

Teste Intermédio de Matemática A

Versão 1

Teste Intermédio

Matemática A

Versão 1

Duração do Teste: 90 minutos | 26.05.2011

12.º Ano de Escolaridade

Decreto-Lei n.º 74/2004, de 26 de Março

Na sua folha de respostas, indique de forma legível a versão do teste.

Formulário

Comprimento de um arco de circunferência

 α r (α – amplitude, em radianos, do ângulo ao centro; r – raio)

Áreas de figuras planas

Losango:
$$\frac{Diagonal\ maior \times Diagonal\ menor}{2}$$

Trapézio:
$$\frac{Base\ maior + Base\ menor}{2} \times Altura$$

Polígono regular:
$$Semiperímetro \times Apótema$$

Sector circular:
$$\frac{\alpha r^2}{2}$$

$$(\alpha - amplitude, em radianos, do ângulo ao centro; $r - raio)$$$

Áreas de superfícies

Área lateral de um cone: $\pi r g$

$$(r - raio \ da \ base; \ g - geratriz)$$

Área de uma superfície esférica: $4 \pi r^2$

$$(r - raio)$$

Volumes

Pirâmide:
$$\frac{1}{3} \times \text{Area da base} \times \text{Altura}$$

Cone:
$$\frac{1}{3} \times \text{Area da base} \times \text{Altura}$$

Esfera:
$$\frac{4}{3} \pi r^3 (r - raio)$$

Trigonometria

$$\operatorname{sen}(a+b) = \operatorname{sen}a \cdot \cos b + \operatorname{sen}b \cdot \cos a$$

$$\cos(a+b) = \cos a \cdot \cos b - \sin a \cdot \sin b$$

$$tg(a + b) = \frac{tga + tgb}{1 - tga \cdot tgb}$$

Complexos

$$(\rho cis \theta)^n = \rho^n cis (n\theta)$$

$$\sqrt[n]{\rho \operatorname{cis} \theta} = \sqrt[n]{\rho} \operatorname{cis} \left(\frac{\theta + 2k\pi}{n} \right), \ k \in \{0, ..., n-1\}$$

Probabilidades

$$\mu = p_1 x_1 + \ldots + p_n x_n$$

$$\sigma = \sqrt{p_1(x_1 - \mu)^2 + ... + p_n(x_n - \mu)^2}$$

Se $X \in N(\mu, \sigma)$, então:

$$P(\mu - \sigma < X < \mu + \sigma) \approx 0.6827$$

$$P(\mu - 2\sigma < X < \mu + 2\sigma) \approx 0.9545$$

$$P(\mu - 3\sigma < X < \mu + 3\sigma) \approx 0.9973$$

Regras de derivação

$$(u+v)' = u' + v'$$

$$(u \cdot v)' = u' \cdot v + u \cdot v'$$

$$\left(\frac{u}{v}\right)' = \frac{u' \cdot v - u \cdot v'}{v^2}$$

$$(u^n)' = n \cdot u^{n-1} \cdot u' \quad (n \in \mathbb{R})$$

$$(\operatorname{sen} u)' = u' \cdot \cos u$$

$$(\cos u)' = -u' \cdot \sin u$$

$$(\operatorname{tg} u)' = \frac{u'}{\cos^2 u}$$

$$(e^u)' = u' \cdot e^u$$

$$(a^u)' = u' \cdot a^u \cdot \ln a \quad (a \in \mathbb{R}^+ \setminus \{1\})$$

$$(\ln u)' = \frac{u'}{u}$$

$$(\log_a u)' = \frac{u'}{u \cdot \ln a} \quad (a \in \mathbb{R}^+ \setminus \{1\})$$

Limites notáveis

$$\lim \left(1 + \frac{1}{n}\right)^n = e$$

$$\lim_{x \to 0} \frac{\operatorname{sen} x}{x} = 1$$

$$\lim_{x \to 0} \frac{e^x - 1}{x} = 1$$

$$\lim_{x \to 0} \frac{\ln(x+1)}{x} = 1$$

$$\lim_{x \to +\infty} \frac{\ln x}{x} = 0$$

$$\lim_{x \to +\infty} \frac{e^x}{r^p} = +\infty \quad (p \in \mathbb{R})$$

- Os cinco itens deste grupo são de escolha múltipla. Em cada um deles, são indicadas quatro opções, das quais só uma está correcta.
- Escreva, na sua folha de respostas, apenas o número de cada item e a letra correspondente à opção que seleccionar para responder a esse item.
- Não apresente cálculos, nem justificações.
- Se apresentar mais do que uma opção, a resposta será classificada com zero pontos, o mesmo acontecendo se a letra transcrita for ilegível.
- **1.** Para um certo número real a , a tabela de distribuição de probabilidades de uma variável aleatória X é a seguinte.

x_i	-1	0	1
$P(X = x_i)$	$\frac{1}{2}$	$\frac{1}{3}$	a

Qual é o valor de a?

- (A) $\frac{1}{3}$
- **(B)** $\frac{1}{4}$
- (C) $\frac{1}{5}$
- **(D)** $\frac{1}{6}$
- **2.** Um saco contém dezasseis bolas, numeradas de $1\ a\ 16$

Retiram-se, simultaneamente e ao acaso, duas dessas dezasseis bolas e adicionam-se os respectivos números.

Qual é a probabilidade de a soma obtida ser igual a 7?

- (A) $\frac{1}{35}$
- **(B)** $\frac{1}{40}$
- (C) $\frac{1}{45}$
- **(D)** $\frac{1}{50}$

3. Seja f uma função, de domínio \mathbb{R} , contínua no intervalo $\left[-1,\,4\right]$

Tem-se
$$f(-1) = 3$$
 e $f(4) = 9$

Em qual das opções seguintes está definida uma função g, de domínio \mathbb{R} , para a qual o teorema de Bolzano garante a existência de pelo menos um zero no intervalo]-1,4[?

(A)
$$g(x) = 2x + f(x)$$

(B)
$$g(x) = 2x - f(x)$$

(C)
$$g(x) = x^2 + f(x)$$

(D)
$$g(x) = x^2 - f(x)$$

4. Na Figura 1, está o gráfico de uma função f cujo domínio é o intervalo $\left]1,3\right[$

Figura 1

A função f tem primeira derivada e segunda derivada finitas em todos os pontos do seu domínio.

Seja
$$x \in]1,3[$$

Qual das afirmações seguintes é verdadeira?

(A)
$$f'(x) > 0 \land f''(x) > 0$$

(B)
$$f'(x) < 0 \land f''(x) > 0$$

(C)
$$f'(x) > 0 \land f''(x) < 0$$

(D)
$$f'(x) < 0 \land f''(x) < 0$$

5. Na Figura 2, está representada, no plano complexo, uma circunferência de centro na origem O do referencial.

Figura 2

- Os pontos $A,\,B$ e $\,C\,$ pertencem à circunferência.
- O ponto $A\,$ é a imagem geométrica do número complexo 3 + 4i
- O ponto ${\it C}$ pertence ao eixo imaginário.
- O arco BC tem $\frac{\pi}{9}$ radianos de amplitude.
- Qual é o número complexo cuja imagem geométrica é o ponto B?
- **(A)** $5 \text{ cis } \frac{10\pi}{9}$
- **(B)** $5 \text{ cis } \frac{25\pi}{18}$
- (C) $7 \cos \frac{10\pi}{9}$
- **(D)** $7 \operatorname{cis} \frac{25\pi}{18}$

GRUPO II

Na resposta a cada um dos itens deste grupo, apresente todos os cálculos que tiver de efectuar e todas as justificações necessárias.

Atenção: quando, para um resultado, não é pedida a aproximação, apresente sempre o valor exacto.

1. Seja $\mathbb C$ o conjunto dos números complexos.

Considere a equação $z^3 - z^2 + 4z - 4 = 0$

Esta equação tem três soluções em ${\mathbb C}$, sendo uma delas o número real 1

As imagens geométricas, no plano complexo, dessas três soluções são vértices de um triângulo.

Determine o perímetro desse triângulo.

Resolva este item sem recorrer à calculadora.

2. Seja f a função, de domínio \mathbb{R}^+ , definida por

$$f(x) = \begin{cases} 2 + \frac{\operatorname{sen}(x-1)}{e \ x - e} & \text{se } 0 < x < 1 \\ x \ e^{-x} + 2x & \text{se } x \ge 1 \end{cases}$$

Resolva os três itens seguintes sem recorrer à calculadora.

- **2.1.** Averigúe se a função f é contínua em x = 1
- **2.2.** O gráfico da função f tem uma assimptota oblíqua.

Determine a equação reduzida dessa assimptota.

2.3. Resolva, no intervalo $\left[1, +\infty\right[$, a equação $\frac{f(x)}{x} = e^x - \frac{2}{3}$

3. Na Figura 3, está representada uma circunferência de centro no ponto $\mathcal O$ e raio 1

Figura 3

Sabe-se que:

- o ponto A pertence à circunferência;
- os pontos O, A, e B são colineares;
- ullet o ponto A está entre o ponto O e o ponto B
- ullet o ponto P desloca-se ao longo da semi-recta $\dot{A}B$, nunca coincidindo com o ponto A
- ullet d é a distância do ponto A ao ponto P
- para cada posição do ponto P, o ponto Q é um ponto da circunferência tal que a recta PQ é tangente à circunferência;
- x é a amplitude, em radianos, do ângulo $OPQ\left(x\in\left]0,\frac{\pi}{2}\right[\right)$

Seja f a função, de domínio $\left]0, \frac{\pi}{2}\right[$, definida por $f(x) = \frac{1-\sin x}{\sin x}$

Resolva os dois itens seguintes sem recorrer à calculadora.

- **3.1.** Mostre que d = f(x)
- **3.2.** Considere a seguinte afirmação: «Quanto maior é o valor de x, menor é o valor de d» Averigúe a veracidade desta afirmação, começando por estudar a função f quanto à monotonia.

4. Seja f a função, de domínio]0,3[, definida por $f(x) = x \ln x + \sin(2x)$

O ponto A pertence ao gráfico da função f

Sabe-se que a recta tangente ao gráfico da função f no ponto A tem declive 3

Determine a abcissa do ponto A

Na resolução deste item deve:

- traduzir o problema por uma equação;
- resolver graficamente essa equação, recorrendo à calculadora;
- indicar o valor pedido arredondado às centésimas.

Deve reproduzir e identificar o gráfico, ou os gráficos, que tiver necessidade de visualizar na calculadora, incluindo o referencial, e deve assinalar, no(s) gráfico(s), o(s) ponto(s) relevante(s).

5. Seja Ω o espaço de resultados associado a uma experiência aleatória.

Sejam A e B dois acontecimentos ($A \subset \Omega$ e $B \subset \Omega$), ambos com probabilidade diferente de zero.

Prove que
$$P(A \cup B) < P(A \mid B) \times P(\overline{B}) \iff P(A) + P(B) < P(A \mid B)$$

FIM

COTAÇÕES

GRUPO I

1.		10 pontos	
2.		10 pontos	
3.		10 pontos	
4.		10 pontos	
5.		10 pontos	
	_		50 pontos
	GRUPO II		
1.		20 pontos	
2.			
	2.1.	20 pontos	
	2.2.	20 pontos	
	2.3.	20 pontos	
3.			
	3.1.	15 pontos	
	3.2.	20 pontos	
4.		15 pontos	
5.		20 pontos	
			150 pontos
		_	
	TOTAL		200 pontos