Homework 6

Course: CO20-320241

October 21th, 2019

Problem 6.1

Solution:

Biggest reason for that is the fact that we have 32 registers on most architectures. In order to represent all 32 possible options we need exactly 5 bits, since 11111 represents 31, and 00000 represents 0.

Problem 6.2

Solution:

```
a) op = 0, rs = 8, rt = 9, rd = 10, shamt = 0, funct = 34 sub $t2 $t0 $t1
```

Problem 6.3

Solution:

a) op =
$$0$$
, rs = 8 , rt = 9 , rd = 10 , shamt = 0 , funct = 34

/ I	<i>'</i>	,	,	,	
op	rs	rt	rd	shamt	funct
000000	01000	01001	01010	00000	100010

b) op =
$$0x23$$
, rs = 17, rt = 18, const = $0x4$

op	rs	rt	const
100011	10001	10010	0000000000000100

Problem 6.4

Solution:

\$t0 = 0010 0100 1001 0010 0100 1001 0010 0100

 $$t1 = 0011\ 1111\ 1111\ 1000\ 0000\ 0000\ 0000\ 0000$

After comparing bits from most significant bit to least one, we can notice that 4 most significant bit is bigger at \$t1, so \$t1 is bigger.

Therefore, slt will set value of \$t2 as 1.

Next instruction is beq, and since 1 and 0 are not equal, we go to next instruction, which is to jump to done, ans our final value is 1.

Problem 6.5

Solution:

addi \$t0, \$0, 6 sll \$t0, \$t0, 2 add \$t0, \$t0, \$s0 - get adress of A[6] lw \$t1, 0(\$t0) - load value of A[6] add \$s1, \$s1, \$t1 sw, \$s1, 0(\$t0)

Problem 6.6

Solution:

Add 16 most significant bits: $0000\ 0000\ 0010\ 0011=35_10$ lui \$s4, 35 Load 16 least significant bits ori \$s4, \$s4, 35

Problem 6.7 Solution:

addi \$t0, \$0, 0 addi \$t1, \$0, 8 LOOP:beq \$t0, \$t1, EXIT addi \$s0, \$s0, 4 addi \$t0, \$t0, 1 j LOOP EXIT: