

Chapter 02. 가장 단순한 신경망을 통해 작동 원리 이해하기

STEP1. 얕은 신경망을 이용한 분류와 회귀

얕은 신경망으로 무엇을 할 수 있을까?

[키, 몸무게, 나이 …]

[지역, 집 면적, 건축 년도, …]

[면접 점수, 실기 점수, 필기 점수, …]

[꽃잎의 너비, 꽃잎의 색깔, …]

[기대 수명]

[적정 매매가]

[당락 여부]

[꽃의 종류]

입력과 출력 간에 상관성이 있을 경우, 이를 학습하여 새로운 입력에 대해 출력을 낼 수 있다.

회귀 (Regression)

잡음이 있는 학습 샘플로부터 규칙을 찾아 연속된 값의 출력을 추정하는 것을 회귀라고 한다.

STEP1. 얕은 신경망을 이용한 분류와 회귀

분류 (Classification)

입력 값을 분석해 특정 범주(Category)로 구분하는 작업을 분류(Classification)라고 한다.

범주가 2개일 경우 '이진 분류 (Binary classification)', 그 이상은 '다중 분류 (Multi-class classification)'라고 한다.

STEP1. 얕은 신경망을 이용한 분류오 회귀

얕은 신경망을 이용한 회귀

얕은 신경망의 동작은 <mark>출력 계층의 활성 함수</mark>에 의해 달라진다. 회귀는 전 범위의 연속된 값을 출력하므로, 보통 Identity function(항등 함수)을 사용한다.

STEP1. 얕은 신경망을 이용한 분류오 회귀

얕은 신경망을 이용한 이진 분류

이진 분류를 위한 출력은 $0\sim1$ 사이의 실수 값이며, 활성함수로 Sigmoid function을 사용한다. 0.5보다 작으면 첫 번째 Class, 0.5보다 크면 두 번째 Class로 분류한다.

STEP1. 얕은 신경망을 이용한 분류오 회귀

얕은 신경망을 이용한 다중 클래스 분류

SoftMax 활성 함수를 이용해 다중 분류 문제를 해결할 수 있다. 각 출력은 해당 Class에 속할 확률을 의미한다.

