1 Структуры сигнатуры σ

1.1 Определение *n*-арных отношений

Определение

Пусть $n \in \omega$ - натуральное число, A - множество. Тогда n-арное отношение на множестве A - это произвольное подмножество

$$r \subseteq A^n$$

- если n=2, то r бинарное отношение
- если n=1, то $r\subseteq A$ **унарное** отношение
- если n=3, то r называется **тернарным** отношением

Замечание

Понятие n-арного отношения является естественным обобщением понятия бинарного отношения.

1.2 Определение сигнатуры

Определение

Сигнатура σ - это тройка $\sigma = (P, F, \mu)$, где

- $P \cap F = \emptyset$
- *P* множество **предикатных символов** (или просто **предикатов**)
- F множество функциональных символов
- $\mu: P \cup F \to \omega$ отображение арности символов из $P \cup F$

Определение

Пусть $\sigma = (P, F, \mu)$ - сигнатура. Функциональный символ $f \in F$ называется константой, тогда и только тогда, когда $\mu(f) = 0$.

1.3 Примеры сигнатур

Сигнатура теории множеств

 $\sigma_{set} = (\{\in\}, \emptyset, \{(\in, 2)\})$ - единственный двухместный предикатный символ \in .

Сигнатура поля вещественных чисел

 $\sigma_{\mathbb{R}} = (\emptyset, \{+,\cdot,0,1\}, \{(+,2),(\cdot,2),(0,0),(1,0)\})$ - сигнатура, содержащая два бинарных функциональных символа + и · и две константы - 0 и 1.

Соглашение

Далее арность символов сигнатуры будет обозначаться верхним индексом., т.е. s^n означает, что $\mu(s)=n$, здесь $s\in P\cup F$ - произвольный символ сигнатуры. Тогда сигнатуры σ_{set} и $\sigma_{\mathbb{R}}$ могут быть переписаны как:

- $\sigma_{set} = (\{\in^2\}, \emptyset)$
- $\sigma_{\mathbb{R}} = (\emptyset, \{+^2, \cdot^2, 0^0, 1^0\})$

Соглашение

Если из контекста понятно, какие символы являются предикатными, а какие - функциональными., тогда разделение на P и F можно пропустить: $\sigma_{\mathbb{R}} = \{+^2, \cdot^2, 0^0, 1^0\}$, $\sigma_{set} = \{\in^2\}$. Если используемые символы имеют стандартную арность, например, $+, \cdot, 0, 1, \in$, то верхние индексы, показывающие эту арность, можно пропустить: $\sigma_{\mathbb{R}} = \{+, \cdot, 0, 1\}$, $\sigma_{set} = \{\in\}$.

1.4 Алфавит сигнатуры σ

Определение

Пусть $\sigma = (P, F, \mu)$ - некоторая сигнатура. Тогда **алфавит** логики предикатов (или логики первого порядка) сигнатуры σ - это множество:

$$\mathcal{A}_{FOL}(\sigma) \rightleftharpoons \{\land, \lor, \rightarrow, \neg, (,) \top, \bot, \forall, \exists, =\} \cup P \cup F \cup \{x_i | i \in \omega\} \cup \{,\}\}$$

Здесь $V = \{x_i | i \in \omega\}$ - бесконечное множество **предметных** переменных.

1.5 Определение структуры сигнатуры σ

Определение

Структура (или алгебраическая система) сигнатуры $\sigma = (P, F, \mu)$ - это пара $\mathcal{M} = (M, \nu)$, где $A \neq \emptyset$ - - произвольное непустое множество, а

$$\nu: P \cup F \to \bigcup_{n \in \omega} \mathcal{P}(M^n)$$

такое отображение, что для любого символа $s \in P \cup F$, $\mu(s) = n$

- если $s \in F$, то $\nu(s) \subseteq M^{n+1}$ график некоторой n-местной функции всюду определённой на M
- ullet если $s\in P$, то $u(s)\subseteq M^n$ n-арное отношение на M

Отображение ν называется **интерпретацией** сигнатуры σ . Множество M называется **областью определения** или **множеством носителей** структуры \mathcal{M} .

1.6 Примеры структур

Поле действительных чисел

 $\mathbb{R}=(R,\nu_R)$, где

- $\nu_R(+): R^2 \to R$ операция сложения,
- $\nu_R(\cdot):R^2 \to R$ операция умножения,
- $\nu_R(0) = 0_R$, $\nu_R(1) = 1_R$

 $0 \in \sigma_{\mathbb{R}}$ - символ, обозначающий 0 как действительное число, $1 \in \sigma_{\mathbb{R}}$ - символ для обозначения 1.

Структура, не являющаяся полем вещественных чисел

$$\mathbb{R}' = (R, \nu_R')$$
, где

- $\nu_R'(+): R^2 \to R$ умножение,
- $\nu_R'(\cdot):R^2\to R$ сложение,

•
$$\nu_R'(0) = 1, \nu_R'(1) = 2$$

Это пример структуры с такой же сигнатурой $\sigma_{\mathbb{R}}$ и носителем, но не являющейся полем вещественных чисел.

Соглашение

Если рассматривать некоторую стандартную структуру (например, поле действительных чисел), тогда вместо $\mathbb{R} = (R, \nu_R)$ можно писать просто $(R, \sigma_{\mathbb{R}})$, предполагая, что для всех символов из $\sigma_{\mathbb{R}}$ существует стандартная интерпретация.

Обозначение

Пусть $\mathcal{M} = (M, \nu)$ - структура сигнатуры σ . Тогда для символов $s \in \sigma$ запись $s^{\mathcal{M}}$ означает $\nu(s)$, т.е.

$$s^{\mathcal{M}} \rightleftharpoons \nu(s)$$

Используя это обозначение, в дальнейшем структуры будем обозначать как $\mathcal{M}=(M,\sigma)$, означающий, что ν некоторым образом определено и вместо ν используется запись $s^{\mathcal{M}}$.

1.7 Группы

Определение

Структура (алгебраическая система) $\mathcal{G} = (G, \sigma_{mon})$ сигнатуры $\sigma_{mon} = \{\cdot^2, 1^0\}$ называется **моноидом**, тогда и только тогда, когда $\forall a, b, c \in G$:

- 1) $a \cdot (b \cdot c) = (a \cdot b) \cdot c$ ассоциативность
- 2) $a \cdot 1 = 1 \cdot a = a$ свойства 1

Определение

Структура $\mathcal{G} = (G, \sigma_{grp})$ сигнатуры $\sigma_{grp} = \sigma_{mod} \cup \{(^{-1})^1\}$ называется **группой**, тогда и только тогда, когда \mathcal{G} является моноидом и $\forall a \in G$:

3) $a \cdot a^{-1} = a^{-1} \cdot a = 1$ - свойство обратного элемента

Определение

Группа $\mathcal{G} = (G, \sigma_{grp})$ называется **абелевой** или **коммутативной**, тогда и только тогда, когда кроме аксиом 1-3 выполняется ещё одна аксиома

4) $a \cdot b = b \cdot a$ - коммутативность

1.8 Группа перестановок

Определение

Пусть A - множество. Рассмотрим множество $Bi(A) \rightleftharpoons \{f|f: A \stackrel{1:1}{\twoheadrightarrow} A\}$ - множество всех биективных отображений из A в A. Операции композиции \circ и нахождения обратного элемента (инверсии) $^{-1}$ определены на этом множестве. Следовательно, существует структура $S(A) = (Bi(A), \sigma_{grp})$:

- $1^{S(A)} \rightleftharpoons id_A$
- если $f, g \in Bi(A)$, то $f \cdot S(A) g \rightleftharpoons f \circ g$
- если $f \in Bi(A)$, то $f^{(-1)^{S(A)}} \rightleftharpoons f^{-1}$

Тогда S(A) - группа перестановок на множестве A. Если $A = n = \{0, \dots, n-1\}$, то группа S(n) обозначается как S_n .

1.9 Кольца

Определение

Структура $\mathcal{R}=(R,\sigma_{rng})$ сигнатуры $\sigma_{rng}=\{+^2,\cdot^2,-^1,0^0,1^0\}$ называется **кольцом**, тогда и только тогда, когда $(R,\{+,-,0\})$ является абелевой группой, $(R,\{\cdot,1\})$ является моноидом и для любых $a,b,c\in G$ верно следующее:

- 1. $a \cdot (b+c) = (a \cdot b) + (a \cdot c)$ левая дистрибутивность
- 2. $(b+c)\cdot a=(b\cdot a)+(c\cdot a)$ правая дистрибутивность

пример

Структура целых чисел $\mathbb{Z} = (Z, \sigma_{rng})$, где + - сложение, $-\mathbb{Z}x = 0 - x$ - одноместное вычитание (нахождение противоположного элемента), 0 и 1 используются для обозначения обычных 0 и 1 как целых чисел и · - умножение, является кольцом.

1.10 Поля и частично упорядоченные множества

Определение

Структура $\mathcal{F} = (F, \sigma_{fld})$ сигнатуры $\sigma_{fld} = \sigma_{rng} \cup \{(^{-1})^1\}$ называется полем, тогда и только тогда, когда \mathcal{F} является кольцом, а $(F \setminus \{0\}, \{\cdot, ^{-1}, 1\})$ абелевой группой.

Замечание

Пусть $\mathcal{A} = (A, \preceq)$ - ЧУМ. Тогда можно предположить, что \mathcal{A} - структура сигнатуры $\sigma_{ord} = \{\leq^2\}$, где \leq двухместный предикатный символ. Для любых $a, b \in A$:

$$a \leq^{\mathcal{A}} b \Leftrightarrow (a,b) \in \leq^{\mathcal{A}} \Leftrightarrow a \leq b$$

1.11 Определение конгруэнции

Определение

Пусть $\mathcal{M}=(M,\sigma)$ - структура. Отношение эквивалентности \sim_{θ} на множестве M называется конгруэнцией, тогда и только тогда, когда для любого функционального символа $f^n \in \sigma$ и для любой пары кортежей $\bar{a}, \bar{b} \in M^n$

$$((a_1 \sim_{\theta} b_1) \land \dots \land (a_n \sim_{\theta} b_n)) \Rightarrow f(\bar{a}) \sim_{\theta} f(\bar{b})$$

пример

Рассмотрим структуру $\mathbb{Z}=(Z,\sigma_{\mathbb{Z}})$ - кольцо целых чисел, где $\sigma_{\mathbb{Z}}=\{+^2,\cdot^2,0,1\}$. Пусть $n\in\omega\setminus\{0\}$ - положительное натуральное число. Тогда отношение

$$m_1 \sim_n m_2 \stackrel{def}{\Leftrightarrow} rest(m_1, n) = rest(m_2, n)$$

- это конгруэнция на \mathbb{Z} .

1.12 Определение разбиения структуры

Определение

Пусть $\mathcal{M} = (M, \sigma)$ - структура, \sim_{θ} - некоторая конгруэнция на \mathcal{M} . Можно определить **разбиение структуры** или **фактор структуру** $\mathcal{M}/\sim_{\theta}=(N, \sigma)$ по конгруэнции \sim_{θ} следующим образом:

- $N=M/\sim_{\theta}=\{[a]_{\sim_{\theta}}|a\in M\}$ разбиение множества M по эквивалентности \sim_{θ}
- $f^{\mathcal{M}/\sim_{\theta}}([a_1]_{\sim_{\theta}}, \dots, [a_n]_{\sim_{\theta}}) \rightleftharpoons [f^{\mathcal{M}}(a_1, \dots, a_n)]_{\sim_{\theta}}$
- $([a_1]_{\sim_{\theta}}, \dots, [a_n]_{\sim_{\theta}}) \in p^{\mathcal{M}/\sim_{\theta}} \Leftrightarrow \exists \bar{b} \in M^n$ $(b_1 \in [a_1]_{\sim_{\theta}} \wedge \dots \wedge b_n \in [a_n]_{\sim_{\theta}} \wedge \bar{b} \in p^{\mathcal{M}})$

Пример - кольцо вычетов по модулю n

Поскольку отношение \sim_n на кольце $\mathbb Z$ является конгруэнцией, структура $\mathbb Z_n \rightleftharpoons \mathbb Z/\sim_n$ определена и называется кольцом вычетов по модулю n. Носитель $\mathbb Z$ обозначается как Z_n .

1.13 Гомоморфизмы структур

Определение

Пусть $\mathcal{M}_1 = (M_1, \sigma), \mathcal{M}_2 = (M_2, \sigma)$ - две структуры сигнатуры $\sigma = (P, F)$, и $\phi : M_1 \to M_2$ - всюду определенное отображение из носителя \mathcal{M}_1 в носитель \mathcal{M}_2 . Тогда ϕ называется **гомоморфизмом**, тогда и только тогда, когда

- $f^{\mathcal{M}_2}(\phi(\bar{a})) = \phi(f^{\mathcal{M}_1}(\bar{a}))$ для любого $f^n \in F$ и для любого кортежа $\bar{a} \in M_1^n$
- $\bar{a}\in p^{\mathcal{M}_1}\Rightarrow \phi(\bar{a})\in p^{\mathcal{M}_2}$ для любого $p^n\in P$ и для любого кортежа $\bar{a}\in M_1^n$

Если ϕ сюръективно, то ϕ называется **сюръективным гомоморфизмом** или **эпиморфизмом**. Если ϕ биективно, и

• $\bar{a} \in p^{\mathcal{M}_1} \Leftrightarrow \phi(\bar{a}) \in p^{\mathcal{M}_2}$ для любого предиката $p^n \in P$ и для любого кортежа $\bar{a} \in M_1^n$

то ϕ называется **изоморфизмом** и обозначается следующим образом: $\phi: \mathcal{M}_1 \stackrel{\simeq}{\to} \mathcal{M}_2$.

1.14 Изоморфизм структур

Определение

Две структуры \mathcal{M}_1 и \mathcal{M}_2 называются **изоморфными**, тогда и только тогда, когда между ними существует изоморфизм $f: \mathcal{M}_1 \stackrel{\simeq}{\to} \mathcal{M}_2$. Обозначается следующим образом: $\mathcal{M}_1 \cong \mathcal{M}_2$.

Изоморфизм структуры \mathcal{M} на себя $f:\mathcal{M}\stackrel{\cong}{\to}\mathcal{M}$ называется **автоморфизмом**.

Лемма

Для любых структур \mathcal{M} , \mathcal{N} и \mathcal{K} сигнатуры σ :

- 1. если $f: \mathcal{M} \stackrel{\simeq}{\to} \mathcal{N}$, то $f^{-1}: \mathcal{N} \stackrel{\simeq}{\to} \mathcal{M}$
- 2. если $f: \mathcal{M} \xrightarrow{\simeq} \mathcal{N}$ и $g: \mathcal{N} \xrightarrow{\simeq} \mathcal{K}$, то $f \circ g: \mathcal{M} \xrightarrow{\simeq} \mathcal{K}$
- 3. $id_M: \mathcal{M} \stackrel{\simeq}{\to} \mathcal{M}$

Доказательство

По определению.

1.15 Пример гомоморфизма

Гомоморфизм кольца целых чисел

Рассмотрим структуру $\mathbb{Z}=(Z,\sigma_{\mathbb{Z}})$ - кольцо целых чисел, где $\sigma_{\mathbb{Z}}=\{+^2,\cdot^2,0,1\}$. Пусть $0< n\in\omega$ - некоторое положительное натуральное число. Определим отображение $f:Z\to Z_n$ следующим образом:

$$f: Z \ni k \to [k]_{\sim_n} \in Z_n$$

Тогда f является гомоморфизмом.

Автоморфизм групп подстановок

Пусть $f \in S(A)$ - некоторая биекция множества A на A. Определим отображение $in_f: S(A) \to S(A)$ следующим образом: для любой $g \in S(A)$ возьмём

$$in_f(g) \rightleftharpoons f \circ g \circ f^{-1}$$

Тогда in_f является автоморфизмом группы S(A) (так называемым **внут- ренним** автоморфизмом).

1.16 Ядро гомоморфизма

Определение

Пусть $\mathcal{M} \xrightarrow{f} \mathcal{N}$ - гомоморфизм. Тогда **ядром** гомоморфизма f является бинарное отношение $\ker(f) = \{(a,b)|a,b \in M,\ f(a) = f(b)\}.$

Замечание

- 1) Пусть \mathcal{M} структура \sim_{θ} некоторая конгруэнция на \mathcal{M} . Тогда отображение $\nu_{\theta}: M \to M/\sim_{\theta}$, определённое как $\nu_{\theta}(a) \rightleftharpoons [a]_{\sim_{\theta}}$ эпиморфизм из $\mathcal{M} \to \mathcal{M}/\sim_{\theta}$. Отображение ν_{θ} называется **натуральным эпиморфизмом**.
- 2) Для любого гомоморфизма $\mathcal{M} \xrightarrow{f} \mathcal{N}$ его ядро $\ker(f)$ является конгруэнцией на \mathcal{M} .

Доказательство

Следует из определения конгруэнции.

1.17 Алгебры

Определение

Структура \mathcal{M} называется **алгеброй**, тогда и только тогда, когда её сигнатура σ не содержит предикатных символов.

Примеры

• $\mathbb{N} = (\omega, \{+^2, \cdot^2, s^1, 0, 1\})$ - алгеброй

- $\mathbb{N}' = (\omega, \{+^2, \cdot^2, s^1, 0, 1, \leq\})$ не алгебра
- $\mathbb{R} = (R, \{+^2, \cdot^2, -^1, (^{-1})^1, 0, 1\})$ алгебра
- $\mathbb{R}' = (R, \{+^2, \cdot^2, -^1, (^{-1})^1, 0, 1, \leq\})$ не алгебра

1.18 Теорема гомоморфизма

Теорема (гомоморфизм)

Пусть $\mathcal{M} \stackrel{\phi}{\to} \mathcal{N}$ - эпиморфизм алгебр. Тогда существует такой изоморфизм $\psi : \mathcal{M} / \sim_{\ker(\phi)} \stackrel{\simeq}{\to} \mathcal{N}$, что $\phi = \nu_{\ker(\phi)} \circ \psi$.

Доказательство

Определим отображение ψ следующим образом. Пусть $[a]_{\sim_{\ker(\phi)}}$ - некоторый класс эквивалентности из $M/\sim_{\ker(\phi)}$. Отметим, что для любого другого $a'\in M$ такого, что $[a]_{\sim_{\ker(\phi)}}=[a']_{\sim_{\ker(\phi)}}$, верно, что $a\sim_{\ker(\phi)}a'$, следовательно, $\phi(a)=\phi(a')$, т.е. Значение $\phi(a)$ для класса $[a]_{\sim_{\ker(\phi)}}$ определяется однозначно. Пусть $g([a]_{\sim_{\ker(\phi)}})=\phi(a)$. Тогда по определению $\nu_{\ker(\phi)}\circ\psi(a)=\phi(a)$. Проверим, что ψ является биективным отображением. Сюръективность ψ очевидна. Инъективность ψ : если $\psi([a]_{\sim_{\ker(\phi)}})=\psi([b]_{\sim_{\ker(\phi)}})$, то, по определению $g, \phi(a)=\phi(b)$, тогда $a\sim_{\ker(\phi)}b$, следовательно, $[a]_{\sim_{\ker(\phi)}}=[b]_{\sim_{\ker(\phi)}}$. Условия гомоморфизма. Пусть $f^n\in\sigma$ функциональный символ $[a_1]_{\sim_{\ker(\phi)}},\ldots,[a_n]_{\sim_{\ker(\phi)}}\in M/\sim_{\ker(\phi)}$. Тогда

$$\psi(f^{\mathcal{M}/\sim_{\ker(\phi)}}([a_1]_{\sim_{\ker(\phi)}},\ldots,[a_n]_{\sim_{\ker(\phi)}})) = \phi(b)$$

где $b \in X = [f^{\mathcal{M}/\sim_{\ker(\phi)}}([a_1]_{\sim_{\ker(\phi)}}, \dots, [a_n]_{\sim_{\ker(\phi)}})]_{\sim_{\ker(\phi)}}$ поскольку $f^{\mathcal{M}}(a_1, \dots, a_n) \in X$,

$$\phi(b) = \phi(f^{\mathcal{M}}(a_1, \dots, a_n)) =$$

$$f^{\mathcal{N}}(\phi(a_1), \dots, \phi(a_n)) =$$

$$f^{\mathcal{N}}(\psi([a_1]_{\sim_{\ker(\phi)}}), \dots, \psi([a_n]_{\sim_{\ker(\phi)}}))$$

1.19 Обогащение/обеднение сигнатур

Определение

Пусть $\mathcal{M}_1 = (M_1, \nu_1)$ - структура сигнатуры σ_1 , $\mathcal{M}_2 = (M_2, \nu_2)$ - структура сигнатуры σ_2 . Тогда \mathcal{M}_2 обогащение структуры \mathcal{M}_1 (и \mathcal{M}_1 - обеднение структуры \mathcal{M}_2), если

- $M_1 = M_2$
- $\sigma_1 \subseteq \sigma_2$
- $\nu_1(s) = \nu_2(s)$ для любого символа $s \in P_1 \cup F_1$

Это обозначается как $\sigma_1 \subseteq \sigma_2$

Определение

Пусть $\sigma_1 \subseteq \sigma_2$ и $\mathcal{M} = (M, \nu)$ - структура сигнатуры σ_2 . Тогда структура $\mathcal{M} \upharpoonright \sigma_1 = (M, \nu|_{\sigma_1})$ - обеднение структуры \mathcal{M} на сигнатуру σ_1 .

пример 1

Если рассмотреть группу \mathcal{G} , то её обеднение $\mathcal{G} \upharpoonright \sigma_{mon}$ на сигнатуру σ_{mon} является моноидом.

пример 2

Если рассмотреть поле \mathcal{F} , то его обеднение $\mathcal{F} \upharpoonright \sigma_{rng}$ на сигнатуру σ_{rng} является кольцом, обеднение $\mathcal{F} \upharpoonright \sigma_{grp}$ на сигнатуру σ_{grp} является группой.

1.20 Подструктуры/суперструктуры

Определение

Пусть $\mathcal{M} = (M, \sigma), \mathcal{N} = (N, \sigma)$ - две структуры. Тогда \mathcal{M} является подструктурой \mathcal{N} , а \mathcal{N} - суперструктурой \mathcal{M} , тогда и только тогда, когда

• $M \subseteq N$

- для любого $f^n \in \sigma$: $f^{\mathcal{M}} = f^{\mathcal{N}}|_{M} = f^{\mathcal{N}} \cap M^{n+1}$
- для любого $p^n \in \sigma$: $p^{\mathcal{M}} = p^{\mathcal{N}}|_M = p^{\mathcal{N}} \cap M^n$

Обозначается как: $\mathcal{M} \subseteq \mathcal{N}$.

1.21 Теорема о подструктурах

Теорема (подструктуры)

Пусть $\mathcal{M} = (M, \nu_M)$ - структура сигнатуры σ . Тогда непустое подмножество $N \subseteq M$ определяет подструктуру $\mathcal{N} = (N, \nu_N) \subseteq \mathcal{M} \iff$ для любых $f^n \in \sigma$ - функциональные символы, если $\bar{a} \in N^n$, то $f^{\mathcal{M}}(\bar{a}) \in N$.

Доказательство

Отметим, что для любого предикатного символа $p^n \in \sigma$, множество $p^{\mathcal{M}}|_N = p^{\mathcal{M}} \cap N^n$ может использоваться в качестве интерпретации $\nu_N(p)$. Если $f^n \in \sigma$ - функциональный символ, то множество $f_0 = f^{\mathcal{M}}|_N = f^{\mathcal{M}} \cap N^{n+1}$ также определяет некоторое отображение на N. Необходимо проверить, что для любого кортежа $\bar{a} \in N^n$ существует единственный b, такой, что $(\bar{a},b) \in f_0$. $f^{\mathcal{M}}$ всюду определенная n-местная функция на M, следовательно существует единственный b, такой, что $(\bar{a},b) \in f^{\mathcal{M}}$. По условию $b \in N$, следовательно, $(\bar{a},b) \in f_0$. Таким образом $\nu_N(f)$ можно рассматривать в качестве интерпретации f_0 . \square

1.22 Примеры подструктур

пример 1

Пусть $0 < n \in \omega$. В группе целых чисел $\mathbb Z$ существует подгруппа $\{k \cdot n | k \in Z\}$ - множество целых чисел, кратных n. Действительно, множество $\{k \cdot n | k \in Z\}$ замкнуто относительно операций в группе $\mathbb Z$.

пример 2

Множество $\{k|k\geq 0\}$ неотрицательных целых чисел не порождает подгруппу в \mathbb{Z} , потому что оно не замкнуто относительно операции —.

пример 3

Пусть \mathcal{G} - абелева группа. Тогда множество $\{a|a\in G,\ a+a=0\}$ порождает подгруппу в \mathcal{G} .

пример 4

Пусть \mathcal{G} - группа, а a - некоторый элемент в \mathcal{G} . Тогда обозначим любой $k \in \mathbb{Z}$ следующим образом:

$$a^k = \begin{cases} \underbrace{a \cdot \ldots \cdot a}_k, & \text{если } k > 0, \\ \underbrace{a^{-1} \cdot \ldots \cdot a^{-1}}_k & \text{если } k < 0 \\ 1, & \text{если } k = 0 \end{cases}$$

Следовательно, множество $< a> = \{a^n|n\in Z\}$ порождает подгруппу $< a> \subseteq \mathcal{G},$ порождённую a.

1.23 Структуры, порождённые множеством

Теорема (о порождённой структуре)

Пусть \mathcal{M} - структура сигнатуры σ , $\emptyset \neq X \subseteq M$ - некоторое произвольное подмножество в M. Тогда существует такая подструктура $\mathcal{N} \subseteq \mathcal{M}$, что $X \subseteq N$ и для любой подструктуры $\mathcal{N}' \subseteq \mathcal{M}$, если $X \subseteq N'$, то $\mathcal{N} \subseteq \mathcal{N}'$. Другими словами, \mathcal{N} наименьшая по отношению \subseteq подструктура в \mathcal{M} , содержащая множество X.

Доказательство

Рассмотрим множество $A = \{\mathcal{N}' | \mathcal{N}' \subseteq \mathcal{M}, X \subseteq N'\}$. Это множество не пустое, так как $\mathcal{M} \in A$. Тогда множество $N = \cap \{N' | \mathcal{N}' \in A\}$ будет порождать носитель подструктуры \mathcal{N} .

Обозначение

Подструктура $\mathcal N$ из теоремы обозначается как $\mathcal M(X).$

1.24 Декартово произведение структур

Определение

Пусть $\mathcal{M}_1, \ldots, \mathcal{M}_n$ - структуры сигнатуры σ . Тогда их Декартово произведение \mathcal{N} определяется следующим образом. Носитель \mathcal{N} является декартовым произведением носителей: $N=M_1\times\ldots\times M_n$. Интерпретации сигнатурных символов. Пусть f^k - функциональный символ, $\bar{a}_1,\ldots,\bar{a}_k$ - последовательность кортежей - элементов носителя N. Пусть $\bar{a}_i=(a_i^1,\ldots,a_i^n)$, где $a_i^i\in M_i$. Тогда

$$f^{\mathcal{N}}(\bar{a}_1, \dots, \bar{a}_k) \rightleftharpoons$$

$$(f^{\mathcal{M}_1}(a_1^1, \dots, a_k^1), f^{\mathcal{M}_2}(a_1^2, \dots, a_k^2), \dots, f^{\mathcal{M}_n}(a_1^n, \dots, a_k^n))$$

Для k-местного предикатного символа p^k определение аналогично:

$$(\bar{a}_1, \dots, \bar{a}_k) \in p^{\mathcal{N}} \Leftrightarrow$$

$$(a_1^1, \dots, a_k^1) \in p^{\mathcal{M}_1} \wedge (a_1^2, \dots, a_k^2) \in p^{\mathcal{M}_2} \wedge \dots \wedge (a_1^n, \dots, a_k^n) \in p^{\mathcal{M}_n}$$

1.25 Пример декартова произведения

пример

Рассмотрим группу $\mathbb{Z}_2 \times \mathbb{Z}_3$. Тогда $|\mathbb{Z}_2 \times \mathbb{Z}_3| = |Z_2 \times Z_3| = 2 \cdot 3 = 6 = |S_3| = |Z_6|$.

- Отметим, что $\mathbb{Z}_2 \times \mathbb{Z}_3 \ncong S_3$. Действительно, нетрудно заметить что декартово произведение абелевых групп является абелевой группой. Поскольку все \mathbb{Z}_k являются абелевыми группами, $\mathbb{Z}_2 \times \mathbb{Z}_3$ также является абелевой группой. Но группа S_3 не является абелевой, следовательно, $\mathbb{Z}_2 \times \mathbb{Z}_3 \ncong S_3$.
- С другой стороны, можно заметить, что $\mathbb{Z}_2 \times \mathbb{Z}_3 \cong \mathbb{Z}_6$. Изоморфизм $f: Z_6 \to Z_2 \times Z_6$ определяется как:

$$Z_6 = \{0, 5\} \ni k \mapsto \underbrace{(1, 1) + \ldots + (1, 1)}_{k} \in Z_2 \times Z_6$$