7. Circuitos de Corrente Alternada (AC)

Universidade do Minho

Depto. Física - Universidade do Minho Carlos Tavares -

- 7.1. Fontes de AC e Fasores
- 7.2. Resistências num Circuito AC
- 7.3. Indutores num Circuito AC
- 7.4. Condensadores num Circuito AC
- 7.5. O Circuito RLC em Série
- 7.6. Ressonância num Circuito RLC em Série

• Descrevemos os princípios básicos dos circuitos AC simples.

- Análise de circuitos em série simples com resistências (R), condensadores
 (C), e indutores (L), isoladamente ou em combinação, alimentados por uma fonte de voltagem sinusoidal.
- Vamos usar o facto de R, C e L terem respostas lineares: a corrente alternada instantânea (AC) em cada um deles é proporcional à voltagem alternada instantânea no componente.
- Quando a voltagem (V) alternada aplicada for sinusoidal, a corrente em cada componente também será sinusoidal, mas não necessariamente em fase com a voltagem aplicada.
- Quando a corrente numa **bobina** (*indutor*) altera-se com o tempo, há uma fem (força electro-motriz) induzida na bobina, conforme a **Lei de Faraday**.

A fem auto-induzida numa bobina define-se pela expressão:

$$\varepsilon = -L\frac{di}{dt}$$

Onde L é a **indutância** da bobina

• A <u>Indutância</u> é uma medida de oposição dum componente do circuito (neste caso a bobina) à variação da corrente.

Universidade do Minho

SI
$$\rightarrow$$
 henry (H) $1H = 1 \frac{V \cdot s}{A}$

 A indutância de <u>qualquer bobina</u> (solenóide, bobina toroidal) é dada pela expressão

$$L = \frac{N\phi_m}{I}$$

- Onde I é a corrente, ϕ_m é o fluxo magnético através da bobina, e N o número total de espiras.
- A indutância de um componente de um circuito depende da geometria do componente.

Indutor (bobina)

Carlos Tavares - Depto. Física - Universidade do Minho

- •Circuito de corrente alternada (AC): uma combinação de componentes (R,L,C) e um gerador que proporciona AC.
- •Pela rotação duma espira num campo magnético com velocidade angular (ω) constante, induz-se uma voltagem alternada (fem) sinusoidal na espira.
- •Esta voltagem instantânea é dada por: $\upsilon = V_m \sin \omega t$

 V_m : voltagem de pico do gerador de AC ou amplitude da voltagem.

•A frequência angular é:
$$\omega = 2\pi f = \frac{2\pi}{T}$$

f: frequência linear da fonte, T: período $(f \rightarrow Hz)$ (ciclos por segundo); $\omega \rightarrow Hz$ rad/s)

Em Portugal, na rede eléctrica f=50 Hz

AC/DC??

Corrente alternada (AC)

Objectivo primordial do capítulo - exemplo: Suponha que tem um gerador de AC ligado a um circuito com componentes R, L e C em série; se a V_m e a f do gerador forem dadas, e os valores de R, L e C também, achar a corrente resultante, caracterizada pela amplitude e pela fase.

A fim de simplificar esta análise temos que construir graficamente um diagrama de fasores: as grandezas oscilatórias (corrente, voltagem) são representadas por vectores giratórios (no sentido anti-horário) no plano complexo, os fasores.

- •O comprimento do fasor representa a amplitude (valor máximo) da grandeza;
- •A projecção do fasor no eixo real representa o valor instantâneo da grandeza.

A soma algébrica instantânea da elevação do potencial,
 e do abaixamento do potencial, na malha do circuito
 deve ser nula (Lei das malhas de Kirchhoff) ⇒

$$\Sigma v_i = 0 \Leftrightarrow v - v_R = 0 \Rightarrow v = v_R = V_m \cdot \sin \omega t$$

 v_R : queda instantânea de voltagem na resistência (R).

A corrente instantânea:

$$i_R = \frac{\upsilon}{R} = \frac{V_m}{R} \sin \omega t = I_m \sin \omega t$$

$$I_m = \frac{V_m}{R}$$
 \rightarrow corrente de pico (máximo)

$$\begin{array}{|c|c|}\hline 1 & e & \hline \\ \hline \end{array} \Rightarrow \boxed{\upsilon_{\mathbf{R}} = \mathbf{I}_{\mathbf{m}} \, \mathbf{R} \sin \omega t}$$

 i_R e v_R variam, ambos de uma forma sinusoidal (com *sin \omega t*) e atingem os valores máximos (picos) num mesmo instante \Rightarrow as duas grandezas estão em fase.

Universidade do Minho

Gráfico da voltagem e da corrente em função do tempo

Diagrama de fasores. As projecções de I_m e V_m (fasores) no eixo vertical representam os valores instantâneos de i_R e v_R .

• ! O valor médio da corrente sobre um ciclo é nulo: a corrente mantém-se num sentido (+) durante o mesmo intervalo de tempo que se mantém no sentido oposto (-) ⇒ O sentido da corrente não tem efeito sobre o comportamento do R no circuito.

Efeito térmico

Iniversidade do Minho

- Qualitativamente: as colisões entre os electrões de condução de corrente e os átomos fixos da resistência (R) provocam um aumento da sua temperatura, que depende do valor da corrente, mas é independente da direcção da corrente.
- Quantitativamente: taxa de conversão da energia eléctrica em calor numa R é a sua **potência instantânea** $P = i^2 \cdot R$; *i*: corrente instantânea na R.
- $\mathbf{P} \propto \mathbf{i}^2 \Rightarrow$ não faz diferença se a corrente for contínua (DC) ou alternada (AC), ou seja se o sinal (+) ou (-) for associado a \mathbf{i} .
- ! O efeito térmico provocada por uma corrente alternada com I_m <u>não</u> é o mesmo que o provocado por uma corrente contínua com o mesmo valor, dado que a corrente alternada somente tem o I_{max} durante um pequeno instante de tempo durante um ciclo >> *importante para poupança energética*.

Universidade do Minho

A corrente média quadrática (rms ou eficaz) é a raiz quadrada da média dos quadrados da corrente (é este valor que é registado mo multímetro!)

O quadrado da corrente varia com $sin^2 \omega t$, e pode-se mostrar que o valor médio de i^2 é $\mathbf{I^2_m/2}$

$$\Rightarrow I_{rms} = \frac{I_m}{\sqrt{2}} = 0,707 I_m$$

$$\Rightarrow I_{rms}^2 = \frac{I_m^2}{2}$$

Exemplo: Uma corrente AC com $I_m = 2$ A libertará o mesmo calor numa R do que uma corrente DC de $0.707 \cdot 2 = 1.414$ A

A potência média dissipada num R com uma corrente AC é:

$$P_{med} = I_{rms}^2 R$$

$$R = \frac{V_{rms}}{I_{rms}}$$

A voltagem média quadrática (ou eficaz):

$$V_{rms} = \frac{V_m}{\sqrt{2}} = 0,707 V_m$$

- ! Quando se fala em medir a voltagem alternada de 220V duma tomada eléctrica, fala-se na realidade de V_{rms} de 220V \Rightarrow V_{m} = 311,1 V
- ! Usaremos valores eficazes (*rms*) ao discutir as correntes e voltagens alternadas.
- ! Os amperímetros e voltímetros de AC são projectados para ler os valores *eficazes (rms)*

Se forem usados os valores *eficazes*, muitas equações terão a mesma forma que as equações nos circuitos DC

	Voltagem	Corrente
Valor instantâneo	υ	i
Valor máximo (pico)	$\mathbf{V}_{\mathbf{m}}$	I _m
Valor médio quadrático (ou eficaz)	$\mathbf{V}_{\mathrm{rms}}(\mathbf{V}_{\mathit{ef}})$	$\mathbf{I}_{\mathrm{rms}}(\mathbf{I}_{\mathit{ef}})$

 v_L : queda instantânea de voltagem no indutor (bobina).

 \Rightarrow Lei das malhas: $\Sigma v_i = 0 \Leftrightarrow v + v_L = 0$,

$$V_{m} \sin \omega t - L \frac{di}{dt} = 0 \Rightarrow L \frac{di}{dt} = V_{m} \sin \omega t$$
Lei de Faraday)

A integração dá a corrente em função do tempo:

$$i_{L} = \frac{V_{m}}{L} \int \sin \omega t \, dt = -\frac{V_{m}}{\omega L} \cos \omega t$$

dado que:
$$-\cos \omega t = \sin \left(\omega t - \frac{\pi}{2}\right) \implies i_L = \frac{V_m}{\omega L} \sin \left(\omega t - \frac{\pi}{2}\right)$$

Comparando com (1) \Rightarrow a corrente do circuito está <u>fora de fase</u> com a voltagem na bobine, com um atraso de $\pi/2$ rad, ou 90°

Universidade do Minho

 v_L atinge V_m (pico) num instante que está um quarto do período de oscilação antes de i_L atingir I_m

Diagrama de fasores:

Quando a υ aplicada for sinusoidal, i_L segue a υ_L com um atraso de 90°

! $\upsilon_L \propto di/dt \Rightarrow \upsilon_L$ é maior quando *i* estiver a variar com maior rapidez. i(t) é uma curva sinusoidal $\Rightarrow di/dt$ (declive) é máximo sempre que a curva i(t) passar pelo zero $\Rightarrow \upsilon_L$ atinge o máximo V_m sempre que $i_L = 0$

16

$$i_L = \frac{V_m}{\omega L} \sin\left(\omega t - \frac{\pi}{2}\right)$$

$$I_{m} = \frac{V_{m}}{\omega L} = \frac{V_{m}}{X_{L}}$$

 $X_L = \omega L$ é a impedância indutiva (ou reactância indutiva)

 I_{rms} é dada por uma expressão semelhante à $\binom{3}{3}$ com V_{m} substituída por V_{rms}

$$X_L = \frac{V_{rms}}{I_{rms}} = \frac{V_m}{I_m}$$

! O conceito de **impedância** é usado a fim de não ser confundido com o de resistência.

A impedância distingue-se da resistência porque introduz uma diferença de fase entre υ e i.

- •Circuito puramente resistivo $\Rightarrow i$ e υ em fase
- •Circuito puramente indutivo $\Rightarrow i$ segue υ com uma diferença de fase de 90°

$$i_{L} = \frac{V_{m}}{\omega L} \sin\left(\omega t - \frac{\pi}{2}\right) = \frac{V_{m}}{X_{L}} \sin\left(\omega t - \frac{\pi}{2}\right)$$

Com $\bigcirc{1}$ e $\bigcirc{3}$ \Rightarrow $\boxed{\upsilon_L = V_m \cdot sen \omega t = I_m \cdot X_L \cdot sen \omega t}$

Pode ser visto como a Lei de Ohm dum circuito indutivo. X_L tem a unidade SI de resistência (impedância) \Rightarrow o Ohm (Ω) .

A impedância dum indutor aumenta com a frequência. Nas frequências mais elevadas i varia mais rapidamente, o que provoca um aumento da fem induzida associada a uma certa \mathbf{I}_{m} .

• Lei das malhas: $\Sigma v_i = 0 \Leftrightarrow v - v_c = 0$

$$\upsilon = \upsilon_c = V_m \operatorname{sen} \omega t$$

• v_c : queda instantânea de voltagem no condensador.

$$v_c = \frac{Q(t)}{C} \rightarrow Q(t) = CV_m \sin \omega t$$
 1

Uma vez que $i = dQ/dt \implies$ a derivação de 1 dá a corrente instantânea

$$\left| i_C = \frac{dQ}{dt} = \omega C V_m \cos \omega t = \omega C V_m \sin \left(\omega t + \frac{\pi}{2} \right) \right|$$

dado que:
$$\cos \omega t = \sin \left(\omega t + \frac{\pi}{2} \right)$$

• Vemos que a corrente do circuito <u>não</u> está em fase com a voltagem aos terminais do condensador.

$$\left| i_C = \omega C V_m sin \left(\omega t + \frac{\pi}{2} \right) = \frac{1}{X_C} V_m sin \left(\omega t + \frac{\pi}{2} \right) \right|$$

 $i_{\rm C}$ está com uma diferença de fase de 90° em antecipação à $v_{\rm C}$.

Diagrama de fasores:

 $i_{\rm C}$ atinge $I_{\rm m}$ (pico) um quarto de ciclo mais cedo que o instante em que a $v_{\rm C}$ atinge $v_{\rm m}$

Quando a fem aplicada for sinusoidal, a corrente num condensador está avançada de 90° relativamente à voltagem no C.

$$X_C = \frac{1}{\omega C}$$

7.5. Circuitos RLC em Série

Universidade do Minho

- $i = I_{m} sin(\omega t \phi); \phi$ é o ângulo de fase entre a corrente do circuito e a voltagem da fonte aplicada.
- Objectivo: determinar ϕ e I_m . Teremos que construir e analisar o diagrama de fasores do circuito.
- ! Todos os componentes estão em série no circuito \Rightarrow a corrente alternada (i) é sempre a mesma (mesma amplitude e fase) em todos os pontos do circuito. \Rightarrow a voltagem em cada componente terá amplitude e fase diferente.

Voltagem
$$\rightarrow$$
 em fase / avanço de 90°

avanço de 90° / atraso de 90° com a corrente

As quedas instantâneas de voltagem são:

$$\upsilon_{\mathbf{R}} = \mathbf{I}_{\mathbf{m}} \mathbf{R} \sin (\omega \mathbf{t} - \phi) = \mathbf{V}_{\mathbf{R}} \sin (\omega \mathbf{t} - \phi)$$

$$\upsilon_{\mathbf{L}} = \mathbf{I}_{\mathbf{m}} \mathbf{X}_{\mathbf{L}} \sin (\omega \mathbf{t} + \pi/2 - \phi) = \mathbf{V}_{\mathbf{L}} \cos (\omega \mathbf{t} - \phi)$$

$$\upsilon_{\mathbf{C}} = \mathbf{I}_{\mathbf{m}} \mathbf{X}_{\mathbf{C}} \sin (\omega \mathbf{t} - \pi/2 - \phi) = -\mathbf{V}_{\mathbf{C}} \cos (\omega \mathbf{t} - \phi)$$

 $V_R = I_m R$; $V_L = I_m X_{L}$; $V_C = I_m X_C$ são as voltagens de pico (máximos) aos terminais de cada componente.

$$\upsilon = \upsilon_{\mathbf{R}} + \upsilon_{\mathbf{L}} + \upsilon_{\mathbf{C}}$$

É mais simples efectuar a soma usando o diagrama de fasores 2A corrente em cada componente é a mesma, $i(t) \Rightarrow$ pela combinação dos três fasores 1:

$$\tan \phi = \frac{V_L - V_C}{V_R}$$

Pelo triângulo na Figura:

$$V_{m} = \sqrt{V_{R}^{2} + (V_{L} - V_{C})^{2}} = \sqrt{(I_{m} R)^{2} + (I_{m} X_{L} - I_{m} X_{C})^{2}}$$

$$V_{m} = I_{m} \sqrt{R^{2} + (X_{L} - X_{C})^{2}} ; X_{L} = \omega L; X_{C} = 1/\omega C$$

$$I_{m} = \frac{V_{m}}{\sqrt{R^{2} + (X_{L} - X_{C})^{2}}}$$

A impedância (Z) do circuito RLC é: $Z = \sqrt{R^2 + (X_L - X_C)^2}$ SI: Ohm (Ω)

$$\Rightarrow$$
 A \rightarrow $V_{m} = I_{m} Z$ \Rightarrow Generalização da Lei de Ohm para AC

• ! A corrente no circuito depende da R, L, C e ω

Se eliminamos o factor comum I_m de cada fasor da Figura (2)

⇒ triângulo de impedância.

$$i = I_m \sin(\omega t - \phi)$$

- Quando $X_L > X_C$ (frequências altas) $\Rightarrow \phi > 0$, a *i* segue a υ aplicada.
- Se $X_L < X_C$ (frequências baixas) $\Rightarrow \phi < 0$, *i* precede a υ aplicada.
- Quando $X_1 = X_C \Rightarrow \phi = 0$, Z = R e $I_m = V_m/R$

A frequência a que se verifica esta última condição é a frequência de 24 ressonância.

Componentes do Circuito	Impedância, Z	Ângulo de Fase, φ
	R	$0_{\mathbf{o}}$
- C	X_{C}	-90°
•	X_{L}	+90°
R C •──₩──	$\sqrt{R^2 + X_C^2}$	Negativo, entre –90° e 0°
R L	$\sqrt{R^2 + X_L^2}$	Positivo, entre 0° e 90°
R L C •──₩──∭∭── ──•	$\sqrt{\boldsymbol{R}^2 + (\boldsymbol{X}_L - \boldsymbol{X}_C)^2}$	Negativo se $X_C > X_L$ Positivo se $X_C < X_L$

7.6. Potência num Circuito AC

Iniversidade do Minho

No circuito RLC podemos exprimir a potência instantânea, P, como:

$$\mathbf{P} = \mathbf{i} \cdot \mathbf{v} = \mathbf{I}_{\mathbf{m}} \mathbf{sin}(\omega \mathbf{t} - \phi) \cdot \mathbf{V}_{\mathbf{m}} \mathbf{sin}(\omega \mathbf{t})$$
$$= \mathbf{I}_{\mathbf{m}} \mathbf{V}_{\mathbf{m}} \mathbf{sin}(\omega \mathbf{t}) \cdot \mathbf{sin}(\omega \mathbf{t} - \phi)$$

! Função complicada do tempo sem muita utilidade prática.

Interessa, em geral: a **potência média** em um ou mais ciclos ⇒

$$\sin(\omega t - \phi) = \sin(\omega t)\cos(\phi) - \sin(\phi)\cos(\omega t) \rightarrow$$
 1

$$\mathbf{P} = \mathbf{I_m} \mathbf{V_m} \sin^2(\omega t) \cdot \cos(\phi) - \mathbf{I_m} \mathbf{V_m} \sin(\omega t) \cdot \cos(\omega t) \cdot \sin(\phi)$$

Toma-se a média de P sobre o tempo durante um ou mais ciclos (I_m , V_m , ϕ e ω constantes).

- Média de $\sin^2(\omega t).\cos(\phi)$ $\rightarrow \frac{1}{2}\cos(\phi)$
- Média de $\sin(\omega t).\cos(\omega t).\sin(\phi) \rightarrow 0$ 1/2.\sin(2\omega t)

⇒ Potência média ou potência activa eficaz dissipada:

$$= I_{rms}.V_{rms}.\cos \phi$$

 V_L - V_C V_m V_R

factor de potência

 \Rightarrow A queda máxima de voltagem na resistência é: $V_R = V_m \cos \phi = I_m.R \rightarrow$

$$\cos \phi = I_m R/V_m$$

$$P_{m\acute{e}d} = I_{rms} V_{rms} \cos \phi = \left(\frac{I_m}{\sqrt{2}}\right) \left(\frac{V_m}{\sqrt{2}}\right) \frac{I_m R}{V_m} = \frac{1}{2} I_m^2 R$$

$$P_{m\acute{e}d} = I_{rms}^2 R$$

- ! A potência média proporcionada pelo gerador é dissipada como calor na R. (como em DC)
- ! Não há perda de potência num indutor ideal ou num condensador ideal.
- (Ex.: o condensador é carregado e descarregado duas vezes durante cada ciclo
 ⇒ há fornecimento de carga ao condensador durante dois quartos do ciclo, e há o retorno da carga à fonte de voltagem, durante os outros dois quartos.
 ⇒ A potência média proporcionada pela fonte é nula. Logo um condensador num circuito de AC não dissipa energia.)
- (Analogamente para o indutor)

A potência que se transmite entre a fonte e o circuito que não é dissipada:

Potência reactiva:
$$P_{react} = I_{rms}.V_{rms}.sen(\phi)$$

$$P_{\text{m\'ed}} = P_{\text{act}} = I_{\text{rms}} V_{\text{rms}} \cos \phi$$

Puramente resistivo $\Rightarrow \phi = 0$, $\cos \phi = 1$

$$\Rightarrow P_{\text{max}} = I_{\text{rms}} \cdot V_{\text{rms}}$$

Potência máxima (máx. amplitude)

Carlos Tavares - Depto. Física - Universidade do Minho

- Um circuito RLC está em **ressonância** quando a corrente tem o seu valor de pico (ver pag. 21/24).
- Em geral $I_{rms} = \frac{V_{rms}}{Z} = \frac{V_{rms}}{\sqrt{R^2 + (X_L X_C)^2}}$

$$!Z = Z(\omega) \Rightarrow I_{rms} = I_{rms}(\omega)$$

A corrente atinge o seu valor máximo quando $X_L = X_C \Rightarrow Z = R$

A frequência ω_0 a que isso ocorre é a **frequência de ressonância do** circuito:

$$X_L = X_C \iff \omega_0 L = \frac{1}{\omega_0 C}$$
 $\omega_0 = \frac{1}{\sqrt{LC}}$

 ω_0 também corresponde à frequência natural de oscilação do circuito LC.

• Nesta frequência a corrente está em fase com a voltagem instantânea aplicada pela fonte de corrente alternada.

Universidade do Minho

$$L = 5 \mu H$$

$$C = 2 nF$$

$$V = 5 mV$$

$$\omega_0 = 10^7 \text{ rad/s}$$

Curvas mais estreitas e altas quando R diminui.

$$I_{rms} \rightarrow \infty$$
, $R \rightarrow 0$ (teoria!!)

Os circuitos reais têm sempre uma certa resistência que limita o valor da corrente.

- Os sistemas mecânicos também exibem ressonâncias: sistema massa-mola.
- Actuando na ω_0 , a amplitude das oscilações aumenta com o tempo.