\mathcal{R} obert \mathcal{S} tańczy

http://www.math.uni.wroc.pl/~stanczr/A/11.pdf

Zadanie 136. Znaleźć szereg Fouriera funkcji

$$f(x) = x \text{ na } (-\pi, \pi)$$
 $f(x) = |x| \text{ na } (-\pi, \pi)$ $f(x) = |x| \text{ na } (-\frac{\pi}{2}, \frac{3\pi}{2})$
 $f(x) = x^2 \text{ na } (0, 2\pi)$ $f(x) = e^x \text{ na } (0, 2\pi)$ $f(x) = e^x \text{ na } (-\pi, \pi)$

Zadanie 137. Rozwiń następujące funkcje określone na przedziale (-1,1) przedłużając je okresowo na cała prostą w szereg Fouriera:

a)
$$x^2$$
, b) x , c) $|x|$, d) $\sin(3\pi x)$, e) $\cos(2\pi x)$, f) $\cos(\pi x) + \cos(3\pi x)$.

Zadanie 138. Rozwiń w szereg Fouriera następujące funkcje f określone na przedziale (0,1) przedłużając je do funkcji

- (i) parzystej na (-1,1),
- (ii) nieparzystej na (-1,1),
- a następnie na całą prostą:

a)
$$x^2$$
, b) x , c) $|x|$, d) $\sin(\pi x)$, e) $\cos(\pi x)$, f) 1.

Zadanie 139. Znaleźć związek między potęgowymi oszacowaniami na współczynniki szeregu Fouriera, a klasą rózniczkowalności funkcji zadanej przez ten szereg. Rozważać należy funkcję okresową określoną na całej prostej.

Zadanie 140. Co należy założyć o funkcji określonej na przedziale [0, a] aby można było ją przedłużyć do funkcji nieparzystej (parzystej) na przedział [-a, a], a następnie du funkcji ciągłej, rózniczkowalnej, klasy C^k .

Zadanie 141. Skonstruuj rozwiązanie następujących zagadnień metodą rozdzielania zmiennych: a) $u_t = u_y, \quad u(0,y) = e^y + e^{-2y};$ b) $u_t = u_y + u, \quad u(0,y) = 2e^{-y} - e^{2y}.$

Zadanie 142. Rozdzielając zmienne rozwiąż równanie $tu_t = u_{xx} + 2u$ z warunkami brzegowymi $u(0,t) = u(\pi,t) = 0$. Udowodnij, że równanie to ma nieskończenie wiele rozwiązań spełniających warunek początkowy u(x,0) = 0. Tak więc, w tym przypadku brak jest jednoznaczności rozwiązań!

Zadanie 143. Rozwiąż równanie dyfuzji $u_t = u_{xx}, 0 < x < 1$, z mieszanym warunkiem brzegowym: $u(0,t) = u_x(1,t) = 0$ i warunkiem początkowym $\varphi(x)$.

Zadanie 144. Rozważamy równanie dyfuzji $u_t = u_{xx}$, -1 < x < 1, z okresowymi warunkami brzegowymi: u(-1,t) = u(1,t) oraz $u_x(-1,t) = u_x(1,t)$. Udowodnij, że rozwiązanie ma następującą postać $u(x,t) = \frac{1}{2}a_0 + \sum_{n=1}^{\infty} \left(a_n \cos n\pi x + b_n \sin n\pi x\right) e^{-n^2\pi^2 t}$.

Zadanie 145. Znajdź rozwiązanie równania $u_{xx} + u_{yy} = 0$ w prostokącie 0 < x < a, 0 < y < b spełniające następujące warunki brzegowe:

```
u_x = -a dla x = 0, u_x = 0 dla x = a, u_y = b dla y = 0, u_y = 0 dla y = b.
```

(Wsk. To zadanie można zrobić na dwa sposoby: metodą Fouriera rozdzielania zmiennych lub można szukać rozwiązania w postaci wielomianu.)

Zadanie 146. Znajdź rozdzielając zmienne rozwiązanie zagadnienia

$$u_t = u_{xx} + u, \ x \in (0,1); \qquad u(x,0) = \cos x, \quad u(0,t) = u(1,t) = 0.$$

Zadanie 147. Dla osób zainteresowanych dodatkowymi zadaniami z rozwiązaniami:

http://math.uni.lodz.pl/~karpinw/zadania/RRCz1/II rzad zadania.PDF

Zadanie 148. Podać przykłady zagadnień początkowych dla cząstkowych równań liniowych pierwszego i drugiego rzędu, które posiadają:

a) dokładnie jedno rozwiązanie, b) wiele rozwiązań, c) zero rozwiązań.

Zadanie 149. Dla równania $yu_x - xu_y = 0$ zbadać istnienie i jednoznaczność rozwiązań przy warunku: a) u(0,y) = y, b) $u(\sqrt{1-y^2},y) = 2$, c) $u(\sqrt{1-y^2},y) = y$.

Zadanie 150. Dla równania $xu_x - yu_y = 0$ zbadać istnienie i jednoznaczność rozwiązań przy warunku: a) $u(y,y) = y^2$, b) u(1/y,y) = 1, c) u(1/y,y) = y.