

Kapazitätsplanung

("Prozessdesign")

Kapazitätsplanung bei Werkstattproduktion

Warteschlangensysteme

Sachgüter- und Dienstleistungsproduktionssysteme

Werkstücke ("Items") bzw. Kunden- oder Produktionsaufträge ("Jobs") — bei Dienstleistungsproduktion sind das i. d. R. die Kunden/Abnehmer selbst — warten auf Bearbeitung bzw. auf Service.

Bei perfekter Planung ("Scheduling") kann das Kapazitätsangebot exakt auf die -nachfrage abgestimmt werden. Dies gelingt aber auch nur unter besonders günstigen Bedingungen.

Hinzukommende stochastische Einflüsse führen unvermeidlich zu Warteschlangen.

Ursachen für Warteschlangen

- ▶ Die Kunden haben gewisse Servicewünsche, bzw. es wird eine bestimmte Erzeugnisvariante verlangt.
- ▶ Die Erfüllung der Servicewünsche verlangt eine gewisse Bedienzeit (Servicezeit, Bearbeitungszeit).
- ▶ Die Kundenaufträge kommen in gewissen Zeitabständen an, bzw. es herrscht asynchroner Materialfluss vor.

Zufällige Schwankungen (⇒ Stochastizität)!

Ursachen für Warteschlangen

Aufbau von Warteschlangen

- ▶ Die Kunden haben ausgefallene, spezielle Servicewünsche.
- ▶ Die Erfüllung der Servicewünsche dauert außergewöhnlich lange.
- Es kommen gerade mehr Kunden an, als bedient werden können.

Abbau von Warteschlangen

- ▶ Die Kunden haben Standard-Servicewünsche.
- ▶ Die Erfüllung der Servicewünsche geht außergewöhnlich schnell.
- ► Es kommen gerade weniger Kunden an, als bedient werden können.

Das **Zusammenwirken dieser stochastischen Effekte** ist nicht exakt vorhersagbar!

Eine zeitliche Koordination von Servicewünschen und entsprechendem Kapazitätsangebot der Serviceeinrichtung ist nicht möglich!

Warteschlangensystem

Littles Gesetz

Bestand L= Materialflussgeschwindigkeit $\lambda \cdot$ Durchlaufzeit W

Doppelter Durchsatz bei gleicher Durchlaufzeit (\rightarrow doppelter Bestand):

Gleicher Durchsatz bei erhöhter Durchlaufzeit (\rightarrow gestiegener Bestand):

Auslastung (Workload Rate) (bei nur einem Server)

$$\rho = \mathbb{E} \{T_S\} \cdot \frac{1}{\mathbb{E} \{T_A\}} = \frac{\lambda}{\mu}$$

Bedienrate (Service Rate)

$$\mu = \frac{1}{\mathrm{E}\left\{T_S\right\}}$$

Ankunftsrate (Arrival Rate)

$$\lambda = \frac{1}{\mathrm{E}\left\{T_A\right\}}$$

Warteschlangensystem

[Spezialfall:]

- exponentialverteilte Zwischenankunftszeiten (Poisson-Ankunftsprozess)
 - hd Anzahl X ankommender Werkstücke ist poissonverteilt mit Rate λ

$$P[X = 1] = P[N(t + \Delta t) - N(t) = 1] \approx \lambda \Delta t$$

- exponentialverteilte Bearbeitungszeiten
 - ${
 hd}$ Anzahl Y fertiger Werkstücke (wenn n Server arbeiten) ist poissonverteilt mit Rate $n\cdot \mu$
- ▶ 1 Server

$$P[Y = 1] = P[N(t + \Delta t) - N(t) = -1] \approx \mu \Delta t$$

\implies M/M/1-Warteschlangensystem

unbeschränkter Warteraum, unbeschränkte Kundenquelle,
 FCFS-Warteschlangendisziplin (FCFS = first come first served)

M/M/1-Warteschlangensystem

Bestandsentwicklung

Zustandswahrscheinlichkeiten

$$P_{n}(t + \Delta t) = P_{n}(t) \cdot (1 - \lambda \Delta t) \cdot (1 - \mu \Delta t)$$

$$+ P_{n+1}(t) \cdot (1 - \lambda \Delta t) \cdot (\mu \Delta t)$$

$$+ P_{n-1}(t) \cdot (\lambda \Delta t) \cdot (1 - \mu \Delta t)$$

$$+ P_{n}(t) \cdot (\lambda \Delta t) \cdot (\mu \Delta t)$$

Auslastung

$$\rho = \frac{\lambda}{\mu} = \lambda \cdot \mathbb{E} \left\{ T_S \right\}$$

Zustandswahrscheinlichkeiten

$$P_n = P[N = n] = P_{n-1} \cdot \rho = P_0 \cdot \rho^n$$

 $P_0 = P[N = 0] = 1 - \rho$

$(n = 1, 2, 3, \ldots)$

erwarteter Bestand im System

$$L = E\{N\} = \frac{\rho}{1 - \rho}$$

Littles Gesetz: $L = \lambda \cdot W$

erwartete Durchlaufzeit

$$W = E\{T\} = \frac{L}{\lambda} = \frac{1}{\mu \cdot (1 - \rho)}$$

M/M/1-Warteschlangenmodell

Auslastung

$$\rho = \frac{\lambda}{\mu} = \lambda \cdot \mathbb{E} \left\{ T_S \right\}$$

Zustandswahrscheinlichkeiten

$$P_n = P[N = n] = P_{n-1} \cdot \rho = P_0 \cdot \rho^n$$

 $P_0 = P[N = 0] = 1 - \rho$

$(n = 1, 2, 3, \ldots)$

erwartete Warteschlangenlänge

$$L_Q = E\{N_Q\} = L - E\{N_S\} = \frac{\rho^2}{1-\rho}$$

Littles Gesetz: $L_Q = \lambda \cdot W_Q$

erwartete Wartezeit

$$W_Q = \mathrm{E}\left\{T_Q\right\} = \frac{L_Q}{\lambda} = \frac{\rho}{\mu \cdot (1-\rho)}$$

Fließproduktion

einheitlicher Materialfluss

Kapazitätsplanung bei Fließproduktion

Arbeitsanalyse

Beispiel Arbeitselemente

								8
Elementzeit t_i [Zeiteinheiten]	3	1	2	5	4	4	7	$\overline{1}$

Vorranggraph (Reihenfolgerestriktionen)

(Beispiel aus Günther/Tempelmeier (2016))

Beispiel Arbeitselemente

Arbeitselement Nr. i								8
Elementzeit t_i [Zeiteinheiten]	1.2	1.2	1.8	1.6	1.3	2.0	1.4	1.3

Vorranggraph (Reihenfolgerestriktionen)

(Beispiel aus Günther/Tempelmeier (2016))

Konfigurierung von Fließproduktionssystemen

Planungsprobleme:

Leistungsabstimmung

- Arbeitsanalyse hinsichtlich
 - * Arbeitselemente (elementare Arbeitsgänge)
 - * Elementzeit (Arbeitsgangdauer)
 - * Produktmix (Varianten des Grundprodukts)
 - * Vorranggraph (technologisch bedingte Reihenfolgerestriktionen)
- - * Minimierung der Anzahl benötigter Bearbeitungsstationen
 - * Aufbau der einzelnen Bearbeitungsstationen: Zuordnung der Arbeitselemente zu den Stationen ("Arbeitsinhalt")
 - * Restriktionen:
 - · vorgegebene Produktionsrate bzw. Taktzeit
 - Unteilbarkeit der Arbeitselemente
 - · z. T. technologisch zwingende Bearbeitungsreihenfolge

Leistungabstimmung

[Zunächst unterstellenw ir deterministische Bedingungen:]

- keine Maschinenausfälle
- ▶ keine schwankenden Bearbeitungszeiten
- ▶ keine variantenabhängigen Elementzeiten
- synchroner Materialfluss
- = deterministische Elementzeiten
- = 100 %ig zuverlässige Transferstraßen
- ⇒ "Klassische Fließbandabstimmung"

Das klassische Fließbandabstimmungsproblem (Simple Assembly-Line Balancing Problem)

Ein Optimierungsmodell zur klassischen Fließbandabstimmung

Modell SALBP

Was muss festgelegt werden — Entscheidungsvariablen:

 $y_m \in \{0,1\}$... Wieviel Stationen werden benötigt?

$$y_m = \begin{cases} 1 \text{ , wenn die } m \text{te Station ben\"otigt wird} \\ 0 \text{ sonst} \end{cases}$$

 $x_{im} \in \{0;1\}$... Welche Arbeitselemente werden an den einzelnen Stationen ausgeführt?

$$x_{im} = \begin{cases} 1 \text{ , wenn Arbeitselement } i \text{ der Station } m \\ \text{zugeordnet wird} \\ 0 \text{ sonst} \end{cases}$$

Modell SALBP

Was ist gegeben — Indexmengen:

I ... Anzahl Arbeitselemente

M ... maximale Anzahl Stationen

 \mathcal{N}_i ... Menge der direkten Nachfolger des Arbeitselements i

Was ist gegeben — Daten:

C ... Taktzeit

 t_i ... Elementzeit (Arbeitsgangdauer) des Arbeitselements i

Modell SALBP

Minimiere die Anzahl benötigter Stationen: $Z = \sum_{m=1}^{M} y_m$ unter Berücksichtigung von

Zuordnungsrestriktionen

Vollständige und eindeutige Zuordnung der Arbeitselemente $i = 1, 2, \dots, I$:

$$\sum_{m=1}^{M} x_{im} = 1$$

Taktzeitrestriktionen: Obergrenze an allen Stationen m = 1, 2, ..., M:

$$\sum_{i=1}^{I} t_i \cdot x_{im} \le C \cdot y_m$$

Reihenfolgerestriktionen in bezug die Arbeitselemente $i = 1, 2, \dots, I-1$:

$$\sum_{m=1}^{M} m \cdot x_{im} \leq \sum_{m=1}^{M} m \cdot x_{jm} \quad \text{(jeweils für die Nachfolgearbeitsgänge } j \in \mathcal{N}_i \text{)}$$

Äquivalente Zielsetzungen:

Minimiere die Anzahl Stationen:

Z

Minimiere die Durchlaufzeit eines Werkstücks:

$$Z \cdot C$$

► Minimiere die Summe der Leerzeiten:

$$\sum_{m=1}^{Z} \left(C - \sum_{i=1}^{I} t_i \cdot x_{im} \right) = Z \cdot C - \sum_{i=1}^{I} t_i$$

► Maximiere die **Auslastung** (den Bandwirkungsgrad):

$$1 - \frac{Z \cdot C - \sum_{i=1}^{I} t_i}{Z \cdot C} = \frac{\sum_{i=1}^{I} t_i}{Z \cdot C}$$

Heuristische Lösungsverfahren

Heuristische Lösungsverfahren zum SALBP

Bilde sukzessive die Stationen durch Zuordnung möglichst vieler Arbeitselemente unter Beachtung der

- ► Reihenfolgerestriktionen,
- ▶ Taktzeitrestriktion!

Wähle aus mehreren möglichen Arbeitselementen gemäß einem **Priori- tätsregelverfahren** z. B. dasjenige mit

- ▶ der größten Anzahl Nachfolger,
- der längsten Elementzeit,
- der kürzesten Elementzeit,
- dem höchsten Positionswert!
 (= Summe der Elementzeit mit den Elementzeiten der Nachfolger)

Fließbandabstimmung: Prioritätsregelverfahren

Beispiel Klassische Fließbandabstimmung

vorgegebene Produktionsrate

X=42 Stück pro Schicht, d. h. 42 Stück in T=462 [Minuten]

maximale (größtzulässige) Taktzeit

(= Kehrwert der vorgegebenen Produktionsrate)

$$C = \frac{T}{X} = \frac{462 \, [\mathrm{Minuten}]}{42 \, [\mathrm{St\"{u}ck}]} = 11 \, \, \mathrm{Minuten} \, \, \mathrm{pro} \, \, \mathrm{St\"{u}ck}$$

Mindestanzahl (theoretisch minimale Anzahl) an Stationen

$$M_{\min} = \frac{\sum \text{Elementzeiten}}{C} = \frac{53}{11} = 4.8\overline{1} \implies \text{aufgerundet: } M_{\min} = \lceil 4.8\overline{1} \rceil = 5$$

Fließbandabstimmung: Prioritätsregelverfahren

Beispiel 10 Arbeitselemente, Taktzeit 11 Minuten

Sta-	Arbeitselemente		Element-	Stations-	Rest-	
tion	einplanb	ar nach	ausgewählt	zeit	zeit	zeit
	Reihenfolge	Taktzeit		[min]	[min]	[min]
I	А	А	А	5	5	6
	B, C, D	B, C, D	B mehr Nachfolger als C, ansonsten willkürlich	3	8	3
II	C, D, E	C, D, E	D hat die meisten Nachfolger	6	6	5
	C, E, G	$\begin{array}{c} C \\ \mathrm{nur} \ C \ \mathrm{passt} \ \mathrm{noch} \end{array}$	С	4	10	1
III	E, F, G	E, F, G	hat die meisten Nachfolger	8	8	3
	E, F, I	F nur F passt noch	F	3	11	0
IV	E, I	E, I	E mehr Nachfolger als I	8	8	3
V	Н, І	Н, І	H willkürlich	5	5	6
	I	I	I	6	11	0
VI	J	J	J	5	5	6

Fließbandabstimmung: Prioritätsregelverfahren

Beispiel Klassische Fließbandabstimmung

Bandwirkungsgrad

$$U=1-\frac{\sum \text{Leerzeiten}}{\text{Gesamtdurchlaufzeit}}=1-\frac{3+1+0+3+0+6}{6\cdot 11}=80.\overline{30}\,\%$$

Fließproduktion mit stochastischen Bearbeitungszeiten

Stochastisch schwankende Bearbeitungszeiten führen zu zufälligen Wartezeiten vor den Stationen.

Puffer sind Warteräume/Lager für Werkstücke zwischen zwei Stationen.

Leistungsmindernde Effekte bei beschränkten Puffern:

- ► Starving: Eine Station kann nicht mit der nächsten Bearbeitung beginnen, weil der davorliegende Puffer leer ist.
- ▶ Blocking: Eine Station kann nicht mit der nächsten Bearbeitung beginnen, weil der nachfolgende Puffer voll ist und fertige Werkstücke nicht weitertransportiert werden können.

Effizienzüberlegungen:

- ▶ Das Ausmaß von Blocking und Starving verkleinert sich mit der Puffergröße. (⇒ höhere Produktionsrate)
- ► Pufferbestände verursachen Lagerkosten.
- ► Technische Lösungen für Puffereinrichtungen erfordern Investitionsaufwand.

Konfigurierung von Fließproduktionssystemen

Planungsprobleme:

Leistungsabstimmung

- ▶ Minimierung der Anzahl benötigter Bearbeitungsstationen
- Aufbau der einzelnen Bearbeitungsstationen:
 Zuordnung der Arbeitselemente zu den Stationen ("Arbeitsinhalt")
- - * vorgegebene Produktionsrate bzw. Taktzeit
 - * Unteilbarkeit der Arbeitselemente
 - * z. T. technologisch zwingende Bearbeitungsreihenfolge

Pufferallokation

Leistungsanalyse

Leistungsanalyse bei stochastischen Bearbeitungszeiten

Leistungsanalyse bei Reihenproduktion

Betrachtung der Stationen als eine Reihe von Warteschlangensystemen:

- ▶ μ_m ... Bearbeitungsrate der Station m, b_m ... mittlere Bearbeitungszeit eines Werkstücks an der Station m $\Longrightarrow \mu_m = \frac{1}{b_m}$
- $\blacktriangleright \lambda_m$... Ankunftsrate von Werkstücken an der Station m
- ▶ unbeschränkte Puffer, d. h. Outputrate an Station $m = \min\{\lambda_m, \mu_m\} = \lambda_{m+1}$
- $ightharpoonup \lambda_1 = \lambda \dots$ Ankunftsrate von Werkstücken aus dem Lager für Vorprodukte
- ▶ Produktionsrate

$$X = \min\{\lambda, \mu_1, \mu_2, \dots, \mu_M\}$$

Stationen als M/M/1-Warteschlangensysteme

[Spezialfall:]

- exponentialverteilte Zwischenankunftszeiten (Poisson-Ankunftsprozess)
- exponentialverteilte Bearbeitungszeiten, d. h. Stationszeiten

Auslastung der Station m:

$$(m = 1, 2, \dots, M)$$

$$\rho_m = \frac{\lambda_m}{\mu_m} = \lambda_m \cdot b_m$$

Zustandswahrscheinlichkeiten für die Station m:

$$(m = 1, 2, \dots, M)$$

$$P_{n_m} = (1 - \rho_m) \cdot \rho_m^{n_m} \qquad (n_m = 0, 1, 2, \ldots)$$

mittlerer Bestand an der Station m:

$$(m = 1, 2, \dots, M)$$

$$L_m = \frac{\rho_m}{1 - \rho_m}$$

mittlere Warteschlangenlänge vor der Station m: (m = 1, 2, ..., M)

$$(m=1,2,\ldots,M)$$

$$L_m^{\mathcal{Q}} = \frac{\rho_m^2}{1 - \rho_m}$$

Stationen als M/M/1-Warteschlangensysteme

[Spezialfall:]

- exponentialverteilte Zwischenankunftszeiten (Poisson-Ankunftsprozess)
- exponentialverteilte Bearbeitungszeiten, d. h. Stationszeiten

Auslastung der Station *m*:

$$(m = 1, 2, \dots, M)$$

$$\rho_m = \frac{\lambda_m}{\mu_m} = \lambda_m \cdot b_m$$

Zustandswahrscheinlichkeiten für die Station *m*:

$$(m = 1, 2, \dots, M)$$

$$P_{n_m} = (1 - \rho_m) \cdot \rho_m^{n_m} \qquad (n_m = 0, 1, 2, \ldots)$$

mittlerer Bestand an der Station m:

$$(m = 1, 2, \dots, M)$$

$$L_m = \frac{\rho_m}{1 - \rho_m}$$

mittlere Durchlaufzeit an der Station m:

$$(m=1,2,\ldots,M)$$

$$W_m = \frac{b_m}{1 - \rho_m}$$

Leistungsanalyse bei Reihenproduktion

Beispiel Leistungsanalyse bei M/M/1-Subsystemen

- ightharpoonup Reihenproduktion mit insgesamt M=5 Stationen
- ▶ Ankunftsrate vor der ersten Station: $\lambda = 0.08$ Stück pro Minute
- ▶ mittlere Bearbeitungszeit an allen Stationen: $b_m = 10$ Minuten

Ankunftsrate an Station m:

$$\lambda_1 = \lambda = 0.08, \ \lambda_m = \min\{\lambda_{m-1}, \mu_{m-1}\} = 0.08$$
 $(m = 2, \dots, 5)$

Stationsauslastung $U_m = \lambda_m \cdot b_m = 0.08 \cdot 10 = 0.8$

Wahrscheinlichkeitsverteilung für den Bestand an den Stationen

$$P_0 = 0.2, P_1 = 0.16, P_2 = 0.128, P_3 = 0.1024, P_4 = 0.0819, \dots, P_{18} = 0.0036, \dots$$

Bestand
$$L_m = \frac{\rho_m}{1 - \rho_m} = \frac{0.8}{0.2} = 4$$
, $L = \sum_{i=1}^5 L_m = 20$

Durchlaufzeit
$$W_m = \frac{b_m}{1 - \rho_m} = \frac{10}{0.2} = 50$$
, $W = \sum_{i=1}^{5} W_m = 250$

Produktionsrate $X = \min\{\lambda, \mu_1, \mu_2, \mu_3, \mu_4, \mu_5\} = 0.08$