1

Assignment-1

AI24BTECH11012- Pushkar Gudla

SECTION-A

F. MATCH THE FOLLOWING

1) Match the following:

(2006-6M)

a)
$$\int_0^{\frac{\pi}{2}} (\sin x)^{\cos x} \left(\cos x \cot x - \log (\sin x)^{\sin x}\right) dx$$

b) Area bounded by $-4y^2 = x$ and $x - 1 = -5y^2$

c) Cosine of the angle of intersection of curves

 $y = 3^{x-1} \log x$ and $y = x^x - 1$ is d) Let $\frac{dy}{dx} = \frac{6}{x+y}$ where y(0) = 0 then value of y when x + y = 6 is

b) 0

c) $6 \ln(2)$

d) $\frac{4}{3}$

2) Match the integrals in Column I with the values in Column II and indicate your answer by darkening the appropriate bubbles in the 4x4 matrix given in the ORS.

(2007-6M)

Column I

a)
$$\int_{-1}^{1} \frac{dx}{1+x^2}$$

b)
$$\int_0^1 \frac{dx}{\sqrt{1-x^2}}$$

c)
$$\int_{2}^{3} \frac{dx}{1-x^2}$$

d)
$$\int_{1}^{2} \frac{dx}{x\sqrt{x^2-1}}$$

Column II

a) $\frac{1}{2} \log \left(\frac{2}{3}\right)$

b) $2 \log \left(\frac{2}{3}\right)$ c) $\frac{\pi}{3}$ d) $\frac{\pi}{2}$

3) (JEE Adv. 2014)

List-I

- a) The number of polynimials f(x) with nonnegative integer coeffecients of $degree \le 2$, satisfying f(0) = 0 and $\int_0^1 f(x) dx = 1$, is b) The number of points in the interval
- $\left[-\sqrt{13}, \sqrt{13}\right]$ at which $f(x) = \sin x^2 + \cos x^2$ attains its maximum value is
- c) $\int_{-2}^{2} \frac{3x^2}{(1+e^x)} dx \text{ equals}$ d) $\frac{\left(\int_{-\frac{1}{2}}^{\frac{1}{2}} \cos 2x \log\left(\frac{1+x}{1-x}\right) dx\right)}{\left(\int_{0}^{\frac{1}{2}} \cos 2x \log\left(\frac{1+x}{1-x}\right) dx\right)}$

a) 8

List-II

- b) 2 c) 4
- d) 0

PQRS

- a) 3241
- b) 3214
- c) 2341
- d) 2314

SECTION-B JEE MAIN/And Edite y-axis is:

[JEE M 2019-9Jan(M)]

a) The area (insq.units) of the region $\{(x,y): y^2 \ge$ $2xandx^2 + y^2 \le 4x, x \ge 0, y \ge 0$ } is:

[JEE M 2016]

- b) The area (insq.units) of the region $\{(x, y) : x \ge a\}$ $0, x + y \le 3, x^2 \le 4y$ and $y \le 1 + \sqrt{x}$ is:

[JEE M 2017]

- i) $\frac{5}{2}$ ii) $\frac{59}{12}$ iii) $\frac{3}{2}$ iv) $\frac{7}{3}$

- c) The integral $\int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \frac{dx}{1+\cos x}$ is equal to:

[JEE M 2017]

- i) -1
- ii) -2
- iii) 42
- iv) 4
- d) Let $g(x) = \cos x^2$, $f(x) = \sqrt{x}$, and α , $\beta(\alpha < \beta)$ be the roots of the quadratic equation $18x^2$ – $9\pi x + \pi^2 = 0$. Then the area (*insq.units*) bounded by the curve y = (gof)(x) and the lines x = α , $x = \beta$ and y = 0, is:

[JEE M 2018]

- i) $\frac{1}{2} \left(\sqrt{3} + 1 \right)$ ii) $\frac{1}{2} \left(\sqrt{3} \sqrt{2} \right)$ iii) $\frac{1}{2} \left(\sqrt{2} 1 \right)$ iv) $\frac{1}{2} \left(\sqrt{3} 1 \right)$

- e) The value of $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\sin^2 x}{1+2^x} dx$ is:

[JEE M 2018]

- i) $\frac{\pi}{2}$ ii) 4π
- iii) $\frac{\pi}{4}$ iv) $\frac{\pi}{8}$
- f) The value of $\int_0^{\pi} |\cos x|^3 dx$ is:

[JEE M 2019-9 Jan(M)]

- i) 0
- ii) $\frac{4}{3}$ iii) $\frac{2}{3}$ iv) $\frac{-2}{3}$
- g) The area (insq.units) bounded by the parabola $y = x^2 - 1$, the tangent at the point (2, 3) to it

- i) $\frac{8}{3}$ ii) $\frac{32}{3}$ iii) $\frac{56}{3}$ iv) $\frac{14}{3}$
- h) The value of $\int_0^{\frac{\pi}{2}} \frac{\sin^3 x}{\sin x + \cos x} dx$ is: [JEE M 2019-9 April(M)]

- i) $\frac{\pi-2}{8}$ ii) $\frac{\pi-1}{4}$ iii) $\frac{\pi-2}{4}$ iv) $\frac{\pi-1}{2}$
- i) The area (insq.units) of the region $A = \{(x, y) :$ $x^2 \le y \le x + 2$ } is:

[JEE M 2019-9 April(M)]

- i) $\frac{10}{3}$ ii) $\frac{9}{2}$ iii) $\frac{31}{6}$ iv) $\frac{13}{6}$