CMII03: Problem Solving with Python

Stuart Allen

CM1103

School of Computer Science & Informatics Cardiff University

Syllabus & recommended reading

Syllabus

- · Fundamental programming concepts in Python
- Algorithms (inc. searching, sorting, recursion)
- Mathematics (mainly discrete mathematics)
- Scientific report writing

Reading

- Think Python! (see Learning Central)
- Discrete Mathematics with Applications, at least Second edition,
 S.S. Epp. Available from the library short loan section, QA39.2.E7

Skills

Skills that will be practised and developed:

- · Programming in Python
- Problem Solving
- Effectively using online and offline API documentation
- Writing scientific reports
- Using the command line to manipulate files and run code

Lectures, labs & tutorials

See structured weekly activity in Learning Central

- Videos watch before the indicated interactive sessions
- Five one-hour interactive sessions per week:
 - Two Discrete Maths & one optional maths tutorial support session (Dr Wu)
 - Two Problem Solving/Algorithms/Python (Prof Allen)
 - Time in these to recap (and cover any other topics you request https://forms.office.com/e/mTu85mXytN

Lectures, labs & tutorials

Two optional 2-hour interactive lab sessions (weeks 5 - 9) with accompanying worksheets covering range of topics in Python (Dr Matt Morgan)

- Thursday: Support for the programming exercise request questions in advance via online poll
- Friday: Revision and recap of the week's topics
- Optional 'advanced' questions
- One challenge question per week

Assessment

Summative

- Programming exercise 40%
 - Set in Week 8 (Monday, November 20, 2023), submit in week 11 (Thursday, December 14, 2023)
- Class test in Week 12 (exact date to be confirmed, likely to be Wednesday, January 10, 2024) – 60% (2 hours)

Formative

- Labs \rightarrow Programming exercise coursework
 - · weekly questions with solutions
 - one question with "doctests" per week on key concepts (e.g. loops, reading files, ...)
- Tutorials, online maths tests: multiple choice, fill in the blanks, etc. \rightarrow Class test

Support & Feedback

Support

- StackOverflow: stackoverflow.com/c/comsc/questions/tagged/14
- · Office hours
- Email: AllenSM@cardiff.ac.uk, WuJII@cardiff.ac.uk, MorganMJW@cardiff.ac.uk

Giving us feedback

- Email: AllenSM@cardiff.ac.uk, WuJII@cardiff.ac.uk, MorganMJW@cardiff.ac.uk
- Weekly survey
- · Lab tutors and teaching assistants
- · Student staff panel

Learning outcomes

On completion of the module a student should be able to:

- Use Python and common modules to implement simple algorithms expressed in pseudocode, and understand fundamental programming concepts
- Develop informal algorithms and apply recursion to solve simple problems
- Informally analyse the efficiency of algorithms and contrast different searching algorithms
- 4. Understand and apply basic logic, set theory, counting techniques, probability and statistics
- 5. Write scientific reports describing the analysis of a problem

What you should expect

- Added more contact hours, but kept existing videos where appropriate
- Too much/too little maths
- Too much/too little Python
- Labs too long/not long enough
- More labs! More labs! More labs! More labs!
- Python assessments too hard
- I found it hard to grasp the Python syntax in just 2hrs of labs per week
- "Didn't really stop and explain the language itself. You just give us a huge piece of code and tell us what it does."

What we expect from you

- Attendance
- Questions
- Engagement
- · Independent study
- Practice

Devices

See https://punkrockor.com/2019/10/18/a-digital-device-policy-in-the-classroom-2/

Phone / Laptop / Tablet / De- vice Use	Far Below Ex- pectations	Below Expecta- tions	Meeting Expectations	Exceeding Expectations
In the real world, people have their phones and devices with them at their jobs, meetings, and courses. Adults do not have their devices taken away from them.	Use is inappropriate. Device is a distraction to others.	Use is distracting. Device is a distraction to the student. Student frequently checks phone or device during learning.	Device is not used except for designated appropriate times OR use is limited to a quick check of the phone during a transition or appropriate time.	Device is not used except for as an efficient academic tool for a direct purpose. Devices are not a distraction and are used at appropriate times as an extension of work or learning.
They are expected to manage their own use and conform to professional expectations in every setting.	Example: A student plays games, views non-academic material, types (not for taking notes), reads non-academic articles, has text or chat conversations.	Example: A student takes out their phone to look at a text several times during a class period.	Example: If a student receives an important message from a parent, they quickly check while still being engaged in class and with no distraction to others.	Example: A student follows along with the lecture notes on a tablet and goes back a slide to correct a misconception about the lecture material. Student looks up the formula
3: Problem Solving with Python (Stuart Allen)				for the Binomial theorem for an

in-class example,