Math 416 Lecture Note: Week 6

Daesung Kim

1 The matrix representation of a linear transformation

Let V be a finite dimensional vector space over \mathbb{R} and $\beta = \{v_1, \dots, v_n\}$ a basis for V. For any $v \in V$, there exists a unique linear combination

$$v = a_1 v_1 + a_2 v_2 + \dots + a_n v_n.$$

Thus, for fixed basis β , every vector v in V corresponds to a collection of scalars a_1, a_1, \dots, a_n .

Definition 1.1. Let V be a finite dimensional vector space over \mathbb{R} and $\beta = \{v_1, \dots, v_n\}$ a basis for V. If $v = a_1v_1 + a_2v_2 + \dots + a_nv_n$, we define the coordinate vector of v relative to β by

$$[v]_{\beta} = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix}.$$

Example 1.2. Let $V = \mathcal{M}_{2\times 2}(\mathbb{R})$ and β be the standard basis for V, that is,

$$\beta = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\}.$$

Then, for any
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
, we have $[A]_{\beta} = \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix}$.

Let V and W be finite dimensional vector spaces over \mathbb{R} with bases $\beta = \{v_1, \dots, v_n\}$ and $\gamma = \{w_1, \dots, w_n\}$. Let $T: V \to W$ be a linear transformation. Then, there exists a unique expression

$$T(v_j) = \sum_{i=1}^{m} a_{ij} w_i$$

for each $j = 1, 2, \dots, n$.

Definition 1.3. Using the notation above, we define the matrix representation of T with respect to β and γ by $[T]_{\beta}^{\gamma} = (a_{ij}) \in \mathcal{M}_{m \times n}(\mathbb{R})$. If $\beta = \gamma$, then we use the notation $[T]_{\beta}^{\gamma} = [T]_{\beta}$.

Remark 1.4. When we consider the coordinate vector and the matrix representation, the order of bases is important. In this context, we think a basis as an ordered set. It means that we give an order to each element in a set. Even though A = B as sets, they could be not equal as ordered sets.

Example 1.5. Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ be defined by T(x,y) = (2x-y, x+y, x-y). Let β and γ be the standard bases for \mathbb{R}^2 and \mathbb{R}^3 . Then, $T(1,0) = 2e_1 + e_2 + e_3$ and $T(0,1) = -e_1 + e_2 - e_3$. Thus,

$$[T]_{\beta}^{\gamma} = \begin{pmatrix} 2 & -1 \\ 1 & 1 \\ 1 & -1 \end{pmatrix}.$$

1

Example 1.6. Let $T : \mathbb{R}^2 \to \mathbb{R}^3$ be defined by T(x,y) = (2x - y, x + y, x - y). Let $\beta = \{f_1 = (1,0), f_2 = (1,1)\}$ and γ be the standard basis for \mathbb{R}^3 . Then, $T(1,0) = 2e_1 + e_2 + e_3$ and $T(1,1) = e_1 + 2e_2$. Thus,

$$[T]^{\gamma}_{\beta} = \begin{pmatrix} 2 & 1\\ 1 & 2\\ 1 & 0 \end{pmatrix}.$$

Definition 1.7. Let V and W be vector spaces over \mathbb{R} and $T,U:V\to W$ linear transformations. For each $c\in\mathbb{R}$, we define $T+U,cT:V\to W$ by (T+U)(v)=T(v)+U(v) and (cT)(v)=cT(v) for all $v\in V$.

Definition 1.8. The collection of all linear transformations from V to W is denoted by $\mathcal{L}(V, W)$. If V = W, then we simply denote by $\mathcal{L}(V)$.

Theorem 1.9. Let V and W be vector spaces over \mathbb{R} , then $\mathcal{L}(V,W)$ is a vector space over \mathbb{R} with the addition and scalar multiplication defined above.

Proof. Let $\mathcal{F}(V,W)$ the set of all functions from V to W, then $\mathcal{F}(V,W)$ is a vector space with the same addition and scalar multiplication. Since the set of all linear transformations from V to W is a subset of $\mathcal{F}(V,W)$, it suffices to show that $\mathcal{L}(V,W)$ is a subspace of $\mathcal{F}(V,W)$. It is trivial that (cT+U)(0)=0. Let $T,U\in\mathcal{L}(V,W)$. Let $x,y\in V$ and $a\in\mathbb{R}$, then

$$\begin{split} (cT+U)(ax+y) &= cT(ax+y) + U(ax+y) \\ &= c(aT(x)+T(y)) + (aU(x)+U(y)) \\ &= a(cT(x)+U(x)) + (cT(y)+U(y)) \\ &= a(cT+U)(x) + (cT+U)(y). \end{split}$$

Thus, cT + U is linear.

Theorem 1.10. Let V and W be finite dimensional vector spaces over \mathbb{R} bases β and γ and $T, U : V \to W$ linear transformations. Then, the map $\Phi : \mathcal{L}(V,W) \to \mathcal{M}_{m \times n}(\mathbb{R})$ defined by $T \mapsto [T]_{\beta}^{\gamma}$ is linear, where $\dim(V) = n$ and $\dim(W) = m$. That is, we have

- (i) $[T + U]^{\gamma}_{\beta} = [T]^{\gamma}_{\beta} + [U]^{\gamma}_{\beta}$, and
- (ii) $[cT]^{\gamma}_{\beta} = c[T]^{\gamma}_{\beta}$ for all $c \in \mathbb{R}$.

Proof. Let $\beta = \{v_1, v_2, \dots, v_n\}$ and $\gamma = \{w_1, w_2, \dots, w_m\}$ be bases for V and W respectively. For each $j = 1, 2, \dots, m$, we have

$$T(v_j) = \sum_{i=1}^{m} a_{ij} w_i, \qquad U(v_j) = \sum_{i=1}^{m} b_{ij} w_i$$

for some $a_{ij}, b_{ij} \in \mathbb{R}$. Then,

$$(T+U)(v_j) = T(v_j) + U(v_j) = \sum_{i=1}^m a_{ij}w_i + \sum_{i=1}^m b_{ij}w_i = \sum_{i=1}^m (a_{ij} + b_{ij})w_i,$$

which implies

$$[T+U]^{\gamma}_{\beta} = (a_{ij} + b_{ij}) = (a_{ij}) + (b_{ij}) = [T]^{\gamma}_{\beta} + [U]^{\gamma}_{\beta}$$

Similarly,

$$(cT)(v_j) = cT(v_j) = c\sum_{i=1}^{m} a_{ij}w_i = \sum_{i=1}^{m} (ca_{ij})w_i$$

and

$$[cT]^{\gamma}_{\beta} = (ca_{ij}) = c(a_{ij}) = c[T]^{\gamma}_{\beta}.$$

2 Composition of linear transformations and matrix multiplication, part 1

Notation 2.1. For two maps U and T, we use the notation UT to denote the composition of maps $U \circ T$, that is, $UT(x) = U \circ T(x) = U(T(x))$.

Theorem 2.2. Let V, W, Z be vector spaces over \mathbb{R} , and $T: V \to W$ and $U: W \to Z$ be linear. Then, $UT: V \to Z$ is linear.

Proof. It is easy to see that UT(0) = U(T(0)) = U(0) = 0. Let $x, y \in V$ and $c \in \mathbb{R}$, then

$$UT(cx + y) = U(T(cx + y)) = U(cT(x) + T(y)) = cU(T(x)) + U(T(y)) = cUT(x) + UT(y).$$

Thus, UT is linear.

Example 2.3. Let $T, U : \mathbb{R}^2 \to \mathbb{R}^2$ be defined by T(x, y) = (x, -y) and U(x, y) = (y, x). Then, T is the reflection about x-axis and U is the reflection about the line x = y. Consider $UT : \mathbb{R}^2 \to \mathbb{R}^2$, then

$$UT(x,y) = U(T(x,y)) = U(x,-y) = (-y,x)$$

is the rotation by $\pi/2$ counterclockwise. Let β be the standard basis for \mathbb{R}^2 , then

$$[T]_{\beta} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \qquad [U]_{\beta} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \qquad [UT]_{\beta} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}.$$

Definition 2.4. Let $A \in \mathcal{M}_{m \times n}(\mathbb{R})$ and $B \in \mathcal{M}_{n \times p}(\mathbb{R})$. We define the product of A and B by $AB \in \mathcal{M}_{m \times p}(\mathbb{R})$,

$$(AB)_{ij} = \sum_{k=1}^{n} A_{ik} B_{kj}.$$

Example 2.5.

$$\begin{pmatrix} 1 & 2 & 1 \\ 0 & 4 & -1 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 2 & -1 \\ 3 & 1 \end{pmatrix} = \begin{pmatrix} 8 & 1 \\ 5 & -5 \end{pmatrix}$$

Definition 2.6. We define the Kronecker delta δ_{ij} by

$$\delta_{ij} = \begin{cases} 1, & i = j, \\ 0, & \text{otherwise.} \end{cases}$$

The $n \times n$ identity matrix is $I_n = (\delta_{ij})$.

Theorem 2.7. Let $A, C \in \mathcal{M}_{m \times n}(\mathbb{R})$ and $B, D \in \mathcal{M}_{n \times p}(\mathbb{R})$, then

- (i) (A + C)B = AB + CB and A(B + D) = AB + AD.
- (ii) c(AB) = (cA)B = A(cB) for $c \in \mathbb{R}$.
- (iii) $I_m A = A = AI_n$.
- (iv) Let V be an n-dimensional vector space over \mathbb{R} with a basis β and $I_V: V \to V$ be defined by $I_V(x) = x$ for all $x \in V$. Then, $[I_V]_{\beta} = I_n$.

Proof. Exercise.
$$\Box$$

Theorem 2.8. Let V, W, Z be finite dimensional vector spaces over \mathbb{R} with bases α, β, γ , and $T: V \to W$ and $U: W \to Z$ be linear. Then, $[UT]^{\gamma}_{\alpha} = [U]^{\gamma}_{\beta}[T]^{\beta}_{\alpha} \in \mathcal{M}_{p \times n}(\mathbb{R})$.

Proof. Let $\alpha = \{v_1, v_2, \dots, v_n\}, \beta = \{w_1, w_2, \dots, w_m\}, \gamma = \{z_1, z_2, \dots, z_p\}$ and

$$T(v_j) = \sum_{k=1}^{m} b_{kj} w_k, \qquad U(w_k) = \sum_{i=1}^{p} a_{ik} z_i.$$

Then,

$$(UT)(v_j) = U(T(v_j)) = U(\sum_{k=1}^m b_{kj} w_k) = \sum_{k=1}^m b_{kj} U(w_k) = \sum_{k=1}^m b_{kj} \sum_{i=1}^p a_{ik} z_i = \sum_{i=1}^p \left(\sum_{k=1}^m a_{ik} b_{kj}\right) z_i$$

Example 2.9. Let $T, U : \mathbb{R}^2 \to \mathbb{R}^2$ be defined by T(x,y) = (x,-y) and U(x,y) = (y,x). Let β be the standard basis for \mathbb{R}^2 , then

$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} = [U]_{\beta}[T]_{\beta} = [UT]_{\beta} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}.$$

Note that $[U]_{\beta}[T]_{\beta} \neq [T]_{\beta}[U]_{\beta}$. In fact, TU(x,y) = T(y,x) = (y,-x) is the rotation by $\pi/2$ clockwise.

3 Composition of linear transformations and matrix multiplication, part 2

Notation 3.1. (i) For $A \in \mathcal{M}_{n \times n}(\mathbb{R})$ and $k \in \mathbb{N}$, $A^k = A \cdot A \cdot \cdots A$ (k times) and $A^0 = I_n$.

- (ii) O is the zero matrix, whose entries are all zero.
- (iii) For $A \in \mathcal{M}_{m \times n}(\mathbb{R})$ and $j = 1, 2, \dots, n, [A]_j$ the j-th column of A.

Theorem 3.2. Let $A \in \mathcal{M}_{m \times n}(\mathbb{R})$ and $B \in \mathcal{M}_{n \times p}(\mathbb{R})$.

- (i) $[A]_j = A \cdot e_j$ where e_j is the standard basis for \mathbb{R}^n .
- (ii) $[AB]_i = A \cdot [B]_i$.

Proof. Exercise. \Box

Theorem 3.3. Let V and W be finite dimensional vector spaces with bases β and γ . Let $T:V\to W$ be linear. Then for each $v\in V$, we have

$$[T(v)]_{\gamma} = [T]_{\beta}^{\gamma}[v]_{\beta}.$$

Proof. Let $\beta = \{v_1, v_2, \dots, v_n\}$ and $\gamma = \{w_1, w_2, \dots, w_m\}$, then

$$T(v_j) = \sum_{i=1}^{m} a_{ij} w_i, \qquad v = b_1 v_1 + \dots + b_n v_n$$

for some $a_{ij}, b_i \in \mathbb{R}$. Then,

$$T(v) = T(b_1v_1 + \dots + b_nv_n) = b_1T(v_1) + \dots + b_nT(v_n) = \sum_{j=1}^n b_j \sum_{i=1}^m a_{ij}w_i = \sum_{i=1}^m \left(\sum_{j=1}^n a_{ij}b_j\right)w_i$$

Definition 3.4. For $A \in \mathcal{M}_{m \times n}(\mathbb{R})$, we define $L_A : \mathbb{R}^n \to \mathbb{R}^m$ by $L_A(x) = Ax$, where x is a column vector in \mathbb{R}^n . The map L_A is called a left-multiplication transformation.

Example 3.5. Let $A = \begin{pmatrix} 1 & 2 & 1 \\ 0 & 1 & 2 \end{pmatrix}$, then $L_A : \mathbb{R}^3 \to \mathbb{R}^2$ and

$$L_A(x,y,z) = \begin{pmatrix} 1 & 2 & 1 \\ 0 & 1 & 2 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x+2y+z \\ y+2z \end{pmatrix}.$$

Remark 3.6. Let β, γ be the standard bases for \mathbb{R}^n and \mathbb{R}^m . Recall that the map $\mathcal{F}: \mathcal{L}(\mathbb{R}^n, \mathbb{R}^m) \to \mathcal{M}_{m \times n}(\mathbb{R})$ defined by $\mathcal{F}(T) = [T]^{\gamma}_{\beta}$ is a linear map by Theorem 1.10.

Theorem 3.7. Let $A, B \in \mathcal{M}_{m \times n}(\mathbb{R})$ and β, γ be the standard bases for \mathbb{R}^n and \mathbb{R}^m . Define $\mathcal{G} : \mathcal{M}_{m \times n}(\mathbb{R}) \to \mathcal{L}(\mathbb{R}^n, \mathbb{R}^m)$ by $\mathcal{G}(A) = L_A$.

- (i) \mathcal{G} is well-defined. $(L_A: \mathbb{R}^n \to \mathbb{R}^m \text{ is linear for all } A \in \mathcal{M}_{m \times n}(\mathbb{R}).)$
- (ii) \mathcal{G} is linear. $(L_{A+B} = L_A + L_B \text{ and } L_{cA} = cL_A \text{ for } c \in \mathbb{R} \text{ for all } A \in \mathcal{M}_{m \times n}(\mathbb{R}).)$
- (iii) \mathcal{G} is one-to one. (For $A, B \in \mathcal{M}_{m \times n}(\mathbb{R})$, $L_A = L_B$ if and only if A = B.)
- (iv) \mathcal{G} is onto. (If $T: \mathbb{R}^n \to \mathbb{R}^m$ is linear, then there exists a unique matrix $C \in \mathcal{M}_{m \times n}(\mathbb{R})$ such that $T = L_C$.)
- (v) $\mathcal{F} \circ \mathcal{G} = Id$. $([L_A]^{\gamma}_{\beta} = A \text{ for all } A \in \mathcal{M}_{m \times n}(\mathbb{R}).)$

Proof. (i) Let $A \in \mathcal{M}_{m \times n}(\mathbb{R})$. First, $L_A(0) = A \cdot 0 = 0$. For $x, y \in \mathbb{R}^n$ and $c \in \mathbb{R}$, we have

$$L_A(cx + y) = A(cx + y) = cAx + Ay = cL_A(x) + L_A(y).$$

Thus, L_A is linear, that is, $\mathcal{G}(A) \in \mathcal{L}(\mathbb{R}^n, \mathbb{R}^m)$.

(ii) For $x \in \mathbb{R}^n$ and $c \in \mathbb{R}$, we have

$$L_{A+B}(x) = (A+B)x = Ax + Bx = L_A(x) + L_B(y)$$

and

$$L_{cA}(x) = (cA)x = c(Ax) = cL_A(x).$$

This implies that $L_{A+B} = L_A + L_B$ and $L_{cA} = cL_A$ so that \mathcal{G} is linear.

(iii) For $A, B \in \mathcal{M}_{m \times n}(\mathbb{R})$, suppose that $L_A = L_B$. For each $i = 1, 2, \dots, n$,

$$L_A(e_i) = Ae_i = [A]_i = [B]_i = Be_i = L_B(e_i),$$

which implies A = B.

(iv) Suppose $T: \mathbb{R}^n \to \mathbb{R}^m$ is linear (i.e. $T \in \mathcal{L}(\mathbb{R}^n, \mathbb{R}^m)$), then let $C = [T]_{\beta}^{\gamma}$. We claim that $L_C = T$. For $x \in \mathbb{R}^n$,

$$L_C(x) = [T]_{\beta}^{\gamma}[x]_{\beta} = [T(x)]_{\gamma} = T(x).$$

(v) Let $A \in \mathcal{M}_{m \times n}(\mathbb{R})$. It suffices to show that $[L_A]^{\gamma}_{\beta} e_i = Ae_i$ for each $i = 1, 2, \dots, n$. Indeed,

$$[L_A]^{\gamma}_{\beta}e_i = [L_A(e_i)]_{\gamma} = [Ae_i]_{\gamma} = Ae_i.$$

Theorem 3.8. If $A \in \mathcal{M}_{m \times n}(\mathbb{R})$ and $B \in \mathcal{M}_{n \times p}(\mathbb{R})$, then $L_{AB} = L_A L_B$. We also have $L_{I_n} = I_{\mathbb{R}^n}$. Proof. For each $i = 1, 2, \dots, n$,

$$L_{AB}(e_i) = AB(e_i) = [AB]_i = A[B]_i = A(Be_i) = L_A(L_B(e_i)) = L_AL_B(e_i).$$

Corollary 3.9. Let $A \in \mathcal{M}_{m \times n}(\mathbb{R})$, $B \in \mathcal{M}_{n \times p}(\mathbb{R})$, and $C \in \mathcal{M}_{p \times q}(\mathbb{R})$, then (AB)C = A(BC).

Proof. It suffices to show that $L_{(AB)C} = L_{A(BC)}$. By the previous theorem, we have

$$L_{(AB)C} = L_{AB}L_C = (L_A \circ L_B) \circ L_C = L_A \circ (L_B \circ L_C) = L_A L_{BC} = L_{A(BC)}.$$

References

[FIS] Freidberg, Insel, and Spence, *Linear Algebra*, 4th edition, 2002.

[Bee] Beezer, A First Course in Linear Algebra, Version 3.5, 2015.

Department of Mathematics, University of Illinois at Urbana-Champaign $E\text{-}mail\ address{:} \texttt{daesungk@illinois.edu}$