IT-System Engineering & Operation

Patrick Bucher

Contents

1	Das	Data Center	1
	1.1	Bestandteile Data Center	1
	1.2	Klimatisierung	2
	1.3	EDV-Einbau	3
	1.4	Kritische Punkte	3
	1.5	Überwachungsgebiete	4
	1.6	Rechenzenter-Effizienz, PUE-Faktor	5
	1.7	Repetitionsfragen	5
	1.8	Verfügbarkeitsverbesserungen	6
		1.8.1 Service Level Agreement	7
		1.8.2 Availability Environment Classification	8
		1.8.3 Repetitionsfragen	8
	1.9	Tier-Levels	8
		1.9.1 Rechercheaufgaben	9
	1.10	Informaton Lifecycle Management	9
		1.10.1 Repetitionsfragen	10
	1.11	Tiered Storage	10
		1.11.1 Übung Allocation Efficiency	11
2	Netz	zwerke im Rechenzentrum	11
3	Glos	ssar	13

1 Das Data Center

1.1 Bestandteile Data Center

- Lüftung (Zu- und Abluft, Wärmetauscher)
- Hochwasserschutz (erhöhte Bauweise)
- Zutrittskontrolle an den Eingängen, Überwachungskameras

- Stromversorgung
 - USV: unterbrechungsfreie Stromversorgung (Energiespeicher: Batterien)
 - Dieselgenerator als Notstromaggregat (Energiespeicher: Dieseltank), mit Kühlung und Abluft
- Server in Serverracks
- Stromverteilung
- Datenleitung/Netzwerk
- Löschanlagen
- Administration/Überwachung

1.2 Klimatisierung

- optimale Temperatur: 26°C
 - keine Schäden bei leicht erhöhter Raumtemperatur (gegenüber 21°C)
 - Wärmeenergie geht von selber an die Umgebung (Heizung benachbarter Räumlichkeiten)
 - im optimalen Leistungsbereich der Klimaanlagen
 - Kondenswasser bei zu tiefen Temperaturen
- Staub und Pollen können schädlich sein
 - verstopfen Ventilatoren (gesteigerter Stromverbrauch durch erhöhte Kühlleistung)
 - Metallpartikel können Schäden an Hardware verursachen
- Probleme
 - Kondenswasser: Ablauf kann verstopfen, Kondenswasser auslaufen
 - Filterkontrolle: verstopfte Filter verursachen erhöhte Leistungsaufnahme
 - zusätzlicher Energieverbrauch
 - Luftverteilung
 - Überwachung
- Kühlluftverteilung
 - 1. Free-Flow-Systeme
 - Warme Luft steigt auf, kalte Luft sinkt ab
 - Gemischte Lufttemperatur
 - einfach
 - Problem: möglicher Wärmekurzschluss (warme Abluft wird als Kühlluft angesogen)
 - 2. Kalt- oder Warmgang-Einhausung
 - Trennung von Warm- und Kaltluft
 - dadurch bessere Energieeffizienz
 - aber teurer im Aufbau
 - Front der Racks sollten komplett abgeschlossen sein, um Warm- und Kaltluft voneinander zu trennen
- Immersion Cooling: flüssigkeitsgekühlte Systeme
 - mit Wärmetauscher und Flüssigkeit in Leitungskabel
 - oder komplett in Öl eingelegt

1.3 EDV-Einbau

- Serverracks
 - verschiedene Höhen (21-49U), Breiten (0.6-1m) und Tiefen (0.8-1.2m)
 - * 1 HE = 1 U = 1.75 Zoll = 44.45 mm
 - auch mit integrierter Kühlung
 - Zuleitungen: oben, unten, seitlich
 - Standard: 19 Zoll (48.26 cm)
- Netzwerk
 - Kupfer (gegenwärtig stark verbreitet)
 - Glasfaser (löst Kupfer derzeit ab)
- Klimageräte, USV und Batterieschränke
 - Batterien sind sehr schwer, spezielle Racks/Bodenverstärkung erforderlich
- Kühlleitungen und Überwachungsgeräte

1.4 Kritische Punkte

- Einbruch, Diebstahl, Vandalismus, Sturmschäden, Trümmer
 - bauliche Massnahmen: stabile Aussenhülle
 - verschlossen mit Zaun
 - teilweise fernab von anderen Gebäuden
 - keine oder kaum Fenster
- Fremdzugriff
 - Zutrittskontrolle (biometrisch, Chip-Karten, Passwörtern)
 - Abhörsicherheit (elektromagnetische Abschirmung, keine mobilen Endgeräte mit Netzwerkverbingungen zulassen, keinen WiFi-Access-Point)
 - Firewall
- · Feuer und Rauch
 - Branderkennung
 - Löschanlage: CO2 (Vorwarnzeit zur Flucht nötig!), Verringerung des Sauerstoffanteils der Luft auf ca. 10% (nicht tödlich, aber das Feuer verlöscht) durch Stickstoff (gefährlicher und günstig) oder Inergen (weniger gefährlich und teurer)
 - Handfeuerlöscher: CO2
 - * Feuer benötigt: Sauerstoff, Hitze und Brennstoff
 - Abschottung einzelner Zellen
 - automatische Abschaltung der Klimaanlage damit der Rauch nicht verteilt wird
 - kein PVC (bildet Salzsäure!) verwenden
- Netzausfälle, Netzstörungen
 - Netzfilter (in Netzteilen integriert)
 - vorgeschaltete USV mit Batterien
 - Diesel-Generatoren
- · Elektromagnetische Störfelder

- EMP: elektromagnetische Impulse (durch Atombomben oder spezielle Generatoren verursacht), kann Geräte zerstören
- Abschirmung (kann teuer sein)
- metallische Aussenfassade
- Blitzableiter
- Staub, Schmutz, Wasser
 - Filteranlagen
 - Schmutzschleusen, spezielle Teppiche
 - erhöhte Bauweise
 - Standortwahl (nicht in Nähe von Gewässern oder mit Steinschlag und Lawinen)
 - Pumpanlagen zum Abpumpen bei Überschwemmungen

1.5 Überwachungsgebiete

- Gebäude
 - Türen (offen/geschlossen)
 - Kameras
 - Bewegungsmelder
 - Zutritte
- Räume
 - Temperatur
 - Luftfeuchtigkeit
 - Bewegung
 - Rauch
 - Brand
 - Wasserlecks
- Energieversorgung
 - Netzausfall
 - Strom, Spannung, Leistung
 - Leistungsfaktor (Kosinus Phi)
- Geräte
 - Niederspannungsverteilungen
 - Schalterstellungen (Ein/Aus)
 - Stromverbrauch einzerlner Bereiche
 - Sicherungsausfall
 - Kurzschluss
 - Überlast
- Generator
 - Kraftstoffstand (Dieseltank)
 - Funktionsbereitschaft
 - Temperatur
 - Überlast
- Klimageräte

- Temperaturen
- Luftfeuchtigkeit
- Übertemperatur
- Filterwiderstand
- Störungen
- USV-Anlagen
 - Normalbetrieb
 - Batteriebetrieb
 - Bypass-Betrieb
 - Ladezustand
 - Batterietemperatur
- Brandmelde- und Löschanlage (Zustandsanzeigen)
 - Löschanlage ausgelöst
 - Übertragungseinrichtung ausgeschaltet
 - Störung
 - Service

1.6 Rechenzenter-Effizienz, PUE-Faktor

- PUE: Power Usage Effectiveness
- Massstab für die Effizienz eines Rechenzentrums
- PUE = gesamte vom Rechenzentrum verbrauchte Energie / Verbrauch der IT-Geräte
 - 1.0: optimal (in kalten Regionen möglich)
 - 1.2: guter Wert (normale Rechenzentren)
 - über 1.4: Optimierungsbedarf
- Stichwort "Green IT"

1.7 Repetitionsfragen

1. Notieren Sie zu 5 beliebigen Bausteinen eines Rechenzentrums die folgenden Punkte:

Baustein	Funktionen	Gefährdet durch	Abhilfe gegen Gefährdungen
Gebäude	Schutz der Server vor äusseren Einflüssen	Umweltkatastrophen	Resistente Bauweise
Klimatisierung	Schutz vor Überhitzung	Verunreinigung der Filter, Kondenswasser	Filterservice, Abpumpvorrichtung
Stromversorgung	Bereitstellung von elektrischer Energie	Stromausfälle, Netzschwankungen	USV mit Batterie, Diesel-Generatoren

Baustein	Funktionen	Gefährdet durch	Abhilfe gegen Gefährdungen
Netzwerk	Verbindung der Komponenten	Ausfall, Überlastung, Überhitzung, Brand	Redundanz, Datensicherung, Lastverteilung, Kühlung, Löschanlage
Eingangskontrolle	Gewährung und Verweigerung von Einlass	unautorisierte Personen	Biometrie, Überwachungskameras, Chipkarten, Passwörter, Personenkontrolle

- 2. Versuchen Sie den Kostenanteil pro Baustein am gesamten RZ abzuschätzen.
 - Gebäude: ca. 10 Millionen CHF (92%)
 - Klimatisierung: ca. 250'000 CHF (2.3%)
 - Stromversorgung: ca. 100'000 CHF (1%)
 - Netzwerk: ca. 500'000 CHF (4.6%)
 - Eingangskontrolle: 25'000 CHF (0.2%)
 - Summe: 10'875'000 CHF (100%)
- 3. Was ist der PUE Faktor und was sind die erreichbaren und effektiv erreichten Werte?
 - PUE bedeutet Power Usage Effectiveness und Massstab für die Effizienz eines Rechenzentrums. Er errechnet sich aus der gesamthaft durch das Rechenzentrum verbrauchten Energiemenge geteilt durch die gesamthaft von den IT-Geräten verbrauchte Energie.
 - 1.0: optimal (in kalten Regionen möglich)
 - 1.2: guter Wert (normale Rechenzentren)
 - über 1.4: Optimierungsbedarf

1.8 Verfügbarkeitsverbesserungen

Kosten der Downtime pro Stunde:

Fertigung: 28'000.-Logistik: 90'000.-

Einzelhandel: 90'000.-Home-Shopping: 113'000.-

Medien (pay per view): 1'100'000.-Bank (Rechenzentrum): 2'500'000.-

• Kreditkartenverarbeitung: 2'600'000.-

• Broker: 6'500'000.-

1.8.1 Service Level Agreement

Verfügbarkeit bei 7 * 24h:

Uptime in %	Downtime pro Jahr
90%	876 h (36.5 d)
95%	438 h (18.25 d)
99%	87.6 h (3.65 d)
99.9%	8.76 h
99.99%	52.56 min
99.999%	5.256 min
99.9999%	31.536 sec

Verfügbarkeit bei 5 * 9h (zu Bürozeiten):

Uptime in %	Downtime pro Jahr	
90%	234.90 h (26.1 d)	
95%	117.45 h (13.05 d)	
99%	23.49 h (2.61 d)	
99.9%	2.35 h	
99.99%	14.09 min	
99.999%	1.14 min	
99.9999%	8.46 sec	

Massnahmen zur Erhöhung der Verfügbarkeit:

- Spiegelung (inkl. Synchronisation)
- Failover Cluster: Ausfall eines Hosts, der vom Client nicht bemerkt wird
 - zwei Hosts, die sich gegenseitig über Heartbeat kontrollieren
 - Client spricht zu einem vorgeschalteten Virtual Host
 - bei Ausfall springt der eine Host für den anderen ein
 - Automatischer Lastausgleich bei vielen Hosts
- Failover Datacenter: Ausfall eines ganzen Datacenters
 - Spiegelung der Datacenters
 - Backup und Produktivdaten über Kreuz, sodass bei einem Ausfall beide Datenbestände an einem Ort sind
- Asynchrone und synchrone Replikation
 - in Rechenzenter A wird eine Datenbank synchron auf eine lokale Instanz gespiegelt
 - in Rechenzenter B wird die Datenübertragung dann asynchron vorgenommen
 - Rechenzenter B ist im Standby-Betrieb

1.8.2 Availability Environment Classification

- AEC-0: Conventional
 - Funktion kann unterbrochen werden
 - Datenintegrität nicht essentiell
- AEC-1: Highly Reliable
 - Funktion kann unterbrochen werden
 - Datenintegrität muss gewährtleistet sein
- AEC-2: High Availability
 - Funktion darf nur zu festgelegten Zeiten unterbrochen werden
 - Zu Hauptbetriebszeiten sind minimale Unterbrüche zulässig
- AEC-3: Fault Resilient
 - Funktion muss zu Hauptbetriebszeiten ununterbrochen aufrecht erhalten werden
- AEC-4: Fault Tolerant
 - Funktion muss ununterbrochen (24/7) aufrecht erhalten werden
- AEC-5: Disaster Tolerant
 - Funktion muss unter allen Umständen verfügbar sein

1.8.3 Repetitionsfragen

- 1. Welche Verfügbarkeit muss im SLA festgehalten werden, wenn ich 1h Ausfallzeit während den Bürozeiten nicht überschreiten will?
 - 99.9572% Verfügbarkeit, 8-17 Uhr von Mo-Fr CET
- 2. Was versteht man unter Failover-Cluster-Services?
 - Eine automatische und für den Client transparente Umschaltung eines redundanten Hosts bei Störungen.
- 3. Wenn z.B. das SAN gespiegelt werden soll, wie erhöhen sich die Kosten? 50%/100%/mehr als 100% und warum?
 - Mehr als 100%, weil die Anzahl der Verbindungen zwischen den einzelnen Komponenten sich mehr als verdoppelt.

1.9 Tier-Levels

- Tier I: Redundanz N: keine Redundanz, 28.8h Ausfallszeit pro Jahr
- Tier II: Redundanz N+1: ein zusätzlicher Server, 22h Ausfallszeit pro Jahr
- Tier III: Redundanz N+1: ein zusätzlicher Server, weitere Redundanzen in der Infrastruktur, 1.6h Ausfallszeit pro Jahr
- Tier IV: Redundanz 2(N+1): ein zusätzlicher Server, alle Server doppelt, 0.8h Ausfallszeit pro Jahr

1.9.1 Rechercheaufgaben

- 1. Suchen sie RZ-Services Anbieter mit Level 3, 3.5 und Level 4 Rechenzentren.
 - Tier III: infomaniak
 - Tier 3+: greeendatacenter
 - Tier IV: greendatacenter
- 2. Versuchen sie die Kosten für den Service zu bestimmen (pro Rack, pro Server, ...).
 - monatlich CHF 450.- pro Monat und Rack (10 Server)
 - monatlich CHF 650.- pro Monat und Rack (? Server)
 - monatlich CHF 1250.- pro Monat und Rack (? Server)

1.10 Informaton Lifecycle Management

Datenzyklus:

- Create (erstellen)
- Store (abspeichern)
- Use (verwenden: einsehen, anpassen)
- Share (weitergeben)
- Archive (archivieren)
- Destroy (löschen)

ILM: Speicherstrategie zur Speicherung von Informationen *entsprechend ihrem Wert* auf dem jeweils günstigsten Speichermedium.

- Verwaltung und Speicherung orientieren sich an Wichtigkeit, Wertigkeit und Kosten der Daten.
- Daten, Quellen und Speichersysteme werden klassifiziert (Speicherhierarchie).
 - Tier 1: SSD, Server-Festplatten (Fiber Channel Disc 15k rpm)
 - Tier 2: HDD,
 - Tier n: SATA-Festplatten
 - spezialisiert: Archivierung, Tapes, langsame Festplatten (disc to disc)

ILM-Management:

- Storage Management
- Document Lifecycle Management
- Content Lifecycle Management
- Records Management

Regeln legen fest, wie und wo Daten gespeichert werden:

- Änderungshäufigkeit
- Zugriffsgeschwindigkeit
- Zugriffshäufigkeit
- Kosten

- · ökonimischer Wert
- gesetzliche Bestimmungen

Inaktive Daten:

- konsumieren Speicherplatz
- werden gepflegt, gesichert, repliziert usw.
- unterliegen rechtlichen und Datenhaltungsansprüchen
- müssen im Katastrophenfall wiederhergestellt werden

1.10.1 Repetitionsfragen

- 1. Was versteht man unter Records Management?
 - Was soll wo und wie lange gespeichert und von wem eingesehen oder bearbeitet werden (rechtliche Aspekte).
- 2. Welche (gesetzlichen) Vorschriften für die Datenaufbewahrungszeit kennen sie?
 - 3 Jahre für intern relevante Daten
 - 10 Jahre für Rechnungen, Geschäftsabschlüsse
 - 20 Jahre bei börsenkotierten Unternehmen
- 3. Wer soll das Records-Management (RM) anordnen und durchsetzen?
 - Rechtsabteilung: sanktionieren
 - Geschäftsleitung: anordnen
 - Abteilungsleiter: durchsetzen
 - Administratoren: ausführen
- 4. Kennen sie aus der eigenen Umgebung Beispiele?
 - keine Positivbeispiele

1.11 Tiered Storage

Daten können nach Nutzung auf verschiedener Hardware gespeichert werden:

- SSD: fast
- DAS/SAN: active
- HDFS/NAS: historical
- Amazon S3/HDFS/NAS: archived (on- or offline)

Verschiedene Datenklassen werden auf verschiedene Speicherklassen gespeichert:

- 1. mission critical data (z.B. Online-Datenbank mit Bestellwesen)
- 2. business critical data (Daten, die immer zur Verfügung stehen müssen)
- 3. nearline or historical data (z.B. alte Pläne in einem Architekturbüro zum gelegentlichen Nachschauen)
- 4. offline data (z.B. Backups und Daten, die nur aufgrund gesetzlicher Bestimmung aufbewahrt werden)

TODO p.41-44

MAID: massive array of idle disks (Festplatten können zum Stromsparen heruntergefahren werden und/oder langsamer laufen)

RTO: recovery time objectives (Ziele betreffend Dauer der Rückspielbarkeit einer Datensicherun einer Datensicherung) RPO: recovery point objectives (Ziele betreffend Dauer zwischen Datensicherungen)

1.11.1 Übung Allocation Efficiency

Alloziert: Allokation von 80% bedeutet, dass bei 5 RAID-Platten 4 verwendet und 1 für Redundanz benötigt wird

Je höher die Belegung, desto höher der Yield (die Ausbeute). TODO: p.47

[Siehe Tabelle mit Berechnung]

2 Netzwerke im Rechenzentrum

Netzwerktopologie:

- Provider
 - Angebot
 - Speed
 - Technik
- Grenze
 - Router
 - Firewall
 - IDP (Intrusion Detection and Protection)
 - Redundanz
- DMZ (Demilitarized Zone)
 - Web-Services
 - Authentifizierung
 - Dienste
- Lokales Netzwerk (LAN)
 - Topologien
 - Speed
 - Trennungen
 - Services

Private IP-Bereiche:

• 10.0.0.0/8

- 172.16.0.0/12
- 192.168.0.0/16

Router

- oft in Firewall oder Layer-3-Switches eingebaut
- Arbeitet mit IP-Paketen, setzt öffentliche in private Adressen um (NAT)
- Anbendung verschiedener Netze
- optionale Weiterleitung bei redundanten Leitungen
- Aufrechterhaltung von QOS durch spezifische Weiterleitungen (aufgrund Pakettyp, Protokoll)
- kann VPN-Endpunkt sein
- Anpassung an unterschiedliche Netzwerktechniken

• Firewall

- Sicherheitsbaustein, Teil des Sicherheitskonzepts
- Übernimmt meist auch Routing-Funktionen
- regelbasierte Sperrung/Weiterleitung von Paketen
- VPN-Endpunkt mit Authentifizierung
- kann auf allen OSI-Schichten arbeiten

• IDP

- IDS (Intrusion Detection System) + IDP (Intrusion Prevention System) = IDP (Intrusion Detection and Protection)
- Eindringungsversuche erkennen (Muster, DOS, Fakes, Portscan, IP-Spoofing)
- Rechenintensiv, oft separate Hardware
- über 1Gbit/s-Netzwerke können nicht komplett überwacht werden (mehrere Geräte oder Heuristik)

• DMZ

- demilitarized zone
- Geschützer Bereich, in dem bestimmte Zugriffe (www, Mail, FTP) erlaubt weden
- 1 oder 2 Firewalls
- Model 1: eine Firewall, an der Internet, DMZ und Inside-Zone hängen
- Model 2: zwei Firewalls: Internet, Firewall, DMZ, Firwall, Inside Zone
- bei Banken müssen die beiden Firewalls verschiedener Hersteller sein

• Netzwerk-Redundanz

- 1 Provider/2 Zugänge
- 2 Provider/je 1 Zugang
- Ausfallüberwachung nötig
- Getrennte Wege
- verschiedene Medien
- Loadbalancing

- LAN-Strukturen (physisch)
 - TOR: top of rack (jedes Rack hat seine eigenen Switches)
 - * neue Switches für jedes neue Rack notwendig
 - EOR: end of row (Racks nur über Patchpanels verbunden)
 - * einfacher, solange genügend Ports vorhanden sind (aber mehr Verkabelungsaufwand nötig)
- LAN-Strukturen
 - mehrere Switch-Ebenen
 - peering/peripherie
 - backbone/spine/core
 - leaf (Anschluss f
 ür Server)
- MPLS: multiprotocol label switching
 - VPN-ähnliche Strukturen zur Verbindung zusammengehöriger Netzwerke ohne Rücksicht auf IP-Segmente
 - Paketvermittlung durch den Provider aufgrund von Labels in den Paketen
 - * QOS (quality of service)
 - * COS (class of service)
 - · realtime (voice)
 - · best effort
 - · bulk (grosse Mengen)
 - · business critical
 - · video
- SDN: Software Defined Networking
 - zwei Ebenen
 - * Control Plane
 - * Data Plane
 - Netzwerke werden via Management-Software erstellt
 - Netze sind teilweise virtuell basierend auf einem Trägernetzwerk und werden mit speziellen Protokollen konfiguriert und verbunden (möglicher Standard: Openflow)
- VLAN: virtual LAN
 - Bildung getrennter Netze auf gemeinsamer Hardware
 - tagged oder untagged
 - Trunk: Verbindung zweier Switches

3 Glossar

• ITIL: IT Infrastructure Library, Standard für IT-Belange v.a. für Grossunternehmen, für KMU übertrieben

- PUE: Power Usage Effectiveness, Massstab für die Effizienz eines Rechenzentrums
- DNS: Domain Name System
- IPAM: IP Address Management
- DHCP: Dynamic Host Configuration Protocoll
- NAP: Network Access Protection
- NAC: Network Access Control