| lightgray Num | Family Type | Name         | Label                       | Format |
|---------------|-------------|--------------|-----------------------------|--------|
| 1             | ID          | id_client    | ID- Client ID               | string |
| 2             | ID          | id_vehicle   | ID- Vehicle ID              | string |
| 3             | ID          | id₋year      | ID- Year                    | string |
| 4             | Claims      | id_claim     | Claims- Claim ID            | string |
| 5             | Claims      | claim_nb     | Claims- Number of Claims    | int    |
| 6             | Claims      | claim_amount | Claims- Total Claims Amount | int    |

Variables List : Claims database

| lightgray <b>Num</b> | Family Type | Name             | Label                                        | Format |
|----------------------|-------------|------------------|----------------------------------------------|--------|
| 1                    | ID          | id_client        | ID- Client ID                                | string |
| 2                    | ID          | id_vehicle       | ID- Vehicle ID                               | string |
| 3                    | ID          | id_policy        | ID- Policy ID                                | string |
| 4                    | ID          | id_year          | ID- Year                                     | string |
| 5                    | Policy      | pol_bonus        | Policy- Bonus Coefficient                    | float  |
| 6                    | Policy      | pol_coverage     | Policy- Coverage                             | string |
| 7                    | Policy      | pol_duration     | Policy- Duration                             | int    |
| 8                    | Policy      | pol_sit_duration | Policy- Current Endorsment Duration          | int    |
| 9                    | Policy      | pol_pay_freq     | Policy- Payment Frequency                    | string |
| 10                   | Policy      | pol_payd         | Policy- Payd Indicator                       | string |
| 11                   | Policy      | pol_usage        | Policy- Usage                                | string |
| 12                   | Policy      | pol_insee_code   | Policy- Insee Town Code                      | string |
| 13                   | Drivers     | drv_drv2         | Drivers- Secondary Driver Presence Indicator | string |
| 14                   | Drivers     | drv_age1         | Drivers- First Driver Age                    | int    |
| 15                   | Drivers     | drv_age2         | Drivers- Secondary Driver Age                | int    |
| 16                   | Drivers     | drv_sex1         | Drivers- First Driver Gender                 | string |
| 17                   | Drivers     | drv_sex2         | Drivers- Secondary Driver Gender             | string |
| 18                   | Drivers     | drv_age_lic1     | Drivers- First Driver Licence Age            | int    |
| 19                   | Drivers     | drv_age_lic2     | Drivers- Secondary Driver Licence Age        | int    |
| 20                   | Vehicle     | vh_age           | Vehicle- Vehicle Age                         | int    |
| 21                   | Vehicle     | vh_cyl           | Vehicle- Engine Capacity                     | int    |
| 22                   | Vehicle     | vh_din           | Vehicle- Din Power                           | int    |
| 23                   | Vehicle     | vh_fuel          | Vehicle- Fuel Type                           | string |
| 24                   | Vehicle     | vh_make          | Vehicle- Make                                | string |
| 25                   | Vehicle     | vh_model         | Vehicle- Model                               | string |
| 26                   | Vehicle     | vh_sale_begin    | Vehicle- Sales Date Beginning                | int    |
| 27                   | Vehicle     | vh_sale_end      | Vehicle- Sales Date End                      | int    |
| 28                   | Vehicle     | vh_speed         | Vehicle- Max Speed                           | int    |
| 29                   | Vehicle     | vh_type          | Vehicle- Type                                | string |
| 30                   | Vehicle     | vh_value         | Vehicle- Value                               | int    |
| 31                   | Vehicle     | vh_weight        | Vehicle- Weight                              | int    |

Variables List : Underwriting database

- 4.1. Variable id\_client. id\_client is a string of the form Annnnnnn ('A' followed by an 8-digit number). First client ID is A00000001 and last is A00091488. Why not A00100000? This is because a single client can own multiple vehicles, as we'll see in the next section.
- 4.2. Variable id\_vehicle. id\_vehicle as a string of the form Vnn (a 'V' followed by a 2-digit number). First vehicle is always numbered V01. If a client has multiple vehicles, then the numeration increases by 1. There is no particular ordering in the vehicles, so their rank should not represent anything valuable.
- 4.3. Variable id\_policy. id\_policy is a string of the form Annnnnnn-Vnn, resulting from the concatenation of id\_client, a minus sign, and id\_vehicle. This is the unique ID that you must provide in you response CSV file, among with your calculated premium.
- 4.4. Variable id\_year. Year ID begins at Year 0 and ends at Year 4. The Year ID is unique in each dataset. Client ID, Vehicle ID and Year ID are present in the underwriting datasets  $(U_i)$  as well as in the claims datasets  $(C_i)$ . When merging claims with contracts, don't forget to use the three IDs as keys.
- 4.5. Variable pol\_bonus. The bonus/malus system is compulsary in France, but we will only use it here as a possible feature. The coefficient is attached to the driver. It starts at 1 for young drivers (i.e. first year of insurance). Then, every year without claim, the bonus decreases by 5% until it reaches its minimum of 0.5. Without any claim, the bonus evolution would then be :  $1 \rightarrow 0.95 \rightarrow 0.9 \rightarrow 0.85 \rightarrow 0.8 \rightarrow 0.76 \rightarrow 0.72 \rightarrow 0.68 \rightarrow 0.64 \rightarrow 0.6 \rightarrow 0.57 \rightarrow 0.54 \rightarrow 0.51 \rightarrow 0.5$

Every time the driver causes a claim (only certain types of claims are taken into account), the coefficient increases by 25%, with a maximum of 3.5. Thus, the range of pol\_bonus extends from 0.5 to 3.5 in the datasets.

- 4.6. Variable pol\_coverage. The coverage are of 4 types: Mini, Median1, Median2 and Maxi, in this order. As you can guess, Mini policies covers only Third Party Liability claims, whereas Maxi policies covers all claims, including Damage, Theft, Windshield Breaking, Assistance, etc.
- 4.7. Variable pol\_duration. Policy duration represents how old the policy is. It is expressed in year, accounted from the beginning of the current year i. Oldest policies in this portfolio can last since prehistoric ages of 45 years.
- 4.8. Variable pol\_sit\_duration. Situation duration represent how old the current policy caracteristics are. It can be different from pol\_duration, because the same insurance policy could have evolved in the past (e.g. by changing coverage, or vehicle, or drivers, ...).
- 4.9. Variable pol\_pay\_freq. The price of the insurance coverage can be paid annually, bi-annually, quarterly or monthly. Be aware that you must provide a yearly cotation in your answer to the pricing game.
- 4.10. Variable pol\_payd. The pol\_payd is a boolean (i.e. a string with Yes or No), which indicates whether our client has subscribed a mileage-based policy or not. In those early ages of Year 0, Pay As You Drive was not that current, so they represent a minority in the portfolio.
- 4.11. Variable pol\_usage. The policy use describes what usage the driver makes from his vehicle, most of time. There are 4 possible values: WorkPrivate which is the most common, Retired which is presumed to be aimed at retired people (who also are presumed driving less kilometers), Professional which denotes a professional usage of the vehicle, and AllTrips which is quite similar to Professional (including pro tours). As for the coverage, it would be very surprising that this variable had no effect on frequency...

4.12. Variable pol\_insee\_code. insee\_code is a 5-digits alphanumeric code used by the French National Institute for Statistics and Economic Studies (hence INSEE) to identify communes and departments in France. There are about 36,000 'communes' in France, but not every one of them is present in the dataset (there are only 18,000 of them). The first 2 digits of insee\_code identifies the 'department' (they are 96, not including overseas departments). The insee\_code or department code can be used to possibly merge external data to the datasets: population density, OSM data, etc.

In case you need it, two shapefiles are available online: one DEPARTMENTS.zip for departments, and one COMMUNES.zip for communes. Be aware that, if you need to graph geographical information, french reference system is RGF93 / Lambert-93 (EPSG:2154) and not the common WGS84.

http://freakonometrics.free.fr/PG3/COMMUNES.zip http://freakonometrics.free.fr/PG3/DEPARTEMENTS.zip



- 4.13. Variable drv\_drv2. The drv\_drv2 boolean (Yes/No) identifies the presence of a secondary driver on the vehicle. There is always a first driver, which characteristics (age, sex, licence) are provided, but a secondary driver is optional, and is present 1 time out of 3.
- 4.14. Variable drv\_age1. This is quite obviously the age of the first driver. drv\_age is expressed in years counted from the beginning of the considered year. Then, drv\_age increases by 1 every year, like in real world... Legal age to drive is 18, so you shouldn't find any age below that limit. Due to the fact that the database is built on existing situations before Year 0, in fact the minimum age is 19 in Year 0 dataset. On the other side, you'll also find quite old drivers.
- 4.15. Variable drv\_age2. When drv\_drv2 is Yes, then the secondary driver's age is present. When not, this age is 0.
- 4.16. Variable drv\_sex1. European rules force insurers to charge the same price for women and men. But driver's gender can still be used in academic studies, and that's why drv\_sex1 is still available in the datasets, and can be used as discriminatory variable in this pricing game.
- 4.17. Variable drv\_sex2. As for drv\_sex1, drv\_sex2 represents the gender of the optional secondary driver. You'll notice that the distribution of this variable is opposite to drv\_sex1.

- 4.18. Variable drv\_age\_lic1. drv\_age\_lic1 is the age of the first driver's driving licence. As for the other ages, it is expressed in integer years from the beginning of the current year.
- 4.19. Variable drv\_age\_lic2. drv\_age\_lic2 is the age of the second driver's driving licence. Be cautious that there are some outliers in the dataset.
- 4.20. Variable vh\_age. This variable is the vehicle's age, the difference between the year of release and the current year. One can consider that vh\_age of 1 or 2 correspond to new vehicles.
- 4.21. Variable  $vh_cyl$ . The engine cylinder displacement is expressed in ml in a continuous scale. This variable should be highly correlated with din power of the vehicle.
- 4.22. Variable vh\_din. The vh\_din is a representation of the motor power. Don't be surprised to find correlations between din power, cylinder, speed and even value of the vehicle...
- 4.23. Variable vh\_fuel. vh\_fuel is the motor alimentation, with mainly two values Diesel and Gasoline. Very few Hybrid vehicles can also be found, but, 6 years ago, the hybrid market was still at its beginning.
- 4.24. Variable vh\_make. The make (brand) of the vehicle. As the database is built from a french insurance, the three major brands are Renault, Peugeot and Citroën.
- 4.25. Variable vh\_model. As a subdivision of the make, vehicle is identified by its model name. The are about 100 different make names in the datasets, and about 1,000 different models. Should you use them, consider concatenating vh\_make and vh\_model.
- 4.26. Variables vh\_sale\_begin and vh\_sale\_end. vh\_sale\_begin and vh\_sale\_end are the dates (in fact : ages) from the beginning of the current year of the beginning and the end of marketing years of the vehicle. This could for instance identify policies that covers very new vehicles or second-hand ones.
- 4.27. Variable vh\_speed. This is the maximum speed of the vehicle, as stated by the manufacturer.
- 4.28. Variable vh\_type. vh\_type can be Tourism or Commercial. You'll find more Commercial types for Professional policy usage than for WorkPrivate.
- 4.29. Variable vh\_value. The vehicle's value (replacement value) is expressed in euros, without inflation so it should be stable from a year to another.
- 4.30. Variable vh\_weight. vh\_weight is the weight (in kg) of the vehicle.
- 4.31. Variable id\_claim. As the claims datasets PG\_2017\_CLAIMS\_YEARi.CSV shows individual claims, we should be able to identify them. id\_claim is a string of the form CLnn (CL followed by a 2-digit number). Numbering of the claims begins at 1 for every policy and each year. Then, the last value of id\_claim is the maximum number of claims for a vehicle in a year. Two-digits representation is sufficient: this maximum doesn't exceed 7 (but not on Year 0, where the maximum is 6).
- 4.32. Variable claim\_nb. As we are talking about individual claims, each claim\_nb has a value of 1. This variable is present for commodity purpose: this is the one you'll probably want to model in a frequency approach.
- 4.33. Variable claim\_amount. Individual claim amounts range from (approx.) -2,000 to +300,000. Yes, there are negative values, they come from claims where our driver's liability is not engaged, so there's a legal recourse.