AMENDMENTS TO THE CLAIMS:

This listing of claims will replace all prior versions, and listings, of claims in the application:

LISTING OF CLAIMS:

- 1. (Currently Amended) a A countermeasure method for implementation executed in an electronic component implementing a public-key cryptography algorithm comprising that employs exponentiation computation, with a left-to-right type exponentiation algorithm, of the type y=g^d, where g and y are elements of the a determined group G written in multiplicative notation, and d is a predetermined number, said countermeasure method being characterized in that it includes including a random draw step, at the start of or during execution of said exponentiation algorithm in deterministic or in probabilistic manner, so as to mask the an accumulator A.
- 2. (Currently Amended) A countermeasure method according to claim 1, characterized in that wherein the group G is written in additive notation.
- 3. (Currently Amended) A countermeasure method according to claim 1, characterized in that wherein the group G is the multiplicative group of a finite field written GF(q^n), where n is an integer.
- 4. (Currently Amended) A countermeasure method according to claim 3, characterized in that wherein the integer is n is equal to 1: n=1.
- 5. (Currently Amended) A countermeasure method according to claim 4, characterized in that it comprises comprising the following steps:
 - Determine an integer k defining the security of the masking and give designate d by the binary representation (d(t), d(t-1), ..., d(0))
 - 2) Initialize the accumulator A with the integer 1

- 3) For i from t down to 0, do the following:
- 3a) Draw a random λ lying in the range 0 to k-1 and replace the accumulator A with A+ λ .q (modulo k.q)
- 3b) Replace A with A² (modulo k.q)
- 3c) If d(i)=1, replace A with A.g (modulo k.q)
- 4) Return A (modulo q).
- 6. (Currently Amended) A countermeasure method according to claim 4, characterized in that it comprises comprising the following steps:
 - 1) Determine an integer k defining the security of the masking, and give designate d by the binary representation (d(t), d(t-1), ..., d(0))
 - 2) Draw a random λ lying in the range 0 to k-1 and initialize the accumulator A with the integer 1+ λ .q (modulo k.q)
 - 3) For i from t-1 down to 0, do the following:
 - 3a) Replace A with A² (modulo k.q)
 - 3b) If d(i)=1, replace A with A.g (modulo k.q)
 - 4) Return A (modulo q).
- 7. (Currently Amended) A countermeasure method according to claim 2, characterized in that wherein the exponentiation algorithm applies to the group G of the points of an elliptic curve defined on the finite field GF(q^n).
- 8. (Currently Amended) A countermeasure method according to claim 7, characterized in that it comprises comprising the following steps:
 - 1) Initialize the accumulator $A=(A_x,A_y,A_z)$ with the (x,y,1) triplet and give designate d by the binary signed-digit representation (d(t+1), d(t), ..., d(0)) with d(t+1)=1
 - 2) For i from t down to 0, do the following:
 - 2a) Draw a random non-zero element λ from GF(q^n) and replace the accumulator A=(A_x,A_y,A_z) with (λ ^2.A_x, λ ^3.A_y, λ .A_z)
 - 2b) Replace $A=(A_x,A_y,A_z)$ with $2*A=(A_x,A_y,A_z)$ in Jacobian representation, on the elliptic curve

- 2c) If d(i) is non-zero, replace $A=(A_x,A_y,A_z)$ with $(A_x,A_y,A_z)+d(i)^*(x,y,1)$ in Jacobian representation on the elliptic curve
- 3) If $A_z=0$, return the point at infinity; otherwise return $(A_x/(A_z)^2$, $A_y/(A_z)^3$.
- 9. (Currently Amended) A countermeasure method according to claim 7, characterized in that it comprises comprising the following steps:
 - 1) Draw a non-zero random element λ from GF(q^n) and initialize the accumulator A=(A_x,A_y,A_z) with the (λ ^2.x, λ ^3.y, λ) triplet and give designate d by the binary signed-digit representation (d(t+1), d(t), ..., d(0)) with d(t+1)=1
 - 2) For i from t down to 0, do the following:
 - 2a) Replace $A=(A_x,A_y,A_z)$ with $2*A=(A_x,A_y,A_z)$ in Jacobian representation, on the elliptic curve
 - 2b) If d(i) is non-zero, replace $A=(A_x,A_y,A_z)$ with $(A_x,A_y,A_z)+d(i)^*(x,y,1)$ in Jacobian representation on the elliptic curve
 - 3) If A_z =0, return the point at infinity; otherwise return $(A_x/(A_z)^2$, $A_y/(A_z)^3$.
- 10. (Currently Amended) A countermeasure method according to claim 7, characterized in that it comprises comprising the following steps:
 - 1) Initialize the accumulator $A=(A_x,A_y,A_z)$ with the (x,y,1) triplet and give designate d by the binary signed-digit representation (d(t+1), d(t), ..., d(0)) with d(t+1)=1
 - 2) For i from t down to 0, do the following:
 - 2a) Draw a random non-zero element λ from GF(q^n) and replace the accumulator A=(A_x,A_y,A_z) with (λ .A_x, λ .A_y, λ .A_z)
 - 2b) Replace $A=(A_x,A_y,A_z)$ with $2*A=(A_x,A_y,A_z)$ in homogeneous representation, on the elliptic curve
 - 2c) If d(i) is non-zero, replace $A=(A_x,A_y,A_z)$ with $(A_x,A_y,A_z)+d(i)^*(x,y,1)$ in homogeneous representation on the elliptic curve
 - 3) If $A_z=0$, return the point at infinity; otherwise return $(A_x/A_z, A_y/A_z)$.

- 11. (Currently Amended) A countermeasure method according to claim 7, characterized in that it comprises comprising the following steps:
 - 1) Draw a non-zero random element λ from GF(q^n) and initialize the accumulator A=(A_x,A_y,A_z) with the (λ .x, λ .y, λ) triplet and give d by the binary signed-digit representation (d(t+1), d(t), ..., d(0)) with d(t+1)=1
 - 2) For i from t down to 0, do the following:
 - 2a) Replace $A=(A_x,A_y,A_z)$ with $2*A=(A_x,A_y,A_z)$ in homogeneous representation, on the elliptic curve
 - 2b) If d(i) is non-zero, replace $A=(A_x,A_y,A_z)$ with $(A_x,A_y,A_z)+d(i)^*(x,y,1)$ in homogeneous representation on the elliptic curve
 - 3) If $A_z=0$, return the point at infinity; otherwise return $(A_x/A_z, A_y/A_z)$.
- 12. (Currently Amended) An electronic component using the countermeasure method according to any preceding claim 1.