Physics 137B Lecture 5

Keshav Balwant Deoskar

January 29, 2024

These are notes taken from lectures on Quantum Mechanics delivered by Professor Raúl A. Briceño for UC Berekley's Physics 137B class in the Sprng 2024 semester.

Contents

	January 26 - Perturbation Theory continued		2
	1.1 Example: 1D Infinite Square Well with a δ -potentia	1	2

1 January 26 - Perturbation Theory continued...

Last time, we left off while trying to extract $|n^{(0)}\rangle$.

To extract $|n^{(0)}\rangle$, we make use of the fact that $\{|l^{(0)}\rangle\}$ is orthonormal. Act using another stationary state $|l^{(0)}\rangle$ where $l \neq n$.

$$\implies \sum_{k \neq n} c_{nk}^{(1)} \left(E_k^{(0)} - E_n^{(0)} \right) \underbrace{\langle l^{(0)} | k^{(0)} \rangle}_{\delta_{lk}} + \langle l^{(0)} | \hat{H}' | n^{(0)} \rangle - E_n^{(1)} \underbrace{\langle l^{(0)} | n^{(0)} \rangle}_{0} = 0$$

$$\implies \left(E_l^{(0)} - E_n^{(0)} \right) c_{nl}^{(1)} = -\langle l^{(0)} | \hat{H}' | n^{(0)} \rangle$$

Again, for emphasis, we are currently dealing with a special case: **Non-degenerate Perturbation Theory** wherein $E_n^{(0)} = E_l^{(0)}$ iff n = l. So, rearraning the equation, we finally get

$$c_{nl}^{(1)} = \frac{\langle l^{(0)} | \hat{H}' | n^{(0)} \rangle}{\left(E_n^{(0)} - E_l^{(0)} \right)}$$

This gives us the first order correction for the state i.e.

$$|n^{(1)}\rangle = \sum_{k \neq n} \frac{\langle l^{(0)} | \hat{H}' | n^{(0)} \rangle}{\left(E_n^{(0)} - E_l^{(0)}\right) | k^{(0)} \rangle}$$

Before moving on to second-order PT and degenerate PT, let's see some nice examples.

1.1 Example: 1D Infinite Square Well with a δ -potential

The known potential is

$$\hat{H}_0 = \frac{\hat{P}^2}{2m} + V_0(x); \quad V_0(x) = \begin{cases} 0 & -\frac{L}{2} \le x \le \frac{L}{2} \\ \infty & \text{otherwise} \end{cases}$$

and we have $\hat{H}' = \alpha \delta(x)$

The goal is to find $E_n^{(1)}$ and $|n^{(1)}\rangle$. We follow the standard procedure:

- 1. Find $|n^{(0)}\rangle$ and $E_n^{(0)}$
- 2. Use $E_n^{(1)} = \langle n^{(0)} | \hat{H}' | n^{(0)} \rangle$
- 3. Use $|n^{(1)}\rangle = \sum_{k \neq n} \frac{\langle k^{(0)} | \hat{H}' | n^{(0)} \rangle}{\left(E_n^{(0)} E_k^{(0)}\right)} |k^{(0)}\rangle$
- 4. "think": do your solutions make sense?

Step 1: To get the *unperturbed* eigenstates and eigenenergies, we set up the TISE:

$$-\frac{\hbar^2}{2m}\frac{d^2}{dx^2}\psi_n^{(0)}(x) = E_n^{(0)}\psi_n^{(0)}$$

and impose the boundary conditions.

Doing so, we obtain

$$\psi_n^{(0)}(x) = \begin{cases} \frac{2}{L}\cos\left(\frac{n\pi x}{L}\right) & n = 2n' + 1\\ \frac{2}{L}\sin\left(\frac{n\pi x}{L}\right) & n = 2n' \end{cases}$$

and

$$E_n^{(0)} = \frac{\hbar^2}{2m} \left(\frac{\pi}{L}\right)^2 n^2$$

Step 2:

The energy correction is

$$\begin{split} E_n^{(1)} &= \langle n^{(1)} | \hat{H}' | n^{(0)} \rangle \\ &= \int dx \; \langle n^{(0)} | x \rangle \langle x | \hat{H}' | x' \rangle \langle x' | n^{(0)} \rangle \\ &= \int dx \psi(x)^* \alpha \delta(x) \psi(x) \\ &= \alpha |\psi_n(0)|^2 \\ &= \begin{cases} \frac{\alpha^2}{L} \; n = \; \text{odd} \\ 0 \; n = \; \text{even} \end{cases} \end{split}$$

So, the overall eigenenergy is given by

$$E_n^{(0)} = \left(\frac{\pi\hbar}{L}\right)^2 \frac{n^2}{2m} + \begin{cases} \alpha \frac{L}{2} & \text{iff } n = \text{ odd} \\ 0 & \text{iff } n = \text{ even} \end{cases}$$

Note that this makes sense if and only if

$$\alpha \frac{L}{2} < \left(\frac{\pi \hbar}{L}\right)^2 \frac{n^2}{2m}$$

$$\implies \alpha < \frac{2}{L} \left(\frac{\pi h}{L}\right)^2 \frac{n^2}{2m}$$

So, if experimental values of α tell us that the 1st order correction is bigger than the 0-order correction, we most definitely have a problem and our system may be non-perturbative.

Step 3:

The eigenstate correction is

$$|n^{(1)}\rangle = \sum_{k \neq n} \frac{\langle k^{(0)} | \hat{H}' | n^{(0)} \rangle}{\left(E_n^{(0)} - E_k^{(0)}\right)} |k^{(0)}\rangle$$