Review Questions – Deadlocks (Chapter 8)

Operating Systems SFWRENG 3SH3 Term 2, Winter 2023

Prof. Neerja Mhaskar

Questions:

1. Consider the below resource allocation graph. Is the system in a deadlock state? If so, report the cycle(s) causing deadlock. If not, explain the order in which processes access the resources requested and complete execution.

2. Consider the below resource allocation graph. Is the system in a deadlocked state? If so, report the cycle(s) causing deadlock. If not, explain the order in which processes access the resources requested and complete execution.

3. Consider the following snapshot of a system:

	Allocation	Max	Available
	ABCD	\overline{ABCD}	ABCD
P_0	0012	0012	1520
P_1	1000	1750	
P_2	1354	2356	
P_3	0632	0652	
P_4	$0\ 0\ 1\ 4$	0656	

Answer the following questions using the banker's algorithm:

- a. What is the content of the matrix Need?
- b. Is the system in a safe state?
- c. If a request from process P₁ arrives for (0,4,2,0), can the request be granted immediately?
- 4. Consider the below resource allocation graph. Construct the corresponding wait-for graph. Is the system in deadlock? If so, provide the cycle causing deadlock.

5. Consider the following snapshot of a system at time *T*0:

Five processes P_0 through P_4 .

Three resource types A (10 instances), B (3 instances), and C (6 instances)

Snapshot at time *T*₀:

	Allocation A B C	Request A B C	Available A B C
<i>P</i> 0	211	000	000
FU			000
<i>P</i> 1	212	202	
<i>P</i> 2	400	0 0 1	
<i>P</i> 3	211	100	
<i>P</i> 4	002	002	

- a) Is the system in deadlocked state? If no, provide a sequence of processes satisfying the safety requirement. If yes, explain why and list the processes involved in the deadlock.
- b) Suppose process P1 makes an additional request of resource type B, the Request matrix is modified as follows:

	<u>Request</u>
	ABC
P_0	000
P_1	212
P_2	0 0 1
<i>P</i> ₃	100
P_4	002

c) Is the system in deadlocked state? If no, provide a sequence of processes satisfying the safety requirement. If yes, explain why and list the processes involved in the deadlock.