CS21003

Tutorial - 7 (28/09/18)

1. You are consulting for a trucking company that does a large amount of business shipping packages between New York and Boston. The volume is high enough that they have to send a number of trucks each day between the two locations. Trucks have a fixed limit \mathbf{W} on the maximum amount of weight they are allowed to carry. Boxes arrive at the New York station one by one, and each package \mathbf{i} has a weight \mathbf{w}_i . The trucking station is quite small, so at most one truck can be at the station at any time. Company policy requires that boxes are shipped in the order they arrive. At the moment, the company is using a simple greedy algorithm for packing: they pack boxes in the order they arrive, and whenever the next box does not fit, they send the truck on its way.

But they wonder if they might be using too many trucks, and they want your opinion on whether the situation can be improved. Here is how they are thinking. Maybe one could decrease the number of trucks needed by sometimes sending off a truck that was less full, and in this way allow the next few trucks to be better packed. Prove that, for a given set of boxes with specified weights, the greedy algorithm currently in use actually minimizes the number of trucks that are needed.

2. Some of your friends have gotten into the burgeoning field of time-series data mining, in which one looks for patterns in sequences of events that occur over time. Purchases at stock exchanges—what's being bought— are one source of data with a natural ordering in time. Given a long sequence S of such events, your friends want an efficient way to detect certain "patterns" in them—for example, they may want to know if the four events.

buy Yahoo, buy eBay, buy Yahoo, buy Oracle occur in this sequence S, in order but not necessarily consecutively.

They begin with a collection of possible events (e.g., the possible transactions) and a sequence S of n of these events. A given event may occur multiple times in S (e.g., Yahoo stock may be bought many times in a single sequence S). We will say that a sequence S is a subsequence of S if there is a way to delete certain of the events from S so that the remaining events, in order, are equal to the sequence S . So, for example, the sequence of four events above is a subsequence of the sequence

buy Amazon, buy Yahoo, buy eBay, buy Yahoo, buy Yahoo, buy Oracle

Their goal is to be able to dream up short sequences and quickly detect whether they are subsequences of S. So this is the problem they pose to you: Give an algorithm that takes two sequences of events—S of length m and S of length n, each possibly containing an event more than once—and decides in time O(m + n) whether S is a subsequence of S.

3. Let's consider a long, quiet country road with houses scattered very sparsely along it. (We can picture the road as a long line segment, with an eastern endpoint and a western endpoint.) Further, let's suppose that despite the bucolic setting, the residents of all these houses are avid cell phone users. You want to place cell phone base stations at certain points along the road, so that every house is within four miles of one of the base stations.

Give an efficient algorithm that achieves this goal, using as few base stations as possible.

4. A small business—say, a photocopying service with a single large machine—faces the following scheduling problem. Each morning they get a set of jobs from customers. They want to do the jobs on their single machine in an order that keeps their customers happiest. Customer i's job will take t_i time to complete. Given a schedule (i.e., an ordering of the jobs), let C_i denote the finishing time of job i. For example, if job j is the first to be done, we would have $C_j = t_j$; and if job j is done right after job i,

we would have $C_j = C_i + t_j$. Each customer i also has a given weight w_i that represents his or her importance to the business. The happiness of customer i is expected to be dependent on the finishing time of i's job. So the company decides that they want to order the jobs to minimize the weighted sum of the completion times, $\sum_{i=1}^{n} w_i C_i$.

Design an efficient algorithm to solve this problem. That is, you are given a set of n jobs with a processing time t_i and a_i weight w_i for each job. You want to order the jobs so as to minimize the weighted sum of the completion times, $\sum_{i=1}^{n} w_i C_i$

5. Consider the following variation on the Interval Scheduling Problem. You have a processor that can operate 24 hours a day, every day. People submit requests to run daily jobs on the processor. Each such job comes with a start time and an end time; if the job is accepted to run on the processor, it must run continuously, every day, for the period between its start and end times. (Note that certain jobs can begin before midnight and end after midnight; this makes for a type of situation different from what we saw in the Interval Scheduling Problem.)

Given a list of n such jobs, your goal is to accept as many jobs as possible (regardless of their length), subject to the constraint that the processor can run at most one job at any given point in time. Provide an algorithm to do this with a running time that is polynomial in n. You may assume for simplicity that no two jobs have the same start or end times.

The optimal solution would be to pick the two jobs (9 P.M., 4 A.M.) and (1 P.M., 7 P.M.), which can be scheduled without overlapping.

6. The wildly popular Spanish-language search engine El Goog needs to do a serious amount of computation every time it recompiles its index. Fortunately, the company has at its disposal a single large supercomputer, together with an essentially unlimited supply of high-end PCs.

They've broken the overall computation into n distinct jobs, labeled J_1, J_2, \ldots, J_n , which can be performed completely independently of one another. Each job consists of two stages: first it needs to be preprocessed on the supercomputer, and then it needs to be finished on one of the PCs. Let's say that job J_i needs p_i seconds of time on the supercomputer, followed by f_i seconds of time on a PC. Since there are at least n PCs available on the premises, the finishing of the jobs can be performed fully in parallel—all the jobs can be processed at the same time. However, the supercomputer can only work on a single job at a time, so the system managers need to work out an order in which to feed the jobs to the supercomputer. As soon as the first job in order is done on the supercomputer, it can be handed off to a PC for finishing; at that point in time a second job can be fed to the supercomputer; when the second job is done on the supercomputer, it can proceed to a PC regardless of whether or not the first job is done (since the PCs work in parallel); and so on. Let's say that a schedule is an ordering of the jobs for the super-computer, and the completion time of the schedule is the earliest time at which all jobs will have finished processing on the PCs. This is an important quantity to minimize, since it determines how rapidly El Goog can generate a new index. Give a polynomial-time algorithm that finds a schedule with as small a completion time as possible.