1. 01.22

(a) Definition: 7.1

Function $f: X \to Y$ is bijection if f is both surjection(on to) and injection (one to one)

(b) Theorem: 7.2

 $f: X \to Y$ is bijection \Leftrightarrow

 $\exists g: Y \to X \text{ s.t. } g \circ f = id_x, f \circ g = id_y \ (id_x \text{ means identity})$

Such *g* is called the inverse of f. Denoted by f^{-1}

- (c) Recall:
 - o Composition of two injective functions is injective.
 - o Composition of two surjective functions is surjective.
 - o Composition of two bijective functions is bijective.
- (d) Definition: 7.4 Permutation:

Permutation on set *X* is a bijection $f: X \to X$

- (e) prop 7.5
 - i. if $f: X \to X$ is a permutation then $\exists f^{-1}: X \to X$ which is also permutation.
 - ii. composition of two permutation is again a permutation.
- (f) Definition: 7.6

if $X = \{1, 2, ..., n\}$ then, $S_n := \{\text{all permutation on } X\}$

(g) EX 7.7

$$\alpha = (1\ 2\ 3\ 4\ 5) \rightarrow (3\ 4\ 1\ 2\ 5)$$

$$\beta = (1\ 2\ 3\ 4\ 5) \rightarrow (5\ 1\ 4\ 3\ 2)$$

Find $\alpha\beta$ (composition of α and β), α^{-1}

Solution:

$$(\alpha\beta)(1) = \alpha(\beta(1)) = \alpha(5) = 5$$

$$(\alpha\beta)(2) = \alpha(\beta(2)) = \alpha(1) = 3$$

$$(\alpha\beta)(3) = \alpha(\beta(3)) = \alpha(4) = 2$$

$$(\alpha\beta)(4) = \alpha(\beta(4)) = \alpha(5) = 1$$

$$(\alpha\beta)(5) = \alpha(\beta(5)) = \alpha(2) = 4$$

Then, $\alpha\beta = (1\ 2\ 3\ 4\ 5) \rightarrow (5\ 3\ 2\ 1\ 4)$

$$\alpha^{-1} = (3\ 4\ 1\ 2\ 5) \rightarrow (1\ 2\ 3\ 4\ 5)$$

rearrange:

$$\alpha^{-1} = (1\ 2\ 3\ 4\ 5) \rightarrow (3\ 4\ 1\ 2\ 5)$$

(h) Homework: 2.1 9(b)

 $g : \mathbb{Z}_8 \Rightarrow \mathbb{Z}_1 2$, $g([x]_8) = [6x]_1 2$ show that g is well defined.

Solution:

Proof. Suppose
$$[x]_8 = [x']_8$$
, WTS $g([x]_8) = g([x']_8)$

Let
$$[x]_8 = [x']_8$$

$$\Rightarrow x \equiv x' \pmod{8}$$

$$\Rightarrow 8|(x-x')$$

⇒
$$x - x' = 8 * q$$
 for some $q \in \mathbb{Z}$
 $x = 8 \cdot q + x'$
By definition of g , $g([x]_8) = [6x]_{12}$
Then, $g([x]_8) = [6(8q + x')]_{12} = [48q + 6x']_{12}$, $g([x']_8) = [6x']_{12}$
WTS $[48q + 6x']_{12} = [6x']_{12}$
Enough to show: $12|(48q + 6x' - 6x')$
Since $48q + 6x' - 6x' = 48q = 12 \cdot 4 \cdot q$
⇒ $12|12 \cdot 4 \cdot q$
⇒ $12|(48q + 6x' - 6x')$
⇒ $g([x]_8) = g([x']_8)$