7

7.1

We prove $M \wedge N \leq M \times N$. Notice for $M \wedge N$ if $\Sigma_m \neq \Sigma_n$ then $M \wedge N = \emptyset$ which is always a subset of any set. Therefore, we assume from now on $\Sigma_m = \Sigma_n$. Also checkout these definitions:

$$(q_m, q_n)(\delta_m \wedge \delta_n)_a = (q_m \delta_a^m, q_n \delta_a^n) \tag{1}$$

$$(q_m, q_n)(\delta_m \times \delta_n)_{(a_m, a_n)} = (q_m \delta_{a_m}^m, q_n \delta_{a_n}^n)$$
(2)

We choose for the covering (η, ξ) $id_{(q_m,q_n)}$ as η and define $\xi : \Sigma_n \to \Sigma_m \times \Sigma_n; a_m \mapsto (a_m, a_m)$, which is well-defined due the assumption $\Sigma_n = \Sigma_m$.

Now we show $\eta((q_m, q_n))(\delta^m \wedge \delta^n)_{a_m} \subseteq \eta((q_m, q_n)(\delta^m \times \delta^n)_{\xi(a_m)})$:

$$\eta((q_m, q_n))(\delta^m \wedge \delta^n)_{a_m} = (q_m, q_n)(\delta^m \wedge \delta^n)_{a_m}$$
 (def. η , 1)

$$= (q_m \delta_{a_m}^m, q_n \delta_{a_m}^n) \tag{2}$$

$$= (q_m, q_n)(\delta_m \times \delta_n)_{(a_m, a_m)}$$
 (def. ξ)

$$= (q_m, q_n)(\delta_m \times \delta_n)_{\xi(a_m)}$$
 (def. η)

 $= \eta((q_m, q_n)(\delta^m \times \delta^n)_{\xi(a_m)})$

7.2

Let M_1, M_2, M_3 three state machines. The claim is that $(M_1 \times M_2) \times M_3 \simeq M_1 \times (M_2 \times M_3)$ holds true. Lets begin by looking at the definitions:

$$M_1 \times M_2 = (Q \times Q', \Sigma \times \Sigma', \delta \times \delta')$$
 (7.1)

with

$$(q, q')(\delta \wedge \delta')_{(a,a')} = (q\delta_a, q'\delta'_{a'}) \mid q \in Q, q' \in Q', a \in \Sigma, a' \in \Sigma'$$

$$(7.2)$$

. Next we look at $(M_1 \times M_2) \times M_3$:

$$(M_1 \times M_2) \times M_3 = ((Q \times Q') \times Q'', (\Sigma \times \Sigma') \times \Sigma'', (\delta \times \delta') \times \delta'')$$
(7.3)

with

$$((q, q'), q'')((\delta \wedge \delta') \wedge \delta'')_{((a,a'),a'')} = ((q\delta_a, q'\delta'_{a'}), q''\delta''_{a''})$$
(7.4)

. Likewise, $M_1 \times (M_2 \times M_3)$ looks like the following:

$$M_1 \times (M_2 \times M_3) = (Q \times (Q' \times Q''), \Sigma \times (\Sigma' \times \Sigma''), \delta \times (\delta' \times \delta'')) \tag{7.5}$$

with

$$(q, (q', q''))(\delta \wedge (\delta' \wedge \delta''))_{(a, (a', a''))} = (q\delta_a, (q'\delta'_{a'}, q''\delta''_{a''}))$$
(7.6)

To show that $(M_1 \times M_2) \times M_3 \simeq M_1 \times (M_2 \times M_3)$ holds true we need to find a bijection that translates $(M_1 \times M_2) \times M_3$ into $M_1 \times (M_2 \times M_3)$:

Define $\alpha: (Q \times Q') \times Q'' \to Q \times (Q' \times Q''): ((q, q'), q'') \mapsto (q, (q', q'') \text{ and } \beta: (\Sigma \times \Sigma') \times \Sigma'' \to \Sigma \times (\Sigma' \times \Sigma''): (a, a'), a'' \mapsto a, (a', a'') \text{ as bijective functions. Now we need to show that}$

$$\alpha((q,q'),q'')((\delta \wedge \delta') \wedge \delta'')_{((a,a'),a'')}) \subseteq (\alpha((q,q'),q''))(\delta \wedge (\delta' \wedge \delta'')_{\beta((a,a'),a'')})$$
(7.7)

Proof:

$$(q\delta_{a}, (q'\delta'_{a'}, q''\delta''_{a''})) =$$

$$\alpha((q\delta_{a}, q'\delta'_{a'}), q''\delta''_{a''}) =$$

$$\alpha((q, q'), q'')((\delta \wedge \delta') \wedge \delta'')_{((a, a'), a'')}) \subseteq (q, (q', q''))(\delta \wedge (\delta' \wedge \delta'')_{a, (a', a'')})$$

$$= (q\delta_{a}, (q'\delta'_{a'}, q''\delta''_{a''}))$$

This concludes the proof for our claim $(M_1 \times M_2) \times M_3 \simeq M_1 \times (M_2 \times M_3)$.

7.3

We prove $P \leq N\omega R$ under the assumption $M \leq N$ and $P \leq M\omega R$. Let $\eta_1: Q_n \to Q_m$ and $\eta_2: Q_m \times Q_r \to Q_p$ be the η -functions of $M \leq N$ and $P \leq M\omega R$. Furthermore, let $\xi_1: \Sigma_p \to \Sigma_r$ be the ξ -function of $P \leq M\omega R$.

We define $\eta: Q_n \times Q_r \to Q_p; (q_n, q_r) \mapsto \eta_2(\eta_1(q_n), q_r)$. Moreover we choose ξ_1 as ξ . Finally, we show $\eta((q_n, q_r))\delta_{a_p}^p \subseteq \eta((q_n, q_r)\delta_{\xi(a_p)}^\omega)$.

$$\eta((q_n, q_r))\delta_{a_p}^p = \eta_2((\eta_1(q_n), q_r))\delta_{a_p}^p \qquad (\text{def. } \eta, \eta_1)$$

$$= \eta_2(q_m, q_r))\delta_{a_p}^p \qquad (\text{def. } \eta_2)$$

$$= q_p\delta_{a_p}^p \qquad (P \leq M\omega R)$$

$$\subseteq \eta_2((q_m, q_r)\delta_{\xi(a_p)}^\omega) \qquad (\text{def. } \xi)$$

$$= \eta_2((q_m, q_r)\delta_{a_r}^\omega) \qquad (\text{def. } \delta^\omega)$$

$$= \eta_2((q_m\delta_{a_m}^m, q_r\delta_{a_r}^r)) \qquad (\text{def. } \omega)$$

$$= \eta_2((q_m\delta_{a_m}^m, q_r\delta_{a_r}^r)) \qquad (\text{def. } \omega)$$

$$= \eta_2((\eta_1(q_n\delta_{a_n}^n, q_r\delta_{a_r}^r)) \qquad (\text{def. } \eta)$$

$$= \eta((q_n\delta_{a_n}^n, q_r\delta_{a_r}^r)) \qquad (\text{def. } \omega)$$

$$= \eta((q_n\delta_{a_n}^n, q_r\delta_{a_r}^r)) \qquad (\text{def. } \delta^\omega)$$

$$= \eta((q_n, q_r)\delta_{a_r}^\omega) \qquad (\text{def. } \delta^\omega)$$

$$= \eta((q_n, q_r)\delta_{a_r}^\omega) \qquad (\text{def. } \xi)$$

$$= \eta((q_n, q_r)\delta_{a_r}^\omega) \qquad (\text{def. } \xi)$$

7.4

No time for that, buzy buying christmas presents.