

Оглавление

- 🕕 Задание по геометрии с олимпиады
 - Чертеж
 - Решение

Ионтакты

Оглавление

- 📵 Задание по геометрии с олимпиады
 - Чертеж
 - Решение

2 Контакты

Problem

Дан треугольник ABC, в котором $\angle A = \angle C = 30^{\circ}$.

Problem

Дан треугольник ABC, в котором $\angle A = \angle C = 30^\circ$. На его сторонах AB, BC и AC выбраны точки D, E и F соответственно так, что $\angle BFD = \angle BFE = 60^\circ$.

Problem

Дан треугольник ABC, в котором $\angle A = \angle C = 30^\circ$. На его сторонах AB, BC и AC выбраны точки D, E и F соответственно так, что $\angle BFD = \angle BFE = 60^\circ$. Периметр треугольника ABC равен p, а периметр треугольника DEF равен p_1 .

Problem

Дан треугольник ABC, в котором $\angle A = \angle C = 30^\circ$. На его сторонах AB, BC и AC выбраны точки D, E и F соответственно так, что $\angle BFD = \angle BFE = 60^\circ$. Периметр треугольника ABC равен p, а периметр треугольника DEF равен p_1 . Докажите, что $p \leqslant 2p_1$.

Чертеж

Рис.: Чертеж

Пусть
$$\angle AFD = \alpha$$
. Поскольку угол $\angle BDF$ внешний для треугольника ADF , то $\angle BDF = \angle DAF + \angle AFD = 30^\circ + \alpha$. Также $\angle BFA$ внешний для треугольника BFC , поэтому $60^\circ + \alpha = \angle BFA =$ ______

Пусть $\angle AFD = \alpha$. Поскольку угол $\angle BDF$ внешний для треугольника ADF, то $\angle BDF = \angle DAF + \angle AFD = 30^\circ + \alpha$. Также $\angle BFA$ внешний для треугольника BFC, поэтому $60^\circ + \alpha = \angle BFA = \angle FBE + \angle FCB$

Следовательно,
$$\angle FBE=30^\circ+\alpha=\angle FDB$$
 (см. рис. 2). Тогда, так как $\angle BFD=\angle BFE=60^\circ$, треугольники BDF и EBF подобны. Значит, $\frac{BF}{FE}=\frac{FD}{BF}$, или $BF^2=FD\cdot FE$. Отсюда следует, что $DF+EF\geq 2\sqrt{DF\cdot EF}=2BF$.

По теорем косинусов для треугольника DEF имеем:

$$DE = \sqrt{DF^2 + EF^2 + DF \cdot EF} \ge \sqrt{2DF \cdot EF + DF \cdot EF} =$$

По теорем косинусов для треугольника DEF имеем:

$$DE = \sqrt{DF^2 + EF^2 + DF \cdot EF} \ge \sqrt{2DF \cdot EF + DF \cdot EF} = BF \cdot \sqrt{3}$$

Следовательно:

$$p_1 = DF + EF + DE \ge (2 + \sqrt{3}) \cdot BF.$$

Пусть BM - вычота равнобедренного треугольника ABC. Тогда легко увидето, что $p=(AB+BC)+AC=4BM+2\sqrt{3}BM=2(2+\sqrt{3})BM$. Осталось заметить, что $BF\geq BM$, поэтому $2p_1\geq 2(2+\sqrt{3})BF\geq 2(2+\sqrt{3})BM=p$.

Оглавление

- 1 Задание по геометрии с олимпиады
 - Чертеж
 - Решение

Ионтакты

Контакты

Как со мной связаться

Контакты

Как со мной связаться

- Телефон:
- Telegram

Контакты

Как со мной связаться

- Телефон:
- Telegram
- Мочта:

Интерактив

Нажми на мой нос

Интерактив

Нажми на мой нос

