Título: Demolidor.

Nome da equipe: #include <coragem.h> Problemática escolhida: Segurança Doméstica

Resumo — O projeto "Demolidor" (que faz referência ao super-herói da Marvel que possui um sonar altamente desenvolvido que atua como a sua visão) surgiu a partir da necessidade de promover uma maior segurança doméstica para pessoas com cegueira, seja ela de nascença, seja ela adquirida ao longo da vida. Tal projeto baseia-se no uso de sonares ultrassônicos que -ao encontrarem algum obstáculo dentro do seu raio de atuação - repassam essa informação para os motores de vibração, estes que são responsáveis por traduzir para o usuário os dados recebidos dos sonares por meio de sua intensidade de vibração.

Palavras-chave — Arduino, linguagem C, Motor de Vibração, Sensor de Distância, distância, projeto.

Abstract - The "Daredevil" project (which references the Marvel superhero who has a highly developed sonar that acts as his vision) arose from the need to promote greater home security for people with blindness, either she from birth or she acquired it over a lifetime. This project is based on the use of ultrasonic sonars that - when encountering an obstacle within their radius of action - pass this information on to the vibration motors, which are responsible for translating the data received from the sonars through their vibration intensity.

Keywords – Arduino, C language, Vibration Motor, Distance Sensor, Distance, project.

I. Objetivo

O experimento tem por principal objetivo auxiliar pessoas cegas a se locomoverem em ambientes domésticos de forma segura.

É importante frisar que por "ambiente doméstico" entende-se qualquer ambiente particular de um

grupo restrito, geralmente familiar, podendo também ser de outro tipo. Com isso, o projeto visa viabilizar a livre circulação de pessoas com deficiência visual em âmbitos domésticos que frequentem menos, tais como a casa de amigos e vizinhos, já que - a depender do tempo que se tem essa condição, costuma-se conhecer bem certos ambientes, sobretudo o seu próprio lar - como também facilitar o processo de adaptação de pessoas que adquiriram cegueira recentemente à sua própria casa.

II. MATERIAL UTILIZADO

- 1. 1 Arduino UNO;
- 2. 2 Módulos de Motor de Vibração;
- 3. 2 Módulos de Sensor de Distância Ultrassônico HC-SR04;
- 4. 1 Chave Gangorra On/Off MR-21S-2BB-F de 2 terminais;
- 5. 1 Bateria de 9V;
- 6. 1 Cabo Adaptador de Alimentação de Bateria de 9V;
- 7. 1 Case para Arduino UNO.

III. RESUMO

Introdução

O projeto "Demolidor" se inspira na ecolocalização dos morcegos com finalidade de expandir a percepção espacial de seu usuário. Para isso utiliza um sensor de distância que emite sinais ultrassônicos e por meio do eco desses sinais em objetos é capaz de mensurar distâncias.

O cálculo da distância de um objeto pode ser feito com base na velocidade do som no ar - aproximadamente 340 m/s - e o tempo entre a

emissão do pulso ultrassônico e a recepção de seu eco. Para isso basta usar a equação I.

Distância = $(Tempo \times velocidade do som) / 2$ (I)

Essa equação é a mesma da velocidade média - estudada no movimento uniforme. A divisão por dois é feita pois o tempo fornecido pelo sensor é para o trajeto de ida e volta do som. Se não for feita estaremos considerando duas vezes a distância.

Para transmitir a informação da distância do objeto para o usuário é utilizado um motor de vibração. O arduino faz o cálculo dessa distância e emite um sinal PWM utilizado no motor. À medida que há aproximação do objeto, o duty cicle porcentagem de tempo em que o sinal do PWM é nível alto - aumenta, isso faz com que o motor vibre com mais intensidade.

Em algum momento da vida já nos deparamos com a situação de estarmos em casa no período da noite e de repente acontecer uma falta de energia elétrica. Com isso tivemos a experiência de estarmos "cegos" em nosso ambiente doméstico e mesmo que bem familiarizados com o local ainda assim acabamos andando com dificuldades. trombamos em mesas, nos machucamos em quinas e alguns de nós podem até ter tropeçado e sofrido uma queda. Nesse contexto, a perda de visão e suas dificuldades são temporárias, mas para algumas pessoas - as que passaram por alguma forma de perda permanente da visão - isso é um desafio permanente e que requer tempo e esforço para adaptação. Tendo em vista isso, o projeto demolidor foi desenvolvido para auxiliar as pessoas com deficiência visual nesse processo visando uma locomoção com mais segurança e facilidade.

Para a implementação do projeto foram utilizados dois Sensores Ultrassônicos HC-SR04 e dois Módulos Motor de Vibração conectados diretamente aos pinos digitais do Arduino. Os pinos relacionados aos sensores HC-SR04 estão configurados como entradas e os módulos de vibração configurados como saída.

Inicialmente foi realizado um teste com os dois Módulos Motor de Vibração e um Potenciômetro, a fim de se observar os níveis de crescimento e decrescimento da intensidade de vibração dos módulos.

Figura 1. Teste dos Módulos Motor de Vibração com um Potenciômetro.

Fonte: imagem do acervo da equipe.

Em seguida, foi realizado um teste com o Sensor Ultrassônico e os módulos, com o objetivo de analisar e registrar informações referentes tanto aos limites de percepção de obstáculos do sensor, quanto à distância mínima - a priori - necessária para ativar os módulos.

OT ON REDMI 9 QUAD CAMERA

Figura 2. Teste do Sensor Ultrassônico.

Fonte: imagem do acervo da equipe.

Figura 3. Projeto "Demolidor" montado por completo na protoboard.

Fonte: imagem do acervo da equipe.

O Sensor Ultrassônico se caracteriza pela ótima precisão e baixo custo, sendo possível medir distâncias no raio de 2 cm à 4 m, com precisão de aproximadamente 3 mm. O módulo de vibração é capaz de emitir diversos padrões de vibração com diferentes intensidades, suportando sinais PWM. Portanto, ambos os componentes foram considerados, devido às suas características, os mais adequados para realização do projeto.

IV. JUSTIFICATIVA

No experimento realizado, ainda na forma de protótipo, testou-se a sensibilidade de um usuário aos motores de vibração quanto a existência de algum objeto no raio de atuação dos sensores ultrassônicos - na frente de sensores foi colocado a mão de um integrante do grupo e o usuário deveria dizer em que sentido estava a mão, esquerda ou direita, sem usar a visão. Além disso, foi testado colocar duas mão, uma em frente a cada sensor, e o usuário disse qual delas estava mais próxima do sensor de acordo com a intensidade de vibração dos dois motores. Para visualizar o experimento veja o vídeo.

Montagens

a) Descrição do Funcionamento:

TABELA I
Tabela de conexões de cada componente do projeto.

Componente	Conexões
Bateria de 9V	O polo negativo está ligado diretamente ao pino adaptador para a alimentação; enquanto o polo positivo está ligado à chave On/Off, esta está ligada ao pino adaptador.
Chave On/Off	O 1º terminal está ligado ao polo positivo da bateria; enquanto o 2º terminal está ligado ao pino adaptador.

Sensor de Distância mais à esquerda	Terminal GND ligado ao pino GND do Arduino; Terminal ECHO ligado ao pino digital 2 do Arduino; Terminal TRIG ligado ao pino digital 3 do Arduino; Terminal VCC ligado ao pino 5V do Arduino.
Sensor de Distância mais à direita	Terminal GND ligado ao terminal GND do Sensor Ultrassônico mais à esquerda; Terminal ECHO ligado ao pino digital 4 do Arduino; Terminal TRIG ligado ao pino digital 5 do Arduino; Terminal VCC ligado ao pino terminal VCC Sensor Ultrassônico mais à esquerda.
Módulo Motor de Vibração mais acima	Terminal IN ligado ao pino digital PWM 9 do Arduino; Terminal VCC ligado ao terminal VCC do Módulo de Vibração mais abaixo; Terminal GND ligado ao terminal GND do Módulo de Vibração mais abaixo.

	Terminal IN ligado ao pino digital PWM 10 do Arduino;
Módulo Motor de	Terminal VCC ligado
Vibração	ao terminal VCC do
mais abaixo	Sensor Ultrassônico
	mais à direita;
	Terminal GND ligado
	ao pino GND do
	Arduino;

Tomando por base a Tabela I acima referente às conexões existentes em todo o projeto, pode-se inferir que o funcionamento do mesmo pode ser dividido em três grandes áreas que estão interligadas entre si, são elas: alimentação, Sensores de Distância e Módulos Motor de Vibração.

Todo o sistema é alimentado por uma bateria de 9V que o deixa portátil - acoplada com um cabo adaptador de alimentação - por meio de uma chave gangorra On/Off que, quando desativada, não permite a passagem de corrente elétrica entre a bateria e a placa Arduino, deixando o projeto desligado.

Quando a *chave On/Off* está ativada, é permitido um fluxo de corrente elétrica entre a bateria e a placa Arduino, ligando o projeto. Com isso, os dois *Sensores Ultrassônicos* passam a funcionar, emitindo uma onda ultrassônica a cada 10µs (dez microssegundos) cada um. Se essa onda é captada pelo receptor quer dizer que há uma barreira física dentro do raio de funcionamento do sensor que possibilitou o ricocheteio da mesma e, a partir do tempo entre a emissão e a capitação de tal onda, é calculado via software a distância entre o sensor e a barreira.

Os raios de funcionamento dos *sensores* foram limitados a dois metros via software para fins de praticidade e viabilidade do projeto. Portanto, apenas os dados captados dentro dessa faixa são considerados e repassados para os *Módulos Motor de Vibração*. Tais módulos estão ligados cada um em uma entrada digital PWM da placa Arduino, sendo possível - então - controlar a intensidade de vibração dos mesmos de acordo com as distâncias

calculadas com os dados dos *Sensores de Distância*. Com isso, à medida que o usuário do projeto "Demolidor" aproxima-se de uma barreira, a intensidade de vibração vai aumentando gradativamente.

Além disso, é importante ressaltar que cada Sensor Ultrassônico está apontado para uma direção diferente, ou seja, um está voltado mais para a esquerda, enquanto o outro está voltado mais para a direita. Sendo assim, cada Módulo de Vibração - que está associado a um sensor distinto - é capaz de repassar para o usuário do projeto também um senso de direção, já que estarão posicionados na região da barriga, estando um mais à esquerda e o outro mais à direita.

b) Diagrama Elétrico:

Figura 4. Diagrama Elétrico do Projeto.

Fonte: imagem produzida pela equipe.

c) Código para implementação do projeto:

Figura 5. Imagens do código por partes.

```
#include <Arduino.h>

// Pino usado para disparar os pulsos do sensor

#define PinTRIG1 3

#define PinTriG2 5

// Pino usado para ler a saida do sensor

#define PinECHO1 2

#define PinECHO2 4

// Pino usado para disparar o motor de vibração (PWM)

const int PinVibra1 = 9; // PWM

const int PinVibra2 = 10; // PWM

double TempoEcho1 = 0;

double TempoEcho2 = 3;

// Em metros por microsegundo

// Const double VelocidadeSom mporus = 0.000340;
```

```
else{
    Serial.println("Fora de Alcance 1!");
    digitalWrite(PinVibra1, LOW);

119
120
121
122    //codicional para ativar segundo motor apenas se a distância para
123    //uma barreira for menor que 2m.
124    DisparaPulsoUltrassonico2();
125    TempoEcho2 = pulseIn(PinEcHO2, HIGH);
126    if((CalculaDistancia(TempoEcho2)*100) <= 200)
127
    {
128
129         Vibracao(CalculaDistancia(TempoEcho2)*100, PinVibra2);
130         //Serial.print("         Distancia 2: ");
131         //Serial.println(CalculaDistancia(TempoEcho2)*100);
132    }
133
134    else{
135         Serial.println("Fora de Alcance 2!");
136         digitalWrite(PinVibra2, LOW);
137    }
138    }
139</pre>
```

if((CalculaDistancia(TempoEcho1)*100) <= 200)</pre>

Vibracao(CalculaDistancia(TempoEcho1)*100, PinVibra1);

Fonte: material produzido pela equipe.

Código no GitHub

V. DIFICULDADES ENCONTRADAS NA IMPLEMENTAÇÃO DO PROJETO

A maior dificuldade enfrentada na montagem do protótipo foi na leitura dos dois sensores ultrassônicos de forma simultânea. Primeiramente tentou-se gerar um único pulso de Trig para os dois sensores, porém, com a função pulseIn só conseguiu-se ler o sinal do pino Echo de um dos sensores. Isso acontecia porque com esse pulso de Trig comum aos dois sensores mandavam um pulso ultrassônico ao mesmo tempo e recebiam seu respectivo eco quase no mesmo instante. Como o Arduino só processa um comando de cada vez, enquanto o sinal do pino Echo de um sensor era lido, o outro era perdido. A solução para esse problema foi criar funções independentes de pulso Trig para cada sensor (linhas 44 a 52 para o sensor 1 e linhas 53 a 61 para o sensor 2) e logo depois que cada uma é executada, é feita a leitura do pino Echo correspondente. Podemos ver isso nas linhas 100 e 104 para o sensor 1 e nas linhas 124 e 125 para o sensor 2.

VI. Referências

- 1. Arduino Education
- 2. Curso de Arduino Udemy
- 3. Documentação de Referência do Arduino
- 4. HC-SR04 Datasheet(PDF) List of Unclassifed Manufacturers
- BANZI, Massimo; SHILOH, Michael. Primeiros Passos com Arduino: a plataforma de prototipagem eletrônica open source. São Paulo: Novatec Editora Ltda, 2015.