Single Point Cutting Tool

 $t_0 = Uncut \ chip \ thickness$ $t_1or \ t_c = Chip \ thickness$ $\beta = Shear \ Angle, \ \gamma = Rake \ Angle$

Chip Thickness Ratio

- During cutting, the cutting edge of the tool is positioned a certain distance below the original work surface. This corresponds to the thickness of the chip prior to chip formation, t_0 .
- •As the chip is formed along the shear plane, its thickness increases to t_c.

• The ratio of t_0 to t_c is called the chip thickness ratio (or simply the chip ratio)

$$r = \frac{t_0}{t_c}$$
 and $\xi = \frac{t_c}{t_0} = \frac{1}{r}$
 $\xi = \text{Chip Reduction Coefficient}$

Chip thickness after cut is always greater than before, so r is always less than 1.0

Relation between three velocities in orthogonal cutting

- The workpiece passes the tool with velocity **Vc**, the cutting speed.
- The chip has velocity **Vchip**.
- The shear process has velocity $\mathbf{V}\mathbf{s}$ and occurs at the onset of shear angle β

(2D Orthogonal Model)

Using Sin rules

$$\frac{V_s}{\sin(90-\gamma)} = \frac{V_c}{\sin 90 - (\beta - \gamma)} = \frac{V_{chip}}{\sin \beta}$$

$$\frac{V_S}{\sin(90-\gamma)} = \frac{V_C}{\cos(\beta-\gamma)} = \frac{V_{chip}}{\sin\beta}$$

Shear Strain in Chip Formation

Shear Strain is

- Deformation of a solid body
- Displacement of any plane relative to a second plane divided by the perpendicular distance between the planes.
- Expressed by Y
- In most engineering cases it is expressed as the % of the original length.

Shear Strain

Shear strain in machining can be computed from the following equation, based on the preceding parallel plate model

$$\epsilon_s = \tan(\beta - \gamma) + \cot\beta$$

Where,

 ϵ_s = shear strain,

 β = shear plane angle, and

 γ = rake angle of cutting tool

Force System During Turning

F_z (Cutting force)

- It is called the main or major component as it is the largest in magnitude.
- It is also called power component as it being multiplied by cutting velocity 'V' decides cutting power (F_z.V) consumption.
- This force accounts for 99% of the power required by the process.

F_v: (Thrust Force)

- It is not large in magnitude
- It is in the direction of cutting tool axis.
- It is responsible for causing dimensional inaccuracy and vibration.
- This force is typically about 50% of F_x.
- It contributes very little to power requirements because velocity in the radial direction is negligible.

F_x (feed force)

- It, even if larger than F_v is least harmful and hence least significant.
- This force accounts for only a small percentage of the power required because feed rates are usually small compared to cutting speeds.

Forces in Metal Cutting

i. Forces acting on the chip by tool

The forces acting on the chip by tool during orthogonal cutting can be separated in two mutually perpendicular components:

- (1) The *friction force* **F** is the force resisting the flow of the chip along the rake face of the tool.
- (2) N is *normal force* perpendicular to the friction force.

Coefficient of friction (μ) between the tool and the chip:

$$\mu = F/N$$

The friction force and its normal force can be added vectorially to form a resultant force \mathbf{R} , which is oriented at an angle $\mathbf{\eta}$, called the friction angle.

The friction angle is related to the coefficient of friction as $\mu = \tan \eta$

Forces in Metal Cutting

ii. Forces applied by the work piece on the chip

There are two force components applied by the work piece on the chip:

- (3) The *shear force* F_s is the force that causes shear deformation to occur in the shear plane,
- (4) The *normal force to shear* F_n is perpendicular to the shear force.

Based on the shear force, we can define the shear stress that acts along the shear plane between the work and the chip: F

 $\tau_S = \frac{F_s}{A_s}$

where $A_s = area$ of the shear plane. This shear plane area can be calculated as

$$A_S = \frac{t_o w}{\sin \beta}$$

Forces acting on the tool (Cutting Force and Thrust Force)

- F, N, F_s , and F_n cannot be directly measured in a machining operation.
- Two force components that act against the tool can be directly measured. The two forces are:
 - (5) Cutting force F_c . The cutting force F_c is in the direction of cutting, the same direction as the cutting speed v.

(6) Thrust force F_t . This force is perpendicular to the cutting force and is direction of $\mathbf{t_o}$.

in the

Once $F_c \& F_t$ have been experimentally found (using dynamometer) F, N, F_s , and F_n can be easily determined with the help of equations.

R" is resultant of F_c & F_t

Single shear plane model- (Ernst and merchant)

- For establishing the relationship between measurable and actual forces in metal cutting Merchant's circle diagram is used.
- It is analysis of three forces system, which balance each other for cutting to occur. Each system is a triangle of forces

Construction of merchant's circle

- Set up x-y axis labeled with forces, and the origin in the centre of the page.
- The cutting force (F_c) is drawn horizontally, and the tangential force (F_t) is drawn vertically.
- Draw in the resultant (R) of F_c and F_t.
- Locate the centre of R, and draw a circle that encloses vector R. If done correctly, the heads and tails of all 3 vectors will lie on this circle.
- Draw in the cutting tool in the upper right hand quadrant, taking care to draw the correct rake angle (γ) from the vertical axis.

Construction of merchant's circle

- Extend the line that is the cutting face of the tool (at the same rake angle) through the circle. This now gives the friction vector (F).
- A line can now be drawn from the head of the friction vector, to the head of the resultant vector (R). This gives the normal vector (N).
- Also add a friction angle (η) between vectors R and N. Therefore, mathematically, R = F_c + F_t = F + N.

Contraction of Merchant Circle

 β = Shear Angle

 γ = Rake Angle

 η = Friction Angle

 F_c = Cutting Force, FT = Thrust Force or Feed Force

Fs = Shear Force, Ns = Normal Shear Force

F = Friction Force (Resistance), N = Normal friction force

Formula used in Merchant circle

Equations to relate the forces

$$F = F_c \sin \gamma + F_T \cos \gamma \qquad \tan \beta = \frac{r \cos \gamma}{1 - r \sin \gamma}$$

$$N = F_c \cos \gamma - F_T \sin \gamma$$

$$F_s = F_c \cos \beta - F_T \sin \beta \qquad r = \frac{t_0}{t_1}$$

$$N_s = F_c \sin \beta + F_T \cos \beta \qquad \epsilon_s = \tan(\beta - \gamma) + \cot \beta$$

$$\frac{F_T}{F_c} = \tan(\eta - \gamma) \qquad \frac{F}{N} = \tan \eta = \mu$$

$$\zeta_s = \frac{F_s \sin \beta}{t_0 w}$$
Fs = $\zeta_s A_s$
 $\zeta_s = \text{Shear Force}$

$$A_s = \text{Shear Area}$$

The Merchant Equation

ullet Of all the possible angles at which shear deformation can occur, the work material will select a shear plane angle eta that minimizes energy

$$2\beta + \eta - \gamma = 90^{\circ}$$

 β = Shear Angle

 $\eta = Friction Angle$

 γ = Rake Angle

- To increase shear plane angle
 - ✓ Increase the rake angle
 - ✓ Reduce the friction angle (or coefficient of friction)
 - ✓ Higher shear plane angle means smaller shear plane which means lower shear force
 - ✓ Result: lower cutting forces, power, temperature, all of which mean easier machining

Lee and Shaper Theory $\beta + \eta - \gamma = 45^{\circ}$

Stabber Theory $oldsymbol{eta} + oldsymbol{\eta} - rac{\gamma}{2} = 45$

Orthogonal Cutting

Orthogonal Cutting

- In orthogonal cutting, the tool approaches the work piece with its cutting edge at right angles to the direction of cutting and parallel to the uncut surface.
- Thus tool approach angle and cutting edge inclination are Zero. This type of cutting is also known as **Two-dimensional Cutting**.

Oblique Cutting

- In oblique cutting, the cutting edge of the tool is inclined at an acute angle with the direction of tool feed or work feed, the chip begin disposed of at a certain angle.
- This type of cutting is also called Three-dimensional cutting.

Comparison between the orthogonal and oblique cutting

Orthogonal cutting	Oblique Cutting
The cutting edge of the tool is	The cutting edge of the tool is inclined to the
perpendicular to the direction of feed	direction of feed motion.
motion.	
Chip flow is expected to in a direction	The chip flow angle is more than zero.
perpendicular to the cutting edge.	
There are only two components of force;	There are three mutually perpendicular forces
these components are mutually	acting while cutting process.
perpendicular.	
The cutting edge is larger than cutting	The cutting edge may or may not be
width.	larger than cutting width.
Chips are in the form of a spiral coil.	Chip flow is in a sideways direction.
High heat concentration at cutting region.	Less concentration of heat at cutting region
	compared to orthogonal cutting.
For a given feed and depth of cutting, the	Force is acting on a large area, results in more
force acts on a small area as compared with	tool life.
oblique cutting, so tool life is less.	
Surface finish is poor.	Good surface finish obtained.
Used in grooving, parting, slotting, pipe	Used almost all industrial cutting, used in
cutting.	drilling, grinding, milling.