Programmation 1

TD n°12

8 décembre 2020

1 Real PCF⁻

We give below the denotational and operational semantics for Real PCF⁻. The types are as follows:

$$\sigma, \tau, \dots :=$$
unit $\mid \Gamma \mid$ $\mid \sigma \rightarrow \tau \mid$

 $\mathbb{S} = \{\bot, \top\}$ with $\bot < \top$. $\mathcal{I} = [0, 1]$ with the usual order.

 $\llbracket * \rrbracket \rho = \top,$

$$\llbracket \mathtt{unit} \rrbracket = \mathbb{S} \qquad \llbracket \mathtt{I} \rrbracket = \mathcal{I} \qquad \llbracket \sigma \to \tau \rrbracket = [\llbracket \sigma \rrbracket \to \llbracket \tau \rrbracket].$$

where $V \in X \mapsto f(V)$ denotes the function which to all V in X associates f(V), and where:

$$add_0(a) = a/2$$
 $add_1(a) = (a+1)/2$ $rem_0(a) = \min(2a, 1)$ $rem_1(a) = \max(2a - 1, 0)$

Contexts (type constraints omitted):

```
egin{aligned} \mathcal{C} &::= \_ & | \, \mathcal{C} v \ | \, 	ext{t} 1_0 \mathcal{C} \ | \, 	ext{t} 1_0 \mathcal{C} \ | \, 	ext{t} 1_1 \mathcal{C} \ | \, \mathcal{C} > 1/2 \ | \, \mathcal{C} > 0 \ | \, 	ext{pif} \, \, \mathcal{C} \, \, 	ext{then} \, \, v \, \, 	ext{else} \, \, w \ | \, 	ext{pif} \, \, u \, \, 	ext{then} \, \, \mathcal{C} \, \, \, 	ext{else} \, \, w \ | \, 	ext{pif} \, \, u \, \, 	ext{then} \, \, v \, \, \, \, 	ext{else} \, \, \mathcal{C} \end{aligned}
```

Operational semantics. We only apply a rule under a context \mathcal{C} of the above form, i.e., $u \to v$ if and only if $u = \mathcal{C}[\ell]$ and $v = \mathcal{C}[r]$, where \mathcal{C} is a context (the types being respected), and $\ell \to r$ is one of the rules below.

$$(\text{fn }x_{\sigma}.u)v \rightarrow u[x_{\sigma}:=v]$$

$$\text{letrec }x_{\sigma}=u \text{ in }v \rightarrow v[x_{\sigma}:=\text{letrec }x_{\sigma}=u \text{ in }v]$$

$$t1_{a}(a.u) \rightarrow u \qquad (a \in \{0,1\})$$

$$t1_{0}(1.u) \rightarrow \dot{1}$$

$$t1_{1}(0.u) \rightarrow \dot{0}$$

$$(1.u) > 1/2 \rightarrow u > 0$$

$$(1.u) > 0 \rightarrow *$$

$$(0.u) > 0 \rightarrow u > 0$$

$$\text{pif }* \text{ then }v \text{ else }w \rightarrow v$$

$$\text{pif }u \text{ then }v \text{ else }* \rightarrow v \qquad (\alpha)$$

$$\text{pif }u \text{ then }0.v \text{ else }1.w \rightarrow 0.v$$

$$\text{pif }u \text{ then }a.v \text{ else }a.w \rightarrow a.(\text{pif }u \text{ then }v \text{ else }w)$$

$$(a \in \{0,1\})$$

Exercise 1:

Recall that for all $u:\tau, \llbracket u \rrbracket$ is a well-defined function, Scott-continuous from $Env \stackrel{\text{def}}{=} \prod_{x \neq \text{variable}} \llbracket \sigma \rrbracket$ to $\llbracket \tau \rrbracket$.

- 1. Show that the construction u>0 of Real PCF⁻ is redundant. Explicitly propose a definition of an expression Real PCF⁻ **nonzero**, of type $I \to unit$, which does not use the expression of the form u>0, and whose semantics $[nonzero]\rho$ is the function to which 0 associates \bot and to all $a \in \mathcal{I}$ non-zero associates \top . Prove this assertion.
- 2. Show that the rule tagged with (α) of the operational semantics is correct, in the sense that $[\![pif\ u\ then\ v\ else\ *]\!]\rho = [\![v]\!]\rho$ for all $\rho \in Env$.
- 3. We consider a Real PCF⁻ program of the form letrec $x_{\sigma} = u$ in v, of type unit . Show that if [letrec $x_{\sigma} = u$ in] $\rho \neq \bot$, then there is an integer $n \in \mathbb{N}$ such that

[letrec
$$x_{\sigma} = u$$
 in $\rho = g(f^n(\perp)),$

where we use the abbreviations $g(V) = \llbracket v \rrbracket (\rho[x_{\sigma} \mapsto V])$ and $f(V) = \llbracket u \rrbracket (\rho[x_{\sigma} \mapsto V])$. (The \bot in argument of f^n is that of $\llbracket \sigma \rrbracket$.) This expresses that a recursive definition (of x_{σ}) used in a terminating computation (v) of type unit will be "expanded" only n times.

- 4. Why does the argument from the previous question not work if letrec $x_{\sigma} = u$ in v is of type I?
- 5. Recall that $\dot{0} \stackrel{\text{def}}{=}$ letrec $x_{\text{I}} = 0.x_{\text{I}}$ in x_{I} . Show that there does not exist a derivation in the operational semantics for

$$t1_0(\text{pif }\dot{0} > 1/2 \text{ then } 1.\dot{0} \text{ else } 0.1.1.\dot{0}) > 1/2 \rightarrow^* *.$$

We can set $Z \stackrel{\text{def}}{=}$ letrec $x_{\text{I}} = 0.x_{\text{I}}$ in $0.x_{\text{I}}$.

- 6. What can we conclude for the adequacy of the type unit? Justify.
- 7. Any suggestions to complete the operational semantics?

Solution:

1.

rec nonzero = fn
$$m_{\rm I}$$
.
 pif $m>1/2$ then * else nonzero(t10 m)

Its semantics is the smallest fixed point of the function F which to $\phi \in [\mathcal{I} \to \mathbb{S}]$ associates the function which to $a \in \mathcal{I}$ associates \top if a > 1/2, $\varphi(\max(2a, 1)) = \varphi(2a)$ otherwise. (The \wedge is trivial here.)

The iterations of Kleene are $\phi_0 = \bot$, then ϕ_1 which associates \top exactly with a > 1/2, then ϕ_2 which associates \top exactly with a such that a > 1/2 or 2a > 1/2 (i.e. a > 1/4).

By induction on n, we see that ϕ_n associates \top exactly with a > 1/2. In effect, ϕ_{n+1} sends all a > 1/2 to \top , and all aleq1/2 to $\phi_n(2a)$, that is to say to \top if $2a > 1/2^n$ (i.e., $a > 1/2^{n+1}$) and to \bot otherwise.

The smallest fixed point therefore always sends 0 to \bot , but any number a > 0 to \top since there is an $n \in \mathbb{N}$ from which $a > 1/2^n$.

- 2. If $\llbracket u \rrbracket \rho > 1/2$, the left side is $\llbracket v \rrbracket \rho$ Otherwise, it is worth $\llbracket v \rrbracket \rho \wedge \llbracket * \rrbracket \rho = \llbracket v \rrbracket \rho$ since $\llbracket * \rrbracket \rho = \top$ is the largest element of $\mathbb S$ (and everything happens in $\mathbb S$ given the typing constraints).
- 3. By definition, [letrec $x_{\sigma} = u$ in v] $\rho = g(\text{lfp}f)$. Using Kleene's formula, and the Scott-continuity of g, this is $\sup_{n \in \mathbb{N}} g(f^n(\bot))$. The dcpo [[u]] = \mathbb{S} is flat, so this sup is reached for a certain n. Note that we must use the Scott-continuity of g. There is no $n \in \mathbb{N}$ such that f(x) = f(x) in general, as the next question shows.
- 4. I does not have the ascending string property. For example, the definition of 1 produces such an infinite growing chain.
- 5. Expressions 1.0 and 0.1.1.0 are in normal form because 1._ and 0._ are not contexts. In fact, we can only start by rewriting $\dot{0} > 1/2$ in Z > 1/2, then in 0.Z > 1/2, which gives ${\tt tl}_0({\tt pif}\ 0.Z > 1/2$ then 1.0 else 0.1.1.0) > 1/2. But there is no longer any rule applicable to this expression.
- 6. It fails. Indeed, for any environment ρ , such as $[0.Z > 1/2]\rho = add_0(0) = 0$,

$$\begin{split} [\![\mathsf{t1}_0(\mathsf{pif}\ 0.Z > 1/2\ \mathsf{then}\ 1.\dot{0}\ \mathsf{else}\ 0.1.1.\dot{0})]\!]\rho \ = \ rem_0([\![1.\dot{0}]\!]\rho \wedge [\![0.1.1.\dot{0}]\!]\rho) \\ \ = \ rem_0(add_1(0) \wedge add_0(add_1(add_1(0)))) \\ \ = \ rem_0(1/2 \wedge 3/8) = rem_0(3/8) = 3/4 \end{split}$$

So $[t1_0(pif 0.Z > 1/2 then 1.\dot{0} else 0.1.1.\dot{0}) > 1/2]\rho = *, but we come to see that the operational semantics does not progress far enough to reach *.$

7. We can already add the rules:

```
 \begin{array}{l} {\rm t1}_a({\rm pif}\ u\ {\rm then}\ v\ {\rm else}\ w)\ \to {\rm pif}\ u\ {\rm then}\ {\rm t1}_av\ {\rm else}\ {\rm t1}_aw \\ {\rm (pif}\ u\ {\rm then}\ v\ {\rm else}\ w)>1/2\ \to {\rm pif}\ u\ {\rm then}\ v>1/2\ {\rm else}\ w>1/2\\ {\rm (pif}\ u\ {\rm then}\ v\ {\rm else}\ w)>0\ \to {\rm pif}\ u\ {\rm then}\ v>0\ {\rm else}\ w>0 \\ \end{array}
```

for $a \in \{0,1\}$. The third form is not essential for the example, but we can see that it will be necessary in general. We could also think of adding rules like (pif u then v else w) $t \to p$ if u then v else wt, but this is not necessary, because with the adequation of type unit, the functions play little role.

Exercise 2:

We now assume that a same Real PCF⁻ variable is always labeled with the same type: if we see x_{σ} and x_{τ} , then $\sigma = \tau$. This amounts to saying that the name x of the variables is sufficient to distinguish them.

We consider the Real PCF⁻⁻ language, which is just Real PCF⁻ but without any type index. For example, fn x.u and letrec x = u in v are the expressions Real PCF⁻⁻ corresponding to fn $x_{\sigma}.u$ and letrec $x_{\sigma} = u$ in v, respectively.

Formally, let E denote the type erasure function, defined by $E(\text{letrec } x_{\sigma} = u \text{ in } v) \stackrel{\text{def}}{=} \text{letrec } x = E(u) \text{ in } E(v), E(\text{fn } x_{\sigma}.u) \stackrel{\text{def}}{=} \text{fn } x.E(u), \text{ etc.}$

We will say that a Real PCF⁻⁻ expression u is typable, of type τ , if and only if there exists a Real PCF⁻ expression u', of type τ , such that E(u) = u.

- 1. Are all Real PCF⁻⁻ expressions typable? Justify.
- 2. Is the type of a Real PCF^{--} typable expression unique? Justify.

Solution:

- 1. No, for example, xx is not, neither is $* + \dot{0}$.
- 2. No, for example, fn x.x has all types $\sigma \to \sigma$.