Camera Calibration

Let
$$K = \begin{pmatrix} \alpha & s & u_0 \\ 0 & \beta & v_0 \\ 0 & 0 & 1 \end{pmatrix}$$
 $R = \begin{pmatrix} r_1^T \\ r_2^T \\ r_3^T \end{pmatrix}$ and $T = [t_x t_y t_z]^T$

$$P = K[RT] = \begin{pmatrix} \alpha & s & u_0 \\ 0 & \beta & v_0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} r_1^T & t_x \\ r_2^T & t_y \\ r_3^T & t_z \end{pmatrix} = \begin{pmatrix} \alpha r_1^T + s r_2^T + u_0 r_3^T & \alpha t_x + s t_y + u_0 t_z \\ \beta r_2^T + v_0 r_3^T & \beta t_y + v_0 t_z \\ r_3^T & t_z \end{pmatrix}$$

$$p = [p_{11}p_{12}p_{13}p_{14}p_{21}p_{22}p_{23}p_{24}p_{31}p_{32}p_{33}p_{34}]^{T}$$

$$P = \begin{pmatrix} p_{11} & p_{12} & p_{13} & p_{14} \\ p_{21} & p_{22} & p_{23} & p_{24} \\ p_{31} & p_{32} & p_{33} & p_{34} \end{pmatrix} \qquad P33 = \begin{pmatrix} p_{11} & p_{12} & p_{13} \\ p_{21} & p_{22} & p_{23} \\ p_{31} & p_{32} & p_{33} \end{pmatrix} = \begin{pmatrix} a_1^T \\ a_2^T \\ a_3^T \end{pmatrix} = \begin{pmatrix} \alpha r_1^T + s r_2^T + u_0 r_3^T \\ \beta r_2^T + v_0 r_3^T \\ r_3^T \end{pmatrix}$$

As P and λP will have the same effect, from the solution from the homogeneous system, we normalize the P33 in the way that the last row has the norm of 1.

let
$$\rho = \frac{\pm 1}{norm(a_3)}$$
 then $\rho P33 = \begin{vmatrix} \rho a_1^T \\ \rho a_2^T \\ \rho a_3^T \end{vmatrix} = \begin{vmatrix} a {}_1^T \\ a {}_2^T \\ a {}_3^T \end{vmatrix}$

$$u_0 = a_1^T * a_3^T$$
 $v_0 = a_2^T * a_3^T$ $\beta = norm(a_2 \times a_3^T)$ $s = \frac{a_1^T * a_2^T - u_0 v_0}{\beta}$

$$\alpha = \sqrt{a'_1^T * a_1 - s^2 - u_0^2} \qquad r_1 = \frac{a'_2 x a'_3}{norm(a'_2 x a'_3)} \qquad r_3 = a'_3 \qquad r_2 = r_3 x r_1 \qquad T = \rho K^{-1} \begin{pmatrix} p_{14} \\ p_{24} \\ p_{34} \end{pmatrix}$$

As there are two possible ways to normalize the matrix P33, there will be two solutions. From the mathematical analysis, from one solution, we can obtain the other one.

 $K_2 = K$ the intrinsic parameters remain unchanged.

$$R_2 = \begin{pmatrix} r_1^T \\ -r_2^T \\ -r_3^T \end{pmatrix} \quad \text{and} \quad T_2 = -T$$