

Video: Portal clip

The pinhole camera

(the *original* graphics hardware)

Pixels

Voxels?

Voxel-based brain imaging

Minecraft

How many voxels do we need?

Triangles!

3-D Cartesian coordinates

Vector addition

$$a = (5, 6, -3)$$

 $b = (-1, 7, 2)$

$$a + b = (5 + (-1), 6 + 7, (-3) + 2)$$

= (4, 13, -1)

Vector addition

Points → vectors from the origin

Relative positioning of objects

Vector subtraction

$$a = (5, 6, -3)$$

 $b = (-1, 7, 2)$

$$a - b = (5 - (-1), 6 - 7, (-3) - 2)$$

= (6, -1, -5)

Vector subtraction

Scalar multiplication

$$a = (5, 6, -3)$$

$$5a = (5.5, 5.6, 5.(-3))$$

= (25, 30, -15)

Scalar multiplication

Applying force in small steps

(This is called "Euler's method for numerical integration." No, you don't have to remember that. But you can if you want.)

Demo: launching snowballs

The dot product

$$a = (5, 6, -3)$$

 $b = (-1, 7, 2)$

a · b =
$$5 \cdot (-1) + 6 \cdot 7 + (-3) \cdot 2$$

= $-5 + 42 + -6 = 31$

	Heller (R)	Reid (D)
37	Y	Y
38	Y	N
39	N	Y
40	N	N
41	N	Y
42	Y	N
43	Y	N
45	N	N
46	Y	Y
54	N	Y

	Heller (R)	Reid (D)	product
37	+1	+1	+1
38	+1	-1	-1
39	-1	+1	-1
40	-1	-1	+1
41	-1	+1	-1
42	+1	-1	-1
43	+1	-1	-1
45	-1	-1	+1
46	+1	+1	+1
54	-1	+1	-1

Total:

-2

	Boxer (D)	Feinstein (D)
37	N	N
38	N	N
39	Y	Y
40	N	N
41	Y	Y
42	N	N
43	N	N
45	N	N
46	Y	Y
54	Y	Y

	Boxer (D)	Feinstein (D)	product
37	-1	-1	+1
38	-1	-1	+1
39	+1	+1	+1
40	-1	-1	+1
41	+1	+1	+1
42	-1	-1	+1
43	-1	-1	+1
45	-1	-1	+1
46	+1	+1	+1
54	+1	+1	+1

Total: +10 (!)

Projecting one vector onto another

 $|A| |B| \cos \theta$

The cross product

$$\begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix} \wedge \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} = \begin{pmatrix} & & \\ & & \\ & & \end{pmatrix}$$

The cross product

Lighting matters

Lighting matters

Video: Phong shading

LightingThe Phong illumination model

Ambient: constant

Diffuse: $\mathbf{L} \cdot \mathbf{N} = \cos \beta$

Specular: $(\mathbf{R} \cdot \mathbf{V})^k = (\cos \alpha)^k$