

Pertemuan 2

SISTEM BILANGAN

I. Konsep Dasar Sistem Bilangan

- Sistem bilangan adalah suatu cara untuk mewakili besaran dari suatu item fisik.
- Konsep dasar sistem bilangan dikarakteristikkan oleh basis (radix), absolute digit dan posisi (place) value, yang dituliskan:

 Basis yang digunakan sistem bilangan tergantung dari jumlah nilai bilangan yang dipergunakan.

Konsep Dasar Sistem Bilangan (Lanjutan)

Sistem bilangan yang sering digunakan adalah:

- Sistem bilangan desimal
- Sistem bilangan biner
- Sistem bilangan oktal
- Sistem bilangan hexadesimal

1. Sistem Bilangan Desimal

- Sistem bilangan desimal menggunakan basis 10 (deca)
- Menggunakan 10 macam simbol bilangan berbentuk digit angka: 0,1,2,3,4,5,6,7,8,9
- Dasar penulisan:

- Bentuk nilai desimal dapat berupa integer (bilangan bulat) dan pecahan
- Dapat ditulis dalam bentuk eksponensial yaitu ditulis dengan mantissa dan exponent.
- Contoh: $1234 = 0,1234 \times 10^4$ mantissa exponent

Sistem Bilangan Desimal (Lanjutan)

Penulisan base/radix dituliskan setelah absolut digit, yaitu A₁₀, atau A(D).

Dalam hal ini yang dituliskan adalah A₁₀

Contoh nilai 4352₁₀ dan 762,15₁₀ dapat diartikan:

$$4 \times 10^{3} = 4000$$
 $7 \times 10^{2} = 700$
 $3 \times 10^{2} = 300$ $6 \times 10^{1} = 60$
 $5 \times 10^{1} = 50$ $2 \times 10^{0} = 2$
 $2 \times 10^{0} = 2 + 1 \times 10^{-1} = 0,1$
 4352 $5 \times 10^{-2} = 0,05 + 762,15$

2. Sistem Bilangan Biner

- Sistem bilangan biner menggunakan basis 2 (binary)
- Menggunakan 2 macam simbol bilangan berbentuk digit angka: 0 dan 1
- Penulisan base/radix dituliskan setelah absolut digit, yaitu
 A₂ atau A(B). Dalam hal ini yang dituliskan adalah A₂
- Dasar penulisan:

A x 2ⁿ

Contoh penulisan: 1001 0011₂

3. Sistem Bilangan Oktal

- Sistem bilangan oktal menggunakan basis 8 (octal)
- Menggunakan 8 macam simbol bilangan berbentuk digit angka: 0,1,2,3,4,5,6,7
- Penulisan base/radix dituliskan setelah absolut digit, yaitu
 A₈ atau A(O). Dalam hal ini yang dituliskan adalah A₈
- Dituliskan:
 A x 8ⁿ

Contoh penulisan: 347₈

4. Sistem Bilangan Hexadesimal

- Sistem bilangan hexadesimal menggunakan basis 16 (hexa)
- Menggunakan 16 macam simbol bilangan berbentuk digit angka: 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F
- Penulisan base/radix dituliskan setelah absolut digit, yaitu
 A₁₆ atau A(H). Dalam hal ini yang dituliskan adalah A₁₆
- Dituliskan: A x 16ⁿ
- Contoh penulisan: A78₁₆

II. Satuan Data

Komputer bekerja atas dasar sistem biner berupa 0 dan 1 yang disebut bit.

Bit merupakan satuan data terkecil dalam sistem komputer.

Bit-bit dapat digunakan untuk menyusun karakter apa saja.

Sebuah karakter dinyatakan dengan 8 bit atau 16 bit.

1. Byte

- Byte merupakan satuan yang digunakan untuk menyatakan sebuah karakter pada sistem ASCII atau EBCDIC
- 1 byte = 8 bit

Satuan Data (Lanjutan)

2. Kilobyte (KB)

- Biasa digunakan untuk berkas gambar berukuran kecil
- 1 kilobyte = 1024 byte

3. Megabyte (MB)

- Biasa digunakan untuk menyatakan kapasitas RAM dalam PC
- 1 MB = 1024 KB = 1.048.576 byte

4. Gigabyte (GB)

- Biasa digunakan untuk menyatakan kapasitas harddisk dalam PC
- 1 GB = 1024 MB = 1.073.741.824 byte

Satuan Data (Lanjutan)

5. Terabyte (TB)

- Biasa digunakan untuk menyatakan kapasitas harddisk dalam mainframe
- 1 TB = 1024 GB = 1.009.511.627.776 byte

6. Petabyte (PB)

1 PB = 1024 TB

III. Sistem Pengkodean

- Sistem yang digunakan untuk mengkodekan karakter bermacam-macam.
- Data disimpan dalam memori komputer menempati posisi 1 byte, yang menggunakan kombinasi dari digit Biner.
- Komputer berbeda dalam menggunakan kode biner untuk mewakili sebuah karakter.
- Ada beberapa kode yang akan dibahas, yaitu BCD, EBCDIC, ASCII dan Unicode

1. BCD (Binary Coded Decimal)

- Merupakan kode biner yang digunakan hanya untuk mewakili nilai digit desimal saja.
- Sebuah karakter BCD dinyatakan dengan 4 bit
- Karakter yang tersedia sebanyak 10 angka, yaitu angka 0,1,2,3,4,5,6,7,8,9
- Digunakan pada komputer generasi pertama.

BCD 4 Bit	Digit Desimal
0000	0
0001	1
0010	2
0011	3
0100	4

BCD 4 Bit	Digit Desimal
0101	5
0110	6
0111	7
1000	8
1001	9

2. EBCDIC (Extended Binary Coded Decimal Interchange Code)

- EBCDIC dikembangkan oleh IBM, yang diterapkan pada berbagai komputer mainframe
- Sebuah karakter dinyatakan dengan 8 bit
- Karakter yang tersedia sebanyak 2⁸ = 226 karakter
- Digunakan pada komputer generasi ketiga

3. ASCII (American Standard Code for Information Interchange)

- ASCII dikembangkan oleh ANSI (American National Standard Institute)
- Sebuah karakter ASCII dinyatakan dengan 8 bit
- Karakter yang tersedia sebanyak 226 karakter, meliputi huruf, angka, dan spesial karakter, termasuk simbol Yunani dan karakter grafis

Tabel EBCDIC 8 bit

HEX	0	1	2	3	4	5	6	7	8	9	A	В	C	D	E	F
0	NUL	DLE	DS		SP	&										0
1	SOH	DC1	DOS						а	j			A	J		1
2	STX	DC2	FS	SYN					b	k	S		В	K	S	2
3	ETX	DC3							С	1	t		С	L	T	3
4	PF	RES	BYP	PN					d	m	u		D	M	U	4
5	HT	NL	LF	RS					е	n	v		E	N	V	5
6	LC	BS	ETB	UC					f	o	w		F	0	W	6
7	DEL	IL	ESC	EOT					g	p	х		G	P	X	7
8	CAN								h	q	у		Н	Q	Y	8
9	RLF	EM							į	r	z		Ι	R	Z	9
A	SMM	CC	SM			!		:								
В	VT					\$	3	#								
C	FF	IFS		DC4	٧	44	%	@								
D	CR	IGS	ENQ	NAK	()										
E	SO	IRS	ACK			-	>	=								
F	SI	IUS	BEL	SUB			?									

Tabel ASCII 8 bit

Dec	Hex	Char	De
128	80	ç	160
129	81	iii	163
130	82	é	162
131	83	â	163
132	84	ä	164
133	85	à	163
134	86	å	160
135	87	G	161
136	88	ê	168
137	89	ê	169
138	8A	è	170
139	8B	ï	173
140	8C	î	172
141	8D	ì	173
142	8E	Ä	174
143	8F	Å	173
144	90	É	174
145	91	36	171
146	92	Æ	178
147	93	ô	179
148	94	ö	180
149	95	ò	18
150	96	û	182
151	97	ù	183
152	98	ij	184
153	99	Ö	183
154	9A	Ü	18 (
155	918	¢	181
156	9C	¢	188
157	910	¥	189
158	9E	R	190
159	9F	.	191

Dec	Нех	Char
160	A0	áı
161	A1	í
162	A2	ó
163	A3	ú
164	A4	ñ
165	A5	Ñ
166	A6	<u>a</u>
167	A7	•
168	A8	ᅩ
169	A9	- -
170	AA	 -∎
171	AB	½
172	AC	4
173	AD	į.
174	AE	-≪
175	AF	38
176	B0	
177	Bl	
178	B2	
179	B3	IT .
180	B4	H
181	B5	-
182	B6	H
183	В7	Ήï
184	B8	7.
185	B9	1
186	BA	11
187	вв	1
188	BC	4
189	BD	
190	BE	╛

Dec	Hex	Char
192	တ	L
193	Cl	土
194	C22	 ⊤
195	cs	Ī
196	C4	١÷
197	cs	 }
198	C6	l <u>⊧</u>
199	C7	∣ ∦ ⊦
200	C8	LL
201	CO	1
202	CA	╨
203	СВ	चा
204	œ	Ţ
205	ဏ	l ==
206	CE	#
207	CF	
208	D0	Щ
209	Dl	T
210	D2	
211	D3	Ⅱ
212	D4	L
213	D5	F
214	D6	I _
215	D7	∏ †
216	D8	∔
217	D9	
218	DA	Ī
219	DB	
220	DC	
221	DD	▎█▁
222	DE	
223	DF	

De	с н	ex	Char
224	E	0	•OX
225	5 E	1	ß
220	5 E	2	Г
223	7 E	3	π
228	} E	4	Σ
229) E	5	o
230) E	6	مر
231	ι E	7	T
232	: E	8	至
233	; E	9	Θ
234	· E	A	Ω
235	5 E	в	δ
230	5 E	c	-00
231	7 E	D	90
238	} E	E	ϵ
239) E	F	n
240) F	0	≡
243	۱ F	1	<u>+</u>
242	F	2	≥
243	F	3	<
244	⊦ F	4	ſ
245	5 F	5	J
244	5 F	6	÷
241	7 F	7	*
248	} F	8	•
249) F	9	•
250) F.	A	-
251	۱ F.	в	1
252	} F	c	m
253	} F	D	2
254	F	E	-
255	5 F	F	

4. Unicode

- Sebuah karakter Unicode dinyatakan dengan 16 bit
- Karakter yang tersedia sebanyak 65.536 karakter, meliputi huruf, angka, dan spesial karakter, termasuk simbol Yunani, karakter grafis, simbol Arab dan Cina

1. Konversi dari Bilangan Desimal ke Biner

- Dengan cara membagi bilangan desimal dengan 2 (basis biner) sampai tidak bisa dibagi lagi
- Kemudian <u>sisa pembagian diurutkan dari bawah ke atas</u> dalam format 8 bit
- Contoh nilai 89₁₀ akan dikonversikan menjadi Biner

Konversi dari Bilangan Desimal ke Biner (Lanjutan)

89

2:

44 sisa 1

2:

22 sisa **0**

2:

11

sisa 0

2:

5

sisa 1

<u>2</u>:

2

sisa 1

<u>2</u>:

1

sisa 0

Dituliskan dari bawah ke atas: 1011001 Karena penulisan dengan 8 bit, maka 89₁₀ = 0101 1001₂

2. Konversi dari Bilangan Desimal ke Oktal

- Dengan cara membagi bilangan desimal dengan 8 (basis oktal) sampai tidak bisa dibagi lagi
- Cara yang digunakan sama dengan bilangan biner
- Contoh nilai 147₁₀ akan dikonversikan menjadi Oktal

Konversi dari Bilangan Desimal ke Oktal (Lanjutan)

- Dituliskan dari bawah ke atas: 223
- Maka hasilnya menjadi 147₁₀ = 223₈

3. Konversi dari Bilangan Desimal ke Hexadesimal

- Dengan cara membagi bilangan desimal dengan 16 (basis hexa) sampai tidak bisa dibagi lagi
- Cara yang digunakan sama dengan bilangan biner
- Contoh nilai 123₁₀ akan dikonversikan menjadi Hexa

Konversi dari Bilangan Desimal ke Hexadesimal (Lanjutan)

- Sisa 11 dikodekan menjadi B
- Maka hasilnya menjadi 123₁₀ = 7B₁₆

4. Konversi dari Bilangan Biner ke Desimal

- Dengan cara mengalikan masing-masing bit biner dalam bilangan sesuai dengan radix dan position value-nya
- Contoh bit 11 0101₂ akan dikonversikan menjadi Desimal

Maka hasil di samping dituliskan:

$$11\ 0101_2 = 53_{10}$$

5. Konversi dari Bilangan Biner ke Oktal

- Dengan cara membagi digit biner tersebut ke dalam tiga digit dari <u>kanan</u>
- Ketiga digit tersebut kemudian dikonversikan menjadi desimal
- Contoh bit 1010 1011₂ akan dikonversikan menjadi Oktal

Biner	10	101	011
Desimal	2	5	3

Maka dituliskan menjadi **1010 1011**₂ = **253**₈

6. Konversi dari Bilangan Biner ke Hexadesimal

- Dengan cara membagi digit biner tersebut ke dalam empat digit dari <u>kanan</u>
- Keempat digit tersebut kemudian dikonversikan menjadi desimal
- Contoh bit 10101011₂ akan dikonversikan menjadi Hexa

Biner	1010	1011
Desimal	10	11
Hexa	Α	В

Maka dituliskan menjadi 1010 1011₂ = AB₁₆

7. Konversi dari Bilangan Oktal ke Desimal

- Dengan cara mengalikan masing-masing bit oktal dalam bilangan sesuai dengan radix dan position valuenya
- Contoh bit 371₈ akan dikonversikan menjadi Desimal

Maka hasil disamping dituliskan:

$$371_8 = 249_{10}$$

8. Konversi dari Bilangan Oktal ke Biner

- Dengan cara mengkonversikan setiap satu digit oktal menjadi tiga digit biner
- Contoh bit 71₈ akan dikonversikan menjadi Biner

Oktal	7	1
Biner	111	001

Maka dituliskan menjadi $71_8 = 0011 1001_2$

9. Konversi dari Bilangan Oktal ke Hexadesimal

- Konversi ini tidak dapat dilakukan secara langsung, tetapi harus dikonversikan terlebih dahulu ke Desimal atau Biner
- Contoh bit 243₈ akan dikonversikan menjadi Hexa

Oktal	2	4		3
Biner	010	100		011
	1010		00	11
Hexa	Α		3	3

Maka dituliskan menjadi **243**₈ = **A3**₁₆

10. Konversi dari Bilangan Hexadesimal ke Desimal

- Dengan cara mengalikan masing-masing bit hexa dalam bilangan sesuai dengan radix dan position valuenya
- Contoh bit 8F₁₆ akan dikonversikan menjadi Desimal

Maka hasil disamping dituliskan:

$$8F_{16} = 143_{10}$$

11. Konversi dari Bilangan Hexadesimal ke Biner

- Dengan cara mengkonversikan setiap satu digit hexa menjadi empat digit biner
- Contoh bit 8F₁₆ akan dikonversikan menjadi Biner

Hexa	8	F
Biner	1000	1111

Maka dituliskan menjadi $8F_{16} = 1000 1111_2$

12. Konversi dari Bilangan Hexadesimal ke Oktal

- Konversi ini tidak dapat dilakukan secara langsung, tetapi harus dikonversikan terlebih dahulu ke Desimal atau Biner sama dengan konversi dari oktal ke hexa
- Contoh bit 8F₁₆ akan dikonversikan menjadi Oktal

Hexa	8		F	
Biner	1000		1111	
	10	001		111
Oktal	2	1		7

Maka dituliskan menjadi 8F₁₆ = 217₈

LATIHAN

Dosen diharapkan memberikan contoh dan latihan konversi bilangan

Soal Latihan Struktur Data (Pertemuan 2)

- 1. Suatu cara untuk mewakili besaran dari suatu item fisik merupakan definisi dari:
 - a. Sistem Komputer

d. Pengkodean

b. Sistem Bilangan

- e. Konversi Bilangan
- c. Aritmetika Bilangan
- 2. Decimal adalah bilangan berbasis sepuluh yang terdiri atas angka...
 - a. 0,1,2,3,4,5,6,7,8,9
 - b. 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F
 - c. 1,3,5,7,9
 - d. 2,4,6,8,10
 - e. 0,1,1,3,5

2. Decimal adalah bilangan berbasis sepuluh yang terdiri atas angka...

- a. 0,1,2,3,4,5,6,7,8,9
- b. 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F
- c. 1,3,5,7,9
- d. 2,4,6,8,10
- e. 0,1,1,3,5

3. Konversikan bilangan decimal ke hexadecimal....

380(10).....(16)

a. 17C (16)

d. 14B (16)

b. 16D (16)

e. 17B (16)

c. 17D (16)

3. Konversikan bilangan decimal ke hexadecimal....

380(10).....(16)

a. 17C (16)

d. 14B (16)

b. 16D (16)

e. 17B (16)

c. 17D (16)

4. Sistem bilangan yang menggunakan basis 8 adalah:

a. Biner

d. Hexadesimal

b. Desimal

e. Unary

c. Oktal

4. Sistem bilangan yang menggunakan basis 8 adalah:

a. Biner

d. Hexadesimal

b. Desimal

e. Unary

c. Oktal

5. Penulisan sistem bilangan yang benar di bawah ini adalah:

a. 285(O)

d. AAA(B)

b. 1211(B)

e. 12F(D)

c. 1010(D)

5. Penulisan sistem bilangan yang benar di bawah ini adalah:

a. 285(O)

d. AAA(B)

b. 1211(B)

e. 12F(D)

c. 1010(D)

1. Suatu cara untuk mewakili besaran dari suatu item fisik merupakan definisi dari:

a. Sistem Komputer

d. Pengkodean

b. Sistem Bilangan

e. Konversi Bilangan

c. Aritmetika Bilangan