

教師あり学習に基づく時系列の因果推論 A Supervised Learning Approach to Causal Inference in Time Series

Yoichi Chikahara, Akinori Fujino
NTT Communication Science Laboratories
Kyoto, Japan

Causal inference in time series

- Given time series data
- Infer causal relationships between variables

Input: Time Series Data

Output: Causal Relationships

Application 1: Economics

 Finding that R&D expenditures influences total sales is useful for companies

Application 2: Bioinformatics

• Discovering gene regulatory relationships is

useful for drug discovery

What is "causal relationship"?

How can we define *causal* relationships between variables?

A definition of temporal causality

Granger causality [Granger1969]

X is the cause of Y

if the past values of *X* are **helpful in predicting** the future values of *Y*

Assumption

At any time point *t* the causal direction is the same

Existing Approach: Using regression models

Existing approach:

Compare prediction errors with/without using values of X

Weakness of existing approach

O NTI

Model misspecification leads to low inference accuracy

Our approach:

Causal inference via classification

Our approach:

Causal inference from time series data via supervised learning

Training Data

Label Assignment Rules

, then assign

$$X \to Y$$

, then assign $X \leftarrow Y$

$$X \leftarrow Y$$

, then assign No Causation

Revisiting definition of Granger causality

if the following holds:

$$P(Y_{t+1}|S_X,S_Y) \neq P(Y_{t+1}|S_Y)$$

Distribution of Y_{t+1} given past values of Y and X

Distribution of Y_{t+1} given past values of Y

$$X \longrightarrow X$$

$$S_X = \{x_1, \dots, x_t\}$$

 $S_Y = \{y_1, \dots, y_t\}$

Revisiting definition of Granger causality

Similarly,

$$\begin{array}{ccc}
\widehat{X} & \widehat{Y} \\
\text{if} & P(Y_{t+1}|S_X, S_Y) &= P(Y_{t+1}|S_Y)
\end{array}$$

Building a classifier for Granger causality identification

Innovative R&D by NTT

Label Assignment Rules

If
$$\begin{cases} P(Y_{t+1}|S_X, S_Y) \neq P(Y_{t+1}|S_Y) \\ P(X_{t+1}|S_X, S_Y) = P(X_{t+1}|S_X) \end{cases}$$
then $X \to Y$
If
$$\begin{cases} P(Y_{t+1}|S_X, S_Y) = P(Y_{t+1}|S_Y) \\ P(X_{t+1}|S_X, S_Y) \neq P(X_{t+1}|S_X) \end{cases}$$
then $X \leftarrow Y$
If
$$\begin{cases} P(Y_{t+1}|S_X, S_Y) = P(Y_{t+1}|S_Y) \\ P(X_{t+1}|S_X, S_Y) = P(Y_{t+1}|S_Y) \end{cases}$$
then $No \ Causation$

Representing features of distributions

• **Kernel mean embedding**: map a distribution to a point in feature space called RKHS

When using Gaussian kernel,

$$\mu_Z \equiv \begin{bmatrix} E[Z] \\ E[Z^2] \\ E[Z^3] \\ \vdots \end{bmatrix}$$

Reformulating label assignment rules

 By mapping distributions to points, label assignment rules can be rephrased as

If
$$\begin{cases} \mu_{X_{t+1}|S_X,S_Y} = \mu_{X_{t+1}|S_X} \\ \mu_{Y_{t+1}|S_X,S_Y} \neq \mu_{Y_{t+1}|S_Y} \\ \text{then } X \to Y \end{cases}$$

$$If \begin{cases} \mu_{X_{t+1}|S_X,S_Y} \neq \mu_{X_{t+1}|S_X} \\ \mu_{Y_{t+1}|S_X,S_Y} = \mu_{Y_{t+1}|S_Y} \\ \text{then } X \leftarrow Y \end{cases}$$

$$If \begin{cases} \mu_{X_{t+1}|S_X,S_Y} = \mu_{X_{t+1}|S_X} \\ \mu_{Y_{t+1}|S_X,S_Y} = \mu_{Y_{t+1}|S_X} \\ \mu_{Y_{t+1}|S_X,S_Y} = \mu_{Y_{t+1}|S_Y} \\ \text{then } No Causation \end{cases}$$
Feature Space \mathcal{H}_Y

$$If \begin{cases} \mu_{X_{t+1}|S_X,S_Y} = \mu_{X_{t+1}|S_X} \\ \mu_{Y_{t+1}|S_X,S_Y} = \mu_{Y_{t+1}|S_Y} \\ \text{then } No Causation \end{cases}$$

Feature representation

• We only have to determine whether or not the two points are equal over time t

We obtain feature vectors
 by using the distance between the points
 (called maximum mean discrepancy (MMD) [Gretton+ NIPS2007]
 in kernel method community)

Feature representation

 By utilizing MMDs, we can obtain feature vectors that are sufficiently different depending on Granger causality

Experiments

Training Data

No Causation

- linear time series from VAR model
- Nonlinear time series from VAR + sigmoid

Experiment 1: Synthetic test data

Linear Test Data

-- generated from VAR model

$$\begin{bmatrix} X_{t+1} \\ Y_{t+1} \end{bmatrix} = \sum_{\tau=0}^{P-1} A_{\tau} \begin{bmatrix} X_{t-\tau} \\ Y_{t-\tau} \end{bmatrix} + E_{\tau}$$

Nonlinear Test Data

-- generated from

$$X_{t} = 0.2X_{t-1} + 0.9N_{X_{t}}$$

$$Y_{t} = -0.5 + \exp(-(X_{t-1} + X_{t-2})^{2}) + 0.7\cos(Y_{t-1}^{2}) + 0.3N_{Y_{t}}$$

- Prepare 300 pairs of bivariate time series
- Evaluate the number of time series whose causal relationships are correctly inferred (i.e., Test Accuracy)

Linear Test Data

Nonlinear Test Data

Nonlinear Test Data

Existing Granger causality methods

Test accuracy strongly depends on the regression model

Nonlinear Test Data

 $GC_{KER} < GC_{GAM}$

Kernel regression cannot be well fitted since time series are too short

Experiment 2: Real-world test data

Real-world Test Data

e.g., River Runoff

X: Precipitation

Y: River runoff

 $(X:truth: X \rightarrow Y)$

Classifier

True causal directions are given in literatures

	SIGC	RCC	\mathbf{GC}_{VAR}	\mathbf{GC}_{GAM}	\mathbf{GC}_{KER}	\mathbf{TE}
$\begin{array}{l} \textit{River Runoff} \\ (T=200) \end{array}$	0.958 (0.058)	0.399 (0.193)	0.684	0.406	0.155	0.485
Temperature (T = 200)	0.961 (0.011)	0.432 (0.242)	0.950	0.848	0.234	0.492
$Radiation \\ (T=200)$	0.987 (0.053)	0.515 (0.345)	0.156	0.0	0.782	0.394
$Internet \\ (T = 200)$	1.0 (0.0)	0.478 (0.222)	0.157	0.387	0.261	0.498
$Sun\ Spots \\ (T=200)$	1.0 (0.0)	0.435 (0.182)	0.908	0.704	0.076	0.522

How can we extend proposed approach to multivariate time series?

Bivariate Methods do not work well

• With original Granger causality, we cannot distinguish the following trivariate case

Granger causality definition for multivariate time series

• Conditional Granger causality [Geweke JASA1984]: compare two conditional distributions given past values of the third variable Z

Feature representation

• Similarly, we map conditional distributions to points in feature spaces and measure the distance

• By using additional MMDs, we formulate feature representation for multivariate time series

Experiment 3: Multivariate real-world data

True causal directions are given in database

Macro F1 score and micro F1 score

Ellis Loyal House And A. A.	\mathbf{SIGC}_{tri}	\mathbf{GC}_{VAR}	\mathbf{GC}_{KER}	\mathbf{SIGC}_{bi}	\mathbf{GC}_{GAM}	TE	RCC
macro-averaged F1	0.483 (0.0)	0.351	0.437	0.431 (0.007)	0.457	0.430	0.407 (0.096)
micro-averaged F1	0.637 (0.0)	0.436	0.513	0.578 (0.011)	0.567	0.449	0.567 (0.161)

*Higher is better

Conclusion

Classification approach to Granger causality identification

- ✓ Requires no selection of regression models
- ✓ Performs sufficiently better than existing modelbased approach
- ✓ Can be applied to multivariate time series

Future work:

- ✓ Addressing more complicated setting
 - \triangleright e.g., causal direction changes over time t

