TD7 suites numériques

Exercice 1 - Suite homographique

Soit la suite réelle (u_n) définie par

$$u_0 = 3$$
 et $u_{n+1} = \frac{4u_n - 2}{u_n + 1}$.

Pour $x \neq -1$, on pose $f(x) = \frac{4x-2}{x+1}$.

- 1. Étudier les variations de f sur $[1, +\infty[$.
- 2. Démontrer que, pour tout $n \ge 0$, on a $u_n > 1$.
- 3. On définit une suite (v_n) à partir de (u_n) en posant, pour tout $n \in \mathbb{N}$,

$$v_n = \frac{u_n - 2}{u_n - 1}.$$

Démontrer que (v_n) est une suite géométrique, et donner l'expression de son terme général.

- 4. En déduire la valeur de u_n en fonction de n.
- 5. Justifier enfin que (u_n) converge et déterminer sa limite.

EXERCICE 2 - Limite infinie

Soit (u_n) la suite définie par $u_0 = 3$ et $u_{n+1} = (u_n^2 + 2)/3$.

- 1. Démontrer que $u_n \geq 3$ pour tout $n \in \mathbb{N}$.
- 2. Démontrer que la suite (u_n) est croissante.
- 3. On suppose que la suite (u_n) converge. Quelles peuvent être les limites possibles de (u_n) ?
- 4. En déduire que la suite (u_n) tend vers $+\infty$.

Exercice 3 - Approximation du nombre d'or

On appelle nombre d'or et on note ϕ la solution positive réelle de l'équation d'inconnue réelle x:

$$x^2 - x - 1 = 0.$$

En particulier, on a $\phi = \sqrt{1+\phi}$.

- 1. Justifier, sans calculatrice, que $1 < \phi < 2$.
- 2. On considère la suite (u_n) définie sur \mathbb{N}^* par

$$u_1 = \sqrt{1}, \ u_2 = \sqrt{1 + \sqrt{1}}, \ u_3 = \sqrt{1 + \sqrt{1 + \sqrt{1}}}$$

et ainsi de suite,

$$u_n = \sqrt{1 + \dots + \sqrt{1 + \sqrt{1}}}$$

avec n radicaux.

Exprimer, pour tout entier n supérieur ou égal à 1, u_{n+1} en fonction de u_n .

3. Montrer que, pour tout $n \geq 1$,

$$1 \le u_n \le \phi$$
.

- 4. Montrer que la suite (u_n) est croissante.
- 5. Démontrer que (u_n) converge vers ϕ .
- 6. Montrer que, pour tout entier $n \ge 1$,

$$|u_{n+1} - \phi| \le \frac{1}{2}|u_n - \phi|.$$

7. En déduire que, pour tout $n \ge 1$,

$$|u_n - \phi| \le \frac{1}{2^{n-1}}.$$

Exercice 4 - Suites récurrentes linéaires d'ordre 2

Donner l'expression du terme général des suites récurrentes (u_n) suivantes :

- 1. $u_{n+2} = 3u_{n+1} 2u_n$, $u_0 = 3$, $u_1 = 5$.
- 2. $u_{n+2} = 4u_{n+1} 4u_n$, $u_0 = 1$, $u_1 = 0$.
- 3. $u_{n+2} = u_{n+1} u_n$, $u_0 = 1$ et $u_1 = 2$.

EXERCICE 5 - Nature

Étudier la nature des suites suivantes, et déterminer leur limite éventuelle :

$$1. u_n = \frac{\ln(n!)}{n_n}$$

1.
$$u_n = \frac{\ln(n!)}{n}$$
 2. $u_n = \frac{\lfloor nx \rfloor}{n^{\alpha}}$ en fonction de $x, \alpha \in \mathbb{R}$ 3. $u_n = \frac{1}{n!} \sum_{k=1}^{n} k!$

3.
$$u_n = \frac{1}{n!} \sum_{k=1}^{n} k$$

Exercice 6 - Partie entière

Soit (u_n) une suite convergente. La suite $(|u_n|)$ est-elle convergente?

Exercice 7 - Somme et produit

Soit (u_n) et (v_n) deux suites de nombres réels. On suppose que (u_nv_n) et que (u_n+v_n) convergent vers 0.

- 1. Démontrer que $(u_n^2 + v_n^2)$ converge vers 0.
- 2. En déduire que (u_n) et (v_n) convergent vers 0.

Exercice 8 - Moyenne de Cesàro

Soit $(u_n)_{n\geq 1}$ une suite réelle. On pose $S_n = \frac{u_1 + \dots + u_n}{n}$.

- 1. On suppose que (u_n) converge vers 0. Soient $\varepsilon > 0$ et $n_0 \in \mathbb{N}^*$ tel que, pour $n \geq n_0$, on a $|u_n| \leq \varepsilon$.
 - (a) Montrer qu'il existe une constante M telle que, pour $n \geq n_0$, on a

$$|S_n| \le \frac{M(n_0 - 1)}{n} + \varepsilon.$$

(b) En déduire que (S_n) converge vers 0.

- 2. On suppose que $u_n = (-1)^n$. Que dire de (S_n) ? Qu'en déduisez-vous?
- 3. On suppose que (u_n) converge vers l. Montrer que (S_n) converge vers l.
- 4. On suppose que (u_n) tend vers $+\infty$. Montrer que (S_n) tend vers $+\infty$.

EXERCICE 9 - Suite sur-additive

Soit $(u_n)_{n\geq 0}$ une suite de réels telle que, pour tout $(m,n)\in\mathbb{N}^2$,

$$u_{m+n} \ge u_m + u_n.$$

On suppose que l'ensemble $\left\{\frac{u_n}{n};\ n\in\mathbb{N}^*\right\}$ est majoré, et on note ℓ sa borne supérieure.

- 1. Soit $m, q, r \in \mathbb{N}$. On pose n = mq + r. Comparer u_n et $qu_m + u_r$.
- 2. On fixe $m \in \mathbb{N}^*$ et $\varepsilon > 0$. En utilisant la division euclidienne de n par m, démontrer qu'il existe un entier N tel que, pour tout n > N,

$$\frac{u_n}{n} \ge \frac{u_m}{m} - \varepsilon.$$

3. Démontrer que $\lim_{n\to+\infty} \frac{u_n}{n} = \ell$.

Exercice 10 - Produit de Cauchy

Soient (u_n) et (v_n) deux suites réelles convergeant respectivement vers u et v. Montrer que la suite $w_n = \frac{u_0v_n + \dots + u_nv_0}{n+1}$ converge vers uv.

Exercice 11 - Convergence des suites extraites

Soit (u_n) une suite de nombres réels.

- 1. On suppose que (u_{2n}) et (u_{2n+1}) convergent vers la même limite. Prouver que (u_n) est convergente.
- 2. Donner un exemple de suite telle que (u_{2n}) converge, (u_{2n+1}) converge, mais (u_n) n'est pas convergente.
- 3. On suppose que les suites (u_{2n}) , (u_{2n+1}) et (u_{3n}) sont convergentes. Prouver que (u_n) est convergente.

Cette feuille d'exercices a été conçue à l'aide du site http://www.bibmath.net