ZiLOG80

Calcolatori Elettronici

Bartolomeo Bajic

Memoria Interna allo Z80

T1 T3 T4 T5 T2 **T4 T5 M2** T2 Stack Pointer **PUSH HL** tipo FIFO **Opcode Fetch M1** T1 T2 T3 T4 T5 **M3** T1 **Buffer** INTERN DATABUS 8 bit d A Multiplexer F' A' di F sp TABUS8Bit la Z Flags R W W ce **IR** S Sign В B' m Instruction +1Temp Temp A Zero D' E' Ε D Register nt Half-Carry H' Н **A**rithmetic Instruction b Logic Decoder high low P/V Parity/overfl. Unit $IX \rightarrow$ hi Negate lo $IY \rightarrow$ Carry Control + Logic ADDRESS BUS 16 bit **Machine Cycle One Memory Request MREQ** Buffer —> **ADDRESS BUS 16** Input / Output Request **IORQ** Read RD hi+ WR Write System Control **RFSH** Refresh **Halt State** HALT Wait **◄**— WAIT Buffer **CPU Control** Interrupt Request ← INT Non-Maskable Interrupt NM Reset **←** RESET Bus Request **←** BUSRQ **CPU Bus Control**

BUSACK

Bus Acknowledge

T1 T2 **T3 T4 T5 M2** T3 T4 T5 Scrivo High byte **PUSH HL** in (SP) Opcode Fetch T2. **M1** Τ1 T2 T3 T4 **T5 M3 T1 Buffer** INTERN DATABUS 8 bit d ^A Multiplexer A' F di sp la Z Flags R W W ce **IR** S Sign В B' m Instruction +1Temp Temp A Zero Ε E' D' D Register nt Half-Carry H' **A**rithmetic Instruction b 8 Logic Decoder high low P/V Parity/overfl. Unit $IX \rightarrow$ Negate hi lo $IY \rightarrow$ Carry Control + Logic ADDRESS BUS 16 bit **Machine Cycle One Memory Request MREQ Buffer —**> **ADDRESS BUS 16** Input / Output Request **IORQ** Read RD hit **WR** Write System Control **RFSH** Refresh **Halt State** HAL₁ Wait **◄**— WAIT Buffer **CPU Control** Interrupt Request INT Non-Maskable Interrupt NM RESET Reset Bus Request **←** BUSRQ

BUSACK

Bus Acknowledge

CPU Bus Control

T1 T2 **T3 T4 T5 M2** T3 T4 **T5** Decremento **PUSH HL** ancora SP Opcode Fetch T2. **M1** T1 T3 T4 **T5 M3** T1 **Buffer** INTERN DATABUS 8 bit d A Multiplexer di A' F sp la Z Flags R W W ce **IR** S Sign В B' m Instruction +1Temp Temp A Zero Ε E' D' D Register nt Half-Carry Н H' **A**rithmetic Instruction b 8 Logic Decoder high low P/V Parity/overfl. Unit $IX \rightarrow$ Negate hi lo $IY \rightarrow$ Carry Control + Logic ADDRESS BUS 16 bit **Machine Cycle One Memory Request MREQ Buffer —**> **ADDRESS BUS 16** Input / Output Request **IORQ** Read RD hi+ WR Write System Control **RFSH** Refresh **Halt State** HAL₁ Wait WAIT Buffer **CPU Control** Interrupt Request INT Non-Maskable Interrupt NM RESET Reset Bus Request **←** BUSRQ

BUSACK

Bus Acknowledge

CPU Bus Control

T1 T2 **T3 T4 T5 M2** T3 T4 **T5** Tengo tutto **PUSH HL** sui Buffer T2. Opcode Fetch **M1** T1 T2 **T3** T4 **T5 M3** T1 **Buffer** INTERN DATABUS 8 bit d A Multiplexer A' di F sp la Z Flags R W W ce **IR** S Sign В B' m Instruction +1Temp Temp A Zero E' E D' D Register nt Half-Carry H' Н **A**rithmetic Instruction b 8 Logic Decoder high low P/V Parity/overfl. Unit $IX \rightarrow$ hi Negate lo $IY \rightarrow$ Carry Control SP + Logic **ADDRESS BUS 16 bit Machine Cycle One Memory Request MREQ Buffer** —> **ADDRESS BUS 16** Input / Output Request **IORQ** Read RD hi+ WR Write System Control **RFSH** Refresh **Halt State** HALT Wait **◄**— WAIT Buffer **CPU Control** Interrupt Request ← INT Non-Maskable Interrupt NM RESET Reset

CPU Bus Control

Bus Request **←**

Bus Acknowledge

BUSRQ

BUSACK

INTerrupt handler routine

Interrupt Handler (classico) Interrupt Handler (con EXX)

PUSH AF EX AF, AF'

PUSH BC EXX PUSH DE

PUSH HL ;...data acquisition...

;...data acquisition... EXX

EX AF, AF'

POP HL

POP DE EI POP BC RETI

POP AF

ΕI

L'assembler Z80 usa istruzioni di lunghezza totale 1,2,3,4 byte

T2 TW T3 Vengono utilizzate solo le linee A0...A7 IORQ RD dell'ADDRESS BUS (256 dispositivi I/O) M Buffer INTERNAL d **TABUS 8 bit** Multiplexer di A' F sp la Z Flags R W W ce IR S Sign HBUS 8 Bit В B' m Instruction +1Temp Temp A Zero E' Ε D' D Register nt Half-Carry H' **A**rithmetic Instruction b Logic Decoder high low P/V Parity/overfl. Unit $IX \rightarrow$ Negate hi Ю $IY \rightarrow$ Carry Control +1+ Logic ADDRESS BUS 16 bit Machine Cycle One **Memory Request MREQ Buffer ADDRESS BUS 16** Input / Output Request **IORQ** Read RD hi+ WR Write System Control RFSH Refresh **Halt State** HAL₁ Wait **◄**— WAIT Buffer **CPU Control** Interrupt Request INT Non-Maskable Interrupt NM RESET Reset Bus Request **◄—** BUSRQ **CPU Bus Control BUSACK Bus Acknowledge**

T2 TW **T3** Viene automaticamente inserito uno stato TWait. IORQ RD Una periferica lenta puo' inserirne altri ancora. M Buffer INTERNAL **TABUS 8 bit** Multiplexer di A' sp la Flags R W W ce IR S Sign В B' m B U S B it Instruction +1Temp Temp A Zero D' D Register nt Half-Carry H' **A**rithmetic Instruction b Logic Decoder high low P/V Parity/overfl. Unit $IX \rightarrow$ Negate hi lo $IY \rightarrow$ Carry Control +1+ Logic ADDRESS BUS 16 bit **Machine Cycle One MREQ Buffer** Memory Request **ADDRESS BUS 16** Input / Output Request IORG Read RD WR Write System Control **RFSH** Refresh **Halt State** HAL₁ Wait **◄—** WAIT Buffer **CPU Control** Interrupt Request INT Non-Maskable Interrupt NM RESET

CPU Bus Control

Bus Request **◄—**

Bus Acknowledge

BUSRO

BUSACK

RESET

Il RESET permette un'accensione ordinata del processore e deve essere tenuto attiva per almeno 3 cicli di clock

Effetti:

PC=0

IFF1=0

IFF2=0

I=0

R=0

IM=0

ADRESS e DATA BUS: alta impedenza

CONTROL LINES: inattive