Variational Dropout and the Local Reparameterization Trick

Eduard Vladimirov

MIPT, 2023

October 24, 2023

Motivation & Background

2 Theory

3 Empirical results

Motivation

Main idea

Efficiency of posterior inference using SGVB can be significantly improved through a local reparameterization.

The authors show how dropout is a special case of SGVB with local reparameterization, and suggest variational dropout, an extension of regular dropout where optimal dropout rates are inferred from the data.

Background

Variational lower-bound

$$\mathcal{L}(\phi) = -D_{\mathit{KL}}(q_{\phi}(\mathbf{w})||p(\mathbf{w})) + L_{\mathcal{D}}(\phi)$$
 where $L_{\mathcal{D}}(\phi) = \sum_{(\mathbf{x},\mathbf{y})\in\mathcal{D}} \mathbb{E}_{q_{\psi}(\mathbf{w})}(\log p(\mathbf{y}|\mathbf{x},\mathbf{w}))$

Stochastic Gradient Variational Bayes

$$L_{\mathcal{D}}(\phi) pprox L_{\mathcal{D}}^{SGVB}(\phi) = rac{N}{M} \sum_{i=1}^{M} \log p(\mathbf{y}^i | \mathbf{x}^i, \mathbf{w} = f(\epsilon, \phi))$$

Variance of the SGVB estimator

Shorthands

$$L_{i} := \log p(\mathbf{y}^{i} | \mathbf{x}^{i}, \mathbf{w} = f(\epsilon, \phi))$$

$$L_{D}^{SGVB}(\phi) = \frac{N}{M} \sum_{i=1}^{M} L_{i}$$

$$Var[L_{i}] = Var_{\epsilon, \mathbf{x}^{i}, \mathbf{y}^{i}} [\log p(\mathbf{y}^{i} | \mathbf{x}^{i}, \mathbf{w} = f(\epsilon, \phi)]$$

Variance

$$extstyle extstyle extstyle Varig[L_{\mathcal{D}}^{SGVB}(\phi)ig] = extstyle N^2igg(rac{1}{M} extstyle Varig[L_iig] + rac{M-1}{M} extstyle Covig[L_i,L_jig]igg)$$

Local Reparameterization Trick

We want to have $Cov[L_i, L_j] = 0$

Consider simple example:

$$\mathbf{B} = \mathbf{A} \mathbf{W}$$
, where $\mathbf{A}, \mathbf{B} \in \mathbb{R}^{M \times 1000}, \mathbf{W} \in \mathbb{R}^{1000 \times 1000}$

$$q_{\phi}(w_{i,j}) = \mathcal{N}(\mu_{i,j}, \sigma_{i,j}^2) \ \forall w_{i,j} \in \mathbf{W}$$

$$w_{i,j} = \mu_{i,j} + \sigma_{i,j}\epsilon_{i,j}$$
, with $\epsilon_{i,j} \sim \mathcal{N}(0,1)$

We have to sample a separate weight matrix **W** for each example in minibatch. As a result, we would need to sample M million random numbers for just a single layer!!!

Local Reparametrization Trick

Solution: sample the random activations **B** directly!

$$q_{\psi}(w_{i,j}) = \mathcal{N}(\mu_{i,j}, \sigma_{i,j}^2) \ \forall w_{i,j} \in \mathbf{W} \Longrightarrow q_{\phi}(b_{m,j}|A) = \mathcal{N}(\gamma_{im,j}, \delta_{m,j}), \text{ with}$$
$$\gamma_{m,j} = \sum_{i=1}^{1000} a_{m,i}\mu_{i,j}, \text{ and } \delta_{m,j} = \sum_{i=1}^{1000} a_{m,i}^2 \sigma_{i,j}^2$$

We only need to sample M thousands random variables

$$b_{m,j} = \gamma_{m,j} + \sqrt{\delta_{m,j}} \zeta_{m,j}$$
, with $\zeta_{m,j} \sim \mathcal{N}(0,1)$, $\zeta \in \mathbb{R}^{M \times 1000}$.

Other advantage: lower variance

Variational Dropout

Dropout

$$\mathbf{B} = (\mathbf{A} \circ \xi) \, \theta \quad \text{with } \xi \sim Bern(1 - p),$$
where $\mathbf{A} \in \mathbb{R}^{M \times K}, \theta \in \mathbb{R}^{K \times L}, \mathbf{B} \in \mathbb{R}^{M \times L},$

Gaussian Dropout

$$\xi \sim \mathcal{N}(1, \alpha), \ \alpha = p/(1-p)$$

Variational Dropout

VD with independent weight noise

$$q_{\phi}(b_{m,j}|A) = \mathcal{N}(\gamma_{im,j}, \delta_{m,j})$$
 with
$$\gamma_{m,j} = \sum_{i=1}^K a_{m,i}\theta_{i,j}, \text{ and } \delta_{m,j} = \alpha \sum_{i=1}^K a_{m,i}^2 \theta_{i,j}^2$$

VD with correlated weight noise

$$\mathbf{B} = (\mathbf{A} \circ \xi) \, \theta, \xi_{i,j} \sim \mathcal{N}(1, \alpha) \Longleftrightarrow \mathbf{b}^m = \mathbf{a}^m \mathbf{W}, \text{ with}$$

$$\mathbf{W} = (\mathbf{w}_1, \dots, \mathbf{w}_K), \text{ and } \mathbf{w}_i = s_i \theta_i, \ q_{\phi}(s_i) = \mathcal{N}(1, \alpha)$$

Variance comparison

stochastic gradient estimator	top layer 10 epochs	top layer 100 epochs	bottom layer 10 epochs	bottom layer 100 epochs
local reparameterization (ours)	7.8×10^{3}	1.2×10^{3}	1.9×10^{2}	1.1×10^{2}
separate weight samples (slow)	1.4×10^{4}	2.6×10^{3}	4.3×10^{2}	2.5×10^{2}
single weight sample (standard)	4.9×10^{4}	4.3×10^{3}	8.5×10^{2}	3.3×10^2
no dropout noise (minimal var.)	2.8×10^3	5.9×10^{1}	1.3×10^2	9.0×10^0

Figure: Variance comparison

Different graphics

Figure: Different graphics

Literature

Main article Variational Dropout and the Local Reparameterization Trick.