Leandro Marín	Grado en Ingeniería Informática	Tiempo Estimado
	Álgebra y Matemática Discreta	Previo: 30 min.
Facultad Informática Universidad Murcia	Unidades del anillo Zn y Fórmula de Euler	Clase: 30 min.

Vídeo: https://youtu.be/nNbVAaxtKd8

1. Resumen

Definición 1. Sea n un entero positivo, denotaremos \mathbb{Z}_n^* al conjunto de las unidades de \mathbb{Z}_n , es decir, aquellos elementos $u \in \mathbb{Z}_n$ tales que existe $v \in \mathbb{Z}_n$ cumpliendo que $uv \equiv 1 \pmod{n}$.

Por ejemplo:

$$\mathbb{Z}_{10}^{\star} = \{1, 3, 7, 9\}$$

 $\mathbb{Z}_{15}^{\star} = \{1, 2, 4, 7, 8, 11, 13, 14\}$

Proposición 2. El producto de unidades es una unidad.

Demostración. Si u y v son unidades es porque existen $u^{-1}, v^{-1} \in \mathbb{Z}_n$ y por lo tanto

$$(uv)(v^{-1}u^{-1}) = u(vv^{-1})u^{-1} = uu^{-1} = 1 \pmod{n}.$$

Esto prueba que el inverso de uv es $v^{-1}u^{-1}$ y por lo tanto el producto de dos elementos que tienen inverso, lo tiene también.

Proposición 3. Sea n un entero positivo y $a \in \mathbb{Z}_n$. Entonces $a \in \mathbb{Z}_n^{\star}$ (es decir, tiene inverso) si y solo si mcd(a, n) = 1.

Demostración. Si mcd(a, n) = 1 entonces por la Identidad de Bézout sabemos que existen $u, v \in \mathbb{Z}$ tales que au + nv = 1, pero entonces $1 = au + nv \equiv au$ (mód n) porque podemos sumar y restar múltiplos de n en la congruencia. Esto demuestra que u es el inverso de a módulo n y por lo tanto a es invertible.

En el otro sentido, si a es un elemento de \mathbb{Z}_n^* , entonces existe $u \in \mathbb{Z}_n$ tal que $au \equiv 1 \pmod{n}$. Dicho de otra forma au - 1 es un mútiplo de n que llamaremos au - 1 = nt. Entonces 1 = au - nt y si $d = \mathsf{mcd}(a, n)$, como d divide a a y a n, dividirá a au - nt = 1, pero el único divisor positivo de 1 es 1. Esto prueba que d = 1. \square

Definición 4. Sea n un entero positivo. Llamaremos $\varphi(n)$ al número de unidades de \mathbb{Z}_n , es decir, el número de elementos de \mathbb{Z}_n^* . Esta función φ se llama función φ de Euler.

Proposición 5. Si p es un número primo, \mathbb{Z}_p es un cuerpo porque todos los elementos distintos de 0 son invertibles. El número de unidades es pues $\varphi(p) = p - 1$.

Demostración. Como p es primo, mcd(a, p) es un divisor de p y sólo puede ser 1 ó p. Si a no es una unidad es porque dicho divisor es p, pero p no divide a ninguno de los $\{1, 2, \dots, p-1\}$ que están entre $p \cdot 0 = 0$ y $p \cdot 1 = p$, por tanto todos estos serán unidades.

La función φ de Euler se puede calcular fácilmente si tenemos una factorización de n en primos distintos $n = p_1^{t_1} p_2^{t_2} \cdots p_k^{t_k}$ porque cumple las siguientes propiedades:

- $\bullet \varphi(p_1^{t_1}p_2^{t_2}\cdots p_k^{t_k}) = \varphi(p_1^{t_1})\varphi(p_2^{t_2})\cdots \varphi(p_k^{t_k}) \text{ si los } p_i \text{ son primos distintos.}$
- $\varphi(p^t) = p^t p^{t-1}$ si p es primo.

Así, por ejemplo, $\varphi(12) = \varphi(2^2 \cdot 3) = \varphi(2^2)\varphi(3) = (2^2 - 2^1)(3^1 - 3^0) = (4 - 2)(3 - 1) = 4.$

Proposición 6 (Fórmula de Euler). Sea n un entero positivo y a un entero tal que mcd(a, n) = 1. Entonces $a^{\varphi(n)} \equiv 1 \pmod{n}$.

Leandro Marín	Grado en Ingeniería Informática	Tiempo Estimado
	Álgebra y Matemática Discreta	Previo: 30 min.
Facultad Informática Universidad Murcia	Unidades del anillo Zn y Fórmula de Euler	Clase: 30 min.

Demostración. Sea $t = \varphi(n)$ y denotemos $\{a_1, a_2, \dots, a_t\}$ a las unidades de \mathbb{Z}_n . Como a es coprimo con n, será una de estas unidades y como el producto de unidades es una unidad, el conjunto $\{aa_1, aa_2, \dots, aa_t\}$ son todas unidades de \mathbb{Z}_n . Pero si $aa_i = aa_j$ multiplicando por la izquierda por a^{-1} deducimos que $a_i = a_j$ y por lo tanto las $\{aa_1, aa_2, \dots, aa_t\}$ son todas diferentes y como son t, han de ser las mismas que $\{a_1, a_2, \dots, a_t\}$ cambiadas de orden.

Como en el producto no importa el orden, tenemos que

$$(aa_1)(aa_2)\cdots(aa_t) \equiv a_1a_2\cdots a_t \pmod{n}$$

Pero entonces podemos agrupar las a's y escribir

$$a^t(a_1a_2\cdots a_t) \equiv 1(a_1a_2\cdots a_t) \pmod{n}$$

Multiplicando por el inverso de $(a_1a_2\cdots a_t)$ por ambos lados, concluimos que $a^t\equiv 1\pmod n$ tal y como queríamos probar.

2. Erratas

(No detectadas)

3. Ejercicios

Con respecto a los ejercicios de este tema, conviene ser capaz de decidir si a es una unidad módulo n, pero esto es equivalente a calcular el máximo común divisor de a y n, lo cual hemos hecho ya en muchos ejercicios. Además deberíamos ser capaces de calcular el inverso de a módulo n, pero eso nos lo da la relación au + nv = 1 y para calcularla utilizaremos el Algoritmo de Euclides Extendido, lo cual también hemos hecho en muchas ocasiones.

En relación con la función φ de Euler, en el próximo tema de la exponenciación modular, tendremos oportunidad de practicarla, porque formará parte del cálculo de las potencias de a módulo n.