QXD0116 - Álgebra Linear Matrizes - Escalonamento e Vetores

André Ribeiro Braga

Universidade Federal do Ceará

Campus Quixadá

Forma escalonada

Definição

Uma matriz está na forma escalonada por linhas se:

- a) Cada elemento principal, não-nulo, de uma linha está à direita do elemento principal, não-nulo, de linha precedente.
- b) Todas as linhas nulas, se existirem, estão na base da matriz (últimas linhas).

$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 2 & 2 & 3 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\mathbf{B} = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 0 & 1 & 4 & 3 & -2 & 5 \\ 0 & 0 & 0 & 3 & 2 & 3 \\ 0 & 0 & 0 & 0 & 0 & -3 \end{bmatrix}$$

Operações elementares

- a) Multiplicar a i-ésima linha por uma constante $\alpha \neq 0$.
- b) Permutar a i-ésima linha com a j-ésima linha.
- c) Substituir a i-ésima linha por α vezes a j-ésima linha somada à i-ésima linha, onde $\alpha \neq 0$.

Definição

Se uma matriz ${\bf B}$ pode ser obtida de uma matriz ${\bf A}$ através de um número finito de operações elementares sobre as linhas de ${\bf A}$, dizemos que ${\bf A}$ é equivalente a ${\bf B}$, ou seja: ${\bf A} \sim {\bf B}$.

O processo de **escalonameto** de uma matriz é a obtenção de uma matriz equivalente na forma escalonada.

Operações elementares

$$\begin{split} \mathbf{A} &= \begin{bmatrix} 3 & 1 & 2 \\ 4 & -1 & 3 \\ 5 & 2 & 1 \end{bmatrix} \leftarrow \otimes^{1/3} \quad \begin{bmatrix} 1 & 1/3 & 2/3 \\ 4 & -1 & 3 \\ 5 & 2 & 1 \end{bmatrix} \leftarrow \otimes -4 \\ & \sim \begin{bmatrix} 1 & 1/3 & 2/3 \\ 0 & -7/3 & 1/3 \\ 5 & 2 & 1 \end{bmatrix} \leftarrow \otimes -5 \\ & \sim \begin{bmatrix} 1 & 1/3 & 2/3 \\ 0 & -7/3 & 1/3 \\ 0 & 1/3 & -7/3 \end{bmatrix} \leftarrow \otimes -3/7 \\ & \sim \begin{bmatrix} 1 & 1/3 & 2/3 \\ 0 & 1/3 & -7/3 \end{bmatrix} \leftarrow \otimes -3/7 \\ & \sim \begin{bmatrix} 1 & 1/3 & 2/3 \\ 0 & 1 & -1/7 \\ 0 & 1/3 & -7/3 \end{bmatrix} \leftarrow \otimes -1/3 \sim \begin{bmatrix} 1 & 1/3 & 2/3 \\ 0 & 1 & -1/7 \\ 0 & 0 & -48/21 \end{bmatrix} \end{split}$$

Escalonamento

Inversão de matrizes

Procedimento

Seja \mathbf{A} uma matriz de ordem n:

- 1º passo: Formar uma matriz aumentada, isto é, formar a matriz
 [A|I], onde I é a matriz identidade de ordem n.
- 2º passo: Reduzir a matriz aumentada à forma escalonada. Se o processo gerar uma linha nula na parte correspondente à A, não haverá inversa.
- 3º passo: Continuar o processo até que a matriz aumentada fique na forma [I|B]. A matriz B obtida será a inversa de A.

Escalonamento

Inversão de matrizes

$$\mathbf{A}|\mathbf{I} = \begin{bmatrix} 3 & 0 & 3 & 1 & 0 & 0 \\ 2 & 1 & -1 & 0 & 1 & 0 \\ 1 & 2 & 0 & 0 & 0 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 1 & 1/3 & 0 & 0 \\ 2 & 1 & -1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 \end{bmatrix}$$

$$\sim \begin{bmatrix} 1 & 0 & 1 & 1/3 & 0 & 0 \\ 0 & 1 & -3 & -2/3 & 1 & 0 \\ 0 & 2 & -1 & -1/3 & 0 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 1 & 1/3 & 0 & 0 \\ 0 & 1 & -3 & -2/3 & 1 & 0 \\ 0 & 0 & 5 & 1 & -2 & 1 \end{bmatrix}$$

$$\sim \begin{bmatrix} 1 & 0 & 1 & 1/3 & 0 & 0 \\ 0 & 1 & -3 & -2/3 & 1 & 0 \\ 0 & 0 & 1 & 1/5 & -2/5 & 1/5 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 2/15 & 2/5 & -1/5 \\ 0 & 1 & 0 & 1/5 & -1/5 & 3/5 \\ 0 & 0 & 1 & 1/5 & -2/5 & 1/5 \end{bmatrix}$$

Escalonamento

Posto (rank) de uma matriz

Definição

Seja **B** a matriz obtida de **A** por escalonamento. O posto de **A** é o número de linhas não nulas de **B**.

Teorema

O posto (característica) de uma matriz **A** (quadrada ou não) é dado pela maior ordem possível das submatrizes quadradas de **A**, com determinantes diferentes de zero.

$$\mathbf{A} = \begin{bmatrix} 1 & 3 & -2 & 5 & 3 \\ 1 & 11 & -15 & 19 & 14 \\ 3 & 1 & 7 & 1 & -2 \\ 7 & -3 & 25 & -7 & 0 \end{bmatrix}$$

Vetores

Definição

Representação de quantidades com grandeza e direção (quantidades vetoriais).

Representação geométrica

Segmento de reta de um ponto P a um ponto Q: \overrightarrow{PQ} , também chamado vetor de P a Q.

- $\overrightarrow{PQ} = \overrightarrow{RS}$ se tiverem mesmo comprimeto e direção
- permanece inalterado quando move-se no plano sem alterar características

Vetores no plano

Definição

Segmentos orientados com ponto inicial na origem (determinados apenas pelo ponto final).

Para cada ponto P(a,b) está associado um único vetor $\mathbf{v} = \overrightarrow{OP}$ e, para cada vetor, associamos a um único ponto no plano: correspondência biunívoca.

Representação analítica

Vetor no plano é um par ordenado de números reais, também representado por uma matriz coluna de dimensões 2×1 .

$$\mathbf{v} = \begin{bmatrix} a \\ b \end{bmatrix}$$

Operações com vetores no plano

Se
$$\mathbf{u} = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$$
 e $\mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$:

• Soma de vetores:

$$\mathbf{w} = \mathbf{u} + \mathbf{v} = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} + \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} u_1 + v_1 \\ u_2 + v_2 \end{bmatrix} = \begin{bmatrix} w_1 \\ w_2 \end{bmatrix}$$

• Produto por escalar:

$$\mathbf{q} = \alpha \cdot \mathbf{u} = \begin{bmatrix} \alpha \cdot u_1 \\ \alpha \cdot u_2 \end{bmatrix} = \begin{bmatrix} q_1 \\ q_2 \end{bmatrix}$$

Operações com vetores no plano

Combinação linear

$$\mathbf{w} = \alpha \cdot \mathbf{u} + \beta \cdot \mathbf{v} = \begin{bmatrix} \alpha \cdot u_1 \\ \alpha \cdot u_2 \end{bmatrix} + \begin{bmatrix} \beta \cdot v_1 \\ \beta \cdot v_2 \end{bmatrix} = \begin{bmatrix} \alpha \cdot u_1 + \beta \cdot v_1 \\ \alpha \cdot u_2 + \beta \cdot v_2 \end{bmatrix} = \begin{bmatrix} w_1 \\ w_2 \end{bmatrix}$$

Projeção ortogonal

$$\mathbf{v} = \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} a \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ b \end{bmatrix}$$
$$= a \cdot \begin{bmatrix} 1 \\ 0 \end{bmatrix} + b \cdot \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

a pode ser interpretado como projeção ortogonal do vetor \mathbf{v} sobre o eixo x e b a projeção ortogonal do vetor \mathbf{v} sobre o eixo y.

Vetores no espaço

Definição

Vetor no espaço é uma tripla ordenada de números reais, também representado por uma matriz coluna de dimensão 3×1 .

$$\mathbf{v} = \begin{bmatrix} a \\ b \\ c \end{bmatrix}$$

$$\mathbf{u} = \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix} = \begin{bmatrix} u_1 \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ u_2 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ u_3 \end{bmatrix}$$

Vetores em \mathbb{R}^n

Definição

Vetor no espaço de n dimensões é uma n-upla ordenada de números reais, também representada por uma matriz coluna de dimensão $n \times 1$.

$$\mathbf{v} = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix}$$

Combinação Linear

Questões importantes

Dados os vetores $\mathbf{u} \in \mathbb{R}^n$, $\mathbf{v} \in \mathbb{R}^n$ e $\mathbf{w} \in \mathbb{R}^n$, quando consideramos

- um único vetor \mathbf{u} , as combinações lineares são as múltiplas $\mathbf{c} \cdot \mathbf{u}$
- dois vetores \mathbf{u} e \mathbf{v} , as combinações são $c \cdot \mathbf{u} + d \cdot \mathbf{v}$
- três vetores \mathbf{u} , \mathbf{v} e \mathbf{w} , as combinações são $c \cdot \mathbf{u} + d \cdot \mathbf{v} + e \cdot \mathbf{w}$

Line containing all cuPlane from all cu + dv

Se os vetores são não-nulos, as combinações

- c · u formam uma linha
- $c \cdot \mathbf{u} + d \cdot \mathbf{v}$ formam um plano
- $c \cdot \mathbf{u} + d \cdot \mathbf{v} + e \cdot \mathbf{w}$ formam um espaço 3D