FYS2140 - Oblig 4

Oskar Idland

A Diskusjonsoppgaver

B Regneoppgaver

Oppgave 3

a)

Vi løser oppgaven numerisk og får resultatet sett i 1. Resultatet er at ettersom funksjonene har relativt lik fase vil det ta mange svingninger før bølgene går inn og ut av fase med hverandre.

Figur 1: Oppgave $\overline{5.a}$

b)

Vi definerer ω, v_f og v_g på følgende måte:

$$\omega(k) = c\sqrt{k^2 + \left(\frac{mc}{\hbar}\right)^2}$$
 , $v_f = \frac{\omega}{k}$, $v_g = \frac{\mathrm{d}w}{\mathrm{d}k} = \frac{k}{\sqrt{k^2 + 1}}$

hvor $m=c=\hbar=1.$ Vi løser dette numerisk og får at $v_f=3.69$ og $v_g=1.09$

Figur 2: Oppgave 5.c