Derivação do integral

- 1. Calcule a derivada da função $\int_1^x \frac{\sqrt{1+t^4}}{t^2} dt$, para x > 0.
- 2. Calcule a derivada da função $\int_1^{\ln x} \sin(u + e^u) \ du$, com x > 0.
- 3. Estude a monotonia da função $f(x) = \int_0^{x^3} e^{-t^2} dt$.
- 4. Determine uma função contínua f tal que

$$\int_0^{x^2} f(t) \ dt = x^3 e^x - x^4, \quad \forall x \in \mathbb{R}.$$

5. Determine uma função contínua f e uma constante k tal que, para todo o $x \in \mathbb{R}$, se verifique:

$$\int_{k}^{x} f(t) dt = \sin x + \frac{1}{2}.$$

6. Seja f uma função real de variável real definida por

$$f(x) = \int_0^x \frac{1 + \sin(t)}{2 + t^2} dt.$$

Sem calcular o integral, encontre um polinómio P de grau 2 tal que P(0) = f(0), P'(0) = f'(0) e P''(0) = f''(0).

Áreas planas

- 1. Em cada alínea, determine a medida da área da região limitada pelas curvas cujas equações são dadas:
 - (a) x = 0, x = 1, y = 3x, $y = -x^2 + 4$;
- T (b) x = 0, $x = \frac{\pi}{2}$, $y = \sin x$, $y = \cos x$;
- (c) y = 0, $x = -\ln 2$, $x = \ln 2$, $y = \operatorname{senh}(x)$;
 - (d) $y + x^2 = 6$, y + 2x 3 = 0;
 - (e) x = -1, y = |x|, y = 2x, x = 1;
 - (f) y = -|x|, y = -4, x = 2, x = -4;
 - (g) x = 0, x = 2, $x^2 + (y 2)^2 = 4$, $x^2 + (y + 2)^2 = 4$;
 - (h) y x = 6, $y x^3 = 0$, 2y + x = 0;
 - (i) $y = -x^2 + \frac{7}{2}$, $y = x^2 1$;
 - $\text{(j)}\ \ y=\cos x,\ \ y=x+1,\ \ x=\pi;$
 - (k) $y = \frac{1}{x}$, 2x + 2y = 5;

(1)
$$y = \frac{4}{x^2}$$
, $y = 5 - x^2$;

(m)
$$x^2 = 12(y-1)$$
, $x^2 + y^2 = 16$;

(n)
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1;$$

(o)
$$y = -x^3$$
, $y = -(4x^2 - 4x)$.

2. Indique como recorreria ao cálculo integral para determinar a área de cada uma das seguintes regiões:

(a)
$$\{(x,y) \in \mathbb{R}^2 : (x-2)^2 + y^2 \le 4 \text{ e } 0 \le y \le x\};$$

(b)
$$\{(x,y) \in \mathbb{R}^2 : |x| + |y| \le 1\};$$

(c)
$$\{(x,y) \in \mathbb{R}^2 : x \le 3 \text{ e } y \ge x^2 - 4x + 3 \text{ e } y \le -x^2 + 5x - 4\}.$$

(d)
$$\{(x,y) \in \mathbb{R}^2 : x^2 - 1 \le y \le x + 1\};$$

(e)
$$\{(x,y) \in \mathbb{R}^2 : -1 \le x \le 2 \text{ e } 0 \le y \le e^x \text{ e } 0 \le y \le e^{-x} \};$$

(f)
$$\{(x,y) \in \mathbb{R}^2 : y \ge 0 \text{ e } y \ge x^2 - 2xy \le 4\}.$$