Pared Celular

- Funciones de la pared celular
- Composición química
- Capas de la pared celular
- Tipos de interconexiones
- Origen de la pared celular
- Síntesis de la celulosa

envoltura rígida rodea protoplasto de las células vegetales

- ✓ determina forma y tamaño de la célula
- ✓ previene la rotura de la membrana plasmática
- √ soporte mecánico a la planta
- ✓ protección contra patógenos potenciales
- ✓ define las interrelaciones celulares (vía apoplasto)
- ✓ participa de absorción, transporte y secreción de las plantas
- ✓ en tejidos externos: protege contra abrasión viento, UV y desecación
- ✓ puede provocar cambios en las propiedades del plasmalema

CONSTITUCIÓN QUÍMICA

celulosa de la pared fuerza mecánica

componentes de la matriz

hemicelulosas ————	limita extensibilidad de la pared
compuestos pécticos ——	plasticidad
proteínas ————	síntesis, transferencia e hidrólisis macromoléculas
oligosacarinas ————	señalamiento a través de receptor de plasmalema
lignina —————	rigidez y resistencia a la degradación
cutina, suberina, ceras —	reducen pérdida de agua
calosa ————	floema, microsporogénesis, cicatrización y estrés
agua ——————	enlaces hidrógeno y conformación polímeros solvente iones y pequeñas moléculas

ESTRUCTURA DE LA PARED CELULAR

MOLÉCULA DE ÁCIDO PECTÍNICO

GLICOPROTEÍNA

MOLÉCULA NEUTRA DE PECTINA

MICROFIBRILLA DE CELULOSA microfibrillas = 10 - 25 nm

macrofibrillas = 0,5 mm y 4 mm long.

ORGANIZACIÓN DE LA PARED

hemicelulosa lignina

15-35 %

laminilla media delgada, amorfa, coloidal sust. pécticas muy hidrofílica celulosa 30-40 % hemicelulosa 25 % pared primaria 50-100 nm, plástica y extensible sust. pécticas 30 % muy hidratada, permeable proteínas 5-10 % celulosa 60-70 % pared secundaria rígida, difícilmente deformable

poco hidratada

pared primaria

pared secundaria

PUNTUACIÓN = PUNTEADURA

discontinuidad en el depósito de pared secundaria

PUNTUACIONES

Tipos

Simple

interrupción abrupta

Areolada

con reborde o areola

par de puntuaciones

puntución ciega

PUNTUACIONES

PLASMODESMOS complejos de transporte intercelular de macromoléculas (azúcares solubles, aminoácidos, nucleótidos libre, partículas virales) que conectan

células vecinas.

Transferencia plasmalema citoplasma desmotúbulo

PUNTUACIONES Y CAMPOS PRIMARIOS DE PUNTUACIONES

Evert 2006

TEICODES = **ECTODESMOS** espacios en que la estructura fibrilar de la pared externa de la epidermis es laxa y bastante abierta.

ORIGEN DE LA PARED

ORIGEN DE LA PARED

microtúbulos + vesículas → fragmoplasto

membranas + microtúbulos → residuales +
vesículas placa celular

vesículas (pectinas) → laminilla media

microfibrillas → pared primaria

ORIGEN DE LA PARED: Desarrollo de la placa celular

Evert 2006

1) Crecimiento en espesor

1) Crecimiento en espesor

La fase fibrilar se deposita únicamente por **aposición** (=adcrustación), es decir por deposición de nuevo material sobre el anterior.

La fase amorfa se deposita por intususcepción (=incrustación), es decir por intercalación de moléculas en la estructura existente; así se depositan la lignina, la cutina y los taninos

1) Crecimiento en extensión

En células isodiamétricas, las microfibrillas se depositan formando una red irregular. La pared aparece como una sucesión de redes de microfibrillas, interpretación llamada "teoría de la red múltiple o multinet"

En células alargadas las microfibrillas se depositan en las paredes laterales perpendicularmente al eje de crecimiento de la célula.

1) Crecimiento en extensión

http://www.euita.upv.es/varios/biologia/Temas/Pared%20celular%20ampliada.htm#Crecimiento

1) Crecimiento en extensión

http://www.euita.upv.es/varios/biologia/Temas/Pared%20celular%20ampliada.htm#Crecimiento

Pared Celular

- Evert 2006. Anatomía de las plantas de Esau. Wiley. Capítulo 6
- Esau 1982. Anatomía de las plantas con semillas. Ed. Hemisferio Sur. Cap. IV
- Web de la UPV: http://www.euita.upv.es/varios/biologia/T emas/Pared%20celular%20ampliada.htm# Crecimiento

Pared Celular

- Funciones de la pared celular
- Composición química
- Capas de la pared celular
- Tipos de interconexiones
- Origen de la pared celular
- Síntesis de la celulosa