CSCI4333 Database Design & Implement

Lecture Seven – Relational Model 1

Instructor: Dr. Yifeng Gao

A **relation** is a more concrete construction, of something we have seen before, the ER diagram.

A **relation** is a more concrete construction, of something we have seen before, the ER diagram.

A relation is (just!) a table!

A **relation** is a more concrete construction, of something we have seen before, the ER diagram.

A relation is (just!) a table!

name	<u>S.S.N</u>	street	city
Lisa	1272	10 th	Mcallen
Bart	5592	Sugar	Edinburg
Lisa	7552	9 th	Mission
Sue	5555	Coria	Brownsville

Students

An attribute uniquely define each entity

Entity name

name	<u>S.S.N</u>	street	city
Lisa	1272	10 th	Mcallen
Bart	5592	Sugar	Edinburg
Lisa	7552	9 th	Mission
Sue	5555	Coria	Brownsville

Students

An attribute uniquely define each entity

Entity name

We will use **table** and **relation** interchangeably, except where there is a possibility of confusion.

name	<u>S.S.N</u>	street	city
Lisa	1272	10 th	Mcallen
Bart	5592	Sugar	Edinburg
Lisa	7552	9 th	Mission
Sue	5555	Coria	Brownsville

Students

Differences between **entities** must be expressed in terms of attributes.

name	<u>S.S.N</u>	street	city
Lisa	1272	10 th	Mcallen
Bart	5592	Sugar	Edinburg
Lisa	7552	9 th	Mission
Sue	5555	Coria	Brownsville

Differences between **entities** must be expressed in terms of attributes.

Key is a set of attribute that allow us to identify uniquely an entity in the entity set.

name	<u>S.S.N</u>	street	city
Lisa	1272	10 th	Mcallen
Bart	5592	Sugar	Edinburg
Lisa	7552	9 th	Mission
Sue	5555	Coria	Brownsville

Differences between **entities** must be expressed in terms of attributes.

Key is a set of attribute that allow us to identify uniquely an entity in the entity set.

In a table, every entity should be unique!

name	<u>S.S.N</u>	street	city
Lisa	1272	10 th	Mcallen
Bart	5592	Sugar	Edinburg
Lisa	7552	9 th	Mission
Sue	5555	Coria	Brownsville

Differences between **entities** must be expressed in terms of attributes.

name
S.S.N
street
city

students

Key is a set of attribute that allow us to identify uniquely an entity in the entity set.

In a table, every entity should be unique!

Ex. SSN is a key

name	<u>S.S.N</u>	street	city
Lisa	1272	10 th	Mcallen
Bart	5592	Sugar	Edinburg
Lisa	7552	9 th	Mission
Sue	5555	Coria	Brownsville

Differences between **entities** must be expressed in terms of attributes.

Key is a set of attribute that allow us to identify uniquely an entity in the entity set.

Question:

Is (name, SSN, street) a key?

Is (street) a key?

name	<u>S.S.N</u>	street	city
Lisa	1272	10 th	Mcallen
Bart	5592	Sugar	Edinburg
Lisa	7552	9 th	Mission
Sue	5555	Coria	Brownsville

Differences between **entities** must be expressed in terms of attributes.

Key is a set of attribute that allow us to identify uniquely an entity in the entity set.

Question:

Is (name, SSN, street) a key?
Yes
Is (street) a key?
No

	i		
name	<u>S.S.N</u>	street	city
Lisa	1272	10 th	Mcallen
Bart	5592	Sugar	Edinburg
Lisa	7552	9 th	Mission
Sue	5555	Coria	Brownsville

Differences between **entities** must be expressed in terms of attributes.

What Different Between Key SSN and (Name, SSN, street)?

SSN belongs to (Name, SSN, street)

In fact, any attribute set contains SSN is a key!
(Name, SSN, street, city) is a key

name	<u>S.S.N</u>	street	city
Lisa	1272	10 th	Mcallen
Bart	5592	Sugar	Edinburg
Lisa	7552	9 th	Mission
Sue	5555	Coria	Brownsville

SSN

(SSN, Name)

(SSN, Name, street)

(SSN, Name, street, city)

	i	i	
name	<u>S.S.N</u>	street	city
Lisa	1272	10 th	Mcallen
Bart	5592	Sugar	Edinburg
Lisa	7552	9 th	Mission
Sue	5555	Coria	Brownsville

SSN

(SSN, Name)

(SSN, Name, street)

(SSN, Name, street, city)

name	<u>S.S.N</u>	street	city
Lisa	1272	10 th	Mcallen
Bart	5592	Sugar	Edinburg
Lisa	7552	9 th	Mission
Sue	5555	Coria	Brownsville

We have multiple keys in a table. But not all keys are very useful! Types of key:

- 1. **superkey:** a set of one or more attributes which, taken collectively, allow us to identify uniquely an entity in the entity set
- 2. candidate key: A superkey for which no subset is a superkey.

SSN:
candidate key
(SSN, Name)
superkey
(SSN, Name, street)
superkey
(SSN, Name, street, city)
superkey

name	<u>S.S.N</u>	street	city
Lisa	1272	10 th	Mcallen
Bart	5592	Sugar	Edinburg
Lisa	7552	9 th	Mission
Sue	5555	Coria	Brownsville

We have multiple keys in a table. But not all keys are very useful! Types of key:

superkey: a set of one or more attributes which, taken collectively, allow us to identify uniquely an entity in the entity set

candidate key: A superkey for which no subset is a superkey.

Look at the following table. Answer following questions:

Make	Model	Owner	State	License #	VIN#
Ford	Focus	Mike	CA	SD123	34724
BMW	Z 4	Joe	CA	JOE	55725
Ford	Escort	Sue	AZ	TD4352	75822
Honda	Civic	Bert	CA	456GHf	77924

Look at the following table. Answer following questions:

(State, License#, VIN#) Key? Superkey? Candidate Key?

(Make, Model, Owner) Key? Superkey? Candidate Key?

(State, License#) Key? Superkey? Candidate Key?

(VIN#) Key? Superkey? Candidate Key?

Make	Model	Owner	State	License #	VIN#
Ford	Focus	Mike	CA	SD123	34724
BMW	Z4	Joe	CA	JOE	55725
Ford	Escort	Sue	AZ	TD4352	75822
Honda	Civic	Bert	CA	456GHf	77924

Look at the following table. Answer following questions:

(State, License#, VIN#): superkey

(Make, Model, Owner): Not a key

(State, License#): candidate key

(VIN#): candidate key

Make	Model	Owner	State	License #	VIN#
Ford	Focus	Mike	CA	SD123	34724
BMW	Z4	Joe	CA	JOE	55725
Ford	Escort	Sue	AZ	TD4352	75822
Honda	Civic	Bert	CA	456GHf	77924

Look at the following table. Answer following questions:

(State, License#, VIN#): superkey (Make, Model, Owner): Not a key (State, License#): candidate key

(VIN#): candidate key

A table can have multiple candidate keys!

Make	Model	Owner	State	License #	VIN#
Ford	Focus	Mike	CA	SD123	34724
BMW	Z4	Joe	CA	JOE	55725
Ford	Escort	Sue	AZ	TD4352	75822
Honda	Civic	Bert	CA	456GHf	77924

Look at the following table. Answer following questions:

```
(State, License#, VIN#): superkey
(Make, Model, Owner): Not a key
(State, License#): candidate key
```

(VIN#): candidate key

A table can have multiple candidate keys! But each table we only choose one.

Make	Model	Owner	State	License #	VIN#
Ford	Focus	Mike	CA	SD123	34724
BMW	Z 4	Joe	CA	JOE	55725
Ford	Escort	Sue	AZ	TD4352	75822
Honda	Civic	Bert	CA	456GHf	77924

Different Types of Key:

superkey: a set of one or more attributes which, taken collectively, allow us to identify uniquely an entity in the entity set

candidate key: A superkey for which no subset is a superkey.

primary key is a candidate key (there may be more than one) chosen by the DB designer to identify entities in an entity set.