See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/263946387

Synthesis, Characterization, and Activity Evaluation of DyVO4/g-C3N4 Composites under Visible-Light Irradiation

ARTICLE	IN INDUS	I RIAL & EN	GINEERING	CHEMIS	LKY KESE	ARCH · N	OVEMBER	2012
Impact Facto	r. 2 50 . DOI: 1	0.1021/jo20177/	0					

CITATIONS	READS
48	56

7 AUTHORS, INCLUDING:

Yiming He
Zhejiang Normal University
76 PUBLICATIONS 761 CITATIONS

SEE PROFILE

Mengfei Luo

Zhejiang Normal University

75 PUBLICATIONS 1,267 CITATIONS

SEE PROFILE

Synthesis, Characterization, and Activity Evaluation of DyVO₄/g-C₃N₄ Composites under Visible-Light Irradiation

Yiming He,*,† Jun Cai,† Tingting Li,‡ Ying Wu,‡ Yanmin Yi,§ Mengfei Luo,‡ and Leihong Zhao‡

Supporting Information

ABSTRACT: DyVO₄/graphitic carbon nitride (DyVO₄/g-C₃N₄) composite photocatalyst with visible-light response was prepared by a milling and heating treatment method. The synthesized powder was characterized by X-ray diffraction, thermogravimetry/differential thermal analysis, N₂ adsorption, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, transmission electron microscopy, and UV-vis diffuse reflection spectroscopy. The activity of composite photocatalyst DyVO₄/g-C₃N₄ for photodegradation of rhodamine B is much higher than that of either single-phase g-C₃N₄ or DyVO₄. The obviously increased performance of DyVO₄/g-C₃N₄ is mainly ascribed to the electron-hole separation enhancement at the interface of the two semiconductors, as proven by photoluminescence spectroscopy and photocurrent measurement. In addition, it is found that holes and ${}^{\bullet}\mathrm{O}_{2}^{-}$ are the main active species in the photocatalytic oxidation of RhB solution in the presence of DyVO₄/g-C₃N₄ composite.

1. INTRODUCTION

Decomposition of water and removal of environmental pollutants through photocatalytic reaction has drawn increasing attention over the last few decades. 1-3 Because of its high activity and chemical stability, TiO₂ has been known as the most efficient photocatalyst.⁴ However, considering the application in practice, a photocatalyst should also have the characteristics of low cost and visible-light response. TiO2 can only absorb ultraviolet (UV) light, which occupies no more than 4% of the solar spectrum, because of its large band gap, which limits its application. Several approaches have been reported to extend the light response of TiO2. These approaches include the incorporation of metal ions (Fe³⁺, $(C^{4-}, N^{3-}, S^{2-})^{7,8}$ or nonmetal ions $(C^{4-}, N^{3-}, S^{2-})^{7,8}$ into the lattice of TiO2, the introduction of oxygen vacancies into the lattices of TiO2,9,10 the dye sensitization of TiO2,11 and the combination of TiO2 with a semiconductor with a small band gap. 12,13 However, the activities of these materials under visiblelight irradiation are limited. Meanwhile, some researchers are devoted to explore non-TiO2 semiconductor materials. Many novel semiconductor photocatalysts were reported, such as BiVO₄, Ag_3PO_4 , and $CaBi_6O_{10}^{14-16}$ However, these novel materials still suffer from the problems of low photocatalytic activity, instability, high cost, and so on. The developing of an efficient photocatalyst under visible light is still desired.

Graphitic carbon nitride (g-C₃N₄) is a metal-free semiconductor that has the characteristics of high thermal and chemical stability and versatile optical, electronic, tribological, and catalytic properties. These unique properties make g-C₃N₄ a valuable material in various potential applications, such as gas storage, the conversion of solar light into electricity, and the synthesis of superhard carbon nitride materials. 17-19 Wang et al. first reported in 2009 that g-C₃N₄ has photocatalytic activity in the production of hydrogen or oxygen during water splitting

under visible-light irradiation.²⁰ Yan et al. then reported that metal-free g-C₃N₄ has good performance in the photodegradation of organic pollutants.²¹ This indicates that the metal-free g-C₃N₄ also has promising potential in the photocatalysis field.²² However, g-C₃N₄ suffers from the disadvantages of low surface area and low quantum efficiency, both of which limit its photocatalytic performance. Therefore, many attempts have been made to improve the photocatalytic performance of g-C₃N₄, such as noble metal deposition, ²³ nonmetal doping, ²⁴ preparation of nano/porous g-C₃N₄, ^{25,26} protonating g-C₃N₄ by strong mineral acids,²⁷ and constructing a heterojunction composite with another semiconductor.²⁸⁻ The last approach is commonly used because the coupling of another semiconductor could not only offer the driving forces to separate and transfer photogenerated electron-hole pairs but also extend the light response of the photocatalyst. For example, Yan et al. prepared g-C₃N₄/TaON composite with higher activity than either a single phase of g-C₃N₄ or TaON in RhB photodegradation.²⁸ The increased performance is mainly ascribed to the enhancement of electron-hole separation in the semiconductors. Lei et al. reported that the coupling of Bi_2WO_6 with g- C_3N_4 can enhance the photocatalytic performance.²⁹ Similarly, N-TiO₂/g-C₃N₄, 30 N-In₂TiO₅/g-C₃N₄, 31 and graphene/g-C₃N₄³² also exhibited better photocatalytic performance compared with g-C₃N₄. However, the photocatalytic activities of those composites were still low. Therefore, more efficient photocatalytic structures need to be developed.

In this paper, a novel g-C₃N₄/DyVO₄ heterostructured photocatalyst was prepared for the first time via a mixing and

July 4, 2012 Received: Revised: October 18, 2012 Accepted: October 24, 2012 Published: October 24, 2012

[†]Department of Materials Physics and [‡]Institute of Physical Chemistry, Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Zhejiang Normal University, Jinhua, 321004, China

[§]Center Station of Suzhou Environmental Monitoring, Suzhou, 215004, China

heating method. DyVO₄ is reported as an efficient photocatalyst with a small band gap $(E_{\rm g}=2.3~{\rm eV}).^{34}$ Meanwhile, DyVO₄ has matching conduction and valence bands with g-C₃N₄. The coupling of DyVO₄ with g-C₃N₄ can promote both the light response and the electron—hole pair separation; the higher photocatalytic activity is thus expected. Rhodamine B (Rh B), which is famous for its good stability, was used as a model compound to investigate the activities of g-C₃N₄/DyVO₄ composite under visible-light irradiation (λ > 420 nm). The performance investigation indicates that the g-C₃N₄/DyVO₄ composite catalysts show high photocatalytic activities for RhB photodegradation as well as high photocatalytic stability under visible light.

2. EXPERIMENTAL SECTION

2.1. Catalysts Preparation. NH_4VO_3 (>99%), Dy(NO_3)₂· $6H_2O$ (>99%), melamine (99%), tetrabutyl titanate (>99.0%), urea (99%), terephthalic acid (>99.0%), NaOH (>96.0%), benzoquinone (>98.0%), KI (>99.0%), 2-propanol (>99.7%), and ethanol (>99.5%) were purchased commercially and used without further purification.

Pure DyVO₄ was prepared by a precipitation method: The starting materials, NH_4VO_3 and $Dy(NO_3)_3$, were separately dissolved in deionized water in a molar ratio of 1:1. Then, the two solutions were mixed to give a yellow precipitate. The pH value of the solution was adjusted to 7 by a solution of NH_3 . After being aged at room temperature for 2 h, the deposit was filtered, washed three times by water, dried at 100 °C for 12 h, and calcined at 500 °C for 2 h.

The metal-free g- C_3N_4 powders were synthesized by heating melamine in a muffle furnace. In a typical synthesis run, 6 g of melamine was placed in a semiclosed alumina crucible with a cover. The crucible was heated to 520 °C for 4 h with a heating rate of 10 °C/min. After the reaction, the alumina crucible was cooled to room temperature. Graphitic C_3N_4 was obtained in a powder form.

The DyVO₄/g-C₃N₄ composite was prepared by a milling and heating method. The typical procedure was as follows: 0.15 g of DyVO₄ and 0.85 g of g-C₃N₄ were mixed and ground in an agate mortar for 20 min. Then, the mixture was calcined at 450 °C for 2 h to obtain the 15 wt % DyVO₄/g-C₃N₄ catalyst. Other DyVO₄/g-C₃N₄ catalysts with different g-C₃N₄ concentrations were prepared by a similar method.

N-doped TiO $_2$ was prepared as follows: 8.0 mL of tetrabutyl titanate was dissolved in 48 mL of ethanol to obtain solution A, and 5.65 g urea was dissolved in 8.0 mL of H $_2$ O and 24 mL of ethanol to obtain solution B. Solution B was dropped slowly into solution A under stirring to form a sol. The sol was then transformed into a gel after aging for 12 h. Finally, the gel was dried at 80 °C and calcined at 500 °C for 3 h to obtain a yellow product.

2.2. Characterization. The X-ray diffraction (XRD) characterization of the catalysts was carried out on Philips PW3040/60 X-ray diffractometer, using Cu K α radiation (40 kV/40 mA) with λ = 0.154 06 nm. N₂ adsorption was measured at 77 K on an Autosorb-1 (Quantachrome Instruments). Thermogravimetry/differential thermal analysis (TG-DTA) was carried out (Netzsch STA449) in a flow of air (20 mL/min) at a heating rate of 10 °C/min. The scanning electron microscopy (SEM) pictures were taken on a field emission scanning electron microscope (Nanoscope IIIa). The transmission electron microscopy (TEM) image was collected with a Hitachi S-4800 transmission electron microscope at an

accelerating voltage of 200 kV. The Fourier transform infrared spectroscopy (FT-IR) spectra of the catalysts were recorded on Nicolet NEXUS670 with a resolution of 4 cm $^{-1}$. The X-ray photoelectron spectroscopy (XPS) measurements were performed with a Quantum 2000 Scanning ESCA Microprobe instrument using Al K α . The C 1s signal was set to a position of 284.6 eV. The UV—vis diffuse reflectance spectra (DRS) of the catalysts were recorded on Thermo Nicolet Evolution 500 equipped with an integrating sphere using BaSO4 as the background. The photoluminescence (PL) spectra of catalysts were collected on an FLS-920 (Edinbergh Instrument). The light source was a Xe lamp (excitation at 365 nm).

2.3. Photocurrent Measurement. Photocurrent was measured on an electrochemical analyzer (CHI660B) in a standard three-electrode system under zero bias. The prepared sample, a Pt wire, and Ag/AgCl (saturated KCl) are used as the working electrode, the counter electrode, and the reference electrode, respectively. A 500 W Xe arc lamp through a UVcutoff filter ($\lambda > 420 \text{ nm}$) served as a light source. Na₂SO₄ (0.5 mol/L) aqueous solution was used as the electrolyte. Working electrodes were prepared as follows: An indium tin oxide (ITO) glass piece with a size of 1.5×5 cm was cleaned successively by acetone, boiling NaOH (0.1 mol/L), deionized water, and then dried in an air stream. Electrically conductive adhesive with a size of 0.8×0.8 cm was pressed on the bottom center of the ITO glass. Finally, the sample powder was ground and closely compacted on the exposed electrically conductive adhesive.

2.4. Photocatalyic Reaction. The photocatalytic activities of the synthesized powders were evaluated by the degradation of RhB by using a spherical Xe lamp (350 W) as light source. Light was passed through two cutoff filters (800 nm > λ > 420 nm) and then was focused onto a 500-mL beaker containing RhB (10 mg/L). The power density at the position of the reactor is about 7.3 mW/cm². The volume of the initial RhB solution was 300 mL. All powders contents in the RhB aqueous solution were 0.10 g/100 mL. Prior to irradiation, the mixture was agitated for an hour to ensure adsorption/desorption equilibrium at room temperature. At given irradiation time intervals, 8 mL aliquots were collected and centrifuged to remove the catalyst particulates for analysis. The filtrates were analyzed by recording variations at the wavelength of maximal absorption (554 nm) in the UV-vis spectra of RhB with a UV-vis spectrophotometer. The photocatalytic activities of 15 wt % DyVO₄/g-C₃N₄ sample in the photodegradation of methyele blue (MB, 10 mg/L) under visible-light irradiation were also investigated by the same method. Chemical oxygen demand (COD) was measured according to the method presented by Thomas and Mazas,³⁵ using a dichromate solution as the oxidizing agent in a strong acid medium.

The examination experiment process of reactive species is similar to the photodegradation experiment. A quantity of scavengers was introduced into the RhB solution prior to addition of the catalyst. Terephthalic acid photoluminescence probing technique (TA-PL) is used in the detection of ${}^{\bullet}$ OH radicals. In the detection experiment, a basic TA solution was added to the reactor instead of RhB, and the concentration of TA was set at 5×10^{-3} mol/L in 1×10^{-2} mol/L NaOH solution. The ${}^{\bullet}$ OH formed in the system can react with TA and generate 2-hydroxyterephthalic acid (HTA), the fluorescence intensity of which is directly proportional to the generated ${}^{\bullet}$ OH. The photoluminescence (PL) spectra were collected on

FLS-920 spectrometer (Edinbergh Instrument), using a Xe lamp (excitation at 316 nm) as light source.

3. RESULTS AND DISCUSSION

3.1. Characterizations of the DyVO₄/g-C₃N₄ Composites. Different from the ordinary organic semiconductors, g- C_3N_4 is stable on exposure to oxygen and water,²⁸ as proven by the TG-DTA experiment shown in Figure 1. Pure g- C_3N_4 is

Figure 1. TG-DTA thermograms for heating the pure g- C_3N_4 and the precursor of 15 wt % DyVO₄/g- C_3N_4 .

stable in air flow below 600 °C. When the temperature is higher than 600 °C, the sublimation or decomposition of g-C₃N₄ occurred. A sharp weight loss with an endothermal peak at 743 °C was thus observed in the TG-DTA curve of the pure g-C₃N₄. For the DyVO₄ and g-C₃N₄ mixture, however, the stability of g-C₃N₄ greatly decreased. The beginning temperature of the weight loss shifted to ca. 440 °C, and the endothermal peak is changed to an exothermal peak. It indicates that the g-C₃N₄ loss in the DyVO₄/g-C₃N₄ mixture can be attributed to the oxidation of g-C₃N₄. This assignment is reasonable considering that DyVO₄ has the ability of activating oxygen.³⁷ Moreover, because the calcination temperature is higher than 440 °C, some g-C₃N₄ might be oxidized to gas product during the heating process. In order to obtain the real g-C₃N₄ concentration, the DyVO₄/g-C₃N₄ composites were characterized by TG-DTA (see Supporting Information, Figure S1). The result is shown in Table 1. The real g-C₃N₄

Table 1. Specific Surface Area and the Real g-C₃N₄ Concentration of DyVO₄/g-C₃N₄ Composite Photocatalysts

catalysts	$S/m^2 \cdot g^{-1}$	concn of g-C ₃ N ₄ /wt %
$g-C_3N_4$	13	100
DyVO ₄	71	_
$10 \text{ wt.}\%\text{DyVO}_4/\text{g-C}_3\text{N}_4$	39	88.0
15 wt.%DyVO $_4$ /g-C $_3$ N $_4$	35	75.0
20 wt.%DyVO $_4$ /g-C $_3$ N $_4$	32	70.2
$30 \text{ wt.}\%\text{DyVO}_4/\text{g-C}_3\text{N}_4$	42	66.1
40 wt.%DyVO $_4$ /g-C $_3$ N $_4$	61	34.7

concentration is lower than the ideal concentration but still maintains the same order. The specific surface areas of DyVO₄, g-C₃N₄, and DyVO₄/g-C₃N₄ composites are also shown in Table 1. DyVO₄ has much higher BET value than g-C₃N₄, which might be due to the different morphology. As shown in Figure 2, pure DyVO₄ is a nanomaterial with an average particle size of approximately 50 nm. For g-C₃N₄, the SEM image

Figure 2. SEM photograph of pure g-C₃N₄ (A, B), DyVO₄ (C), and a representative catalyst 15 wt % DyVO₄/g-C₃N₄ (D).

shows that it is also composed of small particles. However, these particles greatly agglomerated, which may be the origin of the low g-C₃N₄ surface area (13 m²·g⁻¹). The addition of DyVO₄ changes the catalyst morphology. As shown in Figure 2D, 15 wt % DyVO₄/g-C₃N₄ sample presents a similar appearance as the pure DyVO₄, and a higher specific surface area (35 m²·g⁻¹) than that of g-C₃N₄ was thus obtained on the sample. The BET surface area of the samples containing 10 and 20 wt % DyVO₄ is close to that of the 15 wt % DyVO₄/g-C₃N₄ catalyst. When the DyVO₄ concentration is higher than 20 wt %, the BET value of the samples increases with the increasing DyVO₄ concentration.

Figure 3 shows the TEM photograph of a representative catalyst, 15 wt % $DyVO_4/g$ - C_3N_4 . Two kinds of particles were

Figure 3. TEM photograph of a representative catalyst, 15 wt % $\rm DyVO_4/g\text{-}C_3N_4.$

observed. The particle with dark color can be assigned to $\mathrm{DyVO_4}$ because the electron beam has difficulty passing through the heavy atom, whereas the gray particle can be ascribed to $\mathrm{g\text{-}C_3N_4}$. The assignment is verified by the HR-TEM experiment (see Supporting Information, Figure S2). It can be seen that the agglomeration of $\mathrm{g\text{-}C_3N_4}$ particle is prevented, and the two kinds of particles disperse finely, which is consistent with the result in Figure 2.

The structure of the DyVO₄/g-C₃N₄ composites was characterized by XRD. Figure 4 shows the XRD patterns of

Figure 4. XRD patterns of (a) $g-C_3N_4$, (g) $DyVO_4$, and $DyVO_4/g-C_3N_4$ photocatalysts of various concentrations: (b) 10 wt %, (c) 15 wt %, (d) 20 wt %, (e) 30 wt %, and (f) 40 wt %.

g- C_3N_4 , DyVO₄, and DyVO₄/g- C_3N_4 composite photocatalysts. One strong peak is found in g- C_3N_4 at 27.4°, corresponding to the characteristic interplanar staking peak of aromatic systems. ³⁸ Pure DyVO₄ is in its tetragonal phase and exhibits several robust diffraction peaks at 18.7°, 24.9°, 33.5°, and 49.7° (PDF# 16-0870). The DyVO₄/g- C_3N_4 composite presents a two-phase composition: g- C_3N_4 and DyVO₄. With the increase in DyVO₄ concentration, the DyVO₄ peaks strengthened at the expense of that of g- C_3N_4 . No impurity was observed. The result in Figure 4 is also verified by the FT-IR experiment. As shown in Figure 5, both of the characteristic peaks of DyVO₄

Figure 5. FT-IR spectra of (a) g-C₃N₄, (g) DyVO₄, and DyVO₄/g-C₃N₄ photocatalysts of varying concentrations: (b) 10 wt %, (c) 15 wt %, (d) 20 wt %, (e) 30 wt %, and (f) 40 wt %.

(452, 819 cm $^{-1}$) and those of g-C₃N₄ (1251, 1325, 1419, 1571, and 1639 cm $^{-1}$) were observed on the DyVO₄/g-C₃N₄ composites, and the peaks' intensity is correlated with their concentrations.

The surface chemical composition and chemical states of $DyVO_4/g$ - C_3N_4 catalysts were analyzed by means of XPS. Figure 6 shows the XPS spectra of g- C_3N_4 , $DyVO_4$, and 15 wt % $DyVO_4/g$ - C_3N_4 composite. The XPS spectrum of $DyVO_4/g$ - C_3N_4 composite corresponds exactly to the superposition of those observed for the individual semiconductors (Figure 6A). Both signals of Dy and those of V, V, V, and V0 were detected. Figure 6B shows the V1 XPS spectra of the above three samples. Only one peak located at 284.6 eV, which is related to carbon contamination, was observed in the V1 Sample. For

g-C₃N₄ sample, in addition to the polluted carbon peak, another peak at 288.0 eV, which can be assigned to the N–C–N coordination in graphitic carbon nitride, was observed. The 15 wt % DyVO₄/g-C₃N₄ sample also displays two C1s peaks at 284.6 and 288 eV, indicating the existence of g-C₃N₄. However, the peak intensity at 288.0 eV is weaker than that of the g-C₃N₄ sample. A similar phenomenon was also observed in the N1s XPS spectra (Figure 6C), which can be due to the lower concentration of g-C₃N₄ in the 15 wt % DyVO₄/g-C₃N₄ sample. Figure 6D shows the valence-band (VB) XPS spectrum of g-C₃N₄ and DyVO₄. The position of the valence band edge of g-C₃N₄ is located at about 1.50 eV, consistent with the result of Yan. For DyVO₄, the VB edge is determined to be 1.98 eV.

Figure 7 shows the UV-vis diffuse reflectance spectra of DyVO₄, g-C₃N₄, and DyVO₄/g-C₃N₄ composites. For clarity, only 10 and 30 wt % DyVO₄/g-C₃N₄ samples are presented. The UV-vis spectra of other DyVO₄/g-C₃N₄ composites and N-TiO₂ are shown in Figure S3 (Supporting Information). Both DyVO₄ and g-C₃N₄ can absorb UV to visible light. The absorption edge of DyVO₄ is higher than that of g-C₃N₄, indicating its stronger photoabsorption ability. Correspondingly, DyVO₄ (E_{σ} = 2.30 eV) presents a smaller band gap than g-C₃N₄ ($E_{\sigma} = 2.70$ eV, Figure 7B). The UV-vis spectra of the DyVO₄/g-C₃N₄ composite samples can be seen as the overlap of that of the DyVO₄ and g-C₃N₄. With the increase in the DyVO₄ concentration, the characteristic peak of DyVO₄ (307 nm) increases at the expense of the peak of $g-C_3N_4$ (382 nm), consistent with the XRD and FT-IR results. However, because of the low content of DyVO₄ and weak light absorbency of DyVO₄ in the range of 400-500 nm, all DyVO₄/g-C₃N₄ composites display a similar absorption edge as the pure g-C₃N₄, suggesting that addition of DyVO₄ slightly changed the optical properties. N-TiO₂ exhibits the highest photoabsorption performance (Supporting Information, Figure S3).

3.2. Photocatalytic Activity of the DyVO₄/g-C₃N₄ Composites. The photocatalytic activity of DyVO₄/g-C₃N₄ composites was evaluated by decomposing RhB under visiblelight irradiation (λ > 420 nm). Figure 8 shows the photocatalytic activity of the DyVO₄/g-C₃N₄ composite photocatalysts with different DyVO₄ concentrations. As seen in Figure 8A, without a catalyst the absorbency of RhB solution displays little difference before and after the visible-light illumination from a 350 W xenon lamp for 2 h. It can be concluded that the RhB is stable under the experimental conditions. N-doped TiO₂ is usually considered as an effective visible-light-driven photocatalyst. In Figure 8A, its photocatalytic activity is higher than that of DyVO₄ but lower than that of g-C₃N₄. For DyVO₄/g-C₃N₄ composite samples, the photocatalytic activity is greatly influenced by the DyVO₄ concentration. With the increase in the DyVO₄ concentration, the photocatalytic activity first increases and then decreases. The 15 wt % DyVO₄/g-C₃N₄ sample has the optimal photocatalytic activity. The corresponding first-order kinetics plot shown in Figure 8B indicates that the 15 wt % DyVO₄/g-C₃N₄ composite exhibits the highest degradation rate of 2.190 h⁻¹, which is 10.3, 5.3, and 2.6 times higher than that of DyVO₄, N-TiO₂, and g-C₃N₄, respectively. Chemical oxygen demand (COD) measurements of the RhB solution were also carried out to verify whether dye decolorization is accomplished with its degradation. The result shows a COD removal of 96.0% during the photoirradiation process, suggesting that the 15 wt % DyVO₄/g-C₃N₄ sample presents a strong ability in complete oxidation (see Supporting Information, Figure S4). Of course, the rate of the

Figure 6. (A) XPS spectra of g-C₃N₄, DyVO₄, and 15 wt % DyVO₄/g-C₃N₄ composite and (B) C1s, (C) N1s, and (D) valence band XPS.

Figure 7. UV—vis spectra (A) of (a) g- C_3N_4 , (d) DyVO₄, and (b) 15 wt % and (d) 40 wt % DyVO₄/g- C_3N_4 photocatalysts and (B) estimated band gap of photocatalyst by the Kubelka—Munk function.

decolorization is slightly higher than that of COD removal over the 15 wt % DyVO₄/g-C₃N₄ sample, indicating there are still some organic fragments in solution. The same phenomenon was also observed over the P25 and N-TiO $_2$ photocatalysts.

In order to investigate the reusable stability of DyVO₄/g-C₃N₄ composite photocatalysts, the recycling experiments on 15 wt % DyVO₄/g-C₃N₄ sample were also carried out under the same reaction conditions. The catalyst was separated from the reaction mixture by centrifugation after each reaction cycle. The result in Figure 9 indicates that the 15 wt % DyVO₄/g-C₃N₄ sample possesses durable high photocatalytic activity after the RhB photodegradation reaction was repeated five times. In addition to RhB degradation, the DyVO₄/g-C₃N₄ composite also shows high photocatalytic activity for methylene blue (MB) degradation (see Supporting Information, Figure S5). Compared with RhB, the dye-sensitization effect of MB is poor. That is why the photoactivity of P25 in MB degradation is much lower than that in RhB degradation under visible-light irradiation. The result in Figure S5 (Supporting Information) clearly indicates that the high VLD photoactivity of DyVO₄/g-C₃N₄ composite mainly originates from the coupled system itself.

3.3. Discussion. The composite photocatalysts have attracted increasing attention for their enhanced performance. Some researchers attribute the increased activity to the adsorption ability for the organic compounds, which are often related to the specific surface area. In the present work, however, no consistent correlation between the BET area and the photocatalytic activity was observed. It suggests that the adsorption ability of DyVO₄/g-C₃N₄ catalysts shows little effect on the photocatalytic activity. The key factor impacting the catalytic activity might be the composition of the catalysts themselves.

Figure 8. Photocatalytic activity of the DyVO₄/g-C₃N₄ composite photocatalysts for the RhB photodegradation under visible-light irradiation (A) and the corresponding first-order kinetics plot (B) of (a) g-C₃N₄, (b) 10 wt % DyVO₄/g-C₃N₄, (c) 15 wt % DyVO₄/g-C₃N₄, (d) 20 wt % DyVO₄/g-C₃N₄, (e) 30 wt % DyVO₄/g-C₃N₄, (f) 40 wt % DyVO₄/g-C₃N₄, (g) DyVO₄, and (h) N-TiO₂.

Figure 9. Cycling runs for the photocatalytic degradation of RhB in the presence of 15 wt % $DyVO_4/g$ - C_3N_4 sample under visible light irradiation.

Actually, it is well-known that the photocatalytic activity of photocatalyst mainly depends on whether the electron—hole pairs can be separated effectively. For composite photocatalyst, the enhancement in the separation of charge carriers is usually attributed to the charge transfer at the heterojunction interfaces, which originates from matching band potentials between two semiconductors. The VB edges of DyVO₄ and g-C₃N₄ were determined to be 1.98 and 1.50 eV via the VB XPS experiment, respectively. The CB edge potentials of the two semiconductors were thus obtained by using the equation of $E_{\rm CB}=E_{\rm VB}-E_{\rm g}$. The result is shown in Figure 10. As seen from this figure, g-C₃N₄ displays more negative CB edge potential

Figure 10. Scheme for electron—hole separation and transport at the visible-light-driven DyVO₄/g-C₃N₄ composite photocatalyst interface.

than DyVO₄, indicating that the photogenerated electrons on g-C₃N₄ particle surfaces can transfer easily to DyVO₄. Meanwhile, the photoinduced holes on the DyVO₄ surface can move to g-C₃N₄ due to the large difference in VB edge potentials. This charge transfer reduces the probability of electron—hole recombination and leads to a larger amount of electrons on the DyVO₄ surface and holes on the g-C₃N₄ surface, respectively, which promote the photocatalytic reactions to decompose RhB.

In order to prove the above-proposed suggestion about the electron—hole separation, the $DyVO_4/g-C_3N_4$ composite was characterized by PL, which can reveal the migration, transfer, and recombination processes of photogenerated electron—hole pairs in semiconductors. ^{29,34,41} Figure 11 shows the PL spectra

Figure 11. Photoluminescence spectra of pure g-C $_3N_4$ and DyVO $_4/g$ -C $_3N_4$ composite.

of the 15 wt % DyVO₄/g-C₃N₄ composite photocatalysts at an excitation wavelength of 365 nm. Pure g-C₃N₄ has a strong emission band centered at 460 nm, which can be attributed to the radiative recombination process of self-trapped excitations.²⁹ The PL spectrum of DyVO₄/g-C₃N₄ composite is similar to that of pure g-C₃N₄, but its peak intensity is much lower. Because PL emission results from the recombination of free charge carriers, the result in Figure 11 clearly indicates that the recombination of photogenerated charge carriers is inhibited in the DyVO₄/g-C₃N₄ composite semiconductors.

The photocurrent—time measurement was used to further elucidate the interfacial charge transfer dynamics between the interfacial surface of DyVO₄ and g-C₃N₄ semiconductors. The photocurrent is widely regarded as the most efficient evidence to demonstrate the charge separation in composite photo-

catalysts. ⁴² The photocurrent value represents the charge collection efficiency. A relationship is commonly recognized: the higher the photocurrent is, the higher the e^--h^+ separation efficiency is, which is beneficial for the photocatalytic reaction. Figure 12 shows the photocurrent—time curves of g-C₃N₄,

Figure 12. Transient photocurrent response for DyVO₄, g-C₃N₄, and 15 wt % DyVO₄/g-C₃N₄ samples.

DyVO₄, and 15 wt % DyVO₄/g-C₃N₄ composite with two on—off cycles of intermittent irradiation. The electrodes of the three samples are prompt in generating photocurrent with a reproducible response to on—off cycles. The 15 wt % DyVO₄/g-C₃N₄ composite sample presents a photocurrent of 0.93 μ A, which is much higher than that of g-C₃N₄ and DyVO₄. This result indicates the suppression of the charge recombination process in the DyVO₄/g-C₃N₄ heterojunction, as proven by the PL analysis.

Therefore, it is clearly that the charge transfer exists in the DyVO₄/g-C₃N₄ heterojunction, which results in an accumulation of photogenerated electrons on the DyVO₄ CB and holes on the g-C₃N₄ VB. The electrons in DyVO₄ are good reductants that could capture O2 and reduce it to O2- since the CB edge potential of DyVO₄ is more negative than $E_{O,,,\bullet_{O},-}$ (-0.28 V vs SHE).⁴ This inference has been proven before. The O₂ species was detected by electron spin-resonance spectroscopy (ESR) on photocatalyst BiVO₄ whose CB edge potential is slightly more positive than that of DyVO₄. ^{34,43–45} The further reduction of ${}^{\bullet}O_2^-$ can lead to the formation of OH. Actually, it is reported that the oxidative species OH can also be generated by the reaction of h^+ with $H_2O.^{4,46}$ In the DyVO₄/g-C₃N₄ composite, however, the reaction cannot occur because of the low VB edge potential of g-C₃N₄ ($E_{OH/H,O}$ = 2.27 V vs SHE). O₂-, h⁺, and OH are suspected to be involved in the photocatalytic oxidation process.³⁹ In order to evaluate the role of the three reactive species, different scavenges used as probes are introduced into the photocatalytic degradation of RhB. The dosages are from previous studies. 46,47 As Figure 13 showed, the degradation rate $(k_{\rm app})$ decreases obviously to 0.038 h⁻¹ in the presence of benzoquinone (BQ, •O₂ - scavenger), which suggests that •O₂ is the main reactive species for RhB degradation. The addition of KI (h+ and OH quencher) also leads to a great decrease in photocatalytic activity. Meanwhile, 2-propanol (IPA, a quencher of *OH) shows little effect on the $k_{\rm app}$ of RhB. It suggests that ${\bf h}^+$ is also an important reactive species besides O2 species. The TA-PL probing measurement was carried out to further study the role of •OH species. Figure 14 shows the •OH-trapping photo-

Figure 13. $k_{\rm app}$ -Values and photocatalytic activity of DyVO₄/g-C₃N₄ photocatalysts with different quenchers.

Figure 14. OH-trapping photoluminescence spectra of photocatalyst under visible-light irradiation in a solution of terephthalic acid at room temperature.

luminescence spectra of g-C₃N₄, DyVO₄, and 15 wt % DyVO₄/ g-C₃N₄ composite under visible-light irradiation. PL emission peak at 426 nm was observed in all samples, indicating the generation of ${}^{\bullet}$ OH species. However, the peak intensity of DyVO₄/g-C₃N₄ composite is lower than that of g-C₃N₄ and DyVO₄, which is inconsistent with their photocatalytic activities. This result indicates that the generated ${}^{\bullet}$ OH species is not the main reactive species, as shown in Figure 13. On the basis of the analysis above, a possible mechanism for the photocatalytic oxidation of RhB on DyVO₄/g-C₃N₄ composite is suggested. The process is described as follows:

$$DyVO_{4}/g-C_{3}N_{4} \xrightarrow{h\nu} DyVO_{4}(e^{-} + h^{+})/g-C_{3}N_{4}(e^{-} + h^{+})$$
(1)

$$DyVO_4(e^- + h^+)/g-C_3N_4(e^- + h^+)$$

$$\rightarrow \text{DyVO}_4(\text{e}^-)/\text{g-C}_3\text{N}_4(\text{h}^+) \tag{2}$$

$$O_2 + e^- \rightarrow {}^{\bullet}O_2^{} \tag{3}$$

$${}^{\bullet}\text{O}_{2}^{-} + 2\text{H}^{+} + \text{e}^{-} \rightarrow \text{H}_{2}\text{O}_{2}$$
 (4)

$$H_2O_2 + e^- \rightarrow {}^{\bullet}OH + OH^- \tag{5}$$

$${}^{\bullet}\text{O}_2^-/\text{h}^+ + \text{RhB} \rightarrow \text{degradation pruducts}$$
 (6)

Although DyVO₄ greatly promotes the photocatalytic activity of g- C_3N_4 , the promotion effect is not the highest compared with the other dopers. The improvement is higher than that of N-TiO₂ and TaON, but lower than that of Bi₂WO₆ based on

the literatures reported. $^{28-32}$ However, it should be noted that the doping amount of DyVO₄ is the lowest, which decreases the cost of the synthesized photocatalyst. In addition, the DyVO₄/g-C₃N₄ exhibits a strong ability in complete oxidation. Both of the above-mentioned points are beneficial for the application of DyVO₄/g-C₃N₄ catalyst on a large scale. Moreover, the successful doping of DyVO₄ suggests that other cheaper vanadates (such as LaVO₄, BiVO₄) might also promote the photoactivity of g-C₃N₄. It is believed that the developed vandates/g-C₃N₄ photocatalyst would hold the advantages of both high activity and low cost and is promising in practical applications in water purification.

4. CONCLUSIONS

In summary, we have prepared a novel $DyVO_4/g-C_3N_4$ composite photocatalyst by the milling and heating method. The stable dye RhB was selected as a substrate to evaluate the photocatalytic activity of $DyVO_4/g-C_3N_4$. Our results clearly indicate that the synthesized composite has good performance. The highest degradation efficiency was achieved for the 15 wt % $DyVO_4/g-C_3N_4$ sample. On the basis of the energy band positions, PL spectra, and PC curves, the enhanced photocatalytic activity is attributed to the synergy effect between $DyVO_4$ and $g-C_3N_4$.

ASSOCIATED CONTENT

S Supporting Information

TG-DTA thermograms for heating the $DyVO_4/g-C_3N_4$ composites (Figure S1); HR-TEM of 15 wt % $DyVO_4/g-C_3N_4$ composite (Figure S2); UV—vis spectra of $g-C_3N_4$, N-TiO₂, and $DyVO_4/g-C_3N_4$ composites (Figure S3); COD removal of 15 wt % $DyVO_4/g-C_3N_4$, N-TiO₂, and P25 photocatalysts (Figure S4); photocatalytic activity of MB and RhB over 15 wt % $DyVO_4/g-C_3N_4$, N-TiO₂, and P25 photocatalysts (Figure S5). This material is available free of charge via the Internet at http://pubs.acs.org/.

AUTHOR INFORMATION

Corresponding Author

*Tel: +86-0579-83792294. Fax: +86-0579-83714946. E-mail: hym@zjnu.cn.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was supported by the National Natural Science Foundation of China (No. 21003109) and the program for Changjiang Scholars and Innovative Research Team in Chinese Universities (No. IRT0980).

REFERENCES

- (1) Chong, M. N.; Jin, B.; Chow, C. W. K.; Saint, C. Recent developments in photocatalytic water treatment technology: A review. *Water Res.* **2010**, *44*, 2997–3027.
- (2) Chen, X. B.; Shen, S. H.; Guo, L. J.; Mao, S. S. Semiconductor-based photocatalytic hydrogen generation. *Chem. Rev.* **2010**, *110*, 6503–6570.
- (3) Malato, S.; J. Blanco, J.; Vidal, A.; Richter, C. Photocatalysis with solar energy at a pilot-plant scale: An overview. *Appl. Catal., B* **2002**, *37*, 1–15.
- (4) Fujishima, A.; Rao, T. N.; Tryk, D. A. Titanium dioxide photocatalysis. *J. Photochem. Photobiol., C* **2000**, *1*, 1–21.

- (5) Choi, W.; Termin, A.; Hoffmann, M. R. The role of metal ion dopants in quantum-sized ${\rm TiO_2}$: Correlation between photoreactivity and charge carrier recombination dynamics. *J. Phys. Chem.* **1994**, *98*, 13669–13679.
- (6) Yamashita, H.; Harada, M.; Misaka, J.; Takeuchi, M.; Ikeue, K.; Anpo, M. Degradation of propanol diluted in water under visible light irradiation using metal ion-implanted titanium dioxide photocatalysts. *J. Photochem. Photobiol., A* **2002**, *148*, 257–261.
- (7) Ashi, R.; Morikawa, T.; Ohwaki, T.; Aoki, K.; Taga, Y. Visible-light photocatalysis in nitrogen-doped titanium oxides. *Science* **2001**, 293, 269–271.
- (8) Sakthivel, S.; Kisch, H. Daylight photocatalysis by carbon-modified titanium dioxide. *Angew. Chem., Int. Ed.* **2003**, *42*, 4908–4911
- (9) Gordon, T. R.; Cargnello, M.; Paik, T.; Mangolini, F.; Weber, R. T.; Fornasiero, P.; Murray, C. B. Nonaqueous synthesis of TiO_2 nanocrystals using TiF_4 to engineer morphology, oxygen vacancy concentration, and photocatalytic activity. *J. Am. Chem. Soc.* **2012**, *134*, 6751–6761
- (10) Chen, X. B.; Liu, L.; Yu, P. Y.; Mao, S. S. Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. *Science* **2011**, *331*, 746–750.
- (11) Qin, G. H.; Sun, Z.; Wu, Q. P.; Lin, L.; Liang, M.; Xue, S. Dyesensitized TiO₂ film with bifunctionalized zones for photocatalytic degradation of 4-cholophenol. *J. Hazard. Mater.* **2011**, *192*, 599–604.
- (12) Zhang, L.; He, Y. M.; Wu, Y.; Wu, T. H. Photocatalytic degradation of RhB over MgFe₂O₄/TiO₂ composite materials. *Mater. Sci. Eng., B* **2011**, *176*, 1497–1504.
- (13) Sun, M.; Chen, G. D.; Zhang, Y. K.; Wei, Q.; Ma, Z. M.; Du, B. Efficient degradation of azo dyes over Sb_2S_3/TiO_2 heterojunction under visible light irradiation. *Ind. Eng. Chem. Res.* **2012**, *51*, 2897–2903.
- (14) Sun, S. M.; Wang, W. Z.; Zhou, L.; Xu, H. L. Efficient methylene blue removal over hydrothermally synthesized starlike BiVO₄. *Ind. Eng. Chem. Res.* **2009**, *48*, 1735–1739.
- (15) Bi, Y. P.; Ouyang, S. X.; Umezawa, N.; Cao, J. Y.; Ye, J. H. Facet effect of single-crystalline Ag₃PO₄ sub-microcrystals on photocatalytic properties. *J. Am. Chem. Soc.* **2011**, *133*, 6490–6492.
- (16) Wang, Y. J.; He, Y. M.; Li, T. T.; Cai, J.; Luo, M. F.; Zhao, L. H. Photocatalytic degradation of methylene blue on $CaBi_6O_{10}/Bi_2O_3$ composites under visible light. *Chem. Eng. J.* **2012**, *189*–190, 473–481.
- (17) Bai, X. D.; Zhong, D. Y.; Zhang, G. Y.; Ma, X. C.; Liu, S.; Wang, E. G.; Chen, Y.; Shaw, D. T. Hydrogen storage in carbon nitride nanobells. *Appl. Phys. Lett.* **2001**, *79*, 1552–1554.
- (18) Zhang, Z.; Leinenweber, K.; Bauer, M.; Garvie, L. A. J.; Mcmillan, P. F.; Wolf, G. H. High-pressure bulk synthesis of crystalline $C_6N_9H_3$:HCl: A novel C_3N_4 graphitic derivative. *J. Am. Chem. Soc.* **2001**, 123, 7788–7796.
- (19) Zhang, Y. J.; Mori, T.; Ye, J. H.; Antonietti, M. Phosphorus-doped carbon nitride solid: Enhanced electrical conductivity and photocurrent generation. *J. Am. Chem. Soc.* **2010**, *132*, 6294–6295.
- (20) Wang, X. C.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J. M.; Domen, K.; Antonietti, M. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. *Nat. Mater.* **2009**, *8*, 76–80.
- (21) Yan, S. C.; Li, Z. S.; Zou, Z. G. Photodegradation performance of g- $\rm C_3N_4$ fabricated by directly heating melamine. *Langmuir* **2009**, 25, 10397–10401.
- (22) Zhang, Y. J.; Mori, T.; Ye, J. H. Polymeric carbon nitrides: Semiconducting properties and emerging applications in photocatalysis and photoelectrochemical energy conversion. *Sci. Adv. Mater.* **2012**, *4*, 282–291.
- (23) Ge, L.; Han, C. C.; Liu, J.; Li, Y. F. Enhanced visible light photocatalytic activity of novel polymeric g- C_3N_4 loaded with Ag nanoparticles. *Appl. Catal., A* **2011**, 409–410, 215–222.
- (24) Liu, G.; Niu, P.; Sun, C. H.; Smith, S. C.; Chen, Z. G.; Lu, G. Q.; Cheng, H. M. Unique electronic structure induced high photoreactivity of sulfur-doped graphitic C_3N_4 . *J. Am. Chem. Soc.* **2010**, *132*, 11642–11648.

- (25) Goettmann, F.; Fischer, A.; Antonietti, M.; Thomas, A. Chemical synthesis of mesoporous carbon nitrides using hard templates and their use as a metal-free catalyst for friedel—crafts reaction of benzene. *Angew. Chem., Int. Ed.* **2006**, 45, 4467–4471.
- (26) Kailasam, K.; Epping, J. D.; Thomas, A.; Losse, S.; Junge, H. Mesoporous carbon nitride—silica composites by a combined sol—gel/thermal condensation approach and their application as photocatalysts. *Energy Environ. Sci.* **2011**, *4*, 4668–4674.
- (27) Zhang, Y. J.; Thomas, A.; Antonietti, M.; Wang, X. C. Activation of carbon nitride solids by protonation: Morphology changes, enhanced ionic conductivity, and photoconduction experiments. *J. Am. Chem. Soc.* **2009**, *131*, 50–51.
- (28) Yan, S. C.; Lv, S. B.; Li, Z. S.; Zou, Z. G. Organic—inorganic composite photocatalyst of g-C₃N₄ and TaON with improved visible light photocatalytic activities. *Dalton Trans.* **2010**, 39, 1488–1491.
- (29) Ge, L.; Han, C. C.; Liu, J. Novel visible light-induced g-C₃N₄/Bi₂WO₆ composite photocatalysts for efficient degradation of methyl orange. *Appl. Catal., B* **2011**, *108*–*109*, 100–107.
- (30) Yang, N.; Li, G. Q.; Wang, W. L.; Yang, X. L.; Zhang, W. F. Photophysical and enhanced daylight photocatalytic properties of N-doped TiO₂/g-C₃N₄ composites. *J. Phys. Chem. Solid* **2011**, 72, 1319–1324.
- (31) Liu, Y.; Chen, G.; Zhou, C.; Hu, Y. D.; Fu, D. G.; Liu, J.; Wang, Q. Higher visible photocatalytic activities of nitrogen doped In₂TiO₅ sensitized by carbon nitride. *J. Hazard. Mater.* **2011**, *190*, 75–80.
- (32) Zhang, Y. J.; Mori, T.; Niu, L.; Ye, J. H. Non-covalent doping of graphitic carbon nitride polymer with graphene: Controlled electronic structure and enhanced optoelectronic conversion. *Energy Environ. Sci.* **2011**, *4*, 4517–4521.
- (33) Ang, T. P.; Chan, Y. M. Comparison of the melon nanocomposites in structural properties and photocatalytic activities. *J Phys. Chem. C* **2011**, *115*, 15965–1597.
- (34) He, Y. M.; Zhao, L. H.; Wang, Y. J.; Lin, H. J.; Li, T. T.; Wu, X. T.; Wu, Y. Synthesis, characterization and photocatalytic performance of VDyO_x composite under visible light irradiation. *Chem. Eng. J.* **2011**, *169*, 50–57.
- (35) Ministry of Environmental Protection of People's Republic of China. Standard Methods for the Determination of Water and Wastewater, 4th ed.; China Environmental Science Press: Beijing, 2002; pp 211–213 (in Chinese).
- (36) Yan, T. J.; Li, L. P.; Li, G. S.; Wang, Y. J.; Hu, W. B.; Guan, X. F. Porous SnIn₄S₈ microspheres in a new polymorph that promotes dyes degradation under visible light irradiation. *J. Hazard. Mater.* **2011**, *186*, 272–279.
- (37) Fang, Z. M.; Hong, Q.; Zhou, Z. H.; Dai, S. J.; Weng, W. Z.; Wan, H. L. Oxidative dehydrogenation of propane over a series of low-temperature rare earth orthovanadate catalysts prepared by the nitrate method. *Catal. Lett.* **1999**, *61*, 39–44.
- (38) Liao, G. Z.; Chen, S.; Quan, X.; Yu, H. T.; Zhao, H. M. Graphene oxide modified g- C_3N_4 hybrid with enhanced photocatalytic capability under visible light irradiation. *J. Mater. Chem.* **2012**, 22, 2721–2726.
- (39) Yan, H. J.; Chen, Y.; Xu, S. M. Synthesis of graphitic carbon nitride by directly heating sulfuric acid treated melamine for enhanced photocatalytic H₂ production from water under visible light. *Int. J. Hydrogen Energy* **2012**, *37*, 125–133.
- (40) Rachel, A.; Sakakha, M.; Subrahmanyam, M.; Boule, P. Comparison of several titanium dioxides for the photocatalytic degradation of benzenesulfonic acids. *Appl. Catal., B* **2002**, *37*, 293–300.
- (41) Li, X. Z.; Li, F. B.; Yang, C. L.; Ge, W. K. Photocatalytic activity of WO_x-TiO₂ under visible light irradiation. *J. Photochem. Photobiol., A* **2001**, *141*, 209–217.
- (42) Kong, M.; Li, Y. Z.; Chen, X.; Tian, T. T.; Fang, P. F.; Zheng, F.; Zhao, X. J. Tuning the relative concentration ratio of bulk defects to surface defects in TiO₂ nanocrystals leads to high photocatalytic efficiency. *J. Am. Chem. Soc.* **2011**, *133*, 16414–16417.
- (43) Long, M. C.; Cai, W. M.; Cai, J.; Zhou, B. X.; Chai, X. Y.; Wu, Y. H. Efficient photocatalytic degradation of phenol over Co₃O₄/BiVO₄

- composite under visible light irradiation. J. Phys. Chem. C 2006, 110, 20211–20216.
- (44) Zhou, B.; Zhao, X.; Liu, H. J.; Qu, J. H.; Huang, C. P. Synthesis of visible-light sensitive M–BiVO₄ (M = Ag, Co, and Ni) for the photocatalytic degradation of organic pollutants. *Sep. Purif. Technol.* **2011**, 77, 275–282.
- (45) Zhao, W. R.; Wang, Y.; Yang, Y.; Tang, J.; Yang, Y. N. Carbon spheres supported visible-light-driven CuO-BiVO₄ heterojunction: Preparation, characterization, and photocatalytic properties. *Appl. Catal. B* **2012**, *115*–116, 90–99.
- (46) Li, G. T.; Wong, K. H.; Zhang, X. W.; Hu, C.; Yu, J. C.; Chan, R. C. Y.; Wong, P. K. Degradation of Acid Orange 7 using magnetic AgBr under visible light: The roles of oxidizing species. *Chemosphere* **2009**, 76, 1185–1191.
- (47) Lin, H. L.; Cao, J.; Luo, B. D.; Xu, B. Y.; Chen, S. F. Synthesis of novel Z-scheme AgI/Ag/AgBr composite with enhanced visible light photocatalytic activity. *Catal. Commun.* **2012**, *21*, 91–95.