Funktionen mehrerer Variablen

FS 2024 Prof. Dr. Bernhard Zgraggen Autoren:

Laurin Heitzer, Flurin Brechbühler

Version:

0.1.20240606

 $\underline{https:/\!/github.com\!/P4ntomime/funktionen-mehrerer-variablen}$

Inhaltsverzeichnis

Vektoranalysis	2	9.4 Rotation eines Vektorfelds (rot(), curl())	2
9.1 Vektorfelder	2	9.5 Stokes Integralsatz	2
9.2 Divergenz (Volumenableitung)	2	9.5 Stokes Integralsatz	_
9.3 Poisson-Gleichung (Laplace-Gleichung)	2	9.6 Anwendungen: Maxwell-Gleichungen	2

9 Vektoranalysis

9.1 Vektorfelder

- Jedem Punkt P im Raum ist ein Vektor \vec{V} zugeordnet
- Kann als $\vec{V}(\vec{r})$ geschrieben werden, wobei \vec{r} ein Ortsvektor mit fixem Ursprung $\vec{0}$ ist

9.2 Divergenz (Volumenableitung)

- Beschreibt, wie stark sich ein Vektorfeld in einem Punkt ausbreitet oder zusammenzieht
- Beispiel: Vektorfeld das die Geschwindigkeit von Wasser in eineem Fluss beschreibt
 - An Punkten mit positiver Divergenz fliesst Wasser hinaus (Quelle)
 - An Punkten mit negativer Divergenz fliesst Wasser hinein (Senke)

$$\nabla \vec{V} = \operatorname{div} \vec{V} = \lim_{\Delta V \to 0} \frac{\oint_{(s)} \vec{V} \cdot d\vec{S}}{\Delta V}$$

9.2.1 Kartesisch

$$\operatorname{div} \vec{V} = \nabla \cdot \vec{V} = \underbrace{\left(\frac{\partial}{\partial x}; \frac{\partial}{\partial y}; \frac{\partial}{\partial z}\right)}_{\nabla} \cdot \begin{pmatrix} V_x \\ V_y \\ V_z \end{pmatrix} = \frac{\partial V_x}{\partial x} + \frac{\partial V_y}{\partial y} + \frac{\partial V_z}{\partial z}$$

9.2.2 Zylinderkoordinaten

$$\operatorname{div} \vec{V} = \frac{1}{r} \frac{\partial}{\partial r} (rV_r) + \frac{1}{r} \frac{\partial V_{\varphi}}{\partial \varphi} + \frac{\partial V_z}{\partial z}$$

9.3 Poisson-Gleichung (Laplace-Gleichung)

$$\Delta \phi = \operatorname{div} \left(\operatorname{grad}(\phi) \right) = \nabla^2 \phi = \frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} + \frac{\partial^2 \phi}{\partial z^2} = f(\vec{r})$$

$$\phi : f(\vec{r}) : f(\vec{r$$

 Δ : Laplace-Operator

 ϕ : Potentialfeld (\vec{r}) : Quellfunktion

9.3.1 Laplace-Gleichung

 $\Delta \phi = f = 0$ \Rightarrow Spezialfall der Poisson-Gleichung ohne äussere Quellfunktion

9.4 Rotation eines Vektorfelds (rot(), curl())

$$rot \vec{A} = \nabla \times \vec{A} = \begin{pmatrix} \frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \\ \frac{\partial}{\partial z} \end{pmatrix} \times \begin{pmatrix} A_x \\ A_y \\ A_z \end{pmatrix} = \frac{\partial A_x}{\partial x} + \frac{\partial A_y}{\partial y} + \frac{\partial A_z}{\partial z}$$

 $\operatorname{div}\operatorname{rot}(\vec{A}) \stackrel{!}{=} 0$

asdfasf asdfasf asdf

9.5 Stokes Integralsatz

9.6 Anwendungen: Maxwell-Gleichungen