Aprendizagem Computacional - Trabalho Prático 3

João Tiago Márcia do Nascimento Fernandes - 2011162899 Joaquim Pedro Bento Gonçalves Pratas Leitão - 2011150072

14 de Novembro de 2014

$\mathbf{\acute{I}ndice}$

1	Intr	rodução	3								
2	Apl	icação Desenvolvida	4								
	$2.\overline{1}$	Graphical User Interface	4								
	2.2	Redes Neuronais Implementadas	6								
	2.3	Treino das Redes	6								
	2.4	Teste das Redes	7								
	2.5	Implementação em Matlab	8								
		2.5.1 run.m	8								
		2.5.2 createNetwork.m	8								
		2.5.3 prepareDataSets.m	9								
		2.5.4 interpretResults.m	9								
		2.5.5 interpret Group Results.m 	10								
	2.6	Execução	10								
3	Tre	ino e Testes da Aplicação	11								
	3.1	Testes Iniciais	11								
		3.1.1 Descrição	11								
		3.1.2 Análise dos Resultados Obtidos	12								
	3.2	Testes Complementares	14								
		3.2.1 Redes Selecionadas	14								
4	Red	lução da Dimensionalidade	15								
5	6 Conclusões 16										
6	Ane	exos	17								

1 Introdução

O presente trabalho foca-se na previsão e identificação de epiléticas, com base em informação de sinais cerebrais, recolhidos através da realização de um EEG (ElectroEncefaloGrama).

Este exame recolhe dados relativos à atividade cerebral do paciente que o realiza, sendo possível extrair um conjunto de características que permite a identificação de momentos de ocorrência de crises epiléticas (situações ictais) e de momentos nos quais o paciente não apresenta qualquer problema (situações não-ictais).

O trabalho proposto visa a criação de uma aplicação em Matlab, que analise os dados recolhidos após a realização de um EEG a um paciente, e que identifique eventuais situações em que a atividade cerebral registada corresponde a uma situação de crise epilética.

Para proceder à identificação das situações ictais e $n\~ao-ictais$, a aplicação desenvolvida faz uso, na sua arquitetura interna, de redes neuronais, disponíveis na $Neural\ Networks\ Toolbox$ do próprio Matlab.

Para avaliar o desempenho e performance da aplicação desenvolvida, procederemos à análise da sensibilidade e especificidade de cada rede neuronal implementada.

Estas métricas correspondem à percentagem de situações ictais verdadeiras detetadas (sensibilidade) e à percentagem de situações $n\~ao-ictais$ falsas detetadas (especificidade), refletindo a performance da rede na classificação de um dado data set: Uma elevada sensibilidade implica uma boa deteção de situações ictais, enquanto que uma elevada especificidade implica uma boa deteção de casos $n\~ao-ictais$.

Ambas as métricas constituem requisitos necessários para a sua utilização em ambiente clínico, e podem ser definidas da seguinte forma:

$$Sensibilidade = \frac{PositivosVerdadeiros}{PositivosVerdadeiros + FalsosNegativos}$$

$$Especificidade = \frac{NegativosVerdadeiros}{NegativosVerdadeiros + FalsosPositivos}$$

No presente documento pretendemos apresentar de forma mais detalhada a aplicação desenvolvida, discutindo alguns detalhes da sua implementação e apresentando uma reflexão crítica sobre o seu desempenho e performance, nomeadamente da sua sensibilidade e especificidade.

2 Aplicação Desenvolvida

FIXME: MUDAR INTERFACE GRÁFICA PARA PERMITIR ALTERAR DIMENSIONALIDADE DOS DADOS E FAZER REFERÊNCIA A ISSO NESTA SECÇÃO!!!

Tal como referido anteriormente, a aplicação desenvolvida visa analisar os dados referentes a um EEG de um paciente, identificando situações correspondentes a uma crise epilética.

Esta classificação pode ser realizada de duas formas distintas.

Numa primeira abordagem, a que chamamos *Classificação Individual*, é atribuído a cada elemento do conjunto de dados de entrada da aplicação uma de duas *classes*, representadas por dois valores binários:

- Classe $n\tilde{a}o$ -ictal, correspondente a um estado normal do paciente (ausência de crises) e representada pelos valores 1 0
- Classe ictal, correspondente a uma situação de crise, e representada pelos valores 0 1

Na segunda abordagem, a que chamamos *Classificação em Grupo*, a classificação é realizada de forma semelhante, no entanto são considerados conjuntos de dados de entrada da aplicação, ao invés de cada elemento. Para este tipo de classificação podemos adotar duas métricas diferentes:

- Analisar o número de elementos consecutivos classificados individualmente como *ictais*, comparando-o com um dado limiar. Neste caso, se, por exemplo, existirem pelo menos 10 elementos consecutivos classificados como *ic*tais então é detetada uma crise. Caso contrário nenhuma crise é detetada.
- Adotar um sistema de classificação em janela deslizante, analisando o número de elementos classificados individualmente como *ictias*, num dado universo restrito. Isto é, se pelo menos cinco dos últimos dez elementos foram classificados como *ictais* então todos os elementos nesse conjunto são classificados como *ictais*.

Relativamente a este último aspeto, optámos por adotar o segundo método de Classificação em Grupo, considerando uma abordagem por janelas.

De seguida apresentamos em maior detalhe a aplicação desenvolvida, salientando alguns dos seus aspetos mais importantes e relevantes.

2.1 Graphical User Interface

Para facilitar a interação do utilizador com a aplicação, foi-nos proposta a criação de uma interface gráfica onde são solicitadas ao utilizador todas as informações relevantes para a execução da aplicação, separando por completo a sua lógica interna com a especificação dos seus dados de entrada e outros parâmetros.

Assim, na interface gráfica desenvolvida são solicitadas ao utilizador várias informações que permitem a criação e treino das diferentes redes neuronais, nomeadamente:

- Tipo de rede neuronal a criar e treinar. Encontram-se disponíveis as redes Radial Basis Function, Layer Recurrent Network, FeedForward, Feed-Forward Time Input Delay e Distributed Time Delay.
- Função de Aprendizagem (ou Função de Treino) a utilizar na rede neuronal a criar (Se necessário). Encontram-se disponíveis as funções trainscg, traingd e trainrp.
- Função de Performance a utilizar no treino da rede neuronal (se necessário). Estão disponíveis as funções *mse* (mean squared error) e *sse* (sum squared error).
- Função de Activação dos neurónios da rede neuronal a implementar (se necessário). Estão disponíveis as funções hardlim, purelin, logsig e tansig.
- Tipo de Classificação a realizar (Individual ou Em Grupo)
- Ficheiro de dados a utilizar para treinar a rede criada
- Ficheiro de dados a utilizar para testar a rede criada
- Outros aspetos, como objetivo do treino (Goal), taxa de aprendizagem, etc

Para além disso, na interface desenvolvida, existe também uma secção onde são apresentados os resultados de cada teste realizado, nomeadamente a especificidade e sensibilidade da rede considera.

Figura 1: Interface Gráfica implementada

2.2 Redes Neuronais Implementadas

Como já referimos anteriormente, na nossa aplicação implementámos cinco redes neuronais distintas: Radial Basis Function, Layer Recurrent Network, FeedForward, FeedForward Time Input Delay e Distributed Time Delay.

Estas redes apresentam, naturalmente, características e propriedades distintas, sendo que umas se adequam mais ao trabalho que pretendemos realizar do que outras.

Por exemplo, considerando a rede *Layer Recurrent*, esta rede permite a introdução de atrasos em algumas características, o que lhe permite aprender a prever qualquer saída dinâmica, tendo por base entradas passadas. Este processo é possível se forem considerados neurónios e atrasos suficientes na rede.

De facto, esta é uma propriedade que vai, de certa forma, ao encontro do funcionamento de um cérebro humano, que para além de ser um sistema dinâmico, possui também memória.

Na mesma linha de raciocínio, redes que suportam a introdução de atrasos em algumas das características que constituem os dados de entrada surgem, a uma primeira vista, como boas opções para simular o comportamento de um cérebro humano, realizando uma melhor identificação das situações correspondentes a crises epiléticas. Exemplos destas redes são a rede *Distributed Time Delay* e a *FeedForward Input Time Delay*.

Por seu turno, a rede *FeedForward* também se apresenta como uma solução a considerar, dado o facto de permitir uma boa implementação de qualquer função de entradas e saídas arbitrárias, desde que considerados neurónios suficientes na(s) camada(s) escondida(s).

Por fim, é também necessário referir a rede Radial Basis Function, bastante utilizada para aproximar funções e cujo treino passa nomeadamente pela adição de neurónios à camada escondida até que a rede atinja a performance (goal) pretendida. Assim, embora possa ser necessário adicionar um elevado número de neurónios à camada escondida, acreditamos ser possível ter uma boa performance com esta rede.

2.3 Treino das Redes

Um dos principais aspetos do trabalho realizado, prende-se com o treino das redes neuronais, pois é ele que determina a boa (ou má) performance das redes implementadas.

Para o presente trabalho foram-nos fornecidos dados relativos a três pacientes, constituídos por um conjunto de características extraídas para cada elemento, e pela respetiva classe definida para cada elemento.

Uma vez que as situações em que os pacientes estão a sofrer de uma crise epilética são consideravelmente menos do que as situações em que o paciente não apresenta nenhum problema, a simples seleção de todos os elementos de um dos conjuntos fornecidos, ou de parte desses elementos, para realizar o treino da rede, sem qualquer cuidado na seleção dos elementos irá conduzir a dados de treino onde predominam situações não-ictais.

Nesses casos, iremos verificar uma especialização da rede na identificação de situações $n\~ao-ictais$, sem que faça uma classificação de casos ictais igualmente fiável.

De facto, tal situação não é desejável, uma vez que o nosso principal objetivo passa pela identificação de casos *ictais* com um grau de confiança mínimo, não a identificação de situações *não-ictais*.

Assim, para evitar que as redes por nós treinadas se especializem em situações $n\~ao-ictais$, na constituição dos casos de treino das diferentes redes neuronais, consideramos um dos ficheiros fornecidos, e para esse ficheiro selecionamos uma percentagem dos casos ictais (essa percentagem é solicitada ao utilizador através da interface gráfica) que vamos incluir no nosso data set de treino.

Em seguida, selecionamos um número igual de situações $n\~ao-ictais$, preservando a ordem dos diferentes casos nos dados originais. Como o número de situações $n\~ao-ictais$ é bastante superior ao número de situações ictais, ao selecionarmos um número de situações $n\~ao-ictais$ igual ao de situações ictais temos, necessariamente de não incluir a maior parte das situações $n\~ao-ictais$. Assim, para fazermos esta seleção, selecionamos aleatoriamente um conjunto de situações $n\~ao-ictais$ do conjunto de dados originais, preservando sempre a ordem de ambas as situações ictais e $n\~ao-ictais$, como referido. Para ilustrar este ponto consideremos a seguinte situação:

Consideremos os elementos A e B, pertencentes ao data set original e de treino, em que A surge antes de B no data set original. Consideremos também que A corresponde a uma situação ictal, enquanto B corresponde a uma situação $n\tilde{a}o$ -ictal. Então, no data set de treino, A surgirá também antes de B.

Para realizar o treino das diversas redes recorremos ainda a diferentes funções de treino, disponíveis e implementadas pela Neural Network Toolbox do Matlab. As funções de treino disponíveis são a função traingd, trainseq e trainrp.

Com exceção da rede RBF (Radial Basis Function) implementada, o treino das restantes redes neuronais é realizado com recurso à função train da Neural Network Toolbox do Matlab. Uma vez que o treino das redes é uma operação complexa e exigente em termos computacionais, tendo em conta o tipo de redes criadas e a dimensão dos dados para proceder ao treino das redes, estas foram treinadas com aceleração gráfica, disponível nas versões mais recentes do Matlab. Para tal, basta adicionar os parâmetros 'useGPU', 'yes' aquando da chamada da função train: train(network, P, T, 'useGPU', 'yes').

Para a rede RBF, o Matlab realiza o seu treino aquando da criação da rede, não sendo necessária a invocação da função train.

2.4 Teste das Redes

Uma vez completo o treino de uma rede neuronal, esta pode ser testada, de forma a verificar o seu bom, ou mau, funcionamento. Para isso, criámos um conjunto de dados de teste, baseados nos três data sets inicialmente fornecidos.

O processo de criação dos dados de teste é semelhante ao utilizado na constituição dos dados de treino das redes neuronais:

É solicitado ao utilizador que indique o ficheiro (de entre os três ficheiros fornecidos) de onde serão extraídos os dados de teste, e qual a percentagem de situações *ictais* a incluir. Em seguida, o ficheiro escolhido é analisado, e são considerados todos os dados nele presentes, a partir do final do ficheiro, até que o número de situações *ictais* incluídas seja igual à percentagem especificada.

Por outras palavras, se o utilizador especifica que pretende incluir 25% das situações ictais nos dados de treino, e se todas as situações ictais identificadas nesse data set se encontram nas posições 10-20, 40-50, 60-70 e 80-100, então o nosso data set de treino será constituído por todos os elementos do ficheiro, desde a posição 60 até ao final do ficheiro.

Uma vez que aquando da realização dos testes na rede esta já se encontra treinada, é irrelevante considerarmos nos data sets de teste situações ictais na mesma ordem de grandeza do que situações $n\~ao-ictais$, pois apenas estamos a executar a rede para um conjunto de dados, sem que este afete de forma alguma o funcionamento da rede em situações futuras.

2.5 Implementação em Matlab

A aplicação foi por nós desenvolvida e programa quase na sua totalidade, com a exceção do código relativo à interface gráfica. Esta foi desenhada por nós através da interface guide do Matlab, tendo o seu código sido gerado pelo Matlab.

De qualquer forma, toda a lógica interna da aplicação, comunicação da informação recolhida pela interface gráfica para outras estruturas, etc, foi por nós completamente desenvolvida.

2.5.1 run.m

Este ficheiro é o principal ficheiro da aplicação e que permite a sua execução. É nele que se encontra todo o código gerado, relativo à interface gráfica, mas também onde todas as principais funcionalidades da aplicação (criação das redes neuronais e respetivo treino e classificação dos dados de teste) são invocadas.

2.5.2 createNetwork.m

No ficheiro createNetwork.m encontramos a função createNetwork, responsável pela criação da rede neuronal que irá realizar a identificação das situações ictais nos dados considerados e fornecidos à aplicação.

Esta rede é criada de acordo com algumas características pré-definidas, e outras escolhidas pelo utilizador, como é o caso das funções de ativação e de treino.

Após a sua criação, a rede será treinada com um conjunto de dados previamente criado de acordo com as especificações fornecidas pelo utilizador. Este treino não é realizado neste ficheiro, mas sim no principal ficheiro desenvolvido para a aplicação, run.m.

2.5.3 prepareDataSets.m

Neste ficheiro encontramos a função *prepareDataSets*, responsável pela criação dos *data sets* de treino e e de teste, bem como dos respetivos resultados esperados (quer para os dados de treino, quer para os dados de teste).

Tal como referimos brevemente numa secção anterior do presente documento, as abordagens seguidas para a criação dos conjuntos de dados de treino e de teste têm pontos em comum, não sendo, no entanto, completamente iguais.

Uma vez que, nos ficheiros fornecidos, o número de situações $n\tilde{a}o$ -ictais é bastante superior à quantidade de classificações ictais, se simplesmente considerarmos para o nosso data set de treino uma percentagem dos dados fornecidos, sem nos preocuparmos com a distribuição de situações $n\tilde{a}o$ -ictais e ictais, então será altamente provável que as nossas redes sejam treinadas com mais casos $n\tilde{a}o$ -ictais do que com ictais, resultando numa especialização da mesma na deteção de situações $n\tilde{a}o$ -ictais.

Efetivamente, tal situação corresponde ao oposto do desejável, tendo em conta que o nosso objetivo principal passa pela identificação de casos *ictais*, com um grau de confiança mínimo.

Assim, para os dados de treino das redes neuronais criadas são consideradas situações ictais e $n\~ao-ictias$ em igual número e de acordo com uma percentagem das situações ictais totais do ficheiro a considerar, definida pelo utilizador. Nesta seleção, tal como referido anteriormente, é preservada a posição relativa das situações ictais e $n\~ao-ictais$ consideradas.

No que respeita aos dados de teste, também criados neste ficheiro, não é necessária qualquer preocupação em relação ao número de situações ictais e não-ictais, uma vez que pretendemos utilizar estes dados em redes já treinadas, pelo que a sua execução em nada alterará o comportamento futuro da rede.

Assim, os dados de treino são construídos partindo do final de um ficheiro de dados previamente selecionado, incluindo todos os dados (correspondentes a casos *ictais* e *não-ictais*) até que o número de situações *ictais* seja igual a um valor definido pelo utilizador.

2.5.4 interpretResults.m

É neste ficheiro que se encontra a função *interpretResults*, onde é realizado o processamento da classificação executada pela rede neuronal treinada, nas situações em que o tipo de classificação escolhido é a *Classificação Individual*.

Este processamento consiste simplesmente em percorrer os resultados obtidos na execução da rede neuronal para o caso de teste fornecido, comparando-os elemento a elemento com os resultados esperados para esse caso de teste. Assim, é registado o número de situações em que a classificação da rede se apresenta correta (distinguindo-se entre classificações de situações ictais e não-ictais), bem como situações em que a classificação da rede está incorreta (também distinguindo-se entre ituações ictais e não-ictais).

Para além disso, são também registados o número de classificações positivas e negativas, isto é, de situações ictais e $n\~ao-ictais$, presentes nos dados fornecidos

à rede, e que num cenário de classificação perfeita corresponderiam ao número de situações *ictais* e *não-ictais* registadas.

Uma vez que a classificação realizada pela rede nem sempre é clara, podem existir situações para as quais a rede não convergiu, não sendo possível distinguir de forma clara para uma dada situação (ou conjunto de situações) qual a classe atribuída pela rede. Essas situações são também registadas nesta função, sendo posteriormente reportadas como classificações inválidas.

2.5.5 interpretGroupResults.m

O ficheiro interpret Group Results. m é responsável por uma importante parte da lógica subjacente à Classificação em Grupo realizada pela aplicação.

Neste ficheiro, a abordagem seguida é em tudo semelhante ao realizado no caso da *Classificação Individual*: Possuindo os resultados esperados para o teste realizado, basta percorrer os dados obtidos como resultado da classificação da rede neuronal, registando as situações em que os dois conjuntos de dados (dados obtidos e esperados) são idênticos (verdadeiros positivos e verdadeiros negativos), bem como situações onde as classificações diferem (falsos positivos e falsos negativos), ou então não são possíveis (classificações inválidas).

2.6 Execução

Para executar a aplicação o utilizador simplesmente necessita de executar o ficheiro *run.m*, sendo imediatamente exibida a interface gráfica desenvolvida.

A partir desse momento, o utilizador poderá escolher a rede a criar e a treinar, definindo algumas das suas propriedades e do seu treino, nomeadamente a escolha do ficheiro de dados a utilizar como fonte para a criação dos dados de treino e para posterior teste da rede treinada. É também possível selecionar o tipo de classificação a realizar, tal como referido anteriormente: Classificação Individual ou Classificação em Grupo.

Uma vez definidos todos os parâmetros pretendidos pelo utilizador, basta clicar na opção *Train Network*, para proceder ao treino da rede, ou na opção *Test*, para proceder à execução da rede para os dados de teste especificados.

Queremos também salientar a possibilidade de seleção a opção *Test* sem, previamente, ter sido treinada nenhuma rede. Nesse caso, será criada e treinada uma rede de acordo com as especificações para esta definidas na interface. Caso o utilizador não tenha definido nenhuma configuração, será utilizada uma por defeito.

Uma vez finda a execução da rede para os dados de treino selecionados, os resultados dessa execução poderão ser visualizados no painel Results, estando disponível a sensibilidade e especificidade registadas, bem como os dados que permitiram calcular esses valores (verdadeiros positivos e negativos, e falsos positivos e negativos). É ainda apresentado o número de classificações inválidas registadas.

3 Treino e Testes da Aplicação

Após o desenvolvimento inicial da aplicação procedemos ao treino e teste das diferentes redes implementadas, a fim de aferir o seu correto, ou incorreto, funcionamento e da sua adequação às nossas previsões iniciais para a performance de cada rede.

3.1 Testes Iniciais

3.1.1 Descrição

Numa fase inicial dos testes realizados procedemos ao treino de todas as redes neuronais implementadas, para uma vasta gama de combinações possíveis das propriedades das redes consideradas, e para os dois tipos de classificação disponíveis. Assim, inicialmente treinámos as redes com as seguintes propriedades:

- Dados de treino retirados do ficheiro 92202.mat
- Percentagem de situações *ictais* consideradas nos casos de treino de 70%
- Objetivo do treino com o valor de 10^{-6} , com exceção da rede *Radial Basis Function*, onde o valor considerado foi de 10^{-2}
- Número de épocas de treino máximo de 1000
- Número de *validation checks* necessários para terminar o treino igual a metade do número máximo de épocas de treino, ou seja 500
- Ritmo de aprendizagem de 0.2
- Número de Camadas Totais igual a 4 (incluindo a camada de saída)
- Número de neurónios por cada camada escondida (excluindo a camada de saída) igual a 30
- Funções de ativação consideradas: hardlim, purelin, logsiq e tansiq
- \bullet Funções de treino consideradas: trainscg, traingd e trainrp
- Funções de performance consideradas: sse e mse

Antes de entrarmos em maior detalhe sobre os testes realizados gostaríamos de referir alguns pontos que consideramos importantes para uma posterior análise.

Em primeiro lugar, gostaríamos de chamar a atenção do leitor para o número de camadas consideradas nos testes realizados: Um dos pontos defendidos pela bibliografia deste tema refere-se ao facto de, numa rede neuronal com uma única camada escondida (excluindo a camada de entrada e a de saída), ser possível obter os mesmos resultados que numa rede neuronal equivalente, mas que faça uso de mais camadas.

Simplesmente para obter resultados equivalentes é necessário adicionar um número suficiente de neurónios à camada escondida. Naturalmente que, ao se adicionar um elevado número de camadas e de neurónios por camada, o tempo de treino da rede aumenta consideravelmente.

Para além disso, analisando o número de camadas e de neurónios por camada considerados, este pode parecer demasiado excessivo. Efetivamente, numa fase posterior da nossa análise, iremos considerar algumas destas redes treinadas com um número de camadas e de neurónios por camada bastante mais reduzido, com intenção de compararmos os resultados obtidos em cada situação.

Com o objetivo de aferir a validade das redes implementadas, iniciamos os testes executando as diferentes redes para os dados do ficheiro 92202.mat não utilizados para o treino da rede. Dado que estes dados são relativos ao mesmo paciente com o qual as redes foram treinadas será de prever que estes dados se aproximem mais dos dados de treino das redes, resultando numa melhor performance.

Posteriormente a este teste, foram também executados testes com os dados relativos a outros dois pacientes, considerando para efeitos de teste porções de 30%, 50% e 70% do número total de situações ictais presentes em cada um dos ficheiros.

Em anexo a este documento encontra-se uma lista detalhada dos resultados obtidos em cada teste realizado, que poderá ser consultada pelo leitor.

Na lista apresentada optámos por não incluir os resultados relativos aos testes para as redes treinadas com a função sum squared error como função de performance, uma vez que as redes treinadas com esta função obtiveram valores de performance registados pela Neural Network Toolbox muito superiores aos registados para as redes treinadas com a função de performance mean squared error 1

3.1.2 Análise dos Resultados Obtidos

Analisando os resultados obtidos neste teste, existem alguns pontos que, na nossa opinião, se tornam evidentes e que gostaríamos de salientar, desde já.

Nos testes realizados com os dados provenientes do ficheiro 92202.mat não utilizados no treino das redes, ficámos algo surpreendidos com os resultados obtidos.

De uma forma geral, todas as redes apresentam, nesta situação, valores de especificidade bastante elevados (excluindo algumas situações pontuais). No entanto, os valores de sensibilidade registados são bastante reduzidos e irregulares. Queremos também chamar a atenção para o facto de, nos testes realizados, a rede Radial Basis Function não ter realizado uma única classificação inválida, o que é algo que consideramos bastante positivo.

De facto, tal como referimos, seria de esperar que as redes realizassem boas classificações para casos próximos dos com que foram treinadas, como é o caso

 $^{^{\}rm l}$ Neste caso, quanto maior for o valor registado para a performance de uma rede pior será o seu desempenho

quando consideramos dados do mesmo paciente. Embora essa situação se verifique, em algumas situações, para os valores de *especificidade*, os valores de *sensibilidade* e também o número de classificações inválidas revelam outra realidade.

Tais resultados sugerem, assim, a possível existência de um erro na implementação destas redes ou, numa situação mais improvável, a possibilidade de, acidentalmente, termos corrompido os dados no ficheiro que utilizámos para o treino da rede, antes ou depois desse mesmo treino.

No entanto, e tal como iremos constatar de seguida, os resultados obtidos quando sujeitamos as redes a outros dados de teste não foram tão negativos.

Numa primeira e superficial análise, seria plausível considerar que, à luz dos resultados obtidos para os restantes pacientes analisados, a maioria das redes implementadas apresenta uma boa capacidade de generalização. No entanto, os resultados que acabámos de apresentar não nos deixam tão confiantes.

Não obstante, passemos à análise da prestação das diferentes redes, quando executadas com dados diferentes dos com que foram treinadas.

Em primeiro lugar, queremos desde já destacar o facto de, também neste conjunto de testes, não ter sido registada nenhuma classificação inválida por parte da rede *Radial Basis Function*.

Para além disso, verificámos que os resultados obtidos para a Classificação Individual e Classificação em Grupo são bastante semelhantes. De facto, este é, de certa forma, um resultado pouco surpreendente, dado que a nossa abordagem para a Classificação em Grupo é bastante semelhante à abordagem para a Classificação Individual. Todos os passos desde a criação dos dados de teste até à sua execução na rede são comuns aos dois tipos de classificação. A única diferença reside na forma como estes são processados após a sua execução na rede neuronal.

Como os nossos dados possuem as situações *ictais* bastante concentradas em locais muito específicos dos *data sets*, e uma vez que optámos pela abordagem em janela para a *Classificação em Grupo*, esta semelhança entre os resultados obtidos nas duas abordagens não completamente inesperada.

Não obstante, gostaríamos também de salientar que, embora os resultados obtidos para os dois tipos de classificações sejam bastante semelhantes, registámos melhores resultados nos testes que relativos à Classificação Individual.

De entre todas as redes testadas, aquela que apresentou melhores e mais consistentes resultados em ambos os tipos de classificação foi, sem dúvida, a rede *Radial Basis Function*, apresentando em praticamente todos os testes elevados valores (iguais ou superiores a 0.7) de especificidade e sensibilidade.

Para além desta rede, na *Classificação Individual* registámos ainda bons resultados para a rede *Distributed Time Delay*, treinada com a função *trainseg*, tal como a rede *FeedForward Input Time Delay*, em algumas situações pontuais (nomeadamente utilizando como função de treino a função *trainseg* e funções de ativação as funções *logsig* e *tansig*).

As restantes redes e respetivas configurações não mencionadas, não obtiveram resultados tão positivos, destacando-se sobretudo uma clara irregularidade nos resultados registados: Foi bastante frequente a ocorrência de situações em

que uma dada rede registava um valor bastante elevado para a especificidade ou para a sensibilidade, mas o correspondente valor de sensibilidade ou de especificidade registado tomava valores muito reduzidos.

Surpreendentemente, nas redes que apresentam piores resultados, onde se incluem as redes que apresentam as oscilações de resultados que referimos, é bastante comum registarem-se percentagens de dados inválidos mais reduzidas do que em algumas redes com melhores resultados.

No que diz respeito à Classificação em Grupo, os resultados obtidos não são demasiado diferentes dos mencionados. Queremos destacar, à semelhança do que verificámos para a Classificação Individual, a boa performance da rede Radial Basis Function, e da rede Layer Recurrent Network, que desta feita relegou a rede Distributed Time Delay, treinada com a função trainseg para o posto de terceira melhor rede.

À semelhança do verificado na Classificação Individual, a rede FeedForward Input Time Delay registou bons resultados em alguns testes onde foi treinada com a função trainscg, tendo sido utilizadas as funções de ativação logsig e tansig.

Também se verificou uma grande oscilação nos resultados obtidos para algumas redes, registando-se situações em que, uma dada rede, foi registado um valor bastante elevado para a especificidade ou para a sensibilidade, mas o correspondente valor de sensibilidade ou de especificidade era muito mais reduzido.

Quanto ao número de classificações inválidas, registámos valores, em média, inferiores aos da *Classificação Individual*, existindo muitas redes que não apresentam qualquer classificação inválida.

Curiosamente, são as redes com maiores oscilações de valores de sensibilidade e especificidade que apresentam os maiores valores de classificações inválidas.

3.2 Testes Complementares

Tendo em conta os testes realizados para dados diferentes dos dados de treino, decidimos avaliar um pouco mais as redes que mostraram um melhor desempenho, realizando pequenas alterações às suas configurações, repetindo os treinos realizados e analisando os resultados.

3.2.1 Redes Selecionadas

Assim, nesta segunda fase de testes, consideramos as seguintes redes neuronais:

- Rede Radial Basis Function, com um goal de 0.01, um neurónio a adicionar entre displays
- Rede Distributed Time Delay, treinada com a função trainscg, e com as funções de ativação logsig e tansig
- Rede FeedForward Input Time Delay, treinada com a função trainscg, e com as funções de ativação logsig e tansig

Todas estas redes foram treinadas com apenas uma camada escondida e com 3, 7 e 15 neurónios por camada. Para além disso, com exceção da rede Radial Basis Function, foi utilizado um goal de 10^{-6} , 1000 epochs e um limite máximo de validation checks de 500 para o treino das redes.

Para os testes realizados, as redes foram executadas considerando os ficheiros 44202.mat e 63502.mat, selecionando 30, 50 e 70% das situações ictais registadas em cada um desses ficheiros.

De uma forma geral, os resultados da *Classificação Individual e em Grupo* não sofreram muitas alterações, face ao verificado para as respetivas redes nos testes anteriormente realizados:

A rede *Radial Basis Function* continuou a não registar dados inválidos, mesmo quando o seu número de neurónios foi reduzido a 3, o que, na nossa opinião, é um ponto positivo.

Verificaram-se também algumas variações nos valores de sensibilidade e especificidade registados, no entanto não existiu nenhum teste em particular onde os valores registados para estas métricas se afastassem por completo do observado nos testes anteriores.

Tendo em conta estes resultados, podemos constatar que as redes escolhidas para este segundo conjunto de testes realizam classificações com o mínimo de confiança, uma vez que mesmo quando constituídas por um reduzido número de neurónios, mantiveram valores de sensibilidade e especificidade elevados.

Isto leva-nos a acreditar que a sua estrutura, bem como as funções de treino e ativação consideradas conferem a estas redes uma boa capacidade para identificar situações ictais na atividade cerebral humana, adequando-se e permitindo simulando com alguma proximidade a atividade do cérebro humano, pelo menos no que respeita aos seus estados ictais e $n\~ao-ictais$.

3.3 Redução da Dimensionalidade

Explicar a ideia por trás disto (Muitas características com informação redundante -> Filtrando as que dão mais ganhos informativos ao sistema podemos ter uma aprendizagem ligeiramente pior, ou até igualmente melhor, necessitando de menos tempo para o treino da rede)

FIXME: MUDAR INTERFACE GRAFICA PARA PERMITIR UTILIZAR REDIMENSIONALIZAÇÃO DOS DADOS

4 Conclusões

Falar na generalização, uma vez que tivemos bons resultados (lol) em dados de pacientes que não o paciente de treino.

Referir os resultados menos positivos obtidos nos testes com os dados do paciente de treino.

5 Anexos

Nas páginas seguintes apresentamos os testes iniciais realizados para ${\it Classificação\ Individual\ e\ em\ Grupo},$

						Single Classificat	ion						
Network	Training Function	Performance Function	Training Goal	Activation Function	Input	Percentage Crysis (0-100)	Specificity	Sensibility	True Positives	True Negatives	False Positives	False Negatives	Invalid Data
Radial Basis Network	-	-	0.01		44202.mat	30	0.90435	0.89412	912	228070	24123	108	0
FeedForward	traingd	mse	1.00E-006		44202.mat	30	0.9983	0.6941	540	244948	418	238	7069
FeedForward	trainrp	mse	1.00E-006		44202.mat	30	0.71264	0.58589	382	165450	66715	270	20399
FeedForward	trainscq	mse	1.00E-006		44202.mat	30	0.52643	0.4517	318	130110	117050	386	5347
Layer Recurrent Network	traingd	mse	1.00E-006		44202.mat	30	0.99838	0.65019	513	247390	401	276	4629
Layer Recurrent Network	trainrp	mse	1.00E-006		44202.mat	30	0.59739	0.93988	938	131920	88905	60	31395
Layer Recurrent Network	trainscq	mse	1.00E-006		44202.mat	30	0.72719	0.53726	483	181540	68104	416	2672
Distributed Time Delay	traingd	mse	1.00E-006	hardlim	44202.mat	30	0.97158	0.31167	283	244780	7160	625	366
Distributed Time Delay	traingd	mse	1.00E-006	purelin	44202.mat	30	0.99996	0	0	251320	10	844	1042
Distributed Time Delay	traingd	mse	1.00E-006	logsig	44202.mat	30	0.032357	0.99132	571	63	1884	5	250690
Distributed Time Delay	traingd	mse	1.00E-006	tansia	44202.mat	30	0.9998	0.64082	628	252120	50	352	63
Distributed Time Delay	trainrp	mse	1.00E-006	hardlim	44202.mat	30	0.24644	0.90496	438	519	1587	46	250620
Distributed Time Delay	trainrp	mse	1.00E-006	purelin	44202.mat	30	0.85077	0.014417	11	26800	4701	752	220950
Distributed Time Delay	trainrp	mse	1.00E-006	loasia	44202.mat	30	0.97712	0.75179	733	245950	5759	242	532
Distributed Time Delay	trainrp	mse	1.00E-006	tansia	44202.mat	30	0.85839	0.86032	850	210950	34800	138	6475
Distributed Time Delay	trainsca	mse	1.00E-006	hardlim	44202.mat	30	0.96431	0.80588	822	243190	9000	198	5
Distributed Time Delay	trainscq	mse	1.00E-006	purelin	44202.mat	30	0.95819	0.93695	743	106580	4651	50	141190
Distributed Time Delay	trainscg	mse	1.00E-006	logsig	44202.mat	30	0.98956	0.82745	844	249530	2632	176	30
Distributed Time Delay	trainscq	mse	1.00E-006	tansig	44202.mat	30	0.95782	0.81662	806	235740	10382	181	6099
FF Input Time Delay	traingd	mse	1.00E-006	hardlim	44202.mat	30	0.55762	1	1020	0	252190	0	4
FF Input Time Delay	traingd	mse	1.00E-006	purelin	44202.mat	30	0.99999	0	0	251610	3	806	795
FF Input Time Delay	traingd	mse	1.00E-006	logsig	44202.mat	30	0.55555	1	1020	0	252190	0	3
FF Input Time Delay	traingd	mse	1.00E-006	tansig	44202.mat	30	0.99985	0.0088583	9	252150	38	1007	12
FF Input Time Delay	trainrp	mse	1.00E-006	hardlim	44202.mat	30	0.33333	NaN	0	1	2	0	253210
FF Input Time Delay	trainrp	mse	1.00E-006	purelin	44202.mat	30	0.84057	0.45919	422	183180	34744	497	34374
FF Input Time Delay	trainrp	mse	1.00E-006	logsig	44202.mat	30	0.54028	0.92436	941	135100	114950	77	2145
FF Input Time Delay	trainrp	mse	1.00E-006	tansig	44202.mat	30	0.96455	0.73994	717	240850	8852	252	2543
FF Input Time Delay	trainscq	mse	1.00E-006	hardlim	44202.mat	30	3.9653E-006	1	1020	1	252180	0	8
FF Input Time Delay	trainscg	mse	1.00E-006	purelin	44202.mat	30	0.64662	0.28173	273	143430	78386	696	30425
FF Input Time Delay	trainscg	mse	1.00E-006	logsig	44202.mat	30	0.98856	0.80157	816	249090	2882	202	223
FF Input Time Delay	trainscg	mse	1.00E-006	tansig	44202.mat	30	0.97302	0.81176	828	245280	6801	192	114
Radial Basis Network	lialisty	ilise	0.01	tarisiy	63502.mat	30	0.8545	0.60077	471	37563	0.6396	313	0
FeedForward	trainad	mse	1.00E-006		63502.mat	30	0.16702	0.80171	562	6949	34657	139	2436
FeedForward	trainrp	mse	1.00E-006		63502.mat	30	0.075925	0.91623	700	3230	39312	64	1437
FeedForward	trainscq	mse	1.00E-006		63502.mat	30	0.13376	0.84575	647	5800	37561	118	617
Layer Recurrent Network	trainscy	mse	1.00E-006		63502.mat	30	0.13376	0.84575	228	25718	673	336	17788
Layer Recurrent Network			1.00E-006		63502.mat	30	0.84122	0.6255	466	34581	6527	279	2890
Layer Recurrent Network	trainrp trainscq	mse mse	1.00E-006		63502.mat	30	0.13369	0.82252	621	5774	37415	134	799
Distributed Time Delay	traingd	mse	1.00E-006	hardlim	63502.mat	30	0.92128	0.14849	113	39906	3410	648	666
Distributed Time Delay			1.00E-006	purelin	63502.mat	30	1	0.14849	0	43331	0	767	645
Distributed Time Delay	traingd traingd	mse mse	1.00E-006		63502.mat	30	0.92982	0.2	4	43331	4	16	44666
				logsig									
Distributed Time Delay	traingd	mse	1.00E-006	tansig hardlim	63502.mat	30	0.99024	0.28329 0.65116	217	43040 606	424 1378	549 30	513
Distributed Time Delay	trainrp	mse	1.00E-006		63502.mat	30	0.30544		56	294			42673 43964
Distributed Time Delay	trainrp	mse	1.00E-006	purelin	63502.mat	30	0.4044	0.51923	27		433	25	
Distributed Time Delay	trainrp	mse	1.00E-006	logsig	63502.mat	30	0.39889	0.81127	619	16601	25017	144	2362
Distributed Time Delay	trainrp	mse	1.00E-006	tansig	63502.mat	30	0.44028	0.78858	373	5113	6500	100	32657
Distributed Time Delay	trainscg	mse	1.00E-006	hardlim	63502.mat	30	0.89419	0.27331	214	39288	4649	569	23 43003
Distributed Time Delay	trainscg	mse	1.00E-006	purelin	63502.mat	30	0.95521	0.72727	64	1578	74	24	
Distributed Time Delay	trainscg	mse	1.00E-006	logsig	63502.mat	30	0.28793	0.86154	672	12634	31245	108	84
Distributed Time Delay	trainscg	mse	1.00E-006	tansig	63502.mat	30	0.89904	0.55513	433	39335	4417	347	211
FF Input Time Delay	traingd	mse	1.00E-006	hardlim	63502.mat	30	0	1	783	0	43873	0	87
FF Input Time Delay	traingd	mse	1.00E-006	purelin	63502.mat	30	0.99883	0.0012788	1	43597	51	781	313

						Single Classifi	cation						
FF Input Time Delay	traingd	mse	1.00E-006	logsig	63502.mat	30	0	1	783	0	43869	0	91
FF Input Time Delay	traingd	mse	1.00E-006	tansig	63502.mat	30	0.99982	0	0	43696	8	782	257
FF Input Time Delay	trainrp	mse	1.00E-006	hardlim	63502.mat	30	0	NaN	ō	0	29	0	44714
FF Input Time Delay	trainrp	mse	1.00E-006	purelin	63502.mat	30	0.97533	0.44609	211	16765	424	262	27081
FF Input Time Delay	trainrp	mse	1.00E-006	logsig	63502.mat	30	0.8626	0.49352	381	37814	6023	391	134
FF Input Time Delay	trainrp	mse	1.00E-006	tansig	63502.mat	30	0.93247	0.50787	387	40268	2916	375	797
FF Input Time Delay	trainscq	mse	1.00E-006	hardlim	63502.mat	30	0.00041059	0.99872	783	18	43821	1	120
FF Input Time Delay	trainsco	mse	1.00E-006	purelin	63502.mat	30	0.14958	0.74733	559	6504	36978	189	513
FF Input Time Delay	trainscq	mse	1.00E-006	logsig	63502.mat	30	0.93658	0.56923	444	41027	2778	336	158
FF Input Time Delay	trainscq	mse	1.00E-006	tansig	63502.mat	30	0.91445	0.58748	460	40086	3750	323	124
Radial Basis Network	-	-	0.01	tansig	44202.mat	70	0.81983	0.86485	1779	469860	103260	278	0
FeedForward	traingd	mse	1.00E-006		44202.mat	70	0.99579	0.62286	981	552090	2332	594	19186
FeedForward	trainrp	mse	1.00E-006		44202.mat	70	0.73171	0.66667	880	373980	137120	440	62758
FeedForward	trainscq	mse	1.00E-006		44202.mat	70	0.61209	0.42269	626	341740	216580	855	15370
			1.00E-006		44202.mat	70	0.99808	0.53275	797	561210	1082	699	11392
Layer Recurrent Network	traingd	mse	1.00E-006	•				0.53275			238390	197	
Layer Recurrent Network	trainrp	mse			44202.mat	70	0.53298		1811	272070			62709
Layer Recurrent Network	trainscg	mse	1.00E-006		44202.mat	70	0.78069	0.54077	975	442660	124350	828	6367
Distributed Time Delay	traingd	mse	1.00E-006	hardlim	44202.mat	70	0.96116	0.27684	508	550100	22227	1327	1017
Distributed Time Delay	traingd	mse	1.00E-006	purelin	44202.mat	70	0.99997	0	0	570980	17	1682	2499
Distributed Time Delay	traingd	mse	1.00E-006	logsig	44202.mat	70	0.10408	0.99535	1070	523	4502	5	569080
Distributed Time Delay	traingd	mse	1.00E-006	tansig	44202.mat	70	0.99822	0.57201	1132	571790	1018	847	388
Distributed Time Delay	trainrp	mse	1.00E-006	hardlim	44202.mat	70	0.59409	0.87245	814	5506	3762	119	564980
Distributed Time Delay	trainrp	mse	1.00E-006	purelin	44202.mat	70	0.90304	0.029113	43	83733	8990	1434	480980
Distributed Time Delay	trainrp	mse	1.00E-006	logsig	44202.mat	70	0.96727	0.70441	1375	552650	18700	577	1874
Distributed Time Delay	trainrp	mse	1.00E-006	tansig	44202.mat	70	0.75988	0.83425	1661	425370	134420	330	13399
Distributed Time Delay	trainscg	mse	1.00E-006	hardlim	44202.mat	70	0.95678	0.74283	1528	548340	24770	529	11
Distributed Time Delay	trainscg	mse	1.00E-006	purelin	44202.mat	70	0.94631	0.90269	1243	206020	11689	134	356090
Distributed Time Delay	trainscg	mse	1.00E-006	logsig	44202.mat	70	0.96501	0.77918	1602	552920	20046	454	159
Distributed Time Delay	trainscg	mse	1.00E-006	tansig	44202.mat	70	0.92719	0.78814	1581	520260	40856	425	12052
FF Input Time Delay	traingd	mse	1.00E-006	hardlim	44202.mat	70	0	1	2056	0	573100	0	20
FF Input Time Delay	traingd	mse	1.00E-006	purelin	44202.mat	70	0.99997	0.00060938	1	571740	20	1640	1780
FF Input Time Delay	traingd	mse	1.00E-006	logsig	44202.mat	70	0	1	2056	0	573110	0	15
FF Input Time Delay	traingd	mse	1.00E-006	tansig	44202.mat	70	0.99979	0.010784	22	572980	118	2018	37
FF Input Time Delay	trainrp	mse	1.00E-006	hardlim	44202.mat	70	0.14286	NaN	0	1	6	0	575170
FF Input Time Delay	trainrp	mse	1.00E-006	purelin	44202.mat	70	0.86475	0.42701	781	433960	67875	1048	71518
FF Input Time Delay	trainrp	mse	1.00E-006	logsig	44202.mat	70	0.42572	0.91561	1877	242240	326780	173	4115
FF Input Time Delay	trainrp	mse	1.00E-006	tansig	44202.mat	70	0.95354	0.6767	1327	541500	26381	634	5338
FF Input Time Delay	trainscg	mse	1.00E-006	hardlim	44202.mat	70	3.4899E-006	1	2056	2	573080	0	38
FF Input Time Delay	trainscg	mse	1.00E-006	purelin	44202.mat	70	0.72495	0.28041	551	374450	142070	1414	56699
FF Input Time Delay	trainscg	mse	1.00E-006	logsig	44202.mat	70	0.96479	0.75061	1541	551970	20147	512	1004
FF Input Time Delay	trainscg	mse	1.00E-006	tansig	44202.mat	70	0.93586	0.77762	1598	535970	36731	457	426
Radial Basis Network		-	0.01		63502.mat	70	0.92369	0.6819	1104	152300	12583	515	0
FeedForward	traingd	mse	1.00E-006		63502.mat	70	0.15113	0.77181	1035	23576	132420	306	9169
FeedForward	trainrp	mse	1.00E-006		63502.mat	70	0.084882	0.8862	1355	13604	146670	174	4707
FeedForward	trainsco	mse	1.00E-006		63502.mat	70	0.11763	0.77742	1205	19171	143810	345	1976
Laver Recurrent Network	traingd	mse	1.00E-006		63502.mat	70	0.95021	0.44072	539	78758	4127	684	82397
Layer Recurrent Network	trainrp	mse	1.00E-006		63502.mat	70	0.82031	0.69086	1066	116360	25490	477	23108
Layer Recurrent Network	trainscq	mse	1.00E-006		63502.mat	70	0.11259	0.7911	1155	18284	144110	305	2656
Distributed Time Delay	traingd	mse	1.00E-006	hardlim	63502.mat	70	0.94101	0.21886	325	153110	9598	1160	2312
Distributed Time Delay	traingd	mse	1.00E-006	purelin	63502.mat	70	1	0	0	162790	0	1538	2177
Distributed Time Delay	traingd	mse	1.00E-006	logsig	63502.mat	70	0.85484	0.12821	15	106	18	102	166260
Distributed Time Delay	traingd	mse	1.00E-006	tansig	63502.mat	70	0.99243	0.30932	481	160120	1222	1074	3610
Distributed Time Delay	trainrp	mse	1.00E-006	hardlim	63502.mat	70	0.27791	0.30932	213	1618	4204	142	160330
Sistilluted Time Delay	uamp	11136	1.002-000	naaiiii	55502.mat	70	0.21131	0.0	213	1010	4204	142	100330

						Single Class	ification						
Distributed Time Delay	trainrp	mse	1.00E-006	purelin	63502.mat	70	0.49863	0.52941	54	1278	1285	48	163840
Distributed Time Delay	trainrp	mse	1.00E-006	logsig	63502.mat	70	0.34078	0.77577	1204	54113	104680	348	6162
Distributed Time Delay	trainrp	mse	1.00E-006	tansig	63502.mat	70	0.39016	0.6297	687	15856	24784	404	124770
Distributed Time Delay	trainscg	mse	1.00E-006	hardlim	63502.mat	70	0.92002	0.35003	566	151630	13182	1051	78
Distributed Time Delay	trainscg	mse	1.00E-006	purelin	63502.mat	70	0.97282	0.705	141	6228	174	59	159900
Distributed Time Delay	trainscg	mse	1.00E-006	logsig	63502.mat	70	0.285	0.79143	1275	46923	117720	336	253
Distributed Time Delay	trainscg	mse	1.00E-006	tansig	63502.mat	70	0.93331	0.66022	1059	153350	10957	545	598
FF Input Time Delay	traingd	mse	1.00E-006	hardlim	63502.mat	70	0	1	1618	0	164320	0	572
FF Input Time Delay	traingd	mse	1.00E-006	purelin	63502.mat	70	0.99922	0.00062112	1	163460	127	1609	1313
FF Input Time Delay	traingd	mse	1.00E-006	logsig	63502.mat	70	0	1	1618	0	164550	0	337
FF Input Time Delay	traingd	mse	1.00E-006	tansig	63502.mat	70	0.99987	0	0	163740	22	1611	1130
FF Input Time Delay	trainrp	mse	1.00E-006	hardlim	63502.mat	70	0	NaN	0	0	78	0	166430
FF Input Time Delay	trainrp	mse	1.00E-006	purelin	63502.mat	70	0.98002	0.37342	413	55781	1137	693	108480
FF Input Time Delay	trainrp	mse	1.00E-006	logsig	63502.mat	70	0.89335	0.57479	903	146980	17546	668	413
FF Input Time Delay	trainrp	mse	1.00E-006	tansig	63502.mat	70	0.94848	0.61946	936	154280	8380	575	2337
FF Input Time Delay	trainscg	mse	1.00E-006	hardlim	63502.mat	70	0.00028019	0.99938	1617	46	164130	1	711
FF Input Time Delay	trainscg	mse	1.00E-006	purelin	63502.mat	70	0.1287	0.66149	1022	20971	141970	523	2017
FF Input Time Delay	trainscg	mse	1.00E-006	logsig	63502.mat	70	0.96347	0.6433	1037	158580	6012	575	301
FF Input Time Delay	trainscg	mse	1.00E-006	tansig	63502.mat	70	0.95265	0.6778	1096	156790	7792	521	311
Radial Basis Network	-		0.01		44202.mat	50	0.8186	0.87699	1376	444170	98430	193	0
FeedForward	traingd	mse	1.00E-006	-	44202.mat	50	0.99582	0.63427	770	522480	2194	444	18287
FeedForward	trainrp	mse	1.00E-006		44202.mat	50	0.73563	0.63422	645	356110	127980	372	59061
FeedForward	trainscg	mse	1.00E-006	-	44202.mat	50	0.61273	0.43531	498	323900	204720	646	14406
Layer Recurrent Network	traingd	mse	1.00E-006	-	44202.mat	50	0.99804	0.54507	641	531250	1041	535	10708
Layer Recurrent Network	trainrp	mse	1.00E-006		44202.mat	50	0.53091	0.90844	1389	256230	226390	140	60027
Layer Recurrent Network	trainscg	mse	1.00E-006	-	44202.mat	50	0.78276	0.53913	744	420200	116620	636	5972
Distributed Time Delay	traingd	mse	1.00E-006	hardlim	44202.mat	50	0.96142	0.26572	376	520930	20904	1039	923
Distributed Time Delay	traingd	mse	1.00E-006	purelin	44202.mat	50	0.99997	0	0	540560	17	1276	2322
Distributed Time Delay	traingd	mse	1.00E-006	logsig	44202.mat	50	0.096633	0.99392	817	465	4347	5	538540
Distributed Time Delay	traingd	mse	1.00E-006	tansig	44202.mat	50	0.99826	0.58898	887	541360	944	619	365
Distributed Time Delay	trainrp	mse	1.00E-006	hardlim	44202.mat	50	0.58117	0.86809	612	5044	3635	93	534790
Distributed Time Delay	trainrp	mse	1.00E-006	purelin	44202.mat	50	0.90433	0.01426	16	79641	8425	1106	454980
Distributed Time Delay	trainrp	mse	1.00E-006	logsig	44202.mat	50	0.96709	0.72174	1079	523150	17802	416	1728
Distributed Time Delay	trainrp	mse	1.00E-006	tansig	44202.mat	50	0.75764	0.84252	1284	401910	128570	240	12168
Distributed Time Delay	trainscg	mse	1.00E-006	hardlim	44202.mat	50	0.95676	0.74251	1165	519130	23464	404	11
Distributed Time Delay	trainscg	mse	1.00E-006	purelin	44202.mat	50	0.94557	0.91423	1002	193850	11159	94	338070
Distributed Time Delay	trainscg	mse	1.00E-006	logsig	44202.mat	50	0.9645	0.7889	1237	523200	19255	331	150
Distributed Time Delay	trainscg	mse	1.00E-006	tansig	44202.mat	50	0.92661	0.80812	1234	492260	38987	293	11392
FF Input Time Delay	traingd	mse	1.00E-006	hardlim	44202.mat	50	0	1	1568	0	542590	0	15
FF Input Time Delay	traingd	mse	1.00E-006	purelin	44202.mat	50	0.99997	0.00081433	1	541280	14	1227	1651
FF Input Time Delay	traingd	mse	1.00E-006	logsig	44202.mat	50	0	1	1568	0	542590	0	11
FF Input Time Delay	traingd	mse	1.00E-006	tansig	44202.mat	50	0.9998	0.010918	17	542480	106	1540	32
FF Input Time Delay	trainrp	mse	1.00E-006	hardlim	44202.mat	50	0.16667	NaN	0	1	5	0	544160
FF Input Time Delay	trainrp	mse	1.00E-006	purelin	44202.mat	50	0.86491	0.44173	614	410500	64116	776	68166
FF Input Time Delay	trainrp	mse	1.00E-006	logsig	44202.mat	50	0.42529	0.91443	1432	229110	309610	134	3880
FF Input Time Delay	trainrp	mse	1.00E-006	tansig	44202.mat	50	0.95364	0.68825	1031	512700	24922	467	5048
FF Input Time Delay	trainscg	mse	1.00E-006	hardlim	44202.mat	50	1.8431E-006	1	1568	1	542570	0	31
FF Input Time Delay	trainscg	mse	1.00E-006	purelin	44202.mat	50	0.7263	0.27505	409	354870	133730	1078	54085
FF Input Time Delay	trainscg	mse	1.00E-006	logsig	44202.mat	50	0.96442	0.7655	1198	522380	19273	367	955
FF Input Time Delay	trainscg	mse	1.00E-006	tansig	44202.mat	50	0.93508	0.79196	1241	507000	35201	326	401
Radial Basis Network	-	-	0.01	. "	63502.mat	50	0.90908	0.68407	747	103280	10330	345	0
FeedForward	traingd	mse	1.00E-006	-	63502.mat	50	0.17118	0.78733	733	18273	88474	198	7026
FeedForward	trainrp	mse	1.00E-006		63502.mat	50	0.094781	0.90221	941	10438	99689	102	3534

						Single Class	ification						
FeedForward	trainscq	mse	1.00E-006		63502.mat	50	0.12901	0.80971	851	14477	97739	200	1437
Layer Recurrent Network	traingd	mse	1.00E-006	-	63502.mat	50	0.95848	0.44645	371	61825	2678	460	49370
Layer Recurrent Network	trainrp	mse	1.00E-006		63502.mat	50	0.83257	0.68541	719	84592	17011	330	12052
Layer Recurrent Network	trainscg	mse	1.00E-006	-	63502.mat	50	0.12469	0.79412	810	13924	97745	210	2015
Distributed Time Delay	traingd	mse	1.00E-006	hardlim	63502.mat	50	0.9353	0.1902	194	104660	7240	826	1782
Distributed Time Delay	traingd	mse	1.00E-006	purelin	63502.mat	50	1	0	0	112000	0	1047	1659
Distributed Time Delay	traingd	mse	1.00E-006	logsig	63502.mat	50	0.87379	0.11864	7	90	13	52	114540
Distributed Time Delay	traingd	mse	1.00E-006	tansia	63502.mat	50	0.99036	0.3283	348	110600	1077	712	1971
Distributed Time Delay	trainrp	mse	1.00E-006	hardlim	63502.mat	50	0.27578	0.62245	122	1230	3230	74	110050
Distributed Time Delay	trainrp	mse	1.00E-006	purelin	63502.mat	50	0.43457	0.51316	39	870	1132	37	112630
Distributed Time Delay	trainrp	mse	1.00E-006	logsig	63502.mat	50	0.39432	0.79468	836	42894	65886	216	4872
Distributed Time Delay	trainrp	mse	1.00E-006	tansig	63502.mat	50	0.39054	0.71003	524	12304	19201	214	82461
Distributed Time Delay	trainscq	mse	1.00E-006	hardlim	63502.mat	50	0.91155	0.32202	351	103520	10044	739	52
Distributed Time Delay	trainscg	mse	1.00E-006	purelin	63502.mat	50	0.96949	0.71429	100	4926	155	40	109480
Distributed Time Delay	trainscg	mse	1.00E-006	logsig	63502.mat	50	0.32022	0.81985	892	36322	77107	196	187
Distributed Time Delay	trainscg	mse	1.00E-006	tansia	63502.mat	50	0.92473	0.65161	707	104650	8519	378	447
FF Input Time Delay	traingd	mse	1.00E-006	hardlim	63502.mat	50	0.32473	1	1091	0	113090	0	526
FF Input Time Delay	traingd	mse	1.00E-006	purelin	63502.mat	50	0.99908	0.00091996	1	112470	104	1086	1040
FF Input Time Delay	traingd	mse	1.00E-006	logsig	63502.mat	50	0.99908	1	1091	0	113340	0	275
FF Input Time Delay			1.00E-006		63502.mat	50	0.99987	0	0	112700	15	1087	907
FF Input Time Delay	traingd	mse	1.00E-006	tansig hardlim	63502.mat	50	0.99987	NaN	0	0	57	0	114650
	trainrp	mse			63502.mat	50	0.97746		309	43807		432	69146
FF Input Time Delay	trainrp	mse	1.00E-006	purelin				0.417			1010		
FF Input Time Delay	trainrp	mse	1.00E-006	logsig	63502.mat	50	0.88178	0.56792	602	99930	13398	458	316 1708
FF Input Time Delay	trainrp	mse	1.00E-006	tansig	63502.mat	50 50	0.93928	0.59961	614 1090	105170 38	6799	410	
FF Input Time Delay	trainscg	mse	1.00E-006 1.00E-006	hardlim	63502.mat	50 50	0.0003363 0.14145	0.99908		38 15871	112960 96330	1 324	618
FF Input Time Delay	trainscg	mse		purelin	63502.mat			0.68816	715				1464
FF Input Time Delay	trainscg	mse	1.00E-006	logsig	63502.mat	50	0.95605	0.63477	690	108380	4982	397	253
FF Input Time Delay	trainscg	mse	1.00E-006	tansig	63502.mat	50	0.94371	0.66269	723	106990	6382	368	237
Radial Basis Network		-	0.01		92202.mat	30	0.66287	0.70339	83	82466	41941	35	0
FeedForward	traingd	mse	1.00E-006		92202.mat	30	0.99388	0.12844	14	123050	758	95	611
FeedForward	trainrp	mse	1.00E-006	-	92202.mat	30	0.95849	0.42373	50	118770	5144	68	489
FeedForward	trainscg	mse	1.00E-006	-	92202.mat	30	0.9557	0.39474	45	117980	5468	69	966
Layer Recurrent Network	traingd	mse	1.00E-006	-	92202.mat	30	0.99902	0.11504	13	124080	122	100	212
Layer Recurrent Network	trainrp	mse	1.00E-006	-	92202.mat	30	0.92882	0.47788	54	111170	8520	59	4723
Layer Recurrent Network	trainscg	mse	1.00E-006	-	92202.mat	30	0.97243	0.40517	47	120350	3412	69	650
Distributed Time Delay	traingd	mse	1.00E-006	hardlim	92202.mat	30	0.99395	0	0	123600	752	118	50
Distributed Time Delay	traingd	mse	1.00E-006	purelin	92202.mat	30	0.99998	0	0	124380	2	118	29
Distributed Time Delay	traingd	mse	1.00E-006	logsig	92202.mat	30	0.22881	NaN	0	27	91	0	124410
Distributed Time Delay	traingd	mse	1.00E-006	tansig	92202.mat	30	0.99888	0.17094	20	124100	139	97	169
Distributed Time Delay	trainrp	mse	1.00E-006	hardlim	92202.mat	30	0.63033	NaN	0	266	156	0	124100
Distributed Time Delay	trainrp	mse	1.00E-006	purelin	92202.mat	30	0.99395	0.044944	4	121800	741	85	1898
Distributed Time Delay	trainrp	mse	1.00E-006	logsig	92202.mat	30	0.9097	0.23684	27	112430	11160	87	818
Distributed Time Delay	trainrp	mse	1.00E-006	tansig	92202.mat	30	0.86337	0.52137	61	106620	16872	56	917
Distributed Time Delay	trainscg	mse	1.00E-006	hardlim	92202.mat	30	0.54792	0.61864	73	68163	56241	45	3
Distributed Time Delay	trainscg	mse	1.00E-006	purelin	92202.mat	30	0.99437	0.035398	4	122140	691	109	1584
Distributed Time Delay	trainscg	mse	1.00E-006	logsig	92202.mat	30	0.96302	0.36441	43	119790	4600	75	20
Distributed Time Delay	trainscg	mse	1.00E-006	tansig	92202.mat	30	0.97116	0.35652	41	120340	3573	74	500
FF Input Time Delay	traingd	mse	1.00E-006	hardlim	92202.mat	30	0	1	118	0	124400	0	5
FF Input Time Delay	traingd	mse	1.00E-006	purelin	92202.mat	30	0.99994	0	0	124390	7	118	6
FF Input Time Delay	traingd	mse	1.00E-006	logsig	92202.mat	30	8.0386E-006	1	118	1	124400	0	8
FF Input Time Delay	traingd	mse	1.00E-006	tansig	92202.mat	30	0.99998	Ö	0	124390	3	118	13
FF Input Time Delay	trainrp	mse	1.00E-006	hardlim	92202.mat	30	NaN	NaN	0	0	0	0	124520
FF Input Time Delay	trainrp	mse	1.00E-006	purelin	92202.mat	30	0.96101	0.15929	18	118860	4823	95	727

FF Input Time Delay	trainrp	mse	1.00E-006	logsig	92202.mat	30	0.88444	0.43103	50	108940	14234	66	1240
FF Input Time Delay	trainrp	mse	1.00E-006	tansig	92202.mat	30	0.80212	0.38596	44	95443	23546	70	5422
FF Input Time Delay	trainscg	mse	1.00E-006	hardlim	92202.mat	30	8.0386E-006	1	118	1	124400	0	8
FF Input Time Delay	trainscg	mse	1.00E-006	purelin	92202.mat	30	0.98527	0.15455	17	122040	1825	93	552
FF Input Time Delay	trainscg	mse	1.00E-006	logsig	92202.mat	30	0.9508	0.44444	52	117940	6103	65	360
FF Input Time Delay	trainscg	mse	1.00E-006	tansig	92202.mat	30	0.96045	0.44915	53	119400	4917	65	86

						Group Classification							
Network	Training Function	Performance Function	Training Goal	Activation Function	Input	Percentage Crysis (0-100)	Specificity	Sensibility	True Positives	True Negatives	False Positives	False Negatives	Invalid Data
Radial Basis Network			0.01	-	44202.mat	30	0.94627	0.89541	916	2.39E+05	13549	107	0
FeedForward	traingd	mse	1.00E-006	-	44202.mat	30	0.99996	0.58939	600	252140	11	418	30
FeedForward	trainrp	mse	1.00E-006	-	44202.mat	30	0.83471	0.34344	351	210460	41674	671	48
FeedForward	trainscg	mse	1.00E-006	-	44202.mat	30	0.48224	0.30596	313	121610	130570	710	0
Layer Recurrent Network	traingd	mse	1.00E-006		44202.mat	30	0.99989	0.58944	603	252080	28	420	77
Layer Recurrent Network	trainrp	mse	1.00E-006		44202.mat	30	0.71533	0.93157	953	180390	71787	70	0
Layer Recurrent Network	trainscg	mse	1.00E-006	-	44202.mat	30	0.79702	0.49365	505	200990	51188	518	0
Distributed Time Delay	traingd	mse	1.00E-006	hardlim	44202.mat	30	0.99071	0.29717	304	249840	2342	719	0
Distributed Time Delay	traingd	mse	1.00E-006	purelin	44202.mat	30	1	0	0	252180	0	1023	0
Distributed Time Delay	traingd	mse	1.00E-006	logsig	44202.mat	30	0.97408	0.74052	625	12478	332	219	239550
Distributed Time Delay	traingd	mse	1.00E-006	tansig	44202.mat	30	0.99997	0.64809	663	252170	7	360	0
Distributed Time Delay	trainrp	mse	1.00E-006	hardlim	44202.mat	30	0.97967	0.56706	482	13832	287	368	238230
Distributed Time Delay	trainrp	mse	1.00E-006	purelin	44202.mat	30	0.99963	0	0	143160	53	986	109000
Distributed Time Delay	trainrp	mse	1.00E-006	logsig	44202.mat	30	0.9899	0.79374	812	249630	2548	211	0
Distributed Time Delay	trainrp	mse	1.00E-006	tansig	44202.mat	30	0.92567	0.88172	902	233440	18745	121	0
Distributed Time Delay	trainscg	mse	1.00E-006	hardlim	44202.mat	30	0.98036	0.84164	861	247230	4953	162	0
Distributed Time Delay	trainscg	mse	1.00E-006	purelin	44202.mat	30	0.99022	0.7598	775	243400	2404	245	6380
Distributed Time Delay	trainscg	mse	1.00E-006	logsig	44202.mat	30	0.99892	0.85239	872	251910	273	151	0
Distributed Time Delay	trainscg	mse	1.00E-006	tansig	44202.mat	30	0.99209	0.8348	854	250180	1995	169	0
FF Input Time Delay	traingd	mse	1.00E-006	hardlim	44202.mat	30	0	1	1023	0	252180	0	0
FF Input Time Delay	traingd	mse	1.00E-006	purelin	44202.mat	30	1	0	0	252180	0	1020	3
FF Input Time Delay	traingd	mse	1.00E-006	logsig	44202.mat	30	0	1	1023	0	252180	0	0
FF Input Time Delay	traingd	mse	1.00E-006	tansig	44202.mat	30	1	0	0	252180	0	1023	0
FF Input Time Delay	trainrp	mse	1.00E-006	hardlim	44202.mat	30	1	NaN	0	30	0	0	253170
FF Input Time Delay	trainrp	mse	1.00E-006	purelin	44202.mat	30	0.96717	0.45455	465	243900	8280	558	0
FF Input Time Delay	trainrp	mse	1.00E-006	logsig	44202.mat	30	0.51044	0.95797	980	128720	123460	43	0
FF Input Time Delay	trainrp	mse	1.00E-006	tansig	44202.mat	30	0.985	0.69697	713	248400	3782	310	0
FF Input Time Delay	trainscg	mse	1.00E-006	hardlim	44202.mat	30	0	1	1023	0	252180	0	0
FF Input Time Delay	trainscg	mse	1.00E-006	purelin	44202.mat	30	0.74658	0.22483	230	188270	63907	793	0
FF Input Time Delay	trainscg	mse	1.00E-006	logsig	44202.mat	30	0.99833	0.83871	858	251760	421	165	0
FF Input Time Delay	trainscg	mse	1.00E-006	tansig	44202.mat	30	0.99301	0.84457	864	250420	1763	159	0
Radial Basis Network			0.01		63502.mat	30	0.93383	0.60178	473	41039	2908	313	0
FeedForward	traingd	mse	1.00E-006		63502.mat	30	0.14208	0.83933	653	6244	37703	125	8
FeedForward	trainrp	mse	1.00E-006		63502.mat	30	0.019683	0.9313	732	865	43082	54	0
FeedForward	trainscg	mse	1.00E-006		63502.mat	30	0.093772	0.90712	713	4121	39826	73	0
Layer Recurrent Network	traingd	mse	1.00E-006	-	63502.mat	30	0.99993	0.32398	254	42512	3	530	1434
Layer Recurrent Network	trainrp	mse	1.00E-006		63502.mat	30	0.9103	0.60305	474	40005	3942	312	0
Layer Recurrent Network	trainscg	mse	1.00E-006	-	63502.mat	30	0.092043	0.90712	713	4045	39902	73	0
Distributed Time Delay	traingd	mse	1.00E-006	hardlim	63502.mat	30	0.95772	0.11196	88	42089	1858	698	0
Distributed Time Delay	traingd	mse	1.00E-006	purelin	63502.mat	30	1	0	0	43947	0	786	0
Distributed Time Delay	traingd	mse	1.00E-006	logsig	63502.mat	30	1	0	0	557	0	81	44095
Distributed Time Delay	traingd	mse	1.00E-006	tansig	63502.mat	30	0.99993	0.30025	236	43944	3	550	0
Distributed Time Delay	trainrp	mse	1.00E-006	hardlim	63502.mat	30	0.94877	0.25	56	8185	442	168	35882
Distributed Time Delay	trainrp	mse	1.00E-006	purelin	63502.mat	30	1	0.0065147	2	6439	0	305	37987
Distributed Time Delay	trainrp	mse	1.00E-006	logsig	63502.mat	30	0.34291	0.86641	681	15070	28877	105	0
Distributed Time Delay	trainrp	mse	1.00E-006	tansig	63502.mat	30	0.9002	0.70625	452	26565	2945	188	14583
Distributed Time Delay	trainscg	mse	1.00E-006	hardlim	63502.mat	30	0.94748	0.23028	181	41639	2308	605	0
Distributed Time Delay	trainscg	mse	1.00E-006	purelin	63502.mat	30	1	0.081841	32	12146	0	359	32196
Distributed Time Delay	trainscq	mse	1.00E-006	logsig	63502.mat	30	0.21992	0.89695	705	9665	34282	81	0
Distributed Time Delay	trainscg	mse	1.00E-006	tansig	63502.mat	30	0.94441	0.55725	438	41504	2443	348	0
FF Input Time Delay	traingd	mse	1.00E-006	hardlim	63502.mat	30	0	1	786	0	43947	0	0
FF Input Time Delay	traingd	mse	1.00E-006	purelin	63502.mat	30	0.99993	0	0	43944	3	786	0

						Group Classific	ation						
FF Input Time Delay	traingd	mse	1.00E-006	logsig	63502.mat	30	0	1	786	0	43947	0	0
FF Input Time Delay	traingd	mse	1.00E-006	tansig	63502.mat	30	1	0	0	43947	0	786	ō
FF Input Time Delay	trainrp	mse	1.00E-006	hardlim	63502.mat	30	1	NaN	0	274	0	0	44459
FF Input Time Delay	trainrp	mse	1.00E-006	purelin	63502.mat	30	0.99997	0.37054	249	35103	1	423	8957
FF Input Time Delay	trainrp	mse	1.00E-006	logsig	63502.mat	30	0.88868	0.50254	395	39055	4892	391	0
FF Input Time Delay	trainrp	mse	1.00E-006	tansig	63502.mat	30	0.98751	0.51145	402	43398	549	384	0
FF Input Time Delay	trainscq	mse	1.00E-006	hardlim	63502.mat	30	0.000045509	0.51145	786	43390	43945	0	0
			1.00E-006			30		0.79771	627	4467		159	0
FF Input Time Delay	trainscg	mse		purelin	63502.mat		0.10165				39480		0
FF Input Time Delay	trainscg	mse	1.00E-006	logsig	63502.mat	30	0.99315	0.58779	462	43646	301	324	0
FF Input Time Delay	trainscg	mse	1.00E-006	tansig	63502.mat	30	0.983	0.58906	463	43200	747	323	-
Radial Basis Network		-	0.01	-	44202.mat	70	0.84675	0.87234	1804	485270	87827	264	0
FeedForward	traingd	mse	1.00E-006	-	44202.mat	70	0.99995	0.51963	1072	572830	28	991	246
FeedForward	trainrp	mse	1.00E-006	-	44202.mat	70	0.86062	0.45138	933	493130	79864	1134	111
FeedForward	trainscg	mse	1.00E-006	-	44202.mat	70	0.61587	0.31004	639	352950	220150	1422	8
Layer Recurrent Network	traingd	mse	1.00E-006	-	44202.mat	70	0.99992	0.44477	910	572930	45	1136	152
Layer Recurrent Network	trainrp	mse	1.00E-006	-	44202.mat	70	0.60177	0.89845	1858	344870	228230	210	0
Layer Recurrent Network	trainscg	mse	1.00E-006	-	44202.mat	70	0.84951	0.49855	1031	486860	86243	1037	0
Distributed Time Delay	traingd	mse	1.00E-006	hardlim	44202.mat	70	0.9883	0.24141	499	566400	6704	1568	1
Distributed Time Delay	traingd	mse	1.00E-006	purelin	44202.mat	70	1	0	0	573100	0	2068	2
Distributed Time Delay	traingd	mse	1.00E-006	logsig	44202.mat	70	0.97496	0.74239	1170	32551	836	406	540210
Distributed Time Delay	traingd	mse	1.00E-006	tansig	44202.mat	70	0.99997	0.58075	1201	573080	19	867	0
Distributed Time Delay	trainrp	mse	1.00E-006	hardlim	44202.mat	70	0.99147	0.54823	898	62773	540	740	510220
Distributed Time Delay	trainrp	mse	1.00E-006	purelin	44202.mat	70	0.99926	0.010065	20	369470	275	1967	203440
Distributed Time Delay	trainrp	mse	1.00E-006	logsig	44202.mat	70	0.98901	0.73211	1514	566800	6296	554	0
Distributed Time Delay	trainrp	mse	1.00E-006	tansig	44202.mat	70	0.80036	0.85397	1766	458690	114410	302	0
Distributed Time Delay	trainscg	mse	1.00E-006	hardlim	44202.mat	70	0.97753	0.76257	1577	560220	12878	491	0
Distributed Time Delay	trainscg	mse	1.00E-006	purelin	44202.mat	70	0.99128	0.65942	1334	533050	4688	689	35404
Distributed Time Delay	trainscg	mse	1.00E-006	logsig	44202.mat	70	0.98512	0.79932	1653	564570	8527	415	0
Distributed Time Delay	trainscg	mse	1.00E-006	tansia	44202.mat	70	0.96616	0.80948	1674	553710	19393	394	0
FF Input Time Delay	traingd	mse	1.00E-006	hardlim	44202.mat	70	0.90010	1	2068	0	573100	0	0
						70	1	0	0		0		9
FF Input Time Delay	traingd	mse	1.00E-006	purelin	44202.mat		0	1		573100		2061	0
FF Input Time Delay	traingd	mse	1.00E-006	logsig	44202.mat	70 70		0	2068	0 573100	573100 0	0 2068	0
FF Input Time Delay	traingd	mse	1.00E-006	tansig	44202.mat		1	-	-		-		
FF Input Time Delay	trainrp	mse	1.00E-006	hardlim	44202.mat	70	1	NaN	0	70	0	0	575100
FF Input Time Delay	trainrp	mse	1.00E-006	purelin	44202.mat	70	0.97071	0.40764	843	556310	16787	1225	0
FF Input Time Delay	trainrp	mse	1.00E-006	logsig	44202.mat	70	0.37045	0.93762	1939	212310	360790	129	0
FF Input Time Delay	trainrp	mse	1.00E-006	tansig	44202.mat	70	0.98047	0.63975	1323	561910	11193	745	0
FF Input Time Delay	trainscg	mse	1.00E-006	hardlim	44202.mat	70	0	1	2068	0	573100	0	0
FF Input Time Delay	trainscg	mse	1.00E-006	purelin	44202.mat	70	0.81669	0.25097	519	468050	105060	1549	0
FF Input Time Delay	trainscg	mse	1.00E-006	logsig	44202.mat	70	0.98459	0.77176	1596	564270	8833	472	0
FF Input Time Delay	trainscg	mse	1.00E-006	tansig	44202.mat	70	0.96073	0.80077	1656	550590	22507	412	0
Radial Basis Network		-	0.01	-	63502.mat	70	0.96651	0.69349	1129	159350	5521	499	0
FeedForward	traingd	mse	1.00E-006		63502.mat	70	0.13473	0.73193	1185	22165	142350	434	359
FeedForward	trainrp	mse	1.00E-006		63502.mat	70	0.033036	0.89373	1455	5435	159080	173	350
FeedForward	trainscg	mse	1.00E-006	-	63502.mat	70	0.078233	0.81572	1328	12898	151970	300	0
Layer Recurrent Network	traingd	mse	1.00E-006	-	63502.mat	70	0.99932	0.37028	598	150140	102	1017	14643
Layer Recurrent Network	trainrp	mse	1.00E-006		63502.mat	70	0.92841	0.6984	1137	153060	11802	491	2
Layer Recurrent Network	trainscq	mse	1.00E-006		63502.mat	70	0.072649	0.80344	1308	11952	152570	320	350
Distributed Time Delay	traingd	mse	1.00E-006	hardlim	63502.mat	70	0.9681	0.15418	251	159270	5248	1377	350
Distributed Time Delay	traingd	mse	1.00E-006	purelin	63502.mat	70	1	0.10410	0	164520	0	1628	350
Distributed Time Delay	traingd	mse	1.00E-006	logsig	63502.mat	70	1	0.007177	3	1196	0	415	164880
Distributed Time Delay	traingd	mse	1.00E-006	tansia	63502.mat	70	0.99985	0.32248	525	164840	24	1103	0
Distributed Time Delay	traingu	mse	1.00E-006	hardlim	63502.mat	70	0.92809	0.32246	166	22405	1736	608	141580
5.531buted Time Delay	uamp	11136	1.00L-000	naaiiii	33302.mat	70	0.32003	J.21441	100	22400	1750	000	141300

						Group Classific	ation						
Distributed Time Delay	trainrp	mse	1.00E-006	purelin	63502.mat	70	0.99939	0.0030675	2	21324	13	650	144510
Distributed Time Delay	trainrp	mse	1.00E-006	logsig	63502.mat	70	0.29517	0.81634	1329	48561	115960	299	350
Distributed Time Delay	trainrp	mse	1.00E-006	tansig	63502.mat	70	0.8541	0.5607	799	85025	14524	626	65521
Distributed Time Delay	trainscg	mse	1.00E-006	hardlim	63502.mat	70	0.9602	0.35627	580	158310	6562	1048	0
Distributed Time Delay	trainscg	mse	1.00E-006	purelin	63502.mat	70	1	0.07304	68	41950	0	863	123610
Distributed Time Delay	trainscg	mse	1.00E-006	logsig	63502.mat	70	0.23148	0.83292	1356	38164	126700	272	0
Distributed Time Delay	trainscg	mse	1.00E-006	tansig	63502.mat	70	0.96391	0.66892	1089	158920	5950	539	0
FF Input Time Delay	traingd	mse	1.00E-006	hardlim	63502.mat	70	0.0002127	1	1628	35	164520	0	317
FF Input Time Delay	traingd	mse	1.00E-006	purelin	63502.mat	70	0.99994	0	Ö	164510	10	1628	350
FF Input Time Delay	traingd	mse	1.00E-006	logsig	63502.mat	70	0.00038214	1	1628	63	164800	0	5
FF Input Time Delay	traingd	mse	1.00E-006	tansig	63502.mat	70	1	0	0	164520	0	1628	349
FF Input Time Delay	trainrp	mse	1.00E-006	hardlim	63502.mat	70	1	NaN	Ö	735	Ö	0	165760
FF Input Time Delay	trainrp	mse	1.00E-006	purelin	63502.mat	70	0.99983	0.31503	459	115040	20	998	49982
FF Input Time Delay	trainrp	mse	1.00E-006	logsig	63502.mat	70	0.91846	0.59214	964	151420	13443	664	0
FF Input Time Delay	trainrp	mse	1.00E-006	tansia	63502.mat	70	0.98783	0.62007	1007	162860	2006	617	4
FF Input Time Delay	trainscq	mse	1.00E-006	hardlim	63502.mat	70	0.00020057	1	1628	33	164500	0	339
FF Input Time Delay	trainscq	mse	1.00E-006	purelin	63502.mat	70	0.085893	0.68428	1114	14161	150710	514	0
FF Input Time Delay	trainsco	mse	1.00E-006	loasia	63502.mat	70	0.99594	0.67813	1104	164200	669	524	0
FF Input Time Delay	trainscq	mse	1.00E-006	tansig	63502.mat	70	0.99054	0.69287	1128	163310	1559	500	0
Radial Basis Network			0.01	-	44202.mat	50	0.84295	0.88452	1394	457370	85213	182	0
FeedForward	traingd	mse	1.00E-006		44202.mat	50	0.99997	0.53533	841	542330	16	730	239
FeedForward	trainrp	mse	1.00E-006		44202.mat	50	0.86618	0.42286	666	469880	72594	909	110
FeedForward	trainsco	mse	1.00E-006		44202.mat	50	0.61596	0.32441	509	334210	208370	1060	7
Laver Recurrent Network	traingd	mse	1.00E-006		44202.mat	50	0.99992	0.4701	739	542420	44	833	124
Layer Recurrent Network	trainrp	mse	1.00E-006		44202.mat	50	0.59993	0.89975	1418	325520	217070	158	0
Layer Recurrent Network	trainscq	mse	1.00E-006		44202.mat	50	0.85254	0.50127	790	462580	80007	786	0
Distributed Time Delay	traingd	mse	1.00E-006	hardlim	44202.mat	50	0.98834	0.23921	377	536260	6329	1199	0
Distributed Time Delay	traingd	mse	1.00E-006	purelin	44202.mat	50	1	0	0	542580	0	1576	2
Distributed Time Delay	traingd	mse	1.00E-006	logsig	44202.mat	50	0.97474	0.73741	893	31030	804	318	511120
Distributed Time Delay	traingd	mse	1.00E-006	tansia	44202.mat	50	0.99999	0.60025	946	542580	7	630	0
Distributed Time Delay	trainrp	mse	1.00E-006	hardlim	44202.mat	50	0.99095	0.52657	664	58243	532	597	484120
Distributed Time Delay	trainrp	mse	1.00E-006	purelin	44202.mat	50	0.99925	0	0	349830	263	1514	192550
Distributed Time Delay	trainrp	mse	1.00E-006	logsig	44202.mat	50	0.98887	0.75952	1197	536540	6040	379	0
Distributed Time Delay	trainrp	mse	1.00E-006	tansia	44202.mat	50	0.79602	0.86294	1360	431910	110680	216	0
Distributed Time Delay	trainsco	mse	1.00E-006	hardlim	44202.mat	50	0.97752	0.76523	1206	530390	12195	370	0
Distributed Time Delay	trainscg	mse	1.00E-006	purelin	44202.mat	50	0.99114	0.69444	1075	504200	4506	473	33909
Distributed Time Delay	trainscq	mse	1.00E-006	logsig	44202.mat	50	0.9844	0.80964	1276	534120	8462	300	0
Distributed Time Delay	trainscg	mse	1.00E-006	tansia	44202.mat	50	0.96466	0.83185	1311	523410	19174	265	0
FF Input Time Delay	traingd	mse	1.00E-006	hardlim	44202.mat	50	0	1	1576	0	542580	0	0
FF Input Time Delay	traingd	mse	1.00E-006	purelin	44202.mat	50	1	0	0	542580	0	1569	9
FF Input Time Delay	trained	mse	1.00E-006	logsig	44202.mat	50	0	1	1576	0	542580	0	0
FF Input Time Delay	traingd	mse	1.00E-006	tansig	44202.mat	50	1	0	0	542580	0	1576	0
FF Input Time Delay	trainrp	mse	1.00E-006	hardlim	44202.mat	50	1	NaN	0	60	0	0	544100
FF Input Time Delay	trainrp	mse	1.00E-006	purelin	44202.mat	50	0.97186	0.42576	671	527320	15266	905	0
FF Input Time Delay	trainrp	mse	1.00E-006	logsig	44202.mat	50	0.37159	0.93845	1479	201620	340960	97	0
FF Input Time Delay	trainrp	mse	1.00E-006	tansig	44202.mat	50	0.98044	0.65673	1035	531970	10613	541	ō
FF Input Time Delay	trainscq	mse	1.00E-006	hardlim	44202.mat	50	0	1	1576	0	542580	0	ō
FF Input Time Delay	trainscg	mse	1.00E-006	purelin	44202.mat	50	0.81814	0.23096	364	443910	98674	1212	ō
FF Input Time Delay	trainscg	mse	1.00E-006	logsig	44202.mat	50	0.98381	0.78617	1239	533800	8783	337	ő
FF Input Time Delay	trainscg	mse	1.00E-006	tansig	44202.mat	50	0.95888	0.81599	1286	520270	22312	290	0
Radial Basis Network	-	-	0.01	-	63502.mat	50	0.95983	0.69462	762	109030	4563	335	ő
FeedForward	traingd	mse	1.00E-006		63502.mat	50	0.15639	0.79247	863	17711	95536	226	358
FeedForward	trainrp	mse	1.00E-006		63502.mat	50	0.036407	0.8979	985	4123	109120	112	350

						Group Classifica	ition						
FeedForward	trainscg	mse	1.00E-006	-	63502.mat	50	0.085645	0.85141	934	9729	103870	163	0
Layer Recurrent Network	traingd	mse	1.00E-006	-	63502.mat	50	0.99912	0.38356	420	107060	94	675	6447
Layer Recurrent Network	trainrp	mse	1.00E-006	-	63502.mat	50	0.92346	0.68277	749	104900	8694	348	2
Layer Recurrent Network	trainscg	mse	1.00E-006	-	63502.mat	50	0.079905	0.84686	929	9049	104200	168	350
Distributed Time Delay	traingd	mse	1.00E-006	hardlim	63502.mat	50	0.96573	0.13218	145	109370	3881	952	350
Distributed Time Delay	traingd	mse	1.00E-006	purelin	63502.mat	50	1	0	0	113250	0	1097	350
Distributed Time Delay	traingd	mse	1.00E-006	logsig	63502.mat	50	1	0	0	993	0	230	113470
Distributed Time Delay	traingd	mse	1.00E-006	tansig	63502.mat	50	0.99979	0.3464	380	113570	24	717	0
Distributed Time Delay	trainrp	mse	1.00E-006	hardlim	63502.mat	50	0.92892	0.22343	103	17133	1311	358	95789
Distributed Time Delay	trainrp	mse	1.00E-006	purelin	63502.mat	50	0.99922	0.0042644	2	16675	13	467	97537
Distributed Time Delay	trainrp	mse	1.00E-006	logsig	63502.mat	50	0.35221	0.835	916	39887	73360	181	350
Distributed Time Delay	trainrp	mse	1.00E-006	tansig	63502.mat	50	0.8409	0.67087	638	62644	11852	313	39247
Distributed Time Delay	trainscg	mse	1.00E-006	hardlim	63502.mat	50	0.95679	0.30902	339	108690	4909	758	0
Distributed Time Delay	trainscg	mse	1.00E-006	purelin	63502.mat	50	1	0.086072	55	32385	0	584	81670
Distributed Time Delay	trainscg	mse	1.00E-006	logsig	63502.mat	50	0.26839	0.85597	939	30488	83109	158	0
Distributed Time Delay	trainscg	mse	1.00E-006	tansig	63502.mat	50	0.96022	0.66454	729	109080	4519	368	0
FF Input Time Delay	traingd	mse	1.00E-006	hardlim	63502.mat	50	0.00030897	1	1097	35	113250	0	317
FF Input Time Delay	traingd	mse	1.00E-006	purelin	63502.mat	50	0.99991	0	0	113240	10	1097	350
FF Input Time Delay	traingd	mse	1.00E-006	logsig	63502.mat	50	0.00055462	1	1097	63	113530	0	5
FF Input Time Delay	traingd	mse	1.00E-006	tansig	63502.mat	50	1	0	0	113250	0	1097	349
FF Input Time Delay	trainrp	mse	1.00E-006	hardlim	63502.mat	50	1	NaN	0	534	0	0	114160
FF Input Time Delay	trainrp	mse	1.00E-006	purelin	63502.mat	50	0.99977	0.36012	354	85806	20	629	27885
FF Input Time Delay	trainrp	mse	1.00E-006	logsig	63502.mat	50	0.90952	0.57612	632	103320	10278	465	0
FF Input Time Delay	trainrp	mse	1.00E-006	tansig	63502.mat	50	0.98509	0.58371	638	111900	1694	455	4
FF Input Time Delay	trainscg	mse	1.00E-006	hardlim	63502.mat	50	0.00029137	1	1097	33	113230	0	339
FF Input Time Delay	trainscg	mse	1.00E-006	purelin	63502.mat	50	0.093929	0.72288	793	10670	102930	304	0
FF Input Time Delay	trainscg	mse	1.00E-006	logsig	63502.mat	50	0.99467	0.66363	728	112990	606	369	0
FF Input Time Delay	trainscg	mse	1.00E-006	tansig	63502.mat	50	0.98894	0.67001	735	112340	1256	362	0
Radial Basis Network		-	0.01	-	92202.mat	30	0.74893	0.86992	107	93161	31231	16	0
FeedForward	traingd	mse	1.00E-006	-	92202.mat	30	0.99919	0	0	124220	101	123	72
FeedForward	trainrp	mse	1.00E-006	-	92202.mat	30	0.99249	0.38211	47	123440	934	76	20
FeedForward	trainscg	mse	1.00E-006	-	92202.mat	30	0.99329	0.23577	29	123420	834	94	143
Layer Recurrent Network	traingd	mse	1.00E-006		92202.mat	30	0.99967	0	0	124350	41	123	0
Layer Recurrent Network	trainrp	mse	1.00E-006	-	92202.mat	30	0.98592	0.5122	63	122640	1752	60	0
Layer Recurrent Network	trainscg	mse	1.00E-006		92202.mat	30	0.9968	0.39024	48	123990	398	75	0
Distributed Time Delay	traingd	mse	1.00E-006	hardlim	92202.mat	30 30	0.99402	0	0	123650	744	123 123	0
Distributed Time Delay	traingd	mse	1.00E-006	purelin	92202.mat		1	0	-	124390	0		
Distributed Time Delay Distributed Time Delay	traingd	mse	1.00E-006 1.00E-006	logsig	92202.mat 92202.mat	30 30	0.86145 0.99966	NaN 0	0	429 124350	69 42	0 123	124020 0
Distributed Time Delay Distributed Time Delay	traingd	mse	1.00E-006 1.00E-006	tansig hardlim	92202.mat 92202.mat	30	0.99966	0 NaN	0	124350 1713	42 117	123	122680
Distributed Time Delay Distributed Time Delay	trainrp trainrp	mse mse	1.00E-006	purelin	92202.mat	30	0.93607	0	0	124340	49	123	7
Distributed Time Delay Distributed Time Delay	trainrp	mse	1.00E-006	logsig	92202.mat	30	0.95647	0.056911	7	118980	5415	116	0
Distributed Time Delay			1.00E-006	tansia	92202.mat	30	0.95391	0.60976	75	118660	5733	48	0
Distributed Time Delay	trainrp trainscg	mse mse	1.00E-006	hardlim	92202.mat	30	0.49905	0.82927	102	62078	62314	21	0
Distributed Time Delay	trainscg	mse	1.00E-006	purelin	92202.mat	30	0.99947	0.62927	0	123730	66	123	599
Distributed Time Delay Distributed Time Delay		mse	1.00E-006		92202.mat	30	0.99388	0.2439	30	123730	761	93	299
Distributed Time Delay	trainscg trainscg	mse	1.00E-006	logsig tansig	92202.mat	30	0.99515	0.2439	23	123790	603	100	0
FF Input Time Delay	trainscy	mse	1.00E-006	hardlim	92202.mat	30	0.99512	0.18699	23 123	0	124390	0	0
FF Input Time Delay	traingd	mse	1.00E-006	purelin	92202.mat	30	0.99994	0	0	124380	8	123	0
FF Input Time Delay	traingd	mse	1.00E-006	logsig	92202.mat	30	0.000048235	1	123	6	124390	0	0
FF Input Time Delay	traingd	mse	1.00E-006	tansig	92202.mat	30	0.000048235	0	0	124390	0	123	0
FF Input Time Delay	traingu	mse	1.00E-006	hardlim	92202.mat	30	NaN	NaN	0	124390	0	0	124520
FF Input Time Delay	trainrp	mse	1.00E-006	purelin	92202.mat	30	0.9965	0	0	123960	435	123	0
Input time belay	патр	mac	1.002-000	puremi	JZZOZ.IIIdl	30	0.3303		Ü	123300	455	123	Ü

Group Classification

FF Input Time Delay	trainrp	mse	1.00E-006	logsig	92202.mat	30	0.94245	0.49593	61	117230	7159	62	0
FF Input Time Delay	trainrp	mse	1.00E-006	tansig	92202.mat	30	0.87987	0.30894	38	107620	14694	85	2076
FF Input Time Delay	trainscg	mse	1.00E-006	hardlim	92202.mat	30	0.000048235	1	123	6	124390	0	0
FF Input Time Delay	trainscg	mse	1.00E-006	purelin	92202.mat	30	0.99895	0	0	124260	131	123	0
FF Input Time Delay	trainscg	mse	1.00E-006	logsig	92202.mat	30	0.99327	0.45528	56	123560	837	67	0
FF Input Time Delay	trainscg	mse	1.00E-006	tansig	92202.mat	30	0.99502	0.4878	60	123770	620	63	0

Nas páginas seguintes apresentamos os testes posteriores realizados às redes que apresentaram melhores resultados nos testes iniciais, conforme o descrito na $Secç\~ao$ 3 deste documento.

Single Classification2														
Network	Number Neurons Network	Training Function	Performance Function	Training Goal	Activation Function	Input	Percentage Crysis (0-100)	Specificity	Sensibility	True Positives	True Negatives	False Positives	False Negatives	Invalid Data
Radial Basis Network	3	-		0.01		44202.mat	30	0.95183	0.82256	1692	545520	27605	365	0
Radial Basis Network	7	-	-	0.01		44202.mat	30	0.94967	0.82547	1698	544280	28844	359	0
Radial Basis Network	15		-	0.01		44202.mat	30	0.95597	0.82304	1693	547890	25236	364	0
Radial Basis Network	3		-	0.01		44202.mat	50	0.95202	0.83684	1313	516570	26033	256	0
Radial Basis Network	7		-	0.01		44202.mat	50	0.94976	0.83939	1317	515340	27260	252	0
Radial Basis Network	15		-	0.01		44202.mat	50	0.95577	0.83748	1314	518600	23997	255	Ō
Radial Basis Network	3		-	0.01		44202.mat	70	0.98379	0.85098	868	248110	4087	152	0
Radial Basis Network	7		-	0.01		44202.mat	70	0.98095	0.85294	870	247390	4804	150	ō
Radial Basis Network	15			0.01		44202.mat	70	0.98323	0.85882	876	247960	4230	144	ō
Radial Basis Network	3		-	0.01		63502.mat	30	0.93848	0.67326	1090	154740	10143	529	0
Radial Basis Network	7		-	0.01		63502.mat	30	0.94503	0.65164	1055	155820	9063	564	0
Radial Basis Network	15			0.01		63502.mat	30	0.94964	0.64978	1052	156580	8304	567	0
Radial Basis Network	3		-	0.01		63502.mat	50	0.9284	0.65751	718	105480	8135	374	0
Radial Basis Network	7			0.01		63502.mat	50	0.93647	0.64652	706	106390	7218	386	0
Radial Basis Network	15			0.01		63502.mat	50	0.94192	0.64652	706	107010	6599	386	Ö
Radial Basis Network	3		-	0.01		63502.mat	70	0.90548	0.54464	427	39804	4155	357	0
Radial Basis Network	7			0.01		63502.mat	70	0.9156	0.53571	420	40249	3710	364	0
Radial Basis Network	15			0.01		44202.mat	70	0.92488	0.54082	424	40657	3302	360	0
Distributed Time Delay	3	trainscq	mse	1.00E-006	logsig	44202.mat	30	0.83028	0.66975	1377	475370	97173	679	579
Distributed Time Delay	3	trainscg	mse	1.00E-006	tansia	44202.mat	30	0.62253	0.76706	1574	354490	214950	478	3686
Distributed Time Delay	7	trainscg	mse	1.00E-006	logsig	44202.mat	30	0.8515	0.70662	1409	474530	82755	585	15898
Distributed Time Delay	7	trainscg	mse	1.00E-006	tansig	44202.mat	30	0.74258	0.61921	1257	419760	145520	773	7872
Distributed Time Delay	15	trainscg	mse	1.00E-006	logsig	44202.mat	30	0.79749	0.52734	1032	449320	114100	925	9800
Distributed Time Delay	15	trainscg	mse	1.00E-006	tansig	44202.mat	30	0.80607	0.69298	1422	461490	111030	630	601
Distributed Time Delay	3	trainscg	mse	1.00E-006	logsig	44202.mat	50	0.83186	0.68431	1073	450920	91143	495	542
Distributed Time Delay	3	trainscg	mse	1.00E-006	tansig	44202.mat	50	0.6242	0.77955	1220	336500	202600	345	3505
Distributed Time Delay	7	trainscg	mse	1.00E-006	logsig	44202.mat	50	0.85265	0.72164	1094	449780	77730	422	15147
Distributed Time Delay	7	trainscg	mse	1.00E-006	tansia	44202.mat	50	0.83203	0.62944	975	398180	136980	574	7460
Distributed Time Delay	15	trainscg	mse	1.00E-006	logsig	44202.mat	50	0.79837	0.53449	798	425740	107520	695	9412
Distributed Time Delay	15			1.00E-006		44202.mat	50	0.80786	0.7016	1098	437900	10/520	467	564
Distributed Time Delay	3	trainscg trainscg	mse mse	1.00E-006	tansig logsig	44202.mat	70	0.8187	0.7016	704	206230	45669	316	291
Distributed Time Delay	3	trainscg	mse	1.00E-006	tansig	44202.mat	70	0.57995	0.78193	796	145260	105210	222	1733
Distributed Time Delay	7			1.00E-006		44202.mat	70	0.8428	0.78193	716	205620	38352	276	8252
Distributed Time Delay	7	trainscg trainscg	mse mse	1.00E-006	logsig tansia	44202.mat	70	0.70045	0.63284	636	173860	74352	369	3992
Distributed Time Delay	15			1.00E-006		44202.mat	70	0.75219	0.53264	531	185850	61228	436	5170
Distributed Time Delay	15	trainscg trainscg	mse mse	1.00E-006	logsig tansig	63502.mat	70	0.78803	0.70854	722	198510	53397	297	283
Distributed Time Delay	3			1.00E-006		63502.mat	30	0.12819	0.70854	1280	21003	142840	337	1047
Distributed Time Delay	3	trainscg trainscg	mse mse	1.00E-006	logsig tansig	63502.mat	30	0.12819	0.79159	1479	23267	141380	136	248
Distributed Time Delay	7	trainscg	mse	1.00E-006	logsig	63502.mat	30	0.14132	0.88329	1385	33277	127180	183	4480
Distributed Time Delay	7		mse	1.00E-006	tansia	63502.mat	30	0.14023	0.80329	1299	23051	141330	318	507
Distributed Time Delay	15	trainscg		1.00E-006		63502.mat	30	0.14023	0.78049	1248	20610	141330	351	1309
Distributed Time Delay	15 15	trainscg	mse	1.00E-006	logsig	63502.mat	30	0.12598	0.78049	1368	18117	142990	247	180
Distributed Time Delay		trainscg	mse	1.00E-006	tansig	63502.mat	50	0.10999	0.84706	904	15922	96829	186	863
	3	trainscg	mse		logsig									
Distributed Time Delay	3 7	trainscg	mse	1.00E-006	tansig	63502.mat	50 50	0.15424	0.92018	1003	17495	95931	87	188
Distributed Time Delay Distributed Time Delay	7	trainscg	mse	1.00E-006 1.00E-006	logsig	63502.mat	50 50	0.22869 0.15437	0.89577 0.84051	954	25213 17478	85039 95742	111 174	3387 393
		trainscg	mse		tansig	63502.mat				917				
Distributed Time Delay	15	trainscg	mse	1.00E-006	logsig	63502.mat	50	0.13918	0.81961	886	15666	96897	195	1060
Distributed Time Delay	15	trainscg	mse	1.00E-006	tansig	63502.mat	50	0.12116	0.87787	956	13749	99727	133	139
Distributed Time Delay	3	trainscg	mse	1.00E-006	logsig	63502.mat	70	0.14686	0.86335	676	6423	37313	107	224
Distributed Time Delay	3	trainscg	mse	1.00E-006	tansig	63502.mat	70	0.12839	0.92219	723	5633	38242	61	84
Distributed Time Delay	7	trainscg	mse	1.00E-006	logsig	63502.mat	70	0.20329	0.90944	703	8695	34077	70	1198
Distributed Time Delay	7	trainscg	mse	1.00E-006	tansig	63502.mat	70	0.15664	0.87484	685	6868	36978	98	114

Single Classification2 Distributed Time Delay
Distributed Time Delay
FF Input Time Delay 1.00E-006 1.00E-006 1.00E-006 1.00E-006 1.00E-006 1.00E-006 1.00E-006 1.00E-006 1.00E-006 63502.mat 63502.mat 44202.mat 44202.mat 44202.mat 44202.mat 44202.mat 44202.mat 44202.mat trainscg trainscg trainscg trainscg trainscg trainscg trainscg 6436 5454 518940 514800 489790 502270 513040 0.14755 0.12423 0.90807 0.89869 0.85686 0.8765 0.89701 0.92823 0.90962 0.89979 0.86761 0.90421 0.63539 0.64251 0.64411 0.68109 0.63477 0.62945 0.64563 0.65115 37183 38448 52537 58034 81817 70773 58904 40690 48899 54345 76432 66103 15 15 3 7 7 15 15 3 3 7 7 logsig tansig logsig tansig logsig tansig logsig tansig logsig tansig 675 708 1307 1321 1323 1401 1300 1291 1013 1021 103 75 750 735 731 656 748 760 556 547 540 483 346 58 1647 290 1517 76 1183 6153 1561 268 1428 75 1130 526280 492140 487990 trainscg trainscg trainscg FF Input Time Delay FF Input Time Delay trainscg trainscg 1.00E-006 1.00E-006 logsig tansig 44202.mat 0.85877 0.65517 0.69216 1026 1086 464740 476420 44202.mat 0.87816 15 15 553 559 FF Input Time Delay FF Input Time Delay trainscg trainscg 1.00E-006 logsig tansig 44202.mat 0.89848 0.92976 0.64597 1009 1005 486500 54973 FF Input Time Delay
FF Input Time Delay 1.00E-006 44202.mat 0.64258 499090 37707 5811 trainscg trainscg trainscg trainscg 1.00E-006 1.00E-006 1.00E-006 664 687 682 717 667 24609 23931 38146 930 130 767 37 633 logsig tansig logsig tansig logsig tansig logsig tansig logsig tansig logsig tansig 44202 mat 0.90206 0.65098 226650 356 333 44202 mat 0.90506 0.67353 228130 336 44202 mat 0.84828 213280 trainscg 1.00E-006 1.00E-006 44202.mat 44202.mat 0.87153 0.89134 0.70294 219760 32394 27334 303 350 348 248 434 340 269 291 272 141 249 156 166 156 82 152 7 15 3 3 7 7 15 15 3 3 7 7 224230 1.00E-006 1.00E-006 1.00E-006 1.00E-006 1.00E-006 1.00E-006 1.00E-006 1.00E-006 1.00E-006 44202.mat 63502.mat 63502.mat 63502.mat 63502.mat 63502.mat 63502.mat 63502.mat 63502.mat 231770 26950 23074 24673 23473 26163 29324 0.65782 0.84653 0.93104 0.1637 0.1407 0.14975 0.14238 0.15882 0.17948 0.18125 0.15552 0.16528 669 1368 1182 1277 1350 1327 1338 950 840 902 936 925 930 701 17168 137680 140920 140080 141390 138580 134060 92866 95311 3254 256 890 131 25 149 1510 189 751 106 16 113 0.73144 0.78973 0.83385 0.83385 0.82015 0.83106 0.87076 0.77135 20558 17553 18761 trainscg trainscg logsig tansig 94746 95600 FF Input Time Delay FF Input Time Delay trainscq 1.00E-006 1.00E-006 logsig tansig 63502.mat 0.82676 0.85714 trainscg 63502.mat 0.15842 17996 FF Input Time Delay trainscg 1.00E-006 logsig tansig 63502.mat 0.17604 0.84785 19980 93520 15 15 3 3 7 FF Input Time Delay trainscg 1.00E-006 63502.mat 0.19879 0.85635 22359 90119 1140 logsig tansig logsig tansig logsig tansig FF Input Time Delay trainscg 1.00E-006 63502.mat 0.17488 0.89527 7679 36231 50 176 33 5 26 7007 7228 6649 7569 FF Input Time Delay FF Input Time Delay trainscq 1.00E-006 1.00E-006 63502.mat 0.16003 0.80563 630 673 36778 70 70 70 70 70 trainscg 63502.mat 0.16455 0.85842 36698 FF Input Time Delay FF Input Time Delay trainscg trainscg 1.00E-006 63502.mat 0.15127 0.88265 692 689 37305 92 94 15 1.00E-006 63502.mat 0.17228 0.87995 36365

FF Input Time Delay

15

trainscg

1.00E-006

63502.mat

0.18704

0.87821

685

8153

35436

95

374

Group Classification2

		Group Classification2												
Network	Number Neurons Network	Training Function	Performance Function	Training Goal	Activation Function	Input	Percentage Crysis (0-100)	Specificity	Sensibility	True Positives	True Negatives	False Positives	False Negatives	Invalid Data
Radial Basis Network	3			0.01		44202.mat	30	0.97772	0.82882	1714	560330	12766	354	0
Radial Basis Network	7			0.01		44202.mat	30	0.97719	0.83607	1729	560030	13070	339	0
Radial Basis Network	15			0.01		44202.mat	30	0.98146	0.82544	1707	562480	10624	361	0
Radial Basis Network	3			0.01		44202.mat	50	0.97685	0.84581	1333	530030	12559	243	0
Radial Basis Network	7	-		0.01		44202.mat	50	0.97629	0.85406	1346	529720	12863	230	0
Radial Basis Network	15	-		0.01		44202.mat	50	0.98072	0.84137	1326	532120	10463	250	0
Radial Basis Network	3			0.01		44202.mat	70	0.99792	0.85533	875	251660	524	148	0
Radial Basis Network	7			0.01		44202.mat	70	0.99665	0.8563	876	251330	846	147	Ó
Radial Basis Network	15			0.01		44202.mat	70	0.9967	0.85826	878	251350	833	145	Ó
Radial Basis Network	3			0.01		63502.mat	30	0.97309	0.67445	1098	160430	4436	530	0
Radial Basis Network	7			0.01		63502.mat	30	0.97605	0.65418	1065	160920	3949	563	Ó
Radial Basis Network	15			0.01		63502.mat	30	0.97949	0.65295	1063	161490	3382	565	0
Radial Basis Network	3			0.01		63502.mat	50	0.96904	0.65816	722	110080	3517	375	ō
Radial Basis Network	7			0.01		63502.mat	50	0.97292	0.65269	716	110520	3076	381	0
Radial Basis Network	15			0.01		63502.mat	50	0.97702	0.64813	711	110990	2611	386	Ö
Radial Basis Network	3			0.01		63502.mat	70	0.95865	0.54326	427	42130	1817	359	ō
Radial Basis Network	7			0.01		63502.mat	70	0.96421	0.54071	425	42374	1573	361	0
Radial Basis Network	15			0.01		63502.mat	70	0.97181	0.54198	426	42708	1239	360	Ö
Distributed Time Delay	3	trainscq	mse	1.00E-006	logsig	44202.mat	30	0.92193	0.6881	1423	528360	44740	645	0
Distributed Time Delay	3	trainseg	mse	1.00E-006	tansig	44202.mat	30	0.63429	0.81867	1693	363510	209590	375	0
Distributed Time Delay	7	trainscg	mse	1.00E-006	logsig	44202.mat	30	0.94228	0.72244	1494	540020	33082	574	0
Distributed Time Delay	7	trainscg	mse	1.00E-006	tansig	44202.mat	30	0.81934	0.63636	1316	469560	103540	752	0
Distributed Time Delay	15	trainseg	mse	1.00E-006	logsig	44202.mat	30	0.87911	0.54642	1130	503820	69282	938	0
Distributed Time Delay	15	trainscg	mse	1.00E-006	tansig	44202.mat	30	0.90347	0.72534	1500	517780	55322	568	0
Distributed Time Delay	3	trainscg	mse	1.00E-006	logsig	44202.mat	50	0.92339	0.70241	1107	501020	41569	469	0
Distributed Time Delay	3	trainscg	mse	1.00E-006	tansia	44202.mat	50	0.63675	0.84074	1325	345490	197090	251	0
Distributed Time Delay	7	trainscg	mse	1.00E-006	logsig	44202.mat	50	0.94348	0.73477	1158	511920	30666	418	0
Distributed Time Delay	7	trainscg	mse	1.00E-006	tansig	44202.mat	50	0.82097	0.63325	998	445440	97141	578	0
Distributed Time Delay	15	trainscg	mse	1.00E-006	logsig	44202.mat	50	0.88036	0.55838	880	477670	64914	696	0
Distributed Time Delay	15	trainscg	mse	1.00E-006	tansig	44202.mat	50	0.90572	0.7316	1153	491430	51154	423	0
Distributed Time Delay	3	trainscg	mse	1.00E-006	logsig	44202.mat	70	0.92123	0.7087	725	232320	19864	298	0
Distributed Time Delay	3	trainscg	mse	1.00E-006	tansia	44202.mat	70	0.55891	0.84066	860	140950	111230	163	0
Distributed Time Delay	7	trainscg	mse	1.00E-006	logsig	44202.mat	70	0.94477	0.72727	744	238250	13928	279	0
Distributed Time Delay	7	trainscg	mse	1.00E-006	tansig	44202.mat	70	0.76965	0.61975	634	194090	58090	389	0
Distributed Time Delay	15			1.00E-006		44202.mat	70	0.83853	0.57185	585	211460	40719	438	0
Distributed Time Delay	15	trainscg trainscg	mse	1.00E-006	logsig tansig	63502.mat	70	0.89489	0.57185	753	225670	26507	270	0
	3		mse	1.00E-006		63502.mat	30	0.078673	0.88206	1436	12943	151570	192	350
Distributed Time Delay Distributed Time Delay	3	trainscg trainscg	mse mse	1.00E-006	logsig tansig	63502.mat	30	0.078673	0.88206	1562	10789	151570	66	0
Distributed Time Delay	7	trainscg	mse	1.00E-006	logsig	63502.mat	30	0.17425	0.93540	1502	28728	136140	122	0
	7			1.00E-006		63502.mat	30	0.088775	0.88636	1443	14636	150230	185	0
Distributed Time Delay	15	trainscg	mse mse	1.00E-006	tansig	63502.mat	30	0.088775	0.85074	1385	12906	150230	243	350
Distributed Time Delay Distributed Time Delay	15 15	trainscg		1.00E-006	logsig	63502.mat	30	0.078448	0.85074	1385	8037	156830	132	0
	3	trainscg	mse		tansig		30 50		0.91892		9837		132 81	350
Distributed Time Delay		trainscg	mse	1.00E-006	logsig	63502.mat		0.086863		1016		103410		
Distributed Time Delay	3	trainscg	mse	1.00E-006	tansig	63502.mat	50	0.073233	0.95169	1044	8319	105280	53	0
Distributed Time Delay	7 7	trainscg	mse	1.00E-006 1.00E-006	logsig	63502.mat	50 50	0.19769	0.92069 0.92981	1010	22457 11190	91140	87 77	0
Distributed Time Delay	•	trainscg	mse		tansig	63502.mat		0.098506		1020		102410		-
Distributed Time Delay	15	trainscg	mse	1.00E-006	logsig	63502.mat	50	0.087093	0.89973	987	9863	103380	110	350
Distributed Time Delay	15	trainscg	mse	1.00E-006	tansig	63502.mat	50	0.054482	0.95351	1046	6189	107410	51	0
Distributed Time Delay	3	trainscg	mse	1.00E-006	logsig	63502.mat	70	0.094978	0.95674	752	4174	39773	34	0
Distributed Time Delay	3	trainscg	mse	1.00E-006	tansig	63502.mat	70	0.040276	0.9402	739	1770	42177	47	0
Distributed Time Delay	7	trainscg	mse	1.00E-006	logsig	63502.mat	70	0.16588	0.93384	734	7290	36657	52	0
Distributed Time Delay	7	trainscg	mse	1.00E-006	tansig	63502.mat	70	0.1016	0.96438	758	4465	39482	28	0

						Group Classific	cation2							
Distributed Time Delay	15	trainscg	mse	1.00E-006	logsig	63502.mat	70	0.098277	0.96438	758	4319	39628	28	0
Distributed Time Delay	15	trainscg	mse	1.00E-006	tansig	63502.mat	70	0.055977	0.97201	764	2460	41487	22	0
FF Input Time Delay	3	trainscg	mse	1.00E-006	logsig	44202.mat	30	0.9733	0.66441	1374	557800	15303	694	0
FF Input Time Delay	3	trainscg	mse	1.00E-006	tansig	44202.mat	30	0.97031	0.66441	1374	556080	17016	694	0
FF Input Time Delay	7	trainscg	mse	1.00E-006	logsig	44202.mat	30	0.94381	0.65039	1345	540900	32200	723	0
FF Input Time Delay	7	trainscg	mse	1.00E-006	tansig	44202.mat	30	0.95847	0.71422	1477	549300	23800	591	0
FF Input Time Delay	15	trainscg	mse	1.00E-006	logsig	44202.mat	30	0.96908	0.65812	1361	555380	17719	707	0
FF Input Time Delay	15	trainscg	mse	1.00E-006	tansig	44202.mat	30	0.97994	0.63685	1317	561600	11498	751	0
FF Input Time Delay	3	trainscg	mse	1.00E-006	logsig	44202.mat	50	0.97501	0.66815	1053	529020	13559	523	0
FF Input Time Delay	3	trainscg	mse	1.00E-006	tansig	44202.mat	50	0.97054	0.66878	1054	526600	15983	522	0
FF Input Time Delay	7	trainscg	mse	1.00E-006	logsig	44202.mat	50	0.94566	0.66117	1042	513100	29482	534	0
FF Input Time Delay	7	trainscg	mse	1.00E-006	tansig	44202.mat	50	0.96003	0.72779	1147	520900	21687	429	0
FF Input Time Delay	15	trainscg	mse	1.00E-006	logsig	44202.mat	50	0.97071	0.66751	1052	526690	15891	524	0
FF Input Time Delay	15	trainscg	mse	1.00E-006	tansig	44202.mat	50	0.9813	0.6453	1017	532440	10145	559	0
FF Input Time Delay	3	trainscg	mse	1.00E-006	logsig	44202.mat	70	0.97457	0.66373	679	245770	6413	344	0
FF Input Time Delay	3	trainscg	mse	1.00E-006	tansig	44202.mat	70	0.98239	0.7175	734	247740	4442	289	0
FF Input Time Delay	7	trainscg	mse	1.00E-006	logsig	44202.mat	70	0.94661	0.67546	691	238720	13463	332	0
FF Input Time Delay	7	trainscg	mse	1.00E-006	tansig	44202.mat	70	0.96353	0.73607	753	242980	9198	270	0
FF Input Time Delay	15	trainscg	mse	1.00E-006	logsig	44202.mat	70	0.97226	0.67058	686	245180	6996	337	0
FF Input Time Delay	15	trainscg	mse	1.00E-006	tansig	63502.mat	70	0.98469	0.66569	681	248320	3860	342	0
FF Input Time Delay	3	trainscg	mse	1.00E-006	logsig	63502.mat	30	0.10836	0.92629	1508	17865	147000	120	0
FF Input Time Delay	3	trainscg	mse	1.00E-006	tansig	63502.mat	30	0.087455	0.82125	1337	14388	150130	291	349
FF Input Time Delay	7	trainscg	mse	1.00E-006	logsig	63502.mat	30	0.094403	0.87654	1427	15564	149300	201	0
FF Input Time Delay	7	trainscg	mse	1.00E-006	tansig	63502.mat	30	0.079525	0.93366	1520	13111	151760	108	0
FF Input Time Delay	15	trainscg	mse	1.00E-006	logsig	63502.mat	30	0.10301	0.90418	1472	16983	147880	156	0
FF Input Time Delay	15	trainscg	mse	1.00E-006	tansig	63502.mat	30	0.13012	0.914	1488	21452	143420	140	0
FF Input Time Delay	3	trainscg	mse	1.00E-006	logsig	63502.mat	50	0.12184	0.94439	1036	13841	99756	61	0
FF Input Time Delay	3	trainscg	mse	1.00E-006	tansig	63502.mat	50	0.097264	0.88149	967	11015	102230	130	349
FF Input Time Delay	7	trainscg	mse	1.00E-006	logsig	63502.mat	50	0.10506	0.9134	1002	11934	101660	95	0
FF Input Time Delay	7	trainscg	mse	1.00E-006	tansig	63502.mat	50	0.0898	0.9526	1045	10201	103400	52	0
FF Input Time Delay	15	trainscg	mse	1.00E-006	logsig	63502.mat	50	0.11592	0.93619	1027	13168	100430	70	0
FF Input Time Delay	15	trainscg	mse	1.00E-006	tansig	63502.mat	50	0.14774	0.93254	1023	16783	96814	74	0
FF Input Time Delay	3	trainscg	mse	1.00E-006	logsig	63502.mat	70	0.11589	0.95547	751	5093	38854	35	0
FF Input Time Delay	3	trainscg	mse	1.00E-006	tansig	63502.mat	70	0.10394	0.91476	719	4568	39379	67	0
FF Input Time Delay	7	trainscg	mse	1.00E-006	logsig	63502.mat	70	0.10665	0.94784	745	4687	39260	41	0
FF Input Time Delay	7	trainscg	mse	1.00E-006	tansig	63502.mat	70	0.082076	0.95929	754	3607	40340	32	0
FF Input Time Delay	15	trainscg	mse	1.00E-006	logsig	63502.mat	70	0.11352	0.95674	752	4989	38958	34	0
FF Input Time Delay	15	trainscg	mse	1.00E-006	tansig	63502.mat	70	0.13239	0.9402	739	5818	38129	47	0