¹ Description of the Use Case

1.1 Name of Use Case: Microgrid-Island to Grid-Connected Transition

Use Case Identification					
ID	Domain(s)/ Zone(s)	Name of Use Case			
001	SGIP	Microgrid – Island to Grid-Connected Transition			

1.2 Version Management

	Version Management						
Version No.	Date	Name of Author(s)		Changes	Approval Status		
V001	2015- 04-22	D.Bradley, D.Lawrence	S.Laval,		Draft		
V002	2015- 04-27	M. Joe Zhou			Draft review		
V003	2015- 05-28	S.Laval			Draft review		
V004	2015- 09-28	S.Laval		Updated diagrams based on UML	Draft		

1.3 Scope and Objectives of Use Case

Scope and Objectives of Use Case							
Scope	Scope Microgrid – Island to Grid-Connected Transition						
Objective(s)	The optimizer matches the island voltage and frequency to the grid by managing the distributed generation resources to enable the island recloser to resynchronize and reconnect to the grid.						
Related business case(s)	Microgrid – Unscheduled Islanding Transition, Microgrid – Optimization						

1.4 Narrative of Use Case

Na	rrative of Use Case
Short description	

The transition from Islanded to Grid-Connected Microgrid (Resynchronization and Reconnection).

Complete description

This use case deals with the resynchronization and reconnection transition behavior from islanded mode to grid-connected mode of the microgrid. In this scenario, power is restored to the grid and is detected by the island recloser (or switch) at the point of common coupling (PCC); this starts the resynchronization / reconnection (synch-check) activity, only if the DMS provides a confirmation status to the Optimizer of the restored power grid and also granting permission to the island recloser by removing its control block. The balancing of the grid side and island side voltage and frequency are managed by the optimizer in conjunction with the battery inverters. Once the recloser synch-check function criteria is met, the Microgrid is resynchronized and reconnected to the grid. Immediately, the Optimizer messages the battery inverters to switch from voltage-source "Sv" to current-source "Sc" mode. Additionally, the microgrid optimizer and the Utility SCADA receive the recloser close status to update their models.

There is one scenario to this use case: Grid Power Restored.

Grid Power Restored

Several steps are followed:

- Island recloser detects return of power to the grid at PCC and publishes readings and status to Optimizer and DMS.
- DMS sends confirmation status to Optimizer and also sends remove control block command to island recloser.
- Optimizer receives readings and status of the island recloser and the confirmation status from DMS and begins the grid resynchronization and reconnection process
- 4. Optimizer publishes the synch-check command to the Island recloser and receives periodic statuses and readings from the solar inverter, batter inverter, and meters.
- 5. Island recloser receives the synch-check command and initiates the resynch process
- 6. Optimizer manages all battery inverters to match grid-side voltage and frequency by publishing

- desired setpoints
- 7. Battery inverters publish readings and status to the Optimizer
- 8. Optimizer receives Battery inverter readings and status and adjusts setpoints to match grid
- 9. Island recloser resynchs and publishes readings and status to the Optimizer and Utility SCADA
- 10. Optimizer receives Island recloser status message
- 11. Optimizer publishes battery inverter change setting to current-source "Sc" mode
- 12. Battery iniverter receives command and switches to current-source "Sc" mode
- 13. Utility SCADA receives island recloser status message

The Microgrid Island to Grid-Connected Transition performs the following functions:

- 1) Trigger Battery Inverter to switch to current-source "Sc" mode
- 2) Notify microgrid optimizer and DMS of status
- 3) Controls battery inverter settings to balance voltage and frequency of island to grid
- 4) Ensure DMS provides permission
- 5) Optimizer activates recloser synch-check function

1.5 General Remarks

General Remarks	
Not Applicable	

2 Diagrams of Use Case

Figure 1 Use Case for Island to Grid-Connected Microgrid Transition

3 Technical Details

3.1 Actors

Actors					
Grouping (e.g. domair	is, zones)	Group Description			
Actor Name see Actor List	Actor Type see Actor List Actor Description see Actor List				
Microgrid Optimizer	System, application	Application which optimizes the resources included in the microgrid. Optimization is done using a constrained dynamic dispatch.			
Recloser	Device	This is the Point of Connection (common coupling) to the grid. Indicates whether microgrid is in grid-connected or Islanded mode of operation.			
Battery Inverter	Device	Inverter that connects battery to the microgrid. Assumed to be capable of operation as a rectifier. Controllable range of zero to current maximum capability of the battery.			
Solar Inverter	Device	Inverter that connects solar panel to the microgrid. Controllable range of zero to current maximum capability of solar panel.			
SCADA	System, application	SCADA applications including data acquisition, supervisory control, and user interface, and alarming.			
Utility DMS	System, application	System that manages and control the utility distribution grid that microgrids are connected to.			
Meter	device	Measuring device for Microgrid electrical measurements.			

3.2 Triggering Event, Preconditions, Assumptions

Use Case Conditions					
Actor/System/Information/Contract	Triggering Event	Pre- conditions	Assumption		
Microgrid Optimizer	Dispatching is done on a periodic basis that is set during system configuration and event driven by recloser and DMS messages.	Microgrid Optimizer dispatching is always on.	Resource attributes are prepopulated in Microgrid Optimizer. Assumption is that microgrid optimizer publishes and subscribes to the open field message bus.		
Recloser	Power system disturbance is detected by relaying protection scheme that operates system.	Reconnecting the microgrid to the grid from islanded mode is the objective of protection scheme Protection scheme requires sensing of voltage on grid side and the ability to communicate with Optimizer and DMS.	Reconnection of microgrid were part of design of microgrid protection scheme. Assumption is that recloser publishes and subscribes to the open field message bus and is polled by SCADA.		
Battery Inverter	Always on. Microgrid Optimizer can dispatch inverter up to current maximum capability of battery.		Resource attributes are prepopulated in Microgrid Optimizer. Assumption is that battery inverter publishes and subscribes to the open field message bus.		
Utility DMS	Always on during daylight. Receives readings from recloser and provides permission to reconnect to grid	DMS receives data from SCADA	Resource attributes are prepopulated in DMS.		

3.3 References

	References								
No	References Type	Reference	Status	Impact on Use Case	Originator / Organisation	Link			
1	IEC	62559-2		Utilized use- case narrative template	Omnetric, Jim Waight				
2	ORNL	ERPI MicroGrid use case: ONRL-F5		Similar to current usecase	Oakridge National Laboratory, Tennesse				

3.4 Further Information to the Use Case for Classification / Mapping

Classification Information				
Relation to Other Use Cases				
There are other use cases related to the optimization of the microgrid and its reconnection.				
Level of Depth				
Mid level				
Prioritisation				
High				
Generic, Regional or National Relation				
Will be applied in a generic test at Duke, CPS Energy, NREL, and SCE test beds.				
Viewpoint				

Technical
Further Keywords for Classification

4 Step by Step Analysis of Use Case

4.1 Steps - Scenario Name

	Scenario Conditions							
No.	Scenario Name	Primary Actor	Triggering Event	Pre-Condition	Post- Condition			
1	Grid power restoration and permission from DMS causes islanded microgrid to reconnect with the grid	Island recloser at PCC	Grid power restoration	Recloser set up, tested and control block is removed.	Grid-connected from island transition			

4.2 Steps - Scenarios

Figure 2: Scenario 1 Activity Diagram - Island to Grid-Connected microgrid transition

5 Information Exchanged

See Model Output IDL or XSD for a detailed CIM data description.

See Model Output IDL or XSD for a detailed CIM data description. Information Exchanged				
Name of Information	Description of Information Exchanged	Requirements to information data		
Recloser Status	timeStamp normalOpen isLockedOut isOpen	Recloser Status (open or closed)		
Recloser Readings	timestamp value flowDirection multiplier name phases unit	Reading and Reading Type defined in CIM		
Battery Inverter Status	timestamp isCharging isConnected	Battery Inverter Status (charging or discharging, Sv or Sc mode)		
Battery Inverter Control	timeStamp eventOrAction – Mode Control type controlType – SetPoint Control unitMultiplier unitSymbol value	Battery Inverter Control (CIM End Device Control)		
Solar Inverter Status	timestamp isConnected	Solar Inverter Status (connected or disconnected)		
Solar Inverter Control	timeStamp controlType – SetPoint Control unitMultiplier unitSymbol value	Solar Inverter Control (CIM End Device Control)		
SCADA	timestamp value flowDirection multiplier name phases unit	Reading and Reading Type defined in CIM		
Utility DMS	timestamp value flowDirection multiplier name phases unit	Reading and Reading Type defined in CIM		
Meter Readings	timestamp value flowDirection multiplier name phases unit	Reading and Reading Type defined in CIM		

6 Requirements (optional)

Requirements (optional)			
Categories for	Category Description		
Requirements			
NA			
Requirement	Requirement Description		
ID			
NA			

7 Common Terms and Definitions

Common Terms and Definitions			
Term	Definition		

8 Custom Information (optional)

Custom Information (optional)				
Key	Value	Refers to Section		
NA				