Bitext parsing

Wilker Aziz 3/5/17

Context-Free Grammars

A **CFG** grammar G is denoted by

- a set of nonterminal symbols N
- a set of **terminal** symbols Σ with $\Sigma \cap N = \emptyset$
- a set R of **rules** of the form $X \rightarrow \alpha$ where
 - $X \in N$ and $\alpha \in (\Sigma \cup N)^*$
- S ∈ N a distinguished start symbol

Let ε denote an **empty** string

Example CFG

S → NP VP	Vi → sleeps
VP → Vi	Vt → saw
VP → Vt NP	NN → man
VP → VP PP	NN → dog
NP → DT NN	NN → telescope
NP → NP PP	DT → the
PP → IN NP	IN → with

Generative Device

Left-most derivation

- sequence of strings $\mathbf{s}_1 \dots \mathbf{s}_n$
 - $s_1 = S$
 - $\mathbf{s}_n \in \Sigma^*$
 - $\mathbf{s}_{i\geq 2}$ derived from \mathbf{s}_{i-1} by picking the left-most nonterminal X
 - replacing it by some a such that $X \rightarrow \alpha \in R$

Example of Derivation

Substitution

S ₁ =	S	S → NP VP
s ₂ =	NP VP	NP → DT NN
s ₃ =	DT NN VP	DT → the
S ₄ =	the NN VP	NN → man
s ₅ =	the man VP	VP → Vi
s ₆ =	the man Vi	Vi → sleeps
S ₇ =	the man sleeps	
S ₇ =	S ⇒* the man sleeps	

Example of Generation

Example of Recognition

Language

A string $\mathbf{s} = s_1 \dots s_n$ is generated/accepted by G if

$$S \Rightarrow^* S$$

⇒* denotes a sequence of rule applications

Language of G

$$L(G) = \{s: S \Rightarrow^* s\} \subseteq \Sigma^*$$

Chomsky Normal Form

Every CFG is weakly equivalent to another such that

- $X \rightarrow YZ$ where $X, Y, Z \in N$
- $X \rightarrow w$ where $w \in \Sigma$
- and possibly $S \rightarrow \varepsilon$

[Hopcroft and Ullman, 1979]

Parsing as Deduction

Deductive process to prove claims about grammaticality [Shieber et al., 1995]

- focus on strategy rather than implementation
- soundness/completeness easier to prove
- complexity determined by inspection
- dynamic program follows directly
- generality

Deductive systems

Item: a statement / intermediate sound result

formula or schemata expressed with variables

Inference rule: statement derived from existing items

- $\frac{A_1 \dots A_m}{B}$ (condition) where A_i and B are items
 - Ai are called antecedents
 - B is called consequent

Deductive program

Axioms: trivial items

do not depend on previous statements

Goal: states that a proof exists

Proof:

- start from axioms
- exhaustively deduce items
 - never twice under the same premises
- accept if goal is proven

Shift-Reduce Example

Input: the man sleeps

Rule	Condition		Statement	Queue
Axiom		1	[•,O]	1
Shift: [1]		2	[the•,1]	2
Reduce: [2]	DT → the	3	[DT•,1]	3
Shift: [3]		4	[DT man •, 2]	4
Reduce: [4]	NN → man	5	[DT NN ●, 2]	5
Reduce: [5]	$NP \rightarrow DT NN$	6	[NP ●, 2]	6
Shift: [6]		7	[NP sleeps ●, 3]	7
Reduce: [7]	Vi → sleeps	8	[NP Vi ●, 3]	8
Reduce: [8]	VP → Vi	9	[NP VP ●, 3]	9
Reduce: [9]	$S \rightarrow NP VP$	10	[S •, 3]	10
GOAL: [10]				Ø

$S \rightarrow NP VP$	
VP → Vi	
VP → Vt NP	
VP → VP PP	
$NP \rightarrow DT NN$	
$NP \rightarrow NP PP$	
PP → IN NP	
Vi → sleeps	
Vt → saw	
NN → man	
NN → dog	
NN → telescop	е
DT → the	

IN → with

Shift-Reduce

Input: G and w₁ ... w_n

Item form: [a•, j] asserts that $\alpha \Rightarrow w_1 \dots w_i$ or that $\alpha w_{i+1} \dots w_n \Rightarrow^* w_1 \dots w_i$

Axiom: [•,0]

Goal: [S•,n]

SHIFT
$$\frac{\left[\alpha \bullet, j\right]}{\left[\alpha w_{j+1}, j+1\right]}$$

Scan (shift)

asserts that $\alpha w_{i+1} \Rightarrow w_1 \dots w_i w_{i+1}$

REDUCE
$$\frac{[\alpha \gamma \bullet, j]}{[\alpha B \bullet, j]}$$
 $B \to \gamma \in R$

Complete (reduce)

asserts that $\alpha B \Rightarrow w_1 \dots w_i$

Top-Down recognition

Input: G and w₁ ... w_n

Item form: $[\bullet \beta, j]$ asserts that $S \Rightarrow^* w_1 \dots w_i \beta$

Axiom: [•S,0]

Goal: [●,n]

Scan

asserts that $S \Rightarrow^* w_1 \dots w_j w_{j+1} \beta$

SCAN
$$\frac{[\bullet w_{j+1}\beta, j]}{[\bullet\beta, j+1]}$$

PREDICT
$$\frac{\bullet B \ \beta, j}{[\bullet \gamma \ \beta, j]} \ B \to \gamma \in R$$

Predict

asserts that $S \Rightarrow^* w_1 \dots w_i B \beta$

Top-Down Example

Input: the man sleeps

Rule	Condition		Statement	Queue
Axiom		1	[• S, 0]	1
Predict: [1]	$S \rightarrow NP VP$	2	[• NP VP, 0]	2
Predict: [2]	$NP \rightarrow DT NN$	3	[• DT NN VP, 0]	3
Predict: [3]	DT → the	4	[• the NN VP,0]	4
Scan: [4]		5	[• NN VP,1]	5
Predict: [5]	NN → man	6	[• man VP, 1]	6
Scan: [6]		7	[• VP, 2]	7
Predict: [7]	VP → Vi	8	[• Vi, 2]	8, 9, 10
	VP → Vt NP	9	[• Vt NP, 2]	
Predict: [8]	Vi → sleeps	10	[• sleeps, 2]	9, 10
		11		10
Scan: [10]		13	[•, 3]	13
GOAL: [13]		1	6	Ø

 $S \rightarrow NP VP$ $VP \rightarrow Vi$ VP → Vt NP $VP \rightarrow VP PP$ NP → DT NN $NP \rightarrow NP PP$ PP → IN NP Vi → sleeps Vt → saw NN → man NN → dog NN → telescope $DT \rightarrow the$ $IN \rightarrow with$

CKY - CNF only

Input: G and $s = w_1 \dots w_n$ Item form: [i, X, j] asserts that $X \Rightarrow^* w_{i+1} \dots w_i$

Axioms: $[i, X, i+1] X \rightarrow w_i \in R$

Goal: [0, S, n]

Merge: $\frac{[i,A,k]\,[k,B,j]}{[i,C,j]} \quad C \to A\,B \in R$ asserts that

 $W_{i+1} \dots W_k W_{k+1} \dots W_j \Rightarrow^* W_{i+1} \dots W_j$

CKY Example

Input: the man saw the dog

$S \rightarrow NP VP$	Vi → sleeps
VP → Vi	Vt → saw
VP → Vt NP	NN → man
VP → VP PP	NN → dog
$NP \rightarrow DT NN$	NN → telescope
$NP \rightarrow NP PP$	DT → the
PP → IN NP	IN → with

Rule	Condition		Statement	Queue	Passive
Axiom	DT → the	1	[0, DT, 1]	1	
	NN → man	2	[1, NN, 2]	1, 2	
	Vt → saw	3	[2, Vt, 3]	1, 2, 3	
	DT → the	4	[3, DT, 4]	1, 2, 3, 4	
	NN → dog	5	[4, NN, 5]	1, 2, 3, 4, 5	
				2, 3, 4, 5	1
Merge: [1][2]	$NP \rightarrow DT NN$	6	[0, NP, 2]	3, 4, 5, 6	2
				4, 5, 6	3
				5, 6	4
Merge: [4][5]	$NP \rightarrow DT NN$	7	[3, NP, 5]	6, 7	5
				7	6
Merge: [3] [7]	VP → Vt NP	8	[2, VP, 5]	8	7
Merge: [6] [8]	$S \rightarrow NP VP$	9	[0, S, 5]	9	8
GOAL: [9]				Ø	9
		15	₹		

18

Rule Segmentation: "Split Points"


```
_{0}S_{3} \rightarrow _{0}NP_{2} _{2}VP_{3}
_{0}NP_{2} \rightarrow _{0}DT_{1} _{1}NN_{2}
_{2}VP_{3} \rightarrow _{2}Vi_{3}
_{0}DT_{1} \rightarrow _{the}
_{1}NN_{2} \rightarrow _{man}
_{2}Vi_{3} \rightarrow _{sleeps}
```

"Dotted items"

Parsing a CNF grammar is easy because we know the shape of rules

When that's not the case, we have to **scan rules symbol by symbol** using a general mechanism:

Item form: [i, $X \to \alpha_{\blacksquare} \bullet \beta_{\square}$, j] where $X \to \alpha \beta \in R$ is a rule

- In general, we segment rules with respect to the input w₁ ... w_n
- The dot represents progress through the rule's right-hand side (RHS)
- The prefix α has already been parsed and we are waiting for β
- The filled box represents a segmentation of [0 .. j] into |α| adjacent parts
- The empty box has no actual role, it's just a reminder that the segmentation beyond j is unknown

CKY+

Input: G and $s = w_1 \dots w_n$

Item form: [i, $X \rightarrow \alpha \bullet \beta_{\square}$, i] asserts that $X \Rightarrow^* W_{i+1} \dots W_i \beta$

Axioms:
$$[i, X \rightarrow w_i \bullet \alpha_{\square}, i+1] \quad X \rightarrow w_i \alpha \in R$$
 $[i, X \rightarrow \epsilon \bullet, i] \quad X \rightarrow \epsilon \in R$

Goal: $[0, S \rightarrow \alpha \bullet, n]$

Scan

$$\frac{[i, X \to \alpha \blacksquare \bullet w_{j+1} \beta_{\square}, j]}{[i, X \to \alpha \blacksquare w_{j+1} \bullet \beta_{\square}, j+1]}$$

Prefix

$$\frac{[i,X \to \alpha \blacksquare \bullet w_{j+1} \, \beta_\square,j]}{[i,X \to \alpha \blacksquare w_{j+1} \bullet \beta_\square,j+1]} \quad \frac{[i,Y \to \alpha \blacksquare \bullet,j]}{[i,X \to Y_{i,j} \bullet \beta_\square,j]} \quad X \to Y\beta \in R$$

Complete

$$\frac{[i, X \to \alpha \blacksquare \bullet Y \beta_{\square}, k] [k, Y \to \gamma \blacksquare \bullet, j]}{[i, X \to \alpha \blacksquare Y_{k,j} \bullet \beta_{\square}, j]}$$

CKY+ Example

 $S \rightarrow NP \ VP$ $Vi \rightarrow sleeps$ $VP \rightarrow Vi$ $Vt \rightarrow saw$ $VP \rightarrow Vt \ NP$ $NN \rightarrow man$ $VP \rightarrow VP \ PP$ $NN \rightarrow dog$ $NP \rightarrow DT \ NN$ $NN \rightarrow telescope$ $NP \rightarrow NP \ PP$ $DT \rightarrow the$ $PP \rightarrow IN \ NP$ $IN \rightarrow with$

Input: the man sleeps

Rule	Condition		Item	Active	Passive
Axiom	DT → the	1	$[0, DT \rightarrow the \bullet, 1]$	1	
	NN → man	2	[1, NN → man •, 2]	1, 2	
	Vi → sleeps	3	[2, Vi → sleeps •, 3]	1, 2, 3	
Prefix: [1]	$NP \rightarrow DT NN$	4	$[0, NP \rightarrow DT_{0,1} \bullet NN, 2]$	2, 3, 4	1
				3, 4	2
Prefix: [3]	VP → Vi	5	[2, VP → Vi _{2,3} •, 3]	4, 5	3
Complete: [4] [2]		6	$[0, NP \rightarrow DT_{0,1} NN_{1,2} \bullet, 2]$	5, 6	4
				6	5
Prefix: [6]	$S \rightarrow NP VP$	7	$[0, S \rightarrow NP_{0,2} \bullet VP, 2]$	7	6
Complete: [7] [5]		8	$[0, S \rightarrow NP_{0,2} VP_{2,3} \bullet, 3]$	8	7
GOAL: [8]				Ø	

Correctness of Parsing Strategy

Soundness: if a goal item is proven for s

• then **s** ∈ L(G)

Completeness: if $\mathbf{s} \in L(G)$

• then a goal item can be proven for s

Parse Forest

Efficient representation of the whole space $T_G(s)$

each and every possible tree yielding s

We must be able to represent partial derivations

including alternative ones

Ambiguity

Some strings may have more than one derivation in G

Dealing with Ambiguity

Statistical model: weight steps in a derivation

- induces a partial ordering over derivations
- can be used to make a decision
 - e.g. best tree under the model

Probabilistic CFG

CFG extended with parameters $0 \le \theta_r \le 1$

where r ∈ R and

$$\sum_{\alpha:X\to\alpha\in R}\theta_{X\to\alpha}=1$$

Probabilistic CFG

Distribution over trees

$$P(T = t, S = \text{yield}(t)) = P(T = \langle r_1 \dots r_n \rangle, S = s)$$

$$= \prod_{i=1}^{n} \theta_{r_i} = \prod_{i=1}^{n} \theta_{X_i \to \alpha_i} = \prod_{r \in t}^{n} \theta_r^{n(r,t)}$$

and strings

$$P(S=s) = \sum_{t \in T_G(s)} P(T=t, S=s)$$

Estimation

Let us assume the parametric form of θ is a multinomial

one categorical distribution per X ∈ N

Suppose we can observe a treebank, then by MLE

$$\theta_{X \to \alpha} = \frac{n(X \to \alpha)}{n(X)}$$

$$= \frac{n(X \to \alpha)}{\sum_{\alpha'} n(X \to \alpha')}$$

Weighted CKY+

Input: G and $s = w_1 \dots w_n$

Item form: [i, $X \rightarrow \alpha \bullet \beta_{\square}$, i] asserts that $X \Rightarrow^* W_{i+1} \dots W_i \beta$

Axioms:
$$[i, X \rightarrow w_i \bullet \alpha_{\square}, i+1]: \theta_r \quad r = X \rightarrow w_i \alpha \in R$$
 $[i, X \rightarrow \epsilon \bullet, i]: \theta_r \quad r = X \rightarrow \epsilon \in R$

Goal: $[0, S \rightarrow \alpha_{\blacksquare} \bullet, n]$

Scan

$$\frac{[i, X \to \alpha \blacksquare \bullet w_{j+1} \beta_{\square}, j] : \theta_1}{[i, X \to \alpha \blacksquare w_{j+1} \bullet \beta_{\square}, j+1] : \theta_1}$$

Prefix

$$\frac{[i,X \to \alpha \blacksquare \bullet w_{j+1} \, \beta_\square,j] : \theta_1}{[i,X \to \alpha \blacksquare w_{j+1} \bullet \beta_\square,j+1] : \theta_1} \qquad \frac{[i,Y \to \alpha \blacksquare \bullet,j] : \theta_1}{[i,X \to Y_{i,j} \bullet \beta_\square,j] : \theta_r} \quad r = X \to Y\beta \in R$$

Complete

$$\frac{[i, X \to \alpha \blacksquare \bullet Y \beta_{\square}, k] : \theta_1 [k, Y \to \gamma \blacksquare \bullet, j] : \theta_2}{[i, X \to \alpha \blacksquare Y_{k,j} \bullet \beta_{\square}, j] : \theta_1}$$

Joint Distribution

```
_{0}S_{3} \rightarrow _{0}NP_{2} _{2}VP_{3}
_{0}NP_{2} \rightarrow _{0}DT_{1} _{1}NN_{2}
_{2}VP_{3} \rightarrow _{2}Vi_{3}
_{0}DT_{1} \rightarrow _{the}
_{1}NN_{2} \rightarrow _{man}
_{2}Vi_{3} \rightarrow _{sleeps}
```


Complexity

Item form: [i, $X \rightarrow \alpha \bullet \beta \Box$, j]

• Each rule segments the input w₁ .. w_n

Every CFG can be written in CNF (max arity = 2)

- In total we get up to 3 indices ranging from 0 .. n
- O(n³) annotated rules

Bitext Parsing

Imagine we have **two** streams of text

the man sleeps ⇔ dort I' homme

We want to parse both strings simultaneously such that their trees are isomorphic

- same structure up to
- relabelling and permutation of siblings

Isomorphic trees

Synchronous Grammar

A CFG paired with another

RHS symbols map one-to-one

	English	French	
X	Α	A	сору
X	ВС	ВС	сору
		СВ	invert
X	е	f	transduce

Parse E

Parse with the English side of the grammar

```
_{0}\text{NP}_{2} \rightarrow _{0}\text{NP}_{2} \text{ 2VP}_{3}
_{0}\text{NP}_{2} \rightarrow _{0}\text{DT}_{1} \text{ 1NN}_{2}
_{2}\text{VP}_{3} \rightarrow _{2}\text{Vi}_{3}
_{0}\text{DT}_{1} \rightarrow \text{the}
_{1}\text{NN}_{2} \rightarrow \text{man}
_{2}\text{Vi}_{3} \rightarrow \text{sleeps}
```

Projection

	English	French
$_{0}S_{3} \rightarrow$	$_{0}NP_{2}$ $_{2}VP_{3}$	$_{0}NP_{2}$ $_{2}VP_{3}$
		$_{2}VP_{3}$ $_{0}NP_{2}$
$_{0}NP_{2}\rightarrow$	0DT ₁ 1NN ₂	$_{0}DT_{1}$ $_{1}NN_{2}$
		$1NN_{20}DT_{1}$
$_{2}VP_{3}\rightarrow$	₂ Vi ₃	₂ Vi ₃
$_{0}DT_{1} \rightarrow$	the	le
		la
		'
$1NN_2 \rightarrow$	man	homme
₂ Vi ₃ →	sleeps	dort

French Grammar

	French
$_{0}S_{3} \rightarrow$	0NP ₂ 2VP ₃
	$_{2}VP_{3}$ $_{0}NP_{2}$
$_{0}NP_{2} \rightarrow$	$_{0}DT_{1}$ $_{1}NN_{2}$
	$1NN_2 0DT_1$
$_{2}VP_{3}\rightarrow$	₂ Vi ₃
$_{0}DT_{1} \rightarrow$	le
	la
$1NN_2 \rightarrow$	homme
$1NN_2 \rightarrow 2Vi_3 \rightarrow$	dort

Parse F

```
French
_{0}S_{3} \rightarrow _{0}NP_{2} _{2}VP_{3}
                   2VP3 0NP2
_{0}NP_{2} \rightarrow _{0}DT_{1} \ _{1}NN_{2}
                    1NN<sub>2</sub> 0DT<sub>1</sub>
_{2}VP_{3} \rightarrow _{2}Vi_{3}
_{0}DT_{1} \rightarrow le
                    la
1NN<sub>2</sub> → homme
<sub>2</sub>Vi<sub>3</sub> → dort
```


Cascade of Monolingual Parsers

CFG parsing can be seen as intersecting a CFG and an FSA [Bar-Hillel, 1961; Billot and Lang, 1989]

CFGs are closed under intersection [Hopcroft and Ullman, 1979]

L(CFG) n L(FSA) is a context-free language

This neat property makes cascading intersection operations (parsers) appealing [Dyer, 2010]

e.g. bitext parsing

Biproduct: alignments

Complexity

- $O(13 \times m^3)$
 - where I is the length of the English string
 - and m is the length of the French string
- Joint parsing or cascade of parsers has the same theoretical complexity
 - Can cascading be more efficient on average?
 Why?

Bibliography

- Hopcroft, John E. and Ullman, Jeffrey D. 1979. Introduction To Automata Theory, Languages, And Computation.
- Shieber, S. and Schabes, Y. and Pereira, F. 1995. Principles and implementation of deductive parsing. In *Journal of Logic Programming*
- Bar-Hillel, Y. and Perles, M. and Shamir, E. 1961. On formal properties of simple phrase structure grammars.
- Billot, S. and Lang, B. 1989. The Structure of Shared Forests in Ambiguous ParsingThe Structure of Shared Forests in Ambiguous Parsing. In *Proceedings* of the 27th Annual Meeting of the Association for Computational Linguistics.
- Dyer, C. 2010. Two monolingual parses are better than one (synchronous parse). In *Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the Association for Computational Linguistics*.