E.T.S. de INGENIERÍA INFORMÁTICA

Curso 2010/2011

Estructuras Algebraicas para la Computación Relación de Ejercicios 6

1. Sea la aplicación $f: \mathbb{R}^2 \to \mathbb{R}^3$ definida por

$$f(x,y) = (2x + y, x - y, 3y)$$

- a) Demuestra que es lineal.
- b) Halla una base de Ker(f) y las ecuaciones cartesianas de Im(f).
- 2. Sea $f: \mathbb{R}^3 \to \mathbb{R}^3$ el endomorfismo definido por las ecuaciones

$$y_1 = x_1 + x_2 + x_3$$
 $y_2 = x_1 + x_2 - x_3$ $y_3 = x_3$

donde (x_1, x_2, x_3) e (y_1, y_2, y_3) son las coordenadas de un vector y su transformado en la base canónica. Halla una base de Ker(f) y las ecuaciones cartesianas de Im(f).

3. Sea $f: \mathbb{R}^3 \to \mathbb{R}^3$ el endomorfismo definido por

$$f(x, y, z) = (y + z, x + z, y - x)$$

- a) Halla la matriz de f respecto a la base canónica.
- b) Halla una base de Ker(f) y deduce si f es inyectiva.
- c) Halla las ecuaciones cartesianas de Im(f) y su dimensión. Deduce si f es sobreyectiva.
- 4. Sea el endomorfismo $f: \mathbb{R}^3 \to \mathbb{R}^3$ definido

$$f(x, y, z) = (x - y + z, x + y + 2z, ax + by + cz)$$
 $a, b, c \in \mathbb{R}$

- a) Halla la matriz asociada a f respecto a la base canónica de \mathbb{R}^3 .
- b) Determina, según los valores de a, b, c, la dimensión de Ker(f) e Im(f).
- c) Halla, según los valores de a, b, c, bases de Ker(f)
- 5. Sea la aplicación lineal $\tau: \mathbb{R}^3 \to \mathbb{R}^2$ definida

$$\tau(1,3,5) = (1,0)$$

$$\tau(0,1,1) = (1,0)$$

$$\tau(0,0,1) = (0,0)$$

- a) Halla la matriz asociada a τ respecto de las bases canónicas.
- b) Encuentra las ecuaciones cartesianas del subespacio $\tau(\mathcal{U})$, siendo

$$\mathcal{U} = \left\{ (x_1, x_2, x_3) \in \mathbb{R}^3 \mid \begin{array}{ccc} x_1 + x_2 - x_3 & = & 0 \\ x_2 - x_3 & = & 0 \end{array} \right\}$$

1

- 6. Sea la aplicación lineal $f: \mathbb{R}^4 \to \mathbb{R}^3$ definida $f(x_1, x_2, x_3, x_4) = (x_2 x_1, x_3 x_2, x_4 x_3)$.

 Determina la matriz asociada a f respecto de:
 - a) las bases canónicas.
 - b) las bases $\mathcal{B} = \{(1,0,0,0), (1,1,0,0), (1,1,1,0), (1,1,1,1)\}$ y $\mathcal{B}' = \{(1,0,0), (1,1,0), (1,1,1)\}$.
- 7. En \mathbb{R}^3 se consideran los subespacios $\mathcal{U} = \langle (1,1,1) \rangle$ y $\mathcal{W} = \{(x,y,z) \in \mathbb{R}^3 \mid x+y+z=0\}$. Encuentra una aplicación lineal $\varphi : \mathbb{R}^3 \to \mathbb{R}^3$, tal que $Im\varphi = \mathcal{W}$ y $Ker\varphi = \mathcal{U}$.
- 8. Sea $f: \mathcal{P}_2(\mathbb{R}) \to \mathcal{P}_3(\mathbb{R})$ una aplicación lineal tal que:

$$f(1) = 1$$
 $f(x) = x^2$ $f(x^2) = x + x^3$

- a) Halla $f(a+bx+cx^2)$ para todo $a,b,c\in\mathbb{R}$
- b) Determina $\operatorname{Ker}(f)$ e $\operatorname{Im}(f)$
- c) Deduce si f es inyectiva y/o sobreyectiva.
- 9. Sea $\mathcal{M}_2(\mathbb{R})$ el espacio vectorial de las matrices cuadradas reales de orden dos y sea E el conjunto de las matrices de la forma

$$\left(\begin{array}{cc}
a & b+c \\
-b+c & a
\end{array}\right)$$

- a) Prueba que \mathcal{E} es un espacio vectorial y que $\mathcal{B} = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \right\}$ es una base.
- b) Halla la matriz del endomorfismo $\psi: \mathcal{E} \to \mathcal{E}$ definido

$$\psi \left(\begin{array}{cc} a & b+c \\ -b+c & a \end{array} \right) = \left(\begin{array}{cc} 0 & 2b+c \\ -2b+c & 0 \end{array} \right)$$

en la base \mathcal{B} .

- c) Determina el núcleo y la imagen de ψ .
- 10. En los espacios vectoriales $\mathbb{R}_3(x)$ y $\mathcal{M}_2(\mathbb{R})$ se consideran las bases

$$\mathcal{B} = \{x^3, x^2, x, 1\} \qquad \text{y} \qquad \mathcal{B}^* = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\}$$

Se define el homomorfismo $\psi: \mathbb{R}_3(x) \to \mathcal{M}_2(\mathbb{R})$

$$\psi(ax^3 + bx^2 + cx + d) = \begin{pmatrix} a & b - d \\ c - b & 0 \end{pmatrix}$$

- a) Halla la matriz de ψ en las bases citadas.
- b) Encuentra una base del núcleo y las ecuaciones implícitas del subespacio imagen.
- 11. El endomorfismo $\tau: \mathbb{R}^2 \to \mathbb{R}^2$ tiene asociada la matriz $A = \begin{pmatrix} 2 & -3 \\ -3 & 2 \end{pmatrix}$ en la base $\mathcal{B} = \{\vec{v}_1, \vec{v}_2\}$. Determina la matriz B que corresponde a dicho endomorfismo en otra base $\mathcal{B}' = \{\vec{v}_1', \vec{v}_2'\}$ dada por

$$\vec{v}_1' = \vec{v}_1 + \vec{v}_2$$
 $\vec{v}_2' = \vec{v}_2 - \vec{v}_1$