

Modeling and Simulation Lab# 3: SPICE Simulation

Agenda

- SPICE Simulator
- Modified Nodal analysis

SPICE Simulator

It takes an analog circuit schematic, simulates, calculates and plots the voltage at each node, and the current produced by each voltage source.

SPICE Simulator

System Architecture: Nodal Circuit Post-Circuit SPICE Schematic Simulation Voltage Processor Waveform Design Netlist Engine Results Editor

Requirement: Find V1,V2

Simulation solution steps:

- 1. Find Nodes in the circuit
 - 2 Nodes
 - 1 ground node

<u>Simulation solution steps[Cont']:</u>

2. Make KCL at each node.

$$\frac{v_1}{R_1} + \frac{v_1 - v_2}{R_2} = i_{src}$$

$$\frac{v_1 - v_2}{R_2} = \frac{v_2}{R_3}$$

-> Replace Resistance with conductance G=1/R

$$G_1v_1 + G_2(v_1 - v_2) = i_{src}$$

 $G_2(v_1 - v_2) = G_3v_2$

$$(G_1 + G_2)v_1 - G_2v_2 = i_{src}$$

$$G_2v_1 - (G_2 + G_3)v_2 = 0$$

<u>Simulation solution steps[Cont']:</u>

3. Create conductance matrix.

$$\begin{bmatrix} G_1 + G_2 & -G_2 \\ G_2 & -(G_2 + G_3) \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} i_{src} \\ 0 \end{bmatrix} \quad I_{src}$$

4. Solve using by a simple matrix manipulation.

$$v = G^{-1}I$$

Modified Nodal analysis (MNA)

Straightforward analog circuit solver technique based on KCL and KVL.

MNA applied to a circuit with only passive elements (resistors) and independent current and voltage sources results in a matrix equation of the form:

$$Ax=z$$

- A is a matrix consists only of known quantities.
- ☐ Z is a vector holds only known quantities
- ☐ X is a vector holds the unknown quantities (nodal voltages and source currents)

The circuit is solved by a simple matrix manipulation:

$$\mathbf{x} = \mathbf{A}^{-1}\mathbf{z}$$

SPICE Netlist

1. Find Nodes in the circuit

System Architecture:

Netlist Format

Component_Type | Node1 | Node2 | Value | Initial_Value

- Component_Type stands for the type of the component. It can be one of the following:

Voltage Source "Vsrc".

Current Source "Isrc".

Resistance "R".

Inductor "I".

Capacitor "C".

Netlist Format[Cont']

Node1 and Node2 stands for the nodes' numbers to which the component is connected to. (for uni-polar components as Vsrc, Node1 is the +ve port, Node2 is the -ve port)

Value is the physical value of the component.

Initial_Value is the initial current or voltage that is observed on the component at time=0.

Solve Ax=z

The Matrix A

The A matrix will be developed as the combination of 4 smaller matrices, G, B, C, and D.

$$\mathbf{A} = \begin{bmatrix} \mathbf{G} & \mathbf{B} \\ \mathbf{C} & \mathbf{D} \end{bmatrix}$$

The A matrix is (m+n)x(m+n) (n is the number of nodes, and m is the number of independent voltage sources).

The G matrix

$$\mathbf{A} = \begin{bmatrix} \mathbf{G} & \mathbf{B} \\ \mathbf{C} & \mathbf{D} \end{bmatrix}$$

The **G** matrix is *n*x*n* and is determined by the interconnections between the passive circuit elements (resistors)

The G matrix is an nxn matrix formed in two steps:

- 1-Each element in the diagonal matrix is equal to the sum of the conductance of each element connected to the corresponding node.
- 2-The off diagonal elements are the negative conductance of the element connected to the pair of corresponding node.

Example:

The B matrix

$$\mathbf{A} = \begin{bmatrix} \mathbf{G} & \mathbf{B} \\ \mathbf{C} & \mathbf{D} \end{bmatrix}$$

The **B** matrix is *n*x*m* and is determined by the connection of the voltage sources.

The B matrix is an nxm matrix with only 0, 1 and -1 elements

Each location in the matrix corresponds to a particular voltage source and a node.

- If the positive terminal of the *i*th voltage source is connected to node k, then the element (k,i) in the **B** matrix is a 1.
- If the negative terminal of the *i*th voltage source is connected to node k, then the element (k,i) in the **B** matrix is a -1.
- Otherwise, elements of the **B** matrix are zero.

Example

The C & D matrices

$$\mathbf{A} = \begin{bmatrix} \mathbf{G} & \mathbf{B} \\ \mathbf{C} & \mathbf{D} \end{bmatrix}$$

- the C matrix is mxn and is determined by the connection of the voltage sources. It is the transpose of the B matrix.
- The D matrix is mxm and is zero if only independent sources are considered.
- These are not the case when dependent sources are present.

Case 1:
$$\mathbf{C} = \begin{bmatrix} -1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
Case 2: $\mathbf{C} = \begin{bmatrix} 1 & -1 \end{bmatrix}$

Case 1:
$$\mathbf{D} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$
Case 2: $\mathbf{D} = \begin{bmatrix} 0 \end{bmatrix}$

Circuit Simulation Engine Solve Ax=z

The X matrix:

The **x** matrix holds our unknown quantities and will be developed as the combination of 2 smaller matrices **v** and **j**.

$$\mathbf{x} = \begin{bmatrix} \mathbf{v} \\ \mathbf{j} \end{bmatrix}$$

- •The v matrix is nx1 and hold the unknown voltages. Each element in v corresponds to the voltage at the equivalent node in the circuit
- The **j** matrix is mx1 and holds the unknown currents through the voltage sources.

Example

Case 2	
Circuit Diagram	MNA Equations
I_vs1	$\mathbf{v} = \begin{bmatrix} \mathbf{v}_{1} \\ \mathbf{v}_{2} \end{bmatrix}, \mathbf{j} = [\mathbf{i}_{V}], \mathbf{x} = \begin{bmatrix} \mathbf{v} \\ \mathbf{j} \end{bmatrix} = \begin{bmatrix} \mathbf{v}_{1} \\ \mathbf{v}_{2} \\ \mathbf{i}_{V} \end{bmatrix}$

Circuit Simulation Engine Solve Ax=z

The Z matrix:

The z matrix holds our independent voltage and current sources and will be developed as the combination of 2 smaller matrices <u>i</u> and <u>e</u>.

$$z = \begin{bmatrix} i \\ e \end{bmatrix}$$

- •The i matrix is nx1 and contains the sum of the currents through the passive elements into the corresponding node (either zero, or the sum of independent current sources).
- •The **e** matrix is mx1 and holds the values of the independent voltage sources.

Example

Putting all Together

MNA stamp

Resistor MNA Stamp:

Current Source MNA Stamp:

Voltage Source MNA Stamp:

Recap-System Flow chart

