Refer to the test circuit, -40° C < T₁ < 125 $^{\circ}$ C, I_O = 500 mA, V₁ = 10 V, C₁ = 0.1 μ F, unless otherwise specified. Symbol **Parameter Conditions** Min. Unit Typ. Max. $T_{.1} = +25^{\circ}C$ 4.80 5.00 5.20 V_{O} **Output Voltage** $I_0 = 5 \text{ mA to } 1 \text{ A}, P_0 = 15 \text{ W},$ 4.75 5.00 5.25 $V_1 = 7 \text{ V to } 20 \text{ V}$ $V_1 = 7 \text{ V to } 25 \text{ V}$ 4.0 100.0 Line Regulation⁽²⁾ $T_1 = +25^{\circ}C$ Regline mV $V_1 = 8 V \text{ to } 12 V$ 1.6 50.0 $I_0 = 5 \text{ mA to } 1.5 \text{ A}$ 9.0 100.0 Load Regulation⁽²⁾ $T_1 = +25^{\circ}C$ mV Regload $I_0 = 250 \text{ mA to } 750 \text{ mA}$ 50.0 4.0 Quiescent Current $T_1 = +25^{\circ}C$ 5 8 la mΑ 0.03 0.50 I_{Ω} = 5 mA to 1 A Quiescent Current I_Q mΑ Change $V_1 = 7 \text{ V to } 25 \text{ V}$ 0.30 1.30

 $f = 10 \text{ Hz to } 100 \text{ kHz}, T_A = +25^{\circ}\text{C}$

 $f = 120 \text{ Hz}, V_1 = 8 \text{ V to } 18 \text{ V}$

 $T_1 = +25^{\circ}C$, $I_0 = 1 A$

 $T_{.1} = +25^{\circ}C, V_{1} = 35 V$

mV/°C

μV

dΒ

V

m

mA

Α

-0.8

42

73

2

15

230

2.2

62

 $I_{O} = 5 \text{ mA}$

f = 1 kHz

 $T_1 = +25^{\circ}C$

Output Voltage Drift⁽³⁾

Output Noise Voltage

Ripple Rejection⁽³⁾

Output Resistance⁽³⁾

Short-Circuit Current

Dropout Voltage

Peak Current⁽³⁾

 V_{O}/T

 V_N

RR

 V_{DROP}

 R_{Ω}

 I_{SC}

 I_{PK}