Credit Card Fraud Detection System

Detecting Fraud with Machine Learning & Streamlit

Project Overview

Goal: Detect fraudulent credit card transactions using machine learning.

Features:

- Data analysis & visualization
- Model training & evaluation
- Real-time fraud prediction
- User-friendly Streamlit GUI

Dataset

Source: Kaggle Credit Card Fraud Dataset

Size: 284,807 transactions, 492 frauds (0.17%)

Features:

· Time, Amount

- V1–V28 (PCA components)
- · Class (0: Non-Fraud, 1: Fraud)

Tech Stack

Python 3
pandas, numpy
scikit-learn
matplotlib, seaborn, plotly
Streamlit (GUI)

Exploratory Data Analysis (EDA)

Fraud vs. Non-Fraud distribution

Correlation heatmap

Boxplots for amount

Feature distributions

Time-based fraud analysis

EDA Dashboard - Fraud Distribution & Correlation Analysis

Data Preprocessing

Handle missing values

Feature scaling (StandardScaler)

Outlier removal (optional)

Class balancing (under/over-sampling)

Train/test split (70/30)

Model Building

Logistic Regression
Random Forest Classifier
Hyperparameter tuning via GUI
Model training and saving

Model Training Interface - Hyperparameter Configuration

Model Evaluation

Metrics:

- Accuracy
- Precision
- Recall
- F1-Score
- · ROC-AUC

Visuals:

- Confusion Matrix
- ROC Curve
- · Precision-Recall Curve
- Feature Importance

Model Evaluation - Confusion Matrix & ROC Curves

Streamlit GUI Demo

Data overview & EDA

Model training

Fraud prediction (single, batch, random)

Model evaluation

Streamlit GUI - Main Dashboard

Fraud Prediction Interface

Single transaction prediction

Batch processing with CSV upload

Random sample testing

Real-time confidence scores

Fraud Prediction - Real-time Detection Interface

Results

High accuracy and recall for fraud detection Real-time prediction capability User-friendly interface for non-technical users

Results Dashboard - Performance Metrics

Challenges & Solutions

Imbalanced data: Used resampling techniques

Feature anonymization: Relied on statistical patterns

Real-time prediction: Optimized preprocessing pipeline

Future Work

Add more ML models (XGBoost, Neural Networks)
Deploy as a web service (Docker, cloud)
Integrate with real-time transaction streams
Advanced feature engineering

Conclusion

End-to-end fraud detection system Modular, extensible, and user-friendly Ready for real-world applications

Questions?

Thank you!