REAL ANALYSIS FOURTH WEEK

Exercise 3.2.5

Let *X* be any non-empty set and, for $x_1, x_2 \in X$, define

$$d(x_1, x_2) = \begin{cases} 0, & \text{if } x_1 = x_2 \\ 1, & \text{if } x_1 \neq x_2 \end{cases}$$

Show that d is a metric on X. This is called the *discrete metric*, the pair (X,d) is referred to as a *discrete metric space*.

In order to be a metric, need to show positive definiteness, symmetry and triangle inequality.

1. For $x_1, x_2 \in X$, $d(x_1, x_2) \ge 0$, and $d(x_1, x_2) = 0$ if and only if $x_1 = x_2$.

This is trivial considering the given case. If $x_1 \neq x_2$ $d(x_1, x_2) = 1 \geq 0$. If $x_1 = x_2$ then $d(x_1, x_2) = 0$. Likewise, if $d(x_1, x_2) = 0$ then $x_1 = x_2$.

- 2. For any $x_1, x_2 \in X$, we have $d(x_1, x_2) = d(x_2, x_1)$. Consider $x_1 = x_2$, $d(x_1, x_2) = 0$ and $d(x_2, x_1) = 0$ therefore $d(x_1, x_2) = d(x_2, x_1)$. Consider $x_1 \neq x_2$, $d(x_1, x_2) = 1$ and $d(x_2, x_1) = 1$ therefore $d(x_1, x_2) = d(x_2, x_1)$.
- 3. For any $x_1, x_2, x_3 \in X$, we have

$$d(x_1, x_2) \le d(x_1, x_3) + d(x_3, x_2)$$

Since $d(x_i, x_j)$ is equal to either 1 or 0 for $i \neq j$.

Case 1, choose $x_1, x_2, x_3 \in X$. let $x_1 = x_2$ and let x_3 be arbitrary. Then $d(x_1, x_2) = 0$ and $d(x_1, x_3) + d(x_3, x_2) \ge 0$. Satisfying the triangle inequality.

Case 2, choose $x_1, x_2, x_3 \in X$, let $x_1 \neq x_2$. Then $d(x_1, x_2) = 1$ Choose x_3 such that $d(x_1, x_3) = 0$ and $d(x_2, x_3) = 0$ This implies $x_1 = x_3$ and $x_2 = x_3$ which means $x_1 = x_2$ which is a contradiction. So atleast one of $d(x_1, x_3) = 1$ or $d(x_3, x_2) = 1$. Satisfying the triangle inequality.

Exercise 3.2.6

(NOT ASSIGNED)

Let (X,d) be a metric space, and let Y be a proper subset of X. Show that (Y,d') is a metric space, where we define $d'(y_1,y_2) = d(y_1,y_2)$. We call d' the *inherited metric* on Y.

Keeping in mind that *Y* is a proper subset of *X*.

1. Consider $d'(y_1, y_2)$, since (X, d) is a metric space $d(y_1, y_2) \ge 0$ and equal to zero if and only if $y_1 = y_2$, then by definition of $d'(y_1, y_2) = d(y_1, y_2)$ the same positive definiteness holds for (Y, d').

- 2. Since since (X, d) is a metric space $d(y_1, y_2) = d(y_2, y_1)$ which implies $d(y_2, y_1) = d'(y_2, y_1)$ Therefore $d'(y_1, y_2) = d'(y_2, y_1)$.
- 3. Consider $d'(y_1,y_2)=d(y_1,y_2)$, $d'(y_1,y_3)=d(y_1,y_3)$ and $d'(y_3,y_2)=d(y_3,y_2)$. Then $d(y_1,y_2)\leq d(y_1,y_3)+d(y_3,y_2)$ implies $d'(y_1,y_2)\leq d'(y_1,y_3)+d'(y_3,y_2)$ satisfying the triangle inequality.

Exercise 3.2.8

(NOT ASSIGNED)

Prove that d_p is a metric on \mathbb{R}^n for p > 1. *Hint:* The triangle inequality of the only hard part. The proof depends on Hölder's Inequality. To begin, observe that

$$||x+y||_p^p - \sum_i |x_i+y_i|^p \le \sum_i |x_i+y_i|^{p-1} |x_i| + \sum_i |x_i+y_i|^{p-1} |y_i|$$

Proof. To prove the triangle inequality, apply Hölder's Inequality using $q = \frac{p}{p-1}$.

$$\begin{aligned} \|x+y\|_{p}^{p} &\leq \left(\sum_{i} |x_{i}+y_{i}|^{p-1}\right)^{\frac{p}{p-1}} \left(\sum_{i} |x_{i}|^{p}\right)^{\frac{1}{p}} \\ &+ \left(\sum_{i} |x_{i}+y_{i}|^{p-1}\right)^{\frac{p}{p-1}} \left(\sum_{i} |y_{i}|^{p}\right)^{\frac{1}{p}} \\ &= \|x\|_{p} \left(\sum_{i} |x_{i}+y_{i}|^{p}\right)^{\frac{p-1}{p}} + \|y\|_{p} \left(\sum_{i} |x_{i}+y_{i}|^{p}\right)^{\frac{p-1}{p}} \\ &= \|x\|_{p} \|x+y\|_{p}^{p-1} + \|y\|_{p} \|x+y\|_{p}^{p-1} \\ &= (\|x\|_{p} + \|y\|_{p}) \|x+y\|_{p}^{p-1} \end{aligned}$$

We can divide both sides by $||x + y||_p^{p-1}$ to get

$$||x + y||_p \le ||x||_p + ||y||_p$$

Exercise 3.2.9

Note that Hölder's Inequality only works for p, q > 1. Prove the triangle inequality for the d_1 metric.

Proof. In the d_1 metric, $d(x,y) = ||x-y||_p$

$$||x + y||_1 = \sum_{i} |x_i + y_1|^1 \le \sum_{i} |x_i|^1 + \sum_{i} |y_i|^1$$
$$= ||x||_1 + ||x||_1$$

3

Exercise 3.2.10

Prove that d_{∞} defines a metric on \mathbb{R}^n

Proof. Need to show positive definiteness, symmetry, and triangle inequality.

1. Positive definiteness. $d_{\infty}(x,y) = \max_{1 \le j \le n} |x_i - y_i| \ge 0$ and 0 if and only if x = y.