Tecnica delle Costruzioni Corso di laurea in ingegneria edile Prof. Ing. Andrea Prota-a.a. 2022/2023

Ivano D'Apice

N41002772

Indice

1 Assegno Solaio					
2	Analisi dei carichi				
	2.1	Carichi strutturali permanenti $G_1 \ldots \ldots \ldots \ldots$	3		
	2.2	Carichi permanenti non strutturali G_2	4		
3	Not	e	5		

Capitolo 1

Assegno Solaio

Geometria

 $L_1 = 0,70 + 0,10 \cdot n$ $L_2 = 4,00 + 0,10 \cdot c$ $L_3 = 4,80 + 0,10 \cdot c - 0,10 \cdot n$

n=n.ro lettere del nome c=n.re lettere del cognome

Figura 1.1

Figura 1.2: Dati numerici in 1 metro di solaio.

Carichi Accidentali^[1] Matricola pari Sullo Sbalzo \longrightarrow $q = 5,00kN/m^2$ In Campata \longrightarrow $q = 3,50kN/m^2$

Capitolo 2

Analisi dei carichi

Consideriamo due tipi di carico: Q e G. I carichi di tipo Q si dicono **variabili**, mentre quelli di tipo G **permanenti**. Differenziamo poi i carichi G in **permanenti** strutturali G_1 e **permanenti** non strutturali G_2 .

Si ricorda che verrà fatta una verifica rispetto allo **S.L.U** (Stati Limite Ultimo), tenendo conto dello **S.L.E** (Stato Limite di Esercizio) per quanto riguarda il dimensionamento del solaio.

Dati:

$$L_1 = 0,70 + 0,10 \cdot n$$
 = $0,70 + 0,50$ = **1,20m**
 $L_2 = 4,30 + 0,10 \cdot c$ = $4,30 + 0,60$ = **4,90m**
 $L_3 = 4,80 + 0,10 \cdot c - 0,10 \cdot n$ = $4,80 + 0,10$ = **4,90m**

Utilizziamo la luce maggiore ($L_2=L_3$) per calcolare l'altezza del solaio grazie allo S.L.E. Avremo che $\mathbf{H}=\frac{\mathbf{L}}{20}$ e quindi $H=\frac{490cm}{20}=24,50cm \sim 25,00\text{cm}.^{[2]}$

Come da progetto [1.2] avremo $\mathbf{H}_{sbalzo} = H - 4,00cm = 25,00cm - 4,00cm = \mathbf{21,00cm}$.

2.1 Carichi strutturali permanenti G_1

Materiale	h (m)	L (m)	$G_1 (\mathrm{kN/m^3})$	$G_1 (\mathrm{kN/m^2})$
Soletta	0,05	1,00	25,00	1,25
Travetti	0,20	0,10.2	25,00	1,00
$Laterizi^{[2.1]}$	$0,\!20$	$0,\!40 \cdot 2$	6,00	0,96

4

Totale
$$\mathbf{G}_1 = (1, 25+1, 00+0, 96)kN/m^2 = 3, 21kN/m^2$$

2.2 Carichi permanenti non strutturali G_2

Materiale	h (m)	L (m)	$G_1 (\mathrm{kN/m^3})$	$G_1 (\mathrm{kN/m^2})$
Massetto	0,60	1,00	16,00	0,96
Pavimento	0,01	1,00	16,00	0,18
Intonaco	0,01	1,00	18,00	0,18

Totale $\mathbf{G}_2 = (0, 96 + 0, 18 + 0, 18)kN/m^2 = 1, 32kN/m^2$

Capitolo 3

Note

- [1] I valori di carico accidentale in situazione normale sono $q=4.00kN/m^2$ e $q=2.00kN/m^2$ rispettivamente per lo sbalzo e campata. I valori usati in esercizio sono puramente didattici.
- [2] Considerando che una pignatta non è alta meno di 12 cm, l'altezza minima del solaio è comunque di 17 cm.
- [2.1] Il peso specifico dei blocchi di allegerimento in laterizio è stato ricavato dalle tabelle dei pesi specifici di normativa, considerando una percentuale di foratura pari al 67% ($18 \cdot [1-0.67]$) = 5,94 -> 6,00 KN/m³.