

DPP – 1 (Vector)

Video Solution on Website:-

https://physicsaholics.com/home/courseDetails/107

Video Solution on YouTube:-

https://youtu.be/xWx4T0wumvY

Written Solution on Website:-

https://physicsaholics.com/note/notesDetalis/88

- O 1. Sum of four nonzero vectors is zero, Then
 - (a) they must be coplanar
 - (b) they may be coplanar
 - (c) Sum of magnitude of any two vectors must be equal to that of other two vectors.
 - (d) magnitude of sum of any two vectors must be equal to that of other two vectors
- Q 2. if \vec{A} has greater magnitude than \vec{B} Then maximum possible angle between sum of vectors with \vec{A} is

(a)
$$\cos^{-1} \frac{B}{A}$$

(c)
$$\sin^{-1} \frac{B}{A}$$

(b)
$$\cos^{-1} \frac{B}{\sqrt{A^2 + B}}$$

(d)
$$\sin^{-1} \frac{\sqrt{A^2 + B^2}}{\sqrt{A^2 + B^2}}$$

- Q 3. If $\vec{A} \times \vec{B} = \vec{A} \times \vec{C}$ then (all three vectors are nonzero vectors)
 - (a) B must be equal to C.
 - (b) \vec{B} must be equal to \vec{C}
 - (c) \vec{B} and \vec{C} must be coplanar
 - (d) \vec{B} and \vec{C} must be colinear.
- Q 4. if A = 1, B = 2, C = 3 and angle between \vec{A} and \vec{B} , \vec{B} and \vec{C} , \vec{C} and \vec{A} are 60° each. Magnitude of resultant of \vec{A} , \vec{B} and \vec{C} is
 - (a) 3
 - (b) 4
 - (c) 5
 - (d) 6
- Q 5. If $\vec{A} \cdot \vec{B} = \vec{A} \cdot \vec{C}$ then (all three vectors are nonzero vectors)
 - (a) B must be equal to C.
 - (b) \vec{B} must be equal to \vec{C}
 - (c) \vec{B} and \vec{C} must be coplanar
 - (d) None of these
- Q 6. In an octagon ABCDEFGH of equal side, what is the sum of \overrightarrow{AB} , \overrightarrow{AC} , \overrightarrow{AD} , \overrightarrow{AE} , \overrightarrow{AF} , \overrightarrow{AF} , \overrightarrow{AG} , and \overrightarrow{AH}

hysicsaholics

- 6 *A0* (a)
- $3\overrightarrow{A0}$ (b)
- $4 \overrightarrow{AO}$ (c)
- \overrightarrow{AO} (d)
- Q 7. A particle is revolving in a circular track passing through point (3,4,5) about axis of rotation $\frac{x}{1} = \frac{y}{2} = \frac{z}{3}$. Radius of circle is
 - (a) 1

 $(b) \sqrt{\frac{22}{7}}$ $(d) \sqrt{\frac{42}{7}}$

(c) $\sqrt{\frac{32}{7}}$

- Q 8. In an equilateral DABC, AL, BM and CN are medians. Forces along BC and BA represented by them will have a resultant represented by -
 - (a) 2**AL**
 - (b) 2BM
 - (c) 2CN
 - (d) **AC**
- A particle is moving with uniform velocity 10 m/sec from point (2 m,5m,6m) to Q 9. (3m,7m,8m) Velocity vector of particle is

(a)
$$\frac{10}{3}$$
 (î + 2 ĵ + 2 k) m/sec

(a)
$$\frac{10}{3}(\hat{i} + 2\hat{j} + 2\hat{k})$$
 m/sec
(b) $\frac{10}{3}(\hat{i} + \hat{j} + 2\hat{k})$ m/sec
(c) $\frac{5}{3}(\hat{i} + 2\hat{j} + 2\hat{k})$ m/sec
(d) $\frac{5}{6}(\hat{i} + 2\hat{j} + 2\hat{k})$ m/sec

(c)
$$\frac{5}{3}(\hat{\imath} + 2\hat{\jmath} + 2\hat{k})$$
 m/sec

(d)
$$\frac{5}{6}(\hat{\imath} + 2\hat{\jmath} + 2\hat{k})$$
 m/sec

- Q 10. Vector $\hat{i} + 2\hat{j} + 2\hat{k}$ is resolved in two rectangular components. One component is along $\hat{i} + \hat{j} + \hat{k}$. Other component is
 - (a) $\sqrt{\frac{5}{3}}$

(b) $\sqrt{\frac{1}{3}}$

(c) $\sqrt{\frac{2}{3}}$

(d) $\sqrt{\frac{2}{5}}$

Answer Key

Q.1) B,D	Q.2) C	Q.3) C	Q.4) C	Q.5) D
Q.6) D	Q.7) A	Q.8) B	Q.9) A	Q.10) C

