APPENDIX 9-D

Floating Point Formats

D.1. Introduction

Table D-1 provides a summary of floating point formats. Details of each format are shown on the pages following the table.

	Table D-1. Floating Point Formats						
Type	Size	Radix	Sign	Exponent	Fraction	Bias	Formula
IEEE_32	32	2	1	8	23	127	$(-1^{\rm S})(1.{\rm F})(2^{({\rm E}-127)})$
IEEE_64	64	2	1	11	52	1023	$(-1^{\rm S})(1.{\rm F})(2^{({\rm E}-1023)})$
1750A_32	32	2	0	8	24	0	$(0.F)(2^{E})$
1750A_48	48	2	0	8	40	0	$(0.F)(2^{E})$
DEC_32	32	2	1	8	23	128	$(-1^{\rm S})(0.1{\rm F})(2^{({\rm E}-128)})$
DEC_64	64	2	1	8	55	128	$(-1^{\rm S})(0.1{\rm F})(2^{({\rm E}-128)})$
DEC_64G	64	2	1	11	52	1024	$(-1^{\rm S})(0.1{\rm F})(2^{({\rm E}-1024)})$
IBM_32	32	16	1	7	24	64	$(-1^{\rm S})(0.{\rm F})(16^{({\rm E}-64)})$
IBM_64	64	16	1	7	56	64	$(-1^{\rm S})(0.{\rm F})(16^{({\rm E}-64)})$
TI_32	32	2	1	8	24	0	$((-2)^{S} + (0.F))(2^{E})$
TI_40	40	2	1	8	32	0	$((-2)^{S} + (0.F))(2^{E})$

D.2. IEEE 754 32-Bit Single Precision Floating Point

S	Exponent	Fraction	
1	2 9	10	32
		2^{-1}	2^{-23}

Value =
$$(-1^{S})(1.F)(2^{(E-127)})$$

where S = sign: 0 = Positive, 1 = Negative

Exponent = power of 2 with bias of 127

Fraction = F portion of 23-bit fraction 1.F

0: E = 0, F = 0

D.3. IEEE 754 64-Bit Double Precision Floating Point

S	Exponent	Fraction	
1	2 12	13	64
		2^{-1}	2^{-52}

Value =
$$(-1^{S})(1.F)(2^{(E-1023)})$$

where S = sign: 0 = Positive, 1 = Negative

Exponent = power of 2 with bias of 1023

Fraction = F portion of 52-bit fraction 1.F

$$0: E = 0, F = 0$$

D.4. MIL-STD-1750A 32-Bit Single Precision Floating Point

S	Fraction	Exponent	
1	2 24	25	32
	2^{-1} 2^{-23}		

Value = $(0.F)(2^{E})$

where Exponent = 2's complement power of 2

S = sign: 0 = Positive, 1 = Negative

S + Fraction = Normalized, 2's complement F portion of 24-bit fraction 0.F (Bit 2 MUST be set for positive, clear for negative)

0: F = 0

D.5. MIL-STD-1750A 48-Bit Double Precision Floating Point

S	Fraction (MSW)	Exponent	Fraction (LSW)
1	2 24	25 32	33 48
	2^{-1} 2^{-23}		2^{-24} 2^{-31}

Value = $(0.F)(2^{E})$

where Exponent = 2's complement power of 2

S = sign: 0 = Positive, 1 = Negative

S + Fraction = Normalized, 2's complement F portion of 40-bit fraction 0.F (Bit 2 MUST be set for positive, clear for negative)

0: F = 0

D.6. DEC 32-Bit Single Precision Floating Point

S	Exponent	Fraction	
1	2 9	10	32
		2^{-2}	2 ⁻²⁴

Value = $(-1^{S})(0.1F)(2^{(E-128)})$

where S = sign: 0 = Positive, 1 = Negative

Exponent = power of 2 with bias of 128

Fraction = F portion of 23-bit fraction 0.1F

0: S = 0 & F = 0 & E = 0

D.7. DEC 64-Bit Double Precision Floating Point

S	Exponent	Fraction	
1	2 9	10 6	54
	-	2^{-2} 2^{-3}	56

Value = $(-1^{S})(0.1F)(2^{(E-128)})$

where S = sign: 0 = Positive, 1 = Negative

Exponent = power of 2 with bias of 128

Fraction = F portion of 55-bit fraction 0.1F

0: S = 0 & F = 0 & E = 0

D.8. DEC 64-Bit "G" Double Precision Floating Point

S	Exponent	Fraction
1	2 12	13 64
		2^{-2} 2^{-5}

Value = $(-1^S)(0.1F)(2^{(E-1024)})$

where S = sign: 0 = Positive, 1 = Negative

Exponent = power of 2 with bias of 1024

Fraction = F portion of 52-bit fraction 0.1F

0: S = 0 & F = 0 & E = 0

D.9. IBM 32-Bit Single Precision Floating Point

S	Exponent	Fraction	
1	2 8	9	32
		2 ⁻¹	2^{-24}

Value = $(-1^{S})(0.F)(16^{(E-64)})$

where S = sign: 0 = Positive, 1 = Negative

Exponent = power of 16 with bias of 64

Fraction = Normalized F portion of 24-bit fraction 0.F (Bits 9-12 cannot be all zero)

0: F = 0

D.10. IBM 64-Bit Double Precision Floating Point

S	Expor	nent		Fraction
1	2	8	9	64
			2^{-1}	2^{-56}

Value = $(-1^{S})(0.F)(16^{(E-64)})$

where S = sign: 0 = Positive, 1 = Negative

Exponent = power of 16 with bias of 64

Fraction = Normalized F portion of 56-bit fraction 0.F (Bits 9-12 cannot be all zero)

0: F = 0

D.11. TI (Texas Instruments) 32-Bit Single Precision Floating Point

Exponent	S	Fraction	
1 8	9	10	32
		2^{-1}	2^{-23}

Value =
$$((-2)^S + (0.F))(2^E)$$

where Exponent = 2's complement power of 2

S = sign: 0 = Positive, 1 = Negative

Fraction = 2's complement F portion of 24-bit fraction 1.F

0: E = -128

D.12. TI (Texas Instruments) 40-Bit Extended Precision Floating Point

Exponent	S	Fraction	
1 8	9	10	40
		2^{-1}	2^{-31}

Value =
$$((-2)^S + (0.F))(2^E)$$

where Exponent = 2's complement power of 2

S = sign: 0 = Positive, 1 = Negative

Fraction = 2's complement F portion of 32-bit fraction 1.F

0: E = -128