Big Data Spark ML Algorithms

Spark Machine Learning Algorithms

ML Algorithms

- Basic statistics
 - Correlation
 - Hypothesis testing (P-value)
- Classification and Regression
 - Linear models
 - SVM (Support Vector Machine)
 - Linear Regression, Logistic Regression
 - Naive Bayes
 - Decision tree

❖ ML Algorithms

- Others
 - Collaborative Filtering
 - Clustering
 - k-means
 - Dimensionality Reduction
 - etc.

Spark Machine Learning Algorithms

Correlation

- Variables can have a relationship of being
 - Independent
 - Weakly Correlated
 - Strongly Correlated
- Correlation indicates the extent to which variables have an influence on each other (to increase or decrease)

Correlation Example

- In the case of blue dots, x and y are strongly correlated
- On the other hand, the red dots show a weaker correlation between x and y

Spark Machine Learning Algorithms

Hypothesis Testing

- Hypothesis testing method
 - Define a statistic that obeys a certain distribution if the hypothesis is correct
 - 2. Collect samples and then calculate the statistic probability
 - 3. If the sample statistics show a probability lower than the threshold of being drawn from this distribution, then the hypothesis is rejected

Hypothesis Testing Example

• If the probability is lower than the threshold Φ (i.e., t is larger than Ω) then the hypothesis is rejected

Spark Machine Learning Algorithms

Linear Models

- Frequently used in Regression
 - SVM (Support Vector Machine)
 - Logistic Regression
 - Linear Regression, etc.
- Regression is a method to predict the value of one (or more) continuous target variable y given a (D-dimension vector) input x

Linear Regression

- Linear regression is the simplest regression model
- Output of Linear regression is continuous
- To obtain output y, a linear combination of input variables x_i and weights w_i

$$y(\mathbf{x}, \mathbf{w}) = w_0 + w_1 x_1 + \dots + w_D x_D$$

Spark Machine Learning Algorithms

Linear Regression Example

- Example of linear regression
 - Red dots are input data values
 - Blue curve is the Linear regression output model

❖ Logistic Regression

- Used in classification problems that need to make a decision
- Decide among two options
 - Example
 - Decide 0 or 1 using a Sigmoid curve
- Decide among multiple options

Spark Machine Learning Algorithms

❖ Logistic Regression Example

- Sigmoid σ(x) S-shape curve with a decision boundary is frequently used to make a decision
 - Small changes on $\sigma(x)$ near the decision boundary will determine the classification result of 0 or 1

SVM (Support Vector Machine)

- SVM technique is frequently used in solving problems in classification, regression, and novelty detection
- SVM algorithm creates a decision boundary that maximizes the margins between the groups that are being classified

Spark Machine Learning Algorithms

❖ SVM Example

- H₁ represent another algorithm
 - Example: ML (Maximum Likelihood) algorithm
- H₂ represents the SVM
 SVM H₂ attempts to separate datasets with the largest margin

Naive Bayes Classifier

- Conditional independence is assumed to simplify the classification decision
- Bayes Theory is based on conditional probability
 - P(x|y,z) is the conditional probability that x occurs based on the condition that y and z occurred earlier
 - If x is independent of z then $P(x|y,z) \rightarrow P(x|y)$

Spark Machine Learning Algorithms

Naive Bayes Classifier

- Everything is dependent to everything else
 - But the relations are too complex to fully analyze
- In order to simplify the computation process, the Naive Bayes model "Naively" assumes that events are independent
 - Pros: Provides fast and easy-to-compute results
 - Cons: Accuracy and reliability is sacrificed
 - Used when the resulting accuracy is sufficient to be applied to its purpose

Naive Bayes Classifier Example

- Conditioned on class c
 - 1. If it is "assumed" that the probability distributions of the input variables $x_1, ..., x_D$ are independent (which they are actually not independent) then...
 - Class conditional probability density equation can be written as a simple multiplication (product) of one dimensional probability density functions

Spark Machine Learning Algorithms

❖ Naive Bayes Classifier Example

 Lets find the probability of occurrence of dataset x through class c

$$p(\mathbf{x}|y=c)$$

 "Naively" assume conditional independence between the features

$$p(\mathbf{x}|y=c) = \prod_{j=1}^{D} p(x_j|y=c)$$

• D is the number of features

Naive Bayes Classifier Example

$$p(\vec{x}|y=c) = \prod_{j=1}^{\overline{D}} p(\vec{x}_j|y=c)$$
Multi-dimension

Product of one dimensional densities

 Multi-dimensional probability is easily obtained from multiplications (product) of many one dimensional densities

Spark Machine Learning Algorithms

❖ Naive Bayes Classifier Example

$$p(\mathbf{x}|y=c) = \prod_{j=1}^{D} p(\mathbf{x}_{j}|y=c)$$
Multi-dimension

Product of one dimensional densities

- This model is called "naive" since in reality these features are not independent
- But it often works very well

Decision Tree

- Local region is identified (classified) in a sequence of recursive splitting decisions in an efficient way
 - Fewer number of processing steps
 - · Each step has low computation
 - Results in a hierarchical tree shape form
- Hierarchical algorithm is used in supervised learning (training) of the Decision Tree

Spark Machine Learning Algorithms

Decision Tree

- Supervised Learning
 - Training a ML (Machine Learning) system with labeled data (desired outputs)
 - Since the desired outputs are known for the inputs (during the training), error values are available for each training step
 - Backpropagation of errors are used in training the ML system to make it more accurate

Decision Tree Example

 For classification, decision boundaries on the dataset (white and red dots) can be determined using a decision tree

Spark Machine Learning Algorithms

Collaborative Filtering

- ML algorithm that collects preferences or taste information from many users (collaborative) and uses this information to make automatic predictions (filtering) about the interests of other users
 - Collaborative
 - Combining collected information
 - Filtering
 - Filter out less probable options to find the most probable prediction

Collaborative Filtering Example

 Music vendor can recommend music to a New User based on information on User A who's characteristics seem similar

Spark Machine Learning Algorithms

Clustering

- Process of finding similar characteristics in a dataset to form groups of data
- Training data consists of a set of input vectors without any corresponding target values
 - Dataset contains no information (labels) on data and cluster relation
 - Unsupervised Learning is needed

❖ k-means Algorithm

- One of the most famous clustering (classification) algorithms
- Unlabeled data is classified to k classes
- Mean (average) of each class is updated when new data (vector) is received
- Mean value is used to update the division of the classes (clusters)

Spark Machine Learning Algorithms

❖ k-means Algorithm Example

- Classify unlabeled data into the two classes
 - → Red or White
 - All data (vector) is originally colorless

❖ k-means Algorithm Example

- Step 1: Decide the two centers of the classes randomly
- Step 2: Allocate the data into the nearest center

Spark Machine Learning Algorithms

❖ k-means Algorithm Example

- Step 3: Calculate a mean of each class based on the average distance
- Step 4: Allocate the data into the nearest center

❖ k-means Algorithm Example

- Step 5: Calculate a mean of each class again based on the average distance
- Final Step: Allocate the data (vector) into the nearest center's class

Spark Machine Learning Algorithms

Dimensionality Reduction

- Reduces dimensionality by projecting the dataset to a lower dimensional subspace
 - · Captures the essence of the dataset
 - Reduces the complexity of the classifier and regressor
 - Complexity depends on the number of inputs
 - Both the time and space complexity is considered

- Dimensionality Reduction Example
 - Drone management map generation
 - 3D (Longitude, Latitude, Altitude) Info
 - Longitude $\rightarrow x$, Latitude $\rightarrow y$, Altitude $\rightarrow z$
 - 2D (Longitude, Latitude) Drone Map

Dimensionality Reduction - Example

- Assuming that altitude information z is not needed
- By eliminating z from data, we can capture the essence of the data

Spark Machine Learning Algorithms

ML Algorithms Summary

- Basic statistics
 - Correlation, Hypothesis testing (P-value)
- Classification and Regression
 - Linear models (SVM, Linear & Logistic Regression), Naive Bayes, Decision tree
- Others
 - Collaborative Filtering, Clustering (k-means),
 Dimensionality Reduction, etc.

Big Data References

References

 Spark 2.2.0 Machine Learning Library Guide [Online]. Available: https://spark.apache.org/docs/latest/ml-guide.html