Opinion mining on experience feedback: A case study on smarphones reviews

Institut Mines-Télécom

Opinion mining on experience feedback

A case study on smartphones reviews

<u>Laurent Brisson</u> & Jean-Claude Torrel IEEE RCIS 2015, May 13-15 2015, Athens

Opinion mining and sentiment analysis

Context

- People give more importance to the experience feedback they found on internet
- Social interactions have a strong and immediate impact on purchase behaviour
- There is a huge amount of experience feedback available on internet

Tasks

- Document level: "What's the overall opinion about this organization in latest news?"
- Sentence level: "What are the positive tweets about this film?"
- Aspect level: "My clients are they satisfied with the food and service?"

Motivations

Objective:

■ To qualify experience feedback from customer reviews

Constraints:

- Customer reviews could be about anything
- The whole analysis process must be deployed in a short period:
 - No ressource for annotating a learning dataset
 - No supervised learning algorithms

A 3-step approach to find relevant opinions

- A knowledge base to define a relevant perimeter
- Sentence pre-processing to add information
- A linguistic framework to structure search strategies

First step: A knowledge base

The knowledge base is composed of:

- An aspect-lexicon which defines the relevant perimeter to extract opinions
- Sentic* polarity lexicon to access word polarity

*E. Cambria and A. Hussain. Sentic Computing: A Common-Sense-Based Framework for Concept-Level Sentiment Analysis. Cham, Switzerland: Springer (2015)

Second step: Sentence pre-processing

Lexical analysis and transformations

- Character cleaning
- Full stop detection
- Tokenization

Constituency-based syntactic analysis

Third step: Search strategies

In order to extract opinions:

- A breadth-first search is performed on the parse tree
- Automata detect appraisal patterns defined in the linguistic framework
- If a pattern is found, a specific rule is applied to extract the opinion

Linguistic framework for appraisal

The language of evaluation, James R. Martin and Peter R. R. White

Affect as:

- a mental process: "I like this phone"
- a mental state: "I'm very happy with this phone"
- Appreciation as:
 - qualification: "The camera is the only problem"
 - presence/absence: "This phone hasn't got a camera"
 - behavior: "The battery heats up a lot"
- Judgement deals with attitudes towards behaviour (social esteem or social sanction)

Search strategies: an example

"The camera is the only problem" (Appreciation by qualification)

Experiment

Our dataset contains:

- 40,160 comments about 382 smartphones in 81,431 sentences for a total size of 3.5 Mo.
- 368 technical specifications from 8 manufacturer websites.
- A knowledge base with keyword for smartphone's related concepts.

Our validation set contains:

- 708 opinions in 527 comments about 6 smartphones.
- Annotations are a consensus between 3 reviewers

They are available for download: http://goo.gl/YCC5We

Dataset	Appreciation Detection			Detection with Polarity Eval.		
	Precision	Recall	F-Measure	Precision	Recall	F-Measure
Galaxy S5	0.87	0.62	0.72	0.82	0.59	0.69
HTC Desire 310	0.90	0.50	0.64	0.82	0.48	0.60
HTC One (M8)	0.82	0.43	0.56	0.80	0.43	0.56
iPhone 6	0.83	0.50	0.62	0.77	0.47	0.59
Lumia 1320	0.90	0.68	0.78	0.86	0.68	0.76
XPERIA C	0.87	0.66	0.75	0.76	0.62	0.68
Average	0.87	0.57	0.68	0.81	0.55	0.65

- Good average precision to find appreciation and qualify their polarity
- Recall have to be improved to find more opinions:
 - Affect extraction is not yet implemented
 - Constituency-based syntactic analysis cannot handle complex sentences

Future work

- Manage context-based knowledge
- Handle complex sentences with dependency-based syntactic analysis
- Find new rules fitted to affect, judgement and engagement

Conclusion

- Semantic ressources to define a semantic relevant perimeter
- NLP techniques for data preparation and syntactic analysis
- Use of a sound language framework for appraisal in English
- Search strategies to find relevant opinions with their polarity

