s-Arc-transitive solvable Cayley graphs

CAI HENG LI, JIANGMIN PAN, AND YINGNAN ZHANG

Speaker: Yuandong Li

Beijing Jiaotong University

October 1, 2023

Outline

- Preliminaries & Background
- Main Result & Examples
- Proof of the Main result
 - Overview of the proof
 - Reduce to almost simple groups
 - Almost simple groups

Preliminaries

Let Γ be a finite simple undirected graph. Let $G \leq \operatorname{Aut}\Gamma$.

Definition

- s-arc: (s+1)-tuple of vertices $\alpha_0, \alpha_1, \cdots, \alpha_s$ where α_i is adjacent to α_{i+1} and $\alpha_{i-1} \neq \alpha_{i+1}$ for $0 \leq i \leq s-1$ and $1 \leq j \leq s-1$.
- (G,s)-arc-transitive: G is transitive on the set of s-arcs of Γ .
- (G,s)-transitive: (G,s)-arc-transitive but not (G,s+1)-arc-transitive.

For short, **s-transitive** means $(Aut\Gamma, s)$ -transitive for graphs.

Lemma

- s-arc-transitive $(1 \le s) \Longrightarrow k$ -arc-transitive $(1 \le k \le s)$.
- the s-arc-transitivity of a graph is inherited by the normal quotients.

Preliminaries

Definition

- Cayley graph: Cay(G, S) with vertex set G and edges $yx^{-1} \in S$.
- solvable Cayley graph: G is solvable.

Lemma

 Γ is Cayley of $G \iff \exists G \lesssim \operatorname{Aut}\Gamma$ which is vertex-regular.

Preliminaries

Definition

A transitive permutation group G is said to be **quasiprimitive** if its nontrivial normal subgroups are transitive, and **bi-quasiprimitive** if its nontrivial normal subgroups have at most 2 orbits and there exists one which has exactly 2 orbits.

The O'Nan-Scott-Praeger theorem¹ divides the quasiprimitive permutation groups into 8 types: holomorph affine (HA), holomorph simple (HS), holomorph compound (HC), almost simple (AS), simple diagonal (SD), compound diagonal (CD), product action (PA) and twisted wreath product (TW).

¹Cheryl E Praeger. "Finite Quasiprimitive Graphs". In: Surveys in Combinatorics, 1997. London Mathematical Society Lecture Note Series. Cambridge University Press, 1997, 6586.

Background

- 1947, Tutte: No 6-arc-transitive trivalent graphs.
- 1981, Weiss: No s-arc-transitive graphs with $val \ge 3$ for s=6 and s>8.
- 2019, Li C.H. & Xia B.Z.: Connected **non-bipartite** 3-arc-transitive solvable Cayley graph with $val \geq 3$ is a normal cover of the Hoffman-Singleton graph or the Petersen graph.
- 2021, Zhou J.X.: No such normal covers, so $s \le 2$ sharply.

Problem

Studying connected **bipartite** s-arc-transitive solvable Cayley graphs, and determining the upper bound on s.

For convenience, one may assume $s \ge 3$ and $val \ge 3$.

Main Result

Theorem

Every connected s-arc-transitive solvable Cayley graph with $s \ge 3$ and $val \ge 3$ is a normal cover of one of the following graphs:

- **1** the complete bipartite graph $K_{n,n}$ with $n \geq 3$;
- 2 the geometry incidence graph $\mathcal{GI}(5,2,2)$;
- the standard double cover of the Hoffman-Singleton graph;
- **3** a graph Σ with valency $p^f + 1$ such that $\mathrm{PSL}_3(p^f).2 \leq \mathrm{Aut}\Sigma \leq \mathrm{Aut}(\mathrm{PSL}_3(p^f))$ and $\mathbb{Z}_p^{2f}: \mathrm{SL}_2(p^f) \triangleleft (\mathrm{Aut}\Sigma)_\alpha$, where $p^f \geq 3$ is a prime power and α is a vertex.

In particular, the sharp upper bound on s is 4.

These normal covers are being investigated in a sequel. (usually challenge)

Examples

- (1) **K**_{*n,n*} with $n \ge 3$
 - 3-transitive
- $\mathbf{K}_{n,n} \cong \operatorname{Cay}(G, G \backslash H)$ where G is solvable and H < G of index 2 (2) $\mathcal{GI}(5,2,2)$
 - the incidence graph of $(\mathcal{P}, \mathcal{L})$ where $\mathcal{P}(\text{resp. } \mathcal{L})$ is the set of 2-subspace(resp. 3-subspace) of \mathbb{F}_2^5
 - $\operatorname{Aut}(\mathcal{GI}(5,2,2)) = \operatorname{GL}_5(2).\langle \sigma \rangle$ is vertex-transitive
 - $G_{\alpha} = 2^6 : (GL_2(2) \times GL_3(2)), \ G_{\alpha\beta} = 2^8 : (S_3 \times S_3), \ val = \frac{|G_{\alpha}|}{|G_{\alpha\beta}|} = 7$
 - 3-transitive^{2,Theorem 3.4}
 - $G = RG_{\alpha}$ with $R \cong 31:5:2$ vertex-regular^{3, Theorem 1.1}

²Cai Heng Li, Zai Ping Lu, and Gaixia Wang. "Arc-transitive graphs of square-free order and small valency". In: *Discrete Mathematics* 339.12 (2016), pp. 2907–2918.

³Cai Heng Li and Binzhou Xia. Factorizations of Almost Simple Groups with a Solvable Factor, and Cayley Graphs of Solvable Groups. Vol. 279. 1375. Mem. AMS, 2022.

Examples

(3) $HS_{50}^{(2)}$

- ${
 m HS}_{50}$ is 3-transitive ${
 m Aut}({
 m HS}_{50})={
 m P}\Sigma{
 m U}(3,5)$ has a solvable vertex-transitive subgroup It is NOT a Cayley graph
- standard double cover: $\Gamma^{(2)} = (\tilde{V}, \tilde{E})$ of $\Gamma = (V, E)$, where $\tilde{V} = V \times \{1, 2\}$, $\tilde{E} = \{\{(v, 1), (w, 2)\} \mid \{v, w\} \in E\}$ Aut $(\Gamma^{(2)}) \ge \operatorname{Aut}\Gamma \times \langle \sigma \rangle$, Γ s-arc-transitive $\implies \Gamma^{(2)}$ s-arc-transitive
- By MAGMA, \exists_1 connected G-arc-transitive 7-valent graph Γ of order 50 with $(G, G_{\alpha}) = (\mathrm{PSU}_3(5), A_7)$ or $(\mathrm{PSU}_3(5).\mathbb{Z}_2, S_7)$. $\Gamma \cong \mathrm{HS}_{50}$
- By MAGMA, \exists_1 connected G-arc-transitive 7-valent graph Γ of order 100 with $(G, G_{\alpha}) = (\mathrm{PSU}_3(5).\mathbb{Z}_2, A_7)$. $\Gamma \cong \mathrm{HS}_{50}^{(2)}$
- (Q: Could a normal cover of $\mathrm{HS}_{50}^{(2)}$ be solvable Cayley? see Zhou's paper)

Examples

- (4) $\mathcal{PH}(3,q)$
 - the incidence graph of $PG(2, q) = (\mathcal{P}, \mathcal{L})$, where $\mathcal{P}(\text{resp. } \mathcal{L})$ is the set of 1-subspace(resp. 2-subspace) of \mathbb{F}_q^3
 - $\operatorname{Aut}(\mathcal{PH}(3,q)) = \operatorname{P}\Gamma \operatorname{L}_3(q).\langle \sigma \rangle = \operatorname{Aut}(\operatorname{PSL}_3(q))$
 - $(\alpha_0, \dots, \alpha_4)$ with $\alpha_0 \in \mathcal{P}$ corresponds to a basis v_1, v_2, v_3 such that

$$\alpha_0 = \langle v_1 \rangle, \alpha_1 = \langle v_1, v_2 \rangle, \alpha_2 = \langle v_2 \rangle, \alpha_3 = \langle v_2, v_3 \rangle, \alpha_4 = \langle v_3 \rangle$$

all ordered bases are equiv. under linear transformation \implies 4-arc-transitive

• a Cayley graph⁴ of $D_{2(q^2+q+1)}$, for example Heawood graph.

Outline

- Preliminaries & Background
- Main Result & Examples
- Proof of the Main result
 - Overview of the proof
 - Reduce to almost simple groups
 - Almost simple groups

Overview of the proof

Let $\Gamma=\mathrm{Cay}(H,S)$ be connected, (G,s)-transitive, $\mathrm{val}\geq 3$, with H solvable, $H\leq G\leq \mathrm{Aut}\Gamma,\ s\geq 3$. Let $M\lhd G$ (may trivial) be maximal with ≥ 3 orbits on $V\Gamma$. Then

- Γ is a normal cover of Γ_M
- Γ_M is (G/M, s)-arc-transitive
- ullet G/M is either quasiprimitive or bi-quasiprimitive on $V\Gamma_M$, $|V\Gamma_M| \geq 3$

Theorem (Praeger, 1993)

Let Γ be a finite connected graph, $G \leq \operatorname{Aut}\Gamma$ is s-arc transitive on Γ for some $s \geq 2$. Suppose $N \triangleleft G$ has more than two orbits on vertices. Then

- **①** Γ_N is finite and connected and the group of automorphisms of Γ_N induced by G is s-arc transitive on Γ_N .
- ② N is semiregular on vertices (that is $N_{\alpha} = 1$ for each vertex α of Γ) and Γ is a cover of Γ_N .

Overview of the proof

Case quasiprimitive: Γ_M non-bipartite. By Li-Xia-Zhou, no such graphs. Case bi-quasiprimitive: Γ_M bipartite.

Then either $\Gamma_M = \mathbf{K}_{n,n}$, or G/M is almost simple. (Reduce to AS type) Moreover, $\operatorname{soc}(G/M)$ is a classical simple group of Lie type. (Use factorization of AS groups with a solvable factor)

Let s_0 be the sharp upper bound on s.

- By Example (4), $\mathcal{PH}(3,q)$ is 4-transitive, so $s_0 \geq 4$.
- If there is a connected 5-arc-transitive solvable Cayley graph Γ , then Γ is a normal cover of a 5-arc-transitive graph of type (1)-(4), while analysis above states no such graph.

Hence $s_0 = 4$.

Outline

- Preliminaries & Background
- Main Result & Examples
- Proof of the Main result
 - Overview of the proof
 - Reduce to almost simple groups
 - Almost simple groups

Reduce to almost simple groups

In the remains of this talk, we assume the followings.

- Let Γ be a connected bipartite (G, s)-transitive graphs of val ≥ 3 , with bipartitions Δ_1 and Δ_2 and $s \geq 3$.
- Suppose G is bi-quasiprimitive on $V\Gamma$ and contains a vertex-transitive solvable subgroup H.
- Set $G^+ = G_{\Delta_1}$, the setwise stabilizer of G on Δ_1 , and $H^+ = H \cap G^+$.
- Let α , β be adjacent vertices.

Some immediate facts:

- $G^+ = G_{\Delta_1} = G_{\Delta_2}$ has index 2 (hence normal) in G and is transitive on both Δ_1 and Δ_2 , as well as H^+ in H.
- ullet $G=\langle G^+,g
 angle$ where $g\in Gackslash G^+$, g interchanges Δ_1 and Δ_2 , $g^2\in G^+$

Case: unfaithful action

Now we consider the action of G^+ on Δ_1 and Δ_2 .

Lemma (4.2)

If G^+ acts unfaithfully on Δ_1 or Δ_2 , then $\Gamma = \mathbf{K}_{n,n}$, where $n = |V\Gamma|/2$.

Proof. Let $K = \ker(G^+ \curvearrowright \Delta_1)$.

Then $K^g = \ker(G^+ \curvearrowright \Delta_2)$ and $1 \neq KK^g = K \times K^g \triangleleft G$.

:: G is bi-quasiprimitive, $K \times K^g$ has at most 2 orbits.

Since K^g fixes Δ_2 pointwise, K must be transitive on Δ_2 .

It follows that $\Gamma = \mathbf{K}_{n,n}$.

We thus additionally assume G^+ is faithful on both Δ_1 and Δ_2 .

$$G^+\cong (G^+)^{\Delta_1}\cong (G^+)^{\Delta_2}$$

We will prove the above actions are quasiprimitive of almost simple type.

Quasiprimitive \implies same type AS or PA

Lemma (4.3)

Suppose G^+ is quasiprimitive on Δ_1 or Δ_2 . Then

- **①** G^+ is quasiprimitive on both Δ_1 and Δ_2
- **2** both $(G^+)^{\Delta_1}$ and $(G^+)^{\Delta_2}$ have the same type AS or PA

Proof.WLOG, assume G^+ is quasiprimitive on Δ_1 .

G transitive on $V\Gamma$ and $G^+ \triangleleft G \implies G^+ \curvearrowright \Delta_1$, Δ_2 are perm. isom.

Hence G_{-}^{+} is quasiprimitive on Δ_{2} of the same type on Δ_{1} .

By ref.^{5,Thm} ^{1.2}, $(G^+)^{\Delta_1}$ is of type HA, AS, TW or PA.

For cases HA or TW, $soc(G^+) \triangleleft G$ is regular on Δ_1 and Δ_2 ,

then Γ is a **G-normal bi-Cayley graph** on $soc(G^+)$.

By ref.^{6,Lem 3.2}, Γ is at most (G,2)-arc-transitive, contradicting $s \geq 3$.

⁵Michael Giudici, Cai Li, and Cheryl Praeger. "Analysing finite locally *s*-arc transitive graphs". In: *Trans. AMS* 356 (Aug. 2003), pp. 291–317.

Study $soc(G^+)$

Lemma (4.4)

 $\operatorname{soc}(G^+)$ is nonsolvable and is the the unique minimal normal subgroup of G, and $\operatorname{soc}(G^+)_{\alpha} \neq 1$.

Proof.

If $G^+ \curvearrowright \Delta_1$ is quasiprimitive.

By lemma 4.3, G^+ is of type AS or PA.

So $soc(G^+) \underset{min}{\triangleleft} G^+$ and is nonsolvable and not semiregular.

Let $C = C_G(\operatorname{soc}(G^+))$. Then $C \triangleleft G$ and $\operatorname{soc}(G^+) \cap C = Z(\operatorname{soc}(G^+)) = 1$.

If $C \neq 1$, as $C \cap G^+ = 1$ and $G = G^+.2$, we derive that $C \cong \mathbb{Z}_2$.

Since $|V\Gamma| > 4$, C has more than 2 orbits, contradicting G bi-quasiprimitive.

Hence C = 1 and $soc(G^+)$ is also unique in G.

Now assume G^+ is not quasiprimitive on both Δ_1 and Δ_2 .

Then $\exists M \triangleleft G^+$ acting intransitively on Δ_1 hence has > 2 orbits on $V\Gamma$.

Thus $M \not A G$ and $M^g \neq M$. (Recall $G = \langle G^+, g \rangle$)

Since $g^2 \in G^+$, one has $MM^g = M \times M^g < G^+$ is normal in G.

By bi-quasiprimitivity of G, $M \times M^g$ is transitive on Δ_1 and Δ_2 . Bv ref.^{7,Thm} ^{1.5}, either

- $M \times M^g$ is regular on Δ_1 and Δ_2 ; or
- unique minimal normal subgroup of G.

For case (b), done.

For case (a), Γ is a G-normal bi-Cayley graph on $M \times M^g$, again by ref. $^{8,\text{Lem }3.2}$, is at most (G,2)-arc-transitive. A contradiction.

⁷Cai Heng Li et al. "Finite locally-quasiprimitive graphs". In: *Discrete Mathematics* 246.1 (2002), pp. 197-218.

Structure of $soc(G^+)$

According to Lemma 4.4, we may set that

$$N := \operatorname{soc}(G^+) = T_1 \times T_2 \times \cdots \times T_d \cong T^d \stackrel{unique}{\underset{min}{\triangleleft}} G.$$

Then N is transitive on Δ_1 and Δ_2 since G is bi-quasiprimitive.

Consider $G^+ \curvearrowright \{T_1, \cdots, T_d\}$ by conjugation with kernel K. Then $N \triangleleft K \leq \operatorname{Aut}(T_1) \times \cdots \times \operatorname{Aut}(T_d)$. And $T_j \triangleleft K$, $1 \leq j \leq d$. Let $M_j = C_K(T_j)$. Then

$$\cdots \times T_{j-1} \times 1 \times T_{j+1} \times \cdots \leq M_j \leq \cdots \times \operatorname{Aut}(T_{j-1}) \times 1 \times \operatorname{Aut}(T_{j+1}) \times \cdots$$

 $M_j \triangleleft K$ and $K/M_j \lesssim \operatorname{Aut}(T_j)$ is almost simple with socle T_j .

Recall H is a vertex-transitive solvable subgroup of G. Let $H^+ = H \cap G^+$ and H_j be the projection of $H^+ \cap N$ on T_j , $1 \le j \le d$. Then $|H^+ \cap N|$ divides $|H_1||H_2|\cdots |H_d|$.

Exclude PA type

Lemma (4.5)

Suppose $d \geq 2$. Then $\exists j \in \{1, 2, ..., d\}$ s.t. M_j is transitive on Δ_1 or Δ_2 ; in particular, if G^+ is quasiprimitive on Δ_1 or Δ_2 , then it is not of type PA.

Proof.

Assume G^+ is quasiprimitive of type PA on Δ_1 or Δ_2 .

Then $\exists \mathcal{B} = \Omega^d$ a maximal block system s.t. $G^+ \curvearrowright \mathcal{B}$ primitive by PA.

For $(w_1, w_2, ..., w_d) \in \Omega^d$, $(x_1, x_2, ..., x_d) \in M_j$, we have

$$(w_1, w_2, ..., w_d)^{(x_1, x_2, ..., x_d)} = (w_1^{x_1}, w_2^{x_2}, ..., w_d^{x_d}).$$

From previous analysis, $x_j = 1$. Then transitivity of M_j implies $|\Omega| = 1$. Need to prove the transitivity of some M_j .

By lemma 4.4, $N \triangleleft G$ and $N_{\alpha} \neq 1$, $\forall \alpha \in V\Gamma$. By the following lemma,

Lemma (2.5)

Let Γ be a connected (G, s)-transitive graph with $s \geq 3$, and suppose $N \triangleleft G$ and not semiregular. Then one of the following holds:

- both $G_{\alpha}^{\Gamma(\alpha)}$ and $N_{\alpha}^{\Gamma(\alpha)}$ are almost simple 2-transitive;
- Q $G_{\alpha}^{\Gamma(\alpha)}$ is affine and $N_{\alpha}^{\Gamma(\alpha)}$ is primitive.

we have Γ is N-locally-primitive, hence K-locally-primitive since $N \leq K$.

Lemma (2.4)

Let Γ be a connected bipartite G-locally-primitive graph with G-orbits Δ_1 and Δ_2 on $V\Gamma$ and each $|\Delta_i| > 1$. Suppose $\exists N \triangleleft G$ s.t. N is intransitive on Δ_1 and Δ_2 . Then^{a,Lem 5.1}

- **1** Γ is a normal cover of Γ_N .
- ② N is semiregular on V Γ , $G^{V\Gamma_N} \cong G/N$ and $G_\alpha \cong (G/N)_v$ for $\alpha \in V\Gamma$ and $v \in V\Gamma_N$.
- ③ Γ_N is G/N-locally-primitive. Futhermore, if Γ is locally (G,s)-arctransitive with $s \geq 2$, then Γ_N is locally (G/N,s)-arc-transitive.

If $M_j \triangleleft K$ is intransitive on both Δ_1 and Δ_2 for each j=1,...,d, then M_j is semiregular hence $M_j \cap K_\alpha = 1$, and $K_\alpha \cong (K/M_j)_v \lesssim \operatorname{Aut}(T)$. Furthermore, K_α is a diagonal subgroup, i.e. Why?

$$K_{\alpha} = \{(a, a, ..., a) | a \in P\}, P \leq \operatorname{Aut}(T).$$

^aGiudici, Li, and Praeger, "Analysing finite locally s-arc transitive graphs".

$$\mathcal{N}_{\alpha} = \mathcal{N} \cap \mathcal{K}_{\alpha} = (T_1 \times \cdots \times T_d) \cap \mathcal{K}_{\alpha} = \{(a, a, ..., a) | a \in P \cap T\} \lesssim T,$$
thus $|T|^{d-1}$ divides $|\mathcal{N}: \mathcal{N}_{\alpha}| = |\Delta_1|$,

 $H^+ \curvearrowright \Delta_1$ transitively $\Longrightarrow |T|^{d-1}$ divides $|H^+| = |H^+ \cap K| |H^+ K/K|$. $N \curvearrowright \Delta_1$ transitively \Longrightarrow

$$K/N = K_{\alpha}N/N \cong K_{\alpha}/N_{\alpha} \cong P/(P \cap T) \cong PT/T \lesssim \operatorname{Out}(T).$$

- $\therefore |H^+ \cap K|/|H^+ \cap N|$ divides $|\operatorname{Out}(T)|$.
- $\therefore |H^+ \cap N|$ divides $|H_1 \times \cdots \times H_d|$,

Therefore,

$$|T|^{d-1}$$
 divides $|H_1 \times \cdots \times H_d||\operatorname{Out}(T)||H^+K/K|$.

Case: $H^+ \not \leq K$:

Case: $H^+ \leq K$:

Quasiprimitive $G^+ \curvearrowright \Delta_1$ and Δ_2

Lemma (4.6)

 G^+ is quasiprimitive on Δ_1 and Δ_2 .

Proof. Assume $G^+ \curvearrowright \Delta_1$ is NOT quasiprimitive.

Case (a): $N_{\alpha} \cong T$.

Case (b): $1 \neq N_{\alpha} < T$.

Case (b.1): L is nonsolvable.

Case (b.1): L is solvable.

Summary

Recall hypothesis in the beginning of this section:

- Let Γ be a connected bipartite (G, s)-transitive graphs of val ≥ 3 , with bipartitions Δ_1 and Δ_2 and $s \geq 3$.
- Suppose G is bi-quasiprimitive on $V\Gamma$ and contains a vertex-transitive solvable subgroup H.
- Set $G^+ = G_{\Delta_1}$, the setwise stabilizer of G on Δ_1 , and $H^+ = H \cap G^+$.

Proposition (4.7)

Under such hypothesis, either $\Gamma = \mathbf{K}_{n,n}$, or G is an almost simple group and G^+ is quasiprimitive on both Δ_1 and Δ_2 .

Proof. If G^+ acts unfaithfully on Δ_1 or Δ_2 , lemma 4.2 gives $\Gamma = \mathbf{K}_{n,n}$. Faithful case:

Lemma 4.3 shows either G^+ is not quasiprimitive on Δ_1 or Δ_2 , or quasiprimitive on both with same type AS or PA.

Lemma 4.6 exclude the former. Lemma 4.5 exclude PA in the latter. Finally lemma 4.4 implies G is AS.

Outline

- Preliminaries & Background
- Main Result & Examples
- Proof of the Main result
 - Overview of the proof
 - Reduce to almost simple groups
 - Almost simple groups

$soc(G) = T \le G \le Aut(T)$

By proposition 4.7, we may assume G is almost simple with socle T, and G^+ is quasiprimitive on Δ_1 and Δ_2 .

Set $G = T.\mathcal{O}$ and $G^+ = T.\mathcal{O}'$, with $\mathcal{O}' < \mathcal{O} \leq \operatorname{Out}(T)$ and $|\mathcal{O}: \mathcal{O}'| = 2$. T is transitive on $\Delta_i \implies G = G_\alpha T \implies G_\alpha/T_\alpha \cong G_\alpha T/T = G/T = \mathcal{O}$ By Frattini argument, $G = HG_\alpha$ and $G^+ = H^+G_\alpha$.

Both factorization have a solvable factor H, H^+ .

Lemma (5.1)

 $T \neq PSL_2(q)$ with q a prime power.

Proof. Check the classification of connected 2-arc-transitive graphs admitting a two-dimensional linear automorphism group, see ref.⁹, in which the only 3-arc-transitive graph is the Petersen graph, a non-bipartite graph.

⁹C. E. Praeger A. Hassani L. R. Nochefranca. "Two-arc transitive graphs admitting a two-dimensional projective linear group". In: 2.4 (1999), pp. 335–353 → 4 ≥ → 2 → 2

Case: G_{α} solvable

Lemma (5.2)

If G_{α} solvable, then $T=\mathrm{PSL}_3(3)$ and $\Gamma=\mathcal{PH}(3,3^3)$ is 4-transitive of valency 4.

Case: T alternating

Lemma (5.3)

T is not an alternating simple group.

Case: T sporadic

Lemma (5.4)

T is not a sporadic simple group.

Case: T classical

Lemma (5.5)

If T is a classical simple group of Lie type, then $s \le 4$, and one of the following is true.

- **1** $T = \mathrm{PSL}_5(2)$, and $\Gamma \cong \mathcal{GI}(5,2,2)$.
- **2** $T = PSU_3(5)$, and $\Gamma \cong HS_{50}^{(2)}$.
- ③ Γ is of valency $p^f + 1$, $\operatorname{PSL}_3(p^f).2 \le G \le \operatorname{Aut}(\operatorname{PSL}_3(p^f))$ and $\mathbb{Z}_p^{2f}: \operatorname{SL}_2(p^f) \triangleleft G_\alpha \le P_1$ or P_2 where P_1 and P_2 are the stabilizers of T on a 1-dimension subspace and a 2-dimension subspace, respectively.

References

- A. Hassani L. R. Nochefranca, C. E. Praeger. "Two-arc transitive graphs admitting a two-dimensional projective linear group". In: 2.4 (1999), pp. 335–353.
- Conder, Marston et al. "Edge-transitive bi-Cayley graphs". In: *Journal of Combinatorial Theory, Series B* 145 (2020), pp. 264–306.
- Giudici, Michael, Cai Li, and Cheryl Praeger. "Analysing finite locally *s*-arc transitive graphs". In: *Trans. AMS* 356 (Aug. 2003), pp. 291–317.
- Li, Cai Heng, Zai Ping Lu, and Gaixia Wang. "Arc-transitive graphs of square-free order and small valency". In: *Discrete Mathematics* 339.12 (2016), pp. 2907–2918.
- Li, Cai Heng and Binzhou Xia. Factorizations of Almost Simple Groups with a Solvable Factor, and Cayley Graphs of Solvable Groups. Vol. 279. 1375. Mem. AMS, 2022.
- Li, Cai Heng et al. "Finite locally-quasiprimitive graphs". In: *Discrete Mathematics* 246.1 (2002), pp. 197–218.
- Marui, Dragan. "On 2-arc-transitivity of Cayley graphs". In: *Journal of Combinatorial Theory, Series B* 87.1 (2003), pp. 462-4196