

IEL – protokol k projektu

Veronika, Vengerová xvenge01

18. decembra 2019

Obsah

1	Příklad 1	2
2	Příklad 2	5
3	Příklad 3	7
4	Příklad 4	10
5	Příklad 5	13
6	Shrnutí výsledků	16

Stanovte napětí U_{R5} a proud I_{R5} . Použijte metodu postupného zjednodušování obvodu.

sk.	U_1 [V]	U_2 [V]	$R_1 [\Omega]$	$R_2 [\Omega]$	$R_3 [\Omega]$	$R_4 [\Omega]$	$R_5 [\Omega]$	$R_6 [\Omega]$	$R_7 [\Omega]$	$R_8 [\Omega]$
F	125	65	510	500	550	250	300	800	330	250

Pôvodný obvod postupne zjednodušujeme aby sme zisitli U_{R5} a I_{R5} . Ako prvé si zdroje U_1 a U_2 vyjadríme ako 1 zdroj U_{12} .

$$U_{12} = U_1 + U_2 = 190V$$

Ďalej si premeníme trojuholníkový úsek obvodu tvorený R_1 , R_2 , R_3 na hviezdicu R_A , R_B , R_C .

$$R_A = \frac{R_1 \cdot R_2}{R_1 + R_2 + R_3} = \frac{510 \cdot 500}{500 + 510 + 550} = 163.4615\Omega$$

$$R_B = \frac{R_1 \cdot R_3}{R_1 + R_2 + R_3} = \frac{510 \cdot 550}{500 + 510 + 550} = 179.8077\Omega$$

$$R_C = \frac{R_3 \cdot R_2}{R_1 + R_2 + R_3} = \frac{500 \cdot 550}{500 + 510 + 550} = 176.2821\Omega$$

Rezistory R_7 a R_8 sú zapojené paralelne, preto ich môžeme zjednodušiť na R_{78} .

$$R_{78} = \frac{R_7 \cdot R_8}{R_7 + R_8} = \frac{330 \cdot 250}{330 + 250} = 142.2414\Omega$$

Prúd prechádzajúci rezistorom R_A sa rozdeľuje na 2 prúdy I_{R5} a I_{RC} , kde rovnaký prúd I_{R5} prechádza rezistormi R_B , R_4 a R_5 pretože sú sériovo zapojené a rezistormi R_C a R_6 prechádza I_{RC} . Prúd prechádzajúci R_{78} je totožný s I_{RA} pretože podľa 1. Kirchoffovho zákona musí byť súčet prúdov tečúcich z a do uzlu nulový:

$$I_{R78} = I_{R5} + I_{RC}$$

Ďalej zjednodušíme sériovo zapojené rezistory.

$$R_{B45} = R_B + R_4 + R_5 = 179.8077 + 250 + 300 = 729.8077\Omega$$

$$R_{C6} = R_C + R_6 = 176.2821 + 800 = 976.2821\Omega$$

Rezistory R_{B45} a R_{C6} spojíme a získame R_{BC456}

$$R_{BC456} = \frac{R_{B45} \cdot R_{C6}}{R_{B45} + R_{C6}} = \frac{729.8077 \cdot 976.2821}{729.8077 + 976.2821} = 417.6206$$

Získame obvod s 1 rezistorom, z ktorého vieme vypočítať celkový prúd prechádzajúci obvodom.

$$R = R_{BC456} + R_{78} + R_A = 417.6206 + 142.2414 + 163.4615 = 723.3235\Omega$$

Na výpočet využijeme Ohmov zákon.

$$I_R = \frac{U_{12}}{R} = \frac{190}{723.3235} = 0.2627A$$

Teraz sa postupným "rozbaľovanímöbvodu dostaneme k nami hľadanému U_{R5} a I_{R5} . Vieme, že celkový prúd prechádza aj R_{BC456} pretože spolu s R_{78} a R_A je sériovo zapojený. No I_{RBC456} sa rozdelí na I_{RB45} a I_{RC6} , pretože tieto rezistory sú paralelne zapojené. Vieme, že napätie sa pri paralelne zapojených rezistoroch nemení.

$$U_{RBC456} = R_{BC456} \cdot I_R = 417.6206\dot{0}.2627 = 109.7089V$$

Využitím U_{RBC456} získame I_{RB45} , ktoré sa rovná I_{R5} pretože rezistory R_A , R_4 R_5 sú sériovo zapojené, čiže prechádza nimi rovnaký prúd.

$$I_{RB45} = \frac{U_{RB456}}{R_{B45}} = I_{R5}$$

$$I_{R5} = \frac{109.7089}{729.8077} = 0.1503A$$

Z čoho vieme vypočítať U_5

$$U_{R5} = R_5 \cdot I_{R5} = 45.09V$$

Stanovte napětí U_{R6} a proud I_{R6} . Použijte metodu Théveninovy věty.

sk.	U[V]	$R_1 [\Omega]$	$R_2 [\Omega]$	$R_3 [\Omega]$	$R_4 [\Omega]$	$R_5 [\Omega]$	$R_6 [\Omega]$
С	200	70	220	630	240	450	300
U \	R ₁	F	R ₂	R₄ R ₅		U _{R6}	

Obvod ideme počítať pomocou Thévenina, čiže celý obvod si potrebujeme premeniť na ekvivalentný obvod tvaru:

Obvod si zjednodušíme a aby sme vedeli vypočítať R_i , zdroj napatia "skratujeme".

$$R_{12} = R_1 + R_2 = 70 + 220 = 290\Omega$$

$$R_{123} = \frac{R_{12} \cdot R_3}{R_{12} + R_3} = \frac{290 \cdot 630}{290 + 630} = 198.5870\Omega$$

$$R_{1234} = R_{123} + R_4 = 198.5870 + 240 = 438.5870\Omega$$

$$R_i = \frac{R_{1234} \cdot R_5}{R_{1234} + R_5} = \frac{438.587 \cdot 450}{438.587 + 450} = 222.1101\Omega$$

Potrebujeme zistiť ešte U_i , preto si obvod (bez R_6) potrebujeme zjednodušit.

$$R_{45} = R_4 + R_5 = 450 + 240 = 690\Omega$$

$$R_{345} = \frac{R_{45} \cdot R_3}{R_{45} + R_3} = \frac{690 \cdot 630}{690 + 630} = 329.3182\Omega$$

$$R_{12345} = R_{12} + R_{345} = 290 + 329.3182 = 619.3182\Omega$$

Z čoho vieme vypočítať celkový prúd prechádzajúci obvodom. Pomocou neho vieme zistiť prúd tečúci R_{45} , pomocou čoho zistíme U_i .

$$I_1 = \frac{U}{R_{12345}} = \frac{200}{619.3182} = 0.3230A$$

$$U_{345} = U - U_{12} = U - I_1 \cdot R_{12} = 200 - 0.3230 \cdot 290) = 106.33V$$

 R_3, R_4 a R_5 sú zapojené paralelne, preto ich napatia sa rovnajú, prechádza nimi ale rozdielny prúd.

$$I_{45} = \frac{U_{345}}{R_{45}} = \frac{106.33}{690} = 0.1541A$$

$$U_i = U_5 = U_{345} - U_4 = 106.359 - 0.1541 \cdot 240 = 69.375V$$

Preto vieme vypočítať naše hľadané I_{R6} a U_{R6} .

$$I_{R6} = \frac{U_i}{R_6 + R_i} = \frac{69.375}{300 + 222.1101} = 0.1329A$$

$$U_{R6} = I_{R6} \cdot R_6 = 0.1329 \cdot 300 = 39.87V$$

Stanovte napětí U_{R4} a proud I_{R4} . Použijte metodu uzlových napětí $(U_A,\,U_B,\,U_C)$.

sk.	U [V]	I_1 [A]	I_2 [A]	$R_1 [\Omega]$	$R_2 [\Omega]$	$R_3 [\Omega]$	$R_4 [\Omega]$	$R_5 [\Omega]$	
		0.85			31	56	20	30	

V obvode si označíme uzly, s ktorými budeme pracovať a vyznačíme si smery prúdov.

Využitím Prvého Kirchoffovho zákona si vyjadríme prúdy tečúce do a z bodov A, B, C.

$$A: I_1 - I_{R2} - I_{R1} = 0$$

$$B: I_{R2} - I_{R4} + I_{R5} = 0$$

$$C: I_2 - I_{R3} + I_{R4} - I_{R5} = 0$$

Cez uzlové napatie vyjadríme postupne všetky Ix, aby sme získali 3 rovnice o 3 neznámych. Použijeme Ohmov zákon a tiež vedomosť, že $G=\frac{1}{R}$.

$$I_{R2} = (U_A - U_B) \cdot G_2$$

$$I_{R1} = U_A \cdot G_1$$

$$I_{R4} = (U_B - U_C) \cdot G_4$$

$$I_{R3} = U_C \cdot G_3$$

$$I_{R5} = (U - U_B + U_C) \cdot G_5$$

Čo dosadíme do rovníc.

$$A: I_1 - (U_A - U_B) \cdot G_2 - U_A \cdot G_1 = 0$$

$$B: (U_A - U_B) \cdot G_2 - (U_B - U_C) \cdot G_4 - (U + U_C - U_B) \cdot G_5 = 0$$

$$C: I_2 - U_C \cdot G_3 + (U_B - U_C) \cdot G_4 + (U - U_B + U_C) \cdot G_5 = 0$$

Kde si dosadíme číselné hodnoty a upravíme.

$$A: 0.85 - U_A \cdot \frac{1}{31} + U_B \cdot \frac{1}{31} - U_A \cdot \frac{1}{44} = 0.85 + (-0.0323 - 0.0227) \cdot U_A + (0.0323) \cdot U_B = 0.85 - 0.055 \cdot U_A + 0.0323 \cdot U_B$$

$$B: U_A \cdot \frac{1}{31} - U_B \cdot \frac{1}{31} - U_B \cdot \frac{1}{20} + \frac{1}{20} \cdot U_C - (110 - U_B + U_C) \cdot \frac{1}{30} = 0.85 - 0.055 \cdot U_A + 0.0323 \cdot U_B$$

 $0.0323 \cdot U_A + (-0.0323 - 0.05 + 0.0333) \cdot U_B + (0.05 - 0.0333) \cdot U_C - 3.6667 = 0.0323 \cdot U_A - 0.049 \cdot U_B + 0.0167 \cdot U_C - 3.6667 = 0.0323 \cdot U_A - 0.049 \cdot U_B + 0.0167 \cdot U_C - 0.049 \cdot U_C + 0.049 \cdot U_C +$

$$C: 0.75 - \frac{1}{56} \cdot U_C - \frac{1}{20} \cdot U_C + \frac{1}{20} \cdot U_B + (110 - U_B + U_C) \cdot \frac{1}{30} = 4.4167 - 0.0345 \cdot U_C + 0.0167 \cdot U_B$$

Po úprave rovnice si vieme tieto rovnice zapísať ako súčin matíc a jednotlivé napätia vypočítať pomocou Cramerovho pravidla.

$$\begin{pmatrix} -0.055 & 0.0323 & 0\\ 0.0323 & -0.049 & 0.0167\\ 0 & 0.0167 & -0.0345 \end{pmatrix} \quad \begin{pmatrix} U_A\\ U_B\\ U_C \end{pmatrix} = \begin{pmatrix} -0.85\\ 3.6667\\ -4.4167 \end{pmatrix}$$

 $|D| = -0.055 \cdot (-0.049) \cdot (-0.0345) + 0.0167 \cdot 0.0167 \cdot 0.055 + 0.0345 \cdot 0.0323 \cdot 0.0323 = -0.000041645$

$$|D_A| = \begin{vmatrix} -0.85 & 0.0323 & 0\\ 3.6667 & -0.049 & 0.0167\\ -4.4167 & 0.0167 & -0.0345 \end{vmatrix}$$

 $|D_A| = -0.85 \cdot (-0.049) \cdot (-0.0345) - 4.4167 \cdot 0.0323 \cdot 0.0167 - 0.0167 \cdot 0.0167 \cdot (-0.85) + 0.0345 \cdot 0.0323 \cdot 3.6667 = 0.000503 \cdot 0.0167 \cdot 0.01$

$$|D_B| = \begin{vmatrix} -0.055 & -0.85 & 0\\ 0.0323 & 3.6667 & 0.0167\\ 0 & -4.4167 & -0.0345 \end{vmatrix}$$

 $|D_B| = -0.055 \cdot 3.6667 \cdot (-0.0345) - 0.0167 \cdot (-4.4167) \cdot (-0.055) - (-0.0345) \cdot (-0.85) \cdot 0.0323 = 0.00195363$

$$|D_C| = \begin{vmatrix} -0.055 & 0.0323 & -0.85 \\ 0.0323 & -0.049 & 3.6667 \\ 0 & 0.0167 & -4.4167 \end{vmatrix}$$

 $|D_C| = -0.055*(-0.049)*(-4.4167) + 0.0323*0.0167*(-0.85) - 3.6667*0.0167*(-0.055) - (-4.4167)*0.0323*0.032*0.$

$$U_B = \frac{|D_B|}{|D|} = \frac{0.00195363}{-0.000041645} = -46.9115V$$

$$U_C = \frac{|D_C|}{|D|} = \frac{-0.00438574}{-0.000041645} = 105.3125V$$

$$U_{R4} = U_B - U_C = -46.9115 - 105.3125 = -152.224V$$

$$I_{R4} = \frac{U_{R4}}{R_4} = \frac{-152.224}{20} = -7.6112A$$

Pro napájecí napětí platí: $u_1 = U_1 \cdot \sin(2\pi f t)$, $u_2 = U_2 \cdot \sin(2\pi f t)$. Ve vztahu pro napětí $u_{C_2} = U_{C_2} \cdot \sin(2\pi f t + \varphi_{C_2})$ určete $|U_{C_2}|$ a φ_{C_2} . Použijte metodu smyčkových proudů.

Pozn: Pomocné směry šipek napájecích zdrojů platí pro speciální časový okamžik $(t = \frac{\pi}{2\omega})$.

sk.	U_1 [V]	U_2 [V]	$R_1 [\Omega]$	$R_2 [\Omega]$	L_1 [mH]	L_2 [mH]	C_1 [μ F]	C_2 [μ F]	f [Hz]
F	20	35	12	10	170	80	150	90	65

Najskôr si obvod zmeníme na obvod s cievkami a kondenzátormi vyjadrenými cez ich impedanciu. Čím získame:

Pričom sme si hneď vyznačili aj smyčkové prúdy.

Prostredníctvom týchto smyčkových prúdov si vyjadríme všetky smyčky.

$$I_A: -U_1 + U_{ZL1} + U_{ZC2} = 0$$

$$I_B: -U_2 + U_{ZC2} + U_{ZL2} + U_{R2} = 0$$

$$I_C: U_2 - U_{ZC1} - U_{R1} = 0$$

Určíme si ω , Z_{L1} , Z_{L2} , Z_{C1} , Z_{C2} .

$$\omega = 2\pi \cdot f = 2\pi \cdot 65 = 130\pi rad \cdot s^{-1}$$

$$Z_{L1} = j \cdot \omega \cdot L_1 = j \cdot 130\pi \cdot 0.17 = j \cdot 22.1\pi\Omega = 69.4292 \cdot j\Omega$$

$$Z_{L2} = j \cdot \omega \cdot L_2 = j \cdot 130\pi \cdot 0.08 = j \cdot 10.4\pi\Omega = 32.6726 \cdot j\Omega$$

$$Z_{C1} = \frac{j}{-\omega \cdot C_1} = \frac{j}{-130\pi \cdot 0.00015} = \frac{j}{-0.0195\pi}\Omega = -16.3236 \cdot j\Omega$$

$$Z_{C2} = \frac{j}{-\omega \cdot C_2} = \frac{j}{-130\pi \cdot 0.00009} = \frac{j}{-0.0117\pi}\Omega = -27.2060 \cdot j\Omega$$

Rovnice, ktoré sme získali vyjadrením prostredníctvom smyčkových prúdov vieme upraviť na tvar:

$$I_A: U_1 = I_A \cdot Z_{L1} + (I_A + I_B) \cdot Z_{C2}$$

$$I_B: U_2 = (I_A + I_B) \cdot Z_{C2} + I_B \cdot Z_{L2} + I_B \cdot R_2$$

$$I_C: U_2 = I_C \cdot Z_{C1} + I_C \cdot R1$$

Co si vieme zapísať ako súčin matíc tvaru:

$$\begin{pmatrix} Z_{L1} + Z_{C2} & Z_{C2} & 0 \\ Z_{C2} & Z_{C2} + Z_{L2} + R_2 & 0 \\ 0 & 0 & R_1 + Z_{C1} \end{pmatrix} \quad \begin{pmatrix} I_A \\ I_B \\ I_C \end{pmatrix} = \begin{pmatrix} U_1 \\ U_2 \\ U_2 \end{pmatrix}$$

Na zistenie I_A , I_B , I_C využijeme Cramerovo pravidlo:

$$|D| = \begin{vmatrix} 69.4292 \cdot j - 27.2060 \cdot j & -27.2060 \cdot j & 0 \\ -27.2060 \cdot j & -27.2060 \cdot j + 32.6726 \cdot j + 10 & 0 \\ 0 & 0 & 12 - 16.3236 \cdot j \end{vmatrix} = 0$$

$$= (42.2232 \cdot j) \cdot (5.4666 \cdot j + 10) \cdot (-16.3236 \cdot j + 12) - (12 - 16.3236 \cdot j) * (-27.2060 \cdot j) * (-27.2060 \cdot j) =$$

$$= (4122.54 + 8834.55 \cdot j) - (-8882.00 + 12082.2 \cdot j) =$$

$$= 13004.5 - 3247.63 \cdot j$$

$$|D_{IA}| = \begin{vmatrix} 20 & -27.2060 \cdot j & 0\\ 35 & 5.4666 \cdot j + 10 & 0\\ 35 & 0 & 12 - 16.3236 \cdot j \end{vmatrix} =$$

$$=20\cdot (5.4666\cdot j+10)\cdot (-16.32358391\cdot j+12)-(-16.32358391\cdot j+12)\cdot (-27.2060\cdot j)\cdot 35=$$

$$=19728.2+9473.79\cdot j$$

$$|D_{IB}| = \begin{vmatrix} 42.2232 \cdot j & 20 & 0 \\ -27.2060 \cdot j & 35 & 0 \\ 0 & 35 & 12 - 16.3236 \cdot j \end{vmatrix} =$$

$$= (42.2232 \cdot j) \cdot 35 \cdot (12 - 16.3236 \cdot j) - (12 - 16.3236 \cdot j) * 20 * (-27.2060 \cdot j) =$$

$$= 33005.2 + 24263.2 \cdot j$$

Z čoho môžeme získať okamžité prúdy I_A .

$$i_A = \frac{|D_A|}{|D|} = \frac{19728.2 + 9473.79 \cdot j}{13004.51857 - 3247.596285 \cdot j} =$$

= 1.2567 + 1.0423 \cdot jA

A aj prúd I_B .

$$i_B = \frac{|D_B|}{|D|} = \frac{33005.2 + 24263.2 \cdot j}{13004.5 - 3247.63 \cdot j} =$$

$$= 1.9504 + 2.3528 \cdot jA$$

Vďaka čomu vieme vypočítať okamžité napatie U_{C2} .

$$U_{C2} = Z_{C2} \cdot (I_A + I_B) = (1.2567 + 1.0423 \cdot j + 1.9504 + 2.3528 \cdot j) * (-27.2060 \cdot j) =$$

$$U_{C2} = 92.3671 - 87.2524 \cdot jV$$

Amplitúdu napatia vypočítame:

$$|U_c| = \sqrt[2]{(92.3671)^2 + (-87.2524)^2} = 127.0616V$$

Fázový posun 2. kvadrant):

$$\varphi = \arctan \frac{-87.2524}{92.3671} = -0.9446 rad$$

V obvodu na obrázku níže v čase t=0[s] sepne spínač S. Sestavte diferenciální rovnici popisující chování obvodu na obrázku, dále ji upravte dosazením hodnot parametrů. Vypočítejte analytické řešení $u_C=f(t)$. Proveďte kontrolu výpočtu dosazením do sestavené diferenciální rovnice.

Pozn: Pomocné směry šipek napájecích zdrojů platí pro speciální časový okamžik $(t = \frac{\pi}{2\omega})$.

sk.	U[V]	C[F]	$R\left[\Omega\right]$	$u_C(0)$ [V]
D	25	5	25	12
	1			

V čase t(0) sa spínač zopne a vznikne obvod:

Využitím druhého Kirchoffovho zákona získame:

$$u_R + u_C - u = 0$$

Z čoho si vyjadríme prúd I:

$$I = \frac{u - u_C}{R}$$

Vieme, že napätie cievky sa vypočíta ako:

$$u_C' = \frac{1}{C} \cdot I$$

Kde po dosadení získame rovnicu:

$$u_C' = \frac{u - u_C}{R \cdot C}$$

Upravíme ju na obyčajnú diferenciálnu rovnicu 1. rádu a dosadíme hodnoty:

$$u_C' + \frac{u_C}{R \cdot C} = \frac{u}{R \cdot C}$$

Zostavíme si charakteristickú rovnicu, kde $u_C'=\lambda$ a $u_C=1$, čím získame rovnicu:

$$\lambda + \frac{1}{R \cdot C} = 0$$

Z čoho získame, že:

$$\lambda = -\frac{1}{R \cdot C}$$

Očakávame riešenie rovnice v tvare:

$$u_C(t) = k(t) \cdot e^{\lambda \cdot t} = k(t) \cdot e^{-\frac{t}{25 \cdot 5}}$$

Zderivujeme U_C a získame:

$$u_C'(t) = k'(t) \cdot e^{-\frac{t}{25 \cdot 5}} + k(t) \cdot (-\frac{1}{25 \cdot 5}) \cdot e^{-\frac{t}{25 \cdot 5}}$$

 u_C^\prime a u_C dosadíme do diferenciálnej rovnice, ktorú sme si už vytvorili:

$$k'(t) \cdot e^{-\frac{t}{25 \cdot 5}} + k(t) \cdot \left(-\frac{1}{25 \cdot 5}\right) \cdot e^{-\frac{t}{25 \cdot 5}} + \frac{k(t) \cdot e^{-\frac{t}{25 \cdot 5}}}{25 \cdot 5} = \frac{1}{5}$$

Z čoho získame:

$$k'(t) \cdot e^{-\frac{t}{25 \cdot 5}} = \frac{1}{5}$$

 $k'(t) = \frac{1}{5} \cdot e^{\frac{t}{25 \cdot 5}}$

Čo zintegrujeme.

$$k(t) = \frac{125}{5}e^{\frac{t}{125}} + K = 25 \cdot e^{\frac{t}{125}} + K$$

Toto dosadíme do $u_C(t)$ rovnice:

$$u_C(t) = (25 \cdot e^{\frac{t}{125}} + K) \cdot e^{-\frac{t}{25 \cdot 5}} = 25 + K \cdot e^{-\frac{t}{25 \cdot 5}}$$

Pomocou počiatočnej podmienky zistíme K:

$$u_C(0) = 12$$

$$u_C(0) = 25 + K \cdot e^0$$

$$12 = 25 + K$$

$$K = -13$$

$$u_C(t) = 25 - 13 \cdot e^{-\frac{t}{125}}$$

Čím sme získali potrebnú rovnicu. Spravíme aj skúšku.

$$\begin{split} u_C' + \frac{u_C}{125} &= \frac{1}{5} \\ u_C' + \frac{25 - 13 \cdot e^{-\frac{t}{125}}}{125} &= \frac{1}{5} \\ u_C' &= \frac{25 - 25 + 13 \cdot e^{-\frac{t}{125}}}{125} \\ \frac{13 \cdot e^{-\frac{t}{125}}}{125} + \frac{25 - 13 \cdot e^{-\frac{t}{125}}}{125} &= \frac{1}{5} \end{split}$$

Čo platí.

Shrnutí výsledků

Příklad	Skupina	Výsl	edky
1	F	$U_{R5} = 45.09V$	$I_{R5} = 0.1503A$
2	С	$U_{R6} = 39.87V$	$I_{R6} = 0.1329A$
3	С	$U_{R4} = -152.224V$	$I_{R4} = -7.6112A$
4	F	$ U_{C_2} = 127.0616V$	$\varphi_{C_2} = -0.9446 rad$
5	D	$u_C(t) = 25 -$	$-13 \cdot e^{-\frac{t}{125}}V$