

ANALISI DELLE VARIAZIONI

Il progetto mira a identificare e analizzare le variazioni puntuali nei genomi di riferimento. Utilizzando MAFFT per l'allineamento delle sequenze e uno script Python per l'analisi, vogliamo cercare di individuare e riportate le sostituzioni, inserimenti e cancellazioni rispetto al riferimento.

> Giorgio Luigi Maria Bernasconi 885948 Alessio Farioli 879217 Silvia Cambiago 879382

A PROPOSITO DEL PROGETTO

Ci sono stati forniti vari genomi derivati dal sequenziamento di SARS-CoV-2 Genoma di Riferimento (2019)

• NC_045512.2: sequenziato nell'autunno del 2019, questo genoma è utilizzato come base per il confronto con i genomi successivi.

Sequenze del 2021

• Sequenze SARS-CoV-2 2021: queste sequenze sono analizzate per identificare variazioni rispetto al genoma di riferimento del 2019 e per confronti sul numero e tipo di variazioni.

Quali risultati cerchiamo?

NUMERO DI VARIAZIONI

- Identificare il genoma con il maggior numero di variazioni rispetto al riferimento.
- Identificare il genoma con il minor numero di variazioni rispetto al riferimento.

POSIZIONE CON VARIAZIONE COSTANTE

 Elencare le posizioni del genoma di riferimento rispetto a cui tutti gli altri genomi variano.

POSIZIONI CON VARIAZIONI COMUNI

• Elencare le posizioni del genoma di riferimento rispetto a cui tutti gli altri genomi variano allo stesso modo.

ABBIAMO DECISO DI DIVIDERE IL PROBLEMA

LETTURA FILE FASTA

Viene letto un file di tipo FASTA prodotto da MAFFT

CLASSIFICAZIONE DELLE VARIAZIONI

Si itera sulla matrice stabilendo quale variazione si è presentata

PREPARAZIONE DELLA MATRICE

I genomi puliti vengono inseriti in una matrice, per confrontarli in maniera più agevole.

OUTPUT

Viene prodotto un output dettagliato che elenca il tipo di variazione, le basi coinvolte, la posizione e il numero di genomi che la presentano.

IDENTIFICAZIONE DELLE VARIAZIONI

Mediante una matrice booleana vengono segnalate tutte le variazioni (senza distinguerle)

CASI SPECIFICI DA RICERCARE

La ricerca dei casi specifici avviene mediante l'utilizzo di appositi contatori e confronti.

PANORAMICA DEI METODI

READ FASTA

Legge un file in formato FASTA ed estrae le sequenze e i relativi nomi.

PREPARE_MATRIX_FROM_

PREPARE_MATRIX_FROM_

Legge il contenuto di un file FASTA già allineato e lo struttura in una matrice per il confronto delle sequenze. IDENTIFY_VARIATIONS

Identifica le variazioni e crea una matrice booleana che indica in una data posizione la presenza o l'assenza di variazione rispetto alla sequenza di riferimento.

PRINT_VARIATIONS

Individua la tipologia e stampa le variazioni rispetto alla sequenza di riferimento, producendo inoltre il file di report.

PANORAMICA DELL'OUTPUT

POINT 1

Per ogni genoma vengono restituite le variazioni (inserimento, cancellazione, sostituzione), mostrando la posizione e le basi coinvolte

POINT 2

Vengono mostrati i genomi con più e meno variazioni, mostrando il riferimento al nome e il numero di variazioni

POINT 3

Infine vengono mostrate tutte le posizioni per cui tutti i genomi variano rispetto al reference e le posizioni che variano rispetto al reference allo stesso modo.

VARIAZIONI PIÙ IMPORTANTI

OL700538.1

OL799538.1 è il genoma che ha mostrato il maggior numero di variazioni: 60

CANCELLAZIONI

Il nostro script ha individuato la presenza di 0 cancellazioni

OL700521.1

OL700521.1 è il genoma che ha mostrato il minor numero di variazioni: 49

SOSTITUZIONI

Sono presenti mediamente più sostituzioni che inserimenti

PANORAMICA DEI DATI

Abbiamo raggiunto un risultato che ci ha portato a ottenere molteplici dati.

I dati più rilevanti:

- Abbiamo individuato il genoma di SARS-CoV-2 2021 che presenta il maggior numero di variazioni rispetto ai dati raccolti nel 2019: OL700538.1, con le sue 60 variazioni
- Abbiamo anche individuato il genoma di SARS-CoV-2 2021 che presenta il minor numero di variazioni rispetto ai dati raccolti nel 2019: OL700521.1, con le sue 49 variazioni

Da ciò si evince che il numero di variazioni nei 13 genomi si attesta in una soglia tra le 49 e le 60 variazioni

Osservando i risultati ottenuti è saltato subito all'occhio la totale assenza di cancellazioni. Esaminando la sequenza di riferimento abbiamo capito il motivo, non essendo presenti "-" all'interno della sequenza non possono verificarsi delezioni.

COSE CHE NON SONO STATE VISTE

Sono presenti alcune funzionalità gestite dal nostro codice ma che non compaiono visibili nel codice:

- Individua cancellazioni: come detto precedentemente non sono presenti cancellazioni, ma se fossero presenti il codice le individuerebbe
- Variazioni differenti stessa posizione: il codice segnalerebbe se, per una data posizione del reference, tutti i genomi variassero, anche in maniera differente
 - Con i nostri dati non accade: se tutti i genomi variano in una posizione, la mutazione è la stessa