КИЇВСЬКИЙ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ імені ТАРАСА ШЕВЧЕНКА

ФАКУЛЬТЕТ ІНФОРМАЦІЙНИХ ТЕХНОЛОГІЙ

Кафедра прикладних інформаційних систем

Звіт до лабораторної роботи №1

з курсу

«Чисельні методи»

студента 3 курсу групи ПП-31 спеціальності 122 «Комп'ютерні науки» ОП «Прикладне програмування» Селецького В. Р.

> Викладач: Жихарєва Ю.І.

Тема: Елементи теорії похибок.

Мета: Освоїти методику оцінки похибок наближених чисел, навчитися визначати вірні цифри наближеного числа, проводити оцінку похибки значення функції аргументами якої ϵ наближені числа.

Завдання

Завдання 1

- 1) Визначити, яка рівність точніша;
- 2) Округлити сумнівні цифри числа, залишивши вірні знаки. Визначити абсолютну похибку результату;
- 3) Знайти граничні абсолютну і відносну похибки чисел, якщо вони мають тільки вірні цифри.

16. 1)
$$5/3 = 1,667$$
; $\sqrt{38} = 6,16$.
2) a) $0,98351(\pm 0,00042)$;
6) $3,7542$; $\delta = 0,32\%$.
3) a) $62,74$; 6) $0,389$.

рис 1 (варіант 16 завдання 1-3)

Завдання 2

Задано функцію f(a,b,c). Значення змінних зазначені у варіанті з усіма вірними цифрами. Оцінити похибку результату двома способами:

- 4) 3 використанням теорем оцінки похибок арифметичних операцій;
 - 5) За загальною формулою оцінки похибки.

Nº	f(a,b,c)	a	b	С
16	$\frac{a+b^2}{a^2-b}$	4,41	18,5	

рис 2 (варіант 16 завдання 4-5)

Хід роботи

Завдання 1.

Пункт 1

Визначити, яка рівність точніша.

$$5/3 = 1.667 \qquad \qquad \sqrt{38} = 6.16$$

Розв'язання.

Знаходимо значення даних виразів з більшим числом десяткових знаків:

$$\widetilde{x_1} = \frac{5}{3} = 1.66667...$$
 $\widetilde{x_2} = \sqrt{38} = 6.16441$

Обчислимо граничні абсолютні похибки, округляючи їх з надлишком:

$$\Delta(\widetilde{x_1}) = |1.66667 - 1.667| = 0.00033 \le 0.00034$$

$$\Delta(\widetilde{x_2}) = |6.16441 - 6.16| = 0.00441 \le 0.0045$$

Обчислимо граничні відносні похибки:

$$\delta(\widetilde{x_1}) = \frac{\Delta(\widetilde{x_1})}{\widetilde{x_1}} = \frac{0.00033}{1.667} = 0.00019 = 0.019\%$$

$$\delta(\widetilde{x_2}) = \frac{\Delta(\widetilde{x_2})}{\widetilde{x_2}} = \frac{0.00441}{6.16} = 0.00071 = 0.071\%$$

Висновок: Оскільки $\delta(\widetilde{x_1}) < \delta(\widetilde{x_2})$, то рівність 5/3=1.667 є точнішою.

Пункт 2

Округлити сумнівні цифри числа, залишивши вірні знаки. Визначити абсолютну похибку результату.

a)
$$0.98351(\pm 0.00042)$$
; δ) 3.7542 ; $\delta = 0.32\%$

Розв'язання.

а) Нехай $0.98351(\pm 0.00042)=\tilde{x}$. За умовою похибки $\Delta(\tilde{x})=0.00042<0.0005$. Це означає, що в числі 0.98351 вірними є цифри 0, 9, 8, 3 (до першої цифри після коми, тобто до тисячних).

За правилами округлення знайдемо наближене значення числа, зберігши тисячні долі:

$$\widetilde{x_1} = 0.984$$

$$\begin{split} &\Delta(\widetilde{x_1}) = \Delta(\widetilde{x}) + \Delta_{o\kappa p} = 0.00042 + |0.984 - 0.98351| = 0.00042 + 0.00049 \\ &= 0.00091 \end{split}$$

Отримана похибка $\Delta(\widetilde{x_1})$ більша за 0.0005, але менша за 0.005, тому треба зменшити число цифр в наближеному числі до трьох:

$$\widetilde{x_2} = 0.98$$

$$\Delta(\widetilde{x_2}) = \Delta(\widetilde{x}) + \Delta_{o\kappa p} = 0.00042 + |0.98 - 0.98351| = 0.00042 + 0.00351$$
$$= 0.00393$$

Оскільки $\Delta(\widetilde{x_2}) < 0.005$ то три цифри, що залишилися, вірні.

Відповідь: $0.98351(\pm 0.00042) \approx 0.98$

б) Нехай 3.7542; $\delta=0.32\%$,тоді $\Delta(\widetilde{x_1})=\widetilde{x}*\delta(\widetilde{x})=3.7542*0.0032=0.01201<0.05$

В даному числі вірними ϵ дві цифри: 3 та 7. Округлюємо його:

$$\widetilde{x_1} = 3.8$$

Перевірка:

$$\Delta(\widetilde{x_1}) = \Delta(\widetilde{x}) + \Delta_{o\kappa p} = 0.01201 + |3.8 - 3.7542| = 0.01201 + 0.0458$$
$$= 0.05781 < 0.5$$

Оскільки отримана похибка менша за 0.5, то в округленому числі 3.8 цифра 3 - вірна, а цифра 8 - сумнівна.

За правилами округлення знайдемо наближене значення числа

$$\widetilde{x_2} = 4$$

Перевірка:

$$\Delta(\widetilde{x_2}) = \Delta(\widetilde{x}) + \Delta_{o\kappa p} = 0.01201 + |4 - 3.7542| = 0.01201 + 0.2458 = 0.25781 < 0.5$$

Оскільки отримана похибка менша за 0.5, то в округленому числі 4 цифра 4 вірна.

Відповідь: $3.7542(1 \pm 0.32\%) \approx 4$

Пункт 3

Знайти граничні абсолютну і відносну похибку чисел, якщо вони мають тільки вірні цифри.

- a) 62.74
- б) 0.389
- а) За умовою всі 4 цифри числа 62.74 вірні, тому абсолютна похибка $\Delta(\tilde{x}) = 0.005. \ \text{Відносна похибка}:$

$$\frac{\Delta(\tilde{x})}{|\tilde{x}|} = \frac{0.005}{62.74} = 0.000079694 \le 0.00008$$

$$\delta(\tilde{x}) = 0.008\%$$

б) За умовою всі 4 цифри числа 0.389 вірні, тому абсолютна похибка $\Delta(\tilde{x}) = 0.0005$. Відносна похибка:

$$\frac{\Delta(\tilde{x})}{|\tilde{x}|} = \frac{0.0005}{0.389} = 0.0012853 \le 0.002$$

$$\delta(\tilde{x}) = 0.2\%$$

Завдання 2

1. Оцінити похибку результату з використанням теорем оцінки арифметичних похибок.

Задана функція
$$f(a,b) = \frac{a+b^2}{a^2-b}$$
 , де

$$a = 4.41 \pm 0.005$$

$$b = 18.5 \pm 0.05$$

Обчислимо наближене значення функції:

$$f(a,b) = \frac{a+b^2}{a^2-b} = \frac{4.41+18.5^2}{4.41^2-18.5} = 365.63654$$

За правилами обчислення похибок маємо:

$$\begin{split} &\delta \Big(f(a,b) \Big) = \delta (a+b^2) + \delta (a^2-b) = \frac{\Delta (a+b^2)}{|a+b^2|} + \frac{\Delta (a^2-b)}{|a^2-b|} = \frac{\Delta (a) + \Delta (b^2)}{|a+b^2|} + \frac{\Delta (a^2) + \Delta (b)}{|a^2-b|} = \\ &\frac{\Delta (a) + 2 * \delta (b) * |b^2|}{|a+b^2|} + \frac{2 * \delta (a) * a^2 + \Delta (b)}{|a^2-b|} = \frac{\Delta (a) + 2 * \frac{\Delta (b)}{|b|} * |b^2|}{|a+b^2|} + \frac{2 * \frac{\Delta (a)}{|a|} * |a^2| + \Delta (b)}{|a^2-b|} = \frac{\Delta (a) + 2 * \Delta (b) * |b|}{|a+b^2|} + \frac{2 * \Delta (a) * |a| + \Delta (b)}{|a^2-b|} = \frac{\Delta (a) + \Delta (b) * |b|}{|a+b^2|} + \frac{\Delta (a^2) + \Delta (b)}{|a^2-b|} = \frac{\Delta (a) + \Delta (b)}{|a+b^2|} + \frac{\Delta (a^2) + \Delta (b)}{|a^2-b|} = \frac{\Delta (a) + \Delta (b)}{|a+b^2|} + \frac{\Delta (a^2) + \Delta (b)}{|a^2-b|} = \frac{\Delta (a) + \Delta (b)}{|a^2-b|} + \frac{\Delta (a^2) + \Delta (b)}{|a^2-b|} = \frac{\Delta (a) + \Delta (b)}{|a^2-b|} + \frac{\Delta (a) + \Delta (b)}{|a^2-b|} + \frac{\Delta (a) + \Delta (b)}{|a^2-b|} = \frac{\Delta (a) + \Delta (b)}{|a^2-b|} + \frac{\Delta (a) + \Delta (b)}{|a^2-b|} + \frac{\Delta (a) + \Delta (b)}{|a^2-b|} = \frac{\Delta (a) + \Delta (b)}{|a^2-b|} + \frac{\Delta (a) + \Delta (b)}{|a^2-b|} = \frac{\Delta (a) + \Delta (b)}{|a^2-b|} + \frac$$

Підставляємо

$$\delta(f(a,b)) = \frac{0.005 + 2*0.05*18.5}{|4.41 + 18.5^2|} + \frac{2*0.005*4.41 + 0.05}{|4.41^2 - 18.5|} = 0.104602 < 0.11$$

Отже:
$$\delta(f(a, b)) = 11\%$$

Далі рахуємо за формулою:

$$\deltaig(f(a,b)ig)*|f(a,b)|=0.104602*365.6365=38.2463<39$$
 виходить, що $\Deltaig(f(a,b)ig)=39$

Відповідь:
$$f(a, b, c) = 365.63654 \pm 39$$

2. Оцінити похибку результату за загальною формулою оцінки похибки.

Задана функція
$$f(a,b) = \frac{a+b^2}{a^2-b}$$
 , де

$$a = 4.41 \pm 0.005$$

$$b = 18.5 \pm 0.05$$

Для функції трьох змінних визначимо частинні похідні від функції $f(\tilde{a}, \tilde{b}, \tilde{c})$. При визначенні частинної похідної по змінній дві інші змінні вважаємо константами. Згідно з правилами диференціювання частки та складеної функції маємо:

$$f'_{a}(\tilde{a}, \tilde{b}) = \left(\frac{a+b^2}{a^2-b}\right)'_{a} = \frac{-a^2-b-2*a*b^2}{(a^2-b)^2}$$

Підставимо задані значення:

$$f'_a(\tilde{a}, \tilde{b}) = \left(\frac{a+b^2}{a^2-b}\right)'_a = \frac{-4.41^2 - 18.5 - 2 * 4.41 * 18.5^2}{(4.41^2 - 18.5)^2} = -3400.39474$$

Те саме для змінної b:

$$f'_b(\tilde{a}, \tilde{b}) = \left(\frac{a+b^2}{a^2-b}\right)'_b = \frac{2*a^2*b-b^2+a}{(a^2-b)^2}$$

Підставимо задані значення:

$$f'_b(\tilde{a}, \tilde{b}) = \left(\frac{a+b^2}{a^2-b}\right)'_b = \frac{2*4.41^2*18.5 - 18.5^2 + 4.41}{(4.41^2 - 18.5)^2} = 424.67729$$

Отримані значення частинної похідної підставляємо у загальну формулу

$$\Delta\left(f(\tilde{a},\tilde{b})\right) = \left|f'_{a}(\tilde{a},\tilde{b})\right| * \Delta(\tilde{a}) + \left|f'_{b}(\tilde{a},\tilde{b})\right| * \Delta(\tilde{b})$$

$$\Delta\left(f(\tilde{a}, \tilde{b})\right) = |-3400.39474| * 0.005 + |424.67729| * 0.05 = 38.2358 < 39$$

Відповідь: $f(a, b) = 365.63654 \pm 39$

Висновки

В ході лабораторної роботи було освоєно методики оцінки похибок наближених чисел та визначення вірних цифр наближеного числа.

Контрольні питання:

1) Дайте означення обчислювального експерименту та перелічіть його основні етапи.

Обчислювальний експеримент — це технологія наукового дослідження практичних задач, основана на побудові й аналізі за допомогою комп'ютера математичних моделей досліджуваних явищ та об'єктів.

Основними етапами є: Постановка задачі; Побудова математичної моделі; Застосування чисельного методу; Написання програми для ЕОМ; Тестування та налагодження програми; Проведення розрахунків; Аналіз результатів.

2) Перелічить джерела виникнення похибок обчислювального експерименту. Які похибки обчислювального експерименту називають неусувними і чому?

Джерела виникнення похибок ϵ : Похибка математичної моделі; Похибка вхідних даних; Похибка чисельного методу; Обчислювальна похибка.

Похибку математичної моделі та похибку вхідних даних відносять до неусувної похибки, оскільки ці похибки не залежать від обчислювача.

3) Дайте означення граничних абсолютної та відносної

похибок.

Граничною абсолютною похибкою наближення \tilde{x} називається число $\Delta(\tilde{x})$, яке не менше абсолютної похибки наближення, тобто $\Delta = |x - \tilde{x}| \leq \Delta(\tilde{x})$.

Граничною відносною похибкою наближення \tilde{x} називається число $\delta(\tilde{x})$, яке не менше відносної похибки наближення, тобто $\delta = \frac{|x-\tilde{x}|}{|\tilde{x}|} \leq \delta(\tilde{x})$.

4) Які значущі цифри наближеного числа називаються вірними, а які сумнівними?

Вірними цифрами наближеного числа \tilde{x} називаються перші п значущих цифр цього числа, якщо його абсолютна похибка не перевищує половини одиниці розряду, який відповідає n-й значущій цифрі, тобто виконується нерівність: $|x-\tilde{x}| \leq \frac{1}{2}*10^{m-n+1}$.

Сумнівними цифрами наближеного числа \tilde{x} називаються зайві збережені цифри, крім вірних.

5) Що таке машинний епсилон і що він характеризує?

Величина $\varepsilon_M = \frac{1}{2} \, 10^{1-k}$ — називається машинним епсилоном, він характеризує відносну похибку подання дійсних чисел в пам'яті комп'ютера і є одним з найважливіших параметрів обчислювальної системи. Отримані вирази дають підставу стверджувати, що будь-яке число в інтервалі $[1 - \varepsilon_M, 1 + \varepsilon_M]$ у машинному поданні не буде відрізнятися від одиниці.

6) Що означає обчислити наближене число із заданою точністю?

Обчислити наближене число із заданою точністю означає, що необхідно зберегти вірною значущу цифру, яка стоїть в n-му розряді після коми.

7) Запишіть формули для обчислення похибок арифметичних операцій.

1.
$$\Delta(\widetilde{x_1} \pm \widetilde{x_2}) = \Delta(\widetilde{x_1}) + \Delta(\widetilde{x_2})$$

2.
$$\delta(\widetilde{x_1} * \widetilde{x_2}) = \delta(\widetilde{x_1}) + \delta(\widetilde{x_2})$$

3.
$$\delta\left(\frac{\widetilde{x_1}}{\widetilde{x_2}}\right) = \delta(\widetilde{x_1}) + \delta(\widetilde{x_2})$$

4.
$$\delta\left(\widetilde{x_1^k}\right) = k\delta(\widetilde{x_1})$$

8) У чому полягає проблема втрати точності при відніманні близьких чисел і які є способи її уникнути?

Якщо наближені значення чисел $\widetilde{x_1}$ та $\widetilde{x_2}$ близькі, то відносна похибка різниці чисел буде дуже великою порівняно з відносними похибками самих чисел, тому, по можливості, слід уникати віднімання двох майже рівних чисел. Це потрібно враховувати при побудові обчислювальних алгоритмів: адже велика помилка різниці буде накопичуватись в ході подальших обчислень.

Формули, що містять віднімання двох близьких чисел, часто можна перетворити так, щоб уникнути цієї операції. Наприклад: $1-\cos{(x)}=2\sin^2{(\frac{x}{2})}$.

9) У чому полягає пряма задача теорії похибок? Запишіть загальну формулу оцінки похибки для функції двох незалежних змінних.

Пряма задача теорії похибок полягає у наступному — визначити похибку значення функції по відомих похибках аргументів.

Загальна формула оцінки похибки для функції двох незалежних змінних:

$$\Delta\left(f(\tilde{a},\tilde{b})\right) = \left|f'_{a}(\tilde{a},\tilde{b})\right| * \Delta(\tilde{a}) + \left|f'_{b}(\tilde{a},\tilde{b})\right| * \Delta(\tilde{b})$$

10) У чому полягає обернена задача теорії похибок?

Обернена задача теорії похибок полягає у наступному – якими повинні бути абсолютні похибки аргументів функції, щоб абсолютна похибка функції не перевищувала заданої величини.