REC'D 15 OCT 2004

WIPO

PCT

JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

8月27日 2003年

出 願 番 Application Number:

特願2003-209042

[ST. 10/C]:

[]P2003-209042]

出 願 Applicant(s):

住友化学工業株式会社

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

特許庁長官 Commissioner, Japan Patent Office 2004年 8月30日

【書類名】

特許願

【整理番号】

TA03051

【提出日】

平成15年 8月27日

【あて先】

特許庁長官殿

【国際特許分類】

C07C 67/00

C07C253/00

【発明者】

【住所又は居所】

大阪市西淀川区歌島3丁目1番21号 住化ファインケ

ム株式会社 総合研究所内

【氏名】

王 維奇

【発明者】

【住所又は居所】

大阪市西淀川区歌島3丁目1番21号 住化ファインケ

ム株式会社 総合研究所内

【氏名】

池本 哲哉

【特許出願人】

【識別番号】

592120519

【氏名又は名称】

住化ファインケム株式会社

【代理人】

【識別番号】

100093285

【弁理士】

【氏名又は名称】 久保山 隆

【電話番号】

06-6220-3405

【選任した代理人】

【識別番号】

100113000

【弁理士】

【氏名又は名称】

中山 亨

【電話番号】

06-6220-3405

【選任した代理人】

【識別番号】 100119471

【弁理士】

【氏名又は名称】 榎本 雅之

【電話番号】

06-6220-3405

【手数料の表示】

【予納台帳番号】

141624

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

要約書 1

【包括委任状番号】 0307509

【プルーフの要否】 要 【書類名】

明細書

【発明の名称】

芳香族不飽和エステルまたは芳香族不飽和ニトリルの製

造方法

【特許請求の範囲】

【請求項1】

式(1)

 $Ar \longrightarrow H$ (1)

(式中、Arは置換されていてもよい芳香族基または置換されていてもよいヘテロ芳香族基を表わす。)

で示される化合物と、式(2)

(式中、Yはアルコキシカルボニル基、アリールオキシカルボニル基、アラルキルオキシカルボニル基またはシアノ基を表わし、Zは低級アルコキシ基を表わす。)

で示される化合物または式(3)

(式中、YおよびZは上記と同一の意味を表わす。)

で示される化合物とを、酸または加水分解により酸を発生せしめる化合物の存在 下に反応させることを特徴とする式 (4)

(式中、ArおよびYは上記と同一の意味を表わす。)

で示される芳香族不飽和エステルまたは芳香族不飽和ニトリルの製造方法。

【請求項2】

水の共存下に反応を実施する請求項1に記載の芳香族不飽和エステルまたは芳香 族不飽和ニトリルの製造方法。

【請求項3】

酸がハロゲン化水素である請求項1に記載の芳香族不飽和エステルまたは芳香族 不飽和ニトリルの製造方法。

【請求項4】

加水分解により酸を発生せしめる化合物が、オキシハロゲン化リン、ハロゲン化 リン、ハロゲン化チオニルまたはハロゲン化スルフリルである請求項1に記載の 芳香族不飽和エステルまたは芳香族不飽和ニトリルの製造方法。

【請求項5】

酢酸溶媒中で反応を実施する請求項1に記載の芳香族不飽和エステルまたは芳香 族不飽和ニトリルの製造方法。

【請求項6】

置換されていてもよい芳香族基または置換されていてもよいヘテロ芳香族基が、 低級アルキル基、低級アルコキシル基、水酸基、保護基で保護された水酸基、ア ミノ基、保護基で保護されたアミノ基、ハロゲン原子およびハロゲン原子で置換 されていてもよいフェニル基からなる群から選ばれる少なくとも一つの基で置換 されていてもよい芳香族基またはヘテロ芳香族基である請求項1に記載の芳香族 不飽和エステルまたは芳香族不飽和ニトリルの製造方法。

【請求項7】

芳香族基がフェニル基である請求項1に記載の芳香族不飽和エステルまたは芳香 族不飽和ニトリルの製造方法。

【請求項8】

ヘテロ芳香族基がインドリル基である請求項1に記載の芳香族不飽和エステルま たは芳香族不飽和ニトリルの製造方法。

【請求項9】

式(1)で示される化合物が、式(5)

(式中、 R^1 はハロゲン原子で置換されていてもよいフェニル基、水素原子またはアルキル基を表わし、 R^2 はアルキル基を表わすか、またはハロゲン原子で置換されていてもよいフェニル基を表わす。)

で示される化合物であり、式(4)で示される芳香族不飽和エステルまたは芳香族不飽和ニトリルが、式(6)

$$\begin{array}{c}
\mathbb{R}^2 \\
\mathbb{R}^1
\end{array}$$
(6)

(式中、 R^{1} および R^{2} は上記と同一の意味を表わす。)

で示される芳香族不飽和エステルまたは芳香族不飽和ニトリルである請求項1に 記載の芳香族不飽和エステルまたは芳香族不飽和ニトリルの製造方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、芳香族不飽和エステルまたは芳香族不飽和ニトリルの製造方法に関する。

[0002]

【従来の技術】

式(4)

(式中、Arは置換されていてもよい芳香族基または置換されていてもよいヘテロ芳香族基を表わし、Yはアルコキシカルボニル基、アリールオキシカルボニル

基、アラルキルオキシカルボニル基またはシアノ基を表わす。)

で示される芳香族不飽和エステルまたは芳香族不飽和ニトリル(以下、エステルまたはニトリル(4)と略記する。)は、例えば医農薬の合成中間体等として有用である。例えば下記式(7)

$$F$$
 CO_2CH_3
 (7)

で示される化合物は、高脂血症薬として有用なフルバスタチンの合成中間体として知られている(例えば特許文献1参照。)。

[0003]

かかるエステルまたはニトリル (4) の製造方法としては、例えば対応する芳香族ハロゲン化物とアクリル酸等のアクリル酸化合物とを、パラジウム触媒および塩基の存在下に反応させる方法が知られている(例えば特許文献 1 参照。)が、環境に負荷のかかる芳香族ハロゲン化物を原料に用いており、ハロゲン化水素が反応の進行とともに副生し、しかも該ハロゲン化水素を塩基により中和する必要があるという点で、原料面から見ると、必ずしもアトムエコノミーが高い反応とは言えなかった。

[0004]

一方、よりアトムエコノミーが高い方法として、式(1)

$$Ar \longrightarrow H$$
 (1)

(式中、Arは上記と同一の意味を表わす。)

で示される化合物を原料とし、アクリル酸化合物と反応させる方法があり、例えば (a) ルテニウム触媒やパラジウム触媒を用い、酸素の存在下に反応を実施す

る方法(例えば非特許文献1、2参照。)、(b) 量論量以上のパラジウム錯体 を用いる方法(例えば非特許文献3、4参照。)等が提案されている。

[0005]

しかしながら、(a)の方法は、酸素を使用するため、爆発限界以下の反応条件下で実施する必要があり、操作面、設備面で必ずしも有利とは言えず、また、(b)の方法は、原料面ではアトムエコノミーが高い方法ではあるものの、量論量以上のパラジウム錯体を用いているため、コスト面で不利であり、また反応後のパラジウム錯体の後処理も煩雑で、さらに収率も低く、工業的という観点からは、必ずしも有利な製造方法とは言えなかった。

[0006]

また、インドール環を有する化合物については、インドール環を構成する窒素 原子をベンゼンスルホニル基で保護した後、パラジウム触媒の存在下に、アクリ ル酸化合物と反応させる方法が知られている(例えば非特許文献5参照。)が、 インドール環を構成する窒素原子をベンゼンスルホニル基で保護した化合物に限 られた反応であり、しかも収率よく目的物を得るためには、例えば酢酸銀等の比 較的高価な再酸化剤を過剰量用いる必要があった。

[0007]

【特許文献1】

国際公開第01/92223号パンフレット

【非特許文献1】

J. Am. Chem. Soc., <u>125</u>, 1476 (2003)

【非特許文献2】

J. Am. Chem. Soc., <u>123</u>, 337 (2001)

【非特許文献3】

J. Org. Chem., <u>46</u>, 851 (1981)

【非特許文献4】

Heterocycles, <u>22</u>, 1493 (1984)

【非特許文献5】

Synthesis, 236 (1984)

[0008]

【発明が解決しようとする課題】

このような状況のもと、本発明者らは、前記式(1)で示される化合物を原料として、前記エステルまたはニトリル(4)を、よりアトムエコノミーが高く、工業的にもより有利に製造する方法を開発すべく、鋭意検討したところ、前記式(1)で示される化合物と、式(2)

(式中、Yはアルコキシカルボニル基、アリールオキシカルボニル基、アラルキルオキシカルボニル基またはシアノ基を表わし、Zは低級アルコキシ基を表わす。)

で示される化合物または式(3)

(式中、 Y および Z は上記と同一の意味を表わす。)

で示される化合物とを、塩酸等の酸や、オキシ塩化リン等の加水分解により酸を 発生せしめる化合物の存在下に反応させることにより、良好な収率で、目的とす るエステルまたはニトリル (4) を製造することができることを見出し、本発明 に至った。

[0009]

【課題を解決するための手段】

すなわち本発明は、式(1)

$$Ar \longrightarrow H$$
 (1)

(式中、Arは置換されていてもよい芳香族基または置換されていてもよいヘテロ芳香族基を表わす。)

で示される化合物と、式(2)

(式中、Yはアルコキシカルボニル基、アリールオキシカルボニル基、アラルキルオキシカルボニル基またはシアノ基を表わし、Zは低級アルコキシ基を表わす。)

で示される化合物または式(3)

(式中、YおよびZは上記と同一の意味を表わす。)

で示される化合物とを、酸または加水分解により酸を発生せしめる化合物の存在 下に反応させることを特徴とする式 (4)

(式中、ArおよびYは上記と同一の意味を表わす。)

で示される芳香族不飽和エステルまたは芳香族不飽和ニトリルの製造方法を提案するものである。

[0010]

【発明の実施の形態】

式(1)

$$Ar - H$$
 (1)

で示される化合物(以下、化合物(1)と略記する。)の式中、Arは置換されていてもよい芳香族基または置換されていてもよいヘテロ芳香族基を表わす。

[0011]

芳香族基としては、例えばフェニル基、ナフチル基、アンスリル基、フェナンスリル基、テトラヒドロナフチル基、9,10-ジヒドロアンスリル基、アセナフテニル基等が挙げられ、ヘテロ芳香族基としては、例えばインドリル基、ベン

ゾフリル基、ベンゾチエニル基、ベンゾチアゾリル基、ベンゾオキサゾリル基、 ピロリル基、フリル基、チエニル基、ジベンゾフリル基、ジベンゾチエニル基、 2,3-ジヒドロインドリル基、2,3-ジヒドロベンゾフリル基等の芳香環の 構成原子として、例えば窒素原子、酸素原子、硫黄原子等のヘテロ原子を含んだ 芳香族基が挙げられる。

[0012]

かかる芳香族基またはヘテロ芳香族基は、置換基で置換されていてもよく、置 換基としては、例えばメチル基、エチル基、n-プロピル基、イソプロピル基、 n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基等の炭素 数1~4の低級アルキル基、例えばメトキシ基、エトキシ基、nープロポキシ基 、イソプロポキシ基、n-ブトキシ基、イソブトキシ基、sec-ブトキシ基、 tertーブトキシ基等の炭素数1~4の低級アルコキシ基、例えば水酸基、例 えば保護基で保護された水酸基、例えばアミノ基、例えば保護基で保護されたア ミノ基、例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子 、例えばフェニル基、4-クロロフェニル基、4-フルオロフェニル基等のハロ ゲン原子で置換されていてもよいフェニル基等が挙げられる。水酸基の保護基と しては、例えばアセチル基等のアルカノイル基、例えばメトキシメチル基等のア ルコキシアルキル基、例えばベンジル基等のアラルキル基、例えばメチレン基、 ジメチルメチレン基等のアルキレン基等が挙げられ、かかる保護基で保護された 水酸基としては、例えばアセチルオキシ基、メトキシメトキシ基、ベンジルオキ シ基、メチレンジオキシ基、ジメチルメチレンジオキシ基等が挙げられる。また 、アミノ基の保護基としては、例えば前記アルカノイル基、例えばベンジル基等 のアラルキル基、例えばベンジルオキシメチル基等のアラルキルオキシアルキル 基、例えばジメトキシメチル基等のジアルコキシアルキル基、例えばベンゼンス ルホニル基、pートルエンスルホニル基、メタンスルホニル基等のスルホニル基 等が挙げられ、かかる保護基で保護されたアミノ基としては、例えばアセチルア ミノ基、ジベンジルアミノ基、ジベンジルオキシメチルアミノ基、ジメトキシメ チルアミノ基、ベンゼンスルホニルアミノ基、p-トルエンスルホニルアミノ基 、メタンスルホニルアミノ基等が挙げられる。

[0013]

かかる置換基で置換された芳香族基の場合、その置換基の数は特に制限されな いが、反応速度の観点から、2個以上の置換基で置換された芳香族基が好ましく 、3個以上の置換基で置換された芳香族基がより好ましい。また、置換基で置換 されたヘテロ芳香族基の場合もその置換基の数は特に制限されないが、反応速度 の観点から、1個以上の置換基で置換されたヘテロ芳香族基が好ましい。

[0014]

かかる化合物(1)のうち、ヘテロ芳香族基がインドリル基である化合物は、 例えば高脂血症薬として有用なフルバスタチン等のインドール化合物(例えば特 公平2-46031号公報、国際公開第01/92223号パンフレット等)の 合成原料という点で重要であり、かかるヘテロ芳香族基がインドリル基である化 合物としては、例えば式(5)

(式中、R¹はハロゲン原子で置換されていてもよいフェニル基、水素原子また はアルキル基を表わし、R²はアルキル基を表わすか、またはハロゲン原子で置 換されていてもよいフェニル基を表わす。)

で示される化合物が挙げられる。

[0015]

上記式 (5) の式中、ハロゲン原子で置換されていてもよいフェニル基は、前 記したものと同様のものが挙げられ、アルキル基としては、例えばメチル基、エ チル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、se cープチル基、tertープチル基、nーヘキシル基等の炭素数1~6のアルキ ル基が挙げられる。

[0016]

かかる化合物 (1) としては、例えばペンゼン、ナフタレン、ジメトキシベン ゼン、1,3,5-トリメトキシベンゼン、1,2,3-トリメトキシベンゼン 、2,6-ジメトキシフェノール、2-メトキシアニリン、4-メトキシアニリン、2-メトキシアセトアニリド、4-メトキシアセトアニリド、2-アセチルアミノフェノール、4-アセチルアミノフェノール、カテコール、レゾルシノール、ヒドロキノン、4-tert-ブチルカテコール、カプサイシン、

[0017]

2-xチルー1 H - インドール、2-x チルー1-x チルー1 H - インドール、2-x エルー1 H - インドール、2-x エルー1 H - インドール、2-x エルー1 H - インドール、2-x エルー1 H - インドール、2-x エニルー1 H - インドール、3-x チルー1 H - インドール、3-x エニルー1 H - インドール、3-x エニルー1 H - インドール、3-x (4 - フルオロフェニル) - 1 - イソプロビルー1 H - インドール、3-x (4 - フルオロフェニル) - 1 - イソプロビルー1 H - インドール、3-x (4 - フルオロフェニル) - 1 - イソプロビルー1 H - インドール・3-x (4 - フルオロフェニル) - 1 - イソプロビルー1 H - インドール・3-x デール等が挙げられる。

[0018]

かかる化合物(1)は、市販されているものを用いてもよいし、公知の方法に準じて製造したものを用いてもよい。例えば芳香族基がインドリル基である化合物は、例えばTetrahedron Letters, <u>26</u>, 2155(1985)等の公知の方法に準じて製造することができる。

[0019]

式(2)

で示される化合物(以下、化合物(2)と略記する。)および式(3)

で示される化合物(以下、化合物(3)と略記する。)の式中、Yはアルコキシカルボニル基、アリールオキシカルボニル基、アラルキルオキシカルボニル基またはシアノ基を表わし、Zは低級アルコキシ基を表わす。

[0020]

アルコキシカルボニル基としては、例えばメトキシカルボニル基、エトキシカルボニル基、ロープロポキシカルボニル基、イソプトキシカルボニル基、はertープトキシカルボニル基、イソプトキシカルボニル基、tertープトキシカルボニルオール基、nーペキシルオキシカルボニル基、nーオクチルオキシカルボニルオキシ基等の炭素数2~9のアルコキシカルボニル基が挙げられる。アリールオキシカルボニル基としては、例えばフェノキシカルボニル基等が挙げられ、アラルキルオキシカルボニル基としては、例えばベンジルオキシカルボニル基等が挙げられる。低級アルコキシ基としては、例えばメトキシ基、エトキシ基、nープロポキシ基、イソプロポキシ基、nープトキシ基、イソプトキシ基、secープトキシ基、イソプロポキシ基、nーペンチルオキシ基、nーペキシルオキシ基等の炭素数1~6のアルコキシ基が挙げられ、炭素数1~4のアルコキシ基が好ましい。

[0021]

かかる化合物(2)としては、例えば3-メトキシアクリル酸メチル、3-メトキシアクリル酸エチル、3-メトキシアクリル酸n-プロピル、3-メトキシアクリル酸イソプロピル、3-メトキシアクリル酸n-プチル、3-メトキシアクリル酸イソプチル、3-メトキシアクリル酸s e c - プチル、3-メトキシアクリル酸 t e r t - プチル、3-メトキシアクリル酸フェニル、3-メトキシアクリル酸ベンジル、3-エトキシアクリル酸メチル、3-エトキシアクリル酸エチル、3-エトキシアクリル酸n-プロピル、3-エトキシアクリル酸イソプロピル、3-エトキシアクリル酸n-プチル、3-エトキシアクリル酸イソプチル、3-エトキシアクリル酸n-プチル、3-エトキシアクリル酸 t e r t - 、3-エトキシアクリル酸 s e c - プチル、3-エトキシアクリル酸 t e r t -

ブチル、3-エトキシアクリル酸フェニル、3-エトキシアクリル酸ベンジル、3-イソプロポキシアクリル酸メチル、3-イソプロポキシアクリル酸エチル、3-イソプロポキシアクリル酸 n-プロピル、3-イソプロポキシアクリル酸 1-プロピル、1-7ロポキシアクリル酸 1-7ロポキシアクリル酸 1-7ロポキシアクリル酸ベンジル、1-7ロポキシアクリル酸ベンジル、1-7ロポキシアクリル酸ベンジル、1-7ロポキシアクリル酸ベンジル、1-7ロポキシアクリル酸ベンジル、1-7ロポキシアクリル酸ベンジル、1-7ロポキシアクリル酸ベンジル、1-7ロポキシアクリル酸ベンジル、1-7ロポキシアクリル酸ベンジル、1-7ロポキシアクリル酸ベンジル、1-7ロポキシアクリル酸ベンジル、1-7ロポキシアクリル酸ベンジル、1-7ロポキシアクリル酸ベンジル、1-7ロポキシアクリル酸ベンジル、1-7ロポキシアクリル酸ベンジル、1-7ロポキシアクリル酸ベンジル

[0022]

3-n-プトキシアクリル酸メチル、3-n-プトキシアクリル酸エチル、3-n-プトキシアクリル酸n-プロピル、3-n-プトキシアクリル酸イソプロピル、3-n-プトキシアクリル酸イソプロピル、3-n-プトキシアクリル酸イソプチル、3-n-プトキシアクリル酸 <math>s e s c - プチル、3-n-プトキシアクリル酸イソプチル、3-n-プトキシアクリル酸 s e s c - プチル、3-n-プトキシアクリル酸 s e s c - プチル、3-n-プトキシアクリル酸 s c e s c - プチル、3-n-プトキシアクリル酸ペンジル、3-tert-ブトキシアクリル酸メチル、3-tert-ブトキシアクリル酸n-プロピル、3-tert-ブトキシアクリル酸n-プロピル、3-tert-ブトキシアクリル酸イソプロピル、3-tert-ブトキシアクリル酸 s e s c - プチル、3-tert-ブトキシアクリル酸 s e s c - プチル、3-tert-ブトキシアクリル酸 s e s c - プチル、3-tert-ブトキシアクリル酸 s e s c - プチル、3-tert-ブトキシアクリル酸フェニル、3-tert-ブトキシアクリル酸フェニル、3-tert-ブトキシアクリロニトリル、3-エトキシアクリロニトリル、3-イソプロポキシアクリロニトリル、3-n-ブトキシアクリロニトリル、3-tertプトキシアクリロニトリル、3-tertプトキシアクリロニトリル、3-tertプトキシアクリロニトリル、3-tertプトキシアクリロニトリル、3-tertプトキシアクリロニトリル等が挙げられる。

[0023]

なお、かかる化合物(2)には、トランス体とシス体が存在するが、本発明には、そのいずれか一方を用いてもよいし、両者の任意の混合物を用いてもよい。

[0024]

化合物 (3) としては、例えば3, 3-ジメトキシプロピオン酸メチル、3, 3-ジメトキシプロピオン酸エチル、3, 3-ジメトキシプロピオン酸<math>n-プロピル、3, 3-ジメトキシプロピオン酸イソプロピル、3, 3-ジメトキシプロ

ピオン酸 n ーブチル、3,3ージメトキシプロピオン酸イソブチル、3,3ージ メトキシプロピオン酸secーブチル、3,3-ジメトキシプロピオン酸ter t-ブチル、3,3-ジメトキシプロピオン酸フェニル、3,3-ジメトキシプ ロピオン酸ベンジル、3,3-ジエトキシプロピオン酸メチル、3,3-ジエト キシプロピオン酸エチル、3,3ージエトキシプロピオン酸 nープロピル、3, 3-ジエトキシプロピオン酸イソプロピル、3,3-ジエトキシプロピオン酸 n ーブチル、3,3-ジエトキシプロピオン酸イソブチル、3,3-ジエトキシプ ロピオン酸secーブチル、3,3ージエトキシプロピオン酸tertーブチル 、3,3-ジエトキシプロピオン酸フェニル、3,3-ジエトキシプロピオン酸 ベンジル、3,3-ジイソプロポキシプロピオン酸メチル、3,3ージイソプロ ポキシプロピオン酸エチル、3,3-ジイソプロポキシプロピオン酸 n-プロピ ル、3,3ージイソプロポキシプロピオン酸イソプロピル、3,3ージイソプロ ポキシプロピオン酸n-ブチル、3, 3-ジイソプロポキシプロピオン酸イソブ チル、3,3-ジイソプロポキシプロピオン酸secープチル、3,3-ジイソ プロポキシプロピオン酸 t e r t ーブチル、3,3 ージイソプロポキシプロピオ ン酸フェニル、3,3-ジイソプロポキシプロピオン酸ベンジル、3,3-ジ(n-ブトキシ) プロピオン酸メチル、

[0025]

 $3-\bar{y}$ (tert-ブトキシ) プロピオン酸sec-ブチル、3,3- \bar{y} (tert-ブトナン) プロピオン酸tert-ブチル、3,3- \bar{y} (tert-ブトキシ) プロピオン酸フェニル、3,3- \bar{y} (tert-ブトキシ) プロピオン酸フェニル、3,3- \bar{y} (tert-ブトキシ) プロピオン酸ベンジル、3,3- \bar{y} メトキシプロピオニトリル、3,3- \bar{y} (tert-ブトキシプロピオニトリル、3,3- \bar{y} (n-ブトキシ) プロピオニトリル、3,3- \bar{y} (tert-ブトキシ) プロピオニトリル、3,3- \bar{y} (tert-ブトキシ) プロピオニトリル等が挙げられる。

[0026]

かかる化合物 (2) や化合物 (3) は、市販されているものを用いてもよいし、例えば特公昭 61-45974号公報、特開昭 58-26855号公報等公知の方法に準じて製造したものを用いてもよい。

[0027]

化合物 (2) または化合物 (3) の使用量は、化合物 (1) に対して、通常 1 ~ 5 モル倍、好ましくは $1\sim 3$ モル倍である。

[0028]

酸としては、例えば硫酸、例えば塩酸、臭化水素等のハロゲン化水素、例えば 過塩素酸等の過ハロゲン酸、例えばメタンスルホン酸、ベンゼンスルホン酸、p ートルエンスルホン酸、トリフルオロメタンスルホン酸等のスルホン酸、例えば トリフルオロ酢酸等のパーフルオロカルボン酸、例えば三フッ化ホウ素、塩化ア ルミニウム、臭化アルミニウム、塩化亜鉛、臭化亜鉛、塩化スズ、四塩化チタン 等のルイス酸、酸性イオン交換樹脂等が挙げられ、ハロゲン化水素が好ましい。 なお、ルイス酸として、例えば三フッ化ホウ素・テトラヒドロフラン錯体等のル イス酸の錯体を用いてもよい。

[0029]

加水分解により酸を発生せしめる化合物としては、例えばオキシ塩化リン、オキシ臭化リン等のオキシハロゲン化リン、例えば三塩化リン、三臭化リン、五塩化リン等のハロゲン化リン、例えば塩化チオニル等のハロゲン化チオニル、たとえば塩化スルフリル等のハロゲン化スルフリル等が挙げられ、オキシハロゲン化リンが好ましい。

[0030]

酸の存在下に、化合物(1)と化合物(2)または化合物(3)を反応させて もよいし、加水分解により酸を発生せしめる化合物の存在下に、化合物(1)と 化合物(2)または化合物(3)を反応させてもよい。また、酸および加水分解 により酸を発生せしめる化合物の存在下に、化合物(1)と化合物(2)または 化合物(3)を反応させてもよい。

[0031]

これらの混合順序は特に制限されず、例えば化合物(1)と化合物(2)または化合物(3)の混合物に、酸または加水分解により酸を発生せしめる化合物を加えてもよいし、化合物(1)と酸または加水分解により酸を発生せしめる化合物の混合物に化合物(2)または化合物(3)を加えてもよい。

[0032]

酸または加水分解により酸を発生せしめる化合物の使用量は、化合物(1)に対して、通常 0.001モル倍以上、好ましくは 0.01モル倍以上であり、その上限は特になく、反応条件下で液体である場合には、溶媒を兼ねて過剰量用いてもよいが、あまり多いと後処理が煩雑になりやすく、経済的に不利になりやすいため、実用的には 5モル倍以下、好ましくは 3モル倍以下である。

[0033]

反応は、通常溶媒の存在下に実施され、溶媒としては、例えばアセトニトリル、プロピオニトリル等のニトリル系溶媒、例えばギ酸、酢酸等のカルボン酸系溶媒、例えばジクロロメタン、クロロホルム等のハロゲン化炭化水素系溶媒、例えばテトラヒドロフラン等のエーテル系溶媒、例えば酢酸エチル等のエステル系溶媒、例えばメタノール、エタノール、イソプロパノール等のアルコール系溶媒、水等の単独または混合溶媒が挙げられ、カルボン酸系溶媒、ニトリル系溶媒が好ましく、カルボン酸系溶媒がより好ましい。かかる溶媒の使用量は特に制限されない。また、前述のとおり、反応条件下で、前記酸または加水分解により酸を発生せしめる化合物が液体である場合には、かかる酸または加水分解により酸を発生せしめる化合物を溶媒として使用してもよい。

[0034]

化合物 (1) と化合物 (2) または化合物 (3) を、酸または加水分解により酸を発生せしめる化合物の存在下に反応させることにより、目的とする式 (4)

(式中、ArおよびYは上記と同一の意味を表わす。)

で示される芳香族不飽和エステルまたは芳香族不飽和ニトリル(以下、エステルまたはニトリル (4) と略記する。)が得られるが、かかる反応を、水の共存下に実施することにより、より収率よくエステルまたはニトリル (4) を得ることができる。

[0035]

水の共存下で反応を実施する場合の水の使用量は、化合物(1)に対して、通常0.1モル倍以上であり、その上限は特にないが、実用的には50モル倍以下、好ましくは10モル倍以下である。

[0036]

反応温度は、通常−20~80℃である。

[0037]

反応終了後、例えば反応液と水を混合した後、濾過処理することにより、目的とするエステルまたはニトリル (4) を取り出すことができる。場合によっては、反応液中にエステルまたはニトリル (4) が結晶として析出していることがあるが、その場合には、反応液をそのまま濾過処理してエステルまたはニトリル (4) を取り出してもよいし、反応液と水を混合した後、濾過処理し、取り出してもよい。また、例えば反応液に、水および水に不溶の有機溶媒を加え、抽出処理し、得られる有機層を濃縮処理することにより、エステルまたはニトリル (4) を取り出すこともできる。取り出したエステルまたはニトリル (4) は、例えば再結晶、カラムクロマトグラフィ等の通常の精製手段によりさらに精製してもよい。

[0038]

かくして得られるエステルまたはニトリル (4) としては、例えば3-(2,

4,6-トリメトキシフェニル)アクリル酸メチル、3-(2,3,4-トリメ トキシフェニル) アクリル酸メチル、3-(3-ヒドロキシ-2, 4-ジメトキ シフェニル)アクリル酸メチル、3-(3,4-ジヒドロキシフェニル)アクリ ル酸メチル、3-(2,4,6-トリメトキシフェニル)アクリル酸エチル、3 - (2, 3, 4-トリメトキシフェニル) アクリル酸エチル、3-(3-ヒドロ キシー・2, 4ージメトキシフェニル) アクリル酸エチル、3-(3, 4ージヒド ロキシフェニル) アクリル酸エチル、3-(2,4,6-トリメトキシフェニル) アクリル酸 n ープロピル、3 - (2,3,4-トリメトキシフェニル) アクリ ル酸 n ープロピル、3 - (3-ヒドロキシ-2, 4-ジメトキシフェニル) アク リル酸 n - プロピル、3 - (3,4-ジヒドロキシフェニル)アクリル酸 n - プ ロピル、3-(2,4,6-トリメトキシフェニル)アクリル酸イソプロピル、 3-(2,3,4-トリメトキシフェニル)アクリル酸イソプロピル、3-(3 ーヒドロキシー2, 4ージメトキシフェニル)アクリル酸イソプロピル、3ー(3, 4-ジヒドロキシフェニル) アクリル酸イソプロピル、3-(2, 4, 6-トリメトキシフェニル) アクリル酸 n - ブチル、3 - (2,3,4-トリメトキ シフェニル) アクリル酸 n ープチル、3 ー (3 - ヒドロキシー2, 4 - ジメトキ シフェニル)アクリル酸 n ーブチル、3 ー (3,4 ージヒドロキシフェニル)ア クリル酸 n ーブチル、3 ー (2, 4, 6 ートリメトキシフェニル) アクリル酸イ ソブチル、3-(2,3,4-トリメトキシフェニル)アクリル酸イソブチル、 3-(3-ヒドロキシ-2, 4-ジメトキシフェニル) アクリル酸イソブチル、 3-(3,4-ジヒドロキシフェニル)アクリル酸イソブチル、3-(2,4, 6-トリメトキシフェニル) アクリル酸フェニル、3-(2,3,4-トリメト キシフェニル) アクリル酸フェニル、3-(3-ヒドロキシ-2, 4-ジメトキ シフェニル) アクリル酸フェニル、3-(3,4-ジヒドロキシフェニル) アク リル酸フェニル、3-(2,4,6-トリメトキシフェニル)アクリル酸ベンジ ル、3-(2,3,4-トリメトキシフェニル)アクリル酸ベンジル、3-(3 -ヒドロキシ-2, 4-ジメトキシフェニル) アクリル酸ベンジル、3-(3, 4-ジヒドロキシフェニル) アクリル酸ベンジル、3-(2,4,6-トリメト キシフェニル) アクリロニトリル、3-(2,3,4-トリメトキシフェニル)

アクリロニトリル、3-(3-ヒドロキシ-2, 4-ジメトキシフェニル) アクリロニトリル、3-(3, 4-ジヒドロキシフェニル) アクリロニトリル、

[0039]

3-[3-(4-7)ルオロフェニル)-1-7ソプロピル-1 H-7ンドールー2-71ル] アクリル酸メチル、3-[3-(4-7)ル酸エチル、3-[3-(4-7)] アクリル酸エチル、3-[3-(4-7)] アクリル酸エチル、3-[3-(4-7)] アクリル酸ロフェニル)-1-71 アクリル酸ロフェニル)-1-71 アクリル酸ロフェニル)-1-71 アクリル酸インプロピル、3-[3-(4-7)] アクリル酸インプロピル、3-[3-(4-7)] アクリル酸ロフェニル)-1-71 アクリル酸インプロピル、3-[3-(4-7)] アクリル酸ロフェニル)-1-71 アクリル酸ロフェニル -1-71 アクリル酸ロフェニル -1-71 アクリル酸ロフェニル -1-71 アクリル酸ロフェニル -1-71 アクリル酸ロフェニル -1-71 アクリル酸ロフェニル -1-71 アクリロニトリル、-1-71 アクリロニトリル

[0040]

リル酸ベンジル、3-(1-メチル-2-フェニル-1H-インドール-3-イル) アクリロニトリル等が挙げられる。

[0041]

本反応においては、化合物 (2) として、トランス体を用いても、またシス体を用いても、通常トランス体のエステルまたはニトリル (4) か、トランス体が主成分であるトランス体のエステルまたはニトリル (4) とシス体のエステルまたはニトリル (4) の混合物が得られる。

[0042]

なお、かかるエステルまたはニトリル(4)のうち、例えば下記式(7)

$$F$$
 CO_2CH_3
 (7)

等のその分子内に3-(4-フルオロフェニル)インドリル基を有する化合物は、例えば国際公開第01/92223号パンフレット記載の方法に従い、高脂血症薬として有用なフルバスタチンへ変換することができる。

[0043]

【実施例】

以下、実施例により本発明をさらに詳細に説明するが、本発明はこれら実施例 に限定されない。

[0044]

実施例1

3-(4-7)ルオロフェニル) -1-4ソプロピル-1 H-4ンドール1. 0 1 g、3, 3-3メトキシプロピオン酸メチル0. 9 2 g、9 0 重量%酢酸水 0

. $72\,\mathrm{mL}$ (水 $4\,\mathrm{mmo}$ 1含有) および氷酢酸 $6\,\mathrm{mL}$ を混合した後、内温 $2\,5\,\mathrm{C}$ で、オキシ塩化リン 0. $3\,3\,\mathrm{g}$ を滴下し、同温度で 9 時間攪拌、反応させた。反応終了後、反応液に、水 $1\,6\,\mathrm{mL}$ を滴下し、析出結晶を濾取した。濾取した結晶を、 $2\,0$ 体積%メタノール水で洗浄した後、乾燥処理し、 $t\,\mathrm{rans} - 3 - [3\,-(4\,-7)$ ルオロフェニル) $-1\,-4$ ソプロピルー $1\,\mathrm{H}-4$ ンドールー $2\,-4$ ル] アクリル酸メチルの黄色固体 1. $2\,5\,\mathrm{g}$ を得た。収率: $9\,3\,\%$ 。

[0045]

1 H-NMR (δ / ppm , CDC13, 400 MHz)

1. 70 (6 H, d, J = 7 H z), 3. 76 (3 H, s), 4. 95 (1 H, m), 5. 96 (1 H, d, J = 16 H z), 7. 50 (1 H, d, J = 8 H z), 7. 57 (1 H, d, J = 8 H z), 7. 08~7. 40 (6 H, m), 7. 82 (1 H, d, J = 16 H z)

[0046]

実施例2

[0047]

 1_{H-NMR} (δ/ppm , CDC13, 400MHz) 3. 64 (3H, s), 3. 74 (3H, s), 6. 46 (1H, d, J=16Hz), 7. $29\sim7$. 55 (9H, m), 7. 72 (1H, d, J=16Hz)

[0048]

実施例3

1, 3, 5-トリメトキシベンゼン1. 68g、trans-3-メトキシアクリル酸メチル2. 32g、水0. 18gおよび氷酢酸6mLを混合し、内温25℃で、オキシ塩化リン164mgを加え、同温度で3時間攪拌、反応させた。反応終了後、反応液に水36mLを滴下し、析出結晶を濾取した。濾取した結晶を、20体積%メタノール水で洗浄した後、乾燥処理し、trans-3-(24,6-トリメトキシフェニル)アクリル酸メチルの白色固体2.28gを得た。収率:91%。

[0049]

 $1 H-NMR (\delta/ppm, CDC13, 400MHz)$ 3. 79 (3H, s), 3. 85 (3H, s), 3. 87 (6H, s), 6. 1 2 (2H, s), 6. 76 (1H, d, J=16Hz), 8. 08 (1H, d, J=16Hz)

[0050]

実施例4

1, 3, 5-トリメトキシベンゼン1. 7g、3, 3-ジメトキシプロピオン酸メチル1. 68gおよび氷酢酸12mLを混合し、内温25℃で、35重量%塩酸313mgを加え、同温度で1時間攪拌、反応させた。反応終了後、反応液に水36mLを滴下し、析出結晶を濾取した。濾取した結晶を、20体積%メタノール水で洗浄処理した後、乾燥処理し、trans-3-(2,4,6-トリメトキシフェニル)アクリル酸メチルの白色固体2.46gを得た。収率:98%。

[0051]

実施例5

1, 2, 3-トリメトキシベンゼン1. 68g、trans-3-メトキシアクリル酸メチル1. 34gおよび氷酢酸6mLを混合し、内温25℃で、35重量%塩酸313mgを加え、同温度で16時間攪拌、反応させた。反応終了後、反応液に水30mLおよび酢酸エチル50mLを加え、抽出処理した。得られた有機層を水洗浄した後、濃縮処理し、得られた濃縮残渣をシリカゲルカラムクロマトグラフィ(展開液:n-ヘプタン/酢酸エチル=6/1から5/1)により

精製処理し、t rans-3-(2, 3, 4-hリメトキシフェニル)アクリル酸メチルの白色固体0. 63 gを得た。また、原料1, 2, 3-hリメトキシベンゼン0. 92 gを回収した。転化した1, 2, 3-hリメトキシベンゼンに対する3-(2, 3, 4-hリメトキシフェニル)アクリル酸メチルの収率は、55%であった。

[0052]

1 H-NMR (δ / ppm , CDC13, 400 MHz) 3.80 (3 H, s), 3.88 (3 H, s), 3.89 (3 H, s), 3.9 2 (3 H, s), 6.42 (1 H, d, J=16Hz), 6.69 (1 H, d, J=9Hz), 7.26 (1 H, d, J=9Hz), 7.88 (1 H, d, J=16Hz)

[0053]

実施例6

実施例 5 において、1, 2, 3- トリメトキシベンゼン1. 6 8 g に代えて、2, 6- ジメトキシフェノール1. 5 4 g を用いた以外は実施例 5 と同様に実施して、t r a n s - 3- (3- ヒドロキシ-2, 4- ジメトキシフェニル)アクリル酸メチルの白色固体0. 7 6 g を得た。収率:3 2 %。

[0054]

1 H-NMR (δ / ppm , CDC13, 400 MHz) 3.80 (3 H, s), 3.91 (3 H, s), 3.93 (3 H, s), $5.5 \\ 8 (1 \text{ H, s})$, 6.45 (1 H, d, J=16Hz), 6.67 (1 H, d, J=9Hz), 7.07 (1 H, d, J=9Hz), 7.87 (1 H, d, J=16Hz)

[0055]

実施例7

3- (4-フルオロフェニル) -1-イソプロピル-1H-インドール0.6 3gをジクロロメタン3mLに溶解させた溶液に、内温0~10℃で、オキシ塩 化リン0.77gを滴下し、次いで、trans-3-メトキシアクリロニトリル0.92gを滴下した。その後、室温で終夜攪拌、反応させ、さらに還流温度 で、6時間反応させた。反応終了後、反応液を、5重量%炭酸水素ナトリウム水 $100\,\mathrm{mL}$ に加え、酢酸エチルで3回抽出処理した。得られた有機層を合一し、水洗浄した後、無水硫酸マグネシウムで乾燥処理した。硫酸マグネシウムを濾別し、得られた濾液を濃縮処理し、3-[3-(4-7)] アクリロニトリル(トランス体を主成分とするトランス体とシス体の混合物)を含む濃縮残渣を得た。得られた濃縮残渣をシリカゲルカラムクロマトグラフィ(展開液:n-nプタン/酢酸エチル =10/1 から 5/1)で精製処理し、10 に 11 に 11 に 12 に 13 に 13 に 14 に 15 に

[0056]

1 H-NMR (δ / ppm , CDC13, 400 MHz)

1. 70 (6 H, d, J = 7 H z), 4. 85 (1 H, m), 5. 35 (1 H, d, J = 16 H z), 7. 09 \sim 7. 46 (7 H, m), 7. 55 (1 H, d, J = 8 H z), 7. 48 (1 H, d, J = 16 H z)

[0057]

実施例8

3-(4-7)ルオロフェニル)-1-4ソプロピル-1 H-4ンドール0.62 g、t r a n s -3 - メトキシアクリル酸メチル0.5 7 g、x 4 6 m g および氷酢酸6.4 m L を混合した後、内温25 x で、オキシ塩化リン6 6 m g を滴下し、同温度でx 2 1 時間攪拌、反応させた。反応終了後、実施例 1 と同様に後処理し、x t r a n s x - 3 x - [3 x - (4 x - 7) ルオロフェニル)x - 1 x - 4 x - 7 x - 1 Hx - 4 x - 7 x - 7 x - 9 %。

[0058]

実施例9

実施例 8 において、オキシ塩化リンの使用量を、164 mgとし、反応時間を9時間とした以外は実施例 8 と同様に実施し、trans-3-[3-(4-フルオロフェニル)-1-イソプロピルー1H-インドールー2-イル]アクリル

酸メチルの黄色固体0.79gを得た。収率:96%。

[0059]

実施例10~13

実施例 8 において、オキシ塩化リンに代えて、表 1 に示した酸を用い、氷酢酸の使用量を 6 m L とし、表 1 に示した反応条件で実施した以外は実施例 8 と同様に実施して、t r a n s -3 - [3-(4-7) ルオロフェニル)-1 -1 ソプロピル-1 H-1 ンドール-2 -1 ル] アクリル酸メチルの黄色固体を得た。結果を表 1 に示した。

[0060]

【表1】

実施例	酸(mg)		反応時間	収率
10	9 9 重量%硫酸	46mg	15Hr	59%
	(156)			
11	35重量%塩酸	108mg	15Hr	94%
	(166)	(塩酸中の水)		
1 2	pートルエンスルホ	5 6 m g	15Hr	74%
	ン酸・一水和物	(結晶水 10mg含む)		
	(302)			ļ
1 3	47重量%臭化水素	1 4 5 m g	5 H r	90%
	酸水 (274)	(臭化水素酸水中の水)		

[0061]

実施例14

3-(4-7)ルオロフェニル)-1-4ソプロピルー1 Hー4ンドール0.3 1 g、 t r a n s -3 - メトキシアクリル酸メチル0.2 8 g、水3 6 m g およびアセトニトリル6 m L を混合した後、内温25 C で、オキシ塩化リン164 m g を滴下し、同温度で22 時間攪拌、反応させた。反応終了後、実施例1 と同様に後処理し、t r a n s -3-[3-(4-7)ルオロフェニル)-1-4ソプロピル-1 H-4ンドール-2-4ル] アクリル酸メチルの黄色固体0.21 g を

得た。収率:51%。

[0062]

実施例 15

3-(4-7)ルオロフェニル)-1-4ソプロピルー1 Hーインドール2. 5 3 g、t r a n s -3 - メトキシアクリル酸メチル2. 3 2 g、x 0. 3 g およびアセトニトリル1 5 m L を混合した後、内温2 5 $\mathbb C$ で、オキシ塩化リン2. 5 1 gを滴下し、同温度で1 9 時間攪拌、反応させた。反応終了後、実施例1 と同様に後処理し、t r a n s -3-[3-(4-7)ルオロフェニル)-1-4ソプロピル-1 H-4ンドール-2-4ル] アクリル酸メチルの黄色固体2. 1 7 gを得た。収率:6 5%。

[0063]

実施例16~18

[0064]

【表2】

実施例	オキシ塩化リン使用量(mg)	水使用量(mg)	収率
16	2 4 2	4 4	56%
1 7	3 9 8	4 4	7 5 %
18	3 4 8	0	3 2 %

[0065]

実施例19~20

[0066]

【表3】

実施例	酸 (mg)	収率
1 9	三フッ化ホウ素・テトラヒドロフラン錯体(348)	2 7 %
2 0	9 9 重量%硫酸 (1 1 9)	3 9 %

[0067]

実施例 2 1

3-(4-7)ルオロフェニル)-1-4ソプロピルー1 Hーインドール1.27 g、t r a n s -3 - メトキシアクリル酸メチル1.16 g および氷酢酸12 m L を混合した後、内温25 ℃で、30 重量%臭化水素/酢酸溶液797 m g を 滴下し、同温度で5 時間攪拌、反応させた。反応終了後、実施例1 と同様に後処理し、t r a n s -3-[3-(4-7)ルオロフェニル)-1-4ソプロピルー1 Hーインドール-2-4ル] アクリル酸メチルの黄色固体0.15 g を得た。収率:8%。

[0068]

【発明の効果】

本発明によれば、環境に負荷がかかる芳香族ハロゲン化物を原料に用いることなく、また、中和の必要があるハロゲン化水素を副生することなく、高脂血症薬として有用なフルバスタチン等の医農薬等に誘導可能な芳香族不飽和エステルまたは芳香族不飽和ニトリルを製造できるため、よりアトムエコノミーが高い方法であり、また、高価で、後処理が煩雑な遷移金属を用いないため、工業的にもより有利な方法である。

【書類名】

要約書

【要約】

【課題】式(1)

Ar—H

(1)

(式中、Arは置換されていてもよい芳香族基または置換されていてもよいヘテロ芳香族基を表わす。)

で示される化合物を原料として、式(4)

(式中、Arは上記と同一の意味を表わし、Yはアルコキシカルボニル基、シアノ基等を表わす。)

で示される芳香族不飽和エステルまたは芳香族不飽和ニトリルエステルを、より アトムエコノミーが高く、工業的にもより有利に製造する方法を提供すること。

【解決手段】式(1)で示される化合物と、式(2)

(式中、Yは上記と同一の意味を表わし、Zは低級アルコキシ基を表わす。) で示される化合物または式(3)

(式中、YおよびZは上記と同一の意味を表わす。)

で示される化合物とを、酸または加水分解により酸を発生せしめる化合物の存在 下に反応させることを特徴とする前記式(4)で示される芳香族不飽和エステル または芳香族不飽和ニトリルの製造方法。

【選択図】なし

特願2003-209042

【書類名】

出願人名義変更届(一般承継)

【整理番号】

S10634JP01

【提出日】 【あて先】 平成16年 7月22日

【事件の表示】

特許庁長官殿

特願2003-209042

【出願番号】 【承継人】

【識別番号】

000002093

【氏名又は名称】

住友化学工業株式会社

【代表者】

米倉 弘昌

【提出物件の目録】

【物件名】

承継人であることを証明する書面 1

【援用の表示】 平成16年7月22日付けで提出の特願2003-292498

の出願人名義変更届に添付のものを援用する。

ページ: 1/E

特願2003-209042

認定・付加情報

特許出願の番号

特願2003-209042

受付番号

 $5\;0\;4\;0\;1\;2\;3\;3\;7\;1\;4$

書類名

出願人名義変更届(一般承継)

担当官

小野木 義雄 1616

作成日

平成16年 8月23日

<認定情報・付加情報>

【承継人】

申請人

【識別番号】

000002093

【住所又は居所】

大阪府大阪市中央区北浜4丁目5番33号

【氏名又は名称】

住友化学工業株式会社

. 特願2003-209042

出願人履歴情報

識別番号

[592120519]

1. 変更年月日 [変更理由]

1992年 6月 4日 新規登録

住所氏名

大阪市西淀川区歌島三丁目1番21号

住化ファインケム株式会社

特願2003-209042

出願人履歴情報

識別番号

[000002093]

1. 変更年月日 [変更理由]

1990年 8月28日

変更埋田」 住 所 新規登録 大阪府大阪市中央区北浜4丁目5番33号

氏 名 住友化学工業株式会社