Stochastic Neighborhood Embedding

Weekly AI pills

Fabio Brau.

2020-11-13

SSSA, Emerging Digital Technologies, Pisa.

Summary

- 1. Entropy and Kullback–Leibler divergence
- 2. From SNE to t-SNE
- 3. Application for Visualization
- 4. Issues

Introduction

(t)-Stochastic Neighborhood Embedding

Aims

- Dimensionality
 Reduction
- · Data Visualization
 - 1. Exploration
 - 2. Visual Clustering

Example of Data Visualization taken from (Tasic et al., 2018)

Algorithm

Algorithm: Workflow

1. Represent each sample $x_i \in \mathcal{X}$ with $y_i \in \mathcal{Y}$ in a low-dimensional space

$$\Phi: \underset{\subseteq \mathbb{R}^n}{\mathcal{X}} \longrightarrow \underset{\subseteq \mathbb{R}^2}{\mathcal{Y}}$$

2. Convert Geometrical Information to Probabilistic Distribution

$$p_{i|j}$$
: "Probability that x_i is $similar$ to x_j " $q_{i|j}$: "Probability that y_i is $similar$ to y_j "

- 3. Compare distribution $\mathcal P$ of $\mathcal X$ to distribution $\mathcal Q$ of $\mathcal X$
- 4. Adjust the representation Φ to make distributions closer.

Observation

The embedding Φ is defined **point-wise**, i.e Φ is only defined over \mathcal{X} through the definition $\Phi(x_i) = y_i$. Another way to say " y_i are the parameters of Φ " (Future works?).

Algorithm: Workflow

1. Represent each sample $x_i \in \mathcal{X}$ with $y_i \in \mathcal{Y}$ in a low-dimensional space

$$\Phi: \underset{\subseteq \mathbb{R}^n}{\mathcal{X}} \longrightarrow \underset{\subseteq \mathbb{R}^2}{\mathcal{Y}}$$

2. Convert Geometrical Information to Probabilistic Distribution

$$p_{i|j}$$
: "Probability that x_i is $similar$ to x_j " $q_{i|j}$: "Probability that y_i is $similar$ to y_j "

- 3. Compare distribution $\mathcal P$ of $\mathcal X$ to distribution $\mathcal Q$ of $\mathcal X$
- 4. Adjust the representation Φ to make distributions closer.

Observation

The embedding Φ is defined **point-wise**, i.e Φ is only defined over \mathcal{X} through the definition $\Phi(x_i) = y_i$. Another way to say " y_i are the parameters of Φ " (Future works?).

Definition (Similarity with Gaussian Kernel)

For each x_i we fix a σ_i and define

$$\forall j \neq i, \quad p_{i|j} = \frac{\exp\left(-\|x_i - x_j\|^2/(2\sigma_i)^2\right)}{\sum_{k \neq i} \exp\left(-\|x_i - x_k\|^2/(2\sigma_i)^2\right)} \tag{\mathcal{P}_i}$$

Definition (Similarity with Gaussian Kernel)

For each x_i we fix a σ_i and define

$$\forall j \neq i, \quad p_{i|j} = \frac{\exp\left(-\|x_i - x_j\|^2 / (2\sigma_i)^2\right)}{\sum_{k \neq i} \exp\left(-\|x_i - x_k\|^2 / (2\sigma_i)^2\right)} \tag{\mathcal{P}_i}$$

Definition (Similarity with Gaussian Kernel)

For each x_i we fix a σ_i and define

$$\forall j \neq i, \quad p_{i|j} = \frac{\exp\left(-\|x_i - x_j\|^2 / (2\sigma_i)^2\right)}{\sum_{k \neq i} \exp\left(-\|x_i - x_k\|^2 / (2\sigma_i)^2\right)} \tag{\mathcal{P}_i}$$

Definition (Similarity with Gaussian Kernel)

For each x_i we fix a σ_i and define

$$\forall j \neq i, \quad p_{i|j} = \frac{\exp\left(-\|x_i - x_j\|^2 / (2\sigma_i)^2\right)}{\sum_{k \neq j} \exp\left(-\|x_i - x_k\|^2 / (2\sigma_i)^2\right)} \tag{\mathcal{P}_i}$$

Definition (Similarity with Gaussian Kernel)

For each x_i we fix a σ_i and define

$$\forall j \neq i, \quad p_{i|j} = \frac{\exp\left(-\|x_i - x_j\|^2 / (2\sigma_i)^2\right)}{\sum_{k \neq j} \exp\left(-\|x_i - x_k\|^2 / (2\sigma_i)^2\right)} \tag{\mathcal{P}_i}$$

Definition (Similarity with Gaussian Kernel)

For each x_i we fix a σ_i and define

$$\forall j \neq i, \quad p_{i|j} = \frac{\exp\left(-\|x_i - x_j\|^2 / (2\sigma_i)^2\right)}{\sum_{k \neq j} \exp\left(-\|x_i - x_k\|^2 / (2\sigma_i)^2\right)} \tag{\mathcal{P}_i}$$

How σ_i impacts?

Similarity to (0,0) for sigma=2.0

At the same manner we can define similarity in \mathcal{Y} .

$$\forall j \neq i, \quad q_{i|j} = \frac{\exp(-\|y_i - y_j\|^2)}{\sum_{k \neq i} \exp(-\|y_i - y_k\|^2)}$$
 (Q_i)

Observation

 \mathcal{P}_i and \mathcal{Q}_i are probability distributions for each i.

- 1. $0 \le p_{i|j}, q_{i|j} \le 1$ for each $j \ne i$
- 2. $\sum_{j\neq i} p_{i|j} = \sum_{j\neq i} q_{i|j} = 1$

Shannon Entropy, Perplexity, Kullback–Leibler Divergence

Let
$$\mathcal{P} = \{p_1, \cdots, p_n\}$$
 and $\mathcal{Q} = \{q_1, \cdots, q_n\}$ distributions
Shannon Entropy $\mathbb{H}(\mathcal{P}) = -\sum_i p_i \log_2(p_i)$
Perplexity $Perp(\mathcal{P}) = 2^{\mathbb{H}(\mathcal{P})}$
K.L. Divergence $\mathit{KL}(\mathcal{P}, \mathcal{Q}) = \sum_i p_i \log_2\left(\frac{p_i}{q_i}\right)$

How σ_i and Perplexity are related?

Perplexity measures the number of samples in a neighborhood.

