MA1101 Mathematics I

Autumn 2021

ABHISRUTA MAITY 21MS006

Indian Institute of Science Education and Research, Kolkata Mohanpur, West Bengal, 741246, India

Contents

1	Construction of Numbers		
	1.1	Construction of Integers	2
		Construction of Rational Numbers	

§1 Construction of Numbers

§1.1 Construction of Integers

Definition 1.1 (Addition). $a + b \stackrel{\text{def}}{=} [(m+p), (n+q)]$

Definition 1.2 (Multiplication). $a \cdot b \stackrel{\text{def}}{=} [(mp + nq), (mq + np)]$

Theorem 1.3 (Properties of Addition)

well defined.

Proof. We first check + is well-defined. Let a = [(m, n)] = [(m', n')] for $m, n, m', n' \in \mathbb{N}$ and b = [(p, q)] = [(p', q')] for $p, q, p', q' \in \mathbb{N}$

We now check that + is commutative. We have

$$a + b = [(m, n)] + [(p, q)]$$

$$= [(m + p, n + q)]$$

$$= [(p + m, q + n)]$$

$$= [(p, q)] + [(m, n)]$$

$$= b + a$$

Let us define $x \in \mathbb{Z}$ by

$$x \stackrel{\text{def}}{=} [(n,m)]$$

Then,
$$a + x = [(m, n)] + [(n, m)] = [(m + n, n + m)] = [(m + n, m + n)] = [(1, 1)] = \bar{0}$$

Theorem 1.4 (Properties of Multiplication)

The following statements holds:

• ":" is well defined.

Proof. We are going to check that the multiplication is well-defined. Let
$$a,b\in\mathbb{Z}$$
 with $a=[(m,n)]+[(m'+n')]$ and $b=[(p,q)]=[(p',q')]$

Recall that $\mathbb{Z} = \{[(j,1)]: j \in \mathbb{N}, j \geq 2\} \cup$

§1.2 Construction of Rational Numbers