3.1 : C 프로그램 구조와 프로그램 실행

실습예제 3-1: 01comments.c

```
#include <stdio.h>

// 운영체계가 호출하는 함수, void로 매개변수 없음을 표시
int main(void)
{
  puts("3장 첫 c 프로그램!\n");
  printf("키워드: int void return 등\n");
  printf("식별자: main puts 등\n");
  return 0;
}
```

【생각해 보기】 출력은 어떤 형태일까요?

	3장 첫 c 프로그램!
3장 첫 c 프로그램! 키워드: int void return 등 식별자: main puts 등	키워드: int void return 등
	식별자: main puts 등

☞ 제어문자 출력

제어문자	의미	제어문자	의미
\n	줄 바꿈	\a	벨 소리
\t	탭 위치로 이동	\b	왼쪽으로 한 칸 이동
\r	맨 앞으로 이동		

【도전과제 - 1】다음 프로그램 출력은?

#include <stdio.h></stdio.h>	예상 출력
int main(void)	
<pre>{ printf("Goot\bd\tchance\n"); printf("Cow\rW\n");</pre>	
return 0;	

3.2 : 자료형(Data Type)과 변수(Variable) 선언

□ 변수(Variable)

- 프로그램은 문제 해결 **시나리오**이며, 프로그램은 문제 해결을 위해 **데이터**를 처리

구분	정의	값 변경	메모리 역할	예시코드
변수	실행 중 값이 바뀔 수 있는 데이터 공간	가능	값을 저장할 공간 제공	int age = 20; age = 25;
	age = 25	20 -> 25	5 (내용을 언제든지 바꿀	수 있음)

□ 변수(Variable)는 왜 필요할까?

- 변수 : 프로그램에서 일시적으로 데이터를 저장하는 공간
- 데이터가 입력되면 어딘가에 저장해야 다음에 사용할 수 있음
- 변수의 저장공간은 **메인 메모리**에 만들어 짐
- 변수로 메모리의 주소를 사용할 수 있지만 기억하기 불편 변수 이름으로 사용 (예: 메모리 100번지에 20을 대입하라 / 변수 sum에 20을 대입하라)

□ 변수(Variable) 선언 및 활용

자료	설명	자료형	크기 (Byte)	선언 예시	사용 예시/출력 예시
정수	정수 저장 (소수점 없음)	int	4	int age = 20;	printf("%d", age); → 20 출력
실수	실수 저장 (소수점 포함)	double	8	double pi = 3.14;	printf("%.2lf", pi); → 3.14 출력
문자	문자 1개 저장	char	1	char grade = 'A';	printf("%c", grade); → A 출력
문자열	여러 문자 저장	char[]	가변	char name[] = "Tom";	printf("%s", name); → Tom 출력

- 변수는 중괄호의 블록({})에 선언하여 선언한 위치부터 블록 끝까지 사용 가능
- 변수의 자료형이 같으면 동시에 여러 개 선언 가능 (예: int b, c)
- 대입 연산자는 왼쪽의 변수에 오른쪽의 값을 저장함 (예: a = 10;)
- 변수는 대입 연산자 왼쪽에서는 **저장공간**, 오른쪽에서는 **값이** 됨 (예: a = 10; b = a;)
- * l-value(left value) : 저장공간으로 사용하는 변수, r-value(left value) : 값으로 사용하는 변수

□ 변수(Variable) 이름 짖기

- 메모리 시작 주소의 이름 (앞으로 number라고 불러 주세요)

- 변수 이름 만드는 규칙

	sum	0
 ■ 알파벳 문자와 숫자, 밑줄 문자 _로 구성	_count	0
■ 첫 번째 문자는 반드시 알파벳 또는 밑줄 문자 _	dongyang3	0
	dong_yang	0
■ 대문자와 소문자를 구별	2nd_try	X
■ C 언어의 키워드와 똑같은 이름은 허용되지 않음	Dongyang#	X
	int	Х

- 좋은 변수 이름 만들기 : 변수의 역할을 잘 설명하는 이름
 - 밑줄 방식 : bank_account
 - 단어의 첫 글자를 대문자 : BankAccount

□ 변수(Variable) 타입이 왜 필요할까?


```
/**
 * 소스 : 02variables.c
 * 버전: V1.0
 **/
#include <stdio.h>

int main(void)
{

int year = 2022; //선언과 동시에 변수 초기화
int credits;

credits = 15: // 선언된 변수에 초기화

printf("%d년도\n", year);
printf("이수학점: %d학점\n", credits);

return 0:
}
```


실습예제 3-3: 03addsub.c

```
/**
 * 소스: 03addsub.c
 * 버전: V1.0
 **/
#include <stdio.h>

int main(void)
{

 int data1 = 20, data2 = 13;

    // 대입 연산자의 왼쪽과 오른쪽에서의 변수의 의미 해석
    int diff = data1 - data2;
    int sum = data1 + data2:

    printf("data1: %d, data2: %d\n", data1, data2);
    printf("차 : %d, 합: %d\n", diff, sum);

    return 0;
}
```


3.3 : 기본 자료형(Data Type)

□ 기본 자료형 - signed 정수 자료형

1byte	char(1	byte)						
1byte	1byte	short(2	2byte)					
1byte	1byte	1byte	1byte	int(4	byte)			
1byte	1byte	1byte	1byte	long(4byte)			
1byte	1byte	1byte	1byte	1byte	1byte	1byte	1byte	long long(8byte)

자료형 (Data Type)	할당되는 메모리 크기 (Byte)	표현 가능 데이터 범위	출력 서식 문자
char	1	-128 ~ 127	%c (문자로 출력) 또는 %d
short	2	-32768 ~ 32767	%d
int	4	-214748 ~ 2147483647	%d
long	4	-214748 ~ 2147483647	%ld
long long	8	$-2^{63} \sim 2^{63} - 1$	%lld

* 자료형의 int(4byte)와 long(4byte)의 크기가 같은 이유

자료형 int는 운영체제에 따라서 2byte와 4byte로 사용할 수 있는 메모리 크기가 달라짐

- 16bit의 운영체제에서 int의 크기는 2byte, long의 크기는 4byte
- 32bit와 64bit 운영체제에서는 int의 크기는 4byte, long의 크기는 4byte
- 윈도우가 아닌 다른 운영체제에서는 long의 메모리 크기가 8byte인 경우도 있음

□ 기본 자료형 - unsigned 정수 자료형

- 정수 자료형은 양수와 음수 모두 저장함
- unsigned 정수 자료형은 양수만 저장함 2배 넓은 범위의 값을 저장할 수 있음

자료형 (Data Type)	할당되는 메모리 크기 (Byte)	표현 가능 데이터 범위	출력 서식 문자
unsigned char	1	0 ~ 255	%u
unsigned short	2	0 ~ 65535	%u
unsigned int	4	0 ~ 4294967295	%u
unsigned long	4	0 ~ 4294967295	%lu
unsigned long long	8	$0 \sim 2^{64} - 1$	%llu

	실습예제 3-4: 04integer.c
【생각해 보기】실행 결과는 ?	

3.3 : 기본 자료형(Data Type)

□ 기본 자료형 - 부동소수(실수) 자료형

1Byte	1Byte	1Byte	1Byte	float(4	4Byte)			
1Byte	1Byte	1Byte	1Byte	1Byte	1Byte	1Byte	1Byte	double(8Byte)
1Byte	1Byte	1Byte	1Byte	1Byte	1Byte	1Byte	1Byte	long double(8Byte)

자료형 (Data Type)	할당되는 메모리 크기 (Byte)	표현 가능 데이터 범위	출력 서식 문자
float	4	$1.17549E^{-38} \sim 3.40282E^{38}$	%f
double	8	$2.22507E^{-308} \sim 1.79769E^{308}$	%f
long double	8	$2.22507E^{-308} \sim 1.79769E^{308}$	%f

* long double은 운영체제와 플랫폼마다 크기가 다름

운영체제	CPU(플랫폼)	바이트 크기	비트 크기
MS Windows	X86(32bit)	8	64
M5 WINDOWS	X86-64(64bit)	8	64
I :	X86(32bit)	12	96
Linux	X86-64(64bit)	16	128

실습예제 3-5: 05floatdouble.c

3.3 : 기본 자료형(Data Type)

□ 기본 자료형 - 문자 자료형

1Byte

char(1Byte)

1Byte

unsigned char(1Byte)

자료형 (Data Type)	할당되는 메모리 크기 (Byte)	표현 가능 데이터 범위	출력 서식 문자
char	1	-128 ~ 127 (문자는 실제 0~127까지 사용)	%с
unsigned char	1	0 ~ 255	%с

* 표3-6 아스키 코드표 참조 (1Byte인 char로는 한글 문자 저장 불가)

실습예제 3-6: 06char.c

3.3 : 기본 자료형(Data Typ	e)
□ 자료형의 크기 알아내기 - sizeof 연산자	
	실습예제 3-7: 07sizeflow.c
【생각해 보기】실행 결과는 ?	

3.4 : 상수 표현 방법

□ **상수(Constant)**의 개념과 표현 방법

구분	정의	값 변경	메모리 역할	예시코드
상수	프로그램 실행 중 변하지 않는 값	불가능	고정된 값 저장	#define PI 3.14 const int MAX = 100;
	#define PI 3.14	3.14 (0)-	름은 있지만 변경은 안 됨)

□ <u>상수(Constant)</u>

- 데이터는 어딘가 저장되어야 다음에 사용할 수 있음
- 상수 : 저장된 값의 변경이 불가능한 공간 (예: 3.14, 10, 'A', "Hello World")
- 보통 상수는 이름이 없음, 이런 상수를 <u>리터럴(literal) 상수</u>라고 함 (예: 3.14, 10)
- 이름을 붙일 수 있음, 이를 <u>기호(symbolic) 상수</u>라 함 (#define PI 3.14)

□ 상수(Constant) 표현법 (정수, 실수, 문자, 문자열)

자료형	설명	상수 예시	코드 예시	메모리 저장 예시
정수		진수, 8진수,	20 const int NUM = 10; #define YEAR 2025 16진수로 표현 가능 ·), 0xA(16진수). 012(8진수)	이진 정수로 저장됨
실수	소수점 있는 수 • 실수 상수는 <u>소</u>	3.14, -0.5 - 	3.33	부동소수점 방식으로 저장
문자	한 개 문자 (작은 따옴표)	'A', '1'	'A' const char grade = 'A'; #define TOP 'A'	(문자 1개) → 아스키코드 65
			메모리에 표현하기 위한 약속 65 (0x41, 01000001)	
문자열	문자들 묶음 (큰 따옴표)	"Hello", "AB"	"DONGYANG" const char str[] = "AB"; #define NAME "DONGYANG"	'A' + 'B' + '\0' (널문자 포함)

	실습예제 3-10: 10const.c
【생각해 보기】실행 결과는 ?	