

PJM Markets 201

Unit Commitment and Dispatch

PJM State & Member Training Dept.

www.pjm.com | Public PJM©2024

Objectives

Student will be able to:

- Explain the differences between security constrained unit commitment (SCUC) and security constrained economic dispatch (SCED)
 - Describe security constrained unit commitment
 - Describe security constrained economic dispatch

SCUC and SCED - FERC Definition

"The operation of generation facilities to produce energy at the lowest cost to reliably serve consumers, recognizing any operational limits of generation and transmission facilities"

Source: September 30, 2005 order, p14

Sounds like an optimization problem!

Security Constrained Unit Commitment

- *Unit Commitment* is the process of turning on (committing) resources to meet load and other market requirements
- Security-Constrained Unit Commitment (SCUC) commits units while respecting limitations of the transmission system and unit operating characteristics

Offers Received from Generators

Supply Dispatched to Meet Demand

Unit Commitment Example

Gen1: 200MW @ \$50

Gen2: 300MW @ \$30

Gen3: 400MW @ \$80

Gen4: 200MW @ \$10

Gen5: 100MW @ \$40

In an unconstrained system, units are committed in simple economic order:

Gen4 - Gen2 - Gen5 - Gen1 - Gen3

SCUC - Example

SCUC - Example

Gen5: 100MW @ \$40

Security Constrained Economic Dispatch (SCED)

- SCED honors unit commitment and determines the level at which each committed resource should be operated
 - Hourly solution interval in DA
 - 5 minute solution interval in RT

Security Constrained Economic Dispatch (SCED)

- SCED, like SCUC, enforces the "security" (limitations) aspects of the transmission grid
- SCED must also consider operational limitations of generating plants, which may be different than limitations in SCUC
 - Ramp limitations, max run times, etc
 - Start-up costs no longer a factor

Generation Dispatch

SCUC + SCED and Operating Parameters

- SCUC and SCED become extremely complex with the addition of operating parameters
- Resources that may, on the surface, appear to be attractive to the optimization may contribute significantly to total bid production cost
- Optimization software may need to test several different scenarios to determine the least cost solution and still reliably meet demand

SCUC/SCED - Advanced Example

Area 1

Load = 200MW

Limit = 400MW

Gen1: 200MW @ \$50, SU=\$1,000

Gen2: 300MW @ \$30, SU=\$1,000

Gen3: 400MW @ \$80, SU=\$6,000

Gen4: 200MW @ \$10, SU=\$10,000

Gen5: 100MW @ \$40, SU=\$1,000

Area 2

Load = 600MW

SCUC/SCED - Advanced Example

- We know that Gen3 must be on-line to serve load in the congested area
- The question becomes which Area 1 units to commit to serve up to 600MW demand (200 local + 400 transfer)
 - Will now need to consider start-up costs as part of the total production cost

SCUC - Advanced Example

Total Production Cost = \$48,000

Area 1

Load = 200MW

Limit = 400MW

Gen1: 200MW @ \$50, SU=\$1,000

Gen2: 300MW @ \$30, SU=\$1,000

Gen3: 400MW @ \$80, SU=\$6,000

Gen4: 200MW @ \$10, SU=\$10,000

Gen5: 100MW @ \$40, SU=\$1,000

Area 2

Load = 600MW

SCUC/SCED - Advanced Example

- Note that you will only end up dispatching Gen3 for 200MW of its 400MW available
- Would it be cheaper to use all 400MW from Gen3 and only transfer 200MW instead of 400MW?

As it stands now.....

Gen1 (\$11,000) + **Gen2** (\$10,000) + **Gen5** (\$5,000) + **Gen3** for 200MW (\$22,000) = **\$48,000**

Resource	MW	\$/MWh	St	artup	BPC
Gen5	100	40	\$	1,000	\$5,000
Gen2	300	30	\$	1,000	\$10,000
Gen1	200	50	\$	1,000	\$11,000
Gen4	O	10	\$	-	\$0
Gen3	200	80	\$	6,000	\$22,000
					\$48,000

Alt Option 1: All energy from **Gen2/Gen5/Gen3** = \$53,000

Alt Option 2: Gen1/Gen5/partial **Gen2/full Gen3** = \$58,000

SCUC/SCED - Class Exercise

Determine the units that will serve the demand, minimizing production cost and considering the constraint (assume all gens are dispatchable)

New Exercise: SCED Advanced

- Problem: There is an increase in demand of 100MW from one hour to the next
- The generators on the next slide have to serve that additional load, but some have restrictions
- What units can fully serve the additional 100MW?
- What units will the optimization select?

SCED - Advanced Exercise

Generator	Status	Available MW	Cost	Ramp Rate
Gen1	On	100	\$50	5 MW/Min
Gen2	On	100	\$30	1 MW/Min
Gen3	Unavailable	300	\$25	3 MW/Min
Gen4	On	100	\$40	3 MW/Min

SCUC/SCED Exercise Comments

- These were difficult exercises that shows the complexity of SCUC and SCED and the reason why software calculations may be time consuming
- This exercise may also help demonstrate why some generators may or may not have been committed
- Complexity increases with additional parameters, transmission limits, generators, etc.

Questions?

PJM Client Management & Services

Telephone: (610) 666-8980

Toll Free Telephone: (866) 400-8980

Website: www.pjm.com

The Member Community is PJM's self-service portal for members to search for answers to their questions or to track and/or open cases with Client Management & Services