Université de Paris Saclay M1 MF 2024-2025

FEUILLE TD 1 - EXERCICES ALGÈBRE - GROUPES

► Cette feuille de TD nous occupera deux semaines.

Exercices fondamentaux semaine 1

EXERCICE 1 — GROUPE SYMÉTRIQUE. Soit \mathfrak{S}_n le groupe symétrique sur n lettres.

- **1.** Quel est l'ordre maximal d'un élément de \mathfrak{S}_3 ? de \mathfrak{S}_4 ? de \mathfrak{S}_5 ? de \mathfrak{S}_n ?
- 2. Donner le treillis des sous-groupes de \mathfrak{S}_3 , en précisant à chaque fois lesquels des sous-groupes sont distingués. Répéter l'exercice avec le groupe alterné \mathfrak{A}_4 .
 - Soient G un groupe et $K \subseteq H$ deux sous-groupes de G. On suppose que $K \lhd H$ et que $H \lhd G$. A-t-on $K \lhd G$? Démontrer que si K est caractéristique dans G. alors G est caractéristique dans G.
- **3.** Une partition d'un entier n est une suite $0 < \lambda_1 \leqslant \lambda_2 \leqslant \cdots \leqslant \lambda_r$ d'entiers tels que $\sum_{i=1}^r \lambda_i = n$. Montrer que les classes de conjugaison de \mathfrak{S}_n sont en bijection avec les partitions de n. Que dire des classes de conjugaison dans \mathfrak{A}_n ?

EXERCICE 2 — GROUPE DIÉDRAL. On considère les deux transformations suivantes du plan euclidien : la rotation ρ de centre O et d'angle $\frac{\pi}{2}$, et la symétrie orthogonale σ par rapport à l'axe des abscisses. Le groupe diédral \mathbf{D}_4 est le sous-groupe des isométries du plan engendré par ρ et σ .

- **1.** Calculer l'ordre de σ et de ρ . Décrire l'isométrie $\sigma \rho \sigma^{-1}$.
- 2. Montrer que \mathbf{D}_4 contient 8 éléments; caractériser ces éléments géométriquement.
- 3. Déterminer les classes de conjugaison dans \mathbf{D}_4 .
- 4. Donner le treillis des sous-groupes de D_4 , en précisant les sous-groupes distingués.

EXERCICE 3 — **QUATERNIONS ET GROUPES D'ORDRE 8.** On note H l'ensemble des matrices de $\mathcal{M}_2(\mathbf{C})$ de la forme

$$M_{a,b} := \begin{pmatrix} a & b \\ -\bar{b} & \bar{a} \end{pmatrix}.$$

On pose $H^* = H - \{0\}$.

- **1.** Montrer que H^* est un sous-groupe non commutatif de $\mathsf{GL}_2(\mathbf{C})$.
- 2. On note 1 la matrice identité, et on pose $I:=M_{i,0}$, $J=M_{0,1}$, $K=M_{0,i}$. Soit $\mathbf{H}_8=\{\pm \mathbf{1},\pm I,\pm J,\pm K\}$. Montrer que \mathbf{H}_8 est un sous-groupe non commutatif de cardinal 8 de H^* . Indication : On observera que IJ=K=-JI, avec des relations analogues par permutations circulaires de I,J,K.
- **3.** Montrer que le centre et le sous-groupe dérivé de H_8 sont tous deux égaux à $\{\pm 1\}$.
- **4.** Montrer que l'abélianisé de \mathbf{H}_8 est isomorphe à $(\mathbf{Z}/2\mathbf{Z})^2$.
- 5. Est-ce qu'un groupe dont tous les sous-groupes sont distingués est nécessairement abélien?

EXERCICE 4. Soient G un groupe et H un sous-groupe d'indice fini $n \geqslant 2$.

- **1.** Montrer qu'il existe un sous-groupe distingué K de G, contenu dans H, tel que [G:K] divise n! et $[H:K] \mid (n-1)!$. Indication : On pourra considérer l'action de G sur G/H.
- 2. APPLICATION 1: Montrer que si H est d'indice 2 dans G, alors H est distingué dans G. Le démontrer également de façon plus élémentaire.
- **3.** APPLICATION 2 : Montrer que si G est un p-groupe, et si H est d'indice p dans G, alors H est distingué dans G.
- **4. APPLICATION 3**: Supposons que G est fini et que m = [G:H] est le plus petit diviseur premier de l'ordre de G. Montrer que H est distingué dans G.
- **5.** On suppose que G est fini. Montrer que G n'est pas la réunion des conjugués gHg^{-1} de H.
- **6.** Montrer que **2.** reste vrai si G est infini.
- **7.** Est-ce que **2.** reste vrai si on ne suppose plus que [G:H] est fini?
- 8. Soit G un groupe fini agissant transitivement sur un ensemble fini X tel que $\#X\geqslant 2$. Montrer qu'il existe $g\in G$ ne fixant aucun point de Y
- 9. Soit $k \geqslant 5$ un entier et soit H un sous-groupe de \mathfrak{S}_k d'indice compris entre 2 et k-1. Montrer que $H=\mathfrak{A}_k$. On admettra le fait que les seuls sous-groupes distingués de \mathfrak{S}_k sont $\{1\}$, \mathfrak{A}_k et \mathfrak{S}_k .

^{1.} C'est-à-dire le graphe non orienté dont les sommets sont les sous-groupes de G et où une arête relie deux sous-groupes H_1 et H_2 si, et seulement si, $H_1\subseteq H_2$ ou $H_2\subseteq H_1$.

Université de Paris Saclay M1 MF 2024-2025

Exercices complémentaires semaine 1

EXERCICE 5 — GROUPES D'EXPOSANT 2.

- **1.** Soit G un groupe tel que $g^2=1$ pour tout $g\in G$. Montrer que G est abélien et donner des exemples de tels groupes finis et infinis.
- **2.** Montrer que si G est fini, il existe un entier n tel que G est isomorphe à $(\mathbf{Z}/2\mathbf{Z})^n$.

EXERCICE 6 — GROUPES DE TYPE FINI. Soit G un groupe admettant une partie génératrice finie. Montrer que G est fini ou dénombrable. Est-il vrai réciproquement que tout groupe dénombrable admet une partie génératrice finie?

EXERCICE 7. On considère le groupe $G=\mathfrak{A}_4$. Soit D(G) son sous-groupe dérivé. Soit V_4 le sous-groupe de G constitué de l'identité et des doubles transpositions.

- **1.** Montrer que $V_4 \lhd G$, puis que $D(G) \subseteq V_4$. Indication : On observera que G/V_4 est de cardinal 3.
- **2.** Montrer que $D(G) \neq \{1\}$ et que G ne possède pas de sous-groupe distingué de cardinal 2. En déduire que $D(G) = V_4$.
- **3.** Montrer que si H est un sous-groupe d'indice 2 d'un groupe fini A, alors $H \lhd A$. Indication : Regarder les classes à gauche et à droite suivant G.
- **4.** Soit H un sous-groupe de $G=\mathfrak{A}_4$. Montrer que si H est d'indice 2, alors $D(G)\subseteq H$ et aboutir à une contradiction. *Indication : On considérera* G/H. Ainsi G (qui est de cardinal 12) n'a pas de sous-groupe de cardinal 6.
- **5.** Montrer au contraire que pour tout $d \in \mathbf{N}^*$ tel que d divise 24, le groupe \mathfrak{S}_4 possède un sous-groupe de cardinal d.

Université de Paris Saclay M1 MF 2024-2025

Exercices fondamentaux semaine 2

EXERCICE 8. Montrer que tout groupe d'ordre 255 est cyclique.

EXERCICE 9 — GROUPES RÉSOLUBLES.

- 1. Montrer que tout sous-groupe et tout groupe quotient d'un groupe résoluble est résoluble.
- 2. Montrer plus généralement que toute extension d'un groupe résoluble par un groupe résoluble est résoluble.
- 3. Donner un exemple d'un groupe résoluble qui n'est pas nilpotent.
- 4. Soient p et q deux nombres premiers distincts. Montrer que tout groupe d'ordre pq est résoluble.
- 5. Même question pour les groupes d'ordre pqr, si p>q>r sont trois nombres premiers. Indication : On pourra évaluer le nombre d'éléments d'ordre p et le nombre d'éléments d'ordre q.
- **6.** Même question pour les groupes d'ordre p^2q .
 Indication : On pourra être amener à comparer 1+p et q.

EXERCICE 10 — GROUPES NILPOTENTS.

On dit qu'un sous-groupe H de G est maximal si $H \neq G$ et qu'aucun sous-groupe propre de G n'est compris strictement entre H et G.

- **1.** Soient G un groupe fini, $N \lhd G$, $H \leqslant G$ et $\pi: G \to G/N$ la surjection canonique. Montrer que $\pi(H) \leqslant Z(G/N)$ si, et seulement si, $[H,G] \leqslant N$ où, pour $H_1,H_2 \leqslant G$, on note $[H_1,H_2]$ le sous-groupe de G engendré par les commutateurs de la forme $h_1h_2h_1^{-1}h_2^{-1}$ avec $h_1 \in H_1$ et $h_2 \in H_2$.
- 2. On définit la suite centrale descendante associée à G par $C^1(G) = [G,G]$ et $C^{n+1}(G) = [G,C^n(G)]$ pour $n \in \mathbb{N}^*$. En déduire que G est nilpotent si, et seulement si, il existe $n_0 \in \mathbb{N}^*$ tel que $C^{n_0}(G) = \{e\}$. Établir que le groupe G est alors nilpotent si, et seulement si, il existe $n_0 \in \mathbb{N}^*$ tel que $C^{n_0}(G) = \{e\}$.
- 3. Montrer qu'un groupe nilpotent est résoluble. Que dire de la réciproque?
- 4. Montrer que le centre d'un groupe nilpotent est non trivial.
- 5. Montrer que si G est nilpotent et que H est un sous-groupe de G, alors H est nilpotent.
- **6.** Montrer que si $H \lhd G$ et que G est nilpotent, alors G/H est nilpotent.
- **7.** On suppose H et G/H nilpotents. Le groupe G est-il nilpotent?
- **8.** Soient p,q,r trois nombres premiers. Montrer que tout groupe d'ordre pqr est résoluble. Un tel groupe est-il nilpotent?
- **9.** On suppose G fini. Montrer que G est nilpotent si, et seulement si, tout sous-groupe maximal de G est distingué et si, et seulement si, G est produit direct de ses p-Sylow pour tout nombre premier p divisant #G.

Exercices complémentaires semaine 2

EXERCICE 11. Soient p un nombre premier et G un p-groupe fini. Soit (A,+) un groupe abélien avec $A \neq \{0\}$. On suppose donnée une action de G sur A par automorphismes, c'est-à-dire que pour tout $g \in G$, la bijection $x \mapsto g \cdot x$ de A dans A est un automorphisme du groupe abélien A. On suppose de plus que A est A est

- **1.** Montrer que si A est fini, son cardinal est une puissance de p.

 Indication : On pourra utiliser la classification des groupes abéliens finis, ou encore le théorème de Sylow.
- **2.** On suppose que A est fini. Montrer qu'il existe $x \neq 0$ dans A tel que pour tout $g \in G$, on ait $g \cdot x = x$.
- **3.** On ne suppose plus A fini et soit $a \neq 0$ dans A. Montrer que le sous-groupe B de A engendré par $\{g \cdot a, g \in G\}$ est fini.
- 4. En déduire que le résultat de 2. vaut encore sans l'hypothèse A fini.

EXERCICE 12 — GROUPE DES AUTOMORPHISMES.

- **1.** Soient p un nombre premier et $n \in \mathbb{N}$. Établir que $\operatorname{Aut}((\mathbf{Z}/p\mathbf{Z})^n)$ est isomorphe à $\operatorname{GL}_n(\mathbf{Z}/p\mathbf{Z})$. Pour quelles valeurs de n ce groupe est-il commutatif?
- **2.** On suppose que $n\geqslant 2$. Montrer que $({f Z}/p{f Z})^n$ contient un sous-groupe distingué mais non caractéristique.
- 3. On considère dans cette question le cas p=n=2. Montrer que ${
 m Aut}\left({({f Z}/2{f Z})}^2
 ight)$ est isomorphe à ${rak S}_3$.