pati@iitg.ac.in 1

Tutorial problems: MA101-Calculus IIT Guwahati, 2020

Tutorial 1: Realnumbers1,2,3, Sequence1

1. Let S and T be nonempty and bounded above. Define $S+T=\{s+t\mid s\in S, t\in T\}$. Then show that $\sup(S+T)=\sup S+\sup T$.

- 2. Give a finite set, a countable set and an uncountable set $S \subseteq \mathbb{R}$ such that $\mathsf{lub}\, S \in S$. Give a finite set, a countable set and an uncountable set $S \subseteq \mathbb{R}$ such that $\mathsf{lub}\, S \notin S$.
- 3. Let A and B be nonempty and bounded sets such that $A \cap B \neq \emptyset$. Order lub's of $A \cup B$, A and $A \cap B$.
- 4. Determine the sets $\bigcap_{n=1}^{\infty} \left(-\frac{1}{n}, \frac{1}{n}\right)$ and $\bigcap_{n=1}^{\infty} \left(0, \frac{1}{n}\right]$.
- 5. Let $S \subseteq [1,2]$ be an infinite set. Show that it has a limit point.
- 6. Let a < b. Supply 3 rationals and 3 irrationals inside (a, b).
- 7. Consider the sequence $(a_n = \frac{1}{n})$.
 - a) Let $a \neq 0$. Then $a_n \not\to a$ as $\exists \epsilon > 0$ such that $B_{\epsilon}(a)$ misses infinitely many terms of (a_n) . Give a value for ϵ .
 - b) $a_n \to 0$ as each $B_{\epsilon}(a)$ contains a tail (which may depend on ϵ) of (a_n) . Which tail?
- 8. Let s > 0. Is $\frac{[10^n s]}{10^n} \to s$?