Limits

MA1505
Mathematics I
Chapter 1

<u>Outline</u>

- 1. Definition of Limits.
- 2. Basic Results on Limits
- 3. One-sided Limits

Limits

In the concept of *limits*, we are interested in the behaviour of the values of f(x) when x get closer and closer to some number a.

Important Remark

When we consider limits, the value of f(x) when x = a is not important. In fact, f(a) need not be defined.

Example 1.

Let
$$f(x) = \frac{\sin x}{x}$$
.

Note :
$$f(0) = \frac{\sin 0}{0} = \frac{0}{0}$$
. So $f(0)$ is not defined.

Domain of $f = \{x \in \mathbb{R} : x \neq 0\}$.

We shall now look at the behaviour of the values of f(x) when x is close to 0.

Let
$$f(x) = \frac{\sin x}{x}$$
. Domain of $f = \{x \in \mathbb{R} : x \neq 0\}$.

\mathcal{X}	$\frac{\sin x}{x}$	$\boldsymbol{\mathcal{X}}$	$\frac{\sin x}{x}$
0.01	0.999983333	-0.01	0.999983333
0.001	0.99999833	-0.001	0.99999833
0.0001	0.99999998	-0.0001	0.99999998

So we see that when
$$x$$
 get closer and closer to 0 , the value of $\frac{\sin x}{x}$ approaches 1.

x < 0

If we plot the graph of $f(x) = \frac{\sin x}{x}$, we can also see from the graph that when x get closer and closer to 0 from either side, the value of $\frac{\sin x}{x}$ approaches 1.

So we know that the value of $f(x) = \frac{\sin x}{x}$ approaches 1 when x get closer and closer to 0.

In this case, we say that

"the limit of f(x) as x tends to 0 is equal to 1."

We also use the following notation:

$$\lim_{x\to 0} f(x) = 1.$$

Note: in this case, $\lim_{x\to 0} f(x) = 1$ but f(0) is undefined.

Example 2.

Let
$$f(x) = \begin{cases} x+3 & \text{if } x \neq 2 \\ 1 & \text{if } x = 2 \end{cases}$$

Describe the behaviour of f(x) as x tends to 2.

From the graph of f(x), we see that when x gets closer and closer to 2 (but not equal to 2), the value of f(x) approaches 5.

In notation we have:

$$\lim_{x\to 2} f(x) = 5.$$

Note: the value of f(2) = 1 does not have an effect on the limit. Also $\lim_{x \to 2} f(x) \neq f(2)$.

Example 3.

Let
$$f(x) = \frac{1}{x}$$
.

Domain of $f = \{x \in \mathbb{R} : x \neq 0\}$.

From the graph of $f(x) = \frac{1}{x}$, we see that when x gets closer and closer to 0, the value of f(x) does not approach to any value.

In this case, we say that $\lim_{x\to 0} f(x)$ does not exist.

Remarks

- 1. $\lim_{x \to a} f(x)$ may not exist.
- 2. If the limit exists, it is not affected by the number f(a).
- 3. $\lim_{x \to a} f(x)$ need not be equal to f(a).

In Example 2, we have $\lim_{x\to 2} f(x) = 5$ but f(2) = 1, so $\lim_{x\to 2} f(x) \neq f(2)$.

Remarks

- 1. $\lim_{x \to a} f(x)$ may not exist.
- 2. If the limit exists, it is not affected by the number f(a).
- 3. $\lim_{x\to a} f(x)$ need not be equal to f(a).
- 4. f(a) need not be defined.

In Example 1, we have
$$f(x) = \frac{\sin x}{x}$$

 $\lim_{x\to 0} f(x) = 1$ but $f(0)$ is not defined.

Limits (An Informal Definition).

Let f(x) be defined on an open interval containing x_0 , except possibly at x_0 itself. If f(x) gets arbitrary close to L when x is sufficiently close to x_0 , then we say that the limit of f(x) as x tends to x_0 is the number L and we write

$$\lim_{x \to x_0} f(x) = L,$$

which is read "the limit of f(x) as x approaches x_0 is L."

$$\lim_{x \to x_0} f(x) = L$$

What happen at $x = x_0$ is not important.

Case (1). $f(x_0)$ not defined.

Case (2). $f(x_0)$ is defined and $f(x_0) \neq L$.

We say that f(x) is continuous at $x = x_0$.

Rules of Limits

Suppose
$$\lim_{x\to a} f(x) = L$$
 and $\lim_{x\to a} g(x) = L'$. Then

(i)
$$\lim_{x \to a} (f+g)(x) = \lim_{x \to a} f(x) + \lim_{x \to a} g(x) = L + L';$$

(ii)
$$\lim_{x \to a} (f - g)(x) = \lim_{x \to a} f(x) - \lim_{x \to a} g(x) = L - L';$$

(iii)
$$\lim_{x \to a} (fg)(x) = \lim_{x \to a} f(x) \lim_{x \to a} g(x) = LL';$$

(iv)
$$\lim_{x \to a} \left(\frac{f}{g}\right)(x) = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)} = \frac{L}{L'}$$
 provided $L' \neq 0$;

(v)
$$\lim_{x \to a} kf(x) = k \lim_{x \to a} f(x) = kL$$
 for any real number k .

Suppose
$$\lim_{x\to a} f(x) = L$$
 and $\lim_{x\to a} g(x) = L'$. Then

(iv)
$$\lim_{x \to a} \left(\frac{f}{g}\right)(x) = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)} = \frac{L}{L'}$$
 provided $L' \neq 0$;

Remarks

- 1. If $L \neq 0$ and L' = 0, then $\lim_{x \to a} \frac{f}{g}(x)$ does not exist.
- 2. If L = L' = 0, then $\lim_{x \to a} \frac{f}{g}(x)$ may or may not exist.

We will be dealing with such limits problems in the next chapter (L'Hospital Rule).

Evaluate
$$\lim_{x \to -1} \frac{\sqrt{x^2 + 8 - 3}}{x + 1}$$

When cannot substitute x by -1 into the function since the denomintor would be zero.

Evaluate $\lim_{x \to -1} \frac{\sqrt{x^2 + 8 - 3}}{x + 1}$.

In order to find the limit, we multiply the numerator and denominator by the *conjugate* expression $\sqrt{x^2 + 8 + 3}$.

$$\frac{\sqrt{x^2 + 8} - 3}{x + 1} \times \frac{\sqrt{x^2 + 8} + 3}{\sqrt{x^2 + 8} + 3} = \frac{(x - 1)(x + 1)}{(x + 1)(\sqrt{x^2 + 8} + 3)}$$
$$= \frac{(x - 1)}{\sqrt{x^2 + 8} + 3}$$
$$= \frac{(x - 1)}{\sqrt{x^2 + 8} + 3}$$

 $(A-B)(A+B) = A^2 - B^2$

$$(\sqrt{x^2 + 8} - 3)(\sqrt{x^2 + 8} + 3) = (x^2 + 8) - 9$$
$$= x^2 - 1$$
$$= (x - 1)(x + 1)$$

Evaluate lim

In order to find the limit, we multiply the numerator and denominator by the *conjugate* expression $\sqrt{x^2 + 8 + 3}$.

$$\frac{\sqrt{x^2 + 8} - 3}{x + 1} \times \frac{\sqrt{x^2 + 8} + 3}{\sqrt{x^2 + 8} + 3} = \frac{(x - 1)(x + 1)}{(x + 1)(\sqrt{x^2 + 8} + 3)}$$

$$= \frac{(x - 1)}{\sqrt{x^2 + 8} + 3}$$

$$= \frac{(x - 1)}{\sqrt{x^2 + 8} + 3}$$
Therefore $\lim_{x \to -1} \frac{\sqrt{x^2 + 8} - 3}{x + 1} = \lim_{x \to -1} \frac{x - 1}{\sqrt{x^2 + 8} + 3}$.

Therefore
$$\lim_{x \to -1} \frac{\sqrt{x^2 + 8 - 3}}{x + 1} = \lim_{x \to -1} \frac{x - 1}{\sqrt{x^2 + 8 + 3}}.$$

$$= \frac{-1 - 1}{\sqrt{(-1)^2 + 8 + 3}} = -\frac{1}{3}$$

Pause and Think !!!

Evaluate
$$\lim_{x \to 6} \frac{4 - \sqrt{x + 10}}{x^2 - 36}$$
.

Question:

How to decide when $\lim_{x\to a} f(x)$ exists?

Question:

How to decide when
$$\lim_{x\to a} f(x)$$
 exists?

Theorem (to decide when limit exists)

 $\lim_{x \to a} f(x)$ exists if and only if $\lim_{x \to a^{+}} f(x)$ and $\lim_{x \to a^{-}} f(x)$

both exist and are equal.

One-sided Limits

When x tends to a, x can be tending to a from the left side or right side.

If we consider *x* tending to *a* from one side, we obtain the *one-sided* limits.

If $x \to a$ and x > a, we write $x \to a^+$ and call the limit the *right-hand* limits.

If $x \to a$ and x < a, we write $x \to a^-$ and call the limit the *left-hand* limits.

Limits (Definition).

Let f(x) be defined on an open interval containing x_0 , except possibly at a itself. If f(x) gets arbitrary close to L when x is sufficiently close to a, then we say that the limit of f(x) as x tends to a is the number L and we write $\lim_{x \to a} f(x) = L$.

Theorem (to decide when limit exists)

 $\lim_{x \to a} f(x)$ exists if and only if $\lim_{x \to a^{+}} f(x)$ and $\lim_{x \to a^{-}} f(x)$ both exist and are equal.

The graph of the function $f:[0,4] \to \mathbb{R}$ is given below:

(i)
$$\lim_{x \to 0^{+}} f(x) = 1$$

 $\lim_{x \to 4^{-}} f(x) = 1$

$$\lim_{x\to 1^+} f(x) = 1$$

Since $\lim_{x\to 1^{-}} f(x) \neq \lim_{x\to 1^{+}} f(x)$, we conclude that

 $\lim f(x)$ does not exist.

(ii)
$$\lim_{x \to 0^{+}} f(x) = 1$$

$$\lim_{x \to 4^{-}} f(x) = 0$$

$$\lim_{x \to 1^{-}} f(x) = 0$$

$$\lim_{x \to 1^{-}} f(x) = 1$$

Recall that $\lim_{x \to a} f(x)$ exists if and only if $\lim_{x \to a^+} f(x) = \lim_{x \to a^-} f(x)$.

The graph of the function $f:[0,4] \to \mathbb{R}$ is given below:

(iii)
$$\lim_{x \to 2^{-}} f(x) = 1$$

 $\lim_{x \to 2^{+}} f(x) = 1$

Since
$$\lim_{x\to 2^-} f(x) = \lim_{x\to 2^+} f(x) = 1$$
, we conclude that $\lim_{x\to 2} f(x) = 1$.

Recall that $\lim_{x \to a} f(x)$ exists if and only if $\lim_{x \to a^{+}} f(x) = \lim_{x \to a^{-}} f(x)$.

The graph of the function $f:[0,4] \to \mathbb{R}$ is given below:

(iv)
$$\lim_{x \to 3^{-}} f(x) = 2$$

$$\lim_{x \to 3^+} f(x) = 2$$

Since
$$\lim_{x\to 3^-} f(x) = \lim_{x\to 3^+} f(x) = 2$$
, we conclude that

$$\lim_{x\to 3} f(x) = 2.$$

Recall that $\lim_{x \to a} f(x)$ exists if and only if $\lim_{x \to a^{+}} f(x) = \lim_{x \to a^{-}} f(x)$.

Limits involving infinity

Sometimes, we would like to talk about the behaviour of a function as the x value gets larger and larger without bound.

The notation for this is $\lim_{x\to\infty} f(x)$, and is read 'the limit of f(x) as x tends to infinity.''

The symbol $x \to \infty$ means that x gets larger and larger without bound.

Note that ∞ is NOT a real number, it is a symbol which is used in the situation where a quantity increases without bound. Do not write $x = \infty$.

Limits involving infinity

Similarly, we can talk about the behaviour of f(x) as x decreases without bound.

The notation for this is $\lim_{x\to -\infty} f(x)$, and is read 'the limit of f(x) as x tends to negative infinity.''

The symbol $x \to -\infty$ means that x decreases without bound.

Consider the function $f(x) = \frac{1}{x}$ where $x \neq 0$.

(i)
$$\lim_{x \to \infty} f(x) = 0$$

(ii)
$$\lim_{x \to -\infty} f(x) = 0$$

(iii)
$$\lim_{x \to 0^+} f(x) = \infty$$

(iv)
$$\lim_{x \to 0^{-}} f(x) = -\infty$$

The following are a few common situations where $\lim_{x\to a} f(x)$ does not exist.

(i) There is a ''jump'' in the graph of f(x) at x = a so that

$$\lim_{x \to a^{-}} f(x) \neq \lim_{x \to a^{+}} f(x).$$

$$\lim_{x \to 1^{-}} f(x) = 0$$

$$\lim_{x\to 1^+} f(x) = 1$$

So $\lim_{x \to 1^{-}} f(x) \neq \lim_{x \to 1^{+}} f(x)$.

Thus $\lim_{x \to 1} f(x)$ does not exist.

(ii) The graph of f(x) fluctuates when x approaches a.

The graph of $f(x) = \sin(\frac{1}{x})$ is given below.

$$-1 \le \sin(\frac{1}{x}) \le 1$$

Note that the graph of f(x) fluctuates when x approaches 0.

Thus $\lim_{x\to 0} f(x)$ does not exist.

(iii) The function f(x) simply increases without bound as x approaches a. In this case, we write $\lim_{x \to a} f(x) = \infty$.

The graph of $f(x) = \frac{1}{x^2}$ is given below.

Note that as $x \rightarrow 0$ from either side,

the value of f(x) increases without bound.

Thus
$$\lim_{x\to 0} \frac{1}{x^2} = \infty$$
.

(iii) The function f(x) simply increases without bound as x approaches a. In this case, we write $\lim_{x \to a} f(x) = \infty$.

Note that $\lim_{x\to a} f(x) = \infty$ means that the limit of f as x approaches a DOES NOT EXIST and it does not exist because of the following specific reason: f increases without bound (and thus does not approach any value) as x tends to a.

Some Important Remarks.

(iv) The function f(x) decreases without bound as x approaches a. In this case, we write $\lim_{x \to a} f(x) = -\infty$.

The graph of
$$f(x) = -\frac{1}{x^2}$$
 is given below. $\uparrow y$

Note that as $x \to 0$ from either side, the value of f(x) decreases without bound.

$$y = -\frac{1}{x^2}$$

Thus
$$\lim_{x\to 0} -\frac{1}{x^2} = -\infty$$
.

Pause and Think !!!

•
$$f(x) = x \sin(\frac{1}{x})$$
 $(x \neq 0)$

$$-1 \le \sin(\frac{1}{x}) \le 1$$

The value of
$$\lim_{x\to 0} f(x) = 0$$

Continuity

Intuitively, a function is continuous if we can draw its graph ''in one stroke'', or ''without lifting up the pen from the paper''.

Continuous at x = c.

NOT Continuous at x = c.

A function f(x) is continuous at a point c if $\lim f(x) = f(c)$.

Definition (Continuity).

A function f(x) is continuous

- (i) at an interior point c if $\lim_{x\to c} f(x) = f(c)$.
- (ii) at a left end point a if $\lim_{x \to a^+} f(x) = f(a)$.
- (iii) at a right end point b if $\lim_{x \to b^{-}} f(x) = f(b)$.

The graph of the function $f:[0,4] \to \mathbb{R}$ is given below:

(iii)
$$\lim_{x \to 2^{-}} f(x) = 1$$

$$\lim_{x\to 2^+} f(x) = 1$$

Since
$$\lim_{x\to 2^-} f(x) = \lim_{x\to 2^+} f(x) = 1$$
, we conclude that $\lim_{x\to 2} f(x) = 1$.

Note that
$$\lim_{x\to 2} f(x) = 1 \neq f(2) = 2$$
.

Therefore f(x) is not continuous at x = 2.

The graph of the function $f:[0,4] \to \mathbb{R}$ is given below:

(iv)
$$\lim_{x \to 3^{-}} f(x) = 2$$

$$\lim_{x\to 3^+} f(x) = 2$$

Since
$$\lim_{x\to 3^-} f(x) = \lim_{x\to 3^+} f(x) = 2$$
, we conclude that

$$\lim_{x\to 3} f(x) = 2.$$

Note that
$$\lim_{x \to 3} f(x) = 2 = f(3) = 2$$
.

Therefore f(x) is continuous at x = 3.

The Continuity Test.

To test whether a function f is continuous at a point p, we need to checking the following 3 things:

- (1) check that p is in the domain of f(f(p)) is defined),
- (2) check that $\lim_{x\to p} f(x)$ exists (or $\lim_{x\to p^+} f(x)$ or $\lim_{x\to p^-} f(x)$).
- (3) check that $\lim_{x \to p} f(x)$ (or $\lim_{x \to p^+} f(x)$ or $\lim_{x \to p^-} f(x)$) is equal to f(p).

A function f(x) is continuous

- (i) at an interior point p if $\lim_{x \to p} f(x) = f(p)$.
- (ii) at a left end point p if $\lim_{x \to p^+} f(x) = f(p)$.
- (iii) at a right end point p if $\lim_{x \to p^{-}} f(x) = f(p)$.

The Continuity Test.

To test whether a function f is continuous at a point p, we need to checking the following 3 things:

- (1) check that p is in the domain of f(f(p)) is defined),
- (2) check that $\lim_{x\to p} f(x)$ exists (or $\lim_{x\to p^+} f(x)$ or $\lim_{x\to p^-} f(x)$).
- (3) check that $\lim_{x \to p} f(x)$ (or $\lim_{x \to p^+} f(x)$ or $\lim_{x \to p^-} f(x)$) is equal to f(p).

If (1), (2) or (3) fails to hold, then f is not continuous at x = p.

Intermediate Value Theorem.

A function f(x) which is continuous on a closed interval [a,b], takes on every value between f(a) and f(b), that is, if $f(a) \le y_0 \le f(b)$, then there exists $c \in [a,b]$ such that $f(c) = y_0$.

The following theorem is an immediate consequence of the Intermediate Value Theorem by setting $y_0 = 0$.

Theorem.

Let f(x) be a continuous function on a closed interval [a,b].

Suppose f(a) < 0 and f(b) > 0 (or f(a) > 0 and f(b) < 0).

Then the equation f(x) = 0 has a solution in [a,b].

Example.

Use the IVT to show that

$$f(x) = x^{11} + 3x - 1$$

has a root between 0 and 1.

Note: $f(x) = x^{11} + 3x - 1$ is a continuous function on [0,1].

$$f(0) = -1 < 0.$$
 $f(1) = 1 + 3 - 1 = 3 > 0.$

By the IVT, the equation f(x) = 0 has a solution in [0,1].

Hence, $f(x) = x^{11} + 3x - 1$ has a real root between 0 and 1.

End