Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики

Кафедра информатики и прикладной математики

Сети ЭВМ и Телекоммуникации

Лабораторная работа 2

Старался: Шкаруба Н.Е.

Группа: Р3318

2017

Цель работы:

Научиться работать с программами ping, wireshark

1. Ping:

```
[sigma@magma main ]$ ping jovian -c 4 -s 1000
PING Jovian (146.185.143.190) 1000(1028) bytes of data.
1008 bytes from Jovian (146.185.143.190): icmp_seq=1 ttl=56 time=40.1 ms
1008 bytes from Jovian (146.185.143.190): icmp_seq=2 ttl=56 time=41.7 ms
1008 bytes from Jovian (146.185.143.190): icmp_seq=3 ttl=56 time=40.6 ms
1008 bytes from Jovian (146.185.143.190): icmp_seq=4 ttl=56 time=52.8 ms
--- Jovian ping statistics ---
4 packets transmitted, 4 received, 0% packet loss, time 3005ms
rtt min/avg/max/mdev = 40.126/43.836/52.868/5.246 ms
```

Исполнение ping

Окно wireshark после исполнения

1. Имеет ли место фрагментация исходного пакета, какое поле на это указывает?

Фрагментация исходного пакета имеет место быть при превышении его размера MTU (обычно 1500 байт) без учёта Ethernet-фрейма. На фрагментацию указывает поле MF в заголовке IPv4, установленное у всех фрагментов пакета, кроме последнего.

ask.wireshark.org/questions/41152/how-to-check-if-fragmentation-is-happening

Структура IPv4 заголовка

Total Length: 1500	Total Length: 48				
Identification: 0xfbb3 (64435)	Identification: 0xfbb3 (64435)				
	→ Flags: 0x00				
0 = Reserved bit: Not set	0 = Reserved bit: Not set				
.0 = Don't fragment: Not set	.0 = Don't fragment: Not set				
1 = More fragments: Set	0 = More fragments: Not set				
Fragment offset: 0	Fragment offset: 1480				

Снимок нескольких пакетов.

2. Какая информация указывает, является ли фрагмент пакета последним или промежуточным?

На это указывает значение поля Fragment Offset в заголовке IPv4, показывающее смещение текущего фрагмента относительно всего пакета

3. Чему равно количество фрагментов при передаче ping-пакетов?

Количество фрагментов вычисляется по формуле: (Packet Length / MTU) + (Packet Length % MTU? 1:0)

4. Построить график, в котором на оси абсцисс находится размер_пакета, а по оси ординат – количество фрагментов,на которое был разделён каждый ping-пакет

График зависимости размера пакетов от кол-ва его фрагментов.

5. Как изменить поле TTL с помощью утилиты ping?

\$ ping -m [ttl] ...

6. Что содержится в поле данных ping-пакета?

Зависит от реализации программы. У меня хранится последовательность увеличивающаяся на 1 байт

0000	2c	56	dc	41	c1	CC	98	01	a7	9f	b5	9f	08	00	45	00	,V.AE.
0010	04	04	74	14	40	00	40	01	de	5a	c0	a8	01	6a	92	b9	t.@.@Zj
0020	8f	be	80	00	df	be	55	07	00	04	3f	a2	18	59	00	00	U?Ÿ
0030	00	00	11	f7	00	00	00	00	00	00	10	11	12	13	14	15	
0040	16	17	18	19	1a	1b	1c	1d	1e	1f	20	21	22	23	24	25	!"#\$%
0050	26	27	28	29	2a	2b	2c	2d	2e	2f	30	31	32	33	34	35	&'()*+,/012345
0060	36	37	38	39	3a	3b	3с	3d	3e	3f	40	41	42	43	44	45	6789:;<= >?@ABCDE
0070	46	47	48	49	4a	4b	4c	4d	4e	4f	50	51	52	53	54	55	FGHIJKLM NOPORSTU
0080	56	57	58	59	5a	5b	5c	5d	5e	5f	60	61	62	63	64	65	<pre>VWXYZ[\] ^ `abcde</pre>
0090	66	67	68	69	6a	6b	6c	6d	6e	6f	70	71	72	73	74	75	fghijklm nopqrstu
00a0	76	77	78	79	7a	7b	7c	7d	7e	7f	80	81	82	83	84	85	vwxyz{ } ~
00b0	86	87	88	89	8a	8b	8c	8d	8e	8f	90	91	92	93	94	95	
00c0	96	97	98	99	9a	9b	9c	9d	9e	9f	a0	a1	a2	a3	a4	a5	
00d0	a6	a7	a8	a9	aa	ab	ac	ad	ae	af	b0	b1	b2	b3	b4	b5	
00e0	b6	b7	b8	b9	ba	bb	bc	bd	be	bf	c0	c1	c2	c3	c4	c5	
00f0	c6	c7	c8	c9	ca	cb	CC	cd	ce	cf	d0	d1	d2	d3	d4	d5	
0100	d6	d7	d8	d9	da	db	dc	dd	de	df	e0	e1	e2	e3	e4	e5	
0110	e6	e7	e8	e9	ea	eb	ec	ed	ee	ef	f0	f1	f2	f3	f4	f5	

Данные ping пакета

2. Traceroute:

```
[sigma@magma main ]$ sudo traceroute -I jovian
traceroute to jovian (146.185.143.190), 30 hops max, 60 byte packets
1 router.asus.com (192.168.1.1) 6.391 ms 6.672 ms 7.607 ms
2 188.243.32.1.pool.sknt.ru (188.243.32.1) 13.592 ms 13.653 ms 13.654 ms
3 Router.sknt.ru (93.100.0.55) 14.254 ms 14.254 ms 14.253 ms
4 185.37.128.22 (185.37.128.22) 13.304 ms 14.204 ms 14.232 ms
5 ae8.RT.KM.SPB.RU.retn.net (87.245.252.157) 14.231 ms 14.230 ms 14.229 ms
6 ae3-8.RT.TC2.AMS.NL.retn.net (87.245.233.17) 45.711 ms 35.284 ms 33.446 ms
7 80.249.211.98 (80.249.211.98) 33.946 ms 44.218 ms 44.221 ms
8 * * *
9 Jovian (146.185.143.190) 45.163 ms 45.159 ms 45.148 ms
```

Выполнение traceroute

64 3.839587888 192.168.1.106	146.185.143.190	ICMP	74 Echo (ping) request id=0x5a19, seq=32/8192, ttl=11 (reply in 81)
65 3.839904603 87.245.233.17	192.168.1.106	ICMP	70 Time-to-live exceeded (Time to live exceeded in transit)
66 3.839948704 192.168.1.106	146.185.143.190	ICMP	74 Echo (ping) request id=0x5a19, seq=33/8448, ttl=11 (reply in 82)
67 3.865365293 87.245.233.17	192.168.1.106	ICMP	70 Time-to-live exceeded (Time to live exceeded in transit)
68 3.865450897 192.168.1.106	146.185.143.190	ICMP	74 Echo (ping) request id=0x5a19, seq=34/8704, ttl=12 (reply in 84)
69 3.865910416 80.249.211.98	192.168.1.106	ICMP	70 Time-to-live exceeded (Time to live exceeded in transit)
71 3.876187372 80.249.211.98	192.168.1.106	ICMP	70 Time-to-live exceeded (Time to live exceeded in transit)
72 3.876194043 80.249.211.98	192.168.1.106	ICMP	70 Time-to-live exceeded (Time to live exceeded in transit)
73 3.877144992 146.185.143.190	192.168.1.106	ICMP	74 Echo (ping) reply id=0x5a19, seq=30/7680, ttl=56 (request in 60)
74 3.877152077 146.185.143.190	192.168.1.106	ICMP	74 Echo (ping) reply id=0x5a19, seq=31/7936, ttl=56 (request in 61)
75 3.877155109 146.185.143.190	192.168.1.106	ICMP	74 Echo (ping) reply id=0x5a19, seq=27/6912, ttl=56 (request in 57)
76 3.877157174 146.185.143.190	192.168.1.106	ICMP	74 Echo (ping) reply id=0x5a19, seq=25/6400, ttl=56 (request in 55)
77 3.877159977 146.185.143.190	192.168.1.106	ICMP	74 Echo (ping) reply id=0x5a19, seq=26/6656, ttl=56 (request in 56)
78 3.877162113 146.185.143.190	192.168.1.106	ICMP	74 Echo (ping) reply id=0x5a19, seq=28/7168, ttl=56 (request in 58)
79 3.877164190 146.185.143.190	192.168.1.106	ICMP	74 Echo (ping) reply id=0x5a19, seq=29/7424, ttl=56 (request in 59)
81 3.877173525 146.185.143.190	192.168.1.106	ICMP	74 Echo (ping) reply id=0x5a19, seq=32/8192, ttl=56 (request in 64)
82 3.877176071 146.185.143.190	192.168.1.106	ICMP	74 Echo (ping) reply id=0x5a19, seq=33/8448, ttl=56 (request in 66)
83 3.877238805 192.168.1.106	146.185.143.190	ICMP	74 Echo (ping) request id=0x5a19, seq=35/8960, ttl=12 (reply in 85)
84 3.907561138 146.185.143.190	192.168.1.106	ICMP	74 Echo (ping) reply id=0x5a19, seq=34/8704, ttl=56 (request in 68)
85 3.912792207 146.185.143.190	192.168.1.106	ICMP	74 Echo (ping) reply id=0x5a19, seq=35/8960, ttl=56 (request in 83)

Wireshark's trace

1. 1. Сколько байт содержится в заголовке IP? Сколько байт содержится в поле данных?

В заголовке содержится 20, а в поле данных - 32.

Описание заголовка

```
▼ Data (32 bytes)
Data: 48494a4b4c4d4e4f505152535455565758595a5b5c5d5e5f...
```

Описание данных

2. Как и почему именно так изменяется поле TTL в следующих друг за другом ICMP-пакетах traceroute?

Значение поля TTL увеличивается на каждые три запроса, это происходит так ввиду основ функционирования утилиты traceroute.

3. Чем отличаются ICMP-пакеты, генерируемые утилитой traceroute, от ICMP-пакетов, генерируемых утилитой ping?

- а. Значение поля TTL
- b. Размер данных
- с. Содержание данных

4. Чем отличаются полученные пакеты «ICMP reply» от «ICMP error» и зачем нужны оба этих типа ответов?

ICMP reply сигнализирует об успешном получении запроса и является ответом на него. Посылается конечным узлом сети.

ICMP error сигнализирует о том, что процесс передачи не будет завершен полностью (в данном случае из-за обнуления поля TTL пакета). Посылается промежуточными узлами сети.

Этим пакеты необходимы для функционирования утилиты traceroute.

5. Что изменится в работе traceroute, если убрать ключ "-d"? Какой дополнительный трафик при этом будет генерироваться?

Ключ -d для Windows-версии утилиты предотвращает попытки разрешить IP-адреса промежуточных узлов в символьные ссылки. При его отсутствии будет генерироваться дополнительный DNS-трафик. В linux аналогом этого ключа является ключ -n

```
[sigma@magma main ]$ sudo traceroute -I -n jovian traceroute to jovian (146.185.143.190), 30 hops max, 60 byte packets 1 192.168.1.1 4.660 ms 4.919 ms 5.242 ms 2 188.243.32.1 12.558 ms 12.614 ms 12.645 ms 3 93.100.0.55 13.020 ms 13.357 ms 13.357 ms 4 185.37.128.22 22.054 ms 23.898 ms 23.904 ms 5 87.245.252.157 23.903 ms 23.903 ms 23.902 ms 6 87.245.233.17 43.641 ms 39.463 ms 39.266 ms 7 80.249.211.98 57.091 ms 51.049 ms 51.039 ms 8 * * * * 9 146.185.143.190 58.482 ms 50.787 ms 48.927 ms
```

3. HTTP

Необходимо отследить и проанализировать HTTP-трафик, создаваемый браузером при посещении Интернет-сайта, заданного по варианту. В списке захваченных пакетов необходимо проанализировать следующую пару HTTP-сообщений (запрос-ответ):

- GET-сообщение от клиента (браузера);
- ответ сервера.

По результатам анализа собранной трассы покажите, каким образом протокол HTTP передавал содержимое страницы при первичном посещении страницы и при вторичном запросе-обновлении от браузера (т.е. при различных видах GET-запросов).

Filter:	http && ip.a	ddr	V	Expression	Clear	Apply Save
No.	Time	Source	Destination	Protocol	Length	Info
4	0.001705599	192.168.1.106	151.101.36.133	HTTP	562	GET / HTTP/1.1
15	0.049173690	151.101.36.133	192.168.1.106	HTTP	511	HTTP/1.1 200 OK (text/html)
23	3 0.057864464	192.168.1.106	151.101.36.133	HTTP	538	GET /resources/css/default.css HTTP/1.1
25	5 0.104231270	151.101.36.133	192.168.1.106	HTTP	1022	HTTP/1.1 200 OK (text/css)
27	7 0.117257341	192.168.1.106	151.101.36.133	HTTP	573	GET /resources/images/face.png HTTP/1.1
62	2 0.162707386	151.101.36.133	192.168.1.106	HTTP	1115	HTTP/1.1 200 OK (PNG)
72	2 0.225539808	192.168.1.106	151.101.36.133	HTTP	535	GET /favicon.ico HTTP/1.1
73	3 0.261217579	151.101.36.133	192.168.1.106	HTTP	1360	HTTP/1.1 200 OK (image/x-icon)

```
▼ [Expert Info (Chat/Sequence): GET / HTTP/1.1\r\n]
      [GET / HTTP/1.1\r]
      [Severity level: Chat]
      [Group: Sequence]
    Request Method: GET
    Request URI: /
    Request Version: HTTP/1.1
  Host: sigmaone.github.io\r\n
  Connection: keep-alive\r\n
  Pragma: no-cache\r\n
  Cache-Control: no-cache\r\n
  Upgrade-Insecure-Requests: 1\r\n
  User-Agent: Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/56.0.2924.87 Safari/537.36\r\n
  Accept-Encoding: gzip, deflate, sdch\r\n
  Accept-Language: en-US,en;q=0.8\r\n
 ▶ Cookie: _gat=1; _ga=GA1.3.1111397377.1493334271; _gid=GA1.3.433055516.1494790957\r\n
  \r\n
  [Full request URI: http://sigmaone.github.io/]
  [HTTP request 1/4]
  [Response in frame: 15]
  [Next request in frame: 23]
```

Первичный запрос к серверу

Вторичный запрос к серверу

```
    Hypertext Transfer Protocol

  ▶ HTTP/1.1 200 OK\r\n
   Server: GitHub.com\r\n
   Content-Type: text/html; charset=utf-8\r\n
   Last-Modified: Sun, 08 May 2016 00:51:20 GMT\r
   Access-Control-Allow-Origin: *\r\n
   Expires: Sun, 14 May 2017 19:48:33 GMT\r\n
   Cache-Control: max-age=600\r\n
   Content-Encoding: gzip\r\n
   X-GitHub-Request-Id: E8E0:6A19:21D93E:2CFF50:5918B237\r\n
  ▶ Content-Length: 1271\r\n
   Accept-Ranges: bytes\r\n
   Date: Sun, 14 May 2017 19:43:17 GMT\r\n
   Via: 1.1 varnish\r\n
   Age: 51\r\n
   Connection: keep-alive\r\n
   X-Served-By: cache-ams4435-AMS\r\n
   X-Cache: HIT\r\n
   X-Cache-Hits: 2\r\n
   X-Timer: S1494790998.639009, VS0, VE0\r\n
   Vary: Accept-Encoding\r\n
   X-Fastly-Request-ID: 21ad0f566093c68e20db8f49a5490659e028a302\r\n
    r\n
   [HTTP response 1/4]
    [Time since request: 0.047468091 seconds]
    [Request in frame: 4]
    [Next request in frame: 23]
   [Next response in frame: 25]
   Content-encoded entity body (gzip): 1271 bytes -> 2559 bytes
   File Data: 2559 bytes
```

Первичный ответ сервера

```
Hypertext Transfer Protocol
 ▶ HTTP/1.1 200 OK\r\n
  Server: GitHub.com\r\n
  Content-Type: text/html: charset=utf-8\r\n
  Last-Modified: Sun, 08 May 2016 00:51:20 GMT\r\n
  Access-Control-Allow-Origin: *\r\n
  Expires: Sun, 14 May 2017 19:48:33 GMT\r\n
  Cache-Control: max-age=600\r\n
  Content-Encoding: gzip\r\n
  X-GitHub-Request-Id: E8E0:6A19:21D93E:2CFF50:5918B237\r\n
 ▶ Content-Length: 1271\r\n
  Accept-Ranges: bytes\r\n
  Date: Sun, 14 May 2017 20:24:37 GMT\r\n
  Via: 1.1 \text{ varnish}\r\n
  Age: 0\r\n
  Connection: keep-alive\r\n
  X-Served-By: cache-ams4425-AMS\r\n
  X-Cache: MISS\r\n
  X-Cache-Hits: 0\r\n
  X-Timer: S1494793478.899819, VS0, VE91\r\n
  Vary: Accept-Encoding\r\n
  X-Fastly-Request-ID: 9df0bc9078e6cc245d236cc19b869bc0fb8fb41d\r\n
  \r\n
  [HTTP response 1/6]
  [Time since request: 0.126107890 seconds]
  [Request in frame: 455284]
  [Next request in frame: 455298]
  [Next response in frame: 455301]
  Content-encoded entity body (gzip): 1271 bytes -> 2559 bytes
  File Data: 2559 bytes
```

Вторичный ответ сервера

4. DNS

Необходимо отследить и проанализировать трафик протокола DNS

1. Почему адрес, на который отправлен DNS-запрос, не совпадает с адресом посещаемого сайта?

Потому что запрос отправляется на специальный DNS-сервер, производящий разрешение символьных имён в IP-адреса

2. Какие бывают типы DNS-запросов?

https://support.opendns.com/hc/en-us/articles/227986607-FAQ-what-are-the-DNS-Request-Types-

3. В какой ситуации нужно выполнять независимые DNS-запросы для получения содержащихся на сайте изображений?

В этом есть необходимость тогда, когда изображения находятся на других доменах (например, CDN). В таком случае требуется дополнительное разрешение имён серверов с изображениями.

5. ARP

Необходимо отследить и проанализировать трафик протокола ARP

1. Какие MAC-адреса присутствуют в захваченных пакетах ARP-протокола? Что означают эти адреса? Какие устройства они идентифицируют?

В захваченных пакетах присутствуют адреса устройств в сети, а также адрес широкого вещания ff:ff:ff:ff:ff. Адреса устройств используются для идентификации в сети, адрес широкого вещания используется в поле Destination для того, чтобы пакет был доставлен всем устройствам в сети. Эти адреса идентифицируют все устройства в сети, будь то компьютеры, ноутбуки, роутеры, телефоны, или что-то иное.

2. Для чего ARP-запрос содержит IP-адрес источника?

Это сделано для того, чтобы другие устройства в сети могли занести этот источник в свою ARP-таблицу

6. Nslookup

Необходимо отследить и проанализировать трафик протокола DNS.

```
[sigma@magma bin ]$ nslookup jovian
Server: 192.168.1.1
Address: 192.168.1.1#53
** server can't find jovian: NXDOMAIN
```

Эт потому что jovian прописан у меня в /etc/hosts

```
sigma@magma bin ]$ nslookup sigmaone.github.io
erver: 192.168.1.1
ddress: 192.168.1.1#53
Server:
Address:
Non-authoritative answer:
sigmaone.github.io canoni
Name: github.map.fastly.net
Address: 151.101.36.133
                                canonical name = github.map.fastly.net.
[sigma@magma bin ]$ nslookup -type=NS sigmaone.github.io
Server: 192.168.1.1
Address: 192.168.1.1#53
Non-authoritative answer:
sigmaone.github.io c
                                 canonical name = github.map.fastly.net.
Authoritative answers can be found from:
fastly.net
           origin = ns1.fastly.net
           mail addr = hostmaster.fastly.com
serial = 2016110301
           refresh = 3600
           retry = 600
expire = 604800
           minimum = 30
```

Пробуем sigmaone.github.io

536009 4418.7677382 192.168.1.106	192.168.1.1	DNS	78 Standard query 0x0844 A sigmaone.github.io
536010 4418.778545: 192.168.1.1	192.168.1.106	DNS	265 Standard query response 0x0844 A sigmaone.github.io CNAME github.map.fastly.net A 151.101.36.133
536011 4418.7789261 192.168.1.106	192.168.1.1	DNS	81 Standard query 0xb039 AAAA github.map.fastly.net
536012 4418.8146139 192.168.1.1	192.168.1.106	DNS	142 Standard query response 0xb039 AAAA github.map.fastly.net SOA ns1.fastly.net
536034 4419.671534: 192.168.1.106	192.168.1.1	DNS	78 Standard query 0x27cc NS sigmaone.github.io
536057 4424.6716094 192.168.1.106	192.168.1.1	DNS	78 Standard query 0x27cc NS sigmaone.github.io
536058 4424.712612(192.168.1.1	192.168.1.106	DNS	174 Standard query response 0x27cc NS sigmaone.github.io CNAME github.map.fastly.net SOA nsl.fastly.

wireshark

1. Чем различается трасса трафика при вызове nslookup с ключом -type=NS? Просто происходят разные запросы.

2. Что содержится в поле «Answers» DNS-ответа?

При запросе типа A в ответе содержится IPv4-адрес хоста. При запросе типа NS в SOA ответе содержится информация о домене, почтовом ящике, ответственном за доменную зону, а также временные интервалы, определяющие обновления DNS-записей

A request

NS request

3. Каковы имена серверов, возвращающих авторитативный (authoritative) отклик? authoritative ответ мы получаем, если dns сервер имеет текущую запись. В моем случае этого нет, и dns спрашивает у вышестоящего dns.

10. FTP

Необходимо отследить и проанализировать трафик протокола FTP

1. Сколько байт данных содержится в пакете FTP-DATA

Если оставшийся для загрузки размер файла > MTU, то MTU. Иначе - оставшийся для загрузки размер файла.

2. Как выбирается порт транспортного уровня, который используется для передачи FTP-пакетов?

Канал для команд инстанциируется на порту 21. Канал для данных выбирается на случайном порте > 1023. Либо, если это немного другой вопрос, то в зависимости от режима FTP (активный / пассивный). В моём случае это пассивный

3. Чем отличаются пакеты FTP от FTP-DATA?

FTP - являются служебными и используются для передачи команд.

FTP-DATA применяется при загрузке файлов

11. DHCP

Необходимо отследить и проанализировать трафик протокола DHCP.

Нарисуйте временную диаграмму, иллюстрирующую последовательность обмена первыми четырьмя DHCP-пакетами Discover/Offer/Request/ACK

1. Чем различаются пакеты «DHCP Discover» и «DHCP Request»?

DHCP Discover посылается в качестве запроса на получение конфигураций от одного или более DHCP серверов, после их ответа выбирается одна из них и посылается DHCP Request, в котором указывается запрашиваемый IP адрес и идентификатор DHCP сервера.

```
Option: (53) DHCP Message Type (Discover)
                                                                  Option: (53) DHCP Message Type (Request)
   Length: 1
                                                                     Length: 1
   DHCP: Discover (1)
                                                                     DHCP: Request (3)
 Option: (61) Client identifier
                                                                  Option: (61) Client identifier
   Length: 7
                                                                     Length: 7
   Hardware type: Ethernet (0x01)
                                                                     Hardware type: Ethernet (0x01)
   Client MAC address: LiteonTe_17:2c:2a (a4:db:30:17:2c:2a)
                                                                     Client MAC address: LiteonTe_17:2c:2a (a4:db:30:17:2c:2a)
Option: (50) Requested IP Address
                                                                  Option: (50) Requested IP Address
                                                                     Length: 4
                                                                     Requested IP Address: 192.168.0.126
   Requested IP Address: 192.168.0.126
 Option: (12) Host Name
                                                                  Option: (54) DHCP Server Identifier
                                                                     Length: 4
   Length: 6
                                                                     DHCP Server Identifier: 192.168.0.1
   Host Name: lenovo
                                                                  Option: (12) Host Name
 Option: (60) Vendor class identifier
                                                                     Length: 6
   Length: 8
                                                                     Host Name: lenovo
   Vendor class identifier: MSFT 5.0
```

2. Как и почему менялись МАС- и IP-адреса источника и назначения в переданных DHCP-пакетах

При отравке Discover и Request пакетов IP-адрес источника равен 0.0.0.0, т.к. ему не присвоен IP, IP-адрес и MAC-адрес назначения соответствую широковещательным адресам, т.к. источнику неизвестно расположение DHCP-сервера.
При отправке Offer и Ack пакетов MAC и IP адреса источника соответствуют адресам DHCP сервера, MAC адрес — адрес назначения, IP адрес назначения — адрес, предлагаемы/подтверженный IP адрес назначения.

3. Каков IP-адрес DHCP-сервера?

192.168.1.1

4. Что произойдёт, если очистить использованный фильтр "bootp"?

Будут отображены все пакеты, находившиеся в процессе передачи во время выполнения задания. Странный вопрос.

12. Заголовки

Level 2-ARP

Word Offset	Byte 0	Byte 1	Byte 2	Byte 3			
0x0000	Hardware 1	ype (0x01)	Protocol Type (0x80)				
0x0010	HLEN (0x06)	PLEN (0x04)	Oper	ation			
0x0020		Sender Hard	lware Address				
0x0030			Sender Protocol Address				
0x0040							
0x0050	Target Hardware Address						
0x0060			Target Protocol Address				
0x0070							

Level 2-IP

Word Offset	Byte 0	Byte 1	Byte 2	Byte 3			
0x0000	Version (0x4)	Type (0x0)	Length				
0x0010	Identif	ication	Flags				
0x0020	TTL	Protocol (0x1)	Checksum				
0x0030		Sour	rce IP				
0x0040		Destination IP					
0x0050							
0x0060	Data						
0x0070							

Level 3-ICMP

Word Offset	Byte 0	Byte 1	Byte 2	Byte 3			
0x0000	Message Type	Code (0x0)	Checksum				
0x0010	Quench						
0x0050							
0x0060		Da	ta				
0x0070							

DHCP

		1		2	3
0 1 2	3 4 5 6 7	890123	4567	8901234	5678901
+-+-+	-+-+-+-+-	+-+-+-+-+-	+-+-+-+	.+-+-+-+-+-	+-+-+-+-+-+
1 0	bcode (1)	htype ()	I) I	hlen (1)	hops (1)
	00000000000	trar	nsaction	ID (4)	Ī
+			+		+
1	second	s (2)	1	flags	(2)
		client's	s IP add	ress (4)	
+ 		assigned	d IP add	ress (4)	
+	5000000000	boot serve	er's IP	address (4)	†
		relay ager	nt's IP	address (4)	!
 		client's h	nardware	address (16)	
+ +	s	erver's hos	t name (optional) (64	
 		boot	filename	e (128)	 +
		options	(variab	le length)	I