总结

黄飞虎 2021.1.13

学习情况

把李宏毅的cnn与rnn的视频看完,完成了实验四。

论文情况

An End-to-End Trainable Neural Network for Image-based Sequence Recognition and Its Application to Scene Text Recognition

发表期刊: <u>IEEE Transactions on Pattern Analysis and Machine Intelligence</u>

论文链接: https://arxiv.org/pdf/1507.05717.pdf

本文的工作

针对场景文本识别的问题,本文提出了Convolutional Recurrent Neural Network (CRNN),是DCNN与RNN的结合体。

与其他模型作了比较分析

与以前的场景文本识别相比,具有四个独特的属性:

- 1. 它是端到端可训练的,与大多数现有算法相反,其中的组件是单独训练和调整的。
- 2. 它自然地处理任意长度的序列,不涉及字符分割或水平缩放归一化。
- 3. 它不局限于任何预定义的词典,并且在无词典和词典的场景文本识别任务中都取得了显着的表现。
- 4. 它生成一个有效但小得多的模型,这对于实际应用场景更为实用。

CRNN的网络结构包括三个组成部分: 卷积层、循环层和转录层。如下图所示:

实验

对于场景文本识别的所有实验,使用Jaderberg等人发布的合成数据集(Synth)作为训练数据。数据集包含8百万训练图像及其对应的实际单词。

有四个流行的基准数据集用于场景文本识别的性能评估,即ICDAR 2003 (ICO3), ICDAR 2013 (IC13), IIIT 5k-word (IIIT5k)和 Street View Text (SVT)。

比较评估

通过本文提出的CRNN模型和最新的技术,包括基于深度模型的方法,对4个公共数据集的识别精度均如下表所示。

	IIIT5k			SVT		IC03				IC13
	50	1k	None	50	None	50	Full	50k	None	None
ABBYY [34]	24.3	-	-	35.0	-	56.0	55.0	-	-	-
Wang et al. [34]	-	-	-	57.0	-	76.0	62.0	-	-	-
Mishra et al. [28]	64.1	57.5	-	73.2	-	81.8	67.8	-	-	-
Wang et al. [35]	-	-	-	70.0	-	90.0	84.0	-	-	-
Goel et al. [13]	-	-	-	77.3	-	89.7	-	-	-	-
Bissacco et al. [8]	-	-	-	90.4	78.0	-	-	-	-	87.6
Alsharif and Pineau [6]	-	-	-	74.3	-	93.1	88.6	85.1	-	-
Almazán et al. [5]	91.2	82.1	-	89.2	-	-	-	-	-	-
Yao et al. [36]	80.2	69.3	-	75.9	-	88.5	80.3	-	-	-
Rodrguez-Serrano et al. [30]	76.1	57.4	-	70.0	-	-	-	-	-	-
Jaderberg et al. [23]	-	-	-	86.1	-	96.2	91.5	-	-	-
Su and Lu [33]	-	-	-	83.0	-	92.0	82.0	-	-	-
Gordo [14]	93.3	86.6	-	91.8	-	-	-	-	-	-
Jaderberg et al. [22]	97.1	92.7	-	95.4	80.7*	98.7	98.6	93.3	93.1*	90.8*
Jaderberg et al. [21]	95.5	89.6	-	93.2	71.7	97.8	97.0	93.4	89.6	81.8
CRNN	97.6	94.4	78.2	96.4	80.8	98.7	97.6	95.5	89.4	86.7

为了进一步了解与其它文本识别方法相比,所提出算法的优点,我们提供了在一些特性上的综合比较,这些特性名称为E2E Train, Conv Ftrs, CharGT-Free, Unconstrained和Model Size, 如下图所示。

	E2E Train	Conv Ftrs	CharGT-Free	Unconstrained	Model Size
Wang et al. [34]	X	X	X	~	-
Mishra et al. [28]	X	X	X	X	-
Wang et al. [35]	X	~	X	~	-
Goel et al. [13]	X	X	~	X	-
Bissacco et al. [8]	X	X	X	~	-
Alsharif and Pineau [6]	X	~	X	~	-
Almazán et al. [5]	X	X	~	X	-
Yao et al. [36]	X	X	X	~	-
Rodrguez-Serrano et al. [30]	X	X	~	X	-
Jaderberg et al. [23]	X	~	X	~	-
Su and Lu [33]	X	X	~	~	-
Gordo [14]	X	X	X	X	-
Jaderberg et al. [22]	~	~	~	X	490M
Jaderberg et al. [21]	~	~	~	~	304M
CRNN	~	~	~	~	8.3M

E2E Train: 这一列是为了显示某种文字阅读模型是否可以进行端到端的训练。

Conv Ftrs: 这一列用来表明一个方法是否使用从训练 图像直接学习到的卷积特征或手动特征作为基本的表示。

CharGT-Free: 这一列用来表明字符级标注对于训练模型是否是必要的。由于CRNN的输入和输出标签是序列,因此字符级标注是不必要的。

Unconstrained: 这一列用来表明训练模型是否受限于一个特定的字典,是否不能处理字典之外的单词或随机序列。

Model Size: 这一列报告了学习模型的存储空间。在 CRNN中,所有的层有权重共享连接,不需要全连接层。

蓝线:识别精度作为函数参数δ。

红色:每个样本的词典搜索时间。

在IC03数据集上使用50k字典进行测试。

CRNN 在文字识别上的优点:

- 1. 它是端到端的
- 2. 能处理任意长度的序列
- 3. 不需要预定义的字典
- 4. 更小的模型, 更少的参数(不需要全连接层)

对于序列类型的对象, CRNN所具有的优点:

- 1. 可以直接从标签序列上进行学习(例如单词),而不需要进行另外的标注(每个字母)
- 2. 它可以直接从图片中读取信息,无需手工设计特征
- 3. 和 RNN 具有同太阳的优点,可产生一个序列的标签
- 4. 只要求序列的高度标准化,不受限于序列的长度
- 5. 文字识别任务上有出色表现
- 6. 更少的参数, 更小的存储空间

谢谢观看