Data Mining: Concepts and Techniques

(3rd ed.)

Classification: Advanced Methods

Jiawei Han, Micheline Kamber, and Jian Pei University of Illinois at Urbana-Champaign & Simon Fraser University

©2011 Han, Kamber & Pei. All rights reserved.

Chapter 9. Classification: Advanced Methods

Bayesian Belief Networks

- Support Vector Machines
- Lazy Learners (or Learning from Your Neighbors)
- Other Classification Methods
- Additional Topics Regarding Classification
- Numerical Prediction
- Summary

Bayesian Belief Networks

- Bayesian belief networks (also known as Bayesian networks, probabilistic networks): allow class conditional independencies between subsets of variables
- A (directed acyclic) graphical model of causal relationships
 - Represents <u>dependency</u> among the variables
 - Gives a specification of joint probability distribution

- Nodes: random variables
- ☐ Links: dependency
- ☐ X and Y are the parents of Z, and Y is
- the parent of P
- No dependency between Z and P
- ☐ Has no loops/cycles

Bayesian Belief Network: An Example

CPT: **Conditional Probability Table** for variable LungCancer:

LC	0.8	0.5	0.7	0.1
~LC	0.2	0.5	0.3	0.9

(FH, S) (FH, ~S) (~FH, S) (~FH, ~S)

shows the conditional probability for each possible combination of its parents

Derivation of the probability of a particular combination of values of **X**, from CPT:

$$P(x_1,..., x_n) = \prod_{i=1}^{n} P(x_i | Parents (Y_i))$$

Training Bayesian Networks: Several Scenarios

- Scenario 1: Given both the network structure and all variables observable: compute only the CPT entries
- Scenario 2: Network structure known, some variables hidden: gradient descent (greedy hill-climbing) method, i.e., search for a solution along the steepest descent of a criterion function
 - Weights are initialized to random probability values
 - At each iteration, it moves towards what appears to be the best solution at the moment, w.o. backtracking
 - Weights are updated at each iteration & converge to local optimum
- Scenario 3: Network structure unknown, all variables observable: search through the model space to reconstruct network topology
- Scenario 4: Unknown structure, all hidden variables: No good algorithms known for this purpose
- D. Heckerman. <u>A Tutorial on Learning with Bayesian Networks</u>. In Learning in Graphical Models, M. Jordan, ed., MIT Press, 1999.

Chapter 9. Classification: Advanced Methods

- Bayesian Belief Networks
- Support Vector Machines

- Lazy Learners (or Learning from Your Neighbors)
- Other Classification Methods
- Additional Topics Regarding Classification
- Numerical Prediction
- Summary

Classification: A Mathematical Mapping

- Classification: predicts categorical class labels
 - E.g., Personal homepage classification
 - $x_i = (x_1, x_2, x_3, ...), y_i = +1 \text{ or } -1$
 - x₁: # of word "homepage"
 - x₂: # of word "welcome"
- Mathematically, $x \in X = \Re^n$, $y \in Y = \{+1, -1\}$,
 - We want to derive a function f: X → Y
- Linear Classification
 - Binary Classification problem
 - Data above the red line belongs to class 'x'
 - Data below red line belongs to class 'o'
 - Examples: SVM, Perceptron, Probabilistic Classifiers

Discriminative Classifiers

- Advantages
 - Prediction accuracy is generally high
 - As compared to Bayesian methods in general
 - Robust, works when training examples contain errors
 - Fast evaluation of the learned target function
 - Bayesian networks are normally slow
- Criticism
 - Long training time
 - Difficult to understand the learned function (weights)
 - Bayesian networks can be used easily for pattern discovery
 - Not easy to incorporate domain knowledge
 - Easy in the form of priors on the data or distributions

SVM—Support Vector Machines

- A relatively new classification method for both <u>linear and</u> <u>nonlinear</u> data
- It uses a <u>nonlinear mapping</u> to transform the original training data into a higher dimension
- With the new dimension, it searches for the linear optimal separating hyperplane (i.e., "decision boundary")
- With an appropriate nonlinear mapping to a sufficiently high dimension, data from two classes can always be separated by a hyperplane
- SVM finds this hyperplane using support vectors
 ("essential" training tuples) and margins (defined by the support vectors)

SVM—History and Applications

- Vapnik and colleagues (1992)—groundwork from Vapnik
 & Chervonenkis' statistical learning theory in 1960s
- <u>Features</u>: training can be slow but accuracy is high owing to their ability to model complex nonlinear decision boundaries (margin maximization)
- Used for: classification and numeric prediction
- Applications:
 - handwritten digit recognition, object recognition, speaker identification, benchmarking time-series prediction tests

SVM—General Philosophy

SVM—Margins and Support Vectors

SVM—When Data Is Linearly Separable

Let data D be $(\mathbf{X}_1, \mathbf{y}_1)$, ..., $(\mathbf{X}_{|D|}, \mathbf{y}_{|D|})$, where \mathbf{X}_i is the set of training tuples associated with the class labels \mathbf{y}_i

There are infinite lines (<u>hyperplanes</u>) separating the two classes but we want to <u>find the best one</u> (the one that minimizes classification error on unseen data)

SVM searches for the hyperplane with the largest margin, i.e., maximum marginal hyperplane (MMH)

SVM—Linearly Separable

A separating hyperplane can be written as

$$\mathbf{W} \bullet \mathbf{X} + \mathbf{b} = 0$$

where $\mathbf{W} = \{w_1, w_2, ..., w_n\}$ is a weight vector and b a scalar (bias)

For 2-D it can be written as

$$W_0 + W_1 X_1 + W_2 X_2 = 0$$

The hyperplane defining the sides of the margin:

H₁:
$$w_0 + w_1 x_1 + w_2 x_2 \ge 1$$
 for $y_i = +1$, and
H₂: $w_0 + w_1 x_1 + w_2 x_2 \le -1$ for $y_i = -1$

- Any training tuples that fall on hyperplanes H₁ or H₂ (i.e., the sides defining the margin) are support vectors
- This becomes a constrained (convex) quadratic optimization problem: Quadratic objective function and linear constraints → Quadratic Programming (QP) → Lagrangian multipliers

Why Is SVM Effective on High Dimensional Data?

- The complexity of trained classifier is characterized by the # of support vectors rather than the dimensionality of the data
- The support vectors are the <u>essential or critical training examples</u> —
 they lie closest to the decision boundary (MMH)
- If all other training examples are removed and the training is repeated, the same separating hyperplane would be found
- The number of support vectors found can be used to compute an (upper) bound on the expected error rate of the SVM classifier, which is independent of the data dimensionality
- Thus, an SVM with a small number of support vectors can have good generalization, even when the dimensionality of the data is high

SVM—Linearly Inseparable

Transform the original input data into a higher dimensional space

Example 6.8 Nonlinear transformation of original input data into a higher dimensional space. sider the following example. A 3D input vector $\mathbf{X} = (x_1, x_2, x_3)$ is mapped into a 6D space Z using the mappings $\phi_1(X) = x_1, \phi_2(X) = x_2, \phi_3(X) = x_3, \phi_4(X) = (x_1)^2, \phi_5(X) = x_1x_2, \text{ and } \phi_6(X) = x_1x_3.$ A decision hyperplane in the new space is $d(\mathbf{Z}) = \mathbf{W}\mathbf{Z} + b$, where W and Z are vectors. This is linear. We solve for W and b and then substitute back so that we see that the linear decision hyperplane in the new (Z) space corresponds to a nonlinear second order polynomial in the original 3-D input space,

$$d(Z) = w_1x_1 + w_2x_2 + w_3x_3 + w_4(x_1)^2 + w_5x_1x_2 + w_6x_1x_3 + b$$

= $w_1z_1 + w_2z_2 + w_3z_3 + w_4z_4 + w_5z_5 + w_6z_6 + b$

Search for a linear separating hyperplane in the new space

SVM: Different Kernel functions

- Instead of computing the dot product on the transformed data, it is math. equivalent to applying a kernel function K(X_i, X_j) to the original data, i.e., K(X_i, X_j) = Φ(X_i).Φ(X_j)
- Typical Kernel Functions

Polynomial kernel of degree $h: K(X_i, X_j) = (X_i \cdot X_j + 1)^h$

Gaussian radial basis function kernel: $K(X_i, X_j) = e^{-\|X_i - X_j\|^2/2\sigma^2}$

Sigmoid kernel: $K(X_i, X_j) = \tanh(\kappa X_i \cdot X_j - \delta)$

 SVM can also be used for classifying multiple (> 2) classes and for regression analysis (with additional parameters)

SVM vs. Neural Network

SVM

- Deterministic algorithm
- Nice generalization properties
- Hard to learn learned in batch mode using quadratic programming techniques
- Using kernels can learn very complex functions

Neural Network

- Nondeterministic algorithm
- Generalizes well but doesn't have strong mathematical foundation
- Can easily be learned in incremental fashion
- To learn complex functions—use multilayer perceptron (nontrivial)

SVM Related Links

- SVM Website: http://www.kernel-machines.org/
- Representative implementations
 - LIBSVM: an efficient implementation of SVM, multiclass classifications, nu-SVM, one-class SVM, including also various interfaces with java, python, etc.
 - SVM-light: simpler but performance is not better than LIBSVM, support only binary classification and only in C
 - SVM-torch: another recent implementation also written in C

Chapter 9. Classification: Advanced Methods

- Bayesian Belief Networks
- Support Vector Machines
- Lazy Learners (or Learning from Your Neighbors)

- Other Classification Methods
- Additional Topics Regarding Classification
- Numerical Prediction
- Summary

Lazy vs. Eager Learning

- Lazy vs. eager learning
 - Lazy learning (e.g., instance-based learning): Simply stores training data (or only minor processing) and waits until it is given a test tuple
 - Eager learning (the above discussed methods): Given a set of training tuples, constructs a classification model before receiving new (e.g., test) data to classify
- Lazy: less time in training but more time in predicting
- Accuracy
 - Lazy method effectively uses a richer hypothesis space since it uses many local linear functions to form an implicit global approximation to the target function
 - Eager: must commit to a single hypothesis that covers the entire instance space

Lazy Learner: Instance-Based Methods

- Instance-based learning:
 - Store training examples and delay the processing ("lazy evaluation") until a new instance must be classified
- Typical approaches
 - k-nearest neighbor approach
 - Instances represented as points in a Euclidean space.
 - Locally weighted regression
 - Constructs local approximation
 - Case-based reasoning
 - Uses symbolic representations and knowledgebased inference

The k-Nearest Neighbor Algorithm

- All instances correspond to points in the n-D space
- The nearest neighbor are defined in terms of Euclidean distance, dist(X₁, X₂)
- Target function could be discrete- or real- valued
- For discrete-valued, k-NN returns the most common value among the k training examples nearest to x_a
- Vonoroi diagram: the decision surface induced by 1-NN for a typical set of training examples

Discussion on the k-NN Algorithm

- *k*-NN for <u>real-valued prediction</u> for a given unknown tuple
 - Returns the mean values of the k nearest neighbors
- <u>Distance-weighted</u> nearest neighbor algorithm
 - Weight the contribution of each of the k neighbors according to their distance to the query x_q
 - Give greater weight to closer neighbors
- Robust to noisy data by averaging k-nearest neighbors
- Curse of dimensionality: distance between neighbors could be dominated by irrelevant attributes
 - To overcome it, axes stretch or elimination of the least relevant attributes

Chapter 9. Classification: Advanced Methods

- Bayesian Belief Networks
- Support Vector Machines
- Lazy Learners (or Learning from Your Neighbors)
- Other Classification Methods

- Additional Topics Regarding Classification
- Numerical Prediction
- Summary

Genetic Algorithms (GA)

- Genetic Algorithm: based on an analogy to biological evolution
- An initial **population** is created consisting of randomly generated rules
 - Each rule is represented by a string of bits
 - E.g., if A_1 and $\neg A_2$ then C_2 can be encoded as 100
 - If an attribute has k > 2 values, k bits can be used
- Based on the notion of survival of the **fittest**, a new population is formed to consist of the fittest rules and their offspring
- The fitness of a rule is represented by its classification accuracy on a set of training examples
- Offspring are generated by crossover and mutation
- The process continues until a population P evolves when each rule in P satisfies a prespecified threshold
- Slow but easily parallelizable

Fuzzy Set Approaches

- Fuzzy logic uses truth values between 0.0 and 1.0 to represent the degree of membership (such as in a fuzzy membership graph)
- Attribute values are converted to fuzzy values. Ex.:
 - Income, *x*, is assigned a fuzzy membership value to each of the discrete categories {low, medium, high}, e.g. \$49K belongs to "medium income" with fuzzy value 0.15 but belongs to "high income" with fuzzy value 0.96
 - Fuzzy membership values do not have to sum to 1.
- Each applicable rule contributes a vote for membership in the categories
- Typically, the truth values for each predicted category are summed, and these sums are combined

Chapter 9. Classification: Advanced Methods

- Bayesian Belief Networks
- Support Vector Machines
- Lazy Learners (or Learning from Your Neighbors)
- Other Classification Methods
- Additional Topics Regarding Classification

- Numerical Prediction
- Summary

Multiclass Classification

- Classification involving more than two classes (i.e., > 2 Classes)
- Method 1. One-vs.-all (OVA): Learn a classifier one at a time
 - Given m classes, train m classifiers: one for each class
 - Classifier j: treat tuples in class j as positive & all others as negative
 - To classify a tuple X, the set of classifiers vote as an ensemble
- Method 2. All-vs.-all (AVA): Learn a classifier for each pair of classes
 - Given m classes, construct m(m-1)/2 binary classifiers
 - A classifier is trained using tuples of the two classes
 - To classify a tuple X, each classifier votes. X is assigned to the class with maximal vote
- Comparison
 - All-vs.-all tends to be superior to one-vs.-all
 - Problem: Binary classifier is sensitive to errors, and errors affect vote count

Semi-Supervised Classification

- Semi-supervised: Uses labeled and unlabeled data to build a classifier
- Self-training:
 - Build a classifier using the labeled data
 - Use it to label the unlabeled data, and those with the most confident label prediction are added to the set of labeled data
 - Repeat the above process
 - Adv: easy to understand; disadv: may reinforce errors
- Co-training: Use two or more classifiers to teach each other
 - Each learner uses a mutually independent set of features of each tuple to train a good classifier, say f₁
 - Then f₁ and f₂ are used to predict the class label for unlabeled data

 X
 - Teach each other: The tuple having the most confident prediction from f₁ is added to the set of labeled data for f₂, & vice versa
- Other methods, e.g., joint probability distribution of features and labels

Active Learning

- Class labels are expensive to obtain
- Active learner: query human (oracle) for labels
- Pool-based approach: Uses a pool of unlabeled data
 - L: a small subset of D is labeled, U: a pool of unlabeled data in D

learn a model

training set

machine learning

oracle (e.g., human annotator)

unlabeled pool

select queries

- Use a query function to carefully select one or more tuples from U and request labels from an oracle (a human annotator)
- The newly labeled samples are added to L, and learn a model
- Goal: Achieve high accuracy using as few labeled data as possible
- Evaluated using learning curves: Accuracy as a function of the number of instances queried (# of tuples to be queried should be small)
- Research issue: How to choose the data tuples to be queried?
 - Uncertainty sampling: choose the least certain ones
 - Reduce version space, the subset of hypotheses consistent w. the training data
 - Reduce expected entropy over U: Find the greatest reduction in the total number of incorrect predictions

Transfer Learning: Conceptual Framework

- Transfer learning: Extract knowledge from one or more source tasks and apply the knowledge to a target task
- Traditional learning: Build a new classifier for each new task
- Transfer learning: Build new classifier by applying existing knowledge learned from source tasks

Transfer Learning: Methods and Applications

- Applications: Especially useful when data is outdated or distribution changes, e.g., Web document classification, e-mail spam filtering
- Instance-based transfer learning: Reweight some of the data from source tasks and use it to learn the target task
- TrAdaBoost (Transfer AdaBoost)
 - Assume source and target data each described by the same set of attributes (features) & class labels, but rather diff. distributions
 - Require only labeling a small amount of target data
 - Use source data in training: When a source tuple is misclassified, reduce the weight of such tupels so that they will have less effect on the subsequent classifier
- Research issues
 - Negative transfer: When it performs worse than no transfer at all
 - Heterogeneous transfer learning: Transfer knowledge from different feature space or multiple source domains
 - Large-scale transfer learning

Chapter 9. Classification: Advanced Methods

- Bayesian Belief Networks
- Support Vector Machines
- Lazy Learners (or Learning from Your Neighbors)
- Other Classification Methods
- Additional Topics Regarding Classification
- Numerical Prediction
- Summary

Numerical Prediction

- (Numerical) prediction is similar to classification
 - construct a model
 - use model to predict continuous or ordered value for a given input
- Numerical prediction is different from classification
 - Classification refers to predict categorical class label
 - Numerical prediction models continuous-valued functions
- Major method for prediction: regression
 - model the relationship between one or more independent or predictor variables and a dependent or response variable
- Regression analysis
 - Linear and multiple regression
 - Non-linear regression
 - Other regression methods: generalized linear model, Poisson regression, log-linear models, regression trees

Linear Regression

<u>Linear regression</u>: involves a response variable y and a single predictor variable x

$$y = w_0 + w_1 x$$

where w_0 (y-intercept) and w_1 (slope) are regression coefficients

Method of least squares: estimates the best-fitting straight line

$$w_{1} = \frac{\sum_{i=1}^{|D|} (x_{i} - \overline{x})(y_{i} - \overline{y})}{\sum_{i=1}^{|D|} (x_{i} - \overline{x})^{2}} \qquad w_{0} = \overline{y} - w_{1}\overline{x}$$

- Multiple linear regression: involves more than one predictor variable
 - Training data is of the form $(\mathbf{X_1}, \mathbf{y_1}), (\mathbf{X_2}, \mathbf{y_2}), ..., (\mathbf{X_{|D|}}, \mathbf{y_{|D|}})$
 - Ex. For 2-D data, we may have: $y = w_0 + w_1 x_1 + w_2 x_2$
 - Solvable by extension of least square method or using SAS, S-Plus
 - Many nonlinear functions can be transformed into the above

Nonlinear Regression

- Some nonlinear models can be modeled by a polynomial function
- A polynomial regression model can be transformed into linear regression model. For example,

$$y = w_0 + w_1 x + w_2 x^2 + w_3 x^3$$

convertible to linear with new variables: $x_2 = x^2$, $x_3 = x^3$

$$y = W_0 + W_1 x + W_2 x_2 + W_3 x_3$$

- Other functions, such as power function, can also be transformed to linear model
- Some models are intractable nonlinear (e.g., sum of exponential terms)
 - possible to obtain least square estimates through extensive calculation on more complex formulae

Other Regression-Based Models

Generalized linear model:

- Foundation on which linear regression can be applied to modeling categorical response variables
- Variance of y is a function of the mean value of y, not a constant
- <u>Logistic regression</u>: models the prob. of some event occurring as a linear function of a set of predictor variables
- <u>Poisson regression</u>: models the data that exhibit a Poisson distribution
- Log-linear models: (for categorical data)
 - Approximate discrete multidimensional prob. distributions
 - Also useful for data compression and smoothing
- Regression trees and model trees
 - Trees to predict continuous values rather than class labels

Regression Trees and Model Trees

- Regression tree: proposed in CART system (Breiman et al. 1984)
 - CART: Classification And Regression Trees
 - Each leaf stores a continuous-valued prediction
 - It is the average value of the predicted attribute for the training tuples that reach the leaf
- Model tree: proposed by Quinlan (1992)
 - Each leaf holds a regression model—a multivariate linear equation for the predicted attribute
 - A more general case than regression tree
- Regression and model trees tend to be more accurate than linear regression when the data are not represented well by a simple linear model

Predictive Modeling in Multidimensional Databases

- Predictive modeling: Predict data values or construct generalized linear models based on the database data
- One can only predict value ranges or category distributions
- Method outline:
 - Minimal generalization
 - Attribute relevance analysis
 - Generalized linear model construction
 - Prediction
- Determine the major factors which influence the prediction
 - Data relevance analysis: uncertainty measurement, entropy analysis, expert judgement, etc.
- Multi-level prediction: drill-down and roll-up analysis

Prediction: Numerical Data

Prediction: Categorical Data

Chapter 9. Classification: Advanced Methods

- Bayesian Belief Networks
- Support Vector Machines
- Lazy Learners (or Learning from Your Neighbors)
- Other Classification Methods
- Additional Topics Regarding Classification
- Numerical Prediction
- Summary

Summary

- Effective and advanced classification methods
 - Bayesian belief network (probabilistic networks)
 - Support Vector Machine (SVM)
 - Other classification methods: lazy learners (KNN, case-based reasoning), genetic algorithms, rough set and fuzzy set approaches
- Additional Topics on Classification
 - Multiclass classification
 - Semi-supervised classification
 - Active learning
 - Transfer learning
- Numerical prediction
 - (Linear) Regression