

Schadstoffausbreitung (2)*

Aufgabennummer: B_048		
Technologieeinsatz:	möglich □	erforderlich 🗵

Eine Messstation registriert täglich zu einem bestimmten Zeitpunkt die Konzentration der von einer Fabrik emittierten Schadstoffe (in mg/m³). Es wird angenommen, dass diese Schadstoffkonzentrationen annähernd normalverteilt sind.

a) Es werden Messungen an 10 Tagen vorgenommen:

Schadstoffkonzentration	150	166	149	150	172	147	157	164	157	160
in mg/m ³	152	166	149	153	172	147	157	104	157	168

- Berechnen Sie den Stichprobenmittelwert \bar{x} .
- Ermitteln Sie das 95-%-Konfidenzintervall für den Erwartungswert μ , wenn bekannt ist, dass die Standardabweichung σ = 8,5 mg/m³ beträgt.
- b) Die Verteilung der Schadstoffkonzentration kann sowohl mithilfe der Dichtefunktion als auch mithilfe der Verteilungsfunktion der Normalverteilung beschrieben werden. In der nachstehenden Abbildung 1 ist der Graph der Dichtefunktion dargestellt.

- Zeichnen Sie den Graphen der zugehörigen Verteilungsfunktion in Abbildung 2 ein.
- Veranschaulichen Sie die in Abbildung 1 schraffiert dargestellte Wahrscheinlichkeit in Abbildung 2.
- Erklären Sie den mathematischen Zusammenhang zwischen diesen beiden Funktionen.

^{*} ehemalige Klausuraufgabe

Schadstoffausbreitung (2)

- c) Die Fabriksleitung geht vom Erwartungswert μ = 160 mg/m³ und von der Standardabweichung σ = 10 mg/m³ aus.
 - Ermitteln Sie den symmetrisch um μ gelegenen Bereich, in den erwartungsgemäß 99 % aller Messwerte fallen (99-%-Zufallsstreubereich).
 - Geben Sie an, wie sich die Breite dieses Zufallsstreubereichs verändert, wenn anstelle von 99 % nur noch 95 % aller Messwerte in diesen Bereich fallen sollen.

Hinweis zur Aufgabe:

Lösungen müssen der Problemstellung entsprechen und klar erkennbar sein. Ergebnisse sind mit passenden Maßeinheiten anzugeben. Diagramme sind zu beschriften und zu skalieren.

Möglicher Lösungsweg

a) Berechnung mittels Technologieeinsatz:

$$\bar{x} = 158,5 \text{ mg/m}^3$$

Zweiseitiges 95-%-Konfidenzintervall mithilfe der Normalverteilung bestimmen:

$$\overline{X} \pm U_{1-\frac{\alpha}{2}} \cdot \frac{\sigma}{\sqrt{n}}$$

$$n = 10$$

$$\alpha = 5 \%$$

$$U_{0.975} = 1,959...$$

Daraus ergibt sich folgendes Konfidenzintervall in mg/m³: $153,2 \le \mu \le 163,8$.

b)

Der Wert der Verteilungsfunktion an einer Stelle x ist das Integral der Dichtefunktion von $-\infty$ bis x.

Oder umgekehrt: Die Dichtefunktion ist die Ableitung der Verteilungsfunktion.

c) 99-%-Zufallsstreubereich mithilfe der Normalverteilung bestimmen:

$$\mu \pm u_{1-\frac{\alpha}{2}} \cdot \sigma$$

$$\alpha = 1 \%$$

$$U_{0,995} = 2,575...$$

Daraus ergibt sich folgender Zufallsstreubereich in mg/m³: [134,2; 185,8].

Der 95-%-Zufallsstreubereich ist schmäler als der entsprechende 99-%-Zufallsstreubereich.

Schadstoffausbreitung (2)

Lösungsschlüssel

- a) $1 \times B1$: für die richtige Berechnung des Stichprobenmittelwerts \bar{x}
 - 1 × A: für die Verwendung des richtigen Modells (Konfidenzintervall mithilfe der Normalverteilung)
 - 1 × B2: für die richtige Ermittlung des Konfidenzintervalls
- b) 1 × A1: für das richtige Einzeichnen des Graphen der Verteilungsfunktion (eine qualitative Beschriftung der Ordinatenachse ist nicht notwendig)
 - 1 × A2: für das richtige Veranschaulichen der Wahrscheinlichkeit in Abbildung 2
 - 1 x D: für das richtige Erklären des mathematischen Zusammenhangs zwischen Dichtefunktion und Verteilungsfunktion
- c) 1 × B: für die richtige Ermittlung des Zufallsstreubereichs
 - 1 × C: für die richtige Beschreibung der Veränderung der Breite des Zufallsstreubereichs