Total No. of Questions—8]

[Total No. of Printed Pages—3

Seat	
No.	6.0

[5559]-183

S.E. (Computer Engineering) (I Sem.) EXAMINATION, 2019 DATA STRUCTURES AND ALGORITHMS

(2015 **PATTERN**)

Time: Two Hours

Maximum Marks: 50

- N.B. :— (i) Attempt Q. No. 1 or Q. No. 2, Q. No. 3 or Q. No. 4, Q. No. 5 or Q. No. 6, Q. No. 7 or Q. No. 8.
 - (ii) Draw neat diagrams wherever necessary.
 - (iii) Figures to the right indicate full marks.
 - (iv) Assume suitable data, if necessary.
- 1. (a) Write pseudo C/C++ code to perform simple transpose of sparse matrix. [4]
 - (b) State the characteristics of an algorithm.
 - (c) What is complexity analysis of an algorithm? Explain the notations used in the complexity analysis. [6]

Or

2. (a) What is sparse matrix? Explain its representation with an example. [4]

P.T.O.

		(i) ADT	
		(ii) Data structure.	
	(c)	Solve the recurrence relation:	[6]
		$a_r > 10a_{r-1} + 9a_{r-2} = 0$	
		with initial conditions $a_0 = 3$ and $a_1 = 11$.	
3.	(a)	Explain polynomial representation using linked list with	an
		example.	[3]
	(b)	Explain polynomial representation using linked list with example. Define: (i) Recursion (ii) Stack (iii) Linked List.	[3]
	7	(i) Recursion	
		(ii) Stack	
		(iii) Linked List	
	(c)	Explain process of conversion of an infix expression to post	fix
		expression using stack : A * (B - C)/E ^ F + G.	[6]
		$A * (B - C)/E ^ F + G.$	
		Or O'S	
4.	(a)	Explain use of backtracking in 4-Queen's problem.	[4]
	(<i>b</i>)	Explain the concept of Generalized linked list.	[2]
	(c)	Write pseudo C/C++ code to represent circular linked list	as
		an ADT.	[6]
[5559]]-183	2	

[2]

(*b*)

Define:

Write pseudo C/C++ code to implement a simple queue using **5.** (a)linked list. [6] Explain Dequeue with the insert and delete operations (*b*) performed on [7]Orpseudo C/C++ code to implement a circular queue **6.** (a)using arrays. [6] What is Priority queue? Describe the operations on priority (*b*) queue and explain its applications. [7]Write pseudo C/C++ code for radix sort. **7.** (a)[6] Write an algorithm for searching an element using binary (*b*) search. Discuss the time complexity of algorithm in best case and worst case Explain insertion sort algorithm and sort the given 8. (a)insertion sort: [6] 7, 4, 10, 6, 3, 12, 1, 8, 2, 15, Explain merge sort algorithm using divide and conquer (*b*) strategy with an example. State its time complexity and space

complexity.

[7]