Отчет по лабораторной работе №8

Дисциплина: Математическое моделирование

Выполнила Дяченко Злата Константиновна, НФИбд-03-18

Содержание

1	Цель работы	5
2	Задание	6
3	Объект и предмет исследования	8
4	Теоретические вводные данные	9
5	Выполнение лабораторной работы 5.1 Шаг 1 5.2 Шаг 2 5.3 Шаг 3 5.4 Шаг 4	13 13 13 14 14
6	Выводы	16

Список таблиц

Список иллюстраций

5.1	Математическая модель для первого случая	13
5.2	Графики изменения оборотных средств фирм	14
5.3	Математическая модель для второго случая	14
5.4	Графики изменения оборотных средств фирм во втором случае .	15

1 Цель работы

Изучить и построить модель конкуренции двух фирм.

2 Задание

Построить графики изменения оборотных средств фирмы 1 и фирмы 2 без учета постоянных издержек и с веденной нормировкой для случая 1 и для случая 2.

Случай 1:

Рассмотрим две фирмы, производящие взаимозаменяемые товары одинакового качества и находящиеся в одной рыночной нише. Считаем, что в рамках нашей модели конкурентная борьба ведётся только рыночными методами. То есть, конкуренты могут влиять на противника путем изменения параметров своего производства: себестоимость, время цикла, но не могут прямо вмешиваться в ситуацию на рынке («назначать» цену или влиять на потребителей каким-либо иным способом.) Будем считать, что постоянные издержки пренебрежимо малы, и в модели учитывать не будем. В этом случае динамика изменения объемов продаж фирмы 1 и фирмы 2 описывается следующей системой уравнений:

$$\frac{dM_1}{d\theta} = M_1 - \frac{b}{c_1} M_1 M_2 - \frac{a_1}{c_1} M_1^2$$

$$\frac{dM_2}{d\theta} = \frac{c_2}{c_1}M_2 - \frac{b}{c_1}M_1M_2 - \frac{a_2}{c_1}M_2^2$$

Случай 2:

Рассмотрим модель, когда, помимо экономического фактора влияния (изменение себестоимости, производственного цикла, использование кредита и

т.п.), используются еще и социально-психологические факторы – формирование общественного предпочтения одного товара другому, не зависимо от их качества и цены. В этом случае взаимодействие двух фирм будет зависеть друг от друга, соответственно коэффициент перед M_1M_2 будет отличаться. Пусть в рамках рассматриваемой модели динамика изменения объемов продаж фирмы 1 и фирмы 2 описывается следующей системой уравнений:

$$\frac{dM_1}{d\theta} = M_1 - (\frac{b}{c_1} + 0.00061)M_1M_2 - \frac{a_1}{c_1}M_1^2$$

$$\frac{dM_2}{d\theta} = \frac{c_2}{c_1}M_2 - \frac{b}{c_1}M_1M_2 - \frac{a_2}{c_1}M_2^2$$

Для обоих случаев:

N – число потребителей производимого продукта

au – длительность производственного цикла

р – рыночная цена товара

 \tilde{p} – себестоимость продукта, то есть переменные издержки на производство единицы продукции

q – максимальная потребность одного человека в продукте в единицу времени $\theta = \frac{t}{c_1}$ - безразмерное время

$$M_0^1 = 5.5, M_0^2 = 3.5, p_{cr} = 28, N = 30, q = 1, \tau_1 = 10, \tau_2 = 12, \tilde{p_1} = 10, \tilde{p_2} = 8.2$$

$$a_1 = \frac{p_{cr}}{\tau_1^2 \tilde{p_1^2} N q}, a_2 = \frac{p_{cr}}{\tau_2^2 \tilde{p_2^2} N q}, b = \frac{p_{cr}}{\tau_1^2 \tilde{p_1^2} \tau_2^2 \tilde{p_2^2} N q}, c_1 = \frac{p_{cr} - \tilde{p_1}}{\tau_1 \tilde{p_1}}, c_2 = \frac{p_{cr} - \tilde{p_2}}{\tau_2 \tilde{p_2}}$$

$$t = c_1 \theta$$

3 Объект и предмет исследования

Объектом исследования в данной лабораторной работе является модель конкуренции двух фирм, а предметом исследования - графики изменения оборотных средств фирмы 1 и фирмы 2.

4 Теоретические вводные данные

Вначале рассмотрим модель фирмы, производящей продукт долговременного пользования, когда цена его определяется балансом спроса и предложения. Примем, что этот продукт занимает определенную нишу рынка и конкуренты в ней отсутствуют. Обозначим:

- N число потребителей производимого продукта.
- S доходы потребителей данного продукта. Считаем, что доходы всех потребителей одинаковы. Это предположение справедливо, если речь идет об одной рыночной нише, т.е. производимый продукт ориентирован на определенный слой населения.
- M оборотные средства предприятия
- au длительность производственного цикла
- p рыночная цена товара
- $ilde{p}$ себестоимость продукта, то есть переменные издержки на производство единицы продукции.
- δ доля оборотных средств, идущая на покрытие переменных издержек.
- κ постоянные издержки, которые не зависят от количества выпускаемой продукции.
- Q(S/p) функция спроса, зависящая от отношения дохода S к цене p. Она равна количеству продукта, потребляемого одним потребителем в единицу времени. Функцию спроса товаров долговременного использования часто представляют в простейшей форме:

$$Q = q - k \frac{p}{S} = q(1 - \frac{p}{p_{cr}}) \tag{4.1}$$

где q – максимальная потребность одного человека в продукте в единицу времени. Эта функция падает с ростом цены и при $p=p_{cr}$ (критическая стоимость продукта) потребители отказываются от приобретения товара. Величина $p_c r = Sq/k$. Параметр k – мера эластичности функции спроса по цене. Таким образом, функция спроса в форме (1) является пороговой (то есть, Q(S/p)=0 при $p\geq p_{cr}$) и обладает свойствами насыщения.

Уравнения динамики оборотных средств средств можно записать в виде

$$\frac{dM}{dt} = -\frac{M\delta}{\tau} + NQp - \kappa = -\frac{M\delta}{\tau} + Nq(1 - \frac{p}{p_{cr}})p - \kappa \tag{4.2}$$

Уравнение для рыночной цены p представим в виде

$$\frac{dp}{dt} = \gamma(-\frac{M\delta}{\tau\tilde{p}} + Nq(1 - \frac{p}{p_{cr}})) \tag{4.3}$$

Первый член соответствует количеству поставляемого на рынок товара (то есть, предложению), а второй член – спросу. Параметр γ зависит от скорости оборота товаров на рынке. Как правило, время торгового оборота существенно меньше времени производственного цикла τ . При заданном M уравнение (3) описывает быстрое стремление цены к равновесному значению цены, которое устойчиво. В этом случае уравнение (3) можно заменить алгебраическим соотношением

$$-\frac{M\delta}{\tau\tilde{p}} + Nq(1 - \frac{p}{p_{cr}}) = 0 \tag{4.4}$$

Из (4) следует, что равновесное значение цены p равно

$$p = p_{cr}(1 - \frac{M\delta}{\tau \tilde{p}Nq}) \tag{4.5}$$

Уравнение (2) с учетом (5) приобретает вид

$$\frac{dM}{dt} = M \frac{\delta}{\tau} (\frac{p_{cr}}{\tilde{p}} - 1) - M^2 (\frac{\delta}{\tau \tilde{p}})^2 \frac{p_{cr}}{Nq} - \kappa \tag{4.6} \label{eq:4.6}$$

Рассмотрим две фирмы, производящие взаимозаменяемые товары одинакового качества и находящиеся в одной рыночной нише. Последнее означает, что у потребителей в этой нише нет априорных предпочтений, и они приобретут тот или иной товар, не обращая внимания на знак фирмы. В этом случае, на рынке устанавливается единая цена, которая определяется балансом суммарного предложения и спроса. Иными словами, в рамках нашей модели конкурентная борьба ведётся только рыночными методами. То есть, конкуренты могут влиять на противника путем изменения параметров своего производства: себестоимость, время цикла, но не могут прямо вмешиваться в ситуацию на рынке («назначать» цену или влиять на потребителей какимлибо иным способом.) Уравнения динамики оборотных средств запишем по аналогии с (2) в виде

$$\frac{dM_1}{dt} = -\frac{M_1}{\tau_1} + N_1 q (1 - \frac{p}{p_{cr}}) p - \kappa_1 \frac{dM_2}{dt} = -\frac{M_2}{\tau_2} + N_2 q (1 - \frac{p}{p_{cr}}) p - \kappa_2 \quad (4.7)$$

где использованы те же обозначения, а индексы 1 и 2 относятся к первой и второй фирме, соответственно. Величины N1 и N2 — числа потребителей, приобретших товар первой и второй фирмы. Учтем, что товарный баланс устанавливается быстро, то есть, произведенный каждой фирмой товар не накапливается, а реализуется по цене p. Тогда

$$\frac{M_1}{\tau_1 \tilde{p_1}} = N_1 q (1 - \frac{p}{p_{cr}}) \frac{M_2}{\tau_2 \tilde{p_2}} = N_2 q (1 - \frac{p}{p_{cr}}) \tag{4.8} \label{eq:4.8}$$

где $\tilde{p_1}$ и $\tilde{p_2}$ – себестоимости товаров в первой и второй фирме. С учетом (10) представим (11) в виде

$$\frac{dM_1}{dt} = -\frac{M_1}{\tau_1}(1 - \frac{p}{\tilde{p_1}}) - \kappa_1 \frac{dM_2}{dt} = -\frac{M_2}{\tau_2}(1 - \frac{p}{\tilde{p_2}}) - \kappa_2 \tag{4.9}$$

Уравнение для цены, по аналогии с (3),

$$\frac{dp}{dt} = -\gamma (\frac{M_1}{\tau_1 \tilde{p_1}} + \frac{M_2}{\tau_2 \tilde{p_2}} - Nq(1 - \frac{p}{p_{cr}})) \tag{4.10}$$

Считая, как и выше, что ценовое равновесие устанавливается быстро, получим

$$p = p_{cr}(1 - \frac{1}{Nq}(\frac{M_1}{\tau_1\tilde{p_1}} + \frac{M_2}{\tau_2\tilde{p_2}})) \tag{4.11}$$

Подставив (14) в (12) имеем:

$$\frac{dM_1}{dt} = c_1 M_1 - b M_1 M_2 - a_1 M_1^2 - \kappa_1 \frac{dM_2}{dt} = c_2 M_2 - b M_1 M_2 - a_2 M_2^2 - \kappa_2 \tag{4.12}$$

где
$$a_1=\frac{p_{cr}}{\tau_1^2\tilde{p_1^2}Nq}, a_2=\frac{p_{cr}}{\tau_2^2\tilde{p_2^2}Nq}, b=\frac{p_{cr}}{\tau_1^2\tilde{p_1^2}\tau_2^2\tilde{p_2^2}Nq}, c_1=\frac{p_{cr}-\tilde{p_1}}{\tau_1\tilde{p_1}}, c_2=\frac{p_{cr}\tilde{p_2}}{\tau_2\tilde{p_2}}$$
 Исследуем систему (15) в случае, когда постоянные издержки (κ_1 , κ_2)

Исследуем систему (15) в случае, когда постоянные издержки (κ_1 , κ_2) пренебрежимо малы. И введем нормировку $t=c_1\theta$. Получим следующую систему:

$$\frac{dM_1}{d\theta} = M_1 - \frac{b}{c_1} M_1 M_2 - \frac{a_1}{c_1} M_1^2 \frac{dM_2}{d\theta} = \frac{c_2}{c_1} M_2 - \frac{b}{c_1} M_1 M_2 - \frac{a_2}{c_1} M_2^2 \quad \text{(4.13)}$$

Пусть помимо экономического фактора влияния (изменение себестоимости, производственного цикла, использование кредита и т.п.), используются еще и социально-психологические факторы — формирование общественного предпочтения одного товара другому, не зависимо от их качества и цены. В этом случае взаимодействие двух фирм будет зависеть друг от друга, соответственно коэффициент перед $M_1\,M_2$ будет отличаться.

5 Выполнение лабораторной работы

5.1 Шаг 1

Я построила модель для первого случая, когда конкурентная борьба ведётся только рыночными методами, с данными начальными условиями в Modelica. Увидеть это можно на Рисунке 1 (рис. 5.1).

```
1 model lab08 1
2 parameter Real p cr=28 "критическая стоимость продукта";
3 parameter Real N=30 "цисло потребителей произволимого продукта";
4 parameter Real q=1 "максимальная потребиость одного человека в продукте в единицу времени";
5 parameter Real t1=10 "длительность производственного цикла";
6 parameter Real p1=10 "себестоимость производственного цикла";
7 parameter Real p1=10 "себестоимость производственного цикла";
8 parameter Real p2=8.2 "себестоимость продукта 2";
9 parameter Real a1=p cr/(t1*t1*p1*p1*N*q);
10 parameter Real a2=p cr/(t2*t2*p2*p2*N*q);
11 parameter Real b=p cr/(t1*t1*p1*p1*t2*t2*p2*p2*N*q);
12 parameter Real c2=[c-cr-p1/(t2*p2);
13 parameter Real c1=(p-cr-p1/(t1*p1*p1*);
14 Real M1(statr=5.5) "оборотные средства предприятия 1";
15 Real M2(statr=5.5) "оборотные средства предприятия 2";
16 Real tetha1, tetha2 "безразмерное время";
17 equation
18 der(M1)=c1*M1-b*M1*M2-a1*M1*M1;
19 der(M2)=c2*M2-b*M1*M2-a2*M2*M2;
20 der(tetha1)=1/c1;
21 der(tetha2)=1/c1;
22 end lab08_1;
```

Рис. 5.1: Математическая модель для первого случая

5.2 Шаг 2

Построила графики изменения оборотных средств фирмы 1(красный) и фирмы 2(синий). По оси ординат значения $M_(1,2)$, по оси абсцисс значения $\theta=\frac{t}{c_1}$ (безразмерное время). Графики изображены на следующем рисунке (рис. 5.2) По графику видно, что рост оборотных средств предприятий идет независимо друг от друга. В математической модели этот факт отражается в коэффициенте, стоящим перед членом M_1M_2 : в рассматриваемой задаче он одинаковый

в обоих уравнениях $(\frac{b}{c_1})$. Это было обозначено в условиях задачи. Каждая фирма достигает свое максимальное значение объема продаж и остается на рынке с этим значением, то есть каждая фирма захватывает свою часть рынка потребителей, которая не изменяется.

Рис. 5.2: Графики изменения оборотных средств фирм

5.3 Шаг 3

Построила модель для второго случая, когда, помимо экономического фактора влияния, используются еще и социально-психологические факторы (рис. 5.3)

```
model lab08 2

parameter Real p_cr=28 "критическая стоимость продукта";

parameter Real N=30 "число потребителей произволимого продукта";

parameter Real q=1 "максимальная потребность одного человека в продукте в единицу времени";

parameter Real t1=10 "длительность производственного цикла";

parameter Real t2=12 "длительность производственного цикла";

parameter Real p1=10 "себестоимость продукта 1";

parameter Real p2=8.2 "себестоимость продукта 2";

parameter Real al=p_cr/(t1*t1*p1*p1*N*q);

parameter Real al=p_cr/(t1*t1*p1*p1*x1*q);

parameter Real b=p_cr/(t1*t1*p1*p1*t2*t2*p2*p2*N*q);

parameter Real b=p_cr/(t1*t1*p1*p1*t2*t2*p2*p2*N*q);

parameter Real c1=p_cr-p1)/(t1*p1);

Real Mi(start=5.5) "оборотные средства предприятия 1";

Real Mi(start=5.5) "оборотные средства предприятия 2";

Real tethal, tetha2 "бевразмерное время";

equation

der(M1)=c1*M1-(b+0.00061*c1)*M1*M2-a1*M1*M1;

der(M2)=c2*M2-b*M1*M2-a2*M2*M2;

der(tetha1)=1/c1;

end lab08_2;
```

Рис. 5.3: Математическая модель для второго случая

5.4 Шаг 4

Построила графики изменения оборотных средств фирмы 1(красный) и фирмы 2(синий). По оси ординат значения $M_(1,2)$, по оси абсцисс значения $\theta=\frac{t}{c_1}$

(безразмерное время). Графики изображены на следующем рисунке (рис. 5.4) По графику видно, что первая фирма, несмотря на начальный рост, достигнув своего максимального объема продаж, начитает нести убытки и, в итоге, терпит банкротство. Динамика роста объемов оборотных средств второй фирмы остается без изменения: достигнув максимального значения, остается на этом уровне.

Рис. 5.4: Графики изменения оборотных средств фирм во втором случае

6 Выводы

Я познакомилась с моделью конкуренции двух фирм, рассмотрела ее для двух случаев, построив графики изменения оборотных средств фирм. Результаты работы находятся в репозитории на GitHub, а также есть скринкаст выполнения лабораторной работы.