

Broadcasting

主讲人: 龙良曲

Broadcasting

- expand
- without copying data
 - VS tf.tile
- tf.broadcast_to

Key idea

Insert 1 dim ahead if needed

Expand dims with size 1 to same size

• Feature maps: [4, 32, 32, 3]

■ Bias: $[3] \rightarrow [1, 1, 1, 32] \rightarrow [4, 32, 32, 3]$

0	0	0
10	10	10
20	20	20
30	30	30

4				
	0	1	2:	И
	0	1	2	И
	0	1	2	И
	0	1	2	\bigcup

0	0	0	
10	10	10	
20	20	20	
30	30	30	

	$\overline{}$	$\overline{}$	\supset
0	1	2	IJ
_		'	

			/
0	0	0	
10	10	10	
20	20	20	
30	30	30	
	10 20	10 10 20 20	10 10 10 20 20 20

_		\angle	$\overline{}$	$\overline{/}$
	0	1	2	
	0	1	2	
	0	1	2	
	0	1	2	

_				7
	0	1	2	
	10	11	12	
Ī	20	21	22	
	30	31	32	

		/
	0	
/	10	
	20	
	30	

0	0	0
10	10	10
20	20	20
30	30	30

$\overline{}$	$\overline{/}$	$\overline{}$	\nearrow
0	1	2	
0	1	2	
0	1	2	
0	1	2	

How to understand?

When it has no axis

- Create a new concept
- [classes, students, scores] + [scores]

When it has dim of size 1

- Treat it shared by all
- [classes, students, scores] + [students, 1]

Why broadcasting?

1. for real demanding

- [classes, students, scores]
- Add bias for every student: +5 score
- **•** [4, 32, 8] + [4, 32, 8]
- **•** [4, 32, 8] + [5.0]

2. memory consumption

- $[4, 32, 8] \rightarrow 1024$
- bias=[8]: $[5.0,5.0,5.0,...] \rightarrow 8$

Broadcastable?

- Match from Last dim!
 - If current dim=1, expand to same
 - If either has no dim, insert one dim and expand to same
 - otherwise, NOT broadcastable

Situation 1:

• [4, 32, 14, 14]

 \bullet [1, 32, 1, 1] \rightarrow [4, 32, 14, 14]

Situation 2

• [4, 32, 14, 14]

• [14, 14] → [1, 1, 14, 14] → [4, 32, 14, 14]

Situation 3

- **•** [4, 32, 14, 14]
- **•** [**2**, 32, 14, 14]
 - Dim 0 has dim, can NOT insert and expand to same
 - Dim 0 has distinct dim, NOT size 1
 - NOT broadcasting-able

It's efficient and intuitive!

• [4, 32, 32, 3]

• + [3]

• + [32, 32, 1]

• + [4, 1, 1, 1]

Broadcasting

```
In [25]: x=tf.random.normal([4,32,32,3])
In [27]: (x+tf.random.normal([3])).shape
Out[27]: TensorShape([4, 32, 32, 3])
In [28]: (x+tf.random.normal([32,32,1])).shape
Out[28]: TensorShape([4, 32, 32, 3])
In [29]: (x+tf.random.normal([4,1,1,1])).shape
Out[29]: TensorShape([4, 32, 32, 3])
In [31]: (x+tf.random.normal([1,4,1,1])).shape
InvalidArgumentError: Incompatible shapes: [4,32,32,3] vs. [1,4,1,1] [Op:Add]
name: add/
```

tf.broadcast_to

```
In [35]: x.shape
Out[35]: TensorShape([4, 32, 32, 3])
In [36]: (x+tf.random.normal([4,1,1,1])).shape
Out[36]: TensorShape([4, 32, 32, 3])
In [37]: b=tf.broadcast_to(tf.random.normal([4,1,1,1]), [4,32,32,3])
In [38]: b.shape
Out[38]: TensorShape([4, 32, 32, 3])
```

Broadcast VS Tile

```
In [4]: α=tf.ones([3,4])
In [5]: a1=tf.broadcast_to(a, [2,3,4])
<tf.Tensor: id=7, shape=(2, 3, 4), dtype=float32, numpy=</pre>
array([[[1., 1., 1., 1.],
        [1., 1., 1., 1.]
        [1., 1., 1., 1.]
       [[1., 1., 1., 1.],
        [1., 1., 1., 1.],
        [1., 1., 1., 1.]], dtupe=float32)>
In [7]: a2=tf.expand_dims(a,axis=0)
Out[8]: TensorShape([1, 3, 4])
In [10]: \alpha 2 = tf.tile(\alpha 2, [2,1,1])
<tf.Tensor: id=12, shape=(2, 3, 4), dtype=float32,</pre>
anmpy \in [[1., 1., 1., 1.],
        [1., 1., 1., 1.]
        [1., 1., 1., 1.]
       [[1., 1., 1., 1.],
        [1., 1., 1., 1.]
        [1., 1., 1., 1.]], dtupe=float32)>
```

下一课时

数学运算

Thank You.