

Challenges with Tabular Methods such as Q-Learning, SARSA

- Limited to discrete state, discrete action
- Issues for problems with large dimensionality

Solution: Function approximation also called Function Fitting

Function approximation: Context of Q-Table

	a=0	a=1	a=2	
s=0	13774.6	13760.6	14085	
s=1	14187.7	14183.6	14478.7	
s=2	14558.7	14522.4	14824.2	
s=3	14950.3	14886.4	15095.4	
s=4	15307.8	15218.8	15229.7	

- Fit a function for Q(s, A = a), for each a
- Fit a function for Q(s, a), for each a Optimal policy $\pi(s) = argmax_a Q(s, a)$

3D Scatter Plot with Fitted Function

Optimal policy $\pi(s) = argmax_a Q(s, a)$

20

We only sample to sufficiently represent the space (and not sample for every (s,a) pair); This is suitable for both discrete and continuous spaces

0	1	2	3	4	5	6	7	8	9
19.2	2.6	-	96.2	-	-	-	13.7	-	-
88.2	55.6	36.4	121.1	-	132.0	21.7	-	-	-
89.8	-	119.8	-	-	-	-	37.9	120.0	28.8
-	-	59.2	58.7	11.5	65.5	28.1	9.4	59.1	144.0
98.1	-	55.4	122.3	106.6	42.7	-	116.8	12.3	-
81.9	-	55.4	-	-	69.8	-	0.4	76.2	-
-	86.4	130.2	-	46.1	77.3	-	-	-	-
58.7	71.8	39.7	25.4	101.2	88.3	35.2	4.5	68.4	-
67.4	57.8	-	-	-	7.4	39.1	3.1	179.6	-
97.4	-	15.6	-	-	118.3	-	-	-	35.2
95.7	-	70.7	-	88.2	-	-	101.2	0.7	16.7
-	-	-	33.3	-	-	106.6	-	-	4.3
-	70.4	25.4	-	15.9	122.0	40.6	-	48.8	46.7
56.8	22.6	-	84.1	-	-	22.1	-	70.2	11.1

2.9 58.3 45.3 95.9 32.9 72.6 44.8 53.5 118.0 55.7 40.6

10

12 13

14

15

16

18

19

128.4

60.5 67.7 115.8 8.8 68.0 27.2 6.4 76.0 49.2 94.3 12.9 57.9

113.5

142.4

68.4

Generalizing: Function approximation/function fitting

- **Problem**: Given $y = f(\vec{x})$, develop a mathematical representation of $f(\vec{x})$
- Typical dataset format:

	\vec{x} (independent variables)				$y = f(\vec{x})$	
Data samples (p)	<i>x</i> [0]	<i>x</i> [1]	<i>x</i> [2]		x[N]	$y = f(x[0], x[1], \dots)$
1						
2						
P						

Widrow-Hoff algorithm for function approximation

(When analytical form of function is known, apply W-H algo to estimate coefficients of function)

Problem formulation:

• Suppose we know the functional/analytical form of *y*; and suppose it is linear, i.e., of the form

$$y = w[0] + \sum_{i=1}^{N} w[i]x[i] = \sum_{i=0}^{N} w[i]x[i] \text{ with } x[0] = 1$$

$$y = \overrightarrow{w}\overrightarrow{x}^{T}$$

Problem formulation:

 Our objective is to determine the values of the coefficient w[i]; i ∈ {0,1, ..., N} that provides the best fit to data by minimizing sum of square error (SSE) or E

$$\min_{\overrightarrow{w}} \mathbf{E} = \min_{\overrightarrow{w}} \sum_{p=1}^{P} \left[y_p - \sum_{i=0}^{N} w[i] x[i] \right]^2$$

$$\min_{\overrightarrow{w}} \mathbf{E} = \min_{\overrightarrow{w}} \sum_{p=1}^{P} \left[y_p - \overrightarrow{w} \overrightarrow{x}^T \right]^2 = \min_{\overrightarrow{w}} \sum_{p=1}^{P} \left[y_p - \overline{y_p} \right]^2$$

P is the number of data samples

MSE for different values of a and b

- W-H uses steepest descent (SD):
- Recollect main transformation of SD

$$x[i] \leftarrow x[i] - \mu \frac{\partial f(\vec{x})}{\partial x[i]}; i = 1, ..., N$$
$$\vec{x} \leftarrow \vec{x} - \mu \nabla f(\vec{x})$$

For function fitting

$$f(\vec{w}) = E = \sum_{p=1}^{P} \left[y_p - \sum_{i=0}^{N} w[i] x[i] \right]^2 = \sum_{p=1}^{P} \left[y_p - \vec{w} \vec{x}^T \right]^2$$

Objective:

$$\min_{\overrightarrow{w}} E \sim \min_{\overrightarrow{w}} \frac{E}{2}$$

That is, here, we are solving for the coefficients w's so, replace \vec{x} by \vec{w} in SD

That is, here, we are solving for the coefficients w's so, replace
$$x$$

$$w[i] \leftarrow w[i] - \mu \frac{\partial f(\vec{w})}{\partial w[i]}; i = 1, ..., N$$

$$\frac{\partial E/2}{\partial w[i]} = ?$$

$$\frac{\partial E/2}{\partial \omega[i]} = \frac{1}{2} \sum_{p=1}^{P} \frac{\partial}{\partial \omega[i]} \left(y_p - \sum_{i=0}^{N} \omega[i] x_p[i] \right)^2$$
$$= \sum_{p=1}^{P} \left(y_p - \sum_{i=0}^{N} \omega[i] x_p[i] \right) \left(-x_p[i] \right)$$

• Thus, WH transformation is, for each *i*

$$w[i] \leftarrow w[i] - \mu \frac{\partial f(w)}{\partial w[i]}; i = 1, ..., N$$

$$w[i] \leftarrow w[i] - \mu \sum_{p=1}^{P} \left(y_p - \sum_{i=0}^{N} \omega[i] x_p[i] \right) \left(-x_p[i] \right)$$

Solution algorithm

Steps in W-H algorithm (solve for \vec{w} by applying steepest descent)

- 1. Initialize
 - 1. Set w[i] to values between 0 and 1; Set E_{old} (the SSE) to a large number
 - 2. Set m = 0
 - 3. Set μ to a small value typically a function of the number of iterations $\left(e.\,g.\,,\mu=\frac{A}{B+m};\text{A and B are scalars; },u=\frac{1}{m}\right)$
- 2. Compute $\bar{y}_p = \sum_{i=0}^N \omega[i] x_p[i]$ for each $p \in \{1, ..., P\}$;
 - 1. y_p is known (data samples)
- 3. Update w[i] for each i = 0,1,...,N
- **4.** $\omega_{m+1}[i] \leftarrow w_m[i] + \mu \sum_{p=1}^m (y_p \bar{y}_p) x_p[i]$
- 5. Set m = m + 1. Calculate E_{new} ;
- 6. $E_{\text{new}} = \sum_{p=1}^{m} (y_p \bar{y}_p)^2$
- 7. Update μ .
- 8. If $|E_{\text{new}} E_{\text{old}}| < \text{tolerance STOP}$. Otherwise set $E_{\text{old}} = E_{\text{new}}$ and go back to step 2.

What if:

• We assumed a linear function in previous slides

$$y = \overrightarrow{w}\overrightarrow{x}$$

- What-if we know that data fits to a non-linear function, e.g., $y = w[1]x[1]^2 + w[2]x[2]^3 + w[3]x[1]x[2]$
- What would be suitable method to solve for \vec{w} ?

What if:

• We assumed a linear function in previous slides

$$y = \overrightarrow{w}\overrightarrow{x}$$

• What-if we know that data fits to a non-linear function, e.g., $y = w[1]x[1]^2 + w[2]x[2]^3 + w[3]x[1]x[2]$

- What would be suitable method to solve for \vec{w} ?
- Rewrite using transformed variables and solve for \vec{w} using SD

$$y = \vec{w}\vec{z}$$

where,

$$z[1] = x[1]^2$$

 $z[2] = x[2]^3$
 $z[3] = x[1]x[2]$

What if?

• What if functional form is unknown?

UMassAmherst

The Commonwealth's Flagship Campus