

Prof. Dr. Alfred Benedikt Brendel

Chair of Business Information Systems, esp. Intelligent Systems and Services

Data Science: Advanced AnalyticsSegmentation Methods

Dresden // 26.04.2023 Sommersemester 2023

Recap: Aims of the cluster analysis

Segmentation or cluster analysis is used to group objects and/or characteristics into classes or groups so that

- between the elements of the same classes the greatest possible similarity,
- between the elements of different classes the greatest possible diversity is achieved

Clustering Methods

Partitional Clustering

K-Means & K-Medoids
For n objects or data tuples, a
partitioning method constructs k
partitions of the data, where
each partition represents a
cluster k <= n.

Hierarchical Clustering

Agglomerative, Divisive Grouping data objects into a tree (dendrogram) of clusters

Density-Based Clustering

DBSCAN
Grouping data tuples along density-connected points.

Grid-Based Clustering

STING, WaveCluster & CLIQUE Method uses a multi-resolution grid data structure. E.g. spatial area is divided into rectangular cells (STING)

Others

Model-Based Clustering, Fuzzy, Evolutionary, Simulated Annealing

Prof. Dr. Alfred Benedikt BrendelChair of Business Information Systems, esp. Intelligent Systems and Services

Partional Clustering Methods for Segmentation

Partional Clustering Methods

Partitioning methods are segmentation methods which divide the set of **objects N** on the basis of a fixed number of **classes s** in such a way that the computed segmentation or **partition K** minimizes a given **quality index b(K)**:

$$\min_{\boldsymbol{\in} \wp(\wp(N))} \left\{ b(\boldsymbol{K}) : \quad = \left\{ K_1, K_1, K_s \right\}, \quad \bigcup_{i=1}^s K_i = N, \quad K_i \cap K_j = \emptyset \right\}$$

The exchange principle

- (1) Choose start partition $K^0 = \{K_1^0, ..., K_s^0\}$ (start heuristic). Choose $b(K^0)$.
- (2) Search Object(s), so that a transfer reduces *b*.
- (3) Change Object(s) from the current to the best new class.
- (4) Repeat (2) and (3) until no other change is possible.
 - ⇒ **local optimum** found
- The procedures break off after a finite number of steps.
- The procedures usually reach only a **suboptimum** (global optima are usually reached only if several objects can be exchanged simultaneously, taking into account all exchange possibilities).
- The result depends i.a. on the selected start partition (use several start partitions).

Error Minimization Algorithms

e.g. K-means

Partitions the data into K clusters represented by their centers or means.

Example: 2-dimensional, K=3

Error Minimization Algorithms

e.g. K-medoids or PAM (partition around medoids)

Find representative objects (medoids) in clusters

Example: 2-dimensional, K=2

Prof. Dr. Alfred Benedikt BrendelChair of Business Information Systems, esp. Intelligent Systems and Services

Hierarchical Clustering Methods for Segmentation

Hierarchical Clustering Methods

Segmentation methods that construct a sequence of partitions on the basis of a set of objects N.

Agglomerative Clustering

Each object initially represents a cluster of its own. Then clusters are successively merged until the desired cluster structure is obtained.

- Starting point are n = |N| one-element classes.
- Successive transition to coarser decompositions
- Termination as soon as given criterion is fulfilled
- Low computation times, good practical suitability

Diversive Clustering

All objects initially belong to one cluster. Then the cluster is divided into sub-clusters, which are successively divided into their own sub-clusters. This process continues until the desired cluster structure is obtained.

- Starting point is the class of all objects.
- Successive transition to finer decompositions
- Termination as soon as given criterion is fulfilled

> Kaufman, L. and Rousseeuw, P.J. (1990) Partitioning around Medoids (Program PAM). In: Kaufman, L. and Rousseeuw, P.J., Eds., Finding Groups in Data: An Introduction to Cluster Analysis, John Wiley & Sons, Inc., Hoboken, 68-125

Similarity measures

are based on the different **recalculation** of the interclass differences:

Single Linkage

Nearest Neighbour

$$v(K,L) = \min_{i \in K, j \in L} d(i,j)$$

Complete Linkage

Furthest Neighbour

$$v(K,L) = \max_{i \in K, j \in L} d(i,j)$$

Average Linkage Group Average

$$v(K,L) = \frac{1}{|K| \cdot |L|} \sum_{\substack{i \in K \\ j \in L}} d(i,j)$$

Single Linkage

An Example

D	2	3	4	5
1	4,48	2,91	2,08	1,78
2		5,07	3,92	3,70
3			4,33	4,03
4				2,63

First fusion of objects 1 and 5 (min $d_{ij} = 1.78$).

$$\Rightarrow \mathbf{K}^1 = \{\{1,5\}, \{2\}, \{3\}, \{4\}\}\}$$

Fusion levels : 1.78 2.08 2.91 3.70

What we are looking for is a hierarchy with v(i,j) = d(i,j) and $v(K,L) = \min_{i \in K, j \in L} d(i,j)$

Group Average Linkage

An Example

D	2	3	4	5
1	4,48	2,91	2,08	1,78
2		5,07	3,92	3,70
3			4,33	4,03
4				2,63

First fusion of objects 1 and 5 (min $d_{ij} = 1.78$).

$$\Rightarrow \mathbf{K}^1 = \{\{1,5\}, \{2\}, \{3\}, \{4\}\}\}$$

Fusion levels : 1.78 2.36 3.76 4.29

What we are looking for is a hierarchy with

$$v(i,j) = d(i,j)$$
 and $v(K,L) = \frac{1}{|K| \cdot |L|} \sum_{\substack{i \in K \ j \in L}} d(i,j)$

Complete Linkage

An Example

D	2	3	4	5
1	4,48	2,91	2,08	1,78
2		5,07	3,92	3,70
3			4,33	4,03
4				2,63

First fusion of objects 1 and 5 (min $d_{ij} = 1.78$).

$$\Rightarrow$$
 $K^1 = \{\{1,5\}, \{2\}, \{3\}, \{4\}\}\}$

Fusion levels : 1.78 2.63 4.33 5.07

What we are looking for is a hierarchy with v(i,j) = d(i,j) and $v(K,L) = \max_{i \in K, j \in L} d(i,j)$

Interpretation of a Dendrogram

Abrupt changes in the value of the quality criterion allow conclusions to be drawn about the appropriate **number of classes (EB).**

Similar objects are merged early, dissimilar objects later; **outliers** are assigned to a large cluster only at the end.

The class structure is

- **stable**, if different methods lead to similar results,
- intensive, if classes of comparable size are successively merged and
- weak, if successively only neighboring single objects are added.

Assessment of a hierarchy

To answer the question, which of the determined hierarchies "best" reproduces the given **distance matrix D**, one first calculates the (ultrametric) **distance matrix D***, which can be uniquely determined from the dendrograph, according to

$$d^*(i,j) = \min_{\substack{i \in K, j \in L \\ K,L \in \mathcal{K}}} v(K,L)$$

and compares this matrix suitably with the original distance matrix D.

Distance matrix D* of the average linkage

An Example

D	2	3	4	5
1	4,48	2,91	2,08	1,78
2		5,07	3,92	3,70
3			4,33	4,03
4				2,63

Calculation of the dissimilarity using the **dendrogram**

4

2,36

The Shepard-Diagram

The simplest way to evaluate the different distance matrices D and D* is the so-called Shepard diagram, in which the true **distances d** and the **calculated distances d*** are compared in a **coordinate system**.

Example: Average Linkage

Variance-Accounted-For-Criteria

The **VAF criterion** can be calculated to assess the loss of information in procedures that explicitly use distances:

$$VAF = 1 - \frac{\sum_{i=2}^{n} \sum_{j=1}^{i-1} (d(i,j) - d*(i,j))^{2}}{\sum_{i=2}^{n} \sum_{j=1}^{i-1} (d(i,j) - \overline{d})^{2}} \quad mit \quad \overline{d} = \frac{2}{n(n-1)} \sum_{i=2}^{n} \sum_{j=1}^{i-1} d(i,j)$$

For procedures that use variance to measure heterogenity, the VAF cannot be meaningfully interpreted.

A value close to 1 is desired.

Cophenetic correlation coefficient

To assesses the existence of a linear relationship between the true distances d and the calculated distances d* according to:

$$CCC = \frac{\sum_{i=2}^{n} \sum_{j=1}^{i-1} (d(i,j) - \overline{d}) (d^*(i,j) - \overline{d}^*)}{\sqrt{\sum_{i=2}^{n} \sum_{j=1}^{i-1} (d(i,j) - \overline{d})^2 \sum_{i=2}^{n} \sum_{j=1}^{i-1} (d^*(i,j) - \overline{d}^*)^2}} \quad mit \quad \overline{d}^* = \frac{2}{n(n-1)} \sum_{i=2}^{n} \sum_{j=1}^{i-1} d^*(i,j) \quad \overline{d}^* = \frac{2}{n(n-1)} \sum_{i=2}^{n} \sum_{j=1}^{i-1} d^*(i,j)$$

Values close to 1 indicate a small loss of information.

Example: Assessment of a hierarchy

It can be seen that the **Average Linkage** solution is judged the best.

Prof. Dr. Alfred Benedikt Brendel

Chair of Business Information Systems, esp. Intelligent Systems and Services

Density Based Clustering Methods for Segmentation

Density Based Clustering Methods

Designed for discovering clusters of arbitrary shape. It is also used to handle noise in the data clusters

ε ... maximum radius of the neighborhood

MinPts ... minimum number of points in an ϵ -neighborhood

"p is directly density-reachable from q"

Idea: continue growing a given cluster as long as the density (number of objects or data points) in the neighborhood exceeds some threshold. The neighborhood within a radius ε has to contain at least a minimum number of objects. It needs density parameters as a termination condition.

> Ester, M., Kriegel, H.P., Sander, J. and Xu, X. (1996) A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise. Proceedings of the 2nd International Conference on Knowledge Discovery and Data mining, 226-231

Prof. Dr. Alfred Benedikt BrendelChair of Business Information Systems, esp. Intelligent Systems and Services

Thank you for your attention

