Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1. (original) A compound of formula (I), or a pharmaceutically acceptable salt or prodrug thereof

$$R_4$$
 R_2
 R_3
 R_2
 R_3
 R_2

wherein X and X' are independently selected from $-C(R_5)_2$ -, -O-, -S-, $-N(R_5)$ -, or taken together form $-C(R_5)=C(R_5)$ -, $-C(R_5)=N$ -, $-N=C(R_5)$ -, $-N(R_5)-N(R_5)$ - or -N=N-;

Y and Y' are independently selected from $-C(R_5)_2$ -, -O-, -S-, $-N(R_5)$ -, or taken together form $-C(R_5)=C(R_5)$ -, $-C(R_5)=N$ -, $-N=C(R_5)$ -, $-N(R_5)$ - or -N=N-;

Z is $-C(R_5)_2$ -, -O-, -S- or $-N(R_5)$ -, or forms a covalent single or double bond between X' and Y', or Z together with X' or Y' forms $-C(R_5)=C(R_5)$ -, $-C(R_5)=N$ -, $-N=C(R_5)$ -, $-N(R_5)-N(R_5)$ - or -N=N-;

wherein when Z is -O-, -S- or $-N(R_5)$ -, X' and Y' are $-C(R_5)_2$ -;

when X is $-O_{-}$, $-S_{-}$ or $-N(R_{5})_{-}$, X' is $-C(R_{5})_{2}_{-}$;

when Y is $-O_{-}$, $-S_{-}$ or $-N(R_{5})_{-}$, Y' is $-C(R_{5})_{2}_{-}$; or

X or Y together with the carbon atom bearing the phenyl group form a double bond wherein which ever of X or Y forms part of the double bond is selected from $-C(R_5)$ - and -N-;

 R_1 is selected from hydrogen, C_{1-20} alkyl, C_{2-20} alkenyl, C_{2-20} alkynyl, $(A)_nC(O)R_6$, $(A)_nC(S)R_6$, $(A)_nS(O)R_6$, $(A)_nS(O)_2R_6$, $(A)_nOR_7$, $(A)_nSR_7$, $(A)_nN(R_8)$, $(A)_nC(=NR_9)R_{10}$ and $(A)_nR_{11}$, or when X or Y together with the carbon atom bearing the phenyl group form a double bond, R_1 is absent;

 R_2 and R_4 are independently selected from hydrogen, C_{1-3} alkyl and $(A)_m R_{12}$;

 R_3 is selected from C_{1-3} alkyl, $(A)_m R_{12}$, $(A)_m$ aryl and $(A)_m$ heterocyclyl;

 R_5 is selected from hydrogen, C_{1-20} alkyl, C_{2-20} alkenyl, C_{2-20} alkynyl, $(A)_nC(O)R_6$, $(A)_nC(S)R_6$, $(A)_nS(O)R_6$, $(A)_nS(O)_2R_6$, $(A)_nOR_7$, $(A)_nSR_7$, $(A)_pN(R_8)$, $(A)_nC(=NR_9)R_{10}$ and $(A)_nR_{11}$;

 R_6 is selected from hydrogen, $C_{1\text{-}20}$ alkyl, $C_{2\text{-}20}$ alkenyl, $C_{2\text{-}20}$ alkynyl, OH, OC₁₋₁₀alkyl, OC₂₋₁₀alkenyl, OC₂₋₁₀alkynyl, O(A)_qR₁₁, SH, SC₁₋₁₀alkyl, SC₂₋₁₀alkenyl, SC₂₋₁₀alkynyl, S(A)_qR₁₁, N(R₁₃)₂, [NH-CH(R₁₄)C(O)]_s-OH, [NH-CH(R₁₄)C(O)]_s-OC₁₋₃alkyl, [sugar]_s and (A)_qR₁₁;

 $R_7 \text{ is selected from hydrogen, } C_{1\text{-}20} \text{alkyl, } C_{2\text{-}20} \text{alkenyl, } C_{2\text{-}20} \text{alkynyl, } (A)_q R_{11}, C(O) H, \\ C(O) C_{1\text{-}10} \text{alkyl, } C(O) C_{2\text{-}10} \text{alkenyl, } C(O) C_{2\text{-}10} \text{alkynyl, } C(O) - \text{aryl, } C(O)(A)_q R_{11}, C(O)_2 H, \\ C(O)_2 C_{1\text{-}10} \text{alkyl, } C(O)_2 C_{2\text{-}10} \text{alkenyl, } C(O)_2 C_{2\text{-}10} \text{alkynyl, } C(O)_2 - \text{aryl, } C(O)_2 (A)_q R_{11}, C(S) H, \\ C(S) C_{1\text{-}10} \text{alkyl, } C(S) C_{2\text{-}10} \text{alkenyl, } C(S) C_{2\text{-}10} \text{alkynyl, } C(S) - \text{aryl, } C(S) (A)_q R_{11}, C(S) O H, \\ C(S) O C_{1\text{-}10} \text{alkyl, } C(S) O C_{2\text{-}10} \text{alkenyl, } C(S) O C_{2\text{-}10} \text{alkynyl, } C(S) O - \text{aryl, } C(S) O (A)_q R_{11}, \\ S(O)_t H, S(O)_t C_{1\text{-}10} \text{alkyl, } S(O)_t C_{2\text{-}10} \text{alkenyl, } S(O)_t C_{2\text{-}10} \text{alkynyl, } S(O)_t - \text{aryl, } S(O)_t (A)_q R_{11}, \\ [C(O) C H(R_{14}) N H]_s - H, [C(O) C H(R_{14}) N H]_s - C_{1\text{-}10} \text{alkyl, } [C(O) C H(R_{14}) N H]_s - C_{2\text{-}10} \text{alkenyl, } [C(O) C H(R_{14}) N H]_s - C_{2\text{-}10} \text{alkynyl, } [C(O) C H(R_{14}) N H]_s - (A)_q R_{11}, \\ [C(O) C H(R_{14}) N H]_s - C_{2\text{-}10} \text{alkynyl, } [C(O) C H(R_{14}) N H]_s - \text{aryl, } [C(O) C H(R_{14}) N H]_s - (A)_q R_{11}, \\ [C(O) C H(R_{14}) N H]_s - (A)_q R_{11$

each R_8 is independently selected from R_7 and NHC(=NR₁₅)NH₂;

 R_9 is selected from hydrogen and C_{1-6} alkyl;

 R_{10} is selected from C_{1-6} alkyl, NH₂, NH(C_{1-3} alkyl), N(C_{1-3} alkyl)₂, OH, OC₁₋₃alkyl, SH and SC₁₋₃alkyl;

 R_{11} is selected from OH, OC_{1-6} alkyl, OC_{1-3} alkyl-O- C_{1-3} alkyl, O-aryl, O-heterocyclyl, $O[C(O)CH(R_{14})NH]_sH$, [sugar]_s, SH, SC_{1-6} alkyl, SC_{1-3} alkyl-O- C_{1-3} alkyl, S-aryl, S-heterocyclyl, $S[C(O)CH(R_{14})NH]_sH$, halo, $N(R_{15})_2$, $C(O)R_{16}$, CN, $C(R_{17})_3$, aryl and heterocyclyl;

R₁₂ is selected from OH, SH, NH₂, halo, NO₂, C(R₁₇)₃, OC(R₁₇)₃ and CN;

each R_{13} is independently selected from hydrogen, C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl and $(A)_{\alpha}R_{11}$;

 R_{14} is the characterising group of an amino acid;

each R_{15} is independently selected from hydrogen, C_{1-6} alkyl, C_{1-3} alkoxy C_{1-3} alkyl, aryl and heterocyclyl;

 R_{16} is selected from C_{1-3} alkyl, OH, C_{1-3} alkoxy, aryl, aryloxy, heterocyclyl and heterocyclyloxy;

each R₁₇ is independently selected from hydrogen and halogen;

A is optionally substituted methylene wherein when n > 1, any two adjacent A groups are optionally interrupted by -O-, -S- or $-N(R_{15})$ -;

where n is 0 or an integer selected from 1 to 20;

m is 0 or an integer selected from 1 to 3;

p is an integer selected from 1 to 20;

q is an integer selected from 1 to 10

s is an integer selected from 1 to 5;

t is an integer selected from 1 or 2; and

wherein each alkyl, alkenyl, alkynyl, aryl and heterocyclyl may be optionally substituted.

2. (original) A compound according to claim 1 of formula (II), or a pharmaceutically acceptable salt or prodrug thereof

$$R_{4}$$
 R_{2}
 R_{3}
 R_{2}
 R_{3}
 R_{4}

wherein X and Y are independently selected from $-O_{-}$, $-S_{-}$, $-N(R_5)_{-}$ and $-C(R_5)_{2-}$;

Z is $-C(R_5)_2$ - or is a covalent bond between adjacent methylene groups;

 $R_1 \text{ is selected from hydrogen, } C_{1\text{-}20} \text{alkyl, } C_{2\text{-}20} \text{alkenyl, } C_{2\text{-}20} \text{alkynyl, } (A)_n C(O) R_6, \\ (A)_n C(S) R_6, (A)_n S(O) R_6, (A)_n S(O)_2 R_6, (A)_n OR_7, (A)_n SR_7, (A)_n N(R_8), (A)_n C(=NR_9) R_{10} \\ \text{and } (A)_n R_{11};$

 R_2 and R_4 are independently selected from hydrogen, C_{1-3} alkyl and $(A)_m R_{12}$;

 R_3 is selected from C_{1-3} alkyl, $(A)_m R_{12}$, $(A)_m$ aryl and $(A)_m$ heterocyclyl;

 R_5 is selected from hydrogen, C_{1-20} alkyl, C_{2-20} alkenyl, C_{2-20} alkynyl, $(A)_nC(O)R_6$, $(A)_nC(S)R_6$, $(A)_nS(O)R_6$, $(A)_nS(O)_2R_6$, $(A)_nOR_7$, $(A)_nSR_7$, $(A)_pN(R_8)$, $(A)_nC(=NR_9)R_{10}$ and $(A)_nR_{11}$;

 R_6 is selected from hydrogen, $C_{1\text{-}20}$ alkyl, $C_{2\text{-}20}$ alkenyl, $C_{2\text{-}20}$ alkynyl, OH, OC $_{1\text{-}10}$ alkyl, OC $_{2\text{-}10}$ alkenyl, OC $_{2\text{-}10}$ alkynyl, O(A) $_q$ R $_{11}$, SH, SC $_{1\text{-}10}$ alkyl, SC $_{2\text{-}10}$ alkenyl, SC $_{2\text{-}10}$ alkynyl, S(A) $_q$ R $_{11}$, N(R $_{13}$) $_2$, [NH-CH(R $_{14}$)C(O)] $_s$ -OH, [NH-CH(R $_{14}$)C(O)] $_s$ -OC $_{1\text{-}3}$ alkyl, [sugar] $_s$ and (A) $_q$ R $_{11}$;

 $R_7 \text{ is selected from hydrogen, } C_{1\text{-}20} \text{alkyl, } C_{2\text{-}20} \text{alkenyl, } C_{2\text{-}20} \text{alkynyl, } (A)_q R_{11}, C(O) H, \\ C(O) C_{1\text{-}10} \text{alkyl, } C(O) C_{2\text{-}10} \text{alkenyl, } C(O) C_{2\text{-}10} \text{alkynyl, } C(O) \text{-aryl, } C(O) (A)_q R_{11}, C(O)_2 H, \\ C(O)_2 C_{1\text{-}10} \text{alkyl, } C(O)_2 C_{2\text{-}10} \text{alkenyl, } C(O)_2 C_{2\text{-}10} \text{alkynyl, } C(O)_2 \text{-aryl, } C(O)_2 (A)_q R_{11}, C(S) H, \\ C(S) C_{1\text{-}10} \text{alkyl, } C(S) C_{2\text{-}10} \text{alkenyl, } C(S) C_{2\text{-}10} \text{alkynyl, } C(S) \text{-aryl, } C(S) (A)_q R_{11}, C(S) O H, \\ C(S) O C_{1\text{-}10} \text{alkyl, } C(S) O C_{2\text{-}10} \text{alkenyl, } C(S) O C_{2\text{-}10} \text{alkynyl, } C(S) O \text{-aryl, } C(S) O (A)_q R_{11}, \\ S(O)_t H, S(O)_t C_{1\text{-}10} \text{alkyl, } S(O)_t C_{2\text{-}10} \text{alkenyl, } S(O)_t C_{2\text{-}10} \text{alkynyl, } S(O)_t \text{-aryl, } S(O)_t (A)_q R_{11}, \\ [C(O) C H(R_{14}) N H]_s - H, [C(O) C H(R_{14}) N H]_s - C_{1\text{-}10} \text{alkyl, } [C(O) C H(R_{14}) N H]_s - C_{2\text{-}10} \text{alkenyl, } [C(O) C H(R_{14}) N H]_s - C_{2\text{-}10} \text{alkynyl, } [C(O) C H(R_{14}) N H]_s - (A)_q R_{11}, \\ \text{and } [\text{sugar}]_s; \end{aligned}$

each R_8 is independently selected from R_7 and NHC(=NR₁₅)NH₂;

 R_9 is selected from hydrogen and C_{1-6} alkyl;

 R_{10} is selected from C_{1-6} alkyl, NH₂, NH(C_{1-3} alkyl), N(C_{1-3} alkyl)₂, OH, OC₁₋₃alkyl, SH and SC₁₋₃alkyl;

 R_{11} is selected from OH, OC_{1-6} alkyl, OC_{1-3} alkyl-O- C_{1-3} alkyl, O-aryl, O-heterocyclyl, $O[C(O)CH(R_{14})NH]_sH$, [sugar]_s, SH, SC_{1-6} alkyl, SC_{1-3} alkyl-O- C_{1-3} alkyl, S-aryl, S-heterocyclyl, $S[C(O)CH(R_{14})NH]_sH$, halo, $N(R_{15})_2$, $C(O)R_{16}$, CN, $C(R_{17})_3$, aryl and heterocyclyl;

R₁₂ is selected from OH, SH, NH₂, halo, NO₂, C(R₁₇)₃, OC(R₁₇)₃ and CN;

each R_{13} is independently selected from hydrogen, $C_{1\text{-}6}$ alkyl, $C_{2\text{-}6}$ alkenyl, $C_{2\text{-}6}$ alkynyl and $(A)_{\alpha}R_{11}$;

R₁₄ is the characterising group of an amino acid;

each R_{15} is independently selected from hydrogen, C_{1-6} alkyl, C_{1-3} alkoxy C_{1-3} alkyl, aryl and heterocyclyl;

 R_{16} is selected from C_{1-3} alkyl, OH, C_{1-3} alkoxy, aryl, aryloxy, heterocyclyl and heterocyclyloxy;

each R₁₇ is independently selected from hydrogen and halogen;

A is optionally substituted methylene wherein when n > 1, any two adjacent A groups are optionally interrupted by -O-, -S- or $-N(R_{15})$ -;

where n is 0 or an integer selected from 1 to 20;

m is 0 or an integer selected from 1 to 3;

p is an integer selected from 1 to 20;

q is an integer selected from 1 to 10

s is an integer selected from 1 to 5;

t is an integer selected from 1 or 2; and

wherein each alkyl, alkenyl, alkynyl, aryl and heterocyclyl may be optionally substituted.

3. (original) A compound according to claim 2 wherein

Y is -O-, -S- or
$$-NR_5$$
-;

Z forms a covalent bond between adjacent methylene groups;

 R_1 is selected from C_{1-20} alkyl, C_{1-20} alkenyl, $O-(A)_qO-C_{1-6}$ alkyl, $O-(A)_q-$ heterocyclyl,

 $O-(A)_q$ -sugar, $O-(A)_qO[C(O)CH(R_{14})NH]_s-H$, $(A)_nOH$, $(A)_nOC_{1-20}alkyl$,

 $(A)_nOC_{1\text{-}20}alkenyl, (A)_nOC(O)C_{1\text{-}20}alkyl, (A)_nOC(O)C_{1\text{-}20}alkenyl, (A)_nOC(O)aryl, (A)_nOC(O)C_{1\text{-}20}alkenyl, (A)_nOC(O)C_{1\text{-}20}alk$

 $(A)_{n}O[C(O)CH(R_{14})NH]_{s}-H, \ (A)_{n}O[sugar]_{s}, \ (A)_{n}NHC_{1\text{-}20}alkyl, \ (A)_{n}N(C_{1\text{-}20}alkyl)_{2},$

 $(A)_nNHC_{1-20}$ alkenyl, $(A)_nN(C_{1-20}$ alkenyl)₂, $(A)_nNHC(O)C_{1-20}$ alkyl,

 $(A)_nNHC(O)C_{1\text{-}20}\\ alkenyl, (A)_nNHC(O)\\ aryl, (A)_nNH[C(O)CH(R_{14})NH]_s-H,$

 $(A)_nNH-[sugar]_s$, $(A)_nSO_3H$, $(A)_nSO_3C_{1-20}$ alkyl, $(A)_nSO_3C_{1-20}$ alkenyl, $(A)_nC(O)C_{1-20}$ alkyl,

 $(A)_nC(O)C_{1\text{-}20}alkenyl, (A)_nCO_2H, (A)_nCO_2C_{1\text{-}20}alkyl, (A)_nCO_2C_{1\text{-}20}alkenyl,$

 $(A)_{n}C(O)NHC_{1\text{-}20}alkyl, \\ (A)_{n}C(O)N(C_{1\text{-}20}alkyl)_{2}, \\ (A)_{n}C(O)NHC_{1\text{-}20}alkenyl, \\$

 $(A)_{n}C(O)N(C_{1\text{-}20}alkenyl)_{2}, \\ (A)_{n}C(O)[NHCH(R_{14})C(O)]_{s}-OH, \\ (A)_{n}C(O)[sugar]_{s}; \\ wherein$

A is methylene optionally substituted one or two times with a group that is independently selected from C₁₋₆alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl, halogen, OH, OC₁₋₆alkyl, CO₂H,

 CO_2C_{1-3} alkyl, NH_2 , NHC_{1-3} alkyl, $-N(C_{1-3}$ alkyl)₂, CN, NO_2 , aryl or heterocyclyl; R_{14} is the

characterising group of an amino acid, n is 0 or an integer from 1 to 20 and s is an integer from 1 to 5;

R₂ is hydrogen, C₁₋₃alkyl, OH, SH, NH₂, -NO₂, CF₃, halo or -CN;

 R_3 is hydrogen, C_1 - C_3 alkyl, - $(CH_2)_mNH_2$, - $(CH_2)_m$ -OH, - $(CH_2)_m$ -CF₃, - $(CH_2)_m$ -SH or a 5 or 6 membered heterocyclic group, wherein m is 0 or an integer from 1 to 3;

R₄ is hydrogen, C₁₋₃alkyl, OH, SH, NH₂, NO₂, CF₃, halo or CN;

A is unsubstituted methylene or mono-substituted methylene.

4. (original) A compound according to claim 2 wherein

X is -O-, -S-, -NH-;

Y is -O-, -S- or -N(R_5)-;

Z forms a covalent bond between adjacent methylene groups;

 R_1 is C_1 - C_{20} alkyl, C_2 - C_{20} alkenyl, C_2 - C_{20} alkynyl, $(A)_nC(O)R_6$, - $(A)_nC(S)R_6$, - $(A)_nS(O)R_6$, - $(A)_nS(O)_2R_6$, - $(A)_nOR_7$, - $(A)_nSR_7$, - $(A)_nN(R_8)_2$, $(A)_nC(=NR_9)R_{10}$ or $(A)_nR_{11}$ where n, R_6 , R_7 , R_8 , R_9 , R_{10} and R_{11} are defined above;

R₂ is hydrogen, methyl, OH, OCH₃, SH, NH₂, NO₂, CF₃, halo or CN;

 R_3 is $C_{1.3}$ alkyl, - $(CH_2)_mNH_2$, - $(CH_2)_m-OH$, - $(CH_2)_mSH$ or heterocyclyl where m is defined above;

R₄ is hydrogen, methyl, OH, OCH₃, SH, NH₂, NO₂, CF₃, CF₃, halo or CN.

5. (original) A compound according to claim 2 wherein

X is -O- or NH;

Y is -O- or -N(R_{18})- where R_{18} is selected from hydrogen, C_{1-20} alkyl, C_{1-20} alkenyl, C_{1-20} alkynyl and (CH_2)_n R_{11} where R_{11} and n are defined above;

Z forms a covalent bond between adjacent methylene groups;

U.S. National Phase of PCT/AU2004/000453 Preliminary Amendment

R₂ is hydrogen, halomethyl, OH, OCH₃, SH, NH₂, NO₂ or CN;

 R_3 is hydrogen, C_{1-3} alkyl, $(CH_2)_mNH_2$, $(CH_2)_mOH$ or $(CH_2)_mCF_3$ or heterocyclyl where m is defined above;

R₄ is hydrogen, methyl, OH, OCH₃, SH, NH₂, NO₂ or CN.

6. (original) A compound according to claim 1 of formula (III)

$$R_4$$
 R_3
(III)

wherein

X is -O- or -NH-;

Y is -O- or -N(R_{18})- where R_{18} is defined above;

R₃ is hydrogen, NH₂, OH;

R₄ is hydrogen, methyl, OCH₃, or OH.

- 7. (original) A compound according to claim 6 wherein R_1 is selected from $(A)_nOR_7$ where n is 0.
- 8. (original) A compound according to claim 1 wherein

X is -S-;

Y is $-N(R_5)$ -;

X' is $-C(R_5)_2$ -;

Y' is $-C(R_5)_2$ -;

Z forms a covalent bond between X' and Y'.

9. (original) A compound according to claim 8 wherein

Y is -NH-;

X' is $-CH_2$ -;

Y' is $-CH_2$ -;

R₁ is H.

10. (original) A compound according to claim 1 wherein

X and Y are each -O-;

X' and Y' are each $-C(R_5)_2$ -;

Z forms a covalent bond between X' and Y'.

11. (original) A compound according to claim 10 wherein

X' and Y' are each -CH₂-; R₁ is H.

12. (original) A compound according to claim 1 wherein

X and X' taken together form $-C(R_5)=N$ -;

Y is $-C(R_5)$ - and taken together with the carbon atom bearing the phenyl group forms a double bond;

Y' is $-N(R_5)$ -;

Z forms a covalent bond between X and Y'.

13. (original) A compound according to claim 12 wherein

Y is -CH-;

X is -CH-.

14. (original) A compound according to claim 1 wherein

X and X' taken together form $-C(R_5)=N$ -;

Z together with Y' forms $-C(R_5)=C(R_5)$ -;

Y is -C(R₅)- and together with the carbon atom bearing the phenyl group forms a double bond.

15. (original) A compound according to claim 14 wherein

X is $-C(OCH_3)$;

Z together with Y' forms -C(OCH₃)=CH-;

Y is -CH-.

16. (original) A compound according to claim 1 wherein

X' is $-C(R_5)_2$ -;

Y' is $-C(R_5)_2$ -;

Z is $-C(R_5)_2$ -;

X and Y are each -O-.

17. (original) A compound according to claim 16 wherein

X', Y' and Z are each $-CH_2$ -; R_1 is H.

18. (original) A compound according to claim 1 wherein

X and Y are each -S-;

X' and Y' are each $-C(R_5)_2$ -;

Z forms a covalent bond between X' and Y'.

(original) A compound according to claim 18 who	пеге	ren
---	------	-----

X' and Y' are each $-CH_2$ -; R_1 is H.

20. (original) A compound according to claim 1 wherein

X is -S-;

Y is -O-;

X' and Y' are each $-C(R_5)_2$ -;

Z forms a covalent bond between X' and Y'.

21. (original) A compound according to claim 20 wherein

X' and Y' are each -CH₂-.

22. (original) A compound according to claim 1 wherein

X and X' taken together form $-C(R_5)=C(R_5)$ -;

Z together with Y' forms $-C(R_5)=C(R_5)$ -;

Y is -C(R₅)- and together with the carbon atom bearing the phenyl group forms a double bond.

23. (original) A compound according to claim 22 wherein

X and X' taken together form -CH=CH-;

Z together with Y forms –CH=CH-;

Y is –CH-.

24. (original) A compound according to claim 1 wherein

Y is –N- and taken together with the carbon atom bearing the phenyl group forms a double bond;

X is -O-;

X' and Y' are each $-C(R_5)_2$ -

Z forms a covalent bond between X' and Y'.

- 25. (original) A compound according to claim 24 whereinX' and Y' are each -CH₂-.
- 26. (original) A compound according to claim 1 wherein

X and Y are each $-C(R_5)_2$ -;

X' and Y' are each $-N(R_5)$ -;

Z is $C(R_5)_2$.

27. (original) A compound according to claim 1 wherein

X is -O-;

Y' is $-N(R_5)$ -;

X' and Y are each $-C(R_5)_{2}$ -.

28. (original) A compound according to claim 1 wherein

X and X' are each $-C(R_5)_{2}$ -;

Y is $-N(R_5)$ -;

Y' is $C(R_5)_2$ -;

Z forms a covalent bond between X' and Y'.

29. (original) A compound according to claim 1 wherein

X is $-N(R_5)$ -;

X' is $-C(R_5)_2$ -;

Y is $-C(R_5)_2$ -;

Y' is $-N(R_5)$ -;

Z forms a covalent bond between X' and Y'.

30. (original) A compound according to claim 1 wherein

X and X' are each $-C(R_5)_2$ -

Y is $-C(R_5)_2$ -;

Y' is $-N(R_5)$ -;

Z is $-C(R_5)_2$ -

31. (original) A compound according to claim 1 selected from the group consisting of:

2-(2-hydroxyethoxy)-2-(4-hydroxy-3-methylphenyl)-1,3-dioxolane;

2-(2-hydroxyethoxy)-2-(4-hydroxyphenyl)-1,3-dioxolane;

2-(2-hydroxyethoxy)-2-(3-bromo-4-hydroxy-5-methylphenyl)-1,3-dioxolane;

2-(4-Bromophenyl)-1,3-thiazolane;

2-(4-Methoxyphenyl)-1,3-thiazolane;

4-(1,3-Thiazolidin-2-yl)benzonitrile;

2-(4-Hydroxy-3-methoxyphenyl)-1,3-thiazolane;

2-(3,4-Dimethoxyphenyl)-1,3-thiazolane;

Methyl 4-[2-(4-fluorophenyl)-1,3-dioxolan-2-yl]butanoate;

4-[2-(4-Fluorophenyl)-1,3-dioxolan-2-yl]butan-1-ol;

2-(4'-Bromophenyl)-2-butyl-1,3-dioxolane;

4-(4-Methoxyphenyl)-1-(3-methylbutyl)-1*H*-pyrazole;

1-(3-Methylbutyl)-4-(4-methylphenyl)-1*H*-pyrazole;

- 2,6-Dimethoxy-3-[4-(trifluoromethoxy)phenyl]pyridine);
- 2-[4-(2-Thienyl)phenyl]-1,3-thiazolane;
- 2-Ethyl-2-(4-methoxyphenyl)-1,3-dioxolane;
- 2-Hexyl-2-(4-methylphenyl)-1,3-dithiolane;
- 2-Methyl-2-(4-methylphenyl)-1,3-dithiolane;
- 2-Hexyl-2-(4-methylphenyl)-1,3-dioxolane;
- 2-(4-Chlorophenyl)-2-methyl-1,3-dioxane;
- 2-(4-Chlorophenyl)-2-methyl-1,3-dioxolane;
- 2-Methyl-2-(4-methylphenyl)-1,3-dioxane;
- 2-Methyl-2-(4-methylphenyl)-1,3-dioxolane;
- 2-(4-Chlorophenyl)-2-methyl-1,3-dithiolane;
- 2-(4-Nitrophenyl)-2-methyl-1,3-dioxolane;
- 2-(4-Nitrophenyl)-2-methyl-1,3-dioxane;
- 2-(4-Methoxyphenyl)-1,3-oxathiolane;
- 2-(3,4,5-Trimethoxyphenyl)-1,3-oxathiolane;
- 2-Methoxy-4-(1,3-oxathiolan-2-yl)phenol;
- 4-(1,3-Oxathiolan-2-yl)benzonitrile;
- 2-(4-Bromophenyl)-2-ethyl-1,3-oxathiolane;
- 4-(5-Methyl-1,3-oxathiolan-2-yl)benzonitrile;
- 2-(4-Thien-2-ylphenyl)-1,3-oxathiolane;
- 4-(5-Methyl-2-octyl-1,3-oxathiolan-2-yl)phenol;

- 2-Fluoro-5-(5-methyl-1,3-oxathiolan-2-yl)benzenecarbonitrile;
- 4-Methoxy-4'-(trifluoromethoxy)-1,1'-biphenyl;
- 2,6-Dimethoxy-3-[4-(trifluoromethyl)phenyl]pyridine;
- 2-(4-bromophenyl)-2-butyl-4-propyl-1,3-oxathiane;
- 4-(1,3-Dioxolan-2-yl)benzenecarbonitrile;
- 2-(3,5-Dimethoxyphenyl)-2-hexyl-1,3-dioxolane;
- 2-(4-Chlorophenyl)-2-ethyl-4-methyl-1,3-dioxolane;
- 5-(5,5-Diethyl-1,3-dioxan-2-yl)-2-fluorobenzenecarbonitrile;
- 2-(4-Chlorophenyl)-4,5-dihydro-1,3-oxazole;
- 2-(4-Methylphenyl)-4,5-dihydro-1,3-oxazole.
- 32. (original) A compound according to claim 31 selected from the group consisting of:
 - 2-(2-hydroxyethoxy)-2-(4-hydroxy-3-methylphenyl)-1,3-dioxolane;
 - 2-(2-hydroxyethoxy)-2-(4-hydroxyphenyl)-1,3-dioxolane;
 - 2-(2-hydroxyethoxy)-2-(3-bromo-4-hydroxy-5-methylphenyl)-1,3-dioxolane;
 - Methyl 4-[2-(4-fluorophenyl)-1,3-dioxolan-2-yl]butanoate;
 - 4-[2-(4-Fluorophenyl)-1,3-dioxolan-2-yl]butan-1-ol;
 - 2-(4'-Bromophenyl)-2-butyl-1,3-dioxolane;
 - 4-(4-Methoxyphenyl)-1-(3-methylbutyl)-1*H*-pyrazole;
 - 1-(3-Methylbutyl)-4-(4-methylphenyl)-1*H*-pyrazole;
 - 2,6-Dimethoxy-3-[4-(trifluoromethoxy)phenyl]pyridine);
 - 2-[4-(2-Thienyl)phenyl]-1,3-thiazolane;

- 2-Ethyl-2-(4-methoxyphenyl)-1,3-dioxolane;
- 2-Hexyl-2-(4-methylphenyl)-1,3-dithiolane;
- 2-Hexyl-2-(4-methylphenyl)-1,3-dioxolane;
- 2-(4-Bromophenyl)-2-ethyl-1,3-oxathiolane;
- 4-(5-Methyl-1,3-oxathiolan-2-yl)benzonitrile;
- 2-(4-Thien-2-ylphenyl)-1,3-oxathiolane;
- 4-(5-Methyl-2-octyl-1,3-oxathiolan-2-yl)phenol;
- 2-Fluoro-5-(5-methyl-1,3-oxathiolan-2-yl)benzenecarbonitrile;
- 4-Methoxy-4'-(trifluoromethoxy)-1,1'-biphenyl;
- 2,6-Dimethoxy-3-[4-(trifluoromethyl)phenyl]pyridine;
- 2-(4-bromophenyl)-2-butyl-4-propyl-1,3-oxathiane;
- 4-(1,3-Dioxolan-2-yl)benzenecarbonitrile;
- 2-(4-Chlorophenyl)-2-ethyl-4-methyl-1,3-dioxolane;
- 5-(5,5-Diethyl-1,3-dioxan-2-yl)-2-fluorobenzenecarbonitrile.
- 33. (original) A compound according to claim 1 selected from the group consisting of:
 - 2-(2-hydroxyethoxy)-2-(4-hydroxy-3-methylphenyl)-1,3-dioxolane;
 - 4-(4-Methoxyphenyl)-1-(3-methylbutyl)-1*H*-pyrazole;
 - 1-(3-Methylbutyl)-4-(4-methylphenyl)-1*H*-pyrazole;
 - 2-Hexyl-2-(4-methylphenyl)-1,3-dithiolane;
 - 2-Methyl-2-(4-methylphenyl)-1,3-dithiolane;
 - 2-(4-Thien-2-ylphenyl)-1,3-oxathiolane;

- 4-Methoxy-4'-(trifluoromethoxy)-1,1'-biphenyl;
- 2,6-Dimethoxy-3-[4-(trifluoromethyl)phenyl]pyridine.
- 34. (Currently Amended) A method of inhibiting cytokine or biological activity of MIF comprising contacting MIF with a cytokine or biological inhibiting amount of a compound according to any one of claims claim 1 to 33.
- 35. (Currently Amended) A method of treating, preventing or diagnosing a disease or condition wherein MIF cytokine or biological activity is implicated comprising the administration of a treatment, prevention or diagnostic effective amount of a compound according to <u>claim</u> any one of claims 1, 2 or 3 to 33 to a subject in need thereof.
- 36. (Cancelled)
- 37. (Currently Amended) A method according to claim 35 or a use according to claim 36 wherein the disease or condition is selected from the group consisting of autoimmune diseases, tumours or chronic or acute inflammatory diseases.
- 38. (Currently Amended) A method or use according to claim 37 wherein the disease or condition is selected from the group consisting of: rheumatoid athritis, systemic lupus eryhtematosus, ulcerative colitis, Crohn's disease, multiple sclerosis, psoriasis, uveitis, atherosclerotic vascular disease, asthma and chronic obstructive pulmonary disease.
- 39. (original) A method according to claim 35 wherein the subject is a human subject.
- 40. (Currently Amended) A pharmaceutical composition comprising a compound according to <u>claim</u> any one of claims 1 to 33 and a pharmaceutically acceptable carrier, diluent or excipient
- 41. (original) A pharmaceutical composition according to claim 40 further comprising a glucocorticoid.
- 42. (Currently Amended) A method of treating or preventing a disease or condition wherein MIF cytokine or biological activity is implicated comprising:
 - administering to a mammal a compound according to <u>claim</u> any one of claims 1 to 33 or a pharmaceutically acceptable salt or prodrug thereof and a second therapeutic agent.

- 43. (original) A method according to claim 42 wherein the second therapeutic agent is a glucocorticoid.
- 44. (Currently Amended) A method of prophylaxis or treatment of a disease or condition for which treatment with a glucocorticoid is indicated, said method comprising:
 - administering to a mammal a glucocorticoid and a compound according to <u>claim</u> any one of claims 1 to 33 or a pharmaceutically acceptable salt or prodrug thereof.
- 45. (Currently Amended) A method of treating a steroid-resistant disease or condition comprising:
 - administering to a mammal a glucocorticoid and a compound according to <u>claim 1 or any</u> one of claims 1 to 33or a pharmaceutically acceptable salt or prodrug thereof.
- 46. (Currently Amended) A method of enhancing the effect of a glucocorticoid in mammals comprising administering a compound according to any one of claims claim 1 to 33 simultaneously, separately or sequentially with said glucocorticoid.