Log In

Join

Back To Course Home

Grokking Modern System Design Interview for Engineers & Managers 0% completed

System Design Interviews

Introduction

Abstractions

Why Are Abstractions Important?

Network Abstractions: Remote Procedure Calls

Spectrum of Consistency Models

The Spectrum of Failure Models

Non-functional System Characteristics

Back-of-the-envelope Calculations

Building Blocks

Domain Name System Load Balancers Databases Key-value Store Content Delivery Network (CDN) Sequencer **Distributed Monitoring Monitor Server-side Errors Monitor Client-side Errors Distributed Cache Distributed Messaging Queue**

4. The Spectrum of Failure Models.html[2024-06-21, 1:28:50 AM]

Design Uber

Design Twitter
Design Newsfeed System
Design Instagram
Design a URL Shortening Service / TinyURL
Design a Web Crawler
Design WhatsApp
Design Typeahead Suggestion
Design a Collaborative Document Editing Service / Google Docs
Spectacular Failures
Concluding Remarks
Course Certificate Mark Course as Completed
·

The Spectrum of Failure Models

Learn about failures in distributed systems and the complexity of dealing with them.

We'll cover the following

- Fail-stop
- Crash
- Omission failures
- Temporal failures
- Byzantine failures

Failures are obvious in the world of distributed systems and can appear in various ways. They might come and go, or persist for a long period.

Failure models provide us a framework to reason about the impact of failures and possible ways to deal with them.

Here is an illustration that presents a spectrum of different failure models:

This is a spectrum of failure models. The difficulty level when dealing with a failure increases as we move to the right

Fail-stop#

In this type of failure, a node in the distributed system halts permanently. However, the other nodes can still detect that node by communicating with it.

From the perspective of someone who builds distributed systems, fail-stop failures are the simplest and the most convenient.

Crash#

In this type of failure, a node in the distributed system halts silently, and the other nodes can't detect that the node has stopped working.

Omission failures#

In **omission failures**, the node fails to send or receive messages. There are two types of omission failures. If the node fails to respond to the incoming request, it's said to be a **send omission failure**. If the node fails to receive the request and thus can't acknowledge it, it's said to be a **receive omission failure**.

Temporal failures#

In **temporal failures**, the node generates correct results, but is too late to be useful. This failure could be due to bad algorithms, a bad design strategy, or a loss of synchronization between the processor clocks.

Byzantine failures#

In **Byzantine failures**, the node exhibits random behavior like transmitting arbitrary messages at arbitrary times, producing wrong results, or stopping midway. This mostly happens due to an attack by a malicious entity or a software bug. A byzantine failure is the most challenging type of failure to deal with.

Back	
Spectrum of Consistency Models	
Next	
Availability	
Mark as Completed	

The Spectrum of Failure Models - Grokking Modern System Design Interview for Engineers & Managers

Report an Issue