The following is a brief description of the factor-finding process using Pollard's rho method.

1. Greatest common divisor

The Euclidean algorithm gives a very efficient method for finding the greatest common divisor between two integers. Suppose that a and b are two positive integers, not both zero. (The greatest common divisor does not depend on the of a or b.) The key fact for this algorithm is that, if a = bq + r, then gcd(a, b) = gcd(b, r). If r is small compared to b, this fact simplifies the computation of gcd(a, b).

There are two standard choices for r: between 0 and b or between -b/2 and b/2. The first choice yields a simpler implementation because we can just use the modulus operator, denoted $a \pmod{b}$ or a%b; the second choice yields a faster implementation because |r| is guaranteed to be at most b/2.

Algorithm. Let a, b be positive integers, both nonzero. These two algorithms will return gcd(a, b).

- (i) The algorithm to compute gcd(a, b) using a remainder $0 \le r < b$ is as follows:
 - 1. If b = 0, then return a.
 - 2. Otherwise, while $b \neq 0$, replace a with b and replace b with a%b.
- (ii) The algorithm to compute gcd(a, b) using a remainder |r| with $-b/2 < r \le b/2$ is as follows:
 - 1. If b = 0, then return a.
 - 2. Otherwise, while $b \neq 0$, replace a with b and replace b with the minimum of a%b and b-a%b.

Example. Let a = 76 and b = 44. The first version will give

$$\gcd(76,44) = \gcd(44,32) = \gcd(32,12) = \gcd(12,8) = \gcd(8,4) = \gcd(4,0) = 4$$

while the second version will give

$$\gcd(76,44) = \gcd(44,12) = \gcd(12,4) = \gcd(4,0) = 4.$$

2. Primality testing

A prime number is an integer $\mathfrak{p} \geqslant 2$ that has no nontrivial divisors. There are a few important theorems regarding prime numbers that are useful in determining primality.

Fermat's Theorem. If p is prime and x is not divisible by p, then $x^{p-1} \equiv 1 \pmod{p}$.

Lagrange's Theorem. If p is prime, then a polynomial of degree k has at most k roots modulo p.

Rabin's probabilistic primality test. The following test is often called the Miller-Rabin primality test, with probabilistic errors bounded by Michael Rabin.

Consider a positive odd integer \mathfrak{a} , which may be prime or composite. If \mathfrak{a} is prime, then it must satisfy both Fermat's and Lagrange's theorems. In particular, if there is some $x \not\equiv 0$ with $x^{n-1} \not\equiv 1$ or if we can exhibit three distinct roots modulo \mathfrak{a} of the polynomial $\mathfrak{t}^2 - 1$, then we can say with certainty that \mathfrak{a} is composite.

We call x with $x \not\equiv 0$ a witness: it is either a witness that $\mathfrak a$ is definitely composite, or it is a witness that $\mathfrak a$ is probably prime. If there are enough witnesses that declare $\mathfrak a$ to be 'probably prime', we can be fairly certain that $\mathfrak a$ is indeed prime.

We fix a witness x, and perform the following algorithm to decide whether x will declare a to be composite or probably prime.

Algorithm. Write $a-1=2^rm$ with m odd and form the sequence $X_k \equiv x^{2^km} \pmod{\mathfrak{a}}$ by repeated squaring as follows: $X_0 \equiv x^m$ and $X_{k+1} \equiv X_k^2$. There are four possibilities.

- 1. If $X_0 \equiv 1$, then return 'probably prime'.
- 2. If $X_k \equiv -1$ for some $0 \le k < r$, then return 'probably prime'.
- 3. If $X_k \equiv 1$ for some $0 < k \le r$ but $X_0, \dots, X_{k-1} \not\equiv -1$, then return 'composite'.
- 4. If $X_r \not\equiv 1$, return 'composite'.

By way of explanation:

- 1. If $X_0 \equiv 1$, then $x^{n-1} \equiv X_0^{2^r} \equiv 1$, so Fermat's theorem is satisfied.
- 2. If $X_k \equiv -1$, then $X_{k+1} \equiv 1$, so $x^{n-1} \equiv 1$, so Fermat's theorem is satisfied.
- 3. If $X_k \equiv 1$ with $X_{k-1} \not\equiv \pm 1$, then Lagrange's theorem is violated since we would have at least three roots of t^2-1 , namely 1, -1, and X_{k-1} .
- 4. At this point, we have violated Fermat's theorem, since $x^{n-1} \equiv X_r \not\equiv 1$.

Rabin proved that the number of false positives, ie witnesses that return 'probably prime' for a composite number, make up at most 25% of the possible witnesses. (In practice, the percentage is generally much smaller for large enough a.) Therefore, if there are k witnesses that all declare a to be 'probably prime', then the probability of correctly determining primality is at least $1 - (.25)^k$.

It was proved by Pomerance, Selfridge, and Wagstaff that for $a < 10^{12}$, it is sufficient to check the witnesses 2, 3, 5, 7, 11 for complete accuracy. See the Miller-Rabin primality test wikipedia page for precise bounds and references.

Example. Take the composite number $a = 2701 = 37 \cdot 73$ with $2700 = 2^2 \cdot 675$.

The witness x = 2 gives

$$X_0 \equiv 2^{675} \equiv 2337$$

 $X_1 \equiv 2^{1350} \equiv 147$
 $X_2 \equiv 2^{2700} \equiv 1$,

which shows that a is composite since 1, -1, and 147 are all square roots of 1.

The witness x = 5 gives

$$X_0 \equiv 5^{675} \equiv 1511$$

 $X_1 \equiv 5^{1350} \equiv 776$
 $X_2 \equiv 5^{2700} \equiv 2554$,

which shows that \mathfrak{a} is composite since $5^{2700} \not\equiv 1 \pmod{2701}$.

The witness x = 6 gives

$$X_0 \equiv 6^{675} \equiv 2436$$

 $X_1 \equiv 6^{1350} \equiv 2700 \equiv -1,$

which incorrectly returns that a is 'probably prime'.

Including the bad witnesses ± 1 , there are 486 false positives out of 2700, ie 18%:

- 81 of the false positives satisfy $X_0 \equiv x^{675} \equiv 1$;
- 405 of the false positives satisfy $X_k \equiv -1$ for either k = 0 or k = 1, ie either x^{675} or x^{1350} is congruent to -1;
- 810 of the accurate witnesses violate Lagrange's theorem by identifying that 147 and 2554 are square roots of 1 (in addition to ± 1);
- 1404 of the accurate witnesses violate Fermat's theorem: $X_2 \equiv x^{2700} \not\equiv 1$.

3. Pollard's rho method

Suppose we have a positive integer a which is known to be composite with an unknown factor d. John Pollard developed a probabilistic method for finding such a factor. Let f(x) be a polynomial function and define a sequence x_k with initial seed x_0 recursively by

$$x_{k+1} \equiv f(x_k) \pmod{\mathfrak{a}}.$$

Although d is unknown, we may imagine this sequence x_k modulo d. By the pigeonhole principle, there must exist indeces i < j such that $x_i \equiv x_j \pmod{d}$. In particular, $x_j - x_i$ is a multiple of d, hence it must also have a factor in common with a. In other words, there exist indeces i < j such that $d \leq \gcd(x_j - x_i, a) \leq a$.

Since d is unknown, the hope is that by calculating $gcd(x_j - x_i, a)$ for various indeces, we will get a nontrivial factor of a. This method will eventually give a factor of a greater than 1, but some choices of x_0 and f(x) will give the factor a itself, which is unhelpful for factoring.

It is called the 'rho' algorithm because once we find the first instance of $x_i \equiv x_j \pmod{d}$, we actually have a loop with period j-i, ie, $x_{i+k} \equiv x_{j+k} \pmod{d}$. The associated picture resembles the greek letter ρ .

Checking x_j against all x_i with i < j can be computationally intensive, so it is instead convenient to look for an index i such that $x_i \equiv x_{2i} \pmod{d}$. This will give the result eventually since all period lengths will be accounted for, but will likely not give the first such occurrence. It is also possible to return a multiple of the period as opposed to the period itself.

Algorithm. Given a composite integer a, a polynomial f(x), and an initial seed x_0 , initialize with

$$r \equiv f(x_0) \pmod{\mathfrak{a}}, \quad R \equiv f(r) \pmod{\mathfrak{a}}, \quad \text{and} \quad d = \gcd(r - R, \mathfrak{a}).$$

Then, while d is equal to 1, set

$$r \equiv f(r) \pmod{\alpha}$$
, $R \equiv f(f(R)) \pmod{\alpha}$, and $d = \gcd(r - R, \alpha)$,

returning $1 < d \le a$, which is a factor of a (possibly equal to a itself).

Example. Take a = 13, 118, 851 with $p(x) = x^2 + 1$ and $x_0 = 2$. The sequence x_k is given by

k	$\chi_{\mathbf{k}}$	k	x_k
1	5	6	101502
2	26	7	4357970
3	677	8	4305221
4	458330	9	11698896
5	7346689	10	9754134
		,	
	1		1
k	$\chi_{\mathbf{k}}$	k	χ_k
k 11	$\frac{x_k}{1335259}$	$\frac{k}{16}$	3118609
11	1335259	16	3118609
11 12	1335259 12270778	16 17	3118609 9430628

The algorithm has $gcd(x_{2i}-x_i, a) = 1$ until $gcd(x_{20}-x_{10}, a) = 1321$. Therefore 1321 is a nontrivial factor of a and the period modulo 1321 must divide 10. In fact, reducing modulo 1321, we find a period of 5 beginning at x_8 . The table and picture modulo 1321 are given below.

k	χ_k	k	χ_k	1191
1	5	6	1106	120
2	26	7	1312	$x_8 \equiv x_{13} \equiv 82\phi$
3	677	8	82	$x_8 \equiv x_{13} \equiv 82$ $x_7 \equiv 1312$ 9
4	1264	9	120	1106
5	608	10	1191	608
k	$\chi_{\mathbf{k}}$	k	$ \chi_k $	1264
11	1049	16	1049	- 677 ♦
12	9	17	9	26 ullet
13	82	18	82	5
14	120	19	120	
15	1191	20	1191	$\mathrm{x}_0\equiv 2 lacksquare$

Appendix

Division Algorithm. Let a, b be integers with $b \neq 0$. There are two standard ways of choosing a quotient and remainder when dividing a by b:

- (i) There are unique integers q, r such that a = qb + r and $0 \le r < |b|$.
- (ii) There are unique integers q, r such that a = qb + r and $-\frac{|b|}{2} < r \leqslant \frac{|b|}{2}$.

Proof. Let $S = \{a - xb : x \in \mathbb{Z}, a - xb \ge 0\}$. Since S is a nonempty subset of the nonnegative integers, there is a minimum element r = a - qb. Then $0 \le r < |b|$, since otherwise r - |b| would be a smaller element of S.

For the second version, if r > |b|/2, replace r with r - |b| and replace q with $q \pm 1$, depending on the sign of b.

Euclidean Algorithm. For integers a,b with $b\neq 0$, there exist integers q_j and r_j such that

$$a = q_1b + r_1$$

$$b = q_2r_1 + r_2$$

$$r_1 = q_3r_2 + r_3$$

$$\vdots$$

$$r_{n-2} = q_nr_{n-1} + r_n$$

$$r_{n-1} = q_{n+1}r_n + 0$$

Proof. Using either division algorithm repeatedly, the remainders satisfy $0 \le |r_{j+1}| < |r_j|$, so this process eventually terminates with $r_{n+1} = 0$.

Definition. The *greatest common divisor* of two integers a, b (not both zero) is the largest positive integer gcd(a, b) that divides both a and b.

Proposition 1. For a, b with $b \neq 0$, if a = qb + r, then gcd(a, b) = gcd(b, r), which implies that the absolute value of the last nonzero remainder in the Euclidean algorithm is gcd(a, b).

Proof. Assume that a = qb + r. If d is a common divisor of a and b, then d is also a divisor of r = a - qb. Conversely, if d is a common divisor of b and r, then d is also a divisor of a = qb + r. Therefore, the set of common divisors of a and b is equal to the set of common divisors of b and r, which implies that gcd(a, b) = gcd(b, r).

Moreover, using the same notation from the Euclidean algorithm above, we have that

$$\gcd(a, b) = \gcd(b, r_1) = \gcd(r_1, r_2) = \dots = \gcd(r_{n-1}, r_n) = \gcd(r_n, 0) = |r_n|,$$

which completes the proof.

Bezout's Lemma. For integers a,b (not both zero), there exist integers x,y such that

$$ax + by = \gcd(a, b).$$

Proof. Consider the sets $S = \{au + bv : u, v \in \mathbb{Z}\}$ and $S^+ = \{s \in S : s > 0\}$. Since S^+ is a nonempty subset of the positive integers, there is a smallest element d = ax + by in S^+ . By the division algorithm, there exist unique integers q, r such that a = qd + r with $0 \le r < d$. Then,

$$r = a - qd = a - q(ax + by) = a(1 - qx) + b(-qy),$$

which is clearly an element of S. Since r < d and d is the smallest *positive* element of S, we conclude that r = 0, so d must be a divisor of a. Similarly, d must also be a divisor of b.

Suppose now that c is a positive common divisor of a, b. Then c divides any integer combination of a, b, in particular c must divide d = ax + by. This implies that $c \le d$, hence $d = \gcd(a, b)$.

Proposition 2. If \mathfrak{p} is prime, the set $\mathbb{F}_{\mathfrak{p}} = \{0, 1, 2, \dots, \mathfrak{p} - 1\}$ of residues modulo \mathfrak{p} form a field under addition and multiplication modulo \mathfrak{p} .

Proof. We assume the knowledge that modular arithmetic is well-defined. The only field condition that requires verification is that all non-zero elements are invertible. A nonzero element \mathfrak{a} of \mathbb{F}_p is not divisible by \mathfrak{p} , so $\gcd(\mathfrak{a},\mathfrak{p})=1$. By Bezout's Lemma, there exist integers $\mathfrak{x},\mathfrak{y}$ such that $\mathfrak{a}\mathfrak{x}+\mathfrak{p}\mathfrak{y}=1$. Modulo \mathfrak{p} , this equation becomes $\mathfrak{a}\mathfrak{x}\equiv 1\pmod{\mathfrak{p}}$, which proves that \mathfrak{a} is invertible.

Fermat's Theorem. If p is prime and x is not divisible by p, the $x^{p-1} \equiv 1 \pmod{p}$.

Proof. Suppose that x is not divisible by p. Then, modulo p, x is a nonzero element of \mathbb{F}_p , so it is invertible. Take the list of nonzero elements, $1, 2, \ldots, p-1$, and multiply each by x to obtain a new list modulo p,

$$x, 2x, 3x, 4x, \dots, (p-1)x$$
.

Since x is invertible modulo p, the new list is just a permutation of the original list. Therefore, the product modulo p of each list must be the same, ie,

$$\prod_{j=1}^{p-1} j \equiv \prod_{j=1}^{p-1} jx \equiv x^{p-1} \prod_{j=1}^{p-1} j.$$

Since each of 1, 2, ..., p-1 is invertible modulo p, we can cancel the product from each side to obtain $1 \equiv a^{p-1} \pmod{p}$.

Lagrange's Theorem. If p is prime, then a polynomial of degree k has at most k roots modulo p.

Proof. Consider a polynomial equation $a_k x^k + a_{k-1} x^{k-1} + \dots a_1 x + a_0 \equiv 0 \pmod{\mathfrak{p}}$ where a_j is in $\mathbb{F}_{\mathfrak{p}}$ and $a_k \not\equiv 0$. If r is a root of the polynomial, then $a_k r^k + a_{k-1} r^{k-1} + \dots a_1 r + a_0 \equiv 0 \pmod{\mathfrak{p}}$. Therefore,

$$a_k(x^k - r^k) + a_{k-1}(x^{k-1} - r^{k-1}) + \dots a_1(x - r) \equiv 0 \pmod{p}.$$

For each j, the polynomial $x^{j} - r^{j}$ is divisible by x - r since

$$(x-r)(x^{j-1}+rx^{j-2}+\dots+r^{j-2}x+r^{j-1})=x^j-r^j,$$

so we can factor out (x-r) from the left-hand side to get the polynomial equation

$$(x-r)(b_{n-1}x^{n-1}+\cdots+b_1x+b_0) \equiv 0 \pmod{p}.$$

Since \mathbb{F}_p is a field, there are no zero-divisors, so any other root of the original polynomial must be a root of the second factor. The remainder of the proof is a simple case of inductive reasoning.