Lecture 2 - Orthogonal Vectors and Matrices

OBJECTIVE: The best algorithms of numerical linear algebra are somehow based on orthogonality.

We review the ingredients: orthogonal vectors and matrices.

♦ TRANSPOSE

Definition 1. The transpose A^T of an $m \times n$ matrix A is an $n \times m$ matrix where the (i,j) entry of A^T is the (j,i) entry of A

e.g., If
$$\mathbf{A}=\left(\begin{array}{ccc}1&2\\3&4\\5&6\end{array}\right)$$
, then $\mathbf{A^T}=\left(\begin{array}{ccc}1&3&5\\2&4&6\end{array}\right)$.

If $\mathbf{A} = \mathbf{A^T}$ (so \mathbf{A} has to be square!) then \mathbf{A} is said to be *symmetric*.

Note 1. The text uses A^* to denote A^T because it allows for complex numbers.

♦ INNER PRODUCT

Definition 2. Let $\mathbf{x}, \mathbf{y} \in \mathbb{R}^m$. Then, the inner product of \mathbf{x} and \mathbf{y} is a <u>scalar</u>

$$\mathbf{x}^{\mathbf{T}}\mathbf{y} = \sum_{i=1}^{m} x_i y_i.$$

The (Euclidean) length of a vector \mathbf{x} is written as $\|\mathbf{x}\|$ and can be defined as the square root of the inner product of the vector with itself

$$\|\mathbf{x}\| = \sqrt{\mathbf{x}^{\mathsf{T}}\mathbf{x}} = \left(\sum_{i=1}^{m} x_i^2\right)^{\frac{1}{2}}.$$

Also, if the angle between vectors \mathbf{x} and \mathbf{y} is α , we have

$$\cos \alpha = \frac{\mathbf{x}^{\mathbf{T}} \mathbf{y}}{\|\mathbf{x}\| \|\mathbf{y}\|}.$$

Some useful relationships:

a)
$$(\mathbf{x}_1 + \mathbf{x}_2)^T \mathbf{y} = \mathbf{x}_1^T \mathbf{y} + \mathbf{x}_2^T \mathbf{y}$$

b)
$$\mathbf{x}^{\mathbf{T}}(\mathbf{y}_1 + \mathbf{y}_2) = \mathbf{x}^{\mathbf{T}}\mathbf{y}_1 + \mathbf{x}^{\mathbf{T}}\mathbf{y}_2$$

c)
$$(\alpha \mathbf{x})^T (\beta \mathbf{y}) = \alpha \beta \mathbf{x}^T \mathbf{y}$$

Which is faster to compute, a) or b)?

The following properties are also true provided the operations are defined!

$$\mathsf{d)} \quad (\mathbf{A}\mathbf{B})^T = \mathbf{B}^{\mathsf{T}}\mathbf{A}^{\mathsf{T}}$$

e)
$$(AB)^{-1} = B^{-1}A^{-1}$$

Note 2. $\mathbf{A}^{-\mathbf{T}}$ is shorthand for $(\mathbf{A}^{\mathbf{T}})^{-1}$ or $(\mathbf{A}^{-1})^T$. They are equal!

♦ ORTHOGONAL VECTORS

Vectors \mathbf{x}, \mathbf{y} are orthogonal if $\mathbf{x}^T \mathbf{y} = 0$; i.e., the angle between \mathbf{x} and \mathbf{y} is $\frac{\pi}{2}$. (verify!)

Two sets of vectors X, Y are (mutually) orthogonal if every $x \in X$ is orthogonal to every $y \in Y$.

One set of nonzero vectors \mathbf{S} is (mutually) orthogonal if its elements are (pairwise) orthogonal i.e., if $\mathbf{x}, \mathbf{y} \in \mathbf{S}$ and $\mathbf{x} \neq \mathbf{y}$, then $\mathbf{x}^T \mathbf{y} = 0$.

A set of vectors S is *orthonormal* if it is orthogonal and for every $x \in S$, ||x|| = 1.

Theorem 1. The vectors in an orthogonal set S are linearly independent.

Corollary 1. If $S \subseteq \mathbb{R}^m$ contains m vectors, then it is a basis for \mathbb{R}^m .

♦ COMPONENTS OF A VECTOR

This is the most important idea: Inner products can be used to decompose arbitrary vectors into orthogonal components.

e.g., Let $\mathbf{Q} = \{\mathbf{q}_1, \mathbf{q}_2, ..., \mathbf{q}_n\}$ be an orthonormal set and let \mathbf{v} be an arbitrary vector.

 $\mathbf{q}_{j}^{T}\mathbf{v}$ is a scalar that represents the jth coordinate of \mathbf{v} in basis \mathbf{Q} .

 ${f v}$ can be decomposed into n+1 orthogonal components:

$$\mathbf{v} = \mathbf{r} + \sum_{i=1}^{n} (\mathbf{q}_i^T \mathbf{v}) \mathbf{q}_i = \mathbf{r} + \sum_{i=1}^{n} (\mathbf{q}_i \mathbf{q}_i^T) \mathbf{v}.$$

It is easy to verify that r is orthogonal to Q:

$$\mathbf{r} = \mathbf{v} - (\mathbf{q}_1^T \mathbf{v}) \mathbf{q}_1 - (\mathbf{q}_2^T \mathbf{v}) \mathbf{q}_2 - \ldots - (\mathbf{q}_n^T \mathbf{v}) \mathbf{q}_n$$

So,

$$\mathbf{q}_i^T \mathbf{r} = \mathbf{q}_1^T \mathbf{v} - (\mathbf{q}_1^T \mathbf{v}) \mathbf{q}_i^T \mathbf{q}_1 - (\mathbf{q}_2^T \mathbf{v}) \mathbf{q}_i^T \mathbf{q}_2 - \dots - (\mathbf{q}_n^T \mathbf{v}) \mathbf{q}_i^T \mathbf{q}_n$$

Since $\mathbf{q}_i^T \mathbf{q}_j = 0$ if $i \neq j$, the only term left is $(\mathbf{q}_i^T \mathbf{v})(\mathbf{q}_i^T \mathbf{q}_i)$.

$$\mathbf{q}_i^T \mathbf{r} = \mathbf{q}_i^T \mathbf{v} - (\mathbf{q}_i^T \mathbf{v})(\mathbf{q}_i^T \mathbf{q}_i) = 0$$

 $\rightarrow \mathbf{r}$ is the part of \mathbf{v} orthogonal to $\mathbf{Q}.$

So, if \mathbf{Q} is a basis for \mathbb{R}^m , n=m and $\mathbf{r}=\mathbf{0}$. (why?)

$$\therefore \quad \mathbf{v} = \sum_{i=1}^{m} (\mathbf{q}_i^T \mathbf{v}) \mathbf{q}_i = \sum_{i=1}^{m} (\mathbf{q}_i \mathbf{q}_i^T) \mathbf{v}$$

- **Note 3.** The sums are written in two different ways because there are two different interpretations.
- 1. $(\mathbf{q}_i^T \mathbf{v})$ is the coordinate in direction \mathbf{q}_i
- 2. \mathbf{v} is a sum of orthogonal projections of \mathbf{v} onto the directions \mathbf{q}_i (the *i*th projection is achieved by the special rank-one matrix $\mathbf{q}_i \mathbf{q}_i^T$ See Lecture 6)

♦ ORTHOGONAL MATRICES

A square matrix $\mathbf{Q} \in \mathbb{R}^{m \times m}$ is orthogonal if

$$\mathbf{Q}^{\mathrm{T}} = \mathbf{Q}^{-1}.$$

i.e.,

$$\mathbf{Q}^{\mathrm{T}}\mathbf{Q} = \mathbf{Q}\mathbf{Q}^{\mathrm{T}} = \mathbf{I}$$

$$\begin{bmatrix} \mathbf{q}_1^T \\ \mathbf{q}_2^T \\ \vdots \\ \mathbf{q}_m^T \end{bmatrix} \begin{bmatrix} \mathbf{q}_1 & \mathbf{q}_2 & \dots & \mathbf{q}_m \end{bmatrix} = \begin{bmatrix} 1 & & & & \\ & 1 & & & \\ & & \ddots & & \\ & & & 1 \end{bmatrix}$$

NOTATION

$$\mathbf{q}_i^T \mathbf{q}_j = \delta_{ij} = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases} \qquad \begin{cases} \delta_{ij} \text{ is called the} \\ Kronecker \ delta \end{cases}$$

MULTIPLICATION BY AN ORTHOGONAL MATRIX

Note 4. Geometric structure is preserved!

$$(\mathbf{Q}\mathbf{x})^T(\mathbf{Q}\mathbf{y}) = \mathbf{x}^T\mathbf{y}$$
 (verify!)

This invariance of inner products implies angles between vectors are preserved, and so are their lengths, $\|\mathbf{Q}\mathbf{x}\| = \|\mathbf{x}\|$.

- Corresponds to rigid rotation of the vector space if $\det(\mathbf{Q}) = +1$ or reflection if $\det(\mathbf{Q}) = -1$.