

Machine Learning

Clustering

Unsupervised learning introduction

Supervised learning

Training set: $\{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), (x^{(3)}, y^{(3)}), \dots, (x^{(m)}, y^{(m)})\}$

Unsupervised learning

Training set: $\{x^{(1)}, x^{(2)}, x^{(3)}, \dots, x^{(m)}\}$

Applications of clustering

Market segmentation

Organize computing clusters

Astronomical data analysis

Machine Learning

Clustering

K-means algorithm

Input:

- K (number of clusters) \leftarrow
- Training set $\{x^{(1)}, x^{(2)}, \dots, x^{(m)}\}$

$$x^{(i)} \in \mathbb{R}^n$$
 (drop $x_0 = 1$ convention)

Randomly initialize K cluster centroids $\mu_1, \mu_2, \dots, \mu_K \in \mathbb{R}^n$

```
Repeat {
Repeat {

Cluster for i = 1 to m

c^{(i)} := index (from 1 to K) of cluster centroid closest to x^{(i)}

for k = 1 to K

\Rightarrow \mu_k := average (mean) of points assigned to cluster k

x = \frac{1}{4} \left[ x^{(i)} + x^{(i)} + x^{(i)} + x^{(i)} \right] \in \mathbb{R}^n
```

K-means for non-separated clusters

Machine Learning

Clustering Optimization objective

K-means optimization objective

- $ightharpoonup c^{(i)}$ = index of cluster (1,2,...,K) to which example $x^{(i)}$ is currently assigned
- - $\mu_{c^{(i)}} = \text{cluster centroid of cluster to which example } x^{(i)} \text{ has been assigned}$

Optimization objective:

```
Randomly initialize K cluster centroids \mu_1, \mu_2, \ldots, \mu_K \in \mathbb{R}^n cluster essignment step (n) call (n) cal
                                                                                                                            c^{(i)} := index (from 1 to K ) of cluster centroid closest to x^{(i)}
                                                                              for k = 1 to K
                                                                                                                                      \mu_k := average (mean) of points assigned to cluster k
```


Machine Learning

Clustering Random initialization

Randomly initialize K cluster centroids $\mu_1, \mu_2, \dots, \mu_K \in \mathbb{R}^n$

```
Repeat {
        for i = 1 to m
           c^{(i)} := \text{index (from 1 to } K \text{ ) of cluster centroid}
                   closest to x^{(i)}
        for k = 1 to K
            \mu_k := average (mean) of points assigned to cluster k
```

Random initialization

 ${\bf Should\ have}\ K < m$

Randomly pick \underline{K} training examples.

Set μ_1, \dots, μ_K equal to these K examples. $\mu_1 = \chi_1^{(i)}$

$$\mu_2 = \kappa_{(i)}$$

Random initialization

```
For i = 1 to 100 { Randomly initialize K-means. Run K-means. Get c^{(1)}, \dots, c^{(m)}, \mu_1, \dots, \mu_K. Compute cost function (distortion) J(c^{(1)}, \dots, c^{(m)}, \mu_1, \dots, \mu_K)
```

Pick clustering that gave lowest cost $J(c^{(1)},\ldots,c^{(m)},\mu_1,\ldots,\mu_K)$

Machine Learning

Clustering

Choosing the number of clusters

Choosing the value of K

Elbow method:

Choosing the value of K

Sometimes, you're running K-means to get clusters to use for some later/downstream purpose. Evaluate K-means based on a metric for how well it performs for that later purpose.

