Análise e classificação de textura: Uma abordagem baseada em redes complexas

Erikson Júlio de Aguiar

Departamento de Ciência da Computação Instituto de Ciências Matématicas e de Computação Universidade de São Paulo

31 de Agosto de 2018

Roteiro

- Introdução
- Organização da proposta do trabalho base
- Detalhes sobre a proposta do trabalho base
- Proposta de trabalho da disciplina
- 5 Roteiro de desenvolvimento

Introdução I

- Análise de textura é um problema básico em processamento de imagens;
- Diversas áreas necessitam dessa análise;
- Textura é um conceito importante para detectar objetos;
- Classes de texturas consideram interação entre os visizinhos;
- O trabalho base: (BACKES; CASANOVA; BRUNO, 2013);
- Propõe uma técnica baseada em redes complexas para identificar caracretísticas de textura;

Introdução II

• Textura: Sem definição formal (GONZALEZ; WOODS, 2009):

Textura	Média	Entropia
Suave	82.64	5.434
Rugosa	143.56	7.783
Regular	99.72	6.674

 Motivação: Conhecimento do domínio e possibilidade de aplicação em imagens médicas.

Organização da proposta do trabalho base I

- 1. Pixel está conectado a outro. **Def**: $\sqrt{(x'-x)^2+(y'-y)^2} \le r$; **Obs**: melhor r=3.
- **2.** Cálculo dos pesos. **Def:** $w(e) = \frac{(x'-x)^2 + (y'-y)^2 + r^2 \frac{|I(x,y) I(x',y')|}{L}}{r^2 + r^2};$
- **3.** Calcula o histograma de graus. **Def:** $h(i) = \sum_{v \in V} \delta(deg(v), i);$
- **4.** Calcular a função de densidade de probabilidade. **Def:** $p(i) = \frac{h(i)}{\sum_{i=0}^{k}}, i = 0, 1...k = max(deg(v));$

Organização da proposta do trabalho base II

- \downarrow
- **5.** Análise do histograma, a partir das seguintes características: media, entropia, energia e contraste;
- 6. Extração de várias amostragens da rede para análise.
 - **Obs:** Utiliza de um limiar t. $\delta_t(E) = \{e \in E | w(e) \le t\}$
- Calcula as características como no passo 5, mas de cada amostragem;
- 8. São realizados os testes utilizando a base Brodatz.

Detalhes sobre proposta do trabalho base I

Matriz de Pixels:

(a)								
44	31	31	29	35	103	39	29	31
25	23	27	21	42	91	56	20	32
28	18	21	37	69	56	49	21	34
82	20	52	140	70	40	44	30	33
113	17	45	155	52	44	50	35	31
95	20	12	20	58	129	26	32	36
72	28	28	14	60	52	39	34	35
38	15	13	17	53	62	40	27	37
18	16	14	10	38	65	39	26	35

44	31	31	29	35	103	39	29	31
25	23	27	21	42	91	56	20	32
28	18	21	37	69	56	49	21	34
82	20	52	140	70	40	44	30	33
113	17	45	155	52	44	50	35	31
95	20	12	20	58	129	26	32	36
72	28	28	14	60	52	39	34	35
38	15	13	17	53	62	40	27	37
18	16	14	10	38	65	39	26	35

		8	0,52			
	0,51	0,31	0,26	0,29	0,45	
	0,28	0,28	0,09	0,13	0,29	
0,57	0,24	0,26		0,07	0,23	0,53
	0,36	0,17	0,07	0,26	0,33	
	0,49	0,35	0,24	0,28	0,47	
			0,50			

Detalhes sobre proposta do trabalho base II

• Amostragem da rede:

Detalhes sobre proposta do trabalho base III

Resultados:

Comb	inação das	Característ	icas		
Energia	Entropia	Contraste	Media	Nº de Descritores	Taxa de Sucessso (%)
X				36	89.86
	X			36	91.89
		Х		36	89.47
			Х	36	88.40
X	X			72	93.13
Х		X		72	93.75
X			Х	72	93.81
	X	X		72	94.93
	Х		Х	72	94.71
		Х	Х	72	93.69
X	Х	X		108	95.27
Х	Х		Х	108	95.21
X		X	Х	108	94.43
	Х	Х	Х	108	95.15

Proposta de trabalho da disciplina

- Reproduzir os conceitos do trabalho base;
- Aplicado ao contexto de imagens médicas;
- utilizar imagens segmentadas.

Roteiro de desenvolvimento

Buscar artigos e definir a ideia

Implementação

- Transformar imagem em RC
- Cálculo de ligação das arestas
- Cálculo dos peso
- Cálculo do limiar e características
- 5. Testes

Escrita da monografia

Descrever a proposta e como foi elaborada

Apresentação dos resultados

Apresentar os resultados obtidos comparando com algumas outras técnicas citadas

Referências

BACKES, A. R.; CASANOVA, D.; BRUNO, O. M. Texture analysis and classification: A complex network-based approach. *Information Sciences*, v. 219, p. 168 – 180, 2013. ISSN 0020-0255.

GONZALEZ, R.; WOODS, R. *Processamento Digital De Imagens.* [S.I.]: ADDISON WESLEY BRA, 2009. v. 3. ISBN 9788576054016.

