Racionalis tortfuggerny

Alaptorter

1, bonstans / elso fodu

$$\int \frac{4}{3x-1} dx = 4 \int \frac{1}{3x-1} dx = 4 \cdot \ln|3x-1| \cdot \frac{1}{3} + C$$

2 <u>bondans</u> / (elso"foku)ⁿ (n = 2,3,4...)

$$\int \frac{4}{(3x-1)^3} dx = 4 \int (3x-1)^{-3} dx = -\frac{2}{3} \cdot \frac{1}{(3x-1)^2} + C$$

3, elsö'forn'/masodforn' (masodforn'nat ninos valo's quote)

$$\int \frac{4x+5}{x^2+2x+2} dx = 2 \int \frac{2x+2+\frac{15}{2}}{x^2+2x+2} dx = 2 \left(\int \frac{2x+2}{x^2+2x+2} + \frac{\frac{1}{2}}{x^2+2x+2} dx \right) =$$

$$= 2 \ln \left(\chi^2 + 2\chi + 2 \right) + \arctan \left(\chi^2 + 2$$

Tort felbontasa résutortetre

1, nevezóben saz elsőfokú első hatrányon

$$\int \frac{x^2 - 3x + 8}{x(x+1)(x-3)(x+5)} = \int \frac{A}{x} + \frac{B}{x+1} + \frac{C}{x-3} + \frac{D}{x+5} dx$$

2, nevezoben irreducibilis maisodforn

$$\int \frac{x-7}{x^3+4x} dx = \int \frac{A}{x} + \frac{Bx+C}{x^2+4} dx$$

3, neveziben absolven de magasabs hatrainga

$$\int \frac{3 \times ^2 - 2 \times 45}{x^3 (x+1)^2} dx = \int \frac{A}{x} + \frac{B}{x^2} + \frac{c}{x^3} + \frac{D}{x+1} + \frac{E}{(x+1)^2} dx$$

Helyetesitési integrailt

$$\int \frac{e^x}{1+e^x} dx = \int \frac{t}{1+t^2} \cdot \frac{1}{t} dt = \text{out} \int \frac{t}{t} dt = \text{out} \int \frac{t}{$$

$$\frac{dx}{dt} = \frac{1}{L}$$
 derivoicas

Impropius integralt

$$T = \int_{A}^{\infty} \frac{1}{x} dx = \lim_{\alpha \to \infty} \int_{A}^{\infty} \frac{1}{x} dx = \lim_{\alpha \to \infty} \left[\ln |x| \right]_{A}^{\alpha} =$$

$$= \lim_{\alpha \to \infty} \left(\ln |\alpha| - \ln |\alpha| \right) = \infty - 0 = \infty$$

Nem 20-latos figgrényez integralaisa

$$f(x) = \frac{1}{x} \qquad \text{ for } 0 \notin 0$$

$$T = \int_{0}^{1} \frac{1}{x} dx = \lim_{\varepsilon \to 0^{+}} \int_{\varepsilon}^{1} \frac{1}{x} dx = \lim_{\varepsilon \to 0^{+}} \left[\ln |x| \right]_{\varepsilon}^{1} = \lim_{\varepsilon \to 0^{+}} \left(\ln 1 - \ln \varepsilon \right) = \infty$$

Implicit alabban adott goibel

Derivaicais

$$(x^{2}+y^{2}=1)' = 2x + 2y \cdot y' = 0$$

 $y' = \frac{-2x}{2y} = \frac{x}{y}$

E'rinto" equencete:

$$y-y_0 = m(x-x_0)$$

 $m = y'(p)$
derivailt értés a P

poutban

Fuqqo'leges e'rinto"

m nem eintermerheto

Szamlaild # 0 nevezo' = 0

pe: y'= 4-4x

y-4x +0 4y-x=0

f: x2+y2-xy/2=15

(4y)2 + y2 - 4y. y 12 = 15

 $5 = \pm 1$ A(u; = 1) $x = \pm 4$

Vizscintes évinto

scaimeaico = 0

nevezo" + 0

pl: y' = y-4+

y-4x=0 4y-x+0

y=4x -> 4x=-x +0

f: x2+y2-xy/2=15

x2 + (4x)2 - x. 4x 12 = 15

x=+1 >A(1,4)

y= = 4 > B(-1; -4)

Paraméteres alazu sizgörséz

, t∈[0;217]

 $c'(t) = (f'(t), g'(t)) \rightarrow y'(x) = y' = \frac{g'(t)}{f'(t)}$

Juhossz

c(t) = (f(t), g(t))

 $\overline{I} = \int_{V}^{t_{L}} \sqrt{f(t)^{2} + g'(t)^{2}} dt$

Differencial equenleter

-a DE rendre a legmagasats el ofordulos ismeretlem rendre -a DE lineairis ha benne az ismeretlem fugquery es derivaitja i osaz elsos hatraigan scerepelnez

Tipusai

1) Szétvailasztható vailtozóju DE

altalaines alak:

$$\overline{1.opet}$$
: $h(y) = 0$

L) y Constanst Eapure => $y' = 0$

$$\frac{\text{II.eset:} h(y) \neq 0}{\text{Listable optimized of } h(y) \neq 0}$$

$$\frac{y'}{h(y)} = g(x) / S$$

$$\frac{y'}{h(y)} = Sq(x)$$

A'etalaines acaz: y' + a(x)·y = b(x)

ha $b(x) \equiv 0$, alter homogén ha $b(x) \not\equiv 0$, alter inhomogén

(=0 -> minden x eseten 0-at)

1, la 5(x) =0

homogen equenlet

ske'traicazethate' vaictoro'ju'

2, ha b(x) ≠ 0

e inhomogén

Homogén egynlet:

Inhomogén equenlet:

$$y = \frac{1}{x^5} \Rightarrow y' = \frac{1}{x^{10}} + \frac{1}{x^{10}} = \frac{1}{x^{10}}$$

$$\int_{0}^{\infty} \frac{5\pm(x)}{x^{6}} + \frac{\pm(x)}{x^{5}}$$
behelyetes ités az eredeti equenletbe
$$\pm(x) = \int_{0}^{\infty} 9x^{8} dx = x^{9} + C$$

$$y = \frac{x^{9+C}}{x^{5}} = x^{4} + \frac{C}{x^{5}} = aict. megoldava az inhomogén equenletnek$$

A'llando' equithato's DE

$$y = y_{n} + y_{p}$$

$$y_{n} = C \cdot e^{2x}$$

$$pe: y'' - 2y' + 5y = 0$$

$$y_{n} = C \cdot e^{2x}$$

benelyetesitettik y helyere at eredeti 18. be $y = A \times + B$ $y = A \times + B$ y = A y = A $x = -5A = 3 \implies A = -\frac{3}{5}$ $C: A - 5B = 0 \implies B = -\frac{3}{25}$

 $yp = -\frac{3}{5}x - \frac{3}{25}$

$$y = y_n + y_p = C \cdot e^{5x} + \frac{3}{5}x - \frac{3}{25}$$

b(x)	1 49
2×	Ax + B
3×2-5×-4	Ax2+B++C
×3-×	Ax3+ Bx2+Cx+O
x4	A x 4 + Bx3 + Cx2 + Dx +E
2 e ^x	A e×
e ²⁺	A e ^{2x}
2e*-e2*	Aex+Bezx
x + e ³³⁷	Ax + B + Ce3+
x · e 3×	Axe3x + Be3x
Sinx	Asinx + Bcoox
COOX	$A \sin x + B \cos x$
3sint - 5cod(2x)	A sinx + Bcoox+ Csin(2x) + Dcos(2x)
et. sinx	e Aetsint + Betcoot
x · sinx	Axsin + Bxcox + Csinx + Deix

A'llando aqui Hhata's DE Lomplex megoldaissal

pe:
$$y'' + 2y' + 17y = 0$$

$$\lambda^{2} + 2\lambda + 17 = 0$$

$$\lambda = (-1 + 4i)$$

$$\frac{-1 - 4i}{2}$$

Ketvactord's fuggrenner

Kétraltozós fg. ez dif. számítása

x szerinti derivalaisnal az y-t konstansnaz zezelfit es forditua

$$pe: f(x,y) = x^3 - y^2 + x^2 - y^3$$

$$f'_{x}(x_{i}y) = 3x^{2} - 0 + 2x - 0 = 3x^{2} + 2x$$

$$fy(x,y) = 0 - 2y + 0 - 3y^2 = -2y - 3y^2$$

$$f_{xx}^{11}(x,y) = 6x + 2$$
 $f_{yy}^{11}(x,y) = -2 - 6y$
 $f_{xy}^{11}(x,y) = 0$ = $f_{yx}^{11}(x,y) = 0$

Gradiens

Hesse-matrix:
$$H(f(x,y)) = \begin{pmatrix} f_{xx}^{11} & f_{xy}^{11} \\ f_{yx}^{11} & f_{yy}^{11} \end{pmatrix}$$

Iranymenti derivatt

$$f'_{\underline{y}} = \langle \operatorname{qrad} f ; \underline{e}_{\underline{y}} \rangle =$$

$$= f'_{\underline{x}}(\underline{x}_{\underline{y}}) \cdot \frac{1}{\|\underline{y}\|} \cdot \underline{y}_{\underline{x}} + f'_{\underline{y}}(\underline{x}_{\underline{y}}) \cdot \frac{1}{\|\underline{y}\|} \cdot \underline{y}_{\underline{y}}$$

Erinta" siz

S:
$$n_1 \cdot (x - x_0) + n_2 \cdot (y - y_0) + n_3 \cdot (2 - z_0) = 0$$

 $(n_1 \cdot x + n_2 \cdot y + n_3 \cdot z = n_1 \cdot x_0 + n_2 \cdot y_0 + n_3 \cdot z_0)$
 $V_x = (1; 0; f_x(x_0; y_0))$
 $Y_x = (0; 1; f_y(x_0; y_0))$
 $Y_x = (0; 1; f_y(x_0; y_0))$

Sze'Cs d'el He'E

coar azorban a pontorban lehet ahol
$$f_x(x,y) = 0$$
 és $f_y(x,y) = 0$

Lo ezet ar i.n. STACIONA'RIUS pontor

the equ STAC points and clet
$$H(f(x,y)) > 0$$
 van siebsöelte's clet $H(f(x,y)) < 0$ ninos - 11— clet $H(f(x,y)) = 0$?

pe:
$$f(x,y) = x^2 - 8x + y^2 + 10y^{-3}$$

 $f'_{x} = 2x - 8$ $f''_{x} = 2$ $f''_{x} = 0$
 $f''_{y} = 2y + 10$ $f''_{y} = 2$

$$f'_y = 2y + 10$$

$$f''_y = 2$$

$$H(f(P)) = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} \quad \text{det} = \int_{0}^{\infty} d^{2} d^{2$$

Matrixoz

Mülleleter

$$B = A \cdot C = \begin{bmatrix} a \cdot c_{11} & a \cdot c_{12} & \cdots \\ a \cdot c_{nk} \end{bmatrix}$$

$$b_{ij} = c_{ij} \cdot a$$

$$A = \begin{bmatrix} a_{11} + a_{11} & \cdots \\ a_{nk} + b_{nk} \end{bmatrix}$$

$$b_{ij} = c_{ij} + a_{ij}$$

$$C(n \times k)$$

$$B = A \cdot C = \begin{bmatrix} a_{11} - c_{11} & \cdots \\ a_{nk} - c_{nk} & \cdots \\ a_{nk} - c_{nk} & \cdots \end{bmatrix}$$

$$b_{ij} = a_{ij} - a_{ij}$$

$$b_{ij} = a_{ij} - a_{ij}$$

Ket matrix szorzasa

A B Estar leterit A.B és
$$C = A \cdot B$$
 attar $(n \times k)$ $(k \times m)$ $Cij = ai1 \cdot bij + ai2 \cdot b2j \cdots = \sum_{m=1}^{k} aim \cdot bmj$

Foll modszer

$$Pe: A = \begin{bmatrix} 1/23 \\ 4/56 \end{bmatrix} \quad B = \begin{bmatrix} 65 \\ 4/3 \\ 2/4 \end{bmatrix}$$

$$A \cdot B = \begin{bmatrix} A \\ 4/56 \end{bmatrix} \quad (6.1 + 2.4 + 3.2)$$

$$A \cdot B = \begin{bmatrix} A \\ 4/23 \\ 4/56 \end{bmatrix} \quad (6.1 + 2.4 + 3.2)$$

$$A \cdot B = \begin{bmatrix} A \\ 4/23 \\ 4/56 \end{bmatrix} \quad (6.1 + 2.4 + 3.2)$$

$$A \cdot B = \begin{bmatrix} A \\ 4/23 \\ 4/56 \end{bmatrix} \quad (6.1 + 4.4 + 3.2)$$

$$A \cdot B = \begin{bmatrix} A \\ 4/23 \\ 4/56 \end{bmatrix} \quad (6.1 + 4.4 + 3.2)$$

$$A \cdot B = \begin{bmatrix} A \\ 4/23 \\ 4/56 \end{bmatrix} \quad (6.1 + 4.4 + 3.2)$$

$$A \cdot B = \begin{bmatrix} A \\ 4/23 \\ 4/56 \end{bmatrix} \quad (6.1 + 4.4 + 3.2)$$

$$A \cdot B = \begin{bmatrix} A \\ 4/23 \\ 4/56 \end{bmatrix} \quad (6.1 + 2.4 + 3.2)$$

$$A \cdot B = \begin{bmatrix} A \\ 4/23 \\ 4/56 \end{bmatrix} \quad (6.1 + 2.4 + 3.2)$$

$$A \cdot B = \begin{bmatrix} A \\ 4/23 \\ 4/56 \end{bmatrix} \quad (6.1 + 2.4 + 3.2)$$

$$A \cdot B = \begin{bmatrix} A \\ 4/23 \\ 4/56 \end{bmatrix} \quad (6.1 + 2.4 + 3.2)$$

$$A \cdot B = \begin{bmatrix} A \\ 4/23 \\ 4/56 \end{bmatrix} \quad (6.1 + 2.4 + 3.2)$$

$$A \cdot B = \begin{bmatrix} A \\ 4/23 \\ 4/56 \end{bmatrix} \quad (6.1 + 2.4 + 3.2)$$

$$A \cdot B = \begin{bmatrix} A \\ 4/23 \\ 4/56 \end{bmatrix} \quad (6.1 + 2.4 + 3.2)$$

$$A \cdot B = \begin{bmatrix} A \\ 4/23 \\ 4/56 \end{bmatrix} \quad (6.1 + 2.4 + 3.2)$$

$$A \cdot B = \begin{bmatrix} A \\ 4/23 \\ 4/56 \end{bmatrix} \quad (6.1 + 2.4 + 3.2)$$

$$A \cdot B = \begin{bmatrix} A \\ 4/23 \\ 4/56 \end{bmatrix} \quad (6.1 + 2.4 + 3.2)$$

$$A \cdot B = \begin{bmatrix} A \\ 4/23 \\ 4/56 \end{bmatrix} \quad (6.1 + 2.4 + 3.2)$$

$$A \cdot B = \begin{bmatrix} A \\ 4/23 \\ 4/56 \end{bmatrix} \quad (6.1 + 2.4 + 3.2)$$

$$A \cdot B = \begin{bmatrix} A \\ 4/23 \\ 4/56 \end{bmatrix} \quad (6.1 + 2.4 + 3.2)$$

$$A \cdot B = \begin{bmatrix} A \\ 4/23 \\ 4/56 \end{bmatrix} \quad (6.1 + 2.4 + 3.2)$$

$$A \cdot B = \begin{bmatrix} A \\ 4/23 \\ 4/56 \end{bmatrix} \quad (6.1 + 2.4 + 3.2)$$

$$A \cdot B = \begin{bmatrix} A \\ 4/23 \\ 4/56 \end{bmatrix} \quad (6.1 + 2.4 + 3.2)$$

$$A \cdot B = \begin{bmatrix} A \\ 4/23 \\ 4/56 \end{bmatrix} \quad (6.1 + 2.4 + 3.2)$$

$$A \cdot B = \begin{bmatrix} A \\ 4/23 \\ 4/56 \end{bmatrix} \quad (6.1 + 2.4 + 3.2)$$

$$A \cdot B = \begin{bmatrix} A \\ 4/23 \\ 4/56 \end{bmatrix} \quad (6.1 + 2.4 + 3.2)$$

$$A \cdot B = \begin{bmatrix} A \\ 4/23 \\ 4/23 \end{bmatrix} \quad (6.1 + 2.4 + 3.2)$$

$$A \cdot B = \begin{bmatrix} A \\ 4/23 \\ 4/23 \end{bmatrix} \quad (6.1 + 2.4 + 3.2)$$

$$A \cdot B = \begin{bmatrix} A \\ 4/23 \\ 4/23 \end{bmatrix} \quad (6.1 + 2.4 + 3.2)$$

$$A \cdot B = \begin{bmatrix} A \\ 4/23 \\ 4/23 \end{bmatrix} \quad (6.1 + 2.4 + 3.2)$$

$$A \cdot B = \begin{bmatrix} A \\ 4/23 \\ 4/23 \end{bmatrix} \quad (6.1 + 2.4 + 3.2)$$

$$A \cdot B = \begin{bmatrix} A \\ 4/23 \\ 4/23 \end{bmatrix} \quad (6.1 + 2.4 + 3.2)$$

$$A \cdot B = \begin{bmatrix} A \\ 4/23 \\ 4/23 \end{bmatrix} \quad (6.1 + 2.4 + 3.2)$$

$$A \cdot B = \begin{bmatrix} A \\ 4/23 \\ 4/23 \end{bmatrix} \quad (6.1 + 2.4 + 3.2)$$

$$A \cdot B = \begin{bmatrix} A \\ 4/23 \\ 4/23 \end{bmatrix} \quad (6.1 + 2.4 + 3.2)$$

$$A \cdot B = \begin{bmatrix} A \\ 4/23 \\ 4/23 \end{bmatrix} \quad (6.1 + 2.4 + 3.2)$$

$$A \cdot B = \begin{bmatrix} A \\ 4/23 \\ 4/23 \end{bmatrix} \quad (6.1 + 2.4 + 3.2)$$

$$A \cdot B = \begin{bmatrix} A \\ 4/23 \\ 4/23 \end{bmatrix} \quad (6.1 + 2.4 + 3.2)$$

$$A \cdot B = \begin{bmatrix} A \\ 4/23 \\ 4/23 \end{bmatrix} \quad (6.1 + 2.4 + 3.2)$$

$$A \cdot B = \begin{bmatrix} A \\ 4/23 \\ 4/23 \end{bmatrix} \quad (6.1 + 2.4 + 3.2)$$

Transconailas

$$\begin{pmatrix}
A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1k} \\ a_{21} & \dots & a_{2k} \\ \vdots & \vdots & \vdots \\ a_{n1} & \dots & \vdots \\ a_{nk} & \dots & \dots & \dots \\ \vdots & \dots & \dots & \dots \\ a_{nk} & \dots & \dots & \dots \\ \vdots & \dots & \dots & \dots \\ a_{nk} & \dots & \dots & \dots \\ \vdots & \dots & \dots & \dots \\ a_{nk} & \dots & \dots & \dots \\ \vdots & \dots & \dots & \dots \\ a_{nk} & \dots & \dots & \dots \\ \vdots & \dots & \dots \\ \vdots & \dots & \dots \\ \vdots & \dots & \dots & \dots \\ \vdots & \dots \\ \vdots & \dots & \dots \\ \vdots &$$

Müreletel tulajdonsagai

$$\mathcal{L} \cdot \beta \cdot A = \mathcal{L}(\beta A) = (\mathcal{L} \cdot \beta) A$$

$$A + B = B + A$$

$$(A + B) \cdot C = A + B + C$$

$$\mathcal{L} \cdot (A + B) = \mathcal{L} A + \mathcal{L} B$$

$$(A^{t})^{t} = A$$

$$(AA)^t = A(A^t)$$

A.B & B.A

Specialis matrixol

1, neigyzetes maitrix

$$A = \begin{bmatrix} \alpha_{11} \\ \alpha_{nn} \end{bmatrix}$$

2, egységmaitrix

$$\frac{1}{(n \times n)} = \begin{bmatrix} 100.7 \\ 0.1 \\ 0.1 \end{bmatrix}$$

3, nulla matrix

$$A + 0 = A$$
$$A \cdot 0 = 0$$

4, vestor

Peterminainsor

$$A \longrightarrow det(A) = |A| \leftarrow a_1 A matrixhor hendelt scalm (nxn)$$

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \qquad det(A) = \text{end} \cdot ad - b \cdot C \qquad \qquad \begin{cases} 2 \times 2 \text{ moitrix} \\ \text{(foateo)} \text{ (melle'za'tlo')} \end{cases}$$

$$A = \begin{bmatrix} a_{11} & \dots & a_{1n} \end{bmatrix} \quad det(A) = a_{11} \cdot A_{11} + a_{12} \cdot A_{11} + a_{12} \cdot A_{11} + a_{1n} \cdot A_{nn}$$

$$= \begin{bmatrix} a_{11} & \dots & a_{1n} \end{bmatrix} \quad det(A) = a_{11} \cdot A_{11} + a_{12} \cdot A_{1n} + \dots + a_{nn} \cdot A_{nn}$$

$$= \begin{bmatrix} a_{11} & \dots & a_{1n} \end{bmatrix} \quad det(A) = a_{11} \cdot A_{11} + a_{12} \cdot A_{11} + \dots + a_{nn} \cdot A_{nn}$$

$$= \begin{bmatrix} a_{11} & \dots & a_{1n} \end{bmatrix} \quad det(A) = a_{11} \cdot A_{11} + a_{12} \cdot A_{11} + \dots + a_{nn} \cdot A_{nn}$$

$$= \begin{bmatrix} a_{11} & \dots & a_{1n} \end{bmatrix} \quad det(A) = a_{11} \cdot A_{11} + a_{12} \cdot A_{11} + \dots + a_{nn} \cdot A_{nn}$$

Aij-t ugu kapjur meg, hogy elhagyjur ar i sort es j'orlepot elöjele: szorrunt (-1)itj-val

$$\det(A) = 1 \cdot (-1)^{1/4} \cdot \det\left(\frac{56}{89}\right) + 2 \cdot (-1)^{1+2} \cdot \det\left(\frac{46}{9}\right) + 3 \cdot (-1)^{1+3} \cdot \det\left(\frac{45}{89}\right) = 1 \cdot (-1)^{1/4} \cdot \det\left(\frac{56}{89}\right) + (-1)^{1/4} \cdot \det\left(\frac{45}{89}\right) = 1 \cdot (-1)^{1/4} \cdot \det\left(\frac{56}{89}\right) + (-1)^{1/4} \cdot \det\left(\frac{45}{89}\right) = 1 \cdot (-1)^{1/4} \cdot \det\left(\frac{56}{89}\right) + (-1)^{1/4} \cdot \det\left(\frac{45}{89}\right) = 1 \cdot (-1)^{1/4} \cdot \det\left(\frac{56}{89}\right) + (-1)^{1/4} \cdot \det\left(\frac{45}{89}\right) = 1 \cdot (-1)^{1/4} \cdot \det\left(\frac{56}{89}\right) + (-1)^{1/4} \cdot \det\left(\frac{56}{89}\right) + (-1)^{1/4} \cdot \det\left(\frac{45}{89}\right) = 1 \cdot (-1)^{1/4} \cdot \det\left(\frac{56}{89}\right) + (-1)^{1/4} \cdot \det\left(\frac{45}{89}\right) = 1 \cdot (-1)^{1/4} \cdot \det\left(\frac{56}{89}\right) + (-1)^{1/4} \cdot \det\left(\frac{45}{89}\right) = 1 \cdot (-1)^{1/4} \cdot \det\left(\frac{56}{89}\right) + (-1)^{1/4} \cdot \det\left(\frac{45}{89}\right) = 1 \cdot (-1)^{1/4} \cdot \det\left(\frac{56}{89}\right) + (-1)^{1/4} \cdot \det\left(\frac{45}{89}\right) = 1 \cdot (-1)^{1/4} \cdot \det\left(\frac{56}{89}\right) + (-1)^{1/4} \cdot \det\left(\frac{45}{89}\right) = 1 \cdot (-1)^{1/4} \cdot \det\left(\frac{56}{89}\right) + (-$$

pl:
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 \\ 0 & -63 & -9 \\ 0 & -6 & -12 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 \\ 0 & -63 & -9 \\ 0 & -6 & -12 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 \\ 0 & -63 & -9 \\ 0 & -6 & -12 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 \\ 0 & -63 & -9 \\ 0 & -6 & -12 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 \\ 0 & -63 & -9 \\ 0 & -6 & -12 \end{bmatrix} = 0$$

$$\text{Clet}(A) = 1 \cdot (-1)^{A+1} \cdot \begin{vmatrix} -3 & -9 \\ -6 & -12 \end{vmatrix} = 0$$

(a tobbiner as estére O)

Kétraitords fuggrényez intequaçõesa

$$T = \{(x,y) \in \mathbb{R}^2 | \alpha \leq x \leq b, c \leq y \leq d\}$$

$$\int \int f(x,y) dT = \int \left(\int_{c}^{b} f(x,y) dx\right) dy = \int \left(\int_{c}^{b} f(x,y) dy\right) dx$$

integraçais normaltartomaiyan

$$H = \{(x,y) \in \mathbb{R}^2 \mid a \le x \le 5; g_1(x) \le y \le g_2(x) \}$$

$$\iint_{H} f(x,y) dH = \int_{a}^{b} \left(\int_{g_1(x)}^{g_1(x)} f(x,y) dy \right) dx$$

sullypont Liscamitaise

$$M_{\times} = \frac{\iint_{H} \times dH}{\iint_{H} dH}$$