

Problem Statement

Our task is to develop a weed detection model using semi-supervised learning techniques.

We are provided with:

- A small labeled dataset of agricultural field images containing sesame crops and weeds (200 images).
- A larger unlabeled dataset of similar images of sesame crops and weeds (1000 images).

The objective is to train a model/s capable of accurately identifying and localizing weeds within these images, demonstrating a clear improvement in performance by effectively utilizing the unlabeled data.

Metric for evaluation: 0.5 * (FI-Score) + 0.5 * (mAP@[.5:.95])

Initial Approaches

1.) SimCLR Implementation

Initially, we leveraged SimCLR (Simple Framework for Contrastive Learning of Visual Representations) for its robustness in self-supervised learning. SimCLR's methodology involves:

- Random augmentation of unlabeled images to create two correlated views
- Passing these views through a shared encoder
- Utilizing a contrastive loss function to:
 - →Maximize similarity between views of the same image
 - → Minimize similarity with other images in the batch

This process enables learning meaningful features from unlabeled data, which can then be fine-tuned with limited labeled data4. However, with only 200 labeled and 1000 unlabeled images, we lacked diverse negative samples.

2.) Mean Teacher with YOLOv8s

We then transitioned to a Mean Teacher approach using YOLOv8s, anticipating improved performance6. This method involves:

- Generating pseudo-labels using a teacher model
- Performing consistency checks between student and teacher predictions

Despite its potential, this approach significantly increased inference time due to the pseudo-label generation and consistency checking processes.

Proposed Solution

• Integrated Pipeline: Combines robust object detection with refined classification into a seamless system.

Detection with YOLO-v8s:

- Fine-tuned on an augmented dataset expanded from 200 to 640 images using diverse augmentation techniques.
- Scans input images to accurately localize potential weed zones.
- Region Cropping: Detected weed areas are cropped from the original image for further analysis using our classifier model.

Classification with ResNet-50

- Utilizes a ResNet-50 classifier enhanced by the Mean Teacher Method.
- Mean Teacher Approach:
 - Student Model: Learns from both labeled and unlabeled data using cross-entropy loss.
 - Teacher Model: Acts as an exponential moving average of the student to provide stable target predictions.

Outcome: The dual-stage system leverages augmented data and advanced learning strategies to deliver high accuracy and robust weed artifact classification.

Implemented Pipeline

ResNet 50 Classifier with Mean Teacher (Classification of Cropped Regions)

Final Output: Weed Classification

Data Augmentation

```
def adjust_annotations(annotations, crop_x, crop_y, crop_w, crop_h, orig_w, orig_h):
    """Adjust bounding box annotations after cropping."""
    new annotations = []
    for line in annotations:
        class id, x center, y center, width, height = map(float, line.strip().split())
        x abs, y abs = x center * orig w, y center * orig h
       width, height = width * orig w, height * orig h
       x1, y1 = x_abs - width / 2, y_abs - height / 2
        x2, y2 = x_abs + width / 2, y_abs + height / 2
       if x1 >= crop_x and y1 >= crop_y and x2 <= crop_x + crop_w and y2 <= crop_y + crop_h:
           x1 new, y1_new = x1 - crop_x, y1 - crop_y
           x2 new, y2_new = x2 - crop_x, y2 - crop_y
           x_{enter_new} = (x1_{new} + x2_{new}) / 2 / crop_w
           y_center_new = (y1_new + y2_new) / 2 / crop_h
            width_new = (x2_new - x1_new) / crop_w
            height new = (y2 new - y1 new) / crop h
            new_annotations.append(f"{class_id} {x_center_new:.6f} {y_center_new:.6f} {width_new:.6f} {height_new:.6f}"
    return new annotations
def random crop(image, annotations, crop size=(224, 224)):
    """Randomly crop image and adjust annotations."""
   h, w, = image.shape
    crop h, crop w = crop size
   if crop h > h or crop w > w:
        return image, annotations
    x_start = random.randint(0, w - crop_w)
   y start = random.randint(0, h - crop h)
    cropped image = image[y start:y start + crop h, x start:x start + crop w]
    new_annotations = adjust_annotations(annotations, x_start, y_start, crop w, crop h, w, h)
    return cropped image, new annotations
def invert colors(image):
    """Invert image colors."""
    return cv2.bitwise not(image)
def apply gaussian blur(image, kernel size=(5, 5)):
    """Apply Gaussian blur to image."""
    return cv2.GaussianBlur(image, kernel size, 0)
```

Image 1

Image 2

Image 3

Sample Results of our Pipeline

Green Box = Crop Red Box = Weed

Challenges

- Limited Labeled Data: As per the problem statement, our main task was to train a model with a dataset that was not only limited but had only a minimal portion labeled. To overcome this, we leveraged the seamless potential of semi-supervised training.
- Computational Complexity: Mean Teacher & YOLO-v8 integration increased training/inference time. The YOLO model even when we were freezing it and fine-tuning it took almost 20 min for one epoch. And under MTM architecture we have to train at least 100 such epochs. So we have to move to ResNet-50 model.
- Accuracy Challenge: Without Mean Teacher, baseline model ResNet-50 achieved 74% accuracy. Using Mean Teacher method, augmentation, and 100 epochs, an FI-Score of 1 was obtained.
- Pipeline Integration: After overcoming all the previous challenges, we successfully created a pipeline with seamless data flow, ensuring no loss of information.

Conclusions

• <u>Pipeline Architecture</u>:

- → Two-stage pipeline optimizes both labeled and unlabeled data
- → Stage 1: Smart integration of unlabeled data for classification
- → Stage 2: Advanced model refinement techniques

• Technical Implementation:

- → Mean Teacher Method with ResNet-50
- → Teacher model guides student model
- → Improved accuracy and reduced loss
- → Improved pretrained yolo-v8s using Resnet50 classifier results

• Key Benefits:

- → Maximizes available data utility
- → Reduces overfitting
- → Flexible framework for various domains

Thank you