1. Random Sampling

Random Sample: [11, 6, 56, 8, 45, 1, 10, 76, 3, 22]

Random sampling on dataset

```
In [48]:
              import seaborn as sns
           2 | df=sns.load dataset('iris')
              print(df.shape)
           4 random_sample = df.sample(n=10,random_state=42)
           5
             print("Random Sample:\n", random_sample)
           6
         (150, 5)
         Random Sample:
               sepal length sepal width petal length petal width
                                                                          species
         73
                        6.1
                                     2.8
                                                    4.7
                                                                 1.2 versicolor
         18
                        5.7
                                     3.8
                                                    1.7
                                                                 0.3
                                                                          setosa
         118
                        7.7
                                     2.6
                                                    6.9
                                                                 2.3
                                                                       virginica
         78
                        6.0
                                     2.9
                                                    4.5
                                                                 1.5 versicolor
         76
                        6.8
                                     2.8
                                                    4.8
                                                                 1.4
                                                                      versicolor
                        5.4
                                     3.4
         31
                                                    1.5
                                                                 0.4
                                                                          setosa
         64
                        5.6
                                     2.9
                                                    3.6
                                                                 1.3 versicolor
         141
                        6.9
                                     3.1
                                                    5.1
                                                                 2.3
                                                                       virginica
         68
                        6.2
                                                    4.5
                                                                 1.5
                                                                      versicolor
                                     2.2
         82
                        5.8
                                     2.7
                                                    3.9
                                                                 1.2
                                                                      versicolor
```

2. Systematic Sampling

```
In [52]:
               import numpy as np
            3 # Systematic sampling
               population = np.arange(1, 101) # Data from 1 to 100
               population
Out[52]: array([
                               3,
                                    4,
                                                          8,
                    1,
                         2,
                                          5,
                                               6,
                                                     7,
                                                                9,
                                                                    10,
                                                                          11,
                                                                               12,
                                                                                     13,
                        15,
                                                    20,
                   14,
                              16,
                                   17,
                                         18,
                                              19,
                                                         21,
                                                               22,
                                                                    23,
                                                                          24,
                                                                               25,
                                                                                     26,
                   27,
                        28,
                              29,
                                   30,
                                         31,
                                              32,
                                                    33,
                                                         34,
                                                               35,
                                                                    36,
                                                                          37,
                                                                               38,
                                                                                     39,
                   40,
                        41,
                              42,
                                   43,
                                         44,
                                              45,
                                                    46,
                                                         47,
                                                                          50,
                                                               48,
                                                                    49,
                                                                               51,
                                                                                     52,
                                         57,
                                                    59,
                   53,
                        54,
                              55,
                                   56,
                                              58,
                                                         60,
                                                               61,
                                                                    62,
                                                                          63,
                                                                               64,
                                                                                     65,
                                   69,
                                         70,
                                              71,
                                                    72,
                                                                    75,
                   66,
                        67,
                              68,
                                                         73,
                                                               74,
                                                                          76,
                                                                               77,
                                                                                     78,
                                                         86,
                   79,
                        80,
                              81,
                                   82,
                                         83,
                                              84,
                                                    85,
                                                               87,
                                                                    88,
                                                                          89,
                                                                               90,
                                                                                     91,
                   92,
                        93,
                              94,
                                   95,
                                         96,
                                              97,
                                                    98,
                                                         99, 100])
In [53]:
            1 | n = 10 # Sample every 10th element
            2 systematic_sample = population[::n]
               print("Systematic Sample:", systematic sample)
```

Systematic Sample: [1 11 21 31 41 51 61 71 81 91]

Systematic sampling on dataset

```
Systematic Sample:
```

	sepal_length	sepal_width	petal_length	petal_width	species
0	5.1	3.5	1.4	0.2	setosa
10	5.4	3.7	1.5	0.2	setosa
20	5.4	3.4	1.7	0.2	setosa
30	4.8	3.1	1.6	0.2	setosa
40	5.0	3.5	1.3	0.3	setosa
50	7.0	3.2	4.7	1.4	versicolor
60	5.0	2.0	3.5	1.0	versicolor
70	5.9	3.2	4.8	1.8	versicolor
80	5.5	2.4	3.8	1.1	versicolor
90	5.5	2.6	4.4	1.2	versicolor
100	6.3	3.3	6.0	2.5	virginica
110	6.5	3.2	5.1	2.0	virginica
120	6.9	3.2	5.7	2.3	virginica
130	7.4	2.8	6.1	1.9	virginica
140	6.7	3.1	5.6	2.4	virginica

3. Stratified Sampling

```
In [25]:
             from sklearn.model_selection import train_test_split
           2
             import pandas as pd
           3
             # Stratified sampling using scikit-learn
           4
             data = pd.DataFrame({
                  'Category': ['A', 'A', 'B', 'B', 'C', 'C', 'C'],
           6
           7
                  'Values': [1, 2, 3, 4, 5, 6, 7, 8]
           8
             })
             train, test = train_test_split(data, test_size=0.5, stratify=data['Categor
           9
             print("Train Sample:\n", train)
             print("Test Sample:\n", test)
```

Train Sample:

6

	Category	Values
2	Α	3
5	C	6
3	В	4
0	Α	1
Tes	st Sample:	
	Category	Values
7	C	8
4	В	5
1	Α	2

C

7

Starified Sampling on Dataset

```
In [27]:
           1 | X = df.drop(columns=["species"])
           2
             y = df["species"]
           3
             # Stratified sampling: dividing the dataset into training and testing sets
           4
           5 X_train, X_test, y_train, y_test =
             train_test_split(X, y, test_size=0.3, stratify=df['species'],
                               random_state=42)
           7
             print("Train Sample:\n", X_train)
           8
             print("Test Sample:\n", X_test)
           9
          10
              4
```

4.2

1.5

1.3

0.2

Train Sample:						
	sepal_length	sepal_width	petal_length	petal_width		
98	5.1	2.5	3.0	1.1		
68	6.2	2.2	4.5	1.5		
19	5.1	3.8	1.5	0.3		
143	6.8	3.2	5.9	2.3		
99	5.7	2.8	4.1	1.3		
• •	• • •	• • •	• • •	• • •		
37	4.9	3.6	1.4	0.1		
79	5.7	2.6	3.5	1.0		
33	5.5	4.2	1.4	0.2		

2.7

3.1

[105 rows x 4 columns]

5.6

4.6

94

3

[105 rows x 4 columns]					
	Test	Sample:			
		sepal_length	_	· — -	petal_width
	107	7.3	2.9	6.3	1.8
	63	6.1	2.9	4.7	1.4
	133	6.3	2.8	5.1	1.5
	56	6.3	3.3	4.7	1.6
	127	6.1	3.0	4.9	1.8
	140	6.7	3.1	5.6	2.4
	53	5.5	2.3	4.0	1.3
	69	5.6	2.5	3.9	1.1
	20	5.4	3.4	1.7	0.2
	141	6.9	3.1	5.1	2.3
	14	5.8	4.0	1.2	0.2
	38	4.4	3.0	1.3	0.2
	108	6.7	2.5	5.8	1.8
	116	6.5	3.0	5.5	1.8
	28	5.2	3.4	1.4	0.2
	148	6.2	3.4	5.4	2.3
	57	4.9	2.4	3.3	1.0
	10	5.4	3.7	1.5	0.2
	23	5.1	3.3	1.7	0.5
	18	5.7	3.8	1.7	0.3
	97	6.2	2.9	4.3	1.3
	7	5.0	3.4	1.5	0.2
	75	6.6	3.0	4.4	1.4
	104	6.5	3.0	5.8	2.2
	138	6.0	3.0	4.8	1.8
	51	6.4	3.2	4.5	1.5
	84	5.4	3.0	4.5	1.5
	93	5.0	2.3	3.3	1.0
	66	5.6	3.0	4.5	1.5
	35	5.0	3.2	1.2	0.2
	134	6.1	2.6	5.6	1.4
	132	6.4	2.8	5.6	2.2
	85	6.0	3.4	4.5	1.6
	49	5.0	3.3	1.4	0.2
	111	6.4	2.7	5.3	1.9
	40	5.0	3.5	1.3	0.3
	42	4.4	3.2	1.3	0.2
	2	4.7	3.2	1.3	0.2
	43	5.0	3.5	1.6	0.6
	77	6.7	3.0	5.0	1.7

55	5.7	2.8	4.5	1.3
22	4.6	3.6	1.0	0.2
106	4.9	2.5	4.5	1.7
147	6.5	3.0	5.2	2.0
58	6.6	2.9	4.6	1.3

4. Cluster Sampling

```
In [29]:
             import numpy as np
             # Cluster sampling: Select clusters randomly
           3
             data = {
           4
           5
                  'Cluster1': [1, 2, 3,7,8,9,0],
           6
                  'Cluster2': [4, 5, 6,6,5],
           7
                  'Cluster3': [7, 8, 9,8,9],
                  'Cluster4':[6,8,9,11,22]
           8
           9
             selected clusters = np.random.choice(list(data.keys()), 2, replace=False)
          10
             cluster_sample = [data[cluster] for cluster in selected_clusters]
          11
             print("selected clusters:", selected_clusters)
             print("Cluster sample:",cluster_sample)
```

selected clusters: ['Cluster2' 'Cluster1']
Cluster sample: [[4, 5, 6, 6, 5], [1, 2, 3, 7, 8, 9, 0]]

Cluster sampling on dataset

```
In [57]:
           1
              import random
           2
             # Cluster sampling: divide dataset into clusters based on target labels
             clusters = [df[df["species"] == label]
                          for label in df["species"].unique()]
           5
           6
           7
             # Select one cluster randomly
             selected_cluster = random.choice(clusters)
             print("Cluster Sample:\n", selected_cluster)
           9
             #clusters
          10
          11 #df["species"].unique()
```

Cluster Sample:

Cluster Sample:							
	sepal_length	sepal_width	petal_length	petal_width	species		
100	6.3	3.3	6.0	2.5	virginica		
101	5.8	2.7	5.1	1.9	virginica		
102	7.1	3.0	5.9	2.1	virginica		
103	6.3	2.9	5.6	1.8	virginica		
104	6.5	3.0	5.8	2.2	virginica		
105	7.6	3.0	6.6	2.1	virginica		
106	4.9	2.5	4.5	1.7	virginica		
107	7.3	2.9	6.3	1.8	virginica		
108	6.7	2.5	5.8	1.8	virginica		
109	7.2	3.6	6.1	2.5	virginica		
110	6.5	3.2	5.1	2.0	virginica		
111	6.4	2.7	5.3	1.9	virginica		
112	6.8	3.0	5.5	2.1	virginica		
113	5.7	2.5	5.0		_		
				2.0	virginica		
114	5.8	2.8	5.1	2.4	virginica		
115	6.4	3.2	5.3	2.3	virginica		
116	6.5	3.0	5.5	1.8	virginica		
117	7.7	3.8	6.7	2.2	virginica		
118	7.7	2.6	6.9	2.3	virginica		
119	6.0	2.2	5.0	1.5	virginica		
120	6.9	3.2	5.7	2.3	virginica		
121	5.6	2.8	4.9	2.0	virginica		
122	7.7	2.8	6.7	2.0	virginica		
123	6.3	2.7	4.9	1.8	virginica		
124	6.7	3.3	5.7	2.1	virginica		
125	7.2	3.2	6.0	1.8	virginica		
126	6.2	2.8	4.8	1.8	virginica		
127	6.1	3.0	4.9	1.8	virginica		
128	6.4	2.8	5.6	2.1	virginica		
129	7.2	3.0	5.8	1.6	virginica		
130	7.4	2.8	6.1	1.9	virginica		
131	7.9	3.8	6.4	2.0	virginica		
132	6.4	2.8	5.6	2.2	virginica		
133	6.3	2.8	5.1		virginica		
134	6.1	2.6	5.6	1.4	virginica		
135	7.7	3.0	6.1	2.3	virginica		
136	6.3	3.4	5.6	2.4	virginica		
137	6.4	3.1	5.5	1.8	virginica		
138	6.0	3.0	4.8	1.8	virginica		
139	6.9	3.1	5.4	2.1	virginica		
140					_		
	6.7	3.1	5.6	2.4	virginica		
141	6.9	3.1	5.1	2.3	virginica		
142	5.8	2.7	5.1	1.9	virginica		
143	6.8	3.2	5.9	2.3	virginica		
144	6.7	3.3	5.7	2.5	virginica		
145	6.7	3.0	5.2	2.3	virginica 		
146	6.3	2.5	5.0	1.9	virginica		
147	6.5	3.0	5.2	2.0	virginica		
148	6.2	3.4	5.4	2.3	virginica		
149	5.9	3.0	5.1	1.8	virginica		

```
In [30]: 1 df["species"].unique()
Out[30]: array(['setosa', 'versicolor', 'virginica'], dtype=object)
In [ ]: 1
In [ ]: 1
```