

Semantic Image Synthesis with Spatially-Adaptive Normalization

Taesung Park, Ming-Yu Liu, Ting-Chun Wang, Jun-Yan Zhu UC Berkeley, NVIDIA, MIT CSAIL

Presented by:

Matteo Destro, Zihadul Azam

What is this paper about?

- o Converting a **semantic segmentation** mask to a **photorealistic image**
- Preserve semantic information
- Produce images with multiple styles

Image-to-image translation

Pix2pixHD: Generator

- Encoder for downscale
- Decoder for upscale

Image-to-Image Translation with Conditional Adversarial Networks | Phillip Isola, Jun-Yan Zhu | [arvix]

High-Resolution Image Synthesis and Semantic Manipulation with Conditional GANs | Ting-Chun Wang, Ming-Yu Liu | [arvix]

What is wrong with pix2pixHD?

- Use Instance Normalization
- "Wash away information" problem: in pix2pixHD, instance normalization tends to throw away information from the segmentation map. For single-class images, it produces the same image regardless of the class.
- Instance normalization **produce 0** as output of the normalization with uniform semantic mask.

Solution:

SPADE

SPatially-Adaptive (DE)normalization

SPADE: normalization

$$egin{equation} \gamma_{c,y,x}^i(\mathbf{m}) rac{h_{n,c,y,x}^i - oldsymbol{\mu_c^i}}{oldsymbol{\sigma_c^i}} + eta_{c,y,x}^i(\mathbf{m}) \end{pmatrix}$$

Where:

- hⁱ_{n;c;y;x} is the activation at site before normalization
- μ_c and σ_c are the mean and standard deviation of the activations in channel **c**
- m is the segmentation mask

$$\mu_c^i = \frac{1}{NH^i W^i} \sum_{n,y,x} h_{n,c,y,x}^i$$

$$\sigma_c^i = \sqrt{\frac{1}{NH^i W^i} \sum_{n,y,x} \left((h_{n,c,y,x}^i)^2 - (\mu_c^i)^2 \right)}$$

SPADE

- The mask is first projected onto an **embedding space**
- \circ Then it's convolved to produce the modulation parameters γ and β
- \circ The produced γ and β are multiplied and added to the normalized activation element-wise

GauGAN architecture

Three main components:

- **Generator:** generate the final synthetic image.
- Discriminator: discriminate between real and synthetic images. Used only during training.
- Encoder: convert an input image to its latent space representation z. Can be used to transfer the style of an image to the generated one.

Generator: SPADE Residual Block

The generator is composed by a sequence of **SPADE Residual Blocks:**

- SPADE normalizations:
 - the semantic mask is downsampled to match the spatial resolution
- ReLU activations
- o Convolutions:
 - 3x3 kernel with padding 1
 - *k* channels in output
 - input and output spatial dimensions are equal
- Residual connection

Generator

The generator is composed by a sequence of **SPADE Residual Blocks** interleaved by **upsampling layers.**

Less parameters: no need for downsampling layers like Pix2pixHD to feed the semantic map to the model (SPADE modulations parameters are enough).

Discriminator: PatchGAN

The discriminator:

- Takes in input the concatenation of the semantic map (one-hot encoded) and the image
- Is composed by a series of convolutional layers:
 - 4x4 kernel with stride 2
 - Leaky ReLU activations
 - Instance normalization
- A final convolutional layer computes the final prediction

Two discriminators are used, working at different scales.

Encoder: VAE

The encoder is composed by:

- Series of convolutional layers:
 - 3x3 kernel with stride 2
 - Leaky ReLU activations
 - Instance normalization
- Two linear layers to compute:
 - o mean vector (μ)
 - variance vector (σ²)

The final latent space representation **z** is computed via a reparameterization trick:

$$z = \mu + \mathcal{N}(0,1) \cdot e^{\frac{1}{2}\sigma^2}$$

Loss functions

Adversarial loss: uses the Hinge loss instead of the Least Squares loss of Pix2pixHD:

$$L_D = -\mathbb{E}\left[\min(0, -1 + D(x, y))\right] - \mathbb{E}\left[\min(0, -1 - D(G(z, \mathbf{m}), y))\right]$$

$$L_G = -\mathbb{E}\left[D(G(z, \mathbf{m}), y)\right]$$

• Feature matching loss:

$$L_{FM} = \mathbb{E}\left[\sum_{i=1}^{L} \left\| D_k^{(i)}(x) - D_k^{(i)}(G(z, \mathbf{m})) \right\|_1 \right]$$

Perceptual loss: similar concept to Feature loss, but uses activations of a VGG-19 pretrained model

$$L_{VGG} = \mathbb{E}\left[\sum_{i=1}^{L} \|VGG^{(i)}(x) - VGG^{(i)}(G(z, \mathbf{m}))\|_{1}\right]$$

• Encoder loss (if used):

$$L_{KLD} = \mathcal{D}_{KL}(q(z|x) \mid\mid p(z))$$

Datasets

o COCO-Stuff:

- o 118'000 training and 5'000 validation images
- 182 semantic classes

ADE20K (-outdoor):

- 20'120 training and 2'000 validation images
- o 150 semantic classes

o Cityscapes:

- 3'000 training and 500 validation images
- 19 semantic classes

Flickr Landscapes:

- 41'000 training and 1'000 validation images
- Semantic maps computed using a pre-trained DeepLabV2 model

Evaluation metrics

Compare:

- Human evaluation
- Fréchet Inception Distance (FID)
- Mean Intersection Over Union (mIoU)
- Pixel accuracy (accu)

Idea: run a **semantic segmentation** model on the generated images and compare the resulting segmentation map with the original input.

Use state-of-the-art models for each dataset: **DeepLabV2** for COCO-Stuff, **UperNet101** for ADE20K, **DRN-D-105** for Cityscapes

Experiment results

Results compared with state-of-the-art semantic image synthesis models:

- Cascaded Refinement Network^[1] (CRN)
 Uses a deep network that repeatedly refines the output from low to high resolution
- Semi-parametric Image Synthesis Method^[2] (SIMS)
 Semi-parametric approach that composites real segments from a training set and refines the boundaries.

State-of-the-art GAN-based conditional image synthesis framework

	COCO-Stuff		ADE20K			ADE20K-outdoor			Cityscapes			
Method	mIoU	accu	FID	mIoU	accu	FID	mIoU	accu	FID	mIoU	accu	FID
CRN [6]	23.7	40.4	70.4	22.4	68.8	73.3	16.5	68.6	99.0	52.4	77.1	104.7
SIMS [43]	N/A	N/A	N/A	N/A	N/A	N/A	13.1	74.7	67.7	47.2	75.5	49.7
pix2pixHD [48]	14.6	45.8	111.5	20.3	69.2	81.8	17.4	71.6	97.8	58.3	81.4	95.0
Ours	37.4	67.9	22.6	38.5	79.9	33.9	30.8	82.9	63.3	62.3	81.9	71.8

Experiment results: Image Synthesis

Experiment results: Multimodal Synthesis

Demo: Flickr Landscapes dataset

http://gaugan.org/gaugan2/

Improvements from other works

CLADE: Class-Adaptive (DE)normalization

 SEAN: Image Synthesis with Semantic Region-Adaptive Normalization

o GauGAN2

Improvements **From Other** Works

CLADE: Class-Adaptive (DE)normalization

They showed that the spatial information is not very beneficial in SPADE, its effectiveness is given by its semantic awareness.

Idea:

- Learn a single γ and β for each semantic class, instead of modulating them through two a shallow CNN
- Create spatial-aware modulation parameters through guided sampling

The modulation convolutional network of SPADE is removed

SEAN: Image Synthesis with Semantic Region-Adaptive Normalization

Face image editing controlled via style images and segmentation masks:

- This network architecture can control the **style** of each semantic region individually
- Here we can specify one style reference image per region

GauGAN2

GauGAN2 is designed to create photorealistic art with a **mix of words** and **drawings**:

- Trained on 10 million images
- Can translate natural language descriptions into landscape images

Unpaired **SPADE**

Unpaired Semantic Image Synthesis

What if we don't have paired samples?

Idea: exploit a **semantic segmentation model** to train the model in an unpaired setting, introducing a reconstruction loss w.r.t the semantic map input.

We can use an approach similar to CycleGAN (unpaired image-to-image translation):

- Add a segmentation model in the loop (e.g. U-Net, DeepLabV3, ...)
- Add a segmentation loss based on the reconstructed segmentation

Unpaired Semantic Image Synthesis

Unpaired Semantic Image Synthesis

Introduce a class-balanced semantic segmentation loss in the generator:

 \circ Class-balanced loss based on effective number of samples $^{[1]}$: $lpha_c=rac{1-eta}{1-eta^{n_c}}$

$$oldsymbol{ iny Focal loss}^{ ext{[2]}}: \quad L_{SEG} = -\sum_{c,i,j}^{C imes H imes W} lpha_c \cdot \mathbf{m}_{c,i,j} \cdot (1-\mathbf{\hat{m}}_{c,i,j})^{\gamma} \, \log(\mathbf{\hat{m}}_{c,i,j})^{\gamma} \, \log(\mathbf{\hat{m}}_{$$

Final generator loss: $L_G = -\mathbb{E}\left[D(G(z, \mathbf{m}))\right] + \lambda \mathbb{E}\left[L_{SEG}\right]$

Unpaired Semantic Image Synthesis: Results

Performances obtained over the ADE20K dataset. To reduce training time, we used:

- Smaller model: 14.1M parameters instead of 96.5M
- Smaller input images: 64x64 instead of 256x256
- Less epochs: 50 instead of 200
- UPerNet18^[1] as **segmenter** network

Method	mIoU	Accuracy	FID
SPADE (baseline)	27.03	58.35	87.13
SPADE + pretrained UPerNet	29.74	59.96	80.10
SPADE + untrained UPerNet	29.54	59.73	83.67

Unpaired Semantic Image Synthesis: Results

Unpaired Semantic Image Synthesis: Results

As side-effect, we train a **semantic segmentation** network in an **unsupervised** way.

Method	mIoU	Accuracy
Pretrained UPerNet	38.18	78.64
UPerNet trained with SPADE	26.76	57.27

Unpaired Semantic Image Synthesis: Future works

We may also add a second discriminator that detect real/fake semantic maps in order to introduce a **cycle consistency loss:**

$$L_G = -\mathbb{E}\left[D_1(G(z, \mathbf{m}))\right] - \mathbb{E}\left[D_2(S(x))\right] + \lambda_1 \mathbb{E}\left[L_{SEG}\right] + \lambda_2 \mathbb{E}\left[L_{CYC}\right]$$
$$L_{CYC} = ||G(z, S(x)) - x||_1$$

Unpaired Semantic Image Synthesis: Recap

- No need for paired label-image samples (e.g. we could create synthetic input labels)
- Secondary result: unsupervised semantic segmentation model
- The **rescaled loss** give more importance to classes with small objects
- We can exploit pretrained semantic segmentation models, if available
- If a set of paired samples is available (even small), it can be exploited to further train the semantic segmentation network

