Project Description - Tree Automata vs Tree Decompositions

Mateus de Oliveira Oliveira¹

Department of Informatics, University of Bergen, Norway mateus.oliveira@uib.no

1 Tree Automata

For each $n \in \mathbb{N}$, we let $[n] = \{1, ..., n\}$. As a degenerate case, we define $[0] = \emptyset$. For each finite set S we let $\mathcal{P}(S) = \{S' : S' \subseteq S\}$ denote the set of all subsets of S.

Prefix Closed Sets. Let $[r]^*$ denote the set of all strings over [r] and let λ denote the empty string. A subset $U \subseteq [r]^*$ is *prefix closed* if for every $p \in [r]^*$ and every $j \in [r]$, $pj \in U$ implies that $p \in U$. We note that the empty string λ is an element of any prefix closed subset of $[r]^*$. We say that $U \subseteq [r]^*$ is well numbered if for every $p \in [r]^*$ and every $j \in [r]$, the presence of pj in U implies that p1, ..., p(j-1) also belong to U.

Tree-Like Sets. We say that a subset $U \subseteq [r]^*$ is tree-like if U is both prefix-closed and well-numbered. Let U be a tree-like subset of $[r]^*$. If $pj \in U$, then we say that pj is a child of p, or interchangeably, that p is the parent of pj. If $pu \in U$ for $u \in [r]^*$, then we say that pu is a descendant of p. For a node $p \in U$ we let $U|_p = \{pu \in U : u \in [r]^*\}$ denote the set of all descendants of p. Note that p is a descendant of itself and therefore $p \in U|_p$. A leaf of U is a node $p \in U$ without children. We let leaves(U) be the set of leaves of U, and leaves(U,p) be the set of leaves which are descendants of p. We say that a subset S of U is connected if there exists a unique $p \in S$ with the property that either $p = \lambda$ or $p \neq \lambda$ and the parent of p is not in S.

Terms. Let Σ be a finite set of symbols. An r-ary term over Σ is a function $t: Pos(t) \to \Sigma$ whose domain Pos(t) is a tree-like subset of $[r]^*$.

We denote by $\operatorname{Terms}(\Sigma)$ the set of all terms over Σ . If $t_1, ..., t_r$ are terms in $\operatorname{Terms}(\Sigma)$, and $a \in \Sigma$, then we let $t = a(t_1, ..., t_r)$ be the term in $\operatorname{Terms}(\Sigma)$ which is defined by setting $t(\lambda) = a$ and $t(jp) = t_j(p)$ for each $j \in [r]$ and each $p \in Pos(t_j)$.

Tree Automata: Let Σ be a finite set of symbols. A bottom-up tree automaton over Σ is a tuple $\mathcal{A} = (Q, \Sigma, F, \Delta)$ where Q is a set of states, $F \subseteq Q$ a set of final states, and Δ is a set of transitions of the form (q_1, \ldots, q_r, a, q) with $a \in \Sigma$, and $q_1, \ldots, q_r, q \in Q$. The size of \mathcal{A} , which is defined as $|\mathcal{A}| = |Q| + |\Delta|$, measures the

number of states in Q plus the number of transitions in Δ . The set $\mathcal{L}(\mathcal{A},q,i)$ of all terms reaching a state $q \in Q$ in depth at most i is inductively defined as follows: If (a,q) is a transition in Δ , then a reaches state q in depth 1. If (q_1,\ldots,q_k,a,q) is a transition in Δ , and t_1,\ldots,t_k are terms in $Ter(\Sigma)$ such that t_j reaches state q_j in depth at most i for each $j \in [k]$, then the term $a(t_1,\ldots,t_k)$ reaches q in depth at most q in some finite depth. Finally, the language accepted by q is the set q in some finite depth. Finally, the language accepted by q is the set q in some finite depth. Finally, the language accepted by q is the set q in some finite depth. Finally, the language accepted by q is the set q in some finite depth. Finally, the language q is the set q in the consequent of q in and for each q is an antecedent of q. We let q is the consequent of q and for each q is an antecedent of q. We let q in the maximum arity of a transition in q. For each state $q \in Q$, we let

$$\Delta(q) = \{ \tau \in \Delta : q \text{ is the consequent of } \tau \}$$
 (1)

be the set of transitions that have q as consequent. We let $\delta(q) = |\Delta(q)|$ be the *in-degree* of q and $\delta(A) = \max_{q \in Q} \delta(q)$.

Runs: A run in $\mathcal{A} = (Q, \Sigma, F, \Delta)$ is a pair (t, ρ) where $t \in Ter(\Sigma)$, and $\rho : Pos(t) \to Q$ is a function such that for each position $p \in Pos(t)$, if $p1, \ldots, pr$ are the children of p, then the transition $(\rho(p_1), \ldots, \rho(p_r), t(p), \rho(p))$ belongs to Δ . The size of (t, ρ) is defined as $|(t, \rho)| = |Pos(t)|$. We say that (t, ρ) reaches state q if $\rho(\lambda) = q$. We say that (t, ρ) is accepting if (t, ρ) reaches some accepting state. We say that (t, ρ) reaches a transition $\tau \equiv (q_1, \ldots, q_r, a, q)$ if the following conditions are satisfied:

- 1. The root position λ of Pos(t) has r children. Namely, these children are the positions $1, 2, ..., r \in Pos(t)$.
- $2. \ t(\lambda) = a.$
- 3. $\rho(\lambda) = q$.
- 4. For each $i \in \{1, ..., r\}, \rho(i) = q_i$.

We say that \mathcal{A} is deterministic if for each tuple of states $q_1, ..., q_r$ and each symbol $a \in \mathcal{L}$, there exists at most one state q such that $(q_1, ..., q_r, a, q) \in \mathcal{\Delta}$. We say that \mathcal{A} is unambiguous if for each term $t \in Ter(\mathcal{L})$ there exists at most one ρ such that (t, ρ) is a run in \mathcal{A} . We note that the notion of unambiguity generalizes the notion of determinism, since any deterministic tree automaton is unambiguous. We say that a run (t', ρ') extends a run (t, ρ) if there exists a string $p \in [r]^*$ such that t(u) = t'(pu) and $\rho(u) = \rho'(pu)$ for every position $u \in Pos(t)$.

Reachability and co-reachability: We say that a tree automaton $\mathcal{A} = (Q, \Sigma, \Delta, F)$ is reachable if for every state $q \in Q$ there exists a run (t, ρ) which reaches q. We say that \mathcal{A} is co-reachable if each run (t, ρ) in \mathcal{A} can be extended to an accepting run (t', ρ') . In the remainder of this paper, unless stated otherwise, we assume that the automata we deal with are both reachable and co-reachable. This assumption is without loss of generality since any tree automaton \mathcal{A} can be transformed in time $O(|\mathcal{A}|)$ into a reachable and co-reachable tree automaton \mathcal{A}' accepting the same language (i.e., $\mathcal{L}(\mathcal{A}) = \mathcal{L}(\mathcal{A}')$).

2 Concrete Tree Decompositions

Graphs. A graph is a tuple $G = (V(G), E(G), \operatorname{Inc}(G))$ where V(G) is a finite set of vertices, E(G) is a finite set of edges, and $\operatorname{Inc}(G) \subseteq E(G) \times V(G)$ is an incidence relation. We say that a vertex $v \in V(G)$ is an endpoint of an edge $e \in E(G)$ if $(e,v) \in \operatorname{Inc}(G)$. We let endpts $(e) = \{v : (e,v) \in \operatorname{Inc}(G)\}$ be the set of endpoints of e. In this work we only consider graphs in which each edge has precisely two endpoints. Therefore, self-loops are not allowed. On the other hand, our definition of graphs allow the presence of multiple-edges, i.e, distinct edges with the same pair of endpoints. A graph is simple if no two distinct edges have the same pair of endpoints.

Concrete Tree Decompositions. A d-concrete bag is a pair (B, b) where $B \subseteq [d]$ and $b \subseteq B$, with either $b = \emptyset$ or |b| = 2. We note that B is allowed to be empty. We let \mathcal{B}_d denote the set of all d-concrete bags. Note that $|\mathcal{B}_d| = O(2^d \cdot d^2)$. We regard \mathcal{B}_d as a finite alphabet that will be used to construct terms representing tree decompositions of graphs.

A *d-concrete tree decomposition* is a term $t \in \text{Terms}(\mathcal{B}_d)$. We let t(p) = (t(p).B, t(p).b) be the *d*-concrete bag at position p of t. For each $c \in [d]$, we say that a subset $P \subseteq \text{Pos}(t)$ is a c-colored component if the following conditions are satisfied.

- 1. P is a connected subset of Pos(t).
- 2. $c \in t(p).B$ for every $p \in P$.
- 3. If P' is a connected subset of Pos(t), and $c \in t(p).B$ for every $p \in P'$, then $P' \subseteq P$.

Note that if P and P' are c-colored components, then either P = P', or $P \cap P' = \emptyset$. Additionally, for each $p \in \operatorname{Pos}(t)$ and each $c \in t(p).B$, there exists a unique subset $P \subseteq \operatorname{Pos}(t)$ such that P is a c-colored component and $p \in P$. We denote this unique set by $P_{c,p}$.

Definition 1. Let $t \in \text{Terms}(\mathcal{B}_d)$. The graph $\mathcal{G}(t)$ associated with t is defined as follows.

```
1. V(\mathcal{G}(t)) = \{(c, P) : c \in [d], P \subseteq Pos(t), P \text{ is a c-colored component}\}.
```

- 2. $E(\mathcal{G}(t)) = \{e_p : p \in Pos(t), t(p).b \neq \emptyset\}.$
- 3. $\operatorname{Inc}(\mathcal{G}(t)) = \{(e_p, (c, P_{c,p})) : c \in [d], e_p \in E(\mathcal{G}(t)), c \in T[p].b\}.$

Fig. 1. A 3-concrete decomposition t and its corresponding graph $\mathcal{G}(t)$. The set $\{\varepsilon,1,11,12,111,121\}$ is a 1-colored component. The sets $\{12,121\}$ and $\{11,111,112\}$ are 2-colored components. The set $\{1,11,12,112\}$ is a 3-colored component. The root of this last set is 1, and its leaves are 112 and 12.