Qspice - General Reference Guide by KSKelvin

KSKelvin Kelvin Leung

Created on 8-4-2023 Last update on 1-10-2023

QSPICE

- QSPICE
 - Arthor: Mike Engelhardt
 - Download: https://www.qorvo.com/design-hub/design-tools/interactive/qspice

- Topic Included in this guideline
 - Shortcut Key
 - Hierarchical and Sub-circuit
 - Waveform Viewer
 - Simulation Technique

Part 1 Shortcut Key

Schematic Editor Keyboard Shortcuts

HELP > Schematic Capture > Schematic Editor > Keyboard Shortcuts

Key	Command
	(spacebar) Zoom to fit
B ¹	Behavioral source
C ¹	Capacitor
D^1	Diode
E ¹	E-source
F	F-source
G ²	Ground, G-source
Н	H-source
I	Current Source
J ¹	JFET
L ¹	Inductor
M ¹	MOSFET
Q ¹	Bipolar Transistor
R ¹	Resistor
S ¹	Voltage Controlled Switch
T ³	Place Text
V ¹	Voltage Source
W	Start a wire
Υ	Piezoelectric Crystal
Z ¹	MESFET

Ctrl-A	Draw an arc(graphical annotation)
Ctrl-B	Draw a box(graphical annotation)
Ctrl-C	Copy selected object(s) to clipboard
Ctrl-F	Find
Ctrl-G	Toggle display of grid dots
Ctrl-L	Draw a line(graphical annotation)
Ctrl-M	Mirror selected object(s)
Ctrl-R	Rotate selected object(s)
Alt-Ctrl-R	Rotate in 45° increments
Ctrl-V	Paste
Ctrl-X	Cut
Ctrl-Y	Redo
Ctrl-Z	Undo
Ctrl-3	Draw a triangle(graphical annotation)
;	Toggle a text graphic's comment status
F2	Toggle visibility of the Symbol and IP Browser pane.
F3	Toggle visibility of the Symbol Properties pane.
F4	Toggle visibility of the output console.
F5	Run the simulation.

 $^{^{1]}\}mbox{ Repeated depressions of the key cycles through different versions of the symbol.}$

 $^{^{\}rm 2]}$ Repeated depressions of 'G' cycles through different versions of the ground symbol and then G-source symbols.

^{3]} The period key, '.', is accepted as a synonym for 'T'.

Symbol Editor and Waveform Viewer Keyboard Shortcuts

HELP > Waveform Viewer > Keyboard Shortcuts / HELP > Schematic Capture > Symbol Editor > Keyboard Shortcuts

Waveform Viewer Keyboard Shortcuts

Key	Command
Delete	Delete attached cursor if pointing to a readout or delete selected plot labels
F	Zoom to fit(all panes)
F4	Toggle visiblity of the console display
F5	Rerun the simulation
	Reload Plot configuration file
←	Move attached cursor left
\rightarrow	Move attached cursor right
1	Move attached cursor to next step for .step
\downarrow	Move attached cursor to previous step
Ctrl-A	Add a trace
Ctrl-C	Сору
Ctrl-D	Delete a plotting pane
Ctrl-F	Find
Ctrl-G	Turn Grid On/Off
Ctrl-V	Paste
Ctrl-P	Print
Ctrl-W	Add a plotting pane
Ctrl-X	Cut
Ctrl-Y	Redo
Ctrl-Z	Undo

Symbol Editor Keyboard Shortcuts

Key	Command
Ctrl-A	Draw an arc defined by three points
Shift-Ctrl-A	Draw an arc defined by four points
Ctrl-B	Draw a box(or a box for an image)
Ctrl-C	Copy selection(s) to clipboard
E	Draw an Ellipse
Ctrl-F	Find
Ctrl-L	Draw a line
Ctrl-M	Mirror selected objects
Р	Place a pin
Ctrl-R	Rotate selected objects
Т	Place a text attribute
Ctrl-V	Paste
Ctrl-X	Cut
Ctrl-Y	Redo
Ctrl-Z	Undo
Ctrl-3	Draw a triangle
F3	Toggle visibility of the Properties pane.

^{**} Probe Differentiate Voltage : Hold Alt and click differentiate nodes

Waveform Viewer Functions and Keywords (.func, .meas)

HELP > Waveform Viewer > Waveform Expressions

The following functions, constants, and keywords are recognized in expressions of waveform data.

Waveform Viewer Functions and Keywords

Syntax	Description
ABS(x)	X Absolute value of x
ACOS(x)	$\cos^{-1} \chi$ Inverse cosine of x
ACOSH(x)	Inverse hyperbolic cosine of x
ARCCOS(x)	Inverse cosine of x
ARCCOSH(x)	Inverse hyperbolic cosine of x
ARCSIN(x)	Inverse sine of x
ARCSINH(x)	Inverse hyperbolic sine of x
ARCTAN(x)	Inverse tangent of x
ARCTANH(x)	Inverse hyperbolic tangent of x
ASIN(x)	$\sin^{-1} x$ Inverse sine of x
ASINH(x)	Inverse hyperbolic sine of x
ATAN(x)	$\tan^{-1} x$ Inverse tangent of x
ATAN2(x,y) ¹	Four quadrant inverse tangent of x
ATANH(x)	Inverse hyperbolic tangent of x
BUF(x)	x > .5 ? 1 : 0
CBRT(x)	$\sqrt[3]{x}$ Cube root of x
CEIL(x)	x rounded up to nearest integer
COS(x)	$\cos x$ Cosine of x
COSH(x)	Hyperbolic cosine of x
COT(x)	Cotangent of x
D(x)	Derivative of x
DD(x)	Second derivative of x
D ² (x)	Second derivative of x
E	2.7182818284590452354
ERF(x)	Error function of x
ERFC(x)	Complementary error function of x
EXP(x)	e^{x} e raised to the x power
EXP10(x)	10^x 10 raised to the x power
FABS(x)	Absolute value of x
FLOOR(x)	x rounded down to nearest integer

FREQ	Frequency
FREQUENCY	Frequency
GAMMA(x)	Gamma function of x
HYPOT(x,y)	$\sqrt{x^2 + y^2}$ $\sqrt{(x^2 + y^2)}$
IF(x,y,z)	(x > .5) ? y : z
ILOGB(x)	Unbiased exponent of x
IM(x)	$\operatorname{im}(x)$ Imaginary part of x
IMAG(x)	Imaginary part of x
INT(x)	x rounded to nearest integer
INV(x)	x > .5 ? 0 : 1
INVSQRT(x)	1÷√x
ISNAN(x)	One if x is not a number, otherwise zero
J	√-1
J0(x)	Zero order Bessel function of the first kind at x
J1(x)	First order Bessel function of the first kind at x
JN(x,n)	N th order Bessel function of the first kind at x
K	1.380649e-23 J/°K
LGAMMA(x)	Log-gamma function of x
LIMIT(x,y,z)	Mutually intermediate value of x,y, and z
LN(x)	$\log_e x$ Natural logarithm of x $\log_e x$ Natural logarithm of x
LOG(x)	loge x Natural logarithm of x
LOG10(x)	$\log_{10} x$ Logarithm of x in base 10
LOG1P(x)	Natural logarithm of (x + 1)
LOG2(x)	Logarithm of x in base 2
LOGB(x)	LOG2(ABS(x))
MAG(x)	X Absolute value of x
MAX(x,y)	Maximum of x and y
MAXMAG(x,y)	x or y with maximum magnitude
NAN	A value guaranteed to be not a number
MIN(x,y)	Minimum of x and y
MINMAG(x,y)	x or y with minimum magnitude

PH(x)	∠x Phase of x
PHASE(x)	∠x Phase of x
PI	3.14159265358979323846
POW(x,y)	x raised to the y power
POWN(x,y)	x raised to the nearest integer value of y
PWR(x,y)	x Absolute value of x raised to the y power
PWRS(x,y)	$x >= 0 ? x^{y} : -x^{y}$
Q	1.602176487e-19 Coulomb
RE(x)	re(x) Real part of x
REAL(x)	Real part of x
RINT(x)	x rounded to the nearest integer
ROUND(x)	x rounded to the nearest integer
SGN(x)	Sign of x
SIGN(x)	Sign of x
SIN(x)	$\sin x$ Sine of x
SINH(x)	Hyperbolic sine of x
SQRT(x)	\sqrt{x} Square root of x
TABLE(x,x1,y1,)	Interpolate the table given as x1,y1, x2,y2, at point x
TAN(x)	tan x Tangent of x
TANH(x)	Hyperbolic tangent of x
TAUGRP(x)	Group delay of x
TBL(x,x1,y1,)	Interpolate the table given as x1,y1, x2,y2, at point x
TEMP	Circuit temperature
TG(x)	Group delay of x
TIME	Time
TRUNC(x)	Integer part of s
URAMP(x)	x > 0 ? x : 0
USTEP(x)	x > 0 ? 1 : 0
Y0(x)	Zero order Bessel function of the second kind at x
Y1(x)	First order Bessel function of the second kind at x
YN(x)	N th order Bessel function of the second kind at x

^{1]} For complex data, the syntax is ATAN2(z). The meaning is ATAN2(IMAG(z),REAL(z)).

simulation variable

important constant

Function and Operators for Behavioral V and I Sources

HELP > Simulator > Device Reference > B. Behavioral Sources

Functions	
Name	Description
abs(x)	X Absolute value of x
acos(x)	$\cos^{-1} \chi$ arc cosine of x
arccos(x)	Synonym for acos()
acosh(x)	arc hyperbolic cosine of x
asin(x)	$\sin^{-1} x$ arc sine of x
arcsin(x)	Synonym for asin()
asinh(x)	Arc hyperbolic sine
atan(x)	$tan^{-1} x$ Arc tangent of x
arctan(x)	Synonym for atan()
atan2(y,x)	Four quadrant arc tangent of y/x
atanh(x)	Arc hyperbolic tangent
buf(x)	1 if x > .5, else 0
ceil(x)	Integer equal or greater than x
cos(x)	$\cos x$ Cosine of x
cosh(x)	Hyperbolic cosine of x
ddt(x)	dx/dtime Time derivitive x
delay(x,y)	x delayed by y
delay(x,y,z)1	x delayed by y, but store no more than z history
dlim(x,y,z)	x bounded by y which it asymptotically starts to approach at y+z as a first inverse order Laurent series
exp(x)	e to the x
floor(x)	Integer equal to or less than x
hypot(x,y)	$\sqrt{x^2 + y^2} \qquad \text{sqrt}(x^2 + y^2)$
idt(x,y,z)	Time integral of x with initial condtion of y reset when z > .5
	x d time + y

if(x,y,z)	If x > .5, then y else z
int(x)	Convert x to integer
inv(x)	0. if x > .5, else 1.
limit(x,y,z)	Intermediate value of x, y, and z
ln(x)	log _e x Natural logarithm of x
log(x)	$\log_{\mathbf{e}} x$ Natural logarithm of x $\log_{\mathbf{e}} x$ Alternate syntax for In()
log10(x)	$\log_{10} x$ Base 10 logarithm
max(x,y)	The greater of x or y
min(x,y)	The smaller of x or y
pow(x,y)	<i>x</i> ^y x^y
pwr(x,y)	$ x ^y$ abs(x)^y
pwrs(x,y)	sgn(x)*abs(x)^y
random(x)	Random number from 0. to 1. depending on the integer value of x. Interpolation between random numbers is linear for non-integer x.
sin(x)	$\sin x$ Sine of x
sinh(x)	Hyperbolic sine of x
sqrt(x)	\sqrt{x} Square root of x
table	Interpolate x from the look-up table given as a set of pairs of constant
(x,a,b,c,d,)	values.
tan(x)	tan x Tangent of x.
tanh(x)	Hyperbolic tangent of x
ulim(x,y,z)	x bounded by y which it asymptotically starts to approach at y-z as a first

Available Function in B source not listed

- Trunc(x); floor(x); int(x): rounded down integer
- Rint(x); round(x): rounded to nearest integer
- Ceil(x): rounded up integer
- Ustep(x): x > 0 ? 1 : 0
- Uramp(x): x > 0? x: 0

Operand	Description
&	Boolean AND
	Boolean OR
>	True if expression on the left is greater than the expression on the right.

Operators grouped in reverse order of precedence of evaluation

	Boolean OK
>	True if expression on the left is greater than the expression on the right.
<	True if expression on the left is less than the expression on the right.
>=	True if expression on the left is greater than or equal the expression on the right.
<=	True if expression on the left is less than or equal the expression on the right.
+	Addition
-	Subtraction
*	Multiplication
/	Division
**	** / ^ Raise left hand side to power of right hand side. Same as '^'.
	•
!	Boolean not the following expression.

Part 2

circuit

Hierarchical and Sub-

Hierarchical and Sub-circuit: Comparison

Qspice : parent - hierarchical and subckt.qsch | +RdividerH.qsch

- Hierarchical and Sub-circuit
 - They are similar and both support by .qsym symbol, but two different concepts
 - Hierarchical
 - Call a child schematic (.qsch) for simulation
 - Circuit in child schematic (.qsch)
 - Waveform viewer can probe simulation result in daughter schematic
 - Sub-circuit (.subckt)
 - Call a sub-circuit (.subckt) for simulation
 - Circuit in .subckt model
 - Waveform viewer cannot probe simulation result in subckt
 - Result is calculated and stored, just not able to directly probe it.
 - In Qspice, .subckt syntax can embed into .qsym in library file properties (i.e. can share a single .qsym file for simulation)

Hierarchical and Sub-circuit: Comparison

Qspice: parent - hierarchical and subckt (dual hierarchical/subckt).qsch

- Hierarchical and Sub-circuit
 - In netlist, both Hierarchical and Sub-circuit call .subckt syntax
 - Hierarchical
 - Child schematic is a .subckt in Partent netlist
 - Symbol calls this child schematic name
 - Sub-circuit (.subckt)
 - Each symbol calls an individual .subckt by naming its by add prefix as Xnnn•<subckt name>


```
* C:\QspiceKSKelvin\01 User Guide and Script\02
V1 N01 0 1
.subckt X1 • + Rdivider SUB +
R1 + m 1K
R2 m - 1K
                                   .subckt for X1
.ends +Rdivider
X1 N01 0 H1 X1 • + Rdivider SUB
                                   X1•<subckt name>
.subckt X2 • + RdividerSUB + - m
R1 + m 1K
R2 m - 1K
.ends +Rdivider
                                   .subckt for X2
X2 N01 0 S1 X2 + Rdivider SUB
                                   X2•<subckt name>
.tran 1
.end
```

Hierarchical and Sub-circuit: Parameter Passing

Qspice : parent-PassParamHierarchical.qsch | +VdividerH1.qsch

- Parameter Passing
 - Hierarchical and Sub-circuit works in same way
 - As default, .subckt or child schematic load its .param
 - In parent schematic, if string attribute in symbol contains parameters, they will override .param within .subckt or child schematic

Parameter Passing with Global .param from parent

Qspice: parent-PassGlobalParam.qsch | +VdividerH1.qsch | +VdividerH2.qsch

- .param from Parent
 - Global .param passing from parent into a child schematic depends whether this child schematic has the parameter defined
 - If no such parameter is defined in child schematic, global .param override
 - If parameter is defined in child, global .param is ignored. Only string attribute in symbol has ability to override child schematic defined parameter

Three Way to Define Default Parameters in .subckt

Qspice : parent-PassParamSubckt.qsch | +VdividerS.txt

• Three Way to Define Default Parameters in .subckt

For this version, if removes .param lines, param can be added in symbol in string attribute Right Click on symbol > Add New Attribute

Three Type of Sub-Circuit (.subckt) Symbol (.qsym)

Qspice: parent - 3 type subckt symbol.qsch

Hierarchical and Sub-circuit Sub-Topics

- Part 2A: Hierarchical Block
 - Create hierarchical block from child to parent or parent to child schematic
 - Create symbol for hierarchical block
 - Get .subckt from hierarchical block to convert into an embedded subckt symbol
- Part 2B: Symbol for Subckt [Embedded Subckt]
- Part 2C: Symbol for Subckt [Link to Library]
- Part 2D : Convert MOSFET M to subckt Symbol
 - Demonstrate how to convert a MOSFET M symbol into subckt to save effort in creating a MOSFET symbol for .subckt MOSFET model from 3rd party vendor
- Part 2E: Bus and Hierarchical Block

Part 2A

Hierarchical Block

Hierarchical Block: From Child to Parent

Qspice : filter_circuit.qsch | filter_circuit_app.qsch

- [1] Create a child schematic (.qsch) with circuit and net label
- [2] Right click on net label and select "This is a Port"

Method #1

- [3] Create a new schematic which will call to use hierarchical
- [4] Edit → Draw Hierarchical Entry

Method #2

[3] In child schematic, Right click > Open Parent Schematic This will automatically create a parent schematic contains hierarchical symbol, with all Port automatically created

Hierarchical Block: From Child to Parent

Qspice : filter_circuit.qsch | filter_circuit_app.qsch

- [5] Change component text (1st attribute) to match child schematic name
- [6] Right click hierarchy component and "Add Port"
- [7] Name ports as port name defined in child schematic
- [8] Right click hierarchy component and "Enter Schematic" should open child schematic

A completed example

Hierarchical Block: From Parent to Child

- [1] Right click > Draw Hierarchical Entry
- [2] Rename component text (1st attribute) to child schematic name
- ** Child schematic will be created later
- [3] Right click within Hierarchical Block > Add Port
- [4] Right click > Enter Schematic, it will create a child .qsch

[5] Create circuit in child schematic

Hierarchical Block: Create Symbol (.qsym) for Hierarchical

Qspice : parent_Rdivider.qsch | +Rdivider.qsym

- [1] In a parent schematic which contains a hierarchical block
- [2] Hold Shift, draw a selection box to select Hierarchical
- [3] Press Ctrl-C to copy
- [4] File > New > New Symbol
- [5] In New Symbol window, Press Ctrl-V to paste
- [6] A symbol for hierarchical block is created, now, you can edit this symbol. Just bear in mind that "Symbol Type" must be blank for hierarchical symbol

Create Symbol (.qsym) for Hierarchical: Demonstration #1

Qspice: RC_sch.qsym; RC_sch.qsch

[1] Draw a schematic This example has

• Two ports : in and out

fc = 1/2/pi/R/C

.param C=1/2/pi/R/Fcutoff

[2] Create a symbol

- Pin name needs to match schematic ports (order not important)
- Use Text to assign
 - Name: X1
 - 1st attribute : [schematic name]
- Symbol Type: Blank (nothing)
 - Don't assign a X (X for subckt), hierarchical entry no symbol type

Remark:

Major Different for Symbol to call schematic (hierarchical entry) and subckt

- To call schematic (hierarchical entry)
 - Symbol Type : Blank
 - Name : X1
 - 1st attribute: schematic name
- To call subckt
 - Symbol Type : X
 - Name: X1
 - 1st attribute : subckt name

Create Symbol (.qsym) for Hierarchical: Demonstration #2

Qspice: RC_sch.qsym; RC_sch.qsch

- [1] Draw a schematic This example has
- Two ports: in and out
- Right click these nets and select "This is a port" (only these ports will auto generate hierarchical entry)

[2] Right Click > Open Parent Schematic It will ask to automatically generate a parent schematic

[3] Copy hierarchical block in parent with Ctrl-C

[4] File > New > New Symbol, paste with Ctrl-V
** Symbol Type : Blank (nothing)

Don't assign a X (X for subckt), hierarchical no symbol type.
 If you re-open a hierarchical symbol, please pay attention in here as it may auto assign an X into Symbol Type

[5] Save as a .qsym symbol

Remark:

Major Different for Symbol to call schematic (hierarchical entry) and subckt

- To call schematic (hierarchical)
 - Symbol Type : Blank
 - Name : X1
 - 1st attribute : schematic name
- To call subckt
 - Symbol Type : X
 - Name: X1
 - 1st attribute : subckt name

Qspice HELP Reference

Help > Schematic Capture > Schematic Hierarchy

Hierarchical Block: Get subckt with Hierarchical Block method

Symbol & IP Browser

Symbol Properties

QSPICE™ - filter_circuit_app.qsch

File Edit View Help

3. Select that block of text and copy it to the

4. Close the netlist and paste(Ctrl-V) the text into

5. You'll now have a symbol that contains the circuitry that you can use in any schematic in

a schematic(or a blank symbol). That will invoke

clipboard with Ctrl-C.

the 3rd party import routine.

F2

F3

- [2] In the netlist, identify the subcircuit of the hierarchal block
- [3] Select that block of text and copy it to the clipboard with Ctrl-C
- [4] Close the netlist and paste (Ctrl-V) the text into a schematic (or a blank symbol) to invoke the 3rd party import routine
- [5] You'll now have a symbol that contains the circuitry that you can use in any schematic in any directory.

6. Enjoy.

-Mike

any directory.

Engelhardt 10

Part 2B

Symbol for Subckt

[Embedded Subckt]

Symbol for Subckt [Embedded Subckt]

- [1] Assume user has a sub-circuit .subckt in text format library file
- [2] Use a text editor to open library file, copy text for sub-circuit
- [3] In Qspice schematic, paste the text (Ctrl-V)

[4] Rename pins by referring to description in model file

Symbol for Subckt [Embedded Subckt]

- [5] File > New > New Symbol to open a Symbol Window
- [6] In schematic, Ctrl-C to copy Component X1
- [7] Goto Symbol Window, Ctrl-V to paste component

- [8] Delete the box, rearrange pins location, and draw the symbol
- [9] Save into a .qsym symbol format

Symbol for Subckt [Embedded Subckt]

- [10] In Schematic, Symbol & IP Browser, Right Click to "Add a symbol directory"
- [11] Drag created component to schematic
- [12] ** text library is no longer required as .subckt is integrated into symbol

A completed example

kskelvin.net

27

Symbol for Subckt [Embedded Subckt]: Label with Text

Qspice: irf530 with text.qsym

- Text can be used in label
 - For example, instead of changing net name, you can
 - Right click > Text
 - Right click on text > Select "Comment"
 - · Text not comment will become valid item in netlist
 - Can change font size and color
 - Be careful 1st attribute is device name (e.g. IRF530 in example), and doesn't comment it

** Technique to Create embedded SUBCKT Script from Schematic

Qspice: RC_Params.qsym; RC_sch.qsch

[1] Draw a schematic This example has

- Two ports : in and out
- Two input params: R and Fcutoff
- One calculated parameter : C

[2] View > Netlist, copy this netlist

[3 : Method#1] Convert netlist to subckt

- First line add .subckt
- RC is NAME of subckt determined by user
- Follow with ports (net): in out
- Follow with params: R=1K Fcutoff=1K
- Remove .param R=1K and .param Fcutoff=1K
- Last line add .ends RC

This is the finished version

```
.subckt RC in out params: R=1K Fcutoff=1K
R1 in out R
C1 out 0 C
.param C=1/2/pi/R/Fcutoff
.ends RC
```

Copy and paste .subckt script to schematic, then follow standard symbol creation procedure for embedded SUBCKT symbol creation

```
in out
RC
params: R=1K Fcutoff=1K
```

** Technique to Create embedded SUBCKT Script from Schematic

Qspice: RC_noParams.qsym

[3 : Method#2] Convert netlist to subckt

- First line add .subckt
- RC is NAME of subckt determined by user
- Follow with ports (net): in out
- Remove .param R=1K and .param Fcutoff=1K
- Last line add .ends RC

This is the finished version

.subckt RC in out R1 in out R C1 out 0 C .param C=1/2/pi/R/Fcutoff .ends RC

Copy and paste .subckt script to schematic, then follow standard symbol creation procedure for embedded SUBCKT symbol creation [4 : Method#2] Add input param into symbol

- Two input params : R=1K and Fcutoff=1K
- Type T or Right Click > Text, input
 - R=1K
 - Fcutoff=1K
- This will create 2nd and 3rd attribute in String Attributes, where you can select to visible or not in symbol

Autogenerate Symbol Pin Assignment

Qspice: Autogenerate Symbol Pin Assignment.qsch

Part 2C

Symbol for Subckt

[Link to Library]

Symbol for Subckt [Create Symbol and Link to Library]

Example to create subckt symbol for irf530

- [1] File → New → New Symbol
- [2] Right Click \rightarrow Pin (to add 3 pins with order D, G, S)
- [3] Right Click at center of Pin to review PinOrder and PinLabel


```
irf530.lib 
      *Feb 16, 2010
      *Doc. ID: 90181, Rev. A
      *File Name: part irf530 PS.txt and part irf
      *This document is intended as a SPICE model
      *constitute a commercial product data sheet
      *appropriate data sheet of the same number
      *limits.
      .SUBCKT irf530 1 2 3
 9
10
             Model Generated by MODPEX
 11
      *Copyright(c) Symmetry Design Systems*
 12
                All Rights Reserved
 13
           UNPUBLISHED LICENSED SOFTWARE
 14
          Contains Proprietary Information
 15
             Which is The Property of
 16
            SYMMETRY OR ITS LICENSORS
 17
      *Commercial Use or Resale Restricted *
 18
          by Symmetry License Agreement
19
       *************
      * Model generated on Apr 24, 96
21
      * Model format: SPICE3
      * Symmetry POWER MOS Model (Version 1.0)
23
      * External Node Designations
2.4
      * Node 1 -> Drain
      * Node 2 -> Gate
      * Node 3 -> Source
      M1 9 7 8 8 MM L=100u W=100u
      * Default values used in MM:
```

Symbol for Subckt [Create Symbol and Link to Library]

- [4] Draw a box for outline
- [5] Put an "X" in Symbol Type in Symbol Properties
- [6] Right Click → Text → Put an "X"

- [7] To justify Pin label, double click center of Pin
- [8] Click red dot other than its centered justification
- [9] Save symbol file as .qsym

Symbol for Subckt [Create Symbol and Link to Library]

[10] In Schematic, Symbol & IP Browser, Right Click to "Add a symbol directory"[11] Drag created component to schematic

[12] Right Click on symbol, "Add New Attribute" as irf530 [13] In Symbol Properties, add "Library File" as irf530.lib ** library file is required to be put in schematic directory

Part 2D Convert MOSFET M to subckt Symbol

Convert MOSFET M to subckt Symbol

Qspice: Call Lib from M.qsch

It is possible to convert MOSFET symbol M into a sub-circuit symbol by

- 1. Change Symbol Type from MN to X
- 2. Library File as subckt library file
- 3. 1st attribute as subckt name
- 4. [Optional] Change Symbol Name to X?

Pin Order in Symbol MN and MP

Pin Order for Symbol MN (NMOS)

Pin Order for Symbol MP (PMOS)

Part 2E
Bus and Hierarchical
Block

Bus and Hierarchical Block

- Bus and Hierarchical Block
 - With Bus, data is defined as Data[n:m]
 - In Qspice, this net name format create a series of net names from Data[n] to Data[m]
 - If n<m, net name are Data[n], Data[n+1], Data[n+2], ..., Data[m]
 - If n>m, net name are Data[n], Data[n-1], Data[n-2], ..., Data[m]
 - For hierarchical block, subckt bus net names are assigned according to index sequence
 - To use data bus, it is recommending bus, hierarchical block and subckt with same data bus index, which can prevent unexpected behavior in net assignment

Bus and Hierarchical Block

Qspice : Parent-BUS.qsch / BUS_Hierarchical.qsch / bus_dll.cpp


```
|* C:\QspiceKSKelvin\01 User Guide and Script\01 Qspice Reference (0 | 0 | X1 \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \)
```


Bus and Hierarchical Block: Change BUS name order

Qspice: Parent-BUS.qsch / BUS_Hierarchical.qsch / bus_dll.cpp


```
* C:\QspiceKSKelvin\01 User Guide and Script\01 Qspice Reference
؆X1 «in'ui» «A[3] b A[2] b A[1] b A[0] b «» BUS DLL
V1 in 0 pwl 0 0 1 15
X2 A[3] A[2] A[1] A[0] o0 o1 o2 o3 BUS Hierarchical
.subckt BUS Hierarchical d[0] d[1] d[2] d[3] o0 o1 o2 o3
V1 d[0] o0 \overline{0}
                         [2] Subckt X1-d[0] is connected to A[3]
V2 d[1] o1 0
V3 d[2] o2 0
                         [3] This order is feed into hierarchical block
V4 d[3] o3 0
.ends BUS Hierarchical X2, e.g. A[3] is feed into X2-d[0]
 tran 1.
.plot V(o0) V(o1)+1.1 V(o2)+2.2 V(o3)+3.3
.plot V(A[0]) V(A[1])+1.1 V(A[2])+2.2 V(A[3])+3.3
.plot V(in)
 . end
```


Bus and Hierarchical Block: Change Hierarchical net label order

Qspice: Parent-BUS.qsch / BUS_Hierarchical.qsch / bus_dll.cpp


```
* C:\QspiceKSKelvin\01 User Guide and Script\01 Qspice Reference
؆X1 «in'ui» «A[0]'b A[1]'b A[2]'b A[3]'b» «» BUS DLL
V1 in 0 pwl 0 0 1 15
X2 A[0] A[1] A[2] A[3] o0 o1 o2 o3 BUS Hierarchical
.subckt BUS Hierarchical d[3] d[2] d[1] d[0] o0 o1 o2 o3
V1 d[0] o0 0
                         [2] Hierarchical block X2 name is reversed,
V2 d[1] o1 0
V3 d[2] o2 0
                         but Hierarchical / Subckt net assignment is
V4 d[3] o3 0
                        based on order, therefore, A[0] is feed to
ends BUS Hierarchical
                         hierarachical subckt d[3] in this case
.tran 1
.plot V(o0) V(o1)+1.1 V(o2)+2.2 V(o3)+3.3
.plot V(A[0]) V(A[1])+1.1 V(A[2])+2.2 V(A[3])+3.3
.plot V(in)
.end
```


Waveform Viewer Plot Config File (*.pfg) and .plot directive

- Waveform Viewer Config File (*.pfg) and .plot
 - In waveform viewer, plot config can be saved with File > Save Config: [qschname].pfg
 - This config file save windows, traces and axis setting
 - Press spacebar in waveform viewer can re-load config file [qschname].pfg
 - Two unique feature [qschname].pfg can provide but not support by .plot
 - Pre-define x-axis Quantity
 - Pre-define x and y-axis range

Waveform Viewer	Plot Config File [1] [qschname].pfg	.plot command in schematic	Outcome	
	No	No	A blank waveform viewer	
Closed before Simulation	No	Yes	Plot according to .plot command	
	Yes	[ignore]	Plot according to [qschname].pfg config	
Opened before Simulation	[ignore]	[ignore]	Keep windows and traces setting from last plot, reset x and y-axis	
[1] Saya plat config in Wayafarm Viewer : File > Saya Config				

^[1] Save plot config in Waveform Viewer : File > Save Config

^{**} In Waveform Viewer, press Spacebar to reload [qschname].pfg plot config file

^{**} to use .plot, delete [qschname].pfg and close waveform viewer before run of simulation

Data Export in Waveform Viewer – with @ in expression for .step

Qspice: waveform - with @ for step.qsch

- Data Export
- Setup Data Export
 - File > Export Data
 - Number Points : All
 - Expression(s): V(sin),FSIN
 - Time, V(sin), FSIN 0,0,40000000000 2.001953125e-12,0.482183772079123,40000000000 4.00390624999999e-12,0.844853565249706,40000000000 6.00585937500001e-12,0.998118112900149,40000000000 8.00781250000003e-12,0.903989293123441,40000000000 1.0009765625e-11,0.58579785745643,40000000000 1.20117187500001e-11,0.122410675199201,40000000000 1.40136718750001e-11,-0.371317193951856,40000000000 1.6015625e-11,-0.773010453362737,40000000000 1.80175781249999e-11,-0.983105487431211,40000000000 2.00195312499998e-11,-0.949528180593055,40000000000 2.20214843749997e-11,-0.680600997795516,40000000000 2.40234374999995e-11,-0.242980179903377,40000000000_ 0.0.80000000000 2.001953125e-12,0.844853565249706,80000000000 4.00390625000001e-12,0.903989293123441,80000000000 6.00585937500003e-12,0.122410675199201,80000000000 8.0078125e-12,-0.773010453362736,80000000000 1.00097656249999e-11,-0.949528180593055,80000000000 1.20117187499998e-11,-0.242980179903377,80000000000

- Data Export with @
- Setup Data Export
 - File > Export Data
 - Number Points : All
 - Expression(s):V(sin)@1,V(sin)@2

```
Time, V(sin)@1, V(sin)@2
4.00390624999999e-12,0.844853565249706,0.90398929312344
6.00585937500001e-12,0.998118112900149,0.12241067519921
8.00781250000003e-12,0.903989293123441,-0.773010453362739
1.0009765625e-11,0.58579785745643,-0.949528180593
1.20117187500001e-11,0.122410675199201,-0.596254180248215
1.40136718750001e-11,-0.371317193951856,-0.596254180248215
1.6015625e-11,-0.773010453362737,-0.596254180248215
1.80175781249999e-11,-0.983105487431211,-0.596254180248215
2.00195312499998e-11,-0.949528180593055,-0.596254180248215
2.20214843749997e-11,-0.680600997795516,-0.596254180248215
2.40234374999995e-11,-0.242980179903377,-0.596254180248215
2.001953125e-12,0.482183772079122,0.844853565249706
4.00390625000001e-12.0.844853565249707.0.903989293123441
6.00585937500003e-12,0.998118112900148,0.122410675199201
8.0078125e-12,0.903989293123442,-0.773010453362736
1.00097656249999e-11,0.585797857456455,-0.949528180593055
1.20117187499998e-11,0.122410675199269,-0.242980179903377
```

Snapshot Data Method – Export Data with Single Number Points

Qspice: waveform - time snapshot.qsch

Snapshot Data

- To create a snapshot dataset (e.g. all calculated results at particular time)
- This example demonstrate a snapshot data in csv format with export data method
- Idea is to force number points in data export to 1
 - Output two row but both are identical if start and stop are same
 - If start and stop are not same, output two row with time=start and time=stop

In waveform viewer

- 1. File > Export Data
- 2. Change Number Points to 1
- 3. File Format: CSV
- 4. Abscissa Extent : 1, Start = Stop
- 5. Select All

Waveform Viewer – Minimum Tick

Minimum Tick

- Maximum number of ticks in x- and y-axis are 11
- Depends on windows size, maximum number of ticks can reduce to 6
- Therefore, minimum allowable tick is $\frac{\text{Right-Left}}{10}$ or $\frac{\text{top-bottom}}{10}$

Max Time Step in .tran (and .bode) : Two methods

Qspice: MaxTimeStep.qsch

Add [additional instance parameters]

- 1. Right Click on Component
- Select "Add New Attribute"
- 3. Type parameter name and value [refer to help for full list of instance parameters]

This is an example to assign 0.2 ohms series resistance to inductor L1

Inductor Instance Parameters

Name	Description		Default
AG	Wire or stripline is made of gold		
AL	Wire or stripline is made of aluminum		see below
AU	Wire or stripline is made of silver		
BEND	Fractional inductance correction for wire bend or proximity effects		1.
CPAR	Parallel capacitance	F	0.
CU	Wire or stripline is made of copper		see below
DIAMETER	Diameter of wire or air coil	m	
FREQUENCY	Frequency at Q. Also used to compute Rser due to skin effect		
HEIGHT	Height of PCB stripline above ground plane	m	
IC	Initial current if uic is specified on .tran statement	Α	none
INDUCTANCE	Inductance of inductor	Н	0.0
ISAT	Current causing inductance to drop to SATFRAC×INDUCTANCE	Α	Infinite
LENGTH	Length of wire, stripline, or air coil	m	
LSAT	Inductance asymptotically approached in saturation		10% of INDUCTANCE
М	Number of parallel inductors		1.0
NI	Wire is made of nickel		
Q	Quality factor at FREQUENCY		
RPAR	Equivalent parallel resistance	Ω	Infinite
RSER	Equivalent series resistance	Ω	0.0
SATFRAC	Fractional drop in inductance at ISAT		0.7
THICK	Thickness of stripline on top of a PCB	m	0.0
TURNS	Number of turns of an air coil		
VERBOSE	Print wire L, Rser, Rpar results on the console		(not set)
WIDTH	Width of stripline on top of a PCB	m	

AC and DC Attribute in Source

Qspice: AC with Transient Source.qsch; AC with Bias.qsch

Technique to perform AC analysis with a transient source

- 1. Right Click on Voltage/Current source
- Select "Add New Attribute"
- 3. Type "AC 1" to define a 1V source for AC sweep
- 4. Add a .ac analysis statement, and comment transient analysis

Technique to perform AC analysis with DC in source

- 1. Right Click on Voltage/Current Sourec, Add New Attribute
- 2. To add DC source, type "DC ..."
 - If without DC, simulator may not interpret the DC voltage during simulation. Best practice is to add DC

Laplace Time and Frequency Domain Simulation

Qspice: Laplace Simulation - Fdomain.qsch; Laplace Simulation - Tdomain.qsch

Frequency Domain

Laplace Time and Frequency Domain Simulation

Qspice: Laplace Close Loop.qsch

- Close Loop System Time and Bode
 - A technique to get Gp(s) and GH(s) is to add a perturbing source between output and feedback and perform ac analysis
 - In this example, Laplace function can collect in series for both .tran and .ac directive

AC (.ac) and Frequency Response Analysis (.bode)

Qspice: ACmethod.qsch; BODEmethod.qsch

Technique to Probe Drain Current / General Current Probe

Qspice: Current_Probe_Method.qsch

3 common current probe method

- 1. Add a series resistor and probe R current
- 2. Add 0V voltage source and probe current of this voltage source. +ve represent current flow from + to direction within symbol (i.e. current flow downward in above example)
- 3. Ctrl-A (Add Plot) in waveform viewer and select Id(Mnnn)

Selection Guide option for Circuit Elements with 3rd Party Library

Purpose

Use Q transistor as an example of how to have selection quide from 3rd party library

Procedure

- In C:\Program Files\Qspice, create a .txt file
 - e.g. My_NPN.txt
 - May réquire admin access
- Copy and paste .model context into .txt and save
 - https://ltwiki.org/index.php?title=Standard.bit
 - This link contains a list of BJT model
- In Qspice schematic, add a NPN transistor with shortcut
- Right click transistor, open symbol properties and change the library file from NPN.txt to My_NPN.txt Right click transistor and Selection Guide is available
- now

Reference

https://forum.gorvo.com/t/adding-model-files-togspice/14963/7

stevenbennett

5h

That's very helpful thanks. For anyone wanting more detail, this is what worked for me:

- 1: Create a custom .model containing text file in C:\Program Files\QSPICE e.g. My NPN.txt
- 2: Paste in single, or multiple, .model statements e.g. from Standard.bjt LTwiki-Wiki for LTspice 1 and save.
- 3: Add an NPN transistor from the "Q" folder in the Symbols & IP folder list in QSPICE.
- 4: Open the symbol properties for the NPN transistor by double clicking and change the Library File from NPN.txt to My NPN.txt
- 5: Right click the NPN symbol and choose Selection Guide, which will now display all the added models.
- 6: The file Mv NPN.txt will survive any of the frequent QSPICE updates.

B-Source as Comparator

Qspice: B-Source as Comparator.qsch

- Concept of Ideal Comparator with Behavioral Voltage Source
 - Formula of B-source is: if(V(pos)>V(neg),V(Vdd),V(Vss))
 - Practical comparator output normally is open-drain configuration, this is just for simulation purpose

Monte Carlo

Qspice: Monte Carlo.qsch

Random number from 0 to 1 depending on the seed

Flat(x) and MC(x,y) functions equivalent to Ltspice

Qspice: Flat and MC Function.gsch

- Uniform random distribution
 - LTspice offers flat(x) and mc(x,y) functions, but not in Qspice (last check 10-3-2023)
- Function for flat(x) and mc(x,y)
 - .func flat(x) $x^*((random()^*2)-1)$ Generate random [-x, x] .func mc(x,y) $x^*(1+y^*(random()^*2-1))$ Generate random [x*(1-y), x*(1+y)]

Time in .tran and Logic Diagram in Waveform Viewer with .plot

Qspice: Time in .tran.qsch; Logic Signal Plot.qsch

- Time in .tran
 - In .tran, simulation time is stored as a parameter named **Time**
 - Therefore, use a B-source can convert Time into a voltage
 - Time can also be used in function

- Logic Diagram
 - A simple idea to plot logic signal into logic diagram format
 - Idea is to add an offset for each logic in .plot

Dummy TTOL device to help in adaptive timestep

Qspice: TTOL - Dummy TTOL element - Enhance Timestep.qsch

- Dummy TTOL device
 - Qspice uses adaptive timestep
 - If a circuit uses a B-source, if(x,y,z) as a comparator, without TTOL device, its simulation timestep can far from compare instance and output looks weird
 - Example on Top Row
 - Precise time instance at compare action, but as no extra timestep after compare action, output looks like ramping as next timestep is far away (interpolation)
 - To resolve this without using MAXSTEP to limit timestep, a dummy TTOL device can be used (e.g. Switch), with TTOL instance parameters included
 - Example on Bottom Row
 - Extra time steps are added after V(compare) flip the switch, with additional time steps, output looks reasonable
 - Smaller TTOL value can yield a better results but with longer elapsed time

TTOL device to help in adaptive timestep (e.g. function IF)

Qspice: TTOL - TTOL device to Interface Analog and Digital.qsch

TTOL device interface

- Qspice uses adaptive timestep If a circuit uses a B-source,
- if(x,y,z) as a comparator, without TTOL device, its simulation timestep can far from compare instance and output looks weird

 - Example in Top Figure Precise time instance at compare action, but as no extra timestep at compare action, output looks like trapezoidal as next timestep is far away
- To resolve this without using MAXSTEP to limit timestep, a TTOL device can be used (e.g. buffer, with default TTOL=1u)
 - Example in Bottom Figure
 - Extra time steps are added after V(cmpA) flip the buffer, with additional time steps, output looks square waveform
 - Smaller TTOL value can yield a better results but with longer elapsed time

TTOL device to help in adaptive timestep (e.g. function DELAY)

Qspice: TTOL - TTOL for Pulse Delay.qsch

- TTOL device interface
 - Pulse source has instance parameter TimeCtrl to determine timestep at each breakpoint (default is TimeCtrl=Limits), therefore, extra timestep at its rising/falling edge
 - Example in Top Figure
 - But the edge of delayed signal from behavioral source has no information of extra timestep is required, therefore, delayed signal looks like trapezoid
 - A buffer with TTOL is used to improve sharpness of pulse edge
 - Example in Bottom Figure
 - Buffer is triggered when its input cross REF voltage, with TTOL instance parameter, extra timestep is added at such moment

Delay with Transmission Line (alternative way for delay function)

Qspice: Transmission Line for Pulse Delay.qsch

- Delay with Transmission Line
 - Beside of delay(x,y,z)
 function in behavioral
 source, delay can be
 generated with transmission
 line terminate with Zo
 - However, this approach may generate overshoot/undershoot if maximum time step is not defined, this crux is related to Qspice design as a trade between simulation time and accuracy

