Earth Notes

Benjamin Bass

02 February 2016

Contents

1	Rev	iew													1
2	Min	eral (Composi	tion											2
	2.1	Why	${\bf Minerals}$	Grow											:
		2.1.1	Thermo	odynan	nics										ć

1 Review

Know for the Test Most Abundent Elements in the Crust:

Element	Charge	Coordination Number					
		(fold coordination)					
Si	4	4					
O	-2	X					
Na	1	8					
Ca	2	6 (or 8)					
K	1	12					
Al	3	6/4					
Mg	2	6					
Fe	2/3	6					

2 Mineral Composition

Mineral Chemical Site Assignment (more examples in p. 198-200)

ex: Sphalerite (ZnS)

Actual analysis sample that we collected:

Element	Weight Percent	(Grams per Mole)		Normalized
Fe	18.25%	55.85	0.327	.312
Mn	2.66%	54.94	0.048	.046
Cd	.28	112.41	.002	.002
Zn	44.67	65.58	0.683	.651
S	33.57	32.07	1.047	1.0
Total	99.43%			1.011

Final Formula: (Zn.651 Fe.312 Mn.046 Cd.002) S

That is an easy one. Most of the time, when we're dealing with something like Silicates, we have a situation like this:

Silicate Analysis: Olivine

0.99

Elen	n.	WP	AW	MAP	xOxy	AO	CFP
SiO	2	40.99	/ 60.08	.6822	x2	1.3642	.999
FeC)	8.58	71.85	.1194	x1	.1194	.115
Fe ₂ ($)_3$.50	159.69	.0031	x3	.0093	.009
Mg	С	50.00	90.31	1.2403	x1	1.2401	1.816
Mn	Ο	.20	70.94	.0028	x1	.0028	.004
Tota	al	100.27				2.732	

Key	Value
Elem.	Element Normalization FActor
WP	Weight Percent
AW	Atomic Weight Cadion Formula $\%$
MAP	Molecular Atomic Proportion
xOxy	xOxygens
AO	Atomic Opop(?)
NF	Normalization Factor $(4.0/2.732)$
CFP	Cadion Formula Percentage

 $2.732 \rightarrow .999$

Normalize everything to 4 Oxygens.

Normalize to 4 oxygens. Normalizing factor is 2.732.

```
Normalize to exactly 1.0 S. If done right, all the cadions should add up to 1. \frac{1}{1.047} Between 99% and 100% is a good analysis. Final Formula \{(mg1.816Fe.175^{2+}Fe.009^{3+}Mn.04)Si.999O4\}
```

2.1 Why Minerals Grow

 \rightarrow Depends on P,T,X conditions

2.1.1 Thermodynamics

```
Used to describe and predict the equilibrium state of a system.
    ex: Si, Al, Ca, O
    CaO
Si_2
Al_2O_3
Al<sub>2</sub>SiO<sub>5</sub>
CaSiO_3
etc...
    Gibbs Free Energy One of the ways we can quantify free energy using
thermodynamics.
    G = f(P, T, X) (x means composition)
    Every substance, including minerals, has some \Delta G_i = f(P,T,X)
    Stable Equillibrium of a system is the one with the lowest < should be
sum of some sort sumdeltaG> \Delta G < Insert Picture of Stability graph>
    Diamond wants to break down to graphite.
    All this allows us to write REACTIONS
    ex: C_{Diamond} = C_{Granite}
    at the surface P,T: \Delta G<sub>graphite</sub> <\Delta G<sub>Diamond</sub>
    ex: CaAl_2Si_2O_8 = CaAl_2Si_2O_8 anarthite melt
    at surface P,T \Delta G_amorthite <\Delta Ganothite <-
proceeds
    ex: KAl_2(AlSi_3)O_{10}(OH)_2 + SiO_2 = KAlSi_3O_8 + Al_2SiO_5 + H_2O mus-
covite quartz feldspar sillimanite
    at very high Temp > 700 degrees Celsius \Delta G_{\rm ksparSilliminH20} < \Delta
G_{muscovitequartz}
    so Kspasr is stable or reaction —————> reaction proceeds
    ex: 2 \text{ KAlSi}_3O_8 + \text{H}_2O + 2\text{H}^+ = \text{Al}_2\text{Si}_2O_5(O\text{H})_4 + 2\text{K}^+ + 4\text{Si}O_2
Feldspar watah acid kalimite clay classified k+ Dissolved Silicon
```