Examenul de bacalaureat național 2016 Proba E. c)

Matematică *M_mate-info*

Clasa a XII-a BAREM DE EVALUARE ȘI DE NOTARE

Simulare

Filiera teoretică, profilul real, specializarea matematică-informatică

Filiera vocațională, profilul militar, specializarea matematică-informatică

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total obținut pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	(2a+1)+(2b-1)i=0	3 p
	Cum a și b sunt numere reale, obținem $a = -\frac{1}{2}$, $b = \frac{1}{2}$	2p
2.	$\Delta = m^2 - 4$	2p
	$-\frac{m^2 - 4}{4} = -3 \Leftrightarrow m^2 - 16 = 0 \Leftrightarrow m = -4 \text{ sau } m = 4$	3 p
3.	$\log_3 x = \frac{1}{\log_3 x} \Longrightarrow (\log_3 x + 1)(\log_3 x - 1) = 0$	3 p
	$x = \frac{1}{3}$ sau $x = 3$, care verifică ecuația	2p
4.	Sunt 90 de numere naturale de două cifre, deci sunt 90 de cazuri posibile	1p
	Pătratele perfecte de o cifră sunt 0, 1, 4 și 9, deci sunt $3 \cdot 4 = 12$ numere naturale de două	_
	cifre care au ambele cifrele pătrate perfecte, adică sunt 12 cazuri favorabile	2 p
	$p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri posibile}} = \frac{12}{90} = \frac{2}{15}$	2 p
5.	Punctele A, B şi C sunt coliniare, deci $m_{AB} = m_{BC}$	2p
		2P
	$\frac{-3-a}{0+1} = \frac{1+3}{1-0} \Leftrightarrow a = -7$	3 p
6.	$\sin^2\frac{\pi}{7} - 2\sin\frac{\pi}{7}\cos a + \cos^2 a + \cos^2 \frac{\pi}{7} - 2\cos\frac{\pi}{7}\sin a + \sin^2 a = 2 \Leftrightarrow 2 - 2\sin\left(\frac{\pi}{7} + a\right) = 2$	3p
	Cum $a \in (0,\pi)$, din relația $\sin\left(\frac{\pi}{7} + a\right) = 0$, obținem $a = \frac{6\pi}{7}$	2p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$A(1) = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \Rightarrow \det(A(1)) = \begin{vmatrix} 2 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{vmatrix} = $ $= 0$	3p 2p
b)	$\det(A(m)) = \begin{vmatrix} 2 & 1 & m \\ m & m & 1 \\ 1 & m & 1 \end{vmatrix} = \begin{vmatrix} 2 & 1 & m+1 \\ m & m & m+1 \\ 1 & m & m+1 \end{vmatrix} = (m+1) \begin{vmatrix} 2 & 1 & 1 \\ m-2 & m-1 & 0 \\ -1 & m-1 & 0 \end{vmatrix} = (m+1)(m-1)^2$	2p
	Matricea $A(m)$ este inversabilă $\Leftrightarrow \det(A(m)) \neq 0 \Leftrightarrow (m+1)(m-1)^2 \neq 0 \Leftrightarrow m \in \mathbb{R} \setminus \{-1, 1\}$	3 p

c)	$A(0) = \begin{pmatrix} 2 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 1 \end{pmatrix}, \det(A(0)) = 1 \neq 0, (A(0))^{-1} = \begin{pmatrix} 0 & -1 & 1 \\ 1 & 2 & -2 \\ 0 & 1 & 0 \end{pmatrix}$	3p
	$X = \begin{pmatrix} 2 & 1 & 0 \\ -1 & 3 & 2 \end{pmatrix} \begin{pmatrix} 0 & -1 & 1 \\ 1 & 2 & -2 \\ 0 & 1 & 0 \end{pmatrix} \Rightarrow X = \begin{pmatrix} 1 & 0 & 0 \\ 3 & 9 & -7 \end{pmatrix}$	2p
2.a)	x * y = xy - 4x - 4y + 16 + 4 =	2p
	= x(y-4)-4(y-4)+4=(x-4)(y-4)+4, pentru orice numere reale x şi y	3 p
b)	x*4=4*y=4, pentru x și y numere reale	2p
	1*2*3**2016 = ((1*2*3)*4)*(5**2016) = 4*(5**2016) = 4	3 p
	(a-4)(b-4)(c-4) = 62, unde a , b şi c sunt numere naturale şi $a < b < c$	1p
	$\begin{cases} a-4=-2 \\ b-4=-1 \Leftrightarrow \begin{cases} a=2 \\ b=3 \\ c-4=31 \end{cases} $ $\begin{cases} c=35 \end{cases}$	2p
	$\begin{cases} a-4=1 \\ b-4=2 \Leftrightarrow \begin{cases} a=5 \\ b=6 \\ c-4=31 \end{cases} \begin{cases} a=5 \\ b=6 \end{cases}$	2p

SUBIECTUL al III-lea

(30 de puncte)

1.a)	$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{1}{x(x+1)} = 0$	3p
	Dreapta de ecuație $y = 0$ este asimptotă orizontală spre $+\infty$ la graficul funcției f	2 p
b)	$f'(x) = 0 \Leftrightarrow -\frac{2x+1}{x^2(x+1)^2} = 0$	3p
	Coordonatele punctului sunt $x = -\frac{1}{2}$ și $y = -4$	2p
c)	$\lim_{n \to +\infty} \left(\frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \dots + \frac{1}{n(n+1)} \right)^n = \lim_{n \to +\infty} \left(\frac{1}{1} - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + \dots + \frac{1}{n} - \frac{1}{n+1} \right)^n = \lim_{n \to +\infty} \left(1 - \frac{1}{n+1} \right)^n = \lim_{$	3p
	$=\frac{1}{e}$	2 p
2.a)	$\int_{2}^{4} \frac{1}{\ln x} f(x) dx = \int_{2}^{4} \frac{1}{\ln x} \cdot \frac{\ln x}{x} dx = \int_{2}^{4} \frac{1}{x} dx = \ln x \Big _{2}^{4} =$	3p
	$= \ln 2$	2p
b)	$\int_{1}^{e} \frac{f(x)}{x} dx = \int_{1}^{e} \frac{\ln x}{x^{2}} dx = \int_{1}^{e} \left(-\frac{1}{x}\right)' \ln x dx = -\frac{1}{x} \ln x \bigg _{1}^{e} + \int_{1}^{e} \frac{1}{x^{2}} dx =$	3 p
	$=-\frac{1}{e}-\frac{1}{x}\Big _{1}^{e}=1-\frac{2}{e}$	2 p
c)	Cum $x \in [1, e]$, obținem $0 \le \ln x \le 1$, deci $0 \le \frac{\ln x}{x^{n+1}} \le \frac{1}{x^{n+1}}$, pentru orice număr natural n	2p
	$0 \le \int_{1}^{e} \frac{\ln x}{x^{n+1}} dx \le \int_{1}^{e} \frac{1}{x^{n+1}} dx = -\frac{1}{n} \left(\frac{1}{e^n} - 1 \right) \text{ si cum } \lim_{n \to +\infty} \left(-\frac{1}{n} \left(\frac{1}{e^n} - 1 \right) \right) = 0 \Rightarrow \lim_{n \to +\infty} \int_{1}^{e} \frac{f(x)}{x^n} dx = 0$	3p