Analysis of results analysis of hourly coal and solar power dispatch between Maharashtra and Karnataka with sand without solar transmission subsidy

Generator Dispatch (MW) - First 5 Hours

Snapshot	Karnataka Solar	Karnataka Coal	Maharashtra Solar	Maharashtra Coal
With Subsidy	1674.0	7000.0	864.0	1462.0
Without Subsidy	1674.0	3326.0	864.0	5136.0

Transmission Flows (MW)

Snapshot	Ka-Ma Solar Link	Ka-Ma Coal Link
With Subsidy	+1674.0	+2000.0
Without Subsidy	-2000.0	+2000.0

Total System Cost (₹)

• With Subsidy: ₹ 60,92,64,000

• Without Subsidy: ₹ 59,00,64,000

Insights:

1. Identical Generation but Directional Difference in Solar Flow

- Karnataka Solar generates 1674 MW in both cases.
- The **solar link flow direction** changes:
 - With Subsidy: Positive flow (+1674 MW) → means Karnataka is exporting to Maharashtra and Maharashtra pays the transmission fee.
 - Without Subsidy: Negative flow (-2000 MW) → implies Karnataka is importing from Maharashtra's solar (hypothetical or modelling quirk depending on network structure or cost).

2. Coal Dispatch Adjusts Based on Subsidy

- With Subsidy: Karnataka Coal runs at maximum capacity (7000 MW), and Maharashtra Coal is minimized (1462 MW).
- Without Subsidy: Karnataka Coal drops to 3326 MW, while Maharashtra Coal ramps up to 5136 MW, likely due to avoiding costly transmission of solar without subsidy.

3. System Cost Higher With Subsidy

- Somewhat counterintuitively, **system cost increases** with subsidy.
 - This is because the subsidy may encourage transmission of solar, causing extra flow, and Karnataka needs to run more expensive coal to supply Maharashtra.
 - The model balances local generation cost and transmission tariffs to minimize total system cost—not just generator marginal costs.

Conclusion:

- Subsidy encourages solar export, which alters the power flow direction.
- The system prefers local coal in absence of subsidy due to transmission penalties.
- The **total system cost is not always lower with subsidies**—because encouraging longdistance solar transfers may require higher coal backup or suboptimal dispatch.

Internal Coal Usage (First 5 Hours)

State	Scenario	Coal Used Internally (MW)		Imported Coal (MW)
Karnataka	With Subsidy	7000	2000 (exported)	0
	Without Subsidy	3326	2000 (exported)	0
Maharashtra	With Subsidy	1462	0	2000 (imported)
	Without Subsidy	5136	0	2000 (imported)

What This Means

Karnataka:

- With Subsidy:
 - o Generates 7000 MW of coal.
 - o Exports **2000 MW** to Maharashtra.
 - o Keeps **5000 MW for its own load**, matching its demand.
- Without Subsidy:
 - o Only runs 3326 MW of coal.

Still exports 2000 MW, implying Karnataka's own solar (1674 MW) + coal (1326 MW after export) is enough to meet its own 5000 MW demand.

Maharashtra:

• With Subsidy:

- o Generates 1462 MW of coal.
- o Imports 2000 MW of coal from Karnataka.
- Meets its total demand of 6000 MW using:

Local solar: 864 MW

Local coal: 1462 MW

Imports (coal and solar): rest

• Without Subsidy:

- o Generates **5136 MW of coal locally** (much higher).
- Still imports 2000 MW of coal, which might go into balancing due to solar cost structure.
- This suggests Maharashtra reduces dependency on Karnataka's solar due to transmission cost increase, and uses more local coal instead.

Summary Insights

- Subsidy makes Karnataka run coal at full capacity, helping Maharashtra reduce its own coal use.
- Without subsidy, Karnataka reduces its coal generation, and Maharashtra increases its own coal usage, likely because importing solar becomes more expensive.
- In both cases, coal flows from Karnataka to Maharashtra, but its need varies based on the economic incentive (i.e., presence of subsidy).