

Asymptotic Order of Growth Upper bounds. T(n) is O(f(n)) if there exist constants c > 0 and $n_0 \ge 0$ Slight abuse of notation. T(n) = O(f(n)). such that for all $n \ge n_0$ we have $T(n) \le c \cdot f(n)$. Not transitive: $- f(n) = 5n^3$; $g(n) = 3n^2$ Lower bounds. T(n) is $\Omega(f(n))$ if there exist constants c > 0 and $n_0 \ge 0$ $- f(n) = O(n^3) = q(n)$ such that for all $n \ge n_0$ we have $T(n) \ge c \cdot f(n)$. - but $f(n) \neq g(n)$. • Better notation: $T(n) \in O(f(n))$. Tight bounds. T(n) is $\Theta(f(n))$ if T(n) is both O(f(n)) and $\Omega(f(n))$. Meaningless statement. Any comparison-based sorting algorithm Ex: $T(n) = 32n^2 + 17n + 32$. requires at least O(n log n) comparisons. • T(n) is $O(n^2)$, $O(n^3)$, $\Omega(n^2)$, $\Omega(n)$, and $\Theta(n^2)$. Statement doesn't "type-check." • T(n) is not O(n), $\Omega(n^3)$, $\Theta(n)$, or $\Theta(n^3)$. • Use Ω for lower bounds. properties Transitivity. • If f = O(q) and g = O(h) then f = O(h). • If $f = \Omega(g)$ and $g = \Omega(h)$ then $f = \Omega(h)$. • If $f = \Theta(q)$ and $q = \Theta(h)$ then $f = \Theta(h)$. Additivity. • If f = O(h) and g = O(h) then f + g = O(h). • If $f = \Omega(h)$ and $g = \Omega(h)$ then $f + g = \Omega(h)$. If $f = \Theta(h)$ and $g = \Theta(h)$ then $f + g = \Theta(h)$. Some common bounds Polynomials. $a_0 + a_1 n + ... + a_d n^d$ is $\Theta(n^d)$ if $a_d > 0$. Polynomial time. Running time is $O(n^d)$ for some constant d independent of the input size n. Logarithms. $O(\log_a n) = O(\log_b n)$ for any constants a, b > 0. can avoid specifying the base Logarithms. For every x > 0, $\log n = O(n^x)$. log grows slower than every polynomial Exponentials. For every r > 1 and every d > 0, $n^d = O(r^n)$. every exponential grows faster than every polynomial Merge. Combine two sorted lists $A = a_1, a_2, ..., a_n$ with $B = b_1, b_2, ..., b_n$ Linear line. O(n) into sorted whole. Linear time. Running time is proportional to input size. Merged result Computing the maximum. Compute maximum of n numbers $a_1, ..., a_n$. while (both lists are nonempty) { if $(a_i \leq b_j)$ append a_i to output list and increment ifor i = 2 to n { append \boldsymbol{b}_j to output list and increment jif $(a_i > max)$ append remainder of nonempty list to output list Claim. Merging two lists of size n takes O(n) time.

Pf. After each comparison, the length of output list increases by 1.

- Check whether S is an independent set = $O(k^2)$.
- Number of k element subsets = $\binom{n}{n} = \frac{n(n-1)(n-2)\cdots(n-k+1)}{n-2} \le \frac{n^k}{n-2}$ • $O(k^2 n^k / k!) = O(n^k)$. $k(k-1)(k-2)\cdots(2)(1)$

poly-time for k=17, but not practical

2n: total number of subsets of an n-element set

```
foreach subset S of nodes {
  check whether S is an independent set
   if (S is largest independent set seen so far)
      update S* ← S
}
```

