Lezione 6 MSC Equivalenze forti – (3/3)

Roberto Gorrieri

Gerarchia – dove siamo?

Bisimulazione (1)

• È una forma di mutua simulazione passo a passo...

Definition 2.14. Let $TS = (Q, A, \rightarrow)$ be a transition system. A *bisimulation* (originated in [Park81, Mil89]) is a relation $R \subseteq Q \times Q$ such that R and its inverse R^{-1} are both simulation relations. More explicitly, a bisimulation is a relation R such that if $(q_1, q_2) \in R$ then for all $\mu \in A$

- $\forall q_1'$ such that $q_1 \xrightarrow{\mu} q_1'$, $\exists q_2'$ such that $q_2 \xrightarrow{\mu} q_2'$ and $(q_1', q_2') \in R$
- $\forall q_2'$ such that $q_2 \xrightarrow{\mu} q_2'$, $\exists q_1'$ such that $q_1 \xrightarrow{\mu} q_1'$ and $(q_1', q_2') \in R$.

Two states q and q' are bisimilar (or bisimulation equivalent), denoted $q \sim q'$, if there exists a bisimulation R such that $(q, q') \in R$.

 N.B: Non chiedo che se (q1, q2) soddisfano la condizione di mutua simulazione, allora (q1,q2) deve stare in R.

Bisimulazione (2)

- Rè una bisimulazione se e soltanto se R e la sua inversa $R^{-1} = \{(q',q) \mid (q,q') \text{ in } R\}$ sono simulazioni.
- Nota che se q e q' sono simulation equivalent, allora esistono DUE simulazioni R_1 e R_2 tali che R_1 in R_2 in R_3 e R_4 in R_4 e R_5 sia l'inversa di R_4 .
- Inoltre, se (q, q') sono in una bisimulazione R, allora q e q' offrono lo stesso menù di mosse iniziali.
- Quindi:

Proposition 2.3. $q \sim q'$ implies $q \simeq_{rs} q'$ implies $q \simeq_c q'$ implies $q \simeq q'$.

Bisimulazione (3)

Remark 2.5. (Symmetric simulation and bisimulation) A relation $R \subseteq Q \times Q$ is symmetric if for all $q, q' \in Q$, $(q, q') \in R$ iff $(q', q) \in R$. Therefore, if R is symmetric, then $R = R^{-1} = \{(q', q) \mid (q, q') \in R\}$. As a consequence, any symmetric simulation relation S is also a bisimulation, because if S is a simulation, then also $S^{-1} = S$ is a simulation. However, a bisimulation relation need not to be symmetric, as we will see in the following examples, even if it has to be a simulation.

Bisimulazione (4)

In the light of Remark 2.3, the definition above comprises also the case of a bisimulation between two Its's, say, $TS_1 = (Q_1, A_1, \rightarrow_1)$ and $TS_2 = (Q_2, A_2, \rightarrow_2)$ with $Q_1 \cap Q_2 = \emptyset$, because we may consider just one single Its $TS = (Q_1 \cup Q_2, A_1 \cup A_2, \rightarrow_1 \cup \rightarrow_2)$: A bisimulation $R \subseteq Q_1 \times Q_2$ is also a bisimulation on $(Q_1 \cup Q_2) \times (Q_1 \cup Q_2)$. We say that a rooted Its $TS_1 = (Q_1, A_1, \rightarrow_1, q_1)$ is bisimilar to the rooted Its $TS_2 = (Q_2, A_2, \rightarrow_2, q_2)$ if there exists a bisimulation $R \subseteq Q_1 \times Q_2$ containing the pair (q_1, q_2) .

Exercise 2.34. (Isomorphism equivalence implies bisimilarity) Given two labeled transition systems $TS_1 = (Q_1, A_1, \rightarrow_1)$ and $TS_2 = (Q_2, A_2, \rightarrow_2)$, prove that if TS_1 and TS_2 are isomorphic via bijection f (see Definition 2.8), then $R = \{(q_1, q_2) \in Q_1 \times Q_2 \mid f(q_1) = q_2\}$ is a bisimulation. (Moreover, if $Q_1 \cap Q_2 = \emptyset$, then R is a bisimulation over the union of the two transition systems $TS = (Q_1 \cup Q_2, A_1 \cup A_2, \rightarrow_1 \cup \rightarrow_2)$.)

Bisimulazione (5)

- Come si dimostra che q è bisimile a q'? Esibire una relazione di bisimulazione R che contenga la coppia (q, q').
- Come si "costruisce" una bisimulazione? Come si dimostra che una data relazione è una bisimulazione?
- Quante relazioni di bisimulazione diverse ci sono per dimostrare che q è bisimile a q'?
- Come si dimostra che non esiste alcuna bisimulazione tra due stati, per dimostrare che non sono bisimulation equivalent?

Esempio 1

- Q = {q, q', q''}
- Verifica che R = {(q,q'), (q, q'')} è una bisim. Quante altre?
- Verifica che $R_1 = \{(q, q'')\}$ è una bisimulation.
- Verifica che $R_2 = \{(q, q')\}$ non è una bisim.

- Verifica che $R_3 = \emptyset$ è una (bi)simulation sempre vero!!
- In questo caso vale che R_{Δ} = QxQ è una bisimulazione?
- N.B. R₁ e R₃ sono bisimulation, ma poco utili perché non contengono la coppia di stati iniziali (q, q').

Esempio 2

• È possibile talvolta dimostrare la bisimilarità tra sistemi a stati finiti con sistemi a stati infiniti

- $R = \{(q, q_i) \mid i \in N\}$ è una semplice bisimulazione.
- Sia Q = {q, q0, q1, q2, ...}. È vero che QxQ è una bisimulazione?

Esempio 3

• $R = \{(q1,q4),(q2,q5),(q3,q5),(q2,q6),(q2,q7)\}$ è bisim.

- Trova almeno un'altra relazione di bisimulazione.
- Riesci a trovare un lts ancora più piccolo equivalente a questi due?

Esempio 4: non esiste una bis.

• Dimostriamo che non esiste una bisimulazione che contenga la coppia (q_1, q_7) : alla mossa $q_1 - a \rightarrow q_2$, q_7 può solo rispondere con $q_7 - a \rightarrow q_8$, ma q_2 e q_8 non possono essere bisimili perché solo q_8 può fare c.

Esercizio (1)

• Dimostra che i due non sono bisimili

Esercizio (2)

 Verifica se esiste una bisimulazione che contenga la coppia (q1, q6).

Esercizio (3)

 Build a bisimulation relation containing the pair (q0, q4)

Proprietà

Proposition 2.4. For any lts $TS = (Q, A, \rightarrow)$, the following hold:

- 1. the identity relation $\mathscr{I} = \{(q,q) \mid q \in Q\}$ is a bisimulation;
- 2. the inverse relation $R^{-1} = \{(q',q) \mid (q,q') \in R\}$ of a bisimulation R is a bisimulation;
- 3. the relational composition $R_1 \circ R_2 = \{(q,q'') \mid \exists q'.(q,q') \in R_1 \land (q',q'') \in R_2\}$ of two bisimulations R_1 and R_2 is a bisimulation.
- 4. the union $\bigcup_{i \in I} R_i$ of bisimulations R_i is a bisimulation.

$$\sim = \bigcup \{R \subseteq Q \times Q \mid R \text{ is a bisimulation}\}\$$

- Dimostrare che ~ è una relazione d'equivalenza (riflessiva, simmetrica e transitiva)
- Dimostrare che ~ è la più grande bisimulazione

Caratterizzazione di ~: punto fisso

Let us now define *recursively* a new behavioural relation $\sim' \subseteq Q \times Q$ as follows: $q_1 \sim' q_2$ if and only if for all $a \in A$

- $\forall q_1'$ such that $q_1 \xrightarrow{a} q_1'$, $\exists q_2'$ such that $q_2 \xrightarrow{a} q_2'$ and $q_1' \sim q_2'$
- $\forall q_2'$ such that $q_2 \xrightarrow{a} q_2'$, $\exists q_1'$ such that $q_1 \xrightarrow{a} q_1'$ and $q_1' \sim q_2'$.
 - Vorremmo usare questa come definizione (nota: if and only if invece di implies), ma essa è ricorsiva ed ammette molte soluzioni! (vedi esempio prossimo lucido)
 - Si può dimostrare che ~ è una soluzione, anzi la più grande soluzione, di questa definizione ricorsiva.

Per capirci ...

- R = {(q",q")} è una bis., ma non è una soluzione ricorsiva
- R' = {(q',q'), (q'',q'')} è una bis ed anche una soluzione ricorsiva.
- R" = Ø è una bis ed anche una soluzione ricorsiva.
- S = {q', q''} x {q', q''} è la più grande bis ed anche la soluzione ricorsiva più grande.

~ è soluzione ricorsiva (1)

Proposition 2.9. For any lts, bisimulation equivalence \sim is such that $q_1 \sim q_2$ if and only if for all $\mu \in A$

- $\forall q_1'$ such that $q_1 \xrightarrow{\mu} q_1'$, $\exists q_2'$ such that $q_2 \xrightarrow{\mu} q_2'$ and $q_1' \sim q_2'$
- $\forall q_2'$ such that $q_2 \xrightarrow{\mu} q_2'$, $\exists q_1'$ such that $q_1 \xrightarrow{\mu} q_1'$ and $q_1' \sim q_2'$.

Proof. Note that in Definition 2.14, we have "implies" instead of "if and only if". Hence, the implication from left to right is due to the fact that \sim is itself a bisimulation. For the implication from right to left, we follow the proof in [Mil89]. First, define a new relation \sim " in terms of \sim as follows:

 $q_1 \sim'' q_2$ if and only if *for all* $\mu \in A$

- $\forall q_1'$ such that $q_1 \xrightarrow{\mu} q_1'$, $\exists q_2'$ such that $q_2 \xrightarrow{\mu} q_2'$ and $q_1' \sim q_2'$
- $\forall q_2'$ such that $q_2 \xrightarrow{\mu} q_2'$, $\exists q_1'$ such that $q_1 \xrightarrow{\mu} q_1'$ and $q_1' \sim q_2'$.

~ è soluzione ricorsiva (2)

Now we want to prove that $\sim = \sim''$, hence proving the property above. First, if $q_1 \sim q_2$, then (as \sim is a bisimulation)

- $\forall q_1'$ such that $q_1 \xrightarrow{\mu} q_1'$, $\exists q_2'$ such that $q_2 \xrightarrow{\mu} q_2'$ and $q_1' \sim q_2'$
- $\forall q_2'$ such that $q_2 \xrightarrow{\mu} q_2'$, $\exists q_1'$ such that $q_1 \xrightarrow{\mu} q_1'$ and $q_1' \sim q_2'$.

and so (by using the implication from right to left in the definition of \sim ") we have that $q_1 \sim$ " q_2 . It remains to prove that $q_1 \sim$ " q_2 implies $q_1 \sim q_2$. To obtain this, we prove that \sim " is a bisimulation. Assume that $q_1 \stackrel{\mu}{\longrightarrow} q_1'$ (the symmetric case when q_2 moves first is analogous, hence omitted). By definition of \sim ", we have that there exists a state q_2' such that $q_2 \stackrel{\mu}{\longrightarrow} q_2'$ and $q_1' \sim q_2'$; but, by what we just proved, we have also that $q_1' \sim$ " q_2' , and we are done.

Bisimulation up to ~

 A volte è comodo definire una relazione compatta che rimuove quelle coppie che differiscono solo per l'uso di alternative bis. equiv. ==> bisimulation up to ~ (che non è una bisimulation!)

Definition 2.13. A relation $R \subseteq Q \times Q$ is a strong bisimulation up to \sim if $(q_1, q_2) \in R$ then for all $a \in A$

- $\forall q_1'$ such that $q_1 \stackrel{a}{\longrightarrow} q_1'$, $\exists q_2'$ such that $q_2 \stackrel{a}{\longrightarrow} q_2'$ and $q_1' \sim R \sim q_2'$
- $\forall q_2'$ such that $q_2 \xrightarrow{a} q_2'$, $\exists q_1'$ such that $q_1 \xrightarrow{a} q_1'$ and $q_1' \sim R \sim q_2'$.

Correttezza della tecnica up to (1)

Lemma 2.1. If R is a bisimulation up to \sim , then $\sim R \sim$ is a bisimulation.

Proof. Assume $q \sim R \sim q'$, i.e., there exist q_1 and q_2 such that $q \sim q_1$, $(q_1,q_2) \in R$ and $q_2 \sim q'$. We have to prove that for any $q \xrightarrow{\mu} q^1$ there exists $q' \xrightarrow{\mu} q^2$ such that $q^1 \sim R \sim q^2$ (the symmetric case when q' moves first is omitted). Since $q \sim q_1$, there exists q'_1 such that $q_1 \xrightarrow{\mu} q'_1$ with $q^1 \sim q'_1$. Since $(q_1,q_2) \in R$, there exists q'_2 such that $q_2 \xrightarrow{\mu} q'_2$ with $q'_1 \sim R \sim q'_2$. Since $q_2 \sim q'$, there exists q^2 such that $q' \xrightarrow{\mu} q^2$ with $q'_2 \sim q^2$. Summing up, $q^1 \sim q'_1$ and $q'_1 \sim R \sim q'_2$ and $q'_2 \sim q^2$ can be shortened to $q^1 \sim R \sim q^2$, because $\sim \circ \sim = \sim$ by Proposition 2.6. Hence, we have proved that if $q \sim R \sim q'$ then for any q^1 such that $q \xrightarrow{\mu} q^1$ there exists q^2 such that $q' \xrightarrow{\mu} q^2$ with $q^1 \sim R \sim q^2$, as required by the definition of bisimulation.

Correttezza della tecnica up to (2)

Teorema: Se R è una bisimulation up to \sim , allora R \subseteq \sim

Dimostrazione: ${}^{\sim}R^{\sim}$ è una strong bisimulation per il lemma del lucido precedente. Quindi, per definizione di ${}^{\sim}$, vale che ${}^{\sim}R^{\sim}\subseteq {}^{\sim}$. Date che la relazione identità Id $\subseteq {}^{\sim}$, ne consegue che $R = Id R Id \subseteq {}^{\sim}R = {}^{\sim}$, da cui la tesi discende per transitività.

Esercizio

Exercise 2.37. Consider Figure 2.19. Assume to have already proved that $q_2 \sim q_3$ and $q_8 \sim q_9$. Then, prove that $q_1 \sim q_6$ by showing that relation $R = \{(q_1, q_6), (q_2, q_7), (q_5, q_8), (q_1, q_{10})\}$ is a strong bisimulation up to \sim . Note that R is not a bisimulation: some missing pairs are (q_3, q_7) and (q_4, q_{10}) .

Complessità ... e decidibilità

 Bisimulation equivalence su lts a stati finiti con n stati and m transizioni può essere calcolata in tempo
O(m log n)

 A differenza di tutte le altre equivalenze, ~ è anche decidibile su alcune classi di sistemi a stati infiniti (ad esempio, Basic Parallel Processes, BPP, che vedremo, ed anche BPA)

Determinismo

 Esercizio: dimostra che trace equivalence e bisimulation equivalence coincidono su lts deterministici.

Exercise 2.44. (**Determinism**) Prove that trace equivalence and bisimulation equivalence coincide over deterministic Its's. (*Hint*: Given a deterministic Its (Q, A, \rightarrow) , show that $R = \{(q_1, q_2) \mid q_1, q_2 \in Q \text{ and } q_1 =_{tr} q_2\}$ is a strong bisimulation.)

This means that the diagram above collapses to a two-node diagram, one node for isomorphism and one node for all the other equivalences. Moreover, this observation offers a simple algorithm to check trace equivalence between two finite-state rooted Its's $TS_i = (Q_i, A_i, \rightarrow_i, q_i)$ for i = 1, 2: first, transform TS_1 and TS_2 into trace equivalent, yet deterministic, rooted Its's DTS_1 and DTS_2 , respectively, by means of the procedure described in Exercise 2.17 on page 30; then, check if the finite-state, rooted, deterministic Its's DTS_1 and DTS_2 are strongly bisimilar.

Gerarchia – con determinismo

