Predicting Tomorrow's Rain

Isabela Yepes

Project Definition

- Goal: Predict tomorrow's rain 'next_day_prcp_total' using current day's total rainfall, temperature, wind, surface pressure, and vegetation features.
- Regressions and classifiers in machine learning
- Models trained and tested on South Florida 2015 data
- Tested on NYC and South Florida 2022
 December data.

Github:

https://github.com/isabelayepes/Pred
TomorrowsRain

- -Hourly netCDF data from a climate API with a Python script
- converted to daily (avg, min, max, 75%, 25%) CSV calculated target variable with R script
- Distribution of Month 12 avg_leaf_area_index_high_vegetation
 2.5
 2.0
 1.0
 0.5

-cleared NaN data

South FL 2015

South FL 2022

Distribution of Month 12 avg_leaf_area_index_high_vegetation

0.3

0.2

-standardized & outlier removal

- -Data Points: 87941 (2015 South Florida)
- -Model 1: Neural Net Regression (10 epochs, 2 hidden layers Relu activation)
 - -Result with Lat and Lon: test MAE 0.443 mm
 - -Results: test MAE: 0.4996 mm
- Categorized (creates class imbalance)
- -Model 2: Random Forest Classifier 88% accurate (44 features)
- -Model 3: XGBoost Classifier 89-92% acurate (44 features)

South FL 2015 XGBoost Feature importance

2015 South Florida Models on 2022 South Florida & 2022 NYC

True: next_day_prcp_total, nxtpr_cat

Predictions:

Neural Net Regression, nn_pred

Random Forest Classifier, rf_pred

XGBoost Classifier, xg_pred Neural Net Classifier, nnCat

Model 1 Regression result:

Blue = true

Orange = neural net regression prediction

Green = pred

Purple = true

Model 2: Random Forest Classifier Result

Green = pred

Purple = true

Model 3: XGBoost Classifier Result

Green = pred

Purple = true

Model 1: Neural Net Classifier Result:

NYC 2022

6000 642 6751 5000 4000 True label 228 - 3000 - 2000 637 233 1000 0 Predicted label

Neural Net

South Florida 2022

Neural Net

Classifier Comparison

Model	NYC 2022			South Florida 2022		
f1-score	0	1 (65%)	2 (95%)	0	1	2
1: Neural Net	0.64581	0.45977	0.00229	0.61341	0.37562	0.04157
2: Random Forest	0.69831	0.44907	0.00000	0.66140	0.37823	0.00000
3: XGBoost	0.68054	0.44924	0.00943	0.64380	0.40071	0.03831

- visually the neural network classifier is the best, but based on f-1 score XGBoost is most accurate. Classifiers preferred.
- confusion matrix harder to interpret due to class imbalance by design (60 and 95 percentiles)

Further work:

- model building
 - Increasing number of epochs
 - see whether the outlier removal is actually beneficial
 - Try different percentiles
 - Conserve lat and lon (might not work NYC)
 - Add previous prcp total feature

Further Reading

- Github: https://github.com/isabelayepes/PredTomorrowsRain
- Data documentation: ERA5-Land hourly data from 1950 to present:
 https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land?tab=doc

References

- Run model function/ roc and auc curve:
 https://github.com/azalahmadkhan/Precipitation-Prediction-using-ML/blob/main/Precipitation_Prediction.ipynb
- Outlier removal, training and validation accuracy, standardization, confusion matrix:
 https://www.kaggle.com/code/karnikakapoor/rain-prediction-ann#MODEL-BUILDING
- Pairwise correlation, heatmap, confusion matrix:
 https://www.kaggle.com/code/chandrimad31/rainfall-prediction-7-popular-models#Model-Comparison
- Plot Feature Importance: <u>https://www.analyseup.com/learn-python-for-data-science/python-random-forest-feature-importance-plot.html</u>
- Saving the model to reuse it again:
 https://github.com/Biswajit6844/rainfall-prediction/blob/master/Xgboost%20model.ipynb

