P10. Consider a datagram network using 32-bit host addresses. Suppose a router has four links, numbered 0 through 3, and packets are to be forwarded to the link interfaces as follows:

Destination Address Range	Link Interface
11100000 00000000 00000000 00000000 through 11100000 00111111 11111111 11111111	0
11100000 01000000 00000000 00000000 through 11100000 01000000 11111111 11111111	1
11100000 01000001 00000000 00000000 through 11100001 01111111 11111111 11111111	2
otherwise	3

- a. Provide a forwarding table that has five entries, uses longest prefix matching, and forwards packets to the correct link interfaces.
- b. Describe how your forwarding table determines the appropriate link interface for datagrams with destination addresses:

- a) Prefix Match Link Interface
- 11100000 00 C
- 1110000
- 11100001 1
- otherwise 3

- 3b) Prefix match for first address is 5th entry: link interface 3
- Prefix match for second address is 3rd entry: link interface 2
- Prefix match for third address is 4th entry: link interface 3

P11. Consider a datagram network using 8-bit host addresses. Suppose a router uses longest prefix matching and has the following forwarding table:

Prefix Match	Interface
00	0
010	1
011	2
10	2
11	3

For each of the four interfaces, give the associated range of destination host addresses and the number of addresses in the range.

Destination Address Range	Link Interface
00000000 through	0
00111111	
01000000 through	1
01011111	-
01100000	
through 0111111	2
10000000	
through 1011111	2
11000000	
through 1111111	3
number of addresses for interface $0 = 2^6 = 64$ number of addresses for interface $1 = 2^5 = 32$	
number of addresses for interface $2 = 2^6 + 2^5 = 64 + 32 = 9$	16

number of addresses for interface $3 = 2^6 = 64$

P13. Consider a router that interconnects three subnets: Subnet 1, Subnet 2, and Subnet 3. Suppose all of the interfaces in each of these three subnets are required to have the prefix 223.1.17/24. Also suppose that Subnet 1 is required to support at least 60 interfaces, Subnet 2 is to support at least 90 interfaces, and Subnet 3 is to support at least 12 interfaces. Provide three network addresses (of the form a.b.c.d/x) that satisfy these constraints.

223.1.17.0/25 Subnet2

223.1.17.128/26 subnet 1

223.1.17.192/28 Subnet3

- P21. Consider the network setup in Figure 4.22. Suppose that the ISP instead assigns the router the address 24.34.112.235 and that the network address of the home network is 192.168.1/24.
 - Assign addresses to all interfaces in the home network.
 - b. Suppose each host has two ongoing TCP connections, all to port 80 at host 128.119.40.86. Provide the six corresponding entries in the NAT translation table.