nRF9161 Product Specification

Contents

CRYPTOCELL — ARM TrustZone CryptoCell 310	3
	_

1. CRYPTOCELL — ARM TrustZone CryptoCell 310

ARM® TrustZone® CryptoCell 310 (CRYPTOCELL) is a security subsystem which provides root of trust (RoT) and cryptographic services for a device.

Figure 1. Block diagram for CRYPTOCELL

Flash

Data RAM

The following cryptographic features are provided:

- True random number generator (TRNG) compliant with NIST 800-90B, AIS-31, and FIPS 140-2
- Pseudorandom number generator (PRNG) using underlying AES engine compliant with NIST 800-90A
- RSA public key cryptography
 - Up to 2048-bit key size
 - PKCS#1 v2.1/v1.5

- Optional CRT support
- Elliptic curve cryptography (ECC)
 - NIST FIPS 186-4 recommended curves using pseudorandom parameters, up to 521 bits:
 - Prime field: P-192, P-224, P-256, P-384, P-521
 - SEC 2 recommended curves using pseudorandom parameters, up to 521 bits:
 - Prime field: secp160rl, secp192rl, secp224rl, secp256rl, secp384rl, secp521rl
 - Koblitz curves using fixed parameters, up to 256 bits:
 - Prime field: secp160k1, secp192k1, secp224k1, secp256k1
 - Edwards/Montgomery curves:
 - Ed25519, Curve25519
 - ECDH/ECDSA support
- Secure remote password protocol (SRP)
 - Up to 3072-bit operations
- Hashing functions
 - SHA-1, SHA-2 up to 256 bits
 - Keyed-hash message authentication code (HMAC)
- AES symmetric encryption
 - General purpose AES engine (encrypt/decrypt, sign/verify)
 - 128-bit key size
 - Supported encryption modes: ECB, CBC, CMAC/CBC-MAC, CTR, CCM/CCM* (CCM* is a minor variation of CCM)
- ChaCha20/Poly1305 symmetric encryption
 - Supported key size: 128 and 256 bits
 - · Authenticated encryption with associated data (AEAD) mode

Usage

The CRYPTOCELL state is controlled via a register interface. The cryptographic functions of CRYPTOCELL are accessible by using a software library provided in the device SDK, not directly via a register interface.

To enable CRYPTOCELL, use register ENABLE.

Note: Keeping the CRYPTOCELL subsystem enabled will prevent the device from reaching the System ON, All Idle state.

Always-on (AO) power domain

The CRYPTOCELL subsystem has an internal always-on (AO) power domain for retaining device secrets when CRYPTOCELL is disabled.

The following information is retained by the AO power domain:

- 4 bits indicating the configured CRYPTOCELL lifecycle state (LCS)
- ullet 1 bit indicating if the hard-coded RTL key, $K_{\mbox{\footnotesize{PRTL}}}$ (see RTL key), is available for use
- 128-bit device root key, K_{DR} (see Device root key)

A reset from any reset source will erase the content in the AO power domain.

Lifecycle state (LCS)

Lifecycle refers to multiple states a device goes through during its lifetime. Two valid lifecycle states are offered for the device - debug and secure.

The CRYPTOCELL subsystem lifecycle state (LCS) is controlled through register HOST_IOT_LCS. A valid LCS is configured by writing either value Debug or Secure into the LCS field of this register. A correctly configured LCS can be validated by reading back the read-only field LCS_IS_VALID from the abovementioned register. The LCS_IS_VALID field value will change from Invalid to Valid once a valid LCS value has been written.

LCS field value	LCS_IS_VALID field value	Description
Secure	Invalid	Default reset value indicating that LCS has not been configured.
Secure	Valid	LCS set to secure mode, and LCS is valid. Registers HOST_IOT_KDR[03] can only be written once per reset cycle. Any additional writes will be ignored.
Debug	Valid	LCS set to debug mode, and LCS is valid. Registers HOST_IOT_KDR[03] can be written multiple times.

Table 1. Lifecycle states

Cryptographic key selection

The CRYPTOCELL subsystem can be instructed to operate on different cryptographic keys.

Through register HOST CRYPTOKEY SEL, the following key types can be selected for cryptographic operations:

- RTL key K_{PRTL}
- Device root key K_{DR}
- Session key

 K_{PRTL} and K_{DR} are configured as part of the CRYPTOCELL initialization process, while session keys are provided by the application through the software library API.

RTL key

The ARM® TrustZone® CryptoCell 310 contains one hard-coded RTL key referred to as K_{PRTL} . This key is set to the same value for all devices with the same part code in the hardware design and cannot be changed.

The K_{PRTL} key can be requested for use in cryptographic operations by the CRYPTOCELL, without revealing the key value itself.

Access to use of K_{PRTL} in cryptographic operations can be disabled until next reset by writing to register

HOST IOT KPRTL LOCK. If a locked K_{PRTL} key is requested for use, a zero vector key will be routed to the AES engine instead.

Device root key

The device root key K_{DR} is a 128-bit AES key programmed into the CRYPTOCELL subsystem using firmware. It is retained in the AO power domain until the next reset.

Once configured, it is possible to perform cryptographic operations using the CRYPTOCELL subsystem where K_{DR} is selected as key input without having access to the key value itself. The K_{DR} key value must be written to registers HOST_IOT_KDR[0..3]. These 4 registers are write-only if LCS is set to debug mode, and write-once if LCS is set to secure mode. The K_{DR} key value is successfully retained when the read-back value of register HOST_IOT_KDR0 changes to 1.

Direct memory access (DMA)

The CRYPTOCELL subsystem implements direct memory access (DMA) for accessing memory without CPU intervention.

Any data stored in memory type(s) not accessible by the DMA engine must be copied to SRAM before it can be processed by the CRYPTOCELL subsystem. Maximum DMA transaction size is limited to 2^{16} -1 bytes.

Standards

ARM® TrustZone® CryptoCell 310 (CRYPTOCELL) supports a number of cryptography standards.

Algorithm family	Identification code	Document title
	NIST SP 800-90B	Recommendation for the Entropy Sources Used for Random Bit Generation
TRNG	AIS-31	A proposal for. Functionality classes and evaluation methodology for physical random number generators
	FIPS 140-2	Security Requirements for Cryptographic Modules
PRNG	NIST SP 800-90A	Recommendation for Random Number Generation Using Deterministic Random Bit Generators
Stream cipher	Chacha	ChaCha, a variant of Salsa20, Daniel J. Bernstein, January 28th 2008
MAC	Poly1305	The Poly1305-AES message-authentication code, Daniel J. Bernstein Cryptography in NaCl, Daniel J. Bernstein
Key agreement	SRP	The Secure Remote Password Protocol, Thomas Wu, November 11th 1997
	FIPS-197	Advanced Encryption Standard (AES)
AES	NIST SP 800-38A	Recommendation for Block Cipher Modes of Operation - Methods and Techniques

Algorithm family	Identification code	Document title
	NIST SP 800-38B	Recommendation for Block Cipher Modes of Operation. The CMAC Mode for Authentication
	NIST SP 800-38C	Recommendation for Block Cipher Modes of Operation. The CCM Mode for Authentication and Confidentiality
	ISO/IEC 9797-1	AES CBC-MAC per ISO/IEC 9797-1 MAC algorithm 1
	IEEE 802.15.4-2011	IEEE Standard for Local and metropolitan area networks - Part 15.4. Low-Rate Wireless Personal Area Networks (LR-WPANs), Annex B.4: Specification of generic CCM* mode of operation
Hash	FIPS 180-3	Secure Hash Standard (SHA1, SHA-224, SHA-256)
Tiusii	RFC2104	HMAC. Keyed-Hashing for Message Authentication
RSA	PKCS#1	Public-Key Cryptography Standards (PKCS) #1. RSA Cryptography Specifications v1.5/2.1
Diffie-Hellman	ANSI X9.42	Public Key Cryptography for the Financial Services Industry. Agreement of Symmetric Keys Using Discrete Logarithm Cryptography
	PKCS#3	Diffie-Hellman Key-Agreement Standard
	ANSI X9.63	Public Key Cryptography for the Financial Services Industry - Key Agreement and Key Transport Using Elliptic Curve Cryptography
	IEEE 1363	Standard Specifications for Public-Key Cryptography
	ANSI X9.62	Public Key Cryptography For The Financial Services Industry. The Elliptic Curve Digital Signature Algorithm (ECDSA)
ECC	Ed25519	Edwards-curve, <i>Ed25519. high-speed high-security signatures</i> , Daniel J. Bernstein, Niels Duif, Tanja Lange, Peter Schwabe, and Bo-Yin Yang
	Curve25519	Montgomery curve, Curve25519. new Diffie-Hellman speed records, Daniel J. Bernstein
	FIPS 186-4	Digital Signature Standard (DSS)
	SEC 2	Recommended Elliptic Curve Domain Parameters, Certicom Research
	NIST SP 800-56A rev. 2	Recommendation for Pair-Wise Key Establishment Schemes Using Discrete Logarithm Cryptography

Table 2. CRYPTOCELL cryptography standards

Registers

Instances

Instance	Base address	TrustZo	Description			
instance	base address	Мар	Att	DMA	Split access	Description
CRYPTOCELL	0x50840000	HF	S	NSA	No	CryptoCell sub-system control interface

Register overview

Register	Offset	TZ	Description
ENABLE	0x500		Enable CRYPTOCELL subsystem

ENABLE

Address offset: 0x500

Enable CRYPTOCELL subsystem

Bit	numb	er		31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4
ID																															
Re	set 0x	00000	000	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ID	R/ W	Field	Value ID	Val	lue							Des	scrip	tion																	
А	RW	ENAB	LE									Enc	able (or di	sable	e the	e CR	YPTO	OCE	LL s	ubsy	rsten	n								
			Disabled	0								CR'	YPTC	CEL	L sul	osys	tem	disa	blec	ł											
			Enabled	1								Wh	ien e	nab	L sul led tl	he C	RYP				syste	em c	an k	oe ir	nitial	izec	d an	d co	ontr	olle	ed i

Host interface

This chapter describes host registers used to control the CRYPTOCELL subsystem behavior.

HOST_RGF block

The HOST_RGF block contains registers for configuring LCS and device root key K_{DR} , in addition to selecting which cryptographic key is connected to the AES engine.

Registers

Instances

Instance	Base address	TrustZor	ne		Split access	Description
instance	base address	Мар	Att	DMA	Spirt access	Description
CC_HOST_RGF	0x50840000	HF	S	NSA	No	Host platform interface

Register overview

Register	Offset	TZ	Description
HOST_CRYPTOKEY_SEL	0x1A38		AES hardware key select
HOST_IOT_KPRTL_LOCK	0x1A4C		This write-once register is the K_PRTL lock register. When this register is set, K_PRTL cannot be used and a zeroed key will be used instead. The value of this register is saved in the CRYPTOCELL AO power domain.
HOST_IOT_KDR0	0x1A50		This register holds bits 31:0 of K_DR. The value of this register is saved in the CRYPTOCELL AO power domain. Reading from this address returns the K_DR valid status indicating if K_DR is successfully retained.
HOST_IOT_KDRI	0x1A54		This register holds bits 63:32 of K_DR. The value of this register is saved in the CRYPTOCELL AO power domain.
HOST_IOT_KDR2	0x1A58		This register holds bits 95:64 of K_DR. The value of this register is saved in the CRYPTOCELL AO power domain.

Register	Offset	TZ	Description
HOST_IOT_KDR3	0x1A5C		This register holds bits 127:96 of K_DR. The value of this register is saved in the CRYPTOCELL AO power domain.
HOST_IOT_LCS	0x1A60		Controls lifecycle state (LCS) for CRYPTOCELL subsystem

HOST_CRYPTOKEY_SEL

Address offset: 0x1A38

AES hardware key select

Note: If the HOST_IOT_KPRTL_LOCK register is set, and the HOST_CRYPTOKEY_SEL register set to 1, then the HW key that is connected to the AES engine is zero

В	it numl	per		31	81 30 29 28 27 26 25 24 2								22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7 (
IC)																											
R	eset Ox	00000000		0	0	0	0	0	0	0	0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0												0	0 (
10	R/ W	Field	Value ID	Val	lue							Description																
A	RW	HOST_CR\	/PTOKEY_SEL		S								Select the source of the HW key that is used by the AES engine															
			K_DR	0								Use device root key K_DR from CRYPTOCELL AO power domain																
			K_PRTL	1								Use	har	d-co	oded	RTL	key	K_P	RTL									
			Session	2	L							Use	e pro	vide	d ses	ssion	key											

HOST_IOT_KPRTL_LOCK

Address offset: 0x1A4C

This write-once register is the K_PRTL lock register. When this register is set, K_PRTL cannot be used and a zeroed key will be used instead. The value of this register is saved in the CRYPTOCELL AO power domain.

Bit	numb	er		31	31 30 29 28 27 26 25 24 2									21	20	19	18	17	16	15	14	13	12	11	10	9	8	7
ID																												
Re	set Ox(0000000		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ID	R/ W	Field	Value ID	Va	lue							Des	scrip	tion														
А	RW	HOST_IOT	_KPRTL_LOCK										This register is the K_PRTL lock register. When this register is set, K_Pl and a zeroed key will be used instead. The value of this register is sat CRYPTOCELL AO power domain.															
			Disabled	0								K_F	PRTL	can	be s	selec	ted	for u	ıse f	rom	regis	ster	HOS	ST_C	CRYI	РΤО	KEY	_SEL
			Enabled	1	1										bee will b					ct pc	wer-	-on	rese	t (Pi	OR)	. If k	 PF	RTL i

HOST_IOT_KDR0

Address offset: 0x1A50

This register holds bits 31:0 of K_DR . The value of this register is saved in the CRYPTOCELL AO power domain. Reading from this address returns the K_DR valid status indicating if K_DR is successfully retained.

Bit	numb	er		31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5
ID				Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
Re	set 0x	0000000	00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ID	R/ W	Field	Value ID	Val	lue							Des	cript	tion																
А	RW	HOST_K	OT_KDR0									Rec		- x00(bits 0000 ain.			n 128	3-bit	K_C)R ke	ey vc	alue	is no	ot ye	et re	taine	ed ir	n th	e Cl

ı	3it ı	numb	er		31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5
ı	D				Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
ı	Res	et 0x(0000000	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	D	R/ W	Field	Value ID	Va	lue	•	•					Des	cript	tion																
																0000 Ioma		/hen	128	-bit	K_D	R ke	y va	lue i	s su	cces	sfull	y re	tain	ed ir	n th

HOST_IOT_KDRI

Address offset: 0x1A54

This register holds bits 63:32 of K_DR. The value of this register is saved in the CRYPTOCELL AO power domain.

Bit	num	ber		31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4
ID				Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	1
Res	set 0	<000000	000	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	9
ID	R/ W	Field	Value ID	Va	lue							Des	crip	tion																	
А	W	HOST_I	OT_KDRI									K_[DR bi	its 60	3:32																

HOST_IOT_KDR2

Address offset: 0x1A58

This register holds bits 95:64 of K_DR. The value of this register is saved in the CRYPTOCELL AO power domain.

Bit	num	ber		31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5
ID				Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	A
Re	set O	×000000	00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0						
ID	R/ W	Field	Value ID			Des	cript	tion																						
А														ts 9!	5:64															

HOST_IOT_KDR3

Address offset: 0x1A5C

This register holds bits 127:96 of K_DR. The value of this register is saved in the CRYPTOCELL AO power domain.

Bit	num	ber		31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5
ID				Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	A
Re	et 0	000000	00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0				
ID	R/ W	Field	Value ID	Val	lue							Des	crip	tion																
А	A W HOST_IOT_KDR3											K_[DR bi	its 12	7:96															

HOST_IOT_LCS

Address offset: 0x1A60

Controls lifecycle state (LCS) for CRYPTOCELL subsystem

Bit	numb	er		31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4
ID																											В				
Reset 0x000000002															0	0	0	0	0	0	0	0									
ID	R/ W	Field	Value ID	Val	lue							Des	cript	ion																	
A														sta	te va	lue.	This	field	d is v	write	-onc	e pe	er re	set.							

Bit	numb	er		31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4
ID																											В				
Res	et 0x(00000	002	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ID	R/ W	Field	Value ID	Val	lue							Des	scrip	tion																	
			Debug	0								CC	310 c	perd	ates i	in de	ebug	g mc	ode												
			Secure	2								CC	310 c	perd	ates i	in se	cure	e mo	de												
В	RW	LCS_IS	5_VALID									Rec		nly fi	eld. I	ndic	ates	if C	RYP	TOC	ELL	LCS	has	s be	en s	ucce	essf	ully	con	figu	ired s
			Invalid	0								Vali	id LC	:S no	ot yet	reto	ained	d in	the (CRY	PTO	CELI	_ AC) рс	wer	doı	mai	n			
			Valid	1								Vali	id LC	:S su	cces	sfully	/ ret	aine	d in	the	CRY	PTO	CEL	L A	Оро	owe	r do	omo	iin		

