

Instrument Landing System Mathematical Modeling Study for Orlando International Airport Runway 17R Localizer, Orlando, Florida, Revised Airside Docking Plan (Scheme IIIA)

James D. Rambone John E. Walls

November 1988

DOT/FAA/CT-TN89/1

This document is available to the U.S. public through the National Technical Information Service, Springfield, Virginia 22161.

U.S. Department of Transportation
Federal Aviation Administration

Technical Center
Atlantic City International Airport, N.J. 08405

NOTICE

This document is disseminated under the sponsorship of the U.S. Department of Transportation in the interest of information exchange. The United States Government assumes no liability for the contents or use thereof.

The United States Government does not endorse products or manufacturers. Trade or manufacturers' names appear herein solely because they are considered essential to the objective of this report.

Technical Report Documentation Page

1. Papart No.	2. Government Accession No.	3. Recipient's Calalog No.
FOT FAA CT-TN89 1		
4. Title and Subtitle INSTRUMENT LANDING SYSTEM M		S. Report Date November 1988
STUDY FOR ORLANDO INTERNATI 17R LOCALIZER, ORLANDO, FLO	ORIDA, REVISED	6. Performing Organization Code ACD=330
AIRSIDE DOCKING PLAN (SCHEN	E IIIA)	8. Performing Organization Report No.
James D. Rambone and John E	. Walls	DOT/FAA/CT-TN89/1
9. Performing Organization Name and Address Federal Aviation Administra	tion	10. Work Unit No. (TRAIS)
Technical Center Atlantic City International	Airport, N.J. 08405	11. Contract or Grant No. T0605A
		13. Type of Report and Pariod Covered
12. Spensoring Agency Name and Address U.S. Department of Transpor Federal Aviation Administra	tion	Technical Note October 1988
Maintenance and Development Washington, D.C. 20590	Service	14. Sponsoring Agency Code

15. Supplementary Notes

16. Abstract

This Technical Note describes the instrument landing system (ILS) math modeling performed by the Federal Aviation Administration (FAA) Technical Center at the request of the Southern Region. Upon the completion of a preliminary modeling effort described in Technical Note DOT/FAA/CT-TN88/35. "ILS Mathematical Modeling Study for Orlando International Airport Runway 17R," ASO-430 provided a final version of an airside ramp utilization plan (Scheme IIIA) for the Orlando Airport. This necessitated an additional modeling effort due to changes in aircraft docking arrangements, the addition of taxiing aircraft, and a Delta range operations control tower. Computed data are presented showing the effects of airside terminals with simulated docked and taxiing aircraft on the performance of an ILS localizer proposed for runway 17R at the Orlando International Airport. The Southern Region is concerned that reflections from two proposed airside terminals with docked and taxiing aircraft may degrade the localizer course beyond category II/III tolerances. Modeled course structure results indicate that marginal category II/III localizer performance should be obtained with the Wilcox Mark II, 14-element, dual-frequency log periodic antenna and both airside terminals with docked and taxing aircraft at the currently proposed locations. excluding aircraft taxiing parallel to the runway. Category II/III course structure results are not obtained when the parallel taxiing aircraft are included in the reflecting source configuration. Computed clearance orbit. results indicate satisfactory linearity, course crossover, and signal clearance levels.

Instrument Landing System Math Modeling ILS Localizer

ILS Orlando, FL Orlando, FL ILS

18. Distribution Statement

This document is available to the U.S. public through the National Technical Information Service, Springfield, Va. 22161

19. Security Classif. (of this report)	20. Security Classif. (of this page)	21. No. of Pages	22. Price
Unclassified	Unclassified	33	
		l	

TABLE OF CONTENTS

	Page
EXECUTIVE SUMMARY	vii
INTRODUCTION	1
Purpose Background	1
DISCUSSION	1
ILS Math Models ILS Modeling Performed Data Presentation Data Analysis	1 2 6 7
CONCLUSIONS	7
REFERENCES	8

Accession For	
NTIS GRA&I	M
DTIC TAB	(T)
Unannounced	ñ
Justification	
By	-
Dist and	d/or
A-1	10

LIST OF ILLUSTRATIONS

Figure		Page
1	Orlando Runway 17R, ILS Math Modeling Layout	9
2	Orlando Runway 17R, Proposed Airside Terminals and Simulated Docked and Taxiing Aircraft Details, Scheme IIIA	10
3	Typical Aircraft Reflector Plate Silhouette	11
4	Course Structure, Orlando Runway 17R Localizer, Airside Terminal 4, No Docked Aircraft, No Taxiing Aircraft	12
5	Clearance Orbit, Orlando Runway 17R Localizer, Airside Terminal 4, No Docked Aircraft, No Taxiing Aircraft	13
6	CSB and SBO Antenna Patterns, Orlando Runway 17R Localizer, Airside Terminal 4, No Docked Aircraft, No Taxiing Aircraft	14
7	Course Structure, Orlando Runway 17R Localizer, Airside Terminal 4, Docked and Taxiing Aircraft	15
8	Clearance Orbit, Orlando Runway 17R Localizer, Airside Terminal 4, Docked and Taxiing Aircraft	16
9	CSB and SBO Antenna Patterns, Orlando Runway 17R Localizer, Airside Terminal 4, Docked and Taxiing Aircraft	17
10	Course Structure, Orlando Runway 17R Localizer, Airside Terminals 4 and 2, No Docked Aircraft, No Taxiing Aircraft	18
11	Clearance Orbit, Orlando Runway 17R Localizer, Airside Terminals 4 and 2, No Docked Aircraft, No Taxiing Aircraft	19
12	CSB and SBO Antenna Patterns, Orlando Runway 17R Localizer, Airside Terminals 4 and 2, No Docked Aircraft, No Taxiing Aircraft	20
13	Course Structure, Orlando Runway 17R Localizer, Airside Terminals 4 and 2, Docked and Taxiing Aircraft	21
14	Clearance Orbit, Orlando Runway 17R Localizer, Airside Terminals 4 and 2, Docked and Taxiing Aircraft	22
15	CSB and SBO Antenna Patterns, Orlando Runway 17R Localizer, Airside Terminals 4 and 2, Docked and Taxiing Aircraft	23
16	Course Structure, Orlando Runway 17R Localizer, Airside Terminals 4 and 2, Docked and Taxiing Aircraft, Excluding Parallel Taxiing Aircraft	24

LIST OF ILLUSTRATIONS (CONTINUED)

Figure		Page
17	Clearance Orbit, Orlando Runway 17R Localizer, Airside Terminals 4 and 2, Docked and Taxiing Aircraft, Excluding Parallel Taxiing Aircraft	25
18	CSB and SBO Antenna Patterns, Orlando Runway 17R Localizer, Airside Terminals 4 and 2, Docked and Taxiing Aircraft, Excluding Parallel Taxiing Aircraft	26

LIST OF TABLES

Table		Page
1	Localizer Antenna Model Input Data Summary	3
2	Localizer Reflecting Surfaces Data Summary (3 Sheets)	4

EXECUTIVE SUMMARY

This instrument landing system (ILS) math modeling study was performed at the request of the Southern Region to compute the effects of proposed airside terminals with docked aircraft on the performance of an ILS localizer proposed for runway 17R, which is under construction at the Orlando International Airport. Upon the completion of a preliminary modeling effort described in Technical Note DOT/FAA/CT-TN88/35 "ILS Mathematical Modeling Study for Orlando International Airport Runway 17R," ASO-430 provided a final version of an airside ramp utilization plan (Scheme IIIA) for the Orlando Airport. This necessitated an additional modeling effort due to changes in aircraft docking arrangements and the addition of taxiing aircraft and a Delta ramp operations control tower. Reflections from other structures on the airport are not considered in this modeling study. The localizer was modeled using a physical optics mathematical model developed by the Transportation Systems Center. As requested by ASO-433, a Wilcox Mark II, 14-element, dual frequency log periodic antenna array was modeled. Derogative effects from two airside terminals and simulated docked and taxiing aircraft in several reflecting source configurations were considered.

Modeled course structure results indicate that marginal category II/III localizer performance should be obtained for runway 17R with both airside terminals and docked and taxiing aircraft at the currently proposed locations, excluding aircraft taxiing parallel to the runway. Category II/III course results are not obtained when the parallel taxiing aircraft are included in the reflecting source configuration. Computed clearance orbit results indicate satisfactory linearity, course crossover, and signal clearance levels.

INTRODUCTION

PURPOSE.

The purpose of this math modeling study was to provide computer modeled performance data for an instrument landing system (ILS) localizer proposed for runway 17R at the Orlando International Airport.

BACKGROUND.

The Southern Region will be installing an ILS localizer to serve runway 17R, which is under construction at the Orlando International Airport. In support of this project, ASO-433 has requested a math modeling study through the Navigation and Landing Division, APS-400, which, in turn, was forwarded to the Federal Aviation Administration (FAA) Technical Center for accomplishment. completion of a preliminary modeling effort, described in Technical Note DOT/FAA/CT-TN88/35 "ILS Mathematical Modeling Study for Orlando International Airport Runway 17R Orlando, Florida, Preliminary Airside Docking Plan, ASO-430 provided a final version of an airside ramp utilization plan (Scheme IIIA) for the Orlando Airport. This necessitated an additional modeling effort due to changes in aircraft docking arrangements, the addition of taxiing aircraft, and a Delta ramp operations control tower. Localizer math modeling was requested for a Wilcox Mark II, 14-element, dual frequency log periodic dipole (LPD) antenna array to provide category II/III performance. ASO-433 requested modeling of several terminal airside configurations: airside terminal 4 only, with and without docked and taxiing aircraft; and airside terminals 4 and 2, with and without docked and taxiing aircraft. This modeling effort was performed under project T0605A. The Program Manager is Mr. Edmund A. Zyzys. Additional information regarding this study may be obtained by contacting Messrs. James D. Rambone or John E. Walls at FTS 482-4572 or (609) 484-4572.

DISCUSSION

ILS MATH MODELS.

The FAA Technical Center conducts ILS mathematical computer model studies through application of physical optics or geometric theory of diffraction techniques to compute anticipated ILS performance. The modeling for runway 17R localizer was performed using the physical optics localizer model developed by the Transportation Systems Center (TSC) and converted to the Technical Center's mainframe computer. References 1 through 3 describe the modeling technique and implementation. Reference 4 provides validation data for the localizer model.

The coordinate system used in this computer model is a right-handed system with the origin located at the threshold of the runway. The positive x-axis is directed out from the threshold along runway centerline extended, the positive y-axis is directed to the left, the positive z-axis is directed up. Alpha, the angle between the base of a reflector and the x-axis, is measured in the counterclockwise direction. A reflector facing in the negative y-direction has an alpha of 0° . Delta is the angle between the surface of the reflector and the vertical direction. A reflector with a delta of 0° is perpendicular to the ground. Delta is equal to -90° for a horizontal reflector facing down. A

surface illuminated by radio frequency (RF) energy from the antenna is modeled by a rectangular flat or cylindrical surface. The surface is considered to be of infinite conductivity over the total surface and to have zero thickness. This assumption will result in a worst-case performance prediction. The model does not compute multiple reflections or diffractions. Course deviation indicator (CDI) deflections are computed as follows. First, the magnitude and phase of the RF signals arriving at the aircraft location are determined for each surface independently. Next, a resultant RF signal is computed by vectorially combining the independent signals. CDI deflection is then computed from the resultant RF signal.

ILS MODELING PERFORMED.

Figure 1 shows the general orientation of the runway. The TSC localizer model was used to model the effects of the airside terminals and simulated docked and taxiing aircraft. As requested, the Wilcox Mark II, 14-element, dual frequency LPD antenna was modeled at the proposed ILS localizer site. Localizer course structure and clearance orbit computer runs were made for each of the reflective source configurations. Table 1 summarizes the localizer model input data. Antenna currents and phases used for the antenna array are also given in table 1.

The following criteria was used in selecting the surfaces for input to the model: (1) use all surfaces potentially illuminated by direct RF energy from the localizer antenna; (2) the airside terminals can shadow aircraft and each other; (3) aircraft cannot shadow terminals or other aircraft; (4) reflected RF energy is not shadowed; and (5) the effects from other structures on the airport are not considered.

The reflecting surfaces modeled are identified in figure 2. The aircraft (Boeing-747's, Boeing-757's, and Lockheed-1011's) were simulated at specific locations on the airport ramp areas, as given on an airside terminal layout chart, Scheme IIIA, provided by ASO-433. The simulated B-747 aircraft are numbered 17, 18, 19, 25, 26, 27, 28, and 29. The aircraft numbered 10, 11, 12, 13, 14, 20, and 21 are simulated L-1011's. The remaining aircraft were simulated as B-757's. Rectangular plates were used to simulate the aircraft fuselage and tail (figure 3). The location and dimensions of all reflecting surfaces are detailed in table 2. Cylinders were used to simulate the corners of the airsides (A and G in figure 2). A cylinder was also used to simulate the Delta ramp operations control tower (surface F in figure 2). Rectangular plates were used to simulate the other reflecting surfaces.

The reflecting source configurations modeled, per ASO-433 request, are as follows: (1) airside 4 only (surfaces A through F); (2) airside 4 with simulated docked and taxiing aircraft (airside 4 plus adjacent docked aircraft 7 through 24 and taxiing aircraft 25 through 33); (3) airside 4 and 2 without docked and taxiing aircraft (surfaces A through J); (4) airside 4 plus airside 2 with simulated docked and taxiing aircraft (airside 4 plus aircraft 7 through 33, and airside 2 with adjacent docked aircraft 1, 2, 3, and 16 through 24 and taxiing aircraft 28 through 33). The taxiing aircraft are modeled as parked in the locations shown. In addition to the requested modeling, a fifth reflecting source configuration is provided. This configuration consists of the reflecting surfaces described for configuration 4, less the reflections from the B-747 aircraft numbered 25, 26, and 27, which are parallel to the runway opposite airside terminal 4. These results are provided to illustrate the significant

derogative effects caused by large aircraft oriented parallel to the runway in this area. Modeling runs were also made in which these aircraft were rotated in $10^{\rm o}$ steps with respect to the runway (data not shown). While system derogation was reduced for these runs, Category II/III tolerances were still exceeded at each orientation of the aircraft.

TABLE 1. LOCALIZER ANTENNA MODEL INPUT DATA SUMMARY

Localizer Antenna Type:	Wilcox Mark II,
	LPD 14-Element,
	Dual Frequency
Runway 17R Length (ft):	10000.0
Distance to Runway 35L End:	1050.0
Frequency (MHz) - Not yet assigned	ed: 110.0
Site Elevation (ft m.s.l.):	78.0
Course Width (deg):	3.63

14-Element LPD Array

Ant. <u>No.</u>	Spacing (wave <u>length)</u>	Carrier+Si	deband Phase (deg)	Sideband Amplitude	Only Phase (deg)
7L	-4.80	0.160	0	0.367	0
6L	-4.05	0.160	0	0.555	0
5L	-3.30	0.491	0	0.889	0
4L	-2.55	0.491	0	1.000	0
3L	-1.80	0.714	0	1.000	0
2L	-1.05	1.000	0	0.667	0
1L	-0.30	0.893	0	0.222	0
1R	0.30	0.893	0	0.222	180
2R	1.05	1.000	0	0.667	180
3R	1.80	0.714	0	1.000	180
4R	2.55	0.491	0	1.000	180
5R	3.30	0.491	0	0.889	180
6R	4.05	0.160	0	0.555	180
7 R	4.80	0.160	0	0.367	180
		Clearance	Signals	i	
3L	-1.80	0.200	0	0.139	0
2L	-1.05	0.000	0	0.333	0
1L	-0.30	1.000	0	1.000	0
1R	0.30	1.000	0	1.000	180
2R	1.05	0.000	0	0.333	180
3R	1.80	0.200	0	0.139	180

ft - feet

MHz - megahertz

m.s.1. - mean sea level

deg - degree

TABLE 2. LOCALIZER REFLECTING SURFACES DATA SUMMARY

Airside 4	Coordinates <u>X</u> <u>Y</u>	(ft)* <u>Z</u> **	Alpha <u>(deg)</u>	Delta (deg)		_
Α	-3572 1461	13	0.0	0.0	90	32
В	-3446 1595	13	210.8	0.0	346	32
С	-3171 1842	13	240.0	0.0	312	43
D	-3105 2205	13	270.0	0.0	348	32
E	-2676 1493	13	330.0	0.0	289	32
F	-3190 1686	13	0.0	0.0	27	103
Aircraft	Coordinates	(ft)*		Delta	Width	Height
Airside 4	<u>X</u> <u>Y</u>	<u>Z</u> **	(deg)	(deg)	(ft)	(ft)
7	-2370 1378	19	353.6	0.0	134	15
	-2293 1369	26	353.6	0.0	20	32
8	-2421 1280	19	303.7	0.0	134	15
	-2379 1217	2 >	303.7	0.0	22	32
9	-2532 1263	19	254.3	0.0	133	15
	-2554 1189	26	254.3	0.0	21	32
10	-2672 1340	21	236.1	0.0	129	20
	-2718 1273	29	236.1	0.0	35	44
11	-2829 1440	21	234.2	0.0	133	20
	-2876 1375	29	234.2	0.0	32	44
12	-3165 1501	21	300.3	0.0	131	20
	-3124 1431	29	300.3	0.0	32	44
13	-3327 1402	21	301.0	0.0	131	20
	-3286 1332	29	301.0	0.0	31	44
14	-3477 1308	21	284.1	0.0	131	20
	-3454 1229	29	284.1	0.0	30	44
15	-3615 1288	19	245.8	0.0	134	15
	-3646 1219	26	245.8	0.0	21	32
16	-3712 1363	19	210.7	0.0	136	15
	-3779 1326	26	210.7	0.0	19	32
17	-3741 1502	20	337.3	0.0	196	27
	-3849 1546	31	337.3	0.0	37	46
18	-3590 1651	20	302.2	0.0	194	27
	-3654 1748	31	302.2		38	46 27
19	-3387 1780	20	301.9	0.0	194	27 46
	-3449 1878	31	301.9	0.0	38	20
20	-3185 2030	21	0.0	0.0	130	44
0.1	-3268 2031	29	0.0	0.0	34	
21	-3187 2219	21	0.0	0.0 0.0	129 34	20 44
0.0	-3270 2219	29		0.0	134	15
22	-3185 2386	19 26	0.0	0.0	20	32
2.2	-3263 2387	26		0.0	133	15
23	-3150 2498	19	320.0	0.0	20	32
27	-3209 2548	26	320.0	0.0	132	15
24	-3051 2563	19	279.8	0.0	21	32
	-3064 2639	26	279.8	0.0	21	32

TABLE 2. LOCALIZER REFLECTING SURFACES DATA SUMMARY (CONTINUED)

Aircraft Airside 4	Coordinates <u>X</u> <u>Y</u>	(ft)* <u>Z</u> **	Alpha (deg)	Delta (deg)	Width (ft)	Height <u>(ft)</u>
25	-2525 925	20	0.0	0.0	194	27
26	-2640 924 -2786 945 -2902 946	31 20 31	0.0 0.0 0.0	0.0 0.0 0.0	38 197 37	46 27 46
27	-3040 942 -3156 942	20 31	0.0	0.0	195 37	27 46
28	-4044 1537 -4023 1651	20 31	260.6 260.6	0.0 0.0	194 38	27 46
29	-3855 1974 -3796 2074	20 31	239.5 239.5	0.0	195 38	27 46
30	-3296 2853 -3363 2814	19 26	30.6 30.6	0.0 0.0	133 22	15 32
31	-3067 2901 -3143 2901	19 26	0.0 0.0	0.0 0.0	133 20	15 32
32	-2873 2851 -2940 2890	19 26	330.5 330.5	0.0	133 21	15 32
33	-2720 2686 -2763 2750	19 26	303.1 303.1	0.0	130 23	15 32
Airside 2	Coordinates <u>X</u> <u>Y</u>	(ft)* <u>Z</u> **	Alpha (deg)	Delta (deg)	Width (ft)	Height <u>(ft)</u>
G	- 533 1466	13	0.0	0.0	90	32
Н	- 398 1607	13	209.0	0.0	353	32 43
I J	- 177 1766 410 1478	13 13	247.5 330.0	0.0	94 233	32
Aircraft	Coordinates	(ft)*	Alpha			
Airside 2	<u>X</u> <u>Y</u>	<u>Z</u> **	(deg)	<u>(deg)</u>	<u>(ft)</u>	<u>(ft)</u>
1	- 676 1432 - 752 1440	19 26	355.1 355.1		135 20	1.5 32
2	- 594 1541 - 664 1574	19 26	334.9 334.9	0.0	134 20	15 32
3	- 460 1634 - 529 1667	19 26	334.7 334.7	0.0	134 20	15 32
16	719 1467 789 1434	19 26	334.3 334.3	0.0	134 20	15 32
17	(22 1364 648 1253	20 31	282.1 282.1	0.0	194 35	27 46
18	414 1403	20	247.1	0.0	194	27
19	370 1297 191 1495 147 1389	31 20 31	247.1 247.0 247.0	0.0	36 194 35	46 27 46

TABLE 2. LOCALIZER REFLECTING SURFACES DATA SUMMARY (CONTINUED)

Aircraft	Coordinates	(ft)*	Alpha	Delta	Width	Height
Airside 2	<u>X</u> <u>Y</u>	<u>Z</u> **	(deg)	(deg)	<u>(ft)</u>	<u>(ft)</u>
20	- 129 1516	21	304.7	0.0	131	20
	- 83 1451	29	304.7	0.0	32	44
21	- 283 1407	21	305.5	0.0	130	20
	- 236 1341	29	305.5	0.0	31	44
22	- 421 1314	19	304.2	0.0	132	15
	- 375 1251	26	304.2	0.0	20	32
23	- 535 1279	19	264.7	0.0	134	15
	- 542 1203	26	264.7	0.0	20	32
24	- 644 1326	19	224.8	0.0	134	15
	- 699 1271	26	224.8	0.0	20	32
28	765 1097	20	204.7	0.0	193	27
	661 1050	31	204.7	0.0	39	46
29	301 1003	20	4.5	0.0	193	27
	185 993	31	4.5	0.0	37	46
30	- 742 959	19	335.6	0.0	132	15
	- 673 927	26	335.6	0.0	21	32
31	- 912 1119	19	304.5	0.0	132	15
	- 867 1056	26	304.5	0.0	25	32
32	- 981 1307	19	274.9	0.0	133	15
	- 974 1229	26	274.9	0.0	20	32
33	- 933 1526	19	249.2	0.0	132	15
	- 960 1454	26	249.2	0.0	20	32

^{*} Midpoint of base of surface referenced to threshold of runway 17R.

DATA PRESENTATION.

Modeled output results for the localizer are provided on three types of plots: (1) course structure plots, (2) clearance orbit plots, and (3) carrier plus sideband (CSB) and sideband only (SBO) antenna pattern plots. The simulated flightpaths for the course structure runs are centerline approaches starting 60,000 feet from runway threshold. The aircraft crosses the runway threshold at the threshold crossing height and continues at this altitude to a point just short of the stop end of the runway. Distances shown on the horizontal axis of the course structure plots are referenced to the approach threshold. Negative values are shown for distances between the threshold and the localizer. Positive values apply to distances on the approach path toward the outer marker. Angular values on the horizontal axes of the CSB and SBO antenna pattern plots and on the clearance orbit plots were run with flight arcs of 35,000 feet at altitudes of 1,000 feet, with respect to the localizer site.

The vertical axes of the course structure and clearance orbit plots are the model output values of CDI deflection in microamps (0.4-second time constant applied for smoothing). The vertical axes of the antenna pattern plots use a relative scale with the pattern normalized to its peak value. The usual range

^{**} Referenced to base of antenna.

for the vertical scale of modeled course structure data plots is +40 to -40 microamps. This range has been reduced to +10 to -10 microamps for several of the course structure plots provided in this study in order to better display small values of CDI deflection. This choice of scale eliminates the display of category I limits from the plot and shows only the final segment of the category II tolerance limits. Category III tolerance limits (not shown) extend the 5-microamp tolerance shown for category II performance to a point on the runway 3,000 feet from threshold. The limits then increase linearly to 10 microamps at a point which is 2,000 feet from the stop end of the runway.

Modeled localizer output data are provided in figures 4 through 18. Figures 4 through 6 provide computed performance results with airside 4 as the only reflecting source. Modeled course structure is plotted in figure 4. Computed clearance orbit results are given in figure 5. Figure 6 shows the computed CSB and SBO antenna pattern plots. Figures 7 through 9 provide similar plots for the reflecting surface configuration consisting of airside 4 with simulated docked and taxiing aircraft. Figures 10 through 12 show computed performance results for the two airside terminals with no simulated aircraft. The computed performance results for the reflecting surface combination consisting of both airsides 4 and 2 with simulated docked and taxiing aircraft at each airside are provided in figures 13 through 15. Figures 16 through 18 show computed performance results for the two airside terminals with docked and taxiing aircraft at each airside, excluding three B-747 aircraft taxiing parallel to the runway opposite airside terminal 4.

DATA ANALYSIS.

Modeled course structure results for airside 4 alone, and airsides 4 and 2 with no docked and no taxiing aircraft (figures 4 and 10, respectively) show computed CDI deflections that are well within category II/III course structure tolerance limits. Figure 7 (airside 4 with docked and taxiing aircraft) and figure 13 (airsides 4 and 2 with docked and taxiing aircraft) course structure results show computed CDI deflections that exceed the category II/III tolerance limits. Figure 16 (airsides 4 and 2 with docked and taxiing aircraft, excluding parallel taxiing aircraft) marginally meets the category II/III tolerance limits. The computed clearance orbit plots (figures 5, 8, 11, 14, and 17) indicate satisfactory linearity, course crossover, and clearance levels. Figures 6, 9, 12, 15, and 18, CSB and SBO antenna patterns for the Marks II antenna array, show some roughness in the computed clearance signals on the 150 hertz (Hz) side of the pattern.

CONCLUSIONS

Modeled results indicate that marginal category II/III localizer performance should be obtained with the Wilcox Mark II, 14-element, dual frequency log periodic dipole (LPD) antenna array with both airside terminals and docked and taxiing aircraft, excluding aircraft taxiing parallel to the runway, located as proposed. Category II/III tolerance limits are exceeded when the parallel taxiing aircraft are included in the reflecting source configuration, as provided on the airport ramp utilization plan, Scheme IIIA. Computed clearance orbit results indicate satisfactory linearity, course crossover, and clearance levels.

REFERENCES

- 1. Chin, G., et al., <u>Instrument Landing System Scattering</u>, Report DOT/FAA-RD-72-137, 1972.
- 2. Chin, G., et al., <u>User's Manual for ILSLOC</u>: <u>Simulation for Derogation Effects on the Localizer Portion of the Instrument Landing System</u>, Report DOT/FAA-RD-73-13, 1973.
- 3. Chin, G., et al., <u>Instrument Landing System Performance Prediction</u>, Report DOT/FAA-RD-73-200, 1974.
- 4. Chin, G., et al., <u>ILS Localizer Performance Study</u>, <u>Part I. Dallas-Fort Worth Regional Airport and Model Validation</u>, <u>Syracuse Hancock Airport</u>, Report DOT/FAA-RD-72-96, 1972.

PROPOSED AIRSIDE TERMINALS

FIGURE 1. ORLANDO RUNWAY 17R, ILS MATH MODELING LAYOUT

PROPOSED AIRSIDE TERMINALS AIRCRAFT DOCKING PLAN (SCHEME IIIA)

ORLANDO RUNWAY 17R, PROPOSED AIRSIDE TERMINALS AND SIMULATED DOCKED AND TAXIING AIRCRAFT DETAILS, SCHEME IIIA FIGURE 2.

FIGURE 3. TYPICAL AIRCRAFT REFLECTOR PLATE SILHOUETTE

COURSE STRUCTURE, ORLANDO RUNWAY 17R LOCALIZER, AIRSIDE TERMINAL 4, NO DOCKED AIRCRAFT, NO TAXIING AIRCRAFT 7 FIGURE

CLEARANCE ORBIT, ORLANDO RUNWAY 17R LOCALIZER, AIRSIDE TERMINAL 4, NO DOCKED AIRCRAFT, NO TAXIING AIRCRAFT 5. FIGURE

CSB AND SBO ANTENNA PATTERNS, ORLANDO RUNWAY 17R LOCALIZER, AIRSIDE TERMINAL 4, NO DOCKED AIRCRAFT, NO TAXIING AIRCRAFT 9 FIGURE

COURSE STRUCTURE, ORLANDO RUNWAY 17R LOCALIZER, AIRSIDE TERMINAL 4, DOCKED AND TAXIING AIRCRAFT FIGURE 7.

CLEARANCE ORBIT, ORLANDO RUNWAY 17R LOCALIZER, AIRSIDE TERMINAL DOCKED AND TAXIING AIRCRAFT φ • FIGURE

CSB AND SBO ANTENNA PATTERNS, ORLANDO RUNWAY 17R LOCALIZER, AIRSIDE TERMINAL 4, DOCKED AND TAXIING AIRCRAFT 6 FIGURE

COURSE STRUCTURE, ORLANDO RUNWAY 17R LOCALIZER, AIRSIDE TERMINALS AND 2, NO DOCKED AIRCRAFT, NO TAXIING AIRCRAFT FIGURE 10.

CLEARANCE ORBIT, ORLANDO RUNWAY 17R LOCALIZER, AIRSIDE TERMINALS AND 2, NO DOCKED AIRCRAFT, NO TAXIING AIRCRAFT FIGURE 11.

CSB AND SBO ANTENNA PATTERNS, ORLANDO RUNWAY 17R LOCALIZER, AIRSIDE TERMINALS 4 AND 2, NO DOCKED AIRCRAFT, NO TAXIING AIRCRAFT FIGURE 12.

COURSE STRUCTURE, ORLANDO RUNWAY 17R LOCALIZER, AIRSIDE TERMINALS AND 2, DOCKED AND TAXIING AIRCRAFT FIGURE 13.

CLEARANCE ORBIT, ORLANDO RUNWAY 17R LOCALIZER, AIRSIDE TERMINALS 4 AND 2, DOCKED AND TAXIING AIRCRAFT FIGURE 14.

CSB AND SBO ANTENNA PATTERNS, ORLANDO RUNWAY 17R LOCALIZER, AIRSIDE TERMINALS 4 AND 2, DOCKED AND TAXIING AIRCRAFT FIGURE 15.

COURSE STRUCTURE, ORLANDO RUNMAY 17R LOCALIZER, AIRSIDE TERMINALS 4 AND 2, DOCKED AND TAXIING AIRCRAFT, EXCLUDING PARALLEL TAXIING AIRCRAFT FIGURE 16.

CLEARANCE ORBIT, ORLANDO RUNWAY 17R LOCALIZER, AIRSIDE TERMINALS 4 AND 2, DOCKED AND TÁXIING AIRCRAFT, EXCLUDING PARÁLLEL TAXIING AIRCRAFT FIGURE 17.

CSB AND SBO ANTENNA PATTERNS, ORLANDO RUNWAY 17R LOCALIZER, AIRSIDE TERMINALS 4 AND 2, DOCKED AND TAXIING AIRCRAFT, EXCLUDING PARALLEL TAXIING AIRCRAFT FIGURE 18.