GMM, Indirect Inference and Bootstrap Estimators and their properties

Willi Mutschler

TU Dortmund

Winter 2015/2016

Statistical estimation theory

- Let X be a random variable (or random vector) representing a random experiment we are interested in
- \bullet We would like to say something about the distribution of X
- \bullet Usually, the distribution of X is unknown
- We have to collect information about the distribution by observing the random outcome n times
- Before the outcomes are actually observed, we may regard the n observations as random variables X_1, \ldots, X_n

Random samples

- The random variables X_1, \ldots, X_n are called a (simple) random sample from X, if
 - ① each X_i , i = 1, ..., n, is distributed in the same way as X,
 - (2) X_1, \ldots, X_n are stochastically independent.
- The sample elements are i.i.d.
- n is the sample size

Sample statistics

• The joint density of the sample elements X_1, \ldots, X_n is

$$f_{X_1,...,X_n}(x_1,...,x_n) = \prod_{i=1}^n f_{X_i}(x_i) = \prod_{i=1}^n f_{X_i}(x_i)$$

• Let $g: \mathbb{R}^n \longrightarrow \mathbb{R}$ be a real-valued function with n arguments, not containing any unknown parameters, then

$$T = g(X_1, \ldots, X_n)$$

is called a **statistic** (or sample function)

Sample statistics

Examples

Sample mean:

$$\bar{X}=g(X_1,\ldots,X_n)=\frac{1}{n}\cdot\sum_{i=1}^nX_i$$

Sample variance:

$$S^{2} = g(X_{1},...,X_{n}) = \frac{1}{n} \cdot \sum_{i=1}^{n} (X_{i} - \bar{X})^{2}$$

$$S^{*2} = g(X_{1},...,X_{n}) = \frac{1}{n-1} \cdot \sum_{i=1}^{n} (X_{i} - \bar{X})^{2}$$

Sample statistics

Examples

Empirical distribution function

$$\hat{F}(x) = \frac{1}{n} \sum_{i=1}^{n} 1(X_i < x)$$

where 1(A) = 1 if A is true and 1(A) = 0 else

Empirical p-quantile

$$\hat{x}_p = \inf\{x \in \mathbb{R} : \hat{F}(x) \ge p\}$$

Sample statistics

Remarks:

- All concepts are easily generalized to the multivariate case
- The statistic $T = g(X_1, ..., X_n)$ is a function of random variables and hence also a random variable
- A statistic has a distribution (and thus an expectation and variance)
- Statistics are basic tools for estimation of parameters and hypothesis tests about parameters

Estimators and estimates

- Let θ be a vector of unknown parameters we are interested in
- A statistic $\hat{\theta}(X_1, ..., X_n)$ is called **estimator (Schätzer)** of θ
- The realization $\hat{\theta}(x_1, \dots, x_n)$ is called **estimate (Schätzwert)**
- The estimator $\hat{\theta}(X_1, \dots, X_n)$ is a random vector
- The estimate $\hat{\theta}(x_1, \dots, x_n)$ is a vector of real numbers
- Notation: Usually we simply write $\hat{\theta}$ for both, but $\hat{\theta}$ and $\hat{\theta}$ are not the same thing!

Estimators and estimates

Example:

- Let $X \sim \mathit{N}(\mu, \sigma^2)$ with unknown parameters μ and σ^2
- We would like to estimate the parameter vector

$$\theta = \left[\begin{array}{c} \mu \\ \sigma^2 \end{array} \right] = \left[\begin{array}{c} E(X) \\ Var(X) \end{array} \right]$$

ullet A possible estimator of μ is

$$\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

Estimators and estimates

• A possible estimator of σ^2 is

$$\hat{\sigma}^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \hat{\mu})^2$$

 \bullet The estimator of θ and the estimate are

$$\hat{\theta} = \begin{bmatrix} \hat{\mu} \\ \hat{\sigma^2} \end{bmatrix} = \begin{bmatrix} \frac{1}{n} \sum_{i=1}^{n} X_i \\ \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \hat{\mu})^2 \end{bmatrix}$$

$$\hat{\theta} = \begin{bmatrix} \hat{\mu} \\ \hat{\sigma^2} \end{bmatrix} = \begin{bmatrix} \frac{1}{n} \sum_{i=1}^{n} X_i \\ \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \hat{\mu})^2 \end{bmatrix}$$

Estimators and estimates

- Why do we need the complex theoretical concept of estimators as random variables?
- Note that **the** estimator of θ does not exist, there are always many possible estimators
- Example: Let $\theta = Var(X)$; two possible estimators of θ are

$$\hat{\theta}_1(X_1,\ldots,X_n) = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X})^2$$

$$\hat{\theta}_2(X_1,\ldots,X_n) = \frac{1}{n-1}\sum_{i=1}^n (X_i - \bar{X})^2$$

Estimators and estimates

Important questions:

- How can we compare different estimators?
- What is a good estimator?
- Which criteria should a good estimator satisfy?
- Is there an optimal estimator?
- How can we find good estimators?

Properties of estimators

- We distinguish two groups of properties:
 - small (finite) sample properties
 - asymptotic properties
- We consider finite sample properties first
- For simplicity, we only consider univariate estimators
- Thought experiment: repeated samples

Unbiasedness

• An estimator $\hat{\theta}(X_1, \dots, X_n)$ is called **unbiased** for θ if

$$E\left(\hat{\theta}\right) = \theta$$

The bias is defined as

$$bias(\hat{ heta}) = E(\hat{ heta}) - heta$$

Generalization to multivariate case is obvious

Relative efficiency

- ullet How can two unbiased estimators of the unknown parameter heta be compared to each other?
- Let $\hat{\theta}_1$ and $\hat{\theta}_2$ be two unbiased estimators for θ . The estimator $\hat{\theta}_1$ is **relatively more efficient** than $\hat{\theta}_2$, if

$$Var(\hat{\theta}_1) \leq Var(\hat{\theta}_2)$$

for all possible heta and $Var(\hat{ heta}_1) < Var(\hat{ heta}_2)$ for at least one possible heta

Mean squared error

- How can two biased estimators be compared?
- Let $\hat{\theta}$ be an arbitrary estimator for θ . Then

$$MSE(\hat{\theta}) = E\left[\left(\hat{\theta} - \theta\right)^{2}\right]$$

$$= Var\left(\hat{\theta}\right) + \left[bias(\hat{\theta})\right]^{2}$$

is called the mean-squared error of the estimator

- If the estimator is unbiased, its MSE is equal to its variance
- If $MSE(\hat{\theta}_1) < MSE(\hat{\theta}_2)$, then $\hat{\theta}_1$ is more MSE-efficient

Asymptotic properties

- What happens if the sample size goes to infinity?
- Practical relevance: How do estimators behave in large samples?
- We consider a sequence of estimators $\hat{\theta}_n(X_1,\ldots,X_n)$ for $n=1,2,\ldots$
- Consistency
- Asymptotic normality
- Asymptotic efficiency

Consistency

• An estimator $\hat{\theta}_n(X_1,\ldots,X_n)$ is called **consistent** for θ , if

$$plim \ \hat{\theta}_n(X_1,\ldots,X_n) = \theta$$

Sufficient (but not necessary) condition for consistency:

$$\lim_{n\to\infty} E(\hat{\theta}_n) = \theta$$
$$\lim_{n\to\infty} Var(\hat{\theta}_n) = 0$$

Consistency is a basic and very important property of estimators

Consistency

• Attention:

Consistency and (asymptotic) unbiasedness are not the same thing

- An estimator can be
 - consistent and unbiased
 - inconsistent and unbiased
 - consistent and biased
 - inconsistent and biased
 - consistent and asymptotically unbiased
 - inconsistent and asymptotically unbiased
 - consistent and asymptotically biased
 - inconsistent and asymptotically biased

Asymptotic normality

• An estimator $\hat{\theta}_n(X_1,\ldots,X_n)$ for θ is called **asymptotically normal**, if there is a sequence of real numbers θ_1,θ_2,\ldots and a function $V(\theta)$ such that

$$\sqrt{n} \cdot \left(\hat{\theta}_n - \theta_n\right) \stackrel{d}{\rightarrow} U \sim N(0, V(\theta))$$

• Alternative notation:

$$\hat{\theta}_n \stackrel{appr}{\sim} N(\theta_n, V(\theta)/n)$$

Generalization to the multivariate case

Laws of large number and central limit theorems

The estimator

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

for the expectation E(X) is consistent and asymptotically normal under some mild regularity conditions

- ullet Consistency \longrightarrow laws of large number
- ullet Asymptotic normality \longrightarrow central limit theorems

Laws of large number and central limit theorems

- Weak law of large numbers: Let $X_1, X_2, ...$ be a sequence of i.i.d. random variables with $E(X_i) = \mu$ and $Var(X_i) = \sigma^2 < \infty$
- Consider the sequence of random variables

$$\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$$

• Then $plim \bar{X}_n = \mu$

Laws of large number and central limit theorems

Remarks:

- ullet The law of large number states that $ar{X}_n$ is consistent for $E(X)=\mu$
- For every (arbitrarily small) $\epsilon>0$, the probability that the sample mean \bar{X}_n deviates around μ by less than $\pm\epsilon$ converges to zero as the sample size goes to infinity
- Generalization to multivariate case is obvious
- Both the assumption of independence and the assumption of identical distributions may be weakened

Laws of large number and central limit theorems

- Central limit theorem: Let X be a random variable with $E(X) = \mu$ and $Var(X) = \sigma^2 < \infty$, and let X_1, \dots, X_n be a random sample of X
- Consider the sequence of random variables

$$Z_n = \sqrt{n} \frac{\bar{X}_n - \mu}{\sigma}$$

Then

$$Z_n \stackrel{d}{\rightarrow} U \sim N(0,1)$$

Laws of large number and central limit theorems

Common notations:

$$\sqrt{n} rac{ar{X}_n - \mu}{\sigma} \stackrel{d}{ o} U \sim N(0, 1)$$
 $\sqrt{n} \left(ar{X}_n - \mu \right) \stackrel{d}{ o} U \sim N(0, \sigma^2)$
 $ar{X}_n \stackrel{appr}{\sim} N\left(\mu, rac{\sigma^2}{n} \right)$

• Convenient (but wrong) notation: $\sqrt{n} (\bar{X}_n - \mu) \stackrel{d}{\to} N(0, \sigma^2)$

Laws of large number and central limit theorems

- Multivariate central limit theorem: Let $X = (X_1, \dots, X_m)'$ be a random vector with $E(X) = \mu$ and $Cov(X) = \Sigma$
- Let X_1, \ldots, X_n be a (multivariate) random sample of X and

$$\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$$

Then

$$\sqrt{n}\left(\bar{X}_n-\mu\right)\stackrel{d}{\to}U\sim N(0,\Sigma)$$

Laws of large number and central limit theorems

Estimators of moments

• Let X_1, \ldots, X_n be a random sample of X, then

$$\hat{\mu}_p = \frac{1}{n} \sum_{i=1}^n X_i^p$$

is an estimator for the p-th raw moment μ_p of X and

$$\hat{\mu}'_{p} = \frac{1}{n} \sum_{i=1}^{n} (X_{i} - \hat{\mu}_{1})^{p}$$

is an estimator for the p-th central moment μ_p' of X

Laws of large number and central limit theorems

Weak law of large numbers for moments

• Let X_1, X_2, \ldots be a sequence of iid random variables with

$$E(X_i^p) = \mu_p$$

$$E(X_i^{2p}) = \mu_{2p} < \infty$$

- Then $plim \hat{\mu}_p = \mu_p$
- Attention: The assumption $\mu_{2p} < \infty$ is *not* innocuous!

Laws of large number and central limit theorems

Central limit theorem for moments

• Let X_1, X_2, \ldots be a sequence of iid random variables with

$$E(X_i^p) = \mu_p$$

$$E(X_i^{2p}) = \mu_{2p} < \infty$$

Then

$$\sqrt{n} \left(\hat{\mu}_p - \mu_p \right) \stackrel{d}{\rightarrow} U \sim N(0, Var \left(\hat{\mu}_p \right))$$

where

$$Var\left(\hat{\mu}_{p}\right) = \frac{\mu_{2p} - \mu_{p}^{2}}{n}$$

Glivenko-Cantelli theorem

Fundamental theorem of mathematical statistics

Define

$$\Delta_n = \sup_{x \in \mathbb{R}} \left| \hat{F}(x) - F(x) \right|.$$

• Let X_1, X_2, \ldots be a sequence of iid random variables with distribution function F(x). Then

$$P(\lim_{n\to\infty}\Delta_n=0)=1.$$

• The empirical distribution function \hat{F} converges uniformly to the cumulative distribution function F.