K. J. SOMAIYA COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS ENGINEERING ELECTRONIC CIRCUITS

Low & High-frequency response of single-stage amplifier

Numerical 1

For the BJT network shown in figure 1.

a) Calculate r_{π}

b) Find
$$A_{V(mid)} = \frac{V_o}{V_i}$$

c) Calculate Z_i

d) Find
$$A_{VS(mid)} = \frac{V_o}{V_s}$$

e) Determine $f_{L_{CE}}$, $f_{L_{CC1}}$ & $f_{L_{CC2}}$

f) Determine the low cutoff frequency

Given: $\beta = 135, r_o = 50k\Omega$

Figure 1: Circuit for Numerical 1

Solution:

DC Anaylsis: During DC analysis, capacitors become open circuit.

From figure 1 we get,

$$R_{th} = R_1 \parallel R_2 = 68k \parallel 10k$$

 $\therefore R_{th} = 8.718 k\Omega$

We know that
$$V_{th} = \frac{R_2}{R_1 + R_2} \times V_{CC} = \frac{10k}{10k + 68k} \times 14$$

$$\therefore V_{th} = 1.79V$$

Therefore the Thevenin's equivalent circuit is shown in figure 2

Figure 2: Thevenin's Equivalent Circuit

Applying KVL to B-E loop of figure 2, we get

$$\begin{split} V_{th} - I_{BQ}R_{th} - V_{BE} - I_{E}R_{E} &= 0 \\ V_{th} - I_{BQ}R_{th} - V_{BE} - (\beta + 1)I_{BQ}R_{E} &= 0 \\ I_{BQ} &= \frac{V_{th} - V_{BE}}{R_{th} + (\beta + 1)R_{E}} &= \frac{1.79V - 0.7V}{8.71k + (1 + 135) \times 1.2k} \\ \therefore \mathbf{I_{BQ}} &= \mathbf{6.34}\mu\mathbf{A} \\ I_{CQ} &= \beta \times I_{BQ} = 135 \times 6.34\mu A \\ \mathbf{I_{CQ}} &= \mathbf{0.856mA} \end{split}$$

AC Analysis: During AC analysis, capacitors become short circuit.

Calculation of small signal parameters is shown below

$$\mathbf{r_o} = \mathbf{50k\Omega} \qquad (Given)$$

$$r_{\pi} = \frac{\beta \times V_T}{I_{CQ}} = \frac{135 \times 26mV}{0.856\mu A}$$

$$\therefore \mathbf{r_{\pi}} = \mathbf{4.100k\Omega}$$

$$g_m = \frac{I_{CQ}}{V_T} = \frac{0.856mA}{26mV}$$

$$\therefore \mathbf{g_m} = \mathbf{32.923mA/V}$$

The low frequency small signal equivalent circuit is shown in figure 3

Figure 3: Low Frequency Small Signal Equivalent Circuit

Calculation of $f_{L_{\rm CC1}}$:

 $f_{L_{\rm CC1}}=93.85Hz$

$$f_{L_{CC1}} = \frac{1}{2\pi \times R_{eq} \times C_{C1}}$$

$$R_{eq} = R_{sig} + (R_1 \parallel R_2 \parallel r_{\pi}) = 0.82k + (10k \parallel 68k \parallel 4.10k)$$

$$\therefore \mathbf{R_{eq}} = \mathbf{3.608k\Omega}$$

$$C_{C1} = 0.47\mu F$$

$$f_{L_{CC1}} = \frac{1}{2\pi \times 3.608k \times 0.47\mu F}$$

Small signal low frequency equivalent circuit for C_{C1} is shown in figure 5

Figure 4: Small signal low frequency equivalent circuit for C_{C1}

Calculation of $f_{L_{CC2}}$:

$$f_{L_{CC2}} = \frac{1}{2\pi \times R_{eq} \times C_{C2}}$$

$$R_{eq} = (R_C \parallel r_o) + R_L = (5.6k \parallel 4.1k) + 10k$$

$$\therefore \mathbf{R_{eq}} = \mathbf{12.367k\Omega}$$

$$C_{C2} = 0.47 \mu F$$

$$f_{L_{CC2}} = \frac{1}{2\pi \times 12.367k \times 0.47 \mu F}$$

$$f_{L_{\rm CC2}}=27.38 Hz$$

Small signal low frequency equivalent circuit for C_{C2} is shown in figure 5

Figure 5: Small signal low frequency equivalent circuit for C_{C2}

Calculation of $f_{L_{CE}}$:

$$f_{L_{CE}} = \frac{1}{2\pi \times R_{eq} \times C_{E}}$$

$$R_{eq} = \left(\frac{R_{sig} \parallel R_{1} \parallel R_{2} + r_{\pi}}{\beta}\right) \parallel R_{E} = \left(\frac{0.82k \parallel 68k \parallel 10k + 4.10k}{135}\right) \parallel 1.2k$$

$$\therefore \mathbf{R_{eq}} = \mathbf{34.874}\Omega$$

$$C_E = 20\mu F$$

$$f_{L_{CE}} = \frac{1}{2\pi \times 34.874 \times 20\mu F}$$

$$f_{\rm L_{\rm CE}}=228.185Hz$$

Since, $f_{L_{CE}} = 228.185 Hz$ is the largest among $f_{L_{CC1}}$ & $f_{L_{CC2}}$, it is the lower cutoff frequency of the amplifier.

(Bypass capacitor C_E is determining the lower cutoff frequency of the amplifier)

$$f_L=228.185Hz$$

Calculation of mid frequency voltage gain:

The mid frequency small signal equivalent circuit is shown in figure 6

Figure 6: Mid Frequency Small Signal Equivalent Circuit

$$A_V = \frac{V_{out}}{V_{in}} = -g_m(R_C \parallel R_L \parallel r_o) = 32.923 \times 10^{-3} (5.6k \parallel 10k \parallel 50k)$$

$$\mathbf{A_{V(mid)}} = -110.25$$

$$A_{VS(mid)} = \frac{V_{out}}{V_s} = \frac{V_{out}}{V_{in}} \times \frac{V_{in}}{V_s} = A_V \times \frac{V_{in}}{V_s}$$

$$\frac{V_{in}}{V_s} = \frac{R_1 \parallel R_2 \parallel r_{\pi}}{R_1 \parallel R_2 \parallel r_{\pi} + R_{sig}} = \frac{68k \parallel 10k \parallel 4.10k}{68k \parallel 10k \parallel 4.10k + 0.82k}$$

$$\frac{V_{in}}{V_s} = 0.773$$

$$A_{VS(mid)} = -110.25 \times 0.773$$

$$A_{VS(mid)} = -85.223$$

$$\mathbf{A_{VS(dB)}} = \mathbf{38.611dB}$$

Calculation of Z_i:

$$Z_i = R_{sig} + R_1 \parallel R_2 \parallel r_{\pi} = 0.82k + 68k \parallel 10k \parallel 4.10k$$

$$Z_i=3.608 k\Omega$$

SIMULATED RESULTS:

Above circuit is simulated in LTspice and results are as follows:

Figure 7: Circuit Schematic: Results

The output bode plots are shown below

Figure 8: Low frequency response for C_{C2}

Figure 9: Low frequency response for C_{C1}

Figure 10: Low frequency response for C_E

Figure 11: Low frequency response for the circuit

Comparison between theoretical and simulated values is given below:

Parameters	Simulated Values	Theoretical Values
I_{CQ}	0.815mA	0.856mA
Lower cutoff frequency due to C_{C1}	93.09Hz	93.85Hz
Lower cutoff frequency due to C_{C2}	21.0477Hz	27.38Hz
Lower cutoff frequency due to C_E	228.53Hz	228.185Hz
Overall cutoff frequency	228.6Hz	228.185Hz
Mid band voltage gain A_{VS} in dB	36.5dB	38.61dB

Table 1: Numerical 1

Numerical 2

For the N-JFET network shown in figure 12.

- a) Determine $V_{GSQ} \& I_{DQ}$
- b) Determine $g_m \& g_{m_o}$
- c) Find $A_{V(mid)} = \frac{V_o}{V_c}$
- d) Calculate Z_i
- e) Find $A_{VS(mid)} = \frac{V_o}{V_\circ}$
- f) Determine $f_{L_{CC1}}$, $f_{L_{CC2}}$ & $f_{L_{CS}}$
- g) Determine the low cutoff frequency

Given: $I_{DSS} = 6mA$, $V_P = -6V$

Figure 12: Circuit for Numerical 2

Solution:

DC Anaylsis: During DC analysis, capacitors become open circuit.

The thevenin's equivalent DC circuit is shown in figure 13

Applying KVL to D-S loop of figure 13, we get

We know that
$$I_D = I_{DSS} \left(1 - \frac{V_{GS}}{V_P} \right)^2$$
(2)

Figure 13: DC Equivalent Circuit

Substituting (2) in (1) we get,

$$V_{GS} = -I_{DSS}R_S \left(1 - \frac{V_{GS}}{V_P}\right)^2 = -6mA \times (1.2k) \left(1 + \frac{V_{GS}}{6}\right)^2$$

$$V_{GS} = -7.2 - 0.2V_{GS}^2 - 2.4V_{GS}$$

$$0.2V_{GS}^2 + 3.4V_{GS} + 7.2 = 0$$

Solving the quadratic equation we get,

$$V_{GS} = -2.479V$$
 or $V_{GS} = -14.521V$

$$\therefore \mathbf{V_{GS}} = -2.479V \qquad (\because V_{GS} > V_P)$$

:.
$$I_D = 6mA \times \left[1 - \frac{(-2.479)}{(-6)}\right]^2$$

$$\therefore I_D = 2.066 mA$$

AC Analysis: During AC analysis, capacitors become short circuit.

Calculation of small signal parameters is shown below

$$g_m = \frac{2I_{DSS}}{\mid V_P \mid} \left(1 - \frac{V_{GS}}{V_P} \right) = \frac{2 \times 6mA}{\mid -6 \mid} \left[1 - \frac{(-2.479V)}{(-6V)} \right]$$

$$\therefore \mathbf{g_m} = 1.174 mA/V$$

$$g_{m_o} = \frac{2I_{DSS}}{\mid V_P\mid} = \frac{2 \times 6mA}{\mid -6\mid}$$

$$\therefore \mathbf{g_{m_o}} = 2\mathbf{m}\mathbf{A}/\mathbf{V}$$

Calculation of voltage gain:

The mid frequency small signal equivalent circuit is shown in figure 14

Figure 14: Mid Frequency Small Signal Equivalent Circuit

$$A_V = \frac{V_{out}}{V_{in}} = -g_m(R_D \parallel R_L) = 1.174 \times 10^{-3} (3k \parallel 3.9k)$$

$$A_{V(mid)} = -1.989$$

$$A_{VS(mid)} = \frac{V_{out}}{V_s} = \frac{V_{out}}{V_{in}} \times \frac{V_{in}}{V_s} = A_V \times \frac{V_{in}}{V_s}$$

$$\frac{V_{in}}{V_s} \approx 1$$
 (: R_G is in Mega Ohms)

$$A_{VS(mid)} = -1.989 \times 1 = -1.989$$

$$\mathbf{A_{VS(dB)}} = 5.973 dB$$

Calculation of Z_i:

$$Z_i = R_{sig} + R_G \approx 1M\Omega$$

$$Z_i=1M\Omega$$

Low frequency small signal equivalent circuit is shown in figure 15

Figure 15: Low Frequency Small Signal Equivalent Circuit

Calculation of $f_{L_{CC1}}$:

$$\begin{split} C_{C1} &= 0.1 \mu F \\ R_{eq} &= R_{sig} + R_G \approx 1 M \Omega \qquad \qquad (\because R_G \text{ is in Mega Ohms }) \\ \therefore \mathbf{R_{eq}} &= \mathbf{1} \mathbf{M} \Omega \\ f_{L_{CC1}} &= \frac{1}{2\pi \times R_{eq} \times C_{C1}} = \frac{1}{2\pi \times 1 M \times 0.1 \mu F} \\ \mathbf{f_{L_{CC1}}} &= \mathbf{1.591 Hz} \end{split}$$

Small signal low frequency equivalent circuit for C_{C1} is shown in figure 16

Figure 16: Small signal low frequency equivalent circuit for C_{C1}

Calculation of $f_{L_{CC2}}$:

$$C_{C2} = 4.7 \mu F$$

$$R_{eq} = R_D + R_L = 3k \parallel 3.9k$$

$$\therefore R_{\rm eq} = 6.9 k\Omega$$

$$f_{L_{CC2}} = \frac{1}{2\pi \times R_{eq} \times C_{C2}} = \frac{1}{2\pi \times 6.9k \times 4.7\mu F}$$

$$f_{L_{\rm CC2}}=4.908Hz$$

Small signal low frequency equivalent circuit for C_{C2} is shown in figure 17

Figure 17: Small signal low frequency equivalent circuit for C_{C2}

Calculation of $f_{L_{CS}}$:

$$C_S = 10\mu F$$

$$R_{eq} = R_S \parallel \frac{1}{g_m} = 1.2k \parallel \frac{1}{1.174mA/V}$$

$$\therefore R_{eq} = 0.498 k\Omega$$

$$f_{L_{CS}} = \frac{1}{2\pi \times R_{eq} \times C_S} = \frac{1}{2\pi \times 0.498k \times 10\mu F}$$

$$f_{\rm L_{CS}}=31.959Hz$$

Small signal low frequency equivalent circuit for C_S is shown in figure 18

Figure 18: Small signal low frequency equivalent circuit for C_S

Lower Cutoff Frequency f_L:

Since, $f_{L_{CS}}$ is the largest among $f_{L_{CC1}}$ & $f_{L_{CC2}}$, it is the lower cutoff frequency of the amplifier.

(Bypass capacitor C_S is determining the lower cutoff frequency of the amplifier)

 $f_L=31.959Hz\\$

SIMULATED RESULTS:

Above circuit is simulated in LTspice and results are as follows:

Figure 19: Circuit Schematic: Results

Output Waveforms:

The output bode plots are shown below

Figure 20: Low frequency response for C_{C1}

Figure 21: Low frequency response for C_{C2}

Figure 22: Low frequency response for C_S

Figure 23: Low frequency response for the circuit

Comparison between theoretical and simulated values is given below:

Parameters	Simulated Values	Theoretical Values
I_{DQ}	2.06mA	2.066mA
Lower cutoff frequency due to C_{C1}	1.586Hz	1.591Hz
Lower cutoff frequency due to C_{C2}	4.904Hz	4.908Hz
Lower cutoff frequency due to C_S	31.80Hz	31.959Hz
Overall cutoff frequency	31.44Hz	31.959Hz
Mid band voltage gain A_{VS} in dB	5.79dB	5.793dB

Table 2: Numerical 2

Numerical 3

For the N-JFET network shown in figure 24.

- a) Determine $V_{GSQ} \& I_{DQ}$
- b) Determine $g_m \& g_{m_o}$
- c) Find $A_{V(mid)} = \frac{V_o}{V_i}$
- d) Calculate Z_i
- e) Find $A_{VS(mid)} = \frac{V_o}{V_s}$
- f) Determine $f_{L_{CC1}}$, $f_{L_{CC2}}$ & $f_{L_{CS}}$
- g) Determine the lower cutoff frequency
- h) Determine the higher cutoff frequency

Given: $I_{DSS} = 6mA$, $V_P = -6V$, $C_{wi} = 3pF$, $C_{wo} = 8pF$, $C_{gd} = 4pF$, $C_{gs} = 8pF$, $C_{ds} = 2pF$

Figure 24: Circuit for Numerical 3

Solution:

DC Anaylsis: During DC analysis, capacitors become open circuit.

The equivalent DC circuit is shown in figure 25

Applying KVL to D-S loop of figure 25, we get

$$V_{GS} = -I_D R_S \qquad \dots (1)$$

We know that
$$I_D = I_{DSS} \left(1 - \frac{V_{GS}}{V_P}\right)^2$$
(2)

Figure 25: DC Equivalent Circuit

Substituting (2) in (1) we get,

$$V_{GS} = -I_{DSS}R_S \left(1 - \frac{V_{GS}}{V_P}\right)^2 = -6mA \times (1.2k) \left(1 + \frac{V_{GS}}{6}\right)^2$$

$$V_{GS} = -7.2 - 0.2V_{GS}^2 - 2.4V_{GS}$$

$$0.2V_{GS}^2 + 3.4V_{GS} + 7.2 = 0$$

Solving the quadratic equation we get,

$$V_{GS} = -2.479V$$
 or $V_{GS} = -14.521V$
 $\therefore \mathbf{V_{GS}} = -2.479V$ $(\because V_{GS} > V_P)$

$$I_D = 6mA \times \left[1 - \frac{(-2.479)}{(-6)}\right]^2$$

$$\therefore I_D = 2.066 mA$$

AC Analysis: During AC analysis, capacitors become short circuit.

Calculation of small signal parameters is shown below

$$g_m = \frac{2I_{DSS}}{|V_P|} \left(1 - \frac{V_{GS}}{V_P}\right) = \frac{2 \times 6mA}{|-6|} \left[1 - \frac{(-2.479V)}{(-6V)}\right]$$

$$\therefore \mathbf{g_m} = 1.174 mA/V$$

$$g_{m_o} = \frac{2I_{DSS}}{\mid V_P\mid} = \frac{2 \times 6mA}{\mid -6\mid}$$

$$\therefore \mathbf{g_{m_o}} = 2\mathbf{m}\mathbf{A}/\mathbf{V}$$

Calculation of voltage gain:

The mid frequency small signal equivalent circuit is shown in figure 26

Figure 26: Mid Frequency Small Signal Equivalent Circuit

$$A_V = \frac{V_{out}}{V_{in}} = -g_m(R_D \parallel R_L) = 1.174 \times 10^{-3} (3k \parallel 3.9k)$$

$$A_{V(mid)} = -1.989$$

$$A_{VS(mid)} = \frac{V_{out}}{V_s} = \frac{V_{out}}{V_{in}} \times \frac{V_{in}}{V_s} = A_V \times \frac{V_{in}}{V_s}$$

$$\frac{V_{in}}{V_s} \approx 1$$
 (: R_G is in Mega Ohms)

$$A_{VS(mid)} = -1.989 \times 1 = -1.989$$

$$\mathbf{A_{VS(dB)}} = 5.973 dB$$

Calculation of Z_i:

$$Z_i = R_{sig} + R_G \approx 1M\Omega$$

$$\mathbf{Z_i} = \mathbf{1}\mathbf{M}\boldsymbol{\Omega}$$

Low frequency small signal equivalent circuit is shown in figure 27

Figure 27: Low Frequency Small Signal Equivalent Circuit

Calculation of $f_{L_{CC1}}$:

$$\begin{split} C_{C1} &= 0.1 \mu F \\ R_{eq} &= R_{sig} + R_G \approx 1 M \Omega \qquad (\because R_G \text{ is in Mega Ohms }) \\ \therefore \mathbf{R_{eq}} &= \mathbf{1M} \Omega \\ f_{L_{CC1}} &= \frac{1}{2\pi \times R_{eq} \times C_{C1}} = \frac{1}{2\pi \times 1 M \times 0.1 \mu F} \\ \mathbf{f_{L_{CC1}}} &= \mathbf{1.591Hz} \end{split}$$

Small signal low frequency equivalent circuit for C_{C1} is shown in figure 28

Figure 28: Small signal low frequency equivalent circuit for C_{C1}

Calculation of $f_{L_{CC2}}$:

$$C_{C2} = 4.7 \mu F$$

$$R_{eq} = R_D + R_L = 3k \parallel 3.9k$$

$$\therefore R_{\rm eq} = 6.9 k\Omega$$

$$f_{L_{CC2}} = \frac{1}{2\pi \times R_{eq} \times C_{C2}} = \frac{1}{2\pi \times 6.9k \times 4.7\mu F}$$

$$f_{L_{\rm CC2}}=4.908Hz$$

Small signal low frequency equivalent circuit for C_{C2} is shown in figure 29

Figure 29: Small signal low frequency equivalent circuit for C_{C2}

Calculation of $f_{L_{CS}}$:

$$C_S = 10\mu F$$

$$R_{eq} = R_S \parallel \frac{1}{g_m} = 1.2k \parallel \frac{1}{1.174mA/V}$$

 $\therefore R_{eq} = 0.498 k\Omega$

$$f_{L_{CS}} = \frac{1}{2\pi \times R_{eq} \times C_S} = \frac{1}{2\pi \times 0.498k \times 10\mu F}$$

$$f_{\rm L_{CS}}=31.959Hz$$

Small signal low frequency equivalent circuit for C_S is shown in figure 30

Figure 30: Small signal low frequency equivalent circuit for C_S

Lower Cutoff Frequency f_L:

Since, $f_{L_{CS}}$ is the largest among $f_{L_{CC1}}$ & $f_{L_{CC2}}$, it is the lower cutoff frequency of the amplifier.

(Bypass capacitor C_S is determining the lower cutoff frequency of the amplifier)

$$f_L=31.959Hz\\$$

High Frequency Analysis

High frequency small signal equivalent circuit is shown in figure 31

Figure 31: High Frequency Small Signal Equivalent Circuit

Calculation of f_{Hi} :

$$C_{mi} = C_{gd}[1 - A_{V(mid)}] = 4pF[1 - (-1.989)]$$

 $\therefore \mathbf{C_{mi}} = 11.956 \mathbf{pF}$

$$C_i = C_{gs} + C_{mi} + C_{wi} = 8pF + 11.956pF + 3pF$$

 $\therefore \mathbf{C_i} = \mathbf{22.956pF}$

$$R_{eq} = R_{sig} \parallel R_G = 1k \parallel 1M$$

 $R_{eq}=0.999k\Omega$

$$f_{Hi} = \frac{1}{2\pi \times R_{eq} \times C_i} = \frac{1}{2\pi \times 0.999k \times 22.956pF}$$

 $\therefore f_{Hi} = 6.939 MHz$

Ci = Cgs+ Cmi+Cwi

Figure 32: High Frequency Small Signal Equivalent Circuit for C_i

Calculation of f_{Ho}:

$$C_{mo} = C_{gd} \left[1 - \frac{1}{A_{V(mid)}} \right] = 4pF \left[1 - \frac{1}{(-1.989)} \right]$$

 $\therefore \mathbf{C_{mo}} = 6.011 \mathbf{pF}$

$$C_o = C_{ds} + C_{mo} + C_{wo} = 2pF + 6.011pF + 8pF$$

 $\therefore \mathbf{C_o} = \mathbf{16.011pF}$

$$R_{eq} = R_D \parallel R_L = 3k \parallel 3.9k$$

 $R_{eq}=1.696k\Omega$

$$f_{Ho} = \frac{1}{2\pi \times R_{eq} \times C_o} = \frac{1}{2\pi \times 1.696k \times 16.011pF}$$

 $\therefore f_{Ho} = 5.861 MHz$

Co = Cwo + Cmo +Cds

Figure 33: High Frequency Small Signal Equivalent Circuit for C_o

Higher Cutoff Frequency f_H :

Since, f_{Ho} is the lowest frequency among f_{Hi} and f_{Ho} , it is the higher cutoff frequency of the amplifier.

 $f_{H}=5.861MHz \\$

SIMULATED RESULTS:

Above circuit is simulated in LTspice and results are as follows:

Figure 34: Circuit Schematic: Results

Output Waveforms:

The output bode plots are shown below

Figure 35: Low frequency response for C_{C1}

Figure 36: Low frequency response for C_{C2}

Figure 37: Low frequency response for C_S

Figure 38: Low frequency response for the circuit

Figure 39: Frequency response for the circuit

Comparison between theoretical and simulated values is given below:

Parameters	Simulated Values	Theoretical Values
I_{DQ}	2.06mA	2.066mA
Lower cutoff frequency due to C_{C1}	1.586Hz	1.591Hz
Lower cutoff frequency due to C_{C2}	4.904Hz	4.908Hz
Lower cutoff frequency due to C_S	31.80Hz	31.959Hz
Lower cutoff frequency	31.44Hz	31.959Hz
Higher cutoff frequency	5.851MHz	5.861MHz
Mid band voltage gain A_{VS} in dB	5.79dB	5.793dB

Table 3: Numerical 3

