Paquib Mehmood Name Reg No Chen 19111050 Season BS-CHEN-3 Mid Exam Theomoeynamic I Q1 Define the terms. System A System is defined as "Any thing under Consideration is Called System. Sustounding 9+ is define as everything external to the System and Samounding is called Surrounding Surroundin 9 Egstern } Boundary

Adlabotic Process

9+ is a thermodynamic process.

It is the Process in which no heat transfer occours

across the System boundary is known as adiabatic Process.

Isolated System

The System in which no mass or energy cross the boundary is called isolated System. Ex

Example

A thermoflask and water cooler is the example of isolated System 9+ is a physical avuantity whose value is proportional to the Size of the System it describe or to the arrantity of matter in the System.

Example

Entropy, Entholpy etc.

O2 Solve H

Griven Dada
P= 7 bar

h = 2600 kJ/kg

to find

no = ? = Dayness fraction V= ? = Specific Volume u=?= Specific internal Energy

Solution

For olyness fraction: h = K+N H9

$$2600 = 697.1 + M(2064.9)$$

 $2600 - 697.1 = K(2064.9)$
 $1902.9 = K.2064.9$
 $X = 1902.9$
 2064.9
 $X = 0.9211$

For Specific volume

$$J = \Lambda t + K + \Lambda t d$$

$$\hat{V} = 0.001108 + 0.921(0.273 - 0.001108)$$

 $\hat{V} = 0.001108 + 0.25041$

For Specific Internal Energy

Q3 Griven

$$P_1 = 2c bax |100 kpa = 2000 kpa$$

$$1 bax = 2 Mpa$$

V= =0-0342 m3/kg 0.0342 $\omega^2 = \int_{\mathbb{R}^2} \int_{\mathbb{R}^2} dv = -\int_{\mathbb{R}^2} \int_{\mathbb{R}^2} \int_{\mathbb{R}^$ P1'5 = P11'5 => P = Piv, = 7 MPa / OMM / Kg) 1.5 P = 0.0632 $\sqrt{1.5}$ mpa 0.02412 0.0632 0.0632 $=\frac{0.0632}{0.5}$ $\frac{1}{0.0342}$ $\frac{1}{0.15}$ wi = 283.8 kJ/kg

v →?

At State 1 P1 = 2MPa, T, = 213.6C U1 =? U1 = (KJ/Kg) T(°) 26003

U, 213.6 26283 225 a, = 2602 96 kJ/kg V2 = 0.0342 /kg At State 2 V2 (m/kg) U2 (kJ/kg) 0.0328 3045-8 0.0342 li, 0.0356 3144.5 (i) = 3095.15 kJ/kg $\Delta \hat{U} = \hat{u}_1 - \hat{u}_1$ = (3095.15-2602-97) EJ DG = 492.18 KJ/kg sú = auti a = Dû +û av - (492.18-283.8) & J/kg a = 208.38 bJ/kg