МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования

«Нижегородский государственный университет им. Н.И. Лобачевского»

Национальный исследовательский университет

ЛАБОРАТОРНАЯ РАБОТА

Численное решение задачи Коши для ОДУ

Выполнил:	
Антипин Александр Сергеевич	381706-2
	_ Подпись
Проверил:	
Ассистент кафедры ДУМЧА:	
Морозов Кирилл Евгеньевич	
	Полпись

Нижний Новгород

Оглавление

Введение	
Теория	
Выбор модели	
Выбор языка	
Программная реализация	
Вывод	
Список использованной литературы	
Листинг основных функций	

Введение

Дифференциальное уравнение представляет собой математическое уравнение, которое относится к функции и её производным. В прикладной математике функции как правило представляют собой физические величины, а производные скорости их изменения. Дифференциальные уравнения в свою очередь определяют отношения между ними. Поэтому дифференциальные уравнения играют важную роль в различных дисциплинах, включая инженерию, физику, химию, экономику и биологию.

В чистой математике дифференциальные уравнения изучаются с разных точек зрения, большинство из которых касается множества решений функций, удовлетворяющих начальному условию. Только самые простые дифференциальные уравнения могут быть решены с помощью явных формул, однако некоторые свойства решений дифференциального уравнения могут быть определены и без нахождения их точного вида.

Если точное решение не может быть найдено, оно может быть получено численно путём приближения с использованием компьютеров. Теория динамических систем подчёркивает качественный анализ систем, описываемых дифференциальными уравнениями, в то время как многие численные методы были разработаны для определения решений с определённой степенью точности.

Теория

Задача Коши (исходная задача) - задача, заключающаяся в нахождении конкретной функции, удовлетворяющей заданному дифференциальному уравнению и начальному условию. В случае уравнения первой степени начальным условием будет точка, через которую должен пройти график искомой функции. В случае уравнения второй степени начальная задача дополнительно будет содержать значение первой производной в данной точке и аналогично в случае уравнений более высокого уровня.

Теорема существования и единственности утверждает, что если функция f(x,y) дифференцируема по y в окрестности точки плоскости (x_0, y_0) и её производная также дифференцируема в этой точке, то задача Коши однозначно разрешима в окрестности данной точки. Если функция дифференцируема на всем отрезке [a, b], то решение задачи Коши также существует на всем этом отрезке. При численном решении задач чаще всего требуется найти решение для значений $x > x_0$, т.е. первый параметр задачи Коши будет x_0 . Одним из методов численного решения дифференциальных уравнений является метод **Рунге-Кутты**.

Метод Рунге-Кутты

Метод Рунге-Кутты, который, вообще говоря, является более точным и имеет большее практическое значение чем метод Эйлера, хотя идея метода схожа. Приращение функции приближённо выражается в виде линейной комбинации дифференциалов, вычисленных в текущем узле и в окрестных точках узла.

Рассмотрим уравнение второго порядка, разрешённое относительно второй производной:

$$y'' = f(x, y, y')$$

На отрезке [a, b] с начальным условием:

$$y(x_0) = y_0, y'(x_0) = y'_0$$

Это уравнение легко свести к системе уравнений первого порядка с помощью замены переменных. Тогда и уравнение сводится к системе первого порядка.

$$y' = z y'' = z'$$

$$\begin{cases} y' = f_1(x, y, z) \\ z' = f_2(x, y, z) \end{cases} y(x_0) = y_0, z(x_0) = z_0$$

Напишем формулы для решения системы двух уравнений методом Рунге-Кутты:

$$k1 = z[i]$$

 $q1 = f(x[i], y[i], z[i])$
 $k2 = z[i] + q1h/2$
 $q2 = f(x[i] + h/2, y[i] + k1h/2, z[i] + q1h/2)$
 $k3 = z[i] + q2h/2$
 $q3 = f(x[i] + h/2, y[i] + k2h/2, z[i] + q2h/2)$
 $k4 = z[i] + q2h$
 $q4 = f(x[i] + h, y[i] + k3h, z[i] + q3h)$
 $y[i+1] = y[i] + h(k1 + 2k2 + 2k3 + k4)/6$
 $z[i+1] = z[i] + h(q1 + 2q2 + 2*q3 + q4)/6$

Где h является приращением аргумента. Приведённые формулы k1, q1, k2, q2, k3, q3, k4, q4 последовательно вычисляются на каждом шаге, после чего вычисляются y[i+1] и z[i+1].

Выбор модели

В данной лабораторной работе я решил рассмотреть уравнение маятника с диссипацией: x'' + dx' + sin(x) = 0.

Выбор языка

Для создания программы использовался язык высокого уровня C++ с фреймворком Windows Forms для обеспечения визуального представления.

Программная реализация

На следующем рисунке приведён интерфейс программы, где:

слева сверху приведён общий вид уравнения маятника с диссипацией. Под ним можно записать коэффициент уравнения, которое будет решаться в данный момент. Слева можно ввести промежуток на котором будут производиться вычисления, а под ним есть поле для ввода погрешности вычислений. Справа представлены поля для ввода задачи Коши, а также поле задания шага свободной переменной с которым будут происходить вычисления (шаг может быть автоматически изменен в зависимости от выбранной погрешности).

Также в программе предусмотрена функция продолжения фазовой траектории по нажатию клавиши R.

Далее представлены несколько скриншотов вывода графиков в зависимости от заданных начальных условий.

Продолжение фазовой траектории по нажатию R

Погрешность и шаг можно не задавать, у них есть значение по умолчанию

Вывод

В ходе работы было сделано несколько выводов: метод Рунге-Кутты не сложен в реализации, и имеет высокую точность. Ошибка на конечно интервале интегрирования имеет порядок O(h4), где h – расстояние между узлами, в которых вычисляется искомая функция. Если известен класс функций, которые могут стоять в правой части задачи Коши, то алгоритм можно эффективно модифицировать, чтобы избавиться от лишних пересылок данных. Еще к достоинствам этого метода можно добавить то, что он является явными, т.е. значения yi+1 находится по ранее найденным значениям $y1,y2, \dots yi$.

Список использованной литературы

- А.А.Самарский. Введение в численные методы М.: Наука, 1982.
- https://ru.wikipedia.org/wiki/Дифференциальное_уравнение
- https://portal.tpu.ru/SHARED/l/LOPATKIN/Students/DG/9-Problems_1-3.pdf
- https://algowiki-project.org/ru/Участник:Anlesnichiy
 Решение_задачи_Коши_для_системы_ОДУ_методом_РунгеКутты_4_порядка

Листинг основных функций

```
// Уравнение маятника с диссипацией
double func(double x, double y, double z) {
  return -coef1 * z - \sin(y);
}
// Рунге-Кутт
void
         Runge_Kutt(std::vector<double>&
                                                x, std::vector<double>&
                                                                                   у,
std::vector<double>& z,
  double t0, double t1, double h, double eps) {
  size t i = 0;
  while (t0 < t1) {
     // вычисление коэффициентов
     double k1 = h * z[i];
     double q1 = h * func(x[i], y[i], z[i]);
     double k2 = h * (z[i] + q1 / 2);
     double q2 = h * func(x[i] + h / 2, y[i] + k1 / 2, z[i] + q1 / 2);
     double k3 = h * (z[i] + q2 / 2);
     double q3 = h * func(x[i] + h / 2, y[i] + k2 / 2, z[i] + q2 / 2);
     double k4 = h * (z[i] + q2);
     double q4 = h * func(x[i] + h, y[i] + k3, z[i] + q3);
     double yt = y[i] + (k1 + 2 * k2 + 2 * k3 + k4) / 6;
     double zt = z[i] + (q1 + 2 * q2 + 2 * q3 + q4) / 6;
     if (eps > 0)
     {
       h = 2; // уменьшаем шаг в 2 раза и проходим раза по промежутку
       double ux_temp = y[i];
       double uy_temp = z[i];
       for (int j = 0; j < 2; j++)
          double uk1 = h * z[i];
          double ul1 = h * func(x[i], y[i], z[i]);
          double uk2 = h * (z[i] + q1 / 2);
          double ul2 = h * func(x[i] + h / 2, y[i] + k1 / 2, z[i] + q1 / 2);
          double uk3 = h * (z[i] + q2 / 2);
```

```
double ul3 = h * func(x[i] + h / 2, y[i] + k2 / 2, z[i] + q2 / 2);
         double uk4 = h * (z[i] + q2);
         double ul4 = h * func(x[i] + h, y[i] + k3, z[i] + q3);
         ux_{temp} += (k1 + 2 * k2 + 2 * k3 + k4) / 6;
         uy_temp += (q1 + 2 * q2 + 2 * q3 + q4) / 6;
       }
       double S = abs((yt - ux_temp) / 15); // высчитываем погрешность
       if (S > eps) {
         continue;
         //если погрешность не устраивает, уменьшаем шаг, считаем заново
         //добавления точек при этом не происходит и і не увеличивается
       }
            else if (S < eps / 32) { //если вычисления слишком точные, то
увеличиваем шаг
         h *= 2; // шаг можно увеличить
         h *= 2; // т.к. мы перед этим уменьшали в 2 раза, т.е. возвращаем в
исходное
     }
     x.push_back(x[i] + h);
     y.push_back(yt);
     z.push_back(zt);
     ++i;
    t0 += h;
  }
}
private: System::Void button1_Click(System::Object^ sender, System::EventArgs^
e) {
            // Проверка на заполнение необходимых текстовых полей
            if (this->textBox1->Text == "" || this->textBox5->Text == "" ||
                  this->textBox6->Text == "" || this->textBox8->Text == "" ||
                  this->textBox9->Text == "") {
                  MessageBox::Show("Введены не все данные");
                  return;
            // считывание данных
            double coef1 = Convert::ToDouble(this->textBox1->Text);
            double x0 = Convert::ToDouble(this->textBox5->Text);
```

```
double t1 = Convert::ToDouble(this->textBox6->Text);
            if (this->textBox7->Text != "")
                  h = Convert::ToDouble(this->textBox7->Text);
            double y0 = Convert::ToDouble(this->textBox8->Text);
            double z0 = Convert::ToDouble(this->textBox9->Text);
            if (this->textBox2->Text != "")
                  pogr = Convert::ToDouble(this->textBox2->Text);
            if (x0 > t1) {
                  MessageBox::Show("Неправильный интервал");
            t0 = x0;
            tf = t1;
            _x.Add(x0);
           _y.Add(y0);
            _z.Add(z0);
            coef.Add(coef1);
            size_t count = (t1 - x0) / h + 1;
            std::vector<double> x(1), y(1), z(1);
            x[0] = x0;
            y[0] = y0;
            z[0] = z0;
            init(coef1);
            // применение метода Рунге-Кутты
            Runge_Kutt(x, y, z, x[0], t1, h, pogr);
            // Отрисовка графика
            ++countC;
            System::String^ str("0" + countC);
            System::Windows::Forms::DataVisualization::Charting::Series^
= chart1->Series->Add(str);
            ser1->BorderWidth = 2;
            ser1->ChartType
System::Windows::Forms::DataVisualization::Charting::SeriesChartType::Line;
            ser1->IsVisibleInLegend = false;
            ret.Add(ser1);
            for (size_t i = 0; i < x.size(); ++i) {
                  chart1->Series[str]->Points->AddXY(y[i], z[i]);
            }
            x.clear();
            y.clear();
            z.clear();
      }
```