Influence d'un choc des taux de mortalité sur un produit de rente viagère et de capital décès

4DS1- 4DS9 Groupe 3

Présentée par :

Nadine Elleuch Yasmine Amor Fatma Jammoussi Islem Maiti Siwar Najjar Arij Afaya Abir Zahra

Enseignant: Anis Mattoussi

Plan

- Introduction
- Présentation des données
 - Présentation des données
 - Visualisation des données
- Modélisation : Lee-Carter
 - Définition du modéle
 - Estimation des paramètres
 - Affichage des résidus
 - Projection et affichage de la Mortalité
- Valeur Actuelle Probable
 - Définition
 - VAP de la rente viagère anticipée
 - VAP du capital décès
 - VAP en utilisant les taux projetés
- L'effet d'un choc de mortalité
 - Espérance de vie residuelle de la cohorte
 - Nouvelle espérance des produits
- Conclusion

Introduction

Introduction

Dans le secteur de l'assurance-vie et de l'actuariat, les variations des taux de mortalité sont d'une importance capitale. Les compagnies d'assurance doivent en permanence évaluer et anticiper ces variations pour proposer des produits financiers adaptés aux besoins des assurés.

Présentation des données

Présentation des données

Les données utilisées dans cette étude proviennent de HMD. Cette base présente des cohortes d'assurés anglais de 1980 à 2020 dont l'âge varie entre 60 et 100. Nous avons choisi de travailler sur une cohorte d'assurées anglais nées en 1960.

```
| March | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 |
```

Figure: les données importés

Visualisation des données

Figure : Visualisation des données 1

Figure : Visualisation des données 2

Modélisation : Lee-Carter

Définition du modèle Lee-Carter

Le modèle Lee-Carter est un modèle actuariel largement utilisé pour modéliser et projeter les taux de mortalité. Il repose sur une décomposition multiplicative des taux de mortalité en fonctions de l'âge et du temps, offrant ainsi une méthode flexible et efficace pour analyser les tendances de mortalité et estimer les paramètres de mortalité.

$$\ln(m_{xt}) = \alpha_x + \beta_x \cdot \kappa_t + \varepsilon_{xt}$$

- ullet m_{xt} : taux de mortalité à la date t pour l'âge x ;
- ullet $lpha_x$: comportement moyen des $\ln(m_{xt})$ au cours du temps ;
- κ_t : indice d'évolution générale de la mortalité ;
- β_x : sensibilité de la mortalité à l'âge x par rapport à l'évolution générale de la mortalité ;
- ullet $arepsilon_{xt}$ est un terme d'erreur supposé suivre une loi Normale $(0,\delta_{arepsilon})$;

4DS 1-4DS 9 Actuariat vie October 11, 2024

Estimations des paramétres

Figure: Estimations des paramétres

Choix de la plage d'âge : [50, 70]

Actuariat vie

Affichage des résidus

Projection de la Mortalité

Figure: Mortalité sur 25 ans

interprétation

Les taux de mortalité futurs sont projetés avec une incertitude indiquée par les bandes grises autour de la trajectoire centrale, la ligne noire représentant la meilleure estimation.

4DS 1-4DS 9 Actuariat vie October 11, 2024

Quantité Correspondante à la Projection Centrale

interprétation

Les valeurs de κ_t sont utilisées pour estimer les futurs taux de mortalité, combinées avec les paramètres α_x et β_x , représentant la projection centrale des taux futurs dérivés des valeurs centrales de κ_t .

Affichage de la Mortalité

[1] 21 Log des taux de mortalité projetés pour la cohorte née en 1960

interprétation

les taux de mortalité projetés en log pour la cohorte née en 1960, indiquant une augmentation progressive de la mortalité avec l'âge.

Figure: les logs des taux de mortalité projetés pour la cohorte née en 1960 à partir de 2010

14 / 30

Valeur Actuelle Probable

Définition

Pour une série de flux connus F_0, F_1, \ldots , une série de conditions de paiements aléatoires C_0, C_1, \ldots et un facteur d'actualisation 0 < v < 1 (hypothèse de constance du taux d'intérêt), la valeur actuelle des flux est

$$VA = \sum_{k=0}^{\infty} F_k v^k 1_{C_k}$$

et la valeur actuelle probable est

$$VAP = E(VA) = \sum_{k=0}^{\infty} F_k v^k P(C_k)$$

VAP de la rente viagère anticipée

Une rente viagière différée et temporaire est une série annuelle de flux de 1 euro jusqu' au décès de l'individu dont les versements ne peuvent avoir lieu qu'entre [s, s+t[.

```
[1] "VAP de la rente viagère anticipée : 139332.93"
```

Figure: VAP de la rente viagère

interprétation

La VAP élevée implique des paiements mensuels importants, reflétant une longue espérance de vie, et est directement influencée par les taux de mortalité.

VAP du capital décès

Un capital au décès est le versement de 1 euro en fin d'année du décès.

Figure: VAP du capital décès

interprétation

Cette valeur reflète des taux de mortalité de 2018, suggérant que la plupart des assurés vivront plusieurs années avant qu'un paiement complet ne soit effectué.

VAP en utilisant les taux projetés

- 50 0.002117554
- 51 0.002236075
- 52 0.002530024
- 53 0.002843116
- 54 0.003114990
- 55 0.003479338
- 56 0.003974870
- 57 0.004369879
- 58 0.004980408
- **59** 0.005384580
- 60 0.006719913
- 61 0.007458192
- 62 0.008338765
- 63 0.009166450
- 64 0.010104917
- 65 0.011000068
- 66 0.011919992
- 67 0.013284624
- 68 0.014489137
- 69 0.015961560
- 70 0.017430446

VAP en utilisant les taux projetés

Rente viagère anticipée :

```
"VAP de la rente viagère anticipée : 354524.38"
```

Figure: VAP de la rente

Capital décès :

"VAP du capital décès : 979.03"

Figure: VAP du capital décès

L'effet d'un choc de mortalité

Espérance de vie residuelle de la cohorte

[1] "Espérance de vie résiduelle à partir de 2010: 20.01"

Figure: Espérance de vie résiduelle

interprétation de la cohorte nées en 1960 à partir de l'année 2010

=> selon les taux de mortalité projetés, une personne de cette cohorte peut s'attendre à vivre environ 20 années supplémentaires à partir de 2010.

Comparaison de l'espérance de vie résiduelle et celle de la vie périodique

[1] "Espérance de vie périodique en 2010: 78.85"

Figure: Espérance de vie périodique

interprétation

- Espérance de vie résiduelle (cohorte nées en 1960): elle intègre les projections des taux de mortalité futurs, reflétant les changements dynamiques dans la mortalité.
- Espérance de vie périodique (basée sur les taux de mortalité en 2010): elle est statique et suppose que ces taux restent constants tout au long de la vie des individus.

Espérance de vie de la cohorte après le choc de mortalité

"Nouvelle espérance de vie résiduelle avec choc de mortalité à partir de 2020: 19.98"

Figure: Espérance avec choc de mortalité à partir de 2020 à 2025

interprétation

Malgré une augmentation des taux de mortalité de 20% entre 2020 et 2025, l'impact sur l'espérance de vie résiduelle est limité.

=> Une résilience notable de la population face à ce choc.

VAP des produits

```
[1] "VAP de la rente viagère anticipée avec choc de mortalité: 38793.65"
```

[1] "VAP du capital décès avec choc de mortalité: 988.52"

Figure: VAP des produits

VAP des produits

VAP de la rente viagère anticipée :

- Valeur élevée
- Sécurité financière à long terme
- Attrait de la rente viagère malgré l'augmentation des taux de mortalité

VAP du capital décès

- Valeur basse
- Paiement unique : nature du capital décès
- Impact financier limité même avec augmentation des risques de décès

Comparaison des VAPs

	Rente viagère	Capital décès
Les taux de 2018	139332.93	6949.67
Les taux projetés	354524.38	979.03
Les taux de mortalité de 20%	38793.65	988.52

Table: Comparaison des résultats des VAPs

Conclusion

Conclusion

Notre étude souligne l'impact crucial des variations des taux de mortalité sur l'évaluation des produits d'assurance vie, notamment la rente viagère anticipée et le capital décès. L'utilisation d'outils actuariels avancés, comme le modèle de Lee-Carter, permet aux assureurs d'ajuster leurs produits pour assurer leur viabilité financière à long terme.

Merci de votre attention !