universität freiburg

What you needa know about Yoneda

Emma Bach (she/her) Seminar on Functional Programming and Logic, Summer Semester 2025

▶ A common sentiment in many cultures is the idea that things are defined by how they interact with their surroundings.

¹Quoted as a proverb in *Don Quixote*

- ▶ A common sentiment in many cultures is the idea that things are defined by how they interact with their surroundings.
- ▶ "Tell me your company, and I will tell you what you are." 1

¹Quoted as a proverb in *Don Quixote*

- ▶ A common sentiment in many cultures is the idea that things are defined by how they interact with their surroundings.
- "Tell me your company, and I will tell you what you are." 1
- ► The Yoneda Lemma is the result of applying this way of thinking to mathematical objects in category theory.

¹Quoted as a proverb in *Don Quixote*

- ▶ A common sentiment in many cultures is the idea that things are defined by how they interact with their surroundings.
- "Tell me your company, and I will tell you what you are." 1
- ► The Yoneda Lemma is the result of applying this way of thinking to mathematical objects in category theory.
- As a result, a category $\mathbb C$ is often best understood by instead studying functors from that category into $\mathbb S et$.

¹Quoted as a proverb in Don Quixote

ightharpoonup A category $\mathbb C$ consists of:

- ► A *category* C consists of:
 - ightharpoonup a collection $|\mathbb{C}|$ of *objects*;

- ► A *category* C consists of:
 - ightharpoonup a collection $|\mathbb{C}|$ of *objects*;
 - ▶ for all $A, B \in |\mathbb{C}|$, a collection $\mathbb{C}(A, B)$ of morphisms from A to B;

- ightharpoonup A category $\mathbb C$ consists of:
 - ightharpoonup a collection $|\mathbb{C}|$ of *objects*;
 - ▶ for all $A, B \in |\mathbb{C}|$, a collection $\mathbb{C}(A, B)$ of morphisms from A to B;
 - ▶ for all $A \in |\mathbb{C}|$, an *identity morphism* $id_A \in \mathbb{C}(A, A)$;

- ightharpoonup A category $\mathbb C$ consists of:
 - ightharpoonup a collection $|\mathbb{C}|$ of *objects*;
 - ▶ for all $A, B \in |\mathbb{C}|$, a collection $\mathbb{C}(A, B)$ of morphisms from A to B;
 - ▶ for all $A \in |\mathbb{C}|$, an identity morphism $id_A \in \mathbb{C}(A, A)$;
 - ▶ for each pair of morphisms $g \in \mathbb{C}(A, B)$, $f \in \mathbb{C}(A, B)$, a morphism $g \circ f \in \mathbb{C}(A, C)$, such that composition is associative.

- ightharpoonup A category $\mathbb C$ consists of:
 - ightharpoonup a collection $|\mathbb{C}|$ of *objects*;
 - ▶ for all $A, B \in |\mathbb{C}|$, a collection $\mathbb{C}(A, B)$ of morphisms from A to B;
 - ▶ for all $A \in |\mathbb{C}|$, an identity morphism $id_A \in \mathbb{C}(A, A)$;
 - ▶ for each pair of morphisms $g \in \mathbb{C}(A, B)$, $f \in \mathbb{C}(A, B)$, a morphism $g \circ f \in \mathbb{C}(A, C)$, such that composition is associative.
- ▶ If $\mathbb{C}(A, B)$ is a set, we call it the *homset* from A to B.

- ightharpoonup A category $\mathbb C$ consists of:
 - ightharpoonup a collection $|\mathbb{C}|$ of *objects*;
 - ▶ for all $A, B \in |\mathbb{C}|$, a collection $\mathbb{C}(A, B)$ of morphisms from A to B;
 - ▶ for all $A \in |\mathbb{C}|$, an identity morphism $id_A \in \mathbb{C}(A, A)$;
 - ▶ for each pair of morphisms $g \in \mathbb{C}(A, B)$, $f \in \mathbb{C}(A, B)$, a morphism $g \circ f \in \mathbb{C}(A, C)$, such that composition is associative.
- ▶ If $\mathbb{C}(A, B)$ is a set, we call it the *homset* from A to B.
- ▶ For every category \mathbb{C} , the *opposite category* \mathbb{C}^{op} is a category.

- ► A *category* C consists of:
 - ightharpoonup a collection $|\mathbb{C}|$ of *objects*;
 - ▶ for all $A, B \in |\mathbb{C}|$, a collection $\mathbb{C}(A, B)$ of morphisms from A to B;
 - ▶ for all $A \in |\mathbb{C}|$, an identity morphism $id_A \in \mathbb{C}(A, A)$;
 - ▶ for each pair of morphisms $g \in \mathbb{C}(A, B)$, $f \in \mathbb{C}(A, B)$, a morphism $g \circ f \in \mathbb{C}(A, C)$, such that composition is associative.
- ▶ If $\mathbb{C}(A, B)$ is a set, we call it the *homset* from A to B.
- ▶ For every category \mathbb{C} , the *opposite category* \mathbb{C}^{op} is a category.
- For every pair of categories \mathbb{C} , \mathbb{D} , the *product category* $\mathbb{C} \times \mathbb{D}$ is a category.

A functor $F:\mathbb{C}\to\mathbb{D}$ is a structure-preserving map between two categories:

A functor $F:\mathbb{C}\to\mathbb{D}$ is a structure-preserving map between two categories:

▶ F maps an object $A \in |\mathbb{C}|$ to an object $B \in |\mathbb{D}|$

A functor $F: \mathbb{C} \to \mathbb{D}$ is a structure-preserving map between two categories:

- ▶ F maps an object $A \in |\mathbb{C}|$ to an object $B \in |\mathbb{D}|$
- ▶ F maps a morphism $f \in \mathbb{C}(A, B)$ to a morphism $F(f) \in \mathbb{D}(F(A), F(B))$

A functor $F: \mathbb{C} \to \mathbb{D}$ is a structure-preserving map between two categories:

- ▶ F maps an object $A \in |\mathbb{C}|$ to an object $B \in |\mathbb{D}|$
- ▶ F maps a morphism $f \in \mathbb{C}(A, B)$ to a morphism $F(f) \in \mathbb{D}(F(A), F(B))$
- $ightharpoonup F(id_A) = id_{F(A)}$

A functor $F: \mathbb{C} \to \mathbb{D}$ is a structure-preserving map between two categories:

- ▶ F maps an object $A \in |\mathbb{C}|$ to an object $B \in |\mathbb{D}|$
- ▶ F maps a morphism $f \in \mathbb{C}(A, B)$ to a morphism $F(f) \in \mathbb{D}(F(A), F(B))$
- $ightharpoonup F(id_A) = id_{F(A)}$
- $ightharpoonup F(g \circ f) = F(g) \circ F(f)$

Functors from a category into itself are known as *endofunctors*.

► Structure-preserving maps between functors.

$$F(A) \xrightarrow{F(f)} F(B)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$G(A) \xrightarrow{G(f)} G(B)$$

- Structure-preserving maps between functors.
 - ▶ Let F, G : \mathbb{C} \to \mathbb{D} be functors.

$$G(A) \xrightarrow{\phi_A} G(B)$$

- Structure-preserving maps between functors.
 - ▶ Let $F, G : \mathbb{C} \to \mathbb{D}$ be functors.
 - A natural transformation ϕ is an *indexed family of* morphisms for every object $A \in |\mathbb{C}|$, ϕ_A is a morphism from F(A) to G(A).

- Structure-preserving maps between functors.
 - ▶ Let $F, G : \mathbb{C} \to \mathbb{D}$ be functors.
 - A natural transformation ϕ is an *indexed family of* morphisms for every object $A \in |\mathbb{C}|$, ϕ_A is a morphism from F(A) to G(A).
 - ► These morphisms satisfy the *naturality condition*:

$$\forall f \in \mathbb{C}(A, B) : \phi_B \circ F(f) = G(f) \circ \phi_A$$

- Structure-preserving maps between functors.
 - ▶ Let $F, G : \mathbb{C} \to \mathbb{D}$ be functors.
 - A natural transformation ϕ is an indexed family of morphisms for every object $A \in |\mathbb{C}|$, ϕ_A is a morphism from F(A) to G(A).
 - ► These morphisms satisfy the *naturality condition*:

$$\forall f \in \mathbb{C}(A,B) : \phi_B \circ F(f) = G(f) \circ \phi_A$$

▶ Given two functors F and G, we write the collection of all natural transformation between them as Nat(F, G).

Exercise 1 : Order Categories

- a) Let \leq be a reflexive, transitive order (a *preorder*) on a set M. Show that if we define objects by $|\mathbb{P}re(M, \leq)| = M$ and morphisms by $\exists ! f_{x \leq y} \in \mathbb{P}re(x, y) \Leftrightarrow x \leq y$, then $\mathbb{P}re(M, \leq)$ forms a category.
- b) Let $F : \mathbb{M} \to \mathbb{M}$ be an endofunctor on \mathbb{M} . Show that F defines a monotonic function $M \to M$, i.e. $\forall x, y : x \le y \implies F(x) \le F(y)$.
- c) Let $F, G: M \to M$ be monotonic functions. Let ϕ be a natural transformation $F \to G$. Show that $\forall x \in M : F(x) \leq G(x)$.

Exercise 1 : Order Categories, Solution a)

- ► ≤ is reflexive, so we have $\forall x : x \le x \implies \exists id_{x \le x} \in \mathbb{P}re(x, x).$
- ▶ Because of transitivity, for every pair of morphisms $f_{x \le y}$ and $g_{y \le z}$, we have a composed morphism $(g \circ f)_{x \le z}$.
- Since our morphisms are just witnesses of an ordering, they dont care about the order of function application, so composition is associative.

Exercise 1 : Order Categories, Solution b)

▶ By the definition of functors, *F* must take each morphism $f_{x \le y} \in \mathbb{P}re(x, y)$ to a morphism $F(f)_{F(x) \leq F(y)} \in \mathbb{P}re(F(x), F(y)).$

Exercise 1: Order Categories, Solution c)

▶ By the definition of natural transformations, for every object x, ϕ_x is a morphism $F(x) \to G(x)$. If such a morphism exists, we have $F(x) \le G(x)$.

▶ The naturality condition resembles an equality we saw a few weeks ago:

$$r_B \circ \mathtt{map}(a) = \mathtt{map}(a) \circ r_A$$

▶ The naturality condition resembles an equality we saw a few weeks ago:

$$r_B \circ \mathrm{map}(a) = \mathrm{map}(a) \circ r_A$$

This is the free theorem we got for a parametrically polymorphic function $r: [X] \rightarrow [X]$ and an arbitrary function $a: A \rightarrow B$.

▶ The naturality condition resembles an equality we saw a few weeks ago:

$$r_B \circ \operatorname{map}(a) = \operatorname{map}(a) \circ r_A$$

- ► This is the free theorem we got for a parametrically polymorphic function r ::
 [X] -> [X] and an arbitrary function a : A -> B.
- \triangleright This free theorem is equivalent to the statement that r is a natural transformation.

► In general, assume we have:

- ▶ In general, assume we have:
 - two functors F and G,

- ▶ In general, assume we have:
 - two functors F and G,
 - ▶ a parametrically polymorphic function r : F x → G x,

- ▶ In general, assume we have:
 - two functors F and G,
 - ▶ a parametrically polymorphic function r : F x → G x,
 - ► an arbitrary function f : A -> B.

- ▶ In general, assume we have:
 - two functors F and G,
 - ▶ a parametrically polymorphic function r : F x → G x,
 - ▶ an arbitrary function f : A → B.
- ▶ Then we get the following free theorem:

```
r . fmap f = fmap f . r
```

- ► In general, assume we have:
 - two functors F and G,
 - ▶ a parametrically polymorphic function r : F x → G x,
 - ► an arbitrary function f : A -> B.
- ▶ Then we get the following free theorem:

$$r$$
 . $fmap f = fmap f$. r

► In categorical notation:

$$r_B \circ F(f) = G(f) \circ r_A$$

Naturality from Polymorphism

- In general, assume we have:
 - two functors F and G,
 - ightharpoonup a parametrically polymorphic function m r : m F x -> G x,
 - ▶ an arbitrary function f : A → B.
- ▶ Then we get the following free theorem:

$$r$$
 . $fmap f = fmap f$. r

In categorical notation:

$$r_B \circ F(f) = G(f) \circ r_A$$

So our free theorem is a proof that any parametrically polymorphic function r is a natural transformation!

Naturality from Polymorphism

- In general, assume we have:
 - two functors F and G,
 - ▶ a parametrically polymorphic function r : F x → G x,
 - ▶ an arbitrary function f : A → B.
- Then we get the following free theorem:

$$r$$
 . $fmap f = fmap f$. r

In categorical notation:

$$r_B \circ F(f) = G(f) \circ r_A$$

- So our free theorem is a proof that any parametrically polymorphic function r is a natural transformation!
- It turns out that parametrically polymorphic functions correspond exactly to natural transformations between endofunctors $\mathbb{S}et \to \mathbb{S}et$.

► For any category \mathbb{C} , a homset $\mathbb{C}(A, B)$ is a set of morphisms.

- For any category \mathbb{C} , a homset $\mathbb{C}(A, B)$ is a set of morphisms.
- ▶ We define a functor $\mathbb{C}(A, -) : \mathbb{C} \to \mathbb{S}et$:

- \blacktriangleright For any category \mathbb{C} , a homset $\mathbb{C}(A,B)$ is a set of
- - $ightharpoonup \mathbb{C}(A,-)$ maps an Object B to the Homset $\mathbb{C}(A,B)$

- For any category \mathbb{C} , a homset $\mathbb{C}(A, B)$ is a set of morphisms.
- ▶ We define a functor $\mathbb{C}(A, -) : \mathbb{C} \to \mathbb{S}et$:
 - $ightharpoonup \mathbb{C}(A,-)$ maps an Object B to the Homset $\mathbb{C}(A,B)$
 - A morphism $f : \mathbb{C}(B, C)$ is mapped to the morphism $f \circ : \mathbb{C}(A, B) \to \mathbb{C}(A, C)$

- For any category \mathbb{C} , a homset $\mathbb{C}(A, B)$ is a set of morphisms.
- ▶ We define a functor $\mathbb{C}(A, -) : \mathbb{C} \to \mathbb{S}et$:
 - $ightharpoonup \mathbb{C}(A,-)$ maps an Object B to the Homset $\mathbb{C}(A,B)$
 - A morphism $f : \mathbb{C}(B, C)$ is mapped to the morphism $f \circ : \mathbb{C}(A, B) \to \mathbb{C}(A, C)$
- ▶ Similarly, $\mathbb{C}(-,B)$ is a functor $\mathbb{C}^{op} \to \mathbb{S}et$:

- For any category \mathbb{C} , a homset $\mathbb{C}(A, B)$ is a set of morphisms.
- ▶ We define a functor $\mathbb{C}(A, -) : \mathbb{C} \to \mathbb{S}et$:
 - $ightharpoonup \mathbb{C}(A,-)$ maps an Object B to the Homset $\mathbb{C}(A,B)$
 - A morphism $f : \mathbb{C}(B, C)$ is mapped to the morphism $f \circ : \mathbb{C}(A, B) \to \mathbb{C}(A, C)$
- ▶ Similarly, $\mathbb{C}(-,B)$ is a functor $\mathbb{C}^{op} \to \mathbb{S}et$:
 - $ightharpoonup \mathbb{C}(-,B)$ maps an Object A to the Homset $\mathbb{C}(A,B)$

- For any category \mathbb{C} , a homset $\mathbb{C}(A, B)$ is a set of morphisms.
- ▶ We define a functor $\mathbb{C}(A, -) : \mathbb{C} \to \mathbb{S}et$:
 - $ightharpoonup \mathbb{C}(A,-)$ maps an Object B to the Homset $\mathbb{C}(A,B)$
 - A morphism $f : \mathbb{C}(B, C)$ is mapped to the morphism $f \circ : \mathbb{C}(A, B) \to \mathbb{C}(A, C)$
- ▶ Similarly, $\mathbb{C}(-,B)$ is a functor $\mathbb{C}^{op} \to \mathbb{S}et$:
 - $ightharpoonup \mathbb{C}(-,B)$ maps an Object A to the Homset $\mathbb{C}(A,B)$
 - A morphism $f: \mathbb{C}(B,A)$ is mapped to the morphism $\circ f: \mathbb{C}(A,C) \to \mathbb{C}(B,C)$

Functor Categories

▶ For any \mathbb{C} , \mathbb{D} , the collection of functors $\mathbb{C} \to \mathbb{D}$ form a category.

Functor Categories

- ▶ For any \mathbb{C} , \mathbb{D} , the collection of functors $\mathbb{C} \to \mathbb{D}$ form a category.
- ▶ This category is known as a *functor category* and denoted $\mathbb{D}^{\mathbb{C}}$.

Functor Categories

- ▶ For any \mathbb{C} , \mathbb{D} , the collection of functors $\mathbb{C} \to \mathbb{D}$ form a category.
- ightharpoonup This category is known as a *functor category* and denoted $\mathbb{D}^{\mathbb{C}}$.
- ▶ A morphism $\phi \in \mathbb{D}^{\mathbb{C}}(F, G)$ is a natural transformation $F \to G$.

► Remember that the goal is finding out everything about an object *A* through its relations to other objects.

- ► Remember that the goal is finding out everything about an object *A* through its relations to other objects.
- ► So we want to describe an object through a collection of its homsets.

- ► Remember that the goal is finding out everything about an object *A* through its relations to other objects.
- So we want to describe an object through a collection of its homsets.
- Formally, we want a bijective functor

$$\mathcal{Y}:\mathbb{C} o \mathbb{S}et^{\mathbb{C}}\ A\mapsto \mathbb{C}(A,-$$

- Remember that the goal is finding out everything about an object A through its relations to other objects.
- ▶ So we want to describe an object through a collection of its homsets.

Formally, we want a bijective functor

$$\mathcal{Y}: \mathbb{C}
ightarrow \mathbb{S}et^{\mathbb{C}} \ A \mapsto \mathbb{C}(A,-)$$

- Remember that the goal is finding out everything about an object A through its relations to other objects.
- ➤ So we want to describe an object through a collection of its homsets.
- $\begin{array}{ccc}
 A & \xrightarrow{f \in \mathbb{C}(A,B)} & B \\
 \downarrow & & & \downarrow \\
 \mathcal{C}(A,-) & \xrightarrow{\mathcal{V}(f)} & \mathbb{C}(B,-)
 \end{array}$

$$\mathcal{Y}:\mathbb{C}
ightarrow\mathbb{S}et^{\mathbb{C}}\ A\mapsto\mathbb{C}(A,-$$

- $ightarrow \mathbb{C}(B,-)$ lacktriangle We call $\mathcal Y$ the *Yoneda embedding*.
 - ▶ Given $f \in \mathbb{C}(A, B)$, $\mathcal{Y}(f)$ has to be a morphism between $\mathbb{C}(A, -)$ and $\mathbb{C}(B, -)$ in the functor category $\mathbb{S}et^{\mathbb{C}}$.

- Remember that the goal is finding out everything about an object A through its relations to other objects.
- ➤ So we want to describe an object through a collection of its homsets.
- ► Formally, we want a bijective functor

$$\mathcal{Y}: \mathbb{C}
ightarrow \mathbb{S}et^{\mathbb{C}} \ A \mapsto \mathbb{C}(A,-)$$

- $o \mathbb{C}(B,-)$ lacktriangle We call $\mathcal Y$ the Yoneda embedding.
 - ▶ Given $f \in \mathbb{C}(A, B)$, $\mathcal{Y}(f)$ has to be a morphism between $\mathbb{C}(A, -)$ and $\mathbb{C}(B, -)$ in the functor category $\mathbb{S}et^{\mathbb{C}}$.
 - ▶ Therefore, $\mathcal{Y}(f)$ has to be a natural transformation between $\mathbb{C}(A,-)$ and $\mathbb{C}(B,-)$

▶ It turns out we can do even better!

- It turns out we can do even better!
- ▶ We can construct the set of all natural transformations between $\mathbb{C}(A,-)$ and $\underline{\text{any}}$ Functor $F:\mathbb{C}\to\mathbb{S}et$.

- ▶ It turns out we can do even better!
- ▶ We can construct the set of all natural transformations between $\mathbb{C}(A, -)$ and $\underline{\text{any}}$ Functor $F : \mathbb{C} \to \mathbb{S}et$.
- ▶ Specifically, the Yoneda lemma states that:

$$\mathsf{Nat}(\mathbb{C}(A,-),F)\simeq F(A)$$

- It turns out we can do even better!
- We can construct the set of all natural transformations between $\mathbb{C}(A,-)$ and $\underline{\text{any}}$ Functor $F:\mathbb{C}\to\mathbb{S}et$.
- Specifically, the Yoneda lemma states that:

$$\mathsf{Nat}(\mathbb{C}(A,-),F)\simeq F(A)$$

Furthermore, this isomorphism is a natural transformation.

- It turns out we can do even better!
- We can construct the set of all natural transformations between $\mathbb{C}(A,-)$ and $\underline{\text{any}}$ Functor $F:\mathbb{C}\to\mathbb{S}et$.
- Specifically, the Yoneda lemma states that:

$$\mathsf{Nat}(\mathbb{C}(A,-),F)\simeq F(A)$$

- Furthermore, this isomorphism is a natural transformation.
- ▶ So we can construct the Yoneda embedding \mathcal{Y} from the set F(A).

- It turns out we can do even better!
- We can construct the set of all natural transformations between $\mathbb{C}(A,-)$ and $\underline{\text{any}}$ Functor $F:\mathbb{C}\to\mathbb{S}et$.
- Specifically, the Yoneda lemma states that:

$$\mathsf{Nat}(\mathbb{C}(A,-),F)\simeq F(A)$$

- Furthermore, this isomorphism is a natural transformation.
- ▶ So we can construct the Yoneda embedding \mathcal{Y} from the set F(A).
- ▶ Vice versa, if we know all natural transformations Nat($\mathbb{C}(A, -), F$), we can construct the set F(A).

- ▶ It turns out we can do even better!
- We can construct the set of all natural transformations between $\mathbb{C}(A,-)$ and $\underline{\text{any}}$ Functor $F:\mathbb{C}\to\mathbb{S}et$.
- Specifically, the Yoneda lemma states that:

$$\mathsf{Nat}(\mathbb{C}(A,-),F)\simeq F(A)$$

- Furthermore, this isomorphism is a natural transformation.
- ▶ So we can construct the Yoneda embedding \mathcal{Y} from the set F(A).
- ▶ Vice versa, if we know all natural transformations Nat($\mathbb{C}(A, -), F$), we can construct the set F(A).
- Note that this is the *covariant* version of the Yoneda lemma. The lemma is sometimes stated equivalently in terms of the *contravariant homfunctor* $\mathbb{C}(-, A)$.

$$A \xrightarrow{f} B$$

f Let $\phi \in \operatorname{Nat}(\mathbb{C}(A,-),F)$. Since ϕ is natural transformation, we have

$$\mathbb{C}(A,A) \xrightarrow{\mathbb{C}(A,f)=f \circ} \mathbb{C}(A,B) \\
\downarrow \qquad \qquad \downarrow \\
F(A) \xrightarrow{F(f)} F(B)$$

$$F(f) \circ \phi_A = \phi_B \circ f \circ$$

$$A \xrightarrow{f} B$$

 $f \longrightarrow B$ Let $\phi \in \operatorname{Nat}(\mathbb{C}(A,-),F)$. Since ϕ is natural transformation, we have

$$\mathbb{C}(A,A) \xrightarrow{\mathbb{C}(A,f)=f\circ} \mathbb{C}(A,B) \\
\downarrow \qquad \qquad \downarrow \\
F(A) \xrightarrow{F(f)} F(B)$$

$$F(f) \circ \phi_A = \phi_B \circ f \circ$$

▶ Remember that these functors are $\mathbb{C} \to \mathbb{S}et$.

$$A \xrightarrow{f} B \qquad \text{Let } \phi \in \\ \text{transfor}$$

$$\mathbb{C}(A,A) \xrightarrow{\mathbb{C}(A,f)=f \circ} \mathbb{C}(A,B)$$

$$\downarrow \qquad \qquad \downarrow \\ \phi_{A} \qquad \qquad \downarrow \phi_{B}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad$$

 $f \longrightarrow B$ Let $\phi \in \text{Nat}(\mathbb{C}(A, -), F)$. Since ϕ is natural transformation, we have

$$F(f) \circ \phi_{A} = \phi_{B} \circ f \circ$$

- lacktriangle Remember that these functors are $\mathbb{C} o \mathbb{S} et$.
- ▶ This means our morphisms are just regular set functions.

► If we apply these functions to the identity morphism id_A , we get:

$$\phi_B(f \circ id_A) = F(f)(\phi_A(id_A))$$

$$\phi_B(f) = F(f)(\phi_A(id_A)) := F(f)(u)$$

Cayley's Theorem

▶ Every group (G, *, e) is isomorphic to a subgroup of the group of permutations of G.

Cayley's Theorem

- Every group (G, *, e) is isomorphic to a subgroup of the group of permutations of G.
- Specifically:
 - One side of the bijection is constructed by sending $g \in G$ to the permutation which maps $f_g : x \mapsto g * x$
 - The other side sends a permutation f to the element f(e)

Cayley's Theorem

- Every group (G, *, e) is isomorphic to a subgroup of the group of permutations of G.
- Specifically:
 - One side of the bijection is constructed by sending $g \in G$ to the permutation which maps $f_g: x \mapsto g * x$
 - ▶ The other side sends a permutation f to the element f(e)
- ▶ The Yoneda lemma is often viewed as a generalization of Cayley's theorem.

Use the Yoneda embedding to show that every monoid M is isomorphic to a monoid of functions $M \to M$.

Hint 1: The Yoneda embedding gives an isomorphism between objects and their homfunctors.

Hint 2: Two weeks ago we saw that every monoid M defines a category \mathbb{M} with a single object * and a morphism m for each element $m \in M$, where we define morphism composition to be the monoid operation.

► The Yoneda embedding is an isomorphism mapping each object to its homfunctor.

- ► The Yoneda embedding is an isomorphism mapping each object to its homfunctor.
- We only have one object *, and thus only one homfunctor $\mathbb{M}(*, -)$.

- ► The Yoneda embedding is an isomorphism mapping each object to its homfunctor.
- We only have one object *, and thus only one homfunctor M(*, −).
- ▶ Each element $m \in M$ is a morphism. By the definition of the homfunctor, this morphism is mapped to the set function

$$\mathbb{M}(*,m) = m \circ : M \to M$$

$$n \mapsto m \circ n$$

Exercise 2 - Cayley's Theorem for Monoids

- ► The Yoneda embedding is an isomorphism mapping each object to its homfunctor.
- We only have one object *, and thus only one homfunctor M(*, −).
- ▶ Each element $m \in M$ is a morphism. By the definition of the homfunctor, this morphism is mapped to the set function

$$\mathbb{M}(*,m) = m \circ : M \to M$$

$$n \mapsto m \circ n$$

▶ Thus, the Yoneda embedding on M is an isomorphism between monoid objects and a set of functions $M \rightarrow M$. These functions form a monoid under composition.

► In functional programming, an *optic* is generally a data structure including some "outer type" S and some "inner type" A.

- ► In functional programming, an *optic* is generally a data structure including some "outer type" S and some "inner type" A.
- In general, this involves some sort of get function, which allows access to the inner value, and a set function, which changes the inner value.

- ► In functional programming, an *optic* is generally a data structure including some "outer type" S and some "inner type" A.
- In general, this involves some sort of get function, which allows access to the inner value, and a set function, which changes the inner value.
- ▶ *Profunctor optics* are neat and flexible representations of optics as individual polymorphic function.

- ► In functional programming, an *optic* is generally a data structure including some "outer type" S and some "inner type" A.
- In general, this involves some sort of get function, which allows access to the inner value, and a set function, which changes the inner value.
- Profunctor optics are neat and flexible representations of optics as individual polymorphic function.
- In particular, profunctor optics make composition of optics trivial.

- ▶ In functional programming, an *optic* is generally a data structure including some "outer type" S and some "inner type" A.
- In general, this involves some sort of get function, which allows access to the inner value, and a set function, which changes the inner value.
- Profunctor optics are neat and flexible representations of optics as individual polymorphic function.
- In particular, profunctor optics make composition of optics trivial.
- ► Equivalence between optics and their profunctor representations comes down to the Yoneda lemma.

- data Adapter a b s t = Adapter $\{ \text{ from } :: s \rightarrow a, \text{ to } :: b \rightarrow t \}$
 - s and t are assumed to be composite types containing values of types a and b respectively.

- $_1$ data Adapter a b s t = Adapter $\{$ from :: s -> a, to $:: b -> t \}$
 - s and t are assumed to be composite types containing values of types a and b respectively.
 - ightharpoonup Categorically, this translates to a pair of morphisms $\mathbb{C}(S,A)\times\mathbb{C}(B,T)$.

- $_1$ data Adapter a b s t = Adapter $\{$ from :: s -> a, to $:: b -> t \}$
 - s and t are assumed to be composite types containing values of types a and b respectively.
 - ightharpoonup Categorically, this translates to a pair of morphisms $\mathbb{C}(S,A) \times \mathbb{C}(B,T)$.
 - This is a morphism in the corresponding product category $(\mathbb{C}^{op} \times \mathbb{C})((A, B), (S, T))$

- $_{1}$ data Adapter a b s t = Adapter $\{$ from :: s -> a, to :: b -> t $\}$
 - s and t are assumed to be composite types containing values of types a and b respectively.
 - ightharpoonup Categorically, this translates to a pair of morphisms $\mathbb{C}(S,A) \times \mathbb{C}(B,T)$.
 - This is a morphism in the corresponding product category $(\mathbb{C}^{op} \times \mathbb{C})((A, B), (S, T))$
 - We can compose adapters with matching types and define an identity adapter Adapter id id.

- $_1$ data Adapter a b s t = Adapter $\{$ from :: s -> a, to $:: b -> t \}$
 - s and t are assumed to be composite types containing values of types a and b respectively.
 - ightharpoonup Categorically, this translates to a pair of morphisms $\mathbb{C}(S,A) \times \mathbb{C}(B,T)$.
 - This is a morphism in the corresponding product category $(\mathbb{C}^{op} \times \mathbb{C})((A, B), (S, T))$
 - We can compose adapters with matching types and define an identity adapter Adapter id id.
 - ▶ This lets us equivalently view a category $\mathbb{C}^{op} \times \mathbb{C}$ as the category $\mathbb{A}da$ of adapters of objects of \mathbb{C} .

▶ A *profunctor* is a functor $\mathbb{C}^{op} \times \mathbb{C} \to \mathbb{S}et$.

- ▶ A profunctor is a functor $\mathbb{C}^{op} \times \mathbb{C} \to \mathbb{S}et$.
- ► As Haskell code:
 - 1 class Profunctor p where
 - dimap :: (c -> a) -> (b -> d) -> p a b -> p c d

- ▶ A profunctor is a functor $\mathbb{C}^{op} \times \mathbb{C} \to \mathbb{S}et$.
- ► As Haskell code:
 - 1 class Profunctor p where
 - 2 dimap :: (c -> a) -> (b -> d) -> p a b -> p c d
- ► The canonical example of a profunctor is the function type former, where dimap is function composition:
 - ₁ instance Profunctor (->) where
 - $_2$ dimap f g h = g . h . f

- ▶ A profunctor is a functor $\mathbb{C}^{op} \times \mathbb{C} \to \mathbb{S}et$.
- As Haskell code:
 - 1 class Profunctor p where
 - 2 dimap :: (c -> a) -> (b -> d) -> p a b -> p c d
- ► The canonical example of a profunctor is the function type former, where dimap is function composition:
 - instance Profunctor (->) where
 - dimap $f g h = g \cdot h \cdot f$
- $lackbox{ We define the category }\mathbb{P}rof$ to be the functor category $\mathbb{S}et^{(\mathbb{C}^{op}} imes\mathbb{C})=\mathbb{S}et^{\mathbb{A}da}$

Functor Application as a Functor

▶ Given a category \mathbb{C} , the operation of applying a functor $F: \mathbb{C} \to \mathbb{S}et$ to an object $A \in |\mathbb{C}|$ is itself a functor from $\mathbb{S}et^{\mathbb{C}}$ to \mathbb{C} .

Functor Application as a Functor

- ▶ Given a category \mathbb{C} , the operation of applying a functor $F: \mathbb{C} \to \mathbb{S}et$ to an object $A \in |\mathbb{C}|$ is itself a functor from $\mathbb{S}et^{\mathbb{C}}$ to \mathbb{C} .
- ▶ We write -(A) for this functor.

▶ The profunctor representation of an adapter is given by:

1 type AdapterP a b s t = forall p. Profunctor $p \rightarrow p$ a b $\rightarrow p$ s t

- ▶ The profunctor representation of an adapter is given by:
 - 1 type AdapterP a b s t = forall p. Profunctor $p \rightarrow p$ a b $\rightarrow p$ s t
- As we saw earlier, the polymorphism makes AdapterP a natural transformation.

- ▶ The profunctor representation of an adapter is given by:
 - $_{1}$ type AdapterP a b s t = forall p. Profunctor p -> p a b -> p s t
- As we saw earlier, the polymorphism makes AdapterP a natural transformation.
- We define $\mathbb{A}daP$ as the functor category whose objects are those of $\mathbb{A}da = \mathbb{C}^{op} \times \mathbb{C}$, but whose morphisms are profunctor adapters.

- ► The profunctor representation of an adapter is given by:
 - $_{1}$ type AdapterP a b s t = forall p. Profunctor p -> p a b -> p s t
- As we saw earlier, the polymorphism makes AdapterP a natural transformation.
- We define $\mathbb{A}daP$ as the functor category whose objects are those of $\mathbb{A}da = \mathbb{C}^{op} \times \mathbb{C}$, but whose morphisms are profunctor adapters.
- ightharpoonup The homsets in AdaP are defined as:

$$\mathbb{A}daP((A,B),(S,T)) = \mathbb{S}et^{\mathbb{P}rof}(-(A,B),-(S,T))$$

▶ The Yoneda lemma tells us that for any functor *F*:

$$F(A)\simeq \mathbb{S}et^{\mathbb{C}}(\mathbb{C}(A,-),F)$$

▶ The Yoneda lemma tells us that for any functor *F*:

$$F(A)\simeq \mathbb{S}et^{\mathbb{C}}(\mathbb{C}(A,-),F)$$

▶ If we remove the reference to any specific functor, we get:

$$-(A)\simeq \mathbb{S}et^{\mathbb{C}}(\mathbb{C}(A,=),-)$$

▶ The Yoneda lemma tells us that for any functor *F*:

$$F(A)\simeq \mathbb{S}et^{\mathbb{C}}(\mathbb{C}(A,-),F)$$

▶ If we remove the reference to any specific functor, we get:

$$-(A)\simeq \mathbb{S}et^{\mathbb{C}}(\mathbb{C}(A,=),-)$$

So we have:

$$AdaP((A, B), (S, T))$$

$$= Set^{Prof}(-(A, B), -(S, T))$$

$$\simeq Set^{Prof}(Prof(Ada((A, B), =), -), Prof(Ada((S, T), =), -))$$

$$AdaP((A,B),(S,T))$$

$$\simeq Set^{Prof}(Prof(Ada((A,B),=),-),Prof(Ada((S,T),=),-))$$

▶ Applying the Yoneda embedding of the functor category $\mathbb{P}rof = \mathbb{S}et^{\mathbb{A}da}$ gives:

$$\mathbb{S}et^{\mathbb{P}rof}(\mathbb{P}rof(\mathbb{A}da((A,B),=),-),\mathbb{P}rof(\mathbb{A}da((S,T),=),-))$$

 $\simeq \mathbb{P}rof(\mathbb{A}da((A,B),=),\mathbb{A}da((S,T),=))$

▶ Applying the Yoneda embedding again, this time of the category Ada, gives:

$$\mathbb{P}rof(\mathbb{A}da((A,B),=),\mathbb{A}da((S,T),=))$$

$$= \mathbb{S}et^{\mathbb{A}da}(\mathbb{A}da((A,B),=),\mathbb{A}da((S,T),=))$$

$$\simeq \mathbb{A}da((A,B),(S,T))$$

▶ The Yoneda lemma is a fundamental result in category.

- ▶ The Yoneda lemma is a fundamental result in category.
- ▶ The lemma states that the set of natural transformations between a homfunctor $\mathbb{C}(A,-)$ and an arbitrary functor $F:\mathbb{C}\to \mathbb{S}et$ is naturally isomorphic to the set F(A).

- The Yoneda lemma is a fundamental result in category.
- ▶ The lemma states that the set of natural transformations between a homfunctor $\mathbb{C}(A,-)$ and an arbitrary functor $F:\mathbb{C}\to \mathbb{S}et$ is naturally isomorphic to the set F(A).
- ▶ The Yoneda lemma enables the use of the Yoneda embedding, which is a natural isomorphism between a category \mathbb{C} and the category of homfunctors on \mathbb{C} .

- The Yoneda lemma is a fundamental result in category.
- ▶ The lemma states that the set of natural transformations between a homfunctor $\mathbb{C}(A,-)$ and an arbitrary functor $F:\mathbb{C}\to \mathbb{S}et$ is naturally isomorphic to the set F(A).
- ▶ The Yoneda lemma enables the use of the Yoneda embedding, which is a natural isomorphism between a category \mathbb{C} and the category of homfunctors on \mathbb{C} .
- Using the Yoneda embedding twice, we have shown the equivalence of adapters and profunctor adapters.

- The Yoneda lemma is a fundamental result in category.
- ▶ The lemma states that the set of natural transformations between a homfunctor $\mathbb{C}(A,-)$ and an arbitrary functor $F:\mathbb{C}\to \mathbb{S}et$ is naturally isomorphic to the set F(A).
- ▶ The Yoneda lemma enables the use of the Yoneda embedding, which is a natural isomorphism between a category \mathbb{C} and the category of homfunctors on \mathbb{C} .
- Using the Yoneda embedding twice, we have shown the equivalence of adapters and profunctor adapters.
- Similar techniques can be used to show the equivalence of any optic and its profunctor representation.