Photolithography

Photolithography Requirements

- High Resolution
- High PR Sensitivity
- Precision Alignment, say within 10% of minimum feature size
- High Repeatability
- Low Defect Density

Photoresist

Negative Photoresist

- Becomes insoluble after exposure
- When developed, the unexposed parts dissolved.
- Cheaper with poor resolution

Positive Photoresist

- Becomes soluble after exposure, *(photosolubilization)*
- When developed, the exposed parts dissolved
- Expensive with better resolution

Negative and Positive Photoresists

Photoresist Composition

- Polymer
- Solvents
- Sensitizers
- Additives

Polymer

- Solid organic material
- Transfers designed pattern to wafer surface
- Changes solubility due to photochemical reaction when exposed to UV light.
- Positive PR: from insoluble to soluble
- Negative PR: from soluble to insoluble

Solvent

- Dissolves polymers into liquid
- Allow application of thin PR layers by spinning
- 75% of PR before spin coating
- Acetate-type solvent for positive PR; xylene (C_8H_{10}) for negative PR

Sensitizers

- Controls and/or modifies photochemical reaction of resist during exposure.
- Determines exposure time and intensity

Additives

 Various added chemical to achieve desired process results, such as dyes to reduce reflection.

Requirement of Photoresist

- High resolution
 - Thinner PR film has higher the resolution
 - Thinner PR film, the lower the etching and ion implantation resistance
- High etch resistance
- Good adhesion
- Higher tolerance to process conditions like spin rate, baking temperature and exposure flux

Photolithography Process

Basic Steps of Photolithography

- 1. Photoresist coating
- 2. Alignment and exposure
- 3. Development

Basic Steps

- Wafer clean
- Dehydration bake
- Spin coating primer and PR
- Soft bake
- Alignment and exposure
- Development
- Pattern inspection
- Hard bake

PR coating

Development

Wafer Clean

Pre-bake and Primer Vapor

Primer

Photoresist Coating

Soft Bake

Alignment and Exposure

Alignment and Exposure

Post Exposure Bake

Development

Hard Bake

Pattern Inspection

Wafer Clean

- Remove contaminants
- Remove particulate
- Reduce pinholes and other defects
- Improve photoresist adhesion
- Basic steps
 - Chemical clean
 - Washing
 - Dry

Wafer Clean Process

Photolithography Process, Prebake

- Dehydration bake
- Remove moisture from wafer surface
- Promote adhesion between PR and surface
- Usually around 100 °C
- Integration with primer coating

Photolithography Process, Primer

- Promotes adhesion of PR to wafer surface
- Wildly used: Hexamethyldisilazane (HMDS)
- HMDS vapor coating prior to PR spin coating
- Usually performed in-situ with pre-bake
- Cool plate to cool down wafer before PR coating

Pre-bake and Primer Vapor Coating

Spin Coating

- Wafer sit on a vacuum chuck
- Rotate at high speed
- Liquid photoresist applied at center of wafer
- Photoresist spread by centrifugal force
- Evenly coat on wafer surface

Photoresist Spin Coater

Viscosity

- Fluids stick on the solid surface
- Affect PR thickness in spin coating
- Related to PR type and temperature
- Need high spin rate for uniform coating

Relationship of Photoresist Thickness to Spin Rate and Viscosity

Dynamic Spin Rate

PR Spin Coater

- Photoresist spread on spinning wafer surface
- Wafer held on a vacuum chuck
- Slow spin ~ 500 rpm
- Ramp up to ~ 3000 7000 rpm

Photoresist Applying

Photoresist Suck Back

Photoresist Spin Coating

Photoresist Spin Coating

Edge Bead Removal (EBR)

- PR spread to the edges and backside
- PR could flakes off during mechanical handling and causes particles
- Front and back chemical EBR

Edge Bead Removal

Optical Edge Bead Removal

- After alignment and exposure
- Front-side wafer edge expose (WEE)
- Exposed photoresist at edge dissolves during development

Optical Edge Bead Removal

Developer Spin Off

Soft Bake

- Evaporating most of solvent (> 80%) in PR
- Solvents help to make a thin PR but absorb radiation and affect adhesion
- Soft baking time and temperature are determined by PR types and specific process
- 90~110°C for 30 min. in oven; 10~15 min. for hotplate
- Over bake: polymerized, less photo-sensitivity
- Under bake: affect adhesion and exposure

Baking Tools

Hot Plates

- Widely used in the industry
- Back side heating, no surface "crust"
- In-line track system

Wafer Cooling

- Need to cool down to ambient temperature after baking
- Water-cooled chill plate
- Silicon thermal expansion rate: 2.5×10⁻⁶/°C
- For 8 inch (200 mm) wafer, <u>1°C thermal</u> change causes 0.5 µm difference in diameter

Alignment and Exposure

- Most critical process for IC fabrication
- Most expensive tool (stepper) in an IC fab.
- Most challenging technology
- Determines the minimum feature size
- Currently 0.18 μm and pushing to 0.13 μm

Alignment and Exposure Tools

- Contact printer
- Proximity printer
- Projection printer
- Stepper

Contact Printer

- Simple equipment. Widely used before mid-70s
- Resolution: capable for sub-micron
- Use of UV light source
- Image ratio 1:1
- Direct mask-wafer contact, limited mask lifetime
- Particle contamination issue

Contact Printer

Proximity Printer

- $10 \sim 20 \mu m$ distance from wafer surface. No direct contact
- Use of UV light
- Image ratio 1:1
- Less particles and longer mask lifetime
- Resolution: $> 2 \mu m$

Proximity Printer

Projection Printer

- Works like an overhead projector
- Mask to wafer ratio, 1:1
- Resolution to reach at 1 μm
- The scanning projection exposure system
 - the mask and wafer stage move synchronously, allowing UV light source scanning across the mask to refocus and expose PR across the wafer

Projection System

Scanning Projection System

Stepper

- Most popular used photolithography tool in the advanced IC fabs
- Reduction of wafer image gives high resolution
- Use of deep UV light
- Reticle-to-wafer ratio ~ 10:1
- A reticle with 1.25 μm min. feature size say can achieve 0.125 μm min. feature size on wafer
- Very expensive! (extremely complicated and precise)

Q & A

Q: Why does the 5:1 shrink ratio is more popular than the 10:1 shrink ratio?

A: 10:1 image shrink has better resolution than 5:1 image shrink. However, it only exposes a quarter of the area, which means total exposure time will be quadrupled. A trade-off between resolution and throughput.

Step-&-Repeat Alignment/Exposure

Step&Repeat Alignment System

Exposure Light Source

Should have:

- Short wavelength
- High intensity
- Stability

Includes:

- High-pressure mercury lamp
- Excimer laser

Spectrum of the Mercury Lamp

Photolithography Light Sources

	Name	Wavelength (nm)	Application feature size (µm)
	G-line	436	0.50
Mercury Lamp	H-line	405	
	I-line	365	0.35 to 0.25
	XeF	351	
	XeCl	308	
Excimer Laser	KrF (DUV)	248	0.25 to 0.15
	ArF	193	0.18 to 0.13
Fluorine Laser	F_2	157	0.13 to 0.1

Exposure Control

- Exposure light flux is controlled by production of <u>light intensity</u> and <u>exposure time</u>
- Very similar to the exposure of a camera
- Intensity controlled by electrical power
- Adjustable light intensity
- Routine light intensity calibration is required. Intensity, *I*, measured in mW/cm²

Standing Wave Effect

- •Interference of the incident and reflection lights
- •Due to constructive and destructive interference at different depth
- Periodically overexposure and underexposure
- •Affects photolithography resolution.

Standing Wave Intensity

Standing Wave Effect on Photoresist

Post Exposure Bake (PEB)

- Photoresist's glass transition temperature, T_g
- Baking temperature is higher than T_g
- Induce thermal movement of photoresist molecules
- Rearrangement of the overexposed and underexposed PR molecules
- Average out standing wave effect,
- Smooth PR sidewall and improve resolution

PEB (cont.)

- For DUV chemical amplified photoresist, PEB provides the heat needed for acid diffusion and amplification.
- After the PEB process, the images of the exposed areas appear on the photoresist, due to the significant chemical change after the acid amplification

Post Exposure Bake Steps

- PEB normally uses hot plate at 110 to 130 °C for about 1 minute.
- For the same kind of PR, PEB usually requires a higher temperature than soft bake.
- Insufficient PEB will not completely eliminate the standing wave pattern,
- Overbaking will cause polymerization and affects photoresist development

Development

- Developer solvent dissolves the softened part of photoresist
- Transfer the pattern from mask or reticle to photoresist
- Three basic steps:
 - Development
 - Rinse
 - Dry

Development: Immersion

Development – to make etch or implantation perfect

Development Profiles

PR Substrate

Normal Development

PR Substrate

Under Development

PR Substrate

Incomplete Development

PR Substrate

Over Development

Hard Bake

- Evaporating all solvents in PR
- Improving etch and implantation resistance
- Improve PR adhesion with surface
- Polymerize and stabilize photoresist
- PR flow to fill pinhole

PR Pinhole Fill by Thermal Flow

Hard Bake (cont.)

- Hot plate is commonly used
- Can be performed in a oven after inspection
- Hard bake temperature: 100 to 130 °C
- Baking time is about 1 to 2 minutes
- Hard bake temperature normally is higher than the soft bake temperature for the same kind of photoresist

Improper Hard Bake

- Under-bake
 - Photoresist is not filly polymerized
 - High photoresist etch rate
 - Poor adhesion
- Over-baking
 - PR flow and bad resolution

Photoresist Flow

• Over-baking can causes too much PR flow, which affects photolithography resolution.

Normal Baking

Over Baking

Pattern Inspection

- Inspection, stripped PR and rework
 - Photoresist pattern is temporary
 - Etch or ion implantation pattern is permanent.
- Photolithography process can rework
- Can't rework after etch or implantation.
- Scanning electron microscope (SEM) for small feature size (< 0.5 um)
- Optical microscope for large feature size

Q & A

• Why can't optical microscope be used for the 0.25 μm feature inspection?

• Because the feature size (0.25 μ m = 2500 Å) is smaller than the wavelength of the visible light, which is from 3900 Å (violet) to 7500 Å (red)..

Pattern Inspection

- Overlay or alignment
 - run-out, run-in, reticle rotation, wafer rotation, misplacement in X-direction, and misplacement in Y-direction
- Critical dimension
- Surface irregularities such as scratches, pin holes, stains, contamination, etc.

Critical Dimension

Future Trends

- Smaller feature size
- Higher resolution
- Reducing wavelength
- Phase-shift mask

Optical Lithography

- Optics
- Light diffraction
- Resolution
- Depth of focus (DOF)

Light Diffraction Without Lens

Diffraction Reduction

- Short wavelength waves have less diffraction
- Optical lens can collect diffracted light and enhance the image

Light Diffraction With Lens

Numerical Aperture

- NA is the ability of a lens to collect diffracted light
- $NA = 2 r_0 / D$
 - $-r_0$: radius of the lens
 - -D: the distance of the object from the lens
- Lens with larger *NA* can capture higher order of diffracted light and generate sharper image.

(Optical) Resolution

- The achievable, repeatable minimum feature size
- Determined by the wavelength of the light and the numerical aperture of the system. The resolution can be expressed as

$$R = \frac{K_1 \lambda}{NA}$$

 K_1 : the system constant, λ is the wavelength of the light, $NA = 2 r_o/D$, the numerical aperture

Exercise 1, $K_1 = 0.6$

$$R = \frac{K_1 \lambda}{NA}$$

	λ	NA	R
G-line	436 nm	0.60	μm
I-line	365 nm	0.60	μm
DUV	248 nm	0.60	μm
	193 nm	0.60	μm

To Improve Resolution

- Increase NA
 - Larger lens, could be too expensive and unpractical
 - Reduce DOF and cause fabrication difficulties
- Reduce wavelength
 - Need to develop light source, PR and equipment
 - Limitation for reducing wavelength
 - From UV to DUV, to EUV, and to X-Ray
- Reduce K₁
 - Phase shift mask (PSM)

Wavelength and Frequency of Electromagnetic Wave

RF: Radio frequency; MW: Microwave; IR: infrared; and UV: ultraviolet

Depth of focus

- The range that light is in focus and can achieve good resolution of projected image
- Depth of focus can be expressed as:

$$DOF = \frac{K_2 \lambda}{2(NA)^2}$$

Depth of Focus

Depth of Focus

- Smaller numerical aperture, larger DOF
 - Disposable cameras with very small lenses
 - Almost everything is in focus
 - But, with bad resolution
- Prefer to reduce wavelength than increase *NA* to improve resolution
- High resolution, small DOF
- Focus at the middle plane of PR layer

Focus on the Mid-Plain to Optimize the Resolution

Surface Planarization Requirement

- Higher resolution requires
 - Shorter λ
 - Larger NA.
- Both reduces *DOF*
- Wafer surface must be highly planarized.
- That's why CMP is significantly required for 0.25 μm feature patterning.

I-line and DUV

- Mercury i-line, 365 nm
 - Commonly used in 0.35 μm lithography
- DUV KrF excimer laser, 248 nm
 - $-0.25 \mu m$, $0.18 \mu m$ and $0.13 \mu m$ lithography
- ArF excimer laser,193 nm
 - Application: $< 0.13 \mu m$
- F₂ excimer laser 157 nm
 - Still in R&D, $< 0.10 \mu m$ application

Silica and DUV

- SiO₂ strongly absorbs UV when λ < 180 nm
- Silica lenses and masks can't be used
- 157 nm F₂ laser photolithography
 - Fused silica with low OH concentration, fluorine doped silica, and calcium fluoride (CaF₂),
 - With phase-shift mask, even 0.035 μm is possible
- Further delay next generation lithography

Future Trends

Phase Shift Mask

$$d(n_f - 1) = \lambda/2$$

 n_f : Refractive index of phase shift coating

Phase Shift Mask

$$d(n_g - 1) = \lambda/2$$

 n_g : refractive index of the quartz substrate

Phase Shift Mask Patterning

Next Generation Lithography (NGL)

- Extreme UV (EUV) lithography
- X-Ray lithography
- Maskless lithography electron beam or ion beam
- Immersion lithography

EUV

- $\lambda = 10 \text{ to } 14 \text{ nm}$
- Short wavelength and reduced NA
- Mirror basis due to strong absorption at short wavelength
- Use a mask with Pd/C and Mo/Si multilayer coatings
- For 0.1 μm technology and beyond
- Still in development (support from Intel)

Extreme ultraviolet lithography (EUV Lithography) (10-125 nm)

Generated plasma and synchrotron light sources.

X-ray lithography

- Similar to proximity printer
- Difficult to find pure X-ray source (synchrotron radiation facility)
- Challenge on mask making (1:1)
- Very expensive! unlikely will be used in production

X-ray Printing

Optical Mask and X-ray Mask

Photo Mask

Aspect ratio > 1:1

X-ray Mask

E-Beam

- Used for making mask and reticles
- Smallest geometry achieved: 0.014 μm
- Direct print possible, no mask is required
 - Low throughput
- Scattering exposure system (SCALPEL) looks promising
 - Tool development
 - Reticle making
 - Resist development
 - Very similar to stepper lithography

Electron Beam Lithography System

SCALPEL

Ion Beam Lithography

- Can achieve higher resolution
 - Direct writing and projection resist exposing
 - Direct ion implantation and ion beam sputtering patterned etch, save some process steps
- Serial writing, low throughput
- Unlikely will be used in the mass production
- Appropriate for mask and reticle repairing
- IC device defect detection and repairing

Immersion Lithography

- Fill DI water between light source and wafer
- Reach higher DOF

$$DOF = \frac{K_{w}\lambda}{2(NA)^{2}}$$

Kw: refractive index of water (1.43)

- Applied in 193 nm or 248 nm systems
- Likely to push further to 90 or beyond if refractive index increased
- TSMC proved result in 90 nm product with ASML