Homework 7

Adam Sanchez

MATH 4650

1)

```
In [6]: from scipy.special import roots_laguerre
import numpy as np
```

a)

```
In [242]: import numpy as np
          import math
          import matplotlib.pyplot as plt
          def f(x):
               return 1/(1+x**2)
          def integrate(deg):
               sum = 0
              x, w = np.polynomial.legendre.leggauss(deg)
               for i in range(deg):
                   sum += w[i]*f(x[i])
              return sum;
          N = 1000
          I = []
          err = []
          for i in range(1,N):
              q = 2*integrate(i)
              er = abs(q-np.pi)
               I.append(q)
               err.append(er)
```

10/24/2020 HW7 AdamSanchez

```
In [243]: plt.loglog(err)
```

Out[243]: [<matplotlib.lines.Line2D at 0x114eaa240>]


```
In [248]: print('The min error is ', min(err), 'and occurs when d = ', err.index(m
in(err)))
```

The min error is 0.0 and occurs when d = 20

It looks like as the number of degrees increases we quickly become more accurate and we we hover around an error of 10^{-15} . That being said Because π is transendiential when we have an error of 0 im sure we are just at machine precision.

b)

Note, with $x = e^t - 1$, our function is now e^{-t}

```
In [283]: f = lambda x: math.exp(-x)
    def integrate(deg):
        sum = 0
        x, w = np.polynomial.legendre.leggauss(deg)
        for i in range(deg):
            sum += w[i]*f(x[i])
        return sum;

N = 1000
I = []
err = []
for i in range(1,N):
        q = 2*integrate(i)
        er = abs(q-np.pi)
        I.append(q)
        err.append(er)
```

10/24/2020 HW7_AdamSanchez

```
In [284]: plt.loglog(err)
```

Out[284]: [<matplotlib.lines.Line2D at 0x1515b82b70>]

Well this looks very odd. It appears that our error is fixed at a rather large value no matter what d is. I will talk more about what I think is happeneing in part c.

c)

So for part b I think we are some weird things happening with the weights from Leggauss polynomial and our function that is now just e^{-x} I think this has to do with the fact that the weights are orthogonal to the weight function, which just so happens to be e^{-x} so I think we are getting some weird cancelation. So for this problem I don't hing the change of variables would be the best and I would just use part a instead.

2

a)

```
In [202]: from scipy.integrate import quadrature, quad, dblquad
  import time
```

```
In [183]: def baseQuadratureRule(f,a,b):
              Q, errEstimate = quad(f,a,b,epsabs=1.5e-8,epsrel=1.5e-8,limit=50)
              return Q
          def my2D_quadrature(f,a,b,c,d, baseQuadRule ):
              @np.vectorize
              def g(x):
                  def f as fcn of y(y):
                      return f(x,y)
                  Q = baseQuadRule( f_as_fcn_of_y, c, d )
                  return Q
              Q = baseQuadRule( g, a, b )
              return Q
          def my3D_quadrature(f,a1,b1,a2,b2,a3,b3, my2D_quadrature):
              @np.vectorize
              def g(x):
                  def f as fcn of yz(y,z):
                      return f(x,y,z)
                  Q = my2D quadrature( f as fcn of yz, a2, b2, a3, b3, baseQuadrat
          ureRule )
                  return Q
              Q = baseQuadratureRule( g, a1, b1 )
              return Q
          def my4D quadrature(f,a1,b1,a2,b2,a3,b3,a4,b4, my3D quadrature):
              @np.vectorize
              def g(x):
                  def f_as_fcn_of_yzw(y,z,w):
                      return f(x,y,z,w)
                  Q = my3D_quadrature( f_as_fcn_of_yzw, a2, b2, a3, b3, a4, b4, m
          y2D quadrature )
                  return Q
              Q = baseQuadratureRule( g, a1, b1 )
              return Q
```

b)

```
In [147]: from scipy.linalg import hilbert
          d=2
          A = hilbert(d)
          def f(x,y):
              args = np.array([x,y])
              return args.T.dot(args.dot(A))
          def p(x,y):
              return((1/(2*np.pi)**(2/2))*np.exp(-(x**2+y**2)/2))
          def g(x,y):
              return(f(x,y)*p(x,y))
          \#my2D quadrature(g, -5,5,-5,5, baseQuadratureRule(g, -5,5))
In [148]: my2D_quadrature(g,-5,5,-5,5, baseQuadratureRule)
Out[148]: 1.3333119816098895
In [174]: d=3
          A = hilbert(d)
          def f(x,y,z):
              args = np.array([x,y,z])
              return args.T.dot(args.dot(A))
          def p(x,y,z):
              return((1/(2*np.pi)**(3/2))*np.exp(-(x**2+y**2+z**2)/2))
          def g(x,y,z):
              return(f(x,y,z)*p(x,y,z))
In [179]: my3D_quadrature(g,-5,5,-5,5, my2D_quadrature )
Out[179]: 1.533307899800628
          d=4
In [184]:
          A = hilbert(d)
          def f(x,y,z,w):
              args = np.array([x,y,z,w])
              return args.T.dot(args.dot(A))
          def p(x,y,z,w):
              return((1/(2*np.pi)**(4/2))*np.exp(-(x**2+y**2+z**2+w**2)/2))
          def g4(x,y,z,w):
              return(f(x,y,z,w)*p(x,y,z,w))
In [185]: my4D_quadrature(g4,-5,5,-5,5,-5,5,-5,5,my3D_quadrature)
Out[185]: 1.6761617121244665
```

i)

As we can see from the line of code above, $E[f(x)] \approx 1.6761676$, when d = 4.

ii)

My error tollerence (both absolute annd relative) for 1D is very low so it doesnt surprise that 4D took a very long time to run (it was approx. 5 min). For both 2D and 3D the functions were evulated much quicker as would be expected in a problem like this.

c)

```
In [219]: def MonteCarlo(d, N, Verbose = True):
    start_time = time.time()
    A = hilbert(d)
    I = 0.0
    for i in range(N):
        x = np.random.randn(d)
        f = x.T.dot(x.dot(A))
        I += f
    I = (1/N)*I
    end_time = time.time()
    if Verbose == True:
        print('Excution time is:',end_time-start_time, ' seconds')
    return I
```

Running our MonteCarlo for d = 2,3,4:

Now finding the runtime and error for d = 4,12,100

d)

It seems like quadature is probably more accurate than Monte Carlo is expically in low levels of d. However quadature would probably be almost impossible to run on my compute for d =100 ao I think when we have igh dimensions Monte Carlo is the way to go!