

Contents

Abstracted/Indexed in/Cited in: API Abstracts; Chemical Engineering and Biotechnology Abstracts; Catalysts & Catalysis; Chem Inform; Chemical Abstracts; Current Contents: Engineering; Current Contents: Engineering Index; Current Contents: Physical, Chemical & Earth Sciences; Engineering, Technology & Applied Sciences; Metals Abstracts; Research Alert; SCISEARCH; Science Citation Index; Theoretical Chemical Engineering Abstracts. Also covered in the abstract and citation database SciVerse Scopus®. Full text available on SciVerse ScienceDirect®

Uniform hamburger-like mesoporous carbon-incorporated ZnO nanoarchitectures: One-pot solvothermal synthesis, high adsorption and visible-light photocatalytic decolorization of dyes M. Zhou, X. Gao, Y. Hu, J. Chen and X. Hu (PR China, Singapore)	1
A facile and low-cost synthesis of granulated blast furnace slag-based cementitious material coupled with Fe ₂ O ₃ catalyst for treatment of dye wastewater Y.J. Zhang, L.C. Liu, L.L. Ni and B.L. Wang (PR China)	9
Multifunctional graphene oxide–TiO ₂ microsphere hierarchical membrane for clean water production P. Gao, Z. Liu, M. Tai, D.D. Sun and W. Ng (Singapore)	17
Production of visible activity and UV performance enhancement of ZnO photocatalyst via vacuum deoxidation Y. Lv, C. Pan, X. Ma, R. Zong, X. Bai and Y. Zhu (PR China)	26
Oxidation of dichloromethane over Pt, Pd, Rh, and V ₂ O ₅ catalysts supported on Al ₂ O ₃ , Al ₂ O ₃ –TiO ₂ and Al ₂ O ₃ –CeO ₂ S. Pitkäaho, T. Nevanperä, L. Matejova, S. Ojala and R.L. Keiski (Finland, Czech Republic)	33
RuO ₂ –SiO ₂ mixed oxides as corrosion-resistant catalyst supports for polymer electrolyte fuel cells A. Kumar and V.K. Ramani (USA)	43
Synthesis of nanosized Ce _{0.85} M _{0.1} Ru _{0.05} O _{2–δ} (M = Si, Fe) solid solution exhibiting high CO oxidation and water gas shift activity V.M. Shinde and G. Madras (India)	51
A photo-catalysis and rotating nano-CaCO ₃ dynamic membrane system with Fe-ZnIn ₂ S ₄ efficiently removes halogenated compounds in water B. Gao, L. Liu, J. Liu and F. Yang (PR China)	62
The effect of Ca ²⁺ and Al ³⁺ additions on the stability of potassium disilicate glass as a soot oxidation catalyst C. Su and P.J. McGinn (USA)	70
Aerobic oxidative desulfurization of model diesel using a B-type Anderson catalyst [(C ₁₈ H ₃₇) ₂ N(CH ₃) ₂] ₂ Co(OH) ₆ Mo ₆ O ₁₈ ·3H ₂ O H. Lü, W. Ren, W. Liao, W. Chen, Y. Li and Z. Suo (China)	79
Fabrication, characterization and photocatalytic activity of TiO ₂ layers prepared by inkjet printing of stabilized nanocrystalline suspensions M. Černá, M. Veselý, P. Dzik, C. Guillard, E. Puzenat and M. Lepičová (Czech Republic, France)	84
Synthesis, characterization and photocatalytic activity of visible-light plasmonic photocatalyst AgBr-SmVO ₄ T. Li, Y. He, H. Lin, J. Cai, L. Dong, X. Wang, M. Luo, L. Zhao, X. Yi and W. Weng (China)	95
Stability improvement of Au/Fe–La–Al ₂ O ₃ catalyst via incorporating with a Fe _x O _y layer in CO oxidation process C. Qi, S. Zhu, H. Su, H. Lin and R. Guan (PR China)	104
ZrNO–Ag co-sputtered surfaces leading to <i>E. coli</i> inactivation under actinic light: Evidence for the oligodynamic effect S. Rtimi, M. Pascu, R. Sanjines, C. Pulgarin, M. Ben-Simon, A. Houas, J.-C. Lavanchy and J. Kiwi (Tunisia, Switzerland)	113
The role of surface defect sites of titania nanoparticles in the photocatalysis: Aging and modification M.B. Radoičić, I.A. Janković, V.N. Despotović, D.V. Šožić, T.D. Savić, Z.V. Šaponjić, B.F. Abramović and M.I. Ćomor (Serbia)	122
Solar light-activated photocatalytic degradation of gas phase diethylsulfide on WO ₃ -modified TiO ₂ nanotubes M. Grandcolas, T. Cottineau, A. Louvet, N. Keller and V. Keller (France)	128

(Contents continued on bm I)

SciVerse ScienceDirect

Full text of this journal is available, on-line from **ScienceDirect**. Visit www.sciencedirect.com

0926-3373 (20130717) 138/139; 1-B