Optimality of Extreme Points

Theorem 3.31.

Let $P \subseteq \mathbb{R}^n$ a pointed polyhedron and $c \in \mathbb{R}^n$. If $\min\{c^T \cdot x \mid x \in P\}$ is bounded, there is a vertex that is optimal.

Proof:...

Corollary 3.32.

Every linear programming problem is either infeasible or unbounded or there exists an optimal solution.

Proof: Every linear program is equivalent to an LP in standard form.

The claim thus follows from Corollary 3.24 and Theorem 3.31.

M. Skutella ADM I (winter 2019/20) 72

Number of Vertices

Corollary 3.33.

- a A polyhedron has a finite number of vertices and basic solutions.
- For a polyhedron in \mathbb{R}^n given by m linear inequalities, this number is at most $\binom{m}{n}$.

Example:

 $P:=\{x\in\mathbb{R}^n\mid 0\leq x_i\leq 1,\ i=1,\ldots,n\}$ (n-dimensional unit cube)

- ▶ number of constraints: m = 2n
- \triangleright number of vertices: 2^n

Adjacent Basic Solutions and Edges

Definition 3.34.

Let $P \subseteq \mathbb{R}^n$ be a polyhedron.

- Two distinct basic solutions are adjacent if there are n-1 linearly independent constraints that are active at both of them.
- If both solutions are feasible, the line segment that joins them is an edge of *P*.

M. Skutella

ADM I (winter 2019/20

7/

Polyhedra in Standard Form

Let $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, and $P = \{x \in \mathbb{R}^n \mid A \cdot x = b, x \geq 0\}$ a polyhedron in standard form representation.

Observation.

One can assume without loss of generality that rank(A) = m.

Proof: Let $a_1, \ldots, a_m \in \mathbb{R}^n$ rows of A. Assume that $a_i = \sum_{j \neq i} \lambda_j \cdot a_j$.

Case 1:
$$b_i = \sum_{j \neq i} \lambda_j b_j$$
. Then,

$$a_j^T \cdot x = b_j \quad \forall j \neq i \quad \Longrightarrow \quad a_i^T \cdot x = \sum_{j \neq i} \lambda_j \cdot (a_j^T \cdot x) = \sum_{j \neq i} \lambda_j b_j = b_i.$$

Thus the *i*th constraint is redundant and can be deleted.

Case 2:
$$b_i \neq \sum_{j \neq i} \lambda_j b_j \implies A \cdot x = b$$
 has no solution.

Basic Solutions of Polyhedra in Standard Form

Let $A \in \mathbb{R}^{m \times n}$ with rank(A) = m, $b \in \mathbb{R}^m$, and

$$P = \left\{ x \in \mathbb{R}^n \mid A \cdot x = b, \ x \ge 0 \right\}$$

Theorem 3.35.

A point $x \in \mathbb{R}^n$ is a basic solution of P if and only if $A \cdot x = b$ and there are indices $B(1), \ldots, B(m) \in \{1, \ldots, n\}$ such that

- ightharpoonup columns $A_{B(1)}, \ldots, A_{B(m)}$ of matrix A are linearly independent, and
- ► $x_i = 0$ for all $i \notin \{B(1), ..., B(m)\}$.

Proof: ...

- \triangleright $x_{B(1)}, \ldots, x_{B(m)}$ are basic variables, the remaining variables non-basic.
- ▶ The vector of basic variables is denoted by $x_B := (x_{B(1)}, \dots, x_{B(m)})^T$.
- $ightharpoonup A_{B(1)}, \ldots, A_{B(m)}$ are basic columns of A and form a basis of \mathbb{R}^m .
- ▶ The matrix $B := (A_{B(1)}, \dots, A_{B(m)}) \in \mathbb{R}^{m \times m}$ is called basis matrix.

M. Skutella ADM I (winter 2019/20) 76

Corollary: Carathéodory's Theorem

Theorem 3.36 (Carathéodory 1911).

For $S \subseteq \mathbb{R}^n$, every element of $\operatorname{conv}(S)$ can be written as a convex combination of at most n+1 points in S.

Proof: Consider $x \in \text{conv}(S)$. Then x can be written as

$$x = \sum_{i=1}^k \lambda_i' y_i$$
 with $y_1, \dots, y_k \in S$ and $\sum_{i=1}^k \lambda_i' = 1$, $\lambda' \ge 0$.

Consider the following polyhedron in standard form:

$$P = \left\{ \lambda \in \mathbb{R}^k \, \Big| \, \underbrace{\sum_{i=1}^k \lambda_i \, y_i = x, \, \sum_{i=1}^k \lambda_i = 1, \, \lambda \geq 0}_{n+1 \, \text{ equality constraints}}, \, \lambda \geq 0 \right\}.$$

A basic feasible solution $\lambda^* \in P$ yields the desired representation of x.