

ATLAS NOTE

August 15, 2014

Symbols defined in atlasphysics.sty

Ian C. Brock

Abstract

This note lists the symbols defined in atlasphysics.sty.

5 1 The atlasphysics.sty style file

- The atlasphysics.sty style file implements a series of useful shortcuts to typeset a physics paper,
- such as units or particle symbols. It can included in the preamble of your paper with the usual syntax:
- 8 \usepackage{atlasphysics}
- 9 The style file contains among other things:

10	\lapprox	≲	\rapprox	: ≳	\rts	\sqrt{s}	
	\Ecm	$E_{ m cm}$	\stat	(stat.)	\syst	(syst.)	
	\Zboson	Z	\Wboson	W		\Wplus	W^+
	\Wminus	W^-	\Wpm	W^\pm		\Wmp	W^{\mp}
	\Afb	A_{fb}	\GW	Γ_W		\GZ	Γ_Z
	\Wln	$W \to \ell \nu$	\Z11	$Z \to \ell \ell$		\Zee	$Z \rightarrow ee$
11	\Zmm	$Z \to \mu\mu$	\mbox{mZ}	m_Z			
	\mbox{mW}	m_W	\mH	m_H			
	\Mtau	$m_{ au}$	\swsq	$\sin^2\!\theta_W$		\swel	$\sin^2 \theta_{ m eff}^{ m lept}$
	\swsqb	$\sin^2 \overline{\theta}_W$	\swsqon	$\sin^2 \theta_W \equiv 1 - m_W^2 /$	m_Z^2	\gv	$g_{ m V}$
	\ga	$g_{ m A}$	\gvbar	$ar{g}_{ ext{V}}$		\gabar	$ar{g}_{ ext{A}}$
	\Zprime	Z'	\Hboson	H		\GH	Γ_H

12 The command \Zzero is identical to \Zboson.

	\tbar	\overline{t}	\ttbar	1	$tar{t}$		\bbar		$ar{b}$		
	\bbbar	$bar{b}$	\cbar	ā	\bar{c}		\ccba	r	$c\bar{c}$		
	\sbar	\bar{S}	\ssbar		$s\bar{s}$		\ubar	ı	\bar{u}		
	\uubar	$u\bar{u}$	\dbar	Č	$ar{d}$		\ddba	r	$d\bar{d}$		
13	\fbar	$ar{f}$	\ffbar	j	$far{f}$		\qbar		$ar{q}$		
		$qar{q}$	\nbar	ī	$\bar{\nu}$		\nnba	r	$ uar{ u}$		
	\ee	e^+e^-	\mumu	ļ	$\mu^+\mu^-$		\taut	au	$ au^+ au^-$		
	\epm	e^{\pm}	\leple	p ł	$\ell^+\ell^-$		\lnu		$\ell \nu$		
	∖ВоВо	B^0 – \bar{B}^0	\BodE	od	$B^{0}_{i}-\bar{B}^{0}_{i}$			\E	BosBos	$B_{s}^{0}-\bar{B}_{s}^{0}$)
	•	B_d^0	\Bs		$B_d^0 - \bar{B}_d^0$ B_s^0			\E		B_u	
	\Bc	B_c^a	\Lb		$\Lambda_b^{_3}$				jpsi	J/ψ	
14	\Jpsi	J/ψ	\Jee		$J/\psi \rightarrow$	e^+e^-			Jmm		$\rightarrow \mu^+\mu^-$
	\psip	ψ'	\kzer						zerobar	\overline{K}^0	
	\kaon	K	\kplu	ıs	K^+			\k	minus	K^{-}	
	\klong	$K_{\rm L}^0$	\kshc	rt	$K_{\rm S}^0$			J/	Jps	γ	
15	\alphas	$lpha_{ m S}$	\Lms /	$\Lambda_{\overline{ ext{MS}}}$		\Lm	sfive	$\Lambda_{\overline{M}}^{(5)}$	S) IS	\KT	k_{\perp}
	\Vud V	γ_{ud}	\Vus $ V_u $	s		\Vub	$ V_{ub} $				
16		$ c_{cd} $	\Vcs $ V_c $	s		\Vcb	$ V_{cb} $				
	\Vtd <i>V</i>	td	\Vts $ V_t $	<u>,</u>		\Vtb	$ V_{tb} $				
	\Azero	A^0	\hzero	h^0)	\H	Izero	H^0			
17		H^+	\Hminus			-	Ipm	H^{\pm}			

A generic macro \susy#1 is defined, so that for example \susy{q} produces \tilde{q} and similar.

	\chinop	${\tilde{\mathcal{X}}}^+$	\chinotwom	$\tilde{\chi}_2^-$	\chinopm	$\tilde{\chi}^{\pm}$
	\nino	${\tilde \chi}^0$	\ninothree	${ ilde \chi}_3^0$	\gravino	$ ilde{G}$
	\squark	$ ilde{q}$	\gluino	$ ilde{g}$	\slepton	$ ilde{\ell}$
19	\stop	$ ilde{t}$	\stopone	\tilde{t}_1	\stopL	$ ilde{t}_{ m L}$
	\slash sbottom	$ ilde{b}$	\sbottomtwo	$ ilde{b}_2$	\slash sbottomR	$ ilde{b}_{ m R}$
	\sleptonL	$ ilde{\ell}_{ m L}$	\sel	$ ilde{e}$	\smuR	$ ilde{\mu}_{ m R}$
	\stauone	$ ilde{ au}_1$	\snu	$ ilde{ u}$	\squarkR	$ ilde{q}_{ m R}$

For \tilde{q} , \tilde{t} , \tilde{b} , $\tilde{\ell}$, \tilde{e} , $\tilde{\mu}$ and $\tilde{\tau}$, L and R states are defined; for stop, sbottom and stau also the light (1) and heavy (2) states. There are four neutralinos and two charginos defined, the index number unfortunately needs to be written out completely. For the charginos the last letter(s) indicate(s) the charge: p for +, m for -, and pm for \pm .

Use \mathbf{t} arithment than just \mathbf{t} get the spacing right. In principle this works for any macro, although in most cases it will not be needed as \mathbf{x} space. \mathbf{t} will take care of the spacing. Somehow \mathbf{x} space. \mathbf{t} doesn't do a good job for E_T^{miss} .

- 29 And \tev, \gev, \mev, \kev, and \ev have the same results.
- 30 A generic macro \mass#1 is defined, so that for example \mass{\mu} produces $m_{\mu\mu}$ and similar.
- $\$ \twomass{\mu e} will produce $m_{\mu e}$.