hypothesis testing

- https://twitter.com/meganinlisbon/status/1101870079858409478 (https://twitter.com/meganinlisbon/status/1101870079858409478)
- https://www.youtube.com/watch?v=5Dnw46eC-0o&feature=emb_logo (https://www.youtube.com/watch?v=5Dnw46eC-0o&feature=emb_logo)
- biopython
- timeit
- bokeh
- decorators
- virtual enviornments
- working with gzip files
- networkx
- time.sleep
- os : execute
- · static typing
- args, kwargs
- django

Out[1]: 'Andromaxh'

```
In [2]: a = [
             29, 19, 20,
              20, 23, 17,
              21, 24, 31,
              26, 28, 20,
              27, 19, 25,
              31, 24, 28,
              24, 29, 21,
              21, 18, 27,
              20
         ]
         b = [
              21, 19, 13,
             22, 15, 22,
             15, 22, 20,
              12, 24, 24,
              21, 19, 18,
              16, 23, 20,
          ]
In [36]: female yes = 83
         female_total = 264
         male_yes = 255
         male_total = 677
         female success rate = female yes/female total
         male_success_rate = male_yes/male_total
         diff = male_success_rate - female_success_rate
         diff
Out[36]: 0.06226780358981243
```

```
In [8]: total_papers = female_total + male_total
        succeed = female_yes + male_yes
        fail = total_papers - succeed
```

```
In [117]: import random
          1 = [True] * succeed + [False] * fail
          def rand_papers():
              random.shuffle(1)
              female_send = l[:female_total]
              male_send = l[female_total:]
              f suc = sum(female send)
              m suc = sum(male send)
              f_rate = f_suc/female_total
              m_rate = m_suc/male_total
              rate_diff = m_rate - f_rate
              #print (rate diff)
              return rate diff >= 0.06226780358981243
In [169]: %%timeit
          rand_papers()
          1.01 ms \pm 57.2 \mus per loop (mean \pm std. dev. of 7 runs, 1000 loops
          each)
 In [ ]:
In [118]: conferences = 10 000
          for x in range(conferences):
              if rand_papers():
                  s += 1
          print (s/conferences)
          0.0439
  In [ ]: # statistical significance level 0.05
          # Random permutations
          # False Positive Ratio
In [42]: [True] * 3 + [False] * 5
Out[42]: [True, True, True, False, False, False, False]
 In [5]: rs()
 Out[5]: 'Andromaxh'
In [32]: a=[1,2,3,4]
          random.shuffle(a)
          print (a)
          [4, 3, 2, 1]
```

```
In [204]: beer = [
              29, 19, 20,
              20, 23, 17,
              21, 24, 31,
              26, 28, 20,
              27, 19, 25,
              31, 24, 28,
              24, 29, 21,
              21, 18, 27,
              20
          ]
          water = [
              21, 19, 13,
              22, 15, 22,
              15, 22, 20,
              12, 24, 24,
              21, 19, 18,
              16, 23, 20,
          ]
          beer l = len(beer)
          water_l = len(water)
          beer avg = sum(beer)/beer 1
          water avg = sum(water)/water 1
          print (beer_avg, water_avg)
          diff = beer_avg - water_avg
          print (diff)
          23.68 19.222222222222
          4.45777777777778
In [205]: from scipy.stats import ttest ind
In [212]: | ttest_ind(beer, water).pvalue/2
Out[212]: 0.0004205775278799323
In [170]:
          def random m():
              water_beer = beer + water
              random.shuffle(water beer)
              random_beer = water_beer[:beer_l]
              random_water = water_beer[beer_l:]
              random_beer_average = sum(random_beer) / beer_1
              random_water_average = sum(random_water) / water_l
              random_diff = random_beer_average - random_water_average
              return random_diff >= 4.4577777777778
```

```
In [171]: %%timeit
          random m()
          43.2 \mus \pm 2.4 \mus per loop (mean \pm std. dev. of 7 runs, 10000 loops
          each)
 In [ ]:
In [130]: s = 0
          tries = 100 000
          for x in range(tries):
               if random m():
                   s += 1
          s / tries
Out[130]: 0.00035
In [134]: import numpy as np
          def random_m_np():
              water_beer = np.array(beer + water)
               #random.shuffle(water beer)
              np.random.shuffle(water_beer)
              random_beer = water_beer[:beer_1]
              random_water = water_beer[beer_l:]
              random_beer_average = np.average(random_beer)
               random_water_average = np.average(random_water)
               random diff = random beer average - random water average
               return random diff >= 4.45777777777778
In [172]: %%timeit
          random_m_np()
          51.8 \mus \pm 3.25 \mus per loop (mean \pm std. dev. of 7 runs, 10000 loop
          s each)
 In [ ]:
In [137]: | np.average([random_m_np() for x in range(100_000)])
Out[137]: 0.0005
 In [ ]:
In [133]: a = [1,2,2,3,4]
          np.random.shuffle(a)
          а
Out[133]: [2, 1, 4, 3, 2]
```

biopython

```
In [138]: from Bio import Entrez

# For some reason Entrez needs to know who are you
# but you don't have to be that honest..
Entrez.email = 'anonymous@gmail.com'
In [139]: handle = Entrez.einfo()
record = Entrez.read(handle)
```

In [142]: pd.DataFrame(record)

Out[142]:

	DbList
0	pubmed
1	protein
2	nuccore
3	ipg
4	nucleotide
5	structure
6	genome
7	annotinfo
8	assembly
9	bioproject
10	biosample
11	blastdbinfo
12	books
13	cdd
14	clinvar
15	gap
16	gapplus
17	grasp
18	dbvar
19	gene
20	gds
21	geoprofiles
22	homologene
23	medgen
24	mesh
25	ncbisearch
26	nlmcatalog
27	omim
28	orgtrack
29	pmc
30	popset
31	proteinclusters
32	pcassay
33	protfam

```
DbList
             34
                   biosystems
             35
                  pccompound
             36
                  pcsubstance
             37
                     seqannot
             38
                         snp
             39
                          sra
  In [ ]:
In [141]:
            import pandas as pd
```

```
In [148]: handle = Entrez.efetch(
    db='nuccore',
    id='NM_000762.5',
    retmode='text',
    rettype='fasta',
    #rettype='genbank',
)

data = handle.read()
print (data)
```

>NM_000762.5 Homo sapiens cytochrome P450 family 2 subfamily A mem ber 6 (CYP2A6), mRNA

ATCTATCATCCCACTACCACCATGCTGGCCTCAGGGATGCTTCTGGTGGCCTTGCTGGTCTGCCTGACTG

 ${\tt GCCCTTCATTGGAAACTACCTGCAGCTGAACACAGAGCAGATGTACAACTCCCTCATGAAGATCAGTGAG}$

 $\tt CTTCAAAGGCTATGGCGTGGTATTCAGCAACGGGGGGGCGCCCAAGCAGCTCCGGCGCTTCTCCATCGCC$

TCGACGCCCTCCGGGGCACTGGCGCCCAATATCGATCCCACCTTCTTCCTGAGCCGCACAGTCT

 ${\tt TGTCATCAGCTCCATTGTCTTTGGGGACCGCTTTGACTATAAGGACAAAGAGTTCCTGTCACTGTTGCGCGC}$

 ${\tt ATGATGCTAGGAATCTTCCAGTTCACGTCAACCTCCACGGGGCAGCTCTATGAGATGTTCTCTTCG}\\ {\tt GTGA}$

TGAAACACCTGCCAGGACCACAGCAACAGGCCTTTCAGTTGCTGCAAGGGCTGGAGGACTTCATAG

 $\tt CGCATGCAGGAGGAGGAGAACCCCAACACGGAGTTCTACTTGAAAAACCTGGTGATGACCACGTTGA$

 ${\tt ACCTCTTCATTGGGGGCACCGAGACCGTCAGCACCCTGCGCTATGGCTTCTTGCTGCTCATGAAGCA}$

 ${\tt CCCAGAGGTGGAGGCCAAGGTCCATGAGGAGATTGACAGAGTGATCGGCAAGAACCGGCAGCCCAAGTTT}$

 ${\tt GAGGACCGGGCCAAGATGCCCTACATGGAGGCAGTGATCCACGAGATCCAAAGATTTGGAGACGTGATCC}$

 ${\tt CCATGAGTTTGGCCCGCAGAGTCAAAAAGGACACCAAGTTTCGGGATTTCTTCCTCCCTAAGGGCACCGA}$

AGTGTACCCTATGCTGGGCTCTGTGCTGAGAGACCCCAGTTTCTTCTCCAACCCCCAGGACTTCAA

 ${\tt CAGCACTTCCTGAATGAGAAGGGGCAGTTTAAGAAGAGTGATGCTTTTGTGCCCTTTTCCATCGGA}\\ {\tt AAGC}$

 ${\tt GGAACTGTTTCGGAGAAGGCCTGGCCAGAATGGAGCTCTTTCTCTTCTTCACCACCGTCATGCAGA} \\ {\tt ACTT}$

 $\tt CCGCCTCAAGTCCTCCCAGTCACCTAAGGACATTGACGTGTCCCCCAAACACGTGGGCTTTGCCACGATC$

CCACGAAACTACACCATGAGCTTCCTGCCCCGCTGAGCGAGGGCTGTGCCGGTGCAGGTCTGGTGGGGCGG

 ${\tt GGCCAGGGAAAGGGCCAAGACCGGGCTTGGGAGAGGGGCGCAGCTAAGACTGGGGGCAGGATGGC}$

 ${\tt GGAAAGGAAGGGGCTGGTGGCTAGAGGGAAGAAGAAGAAGCAGAAGCGGCTCAGTTCACCTTGATA}$ ${\tt AGGT}$

 ${\tt GCTTCCGAGCTGGGATGAGGAAGGAAACCCTTACATTATGCTATGAAGAGTAGTAATAATAGCA}\\ {\tt GCTC}$

TTATTTCCTGAGCAAAAAAAAAAA

12 of 19

In [159]: for x in blast_record.alignments:
 print (x)

gi|1519246407|ref|NM_000762.6| Homo sapiens cytochrome P450 family 2 subfamily A member 6 (CYP2A6), mRNA Length = 1761

gi|180986|gb|M33318.1|HUMCPIIA3A Human cytochrome P450IIA3 (CYP2A 3) mRNA, complete cds

Length = 1748

gi|29546|emb|X13897.1| Human mRNA for cytochrome P-450IIA Length = 1756

gi|30331|emb|X13930.1| Human CYP2A4 mRNA for P-450 IIA4 protein Length = 1748

gi|1753053698|ref|XM_019015583.2| PREDICTED: Gorilla gorilla gorilla cytochrome P450 2A6 (LOC101146638), transcript variant X1, mRNA Length = 2284

gi|64654819|gb|BC096256.1| Homo sapiens cytochrome P450, family 2, subfamily A, polypeptide 6, mRNA (cDNA clone MGC:116921 IMAGE:4000 6068), complete cds

Length = 1643

gi|64654814|gb|BC096255.1| Homo sapiens cytochrome P450, family 2, subfamily A, polypeptide 6, mRNA (cDNA clone MGC:116920 IMAGE:4000 6064), complete cds

Length = 1643

gi|64653226|gb|BC096254.1| Homo sapiens cytochrome P450, family 2, subfamily A, polypeptide 6, mRNA (cDNA clone MGC:116919 IMAGE:4000 6062), complete cds

Length = 1643

gi|109730085|gb|BC096253.3| Homo sapiens cytochrome P450, family 2, subfamily A, polypeptide 6, mRNA (cDNA clone MGC:116918 IMAGE:4 0006061), complete cds

Length = 1643

gi|1351473687|ref|XM_024237332.1| PREDICTED: Pongo abelii cytochro me P450 2A6 (LOC100457048), transcript variant X1, mRNA Length = 2286

gi|35197|emb|X13929.1| Human CYP2A3 mRNA for P-450 IIA3 protein Length = 1600

gi|6470138|gb|AF182275.1|AF182275 Homo sapiens cytochrome P450-2A6 (CYP2A6) mRNA, complete cds Length = 1627

gi|1887789759|ref $|NM_000764.3|$ Homo sapiens cytochrome P450 family 2 subfamily A member 7 (CYP2A7), transcript variant 1, mRNA Length = 1760

gi|1849054764|ref $|XM_034944594.1|$ PREDICTED: Pan paniscus cytochro me P450 family 2 subfamily A member 7 (CYP2A7), mRNA Length = 2730

gi|181269|gb|M33317.1|HUMCYIIA4A Human cytochrome P450IIA4 (CYP2A 4) mRNA, complete cds

Length = 1747

gi |1367220708 |ref |XM_024351394.1 | PREDICTED: Pan troglodytes cytoc hrome P450 2A7 (LOC107966456), mRNA

Length = 1777

gi|1008465|gb|U22029.1|HSU22029 Human cytochrome P450 (CYP2A7) mRN A, complete cds

Length = 2282

gi|1743170194|ref|XM_003282448.4| PREDICTED: Nomascus leucogenys c ytochrome P450 2A13 (LOC100579248), transcript variant X1, mRNA Length = 2286

gi|1800015647|ref $|XM_032172847.1|$ PREDICTED: Hylobates moloch cyto chrome P450 2A13 (LOC116480658), transcript variant X1, mRNA Length = 2285

gi|1751200936|ref|XM_010380822.2| PREDICTED: Rhinopithecus roxella na cytochrome P450 2A13-like (LOC104676097), transcript variant X 1, mRNA

Length = 2284

gi|795398387|ref $|XM_012086802.1|$ PREDICTED: Cercocebus atys cytoch rome P450 2A13-like (LOC105598002), transcript variant X1, mRNA Length = 6774

gi|1825863830|ref $|XM_033224912.1|$ PREDICTED: Trachypithecus franco isi cytochrome P450 2A13 (LOC117091930), mRNA Length = 2285

gi|548960720|ref|NM_001285348.1| Macaca fascicularis cytochrome P4 50 family 2 subfamily A member 24 (CYP2A24), mRNA >gi|71152698|gb|DQ074792.1| Macaca fascicularis cytochrome P450 2A24 (CYP2A24) mRNA, complete cds

Length = 1759

gi|164691768|dbj|AK312964.1| Homo sapiens cDNA, FLJ93424, highly s imilar to Homo sapiens cytochrome P450, family 2, subfamily A, pol ypeptide 6 (CYP2A6), mRNA

Length = 1506

gi|1825821225|ref $|XM_033218604.1|$ PREDICTED: Trachypithecus franco isi cytochrome P450 2A13-like (LOC117087862), mRNA Length = 2539

gi|1653961540|ref|NM_000766.5| Homo sapiens cytochrome P450 family 2 subfamily A member 13 (CYP2A13), mRNA Length = 1760

gi|1411126738|ref $|XM_025366233.1|$ PREDICTED: Theropithecus gelada cytochrome P450 2A13-like (LOC112612112), transcript variant X2, m RNA

Length = 1739

gi|795398405|ref|XM_012086807.1| PREDICTED: Cercocebus atys cytoch rome P450 2A13-like (LOC105598006), mRNA Length = 6901

gi|1351473349|ref|XM_024237225.1| PREDICTED: Pongo abelii cytochro

me P450 2A13 (LOC100458875), transcript variant X1, mRNA Length = 1752

gi|795234893|ref $|XM_011952499.1|$ PREDICTED: Colobus angolensis pal liatus cytochrome P450 2A13-like (LOC105519195), transcript varian t X1, mRNA

Length = 2284

gi|1622890953|ref $|XM_028838334.1|$ PREDICTED: Macaca mulatta cytoch rome P450, family 2, subfamily A, polypeptide 24 (CYP2A24), transcript variant X1, mRNA

Length = 1781

gi|1849062391|ref $|XM_003812465.2|$ PREDICTED: Pan paniscus cytochro me P450 family 2 subfamily A member 13 (CYP2A13), mRNA Length = 1757

gi|1788688032|ref $|XM_023229274.3|$ PREDICTED: Piliocolobus tephrosc eles cytochrome P450 2A13 (LOC111554025), transcript variant X1, m RNA

Length = 2288

gi|1411126736|ref|XM_025366232.1| PREDICTED: Theropithecus gelada cytochrome P450 2A13-like (LOC112612112), transcript variant X1, m RNA

Length = 1759

gi|649118244|gb|KJ896677.1| Synthetic construct Homo sapiens clone ccsbBroadEn_06071 CYP2A6 gene, encodes complete protein

Length = 1617

gi|1147694741|emb|LT740833.1| Human ORFeome Gateway entry vector p ENTR223-CYP2A6, complete sequence

Length = 4272

gi|823673899|gb|KR711779.1|Synthetic construct Homo sapiens clone CCSBHm $_00030839$ CYP2A6 (CYP2A6) mRNA, encodes complete protein Length = 1617

gi|823673897|gb|KR711778.1| Synthetic construct Homo sapiens clone CCSBHm_00030834 CYP2A6 (CYP2A6) mRNA, encodes complete protein Length = 1617

gi|823673895|gb|KR711777.1| Synthetic construct Homo sapiens clone CCSBHm_00030831 CYP2A6 (CYP2A6) mRNA, encodes complete protein Length = 1617

gi|823673893|gb|KR711776.1| Synthetic construct Homo sapiens clone CCSBHm_00030829 CYP2A6 (CYP2A6) mRNA, encodes complete protein Length = 1617

gi|795398351|ref $|XM_012086792.1|$ PREDICTED: Cercocebus atys cytoch rome P450 2A13 (LOC105597997), transcript variant X3, mRNA Length = 2213

gi|795398348|ref $|XM_012086791.1|$ PREDICTED: Cercocebus atys cytoch rome P450 2A13 (LOC105597997), transcript variant X2, mRNA Length = 2990

gi|795398345|ref|XM_012086790.1| PREDICTED: Cercocebus atys cytoch

```
rome P450 2A13 (LOC105597997), transcript variant X1, mRNA
                    Length = 2711
          gi|544525941|ref|XM 005595716.1| PREDICTED: Macaca fascicularis cy
          tochrome P450 2A13-like (LOC102143277), mRNA
                    Length = 1766
          qi|1751208157|ref|XM 030913665.1| PREDICTED: Rhinopithecus roxella
          na cytochrome P450 2A13 (LOC104676180), mRNA
                    Length = 1749
          qi|1753052882|ref|XM 031004339.1| PREDICTED: Gorilla gorilla goril
          la cytochrome P450 2A13 (LOC101127384), mRNA
                    Length = 1739
          gi|795137501|ref|XM 011936512.1| PREDICTED: Colobus angolensis pal
          liatus cytochrome P450 2A13 (LOC105507828), transcript variant X1,
          mRNA
                    Length = 1750
          gi|1825820915|ref|XM 033216130.1| PREDICTED: Trachypithecus franco
          isi cytochrome P450 2A13-like (LOC117086673), mRNA
                    Length = 1804
          gi|1751201107|ref|XM 010380820.2| PREDICTED: Rhinopithecus roxella
          na cytochrome P450 2A13 (LOC104676095), mRNA
                    Length = 1764
          gi|1381460778|ref|XM 011764694.2| PREDICTED: Macaca nemestrina cyt
          ochrome P450 2A13 (LOC105495313), mRNA
                    Length = 2313
In [164]: first alignment = blast record.alignments[10]
          first hsp = first alignment.hsps[0]
          print(first hsp)
          Score 3191 (2878 bits), expectation 0.0e+00, alignment length 1602
                    159 CCTGCAGCTGAACACAGAGCAGATGTACAACTCCCTCATGAAGAT...CTG
          Query:
          1760
                         1 CCTGCAGCTGAACACAGAGCAGATGTACAACTCCCTCATGAAGAT...CTG
          Sbjct:
          1600
In [165]: print ('Subject start:', first hsp.sbjct start)
          print ('Subject end:', first_hsp.sbjct_end)
          print ('Query start:', first_hsp.query_start)
          print ('Query end:', first hsp.query end)
          Subject start: 1
          Subject end: 1600
          Query start: 159
          Query end: 1760
```

```
last alignment = blast record.alignments[-1]
In [166]:
         last hsp = last alignment.hsps[-1]
         print (last_hsp)
         Score 2873 (2591 bits), expectation 0.0e+00, alignment length 1765
                    1 ATCTATCATCCCACTACCACCATGCTGGCCTCAGGGATGCTTCTG...CAA
         Query:
         1765
                      564 ATCGATCATCCCACTGCCCCCATGCTGGCCTCAGGGCTGCTCCTG...CAA
         Sbjct:
         2310
 In [ ]:
In [153]:
         data.format("fasta")
```

A\n\n'

Out[153]: '>NM 000762.5 Homo sapiens cytochrome P450 family 2 subfamily A me mber 6 (CYP2A6), mRNA\nATCTATCATCCCACTACCACCATGCTGGCCTCAGGGATGCTTC TGGTGGCCTTGCTGGCTGACTG\nTAATGGTCTTGATGTCTGTTTTGGCAGCAGAGGAAGAG CAAGGGGAAGCTGCCTCCGGGACCCACCCCATT\nGCCCTTCATTGGAAACTACCTGCAGCTGAAC ACAGAGCAGATGTACAACTCCCTCATGAAGATCAGTGAG\nCGCTATGGCCCCGTGTTCACCATTC ACTTGGGGCCCCGGCGGTCGTGTGTGTGTGGACATGATGCCG\nTCAGGGAGGCTCTGGTGGA $\tt CCAGGCTGAGGAGTTCAGCGGGCGAGGCGAGCCACCTTCGACTGGGT \backslash nCTTCAAAGGCTAT$ GGCGTGGTATTCAGCAACGGGGAGCGCCCAAGCAGCTCCGGCGCTTCTCCATCGCC\nACCCTGC GGGACTTCGGGGTGGCCAAGCGAGGCATCGAGGAGCGCATCCAGGAGGAGGCGGGCTTCCTCA\nT CGACGCCCTCCGGGGCACTGGCGCGCCAATATCGATCCCACCTTCTTCCTGAGCCGCACAGTCTC CAA\nTGTCATCAGCTCCATTGTCTTTGGGGACCGCTTTGACTATAAGGACAAAGAGTTCCTGTCA CTGTTGCGC\nATGATGCTAGGAATCTTCCAGTTCACGTCAACCTCCACGGGGCAGCTCTATGAGA TGTTCTCTCGGTGA\nTGAAACACCTGCCAGGACCACAGCAACAGGCCTTTCAGTTGCTGCAAGG GCTGGAGGACTTCATAGCCAA\nGAAGGTGGAGCACAACCAGCGCACGCTGGATCCCAATTCCCCA CGGGACTTCATTGACTCCTTTCTCATC\nCGCATGCAGGAGGAGGAGAACACCCCAACACGGAGT TCTACTTGAAAAACCTGGTGATGACCACGTTGA\nACCTCTTCATTGGGGGCACCGAGACCGTCAG CACCACCCTGCGCTATGGCTTCTTGCTGCTCATGAAGCA\nCCCAGAGGTGGAGGCCAAGGTCCAT GAGGAGATTGACAGAGTGATCGGCAAGAACCGGCAGCCCAAGTTT\nGAGGACCGGGCCAAGATGC ${\tt CCTACATGGAGGCAGTGATCCACGAGATCCAAAGATTTGGAGACGTGATCC \setminus nCCATGAGTTTGGC}$ CCGCAGAGTCAAAAAGGACACCAAGTTTCGGGATTTCTTCCTCCCTAAGGGCACCGA\nAGTGTAC CCTATGCTGGGCTCTGTGCTGAGAGACCCCAGTTTCTTCTCCAACCCCCAGGACTTCAATCCC\nc AGCACTTCCTGAATGAGAAGGGGCAGTTTAAGAAGAGTGATGCTTTTGTGCCCTTTTCCATCGGAA ${\tt AGC \backslash nGGAACTGTTTCGGAGAAGGCCTGGCCAGAATGGAGCTCTTTCTCTTCTTCACCACCGTCAT}$ GCAGAACTT\nCCGCCTCAAGTCCTCCCAGTCACCTAAGGACATTGACGTGTCCCCCAAACACGTG GGCTTTGCCACGATC\nCCACGAAACTACACCATGAGCTTCCTGCCCCGCTGAGCGAGGGCTGTGC CGGTGCAGGTCTGGTGGGCGG\nGGCCAGGGAAAGGGCCAGGCCAAGACCGGGCTTGGGAGAGGGG CGCAGCTAAGACTGGGGGCAGGATGGC\nGGAAAGGAAGGGCGTGGTGGCTAGAGGGAAGAAGA AAACAGAAGCGGCTCAGTTCACCTTGATAAGGT\nGCTTCCGAGCTGGGATGAGAGGAAGGAAACC CTTACATTATGCTATGAAGAGTAGTAATAATAGCAGCTC\nTTATTTCCTGAGCAAAAAAAAAAA

```
In [167]:
          from Bio import pairwise2
          alignments = pairwise2.align.globalxx("ACCGT", "ACG")
```

19/01/2021, 11:44 18 of 19

decorators

```
In [223]:
          import time
          def mitsos(f):
              def wrapper():
                   start time = time.time()
                   f()
                  end_time = time.time()
                  print (' Runtime: {} seconds'.format(end_time-start_time))
              return wrapper
In [202]:
          @mitsos
          def g():
              sorted([random.random() for x in range(1000000)])
In [203]:
         g()
           Runtime: 0.8197329044342041 seconds
In [185]:
          g()
          hello
  In [ ]:
```