	Carátula para entrega de prácticas	
Facultad de Ingeniería	Laboratorio de docencia	

Laboratorios de computación salas A y B

	√
Profesor:	Alejandro Pimentel
Asignatura:	Fundamentos de programación
Grupo:	3
No de Práctica(s):	4
Integrante(s):	Uno Karin Natalia
No. de Equipo de cómputo empleado:	37
No. de Lista o Brigada:	8723
Semestre:	1
Fecha de entrega:	9 de septiembre del 2019
Observaciones:	

CALIFICACIÓN:			

PRÁCTICA 4: DIAGRAMAS DE FLUJO

INTRODUCCIÓN

El diagrama de flujo o también diagrama de actividades es una manera de representar gráficamente un algoritmo o un proceso de alguna naturaleza, a través de una serie de pasos estructurados y vinculados que permiten su revisión como un todo.

La representación gráfica de estos procesos emplea, en los diagramas de flujo, una serie determinada de figuras geométricas que representan cada paso puntual del proceso que está siendo evaluado. Estas formas definidas de antemano se conectan entre sí a través de flechas y líneas que marcan la dirección del flujo y establecen el recorrido del proceso, como si de un mapa se tratara.

Los diagramas de flujo son un mecanismo de control y descripción de procesos, que permiten una mayor organización, evaluación o replanteamiento de secuencias de actividades y procesos de distinta índole, dado que son versátiles y sencillos. Son empleados a menudo en disciplinas como la programación, la informática, la economía, las finanzas, los procesos industriales e incluso la psicología cognitiva.

Los principales símbolos convencionales que se emplean en los diagramas de flujo son los siguientes:

Símbolo	Nombre	Función		
	Inicio / Final	Representa el inicio y el final de un proceso		
	Linea de Flujo	Indica el orden de la ejecución de las operaciones. La flecha indica la siguiente instrucción.		
	Entrada / Salida	Representa la lectura de datos en la entrada y la impresión de datos en la salida		
	Proceso	Representa cualquier tipo de operación		
	Decisión	Nos permite analizar una situación, con base en los valores verdadero y falso		

Fuente: https://concepto.de/diagrama-de-flujo/#ixzz5yz05CaaA

OBJETIVO

En esta práctica realizaremos diagramas de flujo que tienen el fin de solucionar, por medio algoritmos, problemas realizando una serie de pasos a seguir dando una solución dependiendo del tipo de problema que se presente.

DESARROLLO/RESULTADOS

Actividad 1. Elabora un diagrama de flujo que reciba un número del 1 al 7, y que indique a qué día de la semana corresponde.

Comprobar:

Actividad 2. Elaborar un diagrama de flujo que reciba tres números y verifique si son válidos como los ángulos de un triángulo.

Comprobar:

• 30,30,120

• -90,90,180

• 0,30,150

• 270,60,30

Actividad 3. Elaborar un diagrama de flujo que reciba tres números como los lados de un triángulo, y que responda si se trata de un triángulo equilátero, isósceles, o escaleno.

Comprobar:

• 45,50,80

• 20,20,20

• 10,100,10

• 0,4,20

Actividad 4. Elaborar un diagrama de flujo que reciba tres números como los lados de un triángulo, y que responda si se puede formar un triángulo con lados de esa longitud, o no.

Comprobar: • 20,40,20

60,100,200

• -3,6,12

• 4,5,9

CONCLUSIÓN

Para concluir, en esta práctica se realizaron una serie de diagramas de flujo con el fin de mostrar que se pueden resolver problemas algebraicos por medio de diagramas de flujo; también su aplicación y el tipo de figuras y lenguaje que se manejan en dichos diagramas. Además, de problemas matemáticos, se pueden realizar una especie de instructivo o manual, ya que los diagramas muestran una serie de pasos y criterios para que se puede llevar a cabo y obtener un resultado con base en ello.