EEG데이터전처리및 시각화시스템

2024.12.18

발표자 이원준

팀원 윤종현 구나현 박철

EEGPROJECT PRESENTATION

목차 1	팀원소개
목차 2	주제및구현전략
목차 3	분석 프로세스
목차 4	백엔드프로세스
목차 5	시스템시연

팀원소개

운종현 백엔드 모델학습 및 백엔드 ppt제작

구나현 프론트엔드 프론트및시각화 ppt제작

박철프론트엔드프론트 및 시각화

EEG데이터와노파채널

주제및구현전략

GOAL

EEG데이터전처리및시각화시스템

GOAL

뇌 부하정도에 따른 뇌파 데이터 시각화 시스템

목적

피실험자 48명에게서 부하가 높은 뇌파 데이터 (HI 데이터) 그리고 부하가 낮은 데이터 (LOW 데이터)를 사용해서 시각화를 진행이 EEG 데이터를 가지고 부하가 높은 뇌파 그래프와 부하가 낮은 그래프에서 각 채널의 영향도를 분석하고 전처리 조합 중 어떤 조합이좋은지 시각화를 진행

분석프로세스

백엔드의FLOW

1 쿼리스트링을통해선택된전처리옵션받아오기

```
data_option = int(request.args.get('data', '0'))
fft_option = request.args.get('fft', 'false').lower() == 'true'
rmn_option = request.args.get('rmn', 'true').lower() == 'true'
ra_option = request.args.get('ra', 'true').lower() == 'true'
avg_option = request.args.get('avg', 'true').lower() == 'true'
```

- subject
- FFT(Fast Fourier Transform)
- remove_line_noise
- remove_artifact
- average re-reference


```
def preprocessing(df,channels,rmn,ra,avg):
   if len(df) != 0:
       # 원본 데이터의 주파수
       sfreq = 128
       # 1. NaN removed
       df = df.dropna(axis=0)
       # 2. high pass filter
       with mne.use log level(50):
           info = mne.create_info(ch_names=channels, sfreq=sfreq, ch_types='eeg')
           raw = mne.io.RawArray(df[channels].T, info)
           raw.filter(1, 40, fir design='firwin')
           if (rmn):
                  raw = remove_line_noise(raw)
           if (ra):
                  raw = Remove_artifact(raw)
           # 5. 평균 재참조
           if (avg):
               raw.set_eeg_reference('average')
           # 6. 데이터를 Pandas DataFrame으로 변환
           df = pd.DataFrame(raw.get_data().T , columns=channels)
           df = df.dropna(axis=0)
           # 7. Min-Max 정규화
           scaler = MinMaxScaler(feature_range=(0, 1)) # 0~1 범위로 정규화
           df[channels] = scaler.fit_transform(df[channels])
           return df
```

2.STEW_DATA_SET에해당옵션에맞는전처리수행

사용자가모델을 CNN (fft=false)를 선택한 경우


```
def preprocessing_fft(df,channels,freq_bands,rmn,ra,avg):
   if len(df) != 0:
      # 원본 데이터의 샘플링 주파수
      sfreq = 128
      # 1. NaN removed
      df = df.dropna(axis=0)
      # 2. high pass filter
      with mne.use log level(50):
          info = mne.create_info(ch_names=channels, sfreq=sfreq, ch_types='eeg') # MNE Info 객체 생성
          raw = mne.io.RawArray(df[channels].T, info)
          raw.filter(1, 40, fir_design='firwin')
          if (rmn):
                  raw = remove_line_noise(raw)
          if (ra):
                  raw = Remove_artifact(raw)
          # 5. 평균 재참조
          if (avg):
             raw.set_eeg_reference('average')
          # 6. 주파수 대역 분리
          band data = {}
          for band, (l_freq, h_freq) in freq_bands.items():
              band_raw = raw.copy().filter(l_freq, h_freq, fir_design='firwin')
              band_data[band] = pd.DataFrame(band_raw.get_data().T, columns=channels)
          # 7. Min-Max 정규화
          scaler = MinMaxScaler(feature_range=(0, 1)) # 0~1 범위로 정규화
          for band, (1_freq, h_freq) in freq_bands.items():
              band_data[band][channels] = scaler.fit_transform(band_data[band][channels])
          return band_data
```

2STEW_DATA_SET에해당옵션에맞는전처리수행

사용자가모델을 CNN_fft (fft=true)를 선택한 경우

cnn_eeg_model_rmnFalse_raFalse_avgFalse_fftFalse.pth cnn_eeg_model_rmnFalse_raFalse_avgFalse_fftTrue.pth cnn_eeg_model_rmnFalse_raFalse_avgTrue_fftFalse.pth cnn_eeg_model_rmnFalse_raFalse_avgTrue_fftTrue.pth = cnn_eeg_model_rmnFalse_raTrue_avgFalse_fftFalse.pth cnn_eeg_model_rmnFalse_raTrue_avgFalse_fftTrue.pth cnn_eeg_model_rmnFalse_raTrue_avgTrue_fftFalse.pth cnn_eeg_model_rmnFalse_raTrue_avgTrue_fftTrue.pth cnn_eeg_model_rmnTrue_raFalse_avgFalse_fftFalse.pth cnn_eeg_model_rmnTrue_raFalse_avgFalse_fftTrue.pth = cnn_eeg_model_rmnTrue_raFalse_avgTrue_fftFalse.pth = cnn_eeg_model_rmnTrue_raFalse_avgTrue_fftTrue.pth cnn_eeg_model_rmnTrue_raTrue_avgFalse_fftFalse.pth cnn_eeg_model_rmnTrue_raTrue_avgFalse_fftTrue.pth = cnn_eeg_model_rmnTrue_raTrue_avgTrue_fftFalse.pth = cnn aga madal rmnTrua raTrua avaTrua fftTrua nth

3.옵션에따라미리학습시켜놓은모델의가중치들을 CNN_EEG모델에적용 (학습된 CNN EEG가중치)


```
def load_basic_models(models_dir=".", model_prefix="cnn_eeg_model"):
   Load all 16 models based on preprocessing options.
   Returns a dictionary with keys as option strings and values as loaded models.
   model_dict = {}
   options = {
        'rmn': [False, True],
       'ra': [False, True],
       'avg': [False, True],
   # Generate all combinations of options
   for rmn, ra, avg, fft in product(options['rmn'], options['ra'], options['avg'], options['fft']):
       # Construct model filename
       model_name = f"{model_prefix}_rmn{rmn}_ra{ra}_avg{avg}_fftFalse.pth"
       model_path = os.path.join(models_dir, model_name)
       if not os.path.exists(model_path):
           print(f"Warning: Model file {model_path} not found. Skipping this configuration.")
           continue
       # Initialize model
       model = CNNEEG(input_channel=len(channels))
       try:
           model.load_state_dict(torch.load(model_path, map_location=device))
           model.to(device)
           model.eval()
           key = f"rmn{rmn}_ra{ra}_avg{avg}_fft{fft}"
           model_dict[key] = model
           #print(f"Loaded model: {model_name} as key: {key}")
       except Exception as e:
           print(f"Error loading model {model_name}: {e}")
```

3.옵션에따라미리학습시켜놓은모델의가중치들을 CNN_EEG모델에적용

(모델불러오기)


```
def predict_eeg_state(model, preprocessed_data, channels, device):
   model.eval()
   # Preprocess data
   processed_data = preprocessed_data
   # Create sequences
   seq_data = []
   for i in range(0, len(processed_data) - 240, 120):
       seq_data.append(processed_data.iloc[i+120:i+240].values)
   if not seq_data:
       print("Insufficient data for prediction.")
       return None, None
   seq_data = np.array(seq_data).transpose(0, 2, 1)
   seq_tensor = torch.tensor(seq_data, dtype=torch.float32).to(device)
   # Predict
   with torch.no_grad():
       predictions = model(seq_tensor)
       probabilities = predictions.cpu().numpy()
       classes = np.argmax(probabilities, axis=1)
   return classes, probabilities
```

3.옵션에따라미리학습시켜놓은모델의가중치들을 CNN_EEG모델에적용 (전처리된데이터에모델적용)


```
def calculate_shap_values(model, preprocessed_data, channels, device):
   # Ensure the model is in evaluation mode
   model.eval()
   # Preprocess the data for SHAP
   seq_data = []
   for i in range(0, len(preprocessed_data) - 240, 120):
       seq_data.append(preprocessed_data.iloc[i + 120:i + 240].values)
   if not seq_data:
      print("Insufficient data for SHAP analysis.")
      return None, None
   seq_data = np.array(seq_data).transpose(0, 2, 1) # (batch, channels, time)
   seq_tensor = torch.tensor(seq_data, dtype=torch.float32).to(device)
   # Define SHAP explainer
   explainer = shap.DeepExplainer(model, seq_tensor) # Pass the model and some baseline data
   shap_values = explainer.shap_values(seq_tensor) # Compute SHAP values
   # Average SHAP values across time steps and sequences to get channel-level importance
   shap_importance = np.mean(np.abs(shap_values[0]), axis=(0, 2)) # (channels,)
   # Pair channels with their importance scores
   channel importance = dict(zip(channels, shap importance))
  return shap values, channel importance
```

4. Shap을 이용하여 모델의 예측에 영향을 미치는 채널별 중요도 계산 및 정규화


```
return jsonify({
    'before_high' : before_high,
    'before low' : before low,
    'after_high': high_dict,
    'after_low': low_dict,
    'predicted high': predicted result high,
    'predicted_low': predicted_result_low,
    'stats_high': stats_high,
    'stats low': stats low,
    'importance_high': importance_high,
    'importance_low': importance_low,
    'shap result' : shap result,
```

5. 반환값

```
'before high
                            전
                               high
                     전처리 전 low
전처리 후 high
전처리 후 low
'before low'
after high'
'after low'
                     예측된 high
predicted high'
predicted low'
stats_high'
stats low'
importance_high'
importance_low'
                     SHAP을 이용한 채널별 중요도
shap_result '
```

시스템시연

