UNIVERSIDAD NACIONAL DE INGENIERÍA

FACULTAD DE INGENIERÍA MECÁNICA

INFORME DE LABORATORIO LABORATORIO DE INGENIERÍA MECÁNICA

MEDICIÓN DE FLUJO

LIMA - PERÚ OCTUBRE 2019

MEDICIÓN DE FLUJO

ENTREGADO:

06 OCTUBRE 2019

Carranza Zavala David, 20174065E	Huaroto Villavicencio Josue, 20174070
Landeo Sosa Bruno, 20172024J	Lino Carbajal Franklin, 20110146D
Quesquen Vitor Angel, 20170270C	Sotelo Cavero Sergio, 20172125K
PROFESOR:	

ING. MORALES TAQUIRI OSWALDO

Índice general

1.	Obj	etivos		1
2.	Cálo	culos y	resultados	2
	2.1.	Estudi	o del flujo en vertedero triangular	2
		2.1.1.	Relación entre el tanque y el caudal en la salida	2
		2.1.2.	Relación entre el caudal y la altura del medidor flotante para el perfil	
			triangular	3
	2.2.	Tubo o	de Venturi	5
	2.3.	Placa	orificio	5
		2.3.1.	Procedimiento	5
		2.3.2.	Cálculos y resultados	6
3.	Con	clusio	nes	8
Bi	bliog	rafía		14

Capítulo 1

Objetivos

- El objetivo de la medición con Venturi es determinar un factor que nos permita comparar resultados teóricos con los reales, recordemos que hay pérdidas en las tuberías y pues, este factor lo considerará.
- 2. Comparar la exactitud de este tubo, cuya instalación es cara, vs otro instrumento que tiene una instalación barata.
- 3. Calcular los coeficientes de descargas para la placa y el venturímetro.

Capítulo 2

Cálculos y resultados

2.1. Estudio del flujo en vertedero triangular

Cuadro con los datos obtenidos en esta parte experimental:

Medición	Altura Tanque	Altura Flotador	Tiempo (seg)	Volumen (ml)	Caudal (ml/s)
1	$20.5~\mathrm{cm}$	0.4 in	15	670	44.6667
2	45 cm	0.49 in	30.5	1954	64.0656
3	57.5 cm	0.5 in	15.33	1090	71.1024
4	64 cm	0.75 in	15.18	1160	76.4163

2.1.1. Relación entre el tanque y el caudal en la salida

Conocemos la relación teorica existente entre la altura (h) de agua presente en el tanque y la velocidad de salida por un orificio en la parte inferior del tanque. Esta relación se representa mediante la formula:

$$V_{\rm salida} = \sqrt{2gh}$$

Entonces para un área de salida constante que desconocemos debería cumplirse que la relación caudal/velocidad debe ser lineal:

De esta grafica podemos deducir que el área de salida del orificio es de $2.02763 \cdot 10^{-5} \text{m}^2$ aproximadamente.

2.1.2. Relación entre el caudal y la altura del medidor flotante para el perfil triangular

De los libros y manuales de hidráulica se puede obtener la siguiente formula para un vertedero triangular con ángulo de 90°:

$$Q_{teorico} = \frac{8}{15}\sqrt{2g}h^{5/2}$$

Esta expresión fue estudiada con mayor profundidad y James Thompson la replanteo considerando un coeficiente de descarga, lo que resulta en:

$$Q_{real} = 0.593 \, Q_{teorico} = 1.4 \, h^{5/2}$$

Con Q en m^3/s y h en metros. Además, esta formula sirve para valores de h entre 5 y 18 cm. Puesto que el coeficiente de descarga depende de las condiciones de ensayo y de los materiales; varios autores realizaron sus propios ensayos y obtuvieron distintas constantes

cercanas al valor de Thompson (1.4 ± 0.15 y 2.5 ± 0.2 aproximadamente). En general se puede deducir que el caudal depende únicamente de la altura por encima del vértice del triángulo o también llamado carga de agua.

$$Q_h = K \cdot h^n$$

Para nuestro ensayo obtuvimos los siguientes datos de caudal y carga de agua (Altura del flotador):

Carga de agua (m)	Caudal (m ³ /s)
0.01016	4.4667e-05
0.012446	6.406557e-05
0.0127	7.110241e-05
0.01905	7.64163e-05

2.2. Tubo de Venturi

Primera toma:

$$Q_1 = \frac{10 \, \mathrm{L}}{9.7 \, \mathrm{s}} = 0.0010309 \, \mathrm{m}^3/\mathrm{sreal}$$
 $\Delta H = 0.101 \, \mathrm{m}$
$$v_2 = 5.3559439 \, \mathrm{m/s} \longrightarrow Q_2 = 0.001526 \, \mathrm{m}^3/\mathrm{s}$$

Segunda toma

$$Q_2 = \frac{10 \text{ L}}{24.215 \text{ s}} = 0.000412967 \text{ m}^3/\text{sreal}$$
 $\Delta H = 0.022 \text{ m}$
$$v_2 = 2.49969 \text{ m/s} \longrightarrow Q_2 = 0.00071247 \gg^{1/2}/\sim$$

Ahora procederemos a calcular los coeficientes de descarga que tiene cada muestra la cual se calculará bajo esta expresión:

$$Cd_1 = \frac{Q_{\text{real}}}{Q_{\text{teórico}}} = 0.6753$$
 $Cd_2 = 0.5796$

Entonces el $Cd_{\text{prom}} = 0.6274$.

2.3. Placa orificio

2.3.1. Procedimiento

1. Activar las bombas

- 2. De la misma manera que el ensayo de Venturi, se verifican que existan cantidades de agua en el tubo, si existiera, se cuantifican para corregir posibles errores.
- 3. Se are la llave de agua y se anotan las diferentes alturas en los niveles de mercurio
- 4. La medición del caudal se hace de la misma manera que con la experiencia de Venturi.
- 5. Cuando se inicie la medición del caudal, se cierra la llave del tanque, luego se abre la llave de descarga para proseguir con las mediciones.

2.3.2. Cálculos y resultados

Se mostrará en detalle los cálculos y resultados del coeficiente de descarga (Cd) de la tubería placa orificio concéntrica interna al tubo.

D (Diámetro mayor)	d (Diámetro menor)	A_D	A_d
5/4 in	3/4 in	$7.917 \cdot 10^{-4} \text{m}^2$	$2.85 \cdot 10^{-4} \text{m}^2$

Datos obtenidos en el laboratorio:

$$T_{amb} = 20^{\circ} \text{C}$$
 $\rho_{\text{agua}} = 998 \text{kg/m}^3$ $\gamma_{\text{agua}} = 9790 \text{ N/m}^3$ $\mu_{\text{agua}} = 1.02 \cdot 10^3 \text{ Pa} \cdot \text{s}$

Medición	$\Delta h \text{ (cm Hg)}$	Volumen (L)	t_1	t_2	$Q_{real}~(\mathrm{m}^3/\mathrm{s})$
1	3	10	17.5 s	17.85 s	0.0005657
2	7.5	10	10.14 s	$9.54 \mathrm{\ s}$	0.00102

Medición de la velocidad del fluido

Para ello se aplicará tres restricciones:

- Aplicar la ecuación de Bernoulli entre los puntos (1) y (2).
- Usar la ecuación de continuidad, por ser fluido incompresible entre los puntos (1) y
 (2).
- Análisis en el manómetro de mercurio entre los puntos (1) y (2).
- Se obtendrá la siguiente expresión matemática:

$$v_2 = \sqrt{\frac{2gh_{Hg}\left(\frac{\rho_{Hg}}{\rho_{\text{agua}}} - 1\right)}{1 - \left(\frac{d}{D}\right)^4}} \qquad Q_{\text{teorico}} = \frac{v_2 \pi d^2}{4}$$

Para la medición 1:

$$v_2 = 2.9152 \,\mathrm{m/s}$$
 $Q_{\text{teorico}} = 8.3 \cdot 10^{-4} \,\mathrm{m}^3/\mathrm{s}$

Para la medición 2:

$$v_2 = 4.609 \,\mathrm{m/s}$$
 $Q_{\text{teorico}} = 1.3137 \cdot 10^{-3} \,\mathrm{m}^3/\mathrm{s}$

Al obtener los dos caudales para ambas mediciones (Q_t,Q_r) se procede a calcular el coeficiente de descarga (Cd):

$$Cd_1 = \frac{Q_{\text{real}}}{Q_{\text{teorico}}} = 0.6867$$
 $Cd_2 = 0.7765$

De una T = 20°C según indica las propiedades del agua y los datos obtenido en cálculos anteriores podemos calcular el número de Reynold (Re):

$$Re_1 = 54336.755$$
 $Re_2 = 85907.69320$

Se procederá a obtener los promedios del Cd y Re:

$$Cd_{\text{prom}} = 0.7316$$
 Re = 70122.22

Según tablas, Cd = 0.65:

%error =
$$\frac{0.7316 - 0.65}{0.7316} = 11.1535\%$$

Al tener un % error apreciable indica que para un Re > 4000 el flujo es turbulento, pero solo en la parte cercana al orificio, ya que después ello regresara a su estado laminar a medida que disminuye la velocidad y se tome constante.

Capítulo 3

Conclusiones

- 1. Se concluye que definitivamente hay pérdidas, pues los caudales son mayores teóricamente.
- 2. Es de utilidad tener el valor del coeficiente de descarga para estimar el caudal que se obtendrá al usar cualquier dispositivo que pueda afectar el caudal.

Anexos

UNIVERSIDAD NACIONAL DE INGENIERIA

Facultad de Ingenieria Mecánica Laboratorio de Energía – Lab. 05

Medición de Flujo

Nentour

DATOS PARA EL EXPERIMENTO														
- 1 2	0 in N=017								-		1			
_			D	Δ	T	0	S		E	N				-
7.5					L	0		P	Δ	R	T	E		
			T	R	Δ	's	E	R	Δ		D	E		
				7	A		4	0	5	Δ				
									\		, 4	7		
														-
							-						-	
						~								
			-	-			-				-		-	

OBSERVACIONES

Cromoin Recipit					
Probat	a de	laboratorio	-		
-			-		

FIRMA DEL PROFESOR:

Discos AP = 20-9.4 (10.6 cm)pg (9,6 seg condd 9,8 seg 2 da parte: DP= 16-13.8 (2.2 cm) Hg = 24,06 805 caudal 24,35 seg Tobo de Reynold Jitercepto M(Pendiente) Mediciones o Altura 1 | Difference | Dif [21-20,5]cm 0,41 pols 15 89 670 m/ Altura 1 - h de léguido en el tubo. Altura 2 - h de elomento flotante

Bibliografía

- [1] Chow, V."Open Channel Hydraulics". McGraw-Hill
- [2] Domínguez, F."Hidráulica".
- [3] Guevara, Robert (2009). "Manual de prácticas de laboratorio de energía II".
- [4] Mott, R. "Mecánica de fluidos". Prentice-Hall