

Profesores:

Yuri Cáceres Hernández Julio Fuentealba Vivallo Luis Herrera Becerra Jorge Morris Arredondo Ricardo Corbinaud Pérez

Trabajo #1

2º Semestre 2024

Aplicación de Teoría de Grafos

Enunciado:

"Generación de rutas de transporte en el Metro de Santiago"

Aplicaciones basadas en navegadores GPS como Waze y Google Maps se han convertido en herramientas indispensables a la hora de planificar viajes en vehículo, moto, bicicleta, transporte público o incluso a pie, esto lo realizan mediante un sistema de algoritmos que involucran tanto al usuario como a su entorno, respondiendo a una sencilla pregunta ¿Cómo llego del punto A al punto B? y dependiendo de las restricciones que imponga el usuario, estas son capaces de generar rutas de navegación.

Tomando como ejemplo una aplicación **Transporte Público "Metro de Santiago"**; se le pide que utilice la teoría de grafos, **IMPLEMENTANDO UN ALGORITMO** que permita generar la ruta más corta entre una estación y otra del Metro de Santiago, usando como referencia el plano de navegación de un usuario del Metro; dado los puntos de partida y destino del viaje, considerando los siguientes elementos básicos:

Elementos

- Puntos de interés
 - o Partida
 - o Destino
 - Estaciones del metro

En caso de que sea necesario, puede añadir o modificar elementos si estos le ayudan a la realización del modelo, pero en ninguna circunstancia puede eliminar alguno de los elementos nombrados anteriormente.

Variables de ruta

Con los elementos mencionados anteriormente se debe construir programa que sea capaz de generar *la rutas más corta entre una estación Origen y otro Destino*, considerando las siguientes variables:

- Horarios
 - Hora actual (salida del viaje sea en el momento)
 - Hora de llegada (viaje programado)
 - Hora de salida (viaje programado)
- Modo de desplazamiento (puede ser más de una)
 - Líneas del Metro
- Opciones de ruta
 - Menor tiempo
 - Menor cantidad de transbordos

Construcción del modelo

Considerando los elementos básicos del modelo, se deben definir las siguientes estructuras:

- Representación del mapa
- Representación de los eventos

Definidas las estructuras del modelo, se debe analizar las relaciones entre ellas y presentar un esquema general del modelo.

Generación de ruta

Habiendo definido el esquema del modelo, diseñe los algoritmos que permitan generar una ruta para el usuario, considerando los siguientes elementos:

- Tiempo estimado de llegada a destino
- Secuencia de viaje (Ruta)

Ejemplo:

Partida: Estación Universidad de Chile

Destino: Irarrazabal

Línea: 3

Tiempo estimado de viaje: 20 min

Consideraciones

- **Debe modelar el problema**: análisis de la situación desde la perspectiva de la teoría de grafos y todo modelamiento debe estar fundamentado en la teoría de grafos
- Los algoritmos presentados deben ser genéricos y utilizando lenguaje natural. No es necesario pseudo código.
- Se recomienda externalizar procesos, para luego incluirlos en el algoritmo principal, esto hará que sea más comprensible.
- **FORMULE** los supuestos necesarios para la creación de los algoritmos, esto significa que no se deben "dar por sentados" y son parte del desarrollo del trabajo
- La implementación se sugiere realizarla en Python.

Indicaciones

Generales

- La nota del trabajo se dará a conocer al finalizar todas las presentaciones
- Grupos de 4 estudiantes como máximo, sin excepciones.

Entrega: Se aplicarán descuentos a los grupos que no cumplan las indicaciones de entrega.

- La entrega final del trabajo incluye un **informe** en documento **Word** y una **presentación** con material de apoyo en **PPT** (**no se aceptarán archivos en formato PDF**)
- Subir ambos archivos a la plataforma CANVAS
- Comentarios de la entrega en Canvas:
 - o Los integrantes del grupo con ambos apellidos (nada más).
- Fechas de entrega
 - o Informe plazo máximo: 20/10/2024 23:59
 - Presentación del trabajo será fijada por el profesor a partir del 21/10/2024 en Horario de clases
- Informe y presentación se evaluarán según una rúbrica general de evaluación

Formato documentos

- Informe: Fuente Arial o Calibri, tamaño 11, texto justificado (excepción títulos y subtítulos).
- Material de apoyo (PPT): Fondos claros con letras oscuras.
- Para ambos: Redacción científica (claridad y precisión, tercera persona, tiempo presente).

Contenido documentos

Informe:

- Portada (Logo universidad, nombre universidad, facultad, escuela, asignatura, docente, ayudante, semestre, año)
- Introducción
 - Objetivo General
 - Objetivos Específicos: son los objetivos que ayudan a alcanzar el objetivo general
- Desarrollo del tema
 - o Explicación del problema:
 - Enunciado (No borrar ni modificar partes de este, en ninguna circunstancia)
 - Análisis y modelamiento de la situación (basado en la teoría de grafos)
 - o Algoritmo para Generación de ruta
- Conclusiones: Análisis de los resultados, nivel de logro en base a los objetivos propuestos y reflexión crítica sobre el trabajo realizado.
- Bibliografía y referencias. (Formato APA, debidamente citadas en el texto)

Presentación:

 Portada (Logo universidad, nombre universidad, facultad, escuela, asignatura, docente, semestre, año, expositores)

- Tabla de contenidos
- Desarrollo del tema (más detalle en el apartado de Evaluación)
- Conclusiones (mismo criterio que en informe)

Evaluación:

- Se evaluará según la rúbrica en la plataforma CANVAS.
- En la presentación todos los integrantes deben exponer.
- Duración de la presentación máximo 15 minutos, con la siguiente dinámica
 - o Apertura: Lo más concisa posible.
 - Tabla de contenidos
 - o Introducción, solo objetivos.
 - o Explicación del problema: breve descripción, énfasis en el modelamiento.
 - o Modelamiento de la situación planteada
 - o Algoritmo generados de rutas. Describir el algoritmo diseñado.
 - o Cierre.