MATH 103 SYLLABUS (CROSS-LISTED WITH MATH 73)

- 1. Abstract Measure Theory (12 Lectures)
 - (a) Measures, σ -algebras and all that.
 - (b) An Example: Lebesgue measure on \mathbf{R} and/or \mathbf{R}^n .
 - (c) Integration in an abstract measure space
 - (d) The convergence Theorems and applications.
 - (e) Product measures, Tonelli and Fubini.
 - (f) Sources
 - i. We have in mind cherry picking from Rudin's *Real & Complex* (Chapters 2, 6 and 8) since that will be the usual reference for the second part of the course. Instructors will have to develop Lebesgue measure on their own or possibly using Royden & Fitzpatrik as a guide.
 - ii. Obviously, time constraints and the instructor's interests will dictate what topics can be covered and at what depth. The topologists would love some attention paid to Lebesgue measure in \mathbf{R}^n at some point.
- 2. Complex Analysis (15 Lectures)
 - (a) Elementary Properties
 - i. Complex differentiation, Cauchy Riemann equations and path integrals
 - ii. Local Cauchy Theorem
 - iii. Holomorphic implies analytic
 - iv. Global Cauchy Theorem
 - v. Sources
 - A. The basic source we have in mind is Chapter 10 of Rudin's $Real\ \mathcal{E}$ Complex. This can be followed fairly closely even if it is fairly sophisticated.
 - B. Dana was taught that in an outline, there had to always be at least two sub-parts under any given item.
 - (b) Selected Topics Lecturer's Discretion
 - i. Maximum Modulus
 - ii. Isolated Singularities and Laurent Series

- iii. Residue Theorem and Applications
- iv. Argument Principle and Roche's Theorem
- v. Normal Families and Riemann Mapping Theorem
- vi. Sources
 - A. When Dana tried this before, he picked and chose from Chapter's 12-14 of Rudin's Real & Complex.
 - B. Sample Goal: try to build up enough background to at least pretend to prove Theorem 13.11 (Rudin) (at least $(b) \iff (c) \iff (d) \iff (f)$). That can't be done without leaving the proofs of some of the harder results.