Covariance, Correlation and Simple Linear Regression

- Please fill out survey on blackboard; we will start using data next week.
- HW1 now out, due Friday next week.

Agenda:

- Review of measures of association between observations; covariance and correlation.
- Population values versus sample estimates (and notation)
- Simple linear regression
- Framework and assumptions
- Estimating parametersHow is SLR different from correlation?

Relationships Between Observations

Consider height and weight of subjects in a clinical trial:

Clearly, taller people weigh more. How do we summarize this relationship?

Variance and Covariance

We have *n* pairs of data:

$$(X_1, Y_1), \ldots, (X_n, Y_n)$$

lacktriangle We summarize variation in X by average distance from

$$\hat{\sigma}_X^2 = s_X^2 = \frac{1}{n-1} \sum (X_i - \bar{X})^2$$

- Same thing for $\hat{\sigma}_V^2$.
- Covariance is the strength of relationship:

$$\hat{\sigma}_{XY} = s_{XY} = \frac{1}{n-1} \sum_{i} (X_i - \bar{X})(Y_i - \bar{Y})$$

Is X_i 's difference from \bar{X} similar to Y_i 's difference from \bar{Y} ?

Correlation

- Covariance changes with the scale of X and Y.
- Correlation is dimensionless:

$$\hat{\rho}_{XY} = r_{XY} = \frac{s_{XY}}{s_{X}s_{Y}}$$

(note no squares on denominator)

Alternatively, it is covariance of standardized quantities:

$$r_{XY} = \frac{1}{n-1} \sum \left(\frac{X_i - \bar{X}}{s_X} \right) \left(\frac{Y_i - \bar{Y}}{s_Y} \right)$$

Measures the strength of linear association.

Height/Weight Data

- Set X = Weight and Y = Height
- Their averages are

$$\bar{X} = 38.12500$$
 $\bar{Y} = 38.90000$

Variances are

$$s_X^2 = 679.0057$$
 $s_Y^2 = 163.22909$

Covariance is

$$s_{XY} = 297.7045$$

Correlation is

$$xy = \frac{297.7054}{\sqrt{679.0057 * 163.22909}} = 0.8942315$$

Calculations Continued

```
> cov.heart = cov(heart$height,heart$weight)
# Their covariance
                                                          [1] 297.7045
```

and correlation

```
> cor.heart = cov.heart/sqrt( var.height * var.weight )
                                                                                                                                          > cor.heart2 = cor(heart$height,heart$weight)
                                                                                                        # Alternatively
                                [1] 0.8942315
                                                                                                                                                                          [1] 0.8942315
```

590 7/24

Properties of rxy

```
    Does not depend on units of measurement for X or Y.

-1 \le r_{XY} \le 1
```

- $r_{XY}=\pm 1$ implies perfect *linear* association
- $r_{XY}=0$ represents no *linear* association, (but not no nonlinear association)

> heart = read.table('heart.txt',head=TRUE) # Load in Data

Some Calculations in R

> m.weight = mean(heart\$weight) # Now calculate Xbar [1] 38.125

> m.height = mean(heart\$height) # And Ybar

> var.weight = var(heart\$weight) [1] 679.0057

Var weight and height

> var.height = var(heart\$height) [1] 163.2291

Graphically

Sample and Population Values

- We calculate s_X^2 for a sample $X_1, ..., X_n$
- For a new set of data, we would get different values.
- Population parameters σ_X^2 , σ_{XY} are parameters governing the process that produces the data.
- Usually, we can think of the population values as being what we would calculate if we had infinite data.
- Want to use sample values to estimate population values.
- Notation:
- usually population values are given by Greek letters σ, μ.
 sample values, are usually Roman letters (s, m) or we use hats $(\hat{\sigma}, \hat{\mu})$ to demonstrate that these are estimates.

TA's can be picky about this.

Acidity Data

Experimental data obtained at 5 time intervals.

less than 6.0 (declines from

packaged food to have pH

What's the correlation?

50€ 11/24

Acidity Data

Experimental data obtained less than 6.0 (declines from at 5 time intervals.

packaged food to have pH

Processing requires

Meat Data

What's the correlation?

Meaningless! We fixed the times before the experiment.

Simple Linear Regression (SLR)

Correlation summarizes relationship between two random quantities. What about controlled experiments?

- Data are X (= time) and Y (= pH) for each sample.
- We would like to know if X and Y are related.
- We have chosen the values of X, want to use this to predict Y.

Does knowing X tell us anything about Y?

- X = independent variable
 - Y = dependent variable

We will still consider the linear relationship between X and Y.

09€ 13/24 php

The Linear Model

A simple model:

$$Y=\beta_0+\beta_1X$$

For every unit increase in X, Y increases by β_1 units.

- lacksquare eta eta_0 = the *intercept*: the value of Y when X=0
- $\beta_1 = \beta_1 = \beta_2 = \beta_1 = \beta_2 = \beta_1 + \beta_2 = \beta_1 + \beta_2 = \beta_1 + \beta_2 = \beta_1 + \beta_2 + \beta_2 + \beta_2 + \beta_3 + \beta_4 + \beta_4$

The Statistical Linear Model

- The deterministic model is rarely exact (and there are no interesting statistics when it is).
- Instead, we account for deviations from the linear model by including an error term:

$$Y = \beta_0 + \beta_1 X + \epsilon$$

- \bullet ϵ = "random error", assumed different each time.
- Assume that $E\epsilon=0$, that is the linear model holds on average:

$$EY = \beta_0 + \beta_1 X$$

■ Here we think of EY as averaging Y repeatedly measured at the same value of X. 500 € 15 / 24

The Statistical Model Illustrated

beta1 = beta0 = 0;

regression parameters # values of X

only random piece epsilon = rnorm(11, mean=0, sd=0.2)X = seq(0,1,by=0.1)

Y = beta0 + beta1*X + epsilon

Sample Data

In practise we observe n pairs of data

$$(X_1, Y_1), \ldots, (X_n, Y_n)$$

The SLR model is

$$Y_i = \beta_0 + \beta_1 X_i + \epsilon_i$$

where the errors satisfy

- 1 $E(\epsilon_i) = 0$
- **2** $\operatorname{var}(\epsilon_i) = \sigma^2$ (homogenous variances)
- 3 All the ϵ_i are independent
- 4 All the ϵ_i are normally distributed (Gaussian)

In other words, $\epsilon_1,\dots,\epsilon_n$ are an independent random sample from

But now I need to know eta_0 , eta_1 and σ^2 .

pH Data

 $S_{XY} = -13.69$ $\bar{Y}=6.12$ $\hat{\beta}_0 = 7.00$ $S_{XX} = 65.6$

Quick calculation of time to reach pH 6.0 is

$$\hat{eta}_0+\hat{eta}_1t=6\Rightarrow t=rac{6.0-\hat{eta}_0}{\hat{eta}_1}=4.8$$
hours

$\bar{X} = 4.20$

Predicted Values and Residuals

Choose β_0 and β_1 to minimize the squared distance between the

The Least Squares Principle

observed Y and the value predicted from X:

Minimize: $SSE(\beta_0, \beta_1) = \sum_{i=1}^{n} (Y_i - \beta_0 - \beta_1 X_i)^2$

 Best prediction for Y with We have estimated $\hat{\beta}_0$ and $\hat{\beta}_1$.

a new $X(X_{new})$ is

$$\hat{Y} = \hat{\beta}_0 + \hat{\beta}_1 X_{new}$$

For the X_i that we already have, the fitted values are

$$\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i$$

Note we do not divide by n – referred to as "sums of squares".

The minimizing values of the parameters are

 $\hat{eta}_1 = rac{S_{XY}}{S_{XX}}$ and $\hat{eta}_0 = ar{Y} - \hat{eta}_1ar{X}$

 $S_{XY} = \sum (X_i - \bar{X})(Y_i - \bar{Y})$ and $S_{XX} = \sum (X_i - \bar{X})^2$

To do this, calculate

 Then our estimates of the errors are the residuals.

 $e_i = Y_i - \hat{Y}_i$

$$V_i = V_i - \hat{Y}_i$$

Variance

Full specification of the model is

$$Y=eta_0+eta_1X+\epsilon,\;\epsilon\sim N(0,\sigma^2)$$

Would still like to know about σ^2 (ie, does knowing X tell us much

Estimate variance by Mean Squared Error

$$\hat{\sigma}^2 = \frac{\mathsf{Error\ SS}}{\mathsf{Error\ DF}} = \frac{\sum (Y_i - \hat{Y}_i)^2}{n-2}$$

Error DF = "effective sample size" for estimating σ^2 ; accounts for estimating β_0 and β_1 . 21/24

Example Inference

- > food.mod = lm(pH~time,data=food)
 - > summary(food.mod)

Residuals:

Max -0.17174 -0.13870 -0.01805 0.12056 0.23220 Median 10

Coefficients:

72.20 1.51e-12 *** -10.59 5.51e-06 *** Estimate Std. Error t value Pr(>|t|) 0.01970 0.09691 -0.20869 6.99649 (Intercept) time

Signif. codes: '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '' 1

Adjusted R-squared: 0.9251 Residual standard error: 0.1595 on 8 degrees of freedom F-statistic: 112.2 on 1 and 8 DF, p-value: 5.509e-06 Multiple R-squared: 0.9335,

23/24

Summary

- Correlation and covariance = measure of linear association between two random quantities.
- Simple linear regression = linear dependence of Y given X. X need not be random.

Residual Standard Error = 0.16

Meat Data

0.7

8.8

0.8

Hd

6.6

Residuals

2.0

1.0

0.0

residual

1.0-

- Statistical model: randomness in Y is in error about a linear trend.
- Least squares estimates for regression lines.

Next

- Precision of the least squares estimate.
- Inference, confidence intervals and prediction intervals.
- Readings: Fox 5.1/5.2, 11

sqo