PARTE A

1. Il limite

$$\lim_{x \to +\infty} \frac{\log(x^2 + \sin(x))}{\log(x - \cos(x))}$$

vale

A: 0 B: N.E. C: N.A. D: 1 E: 1/2

- 2. Il massimo e minimo della funzione $f(x) = x^3 x$ su [-2,0] sono A: $\max = \frac{2}{3\sqrt{3}}$, $\min = -\frac{2}{9}\sqrt{3}$ B: $\max = \frac{2}{9}\sqrt{3}$, $\min = -6$ C: entrambi non esistono D: $\max = \frac{2}{9}\sqrt{3}$, non esiste min E: N.A.
- 3. La retta tangente al grafico di $y(x) = \log(x x^3)$ nel punto $x_0 = 1/3$ vale $\phi(x) = A$: $-\log\left(\frac{8}{3}\right) + \frac{9}{4}x$ B: $\log\left(\frac{8}{27}\right) + 2\left(x \frac{1}{3}\right)$ C: N.A. D: $\log\left(\frac{8}{27}\right) + \frac{9}{4}\left(x \frac{1}{3}\right)$ E: 1 x
- 4. L'integrale

$$\int_0^{+\infty} x e^{-x} dx$$

vale

A: 1 B: 0 C: -1 D: N.E. E: N.A.

- 5. La funzione $f:[0,e] \to [0,10]$ definita da $f(x) = \lambda x e^{-x}$ è suriettiva per $\lambda \in \mathbb{R}$ tale che A: $\lambda = \log(10)$ B: per nessun λ C: $\lambda = 10e$ D: $\lambda = 1$ E: N.A.
- 6. Quale tra questi punti appartiene all'insieme di convergenza della serie di potenze

$$\sum_{n=1}^{+\infty} \frac{3^n + \log(n)}{n^3 + 2^n} x^n$$

A: x = 1/3 B: $x = \pi$ C: x = 0.99 D: x = -1 E: N.A.

- 7. La disequazione $|x| \le |z|$, con $z \in \mathbb{C}$ e $x \in \mathbb{R}$ è vera se A: mai B: $z = 2i^3$ e x = 3 C: $z = \frac{3}{i} 2i$ e $x = \pi$ D: z = 1 + i e x = -3 E: N.A.
- 8. Inf, min, sup e max dell'insieme

$$A = \{x \in \mathbb{Q} \cap [-10, 10] : \sin(\pi x) = 0\}$$

valgono

A: N.A. B:
$$\{-10, N.E., 10, N.E.\}$$
 C: $\{-1, -1, 1, 1\}$ D: $\{-\infty, N.E., +\infty, N.E.\}$ E: $\{-1, N.E., 1, N.E.\}$

- 9. Data $f(x) = \sqrt[3]{|x|}$. Allora f'(0) è uguale a A: N.A. B: -1 C: 1 D: 0 E: $\log(2)$
- 10. L'integrale

$$\int_{2}^{3} \frac{1}{x\sqrt{x}} dx$$

vale

A:
$$\sqrt{2} - \frac{2}{\sqrt{3}}$$
 B: N.A. C: $-\frac{2}{5}x^{-5/2}$ D: $\frac{\sqrt{2}}{4} - \frac{1}{2\sqrt{3}}$ E: N.E.

Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1

24 febbraio 2016

(Cognome)										(Nome)										_	(Numero di matricola)										

ABCDE

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1

24 febbraio 2016

PARTE B

1. Studiare il grafico della funzione

$$f(x) = \int_2^x \frac{\cos(\pi t)}{2t+1} dt$$

in [-1/2, 5/2], determinando in particolare punti di massimo e di minimo, intervalli di convessità e il polinomio di Taylor di grado 2 in $x_0 = 2$..

Soluzione. Osserviamo intanto che la funzione $\frac{\cos(\pi t)}{2t+1}$ è continua in]-1/2,5/2], quindi la funzione f risulta derivabile in tale intervallo e si ha

$$f'(x) = \frac{\cos(\pi x)}{2x+1} \qquad x \in]-1/2, 5/2].$$

Il punto x = -1/2 richiede particolare attenzione perchè in tale punto la funzione integranda non è definita. Si ha però che il limite

$$\lim_{t \to (-1/2)^+} \frac{\cos(\pi t)}{2t+1},$$

è una forma indeterminata del tipo 0/0 che possiamo risolvere facilmente con lo sviluppo di Taylor o derivando e si ottiene

$$\lim_{t \to (-1/2)^+} \frac{\cos(\pi t)}{2t+1} = \frac{\pi}{2},$$

quindi la funzione integranda è limitata e l'integrale è convergente. La funzione f'(x) si annulla nei punti $x_1 = 1/2$ e $x_2 = 3/2$. In tali punti si ha un cambio si segno e si vede facilmente che x_1 è un punto di massimo relativo, mentre x_2 è un punto di minimo locale.

Vicino al punto $x_0 = 2$ si ha lo sviluppo di Taylor

$$f(x) = \frac{x-2}{5} - \frac{1}{25}(x-2)^2 + O\left((x-2)^3\right).$$

La derivata seconda è

$$f''(x) = -\frac{\pi(2t+1)\sin(\pi t) + 2\cos(\pi t)}{(2t+1)^2},$$

e quindi, dato che il denominatore è positivo la derivata seconda si annulla quando è risolta l'equazione

$$\tan(\pi t) = -\frac{2}{\pi(2t+1)}.$$

Dallo studio grafico si ha che ci sono due soluzioni in]-1/2,5/5] di cui una nell'intervallo]1/2,3/2[e l'altra nell'intervallo]3/2,5/2[.

PARTE A

1. Il massimo e minimo della funzione $f(x)=x^3-x$ su [0,2] sono A: non esiste max, min $=-\frac{2}{9}\sqrt{3}$ B: max $=\frac{2}{9}\sqrt{3}$, min $=-\frac{2}{9}\sqrt{3}$ C: N.A. D: entrambi non esistono E: max =6, min $=-\frac{2}{3\sqrt{3}}$

2. L'integrale

$$\int_{1}^{2} \frac{1}{x\sqrt{x}} dx$$

vale

A: N.E. B:
$$-\frac{2}{5}x^{-5/2}$$
 C: $2 - \sqrt{2}$ D: $\frac{1}{2} - \frac{\sqrt{2}}{4}$ E: N.A.

3. La disequazione $|x|\geq |z|$, con $z\in\mathbb{C}$ e $x\in\mathbb{R}$ è vera se A: mai B: $z=2i^3-2i$ e x=3 C: z=1+i e x=-3 D: N.A. E: $z=\frac{3}{i}-2i$ e $x=\pi$

4. Data $f(x) = \sqrt{|x|}$. Allora f'(0) è uguale a A: 1 B: N.A. C: 0 D: $\log(2)$ E: -1

5. La funzione $f:[0,e] \to [0,10]$ definita da $f(x) = \lambda x e^{-x}$ è suriettiva per $\lambda \in \mathbb{R}$ tale che A: $\lambda = 1$ B: $\lambda = \log(10)$ C: $\lambda = 10e$ D: per nessun λ E: N.A.

6. L'integrale

$$\int_0^1 \log(x) \, dx$$

vale

A: -1 B: N.E. C: N.A. D: 0 E: 1

7. La retta tangente al grafico di $y(x) = \log(x - x^3)$ nel punto $x_0 = 1/2$ vale $\phi(x) = A$: $-\log\left(\frac{8}{3}\right) + \frac{2}{3}x$ B: N.A. C: $\log\left(\frac{3}{8}\right) + 2\left(x - \frac{1}{2}\right)$ D: 1 - x E: $\log\left(\frac{3}{8}\right) + \frac{2}{3}\left(x - \frac{1}{2}\right)$

8. Quale tra questi punti appartiene all'insieme di convergenza della serie di potenze

$$\sum_{n=1}^{+\infty} \frac{3^n + \log(n)}{n^3 + 2^n} x^n$$

A: N.A. B: x = -1/2 C: $x = \pi/2$ D: x = -0.99 E: x = 1

9. Il limite

$$\lim_{x \to +\infty} \frac{\log(x + \sin(x))}{\log(x^2 - \cos(x))}$$

vale

10. Inf, min, sup e max dell'insieme

$$A = \{x \in \mathbb{Q} \cap [-10, 10] : \sin(\pi x) = 1\}$$

valgono

A: $\{-10, N.E., 10, N.E.\}$ B: $\{-\infty, N.E., +\infty, N.E.\}$ C: N.A. D: $\{-1, -1, 1, 1\}$ E $\{-1, N.E., 1, N.E.\}$

Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1

24 febbraio 2016

(Cognome)										(Nome)									-	(Numero di matricola)											

ABCDE

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

Figura 1: Equazione per studio punti a derivata seconda nulla

Il grafico approssimativo della funzione f risulta pertanto il seguente

2. Studiare al variare di $a \in \mathbb{R}$ la convergenza della serie

$$\sum_{n=1}^{\infty} \frac{3^n + 2^n}{4n^2 + a^{2n+1}}.$$

Soluzione: Utilizziamo il criterio della radice. Se $|a| \leq 1$ abbiamo che

$$\lim_{n \to \infty} \sqrt[n]{\frac{3^n + 2^n}{4n^2 + a^{2n+1}}} = \lim_{n \to \infty} \sqrt[n]{\frac{3^n}{4n^2}} = +\infty,$$

quindi se $|a| \leq 1$ non abbiamo convergenza. Se |a| > 1 invece

$$\lim_{n\to\infty}\sqrt[n]{\frac{3^n+2^n}{4n^2+a^{2n+1}}}=\lim_{n\to\infty}\sqrt[n]{\frac{3^n}{a^{2n}}\frac{1+(2/3)^n}{4n^2/a^{2n}+a}}=\frac{3}{a^2}.$$

Abbiamo quindi convergenza per $a^2>3$ ovvero $|a|>\sqrt{3},$ e divergenza per $1<|a|<\sqrt{3}$ ovvero $|a|<\sqrt{3}.$ Per $a=\pm\sqrt{3}$ la serie diventa

$$\sum_{n=1}^{\infty} \frac{3^n + 2^n}{4n^2 + 3^n \sqrt{3}} = \sum_{n=1}^{\infty} \frac{1 + (2/3)^n}{4n^2/3^n + \sqrt{3}}$$

e il termine n-esimo ha come limite

$$\lim_{n \to \infty} \frac{1 + (2/3)^n}{4n^2/3^n + \sqrt{3}} = \frac{1}{\sqrt{3}} \neq 0,$$

quindi la serie non converge non soddisfacendo la condizione necessaria che il termine generico deve essere infinitesimo.

Riassumendo la serie converge se e solo se $|a| > \sqrt{3}$.

Figura 2: Grafico di f(x)

3. Si consideri l'equazione differenziale

$$y''(x) + 4y'(x) - 8y(x) = 4$$

si trovino tra le soluzioni quelle che sono limitate su tutto \mathbb{R} . Fissato y(0)=0 si determini y'(0) in modo che la soluzione sia tale che $\lim_{x\to+\infty}y(x)<+\infty$.

Soluzione: Cerchiamo intanto la soluzione dell'omogenea. L'equazione associata è

$$\lambda^2 + 4\lambda - 8 = 0$$

che ha come soluzioni $\lambda_1=-2+2\sqrt{3}$ e $\lambda_2=-2-2\sqrt{3}$. Si noti che $\lambda_1>0$ $\lambda_2<0$.

L'equazione omogenea ha come soluzione generale

$$y_0(x) = Ae^{(-2+2\sqrt{3})x} + Be^{(-2-2\sqrt{3})x}.$$

Si vede immediatamente che una soluzione particolare dell'equazione non omogenea è: $y_1(x) = -1/2$.

L'integrale generale dell'equazione differenziale quindi ha la forma

$$y(x) = Ae^{(-2+2\sqrt{3})x} + Be^{(-2-2\sqrt{3})x} - \frac{1}{2}.$$

Tra queste soluzioni l'unica limitata è $y(x)=-\frac{1}{2}$ (che si ha quando A=B=0).

La condizione y(0) = 0 diventa

$$A + B - \frac{1}{2} = 0.$$

Perché valga $\lim_{x\to +\infty} y(x) < +\infty$ dobbiamo scegliere A=0 dal momento che $-2-2\sqrt{3}<0$. Concludendo abbiamo

$$A = 0, \ B = \frac{1}{2},$$

e la soluzione cercata è

$$y(x) = \frac{1}{2}e^{(-2-2\sqrt{3})x} - \frac{1}{2},$$

che ha come dato iniziale per la derivata prima

$$y'(0) = -1 - \sqrt{3}.$$

4. Data la funzione $f(x) = e^{-x^2} \int_0^x e^{t^2} dt$ per $x \in [0, +\infty[$ dimostrare che ammette massimo. (Sugg. studiare preliminarmente il limite all'infinito)

Soluzione: Osserviamo che f(0) = 0 e che f(x) > 0 per ogni $x \in \mathbb{R}^+$ dato che è prodotto di funzioni positive. Studiamo il limite all'infinito e scriviamo f(x) nel modo seguente

$$f(x) = \frac{\int_0^x e^{t^2} dt}{e^{x^2}} = \frac{f_1(x)}{f_2(x)}$$

in modo da avere una forma indeterminata del tipo ∞/∞ . Studiando pertanto il rapporto delle derivate con la regola di De L'Hopital si ha

$$\lim_{x \to +\infty} \frac{f_1'(x)}{f_2'(x)} = \lim_{x \to +\infty} \frac{e^{x^2}}{e^{x^2} 2x} = 0.$$

Queste due informazioni sono sufficienti a dimostrare che esiste il massimo. Sia infatti $x_0 > 0$ qualsiasi e scegliamo $\epsilon = f(x_0)/2 > 0$. Dalla definizione di limite zero all'infinito abbiamo che esiste K > 0 tale che

$$f(x) < \epsilon \quad \forall x > K.$$

Considerando quindi l'intervallo limitato [0, K] su tale intervallo la funzione continua f(x) assume massimo assoluto $M \ge f(x_0)$ e essendo la funzione minore di M/2 fuori dall'intervallo [0, K], il numero M risulta massimo assoluto della funzione su tutta la semiretta $x \ge 0$.