CS7NS1/CS4400 SCALABLE COMPUTING

Internet Of Things

Flip Classroom

Understand the principles and concepts

You will take your own personal notes

Supplement what you learned from your own paper summaries

Scalable Computing: Internet of Things

What is it	What does it encompass
Properties: ✓ Scalable : how big is big ✓ Adaptive : how easily reconfigurable and repurposed ✓ Dispersed : tasks, resources, nodes, processes ✓ Accessible : Human, machine ✓ Affordable : Devices, comms, energy, deployment	 Core: Processing: computational, data, Communications: carriers, systems, protocols Proximity: location, distance Trust: security, P2P
✓ Reliable : Lifetime, MTBF, consequencesDomains:✓ Internet of Things	Concepts:Horizontal/Vertical ScalingSelf organization
 ✓ Processing Units: CPUs, GPUs ✓ Functional Groupings: Cluster, Grid, Cloud ✓ Nano architectures ✓ Quantum architectures 	AdaptationTuning

Scalable Computing: IoT

Discuss	Properties
 ✓ <u>Internet of Things Scale: Billions of devices</u> ✓ <u>Core considerations:</u> 	> Scalable
✓ <u>Intermittently connected : Not always online or</u> actively powered up . Waking up devices?	> Adaptive
Considerations for communications – Duty cycle Constrained processing, memory and device	> Dispersed
 ✓ Constrained processing, memory and device resources ✓ Energy – availability, usage and system design 	> Reliable
✓ <u>Trust/Security</u>✓ <u>Size/shape/design</u>	
✓ <u>Deployment</u>	

Scalable Computing: IoT

Use cases	In Practice
> Vehicular	
> Systems	
Passengers	
Interconnectivity	
▶ DSRC	
➤ WiFi	
> 3/4/5G	
Processing	
➤ Energy	
Security/Trust	
Deployment	

Scalable Computing

Second assignment ...

- ✓ Required. Due 5pm Sunday 23th September.
- √ https://www.computer.org/web/publications/transactions/
- ✓ Each student to take and study two(2) tutorial papers from the transactions and journals only on this list. Each paper you choose must focus on a different technology, solution or purpose. Use different journals for each paper. Focus ONLY on CPU, GPU and processor systems scalability aspects. Only choose papers relevant to your stream and specific interests
- ✓ For each of those papers, specifically
 - identify the five key contributions/findings/conclusions of the paper;
 - identify the five key technology insights provided by the paper;
 - identify the five key insights of relevance to CPU, GPU and processor scalability that you have gleaned from this paper.

Second submission ...

- > Blackboard: mymodule.tcd.ie
- > AUTOMATIC plagiarism detection
- Submit a pdf of a <u>single sided A4</u>
 <u>page</u> including your name, student
 ID, course code (and stream as
 relevant) and your <u>concise writings</u>
 on each of i-iii above.
- Your total submission should be no longer than one standard single sided A4 page, 11pt font so please be as concise and technically precise as possible in your writing.

Round up

What have you learned	What did you hope to learn
	>
	>
	>
	>
	>
	>
	>
	>