## Litter Size and Menstruation 12/3 update

Data: 1006 out of 2278 species (all species within Rodentia that I have data for) Plotted: 819 species are phylogenetically resolved, thus plotted here Consensus tree extracted from an Upham et al. paper (Jetz lab)

This version includes all families and all species that I can find. I labeled suprafamilies and a few common families (Acomys, Mus, Rattus).

The labeling are based on this paper. There is a minor taxonomy conflict, the relationship between Heteromyidae and Geomyidae outlined by the paper is different from this tree I used. I am leaning towards the tree, as it was published in 2019, time calibrated and used 31 genes instead of 2 to construct.

Method: both REML and PIC, metadata attached at the end. The confidence interval for REML is quite wide. One of the Brownian motion parameter is Nah, and I am still trying to figure out what that means. The two methods give very different results.

Thoughts: The earlier ancestors all have an average litter size of 2.88 or 2.89, and then evolve either into clades with higher or smaller litter size. I don't think this necessarily disqualify our hypothesis,

The sampling is not uniform, which means the constructed ancestral values lean towards available data.

## Warning in sqrt(1/out\$hessian): NaNs produced





 ${\bf Metadata\ about\ REML\ reconstruction:}$ 

- $\bullet\,$   $\$  is the estimate of the Brownian Motion parameter.
- $\bullet\,$   $\ \$  are the confidence intervals on the ancestral character state reconstructions.

Residual log-likelihood: -5664.2874262

Sigma<br/>2: 997.3621519, NaN

CI95:

kable(litter\_ancestral\$CI95[1:10, ], col.names = c('lower bound', 'upper bound'), caption = "sample REM

Table 1: sample REML confidence interval  $\,$ 

|     | lower bound | upper bound |
|-----|-------------|-------------|
| 820 | -11.170629  | 16.942259   |
| 821 | -11.075762  | 16.847165   |
| 822 | -14.542507  | 20.307337   |
| 823 | -11.577820  | 17.328727   |
| 824 | -10.482808  | 16.261825   |
| 825 | -9.168933   | 14.914383   |
| 826 | -9.050760   | 14.727896   |
| 827 | -7.636693   | 11.102322   |
| 828 | -1.464976   | 3.070575    |
| 829 | -9.671487   | 15.420109   |

Ancestral Reconstruction using Phylogenetic Independent Contrast





Metadata about PIC reconstruction:

Residual log-likelihood:

Sigma2:

CI95:

Table 2: sample PIC confidence interval

|     | lower bound | upper bound |
|-----|-------------|-------------|
| 820 | 2.0001156   | 3.771613    |
| 821 | 1.8748948   | 4.297813    |
| 822 | 0.8110138   | 4.270835    |
| 823 | 1.7176718   | 3.872031    |
| 824 | 2.4806467   | 4.499565    |
| 825 | 0.7682447   | 2.667815    |
| 826 | 0.7397868   | 2.736672    |
| 827 | 0.33333333  | 1.660659    |
| 828 | 0.8454750   | 1.137609    |
| 829 | 1.1800702   | 3.378577    |
|     |             |             |

Plotting the values of PIC over REML – RMEL definitelys gives a narrower range of ancestral litter size.



Plotting the confidence interval on the tree – the further back in time, the larger the CI. REML

