

小型 COBP フォトリフレクタ

■概要

NJL5901AR-1は、従来製品NJL5901ARに比べて外形サイズをさらに小型にした、鉛フリーリフロー半田付け対応の表面 実装タイプの小型・薄型フォトリフレクタです。従来製品に比べて実装面積比54%、体積比41%と小型化しています。 また、出力電流は400µA typ.と従来製品に比べて180%アップしています。

■特徴

- ・リードレス小型・薄型 COBP (1.3mm×1.6mm×0.6mm)
- ・高出力 (400µA typ.)
- ・鉛フリーリフロー半田付け対応 (260°C、2回)
- ・可視光カットフィルタ内蔵

■用途

- ・携帯電話カメラモジュールのレンズユニット位置検出
- ・CD、DVD 等の光ピックアップヘッド位置検出
- ・プリンタ、DVC 等のモーター回転検出
- ・ファックス、複写機等の紙検出・タイミング検出
- ・カメラのフィルム情報等の読み取り・タイミング検出
- ・バーコードリーダ、エンコーダー、自動販売機の各種検出

単位(mm)

■外形図

■絶対最大定格(Ta=25°C)

項目	記号	定格	単位	
連続直流順電流	I _F	30	mA	
連続直流逆電圧	V_R	6	V	
許容損失	P_{D}	45	mW	
受光部				
コレクタ・エミッタ電圧	V _{CEO}	16	V	
エミッタ・コレクタ電圧	V _{ECO}	6	V	
コレクタ電流	I _c	10	mA	
コレクタ損失	P _c	25	mW	
カプラ				
全許容損失	Ptot	60	mW	
動作温度	Topr	-30~+85	°C	
保存温度	Tstg	-40 ~ +100	°C	
リフローはんだ温度	Tsol	260	°C	

■電気的光学的特性 (Ta=25°C)

項目	記号	条件	最 小	標準	最大	単位
直流順電圧	V_{F}	I _F =4mA	0.9	_	1.3	V
逆電流	I _R	V _R =6V	_	_	10	μΑ
端子間容量	Ct	$V_R=0V$, f =1MHz		25	1	pF
受光部						
暗電流	I _{CEO}	V _{CE} =10V	_	_	0.2	μΑ
コレクタ・エミッタ電圧	V _{CEO}	I _c =100μA	16		1	V
カプラ						
出力電流	Io	$I_F=4mA,V_{CE}=2V,d=0.7mm$	280	_	700	μΑ
動作暗電流 * ¹	I _{CEOD}	$I_F=4mA,V_{CE}=2V$	_	_	5	μΑ
応答時間(上昇)	tr	$I_o=100\mu$ A, $V_{ce}=2$ V,RL=1K Ω ,d=0.7mm	_	30	_	μs
応答時間(下降)	tf	$I_o=100\mu\text{A}, V_{ce}=2\text{V,RL}=1\text{K}\Omega, d=0.7\text{mm}$	_	30	_	μs

^{*1} 製品単体での特性。基板実装した際に動作暗電流が増えることがあります。

新日本無線

■出力電流測定配置図

出力電流は AI 蒸着面で反射した時

■動作暗電流測定回路

■応答速度測定回路図

■エッジ応答特性測定配置図

Power Dissipation vs. Temperature

Forward Current vs. Temperature

■特性例

Forward Voltage vs. Forward Current

Forward Voltage vs. Temperature

Dark Current vs. Temperature

Operating Dark Current vs. Temperature

Output Current vs. Forward Current (Ta=25°C)

Output Current vs. Temperature

Output Characteristics (Ta=25°C)

Vce Saturation (Ta=25°C)

Output Current vs. Distance (Ta=25°C)

Output Current vs. Edge Distance (Ta=25°C)

Spectral Response (Ta=25°C)

ご使用上の注意

当社、COBP フォトリフレクタ NJL5901AR-1 をご使用頂くに際しては以下の点に御注意下さい。

1. はんだ付け実装

リフロー炉等で本体が加熱される場合、樹脂本体部は表面最高温度 260°C以内として下さい。

はんだ付け方法による注意事項

1) リフロ一炉による場合

リフロー炉推奨温度プロファイル a:温度上昇勾配 : 1~4°C/s この条件でのはんだ付けは2回以内として下さい。 b:予備加熱温度 : 150~180°C 時間 : 60~120s c: 温度上昇勾配 : 1~4°C/s 260°C d: 実装領域 A 温度 : 220°C 時間 : 60s 以内 230°C : 230°C 220°C e: 実装領域 B 温度 : 40s 以内 時間 180°C : 260°C 以下 f: ピーク温度 g:冷却温度勾配 : 1~6°C/s 150°C 温度測定点 : パッケージ表面 常温

- 2) ハロゲンランプ等、短波長赤外線ヒータ使用のリフロー炉の場合 温度プロファイルについては、リフロー炉の場合に準じて下さい。 この場合にはモールド樹脂の為、吸熱効果により樹脂部表面温度がリード端子部分より高くなる恐れがありますので、樹脂部への直接照射は避けて下さい。
- 3) その他の方法

本体を直接溶融はんだに浸漬すること、ベーパーフェーズ(VPS)法によるはんだ付けについては、本体が急加熱されるなど不適当ですのでお避け下さい。

以上いずれの場合に於いても本体が高温となり、高温状態を長時間保つことは信頼性に悪影響を及ぼしますので、出来るだけ短時間ではんだ付けを行うことが必要です。

2. 洗浄

本製品のリフロー後の洗浄は避けて下さい。

3. 取り扱い注意点

- 1) モールド面には触れないよう取り扱って下さい。
- 2) ご使用時モールド面にゴミ、ホコリなどの付着なき様考慮願います。
- 3) ホトトランジスタには、特性測定時又はセット調整時などにおいて 6V を超える逆電圧 (V_{EC}) の印加は、絶対にお避け下さい。感度の低下となります。
- 4) 実装に当たっては、反射物との位置関係は非常に重要ですので、取り付け位置、傾きにはご注意下さい。

4. 脱気包装について

本製品はモールド樹脂の吸湿によるリフロー時の不具合発生を防止するため、脱気包装としておりますので、開封後はすみやかにご使用下さい。

NJL5901AR-1 テーピング仕様

仕様記号(TE1)

1. テーピング寸法

- 1) キャリアテープの材質はポリカーボネイトを使用しています。
- 2) カバーテープは静電防止処理されたポリエステル系テープを使用しています。
- 3) 製品のテーピング方向はテープ引出し方向に対してインデックスマークを図の様にしています。

2. テーピング強度

キャリアテープとカバーテープとの開角 10~15°で引っ張ったとき 20~70g の範囲に剥離強度があること。

3. 包装

- 1) テーピングされた製品は図のようにテーピングに巻取っています。
- 2) 巻取り仕様

① 巻始め : キャリアテープ空凹を 20 ケ以上

② 巻終わり : キャリアテープ空凹を20 ケ以上+カバーテープのみ2周分をつけています。

3) テーピング数量 : 2,000 個

4) 各リール、シリカゲルと共に防湿袋に挿入し、封着しています。

<注意事項>

このデータシートの掲載内容の正確さには 万全を期しておりますが、掲載内容について 何らかの法的な保証を行うものではありませ ん。とくに応用回路については、製品の代表 的な応用例を説明するためのものです。また、 工業所有権その他の権利の実施権の許諾を伴 うものではなく、第三者の権利を侵害しない ことを保証するものでもありません。