Econ821 Problem Set 1 Result Summaries

Xuan Lin

The data analyses for hedonic models were conducted in R. Codes are attached at the end of the file in PDF format. The original R file is uploaded on github.

Question 1

Report means and variances of attributes for each city:

									violent_cri		
			year_built_	sq_footage_	bathrooms_	bedrooms_	total_rooms	stories_mea	me_rate_	property_crime_	year_of_sal
city	county	price_mean	mean	mean	mean	mean	_mean	n	mean	rate_mean	e_mean
LA	37	311463.9263	1952.01876	1602.58218	1.98569178	3.09157726	7.93244377	1.13457183	618.80952	1976.515392	1999.91664
LA	59	296527.6326	1981.45209	1541.96509	2.15192731	2.58722467	6.10440529	1.59174009	314.4707	1414.156806	1999.93998
LA	65	181315.3171	1973.89449	1623.62299	2.20300657	3.12359778	6.13233957	1.19949469	616.38208	2436.70124	1999.82567
LA	71	188939.8284	1979.33519	1679.6764	2.14879856	3.23983488	6.5127451	1.36482972	567.66939	2216.85848	2000.39754
LA	111	332179.352	1978.34596	1825.54504	2.3424373	3.34221863	6.64299928	1.48824648	335.66362	1241.452924	2000.05462
SF	1	398873.1171	1962.17447	1672.36158	2.0314922	3.17236625	6.50623577	1.43417452	441.49934	1971.128292	2000.34516
SF	13	374582.3608	1976.76117	1833.1482	2.24779821	3.30335691	8.01458746	1.43224894	415.78327	1898.750281	2000.55541
SF	75	501817.0863	1945.13257	1497.93269	1.73122589	2.61824094	5.86750359	1.34167738	586.16285	2141.653726	1999.94978
SF	81	503715.0083	1967.16667	1587.40496	2.04414991	2.73966838	5.93399993	1.35557314	349.07914	1713.204285	2000.26109
SF	85	464683.1897	1971.45669	1662.78732	2.16185856	3.21450405	6.84787873	1.40198467	322.55811	1358.682926	2000.23945
			year_built_v	sq_footage_	bathrooms_	bedrooms_v	total_rooms		violent_cri me_rate_v	property_crime_	year_of_sal
city	county	price_var	ar	var	var	ar	_var	stories_var	ar	rate_var	e_var
LA	37	33942721831	240.439066	388140.973	0.63658388	0.69428087	4.26628219	0.11935241	77212.929	363360.2422	17.6570308
LA	59	30953601267	61.1363763	582421.099	0.45335844	0.82331954	2.32547899	0.26958701	18926.972	206208.1516	15.4169279
LA							2.020 .7 000	0.20000702			
	65	11065383445	212.658027	329746.33	0.4548194	0.63225427	1.86934169	0.16273662	77673.747	681390.2369	17.903409
LA	65 71			329746.33 389720.428				0.16273662	77673.747 61450.635	681390.2369 368819.3119	
	71		329.251437		0.38646142		1.86934169 2.65746045	0.16273662 0.23528148	61450.635		17.3121685
LA	71	12133249510	329.251437 261.878758	389720.428	0.38646142 0.51802005	0.70516969	1.86934169 2.65746045 2.66677468	0.16273662 0.23528148 0.26150082	61450.635 23602.373	368819.3119 112945.0221	17.3121685 17.0726339
LA LA	71 111 1	12133249510 29798698555	329.251437 261.878758 697.85835	389720.428 563030.2	0.38646142 0.51802005 0.57241768	0.70516969 0.8037673 0.7728215	1.86934169 2.65746045 2.66677468 2.46933555	0.16273662 0.23528148 0.26150082 0.26079434	61450.635 23602.373 39922.396	368819.3119 112945.0221	17.3121685 17.0726339 17.7719081
LA LA SF	71 111 1	12133249510 29798698555 41544980702 46561031579	329.251437 261.878758 697.85835 379.707879	389720.428 563030.2 437987.58	0.38646142 0.51802005 0.57241768 0.50037351	0.70516969 0.8037673 0.7728215	1.86934169 2.65746045 2.66677468 2.46933555	0.16273662 0.23528148 0.26150082 0.26079434 0.24541211	61450.635 23602.373 39922.396	368819.3119 112945.0221 371046.5242	17.3121685 17.0726339 17.7719081 17.1362193
LA LA SF SF	71 111 1 1	12133249510 29798698555 41544980702 46561031579 65620319073	329.251437 261.878758 697.85835 379.707879 966.905052	389720.428 563030.2 437987.58 563350.088	0.38646142 0.51802005 0.57241768 0.50037351 0.65790174	0.70516969 0.8037673 0.7728215 0.83612014	1.86934169 2.65746045 2.66677468 2.46933555 4.26637152	0.16273662 0.23528148 0.26150082 0.26079434 0.24541211 0.31268353	61450.635 23602.373 39922.396 77245.919	368819.3119 112945.0221 371046.5242 359813.9069	17.903409 17.3121685 17.0726339 17.7719081 17.1362193 18.3596019 17.8774106

points estimates and Bootstrapping results

```
boot(data = la_data, statistic = bs, R = 500, formula = model)
Bootstrap Statistics :
                                                   bias
                                                                     std. error
                   original
           1.989657e+06 1.318247e+05 1.498994e+06 Constant
           1.864903e+04
                                      3.698016e+01 4.833379e+02 Bathroom
                                      1.235183e+00 3.798288e+02 Bedroom
2.001854e+01 5.588499e+02 Stories
         -2.493170e+04
 t4*
         -8.226933e+02
           3.719187e+00
                                      -9.710739e-02 1.439251e+00
 +6*
           4.648937e-04
                                       1.670576e-05 2.359402e-04 PCR^2
          -8.931034e+02
                                       -1.342622e+02 1.528999e+03
                                                                                           Year_built
           -2.926118e-02 3.421392e-02 3.899573e-01 Year_built^2
1.482554e+02 -1.494687e-02 2.396087e+00 Square_footage
 +8+
         -2.926118e-02
t10* -4.293439e-05 -1.033138e-05 5.547963e-04 Square_footage^2
t11* -3.354241e+03 -5.874402e+00 7.265847e+02 Total Room
 t12* 5.521781e+02 2.813446e-01 4.469041e+01 Total Room^2 t13* -2.022722e+02 -7.585901e-02 3.033704e+00 VCR
t14*
t15*
           7.382382e-02
                                      6.909663e-05 1.648867e-03 VCR^2
           2.566848e+04 -3.930548e+01 9.007504e+02 year/county dummies
           7.701509e+03
                                       3.342162e+01 1.020723e+03
 t17* -6.539264e+03 -2.279894e+00 9.695666e+02
 t18* -1.364771e+04
                                       2.527797e+01 8.746022e+02
 t19* -1.464752e+04 2.306539e+01 8.820465e+02 t20* -5.470540e+03 -1.388764e+01 7.952660e+02
 t21*
          1.079181e+04 -1.459507e+01 7.770563e+02
2.463901e+04 1.320286e+01 7.722553e+02
 t22*
          4.889535e+04 -1.641579e+01 8.065821e+02
8.847804e+04 -5.150423e+01 8.735586e+02
 t23*
 t24*
 t25*
           1.498607e+05 -2.011449e+00 9.719851e+02
 t26*
          2.016449e+05
                                      5.008323e+01 1.015590e+03
          2.211715e+05 -3.594313e+01 1.024624e+03
 t28* 2.062445e+05
                                       1.253221e+01 1.304568e+03
           7.796900e+04
                                       2.817227e+01 1.186984e+03
 t30* -1.239729e+04 -6.351995e+01 1.166373e+03
t31* -1.064795e+05 -1.513362e+01 8.184827e+02
t32* -1.111114e+05 -1.852039e+01 6.928437e+02 t33* -8.710331e+03 -7.827093e+01 7.906988e+02
 boot(data = sf_data, statistic = bs, R = 500, formula = model_sf)
 Bootstrap Statistics :
                                               bias
                  original
                                                               std. error
        original bias std. error 2.107292e+07 2.440171e+03 1.597939e+06 Constant 2.168095e+04 2.386806e+01 6.933623e+02 Bathroom -1.93357e+04 1.014811e+01 4.273925e+02 Bedroom -2.840383e+04 3.65967e+01 5.910538e+02 Stories 8.203774e+01 3.692447e+02 1.886203e+00 PCR 9.319099e+03 -1.154506e+06 2.886577e+04 PCR<sup>2</sup>
 t5*
t6*
t6* 9.319009e-03 -1.154506e-06 2.886577e-04 PCR'2

2.386429e-04 -2.595161e-00 1.630007e-03 Year_built

t8* -6.270300e+00 5.527835e-04 4.156644e-01 Year_built'2

t9* 2.347345e+02 -8.857729e-02 3.253872e-00 Square_footage

t10* -1.066487e-03 1.494209e-05 7.221151e-04 Square_footage'2

t11* 3.072683e+04 -1.927611e+01 1.138151e+03 Total Room

t2* -1.99591e-03 2.277221e-01 7.788796e-01 Total Room'2

t13* -2.251711e+02 -2.699683e-01 4.004284e+00 VCR

t14* 1.116099e-01 1.321667e-04 2.12346e-03 VCR'2

t15* -4.604047e-04 1.662539e+01 1.048760e-03 year/county dummies

t16* -1.740659e+04 2.982994e+01 1.131023e+03

t1* -3.27043.auAu -1.4329462e.01 1.098673e.03
 t17* -3.250213e+04
t18* -4.395174e+04
                                  -1.432047e+01 1.098623e+03
-1.354667e+01 1.058030e+03
 t19* -2.290150e+04 -6.975050e+00 1.032970e+03 
t20* -6.639792e+03 -1.430323e+01 1.004120e+03 
t21* 6.569116e+04 8.390140e+01 1.089710e+03 
t22* 8.078236e+04 -4.649580e+01 1.166894e+03
          9.007342e+04 -7.612461e+01 1.141396e+03
1.083045e+05 -6.126087e+00 1.063366e+03
 +25*
           1.661588e+05 -1.384953e+01 1.171738e+03
           2.555370e+05 -1.199936e+01 1.172382e+03
2.605482e+05 -9.132196e+01 1.304497e+03
          2.405591e+05 -8.501107e+01 1.565719e+03 1.118781e+05 -9.948590e+01 1.795105e+03 -5.835151e+04 -2.622206e+01 6.157978e+02
 t28*
          1.544596e+05 -7.072409e+01 1.762366e+03
9.209555e+04 -4.436857e+01 1.103500e+03
3.594948e+04 -3.365045e+01 5.996326e+02
 t31*
```

Point estimation by using the actual data:

The first stage: Coefficients of VCR and VCR SQUARE

- LA: -2.022722e+02; 7.382382e-02
- SF: -2.251711e+02 1.116099e-01

The Second Stage:

```
lm(formula = implicit_price ~ violent_crime_rate + buyers_data.3 +
buyers_data.4 + buyers_data.5 + income + LA_indicator, data = buyers_data)
Residuals:
                      Median
                                    3Q Max 3.734 175.636
-65.336 -4.497
Coefficients:
                            Estimate Std. Error
                                                           t value Pr(>|t|)
5834.460 < 2e-16
(Intercept)
                                           3.485e-02
violent_crime_rate
                           1.690e-01
                                           4.265e-05
buyers_data.3
                          -3.366e-01
                                          5.840e-02
3.550e-02
buyers_data.4
                           -7.169e-01
                                                               5.123 3.01e-07
buyers_data.5
                            1.507e-01
                                           2.943e-02
LA_indicator
                           -9.840e+00
                                          2.366e-02
                                                          -415.932
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 8.639 on 659541 degrees of freedom
Multiple R-squared: 0.9617, Adjusted R-squared: 0.9617
F-statistic: 2.761e+06 on 6 and 659541 DF, p-value: < 2.2e-16
  #########################standard eroors by taking sd of bootstrapped parameters:0.003297735
  secondstage_boot <-read.csv("second_stage_500.csv
sd(secondstage_boot$violent_crime_rate)
[1] 0.003297735
```

standard errors by taking sd of bootstrapped parameters

```
> secondstage_boot <-read.csv("second_stage_500.csv")
> sd(secondstage_boot$violent_crime_rate)
[1] 0.003297735
> |
```

Analysis: The first stage results tell that housing price is negatively correlated with crime rate for both cities. (sensible) The second stage of Rosen illustrates that people's MWTP for violent(negative) is positively correlated with the violent level. People care less about the crime behaviours in the neighborhood when crime level is higher. They ask for less compensation in terms of housing price (that sounds weird to me) Possible explanation: people who cares less about safety lives in the higher-crime communities. Also, People with higher income care more about the crime. But the difference is tiny.

Question 4

Hedonic price gradients, non-parametric measurement:

MWTP estimates based on Non-parametric gradient

```
> summary(MWTP_estimation)
lm(formula = MWTP ~ income + Asian_pi + black + hispanic, data = la_buyer_data)
Residuals:
              1Q Median
-117.12 -46.35
                  -22.99
                            22.67
Coefficients:
               Estimate Std. Error t value Pr(>|t|)
                                                 <2e-16 ***
(Intercept) -2.953e+02 4.684e-01 -630.425
                                                 <2e-16 ***
income
             -3.363e-05
                          2.438e-06
                                      -13.793
                                      -0.855
36.753
Asian_pi
             -7.623e-01 8.912e-01
                                                 0.392
                                                 <2e-16 ***
              5.082e+01 1.383e+00
black
hispanic
              2.148e+01 7.029e-01
                                       30.552
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 68.67 on 55493 degrees of freedom Multiple R-squared: 0.04225, Adjusted R-squared: 0.04218
F-statistic: 612 on 4 and 55493 DF, p-value: < 2.2e-16
```

Point estimation by using the actual data:

```
theta.start = c(-200,0.169, 0,0,0,0)
  names(theta.start) = c("mu1", "mu2", "mu3", "mu4", "mu5", "mu6") theta.mle = optim(par=theta.start, fn=mle, x=buyers_data, method
  theta.mle
$par
         intercept
                          violent crime
                    4.428857e-01
                                        9.380051e+05
                                                                               2.879410e-01
$value
[1] -18826365
$counts
function gradient
145 29
$convergence
[1] 0
$message
NULL
```

Compared to estimation result in Q3, the coefficient of crime rate is higher in the MLE estimation. Coefficient of income seems not that sensible to me.

a few thoughts about the MLE method:

- MLE there is very sensitive to the starting point
- the likelihood may turn to be zero sometimes. We have to drop some observations to make the MLE method feasible. The number of drop out will influence the validity and reliability of the result.

Bootstrapping

> violent_crime
[1] 1.782217 1.815562 1.827490 1.794456 1.880261 1.925557 1.889934 1.774643 1.858079 1.774413 1.833943 1.792788 1.801808 1.806541 1.824256 1.805515
$\begin{bmatrix} 1.7 \end{bmatrix}$ 1.796021 1.923405 1.838094 1.856386 1.776214 1.804366 1.871373 1.827608 1.828061 1.812526 1.795154 1.851288 1.798909 1.821304 1.796239 1.862773
[33] 1.833526 1.858454 1.899362 1.842968 1.809822 1.841034 1.790144 1.828057 1.814842 1.901679 1.831361 1.844445 1.853300 1.836709 1.818653 1.832467
[49] 1.821470 1.815543 1.777509 1.798629 1.669396 1.798543 1.826587 1.829936 1.723054 1.824571 1.830146 1.852022 1.831964 1.849918 1.789620 1.750084
[65] 1.836406 1.875767 1.835583 1.833205 1.805031 1.826747 1.827572 1.875013 1.786784 1.835285 1.863964 1.824027 1.850505 1.833228 1.830584 1.814005
[81] 1.832528 1.844671 1.754401 1.742563 1.734933 1.857054 1.810795 1.733734 1.773632 1.847787 1.742937 1.801780 1.813951 1.955383 1.819451 1.823219
[97] 1.808826 1.828213 1.801898 1.822880 1.829228 1.868184 2.455006 1.805743 1.858498 1.798693 1.806809 1.844918 1.782432 1.847236 1.804924 1.829262
[113] 1.845973 1.843796 1.830253 1.779808 1.816417 1.823904 1.831860 1.860693 1.841052 1.852699 1.911741 1.823685 1.791700 1.795314 1.842719 1.857360
[129] 1.741861 1.773655 1.829539 1.875210 1.881200 1.807225 1.834390 1.835673 1.835521 1.858576 1.821006 1.939656 1.928155 1.808461 1.847885 1.838589
[145] 1.802460 1.756794 1.831751 1.841636 1.845289 1.865521 1.819513 1.811447 1.856956 1.844261 1.982415 1.884124 1.803105 1.830127 1.817734 1.815931
[161] 1.824232 1.757649 1.838201 1.827747 1.829993 1.776675 1.818443 1.812491 1.810877 1.893814 1.830844 1.798633 1.801474 1.755423 1.875788 1.807063
[177] 1.826129 1.835223 1.981046 1.851005 1.800713 1.857467 1.823567 1.822516 1.792560 1.797511 1.828752 1.811588 1.787637 1.856371 1.814268 1.842550
[193] 1.961541 1.819967 1.867458 1.771259 1.787259 1.831562 1.816855 1.881897 1.832008 1.806375 1.845611 1.814113 1.810295 1.864097 1.828835 1.776685
[209] 1.881765 1.827459 1.895581 1.811705 1.963601 1.807496 1.810979 1.831902 1.870396 1.805486 1.851507 1.864688 1.823412 1.825653 1.809318 1.857794
[225] 1.823519 1.877464 1.860671 1.795439 1.879195 1.821495 1.846106 1.799992 1.813219 1.802394 1.882108 1.782057 1.843765 2.177457 1.823419 1.842632
[241] 1.814171 1.798920 1.866874 1.805572 1.781266 1.811242 1.871169 1.829878 1.856727 1.891387 1.847272 1.837774 1.799051 1.834240 1.847345 1.771250
[257] 1.878384 1.832366 1.820039 1.852922 1.844577 1.778527 1.828818 1.822788 1.848795 1.770491 1.841588 1.857984 1.831653 1.884310 1.750739 1.866524
[273] 1.834363 1.850884 1.822605 1.480867 1.783974 1.787437 1.834372 1.847052 2.034499 1.842540 1.839407 1.851192 1.782973 1.814291 1.771079 1.797482
[289] 1.847628 1.800188 1.981723 1.850050 1.817048 1.782921 1.783625 1.781117 1.782047 1.838412 1.814003 1.845232 1.812335 1.876023 1.840056 1.836015
[305] 1.919997 1.811184 1.919188 1.827879 1.839042 1.982109 1.825886 1.851687 1.792556 1.751103 1.808232 1.813620 1.828643 1.818329 1.818164 1.821381
[321] 1.826291 1.827385 1.976472 1.807699 1.828256 1.745108 1.827543 1.814002 1.825401 1.811616 1.819756 1.853961 1.831233 1.787733 1.819050 1.811777
[337] 1.837244 1.828785 1.851768 1.776763 1.820340 1.857451 1.824107 1.826305 1.849786 1.846581 1.800854 1.830895 1.806507 1.813493 1.870385 1.838442
[353] 1.856770 1.804363 1.876558 1.858419 1.794771 1.971303 1.837848 1.850002 1.760206 1.869202 1.787074 1.811532 1.804852 1.870076 1.759275 1.816105
[369] 1.846268 1.797690 1.886622 1.810495 1.814965 1.838999 1.862691 1.802184 1.843593 1.802868 1.806763 1.864329 1.821768 1.798859 1.848888 1.785530
[385] 1.845353 1.787477 1.799120 1.858385 1.841436 1.797106 1.812691 1.834111 1.802344 1.842712 1.876698 1.778594 1.884942 1.963915 1.832281 1.835261
[401] 1.793340 1.820506 1.854267 1.850917 1.799769 1.825448 1.842333 1.788263 1.802643 1.780569 1.867966 1.784078 1.834533 1.820409 1.836481 1.775132
[417] 1.908003 1.844489 1.815312 2.023438 1.822324 1.851950 1.817398 1.801072 1.919310 1.797241 1.763500 1.768706 1.795012 1.780384 1.875702 1.795257
[433] 1.873304 1.785825 1.804800 1.830827 1.747224 1.843068 1.832453 1.864628 1.782407 1.805847 1.856219 1.843970 1.838836 1.815265 1.804331 1.881960
[449] 2.300400 1.833541 1.786054 1.778829 1.843361 1.788356 1.799483 1.843943 1.827247 1.840947 1.781895 1.894778 1.833538 1.769212 1.845419 1.826205
[465] 1.723023 1.847063 1.803830 1.831288 1.827754 1.804388 1.871295 1.855843 1.853210 1.901544 1.875129 1.862622 1.861755 1.851906 1.726842 1.845828
[481] 1.851554 1.846555 1.795624 1.818731 1.814058 1.803125 1.833952 1.773778 1.850740 1.831377 1.823737 1.816884 1.824068 2.005891 1.813043 1.851244
[497] 1.815051
> mean(violent_crime)
[1] 1.831635
s sd(violent_crime)
[1] 0.05983717
<u> </u>

three estimations were removed as outliers before the calculation of mean and standard deviation

boxplot for the coefficient of violent-crime-rate on the "second stage" MLE.

```
setwd("/Volumes/USB30FD/821 ps/hedonic")
library(dplyr)
library(purrr)
library(psych)
la data<- read.table("la data.txt", header = FALSE)</pre>
names(la data) <-</pre>
c("houseid", "price", "county", "year_built", "sq_footage", "bathrooms", "bedrooms", "total_rooms"
"year_of_sale")
la_sta <- la_data %>%
 group by(county) %>%
  summarise(price_mean=mean(price), year_built_mean=mean(year_built),
sq footage mean=mean(sq footage),
bathrooms_mean=mean(bathrooms), bedrooms_mean=mean(bedrooms),
total_rooms_mean=mean(total_rooms), stories_mean=mean(stories),
violent crime rate mean=mean(violent crime rate),
property_crime_rate_mean=mean(property_crime_rate),
year_of_sale_mean=mean(year_of_sale),
            price_var=var(price), year_built_var=var(year_built),
sq_footage_var=var(sq_footage),
bathrooms_var=var(bathrooms), bedrooms_var=var(bedrooms),
total rooms var=var(total rooms), stories var=var(stories),
violent_crime_rate_var=var(violent_crime_rate),
property_crime_rate_var=var(property_crime_rate),
year_of_sale_var=var(year_of_sale))
la_sta$city <- "LA"</pre>
sf data<- read.table("sf data.txt", header = FALSE)</pre>
names(sf data) <-
c("houseid", "price", "county", "year_built", "sq_footage", "bathrooms", "bedrooms", "total_rooms"
"year_of_sale")
sf_sta <-sf_data %>%
  subset(., sf data$county==1|13|75|81|85) %>%
 group_by(county) %>%
  summarise(price_mean=mean(price), year_built_mean=mean(year_built),
sq_footage_mean=mean(sq_footage),
bathrooms_mean=mean(bathrooms), bedrooms_mean=mean(bedrooms),
total_rooms_mean=mean(total_rooms), stories_mean=mean(stories),
violent_crime_rate_mean=mean(violent_crime_rate),
property_crime_rate_mean=mean(property_crime_rate),
year_of_sale_mean=mean(year_of_sale),
            price_var=var(price), year_built_var=var(year_built),
sq_footage_var=var(sq_footage),
bathrooms_var=var(bathrooms), bedrooms_var=var(bedrooms),
total_rooms_var=var(total_rooms), stories_var=var(stories),
violent_crime_rate_var=var(violent_crime_rate),
property_crime_rate_var=var(property_crime_rate),
year_of_sale_var=var(year_of_sale))
sf_sta$city <- "SF"
##combine two stats table
total_sta <- rbind(la_sta, sf_sta)</pre>
write.csv(total_sta, file="Q1_result.csv")
```

```
#Q2
rm(list=ls())
installation needed <- TRUE
loading needed <- TRUE
package_list <- c('foreign', 'xtable', 'plm', 'gmm',</pre>
'AER', 'stargazer', 'readstata13', 'boot')
if(installation_needed){install.packages(package_list, repos='http://
cran.us.r-project.org')}
if(loading_needed){lapply(package_list, require, character.only = TRUE)}
library(boot)
library("dummies")
library(dplyr)
library(purrr)
library(psych)
#################################
# data & model LA
la_data<- read.table("la_data.txt", header = FALSE)</pre>
names(la_data) <-</pre>
c("houseid", "price", "county", "year built", "sq footage", "bathrooms", "bedrooms", "total rooms"
"year of sale")
la data <- cbind(la data, dummy(la data$county, sep = "."))</pre>
la_data <- cbind(la_data, dummy(la_data$year_of_sale, sep = "."))</pre>
model_la <- price ~ bathrooms + bedrooms + stories + property_crime_rate +</pre>
I(property_crime_rate^2) + year_built + I(year_built^2) + sq_footage +
I(sq_footage^2) + total_rooms + I(total_rooms^2) + violent_crime_rate +
I(violent_crime_rate^2) + bathrooms + la_data.1993 + la_data.1994 +
la_data.1995 + la_data.1996 + la_data.1997 + la_data.1998 + la_data.2000 +
la_data.2001 + la_data.2002 + la_data.2003 + la_data.2004 + la_data.2005 +
la_data.2006 + la_data.2007 + la_data.2008 + la_data.59 + la_data.65 +
la data.71 + la data.111
# function to obtain regression weights
bs <- function(formula, data, indices) {</pre>
  d <- data[indices,] # allows boot to select sample</pre>
  fit <- lm(formula, data=d)</pre>
  return(coef(fit))
# bootstrapping with 500 replications
results <- boot(data=la_data, statistic=bs,
                R=500, formula=model_la)
results
result bootcef la <- cbind(results$t[,13],results$t[,14])
write.csv(result_bootcef_la, file="result_bootcef_la.csv")
capture.output(results, file = "results boots la.txt", append = TRUE)
###################
# data & model SF
sf data<- read.table("sf data.txt", header = FALSE)</pre>
names(sf data) <-
c("houseid", "price", "county", "year_built", "sq_footage", "bathrooms", "bedrooms", "total_rooms"
"year of sale")
select(sf_data, sf_data$county==1|13|75|81|85)
```

```
sf data <- cbind(sf data, dummy(sf data$county, sep = "."))</pre>
sf_data <- cbind(sf_data, dummy(sf_data$year_of_sale, sep = "."))</pre>
model sf <- price ~ bathrooms + bedrooms + stories + property crime rate +
I(property_crime_rate^2) + year_built + I(year_built^2) + sq_footage +
I(sq_footage^2) + total_rooms + I(total_rooms^2) + violent_crime_rate +
I(violent crime rate^2) + bathrooms + sf data.1993 + sf data.1994 +
sf data.1995 + sf data.1996 + sf data.1997 + sf data.1998 + sf data.2000 +
sf_data.2001 + sf_data.2002 + sf_data.2003 + sf_data.2004 + sf_data.2005 +
sf_data.2006 + sf_data.2007 + sf_data.2008 + sf_data.13 + sf_data.75 +
sf_data.81 + sf_data.85
# bootstrapping with 500 replications
results_boot_sf <- boot(data=sf_data, statistic=bs,
               R=500, formula=model sf)
results boot sf
result bootcef sf <- cbind(results boot sf$t[,13],results$t[,14])
write.csv(result_bootcef_sf, file="result_bootcef_sf.csv")
capture.output(results boot sf, file = "results boots sf.txt", append =
TRUE)
rm(list=ls())
############## data read-in
##buvers
buyers_data<- read.table("buyer_data_sf_la.txt", header = FALSE)</pre>
names(buyers data) <-
c("buyerid", "price", "violent crime rate", "property crime rate", "race",
"income", "LA indicator")
## boostrapped hedonic price gradients from Q2
la_gradients <- read.csv("result_bootcef_la.csv")</pre>
sf_gradients <- read.csv("result_bootcef_sf.csv")</pre>
gradients la sf <- merge(la gradients,sf gradients, by="boot round")</pre>
rm(la_gradients,sf_gradients)
######################assign implicit price of crime for each individual
*500
for( i in 1:500){
 buyers data[paste("implict price", i, sep= "")] <-</pre>
(buvers data$LA indicator)*gradients la sf[i,2]+ (1-
buyers_data$LA_indicator)*gradients_la_sf[i,4] + 2*gradients_la_sf[i,
3]*(buyers_data$violent_crime_rate)*(buyers_data$LA_indicator) +
2*gradients_la_sf[i,5]*(buyers_data$violent_crime_rate)*(1-
buyers_data$LA_indicator)
######################run second stage regression $ save coefficients *500
##create dummies for race
buyers_data <- cbind(buyers_data, dummy(buyers_data$race, sep = "."))</pre>
##regression
coef1 < -c()
for (j in 1:500){
  test_data <- cbind(buyers_data[, 1:7], buyers_data[, 508:511],
buyers_data[, 7+j])
```

```
colnames(test_data)[12] <- "implicit_price"</pre>
  model <- lm(implicit_price ~ violent_crime_rate + buyers_data.3 +</pre>
buyers_data.4 + buyers_data.5 + income + LA_indicator, data=test_data)
  newcoef1 <- model$coef</pre>
  coef1 <- rbind(coef1,newcoef1)</pre>
}
print(coef1)
#write.csv(coef1, file="second_stage_500.csv")
###################the actural point estimation
##first stage of LA, result: -2.022722e+02; 7.382382e-02
la_data<- read.table("la_data.txt", header = FALSE)</pre>
names(la_data) <-</pre>
c("houseid", "price", "county", "year_built", "sq_footage", "bathrooms", "bedrooms", "total_rooms",
"year_of_sale")
la_data <- cbind(la_data, dummy(la_data$county, sep = "."))</pre>
la_data <- cbind(la_data, dummy(la_data$year_of_sale, sep = "."))</pre>
model_la_actuall <- lm(price ~ bathrooms + bedrooms + stories +</pre>
property_crime_rate + I(property_crime_rate^2) + year_built +
I(year_built^2) + sq_footage + I(sq_footage^2) + total_rooms +
I(total_rooms^2) + violent_crime_rate + I(violent_crime_rate^2) + bathrooms
+ la_data.1993 + la_data.1994 + la_data.1995 + la_data.1996 + la_data.1997
+ la_data.1998 + la_data.2000 + la_data.2001 + la_data.2002 + la_data.2003
+ la_data.2004 + la_data.2005 + la_data.2006 + la_data.2007 + la_data.2008
+ la_data.59 + la_data.65 + la_data.71 + la_data.111, data=la_data)
summary(model_la_actuall)
##first stage of SF, result: -2.251711e+02 1.116099e-01
sf data<- read.table("sf data.txt", header = FALSE)</pre>
names(sf_data) <-</pre>
c("houseid", "price", "county", "year_built", "sq_footage", "bathrooms", "bedrooms", "total_rooms",
"year_of_sale")
select(sf_data, sf_data$county==1|13|75|81|85)
sf_data <- cbind(sf_data, dummy(sf_data$county, sep = "."))</pre>
sf_data <- cbind(sf_data, dummy(sf_data$year_of_sale, sep = "."))</pre>
model_sf_actuall <- lm(price ~ bathrooms + bedrooms + stories +</pre>
property_crime_rate + I(property_crime_rate^2) + year_built +
I(year_built^2) + sq_footage + I(sq_footage^2) + total_rooms +
I(total_rooms^2) + violent_crime_rate + I(violent_crime_rate^2) + bathrooms
+ sf_data.1993 + sf_data.1994 + sf_data.1995 + sf_data.1996 + sf_data.1997
+ sf_data.1998 + sf_data.2000 + sf_data.2001 + sf_data.2002 + sf_data.2003
+ sf_data.2004 + sf_data.2005 + sf_data.2006 + sf_data.2007 + sf_data.2008
+ sf_data.13 + sf_data.75 + sf_data.81 + sf_data.85, data=sf_data)
summary(model_sf_actuall)
##second stage
buyers_data<- read.table("buyer_data_sf_la.txt", header = FALSE)</pre>
names(buyers_data) <-</pre>
c("buyerid", "price", "violent_crime_rate", "property_crime_rate", "race",
"income", "LA_indicator")
```

```
buyers data$implicit price <- (buyers data$LA indicator)*-2.022722e+02+ (1-
buyers_data$LA_indicator)*-2.251711e+02 +
2*7.382382e-02*(buyers data$violent crime rate)*(buyers data$LA indicator)
+ 2*1.116099e-01*(buyers_data$violent_crime_rate)*(1-
buyers data$LA indicator)
buyers data <- cbind(buyers data, dummy(buyers data$race, sep = "."))</pre>
model second stage actuall <- lm(implicit price ~ violent crime rate +
buyers_data.3 + buyers_data.4 + buyers_data.5 + income + LA_indicator,
data=buyers data)
summary(model_second_stage_actuall)
#####################standard eroors by taking sd of bootstrapped
parameters: 0.003297735
secondstage boot <-read.csv("second stage 500.csv")</pre>
sd(secondstage_boot$violent_crime_rate)
#Q4
rm(list=ls())
library(dplyr)
library(purrr)
library(psych)
library(dummies)
##import data of LA
la_data<- read.table("la_data.txt", header = FALSE)</pre>
names(la data) <-
c("houseid", "price", "county", "year built", "sq footage", "bathrooms", "bedrooms", "total rooms"
"year of sale")
##create a function that generates weight vectors (length: # observations)
for each X 1:2000 and h:1:3
la data$weight <- 0
weight <- function(x,h,theta){</pre>
  sigma <- sd(x[, 10])
 x[,13] < (1/(h*sigma))*(1/sqrt(2*pi))*exp(-0.5*(((x[,10]-theta)/
(h*sigma))^2))
 ans <-x[,13]
 return(ans)
}
## for h=1
weight1 <- list()</pre>
for (i in 1:2000){
 weight1[[i]]<- weight(la_data, 1, i)</pre>
## for h=3
weight3 <- list()</pre>
for (i in 1:2000){
 weight3[[i]]<- weight(la_data, 3, i)</pre>
}
## for h=10
weight10 <- list()</pre>
```

```
for (i in 1:2000){
  weight10[[i]]<- weight(la data, 10, i)</pre>
## for h=1000
weight1000 <- list()</pre>
for (i in 1:2000){
  weight1000[[i]]<- weight(la data, 1000, i)</pre>
###########save gradient vector
##model
model <- price ~ violent_crime_rate</pre>
##h1
price_gradient_h1 <- replicate(2000,0)</pre>
for (i in 1:2000){
  estimation <-lm(model, la data, weights=weight1[[i]])</pre>
  price gradient h1[i] <- estimation$coefficients[2]</pre>
save(price_gradient_h1, file = "h1_price_gradients.Rdata")
##h3
price_gradient_h3 <- replicate(2000,0)</pre>
for (i in 1:2000){
  estimation <-lm(model, la_data, weights=weight3[[i]])</pre>
  price gradient h3[i] <- estimation$coefficients[2]</pre>
##h10
price gradient h10 <- replicate(2000,0)</pre>
for (i in 1:2000){
  estimation <-lm(model, la_data, weights=weight10[[i]])</pre>
  price_gradient_h10[i] <- estimation$coefficients[2]</pre>
##h1000
price gradient h1000 <- replicate(2000,0)</pre>
for (i in 1:2000){
  estimation <-lm(model, la_data, weights=weight1000[[i]])</pre>
  price gradient h1000[i] <- estimation$coefficients[2] }</pre>
price gradient h1000
### We eventually get the final result! Let plot it now
x = xis < -c(1:2000)
plot (x_axis, price_gradient_h1, type="b", pch = 19, col="blue",
ylab="Price Gradients", xlab="X")
lines(x_axis, price_gradient_h1000, col="red", type="b")
lines(x_axis, price_gradient_h3, col="green", type="b")
lines(x_axis, price_gradient_h10, col="black", type="b")
legend("topleft", legend=c("h=1", "h=3", "h=10", "h=1000"),
       col=c("blue", "green", "black", "red"), lty=1:4, cex=0.6)
### Q5
rm(list=ls())
```

```
library(dplyr)
library(purrr)
library(psych)
library(dummies)
##import buyer data
la buyer data<- read.table("buyer data la.txt", header = FALSE)</pre>
names(la buyer data) <-</pre>
c("buyer_id","price","violent_crime_rate","property_crime_rate","race","income")
la_buyer_data <- cbind(la_buyer_data, dummy(la_buyer_data$race, sep = "."))</pre>
names(la_buyer_data) <-</pre>
c("buyer id", "price", "violent crime rate", "property crime rate", "race", "income",
                         "Asian_pi", "black", "hispanic", "white")
## import price gradients results
price gradient <- readRDS("h1 price gradients.Rdata")</pre>
##allocate WMTP to each individual
la buyer data$violent crime rate[la buyer data$violent crime rate >= 2000]
<- 2000
la buyer data$MWTP <-</pre>
price_gradient_h1[as.integer(la_buyer_data$violent_crime_rate)]
MWTP estimation <- lm(MWTP~income+Asian pi+black+hispanic,
data=la buyer data)
summary(MWTP estimation)
###06
rm(list=ls())
#First step:boostrap
installation needed <- TRUE
loading needed <- TRUE</pre>
package list <- c('foreign', 'xtable', 'plm', 'gmm',</pre>
'AER', 'stargazer', 'readstata13', 'boot')
if(installation needed){install.packages(package list, repos='http://
cran.us.r-project.org')}
if(loading needed){lapply(package list, require, character.only = TRUE)}
library(boot)
library("dummies")
library(dplyr)
library(purrr)
library(psych)
#################################
# data & model LA
la_data<- read.table("la_data.txt", header = FALSE)</pre>
names(la data) <-</pre>
c("houseid", "price", "county", "year built", "sq footage", "bathrooms", "bedrooms", "total rooms"
"vear of_sale")
la data <- cbind(la data, dummy(la data$county, sep = "."))</pre>
la data <- cbind(la data, dummy(la data$year of sale, sep = "."))</pre>
```

```
model la <- price ~ bathrooms + bedrooms + stories + property crime rate +
I(property_crime_rate^2) + year_built + I(year_built^2) + sq_footage +
I(sq_footage^2) + total_rooms + I(total_rooms^2)+ violent_crime_rate +
I(violent_crime_rate^2) + I(violent_crime_rate^3)+ I(violent_crime_rate^4)+
I(violent_crime_rate^5)+ I(violent_crime_rate^6) + bathrooms + la_data.1993
+ la_data.1994 + la_data.1995 + la_data.1996 + la_data.1997 + la_data.1998
+ la_data.2000 + la_data.2001 + la_data.2002 + la_data.2003 + la_data.2004
+ la_data.2005 + la_data.2006 + la_data.2007 + la_data.2008 + la_data.59 +
la data.65 + la data.71 + la data.111
# function to obtain regression weights
bs <- function(formula, data, indices) {</pre>
 d <- data[indices,] # allows boot to select sample</pre>
 fit <- lm(formula, data=d)</pre>
 return(coef(fit))
}
# bootstrapping with 500 replications
results <- boot(data=la_data, statistic=bs,
                R=500, formula=model_la)
results
result_bootcef_la <- cbind(results$t[,13],results$t[,14],results$t[,</pre>
15], results$t[,16], results$t[,17], results$t[,18])
write.csv(result_bootcef_la, file="q6_result_bootcef_la.csv")
capture.output(results, file = "results_boots_la.txt", append = TRUE)
#####################
# data & model_SF
sf_data<- read.table("sf_data.txt", header = FALSE)</pre>
names(sf_data) <-</pre>
c("houseid", "price", "county", "year_built", "sq_footage", "bathrooms", "bedrooms", "total_rooms",
"year_of_sale")
select(sf_data, sf_data$county==1|13|75|81|85)
sf_data <- cbind(sf_data, dummy(sf_data$county, sep = "."))</pre>
sf_data <- cbind(sf_data, dummy(sf_data$year_of_sale, sep = "."))</pre>
model_sf <- price ~ bathrooms + bedrooms + stories + property_crime_rate +</pre>
I(property_crime_rate^2) + year_built + I(year_built^2) + sq_footage +
I(sq_footage^2) + total_rooms + I(total_rooms^2) + violent_crime_rate +
I(violent_crime_rate^2) + I(violent_crime_rate^3)+ I(violent_crime_rate^4)+
I(violent_crime_rate^5)+ I(violent_crime_rate^6) + bathrooms + sf_data.1993
+ sf_data.1994 + sf_data.1995 + sf_data.1996 + sf_data.1997 + sf_data.1998
+ sf_data.2000 + sf_data.2001 + sf_data.2002 + sf_data.2003 + sf_data.2004
+ sf_data.2005 + sf_data.2006 + sf_data.2007 + sf_data.2008 + sf_data.13 +
sf_data.75 + sf_data.81 + sf_data.85
# bootstrapping with 500 replications
results_boot_sf <- boot(data=sf_data, statistic=bs,
                        R=500, formula=model_sf)
results boot sf
result_bootcef_sf <- cbind(results_boot_sf$t[,13],results_boot_sf$t[,</pre>
14],results_boot_sf$t[,15],results_boot_sf$t[,16],results_boot_sf$t[,
17], results boot sf$t[,18])
write.csv(result_bootcef_sf, file="q6_result_bootcef_sf.csv")
capture.output(results_boot_sf, file = "results_boots_sf.txt", append =
TRUE)
```

```
##Bishop Timmins
library(mlogit)
library(dplyr)
library(maxLik)
##buyers data
buyers data<- read.table("buyer data sf la.txt", header = FALSE)</pre>
names(buvers data) <-
c("buyerid", "price", "violent_crime_rate", "property_crime_rate", "race",
"income", "LA_indicator")
## boostrapped hedonic price gradients from Q5
la gradients <- read.csv("q6 result bootcef la.csv")</pre>
sf_gradients <- read.csv("q6_result_bootcef_sf.csv")</pre>
gradients la sf <- merge(la gradients,sf gradients, by="X")</pre>
rm(la_gradients,sf_gradients)
#####point estimation:
point_la <-lm(model_la, data=la data)</pre>
point gradient la <- point la$coefficients[13:18]</pre>
point_sf <- lm(model_sf, data=sf_data)</pre>
point_gradient_sf <- point_sf$coefficients[13:18]</pre>
point_gradient <- cbind(point_gradient_la, point_gradient_sf)</pre>
buyers data$implicit price <- (buyers data$LA indicator)*point gradient[1,1]+ (1-
buyers data$LA indicator)*point gradient[1,2]+
2*point gradient[2,1]*(buyers data$violent crime rate)*(buyers data$LA indicator) +
2*point_gradient[2,2]*(buyers_data$violent_crime_rate)*(1-buyers_data$LA_indicator)
3*point gradient[3,1]*(buyers data$violent crime rate^2)*(buyers data$LA indicator)
+ 3*point gradient[3,2]*(buyers data$violent crime rate^2)*(1-
buyers data$LA indicator)+
4*point gradient[4,1]*(buyers data$violent crime rate^3)*(buyers data$LA indicator)
+ 4*point_gradient[4,2]*(buyers_data$violent_crime_rate^3)*(1-
buyers data$LA indicator)+
5*point gradient[5,1]*(buyers data$violent crime rate^4)*(buyers data$LA indicator)
+ 5*point_gradient[5,2]*(buyers_data$violent_crime_rate^4)*(1-
buyers data$LA indicator)+
6*point_gradient[6,1]*(buyers_data$violent_crime_rate^5)*(buyers_data$LA_indicator)
+ 6*point gradient[6,2]*(buyers data$violent crime rate^5)*(1-
buyers data$LA indicator)
```

```
buyers data$df implict price <- 2*point gradient[2,1]*(buyers data$LA indicator) +
2*point gradient[2,2]*(1-buyers data$LA indicator)+
6*point gradient[3,1]*(buyers data$violent crime rate)*(buyers data$LA indicator) +
6*point_gradient[3,2]*(buyers_data$violent_crime_rate)*(1-buyers_data$LA_indicator)+
12*point gradient[4,1]*(buyers data$violent crime rate^2)*(buyers data$LA indicator)
+ 12*point gradient[4,2]*(buyers data$violent crime rate^2)*(1-
buvers data$LA indicator)+
20*point_gradient[5,1]*(buyers_data$violent_crime_rate^3)*(buyers_data$LA_indicator)
+ 20*point gradient[5,2]*(buyers data$violent crime rate^3)*(1-
buyers data$LA indicator)+
30*point_gradient[6,1]*(buyers_data$violent_crime_rate^4)*(buyers_data$LA_indicator)
+ 30*point gradient[6,2]*(buyers data$violent crime rate^4)*(1-
buyers data$LA indicator)
##create dummies for race
buyers data <- cbind(buyers data, dummy(buyers data$race, sep = "."))</pre>
#generate mle function
mle = function(theta, x) {
   # theta parameter vector; x
   mu1 = theta[1]
   mu2 = theta[2]
   mu3 = theta[3]
   mu4 = theta[4]
   mu5 = theta[5]
   mu6 = theta[6]
   #x[,14]:vij
   x[, 14] < x[, 8] - mu1 - mu2*x[, 3] - mu3*x[, 6] - mu4*x[, 10] - mu5*x[, 11] - mu6*x[, 10] - mu6*x
   sigma <- sd(x[,14])
   x[, 15] < (1/(sigma*sqrt(2*pi)))*exp(-(1/(2*(sigma^2)))*(x[,
14]^2) \times abs((x[,9]-mu2))
   x \leftarrow subset(x, x[,15] > 0) ###We need to drop 0 value!!!!! fairly
important for mle method to work
   ans \leftarrow sum(log(x[,15]))
   return(ans)
#use ols to try the start point
try <- lm(implicit price~ violent crime rate + income + buyers data.2 +
buyers_data.3 + buyers_data.4, data=buyers_data)
theta.start = c(-200, 0.169, 0, 0, 0, 0)
names(theta.start) = c("mu1", "mu2", "mu3", "mu4", "mu5", "mu6")
#theta.mle = maxLik (mle, start=theta.start, x=buyers data, method =
"BFGS") ###the problem here is that mle could be very sensitive about the
start point
theta.mle = optim(par=theta.start, fn=mle, x=buyers_data, method ="BFGS")
######################assign df(implicit price) of crime for each
individual *500
buyers data<- read.table("buyer data sf la.txt", header = FALSE)</pre>
```

```
names(buyers data) <-</pre>
c("buyerid", "price", "violent_crime_rate", "property_crime_rate", "race",
"income", "LA indicator")
for( i in 1:500){
  buyers data[paste("implict price", i, sep= "")] <-</pre>
(buyers data$LA indicator)*gradients la sf[i,2]+ (1-
buyers data$LA indicator)*gradients la sf[i,8]+ 2*gradients la sf[i,
3]*(buyers data$violent crime rate)*(buyers data$LA indicator) +
2*gradients la sf[i,9]*(buyers data$violent crime rate)*(1-
buyers_data$LA_indicator)+ 3*gradients_la_sf[i,
4]*(buyers_data$violent_crime_rate^2)*(buyers_data$LA_indicator) +
3*gradients la sf[i,10]*(buyers data$violent crime rate^2)*(1-
buyers_data$LA_indicator)+ 4*gradients_la_sf[i,
4]*(buyers data$violent crime rate^3)*(buyers data$LA indicator) +
4*gradients_la_sf[i,11]*(buyers_data$violent_crime_rate^3)*(1-
buyers data$LA indicator)+ 5*gradients la sf[i,
6]*(buyers data$violent crime rate^4)*(buyers data$LA indicator) +
5*gradients la sf[i,12]*(buyers data$violent crime rate^4)*(1-
buyers data$LA indicator)+ 6*gradients la sf[i,
7]*(buyers data$violent crime rate^5)*(buyers data$LA indicator) +
6*gradients_la_sf[i,13]*(buyers_data$violent_crime_rate^5)*(1-
buyers_data$LA_indicator)
}
######################assign df(implicit price) of crime for each
individual *500
for( i in 1:500){
  buyers_data[paste("df_implict_price", i, sep= "")] <-</pre>
2*gradients_la_sf[i,3]*(buyers_data$LA_indicator) + 2*gradients_la_sf[i,
9]*(1-buyers data$LA indicator)+ 6*gradients la sf[i,
4]*(buyers data$violent crime rate)*(buyers data$LA indicator) +
6*gradients la sf[i,10]*(buyers data$violent crime rate)*(1-
buyers_data$LA_indicator)+ 12*gradients_la_sf[i,
4]*(buyers_data$violent_crime_rate^2)*(buyers_data$LA_indicator) +
12*gradients la sf[i,11]*(buyers data$violent crime rate^2)*(1-
buyers_data$LA_indicator)+ 20*gradients_la_sf[i,
6]*(buyers data$violent crime rate^3)*(buyers data$LA indicator) +
20*gradients_la_sf[i,12]*(buyers_data$violent_crime_rate^3)*(1-
buyers data$LA indicator)+ 30*gradients la sf[i,
7]*(buyers data$violent crime rate^4)*(buyers data$LA indicator) +
30*gradients la sf[i,13]*(buyers data$violent crime rate^4)*(1-
buyers data$LA indicator)
#####################run second stage regression $ save coefficients *500
##create dummies for race
buyers_data <- cbind(buyers_data, dummy(buyers_data$race, sep = "."))</pre>
theta.start <-c(-1.939636e+02, 4.428857e-01, 9.380051e+05,
9.751060e-01, 2.879410e-01, 1.159335e+00)
names(theta.start) = c("mu1", "mu2", "mu3", "mu4", "mu5", "mu6")
intercept <- c()</pre>
violent crime <- c()</pre>
income <- c()
asian_pi <-c()
black <- c()
```

```
hispanic <- c()
for (i in 1:500){
  sample <- buyers_data[, c(1:7,7+i,507+i,1008:1011)]</pre>
  theta.mle = optim(par=theta.start, fn=mle, x=sample, method ="BFGS")
  intercept[i] <- theta.mle$par[1]</pre>
  violent_crime[i] <- theta.mle$par[2]</pre>
  income[i] <- theta.mle$par[3]</pre>
  asian_pi[i] <- theta.mle$par[4]</pre>
  black[i] <- theta.mle$par[5]</pre>
  hispanic[i] <- theta.mle$par[6]</pre>
}
###drop outlier before summarizing boostrap results
install.packages("outliers")
library(outliers)
boxplot(income)
violent_crime <- rm.outlier(violent_crime)</pre>
violent_crime <- rm.outlier(violent_crime)</pre>
mean(violent_crime)
sd(violent_crime)
```