Aspect Based Sentiment Analysis with Gated Convolutional Networks

Ananya Mantravadi CS19B1004

Faculty:

Prof. C Krishna Mohan Dept. of CSE, IIT Hyderabad

Teaching Assistant:

Prudviraj Jeripothula PhD Research Scholar **Authors:**

Wei Xue and Tao Li

Publisher:

Association for Computational Linguistics

Outline

- Motivation
- Problem Statement
- Related Work
- Proposed Approach
- Datasets
- Results
- Conclusion
- Future Directions
- References

Motivation - Sentiment Analysis

Applications

Business Insights

News Sources

Question Answering

Aspect Based Sentiment Analysis

"Battery life is good, but the screen size is too small."

Aspect: Battery life, **Polarity:** Positive

Aspect: Screen size, Polarity: Negative

Problem Statement

Two subtasks:

- Aspect-Category Sentiment Analysis (ACSA)
- Aspect-Term Sentiment Analysis (ATSA)

Sentence	
Average to good	Thai food, but terrible delivery.
Average to good	Thai food, but terrible delivery.
	ATSA: Food, Delivery
	ACSA: Service

Related Work

- Earlier research works: labor-intensive handcraft features
- Neural network-based approaches
- Target-dependent: LSTM & attention mechanisms

- 1. NRC-Canada / SVM
- 2. TD-LSTM
- 3. ATAE-LSTM
- 4. IAN
- 5. RAM
- 6. CNN
- 7. GCN

Attention-based LSTM (ATAE-LSTM) Architecture & Limitations

Attention-based LSTM with Aspect Embedding

CNN - Architecture & Limitations

Proposed Approach

- CNN Model with Gating Mechanism
- Gated Tanh-ReLU selectively outputs sentiment features according to a given aspect or entity.
- Simpler than existing models (compared to models with attention)
- Can be trained in parallel not time dependent unlike LSTM models

Gated Convolutional Network with Aspect Embedding (GCAE) for ACSA

1. Embedding Layer

$$w_i \in \{1, 2, \dots, V\} \longrightarrow v_i \in \mathbb{R}^D$$

Gated Convolutional Network with Aspect Embedding (GCAE) for ACSA

GTRU

2. Convolutions & Gated Tanh-ReLU Units (GTRU)

Gated Convolutional Network with Aspect Embedding (GCAE) for ACSA

- 3. Max-over-time pooling layer
- 4. Softmax
- 5. Training Minimize cross-entropy loss

$$\mathcal{L} = -\sum_{i} \sum_{j} y_{i}^{j} \log \hat{y}_{i}^{j}$$

y = ground-truth

 \hat{y} = predicted value

GCAE on ATSA

Datasets

- SemEval Workshops customer reviews: Restaurant & Laptop
- Hard Datasets: Sentences having multiple aspect labels associated with multiple sentiments

Sentence	aspect category/term	sentiment label
Average to good Thai food, but terrible delivery.	food	positive
Average to good Thai food, but terrible delivery.	delivery	negative

Table 1: Two example sentences in one hard test set of restaurant review dataset of SemEval 2014.

Datasets - ACSA Task

- Aspects: food, price, service, ambience, and misc;
- Sentiment polarities: positive, negative, neutral, and conflict.
- Sentence label p: No. of positive labels No. of negative labels
 Positive if p>0, Negative if p<0, Neutral if p=0

	Positive		Negative		Neutral		Conflict	
	Train	Test	Train	Test	Train	Test	Train	Test
Restaurant-Large	2710	1505	1198	680	757	241	-	-
Restaurant-Large-Hard	182	92	178	81	107	61	-	-
Restaurant-2014	2179	657	839	222	500	94	195	52
Restaurant-2014-Hard	139	32	136	26	50	12	40	19

Table 2: Statistics of the datasets for ACSA task. The hard dataset is only made up of sentences having multiple aspect labels associated with multiple sentiments.

Datasets - ATSA Task

• Duplicate each sentence n_a times

	Positive		Negative		Neutral		Conflict	
	Train	Test	Train	Test	Train	Test	Train	Test
Restaurant	2164	728	805	196	633	196	91	14
Restaurant-Hard	379	92	323	62	293	83	43	8
Laptop	987	341	866	128	460	169	45	16
Laptop-Hard	159	31	147	25	173	49	17	3

Table 3: Statistics of the datasets for ATSA task.

Implementation Details

- 300-dimension GloVe vectors pre-trained on unlabeled data of 840 billion tokens
- Random initialization uniform distribution U(-0.25, 0.25)
- Adagrad
- Batch size: 32 instances
- Learning Rate: 1e-2
- Maximal epochs: 30
- 5-fold cross validation

Results - ACSA

Models	Restaura	nt-Large	Restaurant 2014		
Wiodels	Test Hard Test		Test	Hard Test	
SVM*	-	-	75.32	-	
SVM + lexicons*	-	-	82.93	-	
ATAE-LSTM	83.91±0.49	66.32 ± 2.28	78.29 ± 0.68	45.62±0.90	
CNN	84.28 ± 0.15	50.43 ± 0.38	79.47 ± 0.32	44.94 ± 0.01	
GCN	84.48 ± 0.06	50.08 ± 0.31	79.67 ± 0.35	44.49 ± 1.52	
GCAE	85.92±0.27	70.75 ± 1.19	79.35 ± 0.34	50.55±1.83	

Table 4: The accuracy of all models on test sets and on the subsets made up of test sentences that have multiple sentiments and multiple aspect terms. Restaurant-Large dataset is created by merging all the restaurant reviews of SemEval workshops within three years. '*': the results with SVM are retrieved from NRC-Canada (Kiritchenko et al., 2014).

Results - ATSA

Models	Resta	urant	Laptop		
Models	Test Hard Test		Test	Hard Test	
SVM*	77.13	W -	63.61	-	
SVM + lexicons*	80.16	-	70.49	_	
TD-LSTM	73.44 ± 1.17	56.48 ± 2.46	62.23 ± 0.92	46.11±1.89	
ATAE-LSTM	73.74 ± 3.01	50.98 ± 2.27	64.38 ± 4.52	40.39 ± 1.30	
IAN	76.34 ± 0.27	55.16 ± 1.97	68.49 ± 0.57	44.51 ± 0.48	
RAM	76.97 ± 0.64	55.85 ± 1.60	68.48 ± 0.85	45.37 ± 2.03	
GCAE	77.28±0.32	56.73 ± 0.56	69.14±0.32	47.06±2.45	

Table 5: The accuracy of ATSA subtask on SemEval 2014 Task 4. '*': the results with SVM are retrieved from NRC-Canada (Kiritchenko et al., 2014)

Gating Mechanisms

Gated Tanh Units (GTU): $(\mathbf{X} * \mathbf{W} + b) \times \sigma(\mathbf{X} * \mathbf{W}_a + \mathbf{V} \boldsymbol{v}_a + b_a)$

Gated Linear Units (GLU): $tanh(\mathbf{X}*\mathbf{W}+b)\times\sigma(\mathbf{X}*\mathbf{W}_a+\mathbf{V}\boldsymbol{v}_a+b_a)$

Gates	Restau	rant-Large	Restaurant 2014		
Gales	Test	Hard Test	Test	Hard Test	
GTU	84.62		79.31	51.93	
GLU	84.74	59.82	79.12	50.80	
GTRU	85.92	70.75	79.35	50.55	

Table 7: The accuracy of different gating units on restaurant reviews on ACSA task.

Training Time

 Training time of all models until convergence on a validation set on a desktop machine with a 1080 Ti GPU

Model	ATSA
ATAE	25.28
IAN	82.87
RAM	64.16
TD-LSTM	19.39
GCAE	3.33

Table 6: The time to converge in seconds on ATSA task.

Conclusion

- An efficient CNN with gating mechanisms for ACSA and ATSA tasks.
- GTRU controls the sentiment flow according to the given aspect information
- Performance improvement compared with other neural models by extensive experiments on SemEval datasets.

Future Directions

- LSTM → CNN → CNN with Gating Mechanism
- Transformers with Gating Mechanism for Sentiment Analysis

References

- W. Xue and T. Li, "Aspect based sentiment analysis with gated convolutional networks," in Proc. ACL, vol. 1, 2018, pp. 2514–2523.
- Maria Pontiki, Dimitrios Galanis, John Pavlopoulos, Haris Papageorgiou, Ion Androutsopoulos, and Suresh Manandhar. 2014. Semeval-2014 task 4: Aspect based sentiment analysis. In SemEval@COLING, pages 27–35, Stroudsburg, PA, USA. Association for Computational Linguistics.
- Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2014. Neural Machine Translation by Jointly Learning to Align and Translate. In ICLR, pages CoRR abs—1409.0473.
- Yoon Kim. 2014. Convolutional Neural Networks for Sentence Classification. In EMNLP, pages 1746–1751
- Yequan Wang, Minlie Huang, Xiaoyan Zhu, and Li Zhao. 2016b. Attention-based LSTM for Aspect level Sentiment Classification. In EMNLP, pages 606–615.
- Duyu Tang, Bing Qin, Xiaocheng Feng, and Ting Liu. 2016a. Effective LSTMs for Target-Dependent Sentiment Classification. In COLING, pages 3298

 – 3307
- A. Kumar, V. T. Narapareddy, V. Aditya Srikanth, L. B. M. Neti and A. Malapati, "Aspect-Based Sentiment Classification Using Interactive Gated Convolutional Network," in IEEE Access, vol. 8, pp. 22445-22453, 2020

Thank You