Computerstøttet beregning

Lektion 4. Repetition

Martin Qvist

qvist@math.aau.dk

Det Ingeniør-, Natur-, og Sundhedsvidenskabelige Basisår Aalborg Universitet

10. marts 2009

people.math.aau.dk/~qvist/teaching/csb-09

Fejl og fejlvurdering

- x approksimeres med \hat{x}
- Fejl: $|x \hat{x}| = e_N$ (absolut fejl)
- Fejlvurdering: $e_N \leq \beta^{E-N}$
- **■** Taylor: y = f(x) approximeres med $\hat{y} = P_N(x)$
- Fejl: $|y \hat{y}| = e_N$ (absolut fejl)
- Fejlvurdering: $e_N \leq \frac{M}{(N+1)!} |x-x_0|^{N+1}$
- Ligeledes med bisektionsmetoden og fikspunktsmetoden: x som giver f(x) = 0 approksimeres med \hat{x} .

Konvergens

- $e_n = K^n e_0$ eller $e_n = K e_{n-1}$
- Konvergerer mod nul ⇔ metoden virker.
- Mindre K (tættere på 0) giver hurtigere konvergens, dvs. vi skal bruge færre iterationer på at opnå en given tolerance.

Bisektionsmetoden

Udgangspunktet er:

Sætning: Lad f være en kontinuert funktion på intervallet I=[a,b] og antag at $f(a)f(b) \leq 0$. Da findes et punkt $c \in I$ med f(c)=0.

Bisektionsmetoden til løsning af f(x)=0 på I=[a,b] med $f(a)f(b)\leq 0$

Input: f, a, b, tol;

While(b-a) > 2 * tol do

$$m = \frac{b+a}{2};$$

If $f(a)f(m) \leq 0$ then b = m else a = m;

Output:
$$\hat{x} = \frac{b+a}{2}$$

Konvergens for bisektionsmetoden

Introducer

- x_n : Midtpunktet efter n tvedelinger (dvs. $x_1 = (a+b)/2$)
- $e_n = |x_n c|$: Den n'te fejl

Da har vi vurderingen

$$e_n \le \frac{b-a}{2^n}$$

Fikspunkts-metoden

Til løsning af fikspunkt-ligningen x=g(x). (Altså f(x)=x-g(x)=0.) Algoritme

Input: g, N, x_0 ;

For i = 1 to N do

$$x_i = g(x_{i-1})$$

Output: $\hat{x} = x_N$

Hvis $x_n \to s$ for $n \to \infty$ og g er en kontinuert funktion, da er s = g(s).

Kriterium for konvergens

Sætning: Lad g være en differentiabel funktion på intervallet I = [a, b]. Antag, at

- 1. $g(x) \in I$ for alle $x \in I$
- 2. der findes konstant K < 1 sådan $|g'(x)| \le K$ for alle $x \in I$.

Kriterium for konvergens

Sætning: Lad g være en differentiabel funktion på intervallet I = [a, b]. Antag, at

- 1. $g(x) \in I$ for alle $x \in I$
- 2. der findes konstant K < 1 sådan $|g'(x)| \le K$ for alle $x \in I$.

Da findes der i I et entydigt fikspunkt s for g (altså s=g(s)), og fikspunkts-metoden ($x_n=g(x_{n-1})$) vil konvergere mod s for en hvilken som helst begyndelsesværdi $x_0 \in I$.

Kriterium for konvergens

Sætning: Lad g være en differentiabel funktion på intervallet I=[a,b]. Antag, at

- 1. $g(x) \in I$ for alle $x \in I$
- 2. der findes konstant K < 1 sådan $|g'(x)| \le K$ for alle $x \in I$.

Da findes der i I et entydigt fikspunkt s for g (altså s=g(s)), og fikspunkts-metoden ($x_n=g(x_{n-1})$) vil konvergere mod s for en hvilken som helst begyndelsesværdi $x_0 \in I$.

Hvis vi som tidligere indfører den n'te fejl $e_n = |x_n - s|$, da er konvergensraten (mindst) lineær

$$e_n \leq Ke_{n-1}$$
.