2. Parcial 2

2.1. Expresiones útiles

$$\sigma_{\nu} = \sqrt{\sigma_{x}^{2} + \sigma_{y}^{2} + \sigma_{z}^{2} - \sigma_{x}\sigma_{y} - \sigma_{x}\sigma_{z} - \sigma_{y}\sigma_{z} + 3(\sigma_{xy}^{2} + \sigma_{xz}^{2} + \sigma_{yz}^{2})}$$
(1)

$$\sigma_{\nu} = \sqrt{\frac{1}{2}[(\sigma_{11} - \sigma_{22})^2 + (\sigma_{11} - \sigma_{33})^2 + (\sigma_{22} - \sigma_{33})^2] + 3(\sigma_{12}^2 + \sigma_{13}^2 + \sigma_{23}^2)}$$
(2)

$$\lambda = \frac{E \,\nu}{(1+\nu)(1-2\,\nu)} \qquad \mu = G = \frac{E}{2(1+\nu)} \tag{3}$$

$$\begin{bmatrix} \sigma_{xx} \\ \sigma_{yy} \\ \sigma_{xy} \end{bmatrix} = \frac{E}{1 - v^2} \begin{bmatrix} 1 & v & 0 \\ v & 1 & 0 \\ 0 & 0 & \frac{1 - v}{2} \end{bmatrix} \cdot \begin{bmatrix} \varepsilon_{xx} \\ \varepsilon_{yy} \\ 2\varepsilon_{xy} \end{bmatrix}$$
(4)

$$\begin{bmatrix} \sigma_{11} \\ \sigma_{22} \\ \sigma_{12} \end{bmatrix} = \frac{E}{(1+\nu)(1-2\nu)} \begin{bmatrix} 1-\nu & \nu & 0 \\ \nu & 1-\nu & 0 \\ 0 & 0 & \frac{1-2\nu}{2} \end{bmatrix} \cdot \begin{bmatrix} \varepsilon_{11} \\ \varepsilon_{22} \\ 2\varepsilon_{12} \end{bmatrix}$$
 (5)

$$I = \int_{-1}^{1} \phi(\xi) d\xi \approx \phi(\xi_1) W_1 + \phi(\xi_2) W_2 \dots \phi(\xi_n) W_n$$
 (6)

$$I = \int_{-1}^{1} \int_{-1}^{1} \phi(\xi, \eta) d\xi d\eta \approx \sum_{i} \sum_{j} W_{i} W_{j} \phi(\xi, \eta)$$

$$\tag{7}$$

2.2. Como obtener cualquier función de forma

Se define cuantos nodos se va tener por elemento y se los ubica en el espacio (ξ, η) que por simplicidad se trataran como (x, y). Con el triangulo de Pascal para polinomios se elige el grado del polinomio y los términos. Luego se resuelve el sistema de ecuaciones $N_i \cdot X = A$ donde $N_i = [N_1 \quad N_2 \quad \dots \quad N_n]$ y $X = [1 \quad x \quad y \quad \dots \quad x^{k-1}y^k \quad x^ky^k]^T$, o algo por el estilo. Se tienen que elegir los grados mas convenientes teniendo en cuenta la simetría y el número de nodos, este ultimo te limita el número de términos posibles por la naturaleza de la interpolación. La matriz A tendrá en su **espacio fila** el mismo polinomio evaluado en la posición del nodo correspondiente a esa fila.

$$A = \begin{bmatrix} 1 & x_1 & y_1 & \dots & x_1^{k-1} y_1^k & x_1^k y_1^k \\ 1 & x_2 & y_2 & \dots & x_2^{k-1} y_2^k & x_2^k y_2^k \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 1 & x_n & y_n & \dots & x_n^{k-1} y_n^k & x_n^k y_n^k \end{bmatrix}$$

Luego, las funciones de forma N_i se pueden obtener así: $N_i = X^{-1}A$

2.3. Elementos isoparametricos

- Un elemento que no esta distorsionado (sigue siendo rectangular) tiene *J* constante
- Cuidado con modo espurio. Ver tabla 6.8-1 pg. 226 el tema de full/reduced integration.
- Todo sobre como cargar tu elemento isoparam. en pg. 228

Figura 1: Puntos gauss para ordenes n = 2 y n = 3. El peso para n = 2 es igual en todos los puntos $W_i = 1$

2.4. Ejemplo elemento exótico

Matriz de Rigidez

Imaginemos un elementos Q5 cuadrado de 2×2 con espesor t (igual al Q4 con un nodo en su centro). Si fuéramos a obtener las funciones de formas de dicho elemento quedarían iguales para (x,y) y para (ξ,η) por las dimensiones usadas. La funcionalidad que uno estaría tentado a seleccionar sería $[1 \ x \ y \ x^2 \ y^2]$, pero está trae problemas inesperados debido a que tiene varias soluciones en la interpolación. Como nuestra prioridad siempre es mantener la simetría la funcionalidad será $[1 \ x \ y \ x^2 \ y^2]$. Tomando el orden de la figura 2.

$$N_{i} = \begin{bmatrix} \frac{x^{2}y^{2}}{4} + \frac{xy}{4} - \frac{x}{4} - \frac{y}{4}, & \frac{x^{2}y^{2}}{4} - \frac{xy}{4} + \frac{x}{4} - \frac{y}{4}, & \frac{x^{2}y^{2}}{4} + \frac{xy}{4} + \frac{x}{4} + \frac{y}{4}, & \frac{x^{2}y^{2}}{4} - \frac{xy}{4} - \frac{x}{4} + \frac{y}{4}, & 1 - x^{2}y^{2} \end{bmatrix}$$

Llegado a este punto nos interesa obtener la matriz de rigidez. Si queremos lograr "full integration" deberíamos usar Gauss orden n = 3 según $2n - 1 \ge O([\mathbf{B}]^T[\mathbf{E}][\mathbf{B}])$. El producto $[\mathbf{B}]^T[\mathbf{E}][\mathbf{B}]$ da un polinomio de orden 6 ($[\mathbf{B}]$ tiene el mismo orden que la derivada de $[\mathbf{N}]$). De esta forma nos aseguramos que nuestro resultado va ser exacto para el elemento sin distorsionar.

Para esté ejemplo, no se pide *full integration* entonces no pasa nada si queremos *underintegrate*. Usamos Gauss orden n = 2.

Figura 2: Elemento Q5 rectangular.

$$[\mathbf{k}] = \int [\mathbf{B}]^T [\mathbf{E}] [\mathbf{B}] dV = \iint [\mathbf{B}]^T [\mathbf{E}] [\mathbf{B}] t dx dy = \int_{-1}^1 \int_{-1}^1 [\mathbf{B}]^T [\mathbf{E}] [\mathbf{B}] t |\mathbf{J}| d\xi d\eta$$
(8)

donde [B] es la matriz deformación-desplazamiento del elemento, [E] es la matriz constitutiva, y |J| es el determinante de la matriz Jacobiana, el cual se le suele decir simplemente el Jacobiano.

Este ultimo se calcula a partir de la derivada de las funciones de forma

Cargas 2-D

La ecuación que rige como se cargan elementos, siendo $\{r\}$ las cargas nodales, $\{F\}$ fuerzas volumetricas, $\{\Phi\}$ fuerzas de tracción superficiales, $\{\varepsilon_0\}$ las deformaciones iniciales y $\{\sigma_0\}$ las tensiones iniciales (pg. 228)

$$\{\mathbf{r}\} = \int [\mathbf{N}]^T \{\mathbf{F}\} dV + \int [\mathbf{N}]^T \{\mathbf{\Phi}\} dS + \int [\mathbf{B}]^T [\mathbf{E}] \{\boldsymbol{\varepsilon_0}\} dV - \int [\mathbf{B}] \{\boldsymbol{\sigma_0}\} dV$$
(9)

Carga de linea. Si el elemento está cargado sobre la linea 4-3 con una distribuida q(x) (en [N m⁻¹]) entonces procedemos de la siguiente manera según el segundo término de (9):

$$r_{xi} = \int_{-1}^{1} N_i(\tau \mathbf{J}_{11} - \sigma \mathbf{J}_{12}) t \,\mathrm{d}\xi \tag{10}$$

$$r_{yi} = \int_{-1}^{1} N_i(\sigma \mathbf{J}_{11} + \tau \mathbf{J}_{12}) t \, \mathrm{d}\xi \tag{11}$$

donde σ es la solicitación normal a la superficie y τ es la tangencial. Para la fuerza sobre el nodo 4 se tiene

$$r_{v4} = N_4(\xi_2)t[\sigma(\xi_2)\mathbf{J}_{11} + \tau(\xi_2)\mathbf{J}_{12}] \cdot W_2 + N_4(\xi_3)t[\sigma(\xi_3)\mathbf{J}_{11} + \tau(\xi_3)\mathbf{J}_{12}] \cdot W_3$$

Si consideramos que solo hay una *carga distribuida de linea* a tracción/compresión como indica la figura 2, se reduce la ecuación anterior

$$r_{y4} = N_4(\xi_2) \mathbf{J}_{11} q(\xi_2) + N_4(\xi_3) \mathbf{J}_{11} q(\xi_3) = N_4 q \mathbf{J}_{11} \Big|_{\xi_2} + N_4 q \mathbf{J}_{11} \Big|_{\xi_3}$$

similarmente $r_{y3} = N_3 q \mathbf{J}_{11}|_{\xi_2} + N_3 q \mathbf{J}_{11}|_{\xi_3}$ donde la matriz Jacobiana también se evalúa para cada punto de Gauss!

Carga volumetrica.

Tensiones

Las tensiones en los nodos suele ser de mayor interés que sobre los puntos de gauss (mas comprometidas, permiten estimar error)

3. Dudas

- 1. Pg. 223 Cook: [k] de un solido 8 nodos se integra con n = 2, pero [B] se integra con n = 3. Pero se necesita [B] para obtener [k].
- 2. Si quiero verificar calidad de un elemento, me basta con pararme arriba cada punto Gauss y verificar que $|\mathbf{J}|$ no sea igual a cero y que no cambie de signo?
- 3. Tengo un problema plain strain pero tengo q(x) en [N/m]. No lo integro con t! No? Inversamente, para el mismo problema, si tengo solo presiones o fzas volumetricas puedo olvidarme que existe t y no usarla para el calculo de la matriz rigidez (y presiones/fzas vol). Se le dice singularidad a un punto donde $|\mathbf{J}|$ es cero?
- 4. Si quiero tensiones en puntos Gauss, cambia la dimension de [B] cuando itero sobre los puntos? Cook dice que [B] is calculated from (lower order) displacement field. wtf?

- 5. **Follow-up** Cuando itero sobre los mismos Puntos de Gauss para obtener tensiones, cambian mis [N]? Sé que puedo usar los puntos de Gauss para extrapolar tensiones en los nodos, pero hablo antes de eso
- 6. Para un elemento me conviene siempre ser perfectamente simetrico en la elección del orden del polinomio? Hay alguna vez que voy a tomar $\begin{bmatrix} 1 & x & y & xy & x^2 \end{bmatrix}$ antes de tomar algo por el estilo de $\begin{bmatrix} 1 & x & y & y^2 & x^2 \end{bmatrix}$
- 7. **Picardía mia:** Me resulto un poco inútil el formato de [N] para elementos isoparametricos, siendo el formato N_i aparentemente mas util. Es esto un espejismo?