kashmiraspatil@gmail.com

1. Executive Summary

FinFraud is a deployable fintech solution that detects fraudulent transactions in real time using machine learning, ensures transparency with explainable AI, and guarantees integrity with a blockchain-backed immutable audit log. It also provides actionable recommendations for customers, analysts, and product teams.

The system is built with FastAPI, MySQL, React/Tailwind, Docker, and industry-grade ML models.

2. Introduction

Problem Statement

Financial fraud continues to rise with digital transactions, leading to massive losses and eroded trust. Traditional fraud detection systems are often opaque, centralized, and lack reliable audit trails.

Objectives

- Real-time, accurate fraud detection.
- Explainable decisions with reason codes.
- Tamper-proof logging with blockchain.
- Actionable recommendations for multiple stakeholders.

3. System Architecture

The system integrates four major components:

- 1. FastAPI Backend Fraud detection API, blockchain integration, DB persistence.
- 2. ML Models XGBoost & Random Forest with explainability (SHAP).
- 3. Custom Blockchain Ledger Immutable, hash-chained log with Merkle + HMAC.
- 4. React/Tailwind Frontend Dashboard for fraud alerts, blockchain log, recommendations.

4. Database Design

MySQL stores structured data for users, transactions, fraud verdicts, recommendations, and blockchain logs.

Key Tables

- users user details & roles.
- transactions transaction data.
- fraudresults fraud verdicts, fraud score, reason codes.
- chain_blocks immutable blockchain blocks.
- chain entries detailed ledger entries.

5. Fraud Detection Module

- Data Preprocessing Handle imbalance (SMOTE), feature engineering.
- Models XGBoost + Random Forest (trained on transaction datasets).
- Explainability SHAP values + reason codes (e.g., "Unusual location").
- Consensus Multi-agent voting; fraud verdict committed if majority models agree.

6. Blockchain Ledger

- Design SHA-256 hash chaining, Merkle root, HMAC chaining per entry.
- Purpose Immutable, tamper-proof fraud audit trail.
- Security Append-only, private ledger; permissioned access.
- Stored Data Txn reference, verdict, fraud score, reason codes.

Blockchain Ledger: Fraud Audit Trail

7. Recommendation Engine

- For Customers Safety tips (e.g., use secure devices, avoid risky regions).
- For Analysts Ranked transaction review queues.
- For Product Teams Suspicious user/merchant cluster analysis.

8. Frontend UI

Built with React + Tailwind, the dashboard includes:

- Transaction submission form.
- Fraud alert panel (status, fraud score, reason codes).
- Blockchain log viewer.
- Recommendation panel.

9. Deployment & Setup

Requirements

- Python 3.10+
- Docker & Docker Compose
- Node.js

```
# Start MySQL
docker compose up -d mysql
# Initialize schema
docker exec -i <mysql-container> mysql -uuser -pfraudpass frauddb <
database/schema.sql
# Backend setup
cd backend</pre>
```

```
python -m venv .venv && source .venv/bin/activate
pip install -r requirements.txt
uvicorn app.main:app --reload --port 8000
# Frontend setup
cd frontend
npm install && npm start
```

10. Testing & Validation

- Unit Tests ML predictions, blockchain integrity.
- API Testing Swagger UI, Postman.
- End-to-End Tests Submit $txn \rightarrow fraud\ detection \rightarrow blockchain log \rightarrow UI\ visualization.$

Data Flow Diagram: Transaction Processing and Fraud Audit Trail

11. Security & Compliance

- Minimal PII stored on-chain (only hashes/reason codes).
- Strong encryption in DB & blockchain ledger.
- Role-based access control: Admin, Analyst, User.
- Transparent audit logs → compliance with fintech regulations.

12. Limitations & Future Work

- Current blockchain = single-node (future: multi-node PoA/BFT).
- Dataset = synthetic demo; production will need real banking datasets.
- Possible extension → Ethereum/Hyperledger for enterprise compliance.
- Real-time scalability → Kafka integration for high throughput.

13. References

- Stripe: Fintech Fraud Detection Explained
- Cossack Labs: Audit Logs Security
- IRJET: Fraud Detection using Blockchain
- FastAPI Best Practices (Zhanymkanov repo, Tiangolo docs)

Appendix A – API Endpoints

{

- GET /health → API & DB status.
- POST /transaction → Submit transaction, get fraud verdict + blockchain hash.
- GET /blockchain → Retrieve blockchain ledger.
- POST /recommend → Get recommendations.

```
"transaction_id": "txn123",

"user_id": "u001",

"amount": 10000,

"currency": "INR",

"occurred_at": "2025-09-23T14:30:00Z",

"location": "Mumbai",

"device_id": "device123",

"merchant_id": "m001"

}
```