# AIFFEL DL-thon DKTC Task Non-Submission

Anonymous authors
Paper under double-blind review

#### **Abstract**

The DKTC (Dataset of Korean Threatening Conversations) task of AIFFEL-thon involved predicting one of the four sub-categories of threats based on arbitrary conversational audio files. Participants were required to build a model for predicting and classifying the test data in any way they wished, using the given train and test data. The accuracy of the results could be verified by comparing them with a separate answer table. Our team chose to use an ensemble approach, combining models that showed high accuracy using pre-trained models like KLEU BERT, Ko-ELECTRA, and Funnel Transformer.

#### 1 Introduction

The DKTC dataset was created by TUNiB for participation in the 2021 AI Grand Challenge 4th Competition, Speech Recognition Track. The challenge involved predicting one of the four sub-categories of threats or general conversations based on arbitrary conversational audio files. Since the organizers did not provide any training data apart from the samples, participating teams had to create their own data. Therefore, TUNiB produced this dataset through crowd sourcing and released it for non-commercial uses.

The DKTC dataset was divided into training and test data. The training data consisted of approximately 1,000 conversations in each of the four threat sub-categories: 'Threats', 'Extortion', 'Workplace Harassment', and 'Other Harassment'. The test data consisted of 100 conversations in each of the five categories: 'Threats', 'Extortion', 'Workplace Harassment', 'Other Harassment', and 'General Conversation'.

The task of this AIFFEL-thon, conducted by AIFFEL, was to classify test data from the DKTC dataset into one of the four threat sub-categories, excluding the 'General Conversation' class. Participants were given train and test data to devise solutions for the task, and they could check the accuracy of their solutions on a separate accuracy verification website.

To solve the task, our team first pre-processed the given dataset to make it usable in the task. We then tested the preprocessed dataset with several pre-trained models known for showing good performance in determining their respective accuracies. Based on this, we selected the model that best fit the dataset, identified the pre-processing elements that yielded the highest scores, and stored those conditions. We then used ensemble methods to combine the conditions from each model to achieve even higher accuracy.

## \usepackage[accepted]{tmlr}.

You also need to specify the month and year by defining variables month and year, which respectively should be a 2-digit and 4-digit number. To de-anonymize and remove mentions to TMLR (for example for posting to preprint servers), use the preprint option, as in \usepackage[preprint]{tmlr}.

Please read carefully the instructions below, and follow them faithfully.

#### 1.1 Style

Papers to be submitted to TMLR must be prepared according to the instructions presented here.

Authors are required to use the TMLR LATEX style files obtainable at the TMLR website. Please make sure you use the current files and not previous versions. Tweaking the style files may be grounds for rejection.

#### 1.2 Retrieval of style files

The style files for TMLR and other journal information are available online on the TMLR website. The file tmlr.pdf contains these instructions and illustrates the various formatting requirements your TMLR paper must satisfy. Submissions must be made using LATEX and the style files tmlr.sty and tmlr.bst (to be used with LATEX2e). The file tmlr.tex may be used as a "shell" for writing your paper. All you have to do is replace the author, title, abstract, and text of the paper with your own.

The formatting instructions contained in these style files are summarized in sections 2, 3, and 4 below.

## 2 General formatting instructions

The text must be confined within a rectangle 6.5 inches wide and 9 inches long. The left margin is 1 inch. Use 10 point type with a vertical spacing of 11 points. Computer Modern Bright is the preferred typeface throughout. Paragraphs are separated by 1/2 line space, with no indentation.

Paper title is 17 point, in bold and left-aligned. All pages should start at 1 inch from the top of the page.

Authors' names are set in boldface. Each name is placed above its corresponding address and has its corresponding email contact on the same line, in italic and right aligned. The lead author's name is to be listed first, and the co-authors' names are set to follow vertically.

Please pay special attention to the instructions in section 4 regarding figures, tables, acknowledgments, and references.

## 3 Headings: first level

First level headings are in bold, flush left and in point size 12. One line space before the first level heading and 1/2 line space after the first level heading.

#### 3.1 Headings: second level

Second level headings are in bold, flush left and in point size 10. One line space before the second level heading and 1/2 line space after the second level heading.

#### 3.1.1 Headings: third level

Third level headings are in bold, flush left and in point size 10. One line space before the third level heading and 1/2 line space after the third level heading.

#### 4 Citations, figures, tables, references

These instructions apply to everyone, regardless of the formatter being used.

#### 4.1 Citations within the text

Citations within the text should be based on the natbib package and include the authors' last names and year (with the "et al." construct for more than two authors). When the authors or the publication are included in the sentence, the citation should not be in parenthesis, using \citet{} (as in "See Hinton et al. (2006) for more information."). Otherwise, the citation should be in parenthesis using \citep{} (as in "Deep learning shows promise to make progress towards AI (Bengio & LeCun, 2007).").

Table 1: Sample table title

PARTDESCRIPTIONDendriteInput terminalAxonOutput terminalSomaCell body (contains cell nucleus)

The corresponding references are to be listed in alphabetical order of authors, in the **References** section. As to the format of the references themselves, any style is acceptable as long as it is used consistently.

#### 4.2 Footnotes

Indicate footnotes with a number<sup>1</sup> in the text. Place the footnotes at the bottom of the page on which they appear. Precede the footnote with a horizontal rule of 2 inches.<sup>2</sup>

#### 4.3 Figures

All artwork must be neat, clean, and legible. Lines should be dark enough for purposes of reproduction; art work should not be hand-drawn. The figure number and caption always appear after the figure. Place one line space before the figure caption, and one line space after the figure. The figure caption is lower case (except for first word and proper nouns); figures are numbered consecutively.

Make sure the figure caption does not get separated from the figure. Leave sufficient space to avoid splitting the figure and figure caption.

You may use color figures. However, it is best for the figure captions and the paper body to make sense if the paper is printed either in black/white or in color.



Figure 1: Sample figure caption.

#### 4.4 Tables

All tables must be centered, neat, clean and legible. Do not use hand-drawn tables. The table number and title always appear before the table. See Table 1. Place one line space before the table title, one line space after the table title, and one line space after the table. The table title must be lower case (except for first word and proper nouns); tables are numbered consecutively.

<sup>&</sup>lt;sup>1</sup>Sample of the first footnote

 $<sup>^2</sup>$ Sample of the second footnote

# 5 Default Notation

a

In an attempt to encourage standardized notation, we have included the notation file from the textbook, Deep Learning Goodfellow et al. (2016) available at https://github.com/goodfeli/dlbook\_notation/. Use of this style is not required and can be disabled by commenting out math\_commands.tex.

# Numbers and Arrays

| $\boldsymbol{a}$                    | A vector                                                                                          |
|-------------------------------------|---------------------------------------------------------------------------------------------------|
| $\boldsymbol{A}$                    | A matrix                                                                                          |
| Α                                   | A tensor                                                                                          |
| $oldsymbol{I}_n$                    | Identity matrix with $n$ rows and $n$ columns                                                     |
| I                                   | Identity matrix with dimensionality implied by context                                            |
| $oldsymbol{e}^{(i)}$                | Standard basis vector $[0, \dots, 0, 1, 0, \dots, 0]$ with a 1 at position $i$                    |
| $\operatorname{diag}(oldsymbol{a})$ | A square, diagonal matrix with diagonal entries given by $\boldsymbol{a}$                         |
| a                                   | A scalar random variable                                                                          |
| a                                   | A vector-valued random variable                                                                   |
| $\mathbf{A}$                        | A matrix-valued random variable                                                                   |
|                                     | Sets and Graphs                                                                                   |
| A                                   | A set                                                                                             |
| $\mathbb{R}$                        | The set of real numbers                                                                           |
| $\{0, 1\}$                          | The set containing 0 and 1                                                                        |
| $\{0,1,\ldots,n\}$                  | The set of all integers between 0 and $n$                                                         |
| [a,b]                               | The real interval including $a$ and $b$                                                           |
| (a,b]                               | The real interval excluding $a$ but including $b$                                                 |
| $\mathbb{A} \setminus \mathbb{B}$   | Set subtraction, i.e., the set containing the elements of $\mathbb A$ that are not in $\mathbb B$ |
| $\mathcal G$                        | A graph                                                                                           |
| $Pa_{\mathcal{G}}(\mathbf{x}_i)$    | The parents of $x_i$ in $\mathcal{G}$                                                             |
|                                     |                                                                                                   |

A scalar (integer or real)

## Indexing

| $a_i$                                                                                       | Element $i$ of vector $\boldsymbol{a}$ , with indexing starting at 1                                          |
|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| $a_{-i}$                                                                                    | All elements of vector $\boldsymbol{a}$ except for element $i$                                                |
| $A_{i,j}$                                                                                   | Element $i, j$ of matrix $\boldsymbol{A}$                                                                     |
| $oldsymbol{A}_{i,:}$                                                                        | Row $i$ of matrix $\boldsymbol{A}$                                                                            |
| $oldsymbol{A}_{:,i}$                                                                        | Column $i$ of matrix $\boldsymbol{A}$                                                                         |
| $A_{i,j,k}$                                                                                 | Element $(i, j, k)$ of a 3-D tensor <b>A</b>                                                                  |
| $A_{:,:,i}$                                                                                 | 2-D slice of a 3-D tensor                                                                                     |
| $\mathbf{a}_i$                                                                              | Element $i$ of the random vector $\mathbf{a}$                                                                 |
|                                                                                             | Calculus                                                                                                      |
| $\frac{dy}{dx}$                                                                             | Derivative of $y$ with respect to $x$                                                                         |
| $\frac{\partial y}{\partial x}$                                                             | Partial derivative of $y$ with respect to $x$                                                                 |
| $\nabla_{\boldsymbol{x}} y$                                                                 | Gradient of $y$ with respect to $\boldsymbol{x}$                                                              |
| $\nabla_{\boldsymbol{X}} y$                                                                 | Matrix derivatives of $y$ with respect to $\boldsymbol{X}$                                                    |
| $\nabla_{\mathbf{X}} y$                                                                     | Tensor containing derivatives of $y$ with respect to $\mathbf{X}$                                             |
| $rac{\partial f}{\partial oldsymbol{x}}$                                                   | Jacobian matrix $\boldsymbol{J} \in \mathbb{R}^{m \times n}$ of $f : \mathbb{R}^n \to \mathbb{R}^m$           |
| $\nabla_{\boldsymbol{x}}^2 f(\boldsymbol{x}) \text{ or } \boldsymbol{H}(f)(\boldsymbol{x})$ | The Hessian matrix of $f$ at input point $\boldsymbol{x}$                                                     |
| $\int_{\mathcal{L}} f(\boldsymbol{x}) d\boldsymbol{x}$                                      | Definite integral over the entire domain of $\boldsymbol{x}$                                                  |
| $\int_{\mathbb{S}} f(oldsymbol{x}) doldsymbol{x}$                                           | Definite integral with respect to $\boldsymbol{x}$ over the set $\mathbb S$                                   |
|                                                                                             | Probability and Information Theory                                                                            |
| P(a)                                                                                        | A probability distribution over a discrete variable                                                           |
| $p(\mathbf{a})$                                                                             | A probability distribution over a continuous variable, or over a variable whose type has not been specified   |
| $a \sim P$                                                                                  | Random variable a has distribution $P$                                                                        |
| $\mathbb{E}_{\mathbf{x} \sim P}[f(x)] \text{ or } \mathbb{E}f(x)$                           | Expectation of $f(x)$ with respect to $P(x)$                                                                  |
| Var(f(x))                                                                                   | Variance of $f(x)$ under $P(x)$                                                                               |
| Cov(f(x), g(x))                                                                             | Covariance of $f(x)$ and $g(x)$ under $P(x)$                                                                  |
| $H(\mathbf{x})$                                                                             | Shannon entropy of the random variable <b>x</b>                                                               |
| $D_{\mathrm{KL}}(P\ Q)$                                                                     | Kullback-Leibler divergence of P and Q                                                                        |
| $\mathcal{N}(m{x};m{\mu},m{\Sigma})$                                                        | Gaussian distribution over $\boldsymbol{x}$ with mean $\boldsymbol{\mu}$ and covariance $\boldsymbol{\Sigma}$ |

# Functions

| $f:\mathbb{A} \to \mathbb{B}$      | The function $f$ with domain $\mathbb A$ and range $\mathbb B$                                                                                                                  |
|------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $f\circ g$                         | Composition of the functions $f$ and $g$                                                                                                                                        |
| $f(oldsymbol{x};oldsymbol{	heta})$ | A function of $\boldsymbol{x}$ parametrized by $\boldsymbol{\theta}$ . (Sometimes we write $f(\boldsymbol{x})$ and omit the argument $\boldsymbol{\theta}$ to lighten notation) |
| $\log x$                           | Natural logarithm of $x$                                                                                                                                                        |
| $\sigma(x)$                        | Logistic sigmoid, $\frac{1}{1 + \exp(-x)}$                                                                                                                                      |
| $\zeta(x)$                         | Softplus, $\log(1 + \exp(x))$                                                                                                                                                   |
| $  oldsymbol{x}  _p$               | $L^p$ norm of $oldsymbol{x}$                                                                                                                                                    |
| x                                  | $L^2$ norm of $\boldsymbol{x}$                                                                                                                                                  |
| $x^+$                              | Positive part of $x$ , i.e., $\max(0, x)$                                                                                                                                       |
| $1_{	ext{condition}}$              | is 1 if the condition is true, 0 otherwise                                                                                                                                      |

#### 6 Final instructions

Do not change any aspects of the formatting parameters in the style files. In particular, do not modify the width or length of the rectangle the text should fit into, and do not change font sizes (except perhaps in the **References** section; see below). Please note that pages should be numbered.

# 7 Preparing PostScript or PDF files

Please prepare PostScript or PDF files with paper size "US Letter", and not, for example, "A4". The -t letter option on dvips will produce US Letter files.

Consider directly generating PDF files using pdflatex (especially if you are a MiKTeX user). PDF figures must be substituted for EPS figures, however.

Otherwise, please generate your PostScript and PDF files with the following commands:

```
dvips mypaper.dvi -t letter -Ppdf -GO -o mypaper.ps ps2pdf mypaper.ps mypaper.pdf
```

# 7.1 Margins in LaTeX

Most of the margin problems come from figures positioned by hand using \special or other commands. We suggest using the command \includegraphics from the graphicx package. Always specify the figure width as a multiple of the line width as in the example below using .eps graphics

```
\usepackage[dvips]{graphicx} ...
\includegraphics[width=0.8\linewidth]{myfile.eps}
or
\usepackage[pdftex]{graphicx} ...
\includegraphics[width=0.8\linewidth]{myfile.pdf}
```

for .pdf graphics. See section 4.4 in the graphics bundle documentation (http://www.ctan.org/tex-archive/macros/latex/required/graphics/grfguide.ps)

A number of width problems arise when LaTeX cannot properly hyphenate a line. Please give LaTeX hyphenation hints using the \- command.

#### **Broader Impact Statement**

In this optional section, TMLR encourages authors to discuss possible repercussions of their work, notably any potential negative impact that a user of this research should be aware of. Authors should consult the TMLR Ethics Guidelines available on the TMLR website for guidance on how to approach this subject.

#### **Author Contributions**

If you'd like to, you may include a section for author contributions as is done in many journals. This is optional and at the discretion of the authors. Only add this information once your submission is accepted and deanonymized.

# Acknowledgments

Use unnumbered third level headings for the acknowledgments. All acknowledgments, including those to funding agencies, go at the end of the paper. Only add this information once your submission is accepted and deanonymized.

### References

Yoshua Bengio and Yann LeCun. Scaling learning algorithms towards AI. In *Large Scale Kernel Machines*. MIT Press, 2007.

Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. *Deep learning*, volume 1. MIT Press, 2016.

Geoffrey E. Hinton, Simon Osindero, and Yee Whye Teh. A fast learning algorithm for deep belief nets. *Neural Computation*, 18:1527–1554, 2006.

# A Appendix

You may include other additional sections here.