普通高中教科书

HUA XUE

练习部分

必修第一册

学 校 _____

班 级 _____

姓 名 _____

学 号 _____

上海科学技术出版社

普通高中教科书

化 学 练习部分

必修 第一册

主 编:麻生明 陈 寅

副 主 编: 王韻华 朱万森

编写人员:(以姓氏笔画为序)

刘丽君 李锋云 陆惠莲 姚秋平

责任编辑: 胡恺岩 孙 伟

封面设计: 诸梦婷

普通高中教科书 化学练习部分 必修 第一册

上海市中小学(幼儿园)课程改革委员会组织编写

出 版 上海世纪出版(集团)有限公司 上海科学技术出版社 (上海市闵行区号景路 159 弄 A 座 9F - 10F 邮政编码 201101)

发 行 上海新华书店

印 刷 上海中华印刷有限公司

版 次 2021年8月第1版

印 次 2022年7月第2次

开 本 890 毫米×1240 毫米 1/16

印 张 5.5

字 数 141 千字

书 号 ISBN 978-7-5478-4988-0/G•988

定 价 5.60 元

价格依据文号 沪价费[2017]15号

版权所有·未经许可不得采用任何方式擅自复制或使用本产品任何部分·违者必究 如发现印装质量问题或对内容有意见建议,请与本社联系。电话: 021-64848025 全国物价举报电话: 12315

目 录

第1章	化学研究的天地	1
	1.1 物质的分类	1
	1.2 物质的量	4
	1.3 化学中常用的实验方法	8
	本章测试	15
第 2 章	海洋中的卤素资源	19
	2.1 海水中的氯	19
	2.2 氧化还原反应和离子反应	26
	2.3 溴和碘的提取	32
	本章测试	38
第3章	硫、氮及其循环	42
	3.1 硫及其重要化合物	42
	3.2 氮及其重要化合物	48
	3.3 硫循环和氮循环	53
	本章测试	58

第 4 章	原子	² 结构和化学键 ····································	63
	4.1	元素周期表和元素周期律	63
	4.2	原子结构	68
	4.3	核外电子排布	73
	4.4	化学键	77
	本章	·测试 ······	81

第1章 2 化学研究的天地

1.1 物质的分类

物质的分类

1. 生活经验告诉我们:常温常压下,18g液态水的体积约为18mL,而相同质量的水蒸气体积约为24.5L;液态水很难被压缩,而水蒸气却容易被压缩。运用所学知识,解释上述现象。

- 2. 下列各组物质,每一组中,从某种角度分析有一种物质与其他三种不同。请圈画出这种物质,并说明理由。
 - (1) Cu, Hg, Au, Fe:
 - (2) 液氨、液氧、氧化钙、稀硫酸: _____。
- 3. 氯乙烯是一种有机化合物,化学式为 C_2 H_3 Cl,是生产聚氯乙烯的原料。聚氯乙烯可用化学式 $(C_2$ H_3 $Cl)_n$ 来表示。回答下列问题。
 - (1) 计算(C₂H₃Cl)_n中氯的质量分数(答案保留三位有效数字)。

(2) 测得某聚氯乙烯塑料中氯的质量分数约为 0.35,判断该塑料是否只由(C₂H₃Cl),组成。

分散系

1.	用特殊方法司	可以将固体物质加	工为纳米级(1~	100 nm,1 nm	=10 ⁻⁹ m)的超细粉末粒
	子,再制得纳	米材料。下列分散	系中,分散质粒子	直径范围与上	述粒子相同的是()。
	(A) 溶液	(B) 悬浊剂	夜 (C)	胶体	(D) 乳浊液
2.	下列关于胶体	本的说法中,正确的	是()。		
	(A) 胶体的タ	小观不均匀	(B)	胶体粒子不能透	透过滤纸
	(C) 胶体一层	足是混合物	(D)	胶体一定呈液态	3
3.	将 10 mL 淀料	纷胶体和 5 mL 氯化	L 钠溶液混合后	,放入用半透膜	制成的袋内,将此袋浸入
	蒸馏水中,如	图 1.1 所示。一段	时间后,分别取约	袋内和烧杯内的	的液体进行检验。下列预
	测中,正确的	是()。			
	(A) 烧杯内剂	夜体加入硝酸银溶剂	夜后有白色沉淀:	产生	淀粉胶体和
	(B) 烧杯内剂	夜体加入碘水(指碘	!单质的水溶液)	后呈蓝色	氯化钠溶液
	(C) 袋内液体	本加入硝酸银溶液质	 后无变化		半透膜蒸馏水
	(D) 袋内液体	本加入碘水后不变	蓝		M. 1444
4.	Fe(OH)3胶体	本在一定条件下能和	急定存在的主要原	原因是()。	图 1.1
	(A) 胶体粒子	子的直径为 1~100	nm (B)	能产生丁达尔玛	图象
	(C) 胶体粒子	子带正电荷	(D)	胶体粒子不能通	通过半透膜
5.	已知土壤胶体	体粒子带负电荷,能	吸附土壤中的正	离子,有利于有	一些植物对正离子的吸收。
	土壤中施用含	含氮总量相等的下列	可化肥,从化学式	分析其中肥效	最低的是()。
	(A) $(NH_4)_2$	SO_4 (B) NH_4	Cl (C)	$(NH_4)_2CO_3$	(D) NH_4NO_3
6.	已知:在外加	直流电场作用下,	Fe(OH) ₃ 胶体卷	立子向阴极移动	,硅酸胶体粒子向阳极移
	动,某未知胶	体粒子向阴极移动	。若向该未知胶	体中加入:①	MgSO ₄ 溶液(含有 Mg ²⁺ 、
	SO_4^{2-})或② F	e(OH) ₃ 胶体或③	硅酸胶体,不会	发生聚沉的是	(填编号),理
	由是				0
7.	已知淀粉溶于	下水后,其分散质粒	子直径约为1~	100 nm。现有	两瓶试剂,其标签已模糊
	不清,只知道	分别盛有淀粉溶液	和氯化钠溶液,	青你设计多种方	法进行鉴别。
	编号	选择的证			现象与结论
		75 J± HJ IX	луҗЛи		北 然一年比
	1				
	2				
	3				

在上述方法中,无需通过化学反应就能鉴别的是:____(填编号)。

生活与社会

下列是实验室或日常生活中常见的物质:蔗糖、纯铜、盐酸、汽油、蒸馏水、小苏打、二氧化碳、空气溶胶、家用天然气、醋酸、豆浆、乙醇、氢气、活性炭、氯化钠、氢氧化钠、家用消毒液、石灰乳。

从物质的组成和性质等角度,选择上述物质进行分类,并写出分类的依据或理由。

编号	分类依据或理由	示例
1	物质的组成中是否只含一种单 质或一种化合物	纯净物:蔗糖、纯铜、蒸馏水、小苏打、二氧化碳、醋酸、 乙醇、氢气、氯化钠、氢氧化钠 混合物:盐酸、汽油、空气溶胶、家用天然气、豆浆、活性 炭、家用消毒液、石灰乳
2		
3		
••••		

实践与制作

我们知道,AgCl 是一种难溶物质,常温时 AgCl 的溶解度仅为 $0.000\ 19\ g \cdot (100\ g\ H_2O)^{-1}$ 。因此,在溶液中生成的 AgCl 常形成悬浊液。查阅资料后发现,AgCl 也能形成胶体。

资料摘录:

AgCI 胶体的制备方法

量取 1 mL 0.1% NaCl 溶液于试管中,向其中滴加 5 滴 0.02%的 $AgNO_3$ 溶液,边滴加边振荡,即可制得 AgCl 胶体。

回答下列问题。

- (1) 写出制备 AgCl 胶体的化学方程式。
- (2) 为什么上述资料中所用 NaCl 溶液、AgNO。溶液溶质的质量分数,与通常相比低了很多?如何确定制备得到的分散系属于胶体?

1.2 物质的量

物质的量 阿伏加德罗常数

1.	物质的量是-	一个物理量,表示					,符号
	为 ,-	单位是	,用	表示。	1 mol 精	青确包含	
		 该数称为					
2.		· 是否正确,若不					
	(1) 摩尔是七	个基本物理量之	•				
	(2)物质的量	就是物质的质量	. 0				
	(3) 摩尔是物	质的数量单位。					
	(0) 学机定的	D次时 <u>从</u> 至十世。					
	(4) 1 mol 大	米约含有 6.02×1	10 ²³ 个米粒。				
	(5) 1 mol 氧 ²	含有 6.02×10 ²³ /	~氧原子。				
	(6) 含有 3.01	l×10 ²² 个氧分子	的氧气,它的	物质的。	量约为(0.05 mol。	
	(7) 1 mol H ₂	SO ₄ 中约含有 6.	.02×10 ²³ 个望	氢分子。			
	(8) H ₂ SO ₄ 的	的摩尔质量是 98	g 。				
			J -				
	(9) 2 mol 水I	的摩尔质量是 1 1	mol 水的摩尔	ぶ 质量的	2倍。		
	(10) 等质量的	的 H ₂ SO ₄ (摩尔质	量以 98 g・m	ol ⁻¹ 计)和	¶ H₃PO	4(磷酸,摩尔质量以	以 98 g・mol ⁻¹
		相同的分子数和			v		0
3.	1 mol 水分子	中约含有	个水分子	,含有		_mol 氢原子,约含	·有
	个氧原子。			_		_	

4.	0.5 mol Na₂SO₄中约含有	个 Na+和		2-
5.	g SO ₂ 约含有 6.02×10)22个二氧化硫分子,其物	质的量为	_mol,其中含
	有氧原子 mol。			
6.	"神舟七号"载人航天飞船是以位	扁二甲肼(C ₂ H ₈ N ₂)为燃料	斗发射的。	
	(1) 1 个 C ₂ H ₈ N ₂ 分子共含有	个原子。		
	(2) 2 mol C ₂ H ₈ N ₂ 的质量是		个分子,约含有	
	个碳原子。			
	(3) C ₂ H ₈ N ₂ 中C、H、N 三种元素	的质量比为	,1 mol C ₂ H ₈ N ₂	含有g
	氮原子。			
	(4) C ₂ H ₈ N ₂ 在氧气中完全燃烧	生成三种物质:两种氧化	化物和一种单质,	它们均为空气
	中的成分。写出该燃烧反应	拉的化学方程式:		o
	(5) 60 g C ₂ H ₈ N ₂ 完全燃烧,需要	要消耗氧气多少摩尔?这	些氧气约含有多少	>个氧分子?
	摩尔质量 气体摩尔	米和		
	事小贝里 【伊净小门	4 17		
1.	物质的体积主要取决于构成物质	质的微粒数目、微粒大小和	和微粒间的平均距	萬。
	(1) 1 mol 不同的固体或液体物	勿质,虽然具有相同的_	,但是	往往不
	同,固体或液体物质中微粒	1间的平均距离又是非常	小的,所以1 mol	固体或液体物
	质的体积主要取决于	,1 mol 2	不同的固体或液体	本物质的体积
	通常是的。			
	(2) 通常情况下,气体分子间的	平均距离远远大于分子的	的直径,因此当分子	·数目相同时,
	气体的体积大小主要取决于	F,而不	「是	。同温同
	压时,气体	近似相等,1 mol 任何 ^点	气体在同温同压时	体积
	(不考虑分子缔合	等其他因素)。		
2.	每摩尔	气体摩尔体积,用符号	表示,常用单位	立为。
	一般而言,温度越高,气体摩尔伯	本积就;压强越	大,气体摩尔体积	就。
	在标准状况下,气体摩尔体积约	为。		
3.	判断下列叙述是否正确,若不正	确,指出其错误之处。		
	(1) 在标准状况下,1 mol 任何特	物质的体积都约为 22.4 L	0	

(2)	2) 只有在标准状况下,1 mol 气体的体积才约为 22.4 L。						
(3)	3) 0.7 mol N ₂ 和 0.3 mol O ₂ 组成的混合气体在标准状况下的体积约为 22.4 L。						
(4)	常温常压下,1 m	nol 空气的体积大于 2	2.4 L。				
(5)	在标准状况下, ⁴	气体摩尔体积约为 22.	.4 L.				
(6)	22.4 L 气体所含	的分子数一定大于 1	1.2 L 气体所含的分子	数。			
下列	因素中,几乎不	影响气体体积大小的。	是()。				
(A)	分子数	(B) 分子直径	(C) 温度	(D) 压强			
在标 (容积相同的贮气瓶中	分别盛有 O₂和 CH₄	,则两瓶气体具有相同的			
(A)	质量	(B) 原子总数	(C)密度	(D) 分子数			
		体中密度最小的是(
(A)	CO_2	(B) NO ₂	(C) SO ₂	(D) NH ₃			
在一	·定条件下,1体和	只气体 A2与 3 体积气	体 B ₂ 恰好完全反应生	成了2体积气体 W(体积			
均在	相同条件下测定	E),则 W 的化学式是()。				
(A)	AB	(B) A ₂ B ₂	(C) AB ₂	(D) AB ₃			
在标	海状况下,1 L 寿	共气体的质量为 1.25 g	g,则该气体可能是()。			
(A)	H_2	(B) NO	(C) CO	(D) CO ₂			
在标	准状况下,含有	2.408×10 ²⁴ 个CO ₂ 的	口二氧化碳气体,所占值	本积约是多少升? 其质量			
约为	多少克?(列式)	计算)					

4.

5.

6.

7.

8.

9.

10. 在标准状况下,CO 和 O_2 组成的混合气体的体积为 5.6 L,质量为 7.4 g,则混合气体中 CO 的物质的量和质量各为多少?(列式计算)

11. 液态化合物 XY_2 ,在一定量的 O_2 中恰好完全燃烧,发生反应的化学方程式为:

$$XY_2(1) + 3O_2(g) = XO_2(g) + 2YO_2(g)$$

注:1、g分别表示物质的状态为液态、气态。

测得在标准状况下,生成物的总体积为 672 mL,密度为 2.56 g • L-1。试计算:

- (1) 反应前 O₂的体积(标准状况)。
- (2) 化合物 XY₂的摩尔质量。
- (3) 若 XY₂分子中 X、Y 两种元素的质量比为 3:16,则 X、Y 分别是什么元素?

1.3 化学中常用的实验方法

物质的制备

中的药品名称)

- 1. 根据制备 O₂、CO₂等气体的学习经历,回答下列问题。

(2) 若用块状的大理石和盐酸制备 CO_2 ,可选择图 1.2 中的装置______(填编号)。 纯碱与盐酸可反应生成 CO_2 ,为什么实验室通常不选用纯碱和盐酸来制备 CO_2 ? 为什么实验室常选用大理石和稀盐酸制备 CO_2 ,而不选用浓盐酸?

2. 实验室可用浓盐酸和 MnO_2 制备 Cl_2 : $MnO_2 + 4HCl(浓) \stackrel{\triangle}{=\!=\!=\!=} MnCl_2 + Cl_2 \uparrow + 2H_2O$,可选用图 1.3 中的装置 F 和装置 G。装置 G 中的分液漏斗和圆底烧瓶之间用一根导管相连,该装置与装置 F 中的分液漏斗相比,有什么优点?

图 1.3

物质的分离与提纯

- 1. 混有泥沙的食盐可用" → → "操作进行提纯。
- 2. 粗盐中含 $CaSO_4$ 、 $MgSO_4$ 、 $MgCl_2$ 、 $CaCl_2$ 等少量杂质。某兴趣小组通过如图 1.4 所示的实验步骤来除去杂质、提纯粗盐。

图 1.4

- (1) 在流程的空白中,填写操作名称。
- (3) 操作Ⅲ得到的滤渣的成分是
- (4) 试剂 C 是 ,调节滤液 pH 的原因是 。
- (5) 最后得到的 NaCl 与试样中的 NaCl 质量是否相等? 为什么?

3. 分离沸点不同又互溶的液体混合物,常用的方法是 ,可选用图 1.5 中的装置

图 1.5

- **4.** CCl_4 能萃取碘水中的 I_2 , CCl_4 与此无关的性质是(
 - (A) CCl₄的沸点比 H₂O 低
 - (B) CCl₄与 H₂O 和 I₂均不反应
 - (C) CCl₄与 H₂O 互不相溶
 - (D) I₂在 CCl₄中的溶解度比在 H₂O 中大得多
- 5. 下列操作中,与物质的溶解性无关的是()。
 - (A) 用装有水的洗气瓶,除去 CO 中的 HCl
 - (B) 热 KNO3 饱和溶液冷却后析出 KNO3 晶体
 - (C) 蒸馏海水得到淡水
 - (D) 用 CCl₄ 萃取碘水中的碘单质
- 6. I₂ 易溶于酒精,能否用酒精作为萃取剂从碘水中萃取 I₂? 为什么?

物质的检验

- 1. 检验物质的常用方法有显色法、沉淀法、气体法等。下列物质检验的方法中,不合理的 是()。
 - (A) 酸性溶液:显色法

(B) I₂: 显色法

(C) Cl⁻: 沉淀法

(D) Ca²⁺: 气体法

2	不能用于鉴别 Na ₂ CO ₃ 和 KCl 溶液的试剂	或方法是()。
۷.	(A) 盐酸	(B) BaCl ₂ 溶液
	(C) AgNO₃ 溶液	(D) 焰色试验
2	下列各组溶液中,不用其他试剂就可鉴别;	
٥.		
	(A) HCl, CuCl ₂ , NaNO ₃ , Na ₂ SO ₄	
	(C) FeCl ₃ , Na ₂ SO ₄ , NaCl, NaOH	
4.	下列检验某无色溶液样品中所含离子的实	
	(A)加 AgNO ₃ 溶液,生成白色沉淀,可确	
	(B) 加足量稀盐酸,产生无色的气体,可碳	自定有 CO3 存在
	(C)加足量稀盐酸,无明显现象,再加 Ba(l ₂ 溶液,生成白色沉淀,可确定有 SO ²⁻ 存在
	(D) 用洁净的铂丝蘸取溶液,在火焰上灼	烧,焰色为黄色,可确定含 Na ⁺ ,不含 K ⁺
5.	在分液漏斗中用一种有机溶剂萃取水溶液	在中的某种物质,静置分层后,却不能确定哪一
	层是"水层"。请设计一种简便的方法加以	判断。
	配制一定物质的量浓度的溶液	
	品牌 是初演的重视及的信息	-
1.	回答下列问题。	
	(1) 将 40 g NaOH 溶解于 1 L 水中, 所得溶	\ddot{m} 液中溶质的物质的量浓度是否为 $1 \text{ mol} \cdot L^{-1}$?
	(9) 溶流的体和目不事溶氏体和上溶剂体	和子和。
	(2)溶液的体积是否为溶质体积与溶剂体	炽之和?
2.	有 1 mol·L ⁻¹ 硫酸 500 mL,含有的 H ₂ SO ₄ I	的物质的量为,其质量为g,溶
	液中 $c(H^+)$ 为mol • L $^{-1}$, $c(SO_4^{2-})$)为mol•L ⁻¹ 。用 40 g NaOH 配成 2 L
	滚荡 甘物质的悬浓度为 mol•Ⅰ ⁻¹	取出 5 mL 该溶液,其浓度为 mol • L ⁻¹ ,
	俗似, 共物灰的里依及为	
		mol·L ⁻¹ 。在标准状况下,22.4 L HCl 溶
		mol·L ⁻¹ 。在标准状况下,22.4 L HCl 溶

4.	配制一定物质的量浓度的溶液时,需要用到一种较精密的玻璃仪器——,该玻璃
	仪器上标有、此外,所需的仪器还有、、、、
	、、等。
5.	实验中需 $2 \text{ mol} \cdot L^{-1}$ CuSO_4 溶液 950 mL ,配制时应选用的容量瓶的规格和称取
	CuSO ₄ ·5H ₂ O的质量分别是()。
	(A) 1 000 mL,500 g (B) 950 mL,475 g
	(C) 950 mL,304 g (D) 500 mL,125 g
6.	用 98%的浓硫酸(ρ =1.84 g • cm $^{-3}$)配制 0.5 mol • L $^{-1}$ 稀硫酸 500 mL。回答下列问题。
	(1) 所需浓硫酸的体积为。
	(2) 如果实验室有 15 mL、20 mL、50 mL 量筒,应选用mL 量筒。量取时发现量筒
	不干净,用水洗净后直接量取,所配溶液浓度将(填"偏高""偏低"或"无影响")。
	(3) 将量取的浓硫酸沿烧杯内壁慢慢注入盛有约 100 mL 水的烧杯里,并不断搅拌,其目
	的是。
	(4) 将上述溶液, 再沿注入
	馏水洗涤烧杯及玻璃棒2~3次,洗涤液要中,并摇匀。
	(5) 加水至液面距刻度处,改用加水,使溶液的凹液面底部
	与刻度线相切。
7.	在标准状况下,将224 L HCl 气体溶于635 mL水(密度为1g·cm ⁻³)中,所得盐酸的密
	度为 1.18 g • cm ⁻³ 。
	该盐酸的质量分数是多少?该盐酸的物质的量浓度是多少?(答案保留3位有效数字)

证据与推理

下表所列为 KNO_3 、 K_2SO_4 的溶解度。某同学根据表中的数据,利用结晶的方法来提纯混有少量 K_2SO_4 的 KNO_3 。

<u>t</u> °C	0	10	20	40	60	80	90
KNO ₃ 的溶解度 [g・(100 g H ₂ O) ⁻¹]	13.9	21.2	31.6	61.3	106	167	203
K ₂ SO ₄ 的溶解度 [g・(100 g H ₂ O) ⁻¹]	7.4	9.3	11.1	14.8	18.2	21.4	22.9

实验步骤如图 1.6 所示。

阅读上表和图 1.6,回答下列问题。

- (1) 列出操作Ⅳ中用到的实验器材。
- (2) 操作Ⅳ后已得到 KNO。晶体,为什么还要进行重结晶?
- (3) 最后得到的 KNO₃ 与试样中的 KNO₃ 质量是否相等? 为什么?

生活与社会

青蒿素是一种高效的抗疟疾药,我国科学家屠呦呦因成功提取青蒿素而获得共和国勋章、诺贝尔生理学或医学奖等奖项。青蒿素为一种无色针状晶体,熔点为 156~157℃,易溶于丙酮和氯仿中,可溶于乙醇、乙醚中,难溶于水,受热易分解。图 1.7 为一种从黄花蒿中提取青蒿素的简要流程。

已知: 乙醚、丙酮和乙醇的沸点分别为 35 \mathbb{C} 、56.5 \mathbb{C} 和 78 \mathbb{C} 。

(1) 写出操作 Ⅰ、操作 Ⅱ 的名称。

(2) 分析操作 I 中选用乙醚提取青蒿素的原因。

课题与研究

1. 实验室有未贴标签的 4 瓶无色溶液: $MgCl_2$ 、NaCl、HCl、NaOH。若只提供酚酞试液,请你设计鉴别上述溶液的实验方案。

实验步骤	预计产生的实验现象和由此得出的结论

2. 为鉴定某棕红色固体为氯化铁,实验小组设计了如下方案,请将方案补充完整。

实验步骤	实验现象	实验结论
① 观察样品	外观为一种棕红色固体	_
② 取少量固体溶于稀硝酸	固体溶于稀硝酸,得到 色溶液	_
③ 取步骤②所得溶液少许,加入		结论:含有 Cl ⁻ 。 相关反应的化学方程式为:
④ 另取步骤②所得溶液少许,加入		结论:。 相关反应的化学方程式为:
结论:该样品的成分是 FeCl ₃		

本章测试

一、选择题(每小题只有1个正确选项)

1. 化学实验室中的药品常按物质的类别来分类放置。下面是做"酸的性质"实验时,实验桌上部分药品的摆放情况。某同学取用了硫酸以后,应该把它放回的位置是()。

- 2. 下列现象或应用中,不能运用胶体知识解释的是()。
 - (A) 晴朗的清晨,在茂密的树林中,常可看到从枝叶间透过的一道道光柱
 - (B) 一支钢笔使用两种不同的蓝黑墨水(墨水是胶体),易出现堵塞
 - (C) 在饱和 FeCl3溶液中逐滴加入 NaOH 溶液,产生红褐色沉淀
 - (D) 在江河入海口,逐渐形成三角洲
- 3. 制备磁流体的一种方法是: 将含等物质的量溶质的 FeSO₄和 Fe₂(SO₄)₃溶液混合,再滴入稍过量的 NaOH 溶液,随后加入油酸钠溶液,即可生成黑色且分散质粒子的直径为 5.5~ 36 nm 的磁流体。下列说法中,正确的是()。
 - (A) 所得的分散系属于悬浊液
 - (B) 该分散系能产生丁达尔现象
 - (C) 所得的分散系中分散质为 Fe₂O₃
 - (D) 可以用过滤的方法提纯该分散系
- 4. 下列物质中,含水分子数最少的是()。
 - (A) 6.02×10²⁴个水分子

(B) 18 mL 水 ($\rho_{\pi} = 1 \text{ g} \cdot \text{cm}^{-3}$)

(C) 8 mol 1k

(D) 120g水

- 5. 同温同压下,气体体积的大小主要取决于()。
 - (A) 气体分子间的平均距离

(B) 气体分子的自身大小

(C) 气体分子的数目

- (D) 气体分子的数目和分子的自身大小
- **6.** N_A 表示阿伏加德罗常数的值。下列说法中,正确的是()。
 - (A) $28 g N_2$ 所含的原子数目为 N_A
 - (B) 在标准状况下, $22.4 L H_2O$ 中含有水分子的个数为 N_A
 - (C) $2N_A$ 个 Cl_2 的体积是 N_A 个 O_2 的体积的 2 倍

- (D) 在标准状况下,22.4 L HCl 所含的原子数为 $2N_A$
- **7.** 若 CH₄ 与 O₂ 按质量比 1:4 混合时极易爆炸,此时 CH₄ 与 O₂ 的体积比为()。

(A) 1:4

(B) 1:2 (C) 1:1 (D) 2:1

8. 中药的煎制方法常影响疗效。下列中草药煎制的步骤中,类似过滤操作的是()。

(B) 加热煎制

(C) 滗渣取液

(D) 灌装保存

- 9. 与海水晒盐相似的分离方法是()。
 - (A) 冷却结晶 (B) 蒸馏 (C) 蒸发结晶 (D) 分液

- 10. 下列关于从碘水中萃取碘的实验中,说法正确的是()。
 - (A) 萃取剂不能溶于水,且比水更容易使碘溶解
 - (B) 注入碘水和萃取剂,倒转分液漏斗反复用力振荡后即可分液
 - (C) 萃取时,选用萃取剂的密度必须比水大
 - (D) 若没有四氯化碳,可用酒精代替
- 11. 某溶液中存在 SO²⁻ 和 Cl⁻ 两种负离子,使用以下操作进行检验:① 滴加足量的 BaCl₂溶 液;② 滴加足量的 Ba(NO_3)。溶液;③ 过滤;④ 加足量的盐酸;⑤ 滴加 Ag NO_3 溶液。正 确的操作及顺序是()。

- 12. 下列实验操作均要用玻璃棒,其中玻璃棒作用相同的是()。
 - ① 过滤 ② 蒸发 ③ 溶解 ④ 向容量瓶转移液体
 - (A) ①和② (B) ①和④ (C) ③和④
- (D) ②和④
- **13.** 配制 50 mL 1.000 mol L⁻¹ Na₂CO₃ 溶液,下列操作错误的是()。
 - (A) 称量: 在天平上称 5.300 g Na₂CO₃
 - (B)溶解:将固体在烧杯中溶解
 - (C)转移:固体溶解后,立即倒入50 mL容量瓶
 - (D) 定容: 加水超过了刻度线,应重新配制溶液
- **14.** 与 50 mL 1 mol·L⁻¹MgCl₂溶液中 $c(Cl^-)$ 相等的溶液是()。
 - (A) 150 mL 1 mol·L⁻¹ NaCl 溶液
 - (B) 75 mL 1 mol L⁻¹CaCl₂溶液
 - (C) 100 mL 1 mol·L⁻¹KCl 溶液
 - (D) 75 mL 1 mol L⁻¹AlCl₃溶液

15. 若 50 滴水正好是 a mL(密度为 1 g • cm⁻³),则 1 滴水所含的水分子数约为()。

(A) $a \times 50 \times 18 \times 6.02 \times 10^{23}$

(B)
$$\frac{a}{50\times18}\times6.02\times10^{23}$$

(C)
$$\frac{18a}{50} \times 6.02 \times 10^{23}$$

(D)
$$\frac{18 \times 50 \times a}{6.02 \times 10^{23}}$$

二、综合题

16. 填写如图 1.8 所示实验操作的名称。

- 17. 回答下列问题。
 - (1) 物质的量相等的 CO 气体和 CO $_2$ 气体在同温同压下的体积比为_____,密度比为_____,所含原子数之比为_____。
 - (2) 在标准状况下,11.2 L CO 和 CO $_2$ 组成的混合气体质量为 20.4 g,则混合气体中 CO 和 CO $_2$ 的物质的量之比为_____,混合气体的摩尔质量是_____。
 - (3) $100 \text{ mL Al}_2(SO_4)_3$ 溶液中含 2.7 g Al^{3+} ,取 5 mL 溶液稀释成 20 mL,则稀释后溶液中 SO_4^{2-} 的物质的量浓度是多少?

18.	常温下,某同学从一种强酸性的未知无色溶液中检出 Ag+,他还想通过实验检验溶液中
	是否含有大量的 NO3 、Cl-、CO2-、Cu2+、Fe3+、K+等。你认为其中是需
	要检验的,而是不需要检验的。其原因是
	,写出检验离子的实验方法:。
19.	用 $9~ ext{mol} ullet L^{-1}$ 浓硫酸配制 $50~ ext{mL} \ 3~ ext{mol} ullet L^{-1}$ 稀硫酸的实验步骤如下 $oldsymbol{1}$. ① 计算所用浓硫
	酸的体积;②量取一定体积的浓硫酸;③稀释;④转移、洗涤;⑤定容、摇匀。回答下列
	问题。
	(1) 所需浓硫酸的体积是,量取浓硫酸所用的量筒的规格是(从
	下列量筒的规格中选用: ① 10 mL;② 20 mL;③ 50 mL;④ 100 mL)。
	(2) 第③步实验的操作是
	(3) 下列情况对所配制的稀硫酸浓度有何影响?(填"偏大""偏小"或"无影响")
	① 所用的浓硫酸长时间放置在密封不良的容器中:。
	② 容量瓶用蒸馏水洗涤后残留有少量的水:。
	③ 溶解浓硫酸的烧杯、玻璃棒均未洗涤:。
	④ 定容时俯视溶液的凹液面:。

第2章 温海洋中的卤素资源

2.1 海水中的氯

粗盐提纯

- 1. 下列情况中,不利于"盐田法"生产海盐的是()。
 - (A) 气温高,水挥发速度很快
- (B) 海边风大,加速水分挥发

(C) 天旱,久未下雨

- (D) 盐池用塑料布罩住,防止尘土进入
- 2. 某粗盐中含有约 80%~90%(质量分数)氯化钠,还含有 Mg²+、SO²-、Ca²+等离子和泥沙等难溶性杂质。甲同学进行了如下粗盐提纯的实验: 称取 10 g 粗盐,加入 30 mL水充分溶解、过滤,将滤液加热、蒸发结晶,得到食盐。[已知: 20℃时氯化钠的溶解度为 36 g•(100 g 水)⁻¹]
 - (1) 为什么溶解粗盐的水为 30 mL?
 - (2) 写出如图 2.1 所示操作的名称。

- (3) 下列蒸发操作中,正确的是()。
 - (A) 将浑浊的液体倒入蒸发皿中加热
 - (B) 开始析出晶体后用玻璃棒搅拌

- (C) 蒸发皿中出现较多固体时可停止加热
- (D) 待液体完全蒸干后停止加热
- (4) 实验中,哪些操作需要使用玻璃棒? 其作用分别是什么?
- (5) 乙同学认为通过上述实验得到的食盐并不纯净,因此他重新做了实验。他取一定量 通过上述实验得到的食盐,溶于水后得到溶液 A,并进行了如图 2.2 所示的实验。

1	乙同学认为甲同学得到的食盐不纯	争,主要理由是		
2	写出各操作的名称:操作 a	,操作 b。		
3	写出各试剂的化学式与用量: 试剂 [,试剂Ⅱ	,试剂Ⅲ	

- ④ 加入试剂 Ⅱ 后发生反应的化学方程式为
- ⑤ 操作 a 与加入试剂Ⅲ的顺序能否交换? 为什么?

电解饱和食盐水

- 1. 天原化工厂是我国最早的民族化工企业之一。下列物质中,不是该厂生产的产品的 是()。
- (A) 烧碱 (B) 氯气 (C) 氯化钠
- (D) 盐酸
- 2. 如图 2.3 所示, X、Y 为两个惰性电极, 它们通过导线与直流电源相连, a 是饱和食盐水。实验开始前,在两侧电极附近均滴加酚酞试液。
 - (1) 描述在 X 电极附近观察到的实验现象。

图 2.3

(2) 用什么方法可以检验 Y 电极处的生成物?

- (3) 书写装置中发生反应的化学方程式。若电解时消耗了 234 g 氯化钠,计算理论上得到的氯气的最大体积(标准状况)。
- 3. 有人认为海洋中氯化钠的储量丰富,而氢能是一种清洁能源,因此通过电解食盐水可以获得大量的氢气,有利于减少燃烧化石燃料所带来的环境污染问题。你是否同意上述说法?请简述理由。

氯气的性质

- 1. 若一辆槽罐车中的液氯发生大量泄漏,则下列处置方法是否合理? 若不合理,说明理由。
 - (1) 将人群转移到地势低处,等待营救。
 - (2) 将槽罐车推入附近河沟围堰塘中,并撒入足量纯碱。
 - (3) 用高压水枪向空中喷洒大量浓氢氧化钠溶液。
 - (4) 转移附近人群,人们戴上用肥皂水溶液浸泡过的口罩。
- 2. 下列关于实验现象的描述中,错误的是()。
 - (A) 钠在氯气中燃烧时产生白色的烟
 - (B) 红热的铜丝在氯气中燃烧时产生蓝色的烟
 - (C) 红热的铁丝在氯气中燃烧时产生棕褐色的烟
 - (D) 氢气在氯气中安静燃烧,同时产生苍白色火焰
- 3. 下列氯化物中,既能由金属与氯气直接化合得到,也能由金属与盐酸反应制得的是()。
 - (A) FeCl₂
- (B) FeCl₃
- (C) MgCl₂
- (D) CuCl₂
- 4. 下列装置中(烧杯中盛有水),不适用于吸收多余的氯化氢气体的是()。

5. 经验告诉我们,不能使用新盛接的自来水直接饲养观赏鱼,请简述原因。对自来水进行处理后,便可用来养观赏鱼,请结合生活经验,写出一种简易的处理方法。

6. 某同学用新制氯水做了如下表所示实验,请推测实验现象并说明原因。

实验编号	实验操作	实验现象	原因说明
(1)	在硝酸银溶液中滴加氯水		
(2)	在碳酸氢钠溶液中滴加氯水		
(3)	在蓝色石蕊试纸上滴加氯水		

7. 某同学利用如图 2.4 所示的装置开展氯气性质的实验研究。

- (1) 下列反应均能制备氯气,本实验中选用的是 (填编号)。
 - ① 二氧化锰固体和浓盐酸混合共热
 - ② 次氯酸钙固体和浓盐酸混合
 - ③ 高锰酸钾固体和浓盐酸混合
- (2) 装置 B 的作用是 ,装置 E 的作用是 。
- (3) 装置 C 中的布条没有褪色,而装置 D 中的布条褪色了,你认为使布条褪色的物质是
 - _____

- 8. 某兴趣小组用如图 2.5 所示的装置制备饱和氯水并探究其性质。
 - (1) 通入氯气一段时间后,烧瓶里有什么现象?

- (3) 结合必要的化学用语,说明氢氧化钠溶液的作用。
- (4) 将上述新制氯水滴入含有酚酞的氢氧化钠溶液中,发现红色褪去。溶液为什么褪 色?请把你的猜想填入下表。

猜想	溶液褪色的原因
1	
2	
3	

次氯酸和次氯酸盐

- 1. 下列物质中,属于纯净物的是(
 - (A) 氯水 (B) 液氯
- (C) 盐酸
- (D) 漂白粉

- 2. 漂白粉的有效成分是()。
 - $(A) Cl_2$

- (B) HClO (C) $CaCl_2$ (D) $Ca(ClO)_2$
- 3. 漂白粉暴露在潮湿的空气中易失效,其原因是()。
 - (A) Ca(ClO)2易与盐酸反应
- (B) Ca(ClO)2生成易分解的 HClO
- (C) Ca(ClO)₂见光易分解
- (D) CaCl₂易吸收空气中的水分

简述制取漂白粉的原理,并分析某工程师建议将生产漂白粉的工厂建在靠近海边地区 的理由。(写出必要的化学方程式)

证据与推理

海水的密度通常约为 1.026 g·cm⁻³,海水在浓缩过程中析出的盐的质量如下表所示。

海水密度/(g•cm ⁻³)	每升海水在浓缩过程中析出的盐的质量/g				
	CaSO ₄	NaCl	MgCl ₂	MgSO ₄	NaBr
1.13	0.56				
1.20	0.91				
1.21	0.05	3.26	0.004	0.008	
1.22	0.015	9.65	0.01	0.04	
1.26	0.01	2.64	0.02	0.02	0.04
1.31		1.40	0.54	0.03	0.06

- (1) 由上表可知首先析出的物质是_____,原因是
- (2) 在浓缩海水的过程中,海水的密度由 1.026 g·cm⁻³变化至 1.22 g·cm⁻³。此过程中除食盐外,还有一些杂质会同时析出,请你写出析出最多的三种杂质的化学式。
- (3) 在海水制盐的实际生产中,为什么要将海水的密度控制在 $1.21\sim1.26~{\rm g}\cdot{\rm cm}^{-3}$ 之间?请说明理由。

买践与制作

某兴趣小组在实验室自制消毒液。

(1) 若提供下列材料:废弃塑料瓶一个,电池若干,电极两根(可用铅笔芯或碳棒代替),电线若干,电工胶布若干。请你设计并简述家用环保型消毒液(主要成分是 NaClO)的制作过程。

(2) 有同学设计并制作了如图 2.6 所示的装置,通过电解饱和食盐水来自制含 NaClO 的消毒液,请你对甲、乙、丙三套装置分别进行评价。

课题与研究

氯水经过强光照射后,溶液中的氯离子、氢离子的浓度会发生变化。

- (1)请你选用合适的仪器和试剂,设计方案研究不同光照时间下,溶液中氯离子、氢离子的浓度变化情况。
- (2) 某研究小组得到如图 2.7 所示的实验数据,请你结合必要的化学用语,分析氯离子浓度变化的趋势及其原因。

氯水中氯离子浓度随光照时间的变化

图 2.7

2.2 氧化还原反应和离子反应

氧化还原反应

1. 氧化还原反应是	的反应,	称为
氧化剂,		

- 2. 下列生产、生活的实例中,不存在氧化还原反应的是()。
 - (A)海水晒盐 (B)燃放鞭炮
- (C) 食物腐败
- (D) 金属冶炼
- 3. 下列变化中,属于氧化还原反应的是()。

- (B) $NH_4Cl \stackrel{\triangle}{=\!=\!=} NH_3 \uparrow + HCl \uparrow$
- (C) NaCl + H_2SO_4 $\stackrel{\text{微热}}{=\!\!\!=\!\!\!=\!\!\!=}$ NaHSO $_4$ + HCl \uparrow
- (D) $2KI + Br_2 = 2KBr + I_2$
- **4.** 在化学反应 5KCl+KClO₃+3H₂SO₄ == 3Cl₂ ↑ +3K₂SO₄+3H₂O中,被氧化与被还原 的氯元素的质量之比是()。
 - (A) 1:1
- (B) 5:1
- (C) 1:5
 - (D) 3:1
- 5. 氧化还原反应是一类常见的化学反应。根据图 2.8 回答下列问题。

图 2.8

(1)图(a)表示四种基本反应类型(化合反应、分解反应、置换反应和复分解反应)与氧化 还原反应的关系。请在图(a)中用阴影画出反应: $Cl_2 + 2NaBr = 2NaCl + Br_2$ 所属 的椭圆区域。

- (2) 图(b)同样表示了四种基本反应类型与氧化还原反应的关系。 ① 若 Ⅰ 为化合反应,则 Ⅱ 为 反应。 ② 写出一个有水生成且符合反应类型 III 的化学方程式: _____。 ③ 写出一个有水参加且符合反应类型Ⅳ的化学方程式: 氧化剂和还原剂 1. 判断下列反应是否属于氧化还原反应。若是,指出氧化剂和还原剂,并标出电子转移的 方向和数目。 (1) $Cu + Cl_2 \stackrel{\underline{\wedge}\underline{M}}{===} CuCl_2$ (2) $2HClO \stackrel{\text{光照}}{===} 2HCl + O_2 \uparrow$ (3) $2Cl_2 + 2Ca(OH)_2 = CaCl_2 + Ca(ClO)_2 + 2H_2O$

 - (4) $2KClO_3 \stackrel{\triangle}{=} 2KCl + 3O_2 \uparrow$
- 2. 下列变化中,需加入氧化剂的是()。
 - (A) $SO_3^{2-} \rightarrow SO_2$

(B) $CO_2 \rightarrow CO$

(C) $CO_2 \rightarrow H_2 CO_3$

- (D) $FeCl_2 \rightarrow FeCl_3$
- 3. 下列微粒中,既有氧化性也有还原性的是()。
- (A) Fe^{2+} (B) H^{+} (C) Mg^{2+} (D) I^{-}
- 4. 氨在常温条件下可与氯气发生反应: 8NH₃+3Cl₂=6NH₄Cl+N₂。 当有 0.8 mol 氨参 与反应生成 0.6 mol 氯化铵时,下列说法中正确的是()。
 - (A) 反应中转移 4.8 mol 电子 (B) 得到 2.8 g 氮气

(C) 氨是氧化剂

(D) 0.8 mol 氨被氧化

电解质的电离

- 1. 下列关于电解质的说法中,正确的是()。
 - (A) 氯气溶于水后的溶液能导电,因此氯气是电解质
 - (B) 硝酸钠晶体不能导电,但是硝酸钠是电解质

- (C) 在水溶液中或熔融状态下能导电的物质属于电解质
- (D) 盐酸作为电解质能电离出的微粒有: H⁺、Cl⁻、HCl、OH⁻
- **2.** 现有物质: ① NaCl 晶体; ② 醋酸; ③ 汞; ④ 蔗糖; ⑤ 酒精; ⑥ 熔融 KNO₃。请用编号回答下列问题。
 - (1) 能导电的是。
 - (2) 属于电解质的是_____,属于非电解质的是____。
 - (3) 属于强电解质的是。
 - (4) 上述物质的水溶液能导电的是____。
- 3. 写出下列物质的电离方程式。
 - (1) Na₂SO₄:
 - (2) Ba(OH)₂: ______
 - (3) CH₃COOH: _______
 - (4) NH_4Cl_1

 - (6) NaHCO₃:
- 4. 解释产生下列现象的原因。
 - (1) 氯化钠水溶液和熔融氯化钠均能导电,而氯化钠固体却不能导电。
 - (2) 在相同物质的量浓度的盐酸和醋酸溶液中,盐酸的导电能力更强。
- 5. 用如图 2.9 所示的实验装置测量不同电解质水溶液的导电能力。

- (1) 实验中应控制多种变量,如烧杯的规格、溶液的体积、电极材料等。若要获得准确的 实验结论,你认为还应控制哪些实验条件或因素?
- (2) 实验中,哪些现象可以说明电解质溶液的导电能力会有差异?说明理由。
- (3) 若在醋酸溶液中滴加氨水,混合液的导电能力会发生变化。判断混合液的电流随氨 水加入体积的变化曲线图应是()。

离子反应和离子方程式的书写

- 1. 某溶液中存在大量的 Na^+ 、 CO_3^{2-} 、 Cl^- ,则该溶液中还可能大量存在的离子是(
 - $(A) K^+$
- (B) Ag^+
- (C) Ba²⁺
- (D) H^+
- 2. 下列物质中,加入少量 NaOH 固体后导电能力变化最小的是()。
 - (A) 水
- (B) 盐酸
- (C)醋酸溶液 (D)食盐水

- 3. 下列离子方程式中,正确的是()。
 - (A) 碳酸钠溶液与氯化钡溶液混合: Ba²⁺ + CO₃²⁻ = BaCO₃ ↓
 - (B) 铁片溶于稀硫酸中: 2Fe+6H+ === 2Fe³⁺+3H₂↑
 - (C) 碳酸钙溶于盐酸中: CO₃²⁻ + 2H⁺ === CO₂ ↑ + H₂O
 - (D) 氢氧化铜溶于稀硫酸中: OH-+ H+ === H₂O
- 4. 为了验证电解质溶液中部分离子相互之间能否发生反应,有同学做了如下实验:

编号	I	П	Ш
实验	NaCl 溶液 CuSO ₄ 溶液	足量的 BaCl ₂ 溶液 CuSO ₄ 溶液	AgNO₃溶液 +稀硝酸 实验 II 中 的滤液

- (1) 描述实验Ⅰ的目的。
- (2) 实验Ⅱ中有白色沉淀产生,哪些离子发生了反应? 什么现象可以表明 Cu²+没有参与上述离子反应?
- (3) 实验Ⅲ中哪些离子参与了离子反应?

5.	请将下列八种离子: K ⁺ 、Mg ²⁺ 、Ba ²⁺ 、Na ⁺	、SO ²⁻ 、OH ⁻ 、NO ⁻ 、Cl ⁻ ,分成甲、乙两组。	
	要求: ① 能够在溶液中大量共存;② 每组名	各两种正离子和两种负离子。	
	甲组:	;乙组:	0
6.	按下列要求写出离子方程式。		
	(1) 硫酸与氢氧化钠溶液混合:		0
	(2) 醋酸与氢氧化钠溶液混合:		0
	(3) 醋酸钠与盐酸反应:		0
	(4) 氨水与醋酸反应:		0
	(5) 硫酸铜与氢氧化钡反应:		0
	根据离子反应的规律,请你归纳酸、碱、盐在	溶液中能发生离子反应的条件。	

7. 请写出下列除杂实验(括号内为杂质)中选用的试剂及相关的离子方程式。

编号	物质	加入试剂	离子方程式
(1)	$\mathrm{HNO_3}(\mathrm{H_2SO_4})$		
(2)	$FeSO_4(CuSO_4)$		
(3)	NaCl(Na ₂ CO ₃)		
(4)	KNO ₃ (KCl)		

生活与社会

某消毒液的主要成分是 NaClO,可用于衣物、桌椅等物品的消毒。在该消毒液的标签 上注明了"勿与酸性清洁产品(如洁厕灵)混用"的提醒。洁厕灵的主要成分是盐酸,适用于 陶瓷洁具等的清洁。请你解释消毒液与洁厕灵不能混用的原因。

实践与制作

某同学用 Ba(OH)2 溶液、硫酸等试剂做了如下实验:

- (1) 在 Ba(OH)₂ 溶液中滴入酚酞试液后,观察到溶液呈现红色,继续滴入适量的硫酸后,红色褪去并生成了白色沉淀。请结合必要的化学用语,解释产生上述现象的原因。
- (2) 常温下,向 20 mL 0.1 mol·L⁻¹的硫酸中逐滴加入相同物质的量浓度的 Ba(OH)₂ 溶液,生成沉淀的质量与加入 Ba(OH)₂ 溶液的体积关系如图 2.10 所示,a、b、c、d 分别表示不同实验阶段的溶液。

判断溶液分别处于 a、b、c、d 时的酸碱性,并指出溶液处于哪一点时的导电能力最强、哪点时的导电能力最弱。

课题与研究

某些食品包装中放有脱氧剂,可延长食品的保质期。

- (1) 请你观察一种食品脱氧剂,从氧化还原反应的视角解释其能延长食品储存时间的原因。
- (2) 按要求配制脱氧剂并用实验检验其食品保质效果。

铁系脱氧剂的配制: 40 g 还原铁粉、20 g 滑石、15 g 脱脂大豆粉和 2 g 食盐充分混合、研磨。

2.3 溴和碘的提取

卤素单质的性质

- 1. 在化学魔术中,一张白纸用含碘单质的溶液喷洒后会显现蓝色字迹,其奥秘在于白纸上 曾用一种"墨水"写过字迹。这种"墨水"可以是()。
- (A) 食盐水 (B) 白醋 (C) 淀粉溶液 (D) 蔗糖溶液
- 2. 把碘从碘水中分离出来,有下列基本操作:① 静置后分液;② 充分振荡;③ 把碘水倒入 分液漏斗,再加入萃取剂四氯化碳。正确的操作顺序是()。
 - (A) 023 (B) 320 (C) 230 (D) 302

- 3. 如图 2.11 所示,在盛有溴水的甲、乙、丙三支试管中分别加入苯、四氯化碳和酒精,振荡 后静置,出现不同现象(斜线部分表示溶有溴),则下列判断正确的是()。

试管	选项					
[八日]	(A)	(B)	(C)	(D)		
甲	苯	酒精	四氯化碳	苯		
乙	四氯化碳	四氯化碳	苯	酒精		
丙	酒精	苯	酒精	四氯化碳		

- 4. 下列关于卤素单质的说法中,错误的是()。
 - (A) Cl₂、Br₂、I₂的颜色依次加深
 - (B) Cl₂、Br₂、I₂的沸点依次升高
 - (C) Cl₂、Br₂、I₂ 在水中的溶解度依次增大
 - (D) Cl₂、Br₂、I₂ 的氧化性依次减弱
- 5. 将稍过量的氯气通入溴化钠溶液中,然后把溶液蒸干,再将剩余残渣灼烧,最后留下的物 质是()。
 - (A) 溴单质

(B) 溴单质和氯化钠

(C) 氯化钠和溴化钠

- (D) 氯化钠
- 6. 判断下列物质的保存方法是否正确,若不正确,写出正确的保存方法。
 - (1) 少量液溴保存在棕色细口瓶中,并要加水液封。
 - (2) 新制氯水保存在无色广口瓶中,并放置在阴暗处。

- (3) 固体碘保存在无色细口瓶中,并要加水液封。
- (4) 漂白粉密封保存,并放置在阴凉处。
- 7. 已知常温下 KClO₃ 与浓盐酸反应生成 Cl₂、KCl 和 H₂O。如图 2.12 所示,进行关于卤素性质的实验。玻璃管内装有滴有不同溶液的棉球。请写出反应一段时间后图中指定部位的颜色,并分析原因。

管中位置	呈现的颜色	原因分析
1		
2		
3		
4		

8. 如图 2.13 所示,在实验室制备氯气并进行相关实验(图中夹持设备省略)。

- (2) 装直 的作用是短证孰气定省具有漂白性, △ 此表直 中 1、11、111 应依仅放入
- (4) 打开活塞,将装置 D 中少量溶液加入装置 E 中,振荡后观察到的现象是

(5) 装置 F 的作用是 。请指出本实验中需改进的一处:

溴和碘的提取

1. 地球上 99%的溴存在于海水中,故溴也被称为海洋元素,溴主要用于制造汽油抗爆剂、药品、试剂和农药等。以海水提盐后得到的苦卤为原料,提取溴的流程如图 2.14 所示。

已知: $Br_2 + SO_2 + 2H_2O \Longrightarrow H_2SO_4 + 2HBr$ 。

- (1) 苦卤可用作提取溴的原料的原因是
- (2) 写出步骤②中通入 Cl₂ 反应的离子方程式:
- (3) 步骤③用热空气将溴吹出制成粗溴,是因为 (填编号)。
 - (A) Br₂ 的化学性质稳定
- (B) Br₂ 沸点低,易挥发

(C) Br₂ 易升华

- (D) Br₂ 不溶于水
- (4) 步骤④将 Br_2 转化为 Br_3 是利用了 SO_2 的 性。
- (5) 步骤③后,已经得到了含溴的热空气,为什么不能直接进行冷凝得到液溴,而是要经过一系列后续操作才能得到?请简述理由。
- (6) 用 SO₂ 水溶液吸收 Br₂,吸收率可达 95%。你认为在实际工业生产中,从环保、设备等方面考虑,该过程需要解决哪些问题。
- 2. 海带中含有丰富的碘元素,从海带中提取碘的实验流程如图 2.15 所示。

(1) 进行步骤②过滤操作时,需要使用的玻璃仪器有

(2) 写出步骤③所发生反应的离子方程式:

- (5) 有同学认为步骤③中选用氯水作氧化剂不妥,你是否同意该说法?说明理由。
- 3. 结合海水中提取溴和碘的方法,请你归纳提取混合物中目标物质的一般思路,并画出相应的流程图。

卤素离子的检验

- **1.** 鉴别 Cl^- 、 Br^- 、 I^- 可选用的试剂是()。
 - (A) 碘水、淀粉溶液

(B) 溴水、四氯化碳

(C) 淀粉碘化钾溶液

- (D) 硝酸银溶液、稀硝酸
- **2.** 某溶液中 Cl^- 、 Br^- 、 I^- 三者的物质的量之比为 1:2:3,通人一定量的 Cl_2 ,该比变为 3:2:1,则反应的 Cl_2 和原溶液中 I^- 的物质的量之比是()。
 - (A) 1:2
- (B) 1:3
- (C) 1:4
- (D) 1:6
- 3. 向含 I^- 和 Cl^- 的稀溶液中滴入 $AgNO_3$ 溶液,产生沉淀的质量与加入 $AgNO_3$ 溶液体积的关系如图 2.16 所示。原溶液中 $c(I^-)$: $c(Cl^-)$ 的比值为()。

(B)
$$\frac{V_1}{V_2 - V_1}$$

(C)
$$\frac{V_1}{V_2}$$

(D)
$$\frac{V_2}{V_1}$$

4. 为检验碳酸钠溶液中是否混有溴化钠,需要进行如下实验,请补全表中空白处。

实验步骤	实验现象	目的或化学方程式
取样,加入过量稀硝酸		加入稀硝酸的目的是:
加入硝酸银溶液		反应的化学方程式为:

5. 根据如图 2.17 所示的转化关系和实验现象,回答下列问题。

- (1) 写出下列物质的化学式: F ,G 。
- (2) 写出 H 与硝酸银溶液反应的离子方程式: _____。
- (3) 工业上常用电解 E 的水溶液的方法制取 C,反应的化学方程式为_____

_____。在阴极区生成的产物是(填化学式)。

证据与推理

碘属于卤素。1811 年,法国药剂师库尔图瓦首次发现了碘单质。碘单质是一种紫黑色的晶体,易挥发,有毒性和腐蚀性,遇淀粉固体会呈现蓝色。碘是人体中必需的微量元素之一,一名健康成人体内的碘单质的总量约为 30 mg(参考值为 $20\sim50 \text{ mg}$)。碘主要用于制造药物、染料、碘酒及其他含碘化合物等。碘也常被添加在食盐中,我国规定在食盐中添加碘单质的标准为 $20\sim30 \text{ mg} \cdot \text{kg}^{-1}$ 。

- (1) 阅读以上文字并结合相关资料,在你认为不合理处,用横线划出来,并予以修改。
- (2) 查阅资料,了解碘元素的发现史以及提取过程,谈谈你从中受到的启发。
- (3) 碘盐中碘是以什么形式存在的?查阅资料,了解如何检测食盐中是否存在碘,并利用常见的试剂来检测食用盐中是否加碘。

生活与社会

下表是食用碘盐包装上的部分说明,回答下列问题。

配料	精盐、碘酸钾、抗结剂		
碘含量(以碘元素计)/(mg・kg ⁻¹)	35 ± 15		
储存方法	密封、避光、防潮		
食用方法	烹饪时,待食品熟后加入碘盐		

- (1) 为什么建议烹饪时,需待食品烧熟后才加入碘盐?能否用厨房中的淀粉来检验碘盐中的碘?
 - (2) 计算该碘盐中碘酸钾的含量(答案保留 2 位有效数字)。

实践与制作

欲证明某未知无色溶液中含有 I^- ,你能设计哪些实验方案?请在下表中写出简要的实验试剂、操作,以及相应的实验现象和实验结论(参考示例,再写出 2 种方案)。

可供选择的试剂:淀粉溶液、淀粉碘化钾溶液、四氯化碳、稀硝酸、硝酸银溶液、氯水、氯化钠溶液、溴化钠溶液等(还可任选其他试剂)。

方案编号	实验步骤	实验现象	实验结论
1	取样,滴加少量氯水,充分反 应后再加入少许四氯化碳, 振荡,静置	溶液出现分层,四氯化碳层 呈紫红色	说明原无色溶液中含有 I ⁻
1		溶液出现分层,但四氯化碳 层无明显现象	说明原无色溶液中不含 I⁻ (在该实验条件下)
2			
3			

课题与研究

请你查阅并收集关于海洋资源的资料,完成一项专题研究,例如海水的淡化、海水的综合利用、海底可燃冰、海洋中的金属矿物等。将研究成果制作成海报、演示文稿等进行分享和交流。

本章测试

一、选择题(每小题只有1个正确选项)

1.	海水中含量最高的卤	ব素是()。		
	(A) 氟	(B) 氯	(C) 溴	(D) 碘
2.	工业炼铁的主要反应	☑为:Fe₂O₃+3CO = 高	温 ━2Fe+3CO₂。 该反	医应中的氧化剂是()。
	(A) Fe ₂ O ₃	(B) Fe	(C) CO	(D) CO ₂
3.	硫酸钡在熔融状态下	下能够导电,其主要原	因是()。	
	(A) 硫酸钡是电解质	质	(B) 存在自由移动的	的离子
	(C) 存在电子		(D) 存在离子	
4.	手指上有油脂、氯化	钠、水等分泌物。将抗	安有指纹的白纸置于	盛有少量碘的烧杯上,微
	热,即可显现出棕色	指纹。下列碘的性质	中,与该实验无关的是	<u>!</u> () 。
	(A) 易升华	(B) 蒸气呈紫色	(C) 易溶于油脂	(D) 遇淀粉溶液显蓝色
5.	新制氯水既可用来消	肖毒杀菌,也可用作漂	白剂,其中起主要作用	引的是()。
	(A) Cl ₂	(B) HCl	(C) HClO	(D) O_2
6.	下列电离方程式中,	正确的是()。		
	(A) $Na_2SO_4 \longrightarrow Na_2$	$n^+ + SO_4^{2-}$	(B) CH_3COOH —	$= H^{+} + CH_{3}COO^{-}$
	(C) $CaCl_2 \longrightarrow Ca^{2+}$	$+2Cl^{-}$	(D) $KClO_3 \longrightarrow K^+$	$+ \text{Cl}^- + 3\text{O}^{2-}$
7.	在1mL碘水中,加/	人 3 mL 苯,振荡、静置	是后,可观察到的分层	现象(斜线部分表示溶有
	碘)是()。			
	(A)	(B)	(C)	(D)
_		· · · 로 로 · · · · · · · · · · · · · · ·		

8. 下列变化中,必须加入还原剂才能实现的是()。

(A) $KMnO_4 \rightarrow MnCl_2$

(B) $HCl \rightarrow Cl_2$

(C) $SO_2 \rightarrow SO_4^{2-}$

(D) $H_2S \rightarrow S$

9. 如图 2.18 所示,先预热金属钠待其熔融成小球时,撤火,通入氯气,立即可见钠着火燃烧,生成大量白烟。下列叙述中,错误的是()。

金属钠 浸有碱液的棉球

(A) 白烟是氯化钠

- (B) 钠燃烧时产生苍白色火焰
- (C) 浸有碱液的棉球用于吸收未反应的氯气,以免实验时污染环境
- (D) 用淀粉碘化钾溶液滴在露出管外的棉球上,可判断氯气是否被吸收
- 10. 将盛满氯气的试管倒立在水槽中,经日光充分照射后,试管中最后剩余的气体约占试管 容积的()。
 - (A) $\frac{2}{3}$
- (B) $\frac{1}{2}$ (C) $\frac{1}{3}$ (D) $\frac{1}{4}$
- 11. 甲、乙、丙、丁四只集气瓶中分别盛有 H2、Cl2、HCl、HBr 中某一种气体。甲、丙两瓶气体 混合后,见光立即爆炸;丙、丁两瓶气体混合后,瓶壁上出现深红棕色的液滴。乙瓶中盛 有的气体是() 。
 - $(A) H_2$
- (B) Cl₂
- (C) HCl
- (D) HBr
- **12.** 某无色溶液中存在大量的 Ba^{2+} 、 OH^- 、 Cl^- ,则该溶液中还可能大量存在的离子是()。
 - $(A) Ag^+$
- (B) CO_3^{2-} (C) Mg^{2+}
- (D) Br⁻

13. 下列实验中,能达到实验目的的是()。

- (A) 分离碘和酒精
- (B) 除去 Cl₂ 中的 HCl
- (C) 干燥 Cl₂
- (D) 吸收多余的 HCl
- **14.** 下列反应中,能用离子方程式"Ba²⁺+SO₄ → BaSO₄ ↓"表示的是(
 - (A) 氯化钡与硫酸钠溶液反应
- (B) 碳酸钡与硫酸反应
- (C) 氢氧化钡与硫酸铜溶液反应
- (D) 氢氧化钡与硫酸反应
- 15. 在如图 2.19 所示的装置中,将液体 Y 滴入瓶中并摇动,一会儿小 气球胀大。气体 X 与液体 Y 不可能是() 。

选项	(A)	(B)	(C)	(D)
气体 X	Cl_2	Cl_2	HCl	HCl
液体 Y	饱和食盐水	NaOH 浓溶液	水	饱和食盐水

- **16.** 氯气是一种重要的工业原料,工业上利用反应 $3Cl_2 + 2NH_3 \longrightarrow N_2 + 6HCl$ 检查氯气管 道是否漏气。下列说法中,错误的是() 。

 - (A) 若管道漏气遇氨就会产生白烟 (B) 该反应利用了氯气的强氧化性
 - (C) 该反应属于复分解反应
- (D) 生成 1 mol 氮气有 6 mol 电子转移

- **17**. 下列关于 "K³⁷ClO₃ + 6HCl === KCl + 3Cl₂ ↑ + 3H₂O" 的判断中,正确的是()。
 - (A) 氧化剂与还原剂的物质的量之比为 5:1
 - (B) 被氧化的 HCl 占参与反应的 HCl 总量的 $\frac{5}{6}$
 - (C) 只有一部分 K 37ClO。发生还原反应
 - (D) 反应完成后37Cl 全部存在于 KCl 之中

二、综合题

18. 碘盐中的碘主要以碘酸钾形式存在。测定碘盐中碘元素含量的一种方法如下: 称取 50.0 g碘盐溶于适量水中,加入过量碘化钾和稀硫酸。反应的化学方程式如下:

$$KIO_3 + 5KI + 3H_2SO_4 = 3K_2SO_4 + 3I_2 + 3H_2O$$

- (1) 在化学方程式上标出电子转移的方向和数目。
- (2) 写出反应中的还原剂,以及被还原的元素。
- (3) 实验中,若测得生成 3.0×10^{-5} mol I_2 ,请计算该碘盐中碘元素的含量(单位为 mg·kg⁻¹, 结果精确至 0.1 mg·kg⁻¹)。

- 19. 在图 2.20 所示装置中,烧瓶内充满干燥气体 A,将滴管中的液体 B 挤入 烧瓶内,轻轻振荡烧瓶,然后打开弹簧夹,尖嘴管有液体呈喷泉状喷出, 最终几乎充满烧瓶。
 - (1) 若 A 为 HCl 气体(该气体极易溶于水),B 为石蕊试液,则会形成红色喷泉。分析红色喷泉产生的原因。

图 2.20

(2) 请根据喷泉形成的原理,选择适当的试剂来完成其他喷泉实验(填写三组试剂且其中一组能够形成有色喷泉)。

组别	A	В	喷泉的颜色
1			
2			
3			

20. 食盐既是日常生活的必需品,也是重要的化工原料。有同学进行粗盐提纯的实验,流程如图 2.21 所示。

- (1) 步骤①和②的操作名称是。
- (2) 步骤④蒸发时要用到玻璃棒不断搅拌,这是为了防止。
- (3) 猜想和验证。

猜想	验证方法	实验现象	结论
猜想 I: 固体 A 中含有 CaCO ₃	取少量固体 A 于试管中,滴加稀盐酸,并用涂有澄清石灰水的小烧杯罩于试管口		猜想Ⅰ成立
猜想Ⅱ:固体A中 含有 BaCO ₃	取少量固体 A 于试管中,先 滴人,再滴入 Na ₂ SO ₄ 溶液	有气泡放出,无白色沉淀	
猜想Ⅲ:最后制得 的 NaCl 晶体中还含 有 Na ₂ SO ₄	取少量 NaCl 晶体于试管中,加适量蒸馏水溶解,再		猜想Ⅲ成立

第3章 高硫、氮及其循环

3.1 硫及其重要化合物

黑火药中的硫黄

- 1. 黑火药是中国古代四大发明之一。黑火药的主要成分中有一种呈淡黄色、难溶于水、易溶于二硫化碳的固体,这种固体是()。
 - (A) 硝石
- (B) 铁粉
- (C) 木炭
- (D) 硫黄
- 2. 将 Cu 与 S 在隔绝空气的条件下加热且充分反应。下列叙述中,正确的是()。
 - (A) 生成物中只有 Cu₂S
 - (B) 生成物中只有 CuS
 - (C) 生成物中同时存在 Cu2S 和 CuS
 - (D) 若参加反应的 Cu 为 0.1 mol,则有 0.2 mol 电子发生转移
- 3. 比较硫与氯气化学性质的异同,判断硫与氯气的氧化性的相对强弱。
- 4. 某兴趣小组设计了如图 3.1 所示的实验装置,以探究硫与铁在隔绝空气条件下反应所得固体 M 的成分。

实验步骤如下:倾斜装置 A 使足量的稀硫酸与固体 M 充分反应。待反应停止后,装置 B 质量增加,装置 C 中溶液无变化,进入量气管气体的体积为 V mL。(提示: FeS 与

 H_2SO_4 反应生成 H_2S_1 ; H_2S_1 通人 $CuSO_4$ 溶液,反应生成的 CuS_1 是一种不溶于酸也不溶于水的黑色固体。)

(1) 判断固体 M 中一定存在的物质,说明理由。

(2)固体 M 与稀硫酸充分反应后,溶液中出现淡黄色固体。如何分离出这种固体?需要使用哪些玻璃仪器?

		要使用哪	些坡埚仪器?						
		硫的重	要化合物(-	<u>→)</u>					
1.	SO_2	能使酸性	KMnO ₄ 溶液	褪色,说明	SO₂具有	()。			
	(A)	还原性	(B)	氧化性	(C)	漂白性	(D)	酸性	
2.	下列	刘关于硫及	其化合物的证	说法中,错误	的是()。			
	(A)	葡萄酒中	含微量 SO2,	利用了 SO	2的漂白性	=			
	(B)	含硫黄的]温泉可治疗	某些皮肤病	,利用了硫	〔具有杀菌	的作用		
	(C)	用 SO ₂ 除	去工业废水。	中的余氯,禾	间用了 SO	2的还原性			
	(D)	用 SO ₂ 处	2理纸张和衣物	勿,利用了 5	SO₂的漂白	性			
3.	下列	可溶液中,能	能鉴别 SO₂和	CO ₂ 的是()。				
	① 1	H ₂ S溶液	② 酸性 KM	InO₄溶液	③ 氯水	④ 品红证	式液		
	(A)	23	(B) (34	(C)	除①以外	(D)	1234	
4.	下列	 美于硫酸	的叙述中,正	确的是()。				
	(A)	浓硫酸具	、有强氧化性,	不能用来干	上燥 H ₂				
	(B)	浓硫酸的]化学性质稳定	定,可用铁或	试铝制容 器	来储存			
	(C)	浓硫酸具	有吸水性,能	使蔗糖炭仙	2				
	(D)	稀释浓硫	瓦酸时,应将其	沿着器壁憶	慢 慢加入水	(中,并用现	玻璃棒不断	新搅拌	
5.	在某	其种无色溶	F液中,加入 E	BaCl₂溶液后	产生白色	沉淀,加力	稀硝酸	后沉淀不消失	。下列
	判断	折中,正确自	的是()。						
	(A)	一定有 S	$6O_4^{2-}$		(B)	一定有 CO	2 — 3		
	(C)	一定有 A	$\Lambda \mathrm{g}^+$		(D)	可能有 SO	²⁻ 或 Ag ⁺	 	

② 高沸点,难挥发

6. 硫酸具有下列①~⑥所示性质,在横线上填写正确的编号。

① 在水中完全电离,呈强酸性

③ 浓硫酸具有吸水性

④ 浓硫酸具有脱水性

⑤ 浓硫酸具有强氧化性

- ⑥ 浓硫酸溶于水后放出大量的热
- (1)铜与浓硫酸共热后生成二氧化硫,这说明。
- (2) 将浓硫酸滴在一张纸片上,小心烘干纸片后发现滴过酸的位置变黑并最终出现空 洞,这说明
- (3) 在蔗糖晶体中加入适量浓硫酸,再滴入少许水,发现蔗糖慢慢发黑和变热,有刺激性 气味的气体生成,最终形成疏松的炭,这说明。
- 7. 在实验室中,可使用如图 3.2 所示的装置和药品来进行一系列实验。

- (1) 简述装置甲中产生的实验现象,并写出反应的化学方程式。
- (2) 在试管口放置浸有氢氧化钠溶液的棉花的目的是什么?结合必要的化学用语,说明 理由。

硫的重要化合物(二)

- 1. 使用一种吸收剂可以在除去工业尾气中的 SO₂的同时得到化肥。这种吸收剂是(

 - (A) 98.3 % 硫酸 (B) NaOH 溶液 (C) 氨水
- (D)新制氯水
- 2. 若要分离黑火药中的主要成分(硝石、硫黄、木炭),可选用的试剂是(
 - (A) 苯和酒精

(B) 水和二硫化碳

(C) 水和酒精

- (D) 浓硫酸和二硫化碳
- 3. 下列关于浓硫酸的叙述中,正确的是()。

 - (A) 具有吸水性,能使蔗糖炭化
- (B) 在常温下可迅速与铜片反应放出二氧化硫
- (C) 用作干燥剂,能干燥氨、氢气等气体 (D) 在常温下能使铁、铝等金属钝化

棉球	棉球上滴加试剂	实验现象	解释或结论
а		棉球变白,微热后又恢复 红色	该气体具有性
b	含酚酞的 NaOH 溶液	棉球变为白色	离子方程式:
С	碘的淀粉溶液	棉球变为白色	化学方程式:, 该气体具有性

5. 某同学设计了如图 3.4 所示的实验,来探究铁与硫反应后生成物中铁元素的价态。最后对溶液进行检验,测得溶液中铁元素为+2 价。回答下列问题。

- (1) 混合粉末中的 S 需过量,为什么?
- (2) 为什么反应要在"稀有气体环境"中进行?
- (3) 查阅相关资料后说明: 为什么要加入热的KOH溶液? 加入煮沸的稀硫酸的目的是什么?

生活与社会

目前,通过火力来发电仍是获取电能的重要途径,但燃煤排放的 SO₂会对环境和生态造成一定影响。上海是沿海城市,海水资源丰富,海水具有天然咸度,而硫酸盐对海洋基本无害,因此利用海水来脱硫不失为一种有益的尝试。图 3.5 所示为一种海水脱硫的工艺流程。

图 3.5

该工艺的主要流程是:含硫烟气进入吸收塔后,塔顶会喷下大量海水,烟气脱硫达标后排放,在吸收有 SO_2 的海水中继续通入 O_2 ,然后再与pH约为8的天然海水混合后排放。

- (1) 结合化学方程式阐明上述脱硫工艺的化学原理。
- (2) 简评该海水脱硫工艺的优缺点。

实践与制作

同学甲认为: 在某溶液中加入盐酸酸化的 $BaCl_2$ 或 $Ba(NO_3)_2$ 溶液,产生不溶于酸的白色沉淀,则该溶液中一定含有 SO_4^{2-} 。

同学乙为了验证甲的判断,设计了以下实验。

实验 1: 在负离子只有 SO_4^{2-} 、 CO_3^{2-} 的溶液中(忽略水电离出的 OH^- ,下同),加入盐酸酸化的 $BaCl_2$ 溶液。

实验 2: 在正离子只有 Ag^+ 的溶液中(忽略水电离出的 H^+),加入盐酸酸化的 $Ba(NO_3)_2$ 溶液。

实验 3: 在负离子只有 SO_3^2 的溶液中,加入盐酸酸化的 $Ba(NO_3)_2$ 溶液。

同学乙通过查阅资料得知: $3SO_3^{2-} + 2H^+ + 2NO_3^- = 3SO_4^{2-} + 2NO^{↑} + H_2O$,由于盐酸酸化的 Ba(NO₃)₂溶液中含有一定浓度的 H⁺和 NO₃ ,其溶液具有强氧化性。

由实验可知: CO_3^{2-} 、 Ag^+ 、 SO_3^{2-} 的存在会干扰 SO_4^{2-} 的检验,用盐酸酸化的 $BaCl_2$ 溶液

进行检验将无法判断是否一定存在 SO² 。因此,检验 SO² 的基本思路是在加入钡盐试剂之前,先排除干扰离子。结合以上结论,设计实验检验某溶液中是否一定存在 SO² 。

课题与研究

某同学利用下列仪器和试剂,完成"验证 SO_2 既有氧化性又有还原性"的研究课题。 实验原理: ① $SO_2 + Br_2 + 2H_2O$ —— $2HBr + H_2SO_4$;② FeS + 2HCl —— $FeCl_2 + H_2S$ 个。 可选用的仪器如图 3.6 所示(图中橡皮管省略;某些仪器可重复使用)。

可选用的试剂: ① 稀盐酸;② 溴水;③ Na₂SO₃粉末状固体;④ FeS 固体;⑤ 品红试液;⑥ NaOH 溶液;⑦ 浓硫酸。

- (1)根据实验目的选择合适仪器,并连接组合成一套完整的装置。(连接顺序用数字及箭头"→"表示)
- (2)上述实验是通过哪些反应来证明 SO₂既有氧化性又有还原性的?结合必要的化学用语加以说明。
 - (3) 由于 SO₂、H₂S、Br₂蒸气均有毒,说明上述实验中应如何防止有毒气体的污染。

3.2 氮及其重要化合物

固氮

- 1. 下列关于氮气的说法中,错误的是()。
 - (A) 氮气可用作保护气

- (B) 氮气可制作氮肥
- (C) 常温下氮气的化学性质不活泼
- (D) 常温下氮气可支持燃烧
- 2. 下列反应中,属于大气固氮的是()。
 - (A) 用 NH₃和 CO₂合成尿素
- (B) 雷电时氮气转化为一氧化氮

(C) 工业合成氨

- (D) 用硫酸吸收氨得到硫酸铵
- **3.** 下列关于 NO_{2} 气体收集方法的叙述中,正确的是()。
 - (A) 都可用排水法

- (B) NO 用排水法,NO2用向上排气法
- (C) 都可用向上排气法
- (D) NO 用向上排气法,NO2用排水法
- 4. 在大多数植物的生长过程中需要追加大量的氮肥,而空气的主要成分就是氮气。雷雨 天,在雨水里能够检测到一定浓度的硝态氮肥,故有"雷雨发庄稼"的说法。
 - (1) 列举天然固氮的类型,并简述其价值和意义。
 - (2) 用化学方程式表示雷雨时在雨水中形成硝态氮肥的过程。
- 5. 汽车尾气中主要含有 CO₂、CO、SO₂、NO 等物质,治理的方法之一是在汽车的排气管上 安装催化转换器,其中 CO 与 NO 可转化为两种无毒的气体,如图 3.7 所示。

图 3.7

- (1) 简述汽车尾气中 NO 的来源。
- (2) CO 与 NO 反应后生成 CO2 和 N2,写出相关的化学方程式。
- (3) 这种治理方法虽然能够有效地处理 CO 和 NO 等污染物,但同时也让空气的酸度有所提高,即增强了降水的酸性,分析产生这种结果的原因。

氮肥(一)

- 1. 下列关于 NH₃性质的描述中,错误的是()。
 - (A) 极易溶于水,可做喷泉实验
 - (B) 液氨能作制冷剂
 - (C) 工业上常用氮气和氢气合成氨
 - (D) 常温下是无色、无气味的气体,密度比空气小
- 2. 实验室用下列装置与实验方法,其中能达到实验目的的是()。

- 3. 氯化铵是一种常用的无机阻燃剂,用饱和氯化铵溶液处理过的阻燃窗帘不易着火,这主要是利用了氯化铵()。
 - (A) 易溶于水

(B) 受热易被氧化

(C) 受热易分解

- (D) 能与强碱溶液反应
- 4. 下列混合物中,可用加热方法来分离的是()。
 - (A) 氯化铵和氢氧化钙

(B) 碘和氯化铵

(C) 氯化铵和氯化钠

- (D) 氯化铵和碳酸氢铵
- 5. 下列施用铵态氮肥的方法中,错误的是()。

- (A) 在农作物的生长过程中使用化肥碳酸氢铵后要立即盖上泥土
- (B) 铵态氮肥不能与草木灰混合使用
- (C) 铵态氮肥应贮藏在避光、干燥和阴凉处
- (D) 为了让氮肥迅速地被农作物吸收,官在高温天进行施肥
- 6. 下列关于硝酸化学性质的叙述中,正确的是()。
 - (A) 浓硝酸和稀硝酸都能使蓝色石蕊试纸变为红色
 - (B) 硝酸与氧化亚铁反应,只表现氧化性
 - (C) 硝酸可与硫化钠反应制备硫化氢气体
 - (D) 稀硝酸与浓硝酸都能与铜反应,生成硝酸铜
- 7. 氨极易溶于水,可用如图 3.8 所示的装置进行喷泉实验(烧瓶内已充 满干燥氨)。该实验的操作是_____ 其原理是

用化学用语解释喷泉呈红色的原因: _____。

图 3.8

氮肥(二)

- 1. 下列各组气体中,常温常压下能大量共存,且能用浓硫酸干燥的是()。

- (A) H_2 , O_2 , N_2 (B) O_2 , NO_2 (C) H_2 , N_2 , NH_3 (D) NH_3 , HCl_2 , NO_2
- 2. 下列关于氨的实验分析中,错误的是()。
 - (A) 氨极易溶于水的性质可解释氨的喷泉实验
 - (B) 氨的还原性可解释氨与氯化氢反应的实验
 - (C) NH₃ · H₂O 会微弱电离产生 OH⁻,可解释氨水使酚酞试液变为红色
 - (D) NH₃ · H₂O 不稳定,可解释实验室中可用加热氨水的方法制备氨
- 3. 下列检验碳酸氢铵为铵态氮肥的方法中,错误的是()。
 - (A) 与熟石灰混合研磨,嗅闻气味
 - (B) 与氢氧化钠溶液共热后,用湿润的红色石蕊试纸检验
 - (C) 加入稀盐酸,将产生的气体通入澄清石灰水
 - (D) 加热,嗅闻气味
- 4. 下列试剂中,能鉴别 Na_2SO_4 、 NH_4NO_3 、KCl、 $(NH_4)_2SO_4$ 四种溶液(必要时可加热)的是 ()。

 - (A) $BaCl_2$ (B) $Ba(NO_3)_2$ (C) $Ba(OH)_2$ (D) $AgNO_3$

- 5. 利用铵盐与碱反应的性质可以检验 NH⁺。
 - (1) 如何利用身边常见的物品,简便地检验家用化肥中是否含有 NH⁺? 施用铵态氮肥 有何注意事项?

(2) 简述实验室中如何鉴定一种白色粉末是氯化铵。

生活与社会

碳酸氢铵是一种化肥,生产厂商会在标签中注明以下内容:

本品宜贮于干燥、阴冷处,防止受潮;施用后盖土或立即灌溉,避免曝晒或与碱性物质 (如熟石灰)混合使用,以免变质,造成肥效损失。

根据以上叙述,回答下列问题。

- (1) 列出碳酸氢铵的物理、化学性质。
- (2)为研究碳酸氢铵的组成,某兴趣小组在试管中加热碳酸氢铵后得到三种生成物,如 在试管口可观察到有冷凝的无色小液滴,说明生成物之一为水。根据所学知识,猜想另外两 种生成物分别是什么,并设计实验证明你的猜想。

猜想:	
实验:	

实践与制作

某研究小组要快速地制备干燥的氨,提供的药品有:浓氨水、氯化铵固体、氢氧化钠固体、蒸馏水、酚酞试液、碱石灰等;提供的仪器如图 3.9 所示(塞子、玻璃导管、橡胶管、固定装置和尾气处理等装置略去)。

(1) 从图 3.9 中挑选所需的仪器来快速地制备干燥的氨,并进行氨的喷泉实验。画出实验装置简图,并注明反应试剂。

(2) 若用图 3.10 中的装置甲收集氨,如何判断烧瓶中已集满氨?若用装置乙,胶头滴管滴入 $1\sim2$ 滴水后,在烧瓶中可观察到什么现象?

图 3.10

课题与研究

有人认为: 化肥是"粮食的粮食",化肥的使用极大地提高了农作物的产量,养活了更多的人。也有人认为: 化肥对生态环境会产生一定的威胁,使用化肥得不偿失。

请你通过相关的资料和研究,写出你的观点和理由。

3.3 硫循环和氮循环

自然界中的硫循环

- 1. 下列物质中,不属于"城市空气质量日报"报道的指标的是()。
 - (A) 二氧化硫

(B) 氮的氧化物

(C) 二氧化碳

- (D) 悬浮颗粒物
- 2. 人类的活动会对自然界中物质的循环产生重要影响,我们应辩证地看待人与自然的关系。下列说法中,错误的是()。
 - (A) 氮肥的使用带来了粮食的增产,丰富了人们的餐桌,同时也可能会引起水体污染等 环境问题
 - (B) 城市的发展提高了人们的生活质量,但破坏了植被的生态系统,会引起二氧化碳增多,加剧温室效应
 - (C)含硫矿物的燃烧在获得能量的同时,也会使大气中二氧化硫的浓度升高,引发酸雨
 - (D)随着科学技术水平的提高,人类活动对自然界中物质循环的影响日益增大,很难做 到人与自然的和谐共处
- 3. 煤炭中含硫量约为 4%~6%,燃烧时会产生二氧化硫等污染物。下列保护环境的措施中,错误的是()。
 - (A) 用高烟囱排放

(B) 用氨水吸收后排放

(C) 用烧碱吸收后排放

- (D) 用活性炭吸附后排放
- 4. 图 3.11 为自然界中硫循环的示意图,阅读后回答下列问题。
 - (1) 从图中分析,人类或自然的哪些活动会影响硫循环?

(2) 请你提出一项有利于自然界中硫循环的措施。

自然界中的氮循环

- 1. 下列叙述中,与氮循环无关的是()。
 - (A) 自然界中的氨一部分来自动植物遗体的腐败
 - (B) 雷雨天可将大气中的氮气与氧气转化为硝酸盐被植物吸收
 - (C) 氮气充入食品罐头用作保护气,打开食品罐头氮气又重回大气
 - (D) 自然界中的氨可以被氧化成硝酸盐,硝酸盐也可经还原生成氮气
- 2. 下列途径可以得到氨,但不属于自然界中氮循环的是()。
 - (A) 化肥氯化铵受热分解产生氨
- (B) 土壤中微生物分解有机氮化物产生氨
- (C) 植物遗体分解产生氨
- (D) 豆科植物的根瘤菌使空气中的氮转化为氨
- 3. 阅读图 3.12 后回答下列问题。

图 3.12

- (1)农业上有"雷雨发庄稼"的说法,这是因为雷电时实现了氮的固定,为植物提供_____态氮肥;图中途径_____(填编号)的固氮可直接生成大量的氨,写出相应的化学方程式:____。
- (2) 在氧气不足的情况下,一些细菌可将______最终转化成_____返回大气中。土壤中这些 在自然界的多种元素循环中起着重要作用。
- (3) 果园套种是一种高效立体的种植模式,科学研究发现蚕豆可与葡萄、玉米、大麦等作物进行套种。请说明作物与蚕豆套种时,可提高土壤肥效的原因。
- 4. 电闪雷鸣是日常生活中司空见惯的现象,雷电时,空气中的氮气与氧气会直接化合。假设 1 mol 氧气与1 mol 氮气化合时需要吸收 181 kJ 能量,某次雷电放出的总能量为 1.5×10⁷ kJ,

其中约有 1 000 的能量用于发生该反应。试计算:
(1) 某次雷电所产生的一氧化氮的物质的量。

(2) 某次雷电的生成物相当于给土壤施加了多少千克尿素? [尿素的化学式为 CO(NH₂)₂] **酸雨**1. 酸雨形成的主要原因是()。
(A) 森林遭到乱砍濫伐,破坏了生态环境 (B) 大气中 CO₂的含量增多
(C) 汽车排出的大量尾气 (D) 工业上燃烧大量含硫的燃料

2. 下列措施中,你认为可减少酸雨的是()。
① 少用煤做燃料 ② 把工厂的烟囱造高 ③ 燃料脱硫

	(C) 汽车排出的大量尾气	(D)	工业	上燃烧大	量含硫的燃料	
2.	下列措施中,你认为可减少酸雨的是()。				
	① 少用煤做燃料 ② 把工厂的烟囱造高	3	燃料	脱硫		
	④ 在已酸化的土壤中加石灰 ⑤ 开发新	能源				
	(A) ①②③ (B) ②③④⑤	(C)	13	(5)	(D) 1345	ı
3.	酸雨主要是燃烧含硫燃料时释放出 SO ₂ 所	 造成	说的。	若每隔一	定时间测定某次	に收集的酸
	雨的 pH,会发现随时间的推移雨水的 pH	()。			
	(A)逐渐变大	(B)	逐渐	变小到某-	一定值	
	(C) 不变	(D)	无法	判断是否	变化	
4.	下列对绿色化学与环境保护的认识中,错	吴的:	是()。		
	(A) 植树造林有利于改善空气质量					
	(B) 绿色化学有助于改善生态环境					
	(C) 大量排放二氧化硫、氮氧化物都会导	致酸	雨			
	(D) 绿色化学是研究如何用化学的方法来	を处理	1 污染	物		
5.	常见的大气污染物分一次污染物和二次污	染物	7。例	如,2NO-	$+O_2 = 2NO_2$	中的 NO2
	就是二次污染物,由NO2导致的污染就是	NO	的二	次污染。〕	下列物质中,不易	易导致二次

6. 治理工业 SO_2 污染的一种方法,是用 Na_2SO_3 溶液来吸收工业尾气中的 SO_2 。基本原理是:① 将含有 SO_2 的尾气通入足量 Na_2SO_3 溶液中充分反应;② 加热吸收有 SO_2 的溶液,一种生成物 Na_2SO_3 可循环使用,另一生成物 SO_2 逸出后可作原料再利用。

(C) 4(5)

(D) (4)

(1) 在空框中填写物质的化学式,补全流程图(图 3.13)。

① SO_2 ② NO ③ Cl_2 ④ HCl ⑤ CO_2

(A) 12345 (B) 135

污染的是()。

- (2) 结合必要的化学用语,简述该工艺的化学原理。
- (3) 从物质转化和物料循环的视角,分析该工艺的主要特点。
- 7. 绿色化学又被称为环境友好化学,它的好处是使污染控制在生产的源头,从根本上消除污染。硝酸工业的尾气中主要含有 NO、NO₂等气体,工厂常采用 NaOH 溶液吸收 NO、NO₂,使其转化为化工产品 NaNO₂。请分析这一种处理是否符合绿色化学理念。

证据与推理

图 3.14 为氮及其化合物的"价-类"二维图。

(1) 在图 3.14 中,哪些步骤可以表示大气固氮?写出相关的化学方程式。

(2) 实验室用 NH_4Cl 与 $Ca(OH)_2$ 反应来制备 NH_3 ,写出化学方程式,并将图 3.15 中的装置补充完整(在虚框内画出连接图)。

(3) 分析氮元素的价态,说明为什么 N_2 既能被氧化又能被还原,写出体现该性质的化学方程式。

生活与社会

机动车尾气是城市空气的主要污染源,也是雾霾天气的主要成因。查阅如下资料:

汽油燃烧时,空气与燃油气的体积比称为"空燃比"。稀薄燃烧是指汽油在较大空燃比条件下的燃烧。汽车发动机内采用"稀薄燃烧"技术,可达到节约能源的目的,不同空燃比时汽车尾气中主要污染物的含量变化如图 3.16 所示。

- (1) 除节约能源外,稀薄燃烧技术还具有哪些优点?
- (2) 采用稀薄燃烧技术时,是否空燃比越大越好?说明理由。

本 章 测 试

一、选择题(4	每小题只有1个正确选项)	
1. 下列关于硕	流的叙述中,正确的是()。	
(A) 硫元	素的非金属性较强,故只能以化	合态存在于自然界
(B) 分离	黑火药中的 KNO3、C、S,需用 C	S ₂ 、水,并进行过滤操作
(C) 硫在-	与金属、非金属反应时均作氧化	剂
(D) 1.6 g	硫与 6.4 g 铜反应能得到 8.0 g	纯净硫化物
2. 下列氮气的	的用途中,与氮气化学性质稳定	有关的是()。
(A)制取到	金属氮化物	(B) 用于合成氨
(C) 工业_	上以氮气为原料之一制备硝酸	(D) 保护粮食和水果
3. 下列关于西	竣雨的说法中,正确的是 ()	0
(A)酸雨	是自然形成的,与人类活动无关	
(B) 常温 ⁻	下 pH 小于 7 的雨水是酸雨	
(C)酸雨>	对建筑物有很强的腐蚀作用	
(D)酸雨的	的形成,是因为雨水中溶解了二	氧化碳
4. 下列关于氨	氮的说法中,错误的是()。	
(A) 氨与氧	氧气在一定条件下反应表现氨的	的还原性
(B) 氨与	氯化氢相遇产生白烟	
(C) 氨能(使湿润的蓝色石蕊试纸变红	
(D) 液氨ī	可用作制冷剂	
5. 下列关于氯	氯化铵的说法中,正确的是()。
(A) 氯化铂	铵固体易溶于水	(B) 氯化铵是硝态氮肥
(C) 氯化铂	按受热易升华	(D) 氯化铵是氮肥中含氮量最高的化肥
6. 与氮元素的	的循环无关的是()。	
(A) 工业行	合成氨的过程是固氮的过程	
(B) 自然!	界中,氨是动物体特别是蛋白质	腐败后的产物
(C) 工业	上利用氮气和氧气的沸点不同,	分离液态空气法获得氮气
(D) 在电门	闪雷鸣时,氮气与氧气会发生反	应并最终转化为硝酸盐被植物吸收
7. 在光照条件	件下,下列物质不发生化学反应	的是()。
(A) H ₂ 和	1 Cl ₂ 的混合气	(B) H ₂ 和 N ₂ 的混合气

(D) 氯水

(C) AgBr

- 8. 下列关于浓硫酸的说法中,正确的是()。
 - (A) 浓硫酸可用于干燥氨
- (B) 浓硫酸可使纸张脱水炭化
- (C)浓硫酸必须保存在棕色瓶中 (D)可用锌与浓硫酸反应制取氢气
- 9.《中华人民共和国大气污染防治法》施行后对我国的大气污染防治将产生重要影响。下 列说法中,错误的是()。
 - (A) 开发新能源,减少对化石能源的依赖
 - (B) 农作物收割后留下的秸秆可以就地焚烧
 - (C) 实施"煤改气""煤改电"等清洁措施,有利于保护环境
 - (D) 推广使用电动汽车,可减少城市雾霾的形成
- 10. 有一种常见的氮肥,加热可完全分解为气体,其中一种气体能使湿润的红色石蕊试纸变 蓝,另一种气体能使澄清石灰水变浑浊。该氮肥可以是(
 - (A) 氯化铵
- (B) 碳酸氢铵
- (C) 硝酸铵
- (D) 硫酸铵
- 11. 明代李时珍的《本草纲目》中记载: 「火药〕乃焰消「KNO。〕、硫黄、杉木炭所合,以为烽燧 铳机诸药者。这是利用了 KNO₃的()。
 - (A) 自燃性
- (B) 易分解
- (D) 氧化性
- 12. 下列制备硫酸铜的实验方案中,能体现"经济、高效、环保"的是(
 - (A) 铜与浓硫酸共热
 - (B) 用浓硫酸溶解碱式碳酸铜[Cu₂(OH)₂CO₃]
 - (C) 先灼烧废铜屑生成氧化铜,然后用浓硫酸来溶解
 - (D) 适当温度下,使铜片在持续通入空气的稀硫酸中溶解
- 13. 下列关于自然界中硫循环(图 3.17)的说法中,正确的是()。

- (A) 含硫杆菌和好氧/厌氧菌能促进硫循环
- (B) 硫循环中涉及的含硫物质均为无机物
- (C) 燃煤时添加石灰石,可减少酸雨和温室气体的排放
- (D) 上述硫循环中硫元素均被氧化
-)。 14. 图 3.18 为自然界中氮元素的部分循环示意图。下列叙述中,错误的是(

- (A) 这一循环中氮元素既有被氧化又有被还原
- (B) 图中体现了氮的固定
- (C) 这一循环中体现出氮元素的三种价态
- (D) 由于自然界中氮元素处于往复循环,从而使大气中氮气的含量保持稳定
- **15.** 某工厂用 CaSO₄、NH₃、H₂O、CO₂为原料来制备(NH₄)₂SO₄,其工艺流程如图 3.19 所示。下列推断中,错误的是()。

- (A) 生成 1 mol (NH₄)₂SO₄至少消耗 2 mol NH₃
- (B) CO2可循环使用
- (C) 往甲中通适量 CO2有利于(NH4)2SO4生成
- (D) 直接蒸干滤液得到纯净的(NH₄)₂SO₄

二、综合题

16. 实验室用如图 3.20 所示的装置来制备与探究 SO_2 的化学性质。圆底烧瓶中反应的化学方程式为______。若装置 A 中盛放品红试液,可以验证的 SO_2 的性质是_____。若要验证 SO_2 的还原性,装置 A 中应盛放______ 溶液。装置 B 中应盛放 溶液。

17. 硫酸工业尾气中 SO₂的含量超过 0.05%(体积分 数)时需经处理后才能排放。为了测定硫酸工业 尾气中 SO₂的含量,某兴趣小组采用以下方案: 甲方案:如图 3.21 所示,图中气体流量计 B 用 于准确测量通过尾气的体积。将尾气通入一定 体积、浓度已知的碘水中测定 SO2的含量。当洗 气瓶 C 中溶液的蓝色刚好消失时,立即关闭活 塞 A。

- (1) 洗气瓶 C 中导管末端连接一个多孔球泡 D,可以提高实验的准确度,其理由是
- (2) 洗气瓶 C 中的溶液可以用其他试剂替代,请你举出一种:
- (3) 洗气瓶 C 中溶液的蓝色消失后,没有及时关闭活塞 A,测得的 SO_2 含量 "偏高""偏低"或"无影响")。
- 乙方案:实验步骤如图 3.22 所示。

图 3.22

- (4) 写出步骤②中反应的化学方程式:
- (5) 通过的尾气体积为V L(已换算成标准状况)时,该尾气中 SO_2 的含量(体积分数)为 (用含有 V_m 的代数式表示)。

丙方案: 将乙方案中的步骤①省略,直接将尾气通入过量 Ba(OH)2溶液中,其余步骤与 乙方案相同。

- (6) 你认为丙方案是否合理?说明理由:
- 18. 图 3.23 为某兴趣小组设计的实验装置,用以制备氨并完成氨的喷泉实验等。

图 3.23

- (1) 分别指出装置 A 和装置 B 的特点,并写出相应的化学方程式。
- (2) 若分别用装置 C 和装置 D 来引发喷泉,操作上有何不同?
- 19. 某化工厂以铜和稀硝酸为主要原料制备 Cu(NO₃)₂,并设计了以下两种方案: 方案一: 3Cu+8HNO₃(稀) === 3Cu(NO₃)₂+2NO ↑ +4H₂O 方案二: 2Cu+O₂ === 2CuO; CuO+2HNO₃ === Cu(NO₃)₂+H₂O 从环境保护、经济效益等角度考虑,你认为哪种方案比较合理? 说明理由。

第4章 原子结构和化学键

4.1 元素周期表和元素周期律

元素周期	月表
------	----

	儿系周别很	_		
1.	元素周期表中的横行	· 一	从列称为。	元素周期表中共有个
	周期,其中第	周期和	尔为短周期,第	周期称为长周期。
	元素周期表中共有			
2.	- . 俄国化学家门捷列:			
	(A) 提出原子学说		(B) 编排元素	周期表
	(C) 提出分子学说		(D) 发现氧气	
3.	元素周期表中,第2	、3、4 周期元素的数	效目分别是()。	
	(A) 2,8,8	(B) 8,8,8	(C) 8,8,18	(D) 8,18,32
4.	下列元素中,紧靠元	素周期表中金属与	与非金属分界线的 是	1 () 。
	(A) Si	(B) S	(C) P	(D) Se
5.	翻开元素周期表,找	到砷元素。		
	(1) 写出砷元素的原	原子序数和相对原-	子质量。	
	(2) 描述砷元素在元	元素周期表中的位置	置。	
	元素周期律	_		
1.	元素周期律是化学学	学科—个重要规律		
•				变化,这个规律称为
	、一、フロカ、田、江ノ大・地・	HH 7 KE 1	4 / 119 14 78	

- (2) 主族元素的最高正化合价一般取决于 ,最低负化合价一般为
- 2. 根据元素周期表中1~20号元素的性质及其递变规律,回答下列问题。
 - (1) 属于金属元素的有_____种,属于稀有气体元素的是_____ (填元素名称)。
 - (2) 除稀有气体元素原子外,原子半径最大的是;金属性最强的元素是。。 (填元素符号)
 - (3) 比较 Si、N 最简单气态氢化物的热稳定性: 强于 。(填化学式)
- 3. 下列各组性质的比较中,正确的是()。
 - (A) 酸性强弱: $HClO_4 > H_2SO_4$ (B) 热稳定性强弱: $H_2S > HF$
 - (C) 碱性强弱: Mg(OH)₂>NaOH (D) 原子半径大小: Cl>Br
- 4. 下列各组元素性质的变化规律中,错误的是()。
 - (A) Li、Na、K 的最高价氧化物对应水化物的碱性依次增强
 - (B) P、S、Cl 最高正化合价依次升高
 - (C) N、O、F 原子半径依次增大
 - (D) Cl、Br、I 的气态氢化物的热稳定性依次减弱
- 5. 图 4.1 表示部分短周期元素的主要化合价与原子序数的关系。

- (1) 排列 X、Y 和 Z 的原子半径大小顺序。
- (2) 比较 R、W 的气态氢化物的热稳定性。
- (3) 写出 Y、R 的最高价氧化物对应水化物相互反应的化学方程式。

元素周期表的应用

- 1. 砹元素是原子序数为 85 的卤族元素,推测砹元素的单质及其化合物不可能具有的性质是()。
 - (A) 砹化银见光不易分解
- (B) 砹易溶于某些有机溶剂

(C) 砹化银不溶于水

- (D) 砹单质是有色固体
- 2. 下列具有特殊性能的材料中,由主族元素和副族元素组成的化合物是()。
 - (A) 半导体材料砷化镓

- (B) 储氢材料镧镍合金
- (C) 透明陶瓷材料硒化锌
- (D) 超导材料 K₃C₆₀
- **3.** 图 4.2 是元素周期表的局部。
 - (1) 试分析将 C、N、O、F 四种元素编排在同一横行的原因。

С	N	О	F
Si	Р	S	Cl
			Br
			I

图 4.2

- (2) 如何确定 P 的最低负化合价及其气态氢化物的分子式?
- (3) 通过哪些事实或证据,可以比较 Cl、Br 的非金属性的相对强弱?
- (4) 科学家通常利用某些元素来合成农药,这些元素往往位于元素周期表的哪个区域?
- (5) 元素周期表中碘元素的信息如图 4.3 所示。阅读和查阅资料后,你可以 从中获取哪些信息?简要阐述。

53 I 碘 5s²5p⁵ 126.9

图 4.3

证据与推理

下表所列为第2、3周期部分元素的性质,阅读后回答下列问题。

元素性质	元素编号							
	①	2	3	4	5	6	7	8
原子半径/pm	74	160	152	110	99	186	75	82
最高正化合价或		+2	+1	+5	+7	+1	+5	+3
最低负化合价	-2			-3	-1		-3	

(1) 推测上述8种元素的名称和符号,并将它们填写在下列空白的元素周期表(部分)中。

(2) 在上述元素的最高价氧化物对应水化物中,分别写出酸性和碱性最强的化合物的化学式。

(3) 比较④和⑦的气态氢化物的热稳定性(用化学式表示)。

(4) 写出②的最高价氧化物对应水化物与⑤的氢化物水溶液反应的离子方程式。

同周期元素的单质及其化合物的性质会有一定的变化规律。请你设计方案并通过实验比较钠、镁、铝的金属活泼性。

某活动小组设计了"比较钠、镁、铝金属活泼性"的实验方案,并完成了甲、乙两组实验:

甲	组	乙组			
实验步骤	实验现象	实验步骤	实验现象		
1. 取两只 50 mL 烧杯, 加入 20 mL 水,各滴入 2 滴酚酞试液,分别加 入一小粒金属钠和少量 镁粉,观察现象。 将加入镁粉的烧杯加热 至沸腾,观察现象	钠:在冷水中,浮于水面,熔成小球,四处游动,逐渐缩小,溶液很快变红色。 镁:在冷水中几乎无现象,加热至沸腾后产生大量气体,溶液变红	1. 取两只 50 mL 烧杯, 加入 20 mL 水,各滴入 2 滴酚酞试液,分别加入 一小粒金属钠和少量镁 粉,观察现象。 将加入镁粉的烧杯加热 至沸腾,观察现象	钠:在冷水中,浮于水面,熔成小球,四处游动,逐渐缩小,溶液很快变红色。 镁:在冷水中几乎无现象,加热至沸腾后产生大量气体,溶液变红		
2. 取一小块铝和一小块 镁带,用砂纸擦去表面的 氧化膜,分别同时投入 盛有 2 mL 1 mol·L ⁻¹ 盐酸的两支试管中,观 察现象	镁:剧烈反应,很快产生大量气体。 铝:产生大量气体,但反应比镁慢	2. 取一小块铝和一小块 镁带,分别同时投入盛 有 2 mL 1 mol·L ⁻¹ 盐 酸的两支试管中,观察 现象	镁:开始时无明显现象,过一会儿产生大量气体。 铝:基本没有变化		

- (1) 写出钠与水、铝与盐酸反应的化学方程式。
- (2) 确定钠、镁、铝的金属活泼性强弱的顺序。
- (3) 甲、乙两组实验中,哪组的实验更为可靠?阐明原因。

4.2 原子结构

原子的构成

1	按照现代原子结构	1班次 同效下剂的	1 晒			
١.	(1) 原子是由位于			构成的 甘止	1 - 早日	
		不带电荷的			ÆI	1 11 正宅刊
				, 去的由县签工	fic. ##	* 名由苯酚
	(2) 原子呈电中性	:, 及定囚刃	別 审 正 电	1.何 的 电 里 守 丁		了贝电何的
	电量。	· 亚 住 山 七		L 1	:n	to that E
	(3) 原子的质量主	医安集甲仕	上。原于	核 甲 木	™Z	相, 称 为 质
	量数。					
2.	完成下表。					
	微粒符号	核电荷数	质子数	中子数	女 电	1子数
	$^{15}_{7}\mathrm{N}$					
		12		12		10
	³⁷ ₁₇ Cl ⁻					
3.	化学符号 ² H 中左	上角的数字"2"表	示()。			
	(A) 质子数			电子数	(D) 中子数	
4.	下列关于原子 ¹³ C					
	(A) 质量数为 19		(B) F	电子数为 6		
	(C) 质子数为7		(D) F	中子数是 6		
5.	下列关于微粒 ²³ Na	a ⁺ 的描述中,错误				
	(A) 质子数是 11			电子数是 11		
	(C) 中子数是 12			5 量数是 23		
6	科学家人工合成了	一种质子数为 11			麦的原子,该原	三 子的中子
٥.	数与电子数之差为		1011 1 3071	110 1170 = 762	K H J / M J 7 1/2//2	, 1 H1 1 1
	X 与电子		(C) 1	08	(D) 203	
7	某元素 R 原子的原					5.由始由乙
1.		《里奴》(7) 八,匕即广	可 , 八 (次ク)	"日本 丁 电 J ,火	11以儿系历 1 17	ערוונין די ן" (ווינין א
	数为()。	(D) 4	(0)	1	(D) A	
	(A) $A-x$	(B) $A - n - x$	(C) A	$\mathbf{n} + n - x$	(D) $A + n + x$;

核素

1.	现有核素: ${}^{12}_{6}C$ 、 ${}^{14}_{7}N$ 、 ${}^{23}_{11}Na$ 、 ${}^{24}_{12}Mg$ 5	和 ¹⁴ 6C,其中:
	(1) 互为同位素的是和	•
	(2) 质量数相等的是和	•
	(3) 中子数相等的是和	•
2.	下列关于 $_{1}^{1}H$ 、 $_{1}^{2}H$ 、 $_{1}^{3}H$ 的说法中,	E确的是()。
	(A) 表示三种氢元素	(B) 表示氢元素的三种核素
	(C)表示氢元素的三种同素异形	体 (D)表示氢元素的三种质量数
3.	下列各组微粒中,互为同位素的;	륃()。
	$(A) O_2$ 和 O_3	(B) H ₂ O和 D ₂ O
	(C) ${}^{14}_{6}$ C 和 ${}^{14}_{7}$ N	(D) ²³ Na 和 ²⁴ Na
4.	下列关于互为同位素的两种核素	的叙述中,错误的是()。
	(A) 属于同种元素	(B) 具有不同的中子数
	(C) 具有相同的电子数	(D) 化学性质完全不同
5.	用于卫星导航的原子钟被称为卫	星的"心脏",我国目前使用的是铷原子钟。已知自然界
	存在铷元素的两种核素—— ⁸⁵ Rb	、 ⁸⁷ Rb,它们具有()。
	(A) 相同的质量数	(B) 相同的质子数
	(C) 相同的中子数	(D) 不同的电子数
6.	某一微粒的质子数、电子数与另一	一微粒的质子数、电子数均相等,则下列叙述中,错误的
	是()。	
	(A) 可能互为同位素	(B) 可能是相同的原子
	(C)可能是不同的分子	(D) 可能是一种分子和一种离子
7.	碳元素有 ${}_{6}^{12}C$ 、 ${}_{6}^{13}C$ 和 ${}_{6}^{14}C$ 三种核素	•
	(1) 这三种核素之间存在什么关	系?
	(2) 比较它们结构上的相同点和	不同点。

(3) 列举放射性同位素¹⁴₆C的两种不同用途。

相对原子质量

1.	下列	叙述		,]	E确	自的	与是	를()。
					_				 	_

- (A) 相对原子质量就是原子质量的简称
- (B) 相对原子质量的单位一般用"kg"表示
- (C) 相对原子质量是一个没有单位的比值
- (D) 相对原子质量约等于原子核内质子质量和中子质量之和
- 2. 从元素周期表中查得氢元素的某一数值为 1.008,该数值表示()。
 - (A) 一种氢原子的相对原子质量
 - (B) 三种氢原子原子质量的平均值
 - (C) 氢元素的近似相对原子质量
 - (D) 氢元素的相对原子质量
- 3. $X \setminus Y$ 两种元素的相对原子质量分别为 $56 \setminus 16$,化合价分别为+3 价和-2 价,则 X 和 Y组成的化合物的相对分子质量为()。
 - (A) 72
- (B) 88 (C) 160
- (D) 200
- **4.** 硼元素有 ${}^{10}_{5}$ B、 ${}^{11}_{5}$ B 两种核素。硼元素的近似相对原子质量为 10.8,则 ${}^{10}_{5}$ B 和 ${}^{11}_{5}$ B 的丰度之 比为()。
- (A) 1:1 (B) 2:1 (C) 4:1 (D) 1:4
- **5.** 氯元素在自然界有 $_{17}^{35}$ Cl、 $_{17}^{37}$ Cl 两种核素。氯元素的相对原子质量=34.969×75.77%+ $36.966 \times 24.23\% = 35.453$ 。下列表述中,正确的是()。
 - (A) 75.77%表示³⁵Cl 的质量分数
 - (B) 24.23%表示35Cl的丰度
 - (C) 35.453 表示氯元素的相对原子质量
 - (D) 36.966 表示³⁷Cl 的质量数
- 6. 铜元素有两种核素,相关数据如下表所示。

核素	质子数	中子数	相对原子质量	丰度
甲	29	34	62.929 8	69.1%
乙	29	36	64.927 8	30.9%

(1)	甲的质量数为	o
\ _ /	1 P1// == /// / 1	0

- (2) 乙的符号为。
- (3) 铜元素的近似相对原子质量为。
- (4) 铜元素的相对原子质量为____。

- 7. 某元素组成的单质双原子分子有三种,近似相对分子质量分别为 70、72 和 74,且在自然 界中三种分子数之比为9:6:1,试回答:
 - (1) 该元素的各种核素的质量数分别是多少?

(2) 这些核素的丰度分别是多少?

(3) 该元素的近似相对原子质量是多少?

下表列举了一些元素的相对原子质量及其单质的密度。请描述这些元素的相对原子质 量与其单质密度之间的关系。根据这些数据结合它们在元素周期表的位置,你能说出它们 单质密度的变化规律吗?

元素	氦	氖	氩	氪
相对原子质量	4.00	20.2	40.0	83.8
单质的密度/(g・L ⁻¹)	0.179	0.901	1.78	3.74

生活与社会

同位素分为稳定同位素和放射性同位素,其中放射性同位素的原子核会自发地放射出射线而变成另一种原子核,这一过程称为衰变。科学上,通常用"半衰期"来表示放射性同位素衰变的快慢,半衰期是指放射性同位素原子核的数目衰变到原有一半所需的时间。

放射性同位素 ${}^{14}_{6}$ C 被考古学家称为"碳钟",其半衰期为 5 730 年,可用它来断定古生物体的年代,这项研究成果曾获 1960 年诺贝尔化学奖。 ${}^{14}_{6}$ C 的生成和衰变通常是平衡的,即在空气和生物活体中 ${}^{14}_{6}$ C 的含量基本保持不变。当生物体死亡后,其体内的 ${}^{14}_{6}$ C 含量会不断减少。若测得一具古生物遗骸中 ${}^{14}_{6}$ C 含量只有活体中的 12.5%,则这具遗骸死亡至今约多少年?

课题与研究

从古至今,人们对于物质构成认识的探索从未停止过。特别是在原子结构的探索过程中,很多科学家付出了长期而艰辛的努力,并做出了相应的贡献。请你查阅相关资料,撰写一份关于科学家探索原子结构历程的研究报告。

4.3 核外电子排布

核外电子排布的规律

1.	. 多电子原子核外电子	产的排布主要遵循以 ^一	下规律:	
	(1) 各电子层最多可	容纳的电子数为	•	
	(2) 最外层电子数不	超过个(K	层为最外层时则不超	且过个)。次外层
	电子数不超过_	个,倒数第三	层电子数不超过	个。
2.	. 写出 1~20 号元素中	习符合下列要求的元章	素符号。	
	(1) 原子核外 L 层上	上有1个电子的元素是	是 。	
	(2) 原子核外 M 层电	电子数是 L 层电子数	一半的元素是	٥
	(3) 原子核外最外层	电子数等于其电子原	 层数的元素是	<u> </u>
			 上和等于 L 层上的电子	
3.	. 某元素原子核外最外	卜层电子数为1,则其	核电荷数可能为()。
	(A) 2	(B) 9	(C) 13	(D) 19
4.				$\frac{1}{2}$,则该原
	子可能为()。			
	(A) Be	(B) C	(C) O	(D) S
5.	. 某元素原子核外次外	层有2个电子,其最多	外层缺1个电子即达稳	定结构,该元素是()。
	(A) Na	(B) Cl	(C) F	(D) H
6.	. 下列各组微粒中,具	有相同的电子层数和	最外层电子数的是()。
	(A) He 和 H	(B) F ⁻ 和 Mg ²⁺	(C) Cl ⁻ 和Cl	(D) Al ³⁺ 和 Ar
7.	. 原子核外的第4电子	生层,最多可容纳的电	.子数是()。	
	(A) 18	(B) 32	(C) 50	(D) 72
8.	. 按照核外电子排布规	见律,第 20 号元素 Ca	的原子核外电子排布	是()。
	(A) 2,8,9,1	(B) 2,8,10	(C) 2,8,8,1	(D) 2,8,8,2
9.	. A、B、C 三种元素中	有一种是金属元素。	A、B 原子的电子层数	(相同,B、C原子的最外层
	电子数相同,又知这	三种元素原子的最外	层电子数之和为 17,	原子核中的质子数之和为
	31。试通过计算确定	区这三种元素的名称。	,	

结构示意图和电子式

1.	画出下列微粒的结构示意图。
	(1) 最外层电子数是次外层电子数 3 倍的原子:。
	(2) 核外有 10 个电子的+1 价正离子:。
	(3) M 层电子数为 K 层电子数 2 倍的原子:。
2.	写出下列微粒的电子式。
	(1) 最外层电子数是次外层电子数 2 倍的原子:。
	(2) 与氖元素原子电子层结构相同的-3价负离子:。
	(3) L 层电子数为 K 层、M 层电子数之和的原子:。
3.	某种微粒的结构示意图为 (+x) 28 y, 试回答:
	(1) 结构示意图中的" x "表示,结构示意图中的" y "和微粒的电子层数共同决
	定了该微粒的。
	(2) 若 $x-y=10$,则由该结构示意图推知该微粒是(填"原子"或"离子")。
	(3) 若 y=8,该微粒带有 2 个单位负电荷,则该微粒的符号为,该微粒的结构
	示意图为。
	(4) 若 $y=3$ 的中性原子 M 和 $y=6$ 的中性原子 N 化合,则形成的化合物为
	(填化学式)。
4.	下列微粒的结构示意图中,表示正离子的是()。
	$(A) \left(+1 \right) \left(2 \right) \left(8 \right) \left(1 \right)$
5.	下列原子中,最难形成离子的是()。
	$(A) \xrightarrow{(+3)} 2 $ $(B) \xrightarrow{(+8)} 2 $ $(C) \xrightarrow{(+9)} 2 $ $(D) \xrightarrow{(+2)} 2 $
6.	下列表示微粒的电子式中,正确的是()。
	(A) $:\dot{\mathbf{B}}\cdot$ (B) $[\mathrm{Na}]^+$ (C) $[:\ddot{\mathbf{O}}:]^{2-}$ (D) $:\ddot{\mathbf{F}}:^-$
7.	请你根据下列主族元素的原子(或离子)结构示意图,分别指出其原子(或离子)所含的质
	子数、电子数和电子层数。
	$(1) \left(+17\right) \stackrel{>}{\underset{>}{\cancel{2}}} \stackrel{>}{\underset{>}{\cancel{8}}} : \underline{\hspace{2cm}}$
	, \ , \
	$(2) \begin{array}{c} (34) \\ 28 \\ 186 \\ 1$
	<i>'//</i>

8. 有 A、B 两种元素, A 元素原子的 L 层比 B 元素原子的 L 层多 4 个电子, 而 B 元素原子的 M 层比 A 元素原子的 M 层少 2 个电子。写出 A、B 的元素符号,并分别画出它们的原子结构示意图。

核外电子排布与元素周期律

(D) 原子半径由大到小的顺序为 Y>Z>X

		13/21	46 1 141×411 →	几条四两年					
1.	元素	素的性 质	大会随着原子	字数的递增呈现	司期性?	变化。			
	(1)	同周期	元素,随着原	子序数的递增,原	子半径	逐渐	,失电子能	力逐渐	,
				,因而元素					
	(2)			子序数的递增,原					,
		得电子	能力逐渐	,因而元素	的金属	性	,非金属性_	o	
2.	元素	《性质 呈	₹ 見期性变化	的根本原因是()。				
	(A)	原子核	该外电子排布	呈周期性变化	(B)	元素的相对	付原子质量逐渐	斩增大	
	(C)	核电荷	 方数逐渐增大		(D)	元素化合作	个呈周期性变色	化	
3.	下歹	1)关于金	属元素与非	金属元素的叙述。	中,正确	的是()。		
	(A)	非金属	言元素呈现的	最高正化合价不	超过该	元素原子植	亥外最外层电 ⁻	子数	
	(B)	非金属	言元素呈现的	最低负化合价,其	L 绝对值	I等于该元	素原子核外最	外层电子数	汝
	(C)	若某元	上素原子核外	最外层电子数不	超过 2,	则该元素-	一定是金属元	素	
	(D)	若某元	上素原子核外	最外层电子数为	5,则该	元素一定	是非金属元素		
4.	下歹	1)关于同	一种元素的	原子或离子的叙述	述中,正	确的是()。		
	(A)	原子半	4径比负离子	半径小	(B)	原子半径上	比负离子半径。	大	
	(C)	原子半	举径比正离子	半径小	(D)	价态越高,	正离子半径越	大	
5.	Χ,Υ	Y、Z是:	3 种短周期元	素,其中 X、Y 位	于同—	主族,Y、Z	Z 处于同一周	期。X原子	产的最
	外层	层电子数	是其电子层	数的3倍。Z原-	子的核多	小电子数比	Y 原子少 1。	下列说法	中,正
	确的	り是()。						
	(A)	元素非	=金属性由弱	到强的顺序为 Z<	<Y $<$ X				
	(B)	Y元素	長 島价氧化	物对应水化物的	化学式	可表示为]	$H_3 YO_4$		
	(C)	3 种元	素的气态氢化	化物中,Z的气态	氢化物	最稳定			

6. 有 A、B、C、D 四种元素。A 元素原子核外 M 层比 L 层少 2 个电子; B 元素与 A 元素同 周期,其金属性在该周期金属元素中最弱;C元素原子核外最外层电子数是次外层的2 倍;D元素位于C元素的下一周期,其原子半径在该周期原子中最小。试通过推断写出 A、B、C和D的元素符号。

下表所列为多种核素的多项数据,阅读后用核素符号回答下列问题。

核素符号	质量数	质子数	中子数	电子数	核外电子排布
⁹ ₄ Be					
	14	6			
	33		17		
			17	15	
		12	12		
	39			19	
			16		2,8,6

- (1) 哪些核素能够互称为同位素?
- (2) 哪些核素所属的元素位于同一主族?
- (3) 哪些核素的原子形成离子后,其核外电子排布(K,L,M)可表示为2,8,8?

4.4 化学键

离子键

1.	通常,我们把物质中	的	之间	存在的	称)	为化学键。
	正、负离子之间由于					
	的化合物叫做离子化合物。					
2.	化学键是一种构成物质的微					
	是()。					
	(A) 化学键就是两个原子之	之间的吸引作用				
	(B) 化学键既可以存在于原	原子之间,也可以	人存在于分	子之间		
	(C) 化学键存在于分子内质	听有原子之间				
	(D) 化学键这种强烈的相互	五作用包括吸引	和排斥两方	面		
3.	氯化钠、氧化镁等化合物中	存在离子键。下	列关于离	子键的叙述	中,正确的是()。
	(A) 原子间的静电作用	((B) 正、负?	离子间的吸	引作用	
	(C)正、负离子间的静电作	用	(D) 正离子	间通过电	子的吸引作用	
4.	下列元素的原子之间不能形	 成离子键的是	()。			
	(A) 钠和氧 (B) 钐	美和氯	(C) 钾和溴	! (D) 磷和氯	
5.	离子化合物是以离子键结合	的化合物。下列	可关于离子位	化合物的说	法中,正确的是	()。
	(A) 离子化合物的化学式作	代表其分子的组	成			
	(B) 离子化合物熔融时不破	皮坏离子键				
	(C) 离子化合物在固态或力	K 溶液中都能导	电			
	(D) 离子化合物可能只含有	育非金属元素				
6.	已知 X 元素原子核外 M 层	上有2个电子,	Y 元素原子	核外L层	上有 5 个电子	。两者能
	组成稳定的离子化合物,其	化学式是()。			
	(A) $Y_3 X_2$ (B) $X_3 X_3 = X_3 X_3 = X_3 X_3 X_3 = X_3 X_3 X_3 X_3 X_3 X_3 X_3 X_3 X_3 X_3$	XY_2	(C) X_3Y_2	(D) X ₅ Y ₂	
7.	下列各类物质中,不可能含	有离子键的是()。			
	(A) 含氧酸 (B) 碱	咸	(C) 金属氧	化物 (D) 盐	
8.	按要求写出化学用语。					
	(1) 电子式: 溴化钠、氧化银	美。				

(2) 用电子式表示形成过程: 硫化钾、氯化钙。

共价键

1.	原子间通过
	叫做共价化合物,例如等。共价键具有空间指向,所以多原子分子具有一定的
	空间结构,如甲烷分子具有结构。
2.	用电子式表示下列物质的形成过程。
	(1) H ₂ O:
	(2) N ₂ :
3.	下列关于离子化合物和共价化合物的说法中,正确的是()。
	(A) 含有共价键的化合物一定是共价化合物
	(B) 离子化合物中可能含有共价键
	(C) 离子化合物中只含有离子键
	(D) 只含有共价键的物质一定是共价化合物
4.	共价键是原子间通过共用电子对所形成的化学键。下列分子中,含有共价键数目最多的
	是()。
	(A) H_2O (B) HF (C) NH_3 (D) CH_4
5.	下列分子中,原子的最外层电子都能满足8电子稳定结构的是()。
	(A) CH_4 (B) PCl_5 (C) BF_3 (D) CO_2
6.	共价化合物只含有共价键。下列物质中,属于共价化合物的是()。
	(A) KClO (B) HClO (C) NaCl (D) Cl ₂
7.	下列各组化合物中,化学键类型完全相同的是()。
	(A) $CaBr_2$, HCl (B) $MgCl_2$, Na_2S (C) KOH , $NaCl$ (D) H_2O , NH_4Cl
8.	氢元素与其他元素形成的二元化合物称为氢化物。下列关于氢化物的叙述中,正确的是
	()。
	(A) HF 的电子式为 H^+ [: \ddot{F} :] (B) H_2 O 是由 H^+ 和 O^{2-} 构成的
	H
	(C) NH ₃ 的结构式为 H—N—H (D) CH ₄ 的空间填充模型为 (D) CH ₄ 的空间模型为 (D) CH ₄ 的空间模型和 (D) CH ₄ 的型和 (D)
9.	A、B、C、D 四种元素,已知 A 元素原子核内只有 1 个质子,B 元素原子核外电子总数恰好

与 D 元素原子核外最外层电子数相等,且 D 元素原子核外最外层电子数是其次外层电

子数的 3 倍,又知 A、B、C、D 元素的原子序数依次增大。据此推知:

- (1) A、B、C 和 D 四种元素的名称分别是: A_____,B____,C_____,D____。 (2) A 元素与 C 元素组成的化合物,其分子式可表示为 。
- (3) 化合物 A_2D 中存在的化学键为_____键。写出 A_2D 的结构式:_____。
- (4) 写出一种由上述四种元素中的三种组成的共价化合物的分子式:
- 10. 有下列物质: HBr、CO₂、H₂、I₂、NaOH、CaF₂、MgO、NH₃。
 - (1) 这些物质中分别存在哪些类型的化学键?
 - (2) 哪些物质属于离子化合物? 哪些物质属于共价化合物?

证据与推理

图 4.4 为元素周期表的一部分,其中 a~i 代表不同的元素。阅读后回答下列问题。

- (1) 写出 f 元素原子的电子式。
- (2) 哪一种元素在自然界中以单原子形式存在? 其原子核外最外层电子数有何特点?
- (3) a 元素与 b 元素是同一族的金属元素吗?
- (4) 哪些元素的原子形成简单离子后,其电子排布与i元素的原子相同?
- (5) b 元素与 h 元素的单质可化合形成何种物质?在该物质中,两种构成微粒的电子数相同吗?
- (6) 上述元素两两组成的化合物中,属于离子化合物的有哪些?属于共价化合物的又有哪些?试各举两例。

生活与社会

- 1. 豆腐源自中国,是一种既便宜又富有营养价值的食品。要制成豆腐,首先需要把湿润的黄豆加水磨碎以制出豆浆,然后再将豆浆凝固变成豆腐。硫酸钙就是其中一种能把豆浆凝固的凝固剂。此外,硫酸钙也能为人体提供钙离子,从而增加豆腐的营养价值。
 - (1) 写出这种凝固剂的化学式。
 - (2) 该凝固剂中各种微粒之间存在哪些化学键?
 - (3) 这种凝固剂呈现什么颜色?
- 2. 氯化锶通常是敏感牙齿专用牙膏内的有效成分。氯化锶会沉积在牙齿上牙本质内的小孔中,成为牙齿神经末梢的阻碍物,从而减少牙齿对温度变化的敏感反应。
 - (1) 描述锶元素在元素周期表中的位置。
 - (2) 氯化锶中存在哪种化学键?
 - (3) 用电子式表示氯化锶的形成过程。
 - (4) 氯化锶溶液是无色的,那么锶离子、氯离子的颜色分别是什么?
 - (5) 查阅相关资料,列举氯化锶作为牙膏抗过敏成分的优点。

实践与制作

请你尝试用不同的方法制作分子模型:

- (1)利用塑料球、橡皮泥、短木棍等生活中常见的材料,搭建出 HF、 H_2S 、 NH_3 、 CH_4 、 CO_2 等分子的球棍模型。
 - (2) 利用计算机软件来制作 $HF_xH_2S_xNH_3_xCH_4_xCO_2$ 等分子的球棍模型。查阅资料,判断你所搭建的分子模型是否正确。

本章测试

一、选择题(每小题只有1个正确选项) 1. 下列微粒结构示意图所表示的微粒中,最稳定的是()。 $(A) \left(+17 \right) \begin{array}{c} 288 \\ 288 \end{array}$ (B) (+10) 2 82. 下列各组数字是一些元素的原子序数,其原子能以共价键相结合形成 AB。型共价化合物 的是()。 (A) 12 和 17 (B) 11 和 16 (D) 12 和 9 (C) 6和8 3. 下列微粒中, 互为同位素的是()。 (B) ²₂He 和 ³₂He (A) H₂和 D₂ (D) ¹²CO₂ 和¹⁴CO₂ (C) O₂和 O₃ 4. 下列微粒中,电子数大于质子数的是((D) (+8) $\stackrel{?}{2}$ $\stackrel{?}{6}$ (C) ¹⁸₈O (A) H_3O^+ (B) O^{2-} 5. 下列物质中,既含有离子键也含有共价键的是()。 (A) CaCl₂ (B) CS_2 (C) BaSO₄ (D) HBr 6. 科学杂志上报道了通过测量行星物质中48 Ca/44 Ca 的比值,揭示行星演变的关系。48 Ca 和⁴⁴Ca 具有()。 (A) 相同的质量数 (B) 不同的质子数 (C) 相同的中子数 (D) 相同的电子数 7. 下列性质的比较中,正确的是()。 (A) 热稳定性强弱: HF<HCl<HBr<HI

8. 图 4.5 表示 1~18 号元素(原子)的结构或性质随核电荷数递增的变化。无法由该图中

(B) 金属性强弱: Al>Mg>Na

(D) 还原性强弱: Cl⁻ < Br⁻ < I⁻

曲线获知的是()。

(C) 酸性强弱: $H_2SO_4 > HClO_4 > H_3PO_4$

图 4.5

(A) 电子层数

(B) 原子半径

(C) 最高正化合价

- (D) 最外层电子数
- 9. a、b、c、d 为原子序数依次增大的短周期主族元素,a原子核外电子总数与 b原子核外次外层电子数相同;c所在周期数与族序数相同;d与 a同族。下列叙述中,正确的是()。
 - (A) 四种元素中 b 的金属性最强
 - (B) 原子半径由大到小的顺序为 d>c>b>a
 - (C) d 的单质氧化性比 a 的单质氧化性强
 - (D) c 的最高价氧化物对应水化物是一种强碱

二、综合题

10. 完成下表。

核素	核电荷数	中子数	电子排布	元素所在周期数	元素所在族数
⁷ ₃ Li	3				
¹⁸ O				2	16
⁴⁰ ₁₈ Ar			2,8,8		
$^{39}_{19}{ m K}$		20			

11.	A 元素的单质 16.2 g 与足量氧气化合,生成 30.6 g A_2O_3 。 A 元素原子中含有 14 个中	子,
	则 A 元素的相对原子质量为,它位于元素周期表中第周期	矣。
12.	已知 A 元素原子核外最外层电子数比 B 元素原子核外最外层电子数少 2 个; B 元素	原
	子的核电荷数比 A 原子少 6 个, A 和 B 两元素原子的质子数之和为 22。	
	(1) A 元素的名称为,其原子的结构示意图为。	
	(2) B元素的符号为,其原子的电子式为。	
	(3) 由 A、B 两种元素组成的化合物的化学式为 。	

13.	有 A、B、C 三种元素,其中 A、C 两种元素的单质能形成化合物 AC。已知 B 元素和 C 元
	素原子核外电子层数相同,且最外层电子数之和为 10 , A^{2+} 和 B 元素原子具有相同的电
	子层数。C 元素原子核外最外层电子数为次外层电子数的 3 倍。
	(1) 写出 A、B 和 C 三种元素的名称: A,B,C。
	(2) B元素位于第周期,该周期元素的最高价氧化物对应水化物中碱性最强的
	物质的化学式为。
	(3) A ²⁺ 的结构示意图为。
	(4) 化合物 AC 中存在的化学键为键, AC 的电子式为。
	(5) 化合物 BC ₂ 的结构式为。
	(6) 这三种元素原子半径的大小关系是。
14.	A、B、C、D是同一周期的四种元素。A、B、C的原子序数依次相差为1。A元素的单质的
	化学性质活泼,A元素的原子在本周期中原子半径最大。B元素的氧化物2g恰好与
	100 mL 0.5 mol/L 硫酸完全反应。B 元素的单质与 D 元素的单质反应生成化合物 BD ₂ 。
	(1) A 元素原子的结构示意图为。
	(2) C元素原子的电子式为。
	(3) BD ₂ 的化学式为。
	(4) A 元素的最高价氧化物的水化物与 D 的氢化物的水溶液反应的离子方程式
	为。
	(5) B元素的单质在原子序数为 8 的元素的单质中燃烧,所得化合物属于化合
	物,用电子式表示该化合物的形成过程:。
15.	已知 A 元素与卤族元素 B 可组成 A 元素的最高价化合物,该化合物中 B 元素的质量分
	数为 92.2%;在 A 元素的最高价氧化物中,氧元素的质量分数为 72.7%。A 元素与 B 元
	素组成的化合物为无色透明液体,沸点 77℃,该化合物气态时对空气的相对密度为 5.31
	(相同条件下测定)。
	(1) 写出 A 元素的名称,并指出其在元素周期表的位置。
	(2) 写出 A 元素与 B 元素组成的化合物的分子式、A 元素最高价氧化物的分子式。指
	出这两种化合物分别含有的化学键类型。
	(3) 列举两种 A 元素与 B 元素组成的化合物的用途。

说 明

本书根据教育部颁布的《普通高中化学课程标准(2017年版 2020年修订)》和高中化学教科书编写,经上海市中小学教材审查委员会审查准予使用。

编写过程中,上海市中小学(幼儿园)课程改革委员会专家工作委员会、上海市教育委员会教学研究室、上海市课程方案教育教学研究基地、上海市心理教育教学研究基地、上海市基础教育教材建设研究基地、上海市化学教育教学研究基地(上海高校"立德树人"人文社会科学重点研究基地)及基地所在单位复旦大学给予了大力支持。在此表示感谢!

欢迎广大师生来电来函指出书中的差错和不足,提出宝贵意见。出版社电话: 021 - 64848025。

声明 按照《中华人民共和国著作权法》第二十五条有关规定,我们已尽量寻找著作权人支付报酬。著作权人如有关于支付报酬事宜可及时与出版社联系。

经上海市中小学教材审查委员会审查 准予使用 准用号 II-GB-2021026

定价: 5.60元