2020/2 GCC216 - ED - ERE

Estrutura de Dados

REOs 5 e 6 - Árvores Binárias de Busca, Tries e Árvores Balanceadas Relatório de comparação entre ABB e AVL.

Vitor André de Oliveira Tenório - Individual Turma 10A

1. Inserção

Para a visualização da quantidade de nós acessados, foi adicionado um atributo *qtdNohsInsercao* e *qtdNohsBusca*, responsáveis por contar quantos nós foram acessados na inserção e busca, respectivamente. Dessa forma, a quantidade de nós acessados na inserção é contabilizado da seguinte forma: quando a função 'insere' é chamada, a variável *qtdNohsInsercao* é zerada e a função 'insereAux' é chamada, como visto na Figura 1. Esta última utiliza a recursividade para encontrar a posição em que o novo nó será inserido, portanto *qtdNohsInsercao* é incrementado em 1 unidade a cada chamada recursiva.

Figura 1: Função Insere

```
void avl::insere(const unsigned &umDado)
{
    this->qtdNohsInsercao = 0;
    raiz = insereAux(raiz, umDado);
}
```

Fonte: Acervo Pessoal

Este processo é utilizado tanto na AVL, quanto na ABB. Como na segunda não há balanceamento, a inserção termina nesse momento. Para o balanceamento na AVL, de acordo com a necessidade, são realizadas rotações para ajustar as alturas dos nós de forma igual. Em rotações esquerda-direita ou direita-esquerda, são feitas duas chamadas para a função rotacaoDireita seguida da rotacaoEsquerda ou vice-versa. Portanto, nesses dois casos o contador é incrementado em 4 unidades, enquanto nas rotações simples é incrementado em 2 unidades.

Feito isso, foi montada uma tabela com o resultado da inserção de 25 dados na AVL e na ABB:

Inserção			
Valor do Noh Inserido	Nohs Acessados AVL	Nohs Acessados ABB	
50	1	1	
60	2	2	
45	2	2	
80	3	3	
100	6	4	
30	3	3	
46	3	3	
20	4	4	
19	7	5	
18	7	6	
17	7	7	
16	7	8	
90	5	5	
85	8	6	
120	8	5	
150	8	6	
170	8	7	
190	8	8	
200	8	9	
180	5	9	
160	8	8	
140	5	7	
130	10	8	
1	8	9	
2	8	10	

O desenho final de cada uma pode ser visto a seguir:

Figura 2: Resultado AVL

Fonte: Acervo Pessoal

Figura 3: Resultado ABB

Fonte: Acervo Pessoal

Já pelo desenho pode-se verificar como a AVL apresenta uma apresentação mais eficaz. Observando de forma matemática, tem-se que a média e o desvio padrão da quantidade de nós acessados pela operação de inserção na AVL, são respectivamente, 5,96 e 4,9497 aproximadamente. Já na ABB os valores são de 5,8 e 6,3640. A partir desses valores pode-se tirar certas conclusões: mesmo que a média da ABB seja menor, há uma grande diferença no desvio padrão, o que representa que na AVL, os dados são mais homogêneos, não há tanta discrepância entre os valores, enquanto na ABB não há a garantia de eficiência, o que será visto a seguir.

2. Busca

A busca é realizada de forma semelhante à inserção, porém é mais simples. A variável criada é incrementada até achar o elemento procurado, como mostrado na Figura 4. O método utilizado é o mesmo para AVL e ABB.

Figura 4: Busca

```
noh *avl::buscaAux(tipoChave chave)
{
    noh *atual = raiz;
    while (atual != NULL)
        this->qtdNohsBusca++;
        if (atual->elemento == chave)
        {
            return atual;
        else if (atual->elemento > chave)
            atual = atual->esq;
        else
            atual = atual->dir;
    return atual;
```

Fonte: Acervo Pessoal

Em seguida será mostrada uma tabela mostrando a quantidade de nós acessados pela AVL e pela ABB com determinados valores. Os 25 primeiros já se encontram na árvore, enquanto os demais não.

Busca			
Valor do Noh Buscado	Nohs Acessados AVL	Nohs Acessados ABB	
50	3	1	
60	5	2	
45	4	2	
80	4	3	
100	5	4	
30	5	3	
46	5	3	
20	2	4	
19	5	5	
18	4	6	
17	5	7	
16	3	8	
90	1	5	
85	5	6	
120	4	5	
150	4	6	
170	2	7	
190	3	8	
200	4	9	
180	4	9	
160	5	8	
140	3	7	
130	5	8	
1	4	9	
2	5	10	

300	4	9
0	4	9
3	5	10
21	5	4
195	4	9
110	5	5
170	2	7
87	5	6
15	5	10
155	5	8

Os dez últimos (a partir do dado 300) não se encontram na árvore.

Observando a tabela de busca, fica notório a discrepância entre os nós acessados pela AVL em comparação com a ABB. Enquanto a primeira teve 5 como maior número de nós acessados, a segunda chegou a acessar 10 nós para uma única consulta. Além disso, a média e o desvio padrão comprovam a eficiência da AVL. Na AVL, a média é de 4,0857 e o desvio padrão é de 1,4142, enquanto na ABB a média é de 6,3430 e o desvio padrão é de 4,9497. A diferença é clara: a média e o desvio padrão de nós acessados na AVL é bem menor, o que comprova que a árvore balanceada facilita muito a busca e promove uma maior eficiência ao programa.

A planilha utilizada para calcular a média e o desvio padrão se encontra neste link: https://docs.google.com/spreadsheets/d/1-jz6cSdq7F6NKbwtdE2xT1Wqqb2reoIFEQ HtkF-xRqk/edit?usp=sharing