Relaciones y Funciones

Matemáticas - Grado 9

2019

Cada cosa relacionado con...

Figura: Situaciones de relaciones.

Definición

Definición de una relación

Se denomina relación entre dos conjuntos de objetos como un nuevo conjunto que cumple una *condición* o *asociación*.

Figura : Partes de una relación.

- El conjunto de partida de denomina dominio el conjunto de llegada se denomina imagen.
- Los elementos de una relación se llaman pares ordenados. Así, las relaciones $1\rightarrow 2$, $2\rightarrow 4$, $3\rightarrow 6$, se reúnen en el conjunto $R=\{(1,2), (2,4), (3,6)\}.$
- En una relación se debe cumplir una regla c condición: R={(a,b)/ a le corresponde el doble en b}.

Definición

Definición de una relación

Se denomina relación entre dos conjuntos de objetos como un nuevo conjunto que cumple una *condición* o *asociación*.

Figura : Partes de una relación.

- El conjunto de partida de denomina dominio; el conjunto de llegada se denomina imagen.
- Los elementos de una relación se llaman pares ordenados. Así, las relaciones $1\rightarrow 2$, $2\rightarrow 4$, $3\rightarrow 6$, se reúnen en el conjunto $R=\{(1,2), (2,4), (3,6)\}.$
- En una relación se debe cumplir una regla o condición: R={(a,b)/ a le corresponde el doble en b}.

Definición

Definición de una relación

Se denomina relación entre dos conjuntos de objetos como un nuevo conjunto que cumple una *condición* o *asociación*.

Figura : Partes de una relación.

- El conjunto de partida de denomina dominio; el conjunto de llegada se denomina imagen.
- Los elementos de una relación se llaman pares ordenados. Así, las relaciones $1\rightarrow 2$, $2\rightarrow 4$, $3\rightarrow 6$, se reúnen en el conjunto $R=\{(1,2), (2,4), (3,6)\}.$
- En una relación se debe cumplir una regla o condición: R={(a,b)/ a le corresponde el doble en b}.

3 / 22

Definición

Definición de una relación

Se denomina relación entre dos conjuntos de objetos como un nuevo conjunto que cumple una *condición* o *asociación*.

Figura : Partes de una relación.

- El conjunto de partida de denomina dominio;
 el conjunto de llegada se denomina imagen.
- Los elementos de una relación se llaman pares ordenados. Así, las relaciones 1→2, 2→4, 3→6, se reúnen en el conjunto R={(1,2), (2,4), (3,6)}.
- En una relación se debe cumplir una regla o condición: $R = \{(a,b)/a \text{ le corresponde el doble en } b\}$.

- Cualquier relación puede representarse mediante un gráfico denominado plano cartesiano.
- Consiste en un par de ejes horizontal y vertical; el horizontal indica conjunto de partida y el vertical el conjunto de llegada.
- Cada punto en el plano representa un par ordenado.
- Ejemplo:

- Cualquier relación puede representarse mediante un gráfico denominado *plano cartesiano*.
- Consiste en un par de ejes horizontal y vertical; el horizontal indica conjunto de partida y el vertical el conjunto de llegada.
- Cada punto en el plano representa un par ordenado.
- Ejemplo:

- Cualquier relación puede representarse mediante un gráfico denominado *plano cartesiano*.
- Consiste en un par de ejes horizontal y vertical; el horizontal indica conjunto de partida y el vertical el conjunto de llegada.
- Cada punto en el plano representa un par ordenado
- Ejemplo:

- Cualquier relación puede representarse mediante un gráfico denominado *plano cartesiano*.
- Consiste en un par de ejes horizontal y vertical; el horizontal indica conjunto de partida y el vertical el conjunto de llegada.
- Cada punto en el plano representa un par ordenado.
- Ejemplo:

- Cualquier relación puede representarse mediante un gráfico denominado plano cartesiano.
- Consiste en un par de ejes horizontal y vertical; el horizontal indica conjunto de partida y el vertical el conjunto de llegada.
- Cada punto en el plano representa un par ordenado.
- Ejemplo:

- Cualquier relación puede representarse mediante un gráfico denominado plano cartesiano.
- Consiste en un par de ejes horizontal y vertical; el horizontal indica conjunto de partida y el vertical el conjunto de llegada.
- Cada punto en el plano representa un par ordenado.
- Ejemplo:

Figura : Relación A el doble de B.

- Cualquier relación puede representarse mediante un gráfico denominado plano cartesiano.
- Consiste en un par de ejes horizontal y vertical; el horizontal indica conjunto de partida y el vertical el conjunto de llegada.
- Cada punto en el plano representa un par ordenado.
- Ejemplo:

Figura: Relación A el doble de B.

Conjuntos de Dominio e Imagen

Definición

Conjunto de dominio

Es el conjunto de elementos que cumplen con la relación en el conjunto de partida.

Conjunto de imagen

Es el conjunto de elementos que cumplen con la relación en el conjunto de llegada.

Ejemplo: Sean los conjuntos $R=\{1, 2, 3, 5, 6\}$ y $Q=\{3, 6, 7\}$ y la relación $F=\{(r, q)/r \text{ es divisible por } q\}.$

F =

dominio: dom = imagen: im =

Definición

Función

- Una función es un caso especial de relación
- Cualquier función es una relación, pero no toda relación es una función.
- En una función el dominio contiene todo el conjunto de partida.
- Usos: las funciones describen o modelan situaciones que **dependen** de una o más variables.
- En general, las funciones se usan para determinar la imagen a partir de un dominio.

Definición

Función

- Una función es un caso especial de relación.
- Cualquier función es una relación, pero no toda relación es una función.
- En una función el dominio contiene todo el conjunto de partida.
- Usos: las funciones describen o modelan situaciones que **dependen** de una o más variables.
- En general, las funciones se usan para determinar la imagen a partir de un dominio.

Definición

Función

- Una función es un caso especial de relación.
- Cualquier función es una relación, pero no toda relación es una función.
- En una función el dominio contiene todo el conjunto de partida.
- Usos: las funciones describen o modelan situaciones que dependen de una o más variables.
- En general, las funciones se usan para determinar la imagen a partir de un dominio.

Definición

Función

- Una función es un caso especial de relación.
- Cualquier función es una relación, pero no toda relación es una función.
- En una función el dominio contiene todo el conjunto de partida.
- Usos: las funciones describen o modelan situaciones que dependen de una o más variables.
- En general, las funciones se usan para determinar la imagen a partir de un dominio.

Definición

Función

- Una función es un caso especial de relación.
- Cualquier función es una relación, pero no toda relación es una función.
- En una función el dominio contiene todo el conjunto de partida.
- Usos: las funciones describen o modelan situaciones que **dependen** de una o más variables.

Definición

Función

Una función o aplicación es una relación que cumple la condición que para todo elemento del conjunto de partida hay una y solo una imagen en el conjunto de llegada.

- Una función es un caso especial de relación.
- Cualquier función es una relación, pero no toda relación es una función.
- En una función el dominio contiene todo el conjunto de partida.
- Usos: las funciones describen o modelan situaciones que **dependen** de una o más variables.
- En general, las funciones se usan para determinar la imagen a partir de un dominio.

2019

Clasificación

De acuerdo a las relaciones entre los conjuntos dominio e imagen, las funciones se clasifican en:

- Inyectiva: cuando a cada elemento de la imagen le corresponde uno y solo un elemento del dominio.
 - Figura : $f: L \rightarrow N$, a cada letra un número

- Sobreyectiva: cuando la imagen es todo el conjunto de llegada.
 - Figura : $f : P \rightarrow Q$, el cuadrado de.

- Biyectiva: cuando es inyectiva y sobreyectiva.
 - Figura : $f: X \rightarrow Y$, es idéntico a.

Clasificación

De acuerdo a las relaciones entre los conjuntos dominio e imagen, las funciones se clasifican en:

 Inyectiva: cuando a cada elemento de la imagen le corresponde uno y solo un elemento del dominio.

Figura : $f: L \rightarrow N$, a cada letra un número.

Sobreyectiva: cuando la *imagen* es todo el conjunto de *llegada*.

Figura : $f: P \rightarrow Q$, el cuadrado de.

Biyectiva: cuando es *inyectiva* y sobreyectiva.

Figura : $f: X \rightarrow Y$, es idéntico a

Clasificación

De acuerdo a las relaciones entre los conjuntos dominio e imagen, las funciones se clasifican en:

 Inyectiva: cuando a cada elemento de la imagen le corresponde uno y solo un elemento del dominio.

Figura : $f : L \rightarrow N$, a cada letra un número.

Sobreyectiva:

cuando la *imagen* es todo el conjunto de *llegada*.

Figura : $f : P \rightarrow Q$, el cuadrado de.

 Biyectiva: cuando es inyectiva y sobreyectiva.

Figura : $f: X \rightarrow Y$, es idéntico a

Clasificación

De acuerdo a las relaciones entre los conjuntos dominio e imagen, las funciones se clasifican en:

 Inyectiva: cuando a cada elemento de la imagen le corresponde uno y solo un elemento del dominio.

Figura : $f: L \rightarrow N$, a cada letra un número.

 Sobreyectiva: cuando la imagen es todo el conjunto de llegada.

Figura : $f: P \rightarrow Q$, el cuadrado de.

• **Biyectiva:** cuando es *inyectiva* y sobreyectiva.

Χ	-2	2	-1	Q	1	2	2	3	3
Υ	-2	2	-1	0	1	2	2	3	}

Figura : $f: X \rightarrow Y$, es idéntico a.

$$-1 \to -1$$
, $-2 \to -8$, $4 \to 64$, $5 \to 125$

Funciones son reglas

 ¿Cuál es la relación entre los siguientes pares ordenados? ¿La relación es una función?

$$-1 \rightarrow -1$$
, $-2 \rightarrow -8$, $4 \rightarrow 64$, $5 \rightarrow 125$

Funciones son reglas

• ¿Cuál es la relación entre los siguientes pares ordenados? ¿La relación es una función?

$$-1 \rightarrow -1$$
, $-2 \rightarrow -8$, $4 \rightarrow 64$, $5 \rightarrow 125$

- De forma sencilla la relación es:
- El anterior ejemplo es un caso ideal del uso de las funciones

Aplicaciones de las funciones (I)

Una función es una *regla* que permite determinar una imagen a partir de un dominio dado.

El anterior ejemplo es ahora.

• El anterior ejemplo se escribe como $f: X \to Y$ con $f(x) = x^3$ (c simplemente $y = x^3$) para el $dom = \{-1, -2, 4, 5\}$.

Funciones son reglas

 ¿Cuál es la relación entre los siguientes pares ordenados? ¿La relación es una función?

$$-1 \rightarrow -1$$
, $-2 \rightarrow -8$, $4 \rightarrow 64$, $5 \rightarrow 125$

- De forma sencilla la relación es:
- El anterior ejemplo es un caso ideal del uso de las funciones.

Funciones son reglas

• ¿Cuál es la relación entre los siguientes pares ordenados? ¿La relación es una función?

$$-1 \rightarrow -1$$
, $-2 \rightarrow -8$, $4 \rightarrow 64$, $5 \rightarrow 125$

- De forma sencilla la relación es:
- El anterior ejemplo es un caso ideal del uso de las funciones.

Aplicaciones de las funciones (I)

Una función es una *regla* que permite determinar una imagen a partir de un dominio dado.

El anterior ejemplo es ahora...

• El anterior ejemplo se escribe como $f: X \to Y$ con $f(x) = x^3$ (o simplemente $y = x^3$) para el $dom = \{-1, -2, 4, 5\}$.

- Comúnmente, las funciones expresan en forma matemática una dependencia entre cantidades que varían con cierta regularidad
 - El tiempo de recorrido de un bus depende que tan rápido avanza.
 - El costo del recibo de la luz depende del consumo realizado en un mes
 - El costo de unos zapatos dependen del lugar, marca y material.
- En una función el dominio está constituido por las *variables independientes* y la imagen por las *variables dependientes*.
- Las funciones permiten *evaluar* o calcular la variable dependiente a partir de la variable independiente.

- Comúnmente, las funciones expresan en forma matemática una dependencia entre cantidades que varían con cierta regularidad
 - El tiempo de recorrido de un bus depende que tan rápido avanza.
 - El costo del recibo de la luz depende del consumo realizado en un mes.
 - El costo de unos zapatos dependen del lugar, marca y material.
- En una función el dominio está constituido por las variables independientes y la imagen por las variables dependientes.
- Las funciones permiten *evaluar* o calcular la variable dependiente a partir de la variable independiente.

- Comúnmente, las funciones expresan en forma matemática una dependencia entre cantidades que varían con cierta regularidad
 - El tiempo de recorrido de un bus depende que tan rápido avanza.
 - El costo del recibo de la luz depende del consumo realizado en un mes.
 - El costo de unos zapatos dependen del lugar, marca y material.
- En una función el dominio está constituido por las variables independientes y la imagen por las variables dependientes.
- Las funciones permiten evaluar o calcular la variable dependiente a partir de la variable independiente.

- Comúnmente, las funciones expresan en forma matemática una dependencia entre cantidades que varían con cierta regularidad
 - El tiempo de recorrido de un bus depende que tan rápido avanza.
 - El costo del recibo de la luz depende del consumo realizado en un mes.
 - El costo de unos zapatos dependen del lugar, marca y material.
- En una función el dominio está constituido por las variables independientes y la imagen por las variables dependientes.
- Las funciones permiten *evaluar* o calcular la variable dependiente a partir de la variable independiente.

Evaluación de Funciones

Funciones son reglas

Aplicaciones de las funciones (II)

Una función se evalúa a partir de un dominio dado; los valores obtenidos son la imagen de la función.

• **Ejemplo.** Evaluar la función y = 3x - 2 para el dominio $X = \{-1, -2, 0, 1, 2, 3\}.$

Representación de Funciones

Funciones son reglas

Aplicaciones de las funciones (III)

Una función, junto con su dominio e imagen, se representa normalmente de dos formas:

- **Tabulación:** las variables independiente y dependiente se escriben en una tabla.
- Representación cartesiana: las variables independiente y dependiente se escriben como una pareja ordenada

(var. independiente, var. dependiente)

para luego representarse en el plano cartesiano.

Evaluación de Funciones

Algunos ejemplos

• **Ejemplo.** Un bus realiza un recorrido de 20 Km; la función para calcular el tiempo gastado en términos de su rapidez es t=20/v, donde t es el tiempo en h y v la rapidez en Km/h. Estimar los tiempos de recorrido para el conjunto de rapideces $V=\{2, 5, 10, 20, 40\}$.

• **Ejemplo.** El volumen de un cubo se halla multiplicando su lado tres veces por si mismo. Escribir la función matemática y hallar el volumen para un conjunto de cubos que miden $L = \{1, 2, 5, 10\}$.

Representación cartesiana de Funciones

Más sobre el plano cartesiano

• Una pareja ordenada (a, b) representa:

Cada pareja o punto se dibuja en el plano según sus signos

Evaluación de Funciones

Algunos ejemplos

• **Ejemplo.** Un caracol asciende por una pared, recorriendo 30 cm por hora, descansa un momento y desliza 2 cm hacia abajo. Escribir la función matemática para el movimiento y representarla en el plano cartesiano para el dominio $T = \{1, 2, 3, 4\}$.

Evaluación de Funciones

Algunos ejemplos

• **Ejemplo.** Representar en el plano cartesiano la función $y = 3x - x^2$ para el dominio $T = \{-1, 0, 1, 2, 3\}$.

Función constante

Definición y Representación

Definición

Es una función sobreyectiva cuyo dominio es cualquier número real y la imagen es un sólo número real.

- Se dice constante o uniforme por que la imagen no cambia de valor
- En el plano cartesiano, se representa con una línea horizontal, según el valor de la variable dependiente.

Función constante

Definición y Representación

Definición

Es una función sobreyectiva cuyo dominio es cualquier número real y la imagen es un sólo número real.

- Se dice constante o uniforme por que la imagen no cambia de valor.
- En el plano cartesiano, se representa con una línea horizontal, según el valor de la variable dependiente.

Función constante

Definición y Representación

Definición

Es una función sobreyectiva cuyo dominio es cualquier número real y la imagen es un sólo número real.

- Se dice constante o uniforme por que la imagen no cambia de valor.
- En el plano cartesiano, se representa con una línea horizontal, según el valor de la variable dependiente.

Ejemplos

- Sean los conjuntos C={Cali, Tunja, Pasto, Neiva, Quíndio}, D={Nariño, Boyaca, Cauca, Valle, Armenia, Villavicencio, Huila}. a) Escribir la relación T={es la capital de}. b) Escribir la relación U={tiene por capital a}. c) Dibujar la representación cartesiano en cada caso.
- ② Sean los conjuntos $A=\{1, 2, 3, 4, 5\}$ y $B=\{1, 2, 3, 4, 5, 6, 7, 8, 9\}$ y R la relación definida por la regla $R=\{(a, b)/b$ bes igual al doble de a más uno $\{a, b\}$. Hallar la relación $\{a, b\}$ bes divisible por a $\{a, b\}$ y su representación cartesiana.

- Dados los conjuntos $C = \{-5, -3, 0, 1, 3, 4\}$ y $D = \{-1, 2, 3, 6\}$, a) encontrar la relación que satisface la regla $R = \{(c, d)/c + d = 3\}$. b) Hallar los conjuntos dominio e imagen.
- Sean los conjuntos P={-1, -2, 3, 4, 5} y Q={-1, -8, 64, 125} a) Hallar una relación matemática para los conjuntos P y Q. b) Hallar los respectivos conjunto dominio e imagen. c) Dibujar la representación cartesiana de la relación.

- Realizar 4 ejemplos de relaciones que sean funciones y 4 ejemplos de relaciones que no sean funciones.
 En cada ejemplo encontrar el dominio y la imagen de la relación (De preferencia, ejemplos originales).
- ② Considere los conjuntos $F = \{A, B, C, D, E\}$, $G = \{1, 2, 3, 4, 5\}$ y $H = \{a, b, c\}$; construir y definir una función
 - a) inyectiva tal que $f: G \rightarrow H$.
 - b) sobreyectiva tal que $f: F \to H$.
 - c) biyectiva tal que $f: F \to G$.

- Evaluar las siguientes funciones para el dominio $X = \{-3, -2, -1, 0, 1, 2, 3\}$
 - a) y = x 2.
 - b) $y = \frac{x}{2} + \frac{1}{2}$.
 - c) $y = x^2 + 1$.
- ② En un almacén de telas y paños vende cierto paño a un costo de \$1500 por metro.
 - a) Encontrar la expresión matemática que permite calcular el precio de la venta en términos de los metros comprados.
 - b) Encontrar los precios para el conjunto de metros de tela $T = \{1, 2, 3.25, \frac{5}{2}, \frac{7}{5}, \sqrt{7}\}.$

- Un automóvil consume 8 galones de combustible por cada 2 Km de recorrido. Para un día realiza los siguientes recorridos en kilómetros: 4, 8, 10, 20, 50.
 - a) Hallar la función que permita encontrar el combustible consumido en términos de la distancia recorrida.
 - b) Representar de forma cartesiana la función con los datos del problema.
- 2 En un trabajo de ornamentación, se necesitan diseñar ventanas donde el alto es los dos tercios del ancho.
 - a) Determinar la función que permita calcular la cantidad de viga usada (es decir, el perímetro de la ventana) en términos del ancho.
 - b) Representar en el plano cartesiano la función para ventanas de ancho en metros de $\frac{6}{5}$, $\frac{3}{2}$, 3 y 6.