Observations:

anation atch size was 2. To resolve langed the ge batch size lodel with 3 ol layers and We included
2. To resolve nanged the ge batch size lodel with 3 ol layers and We included
ge batch size lodel with 3 ol layers and We included
ge batch size lodel with 3 ol layers and We included
lodel with 3 ol layers and We included
lodel with 3 ol layers and We included
ol layers and We included
We included
n layer in
le chances of
ks like model
itting, but
oks good
we trained
chs, we
r larger epoch
odel stabilizes
ncreasing
) has shown
d the model
ole, but since
ht overfitting
model, we
uld still be at
ase dropout
e any
- a,
y increasing
d epoch size
e that model
duced but so
nce between
al accuracies,
e solution to
should try to
r epoch size
improves
learning is
noose to
size to 40 to
proves

F	C2D	Tuelle con C.C.	Fordamenta : 341 : 11 :
5	Conv3D	Train_acc : 0.94	Explanation: We see that
		Val_acc : 0.84	the training and val accuracy
			have improved but are
			similar to the model 2
			performance. This could be
			the best performance
			possible with this model.
			Decision : The metrics of
			model 2 and 5 can be frozen
			as best metrics and we can
			now try a new architecture
			to see if we get better results
6	Conv2D+GRU	Train_acc : 0.98	Explanation: In this model
		Val_acc : 0.97	we choose to take mobilenet
		_	as the conv2d network with
			pretrained weights from
			imagenet dataset. Since it
			would be very difficult to
			•
			re-train a model to match
			the pretrained model
			metrics. Then we construct a
			gru network which takes the
			vector output from
			mobilenet. We add a 64
			layer GRU cell in this
			network with dropouts. The
			final layers of the network
			1
			are dense layers which will
			pass into a softmax to give
			the predicted class. We get
			great results for 10 epochs.
			<u>Decision</u> : Build
			Conv2D+GRU network,
			reduce epoch size and
			dropout values to see if
			performance is similar
7	Conv2D+GRU	Train_acc : 0.94	Explanation : Even after
'	3311725 3110	Val_acc : 0.88	reducing epoch size and
		vai_acc . 0.00	dropout values we can see
			, -
			that the performance is very
			good. These dropout values
			are promising and might
			perform better with greater
			epoch size
			Decision: Dropout values
			used look promising. We will
			try with larger epoch size to
		l .	Li y with larger epoth size to

			soo if model nerformance
			see if model performance can be maximized
	Carria 2D + CDU	Tue: 0.00	
8	Conv2D+GRU	Train_acc : 0.99	Explanation: After
		Val_acc : 0.97	increasing epoch size we can
			see that the model stabilizes
			and is performing very well.
			Performance of model 6 was
			also very good, so we could
			try running for same epoch
			size and increase dropout
			size
			<u>Decision</u> : Performance is
			very good, but we will also
			run an experiment by
			increasing dropout value to
			see how behaviour changes
9	Conv2D+GRU	Train_acc : 0.98	Explanation: By increasing
		Val_acc : 0.96	dropout values we see
			slightly lower performance
			than model 8. Even though
			there is lesser gap between
			training and val accuracy, the
			performance of model 8 is
			better
			<u>Decision</u> : Increasing dropout
			values have degraded the
			performance a little, model 8
			should be considered the
			best
Final Model	Conv2D+GRU	Train_acc : 0.99	Explanation: This model
		Val_acc : 0.97	gives the best performance
		_	out of all models and also
			does not show any strong
			signs of overfitting. This
			architecture is clearly better
			performing than the Conv3d
			architecture
			<u>Decision</u> : Given the best
			metrics out of all expts, this
			model can be considered as
			best model
	ı	<u> </u>	