## Wk3: PRob Distributions

D. ODay

2022-06-27

# Probability and Probability Distributions

## Intro to Probability

#### **Definitions**

- **Probability** is the chance that an event will or will not occur.the terms are typically expressed in fractions or decimals
- An **event** is one or more of the possible outcomes of a situation or experiment.
- experiment is an activity which produces an event
- sample space is the set of all possible outcomes from an experiment
- Events are termed mutually exclusive when one and only one can take place at the same time
- Collectivelly Exhaustive refers to lists containing all of the possible events which may result from an experiment
- The probability an event will occur is  $P = \frac{\#ofeventoutcomes}{TotalPossibleOutcomes}$

## Rules and conditions

- Concern
  - the case where one event or another will occur
    - \* Also known as marginal or unconditional probability
    - \* P(A) = the probability P of event A occurring
    - \* Where a single probability is involved, only one event can take place
    - \* Ex) what is the probability of selecting a part out of 100 of them
    - \* P = 1%
  - The next situation with two or more events where they both may occur

#### Mutually Exclusive

- For mutually exclusive events
  - P(A or B) = P(A) + P(B)
- For non-mutually exclusive events
  - P(A or B) = P(A) + P(B) P(A+B)
  - Ex question
    - \* With two vendors A and B and with some defective parts for each vendor, what is the probability of selecting vendor A and a defective part?

## **Independent Conditions**

- Marginal Probability
  - P(A) Independent Event (e.g. coin toss)
- Joint Probability
  - The probability of two or more events occurring together (or in succession) is the product of their marginal probabilities
  - $P(AB) = P(A) \times P(B)$
  - Ex) The probability of a machine operator producing a defective part at any point in time is 0.05. What is the probability that three bad parts will be produced in succession?
    - $* P(ABC) = P(A) \times P(B) \times P(C)$
    - \*  $P(3 \text{ Defectives}) = P(Def) \times P(Def) \times P(Def)$
    - $* P(3 def) = 0.05 \times 0.05 \times 0.05$
- Conditional Probability
  - P(B|A)
    - \* The probability event B will occur given event A has occurred
    - \* P(B|A) = P(B) because A and B are independent

## **Dependent Conditions**

- Conditional Probability
  - $-P(B|A) = \frac{P(B \cap A)}{A}$

#### Joint Probabilities Under Statistical Dependence

- The formula for joint probabilities under statistical dependence is a variation of the conditional probability formula
- The joint probability of B and A is the following
  - $P(BA) = P(B|A) \times P(A)$
  - Where P(BA) is the probability of events B and A happening together in succession

## **Probability Distributions**

• The theoretical frequency distributions which are collectively exhaustive

require(lolcat)

#### Distribution in R example

- ## Loading required package: lolcat
- ## lolcat 2.0.0

```
#Get distribution
table.dist.binomial(n=2, p=0.2)
##
     x p.at.x eq.and.above eq.and.below
## 0 0
         0.64
                       1.00
                                    0.64
## 1 1
         0.32
                       0.36
                                    0.96
                       0.04
## 2 2
         0.04
                                    1.00
```

```
#Barplot of Distribution
n = 2
P = 0.2
data=dbinom(x=0:n, size=n, prob=P)
names(data) = 0:n
barplot(data, ylab="P(D)", ylim=c(0,1))
```



## Types of Probability Distributions

- Discrete
  - There are a limited number of possible values
- Continuous
  - A continuous probability distribution has relatively unlimited possibilities for variable value
- A random variable is one which can take on different values as a result of the outcomes of a random experiment. Can be either discrete or continuous

```
Daily.Production <- read.table("~/Documents/GitHub/school_cu/school_cu/methods for quality improvement/school_cu/school_cu/methods for quality improvement/school_cu/school_cu/methods for quality improvement/school_cu/school_cu/methods for quality improvement/school_cu/school_cu/methods for quality improvement/school_cu/school_cu/school_cu/methods for quality improvement/school_cu/school_cu/methods for quality improvement/school_cu/school_cu/methods for quality improvement/school_cu/school_cu/school_cu/methods for quality improvement/school_cu/school_cu/school_cu/methods for quality improvement/school_cu/school_cu/school_cu/school_cu/school_cu/school_cu/school_cu/school_cu/school_cu/school_cu/school_cu/school_cu/school_cu/school_cu/school_cu/school_cu/school_cu/school_cu/school_cu/school_cu/school_cu/school_cu/school_cu/school_cu/school_cu/school_cu/school_cu/school_cu/school_cu/school_cu/school_cu/school_cu/school_cu/school_cu/school_cu/school_cu/school_cu/school_cu/school_cu/school_cu/school_cu/school_cu/school_cu/school_cu/school_cu/school_cu/school_cu/school_cu/school_cu/school_cu/school_cu/school_cu/school_cu/school_cu/school_cu/school_cu/school_cu/school_cu/school_cu/school_cu/school_cu/school_cu/school_cu/school_cu/school_cu/school_cu/school_cu/school_cu/school_cu/school_cu/school_cu/school_cu/school_cu/school_cu/school_cu/school_cu/school_cu/school_cu/school_cu/school_cu/school_cu/school_cu/school_cu/school_cu/school_cu/school_cu/school_cu/school_cu/school_cu/school_cu/school_cu/school_cu/school_cu/school_cu/school_cu/school_cu/school_cu/school_cu/school_cu/school_cu/school_cu/school_cu/school_cu/school_cu/school_cu/school_cu/school_cu/school_cu/school_cu/school_cu/school_cu/school_cu/school_cu/school_cu/school_cu/school_cu/school_cu/school_cu/school_cu/school_cu/school_cu/school_cu/school_cu/school_cu/school_cu/school_cu/school_cu/school_cu/school_cu/school_cu/school_cu/school_cu/school_cu/school_cu/school_cu/school_cu/school_cu/school_cu/school_cu/school_cu/school_cu/school_cu/school_cu/school_cu/schoo
```

```
l min midpoint max u freq rel.freq cum.up cum.down
              50.5 51)
                                0.027 0.027
## 1
    Γ 50
                           1
                                               1.000
              51.5 52)
                                0.054 0.081
                                               0.973
## 2 [ 51
## 3 [ 52
              52.5 53)
                                0.054 0.135
                                               0.919
                           2
## 4
    [
              53.5 54)
                                0.081 0.216
       53
                           3
                                               0.865
## 5 [
       54
              54.5 55)
                           5
                                0.135 0.351
                                               0.784
## 6 [ 55
              55.5 56)
                           7
                                0.189 0.541
                                               0.649
    Ε
              56.5 57)
                                0.162 0.703
                                               0.459
## 7
       56
                           6
## 8
     Γ
       57
              57.5 58)
                           4
                                0.108 0.811
                                               0.297
## 9 [ 58
              58.5 59)
                           4
                                0.108 0.919
                                               0.189
## 10 [ 59
              59.5 60)
                           2
                                0.054 0.973
                                               0.081
## 11 [ 60
              60.5 61)
                                0.027 1.000
                                               0.027
                           1
```

## (probdistdp<-freqdistdp[,c("min","freq","rel.freq")])</pre>

```
##
      min freq rel.freq
## 1
       50
             1
                  0.027
                  0.054
## 2
       51
             2
## 3
                  0.054
       52
             2
## 4
       53
             3
                  0.081
## 5
       54
                  0.135
             5
## 6
       55
             7
                  0.189
## 7
                  0.162
       56
             6
## 8
       57
             4
                  0.108
## 9
       58
                  0.108
             4
## 10 59
                  0.054
             2
## 11 60
                  0.027
```

```
colnames(probdistdp)<-c("Daily Production", "#of Days", "P(DP)")

# Probability Distribution (Histogram)
hist.grouped(Daily.Production$V1, freq = F, anchor.value=50, ylim=c(0,0.20))</pre>
```

# **Grouped Histogram**



#### Expected Value of a Discrete Variable

• One of the most important factors related to any probability distribution is the ability to define the expected value of a random variable

```
# Expected Value of a Discrete Random Variable
x<-probdistdp$`Daily Production`
y<-probdistdp$`P(DP)`
weighted.mean(x,y)</pre>
```

## [1] 55.24324

mean(Daily.Production\$V1)

## [1] 55.24324

## Common Probability Distributions

- Discrete
  - Binomial
  - Poisson
  - Hypergeometric
  - Geometric
- Continuous
  - Normal

- Exponential
- Weibull Family
- Johnson Family
- Other Distributions

## Discrete Distributions

#### The binomial distribution

• Basically either/or between two probabilities

```
# Get density at exactly that x-value
dbinom(x=45, size=50, prob=0.8)

## [1] 0.0295312

#binomial table (lolcat)
#gives desnsity at x for each X
round.object(table.dist.binomial(n=50, p=0.8), 5)
```

```
##
       x p.at.x eq.and.above eq.and.below
## 0
       0 0.00000
                       1.00000
                                     0.00000
## 1
       1 0.00000
                       1.00000
                                     0.00000
## 2
       2 0.00000
                       1.00000
                                     0.00000
## 3
       3 0.00000
                       1.00000
                                     0.00000
## 4
       4 0.00000
                       1.00000
                                     0.00000
## 5
       5 0.00000
                       1.00000
                                     0.00000
## 6
       6 0.00000
                       1.00000
                                     0.00000
##
       7 0.00000
                       1.00000
                                     0.00000
## 8
       8 0.00000
                       1.00000
                                     0.00000
## 9
       9 0.00000
                       1.00000
                                     0.00000
## 10 10 0.00000
                                     0.00000
                       1.00000
## 11 11 0.00000
                       1.00000
                                     0.00000
## 12 12 0.00000
                       1.00000
                                     0.00000
## 13 13 0.00000
                       1.00000
                                     0.00000
## 14 14 0.00000
                                     0.00000
                       1.00000
## 15 15 0.00000
                       1.00000
                                     0.00000
## 16 16 0.00000
                       1.00000
                                     0.00000
## 17 17 0.00000
                       1.00000
                                     0.00000
## 18 18 0.00000
                       1.00000
                                     0.00000
## 19 19 0.00000
                       1.00000
                                     0.00000
## 20 20 0.00000
                       1.00000
                                     0.00000
## 21 21 0.00000
                       1.00000
                                     0.00000
## 22 22 0.00000
                       1.00000
                                     0.00000
## 23 23 0.00000
                       1.00000
                                     0.00000
## 24 24 0.00000
                       1.00000
                                     0.00000
## 25 25 0.00000
                       1.00000
                                     0.00000
## 26 26 0.00001
                       1.00000
                                     0.00001
## 27 27 0.00002
                       0.99999
                                     0.00003
## 28 28 0.00007
                       0.99997
                                     0.00010
## 29 29 0.00022
                       0.99990
                                     0.00032
```

```
## 30 30 0.00061
                                     0.00093
                       0.99968
## 31 31 0.00158
                       0.99907
                                     0.00251
## 32 32 0.00375
                       0.99749
                                     0.00626
## 33 33 0.00818
                       0.99374
                                     0.01444
## 34 34 0.01636
                       0.98556
                                     0.03080
## 35 35 0.02992
                                     0.06072
                       0.96920
## 36 36 0.04986
                       0.93928
                                     0.11059
## 37 37 0.07547
                       0.88941
                                     0.18606
## 38 38 0.10328
                       0.81394
                                     0.28933
## 39 39 0.12711
                       0.71067
                                     0.41644
## 40 40 0.13982
                       0.58356
                                     0.55626
## 41 41 0.13641
                       0.44374
                                     0.69267
## 42 42 0.11692
                       0.30733
                                     0.80959
## 43 43 0.08701
                       0.19041
                                     0.89660
## 44 44 0.05537
                       0.10340
                                     0.95197
## 45 45 0.02953
                       0.04803
                                     0.98150
## 46 46 0.01284
                       0.01850
                                     0.99434
## 47 47 0.00437
                       0.00566
                                     0.99871
## 48 48 0.00109
                       0.00129
                                     0.99981
## 49 49 0.00018
                       0.00019
                                     0.99999
## 50 50 0.00001
                       0.00001
                                     1.00000
```

# #Barplot of Binomial Prob Distribution n=50 P=0.8 data = dbinom(x=26:n, size=n, prob=P) names(data) = 26:n barplot(data, xlab="# of Good Parts", ylab="P(G", ylim=c(0, 0.15))



```
cols = rep("grey", n+1)
cols[20:25] = "red"
barplot(data, col=cols, xlab=" # of Good Parts", ylab="P(G)", ylim=c(0, 0.14))
```



```
#Probability of >=45
#Not that pbinom gives P(X>x) for upper tail probs
pbinom(q=44, size=50, prob=0.8, lower.tail=F)
```

## [1] 0.04802722

## The Poisson distribution

• The number of occurences within a time frame

```
# Get density at exactly that x-value
dpois(x=10, lambda=25)
```

## [1] 0.000364985

```
#dpoisson table (lolcat)
#gives density at x for each X
round.object(table.dist.poisson(lambda = 25), 5)
```

```
##
         x p.at.x eq.and.above eq.and.below
## 0
         0.00000
                        1.00000
                                      0.00000
## 1
         1 0.00000
                        1.00000
                                      0.00000
## 2
         2 0.00000
                        1.00000
                                      0.00000
## 3
         3 0.00000
                        1.00000
                                      0.00000
```

| ## | 1   | 1  | 0.00000 | 1.00000 | 0.00000 |
|----|-----|----|---------|---------|---------|
| ## | 4   | 4  |         |         |         |
| ## | 5   | 5  | 0.00000 | 1.00000 | 0.00000 |
| ## | 6   | 6  | 0.00000 | 1.00000 | 0.00001 |
| ## | 7   | 7  | 0.00002 | 0.99999 | 0.00002 |
| ## | 8   | 8  | 0.00005 | 0.99998 | 0.00008 |
| ## | 9   | 9  | 0.00015 | 0.99992 | 0.00022 |
| ## | 10  | 10 | 0.00036 | 0.99978 | 0.00059 |
| ## | 11  | 11 | 0.00083 | 0.99941 | 0.00142 |
| ## | 12  | 12 | 0.00173 | 0.99858 | 0.00314 |
| ## | 13  | 13 | 0.00332 | 0.99686 | 0.00647 |
| ## | 14  | 14 | 0.00593 | 0.99353 | 0.01240 |
| ## | 15  | 15 | 0.00989 | 0.98760 | 0.02229 |
| ## | 16  | 16 | 0.01545 | 0.97771 | 0.03775 |
| ## | 17  | 17 | 0.02273 | 0.96225 | 0.06048 |
| ## | 18  | 18 | 0.02273 | 0.93952 | 0.00048 |
|    |     |    |         |         |         |
| ## | 19  | 19 | 0.04153 | 0.90796 | 0.13357 |
| ## | 20  | 20 | 0.05192 | 0.86643 | 0.18549 |
| ## | 21  | 21 | 0.06181 | 0.81451 | 0.24730 |
| ## | 22  | 22 | 0.07023 | 0.75270 | 0.31753 |
| ## | 23  | 23 | 0.07634 | 0.68247 | 0.39388 |
| ## | 24  | 24 | 0.07952 | 0.60612 | 0.47340 |
| ## | 25  | 25 | 0.07952 | 0.52660 | 0.55292 |
| ## | 26  | 26 | 0.07646 | 0.44708 | 0.62939 |
| ## | 27  | 27 | 0.07080 | 0.37061 | 0.70019 |
| ## | 28  | 28 | 0.06321 | 0.29981 | 0.76340 |
| ## | 29  | 29 | 0.05450 | 0.23660 | 0.81790 |
| ## | 30  | 30 | 0.04541 | 0.18210 | 0.86331 |
| ## | 31  | 31 | 0.03662 | 0.13669 | 0.89993 |
| ## | 32  | 32 | 0.02861 | 0.10007 | 0.92854 |
| ## | 33  | 33 | 0.02168 | 0.07146 | 0.95022 |
| ## | 34  | 34 | 0.01594 | 0.04978 | 0.96616 |
| ## | 35  | 35 | 0.01138 | 0.03384 | 0.97754 |
| ## | 36  | 36 | 0.00791 | 0.02246 | 0.98545 |
| ## | 37  | 37 | 0.00731 | 0.01455 | 0.99079 |
|    | 38  | 38 | 0.00354 | 0.00921 | 0.99430 |
| ## |     |    |         |         |         |
| ## | 39  | 39 | 0.00225 | 0.00570 | 0.99656 |
| ## | 40  | 40 | 0.00141 | 0.00344 | 0.99796 |
| ## | 41  | 41 | 0.00086 | 0.00204 | 0.99882 |
| ## | 42  | 42 | 0.00051 | 0.00118 | 0.99933 |
| ## | 43  | 43 | 0.00030 | 0.00067 | 0.99963 |
| ## | 44  | 44 | 0.00017 | 0.00037 | 0.99980 |
| ## | 45  | 45 | 0.00009 | 0.00020 | 0.99989 |
| ## | 46  | 46 | 0.00005 | 0.00011 | 0.99994 |
| ## | 47  | 47 | 0.00003 | 0.00006 | 0.99997 |
| ## | 48  | 48 | 0.00001 | 0.00003 | 0.99999 |
| ## | 49  | 49 | 0.00001 | 0.00001 | 0.99999 |
| ## | 50  | 50 | 0.00000 | 0.00001 | 1.00000 |
| ## | 51  | 51 | 0.00000 | 0.00000 | 1.00000 |
| ## | 52  | 52 | 0.00000 | 0.00000 | 1.00000 |
| ## | 53  | 53 | 0.00000 | 0.00000 | 1.00000 |
| ## | 54  | 54 | 0.00000 | 0.00000 | 1.00000 |
| ## | 55  | 55 | 0.00000 | 0.00000 | 1.00000 |
| ## | 56  | 56 | 0.00000 | 0.00000 | 1.00000 |
| ## | 57  | 57 | 0.00000 | 0.00000 | 1.00000 |
| ## | O I | 51 | 0.00000 | 0.0000  | 1.00000 |

| ## | 58  | 58  | 0.00000 | 0.00000 | 1.00000 |
|----|-----|-----|---------|---------|---------|
| ## | 59  | 59  | 0.00000 | 0.00000 | 1.00000 |
| ## | 60  | 60  | 0.00000 | 0.00000 | 1.00000 |
| ## | 61  | 61  | 0.00000 | 0.00000 | 1.00000 |
| ## | 62  | 62  | 0.00000 | 0.00000 | 1.00000 |
| ## | 63  | 63  | 0.00000 | 0.00000 | 1.00000 |
| ## | 64  | 64  | 0.00000 | 0.00000 | 1.00000 |
| ## | 65  | 65  | 0.00000 | 0.00000 | 1.00000 |
| ## | 66  | 66  | 0.00000 | 0.00000 | 1.00000 |
| ## | 67  | 67  | 0.00000 | 0.00000 | 1.00000 |
|    |     |     |         |         |         |
| ## | 68  | 68  | 0.00000 | 0.00000 | 1.00000 |
| ## | 69  | 69  | 0.00000 | 0.0000  | 1.00000 |
| ## | 70  | 70  | 0.00000 | 0.00000 | 1.00000 |
| ## | 71  | 71  | 0.00000 | 0.00000 | 1.00000 |
| ## | 72  | 72  | 0.00000 | 0.00000 | 1.00000 |
| ## | 73  | 73  | 0.00000 | 0.00000 | 1.00000 |
| ## | 74  | 74  | 0.00000 | 0.00000 | 1.00000 |
| ## | 75  | 75  | 0.00000 | 0.00000 | 1.00000 |
| ## | 76  | 76  | 0.00000 | 0.00000 | 1.00000 |
| ## | 77  | 77  | 0.00000 | 0.00000 | 1.00000 |
| ## | 78  | 78  | 0.00000 | 0.00000 | 1.00000 |
| ## | 79  | 79  | 0.00000 | 0.00000 | 1.00000 |
| ## | 80  | 80  | 0.00000 | 0.00000 | 1.00000 |
|    |     |     |         |         |         |
| ## | 81  | 81  | 0.00000 | 0.00000 | 1.00000 |
| ## | 82  | 82  | 0.00000 | 0.00000 | 1.00000 |
| ## | 83  | 83  | 0.00000 | 0.00000 | 1.00000 |
| ## | 84  | 84  | 0.00000 | 0.00000 | 1.00000 |
| ## | 85  | 85  | 0.00000 | 0.00000 | 1.00000 |
| ## | 86  | 86  | 0.00000 | 0.00000 | 1.00000 |
| ## | 87  | 87  | 0.00000 | 0.00000 | 1.00000 |
| ## | 88  | 88  | 0.00000 | 0.00000 | 1.00000 |
| ## | 89  | 89  | 0.00000 | 0.00000 | 1.00000 |
| ## | 90  | 90  | 0.00000 | 0.00000 | 1.00000 |
| ## | 91  | 91  | 0.00000 | 0.00000 | 1.00000 |
| ## | 92  | 92  | 0.00000 | 0.00000 | 1.00000 |
| ## | 93  | 93  | 0.00000 | 0.00000 | 1.00000 |
| ## | 94  | 94  | 0.00000 | 0.00000 | 1.00000 |
| ## | 95  | 95  | 0.00000 | 0.00000 | 1.00000 |
| ## | 96  | 96  | 0.00000 | 0.00000 | 1.00000 |
| ## | 97  | 97  | 0.00000 | 0.00000 | 1.00000 |
|    |     |     |         |         |         |
| ## | 98  | 98  | 0.00000 | 0.00000 | 1.00000 |
| ## | 99  | 99  | 0.00000 | 0.00000 | 1.00000 |
| ## | 100 | 100 | 0.00000 | 0.00000 | 1.00000 |
| ## | 101 | 101 | 0.00000 | 0.00000 | 1.00000 |
| ## | 102 | 102 | 0.00000 | 0.00000 | 1.00000 |
| ## | 103 | 103 | 0.00000 | 0.00000 | 1.00000 |
| ## | 104 | 104 | 0.00000 | 0.00000 | 1.00000 |
| ## | 105 | 105 | 0.00000 | 0.00000 | 1.00000 |
| ## | 106 | 106 | 0.00000 | 0.00000 | 1.00000 |
| ## | 107 | 107 | 0.00000 | 0.00000 | 1.00000 |
| ## | 108 | 108 | 0.00000 | 0.00000 | 1.00000 |
| ## | 109 | 109 | 0.00000 | 0.00000 | 1.00000 |
| ## | 110 | 110 | 0.00000 | 0.00000 | 1.00000 |
| ## | 111 | 111 | 0.00000 | 0.00000 | 1.00000 |
| ## | 111 | 111 | 0.00000 | 0.00000 | 1.00000 |

```
## 112 112 0.00000
                         0.00000
                                       1.00000
## 113 113 0.00000
                         0.00000
                                       1.00000
                         0.00000
## 114 114 0.00000
                                       1.00000
## 115 115 0.00000
                         0.00000
                                       1.00000
## 116 116 0.00000
                         0.00000
                                       1.00000
## 117 117 0.00000
                         0.00000
                                       1.00000
## 118 118 0.00000
                         0.00000
                                       1.00000
## 119 119 0.00000
                         0.00000
                                       1.00000
## 120 120 0.00000
                         0.00000
                                       1.00000
## 121 121 0.00000
                         0.00000
                                       1.00000
## 122 122 0.00000
                         0.00000
                                       1.00000
## 123 123 0.00000
                         0.00000
                                       1.00000
## 124 124 0.00000
                         0.00000
                                       1,00000
## 125 125 0.00000
                         0.00000
                                       1.00000
```

round.object(table.dist.poisson(lambda = 25)[7:51,], 5)

```
##
       x p.at.x eq.and.above eq.and.below
## 6
       6 0.00000
                       1.00000
                                     0.00001
## 7
       7 0.00002
                       0.99999
                                     0.00002
## 8
       8 0.00005
                       0.99998
                                     0.00008
## 9
       9 0.00015
                       0.99992
                                     0.00022
## 10 10 0.00036
                       0.99978
                                     0.00059
## 11 11 0.00083
                       0.99941
                                     0.00142
## 12 12 0.00173
                       0.99858
                                     0.00314
## 13 13 0.00332
                       0.99686
                                     0.00647
## 14 14 0.00593
                       0.99353
                                     0.01240
## 15 15 0.00989
                       0.98760
                                     0.02229
## 16 16 0.01545
                       0.97771
                                     0.03775
## 17 17 0.02273
                       0.96225
                                     0.06048
## 18 18 0.03157
                       0.93952
                                     0.09204
## 19 19 0.04153
                       0.90796
                                     0.13357
## 20 20 0.05192
                       0.86643
                                     0.18549
## 21 21 0.06181
                       0.81451
                                     0.24730
## 22 22 0.07023
                       0.75270
                                     0.31753
## 23 23 0.07634
                       0.68247
                                     0.39388
## 24 24 0.07952
                       0.60612
                                     0.47340
## 25 25 0.07952
                       0.52660
                                     0.55292
## 26 26 0.07646
                       0.44708
                                     0.62939
## 27 27 0.07080
                       0.37061
                                     0.70019
## 28 28 0.06321
                       0.29981
                                     0.76340
## 29 29 0.05450
                       0.23660
                                     0.81790
## 30 30 0.04541
                       0.18210
                                     0.86331
## 31 31 0.03662
                       0.13669
                                     0.89993
## 32 32 0.02861
                       0.10007
                                     0.92854
## 33 33 0.02168
                       0.07146
                                     0.95022
## 34 34 0.01594
                       0.04978
                                     0.96616
## 35 35 0.01138
                       0.03384
                                     0.97754
## 36 36 0.00791
                       0.02246
                                     0.98545
## 37 37 0.00534
                       0.01455
                                     0.99079
## 38 38 0.00351
                       0.00921
                                     0.99430
## 39 39 0.00225
                       0.00570
                                     0.99656
## 40 40 0.00141
                       0.00344
                                     0.99796
## 41 41 0.00086
                       0.00204
                                     0.99882
```

```
## 42 42 0.00051
                      0.00118
                                    0.99933
## 43 43 0.00030
                      0.00067
                                    0.99963
## 44 44 0.00017
                      0.00037
                                    0.99980
## 45 45 0.00009
                      0.00020
                                    0.99989
## 46 46 0.00005
                      0.00011
                                    0.99994
## 47 47 0.00003
                      0.00006
                                    0.99997
## 48 48 0.00001
                      0.00003
                                    0.99999
## 49 49 0.00001
                      0.00001
                                    0.99999
## 50 50 0.00000
                      0.00001
                                    1.00000
```

```
#Barplot of Poisson Prob Distribution

lambda=25
x = 10

data = dpois(x=26:50, lambda=lambda)
names(data) = 26:50
barplot(data, xlab="#Parts per Hour", ylab="P(X)", ylim=c(0, 0.10))
```



```
#Probability of >=45
#Note gives P(X>x) for upper tail probs
pbinom(q=44, size=50, prob=0.8, lower.tail=F)
```

## [1] 0.04802722