Чисельне диференціювання

Лекція 12

Чисельне диференціювання застосовується тоді, коли функцію не можна продиференціювати аналітично:

- функція задана таблично,
- вираз функції такий громіздкий, що користуватися виразом похідної для обчислень дуже важко.

У цьому випадку задану функцію f(x) апроксимують функцією $\varphi(x,a)$, яка легко обчислюється і покладають

$$f'(x) = \varphi'(x, a)$$
.

Нехай функція y = f(x) задана таблично в n+1 точках на інтервалі $\begin{bmatrix} a,b \end{bmatrix}$. Необхідно знайти аналітичний вигляд її похідної.

Найпростіша ідея чисельного диференціювання полягає в тому, що функція замінюється інтерполяційним многочленом (Лагранжа, Ньютона) і похідна функції наближеного замінюється відповідною його похідною.

Постановка задачі чисельного диференціювання

Нехай функція задана таблично .

Необхідно знайти **аналітичний вигляд її похідної.**

Ідея чисельного диференціювання :

функція замінюється інтерполяційним многочленом (Лагранжа, Ньютона) і похідна функції наближеного замінюється відповідною похідною інтерполяційного многочлена.

Формули чисельного диференціювання

Функція задана в рівновіддалених вузлах

$$x_i = x_0 + ih$$
, $h > 0$, $i = 0, \pm 1, \pm 2, \dots$

Її значення та значення похідних у вузлах:

$$f(x_i) = f_i, \quad f'(x_i) = f_i', \quad f''(x_i) = f_i''.$$

M

Нехай функція задана у двох точках:

\boldsymbol{x}_{i}	x_0	x_1
$f(x_i)$	f_0	f_1

$$x_1 = x_0 + h$$

Побудуємо інтерполяційний многочлен 1-го степеня

$$l_1(x) = f_0 + (x - x_0) f(x_0; x_1).$$

$$l_1'(x) = f(x_0; x_1) = \frac{f_1 - f_0}{h}.$$

٠,

Похідну функції f(x) в точці x_0 наближено замінюємо похідною інтерполяційного многочлена

$$f_0'(x) \approx \frac{f_1 - f_0}{h}$$
 (1)

Величина $\frac{f_1-f_0}{h}$ - перша різницева похідна.

M

Нехай функція задана у 3-х точках:

\boldsymbol{x}_{i}	x_0	x_1	<i>x</i> ₋₁
$f(x_i)$	f_0	f_1	f_{-1}

$$x_1 = x_0 + h$$
, $x_{-1} = x_0 - h$

Інтерполяційний многочлен Ньютона 2-го степеня

$$l_2(x) = f(x_0) + (x - x_0)f(x_0; x_1) + (x - x_0)(x - x_1)f(x_0; x_1; x_{-1}).$$

$$l_2'(x) = f(x_0; x_1) + (2x - x_0 - x_1)f(x_0; x_1; x_{-1}).$$

У точці x_0 ця похідна дорівнює

$$l_{2}'(x_{0}) = \frac{f_{1} - f_{0}}{x_{1} - x_{0}} + (x_{0} - x_{1}) \times \left[\frac{f_{0}}{(x_{0} - x_{1})(x_{0} - x_{-1})} + \frac{f_{1}}{(x_{1} - x_{0})(x_{1} - x_{-1})} + \frac{f_{-1}}{(x_{-1} - x_{0})(x_{-1} - x_{1})} \right] = \frac{f_{1} - f_{-1}}{2h}.$$

Центральна різницева похідна

$$f_0' \approx \frac{f_1 - f_{-1}}{2h}$$
 (2)

Друга похідна

$$f_{2}''(x) = 2f(x_{0};x_{1};x_{-1}) =$$

$$= 2\left(\frac{f_{0}}{(x_{0} - x_{1})(x_{0} - x_{-1})} + \frac{f_{1}}{(x_{1} - x_{0})(x_{1} - x_{-1})} + \frac{f_{-1}}{(x_{-1} - x_{0})(x_{-1} - x_{1})}\right) =$$

$$= \frac{f_{1} - 2f_{0} + f_{-1}}{h^{2}},$$

Друга різницева похідна

$$f_0'' \approx \frac{f_1 - 2f_0 + f_{-1}}{h^2}$$
 (3)

(1)-(3) - формули чисельного диференціювання.

Якщо функція достатню кількість раз неперервно диференційованою:

$$\left|f_0'' - \frac{f_1 - f_0}{h}\right| \le \frac{h}{2} \max_{[x_0, x_1]} |f''(x)|,$$

$$\left|f_0' - \frac{f_1 - f_{-1}}{2h}\right| \le \frac{h^2}{6} \max_{[x_{-1}, x_1]} \left|f'''(x)\right|,$$

$$\left|f_0'' - \frac{f_{-1} - 2f_0 + f_1}{h^2}\right| \leq \frac{h^2}{12} \max_{[x_{-1}, x_1]} \left|f^{(4)}(x)\right|.$$

(1)— 1-й порядок точності відносно h,

v

Наближене диференціювання на основі інтерполяції Ньютона

$$x_i - x_{i-1} = h$$
, $(i = 1,...,n)$

$$L_{n}(x) = y_{0} + q \frac{\Delta y_{0}}{1!} + q(q-1) \frac{\Delta^{2} y_{0}}{2!} + q(q-1)(q-2) \frac{\Delta^{3} y_{0}}{3!} + \dots + q(q-1) \dots (q-n+1) \frac{\Delta^{n} y_{0}}{n!},$$

$$q = \frac{x - x_0}{h}$$

$$y \approx L_n(x) = y_0 + q\Delta y_0 + \frac{q^2 - q}{2}\Delta^2 y_0 + \frac{q^3 - 3q^2 + 2q}{6}\Delta^3 y_0 + \frac{q^4 - 6q^3 + 11q^2 - 6q}{24}\Delta^4 y_0 + \dots$$

Враховуючи правило диференціювання складної функції:

$$y'(x) = \frac{dy}{dx} = \frac{dy}{dq} \cdot \frac{dq}{dx} = \frac{1}{h} \cdot \frac{dy}{dq}$$
.

Аналогічно, враховуючи, що

$$y'(x) = \frac{1}{h} \left(\Delta y_0 + \frac{2q-1}{2} \Delta^2 y_0 + \frac{3q^2 - 6q + 2}{6} \Delta^3 y_0 + \frac{2q^3 - 9q^2 + 11q - 3}{12} \Delta^4 y_0 + \ldots \right),$$

отримуємо

$$y''(x) = \frac{d(y')}{dx} = \frac{d(y')}{dq} \cdot \frac{dq}{dx} = \frac{1}{h} \cdot \frac{d(y')}{dq}.$$

$$y'' \approx \frac{1}{h^2} \left[\Delta^2 y_0 + (q-1)\Delta^3 y_0 + \frac{6q^2 - 18q + 11}{12} \Delta^4 y_0 + \dots \right].$$

7

Формули для визначення похідних у вузлах інтерполяції: Якщо $x=x_0$, отримуємо q=0.

$$y'(x) = \frac{1}{h} \left(\Delta y_0 - \frac{\Delta^2 y_0}{2} + \frac{\Delta^3 y_0}{3} - \frac{\Delta^4 y_0}{4} + \dots \right),$$

$$y'' \approx \frac{1}{h^2} \left(\Delta^2 y_0 - \Delta^3 y_0 + \frac{11}{12} \Delta^4 y_0 + \dots \right).$$

Аналогічно можна визначити похідні будь-якого порядку. Але при цьому необхідно в якості x_0 вибирати найближче зліва вузлове значення аргумента.

Приклад. Знайти похідну функції y(x) в т. x = 1.2.

x_i	1.2	1.3	1.4	1.5
y_i	0.91	0.98	1.05	1.5

Розв'язування. Складемо таблицю скінченних різниць

x_i	$f(x_i)$	$\Delta f(x_i)$	$\Delta^2 f(x_i)$	$\Delta^3 f(x_i)$
1.2	0.91	0.07	0.00	0.38
1.3	0.98	0.07	0.38	
1.4	1.05	0.45		
1.5	1.5			

$$f'(x_0) \approx \frac{1}{0.1} \left(0.07 + \frac{0.38}{3} \right) = 10(0.07 + 0.127) = 1.97$$

$$f''(x_0) \approx \frac{1}{(0,1)^2} (-0.38) = -38$$

Похибка при визначенні похідної

$$R'_k(x_0) \approx h^{k+1} \frac{q(q-1)...(q-k)}{(k+1)!} y^{(k+1)}(\xi),$$

де $\xi \in [a,b]$, але не співпадає з вузлами інтерполяції.

Приклад: Функція задана таблично:

x_i	1	2	3	4
y_i	4	9	26	61

Знайти першу і другу похідні в точці x = 1.

Розв'язування. Складемо таблицю скінченних різниць.

x_i	$f(x_i)$	$\Delta f(x_i)$	$\Delta^2 f(x_i)$	$\Delta^3 f(x_i)$
1	4	5	12	6
2	9	17	18	
3	26	35		
4	61			

•

Крок h=1.

$$y'(x) = \frac{1}{h} \left(\Delta y_0 - \frac{\Delta^2 y_0}{2} + \frac{\Delta^3 y_0}{3} - \frac{\Delta^4 y_0}{4} + \dots \right),$$
$$y'' \approx \frac{1}{h^2} \left[\Delta^2 y_0 - \Delta^3 y_0 + \frac{11}{12} \Delta^4 y_0 + \dots \right].$$

Приклад. Знайти значення першої та другої похідних для функції y = f(x), заданої таблично, в точці x = 0,1.

Розв'язування.

$$h = 0.1$$
, $x = x_0 = 0.1$, $q = 0$.

Таблиця скінченних різниць:

x_i	$f(x_i)$	$\Delta f(x_i)$	$\Delta^2 f(x_i)$	$\Delta^3 f(x_i)$	$\Delta^4 f(x_i)$
0	1.2733	0.5274	0.0325	0.0047	0.0002
0.1	1.8007	0.5599	0.0372	0.0049	0.0002
0.2	2.3606	0.5971	0.0421	0.0051	
0.3	2.9577	0.6392	0.0472		
0.4	3.5969	0.6864			
0.5	4.2833				

м

$$h = 0,1$$

$$x = x_0 = 0,1$$

$$q = 0$$

Обчислення

$$y'(0.1) \approx \frac{1}{0.1} \left(0.5599 - \frac{0.0372}{2} + \frac{0.0049}{3} - \frac{0.0002}{4} \right) = 5.4285,$$

$$y''(x_0) \approx \frac{1}{0.01} \left(0.0372 - 0.0049 + \frac{11}{12} 0.0002 \right) = 3.25.$$

Відповідь. $y'(0.1) \approx 5.4285$, $y''(x_0) \approx 3.25$.

Дякую за увагу!