Combinational Circuits

S.M. Shovan

Contents

- What is Combinational circuits?
- Binary logic gates
- Basic logic functions
- Universal gates and it's applications
- Design of
 - 1. Adder
 - a. Half adder
 - b. Full Adder
 - c. Parallel Adder
 - 2. Subtractor
 - 1. Half subtractor
 - 2. Full subtractor

What is combinational circuits?

- Combination of different gates (AND, OR, NOT)
- Output depends on present/current state
- No memory is used
- Can have n inputs and M outputs

Binary variables

- Identifiers can be letters of Alphabet
 - A,B, x,y,z , X1 etc.

- Can have one of two binary values
 - True/False
 - On/Off
 - Yes/No
 - 1/0

Logical operations

- Operations of binary variables
- Three basic logical operations
 - AND (denoted by a dot (•))

$$Z = X \bullet Y$$

• OR (denoted by a plus (+))

$$Z = X + Y$$

• NOT (denoted by a overbar (⁻), a single quote mark (') or tilde (~)

Truth tables

Truth table – a tabular listing of the values of a function for all possible combinations of values on its arguments

AND						
X	$X \mid Y \mid Z = X \cdot Y$					
0	0	0				
0	1	0				
1	0	0				
1	1	1				

OR					
X	$\mathbf{X} \mid \mathbf{Y} \mid \mathbf{Z} = \mathbf{X} + \mathbf{Y}$				
0	0	0 0 1 1			
0	1				
1	0	1			
1	1	1			

NOT	
X	$Z = \overline{X}$
0	1
1	0

Timing diagram

Logic diagram and Expressions

Truth Table

XYZ	$F = X + \overline{Y} \cdot Z$
000	0
001	1
010	0
011	0
100	1
101	1
110	1
111	1

Equation

$$F = X + \overline{Y} Z$$

Additional gates

XOR Gates $\chi \oplus \gamma = \chi \overline{\gamma} + \overline{\chi} \gamma$

Symbol

Truth table

X	Υ	χ⊕γ
0	0	0
0	1	1
1	0	1
1	1	0

Additional gates (Universal gates)

Universal gate - a gate type that can implement any Boolean function.

NAND gates

$$F(X,Y,Z) = \overline{X \cdot Y \cdot Z}$$

NOR gates

$$\sum_{z}^{x} F(x,y,z) = \overline{x+y+z}$$

Basic logic gates implementation using NAND

Basic logic gates implementation using NOR

$$\bullet$$
 F = AB + C'

Using AND, OR, NOT gates

$$\bullet F = AB + C'$$

Using NAND gates

 $\bullet F = AB + C'$

Using NAND gates

$$\bullet F = AB + C'$$

Using NAND gates

$$\bullet F = AB + C'$$

Try Yourself

Application of combinational circuit (Adder)

Half Adder

X	Υ	С	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

$$C = X \cdot \overline{A} + \overline{X} \cdot A = X \oplus A$$

 $C = X \cdot A$

Application of combinational circuit (Adder)

Z + X Y Z

• Full Adder

X	Y	Z	С	S	
0	0	0	0	0	S = X Y Z + X Y Z + X Y C = X Y + X Z + Y Z
0	0	1	0	1	C AT'AZ'IZ
0	1	0	0	1	
0	1	1	1	0	$S = X \oplus Y \oplus Z$
1	0	0	0	1	$C = X Y + (X \oplus Y)Z$
1	0	1	1	0	
1	1	0	1	0	
1	1	1	1	1	

Full-Adder Implement

$$S = A \oplus B \oplus C_{in}$$
 $C_{out} = AB + (A \oplus B) C_{in}$

4 bit Parallel adder

A4 A3 A2 A1 B4 B3 B2 B1

C5 S4 S3 S2 S1

Half-Subtractor

Full subtractor

	INPUT	OUTPUT		
Α	В	Bin	D	Bout
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	0	1
1	0	0	1	0
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

Full subtractor

