浙江大学 2010 - 2011 学年 秋冬 学期 《 高等代数 I 》课程期末考试试卷

课程号:_	<u>061B0040</u> , 开课学院: <u>理学院</u>
考试试卷:	A 卷 √、B 卷 (请在选定项上打 √)
考试形式:	闭√、开卷(请在选定项上打√),允许带入场
考试日期:	
4.560	诚信考试,沉着应考,杜绝违纪。

请注意: 所有题目必须做在答题本上! 做在试卷纸上的一律无效! 请勿将答题本拆开或撕页! 如发生此情况责任自负!

考生姓名:		学号:	所属院系:	

(本试卷满分)0分)

- 1. (15分)设向量组 $\alpha_1 = (1 \ 2 \ -2)^T, \alpha_2 = (2 \ 3 \ 1)^T, \alpha_3 = (-1 \ 2 \ a)^T$,向量 $\beta = (2 \ 1 \ b)^T$ 。 试求
 - (1) a,b 取何值时,向量 β 可由向量组 $\alpha_1,\alpha_2,\alpha_3$ 线性表示?
- (2) a,b 取何值时,向量 β 可由向量组 $\alpha_1,\alpha_2,\alpha_3$ 线性表示且表示法唯一? 并将 β 写成 $\alpha_1,\alpha_2,\alpha_3$ 的线性组合。
- 2. $(10 \, f)$ 设 $_A$ 是一个 $_n$ 阶实矩阵。试证明: $_A$ 是某个欧氏空间的度量矩阵当且仅当 $_A$ 是正定的。
- 3. $(10 \, f)$ 设A是一个n阶可逆反对称实矩阵, α 是一个n元实列向量,b是一个实数。试证明
 - $(1) \alpha^T A \alpha = 0;$
 - (2) $\begin{pmatrix} A & \alpha \\ \alpha^T & b \end{pmatrix}$ 可逆当且仅当 $b \neq 0$.
- 4. (10分)设 a₁a, ···a₁≠0, 试证明:

$$\begin{vmatrix} 1 + a_1 & 1 & \cdots & 1 & 1 \\ 2 & 2 + a_2 & \cdots & 2 & 2 \\ \vdots & \vdots & & \vdots & \vdots \\ n - 1 & n - 1 & \cdots & n - 1 + a_{n-1} & n - 1 \\ n & n & \cdots & n & n + a_n \end{vmatrix} = \left(\prod_{i=1}^n a_i\right) \left(1 + \sum_{i=1}^n \frac{i}{a_i}\right)$$

- 5. (10分)设A是一个幂零矩阵(即存在正整数m使得 $A^{m}=O$),试证明:如果A可对角化,则A=O。
- 6. (10 分)设 $A = (a_{ij})_{n \times n}$ 是一个实随机矩阵(即对于任意的 $1 \le i, j \le n$,有 $a_{ij} \ge 0$ 且 $\sum_{l=1}^{n} a_{il} = 1$),试证明:
 - (1) 若ね是4的一个实特征值,则-1≤4≤1;
 - (2) $\lambda = 1$ 是 A 的一个特征值。

7. (10分) 设矩阵
$$A = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 2 \\ 0 & -1 & a-3 & -2 \\ 3 & 2 & 1 & a \end{pmatrix}$$
.

- (1) 试证明: 齐次线性方程组ATAX=0与AX=0同解;
- (2) 试问a为何值时齐次线性方程组 $A^TAX = 0$ 有唯一解、有无穷多解?并在有无穷多解时求其通解。
- 8. (10 分)设V 是一个n 维线性空间, σ 是V 上的一个线性变换。如果存在向量 $\alpha \in V$ 使得 $\sigma^{n-1}(\alpha) \neq \theta$ (V 中的零向量)且 $\sigma^{n}(\alpha) = \theta$,试证明:
 - (1) $\alpha, \sigma(\alpha), \sigma^2(\alpha), ..., \sigma^{n-1}(\alpha)$ 是V 的一组基;
- (2) 试求 σ 在基 $\alpha,\sigma(\alpha),\sigma^2(\alpha),...,\sigma^{n-1}(\alpha)$ 下的矩阵。
- 9. (15分) 设 $\alpha = (1 \ 2 \ 3 \ 4)^T, A = \alpha \alpha^T$ 。
 - (1) 试证明: A的秩=1;
 - (2) 试证明: $\alpha 是 A$ 的一个特征向量;
 - (3) 试求一个正交矩阵Q和一个对角阵 Λ 使得 $Q^{-1}AQ = \Lambda$ 。