Discrete mathematics - short question

Given a set A, define the following terms:

- a relation on A
- an equivalence relation on A
- a partial order on A
- a well founded relation on A

[4 marks]

If two relations <a on A and <B on B are well founded, show that the lexicographic relation and product relation on A×B are both well founded. [6 marks]

Solution

$R \subseteq A \times A$	[1]
Reflexive, symmetric, transitive.	[1]
Reflexive, anti-symmetric, transitive.	[1]
$\forall S \subseteq A . S \neq \emptyset \Rightarrow \exists m \in S . \forall a \in A . a < m \Rightarrow a \notin S$, or every descending sequence ultimately constant.	[1]
Consider projection of product order into A, find minimum, consider projection into B, find minimum, show minimal.	[1] [1] [1] [1]
Observe $\leq_{\text{I}} \subset \leq_{\text{P}}$.	[1]