŭ	0.4
1,1,1-Trichloroethane	71-55-6	Ū	0.4
Carbon Tetrachloride	56-23-5	Ŭ	0.4
Trichloroethene	79-01-6	Ü	0.4
1,1,2-Trichloroethane	79-00-5	Ü	0.4
Tetrachloroethene	127-18-4	Ŭ	0.4
1,1,1,2-Tetrachloroethane	79-00-5	Ū	0.4
Chlorobenzene	108-90-7	Ü	0.42
1,1,2,2-Tetrachloroethane	79-34-5	Ŭ	0.54
2-Chlorotoluene	95-49-8	U	0.4
Chlorotoluene	106-49-8	Ü	0.4
,3-Dichlorobenzene	541-73-1	Ŭ	0.4
1,2-Dichlorobenzene	95-50-1	Ū	0.4

Surrogate Recovery (1-Chloro-2-Fluoro-Benzene):

81%

70% - 130% (QC limits)

QUALIFIERS:

U = Compound analyzed for, but not detected above the Reporting Limit.

B = Compound in blank and sample. Compare blank and sample data.

E = Extrapolated value. Concentration exceeds the upper limit of the calibration.

RL = Reporting Limit (at or above method detection limit).

NOTES:

Approved

PAR8010W.XLS; 11/25/96

Method 601/8010 Chlorinated VOC's Sample Report

 Client Sample No.
 : ST24 MPF
 Client Project No.
 : 729691-32010

 Lab Sample No.
 : 96-4020-01
 Lab Project No.
 : 96-4020

 Date Sampled
 : 11/12/96
 Matrix
 : Water

Date Prepared : 11/20/96 Method Blank : RB112096

Date Analyzed : 11/20/96 Dilution Factor : 1.0

Compound	CAS #	Concentration (ug/L)	RL (ug/L)
Vinyl Chloride	75-01-4	U	0.4
Chloroethane	75-00-3	U	0.4
1,1-Dichloroethene	75-35-4	Ü	0.4
Dichloromethane	75-09-2	Ū	0.4
trans-1,2-Dichloroethene	· 156-60-5	Ŭ	0.4
1,1-Dichloroethane	75-34-3	U	0.4
cis-1,2-Dichloroethene	156-59-4	Ü	0.4
1,1,1-Trichloroethane	71-55-6	Ŭ	0.4
Carbon Tetrachloride	56-23-5	ŭ	. 0.4
Trichloroethene	79-01-6	Ü	0.4
1,1,2-Trichloroethane	79-00-5	Ü	0.4
Tetrachloroethene	127-18-4	Ŭ	0.4
1,1,1,2-Tetrachloroethane	79-00-5	Ü	0.4
Chlorobenzene	108-90-7	Ŭ	0.42
1,1,2,2-Tetrachloroethane	79-34-5	Ŭ	0.54
2-Chlorotoluene	95-49-8	U	0.34
4-Chlorotoluene	106-49-8	Ü	
1,3-Dichlorobenzene	541-73-1	Ü	0.4
1,2-Dichlorobenzene	95-50-1	Ü	0.4

Surrogate Recovery (1-Chloro-2-Fluoro-Benzene): 81% 70% - 130% (QC limits)

QUALIFIERS:

U = Compound analyzed for, but not detected above the Reporting Limit.

B = Compound in blank and sample. Compare blank and sample data.

E = Extrapolated value. Concentration exceeds the upper limit of the calibration.

RL = Reporting Limit (at or above method detection limit).

Analyse Approved PAR8010W.XLS; 11/25/96

Method 601/8010 Chlorinated VOC's Sample Report

Client Sample No. : ST24 MPI Client Project No. : 729691-32010 Lab Sample No. : 96-4020-02 Lab Project No. : 96-4020

Date Sampled : 11/12/96 Matrix : Water

Date Prepared : 11/20/96 Method Blank : RB112096

Date Analyzed : 11/20/96 Dilution Factor : 1.0

Compound	CAS#	Concentration (ug/L)	RL (ug/L)
Vinyl Chloride	75-01-4	U	0.4
Chloroethane	75-00-3	Ŭ	0.4
1,1-Dichloroethene	75-35-4	Ü	0.4
Dichloromethane	75-09-2	ŭ	0.4
trans-1,2-Dichloroethene	156-60-5	บั	0.4
1,1-Dichloroethane	75-34-3	Ü	0.4
cis-1,2-Dichloroethene	156-59-4	Ü	0.4
1,1,1-Trichloroethane	71-55-6	ŭ	0.4
Carbon Tetrachloride	56-23-5	ŭ	0.4
Trichloroethene	79-01-6	ŭ	0.4
1,1,2-Trichloroethane	79-00-5	Ü	0.4
Tetrachloroethene	127-18-4	ŭ	0.4
1,1,1,2-Tetrachloroethane	79-00-5	ŭ	0.4
Chlorobenzene	108-90-7	ŭ	0.42
1,1,2,2-Tetrachloroethane	79-34-5	Ŭ	0.54
-Chlorotoluene	95-49-8	U	0.4
4-Chlorotoluene	106-49-8	Ŭ	0.4
1,3-Dichlorobenzene	541-73-1	Ű	0.4
1,2-Dichlorobenzene	95-50-1	Ű	0.4

Surrogate Recovery (1-Chloro-2-Fluoro-Benzene): 82% 70% - 130% (QC limits)

QUALIFIERS:

U = Compound analyzed for, but not detected above the Reporting Limit.

B = Compound in blank and sample. Compare blank and sample data.

E = Extrapolated value. Concentration exceeds the upper limit of the calibration.

RL = Reporting Limit (at or above method detection limit).

NOTES:

Approved

PAR8010W.XLS; 11/25/96

Method 601/8010 Chlorinated VOC's Sample Report

Client Sample No. : ST24 MPBS Client Project No. : 729691-32010 Lab Sample No. : 96-4020-03 Lab Project No. : 96-4020

Lab Sample No. : 96-4020-03 Lab Project No. : 96-4020 Date Sampled : 11/12/96 Matrix : Water

Date Prepared : 11/21/96 Method Blank : RB112196
Date Analyzed : 11/21/96 Dilution Factor : 10.0

Compound	CAS #	Concentration (ug/L)	RL (ug/L)
Vinyl Chloride	75-01-4	U	4
Chloroethane	75-00-3	U	4
1,1-Dichloroethene	75-35-4	U	4
Dichloromethane	75-09-2	U	4
trans-1,2-Dichloroethene	156-60-5	U	. 4
1,1-Dichloroethane	75-34-3	U	4
cis-1,2-Dichloroethene	156-59-4	Ü	4
1,1,1-Trichloroethane	71-55-6	Ü	À
Carbon Tetrachloride	56-23-5	Ü	4
Trichloroethene	79-01-6	Ū	4
1,1,2-Trichloroethane	79-00-5	U	4
Tetrachloroethene	127-18-4	Ú	4
1,1,1,2-Tetrachloroethane	79-00-5	U	4
Chlorobenzene	108-90-7	U	4.2
1,1,2,2-Tetrachloroethane	79-34-5	U	5.4
2-Chlorotoluene	95-49-8	U	4
4-Chlorotoluene	106-49-8	U	
1,3-Dichlorobenzene	541-73-1	U	4
1,2-Dichlorobenzene	95-50-1	U	4

Surrogate Recovery (1-Chloro-2-Fluoro-Benzene): 78% 70% - 130% (QC limits)

QUALIFIERS:

U = Compound analyzed for, but not detected above the Reporting Limit.

B = Compound in blank and sample. Compare blank and sample data.

E = Extrapolated value. Concentration exceeds the upper limit of the calibration.

RL = Reporting Limit (at or above method detection limit).

NOTES: Sample dilution required to meet surrogate Q.C.

Approved

PAR8010W.XLS: 11/25/96

Method 601/8010 Chlorinated VOC's Sample Report

Client Sample No. : Trip Blank #3 Client Project No. : 729691-32010 Lab Sample No. : 96-4020-04 Lab Project No. : 96-4020

Date Prepared : 11/20/96 Method Blank : RB112096

Date Analyzed : 11/21/96 Dilution Factor : 1.0

Compound	CAS #	Concentration (ug/L)	_RL (ug/L)
Vinyl Chloride	75-01-4	U	0.4
Chloroethane	75-00-3	U	0.4
1,1-Dichloroethene	75-3 5-4	Ü	0.4
Dichloromethane	75-09-2	0.83 J	0.4
trans-1,2-Dichloroethene	156-60-5	Ü	0.4
1,1-Dichloroethane	75-34-3	U	0.4
cis-1,2-Dichloroethene	156-59-4	U .	0.4
1,1,1-Trichloroethane	71-55-6	U	0.4
Carbon Tetrachloride	56-23-5	U	0.4
Trichloroethene	79-01-6	Ū	0.4
1,1,2-Trichloroethane	79-00-5	U	0.4
Tetrachioroethene	127-18-4	U	0.4
1,1,1,2-Tetrachloroethane	79-00-5	U	0.4
Chlorobenzene	108-90-7	U	0.42
1,1,2,2-Tetrachloroethane	79-34-5	Ü	0.54
-Chlorotoluene	95-49-8	U	0.4
-Chlorotoluene	106-49-8	Ü	0.4
1,3-Dichlorobenzene	541-73-1	Ú	0.4
1,2-Dichlorobenzene	95-50-1	Ű	0.4

Surrogate Recovery (1-Chloro-2-Fluoro-Benzene): 80% 70% - 130% (QC limits)

QUALIFIERS:

U = Compound analyzed for, but not detected above the Reporting Limit.

B = Compound in blank and sample. Compare blank and sample data.

E = Extrapolated value. Concentration exceeds the upper limit of the calibration.

RL = Reporting Limit (at or above method detection limit).

NOTES:

Approved

PAR8010W.XLS; 11/25/96

Methane Report Form Method Blank Report

Method Blank Number Date Extracted/Prepared Date Analyzed

: GB111496 : 11/14/96

Client Project No. Lab Work Order

: 729691.32010

: 11/14/96

Dilution Factor

: 96-4020 : 1.00

Method

: RSKSOP-175M

Matrix

Lab File No.

: Water

: GAS1114002

	Sample			
Compound Name	Cas Number	Concentration mg/L	RL mg/L	
Methane	74-82-8	U	0.002	

Qualifiers

E = Extrapolated value.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

AF4020.XLS

Methane Report Form

Client Sample Number	: ST24MPF	Client Project No.	: 729691.32010
Lab Sample Number	: 96-4020-01	Lab Work Order	: 96-4020
Date Sampled	: 11/12/96	Dilution Factor	: 5.00
Date Received	: 11/13/96	Method	: RSKSOP-175M
Date Extracted/Prepared	: 11/14/96	Matrix	: Water
Date Analyzed	: 11/14/96	Lab File No.	· GAS1114025

Compound Name	Sample Cas Number Concentration mg/L		RL mg/L
Methane	74-82-8	0.14	0.01

		•			
erature	•	70.5 F	Saturation	Meth	0.034450315
ount Injected	:	0.1 ml	Concentration		
Total Volume of Sample	:	43 mi	Concentration	Meth	0.108852614
Head space created	:	4 ml	in Head Space		
Methane Area	:	160.225 ug			

Atomic weight(Methane) : _____ 16 g

Qualifiers

E = Extrapolated value.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

RL = Reporting Limit.

Not Available/Not Applicable.

Analyst

Approved

AF4020.XLS

Methane Report Form

Client Sample Number	: ST24MPI	Client Project No.	: 729691.32010
Lab Sample Number	: 96-4020-02	Lab Work Order	: 96-4020
Date Sampled	: 11/12/96	Dilution Factor	: 1.00
Date Received	: 11/13/96	Method	: RSKSOP-175M
Date Extracted/Prepared	: 11/14/96	Matrix	: Water
Date Analyzed	: 11/14/96	Lab File No.	: GAS1114026

Compound Name	Cas Number	Sample Cas Number Concentration mg/L		
Methane	74-82-8	U	mg/L 0.002	

Temperature	:	70.2 F	Saturation	Meth	
Amount Injected	•	0.5 ml	Concentration		
Total Volume of Sample	•	43 ml	Concentration	Meth	
Head space created	•	4 ml	in Head Space		
Methane Area	•	0 ug			

Atomic weight(Methane) : _____ 16 g

Qualifiers

E = Extrapolated value.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

Approved

AF4020.XLS

Methane Report Form

Client Sample Number Lab Sample Number	: ST24MPBS : 96-4020-03	Client Project No. Lab Work Order	: 729691.32010 : 96-4020
Date Sampled	: 11/12/96	Dilution Factor	: 10.00
Date Received	: 11/13/96	Method	: RSKSOP-175M
Date Extracted/Prepared	: 11/14/96	Matrix	: Water
Date Analyzed	: 11/14/96	Lab File No.	: GAS1114027

Compound Name	Cas Number	Sample Concentration mg/L	RL mg/L
Methane	74-82-8	1.26	0.02

perature	:	70.6 F	Saturation	Meth	0.303890371
amount Injected	:	0.05 ml	Concentration	-	
Total Volume of Sample	:	43 ml	Concentration	Meth	0.96002083
Head space created	:	. 4 ml	in Head Space		
Methane Area	:	706.682 ug			

16 g

Qualifiers

E = Extrapolated value.

Atomic weight(Methane)

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

RL = Reporting Limit.

Not Available/Not Applicable.

Evergreen Analytical, Inc. 4036 Youngfield, Wheat Ridge, CO 80033 (303) 425-6021

RSKSOP-175M Gas Method Methane, Ethane, Ethene LCS Report Form

LCS No.

: LCS111496

EPA Method No.

: RSKSOP-175M

Date Prepared

: 11/14/96

Matrix

: Water

Date Analyzed

: 11/14/96

Method Blank

: GB111496

E.A. LCS Source No.

: 1719

Lab File No.

: GAS1114010

Compound	Spike Added (ug)	Method Blank Concentration (ug)	LCS Concentration (ug)	LCS %REC	QC Limits %REC
Methane Gas	500	0	370	74	64-90
Ethene Gas	500	0	213	43	37-58
Ethane Gas	500	0	321	64	53-83

Spike Recovery:

out of (3) outside limits.

Note: The LCS was made by taking the sample and displacing 4ml of headspace with a 1% methane, ethane, ethene gas and shaking the VOA for 5 minutes. Then injecting 50 ul from the headspace into the GC resulting in a theoretical concentration of 500 ug.

Notes

• = Values outside of QC limits.

NA = Not analyzed/not available.

Analyst // Lehan

Approved

LCS1114.XLS; 11/15/96

4036 Youngfield St. Wheat Ridge, CO 80033 (303) 425-6021

Anion Report

 Date Sampled
 : 11/12/96
 Client Project ID.
 : 729691.32010

 Date Received
 : 11/13/96
 Lab Project Number
 : 96-4020

 Date Prepared
 : 11/13/96
 Method
 : EPA 300.0

 Date Analyzed
 : 11/13/96
 Detection Limit
 : 0.25 mg/L

Evergreen Sample #	Client Sample ID.	<u>Matrix</u>	<u>Chloride</u> mg/L	Dilution <u>Factor</u>
96-4020-01	ST24 MPF	Water	3.5	1
96-4020-01 Duplicate	ST24 MPF Duplicate	Water	3.5	1
96-4020-02	ST24 MPI	Water	4.8	1
96-4020-03	ST24 MPBS	Water	. 3.5	1

Method Blank (11/13/96)

Quality Assurance

< 0.25

	<u> </u>	Spike Amount (mg/L)	Sample Result (mg/L)	Spike Result (mg/L)	% Recovery
96-4020-01	ST24 MPF Matrix Spike	10.0	3.5	13.2	97
96-4020-01	ST24 MPF Matrix Spike Du	р 10.0	3.5	13.2	97
MS/MSD RP	D				0.3

Analyst

4036 Youngfield St. Wheat Ridge, CO 80033 (303) 425-6021

Anion Report

Date Sampled	: 11/12/96	Client Project ID.	:	729691.32010
Date Received	: 11/13/96	Lab Project Number	:	96-4020
Date Prepared	: 11/13/96	Method	:	EPA 300.0
Date Analyzed	: 11/13/96	Detection Limit	:	0.076 mg/L
Date Prepared		Method	:	EPA 300.

Evergreen Sample #	Client <u>Sample ID.</u>	<u>Matrix</u>	<u>Nitrite-N</u> mg/L	Dilution <u>Factor</u>
96-4020-01	ST24 MPF	Water	<0.076	1
96-4020-01 Duplicate	ST24 MPF Duplicate	Water	<0.076	1
96-4020-02	ST24 MPI	Water	<0.076	1
96-4020-03	ST24 MPBS	Water	<0.076	1

Method Blank (11/13/96)

Quality Assurance *

< 0.076

÷	<u> </u>	Spike Amount (mg/L)	Sample Result (mg/L)	Spike Result (mg/L)	% Recovery
96-4020-01	ST24 MPF Matrix Spike	10.0	<0.25	9.6	96
96-4020-01	ST24 MPF Matrix Spike Du	p 10.0	<0.25	9.4	94
MS/MSD RP	D				1.7

^{* =} Quality assurance results reported as Nitrite (NO₂).

Analyst

4036 Youngfield St. Wheat Ridge, CO 80033 (303) 425-6021

Anion Report

 Date Sampled
 : 11/12/96
 Client Project ID.
 : 729691.32010

 Date Received
 : 11/13/96
 Lab Project Number
 : 96-4020

 Date Prepared
 : 11/13/96
 Method
 : EPA 300.0

 Date Analyzed
 : 11/13/96
 Detection Limit
 : 0.056 mg/L

Evergreen Sample #	Client <u>Sample ID.</u>	<u>Matrix</u>	<u>Nitrate-N</u> mg/L	Dilution <u>Factor</u>
96-4020-01	ST24 MPF	Water	<0.056	1
96-4020-01 Duplicate	ST24 MPF Duplicate	Water	<0.056	1
96-4020-02	ST24 MPI	Water	1.5	.1
96-4020-03	ST24 MPBS	Water	<0.056	1

Method Blank (11/13/96)

< 0.056

Quality Assurance *

	<u>s</u>	pike Amount (mg/L)	Sample Result (mg/L)*	Spike Result (mg/L)	% Recovery
96-4020-01	ST24 MPF Matrix Spike	10.0	<0.25	9.4	94
96-4020-01	ST24 MPF Matrix Spike Dup	10.0	<0.25	9.2	92
MS/MSD RP	PD D				2.6

^{* =} Quality assurance results reported as Nitrate (NO₃).

HAnalyst Hol

4036 Youngfield St. Wheat Ridge, CO 80033 (303) 425-6021

Anion Report

Date Sampled	: 11/12/96	Client Project ID.	:	729691.32010
Date Received	: 11/13/96	Lab Project Number	:	96-4020
Date Prepared	: 11/13/96	Method	:	EPA 300.0
Date Analyzed	: 11/13/96	Detection Limit	:	0.25 mg/L

Evergreen Sample #	Client Sample ID.	<u>Matrix</u>	<u>Sulfate</u> mg/L	Dilution <u>Factor</u>
96-4020-01	ST24 MPF	Water	0.86	1
96-4020-01 Duplicate	ST24 MPF Duplicate	Water	0.86	1
96-4020-02	ST24 MPI	Water	3.6	1
96-4020-03	ST24 MPBS	Water	·<0.25	1

Method Blank (11/13/96) <0.25

Quality Assurance

	<u>Sr</u>	oike Amount (mg/L)	Sample Result (mg/L)	Spike Result (mg/L)	% Recovery
96-4020-01	ST24 MPF Matrix Spike	10.0	0.86	10.2	93
96-4020-01	ST24 MPF Matrix Spike Dup	10.0	0.86 ′	10.2	94
MS/MSD RP	D				0.9

Analyst

Client Sample Number : ST24-MPD(D) Client Project Number

Lab Sample Number Lab Work Order : 96-4033-01 96-4033 Date Sampled : 11/13/96 Matrix **WATER**

Date Received : 11/14/96 Lab File Number(s) TVB31115010,28

Date Prepared : 11/15,16/96 Method Blank MB3111596, MB3111696

FID Dilution Factor : 1.0

PID Dilution Factor : 1.0; 5.0

		Analysis	Sample		
Compound Name	Cas Number	Date	Concentration	RL	Units
TVH-Gasoline		11/15/96	3.1	0.1	mg/L
Benzene	71-43-2	11/15/96	46	0.4	ug/L
Toluene	108-88-3	11/15/96	5.7	0.4	ug/L
Chlorobenzene	108-90-7	11/15/96	U	0.4	ug/L
Ethyl Benzene	100-41-4	11/16/96	200	2.0	ug/L
Total Xylenes (m,p,o)	1330-20-7	11/15/96	47	0.4	ug/L
1,3,5-Trimethylbenzene	108-67-8	11/15/96	19	0.4	ug/L
1,2,4-Trimethylbenzene	95-63-6	11/15/96	54	0.4	ug/L
1,2,3-Trimethylbenzene	526-73-8	11/15/96	18	0.4	ug/L
1,2,3,4-Tetramethylbenzene	488-23-3	11/15/96	96	0.5	ug/L
urrogate Recovery:		136%	*	70%-126%	(Limits)
Surrogate Recovery:		98%; 120%		76%-127%	(Limits)

Notes: Total Xylenes consist of three isomers, two of which co-elute. The Xylene RL is for a single peak.

Comments: * = High Surrogate Recovery due to hydrocarbon interference.	

QUALIFIERS and DEFINITIONS:

E = Extrapolated value. Value exceeds calibration range.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

J = Indicates an estimated value when the compound is detected, but is below the Reporting Limit.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

PID = Photoionization detector.

FID = Flame ionization detector.

Total Volatile Hydrocarbons.

729691.32010

Methods 602/8020 and 5030/8015 Modified Data Report

Client Sample Number : ST24-MPH(S) Client Project Number 729691.32010 Lab Sample Number : 96-4033-02 Lab Work Order 96-4033 Date Sampled : 11/13/96 Matrix **WATER Date Received** : 11/14/96 Lab File Number(s) TVB31115011 Date Prepared : 11/15/96 Method Blank MB3111596

FID Dilution Factor : 1.0 PID Dilution Factor : 1.0

	1	Analysis	Sample	T	
Compound Name	Cas Number	Date	Concentration	RL	Units
TVH-Gasoline		11/15/96	1.0	0.1	mg/L
Benzene	71-43-2	11/15/96	18	0.4	ug/L
Toluene	108-88-3	11/15/96	0.6	0.4	ug/L ug/L
Chlorobenzene	108-90-7	11/15/96	U		ug/L ug/L
Ethyl Benzene	100-41-4	11/15/96	15	0.4	ug/L ug/L
Total Xylenes (m,p,o)	1330-20-7	11/15/96	0.8	0.4	ug/L ug/L
1,3,5-Trimethylbenzene	108-67-8	11/15/96	U	0.4	ug/L ug/L
1,2,4-Trimethylbenzene	95-63-6	11/15/96	U	0.4	ug/L ug/L
1,2,3-Trimethylbenzene	526-73-8	11/15/96	U	0.4	<u> </u>
1,2,3,4-Tetramethylbenzene	488-23-3	11/15/96	80	0.5	ug/L ug/L
FID Surrogate Recovery:		110%		70%-126%	(Li
PID Surrogate Recovery:		103%		76%-127%	(Lit

Notes: Total Xylenes consist of three isomers, two of which co-elute. The Xylene RL is for a single peak.

Comments:	

QUALIFIERS and DEFINITIONS:

E = Extrapolated value. Value exceeds calibration range.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

J = Indicates an estimated value when the compound is detected, but is below the Reporting Limit.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

PID = Photoionization detector.

FID = Flame ionization detector.

TVH = Total Volatile Hydrocarbons.

K. Hallman
Approved

Method 601/8010 Chlorinated VOC's Sample Report

Client Sample No. : ST24-MPD(D) Client Project No. : 729691.32010 Lab Sample No. : 96-4033-01 Lab Project No. : 96-4033

Date Sample No. : 96-4033-01 Lab Project No. : 96-4033-01 Date Sampled : 11/13/96 Matrix : Water

Date Analyzed : 11/21/96 Dilution Factor : 1.0

Compound	CAS#	Concentration (ug/L)	RL (ug/L)
Vinyl Chloride	75-01-4	U	0.4
Chloroethane	75-00-3	Ü	0.4
1,1-Dichloroethene	75-35-4	Ü	0.4
Dichloromethane	75-09-2	Ü	0.4
trans-1,2-Dichloroethene	156-60-5	Ū	0.4
1,1-Dichloroethane	75-34-3	Ü	0.4
cis-1,2-Dichloroethene	156-59-4	Ū	0.4
1,1,1-Trichloroethane	71-55-6	Ŭ	0.4
Carbon Tetrachloride	56-23-5	Ü	0.4
Trichloroethene	79-01-6	Ü	0.4
1,1,2-Trichloroethane	79-00-5	U	0.4
Tetrachloroethene	127-18-4	ប់	0.4
1,1,1,2-Tetrachloroethane	79-00-5	Ŭ	0.4
Chlorobenzene	108-90-7	ŭ ·	0.42
1,1,2,2-Tetrachloroethane	79-34-5	Ŭ	0.54
2-Chlorotoluene	95-49-8	Ü	0.4
Chlorotoluene	106-49-8	ŭ	0.4
3-Dichlorobenzene	541-73-1	ŭ	0.4
1,2-Dichlorobenzene	95-50-1	ŭ	0.4

Surrogate Recovery	(1-Chloro-2-Fluoro-Benzene):	83%	70% - 130% (QC limits)
			· · · · · · · · · · · · · · · · · · ·

QUALIFIERS:

Analyst

U = Compound analyzed for, but not detected above the Reporting Limit.

B = Compound in blank and sample. Compare blank and sample data.

E = Extrapolated value. Concentration exceeds the upper limit of the calibration.

RL = Reporting Limit (at or above method detection limit).

Λ
11/

..

HLW4033.XLS; 11/26/96

Method 601/8010 Chlorinated VOC's Sample Report

Client Sample No. : ST24-MPH(S) Client Project No. : 729691.32010

Lab Sample No. : 96-4033-02 Lab Project No. : 98-4033

Lab Sample No. : 96-4033-02 Lab Project No. : 96-4033

Date Sampled : 11/13/96 Matrix : Water

Date Prepared : 11/21/96 Method Blank : RB112196

Date Analyzed : 11/21/96 Dilution Factor : 1.0

Compound	CAS#	Concentration (ug/L)	RL (ug/L)
Vinyl Chloride	75-01-4	LI	0.4
Chloroethane	75-00-3	บั	0.4
1,1-Dichloroethene	75-35-4	ŭ	0.4
Dichloromethane	75-09-2	ŭ	
trans-1,2-Dichloroethene	156-60-5	ŭ	0.4 0.4
1,1-Dichloroethane	75-34-3	Ü	0.4
cis-1,2-Dichloroethene	156-59-4	ŭ	0.4
1,1,1-Trichloroethane	71-55-6	ŭ	
Carbon Tetrachloride	56-23-5	ŭ	0.4
Trichloroethene	79-01-6	ŭ	0.4
1,1,2-Trichloroethane	79-00-5	ŭ	0.4
Tetrachloroethene	127-18-4	ĭi	0.4
1,1,1,2-Tetrachloroethane	79-00-5	ĭi	0.4
Chlorobenzene	108-90-7	Ĭi	0.4 0.42
1,1,2,2-Tetrachloroethane	79-34-5	ŭ	0.42
2-Chlorotoluene	95-49-8	Ŭ	0.54
4-Chlorotoluene	106-49-8	` Ü	
1,3-Dichlorobenzene	541-73-1	ŭ	
1,2-Dichlorobenzene	95-50-1	Ü	0.4

Surrogate Recovery (1-Chloro-2-Fluoro-Benzene): 78%

70% - 130% (QC limits)

QUALIFIERS:

U = Compound analyzed for, but not detected above the Reporting Limit.

B = Compound in blank and sample. Compare blank and sample data.

E = Extrapolated value. Concentration exceeds the upper limit of the calibration.

RL = Reporting Limit (at or above method detection limit).

NOTES:

Analyst

HLW4033.XLS; 11/26/96

Client Sample Number	: ST24-MPD(D)	Client Project No.	: 729691.32010
Lab Sample Number	: 96-4033-01	Lab Work Order	: 96-4033
Date Sampled	: 11/13/96	Dilution Factor	: 20.00
Date Received	: 11/14/96	Method	: RSKSOP-175M
Date Extracted/Prepared	: 11/21/96	Matrix	: Water
Date Analyzed	: 11/21/96	Lab File No.	: GAS1121008

Compound Name	Cas Number	Sample Concentration mg/L	RL mg/L
Methane	74-82-8	2.06	0.04

rature A Injected	: -	74.2 F 0.025 ml	Saturation Concentration	Meth	0.498195092
Total Volume of Sample	:	43 ml	Concentration	Meth	1.563231184
Head space created	:_	4 mi	in Head Space		
Methane Area	: _	579.264 ug			

Atomic weight(Methane) : _____ 16 g

Qualifiers

E = Extrapolated value.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

Mulenen Analyst

Approved

AF4033.XLS

Methane Report Form

Client Sample Number	: ST24-MPH(S)	Client Project No.	: 729691.32010
Lab Sample Number	: 96-4033-02	Lab Work Order	: 96-4033
Date Sampled	: 11/13/96	Dilution Factor	: 20.00
Date Received	: 11/14/96	Method	: RSKSOP-175M
Date Extracted/Prepared	: 11/21/96	Matrix	: Water
Date Analyzed	: 11/21/96	Lab File No.	: GAS1121009

Compound Name	Cas Number	Sample Concentration mg/L	RL mg/L
Methane	74-82-8	1.87	0.04

Temperature Amount Injected	: 	74 F 0.025 ml	Saturation Concentration	Meth	0.451
Total Volume of Sample Head space created		43 ml	Concentration	Meth	1.41784926
Methane Area		4 ml 525.195 ug	in Head Space		
Atomic weight(Methane)	:	16 g			

Qualifiers

E = Extrapolated value.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

Analyst

4036 Youngfield St. Wheat Ridge, CO 80033 (303) 425-6021

Anion Report

Date Sampled	: 11/13/96	Client Project ID.	:	729691.32010
Date Received	: 11/14/96	Lab Project Number	:	96-4033
Date Prepared	: 11/14/96	Method	:	EPA 300.0
Date Analyzed	: 11/14/96	Detection Limit	:	0.25 mg/L

Evergreen Sample #	Client Sample ID.	<u>Matrix</u>	<u>Chloride</u> mg/L	Dilution <u>Factor</u>
96-4033-01	ST24-MPD(D)	Water	4.2	1
96-4033-02	ST24-MPH(S)	Water	3.7	1
96-4033-03	W81	Water	14.4	1
96-4033-04	LF6-MPM	Water	6.5	1
96-4033-04 Duplicate	LF6-MPM Duplicate	Water	6.5	1
96-4033-05	W22	Water	3.8	1
96-4033-06	W1	Water	3.7	1

Method Blank

(11/14/96)

Water

< 0.25

1

Quality Assurance

	<u> </u>	Spike Amount (mg/L)	Sample Result (mg/L)	Spike Result (mg/L)	% Recovery
96-4033-04	LF6-MPM Matrix Spike	10.0	6.5	16.2	97
96-4033-04	LF6-MPM Matrix Spike Du	o 10.0	6.5	16.4	98

MS/MSD RPD

1.7

Analyst

4036 Youngfield St. Wheat Ridge, CO 80033 (303) 425-6021

Anion Report

Date Sampled	: 11/13/96	Client Project ID.	:	729691.32010
Date Received	: 11/14/96	Lab Project Number	:	96-4033
Date Prepared	: 11/14/96	Method	:	EPA 300.0
Date Analyzed	: 11/14/96	Detection Limit	:	0.076 mg/L
Date / maryzod	. 11/14/00	Dotootion Linne	•	0.070 mg/L

Evergreen Sample #	Client Sample ID.	<u>Matrix</u>	<u>Nitrite-N</u> mg/L	Dilution <u>Factor</u>
96-4033-01	ST24-MPD(D)	Water	<0.076	1
96-4033-02	ST24-MPH(S)	Water	<0.076	1
96-4033-03	W81	Water	<0.076	1
96-4033-04	LF6-MPM	Water	<0.076	1
96-4033-04 Duplicate	LF6-MPM Duplicate	Water	<0.076	1
96-4033-05	W22	Water	<0.076	1
96-4033-06	W1	Water	<0.076	1

Method Blank

(11/14/96)

Water

<0.076

1

Quality Assurance *

	Sp	ike Amount (mg/L)	Sample Result (mg/L)	Spike Result (mg/L)	% Recovery
96-4033-04	LF6-MPM Matrix Spike	10.0	<0.25	9.4	94
96-4033-04	LF6-MPM Matrix Spike Dup	10.0	<0.25	9.2	92

MS/MSD RPD

1.9

* = Quality assurance results reported as Nitrite (NO₂).

Analyst

4036 Youngfield St. Wheat Ridge, CO 80033 (303) 425-6021

Anion Report

Date Sampled Date Received Date Prepared Date Analyzed	: 11/13/96 : 11/14/96 : 11/14/96 : 11/14/96	Lab Project Number Method	:	729691.32010 96-4033 EPA 300.0 0.056 mg/L
•		Defection Fittiff	:	0.056 mg/L

Evergreen Sample #	Client Sample ID.	<u>Matrix</u>	<u>Nitrate-N</u> mg/L	Dilution <u>Factor</u>
96-4033-01	ST24-MPD(D)	Water	<0.056	1
96-4033-02	ST24-MPH(S)	Water	<0.056	1
96-4033-03	W81	Water	<u>.</u> <0.056	1
96-4033-04	LF6-MPM	Water	1.3	1
96-4033-04 Duplicate	LF6-MPM Duplicate	Water	1.3	1
96-4033-05	W22	Water	<0.056	1
96-4033-06	W1	Water	<0.056	1

Method Blank

(11/14/96)

Water

< 0.056

1

Quality Assurance *

	·	Spike Amount (mg/L)	Sample Result (mg/L)	Spike Result (mg/L)	% Recovery
96-4033-04	LF6-MPM Matrix Spike	10.0	5.7	15.4	97
96-4033-04	LF6-MPM Matrix Spike Du	ıp 10.0	5.7	15.6	99

MS/MSD RPD

2.2

= Quality assurance results reported as Nitrate (NO₃).

Analyst

4036 Youngfield St. Wheat Ridge, CO 80033 (303) 425-6021

Anion Report

Date Received : 11 Date Prepared : 11	/14/96 Lal /14/96 Me	b Project Number :	729691.32010 96-4033 EPA 300.0 0.25 mg/L
---------------------------------------	-------------------------	--------------------	---

Evergreen Sample #	Client Sample ID.	<u>Matrix</u>	<u>Sulfate</u> mg/L	Dilution <u>Factor</u>
96-4033-01	ST24-MPD(D)	Water	<0.25	1
96-4033-02	ST24-MPH(S)	Water	<0.25	1 .
96-4033-03	W81	Water	3.8	1
96-4033-04	LF6-MPM	Water	0.27	1
96-4033-04 Duplicate	LF6-MPM Duplicate	Water	0.27	1
96-4033-05	W22	Water	11.0	1
96-4033-06	W1	Water	11.6	1
		•	÷	
Method Blank	(11/14/96)	Water	<0.25	1

Quality Assurance

	Sı	pike Amount (mg/L)	Sample Result (mg/L)	Spike Result (mg/L)	% Recovery
96-4033-04	LF6-MPM Matrix Spike	10.0	0.27	9.4	91
96-4033-04	LF6-MPM Matrix Spike Dup	10.0	0.27	9.4	92

MS/MSD RPD

Analyst Analyst

Approved 0.5

4036 Youngfield St. Wheat Ridge, CO 80033 (303) 425-6021

Analysis Report

Date Sampled : 11/13/96
Date Received : 11/14/96
Date Prepared : 11/14/96

Client Project ID. : 729691.32010

Lab Project Number : 96-4033 Method : EPA 310.1

Date Analyzed : 11/14/96 Detection Limit : 5.0 mg CaCO₃/L

Evergreen <u>Sample #</u>	Client Sample ID.	<u>Matrix</u>	Total <u>Alkalinity</u> (mg CaCO ₃ /L)	Dilution <u>Factor</u>
96-4033-01	ST24-MPD(D)	Water	75.9	1
96-4033-02	ST24-MPH(S)	Water	112	1
96-4033-03	W81	Water	298	1
96-4033-04	LF6-MPM	Water	7.1	1
96-4033-05	W22	Water	<5.0	1
96-4033-06	W1	Water	<5.0	1
6-4033-06 Duplicate	W1 Duplicate	Water	<5.0	1
Method Blank	(11/14/96)		<5.0	

Quality Assurance

Reference	<u>True Value</u> (mgCaCO ₃ /L)	<u>Result</u> (mgCaCO ₃ /L)	% Recovery
ERA Minerals	120	113	94

Lot # 0725-96-11

Analyst

WORK ORDER Summary

Report To: Dave Moutoux

Parsons Engineering Science 1700 Broadway Suite 900 Denver, CO 80290

22-Nov-96

Client Project ID: 729691.32010

Phone: (303) 831-8100 **FAX:** (303) 831-8208

Comments:

£									
Sample ID	Cilent Sample ID	Analysis	*	Matrix	Loc	Loc Collection	Received	Due	HT
96-4081-01K	ST24-MPM	Anions by IC CI,NO2,NO3,SO4		Groundwater	CR4	CR4 18-Nov-96	19-Nov-96	04-Dec-96	20-Nov-96
96-4081-02K	LF06-MPG	Anions by IC CI,NO2,NO3,SO4					,	04-Dec-96	20-Nov-96
96-4081-03K	ST24-MPL	Anions by IC CI,NO2,NO3,SO4						04-Dec-96	20-Nov-96
96-4081-05K	LF06-MPF(S)	Anions by IC CI,NOZ,NO3,SO4						04-Dec-96	20-Nov-96
96-4081-07K	ST24-MPJ	Anions by IC CI,NO2,NO3,SO4						04-Dec-96	04-Dec-96 20-Nov-96
96-4081-08K	LF06-MPB	Anions by IC CI,NOZ,NO3,SO4			,			04-Dec-96	20-Nov-96
96-4081-01D	ST24-MPM	BTEX Parsons			7			04-Dec-96	02-Dec-96
96-4081-02D	LF06-MPG	BTEX Parsons						04-Dec-96	02-Dec-96
96-4081-03D	ST24-MPL	BTEX Parsons						04-Dec-96	02-Dec-96
96-4081-04D	W3	BTEX Parsons						04-Dec-96	02-Dec-96
96-4081-05D	LF06-MPF(S)	BTEX Parsons						04-Dec-96	02-Dec-96
96-4081-06D	LF06-MPV	BTEX Parsons						04-Dec-96	02-Dec-96
96-4081-07D	ST24-MPJ	BTEX Parsons						04-Dec-96	02-Dec-96
96-4081-08D	LF06-MPB	BTEX Parsons						04-Dec-96	02-Dec-96
96-4081-01H	ST24-MPM	Methane						04-Dec-96	02-Dec-96
96-4081-02H	LF06-MPG	Methane						04-Dec-96	02-Dec-96
96-4081-03H	ST24-MPL	Methane						04-Dec-96	02-Dec-96
96-4081-05H	LF06-MPF(S)	Methane						04-Dec-96	02-Dec-96

= Special list. See sample comments or test information. HT = Holding Time expiration date.

20/2k/

Evergreen Analytical, Inc.

WORK ORDER Summary

22-Nov-96

Report To: Dave Moutoux

Client Project ID: 729691.32010

Parsons Engineering Science 1700 Broadway Suite 900 Denver, CO 80290

Phone: (303) 831-8100 **FAX:** (303) 831-8208

Comments:

Sample TD	Client Semule ID	Anglesis		١					
		creations.	#	Matrix	700	Collection	Received	Due	HT
96-4081-07H	ST24-MPJ	Methane	ľ	Groundwater 2	7	18-Nov-96	19-Nov-96	04-Dec-96	102-Dec. 96
96-4081-08H	LF06-MPB	Methane						24.00	20 Dec 96
96-4081-01A	ST24-MPM	Purgeable Halocarbons 8010		0				04-1045-30	07-Dec-90
96-4081-02A	LF06-MPG	Purgeable Halocarbons 8010						04-Dec-30	06-397-70
96-4081-03A	ST24-MPL	Purgeable Halocarbons 8010						04-Dec-36	06-39-70
96-4081-04A	W3	Purgeable Halocarbons 8010						04-Dec-30	06-590
96-4081-05A	LF06-MPF(S)	Purgeable Halocarbons 8010						04-Dec-30	06-390-70
96-4081-06A	LF06-MPV	Purgeable Halocarbons 8010						04-D06-30	06-390-70
96-4081-07A	ST24-MPJ	Purgeable Halocarbons 8010						04-06-30	0.2-1.00
96-4081-08A	LF06-MPB	Purgeable Halocarbons 8010						04-Dec-96	07-Dec-96
96-4081-09A	ST74 Field Rlank	Durantle II-1-1-1-1						04-Dec-96	02-Dec-96
1001 001	TOTAL FICTOR DIGITAL	rugeable Halocarbons 8010						04-Dec-96	02-Dec-96
96-4081-10A	LF06 Field Blank	Purgeable Halocarbons 8010						04-Dec-96	02-Dec-96
96-4081-11A	Trip Blank	Purgeable Halocarbons 8010						04 Dec 96	03-Dec-96
96-4081-01D	ST24-MPM	TVH (Gasoline)		2				20.00	02-200-20
96-4081-02D	LF06-MPG	TVH (Gasoline)						04-15-450 04-15-650 04-15-	06-220-20
96-4081-03D	ST24-MPL	TVH (Gasoline)						04-DG-70	05-25-06
96-4081-04D	W3	TVH (Gasoline)						04-17-40	05-20-30
96-4081-05D	LF06-MPF(S)	TVH (Gasoline)						04-1766-90	06-2907-70
96-4081-06D	LF06-MPV	TVH (Gasoline)						04-1765-90	06-DGC-70
96-4081-07D	ST24-MPJ	TVH (Gasoline)						04-17-62-30	06-397-70
96-4081-08D	LF06-MPB	TVH (Gasoline)						04-Dec-30	06-09G-70
								V4-LAC-30	05-727-70

NALYTICAL SERVICES REQUEST CHAIN OF CUSTODY RECORD

nalytic	#036 Youngfield
Evergre	<
•	
•	三く

FAX # 303 1851- 8208

5k 900 8029

G G

STATE

\$505x

COMPANY

ADDRESS 1700 CITY DENNEY (203) 831-8100

PHONE#

Sampler Name:

(signature)

Wheat Ridge, Colorado 80033 FAX RESULTS Y / N al Inc. (303) 425-6021 FAX (303) 425-6854 (800) 845-7400

(print
IENT CONTACT
ರ

ge Lot

PO.# 774691. XSTD (2 wks) 🗀 UST 729691,32010 CLIENT PROJ. I.D. EAL. QUOTE #_

3300

Other (Specify)* TURNAROUND REQUIRED.

expedited turnaround subject to additional fee

ANALYSIS REQUESTED

9

MATRIX

S.C.

(print)_

EAL use onlyQ_kB

Do not write

in shaded area

	F
DATE	SAMPLED
SAMPLE	IDENTIFICATION

PCB Screen	Γ
Pest/PCBs 8080/608/508 (circle)	T
resticides 8080/608 (circle)	T
(circle)	t
C VCS/VC9/09PO VC	Ł
(GICIE) TOWNS BESTHOTHER	Ľ
TOLP VOA/BNA	╘
Oil / Sludge / Multi-phase.	L
Soil / Solid / Ait / Gas	
Water-Drinking/Discharge/Ground	>
No. of Containers	-
Please PRINT all information: CLIENT SAMPLE DATE IDENTIFICATION SAMPLED TIME	/ //2/2/11 4.0.

in shaded area W.O. # 96 – 40 8 / B.O.F. # 757 CS (0) 4/6 / CO CS (0) 9/50/, " CO Cooler Temp. "C 6 Cooler Temp. "C 6 Seals Intact Y / N / (A) Samples Pres(X) N / NA Headcase Y / N / NA	01A 7 K	X4 440	53 F-K	9-7-40	05-43K	00 A>K	107 A>K	08 A>K	09 A>C	010 A7C	Loc 92 C.R.	100.30
	\dagger	 	-	-	-	 			 			
405 (CI- NO 300 204)												
METHANE BUD 175	×	×	X		X		X	X			Y	2e
METHAN	X	X	X		又		又	X			K	93
Dil & Grease 413.1	<u> </u>											
Abaws / WC aleten Isil & Blanch	┥											
Total Metals-DW / WPDES / SW846 Dissolved & iist metals below) Dissolved Metals - DW / WPDES / SW846 Dissolved Metals - DW /												
[olal Mointon (Diesel)	╂											
, -!!ose!) (Uoiii			. (. 6	. (
Colodo) Sobusoo	1-	X	×	メ	イイ	イイ	*				2//20	30
Herbicides 8150/515 (circle)	¥	<u>~</u>	メ	×	1	X	く	^	_	- 1	<u> 1</u> 06	•
1100	-											
309/809/0808 SBO Jaco	+											
esicides 8080/608 (ci.	+											
(circle)	+											
AOV 8260/624/52A S INCINIS	×	X	X	メ	ス	义	X	X	X	X	A A A A	7Q4
TCLP VOA/BNA/Pest/Herb/Metals (circle)												3
essriq-ifluM \ egbul2 \ liO											n	
Soil / Solid / Ait / Gas											Sample Fraction	
Water-Drinking/Discharge/Ground (circle)	×					~			Ш	\sum	e Fr	
No. of Containers	=	11	11	ノ	()	7	()	11	3	3	amp	
MI	5250	න්ත	०%३०	Shec	88	88	88	33	1430	1500	S	
IINT Ition: DATE SAMPLED	18/96/0225									Ş		
mation I	\equiv											
Please PRINT all information: CLIENT SAMPLE DATE	STA4-MPM	-FB6-MPG1	STAY-MPL	W 3	-FBG-MPHS)	LFØ6-MPV	5724-475	-FB6-MPB	STA4 FIELD BLAME	LFOL FIELD BLAM		Instructions:
	5	Z	3		Ľ	じ	2	7	51	7	1	SE

196181)11 Relinquished by: (Signature) Parce Hemy

Date/Time Recei

Date/Time Relinquished by: (Signature)

Date/Time | Received by: (Signature)

Date/Time

CHAIN OF CUSTODY RECORD / ANALYTICAL SERVICES REQUEST

C	し、						Ĺ		2	A	Evergeon Analytical Inc	100	In									200	
C.S. O.S. O.S. O.S. O.S. O.S. O.S. O.S.	ハンショ	Λ					í	й	100	V 2007	os Vainafield St	֚֓֞֞֜֜֞֜֜֞֜֜֝֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֓֓֓֓֓֓֡֓֞֓֓֡֓֡֓֡֓֡֓֞֡֓֞	֚֚֚֚֚֡֝֝֝֜֝֝֜֜֝֓֓֓֓֓֓֓֓֓֓֜֜֜֓֓֓֡֓֜֜֜֓֓֓֡֓֡֓֡֓֡֓֡֓֡֓֡			CLE	CLIENT CONTACT (print)	TACT	(print)				
1000	1 _	J	à	0			1	([Wheat	Wheat Ridge, Colorado 80033	Colora	1do 800	033		CLIE	CLIENT PROJ. I.D. 784691	J. I.D.	1	96	7.3	. 32010	
		7	00000	2 (11	//		(303) ·	(303) 425-6021 FAX (303) 425-6854	21 5-6854				EAL.	EAL. QUOTE #	#				2.# 724C	PO.# 714691.3201
1	SIAIE CALLAR	1	<u>ا</u> ا	M C	12/2	8	٠	1 K) C C	ي	(800)	(800) 845-7400	2	•			TURN	TURNAROUND REQUIRED*	ND RE	QUIRE	•	AZ STD (2 wks)	wks) 🗖 UST	-
Sample Men	0000		1 ¥ ¥,	4	7	d	-	7	٥	Α̈́	FAX RESULTS	≻	z -							. –	Other (Specify)*	pecify)*	
Sampler Name:	LELINIS															edxe.	dited tu	marou	nd sub	ject to	expedited turnaround subject to additional fee	fee	
(print)				MATRIX	XI.			md			AN	ANALYSIS		REQUESTED	JES							EAL use only	only
				\vdash	-	<u> </u>	F			-	-		-	ŀ		r	ŀ		ŀ	ŀ			<u> </u>
Please PRIN	ENT L			ischarge/Ground	ti-phase	Pest/Herb/Metals	.,,,,,		(circle) 808(circle) 808/808 (circle)		(circle)	Circle) rcle)/MTBE (circle) (Gasoline)		2014	e polom) DM \ 2M840 Polom) RobDES \ 2M840						M.C	/ III) sriaded area W.O. #	J 8183
all information:	ation:						24/50	J) C>	9/080 		70SI		,	'MO.	netal						გ <u>გ</u>	C/S (I) Cool	
CLIENT							9/60)	n	CBs 8		8 sebi		44170	CITY	k list r		_		_		8 8 		I / NA
SAMPLE IDENTIFICATION	DATE SAMPLED T	TIME	No. of	3) S / IioS			8	BNA 8 Pestici	Pest/P		oidien X309			الازدوات	0il & G	HART					San	Samples Pres. Y / N / NA Headspace Y / N / NA	/ N / NA / NA
TRIPBUTANK	96/81/11						X				\square						+-		\dagger	+	0	11	
																	<u> </u>						
				_	_															_			
			\exists		_																		
			\exists	-												-	_			-			
			+	\dashv	\dashv		\dashv	_			·						-			-			
			\dashv	\dashv				_		\dashv							_			_			
			-	\dashv	_			_		\dashv													
		1	=	\dashv			\dashv	-			_									_			
		7	=	\dashv			_										_						
		Sa	Sample Fraction	Frac	Ē						¥ 7. ¥ 7. ₹ . ↑		- ii.	* (2) (1) (1) (4) (4)					144		200		
Instructions:												2.0 2.0 2.0								362	Cont		
Kun Irip B	Blank For		800	o	Q	15																	
Relinquished by	Date/Time Received by: (Signature)	Bace	yd by	ois)	onitat	-	-	٥	Date	12			į					4					
C		-	72.00	j)	3	_		3	ğ		iinquisnea by: (<i>Signature)</i>	o Dy: (Signal	ure)	_	Ω	ate/Tim	<u>•</u>	Seived	by: (S	Date/Time Received by: (Signature		Date/Time

Methods 602/8020 and 5030/8015 Modified Data Report Method Blank Report

Method Blank Number

: MB2112096

Client Project Number

729691.32010

Date Prepared

: 11/20/96

Lab Work Order

96-4081

Dilution Factor

: 1.0

Matrix

WATER

Lab File Number

TVB21120007

		Analysis	Sample		
Compound Name	Cas Number	Date	Concentration	RL	Units
TVH-Gasoline		11/20/96	U	0.1	mg/L
Benzene	71-43-2	11/20/96	U	0.4	ug/L
Toluene	108-88-3	11/20/96	U	0.4	ug/L
Chlorobenzene	108-90-7	11/20/96	U	0.4	ug/L
Ethyl Benzene	100-41-4	11/20/96	U	0.4	ug/L
Total Xylenes (m,p,o)	1330-20-7	11/20/96	U	0.4	ug/L
1,3,5-Trimethylbenzene	108-67-8	11/20/96	U	0.4	ug/L
1,2,4-Trimethylbenzene	95-63-6	11/20/96	U	0.4	ug/L
1,2,3-Trimethylbenzene	526-73-8	11/20/96	U	0.4	ug/L
1,2,3,4-Tetramethylbenzene	488-23-3	11/20/96	U	0.5	ug/L
Surrogate Recovery:		<u> </u> 91%		70%-126%	(Limits)
Surrogate Recovery:		99%		76%-127%	(Limits)

Notes: Total Xylenes consist of three isomers, two of which co-elute. The Xylene RL is for a single peak.

Comments:	
	<u> </u>

QUALIFIERS and DEFINITIONS:

E = Extrapolated value. Value exceeds calibration range.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

J = Indicates an estimated value when the compound is detected, but is below the Reporting Limit.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

PID = Photoionization detector.

FID = Flame ionization detector.

TVH = Total Volatile Hydrocarbons.

Blutha Analyst

Methods 602/8020 and 5030/8015 Modified Data Report Method Blank Report

Method Blank Number

: MB2112196

Client Project Number

729691.32010

Date Prepared

: 11/21/96

Lab Work Order

96-4081

Dilution Factor

: 1.0

Matrix

WATER

Lab File Number

TVB21120028

·		Analysis	Sample		
Compound Name	Cas Number	Date	Concentration	RL	Units
TVH-Gasoline		11/21/96	U	0.1	mg/L
Benzene	71-43-2	11/21/96	Ü	0.4	ug/L
Toluene	108-88-3	11/21/96	U	0.4	ug/L
Chlorobenzene	108-90-7	11/21/96	U	0.4	ug/L
Ethyl Benzene	100-41-4	11/21/96	U	0.4	ug/L
Total Xylenes (m,p,o)	1330-20-7	11/21/96	U	0.4	ug/L
1,3,5-Trimethylbenzene	108-67-8	11/21/96	U	0.4	ug/L
1,2,4-Trimethylbenzene	95-63-6	11/21/96	U	0.4	ug/L
1,2,3-Trimethylbenzene	526-73-8	11/21/96	U	0.4	ug/L
1,2,3,4-Tetramethylbenzene	488-23-3	11/21/96	U	0.5	ug/L
FID Surrogate Recovery:		81%		70%-126%	(Li:
PID Surrogate Recovery:		91%		76%-127%	(L

Notes: Total Xylenes consist of three isomers, two of which co-elute. The Xylene RL is for a single peak.

Comments:

QUALIFIERS and DEFINITIONS:

E = Extrapolated value. Value exceeds calibration range.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

J = Indicates an estimated value when the compound is detected, but is below the Reporting Limit.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

PID = Photoionization detector.

FID = Flame ionization detector.

TVH = Total Volatile Hydrocarbons.

Analyst

Methods 602/8020 and 5030/8015 Modified Data Report Method Blank Report

Method Blank Number

: MB2112596

Client Project Number

729691.32010

Date Prepared

: 11/25/96

Lab Work Order

96-4081

Dilution Factor

: 1.0

Matrix

WATER

Lab File Number

TVB21125003

·		Analysis	Sample		
Compound Name	Cas Number	Date	Concentration	RL	Units
TVH-Gasoline		11/25/96	U	0.1	mg/L
Benzene	71-43-2	11/25/96	U	0.4	ug/L
Toluene	108-88-3	11/25/96	U	0.4	ug/L
Chlorobenzene	108-90-7	11/25/96	U	0.4	ug/L
Ethyl Benzene	100-41-4	11/25/96	U	0.4	ug/L
Total Xylenes (m,p,o)	1330-20-7	11/25/96	Ú	0.4	ug/L
1,3,5-Trimethylbenzene	108-67-8	11/25/96	U	0.4	ug/L
1,2,4-Trimethylbenzene	95-63-6	11/25/96	U	0.4	ug/L
1,2,3-Trimethylbenzene	526-73-8	11/25/96	U	0.4	ug/L
1,2,3,4-Tetramethylbenzene	488-23-3	11/25/96	U	0.5	ug/L
Surrogate Recovery:		87%	· · · · · · · · · · · · · · · · · · ·	70%-126%	(Limits)
Surrogate Recovery:		93%		76%-127%	(Limits

Notes: Total Xylenes consist of three isomers, two of which co-elute. The Xylene RL is for a single peak.

Comments:			

QUALIFIERS and DEFINITIONS:

E = Extrapolated value. Value exceeds calibration range.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

J = Indicates an estimated value when the compound is detected, but is below the Reporting Limit.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

PID = Photoionization detector.

FID = Flame ionization detector.

TVH = Total Volatile Hydrocarbons.

Blecha

Methods 602/8020 and 5030/8015 Modified Data Report

Client Sample Number : ST24-MPM

S124-MPM

Client Project Number

729691.32010

Lab Sample Number

: 96-4081-01

Lab Work Order

96-4081

Date Sampled Date Received

: 11/18/96: 11/19/96

Matrix
Lab File Number(s)

WATER TVB21120014,30

Date Prepared

: 11/19/96

Method Blank

MB2112096

FID Dilution Factor

: 200

ethod Blank

MD2112030

PID Dilution Factor

: 200 : 10; 200 MB2112196

		Analysis	Sample		
Compound Name	Cas Number	Date	Concentration	RL	Units
TVH-Gasoline		11/21/96	55	20	mg/L
Benzene	71-43-2	11/21/96	350	80	ug/L
Toluene	108-88-3	11/21/96	11000	80	ug/L
Chlorobenzene	108-90-7	11/20/96	U	4.0	ug/L
Ethyl Benzene	100-41-4	11/21/96	1500	80	ug/L
Total Xylenes (m,p,o)	1330-20-7	11/21/96	8100	80	ug/L
1,3,5-Trimethylbenzene	108-67-8	11/21/96	1400	80	ug/L
1,2,4-Trimethylbenzene	95-63-6	11/21/96	4200	80	ug/L
1,2,3-Trimethylbenzene	526-73-8	11/21/96	1200	80	ug/L
1,2,3,4-Tetramethylbenzene	488-23-3	11/20/96	U	5.0	ug/L
FID Surrogate Recovery:		88%		70%-126%	
PID Surrogate Recovery:		118%; 96%		76%-127%	(Limes)

Notes: Total Xylenes consist of three isomers, two of which co-elute. The Xylene RL is for a single peak.

Comments:	

QUALIFIERS and DEFINITIONS:

E = Extrapolated value. Value exceeds calibration range.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

J = Indicates an estimated value when the compound is detected, but is below the Reporting Limit.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

PID = Photoionization detector.

FID = Flame ionization detector.

TVH = Total Volatile Hydrocarbons.

Annroyed

Methods 602/8020 and 5030/8015 Modified Data Report

Client Sample Number

: ST24-MPL

Client Project Number

729691.32010

Lab Sample Number

: 96-4081-03

Lab Work Order

96-4081

Date Sampled

: 11/18/96

Matrix

WATER

Date Received

: 11/19/96

Lab File Number(s)

TVB21120009

Date Prepared

: 11/20/96

Method Blank

MB2112096

FID Dilution Factor

: 1.0

PID Dilution Factor : 1.0

		Analysis	Sample		
Compound Name	Cas Number	Date	Concentration	RL	Units
TVH-Gasoline		11/20/96	0.4	0.1	mg/L
Benzene	71-43-2	11/20/96	15	0.4	ug/L
Toluene	108-88-3	11/20/96	1.5	0.4	ug/L
Chlorobenzene	108-90-7	11/20/96	U	0.4	ug/L
Ethyl Benzene	100-41-4	11/20/96	2.5	0.4	ug/L
Total Xylenes (m,p,o)	1330-20-7	11/20/96	3.2	0.4	ug/L
1,3,5-Trimethylbenzene	108-67-8	11/20/96	U	0.4	ug/L
1,2,4-Trimethylbenzene	95-63-6	11/20/96	U		ug/L
1,2,3-Trimethylbenzene	526-73-8	11/20/96	7.7	0.4	ug/L
1,2,3,4-Tetramethylbenzene	488-23-3	11/20/96	26	0.5	ug/L
Surrogate Recovery:		121%		70%-126%	(Limits)
Surrogate Recovery:		115%		76%-127%	(Limits)

Notes: Total Xylenes consist of three isomers, two of which co-elute. The Xylene RL is for a single peak.

Comments:			
		·	

QUALIFIERS and DEFINITIONS:

- E = Extrapolated value. Value exceeds calibration range.
- U = Compound analyzed for, but not detected.
- B = Compound also found in the blank.
- J = Indicates an estimated value when the compound is detected, but is below the Reporting Limit.
- RL = Reporting Limit.
- NA = Not Available/Not Applicable.
- **PID** = Photoionization detector.
- FID = Flame ionization detector.
- = Total Volatile Hydrocarbons.

Methods 602/8020 and 5030/8015 Modified Data Report

Client Sample Number : ST24-MPJ

Client Project Number

729691.32010

Lab Sample Number

: 96-4081-07

Lab Work Order

96-4081

Date Sampled

: 11/18/96

Matrix

WATER

Date Received Date Prepared

: 11/19/96

Lab File Number(s)

TVB21120012

: 11/20/96

Method Blank

MB2112096

FID Dilution Factor

: 1.0

PID Dilution Factor : 1.0

		Analysis	Sample		
Compound Name	Cas Number	Date	Concentration	RL	Units
TVH-Gasoline	****	11/20/96	U	0.1	mg/L
Benzene	71-43-2	11/20/96	U	0.4	ug/L
Toluene	108-88-3	11/20/96	U	0.4	ug/L
Chlorobenzene	108-90-7	11/20/96	U	0.4	ug/L
Ethyl Benzene	100-41-4	11/20/96	U	0.4	ug/L
Total Xylenes (m,p,o)	1330-20-7	11/20/96	Ü	0.4	ug/L
1,3,5-Trimethylbenzene	108-67-8	11/20/96	Ü	0.4	ug/L
1,2,4-Trimethylbenzene	95-63-6	11/20/96	U	0.4	ug/L
1,2,3-Trimethylbenzene	526-73-8	11/20/96	U	0.4	ug/L
1,2,3,4-Tetramethylbenzene	488-23-3	11/20/96	U	0.5	ug/L
FID Surrogate Recovery:		100%		70%-126%	(Li)
PID Surrogate Recovery:		108%		76%-127%	(Limits)

Notes: Total Xylenes consist of three isomers, two of which co-elute. The Xylene RL is for a single peak.

Comments:	

QUALIFIERS and DEFINITIONS:

E = Extrapolated value. Value exceeds calibration range.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

J = Indicates an estimated value when the compound is detected, but is below the Reporting Limit.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

PID = Photoionization detector.

FID = Flame ionization detector.

TVH = Total Volatile Hydrocarbons.

TVBXWS2P;TV24081P.XLS; 11/25/96; 8

TOTAL VOLATILE HYDROCARBONS (TVH as Gasoline) Laboratory Control Sample (LCS)

LCS Number Date Prepared	: LCS2112096-GAS : 11/20/96	Matrix Method Numbers	: WATER : EPA 5030/80	015 Modified
Date Analyzed Lab File Number(s)	: 11/20/96 : TVB21120003	Instrument Name	: TVHBTEX2	
Compound Name	Theoretical Concentration (mg/L)	LCS Concentration (mg/L)	LCS % Recovery	QC Limit
Gasoline	2.00	2.16	107.8	81 - 128
Surrogate Recovery:		116%		70 - 126

QUALIFIERS

B = TVH as Gasoline found in blank also.

E = Extrapolated value. Value exceeds calibration range.

NA = Not Available/Not Applicable.

•• = Limits established 10/1/96 for TVHBTEX2. MAB

EPA 602/8020 Data Report **Laboratory Control Sample (LCS)**

LCS Number : LCS2112096-BTEX Date Extracted/Prepared : 11/20/96 Date Analyzed : 11/20/96 Spike Amount (ug/L) : 20.0

Dilution Factor 1.00 Method 602/8020

Matrix Water

Lab File No. TVB21120004

Compound Name Benzene	Cas Number 71-43-2	LCS Concentration (ug/L)	LCS % Recovery	QC Limit** % Recovery
Toluene	108-88-3	21.4	107.0 103.5	75 - 116 75 - 118
Chlorobenzene	108-90-7	19.0	95.0	73 - 115
Ethyl Benzene	100-41-4	20.4	102.0	80 - 122
m,p-Xylene	108-38-3 106-42-3	39.2	98.0	76 - 120
o-Xylene	95-47-6	20.6	103.0	76 -
MTBE	1634-04-4	20.8	104.0	75 - 115
1,3,5-Trimethylbenzene	108-67-8	20.3	101.5	64 - 118
1,2,4-Trimethylbenzene	95-63-6	18.6	93.0	75 - 111
1,2,3-Trimethylbenzene	526-73-8	23.3	116.5	82 - 127
1,2,3,4-Tetramethylbenzene	488-23-3	21.1	105.5	72 - 131
Surrogate Recovery:		103%		76 - 127

NOTES:

m,p-xylene = 40.0 ppb spike.

QUALIFIERS:

E = Extrapolated value. Value exceeds that of the calibration range.

U = Compound analyzed for, but not detected.

B = Compound found in blank and sample. Compare blank and sample data.

NA = Not available/Not analyzed.

** = Limits established 10/1/96 for TVHBTEX2. MAB

TOTAL VOLATILE HYDROCARBONS (TVH as Gasoline) Laboratory Control Sample (LCS)

LCS Number : LCS2112196-GAS Date Prepared : 11/21/96 Date Analyzed : 11/21/96 Lab File Number(s) : TVB21120049		Matrix Method Numbers Instrument Name	: WATER : EPA 5030/8015 Modified : TVHBTEX2	
Compound Name	Theoretical Concentration (mg/L)	LCS Concentration (mg/L)	LCS % Recovery	QC Limit
Gasoline	2.00	2.25	112.7	81 - 128
Surrogate Recovery:		112%		70 - 126

QUALIFIERS

B = TVH as Gasoline found in blank also.

E = Extrapolated value. Value exceeds calibration range.

NA = Not Available/Not Applicable.

** = Limits established 10/1/96 for TVHBTEX2. MAB

11 Millian
Analyst

K. Hollman

EPA 602/8020 Data Report **Laboratory Control Sample (LCS)**

: 20.0

LCS Number : LCS2112196-BTEX Date Extracted/Prepared : 11/21/96 Date Analyzed : 11/21/96 Spike Amount (ug/L)

Dilution Factor Method

1.00

Matrix

602/8020 Water

Lab File No.

TVB21120050

Compound Name	Cas Number	LCS Concentration	LCS %	QC Limit**
Benzene		(ug/L)	Recovery	% Recovery
	71-43-2	21.3	106.5	75 - 116
Toluene	108-88-3	20.4	102.0	75 - 118
Chlorobenzene	108-90-7	18.7	93.5	73 - 115
Ethyl Benzene	100-41-4	20.2	101.0	80 - 122
m,p-Xylene	108-38-3	38.8	97.0	76 100
	106-42-3		07.0	76 - 120
o-Xylene	95-47-6	20.4	102.0	76 - 1
MTBE	1634-04-4	20.2	101.0	75 - 115
1,3,5-Trimethylbenzene	108-67-8	19.9	99.5	64 - 118
1,2,4-Trimethylbenzene	95-63-6	18.4	92.0	75 - 111
1,2,3-Trimethylbenzene	526-73-8	22.8	114.0	82 - 127
1,2,3,4-Tetramethylbenzene	488-23-3	20.4	102.0	72 - 131
Surrogate Recovery:		101%		
		, ,		76 - 127

NOTES:

m,p-xylene = 40.0 ppb spike.

QUALIFIERS:

E = Extrapolated value. Value exceeds that of the calibration range.

U = Compound analyzed for, but not detected.

B = Compound found in blank and sample. Compare blank and sample data.

NA = Not available/Not analyzed.

= Limits established 10/1/96 for TVHBTEX2. MAB

TOTAL VOLATILE HYDROCARBONS (TVH as Gasoline) Laboratory Control Sample (LCS)

LCS Number Date Prepared Date Analyzed Lab File Number(s)	: LCS2112296-GAS : 11/22/96 : 11/22/96 : TVB21120076	Matrix Method Numbers Instrument Name	: WATER : EPA 5030/80 : TVHBTEX2	015 Modified
Compound Name	Theoretical Concentration (mg/L)	LCS Concentration (mg/L)	LCS % Recovery	QC Limit W Recovery
Gasoline	2.00	2.15	107.7	81 - 128
Surrogate Recovery:		118%		70 - 126

QUALIFIERS

B = TVH as Gasoline found in blank also.

E = Extrapolated value. Value exceeds calibration range.

NA = Not Available/Not Applicable.

** = Limits established 10/1/96 for TVHBTEX2. MAB

M. Welka

EPA 602/8020 Data Report Laboratory Control Sample (LCS)

 LCS Number
 : LCS2112296-BTEX

 Date Extracted/Prepared
 : 11/22/96

 Date Analyzed
 : 11/22/96

2/96 Method 2/96 Matrix

Spike Amount (ug/L) : 20.0

Dilution Factor : 1.00

Method : 602/8020 Matrix : Water

Lab File No. : TVB21120077

		LCS	LCS	
Compound Name	Cas	Concentration	%	QC Limit**
	Number	(ug/L)	Recovery	% Recovery
Benzene	71-43-2	21.0	105.0	75 - 116
Toluene	108-88-3	20.3	101.5	75 - 118
Chlorobenzene	108-90-7	18.6	93.0	73 - 115
Ethyl Benzene	100-41-4	20.0	100.0	80 - 122
m,p-Xylene	108-38-3	38.4	96.0	76 - 120
	106-42-3			
o-Xylene	95-47-6	20.2	101.0	76 - 1
MTBE	1634-04-4	20.3	101.5	75 - 115
1,3,5-Trimethylbenzene	108-67-8	19.8	99.0	64 - 118
1,2,4-Trimethylbenzene	95-63-6	18.3	91.5	75 - 111
1,2,3-Trimethylbenzene	526-73-8	22.7	113.5	82 - 127
1,2,3,4-Tetramethylbenzene	488-23-3	20.6	103.0	72 - 131
Surrogate Recovery:		100%		76 - 127

NOTES:

m,p-xylene = 40.0 ppb spike.

QUALIFIERS:

E = Extrapolated value. Value exceeds that of the calibration range.

U = Compound analyzed for, but not detected.

B = Compound found in blank and sample. Compare blank and sample data.

NA = Not available/Not analyzed.

** = Limits established 10/1/96 for TVHBTEX2. MAB

Analyst

EPA 602/8020 Data Report Laboratory Control Sample (LCS)

LCS Number : LCS2112596-BTEX
Date Extracted/Prepared : 11/25/96

: 11/25/96

Spike Amount (ug/L) : 20.0

Date Analyzed

Dilution Factor

1.00

Method

602/8020

Matrix

Water

Lab File No.

TVB21125016

		LCS	LCS	
0	Cas	Concentration	%	QC Limit**
Compound Name	Number	(ug/L)	Recovery	% Recovery
Benzene	71-43-2	21.7	108.5	75 - 116
Toluene	108-88-3	20.8	104.0	75 - 118
Chlorobenzene	108-90-7	19.1	95.5	73 - 115
Ethyl Benzene	100-41-4	20.6	103.0	80 - 122
m,p-Xylene	108-38-3	39.5	98.8	76 - 120
	106-42-3			
o-Xvlene	95-47-6	20.8	104.0	76 - 118
IV	1634-04-4	20.0	100.0	75 - 115
1,3,5-Trimethylbenzene	108-67-8	21.0	105.0	64 - 118
1,2,4-Trimethylbenzene	95-63-6	18.7	93.5	75 - 111
1,2,3-Trimethylbenzene	526-73-8	23.2	116.0	82 - 127
1,2,3,4-Tetramethylbenzene	488-23-3	20.6	103.0	72 - 131
Surrogate Recovery:	···	99%		76 - 127

NOTES:

m,p-xylene = 40.0 ppb spike.

QUALIFIERS:

E = Extrapolated value. Value exceeds that of the calibration range.

U = Compound analyzed for, but not detected.

B = Compound found in blank and sample. Compare blank and sample data.

NA = Not available/Not analyzed.

imits established 10/1/96 for TVHBTEX2. MAB

Analyst

Approved

LCSBXWS2;LSB21125.XLS; 11/26/96

Method 8010 Chlorinated VOC's Method Blank Report

Method Blank

: RB112696

Client Project No.

729691.32010

Date Prepared

: 11/26/96

Lab Project No.

: 96-4081

Date Analyzed

: 11/26/96

Lab File No.

: HALL1126\005F0101

Compound	CAS#	Concentration (ug/L)	D1 (/1)
Vinyl Chloride	75-01-4	U U	RL(ug/L)
Chloroethane	75-00-3	ŭ	0.4
1,1-Dichloroethene	75-35-4	บั	0.4
Dichloromethane	75-09-2	Ü	0.4
trans-1,2-Dichloroethene	156-60-5	ŭ	0.4
1,1-Dichloroethane	75-34-3	- u	0.4
cis-1,2-Dichloroethene	156-59-4	ü	0.4
1,1,1-Trichforoethane	71-55-6	ŭ	0.4
Carbon Tetrachloride	56-23-5	Ü	0.4
Trichloroethene	79-01-6	Ü	0.4
1,1,2-Trichloroethane	79-00-5	Ŭ	0.4
Tetrachioroethene	127-18-4	Ü	0.4
1,1,1,2-Tetrachloroethane	79-00-5	Ŭ II	0.4
Chlorobenzene	108-90-7	Ŭ ·	0.4
1,1,2,2-Tetrachloroethane	79-34-5	Ŭ	0.42
2-Chlorotoluene	95-49-8	Ŭ	0.54
4-Chiorotoluene	106-49-8	Ü	
1,3-Dichlorobenzene	541-73-1	ŭ	
1,2-Dichlorobenzene	95-50-1	ŭ	0.4

Surrogate Recovery (1-Chloro-2-Fluoro-Benzene):

nalyst

84%

70% - 130% (QC limits)

QUALIFIERS:

U = Compound analyzed for, but not detected above the Reporting Limit.

B = Compound in blank and sample. Compare blank and sample data.

E = Extrapolated value. Concentration exceeds the upper limit of the calibration.

RL = Reporting Limit (at or above method detection limit).

NOTES:

Approved

HLW4081.XLS; 11/27/96

Method 601/8010 Chlorinated VOC's Method Blank Report

Method Blank

: RB112596

Client Project No.

: 729691.32010

Date Prepared

: 11/25/96

Lab Project No.

: 96-4081

Date Analyzed

: 11/25/96

Lab File No.

: HALL1125\004F0101

Compound	CAS#	Concentration (ug/L)	RL(ug/L)
Vinyl Chloride	75-01-4	U	0.4
Chloroethane	75-00-3	U	0.4
1,1-Dichloroethene	75-35-4	U	0.4
Dichloromethane	75-09-2	U	0.4
trans-1,2-Dichloroethene	156-60-5	Ü	0.4
1,1-Dichloroethane	75-34-3	U	0.4
cis-1,2-Dichloroethene	156-59-4	U	0.4
1,1,1-Trichloroethane	71-55-6	Ü	0.4
Carbon Tetrachloride	56-23-5	Ü	0.4
Trichloroethene	79-01 - 6	U	0.4
1,1,2-Trichloroethane	79-00-5	U	0.4
Tetrachloroethene	127-18-4	U	0.4
1,1,1,2-Tetrachloroethane	79-00-5	U	0.4
Chlorobenzene	108-90-7	Ū	0.42
1,1,2,2-Tetrachloroethane	79-34-5	Ü	0.54
2-Chlorotoluene	95-49-8	U	0.4
Chlorotoluene	106-49-8	Ũ	0.4
s-Dichlorobenzene	541-73-1	Ü	0.4
1,2-Dichlorobenzene	95-50-1	Ŭ	0.4

Surrogate Recovery (1-Chloro-2-Fluoro-Benzene):

85%

70% - 130% (QC limits)

QUALIFIERS:

U = Compound analyzed for, but not detected above the Reporting Limit.

B = Compound in blank and sample. Compare blank and sample data.

E = Extrapolated value. Concentration exceeds the upper limit of the calibration.

RL = Reporting Limit (at or above method detection limit).

NOTES:

Approved

HLW4081.XLS; 11/27/96

Method 601/8010 Chlorinated VOC's Sample Report

Client Sample No. : ST24-MPM Client Project No. : 729691.32010 Lab Sample No. : 96-4081-01 Lab Project No. : 96-4081

Date Sampled : 11/18/96 Matrix : Water

Date Prepared : 11/26/96 Method Blank : RB112696
Date Analyzed : 11/26/96 Dilution Factor : 10.0

Compound	CAS#	Concentration (ug/L)	RL (ug/L)
Vinyl Chloride	75-01-4	U	4
Chloroethane	75-00-3	Ü	Å
1,1-Dichloroethene	75-35-4	Ū	A
Dichloromethane	75-09-2	Ü	→
trans-1,2-Dichloroethene	156-60-5	Ü	4
1,1-Dichloroethane	75-34-3	U	<u>_</u>
cis-1,2-Dichloroethene	156-59-4	Ü	4
1,1,1-Trichloroethane	71-55-6	ŭ	
Carbon Tetrachloride	56-23-5	ŭ	4
Trichloroethene	79-01-6	ŭ	4
1,1,2-Trichloroethane	79-00-5	Ü	<u> </u>
Tetrachloroethene	127-18-4	Ü	4
1,1,1,2-Tetrachloroethane	79-00-5	Ü	4
Chlorobenzene	108-90-7	บ	4.2
1,1,2,2-Tetrachloroethane	79-34-5	Ü	5.4
2-Chlorotoluene	95-49-8	Ū	
4-Chlorotoluene	106-49-8	Ü	
1,3-Dichlorobenzene	541-73-1	บ	4
1,2-Dichlorobenzene	95-50-1	Ũ	4

QUALIFIERS:

U = Compound analyzed for, but not detected above the Reporting Limit.

B = Compound in blank and sample. Compare blank and sample data.

E = Extrapolated value. Concentration exceeds the upper limit of the calibration.

Approved
HLW4081.XLS; 11/27/96

Method 601/8010 Chlorinated VOC's Sample Report

Client Sample No. : ST24-MPL Client Project No. : 729691.32010

Date Prepared : 11/25/96 Method Blank : RB112596

Date Analyzed : 11/25/96 Dilution Factor : 1.0

Compound	CAS#	Concentration (ug/L)	RL (ug/L)
Vinyl Chloride	75-01-4	U	0.4
Chloroethane	75-00-3	U	0.4
1,1-Dichloroethene	75-35-4	U	0.4
Dichloromethane	75-09-2	U	0.4
trans-1,2-Dichloroethene	156-60-5	U	0.4
1,1-Dichloroethane	75-34-3	U	0.4
cis-1,2-Dichloroethene	156-59-4	Ú	0.4
1,1,1-Trichloroethane	71-55-6	Ü	0.4
Carbon Tetrachloride	56-23-5	Ū	0.4
Trichloroethene	79-01-6	Ü	0.4
1,1,2-Trichloroethane	79-00-5	Ü	0.4
Tetrachloroethene	127-18-4	U	0.4
1,1,1,2-Tetrachloroethane	79-00-5	U	0.4
Chlorobenzene	108-90-7	Ú	0.42
1,2,2-Tetrachloroethane	79-34-5	U	0.54
Chlorotoluene	95-49-8	U	0.4
Chlorotoluene	106-49-8	U	0.4
1,3-Dichlorobenzene	541-73-1	Ü	0.4
1,2-Dichlorobenzene	95-50-1	Ü	0.4

Surrogate Recovery (1-Chloro-2-Fluoro-Benzene):	77%	70% - 130% (QC limits)
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	70 % - 130 % (QC minus)

QUALIFIERS:

U = Compound analyzed for, but not detected above the Reporting Limit.

B = Compound in blank and sample. Compare blank and sample data.

E = Extrapolated value. Concentration exceeds the upper limit of the calibration.

NOTES:	
Analyst	Approved HLW4081.XLS; 11/27/96

Method 601/8010 Chlorinated VOC's Sample Report

Client Sample No. : ST24-MPJ Client Project No. : 729691.32010
Lab Sample No. : 96-4081-07 Lab Project No. : 96-4081

Lab Sample No. : 96-4081-07 Lab Project No. : 96-4081

Date Sampled : 11/18/96 Matrix : Water

Date Prepared : 11/26/96 Method Blank : RB112696
Date Analyzed : 11/26/96 Dilution Factor : 1.0

Compound CAS# Concentration (ug/L) RL (ug/L) Vinyl Chloride 75-01-4 0.4 Chloroethane 75-00-3 U 0.4 1,1-Dichloroethene 75-35-4 U 0.4 Dichloromethane 75-09-2 U 0.4 trans-1,2-Dichloroethene 156-60-5 U 0.4 1,1-Dichloroethane 75-34-3 U 0.4 cis-1,2-Dichloroethene 156-59-4 U 0.4 1,1,1-Trichloroethane 71-55-6 U 0.4 Carbon Tetrachloride 56-23-5 U 0.4 **Trichloroethene** 79-01-6 U 0.4 1,1,2-Trichloroethane 79-00-5 Ū 0.4 Tetrachioroethene 127-18-4 U 0.4 1.1.1.2-Tetrachloroethane 79-00-5 U 0.4 Chlorobenzene 108-90-7 U 0.42 1,1,2,2-Tetrachloroethane 79-34-5 U 2-Chlorotoluene 95-49-8 Ū 4-Chlorotoluene 106-49-8 U 1,3-Dichlorobenzene 541-73-1 U 0.4 1,2-Dichlorobenzene 95-50-1 U 0.4

Surrogate Recovery	(1-Chloro-2-Fluoro-Benzene):	81%	70% - 130% (QC limits)	

QUALIFIERS:

U = Compound analyzed for, but not detected above the Reporting Limit.

B = Compound in blank and sample. Compare blank and sample data.

E = Extrapolated value. Concentration exceeds the upper limit of the calibration.

NOTES:	
<u> </u>	
Adalyst	Approved HLW4081.XLS; 11/27/96

Method 601/8010 Chlorinated VOC's Sample Report

Client Sample No. : ST24 Field Blank Client Project No. : 729691.32010

Lab Sample No. : 96-4081-09 Lab Project No. 96-4081 **Date Sampled** : 11/18/96 Matrix : Water

Date Received : 11/19/96 Lab File No. : HALL1126\012F0101 Date Prepared

: 11/26/96 Method Blank : RB112696 Date Analyzed

: 11/26/96 **Dilution Factor** : 1.0

Compound	CAS#	Concentration (ug/L)	RL (ug/L)
Vinyl Chloride	75-01-4	U	0.4
Chloroethane	75-00-3	Ü	0.4
1,1-Dichloroethene	75-35-4	ŭ	0.4
Dichloromethane	75-09-2	ŭ	0.4
trans-1,2-Dichloroethene	156-60-5	Ü	0.4
1,1-Dichloroethane	75-34-3	Ü	0.4
cis-1,2-Dichloroethene	156-59-4	Ŭ	0.4
1,1,1-Trichloroethane	71-55-6	Ū	0.4
Carbon Tetrachloride	56-23-5	Ŭ	0.4
Trichloroethene	79-01-6	Ü	0.4
1,1,2-Trichloroethane	79-00-5	U	0.4
Tetrachloroethene	127-18-4	Ū	0.4
1,1,1,2-Tetrachloroethane	79-00-5	Ü	0.4
Chlorobenzene	108-90-7	Ü	0.42
1,2,2-Tetrachloroethane	79-34-5	Ü	0.54
plorotoluene	95-49-8	U	0.4
hlorotoluene	106-49-8	Ü	0.4
1,3-Dichlorobenzene	541-73-1	บั	0.4
1,2-Dichlorobenzene	95-50-1	Ü	0.4

Surrogate Recovery	(1-Chloro-2-Fluoro-Benzene):	79%	70% - 130% (QC limits)

QUALIFIERS:

U = Compound analyzed for, but not detected above the Reporting Limit.

B = Compound in blank and sample. Compare blank and sample data.

E = Extrapolated value. Concentration exceeds the upper limit of the calibration.

The reporting Limit (at or above method detection limit).	7	
NOTES:		
Artalyst	Approved	LI WARREN
/ <i>//</i> ////	V	HLW4081.XLS; 11/27/96

Method 601/8010 Chlorinated VOC's Sample Report

Client Sample No. : Trip Blank Client Project No. : 729691.32010

Date Prepared : 11/26/96 Method Blank : RB112696

Date Analyzed : 11/26/96 Dilution Factor : 1.0

Compound	CAS#	Concentration (ug/L)	RL (ug/L)
Vinyl Chloride	75-01-4	U	0.4
Chloroethane	75-00-3	ŭ	0.4
1,1-Dichloroethene	75-35-4	Ü	0.4
Dichloromethane	75-09-2	Ü	0.4
trans-1,2-Dichloroethene	156-60-5	Ü	0.4
1,1-Dichloroethane	75-34-3	ii -	0.4
cis-1,2-Dichloroethene	156-59-4	ij	0.4
1,1,1-Trichloroethane	71-55-6	ü	
Carbon Tetrachloride	56-23-5	Ŭ	0.4
Trichloroethene	79-01-6	Ŭ	0.4 0.4
1,1,2-Trichloroethane	79-00-5	Ŭ	0.4
Tetrachloroethene	127-18-4	ŭ	0.4
1,1,1,2-Tetrachloroethane	79-00-5	ŭ	0.4
Chlorobenzene	108-90-7	ŭ	0.42
1,1,2,2-Tetrachloroethane	79-34-5	Ü	0.42
2-Chlorotoluene	95-49-8	Ü	<u> </u>
4-Chlorotoluene	106-49-8	ŭ	
1,3-Dichlorobenzene	541-73-1	ŭ	0.4
1,2-Dichlorobenzene	95-50-1	ŭ	0.4

Surrogate Recovery	(1-Chloro-2-Fluoro-Benzene):	80%	70% - 130% (QC limits)

QUALIFIERS:

U = Compound analyzed for, but not detected above the Reporting Limit.

B = Compound in blank and sample. Compare blank and sample data.

E = Extrapolated value. Concentration exceeds the upper limit of the calibration.

NOTES:	
Charles and the control of the contr	M
/ Analyst	Approved
	HLW4081,XLS; 11/27/96

Date Performed: 11/25/96

Reference Standard: V832

Control Spike Spike 18.990 19.126		-	•	<u></u>	•	•	:		•					1			
M Blank Septest of Spike Dup. Spike Amt RPD Sample Dup # Control # Cont			Method	Sample	Sample	Spike	Control	Spike		ຮູ	vike Recov	reries			QC Rec	overy F	lange
w 13.54 13.727 18.990 20.0 1.4 68% 69% 69% 28 - 163 5.60 - 100 sine * 16.201 14.949 19.128 20.0 6.4 82% 77% 96% 28 - 167 5.60 - 107 sine * 16.201 14.949 19.128 20.0 6.4 82% 77% 102% 28 - 167 5.60 - 107 roethene * 17.623 18.424 20.03 20.0 6.4 82% 77% 102% 28 - 167 5.60 - 50 sthene * 18.842 22.034 20.0 0.9 94% 95% 11% 41 - 132 5.60 - 162 5.00 - 10 thane * 18.842 22.18 20.0 0.4 100% 95% 47 - 132 5.60 - 10 thane * 18.947 22.183 22.183 20.0 0.4 100% 91% 41 - 138 5.60 - 10 thane * 20.015		Σ	Blank	96-4081-04	Spike	Dup.	Spike	Amt	RPD	Sample		'			•	_	
* 16.201 14.949 19.126 20.0 6.4 82% 77% 96% 46 - 137 9.20 - 167 e 1 (6.473) 15.459 20.419 20.0 6.4 82% 77% 102% 26 - 167 5.60 - 167 e 1 (6.473) 15.459 20.419 20.0 6.4 82% 77% 100% 25 - 162 5.60 - 167 roethene * 17.623 18.424 20.03 2.0 0.9 94% 93% 117% 38 - 155 7.60 - 160 tine * 20.016 19.941 22.144 20.0 0.4 100% 93% 117% 47 - 132 9.0 tine * 20.016 19.941 22.144 20.0 0.4 100% 93% 47 - 132 9.0 1.0 tine * 19.93 18.549 22.148 20.0 0.4 100% 93% 41.14 47 - 132 9.0 tine * 20.017 <td>de</td> <td>*</td> <td></td> <td></td> <td>13.54</td> <td>13.727</td> <td>18.990</td> <td>20.0</td> <td>1.4</td> <td>%89</td> <td>%69</td> <td>956</td> <td>28</td> <td>2</td> <td></td> <td>5.6</td> <td>١.</td>	de	*			13.54	13.727	18.990	20.0	1.4	%89	%69	956	28	2		5.6	١.
ene * 16.473 15.459 20.419 20.0 6.4 82% 77% 102% 28 - 167 5.60 - ene 17.623 18.424 20.034 20.0 4.4 88% 92% 100% 25 - 162 5.00 - roethene * 20.188 19.596 23.784 20.0 3.0 101% 98% 119% 25 - 162 5.00 - rine * 20.188 19.596 23.784 20.0 0.9 94% 93% 107% 47 - 132 9.40 - sethene * 18.427 18.67 21.414 20.0 0.4 100% 107% 47 - 132 9.40 - order * 19.93 18.542 22.184 20.0 1.3 92% 113% 41 - 138 8.50 - order * 19.93 18.542 22.90 20.0 1.3 92% 113% 41 - 136 7.0 thane * 19.33 12.218	ле	•			16.201	14.949	19.126	20.0	8.0	81%	75%	96	28	4	•	9.20	•
e 17,623 18,424 20.034 20.0 4.4 88% 92% 100% 25 - 162 5.00 - 5.00 roethene * 20,188 19.596 23,784 20.0 3.0 101% 98% 119% 38 - 155 7.60 - 7.0 ine * 20,188 19.596 23,784 20.0 0.9 94% 93% 117% 47 - 132 5.00 - 7.0 ethene * 20,016 19.931 18.549 22.183 20.0 7.2 100% 93% 111% 41 - 138 8.20 - 3.0 oride * 18.477 18.239 22.183 20.0 1.3 92% 91% 41 - 138 8.20 - 3.0 oride * 18.477 18.239 22.183 20.0 1.3 92% 91% 41 - 138 8.20 - 3.0 oride * 18.333 17.822 22.540 20.0 3.1 92% 91% 41 - 13 42 - 13 42 - 13 than	oethene	•			16.473	15.459	20.419	20.0	6.4	82%	77%	102%	28	7		5.60	١.
roethene * 20.188 19.596 23.784 20.0 3.0 101% 98% 119% 38 - 155 7.60 - 7.0 ine * 18.842 18.67 21.414 20.0 0.9 94% 93% 117% 47 - 132 9.40 - 7.0 ethene * 20.016 19.941 22.183 20.0 7.2 100% 93% 111% 47 - 132 9.40 - 7.0 thane * 19.93 18.549 22.183 20.0 1.3 92% 91% 111% 41 - 138 8.20 - 7.0 oride * 20.011 20.481 20.0 1.3 92% 91% 41 - 138 8.20 - 7.0 ine * 20.011 20.481 20.0 0.4 105% 105% 113% 39 - 146 7.00 - 7.0 ine * 20.01 21.3 20.0 0.4 105% 105% 110% 11.0 11.0 11.0 11.0 11.0 11.0 1	thane	•			17.623	18.424	20.034	20.0	4.4	88%	85%	100	28	2		5.00	•
ine * 18.842 18.67 21.414 20.0 0.9 94% 93% 107% 47 - 132 9.40 - 1.0 ethene * 20.016 19.941 22.186 20.0 0.4 100% 100% 111% 41 - 138 8.20 thane * 19.93 18.549 22.183 20.0 7.2 100% 93% 111% 41 - 138 8.20 oride * 18.477 18.237 22.848 20.0 1.3 92% 91% 113% 41 - 138 8.20 oride * 20.117 20.487 22.890 20.0 1.8 101% 113% 41 - 138 8.20 thane * 20.914 21.006 22.570 20.0 0.4 105% 113% 23 - 146 7.00 ne 18.383 17.822 21.544 20.0 0.3 91% 90% 113% 28 - 162 5.20 - 16 118 91% 90%	chloroethene	•			20.188	19.596	23.784	20.0	3.0	101%	88%	119	20	8		7.60	
thane the the the the the the the the the th	oethane	٠			18.842	18.67	21.414	20.0	0.9	84%	83%	107%	26	4	•	9.40	•
thane * 19.93 18.549 22.183 20.0 7.2 100% 93% 111% 41 - 138 8.20 - 140 oride * 18.477 18.237 22.648 20.0 1.3 92% 91% 113% 43 - 143 8.60 - 1 hane w 20.117 20.487 22.990 20.0 1.8 101% 105% 115% 35 - 146 7.00 - 1 hane * 20.914 21.006 22.570 20.0 0.4 105% 105% 113% 35 - 146 7.00 - 1 noroethane * 18.142 18.093 20.455 20.0 0.3 91% 90% 102% 26 - 162 5.20 - 165 oroethane * 19.424 19.639 21.49 20.0 1.1 97% 98% 110% 1 - 150 0.16 - 162 oroethane * 18.947 17.594 19.676 20.0 1.4 95% 88% 110% 1 - 150 0.16 -	iloroethene	*			20.016	19.941	22.188	20.0	4.0	100%	100%	1119	26		•	_	
oride * 18.477 18.237 22.648 20.0 1.3 92% 91% 113% 43 - 143 8.60 - 3.0 thane w 20.117 20.487 22.990 20.0 1.8 101% 102% 115% 35 - 146 7.00 - 3.0 thane w 20.914 21.006 22.570 20.0 0.4 105% 105% 113% 39 - 136 7.80 - 105 ne * 18.383 17.822 21.544 20.0 0.3 91% 89% 108% 78 - 162 5.20 - 105 ncoethane * 18.142 18.093 21.544 20.0 1.1 97% 98% 110% 1 - 150 0.16 - 105 ncoethane * 19.424 19.639 21.48 20.0 14.3 128% 111% 12.5% 8 - 184 1.60 - 10 ncoethane * 18.947 17.594 19.676 20.0 7.4 95% 88% 101% 1.40 - 105	oroethane	٠			19.93	18.549	22.183	20.0	7.2	100%	83%	1119	26	4	•	8.20	
w 20.117 20.487 22.990 20.0 1.8 101% 102% 115% 35 - 146 7.00 - 7.80 thane w 20.914 21.006 22.570 20.0 0.4 105% 105% 113% 39 - 136 7.80 - 7.8 norethane * 18.142 18.093 20.455 20.0 0.1 92% 89% 110% 26 - 162 5.20 - 7.8 oroethane * 19.424 19.639 21.968 20.0 1.1 97% 88% 110% 1 - 150 0.16 - 7.8 oroethane * 19.424 19.639 20.0 14.3 128% 110% 1 - 150 0.16 - 160 oroethane * 18.947 17.594 19.676 20.0 7.4 95% 88% 98% 1.10% 1 - 150 0.16 - 160 cene * 17.606 17.619 20.0 2.4 89% 81% 93% 7 - 187 1.40 - 100 cene	rachloride	٠			18.477	18.237	22.648	20.0	1.3	85%	91%	1139	يو	4	٠	8.60	
thane w 20.914 21.006 22.570 20.0 0.4 105% 105% 113% 39 - 136 7.80 - 162 ne 1 18.383 17.822 21.544 20.0 3.1 92% 89% 108% 26 - 162 5.20 - 162 oroethane * 18.142 18.093 21.968 20.0 1.1 97% 98% 110% 1 - 150 0.16 - 162 oroethane * 19.424 19.639 21.968 20.0 14.3 128% 111% 12.5% 8 - 184 1.60 - 1 oroethane * 18.947 17.594 19.676 20.0 7.4 95% 88% 101% 1.60 - 16 oroethane * 17.606 17.619 20.176 20.0 0.1 88% 88% 101%	nene	3			20.117	20.487	22.990	20.0	1.8	101%	102%	1159	26	60	•	7.00	•
ne * 18.383 17.822 21.544 20.0 3.1 92% 89% 108% 26 - 162 5.20 - 50 oroethane * 18.142 18.093 20.455 20.0 0.3 91% 90% 102% oroethane * 19.424 19.639 21.968 20.0 11.1 97% 98% 110% 1 - 150 0.16 - 160 oroethane * 18.947 17.594 19.676 20.0 7.4 95% 88% 101% 1.60 - 1 e 17.888 17.47 18.673 20.0 0.1 88% 87% 93% 7 - 187 1.40 - 1 zene * 17.708 16.249 17.743 20.0 8.6 89% 81% 0 - 208 0.00	oroethane	3			20.914	21.006	22.570	20.0	0.4	105%	105%	1139	20	ñ	•	7.80	•
romoethane * 18.142 18.093 20.455 20.0 0.3 91% 90% 102% - - - proethane * 19.424 19.639 21.968 20.0 1.1 97% 98% 110% 1 - 150 0.16 - 1 proethane * 18.947 17.594 19.676 20.0 7.4 95% 88% 98% 1.60 1.60 - 1 sene * 17.606 17.619 20.176 20.0 0.1 88% 88% 101% - - zene * 17.888 17.47 18.673 20.0 2.4 89% 87% 93% 7 - 187 1.40 - 1 zene * 17.708 16.249 17.743 20.0 8.6 89% 81% 0 - 208 0.00 - 208 0.00 - 208 0.00 - 208 0.00 - 208 0.00 - 208 0.00 - 208 0.00 - 208 0.00 - 208 0.00 - 208 0.00 - 208 0.00 - 208 0.00 - 208 0.00 - 208<	ethene	٠			18.383	17.822	21.544	20.0	3.1	85%	88%	108%	9	7	٠	5.20	١.
* 19.424 19.639 21.968 20.0 1.1 97% 98% 110% 1 - 150 0.16 - 150 Droethane * 25.559 22.149 24.990 20.0 14.3 128% 111% 125% 8 - 184 1.60 - 1 * 18.947 17.594 19.676 20.0 7.4 95% 88% 98% zene * 17.606 17.619 20.176 20.0 0.1 88% 88% 101% zene * 17.888 17.47 18.673 20.0 2.4 89% 87% 93% 7 - 187 1.40 zene * 17.708 16.249 17.743 20.0 8.6 81% 81% 0 - 208 0.00 - 208 0.00 - 208 0.00 - 208 0.00 - 208 0.00 - 208 0.00 - 208 0.00 - 208 0.00 - 208 0.00 - 208 0.00 - 208 0.00 - 208 0.00 - 208 0.00 - 208 0.00 - 208 0.00 - 208 <t< td=""><td>achloroethane</td><td>•</td><td></td><td></td><td>18.142</td><td>18.093</td><td>20.455</td><td>20.0</td><td>0.3</td><td>91%</td><td>%06</td><td>1029</td><td>20</td><td></td><td>•</td><td></td><td></td></t<>	achloroethane	•			18.142	18.093	20.455	20.0	0.3	91%	%06	1029	20		•		
Procethane * 25.559 22.149 24.990 20.0 14.3 128% 111% 125% 8 - 184 1.60 * 18.947 17.594 19.676 20.0 7.4 95% 88% 98% 88. 101% - zene * 17.606 17.619 20.176 20.0 0.1 88% 88% 101% - - zene * 17.888 17.47 18.673 20.0 8.6 89% 81% 93% 7 - 187 1.40 - 187 zene * 17.708 16.249 17.743 20.0 8.6 89% 81% 0 - 208 0.00 - 208	ene	*			19.424	19.639	21.968	20.0	1.1	826	%86	110%	26		•	0.16	١.
* 18.947 17.594 19.676 20.0 7.4 95% 88% 98% - - - sene * 17.606 17.619 20.176 20.0 0.1 88% 88% 101% - - - zene * 17.888 17.47 18.673 20.0 2.4 89% 87% 93% 7 - 187 1.40 - 1.0 zene * 17.708 16.249 17.743 20.0 8.6 89% 81% 89% 0 - 208 0.00 - 208	achloroethane	•			25.559	22.149	24.990	20.0	14.3	128%	111%	1259	20		•	1.60	•
zene * 17.606 17.619 20.176 20.0 0.1 88% 88% 101% - <td>nene</td> <td>•</td> <td></td> <td></td> <td>18.947</td> <td></td> <td>19.676</td> <td>20.0</td> <td>7.4</td> <td>85%</td> <td>88%</td> <td>989</td> <td>92</td> <td></td> <td></td> <td></td> <td></td>	nene	•			18.947		19.676	20.0	7.4	85%	88%	989	92				
* 17.888 17.47 18.673 20.0 2.4 89% 87% 93% 7 - 187 1.40 - 17.708 16.249 17.743 20.0 8.6 89% 81% 89% 0 - 208 0.00 -	euer	٠			17.606		20.178	20.0	0.1	. 88%	88%	1019	9				
• 17.708 16.249 17.743 20.0 8.6 89% 81% 89% 0 - 208 0.00 -	penzene	•			17.888	17.47	18.673	20.0	2.4	88%	87%	83%	9			1.40	•
	pbenzene	٠		٠		16.249	17.743	20.0	8.6	86%	81%	89%	9		•	0.0	١.

M = Applicable matrices. (* = Soil and Water. w = Water only.)

= Marks a spike recovery out of limits.

If recovery is outside method limit, marked with "".

If recovery is outside a guideline, marked with "~".

if the sample spike recovery is outside the limit and the control spike is outside the limit also, the control is marked with "**" or "~~".

Notes on recovery limits:

All spiked analytes must be detected even if low limit is 0.

For analytes not listed in the method, recovery limits of 50-150% will be used as guidelines until limits can be established.

Corrective Actions:

Unacceptable sample spike recovery requires acceptable control spike recovery. If both recoveries are outside limits, corrective action must be taken. One recovery outside limits and the other acceptable, is a warning. Repeated failure requires corrective action. Recoveries outside guidelines should be compared to historical data available to determine if corrective action is required.

PAR8010W.XLS; 11/27/96

Method 8010 Quality Control Samples

Date Performed: 11/26/96 ST \mathcal{H} -mA

Reference Standard: V832

		Method	Method Sample Sample	Sample	Snike	Control	Solle	_	_	1000		1	1
Analyte	7		1007 00	Chile		21110			,	ຼັ -	-		GC Recovery Range
22/12/20		Dialin	10-1004-00	Spire	ond.	Spike	Amt	RPD	Sample	# dna	Control #	1% - 1% H	Low - High
Vinyi Chlonde	≱			15.78	16.558	15.956	20.0	4.8	%62	83%	80%	1	ŀ
Chloroethane	•			17.185	17.476	17.587	20.0	1.7	88%	87%	88%	1	1
1,1-Dichloroethene	٠			18.4	18.015	18.007	20.0	2.1	82%	%08	806	۱ ۱	•
Dichloromethane	•			18.345	19.173	18.341	20.0	4.4	92%	%96 %	92%	٠ ١	•
trans-1,2-Dichloroethene	٠			21.581	22,357	21.922	20.0	3.5	108%	112%	110%	•	•
1,1-Dichloroethane	٠			19.744	19.895	18.017	20.0	0.8	%66	7,50	700	• •	•
cis-1,2-Dichloroethene	٠			20.032	20.368	20.178	20.0	1.4	100%	102%	101%	• •	8.40 - 20.40
1,1,1-Trichloroethane	•		0.131	21.94	21.457	18,110	20.0	2.2	109%	107%	2 2 2	44 - 438	00 00 00 00
Carbon Tetrachloride	•			20.22	19.616	17.849	20.0	3.0	101%	288	268	1	•
Trichloroethene	₹			21.084	21.439	18.588	200	17	105%	107%	03%	•	•
1,1,2-Trichlomethane	3			20.882	21.88	17.683	20.0	47	104%	100%	7000	•	•
Tetrachloroethene	•			19.699	19.867	18.052	200	8	086	7000	800	•	•
1,1,1,2-Tetrachloroethane	•			19.471	19.753	15.565	20.0	14	92%	7000	7867	701 - 07	5.20 - 32.40
Chlorobenzene	•			19.334	20.22	13.743	20.0	4.5	97%	101%	7009	4 - 460	. 20 00
1,1,2,2-Tetrachloroethane	•			22.397	22.913	18.730	20.0	23	112%	115%	84%	184	•
2-Chlorotoluene	•			18.282	18.755	13.096	20.0	2.6	91%	84%	65%	•	00.00
4-Chlorotoluene	•			17.969	18.363	11.033	20.0	2.2	%06	82%	55%		
1,3-Dichlorobenzene	*			17.034	18.515	8.943	20.0	8.3	85%	93%	45%	7 - 187	1 40 - 37 40
1,2-Dichlorobenzene	•			16.48	17.368	8.788	20.0	5.2	82%	87%	44%	0 - 208	. •

M = Applicable matrices. (* = Soil and Water. w = Water only.)

= Marks a spike recovery out of limits.

If recovery is outside method limit, marked with """.

If recovery is outside a guideline, marked with "~".

If the sample spike recovery is outside the limit and the control spike is outside the limit also, the control is marked with "*** or "~~".

Notes on recovery limits:

All spiked analytes must be detected even if low limit is 0.

For analytes not listed in the method, recovery limits of 50-150% will be used as guidelines until limits can be established.

Corrective Actions:

Unacceptable sample spike recovery requires acceptable control spike recovery. If both recoveries are outside limits, corrective action One recovery outside limits and the other acceptable, is a w tside guidelines should be compared to historical data avalia must be Recove

Repeated failure requires corrective action.
 determine if corrective action is required.

PAR8010W.XLS;

Methane Report Form Method Blank Report

Method Blank Number Date Extracted/Prepared : GB112296 : 11/22/96

Client Project No.

: 729691.32010

Date Analyzed

: 11/22/96

Lab Work Order **Dilution Factor**

: 96-4081

Method

: 1.00

: RSKSOP-175M

Matrix

: Water

Lab File No.

: GAS1122002

Sample Compound Name Cas Number Concentration RL mg/L mg/L **Methane** 74-82-8 U 0.002

Qualifiers

E = Extrapolated value.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

RL = Reporting Limit.

Mot Available/Not Applicable.

Methane Report Form

Client Sample Number	: ST24-MPM	Client Project No.	: 729691.32010
Lab Sample Number	: 96-4081-01	Lab Work Order	: 96-4081
Date Sampled	: 11/18/96	Dilution Factor	: 10.00
Date Received	: 11/19/96	Method	: RSKSOP-175M
Date Extracted/Prepared	: 11/22/96	Matrix	: Water
Date Analyzed	: 11/22/96	Lab File No.	: GAS1122022

Compound Name	Cas Number	Sample Concentration mg/L	RL mg/L
Methane	74-82-8	0.16	0.02

Temperature Amount Injected Total Volume of Sample Head space created Methane Area		70.6 F 0.05 ml 43 ml 4 ml 89.296 ug	Saturation Concentration Concentration in Head Space	Meth Meth	0.038
Atomic weight(Methane)	:	16 g			

Qualifiers

E = Extrapolated value.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

Analyst

K. Hellman
Approved

Client Sample Number : ST24-MPL
Lab Sample Number : 96-4081-03
Date Sampled : 11/18/96
Date Received : 11/19/96

Date Extracted/Prepared : 11/22/96
Date Analyzed : 11/22/96

4081-03 Lab Work Order 118/96 Dilution Factor 119/96 Method

Matrix
Lab File No.

Client Project No.

: 10.00 : RSKSOP-175M

: 729691.32010

: 96-4081

: Water

: GAS1122024

Compound Name	Cas Number	Sample Concentration mg/L	RL mg/L
Methane	74-82-8	0.33	0.02

rature	:	69 F	Saturation	Meth	0.080086849
Amount Injected	: -	0.05 ml	Concentration		
Total Volume of Sample	: -	43 ml	Concentration	Meth	0.25376866
Head space created	:	4 ml	in Head Space		
Methane Area	: _	186.238 ug			

Atomic weight(Methane) : _____ g

Qualifiers

E = Extrapolated value.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

RL = Reporting Limit.

NA_Not Available/Not Applicable.

Analyst

K. Hellman

Methane Report Form

Client Sample Number Lab Sample Number Date Sampled Date Received Date Extracted/Prepared Date Analyzed	: ST24-MPJ	Client Project No.	: 729691.32010
	: 96-4081-07	Lab Work Order	: 96-4081
	: 11/18/96	Dilution Factor	: 1.00
	: 11/19/96	Method	: RSKSOP-175M
	: 11/22/96	Matrix	: Water
	: 11/22/96	Lab File No.	: GAS1122027

Compound Name	Cas Number	Sample Concentration mg/L	RL mg/L
Methane	74-82-8	0.014	0.002

Temperature Amount Injected Total Volume of Sample Head space created Methane Area	:	69.1 F 0.5 ml 43 ml 4 ml 77.913 ug	Saturation Concentration Concentration in Head Space	Meth Meth	0.00.4
Atomic weight(Methane)	:	16 g			

16 g

Qualifiers

E = Extrapolated value.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

Evergreen Analytical, Inc. 4036 Youngfield, Wheat Ridge, CO 80033 (303) 425-6021

RSKSOP-175M Gas Method Methane LCS Report Form

LCS No.

: LCS112296

EPA Method No.

: RSKSOP-175M

Date Prepared

: 11/22/96

Matrix

: Water

Date Analyzed

: 11/22/96

Method Blank

: GB112296

E.A. LCS Source No.

: 1886

Lab File No.

: GAS1122009

	Spike	Method Blank	LCS		QC
Compound	Added	Concentration	Concentration	LCS	Limits
	(ug)	(ug)	(ug)	%REC	%REC
Methane Gas	500	0	417	83	64-90

Spike Recovery:

out of (1) outside limits.

Note: The LCS was made by taking the sample and displacing 4ml of headspace with a 1% methane gas and shaking the VOA for 5 minutes. Then injecting 50 ul from the headspace into the GC resulting in a theoretical concentration of 500 ug.

Notes

* = Values outside of QC limits.

NA = Not analyzed/not available.

Analyst

Annroyed

LCS1122.XLS; 11/25/96

4036 Youngfield St. Wheat Ridge, CO 80033 (303) 425-6021

Anion Report

Client Project ID.	:	729691.32010
Lab Project Number	:	96-4081
Method	:	EPA 300.0
Detection Limit	:	0.25 mg/L
	Lab Project Number Method	Lab Project Number : Method :

Evergreen Sample #	Client Sample ID.	<u>Matrix</u>	<u>Chloride</u> mg/L	Dilution <u>Factor</u>
96-4081-01	ST24-MPM	Water	5.0	1
96-4081-01 Duplicate	ST24-MPM Duplicate	Water	5.1	1
96-4081-02	LF06-MPG	Water	3.3	1
96-4081-03	ST24-MPL	Water	4.0	1
96-4081-05	LF06-MPF(S)	Water	6.4	1
96-4081-07	ST24-MPJ	Water	3.4	1
96-4081-08	LF06-MPB	Water	2.8	1

Method Blank (11/19/96)

Water

< 0.25

1

Quality Assurance

	2	Spike Amount (mg/L)	Sample Result (mg/L)	Spike Result (mg/L)	% Recovery
96-4081-01	ST24-MPM Matrix Spike	10.0	5.0	14.0	90
96-4081-01	ST24-MPM Matrix Spike Dup	10.0	5.0	13.8	88

MS/MSD RPD

1.6

4036 Youngfield St. Wheat Ridge, CO 80033 (303) 425-6021

Anion Report

Date Sampled	: 11/18/96	Client Project ID.	729691.32010
Date Received	: 11/19/96	Lab Project Number	96-4081
Date Prepared	: 11/19/96	Method :	EPA 300.0
Date Analyzed	: 11/19/96	Detection Limit	: 0.076 mg/L

Evergreen Sample #	Client <u>Sample ID.</u>	<u>Matrix</u>	<u>Nitrite-N</u> mg/L	Dilution <u>Factor</u>
96-4081-01	ST24-MPM	Water	<0.076	1
96-4081-01 Duplicate	ST24-MPM Duplicate	Water	<0.076	1
96-4081-02	LF06-MPG	Water	<0.076	1
96-4081-03	ST24-MPL	Water	<0.076	1
96-4081-05	LF06-MPF(S)	Water	<0.076	· 1
96-4081-07	ST24-MPJ	Water	<0.076	1
96-4081-08	LF06-MPB	Water	<0.076	1

Method Blank

(11/19/96)

Water

< 0.076

1

Quality Assurance *

	<u>S</u> c	oike Amount (mg/L)	Sample Result (mg/L)	Spike Result (mg/L)	% Recovery
96-4081-01	ST24-MPM Matrix Spike	10.0	<0.25	9.3	93
96-4081-01	ST24-MPM Matrix Spike Dup	10.0	<0.25	9.3	93

MS/MSD RPD

= Quality assurance results reported as Nitrite (NO₂).

Har

Approved

0

4036 Youngfield St. Wheat Ridge, CO 80033 (303) 425-6021

Anion Report

Date Sampled	: 11/18/96	Client Project ID.	:	729691.32010
Date Received	: 11/19/96	Lab Project Number	:	96-4081
Date Prepared	: 11/19/96	Method	:	EPA 300.0
Date Analyzed	: 11/19/96	Detection Limit	:	0.056 mg/L

			· ·	
Evergreen Sample #	Client Sample ID.	<u>Matrix</u>	Nitrate-N mg/L	Dilution <u>Factor</u>
96-4081-01	ST24-MPM	Water	<0.056	1
96-4081-01 Duplicate	ST24-MPM Duplicate	Water	<0.056	1
96-4081-02	LF06-MPG	Water	<0.056	1
96-4081-03	ST24-MPL	Water	<0.056	1
96-4081-05	LF06-MPF(S)	Water	<0.056	1
96-4081-07	ST24-MPJ	Water	1.5	1
96-4081-08	LF06-MPB	Water	3.2	1

Method Blank

(11/19/96)

Water

< 0.056

1

Quality Assurance * ,

	<u>S</u> r	oike Amount (mg/L)	Sample Result (mg/L)	Spike Result (mg/L)	% Recovery
96-4081-01	ST24-MPM Matrix Spike	10.0	<0.25	9.0	90
96-4081-01	ST24-MPM Matrix Spike Dup	10.0	<0.25	9.0	90

MS/MSD RPD

0.7

* = Quality assurance results reported as Nitrate (NO₃).

Analyst

EVERGREEN ANALYTICAL, Inc.

4036 Youngfield St. Wheat Ridge, CO 80033 (303) 425-6021

Anion Report

Date Sampled	: 11/18/96	Client Project ID.	:	729691.32010
Date Received	: 11/19/96	Lab Project Number	:	96-4081
Date Prepared	: 11/19/96	Method	:	EPA 300.0
Date Analyzed	: 11/19/96	Detection Limit	:	0.25 mg/L

Evergreen Sample #	Client <u>Sample ID.</u>	<u>Matrix</u>	<u>Sulfate</u> mg/L	Dilution <u>Factor</u>
96-4081-01	ST24-MPM	Water	0.28	1
96-4081-01 Duplicate	ST24-MPM Duplicate	Water	0.28	1
96-4081-02	LF06-MPG	Water	8.8	1
96-4081-03	ST24-MPL	Water	· 3.5	1
96-4081-05	LF06-MPF(S)	Water	13.4	1
96-4081-07	ST24-MPJ	Water	4.0	1
96-4081-08	LF06-MPB	Water	48.9	10

Method Blank

(11/19/96)

Water

< 0.25

1

Quality Assurance

	<u>s</u>	Spike Amount (mg/L)	Sample Result (mg/L)	Spike Result (mg/L)	% Recovery
96-4081-01	ST24-MPM Matrix Spike	10.0	0.28	9.4	91
96-4081-01	ST24-MPM Matrix Spike Dup	0.10	0.28	9.3	90

MS/MSD RPD

1.4

/// Analyst

Approved

APPENDIX C ANALYTICAL MODEL OUTPUT

APPENDIX C-1 ANALYTICAL MODEL-NA, 8% SOURCE DECAY COEFFICIENT

Transient Solution to the Advective-Dispersive Equation for One-Dimensional Flow, Type Three Boundary Condition (46.5 mg/L source decaying at 8% per year, with a 0.08 day-1 solute decay coefficent, Constant Time, Variable Location)

Hydraulic conductivtiy

$$K := 17.71 \cdot \frac{m}{day}$$

Hydraulic gradient

$$\mathbf{I}:=\mathbf{0.01}\cdot\frac{\mathbf{ft}}{\mathbf{ft}}$$

Effective porosity

$$n_e := 0.3$$

Total porosity

$$n := 0.37$$

Longitudinal dispersivity

$$\alpha_x := 6 \cdot m$$

Concentration of Injected Contaminant

$$C_s := 46.5 \cdot \frac{mg}{liter}$$

Initial Dissolved Contaminant Concentration

$$C_0 := 0.\frac{mg}{liter}$$

Retardation Coefficient Calculation

Solute Decay Rate

$$\lambda := 0.08 \cdot \frac{1}{\text{day}}$$

Source Decay Rate

$$\gamma:=0.00022\cdot\frac{1}{day}$$

soil sorption coefficient (EPA, 1990)

$$K_{oc} := 79 \cdot \frac{mL}{gm}$$

Bulk density (Freeze and Cherry, 1979)

$$\rho_b := 1.65 \cdot \frac{gm}{cm^3}$$

Organic carbon content

Retardation coefficient

$$R := 1 + \frac{\rho b \cdot K oc \cdot f oc}{n}$$

$$R = 1.211$$

Groundwater Hydraulics Calculations

$$\mathbf{v}_{\mathbf{X}} := \frac{\mathbf{K} \cdot \mathbf{I}}{\mathbf{n}_{\mathbf{e}}}$$

$$v_x := \frac{K \cdot I}{n_e}$$
 $v_x = 0.59 \cdot \frac{m}{day}$

$$\mathbf{v}_{\mathbf{c}} := \frac{\mathbf{v}_{\mathbf{x}}}{\mathbf{R}}$$

$$v_c := \frac{v_x}{R}$$
 $v_c = 0.487 \cdot \frac{m}{day}$

$$D_x := \alpha_x \cdot v_x$$

$$D_{x} := \alpha_{x} \cdot v_{x}$$
 $D_{x} = 38.126 \cdot \frac{ft^{2}}{day}$

Present (4 years since source removal in 1993)

Initial Plume Distribution Calculation

t :=1460-day

$$\Delta x := 1 \cdot m$$

$$x_i := \Delta x \cdot j$$

For Retarded Flow with Biodegradation and a Decaying Source (van Genuchten and Alves, 1982)

$$C_{j} = C_{0} \exp(-\lambda \cdot t) \cdot \left[1 - \frac{1}{2} \cdot 1 - erf \frac{R \cdot x_{j} - v_{x} \cdot t}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}} - \frac{v_{x}^{2} \cdot t}{\pi \cdot D_{x} R} \cdot exp \left[- \frac{R \cdot x_{j} - v_{x} \cdot t}{4 \cdot D_{x} R \cdot t} \right] + \frac{1}{2} \cdot 1 + \frac{v_{x} \cdot x_{j}}{D_{x}} + \frac{v_{x}^{2} \cdot t}{D_{x} R} \cdot exp \frac{v_{x} \cdot x_{j}}{D_{x}} \cdot 1 - erf \frac{R \cdot x_{j} + v_{x} \cdot t}{2 \cdot \sqrt{D_{x} R \cdot t}} \right] \dots$$

$$+ C_{s} \cdot exp(-\gamma t) \cdot \left[\frac{v_{x}}{v_{x} + v_{x} \sqrt{1 + \frac{4 \cdot D_{x} R}{v_{x}^{2}} \cdot (\lambda - \gamma)}} \right] \cdot exp \left[\frac{v_{x} - v_{x} \sqrt{1 + \frac{4 \cdot D_{x} R}{v_{x}^{2}} \cdot (\lambda - \gamma)}}{2 \cdot D_{x}} \right] \cdot \left[1 - erf \left[\frac{R \cdot x_{j} - t \cdot \left[v_{x} \sqrt{1 + \frac{4 \cdot D_{x} R}{v_{x}^{2}} \cdot (\lambda - \gamma)} \right]}{2 \cdot \sqrt{D_{x} R \cdot t}} \right] \right] \dots$$

$$+ \left[\frac{v_{x}}{v_{x} - v_{x} \sqrt{1 + \frac{4 \cdot D_{x} R}{v_{x}^{2}} \cdot (\lambda - \gamma)}} \right] \cdot exp \left[\frac{\left[v_{x} + v_{x} \sqrt{1 + \frac{4 \cdot D_{x} R}{v_{x}^{2}} \cdot (\lambda - \gamma)} \right] \cdot x_{j}}{2 \cdot D_{x}} \right] \left[1 - erf \left[\frac{R \cdot x_{j} + t \cdot v_{x} \sqrt{1 + \frac{4 \cdot D_{x} R}{v_{x}^{2}} \cdot (\lambda - \gamma)}} {2 \cdot \sqrt{D_{x} R \cdot t}} \right] \right] \dots$$

$$+ \left[\frac{v_{x}}{v_{x} - v_{x} \sqrt{1 + \frac{4 \cdot D_{x} R}{v_{x}^{2}} \cdot (\lambda - \gamma)}} \right] \cdot exp \left[\frac{v_{x} \cdot v_{x} \sqrt{1 + \frac{4 \cdot D_{x} R}{v_{x}^{2}} \cdot (\lambda - \gamma)}} {2 \cdot D_{x} R \cdot t} \right] \cdot 1 - erf \left[\frac{R \cdot x_{j} + t \cdot v_{x} \sqrt{1 + \frac{4 \cdot D_{x} R}{v_{x}^{2}} \cdot (\lambda - \gamma)}} {2 \cdot \sqrt{D_{x} R \cdot t}} \right] \right] \dots$$

Dissolved BTEX (mg/L) Concentration versus Distance (m)

Dissolved BTEX (mg/L) Concentration versus Distance (m)

5 years from present (2002)

citial Plume Distribution Calculation

$$\begin{array}{ll} j := 0 .. \, 1000 & \qquad & t := 3285 \cdot day \\ \Delta x := 1 \cdot m & \qquad & \end{array}$$

 $x_i := \Delta x \cdot j$

For Retarded Flow with Biodegradation and a Decaying Source (van Genuchten and Alves, 1982)

$$C_{j} := C_{0} \cdot exp(-\lambda \cdot t) \cdot \left[1 - \frac{1}{2} \cdot 1 - erf \frac{R \cdot x_{j} - v_{x} \cdot t}{2 \cdot \sqrt{D_{x} R \cdot t}} - \frac{v_{x}^{2} \cdot t}{\pi \cdot D_{x} R} \cdot exp \left[- \frac{R \cdot x_{j} - v_{x} \cdot t}{4 \cdot D_{x} R \cdot t} \right] + \frac{1}{2} \cdot 1 + \frac{v_{x} \cdot x_{j}}{D_{x}} + \frac{v_{x}^{2} \cdot t}{D_{x} R} \cdot exp \frac{v_{x} \cdot x_{j}}{D_{x}} \cdot 1 - erf \frac{R \cdot x_{j} + v_{x} \cdot t}{2 \cdot \sqrt{D_{x} R \cdot t}} \right] \dots$$

$$+ C_{s} \cdot exp(-\gamma t) \cdot \left[- \frac{v_{x}}{v_{x} + v_{x} \cdot \sqrt{1 + \frac{4 \cdot D_{x} R}{v_{x}^{2}} \cdot (\lambda - \gamma)}} \right] \cdot exp \left[- \frac{v_{x} \cdot \sqrt{1 + \frac{4 \cdot D_{x} R}{v_{x}^{2}} \cdot (\lambda - \gamma)}}{2 \cdot D_{x}} \right] \cdot \left[1 - erf \left[\frac{R \cdot x_{j} - t \cdot \left[v_{x} \cdot \sqrt{1 + \frac{4 \cdot D_{x} R}{v_{x}^{2}} \cdot (\lambda - \gamma)} \right]}{2 \cdot \sqrt{D_{x} R \cdot t}} \right] \right] \dots$$

$$+ \left[- \frac{v_{x}}{v_{x} - v_{x} \cdot \sqrt{1 + \frac{4 \cdot D_{x} R}{v_{x}^{2}} \cdot (\lambda - \gamma)}} \right] \cdot exp \left[\frac{\left[v_{x} + v_{x} \cdot \sqrt{1 + \frac{4 \cdot D_{x} R}{v_{x}^{2}} \cdot (\lambda - \gamma)} \cdot x_{j}} \right]}{2 \cdot D_{x}} \right] \left[1 - erf \left[\frac{R \cdot x_{j} + t \cdot v_{x} \cdot \sqrt{1 + \frac{4 \cdot D_{x} R}{v_{x}^{2}} \cdot (\lambda - \gamma)}} {2 \cdot \sqrt{D_{x} R \cdot t}} \right] \right] \dots$$

$$+ \left[- \frac{v_{x}}{v_{x} - v_{x} \cdot \sqrt{1 + \frac{4 \cdot D_{x} R}{v_{x}^{2}} \cdot (\lambda - \gamma)}}} \right] \cdot exp \left[\frac{v_{x} + v_{x} \cdot \sqrt{1 + \frac{4 \cdot D_{x} R}{v_{x}^{2}} \cdot (\lambda - \gamma)}} {2 \cdot D_{x} \cdot D_{x} \cdot R \cdot t}} \right] - exp \left[- \frac{R \cdot x_{j} - v_{x} \cdot v_{x} \cdot \sqrt{1 + \frac{4 \cdot D_{x} R}{v_{x}^{2}} \cdot (\lambda - \gamma)}}}{2 \cdot D_{x} \cdot D_{x} \cdot R \cdot t}} \right] - exp \left[- \frac{R \cdot x_{j} - v_{x} \cdot v_{x} \cdot \sqrt{1 + \frac{4 \cdot D_{x} R}{v_{x}^{2}} \cdot (\lambda - \gamma)}}}{2 \cdot D_{x} \cdot R \cdot t}} \right] - exp \left[- \frac{R \cdot x_{j} - v_{x} \cdot v_{x} \cdot \sqrt{1 + \frac{4 \cdot D_{x} R}{v_{x}^{2}} \cdot (\lambda - \gamma)}}}{2 \cdot D_{x} \cdot R \cdot t}} \right] - exp \left[- \frac{R \cdot x_{j} - v_{x} \cdot v_{x} \cdot \sqrt{1 + \frac{4 \cdot D_{x} R}{v_{x}^{2}} \cdot (\lambda - \gamma)}}}{2 \cdot D_{x} \cdot R \cdot t}} \right] - exp \left[- \frac{R \cdot x_{j} - v_{x} \cdot v_{x} \cdot \sqrt{1 + \frac{4 \cdot D_{x} R}{v_{x}^{2}} \cdot (\lambda - \gamma)}}}{2 \cdot D_{x} \cdot R \cdot t}} \right] - exp \left[- \frac{R \cdot x_{j} - v_{x} \cdot v_{x} \cdot \sqrt{1 + \frac{4 \cdot D_{x} R}{v_{x}^{2}} \cdot (\lambda - \gamma)}}}{2 \cdot D_{x} \cdot R \cdot t} \right] - exp \left[- \frac{R \cdot x_{j} - v_{x} \cdot v_{x} \cdot \sqrt{1 + \frac{4 \cdot D_{x} R}{v_{x}^{2}} \cdot (\lambda - \gamma)}}}{2 \cdot D_{x} \cdot R \cdot t} \right] - exp \left[- \frac{R \cdot x_{j} - v_{x} \cdot v_{x} \cdot \sqrt{1 + \frac{4 \cdot D_{x} R}{v_{x}^{2}} \cdot (\lambda - \gamma)}}}{2 \cdot D_{x} \cdot R \cdot t} \right] - exp \left[- \frac{R \cdot x_{j} - v_{x} \cdot v$$

Dissolved BTEX (mg/L) Concentration versus Distance (m)

Dissolved BTEX (mg/L) Concentration versus Distance (m)

10 years from present (2007)

al Plume Distribution Calculation

t:=5110-day

$$\Delta x := 1 \cdot m$$

For Retarded Flow with Biodegradation and a Decaying Source (van Genuchten and Alves, 1982)

For Retarded Flow with Biodegradation and a Decaying Source (van Genuchten and Alves, 1982)
$$C_{j} := C_{0} \cdot \exp(-\lambda \cdot t) \cdot \left[1 - \frac{1}{2} \cdot 1 - \text{erf} \frac{R \cdot x_{j} - v_{x} \cdot t}{2 \cdot \sqrt{D_{x} R \cdot t}} - \frac{v_{x}^{2} \cdot t}{\pi \cdot D_{x} R} \cdot \exp\left[- \frac{R \cdot x_{j} - v_{x} \cdot t}{4 \cdot D_{x} R \cdot t} \right] + \frac{1}{2} \cdot 1 + \frac{v_{x} x_{j}}{D_{x}} + \frac{v_{x}^{2} \cdot t}{D_{x} R} \cdot \exp\left[\frac{v_{x} \cdot x_{j}}{D_{x}} \cdot 1 - \text{erf} \frac{R \cdot x_{j} + v_{x} \cdot t}{2 \cdot \sqrt{D_{x} R \cdot t}} \right] \dots$$

$$+ C_{s} \cdot \exp(-\gamma t) \cdot \left[\frac{v_{x}}{v_{x} + v_{x}} \sqrt{1 + \frac{4 \cdot D_{x} R}{v_{x}^{2}} \cdot (\lambda - \gamma)} \right] \cdot \exp\left[\frac{v_{x} - v_{x}}{2 \cdot D_{x}} \cdot \left(\frac{1 + \frac{4 \cdot D_{x} R}{v_{x}^{2}} \cdot (\lambda - \gamma)}{2 \cdot D_{x}} \right) \right] \cdot \left[1 - \text{erf} \left[\frac{R \cdot x_{j} - t \cdot \left[v_{x} \cdot \sqrt{1 + \frac{4 \cdot D_{x} R}{v_{x}^{2}} \cdot (\lambda - \gamma)} \right]}{2 \cdot \sqrt{D_{x} R \cdot t}} \right] \right] \dots$$

$$+ \left[\frac{v_{x}}{v_{x} - v_{x}} \sqrt{1 + \frac{4 \cdot D_{x} R}{v_{x}^{2}} \cdot (\lambda - \gamma)} \right] \cdot \exp\left[\frac{v_{x} \cdot v_{x}}{2 \cdot D_{x}} \cdot \left(\frac{1 + \frac{4 \cdot D_{x} R}{v_{x}^{2}} \cdot (\lambda - \gamma)}{2 \cdot D_{x} R \cdot t}} \right] \right] \dots$$

$$+ \left[\frac{v_{x}}{v_{x} - v_{x}} \sqrt{1 + \frac{4 \cdot D_{x} R}{v_{x}^{2}} \cdot (\lambda - \gamma)}} \right] \cdot \exp\left[\frac{v_{x} \cdot v_{x}}{D_{x} - (\lambda - \gamma) \cdot t} \right] \cdot 1 - \text{erf} \left[\frac{R \cdot x_{j} + v_{x} \cdot t}{v_{x}^{2}} \cdot \left(\frac{1 - v_{x}}{v_{x}^{2}} \cdot (\lambda - \gamma)} \right] \right] \dots$$

Dissolved BTEX (mg/L) Concentration versus Distance (m)

Dissolved BTEX (mg/L) Concentration versus Distance (m)

15 years from present (2012)

nitial Plume Distribution Calculation

t:=6935.day

$$\Delta x := 1 \cdot m$$

$$x_i := \Delta x \cdot j$$

For Retarded Flow with Biodegradation and a Decaying Source (van Genuchten and Alves, 1982)

For Retarded Flow with Biodegradation and a Decaying Source (van Genuchten and Alves, 1982)
$$C_{j} := C_{0} \cdot \exp(-\lambda \cdot t) \cdot \left[1 - \frac{1}{2} \cdot 1 - \text{erf} \frac{R \cdot x_{j} - v_{x} \cdot t}{2 \cdot \sqrt{D_{x} R \cdot t}} - \frac{v_{x}^{2} \cdot t}{\pi \cdot D_{x} R} \cdot \exp\left[- \frac{R \cdot x_{j} - v_{x} \cdot t}{4 \cdot D_{x} R \cdot t} \right] + \frac{1}{2} \cdot 1 + \frac{v_{x} x_{j}}{D_{x}} + \frac{v_{x}^{2} \cdot t}{D_{x} R} \cdot \exp\left[\frac{v_{x} x_{j}}{D_{x}} \cdot 1 - \text{erf} \frac{R \cdot x_{j} + v_{x} \cdot t}{2 \cdot \sqrt{D_{x} R \cdot t}} \right] \dots \right]$$

$$+ C_{s} \cdot \exp(-\gamma \cdot t) \cdot \left[\frac{v_{x}}{v_{x} + v_{x}} \sqrt{1 + \frac{4 \cdot D_{x} R}{v_{x}^{2}} \cdot (\lambda - \gamma)}} {v_{x}} \cdot \exp\left[\frac{v_{x} - v_{x}}{v_{x}} \sqrt{1 + \frac{4 \cdot D_{x} R}{v_{x}^{2}} \cdot (\lambda - \gamma)}} {2 \cdot D_{x}} \right] \cdot \exp\left[\frac{v_{x} - v_{x}}{v_{x}} \sqrt{1 + \frac{4 \cdot D_{x} R}{v_{x}^{2}} \cdot (\lambda - \gamma)}} {2 \cdot D_{x}} \right] \cdot \left[1 - \text{erf} \left[\frac{R \cdot x_{j} - t}{v_{x}} \sqrt{1 + \frac{4 \cdot D_{x} R}{v_{x}^{2}} \cdot (\lambda - \gamma)}} {2 \cdot \sqrt{D_{x} R \cdot t}} \right] \right] \dots \right]$$

$$+ \left[\frac{v_{x}}{v_{x} - v_{x}} \sqrt{1 + \frac{4 \cdot D_{x} R}{v_{x}^{2}} \cdot (\lambda - \gamma)}} {v_{x}} \right] \cdot \left[1 - \text{erf} \left[\frac{R \cdot x_{j} + t \cdot v_{x}}{v_{x}} \sqrt{1 + \frac{4 \cdot D_{x} R}{v_{x}^{2}} \cdot (\lambda - \gamma)}} {2 \cdot \sqrt{D_{x} R \cdot t}}} \right] \right] \dots \right]$$

Dissolved BTEX (mg/L) Concentration versus Distance (m)

Dissolved BTEX (mg/L) Concentration versus Distance (m)

20 years from present (2017)

Initial Plume Distribution Calculation

t:=8760-day

$$\Delta x := 1 \cdot m$$

$$x_i := \Delta x \cdot j$$

For Retarded Flow with Biodegradation and a Decaying Source (van Genuchten and Alves, 1982)

$$\begin{aligned} & C_{j} := & C_{0} \cdot exp(-\lambda \cdot t) \cdot \left[1 - \frac{1}{2} \cdot 1 - erf \, \frac{R \cdot x_{j} - v_{x} \cdot t}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}} \, - \, \frac{v_{x}^{2} \cdot t}{\pi \cdot D_{x} \cdot R} \cdot exp \left[- \frac{R \cdot x_{j} - v_{x} \cdot t}{4 \cdot D_{x} \cdot R \cdot t} \right] + \frac{1}{2} \cdot 1 + \frac{v_{x} \cdot x_{j}}{D_{x}} + \frac{v_{x}^{2} \cdot t}{D_{x} \cdot R} \cdot exp \, \frac{v_{x} \cdot x_{j}}{D_{x}} \cdot 1 - erf \, \frac{R \cdot x_{j} + v_{x} \cdot t}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}} \right] \dots \\ & + C_{s} \cdot exp(-\gamma \cdot t) \cdot \left[\frac{v_{x}}{v_{x} \cdot \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}} \right] \cdot exp \left[\frac{v_{x} - v_{x} \cdot \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)} \cdot x_{j}}{2 \cdot D_{x}} \right] \left[1 - erf \, \frac{R \cdot x_{j} - t \cdot \left[v_{x} \cdot \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)} \right]}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}} \right] \dots \\ & + \left[\frac{v_{x}}{v_{x} - v_{x} \cdot \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}} \right] \cdot exp \left[\frac{\left[v_{x} + v_{x} \cdot \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)} \right] \cdot x_{j}}{2 \cdot D_{x}} \right] \left[1 - erf \, \frac{\left[R \cdot x_{j} + t \cdot v_{x} \cdot \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)} \right]}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}}} \right] \dots \\ & + \left[\frac{v_{x}}{v_{x} - v_{x} \cdot \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}} \right] \cdot exp \left[\frac{\left[v_{x} + v_{x} \cdot \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)} \right] \cdot x_{j}}{2 \cdot D_{x} \cdot R \cdot t}} \right] \left[1 - erf \, \frac{\left[R \cdot x_{j} - t \cdot \left[v_{x} \cdot \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)} \right]} {2 \cdot \sqrt{D_{x} \cdot R \cdot t}}} \right] \dots \\ & + \left[\frac{v_{x}}{v_{x} - v_{x} \cdot \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}} \right] \cdot exp \left[\frac{\left[v_{x} + v_{x} \cdot \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)} \right] \cdot x_{j}}{2 \cdot D_{x} \cdot R \cdot t}} \right] \dots \\ & + \left[\frac{v_{x}}{v_{x} - v_{x} \cdot \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}} \right] \cdot exp \left[\frac{\left[v_{x} + v_{x} \cdot \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)} \right] \cdot x_{j}}{2 \cdot D_{x} \cdot R \cdot t}} \right] \dots \\ & + \left[\frac{v_{x}}{v_{x} - v_{x} \cdot \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}} \right] \cdot exp \left[\frac{v_{x}}{v_{x} - v_{x}^{2}} \cdot (\lambda - \gamma)} \right] \cdot x_{j} \cdot \left[\frac{v_{x}}{v_{x} - v_{x}^{2} \cdot (\lambda - \gamma)} \right] \cdot x_{j} \cdot \left[\frac{v_{x}}{v_{x} - v_{x}^{2} \cdot (\lambda - \gamma)} \right] \cdot x_{j} \cdot \left[\frac{v_{x}}{v_{x} - v_{x}^{2} \cdot (\lambda - \gamma)} \right] \cdot x_{j} \cdot \left[\frac{v_{x}}{v_{x} - v_{x}^{2} \cdot (\lambda - \gamma)} \right] \cdot$$

Dissolved BTEX (mg/L) Concentration versus Distance (m)

Dissolved BTEX (mg/L) Concentration versus Distance (m)

25 years from present (2022)

Initial Plume Distribution Calculation

t :=10585-day

$$\Delta x := 1 \cdot m$$

$$x_i := \Delta x \cdot j$$

For Retarded Flow with Biodegradation and a Decaying Source (van Genuchten and Alves, 1982)

$$\begin{aligned} & \text{C}_{j} = \text{C}_{0} \exp(-\lambda \cdot t) \cdot \left[1 - \frac{1}{2} \cdot 1 - \text{erf} \, \frac{R \cdot x_{j} - v_{x} \cdot t}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}} \, - \, \frac{v_{x}^{2} \cdot t}{\pi \cdot D_{x} \cdot R} \cdot \exp\left[- \frac{R \cdot x_{j} - v_{x} \cdot t}{4 \cdot D_{x} \cdot R \cdot t} \right] + \frac{1}{2} \cdot 1 + \frac{v_{x}^{2} \cdot t}{D_{x}} \cdot \exp\left[\frac{v_{x}^{2} \cdot t}{D_{x}^{2} \cdot R} \cdot \exp\left[\frac{R \cdot x_{j} - v_{x} \cdot t}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}} \right] + \frac{1}{2} \cdot 1 + \frac{v_{x}^{2} \cdot t}{D_{x}} \cdot \exp\left[\frac{v_{x}^{2} \cdot t}{D_{x}^{2} \cdot R} \cdot \exp\left[\frac{v_{x}^{2} \cdot t}{2 \cdot \sqrt{D_{x}^{2} \cdot R \cdot t}} \right] \right] + \\ & + \left[\frac{v_{x}}{v_{x} + v_{x}} \sqrt{1 + \frac{4 \cdot D_{x}^{2} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}} \right] \cdot \exp\left[\frac{\left[v_{x} + v_{x} \sqrt{1 + \frac{4 \cdot D_{x}^{2} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)} \right] \cdot x_{j}}{2 \cdot D_{x}} \right] \cdot \left[1 - \text{erf} \left[\frac{R \cdot x_{j} - t \left[v_{x} \cdot \sqrt{1 + \frac{4 \cdot D_{x}^{2} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)} \right]}{2 \cdot \sqrt{D_{x}^{2} \cdot R \cdot t}}} \right] \right] \cdot \left[1 - \text{erf} \left[\frac{R \cdot x_{j} + t \cdot v_{x} \sqrt{1 + \frac{4 \cdot D_{x}^{2} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}}}{2 \cdot \sqrt{D_{x}^{2} \cdot R \cdot t}}} \right] \right] \cdot \left[1 - \text{erf} \left[\frac{R \cdot x_{j} + t \cdot v_{x} \sqrt{1 + \frac{4 \cdot D_{x}^{2} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}}}{2 \cdot \sqrt{D_{x}^{2} \cdot R \cdot t}}} \right] \right] \cdot \left[1 - \text{erf} \left[\frac{R \cdot x_{j} + t \cdot v_{x} \sqrt{1 + \frac{4 \cdot D_{x}^{2} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}}}{2 \cdot \sqrt{D_{x}^{2} \cdot R \cdot t}}} \right] \right] \cdot \left[1 - \text{erf} \left[\frac{R \cdot x_{j} + t \cdot v_{x} \sqrt{1 + \frac{4 \cdot D_{x}^{2} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}}} {2 \cdot \sqrt{D_{x}^{2} \cdot R \cdot t}}} \right] \right] \cdot \left[1 - \text{erf} \left[\frac{R \cdot x_{j} + t \cdot v_{x} \sqrt{1 + \frac{4 \cdot D_{x}^{2} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}}} {2 \cdot \sqrt{D_{x}^{2} \cdot R \cdot t}}} \right] \right] \right] \cdot \left[1 - \text{erf} \left[\frac{R \cdot x_{j} + t \cdot v_{x} \sqrt{1 + \frac{4 \cdot D_{x}^{2} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}}} {2 \cdot \sqrt{D_{x}^{2} \cdot R \cdot t}}} \right] \right] \cdot \left[1 - \text{erf} \left[\frac{R \cdot x_{j} + t \cdot v_{x} \sqrt{1 + \frac{4 \cdot D_{x}^{2} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}} \right] \right] \cdot \left[\frac{R \cdot x_{j} + t \cdot v_{x} \sqrt{1 + \frac{4 \cdot D_{x}^{2} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}} {2 \cdot \sqrt{D_{x}^{2} \cdot R \cdot t}}} \right] \right] \cdot \left[\frac{R \cdot x_{j} + t \cdot v_{x} \sqrt{1 + \frac{4 \cdot D_{x}^{2} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}} \right] \cdot \left[\frac{R \cdot x_{j} + t \cdot v_{x} \sqrt{1 + \frac{4 \cdot D_{x}^{2} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}} \right] \right] \cdot \left[\frac{R \cdot x_{j} + t \cdot v_{x} \sqrt{1 + \frac{4 \cdot D_{x}^{2} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)} \right] \cdot \left[\frac{R \cdot x_{j} + t \cdot$$

Dissolved BTEX (mg/L) Concentration versus Distance (m)

Dissolved BTEX (mg/L) Concentration versus Distance (m)

30 years from present (2027)

Initial Plume Distribution Calculation

t :=12410-day

$$\Delta x := 1 \cdot m$$

For Retarded Flow with Biodegradation and a Decaying Source (van Genuchten and Alves, 1982)

$$C_{j} = C_{0} \exp(-\lambda \cdot t) \cdot \left[1 - \frac{1}{2} \cdot 1 - \text{erf} \frac{R \cdot x_{j} - v_{x} \cdot t}{2 \cdot \sqrt{D_{x} R \cdot t}} - \frac{v_{x}^{2} \cdot t}{\pi \cdot D_{x} R} \cdot \exp \left[- \frac{R \cdot x_{j} - v_{x} \cdot t}{4 \cdot D_{x} R \cdot t}^{2} \right] + \frac{1}{2} \cdot 1 + \frac{v_{x} \cdot x_{j}}{D_{x}} + \frac{v_{x}^{2} \cdot t}{D_{x} R} \cdot \exp \frac{v_{x} \cdot x_{j}}{D_{x}} \cdot 1 - \text{erf} \frac{R \cdot x_{j} + v_{x} \cdot t}{2 \cdot \sqrt{D_{x} R \cdot t}} \right] \dots$$

$$+ C_{s} \cdot \exp(-\gamma t) \cdot \left[\frac{v_{x}}{v_{x} + v_{x}} \cdot \sqrt{1 + \frac{4 \cdot D_{x} R}{v_{x}^{2}} \cdot (\lambda - \gamma)} \right] \cdot \exp \left[\frac{v_{x} - v_{x}}{2 \cdot D_{x}} \cdot \left(\frac{1 + \frac{4 \cdot D_{x} R}{v_{x}^{2}} \cdot (\lambda - \gamma)}{2 \cdot D_{x}} \right) \cdot \left[1 - \text{erf} \left[\frac{R \cdot x_{j} - t \cdot \left[v_{x} \cdot \sqrt{1 + \frac{4 \cdot D_{x} R}{v_{x}^{2}} \cdot (\lambda - \gamma)} \right]}{2 \cdot \sqrt{D_{x} R \cdot t}} \right] \right] \dots$$

$$+ \left[\frac{v_{x}}{v_{x} - v_{x}} \cdot \sqrt{1 + \frac{4 \cdot D_{x} R}{v_{x}^{2}} \cdot (\lambda - \gamma)} \right] \cdot \exp \left[\frac{\left[v_{x} + v_{x} \cdot \sqrt{1 + \frac{4 \cdot D_{x} R}{v_{x}^{2}} \cdot (\lambda - \gamma)} \right] \cdot x_{j}}{2 \cdot D_{x}} \right] \cdot \left[1 - \text{erf} \left[\frac{R \cdot x_{j} + t \cdot v_{x} \cdot \sqrt{1 + \frac{4 \cdot D_{x} R}{v_{x}^{2}} \cdot (\lambda - \gamma)}}{2 \cdot \sqrt{D_{x} R \cdot t}} \right] \right] \dots$$

$$+ \left[\frac{v_{x}}{v_{x} - v_{x}} \cdot \sqrt{1 + \frac{4 \cdot D_{x} R}{v_{x}^{2}} \cdot (\lambda - \gamma)}} \right] \cdot \exp \left[\frac{v_{x} + v_{x}}{v_{x}} \cdot \sqrt{1 + \frac{4 \cdot D_{x} R}{v_{x}^{2}} \cdot (\lambda - \gamma)}} \right] \cdot \left[1 - \text{erf} \left[\frac{R \cdot x_{j} + t \cdot v_{x}}{v_{x}} \cdot \sqrt{1 + \frac{4 \cdot D_{x} R}{v_{x}^{2}} \cdot (\lambda - \gamma)}} \right] \right] \dots$$

Dissolved BTEX (mg/L) Concentration versus Distance (m)

Dissolved BTEX (mg/L) Concentration versus Distance (m)

35 years from present (2032)

Initial Plume Distribution Calculation

t:=14235-day

$$x_i := \Delta x \cdot j$$

For Retarded Flow with Biodegradation and a Decaying Source (van Genuchten and Alves, 1982)

$$C_{j} = C_{0} \exp(-\lambda \cdot t) \left[1 - \frac{1}{2} \cdot 1 - \text{erf} \frac{R \cdot x_{j} - v_{x} \cdot t}{2 \cdot \sqrt{D_{x} R \cdot t}} - \frac{v_{x}^{2} \cdot t}{\pi \cdot D_{x} R} \cdot \exp\left[- \frac{R \cdot x_{j} - v_{x} \cdot t}{4 \cdot D_{x} R \cdot t} \right] + \frac{1}{2} \cdot 1 + \frac{v_{x} \cdot x_{j}}{D_{x}} + \frac{v_{x}^{2} \cdot t}{D_{x} R} \cdot \exp\left[\frac{v_{x} \cdot x_{j}}{D_{x}} \cdot 1 - \text{erf} \frac{R \cdot x_{j} + v_{x} \cdot t}{2 \cdot \sqrt{D_{x} R \cdot t}} \right] \dots$$

$$+ C_{s} \cdot \exp(-\gamma t) \cdot \left[\frac{v_{x}}{v_{x} + v_{x}} \cdot \sqrt{1 + \frac{4 \cdot D_{x} R}{v_{x}^{2}} \cdot (\lambda - \gamma)}} \right] \exp\left[\frac{v_{x} - v_{x}}{2 \cdot D_{x}} \cdot \left(\frac{1 + \frac{4 \cdot D_{x} R}{v_{x}^{2}} \cdot (\lambda - \gamma)}{2 \cdot D_{x}} \right) \cdot \left[1 - \text{erf} \left[\frac{R \cdot x_{j} - t \cdot v_{x}}{2 \cdot \sqrt{D_{x} R \cdot t}} \cdot \left(\frac{1 + \frac{4 \cdot D_{x} R}{v_{x}^{2}} \cdot (\lambda - \gamma)}{2 \cdot \sqrt{D_{x} R \cdot t}} \right) \right] \dots \right]$$

$$+ \left[\frac{v_{x}}{v_{x} - v_{x}} \cdot \sqrt{1 + \frac{4 \cdot D_{x} R}{v_{x}^{2}} \cdot (\lambda - \gamma)}} \right] \cdot \exp\left[\frac{v_{x} + v_{x}}{2 \cdot D_{x}} \cdot \left(\frac{1 + \frac{4 \cdot D_{x} R}{v_{x}^{2}} \cdot (\lambda - \gamma)}{2 \cdot D_{x}} \right) \cdot \left[1 - \text{erf} \left[\frac{R \cdot x_{j} + t \cdot v_{x}}{2 \cdot \sqrt{D_{x} R \cdot t}} \cdot \left(\frac{1 + \frac{4 \cdot D_{x} R}{v_{x}^{2}} \cdot (\lambda - \gamma)}{2 \cdot \sqrt{D_{x} R \cdot t}} \right) \right] \dots \right]$$

$$+ \left[\frac{v_{x}}{v_{x} - v_{x}} \cdot \sqrt{1 + \frac{4 \cdot D_{x} R}{v_{x}^{2}} \cdot (\lambda - \gamma)}} \right] \cdot \exp\left[\frac{v_{x} + v_{x}}{2 \cdot \sqrt{D_{x} R \cdot t}} \cdot \left(\frac{1 + \frac{4 \cdot D_{x} R}{v_{x}^{2}} \cdot (\lambda - \gamma)}{2 \cdot \sqrt{D_{x} R \cdot t}}} \right) \right] \cdot \left[1 - \text{erf} \left[\frac{R \cdot x_{j} + t \cdot v_{x}}{2 \cdot \sqrt{D_{x} R \cdot t}} \cdot \left(\frac{1 + \frac{4 \cdot D_{x} R}{v_{x}^{2}} \cdot (\lambda - \gamma)}{2 \cdot \sqrt{D_{x} R \cdot t}} \right) \right] \right] \right] \cdot \left[1 - \text{erf} \left[\frac{R \cdot x_{j} + t \cdot v_{x}}{2 \cdot \sqrt{D_{x} R \cdot t}} \cdot \left(\frac{1 + \frac{4 \cdot D_{x} R}{v_{x}^{2}} \cdot (\lambda - \gamma)}{2 \cdot \sqrt{D_{x} R \cdot t}} \right) \right] \right] \cdot \left[1 - \text{erf} \left[\frac{R \cdot x_{j} + t \cdot v_{x}}{2 \cdot \sqrt{D_{x} R \cdot t}} \cdot \left(\frac{1 + \frac{4 \cdot D_{x} R}{v_{x}^{2}} \cdot (\lambda - \gamma)}{2 \cdot \sqrt{D_{x} R \cdot t}} \right) \right] \right] \cdot \left[\frac{1 - \text{erf}}{2 \cdot \sqrt{D_{x} R \cdot t}} \cdot \left(\frac{1 + \frac{4 \cdot D_{x} R}{v_{x}^{2}} \cdot (\lambda - \gamma)}{2 \cdot \sqrt{D_{x} R \cdot t}} \right) \right] \cdot \left[\frac{1 - \text{erf}}{2 \cdot \sqrt{D_{x} R \cdot t}} \cdot \left(\frac{1 + \frac{4 \cdot D_{x} R}{v_{x}^{2}} \cdot (\lambda - \gamma)}{2 \cdot \sqrt{D_{x} R \cdot t}} \right) \right] \cdot \left[\frac{1 - \text{erf}}{2 \cdot \sqrt{D_{x} R \cdot t}} \cdot \left(\frac{1 - \frac{4 \cdot D_{x} R}{v_{x}^{2}} \cdot (\lambda - \gamma)}{2 \cdot \sqrt{D_{x} R \cdot t}} \right) \right] \cdot \left[\frac{1 - \text{erf}}{2 \cdot \sqrt{D_{x} R \cdot t}} \cdot \left(\frac{1 - \frac{4 \cdot D_{x} R}{v_{x}^{2}} \cdot$$

Dissolved BTEX (mg/L) Concentration versus Distance (m)

Dissolved BTEX (mg/L) Concentration versus Distance (m)

40 years from present (2037)

Initial Plume Distribution Calculation

$$t = 16060 \, day$$

$$\Delta x := 1 \cdot m$$

$$x_i := \Delta x \cdot j$$

For Retarded Flow with Biodegradation and a Decaying Source (van Genuchten and Alves, 1982)

$$C_{j} = C_{0} \cdot exp(-\lambda \cdot t) \cdot \left[1 - \frac{1}{2} \cdot 1 - erf \frac{R \cdot x_{j} - v_{x} \cdot t}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}} - \frac{v_{x}^{2} \cdot t}{\pi \cdot D_{x} \cdot R} \cdot exp \left[- \frac{R \cdot x_{j} - v_{x} \cdot t}{4 \cdot D_{x} \cdot R \cdot t} \right] + \frac{1}{2} \cdot 1 + \frac{v_{x} \cdot x_{j}}{D_{x}} + \frac{v_{x}^{2} \cdot t}{D_{x} \cdot R} \cdot exp \frac{v_{x} \cdot x_{j}}{D_{x}} \cdot 1 - erf \frac{R \cdot x_{j} + v_{x} \cdot t}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}} \right] \dots$$

$$+ C_{s} \cdot exp(-\gamma \cdot t) \cdot \left[- \frac{v_{x}}{v_{x} + v_{x}} \cdot \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)} \right] \cdot exp \left[\frac{v_{x} - v_{x}}{2 \cdot D_{x}} \cdot \left(\frac{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}{2 \cdot D_{x}} \right) \right] \cdot \left[1 - erf \left[\frac{R \cdot x_{j} - t \cdot \left[v_{x} \cdot \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)} \right]}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}} \right] \right] \dots$$

$$+ \left[\frac{v_{x}}{v_{x} - v_{x}} \cdot \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)} \right] \cdot exp \left[\frac{v_{x} + v_{x}}{2 \cdot D_{x}} \cdot \left(\frac{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}{2 \cdot D_{x}} \right) \right] \cdot \left[1 - erf \left[\frac{R \cdot x_{j} + t \cdot v_{x}}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}} \right] \right] \dots$$

$$+ \left[\frac{v_{x}}{v_{x} - v_{x}} \cdot \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}} \right] \cdot exp \left[\frac{v_{x} \cdot v_{x}}{D_{x}} \cdot \left(\lambda - \gamma \right) \cdot t \right] \cdot 1 - erf \left[\frac{R \cdot x_{j} + v_{x} \cdot t}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}} \right] \dots$$

Dissolved BTEX (mg/L) Concentration versus Distance (m)

Dissolved BTEX (mg/L) Concentration versus Distance (m)

45 years from present (2042)

Initial Plume Distribution Calculation

$$j := 0..1000$$
 $t := 17885 \cdot day$ $\Delta x := 1 \cdot m$ $x_i := \Delta x \cdot j$

For Retarded Flow with Biodegradation and a Decaying Source (van Genuchten and Alves, 1982)

$$C_{j} = C_{0} \cdot \exp(-\lambda \cdot t) \cdot \left[1 - \frac{1}{2} \cdot 1 - erf \frac{R \cdot x_{j} - v_{x} \cdot t}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}} - \frac{v_{x}^{2} \cdot t}{\pi \cdot D_{x} \cdot R} \cdot exp \left[- \frac{R \cdot x_{j} - v_{x} \cdot t}{4 \cdot D_{x} \cdot R \cdot t} \right] + \frac{1}{2} \cdot 1 + \frac{v_{x} \cdot x_{j}}{D_{x}} + \frac{v_{x}^{2} \cdot t}{D_{x} \cdot R} \cdot exp \frac{v_{x} \cdot x_{j}}{D_{x}} \cdot 1 - erf \frac{R \cdot x_{j} + v_{x} \cdot t}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}} \right] + C_{s} \cdot \exp(-\gamma t) \cdot \left[\frac{v_{x}}{v_{x}} - v_{x} \cdot \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}} \right] \cdot \exp \left[\frac{v_{x} - v_{x}}{2 \cdot D_{x}} \cdot \left(\frac{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}{2 \cdot D_{x}} \right) \cdot \left[1 - erf \left[\frac{R \cdot x_{j} - t \cdot v_{x}}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}} \cdot \left(\frac{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}} \right) \right] \right] \cdot \left[1 - erf \left[\frac{R \cdot x_{j} + t \cdot v_{x}}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}} \cdot \left(\frac{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}} \right) \right] \cdot \left[1 - erf \left[\frac{R \cdot x_{j} + t \cdot v_{x}}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}} \cdot \left(\frac{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}} \right) \right] \cdot \left[1 - erf \left[\frac{R \cdot x_{j} + t \cdot v_{x}}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}} \cdot \left(\frac{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}} \right) \right] \cdot \left[1 - erf \left[\frac{R \cdot x_{j} + t \cdot v_{x}}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}} \cdot \left(\frac{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}} \right) \right] \cdot \left[1 - erf \left[\frac{R \cdot x_{j} + t \cdot v_{x}}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}} \cdot \left(\frac{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}} \right) \right] \cdot \left[1 - erf \left[\frac{R \cdot x_{j} + t \cdot v_{x}}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}} \cdot \left(\frac{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}} \right] \right] \cdot \left[\frac{v_{x}}{2 \cdot D_{x}} \cdot \left(\frac{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}{2 \cdot D_{x}} \right) \right] \cdot \left[\frac{v_{x}}{2 \cdot D_{x}} \cdot \left(\frac{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}{2 \cdot D_{x}} \right) \right] \cdot \left[\frac{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}{2 \cdot D_{x}} \right] \right] \cdot \left[\frac{v_{x}}{2 \cdot D_{x}} \cdot \left(\frac{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}{2 \cdot D_{x}} \right) \right] \cdot \left[\frac{v_{x}}{2 \cdot D_{x}} \cdot \left(\frac{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}{2 \cdot D_{x}} \right] \right] \cdot \left[\frac{v_{x}}{2 \cdot D_{x}} \cdot \left(\frac{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda$$

Dissolved BTEX (mg/L) Concentration versus Distance (m)

50 years from present (2047)

Initial Plume Distribution Calculation

$$\Delta x := 1 \cdot m$$

$$x_i = \Delta x \cdot j$$

For Retarded Flow with Biodegradation and a Decaying Source (van Genuchten and Alves, 1982)

$$\begin{array}{c} C_{j} = C_{0} \cdot exp(-\lambda \cdot t) \cdot \left[1 - \frac{1}{2} \cdot 1 - erf \cdot \frac{R \cdot x_{j} - v_{x} \cdot t}{2 \cdot \sqrt{D_{x} R \cdot t}} - \frac{v_{x}^{2} \cdot t}{\pi \cdot D_{x} R} \cdot exp \left[- \frac{R \cdot x_{j} - v_{x} \cdot t}{4 \cdot D_{x} R \cdot t} \right] + \frac{1}{2} \cdot 1 + \frac{v_{x}^{2} \cdot t}{D_{x}} + \frac{v_{x}^{2} \cdot t}{D_{x} R} \cdot exp \frac{v_{x}^{2} \cdot t}{D_{x}} \cdot 1 - erf \frac{R \cdot x_{j} + v_{x} \cdot t}{2 \cdot \sqrt{D_{x} R \cdot t}} \right] \cdots \\ + C_{s} \cdot exp(-\gamma t) \cdot \left[\left[\frac{v_{x}}{v_{x} + v_{x}} \sqrt{1 + \frac{4 \cdot D_{x} R}{v_{x}^{2}} \cdot (\lambda - \gamma)} \right] \cdot exp \left[\frac{v_{x} - v_{x}}{2 \cdot D_{x}} \right] \cdot \left[1 - erf \left[\frac{R \cdot x_{j} - t \cdot \left[v_{x} \sqrt{1 + \frac{4 \cdot D_{x} R}{v_{x}^{2}} \cdot (\lambda - \gamma)} \right]}{2 \cdot \sqrt{D_{x} R \cdot t}} \right] \right] \cdots \right] \right] \cdot \left[1 - erf \left[\frac{v_{x}}{v_{x}} \sqrt{1 + \frac{4 \cdot D_{x} R}{v_{x}^{2}} \cdot (\lambda - \gamma)} \right] \cdot \left[1 - erf \left[\frac{R \cdot x_{j} + t \cdot v_{x}}{2 \cdot \sqrt{D_{x} R \cdot t}} \right] \right] \cdots \right] \right] \cdot \left[1 - erf \left[\frac{v_{x}}{v_{x}} \sqrt{1 + \frac{4 \cdot D_{x} R}{v_{x}^{2}} \cdot (\lambda - \gamma)}} \right] \cdot \left[1 - erf \left[\frac{R \cdot x_{j} + t \cdot v_{x}}{2 \cdot \sqrt{D_{x} R \cdot t}} \right] \right] \cdots \right] \right] \cdot \left[\frac{v_{x}}{v_{x}} \sqrt{1 + \frac{4 \cdot D_{x} R}{v_{x}^{2}} \cdot (\lambda - \gamma)}} \right] \cdot \left[1 - erf \left[\frac{R \cdot x_{j} + t \cdot v_{x}}{2 \cdot \sqrt{D_{x} R \cdot t}} \right] \right] \cdots \right] \cdot \left[\frac{v_{x}}{v_{x}} \sqrt{1 + \frac{4 \cdot D_{x} R}{v_{x}^{2}} \cdot (\lambda - \gamma)}} \right] \cdot \left[1 - erf \left[\frac{R \cdot x_{j} + t \cdot v_{x}}{2 \cdot \sqrt{D_{x} R \cdot t}} \right] \right] \cdot \left[\frac{v_{x}}{v_{x}} \sqrt{1 + \frac{4 \cdot D_{x} R}{v_{x}^{2}} \cdot (\lambda - \gamma)}} \right] \cdot \left[\frac{v_{x}}{v_{x}} \sqrt{1 + \frac{4 \cdot D_{x} R}{v_{x}^{2}} \cdot (\lambda - \gamma)}} \right] \cdot \left[\frac{v_{x}}{v_{x}} \sqrt{1 + \frac{4 \cdot D_{x} R}{v_{x}^{2}} \cdot (\lambda - \gamma)}} \right] \cdot \left[\frac{v_{x}}{v_{x}} \sqrt{1 + \frac{4 \cdot D_{x} R}{v_{x}^{2}} \cdot (\lambda - \gamma)}} \right] \cdot \left[\frac{v_{x}}{v_{x}} \sqrt{1 + \frac{4 \cdot D_{x} R}{v_{x}^{2}} \cdot (\lambda - \gamma)}} \right] \cdot \left[\frac{v_{x}}{v_{x}} \sqrt{1 + \frac{4 \cdot D_{x} R}{v_{x}^{2}} \cdot (\lambda - \gamma)}} \right] \cdot \left[\frac{v_{x}}{v_{x}} \sqrt{1 + \frac{4 \cdot D_{x} R}{v_{x}^{2}} \cdot (\lambda - \gamma)}} \right] \cdot \left[\frac{v_{x}}{v_{x}} \sqrt{1 + \frac{4 \cdot D_{x} R}{v_{x}^{2}} \cdot (\lambda - \gamma)}} \right] \cdot \left[\frac{v_{x}}{v_{x}} \sqrt{1 + \frac{4 \cdot D_{x} R}{v_{x}^{2}} \cdot (\lambda - \gamma)}} \right] \cdot \left[\frac{v_{x}}{v_{x}} \sqrt{1 + \frac{4 \cdot D_{x} R}{v_{x}^{2}} \cdot (\lambda - \gamma)}} \right] \cdot \left[\frac{v_{x}}{v_{x}} \sqrt{1 + \frac{4 \cdot D_{x} R}{v_{x}^{2}} \cdot (\lambda - \gamma)}} \right] \cdot \left[\frac{v_{x}}{v_{x}} \sqrt{1 + \frac{4 \cdot D_{x} R}{v_{x}^{2}} \cdot (\lambda - \gamma)}} \right] \cdot \left[\frac{v_{x}}{v_{x}} \sqrt{1 + \frac$$

Dissolved BTEX (mg/L) Concentration versus Distance (m)

Dissolved BTEX (mg/L) Concentration versus Distance (m)

Dissolved BTEX (mg/L) Concentration versus Distance (m)

0.4

0.1

Transient Solution to the Advective-Dispersive Equation for One-Dimensional Flow, Type Three Boundary Condition (46.5 mg/L source decaying at 8% per year, a 0.08 day-1 solute decay coefficient, Constant Location, Variable Time)

rogeologic Data

Hydraulic conductivtiy

$$K := 17.71 \cdot \frac{m}{day}$$

Hydraulic gradient

$$I := 0.01 \cdot \frac{ft}{ft}$$

Effective porosity

$$n_e := 0.30$$

Total porosity

$$n := 0.37$$

Longitudinal dispersivity (EPRI, 1985)

$$\alpha_x := 6 \cdot m$$

Concentration of Injected Contaminant

$$C_s := 46.5 \cdot \frac{mg}{liter}$$

Initial Dissolved Contaminant Concentration

$$C_o := 0 \cdot \frac{mg}{liter}$$

Retardation Coefficient Calculation

Solute Decay Rate

$$\lambda := 0.08 \cdot \frac{1}{\text{day}}$$

Source Decay Rate

$$\gamma := 0.00022 \cdot \frac{1}{day}$$

oil sorption coefficient (EPA, 1990)

$$K_{oc} = 79 \cdot \frac{mL}{gm}$$

Bulk density (Freeze and Cherry, 1979)

$$\rho_b := 1.65 \cdot \frac{gm}{cm^3}$$

Organic carbon content

$$f_{oc} := 0.06.\%$$

Retardation coefficient

$$R := 1 + \frac{\rho_b \cdot K_{oc} \cdot f_{oc}}{P}$$

Groundwater Hydraulics Calculations

$$\mathbf{v}_{\mathbf{X}} := \frac{\mathbf{K} \cdot \mathbf{I}}{\mathbf{n}_{\mathbf{e}}}$$

$$v_x = \frac{K \cdot I}{n_e}$$
 $v_x = 0.59 \cdot \frac{m}{day}$

$$\mathbf{v}_{\mathbf{C}} := \frac{\mathbf{v}_{\mathbf{C}}}{\mathbf{R}}$$

$$v_c := \frac{v_x}{R}$$
 $v_c = 0.487 \cdot \frac{m}{day}$

$$D_x := \alpha_x \cdot v_x$$

$$D_x := \alpha_{x} \cdot v_x$$
 $D_x = 38.126 \cdot \frac{ft^2}{day}$

1 meter downgradient from the source area (MPM/MPC)

Plume Distribution Calculation

For Retarded Flow with Biodegradation and a Decaying Source (van Genuchten and Alves, 1982)

$$\begin{array}{l} C_{i} := C_{0} \cdot \exp{-\lambda \cdot t_{i}} \cdot \left[1 - \frac{1}{2} \cdot 1 - erf \, \frac{R \cdot x - v_{X} \cdot t_{i}}{2 \cdot \sqrt{D_{X} \cdot R \cdot t_{i}}} \, - \frac{v_{X}^{2} \cdot t_{i}}{\pi^{-D} \cdot x^{-R}} \cdot exp \left[- \frac{R \cdot x - v_{X} \cdot t_{i}}{4 \cdot D_{X} \cdot R \cdot t_{i}} \right] + \frac{1}{2} \cdot 1 + \frac{v_{X} \cdot x}{D_{X}} + \frac{v_{X}^{2} \cdot t_{i}}{D_{X} \cdot R} \cdot exp \, \frac{v_{X} \cdot x}{D_{X}} \cdot 1 - erf \, \frac{R \cdot x + v_{X} \cdot t_{i}}{2 \cdot \sqrt{D_{X} \cdot R \cdot t_{i}}} \right] \\ + C_{S} \cdot \exp{-\gamma \cdot t_{i}} \cdot \left[\left[\frac{v_{X}}{v_{X}} \cdot \left(\frac{1 + \frac{4 \cdot D_{X} \cdot R}{v_{X}^{2}} \cdot (\lambda - \gamma)}{2 \cdot D_{X}} \right] \cdot \exp{\left[\frac{v_{X} - v_{X}}{\sqrt{1 + \frac{4 \cdot D_{X} \cdot R}{v_{X}^{2}} \cdot (\lambda - \gamma)}} \right] \cdot x}{2 \cdot D_{X}} \right] \cdot \left[1 - erf \, \frac{R \cdot x + t_{i} \cdot v_{X}}{2 \cdot \sqrt{D_{X} \cdot R \cdot t_{i}}} \cdot \left(\frac{1 + \frac{4 \cdot D_{X} \cdot R}{v_{X}^{2}} \cdot (\lambda - \gamma)}{2 \cdot \sqrt{D_{X} \cdot R \cdot t_{i}}} \right] \right] \cdot \cdots \right] \\ + \left[\frac{v_{X}}{v_{X}} \cdot \left(\frac{1 + \frac{4 \cdot D_{X} \cdot R}{v_{X}^{2}} \cdot (\lambda - \gamma)}{2 \cdot D_{X}} \right) \cdot \left(\frac{1 - erf}{2 \cdot \sqrt{D_{X} \cdot R \cdot t_{i}}} \right) \cdot \left(\frac{R \cdot x + t_{i} \cdot v_{X}}{2 \cdot \sqrt{D_{X} \cdot R \cdot t_{i}}} \right) \right] \cdot \cdots \right] \\ + \left[\frac{v_{X}}{v_{X}} \cdot \left(\frac{1 + \frac{4 \cdot D_{X} \cdot R}{v_{X}^{2}} \cdot (\lambda - \gamma)}{2 \cdot \sqrt{D_{X} \cdot R \cdot t_{i}}} \right) \cdot \left(\frac{R \cdot x + v_{X} \cdot t_{i}}{2 \cdot \sqrt{D_{X} \cdot R \cdot t_{i}}} \right) \right] \cdot \left(\frac{1 - erf}{2 \cdot \sqrt{D_{X} \cdot R \cdot t_{i}}} \right) \cdot \left(\frac{R \cdot x + t_{i} \cdot v_{X}}{2 \cdot \sqrt{D_{X} \cdot R \cdot t_{i}}} \right) \cdot \left(\frac{R \cdot x + t_{i} \cdot v_{X}}{2 \cdot \sqrt{D_{X} \cdot R \cdot t_{i}}} \right) \right) \cdot \left(\frac{R \cdot x + t_{i} \cdot v_{X}}{2 \cdot \sqrt{D_{X} \cdot R \cdot t_{i}}} \right) \cdot \left(\frac{R \cdot x + t_{i} \cdot v_{X}}{2 \cdot \sqrt{D_{X} \cdot R \cdot t_{i}}} \right) \cdot \left(\frac{R \cdot x + t_{i} \cdot v_{X}}{2 \cdot \sqrt{D_{X} \cdot R \cdot t_{i}}} \right) \cdot \left(\frac{R \cdot x + t_{i} \cdot v_{X}}{2 \cdot \sqrt{D_{X} \cdot R \cdot t_{i}}} \right) \cdot \left(\frac{R \cdot x + t_{i} \cdot v_{X}}{2 \cdot \sqrt{D_{X} \cdot R \cdot t_{i}}} \right) \cdot \left(\frac{R \cdot x + t_{i} \cdot v_{X}}{2 \cdot \sqrt{D_{X} \cdot R \cdot t_{i}}} \right) \cdot \left(\frac{R \cdot x + t_{i} \cdot v_{X}}{2 \cdot \sqrt{D_{X} \cdot R \cdot t_{i}}} \right) \cdot \left(\frac{R \cdot x + t_{i} \cdot v_{X}}{2 \cdot \sqrt{D_{X} \cdot R \cdot t_{i}}} \right) \cdot \left(\frac{R \cdot x + t_{i} \cdot v_{X}}{2 \cdot \sqrt{D_{X} \cdot R \cdot t_{i}}} \right) \cdot \left(\frac{R \cdot x + t_{i} \cdot v_{X}}{2 \cdot \sqrt{D_{X} \cdot R \cdot t_{i}}} \right) \cdot \left(\frac{R \cdot x + t_{i} \cdot v_{X}}{2 \cdot \sqrt{D_{X} \cdot R \cdot t_{i}}} \right) \cdot \left(\frac{R \cdot x + t_{i} \cdot v_{X}}{2 \cdot \sqrt{D_{X} \cdot R \cdot t_{i}}} \right) \cdot \left(\frac{R \cdot x + t_{i} \cdot v_{X}}{2 \cdot \sqrt{D_{X} \cdot R \cdot t_{i}}} \right)$$

Concentration of BTEX (mg/L) versus Time (years)

Concentration of BTEX (mg/L) versus Time (years)

Concentration of BTEX (mg/L) versus Time (years)

22 meters downgradient from the source area (W71)

Initial Plume Distribution Calculation

year := 365-day i := 1...120
$$x$$
 := 22-m
$$\Delta t := 1 \cdot year$$

$$t_i := \Delta t \cdot i$$

For Retarded Flow with Biodegradation and a Decaying Source (van Genuchten and Alves, 1982)

$$C_{i} := C_{0} \cdot \exp(-\lambda \cdot t_{i}) \cdot \left[1 - \frac{1}{2} \cdot 1 - erf(\frac{R \cdot x - v_{X} \cdot t_{i}}{2 \cdot \sqrt{D_{X} R \cdot t_{i}}}) - \frac{v_{X}^{2} \cdot t_{i}}{\pi \cdot D_{X} R} \cdot exp\left[- \frac{R \cdot x - v_{X} \cdot t_{i}^{2}}{4 \cdot D_{X} R \cdot t_{i}}\right] + \frac{1}{2} \cdot 1 + \frac{v_{X} x}{D_{X}} + \frac{v_{X}^{2} \cdot t_{i}}{D_{X} R} \cdot exp\left[\frac{v_{X} x}{D_{X}} \cdot 1 - erf(\frac{R \cdot x + v_{X} \cdot t_{i}}{2 \cdot \sqrt{D_{X} R \cdot t_{i}}})\right] + C_{s} \cdot \exp(-\gamma \cdot t_{i}) \cdot \left[1 - erf\left[\frac{v_{X}}{v_{X}} \cdot \frac{1 + \frac{4 \cdot D_{X} R}{v_{X}} \cdot (\lambda - \gamma)}{2 \cdot D_{X}} \cdot \frac{1 + \frac{4 \cdot D_{X} R}{v_{X}} \cdot (\lambda - \gamma)}{2 \cdot D_{X}} \cdot \frac{1 + \frac{4 \cdot D_{X} R}{v_{X}} \cdot (\lambda - \gamma)}{2 \cdot D_{X}} \cdot \frac{1 - erf\left[\frac{R \cdot x - t_{i}}{v_{X}} \cdot \frac{v_{X}}{\sqrt{1 + \frac{4 \cdot D_{X} R}{v_{X}} \cdot (\lambda - \gamma)}} \right] - exp\left[\frac{v_{X} \cdot v_{X}}{2 \cdot D_{X}} \cdot \frac{1 + \frac{4 \cdot D_{X} R}{v_{X}} \cdot (\lambda - \gamma)}{2 \cdot D_{X}} \cdot \frac{1 - erf\left[\frac{R \cdot x - t_{i}}{v_{X}} \cdot \frac{v_{X}}{\sqrt{1 + \frac{4 \cdot D_{X} R}{v_{X}} \cdot (\lambda - \gamma)}} \right] - exp\left[\frac{v_{X} \cdot v_{X}}{2 \cdot D_{X}} \cdot \frac{1 + \frac{4 \cdot D_{X} R}{v_{X}} \cdot (\lambda - \gamma)}{2 \cdot D_{X}} \cdot \frac{1 - erf\left[\frac{R \cdot x - t_{i}}{v_{X}} \cdot \frac{v_{X}}{\sqrt{1 + \frac{4 \cdot D_{X} R}{v_{X}} \cdot (\lambda - \gamma)}} \right] - exp\left[\frac{v_{X} \cdot v_{X}}{2 \cdot D_{X}} \cdot \frac{1 - erf\left[\frac{R \cdot x - v_{X} \cdot t_{i}}{v_{X}} \cdot \frac{1 - erf\left[\frac{R \cdot x - v_{X} \cdot t_{i}}{v_{X}} \cdot \frac{1 - erf\left[\frac{R \cdot x - v_{X} \cdot t_{i}}{v_{X}} \cdot \frac{1 - erf\left[\frac{R \cdot x - v_{X} \cdot t_{i}}{v_{X}} \cdot \frac{1 - erf\left[\frac{R \cdot x - v_{X} \cdot t_{i}}{v_{X}} \cdot \frac{1 - erf\left[\frac{R \cdot x - v_{X} \cdot t_{i}}{v_{X}} \cdot \frac{1 - erf\left[\frac{R \cdot x - v_{X} \cdot t_{i}}{v_{X}} \cdot \frac{1 - erf\left[\frac{R \cdot x - v_{X} \cdot t_{i}}{v_{X}} \cdot \frac{1 - erf\left[\frac{R \cdot x - v_{X} \cdot t_{i}}{v_{X}} \cdot \frac{1 - erf\left[\frac{R \cdot x - v_{X} \cdot t_{i}}{v_{X}} \cdot \frac{1 - erf\left[\frac{R \cdot x - v_{X} \cdot t_{i}}{v_{X}} \cdot \frac{1 - erf\left[\frac{R \cdot x - v_{X} \cdot t_{i}}{v_{X}} \cdot \frac{1 - erf\left[\frac{R \cdot x - v_{X} \cdot t_{i}}{v_{X}} \cdot \frac{1 - erf\left[\frac{R \cdot x - v_{X} \cdot t_{i}}{v_{X}} \cdot \frac{1 - erf\left[\frac{R \cdot x - v_{X} \cdot t_{i}}{v_{X}} \cdot \frac{1 - erf\left[\frac{R \cdot x - v_{X} \cdot t_{i}}{v_{X}} \cdot \frac{1 - erf\left[\frac{R \cdot x - v_{X} \cdot t_{i}}{v_{X}} \cdot \frac{1 - erf\left[\frac{R \cdot x - v_{X} \cdot t_{i}}{v_{X}} \cdot \frac{1 - erf\left[\frac{R \cdot x - v_{X} \cdot t_{i}}{v_{X}} \cdot \frac{1 - erf\left[\frac{R \cdot x - v_{X} \cdot t_{i}}{v_{X}} \cdot \frac{1 - erf\left[\frac{R \cdot x - v_{X} \cdot t_{i}}{v_{X}} \cdot \frac{1 - erf\left[\frac{R$$

41 meters downgradient from source area (MPL)

al Plume Distribution Calculation

 $x := 41 \cdot m$

 $\Delta t := 1 \cdot year$

$$t_i := \Delta t \cdot i$$

For Retarded Flow with Biodegradation and a Decaying Source (van Genuchten and Alves, 1982)

$$\begin{array}{c} C_{i} := C_{0} \cdot \exp{-\lambda t_{i}} \cdot \left[1 - \frac{1}{2} \cdot 1 - erf \, \frac{R \cdot x - v_{X} t_{i}}{2 \cdot \sqrt{D_{X} R \cdot t_{i}}} \, - \, \frac{v_{X}^{2} t_{i}}{\pi \cdot D_{X} R} \cdot exp \left[- \frac{R \cdot x - v_{X} t_{i}^{2}}{4 \cdot D_{X} R \cdot t_{i}} \right] + \frac{1}{2} \cdot 1 + \frac{v_{X} x}{D_{X}} + \frac{v_{X}^{2} t_{i}}{D_{X} R} \cdot exp \frac{v_{X} x}{D_{X}} \cdot 1 - erf \, \frac{R \cdot x + v_{X} t_{i}}{2 \cdot \sqrt{D_{X} R \cdot t_{i}}} \right] \\ + C_{S} \cdot \exp{-\gamma t_{i}} \cdot \left[\left[\frac{v_{X}}{v_{X}} \sqrt{1 + \frac{4 \cdot D_{X} R}{v_{X}^{2}} \cdot (\lambda - \gamma)} \right] \cdot \exp{\left[\frac{v_{X} - v_{X}}{2 \cdot D_{X}} \right] \cdot \left[1 - erf \left[\frac{R \cdot x - t_{i}}{2 \cdot \sqrt{D_{X} R \cdot t_{i}}} \right] \cdot \left[1 - erf \left[\frac{R \cdot x - t_{i}}{2 \cdot \sqrt{D_{X} R \cdot t_{i}}} \right] \cdot \left[1 - erf \left[\frac{R \cdot x - t_{i}}{2 \cdot \sqrt{D_{X} R \cdot t_{i}}} \right] \cdot \left[1 - erf \left[\frac{R \cdot x - t_{i}}{2 \cdot \sqrt{D_{X} R \cdot t_{i}}} \right] \right] \cdot \left[1 - erf \left[\frac{R \cdot x - t_{i}}{2 \cdot \sqrt{D_{X} R \cdot t_{i}}} \right] \cdot \left[1 - erf \left[\frac{R \cdot x - t_{i}}{2 \cdot \sqrt{D_{X} R \cdot t_{i}}} \right] \cdot \left[1 - erf \left[\frac{R \cdot x - t_{i}}{2 \cdot \sqrt{D_{X} R \cdot t_{i}}} \right] \right] \cdot \left[1 - erf \left[\frac{R \cdot x - t_{i}}{2 \cdot \sqrt{D_{X} R \cdot t_{i}}} \right] \right] \cdot \left[1 - erf \left[\frac{R \cdot x - t_{i}}{2 \cdot \sqrt{D_{X} R \cdot t_{i}}} \right] \cdot \left[1 - erf \left[\frac{R \cdot x - t_{i}}{2 \cdot \sqrt{D_{X} R \cdot t_{i}}} \right] \right] \cdot \left[1 - erf \left[\frac{R \cdot x - t_{i}}{2 \cdot \sqrt{D_{X} R \cdot t_{i}}} \right] \right] \cdot \left[1 - erf \left[\frac{R \cdot x - t_{i}}{2 \cdot \sqrt{D_{X} R \cdot t_{i}}} \right] \right] \cdot \left[1 - erf \left[\frac{R \cdot x - t_{i}}{2 \cdot \sqrt{D_{X} R \cdot t_{i}}} \right] \right] \cdot \left[1 - erf \left[\frac{R \cdot x - t_{i}}{2 \cdot \sqrt{D_{X} R \cdot t_{i}}} \right] \right] \cdot \left[1 - erf \left[\frac{R \cdot x - t_{i}}{2 \cdot \sqrt{D_{X} R \cdot t_{i}}} \right] \right] \cdot \left[1 - erf \left[\frac{R \cdot x - t_{i}}{2 \cdot \sqrt{D_{X} R \cdot t_{i}}} \right] \right] \cdot \left[1 - erf \left[\frac{R \cdot x - t_{i}}{2 \cdot \sqrt{D_{X} R \cdot t_{i}}} \right] \right] \cdot \left[1 - erf \left[\frac{R \cdot x - t_{i}}{2 \cdot \sqrt{D_{X} R \cdot t_{i}}} \right] \right] \cdot \left[1 - erf \left[\frac{R \cdot x - t_{i}}{2 \cdot \sqrt{D_{X} R \cdot t_{i}}} \right] \right] \cdot \left[1 - erf \left[\frac{R \cdot x - t_{i}}{2 \cdot \sqrt{D_{X} R \cdot t_{i}}} \right] \right] \cdot \left[\frac{R \cdot x - t_{i}}{2 \cdot \sqrt{D_{X} R \cdot t_{i}}} \right] \right] \cdot \left[\frac{R \cdot x - t_{i}}{2 \cdot \sqrt{D_{X} R \cdot t_{i}}} \right] \cdot \left[\frac{R \cdot x - t_{i}}{2 \cdot \sqrt{D_{X} R \cdot t_{i}}} \right] \cdot \left[\frac{R \cdot x - t_{i}}{2 \cdot \sqrt{D_{X} R \cdot t_{i}}} \right] \cdot \left[\frac{R \cdot x - t_{i}}{2 \cdot \sqrt{D_{X} R \cdot t_{i}}} \right] \cdot \left[\frac{R \cdot x - t_{i}}{2 \cdot \sqrt{D_{X} R \cdot t_{i}}} \right] \cdot \left[\frac{R \cdot x$$

Concentration of BTEX (mg/L) versus Time (years)

C_i mg liter 2 50 100 ti year

Concentration of BTEX (mg/L) versus Time (years)

Concentration of BTEX (mg/L) versus Time (years)

APPENDIX C-2 ANALYTICAL MODEL-BB, 50% SOURCE DECAY COEFFICIENT

Transient Solution to the Advective-Dispersive Equation for One-Dimensional Flow, Type Three Boundary Condition (46.5 mg/L source decaying at 50% per year, a 0.08 day-1 solute decay coefficient, Constant Time, Variable Location)

rogeologic Data

Hydraulic conductivity
$$K := 17.71 \frac{m}{day}$$

Hydraulic gradient
$$I := 0.01 \cdot \frac{\hat{n}}{\hat{n}}$$

Effective porosity
$$n_e := 0.3$$

Total porosity
$$n := 0.37$$

Longitudinal dispersivity
$$\alpha_x := 6 \cdot m$$

Concentration of Injected Contaminant
$$C_s := 46.5 \cdot \frac{mg}{liter}$$

Initial Dissolved Contaminant Concentration
$$C_0 := 0 \cdot \frac{mg}{liter}$$

Retardation Coefficient Calculation

Solute Decay Rate
$$\lambda := 0.08 \cdot \frac{1}{\text{day}}$$

Source Decay Rate
$$\gamma = 0.00137 \cdot \frac{1}{\text{day}}$$

bil sorption coefficient (EPA, 1990)
$$K_{oc} := 79 \cdot \frac{mL}{gm}$$

Bulk density (Freeze and Cherry, 1979)
$$\rho_b := 1.65 \cdot \frac{gm}{cm^3}$$

Organic carbon content
$$f_{oc} := 0.06.\%$$

Retardation coefficient
$$R := 1 + \frac{\rho b \cdot K_{oc} \cdot f_{oc}}{n} \qquad R = 1.211$$

Groundwater Hydraulics Calculations

Groundwater velocity (pore-water)
$$v_x := \frac{K \cdot I}{n_e}$$
 $v_x = 0.59 \cdot \frac{m}{day}$

Contaminant velocity
$$v_c = \frac{v_x}{R}$$
 $v_c = 0.487 \cdot \frac{m}{day}$

Longitudinal dispersion coefficient
$$D_x = \alpha_{x} v_x$$
 $D_x = 38.126 \cdot \frac{h^2}{day}$

After 1 year of Biosparging (1998)

Initial Plume Distribution Calculation

For Retarded Flow with Biodegradation and a Decaying Source (van Genuchten and Alves, 1982)

$$\begin{array}{l} C_{j} := C_{0} \cdot exp(-\lambda \cdot t) \cdot \left[1 - \frac{1}{2} \cdot 1 - erf \frac{R \cdot x_{j} - v_{x} \cdot t}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}} - \frac{v_{x}^{2} \cdot t}{\pi \cdot D_{x} \cdot R} \cdot exp \left[- \frac{R \cdot x_{j} - v_{x} \cdot t}{4 \cdot D_{x} \cdot R \cdot t} \right] + \frac{1}{2} \cdot 1 + \frac{v_{x} \cdot x_{j}}{D_{x}} + \frac{v_{x}^{2} \cdot t}{D_{x} \cdot R} \cdot exp \frac{v_{x} \cdot x_{j}}{D_{x}} \cdot 1 - erf \frac{R \cdot x_{j} + v_{x} \cdot t}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}} \right] \\ + C_{s} \cdot exp(-\gamma t) \cdot \left[- \frac{v_{x}}{v_{x} + v_{x} \cdot \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}} \right] \cdot exp \left[- \frac{v_{x} \cdot \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)} \cdot x_{j}}{2 \cdot D_{x}} \right] \left[1 - erf \frac{R \cdot x_{j} - t \left[v_{x} \cdot \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)} \right]}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}} \right] \right] ... \\ + \left[- \frac{v_{x}}{v_{x} - v_{x} \cdot \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}} \right] \cdot exp \left[\frac{v_{x} + v_{x} \cdot \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}}{2 \cdot D_{x}} \right] \left[1 - erf \left[- \frac{R \cdot x_{j} + t \cdot v_{x} \cdot \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}} {2 \cdot \sqrt{D_{x} \cdot R \cdot t}} \right] \right] ... \\ + \left[- \frac{v_{x}}{v_{x} - v_{x} \cdot \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}} \right] \cdot exp \left[- \frac{R \cdot x_{j} + v_{x} \cdot t}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}} \right] - \frac{R \cdot x_{j} + v_{x} \cdot t}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}}} \right] \\ + \left[- \frac{v_{x}}{v_{x} - v_{x} \cdot \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}} \right] \cdot exp \left[- \frac{R \cdot x_{j} + v_{x} \cdot t}{v_{x} \cdot \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}} \right] \\ - \frac{R \cdot x_{j} + v_{x} \cdot t}{v_{x} - v_{x} \cdot \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}} \right] \cdot exp \left[- \frac{R \cdot x_{j} + v_{x} \cdot t}{v_{x} \cdot \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}} \right] \\ - \frac{R \cdot x_{j} + v_{x} \cdot t}{v_{x} \cdot \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}} \right] \cdot exp \left[- \frac{R \cdot x_{j} + v_{x} \cdot t}{v_{x} \cdot \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}} \right] \\ - \frac{R \cdot x_{j} + v_{x} \cdot t}{v_{x} \cdot \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}} \right] \cdot exp \left[- \frac{R \cdot x_{j} + v_{x} \cdot t}{v_{x} \cdot \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}} \right] \\ - \frac{R \cdot x_{j} + v_{x} \cdot t}{v_{x} \cdot \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}} \right] \cdot exp \left[- \frac{R \cdot x_{j} + v_{x} \cdot t}{v_{x} \cdot \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}}$$

Dissolved BTEX (mg/L) Concentration versus Distance (m)

Dissolved BTEX (mg/L) Concentration versus Distance (m)

After 2 years of Biosparging (1999)

Initial Plume Distribution Calculation

$$\Delta x := 1 \cdot m$$

$$x_i := \Delta x \cdot j$$

For Retarded Flow with Biodegradation and a Decaying Source (van Genuchten and Alves, 1982)

$$C_{j} := C_{0} \cdot exp(-\lambda \cdot t) \cdot \left[1 - \frac{1}{2} \cdot 1 - erf \frac{R \cdot x_{j} - v_{x} \cdot t}{2 \cdot \sqrt{D_{x} R \cdot t}} - \frac{v_{x}^{2} \cdot t}{\pi \cdot D_{x} R} \cdot exp \left[- \frac{R \cdot x_{j} - v_{x} \cdot t}{4 \cdot D_{x} R \cdot t} \right] + \frac{1}{2} \cdot 1 + \frac{v_{x} \cdot x_{j}}{D_{x}} + \frac{v_{x}^{2} \cdot t}{D_{x} R} \cdot exp \frac{v_{x} \cdot x_{j}}{D_{x}} \cdot 1 - erf \frac{R \cdot x_{j} + v_{x} \cdot t}{2 \cdot \sqrt{D_{x} R \cdot t}} \right] ...$$

$$+ C_{s} \cdot exp(-\gamma t) \cdot \left[\frac{v_{x}}{v_{x} + v_{x} \cdot \sqrt{1 + \frac{4 \cdot D_{x} R}{v_{x}^{2}} \cdot (\lambda - \gamma)}} \right] \cdot exp \left[\frac{v_{x} - v_{x} \cdot \sqrt{1 + \frac{4 \cdot D_{x} R}{v_{x}^{2}} \cdot (\lambda - \gamma)} \cdot x_{j}}{2 \cdot D_{x}} \right] \cdot \left[1 - erf \left[\frac{R \cdot x_{j} - t \cdot \left[v_{x} \cdot \sqrt{1 + \frac{4 \cdot D_{x} R}{v_{x}^{2}} \cdot (\lambda - \gamma)} \right]}{2 \cdot \sqrt{D_{x} R \cdot t}} \right] \right] ...$$

$$+ \left[\frac{v_{x}}{v_{x} - v_{x} \cdot \sqrt{1 + \frac{4 \cdot D_{x} R}{v_{x}^{2}} \cdot (\lambda - \gamma)}} \right] \cdot exp \left[\frac{v_{x} + v_{x} \cdot \sqrt{1 + \frac{4 \cdot D_{x} R}{v_{x}^{2}} \cdot (\lambda - \gamma)}} {2 \cdot D_{x}} \right] \cdot \left[1 - erf \left[\frac{R \cdot x_{j} + t \cdot v_{x} \cdot \sqrt{1 + \frac{4 \cdot D_{x} R}{v_{x}^{2}} \cdot (\lambda - \gamma)}} {2 \cdot \sqrt{D_{x} R \cdot t}} \right] \right] ...$$

$$+ \left[\frac{v_{x}}{v_{x} - v_{x} \cdot \sqrt{1 + \frac{4 \cdot D_{x} R}{v_{x}^{2}} \cdot (\lambda - \gamma)}} \right] \cdot \left[1 - erf \left[\frac{R \cdot x_{j} + t \cdot v_{x} \cdot \sqrt{1 + \frac{4 \cdot D_{x} R}{v_{x}^{2}} \cdot (\lambda - \gamma)}} {2 \cdot \sqrt{D_{x} R \cdot t}} \right] \right] ...$$

$$+ \left[\frac{v_{x}}{v_{x} - v_{x} \cdot \sqrt{1 + \frac{4 \cdot D_{x} R}{v_{x}^{2}} \cdot (\lambda - \gamma)}} \right] \cdot 1 - erf \left[\frac{R \cdot x_{j} + v_{x} \cdot \sqrt{1 + \frac{4 \cdot D_{x} R}{v_{x}^{2}} \cdot (\lambda - \gamma)}} {2 \cdot \sqrt{D_{x} R \cdot t}} \right] \right] ...$$

Dissolved BTEX (mg/L) Concentration versus Distance (m)

Dissolved BTEX (mg/L) Concentration versus Distance (m)

After 3 years of Biosparging (2000)

Initial Plume Distribution Calculation

 $t = 2555 \cdot day$

$$\Delta x := 1 \cdot m$$

$$x_i := \Delta x \cdot j$$

For Retarded Flow with Biodegradation and a Decaying Source (van Genuchten and Alves, 1982)

$$C_{j} = C_{0} \exp(-\lambda t) \cdot \left[1 - \frac{1}{2} \cdot 1 - \text{erf} \frac{R \cdot x_{j} - v_{x} \cdot t}{2 \cdot \sqrt{D_{x} R \cdot t}} - \frac{v_{x}^{2} \cdot t}{\pi \cdot D_{x} R} \cdot \exp\left[- \frac{R \cdot x_{j} - v_{x} \cdot t}{4 \cdot D_{x} R \cdot t} \right] + \frac{1}{2} \cdot 1 + \frac{v_{x} x_{j}}{D_{x}} + \frac{v_{x}^{2} \cdot t}{D_{x} R} \cdot \exp\left[\frac{v_{x} \cdot x_{j}}{D_{x}} \cdot 1 - \text{erf} \frac{R \cdot x_{j} + v_{x} \cdot t}{2 \cdot \sqrt{D_{x} R \cdot t}} \right] \dots \right]$$

$$+ C_{s} \exp(-\gamma t) \cdot \left[\frac{v_{x}}{v_{x} + v_{x}} \sqrt{1 + \frac{4 \cdot D_{x} R}{v_{x}^{2}} \cdot (\lambda - \gamma)}} \right] \cdot \exp\left[\frac{v_{x} - v_{x}}{2 \cdot D_{x}} \cdot 1 - \text{erf} \frac{R \cdot x_{j} + v_{x} \cdot t}{2 \cdot \sqrt{D_{x} R \cdot t}}} \right] \dots \right]$$

$$+ \left[\frac{v_{x}}{v_{x} - v_{x}} \sqrt{1 + \frac{4 \cdot D_{x} R}{v_{x}^{2}} \cdot (\lambda - \gamma)}} \right] \cdot \exp\left[\frac{v_{x} - v_{x}}{2 \cdot D_{x}} \cdot 1 - \text{erf} \frac{R \cdot x_{j} - v_{x} \cdot t}{2 \cdot \sqrt{D_{x} R \cdot t}}} \right] \dots \right]$$

$$+ \left[\frac{v_{x}}{v_{x} - v_{x}} \sqrt{1 + \frac{4 \cdot D_{x} R}{v_{x}^{2}} \cdot (\lambda - \gamma)}} \right] \cdot \exp\left[\frac{v_{x} + v_{x}}{2 \cdot D_{x}} \cdot 1 - \text{erf} \frac{R \cdot x_{j} + v_{x} \cdot t}{2 \cdot \sqrt{D_{x} R \cdot t}}} \right] \dots \right]$$

$$+ \left[\frac{v_{x}}{v_{x} - v_{x}} \sqrt{1 + \frac{4 \cdot D_{x} R}{v_{x}^{2}} \cdot (\lambda - \gamma)}} \right] \cdot \exp\left[\frac{v_{x} + v_{x}}{2 \cdot \sqrt{D_{x} R \cdot t}} \cdot 1 - \text{erf} \frac{R \cdot x_{j} + v_{x} \cdot t}{2 \cdot \sqrt{D_{x} R \cdot t}}} \right] \dots \right]$$

Dissolved BTEX (mg/L) Concentration versus Distance (m)

Dissolved BTEX (mg/L) Concentration versus Distance (m)

After 4 years of Biosparging (2001)

Initial Plume Distribution Calculation

i :=0..1000

t = 2920 day

 $\Delta x := 1 \cdot m$

 $x_i = \Delta x \cdot j$

For Retarded Flow with Biodegradation and a Decaying Source (van Genuchten and Alves, 1982)

$$C_{j} = C_{0} \cdot \exp(-\lambda \cdot t) \cdot \left[1 - \frac{1}{2} \cdot 1 - \text{erf} \frac{R \cdot x_{j} - v_{x} \cdot t}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}} - \frac{v_{x}^{2} \cdot t}{\pi \cdot D_{x} \cdot R} \cdot \exp\left[- \frac{R \cdot x_{j} - v_{x} \cdot t}{4 \cdot D_{x} \cdot R \cdot t} \right] + \frac{1}{2} \cdot 1 + \frac{v_{x} \cdot x_{j}}{D_{x}} + \frac{v_{x}^{2} \cdot t}{D_{x} \cdot R} \cdot \exp\left[\frac{R \cdot x_{j} + v_{x} \cdot t}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}} \right] \dots \right]$$

$$+ C_{s} \cdot \exp(-\gamma \cdot t) \cdot \left[\frac{v_{x}}{v_{x} + v_{x}} \cdot \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}} \right] \cdot \exp\left[\frac{v_{x} - v_{x}}{2 \cdot D_{x}} \cdot \left[\frac{v_{x} - v_{x}}{v_{x}} \cdot \left(\frac{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}{2 \cdot D_{x}} \right] \cdot \left[1 - \text{erf} \left[\frac{R \cdot x_{j} - t}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}} \cdot \frac{v_{x}}{v_{x}^{2}} \cdot (\lambda - \gamma)} \right] \right] \dots \right]$$

$$+ \left[\frac{v_{x}}{v_{x} - v_{x}} \cdot \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)} \right] \cdot \exp\left[\frac{v_{x} + v_{x}}{v_{x}} \cdot \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}} \right] \cdot \left[1 - \text{erf} \left[\frac{R \cdot x_{j} + t \cdot v_{x}}{v_{x}^{2}} \cdot \left(\frac{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}}} \right] \right] \dots \right]$$

$$+ \left[\frac{v_{x}}{v_{x} - v_{x}} \cdot \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}} \right] \cdot \left[1 - \text{erf} \left[\frac{R \cdot x_{j} + t \cdot v_{x}}{v_{x}^{2}} \cdot \left(\frac{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}}} \right] \right] \dots \right]$$

Dissolved BTEX (mg/L) Concentration versus Distance (m)

Dissolved BTEX (mg/L) Concentration versus Distance (n1)

After 5 years of Biosparging (2002)

Initial Plume Distribution Calculation

$$\Delta x := 1 \cdot m$$

$$x_i := \Delta x \cdot j$$

For Retarded Flow with Biodegradation and a Decaying Source (van Genuchten and Alves, 1982)

$$C_{j} = C_{0} \exp(-\lambda \cdot t) \cdot \left[1 - \frac{1}{2} \cdot 1 - erf \frac{R \cdot x_{j} - v_{x} \cdot t}{2 \cdot \sqrt{D_{x} R \cdot t}} - \frac{v_{x}^{2} \cdot t}{\pi \cdot D_{x} R} \cdot exp \left[- \frac{R \cdot x_{j} - v_{x} \cdot t}{4 \cdot D_{x} R \cdot t} \right] + \frac{1}{2} \cdot 1 + \frac{v_{x} \cdot x_{j}}{D_{x}} + \frac{v_{x}^{2} \cdot t}{D_{x} R} \cdot exp \frac{v_{x} \cdot x_{j}}{D_{x}} \cdot 1 - erf \frac{R \cdot x_{j} + v_{x} \cdot t}{2 \cdot \sqrt{D_{x} R \cdot t}} \right] \cdots \\ + C_{s} \cdot exp(-\gamma t) \cdot \left[- \frac{v_{x}}{v_{x} + v_{x} \cdot \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}} \right] \cdot exp \left[- \frac{v_{x}}{2 \cdot D_{x} R \cdot t} \right] \cdot \left[- \frac{v_{x}}{2 \cdot D_{x}} \right] \cdot \left[- \frac{R \cdot x_{j} + v_{x} \cdot t}{v_{x}^{2} \cdot (\lambda - \gamma)} \right] \cdot \left[- \frac{R \cdot x_{j} + v_{x} \cdot t}{v_{x}^{2} \cdot (\lambda - \gamma)} \right] \cdot \left[- \frac{R \cdot x_{j} + v_{x} \cdot t}{v_{x}^{2} \cdot (\lambda - \gamma)} \right] \cdot \left[- \frac{R \cdot x_{j} + v_{x} \cdot t}{v_{x}^{2} \cdot (\lambda - \gamma)} \right] \cdot \left[- \frac{R \cdot x_{j} + v_{x} \cdot t}{v_{x}^{2} \cdot (\lambda - \gamma)} \right] \cdot \left[- \frac{R \cdot x_{j} + v_{x} \cdot t}{v_{x}^{2} \cdot (\lambda - \gamma)} \right] \cdot \left[- \frac{R \cdot x_{j} + v_{x} \cdot t}{v_{x}^{2} \cdot (\lambda - \gamma)} \right] \cdot \left[- \frac{R \cdot x_{j} + v_{x} \cdot t}{v_{x}^{2} \cdot (\lambda - \gamma)} \right] \cdot \left[- \frac{R \cdot x_{j} + v_{x} \cdot t}{v_{x}^{2} \cdot (\lambda - \gamma)} \right] \cdot \left[- \frac{R \cdot x_{j} + v_{x} \cdot t}{v_{x}^{2} \cdot (\lambda - \gamma)} \right] \cdot \left[- \frac{R \cdot x_{j} + v_{x} \cdot t}{v_{x}^{2} \cdot (\lambda - \gamma)} \right] \cdot \left[- \frac{R \cdot x_{j} + v_{x} \cdot t}{v_{x}^{2} \cdot (\lambda - \gamma)} \right] \cdot \left[- \frac{R \cdot x_{j} + v_{x} \cdot t}{v_{x}^{2} \cdot (\lambda - \gamma)} \right] \cdot \left[- \frac{R \cdot x_{j} + v_{x} \cdot t}{v_{x}^{2} \cdot (\lambda - \gamma)} \right] \cdot \left[- \frac{R \cdot x_{j} + v_{x} \cdot t}{v_{x}^{2} \cdot (\lambda - \gamma)} \right] \cdot \left[- \frac{R \cdot x_{j} + v_{x} \cdot t}{v_{x}^{2} \cdot (\lambda - \gamma)} \right] \cdot \left[- \frac{R \cdot x_{j} + v_{x} \cdot t}{v_{x}^{2} \cdot (\lambda - \gamma)} \right] \cdot \left[- \frac{R \cdot x_{j} + v_{x} \cdot t}{v_{x}^{2} \cdot (\lambda - \gamma)} \right] \cdot \left[- \frac{R \cdot x_{j} + v_{x} \cdot t}{v_{x}^{2} \cdot (\lambda - \gamma)} \right] \cdot \left[- \frac{R \cdot x_{j} + v_{x} \cdot t}{v_{x}^{2} \cdot (\lambda - \gamma)} \right] \cdot \left[- \frac{R \cdot x_{j} + v_{x} \cdot t}{v_{x}^{2} \cdot (\lambda - \gamma)} \right] \cdot \left[- \frac{R \cdot x_{j} + v_{x} \cdot t}{v_{x}^{2} \cdot (\lambda - \gamma)} \right] \cdot \left[- \frac{R \cdot x_{j} + v_{x} \cdot t}{v_{x}^{2} \cdot (\lambda - \gamma)} \right] \cdot \left[- \frac{R \cdot x_{j} + v_{x} \cdot t}{v_{x}^{2} \cdot (\lambda - \gamma)} \right] \cdot \left[- \frac{R \cdot x_{j} + v_{x} \cdot t}{v_{x}^{2} \cdot (\lambda - \gamma)} \right] \cdot \left[- \frac{R \cdot x_{j} + v_{x} \cdot t}{v_{x}^{2} \cdot (\lambda - \gamma)} \right] \cdot \left[- \frac{R \cdot x_{j} + v_{x} \cdot t}{v_{x}^{2} \cdot (\lambda - \gamma)} \right] \cdot \left[- \frac{R \cdot x_{$$

Dissolved BTEX (mg/L) Concentration versus Distance (m)

Dissolved BTEX (mg/L) Concentration versus Distance (m)

Transient Solution to the Advective-Dispersive Equation for One-Dimensional Flow, Type Three Boundary Condition (46.5 mg/L source decaying 50% per year, a 0.08 day-1 solute decay coefficient, Constant Location, Variable Time)

ogeologic Data

$$K = 17.71 \frac{m}{day}$$

$$I := 0.01 \cdot \frac{ft}{ft}$$

$$n := 0.37$$

$$\alpha_x := 6 \cdot m$$

$$C_s := 46.5 \cdot \frac{mg}{liter}$$

$$C_o := 0.\frac{mg}{liter}$$

Retardation Coefficient Calculation

$$\lambda := 0.08 \cdot \frac{1}{\text{day}}$$

$$\gamma := 0.00137 \cdot \frac{1}{day}$$

$$K_{oc} := 79.\frac{mL}{gm}$$

$$\rho_b := 1.65 \cdot \frac{gm}{cm^3}$$

$$f_{oc} = 0.06\%$$

$$R := 1 + \frac{\rho_b \cdot K_{oc} \cdot f_{oc}}{n}$$

$$R = 1.211$$

Groundwater Hydraulics Calculations

$$v_x = \frac{K \cdot I}{n_e}$$

$$v_x = \frac{K \cdot I}{n_e}$$
 $v_x = 0.59 \cdot \frac{m}{day}$

$$\mathbf{v}_{\mathbf{C}} := \frac{\mathbf{v}_{\mathbf{C}}}{\mathbf{R}}$$

$$v_c := \frac{v_x}{R}$$
 $v_c = 0.487 \cdot \frac{m}{day}$

$$D_{x} = \alpha_{x} v_{x}$$

$$D_x := \alpha_x \cdot v_x$$
 $D_x = 38.126 \cdot \frac{R^2}{day}$

1 meter downgradient from source area (MPC/MPM)

ial Plume Distribution Calculation

For Retarded Flow with Biodegradation and a Decaying Source (van Genuchten and Alves, 1982)

$$\begin{array}{c} C_{i} = C_{0} \exp{-\lambda \cdot t_{i}} \cdot \left[1 - \frac{1}{2} \cdot 1 - erf \, \frac{R \cdot x - v_{x} \cdot t_{i}}{2 \cdot \sqrt{D_{x} \cdot R \cdot t_{i}}} \, - \frac{v_{x}^{2} \cdot t_{i}}{\pi \cdot D_{x} \cdot R} \cdot exp \left[- \frac{R \cdot x - v_{x} \cdot t_{i}^{2}}{4 \cdot D_{x} \cdot R \cdot t_{i}} \right] + \frac{1}{2} \cdot 1 + \frac{v_{x} \cdot x}{D_{x}} + \frac{v_{x}^{2} \cdot t_{i}}{D_{x} \cdot R} \cdot exp \frac{v_{x} \cdot x}{D_{x}} \cdot 1 - erf \, \frac{R \cdot x + v_{x} \cdot t_{i}}{2 \cdot \sqrt{D_{x} \cdot R \cdot t_{i}}} \right] \\ + C_{S} \cdot exp - \gamma \cdot t_{i} \cdot \left[\frac{v_{x}}{v_{x} + v_{x}} \cdot \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)} \right] \cdot exp \left[\frac{v_{x} - v_{x}}{2 \cdot D_{x}} \cdot \left[\frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma) \right] \cdot x}{2 \cdot D_{x}} \right] \left[1 - erf \left[\frac{R \cdot x - t_{i} \cdot \left[v_{x} \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)} \right]}{2 \cdot \sqrt{D_{x} \cdot R \cdot t_{i}}} \right] \right] \dots \right] \\ + \left[\frac{v_{x}}{v_{x} - v_{x}} \cdot \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}} \right] \cdot exp \left[\frac{v_{x} + v_{x}}{2 \cdot D_{x}} \cdot \left[1 - erf \left[\frac{R \cdot x + t_{i} \cdot v_{x}}{2 \cdot \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}} \right]} {2 \cdot \sqrt{D_{x} \cdot R \cdot t_{i}}} \right] \right] \dots \right] \\ + \left[\frac{v_{x}}{v_{x} - v_{x}} \cdot \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}} \right] \cdot exp \left[\frac{v_{x} + v_{x}}{2 \cdot D_{x}} \cdot \left[1 - erf \left[\frac{R \cdot x + t_{i} \cdot v_{x}}{2 \cdot \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}} \right]} \right] \right] \dots \right] \right] \\ + \left[\frac{v_{x}}{v_{x} - v_{x}} \cdot \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}} \right] \cdot exp \left[\frac{v_{x}}{v_{x}} \cdot \left[$$

Concentration of BTEX (mg/L) versus Time (years)

Concentration of BTEX (mg/L) versus Time (years)

00

Concentration of BTEX (mg/L) versus Time (years)

22 meter downgradient from source area (W71)

el Plume

l Plume Distribution Calculation

year :=
$$365 \cdot day = i := 1...20$$

$$x := 22 \cdot m$$

$$\Delta t := 1 \cdot year$$

$$t_i = \Delta t \cdot i$$

For Retarded Flow with Biodegradation and a Decaying Source (van Genuchten and Alves, 1982)

$$\begin{array}{c} C_{i} := C_{0} \cdot \exp{-\lambda \cdot t_{i}} \cdot \left[1 - \frac{1}{2} \cdot 1 - erf \, \frac{R \cdot x - v_{x} \cdot t_{i}}{2 \cdot \sqrt{D_{x} R \cdot t_{i}}} \, - \, \frac{v_{x}^{2} \cdot t_{i}}{\pi \cdot D_{x} R} \cdot exp \left[- \frac{R \cdot x - v_{x} \cdot t_{i}}{4 \cdot D_{x} R \cdot t_{i}} \right] + \frac{1}{2} \cdot 1 + \frac{v_{x} \cdot x}{D_{x}} + \frac{v_{x}^{2} \cdot t_{i}}{D_{x} R} \cdot exp \, \frac{v_{x} \cdot x}{D_{x}} \cdot 1 - erf \, \frac{R \cdot x + v_{x} \cdot t_{i}}{2 \cdot \sqrt{D_{x} R \cdot t_{i}}} \right] \dots \\ + C_{s} \cdot \exp{-\gamma \cdot t_{i}} \cdot \left[\frac{v_{x}}{v_{x} + v_{x}} \cdot \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)} \right] \cdot \exp{\left[\frac{v_{x} - v_{x}}{2 \cdot D_{x}} \right] \cdot \left[1 - erf \, \frac{R \cdot x - t_{i}}{2 \cdot \sqrt{D_{x} R \cdot t_{i}}} \cdot \frac{v_{x}}{v_{x}^{2}} \cdot (\lambda - \gamma) \right]}{2 \cdot \sqrt{D_{x} R \cdot t_{i}}} \right] \dots \\ + \left[\frac{v_{x}}{v_{x} - v_{x}} \cdot \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)} \right] \cdot \exp{\left[\frac{v_{x} + v_{x}}{2 \cdot D_{x}} \cdot \frac{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}{2 \cdot D_{x}} \right]} \cdot \left[1 - erf \, \frac{R \cdot x + t_{i} \cdot v_{x}}{2 \cdot \sqrt{D_{x} R \cdot t_{i}}} \cdot \frac{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}{2 \cdot \sqrt{D_{x} R \cdot t_{i}}} \right] \right] \dots \\ + \left[\frac{v_{x}}{v_{x} - v_{x}} \cdot \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}} \cdot \left[1 - erf \, \frac{R \cdot x + v_{x} \cdot t_{i}}{2 \cdot D_{x} \cdot R \cdot (\lambda - \gamma)} \cdot \frac{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}{2 \cdot \sqrt{D_{x} \cdot R \cdot t_{i}}} \right] \right] \dots \\ + \left[\frac{v_{x}}{v_{x} - v_{x}} \cdot \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}} \cdot \left[1 - erf \, \frac{R \cdot x + v_{x} \cdot t_{i}}{2 \cdot D_{x} \cdot R \cdot (\lambda - \gamma)} \right] \cdot \left[1 - erf \, \frac{R \cdot x + v_{x} \cdot t_{i}}{2 \cdot D_{x} \cdot R \cdot (\lambda - \gamma)} \right] \cdot \left[1 - erf \, \frac{R \cdot x + v_{x} \cdot t_{i}}{2 \cdot D_{x} \cdot R \cdot (\lambda - \gamma)} \right] \cdot \left[1 - erf \, \frac{R \cdot x + v_{x} \cdot t_{i}}{2 \cdot D_{x} \cdot R \cdot (\lambda - \gamma)} \right] \cdot \left[1 - erf \, \frac{R \cdot x + v_{x} \cdot t_{i}}{2 \cdot D_{x} \cdot R \cdot (\lambda - \gamma)} \right] \cdot \left[1 - erf \, \frac{R \cdot x + v_{x} \cdot t_{i}}{2 \cdot D_{x} \cdot R \cdot (\lambda - \gamma)} \right] \cdot \left[1 - erf \, \frac{R \cdot x + v_{x} \cdot t_{i}}{2 \cdot D_{x} \cdot R \cdot (\lambda - \gamma)} \right] \cdot \left[1 - erf \, \frac{R \cdot x + v_{x} \cdot t_{i}}{2 \cdot D_{x} \cdot R \cdot (\lambda - \gamma)} \right] \cdot \left[1 - erf \, \frac{R \cdot x + v_{x} \cdot t_{i}}{2 \cdot D_{x} \cdot R \cdot (\lambda - \gamma)} \right] \cdot \left[1 - erf \, \frac{R \cdot x + v_{x} \cdot t_{i}}{2 \cdot D_{x} \cdot R \cdot (\lambda - \gamma)} \right] \cdot \left[1 - erf \, \frac{R \cdot x + v_{x} \cdot t_{i}}{2 \cdot D_{x} \cdot R \cdot (\lambda - \gamma)} \right] \cdot \left[1 - erf \, \frac{R \cdot x + v_{x}$$

year

41 meters downgradient from the source area (MPL)

al Plume Distribution Calculation

week :=
$$7 \cdot day$$
 $i := 1 ... 2700$ $x := 41 \cdot m$ $\Delta t := 1 \cdot week$ $t_i := \Delta t \cdot i$

For Retarded Flow with Biodegradation and a Decaying Source (van Genuchten and Alves, 1982)

$$\begin{array}{c} C_{i} := C_{0} \cdot \exp{-\lambda t_{i}} \cdot \left[1 - \frac{1}{2} \cdot 1 - erf \, \frac{R \cdot x - v_{x} t_{i}}{2 \cdot \sqrt{D_{x} R \cdot t_{i}}} \, - \, \frac{v_{x}^{2} \cdot t_{i}}{\pi \cdot D_{x} R} \cdot exp \left[- \frac{R \cdot x - v_{x} t_{i}^{2}}{4 \cdot D_{x} R \cdot t_{i}} \right] + \frac{1}{2} \cdot 1 + \frac{v_{x} x}{D_{x}} + \frac{v_{x}^{2} \cdot t_{i}}{D_{x} R} \cdot exp \, \frac{v_{x} x}{D_{x}} \cdot 1 - erf \, \frac{R \cdot x + v_{x} t_{i}}{2 \cdot \sqrt{D_{x} R \cdot t_{i}}} \right] \\ + C_{s} \cdot \exp{-\gamma t_{i}} \cdot \left[\left[\frac{v_{x}}{v_{x} + v_{x}} \sqrt{1 + \frac{4 \cdot D_{x} R}{v_{x}^{2}} \cdot (\lambda - \gamma)} \right] \cdot exp \left[\frac{v_{x} - v_{x}}{2 \cdot D_{x}} \right] \cdot \exp{\left[\frac{v_{x} - v_{x}}{v_{x}^{2}} \cdot (\lambda - \gamma) \cdot x \right]} \cdot \left[1 - erf \left[\frac{R \cdot x - t_{i}}{2 \cdot \sqrt{D_{x} R \cdot t_{i}}} \cdot v_{x} \sqrt{1 + \frac{4 \cdot D_{x} R}{v_{x}^{2}} \cdot (\lambda - \gamma)} \right] \right] \cdot exp \left[\frac{v_{x} - v_{x}}{2 \cdot D_{x}} \right] \cdot \left[1 - erf \left[\frac{R \cdot x - t_{i}}{2 \cdot \sqrt{D_{x} R \cdot t_{i}}} \cdot v_{x} \sqrt{1 + \frac{4 \cdot D_{x} R}{v_{x}^{2}} \cdot (\lambda - \gamma)} \right] + \frac{v_{x}}{2 \cdot D_{x}} \right] \cdot \left[1 - erf \left[\frac{R \cdot x + t_{i} \cdot v_{x}}{2 \cdot \sqrt{D_{x} R \cdot t_{i}}} \cdot v_{x} \sqrt{1 + \frac{4 \cdot D_{x} R}{v_{x}^{2}} \cdot (\lambda - \gamma)} \right] \right] \cdot \left[1 - erf \left[\frac{R \cdot x + t_{i} \cdot v_{x}}{2 \cdot \sqrt{D_{x} R \cdot t_{i}}} \cdot v_{x} \sqrt{1 + \frac{4 \cdot D_{x} R}{v_{x}^{2}} \cdot (\lambda - \gamma)} \right] \right] \cdot \left[1 - erf \left[\frac{R \cdot x + t_{i} \cdot v_{x}}{2 \cdot \sqrt{D_{x} R \cdot t_{i}}} \cdot v_{x} \sqrt{1 + \frac{4 \cdot D_{x} R}{v_{x}^{2}} \cdot (\lambda - \gamma)} \right] \right] \cdot \left[1 - erf \left[\frac{R \cdot x + t_{i} \cdot v_{x}}{2 \cdot \sqrt{D_{x} R \cdot t_{i}}} \cdot v_{x} \sqrt{1 + \frac{4 \cdot D_{x} R}{v_{x}^{2}} \cdot (\lambda - \gamma)} \right] \right] \cdot \left[1 - erf \left[\frac{R \cdot x + t_{i} \cdot v_{x}}{2 \cdot \sqrt{D_{x} R \cdot t_{i}}} \right] \right] \cdot \left[\frac{R \cdot x + t_{i} \cdot v_{x}}{2 \cdot \sqrt{D_{x} R \cdot t_{i}}} \right] \cdot \left[\frac{R \cdot x + t_{i} \cdot v_{x}}{2 \cdot \sqrt{D_{x} R \cdot t_{i}}} \right] \cdot \left[\frac{R \cdot x + t_{i} \cdot v_{x}}{2 \cdot \sqrt{D_{x} R \cdot t_{i}}} \right] \right] \cdot \left[\frac{R \cdot x + t_{i} \cdot v_{x}}{2 \cdot \sqrt{D_{x} R \cdot t_{i}}} \right] \cdot \left[\frac{R \cdot x + t_{i} \cdot v_{x}}{2 \cdot \sqrt{D_{x} R \cdot t_{i}}} \right] \cdot \left[\frac{R \cdot x + t_{i} \cdot v_{x}}{2 \cdot \sqrt{D_{x} R \cdot t_{i}}} \right] \cdot \left[\frac{R \cdot x + t_{i} \cdot v_{x}}{2 \cdot \sqrt{D_{x} R \cdot t_{i}}} \right] \cdot \left[\frac{R \cdot x + t_{i} \cdot v_{x}}{2 \cdot \sqrt{D_{x} R \cdot t_{i}}} \right] \cdot \left[\frac{R \cdot x + t_{i} \cdot v_{x}}{2 \cdot \sqrt{D_{x} R \cdot t_{i}}} \right] \cdot \left[\frac{R \cdot x + t_{i} \cdot v_{x}}{2 \cdot \sqrt{D_{x} R \cdot t_{i}}} \right] \cdot \left[\frac{R \cdot x + t_{i} \cdot v_{x}}{2 \cdot \sqrt{D_{x} R \cdot t_{i}}} \right] \cdot \left$$

Concentration of BTEX (mg/L) versus Time (weeks)

Concentration of BTEX (mg/L) versus Time (weeks)

APPENDIX C-3 ANALYTICAL MODEL SENSITIVITY ANALYSES

Sensitivity Analysis of Hydrualic Conductivity (2 times less than observed value) - Present

Initial Plume Distribution Calculation

t = 1460-day

$$\Delta x := 1 \cdot m$$

For Retarded Flow with Biodegradation and a Decaying Source (van Genuchten and Alves, 1982)

$$C_{j} = C_{0} \exp(-\lambda t) \cdot \left[1 - \frac{1}{2} \cdot 1 - erf \frac{R \cdot x_{j} - v_{x} \cdot t}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}} - \frac{v_{x}^{2} \cdot t}{\pi \cdot D_{x} \cdot R} \cdot exp \left[- \frac{R \cdot x_{j} - v_{x} \cdot t}{4 \cdot D_{x} \cdot R \cdot t} \right] + \frac{1}{2} \cdot 1 + \frac{v_{x} \cdot x_{j}}{D_{x}} + \frac{v_{x}^{2} \cdot t}{D_{x} \cdot R} \cdot exp \frac{v_{x} \cdot x_{j}}{D_{x}} \cdot 1 - erf \frac{R \cdot x_{j} + v_{x} \cdot t}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}} \right] \dots$$

$$+ C_{s} \cdot exp(-\gamma t) \cdot \left[- \frac{v_{x}}{v_{x} + v_{x} \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}} \right] \cdot exp \left[- \frac{v_{x} \cdot v_{x} \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}}{2 \cdot D_{x}} \right] \cdot \left[1 - erf \left[- \frac{R \cdot x_{j} - t \left[v_{x} \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}} \right] \right] \dots \right]$$

$$+ \left[- \frac{v_{x}}{v_{x} - v_{x} \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}} \right] \cdot exp \left[- \frac{v_{x} \cdot v_{x} \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}} {2 \cdot D_{x}} \right] \cdot \left[1 - erf \left[- \frac{R \cdot x_{j} + t \cdot v_{x} \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}} {2 \cdot \sqrt{D_{x} \cdot R \cdot t}} \right] \right] \dots \right]$$

$$+ \left[- \frac{v_{x}}{v_{x} - v_{x} \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}} \right] \cdot exp \left[- \frac{v_{x} \cdot v_{x} \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}} {2 \cdot D_{x} \cdot R \cdot t} \right] \cdot 1 - erf \left[- \frac{R \cdot x_{j} + v_{x} \cdot t}}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}} \right] \right] \dots$$

Dissolved BTEX (mg/L) Concentration versus Distance (m)

Sensitivity Analysis of Hydraulic Conductivity (2 times greater than observed) - Present

itial Plume Distribution Calculation

"t :=1460-day

$$\Delta x := 1 \cdot m$$

$$x_i := \Delta x \cdot j$$

For Retarded Flow with Biodegradation and a Decaying Source (van Genuchten and Alves, 1982)

$$C_{j} = C_{0} \exp(-\lambda \cdot t) \cdot \left[1 - \frac{1}{2} \cdot 1 - erf \frac{R \cdot x_{j} - v_{x} \cdot t}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}} - \frac{v_{x}^{2} \cdot t}{\pi \cdot D_{x} \cdot R} \cdot exp \left[- \frac{R \cdot x_{j} - v_{x} \cdot t}{4 \cdot D_{x} \cdot R \cdot t} \right] + \frac{1}{2} \cdot 1 + \frac{v_{x} \cdot x_{j}}{D_{x}} + \frac{v_{x}^{2} \cdot t}{D_{x} \cdot R} \cdot exp \frac{v_{x} \cdot x_{j}}{D_{x}} \cdot 1 - erf \frac{R \cdot x_{j} + v_{x} \cdot t}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}} \right] \dots$$

$$+ C_{s} \exp(-\gamma t) \cdot \left[\frac{v_{x}}{v_{x} + v_{x}} \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}} \right] \exp \left[\frac{v_{x} - v_{x}}{2 \cdot D_{x}} \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}} \right] \cdot exp \left[\frac{v_{x} - v_{x}}{2 \cdot D_{x}} \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}} \right] \cdot exp \left[\frac{v_{x} + v_{x}}{2 \cdot D_{x}} \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}} \right] \cdot exp \left[\frac{v_{x} + v_{x}}{2 \cdot D_{x}} \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}} \right] \cdot exp \left[\frac{v_{x} + v_{x}}{2 \cdot D_{x}} \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}} \right] \cdot exp \left[\frac{v_{x} + v_{x}}{2 \cdot D_{x}} \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}} \right] \cdot exp \left[\frac{v_{x} + v_{x}}{2 \cdot D_{x}} \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}} \right] \cdot exp \left[\frac{v_{x} + v_{x}}{2 \cdot D_{x}} \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}} \right] \cdot exp \left[\frac{v_{x} + v_{x}}{2 \cdot D_{x}} \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}} \right] \cdot exp \left[\frac{v_{x} + v_{x}}{2 \cdot D_{x}} \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}} \right] \cdot exp \left[\frac{v_{x} + v_{x}}{2 \cdot D_{x}} \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}} \right] \cdot exp \left[\frac{v_{x} + v_{x}}{2 \cdot D_{x}} \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}} \right] \cdot exp \left[\frac{v_{x} + v_{x}}{2 \cdot D_{x}} \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}} \right] \cdot exp \left[\frac{v_{x} + v_{x}}{2 \cdot D_{x}} \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}} \right] \cdot exp \left[\frac{v_{x} + v_{x}}{2 \cdot D_{x}} \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}} \right] \cdot exp \left[\frac{v_{x} + v_{x}}{2 \cdot D_{x}} \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}} \right] \cdot exp \left[\frac{v_{x} + v_{x}}{2 \cdot D_{x}} \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}} \right] \cdot exp \left[\frac{v_{x} + v_{x}}{2 \cdot D_{x}} \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}} \right] \cdot exp \left[\frac{v_{x} + v_{x}}{2 \cdot D_{x}} \sqrt{1 + \frac{4 \cdot$$

Dissolved BTEX (mg/L) Concentration versus Distance (m)

Sensitivity Analysis of Total Organic Carbon Content (10 times less than observed value) - Present

Initial Plume Distribution Calculation

t = 1460 -day

$$\Delta x := 1 \cdot m$$

$$x_i := \Delta x \cdot j$$

For Retarded Flow with Biodegradation and a Decaying Source (van Genuchten and Alves, 1982)

$$C_{j} = C_{0} \exp(-\lambda \cdot t) \cdot \left[1 - \frac{1}{2} \cdot 1 - \text{erf} \frac{R \cdot x_{j} - v_{x} \cdot t}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}} - \frac{v_{x}^{2} \cdot t}{\pi \cdot D_{x} \cdot R} \cdot \exp\left[- \frac{R \cdot x_{j} - v_{x} \cdot t}{4 \cdot D_{x} \cdot R \cdot t} \right] + \frac{1}{2} \cdot 1 + \frac{v_{x} \cdot x_{j}}{D_{x}} + \frac{v_{x}^{2} \cdot t}{D_{x} \cdot R} \cdot \exp\left[\frac{R \cdot x_{j} + v_{x} \cdot t}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}} \right] - \exp\left[\frac{v_{x} - v_{x} \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}}{2 \cdot D_{x}} \right] \cdot \left[1 - \text{erf} \left[\frac{R \cdot x_{j} - t \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}} \right] \right] ... \right] + \left[\frac{v_{x}}{v_{x} - v_{x} \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}}} {2 \cdot D_{x}} \right] \cdot \exp\left[\frac{v_{x} + v_{x} \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}}}{2 \cdot D_{x}} \right] \cdot \left[1 - \text{erf} \left[\frac{R \cdot x_{j} - t \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}} \right] \right] ... \right] + \left[\frac{v_{x}}{v_{x} - v_{x} \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}}}}{2 \cdot D_{x} - (\lambda - \gamma) \cdot t} \right] \cdot 1 - \text{erf} \left[\frac{R \cdot x_{j} + v_{x} \cdot t}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}}}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}}} \right] \right] ... \right]$$

Dissolved BTEX (mg/L) Concentration versus Distance (m)

Sensitivity Analysis of Total Organic Carbon Content (10 times greater than observed value) - Present

Initial Plume Distribution Calculation

 $t = 1460 \cdot day$

$$\Delta x := 1 \cdot m$$

$$x_i := \Delta x \cdot j$$

For Retarded Flow with Biodegradation and a Decaying Source (van Genuchten and Alves, 1982)

$$C_{j} = C_{0} \exp(-\lambda \cdot t) \cdot \left[1 - \frac{1}{2} \cdot 1 - erf \frac{R \cdot x_{j} - v_{x} \cdot t}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}} - \frac{v_{x}^{2} \cdot t}{\pi \cdot D_{x} \cdot R} \cdot exp \left[- \frac{R \cdot x_{j} - v_{x} \cdot t}{4 \cdot D_{x} \cdot R \cdot t} \right] + \frac{1}{2} \cdot 1 + \frac{v_{x} \cdot x_{j}}{D_{x}} + \frac{v_{x}^{2} \cdot t}{D_{x} \cdot R} \cdot exp \frac{v_{x} \cdot x_{j}}{D_{x}} \cdot 1 - erf \frac{R \cdot x_{j} + v_{x} \cdot t}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}} \right] ...$$

$$+ C_{s} \cdot exp(-\gamma \cdot t) \cdot \left[\left[\frac{v_{x}}{v_{x} + v_{x}} \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)} \right] \cdot exp \left[\frac{v_{x} - v_{x}}{2 \cdot D_{x}} \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)} \right] \cdot x_{j} \right] \left[1 - erf \left[\frac{R \cdot x_{j} - t \cdot \left[v_{x} \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)} \right]}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}} \right] \right] ...$$

$$+ \left[\frac{v_{x}}{v_{x} - v_{x}} \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)} \right] \cdot exp \left[\frac{\left[v_{x} + v_{x} \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)} \right] \cdot x_{j}}{2 \cdot D_{x}} \right] \left[1 - erf \left[\frac{R \cdot x_{j} + t \cdot v_{x}}{v_{x}} \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)} \right] \right] ...$$

$$+ \left[\frac{v_{x}}{v_{x} - v_{x}} \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)} \right] \cdot exp \left[\frac{v_{x} + v_{x}}{v_{x}} \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)} \right] \cdot 1 - erf \left[\frac{R \cdot x_{j} + t \cdot v_{x}}{v_{x}} \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)} \right] \cdot 1 - erf \left[\frac{R \cdot x_{j} + t \cdot v_{x}}{v_{x}} \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}} \right] \cdot 1 - erf \left[\frac{R \cdot x_{j} + t \cdot v_{x}}{v_{x}} \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)} \right] \cdot exp \left[\frac{v_{x} + v_{x}}{v_{x}} \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}} \right] \cdot exp \left[\frac{v_{x} + v_{x}}{v_{x}} \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)} \right] \cdot exp \left[\frac{v_{x} + v_{x}}{v_{x}} \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)} \right] \cdot exp \left[\frac{v_{x} + v_{x}}{v_{x}} \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}} \right] \cdot exp \left[\frac{v_{x} + v_{x}}{v_{x}} \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)} \right] \cdot exp \left[\frac{v_{x} + v_{x}}{v_{x}} \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}} \right] \cdot exp \left[\frac{v_{x} + v_{x}}{v_{x}} \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)} \right] \cdot exp \left[\frac{v_{x} + v_{x}}{v_{x}} \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda$$

Dissolved BTEX (mg/L) Concentration versus Distance (m)

Sensitivity Analysis of Effective Porosity (25 percent less than observed value) - Present

ial Plume Distribution Calculation

$$j := 0..1000$$
 $t := 1460 \cdot day$

$$\Delta x := 1 \cdot m$$

$$x_i := \Delta x \cdot j$$

For Retarded Flow with Biodegradation and a Decaying Source (van Genuchten and Alves, 1982)

$$C_{j} = C_{0} \exp(-\lambda \cdot t) \cdot \left[1 - \frac{1}{2} \cdot 1 - \text{erf} \frac{R \cdot x_{j} - v_{x} \cdot t}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}} - \frac{v_{x}^{2} \cdot t}{\pi \cdot D_{x} \cdot R} \cdot \exp\left[- \frac{R \cdot x_{j} - v_{x} \cdot t}{4 \cdot D_{x} \cdot R \cdot t} \right] + \frac{1}{2} \cdot 1 + \frac{v_{x} \cdot x_{j}}{D_{x}} + \frac{v_{x}^{2} \cdot t}{D_{x} \cdot R} \cdot \exp\left[\frac{v_{x} \cdot x_{j}}{D_{x}} \cdot 1 - \text{erf} \frac{R \cdot x_{j} + v_{x} \cdot t}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}} \right] \dots \right]$$

$$+ C_{s} \cdot \exp(-\gamma \cdot t) \cdot \left[\left[\frac{v_{x}}{v_{x} + v_{x}} \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)} \right] \cdot \exp\left[\frac{v_{x} - v_{x}}{2 \cdot D_{x}} \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)} \right] \cdot x_{j} \right] \cdot \left[1 - \text{erf} \left[\frac{R \cdot x_{j} - t \cdot \left[v_{x} \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)} \right]}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}} \right] \right] \dots \right]$$

$$+ \left[\frac{v_{x}}{v_{x} - v_{x}} \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}} \cdot \exp\left[\frac{\left[v_{x} + v_{x} \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)} \right] \cdot x_{j}}{2 \cdot D_{x}} \right] \cdot \left[1 - \text{erf} \left[\frac{R \cdot x_{j} + t \cdot v_{x}}{\sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}} \right] \cdot \left[1 - \text{erf} \left[\frac{R \cdot x_{j} + t \cdot v_{x}}{\sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}} \right] \cdot \left[1 - \text{erf} \left[\frac{R \cdot x_{j} + t \cdot v_{x}}{\sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}} \right] \cdot \left[1 - \text{erf} \left[\frac{R \cdot x_{j} + t \cdot v_{x}}{\sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}} \right] \right] \cdot \left[1 - \text{erf} \left[\frac{R \cdot x_{j} + t \cdot v_{x}}{\sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}} \right] \right] \cdot \left[1 - \text{erf} \left[\frac{R \cdot x_{j} + t \cdot v_{x}}{\sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}} \right] \right] \cdot \left[1 - \text{erf} \left[\frac{R \cdot x_{j} + t \cdot v_{x}}{\sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}} \right] \cdot \left[1 - \text{erf} \left[\frac{R \cdot x_{j} + t \cdot v_{x}}{\sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}} \right] \right] \right] \cdot \left[\frac{1}{2} - \frac{1}{2} \cdot \frac{1 - t \cdot v_{x}}{\sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}}} \right] \cdot \left[\frac{1}{2} - \frac{1}{2} \cdot \frac{1 - t \cdot v_{x}}{\sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}} \right] \cdot \left[\frac{1}{2} - \frac{1}{2} \cdot \frac{1 - t \cdot v_{x}}{\sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}} \right] \cdot \left[\frac{1}{2} - \frac{1}{2} \cdot \frac{1 - t \cdot v_{x}}{\sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}} \right] \cdot \left[\frac{1}{2} - \frac{1 - t \cdot v_{x}}{\sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^$$

Dissolved BTEX (mg/L) Concentration versus Distance (m)

Sensitivity Analysis of Effective Porosity (25 percent greater than observed value) - Present

itial Plume Distribution Calculation

$$j := 0..1000$$
 $t := 1460 \cdot day$ $\Delta x := 1 \cdot m$

For Retarded Flow with Biodegradation and a Decaying Source (van Genuchten and Alves, 1982)

$$C_{j} = C_{0} \exp(-\lambda \cdot t) \cdot \left[1 - \frac{1}{2} \cdot 1 - erf \frac{R \cdot x_{j} - v_{x} \cdot t}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}} - \frac{v_{x}^{2} \cdot t}{\pi \cdot D_{x} \cdot R} \cdot exp \left[- \frac{R \cdot x_{j} - v_{x} \cdot t}{4 \cdot D_{x} \cdot R \cdot t} \right] + \frac{1}{2} \cdot 1 + \frac{v_{x} \cdot x_{j}}{D_{x}} + \frac{v_{x}^{2} \cdot t}{D_{x} \cdot R} \cdot exp \frac{v_{x} \cdot x_{j}}{D_{x}} \cdot 1 - erf \frac{R \cdot x_{j} + v_{x} \cdot t}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}} \right] \dots$$

$$+ C_{s} \cdot exp(-\gamma t) \cdot \left[\frac{v_{x}}{v_{x} + v_{x} \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}} \right] \cdot exp \left[\frac{v_{x} - v_{x} \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}}{2 \cdot D_{x}} \right] \cdot \left[1 - erf \left[\frac{R \cdot x_{j} - t \left[v_{x} \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)} \right]}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}} \right] \right] \dots$$

$$+ \left[\frac{v_{x}}{v_{x} - v_{x} \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}} \right] \cdot exp \left[\frac{v_{x} + v_{x} \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}}{2 \cdot D_{x}} \right] \cdot \left[1 - erf \left[\frac{R \cdot x_{j} + t \cdot v_{x} \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}} \right] \right] \dots$$

$$+ \left[\frac{v_{x}}{v_{x} - v_{x} \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}}} \right] \cdot exp \left[\frac{v_{x} \cdot v_{x} \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}}}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}} \right] \cdot 1 - erf \left[\frac{R \cdot x_{j} + v_{x} \cdot \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}}}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}} \right] \cdot 1 - erf \left[\frac{R \cdot x_{j} + v_{x} \cdot \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}}}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}} \right] \cdot 1 - erf \left[\frac{R \cdot x_{j} + v_{x} \cdot \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}}}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}} \right] \cdot 1 - erf \left[\frac{R \cdot x_{j} + v_{x} \cdot \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}}}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}} \right] \cdot 1 - erf \left[\frac{R \cdot x_{j} + v_{x} \cdot \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}} \right] \cdot 1 - erf \left[\frac{R \cdot x_{j} + v_{x} \cdot \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}}}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}} \right] \cdot 1 - erf \left[\frac{R \cdot x_{j} + v_{x} \cdot \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}}}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}} \right] \cdot 1 - erf \left[\frac{R \cdot x_{j} + v_{x} \cdot \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}} \right] \cdot 1 - erf \left[\frac{R \cdot x_{j} + v_{x} \cdot \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}}{2 \cdot \sqrt{D_{x}$$

Dissolved BTEX (mg/L) Concentration versus Distance (m)

Sensitivity Analysis of Dispersivity (2 times less than observed value) - Present

al Plume Distribution Calculation

t = 1460 day

$$\Delta x := 1 \cdot m$$

For Retarded Flow with Biodegradation and a Decaying Source (van Genuchten and Alves, 1982)

$$C_{j} = C_{0} \exp(-\lambda t) \left[1 - \frac{1}{2} \cdot 1 - erf \frac{R \cdot x_{j} - v_{x} \cdot t}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}} - \frac{v_{x}^{2} \cdot t}{\pi \cdot D_{x} R} \cdot exp \left[- \frac{R \cdot x_{j} - v_{x} \cdot t}{4 \cdot D_{x} R \cdot t} \right] + \frac{1}{2} \cdot 1 + \frac{v_{x} \cdot x_{j}}{D_{x}} + \frac{v_{x}^{2} \cdot t}{D_{x} R} \cdot exp \frac{v_{x} \cdot x_{j}}{D_{x}} \cdot 1 - erf \frac{R \cdot x_{j} + v_{x} \cdot t}{2 \cdot \sqrt{D_{x} R \cdot t}} \right] ...$$

$$+ C_{s} \cdot exp(-\gamma t) \cdot \left[\frac{v_{x}}{v_{x} + v_{x} \sqrt{1 + \frac{4 \cdot D_{x} R}{v_{x}^{2}} \cdot (\lambda - \gamma)}} \right] \cdot exp \left[\frac{v_{x} - v_{x} \sqrt{1 + \frac{4 \cdot D_{x} R}{v_{x}^{2}} \cdot (\lambda - \gamma)}} {2 \cdot D_{x}} \right] \cdot \left[1 - erf \frac{R \cdot x_{j} - t \cdot \left[v_{x} \sqrt{1 + \frac{4 \cdot D_{x} R}{v_{x}^{2}} \cdot (\lambda - \gamma)} \right]}{2 \cdot \sqrt{D_{x} R \cdot t}} \right] ...$$

$$+ \left[\frac{v_{x}}{v_{x} - v_{x} \sqrt{1 + \frac{4 \cdot D_{x} R}{v_{x}^{2}} \cdot (\lambda - \gamma)}} \right] \cdot exp \left[\frac{v_{x} + v_{x} \sqrt{1 + \frac{4 \cdot D_{x} R}{v_{x}^{2}} \cdot (\lambda - \gamma)}} {2 \cdot D_{x}} \right] \cdot \left[1 - erf \frac{R \cdot x_{j} + t \cdot v_{x} \sqrt{1 + \frac{4 \cdot D_{x} R}{v_{x}^{2}} \cdot (\lambda - \gamma)}}} {2 \cdot \sqrt{D_{x} R \cdot t}} \right] \right] ...$$

$$+ \left[\frac{v_{x}}{v_{x} - v_{x} \sqrt{1 + \frac{4 \cdot D_{x} R}{v_{x}^{2}} \cdot (\lambda - \gamma)}}} {2 \cdot D_{x} - (\lambda - \gamma) \cdot t} \right] \cdot 1 - erf \frac{R \cdot x_{j} + v_{x} \cdot t}}{2 \cdot \sqrt{D_{x} R \cdot t}}$$

Dissolved BTEX (mg/L) Concentration versus Distance (m)

Sensitivity Analysis of Dispersivity (2 times greater than observed value) - Present

tial Plume Distribution Calculation

t = 1460 day

$$\Delta x = 1 \cdot m$$

$$x_i := \Delta x \cdot j$$

For Retarded Flow with Biodegradation and a Decaying Source (van Genuchten and Alves, 1982)

$$C_{j} = C_{0} \exp(-\lambda \cdot t) \left[1 - \frac{1}{2} \cdot 1 - erf \frac{R \cdot x_{j} - v_{x} \cdot t}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}} - \frac{v_{x}^{2} \cdot t}{\pi \cdot D_{x} R} \cdot exp \left[- \frac{R \cdot x_{j} - v_{x} \cdot t}{4 \cdot D_{x} R \cdot t} \right] + \frac{1}{2} \cdot 1 + \frac{v_{x} \cdot x_{j}}{D_{x}} + \frac{v_{x}^{2} \cdot t}{D_{x} R} \cdot exp \frac{v_{x} \cdot x_{j}}{D_{x}} \cdot 1 - erf \frac{R \cdot x_{j} + v_{x} \cdot t}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}} \right] \dots$$

$$+ C_{s} \exp(-\gamma t) \left[\frac{v_{x}}{v_{x} + v_{x}} \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)} \right] \exp \left[\frac{v_{x} - v_{x}}{2 \cdot D_{x}} \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)} \right] \cdot x_{j} \right] \left[1 - erf \left[\frac{R \cdot x_{j} - t \cdot v_{x}}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}} \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)} \right] \right] \dots$$

$$+ \left[\frac{v_{x}}{v_{x} - v_{x}} \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)} \right] \exp \left[\frac{v_{x} + v_{x}}{2 \cdot D_{x}} \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)} \right] \left[1 - erf \left[\frac{R \cdot x_{j} + t \cdot v_{x}}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}} \right] \right] \dots$$

$$+ \left[\frac{v_{x}}{v_{x} - v_{x}} \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)} \right] \exp \left[\frac{v_{x} + v_{x}}{D_{x}} - (\lambda - \gamma) \cdot t \right] \cdot 1 - erf \left[\frac{R \cdot x_{j} + v_{x} \cdot t}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}} \right] \dots$$

Dissolved BTEX (mg/L) Concentration versus Distance (m)

Sensitivity Analysis of Solute Decay Rate (2 times less than observed value) - Present

al Plume Distribution Calculation

$$t = 1460 \text{ day}$$

$$\Delta x := 1 \cdot m$$

$$x_i := \Delta x \cdot j$$

For Retarded Flow with Biodegradation and a Decaying Source (van Genuchten and Alves, 1982)

$$C_{j} = C_{0} \cdot exp(-\lambda t) \cdot \left[1 - \frac{1}{2} \cdot 1 - erf \frac{R \cdot x_{j} - v_{x} t}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}} - \frac{v_{x}^{2} \cdot t}{\pi \cdot D_{x} R} \cdot exp \left[- \frac{R \cdot x_{j} - v_{x} t}{4 \cdot D_{x} R \cdot t} \right] + \frac{1}{2} \cdot 1 + \frac{v_{x} \cdot x_{j}}{D_{x}} + \frac{v_{x}^{2} \cdot t}{D_{x} R} \cdot exp \frac{v_{x} \cdot x_{j}}{D_{x}} \cdot 1 - erf \frac{R \cdot x_{j} + v_{x} t}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}} \right] . . . \\ + C_{s} \cdot exp(-\gamma t) \cdot \left[- \frac{v_{x}}{v_{x} + v_{x}} \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)} \right] \cdot exp \left[- \frac{v_{x}}{v_{x}^{2} \cdot (\lambda - \gamma)} \right] \cdot exp \left[- \frac{v_{x}}{v_{x}^{2} \cdot (\lambda - \gamma)} \right] \cdot \left[- \frac{R \cdot x_{j} + v_{x} \cdot t}{v_{x}^{2} \cdot (\lambda - \gamma)} \right] \cdot \left[- \frac{R \cdot x_{j} + v_{x} \cdot t}{v_{x}^{2} \cdot (\lambda - \gamma)} \right] \cdot \left[- \frac{v_{x}}{v_{x}^{2} \cdot (\lambda - \gamma)} \right] \cdot \left[- \frac{v_{x}}{v_{x}^{2} \cdot (\lambda - \gamma)} \right] \cdot \left[- \frac{v_{x}}{v_{x}^{2} \cdot (\lambda - \gamma)} \right] \cdot \left[- \frac{R \cdot x_{j} + v_{x} \cdot t}{v_{x}^{2} \cdot (\lambda - \gamma)} \right] \cdot \left[- \frac{R \cdot x_{j} + v_{x} \cdot t}{v_{x}^{2} \cdot (\lambda - \gamma)} \right] \cdot \left[- \frac{R \cdot x_{j} + v_{x} \cdot t}{v_{x}^{2} \cdot (\lambda - \gamma)} \right] \cdot \left[- \frac{R \cdot x_{j} + v_{x} \cdot t}{v_{x}^{2} \cdot (\lambda - \gamma)} \right] \cdot \left[- \frac{R \cdot x_{j} + v_{x} \cdot t}{v_{x}^{2} \cdot (\lambda - \gamma)} \right] \cdot \left[- \frac{R \cdot x_{j} + v_{x} \cdot t}{v_{x}^{2} \cdot (\lambda - \gamma)} \right] \cdot \left[- \frac{R \cdot x_{j} + v_{x} \cdot t}{v_{x}^{2} \cdot (\lambda - \gamma)} \right] \cdot \left[- \frac{R \cdot x_{j} + v_{x} \cdot t}{v_{x}^{2} \cdot (\lambda - \gamma)} \right] \cdot \left[- \frac{R \cdot x_{j} + v_{x} \cdot t}{v_{x}^{2} \cdot (\lambda - \gamma)} \right] \cdot \left[- \frac{R \cdot x_{j} + v_{x} \cdot t}{v_{x}^{2} \cdot (\lambda - \gamma)} \right] \cdot \left[- \frac{R \cdot x_{j} + v_{x} \cdot t}{v_{x}^{2} \cdot (\lambda - \gamma)} \right] \cdot \left[- \frac{R \cdot x_{j} + v_{x} \cdot t}{v_{x}^{2} \cdot (\lambda - \gamma)} \right] \cdot \left[- \frac{R \cdot x_{j} + v_{x} \cdot t}{v_{x}^{2} \cdot (\lambda - \gamma)} \right] \cdot \left[- \frac{R \cdot x_{j} + v_{x} \cdot t}{v_{x}^{2} \cdot (\lambda - \gamma)} \right] \cdot \left[- \frac{R \cdot x_{j} + v_{x} \cdot t}{v_{x}^{2} \cdot (\lambda - \gamma)} \right] \cdot \left[- \frac{R \cdot x_{j} + v_{x} \cdot t}{v_{x}^{2} \cdot (\lambda - \gamma)} \right] \cdot \left[- \frac{R \cdot x_{j} + v_{x} \cdot t}{v_{x}^{2} \cdot (\lambda - \gamma)} \right] \cdot \left[- \frac{R \cdot x_{j} + v_{x} \cdot t}{v_{x}^{2} \cdot (\lambda - \gamma)} \right] \cdot \left[- \frac{R \cdot x_{j} + v_{x} \cdot t}{v_{x}^{2} \cdot (\lambda - \gamma)} \right] \cdot \left[- \frac{R \cdot x_{j} + v_{x} \cdot t}{v_{x}^{2} \cdot (\lambda - \gamma)} \right] \cdot \left[- \frac{R \cdot x_{j} + v_{x} \cdot t}{v_{x}^{2} \cdot (\lambda - \gamma)} \right] \cdot \left[- \frac{R \cdot x_{j} + v_{x} \cdot t}{v_{x}^{2} \cdot (\lambda - \gamma)} \right] \cdot \left[- \frac{R \cdot x_{j} + v_{x} \cdot t}{v_{x}^{2} \cdot$$

Dissolved BTEX (mg/L) Concentration versus Distance (m)

Sensitivity Analysis of Solute Decay Rate (2 times greater than observed value) - Present

itial Plume Distribution Calculation

t = 1460-day

$$\Delta x := 1 \cdot m$$

For Retarded Flow with Biodegradation and a Decaying Source (van Genuchten and Alves, 1982)

$$C_{j} = C_{0} \exp(-\lambda \cdot t) \cdot \left[1 - \frac{1}{2} \cdot 1 - erf \frac{R \cdot x_{j} - v_{x} \cdot t}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}} - \frac{v_{x}^{2} \cdot t}{\pi \cdot D_{x} \cdot R} \cdot exp \left[- \frac{R \cdot x_{j} - v_{x} \cdot t}{4 \cdot D_{x} \cdot R \cdot t} \right] + \frac{1}{2} \cdot 1 + \frac{v_{x} \cdot x_{j}}{D_{x}} + \frac{v_{x}^{2} \cdot t}{D_{x} \cdot R} \cdot exp \frac{v_{x} \cdot x_{j}}{D_{x}} \cdot 1 - erf \frac{R \cdot x_{j} + v_{x} \cdot t}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}} \right] + C_{s} exp(-\gamma t) \cdot \left[\frac{v_{x}}{v_{x} + v_{x} \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}} \right] \cdot exp \left[\frac{v_{x} - v_{x} \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)} \cdot x_{j}}{2 \cdot D_{x}} \right] \left[1 - erf \left[\frac{R \cdot x_{j} - t \left[v_{x} \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)} \right]}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}} \right] \right] + \left[\frac{v_{x}}{v_{x} - v_{x} \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}} \right] \cdot exp \left[\frac{v_{x} + v_{x} \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)} \cdot x_{j}}{2 \cdot D_{x}} \right] \left[1 - erf \left[\frac{R \cdot x_{j} + t \cdot v_{x} \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}} \right] \right] \cdot \left[\frac{v_{x} + v_{x} \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}} \right] \cdot \left[1 - erf \left[\frac{R \cdot x_{j} + t \cdot v_{x} \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}} \right] \right] \cdot \left[\frac{v_{x} + v_{x} \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}} \right] \cdot \left[\frac{v_{x} + v_{x} \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}} \right] \cdot \left[\frac{v_{x} + v_{x} \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}} \right] \cdot \left[\frac{v_{x} + v_{x} \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}} \right] \cdot \left[\frac{v_{x} + v_{x} \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}} \right] \cdot \left[\frac{v_{x} + v_{x} \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}} \right] \cdot \left[\frac{v_{x} + v_{x} \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}} \right] \cdot \left[\frac{v_{x} + v_{x} \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}} \right] \cdot \left[\frac{v_{x} + v_{x} \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}} \right] \cdot \left[\frac{v_{x} + v_{x} \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}} \right] \cdot \left[\frac{v_{x} + v_{x} \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}} \right] \cdot \left[\frac{v_{x} + v_{x} \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}} \right] \cdot \left[\frac{v_{x} + v_{x} \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}} \right] \cdot \left[\frac{v_{x}$$

Dissolved BTEX (mg/L) Concentration versus Distance (m)

APPENDIX D COST ESTIMATE CALCULATIONS

Present Worth Analysis

Annual Adjustment Factor = 7%

Atternative 1: Natural Attenuation		Present																					
with Institutional Controls and																							
Long-Term Groundwater Monitoring		Worth		J	ost (\$) 24 Y.	Cost (\$) at Year Indicated																	
	years	(\$)	Year: 1	2	3	4	s	۰	1	••	6	2	=	12	13	=	15	· 16	11	82	61	20	3
Maintain Institutional Controls	8	\$62,045	85,000	\$5,000	\$5,000	\$5,000	\$5,000	\$5,000	\$ 000'5\$	\$ 000'5\$	\$ 000'5\$	\$ 000'5\$	\$ 000'5\$	\$5,000	\$5,000	\$5,000	\$5,000	\$5,000	\$5,000	\$5,000	\$5,000	\$5,000	\$5,000
Lano-term Manitoring		****																					
install New Wells	_	\$19,403			2	8	2												2	8	2	8	8
Groundwater Sampling (annual)	~	\$46,783	\$11,410	\$11,410	\$11,410	\$11,410	\$11,410	æ	3	3	2	2	8	2	8	8			S	æ	8	2	8
Groundwater Sampling (every other year)	×	\$45,075		æ	3	8	2												111,410	2	\$11,410	æ	8
Reporting/Project Mgmt (annual)	2	\$58,906	24,747	2.22	77.73	\$4,747	24,747										24,747	24,747	54,747	\$4,747	54,747	24,747	\$4,747
Subtotal Present Worth (\$)		\$232,212																					

Total Present Worth Cost (\$):

\$232,212

\$5,000 \$5,000 \$5,000 50 50 50 50 50 50 50 511,410 50 5 54,747 74,747 \$5,000 222 \$5,000
 \$19,403
 \$20,761
 \$0
 \$0
 \$0

 \$46,783
 \$11,410
 \$11,410
 \$11,410
 \$11,410
 \$11,410

 \$13,312
 \$0
 \$0
 \$0
 \$0
 \$0

 \$33,341
 \$4,747
 \$4,747
 \$4,747
 \$4,747
 \$4,747
 Cost (\$) at Year Indicated \$5,000 \$5,000 \$5,000 \$5,000 Annual Adjustment Factor = 7% \$35,118 Present Worth (\$) - ~ ~ 2 Install New Wells Groundwater Sampling (annual) Groundwater Sampling (every other year) Reporting/Project Mgmk (annual) Present Worth Analysis
Alternative 2: Natural Attenuation and
Biospaging and SVE with Institutional
Controls and Long-Term Monitoring Maintain Institutional Controls System Installation
System Maintenance
Annual Report
Subtoxal Presen Worth (\$) Biosparging/SVE System Long-term Monitoring

888

222

222

222

z 3 8 8 5

3 3 11.43 27.74

Total Present Worth Cost (\$):

Subtotal Present Worth (\$)

\$552,802

\$147,957

Present Worth Analysis		Annual A	Annual Adjustment Factor = 7%	actor = 7%																		
Alternative 3: Natural Attenuation and	_																					
Groundwater Extraction and Treatment with Institutional	_	Present																				
Controls and Long-Term Monitoring	W	Worth		Cost (\$) 2.	Cost (\$) at Year Indicated	8																
	years (\$)	Year:	1	2	3 4	\$	9	1	80	6	01	=	12	=	×	51	91	=	2	62	2	8
Groundwater Pump and Treat System																						
System Installation	1 \$154	\$154,213 \$165,008	2	8	2	2	8									8	3	9	S	S	S	S
System Maintenance	15 \$401	5401,841 544,120	20 \$44,120	0 \$44,120	\$44,120		24.130									£.120	.	8	8	S	S	3
Annual Report	15 855					\$6,137	\$6,137	\$6,137	\$6,137	\$6,137	\$6,137	\$6,137	\$6,137	\$6.137	\$6,137	\$6.137	8	3	8	8	2	S
Subtaxal Present Worth (\$)	119\$	950,1193							1 1	Ιł	IJ	1	ΙI	1.	1							
Maintain Institutional Controls	30	\$62,045 \$5,000	00 \$5,000	000'5\$ 0	\$5,000	\$5,000	\$5,000	\$5,000	\$5,000	\$5,000	\$5,000	\$5,000	\$ 000'5\$	\$ 000'5\$	\$ 000'5\$	\$ 000'5\$	\$ 000'5\$	\$ 000'5\$	\$5,000	\$ 000'5\$	\$ 000'5\$	\$5,000
Long-term Monitoring		·																				
Install New Wells	- \$10		35 35	8	8	8	8															S
Groundwater Sampling (annual)		783 \$11,410	10 \$11,41	0 \$11,410	\$11,410	=	3															S
Groundwater Sampling (every other year)	25 845	\$45,075	2	2		3	2															S
Reporting/Project Mgmt (annual)	30 828	747,147	17 \$4,747	747.47	54,747	X.	24,747	54,747	77.72	\$4,747	\$4,747	\$4,747	\$4,747	\$ 141.45	\$4,747	\$4,747	\$4,747	\$4,747	\$4,747	\$ 141.14	S4,747	24,747
Subtoxal Present Worth (\$)	\$232,212	.212																				
Total Present Worth Cost (\$):	\$844,162	791'																				l

Iternatives 1, 2, and 3: Long-Term Monitoring and Institutional Controls standard Rate Schedule

Billing	Billing		Install New				
Category		Task 1	LTM/POC	Task 2	Sampling	Task 3	Reporting
Cost Code/(Billing Category)	Rate	(hrs)	Wells (\$)	(hrs)		(hrs)	& PM (\$)
Word Processor 88/(15)	\$30	0	\$0	0	\$0	8	\$240
CADD Operator 58/(25)	\$47	4	\$188	0	\$0	16	\$752
Technician 42/(50)	\$40	10	\$400	30	\$1,200	10	\$400
Staff Level 16/(65)	\$57	80	\$4,560	30	\$1,710	20	\$1,140
Project Level 12/(70)	\$65	4	\$260	4	\$260	10	\$650
Senior Level 10/(80)	\$85	1	\$85	' 0	\$0	3	\$255
Principal 02/(85)	\$97	0	\$0	0	\$0	0	\$0
Total Labor (hrs \$)		99	\$5,493	64	\$3,170	67	\$3,437
ODCs			,				
Phone			\$30		\$0		\$50
Photocopy			\$20		\$0		\$150
Mail			\$100		\$400		\$60
Computer			\$150		\$0		\$400
CAD			\$0		\$0		\$450
WP			\$0		\$0		\$200
Travel			\$1,000		\$2,000		\$0
r Diem			\$1,358		\$780		\$0
qpt. & Supplies			\$400		\$200		\$0
Total ODCs			\$3,058		\$3,380		\$1,310
Outside Services							
LTM/POC Well Installation Cost	s a/		\$12,210		\$0		\$o
Laboratory Fees b/			•	10 LTM, 2 qa/qc	\$4,860		\$0
Other: Maintain Institutional Con	ntrols		\$0	, 1- 1 -	\$0		\$5,000
Total Outside Services			\$12,210		\$4,860		\$5,000

Proposal Estimate	Task 1	Task 2	Task 3
Labor	\$5,493	\$3,170	\$3,437
ODC's	\$3,058	\$3,380	\$1,310
Outside Services	\$12,210	\$4,860	\$5,000
Total by Task	\$20,761	\$11,410	\$9,747
Total Labor	\$12,100		
Total ODCs	\$7,748		
Total Outside Services	\$22,070		
Total Project	\$41,918		

sk 1: Install New LTM/POC Wells

Task 2: Sampling per Event

Task 3: Reporting and PM per Sampling Event

Alternative 3: Groundwater Extraction and Treatment System

Standard Rate Schedule

Billing		Design & Install	Syste	m Monitoring/		Completion
	Task	Recovery System	Task	Maintenance	Task 3	Report
Rate	(hrs)	(\$)	(hrs)	(weekly)(\$)	(hrs)	(\$)
\$30	40	\$1,200	0	\$0	8	\$240
\$47	120	\$5,640	0	\$0	16	\$752
\$40	260	\$10,400	400	\$16,000	16	\$640
\$57	260	\$14,820	100	\$5,700	40	\$2,280
\$65	120	\$7,800	40	\$2,600	24	\$1,560
\$85	10	\$850	0	\$0	` 5	\$425
\$97	2	\$194	0	\$0	0	\$0
	812	\$40,904	540	\$24,300	109	\$5,897
		\$200		\$60		\$10
	l	•	l	\$0		. \$50
		\$100		\$120		\$40
	1			\$0		\$40
		•	1	\$0	i	\$60
<u> </u>			1	*-		\$40
1	13	•				\$0
	19	•	11			\$0
	il .	- 1	36			\$0
\$1,000	1	\$1,000		\$500		\$0
		\$5,750		\$11,720		\$24 0
	1	\$22,600		\$0		\$0
Ì		\$600		- 1	l	\$ 0
		\$46,000		\$0	ł	\$0
		\$37,576		\$0		\$0
		\$10,678		\$0		\$0
\$300	3	\$900	27	\$8,100		\$0
		\$0		\$0		\$0
		\$118,354		\$8,100		\$0
	\$30 \$47 \$40 \$57 \$65 \$85 \$97 \$500 \$55 \$85 \$1,000	Rate (hrs) \$30	Task Recovery System (\$) \$30	Rate (hrs) Recovery System (s) Task (hrs) \$30 40 \$1,200 0 \$47 120 \$5,640 0 \$40 260 \$10,400 400 \$57 260 \$14,820 100 \$65 120 \$7,800 40 \$85 10 \$850 0 \$97 2 \$194 0 \$100 \$100 \$100 \$100 \$100 \$200 \$240 \$100 \$200 \$240 \$100 \$200 \$240 \$1,000 12 \$55 14 \$770 36 \$85 24 \$2,040 36 \$1,000 \$1,000 \$5,750 \$600 \$46,000 \$37,576 \$10,678 \$10,678 \$300 3 \$900 27 \$0 \$0 \$0 \$0	Task	Task (hrs)

Estimate	Task 1	Task 2	Task 3
Labor	\$40,904	\$24,300	\$5,897
ODC's	\$5,750	\$11,720	\$ 240
Outside Services	\$118,354	\$8,100	\$0
Total by Task	\$165,008	\$44,120	\$6,137
Total Labor	\$71,101		
Total ODCs	\$17,710		
Total Outside Services	\$126,454		
Total Project	\$215,265		

Task 1: Groundwater pump and treat system design and installation and report
Task 2: Monthly Site Time and Travel Costs (per year)

Task 3: Report Preparation

Alternative 2: Biosparging/SVE

Standard Rate Schedule

Standard Rate Schedule							
Billing	Billing	3	Design & Install		stem Monitoring/		Completion
Category		Task 1	Recovery System	ll .	Maintenance		Report
Cost Code/(Billing Category)	Rate	(hrs)	(\$)	(hrs)	(monthly / 1 yr)	(hrs)	(\$)
Word Processor 88/(15)	\$30	40	\$1,200	0	\$0	8	\$240
CADD Operator 58/(25)	\$47	160	\$ 7,520	0	\$0	8	\$376
Technician 42/(50)	. \$40	300	\$12,000	400	\$16,000	16	\$640
Staff Level 16/(65)	\$57	300	. \$17,100	100	\$5,700	40	\$2,280
Project Level 12/(70)	\$65	120	\$7,800	40	\$2,600	24	\$1,560
Senior Level 10/(80)	\$85	20	\$1,700	0	\$0	4	\$340
Principal 02/(85)	\$97	2	\$194	0	\$0	0	\$0
Total Labor (hrs \$)		942	\$47,514	540	\$24,300	100	\$5,436
ODCs							
Phone			\$200		\$60		\$10
Photocopy			\$100		\$0		\$50
Mail			\$100		\$120		\$40
Computer			\$200	Ì	\$0		\$40
CAD			\$240		\$0		\$60
WP			\$100		\$0		\$40
Air fare/Travel (per trip) (2 per., pilot & install)	\$500	4	\$2,000	12	\$6,000		\$0
Vehicle (per day) (18 days, pilot and install)	\$55	18	\$990	24	\$1,320		\$0
Per Diem (per day)	\$85	36	\$3,060	24	\$2,040		\$0
Eqpt. & Supplies	\$500	1	\$500	1	\$500		\$0
Total ODCs	·		\$7,490		\$10,040		\$240
Outside Services							
Well Installation			\$33,125		\$0		\$0
Disposal			\$1,200		\$0		\$0
Equipment Costs			\$21,000		\$0		\$0
System Installation			\$45,620		\$0		\$0
Contingency (10 % of above services)			\$10,094		\$0		\$0
Analytical (pilot test 8, 2 per mnth plus QC)	\$300	8	\$2,400	27	\$8,100		\$0
Local Subcontractor (maintenance)	\$500	0	\$0	12	\$6,000		\$0
Carbon	\$500	2	\$1,000	12	\$6,000		\$0
Total Outside Services			\$114,439		\$20,100		\$0

Estimate	Task 1	Task 2	Task 3
Labor	\$47,514	\$24,300	\$5,436
ODC's	\$7,490	\$10,040	\$240
Outside Services	\$114,439	\$20,100	\$0
Total by Task	\$169,443	\$54,440	\$5,676
Total Labor	\$77,250		
Total ODCs	\$17,770		
Total Outside Services	\$134,539		
Total Project	\$229,559		

Task 1: SVE/Sparge system deisgn and installation and report

Task 2: Monthly Site Time and Travel Costs (per year)

Task 3: Report Preparation

Columbus AFB Backup Calculations

Alternatives 1, 2 and 3: Long-term	n Monitoring										
		Cost calculations									
Mise calculations		Description	Unit	Qty.	Un	it Price	S	ubtotal		Total	Source (If applicable)
Number of LTM wells: Number of wells: Depth each:	8 20 ft	Well Installation Mobilization Well Installation Soil Disposal	ea In ft drum	1 160 11	s s s	2,000 50 100	s s	2,000 8,000 1,100	s	11,100	
		Subtotal Contingency TOTAL	- Is	10%	s	11,100	s	1,110	\$	11,100 1,110 12,210	

Columbus AFB Backup Calculations

			Cost calculations			_						
lisc calculations			Description	Unit	Qty.	T	nit Price	-	ubtotal		Total	Source (If applicable)
ing Carcalations			Description	Cint	Q1.J.	H	int I i i c		dototas	_	Total	Source (II applicable)
Number of vent/sparge wells:			Well Installation							s	33,125	
Number of sparge wells	S = 30	ft	Mobilization	ea	2	s	1,500	s	3,000	•	33,123	Assuming 2 xmobe, one for pilot test
Number of SVE wells: 7		ft	Well Installation	ln ft	255	s	75	-	19,125			Assumes no surface completion
rumber of 5 v 2 wons.			Add. monitor. pts.	ea.	10	S	1,000		10,000			Estimate
			PID and misc equi	day	8	s	125	Š	- 1			Estimate
			r iib and mise equi	- Lab		•	123	•	1,000			Estimate
Disposal Fees										s	1,200	
Soil Disposal			Soil Disposal	drum	12	s	100	s	1,200	•	1,200	Assuming non-hazadous
3011 2 13 p 00 11			2011 2 12 peconi			ľ		•	.,			7133411111g HOII-HAZAGOUS
Equipment Costs			1			l						
Trench Volume/Area												
Width:	1	ft	Equipment Costs			1				s	21,000	
Depth:	3.5	ft	SVE blower/syste	ea	1	s	10,000	s	10,000	_	,	Includes skid mounted blower etc.
Length:	700	ft	Sparge blower	ea	1	s	3,000		-			Mounted on SVE skid
Volume:	2,450	cf	Electronics & PLC	ca	2	s	2,500					Estimate
	-,		Valves, gauges, ho		1	s	1,000		1,000			Estimate
	91	су	Carbon	ea	2	s	1.000		,			Assume 2 x 55 gallon drums in series
Surface Area:	700					ľ	.,	ľ	2,000			- Louis a A Do Barion Grants in Series
		sy	System Installation			١.				s	45,620	
		•	Mob/Demob	ea	1		\$1,500	s	1.500	-	,	Estimate
			Trenching	су	91	l	\$5.05	s	458			Means 022 254 0050
			Pipe laying	In ft	700		\$13.05	\$	9,135			Means 151 701 0550/026 686 2800
			Backfill	су	91		\$17.20	s	1,561			Means 022 204 0600
			Compaction	су	91	i	\$5.10	s	463			Means 022 204 0600
			Pavement Base	sy	78	İ	\$5.25					Means 022 308 0100
			Reseeding	sy	78	s	2	s	149			Means 029 304 0310
			Piping	lf	700	İ	\$9.30	\$	6,510			Means 151 551 1880
			Mechanical	man hr	40	s	39	S	1,553			Means Q-1 crew
			Electrical	ls	1	s	4,000	S	4,000			Estimate for electrician
			Electrical supply	ls	1	\$	10,000	\$	10,000			Estimate to provide power supply
· ·			Slab	су	3		\$97.00	\$	291			Means 033 130 4700
			Building	ls	1	ı	\$10,000	S	10,000			Estimate, (residential area)
												-
						1						
			Subtotal		-	-				\$	100,945	
			Contingency	ls	10%	S	100,945	\$	10,094	\$	10,094	
								l				
			TOTAL	1	ļ.	l		•		\$	111,039	

COSTINGI.XLS\Backup 7/15/97\11:18 AM

Columbus AFB Backup Calculations

		Cost calculations				-					
Misc calculations		Description	Unit	Qty.	U	nit Price	S	ubtotal		Total	Source (If applicable)
Number of recovery wells 8-inch recovery wells	2 x 40 ft	Well Installation Mobilization Well Installation Add. monitor. pts. PID and misc equi	ea In ft ea day	1 80 5 8	\$ \$ \$ \$	2,000 120 2,000 125	\$ \$ \$ \$	2,000 9,600 10,000 1,000	s	22,600	Assuming 2 xmobe, one for pilot test Includes well devel., screen, steel case Estimate Estimate
Disposal			:						s	600	
Soil Disposal		Soil Disposal	drum	6	s	100	s	600	•	000	Assuming non-hazadous
Trench Volume/Area											
Width:	1 ft	Equipment Costs							s	46,000	
Depth:	3.5 ft	Submersible pump	, ea	2	s	2,500	s	5,000		,	Estimate
Length:	300 ft	Air Stripper	ea	1	s	35,000		35,000			Estimate, low profile 1-75 gpm
Volume:	1,050 cf	Electronics & PLC	ea	1	s	5,000	S	5,000			Estimate
		Valves, gauges, ho	ls	1	S	1,000	S	1,000			Estimate
	39 cy	i									
Surface Area:	300 sf	1									
	33 sy	System Installation							\$	37,576	
		Mob/Demob	ea	1		\$1,500	S	1,500			Estimate
		Trenching	су	39	1	\$5.05	\$	196			Means 022 254 0050
		Pipe laying	In ft	300			S	3,915			Means 151 701 0550/026 686 2800
		Well vault boxes	ea	2	1	\$1,200	\$	2,400			Estimate, concrete with spring cover
		Backfill	су	39		\$17.20	S	669			Means 022 204 0600
		Compaction Pavement Base	су	39	1	\$5.10	\$	198			Means 022 204 0600
		Reseeding	sy	33 33	s	\$5.25		- ,,			Means 022 308 0100
		Piping	sy If	300	,	\$9.30	\$	64 2,790			Means 029 304 0310 Means 151 551 1880
		Mechanical	man hr	40	s	39.30	S	1,553			Means Q-1 crew
		Electrical	ls	1	s	4,000	Š	4,000			Estimate for electrician
		Electrical supply	ls	i	s	10,000	-	10,000			Estimate to provide power supply
		Slab	су	3		\$97.00	S	291			Means 033 130 4700
		Building	İs	1		\$10,000	S	10,000			Estimate, (needed for residen.area)
		Subtotal	-	-	-				\$	106,776	1
		Contingency	ls	10%	S	106,776	\$	10,678	\$	10,678	
		TOTAL							\$	117,454	

COSTING1.XLS\Backup 7/15/97\11:18 AM

hubzones as of 8 Mar 00

Company Name	Address line 1	Address line 2	City	State Zip Co	State Zip Code DUNS Number	Number
A BETTER I ASER SERVICE	1100 WICOMICO ST SUITE 733		BALTIMORE	MD 21230-206	-206	867671364
A Dire Service Holimited	2300 West Commerce, Suite 303		San Antonio		78207	154564728
A Dire Service Unlimited	2300 West Commerce, Suite 303		San Antonio	XT XT	78207	154564728
CNI SARS TO HOLLOT A	34 W 119TH ST		NEW YORK	NY 10026-140	3-140	003903437
	34 W 119TH ST		NEW YORK	NY 10026-140	3-140	003903437
A 1000TH OF SASS INC. A WILLIAMS TRICKING & RACKHOF TRENCHING INC.	65 BARTLETT ST		BROOKLYN		-503	103666749
A WILLIAMS TRICKING & BACKHOE TRENCHING INC	65 BARTLETT ST		BROOKLYN		-503	103666749
A&C Environmental Services. Inc.	2045 N. Lawrence Street		Philadelphia		19122	
A&E Digital Print & Copy Center	493 King St. Suite 101		Charleston		29403	962463691
A&M Builders, Inc.	1010 E. 2nd St.		Tulsa		74120	186095162
A&M Builders, Inc.	1010 E. 2nd St.		Tulsa		74120	186095162
A&S Paving Inc.	527 W. 29th Street		Tucson		85713	184905347
A/B Electrical Services, Inc.	3687 Cicotte		Detroit		48210	948566880
Aa Med Care, Inc.	198 Memorial Dr., Se		Atlanta		30312	184228161
Aa Med Care, Inc.	198 Memorial Dr., Se		Atlanta		30312	184228161
AAA MACHINE METAL STAMPING & MANUFACTURING	438 VINE ST		SAN ANTONIO	7821)-256	078488442
Abacus Building & Design Services, Inc.	737 Parker St		Newark		7104	109498274
ABEX DATA SYSTEMS INC	12 Anthony Street		Newark		7107	197329428
ABEX DATA SYSTEMS INC	12 Anthony Street		Newark		7107	197329428
ABS, Inc. Clothing & Exports	3404 W. Papago St. Suite 106		Phoenix		85009	009464749
AC DATA SYSTEMS, INC	806 W CLEARWATER LOOP	Suite C	POST FALLS		83854	824788434
AC INC	PO BOX 17069	1085 JORDAN RD	HUNTSVILLE	358	902-0	063685903
Accurate cabling Inc.	506 North Barker		Mount Vernon		98273	079664079
Accurate cabling Inc.	506 North Barker		Mount Vernon	_	98273	079664079
Ace Printery, Inc.	41 Walnut Street		Hartford		6120	055510192
ACME Auto Rental of San Antonio, INc.	3532 SW Military Drive		San Antonio		78211	1
ACME WORLDWIDE ENTERPRISES INC	1601 Randolph Rd., SE	Suite 110 South	ALBUQUERQUE		5-427	878009299
ACT ABATEMENT CORP	255 ERVING AVE		LAWRENCE	_	1-362	797848264
ADOLPH FARMER CONSTRUCTION INC	1139 E JERSEY ST	SUITE 409	ELIZABETH	_	1-243	113076129
ADOLPHS STEAM CLEANING CARPET & JANITORIAL	PO BOX 11484		OKLAHOMA CITY		3-048	808758171
ADOLPHS STEAM CLEANING CARPET & JANITORIAL	PO BOX 11484		OKLAHOMA CITY	73	3-048	808758171
Advanced Micro Products, Registred company name: RK & DC Enterr 45 south Main Street Suite #370	nterp 45 south Main Street Suite #370		Dayton		45402	619671936
Advanced Micro Products, Registred company name: RK & DC Entert 45 south Main Street Suite #370	nterp 45 south Main Street Suite #370		Dayton		45402	6196/1936
Advanced Systems Technology, Inc.	4111 W. Gore Boulevard		Lawton		73505	122590797
Advanced Systems Technology, Inc.	12249 Science Drive	Suite 150	Orlando	(*)	32826 075186114 - 0001	5114 - 0001
Advanced Systems Technology, Inc.	766 Shrewsbury Avenue		Tinton Falls		7724 603517475 - 0002	7475 - 0002
Advanced Systems Technology, Inc.	4111 W. Gore Boulevard		Lawton		73505	122590797
AERO TEC INDUSTRIES INC	PO BOX 1216		SEMINOLE		3-121	119060887
AERO TEC INDUSTRIES INC	PO BOX 1216		SEMINOLE		5-121	119060887
AFA CONSTRUCTION INC	1300 Clay Street	Suite 600	Oakland		9-611	943267112
AFA CONSTRUCTION INC	1300 Clay Street	Suite 600	Oakland	943	7 611	94326/112
Afco Technologies, Inc.	1535 Brady Blvd.		San Antonio		/823/	09/488088
AFRAM INTERNATIONAL ENVIRONMENTAL CONSULTING	2907 N. Hampton Rd, Ste 104,		Dallas San Antonio	9	J6-868 87/045013 78205 787398759 - 7240	877045013 8759 - 7240
AGE Refining, Inc.	1131 East Commerce Street, Suite 208		San Antonio	~ ``	78205 76739	0477 - 6070
AGE Refining, Inc.	1131 East Commerce St.		Sall Allolino		2020	