Nome e Cognome:	N. Matricola:		
È uno studente lavoratore?	\square SI	□ NO	
Ha seguito il corso in questo A.A. (2019/20)?	\square SI	$\Box\:$ NO, l'ho seguito nell'A.A	
Si è iscritto regolarmente su Uniweb a questo esame?	\square SI	□ NO, perché	

Laurea Magistrale in Ingegneria Meccatronica A.A. 2019/2020 Teoria dei Sistemi e Controllo Ottimo e Adattativo (C. I.)

Esame Scritto di Teoria dei Sistemi (Modulo A) del ??/??/20??

Istruzioni. Non è ammessa la consultazione di libri o quaderni, né l'uso di calcolatrici programmabili. Scrivere in modo chiaro e ordinato, motivare ogni risposta e fornire traccia dei calcoli. Tempo a disposizione: 2 h 30 min.

Esercizio 1 [9 pti]. Si consideri il seguente sistema non lineare a tempo discreto:

$$x_1(t+1) = (1 - \alpha^2)x_1(t)$$

$$x_2(t+1) = x_1^2(t) + (1 - \alpha)x_2(t) + x_2^2(t) + u(t)$$
 $\alpha \in \mathbb{R}$.

- 1. Per $u(t) = \bar{u} = \text{costante}, \forall t$, determinare i punti di equilibrio del sistema al variare di $\alpha \in \mathbb{R}$ e $\bar{u} \in \mathbb{R}$.
- 2. Per u(t) = 0, $\forall t$, studiare la stabilità dei punti di equilibrio trovati al punto 1 al variare di $\alpha \in \mathbb{R}$ utilizzando la linearizzazione.
- 3. Per i casi critici del punto 2 (se ne esistono), si dica, giustificando la risposta, se gli equilibri trovati sono asintoticamente stabili oppure no. [Suggerimento: si analizzi l'evoluzione di una delle due variabili di stato.]

Esercizio 2 [9 pti]. Si consideri il seguente sistema lineare tempo invariante a tempo continuo:

$$\dot{x}(t) = Fx(t) + Gu(t)$$
 $F = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 2 & -1 \end{bmatrix}, G = \begin{bmatrix} 0 & 1 \\ 0 & 0 \\ 1 & 0 \end{bmatrix}.$

- 1. Determinare la forma di Jordan di F e i modi elementari del sistema.
- 2. Progettare, se possibile, un controllore in retroazione dal solo primo ingresso in modo che il sistema retroazionato abbia come modi elementari tutti e soli i seguenti: e^{-t} , te^{-t} , $\frac{t^2}{2}e^{-t}$.
- 3. Progettare, se possibile, un controllore in retroazione da entrambi gli ingressi in modo che il sistema retroazionato abbia come modi elementari tutti e soli i seguenti: e^{-t} , te^{-t} .

Esercizio 3 [9 pti]. Si consideri il seguente sistema lineare tempo invariante a tempo continuo:

$$\dot{x}(t) = Fx(t) + Gu(t)
y(t) = Hx(t)$$

$$F = \begin{bmatrix} \alpha & 0 & 0 \\ 1 & \alpha & 0 \\ 0 & 0 & 1 \end{bmatrix}, G = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, H = \begin{bmatrix} 0 & 0 & 1 \\ 0 & \alpha & \alpha \end{bmatrix}, \alpha \in [0, 1].$$

- 1. Determinare i valori del parametro $\alpha \in [0,1]$ (se ne esistono) tali per cui il sistema risulta raggiungibile.
- 2. Determinare i valori del parametro $\alpha \in [0,1]$ (se ne esistono) tali per cui il sistema risulta rivelabile.
- 3. Determinare i valori del parametro $\alpha \in [0, 1]$ (se ne esistono) tali per cui il sistema risulta rivelabile utilizzando una sola uscita del sistema.

Domanda di Teoria [6 pti]. Si consideri un sistema lineare tempo invariante a tempo discreto:

$$x(t+1) = Fx(t) + Gu(t), \quad F \in \mathbb{R}^{n \times n}, \ G \in \mathbb{R}^{n \times m}.$$

- 1. Si assuma che il sistema **non** sia completamente raggiungibile. Si illustri come si modifica il sottosistema non raggiungibile in seguito ad una retroazione statica della forma u(t) = Kx(t) + v(t), $K \in \mathbb{R}^{m \times n}$.
- 2. Siano date due matrici di stato $F_1, F_2 \in \mathbb{R}^{4 \times 4}$ e una matrice di ingresso $G \in \mathbb{R}^{4 \times 2}$. Sapendo che

$$\operatorname{rank} \begin{bmatrix} -F_1 & G \end{bmatrix} = 3, \quad \operatorname{rank} \begin{bmatrix} -F_2 & G \end{bmatrix} = 4,$$

si dica, giustificando la risposta, se F_1 e F_2 possono corrispondere a matrici di stato di uno stesso sistema retroazionato staticamente dallo stato.

Parte riservata al docente (NON compilare!)

	Parte 1	Parte 2	Parte 3	Totale
Esercizio 1				/ 9
Esercizio 2				/ 9
Esercizio 3				/ 9
Domanda di Teoria				/ 6
Punteggio Finale				/ 33

Commenti:				