ML 101 hands-on

daniel.c.moura@gmail.com | linkedin.com/in/dmoura

Machine learning

- Learn from data
 - Logic extracted from data
 - Logic not provided by the programmer

Machine learning

- Supervised Learning
 - Teaching by example
- Unsupervised learning
 - Extracting structure from the data

Supervised Learning

- $f(x) \rightarrow y$
 - f: the function we want to learn
 - x: inputs
 - y: output

Supervised Learning

f(age, weight, height, gender) → accepted?

age	weight	height	gender	accepted?
20	72	182	male	yes
25	80	160	female	no
22	75	170	male	yes
21	70	185	female	?

Regression vs Classification

- y is continuous → Regression
- *y* is discrete → Classification
 - y can take 2 values → Binary classification
 - y can take 3+ values → Multi-class classification
 - if order of classes matters → Ordinal classification

Regression vs Classification

Designing Experiments

- Three sets
 - Training: for building the model
 - Validation: for choosing / tuning the model
 - Test: for evaluating the model

Splitting the Data

- Holdout
 - e.g. 60%, 20%, 20%
- Repeated sampling
- Cross-validation
 - e.g. 10 fold cross-validation, leave-one-out

Splitting the Data

Evaluation - Regression

- Correlation
- Mean absolute error
- (Root) Mean squared error

Visualising regression errors

Evaluation - Classification

Confusion matrix

	Predicted NO	Predicted YES
Actual NO	TN	FP
Actual YES	FN	TP

Confusion Matrix Measures

Accuracy: how often is the prediction correct?

accuracy (ACC)
$$ACC = \frac{TP + TN}{P + N} = \frac{TP + TN}{TP + TN + FP + FN}$$

Recall: when it is actually yes, how often is the prediction yes?

sensitivity, recall, hit rate, or true positive rate (TPR)
$$TPR = \frac{TP}{P} = \frac{TP}{TP + FN}$$

Precision: when the prediction is yes, how often is it correct?

$$PPV = \frac{TP}{TP + FP} \label{eq:PV}$$

- F1 score: harmonic mean of precision and recall
- MCC: correlation between actual and predicted

AUC measures

Evaluation

Problems & Pitfalls

- Feature scaling
- Non-linear transformations
- Dimensionality reduction
- Categorical variables
- Radial variables
- Missing data
- Outliers

- Overfitting
- Interpolation
- Extrapolation
- Hyperparameters selection
- Algorithm selection
- Imbalanced classes
- Cost/benefit analysis

Automating Experiments

Further reading

- Ten quick tips for machine learning in computational biology, BioData Mining 2017 Dec 8, 10:35, https://doi.org/10.1186/s13040-017-0155-3
- Data Mining: Practical Machine Learning Tools and Techniques, https://www.cs.waikato.ac.nz/ml/weka/book.html

Thanks!

daniel.c.moura@gmail.com