

145 Adams Avenue, Hauppauge, NY 11788 USA Tel: (631) 435-1110 • Fax: (631) 435-1824

Manufacturers of World Class Discrete Semiconductors

2N3821 2N3822 2N3824

N-CHANNEL JUNCTION FIELD EFFECT TRANSISTOR

JEDEC TO-72 CASE

DESCRIPTION

The CENTRAL SEMICONDUCTOR 2N3821, 2N3822, 2N3824 types are silicon N-Channel Junction Field Effect Transistors designed for low frequency, low noise amplifier applications.

MAXIMUM RATINGS (TA = 25°C)

	<u>SYMBOL</u>		<u>UNITS</u>
Drain-Source Voltage	v_DS	50	V
Drain-Gate Voltage	V_{DG}	50	V
Gate-Source Voltage	V _{GS}	50	V
Drain Current	I _D	10	mA
Power Dissipation	P_{D}	300	mW
Junction Temperature	Tj	175	°C
Storage Temperature	T _{stg}	-65 to +200	°C

ELECTRICAL CHARACTERISTICS ($T_A = 25$ °C unless otherwise noted)

		2N3	3821	2N3	822	2N3	824	
<u>SYMBOL</u>	TEST CONDITIONS	<u>MIN</u>	MAX	<u>MIN</u>	<u>MAX</u>	MIN	MAX	<u>UNIT</u>
l _{GSS}	V _{GS} =30V		0.1		0.1		0.1	nA
I _{GSS}	$V_{GS} = 30V$, $T_A = 150$ °C		100		100		100	nA
I _{DSS}	$V_{DS} = 15V$	0.5	2.5	2.0	10			mA
BV GSS	$I_G = 1.0 \mu A$	50		50		50		V
V _{GS(OFF)}	$V_{DS} = 15V$, $I_{D} = 0.5nA$		4.0		6.0			V .
v_{GS}	$V_{DS} = 15V$, $I_{D} = 50\mu A$	0.5	2.0					V
v_{GS}	$V_{DS} = 15V$, $I_{D} = 200\mu A$			1.0	4.0			V
ID(OFF)	$V_{DS} = 15V, V_{GS} = 8.0V$	•					0.1	nA
ID(OFF)	$V_{DS} = 15V$, $V_{GS} = 8.0V$, $T_A = 150$ °C						100	nA
y _{fs}	$V_{DS} = 15V$, $V_{GS} = 0$, $f = 1kHz$	1500	4500	3000	6500			μmho
y _{fs}	$V_{DS} = 15V$, $V_{GS} = 0$, $f = 100MHz$	1500		3000				μmho
yos	$V_{DS} = 15V$, $V_{GS} = 0$, $f = 1.0$ kHz		10		20			μmho
c_{iss}	$V_{DS} = 15V$, $V_{GS} = 0$, $f = 1MHz$		6.0		6.0		6.0	pF
C _{rss}	$V_{DS} = 15V$, $V_{GS} = 0$, $f = 1MHz$		3.0		3.0			pF
C_{rss}	$V_{DS} = 8.0V$, $V_{DS} = 0$, $f = 1 MHz$						3.0	pF
rDS(ON)	$V_{GS} = 0$, $I_D = 0$, $f = 1kHz$						250	Ω
NF	$V_{DS} = 15V$, $V_{GS} = 0$, $R_S = 1.0M\Omega$, f = 10Hz, Noise BW = 5.0Hz		5.0		5.0			dB
e _n	$V_{DS} = 15V$, $V_{GS} = 0$, $f = 10Hz$, Noise BW = 5.0Hz		200		200			nV/√Hz

(Continued on reverse side)

JEDEC TO-72 - MECHANICAL DIMENSIONS

LEAD CODE:

- 1) SOURCE
- 2) DRAIN
- 3) GATE
- 4) CASE LEAD

NOTE: ALL DIMENSIONS IN INCHES (mm).

Central Taio :
Semiconductor Corp.