Dispositivos de Memoria

Sistemas Digitales

Dr. Andrés David García García

Departamento de Mecatrónica

Dispositivos de Memoria Terminología

- Memoria: Elemento o dispositivo que tiene como objetivo almacenar, guardar o retener de forma permanente y/o temporal una cantidad de información.
 - Retener el nivel lógico que corresponda al bit que se desea almacenar.
 - Almacenar palabras de varios bits dentro de una localidad de la memoria específica.

- ▶ Célula de memoria: Se le llama célula de memoria al circuito más pequeño que es capaz de almacenar la información de un bit.
 - ▶ El dispositivo más simple, el Flip-Flop D :

- Palabra de memoria: Es un grupo de bits (ó células de memoria) que representan un dato o una instrucción.
 - El ancho de la palabra puede ser de uno hasta N bits.
 - Ejemplos:
 - El primer micro-procesador tenía un ancho de palabra de 4 bits (4004).
 - El primer procesador comercial con un bus de datos de 8 bits fue el 8086

 Byte

- Byte: La mayoría de las memorias comerciales usan palabras de 8 bits, a esta palabra se le llama Byte (esto debido a la popularidad de los micro-procesadores de 8 bits como el 8086-8088).
- Nibble: Se denomina así a la mitad de un Byte, es decir, a una palabra de 4 bits (herencia de los procesadores de 4 bits como el 4004).

- Capacidad de memoria: Se llama así a la cantidad de información que se puede almacenar en una memoria. La notación más común para la capacidad de memoria es: M palabras de N bits.
 - ▶ Ejemplo : Una memoria de 16 x 8 es capaz de almacenar 16 palabras de 8 bits, es decir 128 bits ó 16 Bytes.

- Densidad: Otra forma de definir la capacidad de una memoria es la densidad. Una memoria tiene mas densidad que otras si puede almacenar más bits
- Mapa de memoria: Se llama así a la distribución de una memoria. Un bloque de memoria se puede dividir en diferentes secciones para ser usadas de forma diferente.
- Direcciones de memoria: Es un número que identifica la localización de una palabra dentro de la memoria. Cada palabra almacenada en una memoria tiene una dirección única ligada a ella.

- Lectura: Se llama así a la operación que permite recuperar los datos almacenados en una o varias direcciones de memoria. También se le llama "fetch".
- Escritura: Es la operación que permite almacenar una serie de palabras dentro de la memoria, estos pueden ser datos o instrucciones. También se le llama "programar" la memoria.
- ► Tiempo de acceso: Medida de velocidad de respuesta de la memoria. Es el tiempo que transcurre entre que la memoria recibe una dirección y en que el dato sea válido en la salida.

Capacidad de Retención

Memoria volátil: Memoria que requiere la aplicación de una corriente eléctrica para almacenar o grabar la información y además para mantener esos datos válidos dentro de las células de memoria.

Memoria no volátil: Memoria que no necesita de una corriente eléctrica para mantener válidos los datos dentro de las células de memoria.

Modo de Acceso

- ▶ RAM (Random-Access Memory) : Memoria de acceso aleatorio. Dispositivo en el cual la localidad actual de memoria no tiene efecto sobre el tiempo que toma la lectura o escritura.
- SAM (Sequential-Access Memory): Memoria de acceso secuencial. Dispositivo de memoria en el cual el tiempo de acceso depende de la localidad de memoria.
- ▶ DAM (Direct Access Memory): Memoria de acceso directo o semi-aleatorio, es un tipo de memoria que combina el acceso RAM y SAM.

Modos de Lectura y Escritura

- ▶ RWM (Read-Write Memory): Memoria que puede ser leída y grabada con igual facilidad. Los tiempos de acceso para lectura y escritura son los mismos.
- ▶ ROM (Read-Only Memory): Memoria de sólo lectura. Este dispositivo es programado una sola vez y sólo se tiene acceso a él en modo de lectura.

Memoria Volátil

Memoria estática: Dispositivo en el cual los datos seguirán válidos mientras se aplique una tensión de alimentación.

Memoria dinámica: Dispositivo en el cual los datos no permanecen siempre válidos aún cuando se aplique de forma constante la alimentación. Los datos deben ser re-escritos periódicamente en cada célula de memoria.

Clasificación

Funcionamiento de una memoria de acceso aleatorio (RAM)

- Cada localidad tiene una dirección física señalada por el bus de Direcciones.
- La señal de control R/W indica el tipo de función a realizar.

Funcionamiento de una memoria de acceso aleatorio (RAM)

- Bus de datos: Designado como D0 á Dn, donde n+1 es el número de bits de la palabra de memoria.
- ▶ Bus de direcciones: Designado como A0 á Am, donde m es el número máximo de bits de direcciones de una memoria de 2^{m+1} palabras. A0 (al igual que D0) es el bit menos significativo.
- Señales de control: Estas señales especifican cuando una dirección es válida, cuando un dato es válido y el tipo de operación que se va a efectuar (lectura o escritura).
 - ▶ Señal de Read/Write
 - Señal de Output Enable (Output Control)
 - Señal de Chip Sellect (Chip Enable)

Funcionamiento de una memoria de acceso aleatorio (RAM)

- A. Seleccionar la dirección de memoria a la cual se va a acceder.
- B. Seleccionar la función de lectura o escritura.
- C. Proporcionar la palabra a almacenar durante un lapso mínimo de tiempo.
- D. Mantener la información recuperada de la memoria durante un lapso mínimo de tiempo.
- E. Habilitar o deshabilitar la memoria para determinar cuando es válida una dirección y/o un dato.

Funcionamiento Memoria RAM

Memoria Semiconductor ROM (acceso RAM)

Líneas de entrada y salida :

Memoria Semiconductor ROM

Líneas de entrada y salida (otra notación):

Memoria Semiconductor ROM

Diagrama de estados :

Memoria Semiconductor RAM (Volátil)

Líneas de entrada y salida

Memoria Semiconductor RAM

Diagrama de estados ciclo de escritura:

Memoria Semiconductor RAM

Diagrama de estados ciclo de lectura:

Estructura Interna de una memoria semiconductor

• Modelo "bit slice" \rightarrow 2ⁿ-1 direcciones, 1 dato

Ejemplo: RAM 16x1

Selección Coincidente

• Motivación:

- Decodificador: k entradas $\rightarrow 2^k$ AND gates de k entradas cada una.
- Implementación directa muy costosa si el número de direcciones es muy grande (hardware y tiempo de acceso).
- Solución: Selección coincidente
 - Reducción en complejidad del decodificador, en número de entradas a cada compuerta y en tiempo de acceso (lectura y escritura)

Selección Coincidente: Principio

- Dos decodificadores de k/2 entradas
- Decodificador 1 controla las líneas "word select"
- Decodificador 2 controla las líneas "chip select"
- esquema de selección bidimensional
 - Decodificador 1: "Selector de línea"
 - Decodificador 2: "Selector de columna"
 - Selección de la célula que resulta de la intersección de la línea "word select" con la columna "chip select"

Selección coincidente: RAM 16x1

Selección Coincidente: Funcionamiento

- Si CS = '0', ninguna columna es seleccionada
- Ejemplo:
 - Acceso a la celda 1001
 - Los dos MSBs (10) seleccionan la línea 2
 - Los dos LSBs (01) seleccionan la columna 1
 - Celda accesada: 9
- Lectura y escritura de forma normal

Selección Coincidente: RAM 8x2

Selección Coincidente: RAM 8x2

- 3 bits de direcciones (2 seleccionan línea y 1 selecciona columna –dos columnas-)
- Dos bits de datos que se almacenan o leen gracias al bit de selección de columna
- Ejemplo:
 - Direccion 011
 - 2 MSBs seleccionan línea 1
 - 1 LSB selecciona columna 2 (dos últimas columnas)
 - Celdas accesadas: 6 y 7

Selección Coincidente: Ventajas

- Ejemplo:
 - RAM 32K x 8 → 256K bits
- Sin selección coincidente
 - Decodificador 15 entradas $2^{15} = 32768$ salidas
 - ; 32768 AND gates de 15 entradas cada una!
- Con selección coincidente
 - 256K = 512² = 2⁹ → 9 bits seleccionan línea y 6 bits seleccionan columna
 - Decodificador de línea 9 − 512 (512 AND gates)
 - Decodificador de columna 6 64 (64 AND gates)
 - Total: 576 AND gates
 - ! Reducción material en un factor 57 ;

Arquitectura de una ROM

Expansión de Memoria

- Memoria comerciales
 - SRAM, DRAM
 - PROM, EPROM, EEPROM
- Memorias disponibles en diferentes tamaños
- Sin embargo, hay aplicaciones cuya unidad de memoria requiere una capacidad mayor que la capacidad de memorias comerciales
- Solución: combinación de CIs para formar el tamaño requerido → expansión de memoria

Expansión de Memoria

- Dos parámetros:
 - Número de palabras (capacidad)
 - Número de bits por palabra (datos)
- Tres tipos de expansión
 - Capacidad (número de palabras)
 - Palabras (número de bits por palabra)
 - Capacidad y palabras (número de palabras y número de bits por palabra)

Expansión de capacidad:

- Construir un bloque de memoria 256K x 8 a partir de memorias 64K x 8:
 - Número de memorias 64K x 8 requeridas
 256K / 64K = 4
 - Bits de direcciones: $log_2 256K = 18$ bits
 - 16 LSB entran al bus de direcciones de todas las memorias
 - 2 MSB entran a un decodificador 2-4 y las salidas van a la entrada CS de las memorias
 - El número de bits de datos no cambia → el bus de datos de entrada y salida es común a todas las memorias

Expansión de capacidad:

Expansión de palabra:

- Construir un bloque de memoria 64K x 32 a partir de memorias 64K x 8
- Número de memorias 64K x 8 requeridas

$$32 / 8 = 4$$

- Bits de direcciones: $log_2 64K = 16$ bits
 - Los 16 bits entran al bus de direcciones de todas las memorias
- El número de bits de datos cambia → el bus de datos de entrada y salida se dividirá en el número de columnas (4) del arreglo de memorias

Expansión de palabra:

Expansión de palabra y de capacidad

- Construir un bloque de memoria 256K x 32 a partir de memorias 64K x 8
- Número de memorias 64K x 8 requeridas
 256K / 64K = 4 ; 32 / 8 = 4 : Total 16 memorias
- Bits de direcciones: $log_2 256K = 18$ bits
 - 16 LSB entran al bus de direcciones de todas las memorias
 - 2 MSB entran a un decodificador 2-4 y las salidas van a la entrada CS de las memorias
- El número de bits de datos → el bus de datos de entrada y salida se dividirá en 4 columnas

Expansión de palabra y de capacidad

Fabricación de Memorias Semiconductor

- Construidas a partir de uno o varios transistores acompañados de elementos pasivos (R, C).
- Según el tipo de arreglo, pueden ser:
 - PROM (EPROM, EEPROM)
 - SRAM
 - DRAM
 - Anti Fusible
 - ▶ Flash

Los transistores que mas se usan en la construcción de memorias son BJT y MOS:

•Tipo N:

•Corte: Vb = '0'

•Saturación: Vb = Vc

•Tipo P:

•Corte: Vb = Vc

•Saturación: Vb = '0'

El circuito de base para la construcción de una célula de memoria es el inversor:

Otra forma de construir un inversor es mediante el uso de lógica complementaria:

Vin	0	1
Vout	1	0

- Las memorias magnéticas basan su funcionamiento en las propiedades de los materiales ferro-magnéticos como el acero, el cobalto y el níquel.
- Para ello utilizan un circuito como el que se muestra en la figura, el cual puede generar un campo magnético a partir de una corriente eléctrica.

La cabeza de grabación se compone de un electro-imán de nucleo de alta permeabilidad.

- <u>Escritura</u>: Se alimenta el embobinado del electro-imán con una corriente que provoca un campo magnético en el entrehierro que magnetiza la cinta.
- Lectura: La cinta en movimiento induce una señal débil en la bobina que es traducida en una señal de corriente.
- ▶ El embobinado está formado de varias espiras de hilo fino, el núcleo está formado de ferrita. La cabeza completa mide entre 1/8 y 1/16 de pulgada.

- Disco Flexible: dispositivo en forma de oblea redonda con un recubrimiento de óxido metálico, el tamaño del disco estándar es:
 - ▶ 10" (hace 25 años)
 - 5"1/4 (hace 15 años)
 - > 3"1/2 (hace 5 años)
- El disco magnético viene recubierto por una protección de plástico que lo aísla del intemperie.
- Este dispositivo es sensible a campos electromagnéticos intensos.

El dispositivo cuenta con motores a pasos, servo motores y sensores ópticos.

▶ El disco flexible se organiza en pistas y sectores:

Doble Densidad:

- •750 KB
- •80 pistas por cara
- •9 sectores por pista

Alta Densidad:

- •1.4 MB
- •80 pistas por cara
- •18 sectores por pista

La intersección entre una pista y un sector es una región que se organiza de la siguiente forma:

- A: Marca de Sincronización
- B: Cabecera de campo de datos
- C: Hueco previo de separación
- D: Datos (512 Bytes)
- E: Código detector de errores
- F: Separación entre sectores

- Disco Duro: Este dispositivo está formado por una serie de obleas recubiertas por óxido férrico apiladas una sobre de otra.
- Entre cada una de ellas existe un espacio que permite el desplazamiento de las cabezas magnéticas.
- Estos dispositivos permiten capacidades del orden de los GB.
- ▶ El tamaño de las obleas es de 3"1/2 y de 5"1/4.

- El disco duro se forma de varios discos similares a los discos flexibles.
- Las caras expuestas al chasis no se utilizan.
- Estos discos se organizan en: Cilindros y Pistas.
- Los discos que forman este dispositivo pueden tener 300 pistas.

La intersección entre un cilindro y una pista es una región que se organiza de la siguiente forma:

- A: Número de cilindro
- B: Número de pista
- C: Número de registro
- D: Datos
- E: Código detector de errores

Cinta magnética:

- Existen tres dispositivos de memoria ópticos en el mercado:
 - ▶ CD-ROM : Compact Disc Read Only Memory.
 - Tipo de memoria óptico no volátil y de acceso directo.
 - Dos formatos : CD-R, y CD-RW.
 - Driginalmente usado como un sistema de respaldo de información.
 - DVD : Digital Versatile Disc.
 - Destinado a la reproducción de secuencias de video de alta definición.
 - También se utiliza como dispositivo de memoria de datos.
 - ▶ Blu-Ray.
 - Destinado a la reproducción de secuencia video y videojuegos de alta definición.

Estructura del lector:

Operación :

- El diodo laser emite un haz de baja energía hacia un espejo altamente reflejante que lo hace impactar en la cara posterior del disco.
- Un servo motor sitúa el haz en la zona (track) a leer.
- Cuando el haz golpea la superficie es refractado y dirigido hacia un sistema de lentes.
- El haz refractado es convertido en una señal eléctrica por medio de un transconductor.

CD-ROM:

- El plato se fabrica a partir de cristal de aluminio o de silicio.
- En su estado puro (sin grabar) el disco se ve del color del aluminio.
- Al grabarse (estado amorfo) la capa de aluminio se desgasta para guardar la información digital en forma de canales.

Corte transversal del disco:

Estructura del disco:

- No existen varias pistas.
- Sólo una pista en forma de espiral.
- Los pozos de información se escriben consecutivamente del centro hacia el exterior

Capacidad : 682 MB 74 minutos de audio HiFi

- ▶ Formato de datos I : cada 2,352 Bytes
 - Sincronía : 12 Bytes
 - Encabezado : 8 Bytes
 - Datos: 2,048 Bytes
 - Código corrector de errores (ECC) : 284 Bytes.

Sincronía	Encabezado	Datos	ECC
-----------	------------	-------	-----

- Formato de datos 2 : cada 2,352 Bytes
 - Sincronía : 12 Bytes
 - Encabezado : 8 Bytes
 - Sub-encabezado : 8 Bytes
 - Datos: 2,324 Bytes
 - Código detector de errores (EDC) : 4 Bytes.

Sincronía Encabezad	lo Sub-E	Datos	ECC
---------------------	----------	-------	-----

Proceso de grabación, borrado y reproducción:

- Como se puede observar en el proceso de grabación la cantidad de energía es mayor debido al desgaste que requiere la superficie de aluminio.
- ➤ El voltaje neutro o de borrado es la referencia.
- ➤ El voltaje inferior a la referencia es la energía resultante en el ciclo de lectura.

- Los discos marcados como RW permiten re-escribir varias veces la información.
- Se pueden reutilizar varias veces.
- Al re-escribirse se desgasta una pequeña capa de silicio o de aluminio.
- Cada capa está protegida por un material dieléctrico.

DVD:

- La diferencia entre el video CD y el DVD radica en que el primero contiene datos en binario que representan una secuencia de imagen mas el audio asociado.
- El DVD es básicamente video en formato digital, bajo una compresión de imágenes de tipo MPEG.
- DVD se define como disco de almacenamiento digital versátil y su principal uso es el de almacenar secuencias digitales de vídeo.

- ▶ El DVD puede ser doble densidad.
- Un DVD puede almacenar en simple densidad 4.7 GB y 17 GB en doble densidad.

Existen varios formatos:

- DVD vídeo
- DVD ROM
- ▶ DVD R
- DVD Audio
- DVD RAM

- Para los formatos de DVD-ROM, DVD-vídeo y DVDaudio tenemos:
 - Formato DVD-5 que solamente puede ser usado en simple densidad a 4.7 GBytes.
 - Formato DVD-9 en simple y doble densidad con un máximo de 8.5 GBytes.
 - Formato DVD-10 en simple y doble densidad con un máximo de 9.4 GBytes.
 - Formato DVD-18 en simple y doble densidad con un máximo de 17.0 GBytes.

- ▶ El formato **DVD-R** permite el formato en doble densidad con una capacidad por lado o cara de 3.8 GBytes.
- ▶ El formato **DVD-RAM** proporciona una capacidad por lado de 2.6 Gbytes y puede ser usado en doble densidad.

Blu-Ray

- Se llama de esa forma debido a que utiliza como emisor óptico un diodo láser de color azul con una longitud de onda de 405 nanómetros.
- El estándar fue diseñado con el propósito de grabar, reescribir y reproducir video de alta definición y su audio asociado en multi-canal.
- Permite almacenar una cantidad superior a su antecesor el DVD.

Blu-Ray

- ▶ Capacidad de almacenamiento del Blu-ray:
 - Single Layer: 27 GB
 - Double Layer: 54 GB

Blu-ray Distriction of the control o

DVD 4.7 Gbyte

Track Pitch: 0,74 micron
Minimum Pit Length: 0,4 μm
Storage Density: 2,77 Gb/inch²

Blu-ray Disc 25 Gbyte

Track Pitch: 0,32 micron Minimum Pit Length: 0,15 μm Storage Density: 14,73 Gb/inch²

DVD

Regiones para la protección de la difusión de cintas cinematográficas definidas:

Blu-Ray

Regiones para la protección de la difusión de cintas cinematográficas definidas:

