DePaul University College of Computing and Digital Media

Casey Bennett, PhD

Last Week

HW4 due today

Final Projects

Pecha Kucha

• 20 slides, 20 seconds each

Markov Models and Temporal Modeling

https://pollev.com/caseybennett801

or text "caseybennett801" to 37607

How does GPS find the best route from here to the airport?

Building a Pipeline

Data

Step 1

Make Predictions

Machine Learning/Statistical Techniques – predict risk stratification, treatment response, survival, re-hospitalization, LOS, etc.

The basic assumption is that the pattern is *stationary*

But sometimes this happens ...

How could you avoid a random traffic jam or wreck?

The things we do now constrain what we can do in the *future*

Building a Pipeline

Data

Step 2

Make Decodsicoiros

Markov Decision Processes (MDPs)
Machine Learning/Statistical Techniques – predict risk stratification,
treatment response **Dynamic Decisionization**

Make Decisions

a = Action/Treatment

s = Patient State

o = Observation

c = Costs

t = Time

cpuc = Utility

Belief States

Plan over Time

Plan/re-plan

Markov Models

- Based on the Markov property
- How far we go back in time to get information is called the order of the Markov model
- We also usually have some time horizon to which we limit predicting
- Markov model = chain = process

Solving an MDP

Bellman Equations

These are used to produce a "policy"

What might be a problem with producing a "policy" for the way the world works?

a = Action/Treatment

b= Probabilities

s = Patient State

o = Observation

c = Costs

t = Time

CPUC = utility

Patient 1

- 50-year old patient, primary depression diagnosis, Physician Referral
- "Arranging Mental Health Visit"
 makes <u>no difference</u> in chance of
 improvement, <10% either way
- Main risk factors included: lower overall historical costs, referral reason, and higher GAD score

Patient 2

- 21-year old cancer patient with depression, referred via ER Admission
- "Arranging Mental Health Visit" would <u>double</u> chance of improvement, 33.1% vs. 64.5%
- Main risk factors included: higher historical drug costs and young age

Results with Real Patient Data

Bennett CC and K Hauser (2013) "Artificial Intelligence Framework for Simulating Clinical Decision-Making: A Markov Decision Process Approach." *Artificial Intelligence in Medicine*. 57(1): 9-19.

How could I figure out if I've seen this sequence before?

Hidden Markov Models

HMMs and Speech Recognition

HMMs and DNA Sequencing

HMMs and DNA Sequencing


```
A C A - - A T G
T C A A C T A T C
A C A C - A G C
A C A C - A T C
A C C G - A T C
```

Solving an HMM

Viterbi Algorithm

 This is used to find the "most probable" sequence given the observations

Many kinds of Markov Models

- Markov Decision Processes (MDPs)
- Partially-Observable MDPs (POMDPs)
- Hidden Markov Models (HMMs)
- Markov Random Fields
- Markov Logic Networks

Other Topics in Temporal Modeling

Other Temporal Models

Temporal Motifs

> Sequential Pattern Mining and Event Prediction

Temporal Motifs

Temporal Motifs

Sequential Pattern Mining

SeqID	Sequence	
S1	<a,b,b,d,c></a,b,b,d,c>	
S2	<a,c,d></a,c,d>	
S3	<a,c,c,d></a,c,c,d>	

Special Topic: Machine Learning and Robotics

What if I don't have GPS, and I've never been to the airport ... how could I find the optimal route?

Reinforcement Learning

Reinforcement Learning

Merging of the Physical and Digital World

For next week

- 1) Project Presentations (13th and 20th)
- 2) Project write-up due Nov 21