Trabajo Final

Tema: Dinámica de Circuitos

Cátedra: Teoría de Circuitos II

Año: 2020

Docentes: Ing. Pires, Eduardo. Ing. Costa, Nicolás

Alumnos: Rodriguez, Ana Victoria. Ulloa, Daniel Alejandro

Fecha: 13/02/2020

Índice

1.	Introducción	2
	1.1. Obtención de las ecuaciones de estado	2
	1.2. Solución analítica utilizando Matlab	2
	1.3. Solución por método numérico	2
	1.4. Solución de un circuito	3
2.	Guía de Problemas	3

1. Introducción

Este trabajo se enfoca en estudiar la dinámica de circuitos presentados en la Unidad 3 del libro CLASSICAL CIRCUIT THEORY, para esto es necesario encontrar la solución de Sistemas de Ecuaciones Diferenciales Algebraicas en forma analítica y aplicando los métodos numéricos de Euler.

Analizar los circuitos a partir de sus ecuaciones de estado permite obtener la respuesta transitoria y estacionaria, mientras que trabajando en el plano de Laplace sólo obtenemos la respuesta de estado estacionario y únicamente es válido si las condiciones iniciales son nulas.

A partir de las trayectorias de estado en distintos planos (X-Y, Y-Z, X-Z) es posible representar la relación existente entre las variables de estado del circuito, por ejemplo representar corriente versus tensión, a este tipo de diagramas se los conoce como Phase Portrait. Estas trayectorias dependen de las condiciones iniciales.

1.1. Obtención de las ecuaciones de estado

Representando las ecuaciones de nodos modificados de la siguiente forma:

$$M\frac{d\vec{x}(t)}{dt} + N\vec{x}(t) = E\mathbf{u}(t) \tag{1}$$

podemos observar que el vector $\vec{x}(t)$ está compuesto por las variables de estado, M es la matriz que expresa las relaciones constitutivas de los componentes dinámicos, N es la matriz de admitancias, E una matriz de fuentes y $\mathbf{u}(t)$ una función vectorial.

Despejando $\frac{d\vec{x(t)}}{dt}$ de 1:

$$M^{-1}M\frac{d\vec{x}(t)}{dt} = M^{-1} \left(E\mathbf{u}(t) - N\vec{x}(t) \right)$$
$$I\frac{d\vec{x}(t)}{dt} = M \setminus E\mathbf{u}(t) - M \setminus N\vec{x}(t)$$
(2)

De 2 se obtiene la expresión:

$$\frac{d\vec{x}(t)}{dt} = A\vec{x}(t) + B\mathbf{u}(t) \tag{3}$$

Resolviendo 3 se obtiene $\vec{x}(t)$ que satisface 1

Para expresar las salidas del circuito es necesario que estén en función de las variables de estado y se consideren las fuentes de excitación:

$$\vec{y}(t) = C\vec{x}(t) + Du(t) \tag{4}$$

Ahora en 4 la función vectorial $\mathbf{u}(t)$ queda expresada como una función escalar u(t)

1.2. Solución analítica utilizando Matlab

utilizando matlab y el comando dsolve... va el script

1.3. Solución por método numérico

Partiendo de 2 la derivada en un tiempo t_n se aproxima por la pendiente de una linea recta pasando por la incógnita \vec{x}_n y su último valor conocido \vec{x}_{n-1} :

$$\left. \frac{d\vec{x}}{dt} \right|_{t_n} \approx \frac{\vec{x}_n - \vec{x}_{n-1}}{h} \tag{5}$$

Se obtiene el método BACKWARD EULER en forma vectorial:

$$\vec{x}_n = \left[\frac{1}{h}M + N\right] \setminus \mathbf{u}(t_n) + \left[\frac{1}{h}M + N\right] \setminus \left(\frac{1}{h}M\vec{x}_{n-1}\right)$$
(6)

aca va el script...

1.4. Solución de un circuito

La respuesta temporal de la tensión de salida V_R del siguiente circuito RLC se puede representar utilizando las soluciones del sistema 3, para esto debemos expresar las matrices C y D de la ecuacion 4

Planteando las ecuaciones y ordenandolas con la forma de 1:

$$C\frac{dV_C}{dt} + \frac{V_C}{R} - il = 0 (7)$$

$$-L\frac{di_L}{dt} + \frac{V_C}{R} = 0 (8)$$

Expresando en forma matricial:

$$\begin{pmatrix} 0 & L \\ C & 0 \end{pmatrix} \frac{d}{dt} \begin{bmatrix} V_C \\ i_L \end{bmatrix} + \begin{pmatrix} -1 & 0 \\ \frac{1}{R} & 1 \end{pmatrix} \begin{bmatrix} V_C \\ i_L \end{bmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \mathbf{u}(t)$$
 (9)

El vector salida es:

$$V_R = \begin{pmatrix} 1 & 0 \end{pmatrix} \begin{bmatrix} V_c \\ i_L \end{bmatrix} + \begin{pmatrix} 0 \\ 0 \end{pmatrix} \mathbf{u}(t) \tag{10}$$

Las soluciones son tal

2. Guía de Problemas

- 1 Escribir las ecuaciones de estado de un circuito formado por un inductor L en paralelo con un capacitor C. Obtener la solución en términos de la corriente inicial del inductor $i_L(0)$ y del voltaje inicial del capacitor $v_C(0)$. Mostrar que la trayectoria es una elipse en el espacio de estados.
- 2 Mostrar que los valores propios del circuito de la Figura 2 son $-1 \pm j$. Encontrar la solución completa para condiciones iniciales arbitrarias y una excitación arbitraria E(t). Sea C=1F, L=1H, $R_1=R_2=1\Omega$. Graficar la trayectoria de la solución homogénea para dos condiciones iniciales en el espacio de estados.

3 Para el circuito de la Figura 2, $C_1 = C_2 = C_3 = 1F$, $R_1 = R_2 = 1\Omega$. Mostrar que los valores propios son -1 y $-\frac{1}{3}$. Asumir que la excitacion $E(t) = 10\cos(\omega t)$. Encontrar la respuesta de estado estacionario.

4 En el circuito de la figura, sea $v_{out}(t)$ el voltaje a traves de la resistencia R_2 y $E(t) = 2e^-2t$ para $t \ge 0$ y E(t) = 0 caso contrario. Mostrar que:

$$v_{out}(t) = \begin{cases} e^{-t} - \frac{8}{9}e^{-t} - \frac{1}{9}e^{-\frac{1}{5}t} & si \qquad t \ge 0 \\ 0 & otros \ casos. \end{cases}$$

5 La fuente E(t) del circuito de la figura se define como $E(t) = 1V \ \forall t \leq 0$ y caso contrario E(t) = 0. Mostrar que el valor a través de la resistencia R_2 para $t \geq 0$ es

$$v_2(t) = \frac{1}{2}e^{-t} + \frac{\sqrt{3}}{3}e^{-\frac{t}{2}}\sin\frac{\sqrt{3}}{3}t\tag{11}$$

Los valores de los elementos son $R_1=R_2=1\Omega, C_1=C_2=1F$ y L=2H. Graficar la salida $v_2(t)$ para el intervalo de tiempo $0 \le t \le 10s$.

6 Aplicar el metodo $Backward\ Euler$ para resolver las ecuaciones de estado del problema anterior siendo $E(t) = \sin t + r(t)$ dónde r(t) es un ruido aleatorio cuya amplitud se encuentra uniformemente distribuida en el rango [-0.1, 0.1]. Graficar la salida.

7 En el circuito de la figura, suponer que el voltaje inicial del capacitor C_1 es 1V, y que todas las condiciones iniciales restante son nulas. Mostrar que el voltaje a traves de g_4 para todo $t \ge 0$ está dado por la siguiente ecuación:

$$v_{4_n}(t) = 0.225e^{\alpha t}\cos\beta t - 0.0087e^{\alpha t}\sin\beta t - 0.1434e^{\lambda_3 t} - 0.0791e^{\lambda_4 t}$$
(12)

Dónde $\alpha=-0.5563,\ \beta=0.9145,\ \lambda_3=-1.1255$ y $\lambda_4=-0.6786.$ Los valores de los elementos son $g_1=1S,\ g_2=2S,\ g_3=3S,\ g_4=4S,\ C_1=C_2=1F,\ L_1=L_2=1H.$ Graficar la proyección de la trayectoria de estado en distintos planos 2D para estudiar la dinámica del circuito.

8 Mostar que en el circuito de la figura el voltaje a través de R_2 es, con una precision de 4 dígitos:

$$v_2(t) = \int_0^t \left[0.4813e^{\lambda_1(t-\tau)} - 0.0440e^{\lambda_2(t-\tau)} \right] E(\tau) d\tau$$
 (13)

Dónde $\lambda_1=-0.9645$ y $\lambda_2=-0.0882$. Asumir que todas las condiciones iniciales son cero. Sea la entrada un pulso $E(t)=\sin^2(\frac{\pi t}{5})$ para el intervalo de tiempo $0\leq t\leq 5,\, E(t)=0$ caso contrario. Encontrar el valor de $v_2(t)$ para el intervalo $0\leq t\leq 10$. Usar convolución numérica y comparar la solución con la obtenida por $Backwar\ Euler$. Los valores de los elementos son $C_1=1F,\, C_2=2F,\, C_3=3F,\, C_4=4F,\, C_5=5F,\, C_6=6F,\, y\, R_1=R_2=1\Omega$

9 Mostrar que la respuesta al impulso de una escalera de 5 secciones de la figura, que modela una longitud de interconexión en un circuito integrado, teniendo en cuenta que la salida es el último nodo, que R=10 y C=0.1F y la expresión es:

$$v_{out}(t) = 0.554e^{\lambda_1 t} - 1.788e^{\lambda_2 t} + 2.720e^{\lambda_3 t} - 2.500e^{\lambda_4 t} + 1.014e^{\lambda_5 t}$$
(14)

Dónde los valores de λ_n son los siguientes:

$$\lambda_1 = -36,8250$$
 $\lambda_2 = -28,3083$ $\lambda_3 = -17,1537$ $\lambda_4 = -6,9028$ $\lambda_5 = -0,8101$

10 Considerar un circuito LC de cuarto orden que consiste en un inductor L_1 en serie con un capacitor C_1 y con una combinación paralelo de un inductor L_2 y un capacitor C_2 . Sea $L_1=1H$, $C_1=\frac{1}{25}F$, $L_2=18H$ y $C_2=\frac{1}{72}F$. Sean las variables de estado i_{L1} , i_{L2} , v_{C1} , v_{C1} . Mostrar que las respuestas a una condición inicial $v_{C1}=1V$ son:

$$i_{L1} = \frac{-16}{165}\sin(10t) - \frac{1}{33}\sin(t)$$
 $v_{C1} = \frac{25}{33}\cos(t) + \frac{8}{33}\cos(10t)$

$$i_{L2} = \frac{-4}{99}\sin(t) + \frac{2}{495}\sin(10t)$$
 $v_{C2} = \frac{8}{11}\cos(10t) - \frac{8}{11}\cos(t)$