This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE 6-15-00

In re Patent Application of

JOHANSSON et al.

Filed: March 1, 2002

Atty. Ref.:

4127-2

Serial No.

Group:

Examiner:

For: ANTENNA

March 1, 2002

Assistant Commissioner for Patents Washington, DC 20231

SUBMISSION OF PRIORITY DOCUMENT

Sir:

It is respectfully requested that this application be given the benefit of the foreign filing date under the provisions of 35 U.S.C. §119 of the following, a certified copy of which is submitted herewith:

Application No.

Country of Origin

<u>Filed</u>

9903115-5

Sweden

3 September 1999

Respectfully submitted,

NIXON & VANDERHYE P.C.

John R. Lastova

Reg. No. 33,149

JRL:mm

1100 North Glebe Road, 8th Floor

Arlington, VA 22201-4714 Telephone: (703) 816-4000

Facsimile: (703) 816-4100

PRV

PATENT- OCH REGISTRERINGSVERKET Patentavdelningen

Intyg Certificate

Härmed intygas att bifogade kopior överensstämmer med de handlingar som ursprungligen ingivits till Patent- och registreringsverket i nedannämnda ansökan.

This is to certify that the annexed is a true copy of the documents as originally filed with the Patent- and Registration Office in connection with the following patent application.

- (71) Sökande Telefonaktiebolaget L M Ericsson (publ), Stockholm SE Applicant (s)
- (21) Patentansökningsnummer 9903115-5 Patent application number
- (86) Ingivningsdatum 1999-09-03
 Date of filing

Stockholm, 2002-01-25

För Patent- och registreringsverket For the Patent- and Registration Office

Godió Begeilund Hjördis Segerlund

Avgift

Fee 170:-

ALBIHNSA GBG

Ink. t. Patent- och reg, verket 1999 -09- U 3 Huvudfaxen Kassan

ANTENNA

110757 SPB 1999-09-02

5

TECHNICAL FIELD

The invention concerns antennas, specifically small stacked patch antennas.

10

BACKGROUND

The size of mobile wireless terminals is decreasing as digital and analog components become increasingly integrated and miniaturized. Apart from user interface aspects, the main limiting factor on further size reductions are the antennas. The antennas are now a dominating factor in the visual appearance of many mobile devices. From an esthetic point of view it would be desirable to have antennas that are small. Further, manufacturing costs can usually be reduced with smaller antennas.

20

25

30

15

Wireless local-area network (LAN) solutions for office use are rapidly becoming a prominent competitor to traditional wireline networks. A major advantage of wireless LANs is the mobility they offer. A computer can be connected to a wireless LAN from anywhere within the LAN's coverage area. The antennas for the mobile terminals of the wireless LANs are normally intended for installation on a PC-card, which puts constraints on the However, the dimensions of antennas are allowable antenna size. wavelength dependent. Additionally an antenna's bandwidth and radiation efficiency are limited by the effective volume, in terms of wavelengths, that the antenna occupies.

10

15

20

.

,

0317119555

Ink. t. Patent- och reg.verket 1999 -09- 0 3

2

Huvudfaxen Kassan

Another constraint put on antennas is their radiation pattern. Wireless LAN antennas mounted on, for example, a PC-card should b small and radiate primarily in the horizontal plane. Indoor wave propagation tends to be confined to incidence angles within a narrow angular interval centered around the horizon. The antenna should also have an omni-directional radiation pattern, i.e. the radiation pattern should be substantially independent of the azimuthal angle, in order to be able to register the various wave components of a typical multipath propagation channel common in indoor environments. Thus, a wireless LAN antenna should be wideband, efficient and substantially omni-directional. Further, such an antenna should make an optimum use of its volume in order to fit into an alloted space in a respective device. Wireless LAN antennas intended to be mounted on a PCcard (direction of mounting in relation to computer orientation when in use should be taken into account), should therefore be planar and low-profile with a negligible thickness.

Additionally a wireless LAN antenna for indoor use should, apart from an omnidirectional radiation pattern with an essentailly constant radiation pattern in the azimuthal (horizontal) direction, preferably also have a null-depth, or a near null-depth, in the broadside (vertical) direction. A null-depth, or near null-depth in the broadside direction is important to enable different wireless LANs on different floors to co-exist with as little cross interference as possible.

A variety of small low profile antennas have been proposed. Examples 25 include everything from antennas based on modifications of the traditional monopole antenna to elaborate optimized antenna schemes involving multilayered structures with meandering lines, ceramic materials, and various types of impedence matching schemes. Most types of low profile antennas with wide bandwidths have semi-isotropic radiation patterns with maximum 30 radiation, or at least significant radiation levels, in the broadside, i.e. vertical, direction. One type of antenna that adresses some of the above mentioned

Ink. L. Patent- och reg verket

3

1999 -09- 0 3

Huvudfaxen Kassan

constraints is the bent stacked slot antenna (BSSA). Th BSSA antenna achieves a relatively wide bandwidth and small size and makes use of a center strip of a middle patch as an integrated impedance matching unit. An example of such an antenna is described in the European patent application EP 795926. However, a disadvantage with the BSSA type of antenna can in some applications be considered to be the inherent azimuthal gain variations and relatively narrow bandwidth, i.e. there is a need for a more omnidirectional antenna with a wider bandwidth.

10

5

SUMMARY

An object of the invention is to define a low-profile antenna which provides a high efficiency, good omni-directionality and a wide bandwidth.

15

25

30

Another object of the invention is to define a low-cost low profile antenna which is suitable to be mounted on a PC-card.

A further object of then invention is to define a low profile antenna which when mounted horizontally provides a substantially omni-directional radiation pattern 20 in the azimuthal direction and at least a near null-depth in the broadside direction.

The aforementioned objects are achieved according to the invention by a stacked patch antenna. The stacked patch antenna is intended to be mounted on a ground plane. The antenna comprises two stacked metallic patches. The patches are stacked on top of each other. The patch to be mounted closest to the ground plane, the middle patch, comprises at least two conductors at or close to its edge which conductors are intended to be connected to the ground plane to thereby ground the patch in two zero potentail areas. The patch to be mounted furthest away from the ground plane, the top patch, comprises at least two conductors at or close to its edge which electrically interconnect the

@317119555

Ink. t. Patent- och reg.verket

1999 -09- 0 3

Huvudfaxen Kassan

4

two patches. The conductors electrically interconnecting the patches should preferably be connected to the middle patch at least proximate the respective zero potential areas of the middle patch. The conductors preferably also provide structural strength to the antenna and provide mounting means and support for the patches. The middle patch is fed at a feed area which is at least proximate the geometric center of the middle patch. The middle patch further comprises at least two apertures completely within the circumference of the middle patch. Preferably the apertures are placed in such a way that at least two paths are provided from each place which is grounded on the middle patch to the feed area, i.e. each aperture blocks a direct line from the feed area to a respective place which is grounded. Thereby enabling radiation from a slot defined by the edge of the top patch and the edge of the middle patch and a slot defined by the edge of the middle patch and the ground plane.

15

20

25

30

10

5

The aforementioned objects are also achieved according to the invention by a stacked patch antenna comprising two metallic patches stacked on top of each other. The middle patch comprises at least two conductors at or close to its edge, which conductors are intended to be connected to a ground plane to thereby ground the patch in two places. The top patch comprises at least two conductors at or close to its edge which electrically interconnect the two patches. The middle patch is fed at a feed area which is at least proximate its geometric center. The middle patch further comprises at least two apertures completely within its circumference, i.e. each aperture having a respective unbroken circumference. Thereby enabling radiation from slots defined by the edge of the top patch and the edge of the middle patch and defined by the edge of the middle patch and the ground plane.

The aforementioned objects are also achieved according to the invention by a low profile antenna structure. The antenna structure comprises a first metallic patch and a second metallic patch stacked over a ground plane. The first patch comprises a circumference along a patch edge of the first patch.

10

15

20

25

30

ŧ

ı

::::

-:--:

Huvudfaxen Kassan

5

Th second patch comprises a circumf rence along a patch edge of th second patch. The first patch is arranged between the ground plane and the second patch. The first patch is grounded at at least a first zero potential area by electrical connection with the ground plane and a second zero potential area by electrical connection with the ground plane. The first patch is further fed at a single feed area. The second patch is electrically interconnected to the first patch. According to the invention the first patch comprises at least a first aperture and a second aperture located completely within the circumference of the first patch, i.e a current can flow on the first patch completely around each aperture. The presence of the apertures force current, propagating from the feed area to the first zero potential area and the second zero potential area, toward the patch edge of the first patch. By forcing the current to flow close to the edge there can be radiation from slots defined by the edge of the first patch and the edge of the second patch and the ground plane. The slots go around the antenna almost completely and therefore a substantially omni-directional radiation pattem is provided.

The aforementioned objects are also achieved according to the invention by a low profile antenna structure. The antenna structure comprises a first metallic patch and a second metallic patch stacked over the first patch. The patches are intended to be mounted over a ground plane. The first patch comprises a circumference along a patch edge of the first patch. The second patch comprises a circumference along a patch edge of the second patch. The first patch is arranged between the ground plane and the second patch. The first patch comprises a first zero potential area by connection with the ground plane and a second zero potential area by connection with the ground plane. The second patch is electrically interconnected to the first patch. The antenna is fed at a single feed area comprised on the first patch. According to the invention the first patch comprises at least a first aperture and a second aperture located completely within the circumference of the first patch, i.e. the first patch comprises two apertures with edges that do not even touch the edge of the first patch. By providing these apertures, current,

ALBIENSA GBG 0317119555 Ink. t. Paternt- och reg.verket 1999 -09- 0 3

6 Huvudfaxen Kassan

propagating from the feed area to the first zero potential area and the second zero potential area, is forced toward the patch edge of the first patch to. By forcing the current to take these paths radiation is enabled from slots defined by the edge of the first patch and the edge of the second patch and the ground plane.

Advantageously the first aperture and the second aperture are located on the first patch in such a way that current propagating from the feed area to the first zero potential area propagates in two different paths around the first aperture and that current propagating from the feed area to the second zero potential area propagates in two different paths around the second aperture. Preferably the first aperture is located between the feed area and the first zero potential area, and the second aperture is preferably located between the feed area and the second zero potential area. Advantageously the second patch is electrically interconnected to the first patch at at least the first zero potential area and the second zero potential area.

Preferably, to ensure that the current propagates where desired, the first aperture and the second aperture each have an extension which is substantially perpendicular to a line between the first zero potential area and the second zero potential area, i.e. the apertures are longer than they are wide

In certain embodiments there is a symmetry of the first patch about a line between the first zero potential area and the second zero potential area. In other embodiments, alone or in combination, there is a symmetry of the first patch about a line perpendicular to a line between the first zero potential area and the second zero potential area. Other embodiments are more or less asymmetric.

In some embodiments the second patch comprises no openings within its circumference. In other embodiments the second patch comprises at least

30

:::

25

5

10

15

20

ink. t. Patent- och reg.verket 1999 -09- 0 3

7

Huvudfaxen Kassan

one opening within its circumefer nce. In further embodiments the second patch is electrically split into two halves along a line which is substantialy perpendicular to a line between the first zero potential area and the second zero potential area.

5

10

20

25

30

Preferably the second patch at least covers the first aperture and the second aperture of the first patch.

In some embodiments the first patch comprises further apertures. In some embodiments the antenna structure comprises the ground plane. Then, advantageously the ground plane is substantially of the same size as the first patch and the second patch. In some embodiments the first patch and the second patch are substantially of the same size. In certain applications the first patch, in addition to the first aperture and the second aperture, advantageously comprises further apertures. 15

In some embodiments the electrical connections from the first patch to the ground plane and the electrical interconnections between the first patch and the second patch, in addition to providing the antenna structure with electrical connections also provides the antenna with mechanical support giving the antenna a self supporting structure. In other embodiments the first patch is supported by a first dielectric and the second patch is supported by a second dielectric, the first dielectric and the second dielectric further providing the antenna with mechanical support giving the antenna a self supporting structure. In other embodiments comprising the ground plane it can be advantageous that the first patch is supported by a first dielectric and that the second patch is between the first dielectric and a second dielectric and that the ground plane is supported by the second dielectric, the first dielectric and the second dielectric further providing the antenna with mechanical support giving the antenna a self supporting structure.

10

15

20

25

30

ALBIHN:A GBG 0317119555 t. Patent- och reg.verket 1999 -09- U 3

8

Huvudfaxen Kassan

The antenna structure according to the invention may at the single feed area be probe fed at one point, thereby attaining a shielded feed probe. The single feed area can then also further comprise inductive feed matching. Optionally the antenna structure may at the single feed area be fed by an aperture coupling. Alternatively the single feed area may be probe fed at a plurality of points. The plurality of points can advantageously be placed in the feed area along a limited line that if extended would pass through the first zero potential area and the second zero potential area. Preferably the plurality of points are placed in the feed area symmetrically about a line that passes through the first zero potential area and the second zero potential area.

The different additional enhancements of the antenna structure according to the invention can be combined in any desired manner as long as no conflicting features are combined.

The aforementioned objects are also achieved according to the invention by a device comprising wireless communication means, which device comprises an antenna according to any above described antenna structure according to the invention.

The aforementioned objects are also achieved according to the invention by a wireless or wireless mobile terminal which comprises an antenna according to any above described antenna structure according to the invention for wireless communication.

The aforementioned objects are also achieved according to the invention by a personal computer card suitable for insertion into an electronic device, which card comprises an antenna according to any above described antenna structure according to the invention

Huvudfoxen Kassan

9

The afor mentioned objects ar also achi ved according to the invention by a wireless local area network system comprising a base station and a plurality of terminals which are in wireless communication with the base station, where at least one terminal comprises either directly, i.e. permanently mounted in the terminal, or indirectly, i.e. removably mounted in the wireless terminal, an antenna according to any above described antenna structure according to the invention

By providing a low-profile stacked patch antena according to the invention a plurality of advantages over prior art antennas are obtained. Primary purposes of the invention are to provide a substantially omni-directional antenna with a low-profile that is suitable for mounting on a PC-card, which is still efficient and has a wide bandwidth, for use in a, for example, wireless LAN. Other advantages of this invention will become apparent from the detailed description.

15

5

10

BRIEF DESCRIPTION OF THE DRAWINGS

The invention will now be described in more detail for explanatory, and in no sense limiting, purposes, with reference to the following figures, in which

Fig. 1	shows a wireless mobile terminal in the form of a personal
	computer, comprising either directly or indirectly an antenna
	according to the invention,

25

30

- Fig. 2 shows a small stacked patch antenna according to the invention,
- Fig. 3 shows a middle patch of an antenna according to the Invention,

Fig. 4 shows a second embodiment of a small stacked patch antenna according to the invention,

@012 Ink. t. Patent- och reg.verket 1999 -09- Û 3

10

Huvudfaxen Kassan

show different embodiments of a middle patch of antennas Fig. 5A-D according to the invention,

shows a third embodiment of a small stacked patch antenna 5 Fig. 6 according to the invention,

show the three metallization layers of a small stacked patch Fig. 7A-C antenna according to the invention, for example that shown and described in relation to figure 6. 10

DETAILED DESCRIPTION

20

25

30

In order to clarify the method and device according to the invention, some 15 examples of its use will now be described in connection with Figures 1 to 7.

Figure 1 shows a wireless mobile terminal in the form of a personal computer The personal computer can either comprise communication means 190. permanently mounted within the computer 190, or allow a communication card 199 to be inserted by means of a slot/mounting means 191 into the computer. A low profile stacked patch antenna according to the invention is suitable to be mounted either directly into the computer 190, or be made accessible indirectly to the computer by being mounted on a PC-card 199. The wireless terminal 190 can, for example, be connected to a wireless local area network via the communications means.

Figure 2 shows a small stacked patch antenna according to the invention. The antenna comprises two stacked patches 210, 240 which are intended to be mounted above a ground plane 200. The ground plane 200 can be comprised in the antenna, in which case the ground plane 200 is of the approximate same size 201 as the patches 210, 240, specifically the first/middle patch 210. The

-:--:

•:--:

: ::

ALBIHNSA GBG 0317119555

Ink. t. Patent- och reg.verket

1999 -09- 0 3

11

Huvudfaxen Kassan

patches 210, 240, will in many mbodiments have at least the same approximate shapes and size limits, but they 210, 240 do not have to be of the same size or shape. One of the functions of the second/top patch 240 is to cover, along a normal vector to the ground plane, at least two apertures 220, 230 on the middle patch 210, in order to prevent the apertures 220, 230 from radiating. The patches 210, 240 are mounted apart from each other and apart from the ground plane 200 in such a way that radiating slots 214, 216, 244, 246 are formed. The radiating slots 214, 216, 244, 246 are defined as the openings that are formed between the edge/circumference 242 of the top patch 240 and the edge/circumference 212 of the middle patch 210, and also the openings 10 that are formed between the edge/circumeference 212 of the middle patch 210 and the ground plane 200 along a projection 201 of the middle patch 210 onto the ground plane 200. The slots 214, 216, 244, 246 are made to radiate by forcing a current that propagates from a feed point/area 219 to at least two zero potential areas 226, 236, toward the circumference 212 of the middle patch 15 210. The current is forced toward the circumference 212 by means of the apertures 220, 230. The apertures 220, 230 are thus positioned on the middle patch 210 so that they hinder/block the current from propagating directly in a straight line to the two zero potential areas 226, 236. The apertures 220, 230 are located completely within the circumference 212 of the middle patch 210 so 20 that current can pass around the apertures 220, 230, i.e. the circumeference 212 of the middle patch does not touch or intersect a circumference/edge 222, 232 of the apertures 220, 230. The two zero potential areas 226, 236 are formed by grounding the middle patch 210 on or proximate to the circumeference 212 by means of electrical connections/conductors 224, 234. 25 The conductors 224, 234 are placed so that there is an aperture 220, 230 between each zero potential area 226, 236 that is formed by the grounding, and the feeding area 219. The top patch 240 is also grounded by means of electrical connections/conductors 254, 264 to create zero potential areas 256, 266 at or proximate the circumference 242 on the top patch 240. 30 conductors 254, 264 are preferably connected directly to or proximate a corresponding zero potential area 226, 236 of the middle patch 210.

10

20

25

30

;

i

:

,-:--**:**

...:

0317119555

ink. t. Patent- och reg.verket 1999 -09- U 3

12

Huvudfaxen Kassan

The size of the conductors 254, 264 between the top patch 240 and the middle patch 210 will influence the front slot 244 and the back slot 246 between the top patch 240 and the middle patch 210. The size of the conductors 224, 234 between the middle patch 210 and the ground plane 200 will influence the front slot 214 and the back slot 216 between the middle patch 210 and the ground plane 200. This gives the antenna structure according to the invention four fundamental degrees of freedom. The antenna can thus be designed to have up to four separate well matched bands, a single continuous frequency band with a very large bandwidth, or in the case of a completely symmetrical antenna structure one well matched substantially omnidirectional large bandwidth frequency band.

The patches 210, 240 can be supported by dielectric carriers or as shown in the figure be mechnically supported by the conductors 224, 234, 254, 264. 15

Figure 3 shows a middle patch 310 of an antenna according to the invention. The figure shows the middle patch 310 with a first aperture 320 with its corresponding edge/circumference 322, a second aperture 330 with its corresponding edge circumference 332, a feed point/area 319, a first zero potential area 326, a second zero potential area 336, a connection place 324 for a first conductor to a ground plane, a connection place 334 for a second conductor to a ground plane, a connection place 354 for a first conductor to a top patch, a connection place 364 for a second conductor to a top patch, and an edge/circumference 312 of the middle patch 310. The figure further shows a first symmetry line 371, a second symmetry line 375, a first current path 327 around the first aperture 320, a second current path 328 around the first aperture 320, a first current path 337 around the second aperture 330, a second current path around the second aperture 330, a front slot position 315 between the middle patch 310 and a ground plane, a back slot position 317 between the middle patch 310 and a ground plane, and a middle patch strip section 311. In this example the zero potential areas 326, 336 are located

25

30

PV Ink. t. Patent- och reg.verket 1999 -09- U 3

13

Huvudfaxen Kassan

between the respective connection places 324, 334 for conductors to a ground plane and corresponding connection places 354, 364 for conductors to top patch.

As can be seen in the figure, the apertures 320, 330 block a possible straight line current path from the feed area 319 to the respective zero potential areas 326, 336. The apertures 320, 330 force the formation of two different current paths 327, 328, 337, 338 to each zero potential area 326, 336. The current paths 327, 328, 337, 338 come close to the circumference 312 of the patch 310 due to the apertures 320, 330 which extend in a direction parallel to the first symmetry line 371 which is perpendicular to the second symmetry line 375 which goes through at least one zero potential area 326, 336 and the feed area 319. Due to the currents 327, 328, 337, 338 close to the circumference 312, the slots become excited and will radiate the front and back slot positions 315, 317.

The exact placement of the feed area 319 will depend on the specific embodiment and in connection with the strip section 311 will provide an impedance match to the radiation resistance experienced at the patch circumference 312.

The patch 310 can be symmetrical about either one or both of the symmetry lines 371, 375. A completely symmetrical patch can provide nearly monopole-type radiation characteristics as to omnidirectionality in the horizontal plane.

Figure 4 shows a second embodiment of a small stacked patch antenna according to the invention. In this embodiment the top patch is split into two halves 481, 482 with an electrical disconnection line 483. This does not change the function of the top patch. Further, the top patch halves 481, 482 are somewhat smaller than the middle patch 410, but still covering the apertures 420, 430. The conductors 424, 434, 454, 464 for grounding the top patch halves 481, 482 and the middle patch 410 to ground 400 are of different

10

15

20

25

30

:-:--

į

ALBIHN: A GBG 0317119555

Ink t. Patent- och reg.verket

14

Huvudfaxen Kassan

dimensions and ar connected to their respective patch 410, 481, 482 or ground plane 400 in alternative places than those shown in figure 2. The projection outline 401 of the middle patch 410 onto the ground plane 400 is also shown to better see the connections 424, 434 to the ground plane 400 and also to show the size of a suitable minimum ground plane. A feed point/area 419 is also shown.

Figures 5A to 5D show different embodiments of a middle patch 510 of antennas according to the invention, All the middle patch 510 examples show a feed point/area 519, a first aperture 520 with a corresponding edge/circumference 522, a second aperture 530 with a corresponding edge/circumference 532, a first zero potential area 526 with a corresponding grounding connector/conductor attachment 524, a second zero potential area 536 with a corresponding grounding connector/conductor attachment 534. As can be seen an edge/circumference 512 of each middle patch 510 is completely different in the shown examples.

Figure 5A shows a middle patch 510 with a rectangular/squarish type circumeference 512 with rounded corners and rectangular apertures 520, 530. Figure 5B shows a middle patch 510 with a indented squarish type circumference 512 and rectangular apertures 520, 530 with Indentations. The indentations 518 of the circumference 512 of the middle patch 510 towards the feed point 519 will force an antenna with this middle patch 510 to have four radiation centres instead of just the two that were indicated and described in relation to figure 3. Figure 5C shows a middle patch 510 with a hexagon circumeference 512 and triangular apertures 520, 530. Figure 5D shows a middle patch 510 with a circular circumference 512 and circular sector type apertures 520, 530. The middle patch 510 according to figure 5D also shows two additional apertures 592, which in this example are circular. These examples are shown just to indicate the huge variety of different embodiments an antenna structure according to the Invention can take.

10

L Patent- och reg.verket 1999 -09- U 3

15

Huvudfaxen Kassan

Figure 6 shows a third embodiment of a small stacked patch antenna according to the invention which is completely self contained and self supported. The small stacked patch antenna according to figure 6 shows a ground plane 600, a first/middle patch 610, a second/top patch 640, a first dielectric 696 between the top 694 and the middle patch 610, a second dielectric between 697 the middle patch 610 and the ground plane 600, and an opening 694 in the top patch 640 for a feed conductor/via 693 that extends all the way from the ground plane 600 to the level of the top patch 640. Figure 6 further shows a first conductor/via 624 to the ground plane 600 grounding the middle patch 610, a second conductor/via 634 to the ground plane 600 grounding the middle patch 610, a first conductor/via 654 to the middle patch 610 from the top patch 640, and a second conductor/via 664 to the middle patch 610 from the top patch 640.

Preferably, as is indicated in the figure, the conductors/vias 624, 634 that ground the middle patch 610, extend from the top patch 640 through the middle patch 610 all the way to the ground plane 600. To be noted is that the feed conductor/via 693 also extends through all of the layers in this particular embodiment.

20

25

30

By integrating the ground plane 600 into the antenna itself, it is possible to attain an antenna with very small tolerances between all of the layers of the antenna. It is then also possible by having the ground plane 600 integrated, to place the antenna where there is no ground plane, e.g. vertically out from a printed circuit board.

The antenna according to figure 6 is preferably manufactured by means of printed circuit board (PCB) technology. The horizontal metal layers, i.e. the middle patch 610, the top patch 640, and preferably also the ground plane 600, are, for example, etched. The vertical conductors 624, 634, 654, 664, 693 can preferably be made by means of vias, i.e. metallized holes. Several hundred antennas can then be manufactured at the same time from a single PCB and

10

15

20

25

30

Property Patent- och reg.verket

16

Huvudfaxen Kassan

then be milled apart. There are several advantages by manufacturing the small stacked patch antenna according to the invention. The patches and the vias can be placed arbitrarily. The size of the antenna can be reduced, both as to height and as to patch area, but not proportionally to the dielectric constant of the PCB as the slots radiate into air. The size of the antenna can be reduced proportionally to an effective dielectric constant, which is somewhere between the dielectric constant of the PCB substrate and that of air.

Figures 7A to 7C show the three metallization layers of a small stacked patch antenna according to the invention, for example that shown and described in relation to figure 6. Figure 7A shows a ground plane 700. Figure 7B shows a middle patch 710, which is to be mounted on top of the gorund plane 700 with a dielectric in between. The dielectric can preferably be a circuit board, as described above in relation to figure 6. Figure 7C shows a top patch 740, which is to be mounted on top of the of the middle patch 710 with a dielectric in between. Figures 7A to 7C further show a first aperture 720, a first via 724 to the ground plane 700, a second aperture 730, a second via 734 to the ground plane 700, a first via 754 to the middle patch 710 from the top patch 740, a second via 764 to the middle patch 710 from the top patch 740, a feed via 793, a top patch opening 794 for the feed via 793, and a ground plane opening 795 for the feed via 793.

To be noted is that figure 6 and figure 7 illustrate feeds with inductive feed matching by having the feed vias 693, 793 extend all the way to the top patch openings 694, 794 in the layer of the top patches 640, 740. Other vias 624, 634, 724, 734 are also from a cost point of view preferably made through the whole antenna, if possible, as is illustrated in figure 6 and figure 7.

The basic principle of the invention is to place at least two apertures on a middle patch, to thereby force a current to the edges of the middle patch. In a typical application working in the 5 GHz to 6 GHz range, the dimensions of an antenna structure according to the invention can for the top and middle patch

Ink. t. Patent- och reg.verket

1999 -09- U 3

17

Huvudfaxen Kassan

be approximately 12 mm by 12 mm for printed circuit board (PCB) embodiments and 16 mm by 14 mm for metal self supporting embodiments. The metal embodiments will preferably have an approximate distance of 3.5 mm between the middle patch and the top patch, and 1.7 mm between the middle patch and the ground plane. The PCB embodiments will preferably have an approximate distance of 1.6 mm between the middle patch and the top patch, and 1.6 mm between the middle patch and the ground plane, these being the sizes of standard printed circuit boards

The invention is not restricted to the above described embodiments, but may 10 be varied within the scope of the following claims.

Ink. t. Patent- och reg.verket

1999 -09- 0 3

110757 SPB 1999-09-02 Huvudfaxen Kassan

5 FIGURE 1

190 computer - mobile terminal.

191 slot for PC-card.

a PC-card onto which or an antenna according to the invention is

intended to be mounted or integrated with.

10

FIGURE 2

254

256

	200	ground plane
	201	a preferable minimum ground plane
	210	first or middle patch
15	212	first patch edge/circumeference
	214	front slot between first patch and ground plane
	216	back slot between first patch and ground plane
	219	feed point/area
	220	first aperture
20	222	first aperture edge/circumference
	224	first conductor to ground plane
	226	first zero potential area on first patch
	230	second aperture
	232	second aperture edge/circumference
25	234	second conductor to ground plane
	236	second zero potential area on first patch
	240	second or top patch
	242	second patch edge/circumeference
	244	front slot between second patch and first patch
30	246	back slot between second patch and first patch

first conductor to first patch

first zero potential area on second patch

Ink. t. Patent- och reg.verket

19

1999 -U9- U 3

Huvudtaxen	Kassan
------------	--------

		Inuvudioxen Adssc
	264	second conductor to first patch
	266	second zero potential area on second patch
	FIGURE	3
5	310	first or middle patch
	311	middle patch strip section
	312	first patch edge/circumeference
	315	front slot position between first patch and ground plane
	317	back slot position between first patch and ground plane
10	319	feed point/area
	320	first aperture
	322	first aperture edge/circumference
	324	connection place for a first conductor to a ground plane
	326	first zero potential area on first patch
15	327	first path around first aperture
	328	second path around first aperture
	330	second aperture
	332	second aperture edge/circumference
	334	connection place for a second conductor to a ground plane
20	336	second zero potential area on first patch
	337	first path around second aperture
	338	second path around second aperture
	354	connection place for a first conductor to a second patch
	364	connection place for a second conductor to a second patch
25	371	first symmetry line
	375	second symmetry line

FIGURE 4

30	400	ground plane
	401	a preferable minimum ground plane
	410	first or middle patch

Ink. t. Patent- och reg.verket

20

1999 -09- 0 3

Huvudfaxen Kassan

		Huvudfax
	419	feed point/area
	420	first aperture
	424	first conductor to ground plane
	430	second aperture
5	434	second conductor to ground plane
	454	first conductor to first patch
	464	second conductor to first patch
	481	part A of second/top patch
	482	part B of second/top patch
10	483	division between part A and B of second/top patch
	FIGUR	≣5
	510	first or middle patch
	512	first patch edge/circumference

	310	
	512	first patch edge/circumference
15	518	feed point indentations
	519	feed point/area
	520	first aperture
	522	first aperture edge/circumference
	524	first conductor to ground plane
20	5 26	first zero potential area on first patch
	530	second aperture
	532	second aperture edge/circumference
	534	second conductor to ground plane
	536	second zero potential area on first patch
25	592	secondary apertures on the first/middle patch

FIGURE 6

	600	ground plane
	610	first or middle patch
30	624	first conductor/via to ground plane
	634	second conductor/via to ground plane
	640	second or top patch

		21	Ink. t. Patent- och reg.verket
			1999 -09- 0 3
	654	first conductor/via to first patch	Huvudfaxen Kassan
	664	second conductor/via to first patch	
	693	feed via	
	694	top patch opening for feed via	
5	696	first dielectric between top and middle patch	. J. alama
	697	second dielectric between middle patch and	ground plane
	FIGURE	. 7	
	700	ground plane	

	700	ground plane
10	710	first or middle patch
	720	first aperture
	724	first conductor/via to ground plane
	730	second aperture
	734	second conductor/via to ground plane
15	740	second or top patch
	754	first conductor/via to first patch
	764	second conductor/via to first patch
	793	feed via
	794	top patch opening for feed via
20	795	ground plane opening for feed via

@317119555

22

Irik. t. Patent- och reg.verket 1999 -09- 0 3

PV

Huvudfaxen Kassan

110757 SPB 1999-09-02

CLAIMS

5

10

15

20

·;··:

- A low profile antenna structure that comprises a first metallic patch 1. (210) and a second metallic patch (240) stacked over a ground plane (200), the first patch comprising a circumference along a patch edge (212) of the first patch, the second patch comprising a circumference along a patch edge (242) of the second patch, the first patch being arranged between the ground plane and the second patch, the first patch being grounded at at least a first zero potential area (226) by electrical connection (224) with the ground plane and a second zero potential area (236) by electrical connection (234) with the ground plane and being fed at a single feed area (219), the second patch being electrically interconnected (254, 264) to the first patch, characterized in that the first patch comprises at least a first aperture (220) and a second aperture (230) located completely within the circumference of the first patch to thereby force current propagating from the feed area to the first zero potential area and the second zero potential area, toward the patch edge of the first patch to thereby enable radiation from slots (214, 216, 244, 246) defined by the edge of the first patch and the edge of the second patch and the ground plane.
- A low profile antenna structure that comprises a first metallic patch 2. (210, 310, 410, 510) and a second metallic patch (240, 481, 482) stacked 25 over the first patch, the patches being intended to be mounted over a ground plane (200, 400), the first patch comprising a circumference along a patch edge (212, 312) of the first patch, the second patch comprising a circumference along a patch edge (242) of the second patch, the first patch being arranged between the ground plane and the second patch, the first 30 patch comprising a first zero potential area (226, 326, 526) by connection (224, 324, 424, 524) with the ground plane and a second zero potential area

10

15

20

25

30

Ink it Patent- och reg.verket 1999 -09- U 3

23

Huvudfaxen Kassan

(236, 336, 536) by connection (234, 334, 434, 534) with the ground plane, the second patch being electrically interconnected (254, 264, 354, 364, 454, 464) to the first patch, and the antenna being fed at a single feed area (219, 319, 419, 519) comprised on the first patch, **characterized in that** the first patch comprises at least a first aperture (220, 320, 420, 520) and a second aperture (230, 330, 430, 530) located completely within the circumference of the first patch to thereby force current, propagating from the feed area to the first zero potential area and the second zero potential area, toward the patch edge of the first patch to thereby enable radiation from slots (214, 216, 244, 246, 315, 317) defined by the edge of the first patch and the edge of the second patch and the ground plane.

- 3. The antenna structure according to claim 2, characterized in that the first aperture (220, 320, 420, 520) and the second aperture (230, 330, 430, 530) are located on the first patch (210,310, 410, 510) in such a way that current propagating from the feed area (219, 319, 419, 519) to the first zero potential area (226, 326, 526) propagates in two different paths (327, 328) around the first aperture and that current propagating from the feed area to the second zero potential area (236, 336, 536) propagates in two different paths (337, 338) around the second aperture.
 - 4. The antenna structure according to claim 2 or 3, characterized in that the first aperture is located between the feed area and the first zero potential area, and in that the second aperture is located between the feed area and the second zero potential area.
 - 5. The antenna structure according to any one of claims 2 to 4, characterized in that the second patch is electrically interconnected to the first patch at at least the first zero potential area and the second zero potential area.

25

Ink t. Patent- och reg. verket

1999 -09- 0 3

24

Huvudfaxen Kassan

- 6. The antenna structure according to any on of claims 2 to 5, characterized in that the first aperture and the second aperture each have an extension which is substantially perpendicular to a line between the first zero potential area and the second zero potential area.
- 7. The antenna structure according to any one of claims 2 to 6, characterized in that there is a symmetry of the first patch about a line between the first zero potential area and the second zero potential area.
- 10 8. The antenna structure according to any one of claims 2 to 7, characterized in that there is a symmetry of the first patch about a line perpendicular to a line between the first zero potential area and the second zero potential area.
- 15 9. The antenna structure according to any one of claims 2 to 8, characterized in that the second patch comprises no openings within its circumference.
- 10. The antenna structure according to any one of claims 2 to 8,20 characterized in that the second patch comprises at least one opening within its circumeference.
 - 11. The antenna structure according to any one of claims 2 to 8, characterized in that the second patch is electrically split into two halves along a line which is substantially perpendicular to a line between the first zero potential area and the second zero potential area.
- 12. The antenna structure according to any one of claims 2 to 11, characterized in that the second patch at least covers the first aperture and30 the second aperture of the first patch.

25

30

ì

|-:--:

Huvudfaxen Kassan

25

- 13. The antenna structure according to any one of claims 2 to 12, characterized in that the first patch comprises further apertures.
- 14. The antenna structure according to any one of claims 2 to 13,5 characterized in that the first patch and the second patch are substantially of the same size.
 - 15. The antenna structure according to any one of claims 2 to 14, characterized in that the first patch, in addition to the first aperture and the second aperture, comprises further apertures.
 - 16. The antenna structure according to any one of claims 2 to 15, characterized in that the antenna structure comprises the ground plane.
- 17. The antenna structure according to claim 16, characterized in that the ground plane is substantially of the same size as the first patch and the second patch.
- 18. The antenna structure according to any one of claims 2 to 17, characterized in that the electrical connections from the first patch to the ground plane and the electrical interconnections between the first patch and the second patch, in addition to providing the antenna structure with electrical connections also provides the antenna with mechanical support giving the antenna a self supporting structure.
 - 19. The antenna structure according to any one of claims 2 to 17, characterized in that the first patch is supported by a first dielectric and in that the second patch is supported by a second dielectric, the first dielectric and the second dielectric further providing the antenna with mechanical support giving the antenna a self supporting structure.

10

25

30

ink. t. Patent- och reg.verket

1999 -09- 0 3

26

Huvudfaxen Kassan

- 20. The antenna structure according to any one of claims 16 to 17, characterized in that the first patch is supported by a first dielectric and in that the second patch is between the first dielectric and a second dielectric and In that the ground plane is supported by the second dielectric, the first dielectric and the second dielectric further providing the antenna with mechanical support giving the antenna a self supporting structure.
- 21. The antenna structure according to any one of claims 2 to 20, characterized in that the single feed area is probe fed at one point.
- 22. The antenna structure according to claim 21, characterized in that the single feed area further comprises inductive feed matching.
- 23. The antenna structure according to any one of claims 2 to 20, characterized in that the single feed area is probe fed at a plurality of points.
- 24. The antenna structure according to claim 23, characterized in that the plurality of points are placed in the feed area along a limited line that if extended would pass through the first zero potential area and the second zero potential area.
 - 25. The antenna structure according to any one of claims 23 to 24, characterized in that the plurality of points are placed in the feed area symmetrically about a line that passes through the first zero potential area and the second zero potential area.
 - 26. The antenna structure according to any one of claims 2 to 20, characterized in that the single feed area is fed by an aperture coupling.
 - 27. A device comprising wireless communication means, characterized in that the device comprises an antenna according to any one of claims 1 to 26.

2029 ik, t. Patent- och reg.verket 1999 -09- 0 3

27

Huvudfaxen Kassan

- 28. A wireless mobile terminal, characterized in that the terminal comprises an antenna according to any one of claims 1 to 26 for wireless communication.
- 29. A personal computer card suitable for insertion into an electronic device, characterized in that the card comprises an antenna according to any one of claims 1 to 26.
- 30. A wireless local area network system comprising a base station and a 10 plurality of terminals which are in wireless communication with the base station, characterized in that at least one terminal comprises either directly or indirectly an antenna according to any one of claims 1 to 26.

Mik. t Patent- och regwerket 1999 - us- v 3

110757 SPB 1999-09-02 Huvudionen Kessen

5 ABSTRACT

A stacked patch antenna comprising two metallic patches (210, 240) stacked on top of each other. The middle patch (210) comprises at least two conductors (224, 234) at or close to its edge (212), which conductors are intended to be connected to a ground plane (200) to thereby ground the patch in two places. The top patch (240) comprises at least two conductors (254, 264) at or close to its edge (242) which electrically interconnect the two patches. The middle patch is fed at a feed area (219) which is at least proximate its geometric center. The middle patch further comprises at least two apertures (220, 230) completely within its circumference (212), i.e. each aperture having a respective unbroken circumference (232, 242). Thereby enabling radiation from slots (214, 216, 244, 246) defined by the edge of the middle patch and the edge of the middle patch and defined by the edge of the middle patch and the ground plane.

20

10

15

(Fig. 2)

@317119555

1/5

Ink. t. Patent- och reg.verket

1999 -09- 0 3

Huvudfaxen Kassan

ALBIEN: 4 GEC 0317119555 2/5

20032 111k. t. Patent- och reg.verket 1999 -09- U 3

Huvudfaxen Kassan

4

0317119555 ALBIHNSA GBG

Ink. t. Patent- och reg.verket

1999 -09- U 3

Huvudfaxen Kassan

1999 -09- 0 3

Huvudfaxen Kassan

Ink t Patent- och reg verket

1999 -09- u 3

FIG 7A

Fig 78

Fig 7c