EE5327: Optimization

Harsh Raj - MA17BTECH11003 Aravind Reddy K V - MA17BTECH11010

Mathematics and Computing, IIT-Hyderabad

Question

Question

Find the **Dual** of the following linear programming problem, and compare the computational efficiencies of solving the primal and dual using **Simplex** method:

Maximize: $3x_1 + 5x_2$ Subject to

$$6x_1 + 6x_2 \leqslant 55$$

$$8x_1 + 2x_2 \leq 30$$

$$5x_1 - 3x_2 \leq 18$$

$$x_2 \le 28$$

$$x_1 \geqslant 0, x_2 \geqslant 0$$

1

Dual form of LPP

Dual Form of an LPP

The Dual for LPP is:

Primal:

Minimize:
$$f(y) = \sum_{i=1}^{n} b_i y_i$$

subject to
$$\sum_{i=1}^{n} a_{ij} y_i \geqslant c_j$$

$$y_i \geqslant 0$$

Dual:

Maximize:
$$f(\mathbf{x}) = \sum_{j=1}^{n} c_j x_j$$

subject to
$$\sum_{j=1}^{n} a_{ij} x_i \leqslant b_i$$

$$x_i \geqslant 0$$

The duality gap in LPP is 0, i.e., the optimal values of objective of the primal and the dual are equal.

Dual Form of given LPP

Primal

Maximize:
$$3x_1 + 5x_2$$

Subject to:
$$6x_1+6x_2 \leqslant 55$$
$$8x_1+2x_2 \leqslant 30$$
$$5x_1-3x_2 \leqslant 18$$
$$x_2 \leqslant 28$$
$$x_1 \geqslant 0, x_2 \geqslant 0$$

Dual:

Minimize:
$$55y_1 + 30y_2 + 18y_3 + 28y_4$$

Subject to:
$$6y_1 + 8y_2 + 5y_3 \ge 3$$

 $6y_1 + 2y_2 - 3y_3 + y_4 \ge 5$
 $y_1 \ge 0, y_2 \ge 0, y_3 \ge 0, y_4 \ge 0$

Comparing Computational Efficiency

- (i) See that
- . No. of variables in Primal = No. of constraints in Dual
- . No. of constraints in Dual = No. of variables in Primal
- (ii) Computational Difficulty in Simplex Method depends on number of Row Operations performed.

No. of row operations is mainly associated with number of constraints rather than number of variables.

. \implies The dual problem above has lesser number of constraints than the primal, hence is computationally efficient when using Simplex Method.

Solving Primal using Simplex

Maximize: $3x_1+5x_2$

Subject to

$$6x_1 + 6x_2 \leq 55$$

$$8x_1 + 2x_2 \leq 30$$

$$5x_1 - 3x_2 \leq 18$$

$$x_2 \leqslant 28$$

$$x_1, x_2 \ge 0$$

Maximize
$$3x_1 + 5x_2 + 0s_1 + 0s_2 + 0s_3 + 0s_4$$

We get rid of inequality signs by introducing slack variables and artificial variables(if neccessary). So, the constraints become

$$6x_1 + 6x_2 + s_1 = 55$$

$$8x_2 + 2x_2 + s_2 = 30$$

$$5x_1 - 3x_2 + s_3 = 18$$

$$x_2 + s_4 = 28$$

$$x_1, x_2, s_1, s_2, s_3, s_4 \geqslant 0$$

Iteration-1		C_j	3	5	0	0	0	0	
В	C_B	X_B	<i>x</i> ₁	x ₂	s_1	s_2	S ₃	S_4	$\frac{\textit{MinRatio}}{\frac{X_B}{x_2}}$
s_1	0	55	6	(6)	1	0	0	0	$\frac{55}{6} = 9.1667 \longrightarrow$
S_2	0	30	8	2	0	1	0	0	$\frac{30}{2} = 15$
S_3	0	18	5	-3	0	0	1	0	
S_4	0	28	0	1	0	0	0	1	$\frac{28}{1} = 28$
z = 0		z_{j}	0	0	0	0	0	0	
		$Z_j - C_j$	-3	-5 ↑	0	0	0	0	

Pivot Element = 6

Entering = x_2 , Departing = s_1

By performing below row operations one by one, we get next table.

$$R_1 = \frac{R_1}{6}$$

$$R_2 = R_2 - 2R_1$$

$$R_3 = R_3 + 3R_1$$

$$R_4 = R_4 - R_1$$

7

Iteration-2		c_j	3	5	0	0	0	0	
В	C_B	X_B	x_1	x ₂	<i>S</i> ₁	S_2	S ₃	S_4	MinRatio
<i>x</i> ₂	5	<u>55</u> 6	1	1	$\frac{1}{6}$	0	0	0	
s_2	0	$\frac{35}{3}$	6	0	- 1/3	1	0	0	
S_3	0	$\frac{91}{2}$	8	0	$\frac{1}{2}$	0	1	0	
S_4	0	113 6	-1	0	- 1/6	0	0	1	
$z = \frac{275}{6}$		z_{j}	5	5	$\frac{5}{6}$	0	0	0	
		$Z_j - C_j$	2	0	5 6	0	0	0	

Since all $Z_j - C_j \geqslant 0$, we have reached the optimal solution.

$$x_1=0, x_2=\frac{55}{6}$$
, Optimized cost $=\frac{275}{6}$

Total number of Row Operations used to solve Primal = 4

Solving Dual using Simplex

Minimize:
$$55x_1 + 30x_2 + 18x_3 + 28x_4$$

Subject to

$$6x_1 + 8x_2 + 5x_3 \ge 3$$
$$6x_1 + 2x_2 - 3x_3 + x_4 \ge 5$$
$$x_1, x_2, x_3, x_4 \ge 0$$

Maximize:
$$-55x_1 - 30x_2 - 18x_3 - 28x_4 + 0s_1 + 0s_2 - Ma_1 - Ma_2$$

We get rid of inequality signs by introducing slack variables and artificial variables(if neccessary). So, the constraints become

$$6x_1 + 8x_2 + 5x_3 - s_1 + a_1 = 3$$

$$6x_1 + 2x_2 - 3x_3 + x_4 - s_2 + a_2 = 5$$

$$x_1, x_2, x_3, x_4, s_1, s_2, a_1, a_2 \ge 0$$

Iteration-1		C_{j}	-55	-30	-18	-28	0	0	-M	-M	
В	$c_{\scriptscriptstyle B}$	X_B	<i>x</i> ₁	x ₂	<i>x</i> ₃	x ₄	s_1	<i>s</i> ₂	A_1	A_2	$\frac{X_B}{x_1}$
A_1	-M	3	(6)	8	5	0	-1	0	1	0	$\frac{3}{6} = 0.5 \rightarrow$
A_2	-M	5	6	2	-3	1	0	-1	0	1	$\frac{5}{6} = 0.8333$
z = -8M		Z_j	-12M	-10M	-2.M	-M	M	M	-M	-M	
		$Z_j - C_j$	-12M+55 ↑	-10M+30	-2M+18	-M+28	M	M	0	0	

Pivot Element = 6

Entering = x_1 , Departing = a_1

By performing below row operations one by one, we get next table.

$$R_1 = \frac{R_1}{6}$$

$$R_2 = R_2 - 6R_1$$

Iteration-2		C_{j}	-55	-30	-18	-28	0	0	-M	
В	$c_{\scriptscriptstyle B}$	X_B	<i>x</i> ₁	x ₂	<i>x</i> ₃	x ₄	s_1	<i>s</i> ₂	A2	$\frac{X_B}{S_1}$
x ₁	-55	$\frac{1}{2}$	1	$\frac{4}{3}$	5 6	0	- 1/6	0	0	
A_2	-M	2	0	-6	-8	1	(1)	-1	1	$\frac{2}{1} = 2 \rightarrow$
$z = -2M - \frac{55}{2}$		z_{j}	-55	$6M - \frac{220}{3}$	$8M - \frac{275}{6}$	-M	$-M + \frac{55}{6}$	М	-M	
		Z_j - C_j	0	$6M - \frac{130}{3}$	$8M - \frac{167}{6}$	-M+28	-M+ ⁵⁵ / ₆ ↑	М	0	

Pivot Element = 1

Entering = s_1 , Departing = a_2

By performing below row operations, we get the next table.

$$R_1 = R_1 + \frac{R_2}{6}$$

Iteration-3		C_j	-55	-30	-18	-28	0	0	
В	C_B	X_B	x ₁	x ₂	x ₃	x ₄	s_1	s_2	MinRatio
x_1	-55	5 6	1	$\frac{1}{3}$	- 1/2	$\frac{1}{6}$	0	- 1/6	
S_1	0	2	0	-6	-8	1	1	-1	
$z=-\frac{275}{6}$		z_{j}	-55	- 55 3	<u>55</u>	- 55	0	<u>55</u>	
		$Z_j - C_j$	0	35	91 2	113 6	0	<u>55</u> 6	

Since all $Z_j - C_j \ge 0$, we have reached the optimal solution.

$$x_1 = \frac{5}{6}, x_2 = 0, x_3 = 0, x_4 = 0$$
, Optimized cost $= \frac{275}{6}$

Total number of Row Operations used to solve Dual = 3

Conclusion: See that since Dual has less number of constraints, it required less number of Row Operations to solve.