Оглавление

1 Поверхности второго порядка

2

Глава 1

Поверхности второго порядка

$$a_{11}x^2 + 2a_{12}xy + a_{22}y^2 + 2a_{23}yz + a_{13}xz + a_{33}^2 + 2b_1x + 2b_2y + 2b_3z + b_4 = 0$$

Алгоритм.

- 1. Поворотом избавляемся от a_{12}, a_{13}, a_{23} (докажем позже)
- 2. Сдвиги:
 - Если $a_{11} \neq 0$, то считаем, что $b_1 = 0$
 - Если $a_{11} = 0$ и $b_1 \neq 0$, то считаем $b_4 = 0$
 - Тут разные типы:
 - (a) Эллиптический $(a_{11} > 0, a_{22} > 0, a_{33} > 0)$

$$a_{11}x^2 + a_{22}y^2 + a_{33}z^2 + b_4 = 0$$

i.
$$b_4 < 0$$

$$rac{x^2}{a^2} + rac{y^2}{b^2} + rac{z^2}{c^2} = 1$$
 — эллипсоид

ii.
$$b_4 = 0$$

$$rac{x^2}{a^2} + rac{y^2}{b^2} + rac{z^2}{c^2} = 0$$
 — точка

iii.
$$b_4 > 0$$

$$rac{x^2}{a^2} + rac{y^2}{b^2} + rac{z^2}{c^2} = -1$$
 — мнимый эллипсоид

(b) Гиперболический $(a_{11}, a_{12} > 0, a_{33} < 0)$ (рис. 1.1a)

Тоже 3 случая, в зависимости от знака b_4 :

і.
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$$
 — однополостный гиперболоид

іі.
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 0$$
 – конус

і
ііі.
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = -1$$
 – двухполостный гиперболо
ид

(c) Параболический ($a_{33}=0$) (рис. 1.1b)

i.
$$b_3 \neq 0$$
, a_{11} , $a_{22} \neq 0$ ($\implies b_4 = 0$)

$$a_{11}x^2 + a_{22}y^2 + 2b_3z = 0$$

А.
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 2z$$
 – эллиптический параболоид

В.
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 2z$$
 – гиперболический параболоид

іі.
$$b_3=0$$
. Нет зависимости от z

- $\begin{array}{ll} {\rm A.} \ \ \frac{x^2}{a^2}+\frac{y^2}{b^2}=1 \rm{эллиптический} \ цилиндр \\ {\rm B.} \ \ \frac{x^2}{a^2}+\frac{y^2}{b^2}=0 \rm{прямая} \end{array}$
- C. $\frac{x^2}{a^2} + \frac{y^2}{b^2} = -1$ тоже прямая
- D. $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ гиперболический цилиндр
- E. $\frac{x^2}{a^2} \frac{y^2}{b^2} = 0$ пара пересекающихся плоскостей F. $y^2 = 2px$ параболический цилиндр
- G. $\frac{x^2}{a^2} = 1$ пара параллельных плоскостей
- H. $\frac{x^2}{a^2} = 0$ плоскость I. $\frac{x^2}{a^2} = -1 \emptyset$

(а) Гиперболический тип

(b) Параболический тип

Рис. 1.1: Классификация