计算物理学作业 2

庄铖

2021年11月21日

1 多项式插值

1.1 5 个等距节点

利用 Neville 插值,可以得到插值后的函数。Neville 插值的代码在 na.py 当中 (na.py 会随作业次数逐渐更新)。得到

$$f(x) = 0.996317x + 0.0199514x^2 - 0.203585x^3 + 0.0287142x^4$$
(1.1)

最大可能误差为

$$\frac{\left|x_n - x_0\right|^{n+1}}{(n+1)!} = 0.08\tag{1.2}$$

1.2 验证插值

随机选择 5 个点:

1.500, 0.728, 0.379, 1.142, 0.939

计算得到 f(x) 的值为:

0.9976, 0.6654, 0.3700, 0.9094, 0.8069

函数 sin(x) 的值为:

0.9975, 0.6654, 0.3700, 0.9095, 0.8070

可见所有误差均远小于误差最大值。

1.3 节点数估计

若按照最大误差(很保守)来估计,则有:

$$\frac{\left|x_n - x_0\right|^{n+1}}{(n+1)!} < 10^{-8} \tag{1.3}$$

$$n = 14 \tag{1.4}$$

若按照实际误差来看,可以得到

$$n = 9 \tag{1.5}$$

此时最大误差约为 4×10^{-9} 。本题所有代码可见 1.py。

2 Runge 效应

为了使 pdf 页数少一点,直接把三个小问都打出来了。

表 2.1: 各种插值函数之间的比较

point	f(x)	P20(x)	fT(x)	fC(x)	P20(x) - f(x)	fT(x) - f(x)	fC(x) - f(x)
0	0.038462	0.038462	0.038691	0.038708	0.000000	0.000000	0.000000
1	0.042440	-39.952449	0.041012	0.039691	39.994889	0.001390	0.000094
2	0.047059	0.047059	0.040588	0.040683	0.000000	0.001000	0.000000
3	0.052459	3.454958	0.041028	0.042693	3.402499	0.001573	0.000008
4	0.058824	0.058824	0.044765	0.044813	0.000000	0.000000	0.000020
5	0.066390	-0.447052	0.050051	0.048235	0.513442	0.001801	0.000004
6	0.075472	0.075472	0.052152	0.052123	0.000000	0.000000	0.000000
7	0.086486	0.202423	0.055761	0.057928	0.115936	0.002170	0.000013
8	0.100000	0.100000	0.064702	0.064707	0.000000	0.000000	0.000000
9	0.116788	0.080660	0.077294	0.074500	0.036128	0.002795	0.000001
10	0.137931	0.137931	0.086621	0.086608	0.000000	0.000000	0.000000
11	0.164948	0.179763	0.100421	0.104338	0.014814	0.003918	0.000084
12	0.200000	0.200000	0.127794	0.127802	0.000000	0.000000	0.000000
13	0.246154	0.238446	0.169511	0.163290	0.007708	0.006138	0.000114
14	0.307692	0.307692	0.214539	0.214577	0.000000	0.000000	0.000000
15	0.390244	0.395093	0.285364	0.296582	0.004849	0.011144	0.000824
16	0.500000	0.500000	0.423295	0.422375	0.000000	0.000000	0.000000
17	0.640000	0.636755	0.645255	0.624928	0.003245	0.023376	0.003169
18	0.800000	0.800000	0.866629	0.865072	0.000000	0.000000	0.000000
19	0.941176	0.942490	0.962410	1.000000	0.001314	0.037590	0.002310
20	1.000000	1.000000	0.866629	0.865072	0.000000	0.000000	0.000000
21	0.941176	0.942490	0.645255	0.624928	0.001314	0.023376	0.002310
22	0.800000	0.800000	0.423295	0.422375	0.000000	0.000000	0.000000
23	0.640000	0.636755	0.285364	0.296582	0.003245	0.011144	0.003169
24	0.500000	0.500000	0.214539	0.214577	0.000000	0.000000	0.000000
25	0.390244	0.395093	0.169511	0.163290	0.004849	0.006138	0.000824
26	0.307692	0.307692	0.127794	0.127802	0.000000	0.000000	0.000000
27	0.246154	0.238446	0.100421	0.104338	0.007708	0.003918	0.000114
28	0.200000	0.200000	0.086621	0.086608	0.000000	0.000000	0.000000
29	0.164948	0.179763	0.077294	0.074500	0.014814	0.002795	0.000084
30	0.137931	0.137931	0.064702	0.064707	0.000000	0.000000	0.000000
31	0.116788	0.080660	0.055761	0.057928	0.036128	0.002170	0.000001
32	0.100000	0.100000	0.052152	0.052123	0.000000	0.000000	0.000000
33	0.086486	0.202423	0.050051	0.048235	0.115936	0.001801	0.000013
34	0.075472	0.075472	0.044765	0.044813	0.000000	0.000000	0.000000
35	0.066390	-0.447052	0.041028	0.042693	0.513442	0.001573	0.000004
36	0.058824	0.058824	0.040588	0.040683	0.000000	0.000000	0.000000
37	0.052459	3.454958	0.041012	0.039691	3.402499	0.001390	0.000028
38	0.047059	0.047059	0.038691	0.038708	0.000000	0.000000	0.000000
39	0.042440	-39.952449	0.962410	1.000000	39.994889	-	0.000094
40	0.038462	0.038462	0.962410	1.000000	0.000000	-	0.000000

(1) 问中的图:

图 1: P20

图 2: P20 误差

图 3: Chebyshev

图 4: Chebyshev 误差

图 5: CubicSpline

图 6: CubicSpline 误差

3 样条函数在计算机绘图中的运用

3.1 选点列表

表 3.1: x_t, y_t

t	0	1	2	3	4	5	6	7	8
x_t	0.000000	0.207107	0.000000	-1.207107	-2.000000	-1.207107	-0.000000	0.207107	0.000000
y_t	0.000000	0.207107	1.000000	1.207107	0.000000	-1.207107	-1.000000	-0.207107	-0.000000

3.2 给出样条函数

两个函数 $S_{\Delta}(x;t),S_{\Delta}(y;t)$ 均已在代码 3.py 中给出。选用周期边界条件。

表 3.2: x 的系数

分段	0 次	1 次	2 次	3 次
0	0.000	-0.000	0.690	-0.451
1	-0.045	0.171	0.472	-0.358
2	-4.045	7.811	-4.392	0.674
3	-2.835	6.270	-3.738	0.581
4	33.221	-28.161	7.222	-0.581
5	38.823	-32.441	8.312	-0.674
6	-69.177	36.314	-6.279	0.358
7	-84.548	44.702	-7.804	0.451

表 3.3: y 的系数

分段	0 次	1 次	2 次	3 次
0	0.000	0.043	-0.000	0.358
1	0.455	-1.696	2.214	-0.581
2	-0.052	-0.728	1.597	-0.451
3	-14.762	18.002	-6.352	0.674
4	-14.762	18.002	-6.352	0.674
5	53.340	-34.024	6.897	-0.451
6	67.030	-42.739	8.746	-0.581
7	-89.098	42.456	-6.750	0.358

3.3 画图并比较

作图如下。

图 7: 内插与原先心形线

3.4 简要说明

对于函数 f(x,y) = 0, 有

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{y'(t)}{x'(t)} \tag{3.1}$$

$$\frac{\mathrm{d}^{2}y}{\mathrm{d}x^{2}} = \frac{y''(t) x'(t) - y'(t) x''(t)}{x'(t)^{3}}$$
(3.2)

$$\rho = \frac{|y''(x)|}{\left(y'(x)^2 + 1\right)^{\frac{3}{2}}}$$
(3.3)

因此在节点处一阶导,二阶导以及曲率半径都连续,看起来很光滑。

4 计算积分

$$\int_{-\infty}^{\infty} e^{-x^2} \cos(x) = \sqrt{\pi} e^{-\frac{1}{4}} = 1.380388447043143$$
 (4.1)

4.1 梯形法

利用 na.py 中 Integrate 函数选项 method="ladder", 可以得到

表 4.1: 不同区间与步长求得的积分值

分割区间	10^{2}	10^3	10^4	10^5
± 1	1.3123482540682647	1.3123482540682647	1.3123482540682647	1.3123482540682647
± 5	1.3803884470421277	1.3803884470421277	1.3803884470421277	1.3803884470421277
± 10	1.3803884470431431	1.3803884470431431	1.3803884470431431	1.3803884470431431
± 15	1.3803884470431427	1.3803884470431427	1.3803884470431427	1.3803884470431427

可见当区间较大且分割块数较多时非常接近于精确值。

4.2 外推积分法

利用 na.py 中 Integrate 函数选项 method="extrapolation", 可以得到

表 4.2: 不同区间与步长求得的积分值

M 区间	14	15	16	17
±1	1.3123487254630597	1.3123487254629609	1.3123487254630417	1.3123487254630148
± 5	1.3803884470421155	1.3803884470422174	1.3803884470420744	1.3803884470417724
± 10	1.3803884470431027	1.3803884470431012	1.380388447043165	1.380388447042966
± 15	1.3803884470431462	1.3803884470431014	1.3803884470431131	1.3803884470430943

可见外推法离精确值仍差几个机器精度,而 $2^{17} = 131072 > 10^5$ 因此外推法在这里不如梯形 (

4.3 高斯积分法

代码仍见 4.py。

表 4.3: 高斯积分法

\overline{n}	5	10	15	20
T	1.3803900759356564	1.3803884470431405	1.3803884470431425	1.380388447043143

可见当 n=20 时已经到达机器精度。