Programació 2 Lliurament 1

David Martínez Carpena 26 d'octubre de 2015

${\rm \acute{I}ndex}$

L	$\S \mathbf{Esp}$	pais afins	3
	1.1	Varietats lineals	3
	1.2	Referències cartesianes	4
	1.3	Equacions paramètriques de una varietat lineal	5
	1.4	Equacions implícites de una varietat lineal	6
	1.5	Combinacions lineals de punts	6
	1.6	Independència afí	7
	1.7	Operacions amb subvarietats	9
	1.8	Fòrmules de Grassman afins	11
	1.9	Teoremes clàssics	12
	1.10	Aplicacions afins	13
	1.11	Expressió d'una aplicació afí en coord. cartesianes	18
	1.12	Matriu d'una aplicació afí	19
	_		
2 Espais euclidis		ais euclidis	26
	2.1	Producte escalar	26

Geometria lineal

1 §Espais afins

Definició 1.1 (Espai afí). Sigui K un cos, E un K-espai vectorial de dimensió finita i A un cojunt tal que $A \neq \phi$. Un espai afí sobre un cos K de espai director E és una terna (A, E, ϕ) tal que:

$$\phi: A \times E \longrightarrow A$$
$$(p, \overrightarrow{v}) \longmapsto \phi(p, \overrightarrow{v}) := p + \overrightarrow{v}$$

Anomenarem punts als elements del conjunt A. A més, es verifiquen els següents axiomes:

(A1) $\forall p \in A$, la aplicació

$$\begin{array}{ccc} \phi_p : E & \longrightarrow & A \\ \overrightarrow{v} & \longmapsto & p + \overrightarrow{v} \end{array}$$

és bijectiva.

(A2) $\forall p \in A, \ \overrightarrow{u}, \overrightarrow{v} \in E,$

$$\phi(p, \vec{u} + \vec{v}) = \phi(\phi(p, \vec{u}), \vec{v})$$
$$p + (\vec{u} + \vec{v}) = (p + \vec{u}) + \vec{v}$$

Sigui dim(E) = n, definirem la dimensió de l'espai afí A com dim(A) = dim(E) = n.

Exemple 1.1. $dim(A) = 0 \Leftrightarrow E = \{0\} \Leftrightarrow A = \{p\}$

Exemple 1.2. $dim(A) = 1 \Leftrightarrow E \cong K \Rightarrow A$ és una recta

Lema 1.1. 1. $\forall p, q \in A, \exists ! \ \vec{v} \in E \ tal \ que \ p = q + \vec{v}, \ i \ definim \ aquest \ vector \ com \ \vec{v} = \vec{q}\vec{p}$

2. (Llei de Chasles) $\overrightarrow{pr} = \overrightarrow{pq} + \overrightarrow{qr}$

Demostraci'o. 1. Per (A1) sabem que,

$$\phi_p : E \longrightarrow A$$

$$\overrightarrow{v} \longmapsto q + \overrightarrow{v} \text{ és bijectiva} \Rightarrow \exists! \overrightarrow{v} \text{ tal que } \overrightarrow{v} = \phi_p^{-1}(p) = \phi_p^{-1}(q + \overrightarrow{v})$$

2.

1.1 Varietats lineals

Definició 1.2. Sigui A un espai afí, amb dim(A) = n, i de espai director E. Una (sub)varietat lineal de A és un subconjunt $\mathbb{L} \subseteq A$ de la forma $\mathbb{L} = p + F$, amb $p \in A$ com a punt de pas de \mathbb{L} i F un subespai vectorial de E com a espai director

$$\mathbb{L} = \{ q \in A | \exists \overrightarrow{v} \in F, q = p + v \} \subseteq A$$

Si una subvarietat lineal és de dimensió n-1, l'anomenem hiperpla.

Lema 1.2. Sigui A un espai afí d'espai director E i \mathbb{L} una subvarietat lineal de A amb espai director F, llavors $dim(\mathbb{L}) = dim(F) \le dim(E) = dim(A)$.

Proposició 1.3. 1. Si $q \in \mathbb{L}$, llavors $\mathbb{L} = p + F = q + F$, i per tant el punt de pas d'una subvarietat lineal no és únic.

2. Sigui $F = \{\overrightarrow{pq} \in E \text{ on } p, q \in \mathbb{L}\} \Rightarrow El \text{ espai director d'una subvarietat lineal és únic.}$

Demostració. 1.
$$q \in \mathbb{L} \Rightarrow \exists \overrightarrow{v} \in F$$
 tal que $q = p + \overrightarrow{v} \Rightarrow p = q - \overrightarrow{v}$
 $p + F \subseteq q + F$? $w \in F$, $p + w = q - v + w = q + (-v + w) \in q + F$
 $q + F \subseteq p + F$? $w \in F$, $q + w = (p + v) + w = p + (v + w) \in p + F$

2.

Proposició 1.4. Sigui $f: E \longrightarrow F$ una aplicació lineal $i \ b \in Im(f) = f(E) \subseteq F$, llavors $f^{-1}(b) = a + Nuc(f)$ i f(a) = b i f(a') = b, amb $a \in E$, tal que $f^{-1}(b)$ és una varietat lineal de E amb dim(Nuc(f)) = dim(E) - rang(f).

Exemple 1.3. 1. El sistema d'equacions

$$\begin{cases}
 x - 3y + 2z &= 1 \\
 y - z &= 0
 \end{cases}$$

defineix una subvarietat lineal de \mathbb{R}^3

$$\mathbb{L} = (2, 1, 1) + \langle (1, 1, 1) \rangle
f : \mathbb{R}^3 \longrightarrow \mathbb{R}^2 \qquad b = (1, 0)$$

2. Una sola equació

$$x - 3y + 4z + w = 6$$

$$f^{-1}(6) = \mathbb{L} = (6, 0, 0, 0) + Nuc(f) = (6, 0, 0, 0) + \langle (...), (...), (...) \rangle$$

$$f : \mathbb{R}^3 \longrightarrow \mathbb{R}$$

$$b = 6$$

1.2 Referències cartesianes

Definició 1.3. Un sistema de coordenades de A ve donat per:

- \bullet Un punt P de A, que anomenem l'origen del sistema.
- Una base $\overrightarrow{e_1}, \overrightarrow{e_2}, ..., \overrightarrow{e_n}$ de E.

$$\mathcal{R} = \{P; \overrightarrow{e_1}, \overrightarrow{e_2}, ..., \overrightarrow{e_n}\}$$

Com la aplicació

$$\phi_p : E \longrightarrow A$$

$$\vec{u} \longmapsto \phi_p(\vec{u}) = p + \vec{u}$$

és bijectiva.

 $\forall q \in A, \exists ! \, \overrightarrow{u} \in E \text{ tal que } \phi_p = p + \overrightarrow{u} = q, \text{ com } \overrightarrow{e_1}, \overrightarrow{e_2}, ..., \overrightarrow{e_n} \text{ \'es base de } E$

$$\vec{u} = \lambda_1 \vec{e_1} + ... + \lambda_n \vec{e_n}$$

i així

$$q = p + \lambda_1 \overrightarrow{e_1} + \dots + \lambda_1 \overrightarrow{e_n}$$

Anomenem les coordenades del punt q en la referència \mathcal{R} a $(\lambda_1, \lambda_2, ..., \lambda_n)$. Per tant les coordenades de q són els components del vector \overrightarrow{pq} en la base $\overrightarrow{e_1}, \overrightarrow{e_2}, ..., \overrightarrow{e_n}$ de E.

1.3 Equacions paramètriques de una varietat lineal

Definició 1.4. Sigui A un espai afí de espai director E, $\mathcal{R} = \{P; \overrightarrow{e_1}, ..., \overrightarrow{e_n}\}$ una referència, $\mathbb{L} = a + F$ una subvarietat lineal de A i el conjunt de vectors $\{\overrightarrow{v_1}, ..., \overrightarrow{v_r}\}$ una base de F. En la referencia \mathcal{R} el punt de pas de \mathbb{L} s'expressarà:

$$a = P + \sum_{i=1}^{n} a_i \vec{e_i}$$

Per tant les coordenades de a en la referència \mathcal{R} seràn $(a_1, ..., a_n)$. Ara expressem la base de F en la de E que hem utilitzat a la referència:

$$\overrightarrow{v_j} = \sum_{i=1}^n v_j^i \overrightarrow{e_i}, \ j = 1, ..., r$$

Llavors, sigui $\vec{w} = \sum_{i=1}^r w^i \vec{v_i} \in F$, podem expressar un punt qualsevol $x \in \mathbb{L}$ com:

$$x = a + \overrightarrow{w} = P + \sum_{i=1}^{n} a_i \overrightarrow{e_i} + \sum_{j=0}^{r} w^j \overrightarrow{v_j} = P + \sum_{i=1}^{n} a_i \overrightarrow{e_i} + \sum_{j=0}^{r} w^j (\sum_{k=0}^{n} v_j^k \overrightarrow{e_k}) = P + \sum_{i=0}^{n} (a_i + \sum_{j=0}^{r} w^j v_j^i) \overrightarrow{e_i}$$

Per tant, si anomenem $(x_1,...,x_n)$ a les coordenades de x en la referència \mathcal{R} , tenim:

$$x_{1} = a_{1} + w^{1}v_{1}^{1} + w^{2}v_{2}^{1} + \dots + w^{r}v_{r}^{1}$$

$$x_{2} = a_{1} + w^{1}v_{1}^{2} + w^{2}v_{2}^{2} + \dots + w^{r}v_{r}^{2}$$

$$\vdots$$

$$x_{n} = a_{n} + w^{1}v_{1}^{n} + w^{2}v_{2}^{n} + \dots + w^{r}v_{r}^{n}$$

Les equacions formades per les coordenades de x a partir de les coordenades de a, w i la base de F en la referència \mathcal{R} les anomenem equacions paramètriques de \mathbb{L} .

Exemple 1.4. Sigui $\mathbb{L} = a + F$ una recta en \mathbb{R}^5 , en la referència \mathcal{R} , a = (1, 3, 5, 2, 8), F = < (3, 2, 0, 6, 9) >, les coordenades d'un punt $x = (x_1, x_2, x_3, x_4, x_5) \in \mathbb{L}$ vindràn expressades per les equacions:

1.4 Equacions implícites de una varietat lineal

Definició 1.5.

1.5 Combinacions lineals de punts

Lema 1.5.
$$\sum_{i=0}^{k} \lambda_i \overrightarrow{pq_i} = \left(\sum_{i=0}^{k} \lambda_i\right) \overrightarrow{pr} + \sum_{i=0}^{k} \lambda_i \overrightarrow{rq_i}$$

Demostraci'o.

$$\overrightarrow{pq} = \overrightarrow{pr} + \overrightarrow{rq}$$

$$\overrightarrow{pq_i} = \overrightarrow{pr} + \overrightarrow{rq_i}$$

$$\lambda_i \overrightarrow{pq_i} = \lambda_i \overrightarrow{pr} + \lambda_i \overrightarrow{rq_i}$$

$$\sum_{i=0}^k \lambda_i \overrightarrow{pq_i} = \left(\sum_{i=0}^k \lambda_i\right) \overrightarrow{pr} + \sum_{i=0}^k \lambda_i \overrightarrow{rq_i}$$

 $\begin{aligned} & \textbf{Corol·lari.} \ \ Si \ \sum_{i=0}^k \lambda_i = 0, \ \sum_{i=0}^k \lambda_i \overrightarrow{pq_i} = \sum_{i=0}^k \lambda_i \overrightarrow{rq_i}, \ definim \ \sum_{i=0}^k \lambda_i q_i = \sum_{i=0}^k \lambda_i \overrightarrow{pq_i} \ si \ \sum_{i=0}^k \lambda_i = 0. \\ Si \ \sum_{i=0}^k \lambda_i = 1, \ \sum_{i=0}^k \lambda_i \overrightarrow{pq_i} = \overrightarrow{pr} + \sum_{i=0}^k \lambda_i \overrightarrow{rq_i}, \ i \ per \ tant \ p + \sum_{i=0}^k \lambda_i \overrightarrow{pq_i} = r + \sum_{i=0}^k \lambda_i \overrightarrow{rq_i}, \\ definim \ \sum_{i=0}^k \lambda_i q_i = p + \sum_{i=0}^k \lambda_i \overrightarrow{pq_i} \ si \ \sum_{i=0}^k \lambda_i = 1. \end{aligned}$

$$\lambda_i \in K \text{ i } \sum_{i=0}^k \lambda_i = x, \text{ si } \left\{ \begin{array}{ll} x = 0 & \text{llavors } \sum \lambda_i p_i \text{ és un vector.} \\ x = 1 & \text{llavors } \sum \lambda_i p_i \text{ és un punt.} \\ x \neq 0 \land x \neq 1 & \text{llavors } \frac{1}{\sum \lambda_i} \sum \lambda_i p_i \text{ és un punt.} \end{array} \right.$$

Exemple 1.5. (Baricentre de m punts de A)

Siguin $p_1, p_2, \ldots, p_m \in A$, es defineix el baricentre d'aquests punts per

$$b = bar(p_1, \dots, p_m)) = \frac{1}{m}p_1 + \dots + \frac{1}{m}p_m = \frac{p_1 + \dots + p_m}{m}$$
$$\sum_{i=0}^m \frac{1}{m} = \frac{m}{m} = 1 \Rightarrow b \text{ és un punt de } A.$$

Exemple 1.6. (Çentre de masses" d'un sistema amb k punts de A)

Siguin $p_1, p_2, \ldots, p_k \in A$, i $m_1, \ldots, m_k \in K$, considerem els punts p_i amb "masses" m_i respectivament, llavors definim el centre de massescom el punt b tal que

$$b = \frac{1}{\sum m_i} (\sum m_i p_i), \qquad \sum \frac{m_i}{\sum m_i} = 1 \Leftrightarrow \sum m_i \neq 0$$
$$\sum m_i p_i = (\sum m_i) b$$

1.6 Independència afí

Definició 1.6. Siguin $p_1, \ldots, p_m \in A$, diem que aquests punts son afinment independents si

$$\sum_{i=0}^{m} \lambda_i = 0, \sum_{i=0}^{m} \lambda_i p_i = 0 \Rightarrow \lambda_i = 0, \forall i = 1, \dots, m$$

I són afinment dependents en el cas contrari.

Lema 1.6. Les següents proposicions són equivalents:

1.
$$\sum_{i=0}^{m} \lambda_i = 0, \sum_{i=0}^{m} \lambda_i p_i = 0 \Rightarrow \lambda_i = 0, \forall i = 1, \dots, m$$

2.
$$Si \sum_{i=0}^{m} \lambda_i = 1, \sum_{i=0}^{m} \mu_i = 1, i \sum_{i=0}^{m} \lambda_i p_i = \sum_{i=0}^{m} \mu_i p_i \Rightarrow \lambda_i = \mu_i, \forall i$$

3.
$$Si \sum_{i=2}^{m} \lambda_i \overrightarrow{p_1 p_i} = 0 \Rightarrow \lambda_i = 0, \forall i = 2, \dots, m$$

Demostraci'o. (1) \Longrightarrow (2)

$$\sum \lambda_i p_i = \sum \mu_i p_i, \ \sum \lambda_i = \sum \mu_i \implies \sum (\lambda_i - \mu_i) p_i = 0, \ \sum (\lambda_i - \mu_i) = 0$$

$$\stackrel{(1)}{\Longrightarrow} \lambda_i - \mu_i = 0 \implies \lambda_i = \mu_i$$

 $(2) \implies (1)$

Suposem

$$\sum \lambda_i p_i = 0, \text{ amb } \sum \lambda_i = 0$$

Agafem un q diferent dels p_i

$$\sum \lambda_i p_i + q = q, \ \sum \lambda_i + 1 = 1 \ \stackrel{(2)}{\Longrightarrow} \ \lambda_i = 0$$

Corol·lari. Si dim(A) = n, el major nombre de punts afinment independents entre ells és n+1

Definició 1.7. Sigui A un conjunt de n+1 punts afinment independents en A^n , s'anomena referència afí(o sistema de coordenades o coordenades baricèntriques).

Proposició 1.7. Si p_0, \ldots, p_n és una referència afí de A y q és qualsevol altre punt, llavors

$$q = \sum_{i=0}^{n} \lambda_i p_i, \ amb \ \sum \lambda_i = 1$$

 $i \ a \ m\acute{e}s \ els \ \lambda_i \ s\acute{o}n \ \'unics.$

Demostració. Considerem:

$$\overrightarrow{p_0q} = \sum_{i=0}^{n} \lambda_i \overrightarrow{p_0p_i}, \ \lambda_i \in K$$

llavors p_0, \ldots, p_n és base de E, així:

$$q - p_0 = \sum \lambda_i \overrightarrow{p_0 p_i} = \sum_{i=0}^n \lambda_i (p_i - p_0)$$
$$q = (p_0 - \sum \lambda_i p_0) + \sum \lambda_i p_i = (1 - \sum \lambda_i) p_0 + \sum \lambda_i p_i$$

Definició 1.8. Fixada la referència p_0, \ldots, p_n de A, s'anomenen coordenades afins o baricèntriques de $q \in A$ als escalars $(\lambda_0, \ldots, \lambda_n)$ tals que:

$$q = \sum_{i=0}^{n} \lambda_i p_i$$

Exemple 1.7. Siguin p_0, \ldots, p_n punts afinment independent de A, el baricentre b té coordenades baricèntriques:

 $b = (\frac{1}{n+1}, \dots, \frac{1}{n+1})$

Proposició 1.8. Sigui $\mathbb{L} \subset A$ un subvarietat lineal, amb dim(A) = n i $dim(\mathbb{L}) = 1$, per tant \mathbb{L} és una recta. Siguin $P, Q \in \mathbb{L}$, amb $P \neq Q$, (P, Q) és una referència afí de \mathbb{L} . A més, donat un altre punt $X \in A$

$$X = \lambda P + (1 - \lambda)Q \iff \overrightarrow{PX}, \overrightarrow{PQ} \text{ s\'on } l.d.$$

Exemple 1.8. Si dim(A) = 2 i \mathcal{R} és una referència cartesiana i $P = (p_1, p_2), Q = (q_1, q_2), X = (x_1, x_2)$ punts de A, sabem que:

$$rang \begin{pmatrix} x_1 - p_1 & q_1 - p_1 \\ x_2 - p_2 & q_2 - p_2 \end{pmatrix} = 1 \iff \begin{vmatrix} x_1 - p_1 & q_1 - p_1 \\ x_2 - p_2 & q_2 - p_2 \end{vmatrix} = 0$$

$$\iff \begin{vmatrix} 1 & 1 & 1 \\ p_1 & x_1 & q_1 \\ p_2 & x_2 & q_2 \end{vmatrix} = 0 \iff \begin{vmatrix} p_0 & x_0 & q_0 \\ p_1 & x_1 & q_1 \\ p_2 & x_2 & q_2 \end{vmatrix} = 0$$

si p_0, p_1, p_2 són les coordenades baricèntriques de P, i així respectivament pels tres punts.

Definició 1.9. Siguin $a, b, c \in A$ 3 punts alineats amb $b \neq c$ i $\lambda \in K$, definim la raó simple com $(a, b, c) := \lambda$ tal que

$$\overrightarrow{ac} = (a, b, c)\overrightarrow{bc} \iff \overrightarrow{ac} = \lambda \overrightarrow{bc}$$

Proposició 1.9. Siguin $a, b, c \in A$ 3 punts alineats amb $b \neq c$ i raó simple $\lambda = (a, b, c) \in K$, podem expressar a com:

$$a = (a, b, c)b + (1 - (a, b, c))c$$

Demostració. Com b i c formen una referència afí de la recta que els uneix, podem expressar a com

$$a = \lambda b + (1 - \lambda)c$$

$$\vec{ac} = c - a = c - (\lambda b + (1 - \lambda)c)$$

$$= (\lambda c + (1 - \lambda)c) - (\lambda b + (1 - \lambda)c)$$

$$= \lambda (c - b)$$

$$= \lambda \vec{bc}$$

Per tant $\lambda = (a, b, c)$, i així:

$$a = (a, b, c)b + (1 - (a, b, c))c$$

Proposició 1.10. Sigui $A, B, C \in A$, dim(A) = n, $i A = (a_1, ..., a_n), B = (b_1, ..., b_n), C = (c_1, ..., c_n)$ les coordenades dels punts en un sistema de coordenades, la raó simple serà:

$$(A, B, C) = \lambda = \frac{c_1 - a_1}{c_1 - b_1} = \dots = \frac{c_n - a_n}{c_n - b_n}$$

Demostració. $(A, B, C) = \lambda \implies \overrightarrow{AC} = \lambda \overrightarrow{BC}$

$$\implies (c_1 - a_1, \dots, c_n - a_n) = \lambda(c_1 - b_1, \dots, c_n - b_n) \implies \lambda = \frac{c_1 - a_1}{c_1 - b_1} = \dots = \frac{c_n - a_n}{c_n - b_n}$$

1.7 Operacions amb subvarietats

Definició 1.10. (Intersecció de subvarietats lineals) Sigui A un espai afí de espai director E, i $\mathbb{L}_1, \mathbb{L}_2 \in A$ dos subvarietats lineals que podem expressar com $\mathbb{L}_1 = p_1 + F_1$ i $\mathbb{L}_2 = p_2 + F_2$, amb $p_1 \in \mathbb{L}_1$, $p_2 \in \mathbb{L}_2$ i $F_1, F_2 \subseteq E$. Definirem la intersecció de dos subvarietats lineals com la subvarietat lineal més gran que conté nomès punts de les dues, i la denotarem per $\mathbb{L}_1 \cap \mathbb{L}_2$ o $\mathbb{L}_1 \wedge \mathbb{L}_2$.

Proposició 1.11. Sigui A un espai afí de espai director E, \mathbb{L}_1 , $\mathbb{L}_2 \in A$ dos subvarietats lineals de espais directors F_1 , $F_2 \in E$ respectivament, i $\mathbb{L}_1 \cap \mathbb{L}_2 \neq \emptyset$, $\mathbb{L}_1 \cap \mathbb{L}_2$ és una subvarietat lineal de A de espai director $F_1 \cap F_2$.

Demostració.

$$\mathbb{L}_1 \cap \mathbb{L}_2 \neq \varnothing \implies \exists c \in A : c \in \mathbb{L}_1 \land c \in \mathbb{L}_2 \implies \left\{ \begin{array}{l} \mathbb{L}_1 &= c + F_1 \\ \mathbb{L}_2 &= c + F_2 \end{array} \implies \mathbb{L}_1 \cap \mathbb{L}_2 = (c + F_1) \cap (c + F_2) \right\}$$

$$u_1 \in F_1, u_2 \in F_2, p \in \mathbb{L}_1 \cap \mathbb{L}_2 : \left\{ \begin{array}{l} p &= c + u_1 \\ p &= c + u_2 \end{array} \right\} \iff \mathbb{L}_1 \cap \mathbb{L}_2 = c + F_1 \cap F_2$$

Proposició 1.12. $\mathbb{L}_1 \cap \mathbb{L}_2 \neq \emptyset \iff \overrightarrow{p_1p_2} \in (F_1 + F_2)$

 $Demostraci\'o. \implies) \qquad \mathbb{L}_1 \cap \mathbb{L}_2 \neq \varnothing \implies \exists c \in \mathbb{L}_1 \cap \mathbb{L}_2 \implies$

$$\implies \left\{ \begin{array}{ll} c & = & p_1 + u_1, & u_1 \in F_1 \\ c & = & p_2 + u_2, & u_2 \in F_2 \end{array} \right\} \implies p_1 + u_1 = p_2 + u_2 \implies u_1 - u_2 = p_2 - p_1$$

$$\begin{vmatrix} u_1 - u_2 \in F_1 \cap F_2 \\ u_1 - u_2 = p_2 - p_1 \\ p_2 - p_1 = \overrightarrow{p_1 p_2} \end{vmatrix} \implies \overrightarrow{p_1 p_2} \in (F_1 + F_2)$$

$$\iff$$
) $\overrightarrow{p_1p_2} \in (F_1 + F_2) \implies \overrightarrow{p_1p_2} = p_2 - p_1 = u_1 - u_2 \implies p_2 + u_2 = p_1 + u_1 = c$

$$p_1 + u_1 \in F_1$$

$$p_2 + u_2 \in F_2$$

$$p_2 + u_2 = p_1 + u_1 = c$$

$$\implies c \in \mathbb{L}_1 \cap \mathbb{L} \implies \mathbb{L}_1 \cap \mathbb{L} \neq \emptyset$$

Definició 1.11. (Paral·lelisme entre varietats lineals) Diem que dues subvarietats lineals tenen una relació de paral·lelisme, i per tant són paral·leles, si

$$\mathbb{L}_1 \parallel \mathbb{L}_2 \iff (F_1 \subseteq F_2) \lor (F_2 \subseteq F_1)$$

Proposició 1.13. La relació de paral·lelisme és de tipus:

- 1. Reflexiva: $\forall \mathbb{L}_1[\mathbb{L}_1 \parallel \mathbb{L}_1]$
- 2. Simètrica: $\forall \mathbb{L}_1, \forall \mathbb{L}_2[\mathbb{L}_1 \parallel \mathbb{L}_2 \implies \mathbb{L}_2 \parallel \mathbb{L}_1]$

En canvi, no és transitiva, i per tant no és relació de equivalència.

Demostració. 1. Reflexiva: $\mathbb{L}_1 \parallel \mathbb{L}_1 \iff (F_1 \subseteq F_1) \vee (F_1 \subseteq F_1)$

2. Simètrica: $\mathbb{L}_1 \parallel \mathbb{L}_2 \iff (F_1 \subseteq F_2) \vee (F_2 \subseteq F_1) \implies \mathbb{L}_2 \parallel \mathbb{L}_1$ Contraxemple de transitivitat: $\mathbb{L}_1 \parallel \mathbb{L}_2, \mathbb{L}_2 \parallel \mathbb{L}_3 \iff ((F_1 \subseteq F_2) \vee (F_2 \subseteq F_1)) \wedge ((F_2 \subseteq F_3) \vee (F_3 \subseteq F_2))$ Si $F_2 \subseteq F_3$ i $F_2 \subseteq F_1 \implies \mathbb{L}_1 \parallel \mathbb{L}_2 \wedge \mathbb{L}_2 \parallel \mathbb{L}_3$ però $\mathbb{L}_1 \not \parallel \mathbb{L}_3$ ja que $(F_1 \not\subseteq F_3) \vee (F_3 \not\subseteq F_1)$.

Definició 1.12. (Suma de subvarietats lineals) Definim la suma de dos subvarietats lineals \mathbb{L}_1 i \mathbb{L}_2 , com la subvarietat lineal més petita que les conté, i la denotem per $\mathbb{L}_1 + \mathbb{L}_2$ o $\mathbb{L}_1 \vee \mathbb{L}_2$.

Proposició 1.14.
$$\mathbb{L}_1 + \mathbb{L}_2 = p_1 + \langle \overrightarrow{p_1 p_2} \rangle + F_1 + F_2$$

Demostració. Per definició, $p_1+<\overrightarrow{p_1p_2}>+F_1+F_2$ és una subvarietat lineal i conté \mathbb{L}_1 i \mathbb{L}_2 :

$$\mathbb{L}_1 = p_1 + F_1 \subseteq p_1 + (\langle \overrightarrow{p_1 p_2} \rangle + F_1 + F_2)$$

$$\mathbb{L}_2 = p_2 + F_2 \subseteq p_2 + (\langle \overrightarrow{p_1 p_2} \rangle + F_1 + F_2)$$

Falta comprovar que $p_1 + \langle \overrightarrow{p_1p_2} \rangle + F_1 + F_2$ és la més petita que les conté:

Definim un subvarietat lineal $\mathbb{M} = p_1 + H = p_2 + H$ tal que $\mathbb{L}_1, \mathbb{L}_2 \subseteq \mathbb{M}$

$$\mathbb{L}_{1} = p_{1} + F_{1} \subseteq p_{1} + H \implies F_{1} \subseteq H$$

$$\mathbb{L}_{2} = p_{2} + F_{2} \subseteq p_{2} + H \implies F_{2} \subseteq H$$

$$p_{1}, p_{2} \in \mathbb{M} \implies \overline{p_{1}p_{2}} \in H \implies \langle \overline{p_{1}p_{2}} \rangle \subseteq H$$

$$\implies p_{1} + (\langle \overline{p_{1}p_{2}} \rangle + F_{1} + F_{2}) \subseteq p_{1} + H = \mathbb{M}$$

Per tant, $p_1 + \langle \overrightarrow{p_1p_2} \rangle + F_1 + F_2$ conté qualsevol subvarietat lineal que contingui \mathbb{L}_1 i \mathbb{L}_2 , i per definició és la suma de \mathbb{L}_1 i \mathbb{L}_2 .

Exemple 1.9.
$$dim(A) = 1, \mathbb{L}_1 = \{p_1\}, \mathbb{L}_2 = \{p_2\}, \text{ amb } p_1 \neq p_2$$

 $\mathbb{L}_1 \cap \mathbb{L}_2 = \varnothing$
 $\mathbb{L}_1 + \mathbb{L}_2 = \{p_1\} + \{p_2\} = "p_1 + p_2" = \{p_1\} \vee \{p_2\} = p_1 \vee p_2 = p_1 + \langle \overrightarrow{p_1p_2} \rangle = A$

Exemple 1.10.
$$dim(A) = 2$$
, $\mathbb{L}_1 = \{p_1\}$, $\mathbb{L}_2 = p_2 + \langle u \rangle$, amb $\overrightarrow{p_1p_2} \neq \lambda u$
 $\mathbb{L}_1 \cap \mathbb{L}_2 = \varnothing$
 $\mathbb{L}_1 + \mathbb{L}_2 = p_1 + \langle \overrightarrow{p_1p_2} \rangle + \langle u \rangle = A$

1.8 Fòrmules de Grassman afins

Teorema 1.15. a) $Si \mathbb{L}_1 \cap \mathbb{L}_2 \neq \emptyset$, llavors

$$dim(\mathbb{L}_1 + \mathbb{L}_2) = dim(\mathbb{L}_1) + dim(\mathbb{L}_2) - dim(\mathbb{L}_1 \cap \mathbb{L}_2)$$

b) $Si \mathbb{L}_1 \cap \mathbb{L}_2 = \emptyset$, llavors

$$dim(\mathbb{L}_1 + \mathbb{L}_2) = dim(\mathbb{L}_1) + dim(\mathbb{L}_2) + 1 - dim(F_1 \cap F_2)$$

Demostració. $dim(\mathbb{L}_1 + \mathbb{L}_2) = dim(p_1 + \langle \overrightarrow{p_1p_2} \rangle + F_1 + F_2) = dim(\langle \overrightarrow{p_1p_2} \rangle + F_1 + F_2) = (*)$

a)
$$\mathbb{L}_1 \cap \mathbb{L}_2 \neq \varnothing \implies \overline{p_1 p_2} \in F_1 + F_2$$

 $(*) = dim(F_1 + F_2) = dim(F_1) + dim(F_2) - dim(F_1 \cap F_2) = dim(\mathbb{L}_1) + dim(\mathbb{L}_2) - dim(\mathbb{L}_1 \cap \mathbb{L}_2)$

b)
$$\mathbb{L}_1 \cap \mathbb{L}_2 = \varnothing \implies \overrightarrow{p_1 p_2} \notin F_1 + F_2$$

 $(*) = 1 + dim(F_1 + F_2) = 1 + dim(F_1) + dim(F_2) - dim(F_1 \cap F_2)$

Exemple 1.11. (Posició relativa d'un hiperpla i una recta a A^n) Siguin \mathbb{L}_1 un hiperpla i \mathbb{L}_2 una recta, per tant $dim(\mathbb{L}_1) = n - 1$ i $dim(\mathbb{L}_2) = 1$, i podem diferenciar dos casos:

•
$$\mathbb{L}_1 \cap \mathbb{L}_2 \neq \emptyset \implies \mathbb{L}_1 \cap \mathbb{L}_2 \subseteq \mathbb{L}_2 \begin{cases} dim(\mathbb{L}_1 \cap \mathbb{L}_2) = 0 \implies \mathbb{L}_1 \cap \mathbb{L}_2 = \{p\} \\ dim(\mathbb{L}_1 \cap \mathbb{L}_2) = 1 \implies \mathbb{L}_2 \subseteq \mathbb{L}_1 \end{cases}$$

•
$$\mathbb{L}_1 \cap \mathbb{L}_2 = \varnothing \implies dim(\mathbb{L}_1 + \mathbb{L}_2) = n - 1 + 1 + 1 - dim(F_1 \cap F_2) = n + 1 - dim(F_1 \cap F_2)$$

$$dim(\mathbb{L}_1 + \mathbb{L}_2) = n + 1 - dim(F_1 \cap F_2)$$

$$dim(\mathbb{L}_2) = 1 \implies dim(F_2) = 1$$

$$\mathbb{L}_1 + \mathbb{L}_2 \subseteq A \implies dim(\mathbb{L}_1 + \mathbb{L}_2) \le n$$

$$\implies F_2 \subseteq F_1 \implies \mathbb{L}_1 \parallel \mathbb{L}_2$$

1.9 Teoremes clàssics

Teorema 1.16 (de Tales). Siguin r, s dos rectes en un pla afí i l_1 , l_2 , l_3 3 rectes paral·leles i que tallen a r en p_1 , p_2 , p_3 , i a s en q_1 , q_2 , q_3 , respectivament; llavors $(p_1, p_2, p_3) = (q_1, q_2, q_3)$.

Demostració. Suposant $p_1 \neq q_1$, definim la referència $\mathcal{R} = \{p_1, \overline{p_1p_2}, \overline{p_1q_1}\}$, i expressem els punts p_i i q_i en aquesta referència:

$$p_{1} = (0,0) \quad q_{1} = (0,1)$$

$$p_{2} = (1,0) \quad q_{2} = p_{1} + \overrightarrow{p_{1}p_{2}} + \overrightarrow{p_{2}q_{2}} = p_{1} + \overrightarrow{p_{1}p_{2}} + b\overrightarrow{p_{1}q_{1}} = (1,b)$$

$$p_{3} = (a,0) \quad q_{3} = p_{1} + \overrightarrow{p_{1}p_{3}} + \overrightarrow{p_{3}q_{3}} = p_{1} + a\overrightarrow{p_{1}p_{2}} + c\overrightarrow{p_{1}q_{1}} = (a,c)$$

$$(p_{1}, p_{2}, p_{3}) = \frac{a-0}{a-1} = \frac{0-0}{0-0}$$

$$(q_{1}, q_{2}, q_{3}) = \frac{a-0}{a-1} = \frac{c-1}{c-b}$$

$$\Rightarrow (p_{1}, p_{2}, p_{3}) = (q_{1}, q_{2}, q_{3})$$

Teorema 1.17 (de Menelao). Siguin A_1, A_2, A_3 3 punts afinment independents en un pla afí, i sigui l una recta que talla amb els costats $a_1 = \{A_2\} + \{A_3\}, a_2 = \{A_3\} + \{A_1\}, a_3 = \{A_1\} + \{A_2\}$ del triangle que formen A_1, A_2, A_3 , en els punts B_1, B_2, B_3 , respectivament; llavors

$$(A_1, A_2, B_3)(A_2, A_3, B_1)(A_3, A_1, B_2) = 1$$

Demostració. $\mathcal{R} = \{A_1, \overrightarrow{A_1 A_2}, \overrightarrow{A_1 A_3}\}$

$$A_{1} = (0,0) \quad B_{1} = (x,y) = \lambda B_{3} + (1-\lambda)B_{2} = (\lambda a, (1-\lambda)b)$$

$$A_{2} = (1,0) \quad B_{2} = (0,b)$$

$$A_{3} = (0,1) \quad B_{3} = (a,0)$$

$$\begin{cases} x+y=1\\ (x,y)=(\lambda a, (1-\lambda)b) \end{cases} \implies \lambda a + (1-\lambda)b \implies \lambda = \frac{1-b}{a-b}, \text{ amb } a \neq b$$

$$B_{1} = \left(\frac{1-b}{a-b}a, \left(1-\frac{1-b}{a-b}\right)b\right) = \left(\frac{1-b}{a-b}a, \frac{a-b-1+b}{a-b}b\right) = \left(\frac{1-b}{a-b}a, \frac{a-1}{a-b}b\right)$$

$$(A_1, A_2, B_3) = \frac{a}{a-1}$$

$$(A_2, A_3, B_1) = \frac{\frac{1-b}{a-b}a - 1}{\frac{1-b}{a-b}a} = \frac{a - ab - a + b}{a - ab} = \frac{b(1-a)}{a(1-b)}$$

$$(A_3, A_1, B_2) = \frac{b-1}{b}$$

$$(A_1, A_2, B_3)(A_2, A_3, B_1)(A_3, A_1, B_2) = \left(\frac{a}{a-1}\right) \left(\frac{b(1-a)}{a(1-b)}\right) \left(\frac{b-1}{b}\right) = 1$$

Teorema 1.18 (de Ceva). Siguin A_1, A_2, A_3 3 punts afinment independents en un pla afí, i sigui P un punt del pla

$$B_1 = (\{A_2\} + \{A_1\}) \cap (\{A_1\} + \{P\})$$

$$B_2 = (\{A_3\} + \{A_1\}) \cap (\{A_2\} + \{P\})$$

$$B_3 = (\{A_1\} + \{A_2\}) \cap (\{A_3\} + \{P\})$$

Llavors

$$(A_1, A_2, B_3)(A_2, A_3, B_1)(A_3, A_1, B_2) = -1$$

Demostració. $\mathcal{R} = \{A_1, \overrightarrow{A_1 A_2}, \overrightarrow{A_1 A_3}\}$

$$P = (a, b)$$

 $A_1 = (0, 0)$ $B_1 = (x, y)$, amb $x + y = 1 \implies B_1 = (x, 1 - x)$
 $A_2 = (1, 0)$ $B_2 = (0, d)$
 $A_3 = (0, 1)$ $B_3 = (c, 0)$

$$\mu_{1} = (B_{1}, P, A_{1}) = \frac{\overrightarrow{B_{1}A_{1}}}{\overrightarrow{PA_{1}}} = \frac{x}{a} = \frac{x-1}{-b} \implies \frac{-b}{a} = \frac{x-1}{x}$$

$$\mu_{2} = (B_{2}, P, A_{2}) = \frac{\overrightarrow{B_{2}A_{2}}}{\overrightarrow{PA_{2}}} = \frac{1}{1-a} = \frac{d}{b} \implies d = \frac{b}{1-a}$$

$$\mu_{3} = (B_{3}, P, A_{3}) = \frac{\overrightarrow{B_{3}A_{3}}}{\overrightarrow{PA_{3}}} = \frac{1}{1-b} = \frac{c}{a} \implies c = \frac{a}{1-b}$$

$$\lambda_{1} = (A_{1}, A_{2}, B_{3}) = \overrightarrow{\frac{A_{1}B_{3}}{A_{2}B_{3}}} = \frac{c}{c - 1} = \frac{\left(\frac{a}{1 - b}\right)}{\left(\frac{a}{1 - b}\right) - 1} = \frac{a}{a + b - 1}$$

$$\lambda_{2} = (A_{2}, A_{3}, B_{1}) = \overrightarrow{\frac{A_{2}B_{1}}{A_{3}B_{1}}} = \frac{x - 1}{x} = \frac{-b}{a}$$

$$\lambda_{3} = (A_{3}, A_{1}, B_{2}) = \overrightarrow{\frac{A_{3}B_{2}}{A_{1}B_{2}}} = \frac{d - 1}{d} = \frac{\left(\frac{b}{1 - a}\right) - 1}{\left(\frac{b}{1 - a}\right)} = \frac{a + b - 1}{b}$$

$$\lambda_1 \lambda_2 \lambda_3 = \left(\frac{a}{a+b-1}\right) \left(\frac{-b}{a}\right) \left(\frac{a+b-1}{b}\right)$$

1.10 Aplicacions afins

Siguin $\mathbb{A}, \mathbb{A}_1, \dots, \mathbb{A}_n$ espais afins de espai director E, E_1, \dots, E_n respectivament

Definició 1.13. Una aplicació afí $f: \mathbb{A}_1 \to \mathbb{A}_2$ és una aplicació de conjunts tal que \exists una aplicació lineal

$$\widetilde{f}: E_1 \to E_2$$

que verifica

$$\forall p \in \mathbb{A}_1, \forall \overrightarrow{u} \in E_1[f(p + \overrightarrow{u}) = f(p) + \widetilde{f}(\overrightarrow{u})]$$

Proposició 1.19. $\exists \widetilde{f}: f(p+\overrightarrow{u}) = f(p) + \widetilde{f}(\overrightarrow{u}) \implies \widetilde{f} \text{ és única, } i \text{ en efecte}$

$$\forall \vec{u} \in E_1[\widetilde{f} = f(p + \vec{u}) - f(p)]$$

i aixi \widetilde{f} queda determinada per f, i l'anomenem l'aplicació lineal associada a f.

Altres formes d'expressar-ho:

Si
$$q = p + \overrightarrow{u} = p + \overrightarrow{pq}$$
, $f(q) = f(p+u) = f(p) + \widetilde{f}(\overrightarrow{pq})$ $f(q) = f(p) + f(p)f(q)$ $f(q) = f(p) + f(p)f(q)$

Usant els axiomes dels espais afins:

Sabem que $\forall p \in \mathbb{A}_1$, la aplicació

$$\phi_p: E_1 \to \mathbb{A}_1$$

$$\overrightarrow{v} \mapsto q + \overrightarrow{v}$$

és bijectiva.

$$\forall \overrightarrow{u} \in E_1[f(\phi_p(\overrightarrow{u})) = \phi_{f(p)}(\widetilde{f}(\overrightarrow{u})) \implies (f \circ \phi_p)(\overrightarrow{u}) = (\phi_{f(p)} \circ \widetilde{f})(\overrightarrow{u})]$$

$$E_1 \xrightarrow{\phi_p} \mathbb{A}_1$$

$$\widetilde{f} \downarrow \qquad \qquad \downarrow f$$

$$E_2 \xrightarrow{\phi_{f(p)}} \mathbb{A}_2$$

$$f \circ \phi_p = \phi_{f(p)} \circ \widetilde{f}$$

Corol·lari.
$$f = \phi_{f(p)} \circ \widetilde{f} \circ \phi_p^{-1}$$
 $\widetilde{f} = \phi_{f(p)}^{-1} \circ f \circ \phi_p$

$$f \ bijectiva \iff \widetilde{f} \ bijectiva$$
 $f \ injectiva \iff \widetilde{f} \ injectiva$
 $f \ exhaustiva \iff \widetilde{f} \ exhaustiva$

 $i \ per \ tant, \ f \ determina \ \widetilde{f}, \ i \ \widetilde{f} \ junt \ amb \ un \ punt \ p \ i \ la \ seva \ imatge \ f(p) \ determina \ f.$

Exemple 1.12.

$$id: \mathbb{A} \rightarrow \mathbb{A}$$

 $p \mapsto id(p) = p$

$$id(p + \overrightarrow{u}) = p + \overrightarrow{u} = id(p) + \overrightarrow{u} \implies \widetilde{id}(\overrightarrow{u}) = \overrightarrow{u}$$

Per tant la identitat de A és afí.

Exemple 1.13. Si f i g són afins, $g \circ f$ és afí i $g \circ f = g \circ f$ En efecte, $\mathbb{A}_1 \xrightarrow{f} \mathbb{A}_2 \xrightarrow{g} \mathbb{A}_3$

$$(g\circ f)(p+\overrightarrow{u})=g(f(p+\overrightarrow{u}))=g(f(p)+\widetilde{f}(\overrightarrow{u}))=(g\circ f)(p)+(\widetilde{g}\circ \widetilde{f})(\overrightarrow{u})\implies \widetilde{g\circ f}=\widetilde{g}\circ \widetilde{f}$$

Definició 1.14. Sigui $w \in E, w \neq 0$, definim

$$z_{\overrightarrow{w}}: \mathbb{A} \to \mathbb{A}$$
 $p \mapsto p + \overrightarrow{w}$

Proposició 1.20. $z_{\vec{w}}$ és una aplicació afí.

Demostració.
$$z_{\overrightarrow{w}}(p+\overrightarrow{u}) = p+\overrightarrow{u}+\overrightarrow{w} = p+\overrightarrow{w}+\overrightarrow{u} = z_{\overrightarrow{w}}(p)+\overrightarrow{u} = z_{\overrightarrow{w}}(p)+id_E(\overrightarrow{u}) \implies z_{\overrightarrow{w}}$$
 és afí i $\widetilde{z_w} = id_E$

Proposició 1.21. Si f és afí i $\widetilde{f} = id$, llavors f és una translació.

Demostració. En efecte, considerem un punt p, i la seva imatge f(p).

Llavors
$$f(p) = p + \vec{w} \implies \vec{w} = \overrightarrow{pf(p)}$$
.

Si ara agafem un altre punt $q = p + \overrightarrow{pq}$ tindrem

$$f(q) = f(p) + \widetilde{f}(\overrightarrow{pq}) = f(p) + \overrightarrow{pq} = p + \overrightarrow{w} + \overrightarrow{pq} = q + \overrightarrow{w} \implies \forall q, f = z_{\overrightarrow{w}}$$

Proposició 1.22. $f, g \ translacions \implies g \circ f \ translació$

 $\begin{array}{ll} Demostraci\'o. \ \forall p[f(p)=p+\overrightarrow{w_1}], \forall p[g(p)=p+\overrightarrow{w_2}]\\ (g\circ f)(p)=g(f(p))=g(p+\overrightarrow{w_1})=(p+\overrightarrow{w_1})+\overrightarrow{w_2}=p+(\overrightarrow{w_1}+\overrightarrow{w_2}) \implies g\circ f \text{ \'es la translaci\'o de vector } \overrightarrow{w_1}+\overrightarrow{w_2} \end{array}$

Proposició 1.23. Les translacions amb l'identitat i la composició d'aplicacions formen un grup.

Demostració. $(z_{-w} \circ z_w)(p) = p$

Definició 1.15. Sigui $r \neq 0, 1$ i sigui O,p dos punt de \mathbb{A} . Definim l'homotècia de centre O i raó r com

Si r > 1 diem que f és una dilatació.

Si 1 > r > 0 diem que f és una contracció

Si r = -1 diem que f és una simetria central

Proposició 1.24. f és una homotècia \iff és una aplicació afí amb $\widetilde{f} = r \cdot id_E$.

 $\begin{array}{ll} \textit{Demostraci\'o.} & \Longrightarrow) & f(p+\overrightarrow{u}) = O + r\overrightarrow{O(p+\overrightarrow{u})} = O + r(\overrightarrow{Op} + \overrightarrow{u}) = O + r\overrightarrow{Op} + r\overrightarrow{u} = f(p) + r\overrightarrow{u} \\ \Longrightarrow f \text{ \'es af\'i i } \widetilde{f} = r \cdot id_E \end{array}$

$$\longleftarrow$$
) f és afí i $\widetilde{f} = r \cdot id_E \implies {\rm FALTA}$ ACABARLO \Box

Proposició 1.25. El centre de la homotècia queda determinat per un punt p i la seva imatge f(p).

Demostraci'o.

$$f(p) = O + rp - rO = (1 - r)O + rp \implies -rp + f(p) = (1 - r)O \implies O = \frac{-r}{1 - r}p + \frac{1}{1 - r}f(p)$$

Proposició 1.26. El centre O de una homotècia verifica f(O) = O, i per tant és un punt fix.

De mostraci'o.

$$O = \frac{-r}{1-r}p + \frac{1}{1-r}p - \frac{1}{1-r}p + \frac{1}{1-r}f(p) = p + \frac{1}{1-r}\overrightarrow{pf(p)}$$

$$f(O) = f(p) + \frac{r}{1-r}\overrightarrow{pf(p)} = \frac{1-r}{1-r}f(p) + \frac{r}{1-r}f(p) - \frac{r}{1-r}p = \frac{1}{1-r}f(p) - \frac{r}{1-r}p = O$$

Donat un p qualsevol, $p = O + \overrightarrow{Op}$, per tant $f(p) = f(O + \overrightarrow{Op}) = f(O) + \widetilde{f}(\overrightarrow{Op}) = O + r\overrightarrow{Op}$

Proposició 1.27. f, g homotecies amb el mateix origen $O \implies g \circ f$ homotècia

$$\begin{array}{ll} \textit{Demostraci\'o.} \ \ f(p) = O + r\overrightarrow{Op}, g(p) = O + s\overrightarrow{Op} \\ (g \circ f)(p) = g(f(p)) = g(O + r\overrightarrow{Op}) = g(O) + sr\overrightarrow{Op} = O + sr\overrightarrow{Op} \implies g \circ f \text{ \'es una homot\`ecia} \\ \text{de centre O i ra\'o rs} \end{array}$$

Proposició 1.28. Les homotècies de mateix origen formen un grup amb l'identitat i la composició.

$$Demostracio$$
. FALTA ACABAR

Proposició 1.29. f, g homotecies tals que $f(x) = P + r\overrightarrow{Px}, g(x) = Q + s\overrightarrow{Qx}$

$$\begin{cases} rs = 1 \implies g \circ f \text{ \'es una translaci\'o de vector de translaci\'ow} = (s-1)\overrightarrow{QP} \\ rs \neq 1 \implies g \circ f \text{ \'es una homot\`ecia} \end{cases}$$

Demostració. $f(x) = P + r\overrightarrow{Px}, g(x) = Q + s\overrightarrow{Qx}$

$$(g \circ f)(x) = g(P + r\overrightarrow{Px}) = Q + s\overrightarrow{Q(P + r\overrightarrow{Px})} = Q + s(P + r\overrightarrow{Px}) - sQ = Q + s\overrightarrow{QP} + sr\overrightarrow{Px} = FALTA ACABARLO$$

$$\implies \widetilde{g \circ f} = \widetilde{g} \circ \widetilde{f} = srid_E$$

 $\implies \begin{cases} rs = 1 \implies g \circ f \text{ és una translació} \\ rs \neq 1 \implies g \circ f \text{ és una homotècia} \end{cases}$ Si $g \circ f$ és una translació amb rs = 1, el seu vector de translació sorè

$$(g \circ f)(P) = g(P) = Q + s\overrightarrow{QP}$$

Així el vector de la translació que busquem és $w=(g\circ f)(P)-P=Q+s\overrightarrow{QP}-P=-\overrightarrow{QP}+s\overrightarrow{QP}=(s-1)\overrightarrow{QP}$

Definició 1.16. Sigui $\mathbb{L} = p + F$ una subvarietat lineal de \mathbb{A} , i tenim una descomposició $E = F \oplus G$, llavors un punt $x \in \mathbb{A}$

$$x = p + \overrightarrow{px} = p + \overrightarrow{px_F} + \overrightarrow{px_G}$$

Definim la simetria respecte de $\mathbb L$ i en la direcció G com

$$s(x) = p + \overrightarrow{px_F} - \overrightarrow{px_G}$$

Proposició 1.30. 1. $x \in \mathbb{L} \implies s(x) = x$

2.
$$\forall x, s \neq id[s^2(x) = x] \implies s^2 = id \implies \tilde{s}^2 = id$$

Demostració. 1. FALTA ACABARLO

2.
$$s(s(x)) = s(p + \overrightarrow{px_F} - \overrightarrow{px_G}) = p + \overrightarrow{px_F} + \overrightarrow{px_G} = x$$

Definició 1.17. Sigui $x = p + \overrightarrow{px} = p + \overrightarrow{px_F} + \overrightarrow{px_G}$, definim la projecció sobre \mathbb{L} en la direcció de G com

$$\pi(x) = p + \overrightarrow{px_F}$$

Proposició 1.31. $x \in \mathbb{L} \implies \pi(x) = x$

Demostració. FALTA ACABAR

Definició 1.18. Una aplicació afí diem que és una afinitat si f és bijectiva(equivalentment \widetilde{f} és bijectiva).

Proposició 1.32. Siguin \mathbb{A}_1 , \mathbb{A}_2 espais afins, $p_1 \in \mathbb{A}_1$, $p_2 \in \mathbb{A}_2$, $h: E_1 \to E_2$ una aplicació lineal. Llavors $\exists !$ aplicació afí $f: \mathbb{A}_1 \to \mathbb{A}_2$ tal que $f(p_1) = p_2$ i $\widetilde{f} = h$.

Demostraci'o. Existència de f:

Definim f per

$$\forall x \in \mathbb{A}_1[f(x) = f(p_1 + \overrightarrow{p_1 x}) = f(p_1) + h(\overrightarrow{p_1 x}) = p_2 + h(\overrightarrow{p_1 x})]$$

Veiem que f és afí

$$f(x+\overrightarrow{u}) = p_2 + h(\overrightarrow{p_1(x+\overrightarrow{u})}) = p_2 + h(\overrightarrow{p_1x} + \overrightarrow{u}) = p_2 + h(\overrightarrow{p_1x}) + h(\overrightarrow{u}) = f(x) + h(\overrightarrow{u})$$

Llavors
$$f$$
 és afí i $\widetilde{f} = h$

Corol·lari. 1. Si $p_1 \in \mathbb{A}_1, p_2 \in \mathbb{A}_2$, i e_1, \ldots, e_n és una base de E_1 i w_1, \ldots, w_n n vectors de E_2 , llavors \exists ! aplicació afí $f : \mathbb{A}_1 \to \mathbb{A}_2$ tal que $f(p_1) = p_2, \widetilde{f}(e_i) = w_i, i = 1, \ldots, n$

Corol·lari. 2. Si p_0, p_1, \ldots, p_n són n+1 punts afinment indep de $\mathbb{A}_1, \dim(\mathbb{A}_1) = n$, i q_0, q_1, \ldots, q_n n+1 punts de \mathbb{A}_2 , llavors $\exists !$ aplicació afí $f : \mathbb{A}_1 \to \mathbb{A}_2$ tal que $f(p_i) = q_i, i = 0, \ldots, n$

Demostració. Siguin $p_i = p_0 + \overline{p_0 p_i}$, com els punts p_i són afinment independent, els n vectors $e_i = \overline{p_0 p_i}$ són l.i.

Per tant formen una base

$$f(p_i) = q_i = q_0 + \overrightarrow{q_0 q_i} = f(p_0 + \overrightarrow{p_0 p_i}) = q_0 + \widetilde{f}(\overrightarrow{p_0 p_i})$$

Després apliquem el cor.1 amb $\overrightarrow{e_i} = \overrightarrow{p_0p_i}$ i $\overrightarrow{w_i} = \overrightarrow{q_0q_i}$.

Proposició 1.33. Si $f: \mathbb{A}_1 \to \mathbb{A}_2$ és afí llavors

•
$$f(\sum_{i=1}^{r} \lambda_i p_i) = \sum_{i=1}^{r} \lambda_i f(p_i), \ si \sum_{i=1}^{r} \lambda_i = 1$$

•
$$\widetilde{f}(\sum_{i=1}^{r} \lambda_i p_i) = \sum_{i=1}^{r} \lambda_i f(p_i), \ si \sum_{i=1}^{r} \lambda_i = 0$$

Demostració.
$$f(\sum \lambda_i p_i) = f(\sum \lambda_i p_i - \sum \lambda_i p_0 + p_0) = f(\sum \lambda_i \overline{p_0 p_i} + p_0) = f(p_0) + \widetilde{f}(\sum \lambda_i \overline{p_0 p_i}) = f(p_0) + \sum \lambda_i \widetilde{f}(\overline{p_0 p_i}) = f(p_0) + \sum \lambda_i \overline{f}(p_0) f(p_i) = f(p_0) + \sum \lambda_i (f(p_i) - f(p_0)) = \sum \lambda_i f(p_i)$$
FALTA ACABAR

Corol·lari. Siguin p_1, p_2, p_3 3 punts alineats de $\mathbb{A}_1, p_2 \neq p_3$, i sigui $f : \mathbb{A}_1 \to \mathbb{A}_2$ una aplicació afí, llavors

- Si $f(p_2) \neq f(p_3), f(p_1)$ està sobre la recta que defineixen $f(p_2)$ i $f(p_3)$, i a més $(p_1, p_2, p_3) = (f(p_1), f(p_2), f(p_3))$
- $Si\ f(p_2) = f(p_3), f(p_1) = f(p_2) = f(p_3)$

Demostració.
$$p_1 = \lambda p_2 + (1 - \lambda)p_3 \implies f(p_1) = \lambda f(p_2) + (1 - \lambda)f(p_3)$$

 $f(p_2) = f(p_3) \implies f(p_1) = f(p_2)$

1.11 Expressió d'una aplicació afí en coord. cartesianes

Sigui \mathbb{A}_1 un espai afí amb un sistema de cordenades $\mathcal{R}_1 = \{O_1; e_1, dotsc, e_n\}, \mathcal{R}_2 = \{O_2; f_1, dotsc, f_m\}$. Si $f : \mathbb{A}_1 \to \mathbb{A}_2$ és una aplicació afí amb una aplicació lineal associada \tilde{f} té una matriu $M = (a_i^i)$ en aquestes bases.

$$\widetilde{f}(\overrightarrow{e_i}) = \sum_{j=1}^m a_i^j f_j, i = 1, \dots, n$$

$$M = \begin{pmatrix} a_1^1 & a_2^1 & \cdots & a_n^1 \\ a_1^2 & a_2^2 & & \vdots \\ \vdots & & \ddots & \vdots \\ a_1^m & \cdots & \cdots & a_n^m \end{pmatrix} \qquad X = \begin{pmatrix} x^1 \\ \vdots \\ x^n \end{pmatrix}$$

Si $x \in E_1$, llavors $x = \sum x^i \vec{e_i}$, i així $\widetilde{f}(x) = \sum \widetilde{f}(\vec{e_i}) x^i = MX$ Si P és un punt de \mathbb{A}_1

$$P = O_1 + \overrightarrow{O_1P} = O_1 + \sum_{i=1}^n x^i \overrightarrow{e_i}$$

aquestes x^i son les coordenades de P en la referència \mathcal{R}_1 Apliquem f a P, tenim

$$f(P) = f(O_1) + \widetilde{f}(\overrightarrow{O_1P}) = O_2 + \sum_{j=1}^m b^j f_j + MX$$

Llavors (b_j) són les coordenades de $f(O_1)$ en \mathcal{R}_2 En forma matricial resulta

- $\bullet\,$ Si X és el vector columna de coordenades de P
- Si B és el vector columna de coordenades de $f(O_1)$
- Si Y és el vector columna de coordenades de f(P)

$$Y = B + MX \iff \begin{pmatrix} y^1 \\ \vdots \\ y^m \end{pmatrix} = \begin{pmatrix} b^1 \\ \vdots \\ b^m \end{pmatrix} + \begin{pmatrix} a_1^1 & \cdots & a_n^1 \\ \vdots & \ddots & \vdots \\ a_1^m & \cdots & a_n^m \end{pmatrix} \begin{pmatrix} x^1 \\ \vdots \\ x^n \end{pmatrix}$$

Això equival a la equació matricial

$$\begin{pmatrix} y^1 \\ \vdots \\ y^m \\ \hline 1 \end{pmatrix} = \begin{pmatrix} a_1^1 & \cdots & a_n^1 & b^1 \\ \vdots & \ddots & \vdots & \vdots \\ a_1^m & \cdots & a_n^m & b^m \\ \hline 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x^1 \\ \vdots \\ x^n \\ \hline 1 \end{pmatrix}$$

1.12 Matriu d'una aplicació afí

Sigui $\mathbb{A}_1, \mathbb{A}_2$ espais afins de referecies $\mathcal{R}_1 = \{O_1; e_1, \dots, e_n\}, \mathcal{R}_2 = \{O_2; e'_i, \dots, e'_n\}$ amb una aplicació afí $f: \mathbb{A}_1 \to \mathbb{A}_2, \widetilde{f}: E_1 \to E_2$ aplicació lineal, la matriu de f serà

$$M(f) = \begin{pmatrix} \ddots & \ddots & \vdots \\ & M(\widetilde{f}) & f(O_1) \\ \vdots & \ddots & \ddots & \vdots \\ \hline 0 & \cdots & 0 & 1 \end{pmatrix} \qquad M(\widetilde{f}) = \begin{pmatrix} \vdots & \vdots & \vdots \\ \widetilde{f}(e_1) & \widetilde{f}(e_2) & \widetilde{f}(e_3) \\ \vdots & \vdots & \vdots \end{pmatrix}$$

Exemple 1.14. f translació de vector $w = w_1, \dots, w_n$

$$M(f) = \begin{pmatrix} 1 & 0 & w_1 \\ & \ddots & \vdots \\ 0 & 1 & w_n \\ \hline 0 & \cdots & 0 & 1 \end{pmatrix}$$

Exemple 1.15. f homotècia de raó r i centre O', amb la referència $\mathcal{R}_1 = \{O_1; e_1, \dots, e_n\}$

$$M(f) = \begin{pmatrix} r & 0 & \vdots \\ & \ddots & f(O_1) \\ \hline 0 & r & \vdots \\ \hline 0 & \cdots & 0 & 1 \end{pmatrix}$$

Exemple 1.16. Simetria respecte a $\mathbb{L} = a+F$ i en la direcció de G, amb $E = F \oplus G$, $s(a+\overrightarrow{u}) = a+\overrightarrow{u_f}-\overrightarrow{u_G}$, amb la referència $\mathcal{R}_1 = \{O_1;e_1,\ldots,e_r,e_{r+1},\ldots,en\}$ amb $\{e_1,\ldots,e_{r+1}\}$ base de F i $\{e_{r+1},\ldots,e_n\}$ base de G

$$M(s) = \begin{pmatrix} 1 & & 0 & & & & 0 \\ & \ddots & & & 0 & & \vdots \\ & & & & 0 & & \vdots \\ \hline & & & & -1 & & 0 & \vdots \\ & & & & \ddots & & \vdots \\ & & & 0 & & -1 & 0 \\ \hline & 0 & \cdots & \cdots & \cdots & \cdots & 0 & 1 \end{pmatrix}$$

Exemple 1.17. Projecció sobre $\mathbb{L} = a + F$ en la direcció de G amb $E = F \oplus G$, $\pi(a + \overrightarrow{u}) = a + \overrightarrow{u_F}$, en la referència anterior tindrem

$$M(\pi) = \begin{pmatrix} 1 & & & & & & & 0 \\ & \ddots & & & & & 0 & \vdots \\ & & & & & & \vdots \\ & 0 & & 1 & & & \vdots \\ & & & & & & \vdots \\ & & & & & 0 & \vdots \\ & & & & & 0 & \vdots \\ & & & & & 0 & 1 \end{pmatrix}$$

Lema 1.34. Si $f: \mathbb{A}_1 \to \mathbb{A}_2$, $g: \mathbb{A}_2 \to \mathbb{A}_3$ applications afins, amb referencies \mathcal{R}_1 , \mathcal{R}_2 , \mathcal{R}_3 per als espais afins \mathbb{A}_1 , \mathbb{A}_2 , \mathbb{A}_3 respectivement. Llavors

$$M(q \circ f) = M(q)M(f)$$

Demostració. FALTA ACABARLO

Definició 1.19 (Punts fixos d'una aplicació afí). Sigui $f : \mathbb{A} \to \mathbb{A}$ una aplicació afí, diem que un punt $p \in \mathbb{A}$ és un punt fix si f(p) = p. Anomenem Γ_f al conjunt de tots el punts fixos de f.

$$\Gamma_f = \{x \in \mathbb{A} : f(x) = x\} \subseteq \mathbb{A}$$

Proposició 1.35. 1. Si $\Gamma_f \neq \emptyset$, llavors Γ_f és una subvarietat lineal de \mathbb{A} de espai director $Ker(\widetilde{f}-1)$, així $\Gamma_f = p + Ker(\widetilde{f}-1)$, amb f(p) = p, i per tant $dim(\Gamma_f) = dim(Ker(\widetilde{f}-1))$

Demostració. $\Gamma_f \neq \varnothing \implies \exists p : f(p) = p$

Qualsevol altre $x \in \Gamma_f$ s'expressa com $x = p + \overrightarrow{px}$

Aplicant la f tenim

$$x = f(x) = f(p + \overrightarrow{px}) = f(p) + \widetilde{f}(\overrightarrow{px}) = p + \widetilde{f}(\overrightarrow{px})$$
$$\overrightarrow{px} = \widetilde{f}(\overrightarrow{px}) \implies (\widetilde{f} - 1)(\overrightarrow{px}) = 0 \implies \overrightarrow{px} \in Ker(\widetilde{f} - 1)$$

Exemple 1.18. 1. Translació $\Longrightarrow \Gamma_f = \emptyset$

- 2. Homotècia $\implies \Gamma_f = centre$
- 3. Simetria $\implies \Gamma_f = \mathbb{L} = a + F$
- 4. Projecció $\implies \Gamma_f = \mathbb{L} = a + F$

Proposició 1.36. 2. Si \widetilde{f} no té el 1 com a valor propi, llavors $\Gamma_f = \{p\}$, o sigui f té un únic punt fix.

Demostració. En efecte, tenim un punt $q \in \mathbb{A}$ qualsevol i els possibles punts fixos de f,p, seràn

$$p = q + \overrightarrow{qp} = f(p) = f(q) + \widetilde{f}(\overrightarrow{qp}) \implies q - f(q) = \widetilde{f}(\overrightarrow{qp}) - \overrightarrow{qp} = (\widetilde{f} - 1)(\overrightarrow{qp})$$
$$\implies \overrightarrow{qp} = (\widetilde{f} - 1)^{-1}(\overrightarrow{f(q)q})$$

Per tant \overrightarrow{qp} és únic

Definició 1.20 (Sistema de punts fixos). Sigui $f : \mathbb{A} \to \mathbb{A}$, \mathcal{R} referencia de \mathbb{A} , i M la matriu de f. Anomenem sistema de punts fixos a M(X) = X, que és un sistema de n equacions amb n incognites.

Probar que si p_1, \ldots, p_s són punts fixos, tota combinació afí dels p_i també és un punt fix. Sigui $p = \sum_{i=0}^{s} \lambda_i p_i$, amb $\sum_{i=0}^{s} \lambda_i = 1$

$$f(p) = f(\sum \lambda_i p_i) = \sum \lambda_i f(p_i) = \sum \lambda_i p_i = p$$

Definició 1.21. Diem que \mathbb{L} és una subvarietat lineal invariant per f si $f(\mathbb{L}) \subseteq \mathbb{L}$ Les subvarietats lineals invariants de $dim(\mathbb{L}) = 0$ són els punts fixos Les subvarietats lineals invariants de $dim(\mathbb{L}) = 1$ són els rectes fixes

Proposició 1.37. Siqui $\mathbb L$ una subvarietat lineal de $\mathbb A$, llavors $\mathbb L$ és invariant per $f \iff$ $(\widetilde{f}(F) \subseteq F) \wedge (\overline{af(a)} \in F)$

 $Demostració. \implies)$ Suposem $\mathbb L$ invariant per $f \implies f(\mathbb L) \subseteq \mathbb L$

$$f(\mathbb{L}) = f(a+F) = f(a) + \widetilde{f}(F) \subseteq a+F \implies \begin{cases} \widetilde{f}(F) \subseteq F \\ af(a) \in F \end{cases}$$

$$\iff$$
 Suposem $(\widetilde{f}(F) \subseteq F) \land (\overrightarrow{af(a)} \in F)$

$$f(\mathbb{L}) = f(a) + \widetilde{f}(F) \subseteq f(a) + F = a + F = \mathbb{L}$$

Corol·lari. Sigui $\mathbb{L} = a + \langle u \rangle$ una recta de A, llavots \mathbb{L} és invariant per $f \iff (\overrightarrow{u}$ és $vector\ propi\ de\ \widetilde{f}) \wedge (\overrightarrow{af(a)} \in < u >) \iff (\overrightarrow{u}\ \textit{\'es vector propi de}\ \widetilde{f}) \wedge (rang \left(\begin{array}{c} \overrightarrow{af(a)} \\ \overrightarrow{u} \end{array} \right) = 1)$

Exemple 1.19. 1.

$$M(f) = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 1 \\ \hline 0 & 0 & 1 \end{pmatrix}$$

Punts fixos?

$$\left. \begin{array}{l} x+2=x \\ y+1=y \end{array} \right\}$$
 No té solució $\implies \Gamma_f=\varnothing$

Rectes fixes? $\vec{u} = (u, v) \neq 0$ és vector propi de \tilde{f}

Per tant, \mathbb{L} és invariant $\iff rang\left(\overrightarrow{af(a)}\right) = 1$

$$f(a,b) = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 1 \\ \hline 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} a \\ b \\ 1 \end{pmatrix} = \begin{pmatrix} a+2 \\ b+1 \\ 1 \end{pmatrix}$$

$$\overrightarrow{af(a)} = (a+2, b+1) - (a, b) = (2, 1)$$

$$rang \left(\begin{array}{cc} 2 & 1 \\ u & v \end{array} \right) = 1 \iff \operatorname{Agafem} \ (u,v) = (2,1)$$

Per tant les rectes invariants són:

$$\mathbb{L} = (a, b) + \langle (2, 1) \rangle$$
, amb un (a, b) qualsevol

Exemple 1.20. 2.

$$M(f) = \begin{pmatrix} 1 & 1 & 2 \\ 0 & 1 & 1 \\ \hline 0 & 0 & 1 \end{pmatrix}$$

Punts fixos?

$$\left. \begin{array}{c} x+y+2=x \\ y+1=y \end{array} \right\}$$
 No té solució $\implies \Gamma_f=\varnothing$

Rectes fixes? $\overrightarrow{u} = e_1 = (1,0)$ és vector propi del valor propi $\lambda = 1$ de \widetilde{f} Per tant, \mathbb{L} és invariant $\iff rang\left(\overrightarrow{af(a)} \right) = 1$

$$f(a,b) = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 1 \\ \hline 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} a \\ b \\ 1 \end{pmatrix} = \begin{pmatrix} a+b+2 \\ b+1 \\ 1 \end{pmatrix}$$

$$\overrightarrow{af(a)} = (a+b+2, b+1) - (a,b) = (b+2,1)$$

$$rang\begin{pmatrix} b+2 & 1\\ 1 & 0 \end{pmatrix} = 2 \neq 1 \implies \# \text{ rectes invariants}$$

Exemple 1.21. 3.

$$M(f) = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ \hline 0 & 0 & 1 \end{pmatrix}$$

Punts fixos?

$$\begin{cases} x + y = x \\ y = y \end{cases} \implies y = 0 \text{ recta de putns fixos}$$

Rectes fixes? $\vec{u} = e_1 = (1,0)$ és vector propi del valor propi $\lambda = 1$ de \tilde{f}

Per tant, \mathbb{L} és invariant $\iff rang\left(\begin{array}{c} \overrightarrow{af(a)} \\ \overrightarrow{u} \end{array}\right) = 1$

$$f(a,b) = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ \hline 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} a \\ b \\ 1 \end{pmatrix} = \begin{pmatrix} a+b \\ b \\ 1 \end{pmatrix}$$

$$\overrightarrow{af(a)} = (a+b,b) - (a,b) = (b,0)$$

$$rang \begin{pmatrix} b & 0 \\ 1 & 0 \end{pmatrix} = 1 \forall a, b$$

Per tant les rectes invariants són:

$$\mathbb{L} = (a, b) + \langle (2, 1) \rangle$$
, amb un (a, b) qualsevol

Definició 1.22. Sigui \mathbb{A} un espai afí amb $dim(\mathbb{A}) = n$, un hiperpla \mathbb{H} és una subvarietat lineal de $dim(\mathbb{H}) = n - 1$

Proposició 1.38. Sigui $f : \mathbb{A} \to \mathbb{A}$ una aplicació afí, que en una referència \mathcal{R} té matriu M. Llavors, els hiperplans invariants per f són els de l'equació

$$A_1x_1 + \dots + A_nx_n + B = 0$$

amb (A_1, \ldots, A_n, B) un vector propi de M^T i $(A_1, \ldots, A_n) \neq 0$

Demostraci'o. Anomenem $V=(A_1\dots A_nB)$ i $X=\begin{pmatrix}x_1\\ \vdots\\ x_n\\ 1\end{pmatrix},$ de forma que la equaci\'o del hiperpla

$$A_1x_1 + \cdots + A_nx_n + B = 0 \iff V \cdot X = 0$$

Com M és la matriu de f, les coordenades de f(x) = y en funció de les x són, si X són les coordenades de x, Y les coordenades de y:

$$Y = M \cdot X$$

Per tant si \mathbb{H} és l'hiperpla VX = 0

$$f^{-1}(\mathbb{H}) = \{x \in \mathbb{A} : f(x) \in \mathbb{H}\} = \{X : V \cdot M \cdot X = 0\}$$

Així \mathbb{H} és invarriant $\iff f(\mathbb{H}) \subseteq \mathbb{H} \iff \mathbb{H} \subseteq f^{-1}(\mathbb{H})$

Per tant el sistema

Com V són vectors fila, transposem tota la equació

$$M^T V^T = \lambda V^T$$

On V^T és un vector director propi de M^T amb $(A_1, \ldots, A_n) \neq 0$

Exemple 1.22. Trobar els hiperplans invariants de l'aplicació

$$M(f) = \begin{pmatrix} 3 & 1 & 0 & 0 \\ 0 & 2 & 1 & 1 \\ 0 & 0 & 2 & 0 \\ \hline 0 & 0 & 0 & 1 \end{pmatrix}$$

1. Trobem M^T

$$M(f) = \begin{pmatrix} 3 & 0 & 0 & 0 \\ 1 & 2 & 0 & 0 \\ 0 & 1 & 2 & 0 \\ \hline 0 & 1 & 0 & 1 \end{pmatrix}$$

2. Trobem els valors propis de M^T : 3, 2 i 1 veps de 1:

$$e_4 = (0,0,0,1) \implies \nexists$$
 hiperplans invariants per $\lambda = 1$

veps de 3:

$$Ker(M^{T} - 3I) = Ker \begin{pmatrix} 0 & 0 & 0 & 0 \\ 1 & -1 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ \hline 0 & 1 & 0 & -2 \end{pmatrix} \implies \begin{cases} x - y = 0 \\ y - z = 0 \\ y - 2t = 0 \end{cases} \implies V_{3} = (1, 1, 1, \frac{1}{2})$$

$$\implies x + y + z + \frac{1}{2} = 0$$

veps de 2:

. . .

Proposició 1.39. $\forall f : \mathbb{A}^n \to \mathbb{A}^n$ aplicació afí, \exists una referencia (de Jordan) tal que la matriu de f en aquesta referència és una matriu de Jordan superior

Aplicacions afins de dim 1

Sigui $f: \mathbb{A} \to \mathbb{A}$ una aplicació afí en una referència de Jordan \mathcal{R} , amb dim(A) = 1, la matriu M podria ser dels següents tipus:

ullet Si f té punts fixos és

- La identitat
$$\iff \left(\begin{array}{c|c} 1 & 0 \\ \hline 0 & 1 \end{array}\right)$$

– Una homotècia de rao
$$\lambda \neq 1 \iff \left(\begin{array}{c|c} \lambda & 0 \\ \hline 0 & 1 \end{array}\right)$$

• Si
$$f$$
 no té punts fixos és una translació $\iff \left(\begin{array}{c|c} 1 & 1 \\ \hline 0 & 1 \end{array}\right)$

Aplicacions afins de dim 2

Sigui $f: \mathbb{A} \to \mathbb{A}$ una aplicació afí en una referència de Jordan \mathcal{R} , amb dim(A) = 2, la matriu M podria ser dels següents tipus:

$$\bullet \left(\begin{array}{c|c} 1 & \\ \hline 0 & 1 \\ \hline \hline 0 & 0 & 1 \end{array} \right)$$

$$-\left(\begin{array}{c|c} 1 & 0 \\ \hline 0 & 1 \\ \hline 0 & 0 & 1 \end{array}\right) \left\{\begin{array}{c|c} \text{Amb punts fixos:} \\ \hline \begin{pmatrix} 1 & 0 & 0 \\ \hline 0 & 1 & 0 \\ \hline 0 & 0 & 1 \end{array}\right) \iff f \text{ identitat} \\ \text{Sense punts fixos:} \\ \hline \begin{pmatrix} 1 & 0 & 0 \\ \hline 0 & 1 & 1 \\ \hline 0 & 0 & 1 \end{array}\right) \iff f \text{ translació}$$

$$-\left(\begin{array}{c|c}1&1\\\hline0&1\\\hline0&0&1\end{array}\right)\left\{\begin{array}{c|c}Amb \text{ punts fixos:}\\ \left(\begin{array}{c|c}1&1&0\\\hline0&0&1\end{array}\right) \iff f \text{ homologia especial}\\ \text{Sense punts fixos:}\\ \left(\begin{array}{c|c}1&1&0\\\hline0&1&1\\\hline0&0&1\end{array}\right) \iff f \text{ composici\'o de una homologia especial i una translaci\'o}$$

•
$$\begin{pmatrix} \lambda & 0 & 0 \\ 0 & 1 & 0 \\ \hline 0 & 0 & 1 \end{pmatrix}$$
 $\begin{cases} Amb \text{ punts fixos:} \\ \begin{pmatrix} \lambda & 0 & 0 \\ \hline 0 & 1 & 0 \\ \hline 0 & 0 & 1 \end{pmatrix} \iff f \text{ homologia general} \end{cases}$ Sense punts fixos: $\begin{pmatrix} \lambda & 0 & 0 \\ \hline 0 & 1 & 1 \\ \hline 0 & 0 & 1 \end{pmatrix} \iff f \text{ composició d'homologia general i translació}$

$$\bullet \left(\begin{array}{c|c} \lambda & \\ 0 & \mu \\ \hline 0 & 0 & 1 \end{array} \right)$$

- Amb punts fixos:
$$\begin{pmatrix} \lambda & 0 & 0 \\ 0 & \lambda & 0 \\ \hline 0 & 0 & 1 \end{pmatrix} \iff f \text{ homotècia}$$
- Amb punts fixos:
$$\begin{pmatrix} \lambda & 1 & 0 \\ 0 & \lambda & 0 \\ \hline 0 & 0 & 1 \end{pmatrix}$$
- Amb punts fixos:
$$\begin{pmatrix} \lambda & 0 & 0 \\ \hline 0 & \mu & 0 \\ \hline 0 & 0 & 1 \end{pmatrix}$$

- Amb punts fixos:
$$\begin{pmatrix} \lambda & 1 & 0 \\ 0 & \lambda & 0 \\ \hline 0 & 0 & 1 \end{pmatrix}$$

- Amb punts fixos:
$$\begin{pmatrix} \lambda & 0 & 0 \\ 0 & \mu & 0 \\ \hline 0 & 0 & 1 \end{pmatrix}$$

Espais euclidis $\mathbf{2}$

2.1Producte escalar

Sigui E un e.v. sobre \mathbb{R}

Definició 2.1. Un producte escalar sobre E és una aplicació $\phi: E \times E \to \mathbb{R}$ tal que

$$\bullet \text{ ϕ bilineal} \iff \begin{cases} \phi(\overrightarrow{x} + \overrightarrow{x}', \overrightarrow{y}) &= \phi(\overrightarrow{x}, \overrightarrow{y}) + \phi(\overrightarrow{x}', \overrightarrow{y}) \\ \phi(\lambda \overrightarrow{x}, \overrightarrow{y}) &= \lambda \phi(\overrightarrow{x}, \overrightarrow{y}) \\ \phi(\overrightarrow{x}, \overrightarrow{y} + \overrightarrow{y}') &= \phi(\overrightarrow{x}, \overrightarrow{y}) + \phi(\overrightarrow{x}, \overrightarrow{y}') \\ \phi(\overrightarrow{x}, \lambda \overrightarrow{y}) &= \lambda \phi(\overrightarrow{x}, \overrightarrow{y}) \end{cases}$$

- ϕ simètrica $\iff \phi(\vec{x}, \vec{y}) = \phi(\vec{y}, \vec{x})$
- ϕ definida positiva \iff $(\vec{x} = \vec{0} \iff \phi(\vec{x}, \vec{x}) = 0) \land (\vec{x} \neq \vec{0} \implies \phi(\vec{x}, \vec{x}) > 0)$

Denotem el producte escalar per $\phi(\vec{x}, \vec{y}) = \vec{x} \cdot \vec{y} = \langle \vec{x}, \vec{y} \rangle = \langle \vec{x} | \vec{y} \rangle$

Exemple 2.1. Sigui $E = \mathbb{R}^n$, $\vec{x} = (x_1, \dots, x_n) \in E$, $\vec{y} = (y_1, \dots, y_n) \in E$, definim

$$\phi(\vec{x}, \vec{y}) = \langle \vec{x}, \vec{y} \rangle = x_1 y_1 + \dots + x_n y_n = \sum_{i=0}^n x_i y_i$$

Veiem que és un producte escalar sobre E:

• ϕ bilineal?

$$\langle \vec{x} + \vec{x}', \vec{y} \rangle = \sum (x_i + x_i') y_i = \sum x_i y_i + \sum x_i' y_i = \langle \vec{x}, \vec{y} \rangle + \langle \vec{x}', \vec{y} \rangle$$

$$\langle \lambda \vec{x}, \vec{y} \rangle = \sum \lambda x_i y_i = \lambda \sum x_i y_i = \lambda \langle \vec{x}, \vec{y} \rangle$$

$$\langle \vec{x}, \vec{y} + \vec{y}' \rangle = \sum x_i y_i + \sum x_i y_i' = \langle \vec{x}, \vec{y} \rangle + \langle \vec{x}, \vec{y}' \rangle$$

$$\langle \vec{x}, \lambda \vec{y} \rangle = \sum x_i \lambda y_i = \lambda \sum x_i y_i = \lambda \langle \vec{x}, \vec{y} \rangle$$

• ϕ simètrica?

Per la commutativa de la \cdot en els \mathbb{R}

$$\langle \vec{x}, \vec{y} \rangle = \sum x_i y_i = \sum y_i x_i = \langle \vec{y}, \vec{x} \rangle$$

• ϕ definida positiva?

$$\vec{x} = 0 \iff \langle \vec{x}, \vec{x} \rangle = 0 \cdot 0 + \dots + 0 \cdot 0 = 0$$

$$\vec{x} \neq 0 \implies \langle \vec{x}, \vec{x} \rangle = x_1 x_1 + \dots + x_n x_n = x_1^2 + \dots + x_n^2 > 0$$

Definició 2.2. Sigui ϕ una forma bilineal sobre E amb dim(E) finita, agafem e_1, \ldots, e_n una base de E y dos vectors qualsevol $x = \sum x_i e_i, y = \sum y_i e_i$. Per tant

$$\phi(x,y) = \phi(\sum x_i e_i, \sum y_i e_i) = \sum x_i y_i \phi(e_i, e_j) =$$

$$= \begin{pmatrix} x_1 & \cdots & x_n \end{pmatrix} \begin{pmatrix} \phi(e_1, e_1) & \cdots & \phi(e_1, e_n) \\ \vdots & \ddots & \vdots \\ \phi(e_n, e_1) & \cdots & \phi(e_n, e_n) \end{pmatrix} \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} = X^T \cdot G \cdot Y$$

Anomenem matriu de Gramm de ϕ en la base $\{e_i\}$ a la matriu G

$$G = (a_{ij}) = (\phi(e_i, e_j))$$

Proposició 2.1. La forma bilineal ϕ és simètrica $\iff \phi(e_i, e_j) = \phi(e_j, e_i) \implies G$ és simètrica

Definició 2.3. Sigui E un e.v. sobre $\mathbb R$ i fixem un producte vectorial sobre E, dos vectors $\overrightarrow{x}, \overrightarrow{y} \in E$ diem que són ortogonals si $< \overrightarrow{x}, \overrightarrow{y} >= 0$, i ho denotarem per $\overrightarrow{x} \perp \overrightarrow{y}$ Una base de E, v_1, \ldots, v_n diem que és ortogonal si $< v_i, v_j >= 0$, si $i \neq j$ Una base de E, v_1, \ldots, v_n diem que és unitaria o normalitzada si $\forall i [< v_i, v_j >= 1]$ Una base de E, v_1, \ldots, v_n diem que és ortonotmal si $< v_i, v_j >= 0$, si $i \neq j$ i $\forall i [< v_i, v_j >= 1]$

$$\langle v_i, v_j \rangle = \delta_{ij}$$
 delta de Kronecker

Proposició 2.2. La matriu de <,> en una base ortonormal és

$$\left(\begin{array}{ccc}
1 & & 0 \\
& \ddots & \\
0 & & 1
\end{array}\right)$$

i per tant en questa base el producte escalar és calcula, sigui $\vec{x} = \sum x_i v_i$, $\vec{y} = \sum y_i v_i$

$$\langle \vec{x}, \vec{y} \rangle = \sum x_i y_i$$

Definició 2.4. Sigui A un subconjunt de E, definim l'ortogonal de A per

$$A^{\perp} = \{ x \in E : \forall a \in A [< x, a >= 0] \}$$

Proposició 2.3. 1. A^{\perp} és un subespai vectorial de E

Demostració. 1. $x, y \in A^{\perp}, \lambda \in \mathbb{R} \stackrel{?}{\Longrightarrow} x + \lambda y \in A^{\perp}$

$$\forall a \in A[< x+\lambda, a> = \underbrace{< x, a>}_0 + \underbrace{\lambda < y, a>}_0 = 0] \implies x+\lambda y \in A^{\perp}$$