CS321 Introduction to Theory of Computation Assignment No. 3, Due: Noon, Friday February 16, 2024

- 1. Suppose that a bank only permits passwords that are strings from the alphabets $\Sigma = \{a, b.c, d, 1, 2, 3, 4, \#, \$, \&\}$. The passwords follow the rules
 - (a) The length can be 5 or 6.
 - (b) The first alphabet must be from $\{a, b, c, d\}$.
 - (c) The last two alphabets must be from $\{1, 2, 3, 4\}$
 - (d) Exactly one alphabet is from $\{\#, \$, \&\}$

Give a regular expression for this language.

- 2. Find an NFA that accepts the language $L = L(ab^*a^*) \cup L((ab)^*ba)$.
- 3. Suppose an NFA is defined by

$$\delta(q_0, a) = \{q_0, q_1\}.$$

$$\delta(q_1, b) = \{q_1, q_2\}$$

$$\delta(q_2, a) = \{q_2\}$$

$$\delta(q_0,\lambda) = \{q_2\}$$

with initial state q_0 and final state q_2 . Find the regular expression for the language accepted by this NFA.

4. Construct a DFA that accepts the language generated by the grammar

$$S \to abS|A$$

$$A \rightarrow baB$$

$$B \to aA|bb$$

5. Construct right- and left-linear grammar for the language

$$L = \{a^n b^m : n \ge 2, m \ge 3\}.$$

- 1. Suppose that a bank only permits passwords that are strings from the alphabets $\Sigma = \{a, b.c, d, 1, 2, 3, 4, \#, \$, \&\}$. The passwords follow the rules
 - (a) The length can be 5 or 6.
 - (b) The first alphabet must be from $\{a, b, c, d\}$. B
 - (c) The last two alphabets must be from $\{1, 2, 3, 4\}$
 - (d) Exactly one alphabet is from $\{\#, \$, \&\}$

Give a regular expression for this language.

We assume that

length is 5 or 6

$$L = a + b + c + d$$

 $N = 1 + 2 + 3 + 4$
 $S = # + $ + $$

$$RE = L((s)((L+N)+(L+N)(L+N)) NN + L((L+N)((s)+(s)(L+N)) NN + L(((L+N)(L+N))(s)) NN = L(((s)((L+N)+(L+N)(L+N))) + ((L+N)((s)+(s)(L+N)) + ((L+N)(L+N))(s)) NN$$

$$\delta(q_0, a) = \{q_0, q_1\}.$$

$$\delta(q_1, b) = \{q_1, q_2\}$$

$$\delta(q_2, a) = \{q_2\}$$

$$\delta(q_0, \lambda) = \{q_2\}$$

with initial state q_0 and final state q_2 . Find the regular expression for the language accepted by this NFA.

The equivalent NFA is:

$$RE = a((ab^*b) + \lambda)a^*$$

$$S \to abS|A$$

$$A \rightarrow baB$$

$$B \to aA|bb$$

$$S \rightarrow abS/A$$

The DFA of given grammar can be shown:

So we can known that the DFA that accepts the language generated by the grammar $S \rightarrow abS \mid A$, $A \rightarrow ba \mid B \rightarrow aA \mid bb$.

5. Construct right- and left-linear grammar for the language
$L = \{a^n b^m : n \ge 2, m \ge 3\}.$
$L = \int a^n b^m n \ge 2, m \ge 3$
RE = aaa*bbbb*
R:
S-> aaA
$A \rightarrow aA$
A -> 666B
В→ bВ В→ л
$S \xrightarrow{1} aaA \xrightarrow{2} aaaA \xrightarrow{3} aaabbbB \xrightarrow{4} aaabbbbB \xrightarrow{5} aaabbbb$
L:
S-> Bb
B -> Abbb
$A \rightarrow Aa$
$A \rightarrow Aaa$ $A \rightarrow A$
S-1>Bb-2>Abbbb -3> Aabbbb -4> Aaaabbbb -5> aaabbbb.