Strategies for analysis of under- and overdispersed count data

Eduardo Elias Ribeiro Junior ^{1 2} Clarice Garcia Borges Demétrio ²

¹Statistics and Geoinformation Laboratory (LEG-UFPR) ²Department of Exact Sciences (ESALQ-USP)

18th May 2018

jreduardo@usp.br | edujrrib@gmail.com

Outline

- 1. Background
- 2. Alternative Models
- 3. Data analysis
- 4. Final remarks

1

Background

Corn damage: Sitophilus zeamais progeny

Motivation:

- Study in Entomology;
- Major pest of stored maize in Brazil is Sitophilus zeamais.

Objective:

► Assess the insecticide action of organic extracts of Annonacae.

Experiment:

- Design: completely randomized experiment with 10 replicates;
- Experimental unit: petri dishes containing 10g of corn treated with extracts;
- ► Factor: Extracts prepared with different parts of the plant (seeds, leaves and branches) or just water (control).
- Response variable: Number of emerged insects (progeny) after 60 days.

Descriptive analysis

Table: Sample mean and sample variance for the *Sitophilus zeamais* data.

Extract	Sample mean	Sample variance	
Control	31.50	62.50	
Leaf	31.30	94.01	
Branch	29.90	88.77	
Seed	1.10	1.66	

Figure: Number of emerged insects for each extract

Poisson model and limitations

GLM framework (Nelder & Wedderburn 1972)

- Provide suitable distribution for a counting random variables;
- Efficient algorithm for estimation and inference;
- Implemented in many software.

Poisson model

▶ Relationship between mean and variance, E(Y) = Var(Y);

Main limitations

- ▶ Overdispersion (more common), E(Y) < Var(Y);
- ▶ Underdispersion (less common), E(Y) > Var(Y).

2

Alternative Models

Proposing of alternative models

The origin of such phenomena of under- and overdispersion can be interpreted as a failure of some basic assumptions of the model (Hinde & Demétrio 1998).

Examples of Poisson process failures:

- Variability of experimental material (Random-effects);
- Aggregate level data (Compound distributions);
- Non-constancy of the hazard function of waiting times (Duration dependence);

We shall present the genesis and definition of models:

- ► COM-Poisson;
- Gamma-Count;
- Generalized Poisson; and
- Poisson-Tweedie.

2.1

Alternative Models **COM-Poisson model**

Weighted Poisson models

The family of weighted Poisson distributions (WPD) (Del Castillo & Pérez-Casany 1998), weights the Poisson probability function by a suitable function,

$$\Pr(Y = y) = \frac{w(y) \exp(-\lambda) \lambda^y}{y! E_{\lambda}[w(Y)]}, \quad y \in \mathbb{N},$$

where $E_{\lambda}(\cdot)$ denotes the mean value with respect to the Poisson random variable with parameter λ and w(y) is a weight function.

The weight function may depend on extra parameter to ensure more flexibility to the distribution.

COM-Poisson distribution

The COM-Poisson (Shmueli et al. 2005) belongs to the family of weighted Poisson distributions and it is obtained when $w(y,\nu)=(y!)^{1-\nu}$. The probability mass function of Y a COM-Poisson random variable is

$$\Pr(Y=y) = \frac{\lambda^y \exp(-\lambda)}{(y!)^{\nu} E_{\lambda}[(Y!)^{1-\nu}]} = \frac{\lambda^y}{(y!)^{\nu} Z(\lambda, \nu)}, \quad Z(\lambda, \nu) = \sum_{j=0}^{\infty} \frac{\lambda^j}{(j!)^{\nu}},$$

where ν is the dispersion parameter.

The moments of distribution are approximated by

$$\mathrm{E}(\mathrm{Y}) pprox \lambda^{1/\nu} - rac{\nu-1}{2\nu}$$
 and $\mathrm{Var}(\mathrm{Y}) pprox rac{\lambda^{1/\nu}}{\nu}.$

Mean-parametrized and regression models

Following Ribeiro Jr et al. (2018), we use the parametrization given by introducing μ based on mean approximation

$$\mu = h(\lambda, \nu) = \lambda^{1/\nu} - \frac{\nu - 1}{2\nu} \quad \Rightarrow \quad \lambda = h^{-1}(\mu, \nu) = \left(\mu + \frac{(\nu - 1)}{2\nu}\right)^{\nu}$$

Regression models

$$Y_i \sim \text{CMP}(\nu, \mu_i)$$
, where $\mu_i = g^{-1}(\boldsymbol{x}_i^{\top} \boldsymbol{\beta})$

2.2

Alternative Models **Gamma-Count model**

Gamma-Count model

Renewal process

Following Winkelmann (1995),

- Let $\tau_k > 0$, $k \in \mathbb{N}^*$, denote the waiting times between the (k-1) and the k-ht event;
- ▶ Let ϑ_n , denote the arrival time of the *n*-th event, so $\vartheta_n = \sum_{k=1}^n \tau_k$.
- ▶ Finally, denote Y_T the number of events within a (0, T) interval.

$$\begin{split} Y_T < y &\iff \vartheta_y \geq T \\ \Pr(Y_T < y) &= \Pr(\vartheta_y \geq T) = 1 - \mathsf{F}_y(T), \\ \Pr(Y_T = y) &= \Pr(Y_T < y) - \Pr(Y_T < y + 1) \\ \Pr(Y_T = y) &= \mathsf{F}_{\vartheta_y}(T) - \mathsf{F}_{\vartheta_{y+1}}(T), \end{split}$$

where $F_{\vartheta_n}(T)$ is the cumulative density function of ϑ_n and T is the interval of the counting.

Gamma-Count distribution

For the Gamma-Count distribution we assume τ_k are identically and independently Gamma(α, κ). So the reproductive property of Gamma random variables, leads to $\vartheta_y \sim \text{Gamma}(y\alpha, \kappa)$.

Consequently, the probability mass function of *Y* a Gamma-Count random variable is

$$\Pr(Y_T = y) = \int_0^T \frac{\kappa^{y\alpha} t^{y\alpha - 1}}{\Gamma(y\alpha) \exp(\kappa t)} dt - \int_0^T \frac{\kappa^{(y+1)\alpha} t^{(y+1)\alpha - 1}}{\Gamma[(y+1)\alpha] \exp(\kappa t)} dt,$$

a difference between two Gamma cumulative density functions, $G(y\alpha,\kappa)-G((y+1)\alpha,\kappa)$, where $G(\alpha,\kappa)$ is the cumulative function $F_y(T)$ for the Gamma variable with parameters α and κ .

Properties and regression models

Winkelmann (1995) showed for increasing *T*, i.e. high counts, it holds that

$$Y_T \stackrel{asy}{\sim} \mathcal{N}\left(\frac{\kappa T}{\alpha}, \frac{\kappa T}{\alpha^2}\right)$$
,

thus the limiting variance-mean ratio equals a constant $1/\alpha$.

Regression models

$$Y_i \sim GCT(\alpha, \kappa_i)$$
, where $\kappa_i = \alpha g^{-1}(\boldsymbol{x}_i^{\top} \boldsymbol{\beta})$,

2.3

Alternative Models **Generalized Poisson model**

Generalized Poisson distribution

The distribution results from the limiting form of the generalized negative binomial distribution (Zamani & Ismail 2012).

The probability mass function is given by

$$\Pr(Y = y) = \begin{cases} \frac{\lambda(\lambda + y\gamma)^{y-1} \exp(-\lambda - y\gamma)}{y!}, & y = 0, 1, 2, \dots \\ 0 & \text{for } y > m, \text{ when } \gamma < 0, \end{cases}$$

where $\lambda > 0$, $\max(-1, -\lambda/4) \le \gamma \le 1$ and m is the largest positive integer for which $\theta + m\lambda > 0$ when λ is negative.

- ► $E(Y) = \lambda (1 \gamma)^{-1}$;
- $Var(Y) = \lambda (1 \gamma)^{-3}.$

Mean-parametrization and regression models

In order to specify regression models based on Generalized Poisson distribution, we use the mean-parametrization

$$\lambda = \frac{\mu}{1 + \sigma \mu}$$
 and $\gamma = \frac{\sigma \mu}{1 + \sigma \mu}$.

Under this parametrization, the moments are given by

- \blacktriangleright E(Y) = μ ;
- ► $Var(Y) = \mu(1 + \mu\sigma)^2$.

Regression models

$$Y_i \sim \text{GPo}(\mu_i, \sigma)$$
, where $\mu_i = g^{-1}(\mathbf{x}_i^{\top} \boldsymbol{\beta})$,

2.4

Alternative Models Poisson-Tweedie model

General two-stage models

The Poisson-Tweedie class of distributions is a general case of the two-stages models (Jørgensen & Kokonendji 2016). This family is given by the following hierarchical specification

$$Y \mid Z \sim Po(Z)$$
 where $Z \sim Tw_p(\mu, \phi)$,

and Tw_p denotes a Tweedie distribution with power parameter p, $p \in (-\infty, 0] \cup [1, \infty)$, $\mu \in \Omega_p$ and $\phi > 0$.

The probability mass function for this distribution cannot be obtained in closed form apart from the special case corresponding to the Negative Binomial distribution, p = 2.

Second-moments assumptions and regression

Although the probability function cannot be obtained, the moments mean and variance can,

$$E(Y) = E[E(Y \mid Z)] = \mu$$

$$Var(Y) = Var[E(Y \mid Z)] + E[Var(Y \mid Z)] = \mu + \phi \mu^{p}.$$

The Poisson-Tweedie has Hermite (p=0), Neymann tipo-A (p=1), Pólya-Aeppli (p=1,5), negative binomial (p=2) and Poisson-inverse Gaussian (p=3) as special cases (Bonat et al. 2018).

Regression models

$$Y_i \sim \text{PTw}_p(\mu_i, \omega)$$
, where $\mu_i = g^{-1}(\boldsymbol{x}_i^{\top} \boldsymbol{\beta})$,

2.5

Alternative Models Comparison of the distributions

Summary of distributions

Table: Probabilistic models for analysis of count data.

	COM-Poisson	Gamma-Count	Generalized Poisson	Poisson-Tweedie
Notation Dispersion parameter	$CMP(\mu_i, \nu)$ $\phi = \log(\nu)$ $\nu > 0$	$GCT(\kappa_i, \gamma)$ $\gamma = \log(\alpha)$ $\alpha > 0$	$GPo(\mu_i, \sigma)$ σ $\sigma > c^*$	$PTw_p(\mu_i, \omega)$ ω $\omega > 0$
Expectation Variance	$pprox \mu_i \ pprox \mu_i/ u$	$\stackrel{a}{pprox} \kappa_i / \alpha$ $\stackrel{a}{pprox} \kappa_i / \alpha^2$	$\mu_i \ \mu_i (1 + \sigma \mu_i)^2$	$\mu_i \\ \mu_i (1 + \omega \mu_i^{p-1})$
Dispersion index (DI)	$\approx 1/\nu$	$\stackrel{a}{\approx} 1/\alpha$	$(1+\sigma\mu_i)^2$	$1 + \omega \mu_i^{p-1}$
Regression	$\mu_i = g^{-1}(\boldsymbol{x}_i^{\top}\boldsymbol{\beta})$	$\kappa_i = \alpha g^{-1}(\boldsymbol{x}_i^{\top} \boldsymbol{\beta})$	$\mu_i = g^{-1}(\boldsymbol{x}_i^{\top}\boldsymbol{\beta})$	$\mu_i = g^{-1}(\boldsymbol{x}_i^{\top}\boldsymbol{\beta})$

 $c^* = \min[-\max(y_i^{-1}), -\max(\mu_i^{-1})]; \stackrel{a}{\approx} \text{asymptotically when } T \to \infty.$

Figure: Dispersion indexes for different parameters of the CMP, GCT, GPo and PTW.

3

Data analysis

Model specification

- Model: $\log(\mu_{ij}) = \beta_0 + \tau_j$.
- i = 1, 2, ..., 10; j = 1, 2, 3, 4;
- Restriction $\tau_1 = 0$.

Table: Parameter estimates and standard errors for the model strategies.

	CMP	GCT	GPo	PTw
β_0	3.477(-)	3.425(0.091)	3.450(0.091)	3.450(0.087)
$ au_{ m leaf}$	-0.008(-)	-0.007(0.128)	-0.006(0.128)	-0.006(0.124)
$ au_{ m branch}$	-0.061(-)	-0.054(0.130)	-0.052(0.129)	-0.052(0.125)
$ au_{ m seed}$	-3.204(-)	-4.016(0.663)	-3.355(0.321)	-3.355(0.362)
Disp.	-1.072(-)	-0.927(0.263)	0.019(0.007)	1.403(0.570)
Power	_	_	_	0.348(0.670)
LogLik	-120.919	-121.651	-122.284	-121.847
AIC	251.839	253.302	254.568	255.693

Fitted values

Figure: (a) Fitted values with confidence intervals (95%) and (b) Mean–variance relationship for the fitted models.

4

Final remarks

Concluding remarks

Summary

- Over- / underdispersion are phenomena that needs caution;
- Generalizations of Poisson distribution can be derived of Poisson process failures;
- For most practical problems, the models are similar in terms of fitted values and confidence intervals;
- ▶ The mean-variance relationship characterizes them.

Future work

Perform a extensive simulation to assess the capacity of each model.

References

- Bonat, W. H., Jørgensen, B., Kokonendji, C. C., Hinde, J. & Démetrio, C. G. B. (2018), 'Extended Poisson-Tweedie: properties and regression model for count data', Statistical Modelling 18(1), 24–49.
- Del Castillo, J. & Pérez-Casany, M. (1998), 'Weighted Poisson distributions for overdispersion and underdispersion situations', Annals of the Institute of Statistical Mathematics 50(3), 567–585.
- Hinde, J. & Demétrio, C. G. B. (1998), 'Overdispersion: models and estimation', Computational Statistics & Data Analysis 27(2), 151–170.
- Jørgensen, B. & Kokonendji, C. C. (2016), 'Discrete dispersion models and their tweedie asymptotics', Advances ub Statistical Analysis 100, 43–78.
- Nelder, J. A. & Wedderburn, R. W. M. (1972), 'Generalized Linear Models', Journal of the Royal Statistical Society. Series A (General) 135, 370–384.
- Ribeiro Jr, E. E., Zeviani, W. M., Bonat, W. H., Demétrio, C. G. B. & Hinde, J. (2018), 'Reparametrization of COM-Poisson regression models with applications in the analysis of experimental data', arXiv (Statistics Applications and Statistics Methodology).

References

- Shmueli, G., Minka, T. P., Kadane, J. B., Borle, S. & Boatwright, P. (2005), 'A useful distribution for fitting discrete data: Revival of the Conway-Maxwell-Poisson distribution', *Journal of the Royal Statistical Society. Series C: Applied Statistics* 54(1), 127–142.
- Winkelmann, R. (1995), 'Duration Dependence and Dispersion in Count-Data Models', *Journal of Business & Economic Statistics* **13**(4), 467–474.
- Zamani, H. & Ismail, N. (2012), 'Functional form for the generalized Poisson regression model', *Communication in Statistics Theory and Methods* **41**, 3666–3675.