Second Course in Analysis

Hsu-Hsiang Tsao

Spring of 2024

Contents

1	Mu	ltivariable Calculus	2
	1.1	Linear Algebra	2
	1.2	Derivatives	6
	1.3	Higher Derivatives	11
	1.4	Implicit and Inverse Functions	12
	1.5	*The Rank Theorem	12
	1.6	*Lagrange Multipliers	12
	1.7	Multiple Integrals	12
2	2 Lebesgue Theory		
	2.1		13
	2.2		13
	2.3		13
	2.4		13
	2.5		13

1 Multivariable Calculus

1.1 Linear Algebra

Definition 1.1.1 (Matrix transformation). Suppose $m, n \in \mathbb{N}$ and $A \in \mathcal{M}^{m,n}(\mathbb{R})$. Then, the matrix transformation represented by A is the map $T_A : \mathbb{R}^n \to \mathbb{R}^m$ defined by

$$T_A(v) = \sum_{i=1}^m \sum_{j=1}^n a_{i,j} v_j e_i \ \forall v \in \mathbb{R}^n,$$

where $v = \sum v_j e_j \in \mathbb{R}^n$ and $\{e_1, \dots, e_n\}$ is the standard basis of \mathbb{R}^n .

Equivalently, T_A is defined by the matrix multiplication

$$T_A(v) = transpose(A \cdot transpose(v)) \ \forall v \in \mathbb{R}^n,$$

where we treat v strictly as a 1-by-n matrix $\forall v \in \mathbb{R}^n$.

Definition 1.1.2 (Notations: \mathcal{L} , \mathcal{M} , \mathbb{F} , n, m). Suppose $m, n \in \mathbb{N}$. We denote by

- (i) $\mathcal{M}^{m,n}(\mathbb{R})$ the collection of all m-by-n matrix with real entries;
- (ii) $\mathcal{L}(\mathbb{R}^n, \mathbb{R}^m)$ the set of all linear transformations from \mathbb{R}^n to \mathbb{R}^m .

When no misunderstanding may arise and sufficient context is supplied, we denote, more briefly, $\mathcal{M}^{m,n}(\mathbb{R})$ and $\mathcal{L}(\mathbb{R}^n,\mathbb{R}^m)$ by \mathcal{M} and \mathcal{L} respectively.

Unless otherwise stated, we assume that $\mathbb{F} \in \{\mathbb{R}, \mathbb{C}\}$ and $m, n \in \mathbb{N}$.

Proposition 1.1.1. Matrix transformations are linear transformations.

Proposition 1.1.2. Suppose $m, n \in \mathbb{N}$. Then, $\mathcal{M}^{m,n}(\mathbb{R})$ is a vector space with dim $\mathcal{M}^{m,n}(\mathbb{R}) = mn$.

Proposition 1.1.3. Suppose $m, n \in \mathbb{N}$. Then, $\mathcal{M}^{m,n}(\mathbb{R})$ and \mathbb{R}^{mn} are isomorphic.

Proposition 1.1.4. Suppose $m, n \in \mathbb{N}$. Then, $\mathcal{L}(\mathbb{R}^n, \mathbb{R}^m)$ is a vector space and dim $\mathcal{L}(\mathbb{R}^n, \mathbb{R}^m) = nm$.

Proposition 1.1.5 (Canonical Isomorphism Induced by Matrix Transformation: \mathcal{T}). Suppose $m, n \in \mathbb{N}$. Then, $\mathcal{T}: \mathcal{M}^{m,n}(\mathbb{R}) \to \mathcal{L}(\mathbb{R}^n, \mathbb{R}^m)$ defined by $\mathcal{T}(A) = T_A \ \forall A \in \mathcal{M}^{m,n}(\mathbb{R})$ is an isomorphism

Theorem 1.1.1 (Composition of Matrix Transformations). Suppose $m, k, n \in \mathbb{N}$, $A \in \mathcal{M}^{m,k}(\mathbb{F})$, and $B \in \mathcal{M}^{k,n}(\mathbb{F})$. Then, $T_A \circ T_B = T_{AB}$.

Definition 1.1.3 (Norm on a vector space). Suppose V is a vector space over field \mathbb{F} . A norm on V is a map $||_{V}: V \to \mathbb{R}$ satisfying the following properties:

- (i) $|v|_V \ge 0 \ \forall v \in V \ with \ |v|_V = 0 \iff v = 0_V;$
- (ii) $|kv|_V = |k| |v|_V \ \forall k \in \mathbb{F}, v \in V.$
- (iii) $|v + w|_V \le |v|_V + |w|_V \ \forall v, w \in V.$

When no misunderstanding may arise and sufficient context is supplied, we may denote $||_V$, more briefly, by ||.

Proposition 1.1.6 (Common Norms on \mathbb{R}^n). Let $n \in \mathbb{N}$. Then, the following maps are norms on \mathbb{R}^n :

(Euclidean Norm or l_2 norm) $||_2 : \mathbb{R}^n \to \mathbb{R}$ where

$$|x|_2 = \sqrt{\sum_{i=1}^n x_i^2} \ \forall x = (x_1, \dots, x_n) \in \mathbb{R}^n.$$

(Supremum norm or l_{∞} norm) $||_{\infty} : \mathbb{R}^n \to \mathbb{R}$ where

$$|x|_{\infty} = \max\{|x_i| : i \in \{1, \dots, n\}\}\ \forall x = (x_1, \dots, x_n) \in \mathbb{R}^n.$$

 $(l_1 \ norm) \mid \mid_1 : \mathbb{R}^n \to \mathbb{R} \ where$

$$|x|_1 = \sum_{i=1}^n |x_i| \ \forall x = (x_1, \dots, x_n) \in \mathbb{R}^n.$$

Definition 1.1.4 (Normed space). A normed space is a vector space V along with a norm || defined on V.

Proposition 1.1.7 (Norm-Induced Metric; Normed Spaces are Metric Spaces). Suppose (V, ||) is a normed space. Then,

- (i) $d: V \times V \to \mathbb{R}$ defined by d(v, w) = |v w|, $\forall (v, w) \in V \times V$, is a metric on V.
- (ii) (v, d) is a metric space.

Definition 1.1.5 (Banach space). A vector space is a Banach space if it is a complete normed space.

Definition 1.1.6 (Operator norm and bounded operator). Suppose V, W are normed spaces and $T \in \mathcal{L}(V, W)$. Then, the operator norm of T is

$$||T|| = \sup \left\{ \frac{|T(v)|_W}{|v|_V} : v \neq 0_V \right\}.$$

An operator is bounded if its operator norm is finite.

Theorem 1.1.2 (Operator Norm Identity). Suppose V, W are normed spaces where $T \in \mathcal{L}(V, W)$. Then,

$$\begin{split} ||T|| &= \sup \left\{ |T(v)| : |v| < 1 \right\} \\ &= \sup \left\{ |T(v)| : |v| \le 1 \right\} \\ &= \sup \left\{ |T(v)| : |v| = 1 \right\} \\ &= \inf \left\{ M > 0 : v \in V \implies |T(v)| \le M \, |v| \right\}. \end{split}$$

Proof. (INCOMPLETE)

Proposition 1.1.8 (Operator Norm Properties). Suppose V, W are normed spaces and $T \in \mathcal{L}(V, W)$. Then, the following statements hold:

- (i) $||T|| \ge 0$;
- (ii) $||T|| = 0 \iff T = 0_{\mathcal{L}(V,W)};$
- (iii) Suppose U is a normed space and $S \in \mathcal{L}(U, V)$. Then, $||T \circ S|| < ||T|| ||S||$.

Proof. (ii) Suppose V, W are normed spaces and $T \in \mathcal{L}(V, W)$.

 $(\implies) \text{ Suppose that } ||T||=0. \text{ It follows that } \frac{|T(v)|_W}{|v|_V} \leq 0, \forall v \in V/\{0_V\}. \text{ We note that, by the definition of a norm, } |T(v)|_W, |v|_V \geq 0 \ \forall v \in V. \text{ Thus, we obtain that, } \forall v \in V/\{0_V\},$

$$\begin{split} \frac{|T(v)|_W}{|v|_V} \geq 0 &\implies \frac{|T(v)|_W}{|v|_V} = 0 \implies |T(v)|_W = 0 \\ &\implies T(v) = 0_W. \end{split} \tag{By the definition of norm)}$$

In addition, certainly $T(0_V) = 0_W$. Hence, we proved that $T(v) = 0_W$, $\forall v \in V$. That is, we show that $T = 0_{\mathcal{L}(V,W)}$, as desired.

(\Leftarrow) Suppose $T = 0_{\mathcal{L}(V,W)}$. It follows that $T(v) = 0_W \ \forall v \in V$. Thus, we have that $|T(v)|_W = 0$, $\forall v \in V$, by the definition of a norm. As an immediate result, we obtain that

$$||T|| = \sup \left\{ \frac{|T(v)|_W}{|v|_V} : v \neq 0_V \right\} = \sup \left\{ 0 : v \neq 0_V \right\} = 0.$$

Theorem 1.1.3 ($\mathcal{L}(V, W)$ is a Normed Space). Suppose V and W are normed spaces. Then, $\mathcal{L}(V, W)$ along with operator norm $|| \ || : \mathcal{L} \to \mathbb{R}$ is a normed space.

Definition 1.1.7 (Comparability of norms).

Proposition 1.1.9 (Comparability Induces an Equivalence Relation on the Set of Norms).

Theorem 1.1.4 (All Norms on \mathbb{R}^n are Comparable).

Corollary 1.1.1 (Norms on Finite-Dimensional Normed Space are Comparable).

Theorem 1.1.5 (Finite Operator Norm and Equivalent Conditions). Suppose V, W are normed spaces and $T \in \mathcal{L}(V, W)$. Then, the following conditions are equivalent:

- (i) $||T|| < \infty$;
- (ii) T is uniformly continuous;
- (iii) T is continuous;
- (iv) T is continuous at the origin (that is, at 0_V).

Proof. (INCOMPLETE) Suppose V, W are normed spaces and $T \in \mathcal{L}(V, W)$.

 $(i \implies ii)$: Suppose $||T|| < \infty$. By definition, we have that $\exists m > 0$ such that m = ||T||

$$\frac{|T(v)|_W}{|v|_V} \le ||T|| \ \forall v \in V / \left\{0_V\right\} \implies |T(v)|_W \le ||T|| \ |v|_V \ \forall v \in V / \left\{0_V\right\}$$

Consider arbitrary $v, w \in V$.

 $(ii \implies iii) \& (iii \implies iv)$: Trivial.

 $(iv \implies i)$: Suppose T is continuous at 0_V .

Theorem 1.1.6 (Characteristics of Linear Maps on Normed Spaces). Suppose $T \in \mathcal{L}(\mathbb{R}^n, W)$, where W is a normed space. Then,

- (i) T is continuous, and
- (ii) T is an isomorphism implies T is a homeomorphism.

Proof. (INCOMPLETE) Corollary 1.1.2. Suppose V, W are finite-dimensional normed spaces. Then, (i) $T \in \mathcal{L}(V, W) \implies T$ is continuous, and (ii) $\phi \in \mathcal{L}(V, W)$ is an isomorphism implies ϕ is a homeomorphism. *Proof.* (INCOMPLETE) Corollary 1.1.3. (i) Suppose V is a finite-dimensional normed space with norms $||_a$ and $||_b$. Then, the identity map I on V is a homomorphism between the normed spaces $(V, ||_a)$ and $(V, ||_b)$. (ii) $\mathcal{T} \colon \mathcal{M} \to \mathcal{L}$ is a homeomorphism. Proof. (INCOMPLETE) Definition 1.1.8 (Conorm). **Exercise 1.1.1** (Determine an Operator Norm). Consider the dilation map $T: \mathbb{R}^2 \to \mathbb{R}^2$ defined $by \ f(x,y) = (2x,y). \ Prove \ ||T|| = 2.$ *Proof.* Outline: show $||T|| \leq 2$. Find $(a,b) \in \mathbb{R}^2$ such that $\frac{|T(a,b)|}{|(a,b)|} = 2$.

Use the definition of sup to prove the conclusion,

1.2 Derivatives

Definition 1.2.1 ((Total) Derivative). Let $n, m \in \mathbb{N}$ and $U \subset \mathbb{R}^n$ be open. Suppose $f: U \to \mathbb{R}^m$.

- (i) The derivative (or total derivative) $(Df)_p$ of f at $p \in U$ is a map, if it exists, $T: \mathbb{R}^n \to \mathbb{R}^m$ such that
 - (a) T is a linear map, and
 - (b) T satisfies

$$f(p+v) = f(p) + T(v) + R(v) \text{ for all sufficiently small } v \in \mathbb{R}^n$$

$$\implies \lim_{|v| \to 0} \frac{R(v)}{|v|} = 0_{\mathbb{R}^m}$$
 (Pugh)

or, equivalently,

$$f(p+v) = f(p) + T(v) + R(v) \text{ for all sufficiently small } v \in \mathbb{R}^n$$

$$\implies \lim_{v \to 0_{\mathbb{R}^n}} \frac{|R(v)|}{|v|} = 0, \quad (\text{Rudin})$$

or, equivalently,

$$\lim_{v \to 0_{\mathbb{R}^n}} \frac{|f(p+v) - T(v) - f(p)|}{|v|} = 0,$$
 (Rudin)

where $R(v) \in \mathbb{R}^m$ denotes the Taylor remainder for f(p+v).

- (ii) We say that f is differentiable at $p \in U$ if $(Df)_p$ exists, and f is differentiable if f is differentiable at $p, \forall p \in U$.
- (iii) Let $E = \{p \in U : (Df)_p \text{ exists}\}$. We call the map $Df : E \to \mathcal{L}(\mathbb{R}^n, \mathbb{R}^m)$, defined by $[Df](p) = (Df)_p \ \forall p \in E$, the **derivative** (or total derivative) of f.

Note that we may also denote Df by f'.

Remark 1.2.1. Recall that $\exists r_p > 0$ such that $q \in \mathbb{R}^n$ and $d(p,q) < r_p \implies q \in E$, since E is open. By sufficiently small $v \in \mathbb{R}^n$, we mean that v is such that $d(p, p + v) < r_p$ so $p + v \in E$.

Remark 1.2.2. The choice of T is unique, since a limit is unique, provided it exists. See proof below.

Definition 1.2.2 (Notations: e_i, u_j, f_j). Let $n, m \in \mathbb{N}$. Denote the standard bases of \mathbb{R}^n and \mathbb{R}^m by $\{e_1, \ldots, e_n\}$ and $\{u_1, \ldots, u_m\}$, respectively.

Suppose $U \subset \mathbb{R}^n$, $f: U \to \mathbb{R}^m$, and $\exists f_1, \dots, f_m: U \to \mathbb{R}$ such that

$$f(p) = \sum_{j=1}^{m} f_j(p)e_j \ \forall p \in U.$$

Unless otherwise stated, we denote e_i the *i*-th standard basis vector of \mathbb{R}^n , $\forall i \in \{1, ..., n\}$, and u_j the *j*-th standard basis vector of \mathbb{R}^m , $\forall j \in \{1, ..., m\}$.

Similarly, we denote f_j the j-th component of f, $\forall j \in \{1, ..., m\}$.

Definition 1.2.3 (Partial derivative). Let $n, m \in \mathbb{N}$ and $U \subset \mathbb{R}^n$ be open, and denote $\{e_1, \ldots, e_n\}$ and $\{u_1, \ldots, u_m\}$ the standard bases of \mathbb{R}^n and \mathbb{R}^m , respectively. Suppose $f: U \to \mathbb{R}^m$ and $f(x) = \sum_{i=1}^m f_i(x)u_i \ \forall x \in U$, where $f_j: U \to \mathbb{R} \ \forall j \in \{1, \ldots, m\}$.

Suppose $p \in U$, $i \in \{1, ..., n\}$, and $j \in \{1, ..., m\}$. Then, the (i, j)-partial derivative or ij^{th} partial derivative of f at $p \in U$ is

$$\frac{\partial f_i(p)}{\partial x_i} = \lim_{t \to 0} \frac{f_i(p + te_j) - f_i(p)}{t} \in \mathbb{R},$$

provided the limit exists. Let $E = \left\{ p \in U : \frac{\partial f_i(p)}{\partial x_j} \text{ exists} \right\}$. We call the map $\frac{\partial f_i}{\partial x_j} : E \to \mathbb{R}$, defined by

$$\left[\frac{\partial f_i}{\partial x_j}\right](p) = \frac{\partial f_i(p)}{\partial x_j} \ \forall p \in E,$$

the (i,j)-partial derivative of f.

We may also denote $\frac{\partial f_i}{\partial x_i}$, the (i,j)-partial derivative of f, more briefly by $D_j f_i$ or $\partial_{x_j} f_i$.

Theorem 1.2.1 (Differentiability Implies Continuity). Suppose $U \subset \mathbb{R}^n$ is open and $f: U \to \mathbb{R}^m$ is differentiable at $p \in U$. Then, f is continuous at p.

Proof. Suppose $U \subset \mathbb{R}^n$ is open and $f: U \to \mathbb{R}^m$ is differentiable at $p \in U$. Suppose further that

$$f(p+v) = f(p) + (Df)_p(v) + R(v), \forall v \in \mathbb{R}^n \text{ such that } p+v \in U.$$
 (*)

By definition, we have that $(Df)_p \in \mathcal{L}(\mathbb{R}^n, \mathbb{R}^m)$ and $\lim_{|v| \to 0} \frac{R(v)}{|v|} = 0_{\mathbb{R}^m}$. We note that $(Df)_p$ is continuous since linear maps from one normed space to another are continuous. As an immediate result, we have that $||(Df)_p||$ is finite by a previous theorem. We observe that

$$\lim_{|v| \to 0} \left[||(Df)_p|| + \frac{|R(v)|}{|v|} \right] = ||(Df)_p|| \text{ and } \lim_{|v| \to 0} |v| = 0 \implies \lim_{|v| \to 0} ||(Df)_p|| \cdot |v| + |R(v)| = \lim_{|v| \to 0} \left(||(Df)_p|| + \frac{|R(v)|}{|v|} \right) \cdot |v| = ||(Df)_p|| \cdot 0 = 0.$$

By definition, we obtain that $\forall \epsilon > 0 \; \exists \delta > 0 \; \text{such that} \; 0 < |v| < \delta \; \text{implies that}$

$$|||(Df)_p|| \cdot |v| + |R(v)|| = ||(Df)_p|| \cdot |v| + |R(v)| < \epsilon$$

$$\implies \epsilon > ||(Df)_p|| \cdot |v| + |R(v)| \ge |(Df)_p(v)| + |R(v)|$$
(By the definition of $||(Df)_p||$)
$$\ge |(Df)_p(v) + R(v)|.$$
(By the Triangle Inequality)

Thus, it holds that $\forall \epsilon > 0 \ \exists \delta > 0$ such that $p + v \in U$ and $0 < |(p + v) - p| = |v| < \delta$ implies that

$$|f(p+v) - f(p)| = |(Df)_p(v) + R(v)| < \epsilon.$$
 (By (*))

Hence, f is continuous at p by definition. (We note that if we replace p+v with x, the above statement resembles precisely the familiar $\delta - \epsilon$ definition for the continuity of a function at a point)

Theorem 1.2.2 (Characterization of Derivative at a Point). Let $n, m \in \mathbb{N}$ and $U \subset \mathbb{R}^n$ be open. Suppose $f: U \to \mathbb{R}^m$ is differentiable at $p \in U$. Then, $(Df)_p \in \mathcal{L}(\mathbb{R}^n, \mathbb{R}^m)$ is given by

$$(Df)_p(u) = \lim_{t \to 0} \frac{f(p+tu) - f(p)}{t} \ \forall u \in \mathbb{R}^n.$$

Proof. Let $n, m \in \mathbb{N}$ and $U \subset \mathbb{R}^n$ be open. Suppose $f: U \to \mathbb{R}^m$ is differentiable at $p \in U$.

(Case 1): We observe that $(Df)_p(0_{\mathbb{R}^n}) = 0^{\mathbb{R}^m}$ since $(Df)_p$ is linear. It follows that, for $u = 0_{\mathbb{R}^n}$,

$$(Df)_p(u) = 0 = \lim_{t \to 0} \frac{f(p+tu) - f(p)}{t}$$

as desired.

(Case 2): Consider arbitrary $u \in \mathbb{R}^n / \{0_{\mathbb{R}^n}\}$ and suppose $\forall t \in \mathbb{R}$ such that $p + tu \in U$ we have that

$$f(p+tu) = f(p) + (Df)_p(tu) + R(tu).$$

By the differentiability of f at p, we obtain that

$$\lim_{|tu| \to 0} \frac{R(tu)}{|tu|} = 0_{\mathbb{R}^m} \implies \lim_{|t| \to 0} \frac{R(tu)}{|tu|} = 0_{\mathbb{R}^m} \quad \text{(Since } |u| \text{ is fixed)}$$

$$\implies \forall \epsilon > 0 \; \exists \delta > 0 \text{ such that } 0 < |t| < \delta \implies \left| \frac{R(tu)}{|tu|} \right| = \frac{|R(tu)|}{|tu|} < \epsilon. \tag{*}$$

Consider arbitrary $\epsilon > 0$. Then, $\frac{\epsilon}{|u|} > 0$ since $u \neq 0_{\mathbb{R}^n}$ by assumption. By (*), we obtain that

$$\begin{split} \exists \delta > 0 \text{ such that } 0 < |t| < \delta \implies \left| \frac{R(tu)}{t |u|} \right| &= \frac{|R(tu)|}{|tu|} < \frac{\epsilon}{|u|} \\ &\implies \left| \frac{R(tu)}{t |u|} \cdot |u| \right| < \epsilon. \\ &\therefore \lim_{t \to 0} \frac{R(tu)}{t |u|} |u| = 0_{\mathbb{R}^m}. \end{split} \tag{**}$$

Now, consider the limit $\lim_{t\to 0} \frac{f(p+tu)-f(p)}{t}$. We observe that

$$\lim_{t \to 0} \frac{f(p+tu) - f(p)}{t} = \lim_{t \to 0} \frac{(Df)_p(tu) + R(tu)}{t}$$

$$= \lim_{t \to 0} \frac{t(Df)_p(u) + R(tu)}{t}$$

$$= \lim_{t \to 0} \left[(Df)_p(u) + \frac{R(tu)}{t} \right] = \lim_{t \to 0} \left[(Df)_p(u) + \frac{R(tu)}{t|u|} |u| \right]$$

$$= (Df)_p(u)$$
(By assumption)
$$(Since (Df)_p \in \mathcal{L}(\mathbb{R}^n, \mathbb{R}^m))$$

$$= \lim_{t \to 0} \left[(Df)_p(u) + \frac{R(tu)}{t|u|} |u| \right]$$

$$= (Df)_p(u)$$
(By (**))

That is, we show that $\forall u \in \mathbb{R}^n$, $(Df)_p(u) = \lim_{t \to 0} \frac{f(p+tu) - f(p)}{t}$ and complete this proof.

Corollary 1.2.1 (Uniqueness of Total Derivative). Suppose $U \subset \mathbb{R}^n$ is open and $f: U \to \mathbb{R}^m$ is differentiable at $p \in U$. Then, $T, \tilde{T} \in \mathcal{L}(\mathbb{R}^n, \mathbb{R}^m)$ both satisfy the derivative properties implies that $T = \tilde{T}$.

Proof. Suppose $U \subset \mathbb{R}^n$ is open and $f: U \to \mathbb{R}^m$ is differentiable at $p \in U$. Suppose further that $T, \tilde{T} \in \mathcal{L}(\mathbb{R}^n, \mathbb{R}^m)$ both satisfy the derivative properties. By the preceding theorem, we obtain that

$$T(u) = \lim_{t \to 0} \frac{f(p+tu) - f(p)}{t} = \tilde{T}(u) \ \forall u \in \mathbb{R}^n,$$

which implies, by definition, $T = \tilde{T}$.

Theorem 1.2.3 (Existence of Total Derivative Implies the Existence of Partial Derivative). Let $n, m \in \mathbb{N}$ and $U \subset \mathbb{R}^n$ be open. Suppose $f: U \to \mathbb{R}^m$ is differentiable at $p \in U$. Then, all partial derivatives of f at p exist and they are the entries of the matrix that represents the total derivative $(Df)_p$ at p. That is,

(i)
$$\forall (i,j) \in \{1,\ldots,m\} \times \{1,\ldots,n\}, \ \partial x_j f_i(p) \in \mathbb{R}, \ and$$

(ii) $(Df)_p = T_{A_p}$, where $\forall (i,j) \in \{1,\ldots,m\} \times \{1,\ldots,n\}$ we have that $(A_p)_{i,j} = \partial_{x_i} f_i(p)$ and

$$A_{p} = \begin{bmatrix} \partial_{x_{1}} f_{1}(p) & \partial_{x_{2}} f_{1}(p) & \dots & \partial_{x_{n}} f_{1}(p) \\ \partial_{x_{1}} f_{2}(p) & \partial_{x_{2}} f_{2}(p) & \dots & \partial_{x_{n}} f_{2}(p) \\ \vdots & \vdots & \ddots & \vdots \\ \partial_{x_{1}} f_{m}(p) & \partial_{x_{2}} f_{m}(p) & \dots & \partial_{x_{n}} f_{m}(p) \end{bmatrix} \in \mathcal{M}^{m,n}(\mathbb{R}).$$

Proof. Outline: Apply the preceding theorem and let u be the standard basis vectors in \mathbb{R}^n . \square

Theorem 1.2.4 (Existence and continuity of Partial Derivatives Imply Existence of Total Derivative). Suppose $U \subset \mathbb{R}^n$ is open, and $f: U \to \mathbb{R}^m$. Suppose further that $\forall (i,j) \in \{1,\ldots,m\} \times \{1,\ldots,n\}$ it holds that

- (i) $\forall p \in U, \ \partial_{x_i} f_i(p) \in \mathbb{R}, \ and$
- (ii) $\partial_{x_i} f_i$ is continuous.

Then, $\forall p \in U$, f is differentiable at p and $(Df)_p$ exists.

Proof. (INCOMPLETE)

Outline 1 Let A be the matrix whose entries are the partial derivative.

2. Let T be the linear map represented by A

Definition 1.2.4 (Bilinear map). Suppose V, W, Z are vector spaces. Then, a map $B: V \times W \to Z$ is bilinear if

 \Box

(i) $\forall v \in V, B(v,\cdot) \colon W \to Z$ defined by $[B(v,\cdot)](w) = B(v,w) \ \forall w \in W$ is linear, and

(ii) $\forall w \in W, B(\cdot, w) : V \to Z$ defined by $[B(\cdot, w)](v) = B(v, w) \ \forall v \in V$ is linear.

Proposition 1.2.1 (Examples of Bilinear Maps). The usual multiplication on \mathbb{R} , dot product on \mathbb{R}^n , and matrix product are bilinear maps.

Theorem 1.2.5 (Differentiation Rules). (*Linearity*) Suppose $c \in \mathbb{R}$, $U \subset \mathbb{R}^n$ is open, and $f: U \to \mathbb{R}^m$ and $g: U \to \mathbb{R}^m$ are differentiable at $p \in U$. Then, f + cg is differentiable at p and

$$(D(f+cg))_p = (Df)_p + c(Dg)_p.$$

(Chain Rule) Suppose $f: U \to \mathbb{R}^m$ is differentiable at $p \in U$, and $W \subset \mathbb{R}^m$ is open with $f(U) \subset W$. Suppose further that $g: W \to \mathbb{R}^r$ is differentiable at f(p). Then, $g \circ f: U \to \mathbb{R}^r$ is differentiable at p and

$$(D[g \circ f])_p = (Dg)_{f(p)} \circ (Df)_p \in \mathcal{L}(\mathbb{R}^n, \mathbb{R}^r).$$

(**Leibniz Rule**) Suppose \bullet : $\mathbb{R}^m \times \mathbb{R}^r \to \mathbb{R}^q$ is bilinear, where $f: U \to \mathbb{R}^m$ and $g: U \to \mathbb{R}^r$ are differentiable at $p \in U$. Then, $T: U \to \mathbb{R}^q$ defined by

$$T(u) = f(u) \bullet g(u) = \bullet(f(u), g(u)), \forall u \in U$$

is differentiable at p and

$$[(DT)_p](v) = [Df]_p(v) \bullet g(p) + f(p) \bullet [Dg]_p(v) \ \forall v \in U.$$

(Constant Map and Linear Map) (i) Suppose $U \subset \mathbb{R}^n$ is open and $c \in \mathbb{R}^m$. Define $c_{\mathbb{R}} \colon U \to \mathbb{R}^m$ by $c_{\mathbb{R}}(u) = c \ \forall u \in U$. Then, $c_{\mathbb{R}}$ is differentiable and $\forall p \in U \ (Dc_{\mathbb{R}})_p = 0_{\mathbb{R}}$, where $0_{\mathbb{R}} \colon \mathbb{R}^n \to \mathbb{R}^m$ is defined by $0_{\mathbb{R}}(u) = 0_{\mathbb{R}^m} \ \forall u \in U$.

(ii) Suppose $T \in \mathcal{L}(\mathbb{R}^n, \mathbb{R}^m)$. Then, T is differentiable and $\forall p \in \mathbb{R}^n \ (DT)_p = T$.

$$Proof.$$
 (INCOMPLETE)

Definition 1.2.5 (Segment in \mathbb{R}^n). Let $p,q \in \mathbb{R}^n$. Then, the segment [p,q] in \mathbb{R}^n is

$$[p,q] = \{(1-\lambda)p + \lambda q : \lambda \in [0,1]\}.$$

Theorem 1.2.6 (Differentiability of Vector Function \iff Component-wise Differentiability). Let $n, m \in \mathbb{N}$, $U \subset \mathbb{R}^n$ is open, and $f: U \to \mathbb{R}^m$. Then, f is differentiable at $p \in U \iff f_j$ is differentiable at $p, \forall j \in \{1, \ldots, m\}$,

$$Proof.$$
 (INCOMPLETE)

Theorem 1.2.7 (General Mean Value Theorem). Suppose $U \subset \mathbb{R}^n$ is open, $[p,q] \subset U$, and $f: U \to \mathbb{R}^m$ is differentiable. Then,

$$|f(p) - f(q)| \le M |p - q|,$$

where $M = \sup \{ || (Df)_q : q \in U || \}.$

$$Proof.$$
 (INCOMPLETE)

Definition 1.2.6 (Integrating a Matrix and a derivative at a point). Suppose $[a,b] \subset \mathbb{R}$, $m,n \in \mathbb{N}$, $A \in \mathcal{M}^{m,n}(\mathbb{R})$. Then, we define

(*i*)

$$\int_{a}^{b} A dt = \begin{bmatrix} \int_{a}^{b} a_{1,1} dt & \int_{a}^{b} a_{1,2} dt & \cdots \int_{a}^{b} a_{1,n} dt \\ \int_{a}^{b} a_{2,1} dt & \int_{a}^{b} a_{2,2} dt & \cdots \int_{a}^{b} a_{2,n} dt \\ \vdots & \vdots & \ddots & \vdots \\ \int_{a}^{b} a_{m,1} dt & \int_{a}^{b} a_{m,2} dt & \cdots \int_{a}^{b} a_{m,n} dt \end{bmatrix},$$

where $\forall (i,j) \in \{1,\ldots,m\} \times \{1,\ldots,n\}$ a_{i,j} is the (i,j)-entry of A.

(ii) Suppose $U \subset \mathbb{R}^n$ and $f: U \to \mathbb{R}^m$ is differentiable at $p \in U$ with derivative $(Df)_p$ at p. Then, we define

$$\int_{b}^{a} (Df)_{p} dt = \int_{b}^{a} B_{p} dt,$$

where $B_p \in \mathcal{M}^{m,n}(\mathbb{R})$ is the matrix representing $(Df)_p$.

Definition 1.2.7 (C^n) . Suppose f is a n-th order differentiable map and $\forall i \in \{1, ..., n\}$, $f^{(i)}$ is continuous. Then, f is continuous n-th order differentiable (or n-th order continuously differentiable) and we say that $f \in C^n$.

Theorem 1.2.8 (C^1 Mean Value Theorem). Suppose $U \subset \mathbb{R}^n$ is open, $[p,q] \subset U$, and $f: U \to \mathbb{R}^m \in C^1$. Then,

$$f(q) - f(p) = T \cdot (q - p)$$

where T is the average derivative of f on the segment [p,q] with

$$T = \int_0^1 (Df)_{p+t(q-p)} dt \in \mathcal{M}^{m,n}(\mathbb{R}).$$

Proof. (INCOMPLETE)

Corollary 1.2.2 (Connectedness, Differentiability, and Trivial Derivative Implies Constantness). Suppose $U \subset \mathbb{R}^n$ is open and connected. Suppose further that $f: U \to \mathbb{R}^m$ is differentiable and $\forall p \in U$, $(Df)_p = \tilde{0}$, where $\tilde{0}: \mathbb{R}^n \to \mathbb{R}^m$ is defined by $\tilde{0}(v) = 0_{\mathbb{R}^m} \ \forall v \in \mathbb{R}^n$. Then, f is contstant.

Theorem 1.2.9 (Differentiation Past the Integral). Suppose $[a,b], (c,d) \subset \mathbb{R}$, $f:[a,b] \times (c,d) \to \mathbb{R}$ is continuous, $\frac{\partial f}{\partial y}(x,y) \in \mathbb{R} \ \forall (x,y) \in [a,b] \times (c,d)$, and $\frac{\partial f}{\partial y}:[a,b] \times (c,d) \to \mathbb{R}$ is continuous. Then,

(i) $F:(c,d)\to\mathbb{R}$ defined by

$$F(y) = \int_{a}^{b} f(x, y) dx \ \forall y \in (c, d)$$

is of class C^1 and

(ii)

$$F'(y) = \int_a^b \frac{\partial f(x,y)}{\partial y} dx \ \forall y \in (c,d).$$

1.3 Higher Derivatives

Theorem 1.3.1 (Existence of Second Total Derivative Implies the Existence of Other Second Derivatives). (i) Suppose $U \subset \mathbb{R}^n$ is open, $f: U \to \mathbb{R}^m$, and $p \in U$. Suppose that $(D^2f)_p$ exists. Then, $\forall k \in \{1, \ldots, m\}$

- (a) $(D^2f_k)_p$ exists,
- (b) $\forall i, j \in \{1, ..., n\}$ $\frac{\partial^2 f_k}{\partial x_i \partial x_j}(p) \in \mathbb{R}$, and
- $(c) \forall i, j \in \{1, \ldots, n\}$

$$(D^2 f_k)_p(e_i, e_j) = \frac{\partial^2 f_k(p)}{\partial_{x_i} \partial_{x_j}}.$$

(ii)

Theorem 1.3.2 (Symmetry of Second Derivative). Suppose $U \subset \mathbb{R}$ is open, $f: U \to \mathbb{R}^m$, and $p \in U$. Suppose further that $(D^2 f)_p$ exists. Then, $(D^2 f)_p$ is symmetric; that is,

$$\forall v, w \in U \ (D^2 f)_p(v, w) = (D^2 f)_p(w, v).$$

Corollary 1.3.1 (Existence of Second-Derivative Implies Equivalence of Second-Mixed Partials).

Corollary 1.3.2 (Existence of r-th Derivative Implies Symetry and Equivalence of r-th Order Mixed Partials).

Definition 1.3.1 (Class C^r).

Definition 1.3.2 (Smoothness and class C^{∞}).

Definition 1.3.3 (Uniformly C^r convergent and Uniformly C^r Cauchy).

Theorem 1.3.3 (Euqivalence of Uniformly C^r Convergent and Uniformly C^r Cauchy).

Definition 1.3.4 (C^r norm).

Theorem 1.3.4 (C^r Norm Induced Banach Space).

Theorem 1.3.5 (C^r M-Test).

1.4 Implicit and Inverse Functions

Definition 1.4.1 (Implicit function).

Theorem 1.4.1 (Implicit Function Theorem).

Definition 1.4.2 (Diffeomorphism).

Definition 1.4.3 (C^r Diffeomorphism).

Theorem 1.4.2 (Inverse Function Theorem).

1.5 *The Rank Theorem

Omitted

1.6 *Lagrange Multipliers

Omitted

1.7 Multiple Integrals

Definition 1.7.1 (Multiple Inegrals).

Theorem 1.7.1 (Fubini's Theorem).

Corollary 1.7.1.

Theorem 1.7.2 (Cavalieri's Principal).

Theorem 1.7.3 (Change of Variables).

2 Lebesgue Theory

- 2.1
- 2.2
- 2.3
- 2.4
- 2.5