Algoritmos e Estruturas de Dados

Marcelo Lobosco DCC/UFJF

O Problema do Caminho Mínimo

Segunda Parte - Aula 02

Agenda

- Grafos
 - □ O problema do caminho mínimo
 - Algoritmo de Dijkstra
 - Algoritmo de Bellman-Moore
 - Algoritmo de Bellman-Moore-d'Esopo
 - Algoritmo de Floyd

w

O Problema do Caminho Mínimo

- Dado um grafo G = (N, A, P), onde $P = (p_{ij})$ = peso da aresta e_{ij} , encontrar o caminho de menor peso entre:
 - □Dois vértices s e t
 - □Entre um vértice s até j, para todo j \neq s
 - □Entre cada par de vértices (i,j) de G

- Algoritmo clássico para determinar caminhos mínimos
- Dijkstra, 1959
- Devemos considerar os pesos não negativos (p_{ii} ≥ 0, ∀(i,j) ∈ A)
- Duas fases: iniciação e iterações

100

Algoritmo de Dijkstra

Iniciação

```
Para todo i ≠ s faça

dist (i) = ∞

final (i) = false

pred (i) = -1

Dist (s) = 0

Final (s) = true

Recente = s // último nó que recebeu final = true
```

Iterações

```
Enquanto final (t) = false faça
     Para todo nó i adjacente ao nó recente com final(i) false
       faça
         NewLabel = dist (Recente) + P_{recente, i}
         Se NewLabel < dist (i)
             dist (i) = NewLabel
             pred(i) = recente
    Seja y o vértice com menor rótulo temporário, tal que dist
(\vee) \neq \infty
        final(y) = true
        recente = y
```


$$i = 2$$

Newlabel = $0 + 1 = 1 < \infty$
Recente = 1

Encontrar caminho mínimo entre 1 e 7

6

5

$$i = 4$$

Newlabel = $0 + 3 = 3 < \infty$
Recente = 1

$$i = 6$$

Newlabel = $1 + 6 = 7 < \infty$
Recente = 2

Encontrar caminho mínimo entre 1 e 7

6

Encontrar caminho mínimo entre 1 e 7

6

O Problema do Caminho Mínimo

- Encontrar o caminho mínimo entre dois vértices distintos do grafo: algoritmo de Dijkstra
- Encontrar o caminho mínimo entre um vértice s e todos os vértices j, com j ≠ s: adaptar Dijkstra modificando o seu critério de parada para
 - \Box Enquanto existir nó x com final (y) = false faça
- Encontrar o caminho mínimo entre cada par de vértices (u,v) de G: repetir n vezes o algoritmo
- O algoritmo de Dijkstra exige que todos os pesos sejam maiores ou iguais à zero

- Utilizado para encontrar caminhos mínimos numa rede direcionada com pesos arbitrários
 - □ Pesos podem ser negativos, *mas não podem existir ciclos negativos*
- Iniciação
 dist (s) = 0
 dist (i) = ∞, ∀ i ≠ s
 pred (i) = -1, ∀i
- Iterações
 Para todo vértice u
 Enquanto existir arco (u,v) tal que dist(u) + p_{uv}< dist(v) faça</p>
 - dist (v) = dist(u) + p_{uv} pred(v) = u

10

Algoritmo de Bellman-Moore

M

Algoritmo de Bellman-Moore

Iniciação:

- \Box s = 1
- \Box dist(1) = 0
- □dist (2) = ∞
- □dist (3) = ∞
- \square dist (4) = ∞

- u = 1
- (u,v) = (1,2)
 - \Box dist(2) = 2
 - \square pred(2) = 1
 - □dist (3) = ∞
 - □dist (4) = ∞

- u = 1
- (u,v) = (1,3)
 - \Box dist(2) = 2
 - □ dist (3) = -1
 - \square pred(3) = 1
 - \Box dist (4) = ∞

$$s = 1$$

- u = 2
- (u,v) = (2,3)
 - \Box dist(2) = 2
 - \Box dist (3) = -2
 - \Box pred(3) = 2
 - \square dist (4) = ∞

- u = 2
- (u,v) = (2,4)
 - \Box dist(2) = 2
 - \Box dist (3) = -2
 - \Box dist (4) = 5
 - \Box pred(4) = 2

Algoritmo de Bellman-Moore

- u = 3
- (u,v) = (3,4)
 - \Box dist(2) = 2
 - \Box dist (3) = -2
 - \Box dist (4) = -8
 - \Box pred(4) = 3

Algoritmo de Bellman-Moore

- Caminho mínimo: $1 \rightarrow 2 \rightarrow 3 \rightarrow 4$
- Custo mínimo: -8

- Variação do Algoritmo de Bellman-Moore
- Idéia é construir fila de nós a ser examinado
 - □Inicialmente fila Q contém único nó, i = s
 - □Numa dada iteração, nó u de Q é examinado
 - u primeiro nó da fila
 - Após examinado, retirado de Q
 - Exame consiste em analisar todos os arcos com origem em u com tipo (u,v)
 - Se peso de s até v for reduzido usando u, adicionamos v na fila Q (caso já não esteja nela)

- Observe que v entra na fila Q se dist(v) for reduzido
 - Um determinado nó pode entrar na fila Q várias vezes
 - Cada vez que um caminho mais curto for descoberto entre s e t
 - Na prática não interessante: no pior caso o número de entradas ou saídas de um mesmo nó na fila Q pode ser bastante elevado

- Heurística para suprir essa deficiência: colocar um nó v no fim da fila Q se nunca foi analisado antes
 - Caso já tenha sido analisado, colocá-lo no início da fila Q
 - □ Justificativa: reexaminá-lo imediatamente e reduzir, se for o caso, os valores de todos os nós modificados através deste nó
 - Segundo o autor, isto reduz o número de vezes em que v retorna a fila Q

- Para Pesos Arbitrários e sem Ciclos Recursivos
- Iniciação

```
Para todo v \neq s

dist (v) = \infty

pred (v) = -1

Para v = s

dist (s) = 0

pred (s) = -1

Q = \{s\}

head = s
```

Iterações

```
Enquanto Q \neq \emptyset faça
   Retire nó head = u de Q
   Para cada aresta (u,v) faça
       Newlabel = dist(u)+p_{uv}
      Se Newlabel < dist(v) então
          dist(v) = Newlabel
          pred(v) = u
          Se v nunca esteve em Q antes então insere v
            no final de Q
          Caso contrário (se v já esteve em Q, mas não
            está atualmente) inserir v no início de Q
```


Encontrar caminho mínimo entre 1 e 4

w

Algoritmo de Bellman-Moored'Esopo

Iniciação:

- \Box s = 1
- \Box dist(1) = 0
- □dist (2) = ∞
- \Box dist (3) = ∞
- □dist (4) = ∞
- \Box Q = {1}
- \Box head = 1

- Iterações
 - \Box Q = {2,3}
 - \Box head = 2

- Iterações
 - \Box Q = {3,4}
 - \Box head = 2

м.

- Iterações
 - $\Box Q = \{4\}$
 - \Box head = 3

- Iterações
 - $\square Q = \{\}$
 - \square head = 4

- Seja um grafo direcionado representado por uma matriz de adjacências
- A cada etapa calculamos uma matriz de pesos P onde cada elemento P(i,j) representa o valor do caminho mais curto de k arestas entre i e j.
- A cada iteração k atualizamos a matriz, verificando a validade de se incluir k no caminho mínimo de cada par de nós i e j

Algoritmo de Floyd

Iterações k: 0, 1, 2, ..., n

```
\begin{array}{ll} p^{(0)}_{ij} \leftarrow p_{ij} \\ p^{(k)}_{ij} \leftarrow min \left( p^{(k-1)}_{ij}; p^{(k-1)}_{ik} + p^{(k-1)}_{kj} \right) \end{array}
```

Isso significa que na iteração k = 1 o nó 1 é inserido no caminho mínimo de i para j se $p^{(0)}_{ii} > p^{(0)}_{i1} + p^{(0)}_{1i}$

```
Para k \leftarrow 1 até m faça

Para i \leftarrow 1 até n faça

Para j \leftarrow 1 até n faça

p_{ij} \leftarrow min { p_{ij}, p_{ik} + p_{kj}}
```

Notas:

- □ O último p_{ij} do algoritmo fornece a distância mínima de i a j
- \square O último p_{ii} , $i=1,\,2,\,...,\,n$ é o comprimento do ciclo mínimo passando pelo nó i
- □ Para recuperarmos a trajetória do caminho mínimo entre cada par (i,j) necessitamos construir outra seqüência de matrizes $C^k = (C^k_{ii})$, k = 1, 2, ..., n

- Construção da Matriz C
 - Inicialmente

$$C_{ij} \leftarrow i$$
, se $p_{ij} \neq \infty$
 $C_{ii} \leftarrow 0$, se $p_{ii} = \infty$

□Na iteração k = I

Se o nó l foi inserido entre i e j faça

$$C_{ij} \leftarrow C_{lj}$$

M

Algoritmo de Floyd

No final, um caminho mínimo (i, r₁, r₂, ..., r_q, j) pode ser recuperado usando a matriz C da seguinte forma

```
\begin{array}{l} r_{q} \leftarrow C_{ij} \\ r_{q-1} \leftarrow C_{i,rq} \\ r_{q-2} \leftarrow C_{i,rq-1} \\ \vdots \leftarrow r_{1} \end{array}
```


w

Algoritmo de Floyd

k= 0 (iniciação)

			_	3	4	5
$C_{(0)} =$	1	0	1	1	0	1
	2	0	0	0	2	2
	3	0	3	0	0	0
	4	4	0	4	0	0
	5	0	0	0	5	0

Algoritmo de Floyd

$$k= 1$$
 $p_{ij} \leftarrow min \{ p_{ij}, p_{i1} + p_{1j} \}$

p ⁽¹⁾ =		1	2	3	4	5
	1	*	3	8	∞	-4
	2	8	*	∞	1	7
	3	8	4	*	∞	∞
	4	2	<u>5</u>	-5	*	<u>-</u> 2
	5	8	∞	∞	6	*

$$\mathbf{x}^{(1)} =
 \begin{bmatrix}
 1 & 1 & 2 & 3 & 4 & 3 \\
 1 & 0 & 1 & 1 & 0 & 1 \\
 2 & 0 & 0 & 0 & 2 & 2 \\
 3 & 0 & 3 & 0 & 0 & 0 \\
 4 & 4 & 1 & 4 & 0 & 1 \\
 5 & 0 & 0 & 0 & 5 & 0
 \end{bmatrix}$$

$$p_{12} \leftarrow \min \{ p_{12}, p_{11} + p_{12} \} = \min \{ 3, \infty \} = 3$$

$$p_{42} \leftarrow \min \{ p_{42}, p_{41} + p_{12} \} = \min \{ \infty, 2+3 \} = 5 \Rightarrow C_{42} = C_{12} = 1$$

Algoritmo de Floyd

$$k= 2$$

 $p_{ij} \leftarrow min \{ p_{ij}, p_{i2} + p_{2j} \}$

p ⁽²⁾ =		1	2	3	4	5
	1	*	3	8	<u>4</u>	-4
	2	∞	*	∞	1	7
	3	∞	4	*	<u>5</u>	<u>1</u> 1
	4	2	5	-5	*	-2
	5	∞	∞	∞	6	*

$$p_{12} \leftarrow \min \{ p_{12}, p_{12} + p_{22} \} = \min \{ 3, \infty \} = 3$$

$$p_{14} \leftarrow min \{ p_{14}, p_{12} + p_{24} \} = min \{ \infty, 3+1 \} = 4 \Rightarrow C_{14} = C_{24} = 2$$

Algoritmo de Floyd

$$k=3$$
 $p_{ij} \leftarrow min \{ p_{ij}, p_{i3} + p_{3j} \}$

		1	2	3	4	5
p ⁽³⁾ =	1	*	3	8	4	-4
	2	∞	*	∞	1	7
	3	∞	4	*	5	11
	4	2	<u>-</u> 1	-5	*	-2
	5	∞	8	∞	6	*

$$\Sigma^{(3)} = \begin{bmatrix} 1 & 2 & 3 & 4 & 3 \\ 1 & 0 & 1 & 1 & 2 & 1 \\ 2 & 0 & 0 & 0 & 2 & 2 \\ 3 & 0 & 3 & 0 & 2 & 2 \\ 4 & 4 & 3 & 4 & 0 & 1 \\ 5 & 0 & 0 & 0 & 5 & 0 \end{bmatrix}$$

$$p_{12} \leftarrow \min \{ p_{12}, p_{13} + p_{32} \} = \min \{ 3, \infty \} = 3$$

$$p_{42} \leftarrow min \{ p_{42}, p_{43} + p_{32} \} = min \{5,-5+4\} = -1 => C_{42} = C_{32} = 3$$

10

Algoritmo de Floyd

$$k= 4$$
 $p_{ij} \leftarrow min \{ p_{ij}, p_{i4} + p_{4j} \}$

		ㅗ		၁	 4	5
	1	0	1	<u>4</u>	2	1
_(4)	2	<u>4</u>	0	<u>4</u>	2	1
C`	З	<u>4</u>	3	0	2	1
	4	4	3	4	0	1
	5	<u>4</u>	<u>3</u>	<u>4</u>	5	0

$$p_{12} \leftarrow min \{ p_{12}, p_{14} + p_{42} \} = min \{3,3\} = 3$$

 $p_{13} \leftarrow min \{ p_{13}, p_{14} + p_{43} \} = min \{8,4-5\} = -1 => C_{13} = C_{43} = 4$

$$p_{25} \leftarrow \min \{ p_{25}, p_{24} + p_{45} \} = \min \{7,1-2\} = -1 = > C_{25} = C_{45} = 1$$

$$k=5$$
 $p_{ij} \leftarrow min \{ p_{ij}, p_{i5} + p_{5j} \}$

p ⁽⁵⁾ =		1	2	3	4	5
	1	*	<u>1</u>	<u>-</u> 3	<u>2</u>	-4
	2	3	*	-4	1	-1
	3	7	4	*	5	3
	4	2	-1	-5	*	-2
	5	8	5	1	6	*

$$C^{(5)} = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 0 & 3 & 4 & 5 & 1 \\ 2 & 4 & 0 & 4 & 2 & 1 \\ 3 & 4 & 3 & 0 & 2 & 1 \\ 4 & 4 & 3 & 4 & 0 & 1 \\ 5 & 4 & 3 & 4 & 5 & 0 \end{bmatrix}$$

$$p_{12} \leftarrow \min \{ p_{12}, p_{15} + p_{52} \} = \min \{3,-4+5\} = 1 \Rightarrow C_{12} = C_{52} = 3$$

 $p_{13} \leftarrow \min \{ p_{13}, p_{15} + p_{53} \} = \min \{-1,-4+1\} = -3 \Rightarrow C_{13} = C_{53} = 4$

Qual o menor caminho entre 5 e 2?

	1	0	3	4	5	1
(5)	2	4	0	4	2	1
=	3	4	3	0	2	1
	4	4	3	4	0	1
	5	4	3	4	5	0

$$r_{q} = C_{ij} = C_{52} = 3$$
 $r_{q-1} = C_{iq} = C_{53} = 4$
 $i = C_{iq-1} = C_{54} = 5$
 $5 \rightarrow 4 \rightarrow 3 \rightarrow 2$

Próxima Aula...

- Fluxo Máximo em Redes
 - □Introdução
 - □Algoritmo de Fork-Fulkerson