Package 'fourierin'

December 8, 2023

December 6, 2023
Type Package
Title Computes Numeric Fourier Integrals
Version 0.2.5
Date 2023-12-08
Author Guillermo Basulto-Elias
Maintainer Guillermo Basulto-Elias <guillermobasulto@gmail.com></guillermobasulto@gmail.com>
Description Computes Fourier integrals of functions of one and two variables using the Fast Fourier transform. The Fourier transforms must be evaluated on a regular grid for fast evaluation.
License MIT + file LICENSE
LinkingTo RcppArmadillo, Rcpp
Imports Rcpp (>= 1.0.1),
Suggests MASS, knitr, rmarkdown, dplyr, tidyr, purrr, ggplot2, lattice, rbenchmark, testthat (>= 3.1.0), covr, spelling
RoxygenNote 7.2.3
URL https://github.com/gbasulto/fourierin
BugReports https://github.com/gbasulto/fourierin/issues
VignetteBuilder knitr
Encoding UTF-8
Language en-US
NeedsCompilation yes
Repository CRAN
Date/Publication 2023-12-08 20:40:02 UTC
R topics documented:
fourierin
Index 11

2 fourierin

_		
† OU	rie	rın

Compute Fourier integrals

Description

It computes Fourier integrals for functions of one and two variables.

Usage

```
fourierin(
   f,
   lower_int,
   upper_int,
   lower_eval = NULL,
   upper_eval = NULL,
   const_adj,
   freq_adj,
   resolution = NULL,
   eval_grid = NULL,
   use_fft = TRUE
)
```

Arguments

f	function or a vector of size m. If a function is provided, it must be able to be evaluated at vectors. If a vector of values is provided, such evaluations must have been obtained on a regular grid and the Fourier integral is faster is m is a power of 2.
lower_int	Lower integration limit(s).
upper_int	Upper integration limit(s).
lower_eval	Lower evaluation limit(s). It can be NULL if an evaluation grid is provided.
upper_eval	Upper evaluation limit(s). It can be NULL if an evaluation grid is provided.
const_adj	Factor related to adjust definition of Fourier transform. It is usually equal to 0 , -1 or 1.
freq_adj	Constant to adjust the exponent on the definition of the Fourier transform. It is usually equal to 1, -1, 2pi or -2pi.
resolution	A vector of integers (faster if powers of two) determining the resolution of the evaluation grid. Not required if f is a vector.
eval_grid	Optional matrix with d columns with the points where the Fourier integral will be evaluated. If it is provided, the FFT will not be used.
use_fft	Logical value specifying whether the FFT will be used.

Details

See plenty of detailed examples in the vignette.

fourierin 3

Value

A list with the elements n-dimensional array and n vectors with their corresponding resolution. Specifically,

```
values A n-dimensional (resol_1 x resol_2 x ... x resol_n) complex array with the values.

w1 A vector of size resol_1
...

wn A vector of size resol_n
```

Examples

```
##--- Example 1 --------
##--- Recovering std. normal from its characteristic function -----
library(fourierin)
## Function to be used in the integrand
myfnc \leftarrow function(t) exp(-t^2/2)
## Compute integral
out <- fourierin(f = myfnc, lower_int = -5, upper_int = 5,
                lower_eval= -3, upper_eval = 3, const_adj = -1,
                freq_adj = -1, resolution = 64)
## Extract grid and values
grid <- out$w</pre>
values <- Re(out$values)</pre>
## Compare with true values of Fourier transform
plot(grid, values, type = "1", col = 3)
lines(grid, dnorm(grid), col = 4)
##--- Example 2 --------------
##--- Computing characteristic function of a gamma r. v. ------
library(fourierin)
## Function to be used in integrand
myfnc <- function(t) dgamma(t, shape, rate)</pre>
## Compute integral
shape <- 5
rate <- 3
out <- fourierin(f = myfnc, lower_int = 0, upper_int = 6,</pre>
                lower_eval = -4, upper_eval = 4,
                const_adj = 1, freq_adj = 1, resolution = 64)
## Extract values
grid <- out$w</pre>
                                      # Extract grid
                                      # Real values
re_values <- Re(out$values)
```

4 fourierin

```
im_values <- Im(out$values)</pre>
                                         # Imag values
## Now compute the real and imaginary true values of the
## characteric function.
true_cf <- function(t, shape, rate) (1 - 1i*t/rate)^-shape</pre>
true_re <- Re(true_cf(grid, shape, rate))</pre>
true_im <- Im(true_cf(grid, shape, rate))</pre>
## Compare them. We can see a slight discrepancy on the tails,
## but that is fixed when resulution is increased.
plot(grid, re_values, type = "l", col = 3)
lines(grid, true_re, col = 4)
                                         # Same here
plot(grid, im_values, type = "1", col = 3)
lines(grid, true_im, col = 4)
##--- Example 3 ------
##--- Recovering std. normal from its characteristic function ---
library(fourierin)
##-Parameters of bivariate normal distribution
mu < -c(-1, 1)
sig \leftarrow matrix(c(3, -1, -1, 2), 2, 2)
##-Multivariate normal density
##-x is n x d
f <- function(x) {</pre>
   ##-Auxiliar values
   d \leftarrow ncol(x)
   z \leftarrow sweep(x, 2, mu, "-")
    ##-Get numerator and denominator of normal density
    num \leftarrow exp(-0.5*rowSums(z * (z %*% solve(sig))))
    denom <- sqrt((2*pi)^d*det(sig))</pre>
    return(num/denom)
}
## Characteristic function
## s is n x d
phi <- function(s) {</pre>
    complex(modulus = exp(- 0.5*rowSums(s*(s %*% sig))),
            argument = s %*% mu)
}
##-Approximate cf using Fourier integrals
eval <- fourierin(f, lower_int = c(-8, -6), upper_int = c(6, 8),
                  lower_eval = c(-4, -4), upper_eval = c(4, 4),
                  const_adj = 1, freq_adj = 1,
                  resolution = c(128, 128))
## Extract values
t1 <- eval$w1
t2 <- eval$w2
```

```
t \leftarrow as.matrix(expand.grid(t1 = t1, t2 = t2))
approx <- eval$values</pre>
true <- matrix(phi(t), 128, 128)</pre>
                                         # Compute true values
## This is a section of the characteristic function
plot(t2, Re(approx[i, ]), type = "l", col = 2,
     ylab = "",
     xlab = expression(t[2]),
     main = expression(paste("Real part section at ",
                              t[1], "= 0")))
lines(t2, Re(true[i, ]), col = 3)
legend("topleft", legend = c("true", "approximation"),
       col = 3:2, lwd = 1)
##-Another section, now of the imaginary part
plot(t1, Im(approx[, i]), type = "l", col = 2,
     ylab = "",
     xlab = expression(t[1]),
     main = expression(paste("Imaginary part section at ",
                              t[2], "= 0")))
lines(t1, Im(true[, i]), col = 3)
legend("topleft", legend = c("true", "approximation"),
       col = 3:2, lwd = 1)
```

fourierin_1d

Univariate Fourier integrals

Description

It computes Fourier integrals of functions of one and two variables on a regular grid.

Usage

```
fourierin_1d(
    f,
    lower_int,
    upper_int,
    lower_eval = NULL,
    upper_eval = NULL,
    const_adj,
    freq_adj,
    resolution = NULL,
    eval_grid = NULL,
    use_fft = TRUE
)
```

Arguments

function or a vector of size m. If a function is provided, it must be able to be evaluated at vectors. If a vector of values is provided, such evaluations must have been obtained on a regular grid and the Fourier integral is faster is m is a power of 2.
Lower integration limit(s).
Upper integration limit(s).
Lower evaluation limit(s). It can be NULL if an evaluation grid is provided.
Upper evaluation limit(s). It can be NULL if an evaluation grid is provided.
Factor related to adjust definition of Fourier transform. It is usually equal to 0, -1 or 1.
Constant to adjust the exponent on the definition of the Fourier transform. It is usually equal to 1, -1, 2pi or -2pi.
A vector of integers (faster if powers of two) determining the resolution of the evaluation grid. Not required if f is a vector.
Optional matrix with d columns with the points where the Fourier integral will be evaluated. If it is provided, the FFT will not be used.
Logical value specifying whether the FFT will be used.

Details

See vignette for more detailed examples.

Value

If w is given, only the values of the Fourier integral are returned, otherwise, a list with the elements

w A vector of size m where the integral was computed.values A complex vector of size m with the values of the integral

Examples

```
grid <- out$w</pre>
values <- Re(out$values)</pre>
plot(grid, values, type = "1", col = 3)
lines(grid, dnorm(grid), col = 4)
##--- Example 2 ------
##--- Computing characteristic function of a gamma r. v. -----
library(fourierin)
## Function to to be used in integrand
myfun <- function(t) dgamma(t, shape, rate)</pre>
## Compute integral
shape <- 5
rate <- 3
out <- fourierin_1d(f = myfun, lower_int = 0, upper_int = 6,</pre>
                    lower_eval = -4, upper_eval = 4,
                    const_adj = 1, freq_adj = 1, resolution = 64)
grid <- out$w</pre>
                                         # Extract grid
re_values <- Re(out$values)</pre>
                                         # Real values
im_values <- Im(out$values)</pre>
                                         # Imag values
                                      # Now compute the real and
                                      # imaginary true values of the
                                         # characteric function.
true_cf <- function(t, shape, rate) (1 - 1i*t/rate)^-shape</pre>
true_re <- Re(true_cf(grid, shape, rate))</pre>
true_im <- Im(true_cf(grid, shape, rate))</pre>
                                      # Compare them. We can see a
                                      # slight discrepancy on the
                                      # tails, but that is fixed
                                      # when resulution is
                                      # increased.
plot(grid, re_values, type = "1", col = 3)
lines(grid, true_re, col = 4)
                                         # Same here
plot(grid, im_values, type = "1", col = 3)
lines(grid, true_im, col = 4)
```

fourierin_2d

Bivariate Fourier integrals

Description

It computes Fourier integrals for functions of one and two variables.

Usage

```
fourierin_2d(
   f,
   lower_int,
   upper_int,
   lower_eval = NULL,
   upper_eval = NULL,
   const_adj,
   freq_adj,
   resolution = NULL,
   eval_grid = NULL,
   use_fft = TRUE
)
```

Arguments

f	function or a vector of size m. If a function is provided, it must be able to be evaluated at vectors. If a vector of values is provided, such evaluations must have been obtained on a regular grid and the Fourier integral is faster is m is a power of 2.
lower_int	Lower integration limit(s).
upper_int	Upper integration limit(s).
lower_eval	Lower evaluation limit(s). It can be NULL if an evaluation grid is provided.
upper_eval	Upper evaluation limit(s). It can be NULL if an evaluation grid is provided.
const_adj	Factor related to adjust definition of Fourier transform. It is usually equal to 0 , -1 or 1 .
freq_adj	Constant to adjust the exponent on the definition of the Fourier transform. It is usually equal to $1, -1, 2pi$ or $-2pi$.
resolution	A vector of integers (faster if powers of two) determining the resolution of the evaluation grid. Not required if f is a vector.
eval_grid	Optional matrix with d columns with the points where the Fourier integral will be evaluated. If it is provided, the FFT will not be used.
use_fft	Logical value specifying whether the FFT will be used.

Value

If w is given, only the values of the Fourier integral are returned, otherwise, a list with three elements

w1 Evaluation grid for first entry
w2 Evaluation grid for second entry
values m1 x m2 matrix of complex numbers, corresponding to the evaluations of the integral

Examples

```
##--- Recovering std. normal from its characteristic function -----
library(fourierin)
##-Parameters of bivariate normal distribution
mu < -c(-1, 1)
sig \leftarrow matrix(c(3, -1, -1, 2), 2, 2)
##-Multivariate normal density
##-x is n x d
f <- function(x) {</pre>
    ##-Auxiliar values
    d \leftarrow ncol(x)
    z \leftarrow sweep(x, 2, mu, "-")
    ##-Get numerator and denominator of normal density
    num <- exp(-0.5*rowSums(z * (z %*% solve(sig))))
    denom <- sqrt((2*pi)^d*det(sig))</pre>
    return(num/denom)
}
##-Characteristic function
##-s is n x d
phi <- function(s) {</pre>
    complex(modulus = exp(- 0.5*rowSums(s*(s %*% sig))),
            argument = s %*% mu)
}
##-Approximate cf using Fourier integrals
eval <- fourierin_2d(f, lower_int = c(-8, -6), upper_int = c(6, 8),
                      lower_eval = c(-4, -4), upper_eval = c(4, 4),
                      const_adj = 1, freq_adj = 1,
                      resolution = c(128, 128))
## Extract values
t1 <- eval$w1
t2 <- eval$w2
t \leftarrow as.matrix(expand.grid(t1 = t1, t2 = t2))
approx <- eval$values</pre>
true <- matrix(phi(t), 128, 128)</pre>
                                          # Compute true values
##-This is a section of the characteristic functions
i <- 65
plot(t2, Re(approx[i, ]), type = "l", col = 2,
     ylab = "",
     xlab = expression(t[2]),
     main = expression(paste("Real part section at ",
                              t[1], "= 0")))
lines(t2, Re(true[i, ]), col = 3)
legend("topleft", legend = c("true", "approximation"),
       col = 3:2, lwd = 1)
```

Index

fourierin, 2
fourierin_1d, 5
fourierin_2d, 7