Angle-Resolved Photoemission Spectroscopy (ARPES)

Parnian Lali and Rasta M.Ebrahimi

Dr.Sahebsara

Contents

Introduction to ARPES

• Theory section

Examples of ARPES

- ARPES as an experimental method
- Conclusion

Photoemission Spectroscopy (PES)

Photoemission Spectroscopy (PES)

UPS & XPS

X-ray photoemission spectroscopy (XPS) , University of Geneva, Switzerland

ARPES & PES

Theory section – 2D

$$E_k = \frac{\hbar^2 K^2}{2m_0}$$

 K_{\parallel} and K_{\perp} are the surface normal and parallel components of the wave vector \mathbf{K} in vacuum:

$$\rightarrow E_k = \frac{\hbar^2 \left(K_{\parallel}^2 + K_{\perp}^2\right)}{2m_0}$$

$$\begin{cases} K_{\parallel} = K sin\theta \\ K_{\perp} = K cos\theta \end{cases}$$

$$\begin{cases} hK_{\parallel} = p = \sqrt{2mE_k}\sin\theta & (K_{\parallel} = k_{\parallel}) \\ hK_{\perp} = \sqrt{(2m(E_k\cos^2\theta - V_0))} & (K_{\perp} \neq k_{\perp}) \end{cases}$$

Theory section – 3D

Angle-resolved Photoemission Spectroscopy, Hongyun Zhang, Tommaso Pincelli and etc

$$\begin{cases} k_{x,in} = k_{x,out} = \frac{\sqrt{2m_e E_k}}{\hbar} (\cos\beta\sin\alpha + \sin\beta\cos\theta\cos\alpha) \\ k_{y,in} = k_{y,out} = \frac{\sqrt{2m_e E_k}}{\hbar} \sin\theta\cos\alpha \\ k_{z,in} = \sqrt{k_{z,out}^2 + V_0(\frac{\sqrt{2m_e}}{\hbar})^2} \end{cases}$$

What are the Measured Quantities and the Desired Quantities?!

a simple example of ARPES: 2D free electron gas on Cu(111)

Another examples of ARPES

Anisotropic Electric Conductivity of Delafossite PdCoO2 Studied by Angle-Resolved Photoemission Spectroscopy, July 2009

Another examples of ARPES

ZnO

High-density two-dimensional electron system induced by oxygen vacancies in ZnO, February 2018

Another examples of ARPES

Cu(111 surface)

ARPES in Python

ARPES in Python

 $k(A^{-1})$

```
import arpespythontools as arp
    data, energy, angle = arp.load_ses_spectra('sample_spectra.txt')
    data k, e bin, k = arp.k conv(data, energy, angle, 16.67)
    # Fermi energy = 16.67 eV
 5
    # Plot image
    import matplotlib.pyplot as plt
    %matplotlib inline
    # Above line is specific to Jupyter Notebook
    plt.figure(figsize = (8, 6))
10
    plt.imshow(data k, origin = 'lower', aspect = 'auto', \
12
                 extent = (k[0], k[-1], e_bin[0], e_bin[-1]))
    plt.xlabel("k ($\AA^{-1}$)")
                                                           -0.2 -
13
    plt.ylabel('$E {bin}$ (eV)')
                                                            0.0 -
    plt.set cmap('magma r')
    plt.show()
                                                            0.2 -
                                                        E_{bin} (eV)
                                                            0.4 -
                                                            0.6 -
                                                            0.8 -
                                                            1.0 -
                                                            1.2 -
                                                                         -0.2
                                                                                  -0.1
                                                                                           0.0
                                                                                                   0.1
                                                                 -0.3
                                                                                                           0.2
                                                                                                                    0.3
                                                       15
```

ARPES in Python

Applications

Image from VG Scienta and PhD Thesis of Dr. Ari Deibert Palczewski (http://lib.dr.iastate.edu/cgi/viewcontent.cgi?article=2629&context=etd)

Pass energy-E_p

Energy resolution

$$\Delta E = \frac{E_p S}{D}$$

D: mean diameter of the analyzer

The resolving power of the analyzer

$$\longrightarrow R = \frac{E}{\Delta E} = \frac{E}{S}$$

sample holder

Synchrotron light sources

Laser-ARPES

Ir(111)

ARPES برای نقشه برداری در موارد زیر استفاده میشود:

ساختار پیوند های اشغال شده بسیاری فلزات و نیمه رسانا ها.

حالت های آشکار شده در گپ های پیوندی تصویر شده.

حالت های چاه پتانسیل که در سیستم با کاهش ابعاد برانگیخته میشوند.

مواد با قطر یک اتم مانند گرافن.

ساختار های پیوندی زیرساخت.

گپ ها.

دینامیک شبه ذرات بسیار همبسته مانند ابررسانا های دمای بالا.

ARPES

