TD Authentification

Cours SECRES

Christophe Kiennert

Protocole d'origine

- 1. $C \rightarrow AC$: C, S, N_1
- 2. AC -> C: AC, {AC, C, N_1 , PK_S }_{SKac}
- 3. $C \rightarrow S$: $C, S, \{C, T, L, \{N_2\}_{PKS}\}_{SKC}$
- 4. $S \rightarrow AC$: S, C, N_3
- 5. AC -> S: AC, {AC, S, N_3 , PK_C }_{SKac}
- 6. S -> C: S, C, $\{S, N_2+1\}_{PKC}$

• • •

• • •

• • •

• • •

• • •

6. X/S -> C: S, C, $\{S, N_2+1\}_{PKC}$

Quel est le problème ? Qu'est-ce qui ne devrait pas être possible ?

```
...
...
...
6. X/S -> C: S, C, {S, N<sub>2</sub>+1}<sub>PKc</sub>
```

Quel est le problème ? Qu'est-ce qui ne devrait pas être possible ?

Réponse : X connaît N₂ ! Comment est-ce possible ?

•••

• • •

3. C -> X/S: C, S, {C, T, L, $\{N_2\}_{PKS}\}_{SKC}$

• • •

• • •

6. X/S -> C: S, C, $\{S, N_2+1\}_{PKC}$

Le seul moment où X a pu récupérer N_2 est au moment du message 3. Mais N_2 est normalement chiffré avec PK_S . Comment est-ce possible ?

```
...
3. C -> X/S: C, S, {C, T, L, {N<sub>2</sub>}<sub>PKx</sub>}<sub>SKc</sub>
...
...
6. X/S -> C: S, C, {S, N<sub>2</sub>+1}<sub>PKc</sub>
```

Le seul moment où X a pu récupérer N_2 est au moment du message 3. Mais N_2 est normalement chiffré avec PK_s . Comment est-ce possible ?

Réponse : Et si N2 était chiffré avec PK_x ? Mais pourquoi C ferait-il cela ?

```
...
2. AC -> C: AC, {AC, C, N<sub>1</sub>, PK<sub>S</sub>}<sub>SKac</sub>
3. C -> X/S: C, S, {C, T, L, {N<sub>2</sub>}<sub>PKx</sub>}<sub>SKc</sub>
...
6. X/S -> C: S, C, {S, N<sub>2</sub>+1}<sub>PKc</sub>
```

C reçoit PK_S de la part de l'AC, qui n'a aucun intérêt à lui donner PK_X . Pourquoi l'AC aurait répondu avec PK_X ?

```
...
2. AC -> C: AC, {AC, C, N<sub>1</sub>, PK<sub>X</sub>}<sub>SKac</sub>
3. C -> X/S: C, S, {C, T, L, {N<sub>2</sub>}<sub>PKx</sub>}<sub>SKc</sub>
...
6. X/S -> C: S, C, {S, N<sub>2</sub>+1}<sub>PKc</sub>
```

C reçoit PK_S de la part de l'AC, qui n'a aucun intérêt à lui donner PK_X . Pourquoi l'AC aurait répondu avec PK_X ?

Réponse : Et si X avait modifié la requête de C ?

- 1. $C \rightarrow AC$: C, S, N_1
- 2. AC -> C: AC, {AC, C, N_1 , PK_X }_{SKac}
- 3. C -> X/S: C, S, {C, T, L, $\{N_2\}_{PKx}\}_{SKc}$

• • •

• • •

6. $X/S \rightarrow C$: S, C, $\{S, N_2+1\}_{PKC}$

Comment X doit-il modifier le message 1 pour que l'AC réponde avec PK_X dans le message 2 ?

- C -> X/AC: C, S, N₁
 X/C -> AC: C, X, N₁
 AC -> C: AC, {AC, C, N₁, PK_X}_{SKac}
 C -> X/S: C, S, {C, T, L, {N₂}_{PKX}}_{SKc}
- 6. $X/S \rightarrow C$: S, C, $\{S, N_2+1\}_{PKC}$

Correctif à l'attaque

- 1. $C \rightarrow AC$: C, S, N_1
- 2. AC -> C: AC, {AC, C, N_1 , S, PK_S }_{SKac}
- 3. $C \rightarrow S$: $C, S, \{C, T, L, \{N_2\}_{PKS}\}_{SKC}$
- 4. $S \rightarrow AC$: S, C, N_3
- 5. AC -> S: AC, {AC, S, N_3 , PK_C }_{SKac}
- 6. S -> C: S, C, $\{S, N_2+1\}_{PKC}$

Il faut lier la clé publique à l'identité du détenteur de cette clé C'est le principe des certificats X.509!

Protocole après correctif des deux attaques

- 1. $C \rightarrow AC$: C, S, N_1
- 2. AC -> C: AC, {AC, C, N_1 , S, PK_S }_{SKac}
- 3. $C \rightarrow S$: $C, S, \{C, T, L, \{N_2\}_{PKS}\}_{SKC}$
- 4. $S \rightarrow AC$: S, C, N_3
- 5. AC -> S: AC, {AC, S, N_3 , C, PK_C }_{SKac}
- 6. S -> C: S, C, $\{S, N_2+1\}_{PKC}$

A ce stade, il n'est plus possible d'attaquer les messages 1-2 / 4-5 On peut donc considérer que le protocole se réduit aux messages 3 et 6

• • •

• • •

• • •

6. $X/S \rightarrow C$: S, C, $\{S, N_2+1\}_{PKC}$

Comment X peut-il connaître N₂ sachant qu'il ne peut plus utiliser l'attaque sur la requête à l'AC ?

3. C -> X/S: C, S, {C, T, L,
$$\{N_2\}_{PKS}\}_{SKC}$$

• • •

• • •

6.
$$X/S \rightarrow C$$
: S, C, $\{S, N_2+1\}_{PKC}$

Comment X peut-il connaître N₂ sachant qu'il ne peut plus utiliser l'attaque sur la requête à l'AC ?

=> PK_S ne peut pas être PK_X dans le message 3

- 3. C -> X/S: C, S, {C, T, L, {N₂}_{PKs}}_{SKc}
 3'. X -> ?:...
 6'. ? -> X:...
- 6. $X/S \rightarrow C$: S, C, $\{S, N_2+1\}_{PKC}$

Comment X peut-il connaître N₂ sachant qu'il ne peut plus utiliser l'attaque sur la requête à l'AC ?

Entrelacement de sessions : et si X tentait d'initier une nouvelle session du protocole (message 3') après l'ouverture de session par C (message 3) ?

- 3. C -> X/S: C, S, {C, T, L, {N₂}_{PKS}}_{SKC}
 3'. X -> ?: ...
 6'. ? -> X: ...
- 6. $X/S \rightarrow C$: S, C, $\{S, N_2+1\}_{PKC}$

Quel message X doit-il recevoir en 6' pour avoir accès à N₂ ?

- 3. C -> X/S: C, S, {C, T, L, $\{N_2\}_{PKS}\}_{SKC}$ 3'. X -> ?: ... 6'. ? -> X: X, ?, $\{X, N_2+1\}_{PKX}$
- 6. $X/S \rightarrow C$: S, C, $\{S, N_2+1\}_{PKC}$

Quel message X doit-il recevoir en 6' pour avoir accès à N₂ ?

Si X reçoit N_2 chiffré avec PK_X , il peut connaître N_2 . A quoi ressemble le message 3' dans ce cas ?

- 3. C -> X/S: C, S, {C, T, L, { N_2 }_{PKs}}_{SKc} 3'. X -> ?: X, ?, {X, T, L, { N_2 }_?}_{SKx} 6'. ? -> X: X, ?, {X, N_2 +1}_{PKx}
- 6. $X/S \rightarrow C$: S, C, $\{S, N_2+1\}_{PKC}$

Dans le message 3', X est censé générer un nouveau nombre N_2 ' chiffré par la clé publique du destinataire. Mais dans ce cas il recevra N_2 ' en 6', et non N_2 .

S'il renvoie le même N_2 que dans le message 3, cela veut dire que X a réussi à connaître N_2 au moment de l'envoi de 3' puisqu'il doit le chiffrer lui-même. Or X doit connaître SK_S pour déchiffrer N_2 après le message 3, ce qui est impossible.

=> A moins que...

- 3. C -> X/S: C, S, {C, T, L, $\{N_2\}_{PKS}\}_{SKC}$ 3'. X -> S: X, S, {X, T, L, $\{N_2\}_{PKS}\}_{SKX}$ 6'. S -> X: X, S, {X, N₂+1}_{PKX}
- 6. $X/S \rightarrow C: S, C, \{S, N_2+1\}_{PKC}$

Si X envoie son message 3' à S, il peut rejouer la valeur $\{N_2\}_{PKs}$ obtenue dans le message 3. Pas besoin de générer un nouveau nombre aléatoire, ni de déchiffrer N_2 .

Correctif à l'attaque

- 3. C -> S: C, S, {C, T, L, {C, N_2 }_{PKs}}_{SKc}
- 6. S -> C: S, C, $\{S, N_2+1\}_{PKC}$

Il faut ajouter l'identité de celui qui a généré le nombre aléatoire N₂.