Codage des entiers positifs et négatifs encore appelés "entiers signés" c'est-à-dire dotés d'un signe

Il n'y a pas vraiment le choix du format à adopter pour **coder les négatifs**. En effet une fois trouvé un format pour coder en binaire un entier n (positif) il faudra coder -n de telle sorte que l'addition n + (-n) donne 0.

Nous avons découvert précédemment comment fonctionne l'addition binaire (exactement comme l'addition décimale).

<u>0 en décimal</u> 0 est à la fois	-> positif et négati	0	0	0	0	0	0	0	0
1 en décimal	->	0	0	0	0	0	0	1	1
-1 en décimal	->	b	b	b	b	b	b	b	b
	Somme = 0	0	0	0	0	0	0	0	0
2 en décimal	->	0	0	0	0	0	1	0	0
-2 en décimal	->	b	b	b	b	b	b	b	b
	Somme = 0	0	0	0	0	0	0	0	0
3 en décimal	->	b	b	b	b	b	b	b	b
3 en décimal	->	b	b	b	b	b	b	b	b
	Somme = 0	0	0	0	0	0	0	0	0
en décimal	->	b	b	b	b	b	b	b	b
4 en décimal	->	b	b	b	b	b	b	b	b
	Somme = 0	0	0	0	0	0	0	0	0
5 en décimal	->	b	b	b	b	b	b	b	b
-5 en décimal	->	b	b	b	b	b	b	b	b
	Somme = 0	0	0	0	0	0	0	0	0

Q1: remplacer les b (bit) par des 0 et des 1 pour obtenir aux bons emplacements les écritures binaires des entiers de 3 à 5 et -1 à -5 REMARQUE : si une retenue dépasse l'octet, alors on l'ignore

Q2 : expliquez ci-dessous la méthode systématique de passage d'un entier positif à son inverse Cette méthode est souvent appelée *complément à 2*

Pour s'entrainer :

74 en décimal	->	b	b	b	b	b	b	b	b
-74 en décimal	->	b	b	b	b	b	b	b	b
127 en décimal	->	b	b	b	b	b	b	b	b
-127 en décimal	->	b	b	b	b	b	b	b	b

Q3: PROBLEME: Les octets que vous venez d'écrire pour représenter des entiers négatifs peuvent aussi être interprétés comme des écritures binaires d'entiers positifs Remplacer les P par la valeur positive (en décimal) que l'on pourrait attribuer à ces octets

CONCLUSIONS

Q4: Quel est le rôle particulier du bit de poids fort sous le format "entier signé"?

Q5 : Sous le format "entier signé" quelle est la gamme de valeurs que l'on peut représenter sur un octet ?