## Biostat 276 Homework 1

## Zian ZHUANG

## **Bayesian Probit Regression**

In R load the package (survival) and consider the analysis of the data-set (infert). Ignoring dependence due to matching, consider a Bayesian analysis for a logistic regression model relating case status to: age, parity, education, spontaneous and induced. More precisely, assume case status  $y_i$  has density  $y_i \sim_{ind} Bern(p_i), p_i = \Phi(X_i'\beta)$ , where  $\Phi(.)$  is the standard Gaussian cdf. Consider a prior  $\beta \sim N(0, 10^2 (X_i'X)^{-1})$ . We are interested in  $p(\beta|Y)$ .

```
library(survival)
data("infert")
infert$education <- infert$education %>% as.numeric() - 1
df <- infert %>%
    select(c("case", "education", "age", "parity", "induced", "spontaneous"))
```

(1)

Describe and implement an adaptive Metropolis-Hastings algorithm designed to obtain a MC with stationary distribution  $p(\beta|Y)$ .

We know that

$$\begin{split} P(\beta|Y) &= P(Y|\beta)P(\beta) \\ &= (\prod_{i=1}^{n} \Phi(X_{i}^{'}\beta)^{y_{i}}(1 - \Phi(X_{i}^{'}\beta))^{1-y_{i}})P(\beta) \\ &\propto (\prod_{i=1}^{n} \Phi(X_{i}^{'}\beta)^{y_{i}}(1 - \Phi(X_{i}^{'}\beta))^{1-y_{i}}) * \exp(-\frac{1}{2}\beta^{'}\sum \beta) \end{split}$$

Then we design a adaptive proposal:

• 
$$\beta_{t+1}|\beta_t \sim N(\beta_t, c * \sum_t)$$

in which  $\sum_{t} = \frac{1}{t} \sum_{j=1}^{t} \beta_{j} \beta_{j}'$ .

According to (Roberts and Rosenthal, 2009), we also set,

- 1)  $\tilde{\sum}_t = \sum_t + \epsilon I$  to avoid degeneracies
- 2)  $Q(\beta_t, \beta_{t+1}) = \delta N(\beta_t, c * \tilde{\Sigma}_t) + (1 \delta)N(\beta_t, \Sigma_0)$  in which  $\delta \sim Binomial(p_\delta)$ . here we set  $p_\delta = 0.7$ , and set  $\Sigma_0$  same as the prior  $\Sigma$  of  $\beta$ .

```
bvar\_prior \leftarrow solve(t(as.matrix(df[,-1])) %*% as.matrix(df[,-1])) * 100
bvar_prior_inv \leftarrow t(as.matrix(df[,-1])) %*% as.matrix(df[,-1]) / 100
.cal_ll <- function(beta){</pre>
  est <- data.frame(est=pnorm(as.matrix(df[,-1]) %*% t(beta)), y=df[,1])
  out \leftarrow apply(est, 1, function(x){ifelse(x[2]==0,1-x[1],x[1])})
  out <- log(out) %>% sum - 1/2 * beta %*% bvar_prior_inv %*% t(beta)
mh.sim <- function(nsim=1000, burn=0, delta=0.8, c=3, seed=1996){
  set.seed(seed)
  num_beta \leftarrow dim(df)[2]-1
  nsim.total <- nsim*(1.0 + burn)</pre>
  burn.num <- nsim*burn</pre>
  delta_set <- rbinom(nsim.total, 1, prob = delta)</pre>
  beta <- matrix(rep(0,num_beta),1)</pre>
  beta.ch <- matrix(NA,nsim,num_beta)</pre>
  bvar \leftarrow diag(num_beta)*10^(-15)
  for(i in 1:nsim.total){
    if(i \le 1500){ #used adaptive algorithm on the first 1500 simulations
      bvar <- (bvar * (i - 1) + t(beta) %*% beta)/i + diag(num_beta)*10^(-15)
      beta_temp_2 <- rmvnorm(n=1, mean = beta, sigma = bvar_prior)</pre>
      delta temp <- delta set[i]</pre>
    }else{
      delta_temp <- 1</pre>
    }
    beta_temp_1 <- rmvnorm(n=1, mean = beta, sigma = c*bvar)</pre>
    beta_temp <- beta_temp_1 * delta_temp + beta_temp_2 * (1-delta_temp)</pre>
    PO <- .cal_11(beta)
    P1 <- .cal_ll(beta_temp)
    ratio <- P1 - P0
    if(log(runif(1)) < ratio){</pre>
      beta <- beta_temp</pre>
    if(i > burn.num){
      i1 <- i - burn.num
      beta.ch[i1,] = beta
    }
  }
  return(list(beta=beta.ch))
```

simulation begin

```
burn=0.3
nsim=5000

# simulation
mh.mcmc.sim <- mh.sim(nsim=nsim, burn=burn, delta=0.7, c=1)

# get results</pre>
```

(2)

Describe and implement a data augmented (DA-MCMC ) strategy targeting  $p(\beta|Y)$ . We add a new parameter z here, which makes

$$Y_i|z_i \sim I(z_i > 0)$$
  
 $z_i|\beta, \tau_i \sim N(X_i\beta, 1)$ 

Then we can calculate the full posterior distribution for  $\beta$ ,

$$P(\beta|z,\tau) = P(z|\beta) * P(\beta)$$

$$\propto \prod \exp(-\frac{(z_i - X_i\beta)^2}{2}) * \exp(-\frac{1}{2}\beta' \sum \beta)$$

$$= \exp(-\frac{1}{2}(\beta' X' X \beta - 2 * \beta X' z) - \frac{1}{2} * \beta' \sum \beta)$$

$$= \exp(-\frac{1}{2}(\beta' (X' X + \sum)\beta - 2 * \beta X' z))$$

This is a normal kernel. Then we found that  $\beta|z\sim N(\frac{X^{'}z}{X^{'}X+\sum},\frac{1}{X^{'}X+\sum}).$ 

As for z,

$$\begin{split} P(z_i|\beta, Y) &= P(Y_i|z_i) * P(z_i|\beta) \\ &= I(z_i > 0) * \exp(-\frac{(z_i - X_i\beta)^2}{2}) \text{ (if Yi=1)} \\ &= I(z_i \le 0) * \exp(-\frac{(z_i - X_i\beta)^2}{2}) \text{ (if Yi=0)} \end{split}$$

Then we found that  $z_i$  follows truncated normal distribution with mean  $X_i\beta$  and variance 1.

```
for(i in 1:nsim.total){
    \#i=1
    \#z
    z_info <- as.matrix(cbind(X%*%t(beta), # z_mean</pre>
                               1, # z_sd
                               range),) # truncated range
    z <- apply(z_info, 1,</pre>
               function(info){rtruncnorm(1, a=info[3], b=info[4],
                                           mean = info[1], sd = info[2])
    #beta
    bmean <- solve(t(X)%*%X+bvar_prior)%*%t(X)%*%z
    bvar <- solve(t(X)%*%X+bvar_prior)</pre>
    beta <- rmvnorm(n=1, mean = bmean, sigma = bvar)
    if(i > burn.num){
      i1 <- i - burn.num
      beta.ch[i1,] = beta
    }
  }
  return(list(beta=beta.ch))
}
```

simulation begin

(3)

Describe and implement a parameter expanded - data augmentation (PX-DA MCMC) algorithm targeting  $p(\beta|Y)$ .

Here we add w and  $\alpha$ , which follow

$$W_{i}|\beta, \alpha \sim N(X_{i}'\beta\alpha, \alpha^{2})$$
  
 $Y_{i}|W_{i} = I(W_{i} > 0)$   
 $\alpha^{2} \sim IG(a, b)$ 

Then we can calculate the full posterior distribution for  $\beta$ ,

$$\begin{split} P(\beta|w,\alpha) &= P(w|\beta,\alpha) * P(\beta) \\ &\propto \prod \exp(-\frac{(w_i - \alpha X_i \beta)^2}{2\alpha^2}) * \exp(-\frac{1}{2}\beta^{'} \sum \beta) \\ &= \exp(-\frac{1}{2\alpha^2}(\alpha^2\beta^{'} * X^{'}X\beta - 2 * \alpha\beta X^{'}w) - \frac{1}{2} * \beta^{'} \sum \beta) \\ &= \exp(-\frac{1}{2}(\beta^{'}(X^{'}X + \sum)\beta - 2 * \beta X^{'}w/\alpha)) \end{split}$$

This is a normal kernel. Then we found that  $\beta|z,\tau \sim N(\frac{X'w}{\alpha X'X+\alpha \sum},\frac{1}{X'X+\sum})$ .

As for w,

$$P(w_i|\beta, \alpha, Y_i) = P(Y_i|w_i) * P(w_i|\beta, \alpha)$$

$$= I(w_i > 0) * \exp(-\frac{(w_i - \alpha X_i \beta)^2}{2\alpha^2}) \text{ (if Yi=1)}$$

$$= I(w_i \le 0) * \exp(-\frac{(w_i - \alpha X_i \beta)^2}{2\alpha^2}) \text{ (if Yi=0)}$$

Then we found that  $w_i$  follows truncated normal distribution with mean  $\alpha X_i \beta$  and variance  $\alpha^2$ . As for  $\alpha^2$ ,

$$\begin{split} P(\alpha^{2}|\beta, w, Y) &= P(w|\alpha^{2}, \beta) * P(\alpha^{2}) \\ &= (\frac{1}{\sqrt{2\pi\alpha^{2}}})^{n} \exp(-\frac{(w - \alpha X\beta)^{2}}{2\alpha^{2}}) * (\alpha^{2})^{-a-1} \exp(-b/\alpha^{2}) \\ &\propto (\alpha^{2})^{-a-n/2-1} \exp(-(\frac{(w - \alpha X\beta)^{2}}{2} + b)/\alpha^{2}) \end{split}$$

This is difficult to treat it as a specific kernel. Then we consider use MH method to simulate  $\alpha^2$ . Here we use truncated normal proposal.

```
.alpha.sq.ll <- function(alpha.sq,beta,w,a,b,X,n){</pre>
  out \langle -(-a-n/2-1)*log(alpha.sq)-
    ((2*b+t(w-sqrt(alpha.sq)*X%*%t(beta))%*%
         (w-sqrt(alpha.sq)*X%*%t(beta)))/2)/alpha.sq
  return(out)
px.da.mh.sim <- function(nsim=1000, burn=0, as_sd=1,
                           a=3, b=3, seed=1996,
                           X=as.matrix(df[,-1])
                           Y=as.matrix(df[,1])){
  set.seed(seed)
  num_beta <- dim(df)[2]-1</pre>
  nsim.total <- nsim*(1.0 + burn)</pre>
  burn.num <- nsim*burn</pre>
  beta <- matrix(rep(0,num_beta),1)</pre>
  beta.ch <- matrix(NA,nsim,num beta)</pre>
  alpha.sq <- 1
  n <- length(Y)
```

```
range <- cbind(ifelse(Y==0, -Inf, 0),</pre>
                 ifelse(Y==0, 0, Inf))
  for(i in 1:nsim.total){
    \#i = 1
    w_info <- as.matrix(cbind(sqrt(alpha.sq)*X%*%t(beta), # w_mean</pre>
                               sqrt(rep(alpha.sq,length(Y))), # w_sd
                               range),) # truncated range
    w <- apply(w_info, 1,
               function(info){rtruncnorm(1, a=info[3], b=info[4],
                                           mean = info[1], sd = info[2])
    #beta
    bmean <- solve(t(X)%*%X*sqrt(alpha.sq)+</pre>
                      bvar_prior*sqrt(alpha.sq))%*%t(X)%*%w
    bvar <- solve(t(X)%*%X+bvar_prior)</pre>
    beta <- rmvnorm(n=1, mean = bmean, sigma = bvar)
    #alpha.sq
    as_temp <- rtruncnorm(1, a=0, b=Inf, mean = alpha.sq, sd = as_sd)
    PO <- .alpha.sq.ll(alpha.sq,beta,w,a,b,X,n)
    P1 <- .alpha.sq.ll(as_temp,beta,w,a,b,X,n)
    ratio <- P1 - P0 - log(dtruncnorm(as_temp,mean = alpha.sq, sd = as_sd)) +
    log(dtruncnorm(alpha.sq,mean = as_temp, sd = as_sd))
    if(log(runif(1)) < ratio){</pre>
      alpha.sq <- as_temp</pre>
    if(i > burn.num){
      i1 <- i - burn.num
      beta.ch[i1,] <- beta
    }
  }
  return(list(beta=beta.ch))
simulation begin (set as_sd=1, a=3, b=3)
burn=0.3
nsim=5000
# simulation
px.da.mh.mcmc.sim <- px.da.mh.sim(nsim=nsim, burn=burn,as_sd=1)</pre>
# get results
results.px <- apply(px.da.mh.mcmc.sim$beta, 2,
                     function(x){
                       quantile(x, c(0.025, 0.5, 0.975))) %>% round(.,2) %>%
              apply(., 2, function(x){paste0(x[2]," (", x[1],", ",x[3],")")})
```

**(4)** 

Assess mixing and convergence of the chains induced by the competing transition schemes implemented in 1,2 and 3. Comment on potential trade-offs involving: coding complexity, storage and cpu time.

Check mixing and convergence of the chains:

```
# plots for mh method
par(mfrow=c(2,3))
for(i in 1:5){
   plot(1:nsim, mh.mcmc.sim$beta[,i], type="l")
}
par(mfrow=c(2,3))
```











```
for(i in 1:5){
   acf(mh.mcmc.sim$beta[,i],main = substitute(beta[x], list(x = i)))
}
# plots for da-mh method
par(mfrow=c(2,3))
```



```
for(i in 1:5){
  plot(1:nsim, da.mh.mcmc.sim$beta[,i], type="l")
}
par(mfrow=c(2,3))
```



```
for(i in 1:5){
   acf(da.mh.mcmc.sim$beta[,i], main = substitute(beta[x], list(x = i)))
}
# plots for px-da-mh method
par(mfrow=c(2,3))
```



```
for(i in 1:5){
  plot(1:nsim, px.da.mh.mcmc.sim$beta[,i], type = "l")
}
par(mfrow=c(2,3))
```



```
for(i in 1:5){
   acf(px.da.mh.mcmc.sim$beta[,i], main = substitute(beta[x], list(x = i)))
}

results <- rbind(results.mh, results.da, results.px) %>% as.data.frame
colnames(results) <- colnames(df)[-1]
results %>%
   kbl(caption = "Beta Summary Table (95% CI)") %>%
   kable_classic(full_width = F, html_font = "Cambria")
```

\begin{table}

\caption{Beta Summary Table (95% CI)}

|            | education            | age              | parity              | induced           | spontaneous       |
|------------|----------------------|------------------|---------------------|-------------------|-------------------|
| results.mh | -0.17 (-0.23, -0.12) | -0.01 (-0.01, 0) | -0.5 (-0.64, -0.37) | 0.76 (0.55, 1.02) | 1.05 (0.79, 1.32) |
| results.da | -0.36 (-0.63, -0.1)  | 0 (-0.02, 0.01)  | -0.41 (-0.6, -0.22) | 0.61 (0.31, 0.92) | 1.06 (0.77, 1.37) |
| results.px | -0.37 (-0.64, -0.11) | 0 (-0.02, 0.01)  | -0.4 (-0.6, -0.22)  | 0.61 (0.31, 0.92) | 1.06 (0.75, 1.38) |

 $\ensuremath{\mbox{end}\{\ensuremath{\mbox{table}}\}}$ 



As we can tell from the plots, auto correlation of chain generated by adaptive—mh method decrease much slower than that of px-da—mh and da—mh method. In addition, auto correlation for some parameters' chains (e.g.  $\beta_5$ ) of px-da—mh decrease slightly faster than that of da—mh method. As for values of  $\beta_5$ , three methods provided largely consistent estimates.

Calculate memory usage and running time of the chain:

Table 1: Memory Usage Summary Table

| method      | memory_usage |
|-------------|--------------|
| adaptive-mh | 58159376     |
| da.mh       | 460175672    |
| px.da.mh    | 472736840    |

```
# calculate running time
stats <- microbenchmark(mh = {mh.sim(nsim=nsim, burn=burn)},</pre>
                        da.mh = {da.mh.sim(nsim=nsim, burn=burn)},
                        px.da.mh = {px.da.mh.sim(nsim=nsim, burn=burn)},
                        times = 10, unit = "ms")
stats
## Unit: milliseconds
##
        expr
                  min
                            lq
                                   mean
                                           median
##
          mh 3010.472 3028.619 3185.825 3184.099 3341.571 3367.114
       da.mh 1508.983 1530.647 1554.086 1538.988 1548.044 1729.210
##
   px.da.mh 1572.284 1582.896 1674.338 1671.075 1763.771 1779.397
                                                                        10
autoplot(stats)
```

## Coordinate system already present. Adding new coordinate system, which will replace the existing one



As we can tell from the memory usage summary table, adaptive-mh method used the smallest memory. da.mh and px.da.mh methods used very similar memory. As for the efficiency, da.mh and px.da.mh have similar running time, which is nearly half of adaptive-mh method's.

Conclusion: px.da.mh method had the best convergence of the chains. da.mh method operated most efficient and adaptive-mh method occupied the smallest memory.