1.IMPORTING THE DATA AND PRE-PROCESSING

```
import pandas as pd
In [1]:
            import numpy as np
            from sklearn.datasets import load_iris
In [2]:
            iris=load_iris()
            data=pd.DataFrame(iris.data,columns=iris.feature_names)
            data['species']=iris.target
In [3]:
         ▶ print(type(iris))
            <class 'sklearn.utils._bunch.Bunch'>
In [4]:
         iris.keys()
   In [5]:
         | iris['target_names']
            data['target']=iris.target
In [6]:
            data
   Out[6]:
                     sepal length
                                    sepal width
                                                  petal length
                                                                 petal width
                                                                           species target
                           (cm)
                                         (cm)
                                                        (cm)
                                                                      (cm)
               0
                            5.1
                                          3.5
                                                         1.4
                                                                       0.2
                                                                                0
                                                                                      0
                                                                       0.2
               1
                            4.9
                                          3.0
                                                         1.4
                                                                                0
                                                                                      0
                            4.7
                                                                       0.2
               2
                                          3.2
                                                         1.3
                                                                                0
                                                                                      0
               3
                            4.6
                                          3.1
                                                         1.5
                                                                       0.2
                                                                                0
                                                                                      0
               4
                            5.0
                                          3.6
                                                         1.4
                                                                       0.2
                                                                                      0
                                           ...
                                                          ...
             145
                            6.7
                                          3.0
                                                         5.2
                                                                       2.3
                                                                                2
                                                                                      2
             146
                            6.3
                                          2.5
                                                         5.0
                                                                       1.9
                                                                                      2
             147
                            6.5
                                          3.0
                                                         5.2
                                                                       2.0
                                                                                2
                                                                                      2
                                                                                      2
             148
                            6.2
                                          3.4
                                                         5.4
                                                                       2.3
             149
                            5.9
                                          3.0
                                                         5.1
                                                                       1.8
                                                                                2
                                                                                      2
            150 rows × 6 columns
```

```
In [7]:
         data.info()
            <class 'pandas.core.frame.DataFrame'>
            RangeIndex: 150 entries, 0 to 149
            Data columns (total 6 columns):
                 Column
             #
                                    Non-Null Count Dtype
                 -----
                                    -----
                                                    ----
                 sepal length (cm) 150 non-null
                                                    float64
             0
                 sepal width (cm)
                                    150 non-null
                                                    float64
             1
                 petal length (cm)
                                                    float64
             2
                                    150 non-null
             3
                 petal width (cm)
                                                    float64
                                    150 non-null
             4
                 species
                                    150 non-null
                                                    int32
             5
                 target
                                    150 non-null
                                                    int32
            dtypes: float64(4), int32(2)
            memory usage: 6.0 KB
In [8]: ► data.isnull().sum()
   Out[8]: sepal length (cm)
            sepal width (cm)
                                 0
            petal length (cm)
                                 0
            petal width (cm)
                                 0
                                 0
            species
            target
            dtype: int64
In [9]:

    data.describe()

   Out[9]:
```

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	species	target
count	150.000000	150.000000	150.000000	150.000000	150.000000	150.000000
mean	5.843333	3.057333	3.758000	1.199333	1.000000	1.000000
std	0.828066	0.435866	1.765298	0.762238	0.819232	0.819232
min	4.300000	2.000000	1.000000	0.100000	0.000000	0.000000
25%	5.100000	2.800000	1.600000	0.300000	0.000000	0.000000
50%	5.800000	3.000000	4.350000	1.300000	1.000000	1.000000
75%	6.400000	3.300000	5.100000	1.800000	2.000000	2.000000
max	7.900000	4.400000	6.900000	2.500000	2.000000	2.000000

2.CLUSTERNG ALGORITHM IMPLEMENTATION

A.KMeans Clustering

C:\ProgramData\anaconda3\Lib\site-packages\sklearn\cluster_kmeans.py:14
12: FutureWarning: The default value of `n_init` will change from 10 to
'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warn
ing

super()._check_params_vs_input(X, default_n_init=10)

C:\ProgramData\anaconda3\Lib\site-packages\sklearn\cluster_kmeans.py:14
36: UserWarning: KMeans is known to have a memory leak on Windows with M
KL, when there are less chunks than available threads. You can avoid it
by setting the environment variable OMP_NUM_THREADS=1.
 warnings.warn(

B.Hierarchical Clustering

```
In [17]:  hier_clust = AgglomerativeClustering(n_clusters=3)
data['HierCluster'] = hier_clust.fit_predict(data)
```

