# **Exercise Session: Social Choice Theory II**

# COMP4418 Knowledge Representation and Reasoning

Patrick Lederer<sup>1</sup>

<sup>&</sup>lt;sup>1</sup>School of Computer Science and Engineering, UNSW Australia

Compute the lottery chosen by the uniform random dictatorship, the randomized Borda rule (which randomizes proportional to the Borda scores), and a maximal lottery for the subsequent profiles.

a)  $R^1$ : 2:  $b \succ c \succ d \succ a$ 2:  $a \succ b \succ c \succ d$ 2:  $c \succ d \succ a \succ b$ 1:  $a \succ d \succ c \succ b$ 

a)  $R^1$ : 2:  $b \succ c \succ d \succ a$ 2:  $a \succ b \succ c \succ d$ 2:  $c \succ d \succ a \succ b$ 1:  $a \succ d \succ c \succ b$ 

a)  $R^1$ : 2:  $b \succ c \succ d \succ a$ 2:  $a \succ b \succ c \succ d$ 2:  $c \succ d \succ a \succ b$ 1:  $a \succ d \succ c \succ b$ 

a)  $R^1$ : 2:  $b \succ c \succ d \succ a$ 2:  $a \succ b \succ c \succ d$ 2:  $c \succ d \succ a \succ b$ 1:  $a \succ d \succ c \succ b$ 

- a is top-ranked by 3 voters.
- *b* is top-ranked by 2 voters.
- c is top-ranked by 2 voters.
- *d* is top-ranked by 0 voters.

a)  $R^1$ : 2:  $b \succ c \succ d \succ a$ 2:  $a \succ b \succ c \succ d$ 2:  $c \succ d \succ a \succ b$ 1:  $a \succ d \succ c \succ b$ 

- a is top-ranked by 3 voters.
- *b* is top-ranked by 2 voters.
- c is top-ranked by 2 voters.
- *d* is top-ranked by 0 voters.
- The uniform random dictatorship chooses the lottery  $\left[\frac{3}{7}:a,\frac{2}{7}:b,\frac{2}{7}:c\right]$

a)  $R^1$ : 2:  $b \succ c \succ d \succ a$ 2:  $a \succ b \succ c \succ d$ 2:  $c \succ d \succ a \succ b$ 1:  $a \succ d \succ c \succ b$ 

a)  $R^1$ : 2:  $b \succ c \succ d \succ a$ 2:  $a \succ b \succ c \succ d$ 2:  $c \succ d \succ a \succ b$ 1:  $a \succ d \succ c \succ b$ 3 2 1 0

a)  $R^1$ : 2:  $b \succ c \succ d \succ a$ 2:  $a \succ b \succ c \succ d$ 2:  $c \succ d \succ a \succ b$ 1:  $a \succ d \succ c \succ b$ 3 2 1 0

#### Randomized Borda Rule:

• Borda score of a:  $2 \cdot 0 + 2 \cdot 3 + 2 \cdot 1 + 1 \cdot 3 = 11$ 

a)  $R^1$ : 2:  $b \succ c \succ d \succ a$ 2:  $a \succ b \succ c \succ d$ 2:  $c \succ d \succ a \succ b$ 1:  $a \succ d \succ c \succ b$ 3 2 1 0

- Borda score of a:  $2 \cdot 0 + 2 \cdot 3 + 2 \cdot 1 + 1 \cdot 3 = 11$
- Borda score of *b*:  $2 \cdot 3 + 2 \cdot 2 + 2 \cdot 0 + 1 \cdot 0 = 10$

a)  $R^1$ : 2:  $b \succ c \succ d \succ a$ 2:  $a \succ b \succ c \succ d$ 2:  $c \succ d \succ a \succ b$ 1:  $a \succ d \succ c \succ b$ 3 2 1 0

- Borda score of a:  $2 \cdot 0 + 2 \cdot 3 + 2 \cdot 1 + 1 \cdot 3 = 11$
- Borda score of *b*:  $2 \cdot 3 + 2 \cdot 2 + 2 \cdot 0 + 1 \cdot 0 = 10$
- Borda score of *c*:  $2 \cdot 2 + 2 \cdot 1 + 2 \cdot 3 + 1 \cdot 1 = 13$

a)  $R^1$ : 2:  $b \succ c \succ d \succ a$ 2:  $a \succ b \succ c \succ d$ 2:  $c \succ d \succ a \succ b$ 1:  $a \succ d \succ c \succ b$ 3 2 1 0

- Borda score of a:  $2 \cdot 0 + 2 \cdot 3 + 2 \cdot 1 + 1 \cdot 3 = 11$
- Borda score of *b*:  $2 \cdot 3 + 2 \cdot 2 + 2 \cdot 0 + 1 \cdot 0 = 10$
- Borda score of *c*:  $2 \cdot 2 + 2 \cdot 1 + 2 \cdot 3 + 1 \cdot 1 = 13$
- Borda score of *d*:  $2 \cdot 1 + 2 \cdot 0 + 2 \cdot 2 + 1 \cdot 2 = 8$

a) 
$$R^1$$
: 2:  $b \succ c \succ d \succ a$   
2:  $a \succ b \succ c \succ d$   
2:  $c \succ d \succ a \succ b$   
1:  $a \succ d \succ c \succ b$   
3 2 1 0

- Borda score of a:  $2 \cdot 0 + 2 \cdot 3 + 2 \cdot 1 + 1 \cdot 3 = 11$
- Borda score of *b*:  $2 \cdot 3 + 2 \cdot 2 + 2 \cdot 0 + 1 \cdot 0 = 10$
- Borda score of *c*:  $2 \cdot 2 + 2 \cdot 1 + 2 \cdot 3 + 1 \cdot 1 = 13$
- Borda score of *d*:  $2 \cdot 1 + 2 \cdot 0 + 2 \cdot 2 + 1 \cdot 2 = 8$
- The randomized Borda rule chooses the lottery

$$\left[\frac{11}{42}:a,\frac{10}{42}:b,\frac{13}{42}:c,\frac{8}{42}:d\right]$$

a)  $R^1$ : 2:  $b \succ c \succ d \succ a$ 2:  $a \succ b \succ c \succ d$ 2:  $c \succ d \succ a \succ b$ 1:  $a \succ d \succ c \succ b$ 

a) 
$$R^1$$
: 2:  $b \succ c \succ d \succ a$   
2:  $a \succ b \succ c \succ d$   
2:  $c \succ d \succ a \succ b$   
1:  $a \succ d \succ c \succ b$ 

#### Maximal Lottery - Approach 1:

• Compute the matrix containing the values  $n_{xy}(R) = |\{i \in N : x \succ_i y\}| \text{ for all } x, y \in A.$ 

a) 
$$R^1$$
: 2:  $b \succ c \succ d \succ a$   
2:  $a \succ b \succ c \succ d$   
2:  $c \succ d \succ a \succ b$   
1:  $a \succ d \succ c \succ b$ 

|   | а | Ь | С | d |
|---|---|---|---|---|
| а | 0 | 5 | 3 | 3 |
| b | 2 | 0 | 4 | 4 |
| С | 4 | 3 | 0 | 6 |
| d | 4 | 3 | 1 | 0 |

### Maximal Lottery - Approach 1:

• Compute the matrix containing the values  $n_{xy}(R) = |\{i \in N : x \succ_i y\}| \text{ for all } x, y \in A.$ 

a) 
$$R^1$$
: 2:  $b \succ c \succ d \succ a$   
2:  $a \succ b \succ c \succ d$   
2:  $c \succ d \succ a \succ b$   
1:  $a \succ d \succ c \succ b$ 

|   | а | Ь | С | d |
|---|---|---|---|---|
| а | 0 | 5 | 3 | 3 |
| Ь | 2 | 0 | 4 | 4 |
| С | 4 | 3 | 0 | 6 |
| d | 4 | 3 | 1 | 0 |

- Compute the matrix containing the values  $n_{xy}(R) = |\{i \in N : x \succ_i y\}| \text{ for all } x, y \in A.$
- Solve the inequality system

$$0 \cdot p(a) + 2 \cdot p(b) + 4 \cdot p(c) + 4 \cdot p(d) \ge 0 \cdot p(a) + 5 \cdot p(b) + 3 \cdot p(c) + 3 \cdot p(d)$$

$$5 \cdot p(a) + 0 \cdot p(b) + 3 \cdot p(c) + 3 \cdot p(d) \ge 2 \cdot p(a) + 0 \cdot p(b) + 4 \cdot p(c) + 4 \cdot p(d)$$

$$3 \cdot p(a) + 4 \cdot p(b) + 0 \cdot p(c) + 1 \cdot p(d) \ge 4 \cdot p(a) + 3 \cdot p(b) + 0 \cdot p(c) + 6 \cdot p(d)$$

$$4 \cdot p(a) + 3 \cdot p(b) + 1 \cdot p(c) + 0 \cdot p(d) \ge 3 \cdot p(a) + 4 \cdot p(b) + 6 \cdot p(c) + 0 \cdot p(d)$$

a)  $R^1$ : 2:  $b \succ c \succ d \succ a$ 2:  $a \succ b \succ c \succ d$ 2:  $c \succ d \succ a \succ b$ 1:  $a \succ d \succ c \succ b$ 

a)  $R^1$ : 2:  $b \succ c \succ d \succ a$ 2:  $a \succ b \succ c \succ d$ 2:  $c \succ d \succ a \succ b$ 1:  $a \succ d \succ c \succ b$ 

## Maximal Lottery - Approach 2:

• Maximal lotteries can be computed based on the values  $n_{xy}(R) - n_{yx}(R)$  for all  $x, y \in A$ .

a)  $R^1$ : 2:  $b \succ c \succ d \succ a$ 2:  $a \succ b \succ c \succ d$ 2:  $c \succ d \succ a \succ b$ 1:  $a \succ d \succ c \succ b$ 

- Maximal lotteries can be computed based on the values  $n_{xy}(R) n_{yx}(R)$  for all  $x, y \in A$ .
  - $\rightarrow$  we can cancel out completely reversed preference relations.

a)  $R^1$ : 1:  $b \succ c \succ d \succ a$ 2:  $a \succ b \succ c \succ d$ 2:  $c \succ d \succ a \succ b$ 

- Maximal lotteries can be computed based on the values  $n_{xy}(R) n_{yx}(R)$  for all  $x, y \in A$ .
  - $\rightarrow$  we can cancel out completely reversed preference relations.

a)  $R^1$ : 1:  $b \succ c \succ d \succ a$ 2:  $a \succ b \succ c \succ d$ 2:  $c \succ d \succ a \succ b$ 

- Maximal lotteries can be computed based on the values  $n_{xy}(R) n_{yx}(R)$  for all  $x, y \in A$ .
  - $\rightarrow$  we can cancel out completely reversed preference relations.
- Maximal lotteries assign probability 0 to Pareto-dominated alternatives and are invariant under removing alternatives with probability 0.

- a)  $R^1$ : 1:  $b \succ c \succ d \succ a$ 2:  $a \succ b \succ c \succ d$ 
  - 2. c > d > a > b

- Maximal lotteries can be computed based on the values  $n_{xy}(R) n_{yx}(R)$  for all  $x, y \in A$ .
  - $\rightarrow$  we can cancel out completely reversed preference relations.
- Maximal lotteries assign probability 0 to Pareto-dominated alternatives and are invariant under removing alternatives with probability 0.
  - $\rightarrow$  We can remove Pareto-dominated alternatives.

- a)  $R^1$ : 1:  $b \succ c \succ a$ 
  - 2:  $a \succ b \succ c$
  - 2:  $c \succ a \succ b$

- Maximal lotteries can be computed based on the values  $n_{xy}(R) n_{yx}(R)$  for all  $x, y \in A$ .
  - $\rightarrow$  we can cancel out completely reversed preference relations.
- Maximal lotteries assign probability 0 to Pareto-dominated alternatives and are invariant under removing alternatives with probability 0.
  - $\rightarrow$  We can remove Pareto-dominated alternatives.

a) 
$$R^1$$
: 1:  $b \succ c \succ a$ 

2: 
$$a \succ b \succ c$$

2: 
$$c \succ a \succ b$$



- Maximal lotteries can be computed based on the values  $n_{xy}(R) n_{yx}(R)$  for all  $x, y \in A$ .
  - $\rightarrow$  we can cancel out completely reversed preference relations.
- Maximal lotteries assign probability 0 to Pareto-dominated alternatives and are invariant under removing alternatives with probability 0.
  - $\rightarrow$  We can remove Pareto-dominated alternatives.
- Triangle trick:

a) 
$$R^1$$
: 1:  $b \succ c \succ a$ 

2: 
$$a \succ b \succ c$$

2: 
$$c \succ a \succ b$$



- Maximal lotteries can be computed based on the values  $n_{xy}(R) n_{yx}(R)$  for all  $x, y \in A$ .
  - $\rightarrow$  we can cancel out completely reversed preference relations.
- Maximal lotteries assign probability 0 to Pareto-dominated alternatives and are invariant under removing alternatives with probability 0.
  - $\rightarrow$  We can remove Pareto-dominated alternatives.
- Triangle trick:

a) 
$$R^1$$
: 1:  $b \succ c \succ a$ 

2: 
$$a \succ b \succ c$$

2: 
$$c \succ a \succ b$$



- Maximal lotteries can be computed based on the values  $n_{xy}(R) n_{yx}(R)$  for all  $x, y \in A$ .
  - $\rightarrow$  we can cancel out completely reversed preference relations.
- Maximal lotteries assign probability 0 to Pareto-dominated alternatives and are invariant under removing alternatives with probability 0.
  - $\rightarrow$  We can remove Pareto-dominated alternatives.
- Triangle trick:The maximal lottery is  $[\frac{1}{5}:a,\frac{1}{5}:b,\frac{3}{5}:c]$ .

b) 
$$R^2$$
: 2:  $a \succ b \succ c \succ d$   
2:  $d \succ b \succ c \succ a$   
1:  $c \succ a \succ b \succ d$ 

b) 
$$R^2$$
: 2:  $a \succ b \succ c \succ d$   
2:  $d \succ b \succ c \succ a$   
1:  $c \succ a \succ b \succ d$ 

b) 
$$R^2$$
: 2:  $a \succ b \succ c \succ d$   
2:  $d \succ b \succ c \succ a$   
1:  $c \succ a \succ b \succ d$ 

- a is top-ranked by 2 voters.
- *b* is top-ranked by 0 voters.
- *c* is top-ranked by 1 voters.
- *d* is top-ranked by 2 voters.

b) 
$$R^2$$
: 2:  $a \succ b \succ c \succ d$   
2:  $d \succ b \succ c \succ a$   
1:  $c \succ a \succ b \succ d$ 

- a is top-ranked by 2 voters.
- *b* is top-ranked by 0 voters.
- *c* is top-ranked by 1 voters.
- *d* is top-ranked by 2 voters.
- The uniform random dictatorship chooses the lottery  $\left[\frac{2}{5}:a,0:b,\frac{1}{5}:c,\frac{2}{5}:d\right]$

b) 
$$R^2$$
: 2:  $a \succ b \succ c \succ d$   
2:  $d \succ b \succ c \succ a$   
1:  $c \succ a \succ b \succ d$ 

b) 
$$R^2$$
: 2:  $a \succ b \succ c \succ d$   
2:  $d \succ b \succ c \succ a$   
1:  $c \succ a \succ b \succ d$   
3 2 1 0

b) 
$$R^2$$
: 2:  $a \succ b \succ c \succ d$   
2:  $d \succ b \succ c \succ a$   
1:  $c \succ a \succ b \succ d$   
3 2 1 0

#### Randomized Borda Rule:

• Borda score of *a*:  $2 \cdot 3 + 2 \cdot 0 + 1 \cdot 2 = 8$ 

b) 
$$R^2$$
: 2:  $a \succ b \succ c \succ d$   
2:  $d \succ b \succ c \succ a$   
1:  $c \succ a \succ b \succ d$   
3 2 1 0

- Borda score of a:  $2 \cdot 3 + 2 \cdot 0 + 1 \cdot 2 = 8$
- Borda score of *b*:  $2 \cdot 2 + 2 \cdot 2 + 1 \cdot 1 = 9$

b) 
$$R^2$$
: 2:  $a \succ b \succ c \succ d$   
2:  $d \succ b \succ c \succ a$   
1:  $c \succ a \succ b \succ d$   
3 2 1 0

- Borda score of *a*:  $2 \cdot 3 + 2 \cdot 0 + 1 \cdot 2 = 8$
- Borda score of *b*:  $2 \cdot 2 + 2 \cdot 2 + 1 \cdot 1 = 9$
- Borda score of *c*:  $2 \cdot 1 + 2 \cdot 1 + 1 \cdot 3 = 7$

b) 
$$R^2$$
: 2:  $a \succ b \succ c \succ d$   
2:  $d \succ b \succ c \succ a$   
1:  $c \succ a \succ b \succ d$   
3 2 1 0

#### Randomized Borda Rule:

- Borda score of *a*:  $2 \cdot 3 + 2 \cdot 0 + 1 \cdot 2 = 8$
- Borda score of *b*:  $2 \cdot 2 + 2 \cdot 2 + 1 \cdot 1 = 9$
- Borda score of *c*:  $2 \cdot 1 + 2 \cdot 1 + 1 \cdot 3 = 7$
- Borda score of *d*:  $2 \cdot 3 + 2 \cdot 0 + 1 \cdot 0 = 6$

b) 
$$R^2$$
: 2:  $a \succ b \succ c \succ d$   
2:  $d \succ b \succ c \succ a$   
1:  $c \succ a \succ b \succ d$   
3 2 1 0

#### Randomized Borda Rule:

- Borda score of *a*:  $2 \cdot 3 + 2 \cdot 0 + 1 \cdot 2 = 8$
- Borda score of *b*:  $2 \cdot 2 + 2 \cdot 2 + 1 \cdot 1 = 9$
- Borda score of *c*:  $2 \cdot 1 + 2 \cdot 1 + 1 \cdot 3 = 7$
- Borda score of *d*:  $2 \cdot 3 + 2 \cdot 0 + 1 \cdot 0 = 6$
- The randomized Borda rule chooses the lottery  $\left[\frac{8}{30}: a, \frac{9}{30}: b, \frac{7}{30}: c, \frac{6}{30}: d\right]$

b) 
$$R^2$$
: 2:  $a \succ b \succ c \succ d$   
2:  $d \succ b \succ c \succ a$   
1:  $c \succ a \succ b \succ d$ 

b) 
$$R^2$$
: 2:  $a \succ b \succ c \succ d$   
2:  $d \succ b \succ c \succ a$   
1:  $c \succ a \succ b \succ d$ 

#### Maximal Lottery:

 Maximal lotteries assign probability 0 to the alternative that loses all pairwise majority comparisons.

3

b) 
$$R^2$$
: 2:  $a \succ b \succ c \succ d$   
2:  $d \succ b \succ c \succ a$   
1:  $c \succ a \succ b \succ d$ 

- Maximal lotteries assign probability 0 to the alternative that loses all pairwise majority comparisons.
  - ightarrow we can remove this alternative from our profile.

b)  $R^2$ : 2:  $a \succ b \succ c$ 2:  $b \succ c \succ a$ 1:  $c \succ a \succ b$ 

- Maximal lotteries assign probability 0 to the alternative that loses all pairwise majority comparisons.
  - ightarrow we can remove this alternative from our profile.

b) 
$$R^2$$
: 2:  $a \succ b \succ c$   
2:  $b \succ c \succ a$   
1:  $c \succ a \succ b$ 



- Maximal lotteries assign probability 0 to the alternative that loses all pairwise majority comparisons.
  - ightarrow we can remove this alternative from our profile.
- Triangle trick:

b) 
$$R^2$$
: 2:  $a \succ b \succ c$   
2:  $b \succ c \succ a$   
1:  $c \succ a \succ b$ 



- Maximal lotteries assign probability 0 to the alternative that loses all pairwise majority comparisons.
  - ightarrow we can remove this alternative from our profile.
- Triangle trick:

b) 
$$R^2$$
: 2:  $a \succ b \succ c$   
2:  $b \succ c \succ a$   
1:  $c \succ a \succ b$ 



- Maximal lotteries assign probability 0 to the alternative that loses all pairwise majority comparisons.
  - ightarrow we can remove this alternative from our profile.
- Triangle trick: The maximal lottery is  $\left[\frac{3}{5}:a,\frac{1}{5}:b,\frac{1}{5}:c\right]$ .

- a) Show that no maximal lottery rule is strategyproof.
- $R^1$ : 1: a > b > c
  - 1:  $b \succ c \succ a$
  - 1:  $c \succ a \succ b$

a) Show that no maximal lottery rule is strategyproof.

$$R^1$$
: 1:  $a \succ b \succ c$   
1:  $b \succ c \succ a$   
1:  $c \succ a \succ b$ 

• The unique maximal lottery in  $R^1$  is  $p=[\frac{1}{3}:a,\frac{1}{3}:b,\frac{1}{3}:c]$ 

4

$$R^1$$
: 1:  $a \succ b \succ c$   
1:  $b \succ c \succ a$   
1:  $c \succ a \succ b$ 

- The unique maximal lottery in  $R^1$  is  $p=[\frac{1}{3}:a,\frac{1}{3}:b,\frac{1}{3}:c]$
- Assume u(a)=3, u(b)=2, u(c)=0. The expected utility of agent 1 is  $\mathbb{E}[u(p)]=\frac{5}{3}$ .

a) Show that no maximal lottery rule is strategyproof.

$$R^1$$
: 1:  $a \succ b \succ c$   $R^2$ : 1:  $b \succ a \succ c$   
1:  $b \succ c \succ a$  1:  $b \succ c \succ a$   
1:  $c \succ a \succ b$ 

- The unique maximal lottery in  $R^1$  is  $p = [\frac{1}{3}:a,\frac{1}{3}:b,\frac{1}{3}:c]$
- Assume u(a)=3, u(b)=2, u(c)=0. The expected utility of agent 1 is  $\mathbb{E}[u(p)]=\frac{5}{3}$ .

4

$$R^1$$
: 1:  $a \succ b \succ c$   $R^2$ : 1:  $b \succ a \succ c$   
1:  $b \succ c \succ a$  1:  $b \succ c \succ a$   
1:  $c \succ a \succ b$  1:  $c \succ a \succ b$ 

- The unique maximal lottery in  $R^1$  is  $p = [\frac{1}{3}:a,\frac{1}{3}:b,\frac{1}{3}:c]$
- Assume u(a) = 3, u(b) = 2, u(c) = 0. The expected utility of agent 1 is  $\mathbb{E}[u(p)] = \frac{5}{3}$ .
- The unique maximal lottery in  $R^2$  is q = [1 : b].

$$R^1$$
: 1:  $a \succ b \succ c$   $R^2$ : 1:  $b \succ a \succ c$   
1:  $b \succ c \succ a$  1:  $b \succ c \succ a$   
1:  $c \succ a \succ b$ 

- The unique maximal lottery in  $R^1$  is  $p = [\frac{1}{3}:a,\frac{1}{3}:b,\frac{1}{3}:c]$
- Assume u(a) = 3, u(b) = 2, u(c) = 0. The expected utility of agent 1 is  $\mathbb{E}[u(p)] = \frac{5}{3}$ .
- The unique maximal lottery in  $R^2$  is q = [1 : b].
- Assume u(a) = 3, u(b) = 2, u(c) = 0. The expected utility of agent 1 for this utility is  $\mathbb{E}[u(q)] = 2$ .

$$R^1$$
: 1:  $a \succ b \succ c$   $R^2$ : 1:  $b \succ a \succ c$   
1:  $b \succ c \succ a$  1:  $b \succ c \succ a$   
1:  $c \succ a \succ b$ 

- The unique maximal lottery in  $R^1$  is  $p = [\frac{1}{3}:a,\frac{1}{3}:b,\frac{1}{3}:c]$
- Assume u(a)=3, u(b)=2, u(c)=0. The expected utility of agent 1 is  $\mathbb{E}[u(p)]=\frac{5}{3}$ .
- The unique maximal lottery in  $R^2$  is q = [1 : b].
- Assume u(a) = 3, u(b) = 2, u(c) = 0. The expected utility of agent 1 for this utility is  $\mathbb{E}[u(q)] = 2$ .
- Voter 1 can manipulate!

b) Show that the randomized Borda rule is strategyproof.

- b) Show that the randomized Borda rule is strategyproof.
  - Let  $R^1$  and  $R^2$  denote two profiles that only differ in the preference relation of voter i.

- b) Show that the randomized Borda rule is strategyproof.
  - Let  $R^1$  and  $R^2$  denote two profiles that only differ in the preference relation of voter i.
  - Let p and q denote the lotteries chosen by the randomized Borda rule for  $R^1$  and  $R^2$ .

- b) Show that the randomized Borda rule is strategyproof.
  - Let  $R^1$  and  $R^2$  denote two profiles that only differ in the preference relation of voter i.
  - Let p and q denote the lotteries chosen by the randomized Borda rule for  $R^1$  and  $R^2$ .
  - Let u denote a utility function that is consistent with the preference relation ≻<sup>1</sup><sub>i</sub>.

- b) Show that the randomized Borda rule is strategyproof.
  - Let  $R^1$  and  $R^2$  denote two profiles that only differ in the preference relation of voter i.
  - Let p and q denote the lotteries chosen by the randomized Borda rule for  $R^1$  and  $R^2$ .
  - Let u denote a utility function that is consistent with the preference relation  $\succeq_i^1$ .
  - To show:  $\mathbb{E}[u(p)] \geq \mathbb{E}[u(q)]$ .

- b) Show that the randomized Borda rule is strategyproof.
  - Let  $b(R^1, x)$  denote the Borda score of alternative x in  $R^1$ ,  $B^1 = \sum_{x \in A} b(R^1, x)$  the total Borda score in  $R^1$ , and  $B^2 = \sum_{x \in A} b(R^2, x)$ .

- b) Show that the randomized Borda rule is strategyproof.
  - Let  $b(R^1, x)$  denote the Borda score of alternative x in  $R^1$ ,  $B^1 = \sum_{x \in A} b(R^1, x)$  the total Borda score in  $R^1$ , and  $B^2 = \sum_{x \in A} b(R^2, x)$ .
  - Since  $R^1$  and  $R^2$  have the same number of voters,  $B^1 = B^2$ .

- b) Show that the randomized Borda rule is strategyproof.
  - Let  $b(R^1, x)$  denote the Borda score of alternative x in  $R^1$ ,  $B^1 = \sum_{x \in A} b(R^1, x)$  the total Borda score in  $R^1$ , and  $B^2 = \sum_{x \in A} b(R^2, x)$ .
  - Since  $R^1$  and  $R^2$  have the same number of voters,  $B^1 = B^2$ .
  - It suffices to show that  $\sum_{x \in A} u(x)b(R^1, x) \ge \sum_{x \in A} u(x)b(R^2, x).$

- b) Show that the randomized Borda rule is strategyproof.
  - Let  $b(R^1, x)$  denote the Borda score of alternative x in  $R^1$ ,  $B^1 = \sum_{x \in A} b(R^1, x)$  the total Borda score in  $R^1$ , and  $B^2 = \sum_{x \in A} b(R^2, x)$ .
  - Since  $R^1$  and  $R^2$  have the same number of voters,  $B^1 = B^2$ .
  - It suffices to show that  $\sum_{x \in A} u(x)b(R^1, x) \ge \sum_{x \in A} u(x)b(R^2, x).$
  - Since  $\succ_j^1 = \succ_j^2$  for all voters  $j \neq i$ , it holds that  $b(R^1, x) b(R^2, x) = b(\succ_i^1, x) b(\succ_i^2, x)$ .

- b) Show that the randomized Borda rule is strategyproof.
  - Let  $b(R^1, x)$  denote the Borda score of alternative x in  $R^1$ ,  $B^1 = \sum_{x \in A} b(R^1, x)$  the total Borda score in  $R^1$ , and  $B^2 = \sum_{x \in A} b(R^2, x)$ .
  - Since  $R^1$  and  $R^2$  have the same number of voters,  $B^1 = B^2$ .
  - It suffices to show that  $\sum_{x \in A} u(x)b(R^1, x) \ge \sum_{x \in A} u(x)b(R^2, x).$
  - Since  $\succ_j^1 = \succ_j^2$  for all voters  $j \neq i$ , it holds that  $b(R^1, x) b(R^2, x) = b(\succ_i^1, x) b(\succ_i^2, x)$ .
  - It suffices to show that  $\sum_{x \in A} u(x)b(\succ_i^1, x) \ge \sum_{x \in A} u(x)b(\succ_i^2, x).$

- b) Show that the randomized Borda rule is strategyproof.
  - We claim that  $\succ_i^1$  maximizes  $\sum_{x \in A} u(x)b(\succ, x)$

- b) Show that the randomized Borda rule is strategyproof.
  - We claim that  $\succ_i^1$  maximizes  $\sum_{x \in A} u(x)b(\succ, x)$
  - Consider a preference relation  $\succ \neq \succ_i^1$ . Wlog, let y denote the alternative that maximizes  $b(\succ_i^1, y)$  subject to  $b(\succ, y) \neq b(\succ_i^1, y)$ .

- b) Show that the randomized Borda rule is strategyproof.
  - We claim that  $\succ_i^1$  maximizes  $\sum_{x \in A} u(x)b(\succ, x)$
  - Consider a preference relation  $\succ \neq \succ_i^1$ . Wlog, let y denote the alternative that maximizes  $b(\succ_i^1, y)$  subject to  $b(\succ, y) \neq b(\succ_i^1, y)$ .
  - Since  $b(\succ, x) = b(\succ_i^1, x)$  for all x with  $x \succ_i^1 y$ , it holds that  $b(\succ, y) < b(\succ_i^1, y)$ .

- b) Show that the randomized Borda rule is strategyproof.
  - We claim that  $\succ_i^1$  maximizes  $\sum_{x \in A} u(x)b(\succ, x)$
  - Consider a preference relation  $\succ \neq \succ_i^1$ . Wlog, let y denote the alternative that maximizes  $b(\succ_i^1, y)$  subject to  $b(\succ, y) \neq b(\succ_i^1, y)$ .
  - Since  $b(\succ, x) = b(\succ_i^1, x)$  for all x with  $x \succ_i^1 y$ , it holds that  $b(\succ, y) < b(\succ_i^1, y)$ .
  - Let ≻' denote the preference relation derived from ≻ by moving y at position b(≻<sup>1</sup><sub>i</sub>, y).

- b) Show that the randomized Borda rule is strategyproof.
  - We claim that  $\succ_i^1$  maximizes  $\sum_{x \in A} u(x)b(\succ, x)$
  - Consider a preference relation  $\succ \neq \succ_i^1$ . Wlog, let y denote the alternative that maximizes  $b(\succ_i^1, y)$  subject to  $b(\succ, y) \neq b(\succ_i^1, y)$ .
  - Since  $b(\succ, x) = b(\succ_i^1, x)$  for all x with  $x \succ_i^1 y$ , it holds that  $b(\succ, y) < b(\succ_i^1, y)$ .
  - Let  $\succ'$  denote the preference relation derived from  $\succ$  by moving y at position  $b(\succ_i^1, y)$ .
  - Let  $\ell = b(\succ', y) b(\succ, y)$

- b) Show that the randomized Borda rule is strategyproof.
  - By going from  $\succ$  to  $\succ'$ :

- b) Show that the randomized Borda rule is strategyproof.
  - By going from  $\succ$  to  $\succ'$ :
    - We increase the utility gained by y by  $u(y)\ell$ .

- b) Show that the randomized Borda rule is strategyproof.
  - By going from  $\succ$  to  $\succ'$ :
    - We increase the utility gained by y by  $u(y)\ell$ .
    - We decrease the Borda score of  $\ell$  alternatives  $z_1, \ldots, z_\ell$  by 1.

- b) Show that the randomized Borda rule is strategyproof.
  - By going from  $\succ$  to  $\succ'$ :
    - We increase the utility gained by y by  $u(y)\ell$ .
    - We decrease the Borda score of  $\ell$  alternatives  $z_1, \ldots, z_\ell$  by 1.
    - This decreases the utility by  $\sum_{j=1}^{\ell} u(z_i)$ .
  - It holds that  $y \succ_i^1 z_j$  for all  $j \in \{1, \dots, \ell\}$  (as y is only weakened when going from  $\succ_i^1$  to  $\succ$ )

- b) Show that the randomized Borda rule is strategyproof.
  - By going from  $\succ$  to  $\succ'$ :
    - We increase the utility gained by y by  $u(y)\ell$ .
    - We decrease the Borda score of  $\ell$  alternatives  $z_1, \ldots, z_\ell$  by 1.
    - This decreases the utility by  $\sum_{j=1}^{\ell} u(z_i)$ .
  - It holds that  $y \succ_i^1 z_j$  for all  $j \in \{1, ..., \ell\}$  (as y is only weakened when going from  $\succ_i^1$  to  $\succ$ )
  - This implies that  $u(y) > u(z_j)$  for all  $j \in \{1, \dots, \ell\}$

- b) Show that the randomized Borda rule is strategyproof.
  - By going from  $\succ$  to  $\succ'$ :
    - We increase the utility gained by y by  $u(y)\ell$ .
    - We decrease the Borda score of  $\ell$  alternatives  $z_1, \ldots, z_\ell$  by 1.
    - This decreases the utility by  $\sum_{j=1}^{\ell} u(z_i)$ .
  - It holds that  $y \succ_i^1 z_j$  for all  $j \in \{1, ..., \ell\}$  (as y is only weakened when going from  $\succ_i^1$  to  $\succ$ )
  - This implies that  $u(y) > u(z_j)$  for all  $j \in \{1, \dots, \ell\}$
  - Thus  $u(y)\ell > \sum_{j=1}^{\ell} u(z_i)$

- b) Show that the randomized Borda rule is strategyproof.
  - By going from  $\succ$  to  $\succ'$ :
    - We increase the utility gained by y by  $u(y)\ell$ .
    - We decrease the Borda score of  $\ell$  alternatives  $z_1,\ldots,z_\ell$  by 1.
    - This decreases the utility by  $\sum_{j=1}^{\ell} u(z_i)$ .
  - It holds that  $y \succ_i^1 z_j$  for all  $j \in \{1, ..., \ell\}$  (as y is only weakened when going from  $\succ_i^1$  to  $\succ$ )
  - This implies that  $u(y) > u(z_j)$  for all  $j \in \{1, \dots, \ell\}$
  - Thus  $u(y)\ell > \sum_{j=1}^{\ell} u(z_i)$
  - This proves that  $\succ_i^1$  maximizes  $\sum_{x \in A} u(x)b(\succ, x)$

- b) Show that the randomized Borda rule is strategyproof.
  - By going from  $\succ$  to  $\succ'$ :
    - We increase the utility gained by y by  $u(y)\ell$ .
    - We decrease the Borda score of  $\ell$  alternatives  $z_1, \ldots, z_\ell$  by 1.
    - This decreases the utility by  $\sum_{j=1}^{\ell} u(z_i)$ .
  - It holds that  $y \succ_i^1 z_j$  for all  $j \in \{1, ..., \ell\}$  (as y is only weakened when going from  $\succ_i^1$  to  $\succ$ )
  - This implies that  $u(y) > u(z_j)$  for all  $j \in \{1, \dots, \ell\}$
  - Thus  $u(y)\ell > \sum_{j=1}^{\ell} u(z_i)$
  - This proves that  $\succ_i^1$  maximizes  $\sum_{x \in A} u(x)b(\succ, x)$
  - Thus,  $\sum_{x \in A} u(x)b(\succ_i^1, x) \ge \sum_{x \in A} u(x)b(\succ_i^2, x)$  and the randomized Borda rule is strategyproof.

c) Given a preference relation  $\succ$  and an alternative x, let  $U(\succ,x)=\{x\}\cup\{y\in A\colon y\succ x\}$ . Show that, for all preference relations  $\succ$  and all lotteries  $p,q\in\Delta(A)$ , it holds that  $\mathbb{E}[p(u)]\geq\mathbb{E}[q(u)]$  for all u that are consistent with  $\succ$  if and only if  $\sum_{y\in U(\succ,x)}p(y)\geq\sum_{y\in U(\succ,x)}q(y)$  for all  $x\in A$ .

- c) Given a preference relation  $\succ$  and an alternative x, let  $U(\succ,x)=\{x\}\cup\{y\in A\colon y\succ x\}$ . Show that, for all preference relations  $\succ$  and all lotteries  $p,q\in\Delta(A)$ , it holds that  $\mathbb{E}[p(u)]\geq\mathbb{E}[q(u)]$  for all u that are consistent with  $\succ$  if and only if  $\sum_{y\in U(\succ,x)}p(y)\geq\sum_{y\in U(\succ,x)}q(y)$  for all  $x\in A$ .
  - Assume that  $\succ$  is given by  $x_1 \succ x_2 \succ \cdots \succ x_m$  and fix two lotteries p and q.

- c) Given a preference relation  $\succ$  and an alternative x, let  $U(\succ,x)=\{x\}\cup\{y\in A\colon y\succ x\}$ . Show that, for all preference relations  $\succ$  and all lotteries  $p,q\in\Delta(A)$ , it holds that  $\mathbb{E}[p(u)]\geq\mathbb{E}[q(u)]$  for all u that are consistent with  $\succ$  if and only if  $\sum_{y\in U(\succ,x)}p(y)\geq\sum_{y\in U(\succ,x)}q(y)$  for all  $x\in A$ .
  - Assume that  $\succ$  is given by  $x_1 \succ x_2 \succ \cdots \succ x_m$  and fix two lotteries p and q.
  - Assume that  $\sum_{y \in U(\succ,x)} p(y) \ge \sum_{y \in U(\succ,x)} q(y)$  for all  $x \in A$ .

- c) Given a preference relation  $\succ$  and an alternative x, let  $U(\succ,x)=\{x\}\cup\{y\in A\colon y\succ x\}$ . Show that, for all preference relations  $\succ$  and all lotteries  $p,q\in\Delta(A)$ , it holds that  $\mathbb{E}[p(u)]\geq\mathbb{E}[q(u)]$  for all u that are consistent with  $\succ$  if and only if  $\sum_{y\in U(\succ,x)}p(y)\geq\sum_{y\in U(\succ,x)}q(y)$  for all  $x\in A$ .
  - Assume that  $\succ$  is given by  $x_1 \succ x_2 \succ \cdots \succ x_m$  and fix two lotteries p and q.
  - Assume that  $\sum_{y \in U(\succ,x)} p(y) \ge \sum_{y \in U(\succ,x)} q(y)$  for all  $x \in A$ .
  - Let u denote a utility function consistent with  $\succ$ . Define  $\Delta_m = u(x_m)$  and  $\Delta_i = u(x_i) u(x_{i+1})$  for  $i \in \{1, \dots, m-1\}$ .

- c) Given a preference relation  $\succ$  and an alternative x, let  $U(\succ,x)=\{x\}\cup\{y\in A\colon y\succ x\}$ . Show that, for all preference relations  $\succ$  and all lotteries  $p,q\in\Delta(A)$ , it holds that  $\mathbb{E}[p(u)]\geq\mathbb{E}[q(u)]$  for all u that are consistent with  $\succ$  if and only if  $\sum_{y\in U(\succ,x)}p(y)\geq\sum_{y\in U(\succ,x)}q(y)$  for all  $x\in A$ .
  - Assume that  $\succ$  is given by  $x_1 \succ x_2 \succ \cdots \succ x_m$  and fix two lotteries p and q.
  - Assume that  $\sum_{y \in U(\succ,x)} p(y) \ge \sum_{y \in U(\succ,x)} q(y)$  for all  $x \in A$ .
  - Let u denote a utility function consistent with  $\succ$ . Define  $\Delta_m = u(x_m)$  and  $\Delta_i = u(x_i) u(x_{i+1})$  for  $i \in \{1, \dots, m-1\}$ .
  - It holds that  $u(x_i) = \sum_{j=i}^m \Delta_j$  and that  $x_i \in U(\succ, x_j)$  for all  $j \in \{1, \ldots, m\}$

• Hence, we have that 
$$\sum_{i=1}^{m} p(x_i) u(x_i) = \sum_{i=1}^{m} p(x_i) \sum_{j=i}^{m} \Delta_j = \sum_{j=1}^{m} \Delta_j \sum_{x_i \in U(\succ, x_j)} p(x_i)$$

- Hence, we have that  $\sum_{i=1}^{m} p(x_i)u(x_i) = \sum_{i=1}^{m} p(x_i) \sum_{j=i}^{m} \Delta_j = \sum_{j=1}^{m} \Delta_j \sum_{x_i \in U(\succ, x_j)} p(x_i)$
- $\bullet$  By a symmetric argument for q, we conclude that

$$\sum_{i=1}^{m} p(x_i)u(x_i) = \sum_{j=1}^{m} \Delta_j \sum_{x_i \in U(\succ, x_j)} p(x_i)$$

$$\geq \sum_{j=1}^{m} \Delta_j \sum_{x_i \in U(\succ, x_j)} q(x_i)$$

$$= \sum_{j=1}^{m} q(x_i)u(x_j)$$

- Hence, we have that  $\sum_{i=1}^{m} p(x_i)u(x_i) = \sum_{i=1}^{m} p(x_i) \sum_{j=i}^{m} \Delta_j = \sum_{j=1}^{m} \Delta_j \sum_{x_i \in U(\succ, x_j)} p(x_i)$
- By a symmetric argument for q, we conclude that

$$\sum_{i=1}^{m} p(x_i)u(x_i) = \sum_{j=1}^{m} \Delta_j \sum_{x_i \in U(\succ, x_j)} p(x_i)$$

$$\geq \sum_{j=1}^{m} \Delta_j \sum_{x_i \in U(\succ, x_j)} q(x_i)$$

$$= \sum_{i=1}^{m} q(x_i)u(x_i)$$

• We hence conclude that  $\mathbb{E}[p(u)] \geq \mathbb{E}[q(u)]$  for all u.

• Next, assume that there is an alternative  $x_i$  such that  $\sum_{x_j \in U(\succ, x_i)} p(x_j) < \sum_{x_j \in U(\succ, x_i)} q(x_j)$ .

- Next, assume that there is an alternative  $x_i$  such that  $\sum_{x_i \in U(\succ, x_i)} p(x_j) < \sum_{x_i \in U(\succ, x_i)} q(x_j)$ .
- Let  $\delta = \sum_{x_j \in U(\succ, x_i)} q(x_j) \sum_{x_j \in U(\succ, x_i)} p(x_j)$

- Next, assume that there is an alternative  $x_i$  such that  $\sum_{x_i \in U(\succ,x_i)} p(x_j) < \sum_{x_i \in U(\succ,x_i)} q(x_j)$ .
- Let  $\delta = \sum_{x_i \in U(\succ, x_i)} q(x_j) \sum_{x_i \in U(\succ, x_i)} p(x_j)$
- Choose  $\epsilon > 0$  such that  $m^2 \epsilon < \delta$ .

- Next, assume that there is an alternative  $x_i$  such that  $\sum_{x_i \in U(\succ, x_i)} p(x_j) < \sum_{x_i \in U(\succ, x_i)} q(x_j)$ .
- Let  $\delta = \sum_{x_i \in U(\succ, x_i)} q(x_j) \sum_{x_i \in U(\succ, x_i)} p(x_j)$
- Choose  $\epsilon > 0$  such that  $m^2 \epsilon < \delta$ .
- Let u denote the utility function given by  $u(x_j) = 1 + (m-j)\epsilon$  if  $x_j \in U(\succ, x_i)$  and  $u(x_j) = (m-j)\epsilon$  if  $x_j \notin U(\succ, x_i)$ . Note that u is consistent with  $\succ$ .

- Next, assume that there is an alternative  $x_i$  such that  $\sum_{x_i \in U(\succ,x_i)} p(x_j) < \sum_{x_i \in U(\succ,x_i)} q(x_j)$ .
- Let  $\delta = \sum_{x_i \in U(\succ, x_i)} q(x_j) \sum_{x_i \in U(\succ, x_i)} p(x_j)$
- Choose  $\epsilon > 0$  such that  $m^2 \epsilon < \delta$ .
- Let u denote the utility function given by  $u(x_j) = 1 + (m-j)\epsilon$  if  $x_j \in U(\succ, x_i)$  and  $u(x_j) = (m-j)\epsilon$  if  $x_j \notin U(\succ, x_i)$ . Note that u is consistent with  $\succ$ .
- It holds that

$$\mathbb{E}[u(p)] = \sum_{x_j \in A} u(x_j) p(x_j) < m^2 \epsilon + \sum_{x_j \in U(x_i)} u(x_j) p(x_j)$$

$$< \sum_{x_j \in U(x_i)} u(x_j) q(x_j) < \mathbb{E}[q(u)].$$

Compute AV, PAV, CCAV, Phragmen, and MES for the subsequent profile and the target committee size k = 3.

3: 
$$\{a,b\}$$
 3:  $\{a,c\}$  2:  $\{a,b,d\}$  2:  $\{e\}$  1:  $\{f\}$ 

```
3: \{a, b\} 3: \{a, c\} 2: \{a, b, d\} 2: \{e\} 1: \{f\} AV:
```

• *a* is approved by 8 voters.

```
3: \{a, b\} 3: \{a, c\} 2: \{a, b, d\} 2: \{e\} 1: \{f\} AV:
```

- a is approved by 8 voters.
- *b* is approved by 5 voters.

```
3: \{a, b\} 3: \{a, c\} 2: \{a, b, d\} 2: \{e\} 1: \{f\} AV:
```

- *a* is approved by 8 voters.
- *b* is approved by 5 voters.
- *c* is approved by 3 voters.

```
3: \{a, b\} 3: \{a, c\} 2: \{a, b, d\} 2: \{e\} 1: \{f\} AV:
```

- *a* is approved by 8 voters.
- *b* is approved by 5 voters.
- *c* is approved by 3 voters.
- *d* is approved by 2 voters.

```
3: \{a,b\} 3: \{a,c\} 2: \{a,b,d\} 2: \{e\} 1: \{f\} AV:
```

- *a* is approved by 8 voters.
- *b* is approved by 5 voters.
- c is approved by 3 voters.
- d is approved by 2 voters.
- *e* is approved by 2 voters.

```
3: \{a,b\} 3: \{a,c\} 2: \{a,b,d\} 2: \{e\} 1: \{f\} AV:
```

- *a* is approved by 8 voters.
- *b* is approved by 5 voters.
- *c* is approved by 3 voters.
- d is approved by 2 voters.
- e is approved by 2 voters.
- *f* is approved by 1 voters.

```
3: \{a, b\} 3: \{a, c\} 2: \{a, b, d\} 2: \{e\} 1: \{f\} AV:
```

- *a* is approved by 8 voters.
- *b* is approved by 5 voters.
- c is approved by 3 voters.
- *d* is approved by 2 voters.
- e is approved by 2 voters.
- f is approved by 1 voters.
- $AV(A,3) = \{a,b,c\}$

```
3: \{a,b\} 3: \{a,c\} 2: \{a,b,d\} 2: \{e\} 1: \{f\} CCAV:
```

• In principle: check the CCAV score of every committee:

```
3: \{a,b\} 3: \{a,c\} 2: \{a,b,d\} 2: \{e\} 1: \{f\}
```

- In principle: check the CCAV score of every committee:
  - $\{a, b, c\}$  has a *CCAV* score of 8.

```
3: \{a, b\} 3: \{a, c\} 2: \{a, b, d\} 2: \{e\} 1: \{f\}
```

- In principle: check the *CCAV* score of every committee:
  - $\{a, b, c\}$  has a *CCAV* score of 8.
  - $\{a, b, d\}$  has a *CCAV* score of 8.

```
3: \{a,b\} 3: \{a,c\} 2: \{a,b,d\} 2: \{e\} 1: \{f\}
```

- In principle: check the *CCAV* score of every committee:
  - $\{a, b, c\}$  has a *CCAV* score of 8.
  - $\{a, b, d\}$  has a *CCAV* score of 8.
  - ...

```
3: \{a,b\} 3: \{a,c\} 2: \{a,b,d\} 2: \{e\} 1: \{f\} CCAV:
```

- In principle: check the *CCAV* score of every committee:
  - $\{a, b, c\}$  has a *CCAV* score of 8.
  - $\{a, b, d\}$  has a *CCAV* score of 8.
  - ...
- Better approach: Greedy optimize and think how to improve

```
3: \{a,b\} 3: \{a,c\} 2: \{a,b,d\} 2: \{e\} 1: \{f\} CCAV:
```

- In principle: check the *CCAV* score of every committee:
  - $\{a, b, c\}$  has a *CCAV* score of 8.
  - $\{a, b, d\}$  has a *CCAV* score of 8.
  - ...
- Better approach: Greedy optimize and think how to improve
  - If we choose a, the 8 voters on the left are satisfied.

```
3: \{a,b\} 3: \{a,c\} 2: \{a,b,d\} 2: \{e\} 1: \{f\} CCAV:
```

- In principle: check the *CCAV* score of every committee:
  - $\{a, b, c\}$  has a *CCAV* score of 8.
  - $\{a, b, d\}$  has a *CCAV* score of 8.
  - ...
- Better approach: Greedy optimize and think how to improve
  - If we choose a, the 8 voters on the left are satisfied.
  - If we choose *e* and *f* , the 3 voters on the right are satisfied.

3: 
$$\{a,b\}$$
 3:  $\{a,c\}$  2:  $\{a,b,d\}$  2:  $\{e\}$  1:  $\{f\}$  CCAV:

- In principle: check the *CCAV* score of every committee:
  - $\{a, b, c\}$  has a *CCAV* score of 8.
  - $\{a, b, d\}$  has a *CCAV* score of 8.
  - ...
- Better approach: Greedy optimize and think how to improve
  - If we choose a, the 8 voters on the left are satisfied.
  - If we choose *e* and *f* , the 3 voters on the right are satisfied.
  - The *CCAV* score of  $\{a, e, f\}$  is 11 (which is maximal).

3: 
$$\{a,b\}$$
 3:  $\{a,c\}$  2:  $\{a,b,d\}$  2:  $\{e\}$  1:  $\{f\}$  CCAV:

- In principle: check the *CCAV* score of every committee:
  - $\{a, b, c\}$  has a *CCAV* score of 8.
  - $\{a, b, d\}$  has a CCAV score of 8.
  - ...
- Better approach: Greedy optimize and think how to improve
  - If we choose a, the 8 voters on the left are satisfied.
  - If we choose *e* and *f* , the 3 voters on the right are satisfied.
  - The *CCAV* score of  $\{a, e, f\}$  is 11 (which is maximal).
- $CCAV(A, 3) = \{a, e, f\}$

3: 
$$\{a,b\}$$
 3:  $\{a,c\}$  2:  $\{a,b,d\}$  2:  $\{e\}$  1:  $\{f\}$ 

#### PAV:

• In principle: check the *PAV* score of every committee:

7

3: 
$$\{a,b\}$$
 3:  $\{a,c\}$  2:  $\{a,b,d\}$  2:  $\{e\}$  1:  $\{f\}$ 

#### PAV:

- In principle: check the PAV score of every committee:
  - $\{a,b,c\}$ :  $3 \cdot (1+\frac{1}{2}) + 3 \cdot (1+\frac{1}{2}) + 2 \cdot (1+\frac{1}{2}) = 11$ .

3: 
$$\{a,b\}$$
 3:  $\{a,c\}$  2:  $\{a,b,d\}$  2:  $\{e\}$  1:  $\{f\}$ 

- In principle: check the PAV score of every committee:
  - $\{a,b,c\}$ :  $3 \cdot (1+\frac{1}{2}) + 3 \cdot (1+\frac{1}{2}) + 2 \cdot (1+\frac{1}{2}) = 11$ .
  - $\{a,b,d\}$ :  $3 \cdot (1+\frac{1}{2}) + 3 \cdot 1 + 2 \cdot (1+\frac{1}{2}+\frac{1}{3}) = 11+\frac{1}{6}$ .

3: 
$$\{a,b\}$$
 3:  $\{a,c\}$  2:  $\{a,b,d\}$  2:  $\{e\}$  1:  $\{f\}$ 

- In principle: check the PAV score of every committee:
  - $\{a, b, c\}$ :  $3 \cdot (1 + \frac{1}{2}) + 3 \cdot (1 + \frac{1}{2}) + 2 \cdot (1 + \frac{1}{2}) = 11$ .
  - $\{a,b,d\}$ :  $3 \cdot (1+\frac{1}{2}) + 3 \cdot 1 + 2 \cdot (1+\frac{1}{2}+\frac{1}{3}) = 11+\frac{1}{6}$ .
  - ...

3: 
$$\{a,b\}$$
 3:  $\{a,c\}$  2:  $\{a,b,d\}$  2:  $\{e\}$  1:  $\{f\}$ 

- In principle: check the PAV score of every committee:
  - $\{a, b, c\}$ :  $3 \cdot (1 + \frac{1}{2}) + 3 \cdot (1 + \frac{1}{2}) + 2 \cdot (1 + \frac{1}{2}) = 11$ .
  - $\{a, b, d\}$ :  $3 \cdot (1 + \frac{1}{2}) + 3 \cdot 1 + 2 \cdot (1 + \frac{1}{2} + \frac{1}{3}) = 11 + \frac{1}{6}$ .
  - ...
- Better approach: Greedy optimize and think how to improve

3: 
$$\{a,b\}$$
 3:  $\{a,c\}$  2:  $\{a,b,d\}$  2:  $\{e\}$  1:  $\{f\}$ 

- In principle: check the *PAV* score of every committee:
  - $\{a,b,c\}$ :  $3 \cdot (1+\frac{1}{2}) + 3 \cdot (1+\frac{1}{2}) + 2 \cdot (1+\frac{1}{2}) = 11$ .
  - $\{a, b, d\}$ :  $3 \cdot (1 + \frac{1}{2}) + 3 \cdot 1 + 2 \cdot (1 + \frac{1}{2} + \frac{1}{3}) = 11 + \frac{1}{6}$ .
  - ...
- Better approach: Greedy optimize and think how to improve
  - If we choose a, the 8 voters on the left return 1 point.

3: 
$$\{a,b\}$$
 3:  $\{a,c\}$  2:  $\{a,b,d\}$  2:  $\{e\}$  1:  $\{f\}$ 

- In principle: check the *PAV* score of every committee:
  - $\{a, b, c\}$ :  $3 \cdot (1 + \frac{1}{2}) + 3 \cdot (1 + \frac{1}{2}) + 2 \cdot (1 + \frac{1}{2}) = 11$ .
  - $\{a, b, d\}$ :  $3 \cdot (1 + \frac{1}{2}) + 3 \cdot 1 + 2 \cdot (1 + \frac{1}{2} + \frac{1}{3}) = 11 + \frac{1}{6}$ .
  - ...
- Better approach: Greedy optimize and think how to improve
  - If we choose a, the 8 voters on the left return 1 point.
  - If we choose b, we increase the score of 5 voters by  $\frac{1}{2}$ .

3: 
$$\{a,b\}$$
 3:  $\{a,c\}$  2:  $\{a,b,d\}$  2:  $\{e\}$  1:  $\{f\}$ 

- In principle: check the *PAV* score of every committee:
  - $\{a,b,c\}$ :  $3 \cdot (1+\frac{1}{2}) + 3 \cdot (1+\frac{1}{2}) + 2 \cdot (1+\frac{1}{2}) = 11$ .
  - $\{a, b, d\}$ :  $3 \cdot (1 + \frac{1}{2}) + 3 \cdot 1 + 2 \cdot (1 + \frac{1}{2} + \frac{1}{3}) = 11 + \frac{1}{6}$ .
  - ...
- Better approach: Greedy optimize and think how to improve
  - If we choose a, the 8 voters on the left return 1 point.
  - If we choose b, we increase the score of 5 voters by  $\frac{1}{2}$ .
  - If we choose e, we increase the score of 2 voters by 1.

3: 
$$\{a,b\}$$
 3:  $\{a,c\}$  2:  $\{a,b,d\}$  2:  $\{e\}$  1:  $\{f\}$ 

- In principle: check the *PAV* score of every committee:
  - $\{a, b, c\}$ :  $3 \cdot (1 + \frac{1}{2}) + 3 \cdot (1 + \frac{1}{2}) + 2 \cdot (1 + \frac{1}{2}) = 11$ .
  - $\{a, b, d\}$ :  $3 \cdot (1 + \frac{1}{2}) + 3 \cdot 1 + 2 \cdot (1 + \frac{1}{2} + \frac{1}{3}) = 11 + \frac{1}{6}$ .
  - ...
- Better approach: Greedy optimize and think how to improve
  - If we choose a, the 8 voters on the left return 1 point.
  - If we choose b, we increase the score of 5 voters by  $\frac{1}{2}$ .
  - If we choose e, we increase the score of 2 voters by 1.
  - {a, b, e} has a *PAV* score of 12.5
- $PAV(A, 3) = \{a, b, e\}$

3: 
$$\{a,b\}$$
 3:  $\{a,c\}$  2:  $\{a,b,d\}$  2:  $\{e\}$  1:  $\{f\}$ 

### Phragmen:

• Initial budget vector: b(0) = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0).

7

3: 
$$\{a,b\}$$
 3:  $\{a,c\}$  2:  $\{a,b,d\}$  2:  $\{e\}$  1:  $\{f\}$ 

- Initial budget vector: b(0) = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0).
- Compute time when next alternative can be afforded.

3: 
$$\{a,b\}$$
 3:  $\{a,c\}$  2:  $\{a,b,d\}$  2:  $\{e\}$  1:  $\{f\}$ 

- Initial budget vector: b(0) = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0).
- Compute time when next alternative can be afforded.
  - a is approved by 8 voters  $\rightarrow$  affordable at  $t = \frac{1}{8}$ .

3: 
$$\{a,b\}$$
 3:  $\{a,c\}$  2:  $\{a,b,d\}$  2:  $\{e\}$  1:  $\{f\}$ 

- Initial budget vector: b(0) = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0).
- Compute time when next alternative can be afforded.
  - a is approved by 8 voters  $\rightarrow$  affordable at  $t = \frac{1}{8}$ .
  - *b* is approved by 5 voters  $\rightarrow$  affordable at  $t = \frac{1}{5}$ .

3: 
$$\{a,b\}$$
 3:  $\{a,c\}$  2:  $\{a,b,d\}$  2:  $\{e\}$  1:  $\{f\}$ 

- Initial budget vector: b(0) = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0).
- Compute time when next alternative can be afforded.
  - *a* is approved by 8 voters  $\rightarrow$  affordable at  $t = \frac{1}{8}$ .
  - b is approved by 5 voters  $\rightarrow$  affordable at  $t = \frac{1}{5}$ .
  - c is approved by 3 voters  $\rightarrow$  affordable at  $t = \frac{1}{3}$ .

3: 
$$\{a,b\}$$
 3:  $\{a,c\}$  2:  $\{a,b,d\}$  2:  $\{e\}$  1:  $\{f\}$ 

- Initial budget vector: b(0) = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0).
- Compute time when next alternative can be afforded.
  - a is approved by 8 voters  $\rightarrow$  affordable at  $t = \frac{1}{8}$ .
  - *b* is approved by 5 voters  $\rightarrow$  affordable at  $t = \frac{1}{5}$ .
  - c is approved by 3 voters  $\rightarrow$  affordable at  $t = \frac{1}{3}$ .
  - d is approved by 2 voters  $\rightarrow$  affordable at  $t = \frac{1}{2}$ .

3: 
$$\{a,b\}$$
 3:  $\{a,c\}$  2:  $\{a,b,d\}$  2:  $\{e\}$  1:  $\{f\}$ 

- Initial budget vector: b(0) = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0).
- Compute time when next alternative can be afforded.
  - a is approved by 8 voters  $\rightarrow$  affordable at  $t = \frac{1}{8}$ .
  - *b* is approved by 5 voters  $\rightarrow$  affordable at  $t = \frac{1}{5}$ .
  - c is approved by 3 voters  $\rightarrow$  affordable at  $t = \frac{1}{3}$ .
  - d is approved by 2 voters  $\rightarrow$  affordable at  $t = \frac{1}{2}$ .
  - *e* is approved by 2 voters  $\rightarrow$  affordable at  $t = \frac{1}{2}$ .

3: 
$$\{a,b\}$$
 3:  $\{a,c\}$  2:  $\{a,b,d\}$  2:  $\{e\}$  1:  $\{f\}$ 

- Initial budget vector: b(0) = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0).
- Compute time when next alternative can be afforded.
  - a is approved by 8 voters  $\rightarrow$  affordable at  $t = \frac{1}{8}$ .
  - b is approved by 5 voters  $\rightarrow$  affordable at  $t = \frac{1}{5}$ .
  - c is approved by 3 voters  $\rightarrow$  affordable at  $t = \frac{1}{3}$ .
  - d is approved by 2 voters  $\rightarrow$  affordable at  $t = \frac{1}{2}$ .
  - *e* is approved by 2 voters  $\rightarrow$  affordable at  $t = \frac{1}{2}$ .
  - f is approved by 1 voters  $\rightarrow$  affordable at t = 1.

3: 
$$\{a,b\}$$
 3:  $\{a,c\}$  2:  $\{a,b,d\}$  2:  $\{e\}$  1:  $\{f\}$ 

- Initial budget vector: b(0) = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0).
- Compute time when next alternative can be afforded.
  - a is approved by 8 voters  $\rightarrow$  affordable at  $t = \frac{1}{8}$ .
  - b is approved by 5 voters  $\rightarrow$  affordable at  $t = \frac{1}{5}$ .
  - c is approved by 3 voters  $\rightarrow$  affordable at  $t = \frac{1}{3}$ .
  - d is approved by 2 voters  $\rightarrow$  affordable at  $t = \frac{1}{2}$ .
  - *e* is approved by 2 voters  $\rightarrow$  affordable at  $t = \frac{1}{2}$ .
  - f is approved by 1 voters  $\rightarrow$  affordable at t = 1.
- We will first add a at  $t = \frac{1}{8}$ .

3:  $\{a,b\}$  3:  $\{a,c\}$  2:  $\{a,b,d\}$  2:  $\{e\}$  1:  $\{f\}$ 

### Phragmen:

• After buying a, the budget vector is :  $b(\frac{1}{8}) = (0, 0, 0, 0, 0, 0, 0, 0, \frac{1}{8}, \frac{1}{8}, \frac{1}{8}).$ 

3: 
$$\{a,b\}$$
 3:  $\{a,c\}$  2:  $\{a,b,d\}$  2:  $\{e\}$  1:  $\{f\}$ 

- After buying *a*, the budget vector is :  $b(\frac{1}{8}) = (0, 0, 0, 0, 0, 0, 0, 0, \frac{1}{8}, \frac{1}{8}, \frac{1}{8}).$
- Compute when the next alternative can be afforded.

3: 
$$\{a,b\}$$
 3:  $\{a,c\}$  2:  $\{a,b,d\}$  2:  $\{e\}$  1:  $\{f\}$ 

### Phragmen:

$$b(\frac{1}{8}) = (0, 0, 0, 0, 0, 0, 0, 0, \frac{1}{8}, \frac{1}{8}, \frac{1}{8}).$$

- Compute when the next alternative can be afforded.
  - b is approved by 5 voters with no budget
    - ightarrow affordable at  $t+rac{1}{5}$ .

3: 
$$\{a,b\}$$
 3:  $\{a,c\}$  2:  $\{a,b,d\}$  2:  $\{e\}$  1:  $\{f\}$ 

### Phragmen:

$$b(\frac{1}{8}) = (0, 0, 0, 0, 0, 0, 0, 0, \frac{1}{8}, \frac{1}{8}, \frac{1}{8}).$$

- Compute when the next alternative can be afforded.
  - *b* is approved by 5 voters with no budget  $\rightarrow$  affordable at  $t + \frac{1}{5}$ .
  - *c* is approved by 3 voters with no budget  $\rightarrow$  affordable at  $t + \frac{1}{3}$ .

3: 
$$\{a,b\}$$
 3:  $\{a,c\}$  2:  $\{a,b,d\}$  2:  $\{e\}$  1:  $\{f\}$ 

### Phragmen:

$$b(\frac{1}{8}) = (0, 0, 0, 0, 0, 0, 0, 0, \frac{1}{8}, \frac{1}{8}, \frac{1}{8}).$$

- Compute when the next alternative can be afforded.
  - b is approved by 5 voters with no budget
    - $\rightarrow$  affordable at  $t + \frac{1}{5}$ .
  - c is approved by 3 voters with no budget  $\rightarrow$  affordable at  $t + \frac{1}{3}$ .
  - *d* is approved by 2 voters with no budget
    - ightarrow affordable at  $t+rac{1}{2}$ .

3: 
$$\{a,b\}$$
 3:  $\{a,c\}$  2:  $\{a,b,d\}$  2:  $\{e\}$  1:  $\{f\}$ 

### Phragmen:

$$b(\frac{1}{8}) = (0, 0, 0, 0, 0, 0, 0, 0, \frac{1}{8}, \frac{1}{8}, \frac{1}{8}).$$

- Compute when the next alternative can be afforded.
  - *b* is approved by 5 voters with no budget
    - $\rightarrow$  affordable at  $t + \frac{1}{5}$ .
  - c is approved by 3 voters with no budget  $\rightarrow$  affordable at  $t + \frac{1}{3}$ .
  - d is approved by 2 voters with no budget
    - $\rightarrow$  affordable at  $t + \frac{1}{2}$ .
  - e is approved by 2 voters with total budget of  $\frac{2}{8}$ 
    - $\rightarrow$  affordable at  $t + \frac{3}{8}$ .

3: 
$$\{a,b\}$$
 3:  $\{a,c\}$  2:  $\{a,b,d\}$  2:  $\{e\}$  1:  $\{f\}$ 

### Phragmen:

• After buying *a*, the budget vector is :  $b(\frac{1}{8}) = (0, 0, 0, 0, 0, 0, 0, 0, \frac{1}{8}, \frac{1}{8}, \frac{1}{8}).$ 

- Compute when the next alternative can be afforded.
  - *b* is approved by 5 voters with no budget  $\rightarrow$  affordable at  $t + \frac{1}{5}$ .
  - c is approved by 3 voters with no budget  $\rightarrow$  affordable at  $t + \frac{1}{3}$ .
  - *d* is approved by 2 voters with no budget  $\rightarrow$  affordable at  $t + \frac{1}{2}$ .
  - *e* is approved by 2 voters with total budget of  $\frac{2}{8}$   $\rightarrow$  affordable at  $t + \frac{3}{8}$ .
  - f is approved by 1 voters with total budget of  $\frac{1}{8}$   $\rightarrow$  affordable at  $t + \frac{7}{8}$ .

3: 
$$\{a,b\}$$
 3:  $\{a,c\}$  2:  $\{a,b,d\}$  2:  $\{e\}$  1:  $\{f\}$ 

- After buying a, the budget vector is :  $b(\frac{1}{8}) = (0, 0, 0, 0, 0, 0, 0, 0, 0, \frac{1}{8}, \frac{1}{8}, \frac{1}{8}).$
- Compute when the next alternative can be afforded.
  - *b* is approved by 5 voters with no budget  $\rightarrow$  affordable at  $t + \frac{1}{\epsilon}$ .
  - c is approved by 3 voters with no budget  $\rightarrow$  affordable at  $t + \frac{1}{3}$ .
  - d is approved by 2 voters with no budget
     → affordable at t + ½.
  - e is approved by 2 voters with total budget of  $\frac{2}{8}$ 
    - ightarrow affordable at  $t+rac{3}{8}$ .
  - f is approved by 1 voters with total budget of  $\frac{1}{8}$   $\rightarrow$  affordable at  $t + \frac{7}{8}$ .
- We add b at  $t = \frac{1}{8} + \frac{1}{5} = \frac{13}{40}$ .

3: 
$$\{a,b\}$$
 3:  $\{a,c\}$  2:  $\{a,b,d\}$  2:  $\{e\}$  1:  $\{f\}$ 

### Phragmen:

• After buying b, the budget vector is :  $b(\frac{13}{40}) = (0, 0, 0, \frac{1}{5}, \frac{1}{5}, \frac{1}{5}, 0, 0, \frac{13}{40}, \frac{13}{40}, \frac{13}{40}).$ 

3: 
$$\{a,b\}$$
 3:  $\{a,c\}$  2:  $\{a,b,d\}$  2:  $\{e\}$  1:  $\{f\}$ 

- After buying *b*, the budget vector is :  $b(\frac{13}{40}) = (0, 0, 0, \frac{1}{5}, \frac{1}{5}, \frac{1}{5}, 0, 0, \frac{13}{40}, \frac{13}{40}, \frac{13}{40}).$
- Compute when the next alternative can be afforded.

3: 
$$\{a,b\}$$
 3:  $\{a,c\}$  2:  $\{a,b,d\}$  2:  $\{e\}$  1:  $\{f\}$ 

- After buying b, the budget vector is:
- $b(\frac{13}{40}) = (0, 0, 0, \frac{1}{5}, \frac{1}{5}, \frac{1}{5}, 0, 0, \frac{13}{40}, \frac{13}{40}, \frac{13}{40}).$
- Compute when the next alternative can be afforded.
  - *c* is approved by 3 voters with total budget of  $\frac{3}{5}$   $\rightarrow$  will be affordable at  $t + \frac{2}{5} \cdot \frac{1}{3} = t + \frac{2}{15}$ .

3: 
$$\{a,b\}$$
 3:  $\{a,c\}$  2:  $\{a,b,d\}$  2:  $\{e\}$  1:  $\{f\}$ 

- After buying *b*, the budget vector is :  $b(\frac{13}{40}) = (0, 0, 0, \frac{1}{5}, \frac{1}{5}, \frac{1}{5}, 0, 0, \frac{13}{40}, \frac{13}{40}, \frac{13}{40}).$
- Compute when the next alternative can be afforded.
  - *c* is approved by 3 voters with total budget of  $\frac{3}{5}$   $\rightarrow$  will be affordable at  $t + \frac{2}{5} \cdot \frac{1}{3} = t + \frac{2}{15}$ .
  - d is approved by 2 voters with no budget  $\rightarrow$  will be affordable at  $t+\frac{1}{2}$ .

3: 
$$\{a,b\}$$
 3:  $\{a,c\}$  2:  $\{a,b,d\}$  2:  $\{e\}$  1:  $\{f\}$ 

- After buying *b*, the budget vector is :  $b(\frac{13}{40}) = (0, 0, 0, \frac{1}{5}, \frac{1}{5}, \frac{1}{5}, 0, 0, \frac{13}{40}, \frac{13}{40}, \frac{13}{40}).$
- Compute when the next alternative can be afforded.
  - c is approved by 3 voters with total budget of  $\frac{3}{5}$   $\rightarrow$  will be affordable at  $t + \frac{2}{5} \cdot \frac{1}{3} = t + \frac{2}{15}$ .
  - d is approved by 2 voters with no budget
     → will be affordable at t + ½.
  - *e* is approved by 2 voters with total budget of  $\frac{26}{40}$   $\rightarrow$  will be affordable at  $t + \frac{14}{40} \cdot \frac{1}{2} = t + \frac{7}{40}$ .

3: 
$$\{a,b\}$$
 3:  $\{a,c\}$  2:  $\{a,b,d\}$  2:  $\{e\}$  1:  $\{f\}$ 

- After buying *b*, the budget vector is :  $b(\frac{13}{40}) = (0, 0, 0, \frac{1}{5}, \frac{1}{5}, \frac{1}{5}, 0, 0, \frac{13}{40}, \frac{13}{40}, \frac{13}{40}).$
- Compute when the next alternative can be afforded.
  - *c* is approved by 3 voters with total budget of  $\frac{3}{5}$   $\rightarrow$  will be affordable at  $t + \frac{2}{5} \cdot \frac{1}{3} = t + \frac{2}{15}$ .
  - d is approved by 2 voters with no budget
     → will be affordable at t + ½.
  - *e* is approved by 2 voters with total budget of  $\frac{26}{40}$   $\rightarrow$  will be affordable at  $t + \frac{14}{40} \cdot \frac{1}{2} = t + \frac{7}{40}$ .
  - f is approved by 1 voters with total budget of  $\frac{13}{40}$   $\rightarrow$  will be affordable at  $t + \frac{27}{40}$ .

3: 
$$\{a,b\}$$
 3:  $\{a,c\}$  2:  $\{a,b,d\}$  2:  $\{e\}$  1:  $\{f\}$ 

- After buying *b*, the budget vector is :  $b(\frac{13}{40}) = (0, 0, 0, \frac{1}{5}, \frac{1}{5}, \frac{1}{5}, 0, 0, \frac{13}{40}, \frac{13}{40}, \frac{13}{40}).$
- Compute when the next alternative can be afforded.
  - *c* is approved by 3 voters with total budget of  $\frac{3}{5}$   $\rightarrow$  will be affordable at  $t + \frac{2}{5} \cdot \frac{1}{3} = t + \frac{2}{15}$ .
  - d is approved by 2 voters with no budget
     → will be affordable at t + ½.
  - *e* is approved by 2 voters with total budget of  $\frac{26}{40}$   $\rightarrow$  will be affordable at  $t + \frac{14}{40} \cdot \frac{1}{2} = t + \frac{7}{40}$ .
  - f is approved by 1 voters with total budget of  $\frac{13}{40}$   $\rightarrow$  will be affordable at  $t + \frac{27}{40}$ .
- We will add c at  $t = \frac{13}{40} + \frac{2}{15} = \frac{55}{120}$ .

3: 
$$\{a,b\}$$
 3:  $\{a,c\}$  2:  $\{a,b,d\}$  2:  $\{e\}$  1:  $\{f\}$ 

Phragmen: Phragmen(A, 3) = {a, b, c}

- After buying *b*, the budget vector is :  $b(\frac{13}{40}) = (0, 0, 0, \frac{1}{5}, \frac{1}{5}, \frac{1}{5}, 0, 0, \frac{13}{40}, \frac{13}{40}, \frac{13}{40}).$
- Compute when the next alternative can be afforded.
  - *c* is approved by 3 voters with total budget of  $\frac{3}{5}$   $\rightarrow$  will be affordable at  $t + \frac{2}{5} \cdot \frac{1}{3} = t + \frac{2}{15}$ .
  - d is approved by 2 voters with no budget
     → will be affordable at t + ½.
  - *e* is approved by 2 voters with total budget of  $\frac{26}{40}$   $\rightarrow$  will be affordable at  $t + \frac{14}{40} \cdot \frac{1}{2} = t + \frac{7}{40}$ .
  - f is approved by 1 voters with total budget of  $\frac{13}{40}$   $\rightarrow$  will be affordable at  $t + \frac{27}{40}$ .
- We will add c at  $t = \frac{13}{40} + \frac{2}{15} = \frac{55}{120}$ .

3: 
$$\{a,b\}$$
 3:  $\{a,c\}$  2:  $\{a,b,d\}$  2:  $\{e\}$  1:  $\{f\}$ 

### MES:

• Initially the budget vector is  $b = (\frac{3}{11}, \frac{3}{11}, \frac{3}{11}, \frac{3}{11}, \frac{3}{11}, \frac{3}{11}, \frac{3}{11}, \frac{3}{11}, \frac{3}{11}, \frac{3}{11}, \frac{3}{11})$ 

3: 
$$\{a, b\}$$
 3:  $\{a, c\}$  2:  $\{a, b, d\}$  2:  $\{e\}$  1:  $\{f\}$ 

#### MES:

- Initially the budget vector is  $b = (\frac{3}{11}, \frac{3}{11}, \frac{3}{11}, \frac{3}{11}, \frac{3}{11}, \frac{3}{11}, \frac{3}{11}, \frac{3}{11}, \frac{3}{11}, \frac{3}{11}, \frac{3}{11})$
- ullet Compute ho for all affordable candidates.

3: 
$$\{a,b\}$$
 3:  $\{a,c\}$  2:  $\{a,b,d\}$  2:  $\{e\}$  1:  $\{f\}$ 

#### MES:

- Initially the budget vector is  $b = (\frac{3}{11}, \frac{3}{11}, \frac{3}{11}, \frac{3}{11}, \frac{3}{11}, \frac{3}{11}, \frac{3}{11}, \frac{3}{11}, \frac{3}{11}, \frac{3}{11})$
- Compute  $\rho$  for all affordable candidates.
  - *c*, *d*, *e*, and *f* are not affordable as their supporters do not have enough money.

3: 
$$\{a,b\}$$
 3:  $\{a,c\}$  2:  $\{a,b,d\}$  2:  $\{e\}$  1:  $\{f\}$ 

#### MES:

Initially the budget vector is

$$b = \left(\frac{3}{11}, \frac{3}{11}, \frac{3}{11}, \frac{3}{11}, \frac{3}{11}, \frac{3}{11}, \frac{3}{11}, \frac{3}{11}, \frac{3}{11}, \frac{3}{11}, \frac{3}{11}\right)$$

- ullet Compute ho for all affordable candidates.
  - c, d, e, and f are not affordable as their supporters do not have enough money.
  - a is affordable at  $\rho = \frac{1}{8}$ .

3: 
$$\{a,b\}$$
 3:  $\{a,c\}$  2:  $\{a,b,d\}$  2:  $\{e\}$  1:  $\{f\}$ 

#### MES:

Initially the budget vector is

$$b = \left(\frac{3}{11}, \frac{3}{11}, \frac{3}{11}, \frac{3}{11}, \frac{3}{11}, \frac{3}{11}, \frac{3}{11}, \frac{3}{11}, \frac{3}{11}, \frac{3}{11}, \frac{3}{11}\right)$$

- ullet Compute ho for all affordable candidates.
  - c, d, e, and f are not affordable as their supporters do not have enough money.
  - a is affordable at  $\rho = \frac{1}{8}$ .
  - b is affordable at  $\rho = \frac{1}{5}$ .

3: 
$$\{a,b\}$$
 3:  $\{a,c\}$  2:  $\{a,b,d\}$  2:  $\{e\}$  1:  $\{f\}$ 

#### MES:

- Initially the budget vector is  $b = (\frac{3}{11}, \frac{3}{11}, \frac{3}{11}, \frac{3}{11}, \frac{3}{11}, \frac{3}{11}, \frac{3}{11}, \frac{3}{11}, \frac{3}{11}, \frac{3}{11})$
- Compute  $\rho$  for all affordable candidates.
  - c, d, e, and f are not affordable as their supporters do not have enough money.
  - a is affordable at  $\rho = \frac{1}{8}$ .
  - b is affordable at  $\rho = \frac{1}{5}$ .
- We buy a for  $\rho = \frac{1}{8}$ .

3: 
$$\{a,b\}$$
 3:  $\{a,c\}$  2:  $\{a,b,d\}$  2:  $\{e\}$  1:  $\{f\}$  *MES*:

$$b = \left(\frac{13}{88}, \frac{13}{88}, \frac{13}{88}, \frac{13}{88}, \frac{13}{88}, \frac{13}{88}, \frac{13}{88}, \frac{13}{88}, \frac{3}{11}, \frac{3}{11}, \frac{3}{11}\right)$$

3: 
$$\{a, b\}$$
 3:  $\{a, c\}$  2:  $\{a, b, d\}$  2:  $\{e\}$  1:  $\{f\}$ 

#### MES:

- After we buy a, the budget vector is  $b = (\frac{13}{88}, \frac{13}{88}, \frac{13}{88}, \frac{13}{88}, \frac{13}{88}, \frac{13}{88}, \frac{13}{88}, \frac{13}{88}, \frac{13}{88}, \frac{3}{11}, \frac{3}{11}, \frac{3}{11})$
- No candidate is affordable anymore!

3: 
$$\{a,b\}$$
 3:  $\{a,c\}$  2:  $\{a,b,d\}$  2:  $\{e\}$  1:  $\{f\}$ 

#### MES:

- After we buy a, the budget vector is  $b = (\frac{13}{88}, \frac{13}{88}, \frac{13}{88}, \frac{13}{88}, \frac{13}{88}, \frac{13}{88}, \frac{13}{88}, \frac{13}{88}, \frac{13}{88}, \frac{3}{11}, \frac{3}{11}, \frac{3}{11})$
- No candidate is affordable anymore!
- We start running *Phragmen* with the remaining budgets.

3: 
$$\{a,b\}$$
 3:  $\{a,c\}$  2:  $\{a,b,d\}$  2:  $\{e\}$  1:  $\{f\}$ 

#### MES:

$$b = \left(\frac{13}{88}, \frac{13}{88}, \frac{13}{88}, \frac{13}{88}, \frac{13}{88}, \frac{13}{88}, \frac{13}{88}, \frac{13}{88}, \frac{3}{11}, \frac{3}{11}, \frac{3}{11}\right)$$

- No candidate is affordable anymore!
- We start running *Phragmen* with the remaining budgets.
  - *b* will be bought at  $t = (1 \frac{65}{88}) \cdot \frac{1}{5} = \frac{23}{440}$

3: 
$$\{a,b\}$$
 3:  $\{a,c\}$  2:  $\{a,b,d\}$  2:  $\{e\}$  1:  $\{f\}$ 

#### MES:

$$b=\big(\tfrac{13}{88},\tfrac{13}{88},\tfrac{13}{88},\tfrac{13}{88},\tfrac{13}{88},\tfrac{13}{88},\tfrac{13}{88},\tfrac{13}{88},\tfrac{3}{11},\tfrac{3}{11},\tfrac{3}{11}\big)$$

- No candidate is affordable anymore!
- We start running *Phragmen* with the remaining budgets.
  - *b* will be bought at  $t = (1 \frac{65}{88}) \cdot \frac{1}{5} = \frac{23}{440}$
  - c will be bought at  $t = (1 \frac{39}{88}) \cdot \frac{1}{3} = \frac{49}{272}$

3: 
$$\{a,b\}$$
 3:  $\{a,c\}$  2:  $\{a,b,d\}$  2:  $\{e\}$  1:  $\{f\}$ 

#### MES:

$$b = \left(\frac{13}{88}, \frac{13}{88}, \frac{13}{88}, \frac{13}{88}, \frac{13}{88}, \frac{13}{88}, \frac{13}{88}, \frac{13}{88}, \frac{3}{11}, \frac{3}{11}, \frac{3}{11}\right)$$

- No candidate is affordable anymore!
- We start running *Phragmen* with the remaining budgets.
  - b will be bought at  $t = (1 \frac{65}{88}) \cdot \frac{1}{5} = \frac{23}{440}$
  - c will be bought at  $t = (1 \frac{39}{88}) \cdot \frac{1}{3} = \frac{49}{272}$
- $MES(A, 3) = \{a, b, c\}.$

a) Show that PAV satisfies EJR.

- a) Show that *PAV* satisfies EJR.
  - Assume for contradiction that there is a profile A and a target committee size k such that the committee W chosen by PAV fails EJR.

- a) Show that *PAV* satisfies EJR.
  - Assume for contradiction that there is a profile A and a target committee size k such that the committee W chosen by PAV fails EJR.
  - There is a set of voters S and an integer  $\ell$  such that  $|S| \ge \frac{\ell |N|}{k}$ ,  $|\bigcap_{i \in S} A_i| \ge \ell$ , and  $|W \cap A_i| < \ell$  for all  $i \in S$ .

- a) Show that PAV satisfies EJR.
  - Assume for contradiction that there is a profile A and a target committee size k such that the committee W chosen by PAV fails EJR.
  - There is a set of voters S and an integer  $\ell$  such that  $|S| \ge \frac{\ell |N|}{k}$ ,  $|\bigcap_{i \in S} A_i| \ge \ell$ , and  $|W \cap A_i| < \ell$  for all  $i \in S$ .
  - There is at least one alternative  $c \in \bigcap_{i \in S} A_i$  with  $c \notin W$ .

- a) Show that *PAV* satisfies EJR.
  - Assume for contradiction that there is a profile A and a target committee size k such that the committee W chosen by PAV fails EJR.
  - There is a set of voters S and an integer  $\ell$  such that  $|S| \ge \frac{\ell |N|}{k}$ ,  $|\bigcap_{i \in S} A_i| \ge \ell$ , and  $|W \cap A_i| < \ell$  for all  $i \in S$ .
  - There is at least one alternative  $c \in \bigcap_{i \in S} A_i$  with  $c \notin W$ .
  - Let s(X) denote the PAV score of a committee X

- a) Show that PAV satisfies EJR.
  - Assume for contradiction that there is a profile A and a target committee size k such that the committee W chosen by PAV fails EJR.
  - There is a set of voters S and an integer  $\ell$  such that  $|S| \ge \frac{\ell |N|}{k}$ ,  $|\bigcap_{i \in S} A_i| \ge \ell$ , and  $|W \cap A_i| < \ell$  for all  $i \in S$ .
  - There is at least one alternative  $c \in \bigcap_{i \in S} A_i$  with  $c \notin W$ .
  - Let s(X) denote the *PAV* score of a committee X
  - We will show that there is an alternative  $d \in W$  such that  $s((W \setminus \{d\}) \cup \{c\}) > s(W)$ .

- a) Show that PAV satisfies EJR.
  - Assume for contradiction that there is a profile A and a target committee size k such that the committee W chosen by PAV fails EJR.
  - There is a set of voters S and an integer  $\ell$  such that  $|S| \ge \frac{\ell |N|}{k}$ ,  $|\bigcap_{i \in S} A_i| \ge \ell$ , and  $|W \cap A_i| < \ell$  for all  $i \in S$ .
  - There is at least one alternative  $c \in \bigcap_{i \in S} A_i$  with  $c \notin W$ .
  - Let s(X) denote the *PAV* score of a committee X
  - We will show that there is an alternative  $d \in W$  such that  $s((W \setminus \{d\}) \cup \{c\}) > s(W)$ .
  - For this, we define  $\Delta(X, Y) = s(X) s(Y)$ .

$$\Delta((W \setminus \{d\}) \cup \{c\}, W \setminus \{d\})$$

$$= \sum_{i \in N} \sum_{y=1}^{|A_i \cap (W \setminus \{d\} \cup \{c\})|} \frac{1}{y} - \sum_{i \in N} \sum_{j=1}^{|A_i \cap (W \setminus \{d\})|} \frac{1}{y}$$

$$\Delta((W \setminus \{d\}) \cup \{c\}, W \setminus \{d\})$$

$$= \sum_{i \in N} \sum_{y=1}^{|A_i \cap (W \setminus \{d\} \cup \{c\})|} \frac{1}{y} - \sum_{i \in N} \sum_{j=1}^{|A_i \cap (W \setminus \{d\})|} \frac{1}{y}$$

$$= \sum_{i \in N: c \in A_i} \frac{1}{|A_i \cap (W \setminus \{d\} \cup \{c\})|}$$

$$\Delta((W \setminus \{d\}) \cup \{c\}, W \setminus \{d\}))$$

$$= \sum_{i \in N} \sum_{y=1}^{|A_i \cap (W \setminus \{d\} \cup \{c\})|} \frac{1}{y} - \sum_{i \in N} \sum_{j=1}^{|A_i \cap (W \setminus \{d\})|} \frac{1}{y}$$

$$= \sum_{i \in N: c \in A_i} \frac{1}{|A_i \cap (W \setminus \{d\} \cup \{c\})|}$$

$$\geq \sum_{i \in S} \frac{1}{|A_i \cap (W \setminus \{d\} \cup \{c\})|}$$

$$\Delta((W \setminus \{d\}) \cup \{c\}, W \setminus \{d\})) 
= \sum_{i \in N} \sum_{j=1}^{|A_i \cap (W \setminus \{d\} \cup \{c\})|} \frac{1}{y} - \sum_{i \in N} \sum_{j=1}^{|A_i \cap (W \setminus \{d\})|} \frac{1}{y} 
= \sum_{i \in N: c \in A_i} \frac{1}{|A_i \cap (W \setminus \{d\} \cup \{c\})|} 
\ge \sum_{i \in S} \frac{1}{|A_i \cap (W \setminus \{d\} \cup \{c\})|} 
\ge \sum_{i \in S} \frac{1}{\ell}$$

$$\Delta((W \setminus \{d\}) \cup \{c\}, W \setminus \{d\}))$$

$$= \sum_{i \in N} \sum_{\substack{|A_i \cap (W \setminus \{d\} \cup \{c\})| \\ y = 1}} \frac{1}{y} - \sum_{i \in N} \sum_{j=1}^{|A_i \cap (W \setminus \{d\})|} \frac{1}{y}$$

$$= \sum_{i \in N: c \in A_i} \frac{1}{|A_i \cap (W \setminus \{d\} \cup \{c\})|}$$

$$\geq \sum_{i \in S} \frac{1}{|A_i \cap (W \setminus \{d\} \cup \{c\})|}$$

$$\geq \sum_{i \in S} \frac{1}{\ell}$$

$$\geq \frac{|N|}{k}$$

$$\Delta(W, W \setminus \{d\}) = \sum_{i \in N} \sum_{y=1}^{|A_i \cap W|} \frac{1}{y} - \sum_{i \in N} \sum_{j=1}^{|A_i \cap (W \setminus \{d\})|} \frac{1}{y}$$

$$\Delta(W, W \setminus \{d\}) = \sum_{i \in N} \sum_{y=1}^{|A_i \cap W|} \frac{1}{y} - \sum_{i \in N} \sum_{j=1}^{|A_i \cap (W \setminus \{d\})|} \frac{1}{y}$$

$$= \sum_{i \in N: d \in A_i} \sum_{j=1}^{|A_i \cap W|} \frac{1}{y} - \sum_{i \in N: d \in A_i} \sum_{j=1}^{|A_i \cap (W \setminus \{d\})|} \frac{1}{y}$$

$$\Delta(W, W \setminus \{d\}) = \sum_{i \in N} \sum_{y=1}^{|A_i \cap W|} \frac{1}{y} - \sum_{i \in N} \sum_{j=1}^{|A_i \cap (W \setminus \{d\})|} \frac{1}{y}$$

$$= \sum_{i \in N: d \in A_i} \sum_{j=1}^{|A_i \cap W|} \frac{1}{y} - \sum_{i \in N: d \in A_i} \sum_{j=1}^{|A_i \cap (W \setminus \{d\})|} \frac{1}{y}$$

$$= \sum_{i \in N: d \in A_i} \frac{1}{|A_i \cap W|}$$

It holds that

$$\sum_{d \in W} \Delta(W, W \setminus \{d\}) = \sum_{d \in W} \sum_{i \in N: d \in A_i} \frac{1}{|A_i \cap W|}$$

It holds that

$$\sum_{d \in W} \Delta(W, W \setminus \{d\}) = \sum_{d \in W} \sum_{i \in N: d \in A_i} \frac{1}{|A_i \cap W|}$$
$$= \sum_{i \in N: A_i \cap W \neq \emptyset} |A_i \cap W| \cdot \frac{1}{|A_i \cap W|}$$

• There is an alternative  $d \in W$  such that

$$\Delta(W, W \setminus \{d\}) \leq \frac{|\{i \in N \colon A_i \cap W \neq \emptyset\}|}{k} \leq \frac{|N|}{k}.$$

It holds that

$$\sum_{d \in W} \Delta(W, W \setminus \{d\}) = \sum_{d \in W} \sum_{i \in N: d \in A_i} \frac{1}{|A_i \cap W|}$$

$$= \sum_{i \in N: A_i \cap W \neq \emptyset} |A_i \cap W| \cdot \frac{1}{|A_i \cap W|}$$

$$= |\{i \in N: A_i \cap W \neq \emptyset\}|.$$

• There is an alternative  $d \in W$  such that

$$\Delta(W, W \setminus \{d\}) \leq \frac{|\{i \in N \colon A_i \cap W \neq \emptyset\}|}{k} \leq \frac{|N|}{k}.$$

• If there is  $d \in W$  with  $\Delta(W, W \setminus \{d\}) < \frac{|N|}{k}$ , then

$$\Delta(W \setminus \{d\} \cup \{c\}, W)$$

$$= \Delta(W \setminus \{d\} \cup \{c\}, W \setminus \{d\}) - \Delta(W, W \setminus \{d\})$$

$$> \frac{|N|}{k} - \frac{|N|}{k}$$

$$= 0.$$

• If there is  $d \in W$  with  $\Delta(W, W \setminus \{d\}) < \frac{|N|}{k}$ , then

$$\Delta(W \setminus \{d\} \cup \{c\}, W)$$

$$= \Delta(W \setminus \{d\} \cup \{c\}, W \setminus \{d\}) - \Delta(W, W \setminus \{d\})$$

$$> \frac{|N|}{k} - \frac{|N|}{k}$$

$$= 0.$$

• This proves that  $W \setminus \{d\} \cup \{c\}$  has a higher PAV score than W.

• Otherwise, we have that  $|\{i \in N : A_i \cap W \neq \emptyset\}| = |N|$  and  $\Delta(W, W \setminus \{d\}) = \frac{|N|}{k}$  for all  $d \in W$ .

- Otherwise, we have that  $|\{i \in N : A_i \cap W \neq \emptyset\}| = |N|$  and  $\Delta(W, W \setminus \{d\}) = \frac{|N|}{k}$  for all  $d \in W$ .
- Choose d such that  $d \in A_i$  for some  $i \in S$ . It holds that  $|W \setminus \{d\} \cup \{c\}| \le \ell 1$ .

- Otherwise, we have that  $|\{i \in N : A_i \cap W \neq \emptyset\}| = |N|$  and  $\Delta(W, W \setminus \{d\}) = \frac{|N|}{k}$  for all  $d \in W$ .
- Choose d such that  $d \in A_i$  for some  $i \in S$ . It holds that  $|W \setminus \{d\} \cup \{c\}| \le \ell 1$ .
- Using this in our previous analysis shows that  $\Delta(W\setminus\{d\}\cup\{c\},W\setminus\{d\})>\frac{|N|}{k}.$

- Otherwise, we have that  $|\{i \in N : A_i \cap W \neq \emptyset\}| = |N|$  and  $\Delta(W, W \setminus \{d\}) = \frac{|N|}{k}$  for all  $d \in W$ .
- Choose d such that  $d \in A_i$  for some  $i \in S$ . It holds that  $|W \setminus \{d\} \cup \{c\}| \le \ell 1$ .
- Using this in our previous analysis shows that  $\Delta(W \setminus \{d\} \cup \{c\}, W \setminus \{d\}) > \frac{|N|}{k}$ .
- We can now derive again that  $\Delta(W \setminus \{d\} \cup \{c\}, W) > 0$ .

- Otherwise, we have that  $|\{i \in N : A_i \cap W \neq \emptyset\}| = |N|$  and  $\Delta(W, W \setminus \{d\}) = \frac{|N|}{k}$  for all  $d \in W$ .
- Choose d such that  $d \in A_i$  for some  $i \in S$ . It holds that  $|W \setminus \{d\} \cup \{c\}| \le \ell 1$ .
- Using this in our previous analysis shows that  $\Delta(W \setminus \{d\} \cup \{c\}, W \setminus \{d\}) > \frac{|N|}{k}$ .
- We can now derive again that  $\Delta(W\setminus\{d\}\cup\{c\},W)>0$ .
- Hence our initial assumption is wrong.

- b) Show that *MES* satisfies EJR.
  - We will only focus on the first phase of *MES* (i.e., not take the completion into account).

- b) Show that MES satisfies EJR.
  - We will only focus on the first phase of MES (i.e., not take the completion into account).
  - Assume for contradiction that there is a profile A and a target committee size k such that the committee W chosen by (the first phase of) MES fails EJR.

- b) Show that MES satisfies EJR.
  - We will only focus on the first phase of MES (i.e., not take the completion into account).
  - Assume for contradiction that there is a profile A and a target committee size k such that the committee W chosen by (the first phase of) MES fails EJR.
  - There is a set of voters S and an integer  $\ell$  such that  $|S| \ge \frac{\ell |N|}{k}$ ,  $|\bigcap_{i \in S} A_i| \ge \ell$ , and  $|W \cap A_i| < \ell$  for all  $\ell \in S$ .

- b) Show that MES satisfies EJR.
  - We will only focus on the first phase of MES (i.e., not take the completion into account).
  - Assume for contradiction that there is a profile A and a target committee size k such that the committee W chosen by (the first phase of) MES fails EJR.
  - There is a set of voters S and an integer  $\ell$  such that  $|S| \ge \frac{\ell |N|}{k}$ ,  $|\bigcap_{i \in S} A_i| \ge \ell$ , and  $|W \cap A_i| < \ell$  for all  $\ell \in S$ .
  - When *MES* stops, there must be at least one voter  $i \in S$  with a budget  $b_i < \frac{1}{|S|}$ . Otherwise, |W| < k and we can add a candidate from  $\bigcap_{i \in S} A_i$  to the committee.

• This implies that

$$\frac{\frac{k}{|N|} - b_i}{\ell - 1} > \frac{\frac{k}{|N|} - \frac{1}{5}}{\ell - 1} \ge \frac{\frac{k}{|N|} - \frac{k}{\ell |N|}}{\ell - 1} = \frac{k}{|N|} \cdot \frac{1}{\ell}.$$

• This implies that

$$\frac{\frac{k}{|N|} - b_i}{\ell - 1} > \frac{\frac{k}{|N|} - \frac{1}{5}}{\ell - 1} \ge \frac{\frac{k}{|N|} - \frac{k}{\ell |N|}}{\ell - 1} = \frac{k}{|N|} \cdot \frac{1}{\ell}.$$

• Hence, agent i payed more than  $\frac{k}{|N|} \cdot \frac{1}{\ell}$  for some candidate.

This implies that

$$\frac{\frac{k}{|N|} - b_i}{\ell - 1} > \frac{\frac{k}{|N|} - \frac{1}{5}}{\ell - 1} \ge \frac{\frac{k}{|N|} - \frac{k}{\ell |N|}}{\ell - 1} = \frac{k}{|N|} \cdot \frac{1}{\ell}.$$

- Hence, agent *i* payed more than  $\frac{k}{|N|} \cdot \frac{1}{\ell}$  for some candidate.
- Let c denote the first candidate such that a voter  $i \in S$  payed more than  $\frac{1}{\ell}$  for this candidate.

This implies that

$$\frac{\frac{k}{|N|} - b_i}{\ell - 1} > \frac{\frac{k}{|N|} - \frac{1}{5}}{\ell - 1} \ge \frac{\frac{k}{|N|} - \frac{k}{\ell |N|}}{\ell - 1} = \frac{k}{|N|} \cdot \frac{1}{\ell}.$$

- Hence, agent *i* payed more than  $\frac{k}{|N|} \cdot \frac{1}{\ell}$  for some candidate.
- Let c denote the first candidate such that a voter  $i \in S$  payed more than  $\frac{1}{\ell}$  for this candidate.
- Let b'<sub>i</sub> denote the budgets of the voters immediately before c
  is chosen.

• As each voter in  $b_i'$  payed for at most  $\ell-1$  alternatives with a price of at most  $\frac{k}{|N|} \cdot \frac{1}{\ell}$ , each voter  $i \in S$  has a budget of  $b_i' \geq \frac{k}{|N|} \cdot \frac{1}{\ell}$ .

- As each voter in  $b_i'$  payed for at most  $\ell-1$  alternatives with a price of at most  $\frac{k}{|N|} \cdot \frac{1}{\ell}$ , each voter  $i \in S$  has a budget of  $b_i' \geq \frac{k}{|N|} \cdot \frac{1}{\ell}$ .
- Since  $|W \cap A_i| < \ell 1$  for all  $i \in S$  and  $|\bigcap_{i \in S} A_i| \ge \ell$ , there is an alternative c' that is approved by all voters in S that is not yet selected.

- As each voter in  $b_i'$  payed for at most  $\ell-1$  alternatives with a price of at most  $\frac{k}{|N|} \cdot \frac{1}{\ell}$ , each voter  $i \in S$  has a budget of  $b_i' \geq \frac{k}{|N|} \cdot \frac{1}{\ell}$ .
- Since  $|W \cap A_i| < \ell 1$  for all  $i \in S$  and  $|\bigcap_{i \in S} A_i| \ge \ell$ , there is an alternative c' that is approved by all voters in S that is not yet selected.
- This alternative can be bought at a price of at most  $\frac{1}{|S|} \le \frac{k}{|N|} \cdot \frac{1}{\ell}$ .

- As each voter in  $b_i'$  payed for at most  $\ell-1$  alternatives with a price of at most  $\frac{k}{|N|} \cdot \frac{1}{\ell}$ , each voter  $i \in S$  has a budget of  $b_i' \geq \frac{k}{|N|} \cdot \frac{1}{\ell}$ .
- Since  $|W \cap A_i| < \ell 1$  for all  $i \in S$  and  $|\bigcap_{i \in S} A_i| \ge \ell$ , there is an alternative c' that is approved by all voters in S that is not yet selected.
- This alternative can be bought at a price of at most  $\frac{1}{|S|} \le \frac{k}{|N|} \cdot \frac{1}{\ell}$ .
- This contradicts that *MES* chooses *c* as next candidate.

- As each voter in  $b_i'$  payed for at most  $\ell-1$  alternatives with a price of at most  $\frac{k}{|N|} \cdot \frac{1}{\ell}$ , each voter  $i \in S$  has a budget of  $b_i' \geq \frac{k}{|N|} \cdot \frac{1}{\ell}$ .
- Since  $|W \cap A_i| < \ell 1$  for all  $i \in S$  and  $|\bigcap_{i \in S} A_i| \ge \ell$ , there is an alternative c' that is approved by all voters in S that is not yet selected.
- This alternative can be bought at a price of at most  $\frac{1}{|S|} \le \frac{k}{|N|} \cdot \frac{1}{\ell}$ .
- This contradicts that *MES* chooses c as next candidate.
- Hence, we now conclude that MES satisfies EJR.