Evolutionary Algorithms

Alexander Asteroth, Adam Gaier, Alexander Hagg

Bonn Rhein Sieg University o.a.s., Department of Computer Science

Introduction

Seen so far:

- Traditional evolution of fully connected, fixed topology neural networks
- Coevolution of subpopulations of neurons, also fixed topology (ESP).
- Effective in continuous and high-dimensional domains.
- What about non-fixed topologies?

Evolving Network Topology

- Fully-connected networks can approximate any function.
- So why bother evolving topology?
 - To get around grid search to find **number of hidden neurons**.
 - To **minimize** the dimensionality of weight space.

Figure: Left: Task for ESP evolving with 4 hidden neurons - every weight adds an entire dimension in weight space. Right: NEAT evolves minimal networks.

Problems: Continuous Topology Minimization

Continuous topology minimization without a special fitness function measuring complexity

Problems: Combining Disparate Topologies

Representation allowing crossover for disparate topologies

Problems: Continuous Topology Minimization

Protect topological innovation. New individuals with changed topology have to compete against older weight-optimized structures.

NEAT

- Start with a minimal feed forward neural network by just connecting input and output neurons.
- Evolve by mutating *nodes* or *connections* and breeding with crossover
- This constructive method does not need fitness modification to minimize solutions
- Use speciation to protect new, more complex, individuals.

NEAT: Representation

Figure: Taken from NEAT paper[?]

NEAT: Mutation

- add connection: add connection gene between unconnected nodes.
- add node:
 - split existing connection
 - 2 add node
 - 3 disable old connection
 - 4 add two new connections (in \rightarrow new: weight 1, new \rightarrow out: old weight)¹.

NEAT: Tracking Genealogy

Historic origin

If two genes are derived from the same ancestral gene, they must represent the same structure.

Global innovation number (a chronology of mutations):

- 1 Gene is added on structural mutation
- Check if this mutation is unique (in this generation)
- 3 Innovation number is assigned to new gene
- 4 Innovation number is incremented

NEAT: Genealogy/Crossover

NEAT: Genealogy/Crossover

- Matching Genes
 - Genes with same innovation numbers
- Disjoint Genes
 - Within range of other parents highest innovation number
 - Parent A gene innovation# < max(Parent B gene innovation#)
- Excess Genes
 - Outside of range of other parents highest innovation number
 - Parent A gene innovation# > max(Parent B gene innovation#)
- Matching genes taken randomly from either parent
- Non-matching genes taken from most fit parent
- If equal fitness, taken randomly

NEAT: Speciation

- Using only the process outlined so far, complexification will still be difficult
 - Smaller networks optimize faster
 - New structures typically not immediately helpful
- Use speciation and niching to protect new structures

NEAT: Speciation

- Use historical markers to separate into topological species.
- Compatibility distance using number of disjoint and excess genes.
- Compatibility threshold as species border.

Compatibility distance:

$$\delta = \frac{c_1 * E}{N} + \frac{c_2 * D}{N} + c_3 * \overline{W}$$

N = number of genes of largest individual

 $E = {\sf excess} \; {\sf genes}$

 $D = {\sf disjoint\ genes}$

 $\overline{W}=$ avg. weight differences of matching genes (incl. disabled)

 c_1 , c_2 , c_3 are hyperparameters.

NEAT: Speciation

Speciation and Niching

- 1 Assign each individual to a species
 - Individuals are grouped into species based on compatibility distance
 - These species are considered niches, with fitness penalties for having a large number of individuals in the species
- 2 Each species is assigned a number of children for the next generation based on their fitness compared to other species
- 3 Within each species selection and recombination take place until they have produced the number of offspring assigned by their fitness

HyperNEAT

What have we seen so far?

- ANN traditionally are trained using gradient-based methods
- Training ANN with GA can overcome some drawbacks of these methods
 - deeper networks (gradients averaging out)
 - recurrent networks (unfolding leads to deep networks)
 - networks without fixed topology
- ESP and NEAT still has difficulties in training very big networks

Biological inspiration

- How can this number of connections be defined?
- Learn from nature:
 - ANN are already inspired by biological neurons
 - Neurons in the brain exhibit locality not present in ANN (e.g. visual cortex, motor-cortex)

 \rightarrow see next slide

Cortical homunculus

HyperNEAT: fundamental observations

- Nature preserves geometric information in signals
- Nearby signals have similar effects
- Nearby neurons have similar functions (→ similar weights)
- Interpretation of weights as a pattern exhibits structural information

Preservation of geometric ordering

(a) Geometric Order

(b) Random Order

■ Classical ANN are ignorant w.r.t. order of the inputs and outputs

A new kind of ANN learning

- Learn weight patterns rather than individual weights
- Use pattern producing networks to describe this pattern (→ http://picbreeder.org)
- Networks
 - trained by NEAT
 - have different possible activation functions (Compositional)
 - implement the weight-function of another network
 - are called

Connective Compositional Pattern Producing Networks

Expressiveness of CPPN

- CPPN are particularly suited to describe symmetric repeating patterns including variation
- Similar phenomena are observed in biological brains
- CPPN use additional functions (w.r.t. ANN):
 - symmetric functions (e.g. gaussian)
 - periodic functions (e.g. sine)

Connective CPPN

Idea

Use CPPN to assign weights to some vector (from node a to node b)

Substrate

 Definition of substrate, i.e. the coordinate space for ANN-nodes, plays central role

Resolution

- Within a Hypercube coordinates of nodes can be chosen with arbitrary resolution
- Proven to scale up to millions of connections
- For visual discrimination example: train for 11×11 inputs, express for 33×33 and 55×55

Visual discrimination example

Task: Find center of bigger of two objects

Visual discrimination example: learning speed

Visual discrimination example: scaling up

success stories to Google "HyperNEAT"

References

Most Figures taken from Kenneth O. Stanley, David DAmbrosio, Jason Gauci: A Hypercube-Based Indirect Encoding for Evolving Large-Scale Neural Networks, Artificial Life journal 15(2), Cambridge, MA: MIT Press, 2009