Time-series Analytics

Giacomo Ziffer

giacomo.ziffer@polimi.it

Introduction

Time Series (brief recall from early lectures)

- A time-series is a set of observations on a quantitative variable collected over time.
- Examples
 - Dow Jones Industrial Averages
 - Historical data on sales, inventory, customer counts, interest rates, costs, etc.
 - Signal processing, pattern recognition, econometrics, mathematical finance, weather forecasting, earthquake prediction, electroencephalography, communications engineering, ...
- Businesses are often very interested in analyzing and forecasting time series variables

Time series analysis

A statistical technique that uses time-series data for explaining the past and forecasting future events

1st foundational concept Stationarity

Fact

If a time series is stationary,... ... it is predictable

Definition

A **stationary** time series is one whose **properties do not depend on the time** at which the series is observed.

Let's build the intuition of stationarity

White noise: the perfect time series

A sequence of random numbers with zero mean and finite variance

- NOTE: indeed it is perfectly predictable
 - If you predict 0 (the mean), you minimize the error (which is proportional to the variance)

Mean is constant over time (a.k.a., with trend)

Variance is constant over time

No repetitive pattern (a.k.a. seasonality)

Stationarity No combinations of the previous ones :-P

non-constant variance + seasonality

non-constant mean + seasonality

Non-constant mean
+ non-constant variance
+ seasonality

Stationarity Let's see if you got the point

- Which of these time series is stationary?
- Why?

Quiz

Stationary Formal definition

- Let $\{X_t\}$ be a stochastic process and let $F_X(t_{1+\tau},...,t_{k+\tau})$ represent the cumulative distribution function of the unconditional (i.e., with no reference to any particular starting value) joint distribution of $\{X_t\}$ at times $t_{1+\tau},...,t_{k+\tau}$.
- Then, $\{X_t\}$ is said to be strictly stationary, strongly stationary or strict-sense stationary if

$$F_X(t_1,...,t_k) = F_X(t_{1+\tau},...,t_{k+\tau})$$
 for any $\tau e k$.

How to **test** for **stationarity**

Stationary By hand ...

- 1. Load a time series
- 2. Split it two parts
- 3. Compute mean and variance of the two parts
- 4. Compare them

Stationary Statistical tests

- We can test for stationarity using statistical tests called **Unit Root Tests**.
- ADF test: Augmented Dickey Fuller test
- KPSS test: Kwiatkowski-Phillips-Schmidt-Shin test

2nd Quiz

Time-series Analytics

Giacomo Ziffer

giacomo.ziffer@polimi.it

