```
> fitMod <- lm(Y ~ Xc + Zc + Xc:Zc) #Model interacts IV & moderator
> summary(fitMod)
```

Call:

 $lm(formula = Y \sim Xc + Zc + Xc : Zc)$

Residuals:

Min 1Q Median 3Q Max -21.466 -8.972 -0.233 6.180 38.051

Coefficients:

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 11.65 on 96 degrees of freedom Multiple R-squared: 0.7661, Adjusted R-squared: 0.7587 F-statistic: 104.8 on 3 and 96 DF, p-value: < 2.2e-16

We can use the plotSlopes function in the rockchalk package to plot the slopes (1 SD above and 1 SD below the mean) of the moderating effect.

The plot below shows that those who drank less coffee (the black line) paid more attention with the more sleep they got last night, but paid less attention overall than average (the red line).

Those who drank more coffee (the green line) paid more attention when they slept more as well and paid more attention than average.

The <u>difference</u> in the slopes for those who drank more or less coffee shows that coffee consumption moderates the relationship between hours of sleep and attention paid.


```
ps <- plotSlopes(fitMod, plotx
= "Xc", modx = "Zc", xlab =
"Sleep", ylab = "Attention
Paid", modxVals = "std.dev")</pre>
```