### CS 331: Artificial Intelligence Adversarial Search

### Games we will consider

- Deterministic
- · Discrete states and decisions
- · Finite number of states and decisions
- Perfect information ie. fully observable
- · Two agents whose actions alternate
- Their utility values at the end of the game are equal and opposite (we call this zero-sum)

"It's not enough for me to win, I have to see my opponents lose"

2

# Which of these games fit the description?

Two-player, zero-sum, discrete, finite, deterministic games of perfect information











# Which of these games fit the description?

Two-player, zero-sum, discrete, finite, deterministic games of perfect information











### What makes games hard?

- Hard to solve e.g. Chess has a search graph with about  $10^{40}$  distinct nodes
- Need to make a decision even though you can't calculate the optimal decision
- Need to make a decision with time limits

### Formal Definition of a Game

A quintuplet (S, I, Succ(), T, U):

| S      | Finite set of states. States include information on which player's turn it is to move.                               |
|--------|----------------------------------------------------------------------------------------------------------------------|
| I      | Initial board position and which player is first to move                                                             |
| Succ() | Takes a current state and returns a list of (move,state) pairs, each indicating a legal move and the resulting state |
| T      | Terminal test which determines when the game ends. Terminal states: subset of S in where the game has ended          |
| U      | Utility function (aka objective function or payoff function): maps from terminal state to real number                |

### Nim

Many different variations. We'll do this one.

- Start with 9 beaver logos
- In one player's turn, that player can remove 1, 2 or 3 beaver logos
- The person who takes the last beaver logo wins

Nim

Bearing Bearing Bearing Bearing

Bearing Bearing

Bearing

Bearing

Bearing

Bearing

Bearing

Bearing

Bearing

Bearing

Bearing

Bearing

Bearing

Bearing

Bearing

Bearing

### 



### How to Use a Game Tree

- Max wants to maximize his utility
- Min wants to minimize Max's utility
- Max's strategy must take into account what Min does since they alternate moves
- A move by Max or Min is called a ply

11

### The Minimax Value of a Node

The minimax value of a node is the utility for MAX of being in the corresponding state, assuming that both players play optimally from there to the end of the game

### MINIMAX - VALUE(n) =

UTILITY(n) If n is a terminal state  $\max_{s \in Successors(n)} \text{MINIMAX-VALUE}(s) \text{ If n is a MAX node}$   $\min_{s \in Successors(n)} \text{MINIMAX-VALUE}(s) \text{ If n is a MIN node}$ 

Minimax value maximizes worst-case outcome for MAX





















### The MINIMAX Algorithm function MINIMAX-DECISION(state) returns an action inputs: state, current state in game $v \leftarrow MAX-VALUE(state)$ return the action in SUCCESSORS(state) with value v function MAX-VALUE(state) returns a utility value $\textbf{if} \ TERMINAL\text{-}TEST(\textit{state}) \ \textbf{then} \ \textbf{return} \ \textbf{UTILITY}(\textit{state})$ v ← - Infinity for a, s in SUCCESSORS(state) do $v \leftarrow MAX(v, MIN-VALUE(s))$ $\textbf{function} \ \text{MIN-VALUE}(\textit{state}) \ \textbf{returns} \ \textit{a utility value}$ $\textbf{if} \ TERMINAL\text{-}TEST(\textit{state}) \ \textbf{then} \ \textbf{return} \ UTILITY(\textit{state})$ $v \leftarrow Infinity$ for a, s in SUCCESSORS(state) do $v \leftarrow \text{MIN}(v, \text{MAX-VALUE}(s))$ 23

### The MINIMAX algorithm

- · Computes minimax decision from the current state
- Depth-first exploration of the game tree
- Time Complexity  $O(b^m)$  where b=# of legal moves, m=maximum depth of tree
- Space Complexity:
  - O(bm) if all successors generated at once
  - O(m) if only one successor generated at a time (each partially expanded node remembers which successor to generate next)









### Subtleties With Multiplayer Games

- Alliances can be made and broken
- For example, if A and B are weaker than C, they can gang up on C
- But A and B can turn on each other once C is weakened
- But society considers the player that breaks the alliance to be dishonorable

29

### **Pruning**

- Can we improve on the time complexity of  $O(b^m)$ ?
- Yes if we prune away branches that cannot possibly influence the final decision











### **Pruning Intuition**

Remember that minimax search is DFS.

At any one time, we only have to consider the nodes along a single path in the tree

### In general, let:

- $\alpha$  = highest minimax value of all of the MAX player's choices expanded on
- current path  $\beta$  = lowest minimax value of all of the MIN player's choices expanded on current path
- If at a MIN player node, prune if minimax value of node  $\leq \alpha$
- If at a MAX player node, prune if minimax value of node  $\geq \beta$

# Function ALPHA-BETA-SEARCH(state) returns an action inputs: state, current state in game $v \leftarrow \text{MAX-VALUE}(state, -\infty, +\infty)$ return the action in SUCCESSORS(state) with value vFunction MAX-VALUE(state, $\alpha$ , $\beta$ ) returns a utility value inputs: state, current state in game $\alpha$ , the value of the best alternative for MAX along the path to state $\beta$ , the value of the best alternative for MIN along the path to state if TERMINAL-TEST(state) then return UTILITY(state) $v \leftarrow -\infty$ for a, s in SUCCESSORS(state) do $v \leftarrow \text{MAX}(v, \text{MIN-VALUE}(s, \alpha, \beta))$ if $v \ge \beta$ then return $v \leftarrow \text{MAX}(v, \text{MIN-VALUE}(s, \alpha, \beta))$ return $v \leftarrow \text{MAX}(\alpha, v)$ return $v \leftarrow \text{MAX}(\alpha, v)$



# Illustrating the Pseudocode • In the example to follow, the notation $(-\infty, +\infty)$ represents the $(\alpha, \beta)$ values for the corresponding node • This example is intended to illustrate how the actual implementation of Alpha-Beta pruning works = Maximizing player = Minimizing player







### Effectiveness of Alpha-Beta

- · Depends on order of successors
- Best case: Alpha-Beta reduces complexity from  $O(b^m)$  for minimax to  $O(b^{m/2})$
- This means Alpha-Beta can lookahead about twice as far as minimax in the same amount of time

43

### **Implementation Details**

- In games we have the problem of transposition
- Transposition means different permutations of the move sequence that end up in the same position
- Results in lots of repeated states
- Use a transposition table to remember the states you've seen (similar to closed list)

44

### What you should know

- Be able to draw up a game tree
- Know how the Minimax algorithm works
- Know how the Alpha-Beta algorithm works
- Be able to do both algorithms by hand