

FINDING A MODEL FOR SIMULATING THERMOPHORESIS

COMPUTATIONAL PHYSICS FINAL PROJECT

SHAHRZAD ZARE

THE MAIN QUESTION

What will happen if we put a macro particle in a pool of micro particles which are located between two walls with different temperatures?

THE COORDINATES, SPACE AND BOUNDARY CONDITION

- 2D box
- Periodic Condition
- Some regions along the horizontal axis

THE MICRO PARTICLES

- They do not have radius (The probability of collision between them is zero).
- Number of micro particles

A MODEL FOR INTERACTION BETWEEN MICRO PARTICLES IN ORDER TO GENERATE TEMPERATURE GRADIENT

• They do not see each other (There is no interaction between them).

$$T = {^{E_k}}/_{N \times k}$$

Thermostat

Correction Coefficient=
$$\sqrt{(N \times k \times T)/E_k}$$

- Uniform random distribution for initial locations
- Boltzmann distribution for initial velocities

$$e^{-E_k}/_{kT}$$

500 MICRO PARTICLES IN 50 REGIONS

A MODEL FOR INTERACTION BETWEEN MICRO PARTICLES AND MACRO PARTICLE

Energy and Momentum is conserved (Elastic Collision).

MOTION OF THE MACRO PARTICLE UNDER UNIFORM TEMPERATURE

MOTION OF THE MACRO PARTICLE UNDER PARABOLIC TEMPERATURE GRADIENT

HOW TO VERIFY THE MODEL

- Energy conservation? No
- Momentum conservation? No
- Brownian motion

MEAN SQUARED DISPLACEMENT = $2D \times time$

$$D = \frac{kT}{6\pi\eta r}$$

BROWNIAN MOTION?!

BROWNIAN MOTION?!

r = 0.5

r = 5

