953212 DB SYS & DB SYS DESIGN (2, 1, 4)

Prerequisite SE953102 ADT

Agenda

- Course outline
- Introduction to Database system

Course information

• Prerequisites: 953102 Abstract data type and problem solving

• **Credit:** 3(2-2-4)

• Lecture: Pree Thiengburanathum, PhD.

Email: <u>pree.t@cmu.ac.th</u> Office room: 415-1

• TA: 3 TAs (Mr. Elf, Gui, Wang)

Course information

• Lecture

- Date: Monday and Thursday
- Room: online via zoom
- Time: 13:00-14:30pm

• Lab

- Date: Tuesday and Friday
- Room: online via zoom
- Time: 9:00-11:00am

Course objectives

Course objectives:

- Student are able to
 - Design logical data model and physical data model.
 - Design and implement physical database.
 - Organize, maintain and retrieve information form a Database Management System.
 - Apply the course knowledge to the following courses:
 - 953233 Programming methodology (Adv. Programming)
 - 953261 Interactive web development

Course content

Week no.	Lecture (1 hour)	Lab (2 hours)	Instructor
1	Course policy announcementIntroduction to Database system	Pre-test on data structure (2-D array and basic sorting, searching)	Pree
2	 Database approach Component of the DB environment Range of DB applications 	 Lab sheet involves terms, definitions, explain applications. 	Pree
3	- Modeling entities and ttributes	 Lab sheet involves basic entity and attributes. 	Pree
4	- Modeling relationships ER	- Lab sheet involve basic ER	Pree
5	- EER modeling	- Workbench ER modeling	Pree
6	- EER to relations	- Workbench EER modeling	Pree
7	- Logical database design	- Normalization 1, 2, 3	Pree
8	- Physical database design	Lab sheet file organization	Pree
9	- Intro to SQL	 Introduction to XAMPP Introduction to simple SQL and DB Programming, processing single table 	Pree
10	- Advanced SQL	Processing multiple tables, workbench on Advanced SQL	Pree
11	- Database application development	Develop connection (e.g., rest service)	Pree
12	- Database application development	Create connection (e.g., phpMyAdmin)	Pree
13	- Data Warehousing/ Project idea	Integrate with other course projects	Pree
14	- Project implement	Integrate with other course projects	Pree/Toey/Kong

- Sid, sname, Iname, gpa
- 1, a, doh
- ..
- ..
- •

Course requirements

- Lectures in class (3 hour per week)
- Lab Practice (4 hours per week)
- Unannounced Quizzes
- Assignments
- Lab examination
- Midterm and final exams
- Project assignment

Grading system

Lecture attendance and quizzes

• Lecture Attendance 5 %

• Quiz 5 %

Lab attendance

• Attendance 5%

• Assignment 5 %

Midterm Examination 30%

• Final Examination 30%

• Project Assignment 20 %

• Total 100%

• The semester grade is computed by group reference

Grade policy:

- Any late assignment submissions will either be penalized (at least 50% reduction) or NOT be accepted.
- If a student is late more **than 15 minutes** in either lab or lecture, you will be regarded as absence.
- If a student needs to be absent with legitimate causes, please notify the lecturer or TA before the date of absence.
- The student who has come to class <u>less than 80% will NOT</u> allow to take the FINAL EXAM.
- The student who does not take the final exam gets "F" for this course.
- The work that does not strictly follow the instruction is not accepted.

Course Texts

- Jeff Hoffer, Ramesh Venkataraman, Heikki Topi Modern Database Management (2016, Pearson Education Limited)
- Silberschatz A., Korth H., Sudarshan S. Database system concepts (2010, McGraw-Hill Higher Education)
- Google classroom (for the lecture slides)

Course communication

- Facebook group: 953212 63/1
- https://www.facebook.com/groups/824516401285911
- pree.t@cmu.ac.th
- Tas contacts
- liqian_w@elearning.cmu.ac.th
- aoxue gui@elearning.cmu.ac.th
- supavas s@elearning.cmu.ac.th

Google classroom

2kteqs4

953212 DB SYS & DB SYS DESIGN 701

What is data?

Unit	Value	Size
bit (b)	0 or 1	1/8 of a byte
byte (B)	8 bits	1 byte
kilobyte (KB)	1000 ¹ bytes	1,000 bytes
megabyte (MB)	1000 ² bytes	1,000,000 bytes
gigabyte (GB)	1000³ bytes	1,000,000.000 bytes
terabyte (TB)	1000 ⁴ bytes	1,000,000,000,000 bytes
petabyte (PB)	1000⁵ bytes	1,000,000,000,000,000 bytes
exabyte (EB)	1000 ⁶ bytes	1,000,000,000,000,000 bytes
zettabyte (ZB)	1000 ⁷ bytes	1,000,000,000,000,000,000 bytes
yottabyte (YB)	1000 ⁸ bytes	1,000,000,000,000,000,000,000 bytes

Hierarchy of data (cont.)

- Bit a bit is the smallest unit of data representation (value of a bit may be 0 or 1)
- **Byte** a unit of digital information that most commonly consists of eight bits to encode a single character.
- **Field** a filed consists of a grouping of characters. A data field represents an attribute (a characteristic or quality) of some entity (object, person, place, or event)

Hierarchy of data (cont.)

- Record a record represents a collection of attributes that describe an entity
- File a group of related records.
- Database is an integrated collection of logically related records or files.
- Data structure vs Database?
 - Temporary vs permeant

History of Database Management

Paper-based

- Paper
- Box card index
- Filling

File-based System (Computerized)

- Magnetic tap file, Magnetic disk, Hard disk
- Server

History of Database Systems

1950's and early 1960's:

- Data processing using magnetic tapes for storage
 - Tapes provided only sequential access
- Punched cards for input

Late 1960's and 1970's:

- Hard disks allowed direct access to data
- Network and hierarchical data models in widespread use
- Ted Codd defines the relational data model
 - Would win the ACM Turing Award for this work
 - IBM Research begins System R prototype
 - UC Berkeley begins Ingres prototype
- High-performance (for the era) transaction processing

History of Database Systems

1980's:

- Research relational prototypes evolve into commercial systems
- SQL becomes industrial standard
- Parallel and distributed database systems
- Object-oriented database systems

1990's:

 Large decision support and data-mining applications

Early 2000's:

- XML and XQuery standards
- Automated database administration

Later 2000's: **NoSQL and NewSQL (RDMS enhanced)**

- Giant data storage systems
- Google BigTable, Yahoo PNuts, Amazon,etc.

Database Matter!

- Continental Airlines aka. United Airlines
- Lowest rank to the most admired global company

Source: https://www.ausbt.com.au/fyi-continental-airlines-is-no-more-flights-now-united (Accessed August 2018)

More Definitions

- Database: organized collection of logically related data
- Data: stored representations of meaningful objects and events
 - <u>Structured</u>: numbers, string, dates
 - <u>Unstructured</u>: images, video, documents, textual
- Information: data processed to increase knowledge in the person using the data
- Metadata: data that describes the properties and context of user data

Structure vs non-structure data

- Structure data
 - Spread sheet consists of numeric, character and dates
- Non-structure data
 - Photo, sound, video segments

Source: http://bigdata.black/infrastructure/storage/unstructured-data/

What is Database?

- A database is any collection of data.
- A DBMS is a software system designed to maintain a database.
- We use a DBMS when
 - there is a large amount of data
 - security and integrity of the data are important
 - many users access the data concurrently

Metadata

• Data that describe the properties or characteristics of end-use data and the context of those data.

Data Item Meta						
Name	Туре	Length	Min	Max	Description	Source
Course	Alphanumeric	30			Course ID and name	Academic Unit
Section	Integer	1	1	9	Section number	Registrar
Semester	Alphanumeric	10			Semester and year	Registrar
Name	Alphanumeric	30			Student name	Student IS
ID	Integer	9			Student ID (SSN)	Student IS
Major	Alphanumeric	4			Student major	Student IS
GPA	Decimal	3	0.0	4.0	Student grade point average	Academic Unit

2. Hierarchy of Data

Note: EMP = employee

Source: Jeffrey TL Tan Wikipedia original contributor for Data Hierarchy. 9 Aug 2013 Permission is given to freely use this diagram in its entirety & unedited.

Data Hierarchy Diagram – with Employee Database example

https://en.wikipedia.org/wiki/Data_hierarchy

Example Database Application

- Consider a Internet or Phone Company in Thailand, such as AT&T
- Kinds of information they deal with:

customer records

employee records

billing information

management records

switching and wiring diagrams

customer service orders

Why Use a DBMS?

Without a DBMS, we'd have:

Why Use a DBMS?

DBMS Roles

- Actors On the Scene
 - (people interested in the actual data):
 - Database administrators
 - Database designers
 - Systems analysts and application programmers
 - End users

1. The Need for Databases

- Database Applications:
 - Banking: transactions
 - Airlines: reservations, schedules
 - Universities: registration, grades
 - Sales: customers, products, purchases
 - Online retailers: order tracking, customized recommendations
 - Manufacturing: production, inventory, orders, supply chain
 - Human resources: employee records, salaries, tax deductions
- Databases can be very large.
- Database are accessed by customer and other remote users via various tech
 - (ATM, Web-browser, mobile phones, etc.)
- Databases touch all aspects of our lives.

University Database Example

- Application program examples
 - Add new students, instructors and courses
 - Register students for courses and generate class rosters
 - Assign grades to students, compute grade point averages (GPA) and generate transcripts

Actors on the Scene

- Database Administrators
 - Acquiring a DBMS
 - Managing the system
 - Acquiring HW and SW to support the DBMS
 - Authorizing access (security policies)
 - Managing staff, including DB designers

Actors on the Scene

- Database Designers
 - Identifying the information of interested
 - Designing the database conceptual schema
 - Designing views for particular users
 - Designing the physical data layout and logical schema
 - Adjusting data parameters for performance

Actors Behind the Scene

- Tools Developers
 - Design and implement DBMS add-ons or plug-ins
 - May work for DBMS supplier or be independent
 - kinds of tools: database design aids, performance monitoring tools, user and designer interfaces

Actors Behind the Scene

- Operators and maintenance personnel
 - Run and maintain the computer environment in which a DBMS operates
 - Probably work for the database administrator (DBA)

Actors Behind the Scene

- Database Researchers
 - academic or industrial researchers
 - develop new theory, new designs, new data models and new algorithms to improve future database management systems

Lab 1

• Tomorrow at 9am