高等微积分

邹文明

第三章:导数

§3.5. 利用导数研究函数

定理 1. (函数的增减) 设 $f \in \mathscr{C}[a,b]$ 在 (a,b) 内可导. 则

(1) 函数 f 递增当且仅当 $\forall x \in (a,b), f'(x) \ge 0$; (2) 函数 f 递减当且仅当 $\forall x \in (a,b)$, $f'(x) \leq 0$.

证明: (1) 充分性. 若 $\forall x \in (a,b)$, 均有 $f'(x) \ge 0$, 那么 $\forall x_1, x_2 \in [a, b]$, 当 $x_2 > x_1$ 时, 由 Lagrange

中值定理可知, $\exists \xi \in (x_1, x_2)$ 使 $f(x_2) - f(x_1) = f'(\xi)(x_2 - x_1) \geqslant 0$,

因此函数 f 为单调递增.

必要性. 设 f 单调递增, 则 $\forall x \in (a,b)$, 由导数 定义以及函数极限保号性可知

$$f'(x) = f'_{+}(x) = \lim_{y \to x^{+}} \frac{f(y) - f(x)}{y - x} \ge 0.$$

故所证结论成立.

(2) 对 -f 应用 (1) 结论立刻可知所证成立.

注: 由前面证明可知, 若 $\forall x \in (a,b)$, f'(x) > 0, 则 f 在 [a,b] 上严格递增, 但其逆命题不成立. 例如 $f(x) = x^3$ 在 \mathbb{R} 上严格递增, 但 f'(0) = 0.

定理 2. 如果 $f \in \mathscr{C}[a,b]$ 在 (a,b) 内可导, 则 f严格递增当且仅当 $\forall x \in (a,b)$, 均有 $f'(x) \ge 0$ 且 f' 在 (a,b) 的任意子区间上不恒为零. 证明: 充分性. 假设 $\forall x \in (a,b), f'(x) \ge 0$ 且 f'在 (a,b) 的任意子区间上不恒为零. 则 f 递增.

如果 f 不为严格递增,则 $\exists x_1, x_2 \in [a, b]$ 使得 $x_1 < x_2$,但 $f(x_1) = f(x_2)$,于是 f 在 $[x_1, x_2]$ 上 取常值,故 f' 在 (x_1, x_2) 上恒为零,矛盾!因此 函数 f 为严格说增

必要性. 如果 f 严格递增, 则 $\forall x \in (a,b)$, 均有 $f'(x) \ge 0$. 另外, 对于任意的子区间 $I \subseteq (a,b)$, 必存在 $x_1, x_2 \in I$ 使得 $x_1 < x_2$. 又由 Lagrange 中值定理可知, $\exists \xi \in (x_1, x_2)$ 使得我们有 $f'(\xi) = \frac{f(x_2) - f(x_1)}{x_2 - x_1} > 0,$

因此 f' 在 I 上不恒为零.

定理 2'. 如果 $f \in \mathcal{C}[a,b]$ 在 (a,b) 内可导,则 f 严格递减当且仅当 $\forall x \in (a,b)$,均有 $f'(x) \leq 0$ 且 f' 在 (a,b) 的任意子区间上不恒为零.

如何研究 (初等) 函数的单调性?

- 函数 f 的导数为零的点称为 f 的驻点.
- 驻点和导数不存在的点称为临界点.

确定 (初等) 函数单调性的具体步骤

- 计算导数, 找出临界点.
- 。以临界点为端点来分割函数的定义域.
- 判断导函数在每个子区间的符号,由此确定 函数的单调性.

例 1. 求函数 $f(x) = x^4 - 2x^2$ 的单调区间.

解: 因函数 f 为初等函数, 故可导且

$$f'(x) = 4x^3 - 4x = 4x(x-1)(x+1),$$

从而 f 的驻点为 -1,0,1. 由于 f' 在 $(-\infty,-1)$ 和 (0,1) 上取负号, 而在 (-1,0) 和 $(1,+\infty)$ 上取正号, 因此 f 在 $(-\infty,-1]$ 和 [0,1] 上为严格递减, 而在 [-1,0] 和 $[1,+\infty)$ 上为严格递增.

例 2. 求函数 $f(x) = \frac{x}{3} - x^{\frac{2}{3}}$ 的单调区间.

解: 函数 f 在 \mathbb{R} 上连续, 且在 $\mathbb{R}\setminus\{0\}$ 上可导, 而 $\forall x \in \mathbb{R} \setminus \{0\}$, 均有 $f'(x) = \frac{1}{3} - \frac{2}{3\sqrt[3]{x}}$. 则 f 的 驻点为 8, 其临界点为 0,8. 由于 f' 在 $(-\infty,0)$ 和 $(8,+\infty)$ 上取正号, 于是函数 f 在 $(-\infty,0]$ 和 $[8,+\infty)$ 上严格递增. 同样因 f' 在 (0,8) 上 取负号, 故 f 在该区间上严格递减.

例 3. $\forall x \in \mathbb{R} \setminus \{0\}$, 求证: $\cos x > 1 - \frac{1}{2}x^2$.

取负号, 从而函数 f 在 $[0, +\infty)$ 上为严格递增, 而在 $(-\infty, 0]$ 上为严格递减, 则 $\forall x \in \mathbb{R} \setminus \{0\}$, 我们有 f(x) > f(0) = 0, 即 $\cos x > 1 - \frac{1}{2}x^2$.

例 4. 求证: $\forall x \in \mathbb{R} \setminus \{0\}$, 均有 $e^{-x^2} < \frac{1}{1+x^2}$. 证明: $\forall y \in \mathbb{R}$, 令 $f(y) = (1+y)e^{-y} - 1$. 则 f 为

初等函数, 因此可导. 又 $\forall y > 0$, 均有 $f'(y) = e^{-y} - (1+y)e^{-y} = -ye^{-y} < 0,$

因而
$$f$$
 在 $[0, +\infty)$ 上为严格递减,从而 $\forall y > 0$,

我们有 f(y) < f(0) = 0,也即 $e^{-y} < \frac{1}{1+y}$. 于是 $\forall x \in \mathbb{R} \setminus \{0\}$,均有 $e^{-x^2} < \frac{1}{1+x^2}$.

函数的极值

定理 1. 假设 $x_0 \in (a,b)$, 并且函数 $f \in \mathcal{C}(a,b)$ 在 $(a,b) \setminus \{x_0\}$ 上可导.

(1) 若 f' 在 (a, x_0) 上非负而在 (x_0, b) 上非正, 则 x_0 为 f 的最大值点, 也为极大值点.

(2) 若 f' 在 (a, x_0) 上非正而在 (x_0, b) 上非负,则 x_0 为 f 的最小值点,也为极小值点.

证明: (1) 由于 f 在 $(a, x_0]$ 上递增, 在 $[x_0, b)$ 上递减, 故所证成立. 由 (1) 立刻可得 (2).

例 5. 求函数 $f(x) = |x|^{\frac{2}{3}}(x-1)$ 的极值点.

解: 由于 $f(x) = \sqrt[3]{x^2}(x-1)$, 则 f 为连续函数, 它在 $\mathbb{R}\setminus\{0\}$ 上可导且 $f'(x) = \frac{5x-2}{3\sqrt[3]{x}}$. 于是 f 的 临界点为 $0, \frac{2}{5}$, 且 f' 在 $(-\infty, 0)$ 和 $(\frac{2}{5}, +\infty)$ 上 取正号, 而在 $(0,\frac{2}{5})$ 上取负号, 故 f 在点 x=0取极大值 0, 而在点 $x = \frac{2}{5}$ 取极小值 $-\frac{3}{5}(\frac{2}{5})^{\frac{2}{3}}$.

最大值与最小值

回顾: 如果 $f \in \mathcal{C}[a,b]$ 在 (a,b) 上可导, 则 f 的最值点或者为端点, 或者为 f 的驻点.

确定最值的具体方法

- 求函数 *f* 在临界点处的值以及端点处的值, 比较大小以便确定最值.
- •若己知最值存在且在内部取到,并且函数又只有一个临界点(驻点),则该点为所求解.

例 6. 求函数 $V(x) = x(50 - 2x)^2$ 在 [0,25] 上的最大值. 解: 由于 V 为初等函数, 故连续, 则在 [0,25] 上

有最大值. 又 V(1) > 0, 并且 V(0) = V(25) = 0, 于是 V 的最大值在 (0,25) 内取到. 但

$$V'(x) = (50 - 2x)^2 + x \times 2(50 - 2x) \times (-2)$$
$$= (50 - 2x)(50 - 6x).$$

则 $\frac{25}{3}$ 为 V 在 (0,25) 内的唯一驻点, 因此它是 V 的最大值点, 故最大值为 $V(\frac{25}{3}) = \frac{250000}{27}$.

§3.6. L'Hospital 法则

定理 1. 假设f(x), g(x) 在点 x_0 的某个去心邻域内可导,并且 $g'(x) \neq 0$. 满足:

(i)
$$\lim_{x \to x_0} f(x) = \lim_{x \to x_0} g(x) = 0;$$

(ii)
$$\lim_{x \to x_0} \frac{f'(x)}{g'(x)}$$
 存在或者等于 $\pm \infty$ 或者 ∞ ;

那么
$$\lim_{x \to x_0} \frac{\dot{f}(x)}{g(x)} = \lim_{x \to x_0} \frac{f'(x)}{g'(x)}.$$

证明: 由于 $\lim_{x \to x_0} f(x) = \lim_{x \to x_0} g(x) = 0$, 我们可以 假设 $f(x_0) = g(x_0) = 0$. 这样, f(x), g(x) 在 x_0 的

某个邻域内连续. 在这个邻域内任意取一个点x, 并且 $x \neq x_0$. 在区间[x, x_0] 或者[x_0 , x] 上用柯西中值定理:

 $\frac{f(x)}{g(x)} = \frac{f(x) - f(x_0)}{g(x) - g(x_0)} = \frac{f'(\xi)}{g'(\xi)},$

这里 ξ 在 x, x_0 之间. 令 $x \to x_0$ 即可.

例 1. 求 $\lim_{x\to 0} \left(\frac{1}{x} - \frac{1}{e^x-1}\right)$.

解:
$$\lim_{x \to 0} \left(\frac{1}{x} - \frac{1}{e^x - 1} \right) = \lim_{x \to 0} \frac{e^x - 1 - x}{x(e^x - 1)}$$
$$= \lim_{x \to 0} \frac{e^x - 1 - x}{x^2} = \lim_{x \to 0} \frac{e^x - 1}{2x} = \frac{1}{2}.$$

同学们辛苦了!