Дискретная математика

Сидоров Дмитрий

Группа БПМИ 219

January 9, 2022

№1

Найдите коэффициент при в разложении многочлена на мономы.

Решение:

Многочлен имеет степень 12, те состоит из 12 скобок. Заметим, что коэффициенты при каждом x_1, x_2, \ldots, x_6 в каждой скобке $(x_1 + x_2 + \cdots + x_6)$ равны 1. Тогда, выбирая по две скобки (т к степень каждого x_i равна 2) для каждого х получим, что коэффициент равен $\frac{12!}{(2!)^6}$ (тк $\binom{12}{2} \cdot \binom{10}{2} \cdot \binom{8}{2} \cdot \binom{6}{2} \cdot \binom{4}{2} \cdot \binom{2}{2} = \frac{12!}{(2!)^6}$). Заметим, что 2! = 2, т е $\frac{12!}{(2!)^6} = \frac{12!}{2^6}$.

Ответ: $\frac{12!}{26}$

№2

Есть 3 гвоздики, 4 розы и 5 тюльпанов. Сколькими способами можно составить букет из 7 цветов, используя имеющиеся цветы? (Цветы одного сорта считаем одинаковыми.) Ответом должно быть число в десятичной записи.

Решение:

Рассмотрим букет из 7 цветов. Пусть в нём x гвоздик, y роз и z тюльпанов. Тогда ответ на задачу - количество решений уравнения x+y+z=7, причём $0 \le x \le 3$, $0 \le y \le 4$, $0 \le z \le 5$ и одновременно x,y,z не равны 0. Тогда рассмотрим количество букетов в зависимости от количества гвоздик в нём.

- (y,z): (2,5), (3,4), (4,3) Итого 3 пары.
- (y,z) (1,5), (2,4), (3,3), (4,2) Итого 4 пары.
- $x = 2 \Rightarrow y + z = 5 \Rightarrow$ возможные варианты (y, z): (0, 5), (1, 4), (2, 3), (3, 2), (4, 1) Итого 5 пар.
- (4) $x = 3 \Rightarrow y + z = 4 \Rightarrow$ возможные варианты (y, z): (0, 4), (1, 3), (2, 2), (3, 1), (4, 0) Итого 5 пар.

Таким образом, всго 3+4+5+5=17 решений $\Rightarrow 17$ пособами можно составить букет из 7 цветов.

Ответ: 17

№3

Сколько есть 6-элементных подмножеств множества чисел $[15] = \{1, 2, ..., 15\}$, в которых любая пара чисел различается хотя бы на 2? Ответом должно быть число в десятичной записи.

Решение:

Заметим, что если любая пара чисел различается хотя бы на 2, то в 6-элементном подмножестве нет пар чисел, которые различаются на 0 (те одинаковых) или на 1 (те подряд идущих). Первое условие всегда выполняется, тк в 6-элементном подмножестве множества чисел [15] все числа различные. Посчитаем количество 6-элементных подмножеств множества чисел $[15] = \{1, 2, \dots, 15\}$, в которых нет подряд идущих чисел. Заметим, что каждое 6-элементное подмножество состот из 6 элементов множества чисел [15], те берётся ровно 6 чисел из множества чисел [15], а значит каждое такое подмножество задаётся как последовательность длины 15 из 0 и 1, где на iом месте стоит 0, если і не входит в подмножество, и 1 иначе. Таким образом, каждое подмножество задаётся как последовательность из 6 единиц и 15 - 6 = 9 нулей, при этом, тк в подмножестве нет подряд идущих чисел, в последовательности нет подряд идущих 1. Таким образом, искомое количество подмножеств равно количеству таких последовательностей. Заметим, что можно расставить 6 единиц произвольным способом в последовательности длины 15 - 5=10 (на остальных 4 местах нули) и добавить ещё 5 нулей так, что никакие две единицы не будут стоять рядом, значит количество удовлетворяющих последовательностей равно $C_{10}^6 = \frac{10!}{6! \cdot 4!} = \frac{10 \cdot 9 \cdot 8 \cdot 7}{2 \cdot 3 \cdot 4} = \frac{10 \cdot 9 \cdot 8 \cdot 7}{3} = 70 \cdot 3 = 210$

Ответ: 210

№4

Найдите количество монотонных тотальных функций из $[8] = \{1, 2, \dots, 8\}$ в $[12] = \{1, 2, \dots, 12\}$. Функция f называется монотонной, если из $x \le y$ следует $f(x) \le f(y)$.

Решение:

Если функция тотальна, то каждому из 8 элементов из [8] необходимо поставить в соответствие 1 элемент из [12]. Заметим, что 8 элементов можно расположить в порядке неубывания единственным образом. Значит количество монотонных тотальных функций равно количеству способов выбрать 8 элементов из [12], при этом элементы из [12] могут повторяться, а значит количество способов равно $C_{8+12-1}^8 = C_{19}^8 = \frac{19!}{11! \cdot 8!}$

Ответ: $\frac{19!}{11!.8!}$

 $N_{2}5$

Сколько различных слов (не обязательно осмысленных) можно получить, переставляя буквы в слове «ОБОРОНОСПОСОБНОСТЬ» так, чтобы никакие две буквы О не стояли рядом?

Решение:

В слове ОБОРОНОСПОСОБНОСТЬ 18 букв, в нём 7 букв О. По условию никакие две буквы О не стоят рядом. Посчитаем количество способов расставить букву О. Заметим, что можно расставить буквы О произвольным способом в слове длины 18 - 6 = 12 и потом добавить в слово 6 мест так, чтобы никакие две буквы О не стояли рядом. Значит количество способов расставить буквы О C_{12}^7 . После расстановки букв О останется ещё 11 букв, которые надо расставить, из них повторяются буквы Б (2 раза), Н (2 раза) и С (3 раза), остальные не повторяются, а значит количество способов расставить оставшиеся 11 букв $\frac{11!}{2!2!3!} = \frac{11!}{24}$, таким образом, всего различных слов $C_{12}^7 \cdot \frac{11!}{24} = \frac{12! \cdot 11!}{5! \cdot 7! \cdot 24}$

Ответ: $\frac{12! \cdot 11!}{5! \cdot 7! \cdot 24}$

2

№6

Сколько есть способов разместить 20 различных книг на 5 полках, если каждая полка может вместить все 20 книг? Размещения, различающиеся порядком книг на полках, считаются различными.

Решение:

Количество искомых размещений - это количество решений уравнения $x_1 + x_2 + x_3 + x_4 + x_5 = 20$, где x_i - количество книг на i - ой полке, те это количество последовательностей из 20 шариков и 4 перегородок, те $\frac{24!}{4!20!} \cdot 20! = \frac{24!}{4!}$ (умножаем на 20!, тк важен порядок книг).

Otbet: $\frac{24!}{4!}$

№7

Найдите количество таких всюду определённых функций f из 7-элементного множества A в себя, что $f \circ f = id_A$. Ответом должно быть число в десятичной записи.

Решение:

Заметим, что если f - отображение A в себя и $f \circ f = id_A$, то если f(x) = a, то f(a) = f(f(x)) = x. Заметим, что если f(a) = b и $a \neq b$, то f(b) = a, причём $b \neq a$, те для каждого элемента, который не переходит в себя, существует "парный элемент", а значит количество элементов, которые не переходят в себя, чётно, а значит количество элементов, которые переходят в себя нечётно (тк всего 7 элементов). Таким образом, элементов, которые переходят в себя, может быть 1, 3, 5 или 7. Рассмотри 4 случая:

1 элемент) Есть 7 способов выбрать элемент, который переходит в себя, остаётся 6 элементов. Посчитаем количесвто способов разбить 6 элементов на пары: Первую пару можно выбрать C_6^2 способами, вторую C_4^2 , третью C_2^2 , значит способов $\frac{C_6^2 \cdot C_4^2 \cdot C_2^2}{3!}$ (делим на 3!, тк порядок не важен) $=\frac{15 \cdot 6}{6} = 15$, итого $7 \cdot 15 = 105$ функций.

3 элемента) Есть $C_7^3 = \frac{5 \cdot 6 \cdot 7}{6} = 35$ способа выбрать 3 элемента, которые переходят в себя, остальные 4 разбиваются на пары 3 способами, итого $35 \cdot 3 = 105$ функций.

5 элементов) Выбираем 5 элементов $C_7^5 = \frac{6\cdot 7}{2} = 21$ способом, остальые 2 разбиваются на пары единственным способом, итого 21 функция.

7 элементов) Все элементы множества А переходят в себя ⇒ одна функция.

Таким образом, всего 105 + 105 + 21 + 1 = 232 функций.

Ответ: 232

№8

Найдите максимальное количество простых путей из заданной вершины s в заданную вершину t в ориентированном ациклическом графе на n вершинах. (Максимум берётся по всем ориентированным ациклическим графам с n вершинами и всем парам вершин s, t в каждом графе.)

Решение:

Будем считать, что $n \geq 2$, иначе существует только один путь (из вершины в себя). Зафиксируем вершины s и t и рассмотрим оставшиеся n-2 вершины (тк "максимум берётся по всем ориентированным ациклическим графам с n вершинами и всем парам вершин n0, n2 в каждом графе"). Заметим, что если существует простой путь

из s в t, то он имеет вид $sv_1v_2\dots v_kt$. По условию граф ациклический, те в нём нет циклов длины более 1. Тогда докажем, что если существует путь $sv_1v_2\dots v_kt$, то не существует другой путь из s в t, состоящий в точности из верших, входящих в путь $sv_1v_2\dots v_kt$, но в другом порядке. Пусть такой путь существует, путь имеет вид $sv_1\dots v_iv_{i+1}\dots v_kt$ и существует путь $sv_1\dots v_{i+1}v_k\dots v_mv_i\dots v_kt$ (обязательно найдутся такие вершины v_i и v_{i+1} такие, что v_{i+1} стоит левее v_i , иначе пути $sv_1\dots v_iv_{i+1}\dots v_kt$ и $sv_1\dots v_{i+1}v_k\dots v_mv_i\dots v_kt$ совпадают). Но тогда в исходном графе существует цикл $v_{i+1}v_k\dots v_mv_iv_{i+1}$, в котором более чем одна вершина, что невозможно по условию. Значит каждый путь из s в t определяется входящими в него верщинами, а всего таких путей столько, сколько подмножеств из n-2 вершин, те 2^{n-2} (каждую из n-2 вершин либо "берём" в путь, либо "не берём").

Ответ: 2^{n-2}