Package 'priorsense'

November 1, 2024

Description Provides functions for prior and likelihood sensitivity analysis in Bayesian models. Currently it implements methods to determine the sensitivity of the posterior to power-scaling per-

```
turbations of the prior and likelihood.
License GPL (>= 3)
Encoding UTF-8
RoxygenNote 7.3.2
Imports checkmate (>= 2.3.1), ggdist (>= 3.3.2), ggh4x (>= 0.2.5),
     ggplot2 (>= 3.5.1), matrixStats (>= 1.3.0), methods, posterior
     (>= 1.6.0), rlang (>= 1.1.4), stats, tibble (>= 3.2.1), utils
Suggests bayesplot (>= 1.11.1), brms (>= 2.22.0), cmdstanr (>= 0.8.1),
     iwmm (>= 0.0.1), knitr (>= 1.47), philentropy (>= 0.8.0), rstan
     (>= 2.32.6), testthat (>= 3.0.0), transport (>= 0.15),
     rmarkdown (>= 2.27)
Config/testthat/edition 3
Depends R (>= 3.6.0)
VignetteBuilder knitr
Additional repositories https://topipa.r-universe.dev,
     https://stan-dev.r-universe.dev
URL https://n-kall.github.io/priorsense/
NeedsCompilation no
Author Noa Kallioinen [aut, cre, cph],
     Topi Paananen [aut],
     Paul-Christian Bürkner [aut],
     Aki Vehtari [aut],
     Frank Weber [ctb]
Maintainer Noa Kallioinen <noa.kallioinen@aalto.fi>
Repository CRAN
```

Date/Publication 2024-11-01 12:30:02 UTC

Title Prior Diagnostics and Sensitivity Analysis

Version 1.0.4

2 priorsense-package

Contents

	riorsense-package	2
	js_dist	
	reate-priorsense-data	4
	xample_powerscale_model	6
	og_lik_draws	6
	og_prior_draws	7
	owerscale-gradients	8
	owerscale-overview	10
	owerscale-sensitivity	13
	owerscale_derivative	15
	owerscale_plots	16
	redictions_as_draws	18
dex		20
prior	ense-package priorsense: Prior (and likelihood) diagnostics and sensitivity analys	is

Description

Index

The **priorsense** package provides functions for prior and likelihood sensitivity analysis of Bayesian models. Currently it implements methods to determine the sensitivity of the posterior to powerscaling perturbations of the prior and likelihood.

Details

The main diagnostic function provided by **priorsense** is powerscale_sensitivity. Given a fitted model or draws object, it computes the powerscaling sensitivity diagnostic described in Kallioinen et al. (2023). It does so by perturbing the prior and likelihood and computing the effect on the posterior, without needing to refit the model (using Pareto smoothed importance sampling and importance weighted moment matching; Vehtari et al. 2022, Paananen et al. 2021).

In addition, visual diagnostics are available by first using powerscale_sequence to create a sequence of perturbed posteriors, and then a plot function such as powerscale_plot_ecdf to visualise the change.

The following global options are available:

• priorsense.plot_help_text: If TRUE (the default), priorsense plots will include a title and explanatory text. If FALSE they will not.

Author(s)

Maintainer: Noa Kallioinen <noa.kallioinen@aalto.fi> [copyright holder]

Authors:

- Topi Paananen
- · Paul-Christian Bürkner

cjs_dist 3

• Aki Vehtari

Other contributors:

• Frank Weber [contributor]

References

Kallioinen, N., Paananen, T., Bürkner, P-C., Vehtari, A. (2023). Detecting and diagnosing prior and likelihood sensitivity with power-scaling perturbations. *Statistics and Computing*. 34(57). doi:10.1007/s11222-023-10366-5

Vehtari, A., Simpson, D., Gelman, A., Yao, Y., and Gabry, J. (2024). Pareto smoothed importance sampling. *Journal of Machine Learning Research*. 25(72). https://jmlr.org/papers/v25/19-556.html

Paananen, T., Piironen, J., Bürkner, P-C., Vehtari, A. (2021). Implicitly adaptive importance sampling. *Statistics and Computing*. 31(16). doi:10.1007/s11222-020-09982-2

See Also

 $powerscale_sensitivity\ powerscale_sequence\ powerscale_plot_ecdf\ powerscale_plot_dens\ powerscale_plot_quantities$

cjs_dist

Cumulative Jensen-Shannon divergence

Description

Computes the cumulative Jensen-Shannon distance between two samples.

Usage

```
cjs_dist(
    x,
    y,
    x_weights = NULL,
    y_weights = NULL,
    metric = TRUE,
    unsigned = TRUE,
    ...
)
```

Arguments

```
    x numeric vector of samples from first distribution
    y numeric vector of samples from second distribution
    x_weights numeric vector of weights of first distribution
    y_weights numeric vector of weights of second distribution
```

4 create-priorsense-data

metric Logical; if TRUE, return square-root of CJS

unsigned Logical; if TRUE then return max of $CJS(P(x) \parallel Q(x))$ and $CJS(P(-x) \parallel Q(-x))$.

This ensures invariance to transformations such as PCA.

... unused

Details

The Cumulative Jensen-Shannon distance is a symmetric metric based on the cumulative Jensen-Shannon divergence. The divergence $CJS(P \parallel Q)$ between two cumulative distribution functions P and Q is defined as:

$$CJS(P||Q) = \sum P(x) \log \frac{P(x)}{0.5(P(x) + Q(x))} + \frac{1}{2 \ln 2} \sum (Q(x) - P(x))$$

The symmetric metric is defined as:

$$CJS_{dist}(P||Q) = \sqrt{CJS(P||Q) + CJS(Q||P)}$$

This has an upper bound of $\sqrt{\sum (P(x) + Q(x))}$

Value

distance value based on CJS computation.

References

Nguyen H-V., Vreeken J. (2015). Non-parametric Jensen-Shannon Divergence. In: Appice A., Rodrigues P., Santos Costa V., Gama J., Jorge A., Soares C. (eds) Machine Learning and Knowledge Discovery in Databases. ECML PKDD 2015. Lecture Notes in Computer Science, vol 9285. Springer, Cham. doi:10.1007/978-3-319-23525-7_11

Examples

```
x <- rnorm(100)
y <- rnorm(100, 2, 2)
cjs_dist(x, y, x_weights = NULL, y_weights = NULL)</pre>
```

create-priorsense-data

Create data structure for priorsense

Description

Create a data structure that contains all required data and functions for priorsense

create-priorsense-data 5

Usage

```
create_priorsense_data(x, ...)
## Default S3 method:
create_priorsense_data(
  х,
  fit = NULL,
  log_prior_fn = log_prior_draws,
  log_lik_fn = log_lik_draws,
 log_prior = NULL,
  log_lik = NULL,
 log_ratio_fn = NULL,
)
## S3 method for class 'stanfit'
create_priorsense_data(x, ...)
## S3 method for class 'CmdStanFit'
create_priorsense_data(x, ...)
## S3 method for class 'draws'
create_priorsense_data(x, ...)
```

Arguments

x	an object for which the method is defined
	arguments passed to methods
fit	a model fit object (only used if x is not a fit object)
log_prior_fn	function to derive log prior from object
log_lik_fn	function to derive log likelihood from object
log_prior	draws from log prior
log_lik	draws from log likelihood
log_ratio_fn	function for moment matching

Value

A priorsense_data object, which contains the data and functions to run sensitivity analyses.

Examples

```
x <- example_powerscale_model()
drw <- x$draws
psd <- create_priorsense_data(drw)</pre>
```

6 log_lik_draws

```
example_powerscale_model
```

Example Stan model for power-scaling

Description

Provides example models (with data) that are ready for use with power-scaling.

Usage

```
example_powerscale_model(model = "univariate_normal")
```

Arguments

model

Character specifying which model code to return. Currently "univariate_normal" and "eight_schools" are implemented.

Value

List containing model code and corresponding data.

Examples

```
ex_normal <- example_powerscale_model(model = "univariate_normal")
ex_eightschools <- example_powerscale_model(model = "eight_schools")</pre>
```

log_lik_draws

Extract log likelihood draws

Description

Extract log likelihood from fitted model and return as a draws object.

```
log_lik_draws(x, ...)
## S3 method for class 'stanfit'
log_lik_draws(x, joint = FALSE, log_lik_name = "log_lik", ...)
## S3 method for class 'CmdStanFit'
log_lik_draws(x, joint = FALSE, log_lik_name = "log_lik", ...)
## S3 method for class 'draws'
log_lik_draws(x, joint = FALSE, log_lik_name = "log_lik", ...)
```

log_prior_draws 7

Arguments

x Model fit or draws object.

... Arguments passed to individual methods.

joint Logical indicating whether to return the joint log likelihood or array. Default is

FALSE.

log_lik_name Name of parameter in Stan model corresponding to log likelihood, default is

"log lik".

Value

A draws_array object containing log_lik values.

Examples

```
ex <- example_powerscale_model()
drw <- ex$draws
log_lik_draws(drw)</pre>
```

log_prior_draws

Extract log prior draws

Description

Extract log likelihood from fitted model and return as a draws object.

Usage

```
log_prior_draws(x, ...)
## S3 method for class 'stanfit'
log_prior_draws(x, joint = FALSE, log_prior_name = "lprior", ...)
## S3 method for class 'CmdStanFit'
log_prior_draws(x, joint = FALSE, log_prior_name = "lprior", ...)
## S3 method for class 'draws'
log_prior_draws(x, joint = FALSE, log_prior_name = "lprior", ...)
```

Arguments

x Model fit or draws object.

... Arguments passed to individual methods.

joint Logical indicating whether to return the joint log prior or array. Default is

FALSE.

log_prior_name Name of parameter in Stan model corresponding to log prior, default is "lprior".

8 powerscale-gradients

Value

A draws_array object containing log_prior values.

Examples

```
ex <- example_powerscale_model()
drw <- ex$draws
log_prior_draws(drw)</pre>
```

Description

Calculate the numerical derivative of posterior quantities/divergence with respect to power-scaling the specified component (prior or likelihood). This is done using importance sampling (and optionally moment matching).

```
powerscale_gradients(x, ...)
## Default S3 method:
powerscale_gradients(x, ...)
## S3 method for class 'priorsense_data'
powerscale_gradients(
  variable = NULL,
  component = c("prior", "likelihood"),
  type = c("quantities", "divergence"),
  lower_alpha = 0.99,
  upper_alpha = 1.01,
  div_measure = "cjs_dist",
 measure_args = list(),
 moment_match = FALSE,
  k_{threshold} = 0.5,
  resample = FALSE,
  transform = NULL,
  prediction = NULL,
  scale = FALSE,
  prior_selection = NULL,
 likelihood_selection = NULL,
)
```

powerscale-gradients 9

Arguments

•	9	
	x	Model fit or draws object.
	•••	Further arguments passed to functions.
	variable	Variables to compute sensitivity of. If NULL (default) sensitivity is computed for all variables.
	component	Component to power-scale (prior or likelihood).
	type	type of sensitivity to measure ("distance", "quantity"). Multiple options can be specified at the same time.
	lower_alpha	lower power to scale component by, should be < 1 (default is 0.9).
	upper_alpha	upper power to scale component by, should be > 1 (default is 1.1).
	div_measure	The divergence measure to use. The following methods are implemented:
		• "cjs_dist": Cumulative Jensen-Shannon distance. Default method. See function cjs_dist for more details.
		• "js_dist": Jensen-Shannon distance.
		 "js_div": Jensen-Shannon divergence.
		 "hellinger_dist": Hellinger distance.
		 "kl_dist": Kullback-Leibler distance.
		 "kl_div": Kullback-Leibler divergence.
		 "ks_dist": Kolmogorov-Smirnov distance.
		 "hellinger_dist": Hellinger distance.
		• "ws_dist": Wassterstein distance (pass measure_args = list(p = N)) for a different order, where N is the order.
	measure_args	Named list of further arguments passed to divergence measure functions.
	moment_match	Logical; Indicate whether or not moment matching should be performed. Can only be TRUE if is_method is "psis".
	k_threshold	Threshold value for Pareto k values above which the moment matching algorithm is used. Default is 0.5 .
	resample	Logical; Indicate whether or not draws should be resampled based on calculated importance weights.
	transform	Indicate a transformation of posterior draws to perform before sensitivity analysis. Either "scale" or "whiten".
	prediction	Function taking the model fit and returning a draws_df of predictions to be appended to the posterior draws
	scale	logical scale quantity gradients by base posterior standard deviation.

prior_selection

Numeric vector specifying which priors to consider.

 ${\tt likelihood_selection}$

Numeric vector specifying which likelihoods to consider.

Value

Maximum of the absolute derivatives above and below alpha = 1.

10 powerscale-overview

Examples

```
ex <- example_powerscale_model()
drw <- ex$draws
powerscale_gradients(drw)</pre>
```

powerscale-overview

Prior/likelihood power-scaling perturbation

Description

Estimate posterior draws based on power-scaling perturbations of prior or likelihood using importance sampling (and optionally moment matching).

```
powerscale(x, ...)
## Default S3 method:
powerscale(
  Х,
  component,
  alpha,
 moment_match = FALSE,
  k_threshold = NULL,
  resample = FALSE,
  transform = NULL,
  prediction = NULL,
  variable = NULL,
  selection = NULL,
)
## S3 method for class 'priorsense_data'
powerscale(
  х,
  component,
  alpha,
 moment_match = FALSE,
 k_threshold = NULL,
  resample = FALSE,
  transform = NULL,
  prediction = NULL,
  variable = NULL,
  selection = NULL,
)
```

powerscale-overview 11

```
powerscale_sequence(x, ...)
## Default S3 method:
powerscale_sequence(
 lower_alpha = 0.8,
  upper_alpha = 1/lower_alpha,
 length = 3,
 variable = NULL,
  component = c("prior", "likelihood"),
 moment_match = FALSE,
 k_{threshold} = 0.5,
  resample = FALSE,
  transform = NULL,
  prediction = NULL,
  auto_alpha_range = FALSE,
  symmetric = TRUE,
  prior_selection = NULL,
  likelihood_selection = NULL,
)
## S3 method for class 'priorsense_data'
powerscale_sequence(
  х,
 lower_alpha = 0.8,
  upper_alpha = 1/lower_alpha,
  length = 3,
  variable = NULL,
  component = c("prior", "likelihood"),
 moment_match = FALSE,
 k_{threshold} = 0.5,
  resample = FALSE,
  transform = NULL,
  prediction = NULL,
  auto_alpha_range = FALSE,
  symmetric = TRUE,
  prior_selection = NULL,
 likelihood_selection = NULL,
)
```

Arguments

```
x A fitted model object.
```

... Further arguments passed to internal functions.

component Component to be power-scaled (either "prior" or "likelihood"). For power-

12 powerscale-overview

scale_sequence, this can be both "prior" and "likelihood".

alpha Value by which to power-scale specified component. (likelihood/prior).

moment_match Logical; Indicate whether or not moment matching should be performed. Can

only be TRUE if is_method is "psis".

k_threshold Threshold value for Pareto k values above which the moment matching algo-

rithm is used. Default is 0.5.

resample Logical; Indicate whether or not draws should be resampled based on calculated

importance weights.

transform Indicate a transformation of posterior draws to perform before sensitivity anal-

ysis. Either "scale" or "whiten".

prediction Function taking the model fit and returning a draws_df of predictions to be ap-

pended to the posterior draws

variable Vector of variable names to return estimated posterior draws for. If NULL all

variables will be included.

selection Numeric vector specifying partitions of component to be included in power-

scaling. Default is NULL, which takes all partitions.

lower_alpha Lower power-scaling alpha value in sequence.

upper_alpha Upper power-scaling alpha value in sequence.

length Length of alpha sequence.

auto_alpha_range

Boolean. Restrict range to ensure Pareto-k values below threshold?

symmetric Boolean. Should the alpha range be symmetrical around alpha = 1, on log-

space?

prior_selection

Numeric vector of prior partitions to include in power-scaling. Default is NULL,

which takes all partitions.

likelihood selection

Numeric vector of likelihood partitions to include in power-scaling. Default is

NULL, which takes all partitions.

Value

A powerscaled_draws or powerscaled_sequence object, which contains the estimated posterior draws resulting from the power-scaling perturbations and details of the perturbation and estimation methods.

References

Kallioinen, N., Paananen, T., Bürkner, P-C., Vehtari, A. (2023). Detecting and diagnosing prior and likelihood sensitivity with power-scaling perturbations. *Statistics and Computing*. 34(57). doi:10.1007/s11222-023-10366-5

Vehtari, A., Simpson, D., Gelman, A., Yao, Y., and Gabry, J. (2024). Pareto smoothed importance sampling. *Journal of Machine Learning Research*. 25(72). https://jmlr.org/papers/v25/19-556.html

Paananen, T., Piironen, J., Bürkner, P-C., Vehtari, A. (2021). Implicitly adaptive importance sampling. *Statistics and Computing*. 31(16). doi:10.1007/s11222-020-09982-2

powerscale-sensitivity 13

Examples

Description

Calculates the prior/likelihood sensitivity based on power-scaling perturbations. This is done using importance sampling (and optionally moment matching).

```
powerscale_sensitivity(x, ...)
## Default S3 method:
powerscale_sensitivity(
  Х,
  variable = NULL,
  lower_alpha = 0.99,
  upper_alpha = 1.01,
  div_measure = "cjs_dist",
 measure_args = list(),
  component = c("prior", "likelihood"),
  sensitivity_threshold = 0.05,
 moment_match = FALSE,
  k_{threshold} = 0.5,
  resample = FALSE,
  transform = NULL,
  prediction = NULL,
  prior_selection = NULL,
  likelihood_selection = NULL,
  num_args = NULL,
)
## S3 method for class 'priorsense_data'
powerscale_sensitivity(
  х,
  variable = NULL,
  lower_alpha = 0.99,
  upper_alpha = 1.01,
```

powerscale-sensitivity

```
div_measure = "cjs_dist",
 measure_args = list(),
  component = c("prior", "likelihood"),
  sensitivity_threshold = 0.05,
 moment_match = FALSE,
  k_{threshold} = 0.5,
  resample = FALSE,
  transform = NULL,
  prediction = NULL,
  prior_selection = NULL,
  likelihood_selection = NULL,
  num_args = NULL,
)
## S3 method for class 'CmdStanFit'
powerscale_sensitivity(x, ...)
## S3 method for class 'stanfit'
powerscale_sensitivity(x, ...)
```

Arguments

x Model fit object or priorsense_data object.
 ... Further arguments passed to functions.
 variable Character vector of variables to check.
 lower_alpha Lower alpha value for gradient calculation.

upper_alpha Upper alpha value for gradient calculation.

div_measure The divergence measure to use. The follow

The divergence measure to use. The following methods are implemented:

- "cjs_dist": Cumulative Jensen-Shannon distance. Default method. See function cjs_dist for more details.
- "js_dist": Jensen-Shannon distance.
- "js_div": Jensen-Shannon divergence.
- "hellinger_dist": Hellinger distance.
- "kl_dist": Kullback-Leibler distance.
- "kl_div": Kullback-Leibler divergence.
- "ks_dist": Kolmogorov-Smirnov distance.
- "hellinger_dist": Hellinger distance.
- "ws_dist": Wassterstein distance (pass measure_args = list(p = N)) for a different order, where N is the order.

measure_args Named list of further arguments passed to divergence measure functions.

component Character vector specifying component(s) to scale (default is both "prior" and "likelihood").

sensitivity_threshold

Threshold for flagging variable as sensitive to power-scaling.

powerscale_derivative 15

moment_match	Logical; Indicate whether or not moment matching should be performed. Can only be TRUE if is_method is "psis".		
k_threshold	Threshold value for Pareto k values above which the moment matching algorithm is used. Default is 0.5.		
resample	Logical; Indicate whether or not draws should be resampled based on calculated importance weights.		
transform	Indicate a transformation of posterior draws to perform before sensitivity analysis. Either "scale" or "whiten".		
prediction	Function taking the model fit and returning a draws_df of predictions to be appended to the posterior draws		
prior_selection			
	Numeric vector of prior partitions to include in power-scaling. Default is NULL, which takes all partitions.		
likelihood_selection			
	Numeric vector of likelihood partitions to include in power-scaling. Default is NULL, which takes all partitions.		
num_args	(named list) Optional arguments passed to num () for pretty printing of summaries. Can be controlled globally via the posterior.num_args option.		

Value

Table of sensitivity values for each specified variable.

References

Kallioinen, N., Paananen, T., Bürkner, P-C., Vehtari, A. (2023). Detecting and diagnosing prior and likelihood sensitivity with power-scaling perturbations. *Statistics and Computing*. 34(57). doi:10.1007/s11222-023-10366-5

Vehtari, A., Simpson, D., Gelman, A., Yao, Y., and Gabry, J. (2024). Pareto smoothed importance sampling. *Journal of Machine Learning Research*. 25(72). https://jmlr.org/papers/v25/19-556.html

Paananen, T., Piironen, J., Bürkner, P-C., Vehtari, A. (2021). Implicitly adaptive importance sampling. *Statistics and Computing*. 31(16). doi:10.1007/s11222-020-09982-2

Examples

```
ex <- example_powerscale_model()
powerscale_sensitivity(ex$draws)</pre>
```

powerscale_derivative Derivative with respect to power-scaling

Description

Calculate the analytical derivative of a quantity with respect to power-scaling prior or likelihood.

powerscale_plots

Usage

```
powerscale_derivative(x, log_component, quantity = "mean", ...)
```

Arguments

Value

Derivative of the quantity with respect to log2 of the power-scaling factor (alpha).

Examples

```
example_model <- example_powerscale_model()
draws <- example_model$draws
log_prior <- log_prior_draws(draws, joint = TRUE)
posterior::summarise_draws(
    posterior::subset_draws(draws, variable = c("mu", "sigma")),
    mean,
    mean_sens = ~powerscale_derivative(.x, log_prior, quantity = "mean")
)</pre>
```

powerscale_plots

Diagnostic plots for power-scaling sensitivity

Description

Various diagnostic plots for power-scaling sensitivity. See Plot Descriptions below for details.

```
powerscale_plot_dens(x, ...)

powerscale_plot_ecdf(x, ...)

## S3 method for class 'powerscaled_sequence'
powerscale_plot_ecdf(
    x,
    variable = NULL,
    resample = FALSE,
    length = 3,
    facet_rows = "component",
    help_text = getOption("priorsense.plot_help_text", TRUE),
```

powerscale_plots 17

```
colors = NULL,
)
powerscale_plot_quantities(x, ...)
## S3 method for class 'powerscaled_sequence'
powerscale_plot_quantities(
 Х,
 variable = NULL,
 quantity = c("mean", "sd"),
 div_measure = "cjs_dist",
  resample = FALSE,
 measure_args = NULL,
 mcse = TRUE,
  quantity_args = NULL,
 help_text = getOption("priorsense.plot_help_text", TRUE),
  colors = NULL,
)
```

Arguments

X	An object of class powerscaled_sequence or an object for which powerscale_sequence will first be run on.
	Arguments passed to powerscale_sequence if x is not of class powerscaled_sequence.
variable	A character vector of variable names. If NULL (the default) all variables will be plotted.
resample	Logical; Indicate whether or not draws should be resampled based on calculated importance weights.
length	Numeric specifying how many alpha values should be used. Ignored of the object is of class powerscaled_sequence.
facet_rows	Character defining the rows of the plot facets, either "variable" or "component". Default is "variable".
help_text	Logical indicating whether title and subtitle with explanatory description should be included in the plot. Default is TRUE. Can be set via option "priorsense.show_help_text".
colors	Character vector of colors to be used for plots. Either length 3 for powerscale_plot_ecdf and powerscale_plot_dens with order lowest, base, highest; or length 2 for powerscale_plot_quantities with order low Pareto k, high Pareto k. If NULL the defaults will be used.
quantity	A character vector specifying one or several quantities to plot. Options are "mean", "median", "sd", "mad", "quantile".
div_measure	The divergence measure to use. The following methods are implemented:

• "cjs_dist": Cumulative Jensen-Shannon distance. Default method. See

- function cjs_dist for more details.
- "js_dist": Jensen-Shannon distance.

18 predictions_as_draws

- "js_div": Jensen-Shannon divergence.
- "hellinger_dist": Hellinger distance.
- "kl_dist": Kullback-Leibler distance.
- "kl_div": Kullback-Leibler divergence.
- "ks_dist": Kolmogorov-Smirnov distance.
- "hellinger_dist": Hellinger distance.
- "ws_dist": Wassterstein distance (pass measure_args = list(p = N)) for a different order, where N is the order.

measure_args mcse

Named list of further arguments passed to divergence measure functions.

Boolean; If TRUE will plot +/- 2 * Monte Carlo standard error of the base quantity on the quantities plot.

quantity_args Named list of further arguments passed to quantity functions. Passed as .args to [posterior::summarise_draws].

Value

A ggplot object that can be further customized using the ggplot2 package.

Plot Descriptions

powerscale_plot_dens() Kernel density plot of power-scaled posterior draws with respect to power-scaling.

powerscale_plot_ecdf() Empirical cumulative distribution function plot of power-scaled posterior draws with respect to power-scaling.

powerscale_plot_quantities() Plot of posterior quantities with respect to power-scaling.

Examples

```
ex <- example_powerscale_model()</pre>
powerscale_plot_dens(ex$draws)
```

predictions_as_draws brms predictions as draws

Description

Create predictions using brms functions and convert them into draws format

```
predictions_as_draws(
  х,
 predict_fn,
 prediction_names = NULL,
 warn_dims = getOption("priorsense.warn", TRUE),
)
```

predictions_as_draws 19

Arguments

Value

draws array of predictions

Examples

```
## Not run:
library(brms)
if ("log_prior_draws.brmsfit" %in% methods(log_prior_draws) &&
    ("log_lik_draws.brmsfit" %in% methods(log_lik_draws))) {
  fit <- brm(</pre>
    yield \sim N * P * K,
    data = npk,
    prior = prior(normal(0, 1), class = "b"),
    refresh = 0
  )
  powerscale_sensitivity(
      fit,
      variable = "_pred",
      prediction = function(x) predictions_as_draws(
                                  x, brms::posterior_epred
 )
}
## End(Not run)
```

Index

```
cjs_dist, 3
create-priorsense-data, 4
create_priorsense_data
        (create-priorsense-data), 4
example_powerscale_model, 6
log_lik_draws, 6
log_prior_draws, 7
num(), 15
option, 15
powerscale, 3
powerscale (powerscale-overview), 10
powerscale-gradients, 8
powerscale-overview, 10
powerscale-sensitivity, 13
powerscale.default
        (powerscale-overview), 10
powerscale.priorsense_data
        (powerscale-overview), 10
powerscale_derivative, 15
powerscale_gradients
        (powerscale-gradients), 8
powerscale_plot_dens, 3
powerscale_plot_dens
        (powerscale_plots), 16
powerscale_plot_ecdf, 2, 3
powerscale_plot_ecdf
        (powerscale_plots), 16
powerscale_plot_quantities, 3
powerscale_plot_quantities
        (powerscale_plots), 16
powerscale_plots, 16
powerscale_sensitivity, 2, 3
powerscale_sensitivity
        (powerscale-sensitivity), 13
powerscale_sequence, 2, 3
```