1. Sean A y B dos conjuntos, prueba que $A \subseteq B$ si y solo si $A \cap B = A$.

Solución. (\Rightarrow) Supongamos que $A \subseteq B$ y veamos que $A \cap B = A$. El contenido $A \cap B \subseteq A$ es claro, de modo que solo tenemos que probar que $A \subseteq A \cap B$. Sea $x \in A$, dado que por hipótesis $A \subseteq B$, deducimos que $x \in B$, de lo cual se deduce que $x \in A$ y $x \in B$, es decir, $x \in A \cap B$, por definición.

- (\Leftarrow) Supongamos que $A \cap B = A$ y veamos que $A \subseteq B$. Sea así $x \in A$ arbitrario, de forma que $x \in A \cap B$ y en particular, $x \in B$. Esto concluye la solución del ejercicio. □
- **2.** Demuestra la conocida como segunda ley de De Morgan: si A, B y C son conjuntos cualesquiera, se verifica que $A \setminus (B \cap C) = (A \setminus B) \cup (A \setminus C)$.

Solución. Basta observar que:

$$x \in A \setminus (B \cap C) \iff x \in A \land x \not\in (B \cap C)$$

$$\iff x \in A \land (x \not\in B \lor x \not\in C)$$

$$\iff (x \in A \land x \not\in B) \lor (x \in A \land x \not\in C)$$

$$\iff (x \in A \setminus B) \lor (x \in A \setminus C)$$

$$\iff x \in (A \setminus B) \cup (A \setminus C),$$

como queríamos probar. Las implicaciones de izquierda a derecha nos proporcionan el contenido " \subseteq " mientras que las recíprocas nos proporcionan el contenido " \supseteq ".

- **3.** Sean A, B y C tres conjuntos. Demuestra las siguientes propiedades:
 - (1) $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$;
 - $(2) \quad A \cup (B \cap C) = (A \cup B) \cap (A \cup C).$

Solución. Se deja como ejercicio propuesto.

- **4.** Denotemos $A_n = \{(n+1)k : k \in \mathbb{N}\}$ para cada $n \in \mathbb{N}$.
 - (1) ¿Qué conjunto es $A_1 \cap A_2$?
 - (2) Describe los conjuntos $\bigcup \{A_n : n \in \mathbb{N}\}\ y \bigcap \{A_n : n \in \mathbb{N}\}.$

Solución. El conjunto A_1 es el de los múltiplos de 2, $\{2,4,6,...\}$, mientras que A_2 es el de los múltiplos de 3, $\{3,6,9,...\}$, con lo que la intersección, es decir, los números que son a la vez múltiplos de 2 y de 3, será $\{6,12,18,...\}$, es decir, los múltiplos de 6, o, con la notación del ejercicio, A_5 . Es decir, $A_1 \cap A_2 = A_5$. Veamos las dos inclusiones.

Para demostrar que $A_1 \cap A_2 \subseteq A_5$, sea $n \in A_1 \cap A_2$, de forma que existen $k_1, k_2 \in \mathbb{N}$ de manera que $n = 2k_1 = 3k_2$. Puesto que 2 y 3 son primos entre sí, 2 divide necesariamente a k_2 y 3 divide necesariamente a k_1 , esto es, $k_1 = 3\ell_1$ y $k_2 = 2\ell_2$ para ciertos $\ell_1, \ell_2 \in \mathbb{N}$. En particular, $n = 6\ell_1$, y por ende $n \in A_5$.

Recíprocamente, $A_5 \subseteq A_1 \cap A_2$ claramente, ya que dado $n \in A_5$, existirá $k \in \mathbb{N}$ tal que n = 6k, pero entonces n = 2(3k) = 3(2k), de forma que $n \in A_1$ y $n \in A_2$, es decir, $n \in A_1 \cap A_2$.

Veamos ahora que $\bigcup \{A_n : n \in \mathbb{N}\} = \mathbb{N} \setminus \{1\}$.

Para la inclusión de izquierda a derecha, sea $j \in \bigcup \{A_n : n \in \mathbb{N}\}$, de forma que existe $k \in \mathbb{N}$ para el que $j \in A_k \subseteq N$, y por ende $j = (k+1)m = km + m \ge 1 + 1 = 2$ para cierto $m \in \mathbb{N}$, con lo que $j \in \mathbb{N}$ pero j > 1, esto es, $j \in \mathbb{N} \setminus \{1\}$.

Recíprocamente, sea $j \in \mathbb{N} \setminus \{1\}$, entonces $j \in A_{j-1}$, pues $j = (j-1+1) \cdot 1$ y con ello concluimos que $j \in \bigcup \{A_n : n \in \mathbb{N}\}$.

Veamos, por último, que $\bigcap \{A_n : n \in \mathbb{N}\} = \emptyset$.

Supongamos por reducción al absurdo que existe $j \in \bigcap \{A_n : n \in \mathbb{N}\}$. Entonces, $j \notin A_j$, dado que los elementos de A_j son todos mayores que j, lo cual es absurdo.