Potes interiores para programação lingar

PL: min ctx s.a.
$$Ax = b$$
, $x > 0$.

SP(μ_{K}): min ctx - $\mu_{K} \sum_{i=1}^{n} l_{i}(x_{i})$
 $Ax = b$.

KKT de SP(μ_{K}):

$$\begin{bmatrix}
C - \mu_{K} \begin{bmatrix} 1x_{i} \\ 1x_{i} \end{bmatrix} + A^{t}y = 0 \\
- \frac{1}{2}x_{i} \end{bmatrix} + A^{t}y = 0$$

Ax - b = 0

ondo

$$X = diag(x) = \begin{bmatrix} x_{i} \\ 0 \end{bmatrix} \xrightarrow{x > 0} X^{-1} = \begin{bmatrix} x_{i} \\ 0 \end{bmatrix} \xrightarrow{x_{i}} X^{-1} = 0$$

O segredo para ganhar estabilidade numérica é controlar os termos μ_{K} .

Definimos $3i = \mu_{K}$, $\forall i$. Mole gre $\mu_{x} \times e = \mu_{x_{1}} = 3$. Cossum, o sostema F(x,y) = 0 fica $F(x,y,z) = \begin{bmatrix} c-z+A^ty\\ Ax-b \end{bmatrix} = 0$ $x_1z_1 - \mu_x$ \vdots $x_mz_m - \mu_x$ $\left(3i = \mu_{\kappa} \iff \chi_{i} = 0\right)$ Codreção Newtoniana para F(n,y,z)=0 tra uma componente adicional relativa à z.

$$F(n,y,z)d = -F(n,y,z).$$

$$\begin{array}{c}
\widetilde{F}(\chi_{1}y_{1}) = \begin{bmatrix}
0 & A^{t} & -I_{m} \\
A & 0 & 0
\end{array}$$

$$\begin{bmatrix}
3_{1} & 0 & \cdots & 0 \\
0 & 3_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ddots & \infty
\end{bmatrix}$$

Danotando
$$X = diag(x) = \begin{bmatrix} x_1 & 0 \\ 0 & x_m \end{bmatrix}, Z = diag(x) = \begin{bmatrix} 3_1 & 0 \\ 0 & 3_m \end{bmatrix}$$

$$\frac{2}{F}(x,y,z) = \begin{bmatrix} 0 & A^t & -I \\ A & 0 & 0 \\ Z & 0 & X \end{bmatrix}$$

Sistema Mentanano.

$$\begin{bmatrix} O & A^{\dagger} & -f \\ A & O & O \\ Z & O & X \end{bmatrix} \begin{bmatrix} d_{x} \\ d_{y} \end{bmatrix} = -\begin{bmatrix} C - z + A^{\dagger}y \\ A - h - b \\ X - b \end{bmatrix}$$

$$\begin{bmatrix} A & A & A - b \\ A & A - b \end{bmatrix}$$

$$\begin{bmatrix} A & A & A - b \\ A & A - b \end{bmatrix}$$

$$\begin{bmatrix} A & A & A - b \\ A & A - b \end{bmatrix}$$

$$\begin{bmatrix} A & A & A - b \\ A & A - b \end{bmatrix}$$

$$\begin{bmatrix} A & A & A - b \\ A & A - b \end{bmatrix}$$

$$\begin{bmatrix} A & A & A - b \\ A & A - b \end{bmatrix}$$

$$\begin{bmatrix} A & A & A - b \\ A & A - b \end{bmatrix}$$

$$\begin{bmatrix} A & A & A - b \\ A & A - b \end{bmatrix}$$

$$\begin{bmatrix} A & A & A - b \\ A & A - b \end{bmatrix}$$

$$\begin{bmatrix} A & A & A - b \\ A & A - b \end{bmatrix}$$

$$\begin{bmatrix} A & A & A - b \\ A & A - b \end{bmatrix}$$

Como inicializar (x°, y°, z°) {

Enter pode ser qualquer pronto en

que x°>0 e z°>0 (p-ex., xi=1, Vi,

zi=1, Vi, e y=0). Porém na prática

escistem hemisticas para uma loa

inicialização.

(*) Como parar?

PL

Lo SUCESSO: ~ KKT. (=> solução
otima) La insuc ESSO: « no máx. itera éous atingido; · calculo d falhou; · latta de mogresso; · N(21, 2) | muito grande Lo PL provarremente é ilimitado ou inviávil. (x) Como diminio no ?

MUITO INPORTANTE para estabilidade do mitodo. Lembre-se que no sistema F(x,y,z)=0, ha as expressor $\mathcal{H}_{1}\mathcal{I}_{1}-\mu=0, \ldots, \mathcal{H}_{n}\mathcal{I}_{N}-\mu=0$ Logo, os produtos x; z; ficam emtrados no valor u. Se u for muito rapido

DODO DECO CONTRUMO O TINCO de NOLIMAN
para zero, corremos o risco de obstirmos
produtos 7: 3: destralancedos, o que
gla mal condicionamento do sistema
F(x,y,z)d = -F(x,y,z). Se controlamos
a relocidade de decarmento de m,
os produtos xizi tendem a ficar prosimos
entre n', favore cendo a estatistidade
munitura.
^
Una ideia que funciona bun é tomas
n en função das médias dos produtos
, , , , , , , , , , , , , , , , , , , ,
rizi, ti, isto e,
\(\sigma_1\): \(\frac{7}{3}\):
i=1
\sim

Détatles nos aulas de Tépicos em PO" 2021/1, veja pagina da disciplina.