THE NUMBERS OF EDGES OF THE ORDER POLYTOPE AND THE CHAIN POLYTOPE OF A FINITE PARTIALLY ORDERED SET

TAKAYUKI HIBI, NAN LI, YOSHIMI SAHARA AND AKIHIRO SHIKAMA

ABSTRACT. Let P be an arbitrary finite partially ordered set. It will be proved that the number of edges of the order polytope $\mathcal{O}(P)$ is equal to that of the chain polytope $\mathcal{C}(P)$. Furthermore, it will be shown that the degree sequence of the finite simple graph which is the 1-skeleton of $\mathcal{O}(P)$ is equal to that of $\mathcal{C}(P)$ if and only if $\mathcal{O}(P)$ and $\mathcal{C}(P)$ are unimodularly equivalent.

Introduction

In [5] the combinatorial structure of the order polytope $\mathcal{O}(P)$ and the chain polytope $\mathcal{C}(P)$ of a finite poset (partially ordered set) P is studied in detail. Furthermore, the problem when $\mathcal{O}(P)$ and $\mathcal{C}(P)$ are unimodularly equivalent is solved in [3]. In this paper it is proved that, for an arbitrary finite poset P, the number of edges of the order polytope $\mathcal{O}(P)$ is equal to that of the chain polytope $\mathcal{C}(P)$. Furthermore, it is shown that the degree sequence of the finite simple graph which is the 1-skeleton of $\mathcal{O}(P)$ is equal to that of $\mathcal{C}(P)$ if and only if $\mathcal{O}(P)$ and $\mathcal{C}(P)$ are unimodularly equivalent.

1. Edges of order polytopes and chain polytopes

Let $P = \{x_1, \dots, x_d\}$ be a finite poset. Given a subset $W \subset P$, we introduce $\rho(W) \in \mathbb{R}^d$ by setting $\rho(W) = \sum_{i \in W} \mathbf{e}_i$, where $\mathbf{e}_1, \mathbf{e}_2 \dots, \mathbf{e}_d$ are the canonical unit coordinate vectors of \mathbb{R}^d . In particular $\rho(\emptyset)$ is the origin of \mathbb{R}^d . A *poset ideal* of P is a subset I of P such that, for all x_i and x_j with $x_i \in I$ and $x_j \leq x_i$, one has $x_j \in I$. An *antichain* of P is a subset A of P such that x_i and x_j belonging to A with $i \neq j$ are incomparable. The empty set \emptyset is a poset ideal as well as an antichain of P. We say that x_j covers x_i if $x_i < x_j$ and $x_i < x_k < x_j$ for no $x_k \in P$. A chain $x_{j_1} < x_{j_2} < \dots < x_{j_\ell}$ of P is called *saturated* if x_{j_q} covers $x_{j_{q-1}}$ for $1 < q \leq \ell$.

The *order polytope* of P is the convex polytope $\mathcal{O}(P) \subset \mathbb{R}^d$ which consists of those $(a_1, \ldots, a_d) \in \mathbb{R}^d$ such that $0 \le a_i \le 1$ for every $1 \le i \le d$ together with

$$a_i \ge a_j$$

if $x_i \leq x_j$ in P.

The *chain polytope* of P is the convex polytope $\mathscr{C}(P) \subset \mathbb{R}^d$ which consists of those $(a_1, \ldots, a_d) \in \mathbb{R}^d$ such that $a_i \geq 0$ for every $1 \leq i \leq d$ together with

$$a_{i_1} + a_{i_2} + \cdots + a_{i_k} \le 1$$

for every maximal chain $x_{i_1} < x_{i_2} < \cdots < x_{i_k}$ of P.

²⁰¹⁰ Mathematics Subject Classification: Primary 52B05; Secondary 06A07. **Key words and phrases:** chain polytope, order polytope, partially ordered set.

One has $\dim \mathcal{O}(P) = \dim \mathcal{C}(P) = d$. The vertices of $\mathcal{O}(P)$ is those $\rho(I)$ for which I is a poset ideal of P ([5, Corollary 1.3]) and the vertices of $\mathcal{C}(P)$ is those $\rho(A)$ for which A is an antichain of P ([5, Theorem 2.2]). It then follows that the number of vertices of $\mathcal{O}(P)$ is equal to that of $\mathcal{C}(P)$. Furthermore, the volume of $\mathcal{O}(P)$ and that of $\mathcal{C}(P)$ are equal to e(P)/d!, where e(P) is the number of linear extensions of P ([5, Corollary 4.2]).

In [4] a characterization of edges of $\mathcal{O}(P)$ and those of $\mathcal{C}(P)$ is obtained. Recall that a subposet Q of a finite poset P is said to be *connected* in P if, for each x and y belonging to Q, there exists a sequence $x = x_0, x_1, \ldots, x_s = y$ with each $x_i \in Q$ for which x_{i-1} and x_i are comparable in P for each $1 \le i \le s$.

Lemma 1.1. *Let P be a finite poset.*

- (a) Given poset ideals I and J with $I \neq J$, the segment combining $\rho(I)$ with $\rho(J)$ is an edge of $\mathcal{O}(P)$ if and only if $I \subset J$ and $J \setminus I$ is connected in P.
- (b) Given antichains A and B with $A \neq B$, the segment combining $\rho(A)$ with $\rho(B)$ is an edge of $\mathcal{C}(P)$ if and only if $(A \setminus B) \cup (B \setminus A)$ is connected in P.

Let, in general, G be a finite simple graph, i.e., a finite graph with no loop and with no multiple edge, on the vertex set $V(G) = \{v_1, \ldots, v_n\}$. The $degree \deg_G(v_i)$ of each $v_i \in V(G)$ is the number of edges e of G with $v_i \in e$. Let $i_1 \cdots i_n$ denote a permutation of $1, \ldots, n$ for which $\deg_G(v_{i_1}) \leq \cdots \leq \deg_G(v_{i_n})$. The $degree \ sequence \ ([1, p. 216])$ of G is the finite sequence $(\deg_G(v_{i_1}), \ldots, \deg_G(v_{i_n}))$.

Example 1.2. Let X denote the poset

Figure 1

Then the degree sequence of the finite simple graph which is the 1-skeleton of $\mathcal{O}(X)$ is

and that of $\mathscr{C}(X)$ is

$$(5,6,6,6,6,6,6,7)$$
.

This observation guarantees that, even though the number of edges of $\mathscr{O}(X)$ is equal to that of $\mathscr{C}(X)$, one cannot construct a bijection $\varphi: V(\mathscr{O}(X)) \to V(\mathscr{C}(X))$, where $V(\mathscr{O}(X))$ is the set of vertices of $\mathscr{O}(X)$ and $V(\mathscr{C}(X))$ is that of $\mathscr{C}(X)$, with the property that, for α and β belonging to $V(\mathscr{O}(X))$, the segment combining α and β is an edge of $\mathscr{O}(X)$ if and only if the segment combining $\varphi(\alpha)$ and $\varphi(\beta)$ is an edge of $\mathscr{C}(X)$.

2. The number of edges of order polytopes and chain polytopes

We now come to the main result of the present paper.

Theorem 2.1. Let P be an arbitrary finite poset. Then the number of edges of the order polytope $\mathcal{O}(P)$ is equal to that of the chain polytope $\mathcal{C}(P)$.

Proof. Let Ω denote the set of pairs (I,J), where I and J are poset ideals of P with $I \neq J$ for which $I \subset J$ and $J \setminus I$ is connected in P. Let Ψ denote the set of pairs (A, B), where A and B are antichains of P with $A \neq B$ for which $(A \setminus B) \cup (B \setminus A)$ is connected in P.

As is stated in the proof of [4, Lemma 2.3], if there exist $x, x' \in A$ and $y, y' \in B$ with x < y and y' < x', then $(A \setminus B) \cup (B \setminus A)$ cannot be connected. In fact, if $(A \setminus B) \cup (B \setminus A)$ is connected, then there exists a sequence $x = x_0, y_0, x_1, y_1, \dots, y_s, x_s = x'$ with each $x_i \in A \setminus B$ and each $b_i \in B \setminus A$ such that x_i and y_i are comparable for each i and that y_i and x_{i+1} are comparable for each j. Since x < y and since B is an antichain, it follows that $x = x_0 < y_0$. Then, since A is an antichain, one has $y_0 > x_1$. Continuing these arguments says that $y_s > x_s = x'$. However, since y' < x', one has $y' < y_s$, which contradicts the fact that B is an antichain.

As a result, each $(A,B) \in \Psi$ can be required to satisfy either (i) $B \subset A$ or (ii) b < awhenever $a \in A$ and $b \in B$ are comparable. By virtue of Lemma 1.1, our work is to construct a bijection between Ω and Ψ .

Given $(I,J) \in \Omega$, we associate with

$$A = \max(J), B = \min(J \setminus I) \cup (\max(I) \cap \max(J))$$

with setting $\min(J \setminus I) = \emptyset$ if $|J \setminus I| = 1$, where, say, $\max(I)$ (resp. $\min(I)$) stands for the set of maximal (resp. minimal) elements of *I*. It then follows that

(1)
$$\min(J \setminus I) \cap (\max(I) \cap \max(J)) = \emptyset.$$

Now, $A = \max(J)$ is an antichain of P. If $x \in \min(J \setminus I)$ and $y \in \max(I) \cap \max(J)$, then $x \not\leq y$ since $x \not\in I$ and $y \in I$, and $y \not\leq x$ since $x \in J$, $x \neq y$ and $y \in \max(J)$. Hence B is an antichain of P. Furthermore, since $\max(J) \cap \min(J \setminus I) = \emptyset$, where $\min(J \setminus I) = \emptyset$ if $|J \setminus I| = 1$, it follows that $A \setminus B = \max(J) \setminus \max(I) = \max(J \setminus I)$ and $B \setminus A = \min(J \setminus I)$. Hence $(A \setminus B) \cup (B \setminus A)$ is connected in P. Thus $(A, B) \in \Psi$.

We claim that the above map which associates $(I,J) \in \Omega$ with $(A,B) \in \Psi$ is, in fact, a bijection between Ω and Ψ .

Let (I,J) and (I',J') belong to Ω with $\max(J) = \max(J')$ and

(2)
$$\min(J \setminus I) \cup (\max(I) \cap \max(J)) = \min(J' \setminus I') \cup (\max(I') \cap \max(J')).$$

Then J = J'. Let $\max(I) \cap \max(J) \neq \max(I') \cap \max(J)$ and, say, $\max(I) \cap \max(J) \neq \emptyset$. Let $x \in \max(I) \cap \max(J)$ and $x \notin \max(I') \cap \max(J)$. By using (2), one has $x \in \min(J \setminus I')$. Since $\max(J \setminus I') \cap \min(J \setminus I') = \emptyset$, where $\min(J \setminus I) = \emptyset$ if $|J \setminus I| = 1$, there is $y \in \max(J \setminus I')$ I') with x < y. This is impossible since x and y belong to max(J). As a result, one has $\max(I) \cap \max(J) = \max(I') \cap \max(J)$. It then follows from (1) and (2) that $\min(J \setminus I) =$ $\min(J \setminus I')$. In addition,

$$\max(J \setminus I) = \max(J) \setminus \max(I) = \max(J) \setminus (\max(I) \cap \max(J)) = \max(J \setminus I').$$

Since

$$J \setminus I = \{ x \in P : x \le b, \exists b \in \max(J \setminus I) \} \bigcap \{ x \in P : a \le x, \exists a \in \min(J \setminus I) \},$$

it follows from $\min(J \setminus I) = \min(J \setminus I')$ and $\max(J \setminus I) = \max(J \setminus I')$ that $J \setminus I = J \setminus I'$. Hence I = I' and (I, J) = (I', J'), as desired.

Let (A,B) belong to Ψ . Let J be the poset ideal of P with $\max(J) = A$. Let I be the poset ideal of P consisting of those $x \in J$ for which $x \ge y$ for no $y \in B \setminus A$. In particular, $I = J \setminus \{x\}$ if $B \subset A$ with $A \setminus B = \{x\}$. Then $\max(J \setminus I) = A \setminus B$ and $\min(J \setminus I) = B \setminus A$, where $\min(J \setminus I) = \emptyset$ if $|J \setminus I| = 1$. Hence $I \subset J$ and $J \setminus I$ is connected in P. Furthermore, $B = \min(J \setminus I) \cup (\max(I) \cap \max(J))$, as required.

3. Degree sequences of 1-skeletons of order and chain polytopes

Let $\mathbb{Z}^{d \times d}$ denote the set of $d \times d$ integral matrices. A matrix $A \in \mathbb{Z}^{d \times d}$ is *unimodular* if $\det(A) = \pm 1$. Given integral polytopes $\mathscr{P} \subset \mathbb{R}^d$ of dimension d and $\mathscr{Q} \subset \mathbb{R}^d$ of dimension d, we say that \mathscr{P} and \mathscr{Q} are *unimodularly equivalent* if there exists a unimodular matrix $U \in \mathbb{Z}^{d \times d}$ and an integral vector $\mathbf{w} \in \mathbb{Z}^d$ such that $Q = f_U(P) + \mathbf{w}$, where f_U is the linear transformation of \mathbb{R}^d defined by U, i.e., $f_U(\mathbf{v}) = \mathbf{v}U$ for all $\mathbf{v} \in \mathbb{R}^d$.

Recall from [3] that $\mathcal{O}(P)$ and $\mathcal{C}(P)$ are unimodularly equivalent if and only if the poset X of Figure 1 does not appear as a subposet of P. In consideration of Example 1.2, we now prove the following

Theorem 3.1. Let P be a finite poset. Then the degree sequence of the finite simple graph which is the 1-skeleton of $\mathcal{O}(P)$ is equal to that of $\mathcal{C}(P)$ if and only if $\mathcal{O}(P)$ and $\mathcal{C}(P)$ are unimodularly equivalent.

Proof. ("If") If $\mathcal{O}(P)$ and $\mathcal{C}(P)$ are unimodularly equivalent, then the 1-skeleton of $\mathcal{O}(P)$ is isomorphic to that of $\mathcal{C}(P)$ as finite graphs. Thus in particular the degree sequence of the 1-skeleton of $\mathcal{O}(P)$ is equal to that of $\mathcal{C}(P)$, as required.

("Only If") Let |P| = d. Suppose that $\mathcal{O}(P)$ is not unimodularly equivalent to $\mathcal{C}(P)$. It then follows from [3, Theorem 2.1] that the poset X of Figure 1 does appear as a subposet of P. Let $X = \{a, b, c, g, h\}$, where a < c, b < c, c < g and c < h. Work with the same notation as in the proof of Theorem 2.1. Write $G_{\mathcal{O}(P)}$ for the finite simple graph which is the 1-skeleton of $\mathcal{O}(P)$ and $G_{\mathcal{C}(P)}$ for that of $\mathcal{C}(P)$.

Let $A \neq \emptyset$ be an antichain of P. Then $(\emptyset, A) \in \Psi$ if and only if |A| = 1. It then follows that the degree of the vertex $\rho(\emptyset)$ of $G_{\mathscr{C}(P)}$ is equal to d.

We now prove that the degree of each vertex of $G_{\mathcal{O}(P)}$ is at least d+1. Let I be a poset ideal of P. For each $x \in I$ we write I' for the poset ideal of P consisting of those $y \in I$ with $y \not\geq x$. Then $(I',I) \in \Omega$. For each $x \in P \setminus I$ we write I' for the poset ideal of P consisting of those $y \in P$ with either $y \in I$ or $y \leq x$. Then $(I,I') \in \Omega$. As a result, the degree of each vertex of $G_{\mathcal{O}(P)}$ is at least d.

Since the poset $X = \{a, b, c, g, h\}$ of Figure 1 does appear as a subposet of P, one has either $c \in I$ or $c \notin I$. Let $c \in I$ and I' the poset ideal of P consisting of those $y \in I$ with neither $y \ge a$ nor $y \ge b$. Then $(I', I) \in \Omega$. Let $c \notin I$ and I' the poset ideal of P consisting of those $y \in P$ with $y \in I$ or $y \le g$ or $y \le h$. Then $(I, I') \in \Omega$. Hence the degree of each vertex of $G_{\mathcal{O}(P)}$ is at least d+1, as desired.

Together with [3, Corollary 2.3] it follows that

Corollary 3.2. Given a finite poset P, the following conditions are equivalent:

- (i) $\mathcal{O}(P)$ and $\mathcal{C}(P)$ are unimodularly equivalent;
- (ii) $\mathcal{O}(P)$ and $\mathcal{C}(P)$ are affinely equivalent;
- (iii) $\mathcal{O}(P)$ and $\mathcal{C}(P)$ have the same f-vector ([2, p. 12]);
- (iv) The number of facets of $\mathcal{O}(P)$ is equal to that of $\mathcal{C}(P)$;
- (v) the degree sequence of the finite simple graph which is the 1-skeleton of $\mathcal{O}(P)$ is equal to that of $\mathcal{C}(P)$;
- (vi) The poset X of Figure 1 of does not appear as a subposet of P.

REFERENCES

- [1] R. Diestel, "Graph theory," 4th ed., GTM 173, Springer, Heidelberg, 2010.
- [2] T. Hibi, "Algebraic combinatorics on convex polytopes," Carslaw Publications, Glebe, N.S.W., Australia, 1992.
- [3] T. Hibi and N. Li, Unimodular equivalence of order and chain polytopes, Math. Scand., to appear.
- [4] T. Hibi and N. Li, Cutting convex polytopes by hyperplanes, arXiv:1402.3805.
- [5] R. Stanley, Two poset polytopes, *Discrete Comput. Geom.* **1** (1986), 9 23.

Takayuki Hibi, Department of Pure and Applied Mathematics, Graduate School of Information Science and Technology, Osaka University, Toyonaka, Osaka 560-0043, Japan

E-mail address: hibi@math.sci.osaka-u.ac.jp

Nan Li, Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

E-mail address: nan@math.mit.edu

YOSHIMI SAHARA, DEPARTMENT OF PURE AND APPLIED MATHEMATICS, GRADUATE SCHOOL OF INFORMATION SCIENCE AND TECHNOLOGY, OSAKA UNIVERSITY, TOYONAKA, OSAKA 560-0043, JAPAN

E-mail address: y-sahara@cr.math.sci.osaka-u.ac.jp

AKIHIRO SHIKAMA, DEPARTMENT OF PURE AND APPLIED MATHEMATICS, GRADUATE SCHOOL OF INFORMATION SCIENCE AND TECHNOLOGY, OSAKA UNIVERSITY, TOYONAKA, OSAKA 560-0043, JAPAN

E-mail address: a-shikama@cr.math.sci.osaka-u.ac.jp