A general theory of learning and memory with Complex Synapses

Subhaneil Lahiri

Stanford University, Applied Physics

September 1, 2014

see: S. Lahiri and S. Ganguli, "A memory frontier for complex synapses," Advances in Neural Information Processing Systems 26, pages 1034–1042. 2013.

Synapses are complex

[Coba et al. (2009)]

[Montgomery and Madison (2002)]

- ullet Internal functional state of synapse o synaptic weight.
- weak
- ullet Candidate plasticity events o transitions between states

strong

Potentiation

Depression

- ullet Internal functional state of synapse o synaptic weight.
- weak
- ullet Candidate plasticity events o transitions between states

strong

Potentiation event

Depression event

- ullet Internal functional state of synapse o synaptic weight.
- weak
- ullet Candidate plasticity events o transitions between states

strong

Potentiation event

Depression event

- ullet Internal functional state of synapse o synaptic weight.
- weakstrong
- $\bullet \ \, \text{Candidate plasticity events} \to \text{transitions between states} \\$

Potentiation event

Depression event

- ullet Internal functional state of synapse o synaptic weight.
- weak
- ullet Candidate plasticity events o transitions between states

strong

Potentiation event

Depression event

- ullet Internal functional state of synapse o synaptic weight.
- weakstrong
- $\bullet \ \, \text{Candidate plasticity events} \to \text{transitions between states} \\$

Potentiation event

Depression event

- ullet Internal functional state of synapse o synaptic weight.
- weak
- ullet Candidate plasticity events o transitions between states

strong

Potentiation event

Depression event

- ullet Internal functional state of synapse o synaptic weight.
- weak
- ullet Candidate plasticity events o transitions between states

strong

Potentiation event

Depression event

- ullet Internal functional state of synapse o synaptic weight.
- weak
- ullet Candidate plasticity events o transitions between states

strong

Potentiation event

Depression event

- ullet Internal functional state of synapse o synaptic weight.
- weak
- ullet Candidate plasticity events o transitions between states

strong

Potentiation event

Depression event

[Fusi et al. (2005), Fusi and Abbott (2007), Barrett and van Rossum (2008)] [Lahiri and Ganguli (2013)]

3 / 5

- ullet Internal functional state of synapse o synaptic weight.
- weak
- $\bullet \ \, \text{Candidate plasticity events} \to \text{transitions between states} \\$

strong

Potentiation event

Depression event

- ullet Internal functional state of synapse o synaptic weight.
- weak
- ullet Candidate plasticity events o transitions between states

strong

Potentiation event

Depression event

- ullet Internal functional state of synapse o synaptic weight.
- weak
- ullet Candidate plasticity events o transitions between states

strong

Potentiation

Depression

Example models

Two example models of complex synapses.

[Fusi et al. (2005), Leibold and Kempter (2008), Ben-Dayan Rubin and Fusi (2007)]

These have different memory storage properties

Memory curve envelope

Memory curve envelope

Early times (vary # states):

Late times (vary ε .):

References I

M. P. Coba, A. J. Pocklington, M. O. Collins, M. V. Kopanitsa, R. T. Uren, S. Swamy, M. D. Croning, J. S. Choudhary, and S. G. Grant.

"Neurotransmitters drive combinatorial multistate postsynaptic density networks".

Sci Signal, 2(68):ra19, (2009).

Johanna M. Montgomery and Daniel V. Madison.

"State-Dependent Heterogeneity in Synaptic Depression between Pyramidal Cell Pairs".

Neuron, 33(5):765 - 777, (2002).

References II

S. Fusi, P. J. Drew, and L. F. Abbott.

"Cascade models of synaptically stored memories".

Neuron, 45(4):599-611, (Feb, 2005).

S. Fusi and L. F. Abbott.

"Limits on the memory storage capacity of bounded synapses".

Nat. Neurosci., 10(4):485-493, (Apr., 2007).

A. B. Barrett and M. C. van Rossum.

"Optimal learning rules for discrete synapses".

PLoS Comput. Biol., 4(11):e1000230, (Nov, 2008).

References III

Subhaneil Lahiri and Surya Ganguli.

"A memory frontier for complex synapses".

In C.J.C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K.Q. Weinberger, editors, Advances in Neural Information Processing Systems 26, pages 1034-1042. 2013.

"Sparseness Constrains the Prolongation of Memory Lifetime via Synaptic Metaplasticity".

Cerebral Cortex, 18(1):67-77, (2008).

Daniel D Ben-Dayan Rubin and Stefano Fusi.

"Long memory lifetimes require complex synapses and limited sparseness".

Frontiers in computational neuroscience, 1(November):1–14, (2007).

