Problem 1

Consider the nonlinear differential equation:

$$\ddot{y} = 2y - (y^2 + 1)(\dot{y} + 1) + u$$

- a) Obtain a non-linear state-space representation.
- b) Linearize this system of equations around its equilibrium output trajectory when $u(\cdot) \equiv 0$, and write it in state-space form.

Solution

(a) Let $x_1 = y$, $x_2 = \dot{y}$, then

$$\dot{x_1} = x_2$$

 $\dot{x_2} = 2x_1 - (x_1^2 + 1)(x_2 + 1) + u$
 $y = x_1$

(b) Letting $\dot{x}_{e1} = 0$, $\dot{x}_{e2} = 0$, u = 0, we have $x_{e1} = 1$, $x_{e2} = 0$. Linerize the system around the nominal trajectory $x^n(t) = [1, 0]^T$. Letting $x_1 = x_{e1} + \delta x_1$, $x_2 = x_{e2} + \delta x_2$, we have

$$\dot{x_1} = \delta \dot{x_1} = x_2 = x_{e2} + \delta x_2 = \delta x_2
\dot{x_2} = \delta \dot{x_2} = f(x_{e1} + \delta x_1, x_{e2} + \delta x_2, 0) = f(x_{e1}, x_{e2}, 0) + \frac{\partial f}{\partial x_1} \delta x_1 + \frac{\partial f}{\partial x_2} \delta x_2 = -2\delta x_2$$

The state space equation is

$$\begin{bmatrix} \delta \dot{x_1} \\ \delta \dot{x_2} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & -2 \end{bmatrix} \begin{bmatrix} \delta x_1 \\ \delta x_2 \end{bmatrix}$$

Problem 2

Suppose $A \in \mathbb{R}^{n \times n}$ and $D \in \mathbb{R}^{m \times m}$ are square matrices. Suppose A and D have all distinct eigenvalues. (That is, the eigenvalues of A are from both different from each other and the eigenvalues of D, and similarly for D.) Prove that the eigenvalues of M are the union of the eigenvalues of A and D, where:

$$M = \begin{bmatrix} A & B \\ 0_{m \times n} & D \end{bmatrix}$$

Here, $0_{m \times n} \in \mathbb{R}^{m \times n}$ is the matrix of all zeros, and $B \in \mathbb{R}^{n \times m}$ is an arbitrary matrix.

Hint: Use the eigenvectors of A and D to construct the eigenvectors of M. Note that (sI - A) is invertible for any s that is not an eigenvalue of A.

Note: This is actually true for any A and D, but is easier to show for the distinct eigenvalue case.

Solution

Let v_i be the *i*-th eigenvector of A corresponding to the eigenvalue λ_i and $u_i = \begin{bmatrix} v_i \\ 0_{m \times 1} \end{bmatrix}$. Then $Mu_i = \lambda_i u_i$, which means u_i is an eigenvector of M and λ_i is an eigenvalue of M. Therefore, all the n eigenvalues of A are eigenvalues of M.

Let v_i be the *i*-th eigenvector of D corresponding to the eigenvalue λ_i and $C = \lambda_i I - A$. Then because λ_i is not an eigenvalue of A, C^{-1} exists. Let $u_i = \begin{bmatrix} C^{-1}Bv_i \\ v_i \end{bmatrix}$. Then $Mu_i = \lambda_i u_i$, which means u_i is an eigenvector of M and λ_i is an eigenvalue of M. Therefore, all the m eigenvalues of D are eigenvalues of M.

M has at most n+m eigenvalues, so eigenvalues of M is exactly the union of the eigenvalues of A and D.

Problem 3

Consider:

$$M = \begin{bmatrix} A & B \\ C & D \end{bmatrix}$$

Suppose D is invertible. Show that $det(M) = det(D) det(A - BD^{-1}C)$. (This is known as the Schur complement; note how this generalizes the 2×2 equation for the determinant: ad - bc.)

Hint: You may use the previous problem, and you may take it for granted that $\det(AB) = \det(A)\det(B)$. (In abstract algebra terms, this means that the determinant is a group homomorphism.) Try to break down M into the product of two triangular matrices, one with determinant $\det(D)$ and one with determinant $\det(A - BD^{-1}C)$.

Solution

Since

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix} = \begin{bmatrix} A - BD^{-1}C & BD^{-1} \\ 0 & I \end{bmatrix} \begin{bmatrix} I & 0 \\ C & D \end{bmatrix},$$
 we have $\det(M) = \det(\begin{bmatrix} A - BD^{-1}C & BD^{-1} \\ 0 & I \end{bmatrix}) \det(\begin{bmatrix} I & 0 \\ C & D \end{bmatrix}) = \det(D) \det(A - BD^{-1}C)$

Problem 4

Consider the linear system:

$$\dot{x} = Ax + Bu \qquad \qquad y = Cx \tag{1}$$

For any time T > 0, we can view this system as a mapping $L : (x_0, (u(t))_{0 \le t \le T}) \mapsto (x_f, (y(t))_{0 \le t \le T})$. That is, L takes initial conditions $x(0) = x_0$ and functions $u(\cdot)$ as an input, and it outputs final states $x(T) = x_f$ and functions $y(\cdot)$, according to the differential equation (1). Let \mathcal{U} denote the set of piecewise continuous, square-integrable functions from [0, T] to \mathbb{R}^{n_i} , and similarly \mathcal{Y} denote the set of piecewise continuous, square-integrable functions from [0, T] to \mathbb{R}^{n_o} . So, $L : \mathbb{R}^n \times \mathcal{U} \to \mathbb{R}^n \times \mathcal{Y}$.

The $dual\ system$ is given by:

$$-\dot{\tilde{x}} = A^{\mathsf{T}}\tilde{x} + C^{\mathsf{T}}\tilde{u} \qquad \qquad \tilde{y} = B^{\mathsf{T}}\tilde{x}$$

Here, $\tilde{u} \in \tilde{\mathcal{U}} = \mathcal{Y}$ and $\tilde{y} \in \tilde{\mathcal{Y}} = \mathcal{U}$. Note the minus sign on the state dynamics; we'll actually think of the dual system moving backward in time. Define $L^*: (\tilde{x}_f, (\tilde{u}(t))_{0 \leq t \leq T}) \mapsto (\tilde{x}_0, (\tilde{y}(t))_{0 \leq t \leq T})$, mapping final states \tilde{x}_f and dual inputs \tilde{u} to initial states \tilde{x}_0 and dual outputs \tilde{y} . Note that $L^*: \mathbb{R}^n \times \tilde{\mathcal{U}} \to \mathbb{R}^n \times \tilde{\mathcal{Y}}$.

Define the inner product on $\mathbb{R}^n \times \mathcal{U}$ (which is also $\mathbb{R}^n \times \tilde{\mathcal{Y}}$) as:

$$\langle (x_0, u(\cdot)), (x'_0, u'(\cdot)) \rangle = x_0^{\mathsf{T}} x'_0 + \int_0^T u(t)^{\mathsf{T}} u'(t) dt$$

Define the inner product on $\mathbb{R}^n \times \mathcal{Y}$ similarly. For this problem, show that L^* is the adjoint of L. (This is sometimes called the *pairing lemma*.)

Hint: Consider $\frac{d}{dt}\langle x, \tilde{x} \rangle$, and integrate on [0, T].

Solution

Define $\langle x, \tilde{x} \rangle := x^T \tilde{x}$, then we have

$$\frac{d}{dt}\langle x, \tilde{x} \rangle = \langle \dot{x}, \tilde{x} \rangle + \langle x, \dot{\tilde{x}} \rangle = \langle Ax + Bu, \tilde{x} \rangle - \langle x, A^T \tilde{x} + C^T \tilde{u} \rangle = \langle Ax, \tilde{x} \rangle + \langle Bu, \tilde{x} \rangle - \langle x, A^T \tilde{x} \rangle - \langle x, C^T \tilde{u} \rangle = \langle Bu, \tilde{x} \rangle - \langle x, C^T \tilde{u} \rangle = u^T B^T \tilde{x} - x^T C^T \tilde{u} = u^T \tilde{y} - y^T \tilde{u}$$

From the fundamental theorem of calculus, we have the integral equation

$$\int_0^T \frac{d}{dt} \langle x, \tilde{x} \rangle = \langle x(T), \tilde{x}(T) \rangle - \langle x(0), \tilde{x}(0) \rangle = x_f^T \tilde{x}_f - x_0^T \tilde{x}_0 = \int_0^T u^T \tilde{y} dt - \int_0^T y^T \tilde{u} dt$$

Therefore,

$$x_f^T \tilde{x}_f + \int_0^T y^T \tilde{u} dt = x_0^T \tilde{x}_0 + \int_0^T u^T \tilde{y} dt,$$

which means

$$\langle L(x_0, u_0), (\tilde{x}_f, \tilde{u}) \rangle = \langle (x_0, u_0), L^*(\tilde{x}_f, \tilde{u}) \rangle,$$

and L and L^* are adjoint.