Práctica 3:

Definiciones y propiedades elementales

- 1. Para cada una de las siguientes funciones $T: \mathbb{R}^2 \to \mathbb{R}^2$ determinar si se trata de una transformación lineal y en caso afirmativo, obtener nul(T) y img(T).
 - a) $T((x,y)^T) = (y,x)^T$.
 - b) $T((x,y)^T) = (x^2, y^2)^T$.
 - c) $T((x,y)^T) = (x,-y)^T$.
 - d) $T((x,y)^T) = (x,0)^T$.
- 2. Sean $T_{1,2}:\mathbb{R}^3\to\mathbb{R}^3$ tal que $T_1((x,y,z)^T)=(x,y,0)^T$ y $T_2((x,y,z)^T)=(x,y,y)^T$. Hallar $T_1\circ T_2$ y $T_2\circ T_1$.

Analizar si son epimorfismos, monomorfismos, isomorfismos o ninguna de ellas.

3. Definimos $\mathbb{R}_n[x] = \{p : p \ polinomio \ a \ coeficientes \ reales \ grad(p) \le n, \ x \in \mathbb{R}\} \cup \{0\}$. Sea

$$T: \quad \mathbb{R}^{2\times 2} \quad \to \quad \mathbb{R}_3[x]$$

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \quad \mapsto \quad T\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\right) = 2dx^3 + (a+b)x^2 + (a-c)x + 2(c+d).$$

- a) Probar que T es lineal.
- b) Hallar una base para nul(T) y una para img(T).
- c) Determinar si T es un isomorfismo.
- 4. Sea $T: \mathbb{R}_n[x] \to \mathbb{R}_n[x]$ tal que $T(a_0 + a_1x + \cdots + a_nx^n) = a_0 + a_1(x+1) + \cdots + a_n(x+1)^n$. Probar que T es isomorfismo.
- 5. Sea $T: \mathbb{R}^3 \to \mathbb{R}^3$ tal que $T(v) = (x+y, x+z, \alpha(v))^T$, donde $v = (x,y,z)^T$ y $\alpha: \mathbb{R}^3 \to \mathbb{R}$. Determinar, si es posible, α de modo que T resulte lineal.
- 6. Determinar, si existe, una transformación lineal $T:\mathbb{R}^3\to\mathbb{R}^2$ que verifique: $T((1,-1,1)^T)=(1,0)^T$ y $T((1,1,1)^T)=(0,1)^T$.
- 7. Definimos $I:C(\mathbb{R})\to C(\mathbb{R})$ tal que $I(f)(x)=\int\limits_0^x f(t)\ dt$ e $I_a^b:C(\mathbb{R})\to\mathbb{R}$ tal que $I_a^b(f)(x)=\int\limits_a^b f(x)\ dx$. Probar que I y I_a^b son transformaciones lineales.

El álgebra de las transformaciones lineales

- 8. Sean V y W espacios vectoriales sobre \mathbb{K} y $\mathcal{L}(V,W) = \{T: V \to W: T \ transformaci\'on \ lineal\}$. Probar que para $T_1, T_2 \in \mathcal{L}(V,W)$
 - a) $\{v \in V : T_1(v) = T_2(v)\} \subset_{s.e.v.} V.$
 - b) Si $V = \langle U \rangle$ y $T_1(u) = T_2(u), \forall u \in U$, entonces $T_1(v) = T_2(v), \forall v \in V$.
- 9. Sean V y W espacios vectoriales de dimensión finita y $T \in \mathcal{L}(V, W)$. Probar que:
 - a) Si T invectiva, entonces T transforma conjuntos de vectores l.i. de V en conjuntos de vectores l.i. de W.
 - b) Si T sobreyectiva, entonces T transforma conjuntos generadores de vectores de V en conjuntos generadores de vectores de W.
 - c) T isomorfismo si y solo si T transforma bases de V en bases de W.
- 10. Sea V un espacio vectorial sobre \mathbb{K} y supongamos que existe una aplicación lineal $T \in \mathcal{L}(V)$ tal que tanto nul(T) como img(T) son subespacios de dimensión finita. Probar que V también debe ser de dimensión finita.
- 11. Sea V un espacio vectorial de dimensión finita sobre \mathbb{K} y $S,T\in\mathcal{L}(V)$. Probar que:

- a) $T \circ S$ es inversible si y solo si S y T son inversibles.
- b) Para I, la función identidad en $V, T \circ S = I$ si y solo si $S \circ T = I$.
- 12. Sea \mathbb{C} el espacio vectorial de los números complejos sobre \mathbb{R} , con las operaciones usuales. Describir explícitamente un isomorfismo de este espacio con \mathbb{R}^2 .
- 13. Una matriz $n \times n$, $A = (a_{ij})_{i,j=1}^n$ con entradas en $\mathbb C$ tal que $A = \overline{A}^T$, i.e. $a_{ij} = \overline{a_{ji}}$, para todos $i, j = 1, \cdots, n$, se dice *Hermitiana*.

Sea W el conjunto de todas las matrices Hermitianas 2×2 .

- a) Verificar que W es un espacio vectorial sobre \mathbb{R} .
- b) Verificar que la aplicación

$$(x, y, z, t) \mapsto \begin{bmatrix} t + x & y + iz \\ y - iz & t - x \end{bmatrix}$$

es un isomorfismo de \mathbb{R}^4 en W.

- 14. Mostrar que $\mathcal{M}_{m\times n}(\mathbb{K})$ es isomorfo a \mathbb{K}^{mn} .
- 15. Sean V y W dos espacios vectoriales de dimensión finita sobre \mathbb{K} . Probar que V y W son isomorfos si y solo si $\dim V = \dim W$.

Representación de transformaciones lineales por matrices

16. La matriz

$$A = \left[\begin{array}{cc} 1 & 0 \\ 3 & 1 \end{array} \right]$$

produce una transformación llamada *esfuerzo constante*, que deja fijo al *eje y*. Hacer un bosquejo para indicar qué ocurre cuando se aplica dicha transformación a los vectores (1,0), (2,0) y (-1,0). ¿Cómo se transforma el *eje x*?

- 17. a) Encontrar la matriz de permutación cíclica A de tamaño 4×4 que transforma el vector (x_1, x_2, x_3, x_4) en (x_2, x_3, x_4, x_1) .
 - b) ¿Cuál es la transformación asociada a A^2 ?
- 18. *a*) Encontrar la matriz A de tamaño 4×3 que representa el *desplazamiento derecho* que transforma (x_1, x_2, x_3) en $(0, x_1, x_2, x_3)$.
 - b) Calcular la matriz B de tamaño 3×4 que representa el desplazamiento izquierdo que transforma (x_1,x_2,x_3,x_4) en (x_2,x_3,x_4) .
 - c) Obtener AB y BA sin realizar el producto de matrices.
- 19. Sea $V=\mathbb{R}^n$, fijamos la base canónica $\mathcal{B}=\{e_1,e_2,\cdots,e_n\}$. Para cada $T_i:\mathbb{R}^n\to\mathbb{R}^n$ hallar A_i tal que $A_ix=T_i(x), \forall x\in\mathbb{R}^n, i=1,\cdots,4$.
 - a) $T_1(x) = x, \forall x \in \mathbb{R}^n$.
 - b) $T_2(x) = 0, \forall x \in \mathbb{R}^n$.
 - c) $T_3(x) = c \cdot x, c \in \mathbb{R}, \forall x \in \mathbb{R}^n$.
 - d) Sean p, q enteros distintos entre 1 y n inclusives

$$T_4(x) = y, \text{ donde } y = (y_k)_{k=1}^n \text{ con } y_k = \left\{ \begin{array}{ll} x_k & \text{para } k \neq p, \ k \neq q \\ x_p & \text{para } k = q \\ x_q & \text{para } k = p \end{array} \right.$$

20. Consideremos la base canónica de $V = \mathbb{R}^2$ dada por $\mathcal{B} = \{e_1, e_2\}$ y la transformación lineal $T : \mathbb{R}^2 \to \mathbb{R}^2$ que aplica los vectores e_1 y e_2 como sigue:

$$T(e_1) = e_1 + e_2,$$
 $T(e_2) = 2 \cdot e_1 - e_2.$

Obtener:

- a) $T(3 \cdot e_1 4 \cdot e_2)$ y $T^2(3 \cdot e_1 4 \cdot e_2)$,
- b) las matrices asociadas a T y T^2 en la base \mathcal{B} ,
- c) $T(v), \forall v \in V$.
- 21. Sea $T_w: \mathbb{C} \to \mathbb{C}/T_w(z) = z + w\bar{z}$, donde $w = a + ib, a, b \in \mathbb{R}$ y \mathbb{C} espacio vectorial sobre \mathbb{R} .
 - a) Considerar w = 1 + i y calcular $T_w(2 + 3i)$.
 - b) Comprobar que T_w es una transformación lineal entre espacios vectoriales.
 - c) Si $\mathcal{B} = \{1, i\}$ es base de \mathbb{C} , hallar la matriz de T_w en dicha base.
 - d) Probar que T_w es isomorfismo si y solo si $a^2 + b^2 \neq 1$.
- 22. Sea $T: \mathbb{R}^3 \to \mathbb{R}^3$ transformación lineal tal que

$$T((0,0,1)^T) = (2,3,5)^T,$$
 $T((0,1,1)^T) = (1,0,0)^T,$ $T((1,1,1)^T) = (0,1,-1)^T.$

- a) Probar que con esta información es posible obtener $T(v), \forall v \in \mathbb{R}^3$.
- b) Determinar, fijada la base canónica en \mathbb{R}^3 , la matriz de T.
- c) Utilizando b), obtener $\dim(nul(T))$ y rang(T).
- d) Determinar si T es inversible.
- 23. Sea T la transformación lineal de \mathbb{R}^3 en \mathbb{R}^2 definida por

$$T(x_1, x_2, x_3) = (x_1 + x_2, 2x_3 - x_1).$$

- a) Si \mathcal{B} es la base ordenada estándar de \mathbb{R}^3 y \mathcal{B}' es la base ordenada estándar para \mathbb{R}^2 , determinar la matriz de T relativa al par $(\mathcal{B}, \mathcal{B}')$.
- b) Si $\mathcal{B} = \{(1,0,-1),(1,1,1),(1,0,0)\}$ y $\mathcal{B}' = \{(0,1),(1,0)\}$ ¿Cuál es la matriz de T relativa a al par $(\mathcal{B},\mathcal{B}')$?
- 24. Sea T un operador lineal sobre \mathbb{K}^n y sea A la matriz de T relativa a la base estándar de \mathbb{K}^n . Sea W el subespacio de \mathbb{K}^n generado por los vectores columnas de A. ¿Qué relación existe entre W y T?
- 25. Sea V un espacio vectorial de dimensión finita sobre el campo \mathbb{K} y sean S y T operadores lineales sobre V. Probar que existen dos bases ordenadas \mathcal{B} y \mathcal{B}' en V tales que $[S]_{\mathcal{B}} = [T]_{\mathcal{B}'}$ si y solo si existe un operador lineal inversible U sobre V tal que $T = USU^{-1}$.

Funcionales lineales

- 26. En \mathbb{R}^3 , sean $v_1 = (1,0,1)^T$, $v_2 = (0,1,2)^T$ y $v_3 = (-1,-1,0)^T$.
 - a) Si f es un funcional lineal sobre \mathbb{R}^3 tal que $f(v_1)=1$, $f(v_2)=-1$ y $f(v_3)=3$ y si $v=(a,b,c)^T$, hallar f(v).
 - b) Describir explícitamente un funcional lineal f sobre \mathbb{R}^3 tal que $f(v_1) = f(v_2) = 0$ pero $f(v_3) \neq 0$.
 - c) Sea f cualquier funcional lineal tal que $f(v_1) = f(v_2) = 0$ pero $f(v_3) \neq 0$. Si $v = (2, 3, -1)^T$, muestre que $f(v) \neq 0$.
- 27. Sea $\mathcal{B} = \{(1,0,-1)^T, (1,1,1)^T, (2,2,0)^T\}$ una base de \mathbb{C}^3 . Hallar la base dual de \mathcal{B} .
- 28. Sean $v_1 = (1, 0, -1, 2)^T$ y $v_2 = (2, 3, 1, 1)^T$ y sea $W = \langle \{v_1, v_2\} \rangle$. ¿Qué funcionales lineales de la forma $f(x_1, x_2, x_3, x_4) = c_1 x_1 + c_2 x_2 + c_3 x_3 + c_4 x_4$ están en el anulador de W?.
- 29. Sea $V = \mathcal{M}_{2\times 2}(\mathbb{R})$ y sean

$$B = \begin{bmatrix} 2 & -2 \\ -1 & 1 \end{bmatrix}, \qquad C = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}.$$

Sea W el subespacio de V que consiste de todas las matrices A tales que AB=0. Sea f, un funcional lineal sobre V que está en el anulador de W. Supongamos que f(I)=0 (I matriz identidad) y f(C)=3. Hallar f(B).

30. Sean W_1 y W_2 subespacios de un espacio vectorial V de dimensión finita.

- a) Probar que $(W_1 + W_2)^0 = W_1^0 \cap W_2^0$.
- b) Probar que $(W_1 \cap W_2)^0 = W_1^0 + W_2^0$.
- 31. Sea V un espacio vectorial de dimensión finita sobre $\mathbb K$ y sea W un subespacio de V. Si f es un funcional lineal sobre W, demostrar que existe un funcional lineal g sobre V tal que $g(v) = f(v), \forall v \in W$.
- 32. Sea $v \in V$ espacio vectorial, entonces v induce un funcional lineal L_v en V^* definido por

$$\begin{array}{ccc} L_v: & V^* & \to & \mathbb{K} \\ & f & \mapsto & L_v(f) = f(v) \end{array}$$

- a) Mostrar que L_v es lineal.
- b) Probar que si V es de dimensión finita y $v \neq 0$, entonces existe un funcional lineal f tal que $f(v) \neq 0$.
- c) Probar que si V es de dimensión finita, la aplicación $v\mapsto L_v$ es un isomorfismo de V en V^{**} . V^{**} se conoce como el doble dual de V.
- d) Probar que si L es un funcional lineal sobre el espacio dual V^* del espacio vectorial V de dimensión finita, entonces existe un único vector $v \in V$ tal que L(f) = f(v) para todo $f \in V^*$.
- e) Mostrar que en un espacio vectorial V de dimensión finita, toda base de V^* es la dual de alguna base de V.