Machine Learning - TP

Nathalie Villa-Vialaneix - nathalie.villa@univ-paris1.fr http://www.nathalievilla.org

IUT STID (Carcassonne) & SAMM (Université Paris 1)

Formation INRA **Niveau** 3

Packages in R

is provided with basic functions but more than 3,000 packages are available on the CRAN (Comprehensive R Archive Network) for additionnal functions (see also the project Bioconductor).

- Installing new packages (has to be done only once)
 - with the command line:

with the menu (Windows or Mac OS X)

Loading a package (has to be done each time R is re-started)

library(nnet)

Working directory

All files in proper directories/subdirectories can be downloaded at: http://www.nathalievilla.org/docs/formation_inra, either as individual files or as a full zip file inra-package.zip.

The companion script ML-scriptR.R is made to be run from the subdirectory ML/TP of the provided material. For the computers in the classroom, this can be set by the following command line:

setwd("/home/fp/Bureau/inra-package/ML/TP")

If you are using Windows or Mac OS X, you can also choose to do it from the menu (in "Fichier" / "Définir le répertoire de travail"). In any case, you must adapt the working directory if you want to run

the script on another computer!

Outline

- 1 Introduction: Data importation and exploration
- Neural networks
- 3 CART
- 4 Random forest

Outline

- 1 Introduction: Data importation and exploration
 - 2 Neural networks
- 3 CART
- 4 Random forest

Use case description

Data kindly provided by Laurence Liaubet described in [Liaubet et al., 2011]:

- microarray data: expression of 272 selected genes over 57 individuals (pigs);
- a phenotype of interest (muscle pH) measured over the 57 invididuals (numerical variable).

file 1: genes expressions

file 2: muscle pH

Load data

```
Loading genes expressions
d <- read.table("../../Data/sel_data.csv", sep=";",</pre>
         header=T, row.names=1, dec=",")
dim(d)
names (d)
summary(d)
# Loading pH
pH <- scan("../../Data/sel_ph.csv",dec=",")</pre>
length (pH)
summary (pH)
```


Basic analysis

```
# Data distribution
layout(matrix(c(1,1,2),ncol=3))
boxplot(d,main="genes expressions")
boxplot(pH,main="pH")
```


Correlation analysis

Correlation analysis
heatmap(as.matrix(d))

Correlation with pH

Classification and regression tasks

- Regression: predict pH (numerical variable) from genes expressions. Useful to: help verify the strength of the relation between genes expressions and pH; help understand the nature of the relation.
- Classification: predict whether the pH is smaller or greater than 5.7 from genes expressions. (toy example)

```
# Classes definition
pH.classes <- rep(0,length(pH))
pH.classes[pH>5.7] <- 1
table(pH.classes)</pre>
```


Nathalie Villa-Vialaneix

Train/Test split: regression framework

```
# Initialization and training sample selection
set.seed (16011357)
training <- sample(1:ncol(d),round(0.8*ncol(d)),
        replace=F)
# Matrices definition
d.train <- t(d[,training])</pre>
pH.train <- pH[training]</pre>
d.test <- t(d[,-training])</pre>
pH.test <- pH[-training]
# Data frames definition
r.train <- cbind(d.train,pH.train)
r.test <- cbind(d.test,pH.test)
colnames(r.train) <- c(colnames(d.train), "pH")</pre>
colnames(r.test) <- c(colnames(d.train), "pH")</pre>
r.train <- data.frame(r.train)
r.test <- data.frame(r.test)
```

Train/Test split: classification framework

```
# Vectors definition
pHc.train <- pH.classes[training]</pre>
pHc.test <- pH.classes[-training]
# Data frames definition
c.train <- cbind(d.train,pHc.train)</pre>
c.test <- cbind(d.test,pHc.test)</pre>
colnames(c.train) <- c(colnames(d.train), "pHc")</pre>
colnames(c.test) <- c(colnames(d.train), "pHc")</pre>
c.train <- data.frame(c.train)</pre>
c.test <- data.frame(c.test)</pre>
# Transforming pHc into a factor
c.train$pHc <- factor(c.train$pHc)</pre>
c.test$pHc <- factor(c.test$pHc)</pre>
```

Training / Test sets (short) analysis

Outline

- 1 Introduction: Data importation and exploration
- 2 Neural networks
- 3 CART
- 4 Random forest

Loading the data (to be consistent) and nnet library

```
# Loading the data load("../../Data/train-test.Rdata")
```

MLP are unusable with a large number of predictors (here: 272 predictors for 45 observations only in the training set) ⇒ selection of a relevant subset of variables (with LASSO):

```
# Loading the subset of predictors
load("../../Data/selected.Rdata")
```

MLPs are provided in the **nnet** package:

```
# Loading nnet library
library(nnet)
```


Simple use: MLP in the regression framework **Training**

Analysis

```
print(nn1)
summary(nn1)
# Training error and pseudo -R2
mean((pH.train-nn1$fitted)^2)
1-mean((pH.train-nn1$fitted)^2)/var(pH.train)
# Predictions (test set)
pred.test <- predict(nn1,d.test[,selected])
# Test error and pseudo -R2
mean((pH.test-pred.test)^2)
1-mean((pH.test-pred.test)^2)/var(pH.train)</pre>
```

Predictions vs observations

Check results variability

Summary

	Train	Test
nn1	30.8%	44.9%
nn2	99.8%	-34!!

Simple use: MLP in the classification framework **Training**

Analysis

```
print(nnc1)
summary(nnc1)
# Predictions
nnc1$fitted
# Recoding
pred.train <- rep(0,length(nnc1$fitted))
pred.train[nnc1$fitted>0.5] <- 1
# Training error
table(pred.train,c.train$pHc)
sum(pred.train!=c.train$pHc)/length(pred.train)</pre>
```

Test error

```
# Predictions and recoding
raw.pred.test <- predict(nnc1,c.test)
pred.test <- rep(0,length(raw.pred.test))
pred.test[raw.pred.test>0.5] <- 1
# Test error
table(pred.test,c.test$pHc)
sum(pred.test!=c.test$pHc)/length(pred.test)</pre>
```

Summary

Train		Test			
Observations Predictions	0	1	Observations Predictions	0	1
0	22	1	0	4	3
1	0	22	1	2	2

Overall misclassification rate: 2 22% 45 4

45.45%

Tuning MLP with the e1071 package

Search for the best parameters with 10-fold CV

```
library(e1071)
set.seed(1643)
t.nnc2 <- tune.nnet(pHc~.,data=c.train[,
        c(selected, ncol(c.train))], size=c(2,5,10),
        decay=10^{(-c(10,8,6,4,2))}, maxit=500,
        linout=F, tunecontrol=
        tune.control(nrepeat=5, sampling="cross",
        cross=10))
```

Basic analysis of the output

```
# Looking for the best parameters
plot(t.nnc2)
```


Best parameters?


```
summary(t.nnc2)
t.nnc2$best.parameters
# Selecting the best MLP
nnc2 <- t.nnc2$best.model</pre>
```

Results analysis

```
# Training error
pred.train <- rep(0,length(nnc2$fitted))</pre>
pred.train[nnc2$fitted>0.5] <- 1</pre>
table (pred.train, c.train $ pHc)
sum(pred.train!=c.train$pHc)/length(pred.train)
# Predictions and test error
raw.pred.test <- predict(nnc2,c.test)
pred.test <- rep(0,length(raw.pred.test))</pre>
pred.test[raw.pred.test>0.5] <- 1</pre>
table (pred.test, c.test $pHc)
sum(pred.test!=c.test$pHc)/length(pred.test)
```

Summary

	Train	Test
nnc1	2.22%	45.45%
nnc2	0%	22.27%

Outline

- 1 Introduction: Data importation and exploration
- 2 Neural networks
- **3** CART
- 4 Random forest

Regression tree training

Training with the rpart package

Basic analysis of the output

```
print(tree1)
summary(tree1)
plot(tree1)
text(tree1)
```


Resulting tree


```
tree1$where # leaf number
tree1$frame # nodes features
```


Performance analysis

```
# Training predictions and error
pred.train <- tree1$frame$yval[tree1$where]</pre>
mean((pred.train-r.train$pH)^2)
1-mean((pred.train-r.train$pH)^2)/var(pH.train)
# Test predictions and error
pred.test <- predict(tree1, r.test)</pre>
mean((pred.test-r.test$pH)^2)
1-mean((pred.test-r.test$pH)^2)/var(pH.train)
# Fitted values vs True values
plot(pH.train, pred.train, xlab="Observations",
        ylab="Fitted values", main="", pch=3,
        col="blue")
points(pH.test, pred.test, pch=19, col="darkred")
legend("bottomright", pch=c(3,19), col=c("blue",
        "darkred"), legend=c("Train", "Test"))
abline(0,1,col="darkgreen")
```

Summary

Numerical performance

	Train	Test
tree1	96.6%	11.6%
nn2	99.8%	-34!!

Classification tree training and tuning

Training with the rpart package and tuning with the e1071 package

Basic analysis of the output

```
plot(t.treec1)
```


Tuning results

t.treec1\$best.parameters
treec1 <- t.treec1\$best.model</pre>

Basic analysis of the best tree

```
summary(treec1)
plot(treec1)
text(treec1)
treec1$where # leaf number
treec1$frame # nodes features
```


Predictions and errors

Training set

```
# Make the prediction
pred.train <- predict(treec1,c.train)
# Find out which class is predicted
pred.train <- apply(pred.train,1,which.max)
library(car) # to have the "recode" function
pred.train <- recode(pred.train,"2=1;1=0")
# Calculate misclassification error
table(pred.train,pHc.train)
sum(pred.train!=pHc.train)/length(pred.train)</pre>
```

Test set

```
pred.test <- predict(treec1,c.test)
pred.test <- apply(pred.test,1,which.max)
pred.test <- recode(pred.test,"2=1;1=0")
table(pred.test,pHc.test)
sum(pred.test!=pHc.test)/length(pred.test)</pre>
```

Classification performance summary

Overall misclassification rates

	Train	Test
nnc1	2.22%	45.45%
nnc2	0	22.27%
treec1	0	45.45%

Outline

- 1 Introduction: Data importation and exploration
- 2 Neural networks
- 3 CART
- 4 Random forest

Random forest training (regression framework)

Training with the randomForest package

Basic analysis of the output

```
plot(rf1)
rf1$ntree
rf1$mtry
rf1$importance
```


Predictions and errors

MSE

	Train	Test
nn1	30.8%	44.9%
nn2	99.8%	-34
rf1	84.5%	51.2%%

Predictions vs observations

Importance analysis

Random forest training (classification framework)

Training with the randomForest package (advanced features)

Basic analysis of the output

```
plot(rfc1)
rfc1$importance
```


Predictions and errors

```
# Training set (oob error and training error)
table(rfc1$predicted,pHc.train)
sum(rfc1$predicted!=pHc.train)/length(pHc.train)
# Test set
table(rfc1$test$predicted,pHc.test)
sum(rfc1$test$predicted!=pHc.test)/length(pHc.test)
```

Overall misclassification rates

	Train	Test
nnc1	2.22%	45.45%
nnc2	0	22.27%
treec1	0	45.45%
rfc1	33.33%	36.36%

Importance analysis

```
Importance analysis
layout (matrix(c(1,2),ncol=2))
barplot(t(rfc1$importance[,3]),xlab="variables",
        ylab="Mean Dec. Accu.",col="darkred",
        las=2, names=rep(NA, nrow(rfc1$importance)))
barplot(t(rfc1$importance[,4]),xlab="variables",
        ylab="Mean Dec. Gini",col="darkred",
        las=2, names=rep(NA, nrow(rfc1$importance)))
which (rfc1$importance[,3]>0.002)
```


Liaubet, L., Lobjois, V., Faraut, T., Tircazes, A., Benne, F., Iannuccelli, N., Pires, J., Glénisson, J., Robic, A., Le Roy, P., SanCristobal, M., and Cherel, P. (2011).

Genetic variability or transcript abundance in pig peri-mortem skeletal muscle: eQTL localized genes involved in stress response, cell death, muscle disorders and metabolism.

BMC Genomics, 12(548).

