Несобственные интегралы

Интегралы от произвольных функций

Признак Абеля. Пусть $\int_a^b f(x) \, dx$ сходится, g(x) монотонна и ограничена на [a,b). Тогда $\int_a^b f(x)g(x) \, dx$ сходится.

Признак Дирихле. Пусть интегралы $\int_a^A f(x) dx$ ограничены в совокупности при $A \in [a,b)$, $g(x) \to 0$ при $x \to b - 0$ и монотонна на [a,b). Тогда $\int_a^b f(x)g(x) dx$ сходится.

Абсолютная и условная сходимость интегралов

Если сходится $\int_a^b |f(x)| \, dx$, то интеграл $\int_a^b f(x) \, dx$ называется абсолютно сходящимся.

Абсолютная сходимость ⇒ сходимость.

Пример.

Если $\int_a^b f(x) \, dx$ сходится, а $\int_a^b |f(x)| \, dx$ расходится, то интеграл $\int_a^b f(x) \, dx$ называется *условно сходящимся*.

Интегралы, зависящие от параметра

Равномерный предельный переход

Пусть функция f(x,y) определена на $X \times Y, b \in Y'$.

Пусть для каждого $x \in X$ существует

$$\lim_{y \to b} f(x, y) = \varphi(x).$$

Тогда $\varphi(x)$ называется поточечным пределом функции f(x,y) при стремлении $y \to b$.

Определение. Функция f(x,y) сходится κ функции $\varphi(x)$ равномерно на множестве X при $y \to b$, если

$$(Kouu) \quad \forall \, \varepsilon > 0 \,\, \exists \, \delta = \delta(\varepsilon) > 0 \,\, \forall \, y \in Y \,\, \forall \, x \in X \,\, (0 < |y - b| < \delta \quad \Rightarrow \quad |f(x, y) - \varphi(x)| < \varepsilon)$$

(Гейне)
$$\forall \{y_n\}$$
 :
$$\begin{cases} y_n \in Y \\ y_n \to b \\ y_n \neq b \end{cases} \Rightarrow f(x,y_n) \overset{X}{\rightrightarrows} \varphi(x) \text{ при } n \to \infty.$$

При этом функция $\varphi(x)$ называется равномерным пределом функции f(x,y) на множестве X. Обозначения: $f(x,y) \stackrel{X}{\Rightarrow} \varphi(x)$ при $y \to b$.

Утверждение. Определение Коши и Гейне равномерного предела функции равносильны.

Теорема (критерий Коши).

$$\begin{split} f(x,y) &\stackrel{X}{\rightrightarrows} \varphi(x) \ \text{при } y \to b \quad \Leftrightarrow \quad \forall \, \varepsilon > 0 \ \exists \, \delta = \delta(\varepsilon) > 0 \ \forall \, y', y'' \in Y \ \forall \, x \in X \\ & ((0 < |y' - b| < \delta) \ \land \, (0 < |y'' - b| < \delta) \ \Rightarrow \ |f(x,y') - f(x,y'')| < \varepsilon). \end{split}$$

Теорема (о непрерывности предельной функции). Если при каждом $y \in Y$ функция f(x,y) непрерывна по x на X и $f(x,y) \stackrel{X}{\Longrightarrow} \varphi(x)$ при $y \to b$, то $\varphi(x)$ непрерывна на X.

Теорема (о перестановке пределов). Пусть функция f(x,y) определена на $X\times Y, a\in X', b\in Y'.$ Пусть при каждом $y\in Y$ функция $f(x,y)\to \psi(y)$ при $x\to a$ и $f(x,y)\overset{X}{\Longrightarrow} \varphi(x)$ при $y\to b.$ Тогда

$$\exists \lim_{x \to a} \varphi(x) = A, \quad \exists \lim_{y \to b} \psi(y) = B \quad \text{и} \quad A = B.$$

Теорема 1 (достаточных условиях равномерной сходимости). Пусть для любого $x \in [a,b]$ $f(x,y) \to \varphi(x)$ монотонно при монотонном стремлении $y \to b$. Пусть при каждом $y \in Y$ функция f(x,y) и функция $\varphi(x)$ непрерывны на [a,b]. Тогда $f(x,y) \stackrel{[a,b]}{\rightrightarrows} \varphi(x)$ при $y \to b$.

Теорема 2 (о достаточных условиях равномерной сходимости). Пусть f(x, y) непрерывна как функция двух переменных на $[a, b] \times [c, d]$. Тогда для любого $y_0 \in [c, d]$ $f(x, y) \stackrel{[a, b]}{\Longrightarrow} \varphi(x)$ при $y \to y_0$.

Собственные интегралы, зависящие от параметра

Пусть функция f(x,y) определена на $[a,b] \times Y$.

Пусть при каждом $y \in Y$ функция f(x,y) интегрируема по x на [a,b]. Тогда

$$\int_a^b f(x,y) \, dx =: I(y)$$

— собственный интеграл, зависящий от параметра $y \in Y$.

Теорема (о предельном переходе под знаком собственного интеграла).

Пусть при каждом $y \in Y$ функция f(x,y) интегрируема по x на [a,b]. Пусть $y_0 \in Y'$ и $f(x,y) \stackrel{X}{\Longrightarrow} \varphi(x)$ при $y \to y_0$. Тогда $\varphi(x)$ интегрируема на [a,b], существует $\lim_{y \to y_0} I(y)$ и

$$\lim_{y \to y_0} I(y) = \int_a^b \varphi(x) \, dx.$$

Теорема (о непрерывности собственного интеграла, зависящего от параметра). Пусть f(x,y) непрерывна на $[a,b] \times [c,d]$. Тогда I(y) непрерывна на [c,d].

Теорема (о дифференцируемости собственного интеграла, зависящего от параметра).

Пусть при каждом $y \in [c,d]$ функция f(x,y) интегрируема по x на [a,b]. Пусть $f_y'(x,y)$ непрерывна на $[a,b] \times [c,d]$. Тогда I(y) дифференцируема на [c,d] и

$$\frac{d}{dy}I(y) = \int_a^b \frac{\partial}{\partial y} f(x,y) \, dx, \quad y \in [c,d].$$

Пример.
$$\int_0^1 \frac{x^b - x^a}{\ln x} dx = I(b), \ b \geqslant a > 0.$$

Теорема (об интегрируемости собственного интеграла, зависящего от параметра).

Пусть f(x,y) непрерывна на $[a,b] \times [c,d]$. Тогда для каждого $t \in [c,d]$ функция I(y) интегрируема на [c,t] и

$$\int_c^t dy \int_a^b f(x,y) dx = \int_a^b dx \int_c^t f(x,y) dy.$$

Пример.
$$\int_0^1 \frac{x^b - x^a}{\ln x} dx = I(b), \ b \geqslant a > 0.$$