

Arquitetura de Computadores Desempenho

Ríad Mattos Nassiffe

Sumário Sumário

- O que é desempenho?
- Gargalos já visto

Desempenho

O que significa dizer que um computador x tem desempenho melhor que um computador y?

Desempenho

Veículo	Velocidade	Capacidade	Flexibilidade
Moto	120 km/h	2	Alta
Carro	120 km/h	5	Alta
Ônibus	90 Km/h	50	Média
Trem	200-400 km/h	250	Baixa
Avião	954 km/h	50	Baixa

- Qual desses meios de transporte tem melhor desempenho?
 - o Depende do objetivo.

Desempenho Computacional

Tipos de aplicações:

- Processamento de imagens
- Renderização em 3D
- Videoconferência
- Manipulação de vídeo
- Manipulação de áudio
- Cálculos matemáticos
- Simulação
- •

Métricas do Ponto de Vista Computacional

- Tempo de resposta
- Quantidade de dados por unidade de tempo (Throughput ou largura de banda)
- Velocidade dos dispositivos

Como Medir o Desempenho

- Canais de comunicação
- CPU
- Placa de vídeo
- Memória
- todos os componentes.

CPU

- Velocidade do sinal de clock
- Maior densidade
- Instruções de CPU mais complexas

CPU

- Técnicas para melhorar o desempenho:
 - Pipeline
 - Predição e desvio
 - Execução superescalar
 - Análise de fluxo de dados
 - Execução especulativa

Pipeline

Pipeline

Pipeline

Predição de Desvio

- if, else (Condicional)
- for (Condicional)
- while (Condicional)
- Funções (Incodicional)
- Métodos (incondicional)
- etc...

Predição de Desvio

Predição de desvios:

Aumenta o número de instruções disponíveis para execução.

Aumenta o paralelismo a nível de instrução.

• Permite que trabalho útil seja concluído enquanto se espera pela

resolução do desvio.

Pode ser em hardware/software

Execução Superescalar

- Permite a execução de mais de uma instrução por ciclo
- Permitiu o paralelismo de instruções
- Permite que diferentes estágios do pipeline sejam usados no mesmo ciclo

Execução Superescalar

- Dependência de dados verdadeira
 - o add r1, r2 # carregar registrador r1 com a soma dos conteúdos de r1 e r2
 - o move r1, r3 # carregar registrador r3 com o conteúdo de r1
- Dependência de desvio
- Conflito de recursos
 - Cache, barramento e etc..

Análise de Fluxo de Dados

 Analisa as instruções a serem executadas e cria uma lista otimizada de instruções sem conflitos, com melhor utilização da CPU.

Execução Especulativa

Meltdown

Meltdown

Em janeiro de 2018, foi publicada uma falha relacionada com a leitura de memória protegida do núcleo (*kernel*), por meio da exploração da arquitetura de processadores Intel em segmentação de instruções. A falha permite que algoritmos maliciosos tenham acesso à trechos de memória, tais como senhas e outras informações protegidas, por meio da tentativa do acesso explicito a ela devido ao empilhamento e execução das instruções antes de descartá-las. Esse acesso será negado posteriormente pela unidade de controle, contudo sua execução ficará armazenada em cache, tornando-a acessível.

Os *updates* em *softwares* para correção desse *bug* de *hardware* praticamente desativam a técnica de pipeline nos processadores, comprometendo em até 30% de seu desempenho.

Performance da CPU vs Frequência

Métricas de Desempenho da CPU

- Clock
- Tempo de CPU = (instruções x CPI)/ taxa de clock

Risc x Cisc

- Complex Instruction Set Computer (CISC)
- Reduced Instruction Set Computer (RISC)

CISC	RISC	
 Ênfase no hardware Suporta multi-clock Instruções complexas Memory-to-memory: "LOAD" and "STORE", adicionadas as instruções menor tamanho de código Mais transistor usado para implementar instruções complexas. 	 Ênfase no software Single-clock, conjunto de instruções reduzidas Register to register: "LOAD" and "STORE", independente das instruções Maior tamanho de código Mais transistores para registradores. 	

Dúvidas

- → Encontros presenciais.
- → Encontros síncronos
 no google meet,
 marcados no
 calendário da turma
 e avisados no SIGAA.

