Proyecto 3

Descripción del problema: Se tiene un fenómeno del mundo real, y se quiere saber cómo sería la función que describa el comportamiento del mismo.

Descripción del proyecto: Se solicita una versión más sencilla del programa Eurega. Se da un conjunto de datos de un fenómeno del mundo real. Las funciones candidatas a aproximar los datos son de la forma h(x) = f(x) + g(x), donde tanto f como g pueden ser:

- a) constantes reales: k
- b) polinomios de grado menor o igual a 4
- c) $k_1 e^{k2 x}$ d) $k_1 sen(k_2 x)$ e) $k_1 cos(k_2 x)$

El programa deberá usar la técnica de algoritmos genéticos para encontrar una función h que describa este fenómeno.

 \boldsymbol{x}

El lenguaje de programación es libre.

Los datos son:

u	$J(\omega)$
1	0
2	2
3	4
4	5
5	6
6	6
7	7
8	8
9	10
10	10
11	12
12	12
13	14
14	14
15	16
16	16
17	18
18	22

f(x)

60	84
61	84
62	88
63	89
64	93
65	94
66	97
67	98
68	99
69	100
70	103
71	104
72	106
73	108
74	110
75	111
76	114
77	115
78	117
79	118
80	121
81	123
82	125
83	126
84	125
85	125
86	136
87	136
88	138
89	138
90	142
91	140
92	146
93	144
94	150
95	148
96	151
97	150
98	153
99	153
100	157

157
157
159
157
156
157
157
161
159
162
162
165
173
175
173
176
175
175

Propósito didáctico:

• Consolidar en los estudiantes el uso de los algoritmos genéticos como una herramienta de aprendizaje mecánico.

Evaluación

Ejecución (30%)

- Corrida de muestra: mostrar algunos datos de estado de la ejecución: generación, mejor individuo (con su fitness) cada cierto número de generaciones.
- > Examen del código fuente

Documentación (70%)

- Descripción y justificación de los parámetros del algoritmo (20%)
 - Número de poblaciones
 - \triangleright Tamaño de población (t < L)
 - Life span (esperanza de vida) de cada individuo
 - Criterio de terminación temprana (los de menor fitness tienen mayor probabilidad)
 - Cálculo del fitness de cada individuo
 - Descripción del genoma
 - ➤ Técnica de crossover: cómo se implementa la escogencia de los individuos para el crossover y cómo se producen los nuevos individuos.
 - Relación entre probabilidad de crossover y fitness, hay que demostrar que dados dos individuos, el de mejor fitness tendrá una mayor probabilidad de crossover.
 - Probabilidad de mutación
 - Fécnica de aplicación de mutación: como se justifica el cambio en k_1 o k_2 . ¿Cambia f o g?¿Cambia k_1 o k_2 ? ¿O alguna de las constantes del polinomio?¿En cuanto?
 - Técnica de detección de estancamiento de la población
 - Criterio de detenimiento (no puede ser un número de generaciones)

Función encontrada (50%)

Fecha y forma de entrega: 27 de Mayo de 2021, la documentación se deja en una carpeta de Tareas del Tec Digital. El trabajo es grupal (grupos de hasta 4 personas).