C. 3. Hutson.

Brotan 5.7

HANDBOOK

OF

CHEMISTRY AND PHYSICS

A READY-REFERENCE POCKET BOOK OF CHEMICAL AND PHYSICAL DATA

EIGHTH EDITION

COMPILED FROM THE MOST RECENT AUTHORITATIVE SOURCES

By

CHARLES D. HODGMAN, M.S.

Assistant Professor of Physics in Case School of Applied Science

ASSISTED BY

MELVILLE F. COOLBAUGH, M.A. Professor of Chemistry in Colorado School of Mines

A BIT

CORNELIUS E. SENSEMAN, M.A. Color Laboratory, United States Bureau of Chemistry

PRICE, THREE DOLLARS

CLEVELAND, OHIO
THE CHEMICAL RUBBER COMPANY
1920

Copyright, 1914, 1915, 1916, 1917, 1918, 1919, 1920

BY ·

THE CHEMICAL RUBBER COMPANY CLEVELAND, OHIO

Copyright in Great Britain, 1919, 1920

All rights reserved under International Convention

THE PLIMPTON PRESS NORWOOD MASS US.A

PREFACE

In compliance with the requests of hundreds of our friends for a small but comprehensive book of reference on chemical and physical topics, we have designed and compiled this Handbook of Chemistry and Physics.

In its new and revised form we have aimed to present in one compact, easily portable volume a comparatively comprehensive reference book for use in the laboratory or classroom. While more complete and broader in scope than the reference material ordinarily found in the laboratory manual, it is still not a competitor of the many large and complete reference books already published, but fills, we believe, a place not hitherto occupied by any publication in this country.

We shall feel amply rewarded for our effort and expense if this volume proves to be of use and convenience to the profession whose support has been a conspicuous factor in the

growth of our establishment.

The material here included has been carefully selected by W. R. Veazey, Ph.D., of the Chemistry Department, and Charles D. Hodgman, B.S., of the Department of Physics of the Case School of Applied Science. The compilers have been guided in their selections by the suggestions of more than a thousand members of high standing in the Chemical and Physical profession.

A large number of the tables are the result of compilation from various sources: the original authority or the source of information being stated where possible. Special mention should be made of the use of the "Smithsonian Physical Tables," from which several tables have been taken without alteration, while others are partly compiled from similar tables in that volume.

Material has also been copied by special permission from the following: Collins, "The Design and Construction of Induction Coils," Munn and Co., publisher; Miller, "Laboratory Physics," Ginn and Co., publisher; Noyes, "Qualitative Analysis," Macmillan and Co., publisher; Perkins, "Introduction to General Thermodynamics," John Wiley and Sons, publisher; Talbot, "Quantitative Analysis," Macmillan and Co., publisher; Young, "General Astronomy," Ginn and Co., publisher; Cohn, "Indicators and Test-papers," John Wiley and Sons, publisher.

PREFACE TO SIXTH EDITION

The sixth edition of the Handbook presents several important changes and additions. The change in arrangement of material is the result of an attempt to make more convenient the use of the mathematical tables and especially the table of logarithms which is used by both branches of science and in such a way as to make it important that it should be easy of access.

The table of physical constants of inorganic compounds has been entirely rewritten. Data are now given for about one thousand compounds and it is believed that the list fully meets the requirements of the high school or college laboratory.

Another notable addition is a new and unusually complete table of heats of formation and solution. The arrangement of the material is original and its convenience will, we believe, appeal to users of the Handbook.

Among the more important tables added are the following:

Properties of Saturated Steam.

Specific Gravity of Mixtures of Ethyl Alcohol and Water by Volume and by Weight.

Specific Gravity of Aqueous Solutions of Sodium Chloride.

Composition and Physical Properties of Alloys. Decomposition of Anhydrous Metallic Sulphates.

Dehydration of Metallic Sulphates.

Solubility of Inorganic Salts at various Temperatures.

Molecular Elevation of Boiling Point and Depression of Freezing Point.

Exponentials.

Degree-Radian Conversion Table; etc.

A large number of minor changes, corrections, and additions

have been made.

The revision has been directly along the line of numerous suggestions received from users of the book. Many other valuable suggestions have been received and while it is impossible to add further material to the present edition they serve to indicate the possibilities of future growth.

Material has been reprinted by permission from Peabody, Steam and Entropy Tables, John Wiley and Sons, Inc., publisher.

THE CHEMICAL RUBBER COMPANY.

Cleveland, Ohio, August 15, 1917.

PREFACE TO THE EIGHTH EDITION

Suggestions which have been made as to the additional matter to be included in the new edition of the Handbook have been unusually varied in character. An effort has been made, however, to meet the wishes of as many as possible without materially departing from the principles heretofore followed.

Two notable additions are the new and enlarged numerical table and the complete and exceedingly convenient set of Metric-

English and English-Metric conversion tables.

Other tables incorporated in the Handbook for the first time

in the present edition are:

Common Names of Chemicals, their Correct Names and

Formulæ.

Sulphuric Acid, Nitric Acid, Hydrochloric Acid and Aqua Ammonia Tables of the Manufacturing Chemists' Association. Heats of Formation and Combustion of Organic Compounds.

Constants of Oils, Fats, and Waxes.

Conductivity of Standard Solutions.

Equivalent Conductivity of Aqueous Solutions. Equivalent Conductivity of the Separate Ions.

Ionization due to X-Rays.

Mean Absorption Coefficient for X-Rays.

X-Ray Spectra and Atomic Numbers.

Many other tables, although appearing in previous editions, have been entirely rewritten and greatly enlarged. Among them are the following:

Heat Conductivity.
Thermal Expansion.
Specific Heat of Aqueous Solutions.
Specific Heat of the Elements.
Compressibility of Liquids.
Radioactivity.
Photographic Formulæ, etc.

THE CHEMICAL RUBBER CO.

Nov. 18, 1919.

	PAGE
Antidotes of Poisons	. 11
Burns and Scalds	12
	12
and the control of th	
MARTINIA MICAT MADI DO	
MATHEMATICAL TABLES	
Algebraic Formulæ	13
Mensuration Formula	17
Mensuration Formulæ. Trigonometrical Functions in a Right-angled Triangle.	
Cing and I finish of Villa A Right-angled Triangle	23
Signs and Limits of Value Assumed by the Functions	23
Value of the Functions of Various Angles	24
Relations of the Functions	24
Functions of Sums of Angles	24
Functions of Multiple Angles	25
Relations between Sides and Angles of Any Triangle	25
Analytical Geometry	28
Designatives and Intermela	26
Derivatives and Integrals Explanation of the Use of Logarithms	
Explanation of the Use of Logarithms.	29
Five-place Logarithms	31
Natural Logarithms,	49
Exponentials. Natural Sines, Cosines, Tangents, and Cotangents.	52
Natural Sines, Cosines, Tangents, and Cotangents	54
Logarithms of the Trigonometrical Functions.	59
Degrees-Radians.	64
Numerical Table	
Numerical Table	67
Numerical Constants	66
GENERAL CHEMICAL TABLES	
International Atomic Weights. Molecular Weights and their Logarithms.	87
Molecular Weights and their Logarithms.	88
	90
	92
	98
Physical Constants of Organic Compounds. Constants of Animal and Vegetable Oils. Constants of Fets and Worse	142
Constants of Animal and Vegetable Oils	252
Constants of Fats and Waxes.	256
Common Names of Chemicals.	
Position 1 varies of Citediticals.	258
Periodic Arrangement of the Elements	261
Qualitative Analysis Scheme: Separation of the Basic Constituents into Groups	
Separation of the Basic Constituents into Groups	262
Analysis of the Silver-Group. Separation of the Copper and Tin Groups. Analysis of the Copper and Tin Groups.	262
Separation of the Copper and Tin Groups	263
	263
Analysis of the Tin-Group	264
Analysis of the Tin-Group. Separation of the Aluminum and Iron Groups.	
Analysis of the Aluminum and Iron Groups	264
	265
Analysis of the Iron Group. Separation of Zinc, Nickel, and Cobalt.	265
Separation of Zinc, Nickel, and Cobalt	266
Aliaivala of the Alkalina Earth Group	266
Analysis of the Alkali Group	267
Detection of the Readily Volatile Acidic Constituents	267
Analysis of the Alkali Group Detection of the Readily Volatile Acidic Constituents Detection of the Acidic Constituents Precipitated by Barium and	201
Silver Salts	000
Detection of the Phoenhotes and Consents Helida-	268
Silver Salts Detection of the Phosphates and Separate Halides	268
Flame and Bead Tests. Preparation and Proper Concentration of Laboratory Reagents.	269
rreparation and Proper Concentration of Laboratory Reagents	271
Deci-normal Solutions of Saits and other Reagents	274
Deci-normal Solutions of Oxidation and Reduction Reagents.	276

and the same of th	AGE
Solubility Chart	277
Solubility of Inorganic Salts in Water	278
Solubility of Cane Sugar in Water	279
Indicators	280
Indicators. Gravimetric Factors and their Logarithms.	281
Heats of Formation and Solution	298
Heats of Combustion	317
Sulphuric Acid	321
	323
Acetic Acid	324
Nitric Acid Hydrochloric Acid	
Hydrochioric Acid	326
Ammonium Hydroxide	327
Potassium Hydroxide	328
Sodium Hydroxide	329
Potassium Carbonate	330
Sodium Carbonate	330
Sodium Chloride	331
Potassium Chloride	331
Ammonium Chloride Specific Gravity of Mixtures of Ethyl Alcohol by Volume and by Weight. Tables of the Manufacturing Chemists' Association. Specific Gravity of Gases and Vapors. Dehydration of Metallic Sulphates. Decomposition of Anhydrous Metallic Sulphates.	331
Specific Gravity of Mixtures of Ethyl Alcohol by Volume and by Weight.	332
Tables of the Manufacturing Chemists' Association	340
Specific Gravity of Gases and Vapors	351
Dehydration of Metallic Sulphates	352
Decomposition of Anhydrous Metallic Sulphates	353
Degree of Ionization Solubility Product Ionization Constants of Acids and Bases	354
Solubility Product	355
Ionization Constants of Acids and Bases	356
Electromotive Force Series of Metals.	357
Functions, Uses, and Compositions of Foods.	358
Functions, Caes, and Compositions of Foods	•••
PROPERTIES OF MATTER	
D	
D	361
D	361 362
D	362
D	362 363
Density: Density of Various Solids Density of Water. Density of Various Liquids Hydrogeter of Conversion Tables	362 363 363
Density: Density of Various Solids	362 363 363 365
Density: Density of Various Solids Density of Water Density of Various Liquids Hydrometer of Conversion Tables Absolute Density of Water	362 363 363 365 366
Density: Density of Various Solids Density of Water Density of Various Liquids Hydrometer of Conversion Tables Absolute Density of Water Relative Density of Water Relative Density of Water Relative Density of Water	362 363 363 365 366 367
Density: Density of Various Solids Density of Water Density of Various Liquids Hydrometer of Conversion Tables Absolute Density of Water Relative Density of Water Density and Volume of Mercury	362 363 363 365 366 367 368
Density: Density of Various Solids. Density of Water. Density of Various Liquids. Hydrometer of Conversion Tables Absolute Density of Water Relative Density of Water Density and Volume of Mercury Density of Aqueous Solutions. Density of Aqueous Solutions.	362 363 363 365 366 367 368 368
Density: Density of Various Solids. Density of Water. Density of Various Liquids. Hydrometer of Conversion Tables Absolute Density of Water Relative Density of Water Density and Volume of Mercury Density of Aqueous Solutions. Density of Aqueous Solutions.	362 363 363 365 366 367 368 368 368
Density: Density of Various Solids Density of Water Density of Various Liquids Hydrometer of Conversion Tables Absolute Density of Water Relative Density of Water Density and Volume of Mercury Density of Aqueous Solutions Density of Alcohol Density of Dry Air	362 363 363 365 366 367 368 368 369 369
Density: Density of Various Solids Density of Water Density of Various Liquids Hydrometer of Conversion Tables Absolute Density of Water Relative Density of Water Density and Volume of Mercury Density of Aqueous Solutions Density of Alcohol Density of Dry Air Density of Saturated Vapors at the Temperature of Normal Ebullition Density of Gases in Liquid and Solid Form	362 363 363 365 366 367 368 368 368
Density: Density of Various Solids Density of Water Density of Various Liquids Hydrometer of Conversion Tables Absolute Density of Water Relative Density of Water Density and Volume of Mercury Density of Aqueous Solutions Density of Alcohol Density of Dry Air Density of Saturated Vapors at the Temperature of Normal Ebullition Density of Gases in Liquid and Solid Form	362 363 363 365 366 367 368 368 369 369 370
Density: Density of Various Solids. Density of Water. Density of Various Liquids. Hydrometer of Conversion Tables Absolute Density of Water Relative Density of Water Density and Volume of Mercury Density of Aqueous Solutions. Density of Alcohol. Density of Dry Air Density of Saturated Vapors at the Temperature of Normal Ebullition Density of Cases in Liquid and Solid Form Elasticity:	362 363 363 365 366 367 368 368 369 370
Density: Density of Various Solids. Density of Water. Density of Various Liquids. Hydrometer of Conversion Tables Absolute Density of Water. Relative Density of Water. Density and Volume of Mercury. Density of Aqueous Solutions. Density of Alcohol. Density of Saturated Vapors at the Temperature of Normal Ebullition Density of Saturated Vapors at the Temperature of Normal Ebullition Density of Saturated Vapors at the Temperature of Normal Ebullition Density of Saturated Vapors at the Temperature of Normal Ebullition Density of Saturated Vapors at the Temperature of Normal Ebullition Density of Saturated Vapors at the Saturated Vapors at Capacacacacacacacacacacacacacacacacacaca	362 363 363 365 366 367 368 369 369 370 370
Density: Density of Various Solids Density of Water Density of Various Liquids Hydrometer of Conversion Tables Absolute Density of Water Relative Density of Water Density and Volume of Mercury Density of Aqueous Solutions Density of Alcohol Density of Dry Air Density of Saturated Vapors at the Temperature of Normal Ebullition Density of Gases in Liquid and Solid Form Elasticity: Elastic Constants for Solids Compressibility of Liquids	362 363 363 365 366 367 368 368 369 370 370 372 375
Density: Density of Various Solids Density of Water Density of Various Liquids Hydrometer of Conversion Tables Absolute Density of Water Relative Density of Water Density and Volume of Mercury Density of Aqueous Solutions Density of Alcohol Density of Dry Air Density of Saturated Vapors at the Temperature of Normal Ebullition Density of Gases in Liquid and Solid Form Elasticity: Elastic Constants for Solids Compressibility of Liquids	362 363 363 365 366 367 368 369 370 370 372 375 376
Density: Density of Various Solids Density of Water Density of Various Liquids Hydrometer of Conversion Tables Absolute Density of Water Relative Density of Water Density and Volume of Mercury Density of Aqueous Solutions Density of Alcohol Density of Dry Air Density of Saturated Vapors at the Temperature of Normal Ebullition Density of Gases in Liquid and Solid Form Elasticity: Elastic Constants for Solids Compressibility of Liquids	362 363 363 365 366 367 368 369 369 370 372 375 376 376
Density: Density of Various Solids Density of Water Density of Various Liquids Hydrometer of Conversion Tables Absolute Density of Water Relative Density of Water Density and Volume of Mercury Density of Aqueous Solutions Density of Alcohol Density of Dry Air Density of Saturated Vapors at the Temperature of Normal Ebullition Density of Gases in Liquid and Solid Form Elasticity: Elastic Constants for Solids Compressibility of Liquids	362 363 363 365 366 367 368 369 370 372 372 375 376 376 377
Density: Density of Various Solids. Density of Various Liquids. Hydrometer of Conversion Tables Absolute Density of Water. Density of Mater. Density of Mater. Density of Mater. Density of Mater. Density of Aqueous Solutions Density of Aqueous Solutions Density of Alohol Density of Saturated Vapors at the Temperature of Normal Ebulition Density of Saturated Vapors at the Temperature of Normal Ebulition Density of Saturated Vapors at the Temperature of Normal Ebulition Density of Saturated Vapors at the Temperature of Normal Ebulition Density of Saturated Vapors at the Temperature of Normal Ebulition Density of Saturated Vapors at the Temperature of Normal Ebulition Density of Saturated Vapors at the Temperature of Normal Ebulition Density of Saturated Vapors at the Temperature of Normal Ebulition Density of Saturated Vapors at the Temperature of Normal Ebulition Density of Saturated Vapors at the Temperature of Normal Ebulition Density of Saturated Vapors at the Temperature of Normal Ebulition Density of Saturated Vapors at the Temperature of Normal Ebulition Density of Saturated Vapors at the Temperature of Normal Ebulition Density of Saturated Vapors at the Temperature of Normal Ebulition Density of Saturated Vapors at the Temperature of Normal Ebulition Density of Saturated Vapors at the Temperature of Normal Ebulition Density of Saturated Vapors at the Temperature of Normal Ebulition Density of Saturated Vapors at the Temperature of Normal Ebulition Density of Saturated Vapors at the Temperature of Normal Ebulition Density of Saturated Vapors at the Temperature of Normal Ebulition Density of Saturated Vapors at the Temperature of Normal Ebulition Density of Saturated Vapors at the Temperature of Normal Ebulity of Normal Ebul	362 363 363 365 366 367 368 369 370 372 375 376 376 377
Density: Density of Various Solids. Density of Various Liquids. Hydrometer of Conversion Tables Absolute Density of Water. Density of Mater. Density of Mater. Density of Mater. Density of Mater. Density of Aqueous Solutions Density of Aqueous Solutions Density of Alohol Density of Saturated Vapors at the Temperature of Normal Ebulition Density of Saturated Vapors at the Temperature of Normal Ebulition Density of Saturated Vapors at the Temperature of Normal Ebulition Density of Saturated Vapors at the Temperature of Normal Ebulition Density of Saturated Vapors at the Temperature of Normal Ebulition Density of Saturated Vapors at the Temperature of Normal Ebulition Density of Saturated Vapors at the Temperature of Normal Ebulition Density of Saturated Vapors at the Temperature of Normal Ebulition Density of Saturated Vapors at the Temperature of Normal Ebulition Density of Saturated Vapors at the Temperature of Normal Ebulition Density of Saturated Vapors at the Temperature of Normal Ebulition Density of Saturated Vapors at the Temperature of Normal Ebulition Density of Saturated Vapors at the Temperature of Normal Ebulition Density of Saturated Vapors at the Temperature of Normal Ebulition Density of Saturated Vapors at the Temperature of Normal Ebulition Density of Saturated Vapors at the Temperature of Normal Ebulition Density of Saturated Vapors at the Temperature of Normal Ebulition Density of Saturated Vapors at the Temperature of Normal Ebulition Density of Saturated Vapors at the Temperature of Normal Ebulition Density of Saturated Vapors at the Temperature of Normal Ebulition Density of Saturated Vapors at the Temperature of Normal Ebulition Density of Saturated Vapors at the Temperature of Normal Ebulity of Normal Ebul	362 363 363 365 366 367 368 369 370 372 372 375 376 376 377
Density: Density of Various Solids. Density of Various Liquids. Hydrometer of Conversion Tables Absolute Density of Water. Relative Density of Water. Density and Volume of Mercury. Density of Aqueous Solutions. Density of Aqueous Solutions. Density of Jerohol. Density of Saturated Vapors at the Temperature of Normal Ebullition Density of Saturated Vapors at the Temperature of Normal Ebullition Density of Saturated Vapors at the Temperature of Normal Ebullition Density of Saturated Vapors at the Temperature of Normal Ebullition Density of Saturated Vapors at the Temperature of Normal Ebullition Density of Saturated Vapors at the Temperature of Normal Ebullition Density of Saturated Vapors at the Temperature of Normal Ebullition Density of Saturated Vapors at the Temperature of Normal Ebullition Density of Saturated Vapors at the Temperature of Normal Ebullition Density of Saturated Vapors at the Temperature of Normal Ebullition Density of Saturated Vapors at the Temperature of Normal Ebullition Density of Saturated Vapors at the Temperature of Normal Ebullition Density of Saturated Vapors at the Temperature of Normal Ebullition Density of Saturated Vapors at the Temperature of Normal Ebullition Density of Saturated Vapors at the Temperature of Normal Ebullition Density of Saturated Vapors at the Temperature of Normal Ebullition Density of Saturated Vapors at the Temperature of Normal Ebullition Density of Saturated Vapors at the Temperature of Normal Ebullition Density of Saturated Vapors at the Temperature of Normal Ebullition Density of Saturated Vapors at the Temperature of Normal Ebullition Density of Saturated Vapors at the Temperature of Normal Ebullition Density of Saturated Vapors at the Temperature of Normal Ebullition	362 363 363 365 366 367 368 368 369 370 372 375 376 376 377 377
Density: Density of Various Solids. Density of Various Liquids. Hydrometer of Conversion Tables Absolute Density of Water. Relative Density of Water. Density and Volume of Mercury. Density of Aqueous Solutions. Density of Aqueous Solutions. Density of Jerohol. Density of Saturated Vapors at the Temperature of Normal Ebullition Density of Saturated Vapors at the Temperature of Normal Ebullition Density of Saturated Vapors at the Temperature of Normal Ebullition Density of Saturated Vapors at the Temperature of Normal Ebullition Density of Saturated Vapors at the Temperature of Normal Ebullition Density of Saturated Vapors at the Temperature of Normal Ebullition Density of Saturated Vapors at the Temperature of Normal Ebullition Density of Saturated Vapors at the Temperature of Normal Ebullition Density of Saturated Vapors at the Temperature of Normal Ebullition Density of Saturated Vapors at the Temperature of Normal Ebullition Density of Saturated Vapors at the Temperature of Normal Ebullition Density of Saturated Vapors at the Temperature of Normal Ebullition Density of Saturated Vapors at the Temperature of Normal Ebullition Density of Saturated Vapors at the Temperature of Normal Ebullition Density of Saturated Vapors at the Temperature of Normal Ebullition Density of Saturated Vapors at the Temperature of Normal Ebullition Density of Saturated Vapors at the Temperature of Normal Ebullition Density of Saturated Vapors at the Temperature of Normal Ebullition Density of Saturated Vapors at the Temperature of Normal Ebullition Density of Saturated Vapors at the Temperature of Normal Ebullition Density of Saturated Vapors at the Temperature of Normal Ebullition Density of Saturated Vapors at the Temperature of Normal Ebullition	362 363 363 365 366 367 368 369 370 372 375 376 377 377 378
Density: Density of Various Solids. Density of Various Liquids. Hydrometer of Conversion Tables Absolute Density of Water. Relative Density of Water. Density and Volume of Mercury. Density of Aqueous Solutions. Density of Aqueous Solutions. Density of Jerohol. Density of Saturated Vapors at the Temperature of Normal Ebullition Density of Saturated Vapors at the Temperature of Normal Ebullition Density of Saturated Vapors at the Temperature of Normal Ebullition Density of Saturated Vapors at the Temperature of Normal Ebullition Density of Saturated Vapors at the Temperature of Normal Ebullition Density of Saturated Vapors at the Temperature of Normal Ebullition Density of Saturated Vapors at the Temperature of Normal Ebullition Density of Saturated Vapors at the Temperature of Normal Ebullition Density of Saturated Vapors at the Temperature of Normal Ebullition Density of Saturated Vapors at the Temperature of Normal Ebullition Density of Saturated Vapors at the Temperature of Normal Ebullition Density of Saturated Vapors at the Temperature of Normal Ebullition Density of Saturated Vapors at the Temperature of Normal Ebullition Density of Saturated Vapors at the Temperature of Normal Ebullition Density of Saturated Vapors at the Temperature of Normal Ebullition Density of Saturated Vapors at the Temperature of Normal Ebullition Density of Saturated Vapors at the Temperature of Normal Ebullition Density of Saturated Vapors at the Temperature of Normal Ebullition Density of Saturated Vapors at the Temperature of Normal Ebullition Density of Saturated Vapors at the Temperature of Normal Ebullition Density of Saturated Vapors at the Temperature of Normal Ebullition Density of Saturated Vapors at the Temperature of Normal Ebullition	362 363 363 365 366 367 368 369 370 372 375 376 377 377 378
Density: Density of Various Solids. Density of Various Liquids. Hydrometer of Conversion Tables Absolute Density of Water. Density and Volume of Mercury. Density of Aqueous Solutions. Density of Aqueous Solutions. Density of Alcohol. Density of Saturated Vapors at the Temperature of Normal Ebullition Density of Gases in Liquid and Solid Form Elasticity: Elastic Constants for Solids. Compressibility of Liquids. Elastic Constants for Gases. Coefficient of Friction. Resistance to Crushing for Various Materials. Tensile Strength of Metals. Modulus of Rupture, Transverse Tests for Wood Hardness. Surface Tension of Various Liquids in Contact with Air. Surface Tension of Fused Solids.	362 363 363 365 366 367 368 369 370 372 375 376 376 377 378 379 380
Density: Density of Various Solids. Density of Water Density of Various Liquids Hydrometer of Conversion Tables Absolute Density of Water Relative Density of Water Density and Volume of Mercury Density of Aqueous Solutions Density of Alcohol Density of Saturated Vapors at the Temperature of Normal Ebullition Density of Gases in Liquid and Solid Form Elasticity: Elastic Constants for Solids Compressibility of Liquids. Elastic Constants for Gases Coefficient of Friction Resistance to Crushing for Various Materials Tensile Strength of Metals. Modulus of Rupture, Transverse Tests for Wood Hardness	362 363 363 365 366 367 368 369 370 372 375 376 377 377 378
Density: Density of Various Solids. Density of Various Liquids. Hydrometer of Conversion Tables Absolute Density of Water. Relative Density of Water Density and Volume of Mercury Density of Aqueous Solutions Density of Aqueous Solutions Density of Saturated Vapors at the Temperature of Normal Ebulition Density of Saturated Vapors at the Temperature of Normal Ebulition Density of Saturated Vapors at the Temperature of Normal Ebulition Density of Saturated Vapors at the Temperature of Normal Ebulition Density of Saturated Vapors at the Temperature of Normal Ebulition Density of Saturated Vapors at the Temperature of Normal Ebulition Density of Saturated Vapors at the Temperature of Normal Ebulition Density of Saturated Vapors at the Temperature of Normal Ebulition Density of Saturated Vapors at the Temperature of Normal Ebulition Density of Saturated Vapors at the Temperature of Normal Ebulition Density of Saturated Vapors at the Temperature of Normal Ebulition Density of Saturated Vapors at the Temperature of Normal Ebulition Density of Saturated Vapors at the Temperature of Normal Ebulition Density of Saturated Vapors at the Temperature of Normal Ebulition Density of Saturated Vapors at the Temperature of Normal Ebulition Density of Saturated Vapors at the Temperature of Normal Ebulition Density of Saturated Vapors at the Temperature of Normal Ebulition Density of Saturated Vapors at the Temperature of Normal Ebulition Density of Saturated Vapors at the Temperature of Normal Ebulition Density of Saturated Vapors at the Temperature of Normal Ebulition Density of Saturated Vapors at the Temperature of Normal Ebulition Density of Saturated Vapors at the Temperature of Normal Ebulition Density of Saturated Vapors at the Temperature of Normal Ebulition Density of Saturated Vapors at the Temperature of Normal Ebulition Density of Saturated Vapors at the Temperature of Normal Ebulition Density of Saturated Vapors at the Temperature of Normal Ebulition Density of Saturated Vapors at the Temperature of Normal Ebulition	362 363 363 365 366 368 369 370 370 372 375 376 377 378 379 379 380 380
Density: Density of Various Solids. Density of Various Liquids. Hydrometer of Conversion Tables Absolute Density of Water. Relative Density of Water Density and Volume of Mercury Density of Aqueous Solutions Density of Aqueous Solutions Density of Saturated Vapors at the Temperature of Normal Ebulition Density of Saturated Vapors at the Temperature of Normal Ebulition Density of Saturated Vapors at the Temperature of Normal Ebulition Density of Saturated Vapors at the Temperature of Normal Ebulition Density of Saturated Vapors at the Temperature of Normal Ebulition Density of Saturated Vapors at the Temperature of Normal Ebulition Density of Saturated Vapors at the Temperature of Normal Ebulition Density of Saturated Vapors at the Temperature of Normal Ebulition Density of Saturated Vapors at the Temperature of Normal Ebulition Density of Saturated Vapors at the Temperature of Normal Ebulition Density of Saturated Vapors at the Temperature of Normal Ebulition Density of Saturated Vapors at the Temperature of Normal Ebulition Density of Saturated Vapors at the Temperature of Normal Ebulition Density of Saturated Vapors at the Temperature of Normal Ebulition Density of Saturated Vapors at the Temperature of Normal Ebulition Density of Saturated Vapors at the Temperature of Normal Ebulition Density of Saturated Vapors at the Temperature of Normal Ebulition Density of Saturated Vapors at the Temperature of Normal Ebulition Density of Saturated Vapors at the Temperature of Normal Ebulition Density of Saturated Vapors at the Temperature of Normal Ebulition Density of Saturated Vapors at the Temperature of Normal Ebulition Density of Saturated Vapors at the Temperature of Normal Ebulition Density of Saturated Vapors at the Temperature of Normal Ebulition Density of Saturated Vapors at the Temperature of Normal Ebulition Density of Saturated Vapors at the Temperature of Normal Ebulition Density of Saturated Vapors at the Temperature of Normal Ebulition Density of Saturated Vapors at the Temperature of Normal Ebulition	362 363 363 365 366 368 368 369 370 372 375 376 377 377 377 378 380 380
Density: Density of Various Solids. Density of Various Liquids. Density of Various Liquids. Hydrometer of Conversion Tables Absolute Density of Water Relative Density of Water Density and Volume of Mercury Density of Aqueous Solutions. Density of Aqueous Solutions. Density of Saturated Vapors at the Temperature of Normal Ebullition Density of Saturated Vapors at the Temperature of Normal Ebullition Density of Saturated Vapors at the Temperature of Normal Ebullition Density of Saturated Vapors at the Temperature of Normal Ebullition Density of Saturated Vapors at the Temperature of Normal Ebullition Density of Saturated Vapors at the Temperature of Normal Ebullition Density of Saturated Vapors at the Temperature of Normal Ebullition Density of Saturated Vapors at the Temperature of Normal Ebullition Density of Saturated Vapors at the Temperature of Normal Ebullition Density of Saturated Vapors at the Temperature of Normal Ebullition Density of Saturated Vapors at the Temperature of Normal Ebullition Density of Saturated Vapors at the Temperature of Normal Ebullition Density of Saturated Vapors at the Temperature of Normal Ebullition Density of Saturated Vapors at the Temperature of Normal Ebullition Density of Saturated Vapors at the Temperature of Normal Ebullition Density of Saturated Vapors at the Temperature of Normal Ebullition Density of Saturated Vapors at the Temperature of Normal Ebullition Density of Saturated Vapors at the Temperature of Normal Ebullition Density of Saturated Vapors at the Temperature of Normal Ebullition Density of Saturated Vapors at the Temperature of Normal Ebullition Density of Saturated Vapors at the Temperature of Normal Ebullition Density of Saturated Vapors at the Temperature of Normal Ebullition Density of Saturated Vapors at the Temperature of Normal Ebullition Density of Saturated Vapors at the Temperature of Normal Ebullition Density of Saturated Vapors at the Temperature of Normal Ebullition Density of Saturated Vapors at the Temperature of Normal Ebullition Density of S	362 363 363 365 366 367 368 368 369 370 372 375 376 377 378 379 379 379 380 380 380
Density: Density of Various Solids. Density of Various Liquids. Density of Various Liquids. Hydrometer of Conversion Tables Absolute Density of Water Relative Density of Water Density and Volume of Mercury Density of Aqueous Solutions. Density of Aqueous Solutions. Density of Saturated Vapors at the Temperature of Normal Ebullition Density of Saturated Vapors at the Temperature of Normal Ebullition Density of Saturated Vapors at the Temperature of Normal Ebullition Density of Saturated Vapors at the Temperature of Normal Ebullition Density of Saturated Vapors at the Temperature of Normal Ebullition Density of Saturated Vapors at the Temperature of Normal Ebullition Density of Saturated Vapors at the Temperature of Normal Ebullition Density of Saturated Vapors at the Temperature of Normal Ebullition Density of Saturated Vapors at the Temperature of Normal Ebullition Density of Saturated Vapors at the Temperature of Normal Ebullition Density of Saturated Vapors at the Temperature of Normal Ebullition Density of Saturated Vapors at the Temperature of Normal Ebullition Density of Saturated Vapors at the Temperature of Normal Ebullition Density of Saturated Vapors at the Temperature of Normal Ebullition Density of Saturated Vapors at the Temperature of Normal Ebullition Density of Saturated Vapors at the Temperature of Normal Ebullition Density of Saturated Vapors at the Temperature of Normal Ebullition Density of Saturated Vapors at the Temperature of Normal Ebullition Density of Saturated Vapors at the Temperature of Normal Ebullition Density of Saturated Vapors at the Temperature of Normal Ebullition Density of Saturated Vapors at the Temperature of Normal Ebullition Density of Saturated Vapors at the Temperature of Normal Ebullition Density of Saturated Vapors at the Temperature of Normal Ebullition Density of Saturated Vapors at the Temperature of Normal Ebullition Density of Saturated Vapors at the Temperature of Normal Ebullition Density of Saturated Vapors at the Temperature of Normal Ebullition Density of S	362 363 365 366 367 368 369 370 375 375 376 377 377 378 379 380 380 381 381
Density: Density of Various Solids. Density of Various Liquids. Density of Various Liquids. Hydrometer of Conversion Tables Absolute Density of Water Relative Density of Water Density and Volume of Mercury Density of Aqueous Solutions. Density of Aqueous Solutions. Density of Saturated Vapors at the Temperature of Normal Ebullition Density of Saturated Vapors at the Temperature of Normal Ebullition Density of Saturated Vapors at the Temperature of Normal Ebullition Density of Saturated Vapors at the Temperature of Normal Ebullition Density of Saturated Vapors at the Temperature of Normal Ebullition Density of Saturated Vapors at the Temperature of Normal Ebullition Density of Saturated Vapors at the Temperature of Normal Ebullition Density of Saturated Vapors at the Temperature of Normal Ebullition Density of Saturated Vapors at the Temperature of Normal Ebullition Density of Saturated Vapors at the Temperature of Normal Ebullition Density of Saturated Vapors at the Temperature of Normal Ebullition Density of Saturated Vapors at the Temperature of Normal Ebullition Density of Saturated Vapors at the Temperature of Normal Ebullition Density of Saturated Vapors at the Temperature of Normal Ebullition Density of Saturated Vapors at the Temperature of Normal Ebullition Density of Saturated Vapors at the Temperature of Normal Ebullition Density of Saturated Vapors at the Temperature of Normal Ebullition Density of Saturated Vapors at the Temperature of Normal Ebullition Density of Saturated Vapors at the Temperature of Normal Ebullition Density of Saturated Vapors at the Temperature of Normal Ebullition Density of Saturated Vapors at the Temperature of Normal Ebullition Density of Saturated Vapors at the Temperature of Normal Ebullition Density of Saturated Vapors at the Temperature of Normal Ebullition Density of Saturated Vapors at the Temperature of Normal Ebullition Density of Saturated Vapors at the Temperature of Normal Ebullition Density of Saturated Vapors at the Temperature of Normal Ebullition Density of S	362 363 363 365 366 367 368 369 370 370 376 376 376 377 377 377 378 380 380 380 381 381 381 381
Density: Density of Various Solids. Density of Various Liquids. Hydrometer of Conversion Tables Absolute Density of Water. Relative Density of Water Density and Volume of Mercury Density of Aqueous Solutions Density of Aqueous Solutions Density of Saturated Vapors at the Temperature of Normal Ebulition Density of Saturated Vapors at the Temperature of Normal Ebulition Density of Saturated Vapors at the Temperature of Normal Ebulition Density of Saturated Vapors at the Temperature of Normal Ebulition Density of Saturated Vapors at the Temperature of Normal Ebulition Density of Saturated Vapors at the Temperature of Normal Ebulition Density of Saturated Vapors at the Temperature of Normal Ebulition Density of Saturated Vapors at the Temperature of Normal Ebulition Density of Saturated Vapors at the Temperature of Normal Ebulition Density of Saturated Vapors at the Temperature of Normal Ebulition Density of Saturated Vapors at the Temperature of Normal Ebulition Density of Saturated Vapors at the Temperature of Normal Ebulition Density of Saturated Vapors at the Temperature of Normal Ebulition Density of Saturated Vapors at the Temperature of Normal Ebulition Density of Saturated Vapors at the Temperature of Normal Ebulition Density of Saturated Vapors at the Temperature of Normal Ebulition Density of Saturated Vapors at the Temperature of Normal Ebulition Density of Saturated Vapors at the Temperature of Normal Ebulition Density of Saturated Vapors at the Temperature of Normal Ebulition Density of Saturated Vapors at the Temperature of Normal Ebulition Density of Saturated Vapors at the Temperature of Normal Ebulition Density of Saturated Vapors at the Temperature of Normal Ebulition Density of Saturated Vapors at the Temperature of Normal Ebulition Density of Saturated Vapors at the Temperature of Normal Ebulition Density of Saturated Vapors at the Temperature of Normal Ebulition Density of Saturated Vapors at the Temperature of Normal Ebulition Density of Saturated Vapors at the Temperature of Normal Ebulition	362 363 365 366 367 368 369 370 375 375 376 377 377 378 379 380 380 381 381

HEAT
Conversion of Thermometer Scales
Reduction of Mercury in Glass Thermometer Reading to the Hydrogen
Scale
Thermal Expansion: Coefficients of Thermal Expansion
Coefficients of Thermal Expansion
Cubical Expansion of Solids
Cubical Expansion of Liquids
Coefficients of Expansion of Gases at Constant Pressure 39
Coefficients of Expansion of Gases at Constant Volume
Specific Heat:
Specific Heat of Water and Mercury
Specific Heat of Chemical Elements
Specific Heat of Various Solids. 40 Specific Heat of Various Liquids. 40 Specific Heat of Aqueous Solutions. 40 Specific Heat of Gases. 40
Specific Heat of Aqueous Solutions
Specific Heat of Gases
Color Scale of Temperature 40
Boiling-point of Water
Melting and Boiling Temperatures 40 Temperature of Fusion for Various Substances 40
Boiling-point for Various Substances 40
Boiling-point for Various Substances 40 Melting-point of Ice, Variation with Pressure 40
Boiling-point of Water-Alcohol Mixtures 40
Molecular Elevation of Boiling-point40
Molecular Depression of Freezing-point 40
Critical and Van der Waals' Constants for Gases
Freezing Mixtures 41 Heat Equivalent of Fusion 41
Heat Equivalent of Vaporization
Change in Volume Due to Fusion
Fixed Points for High Temperatures
Vapor Tension: Vapor Tension of Water at Low Temperatures
Vapor Tension of Water at Low Temperatures
Vapor Tension of Water, 100° to 230° C
Vapor Tension of Mercury
Vapor Tension of Water at Low Temperatures 41 Vapor Tension of Water, 0° to 100° C 41 Vapor Tension of Water, 100° to 230° C 42 Vapor Tension of Mercury 42 Lowering of Vapor Pressure by Salts in Aqueous Solutions 42 Vapor Pressures of Various Substances 42
Vapor Pressures of Various Substances
Number of Molecules in a Molecule-gram
Mass of the Hydrogen Atom 42
Heat Conductivity
Properties of Saturated Steam
High and Low Temperatures Obtained by Various Means
neat values of rueis
HYGROMETRIC AND BAROMETRIC TABLES
C
Conversion Table for Barometric Readings
Conversion Table for Pressure Units
Temperature Correction, Brass Scale
Mass of Water Vapor in Saturated Air
Reduction of Barometer Readings to Standard Temperature 44
Correction for Capillary Depression of Mercury in a Glass Tube
Reduction of Barometer to Sea Level. 44 Reduction of Barometer to Latitude 45° 45 Relative Humidity — Dew-point. 45
Relative Humidity — Dew-point
Reduction of Psychrometric Observation 45

. 8

SOUND	PAGE
Velocity of Sound in Solids	454 455 456
ELECTRICITY AND MAGNETISM	
Sparking Potential or Dielectric Strength Specific Inductive Capacity Spericific Inductive Capacity Sparking Potential Electromotive Force and Composition of Voltaic Cells Contact Difference of Potential for Metals Difference of Potential between Metals in Solutions of Salts Specific Resistance and Temperature Coefficient for Metals Resistance of Electrolytes Safe Carrying Capacity of Copper Wire Conductivity of Standard Solutions Equivalent Conductivity of Aqueous Solutions Equivalent Conductivity of the Separate Ions Resistance of Various Substances Thermoelectric Power Magnetic Constants: Permeability of Transformer Iron Magnetic Properties of Iron and Steel Saturation Constants Saturation Constants	460 462 464 464 466 466 467 468 471 472 473
Saturation Constants for Magnetic Substances Magnetic Susceptibility of Various Substances Variation of Resistance due to a Magnetic Field Internal Resistance of Various Voltaic Cells. Hall Effect. Electrochemical Equivalents Magnetic Inclination or Dip and Horizontal Intensity Magnetic Declination. LIGHT	476 476 477 477 478
	. 481
Photometric Standards. Standard Candles Mean Horizontal Candle Power of Various Light Sources. Primary Color Sensations Produced by Various Light Sources. Intrinsic Brilliancy of Light Sources. Wave Lengths of Various Radiations. Variation in the Sensitiveness of the Eye with the Wave Length. Wave Lengths for Fraunhofer Lines. Wave Lengths for Spectroscope Calibration Wave Lengths of Principal Lines of Various Elements. Relative Stimulation of the Three Color Sensations.	. 482 . 482 . 483 . 483 . 484
Index of Refraction:	. 491
Index of Refraction: Optically Isotropic Solids. Uniaxial Crystals Biaxial Crystals. Glass. Rock Salt, Silvine, Calcite, Fluorite, and Quartz. Liquids.	. 493
Aqueous Solutions. Metals.	. 495 . 496
Uspersion Diffused Reflection Coefficients of Transparency Reflection of Light by Glass in Air	. 496
Reflection of Light by Glass in Air. Reflection by Transparent Media in Air. Reflection of Light by Metals. Transmissibility for Radiations. Phosphorescence by Cathode Rays Fluorescence of Organic Substances in Solution.	498
Fluorescence of Organic Substances in Solution. Fluorescence of Gases and Vapors. Specific Rotation.	

MISCELLANEOUS TABLES	PAGI
Röntgen Rays.	-
Radioactive Substances Declination of the Sun and Equation of Time.	510
Declination of the Sun and Equation of Time	515
Mean Places of Stars. Approximate Correction for Refraction	515
Data in Regard to the Earth	516
Data in Regard to the Earth Data Concerning the Solar System	516 516
Meteorological Data	517
Meteorological Data Acceleration Due to Gravity, Latitude, Longitude, and Elevation	518
Moment of Inertia for Various Bodies	520
Moment of Inertia for Various Bodies	522
ALOUILC SHO MOJECULAR Constants	F00
Miscellaneous Constants The Greek Alphabet	524
The Greek Alphabet	524
DEFINITIONS AND FORMULÆ	
Chemical Laws	525
Chemical Theories Definitions of Chemical Terms Ovidation Reduction Function	526
Definitions of Chemical Terms	527
Oxidation-Reduction Equations One Hundred Completed Chemical Equations.	528
Physical Terms Overtition and Historian Equations	529
Physical Terms, Quantities, and Units. Physical Formulæ.	531
2 29 Month 2 Official Control of	539
TARORAMORE AREA AND	
LABORATORY ARTS AND RECIPES	
PHOTOGRAPHIC FORMULÆ	562
MEASURES AND UNITS	
Weights and Measures, U. S. System	570
Weights and Measures, Metric System	573
	574
Relations of Electrical Units Values of the Gas Constant R for Various Units	574
Factors for Conversion of Energy Units.	574
Factors for Conversion of Pressure Units.	575 575
Comparison of Metric and Customary Units	576
Comparison of Tons and Pounds	582
Metric-English and English-Metric Conversion Tables	585
Comparison of Metric and Customary Units. Comparison of Tons and Pounds Metric-English and English-Metric Conversion Tables Centigrade-Fahrenheit and Fahrenheit-Centigrade Conversion Tables	646
WIRE TABLES	
Comparison of Wire Gauges. Twist Drill and Steel Wire Gauge.	673
Twist Drill and Steel Wire Gauge	674
Dimensions of Wire, Stub's Gauge. Dimensions of Wire, British Standard Gauge.	675
Dimensions of Wire, British Standard Gauge	676
Resistance of Aluminum Wire	677 677
Dimensions of Wire, B. & S. Gauge, Mass and Resistance for Copper	678
Cross-section and Mass of Wires.	682
Differences of Wife, British Standard Gauge Platinum Wire Table Resistance of Aluminum Wire Dimensions of Wire, B. & S. Gauge, Mass and Resistance for Copper Cross-section and Mass of Wires Approximate Resistance of Wire	686
PROBLEMS	
Method of Solving Chemical Problems	687
Method of Solving Chemical Problems Problems in Elementary Physics	691
Index	695
Advertisements	712

ANTIDOTES OF POISONS

Acetic Acid.—Emetics, magnesia, chalk, soap, oil.

Arsenic, Rat Poison, Paris Green.—Milk, raw egg, sweet oil, lime water, flour and water.

Carbolic Acid.—Any soluble non-toxic sulphate, after provoking vomiting with zinc sulphate; uncooked white of egg in abundance, milk of lime, saccharate of calcium, olive or castor oil with magnesia in suspension, ice, washing the stomach with equal parts water and vinegar; give alcohol or whiskey or about four fluid ounces camphorated oil at one dose.

Chloroform, Chloral, Ether.—Dash cold water on head and

chest, artificial respiration.

Hydrochloric Acid.—Magnesia, alkali carbonates, albumen, ice.

Hydrocyanic or Prussic Acid.—Hydrogen peroxide internally, and artificial respiration, breathing ammonia or chlorine from chlorinated lime, ferrous sulphate followed by potassium carbonate, emetics, warmth.

Iodine.—Emetics, stomach siphon, starchy foods in abundance,

sodium thiosulphate.

Lead Acetate.—Emetics, stomach siphon, sodium, potassium

or magnesium sulphates, milk, albumen.

Mercuric Chloride or Corrosive Sublimate.—Zinc sulphate, emetics, stomach siphon, white of egg, milk, chalk, castor oil, table salt, reduced iron.

Nitrate of Silver.—Salt and water.

Nitric Acid.—Same as for hydrochloric acid.

Opium, Morphine, Laudanum, Paregoric, etc.—Strong coffee, hot bath. Keep awake and moving at any cost.

Phosphoric Acid.—Same as for hydrochloric.

Sodium Hydroxide or Potassium Hydroxide.—Vinegar, lemon juice, orange juice, oil, milk.

Sulphuric Acid.—Same as for hydrochloric acid with the

addition of soap or oil.

Sulphurous Acid or Sulphur Dioxide.—Mustard plaster on chest; narcotics, expectorants.

BURNS AND SCALDS

Exclude air by thin paste of starch, flour, or baking soda. Ordinary oils such as vaseline, olive or castor oil, lard or cream may also be used. Lime water mixed with an equal part of raw linseed oil makes an excellent dressing. An especially valuable material for all burns is picric acid gauze which may be applied in the form of a compress.

After treatment with any of the above materials, cover with a cloth or with cotton and hold in place with a light bandage.

ACID AND ALKALI BURNS

With either, wash off as quickly as possible with a large quantity of water. Water from a tap may be allowed to flow over burns.

ACIDS

While the injury is being washed, have procured, lime water or lime water and raw linseed oil mixed together in equal proportions or a mixture of baking soda and water or soap suds and apply freely. For acid in the eye wash as quickly as possible with water and then with lime water.

ALKALIS

Wash with a large quantity of water as for acid burns. Neutralize with weak vinegar, hard eider or lemon juice. For lime or other strong alkali burns in the eye wash with weak solution of vinegar or with olive oil or a saturated solution of boric acid.

MATHEMATICAL TABLES

ALGEBRA

Factors

$$(a \pm b)^2 = a^2 \pm 2ab + b^2$$

$$(a \pm b)^3 = a^3 \pm 3a^2b + 3ab^2 \pm b^3$$

$$a^2 - b^2 = (a - b)(a + b)$$

$$a^3 - b^3 = (a - b)(a^2 + ab + b^2)$$

$$a^3 + b^3 = (a + b)(a^2 - ab + b^2)$$

$$a^n - b^n = (a - b)(a^{n-1} + a^{n-2}b + \dots + b^{n-1})$$

$$a^n - b^n = (a + b)(a^{n-1} - a^{n-2}b + \dots + b^{n-1}),$$
 for even values of n .
$$a^n + b^n = (a + b)(a^{n-1} - a^{n-2}b + \dots + b^{n-1}),$$
 for odd values of n .
$$a^4 + a^2b^2 + b^4 = (a^2 + ab + b^2)(a^2 - ab + b^2)$$

$$(a + b + c)^2 = a^2 + b^2 + c^2 + 2ab + 2ac + 2bc$$

$$(a + b + c)^3 = a^3 + b^3 + c^3 + 3a^2(b + c) + 3b^2(a + c) + 6abc$$

Quadratic Equations

Any quadratic equation may be reduced to the form,-

$$ax^{2} + bx + c = 0$$
Then
$$x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$

If $b^2 - 4ac$ is positive the roots are real and unequal.

If $b^2 - 4ac$ is zero the roots are real and equal.

If $b^2 - 4ac$ is negative the roots are imaginary and unequal.

If $b^2 - 4ac$ is a perfect square the roots are rational and unequal.

Exponents

$$a^{x} \times a^{y} = a^{(x+y)} \qquad a^{-x} = \frac{1}{a^{x}}$$

$$\frac{a^{x}}{a^{y}} = a^{(x-y)} \qquad a^{0} = 1$$

$$(a^{x})^{y} = a^{xy} \qquad a^{\frac{x}{y}} = \sqrt[y]{a^{x}}$$

Proportion

If
$$\frac{a}{b} = \frac{c}{d}$$
Then
$$\frac{a+b}{b} = \frac{c+d}{d}$$

$$\frac{a-b}{b} = \frac{c-d}{d}$$

$$\frac{a-b}{a+b} = \frac{c-d}{c+d}$$

ALGEBRA (Continued)

Sums of Numbers

The sum of the first n numbers, —

$$\Sigma(n) = 1 + 2 + 3 + 4 + 5 + \dots + n = \frac{n(n+1)}{2}$$

The sum of the squares of the first n numbers,

$$\Sigma(n^2) = 1^2 + 2^2 + 3^2 + 4^2 + 5^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$$

The sum of the cubes of the first n numbers,

$$\Sigma(n^3) = 1^3 + 2^3 + 3^3 + 4^3 + 5^3 \cdot \ldots + n^3 = \frac{n^2(n+1)^2}{4}$$

Arithmetical Progression

If a is the first term; l, the last term; d, the common difference; n, the number of terms and s, the sum of n terms, —

$$l = a + (n - 1)d$$

$$s = \frac{n}{2}(a + l)$$

$$s = \frac{n}{2} \left\{ 2a + (n - 1)d \right\}$$

Geometrical Progression

If a is the first term; l, the last term; r, the common ratio; n, the number of terms and s, the sum of n terms,—

$$s = \frac{a(r^{n} - 1)}{r - 1}$$

$$s = \frac{a(1 - r^{n})}{1 - r}$$

If n is infinity and r less than unity, —

$$s = \frac{a}{1 - r}$$

Permutations

If M denote the number of permutations of n things taken p at a time, - $M = n(n-1)(n-2) \dots (n-p+1)$

Combinations

If M denote the number of combinations of n things taken p at a time, —

$$M = \frac{n(n-1)(n-2)\dots(n-p+1)}{p}$$

$$M = \frac{n}{p} \frac{n}{p-p}$$

ALGEBRA (Continued)

Approximations

If a and b are small quantities, the following relations are approximately true,—

$$(1 = a)^m = 1 = ma$$

$$(1 = a)^m (1 = b)^n = 1 = ma = nb$$

If n is nearly equal to m,

$$\sqrt{nm} = \frac{n+m}{2}$$
, approximately.

If θ is a very small angle expressed in radians, — $\frac{\sin \theta}{\theta} = 1$ and $\frac{\tan \theta}{\theta} = 1$, approximately.

Series

Binomial

$$(x+y)^{n} = x^{n} + nx^{n-1}y + \frac{n(n-1)}{2}x^{n-2}y^{2} + \dots$$

$$\frac{n(n-1)\dots(n-m+1)}{2}x^{n-m}y^{m} + \dots$$

$$(y^{2} < x^{2})$$

$$(1 \pm x)^n = 1 \pm nx + \frac{n(n-1)x^2}{2} \pm \frac{n(n-1)(n-2)x^3}{3} + \dots \text{ etc.}$$

$$(x^2 < 1)$$

$$(1 \pm x)^{-n} = 1 \pm nx + \frac{12}{2} \pm \frac{3}{2} + \dots \text{ etc.}$$

$$(1 \pm x)^{-n} = 1 \quad n \mp x + \frac{n(n+1)x^2}{2} \mp \frac{n(n-1)(n-2)x^3}{2} + \dots \text{ etc.}$$

$$(x^2 < 1)$$

$$(x^{2} < 1)$$

$$(1 + x)^{-1} = 1 + x^{2} + x^{3} + x^{4} + x^{5} + (x^{2} < 1)$$

$$(1 \pm x)^{-1} = 1 \mp x + x^2 \mp x^3 + x^4 \mp x^5 + \dots$$

$$(1 \pm x)^{-2} = 1 \mp 2x + 3x^2 \mp 4x^3 + 5x^4 \mp 6x^5 + \dots$$

$$(x^2 < 1)$$

$$(x^2 < 1)$$

Taylor's Series

$$f(x+h) = f(x) + hf'(x) + \frac{h^2}{|2}f''(x) + \frac{h^3}{|3}f'''(x) + \dots$$

Maclaurin's Series

$$f(x) = f(0) + \frac{x}{1}f'(0) + \frac{x^2}{2}f''(0) + \frac{x^3}{2}f'''(0) + \cdots$$

Exponential

$$e = 1 + \frac{1}{1} + \frac{1}{\underline{|2|}} + \frac{1}{\underline{|3|}} + \frac{1}{\underline{|4|}} + \dots$$

$$e^x = 1 + x + \frac{x^2}{|2|} + \frac{x^3}{|3|} + \frac{x^4}{|4|} + \dots$$

$$a^{x} = 1 + x \log a + \frac{(x \log a)^{2}}{\underline{|2|}} + \frac{(x \log a)^{3}}{\underline{|3|}} + \cdots$$

ALGEBRA (Continued)

Logarithmic

$$\log_{e} x = \frac{x-1}{x} + \frac{1}{2} \left(\frac{x-1}{x}\right)^{2} + \frac{1}{3} \left(\frac{x-1}{x}\right)^{3} + \dots$$

$$(x > \frac{1}{2})$$

$$\log_{e} x = (x-1) - \frac{1}{2}(x-1)^{2} + \frac{1}{3}(x-1)^{3} - \dots$$

$$(2 > x > 0)$$

$$\log_e x = 2 \left[\frac{x-1}{x+1} + \frac{1}{3} \left(\frac{x-1}{x+1} \right)^3 + \frac{1}{5} \left(\frac{x-1}{x+1} \right)^5 + \dots \right]$$
 (x > 0)

$$\log_e(1+x) = x - \frac{1}{2}x^2 + \frac{1}{3}x^3 - \frac{1}{4}x^4 + \dots$$

$$\log_e(n+1) - \log_e(n-1) = 2\left[\frac{1}{n} + \frac{1}{3n^3} + \frac{1}{5n^5} + \dots\right]$$

$$\log_{10}(n+1) - \log_{10}^{n} = \frac{k}{n} + \frac{k}{2n^2} + \frac{k}{3n^3} + \dots$$
 where $k = .4343...$

Trigonometric

$$\sin x = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \dots$$

$$\cos x = 1 - \frac{\overline{x^2}}{|2|} + \frac{\overline{x^4}}{|4|} - \frac{\overline{x^6}}{|6|} + \dots$$

$$\tan x = x + \frac{x^3}{3} + \frac{2x^5}{15} + \frac{17x^7}{315} + \frac{62x^9}{2835} + \dots \qquad \left(x^2 < \frac{\pi^2}{4}\right)$$

$$\sin^{-1}x = x + \frac{x^3}{6} + \frac{1}{2} \cdot \frac{3}{4} \cdot \frac{x^5}{15} + \frac{1}{2} \cdot \frac{3}{4} \cdot \frac{5}{6} \cdot \frac{x^7}{17} + \dots$$
 (x² < 1)

$$\tan^{-1}x = x - \frac{1}{3}x^3 + \frac{1}{5}x^5 - \frac{1}{7}x^7 + \dots$$
 (x² < 1)

$$= \frac{\pi}{2} - \frac{1}{x} + \frac{1}{3x^3} - \frac{1}{5x^5} + \dots$$
 (x² > 1)

MENSURATION FORMULÆ

Plain Figures Bounded by Straight Lines

The area of a triangle whose base is b and altitude h

$$=\frac{hb}{2}$$
.

The area of a triangle with angles A, B, and C and sides opposite a, b, and c, respectively

$$= \frac{1}{2}ab \sin C.$$

$$= \sqrt{s(s-a)(s-b)(s-c)},$$

or

where s = 1/2(a+b+c).

A rectangle with sides a and b has an area = ab.

The area of a parallelogram with side b and the perpendicular distance to the parallel side h

$$=bh.$$

The area of a parallelogram with sides a and b and the included angle θ $=ab\sin\theta$.

The area of a rhombus with diagonals c and d,

$$=\frac{1}{2}cd.$$

The area of any quadrilateral with diagonals a and b and the angle between them θ

$$=\frac{1}{2}ab\sin\theta$$
.

The area of a regular polygon with n sides, each of length l,

$$= \frac{1}{4}nl^2 \cot \frac{180}{n}.$$

For a regular polygon of n sides, each side of length l, the radius of the inscribed circle,

$$= \frac{l}{2} \cot \frac{180}{n}.$$

The radius of the circumscribed circle,

$$= \frac{l}{2} \operatorname{cosec} \frac{180}{n}.$$

Area, Radius of Inscribed and Circumscribed Circles for Regular Polygons

l =length of one side.

Name.	Number of sides.	Area.	Radius of inscribed. circle.	Radius of circumscribed circle.
Triangle, equilateral	3	$0.43301l^2$	0.288671	0.577351
Square		1.00000l2	0.500001	0.707101
Pentagon	4 5	$1.72048l^2$	0.688191	0.85065l
Hexagon	6	$2.59808l^2$	0.86602l	1.0000l
Heptagon	7	$3.63391l^2$	1.0383l	1.1523l
Octagon	8	$4.82843l^2$	1.2071l	1.3065l
Nonagon	9	$6.18182l^2$	1.3737l	1.4619l
Decagon	10	7.6942112	1.5388l	1.6180l
Undecagon	11	$9.36564l^2$	1.7028l	1.7747l
Dodecagon	12	$11.19615l^2$	1.8660l	1.9318l

Radius of circle inscribed in any triangle, whose sides are a, b, and c, where $s = \frac{1}{2}(a+b+c)$

$$=\frac{\sqrt{s(s-a)(s-b)(s-c)}}{s}$$

The radius of the circumscribed circle

$$= \frac{abc}{4\sqrt{s(s-a)(s-b)(s-c)}}.$$

The perimeter of a polygon inscribed in a circle of radius r, where n is the number of sides,

$$=2nr\sin\frac{\pi}{n}.$$

The area of the inscribed polygon,

$$= \frac{1}{2}nr^2 \sin \frac{2\pi}{n}.$$

The perimeter of a polygon circumscribed about a circle of radius r, number of sides n

$$=2nr\tan\frac{\pi}{n}$$
.

The area of the circumscribed polygon

$$=nr^2\tan\frac{\pi}{n}$$
.

Plane Figures Bounded by Curved Lines

The circumference of a circle whose radius is r and diameter d(d=2r)

 $=2\pi r=\pi d.$

The area of a circle

$$=\pi r^2 = \frac{1}{4}\pi d^2 = .7854d^2$$
.

The length of an arc of a circle for an arc of θ degrees

$$=\frac{\pi r\theta}{180}$$
.

Note.—In this and following similar formulæ r denotes the radius of the circle, (OC, Fig. 1).

For an arc of θ radians the length

$$=r\theta$$
.

Fig 1.

The length of a chord subtending an angle θ

 $=2r\sin\tfrac{1}{2}\theta.$

The area of a sector where θ is the angle between the radii in degrees

 $=\frac{\pi r^2 \theta}{360}$.

If s is the length of the arc, the area of the sector

$$=\frac{sr}{2}$$
.

The area of a segment where θ is the angle between the two radii in degrees

$$=\frac{\pi r^2\theta}{360}-\frac{r^2\sin\theta}{2}.$$

If θ is in radians the area

$$= \frac{1}{2}r^2(\theta - \sin \theta).$$

The area of the ring between two circles of radius r_1 and r_2 , one of which encloses the other,

$$=\pi(r_1+r_2)(r_1-r_2).$$

The two cricles are not necessarily concentric.

Area of the sector of an annulus. (Fig. 2.)—If angle $GOH = \theta$ and the lines GO and $JO = r_1$ and r_2 respectively, the area GHIJ

$$= \frac{1}{2}\theta(r_1+r_2)(r_1-r_2).$$

Fig. 2.

If s_1 = the length of the arc GH and s_2 = the arc JI and $h = HI = r_1 - r_2$, the area GHIJ

$$= \frac{1}{2}h(s_1+s_2).$$

The circumference of an ellipse whose semiaxes are a and b

$$=2\pi\sqrt{\frac{a^2+b^2}{2}}$$
, approximately.

The area of an ellipse

$$=\pi ab.$$

The length of the arc of a parabola, as arc SPQ in Fig. 3, where x = PR, and y = QR

$$=2\sqrt{y^2+\frac{4x^2}{3}}.$$

The area of the section of the parabola PQRS.

$$=\frac{4}{2}xy$$
.

Solids Bounded by Planes

The lateral area of a regular prism = perimeter of a right section

× the length.

The volume of a regular prism = area of base × the altitude. The lateral area of a regular pyramid, slant height l and length of one side of base a.

$$=\frac{1}{2}nal.$$

The volume of a pyramid = $\frac{1}{2}$ area of base \times altitude.

Fig. 3.

Surface and Volume of Regular Polyhedra

Surface and volume of regular polyhedra in terms of the length of one edge l.

Name.	Nature of surface.	Surface.	Volume.
Tetrahedron	4 equilateral triangles	$1.73205l^2$	$0.11785l^{3}$
Octahedron Dodecahedron.	6 squares 8 equilateral triangles 10 pentagons 20 equilattriangles.	$\begin{array}{c} 6.00000l^2 \\ 3.46410l^2 \\ 20.64578l^2 \\ 8.66025l^2 \end{array}$	$\begin{array}{c} 1.00000l^3 \\ 0.47140l^3 \\ 7.66312l^3 \\ 2.18170l^3 \end{array}$

Solids Bounded by Curved Surfaces

The surface of a sphere of radius r and diameter d(=2r) $=4\pi r^2 = \pi d^2 = 12.57r^2$.

The volume of a sphere

$$=\frac{4}{3}\pi r^3 = \frac{1}{6}\pi d^3 = 4.189r^3$$
.

The area of a lune on the surface of a sphere of radius r, included between two great circles whose inclination is θ radians

$$=2r^2\theta$$
.

The area of a spherical triangle whose angles are A, B, and C (radians) on a sphere of radius r

$$=(A+B+C-\pi)r^2.$$

The area of a spherical polygon of n sides where θ is the sum of its angles in radians

$$= [\theta - (n-2)\pi]r^2.$$

The area of the curved surface of a spherical segment of height h, radius of sphere r

$$=2\pi rh.$$

The volume of a spherical segment, data as above

$$=\frac{1}{3}\pi h^2(3r-h).$$

If a = radius of the base of the segment, the volume

$$=\frac{1}{6}\pi h(h^2+3a^2).$$

The curved surface of a right cylinder where r = the radius of the base and h, the altitude,

$$=2\pi rh.$$

The volume of a cylinder, data as above,

$$=\pi r^2 h$$

The curved surface of a right cone whose altitude is h and radius of base r

$$=\pi r\sqrt{r^2+h^2}.$$

The volume of a cone, data as above,

$$= \frac{\pi}{3}r^2h = 1.047r^2h.$$

The curved surface of the frustum of a right cone, radius of base r, of top r^2 and altitude h,

$$=\pi(r_1+r_2)\sqrt{h^2+r^2}$$
.

The volume of the frustum of a cone, data as above,

$$=\pi\frac{h}{3}(r_1^2+r_1r_2+r_2^2).$$

The oblate spheroid is formed by the rotation of an ellipse about its minor axis. If a and b are the major and minor semi-axes respectively, and e the eccentricity, the surface

$$=2\pi a^2 + \pi \frac{b^2}{c} \log_e \frac{1+e}{1-e},$$

and volume

 $=\frac{4}{3}\pi a^2b$.

The prolate spheroid is formed by the rotation of an ellipse about its major axis (2a), data as above.

Surface
$$=2\pi b^2 + 2\pi \frac{ab}{e} \sin^{-1}e,$$
 volume
$$=4/3\pi ab^2.$$

TRIGONOMETRIC FUNCTIONS IN A RIGHT-ANGLED TRIANGLE

If A, B, and C are the vertices (C the right angle), and a, b, and b the sides opposite respectively,

$$\sin A = \frac{a}{h},$$
 $\cos A = \frac{b}{h^2}$
 $\tan A = \frac{a}{b},$ $\cot A = \frac{b}{a},$
 $\operatorname{secant} A = \frac{h}{b},$ $\operatorname{cosec} A = \frac{h}{a}.$

SIGNS AND LIMITS OF VALUE ASSUMED BY THE FUNCTIONS

	Qua	drant I.	Qua	irant II.	Quad	rant III.	Quadrant IV.		
Funtion.	Sign. Value.		Sign.	Value.	Sign.	Value.	Sign.	Value.	
sin cos cot sec cosec	+++++	0 to 1 1 to 0 0 to ∞ ∞ to 0 1 to ∞ ∞ to 1	+ +	1 to 0 0 to 1 \infty to 0 0 to \infty \infty to 1 1 to \infty	1 1++11	0 to 1 1 to 0 0 to ∞ ∞ to 0 1 to ∞ ∞ to 1	- + - + -	1 to 0 0 to 1 ∞ to 0 0 to ∞ 0 to ∞ to 1 1 to ∞	

VALUE OF THE FUNCTIONS OF VARIOUS ANGLES

	٥°	30°	45°	60°	90°	180°	270°
sin	0	1/2	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}\sqrt{3}$	1	0	-1
cos	1	$\frac{1}{2}\sqrt{3}$	$\frac{1}{\sqrt{2}}$	1/2	0	-1	0
tan	0	$1/\sqrt{3}$	1	$\sqrt{3}$	- 00	0	. ∞
cot	∞	$\sqrt{3}$	1	$\frac{1}{\sqrt{3}}$	0	∞	0

RELATIONS OF THE FUNCTIONS

$$\sin x = \frac{1}{\csc x}. \qquad \cos x = \frac{1}{\sin x}.$$

$$\cos x = \frac{1}{\sec x}. \qquad \sec x = \frac{1}{\cos x}.$$

$$\tan x = \frac{1}{\cot x} = \frac{\sin x}{\cos x}.$$

$$\cot x = \frac{1}{\tan x} = \frac{\cos x}{\sin x}.$$

$$\sin x = \sqrt{1 - \cos^2 x}. \qquad \cos x = \sqrt{1 - \sin^2 x}.$$

$$\tan x = \sqrt{\sec^2 - 1}. \qquad \sec x = \sqrt{\tan^2 + 1}.$$

$$\cot x = \sqrt{\csc^2 x - 1}. \qquad \csc x = \sqrt{\cot^2 x + 1}.$$

$$\sin x = \cos (90 - x) = \sin (180 - x).$$

$$\cos x = \sin (90 - x) = -\cos (180 - x).$$

$$\tan x = \cot (90 - x) = -\tan (180 - x).$$

$$\cot x = \tan (90 - x) = -\cot (180 - x).$$

FUNCTIONS OF SUMS OF ANGLES

$$\sin (x+y) = \sin x \cos y + \cos x \sin y.$$

$$\sin (x-y) = \sin x \cos y - \cos x \sin y.$$

$$\cos (x+y) = \cos x \cos y - \sin x \sin y.$$

$$\cos (x-y) = \cos x \cos y + \sin x \sin y.$$

$$\tan (x+y) = \frac{\tan x + \tan y}{1 - \tan x \tan y}.$$

$$\tan (x-y) = \frac{\tan x - \tan y}{1 + \tan x \tan y}.$$

FUNCTIONS OF MULTIPLE ANGLES

$$\sin 2x = 2 \sin x \cos x$$
.

$$\cos 2x = \cos^2 x - \sin^2 x = 2 \cos^2 x - 1 = 1 - 2 \sin^2 x$$
.

$$\sin 3x = 3\sin x - 4\sin^3 x.$$

$$\cos 3x = 4\cos^3 x - 3\cos x.$$

$$\tan 2x = \frac{2 \tan x}{1 - \tan^2 x}.$$

$$\tan 3x = \frac{3 \tan x - \tan^3 x}{1 - 3 \tan^2 x}$$
.

$$\sin \frac{1}{2}x = \pm \sqrt{\frac{1-\cos x}{2}}.$$

$$\cos \frac{1}{2}x = \pm \sqrt{\frac{1+\cos x}{2}}.$$

$$\tan \frac{1}{2}x = \pm \sqrt{\frac{1-\cos x}{1+\cos x}}$$

RELATIONS BETWEEN SIDES AND ANGLES OF ANY TRIANGLE

In a triangle with angles A, B, and C and sides opposite a, b, and c respectively,

$$\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}.$$

$$a^2 = b^2 + c^2 - 2bc \cos A$$
.

$$a=b\cos C+c\cos B$$
.

$$\cos A = \frac{b^2 + c^2 - a^2}{2bc}.$$

$$\tan \frac{A-B}{2} = \frac{a-b}{a+b} \cot \frac{C}{2}.$$

$$\sin A = \frac{2}{bc} \sqrt{s(s-a)(s-b)(s-c)},$$

where
$$s = \frac{1}{2}(a+b+c)$$
.

$$\sin \frac{A^{\bullet}}{2} = \sqrt{\frac{(s-b)(s-c)}{bc}}.$$

$$\cos \frac{A}{2} = \sqrt{\frac{s(s-a)}{bc}}$$

$$\tan \frac{A}{2} = \sqrt{\frac{(s-b)(s-c)}{s(s-a)}}.$$

CALCULUS

Derivatives

$$d \ ax = adx$$

$$d \ uv = \left(u\frac{dv}{dx} + v\frac{du}{dx}\right)dx$$

$$d \ \frac{u}{v} = \left(v\frac{du}{dx} - u\frac{dv}{dx}\right)dx$$

$$dx^n = n \ x^{n-1}dx$$

$$df(u) = d\frac{f(u)}{du} \cdot \frac{du}{dx} \cdot dx$$

$$de^{ax} = e^{ax}dx$$

$$de^{ax} = a \ e^{ax}dx$$

$$d \ \log x = \frac{1}{x}dx$$

$$d \ \sin x = \cos x \ dx$$

$$d \ \cos x = -\sin x \ dx$$

$$d \ \tan x = \sec^2 x \ dx$$

$$d \ \cot x = -\csc^2 x \ dx$$

$$d \ \sin^{-1}x = (1 - x^2)^{-\frac{1}{2}}dx$$

$$d \ \cos^{-1}x = -(1 - x^2)^{-\frac{1}{2}}dx$$

$$d \ \cot^{-1}x = (1 + x^2)^{-1}dx$$

$$d \ \cot^{-1}x = -(1 + x^2)^{-1}dx$$

$$d \ \csc^{-1}x = x^{-1}(x^2 - 1)^{-\frac{1}{2}}dx$$

$$d \ \csc^{-1}x = -x^{-1}(x^2 - 1)^{-\frac{1}{2}}dx$$

Integrals

$$\int x^n dx = \frac{x^{n+1}}{n+1} \qquad \text{except } n = -1$$

$$\int \frac{dx}{x} = \log x$$

$$\int e^x dx = e^x$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}$$

$$\int x e^{ax} dx = \frac{e^{ax}}{a^2} (ax - 1)$$

$$\int \log x dx = x \log x - x$$

$$\int u dv = uv - \int v du$$

Integrals (Continued)

$$\int (a + bx)^n dx = \frac{(a + bx)^{n+1}}{(n+1)b}$$

$$\int (a^2 + x^2)^{-1} dx = \frac{1}{a} \tan^{-1} \frac{x}{a} = \frac{1}{a} \sin^{-1} \frac{x}{\sqrt{x^2 + a^2}}$$

$$\int (a^2 - x^2)^{-1} dx = \frac{1}{2a} \log \frac{a + x}{a - x}$$

$$\int (a^2 - x^2)^{-\frac{1}{2}} dx = \sin^{-1} \frac{x}{a} = -\cos^{-1} \frac{x}{a}$$

$$\int x(a^2 + x^2)^{-\frac{1}{2}} dx = \pm (a^2 + x^2)^{\frac{1}{2}}$$

$$\int \sin^2 x dx = -\frac{1}{2} \cos x \sin x + \frac{1}{2}x$$

$$\int \cos^2 x dx = \frac{1}{2} \sin x \cos x + \frac{1}{2}x$$

$$\int \sin x \cos x dx = \frac{1}{2} \sin^2 x$$

$$\int (\sin x \cos x)^{-1} dx = \log \tan x$$

$$\int \tan x dx = -\log \cos x$$

$$\int \tan^2 x dx = \tan x - x$$

$$\int \cot x dx = \log \sin x$$

$$\int \cot^2 x dx = -\cot x - x$$

$$\int \csc^2 x dx = \log \tan \frac{1}{2}x$$

$$\int x \sin x dx = \sin x - x \cos x$$

 $\int x \cos x \, dx = \cos x + x \sin x$

ANALYTICAL GEOMETRY

The distance between two points $x_1, y_1,$ and $x_2, y_2,$ —rectangular coördinates:

$$d = \pm \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

For polar coördinates and points r_1 , θ_1 , and r_2 , θ_2 :

$$d = \pm \sqrt{r_1^2 + r_2^2 - 2r_1r_2\cos(\theta_1 - \theta_2)}$$

The area of a triangle whose vertices are $x_1, y_1; x_2, y_2,$ and $x_3, y_3:$

$$A = \frac{1}{2}(x_1y_2 - x_2y_1 + x_2y_3 - x_3y_2 + x_3y_1 - x_1y_3)$$

For polar coördinates and vertices, r_1, θ_1 ; r_2, θ_2 , and r_3, θ_3 :

$$A = \frac{1}{2} \left\{ (r_1 r_2 \sin (\theta_2 - \theta_1) + r_2 r_3 \sin (\theta_3 - \theta_2) + r_3 r_1 \sin (\theta_1 - \theta_3) \right\}$$

The equation of a straight line where m is the tangent of the angle of inclination and c, the distance of intersection with the axis from the origin:

$$y = mx + c$$

If a line of inclination m passes through the point x_1 , y_1 its equation is:

$$y-y_1=m(x-x_1)$$

The equation of a line through the points x_1 , y_1 , and x_2 , y_2 is:

$$\frac{y-y_1}{y_2-y_1}=\frac{x-x_1}{x_2-x_1}$$

If the intercepts on the axes are a and b, the equation is:

$$\frac{x}{a} + \frac{y}{b} = 1$$

If the length of the perpendicular from the origin is p and its angle of inclination θ the equation is:

$$x\cos\theta+y\sin\theta=p$$

General equation of the straight line:

$$Ax + By + C = 0$$

The equation of a circle whose center is at a, b:

$$(x-a)^2 + (y-b)^2 = c^2$$

If the origin is at the center:

$$x^2 + y^2 = c^2$$

The polar equation of a circle with the origin on the circumference and its center at point c, α :

$$r=2c\cos{(\theta-a)}.$$

If the origin is not on the circumference, the radius a and the center at a point l, a, the equation becomes:

$$a^2 = r^2 + l^2 - 2rl\cos(\theta - a)$$

The equation of a parabola with the origin at the vertex, where p is the distance from the focus to the vertex:

$$y^2 = 4px$$

The polar equation where the pole is at the focus and l the semilatus rectum is:

$$\frac{l}{r} = 1 - \cos \theta$$

If the pole is at the vertex and p as above:

$$r = \frac{4p\cos\theta}{\sin^2\theta}$$

The equation of the ellipse with the origin at the center and semi-axes a and b:

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

Polar equation where the pole is at the center:

$$r^2 = \frac{a^2b^2}{a^2\sin^2\theta + b^2\cos^2\theta}$$

The equation of the hyperbola with the origin at the center, semi-axes a and b:

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

Polar equation, pole at center:

$$r^2 = \frac{a^2b^2}{a^2\sin^2\theta - b^2\cos^2\theta}$$

EXPLANATION OF LOGARITHM TABLES

The logarithm of a number is the exponent of that power to which another number, the base, must be raised to give the number first named. The base commonly used is 10 and as most numbers are incommensurable powers of ten a common logarithm, in general, consists of an integer which is called the characteristic and an endless decimal, the mantissa.

It is to be observed that the common logarithms of all numbers expressed by the same figures in the same order with the decimal point in different positions have different characteristics but the same mantissa. To illustrate:—if the decimal point stand after the first figure of a number, counting from the left, the characteristic is 0; if after two figures, it is 1; if after three figures, it is 2, and so forth. If the decimal point stand before the

first significant figure the characteristic is -1, usually written $\overline{1}$: if there is one zero between the decimal point and the first significant figure it is $\overline{2}$ and so on. For example: $\log 256 = 2.40824$, $\log 2.56 = 0.40824$, $\log 0.256 = \overline{1.40824}$, $\log 0.00256 = \overline{3.40824}$. Inasmuch as the characteristic may be determined by inspection the mantissas only are given in tables of common logarithms.

To find the logarithm of a number. For a number of four figures take out the tabular mantissa on a line with the first three figures of the number and under its third figure. The characteristic is determined as previously

explained.

For a number of less than four figures supply zeros to make a four figure number and take the value of the mantissa from the tables as before. For example: $\log 2 = \log 2.000 = 0.30103$.

For a number of more than four figures take the tabular value of the mantissa for the first four figures; find the difference between this mantissa and the next greater tabular mantissa and multiply the difference so found by the remaining figures of the number as a decimal and add the product to the mantissa of the first four figures. For example: to find log 46.762.

 $\log 46.76 = 1.66987$

Tabular difference between this mantissa and that for 4677 is .00010.

$$\begin{array}{l} \therefore \log 46.762 = 1.66987 + .2 \times .00010 \\ = 1.66987 + .00002 \\ = 1.66989 \end{array}$$

To find the number corresponding to a given logarithm.

If the mantissa is found exactly in the table, join the figure at the top which is directly above the given mantissa to the three figures on the line at the left and place the decimal point according to the characteristic of the logarithm. For example, \log^{-1} (antilogarithm) 3.39967 = 2510.

If the mantissa is not found exactly in the table it is necessary to interpolate. For example, $\log^{-1} 3.40028 = 2513. + \frac{9}{18} = 2513.5$.

The column of proportional parts at the right of each page of the table shows, under the heading of the various tabular differences, the parts of these differences which correspond to the digits from 1 to 9 in the fifth place. This makes it possible to take out a logarithm for a five figure number or to find an antilogarithm of the same number of significant figures with increased facility, usually by inspection.

The following formulæ express the relations on which the use

of logarithms is based.

$$\log ab = \log a + \log b$$

$$\log \frac{a}{b} = \log a - \log b$$

$$\log a^n = n \times \log a$$

$$\log \sqrt[n]{a} = \frac{\log a}{n}$$

FIVE-PLACE LOGARITHMS

N.	0	1	2	3	4	5	6	7	8	9.		ortion arts	al ——
100	00 000	043	087	130 561	173 604	217 647	260 689	303 732	346 775	389 817	44 1 4.4	43 4,3	42 4.2
101	432 860	475 903	518 945	988 3		*072					2 8,8	8,6	8.4
102 103	01 284	326	368	410	452	494		578	620	662	3 13,2	12,9	12,6
104	703	745	787	828	870	912	953		*036		4 17,6	17,2	16,8
105	02 119	160	202	243	284	325	366	407	449	490	5 22,0	21,5	21,0
106	531	572	612	653	694	735	776	816	857	898	6 26,4 7 30,8	25,8 30,1	25,2 29,4
107	938		*019 *	*060 · 463	503	*141 543	583	623	663	703	8 35,2	34,4	33,6
108 109	03 342 743	383 782	423 822	862	902	941	981	*021			9 39,6	38,7	37,8
100				-		000		44 5	484	400	44	40	39 (
110	04 139	179	218 610	258 650	297 689	336 727	376 766	415 805	454 844	493 883	41 1 4,1	4.0	3,9
111	532 922	571 961	999 3		* 077	*115	*154	*192			2 8,2	8,0	7,8
$\frac{112}{113}$	05 308	346	385	423	461	500	538	576	614	652	3 12,3	12,0	11,7
114	690	729	767	805	843	881	918	956		*032	4 16,4	16,0	15,6
115	06 070	108	145	183	221	258	296	333	371	408	5 20,5	20,0	19,5
116	446	483	521	558	595	633	670	707 *078	744	781	6 24,6	24,0 28,0	23,4 27,3
117	819		893	930	967 335	372	408	445	482	518	7 28,7 8 32,8	32,0	31,2
118	07 188		262 628	298 664	700	737	773	809	846	882	9 36,9	36,0	35,1
119	555	991	020	004	100	1							- F
120	918			*027	*063			*171			38	37	36
121	08 279		350	386	422	458			565		1 3,8 2 7,6	3,7 7,4	3,6 7,2
122	636	672	707	743	778	814		884 *237			2 7,6 3 11,4	11.1	10.8
123	991		*061	447	482	517	552		621	656	4 15,2	14.8	14.4
124	09 342		412 760	795	830	864				*003	5 19,0	18,5	18,0
125 126	10 037			140	175	209					6 22,8	22,2	21,6
127	380			483	517	551					7 26.6	25,9	25,2
128	721			823	857	890				*025	8 30,4	29,6	28,8
129	11 059	093	126	160	193	227	261	294	327	361	9 34,2	33,3	32,4
130	394	428	461	494	528	561	594				35	34	33
131	727			826	860	893	926			*024	1 3,5 2 7,0	3,4	3,3
132	12 05	7 090	123	156		222					2 7,0	6,8	6,6
. 133	38					548 872	581 905			678 *001	3 10,5 4 14,0	10,2 13,6	$9,9 \\ 13.2$
134	710			808 130		194		937 258	3 290		5 17,5	17,0	16,5
135						513					621,0	20,4	19,8
136 137	354 673					830					7 24,5	23.8	23,1
138		i *n19	*051	*082	*114		*176	*208	*239	*270	8 28,0	27,2	26,4
139						457	489	520	551	582	9 31,5	30,6	29,7
	1			700	. 797	768	799	829	860	891	32	31	80
140				706	737 *045					3 *198			3.0
141						381					2 6.4	6,2	6,0
142 143						68						9,3	9,0
143				927	957	987	7 *01	7 *047	7 *07	7 *107	4 12,8	12,4	12,0
145		7 167	7 ` 197	227	256	286							
146	43	5 46				584				3 702	6 19,2		
147						879 173					7 22,4 8 25,6		24,0
148 149					i •143 3 435	464					9 28.8	27,9	27,0
149	' 31	9 040	5 511			11	**				11		
150	60	9 63	8 667	696	725	754	4 78	2 81:	1 840	0 869		5.1	
N	. 0	1	2	3	4	5	6	7	8	9	Pro	portio	nal
						1			1.1%		1		

FIVE-PLACE LOGARITHMS (Continued)

-								_/_						
N.	.	0	1	2	3	4	5	6	7	8	9	P	roport part	
150 151 152 153 154 155 156 157 158 159	18	7 609 898 8 184 469 752 9 033 312 590 866 0 140	926	667 955 241 526 808 089 368 645 921 194	270 554	725 *013 298 583 865 145 424 700 976 249	754 *041 327 611 893 173 451 728 *003 276	*070 355 639 921 201 479 756 *030	*099 5 384 9 667 949 229 507 5 783) *058	9 *127 1 412 7 696 9 977 9 257 7 535 8 111 8 *085	*156 441 724 *005 285 562 838 *112	1 2 3 4 5 6 7 8	29 5,8 8,7 11,6 14,5 17,4 20,3 23,2 26,1	28 2,8 5,6 8,4 11,2 14,0 16,8 19,6 22,4 25,2
160 161 162 163 164 165 166 167 168 169		412 683 952 219 484 748 011 272 531 789	439 710 978 245 511 775 037 298 557 814	466 737 *005 272 537 801 063 324 583 840	493 763 *032 299 564 827 089 350 608 866	520 790 *059 325 590 854 115 376 634 891	548 817 *085 352 617 880 141 401 660 917	844	871 *139 405 669	898 165 431 696 958 220 479 737	656 925 *192 458 722 985 246 505 763 *019	1 2 3 4 5 6 7 8 9	27 2,7 5,4 8,1 10,8 13,5 16,2 18,9 21,6 24,3	26 2,6 5,2 7,8 10,4 13,0 15,6 18,2 20,8 23,4
170 171 172 173 174 175 176 177 178 179		300 553 805 055 304 551 797 042 285	070 325 578 830 080 329 576 822 066 310	096 350 603 855 105 353 601 846 091 334	121 376 629 880 130 378 625 871 115 358	147 401 654 905 155 403 650 895 139 382	172 426 679 930 180 428 674 920 164 406	198 452 704 955 204 452 699 944 188 431	223 477 729 980 229 477 724 969 212 455	249 502 754 *005 254 502 748 993 237 479	274 528 779 *030 279 527 773 *018 261 503		1 2, 2 5, 3 7, 4 10, 5 12, 6 15, 7 17, 8 20, 9 22,	5 0 5 0 5 0 5 0 5
180 181 182 183 184 185 186 187 188 189	26 27	527 768 007 245 482 717 951	551 792 031 269 505 741 975 207 439 669	575 816 055 293 529 764	600 840 079 316 553 788	624 864 102 340 576 811 *045 277 508 738	648 888 126 364 600 834	672 912 150 387 623 858	696 935 174 411 647 881 *114 346 577 807	720 959 198 435 670 905	744 983 221 458 694 928 *161 393 623 852	1 2 3 4 5 6 7 8 9	24 2,4 4,8 7,2 9,6 12,0 14,4 16,8 19,2 21,6	23 2,3 4,6 6,9 9,2 11,5 13,8 16,1 18,4 20,7
190 191 192 193 194 195 196 197 198 199	29	875 103 330 556 780 003 226 447 667 885	898 126 353 578 803 026 248 469 688 907	921 149 375 601 825 048 270 491 710 929 146	944 171 398 623 847 070 292 513 732 951	967 194 421 646 870 092 314 535 754 973	217 443 668 892 115 336 557 776	240 466 691 914 137 358 579 798	262 488 713 937 159 380 601 820	285 511 735 959 181 403 623 842	*081 307 533 758 981 203 425 645 863 *081	1 2 3 4 5 6 7 8 9	22 2,2 4,4 6,6 8,8 11,0 13,2 15,4 17,6 19,8	21 2,1 4,2 6,3 8,4 10,5 12,6 14,7 16,8 18,9
N.		0	1	2	3	4	5	6	. 7	8	9	Pro	portio parts	nal

-													
N.		0	1	2	3	4	5	6	7	8	9		ortional parts
200 201 202 203	30	103 320 535 750	125 341 557 771	146 363 578 792	814	190 406 621 835	211 428 643 856	664 878	471 685 899	492 707 920	514 728 942	1 2	22 21 2,2 2,1 4,4 4,2 6,6 6,3
204 205 206 207 208	31	963 175 387 597 806	984 197 408 618 827	*006 218 429 639 848	*027 239 450 660 869	*048 260 471 681 890	*069 281 492 702 911	*091 302 513 723 931	323	*133 345 555 765 973	*154 366 576 785 994	6 7	8,8 8,4 11,0 10,5 13,2 12,6 15,4 14,7 17,6 16,8
209	32	015	035	056	077	098	118	139	160	181	201		17,6 16,8 19,8 18,9
210 211 212 213 214 215 216 217 218 219		222 428 634 838 041 244 445 646 846 044	243 449 654 858 062 264 465 666 866 064	263 469 675 879 082 284 486 686 885 084	284 490 695 899 102 304 506 706 905 104	305 510 715 919 122 325 526 726 925 124	325 531 736 940 143 345 546 746 945 143	346 552 756 960 163 365 566 766 965 163	366 572 777 980 183 385 586 786 985 183	387 593 797 *001 203 405 606 806 *005 203	408 613 818 *021 224 425 626 826 *025 223	1 2 3 4 5 6 7 8 9	20 2,0 4,0 6,0 8,0 10,0 12,0 14,0 16,0 18,0
220 221 222 223 224 225 226 227 228 229	35	242 439 635 830 025 218 411 603 793 984	262 459 655 850 044 238 430 622 813 *003	282 479 674 869 064 257 449 641 832 *021	301 498 694 889 083 276 468 660 851 *040	321 518 713 908 102 295 488 679 870 *059	341 537 733 928 122 315 507 698 889 *078	361 557 753 947 141 334 526 717 908 *097	380 577 772 967 160 353 545 736 927 *116	400 596 792 986 180 372 564 755 946 *135	420 616 811 *005 199 392 583 774 965 *154	1 2 3 4 5 6 7 8	19 1,9 3,8 5,7 7,6 9,5 11,4 13,3 15,2 17,1
230 231 232 233 234 235 236 237 238 239	37	173 361 549 736 922 107 291 475 658 840	192 380 568 754 940 125 310 493 676 858	773 959 144 328 511 694 876	229 418 605 791 977 162 346 530 712 894	248 436 624 810 996 181 365 548 731 912	267 45\$ 642 829 *014 199 383 566 749 931	286 474 661 847 *033 218 401 585 767 949	305 493 680 866 *051 236 420 603 785 967	254 438 621 803	342 530 717 903 *088 273 457 639 822 *003	1 2 3 4 5 6 7 8 9	18 1,8 3,6 5,4 7,2 9,0 10,8 12,6 14,4 16,2
240 241 242 243 244 245 246 247 248 249 250	39	021 202 382 561 739 917 094 270 445 620	039 220 399 578 757 934 111 287 463 637	057 238 417 596 775 952 129 305 480 655	075 256 435 614 792 970 146 322 498 672 846	093 274 453 632 810 987 164 340 515 690 863	112 292 471 650 828 *005 182 358 533 707 881	130 310 489 668 846 *023 199 375 550 724	148 328 507 686 863 *041 217 393 568 742 915	166 346 525 703 881 *058 235 410 585 759 933	184 364 543 721 899 *076 252 428 602 777 950	123456789	17 1,7 3,4 5,1 6,8 8,5 10,2 11,9 13,6 15,3
N.		0	1	2	3	4	5	6	7	8	9		ortional arts

_												
N.	0	1	2	3	4	5	6	7	8	9~		ortional arts
250 251 252	39 794 967 40 140	811 985 157	829 *002 175	846 *019 192	863 *037 209	881 *054 226	898 *071 243	915 *088 261	933 *106 278	950 *123 295	1 2	18 1,8 3,6
253 254	312 483 4654	329 500	346 518	364 535	381 552		415 586	432 603	449 620	466 637	3 4	5,4 7,2
$\frac{255}{256}$	824	671 841	688 858	705 875	722 892	739 909	756 926	773 943	790 960	807 976	5 6	9,0 10,8
257 258 259	993 41 162 330	*010 179 347	*027 196 363	*044 212 380	*061 229 397	*078 246 414	*095 263 430	*111 280 447	*128 296 464	*145 313 481	7 8 9	12,6 14,4 16,2
260	497	514	531	547	564	581	597	614	631	647		17
261 262	830	681 847	697 863 *029	714 880 *045	731 896 *062	747 913 *078	764 929 *095	780 946 *111	797 963	814 979	1 2 3	1,7 3,4
263 264 265	42 160 325	*012 177 341	193 357	210 374	226 390	243 406	259 423	275 439	*127 292 455	308 472	4 5	5,1 6,8 8,5
266 267	488 651	504 667	521 684	537 700	553 716	570 732	586 749	602 765	619 781	635 797	6 7	10,2 11,9
268 269	813 975	8€9 991	*008	862 *024	878 *040	*056	911 *072	927 *088	943 *104	959 *120	8 9	13,6 15,3
270 271	43 136 297	152 313	169 329	185 345	201 361	217 377	233 393	249 409	$\begin{array}{c} 265 \\ 425 \end{array}$	281 441	1	16 1,6
272 273 274	457 616	473 632	489 648	505 664	521 680	537 696 854	553 712 870	569 727 886	584 743	600 759	2 3 4	3,2 4,8
274 275 276	775 933 44 091	791 949 107	807 965 122	823 981 138	838 996 154		*028 185		902 *059 217	917 *075 232	5 6	6,4 8,0 9,6
277 278	248 404	264 420	279 436	$\frac{295}{451}$	311 467	326 483	342 498	$\frac{358}{514}$	373 529	389 545	7 8	11,2 12,8
279 280	560 716	576 731	592 747	607 762	623 778	638 793	654 809	669 824	685 840	700 855	9	14,4 15
281 282	45 025	886 040	902 056	917 071	932 086	948 102	963 117	979 133	994 148	*010 163	1 2	1,5 3,0
283 284	179 332 484	194 347 500	209 362 515	225 378 530	240 393 545	255 408 561	271 423 576	286 439 591	301 454 606	317 469 621	3 4 5	4,5 6,0 7,5
285 286 287	637 788	652 803	667 818	682 834	697 849	712 864	728 879	743 894	758 909	773 924	6 7	9,0 10,5
288 289	939 46 090	$\frac{954}{105}$	969 120	984 135	*000 150	*015 165	*030 180	*045 195	*060 210	*075 225	8 9	12,0 13,5
290 291	240 389	255 404	270 419	285 434	300 449	315 464	330 479	345 494	359 509	374 523	1	14 1,4
292 293	538 687	553 702	568 716	583 731	598 746	613 761	627 776 923	790	657 805	672 820	3	2,8 4,2
294 295 296	835 982 47 129	850 997 144	864 *012 159	879 *026 173	894 *041 188	909 *056 202		938 *085 232	953 *100 246	967 *114 261	4 5 6	5,6 7,0 8,4
297 298	276 422	290 436	305 451	319 465	334 480	349 494	363 509	378 524	392 538	407 553	7 8	9,8 11.2
299 300	567 712	582 727	596 741	611 756	625 770	640 784	654 799	669 813	683 828	698. 842	9	12,6
-										-		
N.	0	1	2	3	4	5	6	7	8	9		ortional arts
_	1					1					1	

									1				
N.	, 0		1	2	3	4	- 5	6	7	8	9		ortional arts
300	47 7	12	727	741	756	770	784	799	813	828	842		tana a
301		57	871	885	900	914	929	943	958	972	986		
302	48 0	กับ	015	029	044	058	073	087	101	116	130		
202		44	159	173	187	202	216	230	244.	259	273		15
303			302~	316	330	344	359	373	387	401	416	1.1	1.5
304		87			473	487	501	515	530	544	558	2	3,0
305		30	444	458	615	629	643	657	671	686	700	3	4,5
306		72	586	601		770	785	799	813	827	841	4	6,0
307		14	728	742	756		926	940	954	968	982	5	7,5
308		55	869	883	897	911	*066				*122	6	9,0
309	.9	96 1	610 °	*024 °	*038	* 052	*000	"000	.094	.100	.122	7	10.5
040	40.1	26	150	164	178	192	206	220	234	248	262	8	12,0
310	49 1		290	304	318	332	346	360	374	388	402	9	13,5
311		76		443	457	471	485	499	513	527	541	,	
312		15	429			610	624	638	651	665	679		
313		54	568	582	596	748	- 762	776	790	803	817		
314		93	707	721	734		900	914	927	941	955		14
315	١ . ١	31	845	859	872	886		*051			*092	.1	1,4
316		69	982			*024	174	188	202	215	229	1 2	2.8
317	50 1		120	133	147	161	311	325	338	352	365	3	4,2
318		43	256	270	284	297	447	325 461	474	488	501	4	5,6
319	٤	79	393	406	420	433	221	401	212	100	301	5	7,0
320	,	515	529	542	556	569	583	596	610	623	637	6	8,4
321	1 6	551	664	678	691	705	718	732	745	759	772	7	9,8
322		86	799	813	826	840	853	866	880	893	907	8	11,2
323		20	934	947	961	974	987	*001			*041	9	12,6
324	51 (55	068	081	095	108	121	135	148	162	175		
325	1	188	202	215	228	-242	255	268	282	295	308	1	
326		322	335	348	362	375	388	402	415	428	441		and and a
327		155	468	481	495	508	521	534	548	561	574		13
328	1 1	587	601	614	627	640	654	667	680	693	706	1	1,3
329		720	733	746	759	772	786	799	812	825	838	3	2,6 3,9
			005	070	001	004	917	930	943	957	970	4	5,2
330		351	865	878	*000	904 *035		*061		*088		5	6,5
331		983			*022		179		205	218	231	6	7,8
332		114	127	140	153	166	310		336	349	362	7	9,1
333		244	257	270	284	297			466	479	492	8	10,4
334		375	388	401	414	427	440		595		621	9	11,7
335 336		504	517	530	543	556	569		724	608 737	750	9	1 11/1
336	1	634	647	660	673	686	699			866	879		
337		763	776	789	802	815	827	840			*007	1	
338		892	905	917	930	943	956			$\frac{994}{122}$			12
339	53	020	033	046	058	071	084	097	110	144	₃ 135	1	1,2
940		110	161	173	186	199	212	224	237	250	263	2	2,4
340		148		301	314	326	339					3	3,6
341		275	288 415	428		453	466		491			4	4,8
342		403				580	593					5	6,0
343		529	542	555 681	694	706	719				769	6	7,2
344		656	668		820	832	845					7	8,4
345		782	794	807		958	970					8	9,6
346		908	920	933			095					9	10,8
347	54	033	045	058			220					1	, 10,0
348 349	1	$\frac{158}{283}$	170 295	183 307			345					1	
							1						
350		407	419	432	444	456	469	481	494	: 500	. 919		
N.		0	1	2	3	4	5	6	7	8	. 9		portion
11.	1	Ť, :	-	_	•		1					11	parts
	1 -						11					11	

N.		. 0	1	2	3	4	5	6	7	8	9		portiona parts
3 50 351	54	407					469						
352		531 654	543 667	555 679	568 691		593					11	
353	ł	777	790				716 839	728 851				11	
354	l	900			937	949	962					١.	13
355	55						084					1 2	1,3
356	ı	145	157	169			206					3	2,6 3,9
357		267	279	291			328		352	364		4	5,2
358		388	400				449	461		485		5	6,5
359		509	522	534	546	558	570	582	594	606	618	6	7.8
160		630	642	654	666	678	691	703	715	727	739	8	9,1
361		751	763	775	787	799	811	823	835			9	10,4 11,7
862	l	871	883			919	931	943	955	967			1 11,,
63			*003			*038	*050						
64 65	90	110 229	$\frac{122}{241}$	134 253		158	170	182				11	
66		348	360			277 396	289 407	301 419	312			_	12
67		467	478				526	538		443 561		1	1,2
68		585	597	608		632	644	656		679		3	2,4
69		703	714			750	761	773		797		4	3,6 4,8
70		820	832	844	855	007	879	001	000			5	6.0
71		937	949	961	972	867 984	996	891 *008	902 *019	914 *031		6	7,2
72	57	054	066	078	089	101	113	124	136	148		8	8,4
73		171	183	194	206	217	229	241	252	264	276	ŝ	9,6 10,8
74		287	299	310	322	334	345	357	368	380	392	"	10,0
75 76		403	415	426	438	449	461	473	484	496	507		
77		519 634	530 646	542 657	553 669	565	576	588	600	611	623		
78		749	761	772	784	680 795	692 807	703 818	715 830	726 841	738		11
79		864	875	887	898	910	921	933	944	955	852 967	1 2	1,1 2,2
во		978	990	*001	*013	*024	*035	*047	*058	*070	*081	3	2,2 3,3
81	58	092	104	115	127	138	149	161	172	184	195	4 5	4,4 5,5
82		206	218	229	240	252	263	274	286	297	309	Ä	6.6
83 84		320	331	343	354	365	377	388	399	410	422	6 7	6,6 7,7
85		433 546	444 557	456 569	467	478	490	501	512	524	535	8	8,8
36		659	670	681	580 692	591 704	602 715	614 726	$\frac{625}{737}$	636	647	9	9,9
37		771	782	794	805	816	827	838	850	749 861	760 872	l	
38		883	894	906	917	928	939	950	961	973	984	1	1.8
39		995	*006	*017	*028	*040	*051				*095		10
90	59	106	118	129	140	151	162	173	184	195	207	1	1,0
91	-	218	229	240	251	262	273	284	295	306	207 318	2 3	2,0 3,0
2		329	340	351	362	373	384	395	406	417	428	. 4	3,0 4,0
3		439	450	461	472	483	494	506	517	528	539	5	5,0
04 05		550 660	561	572	583	594	605	616	627	638	649	6	6,0
6		770	671 780	682 791	693 802	704 813	715 824	726 835	737	748	759	7	7,0
97		879	890	901	912	923	934	945	846 956	857 966	868 977	8	8,0
98		988				*032			*065		*086	9,	9,0
99	60	097	108	119	130	141	152	163	173	184	195	-	
00		206	217	228	239	249	260	271	282	293	304		68 612
1.		0	1	2	3	4	5	6	7	8	9	Propo	rtional

							ī						
N.		0	1	2	3	4	5	6	7	8	9		rtional rts
100	60	206	217	228	239	249	260	271	282	293	304		
101		314	325	336	347	358	369	379	390	401	412		
102		423 531	433 541	444 552	455 563	466 574	477 584	487 595	498 606	509 617	520 627		
103 104		638	649	660	670	681	692	703	713	724	735		
105		746	756	767	778	788	799	810	821	831	842	- 1	
106		853	863	874	885	895	906	917	927	938	949		a'a
107		959	970	981	991			*023 130	*034 140	*045 151	*055 162	1	11
108 109	61	$\begin{array}{c} 066 \\ 172 \end{array}$	077 183	$\begin{array}{c} 087 \\ 194 \end{array}$	098 204	109 215	119 225	236	247	257	268	3	1,1 2,2 3,3
410		278	289	300	310	321	331	342	352	363	374	4	4,4
111		384	395	405	416	426	437 542	448 553	458 563	469 574	479 584	5	5,5 6,6
112		490	500 606	511 616	521 627	532 637	648	658	669	679	690	6 7 8	7,7
413 414	-	595 700	711	721	731	742	752	763	773	784	794		8,8
415		805	815	826	836	847	857	868	878	888	899	9	9,9
116		909	920	930	941	951	962	972	982		*003		
417	62	014	024	034	045	055	066	076	086	097 201	$\frac{107}{211}$	İ	
418 419		$\frac{118}{221}$	$\frac{128}{232}$	138 242	149 252	159 263	170 273	$\frac{180}{284}$	$\begin{array}{c} 190 \\ 294 \end{array}$	304	315		
420		325	335	346	356	366	377	387	397	408	418		10
121		428	439	449	459	469	480	490	500 603	511 613	521 624	1 2	1,0 2,0
22		531	542	552	562 665	572 675	583 685	593 696	706	716	726	3	3,0
123 124	1	634 737	644 747	655 757	767	778	788	798	808	818	829	4	4,0
125		839	849	_859	870	880	890	900	910	921	931	5	5,0
426		941	951	961	972	982		*002			*033	6	6,0
427	63	043	053	063	073	083	094	104 205	$\frac{114}{215}$	124 225	134 236	8	7,0 8,0
428 429		144 246	155 256	165 266	175 276	185 286	195 296	306	317	327	337	9	9,0
430		347	357	367	377	387	397	407	417	428	438		
431		448	458	468	478	488	498	508 609	518 619	528 629	538 639		
432	١	548	558	568	579	589	599 699	709	719	729	739		
433 434		649 749	659 759	669 769	679	689 789	799	809	819	829	839		
435		849	859	869	779 879	889	899	909	919	929	939		9
436	1	949	959	969	979	988		*008		*028	*038	1	0,9
437	64	048	058	068	078	088	098	108	118	128	137	2 3	1,8 2,7
438 439		147 246	157 256	167 266	177 276	187 286	197 296	$\frac{207}{306}$	$\frac{217}{316}$	$\frac{227}{326}$	$\begin{array}{c} 237 \\ 335 \end{array}$	4 5	3,6
440		345	355	365	375	385	395			424	434	6 7	4,5 5,4
441	1	444	454	464	473	483	493 591	503 601	513 611	523 621	532 631	8	6,3 7,2 8,1
442	l	542	552 650	562 660	572 670	582 680	689			719	729	∥° 9	8,1
443 444		640 738	748	758	768	777	787	797	807	816	826	1	
445	1	836	846	856	865	875	885			914		.	
446		933	943	953	963	972	982					1	
447	65	031	040	050	060	070	079 176					' '	
448 449	1	128 225	137 234	147 244	$157 \\ 254$	167 263	273						
450		321	331	341	350	360	369	379	389	398	408		
N.		0	1	2	3	4	5	6	7	8	9		ortional arts

N.	0	1	2	3	4	5	6	7	8	9		ortional
450 451 452 453 454 455 456 457 458 459 460 461 462	65 321 418 514 610 706 801 896 992 66 087 181 276 370 464	331 427 523 619 715 811 906 *001 096 191 285 380 474	341 437 533 629 725 820 916 *011 106 200 295 389 483	350 447 543 639 734 830 925 *020 115 210 304 398 492	360 456 552 648 744 839 935 *030 124 219 314 408 502	369 466 562 658 753 849 944 *039 134 229 323 417 511	379 475 571 667 763 858 954 *049 143 238 332 427 521	389 485 581 677 772 868 963 *058 153 247 342 436 530	495 591 686 782 877 973	408 504 600 696 792 887 982 *077 172 266 361 455 549	1 2 3 4 5 6	10 1,0 2,0 3,0 4,0 5,0 6,0
463 464 465 466 467 468 469	558 652 745 839 932 67 025 117	567 661 755 848 941 034 127	577 671 764 857 950 043 136	586 680 773 867 960 052 145	596 689 783 876 969 062 154	605 699 792 885 978 071 164	614 708 801 894 987 080 173	624 717 811 904 997 089 182	633 727 820 913	642 736 829 922 *015 108 201	7 8 9	7,0 8,0 9,0
470 471 472 473 474 475 476 477 478 479	210 302 394 486 578 669 761 852 943 68 034	219 311 403 495 587 679 770 861 952 043	228 321 413 504 596 688 779 870 961 052	237 330 422 514 605 697 788 879 970 061	247 339 431 523 614 706 797 888 979 070	256 348 440 532 624 715 806 897 988 079	265 357 449 541 633 724 815 906 997 088	274 367 459 550 642 733 825 916 *006 097	284 376 468 560 651 742 834 925 *015	293 385 477 569 660 752 843 934 *024 115	123456789	9 1,8 2,7 3,6 4,5 5,4 6,3 7,2 8,1
480 481 482 483 484 485 486 487 488 489	124 215 305 395 485 574 664 753 842 931	133 224 314 404 494 583 673 762 851 940	142 233 323 413 502 592 681 771 860 949	151 242 332 422 511 601 690 780 869 958	160 251 341 431 520 610 699 789 878 966	169 260 350 440 529 619 708 797 886 975	178 269 359 449 538 628 717 806 895 98 4	187 278 368 458 547 637 726 815 904 993	196 287 377 467 556 646 735 824 913 *002	205 296 386 476 565 655 744 833 922 *011	1 2 3 4 5	8 0,8 1,6 2,4 3,2 4,0
490 491 492 493 494 495 496 497 498 499	69 020 108 197 285 373 461 548 636 723 810	028 117 205 294 381 469 557 644 732 819	037 126 214 302 390 478 566 653 740 827	046 135 223 311 399 487 574 662 749 836	055 144 232 320 408 496 583 671 758 845	064 152 241 329 417 504 592 679 767 854	073 161 249 338 425 513 601 688 775 862	082 170 258 346 434 522 609 697 784 871	090 179 267 355 443 531 618 705 793 880	099 188 276 364 452 539 627 714 801 888	6 7 8 9	4,8 5,6 6,4 7,2
500 N.	897	906	914	923	932	940	949 6	958 7	8	975		rtional erts

N.		0	1	2	3	4	5	6	7	. 8	9	Proportional parts
500 501 502 503 504 505 506 507 508 509	70 0 1 2 3 4 5	84	906 992 079 165 252 338 424 509 595 680	914 *001 * 088 174 260 346 432 518 603 689	923 *010 * 096 183 269 355 441 526 612 697	932 *018 105 191 278 364 449 535 621 706	940 *027 114 200 286 372 458 544 629 714	949 *036 122 209 295 381 467 552 638 723	958 *044 131 217 303 389 475 561 646 731	966 *053 140 226 312 398 484 569 655 740	975 *062 148 234 321 406 492 578 663 749	9 1 0,9 2 *1,8 3 2,7
510 511 512 513 514 515 516 517 518 519	71 (757 342 927 912 996 181 265 349 433 517	766 851 935 020 105 189 273 357 441 525	774 859 944 029 113 198 282 366 450 533	783 868 952 037 122 206 290 374 458 542	791 876 961 046 130 214 299 383 466 550	800 885 969 054 139 223 307 391 475 559	808 893 978 063 147 231 315 399 483 567	817 902 986 071 155 240 324 408 492 575	825 910 995 079 164 248 332 416 500 584	834 919 *003 088 172 257 341 425 508 592	4 3,6 6 4,5 6 5,4 7 6,3 8 7,2 9 8,1
520 521 522 523 524 525 526 527 528 529	72	600 684 767 850 933 016 099 181 263 346	609 692 775 858 941 024 107 189 272 354	617 700 784 867 950 032 115 198 280 362	625 709 792 875 958 041 123 206 288 370	634 717 800 883 966 049 132 214 296 378	642 725 809 892 975 057 140 222 304 387	650 734 817 900 983 066 148 230 313 395	659 742 825 908 991 074 156 239 321 403	667 750 834 917 999 082 165 247 329 411	675 759 842 925 *008 090 173 255 337 419	8 1 0,8 2 1,6 3 2,4 4 3,2 5 4,0 6 4,8 7 5,6 8 7,2
530 531 532 533 534 535 536 537 538 539	73	428 509 591 673 754 835 916 997 078 159	436 518 599 681 762 843 925 *006 086 167	444 526 607 689 770 852 933 *014 094 175	452 534 616 697 779 860 941 *022 102 183	460 542 624 705 787 868 949 *030 111 191	469 550 632 713 795 876 957 *038 119	477 558 640 722 803 884 965 *046 127 207	485 567 648 730 811 892 973 *054 135 215	143	665 746 827 908 989 *070 151	7 1 0,7 2 1,4 3 2,1 4 2,8 5 3,5
540 541 542 543 544 545 546 547 548 549		239 320 400 480 560 640 719 799 878 957	965	973	263 344 424 504 584 664 743 823 902 981	272 352 432 512 592 672 751 830 910 989	280 360 440 520 600 679 759 838 918 997	926 *005	376 456 536 616 695 775 854 933 *013	384 464 544 6 624 6 703 6 783 862 8 941 8 *020	392 472 552 632 711 791 2 870 949 3 *028	5 3,5 6 4,2 7 4,9 8 5,6 9 6,3
N.		0	1	,	3	4	5	6	7	.8	9	Proportional parts

									2.4	•		• .
N.		0	1	2	3	4	5	.6	7	8	9	Proportional parts
550	7	1 036		052	2 060	068	076				9 107	7
551	1	115			139		155	162	170			
552 553	١.	194 273					233 312					
554	1	351					390					
555	1	429	437	445	453	461	468					
556	1	507					547				578	3
557 558		586 663	593 671				624			648	656	5 -
559		741					702 780					
	1											li .
560 561	ľ	819 896					858					
562	l	974				*005	935 *012			958	3 966 5 *0 43	
563	75	051	059				089	097	105	113	3 120	
564	1	128	136	143	151	159	166			189	197	3 2,4 4 3,2
565	l	205	213		228	236	243	251	259	266	274	5 4.0
566 567		282	289				320					6 4,8
568		358 435	366 442			389 465	397					7 5,6
569		511	519				473 549		488 565			8 6,4 9 7,2
570		587	F0F	400	010							"
571		664	595 671	603 679		618 694	626 702	633 709	641 717	648 724		H
572		740	747	755	762	770	778	785	793			
573		815	823	831	838	846	853	861	868			ll .
574 575		891	899	906	914	921	929	937	944	952	959	
576	76	967 042	974 050	982	989	997		*012		*027		
577	•	118	125	057 133	065 140	072 148	080 155	087 163	095 170			
577 578		193	200	208	215	223	230	238	245	178 253	185 260	
579		268	275	283	290	298	305	313	320	328		ll·
580		343	350	358	365	373	380	388	395	403	410	7
581 582		418	425	433	440	448	455	462	470	477	485	1 0,7
583		492 567	500 574	507 582	515 589	522	530	537	545	552	559	2 1 1 4
584		641	649	656	664	597 671	604 678	612 686	619 693	626 701	634	3 2,1
585		716	723	730	738	745	753	760	768	775	708 782	4 2,8 5 3,5 6 4,2
586		790	797	805	812	819	827	834	842	849	856	6 4,2
587 588		864	871	879	886	893	901	908	916	923	930	1 7 4.9
589	77	938 012	945 019	953 026	960 034	967 041	975 048	982 056	989	997	*004	8 5,6
1	•					- 1			003	070	078	9 6,3
590 591	, -	085 159	093	100	107	115	122	129	137	144	151	
592		232	166 240	$\frac{173}{247}$	181 254	188 262	195	203 276	210	217	225	
593		305	313	320	327	335	269 342	349	283 357	291 364	298 371	,
594		379	386	393	401	408	415	422	430	437	444	
595		452	459	466	474	481	488	495	503	510	517	
596 597		525 597	532 605	539	546	554	561	568	576	583	590	
598		670	-677	612 685	619 692	627 699	634 706	$\frac{641}{714}$	648 721	656 728	663	
599		743	750	757	764	772	779	786	793	728 801	735 808	
600		815	822	830	837	844	851	859	866	873	880	
N.		0	1	2	3	4	5	6	7	8	9.	Proportional parts

	_								-			
N.		0	1	2	3	4	5.	6	7	8	9	Proportional parts
600	77	815	822	830	837	844	851	859	866	873	880	
601	١.,	887	895	902	909	916	924	931	938			II
602	1	960	967	974	981	988	996	*003				1
603	78	032	039	046	053	061	068	075	082	089	097	1
604		104	111	118	125	132	140	147	154			1 .
605	ŀ	176	183	190	197	204	211	219	226			11
606	ł	247	254	262	269	276	283	290	297	305		医 2000年100年100年
607	1	319	326	333	340	347	355	362	369			8
608	l	390	398	405	412	419	426	433	440		455	1 0,8
609		462	469	476	483	490	497	504	512	519	526	2 1,6 3 2,4
610		533	540	547	554	561	569	576	.583 654	590	597 668	4 3,2
611 612	1	604 675	611	618	625 696	633 704	640 711	647 718	725	661 732	739	
613	1	746	682 753	689 760	767	774	781	789	796	803	810	6 4,8 7 5,6
814	1	817	824	831	838	845	852	859	866	873	880	8 6,4
615	l	888	895	902	909	916	923	930	937	944	951	9 7,2
616	l	958	965	972	979	986		*000				(Market Control
317	70	029	036	043	050	057	064	071	078	085	092	1
318	١.,	099	106	113	120	127	134	141	148	155	162	
319		169	176	183	190	197	204	211	218	225	232	
620		239	246	253	260	267	274	281	288	295	302	7
621		309	316	323	330	337	344	351	358	365	372	1 0,7
322 323	1	379	386		400	407	414	421	428	435	442	2 1,4
323		449	456	463	470	477	484	491	498	505	511	3 2,1
324	l	518	525	532	539	546	553	560	567	574	581	4 2,8
325	ŀ	588	595	602	609	616	623	630	637	644	650	5 3,5
326		657	664	671	678	685	692	699	706	713	720	6 4,2
327		727	734	741	748	754	761	768	775	782	789	7 4,9
28 29		796 865	803 872	810 879	817 886	824 893	831 900	837 906	844 913	851 920	858 927	8 5,6 9 63
330		934	941	948	955	962	969	975	982	989	996	
631	80		010	017	024	030	037	044	051	058	065	
332	-	072	079	085	092	099	106	113	120	127	134	
333		140	147	154	161	168	175	182	188	195	202	
334		209	216	223	229	236	243	250	257	264	271	
35		277	284	291	298	305	312	318	325	332	339	6
336		346	353	359	366	373	380	387	393	400	407	1 0,6
37 38		414	421	428	434	441	448	455	462	468	475	2 1,2
38		482	489	496	502	509	516	523	530	536	543	3 1,8
39		550	557	564	570	577	584	591	598	604	611	4 2,4 5 3,0
40		618	625	632	638	645	652	659	665	672	679	6 3,6
41		686	693	699	706	713	720 787	726	733	740	747	7 4,2 8 4,8
42		754	760	767	774	781	184	794	801	808	814	8 4,8 9 5,4
43		821 889	828 895	835 902	841 909	848 916	855 922	862 929	868 936	875 943	882 949	9 0,±
45		956	895 963	969	976	983	990				*017	
46	21	023	030	037	043	050	057	064	070	077	084	1.0
47	01	023	097	104	111	117	124		137	144	151	
48		158	164	171	178	184	191	198	204	211	218	
49		224	231	238	245	251	258	265	271	278	285	
50		291	298	305	311	318	325	331	338	345	351	
N.		0	1	2	3	4	5	6	7	8	9	Proportional parts
				•		`						parts

N.		0	1	2	3	4	5	6	7	8	9	Proportional parts
650	81	291	298	305	311	318	325	331	338	345	351	
651 652		358 425	365 431	371 438	378 445	$\frac{385}{451}$	391 458	398 465	$\frac{405}{471}$	411 478	418 485	l
653		491	498	505	511	518	525	531	538	,544	551	
654	1	558	564	571.	578	584	591	598	604	611	617	
655		624	631	637	644	651	657	664	671	677	684	
656 657	1	690 757	697	704	710	717	723	730	737	743	750	}
657 658		757	763	770 836	776	783 849	790 856	796 862	803 869	809 875	816 882	
659	ľ	823 889	829 895	902	842 908	915	921	928	935	941	948	*
660		954	961	968	974	981	987		*000			7
661	82	020	027	033	040	046	053	060	066	073	079 145	1 0,7
662 663		086 151	092 158	099 164	105 171	112 178	119 184	125 191	132 197	138 204	210	2 1,4 3 2,1
664		217	223	230	236	243	249	256	263	269	276	1 4 2.8
665	l	282	289	295	302	308	315	321	328	334	341	5 3,5
666		347	354	360	367	373	380	387	393	400	406	6 4,2
667		413	419	426	432	439	445	452	458	465	471	7 4,9 8 5,6
668 669	İ	478 543	484 549	491 556	497 562	504 569	510 575	517 582	523 588	530 595	536 601	8 5,6 9 6,3
670		607	614	620	627	633	640	646	653	659	666	
671		672	679	685	692	698	705	711	718	724	730 795	
672		737	743	750	756	763	769 835	776 840	782 847	789 853	795 860	
673 674		802 866	808 872	814 879	821 885	827 892	898	905	911	918	924	
675	1	930	937	943	950	956	963	969	975	982	988	
676		995	*001	*008	*014	*020	*027		*040		*052	
677	83	059	065	072	078	085	091	097	104	110	117	1 to
678 679		$\frac{123}{187}$	129 193	136 200	142 206	$\begin{array}{c} 149 \\ 213 \end{array}$	155 219	$\frac{161}{225}$	$\begin{array}{c} 168 \\ 232 \end{array}$	174 238	181 245	
680		251	257	264	270	276	283	289	296	302	308	6
681		315	321	327	334	340	347	353	359	366	372	1 0,6
682 683		378	385	391	398	404	410 474	417 480	$\frac{423}{487}$	429 493	436 499	2 1,2 3 1,8
684		442 506	448 512	455 518	461 525	467 531	537	544	550	556	563	4 2,4
685		569	575	582	588	594	601	607	613	620	626	5 3.0
686		632	639	645	651	658	664	670	677	683	689	6 3,6
687		696	702	708	715	721	727	734	740	746	753	7 4,2
688 689		759 822	765 828	771 835	778 841	784 847	790 853	797 860	803 866	809 872	816 879	8 4,8 9 5,4
690		885	45.3	897	904	910	916	923	929	935	942	
691		948	954	960	967	973	979	985	992	998	*004	
692	84	011		023	029	036	042	048	055	061	067	
693	l	073		086 148	092 155	098	105 167	111 173	117 180	123 186	130 192	
694 695	l	136 198		211	217	$\frac{161}{223}$	230	236	242	248	255	-
696	l	261	267	273	280	286	292	298	305	311	317	
697	1	323	330	336	342	348	354	361	367	373	379	
698	1	386	392	398	404	410	417	423	429	435	442	
699		448		460	466	473	479	485	491	497	504	a
700		510	516	522	528	535	541	547	553	559	566	1 1 1 1 1 1 1 1 1
N.		0	1	2	3	4	5	6	7	8	9	Proportional parts
	1		-				II					

- 1	_						I				- 1	1	
N.		0	1	2	3	4	5	6	7	8	9		rtional arts
700	01	510	516	522	528	535	541	547	553	559	566		
701	01	572	578	584	590	597	603	609	615	621	628	1	
702 l	l	634	640	646	652	658	665	671	677	683	689	l .	
703 704		696	702	708	714	720	726	733	739	745	751 813	i	
704		757	763	770	776	782	788	794	800	807	813		1
705		819	825	831	837	844	850	856	862	868	874		
706		880	887	893	899 960	905	911 973	917 979	924 985	930 991	936 997	1	7
707 708	05	942 003	948 009	$\frac{954}{016}$	022	967 028	034	040	046	052	058	1	
709	00	065	071	077	083	089	095	101	107	114	120	2	0,7 1,4
710		126	132	138	144	150	156	163	169	175	181	2 3 4 5 6 7	2,1 2,8 3,5
711		187	193	199	205	211	217	224	230 291	236	242 303	5	3,5 4,2
711 712 713		248	254	260	266	272	278 339	$\frac{285}{345}$	352	297 358	364	7	4,9
714		309 370	$\frac{315}{376}$	$\frac{321}{382}$	$\frac{327}{388}$	333 394	400	406	412	418	425	8	5,6
715		431	437	443	449	455	461	467	473	479	485	9	6,3
716 l		491	437 497	503	509	516	522	528	534	540	546		•
717 718		552	558	564	570	576	582	588	594	600	606	1	
718		612	618	625	631	637	643	649	655	661	667		
119		673	679	685	691	697	703	709	715	721	727		
720		733	739	745 806	$\begin{array}{c} 751 \\ 812 \end{array}$	757 818	763 824	769 830	775 836	781 842	788 848		6
21		794 854	800 860	866	872	818	884	890	896	902	908	1	0.6
22 23		914	920	926	932	938	944	950	956	962	968	2	0,6 1,2
24		974	980	986	992	998	*004	*010	*016	*022	*028	3	1.8
24 25	86	034	040	046	052	058	064	070	076	082	088	4	2,4
726 I		094	100	106	112	118	124	130	136	141	147	5	3,0
27		153	159	165	171	177	183 243	189	195	$\frac{201}{261}$	207 267	9	3,6
28 29		$\begin{array}{c} 213 \\ 273 \end{array}$	$\begin{array}{c} 219 \\ 279 \end{array}$	$\begin{array}{c} 225 \\ 285 \end{array}$	$\frac{231}{291}$	237 297	303	$\frac{249}{308}$	$\frac{255}{314}$	320	326	2 3 4 5 6 7 8	4,2 4,8
730		332	338	344	350	356	362 421 481	368	374	380	386	9	5,4
731 732		$\frac{332}{392}$	398	404	410	415	421	$\frac{368}{427}$	433	439	445		
32		451	457	463	469	475	481	487	493	499	504	1	
33 34		510	516	522	528	534	540	·546	552	558	564 623	l.	
34		570	576	581	587 646	593 652	599	605	611 670	617 676	682		5
35 36		629 688	$635 \\ 694$	641 700	705	711	658 717	723	729	735	741	1	0,5
37		747.	753	759	764	770	776	782	788	794		2	1,0
38		806	812	817	823	829 888	835	841	847	853	859	3	1.5
39		864	870	876	882	888	894	900	906	911	917	2 3 4 5	2,0 2,5 3,0
40		923	929	935	941	947	953	958	964 *023	970 *029	976 *035	6 7 8	3,0 3,5
41	07	982	988	$\frac{994}{052}$	999 058	*005 064	*011 070	*017 075	081	087	093	8	4,0
42 43	87	040 099	046 105	111	116	122	128	134	140	146	151	9	4,5
44		157	163	169	175	181	186	192	198	204	210		-,-
45		216	221	227	233	239 -	245	251	256	262	268		
46	l	216 274	280	286	291	297	303	309	315	320	326		/
47	1	332	338	344	349	355	361	367	373	379	384		
748 749		390 448	396 454	402 460	408 466	$\frac{413}{471}$	419 477	425 483	431 489	437 495	442 500		
750		506	512	518	523	529	535	541	₇ 547	552	558		
N.		0	1	2	3	4	5	6	7	8	9		ortiona arts

N.	. 0	1_	2	3	4	5	6	7	8	9	Proportional parts
750 751 752 753 754 755 756 757 758	87 506 564 622 679 737 795 852 910 967	512 570 628 685 743 800 858 915 973	518 576 633 691 749 806 864 921 978	523 581 639 697 754 812 869 927 984	529 587 645 703 760 818 875 933 990	535 593 651 708 766 823 881 938	541 599 656 714 772 829 887 944 *001	547 604 662 720 777 835 892 950	552 610 668 726 783 841 898 955 *013	558 616 674 731 789 846 904 961	
759	88 024	030	036	041	047	053	058	064	070	076	
760 761 762 763 764 765 766 767 768 769	081 138 195 252 309 366 423 480 536 593	087 144 201 258 316 372 429 485 542 598	093 150 207 264 321 377 434 491 547 604	098 156 213 270 326 383 440 497 553 610	104 161 218 275 332 389 446 502 559 615	110 167 224 281 338 395 451 508 564 621	116 173 230 287 343 400 457 513 570 627	121 178 235 292 349 406 463 519 576 632	127 184 241 298 355 412 468 525 581 638	133 190 247 304 360 417 474 530 587 643	6 1 0,6 2 1,2 3 1,8 4 2,4 5 3,0 6 3,6 7 4,2 8 4,8 9 5,4
770 771 772 773 774 775 776 777 778 779	649 705 762 818 874 930 986 89 042 098 154	655 711 767 824 880 936 992 048 104 159	660 717 773 829 885 941 997 053 109 165	666 722 779 835 891 947 *003 059 115 170	672 728 784 840 897 953 *009 064 120 176	677 734 790 846 902 958 *014 070 126 182	683 739 795 852 908 964 *020 076 131 187	689 745 801 857 913 969 *025 081 137 193	694 750 807 863 919 975 *031 087 143 198	700 756 812 868 925 981 *037 092 148 204	
780 781 782 783 784 785 786 787 788 789	209 265 321 376 432 487 542 597 653 708	215 271 326 382 437 492 548 603 658 713	221 276 332 387 443 498 553 609 664 719	226 282 337 393 448 504 559 614 669 724	232 287 343 398 454 509 564 620 675 730	237 293 348 404 459 515 570 625 680 735	243 298 354 409 465 520 575 631 686 741	248 304 360 415 470 526 581 636 691 746	254 310 365 421 476 531 586 642 697 752	260 315 371 426 481 537 592 647 702 757	5 1 0,5 2 1,0 3 1,5 4 2,0 5 3,0 7 3,5 8 4,0 9 4,5
790 791 792 793 794 795 796 797 798 799	763 818 873 927 982 90 037 091 146 200 255 309	768 823 878 933 988 042 097 151 206 260	774 829 883 938 993 048 102 157 211 266	779 834 889 944 998 053 108 162 217 271	785 840 894 949 *004 059 113 168 222 276	790 845 900 955 *009 064 1173 227 282 336	796 851 905 960 *015 069 124 179 233 287	801 856 911 966 *020 075 129 184 238 293	807 862 916 971 *026 080 135 189 244 298	812 867 922 977 *031 086 140 195 249 304	
N.	0	1	2	3	4	5	6	7	8	9	Proportional parts

N.	0	1	. 2	3	4	5	6	7	8	9	Proportional parts
800	90 309	314	320	325	331	336	342	347	352	358	
801	363	369	374	380	385	390	396	401	407	412	
802	417	423	428	434	439	445	450	455	461	466	
803	472	477	482	488	493	499	504	509	515	520	
804	526	531	536	542	547	553	558	563	569	574	
805	580	585	590	596	601	607	612	617	623	628	
806	634	639	644	650	655	660	666	671	677	682	
807	687	693	698	703	709	714	720	725	730	736	
808	741	747	752	757	763	768	773	779	784	789	
809	795	800	806	811	816	822	827	832	838	843	
810	849	854	859	865	870	875	881	886	891	897	6
811	902	907	913	918	924	929	934	940	945	950	1 0,6
812	956	961	966	972	977	982	988	993	998	*004	2 1,2
813	91 009	014	020	025	030	036	041	046	052	057	3 1,8
814	062	068	073	078	084	089	094	100	105	110	4 2,4
815	116	121	126	132	137	142	148	153	158	164	5 3,6
816	169	174	180	185	190	196	201	206	212	217	6 3,6
817	222	228	233	238	243	249	254	259	265	270	7 4,2
818	275	281	286	291	297	302	307	312	318	323	8 4,8
819	328	334	339	344	350	355	360	365	371	376	9 5,4
820	381	387	392	397	403	408	413	418	424	429	
821	434	440	445	450	455	461	466	471	477	482	
822	487	492	498	503	508	514	519	524	529	535	
823	540	545	551	556	561	566	572	577	582	587	
824	593	598	603	609	614	619	624	630	635	640	
825	645	651	656	661	666	672	677	682	687	693	
826	698	703	709	714	719	724	730	735	740	745	
827	751	756	761	766	772	777	782	787	793	798	
828	803	808	814	819	824	829	834	840	845	850	
829	855	861	866	871	876	882	887	892	897	903	
830 831 832 833 834 835 836 837 838 839	908 960 92 012 065 117 169 221 273 324 376	.913 965 018 070 122 174 226 278 330 381	918 971 023 075 127 179 231 283 335 387	924 976 028 080 132 184 236 288 340 392	929 981 033 085 137 189 241 293 345 397	934 986 038 091 143 195 247 298 350 402	939 991 044 096 148 200 252 304 355 407	944 997 049 101 153 205 257 309 361 412	054 106 158 210 262 314	955 *007 059 111 163 215 267 319 371 423	5 1 0,5 2 1,0 3 1,5 4 2,0 5 2,5 6 3,0 7 3,5 8 4,0 9 4,5
840	428	433	438	443	449	454	459	464	469	474	
841	480	485	490	495	500	505	511	516	521	526	
842	531	536	542	547	552	557	562	567	572	578	
843	583	588	593	598	603	609	614	619	624	629	
844	634	639	645	650	655	660	665	670	675	681	
845	686	691	696	701	706	711	716	722	727	732	
846	737	742	747	752	758	763	768	773	778	783	
847	788	793	799	804	809	814	819	824	829	834	
848	840	845	850	855	860	865	870	875	881	886	
849	891	896	901	906	911	916	921	927	932	937	
N.	0	1	2	3	4	5	6	7	8	9	Proportional parts

							`					
N.	0	1	2	3	4	5	6	7	8	9		ortional arts
850 851 852 853 854 855 857 858 859 860 861 862 863 864 865 866 867 869	92 942 993 93 044 095 146 197 247 298 349 399 450 551 601 752 802 802 802 802	947 998 049 100 151 202 252 303 354 404 455 505 606 656 707 757 807 807	952 *003 054 1056 207 258 308 359 409 460 510 561 611 712 762 812 812 912	957 *008 059 110 212 263 313 364 414 465 515 566 616 717 767 817 817 917	962 *013 064 115 166 217 268 318 369 420 470 520 571 621 671 722 772 822 872 922	967 *018 069 120 171 222 273 323 374 425 475 526 626 676 727 777 827 827 927	973 *024 075 125 176 227 278 328 379 430 480 531 681 682 732 782 882 882 932	978 *029 080 131 181 232 283 334 334 435 485 536 636 687 737 787 887 887 937	983 *034 085 136 237 288 339 340 490 541 591 642 742 792 842 892	988 *039 090 141 192 242 293 344 445 495 546 646 697 747 797 847 897 947	1 2 3 4 5 6 7 8 9	6 0.6 1.2 1.8 2.4 3.0 4.2 4.8 5,4
870 871 872 873 874 875 876 877 878 879	952 94 002 052 101 151 201 250 300 349 399	957 007 057 106 156 206 255 305 354 404	962 012 062 111 161 211 260 310 359 409	967 017 067 116 166 216 265 315 364 414	972 022 072 121 171 221 270 320 369 419	977 027 077 126 176 226 275 325 374 424	982 032 082 131 181 231 280 330 379 429	987 037 086 136 186 236 285 335 384 433	992 042 091 141 191 240 290 340 389 438	997 047 096 146 196 245 295 345 394 443	1 2 3 4 5 6 7 8 9	5 0,5 1,0 1,5 2,0 2,5 3,0 3,5 4,0 4,5
880 881 882 883 884 885 886 887 888 889 890	448 498 547 596 645 694 743 792 841 890 939 988	453 503 552 601 650 699 748 797 846 895	458 507 557 606 655 704 753 802 851 900 949 948	463 512 562 611 660 709 758 807 856 905 954 *002	468 517 567 616 665 714 763 812 861 910 959	473 522 571 621 670 719 768 817 866 915 963 *012	478 527 576 626 675 724 773 822 871 919 968 *017	973 *022		493 542 591 640 689 738 787 836 885 934 983	12345 6780	4 0,4 0,8 1,2 1,6 2,0 2,4 2,8 3,2
892 893 894 895 896 897 898 899	95 036 085 134 182 231 279 328 376 424	041 090 139 187 236 284 332 381 429	046 095 143 192 240 289 337 386 434	051 100 148 197 245 294 342 390 439	056 105 153 202 250 299 347 395	061 109 158 207 255 303 352 400 448	066 114 163 211 260 308 357 405 453	071 119 168 216 265 313 361 410	075 124 173 221 270 318 366 415 463	080 129 177 226 274 323 371 419	9	1 3,6
N.	0	1'	2	3	4	5	6	7	8	9		ortional arts

												-
N.	0	1	2	3	4	5	6	7	8	9	Proportions parts	ıl
900 9	5 424	429	434	439	444	448	453	458	463	468		
901	472	477	482	487	492	497	501	506	511	516		
902	521	525	530	535	540	545	550	554	559	564		
903	569	574	578	583	588	593 641	598 646	602 650	607 655	612 660		
904	617 665	$\frac{622}{670}$	626 674	631 679	636 684	689	694	698	703	708	,	
906	713	718	722	727	732	737	742	746	751	756		
907	761	766	770	775	780	785	789	794	799	804	-	
908	809	813	818	823	828	832	837	842	847	852		
909	856	861	866	871	875	880	885	890	895	899		
910	904	909	914	918	$\frac{923}{971}$	928 976	933 980	938 985	942 990	947 995	1 5	
911 912	952	957	961	966 *014						*042	2 1.0	
	6 047	052	057	061	066	071	076	080	085	090	3 1,5	
914	095	099	104	109	114	118	123	128	133	137	4 2,0	
915	142	147	152	156	161	166	171	175	180	185	5 2,5	
916	190	194	199	204	209	213	218 265	223	227		6 3,0 7 3,5	
917	$\frac{237}{284}$	242 289	246 294	251 298	256 303	261 308	313	$\frac{270}{317}$	275 322	280 327	8 4,0	
918 919	332	336	$\frac{294}{341}$	346	350	355	360	365	369	374	9 4,5	
920	379	384	388	393	398	402	407	412	417	421		
921	426	431	435	440	445	450	454	459	464	468		
922	473	478	483	487	492	497	501	506	511	515		
923	520	525	530	534	539	544	548 595	553 600	558	562		
924 925	567 614	$\frac{572}{619}$	$\begin{array}{c} 577 \\ 624 \end{array}$	$\frac{581}{628}$	586 633	591 638	642	647	$605 \\ 652$	609 656		
926	661	666	670	675	680	685	689	694	699	703		
927	708	713	717	722	727	731	736	741	745	750		
928 929	755 802	759 806	764 811	769 816	774 820	778 825	783 830	788 834	792 839	797 844		
											4	
930 931	848	853 900	858 904	862 909	$867 \\ 914$	872 918	876 923	881 928	886 932	890 937	1 0,4	
931	895 942	946	951	956	960	965	970	974	979	984	2 0.8	
933	988	993	997		*007	*011	*016	*021	*025	*030	3 1,2	
934 9	7 035	039	044	049	053	058	063	067	072	077	4 1,6	
935	081	086	090	095	100	104	109	114	118	123	5 2,0 6 2,4	
936	$\frac{128}{174}$	132 179	137 183	142 188	$\frac{146}{192}$	151 197	155 202	160 206	165 211	169 216	7 2,8	
937 938	220	225	230	234	239	243	248	253	257	262	8 3.2	
939	267	271	276	280	285·	290	294	299	304	308	9 3,6	
940	313	317	322	327	331	336	340	345	350	354	ľ	
941	359	364	368	373	377	382	387	391	396	400		
942	405	410	414	419	$\frac{424}{470}$	428 474	433 479	437 483	442 488	447 493		
943 944	451 497	456 502	460 506	465 511	516	520	525	529	534	539		
945	543	548	552	557	562	566	571	575	580	585		
946	589	594	598	603	607	612	617	621	626	630	-	
947	635	640	644	649	653	658	663	667	672	676		
948 949	681 727	685 731	690 736	695 740	699 745	704 749	708 754	713 759	717 763	722 768		
950	772	777	782	786	791	795	800	804	809	813		
N.	0	1	2	3	4	5.	6	7	8	9	Proportion	al

N.		0	1	2	3	4	5	6	7	8	9	Proportional parts
950 951 952	8	72 818 864	777 823 868	782 827 873	786 832 877	791 836 882	795 841 886	800 845 891	804 850 896	809 855 900	813 859 905	
953 954	g	009 055	914 959	918 964	923 968	928 973	932 978	937 982	941 987	946 991	950 996	
955 956	98 0)00)46	005 050	009 055	014 059	019 064	023 068	028 073	032	037 082	041 087	
957	0	91	096	100	105	109	114	118	123	127	132	
958 959	i	82	141 186	146 191	150 195	155 200	159 204	164 209	$\frac{168}{214}$	173 218	$\begin{array}{c} 177 \\ 223 \end{array}$	
960 961	2 2	27 272	$\frac{232}{277}$	236 281	241 286	245 290	250 295	254 299	259 304	263 308	268 313	5 1 0,5
962 963	3	18 63	322 367	327 372	331 376	336 381	340 385	345 390	349 394	354 399	358 403	2 1,0 3 1,5
964	4	80	412	417	421	426	430	435	439	444	448	4 2 0
965 966	4	53 98	457 502	$\begin{array}{c} 462 \\ 507 \end{array}$	466 511	471 516	475 520	480 525	484 529	489 534	493 538	5 2,5 6 3,0
967 968	5	43 88	$\begin{array}{c} 547 \\ 592 \end{array}$	552 597	556 601	561 605	565 610	570 614	574 619	579 623	583 628	7 3,5 8 4,0
969		32	637	641	646	650	655	659	664	668	673	9 -4,5
970 971	6	77	$\frac{682}{726}$	$\begin{array}{c} 686 \\ 731 \end{array}$	691 735	695 740	700 744	704 749	709 753	713 758	717 762	
971 972	7	22 67	771	776	780	784	789	793	798	802	807	
973 974	8	311 356	816 860	820 865	825 869	829 874	834 878	838 883	843 887	847 892	851 896	
975 976	9	00 45	905 949	909 954	914 958	918 963	923 967	927 972	932 976	936 981	941 985	
977	9	89	994	998	*003	*007	*012	*016	*021	*025	*029	
978 979	99 0	34 78	038 083	043 087	$\begin{array}{c} 047 \\ 092 \end{array}$	052 096	056 100	$\begin{array}{c} 061 \\ 105 \end{array}$	$\begin{array}{c} 065 \\ 109 \end{array}$	$\begin{array}{c} 069 \\ 114 \end{array}$	074 118	
980 981		23 67	$\frac{127}{171}$	131 176	136 180	140 185	145 189	149 193	154 198	$\frac{158}{202}$	162 207	1 0,4
982	-2	11	216	220	224	229 273	233	238	242	247	251	2 0.8
983 984	3	55 00	260 304	264 308	269 313	273 317	277 322	282 326	286 330	$\frac{291}{335}$	295 339	4 1,6
985 986	. 3	44 88	348 392	352 396	357 401	361 405	366 410	370 414	374 419	$\frac{379}{423}$	383 427	5 2,0 6 2,4
987 988	4	32	436	441	445	449	454	458	463	467	471	7 2.8
989		76 20	480 524	484 528	489 533	493 537	498 542	502 546	506 550	511 555	515 559	8 3,2
990 991	5	664 607	$\frac{568}{612}$	572 616	577 621	581 625	585 629	590 634	594 638	599 642	603 647	
992	6	551	656	660	664	669	673	677	682	686	691	
993 994	7	95 39	699 743	704 747	708 752	712 756	717 760	721 765	726 769	730 774	734 778	
995 996	7	82 826	787 830	791 835	795 839	800 843	804 848	808	813 856	817 861	822 865	
997	8	370	874	878	883	887	891,	896	900	904	909	
998 999	9)13)57	917 961	$\frac{922}{965}$	926 970	930 974	935 978	939 983	944 987	948 991	952 996	
1000	00 0	000	004	009	013	017	022	026	030	035	039	
N.		0	1	2	3	4	5	6	7	8	9	Proportional parts
	<u> </u>						<u> </u>)

NATURAL LOGARITHMS

NATURAL OR NAPERIAN LOGARITHMS OF THE NUMBERS FROM 1 TO 1109

To find the logarithm of a number which is $\frac{1}{10}$ or 10 times etc. a number whose logarithm is given, subtract from or add to the given logarithm the logarithm of 10.

Thus $\log 1.6 = \log 16 - \log 10$ $\log 160 = \log 16 + \log 10$ etc.

N	Log	N	Log	N	Log	N	Log	N	Log
-0	· <u> </u>	20	2. 99 573	40	3. 68 888	60	4. 09 434	80	4. 38 203
1	0. 00 000	21	3. 04 452	41	3. 71 357	61	4. 11 087	81	4. 39 445
2	0. 69 315	22	3. 09 104	42	3. 73 767	62	4. 12 713	82	4. 40 672
3	1. 09 861	23	3. 13 459	43	3. 76 120	63	4. 14 313	83	4. 41 884
4	1. 38 629	24	3. 17 805	44	3. 78 419	64	4. 15 888	84	4. 43 082
5	1. 60 944	25	3. 21 888	45	3. 80 666	65	4. 17 439	85	4. 44 265
6	1. 79 176	26	3. 25 810	46	3. 82 864	66	4. 18 965	86	4. 45 435
7	1. 94 591	27	3. 29 584	47	3. 85 015	67	4. 20 469	87	4. 46 591
8	2. 07 944	28	3. 35 220	48	3. 87 120	68	4. 21 951	88	4. 47 734
	2. 19 722	29	3. 36 730	49	3. 89 182	69	4. 23 411	89	4. 48 864
10	2. 30 259	30	3. 40 120	50	3. 91 202	70	4. 24 850	90	4. 49 981
11	2. 39 790	31	3. 43 399	51	3. 93 183	71	4. 26 268	91	4. 51 086
12	2. 48 491	32	3. 46 574	52	3. 95 124	72	4. 27 667	92	4. 52 179
13	2. 56 495	33	3. 49 651	53	3. 97 029	73	4. 29 046	93	4. 53 260
14	2. 63 906	34	3. 52 636	54	3. 98 898	74	4. 30 407	94	4. 54 329
15	2. 70 805	35	3. 55 535	55	4. 00 733	75	4. 31 749	95	4. 55 388
16	2. 77 259	36	3. 58 352	56	4. 02 535	76	4. 33 073	96	4. 56 435
17	2. 83 321	37	3. 61 092	57	4. 04 305	77	4. 34 381	97	4. 57 471
18	2. 89 037	38	3. 63 759	58	4. 06 044	78	4. 35 671	98	4. 58 497
19	2. 94 444	39	3. 66 356	59	4. 07 754	79	4. 36 945	99	4. 59 512
20	2. 99 573	40	3. 68 888	60	4. 09 434	80	4. 38 203	100	4. 60 517

NATURAL LOGARITHMS (Continued)

								·		,	
N	Ļο	g 0	1 `	2	3	4	5	6	7	8	9
10		6 0517			3473	4439	539	6 6344	7283	8213	9135
11	4.	7 0048					449	3 5359		7 7068	
12 13	1,	8749 8 6753					*283				*5981
14							*052			3 *2725	*3447
15		9 4164 9 1064					7673 4343				
16	1	7517					*0598				
17	5 1	3580	4166	4749		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1				
18	l ". '	9296			*0949	5906 *1494	6479 *2036			8178 *3644	
19	5. 2	4702	5227	5750	6269	6786	7300				*4175 9330
20	l	9832	*0330	*0827	*1321	*1812	*2301				
21-	5. 3	4711	5186	5659	6129	6598	7064				8907
22 23	١	9363		*0268	*0717	*1165	*1610	*2053		*2935	*3372
	5. 4	3808	4242	4674	5104	5532	5959	6383	6806		7646
24	١	8064	8480	8894	9306	9717	*0126	*0533	*0939	*1343	*1745
25 26	5. 5	2146	2545	2943	3339	3733	4126		4908		5683
		6068	6452	6834	7215	7595	7973	8350	8725	9099	9471
27 28		9842	*0212	*0580	*0947	*1313	*1677			*2762	*3121
29	5. 6	3479 6988	3835	4191	4545	4897	5249			6296	6643
30	E 77		7332	7675	8017	8358	8698		9373	9709	*0044
31	5. 7	0378	0711	1043	1373	1703	2031	2359	2685	3010	3334
32	,	3657 6832	3979 7144	4300	4620	4939	5257	5574	5890	6205	6519
33		9909	*0212	7455 *0513	7765 *0814	8074 *1114	8383 *1413	8690 *1711	8996	9301	9606
34	E 0	2895							*2008	*2305	*2600
35	0. 0	5793	3188 6079	3481 6363	3773 6647	4064 6930	4354 7212	4644 7493	4932	5220	5507
3 6		8610	8888	9164	9440	9715	9990	*0263	7774 *0536	8053 *0808	8332 *1080
37	5 9	1350	1620	1889	2158	2426	2693				
38	0. 0	4017	4280	4542	4803	5064	5324	2959 5584	3225 5842	3489 6101	3754
39		6615	6871	7126	7381	7635	7889	8141	8394	8645	6358 8899
40		9146	9396	9645	9894	*0141	*0389	*0635	*0881	*1127	*1372
41	6.0	1616	1859	2102	2345	2587	2828	3069	3309	3548	3787
42		4025	4263	4501	4737	4973	5209	5444	5678	5912	6146
43		6379	6611	6843	7074	7304	7535	7764	7993	8222	8450
44		8677	8904	9131	9357	9582	9807	*0032	*0256	*0479	*0702
45 46	6. 1	0925	1147	1368	1589	1810	2030	2249	2468	2687	2905
		3123	3340	3556	3773	3988	4204	4419	4633	4847	5060
47		5273	5486	5698	5910	6121	6331	6542	6752	6961	7170
48 49		7379 9441	7587 9644	7794	8002	8208	8415	8621	8826	9032	9236
	a 9	1461				*0254	*0456	*0658	*0859	*1060	*1261
50	0. 2		1661	1860	2059	2258	2456	2654	2851	3048	3245
51 52		3441 5383	3637 5575	3832	4028	4222	4417	4611	4804	4998	5190
53		7288	7476	5767 7664	5958 7852	6149 8040	6340 8227	6530 8413	6720 8600	6910 8786	7099 8972
54		9157	9342	9527				-			
55	6. 3	0992	9342 1173	9527 1355	$9711 \\ 1536$	9895 1716	*0079 1897	*0262 2077	*0445 2257	*0628 2436	*0810 2615
56	5	2794	2972	3150	3328	3505	3683	3859	4036	4212	2015 4388
57		4564	4739	4914	5089	5263	5437	5611	5784	5957	6130
58		6303	6475	6647	6819	6990	7161	7332	7502	7673	7843
59		8012	8182	8351	8519	8688	8856	9024	9192	9359	9526
60		9693	9859	*0026	*0192	*0357	*0523	*0688	*0853		*1182
N	Log	0	1	2	3	4	5	6	7	8	9

NATURAL LOGARITHMS (Continued)

N	Log	0 -	1	2	3	4	5	6	7	8	9
60	6 2	9693	9859	*0026	*0192	*0357	*0523	*0688	*0853	2021	*1182
			1510	1673	1836	1999	2162	2325	2487	2649	2811
61	6. 4	1346	3133	3294	3455	3615	3775	3935	4095	4254	4413
62 63		$\begin{array}{c} 2972 \\ 4572 \end{array}$	4731	4889	5047	5205	5362	5520	5677 7235	5834 7389	5990 7543
64		6147	6303	6459	6614	6770	6925	7080 8616	8768	8920	9072
65		7697	7851	8004	8158	8311	8464 9979	*0129	*0279	*0429	*0578
66		9224	9375	9527	9677	9828					
67	e 5	0728	0877	1026	1175	1323	1471	1619	1767	1915	2062
68	0. 5	2209	2356	2503	2649	2796	2942	3088	3233	3379	$3524 \\ 4965$
69		3669	3814	3959	4103	4247	4391	4535	4679	4822	
70		5108	5251	5393	5536	5678	5820	5962	6103	6244	6386
				6808	6948	7088	7228	7368	7508	7647	7786
71		6526	6667 8064	8203	8341	8479	8617	8755	8893	9030	9167
72		$7925 \\ 9304$	9441	9578	9715	9851	9987	*0123	*0259	*0394	*0530
73						1204	1338	1473	1607	1740	1874
74	6.6	0665	0800	0935	1070	2539	2672		2936	3068	3200
75		2007	2141	2274	2407	3857	3988			4379	4509
76	1	3332	3463	3595	3726				5544	5673	5801
77	1	4639	4769	4898	5028	5157	5286 6568			6950	7077
78	l	5929	6058	6185	6313	6441	7834				8336
79	1	7203	7330	7456	7582	7870					9580
80	ł	8461	8586	8711	8835	8960	9084				
	l	9703	9827	9950	*0073	*0196	*0319				*0808
81	10	7 0930	1052	1174	1296		1538	1659			$\begin{array}{c} 2022 \\ 3221 \end{array}$
82 83	1 0. 4	2143	2263	2383	2503		2743	3 2863	2982		
	1			3578	3697	3815	3934	4052			
84	1	3340	3459 4641	4759	4876		5110				
85	1	4524 5693	5809	5926	6041		6273	6388	6504	6619	
86	1						742	2 7537	7651		7878
87		6849	6964		7194 8333		8559		8784	8897	9010
88	1	7992	8106		9459		968	2 9794	9906	*0017	
89	1	9122	9234				079	3 0904	1014	1124	1235
90	6.	8 0239	0351	0461	0572		189			2220	2329
91		1344	1454		1674		297				3411
92	1	2437	2546				405				4482
93	1	3518	3626	3733	3841		1			5435	5541
94		4588	4694	4801	4907	5013	511				
95	1	5646	5751		5961		617 721				
96	1	6693	6797	6901	7008	7109					
97		7730	7833	7936	8038	8141	824				
98		8755			906						
99	1	9770	9871	9972	*007						
100	6	9 0776		0975	107	5 1175					
	10.	1771				7 2166	226				
101		2756					324				
102 103		3731				2 4119	421	6 431	2 440		
						6 5081	517		3 536		
104		4698					613	0 622		9 641	
105		5655 6602						3 716	7 726		
106						-		8 810	1 819	3 828	
107		7541						34 902	6 911	8 921	
108		8472							2 *003		
109		9393							1 094	1 103	1 1121
110	7.	0 0307	7 039	7 048	5 007	9 0070					
N	L	og 0	1	2	3	3 4	5	6	7	8	9
	<u> </u>					51					

	0.09	1 094	1.209	1.336	1.477	1.632	1.804	2.203	2.435	2.691	-	6.0	6.686 18.17 49.40 134.3 365.0 992.3 2697 7332 19930
	0.08	1.083	1.197	1.323	1.462	1.616	1.974	2.181	2.411	2.664		0.8	6.050 16.44 44.70 121.5 330.3 897.9 2441 6634
e and top.	20.0	1.073	1.185	1.310	1.448	1.600	1.954	2.160	2.387	2.638		0.7	14.88 14.88 40.45 110.0 298.9 812.4 2208 6003 16318
for the values of n shown at the side and top.	90.0	1.062	1.174	1.297	1.433	1.751	1.935	2.138	2.363	2.612		9.0	4.955 13.46 36.60 99.48 270.4 735.1 1998 5432 14765
ues of n shov	0.05	1.051	1.162	487.1	1.419	1.733		2.117				0.5	4.482 12.18 33.12 90.02 244.7 665.1 1808 13360
e" for the val	0.04	1.041	1.150	1.2/1	1.553	1.716	1.896	2.096	2.316	7.560		0.4	4.055 11.02 29.96 81.45 221.4 601.9 1636 4447
This table gives the values of e"	0.03	1.030	1.139	1.203	1.537	1.699	1.878	2.075	5.293	7.999		0.3	3.669 9.974 27.11 73.70 200.3 544.6 1480 4024 10938
table gives t	0.02	1.020	1.121	1.377	1.522	1.682	1.859	9.004	20.420	4.003		0.2	3.320 9.025 24.53 66.69 181.3 492.8 1339 3641 9897
This	0.01	1.010	1.234	1.363	1.507	1.665	2.8	2.004	2.23	101.		0.1	3.004 8.166 22.20 60.34 164.0 445.9 1212 3295 8955
	0.0	1.000	1.221	1.350	1.492	1.649	1.822	2.25	2.460			0.0	2.718 7.389 20.09 54.60 148.4 403.4 1097 22031 22026
		0.0	0.2	0.3	0.4	0.0	9.0	0	6.0				1084697860

EXPONENTIALS (Continued)

0.0001360.0550 0.0202 0.00745 00274 00101 0.00037 0.411 0.827 0.748 0.677 0.613 0.554 0.502 0.1506.0 0.0 000055 0.0004100.0001510.00823 0.00111 0.0608 0.02240.923 0.835 0.756 0.684 0.619 0.560 0.458 0.415 0.375 8.0 0.08 0.000453 0.00910 0.003350.001230.06720.0247 0.844 0.763 0.691 0.566 0.566 0.463 0.419 0.379 This table gives the values of e^{-n} for the values of n shown at the side and top. 0.7 0.07 0.00370 000184 0.202 0.0743 0.0273 0.0101 0.852 0.698 0.631 0.571 0.571 0.423 0.383 942 9.0 90.0 0.000553 .000075 00400 0.00150.0821 .0302 .0111 0.861 0.779 0.705 0.638 0.577 0.522 0.427 0.387 0.5 95 8 ö 000225 000083 0.000611 .00166 .00452 0123 0.0334.0907 0.869 0.787 0.712 0.644 0.583 0.527 0.477 0.391 0.2479.4 9.0 0.000676 0.000249000001 0.00499 0.001840.0369 0.0136 0.878 0.795 0.719 0.651 0.589 0.482 0.436 0.100 0.3 0.03 00203 000747 000275 000101 .00552 0.111 0.887 0.803 0.726 0.657 0.595 0.538 0.440 0.2 0.02 0.122 0.0450 0.0450 0.00610 0.00224 0.000825 0.000304 0.000112 0.733 0.664 0.600 0.543 0.492 0.445 896 811 733 0.1 0.01 000912 000335 0.0498 0.0183 0.00674 0.00248 000123 000045 1.000 0.905 0.819 0.670 0.670 0.649 0.497 0.407 0.368 . 135 0.0 9.0 0.000

NATURAL SINES, COSINES, TANGENTS AND COTANGENTS

Degrees.	Sin.	Cos.	Tan.	Cot.	Degrees.
0° 00′	0.0000	1.0000	0.0000		90° 00′
10	.0029	1.0000	.0029		50
20	.0058	1.0000	.0058	343.77 171.89	40
30	.0087	1.0000	.0087	114.59	
40	.0116	.9999	.0116	85.940	30
50	.0145	.9999	.0145	68.750	20 10
1° 00′	0.0175	0.9998	0.0175		1
10	.0204	.9998	.0204	57.290	89° 00′
20	.0233	.9997		49.104	50
30	.0262	.9997	.0233	42.964	40
40	.0291	.9996	.0262 .0291	38.188	30
50	.0320	.9995	.0320	34.368 31.242	20 10
2° 00′	0.0349	0.9994	0.0349	1	1
10	.0378	.9993		28.636	88° 00′
20	.0407	.9992	.0378	26.432	50
3ŏ	.0436		.0407	24.542	40
40	.0465	.9990	.0437	22.904	30
. 50		.9989	.0466	21.470	20
	.0494	.9988	.0495	20.206	10
3° 00′ 10	0.0523	0.9986	0.0524	19.081	87° 00′
20	.0552	.9985	.0553	18.075	50
30	.0581	.9983	.0582	17.169	40
	.0610	.9981	.0612	16.350	30
40	.0640	.9980	.0641	15.605	20
50	.0669	.9978	.0670	14.924	10
4° 00′	0.0698	0.9976	0.0699	14.301	86° 00′
10	.0727	.9974	.0729	13 727	50
20	.0756	.9971	.0758	13.727 13.197	40
30	.0785	.9969	.0787	12.706	30
40	.0814	.9967	.0816	12.251	20
50	.0843	.9964	.0846	11.826	10
5° 00′	0.0872	0.9962	0.0875	11.430	85° 00′
10	.0901	.9959	.0904	11.059	50
20	.0929	.9957	.0934	10 712	
30	.0958	.9954	.0963	10.712 10.385	40
40	.0987	.9951	.0992	10.078	30
50	.1016	.9948	.1022	9.7882	20 10
6° 00'	0.1045	0.9945	0.1051	9.5144	84° 00′
10	.1074	.9942	1080	9.2553	
20	.1103	.9939	.1110		50
30	.1132	.9936	.1139	9.0098 8.7769	40
40	.1161	.9932	.1169	0.1109	30
50	.1190	.9929	.1198	8.5555 8.3450	20 10
7° 00′	0.1219	0.9925	0.1228		
10	.1248	.9922	. 1257	8.1443	83° 00′
20	.1276	.9918	.1287	7.9530	50
30	.1305	.9914	.1317	7.7704	40
40	1334	.9911	.1346	7.5958	30
50	.1363	.9907	.1376	7.4287 7.2687	20
8° 00′	0.1392				10
10	1421	0.9903	0.1405	7.1154	. 82° 00′
20	.1449	.9899	. 1435	6.9682	50
3ŏ	1478	.9894	. 1465	6.8269	40
40	1507	.9890	.1495	6.6912	30
50	1536	.9886	.1524	6.5606	20
9° 00′	1	.9881	.1554	6.4348	10
Degrees.	0.1564	0.9877	0.1584	6.3138	81° 00′
	Cos.				

NATURAL SINES, COSINES, TANGENTS AND COTANGENTS (Continued)

Degrees.	Sin.	Cos.	Tan.	Cot.	Degrees.
9° 00′	0.1564	0.9877	0.1584	6.3138	81° 00′
10	.1593	.9872	.1614	6.1970	50
20	.1622	.9868	.1644	6.0844	40
30	.1650	.9863	.1673	5.9758	30
40	.1679	.9858	.1703	5.8708	20
50	.1708	.9853	.1733	5.7694	10
10° 00′ 10 20 30 40 50	0.1736 .1765 .1794 .1822 .1851	0.9848 .9843 .9838 .9833 .9827 .9822	0.1763 .1793 .1823 .1853 .1883 .1914	5.6713 5.5764 5.4845 5.3955 5.3093 5.2257	80° 00 50 40 30 20 10
11° 00′	0.1908	0.9816	0.1944	5.1446	79° 00′
10	.1937	.9811	.1974	5.0658	50
20	.1965	.9805	.2004	4.9894	40
30	.1994	.9799	.2035	4.9152	30
40	.2022	.9793	.2065	4.8430	20
50	.2051	.9787	.2095	.7729	10
12° 00′ 10 20 30 40 50	0.2079 .2108 .2136 .2164 .2193 .2221	0.9781 .9775 .9769 .9763 .9757	0.2126 .2156 .2186 .2217 .2247 .2278	4.7046 4.6382 4.5736 4.5107 4.4494 4.3897	78° 00 50 40 30 20 10
13° 00′	0.2250	0.9744	0.2309	4.3315	77° 00′
10	.2278	.9737	.2339	4.2747	50
20	.2306	.9730	.2370	4.2193	40
30	.2334	.9724	.2401	4.1653	30
40	.2363	.9717	.2432	4.1126	20
50	.2391	.9710	.2462	4.0611	10
14° 00′	0.2419	0.9703	0.2493	4.0108	76° 00′
10	.2447	.9696	.2524	3.9617	50
20	.2476	.9689	.2555	3.9136	40
30	.2504	.9681	.2586	3.8667	30
40	.2532	.9674	.2617	3.8208	20
50	.2560	.9667	.2648	3.7760	10
15° 00′	0.2588	0.9659	0.2679	3.7321	75° 00′
10	.2616	.9652	.2711	3.6891	50
20	.2644	.9644	.2742	3.6470	40
30	.2672	.9636	.2773	3.6059	30
40	.2700	.9628	.2805	3.5656	20
50	.2728	.9621	.2836	3.5261	10
16° 00′	0.2756	0.9613	0.2867	3.4874	74° 00′
10	.2784	.9605	.2899	3.4495	50
20	.2812	.9596	.2931	3.4124	40
30	.2840	.9588	.2962	3.3759	30
40	.2868	.9580	.2994	3.3402	20
50	.2896	.9572	.3026	3.3052	10
17° 00′	0.2924	0.9563	0.3057	3.2709	73° 00′
10	.2952	.9555	.3089	3.2371	50
20	.2979	.9546	.3121	3.2041	40
30	.3007	.9537	.3153	3.1716	30
40	.3035	.9528	.3185	3.1397	20
50	.3062	.9520	.3217	3.1084	10
18° 00′	0.3090	0.9511	0.3249	3.0777	72° 00′
Degrees.	Cos.	Sin.	Cot.	Tan.	Degrees.

NATURAL SINES, COSINES, TANGENTS AND COTANGENTS (Continued)

_				10 (OOHIII)	uucuj	
_	Degrees.	Sin.	Cos.	Tan.	Cot.	Degrees.
	18° 00′ 10 20 30 40 50	0.3090 .3118 .3145 .3173 .3201 .3228	0.9511 .9502 .9492 .9483 .9474 .9465	0.3249 .3281 .3314 .3346 .3378 .3411	3.0777 3.0475 3.0178 2.9887 2.9600 2.9319	72° 00′ 50 40 30 20 10
-	19° 00′ 10 20 30 40 50	0.3256 .3283 .3311 .3338 .3365 .3393	0.9455 .9446 .9436 .9426 .9417 .9407	0.3443 .3476 .3508 .3541 .3574 .3607	2.9042 2.8770 2.8502 2.8239 2.7980 2.7725	71° 00′ 50 40 30 20 10
Ø	20° 00′ 10 20 30 40 50	0.3420 .3448 .3475 .3502 .3529 .3557	0.9397 .9387 .9377 .9367 .9356 .9346	0.3640 .3673 .3706 .3739 .3772 .3805	2.7475 2.7228 2.6985 2.6746 2.6511 2.6279	70° 00′ 50 40 30 20 10
	21° 00′ 10 20 30 40 50	0.3584 .3611 .3638 .3665 .3692 .3719	0.9336 .9325 .9315 .9304 .9293 .9283	0.3839 .3872 .3906 .3939 .3973 .4006	2.6051 2.5826 2.5605 2.5386 2.5172 2.4960	69° 00′ 50 40 30 20
	22° 00′ 10 20 30 40 50	0.3746 .3773 .3800 .3827 .3854 .3881	0.9272 .9261 .9250 .9239 .9228 .9216	0.4040 .4074 .4108 .4142 .4176 .4210	2.4751 2.4545 2.4342 2.4142 2.3945 2.3750	68° 00′ 50 40 30 20
	23° 00′ 10 20 30 40 50	0.3907 .3934 .3961 .3987 .4014 .4041	0.9205 .9194 .9182 .9171 .9159 .9147	0.4245 .4279 .4314 .4348 .4383 .4417	2.3559 2.3369 2.3183 2.2998 2.2817 2.2637	67° 00′ 50 40 30 20
	24° 00′ 10 20 30 40 50	0 4067 .4094 .4120 .4147 .4173 .4200	0.9135 .9124 .9112 .9100 .9088 .9075	0.4452 .4487 .4522 .4557 .4592 .4628	2.2460 2.2286 2.2113 2.1943 2.1775 2.1609	66° 00′ 50 40 30 20
•	25° 00 10 20 30 40 50	0.4226 .4253 .4279 .4305 .4331 .4358	0.9063 .9051 .9038 .9026 .9013 .9001	0.4663 .4699 .4734 .4770 .4806 .4841	2.1445 2.1283 2.1123 2.0965 2.0809 2.0655	65° 00′ 50 40 30 20 10
	26° 00′ 10 20 30 40 50 27° 00	0.4384 .4410 .4436 .4462 .4488 .4514 0.4540	0.8988 .8975 .8962 .8949 .8936 .8923	0.4877 .4913 .4950 .4986 .5022 .5059	2.0503 2.0353 2.0204 2.0057 1.9912 1.9768	64° 00′ 50 40 30 20 10
	Degrees.	Cos.	0.8910 Sin.	0.5095 Cot.	1.9626 Tan.	63° 00′
			56		1 all.	Degrees.

NATURAL SINES, COSINES, TANGENTS AND COTANGENTS (Continued)

Degrees.	Sin.	Cos.	Tan.	Cot.	Degrees.
27° 00	0.4540	0.8910	0.5095	1.9626	63° 00′
10	.4566	.8897	,5132	1.9486	50
20	.4592	.8884	.5169	1.9347	40
30	.4617	.8870	.5206	1.9210	30
40	.4643	.8857	.5243	1.9074	20
50	.4669	.8843	.5280	1.8940	10
28° 00′	0.4695	0.8829	0.5317	1.8807	62° 00′
10	.4720	.8816	.5354	1.8676	50
20	.4746	.8802	.5392	1.8546	40
30	.4772	.8788	.5430	1.8418	30
40	.4797	.8774	.5467	1.8291	20
50	.4823	.8760	.5505	1.8165	10
29° 00′	0.4848	0.8746	0.5543	1.8040	61° 00′
10	.4874	.8732	.5581	1.7917	50
20	.4899	.8718	.5619	1.7796	40
30	.4924	.8704	.5658	1.7675	30
40	.4950	.8689	.5696	1.7556	20
50	.4975	.8675	.5735	1.7437	10
30° 00′	0.5000	0.8660	0.5774	1:7321	60° 00′
10	.5025	.8646	.5812	1:7205	50
20	.5050	.8631	.5851	1:7090	40
30	.5075	.8616	.5890	1:6977	30
40	.5100	.8601	.5930	1:6864	20
50	.5125	.8587	.5969	1:6753	10
31° 00′	0.5150	0.8572	0.6009	1.6643	59° 00′
10	.5175,	.8557	.6048	1.6534	50
20	.5200	.8542	.6088	1.6426	40
30	.5225	.8526	.6128	1.6319	30
40	.5250	.8511	.6168	1.6212	20
50	.5275	.8496	.6208	1.6107	10
32° 00′	0.5299	0.8480	0.6249	1.6003	58° 00'
10	.5324	.8465	.6289	1.5900	50
20	.5348	.8450	.6330	1.5798	40
30	.5373	.8434	.6371	1.5697	30
40	.5398	.8418	.6412	1.5597	20
50	.5422	.8403	.6453	1.5497	10
33° 00′	0.5446	0.8387	0.6494	1.5399	57° 00′
10	.5471	.8371	.6536	1.5301	50
20	.5495	.8355	.6577	1.5204	40
30	.5519	.8339	.6619	1.5108	30
40	.5544	.8323	.6661	1.5013	20
50	.5568	.8307	.6703	1.4919	10
34° 00′	0.5592	0.8290	0.6745	1.4826	56° 00′
10	.5616	.8274	.6787	1.4733	50
20	.5640	.8258	.6830	1.4641	40
30	.5664	.8241	.6873	1.4550	30
40	.5688	.8225	.6916	1.4460	20
50	.5712	.8208	.6959	1.4370	10
35° 00′	0.5736	0.8192	0.7002	1.4281	55° 00′
10	.5760	.8175	.7046	1.4193	50
20	.5783	.8158	.7089	1.4106	- 40
30	.5807	.8141	.7133	1.4019	30
40	.5831	.8124	.7177	1.3934	20
50	.5854	.8107	.7221	1.3848	10
36° 00'	0.5878	0.8090	0.7265	1.3764	54° 00′
Degrees.	Cos.	Sin.	Cot.	Tan.	Degrees.

NATURAL SINES, COSINES, TANGENTS AND TANGENTS (Continued)

Degrees.	Sin.	Cos.	Tan.	Cot.	Degrees.
36° 00′	0.5878	0.8090	0.7265	1.3764	54° 00′
10	.5901	.8073	.7310	1.3680	50
20	.5925	.8056	.7355	1.3597	40
30	.5948	.8039	.7400	1.3514	30
40	.5972	.8021	.7445	1.3432	20
50 37° 00′ 10 20	.5995 .6018 .6041 .6065	.8004 .7986 .7969 .7951	.7490 .7536 .7581 .7627	1.3351 1.3270 1.3190 1.3111	53° 00′ 50 40
30	.6088	.7934	.7673	1.3032	30
40	.6111	.7916	.7720	1.2954	20
50	.6134	.7898	.7766	1.2876	10
38° 00'	0.6157	0.7880	0.7813	1.2799	52° 00'
10	.6180	.7862	.7860	1.2723	50
20 30 40 50 39° 00′	.6202 .6225 .6248 .6271	.7844 .7826 .7808 .7790	.7907 .7954 .8002 .8050	1.2647 1.2572 1.2497 1.2423 1.2349	40 30 20 10 51° 00'
10	.6316	.7753	.8146	1.2276	50
20	.6338	.7735	.8195	1.2203	40
30	.6361	.7716	.8243	1.2131	30
40	.6383	.7698	.8292	1.2059	20
50	.6406	.7679	.8342	1.1988	10
40° 00′	0.6428	0.7660	0.8391	1.1918	50° 00′
10	.6450	.7642	.8441	1.1847	50
20	.6472	.7623	.8491	1.1778	40
30	.6494	.7604	.8541	1.1708	30
40	.6517	.7585	.8591	1.1640	20
50	.6539	.7566	.8642	1.1571	10
41° 00′ 10 20 30 40 50	0.6561 .6583 .6604 .6626 .6648 .6670	0.7547 .7528 .7509 .7490 .7470 .7451	0.8693 .8744 .8796 .8847 .8899 .8952	1.1504 1.1436 1.1369 1.1303 1.1237 1.1171	49° 00′ 50 40 30 20
42° 00′	0.6691	0.7431	0.9004	1.1106	48° 00′
10	.6713	.7412	.9057	1.1041	50
20	.6734	.7392	.9110	1.0977	40
30	.6756	.7373	.9163	1.0913	30
40	.6777	.7353	.9217	1.0850	20
50	.6799	.7333	.9271	1.0786	10
43° 00′	0.6820	0.7314	0.9325	1.0724	47° 00′
10	.6841	.7294	.9380	1.0661	50
20	.6862	.7274	.9435	1.0599	40
30	.6884	.7254	.9490	1.0538	30
40	.6905	.7234	.9545	1.0477	20
50	.6926	.7214	.9601	1.0416	10
44° 00′	0.6947	0.7193	0.9657	1.0355	46° 00′
10	.6967	.7173	.9713	1.0295	50
20	.6988	.7163	.9770	1.0235	40
30	.7009	.7133	.9827	1.0176	30
40	.7030	.7112	.9884	1.0117	20
50	.7050	.7092	.9942	1.0058	10
45° 00′	0.7071	0.7071	1.0000	1.0000	45° 00′
Degrees.	Cos.	Sin.	Cot.	Tan.	Degrees.

LOGARITHMS OF THE TRIGONOMETRICAL FUNCTIONS

Degrees.	Log sin	Log cos	Log tan	Log cot	Degrees.
0° 00′ 10 \ 20	$\begin{array}{c} \infty \\ 7.4637 \\ .7648 \end{array}$	0.0000 .0000 .0000	7.4637 $.7648$	2.5363 .2352	90° 00′ 50 40
30 40 50	.9408 8.0658 .1627	.0000 .0000	.9409 8.0658 .1627	.0591 1.9342 .8373	30 20 10
1° 00′	8.2419	9.9999	8.2419	1.7581	89° 00′
10	.3088	.9999	.3089	.6911	50
20	.3668	.9999	.3669	.6331	40
30	.4179	.9999	.4181	.5819	30
40	.4637	.9998	.4638	.5362	20
50	.5050	.9998	.5053	.4947	10
2° 00′ 10 20 30 40 50	8.5428 .5776 .6097 .6397 .6677 .6940	9.9997 .9997 .9996 .9996 .9995	8.5431 .5779 .6101 .6401 .6682 .6945	1.4569 .4221 .3899 .3599 .3318 .3055	88° 00′ 50 40 30 20 10
3° 00′	8.7188	9.9994	8.7194	1.2806	87° 00′
10	.7423	.9993	.7429	.2571	50
20	.7645	.9993	.7652	.2348	40
30	.7857	.9992	.7865	.2135	30
40	.8059	.9991	.8067	.1933	20
50	.8251	.9990	.8261	.1739	10
4° 00′	8.8436	9.9989	8.8446	1.1554	86° 00′
10	.8613	.9989	.8624	.1376	50
20	.8783	.9988	.8795	.1205	40
30	.8946	.9987	.8960	.1040	30
40	.9104	.9986	.9118	.0882	20
50	.9256	.9985	.9272	.0728	10
5° 00′	8.9403	9.9983	8.9420	1.0580	85° 00′
10	.9545	.9982	.9563	.0437	50
20	.9682	.9981	.9701	.0299	40
30	.9816	.9980	.9836	.0164	30
40	.9945	.9979	.9966	.0034	20
50	9.0070	.9977	9.0093	0.9907	10
6° 00′	9.0192	9.9976	9.0216	0.9784	84° 00′
10	.0311	.9975	.0336	.9664	50
20	.0426	.9973	.0453	.9547	40
30	.0539	.9972	.0567	.9433	30
40	.0648	.9971	.0678	.9322	20
50	.0755	.9969	.0786	.9214	10
7° 00′	9.0859	9.9968	9.0891	0.9109	83° 00′
10	.0961	.9966	.0995	.9005	50
20	.1060	.9964	.1096	.8904	40
30	.1157	.9963	.1194	.8806	30
40	.1252	.9961	.1291	.8709	20
50	.1345	.9959	.1385	.8615	10
8° 00′	9.1436	9.9958	9.1478	0.8522	82° 00′
10	.1525	.9956	.1569	.8431	50
20	.1612	.9954	.1658	.8342	40
30	.1697	.9952	.1745	.8255	30
40	.1781	.9950	.1831	.8169	20
50	.1863	.9948	.1915	.8085	10
9° 00′	9.1943	9.9946	9.1997	.0.8003	81° 00′
Degrees.	Log cos	Log sin	Log cot	Log tan	Degrees.

		\ ;			
Degrees.	Log sin	Log cos	Log tan	Log cot	Degrees.
9° 00′	9.1943	9.9946	9.1997	0.8003	81° 00′
10	.2022	.9944	.2078	.7922	50
20	.2100	.9942	.2158	.7842	40
30	.2176	.9940	.2236	.7764	30
40	.2251	.9938	.2313	.7687	20
50	2324	.9936	2389	7611	10
10° 00′ 10 20 30 40 50	9.2397 .2468 .2538 .2606 .2674 .2740	9.9934 .9931 .9929 .9927 .9924 .9922	9.2463 .2536 .2609 .2680 .2750 .2819	0.7537 .7464 .7391 .7320 .7250	80° 00′ 50 40 30 20 10
11° 00′	9.2806	9.9919	9.2887	0.7113	79° 00′
10	.2870	.9917	.2953	.7047	50
20	.2934	.9914	.3020	.6980	40
30	.2997	.9912	.3085	.6915	30
40	.3058	.9909	.3149	.6851	20
50	.3119	.9907	.3212	.6788	10
12° 00′	9.3179	9.9904	9.3275	0.6725	78° 00′
10	.3238	.9901	.3336	.6664	50
20	.3296	.9899	.3397	.6603	40
30	.3353	.9896	.3458	.6542	30
40	.3410	.9893	.3517	.6483	20
50	.3466	.9890	.3576	.6424	10
13° 00′	9.3521	9.9887	9.3634	0.6366	77° 00′
10	.3575	.9984	.3691	.6309	50
20	.3629	.9881	.3748	.6252	40
30	.3682	.9878	.3804	.6196	30
40	.3734	.9875	.3859	.6141	20
50	.3786	.9872	.3914	.6086	10
14° 00′	9.3837	9.9869	9.3968	0.6032	76° 00
10	.3887	.9866	.4021	.5979	50
20	.3937	.9863	.4074	5926	40
30	.3986	.9859	.4127	.5873	30
40	.4035	.9856	.4178	.5822	20
50	.4083	.9853	.4230	.5770	10
15° 00′ 10 20 30 40 50	9.4130 .4177 .4223 .4269 .4314 .4359	9.9849 .9846 .9843 .9839 .9836	9.4281 .4331 .4381 .4430 .4479 .4527	0.5719 .5669 .5619 .5570 .5521 .5473	75° 00′ 50 40 30 20 10
16° 00′	9.4403	9.9828	9.4575	0.5425	74° 00′
10	.4447	.9825	.4622	.5378	50
20	.4491	.9821	.4669	.5331	40
30	.4533	.9817	.4716	.5284	30
40	.4576	.9814	.4762	.5238	20
50	.4618	.9810	.4808	.5192	10
17° 00′	9.4659	9.9806	9.4853	0.5147	73° 00′
10	.4700	.9802	.4898	.5102	50
20	.4741	.9798	.4943	.5057	40
30	.4781	.9794	.4987	.5013	30
40	.4821	.9790	.5031	.4969	20
50	.4861	.9786	.5075	.4925	10
18° 00′	9.4900	9.9782	9.5118	0.4882	72° 00′
Degrees.	Log cos	Log sin	Log cot	Log tan	Degrees.

Degrees.	Log sin	Log cos	Log tan	Log cot	Degrees.
18° 00'	9.4900	9.9782	9.5118	0.4882	72° 00′
10	.4939	.9778	. 5161	. 4839	50
20	.4977	.9774	. 5203	.4797	40
30	.5015	.9770	. 5245	.4755	30
40 50	.5052	.9765 .9761	.5287	.4713	20 10
			l	.4671	
19° 00′	9.5126	9.9757	9.5370	0.4630	71° 00'
10 20	5163	.9752	.5411	.4589	50
30	.5199	.9748	.5451	.4549	40 30
40	.5270	.9739	.5491	.4509	20
5ŏ	.5306	.9734	.5571	.4429	10
20° 00′	9.5341	9.9730	9.5611	0.4389	70° 00′
10	. 5375	.9725	. 5650	.4350	50
20	. 5409	.9721	. 5689	.4311	40
30	. 5443	.9716	. 5727	.4273	30
40	. 5477	.9711	. 5766	.4234	20
50	.5510	.9706	.5804	.4196	10
21° 00′	9.5543	9.9702	9.5842	0.4158	69° 00′
10	. 5576	.9697	.5879	.4121	50
20	. 5609	.9692	.5917	.4083	40
30 40	.5641	.9687 .9682	.5954	.4046	30 20
50	.5704	.9682	.5991	.4009 .3972	10
22° 00′	9.5736	9.9672	9.6064	0.3936	68° 00′
10	.5767	.9667	.6100	.3900	50
20	.5798	.9661	.6136	.3864	40
30	.5828	.9656	.6172	.3828	30
40	.5859	.9651	.6208	.3792	20
50	. 5889	.9646	.6243	.3757	10
23° 00′	9.5919	9.9640	9.6279	0.3721	67° 00′
10	.5948	.9635	. 6314	.3686	50
20	.5978	.9629	. 6348	.3652	40
30	.6007	.9624	. 6383	.3617	30
40 50	.6036 .6065	.9618 .9613	.6417	.3583	20 10
	1	1	i	.3548	1
24° 00′	9.6093	9.9607	9.6486	0.3514	66° 00′
10 20	.6121	.9602 .9596	.6520	.3480	50 40
30	.6149 .6177	.9590	. 6553 . 6587	.3447	30
40	.6205	.9584	.6620	.3380	20
50	.6232	.9579	.6654	.3346	10
25° 00'	9.6259	9.9573	9.6687	0.3313	65° 00'
. 10	.6286	.9567	.6720	.3280	50
20	.6313	.9561	.6752	.3248	40
30	. 6340	.9555	. 6785	.3215	30
40	. 6366	.9549	. 6817	.3183	20
50	- 6392	.9543	. 6850	.3150	10
26° 00′	9.6418	9.9537	9.6882	0.3118	64° 00′
10 20	.6444	.9530	.6914	.3086	50
20 30	.6470	.9524	.6946	.3054	40 30
40	.6495 .6521	.9518 .9512	.6977	.3023	20
50	6546	.9505	.7040	.2960	10
27° 00′	9.6570	9.9499	9.7072	0.2928	63° 00′
Degrees.	Log cos	Log sin	Log cot	Log tan	Degrees.

-	(Continued)									
Degrees.	Log sin	Log cos	Log tan	Log cot	Degrees.					
27° 00′	9.6570	9.9499	9.7072	0.2928	63° 00′					
10	.6595	.9492	.7103	.2897	50					
20	.6620	.9486	.7134	.2866	40					
30	.6644	.9479	.7165	.2835	30					
40	.6668	.9473	.7196	.2804	20					
50	.6692	.9466	.7226	.2774	10					
28° 00′	9.6716	9.9459	9.7257	0.2743	62° 00′					
10	.6740	.8453	.7287	.2713	50					
20	.6763	.9446	.7317	.2683	40					
30	.6787	.9439	.7348	.2652	30					
40	.6810	.9432	.7378	.2622	20					
50	.6833	.9425	.7408	.2592	10					
29° 00′	9.6856	9.9418	9.7438	0.2562	61° 00′					
10	.6878	.9411	.7467	.2533	50					
20	.6901	.9404	.7497	.2503	40					
30	.6923	.9397	.7526	.2474	30					
40	.6946	.9390	.7556	.2444	20					
50	.6968	.9383	.7585	.2415	10					
30° 00′	9.6990	9.9375	9.7614	0.2386	60° 00′					
10	.7012	.9368	.7644	.2356	50					
20	.7033	.9361	.7673	.2327	40					
30	.7055	.9353	.7701	.2299	30					
40	.7076	.9346	.7730	.2270	20					
50	.7097	.9338	.7759	.2241	10					
31° 00′	9.7118	9.9331	9.7788	0.2212	59° 00′					
10	.7139	.9323	.7816	.2184	50					
20	.7160	.9315	.7845	.2155	40					
30	.7181	.9308	.7873	.2127	30					
40	.7201	.9300	.7902	.2098	20					
50	.7222	.9292	.7930	.2070	10					
32° 00′	9.7242	9.9284	9.7958	0.2042	58° 00′					
10	.7262	.9276	.7986	.2014	50					
20	.7282	.9268	.8014	.1986	40					
30	.7302	.9260	.8042	.1958	30					
40	.7322	.9252	.8070	.1930	20					
50	.7342	.9244	.8097	.1903	10					
33° 00° 10° 20° 30° 40° 50° 50° 50° 50° 50° 50° 50° 50° 50° 5	9.7361	9.9236	9.8125	0.1875	57° 00′					
	.7380	.9228	.8153	.1847	50					
	.7400	.9219	.8180	.1820	40					
	.7419	.9211	.8208	.1792	30					
	.7438	.9203	.8235	.1765	20					
	.7457	.9194	.8263	.1737	10					
34° 00′	9.7476	9.9186	9.8290	0.1710	56° 00′					
10	.7494	.9177	.8317	.1683	50					
20	.7513	.9169	.8344	.1656	40					
30	.7531	.9160	.8371	.1629	30					
40	.7550	.9151	.8398	.1602	20					
50	.7568	.9142	.8425	.1575	10					
35° 00′ 10 20 30 40 50	9.7586 .7604 .7622 .7640 .7657 .7675	9.9134 .9125 .9116 .9107 .9098 .9089	9.8452 .8479 .8506 .8533 .8559 .8586	0.1548 ° .1521 .1494 .1467 .1441	55° 00′ 50 40 30 20 10					
36° 00′	9.7692	9.9080	9.8613	0.1387	54° 00′					
Degrees.	Log.cos	Log sin	Log cot	Log tan	Degrees.					

Degrees.	Log sin	Log cos	Log tan	Log cot	Degrees.
36° 00′	9.7692	9.9080	9.8613	0.1387	54° 00′
10	.7710	.9070	.8639	.1361	50
20	.7727	.9061	.8666	.1334	40
30	.7744	.9052	.8692	.1308	30
40	.7761	.9042	.8718	.1282	20
50	.7778	.9033	.8745	.1255	10
37° 00′	9.7795	9.9023	9.8771	0.1229	53° 00′
10	.7811	.9014	.8797	.1203	50
20	.7828	.9004	.8824	.1176	40
30	.7844	.8995	.8850	.1150	30
40	.7861	.8985	.8876	.1124	20
50	.7877	.8975	.8902	.1098	10
38° 00′	9.7893	9.8965	9.8928	0.1072	52° 00′
10	.7910	.8955	.8954	.1046	50
20	.7926	.8945	.8980	.1020	40
30	.7941	.8935	.9006	.0994	30
40	.7957	.8925	.9032	.0968	20
50	.7973	.8915	.9058	.0942	10
39° 00′	9.7989	9.8905	9.9084	0.0916	51° 00′
10	.8004	.8895	.9110	.0890	50
20	.8020	.8884	.9135	.0865	40
30	.8035	.8874	.9161	.0839	30
40	.8050	.8864	.9187	.0813	20
50	.8066	.8853	.9212	.0788	10
40° 00′	9.8081	9.8843	9.9238	0.0762	50° 00′
10	.8096	.8832	.9264	.0736	50
20	.8111	.8821	.9289	.0711	40
30	.8125	.8810	.9315	.0685	30
40	.8140	.8800	.9341	.0659	20
50	.8155	.8789	.9366	.0634	10
41° 00′	9.8169	9.8778	9.9392	0.0608	49° 00′
10	.8184	.8767	.9417	.0583	50
20	.8198	.8756	.9443	.0557	40°
30	.8213	.8745	.9468	.0532	30
40	.8227	.8733	.9494	.0506	20
50	.8241	.8722	.9519	.0481	10
42° 00°	9.8255	9.8711	9.9544	0.0456	48° 00′
10	.8269	.8699	.9570	.0430	50
20	.8283	.8688	.9595	.0405	40
30	.8297	.8676	.9621	.0379	30
40	.8311	.8665	.9646	.0354	20
50	.8324	.8653	.9671	.0329	10
43° 00′	9.8338	9.8641	9.9697	0.0303	47° 00′
10	.8351	.8629	.9722	.0278	50
20	.8365	.8618	.9747	.0253	40
30	.8378	.8606	.9773	.0228	30
40	.8391	.8594	.9798	.0202	20
50	.8405	.8582	.9823	.0177	10
44° 00′ 10 20 30 40 50	9.8418 .8431 .8444 .8457 .8469 .8482	9.8569 .8557 .8545 .8532 .8520	9.9848 .9874 .9899 .9927 .9949 .9975	0.0152 .0126 .0101 .0076 .0051 .0025	46° 00′ 50 40 30 20 10
45° 00′	9.8495	9.8495	0.0000	0.0000	45° 00′
Degrees.	Log cos	Log sin	Log cot	Log tan	Degrees

DEGREES — RADIANS

The table gives in radians the angle which is expressed in degrees and minutes at the side and top.

minutes	at the side a	and top.				_
•	00'	10	20	30	40	50
0	0.0000	0.0029	0.0058	0.0087	0.0116	0.0145
ĭ	0.0000	0.0204	0.0033	0.0067		0.0145
$\dot{f 2}$	0.0349	0.0204	0.0233	0.0202	0.0291	0.0320
3	0.0524	0.0553	0.0582		0.0465	0.0495
4	0.0698	0.0333	0.0352	0.0611	0.0640	0.0669
5	0.0033	0.0902	0.0730	0.0785	0.0814	0.0844
6	0.1047	0.0902	0.0931	0.0960	0.0989	0.1018
7	0.1047	0.1076	0.1105	0.1134	0.1164	0.1193
8	0.1222	$0.1251 \\ 0.1425$		0.1309	0.1338	0.1367
9	0.1571	0.1423	0.1454	0.1484	0.1513	0.1542
10	0.1371	0.1000	0.1629	0.1658	0.1687	0.1716
11			0.1804	0.1833	0.1862	0.1891
11 12	0.1920 0.2094	0.1949	0.1978	0.2007	0.2036	0.2065
13		0.2123	0.2153	0.2182	0.2211	0.2240
	0.2269	0.2298	0.2327	0.2356	0.2385	0.2414
14	0.2443	0.2473	0.2502	0.2531	0.2560	0.2589
15	0.2618	0.2647	0.2676	0.2705	0.2734	0.2763
16	0.2793	0.2822	0.2851	0.2880	0.2909	0.2938
17	0.2967	0.2996	0.3025	0.3054	0.3083	0.3113
18	0.3142	0.3171	0.3200	0.3229	0.3258	0.3287
19	0.3316	0.3345	0.3374	0.3403	0.3432	0.3462
20	0.3491	0.3520	0.3549	0.3578	0.3607	0.3636
21	0.3665	0.3694	0.3723	0.3752	0.3782	0.3811
22	0.3840	0.3869	0.3898	0.3927	0.3956	0.3985
23	0.4014	0.4043	0.4072	0.4102	0.4131	0.4160
24	0.4189	0.4218	0.4247	0.4276	0.4305	0.4334
25	0.4363	0.4392	0.4422	0.4451	0.4480	0.4509
26	0.4538	0.4567	0.4596	0.4625	0.4654	0.4683
27	0.4712	0.4741	0.4771	0.4800	0.4829	0.4858
28	0.4887	0.4916	0.4945	0.4974	0.5003	0.5032
29	0.5061	0.5091	0.5120	0.5149	0.5178	0.5207
30	0.5236	0.5265	0.5294	0.5323	0.5352	0.5381
31	0.5411	0.5440	0.5469	0.5498	0.5527	0.5556
32	0.5585	0.5614	0.5643	0.5672	0.5701	0.5730
33	0.5760	0.5789	0.5818	0.5847	0.5876	0.5905
34	0.5934	0.5963	0.5992	0.6021	0.6050	0.6080
35	0.6109	0.6138	0.6167	0.6196	0.6225	0.6254
36	0.6283	0.6312	0.6341	0.6370	0.6400	0.6429
37	0.6458	0.6487	0.6516	0.6545	0.6574	0.6603
38	0.6632	0.6661	0.6690	0.6720	0.6749	0.6778
39	0.6807	0.6836	0.6865	0.6894	0.6923	0.6952
40	0.6981	0.7010	0.7039	0.7069	0.7098	0.7127
41	0.7156	0.7185	0.7214	0.7243	0.7272	0.7301
42	0.7330	0.7359	0.7389	0.7418	0.7447	0.7476
43	0.7505	0.7534	0.7563	0.7592	0.7621	-0.7650
44	0.7679	0.7709	0.7738	0.7767	0.7796	0.7825
	!					

DEGREES - RADIANS (Continued)

	00'	10	20	30	40	50
45 `	0.7854	0.7883	0.7912	0.7941	0.7970	0.7999
46	0.8029	0.8058	0.8087	0.8116	0.8145	0.8174
47	0.8203	0.8232	0.8261	0.8290	0.8319	0.8348
48	0.8378	0.8407	0.8436	0.8465	0.8494	0.8523
49	0.8552	0.8581	0.8610	0.8639	0.8668	0.8698
50	0.8727	0.8756	0.8785	0.8814	0.8843	0.8872
51	0.8901	0.8930	0.8959	0.8988	0.9018	0.9047
52	0.9076	0.9105	0.9134	0.9163	0.9192	0.9221
53	0.9250	0.9279	0.9308	0.9338	0.9367	0.9396
54	0.9425	0.9454	0.9483	0.9512	0.9541	0.9570
55	0.9599	0.9628	0.9657	0.9687	0.9716	0.9745
56	0.9774	0.9803	0.9832	0.9861	0.9890	0.9919
57	0.9948	0.9977	1.0007	1.0036	1.0065	1.0094
58	1.0123	1.0152	1.0181	1.0210	1.0239	1.0268
59	1.0123	1.0327	1.0356	1.0385	1.0414	1.0443
60	1.0472	1.0501	1.0530	1.0559	1.0588	1.0617
61	1.0472	1.0676	1.0705	1.0734	1.0763	1.0792
62	1.0047	1.0850	1.0879	1.0908	1.0937	1.0966
63	1.0996	1.1025	1.1054	1.1083	1.1112	1.1141
64	1.1170	1.1025	1.1034	1.1257	1.1286	1.1316
65	1.1345	1.1199	1.1223	1.1432	1.1461	1.1490
66	1.1545	1.1548	1.1577	1.1606	1.1636	1.1665
67	1.1694	1.1723	1.1752	1.1781	1.1810	1.1839
68	1.1868		1.1732	1.1956	1.1985	1.2014
69		1.1897 1.2072	1.1920 1.2101	1.2130	1.2159	1.2188
70	1.2043 1.2217	1.2072 1.2246	1.2101 1.2275	1.2305	1.2334	1.2363
. 71	1.2392	1.2421	1.2450	1.2479	1.2508	1.2537
72	1.2566	1.2595	1.2625	1.2654	1.2683	1.2712
73	1.2741	1.2770	1.2799	1.2828	1.2857	1.2886
73 74	1.2741	1.2945	1.2974	1.3003	1.3032	1.3061
75	1.3090	1.3119	1.3148	1.3177	1.3206	1.3235
76	1.3265	1.3294	1.3323	1.3352	1.3381	1.3410
77	1.3439	1.3468	1.3497	1.3526	1.3555	1.3584
78	1.3614	1.3643	1.3672	1.3701	1.3730	1.3759
79	1.3788	1.3817	1.3846	1.3875	1.3904	1.3934
80	1.3963	1.3992	1.4021	1.4050	1.4079	1.4108
81	1.4137	1.4166	1.4195	1.4224	1.4254	1.4283
82	1.4312	1.4341	1.4370	1.4399	1.4428	1.4457
83	1.4486	1.4515	1.4544	1.4574	1.4603	1.4632
84	1.4661	1.4690	1.4719	1.4748	1.4777	1.4806
85	1.4835	1.4864	1.4893	1.4923	1.4952	1.4981
86	1.5010	1.5039	1.5068	1.5097	1.5126	1.5155
87	1.5184	1.5213	1.5243	1.5272	1.5301	1.5330
88	1.5359	1.5388	1.5417	1.5446	1.5475	1.5504
89	1.5533	1.5563	1.5592	1.5621	1.5650	1.5679
90	1.5708	1.0000	1.0032	1.0021	1.0000	1.00.0
<i>5</i> 0	1 1.0100	1	1 .	1	i	i

DEGREES - RADIANS (Concluded)

Deg.	Radians.	Deg.	Radians.	Deg.	Radians.	Deg.	Radians.
90	1.5708	160	2.7925	230	4.0143	300	5.2360
100	1.7453	170	2.9671	240	4.1888	310	5.4105
110	1.9199	180	3.1416	250	4.3633	320	5.5851
120	2.0944	190	3.3161	260	4.5379	330	5.7596
130	2.2689	200	3.4907	270	4.7124	340	5.9341
140	2.4435	210	3.6652	280	4.8869	350	6.1087
150	2.6180	220	3.8397	290	5.0615	360	6.2832

NUMERICAL CONSTANTS

$$\pi = 3.14159$$

$$\log \pi = 0.497150$$

$$4\pi = 12.56637, \qquad \log 4\pi = 1.099210,$$

$$\frac{\pi}{2} = 1.57080 \qquad \log \frac{\pi}{2} = 0.196120$$

$$\frac{\pi}{3} = 1.04720 \qquad \log \frac{\pi}{3} = 0.020029$$

$$\frac{4}{3}\pi = 4.18879 \qquad \log \frac{4}{3}\pi = 0.622089$$

$$\frac{\pi}{4} = 0.78540 \qquad \log \frac{\pi}{4} = 9.895090 - 10$$

$$\frac{1}{\pi} = 0.31831 \qquad \log \frac{1}{\pi} = 9.502850 - 10$$

$$\pi^2 = 9.86960 \qquad \log \pi^2 = 0.994300$$

$$\frac{1}{\pi^2} = 0.10132 \qquad \log \frac{1}{\pi^2} = 9.005700 - 10$$

$$\sqrt{\pi} = 1.77245 \qquad \log \sqrt{\pi} = 0.248575$$

$$\frac{1}{\sqrt{\pi}} = 0.56419 \qquad \log \sqrt[4]{\pi} = 9.751425 - 10$$

$$\sqrt[8]{\pi} = 1.46459 \qquad \log \sqrt[8]{\pi} = 0.165717$$

BASE OF NATURAL LOGARITHMS

$$e = 2.71828$$
 $\log_{10} e = 0.434294$
Natural log of $x = \log_e x = 2.30259 \log_{10} x$.

For conversion or reduction factors see under Measures and Units.

For miscellaneous physical constants see under Miscellaneous Tables.

NUMERICAL TABLE

RECIPROCALS, POWERS AND ROOTS OF NUMBERS, CIRCUMFERENCES AND AREAS FOR NUMBERS (DIAMETERS) FROM 1 TO 1000

n	$1000\frac{1}{n}$	n^2	n³	\sqrt{n}	$\sqrt[3]{n}$	Circum. of circle πn	Area of circle $\frac{1}{4}\pi n^2$
1 2 3 4 5 6 7 8 9	000.00 500.00 333.33 250.00 200.00 166.67 142.86 125.00 111.11 100.00	1 4 9 16 25 36 49 64 81 100	1 8 27 64 125 216 343 512 729 1000	1. 1.414 1.732 2.000 2.236 2.449 2.646 2.828 3.000 3.162	1.00000 1.25992 1.44225 1.58740 1.70998 1.81712 1.91293 2.00000 2.08008 2.15443	3.14159 6.28319 9.42478 12.5664 15.7080 18.8496 21.9911 25.1327 28.2743 31.4159	.79 3.14 7.07 12.57 19.64 28.27 38.49 50.27 63.62 78.5
11	90.9091	121	1331	3.3166	2.22398	34.5575	95.0
12	83.3333	144	1728	3.4641	2.28943	37.6991	113.1
13	76.9231	169	2197	3.6056	2.35133	40.8407	132.7
14	71.4286	196	2744	3.7417	2.41014	43.9823	153.9
15	66.6667	225	3375	3.8730	2.46621	47.1239	176.7
16	62.5000	256	4096	4.0000	2.51984	50.2655	201.1
17	58.8235	289	4913	4.1231	2.57128	53.4071	227.0
18	55.5556	324	5832	4.2426	2.62074	56.5487	254.5
19	52.6316	361	6859	4.3589	2.66840	59.6903	283.5
20	50.0000	400	8000	4.4721	2.71442	62.8319	314.2
21	47.6190	441	9261	4.5826	2.75892	65.9734	346.4
22	45.4545	484	10648	4.6904	2.80204	69.1150	380.1
23	43.4783	529	12167	4.7958	2.84387	72.2566	415.5
24	41.6667	576	13824	4.8990	2.88450	75.3982	452.4
25	40.0000	625	15625	5.0000	2.92402	78.5398	490.9
26	38.4615	676	17576	5.0990	2.96250	81.6814	530.9
27	37.0370	729	19683	5.1962	3.00000	84.8230	572.6
28	35.7143	784	21952	5.2915	3.03659	87.9646	615.8
29	34.4828	841	24389	5.3852	3.07232	91.1062	660.5
30	33.3333	900	27000	5.4772	3.10723	94.2478	706.9
31	32.2581	961	29791	5.5678	3.14138	97.3894	754.8
32	31.2500	1024	32768	5.6569	3.17480	100.531	804.3
33	30.3030	1089	35937	5.7446	3.20753	103.673	855.3
34	29.4118	1156	39304	5.8310	3.23961	106.814	907.9
35	28.5714	1225	42875	5.9161	3.27107	109.956	962.1
36	27.7778	1296	46656	6.0000	3.30193	113.097	1017.9
37	27.0270	1369	50653	6.0828	3.33222	116.239	1075.2
38	26.3158	1444	54872	6.1644	3.36198	119.381	1134.1
39	25.6410	1521	59319	6.2450	3.39121	122.522	1194.6
40	25.0000	1600	64000	6.3246	3.41995	125.664	1256.6
41 42 43 44 45 46 47 48 49 50	24.3902 23.8095 23.2558 22.7273 22.2222 21.7391 21.2766 20.8333 20.4082 20.0000	1681 1764 1849 1936 2025 2116 2209 2304 2401 2500	68921 74088 79507 85184 91125 97336 103823 110592 117649 125000	6.4031 6.4807 6.5574 6.6332 6.7082 6.7823 6.8557 6.9282 7.0000 7.0711	3.65931	128.805 131.947 135.088 138.230 141.372 144.513 147.655 150.796 153.938 157.080	1320.3 1385.4 1452.2 1520.5 1590.4 1661.9 1734.9 1809.6 1885.7

NUMERICAL TABLE (Continued)

n	$1000\frac{1}{n}$	n²	n³	\sqrt{n}	$\sqrt[3]{n}$	Circum. of circle πn	Area of circle ½πn²
51	19.6078	2601	132651	7.1414	3.70843	160.221	2042.8
52	19.2308	2704	140608	7.2111	3.73251	163.363	2123.7
53	18.8679	2809	148877	7.2801	3.75628	166.504	2206.2
54	18.5185	2916	157464	7.3485	3.775628	169.646	2290.2
55	18.1818	3025	166375	7.4162	3.80295	172.788	2375.8
56	17.8571	3136	175616	7.4833	3.82586	175.929	2463.0
57	17.5439	3249	185193	7.5498	3.84850	179.071	2551.8
58	17.2414	3364	195112	7.6158	3.87088	182.212	2642.1
59	16.9492	3481	205379	7.6811	3.89300	185.354	2734.0
60	16.6667	3600	216000	7.7460	3.91487	188.496	2827.4
61	16.3934	3721	226981	7.8102	3.93650	191.637	2922.5
62	16.1290	3844	238328	7.8740	3.95789	194.779	3019.1
63	15.8730	3969	250047	7.9373	3.97906	197.920	3117.3
64	15.6250	4096	262144	8.0000	4.00000	201.062	3217.0
65	15.3846	4225	274625	8.0623	4.02073	204.204	3318.3
66	15.1515	4356	287496	8.1240	4.04124	207.345	3421.2
67	14.9254	4489	300763	8.1854	4.06155	210.487	3525.7
68	14.7059	4624	314432	8.2462	4.08166	213.628	3631.7
69	14.4928	4761	328509	8.3066	4.10157	216.770	3739.3
70	14.2857	4900	343000	8.3666	4.12129	219.911	3848.5
71	14.0845	5041	357911	8.4261	4.14082	223.053	3959.2
72	13.8889	5184	373248	8.4853	4.16017	226.195	4071.5
73	13.6986	5329	389017	8.5440	4.17934	229.336	4185.4
74	13.5135	5476	405224	8.6023	4.19834	232.478	4300.8
75	13.3333	5625	421875	8.6603	4.21716	235.619	4417.9
76	13.1579	5776	438976	8.7178	4.23582	238.761	4536.5
77	12.9870	5929	456533	8.7750	4.25432	241.903	4656.6
78	12.8205	6084	474552	8.8318	4.27266	245.044	4778.4
79	12.6582	6241	493039	8.8882	4.29084	248.186	4901.7
80	12.5000	6400	512000	8.9443	4.30887	251.327	5026.6
81	12.3457	6561	531441	9.0000	4.32675	254.469	5153.0
82	12.1951	6724	551368	9.0554	4.34448	257.611	5281.0
83	12.0482	6889	571787	9.1104	4.36207	260.752	5410.6
84	11.9048	7056	592704	9.1652	4.37952	263.894	5541.8
85	11.7647	7225	614125	9.2195	4.39683	267.035	5674.5
86	11.6279	7396	636056	9.2736	4.41400	270.177	5808.8
87	11.4943	7569	658503	9.3274	4.43105	273.319	5944.7
88	11.3636	7744	681472	9.3808	4.44796	276.460	6082.1
89	11.2360	7921	704969	9.4340	4.46475	279.602	6221.1
90	11.1111	8100	729000	9.4868	4.48140	282.743	6361.7
91	10.9890	8281	753571	9.5394	4.49794	285 .885	6503.9
92	10.8696	8464	778688	9.5917	4.51436	289 .027	6647.6
93	10.7527	8649	804357	9.6437	4.53065	292 .168	6792.9
94	10.6383	8836	830584	9.6954	4.54684	295 .310	6939.8
95	10.5263	9025	857375	9.7468	4.56290	298 .451	7088.2
96	10.4167	9216	884736	9.7980	4.57886	301 .593	7238.2
97	10.3093	9409	912673	9.8489	4.59470	304 .734	7389.8
98	10.2041	9604	941192	9.8995	4.61044	307 .876	7543.0
99	10.1010	9801	970299	9.9499	4.62607	311 .018	7697.7
100	10.0000	10000	1000000	10.0000	4.64159	314 .159	7554.0

n	$1000\frac{1}{n}$	n^2	n^3	\sqrt{n}	$\sqrt[3]{n}$	Circum. of circle πn	Area of circle $\frac{1}{2}\pi n^2$
101 102 103 104 105 106 107 108 109	9.90099 9.80392 9.70874 9.61538 9.52381 9.43396 9.34579 9.25926 9.17431	10201 10404 10609 10816 11025 11236 11449 11664 11881 12100	1030301 1061208 1092727 1124864 1157625 1191016 1225043 1259712 1295029 1331000	10.0499 10.0995 10.1489 10.1980 10.2470 10.3941 10.3923 10.4403 10.4881	4.65701 4.67233 4.68755 4.70267 4.71769 4.73262 4.74746 4.76220 4.77686 4.79142	317,301 320,442 323,584 326,726 329,867 333,009 336,150 339,292 342,434 345,575	8011.9 8171.3 8332.3 8494.9 8659.0 8824.7 8992.0 9160.9 9331.3 9503.3
110 111 112 113 114 115 116 117 118 119 120	9.09091 9.00901 8.92857 8.84956 8.77193 8.69565 8.62069 8.54701 8.47458 8.40336 8.33333	12321 12544 12769 12996 13225 13456 13689 13924 14161 14400	1367631 1404928 1442897 1481544 1520875 1560896 1601613 1643032 1685159 1728000	10.5357 10.5830 10.6301 10.6771 10.7238 10.7703 10.8167 10.8628 10.9087 10.9545	4.80590 4.82028 4.83459 4.84881 4.86294 4.87700 4.89097 4.90487 4.91868 4.93242	348.717 351.858 355.000 358.142 361.283 364.425 367.566 370.708 373.850 376.991	9676.9 9852.0 10028.8 10207.0 10386.9 10568.3 10751.3 10935.9 11122.0 11309.7
121 122 123 124 125 126 127 128 129 130	8.26446 8.19672 8.13008 8.06452 8.00000 7.93651 7.87402 7.81250 7.75194 7.69231	14641 14884 15129 15376 15625 15876 16129 16384 16641 16900	1771561 1815848 1860867 1906624 1953125 2000376 2048383 2097152 2146689 2197000	11.0000 11.0454 11.0905 11.1355 11.1803 11.2250 11.2694 11.3137 11.3578 11.4018	4.94609 4.95968 4.97319 4.98663 5.00000 5.01330 5.02653 5.03968 5.05277 5.06580	380.133 383.274 386.416 389.557 392.699 395.841 398.982 402.124 405.265 408.407	11499.0 11689.9 11882.3 12076.3 12271.9 12469.0 12667.7 12868.0 13069.8 13273.2
131 132 133 134 135 136 137 138 139 140	7.63359 7.57576 7.51880 7.46269 7.40741 7.35294 7.29927 7.24638 7.19424 7.14286	17161 17424 17689 17956 18225 18496 18769 19044 19321 19600	2248091 2299968 2352637 2406104 2460375 2515456 2571353 2628072 2685619 2744000	11.4455 11.4891 11.5326 11.5758 11.6190 11.6619 11.7047 11.7473 11.7898 11.8322	5.14256 5.15514	411.549 414.690 417.832 420.973 424.115 427.257 430.398 433.540 436.681 439.823	13478.2 13684.8 13892.9 14102.6 14313.9 14526.7 14741.1 14957.1 15174.7 15393.8
141 142 143 144 145 146 147 148 149	7.09220 7.04225 6.99301 6.94444 6.89655 6.84932 6.80272 6.75676 6.71141 6.66667	19881 20164 20449 20736 21025 21316 21609 21904 22201 22500	2803221 2863288 2924207 2985984 -3048625 3112136 3176523 3241792 3307949 3375000	11.8743 11.9164 11.9583 12.0000 12.0416 12.0830 12.1244 12.1655 12.2066 12.2474	5.25359 5.26564 5.27763 5.28957 5.30146	442.965 446.106 449.248 452.389 455.531 458.673 461.814 464.956 468.097 471.239	15614.5 15836.8 16060.6 16286.0 16513.0 16741.6 16971.7 17203.4 17436.6 17671.5

n	$1000\frac{1}{n}$	n ²	n³	\sqrt{n}	$\sqrt[3]{n}$	Circum. of circle πn	Area of circle ½πn²
151	6.62252		3442951	12.2882		474.380	17907.9
$\frac{152}{153}$	6.57895	23104	3511808	12.3288		477.522	18145.8
154	6.53595 6.49351	23409 23716	3581577	12.3693		480.664	18385.4
155	6.45161	24025	3652264 3723875	12.4097		483.805	18626.5
156	6.41026	24336	3796416	$ 12.4499 \\ 12.4900$		486.947	18869.2
157	6.36943	24649	* 3869893	12.5300		490.088 493.230	19113.5
158	6.32911	24964	3944312	12.5698		496.372	19359.3 19606.7
159	6.28931	25281	4019679	12.6095		499.513	19855.7
160	6.25000	25600	4096000	12.6491	5.42884	502.655	20106.2
161	6.21118	25921	4173281	12.6886	5.44012	505.796	20358.3
162	6.17284	26244	4251528	12.7279	5.45136	508.938	20612.0
$\frac{163}{164}$	6.13497	26569	4330747	12.7671	5.46256	512.080	20867.2
165	6.09756	26896	4410944	12.8062	5.47370	515.221	21124.1
166	6.06061 6.02410	27225 27556	4492125	12.8452	5.48481	518.363	21382.5
167	5.98802	27889	4574296 4657463	12.8841	5.49586	521.504	21642.4
168	5.95238	28224	4741632	$ 12.9228 \\ 12.9615$	5.50688 5.51785	524.646	21904.0
169	5.91716	28561	4826809	13.0000	5.52877	527.788 530.929	22167.1
170	5.88235	28900	4913000	13.0384	5.53966	534.071	22431.8 22698.0
171	5.84795	29241	5000211	13.0767	5.55050	537.212	
172	5.81395	29584	5088448	13.1149	5.56130	540.354	22965.8 23235.2
173	5.78035	29929	5177717	13.1529	5.57205	543.496	23506.2
174 175	5.74713	30276	5268024	13.1909	5.58277	546.637	23778.7
176	5.71429 5.68182	30625	5359375	13.2288	5.59344	549.779	24052.8
177	5.64972	30976 31329	5451776	13.2665	5.60408	552.920	24328.5
178	5.61798	31684	5545233 5639752	13.3041 13.3417	5.61467 5.62523	556.062	24605.7
179	5.58659	32041	5735339	13.3791	5.63574	559.203 562.345	24884.6
180	5.5556	32400	5832000	13.4164	5.64622	565.487	25164.9 25446.9
181	5.52486	32761	5929741	13.4536	5.65665	568.628	25730.4
182	5.49451	33124	6028568	13.4907	5.66705	571.770	26015.5
183 184	5.46448	33489	6128487	13.5277	5.67741	574.911	26302.2
185	5.43478 5.40541	33856 34225	6229504	13.5647	5.68773	578.053	26590.4
186	5.37634	34596	6331625 6434856	$13.6015 \\ 13.6382$	5.69802	581.195	26880.3
187	5.34759	34969	6539203	13.6748	5.70827 5.71850	584.336 587.478	27171.6
188	5.31915	35344	6644672	13.7113	5.72865	590.619	27464.6
189	5.29101	35721	6751269	13.7477	5.73879	593.761	27759.1 28055.2
190	5.26316	36100	6859000	13.7840	5.74890	596.903	28352.9
191	5.23560	36481	6967871	13.8203	5.75897	600.044	28652.1
192 193	5.20833	36864	7077888	13.8564	5.76900	603.186	28952.9
194	5.18135 5.15464	37249	7189057	13.8924	5.77900	606.327	29255.3
195	5.12821	37636 38025	7301384	13.9284	5.78896	609.469	29559.3
196	5.10204	38416	7414875 7529536	13.9642 14.0000	5.79889	612.611	29864.8
197	5.07614	38809	7645373	14.0057	5.80879 5.81865	615.752	30171.9
198	5.05051	39204		14.0712	5.82848	618.894 622.035	30480.5 30790.8
199 200	5.02513	39601	7880599	14.1067	5.83827	625.177	31102.6
	5.00000	40000 l		14.1421	5.84804		

n	$1000\frac{1}{n}$	n^2	n^3	\sqrt{n}	$\sqrt[3]{n}$	Circum. of circle πn	Area of circle $\frac{1}{2}\pi n^2$
201 202 203 204 205 206 207 208 209	4.97512 4.95050 4.92611 4.90196 4.87805 4.85437 4.83092 4.80769 4.78469	40401 40804 41209 41616 42025 42436 42849 43264 43681	8120601 8242408 8365427 8489664 8615125 8741816 8869743 8998912 9129329	14.1774 14.2127 14.2478 14.2829 14.3178 14.3527 14.3875 14.4222 14.4568	5.85777 5.86746 5.87713 5.88677 5.89637 5.90594 5.91548 5.92499 5.93447	631.460 634.602 637.743 640.885 644.026 647.168 650.310 653.451 656.593	31730.9 32047.4 32365.5 32685.1 33006.4 33329.2 33653.5 33979.5 34307.0
210 211 212 213 214 215 216 217	4.76190 4.73934 4.71698 4.69484 4.67290 4.65116 4.62963 4.60829	44100 44521 44944 45369 45796 46225 46656 47089	9261000 9393931 9528128 9663597 9800344 9938375 10077696 10218313	14.4914 14.5258 14.5602 14.5945 14.6287 14.6629 14.6969 14.7309	5.94392 5.95334 5.96273 5.97209 5.98142 5.99073 6.00000 6.00925	659.734 662.876 666.018 669.159 672.301 675.442 678.584 681.726	34966.7 35298.9 35632.7 35968.1 36305.0 36643.5 36983.6 37325.3
218 219 220 221 222 223 224	4.58716 4.56621 4.54545 4.52489 4.50450 4.48430 4.46429	47524 47961 48400 48841 49284 49729 50176	10360232 10503459 10648000 10793861 10941048 11089567 11239424	14.7648 14.7986 14.8324 14.8661 14.8997 14.9332 14.9666	6.01846 6.02765 6.03681 6.04594 6.05505 6.06413 6.07318	684.867 688.009 691.150 694.292 697.434 700.575 703.717	37668.5 38013.3 38359.6 38707.6 39057.1 39408.1
225 226 227 228 229 230	4.4444 4.42478 4.40529 4.38529 4.36681 4.34783	50625 51076 51529 51984 52441 52900 53361	11390625 11543176 11697083 11852352 12008989 12167000	15.0000 15.0333 15.0665 15.0997 15.1327 15.1658	6.08220 6.09120 6.10017 6.10911 6.11803 6.12693	706.858 710.000 713.142 716.283 719.425 722.566 725.708	39760.8 40115.0 40470.8 40828.1 41187.1 41547.6 41909.6
232 233 234 235 236 237 238 239 240	4.31034 4.29185 4.27350 4.25532 4.23729 4.21941 4.20168 4.18410 4.16667	53824 54289 54756 55225 55696 56169 56644 57121	12487168 12649337 12812904 12977875 13144256 13312053 13481272 13651919 13824000	15.2315 15.2643 15.2971 15.3297 15.3623 15.3948 15.4272 15.4596 15.4919	6.14463 6.15345 6.16224 6.17101 6.17975 6.18846 6.19715 6.20582 6.21447	728.849 731.991 735.133 738.274 741.416 744.557 747.699 750.841 753.982	42273.3 42638.5 43005.3 43373.6 43743.5 44115.0 44488.1 44862.7 45238.9
241 242 243 244 245 246 247 248 249 250	4.14938 4.13223 4.11523 4.09836 4.08163 4.06504 4.04858 4.03226 4.01606 4.00000		13997521 14172488 14348907 14526784 14706125 14880936 15069223 15252992 15438249 15625000	15.5242 15.5563 15.5885 15.6205 15.6525 15.6844 15.7162 15.7480 15.7797 15.8114	6.25732 6.26583 6.27431 6.28276 6.29119	757.124 760.265 763.407 766.549 769.690 772.832 775.973 779.115 782.257 785.398	45616.7 45996.1 46377.0 46759.5 47143.5 47529.2 47916.4 48305.1 48695.5 49087.4

						· · · · · · ,	
n	$1000\frac{1}{n}$	n ²	n ³	\sqrt{n}	$\sqrt[3]{n}$	Circum. of circle πn	Area of circle ½πn²
251 252 253 254 255 256 257 258 259 260	3.98406 3.96825 3.95257 3.93701 3.92157 3.90625 3.89105 3.87597 3.86100 3.84615	63001 63504 64009 64516 65025 65536 66049 66564 67081	15813251 16003008 16194277 16387064 16581375 16777216 16974593 17173512 17373979 17576000	15.8430 15.8745 15.9060 15.9374 15.9687 16.0000 16.0312 16.0624 16.0935 16.1245	6.31636 6.32470 6.33303 6.34133 6.34960 6.35786 6.36610 6.37431	788.540 791.681 794.823 797.965 801.106 804.248 807.389 810.531 813.672	49480.9 49875.9 50272.6 50670.8 51070.5 51471.9 51874.8 52279.2 52685.3
261 262 263 264 265 266 267 268 269 270	3.83142 3.81679 3.80228 3.78788 3.77358 3.74532 3.74532 3.73134 3.71747 3.70370	68121 68644 69169 69696 70225 70756 71289 71824 72361 72900	17779581 17984728 18191447 18399744 18609625 18821096 19034163 19248832 19465109 19683000	16.1555 16.1864 16.2173 16.2481 16.2788 16.3095 16.3401 16.3707 16.4012 16.4317	6.38250 6.39068 6.39883 6.40696 6.41507 6.42316 6.43123 6.43928 6.44731 6.45531 6.46330	816.814 819.956 823.097 826.239 829.380 832.522 835.664 838.805 841.947 845.088 848.230	53092.9 53502.1 53912.9 54325.2 54739.1 55154.6 55571.6 55990.3 56410.4 56832.2 57255.5
271 272 273 274 275 276 277 278 279 280	3.69004 3.67647 3.66300 3.64964 3.63636 3.62319 3.61011 3.59712 3.58423 3.57143	73441 73984 74529 75076 75625 76176 76729 77284 77841 78400	19902511 20123648 20346417 20570824 20796875 21024576 21253933 21484952 21717639 21952000	16.4621 16.4924 16.5227 16.5529 16.5831 16.6132 16.6433 16.6733 16.7033 16.7332	6.47127 6.47922 6.48715 6.49507 6.50296 6.51083 6.51868 6.52652 6.53934 6.54213	851.372 854.513 857.655 860.796 863.938 867.080 870.221 873.363 876.504 879.646	57680.4 58106.9 58534.9 58964.6 59395.7 59828.5 60262.8 60698.7 61136.2 61575.2
281 282 283 284 285 286 287 288 289 290	3.55872 3.54610 3.53357 3.52113 3.50877 3.49650 3.48432 3.47222 3.46021 3.44828	78961 79524 80089 80656 81225 81796 82369 82944 83521 84100	22188041 22425768 22665187 22906304 23149125 23393656 23639903 23887872 24137569 24389000	16.7631 16.7929 16.8226 16.8523 16.8819 16.9115 16.9411 16.9706 17.0000 17.0294	6.54991 6.55767 6.56541 6.57314 6.58084 6.58853 6.59620 6.60385 6.61150 6.61911	882.788 885.929 889.071 892.212 895.354 898.495 901.637 904.779 907.920 911.062	62015.8 62458.0 62901.8 63347.1 63794.0 63242.4 64692.5 65144.1 65597.2 66052.0
291 292 293 294 295 296 297 298 299 300	3.43643 3.42466 3.41297 3.40136 3.38983 3.37838 3.36700 3.35570 3.34448 3.33333	84681 85264 85849 86436 87025 87616 88209 88804 89401 90000	24642171 24897088 25153757 25412184 25672375 25934336 26198073 26463592 26730899 27000000	17.0587 17.0880 17.1172 17.1464 17.1756 17.2047 17.2337 17.2627 17.2916 17.3205	6.62671 6.63429 6.64185 6.64940 6.65693 6.66444 6.67194 6.67942 6.68688 6.69433	914.203 917.345 920.487 923.628 926.770 929.911 933.053 936.195 939.336 942.478	66508.3 66966.2 67425.7 67886.7 68349.3 68813.5 69279.2 69746.5 70215.4 70685.8

~							
n	$1000\frac{1}{n}$	n^2	. n³	\sqrt{n}	$\sqrt[3]{n}$	Circum. of circle πn	Area of circle $\frac{1}{4}\pi n^2$
301 302 303 304 305 306 307 308 309	3.32226 3.31126 3.30033 3.28947 3.27869 3.26797 3.25733 3.24675 3.23625	90601 91204 91809 92416 93025 93636 94249 94864 95481	27270901 27543608 27818127 28094464 28372625 28652616 28934443 29218112 29503629	17.3494 17.3781 17.4069 17.4356 17.4642 17.4929 17.5214 17.5499 17.5784	6.70186 6.70917 6.71657 6.72395 6.73132 6.73866 6.74600 6.75331 6.76061	945.619 948.761 951.903 955.044 958.186 961.327 964.469 967.611 970.752 973.894	71157.9 71631.5 72106.6 72583.4 73061.7 73541.5 74023.0 74506.0 74990.6 75476.8
310 311 312 313. 314 315 316 317 318 319 320	3.22581 3.20513 3.20513 3.19489 3.18471 3.17460 3.16456 3.15457 3.14465 3.13480 3.12500	101761	29791000 30080231 30371328 30664297 30959144 31255875 31554496 31855013 32157432 32461759 32768000	17.6068 17.6352 17.6635 17.6918 17.7200 17.7482 17.7764 17.8045 17.8326 17.8606 17.8885	6.76790 6.77517 6.78242 6.78966 6.79688 6.80409 6.81128 6.81846 6.82562 6.83277 6.83990	977.035 980.177 983.318 986.460 989.602 992.743 995.885 999.026 1002.17 1005.31	75964.5 76453.8 76944.7 77437.1 77931.1 78426.7 78923.9 79422.6 79922.9 80424.8
321 322 323 324 325 326 327 328 329 330		103041 103684 104329 104976 105625 106276 106929 107584 108241	33076161 33386248 33698267 3401224 34328125 34645976 34965783 35287552 35611289 35937000	17.9165 17.9444 17.9722 18.0000 18.0278 18.0555 18.0831 18.1108 18.1384 18.1659	6.84702 6.85412 6.86121 6.86829 6.87534 6.88239 6.88942 6.89643 6.90344 6.91042	1008.45 1011.59 1014.73 1017.88 1021.02 1024.16 1027.30 1030.44 1033.58 1036.73	80928.2 81433.2 81939.8 82448.0 82957.7 83469.0 83981.8 84496.3 85012.3 85529.9
331 332 333 334 335 336 337 338 339 340	3.02115 3.01205 3.00300 2.99401 2.98507 2.97619	109561 110224 110889 111556 112225 112896 113569 114244 114921	36264691 36594368 36926037 37259704 37595375 37933056 38272753 38614472 38958219 39304000	18.1934 18.2209 18.2483 18.2757 18.3030 18.3303 18.3576 18.3848 18.4120 18.4391	6.91740 6.92436 6.93130 6.93823 6.94515 6.95205 6.95894 6.96582 6.97268 6.97953	1039.87 1043.01 1046.15 1049.29 1052.43 1055.58 1058.72 1061.86 1065.00 1068.14	86049.0 86569.7 87092.0 87615.9 88141.3 88668.3 89196.9 89727.0 90258.7 90792.0
341 342 343 344 345 346 347 348 349 350	2.93255 2.92398 2.91545 2.90698 2.89851 2.8951 2.88184 2.87356 2.8653	1	39651821 40001688 40353607 40707584 41063625 41421736 41781923 42144192 42508549 42875000	18.4662 18.4932 18.5203 18.5472 18.5742 18.6011 18.6279 18.6548 18.6815 18.7083	7.02035 7.02711 7.03385 7.04058	1071.28 1074.42 1077.57 1080.71 1083.85 1086.99 1090.13 1093.27 1096.42 1099.56	91326.9 91863.3 92401.3 92940.9 93482.0 94024.7 94569.0 95114.9 95662.3 96211.3

			1			·	
n	$1000\frac{1}{n}$	n ²	n ³	\sqrt{n}	$\sqrt[3]{n}$	Circum. of circle	Area of circle ½πn²
351	2.84900		43243551	18.7350		1102.70	96761.8
352	2.84091		43614208	18.7617		1105.84	97314.0
353 354	2.83286 2.82486		43986977 44361864	18.7883 18.8149		$ 1108.98 \\ 1112.12 $	97867.7
355	2.81690		44738875	18.8414		1115.27	98423.0 98979.8
356	2.80899	126736	45118016	18.8680	7.08734	1118.41	99538.2
357	2.80112	127449	45499293	18.8944	7.09397	1121.55	100098.
358 359	2.79330 2.78552	128164	45882712 46268279	18.9209 18.9473	7.10059 7.10719	1124.69 1127.83	100660. 101223.
360		129600	46656000	18.9737	7.11379	1130.97	101723.
001	0.77000	100001	45045001	10 0000	- 1000F		
$\frac{361}{362}$	2.77008 2.76243		47045881 47437928	19.0000 19.0263	7.12037 7.12694	1134.11 1137.26	102354.
363	2.75482		47832147	19.0526	7.13349	1140.40	102922. 103491.
364	2.74725		48228544	19.0788	7.14004	1143.54	104062.
365	2.73973		48627125	19.1050	7.14657	1146.68	104635.
366 367	2.73224 2.72480	133956	49027896 49430863	$19.1311 \\ 19.1572$	7.15309 7.15960	1149.82	105209.
368	2.71739	135424	49836032	19.1833	7.16610	$1152.96 \\ 1156.11$	105784. 106362.
369	2.71003	136161	50244309	19.2094	7.17258	1159.25	106941.
370	2.70270	136900	50653000	19.2354	7.17905	1162.39	107521.
371	2.69542	137641	51064811	19.2614	7.18552	1165.53	108103.
372	2.68817		51478848	19.2873	7.19197	1168.67	108687.
373	2.68097	139129	51895117	19.3132		1171.81	109272.
374 375	2.67380 2.66667	140625	52313624 52734375	$19.3391 \ 19.3649$	$7.20483 \\ 7.21125$	1174.96 1178.10	109858. 110447.
376	2.65957	141376	53157376	19.3907	7.21765		111036.
377	2.65252		53582633	19.4165	7.22405	1184.38	111628.
378 379	$2.64550 \\ 2.63852$		54010152 54439939	19.4422	7.23043 7.23680		112221.
380	2.63158		54872000	19.4679 19.4936		1190.66 1193.81	112815. 113411.
							-
381 382	$2.62467 \\ 2.61780$		55306341 55742968	19.5192 19.5448			114009.
383	2.61097		56181887	19.5704			114608. 115209.
384	2.60417		56623104	19.5959	7.26848	1206.37	115812.
385 386	$2.59740 \\ 2.59067$	148225	57066625	19.6214	7.27479	1209.51	116416.
387	2.58398		57512456 57960603	$19.6469 \\ 19.6723$			117021. 117628.
388		150544	58411072	19.6977			118237
389	2.57069			19.7231	7.29989	1222.08	118847.
390	2.56410	152100	59319000	19.7484	7.30614	1225.22	119459.
391	2.55754		59776471	19.7737	7.31238	1228.36	120072.
392	2.55102		60236288	19.7990	7.31861	1231.50	120687.
393 394	2.54453 2.53807		60698457 61162984	19.8242 19.8494	7.32483 7.33104		121304.
395	2.53165	156025	61629875	19.8746			121922. 122542.
396	2.52525	156816	62099136	19.8997	7.34342	1244.07	123163.
397	2.51889			19.9249	7.34960	1247.21	123786.
398 399	2.51256 2.50627			19.9499 19.9750			124410.
400	2.50000			20.0000			125036. 125664.
	1						

n	$1000\frac{1}{n}$	n ²	n^3	\sqrt{n}	$\sqrt[3]{n}$	Circum. of circle	Area of circle $\frac{1}{2}\pi n^2$
	- 10		<i>i</i>				
401	2.49377	160801	64481201	20.0250	7.37420	1259.78	126293.
402	2.48756		64964808	20.0499	7.38032	1262.92	126923.
403	2.48139	163409	65450827	20.0749	7.38644	1266.06	127556.
404	2.47525		65939264	20.0998	7.39254	1269.20	128190.
405	2.46914	164025	66430125	20.1246	7.39864	1272.35	128825.
406	2.46305	164836	66923416	20.1494	7.40472	1275.49	129462. 130100.
407	2.45700	165649	67419143	20.1742	7.41080	1278.63 1281.77	130741.
408	2.45098	166464	67917312	20.1990	7.41686	1284.91	131382.
409	2.44499	167281	68417929	20.2237 20.2485	7.42291 7.42896	1288.05	132025.
410	2.43902	168100	68921000	20.2400			
411	2.43309	168921	69426531	20.2731	7.43499 7.44102	1291 . 19 1294 . 34	132670. 133317.
412	2.42718	169744	69934528	20.2978 20.3224	7.44703	1297.48	133965.
113	2.42131	171206	70444997 70957944	20.3224	7.45304	1300.62	134614.
414	2.41546	171390	71473375	20.3715		1303.76	135265.
415	2.40964		71991296	20.3961	7.46502	1306.90	135918.
416	2.40385 2.39808	173880	72511713	20.4206		1310.04	136572.
417	2.39234	174724	73034632	20.4450		1313.19	137228.
418 419	2.38663	175561	73560059	20.4695	7.48292	1316.33	137885.
420	2,38095	176400	74088000	20.4939	7.48887	1319.47	138544.
421	2.37530	177941	74618461	20.5183		1322.61	139205.
422	2.36967		75151448	20.5426	7.50074	1325.75	139867.
423	2.36407	178929	75686967	20.5670	7.50666	1328.89	140531.
424	2.35849	179776	76225024	20.5913		1332.04	141196.
425	2.35294	180625	76765625	20.6155		1335.18	141863.
426	2.34742	181476	77308776	20.6398		1338.32	142531. 143201.
427	2.34192	182329	77854483	20.6640		1341 .46 1344 .60	143872.
428	2.33645	183184	78402752	20.6882		1347.74	144545.
429	2.33100		78953589	$\begin{vmatrix} 20.7123 \\ 20.7364 \end{vmatrix}$		1350.88	145220.
430	2.32558	184900	79507000			1	
431	2.32019	185761	80062991	20.760	7.55369	1354.03	145896.
432	2.31481	186624	80621568	20.7846		1357 . 17 1360 . 31	$146574. \\ 147254.$
433	2.30947	187489	81182737	20.8087			147934.
434	2.30415	188356	81746504	20.8327 20.8567		1366.59	148617.
435		189225	82312875	20.8806		1369.73	149301.
436		190096	82881856 83453453	20.904		1372.88	149987.
437		3 190969	84027672	20.9284		1376.02	150674.
438	2.2831	1 191844	84604519	20.9523		1379.16	151363.
439 440		0 192721 3 193600	85184000	20.9762			152053.
			85766121	21.0000	7.61166	1385.44	152745.
441	2.2675	4 195364	86350888	21.0238	7.61741	1388.58	153439.
442 443	2.2024	4 196249	86938307	21.0476	7.62315	1391.73	154134.
444	2.2573	5 197136	87528384	21.0713	3 7.62888	1394.87	154830.
445		9 198025	88121125			1398.01	155528.
446		5 198916	88716536	21.1187		1401.15	156228. 156930.
447	2.2371	4 199809	89314623	21.1424		1404.29	157633.
448	2.2321	4 200704	89915392			1407 . 43 1410 . 58	158337.
449	2.2271	7 201601	90518849		7.65741 7.66309	1413.72	159043.
450	2.2222	2 202500	91125000	21.213	1.00008	1.2102	1200000

n	$1000\frac{1}{n}$	n^2	n³	\sqrt{n}	$\sqrt[3]{n}$	Circum. of circle πn	Area of circle ½πn²
451	2.21729		91733851	21.2368	7.66877	1416.86	159751
452	2.21239		92345408	21.2603	7.67443	1420.00	160460
453	2.20751		92959677	21.2838	7.68009	1423.14	161171
454 455	2.20264		93576664	21.3073		1426.28	161883
456	2.19780 2.19298		94196375	21.3307		1429.42	162597
457	2.19298	207930	94818816	$\begin{vmatrix} 21.3542 \\ 21.3776 \end{vmatrix}$		1432.57	163313
458	2.18341	200049	96071912	21.4009		1435.71	164030
459	2.17865	210681	96702579	21.4243		1438.85 1441.99	164748
460	2.17391		97336000	21.4476	7.71944	1445.13	165468 166190
					1		100150
461	2.16920		97972181	21.4709	7.72503	1448.27	166914
462 463	2.16450		98611128	21.4942	7.73061	1451.42	167639
464	2.15983		99252847	21.5174	7.73619	1454.56	168365
465	$2.15517 \\ 2.15054$	210290	99897344	21.5407	7.74175	1457.70	169093
466	2 14502	210223	100544625 101194696	$21.5639 \\ 21.5870$	7.74731 7.75286	1460.84	169823
467	2.14592 2.14133	218098	101194090	21.6102	7.75840	1463.98	170554
468	2.13675	219024	102503232	21.6333	7 76304	$1467.12 \\ 1470.27$	171287 172021
469	2.13220		103161709	21.6564	7.76394 7.76946	1473.41	172757
470	2.12766	220900	103823000	21.6795	7.77498	1476.55	173494
4771	0.4004	201011					
471 472	2.12314		104487111	21.7025	7.78049	1479.69	174234
473	$2.11864 \\ 2.11416$		105154048	21.7256	7.78599 7.79149	1482.83	174974
474	2.11410		105823817 106496424	$21.7486 \\ 21.7715$	7.79149	1485.97	175716
475	2.10526		107171875	21.7945	7.79697 7.80245	1489.11	176460
476	2.10084		107850176	21.8174		1492.26 1495.40	177205
477	2.09644	227529	108531333	21.8403		1498.54	177952 178701
478	2.09205	228484	109215352	21.8632		1501.68	179451
479	2.08768		109902239	21.8861		1504.82	180203
480	2.08333	230400	110592000	21.9089		1507.96	180956
481	2.07900	231361	111284641	21.9317	7.83517	1511 11	101771
482	2.07469			21.9545		1511.11 1514.25	181711 182467
483	2.07039			21.9773	7.84601	1517.39	183225
484		234256	113379904	22.0000		1520.53	183984
485.	2.06186		114084125	22.0227		1523.67	184745
486			114791256	22.0454	7.86222 1	1526.81 l	185508
487 488			115501303	22.0681	7.86761	1529.96	186272
489				22.0907	7.87299	1533.10	187038
490	2.04082			22.1133 22.1359			187805
	2.01002	10100	111013000	22.1009	1.00014	1539.38	188574
491	2.03666			22.1585	7.88909	1542.52	189345
492			119095488	22.1811	7.89445		190117
493	2.02840	243049	119823157	22.2036	7.89979	548.81	190890
494 495	2.02429		120553784	22.2261	7.90513	551.95 l	191665
496	2.02020 2 2.01613 2		121287375	22.2486 22.2711	7.91046		192442
497	2.01207			22.2711		558.23	193221
498	2.00803			22.2935	7.92110 1 7.92641 1		194000
499	2.00401			2.3383			194782 195565
500	2.00000 2			2.3607			196350
		1				1	

n	$1000\frac{1}{n}$	n^2	n^3	\sqrt{n}	$\sqrt[3]{n}$	Circum. of circle πn	Area of circle $\frac{1}{4}\pi n^2$
501	1.99601	251001	125751501	22.3830	7.94229	1573.94	197136
502	1.99203	252004	126506008	22.4054	7.94757	1577.80	197923
503	1.98807		127263527	22.4277	7.95285	1580.22	198713
504	1.98413		128024064	22.4499	7.95811	1583.36	199504 200296
505	1.98020	255025	128787625	22.4722	7.96337	1586.50 1589.65	201090
506	1.97628	256036	129554216	$22.4944 \\ 22.5167$	7.96863 7.97387	1592.79	201886
507	1.97239		130323843 131096512	$\frac{22.5107}{22.5389}$	7.97911	1595.93	202683
508	1.96850 1.96464	250004	131872229	22.5610	7.98434	1599.07	203482
509 510	1.96078		132651000	22.5832	7.98957	1602.21	204282
310	1.500.0						
511	1.95695		133432831	22.6053	7.99479	1605.35	205084
512	1.95312	262144	134217728	22.6274	8.00000	1608.50	205887 206692
513	1.94932		135005697	22.6495	8.00520	1611.64	207499
514	1.94553		135796744	22.6716	8.01040 8.01559	1614.78 1617.92	208307
515	1.94175		136590875	$22.6936 \\ 22.7156$	8.02078	1621.06	209117
516	1.93798 1.93424		137388096 138188413	22.7376	8.02596	1624.20	209928
517 518	1.93424		138991832	22.7596	8.03113	1627.34	210741
519	1.92678		139798359	22.7816	8.03629	1630.49	211556
520	1.92308	270400	140608000	22.8035	8.04145	1633.63	212372
	5			00 0074	0.04000	1636.77	213189
521	1.91939	271441	141420761	22.8254	8.04660 8.05175	1639.91	214008
522	1.91571		142236648	22.8473 22.8692	8.05689	1643.05	214829
523		273529 274576	143055667 143877824	22.8910	8.06202	1646.19	215651
524 525	1.90476		144703125	22.9129	8.06714	1649.34	216475
526	1 00114	276676	145531576	22.9347	8.07226	1652.48	217301
527	1.89753	277729	146363183	22.9565	8.07737	1655.62	218128
528	1.89394	278784	147197952	22.9783	8.08248	1658.76	218956
529	1.89036	278784 279841	148035889	23.0000	8.08758	1661.90	219787
530	1.88679	280900	148877000	23.0217	8.09267	1665.04	220618
531	1 88324	281961	149722291	23.0434	8.09776	1668.19	221452
532	1 87970	283024	150568768	23.0651	8.10284	1671.33	222287
533	1.87617	284089	151419437	23.0868	8.10791	1674.47	223123
534		285156	152273304	23.1084	8.11298	1677.61	223961 224801
535		286225	153130375	23.1301	8.11804 8.12310	1680.75 1683.89	225642
536	1.86567	287296	153990656 154854153	$\begin{vmatrix} 23.1517 \\ 23.1733 \end{vmatrix}$	8.12814	1687.04	226484
537		288369 289444	155720872	23.1948	8.13319	1690.18	227329
538 539	1.85529		156590819	23.2164	8.13822	1693.32	228175
540		291600	157464000	23.2379	8.14325	1696.46	229022
0.10				00 0504	0.14000	1000 60	229871
541	1.8484	3 292681	158340421	23.2594	8.14828 8.15329	$1699.60 \\ 1702.74$	230722
542		2 293764	159220088	23.2809 23.3024		1705.88	231574
543		2294849	160103007 166989184	23.3238		1709.03	232428
544	1.8348	4 295936 6 297025	161878625	23.3452		1712.17	233283
545 546	1 8315	298116	162771336	23.3666		1715.31	234140
547		5 299209	163667323	23.3880		1718.45	234998
548	1.8248		164566592	23.4094	8.18327	1721.59	235858
549	1.8214	9 301401	165469149	23.4307	8.18824	1724.73	236720
550	1.8181	8 302500	166375000	23.4521	8.19321	1727.88	237583
	· .	1			<u> </u>		

						,	
ņ	$1000\frac{1}{n}$	n^2	n^3	\sqrt{n}	$\sqrt[3]{n}$	Circum. of circle	Area of circle ½πn²
551		303601	167284151	23,4734	8.19818	1731.02	238448
552	1.81159		168196608	23.4947		1734.16	239314
553	1.80832		169112377	23.5160	8.20808	1737.30	240182
554	1.80505		170031464	23.5372	8.21303	1740.44	241051
555	1.80180		170953875	23.5584	8.21797	1743.58	241922
556	1.79856		171879616	23.5797	8.22290	1746.73	242795
557	1.79533		172808693	23.6008	8.22783	1749.87	243669
558	1.79211		173741112	23.6220	8.23275	1753.01	244545
559	1.78891		174676879	23.6432	8.23766	1756.15	245422
560	1.78571	313600	175616000	23.6643	8.24257	1759.29	246301
561	1.78253		176558481	23.6854	8.24747	1762.43	247181
562 563	1.77936		177504328	23.7065	8.25237	1765.58	248063
564	1.77620	316969	178453547	23.7276	8.25726	1768.72	248947
565	1.77305 1.76991	318090	179406144	23.7487	8.26215	1771.86	249832
566	1 76679	220256	$180362125 \\ 181321496$	23.7697	8.26703	1775.00	250719
567	1.76678 1.76367	321480	182284263	$23.7908 \\ 23.8118$	8.27190	1778.14	251607
568	1.76056	322624	183250432	23.8328	8.27677	1781.28	252497
569	1.75747		184220009	23.8537	8.28164 8.28649	1784.42	253388
570	1.75439		185193000	23.8747	8.29134	1787.57 1790.71	254281 255176
571	1.75131	326041	186169411	23.8956	8.29619	,	
572	1.74825		187149248	23.9165	8.30103	1793.85	256072
573	1.74520		188132517	23.9374	8.30587	1796.99 1800.13	256970
574	1.74216			23.9583	8.31069	1803.27	257869
575	1.73913	330625		23.9792	8.31552	1806.42	258770
576	1.73913 1.73611	331776		24.0000	8.32034	1809.56	259672 260576
577	1.73310	332929		24.0208	8.32515	1812.70	261482
578	1.73010 1.72712	334084		24.0416	8.32995	1815.84	262389
579				24.0624	8.33476	1818.98	263298
580	1.72414	336400	195112000	24.0832	8.33955	1822.12	264208
581			196122941	24 . 1039	8.34434	1825.27	265120
582	1.71821	338724	197137368	24.1247	8.34913	1828.31	266033
583	1.71527	339889	198155287	24.1454	8.35390	1831.55	266948
584	1.71233			24.1661	8.35868	1834.69	267865
585 586	1.70940		200201625	24.1868	8.36345	1837.83	268783
587	1.70358			24.2074	8.36821	1840.98	269703
588	1.70068			24.2281	8.37297	1844.11	270624
589	1.69779			24.2487 24.2693	8.37772 8.38247	1847.26	271547
590	1.69492			24.2899	8.38721	1850.40 1853.54	272471 273397
591	1.69205	240201		- 1	i i		
592	1.68919			24.3105			274325
593	1.68634			24.3311 24.3516			275254
594	1.68350			24.3510 24.3721	8.40140 8.40612	1862.96	276184
595	1.68067			4.3926		1866.11 1869.25	277117
596	1.67785			4.4131			278051
587	1.67504			4.4336	8.42025		278986 279923
598	1.67224			4.4540			279923 280862
599				4.4745			281802
600	1.66667			24.4949			282743
-						.	

n	$1000\frac{1}{n}$	n^2	- n³	\sqrt{n}	$\sqrt[3]{n}$	Circum. of circle πn	Area of circle $\frac{1}{4}\pi n^2$
601 602 603 604 605 606	1.66389 1.66113 1.65837 1.65563 1.65289 1.65017	362404 363609 364816 366025	217081801 218167208 219256227 220348864 221445125 222545016	24.5153 24.5357 24.5561 24.5764 24.5967 24.6171	8.43901 8.44369 8.44836 8.45303 8.45769 8.46235	1888.10 1891.24 1894.38 1897.52 1900.66 1903.81	283687 284631 285578 286526 287475 288426
607 608 609 610	1.64745 1.64474 1.64204 1.63934	368449 369664 370881 372100	223648543 224755712 225866529 226981000	24.6374 24.6577 24.6779 24.6982	8.46700 8.47165 8.47629 8.48093	1906.95 1910.09 1913.23 1916.37	289379 290333 291289 292247
611 612 613 614 615 616 617 618 619	1.63666 1.63399 1.63132 1.62866 1.62602 1.62338 1.62075 1.61812	374544 375769 376996 378225 379456 380689 381924 383161	228099131 229220928 230346397 231475544 232608375 233744896 234885113 236029032 237176659 238328000	24.7184 24.7386 24.7588 24.7790 24.7992 24.8193 24.8395 24.8596 24.8596 24.8998	8.48556 8.49018 8.49481 8.49942 8.50404 8.51324 8.51324 8.51784 8.52243 8.52702	1919.51 1922.65 1925.80 1928.94 1932.08 1935.22 1938.36 1941.50 1944.65 1947.79	293206 294166 295128 296092 297057 298024 298992 299962 300934 301907
620 621 622 623 624 625 626 627 628 629	1.61290 1.61031 1.60772 1.60514 1.60256 1.60000 1.59744 1.59490 1.59236 1.58983	385641 386884 388129 389376 390625 391876 393129 394384 395641	239483061 240641848 241804367 242970624 244140625 245314376 246491883 247673152 248858189	24.9199 24.9399 24.9600 24.9800 25.0000 25.0200 25.0400 25.0599 25.0799 25.0998	8.53160 8.53618 8.54075 8.54532 8.54988 8.55444 8.55899 8.56354 8.56808	1950.93 1954.07 1957.21 1960.35 1963.50 1966.64 1969.78 1972.92 1976.06 1979.20	302882 303858 304836 305815 306796 307779 308763 309748 310736 311725
630 631 632 633 634 635 636 637 638 639 640	1.57978 1.57729 1.57480 1.57233 1.56986 1.56740	l	250047000 251239591 252435968 253636137 254840104 256047875 257259456 258474853 259694072 260917119 262144000	25.0998 25.1197 25.1396 25.1595 25.1794 25.2190 25.2389 25.2389 25.2587 25.2784 25.2982	8.57715 8.58168 8.58620 8.59072 8.59524 8.59975 8.60425 8.60875 8.61325	1982.34 1985.49 1988.63 1991.77 1994.91 1998.05 2001.19 2004.34 2007.48 2010.62	312715 313707 314700 315696 316692 317690 318690 319692 320695 321699
641 642 643 644 645 646 647 648 649 650	1.56006 1.55763 1.55521 1.55286 1.55039 1.54799 1.54566 1.54322 1.5408	6 410881 8 412164 1 413449 9 416736 9 416025 9 417316 9 418609 1 419904 8 421201 6 422500	263374721 264609288 265847707 267089984 268336125 269586136 270840023 272097792 273359449 274625000	25.3180 25.3377 25.3574 25.3772 25.3969 25.4165 25.4362 25.4558 25.4758 25.4951	8.62671 8.63118 8.63566 8.64012 8.64459 8.64459 8.65350 8.65795	2013.76 2016.90 2020.04 2023.19 2026.33 2029.47 2032.61 2035.75 2038.89 2042.04	322705 323713 324722 325733 326745 327759 328775 329792 330810 331831

n	$1000\frac{1}{n}$	n ²	n³	\sqrt{n}	$\sqrt[3]{n}$	Circum. of circle πn	Area of circle $\frac{1}{4}\pi n^2$
651	1.53610	423801	275894451	25.5147	8.66683	2045 10	000050
652	1.53374		277167808	25.5343		2045.18	332853
653	1.53139		278445077	25.5539	8.67127	2048.32	333876
654	1.52905		279726264			2051.46	334901
655	1.52672		281011375	25.5734		2054.60	335927
656	1.52439		282300416	25.5930	8.68455	2057.74	336955
657	1.52207		283593393	25.6125	8.68896	2060.88	337985
658	1.51976		284890312	25.6320 25.6515	8.69338	2064.03	339016
659	1.51745		286191179	25.6710	8.69778	2067.17	340049
660	1.51515		287496000	25.6905	8.70219	2070.31	341084
	1.01010	100000	201490000	25.0905	8.70659	2073.45	342119
661	1.51286		288804781	25.7099	8.71098	2076.59	343157
662	1.51057		290117528	25.7294	8.71537	2079.73	344196
363	1.50830	439569	291434247	125.7488	8.71976	2082.88	345237
664	1.50602		292754944	25.7682	8.72414	2086.02	346279
365	1.50376	442225	294079625	25.7876	8.72852	2089.16	347323
366	1.50150		295408296	25.8070	8.73289	2092.30	348368
367	1.49925	444889	296740963	25.8263	8.73726	2095.44	349415
368	1.49701	446224	298077632	25.8457	8.74162	2098.58	350464
669	1.49477		299418309	25.8650	8.74598	2101.73	351514
370	1.49254	448900	300763000	25.8844	8.75034	2104.87	352565
71	1.49031	450041	2001117711	05 0005	0 == 100		
72	1.48810		302111711	25.9037	8.75469	2108.01	353618
73	1.48885		303464448	25.9230	8.76904	2111.15	354673
74	1.48368		304821217	25.9422	8.76338	2114.29	355730
75	1.48148		306182024	25.9156	8.76772	2117.43	356788
76	1.47929		307546875 308915776	25.9808	8.77205	2120.58	357847
77	1.47710			26.0000	8.77638	2123.72	358908
78	1.47493	150684		26.0192	8.78071	2126.86	359971
79 I	1.47275			26.0384 26.0576	8.78503	2130.00	361035
80	1.47059			26.0768	8.78935 8.79366	2133.14 2136.28	362101 363168
						2100.20	909109
81 82	1.46843		315821241	26.0960	8.79797	2139.42	364237
83	1.46628			26.1151	8.80227	2142.57 2145.71	365308
84	1.46413			26.1343	8.80657	2145.71	366380
85	1.46199 1.45985			26.1534	8.81087	2148.85	367453
86	1.45773		321419125 322828856	26.1725	8.81516	2151.99	368528
87	1.45560			26.1916		2155.13	369605
88	1.45349			26.2107	8.82373	2158.27	370684
89	1.45138			26.2298	8.82801	2161.42	371764
90 l	1.44928			26.2488 26.2679		2164.56	372845
1	1.11020	.,0100	32000000	20.2019	8.83656	2167.70	373928
91	1.44718		329939371	26.2869	8.84082	2170.84	375031
92	1.44509		331373888	26.3059	8.84509		376099
93	1.44300 4	l80249` 3	332812557	26.3249	8.84934	2177.12	377187
94	1.44092		334255384	26.3439	8.85360	2180.27	378276
95	1.43885		335702375	26.3629	8.85785		379367
96	1.43678			26.3818	8.86210		380459
97	1.43472			26.4008	8.86634	2189.69	381554
	1.43266		340368392	26.4197	8.87058		382649
98 99 00	1.43062 4 1.42857 4			26.4386 26.4575	8.87481	2195.97	383746 384845

n	$1000\frac{1}{n}$	n^2	n^3	\sqrt{n}	$\sqrt[3]{n}$	Circum. of circle πn	Area of circle ½πn²
701	1.42653		344472101	26.4764	8.88327	2202.26	385945
702	1.42450		345948408	26.4953	8.88749	2205.40	387047
703	1.42248		347428927	26.5141	8.89171	2208.54 2211.68	388151 389256
704 705	1.42045		348913664 350402625	$\begin{vmatrix} 26.5330 \\ 26.5518 \end{vmatrix}$	8.89592 8.90013	2211.08	390363
706	$1.41844 \\ 1.41643$		351895816	26.5707	8.90434	2217 96	391471
707	1.41443		353393243	26.5895	8.90854	2217.96 2221.11	392580
708	1.41243		354894912	26.6083	8.91274	2224.25	393692
709	1.41044		356400829	26.6271	8.91693	2227.39	394805
710	1.40845	504100	357911000	26.6458	8.92112	2230.53	395919
711	1.40647		359425431	26.6646	8.92531	2233.67	397035
712	1.40449		360944128	$26.6833 \\ 26.7021$	8.92949 8.93367	2236.81 2239.96	398153 399272
713 714	1.40252 1.40056		362467097 363994344	26.7208	8.93784	2243.10	400393
715		511225	365525875	26.7395	8.94201	2246.24	401515
716	1.39665		367061696	26.7582	8.94618	2249.38	402639
717	1.39470		368601813	26.7769	8.95034	2252.52	403765
718	1.39276		370146232	26.7955	8.95450	2255,66	404892
719	1.39082	516961	371694959	26.8142	8.95866	2258.81	406020
720	1.38889	518400	373248000	26.8328	8.95281	2261.95	407150
721	1.38696		374805361	26.8514	8.96696	2265.09	408282
722	1.38504		376367048	26.8701	8.97110	2268.23	409416
723	1.38313		377933067	26.8887	$8.97524 \\ 8.97938$	$2271.37 \\ 2274.51$	410550 411687
724 725	1.38122		379503424 381078125	$\begin{vmatrix} 26.9072 \\ 26.9258 \end{vmatrix}$	8.98351	2277.65	412825
726	1.37931 1.37741	527076	382657176	26.9444	8.98764	2280.80	413965
727	1.37552		384240583	26.9629	8.99176	2283.94	415106
728	1.37363	529984	385828352	26.9815	8.99588	2287.08	416248
729 730	1.37174 1.36986		387420489 389017000	$ 27.0000 \\ 27.0185 $	$9.00000 \\ 9.00411$	2290.22 2293.36	417393 418539
- 1	, "	-	390617891	27.0370	9.00822	2296.50	419686
731 732	1.36799 1.36612		392223168	27.0555	9.01233	2299.65	420835
733	1.36426		393832837	27 0740	9.01643	2302.79	421986
734	1.36240		395446904	$27.0740 \\ 27.0224$	9.02043	2305.93	423138
735	1.36054		397065375	127.11091	9.02462	2309.07	424292
736	1.35870		398688256	27.1293 27.1477	9.02871	2312.21	425447
737	1.35685		400315553	27.1477	9.03280	2315.35	426604
738	1.35501		401947272	27.1662	9.03689 9.04097	2318.50 2321.64	427762 428922
739 740	1.35318 1.35135		403583419 405224000	27.1846 27.2029	9.04504	2324.78	430084
741	1.34953	549081	406869021	27.2213	9.04911	2327.92	431247
742	1.34771	550564	408518488	27.2397	9.05318	2331.06	432412
743	1.34771 1.34590	552049	410172407	27.2580	9.05725	2334.20	433578
744	1.34409	553536	411830784	27.2764	9.06131	2337.34	434746
745		555025	413493625	27.2947	9.06537	2340.49	435916
746		556516	415160936	27.3130	9.06942	2343.63	437087 438259
747	1.33869	1008009	416832723	27.3313	9.07347 9.07752	2346.77 2349.91	439433
748	1.33690 1.33511		418508992 420189749	27.3496 27.3679	9.08156	2353.05	440609
749 750	1.33333		421875000	27.3861	9.08560	2356.19	441786
	1.00000		1-20.000		1		1

n	$1000\frac{1}{n}$	n^2	n^3	\sqrt{n}	$\sqrt[3]{n}$	Circum. of circle πn	Area of circle $\frac{1}{4}\pi n^2$
751	1.33156	564001	423564751	27.4044	9.08964	2359.34	442965
752	1.32979		425259008	27.4226	9.09367	2362.48	444146
753	1.32802	567009	426957777	27.4408	9.09770	2365.62	445328
754	1.32626	568516	428661064	27.4591	9.10173	2368.76	446511
755	1.32450	570025	430368875	27.4773	9.10575	2371.90	447697
756	1.32275	571536	432081216	27.4955	9.10977	2375.04	448883
757	1.32100		433797093	27 . 5136	9.11378	2378.19	450072
758	1.31926		435519512	27.5318	9.11779	2381.33	451262
759	1.31752		437245479	27.5500	9.12180	2384 47	452453
760	1.31579	577600	438976000	27.5681	9.12581	2387.61	453646
761 762	1.31406 1.31234		440711081 442450728	27.5862 27.6043	9.12981 9.13380	2390.75 2393.89	454841 456037
763	1.31062		444194947	27 . 6225	9.13780	2397.04	457234
764	1.30890		445943744	27.6405	9.14179	2400.18	458434
765	1.30719		447697125	27.6586	9.14577	2403.32	459635
766	1.30548		449455096	27.6767	9.14976	2406.46	460837
767		588289	451217663	27.6948	9.15374	2409.60	462041
768	1.30208		452984832	27.7128	9.15771	2412.74	463247
769	1.30039	591361	454756609	27.7308	9.16169	2415.88	464454
770	1.29870	592900	456533000	27.7489	9.16566	2419.03	465663
771	1.29702		458314011	27.7669	9.16962	2422.17	466873
772	1.29534		460099648	27.7849	9.17359	2425.31	468085
773	1.29366 1.29199		461889917	27.8029	9.17754	2428.45	469298
774 775	1.29032		463684824 465484375	27 .8209 27 .8388	9.18150 9.18545	2431.59	470513
776		602176	467288576	27.8568	9.18940	$2434.73 \\ 2437.88$	471730 472948
777	1.28700		469097433	27 8747	9.19335	2441.02	474168
778	1.28535		470910952	27 . 8747 27 . 8927	9.19729	2444.16	475389
779	1.28370		472729139	27.9103	9.20123	2447.30	476612
780	1.28205	608400	474552000	27.9285	9.20516	2450.44	477836
781		609961	476379541 478211768	27.9464	9.20910	2453.58	479062
782 783	1.27714	611524	480048687	27.9643 27.9821	9.21303 9.21695	2456.73	480290
784	1.27551		481890304	28.0000	9.21095	2459.87 2463.01	481519 482750
785	1.27389		483736625	28.0179	9.22479	2466.15	483982
786	1.27226		485587656	28.0357	9.22871	2469.29	485216
787	1.27065		487443403	28 0535	9.23262	2472.43	486451
788	1.26904	620944	489303872	28.0713	9.23653	2475.58	487688
789	1.26743	$622521 \cdot$	491169069	28.0891	9.24043	2478.72	488927
790	1.26582	624100	493039000	28.1069	9.24434	2481.86	490167
791	1.26422	625681	494913671	28.1247	9.24823	2485.00	491409
792	1.26263		496793088	28.1425	9.25213	2488.14	492652
793 794	1.26103		498677257	28.1603	9.25602	2491.28	493897
795	$1.25945 \\ 1.25786$	632025	500566184 502459875	$82.1780 \\ 28.1957$	9.25991 9.26380	2494.42	495143
796	1.25628		504358336	28.1957	9.26758	2497.57 2500.71	496391
797	1.25471		506261573	28.2312	9.27156	2503.85	497641 498892
798	1.25313		508169592	28.2489	9.27544	2506.99	500145
799	1.25166	638401	510082399	28.2666	9.27931	2510.13	501399
800	1.25000		512000000	28 2843	9.28318	2513.27	502655

n	$1000\frac{1}{n}$	n^2	n³	\sqrt{n}	$\sqrt[3]{n}$	Circum. of circle	Area of circle $\frac{1}{4}\pi n^2$
801	1,24844	641601	513922401	28.3019	9.28704	2516.42	503912
802	1.24688	643204	515849608	28.3196	9.29091	2519.56	505171
803	1.24533	644809	517781627	28.3373	9.29477	2522.70 2525.84	506432 507694
804	1.24378		519718464	$\begin{vmatrix} 28.3549 \\ 28.3725 \end{vmatrix}$	9.29862 9.30248	2528.98	508958
805	1.24224 1.24069	640626	521660125 523606616	28.3901	9.30633	2532.12	510223
806 807	1.23916		525557943	28.4077	9.31018	2535.27	511490
808	1.23762		527514112	28.4253	9.31402	2538.41	512758
809	1.23609		529475129	28.4429	9.31786	2541.55	514028
810	1.23457	656100	531441000	28.4605	9.32170	2544.69	515300
811	1.23305	657721	533411731	28,4781	9.32553	2547.83	516573
812	1.23153		535387328	28.4956	9.32936	2550.97	517848
813	1.23001		537367797	28.5132	9.33319	2554.11	519124
814	1.22850	662596	539353144	28.5307	9.33702	2557.26	520402 521681
815	1.22699		541343375	28.5482	9.34084 9.34466	2560.40 2563.54	522962
816	1.22549		543338496 545338513	28.5657 28.5832	9.34847	2566.68	524245
817 818	1.22399 1.22249		547343432	28.6007	9.35229	2569.82	525529
819	1.22100		549353259	28.6182	9.35610	2572.96	526814
820	1.21951		551368000	28.6356	9.35990	2576.11	528102
		07.10.11	FF0007661	00 6521	9.35370	2579.25	529391
821	1.21803	674041	553387661 555412248	28.6531 28.6705	9.36751	2582.39	530681
822 823	1.21655 1.21507		557441767	28.6880		2585.53	531973
824	1.21359	678976	559476224	28.7054	9.37510	2588.67	533267
825	1.21212	680625	561515625	28.7228		2591.81	534562
826	1.21065	682276	563559976	28.7402	9.38268	2594.96 2598.10	535858 537157
827	1.20919		565609283	28.7576 28.7750	9.38646 9.39024	2601.24	538456
828 829	1.20773 1.20627	697941	567663552 569722789	28.7924		2604.38	539758
830	1.20482	688900	571787000	28.8097	9.39780	2607.52	541061
00+	1.20337	e00561	573856191	28.8271	9,40157	2610.66	542365
831 832		692224	575930368	28.8444		2613.81	543671
833		693889	578009537	28.8617	9.40911	2616 95	544979
834		695556	580093704	28.8791	9.41287	2620.09	546288 547599
835		697225	582182875	28.8964	9.41663 9.42039	2623.23 2626.37	548912
836	1.19617		584277056	28.9137 28.9310		2629.51	550226
837 838	1.19474	700569 702244	586376253 588480472	28.9482		2632.65	551541
- 839	1.19332		590589719	28.9655	9.43164	2635.80	552858
840		705600	592704000	28.9828	9.43539	2638.94	554177
044	1	1	504002201	29.0000	9.43913	2642.08	555497
841	1.18906	707281 708964	594823321 596947688	29.0000		2645.22	556819
842 843	1.1870		599077107	29.0345	9.44661	2648.36	558142
844	1.18483		601211584	29.0517	9.45034	2651.50	559467
845	1.18343	712336 714025	603351125	29.0689	9.45407	2654.65 2657.79	560794 562122
846	1.18203	3 715716	605495736	29.0861	9.45780 9.46152	2660.93	563452
847	1.18064		607645423 609800192	29.1033 29.1204		2664.07	564783
848 849	1.1792	5 719104 5 720801	611960049	29.1376		2667.21	566116
850	1.17647	722500	614125000	29.1548		2670.35	567450
555			l			<u> </u>	ــــــــــــــــــــــــــــــــــــــ

n	$1000\frac{1}{n}$. n²	n ³ .	\sqrt{n}	$\sqrt[3]{n}$	Circum. of circle πn	Area of circle ½πn²
851	1.17509	724201	616295051	29.1719	9.47640	2673.50	568786
852	1.17371		618470208	29.1890	9.48011	2676.64	570124
853	1.17233	727609	620650477	29.2062	9.48381	2679.78	571463
854			622835864	29.2233	9.48752	2682.92	572803
355	1.16959 1.16822	731025	625026375	29.2404	9.49122	2686.06	574146
356			627222016	29.2575	9.49492	2689.20	575490
357	1.16686		629422973	29.2746	9.49861	2692.34	576835
358		736164	631628712	29.2916	9.50231	2695.49	578182
359 360	1.16414 1.16279	737881	633839779 636056000	29.3087	9.50600 9.50969	2698.63 2701.77	579530 580880
300	1.10279	799000	030030000	29.3258	9.50909	.2/01.77	200000
361	1.16144		638277381	29.3428	9.51337	2704.91	582232
362	1.16009		640503928	29.3598	9.51705	2708.05	583585
363	1.15875		642735647	29.3769	9.52073	2711.19	584940
364 365	1.15741	740490 748225	644972544 647214625	29.3939 29.4109	$9.52441 \\ 9.52808$	2714.34 2717.48	586297 587655
366	1.15473		649461896	29.4279	9.53175	2720.62	589014
367		751689	651714363	29.4449	9.53542	2723.76	590375
368 I		753424	653972032	29.4618	9.53908	2726.90	591738
369 l		755161	656234909	29.4788	9.54274	2730.04	593102
370		766900	658503000	29.4958	9.54640	2733.19	594468
371	1.14811	758641	660776311	29.5127	9.55006	2736.33	595835
372	1.14679		663054848	29.5296	9.55371	2739.47	£97204
373	1.14548		665338617	29.5466	9.55736	2742.61	598575
374	1.14416	763876	667627624	29.5635	9.56101	2745.75	599947
375	1.14286		669921875	29.5804	9.56466	2748.89	601320
376	1.14155		672221376	29.5973	9.56830	2752.04	602696
377		769129	674526133	29.5142	9.57194	2755.18	604073
378	1.13895		676836152	29.6311	9.57557	2758.32	605451
379 380	1.13766 1.13636	772641 774400	679151439 681472000	29.6479 29.6648	9.57921 9.58284	2761.46 2764.60	606831 608212
881	1.13507	776161	683797841	29.6816	9.58646	2767.74°	609595
882		777924	686128968	29.6985	9.59009	2770.88	610980
883		779689	688465387	29.7153	9.59372	2774.03	612366
884			690807104	29.7321	9.59734	2777.17	613754
85			693154125	29.7489	9.60095	2780.31	615143
886			695506456	29.7658	9.60457	2783.45	616534
887	1.12740		697864103	29.7825	9.60818	2786.59	617927
888	1.12613		700227072	29.7993	9.61179	2789.70	619321
389 I		790321	702595369	29.8161	9.61540	2792.88	620717
390	1.12360	792100	704969000	29.8329	9.61900	2796.02	622114
391	1.12233		707347971	29.8496	9.62260	2799.16	623513
392	1.12108		709732288	29.8664	9.62620	2802.30	624913
393		797449	712121957	29.8831	9.62980	2805.44	626315
394	1,11857		714516984	29.8998	9.63339	2808.58	627718
395	1.11732		716917375	29.9166	9.63698	2811.73	629124
396		802816	719323136	29.9333	9.64057	2814.87	630530
397 398	1.11483 1.11359		721734273 724150792	29.9500 29.9666	9.64415 9.64774	2818.01	631938 633348
399	1.11235		724150792	29.9833	9.65132	2821.15 2824.29	634760
900	1.11111		729000000	30.0000	9.65489	2827.43	636173
.50		020000		55.5550	0.00100	-521.10	15501.0

n	$1000\frac{1}{n}$	n2	n^3	\sqrt{n}	3√n	Circum. of circle	Area of circle $\frac{1}{4}\pi n^2$
901	1.10988	811801	731432701	30.0167	9.65847	2830.57	637587
902	1.10865		733870808	30.0333	9.66204	2833.72	639003
903	1.10742		736314327	30.0500	9.66561	2836.96	640421
904	1.10619		738763264	30.0666	9.66918	2840.00	641840
905	1.10497		741217625	30.0832	9.67274	2843.14	643261
906	1.10375		743677416	30.0998	9.67630	2816.28	644683
907	1.10254		746142643	30.1164	9.67986	2849.42	646107
908	1.10132	824464	748613312	30.1330	9.68342	2852 57	647533
909	1.10011	826281	751089429	30.1496	9.68697	2855.71	648960
910	1.09890	828100	753571000	30.1662	9.69052	2858.85	650388
911	1.09769		756058031	30.1828	9.69407	2861.99	651818
912	1.09649		758550528	30.1993	9.69762	2865.13	653250
913	1.09529		761048497	30.2159	9.70116	2868.27	654684
914	1.09409		763551944	30.2324	9.70470	2871.42	656118
915	1.09290		766060875	30.2490	9.70824	2874.56	657555
916	1.09170		768575296	30.2655	9.71177	2877.70	658993
917	1.09051		771095213	30.2820	9.71531	2880.84	660433
918	1.08932		773620632	30.2985	9.71884	2883.98	661874
919 920	1.08814		776151559 778688000	30.3150	9.72236	2887.12 2890.27	663317
920	1.00090	040400	110000000	30.3315	9.72589	2890.21	664761
921	1.08578		781229961	30.3480	9.72941	2893.41	666207
922	1.08460		783777448	30.3645	9.73293	2996.55	667654
923 924	1.08342 1.08225		786330467	30.3809	9.73645	2899.69	669103
925	1.08223		788889024 791453125	$30.3974 \\ 30.4138$	9.73996 9.74348	2902.83 2905.97	670554
926	1.07991		794022776	30.4302	9.74699	2909.11	672006 673460
927	1.07875		796597983	30.4467	9.75049	2912.26	674915
928	1.07759		799178752	30.4631	9.75400	2915.40	676372
929	1.07643		801765089	20.4795	9.75750	2918.54	677831
930	1.07527	864900	804357000	30.4959	9.76100	2921.68	679291
931	1.07411	866761	806954491	30.5123	9.76450	2924.82	680753
932	1.07296	868624	809557568	30.5287	9.76799	2927.96	682216
933	1.07181		812166237	30.5450	9.77148	2931.11	683680
934	1.07066		814780504	30.5614	9.77497	2934.25	685147
935	1.06952	874225	817400375	30.5778	9.77846	2937.39	686615
936	1.06838		820025856	30.5941	9.78195	2940.53	688084
937	1.06724		822656953	30.6105	9.78543	2943.67	689555
938	1.06610		825293672	30.6268	9.78891	2946.81	691028
939 940	1.06496 1.06383		827936019 830584000	30.6431 30.6594	9.79239 9.79586	2949.96 2953.10	692502
340	1.00363	000000	050504000	30.0034	9.19000	2955.10	693978
941	1.06270		833237621	30.6757	9.79933	2956.24	695455
942	1.06157 1.06045		835896888	30.6920	9.80280	2959.38	696934
943 944	1.05932		838561807 841232384	30.7083 30.7246	9.80627 9.80974	2962.52 2965.66	698415
944	1.05820		843908625	30.7409	9.80974	2968.81	699897 701380
946	1.05708		846590536	30.7571	9.81666	2971.95	701380
947	1.05597		849278123	30.7734	9.82012	2975.09	704352
948	1.05485		851971392	30.7896	9.82357	2978.23	705840
949	1.05374		854670349	30.8058	9.82703	2981.37	707330
950	1.05263	902500	857375000	30.8221	9.83048	2984.51	708822
ALIEN S SERVICE						_	

n	$1000\frac{1}{n}$	n^2	n^3	\sqrt{n}	$\sqrt[3]{n}$	Circum. of circle πn	Area of circle $\frac{1}{4}\pi n^2$
51	1.05152	904401	860085351	30.8383	9.83392	2987.65	710315
52	1.05042		862801408	30.8545	9.83737	2990.80	711810
53	1.04932		865523177	30.8707	9.84081	2993.94	713306
54	1.04822		868250664	30.8869	9.84425	2997.08	714803
55	1.04712		870983875	30.9031	9.84769	3000.22	716303
56	1.04603		873722816	30.9192	9.85113	3003.36	717804
57	1.04493		876467493	30.9354	9.85456	3006.50	719306
58	1.04384	917764	879217912	30.9516	9.85799	3009.65	720810
59 l	1.04275	919681	881974079	30.9677	9.86142	3012.79	722316
60	1.04167	921600	884736000	30.9839	9.86485	3015.93	723823
61	1.04058	923521	887503681	31.0000	9.86827	3019.07	725332
62	1.03950	925444	890277128	31.0161	9.87169	3022.21	726842
63	1.03842		893056347	31.0322	9.87511	3025.35	728354
64	1.03734	929296	895841344	31.0483	9.87853	3028.50	729867
65	1.03627		898632125	31.0644	9.88195	3031.64	731382
66 67	1.03520 1.03413	999190	901428696 904231063	31.0805	9.88536	3034.78 3037.92	732899 734417
68	1.03306		907039232	$31.0966 \\ 31.1127$	$9.88877 \\ 9.89217$	3037.92	735937
69	1.03199		909853209	31.1288	9.89558	3044.20	737458
70	1.03093		912673000	31.1448	9.89898	3047.34	738981
71	1.02987	042841	915498611	31.1609	9.90235	3050.49	740506
72	1.02881		918330048	31.1769	9.90578	3053.63	742032
73 I	1.02775		921167317	31.1929	9.90918	3056.77	743559
74	1.02669		924010424	31.2090	9.91257	3059.91	745088
75 l	1.02564		926859375	31.2250	9.91596	3063.05	746619
76	1.02459		929714176	31.2410	9.91935	3066.19	748151
77	1.02354		932574833	31.2570	9.92274	3069.34	749685
78	1.02249	956484	935441352	31.2730	9.92612	3072.48	751221
79	1.02145	958441	938313739	31.2890	9.92950	3075.62	752758
80	1.02041	960400	941192000	31.3050	9.93288	3078.76	754296
81	1.01937		944076141	31.3209	9.93626	3081.90	755837
82	1.01833		946966168	31.3369	9.93964	3085.04	757378
83	1.01729		949862087	31.3528	9.94301	3088.19	758922
84	1.01626		952763904	31.3688	9.94638	3091.33	760466
85 86	$1.01523 \\ 1.01420$	970225	955671625 958585256	31.3847 31.4006	$9.94975 \\ 9.95311$	3094.47	762013 763561
87	1.01317		961504803	31.4166	9.95648	3097.61 3100.75	765111
88	1.01317		964430272	31.4325	9.95984	3103.89	766662
89	1.01112	078191	967361669	31.4484	9.96320	3107.04	768214
90	1.01010		970299000	31.4643	9.96655	3110.18	769769
91	1.00908	982081	973242271	31.4802	9.96991	3113.32	771325
92	1.00806		976191488	31.4960	9.97326	3116.46	772882
93	1.00705	986049	979146657	31.5119	9.97661	3119.60	774441
94	1.00604		982107784	31.5278	9.97996	3122.74	776002
95	1.00503		985074875	31.5346	9.98331	3125.88	777564
96	1.00402		988047936	31.5595	9.98665	3129.03	779128
97	1.00301		991026973	31.5753	9.98999	3132.17	780693
98	1.00200		994011992	31.5911	9.99333	3135.31	782260
199 I	1.00100	1998001 -	1997002999	31.6070	9.99667	3138.45	783828

GENERAL CHEMICAL TABLES

INTERNATIONAL ATOMIC WEIGHTS

1920

		Principal valence	Name Sym-Atomic Principal bol weight valence
AluminumAl	27.1	3	MolybdenumMo 96.0 3, 4 or 6
Antimony, stib-			NeodymiumNd 144.3 3
iumSb	120.2	3 or 5	Neon
ArgonA	39.9	0	NickelNi 58.68 2 or 3
Arsenic As	74.96	3 or 5	Niton, Ra ema-
Barium Ba		2	nationNt 222.4 -
BismuthBi	208.0	3 or 5	NitrogenN 14.008 3 or 5
BoronB	11.0	3	OsmiumOs 190.9 2, 3, 4 or 8
Bromine Br	79.92	ĭ	Oxygen 0 16.00 2
Cadmium Cd		$\hat{2}_{}$	PalladiumPd 106.7 2 or 4
Cæsium Cs	132.81	ĩ	Phosphorus P 31.04 3 or 5
CalciumCa		2	PlatinumPt 195.2 2 or 4
CarbonC	12.005		Potassium, ka-
Cerium Ce		4 or 3	lium
Chlorine	35.46	. 1	Praseodymium. Pr 140.9 3
Chromium Cr	52.10	2, 3 or 6	RadiumRa 226.0 2
CobaltCo	58 97	2 or 3	Rhodium Rh 102.9 3
Columbium, ni-	00.01	2010	RubidiumRb 85.45 1
obiumCb	93.1	3 or 5	Ruthenium Ru 101.7 3, 4, 6 or 8
Copper Cu		1 or 2	SamariumSa 150.4 3
DysprosiumDy		3	Scandium Sc 44.1 3
Erbium Er		. š	SeleniumSe 79.2 2, 4 or 6
Europium Eu		š	SiliconSi 28.3 4
Fluorine F	19.0	ĭ	Silver, argentumAg 107.88 1
GadoliniumGd		3	Sodium, na-
Gallium Ga		3	triumNa 23.00 1
GermaniumGe		4	StrontiumSr 87.63 2
Glucinum, be-		•	Sulphur S 32.06 2, 4 or 6
rylliumGl	9.1	2	TantalumTa 181.5 5
Gold, aurumAu		1 or 3	TelluriumTe 127.5 2, 4 or 6
Helium He	4.00	. 0	TerbiumTb 159.2 3
Holmium Ho	163.5	3	ThalliumTl 204.0 1 or 3
Hydrogen H	1.008	1	ThoriumTh 232.15 4
Indium In		$\bar{3}$	ThuliumTm 168.5 3
IodineI	126.92	i	Tin, stannumSn 118.7 2 or 4
Iridium Ir	193.1	3 or 4	Titanium Ti 48.1 3 or 4
Iron, ferrum Fe	55.84	2 or 3	Tungsten, wol-
KryptonKr	82.92	0	framiumW 184.0 6
LanthanumLa	139.0	3	UraniumU 238.2 4 or 6
Lead, plumbum . Pb	207.2	2 or 4	VanadiumV 51.0 3 or 5
Lithium Li	6.94	1	XenonXe 130.2 0
Lutecium Lu		/ 3	YtterbiumYb 173.5 3
Magnesium Mg	24.32	. 2	YttriumYt 89.33 3
Manganese Mi		2, 4, 6 or 7	ZincZn 65.37 2
Mercury, hy-			ZirconiumZr 90.6 4
drargyrumHg	200.6	1 or 2	

MOLECULAR WEIGHTS AND THEIR LOGARITHMS

Compound	Mol. wt.	Log.	Compound	Mol. wt.	Log.
Aluminum			Hydrogen		
Al ₂ O ₃	102.20	2.00945	H ₂ O	18.016	1.25565
$Al_2(OH)_6$	156.25	2.19381	Iodine		
Antimony	400 70	0. 60000	AgI	234.80	2.37070
Sb ₂ S ₅	400.70 336.58	2.60382 2.52609	HIPbI ₂	127.93	2.10697
Sb_2S_3 Sb_2O_3	288.40	2.46000	Tron	461.04	2.66374
Sb ₂ O ₅	320.40	2.50569	FeO	71.84	1.8563
Arsenic			Fe ₂ U ₃	159.68	2.2032
$Mg_2As_2O_7$	310.56	2.49214	Lead		
$(\overline{MgNH_4AsO_4})_2$.	200 00	0 50054	PbSO ₄	303.26	2.4818
H ₂ O	380.66	2.58054 2.49167	PbS	239.26 223.00	2.3788 2.3483
A82S3	310.22 246.10	2.39111	PbO	278.12	2.4442
As ₂ O ₃	197.92	2.29649	PbCrO ₄	323.20	2.5094
As ₂ O ₅	229.92	2.36157	Lithium		
Barium			LiCl	42.40	1.6273
BaSO4	233.43	2.36816	Li ₂ SO ₄	109.94	2.0411
BaO	153.37 197.37	$2.18574 \\ 2.29528$	Li ₂ O Li ₂ CO ₃	29.88	1.4753 1.8685
BaCO ₃ BaCrO ₄	253.37	2.40374	Li ₃ PO ₄	73.88 116.09	2.0647
Bismuth	200.01		Magnesium	110.05	2.001
Bi ₂ O ₃	464.00	2.66652	$Mg_2P_2O_7$	222.72	2.3477
Bi_2S_3	512.18	2.70942	MgO	40.32	1.6055
BiOCl	259.46	2.41407	Mg(NH ₄)AsO ₄ +		
Bromine	187.80	2.27370	6H ₂ O	289.42	2.4615
AgBr HBr	80.93	1.90811	Mg2As2O7 MgSO4	310.56 120.38	2.4921 2.0805
Cadmium	30.35	1.50011	Manganese	120.55	2.0000
CdS	144.45	2.15972	MnSO ₄	150.99	2.1789
CdO	128.40	2.10857	MnS	86.99	1.9394
Calcium	50.05	1 54050	Mn ₃ O ₄	228.79	2.3594
CaO CaSO ₄	56.07 136.13	1.74873 2.13395	Mn ₂ O ₃	157.86 70.93	2.1982 1.8508
CaCO ₃	100.07	2.13393	MnOKMnO4	158.03	2.1987
Carbon	100.01	2.00000	Mercury	100.00	2.100
CO ₂	44.00	1.64345	HgS	232.66	2.3667
CN	26.01	1.41514	HgO	216.60	2.3356
<u>CO</u>	28.00 27.02	1.44716 1.43169	Hg ₂ O	417.20	2.6203
HCN Chlorine	27.02	1.43109	Hg ₂ Cl ₂ Nickel	472.12	2.6740
AgCl	143.34	2.15637	NiO	74.68	1.8732
AgCl	36.47	1.56194	NiO NiSO4	154.74	2.1896
Chromium			Nitrogen		
Cr ₂ O ₃	152.00	2.18184	N ₂ O ₅	108.02	2.0335
CrO ₃ PbCrO ₄	100.00 323.10	2.00000 2.50934	N ₂ O ₃	76.02 53.50	1.8809 1.7283
BaCrO ₄	253.37	2.40374	(NH ₄) ₂ SO ₄	132.14	2.1210
Cobalt		i	Phosphorus	102.11	
CoO	74.97	1.87489	Mg ₂ P ₂ O ₇	222.72	2.3477
Co ₃ O ₄	240.91	2.38186	$Ag_4P_2O_7$	605.60	2.7821
K ₈ C ₀ (NO ₂) ₆	452.33	2.65546	P ₂ O ₅	142.08	2.1525
Copper CuO	79.57	1.90075	PH ₃	34.06 418.68	1.5322 2.6218
Cu ₂ S	159.20	2.20194	Platinum	410.00	2.0210
Fluorine	=====		K ₂ PtCl ₆	486.16	2.6867
CaF ₂	78.07	1.89248	$(NH_4)_2PtCl_6$	444.04	2.6474
HF	20.008	1.30121	Potassium		
BaSiF ₆	279.67	2.44665	KCl	74.56	1.8725
K ₂ SiF ₆	220.50	2.34341	K ₂ SO ₄	174.26	2.2412 2.6867
H_2SiF_6	144.32	2.15932	K ₂ PtCl ₆	486.16	⊿. ∪o∪≀

MOLECULAR WEIGHTS AND THEIR LOGARITHMS (Cont.)

Compound	Mol. wt.	Log.	Compound	Mol. wt.	Log.
			Strontium		
Potassium (Cont.)	04.00	1 05405	SrSO4	183.69	2.2640
<u>K₂O.</u>	94.20	1.97405		147.63	
K ₂ SiF ₆	220.50	2.34341	SrCO ₃		2.1691
Silicon			SrO	103.63	2.0155
SiO_2	60.30	1.78032		040 10	0 0011
SiF4		2.01828		246.10	2.3911
$\mathbf{H}_{2}\mathbf{SiF}_{6}\dots$		2.15932		144.46	2.1597
K_2SiF_6		2.34341	H ₂ S	34.08	1.5325
$BaSiF_6$	279.67	2.44665		64.06	1.8065
Silver			SO3	_80.06	1.9034
Ag ₂ O	231.76	2.36504	H ₂ SO ₄	98.08	1.9915
AgBr	187.80	2.27370			
AgCl		2.15637		151.00	2.1789
AgI	234.80	2.37070	SnO	135.00	2.1303
AgCN	133.89	2.12675	Zinc		
Ag_3PO_4	418.68	2.62188	Zinc ZnS	97.43	1.9886
Sodium	1		ZnO	81.37	1,9104
NaCl	58.46	1.76686			٠,
Na ₂ SO ₄		2.15247	1		l .
Na ₂ CO ₃		2.02531	•		1
Na ₂ O	62.00	1.79239	1		`

COMPOSITION AND PHYSICAL PROPERTIES OF ALLOYS

		T		· · · ·
Composition	 Name	Sp. gr.	Thermal expan- sion coef- ficient	Melt- ing- point °C.
				-
Aluminum 97Al, 3Cu			24×10⁻⁵	640
90Al, 10Mg	Magnalium	2.50	24	608
70Al, 30Mg	Magnalium	2.00		• • • • •
91Al, 9Zn		2.80		600
Bismuth	1			00
52.5Bi, 32Pb, 15.5Sn 50Bi, 27Pb, 13Sn, 10Cd. 50Bi, 25Pb, 12.5Sn, 12.5Cd	Lipowitz' alloy			96 65
50Bi, 25Pb, 12.5Sn, 12.5Cd	Wood's metal	9.70		65.5
50Bi, 27.1Pb, 22.9Sn 40Bi, 40Pb, 20Sn	Rose metal			iii
Copper	1			
90Cu, 10Al	Aluminum bronze	7.6	16.5	1050
95Cu, 5Mn	"B" Alloy, P.R.R Manganese bronze	8.8		1060
82Cu, 15Mn, 3N	Manganin	8.5		1366
80Cu, 20Ni	Nickeline	8.5 8.4		1190 1290
60Cu, 40Ni	Bronze, gun metal	8.8	18	1010
78Cu, 22Sn	Bell metalBronze, speculum metal	8.7 8.6	18.6	890 750
95Cu, 4Sn, 1Zn	Bronze coins	8.96	18.0	
82Cu, 16Sn, 2Zn 79.7Cu, 10Sn, 9.5Sb, 0.8P	Bronze bearings	8.8	'	
90Cu, 10Zn	Phosphor bronze Red brass	8.8 8.60		
67Cu, 33Zn	Brass, ordinary yellow.	8.40	18.5	940
60Cu, 40Zn 55Cu, 45Zn	Muntz metal For brazing			880
61.2Cu, 37.3Zn, 0.9Sn, 0.4	1			
Pb, 0.2Fe 52Cu, 26Zn, 22Ni	Tobin bronze German silver	8.45	• • • • • • •	• • • •
60Cu, 25Zn, 15Ni	German silver		18.4	
Iridium 95Ir, 5Pt	·	22.38	. 1	
Iron		22.30	• • • • • • • • •	
80Fe, 20Al	Ferro-aluminum	6.30		1480
97Fe, 3C	Cast iron, white	$\frac{7.60}{7.0}$	11.2	1150 1230
99ге, 1С	Steel	7.83	12.0	1430
50Fe, 50Cr 50Fe, 50Mn	Ferro-chromium Ferro-manganese	6.9	• • • • • • •	1458 1325
86Fe, 13Mn, 1C	Manganese steel	7.81		1510
96.5Fe, 3.5Ni	Nickel steel	8.1	i8	1500
67 XFa 39Ni 09C	Ferro-nickel Ferro-nickel, valve steel	8.0	4	1480
63.8Fe, 36Ni, 0.2C	Invar	8.0	0.8	1497
95.1Fe, 3Ni, 1.5Cr, 0.4C.	Platinite	8.2	7.5	1470
63.8Fe, 36Ni, 0.2C. 53.85Fe, 46Ni, 0.15C. 95.1Fe, 3Ni, 1.5Cr. 0.4C. 97.6Fe, 2Si, 0.4C. 94.5Fe, 5W, 0.5C.	Silicon steel			
75Fe, 18W, 6Cr, 0.3Va,	Tungsten steel High speed steel			• • • •
0.7C	spood stoom			••••
C - 1.1	i l			
Gold 90Au, 10Cu	Coinage	17 17		040
Gold 90Au, 10Cu	Coinage	17.17		940

COMPOSITION AND PHYSICAL PROPERTIES OF ALLOYS (Continued)

Composition.	Name.	Specific gravity.	Thermal expan- sion coef- ficient.	Melt- ing point °C.
Lead	7			
90Pb, 10Sb 85Pb, 15Sb		10.4	19.5	230
82Pb, 15Sb, 3Sn	. Type metal			
67Pb, 33Sn	. Solder	9.4	.25.0	240
75Pb, 5Sn, 19Sb, 1Cu	. White metal	9.5		238
84.33Pb, 14.38Sb, 0.61Fe	, , ,			
0.68Zn	. Carbox metal			
Mercury	la			
80Hg, 20Bi				
70Hg, 30Cu	. Dentists' amalgam			• • • • • •
Platinum	701	01.01	0.0	- 1
90Pt, 10Ir	. Platinum-iridium	21.61	8.8	
90Pt, 10Rh	. Platinum-rhodium		• • • • • • • • •	
Silver	a .	10.0	1 1	875
90Ag, 10Cu				1
80Ag, 20Cu	. Jewelry			• • • • • • • • • • • • • • • • • • • •
Tin	D ::	-		260
90Sn, 10Sb				
80Sn, 20Sb				
90Sn, 7Sb, 3Cu	. Babbitt	7.53		233
75Sn, 12.5Sb, 12.5Cu 97Sn, 3Cu	. Antiriction	7.35		300
9/8n, 3Cu	. Knine metal	7.70		300
68Sn, 32Cd	With the most of	7.70		
82Sn, 12Sb, 6Cu	. white metal			
Zinc 95Zn, 5Al	1 . ,	2.80		
95Zn, 5A1		2.50		

PHYSICAL CONSTANTS OF

No.	Name.	Derivation.	Sym- bol.	At. wt.	Specific gravity.*	Principal valence.
1	Aluminum	L. alumen, alum	Al	27.1	2.70 20° C.	3
2	Antimony	L. antimonium	Sb	120.2	6.62 20°	3 or 5
3 4 5 6 7 8 9	liquid Arsenic, cryst. amorph Barium Bismuth	Gr. argos, inactive L. arsenicum Gr. barys, heavy Unknown Borax	As Ba	39.88 39.88 74.96 74.96 137.37 208.0 11.0	1.38 A 1.405-186° 5.73 4.72 14° 3.80 0° 9.78 20° 2.45	0 0 3 or 5 3 or 5 2 3 or 5
10 11 12 13 14	liquid Cadmium	Gr. bromos, stench Gr. kadmia, calamine. L. caesius, sky blue	B Br Br Cd Cs	11.0 79.92 79.92 112.4 132.81	2.54 5.87 A60° 3.12 20° 8.65 20° 1.87 26°	3 1 1 2 1
15 16	Calcium Carbon, amor.	L. calx, lime L. carbo, charcoal	Ca C	40.07 12.0	1.54 29° 1.88	2 2 or 4
17 18 19 20	diamond Cerium	Planet Ceres	C Cc Cl	12.0 12.0 140.25 35.46	2.25 3.51 6.92 25° 2.49 A	2 or 4 2 or 4 3 or 4
21 22 23 24	Columbium,	Gr. chroma, color G. kobold, goblin Columbia,	Cl Cr Co Cb	35.46 52.0 58.97 93.1	1.51-34° 6.92 20° 8.72 21° 8.4	1 2, 3 or 6 2 or 3 3 or 5
25	niobium Copper	Cyprus	Çu	63.57	8.93-8.95	1 or 2
26		Gr. hard to speak with		162.5		3
27		Yrtterby, town in Sweden	ł	167.7	4.77	3
28	Europium	Europe	Eu	152.0	1.91.7	3
29 30	liquid	L fluor, flow	F	19.0 19.0	1.31 A 1.14-200°	1 1
31	Gadolinium	Gadolin, a Russian		157.3	1.31	3
32	Gallium	L. Gallia, France	Ğa	69.9	5.94; 23°	3
33		L. Germania, Germany		72.5	5.47 20°	4
34		Gr. glykys, sweet	Gl	9.1	1.85	2
35	beryllium Gold	Anglo-Saxon, gold	Au	197.2	19. 32 17.5°	1 or 3
	1	1	ı	ı	ı	I

^{*} Specific gravities marked A are referred to air.

THE ELEMENTS

No.	Melting point °C.	point	Dis- cov- ered.	Discoverer.	Where found.
1	658	1800	1828	Wohler	In many rocks. Most abundant metal.
2	630		1450	Valentine	Chiefly as sulphide and in various metallic ores.
3	-189 ~	-186.1	1894	Rayleigh	Rare element in air.
4 5 6	sub.†	450	1694	Schroder	As sulphide and in metallic ores.
7 8 9	850 269.2 2000–2500	1436	1808 1450 1808	Davy Valentine Davy	In barite and witherite. As sulphide and in rare minerals. In borax and some minerals.
10 11	-7.3	58.7	1828	Balard	In sea water and natural brines.
12 13 14	320 26.4		1817 1860	Stromeyer Bunsen	In zinc ores. In lepidolite, pollucite, and some mineral springs.
15 16	>3500	subl. 3500	1808 Pre	Davy historic	In limestone and other rocks. In coal, limestone and all organic matter.
17	1		1		
18 19 / 20	623 -102	-33.6	1803 1774	Berzelius Scheele	In cerite and rare minerals. In common salt and other chlorides.
21 22 23 24	1505 1490 1950		1797 1773 1801	Vauquelin Brandt Hatchett	In chrome-iron ore. In many metallic ores. In columbite and rare minerals.
25 26	1083		Pre 1886	historic Lecoq de Boisbaudran	As metal and in many ores. In holmium, samarskite, gadolinite, etc.
27			1843	Mosander	In gadolinite and rare minerals.
28 29	-223	-187···	1896 1771	Demarcay Scheele	In fluorite and other minerals.
30 31 32 33	30.1 958	volat. at	1886 1875 1886	Marignac Boisbaudran Winkler	In rare minerals as gadolinite. In certain zinc blendes. In argyrodite, a rare mineral.
34	. 960		1828	Wohler	In beryl and several rare minerals.
35	1065.6	2500	Pre	historic	Generally free; rarely combined in various ores.
	1	1	ı	'	1.

[†] Melts at 500° C. under pressure.

PHYSICAL CONSTANTS OF

_	~					
No.	Name.	Derivation.	Sym- bol.	At. wt.	Specific gravity.	Principal valence.
1	Helium, gas	Gr. helios, the sun	He	4.00	0.137 A	0
2 3	liquid Hydrogen,gas	Gr. hydro, water, and genes, forming	He H	4.00 1.008	0.15-269° 0.0695 A	0
5	liquid Indium	From its indigo	H In	1.008 114.8	0.070-252° 7.12 13°	1 3
6 7 8	solid Iridium	Gr. iodes, violet L. iris. rainbow	I I Ir	126.92 126.92 193.1	8.72 A 4.94 20° 22.42 17°	1 1 3 or 4
9 10	•	Anglo-Saxon, iron Gr. Kryptos, hidden	Fe	55.84	7.85-7.88	2 or 3
11	liquid	1.7.	Kr Kr	82.92 82.92	2.818 A 2.16–146°	0
12	Lanthanum	Gr. lanthano, to con-	La	139.0	6.155	3
13 14	Lead Lithium	Anglo-Saxon, lead Gr. lithos, stone	Pb Li	207.2 6.94	11.34 0.534	2 or 4 1
		Lutetia, ancient name of Paris		175.0	• • • • • • • • • • • • • • • • • • • •	3
		Magnesia, district in Thessalv	_	24.32	1.74.5°	2
17 18 19	Mercury	L. magnes, magnet Planet Mercury Gr. molybdos, lead	Mn Hg Mo	54.93 200.6 96.0	7.42 13.595 4° 9.01	2, 4, 6 or 7 1 or 2 3, 4 or 6
20	Neodymium.	Gr. neos, new and	Nd	144.3	6.95	3, 40, 0
		Gr. neos, new Sw. abbr. of kup-	Ne Ni	20.2 58.68	0.674 A 8.60-8.90	0 2 or 3
23	Nitrogen, gas	parnickel N. L., niter forming	N	14.01	0.967 A	2 or 3
24 25	liquid Osmium	Gr. osme, odor	N Os	14.01 190.9	0.854-205° 22.48	3 or 5 2, 3, 4 or 8
26	Oxygen, gas	Gr. acid former	0	16.0	1.1053 A	2
27 28	liquid Palladium	Planet Pallas	O Pd	15.0 106.7	1.14-184° 12.16	2 2 or 4
	yellow	Gr. light bearing	P	31.04	1.83	3 or 5
30 31 32	red Platinum Potassium	Sp. plating Eng. potash.	P Pt K	31.04 195.2 39.10	2.20 21.37 0.870 20°	3 or 5 2 or 4 1

THE ELEMENTS (Continued)

No. Melting point of C. Discoverer. Discoverer. Where found.						
Travers Sun. Sun.	No.	point	point	cov-	Discoverer.	Where found.
Technical State Technical	_	-272	-268.8	1895		
The control of the	3.	-259	-252.8	1766	Cavendish	
Tennant		155	red heat	1863		In certain zinc ores.
Ramsey and Travers In iridosmine As oxide and sulphide in nearly all rocks. Rare element in air. Rare element in air. In galena and other rare minerals. In galena and other ores. In lepidolite, spodumene and other rare minerals. In samarskite and gadolinite. In sea water, magnesite and other minerals. In galena and other ores. In lepidolite, spodumene and other minerals. In sea water, magnesite and other minerals. In galena and other ores. In sea water, magnesite and other minerals. In sea water, magnesite and other minerals. In galena and other ores.		112-115	184	1811	Courtois	Mainly in ashes of seaweeds.
10	8					As oxide and sulphide in nearly
12 810 1839 Mosander In cerite and other rare minerals.		-169	-151.7	1895		Rare element in air.
14		810		1839	Mosander	In cerite and other rare minerals.
15						In lepidolite, spodumene and other
17	15			1907		
174	16	651	1120	1829.	Bussy	
22	18 19	-38.85 2535	357.25	Pre 1782	historic Hjelm	Native and in cinnabar. Chiefly in molybdenite.
22	21	-253	-239	1895		Rare gas in air.
27	22	1452		1751		Many metallic ores.
25 2700 white heat 1803 Tennant In iridosmine and native platinum. In air and forms about one half the earth's crust combined in rocks, etc. 1804 Wollaston Native and in platinum and gold ores. In bones and apatite and many minerals. 1755 1741 Wood As native platinum. As native platinum and native platinum and solution ores. In iridosmine and native platinum and native platinum. In iridosmine and native platinum and native platinum. In iridosmine and native platinum and native platinum. In iridosmine and native platinum.		-210.5	-195	1772	Rutherford	In air and organic matter.
26 -227 -182.7 1774 Priestley In air and forms about one half the earth's crust combined in rocks, etc. 28 1542 1804 Wollaston Native and in platinum and gold ores. In bones and apatite and many minerals. 30 1755 1741 Wood As native platinum.		2700		1803	Tennant	In iridosmine and native plat-
28 1542	ē	-227		1774	Priestley	In air and forms about one half the earth's crust combined in
29 44.2 290 1669 Brandt In bones and apatite and many minerals. 30	27 28	1542		1804	Wollaston	Native and in platinum and gold
30		44.2	290	1669	Brandt	In bones and apatite and many
	31		712			As native platinum.

PHYSICAL CONSTANTS OF

-						
No.	Name.	Derivation.	Sym- bol.	At. wt.	Specific gravity.	Principal valence.
1.		Gr. praseos, green,	Pr	140.9	6.48	3
2 3 4		and didymos, twin L. radius, ray Gr. rhodon, rose L. rubidius, red	Ra Rh Rò	226.0 102.9 85.45	12.44 1.52	2 3 1
5 6	Ruthenium Samarium	Ruthenia, Russia Samarski, a Russian	Ru Sm	101.7 150.4	12.06 7.7-7.8	3, 4, 6 or 8
7	Scandium	Scandinavia	Sc	44.1		3
8 9	Selenium Silicon	Gr. selene, moon L. silex, flint	Se Si	79.2 28.3	4.47-4.80 2.42 cryst.	2, 4 or 6
10 11	Silver Sodium	Anglo-Saxon, soelfor English, soda	Ag Na	107.88 23.00	10.50 0.971	1 1
12	Strontium	Strontian, town in Scotland	Sr	87.63	2.54	2
13	Sulphur, amorphous.	L. sulfur	s	32.06	2.046	2, 4 or 6
14 15 16	rhombic monoclinic. Tantalum	Gr. tantalus, myth	S S Ta	32.06 32.06 181.5	2.07 1.957 16.6	2, 4 or 6 2, 4 or 6 5
17 18	Tellurium Terbium	L. tellus, earth Ytterby, town in Sweden	Te Tb	127.5 159.2	6.25	4 or 6
19	Thallium	Gr. thallos, budding		204.0	11.85	1 or 3
20 21 22 23 24 25	Thulium Tin, gray rhombic tetragonal	L. Titanes, sons of the	Sn Sn	232.4 168.5 118.7 119.0 119.0 48.1	11.2 5.85 15° 6.55 7.298 15° 4.5	2 or 4 2 or 4 2 or 4 2 or 4 3 or 4
26	Tungsten, wolframium	sw. heavy stone	w	184.0	18.7	6
27	Uranium		U	238.2	18.68	4 or 6
28 29	Vanadium Xenon, gas	Goddess Vanadis Gr. xenos, strange	V Xe	51.0 130.2	5.69 4.422	3 or 5
30 31	liquid Ytterbium	Ytterby, town in Sweden	Xe Yb	130.2 173.5	3.52	0 3
32	Yttrium		Y	88.7	3.80	3
33	Zine	G. Zink	Zn	65.37	7.00-7.19	2
34	Zirconium	Per. argun, gold-color	Zr	90.6	4.15 amor.	4

THE ELEMENTS (Continued)

No.	Melting point °C.	Boiling point °C.	Dis- cov- ered.	Discoverer.	Where found.
1	940		1885	Welsbach	In cerite and other rare minerals.
2 3 4	700 1970 38.5		1903 1804 1860	Mme. Curie Wollaston Bunsen	In pitchblende. With platinum and iridosmine. In lepidolite and some mineral
5	2000 1300- 1400		1879	Claus Boisbaudran	springs. With platinum and iridosmine. In samarskite, cerite and other rare minerals.
7 8 9	1350 217 1420	690 3500	1879 1817 1823		In gadolinite and other rare minerals. Mainly as impurity in sulphur. In quartz, most abundant after
10 11	961 97	1955 750		historic	oxygen. Native and in many ores. In common salt, sea water and
12	900	white heat	1808	Davy	many rocks. In strontianite and rare minerals.
13	120	444.7	Pre	historic	Native and in many sulphides and sulphates.
14 15 16	114.5 119.3 2850	444.7 444.7	1802	Ekeberg	In tantalite and other rare
17 18	451	1390	1782 1843		minerals. In several rare minerals. In gadolinite.
19	301.7	1280	1862	Crookes	In pyrites and flue dust of sul
20 21 22	1	2270	Pre	Cleve	In thorite and other rare minerals. In gadolinite. In cassiterite (SnO ₂).
23 24 25	1800-1850			Gregor	In rocks and clays in small
26	3350		1781	d'Elhujar	In wolframite.
27	Near Mo	 	1789	Klaproth	In pitchblende and other rare
28 29	1710 -140	-109	1830 1895	Sefström Ramsey and Travers	In vanadinite and other minerals.
30 31			1878	Marignac	In gadolinite and other rare minerals.
32	[1828	Wohler	In gadolinite and other rare minerals.
33	419.4	918	1520		In ores as oxide, carbonate, sul phide and silicate.
34	2350		1824	Berzelius	In zircon and other rare minerals

PHYSICAL CONSTANTS OF

The following table gives data for about one thousand compounds. It is believed that the list covered is sufficiently complete to more than meet the needs of the high school or college laboratory and is intended to include all inorganic compounds which are commercially obtainable. Certain rare substance, especially those for which practically no data are obtainable, are intentionally omitted.

cuany those for which practically no data are obtainable, are intentionally omitted. Specific gravities are given at definite temperatures where possible, the temperature in degrees Centigrade being indicated by the small figure appearing in the position of an exponent. Unless otherwise indicated the figures are referred to water at 4° C. The figures 5.63% indicate a specific gravity of 5.63 at 20° C. referred to water at 15° C.

	Name.	Formula.	Mol. wt.	Crystalline form and color.
1 2	Acetic acidAluminum	HC ₂ H ₈ O ₂	60.03 27.1	regular, bluish white
3	acetate, normal	Al(C ₂ H ₃ O ₂) ₃	204.17	
5	arsenate	AlÀsO4AlBr ₃ .6H ₂ O	166.02	colorless.
6	carbide	Al ₄ C ₃		coloriess,
7	chloride	AlCl ₃	133.48	• • • • • • • • • • • • • • • • • • • •
8	chloride	AlCl ₈ .6H ₂ O		white
9	fluoride	AlF ₃	84.1	
ĭ	iodide	AlI ₈	72.2 407.86	amorphous, white
2	iodide	AlI,6H,0	515.9	white
3	nitrate	Al(NO ₈) ₈ .9H ₂ O		rhombic
4	oxide	Al ₂ O ₃	102.2	hexagonal, amorphou
5 6	phosphate	AlPO4	122.1	hexagonal, amorphou
7	sulphate	Al ₂ (SO ₄) ₃	342.4 666.7	white monoclinic, colorless
8	sulphide	${ m Al_2S_2}$	150.4	vellow crystals
9	Alum, ammonium	Al ₂ (SO ₄) ₃ .(NH ₄) ₂ SO ₄ . 24H ₂ O	906.9	regular
0	ammonium, chrome	Cr ₂ (SO ₄) ₃ . (NH ₄) ₂ SO ₄ . 24H ₂ O	956.7	regular, green or vio
1	ammonium, iron	Fe ₂ (SO ₄) ₃ . (NH ₄) ₂ SO ₄ .	964.4	regular
2	potassium	Al ₂ (SO ₄) ₃ .K ₂ SO ₄ .24H ₂ O.	949	regular
3	potassium, chrome.	Cr2(SO4)s, K2SO4,24H2O.	998.9	regular, green
4 5	potassium, iron potassium, manga-	Fe ₂ (SO ₄) ₃ .K ₂ SO ₄ .24H ₂ O.	1006.5	regular, violet
	nese	Mn ₂ (SO ₄) ₃ . K ₂ SO ₄ .24 H ₂ O	l	regular, violet
6	sodium	Al ₂ (SO ₄) ₃ .Na ₂ SO ₄ .24H ₂ O	916.9	regular
		NH ₃	17	
8 9	Ammonium acetate	NH ₄ C ₂ H ₃ O ₂	77.1	
9	arsenate	(NH ₄) ₃ AsO ₄ .3H ₂ O NH ₄ AsO ₂	247.2 125	prisms
ĭ	benzoate	NH ₄ C ₇ H ₅ O ₂	139.1	crystals
2	bromide	NH ₄ Br	98	regular
$\frac{3}{4}$	carbonate	(NH ₄) ₂ CO ₃ .H ₂ O NH ₄ HCO ₃	114.1 79.1	platesrhombic or monoclini
5	carbonate, carba-	NH ₄ HCO ₃ .NH ₄ CO ₂ . NH ₂	157.1	l

INORGANIC COMPOUNDS

In all cases where temperatures are not stated ordinary room temperature may be understood (15–25 $^{\circ}$ C.).

Boiling points are given at atmospheric pressure unless otherwise indicated. Solubilities have been given in definite figures and temperatures stated, where

coupulties have been given in definite figures and temperatures stated, where possible, in the same form as for specific gravity.

The following abbreviations are employed:—a., acid; al., alcohol; alk., alkalies; appr., approximately; aq. rg., aqua regia; atm., atmospheres; conc., concentrated; decomp., decomposes; dil., dilute; i., insoluble; s., soluble; o, soluble in all proportions; sl. s., slightly soluble; subl., sublimes; v. s., very soluble; vol., volume.

	Sp. gr.	Melting	Boiling-	Solul	bility in 100	parts of
	$H_2\bar{O} = 1$ (A) air = 1 (D) $H_2 = 1$	point, point,		Cold water.	Hot water.	Alcohol, acids, etc.
1 2	1.0607½° 2.71	17 658.	118 1800	∞ i.	∞ i.	s. al. s. alk.; s. HCl, H ₂ SO ₄
3 4 5 6 7	2.36	decomp. 190, 2½ at.		s. i. v. s. decomp. 69.87 ¹⁵	decomp. i. v. s.	sl. s. a. s. al., CS ₂ s. a. s.CHCl ₃ ,CCl ₄ , ether, CS ₂
10	3.1 2.3 2.63	180	360	40 i. i.	v. s. i. i.	s. ether, al. i. a., al., alk. s. a., alk.
12 13 14	3.75-4	73		v. s. v. s. i.	v. s. v. s. i.	s. al., CS ₂ s. al., alk. s. conc. H ₂ SO ₄ , alk., HCl
- 18	2.59 1.62 2.02 ¹ / ₂ ° 1.645 ² / ₂ °	decomp. decomp. 1100 94.5		i. 36.120° 86.850° decomp. 3.90°	1. 89.1100° 1132100° 357100°	s. a., alk. sl. s. al. s. a. i. al.
	1.719 1.712			3.950° 4015°	15 ¹⁵ ° 400	s. al. i. al.
22 23 24 25	1.757 ²⁰ ° 1.8127 ⁰ ° 1.806	84.5 89		5.20° 20 2012.5° decomp.	422100° 50 v. s. s.	i. al. i. al.
27 28 29 30	[0.6234° 1q.	89	-38.5	103.110° [89.90° g. 1104.960 c.c. 1484° s. v. s.	-	i. al. s. alk.
33 34	2.327‡° 1.586	decomp. 193.5 subl. decomp. 85° decomp. 36-60		95225° 66.210° 10015° 11.90°	83.3100° 128.2100° 2780° 6765°	s. al., ether i. al. i. al.
3 0		subl.		2040	0100	

PHYSICAL CONSTANTS OF

_			1	7
	Name	Formula	Mol. wt.	Crystalline form and color
_				
. 1	Ammonium chloride	NH ₄ Cl	53.5	regular or tetragonal.
2 3	chloroplatinate chromate	(NH ₄) ₂ .PtCl ₆ (NH ₄) ₂ CrO ₄	444 152.1	yellow, regular monoclinic, yellow
4 5	citrate		243.2 60.1	white powder
6	cvanide	NHCN	44.1	regular
7	dichromate	(Nf14)2CF2U7	152.1	monoclinic, yellow or
8	fluoride	NH4F	37	hexagonal
9 10	iodide arsenate		145 289.4	regular
ii	magnesium phosphate		245.6	tetragonal
12	molybdate	(NH ₄) ₂ M ₀ O ₄	196.1	monoclinic
13	nitrate	NH4NO3	80.1	tetragonal
14 15	nitrite	NH ₄ NO ₂	64.1	prisms, trimetric
16	oxalate perchlorate	(NH ₄) ₂ C ₂ O ₄ .H ₂ O	142.1 117.5	prisms, trimetric
17	permanganate	NH ₄ MnO ₄	137	rhombie
18	persulphate	(NH ₄) ₂ S ₂ O ₈	228.2	monoclinic
19 20	phospate, di	(NH ₄) ₂ HPO ₄	132.2	monoclinic, colorless.
21	phosphate, mono phosphomolybdate	NH ₄ H ₂ PO ₄	$115.1 \\ 1931.2$	tetragonalyellow
- 1	phosphomoly busic	3H ₂ O	1931.2	yenow
22	salicylate	NH4C7H5O8	155.1	monocl
23 25	sulphate	(NH4)2SU4	132.2	rnombic, colorless
24	sulphidesulphite	(NH ₄) ₂ S (NH ₄) ₂ SO ₃ .H ₂ O	68.2 134.2	111111111111111111111111111111111111111
26	sulphydrate	NHAHS	51.1	monoclinierhombic, colorless
27	sulphocyanate	INHICNS	76.1	monoclinic, colorless
28 29	tartrate	(NF14)2U4F14U6	184.1	colori. monoci
	Antimonic acid Antimonous acid	H ₃ SbO ₄ H ₃ SbO ₃	187.2 171.2	
31	Antimony	Sb	120.2	rhombohedric, white.
		1	120.2	moniponeuric, wince.
32	bromide	SbBr ₃	360	rhombic
33		SbCl ₃	226.6	rhombic
34 35	chloride, penta hydride	SbCl ₅ SbH ₃	$295.5 \\ 123.2$	
36		SbI3	501	hexagonal or rhombic
37	oxide, tri	Sb ₂ O ₃	288.4	or monoclinic rhombic
38		ST 6:		
39	oxide penta-	Sb ₂ O ₄ Sb ₂ O ₅	$\frac{304.2}{320.4}$	white
40				yellow
		SbOC1	171.7	regular, white
41 42	oxychloride (ic)	SbUCl ₃	242.6	yellow
43	sulphide, tri-	SbOCl3	528.4 336.6	hexagonal black
44		Sb ₂ S ₅	400.8	orange
	Parac, ponta	~~~~~	200.3	Orange

INORGANIC COMPOUNDS (Continued) .

	Sp. gr.	Sp. gr. Melting-		Solubility in 100 parts of			
	$H_2O = 1$ (A) air = 1 (D) $H_2 = 1$	point, Deg. C.	Boiling- point, Deg. C.	Cold water.	Hot water.	Alcohol, acids, etc.	
1	1.52			29.40°	77.3103°	sl. s. al., NH ₃ , methyl. al.	
2 3	3.034 ² / ₄ ° 1.866	decomp. decomp. 180°	•••••	0.67 ²⁰ ° 40 ³⁰ °	1.25 ¹⁰⁰ ° decomp.	al. 0.005	
- 4 - 5 - 6		decomp. 36		s., deliq. s. s.	decomp.	sl. s. al. s. al.	
7	2.367	decomp.		47.1 ³⁰ °	v. s.		
10	2.515	subl.	,	v. s. v. s. 0.038 ²⁰ °	decomp. v. s. s.	sl. s. al. v. s. al. i. al.; s. a.	
12 13	1.65 2.38–2.95 1.725 ¹⁵ °	153–166	decomp. 210	0.0132 decomp. 1180°	decomp. 871100°	s. a.; i. al. i. al. 3.820° al.	
14 15 16	1.69 1.502 1.95	decomp.		s. 4 . 2 ¹⁵ ° s.	decomp. 41.34 v. s.	s. al.	
17 18	2.207 1.619	decomp. decomp.		815° 58.20° 25	s.	i. al.	
20 21	1.803♀°			1710° 0.0315°	260°1°	i.al., HNOs; s. alk.	
22 23 24	1.77	140	lecomp. 280	111 ^{25°} 71 ^{0°} v. s.	s. 103.3100°	43.5 ^{25°} al. i. al.	
25 26	1.3057 ¹⁸ °	decomp. decomp. decomp159	lecomp. 170	10012° v. s.	162200	i. al. s. al. s. al.	
• 28	1.601 6.6	decomp.		s. sl. s. i.	s. sl. s.	s. a., KOH i. al.	
31	6.6220°	630	1440	i.	i. i.	s. hot conc. H ₂ SO ₄ , aq.	
	4.148230	94.2	280	decomp.	decomp.	s. HCl, HBr, CS ₂ , al.	
34	3.06426° 2.34628°	73.2 -6	223.5 3230mm	decomp.	decomp.	s. al., HCl, H ₂ C ₄ H ₄ O ₆ s. HCl	
	(A)4.344 ¹⁵ ° 4.848 ²⁶ °	-91.5 170.8	-18 401	s. 20 c.c. decomp.	4 c.c. decomp.	s. al. 1500 c.c., CS ₂ 2500 c.c. s. al., HI,HCl,	
	5.6		15.5	0.0018215°	0.01	KI, CS ₂ s. HCl, KOH, H ₂ C ₄ H ₄ O ₆	
	4.07 3.78	O, 1060 O, 450	O ₂ , 1060	i. i.	i. i.	s. alk.; sl. s. a. s. HCl, KOH, HI	
40 41		decomp.		i. i.	decomp.	i. al.; s. HCl, CS ₂ s. al.	
42	4.89 4.62	decomp. 555		decomp. 0.000175	decomp. decomp.	s. H ₂ SO ₄ s. al., NH ₄ HS.	
44	4.120°			i.	i.	K ₂ S, HCl s. al., NH ₄ HS, HCl	

PHYSICAL CONSTANTS OF

		FIIIO	CONSTANTS OF	
•	Name.	Formula.	Mol. wt.	Crystalline form and color.
-				
		$K(SbO)C_4H_4O_6.\frac{1}{2}H_2O$		octahedral
	2 Arsenic cryst	As ₄	299.8 151	rhombohedric, gray
	4 acid, pyro	H4A82O7	266 124	
	pentoxide	As ₄ H ₃ AsO ₄ .½H ₂ O. H ₄ As ₂ O ₇ . HAsO ₃ . As ₂ O ₅ . As ₂ S ₂ .	229.9 114.1	amorphous monoclinic, red
	8 sulphide, penta 9 Arsenous chloride	As ₂ S ₅ AsCl ₃	310.3 181.3	yellow
	0 hydride 1 oxide	AsH ₃	78 197.9	regular, amorphous, white
1	2 oxychloride	AsOC1	126.4	brown
	1 -	As ₂ S ₃	246.1	monoclinic, yellow or red
1	4 Barium	Ba Ba(C ₂ H ₃ O ₂) ₂ .H ₂ O	137.4 273.4	white
1	6 arsenate	Ba ₃ (AsO ₄) ₂ Ba(BrO ₃) ₂ .H ₂ O	690.1 411.2	blackmonoclinic
		BaBr ₂ .2H ₂ O	333.2	monoclinic
1	9 carbonate	BaCO ₃	197.4	rhombic, white
2	0 chlorate	Ba(ClO ₃) ₂ .H ₂ O BaCl ₂ 2H ₂ O	322.3 244.3	monoclinic
2	2 chloroplatinate	BaPt-Cl ₆ .4H ₂ O	617.4 253.5	monoclinic, red
2	4 fluoride	BaF2	175.4	rhombic plates, yellow amorphous, white
2	5 hydroxide	Ba(OH) ₂ .8H ₂ O Ba(IO ₃) ₂ .H ₂ O	315.5 505.2	tetragonal, white
2 2	7 iodide	BaI ₂	391.2 261.4	rhombie
2	nitrite	Ba(NO2)2.H2O	247.4	regularhexagonal needles
3	0 oxalate	BaC ₂ O ₄ .H ₂ O	243.4	
3	1 oxide	BaO	153.4	regular or amorphous.
3	perchiorate	$Ba(ClO_4)_2$	336.3 375.3	hexagonal
3	peroxide	BaO ₂	169.4	gray
3	phosphate, tri	BaO ₂ Ba ₃ (PO ₄) ₂ . BaH ₄ (PO ₄) ₂ . BaHPO ₄ Ba ₂ P ₂ O ₇	602.2 331.5	triclinic
3	phosphate, di	BaHPO ₄	233.4	rhombic needles
3	phosphate, pyro	Ba ₂ P ₂ O ₇ BaSO ₄	448.8 233.4	rhombic, white
	_			
4	sulphide	BaS	169.4	rhombic
4	sulphocyanate Bismuth	Ba(CNS) ₂ .2H ₂ O Bi	289.6 208	needles rhombohedric,pinkish
				9

INORGANIC COMPOUNDS (Continued)

1	Sp. gr. Meltins		gr. Melting- Boiling-			Solubility in 100 parts of			
		point, Deg. C.	point, Deg. C.	Cold water.	Hot water.	Alcohol, acids, etc.			
1	2.6	½H ₂ O, 100°		5.268.70	35.7100°	i. al.; s. glyc.			
34	5.727 ¹⁴ ° 2–2.5	subl.* 35.5 206 decomp.	450 H ₂ O, 160	i. 16.7	i. 50	i. s. alk.			
	4.086 3.55	307	decomp. 565	150 i.	v. s. i.	v. s. s. K ₂ S, NAHCO ₃			
8	2.2052	v. fusible -18	subl. 130.2	i. s.	i. decomp.	s. alk., HNO s. HBr, HC al., ether			
1	2.695 (A) 3.65-4.15	-113.5 218 subl.	-54.8	5.1 vol. 1.20062°	sl. s. 2.038 ²⁵ °	sl. s. alk. s. alk., alk carbonates HCl, al.			
2		fusible		decomp.	decomp.	s. CS ₂ ; i. al			
3	3.46	310	700	0.00005	sl. s.	s.alk., alk.car bonates			
4	3.8 2.02	850 decomp.	vol. 950	decomp.	decomp. 80.599°	s. al., a. i. al.			
7	3.82	decomp.		0.055 0.30°	5.671000	s. a., NH ₄ Cl			
	3.852 ² 4°	880 2H ₂ O, 100°	<u>}</u>	12500	181.71000	v. s. al.			
	4.275	795	decomp. 1450	0.0022200	0.00651000	i. al.; s. a NH4Cl			
0 1	3.179 3.09724° 2.86 4.49815°	960		19.23° 36.20° s.	111.2 ¹⁰⁰ °	sl. s. al. i. al.; s. HNO decomp. by			
3	4.498150	4000		0.0003518° 0.16318°	0.0043 sl. s.	s. HCl, HNC s. a., NH ₄ Cl			
4 5	4.828 1.656	1280 78	103	5.5615°	182.780°	lsl. s. al.			
26	5.28	H ₂ O, 130		0.0080°	0.211000	i. al.; s. HC HNO ₃			
27	5.150 ²⁵ ° 3.244 ²⁸ °	537-740	decomp.	170°° 5.2°°	272100° 32.2100°	v. s. al. i. al.			
29	3.173 ²⁹ °	575 decomp. 115		580°	97850	v. s. HCl; alk.			
30	2.6578			0.0093180	0.02281090	i. al.; s. a NH ₄ Cl			
	4.73-5.74			v. s.		v. s. al. s. alk., al.			
32 33		505		8. 62.5 ¹¹ °	8. 75.425°	o. ain., ai.			
34	4.958	O, 450		i.	decomp.	s. dil. a.			
35	4.1 2.94°			decomp	decomp.	s. a. s. a.			
56 27	4.165 ^{15°}			decomp. 0.01-0.02	decomp.	s.a., NH4 sal			
38	3.920			0.01	1	s.a., NH ₄ sal s.a., NH ₄ sal			
	4.25-4.5	decomp.		0.0001732°	0.0003137.70	0 006 3 HCl; s.con H ₂ SO ₄			
	4.25150	infusible		decomp.	decomp.	i. al. s. al.			
41 42	9.78 ²⁰ °	269.2	1436	s. i.	s. i.	s. HNO ₃ , a rg., con H ₂ SO ₄			
	•	•		1		ı rg., con			

^{*} Melts under pressure at 500°.

PHYSICAL CONSTANTS OF

_	l			7
	Name.	Formula.	Mol. wt.	Crystalline form and color.
1 1 2 3 3 4 5 6 7 7 8 9 10 11 12 12	Bismuth bromide carbonate, sub chloride hydroxide nitrate nitrate, sub oxide (ic) oxychloride phosphate sulphate sulphide	Bi(NO ₃) ₃ .5H ₂ O	304 464 496 259.5	yellow crystals white crystals white triclinic hexagonal plates yellow, tetragonal brown white white
13	Boric acidBoron	H ₃ BO ₃ B	62 11	triclinic, white
15 16 17 18 19	sulphide	BCl ₃ . B ₂ O ₄ . B ₂ S ₃ . HBrO ₃ .	117.4 70 118.2 129 159.8	white crystals.colorless.brown.
20	chloride	BrCl.10H ₂ O	295.6	yellow
21 22 23 24 25 26 27 28 29 30	hydroxideiodide	CdCl ₂ .2H ₂ O	206.8 112.4 284.5 2739.1 272.2 172.4 219.3 150.4 146.4 366.2	hexagonal monoclinic, colorless. yellow, crystalline monoclinic crystalline hexagonal, white brownish
37 38 39 40 41 42 43 44	sulphate. sulphide. Cæsium bromide. carbonate. chloride. hydroxide iodide. nitrate. oxide. sulphate. Calcium	Cd(NO ₃) ₂ .4H ₂ O. CdO CdO CdO CdS CdSO ₄ .4H ₂ O. CdS. CS. CS. CSBB. CS ₂ CO ₃ . CSCI. CSOH CSI CSNO ₃ . CS ₂ CO ₄ . CC ₄ CO ₄ CO ₂ CO ₄	308.5 128.4 769.5 280.5 144.5 132.8 212.7 325.6 168.3 149.8 259.7 194.8 281.6 361.7 40.07 40.07	prism. needles. brown, amorphous monoclinic yellow, hexagonal silvery yellow regular, colorless gray tetragonal crystalline, orange needles rhombohedrie needles
. }				•

	Sp. gr.	Melting-	Boiling-	Solubility in 100 p		parts of	
	$ \begin{array}{c c} H_2O=1\\ (A)\ air=1\\ (D)\ H_2=1 \end{array} \ \begin{array}{c} \operatorname{Metting}^2\\ \operatorname{point},\\ \operatorname{Deg.}\ C. \end{array} $		point,	Cold water.	Hot water.	Alcohol, acids, etc.	
. 5	5.604 6.86 4.5611°	219 decomp. 232		decomp. i. decomp.	decomp. i. decomp.	s. ether, HBr s. a. s. al., a., ace-	
4	2.78	H ₂ O, 100°	decomp. 75–80	i. decomp.	i. decomp.	tone s. a. s. HNO ₃ , a.	
	4.928 ^{15°} 8.868	decomp. 260 820–860 O, 150	O ₂ , 357	i. i. i.	i. i. i.	s. a. s. a. s. a., conc. KOH	
10 11		red heat		i. i. decomp. 0 000018	i. i. decomp.	s. a. s. HCl s. a. s. HNO ₂	
13 14	7.39 1.4347 ¹⁵ 2.45	185 2000-2500	subl. at 3500	4 9 ²¹ ° i.	28.7 ^{100°} i.	s. al.; s. conc. HNO ₃ ,conc. H ₂ SO ₄	
16 17	1.434 1.834° 1.55	577 310 decomp. 100	18.23	decomp. 1.1°° decomp. v. s. 4.17°°	decomp. 16.4 ^{102°} decomp. 3.49 ^{50°}	decomp. al. s. al., conc. a. s. alk., al.,	
20		7	decomp.	v. s.		ether, CS ₂ , CHCl ₃ , KBr s. CS ₂ , ether	
23	8.65 ²⁰ ° 2.01	36 320	above 10 778	i. v. s. 1250 ¹⁹ °	i. v. s.	s. CS ₂ , CHCl ₃ s. a., NH ₄ NO ₃	
26 27	5 5 . 192 ^{25°} 3 4 . 258 ^{4°} 7 3 . 32	568 decomp.	806-812	61.10° i. 16820° 4.3615°	161 ^{100°} i. 180 ^{100°}	s. al., ether s. a., NH4 salts s. al. s. a.	
29	8 6.64 9 4.79 ¹⁵ ° 0 5.644	520 H ₂ O, 300 404	708-719	0.0002625° 80.10°	1281000	s. a., NH ₄ salts s. al., ether, NH ₄ OH	
33	1 2.455 2 6.95-8.11 3 3.087 ² 4° 4 3.05 5 4.8 6 1.88 7 4.455 ²¹ °	59.5 white heat 26.4	670	143.40° i. 114.20° 1400° 0.00013 decomp. s.	i. 87 ^{100°} 135.5 ^{100°} decomp.	s. al. s. a., NH4 salts i. al. s. a. s. a., al. decomp. al.	
3 4 4 4	8 9 3 .972 ² 2° 0 4 .018 1 4 .51 ² 5° 2 3 .687 ² 5°	646 <272.3 621 414	decomp. 610 subl. decomp.	161.49° 301.330° 27.70° 9.330°	v. s. 270.5100° s. 51.535.6° 197100°	s. al. s. al. s. al. sl. s. al. s. abs. al.	
4		805 decomp.	150	v. s. 167°° decomp. 43.6°° 50°°	220.3100° decomp. 34.3100°	i. al. s. a. sl. s. al.	

_	1	1	· ·	
	Name	Formula	Mol. wt.	Crystalline form and color
1 2 3	carbonate	CaCo ₂	199.9 64 100	needles
4 5 6 7 8 9	chloridechromatefluoride	CaCl ₂	111 219.1 192.2 78 74.1 215	hexagonal yellow crystals regular hexagonal
10 11 12 13 14 15	hypophosphiteiodideiodideiotidenitrateoxalate	Ca(H ₂ PO ₂) ₂ . CaI ₂ . CaI ₂ .6H ₂ O. Ca(NO ₃) ₂ .4H ₂ O. CaC ₂ O ₄ ·H ₂ O.	170.2 293.9 402 236.2 146.1	monoclinic plates monoclinic colorl. oct
16 17 18	permanganate phosphate phosphate, di	CaO	56 330 310.3 172.2	amorphous, regular purple prisms
20 21	phosphate, pyro	CaH ₄ (PO ₄) ₂ .H ₂ O	252.2 326.3 136.1	rhombierhombie
2 2	sulphate	CaSO ₄ .2H ₂ O	172.1	monoclinic
23 24 25 26 27 28	sulphide	CaS	72.1 12 12 12 12 153.8 44	regular, white amorphic, black hexagonal, black regular
29 30	disulphide	CS ₂	76.1 28	
31	Ceric hydroxide	2CeO ₂ .3H ₂ O	398.6	
32 33 34 35	nitrate	Ce(NO ₃) ₄	388.3 172.3 404.5 140.3	reddish yellow
36 37 38	Cerous carbonate chloridehydroxide	Ce ₂ (CO ₃) ₃ .5H ₂ O CeCl ₃	550.4 246.6 436.6	crystals
39 40 41 42 43 44 45	oxidesulphateChloric acidChlorineoxide, mon-	Ce(NOs)s.6H2O	435.2 328.5 568.7 210.6 70.9 86.9 67.5	red crystalsgray powdermonoclinic or rhombic greenish yellowyellowish red
				· ·

İ	Sp. gr.	Molting	Boiling-	Solut	oility in 100	parts of
	Sp. gr. $H_2O = 1$ (A) air = 1 (D) $H_2 = 1$	Melting- point, Deg. C.	point, Deg. C.	Cold water.	Hot water.	Alcohol, acids, etc.
2	3.354 ² 9° 2.22 ^{18°} 2.7–2.949	760 dec. 825	806-812	1250° dec. to C ₂ H ₂ 0.0013 ¹⁶ °	312 ¹⁰⁵ ° 0.002 ¹⁰⁰ °	v. s. al. s. a., NH ₄ Cl, CO ₂ aq.
5 6 7 8 9	2.152 ² 9° 1.654 3.18 2.078	774 29.48 2H ₂ O, 200 1378 decomp. decomp. decomp. at	129–130	49.6°° 37.3°° 22.2°° 0.0037 ^{15.5} ° 0.17°° deliques. 17	15499° 61.4100° 4.3100° 0.001618° 0.08100° decomp.	s. al. s. al., a. sl. s. conc. a. sl. s. conc. a. s. NH ₄ Cl dec. by a. i. al.
11 12 13 14 15 16	3.956 ² / ₄ ° 1.915° 2.24° (anh.) 3.306 5° 3.18	631 42 42.31 decomp. 1995 decomp.	708–719 160 132	1920° v. s. 1340° 0.000618° 0.1310° 33110° 0.0023-0031 0.002318°	435 ⁹² ° v. s. 506 ¹⁵² ° 0.0014 ⁹⁵ ° 0.067 ⁸⁰ ° 388 ²⁵ ° decomp. 0.075 ¹⁶⁰ °	s. a., al. s. al. s. a. s. a.; i. al. i. al.; s.
19 20	24°	H ₂ O, 100°	dec. 200	1.8 ⁸⁰ ° sl. s.	decomp.	H ₄ C ₆ H ₇ O ₇ s. a. s.a.,Na ₂ S ₂ O ₃ , NH ₄ salts, HCl,NaCl;
	2.96	2H ₂ O, below		0.2410	0.222100°	i. al.
24 25 26 27 28 29	2.8 ¹⁶ 1.75-2.10 2.3 3.51 1.5817 ² (1.53 (A) 22 (D) 1.292 ³ 0.9670 (A)	300 >3500 	subl. 3500 76.74 -79 47 -190	decomp. i. i. i. i. 179.67 c.c.0 $(3.287c.c.0^{\circ})$ (0.00440°)	0.01450°	s. a., alk. s. a., alk. s. al., ether s. al., Cu ₂ Cl ₂
31 32				deliques.	decomp.	s. al., a.; sl. s. alk. s. al.
33 34	7.65	623		i. s. i.	i. i.	i. al., conc. HCl, HNO ₃ ,
36 37 38	3.8815:5°	848		i. 100	decomp.	H ₂ SO ₄ s. (NH ₄) ₂ CO ₃ s. al. s. a. (NH ₄) ₂ CO ₃ s. al.
4: 4: 4:	0 6.9-7.0 13.912 21.282 ^{14°} 32.49 (A) 42.977 (A) 51.5 2.315 (A)	3H ₂ O, 150 decomp. -102 -76	dec. 200	deliques. i. 16.56°° v. s. 150°° c.c. 200 c.c.°° 2000 c.c.4°	2.25 ¹⁰⁰ ° c.c.	s. conc. H ₂ SO ₄ s. alk. s. alk., conc. H ₂ SO ₄

_		FIIIO	CAL	CONSTANTS OF
	Name.	Formula.	Mol. wt.	Crystalline form and color.
1	Chromium	Cr	52	gray crystals
. 2	trioxide	CrO ₃	100	red, triclinic
34 8	oxide	CrF ₃ .4H ₂ O Cr(OH) ₃ .2H ₂ O Cr(NO ₃) ₃ .9H ₂ O	400.2	pink crystalsgreen crystals.green.purple prisms.hexagonal, dark greenbluish green.
10 11 12 13 14 15	sulphide Chromous chloride hydroxide sulphate Cobalt carbonyl	Cr ₂ S ₃ . CrCl ₂ . Cr(OH) ₂ . Cr ₃ O _{4.7} H ₂ O. Co. Co. Co(CO) ₄ .	200.2 122.9 86 274.2 58.97	regular violetdark powdercrystalline.yellow brown.blue
16 17 18 19		CoCl ₃ Co(OH) ₃ Co ₂ O ₃ 2Co(NO ₂) ₂ .6KNO ₂ . 3H ₂ O Co ₂ (SO ₄) ₃	1	blackbrown yellow prismsblue crystalline pow-
21	- '	Co ₃ O ₄ Co(C ₂ H ₃ O ₂) ₂ .4H ₂ O	240.9 249.1	der regular, black reddish violet, crys-
23 24 25	arsenate bromide carbonate	Co ₃ (AsO ₄) ₂ .8H ₂ O	599 326.9 119	talline reddish monoclinic red crystals rhombohedric, rose colored
26 27 28 29	hydroxide nitrateoxide	CoCl _{2.6} H ₂ O	93 291.1 75	monoclinic, ruby red. rose red, rhombic monoclinic, red brown
30 31 32 33	phosphatesulphatesulphideCopper	Co ₃ (PO ₄) ₂ .3H ₂ O CoSO ₄ .7H ₂ O CoS Cu	421 281.2 91 63.57	red, rhombicbrownred crystalline
34 35	ammonium sul-	Cu(C ₂ H ₃ O ₂) ₂ ,H ₂ O CuSO ₄ .4NH ₃ .H ₂ O	199.6 245.8	dark greenrhombic, blue
36 37 38 39 40	arsenitebromide	Cu ₃ (AsO ₄) ₂ .4H ₂ O CuHAsO ₃ CuBr ₂ 2CuCO ₃ .Cu(OH) ₂ CuCl ₂ .2H ₂ O	540.7 187.5 223.4 344.7 170.5	bluish green
41 42		CuCl2 Cu2Fe(CN)6.7H2O	134.5 465.2	brownish yellow red brown
43		Cu(OH)2	97.6	blue crystals
				•

	Sp. gr.	Melting-	Boiling-	Solul	arts of		
	$\hat{H}_2\hat{O} = 1$ (A) air = 1 (D) $H_2 = 1$	point, Deg. C.	point, Deg. C.	Cold water.	Hot water.	Alcohol, acids, etc.	
_ 1	6.92 ²⁰ °	1505	2200	i.	i.	s. HCl, dil.	
2	2.74	196	decomp.	163.4º°	20671000	$ \begin{array}{cccc} & H_2SO_4 \\ & H_2SO_4 \end{array} $	
3	2.75715°		1200-1500	i. v. s.	sl. s. v. s.	s. a.	
5		36.5	125.5	i. s.	i. s. i.	s. a., alk. s. a., alk. s. a.	
7 8	5.04	2059		i. sl. s.	1	s. a., alk.; i. HC ₂ H ₃ O ₂	
9 10	1.7 ²² ° 3.77 ¹⁹ °	12H ₂ O, 100		120 ²⁰ ° i.	decomp.	s. HNO	
11 12	2.75114			v. s. decomp. 12.350°	v. s.	s. a. sl. s. al.	
13 14 15	8.72 ²¹ ° 1.827 ¹⁸ °	1478 42–46	dec. 135	i. i.	i. i.	s. a. s. al., ether.	
	2.94	decomp.		s. i.	s. i.	CS ₂ i. al.; s. a.	
	5.18	dec.redheat		i. sl. s.	i. sl. s.	s. conc. a. i. al.	
20	ŧ			decomp.		s. conc. H ₂ SO ₄	
21 22	5.8-6.3 1.7043 ^{18.70}			i. s.	i. s.	s. conc. a. s. a.	
24	2.948 4.13	100 decomp.		i. deliques. i.	i. 153 . 2 ⁹⁷ ° i.	s. a. s. al., ether s. a.	
27	1.84 3.597 ¹⁵ °	86.75	6H₂O, 110	76.70° i.	190,7 ¹⁰⁰ ° i.	v. s. ether s. NH4 salts	
	1.83 ¹⁴ ° 5.68	56 O, 2860	dec.redheat	133.80° i.	i.	s. al. i. al.; s. a., NH4OH	
30 31	1.91815°	96.8		i. 24.6° 0.00038	i. 82 6100 °	s. H ₃ PO ₄ s. al. s. a.	
32 33	5.45 ¹⁸ ° 8.93–8.95	>1100 1083	2310	i.	i.	s. HNO ₃ , hot conc. H ₂ SO ₄	
34 35	1.9	dec. 240 dec. 150		7.2 18.521.5°	decomp.	s. al., ether i. al.	
36 37		decomp.		i. i.	i. i.	s. a. NH4OH s. a. NH4OH	
	3.88 2.47-2.535	decomp. decomp. 2H ₂ O, 100	dec.redheat	v. s. i. 110.40°	v. s. decomp. 192.4 ¹⁰⁰ °	s. a., NH ₄ OH s. al., ether,	
	3.054	498	decomp.	70.60°	107.4100°	NH ₄ Cl s. al. s. conc. a.,	
	3.368	decomp.		i.	decomp.	NH ₄ OH s. a., al., NH ₄ OH	

_		PHIS	ICAL	CONSTANTS OF
	Name.	Formula.	Mol. wt.	Crystalline form and color.
. 2	Oxide	Cu(NO ₃) ₂ .3H ₂ O Cu(NO ₃) ₂ .6H ₂ O CuO	79.6	blue prismaticblue crystalsregular, monoclinic,
5 6 7	phosphate sulphate sulphate sulphide	Cu ₃ (PO ₄) ₂ .3H ₂ O CuSO ₄ CuSO ₄ .5H ₂ O CuS	434.8 159.6 249.7 95.6	rhombic bluetriclinic, bluehexagonal, black
8	Cuprous bromide	CuBr	143.5	brown
9 10	carbonate chloride	Cu ₂ CO ₃ CuCl	123.5 99.1	yellow white, tetrahedral
11	cyanide	CuCN	89.7	white, monoclinic
12 13 14	hydroxideiodideoxide.	CuOĤ CuI Cuso	80.6 190.5 143.1	yellowregular, red
15 16 17 18	sulphide sulphocyanate Ferric acetate, basic arsenate	Cu ₂ S. CuCNS. FeOH(C ₂ H ₃ O ₂) ₂ . FeAsO ₄ .2H ₂ O.	159.2 121.7 190.9 230.9	rhombic, black white amorphous
19 2 0		FeBr ₃ FeCl ₃	295.6 162.2	dark red crystals hexagonal, brown or black
21 22	chlorideferrocyanide	FeCl ₃ .6H ₂ O Fe ₄ [Fe(CN) ₆] ₃	270.3 859.1	reddish yellow dark blue crystals
23 24 25	hydroxidenitrate	Fe(OH) ₃ Fe(NO ₃) ₃ ,9H ₂ O Fe ₂ (C ₂ O ₄) ₃ Fe ₂ O ₃	106.9 404	reddish brown rhombic
26				amorphous red, hexagonal, rhom- bohedric or regular
27 28	•	FePO4.4H ₂ O Fe ₂ (SO ₄) ₃ .9H ₂ O		yellow, rhombic or monoclinic
29	sulphide	Fe ₂ (SO4) ₃ .9H ₂ O Fe ₂ S ₃ Fe ₃ (CNS) ₃ .3H ₂ O Fe ₃ O ₄ FeSO ₄ (NH ₄) ₂ SO ₄ .	562 207.9	yellow, rhombic yellowish green
31	Ferroso-ferric oxide	Fe ₃ O ₄	231.5	dark red, regular regular, black
33	sulphate	FeSO ₄ (NH ₄) ₂ SO ₄ . 6H ₂ O Fe ₃ (AsO ₄) ₂ .6H ₂ O		monoclinic, bluish green green, amorphous
34		FeBr ₂ .6H ₂ O		reddish, crystalline
35 36	carbonate	FeCO3	115.8	rhombohedric, gray monoclinic, blue green
37	ferricyanide	Fe ₃ [Fe(CN) ₆] ₂	591.3	deep bluede green
38 39	hydroxide	FeCU ₂ . H ₂ O Fe ₃ [Fe(CN) ₆] ₂ . Fe(OH) ₂ . Fe(NO ₃) ₂ .6H ₂ O. Fe(NO ₃) ₂ .6H ₂ O.	89.8	crystalline, pale green
40	nitrate	re12.4H2O Fe(NO ₂)2.6H ₂ O	381.7 288	crystalline, green
41 42	oxålate	FeC ₂ O ₄ .2H ₂ O	179.9	crystals crystals, pale yellow
43	phosphate	FeO	71.8	black monoclinic, blue
	,		l	•

	Sp. gr.	-		Solubility in 100 p		parts of	
	$H_2O = 1$ (A) air = 1 (D) $H_2 = 1$	Melting- point, Deg. C.	Boiling- point, Deg. C.	Cold water.	Hot water.	Alcohol, acids, etc.	
1 2 3	2.174 2.047 6.4	114.5 26.4 1064	dec. 170 decomp. 0.1110	137.8 243.70° i.	1270 ¹⁰⁰ ° ∞ i.	s. al. s. al. s. a., NH ₄ Cl, KCN	
4 5 6 7	3.516 ³⁰ ° 2.286 ¹⁶ ° 3.98	dec. 621 4H ₂ O, 110	5H ₂ O, 230	sl. s. 200° 31 .610° 0.000033	194100° 203.3100°	s. a., NH ₄ OH i. al. i. al. s. HNO ₃ , KCN	
8	4.72	484	861-954	i.	i.	s. HBr, HCl, NH ₄ OH	
9 10	3.53	decomp. 422	954–1032	i. sl. s.	i.	s. a., NH ₄ OH s. HCl, NH ₄ OH	
11		red heat	; ;	i.	i.	s. HCl, NH4OH, KCN	
12 13 14	5.65 ¹⁵ ° 5.88	½H ₂ O, 360 606 red heat	759-772 O, 1800	i. 0.0008 ¹⁸ ° i.	i. i.	s. a., NH ₄ OH s. KI s. NH ₄ OH.	
16 17 18 19	3.18	1100 1084 subl. & dec. 298		0.00005 0.023 ¹⁸ ° i. i. s. 74.39°°	i. i. s. 536.6100°	HCl, NH ₄ Cl s. HNO ₃ s. NH ₄ OH s. hot a. s. dil. HCl s. al., ether v. s. al. ether +HCl	
21 22		37 decomp.	280–285	2460° i.	∞ i.	s. al. s. conc. HCl,	
24 25	3.4-3.9 1.683520° 5.12-5.30	1½H ₂ O, 500 47.2 dec. 100 1541	decomp.	i. v. s. v. s. i.	i. v. s. v. s. i.	i. al.; s. a. s. al. i. al.; s. a. s. a.	
27	2.87			i.	0.067	s. mineral a.; i. HC ₂ H ₃ O ₂	
29 30 31	2-2.1 4.25-441 5.16 1.865	decomp.	<i>A</i>	v. s. decomp. v. s. i. 180°	decomp. decomp. v. s. i. 78.275°	s. abs. al. dec. by a. v. s. al., ether i. al. i. al.	
33				i.	i.	sl. s. NH4OH s. dil. HCl	
36 37 38	3.7-3.9 1.926	decomp. 177 (anhyd.) 60.5 dec. 160		313.2°° i. 160.1¹°° i. 0.00067 v. s. 200°°	oo i. 415.5 ¹⁰⁰ ° decomp. 300 ²⁵ 0.026	s. al. s. CO ₂ aq. s. al. i. al., dil. a. s. a., NH ₄ Cl s. al.	
42		1419		i.	i. i.	s. a. s. a. i. HC ₂ H ₂ O ₂	

_		<u> </u>	 	
	Name	Formula	Mol. wt.	Crystalline form and color
34 5 6 7 8	sulphide Fluorine Fluorinici acid Glucinum carbonate chloride hydroxide	FeSO ₄ .7H ₂ O. FeS. F ₂ . H ₂ SiF ₆ . Gl. GlCO ₃ ·4H ₂ O. GlCO ₂ . Gl(OH) ₂ .	141.2 80 43.1	monocl. blue greenblack greenish yellowhexagonal, gray crystals, needles white
10 11	oxidesulphateGold	GlO GlSO ₄ .4H ₂ O Au	25.1 177.2 197.2	hexagonal
12 13 14 15 16 17 18 19 20	cyanide (ic). cyanide (ous). hydroxide (ic). hydroxide (ous). iodide (ic).	AuBr AuCls AuCls Au(CN)3.6H2O Au(CN) Au(OH)3 Au(OH)4 AuIs AuIs AuI	277.1 303.6 232.7 383.3 223.2 248.2 214.2 578 324.1 442.4	green. cryst. yellowish red. crystals, yellow crystals, yellow yellow brown red brown dark green yellow black
22 23		Au ₂ O ₃	410.4 620.5	violet
27 28 29 30 31 32 33 34 35	sulphide (ous) Hydrazine dihydrochloride sulphate Hydrobromie acid Hydrochloric acid Hydrocyanic acid Hydrofluoric acid Hydrofluoric acid Hydrofluoric acid Hydrogen peroxide	Au ₂ S ₃ Au ₂ S ₃ NH ₂ , NH ₂ N ₂ H ₄ , H ₂ Cl ₂ N ₂ H ₄ , H ₂ Cl ₂ N ₂ H ₄ , H ₂ SO ₄ HBr HCl HCN HF HI H ₂ H ₂ O ₂ H ₂ O ₂	490.6 426.5 32.1 105.0 130.1 80.9 36.5 27 20 127.9 2.016 34 34.1	brown. black. cryst. regular tablets. crystals, white. colorless.
37 38 39 4 0	chloride, mono-	HIOsI2ICl	253.8 162.4	rhombicrhombic, black rhombic, red brownyellow crystals
42 43 44 45 46 47	wrought. cast. steel carbide carbide disulphide Lanthanum carbonate chloride	Fe. Fe. Fe. Fe. Fe. Fe. Fe. Fe2. Fe2. Fe	55.84 55.84 179.5 103.8 120 139 602.1 371.4 433.1	cubical or octahedral. gray gray gray regular, gray crystals, gray reg.orrhombic.yellow lead gray crystals white triclinic crystals, colorless amorphous

-	Sp. gr.	Maltina	Boiling-	Solul	oility in 100	parts of
	Sp. gr. $H_2O = 1$ (A) air = 1 (D) $H_2 = 1$	Melting- point, Deg. C.	point, Deg. C.	Cold water.	Hot water.	Alcohol, acids, etc.
2	1.875 4.84 1.31 ¹⁵ ° (A)	64 1197 -223	decomp.	32.80° 0.00089 decomp.	196.476° decomp.	i. al. s. a.
5 6	1.85 ²⁰ °	960		s. i. 0.360°	8. i.	s. dil. a., alk.
7 8		400 decomp.	500	deliques. i.	v. s.	v. s. al. s. a., alk., NaHCO3
10	3.016°° 1.7125 ^{10.5} ° 19.32 ^{17.5} °	infus. 2H ₂ O, 100 1065.6	decomp. 2500	i. 100 ¹⁴ ° i.	ω i.	s. a., alk. i. al. i. a.; s.aq.reg., KCN
12 13 14	3.9	decomp. 115 subl. decomp.	150	i. 68 decomp.	i. v. s. decomp.	dec. a. s. al., ether
15 16 17		decomp. decomp. 250		v. s. i. i. s.	v. s. i. i.	s. al. i. a.; s. KCN s. conc. HNO ₃
18 19 20		decomp. 120		i. i.	decomp.	s. iodides s. excess KI
21 22 23		$\left\{ egin{array}{l} { m O, 160} \\ { m O_3, 250} \\ { m decomp. 250} \end{array} \right\}$		i. i. deliques.	i. i. decomp.	s. HCl s. HI, alk. s. HCl., conc.
24				i.		H ₂ SO ₄ s. Na ₂ S, K ₂ S; i. a.
25 26 27	1.01150	1.4 198	113	i. v. s. s.	v. s.	i. a. s. al. s. al.
00		254 -87 -112.5	-68.7 -83.1	sl. s. 221 . 20° 82 . 510°	v. s. 130100° 56.160°	i. al. s. al. s. al., ether
33	(A)	-13.8 -92.3 -51.3 -259	26.54 19.44 34.1 -253	264 42,500 c.c. ¹⁰⁶	σ y. s. v. s.	 ∞ al., ether s. al. s. Pd, Pt, Fe;
34 35 36	0.06948 (A) 51.458° 51.1895 (A)	-259 -2 -85.5	80.2 -61.8	00 437 c.c.0°	186 c.c.40°	s. al., ether s. al. charcoal
38	7 4 . 6290° 8 4 . 948 ^{17°} 9 3 . 1822 2 °	decomp. 170 112-115 25	184.35 101	2860° 0.018211° decomp.	47180° 0.09255°	v.s.al.,HNO ₃ s. al.,KI,ether s. al., ether s. al., ether
40	3.1107	33 1530	2450	s. i.	decomp.	HCl s. a.
44	17.85-7.88 27.86 37.03 17.60-7.80 57.0716°	1505 1275 1375		i. i. i.	i. i. i.	s. a. s. a. s. a.
4	7 4 .86–5 .18 8 6 .155	1171 810	decomp.	i. 0.00049 decomp.	i. decomp.	s. a. i. dil. a. s. a.
5 5	9 0 1	40	126	i. v. s. deliques.	i. v. s. v. s.	sl. s. CO ₂ aq. s. al. v. s. al.
5	2 6.41150	infusible		sl. s.		s. al., a., NH ₄ Cl

	Name.	Formula.	Mol. wt.	Crystalline form and color.
1 2	Lanthanum sulphate. Lead	La ₂ (SO ₄) ₃ .9H ₂ O Pb	728.3 207.2	hexagonal, colorless reg. or moclinic, gr
3 4	borate	Pb(C ₂ H ₃ O ₂) ₂ .3H ₂ O Pb(BO ₂) ₂ .H ₂ O	379.3 311.2	monoclinic, white
5 6 7 8 9 0 1	bromide	PbBrs PbCOs. 2PbCOs.Pb(OH)s PbCls PbCrO4 PbCrO4.PbO PbCrsO7 Pb(OH)s	423.2	rhombic, colorless.rhombic.amorphous.rhombic.monoclinic, yellow.crystals, red.crystals, brick red.
2 3 4 5 6 7 8 9	iodateiodidenitrateoxalate	Pb(OH) ₂ . Pb(IO ₃) ₂ . PbI ₂ (IO ₃) ₂ . PbI ₂ (NO ₃) ₂ . PbC ₂ O ₄ . PbO PbO PbO PbO Pb ₂ O ₃ . Pb ₃ O ₄ .	241.2 557 461 331.2 295 223.2 223.2 430.4	white. white. hexagonal, yellow. octahedral, white. white. rhombic, yellow. hexagonal, red. amorphous, black.
0 1 2		Pb ₂ O ₃ Pb ₃ O ₄ PbO ₂	462.4 685.6 239.2	amorp., reddish yello amorphous, scarlet. hexagonal, brown
3 4 5 6 7	oxychloridephosphatephosphitepyrophosphatesulphate	PbCls.PbO	501.3 811.7 287.2 606.5 303.3	tetragonal, white white white rhombic rhombic, white
8 9 0	sulphite sulphocyanate	PbSO4.PbO PbS PbSO3 Pb(CNS)2.	526.5 239.3 287.3 323.4	regular, black white monocl., yellowish
3 1 2 3	Lithium acetate bicarbonate bromide carbonate abloride	Li LiC ₂ H ₃ O ₂ .2H ₂ O LiHCO ₃ LiscO ₃ LiCO LiCI.	68 86.9 73.9	silvery grayrhombic, whitewhitecrystals, whiteprismatic
	nitroto	LiOH LiOH LiNO ₃ Li ₃ O Li ₃ PO ₄ ,H ₂ O Li ₂ SO ₄ Li ₂ S	42.4 24 69 29.9 133.9	octahedral, white crystals, white rhombohedric crystals rhomboidal.
3	acetateammonium arsenate	MgMg(C ₂ H ₃ O ₂) ₂ .4H ₂ O MgNH ₄ AsO ₄ .6H ₂ O	46 24.32 214.4 289.4	rhomboidal
	ammonium phos-	MgNH ₄ PO ₄ .6H ₂ O MgBr ₂ .6H ₂ O	245.6 184.2	tetragonal

S	o. gr.	Melting-	Boiling-	Solu	parts of	
(A) (D)	o. gr. I ₂ O = 1 air = 1 H ₂ = 1		point, Deg. C.	Cold water.	Hot water.	Alcohol, acids, etc.
1 2.821 2 11.34		decomp. 327	1525	3.80° i.	1.06 ¹⁰⁰ °	s. HNO ₃ , hot conc.H ₂ SO ₄ , HCl
3 2.50 4 5.598		3H ₂ O, 75° red heat	280	45.64 ¹⁵ ° i.	200100° i.	i. al. s. a.; i. al.
(ar 5 6.572 6 6.47		380 decomp. decomp.	861-950	0.4550° 0.00198 i. 0.6730°	4.75100° decomp. i. 3.34100°	s. a., KBr; i.al. i. al.; s. alk., a. s. CO ₂ aq. i. al.; s. dil. HCl
8 5.80 9 6.123 10	150	501 fusible	861-954	0.6730° 0.0000218° i. decomp.	i.	s. a., alk. s. a., alk. s. a., alk.
12 13 14 6.16 15 4 531	 ₂₄ σ	145 3.58 decomp. 223	861-954	sl. s. 0.00122° 0.0440°	sl. s. 0.436 ¹⁰⁰ ° 139 ¹⁰⁰ °	s. a., alk. sl. s. HNO ₃ i. al., s. KI s. alk.
16 5.025 17 9.375 18 8.741 19 8.342	10	decomp. 300 888	white heat	0.00016 ¹⁸ ° 0.017 ²⁰ ° 0.0013 ²² °	i.	i. al., s. HNO ₈ s. alk., NH ₄ Cl dec. a., alk.
20 21 9.07	••••	decomp. 370 decomp. 500		i. i.	decomp.	dec. a., alk. s. glacial HC ₂ H ₃ O ₂ i. al.; s. glacial
22 8.91 23 7.21		decomp.		i.	i. i.	HC ₂ H ₃ O ₂ s. alk. s. HNO ₃
24 6.9-7 25 26 27 6.23	.3	decomp. 806 (anhy.) >1100		0.000014 ²⁰ ° i. i. 0.0042 ²⁰ °	i. i. decomp. sl. s.	s. HNO ₃ s. HNO ₃ s. alk., HNO ₃ s. conc. a., NH ₄ salts
28 29 7.48 30		1112		0.0044 0.0001 i.	sl. s. i. i.	sl. s. H ₂ SO ₄ s. conc. a. s. HNO ₃ s. KCNS,
31 3.82 32 0.534	[20°	186	1400	0.5 ²⁰ ° decomp. 300 ¹⁵	decomp.	HNO ₃
33 34 35 3.464 36 2.111	12 <u>5</u> 0	70 547 695–710	decomp.	5.5 ¹³ ° 143°° 1.539°°	270 ¹⁰³ ° 0.728 ¹⁰⁰ °	s. a. s. al. i. al.
37 2.068 38 39 2.39 40 2.102		600 red heat 253-267 sublimes		63.70° 12.70° 48.30° 5.220°	12996° 17.5100° 227.3100° 6.26100°	v. s. al. sl. s. al. v. s. al. s. a.
41 2.41 42 2.21 43 1.66		857 843-874	H ₂ O, 100	0.04 35.340° v. s.	29.24100° v. s. sl. decomp.	s. a., NH ₄ Cl i. 80% al. v. s. al. s.a., NH ₄ salts
44 1.74 45 1.45 46 47 1.71		decomp.	1120	deliques. 0.038 ²⁰ 0.01322	v. s. s.	v. s. al. i. al.; s. a. s. a.; i. al.
48		decomp.		3160°	v. s.	s. al.

_		FILL	CAL	COMSTANTS OF
	Name.	Formula.	Mol. wt.	Crystalline form and color.
,	ate	MgCO ₃	84.3	rhomboh, or rhombie
2 3 4 5 6 7	chloride:	MgCl ₂ .6H ₂ O	203.3 58.3 278.2	monoclinic rhombohedric monocl. or tricl
8	oxide	MgOMg ₃ (PO ₄) ₂ .4H ₂ O	148.4 40.32 335.1	white reg. or hexagonal monoclinic
10 11 12 13 14	phosphate, pyro sulphatesulphate	MgSO ₄ MgSO ₄ .7H ₂ O	246.5 222.7 120.4 246.5 56.4	hexagonaltetrag. or monoclcubical, brown
16 17 18	acetate phate bromide.	MnMn(C ₂ H ₃ O ₂).4H ₂ O NH ₄ MnPO ₄ .H ₂ O		grayish pink monocl., pale red crystals, white
19 20	carbonate	MnBr ₂ MnCO ₃ MnCl ₂	214.8 114.9 125.9	rose redrhomboh. rose
21 22	chloridehydroxide (ous)	MnCl ₂ .4H ₂ O Mn(OH) ₂	197.9 89	monocl., rose hexagonal, white
23 24	hydroxide (ic)			tetragonal, brown
25 26 27		M-C-0. 91 H-0	183.8 287.1 188 70.9	monoclinic, rose monoclinic, rose crystals, white reg. grayish green
28 29 80 81	oxide (ic) oxide, di oxide, ous, ic	MnO. Mn ₂ O ₃ . MnO ₂ . Mn ₃ O ₄ Mn ₃ (PO ₄) ₂ .7H ₂ O.	70.9 157.9 86.9 228.8	regular, black tetrag.orrhomb.black tetrag. black amorphous, reddish
32 33 34	silicatesulphate (ic)	MnSiO ₃ MnSiO ₃ Mn ₂ (SO ₄) ₃	481 283.9 131.2 398.1	amorphous, reddish amorphous, white crystals, red crystals, green
5 6 7	sulphide (ous)	MnSO ₄	151 223 1 87	reddishprisms, rosecryst., pale pink to brown
		Hg(C ₂ H ₃ O ₂) ₂	200.6 318.7	silveryscales, white
1 2 3	arsenatebromidechloride.cyanide.	Hg(C ₂ H ₃ O ₂) ₂ . Hg ₃ (AsO ₄) ₂ . Hg ₂ H ₃ O ₃ O ₂ . HgBr ₃ . HgCl ₂ . Hg(CN) ₂ . Hg(ON) ₂ . Hg(OH) ₂ . Hg[2. Hg[2. HgI ₂ . HgI ₂ . HgI ₃ O ₃ O ₃ O ₃ O ₃ O ₃ O ₃ O ₃ O ₃ O ₃ O	879.7 360.4 271.5 252.6	yellowrhombicrhombic, whitetetragonal, white
5 6 7	nydroxideiodide rediodide yellownitrate	Hg(OH) ₂ HgI ₂ HgI ₂ Hg(NO ₈) ₂ .H ₂ O	234.6 454.4 454.4 342.6	tetragonal, redrhombic, yellowcrystals, white
		·		

_						
	Sp. gr. H ₂ O = 1	Melting-	Boiling-	Solu	bility in 100 p	parts of
	$H_2O = 1$ (A) air = 1 (D) $H_2 = 1$	point, Deg. C.	point, Deg. C.	Cold water.	Hot water.	Alcohol, acids, etc.
1	3.04	decomp. 450		0.0106	,	s. a., CO ₂
9	2.18			0.04	0.011	s. a., NH4 salts
2	1.569170	2H ₂ O, 100		167	367	s. al.
4	2.3615°	decomp.	1	0.0009		s. NH ₄ salts
- 5		decomp.		100°°	164.91100	s. al., ether
6	1.464	90	5H ₂ O, 330	200 0.0716°	0.08100°	s. al.
7	3.43	decomp. 1890–1940		0.00062	0.08.00	s. a., oxalates s. a., NH4 salt
9		1890-1940		0.0205		s. a.; i. NH
. "				0.0200		salts
10		l		0.3	0.2	s. a.; i. al. s. a.; i. al.
11	2.40			i.	i.	s. a.; i. al.
19	19 RG	decomp.		26.90° 76.90°	73.8100°	s. al.
13	1.678 ¹⁶ ° 2.82 ¹⁵ ° 7.42	decomp.		76.90	671.2100°	s. al. s. a.
14	2.8215	decomp.	1000	decomp.	decomp.	s. a. s. dil. a.
15	1.6	1207	1900	decomp.	decomp.	s. al.
17				0.0031	0.05	i. al., NH
.,		1		0.0001		salts
18		decomp.		127,30°	228100°	
	3.125	decomp.		0.013		s. dil. a., CO
					123 8106.30	aq.
20	2.97725°, 1.913	650	100	62.16 ¹⁰ ° 1518°	00	s. al.; i. ether
21	1.913		106	151°	i.	s. al.; i. ethe s. a., NH ₄
22	3.258	decomp.		1.	**	salts: i. alk.
23	4.335	decomp.		i.	i.	s. hot conc
	1.000	accomp.				H ₂ SO ₄
24		decomp.		deliques.	v. s.	
25	1.82	25.8	129.4	426.4º°	∞ 0.08100°	v. s. al. s. dil. a.
26	2.45320°	decomp. 150		0.05		s. a., NH ₄ Cl
27	5.091	white heat		i. i.	i.	8 0
20	4.335 5.026	3 O, 1090 3 O, 570		i.	lî.	s. a. s. HCl
30	4.61	infusible		li.	i.	s. HCl
31	İ			sl. s.		s. a.; i. al.
32	3.584720°	1		i.	į.	s. a.
33	3.35	1218		1.	1.	
34		decomp.		deliq.	decomp.	s. conc. HCl
9:	0 054	decomp.		53.20°	6775°	s. al.; i. ether
36	2.954 2.107	decomp.		105.3°	111.254°	i. al.
37	3.63 17 °	decomp.	I	0.00047		s. dil. a.
٠.	0.0017	accorr.p.			1.	
38	13.5952°	-38.85	357.25	i.	i.	s. HNO ₃ ,cone H ₂ SO ₄
				25100	100100°	H ₂ SO ₄ s. al.
39	3.254422°			sl, s.	100	s. HCl, HNO
4(/ 5 700 · · · · · ·	235-244	325	1.069°	20-25100	s. al., ether
41	5.738 5.424	235-244 277	303-307	5.73°°	53 96100°	s. al., ether
4	3 4.018	decomp.		12.515°	53100°	s. al.
44		H ₂ O, 175		li.	ļi	s. a.
4	6.257	253	349	0.00417.50	[∫s. al.
	3 6	241	349	i.	1.	(alk. salts s. HNO ₃ ; i. al
4		decomp.		v. s.	decomp.	s. HNO3; 1. al
		1	1			1
		1		1	1	
	1			!		

-	1		-	COMBINATO OF
	Name.	Formula.	Mol. wt.	Crystalline form and color.
1		HgO		tetrag. plates, yellow or monocl. prisms, red
2		Hg ₈ (PO ₄) ₂		white to yellowish
3 4 5 6 7	sulphatesulphate, basicsulphidesulphideMercurous acetate	HgSO ₄ . HgSO ₄ .2HgO HgS HgS HgC ₂ H ₃ O ₂	296.7 729.9 232.7 232.7 259.6	whiteyellowamorphous, blackrhombohedric, redmicaceous scales
8	bromide	HgBr	280.5	tetragonal, yellow
.9 10 11 12 13 14	chloride	Hg2CO ₃ . HgCl. Hg2CrO ₄ . Hg1. Hg1. Hg2O.	236.1	yellowrhom. or tetrag., white crystals, redtetragonal, yellowmonoclinic, whiteblack
15 16	phosphatesulphate	Hg ₃ PO ₄ Hg ₂ SO ₄	681.2 497.3	monoclinic, white
17 18	sulphide Molybdenum	Hg ₂ S	433.3 96	blackgray
19 2 0	chloride, di chloride, tri	MoCl ₂	166.9 202.4	amorphous, yellow needles, red
21	chloride, tetra	MoCl4	237.8	crystals, brown
22	chloride, penta	MoCl ₅	273.3	crystals, black
23 24 25 26 27	oxide, dioxide, sesquioxide, trisulphide, disulphide, trisulphide, trisu	MoO ₂	128 240 144 160.1 192.2	prismatic, redyellow to blackblackred brown.
28	sulphide, tetra	MoS4	224.3	brown
29 30	Molybdic acid	H ₂ MoO ₄ H ₂ MoO ₄ .H ₂ O	162 180	needles monoclinic, yellow
31 32 33 34 35 36 37 38	Nickel. acetate. ammonium chloride ammonium sulphate bromide. carbonate. carbonate, basic carbonyl.	Ni. Ni(C ₂ H ₂ O ₂) ₂ NiC(2.NH ₄ Cl.6H ₂ O NiSO ₄ .(NH ₄) ₂ SO ₄ .6H ₂ O NiB ₁ 2 NiCO ₃ 2NiCO ₃ .3Ni(OH) ₂ .4H ₂ O Ni(CO) ₄	58.68 176.7 291.2 395 218.5 118.7 587.5 170.7	
39 40 41	chloridechloridecyanide.	NiCl2 NiCl2.6H2O Ni(CN)2.4H2O	129.6 237.7 110.7	scales, yellow
-				

	Sp. gr.	Melting-	Boiling-	Boiling-point, Deg. C. Cold water. Hot water.		parts of	
	$H_2O = 1$ (A) air = 1 (D) $H_2 = 1$	point, Deg. C.	point,			Alcohol, acids, etc.	
.1	11.14	decomp.		0.0051525°	0.0395100°	s. a.; i. al.	
2	••••			i.	sl. s.	sl. s. a.; s. NH4Cl	
	6.466 6.44	dec. red hot		decomp. 0.002		s. a.; i. al. s. a.; i. al.	
5	7.67	sublimes	J	0.0025		s. Na ₂ S, K ₂ S,	
	8.09	at 446	}{	i.	i.	aq. reg.	
7		decomp.	[`	0.7518°		s. H ₂ SO ₄ , HNO ₃	
8	7.307	sublimes at 405		i.	i.	i. al.	
9		decomp. 130		li.	decomp.	s. NH ₄ Cl	
	7.1	sublimes	383.2	0.00031	0.01	s. aq. reg.	
11		decomp.		sl. s.	s.	s. aq. reg. s. HNO_3 s. KI .; i. al.	
	7.7	290	310	0.0417	,	s. Kl.; i. al.	
	4.78 9.8	decomp.		s.	decomp.	s. glac.	
14	9.0	decomp.		i.	1.	HC.H.O.	
15 16	7.56		decomp.	i. 0.05516.5°	decomp. 0.092100°	HC ₂ H ₃ O ₂ s. HNO ₃ s. H ₂ SO ₄ , HNO ₃	
17	9.01	decomp. 0°		į.	į.	li o	
10	9.01	2535		1.	1.	H ₂ SO ₄ , HC	
19		decomp.		li.	li.	s. HNO ₃ , conc. H ₂ SO ₄ , HC s. a., al., ether	
20		decomp.		i.	decomp.	s. HNO ₃ ,	
21		,		deliques.	decomp.	H ₂ SO ₄ , al. s. HNO ₃ , H ₂ SO ₄ , al.	
2 2	9.5	194	268	deliques.	decomp.	s. HNO ₃ , H ₂ SO ₄ , al.	
23	6.44100			i.	i.	i. a., alk.	
24			::::::::	i.	li.	i. a., alk.	
25	4.3921°	791	sublimes	0.107180	1.70570°	s. a., NH ₄ OH	
26 27	4.80140			i. sl. s.	i. s.	s. conc. a. s. alk. sul	
21		decomp.		SI. S.	s.	s. alk., sul	
28				i.	i.	s. alk., sul phides	
29			1	sl. s.		Ia NHOH	
30	3.12415°	H ₂ O, 70		0.133180	2.13 ^{70°}	s. a., NH ₄ OH NH ₄ salts	
31	8.6-8.90	1452		i.	i.	s. a.	
32	8.6-8.90 1.799	decomp.		16.6		i. al.	
33	1.645			v. s. 2.53.5°	v. s. 39.285°	1 ***	
34	1.929 ²⁰ ° 4.64	decomp.		112.80°	155.1100°	s. al., ether	
36	1.02	decomp.		i.	i.	s. a.	
37		decomp.		li.	decomp.	s. a., NH ₄ salts. al., CH ₃ Cl	
38	1.3185 ¹⁷ °	-25	43	0.0189-8°	i.	s. al., CH ₃ Cl	
20	2.56	aubl		53.80°	87.6100°	s. al., NH ₄ OH	
4 0		subl.		179.30°	599100°	v. s. al.	
41		4H ₂ O, 200	decomp.	i.	i.	s. KCN	
				1			
	1		i	i			
	I	1 ′	1	1	1)	

_				
	Name.	Formula.	Mol. wt.	Crystalline form and color.
1 2 3 4 5 6	Nickel hydroxide (ic) hydroxide (ous) iodide nitrate oxide, mon oxide, sesqui	Ni(OH) ₃ . 4Ni(OH) ₂ .H ₂ O. NiI ₂ . Ni(NO ₂) ₂ .6H ₂ O. NiO. Ni ₂ O ₃ .	109.7 388.8 312.5 290.8 74.7 165.4	jet blackscales, blackscales, blacksrogular, greenregular, greenblack.
7 8 9 10 11	oxide (ous) (ic) phosphatesulphatesulphatesulphatesulphide.	Ni ₃ O ₄ Ni ₃ (PO ₄) ₂ .7H ₂ O NiSO ₄ NiSO ₄ .7H ₂ O NiS	240 492.2 154.8 280.9 90.8	graygreenregular, yellowrhombic, greenhombic, dack
12 13 14	Nitric acid Nitrogenoxide, mon- (ous)	HNO ₃	63 28.02 44	
15	oxide, di- (ic)	NO(N ₂ O ₂)	30	
16 17	oxide, trioxide, tetr	N ₂ O ₃ NO ₂ (N ₂ O ₄)	76 46	
18 19 20 21	oxide, pentoxychloride Osmiumchloride, di	N ₂ O ₅ NOCl. Os OsCl ₂	108 65.5 190.9 261.8	cryst., yellow or red amorphous, bluish needles, dark green
22 23 24 25 26 27 28 29	chloride, tri	OsCl ₃ , OsCl ₄ , OsO, Os ₂ O ₃ , OsO ₂ , OsO ₄ , OsS ₂ , OsS ₄ ,	297.3 332.7 206.9 .229.8 222.9 254.9 255 319.2	regular, brownish needles, red to yellow black black coppery red monoel., colorless brownish yellow brownish black
30 31		H ₂ C ₂ O ₄ ,2H ₂ O O ₂	126.1 32	crystals, colorless
32 33	Ozone Palladium	O ₃ Pd	48 106.7	regular, silvery
34 35 36 37	bromide chloridehydroxide iodide	PdBr ₂ PdCl ₂ .2H ₂ O Pd(OH) ₂ . PdI ₂ .	266.5 213.7 140.7 360.5	brownprisms, brownbrownblack
38	nitrate	Pd(NO ₃) ₂	230.7	rhombic, yellow
	oxide, mon		122.7 138.7 238.8 138.8 170.8 100.5 228	brown. black. crystals, brown. black dark brown. monoclinic.

	Sp. gr. H ₂ O = 1	∺≋ Melting-	Boiling-	Solul	oility in 100 p	oarts of
	$H_2O = 1$ (A) air = 1 (D) $H_2 = 1$	point, Deg. C.	point, Deg. C.	Cold water.	Hot water.	Alcohol, acids, etc.
3 4 5	4.36 2.05 6.69 4.83		136.7 NiO at 600	i. i. 124.2°° 238.5°° i. i.	i. i. 188.2 ¹⁰⁰ ° ∞ i. i.	s. a., NH ₄ OH s. a., NH ₄ OH s. al., NH ₄ OH s. a., NH ₄ OH s. HCl, NH ₄ OH
10	3.418 ¹⁵ ° 1.98 4.60	SO ₃ , 840 98–100 797	6H ₂ O, 103	i. i. 29.30° 75.615.5° 0.00036	i. i. 83.7 ¹⁰⁰ 475.8 ¹⁰⁰ decomp.	s. a. s. a. i. al. sl. s. al. s. HNO ₃ , aq rg.
13	1.530 ¹⁵ ° 0.967 (A) 1.5301 (A)	-41.3 -210.5 -102.4	86 195 89.4	2.348 c.c.º° 130.52 c.c.º°	0.82 c.c. ²⁰	sl. s. al. s. al., conc H ₂ SO ₄
15	1.0366 (A)	-160.6	153	7.3 c.c.º°	0.0 c.c. ^{100°}	s. al., cond H ₂ SO ₄
16 17	1.447 ⁻² ° 1.49034°	-103 -9.6	3.5 21.6	s. s.		s. a. s. conc. a CS ₂ , CHCl
19	1.642 ^{18°} 2.31 (A) 22.48	29-30 60 2700	45-50 -5.6 white heat	s. decomp. i. sl. s.	i.	i. a. s. al., ether
22 23 24 25 26 27	8.89	20	100	sl. s. sl. s. i. i. i.	i. i. i. s.	s. alk., al. HC s. al., HCl s. a. i. a. i. a. s. al., ether
28 29		decomp.		sl. s. i.		sl. s. alk. s. HNO ₃ ; alk.
	1.653 ^{18.5} ° 1.1053 (A)	98 —227	-182.7	4.90° 4.89 c.c.0°	120 ⁷⁰ ° 1.7 c.c. ¹⁰⁰ °	s. al. sl. s. al.; melted Ag
	1.658 (A) 12.16	decomp. 270 1542	-119	0.88 i.	i.	s. conc. a., ac
34 35 36 37		100	360	i. s. i. i.	i. s. i. i.	s. HBr s. HCl s. a., alk. s. excess K i. al., ether
38		decomp.		s.	decomp.	s. HNO ₈
39 40 41 42 43		O, 875 O, 200 decomp. decomp.	39	i. i. v. s. i. i. s.	i. i. decomp. i. i.	s. a. sl. s. a. s. HCl s. aq. rg.
45		130	734	v. s.	v. s.	s. al., ether

-		, FIII	CAL	CONSTANTS OF
	Name.	Formula.	Mol. wt.	Crystalline form and color.
-	Permanganic acid Phosphoric acid, ortho- acid, meta-	HMnO ₄	98.1	rhomb.
į	acid, pyro Phosphorous acid,	1 -	1	needles crystals, yellowish
2	ortho- acid, hypo Phosphorus, yellow Phosphorus, red bromide, tri	1	66.1 124.16 124.16	regular, vellow
10 11	bromide, penta chloride, tri	PBr ₅ PCl ₃	430.6 137.4	rhomboidal, yellow colorless
12	chloride, penta	PCl ₅	208.3	rhombic, yellow
13 14 15 16 17	logiae, tri	PH ₃ P ₂ H ₄ (P ₄ H ₂) ₃ PI ₃ P ₂ O ₃	34.1 66.1 378.5 411.8 110.1	yellowprismatic, red.
18 19 20	oxide, tetraoxide, pentasulphide, tri	P ₂ O ₄	126.1 142.1 158.3	orthorhombic amorphous, white cryst., grayish yellow.
21 22 23 24 25	sulphide, penta Platinic acid, chlor Platinum bromide (ous) bromide (ic)	P ₂ S ₅ H ₂ PtCl ₆ .6H ₂ O Pt PtBr ₂ PtBr ₄ .	222.4 518.1 195.2 355 514.9	cryst., grayish yellow cryst., red brown silvery gray brown dark brown.
26	chloride (ous)	PtCl ₂	266.1	brown
27 28	chloride (ic) hydroxide (ous)	PtCl4 Pt(OH)2	337 229.2	cryst., reddish brown. black
29 30 31 32	hydroxide (ic)iodide (ous)iodide (ic)oxide (ous)	Pt(OH)4. PtI2. PtI4. PtO.	263.2 449 702.9 211.2	red brownblackamorph., brown black violet to black
33 34	oxide (ic)sulphide (ous)	PtO ₂ PtS	227.2 227.3	blackblack
35	sulphide (ic)	PtS2	259.3	needles, black or gray
36 37 38 39 40 41 42	sulphate	Pt(SO ₄) ₂ .4H ₂ O K KC ₂ H ₃ O ₂ KH(C ₂ H ₃ O ₂) ₂ K ₂ Al ₂ O ₄ .3H ₂ O. KSbO ₃ KSbOC ₄ H ₄ O ₆ .½H ₂ O	98.1 158.2 250.5	plates, yellowtetragonal, whiteneedles, platescrystalscrystalscrystalscrystals
			1	

	Sp. gr.	Melting-	Boiling-	Solubility in 100 p		parts of
	$\hat{\mathbf{H}}_{2}\hat{\mathbf{O}} = 1$ (A) air = 1 (D) $\mathbf{H}_{2} = 1$	point, Deg. C.	point,	Cold water.	Hot water.	Alcohol, acids, etc.
1 2	1.88418.20	38.6	decomp. 213	v. s. v. s.	decomp.	s. al.
3	2 2-2.5	subl. at white heat	•••••	s.	s.	
4 5	1.65121.20	61 70.1	decomp. 200	v. s. ∞	decomp. ∞	v. s. al., ether
7	1.493 ^{18.8°} 1.83 2.20 2.8847	26.1 44.2 725 -41.5	decomp. 290 350 170.8	∞ 0.00033 i. decomp.	∞ sl. s. i.	sl. s. al., ether i. ether; s. alk. s. CS ₂ , ether, CHCl ₃
10 11	1.6129	100 -111.8	10 6 75 .95	decomp.		s. CS ₂ , ether, CHCl ₃
13 14 15	3.60 ²⁹⁶ ° (D) 1.17 (D) 1.01 1.83 ¹⁹ ° 2.135 ²¹ °	148 (pressure) -133.5 <-10 61 22.5	160-165 -86.4 57-58 decomp. 173	decomp. sl. s. i. i. decomp. s.	i. i. i. decomp.	s. CS ₂ s. al., ether s. al. i. al. s. CS ₂ s. CS ₂ , ether,
18 19	2.537 22;5 ° 2.387	>100 290	180 490	s. v. s. decomp.	v. s.	S. conc. H ₂ SO ₄ s. al., alk.,
21 22 23 24 25		290 decomp. 1755 decomp. 300	515	decomp. v. s. i. i. 0.41 ²⁰	v. s. i. i. sl. s.	s. CS ₂ , alk. s. al., ether s. aq. rg.; i. a. s. HBr, KBr s. al., ether, HBr
26	5.87	dec. red. ht.		i.	i.	s. HCl, NH4OH
27 28		decomp.		v. s. i.	v. s. i.	s. al., ether s. HCl, HBr, alk.
29 30 31 32		decomp. 325 decomp. 325 decomp. 555		i. i. i. i.	i. i. i.	v. s. a., alk. i. a.; Na ₂ SO ₃ s. alk., HI, KI s. H ₂ SO ₃ , conc. HCl
33 34	8.897	430 decomp.		i. i.	i. i.	i. a. i. a.; s. (NH ₄) ₂ S
3	5.27	decomp.		i.	i.	s. (NH ₄) ₂ S, aq. rg.
3: 3: 4: 4:	7 0 .87020° 3 9	62.5 148 ½H ₂ O, 100	712 decomp. 200	s. decomp. 1882° decomp. v. s. i. 58°	decomp. 49262° v. s. sl. s. 52100°	s. a., al., ether s. a., al. s. al.; i. ether s. glac. acetic i. al.; s. alk. s. hot KOH i. al.

		FILE	ICAL	CONSTANTS OF
	Name	Formula	Mol. wt.	Crystalline form and color.
				٠. ــــــــــــــــــــــــــــــــــــ
1	Potassium arsenate	K ₃ A ₈ O ₄	256.3	crystals
2 3	arsenate, acid	KH ₂ AsO ₄ KAsO ₂	180.1	crystals
4	borate	KASO2. K2B4O7.5H2O	146.1 324.3	hexagonal prisms
5	bromate	KBrO ₃	167	rhombohedral
6 7	bromide	KBr	119	regular
8	carbonate, acid	K ₂ CO ₃ . KHCO ₃ .	138.2 100.1	monoclinic
9	chlorate	KClO ₃	122.6	monoclinie
10 11	chloride	KCl K ₂ PtCl ₆	74.6	regular
12	chromate	K ₂ CrO ₄	486.2 194.2	regular, yellowrhombohedric, yellow
13	citrate	K ₃ C ₆ H ₅ O ₇ .H ₂ O	324.4	coloriess crystals
14	cobaltinitrite	2Co(NO ₂) ₃ .6KNO ₂ . 3H ₂ O	958.7	tetragonal, yellow
15	cyanate	KCNO	81.1	needles
16		KCN	65.1	regular, white
17 18	ferrievanide	K ₂ Cr ₂ O ₇	$294.2 \\ 329.2$	tricl. or monocl., red. monoclinic, red
19	ferrocvanide	K ₄ Fe(CN) ₆ .3H ₂ O	422.4	monoclinic, yellow
20	fluoride	K ₃ Fe(CN) ₆ . K ₄ Fe(CN) ₆ .3H ₂ O. KF.	58.1	······································
21 22	fluosilicate	K2S1F6	220.5	hexagonal
23	hymochlorita	KOH	$\frac{56.1}{90.6}$	rhombohedric
24	iodate	KIO3	214	regular
25	10dide	K1	166	regular
26 27	manganate	K ₂ MnO ₄ KNO ₃	197.1	rnombon., dark green
28	nitrite	KNO.	101.1 85.1	rhomboh. or prism prismatic
29	oxalate	K ₂ C ₂ O ₄ .H ₂ O	184.2	monoclinic
30	oxide	K ₂ O	94.2	octahedral, gray
31 32	nerchlorate	KCIO.	$142.2 \\ 138.6$	yellowrhombic
33	periodate	K ₂ O ₄ . KClO ₄ . KIO ₄ .	230	rhombie
34	permanganate	KMn()	158	rhombicrhombic, deep purple.
35 36	persulphate	KSO ₄ K ₃ PO ₄	$135.2 \\ 212.3$	prismatic
37	phosphate, bydrogen .	K ₂ HPO ₄	174.3	rhombie
38	phosphate, dihydrogen	KH2PO4	136.2	tetragonal
39	phosphate, pyro	K ₄ P ₂ O ₇ .3H ₂ O	384.5	
40 41	silicate	K ₂ HPO ₃ K ₂ SiO ₃	$158.3 \\ 154.5$	• • • • • • • • • • • • • • • • • • • •
42	silver cvanide	KAg(CN)	199	regular
43 44	sulphate	K ₂ SO ₄	174.3	rhomb. or hexag
44	sulphate, acid sulphate, pyro	KHSO ₄ K ₂ S ₂ O ₇	136.2 254.3	monocl. or rhomb
46	sulphide, mono	K ₂ S	110.3	crystals, brown
47	sulphide, penta	K2S5	238.6	
48 49	sulphite	K ₂ SO ₃ .2H ₂ O KHSO ₃	194.3	crystals, white
50	sulphocyanate	KCNS	120.2 97.2	needles
	tartrate Praeseodymium	K ₂ C ₄ H ₄ O ₆ . ½H ₂ O	235.3	monocl
52	Praeseodymium	Pr	140.9	yellow
53 54	oxide, tri-	PrCl ₃ Pr ₂ O ₃	247.3 329.8	needles, green yellowish green
-	Omitady 011	11200	048.0	yenowish green

Sp. gr.	_ 1 Melting-	Boiling-	Solubility in 100 pa		parts of
Sp. gr. H ₂ O	= 1 point,	point,			1
(A) air =	. 1 Pom,				Alcohol,
(D) H ₂ =	$\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ Deg. C.	Deg. C.	Cold water.	Hot water.	acids, etc.
	de .				acids, coo.
			18.87	v. s.	s. al.
2.851	288		196°	v. s.	i. al.
			8.	8.	sl. s. al.
	5H ₂ O, red		26.730°	v. s.	
3.24	434	decomp.	3.110°	49.75100°	sl. s. al.
2.73	730	white heat	54 °	105100°	sl. s. al., eth
12.29	900		89.40°	156100°	i. al.
2.17	decomp.		22.50°	6060°	i. al.; s. K ₂ C
	100-200			İ	aq.
2.344170	357	decomp. 400	3.30°	56100°	sl. s. al. ; s. a
1 98430°	776	white heat	28.50	56.6100°	s. al., alk.
3.29121°	decomp.		0.70°	5.22100°	i. al., ether
3.29121° 2.73218°	971		58.90°	79.110°	i. al.
1.98	dec. 230	1	16715°	v. s.	sl. s. al.
-::	decomp. 200		0.090	sl. s.	i. al., ether
1			1	1	
2.048 1.5215°		1	s.	s.	i. al.
1.52150	red heat		v. s.	122.2103.30	s. al.
2.6924°	396	dec. 1000	500	102100°	i. al.
1.811170	decomp.		334.50	77.5100°	s!. s. al.
1.853170	3H ₂ O, 70		27.812.20	90.696.30	i. al.
2.481	859 9		92.3180	v. s.	i. al.; s. HF
2.481 2.665 ¹ 4 ⁻⁶	dec. red ht.		0.1217.50	0.9551000	i. al.; s. HC
2.044	360.4	vol. wh. ht.	970°	178100°	v. s. al., etl
	decomp.		v. s.	v. s.	l
3.97518°	560		4.740°	32.3100°	i. al.; s. KI
3.975 ^{18°} 3.115 ² / ₂ °	680		127.90°	2091000	s. al., ether
	decomp. 190		8.	decomp.	s. KOH
2.10916°	337		13.30°	246100°	i. al., ether
1.91525°			30015.5°	v. s.	s. al.
2.08	decomp.		33160		
2.328	red heat		v. s.	v. s.	s. al., ether
1	red heat		decomp.	10.01000	s. al.
2.52419:8	° 610		0.700	19.8100°	i. al. sl. s. KOH
3.6184	582	O, 300	0.66130	8.	si. S. AUH
2.703 ^{9.9} °	decomp. 240		2.830° 1.770°	32.7535° 4.0840°	dec. al., etc
	dec. <100		sl. s.		i. al.
				s. v. s.	v. s. al.
0 220209	decomp.	H.O. 400	v. s. 257°	v. s. s.	i. al.
2.338%	96	H ₂ O, 400		v. s.	i. al.
2.33	3H ₂ O, 300		s. v. s.	v. s. v. s.	i. al.
	decomp.		v. s. s.	s.	i. al.
			12.5	100	s. al.
2.663200	1076		8.50°	26.2100°	i. al.
2.24-2.6	1 200	decomp.	36.30°	121.6100°	
2 27	>300	decomp.	s.	decomp.	
2.27 2.13	7000		8.	v. s.	s. al.
2.15			v. s.	v. s.	v. s. al.
3	decomp.	1	100	v. s.	sl. s. al.
3	decomp.	1			i. al.
1.906	172.3	decomp. 500	177.20°	s. 21720°	s. al.
1.975		decomp. ooo	500°; 12.5175°	278100°	sl. s. al.
6.48	940	1	decomp.	1	
	818	1	69.5 ^{13°}	v. s.	s. al.
4,017ሁ°					

		PHISI	ŲAL.	CONSTANTS OF
	Name.	Formula.	Mol. wt.	Crystalline form and color.
1	Praseodymium oxide	Pr ₂ O ₄	345.8	black
	oxide, per	Pr ₂ O ₅	361.8	
3	3 sulphate	Pr ₂ (SO ₄) ₃	570	
4	l sulphide Radium		378	brown
í			226 385.8	
- 7	chloride		296.5	regular, yellow
	Rhodium	Rh	102.9	grayish white
		RhCl ₃	209.3	red
10			153.9	black
11 12			325	red
13			118.9 253.8	gray
14			134.9	crystals, graybrown
15	sulphate	$Rh_2(SO_4)_3.12H_2O$	710.2	crystals, light yellow.
16		RhS	135	bluish
17	Rubidium	Rb	85.45	soft white
18 19		RbBr	165.4	regular
20		RbCl	230.9 120.9	nomiles
21	hydroxide	RbCl	102.5	regular
22	nitrate	RbNO2	147.5	grayhexagonal or regular
23	oxide	Rb ₂ O	186.9	octahedral
24		Rb ₂ O ₂	202.9	needles, yellow
25 26		Rb ₂ SO ₄	267	hexagonal
27	Ruthenium	Ru	275 101.7	crystals
28		RuCl.	208.1	crystals, grayish crystals, brown
29	hydroxide	Ru(OH) ₈	192.8	black
30	oxide, sesqui	Ku ₂ O ₃	131.6	blue black
31	oxide, di	RuO2	173.8	egular, violet
32	oxide, tetr	RuO4	165.7	chombic, yellow
33 34	Scandiumchloride	ScScCl ₃	44.1 150.5	plates
35	oxide	Sc ₂ O ₃	136.2	powder, white
36	sulphate	Sc ₂ O ₃	376.4	
37	Selenium	Ses	633.6	hexagonal, gray
38	oxide	lan.	111 0	
39	oxide Selenic acid	$egin{array}{ll} \operatorname{SeO_2} & & & & \\ \operatorname{H_2SeO_4} & & & & & \\ \end{array}$	$111.2 \\ 145.2$	tetragonal
40	Selenic acid Selenious acid	H ₂ SeO ₃	129.2	crystals
41	Silicic acid, ortho	H ₄ SiO ₄	96.3	amorphous
42	acid, meta	H_2SiO_3	78.3	amorphous
43 44	Silicon	Si	28.3	octahedral, gray
45	chloride	SiC.	40.3	rhombic, plates
46	fluoride	SiF ₄	170.1 104.3	yellow
47	oxide, amorphous	SiO ₂	60.3	amorphous
40		2.0		
48	oxide, crystal	SiO ₂	60.3	hexagonal prisms
49	Silver	Ag	107.88	regular, white
				•
			. 1	<u> </u>

١	Sp. gr.	Melting-	Boiling-	Solubility in 100 p		oarts of
	$\hat{H}_2 \hat{O} = 1$ (A) air = 1 (D) $\hat{H}_2 = 1$	point, Deg. C.	point, Deg. C.	Cold water.	Hot water.	Alcohol, acids, etc.
1 5	.978 2 0°	•	•			4 .
4 5	.7216° .04211°	decomp.		23.64°° i.	1.01100° decomp.	s. dil. a.
5 6 7		700 subl. 900 1650		s.	s.	s. al.
8 1	2.44	1970 decomp. 475		i. i.	i. i.	sl. s. a., aq. r i. a.
0		decomp.	`	i. s.	i. s.	s. a., KOH i. al.
2				i. i.	i. i.	i. a. i. a., KOH
4				i. v. s.	i. decomp.	i. a., KOH i. al.
6 7]	.52	decomp.	696	decomp.	205.2 ^{113.5}	i. a., aq. rg. s. a., al.
91	3.21 ²³ °	683 837 726		985° 42020° 76.381°	8. 138.9100°	s. al.
1 3	3.203 ¹¹ ° 3.0955	301		19830° 20.10°	v. s. 452100°	s. al. v. s. HNO ₃
3 3	3.72°° 3.65°°	600		s.	s.	1.
6	3.6113 %°	1051		36.40° v. s.	81 8100° v. s.	sl. s. a.
8	12.06	2000		i. s.	decomp.	sl. s. al.; i. a. s. a., alk.
0 2	7.2			i. i.	i. i.	i. a. i. a.
.	5.7	25	100.8 (183 mm.)	sl. s.		s. alk.
3 4		1350 subl. 800- 850		v. s.	v. s.	i. al.
612	3.864 2.579			i.	i.	s. hot conc.
1	1.47-4.8	217	690	i.	i. v. s.	s. CS ₂ , con H ₂ SO ₄ v.s.a.l.acetic
9 2	3 . 954 2 . 9505 3 . 065	390 58 decomp.	decomp. 100 260	v. s. v. s.	v. s. v. s. v. s.	s. conc. H ₂ So v. s. al.
1	1.576 ¹⁷ ° 1.813 ¹⁷ °			sl. s. i.	sl. s. i.	s. alk. s. alk.
4	2.42 3.12	1420	3500	i. i.	i. i.	s. HNO ₃ i. a. dec. al.
6	1.5241 2 3.57 (Å)	-89 -77	57.57 65	decomp.		s. al., ethe
7	2.20	1600	vol. 1750	i.	i.	i. a.; s. hot al
9	2.319-2.653 10.5	1750 961	1955	i. i.	i. i.	i. alk.; s. Hi s. HNO ₃ , h conc. H ₂ S

-				
	Name.	Formula.	Mol. wt.	Crystalline form and color.
1 2 3 4	Silver acetatearsenatearsenitebromate	AgC ₂ H ₃ O ₂	166.9 462.6 466.6 235.8	laminaedark redyellow.tetragonal
5	bromide	AgBr	187.8	regular, pale yellow
6	carbonate	Ag2CO3	275.8	
7 8	chloratechloride	AgClO ₃	191.3 143.3	regular or tetragonal.
9	chromate	Ag ₂ CrO ₄	331.8	crystals, dark red
10	cyanate	AgCNO	149.9	
11	cyanide	AgCN	133.9	curdy, white
12	dichromate	Ag ₂ Cr ₂ O ₇	131.8	triclinic, red
13	ferricyanide	Ag ₃ Fe(CN) ₆	535.5	orange
14	ferrocyanide	Ag ₄ Fe(CN) ₆ .H ₂ O	661.4	yellowish
15 16	fluorideiodate	AgFAgIO ₃	126.9 282.3	tetragonal, yellow monoclinic
17	iodide	AgI	234.8	hexag. or reg. yellow
18 19 20	nitrate nitrite oxalate	AgNO ₃	169.9 153.9 303.8	hexag. or rhomb crystals, white white
21	oxide	Ag ₂ O	231.8	brown
22 23 24	perchlorate permanganate phosphate, ortho	AgClO4AgMnO4AgsPO4	207.3 225.8 418.7	white monoclinicyellow
25	phosphate, pyro	Ag4P2O7	605.6	
26 27	potassium cyanide sulphate	KAg(CN)2Ag2SO4	199 311.8	regular, octahedra tricl. or rhomboh
28	sulphide	Ag ₂ S	248.8	regular, gray or black
29 30	sulphitesulphocyanate	Ag ₂ SO ₃ AgCNS	295.8 166	crystalswhite, curdy
	. /			

ı	Sp. gr. $H_2O = 1$	Melting-	Boiling-	Solul	erts of	
	$H_2O = 1$ (A) air = 1 (D) $H_2 = 1$	point, Deg. C.	point, Deg. C.	Cold water.	Hot water.	Alcohol acids, etc.
2	3.259 6.66 ²⁵ °	decomp.		1.02 ¹⁴ ° 0.00085 ²⁰ °	2.5280°	s. a., alk.
3	5.206	decomp. decomp.		0.0011520° 0.15820°		s. a., alk. sl. s. HNO ₃
- 1	6.473	427	decomp. 700	0.00002625°	0.00014 ¹⁰⁰ °	s. NH4OH s. KCN, sl. s NH4OH
6	6.0	decomp. 200		0.003115°	0.05100°	ls. NH ₄ OH.
	4.21 5.553	230 455	decomp. 270	10 ¹⁵ ° 0.000152 ²⁰ °	5080° 0.0022100°	HNO ₃ , H ₂ SO i. al. s. NH ₄ OH, conc. HCl, KCN
9	5.523			0.0028180	0.0284 ²⁵ °	s. NH4OH, KCN
10	4.0	decomp.		sl. s.	s.	s. HNO ₃ , NH ₄ OH, KCN
11	3.95	decomp.		0.000021250		s. HNO ₃ , NH ₄ OH, KCN
12	·	decomp.		0.0083 ¹⁵ °	decomp.	v. s. HNO ₃ , NH ₄ OH, KCN
13 14				0.000066 ²⁰ ° i.	i.	s. NH ₄ OH s. KCN, NH ₄ OH
	5.852 5.4–5.65	435 decomp.		18215.5° 0.0038518°	sl. s.	s. HNO ₃ , NH ₄ OH
17	5.674 25 °	526		0.000035 ²¹ °		s. KCN, Na ₂ S ₂ O ₃ ,
19	4.35219° 4.45326°	209	decomp.	121.90° 0.33	940100° s.	NaCl s. al., ether i. al.
	5.0294° 7.521	decomp. O, 300–340		0,0033918° 0.0021520°		s. NH ₄ OH, KCN s. NH ₄ OH, KCN,
22 23		486 decomp.		s. 0.550°	s. 1.69 ²⁸ .5°	Na ₂ S ₂ O ₃
	6.370	849		0.00193200		s. a., NH ₄ OH KCN
25	5.306	585		i.	i.	s. NH ₄ OH, HNO ₃ , H ₂ SO ₄ ,
26 27	5.40	651	decomp. 925	25 ²⁰ ° 0.73 ¹⁴ .5°	v. s. 1.393100°	KCN s. al.; i. a. s. HNO ₃ , H ₂ SO ₄ , NH ₄ OH
28	7.08	812		0.0002		s.conc.HNO sl. s. KCN
29		decomp. 100		sl. s. 0.00002125°	sl. s. 0.000023100°	s. NH ₄ OH s. NH ₄ OH,

	• *			l'
	Name	Formula	Mol. wt.	Crystalline form and color.
	<u> </u>			, ,
1	Sodium	Na	23	tetragonal, silvery
2	acetate	NaC ₂ H ₃ O ₂	82	monoclinic, prisms
3		Na ₂ Al ₂ O ₄	$164.2 \\ 508.5$	amorphous
4	antimonate	2NaSbO ₃ .7H ₂ O	508.5	octahedra
5		Na ₂ H ₂ Sb ₂ O ₇ .H ₂ O	418.4	
6	arsenate		424.2	
	arsenate, acid	Na ₂ HA ₈ O ₄ .7H ₂ O	312.1	crystalline
8	arsenate, acid	Na ₂ HA ₈ O ₄ .12H ₂ O	402.2	monoclinic or rhom
9	arsenitebenzoate		170 144	crystalline
ĭ	horate meta-	NaBO ₂	66	hexagonal prisms.
2	borate, meta		204.1	monoclinic
3		Na ₂ B ₄ O ₇	202	
4	borate, tetra	Na ₂ B ₄ O ₇ .5H ₂ O	292.1	octahedral
5	borate, tetra- (borax).		382.2	monoclinic
6	bromate	NaBrOs	$150.9 \\ 102.9$	crystals
8	bromidebromide	NaBr NaBr.2H ₂ O	139	regular
9	carbonate	Na ₂ CO ₃	106	
ŏ	carbonate		124	crystals
1	carbonate	Na ₂ CO ₃ .10H ₂ O	286.2	monoclinic
2		NaHCO3	84	monoclinic
3	chlorate	NaClOs	106.5	regular, tetragonal
4	chloride	NaCl	$\frac{58.5}{342.2}$	regular
5	chromate	Na ₂ CrO ₄ .10H ₂ O	714.3	triclinic, yellow wh. cryst
7	cvanide	NaCN	49	wii. Ciyst
8	dichromate	Na ₂ Cr ₂ O ₇ .2H ₂ O	298	triclinic, red
9	ferricyanide		298.9	red
0	ferrite	Na ₂ Fe ₂ O ₄ Na ₄ Fe(CN) ₆ .12H ₂ O	$221.7 \\ 520.1$	monoclinic, yellow
2	fluoride	NaF	42	regular
3	fluosilicate	Na ₂ SiF ₆	188.3	gelatinous or hexa
4	formate	NaCHO2	68.0	rhombic
5		NaOH	40	white
6	hypochlorite	NaOCl NaH ₂ PO ₂ .H ₂ O	74.5- 106.1	
7 8	hypophosphite hyposulphite	NaHSO ₂	88.1	monoclinic, prisms
9	iodate	NaIO ₃	197.9	
ŏ	iodide	NoT	149.9	regular
1	iodide	NaI.2H ₂ O	185.9	
2	manganate	Na2MnO4.10H2O	345.1	monoclinic, green.
3	molybdate	Na ₂ MoO ₄ .2H ₂ O	242 85	tablets
4	nitrate	NaNO ₃ NaNO ₂	69	rhombohedric
6	nitroprusside	NaFe(CN) ₅ NO.2H ₂ O	297.8	triclinic, red
7	oxalate		134	
8	oxide	Na ₂ O	62	gravish
9	perchlorate	NaClO4	122.5	rhombohedral
0	permanganate	Na ₂ MnO ₄ .3H ₂ O Na ₂ O ₂	196	crystals, purple
- I		IIN8.9U2	78	yellow
	peroxide	No. DO. 1911-0	360 0	
1 2 3	phosphate, tribasic	Na ₃ PO ₄ .12H ₂ O	380.2 358.2	hexagonal

Sp. gr. H ₂ O = 1 Melting-		Boiling- Solu		bility in 100 parts of		
	$H_2O = 1$ (A) air = 1 (D) $H_2 = 1$	point, Deg. C.	point, Deg. C.	Cold water.	Hot water.	Alcohol, acids, etc.
1	0.971	97	750	decomp.		i. benzol., kerosene
ا	1.4	58		266°	200	s. al.
3	1.4	1800		8.	v. s.	i. al.
4				0.03112.30		sl. s. al., NH
5				sl. s. 26 .7 ¹⁷ °	sl. s.	sl. s. al.
	1.7593	85.5		61 ¹⁵ °	v. s.	sl. s. al.
7	1 71	57 28	7H ₂ O, 100 12H ₂ O, 100	17.20°	140.730°	sl. s. al.
2	1.71 1.87	26	121120, 100	v. s.	v. s.	
ŏ				62.525°	76.9100°	s. al.
Ĺ		966		s.	v. s.	
2		57		8.	V. 8.	l,
	2.367	741		1.35°	52.5100°	i. al.
4	1.815			1.9°° 2.83°°	99.1100° 201.4100°	i. al. i. al.
5	1.694170	red heat		27.540°	90.9100	i. al.
ģ	3.339 3.014 2.1764°	381 768		79.50°	115100°	sl. s. al.
4	3.U14 9.17620°	108		172.50°	259.5100°	s. al.
읾	2.170 2.476	852	decomp.	7.100	45.4100°	i. al.
		H ₂ O, 100	accomp.			i. al.
ĭl	1.458	34	106	21.52°°	420.68104°	i. al.
اءَ	2.206	CO ₂ , 270		6.90°	16.40°°	i. al.
3	2 49015°	255	decomp.	81.90°	232.6100°	s. al.
4	2.17 2.7116°	805	white heat	35.70°	39 . 8100°	sl. s. al.; i. HC
5	2.7116°	19.92		v. s.	ω	sl. s. al.
6		150	decomp.	9125°	250100°	sl. s. al. sl. s. al.
7	0. 5040	320	2H ₂ O, 100	s. 1630°	v. s. 433 ¹⁰⁰ °	SI. S. AI.
	2.52160	320		(anhyd.)	(anhyd.)	i. al.
9	• • • • • • • • •			decomp.	80.00	1. 21.
0	1 450			2215.5°		i. al.
쉬	1.458	992		4150		sl. s. al.
2	2.766 2.679 1.919	dec. red ht.		0.6517.50	2.46100°	i. al.
4	1 919	decomp.		440°	160100°	sl. s. al.
$\hat{5}$	2.13	318	white heat	420°	31380°	v. s. al., ethe
6		decomp.		s.	decomp.	
7				8.	8.	v. s. al.
8		,		v. s. 2.520°	v. s. 33.9100°	s. al. i. al.; s. aceti
9	4.277	decomp.		159°°	302100°	v. s. al.
Ų,	3.66525°	664		317.90°	1550100°	V. S. a
2	2.448	decomp.		8.	decomp.	
3		decomp.		56.20°	115.5100°	
	2.26515°	312	decomp.	72.90°	180100°	sl. s. al.
l5	2.15726°	271		83.320°	v. s.	sl. s. ether, a
6	1.6803 ¹⁷ °			4015°		
7				3.226.5°	6.33100°	January 61
	2.27	red heat	,	decomp.		decomp. al.
9		482	decomp.	8.	v. s.	s. al.
n	1	decomp.		v. s.	v. s. decomp.	
į	2.805	decomp.	11H-0 100	8. 28.315°	œcomp.	
ž	1.6445	77	11H ₂ O, 100	6.50°	8	i. al.
. 1	1.5217°	35	12H ₂ O,100	v. s.	v. s.	i. al
	2.04	2H ₂ O, 200				

1	1	ı	1
Name	Formula	Mol. wt.	Crystalline form and color.
1 Sodium phosphate,	N84P4O12	408.2	
meta- 2 phosphate, pyro	Na ₄ P ₂ O ₇ .10H ₂ O	440.0	
3 phosphite	Na ₂ HPO ₃ .5H ₂ O	446.2 216.2	monoclinic rhombohedric
4 potassium carbonate	NaKCO3.6H2O	230.2	monoclinic
5 salicylate		160.1	wh. scales
6 silicate	Na ₂ SiO ₃ Na ₂ Si ₄ O ₉	122.3 303.2	monoclinicamorphous
8 stannate9 sulphate		267.1 142.1	hexagonal
			rhomb., monocl. hexag.
0 sulphate 1 sulphate	Na ₂ SO ₄ .7H ₂ O	268.2	rhomb, or tetrag
sulphate sulphate, acid	Na ₂ SO ₄ .10H ₂ O	322.2 120.1	monoclinic
3 sulphide, mono	Na ₂ S	78.1	amorph., pinkish
4 sulphide, penta	. Na ₂ S ₅	206.4	
5 sulphite	. 114a2OU3	126.1	hexagonal, prisms
6 sulphite, acid 7 sulphocyanate	. NaHSO3	104.1	monoclinic
8 tartrate	NaCNS	81.1 230.1	rhombictrimetric
g unosuiphate	. IN82S2U2.5H2U	248.2	monoclinic
0 Strontium	.[Sr	87.63	crystals, silvery
bromide		247.5	needles
2 bromide	. SrCO ₃	$355.6 \\ 147.6$	rhombic
4 chlorate		254.6	rhomble or monocl.
5 chloride	. SrCl ₂	158.6	or monoci
6 chloride		266.6	hexagonal
7 chromate	. SrCrO ₄	202.7	monoclinic
8 fluoride	SrF ₂	125.6	regular, octahedra.
9 hydroxide 0 hydroxide	. Sr(OH)2	121.7	tetragonal
0 hydroxide 1 iodide		$265.8 \\ 341.5$	tetragonal
2 iodide	SrI ₂ .6H ₂ O	449.6	crystals
3 nitrate	. Sr(NO ₃) ₂	211.7	regular, octahedra.
nitrate	. Sr(NO ₃) ₂ .4H ₂ O	283.7	triclinic
oxide	SrC ₂ O ₄ .H ₂ O SrO	193.7 103.6	hambia
phosphate	SrHPO4	183.7	rhombic, gray whit
sulphate	. SrSO4	183.7	rhombic
sulphide	. SrS	119.7	regular
1 Sulphur, amorphous	. SrSO ₃	167.7	crystals
monoclinic	S ₈	256.48	amorph., pale yellov monoclinic
rhombic		256.48	rhombic
chloride	. S ₂ Cl ₂	135	liquid, yellow sh rec
oxide, di		64.1	
oxide, tri	. SO ₃	80.1	crystals, prismatic.
Sulphuric acid	. H ₂ SO ₄	98.1	
acid	. H ₂ SO ₄ .H ₂ O	116.1 134.1	prisms
		101.1	

	Sp. gr.	Melting-	Boiling-	Solut	oility in 100	parts of
	$\hat{H}_2O = 1$ (A) air = 1 (D) $H_2 = 1$	point, Deg. C.	point, Deg. C.	Cold water.	Hot water.	Alcohol, acids, etc.
1	2.476	610	dec. red ht.	sl. s.	sl. s.	s. a., alk.
3		988 (anhyd.) 53		5.40° s.	93.11 ¹⁰⁰ ° v. s.	i. al. i. al.
5 6	1.6334	6H ₂ O, 100 1056		185 ¹⁵ ° 111 ¹⁵ ° s.	125 ²⁵ °	17 ¹⁵ ° al. i. al., _N
8				s. 67.40°	s. 61.30°	salts, K- salts i. al.
9 10	2.67315°	884		5.02°° 19.6°°	42.5100° 42.7100°	i. al.
11 12	1.462 2.742 2.471	32.383 300		12.170° 500° 15.410°	312 ³⁴ ° 100 ¹⁰⁰ ° 59.2 ⁹⁰ °	i. al. sl. s. al.
14 15	2.63340	150	decomp.	s. 14.10°	s. 33100° s.	sl. s. al. i. al. i. al.
17	1.48 1.794 1.729 ¹⁷ °	decomp. 287		sl. s. v. s. 296°	v. s. 6643°	v. s. al. i. al.
$\frac{20}{21}$	2.54 4.21624°	48 900 630	decomp. 220 white heat	87.70°	301.560° 250110°	i. al. s. a., al. s. al.
22 23 24	2.358° 3.62 3.152	dec. 1155 decomp. 290		204.20° 0.0011 ¹⁸ ° 174.9 ¹⁸ °	σ v. s.	s. a., NH4 salt s. al.
$\frac{25}{26}$	3.054 1.964 ^{16.7°} 3.895 ^{15°}	872 112°	4H ₂ O, 60	44.20° 106.20° 0.1215°	101.9100° 205.840°	s. abs. al. s. acetic, NH
28	2.44 3.625	902 375	dec. 1000	0.01218° 0.410°	sl. s. 21 .83 ¹⁰⁰ ° 47 .71 ¹⁰⁰ °	salts s. HCl; i. Hl s. NH4 salts s. NH4 salts
30 31	1.396 4.549 ² / ₂ 5°	507		0.90° 1640° 448.90°	47.71100° 370100°	s. NH ₄ salts
34	4.415 2.93 2.249 ^{15.5°}	645 decomp.		39.50° 60.430° 0.005118°	101.1100° 206.5100°	0.012 abs. al. i. HNO3 s. HCl, HNO
37	4.34 3.544 3.71	dec. wh. ht.		decomp. i. 0.011418°	i. 0.0104100°	sl. s. al. s.a., NH ₄ salt
	3.7215°			s. 0.0033	decomp.	sl. s. a.; i. al. dil. H ₂ SO ₄ s. al. v. s. H ₂ SO ₃
41	2.046 1.957	decomp. 120 119.3	444.7 444.7	i. i.	i. i.	sl. s. CS ₂ s. CS ₂ , al.
	2.07 1.70944°	114.5 -80	444 . 7 138	i. decomp.	i.	181.355° s. CS ₂ , al.
45	11 Z.Zb39(A.)	-72.7	-10 46.2	7979 c.c.º° decomp.	1560 c.c.60°	s. al., H ₂ SO ₄ s. conc. H ₂ SO
46 47 44	1.982\(\frac{1}{2}\) 2.75(A). 1.8342\(\frac{1}{2}\) 1.788\(\frac{1}{2}\)	14.8 10.46 8.53	decomp. 40 210–338	ω ω	& &	decomp. al. decomp. al.
49	1.6650°	-38.9	170–190	8	∞	decomp. al.

	Name.	Formula.	Mol. wt.	Crystalline form and color.
1 2	Sulphuric acid, pyro Tantalum	H ₂ S ₂ O ₇	178.2 181.5	crystalsgray
3	bromide	TaBr ₅	585.1	crystals, yellow
4	chloride	TaCl ₅	358.8	prisms, yellow
5	oxide	Ta ₂ O ₅	443	rhombic, white
6 7	Telluric acid Tellurium	H ₂ TeO ₄	193.5 127.5	amorphous, rhombic.
8 9 10 11 12 13	bromide	TeBr ₂ . TeCl ₂ . TeI ₂ . TeO ₂ . H ₂ TeO ₃ . Ti.	187.3 198.4 181.3 159.5 177.5 204	needles, steel graycrystals, blackcrystals, blackoctahedral, yellowoctahedral.bluish white
14 15 16 17 18	bromidecarbonatechloridehydroxideiodide.	TIBr Tl ₂ CO ₃ TICl TI(OH) TII	283.9 468 239.5 221 330.9	regular
19 20 21 22	nitrateoxide (ous)oxide (ic)phosphate	TINO ₃	266 424 456 707	rhombic, prisms yellow hexagonal, black needles
23 24 25 26	sulphatesulphideThoriumchloride	Tl ₂ SO ₄	504.1 440.1 232.4 374.2	rhombic, prismstetrag., blue blackamorph. or crystneedles.
27 28	hydroxide Tin	Th(OH)4	300.4 118.7	gelatinousrhombic, tetragonal
29 30 31 32 33 34 35	stannic acid	H ₂ SnO ₃ . H ₁₈ Sn ₅ O ₁₅ . SnBr ₄ . SnCl ₄ . SnI ₄ . SnO ₂ . Sn (SO ₄) ₂ .2H ₂ O.	168.7 843.6 438.4 260.5 626.4 150.7	amorphousliquidamorph., hexag., tetrag, rhomb.
36		SnS ₂	183.8	hexagonal, yellow
37 38 39 40 41	stannous bromide stannous chloride stannous chloride stannous hydroxide.	SnBr ₂	278.5 189.6 225.7 152.7	crystals, yellow triclinic amorphous crystals, red

_	$\begin{array}{c} \text{Sp. gr} \\ \text{H}_2\text{O} = 1 \\ \text{(A) air} = 1 \end{array}$	Melting-	Boiling-		. · ·	parts of	
_	$(\mathbf{D}) \mathbf{H}_2 = 1$	point, Deg. C.	point, Deg. C.	Cold water.	Hot water.	Alcohol, acids, etc.	
1 2	1.89 16.6	35 2850	decomp.	decomp.	i. ,	decomp. s. HF, fused	
3		240	320	decomp.		s. abs. al.,	
4	3.68	211.3	241.6	decomp.		ether s. H ₂ SO ₄ , abs.	
- 5	7.53			i.	i.	al. i. <u>a.; s.</u> fused	
6 7	3.441 6.25	decomp. 160 451	1390	i. i.	sl. s. i.	KHSO ₄ i. cold a., alk. s.conc.H ₂ SO ₄ , KOH	
10	6.89 (D).	280 175	339 324	decomp. decomp. i.	i.	dec. HCl	
11 12 13	5.890° 3.053 11.85	dull red dec. 40 301.7	>700 1280	0.00067 sl. s. i.	decomp.	s. a., alk. s. a., alk. s. HNO ₃ , H ₂ SO ₄	
16 17	7.54 7.11 7.02	450 272 429 decomp. 100		0.0466 ²⁰ ° 4.02 ^{15.5} ° 0.20° v. s.	0.86968.5° 27.21100° 290° V. S.	i. al, ether sl.s. HCl;i.al. s. al.	
	7.07215.50	422 205	806	0.0064 ²⁰ °	0.125 ¹⁰⁰ ° 414 ¹⁰⁰ °	i. al, KI; s. aq rg. i. al.	
20 21	5.55° 5.56°° 6.89	>8 70 759	O, 1865 O ₂ , 875	s. i. 0.515°	s. i. 0.67 ¹⁰⁰ °	s. al. s. a.; i. al. i. al.; s. NH	
24 25	6.76 8.0 11.2 4.59	632 448 1700 820	decomp.	2.70° 0.0379 ²⁰ ° i. v. s.	16.5%° sl. s. i. v. s.	salts s. a.; i. alk. s. HCl, H ₂ SO s. al. ether	
27 28	5.85-7.298	decomp. 231.9	2270	i. i.	i. i.	KCl s. a.; i. alk. s. dil. a., conc	
33		29 . 9 [-33]144]1127	203.3 114 295	i. i. s. s. v. s.	i. i. decomp. decomp. decomp.	alk., aq. rg i. a.; s. KOH NaOH s. al., ether s. al., ether s. conc. H ₂ SO	
35				v. s.	decomp.	s. dil. H ₂ SO ₄	
	4.51	dec. rd. ht.		0.00002		HCl s. conc. HCl alk., sul	
38	2.7	215 247.2 37.7 316	619 603 decomp.	s. 83.9°° 118.7°° i. 0.982°°	decomp. 269.815 comp. decomp. 4.03100 comp.	s. alk., al. s. alk., al. s. al., alk. s. al., dil. a. s. dil. HCl KOH, CS ₂	

		. 11101	UAL .	CONSTANTS OF
	Name.	Formula.	Mol. wt.	Crystalline form and color.
	Tin, stannous oxide	SnO	134.7	regular
3	stannous sulphate stannous sulphide	SnSO4	214.8 150.8	crystals crystals, brown
4 5 6 7 8 9 10 11 12	Titanium bromide chloride, di- chloride, di- chloride, tri- chloride, tetra- iodide oxide, sesqui-	H ₂ TiO ₂ Ti Ti TiBr ₁ TiCl ₂ TiCl ₃ TiCl ₃ TiCl ₄ TiCl ₄ TiCl ₄ TiL ₄ Ti ₄ Ti ₄ Ti ₅ O ₅ TiO ₂	98.1 48.1 367.8 119 154.5 189.9 555.8 144.2 80.1	amorph., dark gray crystals, orange black dark violet octahedral, red amorphous, black tetrag., rhomb. white
13 14		Ti ₂ (SO ₄) ₃	384.4 184	to black crystals, green gray to black
15 16 17 18 19 20 21 22 23 24	oxide, tri	WCl2. WCl4. WCl5. WCl6. WCl6. WO2. WO3. WS2. WS3. WS3.	254.9 325.8 361.3 396.8 216 232 248.1 280.2 250 304.5	amorphous, gray crystals, gray needles, black regular, dark blue rhombic, brown rhombic, yellow crystals, dark gray black yellow vellow
25 26 27 28 29	Uranium bromide chloride	U UBr4 UCl4	238.2 557.9 380 745.9 270.2	crystals, white leaflets, black regular, green monoclinic, yellow octahedral, black
30 31 32 33 34 35	oxide, tri	$\begin{array}{c} U \tilde{O}_3 \dots \\ U (SO_4)_2.4H_2O \dots \\ US_2 \dots \\ UO_2 (C_2H_3O_2)_2.2H_2O \dots \end{array}$	842.6 286.2 502.4 302.3 424.3 502.3	olive green. yellow monoclinic, green gray. monoclinic, yellow rhombic, yellow
36 37 38	sulphate	$UO_2SO_4.3H_2O$	534.4 420.3 302.3	rhombic, yellow crystals, yellow brown
39	Vanadic acid, meta	HVO ₃	100	scales, yellow
40 41		H ₄ V ₂ O ₇	218 51	amorphous, brown crystals, light gray
42 43	chloride, di chloride, tri	VCl ₂ VCl ₃	121.9 157.4	hexagonal, green
				į.

	Sp. gr.	Melting-	Boiling-	Solul	bility in 100 p	parts of
	Sp. gr. $H_2O = 1$ (A) air = 1 (D) $H_2 = 1$	point, Deg. C.	point, Deg. C.	Cold water.	Hot water.	Alcohol, acids, etc.
1	6.3	dec. rd. ht.		i.	i	s. a., NH ₄ Cl, i. alk.
2 3	5.080°	882	1230	18.9 ¹⁹ ° 0.000002	18.2100°	s. H ₂ SO ₄ s. cone. HCl, (NH ₄) ₂ Sx
5	4.5 2.6	1800-1850 39	230	i. i. decomp.	i. decomp.	s. a., alk.; i. al. s. a.
7		decomp. 440		decomp. s. s.	s. decomp.	i. CS ₂ , CHCl ₃ s. al., HCl s. dil. HCl
10 11		150	>360	v. s. i. i.	v. s. i. i.	s. H ₂ SO ₄ , HF s. alk., conc.
		2974		i. i.	i. i.	s. dil. a.; i. al. s. HNO ₃ , aq.
15				decomp.	,	rg., hot KOH
16		decomp. 248 275	275.6 346.7	decomp. decomp. sl. s.	decomp.	sl. s. CS ₂ v. s. CS ₂
19 20	12.11 7.16 7.510°	rd. ht.		i. i.	i. i.	s. a., alk. i. a.; s. alk.
		½H₂O, 100°		sl. s. i.	s. i.	s. alk. sul- phides, alk. s. HF, alk.
24	5.93 ¹⁵ °	H ₂ O, 250–300		i.	i.	s. a., alk. car- bonates; i. alk.
20	18.68 4.838			i. v. s. s.	i. v. s. decomp.	s. a.; i. alk. s. NH4Cl
2	5.6 ¹⁵ ° 10.95	500 2176		s. i.	s. i.	s. dil. a., alk. carbonates
3		decomp. decomp. 4H ₂ O, 300		i. decomp.	i. i.	s. a. s. HNO ₃ s. dil. a. s. conc. HCl
3	3 4 2.807	4H ₂ O, 300 >1100 2H ₂ O, 275 59.5	118	decomp. s. 200	decomp.	s. al. v. s. al., ether, acetic
3		decomp.		i. 16.6 ^{13°} sl. s.	i. 22.2 ¹⁰⁰ ° sl. s.	i acetic s. al., H ₂ SO ₄ s. al., cone
	9		<u> </u>	sl. s.	8.	HCl s. alk., NH4OH
	0 1 5.69	1710		sl. s. i.	s. i.	s. a., alk. s. HNO ₅ , HF, H ₂ SO ₄
	2 3.28 3 3.0			s.	s. s.	s. al., ether s. abs. al., ether
1	1					1

nadium chloride tetra- xide, di- xide, tetra- xide, tetra- xide, penta- ulphate- ulphide, tri- ulphide, penta- terbium hloride xide ulphate xium crium chloride ydroxide	V:O ₃ V:O ₄ V:O ₄ V:O ₅ V:O ₅ (VO) ₂ (SO ₄) ₃ . V ₂ S ₃ . V ₂ S ₅ . Xe Yb YbCi ₃ ·6H ₂ O. Yb ₂ O ₃ Yb ₂ (SO ₄) ₃ . Yt YtCl ₃ ·6H ₂ O.	150 166 182 422.2 198.2 262.4 130.2 173.5 388 395 635.2 88.7 303.2	liquid, red. crystals, light gray. crystals, black. crystals, blue. rhombic, yellow to red blue. plates, dark. black. rhombic, green. hexagonal, gray black plates.
xide, penta- ulphate. ulphate, tri- ulphide, penta- non. terbium hloride. xide ulphate rium rium chloride.	Vy05 (VO) ₂ (SO ₄) ₃ . V ₂ S ₅ . Xe. Yb. YbCl ₃ .6H ₂ O. Vb ₂ O ₃ . Yb ₂ (SO ₄) ₃ . Yt YtCl ₃ .6H ₂ O.	182 422.2 198.2 262.4 130.2 173.5 388 395 635.2 88.7 303.2	rhombic, yellow to red blue
non. terbium hloride uide uiphate rium rium ydroxide	Xe	130.2 173.5 388 395 635.2 88.7 303.2	rhombic, green
ierbium hloride xide ulphate rrium rrium chloride ydroxide	Yb. YbCl ₃ .6H ₂ O. Yb ₂ O ₃ . Yb ₂ (SO ₄) ₃ . Yt YtCl ₃ .6H ₂ O.	173.5 388 395 635.2 88.7 303.2	rhombic, greenhexagonal, gray black
ulphatetrium crium chloride ydroxide	Y tCl ₃ .6H ₂ O	303.2	hexagonal, gray black
	Yt(OH)3		
itroto	1	139.7	gelatinous
xideulphate	Yt ₂ O ₈	382.8 225.4 609.7	prismscrystals
c	Zn	65.37	crystals
cetateromide	ZnBr ₂	237.5 225.2	needles
arbonate		125.4	rhombie
	ZnCl ₂ Zn(CN) ₂	136.3 117.4	octahedralortho. prisms
ydroxide	Zn ₂ Fe(CN) ₆ .3H ₂ O	396.7	
dide	Zn(OH) ₂	99.4 319.2	rhombic, prisms octahedra
itratealateide	Zn(NO ₃) ₂ .6H ₂ O ZnC ₂ O ₄ .2H ₂ O ZnO	297.5 189 81.4	tetragonalhexag. or amorph
nosphate	$Zn_3(PO_4)_2Zn_2P_2O_7$	386.2 304.8	prisms
F J	ZnSO ₄ ZnSO ₄ .7H ₂ O	161.4 287.6	rhombic prisms or mono.
ılphate ılphate		97.4	reg., tetrag. or hexag.
ılphate ılphate ılphide ılphite		381	
1	osphate, pyro	lphate ZnSO ₄	

INORGANIC COMPOUNDS (Continued)

	Snor			Solul	ubility in 100 parts of			
ľ	Sp. gr. $H_2O = 1$ (A) air = 1 $D (H_2) = 1$	Melting- point, Deg. C.	Boiling- point, Deg. C.	Cold water.	Hot water.	Alcohol, acids, etc.		
1 1	.8653 2°	<-18	154	s	s.	s. abs. al., ether		
23	.64 .87 ¹⁸ °			i. sl. s.	i. s.	s. a., alk. s. alk., HF s. a., alk.		
41		658	* · · · · · · · · · · · · · · · · · · ·	i. 0.820°	i.	s. conc. a., alk		
61	.85			v. s.	decomp.	s. al. s. HNO ₃ ; sl. s. alk.		
8 3	3.0		·			alk. sl. s. alk.; s. HNO ₃		
	.422 (A.)	-140	-109	28.4 c.c. ^{17°}				
10 11 2	.575	150–155	6H ₂ O, 180	v. s.	v. s.	sl. s. al.; i. ether s. hot a.		
12 9	175(?)	decomp. 900		1. 44.2°°	1. 4.67100°			
14 3	3.62 3.8			decomp.		v. s. dil. a. sl. s. al.; i.		
15 2	2.18180	160	••••	v. s.	v. s.	other		
16		decomp.		i.	i.	s. a, NH4Cl		
17 2	2.682			s. i.	s. i.	s. conc. HNO		
18 5 19 2	5.35 ¹⁸ ° 2.612	dec. 1000		1.52	sl. s.	s. sat. K ₂ SO.		
- 1	7-7.19	419.4	918	i. '	i.	s. a., alk.		
21 22	1.72 4.219 2 °	242 394	650	30 ²⁵ °	44.6100° 670100°	s. al. v. s. al., ether NH ₄ OH		
23	4.44	CO ₂ , 300		0.00115°		s. a., alk. NH ₄ salts		
24	2.907 2 5°	365	730	209°°	616 ¹⁰⁰ °	v. s. al., ethe s. alk., KCN		
25		decomp.		i.	i.	l i ol		
26				i.	i.	s. NH ₃ aq.		
	3.053 4.696	decomp. 446	624	0.00048 ¹⁸ ° 430°°	5101000	s. a., alk. s. a. (NH ₄): CO ₃ aq.		
29	2.065	36.4	130	324.50° 0.0007918°	∞ •	v. s. al. s. a., alk.		
30 31	5. 42 -5.78			0.001		s. a., alk NH4 salts		
32 33	3.998 ¹⁵ °	red ht.		i. i.	i. i.	s. a., alk NH4OH		
34	3.49 2.015	decomp. 72	0 7H ₂ O, 280	43.020° 115.20°	95 .03100° 633 .59100°	NH4OH sl. s. al. sl. s. al.		
36 37	3.98	1049	vol. 1180	0.00069 0.16	decomp.	i. acetic i. al.; s. H ₂ SO NH ₄ OH		
38	{4.15 6.40	1500 2350		;} i. 1	i.	s. HF., sl. s.		

139

_			Π	1
	Name.	Formula.	Mol. wt.	Crystalline form and color.
_	Zirconium chloride	ZrCl4.	232.4	
3	chloridehydroxide nitrate	Zr(OH) ₄ Zr(NO ₃) ₄ .5H ₂ O	158.6 428.1	gelatinous
4	oxide	ZrÒ2	122.6	amorph. or hexag
5	sulphate	Zr(SO ₄) ₂ .4H ₂ O	354.8	crystals
		` .		•

INORGANIC COMPOUNDS (Concluded)

Sp. gr.	Melting-	Boiling-	Solu	parts of	
Sp. gr. $H_2O = 1$ (A) Air = 1 (D) $H_2 = 1$	point, Deg. C.	Point, Deg. C.	Cold water.	Hot water.	Alcohol, acids, etc.
3.25 3.5.4824 13:5°	2H ₂ O, 550 decomp. 100 2500	400	s. 0.02 s. i. 14639.5	decomp.	s. al. s. a.; i. al., alk. s. conc. H ₂ SO ₄ , HF s. H ₂ SO ₄ ; i. al.
				,	

PHYSICAL CONSTANTS OF

The following table contains data for about two thousand compounds. The information has been collected from a large number of sources including not only the standard reference works but many modern texts on organic chemistry and on special branches of the subject.

chemistry and on special branches of the subject.

Specific gravities are given at 15° C. where no other temperature is indicated, or at the definite temperature shown by the small figures at the right.

Boiling-points are given at normal atmospheric pressure unless otherwise indicated. Decomposition, occurring near or below the melting or boiling point is indicated by the letter d., preceding the temperature when decomposition occurs before the change of state and following the temperature when decomposition occurs with the change of state: d. 178 indicates that decomposition occurs at 178° C.; 178, d. indicates that the substance changes state with decomposition at 178° C.

Solubilities are indicated by figures giving the mass in grams soluble in 100 c.c. of the solvents. Unless otherwise indicated solubilities under alcohol

are for 95% ethyl alcohol.

No.	Name	Synonyms	Formula	Mol. wt.
	Abietic acid		C20H30O2	302.34
2	Acenaphthene		C10H6(CH2)2	154.14
3	Acetal	aldehyde	CH ₂ ·CH(OC ₂ H ₅) ₂	118.14
4 5	Acetaldenyde	aldenyde	CH ₃ CHO CH ₃ CHNOH	44.04 59.05
6	Acetamide	aidoxime	CH ₃ CONH ₂	59.05
7	Acetamino-		CH3CO·NH·C10H6	201.16
′ .	naphthol (1, 2)		OH	
8	Acetamino- naphthol (4, 1)	naphthacetol	CH ₃ CO·NH·C ₁₀ H ₆ ·	201.16
9	Acetamino-phenol (2, 1)		CH ₃ CO·NH·C ₆ H ₄ ·	151.12
10	" (3, 1)		CH ₃ CO·NH·C ₆ H ₄ ·	151.12
11	" " (4, 1)		CH ₃ CO·NH·C ₆ H ₄ ·	151.12
12	Acetanilide	antifebrin	C ₆ H ₅ ·NH·CO·CH ₃	135.12
13	Acetaniside (o.)		CH ₃ O · C ₆ H ₄ · NH · COCH ₃	165.14
14	Acetic acid		CH₃-COOH	60.04
15	anhydride		(CH ₃ CO) ₂ O C ₁₀ H ₇ ·NH·COCH ₃	102.07
16	Acetnaphtnalide(1)	acetalphanaphthyl- amine	C10H7·NH·COCH3	185.16
17	" (2)	acet-betanaphthyl- amine	$C_{10}H_7 \cdot NH \cdot COCH_8$	185.16
18	Aceto-acetic ether.	See ethyl acetoacetate		
19	Acetol	acetyl carbinol	CH ₃ CO·CH ₂ OH	74.06
20	Acetone	dimethyl ketone	CH ₃ ·CO·CH ₃ ·····	58.06
21 22	Acetonitrile. Aceto-phenone	See methyl cyanide phenylmethyl ke-	CH ₃ CO · C ₆ H ₅	120.10
		tone, hypnone	(077.) 0 37077	= 0.00
23 24	Acetoxime	phenacetin, oxy-	(CH ₃) ₂ C: NOH	73.08
24	Acetphenetidide (p.)	ethyl acetanilide	CH ₃ CO·NH·C ₆ H ₄ · OC ₂ H ₅	179.16
25	Acet-toluide (o.)	······	CH ₃ ·C ₆ H ₄ ·NH· COCH ₃	149.14
26	" (m.)		CH ₃ ·C ₆ H ₄ ·NH· COCH ₃	149.14
27	" (p.)		CH ₃ ·C ₆ H ₄ ·NH· COCH ₃	149.14

ORGANIC COMPOUNDS

The following abbreviations are used:—a., acid; abs., absolute; abt., about; acet., acetone; acet. a., acetic acid; al., alcohol; amor., amorphous; anh., anhydrous; br., brown; bz., benzene; c., cold; chl., chloroform; colorl., colorless; cryst., crystals; d., under melting-points, boiling-points or solubilities, decomposes; d., in connection with the names of compounds, dextrorotary; dec., decomposes; dk., dark; deliqu., deliquescent; eth., ether; f., from; fluores, fluorescent; glac, glacial; grn., green; h., hot; hex., hexagonal; in insoluble; ign., ignites; l., laevo-rotary; leaf., leaflets; liq., liquid; lgr., ligroin; lust, lustrous; m., meta-; meth., methyl; mic., microscopic; monoel, monoelinic; m.p., melting-point; n., normal; need., needles; o., ortho-; octahdr., octahedral; p., para; pa., pale; pl., plates; powd., powder; pr., prisms; purp., purple; pyr., pyridine; rac., racemic; rhomb., rhombic; rhodr., rhombohedral; s., soluble; sc., scales; sl., slightly; sm., small; subl., sublimes; sym., symmetrical; tab., tablets; tetr., tetragonal; tricl., triclinic; trim., trimetric; uns., unsymmetrical; v., very; visc., viscous; w., water; wh., white; yel., yellow.

No.	Crystal- line form	Sp. gr. H ₂ O=1	Melting- point	Boiling-	Solubi	lity in gm 100 c.c. of	s. per
No.	and color	(A)Air=1	°C		Water	Alcohol	Ether
1 2 3 4 5 6 7	leaf. need. liq. liq. liq. or need need. f.chl. leaf.	1.0687 0.8314 ^{20°} 0.806° 0.965 ^{20°} 1.139	182 95 -120.7 13 or 47 82 235 d.	277.5 104 20.8 115 222	i. 5.5 c. ∞ ∞ v. s.	v. s. s. h.	v. s.
8	need.		187		i.	s.	,
9	leaf.		201		s. h.	s.	•••••
10	need.		148-9	•••••	v. s.	8.	v. sl. s.
11	monocl.	1.293 ^{21°}	166				
12 13	white leaf. whte.cryst	1.2114°	114.2 78-84	303.8 303-5	0.5 v. s. h.	40. 55.21°	8.3
14 15 16	liq. liq. colorl. cryst. leaf.	1.05138° 1.080%°	16.7 159 132	118.1 137	dec. s. h. s. h.	ω ω v. s. s.	α α
18 19 20 21	liq. liq.	0.792200	-94.6	145-150d. 56.5	· ·	& C	& &
22	plates	1.03315°	20.5	202	i.	s.	s.
23 24	prisms leaf.	0.887₽°	59-60 134-5	135	v. s. 0.11	v. s. 6	v. s. 1.3
25	colorl.	1.168150	107-110	296	0.86	s.	s.
26	cryst.		65.5	303	0.4418		
27	need.		151-3	307	0.09	10.8	

No.	Name	Synonyms	Formula	Mol. wt.
1 2	Acetyl-acetone Acetylamino-		CH ₂ CO·CH ₂ COCH ₃ CH ₂ CO·NH·C ₆ H ₄ ·	100.09
3	benzoic acid (o.) Acetylamino-		COOH CH ₃ CO·NH·C ₆ H ₄ .	179.13
4	benzoic acid (m.) Acetylamino-		COOH	179.13
5	benzoic acid (p.) Acetyl-biuret		COOH COOH	179.13
6	bromide	••••••	CH ₂ CO·NH·CO·NH ₂	145.11
7	chloride		CH ₂ COBr	122.95 78.49
8	glycine		CH ₃ COCl CH ₃ CO·NH·CH ₂ COOH	117.09
9 10	peroxide phenylene-	amino-acetanalid	(CH ₃ CO) ₂ O ₂ NH ₂ ·C ₆ H ₄ ·NH·	118.07 150.14
11	diamine (p.) phenylhydra- zine (α)	hydracetin	COCH ₃ C ₆ H ₅ ·NH·NH· COCH ₃	150.14
12	salicylic acid	aspirin	C6H4 < COOH	180.11
13	urea	••••••	NH ₂ ·CO·NH· COCH ₃	102.08
14	Acetylene	••••••	HC: CH	26.03
15	tetrabromide	•••••	CHBr ₂ ·CHBr ₂	345.71
16 17 18	tetrachloride Aconitic acid Aconitine	tetrachlor-ethane equisetic acid acetylbenzoyl-	CHCl ₂ · CHCl ₂	167.87 174.08 645.55
19	hydrobromide	aconine	CaH47O11N · HBr	771.52
20	Acridine	*************	+2½H ₂ O C ₆ H ₄ <ch>C₆H₄ CH₂: CH₂: CH₃O</ch>	179.15
21 22	Acrolein	acrylic aldehyde ethylenecarboxylic	CH2: CH · CHO CH2: CH · COOH	56.05 72.05
	Adenine	acid	C ₆ H ₆ N ₆	135.12
24	Adipic acid	esculin	COOH(CH2)4COOH	146.11
1			C15H16O9	340.20
7	Aldehyde.	See acetaldehyde	OH OH(OH)NI	
8	benzoic acid (o.)		CH ₃ ·CH(OH)NH ₂ COOH·C ₆ H ₄ ·CHO	61.08 150.09
9	" " (m.)		COOH · C ₆ H ₄ · CHO	150.09
	Aldol		COOH · C ₆ H ₄ · CHO	150.09
- -	Alizarine	3113	CH ₃ ·CH(OH)CH ₂ · CHO	88.08
_ '	Allantoin	dihydroxyanthra- quinone α , β	C ₆ H ₄ (CO) ₂ C ₆ H ₂ (OH) ₂	240.13
1	l l		C4H6N4O8	158.11
- I.	Alloxan	mesoxalylurea	C ₄ H ₂ N ₂ O ₄ +1 or 4H ₂ O	214.11 (4H ₂ O)
5	Allyl acetate		CH ₃ ·COO·C ₃ H ₅	100.09

No.	Crystal- line form	Sp. gr. H ₂ O=1	Melting- point	point	Solub	ility in gm 100 c.c. o	s. per f
-10.	and color	(A)Air=1	c	°C	Water	Alcohol	Ether
1 2	liq. need.	0.98715°	185	139.6	12.5 sl. s.; s.h.	. b.	ω 8.
3			248 d.		sl. s. h.	sl. s. h.	sl. s.
4	need.		250 d.		sl. s.	s.	sl. s.
5	need.		193		v. s.		v. sl. s.
6 7 8	liq. liq. cryst.	1.10520°	206	81 55(50.9)	d. d. 2.7	d. d. s.	s. s. i.
9 10	leaf. need.	1.6	30 159.5	63 ^{21mm} .	sl. s. sl. s.	v. s.	σ v. s.
11	colorl. cryst.		128-130		sl.s.;s.h.	s.	sl. s.
12 13	colorl. cryst.		135 218-9		sl. s. v. s. h.	8. 1 ²⁰ °	s.
14	gas	0.906(A)	-81	-85	v. sl. s.	s.	25 in 1
15	yellowish liq.	2.97		136- 736mm, 239-42 d.	i.	s.	of acet.
16 17 18	liq. leaf. prisms	1.5825°	191 d. abt. 190	147	i. 18 .03	50 ¹² 4.5	sl. s. 2.25
19	hex. tab.		160-3		s.	8.	
20	leaf.		107	abt. 360	v.sl.s.	v. s.	v. s.
21 22	liq. liq.	0.84 1.062 ^{16°}	7-8	52.4 140	40 ∞	8.	s
23	need. f. c.		360 d.		.09 cold	sl. s.	i.
24 25	H ₂ O need. wh. need.		153 160	265100mm.	1.5 ¹⁵ ° 0.16 c., 8 h.	v. s. sl. s.	sl. s. sl. s.
26 27 28 29 30 31	rhomb. leaf. need. wh. need. liq. or. need.	1.404	70-80 97.2 164-6 246,(285) 	100 90– 105 ²⁰ mm.	v. s. v. s. s. h. 	v. s. v. s. v. s. 	sl. s. v. s. sl. s. s. v. s.
33			227-31 d.			v. s. v. sl. s.	i.
34	wh. cryst.		dec. abt.		0.6 c., v. s. h. v. s.	v. sı. s.	4.
35	liq.	0.938%	170	103-4784	sl. s.	s. ∞	8
-	u .	J.005		100-1-7	SI. 5.		

No.	Name	Synonyms	Formula	Mol. wt.
1	Allyl acetic acid		C ₂ H ₅ ·CH ₂ ·COOH	100.0
2	acetonitrile		C ₃ H ₅ ·CH ₂ CN	81.0
3	alcohol		CH2: CH · CH2OH	58.0
4	amine		CH ₂ : CH·CH ₂ OH CH ₂ : CH·CH ₂ ·NH ₂	57.0
5	aniline		C ₆ H ₅ ·NH·C ₈ H ₅	133.1
6	benzene		C6H5 · CH · CH · CH3	118.1
7	benzoate		C6H5 · CO2 · C3H5 · · · ·	162.1
8	bromide	monobromopropy- lene(γ)	CH2: CH·CH2Br	120.9
9	chloride	monochloropropy- lene (γ)	CH2: CH·CH2Cl	76.5
10	cinnamate		C ₆ H ₅ .CH : CH · COO · C ₃ H ₅	188.1
11	cyanide		$CH_2: CH \cdot CH_2CN$	67.0
12	ether	*	$(CH_2: CH \cdot CH_2)_2O.$	98.1
13	formate		HCOO·C ₃ H ₅	86.0
14	iodide		$CH_2: CH \cdot CH_2I \cdot \dots$	167.9 128.1
15	isoamyl ether		C ₃ H ₅ ·O·C ₅ H ₁₁	128.1
16	isocyanide	• • • • • • • • • • • • • • • • • • • •	CH2: CHCH2NC	67.0
17	mercaptan	allyl isosulphocy-	CH ₂ : CH·CH ₂ SH CH ₂ : CH·CH ₂ NCS.	74.1 99.1
. 8	mustard oil	anicester, allyl	CH2: CH-CH2NCS.	99.1
ا م		isothiocyanate	C ₂ O ₄ (C ₃ H ₅) ₂	170.1
9	oxalate phenyl ether		C.H. OC.H.	134.1
0			$\begin{array}{c} C_{8}H_{5} \cdot OC_{8}H_{5} \\ C_{8}H_{5} \cdot C_{5}H_{4} \cdot N \\ (CH_{2} : CH \cdot CH_{2})_{2}S \\ C_{8}H_{5} \cdot NH \cdot CS \cdot NH_{2} \\ \end{array}$	119.1
21	pyridine (1) sulphide	thioallyl ether	(CH · CH · CH · CH · CH	114.1
23	sulphocarbamide	thiosinamine	C.H. NH. CS. NH.	116.1
24	sulphocyanide	emosinamme	C ₈ H ₅ ·SCN	99.1
25	Allylene	methyl acetylene,	CH₃·C CH	40.0
26	oxide	propine	CH₃ · (C : CH)O	56.0
27	Aluminum ethyl .		Al(C2H5)3	114.2
28	methyl		Al(CH ₃) ₃	72.1
9	Amidol.	See diaminophenol	hydrochloride	
SÕ.	Amino-acetanilid (p.)		ŇH ₂ ·C ₆ H ₄ ·NH· COCH ₃	150.1
31	acetic acid	glycin, glycocoll	NH2·CH2·COOH	75.0
32	acetophenone (p.)	giyom, giyooon	NH2 · C6H4COCH3	135.
33	anthraquinone (1)		NH ₂ ·C ₆ H ₃ : (CO) ₂ : C ₆ H ₄	223.
34	" (2)		NH ₂ ·C ₆ H ₃ : (CO) ₂ : C ₆ H ₄	223.1
35	azo-benzene (p.)	aniline yellow	NH2 · C6H4 · N2 · C6H5	197.1
6	azo-naphthalene $(4, \alpha, \alpha)$		C10H7 · N2 · C10H6 · NH2	297.2
7	benzaldehyde (o.)		NH2·C6H4·CHO	121.1
88	" (m.)		NH2.C6H4.CHO	121.1
39	" (p.)		NH2·C6H4·CHO	121.1
10	benzamide (o.)		$ NH_2 \cdot C_6H \cdot CONH_2 $	136.1
1	" (m.)		NH2·C6H·CONH2	136.1
2	" (p.)	<u>.</u>	NH2·C6H·CONH2	136.1
13	benzene.	See aniline		400
4	benzene-sulphonic	·	NH2 · C6H4 · SO8H	182.
	acid (o.)		+½H ₂ O	900
5	benzene-sulphonic acid (m.)	metanilic acid	NH ₂ ·C ₆ H ₄ ·SO ₃ H +1½H ₂ O	200.

No.	Crystal- line form	Sp. gr. H ₂ O=1	Melting- point	point	Solub	ility in gn 100 c.c. of	ıs. per
1,0,	and color	(A)Air=1	. ℃	€	Water	Alcohol	Ether
1 2 3 4 5 6 7 8	liq. liq. liq. liq. yel. oil liq.	0.984 ^{18°} 1.18 ^{13°} 0.854 ^{20°} 0.769 0.982 ^{25°} 0.914 1.059 1.436		186-8 140 96.6 56.0-56.5 208-9 176-7 228 70-71	sl. s. i.	v. s	v. s.
9	liq.	0.93720°		44.6–46	i. •	s.	8
10	wh. cryst.	1.052§§°		284–6 d.	i.	v. s.	8
11 12 13 14 15 16 17 18	liq. yel. liq. liq. liq.	0.835 0.805 ¹⁸ ° 0.932 1.89 ¹⁸ ° 0.794 ¹⁷ °		119 94.3 82-3 101-2 120 96-106 90 150.7	sl. s. i. v. sl. s. sl. s. v. sl. s.	s. 8 s. 8 s. 8 s. 8 v. s.	
19 20 21 22 23 24 25	liq.	1.055 0.986 0.959°° 0.88827°	74 -110	217 191.7 189–190 140 161 –23.5	i. i. sl. s. v. s. i.	s. v. s.	∞ v. s.
26 27 28 29	liq. liq.		 0	62-3 194 130	sl. s. decomp.		e V. S.
30 31 32 33	monocl. yel. pr red need.	1.161	159.5 233 d. 105-6 242		sl. s. 23 v. sl. s. i.	v. s. i. s. s.	i. s. s.
34	red need.		302	subl.	i.	s.	s.; s. 62
35 36	yel. need. red need.		125-6 173-5	abt. 360	sl. s. h.	s. h. sl. s.	s. sl. s.
37 38 39 40 41 42 43 44	leaf. yel. amor. flat plates leaf. yellow yellow prisms		39 70 108 79 178–9 (182.9)	decomp.	sl. s. s. s. h. sl. s. sl. s.	v. s. v. s. s.	v. s. sl. s. sl. s.
45	need. or pr.				s.	sl. s.	sl. s.

No.	Name	Synonyms	Formula	Mol. wt.
1	Amino-benzene-	See suphanilic acid	_	
2	sulphonic acid(p.) benzidine (2)	•••••	(NH ₂) ₂ C ₆ H ₃ . C ₆ H ₄ NH ₂	199.19
3	benzoic (o.)	anthranilic acid	NH2·C6H4·COOH	137.09
4 5	" (m.)		NH2·C ₆ H ₄ ·COOH NH2·C ₆ H ₄ ·COOH	137.09 137.09
6	" (p.) benzonitrile (m.)		NH2·C6H4·CN	118.10
7	" (p.)		$NH_2 \cdot C_6H_4 \cdot CN \dots$	118.10
8	cinnamic acid (o.)		NH2 · C6H4 · CH : CH ·	163.26
9	" " (m.)		COOH NH2·C6H4·CH:CH·	163.26
10	" " (p.)		COOH NH2·C ₆ H ₄ ·CH; CH· COOH	163.26
11	4 cresol (2)		NH ₂ ·C ₆ H ₃ ·CH ₃ (OH)	123.12
12	5 " (2)		$NH_2 \cdot C_6H_3 \cdot CH_3(OH)$	123.12
13	6 " (2)		NH2 · C ₆ H ₈ · CH ₃ (OH)	123.12
14	0 (3)	• • • • • • • • • • • • • • • • • • • •	NH2 · C6H3 · CH3(OH)	123.12
15 16	2 " (4) 3 '' (4)		$ \begin{array}{c} \text{NH}_2 \cdot \text{C}_6\text{H}_3 \cdot \text{CH}_3(\text{OH}) \\ \text{NH}_2 \cdot \text{C}_6\text{H}_3 \cdot \text{CH}_3(\text{OH}) \end{array} $	123.12 123.12
17	dimethyl aniline		NH ₂ . C ₆ H ₄ · N(CH ₃) ₂	136.16
18	" " (o.)		NH2 · C6H4 · N(CH3)2	136.16
19	" " (p.)		$NH_2 \cdot C_6H_4 \cdot N(CH_3)_2$	136.16
20	diphenyl (o.)		$\begin{array}{c} NH_2 \cdot C_6H_4 \cdot C_6H_5 \dots \\ NH_2 \cdot C_6H_4 \cdot C_6H_5 \dots \end{array}$	169.16
21 22	" (m.)	xenylamine	NH2·C6H4·C6H5 NH2·C6H4·C6H5	169.16 169.16
23	" (p.) ethanol	zenylamme	NH2 · CH2 · CH · OH	61.08
24	ethyl benzene (o).		$NH_2 \cdot C_6H_5 \cdot C_2H_5$	121.14
25	" " (m.)		$NH_2 \cdot C_6H_5 \cdot C_2H_5 \dots$	121.14
26	(p.)		NH ₂ ·C ₆ H ₅ ·C ₂ H ₅ ····	121.14
27 28	malonic acid phenol (o.)		$ \begin{array}{c} \text{NH}_2 \cdot \text{CH}(\text{COOH})_2 \dots \\ \text{NH}_2 \cdot \text{C}_6 \text{H}_4 \cdot \text{OH} \dots \end{array} $	119.07 109.10
29	" (m.)		NH ₂ ·C ₆ H ₄ ·OH	109.10
30	" (p.)	para-amidophenol, rodinol	$NH_2 \cdot C_6H_4 \cdot OH \dots$	109.10
31	propionic acid (α, d.)	d-alanine	CH₃·CH(NH₂) COOH	89.08
32	propionic acid $(\alpha, l.)$	l-alanine	CH₃·CH(NH₂) COOH	89.08
33	propionic acid (α, rac.)	d, l-alanine	CH₃·CH(NH₂) COOH	89.08
34	propionic acid (\$\beta\$)	$oldsymbol{eta}$ -alanine	CH ₂ (NH ₂)CH ₂ COOH	89.08
35	pyridine (2) (3)		NH ₂ ·C ₅ H ₄ N	94.09
36 37	" (3) " (4)		NH ₂ ·C ₅ H ₄ N NH ₂ ·C ₅ H ₄ N	94.09 94.09
38	quinoline (2)		CoH6N·NH2	144.13
39	" (4)		CoHoN·NH2	144.13
	1:1::1 (0)	_	NH CH (OFF)	150 10
40	salicylic acid (3)		NH ₂ ·C ₆ H ₃ (OH) (COOH)	153.10
41	" " , (5)		NH₂·C₀H₃(OH) (COOH)	153.10

No.	Crystal- line form	Sp. gr. H ₂ O=1	Melting- point	Boiling- point	Solub	ility in gr 100 c.c. of	ns per
	and color	(A)Air=1	- °C	- °C	Water	Alcohol	Ether
1	-						
2	need.		134				
3 4	yel. leaf.		144-5 174		0.35113.8° 0.5610°	10.79.6° 2.210°	16.056.8 1.710°
5	yel. cryst. yel. cryst.		186-7	• • • • •	0.3310	11.3100	6.11100
6	need.		53-4	288-90	sl. s.	v. sl. s.	v. sl. s.
7	colorl.		86		v. s. h.	v. s.	v. s.
8	need.		158-9 d.		sl. s. c.; s. h.	s. h.	8.
9	yel. need.		180-1		sl. s. c.; v. s. h.	v. s.	v. s.
10	yel. need.		175–6 d.		sl. s. c.; v. s. h.	y. s.	v. s.
11 .	colorl. leaf.		159-61		s. c.:	v. s.	.v. s.
12	or need. leaf. f. bz.		abs 174		v. s. h.	v. s.	
13	need.		abt. 174 124-8		s. sl. s.	v. s.	v. s. sl. s.
14	warts f. bz.		174 d.				
15	colorl.	y	144.5				
16 17	sc. f. eth.		135	218	v. sl. s.	v. s.	v. s.
•				210			· · · · · •
18				268-70			
19			41	262			
20 21	colorl.leaf.	• • • • • • • • • • • • • • • • • • • •	45.5 30	299 254	i.	8.	
22	colorl.leaf.	*********	- 53	302	sl. s. h.	v. s.	v. s.
23	colorl. liq.	1.022200		171	œ	ω.	1. 1
24	liq.	0.983220		215-6			
25 26	colorl. liq.	0.990° 0.975 ²² °	···· <u>;</u> ····	214-15		• • • • • •	•••
27	leaf. colorl.	0.975**	5 109 d.	216-65	sl. s.	sl. s.	
28	rhomb.		170	subl.	1.700	4.400	v. s.
29	colorl.		123		2.6	v. s.	v. s.
30	leaf.		184 d.		1.100	4.500	sl. s.
31	colorl.		293		20	v. sl. s	• • • • •
32	prisms		297 d.				
33	colorl.		195		v. s.	0.3725°	
34	prisms f. al.		196	•••••	v. s.	v. sl. s. abs.	i.
35	leaf. f. lgr.		56 -	204		v. s.	
36	leaf. f. bz.		64	250-2	v. s.	v. s.	v. s.
37 38	need. f. bz. leaf.		154.8 129		v. s. v. sl. s.:	v. s. v. s.	s. v. s.
.	leai.		129		s. h.	V. S.	V. S.
39	need. f. w.		154		s.	s.	v. s. chl.
İ			(+H ₂ O		l	/	
10			69-70) 235 d.			v. sl. s.	
11	need.		280 d.	• • • • •	i.	i.	· · · · · · · ·
				1	i		

No.	Name	Synonyms	Formula	Mol. wt.
1 2	Amino-thiophene triphenyl-		NH ₂ C ₄ H ₃ S (C ₆ H ₆)CH·C ₆ H ₄ .	99.13 259.24
_	methane		NH ₂	511.37
3	Amygdalin	amylacetic ester	C ₂₀ H ₂₇ NO ₁₁ + 3H ₂ O CH ₃ COO · C ₅ H ₁₁	130.15
5	Amyl alcohol (n.).		CH ₃ (CH ₂) ₃ CH ₂ OH	88.11
6	" " (act.)		CH ₂ (C ₂ H ₅)CH · CH ₂ OH	88.11
7	" (sec. α)	methyl-n-propyl carbinol	CH ₃ ·CH ₂ ·CH ₂ · CH(OH)·CH ₃	88.11
8	" " (tert.)	dimethyl ethyl carbinol	$(CH_3)_2 \cdot C(OH) \cdot C_2H_5$	88.11
9	amine		CH ₃ ·(CH ₂) ₄ ·NH _{2···}	87.14 148.18
10	benzene (n.)	phenyl pentane	$C_6H_5 \cdot C_5H_{11} \cdot \cdots $ $CH_3 \cdot (CH_2)_4Br \cdot \cdots$	151.03
11 12	bromide (n chloride (n.)	α -brompentane α -chlorpentane	CH ₂ ·(CH ₂) ₄ Cl	106.57
13	ether (n.)		$(C_5H_{11})_2O$ $HCOO \cdot C_5H_{11}$	158.23
14	formate (n.)		HCOO · C₅H ₁₁	116.13
15	iodide		$CH_3 \cdot (CH_2)_4 \cdot I \dots$	198.03 158.19
16 17	isobutyrate		$C_4H_7OO \cdot C_5H_{11} \cdot \cdot \cdot \cdot C_5H_{11} \cdot NO_2 \cdot \cdot \cdot \cdot \cdot$	117 12
18	nitrite (n.) salicylate		HO · C ₆ H ₄ · COO ·	117.12 168.19
19 20	Amylene (n.)	propyl ethylene ethyl-methyl- ethylene	C_5H_{11} $CH_3 \cdot (CH_2)_2 \cdot CH:CH_2$ $C_2H_5 \cdot CH:CH_3$	70.11 70.11
21 22	Anaesthesine	trimethyl-ethylene ethyl para-amino- benzoate	$(CH_3)_2 \cdot C : CH \cdot CH_3$ $NH_2 \cdot C_6H_4 \cdot COO \cdot$ C_2H_5	70.11 165.14
23	Anethol (p.)		CH ₃ ·CH:CH·C ₆ H ₄ ·	148.15
24 25	Angelic acid Aniline	amino-benzene, phenyl-amine	$egin{array}{lll} O\cdot CH_8 & & & \\ C_4H_7\cdot COOH & & & \\ C_6H_5\cdot NH_2 & & & \\ & & & \end{array}$	100.09 93.10
26	Anis alcohol (p.)	anisyl alcohol	CH ₃ O · C ₆ H ₄ · CH ₂ · OH	138.12
27	Anisaldehyde (p.)		CH ₃ O·C ₆ H ₄ ·CHO	136.10
28	Anisic acid (p.)		CH ₃ O·C ₆ H ₄ ·COOH.	152,10
29 30	Anisidine (0.) (p.)		$\begin{array}{c} CH_3O \cdot C_6H_4 \cdot NH_2 \dots \\ CH_3O \cdot C_6H_4 \cdot NH_2 \dots \end{array}$	123.12 123.12
31	Anisol	methyl phenyl ether	$C_6H_5 \cdot O \cdot CH_3 \cdot \cdot \cdot \cdot$	108.10
32 33	Anthracene Anthragallol	trihydroxy-	$C_6H_4: (CH)_2: C_6H_4 C_{14}H_5O_2(OH)_3$	178.15 256.03
34	(1, 2, 3) Anthramine (β) .	anthraquinone β-amino-anthra- cene	C ₆ H ₄ : (CH) ₂ : C ₆ H ₃ . NH ₂	193.17
35	Anthranil		C6H4: NH·CO	119.09
36	Anthranilic acid.	See oamino-benzoi	c acid	104 12
37	Anthranol	γ-hydroxy-anthra-	C14H10O	194.15
38	Anthrapurpurin	trihydroxy anthra- quinone (1, 2, 7)	C14H5O2(OH)3	256.13
39	Anthraquinoline		C17H11N	229.18
40	Anthraquinone		C6H4: (CO)2: C6H4.	208.13

No.	Crystal- line form	Sp. gr. H ₂ O=1	Melting- point	Boiling- point	Solub	ility-in gm 100 c.c. of	s. per
	and color	(A)Air=1	•c	•C	Water	Alcohol	Ether
1 2	yel. oil prisms f. eth.		84		v. s.	v. s.	i. s.; s. bz and lgr
3 4 5 6	rhomb. f. w. liquid colorl. liq. colorl. liq.	0.866 ^{25°} 0.817 ^{20°} 0.817 ^{18°}	214–6 	1480 137.8 128.7	8.3 ^{10°} 0.18 ^{20°} 2.7 ^{22°} sl. s.	0.11 ^{10°} ∞ ∞ ∞	i. & & & & & & & & & & & & & & & & & & &
7	colorl. liq.	0.82400		119	16.7	ω .	œ
8	colorl. liq.	0.814	-12	102.5	sl. s.	s.	s.
9 10 11 12 13 14 15 16 17	colorl. liq. colorl. liq. colorl. liq. colorl. liq. yel. liq. colorl. liq	0.766 ^{19°} 0.860 ^{22°} 1.223 ^{20°} 0.883 ²⁰ 0.775 ^{25°} 0.902 ^{0°} 1.517 ^{20°} 0.859		104 201 128.7 ⁷⁴⁰ 106.6 ⁷⁴⁰ 169 130.4 155.4 ⁷³⁹ 153-5 96 276-7	i. sl. s. sl. s.	s. s. s	8 8
19 20	colorl. liq. colorl. liq.	·····		39–40 36.5	i. i.	8 8	8 8
21 22	colorl. liq. rhomb. f. eth.	0.666	90-1	37.1	v. sl. s. v. sl. s.	s. s.	∞ 14.3
23	leaf.	0.994	21.6	233.	v. sl. s.	∞	8
$\frac{24}{25}$	monocl. liquid	0.954 ^{76°} 1.022 ^{20°}	45.5 -6	185 184.4	sl. s. 3.116°	v. s. h.	v. s.
26 27 28	need. colorl. liq. monocl.	1.113 1.126 1.3644°	45 0 184.2	258.8 248 275-80	i. sl. s. v. sl. s.; s. h.	v. s. ∞ v. s.	v. s.
29 30	colorl. liq. need. f. h.	1.098	5.2 57.7	224 239.5	sl. s.		
31	colorl. liq.	0.98821	-37.8	155.	i.	s.	8.
32 33	colorl. leaf. or. red need.	1.147	216.5 310	351	i. s. alk., green	0.59 ^{15°} s.	1.17 ^{15°} 8.
34	yel. need.		238		v. sl. s.	sl. s.	sl. s.
35 36	colorl.	1.189	. 18	210–5 d.	s. h. dil. NaOH	v. s.	
37	pale yel.		160–70 d.			1	v. s. h bz.
38	or. need.		abt. 330		sl. s. h.	v. s.	sl. s.
39	leaf.		170	446	i.	v. s.	v. s.; s. bz.
40	pale yel. need.		284.5	380	i.	0.05 ^{10°} 2.3 ^{70°}	v. sl. s.
				Ι].

No.	Name	Synonyms	Formula	Mol. wt.
1	Anthrol (m.)		C ₆ H ₄ : (CH) ₂ : C ₆ H ₃ . OH	194.15
2 3	Antifebrin. Antimony penta- methyl	See acetanilid	Sb(CH ₃) ₅	195.35
4 5 6 7	trimethyl Antipyrene Arabinose (d. or l.) Arabitol	analgesinearabite	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	165.29 188.17 150.11 152.13
8 9 10	Arachidic acid Arbutin Asparagine (l.)	arachic acid	$C_{20}H_{40}O_2 \dots C_{12}H_{16}O_{7}+\frac{1}{2}H_{2}O^{*}$ $C_{2}H_{3}(NH_{2})(COOH) \cdot CO \cdot NH_{2}$	312.42 281.20 132.10
11	Aspartic acid		CH(NH ₂)·(COOH)·	133.09
12	Aspirin	acetyl-salicylic acid	$_{\text{C6H}_4}$ < $_{\text{COOH}}^{\text{COOH}_3}$.	180.11
13	Atropic acid		$\mathrm{CH_2} : \mathrm{C}(\mathrm{C_6H_5}) \cdot \\ \mathrm{COOH}$	148.11
14	Atropine	dauterine, inactive tropine	C ₁₇ H ₂₃ O ₃ N	289.28 387.36
15 16	Atropine sulphate Auramine		(C ₁₇ H ₂₃ O ₃ N) ₂ H ₂ SO ₄ HN : C[C ₆ H ₄ N(CH ₃) ₂] ₂	295.29
17 18	Aurine	coralline	C19H ₁₄ ·O ₃ COOH·(CH ₂) ₇ · COOH	290.22 188.18
19 20	Azobenzene Azobenzoic acid (o.)		$egin{array}{c} \mathrm{C_6H_5 \cdot N_2 \cdot C_6H_5 \cdot \dots } \\ \mathrm{COOH \cdot C_6H_4 \cdot N_2 \cdot } \\ \mathrm{C_6H_4 \cdot COOH} \end{array}$	182.16 270.23
21	Azonaphthaline (α, α)		C ₁₀ H ₇ · N ₂ · C ₁₀ H ₇	282.30
22	Azophenol (o.)	dihydroxy-azoben- zene (2, 2')	HO·C ₆ H ₄ ·N ₂ ·C ₆ H ₄ · OH	214.22
2 3	" (m.)	dihydroxy-azoben- zene (3, 3')	HO·C ₆ H ₄ ·N ₂ ·C ₆ H ₄ · OH	214.22
24	" (p.)	dihydroxy-azoben- zene (4, 4')	HO · C ₆ H ₄ · N ₂ · C ₆ H ₄ · OH CH ₃ · C ₆ H ₄ · N ₂ · C ₆ H ₄ ·	214.22 210.27
25	Azotoluene (oo.)	dimethyl-azoben- zene (2, 2') dimethyl-azoben-	CH ₃ ·C ₆ H ₄ ·N ₂ ·C ₆ H ₄ · CH ₃ ·C ₆ H ₄ ·N ₂ ·C ₆ H ₄ ·	210.27
26 27	" (pp.).	zene (3, 3') dimethyl-azoben-	CH ₃ CH ₃ · C ₆ H ₄ · N ₂ · C ₆ H ₄	210.27
28	Azoxybenzene	zene (4, 4')	CH ₃ (C ₆ H ₅) ₂ : N ₂ O	198.22
29	Azoxybenzoic acid		(COOH · C ₆ H ₄) ₂ N ₂ O	286.23
30	(o.) Azoxybenzoic acid		(COOH · C ₆ H ₄) ₂ N ₂ O	286.23
31	(m.) Azoxybenzoic acid		(COOH·C ₆ H ₄) ₂ N ₂ O	286.23
32	$Azoxynaphthalene (\alpha)$	•••••	(C ₁₀ H ₇) ₂ N ₂ O	298.23
				٠.

No.	Crystal- line form	Sp. gr. H ₂ O=1	Melting- point	Boiling- point		lity in gm 100 c.c. of	
	and color	(A)Air=1		°C	Water	Alcohol	Ether
1 :	need.		d. 200		s. acet.	v. s.	v. s.
3				96-100	i.		
4 5 6 7	leaf. rhomb. colorl.	1.523 1.19 ²⁰ °	111-13. abt. 160 102	80.6	sl. s. 100+ 5910° v. s.	i. 100. v. sl. s. v. s. h.	s. 3.3 i.
8 9 10	warts leaf. need rhomb.	1.543	77 165–70 230–5 d.		i. v. s. h. 1.8 ^{10°} 53 ^{100°}	.45 ²⁰ ° v. s. i.	v. s. i. i.
11	leaf.	••••••	290.4 d.	•••••	0.39 ¹⁰ ° 5.4 ¹⁰⁰ °	i. abs.	
12	colorl. cryst.		135	•••••	sl. s.	s.	8.
13	monocl.	•••	106–6.	267 d.	0.14190	8.	s. CS ₂
14	need.		115- 115.5		0.2225°	68.5	. 6 _
15 16	wh. powd. yel. leaf. f.	•	188 136		260 i.	27 s.	0.05
17 18	al. red need. leaf.		abt. 220 106	abt. 360 d.	i.; s.alk. 0.2420°	s. v. s.	8. 2.7
19 20	or. leaf. dk. yel.	1.203	68 237 d.	295-7	v. s. h. i. v. sl. s.	8.5 ^{16°} s.	s. v. s.
21	need. red need.		186-90	subl.	i.	sl. s.	s. bz.
22	yel. leaf.		171	subl.	i.; s. alk.	0.33	v. s.
23	br. leaf.		205		v. sl. s.	s	sl. s.
24	br. triclin.		204 d.	• • • • • • •	sl. s.	v. s.	v. s.; s. bz.
25	red prisms		55		i.	614.50	147.716.
26	or, red.		54-5	.:	i.	v. s.	v. s.
27	rhomb. or. yel.		144		i.; s. lgr.	s	v. s.
28	need. yel. need.	1.24828°	36.2	d.	i.	17.5160	v. s.
29	f. h. al. pa. yel.		248	dec.	v. sl. s. h.	sl. s.	sl. s.
30	leaf. pa. yel.		320 d.		i.	sl. s.	al. s.
31	need. yel. amor.		dec.		i.	i.	s. pyr.
32	red rhomb.		126.5-7.0		s. cone. H ₂ SO ₄	s.	
		*					

No.	Name	Synonyms	. Formula	Mol. wt.
1	Barbituric acid	malonyl urea	CO: (NH·CO)2:	164.07
2	Behenic acid		CH ₂ +2H ₂ O C ₂₂ H ₄₄ O ₂	340.44
3 4 5	Benzal chloride Benzaldehyde phenylhydrazone	art. almond oil	C ₆ H ₅ ·CHCl ₂ C ₆ H ₅ ·CHO C ₆ H ₅ ·CH: N·NH·	160.99 106.09 196.18
6	Benzaldoxime		C ₆ H ₅ ·CH: NOH	121.14
7	(α) (anti.) Benzaldoxime	•••••	C ₆ H ₅ ·CH: NOH	121.14
8	$(\boldsymbol{\beta})$ (syn.) Benzamide		C ₆ H ₅ ·CONH ₂	121.14
9	Benzanilid	phenyl benzamide	C6H5 · CO · NH · C6H5	197.20
10	Benzene	**************	C ₆ H ₆	78.08
11	azo-α-naphthyl-		C6H5 · N2 · C10H6 · NH2	247.21
12	amine hexabromide (α)		C6H6Br6	457.84
13	hexachloride (α)		C6H6Cl6	290.78
14	" (β)		C ₆ H ₆ Cl ₆	290.78
15 16 17 18 19	sulphinic acid sulphonic acid sulphonic amide. sulphonic chloride Benzidine (p.)	4, 4'-diamino-di- phenyl (p.)	$\begin{array}{l} C_6H_5 \cdot SO_2H \dots \\ C_6H_5 \cdot SO_3H + 1\frac{1}{2}H_2O \dots \\ C_6H_5 \cdot SO_2NH_2 \dots \\ C_6H_5 \cdot SO_2C1 \dots \\ NH_2 \cdot C_6H_4 \cdot C_6H_4 \dots \\ NH_2 \end{array}$	142.13 185.16 157.18 176.57 184.20
20	Benzil	dibenzoyl	$C_6H_5 \cdot CO \cdot CO \cdot C_6H_5$.	210.15
21	Benzilic acid		(C ₆ H ₅) ₂ ·C(OH)· COOH	228.17
22	Benzoic acid		C ₆ H ₅ ·COOH	122.09
23	anhydride	•••••	(C ₆ H ₅ ·CO) ₂ O	226.14
24	Benzoin		$egin{array}{c} \mathbf{C_6H_5} \cdot \mathbf{CH(OH)} \cdot \mathbf{CO} \cdot \\ \mathbf{C_6H_5} \end{array}$	212.17
25 26	Benzonitrile Benzophenone	phenyl cyanide diphenyl ketone	$\begin{array}{c} C_6H_5\cdot CN \dots \\ C_6H_5\cdot CO\cdot C_6H_5 \dots \end{array}$	103.08 182.14
27 28 29	Benzoquinone. Benzothiophene. Benzotrichloride	See <i>quinone</i> See <i>thio naphthene</i> toluene trichloride	$\mathrm{C_6H_5\cdot CCl_3}$	195.43
30	Benzoyl-acetic acid		C ₆ H ₅ ·CO·CH ₂ ·	164.11
31	acetone		COOH C ₆ H ₅ ·CO·CH ₂ ·CO·	162.13
32 33 34	bromide chloride cyanide		CH ₃ C ₆ H ₅ ·COBr C ₆ H ₅ ·COCl C ₆ H ₅ ·COCN	185.04 140.53 131.12

No.	Crystal- line form	Sp. gr. H ₂ O=1	Melting- point	Boiling- point		lity in gm 100 c.c. of	s. per
NO.	and color	(A)Air=1	°C	°C	Water	Alcohol	Ether
1	rhomb.		dec.		sl. s.		
2	colorl.		84	,	i.	0.10170	1.92160
3 4 5	need. colorl. liq. colorl. liq. colorl.	1.295 ¹⁶ ° 1.05	-16 -13.5 154.5-	213 179.5	i. 0.33	ω ω	& &
6	colorl. leaf.	1.1129°	155.5 33-5	118-9 10mm	sl. s.	v. s.	v. s.
7	colorl. tab.		128-30		sl. s. bz.		v. s.
8	or need. colorl.	1.34140	128	290	sl. s. h.	2725°	v. s.
9	mono. tab. colorl. leaf.	1.3240	160–1		i.	1.7 c., 14.3 h.	sl. s.
10	colorl. rhomb.	0.879200	5.4	80.36	0.07220	8	∞
11	prisms red need.	•	123		s. bz.	s.	s.
12	colorl.		212			sl. s.	sl. s.
13	monocl.	1.87 ²⁰ °	157	21 _{8345mm}	4.35 ¹⁵ °	6.5 ^{18°} bz.	v. s. aniline
14	monocl. colorl.		310	subl.	(Less		α in chl.)
15 16 17 18 19	prisms colorl. leaf. lust. pl. oil lust scales f. h. w. yel. need.	1.384	83-4 65-6 150 14.5 128.2 30.7 95	d. 100 251.5 400-1 740mm 346-8 d	s. h. v.s. sl. s i. 0.94100	v. s. v. s. v. s. v. s.	v. s. i. v. s. s. 2.2 v. s.
21	co or		150		v. s. h.	v. s.	v. s.
22	monocl.	1.266	121.2	249.2	0.2920° 5.9100°	47.15° abs.	31.4
23	or ne d. colorl. rhomb.	1.199	42	360		s.	8.
24	hex. f. al.		133–7	343-4	i. c.; sl. s. h.	s. h.	
25 26	liq. colorl. rhomb.	1.00025° 1.09858°	-13.1 48-8.5	191 306	1100° i.	13.5 ^{18°}	17.5 ^{13°}
27 28 29	colorl. oil	1.38	-21.2	213-4	dec.		
30	colorl.		103-4, d.		sl. s.	v. s.	v. s.
31	need. colorl. colorl. liq.	1.570	60-1 abt. 0	218	v. sl. s. dec.	v. s. s. wth.	v. s
32 33 34	colorl. liq. colorl. tab		-1 32-3	198 206–8	dec.	dec.	ω

No.	Name	Synonyms	Formula	Mol. wt.
1	Benzoyl-peroxide		(C ₆ H ₅ ·CO) ₂ O ₂	242.15
2	phenylhydrazine (α)		C ₆ H ₅ ·CO·NH·NH· C ₆ H ₅	212.17
3	Benzyl acetate		CH ₃ ·COO·CH ₂ C ₆ H ₅	150.13
4	aceto-acetic ether		C ₂ H ₃ O·CH (C ₇ H ₇) COO·C ₂ H ₅	220.20
5 6	alcohol	phenylcarbinol	C ₆ H ₅ CH ₂ OH	108.10
7	amine benzoate		C ₆ H ₅ ·CH ₂ NH ₂ C ₆ H ₅ ·COO·CH ₂	107.15 212.17
8	bromide		C_6H_5 $C_6H_5 \cdot CH_2B_1$	171.06
9 10	carbinol chloride	See phenyl ethyl alc	ohol C ₆ H ₅ ·CH ₂ Cl	196 55
11	cyanide		C ₆ H ₅ ·CH ₆ CN	126.55 117.15
12 13	ether		(C ₆ H ₅ ·CH ₂) ₂ O	198.19
13 14	iodide mustard oil		$C_6H_5 \cdot CH_2I$	218.06
15	sulphocyanide		C ₆ H ₅ ·CH ₂ ·SCN	149.19 149.19
16	urea	benzyl carbamide	C ₆ H ₅ ·CH ₂ ·NH·CO· NH ₂	150.20
17	Berberine		$C_{20}H_{17}O_4N + 6H_2O$.	443.34
18	Berberonic acid	pyridine tricar- bonic acid (2, 4, 5)	C ₅ H ₅ N(COOH) ₃ (2,4,5) + 2H ₂ O	247.15
19	Betaine	trimethyl glycocoll	CO·CH ₂ ·N(CH ₃) ₃ ·O	117.11
20	Bilirubin	•••••	C34H36N4O7	608.58
21	Biuret		NH ₂ ·CO·NH·CO·	121.19
22	Borneol (i.)	•••••	NH ₂ ·+ H ₂ O C ₁₀ H ₁₇ OH	154.20
23	" (d.)	${\bf Borneo\ camphor}\dots$	C10H17OH	154.20
24	" acetate (d.) Brassidic acid	••••••	CH3 COOC10H17	184.22
6	Brazilin		$\begin{array}{c} C_{22}H_{42} O_2 \dots \\ C_{16}H_{14}O_5 + 1\frac{1}{2}H_2O \dots \end{array}$	$338.45 \\ 313.21$
7 8	Brom-acetic acid.		CH ₂ BrCOOH	139.00
8	acetone		CH ₂ Br·CO·CH ₃	136.98
9	acetylene		C2HBr	104.98
0	aniline (o.)		BrC6H4NH2	172.08
2	" " (m.) (p.).		BrC ₆ H ₄ NH ₂ BrC ₆ H ₄ NH ₂	172.08 172.08
3 4	benzene.	See phenyl bromide		
	benzoic acid (o.)	•••••	BrC ₆ H ₄ ·COOH	201.04
5	(m.)	••••••	BrC ₆ H ₄ ·COOH	201.04
6	" " (p.)	•••••	BrC6H4 · COOH	201.04
8	ethylene		CH2:CHBr	107.00 207.07
9	naphthalene (α)	••••••	C ₁₀ H ₇ Br C ₁₀ H ₇ Br	207.07 207.07

No.	Crystal- line form	Sp. gr. H ₂ O=1	Melting- point	Boiling- point		llity in gm 100 c.c. of	
	and color	(A)Air=1	- ℃		Water	Alcohol	Ether
1	colorl.		103.5		i.; s. bz.	s.	v. s.
2	colorl.		168		v. sl. s. h.	s. h.	v. sl. s.
3	colorl. liq.	1.057160		206	v. sl. s.	∞	80
4	colorl. liq.	1.061250		284–90. d.	i.	· ∞	∞
5 6 7	colorl. liq. colorl. liq. colorl. liq.	$1.043^{20}^{\circ} \ 0.980^{20}^{\circ} \ 1.114^{19}^{\circ}$	18.3	204.7 184 323-4.	417° ∞ i.	& & 8.	8 8 8
8	or leaf. liq.	1.438220	-3.9	198:5	i.	∞	8
10 11 12 13 14 15 16	colorl liq. liq. colorl oil prisms need.	1.103 ^{18°} 1.021 ¹ / ₁ 8° 1.036 ^{16°} 1.734 ^{25°}	-41.2 -24.6 24. 41 147.	176-9. 233.5 295-8 dec. 243 230-5	i. i. s. CS ₂ i. i. sl. s.	∞ v. s. h. sl. s. v. s. v. s.	8. 8. 8. v. s. sl. s.
17	yel. or or.		145 d.		22210	1 c.;	v. sl. s.
18	need.		d. 235		sl. s. c.;	v. s. h. v. sl. s. h;	i.
19	tricl. colorl.		270–6 d.		v. s. h. v. s.	s.	
20	monocl. dk. red		192-2.5		v. sl. s.;	sl. s.	v. sl. s.
21	rhomb. colorl.		190 d.		s. alk.	v. s.	v. sl. s.
22	need. colorl. hex.	1.011	210.5	subl.	45.5106° v. sl. s.	v. s.	v. s.
23	leaf. colorl. hex. leaf.	1.011	203.4	212-2	v. sl. s.	v. s.	v. s.
24 25 26	colorl. colorl. leaf. colorl.	0.85957	29 60 abt. 250	223 	v. sl. s. 0.74 ²⁴ sl. s.	v. s. v. sl. s. c. s.	s. s. s.
27 28	need. colorl. hex.		50	208 136.5 725mm			,
29 30 31 32	gas rhomb.	1.582210	31-1.5 18-8.5 66.4	-2 250-1 251 dec.	v. s. i.	s. s. s. v. s.	v. s.
33 34	colorl.		150	subl.	0.18250	v. s.	v. s.
35	need.		155		0.04250	v. s.	v. s.
36	need. colorl.		251		v. sl. s. c.	s.	v. s.
37 38 39	monocl. prisms rhomb. leaf.	1.517 ^{14°} 1.487 ² 9° 1.605°	5 59	16 ^{750mm} 279 282	i. bz. s. bz.	ω ω abs. 6	ω ω v. s.
	1	1	1			1	I

No.	Name	Synonyms	Formula	Mol. wt.
1 2 3 4 5 6 7 8 9 10 11 12	Brom- nitrobenzene (o.) " (p.) phenol (o.) " (p.) toluene (o.) " (m.) Bromal Bromoform Brucine	tribromaldehyde	BrCsH4NO2. BrCsH4NO2. BrCsH4NO3. BrCsH4OH. BrCsH4OH. BrCsH4OH. BrCsH4CH3. BrCsH4CH3. BrCsH4CH3. CBr3-CHO. CBr3-CHO.	207.07 207.07 207.07 173.03 173.03 171.06 171.06 280.90 252.90 466.41
13 14	hydrochloride nitrate		C ₂₃ H ₂₆ O ₄ N ₂ ·HCl C ₂₃ H ₂₆ O ₄ N ₂ ·HNO ₃ + 2H ₂ O	430.81 493.39
15	sulphate		(C ₂₃ H ₂₆ O ₄ N ₂) ₂ H ₂ SO ₄ + 7H ₂ O	1012.86
16	Butane (n.)		CH ₃ ·CH ₂ ·CH ₂ ·CH ₃	58.10
17 18 19	Butyl acetate alcohol (n.) " (sec.)	methyl ethyl car-	CH ₃ ·COO·C ₄ H _{9····} CH ₃ ·(CH ₂) ₂ ·CH ₂ OH CH ₃ ·CH ₂ ·CHOH· CH ₃	116.13 74.10 74.10
20 21	" (iso) " (tert.)	trimethyl carbinol	(CH ₃) ₂ ·CH·CH ₂ OH (CH ₃) ₃ ·COH	74.10 74.10
22	amine (n.)		CH ₃ ·(CH ₂) ₂ ·CH ₂ NH ₂	73.15
23 24 25 26 27 28 29 30 31 32 33 34 35	benzoate (n.) bromide (n.) butyrate (n.) carbinol chloride (n.) cyanide ether (n.) formate iodide mustard oil phenyl ketone Butylene Butyramide (n.)	valero nitrile ethyl ethylene	C.H. COO C.H	178.18 137.05 144.17 88.13 92.54 83.06 130.19 102.11 184.06 115.19 162.17 56.08 87.13
36 37 38 39 40 41 42 43 44 45	Butyric acid (n.) aldehyde (n.) anhydride Butyrine Cacodyl. chloride oxide Cacodylic acid Caffeic acid Caffeine	tributyrinetheine	CH3· (CH3)· COOH CH3· (CH3)· CH0. (CH3· (CH3)· CO)2· O (CH4· COO)3C-H1. (CH3)2AS-AS(CH3). (CH3)2AS-AS(CH3). (CH3)2ASC. (CH3)2ASC. (CH3)2ASC. CH3)2ASC. CH3)2ASC. CH3)2ASC. CH3)2ASC. CH3)2ASC. CH3)2ASC. CH3)2ASC. CH3)2ASC.	88.08 72.08 158.16 302.28 210.12 140.51 226.12 138.06 189.12 212.30
46 47	Camphene (i.) (d. or l.)		C ₁₀ H ₁₆	136.17 136.17

No.	Crystal- line form	Sp. gr. H ₂ O=1	Melting- point	Boiling- point		lity in gm 100 c.c. of	
No.	and color	(A)Air=1	°C	°C	Water	Alcohol	Ether
1 2 3 4 5 6 7 8 9 10 11 12	monocl. oil leaf. tetr. liq. liq. rhomb. yel. liq. colorl. liq. monocl.	1.934 ^{22°} 1.840 1.431 ¹ / ₁ 8° 1.410 ^{20°} 1.354 ^{240°} 2.65 2.884 ^{25°}	38.5 52.6 125 5.6 32-3 63-4 -26 -40 28.5 	264.4 257.5 259.2 195 236 238 181 183 184-5 174 151.2	i. i. s. alk. s. alk. s. chl. i. dec. sl. s. 0.31 c.; 0.67100°	V. S. S. S. S. S. S. W. S. W. S.	s. s. v. s
13 14	need. prisms		230 d.		v. s. s.	s.	
15	long need.				s.	s.	
16	gas	0.600°.		1	i.	5.6 c.	
17 18 19	colorl. liq. colorl. liq. colorl. liq.	2.046 (A) 0.88220° 0.81020° 0.81922°		125 117 99.8	sl. s. 8.3 29 ²⁰	& &	8 8
20 21	colorl. liq. colorl. liq. or rhomb.	0.806 ^{15°} 0.781 ^{25°} 0.740 ^{20°}	-108 25	106.5 82.9 78	9.5 ^{18°} ∞ v. s.	s.	ω ω
22 23 24 25 26 27 28 29 30 31 32 33 34 35	colorl. liq. oil liq. colorl. liq. liq. colorl. liq. liq. colorl. liq. liq. liq. liq. gas wh. tab.	1. 00020° 1. 27920° 0. 8880° 0. 81220° 0. 88720° 1. 00020° 0. 76940° 0. 9110° 1. 61720°	52-3	247.3-9.0 101 165 113-4 77.5-8.0 141 141 106.9 129.6 167 2.375-8.5 1.5-2.5 216	i. i. sl. s. sl. s. i. i. s. sl. s. i. i. s. sl. s. ii. i. i. i. i. i. i. s. sl. s. s. i. i. i. s.	© CO CO CO CO CO CO CO CO CO CO CO CO CO	
36 37 38 39 40 41 42 43 44 45	colorl. liq. colorl. liq. colorl. liq. colorl. liq. rhombic. yel. prisms wh. need. feath. need.	0.960 ^{19°} 0.817 ^{20°} 0.978 1.052	-7.9 -6 -25 200 d. 195 229.5- 30.5 47 51-2	162.5 73-4. 191-3 285 170 100 120 dec 157	3.7 dec. i. sl. s. i. v. s. s. 1.3516°; 45.565°; i.	© dec. V. s. s. s. v. s. 2.315° (85%) V. s. v. s. v. s.	v. sl. s. 0.04416° v. s.

No.	Name	Synonyms	Formula	Mol. wt.
1 2	Camphor (d.) Camphoric acid (i.)		C ₁₀ H ₁₆ O C ₈ H ₁₄ (COOH) ₂	152.18 200.18
3.	Camphoric acid(d.)		C ₈ H ₁₄ (COOH) ₂	200.18
4	" anhydride	·····	C ₁₀ H ₁₄ O ₈	182.17
5 6	Cane sugar. Capric acid	See sucrose	CH ₃ ·(CH ₂) ₈ ·COOH	172.21
7	Caproic acid		CH·(CH ₂) ₄ ·COOH.	116.13
8 9	Caprylic acid Carbanilid	diphenyl urea	$\begin{array}{c} CH_3 \cdot (CH_2)_6 \cdot COOH \\ C_6H_5 \cdot NH \cdot CO \cdot NH \cdot \\ C_6H_5 \end{array}$	144.17 212.25
10	Carbazol		C6H4·NH·C6H4	167.17
11 12	Carbolic acid Carbon dioxide	See phenol	CO ₂	44.01
13 14 15	disulphide hexachloride monoxide		CS ₂	76.13 236.77 28.01
16 17 18 19 20 21 22	oxysulphide suboxide tetrabromide tetrachloride tetraiodide Carbonyl chloride Carbostyril	tetrachlormethane phosgene. 2 hydroxy-quino- line	COS. CsO2. CBr4. CCl4. COCl2. HO·C ₉ H ₅ ·N.	60.07 68.02 331.85 153.84 519.89 98.92 145.15
23	Carvacrol	isopropylhydroxy- toluene	(CH ₃) ₂ CH·C ₆ H ₃ ·	150.16
24	Catechol	pyrocatechin	$(CH_2) \cdot OH(4, 1, 2)$ $C_6H_4(OH)_2 (0.) \dots$	110.08
25	Cellulose		(C ₆ H ₁₀ O ₅)x	(162. 11) x
26 27	acetate penta tetra	•••••	C ₆ H ₅ (COOCH ₃) ₅ C ₆ H ₆ O(COOCH ₃) ₄	372.24 330.21
28	" tri		C ₆ H ₇ O ₂ (COOCH ₃) ₃ .	288.19
29	nitrate hexa	principal constitu- ent of gun cotton	C12H14O4(NO3)6	594.23
30	" penta		C12H15O5(NO3)5	549.23
31	" tetra)	constituents	C ₁₂ H ₁₆ O ₆ (NO ₃) ₄	504.23
32	" tri}	of collodion	C12H17O7(NO3)3	459.23

No.	Crystal- line form	Sp. gr. H ₂ O=1	Melting- point	Boiling- point		lity in gm 100 c.c. of	
-10.	and color	(A)Air=1	°C	*°C	Water	Alcohol	Ether
1 2	colorl. hex.	0.992 ^{10°} 1.228	176.4 208	205.3	v. sl. s. 0.76 ²⁵ °; 10 ¹⁰⁰ °	120 ¹² ° s.	v. s. v. s.
3	colorl. monocl.	1.186	187		0.62 ^{12°} ; 8.3 ^{100°}	112.	• • • • • • • • • • • • • • • • • • • •
4	rhomb. f.		220-1.	abt. 270. d.	v. sl. s.	v. s.	v. s.
5 6	colorl. need.	0.930870	31.3	268.4	v. sl. s.	8.	8.
7	colorl. liq.	0.929200	-5.2	205.7	v. sl. s.	8.	8.
8	colorl. leaf. need. f. al.	0.910 ²⁰ °	16.5 236-7	237.5	0.25100° v. sl. s.	σ v. s.	σ v. s.
10	colorl. leaf.		238.5	351.5	i.	0.92 ^{14°} ; 3.88 ^{78°}	sl. s.
11 12	gas	1.53 (A)	-65	-80	179.70°; 107.515°	319.9 ^{15°} c.c.	·
13 14 15	colorl. liq. rhombic. gas	1.256 ^{22°} 1.99 ^{20°} 0.967(A)	-112.8 182 -205.7- 7.0	46.2 187 -190	i. 2.5 ¹⁵ ° c.c.	∞ s. 20 ²⁰ ° c.c.	v. s.
16 17 18 19 20 21 22	gas gas tab. colorl. liq. red gas pr. f. al.	2.104(A) 1.11° 3.42 1.58425° 4.3220°	-107 92 -19.5 <-75. 199-200.	-47.5 7 189 76. dec. 8.2 subl.	100c.c. dec. i. 0.0820° i. dec. v. sl. s. c.; s. h.	s. s. dec. v. s.	s s s v. s.
23	oil	0.97828°		236-8	s. alk.		s.
24 25	colorl. leaf. f. bz. amor.	1.344 abt. 1.5	104	240-5	v. s. i.*	v. s.	v. s. i.
26 27	amor. amor. amor.	apt. 1.3	soft. abt.		i. i.; i. acet.	s. i.; i. meth.	i.; i amyl.‡ acet.
28	amor.				i.	i.; i. acet.	i.‡
29	wh. amor.	abt. 1.66	ign. 160 -70		i.; i. bz.	i.; v. v. sl. s. ethal.	i ; s.† nitro-bz.
30	wh. amor.	abt. 1.66			i.; i. bz.	i.; s. ethal.	i.
31	wh. amor.	abt. 1.66			i.; i. bz.	i.; s. ethal.	i.; s. meth. al.
32	wh. amor.	abt. 1.66			i.; i. bz.	s. abs.;	s. glac. acet. a.h.

Soluble in conc. H₂SO₄· and ammoniacal CuO.
 † All nitro celluloses are soluble in acetone, ethyl acetate, amylacetate.
 ‡ Soluble in chl., glac. acet. a. and nitrobenzene.

No.	Name	Synonyms	Formula	Mol. wt.
1	Cerotic acid		C ₂₆ H ₅₂ O ₂	396.55
2	Ceryl alcohol		C ₂₆ H ₅₄ O*	382.56
3 4	Cetyl alcohol Chlor-acetic acid .	ethal	C ₁₆ H ₃₃ OH CH ₂ Cl·COOH	242.35 94.49
5 6 7 8 9	acetone acetyl chloride aniline (o.) " (m.) " (p.)		CH ₂ Cl · CO · CH ₃	92.51 112.93 127.57 127.57 127.57
10 11 12 13 14	benzamide (o.) " (m.). " (p.) benzene benzoic acid (o.)	phenylchloride	ClC ₆ H ₄ ·CONH ₂ ClC ₆ H ₄ ·CONH ₂ ClC ₆ H ₅ Cl ClC ₆ H ₄ COOH	155.58 155.58 155.58 112.52 156.53
15	" " (m.)		ClC ₆ H ₄ COOH	156.53
16	" " (p.)		ClC ₆ H ₄ COOH	156.53
17 18 19 20 21 22 23 24 25 26 27	ethyl alcohol (2) malonic acid naphthalene (\alpha). " (\beta). " (m.) " (m.) phenol (0.) " (m.) " (p.)	nitro-chloroform, nitrotrichlor- methane	CH ₂ Cl · CH ₂ OH	80 .50 138 .50 162 .56 162 .56 157 .55 157 .55 128 .53 128 .53 128 .53 164 .39
28 29 30 31 32 33 34 35	- propionic acid (\alpha) pyridine (2) (3) quinoline (2) quinoline (2) (4)		CH ₃ ·CHCl·COOH. CH ₂ ·Cl·CH ₂ ·COOH. CIC ₃ ·H ₄ N. CIC ₃ ·H ₄ N. CIC ₄ ·H ₄ N. CIC ₃ ·H ₄ N. CIC ₃ ·H ₄ N. CIC ₃ ·H ₄ N.	108.51 108.51 113.55 113.55 113.55 163.59 163.59 163.59
36 37	toluene (o.) (m.)		ClC ₆ H ₄ ·CH ₃ ClC ₆ H ₄ ·CH ₃	$126.55 \\ 126.55$
38 39	" (p.) Chloral	trichloracetic alde-	ClC ₆ H ₄ ·CH ₃ CCl ₃ ·CHO	126.55 147.37
40	alcoholate		CCl3·CH(OH)·O·	193.46
41	hydrate		C_2H_5 $CCl_3 \cdot CH(OH)_2 \cdot \dots$	165.39
12	Chlorhydrine (α) .		CH ₂ Cl·CHOH CH ₂ OH	110.53

No.	Crystal- line form	Sp. gr. H ₂ O=1	Melting- point	Boiling- point	Solub	lity in gm 100 c.c. of	s. per
110.	and color	(A)Air=1	, .c	- °C	Water	Alcohol	Ether
-1	need. f. al.	0.836 ^{79°}	78-82.5	dec.	i.; s. acet.	v. sl. s.c.; s. h.	20. ^{35°} s. bz.
2	colorl. cryst.		79		i.	s.	s.
3 4	leaf. f. al. colorl. rhomb.	$0.818^{50}^{\circ} \ 1.398^{64}^{\circ}$	50 62-3	344 186	i. v. s.	s. s.	s. s.
5 6 7	colorl. liq. colorl. liq. liq.	1.162 ¹⁶ ° 1.495 ⁰ ° 1.213 ²⁰ °		119 105–6 207	sl. s. dec. s. a.	dec.	 s.
8	liq. rhomb.	1.216 ²⁰ ° 1.340 ¹⁸ °	70	230 230–2	s. a. s. h.; s. a.	s.	s
10 11 12	long. need. need. need.		142.4 134.5 178.3		sl. s. sl. s. v. sl. s.	v. s. v. s. v. s.	v. s.
13 14	colorl. liq. colorl. rhomb.	1.106 ²⁰ ° 1.540	-45 137, (142)	132	i. 0.2125° 0.040°	v. s.	v. s.
15 16	colorl. prisms colorl.	1.541 ^{24°}	153, (158) 236	subl.	v. sl. s.	v. s.	v. s.
17 18	monocl. colorl. liq. prisms	1.201 ^{19°}	(240–3)	132	∞ v. s.	σ v. s.	σ v. s. s.
19 20 21 22	colorl. leaf. need. rhomb.	1.194 ²⁰ ° 1.266 ¹⁶ ° 1.368 ²² ° 1.534	56 32.5 44.2	263 265 246 235.6	i. i. i. s. bz.	s. s. s. v. s. h.	s. s. s.
23 24 25 26 27	monocl. colorl.liq. colorl. liq.	1.52018°	83 8.8 32.8 42.9 -69.2	239-42 175-6 214 217 112	i. v. sl. s. i.	s. s. v. s. co	v. s.
28 29 30	colorl. liq. colorl. leaf. liq.	1.280° 1.205	41.5	186 203-5 166 ^{714mm}	∞ v. s. v. sl. s.	σ v. s.	& &
31 32 33 34	liq. liq. need	1.275	37-8	148 ⁷⁴³ mn 147–8 275 255 ⁷⁴³ mn	v. sl. s.	v. s.	v. s.
35 36	colorl. liq.	1.37717°	34 -34 -47.8	260-1 744mm 157 162	sl. s.	s. s.	w. s
37 38 39	colorl. liq.	1.072 ²⁰ ° 1.071 ¹⁸ ° 1.512 ²⁰ °	6.5-7.5 -57.5	(150) 162 98	sl. s. v. s.	s. ∞	8 8
40	colori. nq.	1.14340°	56	115	v. s.	8.	8.
41	cryst.	1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	57	97-97.5	, 66	v. s.	s.
42	liq.	1.32615°		d. 213	s.	s.	s.

	T	I		,
No.	Name	Synonyms	Formula	Mol. wt.
1	Chloroform	trichlormethane	CHCl ₃	119.37
2	Cholesterol	cholesterin	C26H43OH+H2O	390.50
3	Choline	bilineurine	OH · CH ₂ · CH ₂ ·	121.16
4	Chrysene		N(CH ₂) ₃ ·OH C ₁₈ H ₁₂	228.19
5	Cinchonine		C19H22ON2	294.29
6	bisulphate		C19H22ON2 · H2SO4	464.43
. 7	hydrochloride		+4H ₂ O C ₁₉ H ₂₂ ON ₂ ·HCl	366.79
8	sulphate		+2H ₂ O (C ₁₉ H ₂₂ ON ₂) ₂ H ₂ SO ₄	722.69
9 10	Cinnamene Cinnamic acid	styrene phenylacrylic acid (B)	+2H ₂ O C ₆ H ₅ ·CH: CH ₂ C ₆ H ₅ ·CH: CH·	104.10 148.11
11	Cinnamic aldehyde	·····	COOH C ₆ H ₅ ·CH : CH · CHO	132.11
12	Cinnamyl alcohol.		C ₆ H ₅ ·CH : CH·	134.13
13 14	Citral Citric acid		СН ₂ ОН С ₉ Н ₁₅ -СНО СООН - СН ₂ -С(ОН) (СООН) - СН ₂ -СООН	152.18 210.11
15 16 17	Citronellal Citronellol (d.) Cocaine		C ₉ H ₁₇ ·CHO C ₁₀ H ₂₀ O C ₁₇ H ₂₁ O ₄ N	154.19 156.21 303.26
18	hydrochloride		C17H21O4N·HCl	339.73
19	Codeine	morphine methyl	C18H21O8N+H2O	317.28
20	hydrochloride	ether	C18H21O3N · HCl	371.77
21	phosphate		+2H ₂ O C ₁₈ H ₂₁ O ₂ N · H ₂ PO ₄	433.37
22	sulphate		+2H ₂ O (C ₁₈ H ₂₁ O ₃ N) ₂ .	786.69
23	Collidine (α)	2-methyl-4-ethyl	H ₂ SO ₄ +5H ₂ O CH ₃ ·C ₅ H ₃ N·C ₂ H ₅	121.17
24	" (β)	pyridine 4-methyl-3-ethyl	CH ₃ ·C ₅ H ₈ N·C ₂ H _{5··}	121.17
25	" (γ)	pyridine 2, 4, 6-trimethyl	(CH ₃) ₃ ·C ₅ H ₂ N	121.17
26	Coniine (d.)	pyridine 2-propyl piper- idine	2, C5H10N·C8H7	127.19
27	hydrochloride	laine	C8H17N·HCl	163.66
28	Coumaric acid (o.)	hydroxycinnamic acid (o.)	HO-C6H4-CH:CH-	164.11
29	" " (m.)	hydroxycinnamic acid (m.)	COOH HO·C ₆ H ₄ ·CH:CH·	164.11
30	" " (p.)	hydroxycinnamic acid (p.)	COOH COOH	164.11
1			_1	

No.	Crystal- line form	Sp. gr. H ₂ O=1	Melting-	Boiling-	Solubi	lity in gm 100 c.c. of	s. per
	and color	(A) Air=1			Water	Alcohol	Ether
1	colorl. liq.	1.499150	-70	61.2	0.6222°	ω	· ·
2	monocl.	1.067	(-63.2) 148.5		i.	20 h.	18
3	tab. visc. liq.				s.	s.	٠٠٠٠٠.
4	scales, red		250	448	v. sl. s.	v. sl. s.	v. sl. s.
5	fluores colorl.	,	240- 50, d.		0.027^{20}	1	0.27
6	need. octahed.				217140	111 ^{14°}	
7	colorl.				4.5 c.	100	0.18
8	monocl. rhombic		198.5		1.55 ¹³ °	1711°	*
9 10	colorl. liq. colorl.	0.925°° 1.2484°	133	146 300	i. 0.120°	∞ 23²0°	v. s.
11	monocl. colorl. liq.	1.050 ²⁴ °	-7.5	128- 3020mm	v. sl. s.	∞	∞
12	need.	1.04035°	33	254	sl. s.	v. s.	v. s.
13 14	colorl. liq. colorl. rhomb.	0.897 1.54218°	153	228-9 dec.	i. 133 c.*	∞ 11625°	2.26 c.
15 16 17	colorl. liq. colorl. liq. colorl.	0.854 ^{17.5°} 0.856 ^{8°}	98	205-8 118 ^{17mm}	v. sl. s. v. sl. s. 0.1625°; 0.3880°	∞ ∞ 2025°	ω ω 26.3
18	monocl. colorl.		186†		25025	. 38.4%	·i.
- 19	prisms colorl.		155 anh.		0.83 ²⁵ °; 1.7 ⁸⁰ °	62.525°	8250
20	orthorh.		264 anh.		3.8415°		
21	need.		235		44.525°	0.3825°	0.07
22	need. colorl. rhomb.		278, d.		3.325	0.125	i.
23	colorl. liq.	0.927160		179	9.	v. s.	v. s.
24	colorl. liq.	0.966°		abt. 19	5 i.	s.	• • • • • • • • • • • • • • • • • • • •
25	colorl. liq.	0.917		171-2	v. sl. s.		
26	colorl. liq.	0.844200	-2	166-7	1.1 c.	∞	v. s.
27	colorl.		208-12		50	8.	i.
28	colorl.		208	dec.	sl. s.	v. s.	v. sl. s.
29	colorl. prisms		191		v. s. h.		v. s.
30	colorl. need.		206		sl. s. c.; v. s. h		v. s.
				1 .			<u> </u>
		·	<u> </u>				

^{*} Crystallizes from water with 1H₂O.

[†] Crystallized from alcohol.

No.	Name	Synonyms	Formula	Mol. wt.
1	Coumarin	cumarin	C ₉ H ₆ O ₂	146.10
3	Coumaron Creatine	methylglycocy-	C ₈ H ₆ O NH:C(NH ₂)N(CH ₃)	118.09 149.23
4	${\bf Creatinine}$	amine methylglycocyami- dine		113.20
5	Creosole	dine	CH3 · O · C6H3 · (CH3) ·	138.12
6	Cresol (o.)		OH, (1, 4, 2) CH ₃ ·C ₆ H ₄ ·OH	108,10
7 8	" (m.) " (p.)	`	CH ₃ ·C ₆ H ₄ ·OH CH ₃ ·C ₆ H ₄ ·OH	108.10 108.10
9	Crotonic acid (α) .		C ₃ H ₅ ·COOH	86.07
10	" " (β):		C ₂ H ₅ ·COOH	86.07
11	" aldehyde (α)		C ₃ H ₅ ·CHO	70.07
12	Crotonyla cohol		CH ₃ ·CH:CH· CH ₂ OH	72.08
13 14	Cumene Cumidine	isopropyl benzene paraisopropyl aminobenzene	$C_6H_5 \cdot CH(CH_3)_2 \dots$ $(CH_3)_2CH \cdot C_6H_4 \cdot$	120.15 135.16
15	Cuminic acid (p.)		NH ₂ (CH ₃) ₂ CH · C ₆ H ₄ ·	164.15
16	aldehyde (p.)	paraisopropyl benzaldehyde	COOH (CH ₃) ₂ CH·C ₆ H ₄ · CHO	148.15
17 18	Cyan-acetic acid Cyanamide	nitrilomalonic acid	CH ₂ (CN) · COOH CN · NH ₂	85.09 42.11
19 20	Cyanogen bromide		N:C·C:NCNBr	52.03 106.01
21	${f chloride} \ldots \ldots$		CNCI	61.50
22	Cyanuric acid		H ₃ O ₃ N ₃ C ₃ +2H ₂ O	165.21
23	Cyclo-hexane	hexanaphthene	C ₆ H ₁₂	82.13
4 5 6	hexanol hexanone Cymene	hexahydrophenol. pisopropyl	(CH ₂) ₅ : CHOH (CH ₂) ₅ : CO CH ₃ · C ₆ H ₄ · CH;	100.13 98.11 134.17
7	Deca-hydro-	toluene	(CH ₃) ₂ (1, 4) C ₁₀ H ₁₈	138.20
8 9	naphthalene Decane (n.) Decyl alcohol		CH ₃ ·(CH ₂) ₈ ·CH ₃ CH ₃ ·(CH ₂) ₈ ·CH ₂ OH	142.23 158.23
0	Decylene (n.)		CH3 · (CH2)7 · CH :	140.21
1	Dextrin		CH_2 $(C_6H_{10}O_5)_{\mathbf{X}}$	(162
2 3	Dextrose	glucose, grape sugar	$C_6H_{12}O_6+H_2O$ $C_6H_5\cdot N(CO\cdot CH_3)_2$.11)x 198.15 177.15

No.	Crystal- line form	Sp. gr. H ₂ O=1	Melting- point	Boiling- point	Solubi	lity in gms 100 c.c. of	s. per
	and color	(A)Air=1		c	Water	Alcohol	Ether
1	colorl.	,	67	290-0.5	v. sl. s.; s, h.	v. s.	v.s.
2 3	liq colorl. monocl.	1.078150	<-18 d. 295- 300	169–74	i. 1.35 ¹	8. 0.008 ⁷⁰ °	s. i.
4	colorl. prisms f.w.	,	d. abt. 270		8.716	0.16 c. abs.	• • • • • • •
5	oil	1.09615°		220-2	sl. s.	8	ω, ω bz.
6	colorl.	1.051}§°	30	190.8	3.1350	∞ abv. 30°	∞ abv. 30°
7 8	colorl. liq. colorl. prisms	1.03915° 1.03915°	4 36	202.8 201.8	2.41 ²⁵ °. 2.36 ⁴⁰ °	∞ ∞ abv. 36	∞ ∞ abv. 36
9	colorl. monocl.	0.973^{72} °	72	185	8.3		
10	colorl.	1.031	15.5	169.72, d.	40	s.	
11	need. colorl.liq.	0 85914°		104-5	s.		
12	colorl. liq.	0.873°°		117	16.6		
13 14	colorl. liq. colorl. liq.	$0.862^{20}^{\circ} \ 0.953$	<-20	152.5-3.0 225	i. s. a.	8.	s.
15	colorl.	1.1634°	116.5	subl.	v. sl. s. c.	s.	v. s.
16	tricl. colorl. liq.	0.97635°	1	235	i.	s.	s.
17 18	colorl. colorl. need		69-70 46(41-2)	dec.	s. v. s.	s. v. s.	s. . s.
19 20	gas colorl.	1.806 (A)	-34 52	-21 61.5	400 c.c. s.	v. s. s.	s. s.
21	gas		-5	15.5	2500 c.c.	10,000	5,000 c.c.
22	colorl. monocl.	1.768°°			0.25170	0.33 с.	v. sls
23	colorl. liq.	0.779 ²⁰ ° (0.790 ²⁰)	6.4 (4.7)	80.8	i.	ω	ω .
24 25 26	colorl. liq. colorl. liq.	0.96220° 0.94720° 0.86016°	16 (24) -73.5	160-1 155-7 175-6.5	3.6 v. s. i.	s. s. v. s.	s. s.
27	colorl. liq.	0.87720°		189-91 (173-80)	i.	s.	s.
28 29	colorl. liq. colorl., visc. liq.	0.730 ²⁰ ° 0.830 ²⁰ °	-30-2 7	173 231	i.	s.	
30	visc. liq. colorl. liq.	0.763°		172	i.	ω	· 00
31	white	1.038			v. s. h.	· i.	i
32 33	amor. need. f. al. colorl. leaf.	1.56218°	146 anh. 37-8	14211 mm	8317.50	sl. s.	i.

No.	Name	Synonyms	Formula	Mol. wt.
1	Diacetin	glyceryl diacetate	C ₃ H ₅ (OH) (OOC · CH ₃) ₂	176.14
2 3	Diacetyl Diamino-azo-ben- zene (2, 4)		$CH_3 \cdot CO \cdot CO \cdot CH_3$ $(NH_2)_2 \cdot C_6H_3 \cdot N_2 \cdot$	86.07 212.20
4	-azo-benzene hydrochloride	chrysoidine orange	C ₆ H ₅ C ₆ H ₅ ·N ₂ ·C ₆ H ₃ · (NH ₂) ₂ HCl	248.66
5	benzene (o.)		C ₆ H ₄ ·(NH ₂) ₂	108.11
6 7	" (m.) " (p.)		C ₆ H ₄ ·(NH ₂) ₂ C ₆ H ₄ ·(NH ₂) ₂	108.11 108.11
8	Diamino-diphenyl methane (4, 4').		CH2(C6H4·NH2)2	184.19
9	Diamino-naphtha- lene (1, 2)	naphthylene diamine	C10H6 · (NH2)2	158.15
10	Diamino-naphtha- lene (1, 5)	naphthylene diamine	C10H6 · (NH2)2	158.15
11	Diamino-naphtha- lene (1, 8)	naphthylene diamine	C10H6 · (NH2)2	158.15
12 -	Diaminophenol		(NH ₂) ₂ ·C ₆ H ₃ (OH)	110.00
13	(2, 4) hydrochloride	amidol	HO·C ₆ H ₈ ·(NH ₂) ₂ · 2HCl	182.94
14	Diamino-triphenyl- methane (4, 4')	••••••	C ₆ H ₅ ·CH·(C ₆ H ₄ · NH ₂) ₂	274.26
15	Diazo-amino- benzene	•••••	C6H5·N2·NH·C6H5	197.27
16	benzene chloride	••••••	$C_6H_5 \cdot N_2Cl \cdot \dots$	140.60
17	" nitrate.		C6H5-N2NO3	167.19
18	Dibenzyl		C ₆ H ₅ ·CH ₂ ·CH ₂ · C ₆ H ₅	182.19
19 20	Dibrom-acetic acid anthracene		CHBr ₂ ·COOH	217.95
21	benzene (o.)		C ₁₄ H ₈ Br ₂ C ₆ H ₄ Br ₂	320.97 235.98
22	" (m.) " (p.)		C ₆ H ₄ Br ₂ C ₆ H ₄ Br ₂	235.98
.	Dichlor-acetamide	,	CHCl ₂ ·CONH ₂	235.98 127.98
25	acetic acid			128.93
26 27	acetone (α)		CHCl ₂ ·COOH CHCl ₂ ·CO·CH ₃	126.95
28	acetyl chloride		CH ₂ Cl·CO·CH ₂ Cl CHCl ₂ ·COCl	126.95
29	aldehyde		CHCl ₂ ·CHO	147.37 112.93
30	anthracene (9,10)	•••••	C ₁₄ H ₈ Cl ₂	112.93 247.05
31	aniline (2, 4) (2, 5)		NH2·C6H3Cl2	162.01
32	$(2, 5) \dots $ $(3, 4) \dots$		NH ₂ ·C ₆ H ₃ Cl ₂	162.01
34	(0, 0)		$ \begin{array}{c c} \mathbf{NH_6 \cdot C_6H_3Cl_2} \\ \mathbf{NH_6 \cdot C_6H_3Cl_2} \end{array} $	$162.01 \\ 162.01$
35	benzene (o.)		C ₆ H ₄ Cl ₂	146.96

No.	Crystal- line form	Sp. gr. H ₂ O=1	Melting- point	Boiling- point	Solub	ility in gm 100 c.c. of	ns. per f
	and color	(A)Air=1	.°C	*C	Water	Alcohol	Ether
1	,	1.17915°	40	259-60	ω	v. s.	s.
2 3	yellow liq. yel. need.	0.97322°	117.5	87.5–8.0	2515° sl. s.	s.	s
4	red brown				v. s.	s.	
5	tab. f. chl.	,	101.2	256-8	sl. s. c.; s. h.	v. s.;	v. s.
6 7	rhombic colorl. sc.		63 140	283-4 267	s. s.	s. s.	s. s.
8	f. bz. colorl. leaf.		88	,		v. s.	s. bz.
9	colorl. rhomb.	•••••	95–6		s. h.	v. s.	v. s.
Ì0	f. w. colorl. prisms	••••	189.5	subl.	v. sl. s. c.	v. s. chl.	v. s.
11	f. eth. colorl.		66.5		sl. s.	v. s.	v. s.
12	f. al. colorl.	•••••	78–80 ď.		s. alk.	·	
13	gray-wh. cryst.	•••••			s.	sl. s.	
14	colorl. warts	•••••	139		v. sl. s.	v. s.	v. s.
15	yel. leaf. f. al.		96	•••••	i.	s. h.	v. s.
16	colorl. need.	•••••	dec.		v. s.	s.	i.
17	colorl. need.		exp.	•••••	v. s.	s.	i.
18	colorl. monocl.	0.995	52	284	i.	8.	v. s.
19 20	yel. need.		48 221	232 subl.	v. s. s. bz. h.	v. s. ,sl. s.	v. s. sl. s.
21 22	colorl.	1.977 ^{18°} 1.955 ^{19°}	-1 1-2	224 219.5	i. i.	s. s.	8.
23	colorl. monocl.	2.220	89.3	219	i.	14300	
24	monocl.		98	233- 4755mm	v. s. h.	v. s.	v. s.
25 26	colorl. liq. colorl. liq.	1.572 ^{13°} 1.236 ^{21°}	-4	190-1 120	s.	s. s.	s. ∞
27 28	colorl. liq.		45	172-4 107-8	dec.	dec.	
29 30	colori, iiq. colori, liq. yel. need.	,	209	88-90	i. s. bz.	sl. s.	al. s.
31	need		63	245		s	
32 33	need		50 71.5	251 272		s. s.	:::::::
34 35	need colorl. liq.	1.325°	505	259-60 179	i. i.	s. s.	

,		····		
No.	Name	Synonyms	Formula	Mol. wt.
1 2 3	Dichlor- benzene (m.) " (p.) benzoic acid (2, 5)		C ₆ H ₄ Cl ₂	146.96 146.96 190.97
4 5	" (2, 6) " (3, 4)		$\begin{array}{c} \operatorname{Cl_2C_6H_3\cdot COOH} \dots \\ \operatorname{Cl_2C_6H_3\cdot COOH} \dots \end{array}$	190.97 190.97
6	hydrine (1, 3) (α)		СН₂СІ∙СНОН∙	128.97
7	" (2, 3) (β)		CH ₂ Cl CH ₂ Cl·CHCl· CH ₂ OH	128.97
8 9 10 11	methyl ether naphthalene (1, 4) " (1, 5) nitro-hydrine		CH2Cl·O·CH2Cl C10H6Cl2 C10H6Cl2 CH2Cl·CH(NO2)· CH2Cl	114.96 197.08 197.08 103.07
12 13 14 15 16 17 18 19 20 21	Diethyl-acetic acid amine		(C ₂ H ₃) ₂ : CH · COOH (C ₂ H ₃) ₂ : NH C ₂ H ₃ : NC ₂ H ₃) ₂ . C ₄ H ₄ (C ₂ H ₃) ₂ . C ₄ H ₄ (C ₂ H ₃) ₂ . C ₄ H ₄ (C ₂ H ₃) ₂ . (C ₂ H ₃) ₂ CHOH (C ₂ H ₃) ₂ C · (COOH) ₂ (C ₃ O · NHC ₂ H ₃) ₂ . (C ₄ H ₃) ₂ C · (C ₄ C) ₃ CH ₃ .	116.13 73.12 149.21 134.17 134.17 134.17 88.13 86.11 160.14 144.21 148.19
23 24	urea (s.) " (uns.)		C ₂ H ₅ NH·CO· NHC ₂ H ₅ NH ₂ ·CO·N(C ₂ H ₅) ₂ .	116.14 116.14
25	Dihydro-anthra-		C6H4: (CH2)2: C6H4	180.17
26 27 28	cene benzene (1, 2) " (1, 4) naphthalene (1, 4) Dihydroxy-		C ₆ H ₈	80.09 80.09 130.13
29 30 31	benzene (q.) " (m.) " (p.)	See catechol See resorcinol See quinol	(HO)₂: C ₆ H₃·COOH	190.12
32 32	benzoic acid (2, 3) " " (2, 4)		+2H ₂ O (HO) ₂ : C ₆ H ₃ ·COOH	208.14
			+3H ₂ O (HO) ₂ : C ₆ H ₃ · COOH	154.09
34 35	" " (2, 5) " " (3, 5)		(HO) ₂ : C ₆ H ₃ ·COOH +1½H ₂ O	181.12
36	" " (2, 6)	γ -resorcylic acid	(HO)2: C6H3 COOH	154.09
37 38 39 40	naphthalene (1,6) " (1,7) " (1,8) " (2,3)		C ₁₀ H ₆ (OH) ₂ C ₁₀ H ₆ (OH) ₂ C ₁₀ H ₆ (OH) ₂	160.11 160.11 160.11 160.11
41 42	" (2,7) pyridine (2,4)		C ₁₀ H ₆ (OH) ₂ (HO) ₂ C ₅ H ₃ N	160.11 111.11
	1	Y Y	I	, A

No.		Sp. gr. H ₂ O=1	Melting- point	Boiling- point	Solub	ility in gm 100 c.c. of	s. per
	and color	(A)Air=1	c		Water	Alcohol	Ether
1	colorl. liq.	1.30700	-18	172	i.	s.	s.
3	leaf. f. al. colorl. need.	1.26815°	53 156	172-4 301	sl. s.; s. alk.	s. s.	v. s.
4 5	colorl. need. colorl. need.		126.5 203		s. alk. sl. s.; s. alk.	v. sl. s.	
6.	colorl. liq.	1.367190		174 (182)	1.1190	ω .	∞ `
7	colorl. liq.	1.35517.50		182–3	•••••	•••••	• • • • • • •
8 9 10 11	need. f. al. sc. f. al. colorl.	1.315	67-8	105 287 subl.	i. i. i. i.	8. 8. 8.	s. s. s.
12 13 14 15 16	colorl. liq. colorl. liq. colorl. liq. colorl. liq. colorl. liq.	0.92018° 0.71215° 0.936 0.86618° 0.86020°	-40 -38-9	190 55.5–6.0 216 185 181 -2	sl. s. v. s. v. sl. s. i. i.	s. s. s. s.	s. s. s.
17 18 19 20 21	colorl. liq. colorl. liq. colorl. liq. "prisms colorl. need.		121–5 175	182-3 116.5 102-7	i. sl. s. s. 65 ¹⁶ ° sl. s.	s. s. co v. s.	s. s. co v. s. v. sl. s.
22 23	colorl. liq. colorl. prisms	0.879 ²⁰ ° 1.042	112	199-200 263	i. v. s.	ω v. s.	v. s.
24	colorl.	•••••	70–4	•••••	v. s.	v. s.	s.
25	colorl. tricl.		108.5	313	i.	v. s.	v. s.
26 27 28	colorl. liq. colorl. liq. colorl. liq.	0.84820° 0.84720°	15-5.5	82–5 85–6 212	i. i. i.	s. ∞ v. s.	v. s. φ v. s.
29 30 31							
32	colorl. need.	•••••	204	dec.	8.	•••••	•••••
33	colorl. need.	••••	204–6 d. (213)	dec.	0.26170	v. s.	v. s.
34 35	colorl. need. colorl. prisms		199–200 232	dec.	v. s. s.	v. s. v. s.	v.s. v. s.
36	colorl.	•••••	148–67 d.		s. alk.	•••••	•••••
37 38 39 40	colorl pr. colorl. need. need. rhomb.	; •(g. • • • • • •	134–5 178 140 159		s. sl. s. h. s. h.	v. sl. s. v. s. v. s. bz. v. s.	v. s. v. s. v. s. v. s.
$\begin{array}{c} 41 \\ 42 \end{array}$	f. w. colorl. need. rhombic	********	190 260–5	subl., d.	s. h. sl. s.	s. sl. s.	s. i.
					1	-	

No.	Name	Synonyms	Formula	Mol. wt.
1 2 3 4 5 6 7 8 9	Dihydroxy- pyridine (2, 6) quinone (2, 5) toluene (2, 4) (2, 5) (2, 6) Diiodo-acetic acid benzene (o.) (m) Diiso-amylamine.		(HO) ₂ C ₅ H ₃ N+ ¹ / ₂ H ₂ O C ₆ H ₂ O ₂ (OH) ₂ . CH ₂ C ₆ H ₄ (OH) ₂ . CH ₂ C ₆ H ₄ (OH) ₂ . CH ₂ C ₆ H ₄ (OH) ₂ . CH ₁ C ₇ COOH C ₆ H ₄ C ₇ COOH C ₆ H ₄ C ₈	120.12 140.06 124.10 124.10 124.10 311.97 330.00 330.00 330.00 157.27
11 13	amyl ketone butyl amine	· · · · · · · · · · · · · · · · · · ·	CH ₂] ₂ NH (C ₅ H ₁₁) ₂ CO [(CH ₃) ₂ ·CH·	170.24 129.24
13 14 15 16	" oxalate propyl carbinol. " ketone Dimethyl acetic acid	See isobutyric acid	CH ₂] ₂ NH C ₂ O ₄ (C ₄ H ₉) ₂ (C ₃ H ₇) ₂ CHOH (C ₃ H ₇) ₂ CO	202.20 116.17 114.16
17 18 19 20 21 22 23	amine	See, xlyenes	(CH ₃) ₂ NH C ₆ H ₅ N(CH ₆) ₂ C ₁₄ H ₈ (CH ₃) C ₁₄ H ₈ (CH ₃) (CH ₃) ₂ A ₈ H (CH ₃) ₂ C ₆ H ₅ ·COOH	45.11 122.17 206.20 206.20 106.07
24	" " (2, 4)	xylic acid	(CH ₃) ₂ C ₆ H ₃ ·COOH	150.13
25 26	" " (2, 5) " " (2, 6)		(CH ₃) ₂ C ₆ H ₃ ·СООН (CH ₃) ₂ C ₆ H ₃ ·СООН	150.13 150.13
27	" (3, 4)		(CH ₈) ₂ C ₆ H ₈ ·COOH	150.13
28	" " (3, 5)	mesitylinic acid (1, 3, 5)	(CH ₃) ₂ C ₆ H ₃ ·COOH	150.13
29 30	etherethyl acetic acid.	methyl ether	$CH_3 \cdot O \cdot CH_3 \cdot \dots \cdot CH_3 \cdot 2(C_2H_5) \cdot C \cdot COOH$	46.06 116.13
31	" benzene		$C_2H_5 \cdot C_6H_3 \cdot (CH_3)_2$.	134.17
32	(2, 3, 5) " benzene	•••••	C2H5 C6H3 (CH3)2	134 . 17
33 34	glyoxime isophthalate (1, 3)	diacetyldioxime	(1, 3, 4) (CH ₃) ₂ C ₂ (NOH) ₂ C ₆ H ₄ (COOCH ₃) ₂	116.10 194.13
35 36 37 38 39	isopropyl carbinol naphthylamine(α) (β) nitros amine oxalate		(CH ₃) ₂ (C ₃ H ₇)COH C ₁₀ H ₇ ·N(CH ₃) ₂ C ₁₀ H ₇ ·N(CH ₃) ₂ (CH ₃) ₂ N·NO (COOCH ₃) ₂	102.15 171.21 171.21 74.11 118.07
40	oxamide (s.)		(CO·NHCH ₃) ₂	116.16
41	" (uns.)		(CH ₃) ₂ N·CO·CO· NH ₂	116.16
- 1	l			l

1 yel 2 yel colc 6 yel colc 6 yel colc 6 yel colc 6 yel colc 11 yel 12 coll 11 yel 12 coll 11 yel 12 coll 12 coll 14 coll 15 coll 16 respectively coll 15 coll 16 respectively coll 15 coll 16 respectively coll 15 coll 16 respectively coll 15 coll 16 respectively coll 15 coll 16 respectively coll 15 coll 16 respectively coll 15 coll 16 respectively coll 15 coll 16 respectively coll 15 coll 16 respectively coll 15 coll 16 respectively coll 15 coll 16 respectively coll 1	lorl. l liq. lorl. liq. lorl. liq. lorl. liq. lorl. liq. lorl. lorl. leaf. lorl. leaf. lorl. leaf. lorl. liq.	H ₂ O=1 (A)Air=1 0.778 0.778 0.749 1.0024° 0.82230° 0.82630° 0.687-5-8° 0.95830° 1.21329°	point °C 195 215-20 103-4 124 63-6 110 27 40.4 129.4	point 267-70 subl. 286.5 284.7 285.7 190 226 1139-40 123.7 7.2 194	Water sl. s. i. v. s. v. s. v. s. i. sl. s. i. i. v. sl. s. i. v. sl. s.	Alcohol sl. s. v. s. v. s. v. s. s. s. s. s. s. s. s. s. s. s. s. s.	Ether v. sl. s. v. sl. s. v. s. s. s. s. v. s. bz
2 yei col col col col col col col col col col	l. need. lorl. lorl. lorl. leaf. rl. need. lllow isms omb. af. lorl. liq. lorl. liq. lorl. liq. lorl. liq. lorl. liq. lorl. liq. lorl. liq. lorl. liq. lorl. liq. lorl. liq. lorl. liq. lorl. liq. lorl. leaf. lorl. liq. lorl. liq. lorl. liq.	0.778 0.749 1.002 ^{14°} 0.829 ^{20°} 0.806 ^{20°} 0.687–5.8° 0.958 ^{20°}	215-20 103-4 124 63-6 110 27 40.4 1 2.5 246 71	267-70 subl. 286.5 284.7 285 190 226 139-40 229 140 123.7 7.2 194	i. v. s. v. s. v. s. s. s. i. s. s. i. v. sl. s. i. v. sl. sl. s. v. sl. sl. s. v. sl. sl. s. v. sl. s. v. sl. sl. s	V. S. V. S. V. S. V. S. S. S. S. S. S. S. S. S. S. S. S. S.	v. sl. s. v. s. v. s.
12 co. 13 co. 14 co. 15 co. 15 co. 16 lo. co. 19 co. c	lorl, liq. lorl, liq. lorl, liq. lorl, lorl, lorl, lorl, leaf, lorl, liq. lorl, liq.	1.002 ^{14°} 0.829 ^{20°} 0.806 ^{20°} 0.687 ^{-5.8°} 0.958 ^{20°}	2.5 -246 71	7.2 194 194 194 194	v. sl. s. i. v. sl. s. v. sl. s. v. s.	s. s. s. bz. s.	s. s. s.
15 col 16 col 16 col 17 gas 18 ye col 20 col 22 col 17 col 22 col 17 col 22 col 17 col 25 col 17 col 32 col 33 col 33 col 33 col 33 col 33 col 35 col 36 col 37 col	lorl. s l. liq. lorl. leaf. sed. f. al. lorl. liq. lorl.	0.829 ²⁰ ° 0.806 ²⁰ ° 0.687 ^{-5.8} ° 0.958 ²⁰ °	2.5 246 71	7.2 194	v. sl. s. v. s. v. sl. s.	s. bz. s. s.	s. s.
18 ye color	l. liq. lorl. leaf. ed. f. al. lorl. liq. lorl. prisms	0.95820°	246 71	194	v. sl. s.	8.	8.
23 co 1 24 co 24 co 25 cold ne 27 co 28 min 29 ga 30 co 31 co 32 co 33 co	prisms			36	∞ chl.	s. &	v. s. bz
24 color 1 25 color 26 ne 27 co 1 28 min 5 29 ga 30 co 31 co 32 co 33 co 33 co 33 co		,	144		v. sl. s. h.	s.	•••••
25 cold ne 27 co 128 min f 29 ga 30 co 31 co 32 co 33 co	lorl. monocl.		126	268	v. sl. s. h.	v. s. h.	s.
28 mo f ga 30 co 31 co 32 co 33 co	orl. need. eed. f. al.		132 97–9 (116)	268 274.5	v. sl. s. h. sl. s.	v. s.	v. s.
28 months for five section for five sect	lorl. prisms	•••••	163		v. sl. s. h.	v. sl. s.	
29 ga 30 co 31 co 32 co 33 co	onocl.		166	sub.	v. sl. s.	v. s.	
32 co		1.617 (A)	-138.5 -14	-24 187	3700 c.c. v. sl. s.	8. 8.	s. s.
33 co	lorl. liq.	0.861200	 	185	j.		
	olorl. liq.	0.87820°		183.4	i.		
34 co	olorl. olorl.	*	234.5 64.5 (67-8)		i. i.	v. s.	v. s.
36 co 37 co 38 ye 39 co	olorl. liq. olorl. olorl.	0.823 ^{19°} 1.045 ¹ / ₆ ° 1.046 ¹ / ₆ °	(67-8) -14 46 54	117.6 276 305 153 166.3	s. i. i. i.	8. 8.	s.
40 co	el. liq. olorl.		209-10		sl. s.	sl. s.	v. sl. s.
41 00	el. liq.			١	v. s.	v. s.	v. sl. s.

No.	Name	Synonyms	Formula	Mol. wt.
1 2 3 4	Dimethyl- phosphine phthalate (o.) propyl carbinol. pyridine.	See lutidine	(CH ₃) ₂ PH C ₆ H ₄ (COOCH ₃) ₂ (CH ₃) ₂ (C ₂ H ₇)COH	62.07 194.13 102.13
5 6 7 8	pyridine. quinone (2, 3) " (2, 5) " (2, 6) racemate		(CH ₂) ₂ C ₆ H ₂ O ₂ (CH ₃) ₂ C ₆ H ₂ O ₂ (CH ₃) ₂ C ₆ H ₂ O ₂ C ₄ H ₄ O ₆ (CH ₃) ₂	136.10 136.10 136.10 178.11
9 10 11 12 13 14 15	succinate sulphate tartrate (d. and l.) terephthalate (p.) thiophene (2, 4) " (2, 5) urea (sym.)		C ₂ H ₄ ·(COO·CH ₃) ₂ . (CH ₃) ₂ SO ₄ . C ₄ H ₄ O ₅ (CH ₃) ₂ . C ₅ H ₄ (COOCH ₃) ₂ . (CH ₃) ₂ C ₄ H ₃ S. (CH ₃) ₄ C ₄ H ₃ S. CH ₃ NH·CO· NHCH ₃ . NH ₂ ·CO·N(CH ₃) ₂ .	146.11 126.12 178.11 194.13 112.14 112.14 88.16
17	Dinaphthol (α)		HO · C10H6 · C10H6 ·	286.22
18	" (β)		OH HO·C10H6·C10H6·	286.22
19	Dinaphthyl $(\alpha \alpha)$.		OH C10H7 · C10H7 · · · · · ·	254.22
20 21	" $(\beta \beta)$. Dinitraniline $(2, 4)$		C ₁₀ H ₇ ·C ₁₀ H ₇ (NO ₂) ₂ C ₆ H ₃ NH ₂	254 . 22 183 . 19
22 23	Dinitro benzene (o.) " (m.)		C ₆ H ₄ (NO ₂) ₂ C ₆ H ₄ (NO ₂) ₂	168.14 168.14
24 25	" (p.) benzoic acid (2, 4)		$\begin{array}{c} C_6H_4(NO_2)_2\\ (NO_2)_2\cdot C_6H_3\cdot COOH \end{array}$	168.14 212.15
26	" " (2, 5)		(NO ₂) ₂ ·C ₆ H ₃ ·COOH	212.15
27 28 29 30 31 32	" (2, 6) " (3, 4) " (3, 5) diphenyl (p., p.). methane		(NO ₂) ₂ ·C ₆ H ₃ ·COOH (NO ₂) ₂ ·C ₆ H ₃ ·COOH (NO ₂) ₂ ·C ₆ H ₃ ·COOH NO ₂ C ₆ H ₄ ·C ₆ H ₄ NO ₂ . CH ₂ (NO ₂) ₂ ······· (NO ₂) ₂ ·C ₆ H ₃ ·OH.	212.15 212.15 212.15 244.20 106.11 184.14
33	" (2, 4)		(NO ₂) ₂ ·C ₆ H ₃ ·OH	184.14
34	" (2, 6)		(NO ₂) ₂ ·C ₆ H ₃ ·OH	184 . 14
35 36 37 38 39 40	" (3, 4) ; " (3, 5) ; toluene (2, 4) ; " (2, 5) ; " (2, 6) ; " (3, 4)		(NO ₂) ₂ ·C ₆ H ₃ ·OH (NO ₂) ₂ ·C ₆ H ₃ ·OH (NO ₂) ₂ ·C ₆ H ₃ ·CH ₃ (NO ₂) ₂ ·C ₆ H ₃ ·CH ₃ (NO ₂) ₂ ·C ₆ H ₃ ·CH ₃ (NO ₂) ₂ ·C ₆ H ₃ ·CH ₃	184 . 14 184 . 14 182 . 17 182 . 17 182 . 17
41 42	" (3, 5) Diphenyl		$(NO_2)_2 \cdot C_6H_8 \cdot CH_8 \cdot C_6H_5 \cdot C_6H_5 \cdot \dots$	182.17 154.14

and color (A)Air=1 °C C° Water Alcohol Ether	No.	Crystal- line form	$\begin{array}{c} \mathrm{Sp.\ gr.} \\ \mathrm{H}_2\mathrm{O} = 1 \end{array}$	Melting- point	Boiling- point	Solubi	lity∘in gm 100 c.c. of	s. per
1			(A)Air=1			Water	Alcohol	Ether
66 prisms 7 yel, need. 72-3 subl. sl. s. h. sl.	2	colorl. liq.			282	i.		<u></u>
9 colorl. 1.126	6	prisms yel. need. monocl.		125 72–3	subl.	sl. s. h.	sl. s.	
14 colorl. prisms colorl. prisms 100 268-73 v. s. s. i. s. i. v. sl. s. v. sl. s. <td< td=""><td>10 11 12</td><td>colorl. colorl. need</td><td>1.340</td><td>48 140</td><td>188.5 280</td><td>s. 0.33</td><td>v. s.</td><td></td></td<>	10 11 12	colorl. colorl. need	1.340	48 140	188.5 280	s. 0.33	v. s.	
16 colorl. prisms 180	14	colorl.	0.986		135	i.	s.	i.
18 need.	7	colorl. prisms		1				
20 colorl. 1.615 187								
20 colorl. yel.monoel. 1.615 187.5- 187.5- 187.5- 117 1.072.0- 117 319 0.38400 0.01 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	19	colorl. tab.			abt. 360	v. s. bz.	s.	s.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			1.615	187 187.5-		i	·0.721°	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		tab. f. al. need f. al.	1.565 ¹⁷ ° 1.546 ¹⁷ °	117			3.5 ²⁰ °	v. s. bz v. s.; v. s. bz
26 colori. 177		colorl. pr.						s. bz. 0.71 ^{30°}
28 colorl.	26	colorl.			-			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	28 29 30	colorl. tab. f. w. need.		163-4 203-4		0.6725° 1.9100°	v. s. v. s. s. h.	sl. s.
33 yel. pl. f. 1.683 ²⁶ 114 v.sl.s.c.; v.s.h. 3.91 ²⁶ v.s. 34 yel. need. f. w. 61.8 v.sl.s.c.; v.s.h. v.sl.s.c.; v.s.h. v.s.h. 35 need. 134 37 need. f. al. 1.321 ⁶⁰ 70.7 v.sl.s.c. sl. s. v.s. 38 need. f. al. 52 v.s.CS ₂ v.s. v.s. 39 need. f. 1.32 61 i. s. 2.196 CS ₂ 02.2 v.sl.s.c. v.sl.s.c. v.s. v.s. v.s. v.s. v.s.		yel. need.		144		sl. s.	v. s. h.	
35 f. w. 35 need. 36 leaf. 37 need. f. al. 38 need. f. al. 39 need. f. al. 40 need. f. 134 20 v.sl.sc. 21 v.s.CS2 22 v.s.CS2 23 v.s.CS2 38 need. f. 40 need. f. 1.32 61 i. s. 2.19 CS2 v.sl.s.		yel. pl. f. w.				v.s.h.		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		f. w.				v.s.h.	V. S. II.	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	36 37	leaf. need. f. al.		122 70.7 52		v.sl.s.c.	v. s.	v. s. v. s. ba
44 3 c 109_9	39 40	need. need. f. CS ₂	1.32	61		i	8.	
		need. f. w.	1.165		254.6			

No.	Name	Synonyms	Formula	Mol. wt.
1	Diphenyl- acetic acid		(C ₆ H ₆) ₂ ·CH·COOH	212.17
2	amine		$(C_6H_5)_2 \cdot NH \cdot \dots$	169.19
3 4 5 6 7	benzene $(p.)$ carbinol hydrazine (α, α) ketone. methane	benzhydrol See benzophenone	$C_6H_5 \cdot C_6H_4 \cdot C_6H_5 \dots$ $(C_6H_5)_2CHOH \dots$ $(C_6H_5)_2N \cdot NH_2 \dots$ $(C_6H_5)_2CH_2 \dots$	230.21 184.16 184.24 168.17
8	urea (uns.)	carbanilide	$NH_2 \cdot CO \cdot N \cdot (C_6H_5)_2$	212.25
9	Dipicolinic acid (2, 6)		C ₅ H ₃ N(COOH) ₂ + 1½H ₂ O	194.11
10 11 12 13 14 15	Dipropargyl Dipropyl amine carbinol ether ketone Dipyridyl (p. p)	propyl etherbutyrone.	CH; C·CH ₂ ·CH ₂ · C; CH (C,H ₁) ₂ NH (C ₂ H ₇) ₂ ·CHOH (C ₃ H ₇ ·C·C ₄ H ₇ (C ₄ H ₇ ·C·C·C ₄ H ₇ (C ₄ H ₄ N·C ₅ H ₄ N+	78.08 101.19 116.17 102.15 114.16 156.21
16 17	Diquinoline Ditolyl (o. o.)		2H ₂ O C ₉ H ₇ N·C ₉ H ₇ N CH ₃ ·C ₆ H ₄ ·C ₆ H ₄ · CH ₃	258.29 182.19
18	" (o. m.)		CH ₈ ·C ₆ H ₄ ·C ₆ H ₄ ·	182.19
19	" (m. m.)		CH ₃ C ₆ H ₄ · C ₆ H ₄ · CH ₃	182.19
20	" (p. p.)		CH ₃ ·C ₆ H ₄ ·C ₆ H ₄ · CH ₃	182.19
21 22 23	Ditolyl amine (o.). " " (m.) " (p.)		(CH ₃ C ₆ H ₄) ₂ NH (CH ₃ C ₆ H ₄) ₂ NH (CH ₃ C ₆ H ₄) ₂ NH	197.23 197.23 197.23
24 25 26	Dodecane (n.) Dodecylene Dulcite		CH ₃ (CH ₂) ₁₀ ·CH ₃ C ₁₂ H ₂₄ C ₆ H ₈ (OH) ₆	170.28 168.26 182.15
27 28 29 30	Ecgonine (l.) hydrochloride Elaïdic acid Eosine	tetrabromfluores-	C9H16O3N+H2O C9H16O3N HCl C17H38COOH C20H8O6Br4	203.19 239.66 282.37 648.84
31	Eosine (dye)	alkali salt of above	C20H6O5Br4Na2	691.83
32	Epichlorhydrine (α)	chloropropylene oxide	C₃H₅ClO	92.51
33	Epidichlorhydrine (α)	oxide	C ₃ H ₄ Cl ₂	110.95
34 35	Erucic acid Erythrosine	tetraiodofluores-	C ₂₁ H ₄₁ COOH C ₂₀ H ₈ O ₅ I ₄	338.45 835.84
36	Erythrosine (dye)	alkali salt of above	C20H6O5I4Na2	879.82
36	Erythrosine (dye)	alkali salt of above	C ₂₀ H ₆ O ₅ I ₄ Na ₂	879

No.	Crystal- line form	Sp. gr. H ₂ O=1	Melting- point	Boiling- point	Solubi	lity in gm 100 c.c. of	s. per
	and color	(A)Air=1			Water	Alcohol	Ether
1 2	colorl. need. colorl.	1.159	148 54	302	v. s. h. v. sl. s.	v. s.	v. s. v. s.
3 4 5 6	scales colorl. leaf. need. tricl. f. lgr.	1.190	205 67.5–8.0 34.5(44)	(310) 383 297-8 22040mm	s. h. bz. 0.05 c. v. sl. s.	v. sl. s. v. s. v. s.	sl. s. v. s. v. s.
7 8	colorl. rhomb. colorl.	1.00126°	26-7 189	261-2	v. sl. s. v. sl. s.	v. s.	v. s.
9	need. colorl.		226 d.		v. sl. s.	v. sl. s.	
10	need. liq.	0.805	-6	85	i.	s.	v. s.
11 12 13 14 15	colorl. liq. colorl. liq. colorl. liq. colorl. liq. need.	0.736 ²⁵ ° 0.820 ²⁰ ° 0.744 ²¹ ° 0.821	73*	110 154 90.7 144 305	s. s. i. v. sl. s.	s. s. co co v. s.	s. ∞ ∞ v. s.
16 17	yel. need. colorl. liq.		114	272	i. i.	v. s.	v. s.
18	colorl. liq.			288	i.	v. s.	V. 8.
19	colorl. liq.			280-1	i.		
20	colorl. pr. f. eth.		121			s.	s.
21 22 23	liq. liq. colorl.		79	313-4 319-20 330.5	v. sl. s. i. v. sl. s.	v. s.	v. s.
24 25 26	need. colorl. liq. colorl. liq. colorl. pr.	0.768 ²⁰ 0.785 ²⁰ 1.466	$ \begin{array}{c c} -12 \\ -31.5 \\ 188.5 \end{array} $	214.5 213-5	i. i. 4 c.;	v. s. v. s. v. sl. s.	v. s. v. s. v. sl. s.
27 28 29 30	colorl. pr. tricl. pl. colorl. leaf. red need.	0.85179	198 d. 246 51.5	234 ¹⁵ mm	v. s. h 21.7 ¹⁷ ° s. i. i.	1.5 sl. s. s. s.	v. sl. s. s. s. acet. a
31	red to br.			,	s.	s.	
32	powd. colorl. liq.	1.2030°		117	i.	ω .	ω
33	colorl. liq.	1.209§§°		96	i.	ω	∞.
34 35	colorl. need. yel. cryst.	0.860550	33.4	264 ^{15mm}	i	v. s. s.	v. sl. s.
36	red-br. powd.				s.	s:	

No.	Name	Synonyms	Formula	Mol.
1	Ethane		CH ₂ ·CH ₂	30.06
2	Ether	diethyl ether	CH ₃ ·CH ₃ C ₂ H ₅ ·O·C ₂ H ₅	74.10
3	Ethoxy-benzoic		$C_2H_5 \cdot O \cdot C_6H_4 \cdot$	166.13
4	acid (o.)		COOH	
4	Ethoxy-benzoic _acid (m.)		C ₂ H ₅ ·O·C ₆ H ₄ · COOH	166.13
5	Ethoxy-benzoic	l	C2H5·O·C6H4·	166.13
-	acid (p.)		COOH	100.16
6	Ethyl acetate		CH ₃ ·COO·C ₂ H _{5···}	88.06
7	acetoacetate	acetoacetic ether.	CH ₃ ·CO·CH ₂ ·CO ₂ ·	130.11
8	acetrilana		C ₂ H ₅	
9	acetylene acrylate		C ₂ H ₅ ·C:CH C ₃ H ₃ OO·C ₂ H ₅	54.02
1ŏ	alcohol		C ₂ H ₅ ·OH	100.09 46.06
11	allyl ether		C ₂ H ₅ ·O·CH ₂ ·CH:	86.11
	- ·	,	CH ₂	00.11
12	amine		C ₂ H ₅ ·NH ₂	45.11
13 14	amyl ketone		C2H5·CO·C5H11	128.17
15	anilinebenzene		$C_6H_5 \cdot NH \cdot C_2H_5 \dots$	121.17
16	benzoate	phenylethane	C ₆ H ₅ ·C ₂ H ₅ ······	106.12
17	benzoic acid (o.).		$\begin{array}{c} C_6H_5 \cdot COO \cdot C_2H_5 \dots \\ C_2H_5 \cdot C_6H_4 \cdot COOH \dots \end{array}$	150.13 150.13
18	" " (m)		C2H5·C6H4·COOH	150.13
19	" " (p.)		C2H5·C6H4·COOH	150.13
50	benzoyl-acetate.	benzoyl acetic ester		192.16
21	benzyl ether		COO · C ₂ H ₅	
22	" ketone		C ₂ H ₅ ·O·CH ₂ ·C ₆ H ₅ . C ₂ H ₅ ·CO·CH ₂ ·C ₆ H ₅	136.15 148.15
23	brom-acetate			
24	bromide	monobromethane.	CH ₂ Br·COO·C ₂ H ₅ .	167.04
25	butyl ether (n.).	monoprometnane.	C_2H_5Br . $C_2H_5 \cdot O \cdot C_4H_9$	109.01
26	" ketone (n.)		$C_2H_5 \cdot CO \cdot C_4H_9 \dots$	102.15 114.16
27	butyrate	<u>.</u>	C ₃ H ₇ ·COO·C ₂ H ₅	116.13
28	carbamate.	See urethane		110.10
29	carbonate		$(C_2H_5)_2CO_3$ $CH_2Cl \cdot COO \cdot C_2H_5$	118.11
80	chloracetate	• • • • • • • • • • • • • • • • • • • •	CH ₂ Cl·COO·C ₂ H ₅	122.53
'*	cmoraceto-acetate	• • • • • • • • • • • • • • • • • • • •	$CH_2 \cdot CO \cdot CH_2 \cdot COO \cdot C_2H_5$	164.55
12	chlorformate	ethyl chlorcarbon-	ClCOO·C ₂ H ₅	108.52
3	chloride	ate	C ₂ H ₅ Cl	64.50
4	chlorpropionate		CH ₃ ·CHCl·COO·	136.55
_	(a)		C_2H_5	100.00
5	cinnamate	• • • • • • • • • • • • • • • • • • • •	C ₆ H ₅ ·CH : CH	176.16
6	cyanacetate		COO·C2H5	***
7	cyanide	propionitrile	CH ₂ CN·COO·C ₂ H ₅ C ₂ H ₅ CN	113.13
8	diaceto-acetate	propromitine	(CH ₂ ·CO) ₂ CH,	50.10 172.14
			COO · C2H5	112.11
9	dichloracetate		CHCl2·COO·C2H5	156.97
0	diethyl-aceto-		$CH_3CO \cdot C(C_2H_5)_2$	186.19
1	acetate		CO ₂ C ₂ H ₅	
-	diethyl-malonate		$(C_2H_5)_2 \cdot C \cdot (COO \cdot$	216.22
2	dimethyl-		$C_2H_5)_2$ (CH ₃) ₂ ·C·(COO·	188.18
_	malonate		$C_2H_5)_2$	199.19

No.	Crystal- line form	Sp. gr. H ₂ O=1	Melting- point	Boiling- point		lity in gm 100 c.c. of	s. per
110.	and color	(A)Air=1	°C	°C	Water	Alcohol	Ether
1 2 3	gas colorl. liq. colorl.	1.049(A) 0.719	-172 -116.2 19.4	-86 35	sl. s. 8.3 ^{17.5} sl. s.	46 c.c.⁴° ∞ 	
4	colorl.		137	sub.	sl. s. h.	s.	, s.
5	colorl.		195		v. sl. s. h.		
6 7	colorl. liq. liq.	0.900 ²⁰ ° 1.030 ¹⁵ °	-82.4	77. 181	8.6 ²⁰ ° sl. s.	ω 8.	8.
8 9 10 11	colorl. colorl. liq. colorl. liq. colorl. liq.	0.939°° 0.78920° 0.79925°	-130 -114	18 98.5 78.4 66	i. œ i.	s. 	s. & &
12 13 14 15 16 17 18 19 20	colorl. liq. colorl. liq. liq. colorl. liq. colorl. need. colorl. need. colorl. leaf. colorl. liq.	0.689 0.850° 0.96320° 0.87444° 1.051	-84 -80 -94 -68 47 112-3	abt. 19 170 205 136.5 212 259 265–70 d.	o i. v. sl. s. i. sl. s. h. v. sl. s. v. sl. s. s. h. i.	& & & & & & & & & & & & & & & & & & &	& & & & & & & & & & & & & & & & & & &
21 22	colorl. liq.	0.95018° 0.99817.6°		185(189) 223-6 (230)	i. i.	& &	8 8
23 24 25 26 27 28	colorl. liq. colorl. liq. colorl. liq. colorl. liq. colorl. liq.	1.507½5° 1.450 0.75220° 	-93.3	158-60 39 92 147-8 119.9	i. 0.09 ²⁰ ° i. i. 0.68 ²⁵ °	8 8 8 8	8 8 8 8
29 30 31	colorl. liq. colorl. liq. colorl. liq.	0.978 1.15920° 1.17925°		126 145.5 196-200	i. i. v. sl. s.	8. 	 œ
32	colorl. liq.	1.139		93	dec.	ω	- ∞
33	colorl. liq.	0.921°° (0.925°°)	-141	12.25	2	∞ ′	∞
34	colorl. liq.	1.087		146	v. sl. s.	ω	ω .
35	colorl. liq.	1.050	12	271	i.	s.	v. s.
36 37 38	colorl. liq. colorl. liq. colorl. liq.	1.066 0.780 ²⁰ ° 1.101		207 97.1 200-5	i. s. sl. s.	& & 	,
39 40	colorl. liq.	1.283 0.97420°		156-8 218	v. sl. s. i.	& &	88
41	colorl. liq.	0.992		223	i.	ω .	√ ∞
42	colorl. liq.	1.002		196.5	i.	ω .	ω
			1	1 .			

No.	Name	Synonyms	Formula	Mol. wt.
	Ethyl			ļ
1	diphenylamine		(C ₆ H ₅) ₂ NC ₂ H ₅	197.23
2	fluoride		C ₂ H ₅ F	48.05
3	formate		HCOO·C ₂ H ₅	74.07
		•••••	$C_2H_3(OH)_2 \cdot COO \cdot C_2H_5$	134.11
5	glycol ether	•••••	$CH_2OH \cdot CH_2 \cdot O \cdot $ C_2H_5	90.10
6	glycollate		CH ₂ OH · COO · C ₂ H ₅	104.08
7 8	hydrazine	• • • • • • • • • • • • • • • • • • • •	C ₂ H ₅ NH·NH ₂	60.15
°	hydrocinnamate.	• • • • • • • • • • • • • • • • • • • •	C ₆ H ₅ ·CH ₂ ·CH ₂ · CO ₂ ·C ₂ H ₅	178.18
9	hydrogen sulphate	ethyl sulphuric acid	C2H5·HSO4	126.11
10	hydrosulphide	See ethyl mercaptan		
$\begin{array}{c c} 11 \\ 12 \end{array}$	hydroxylamine(α)		NH ₂ ·O·C ₂ H ₅ ·····	61.11
13	" (β)		C ₂ H ₅ NHOH	61.11 156.02
14	isoamyl ether		C2H5·O·C5Hi1	116.17
15	isobutyl ether		C ₀ H ₅ ·O·C ₄ H ₀	102.15
16	isobutyl ketone.		$C_2H_5 \cdot CO \cdot C_4H_9 \dots$	114.16
17	isobutyrate	• • • • • • • • • • • • • • • • • • • •	(CH ₃) ₂ CH·COO· C ₂ H ₅	116.13
18	isocyanate		C2H5NCO	71.10 55.10
19	isocyanide	ethyl carbylamine	C_2H_5NC	55.10
20	isopropyl-aceto- acetate		$C_2H_3O \cdot CH(C_3H_7) \cdot CO_2 \cdot C_2H_5$	172.18
21	isopropyl ether		$C_2H_5 \cdot O \cdot CH(CH_3)_2$.	88.13
22	" ketone.		C2H5 · CO · CH (CH2)	100.13
23	isosuccinate		$C_2H_5 \cdot CO \cdot CH(CH_3)_2$ $CH_3 \cdot CH(COO \cdot$	174.15
24	isothiocyanate	ethyl mustard oil.	$C_2H_5)_2$	
25	isovaleriate	ethyl mustard oll.	$C_2H_5 \cdot N : CS \dots CH_3)_2CH \cdot CH_2$	87.15 130.16
-	2007420,2400		COO·C ₂ H ₅	100.10
26	lactate		C ₃ H ₅ O ₃ ·C ₂ H ₅ ·····	118.11
27	malate	•••••	$C_2H_3(OH)$.	190.15
28	malonate		(COO·C ₂ H ₅) ₂	100 14
29	mercaptan		$CH_2(COO \cdot C_2H_5)_2$ C_2H_5SH	160.14 62.11
30	monotartrate		COOH · (CHOH)2·	178.11
			COO·C ₂ H ₅	
31	mustard oil. See naphthalene (α) .	ethyl isothiocyanate	$C_{10}H_7 \cdot C_2H_5 \cdot \cdot \cdot \cdot \cdot$	156.16
-			C10117 C2115	100.10
33	" (β).		$C_{10}H_7 \cdot C_2H_5 \cdot \cdot \cdot \cdot \cdot \cdot$	156.16
34	naphthyl ether (α)	•••••	$C_{10}H_7 \cdot O \cdot C_{2}H_5 \cdot \dots$	172.16
35 36	" (<i>β</i>)		$C_{10}H_7 \cdot O \cdot C_2H_5 \cdot \dots $ $C_2H_5NO_3 \cdot \dots $	172.16
7	nitrite	•••••	C ₂ H ₅ NO ₂	91.09 75.09
8	nitro-benzoate(o.)		NO2 · C6H4 · COO ·	195.16
	" " (-)		C_2H_5	
9	" " (m.)		NO ₂ ·C ₆ H ₄ ·COO· C ₂ H ₅	195.16
0	" " (p.)		NO2 · C6H4 · COO ·	195.16
.	- /		C ₂ H ₅	-
1 2	nitrolic acid	· · · · · · · · · · · · · · · · · · ·	$\begin{array}{c} CH_3 \cdot C \cdot (NOH) \cdot NO_2 \\ (\cdot COO \cdot C_2H_5)_2 & \dots \end{array}$	104.12
3	oxalate palmitate		$(\cdot COO \cdot C_2H_5)_2 \dots C_{15}H_{31} \cdot COO \cdot C_2H_5.$	146.10 284.39
٦ ا	parmitate	***************************************	C1841 81 · COO · C2H5.	404.09

No.	Crystal-	H ₂ O=1	Melting- point	Boiling-		lity in gm 100 c.c. of	s. per
110.	and color	(A)Air=1	·°C	•C	Water	Alcohol	Ether
1 2 3 4	liq. gas colorl. liq. liq.	1.7 0.917 1.091	 -80	295 -32 54.4 230-40	i. 198c.c. ^{14°} 11 s.	s. v. s. ∞ v. s.	 ω v. s.
5	colorl. liq.	0.926130		135	s.	ο	œ
6 7 8	colorl. liq. colorl. liq. colorl. liq.	1.08323° 1.01225°	*******	160 101 247-9	v. s. i.	v. s. v. s.	v. s. v. s.
9	liq.	1.316		dec.	v. s.	s.	s.
10 11 12 13 14 15 16 17	colorl. liq. colorl. leaf. liq. colorl. liq. colorl. liq. colorl. liq. colorl. liq.	0.883 ^{7.5} ° 0.908 ⁶⁴ ° 1.94½° 0.761 0.751 0.8154°° 0.869 ²⁰ °	59–60 d. –112	72.3 112 78-80 136 110.1	w. s. 0.420° i. i. i. sl. s.	ω v. s. s. ω ω ω	& sl. s. s. & & & & & & & & & & & & & & & & & & &
18 19 20	liq. colorl. liq. colorl. liq.	0.898 0.7594° 0.94748°		60 78–9 200.5 d.	i. v. s. v. sl. s.	 	s. s. ∞
21 22 23	colorl. liq. colorl. liq. colorl. liq.	0.7450° 0.8300° 1.021		54 114.5 198	s. v. sl. s. v. sl. s.	σ v. s. ω	8 8 8
24 25	colorl. liq.	0.995 ²⁸ ° 0.872	-5.9	131-2 134.3	i. i.	s. ∞	s. ∞
26 27	colorl. liq.	1.03119° 1.12425°		154 . 5 248–52 d	. s.	v. s. ∞	v. s. ∞
28 29 30	colorl. liq. liq. colorl. rhomb.	1.061 0.838 ²¹	-50 -144 90	198 36–7	v. sl. s. 1.5 s.	8. 	s.
31 32	colorl. liq.	1.06415°		258 sl. d.	i.	ω	00
33 34 35 36 37 38	colorl. tricl.	1.008°° 1.116 0.900	-19 5.5 37 -112 30	251 280 282 87.6 17	i. i. i. i. v. sl. s.	ω v. s. sl. s. ω ω ω	ω V. S. S. ω S.
39]	47 (54)			1	\
40			57 86–8 d		8.		в.
41 42 43	colorl. liq.		24.2	186.1	sl. s.	s.	8.
	1	•					

No.	Name	Synonyms	Formula	Mol. wt.
_	Ethyl			
1	phenate	See phenetol		1
3	phenol (o.) (p.)		C ₂ H ₅ ·C ₆ H ₄ ·OH	122.12
4	phenyl-acetate		C ₂ H ₅ ·C ₆ H ₄ ·OH C ₆ H ₅ ·CH ₂ ·COO	122.12 164.13
_	}		C ₂ H ₅	104.13
5	phenyl ketone		C ₆ H ₅ ·CO·C ₂ H ₅ ····	134.13
6 7 8 9	phosphate		(C ₂ H ₅) ₃ PO♠······	182.15
Ŕ	phthalate (o.)	14016 ALLANDAR VIII	$C_6H_4 \cdot (COO \cdot C_2H_5)_2$	222.17
ğ	" (m.) " (p.)	ethyl isophthalate ethyl terephthalate	C ₆ H ₄ ·(COO·C ₂ H ₅) ₂	222.17
10	propiolate	·····	$C_6H_4 \cdot (COO \cdot C_2H_5)_2$ CH : $C \cdot COO \cdot C_2H_5$.	222.17 98.07
11	propionate		C2H5.COO.C2H5	102.11
12	propyl carbinol.		C ₃ H ₇ ·CHOH·C ₂ H ₅ .	102.15
13 `	(n.)	,	C3H7·O·C2H5	90 10
14	" ketone	· · · · · · · · · · · · · · · · · · ·	C2H5 · CO · C3H5	88.13 100.13
15	" malonate		C ₃ H ₇ ·CH·(COO·	202.19
16	pyridine (2)		$C_2H_5)_2$	
17	" (3)		C ₂ H ₅ ·C ₅ H ₄ N	107.11
18	" (4)		C2H5·C5H4N	107.11 107.11
19	salicylate		HO · C ₆ H ₄ · COO ·	166.13
20	succinate (n.)	÷	C ₂ H ₅	
21	succinic acid		$(\cdot CH_2 \cdot COO \cdot C_2H_5)_2$. $C_2H_3(C_2H_5)(COOH)_2$	174.16 146.11
22	sulphate	•••••	(C ₂ H ₅) ₂ SO ₄	154.15
23	sulphide			00.15
24	sulphite	2,	$(C_2H_5)_2S$ $(C_2H_5)_2SO_3$	90.15 138.15
25	sulphocyanate	See ethyl thiocyanate		100.10
7	sulphonesulphonic acid		$(C_2H_5)_2SO_2$ $C_2H_5SO_2 \cdot OH$	122.15
8	sulphonic chloride		$C_2H_5SO_2\cdot OH \dots$ $C_2H_5\cdot SO_2Cl \dots$	110.11
9	tartrate (d. or l.)		(·CH(OH)·COO	128,55 206.16
ю			C2H5)2	
ĭ	thiocyanate toluate (o.)		C ₂ H ₅ ·SCN CH ₃ ·C ₆ H ₄ ·COO·	87.16
_			C ₂ H ₅	164.15
2	" (m.)		CH ₃ ·C ₆ H ₄ ·COO·	164.15
3	" (p.)		C ₂ H ₅ CH ₃ ·C ₆ H ₄ ·COO·	164.15
. 1			C ₂ H ₅	104.15
4	toluene (o.)	methylethyl benzene (o.)	C ₂ H ₅ ·C ₆ H ₄ ·CH ₃	120.15
5	" (m.)	methylethyl	C2H5·C6H4·CH3	120.15
6	" (p.)	benzene (m.) methylethyl	C2H5·C6H4·CH3	120.15
7	trichloracetate .	benzene (p.)	001 000 077	
8	urea		CCl ₃ ·COO·C ₂ H _{5···} NH ₂ ·CO·NHC ₂ H ₅	191.41 88.16
	· .			00.10
9	valeriate		C4H9 · COO · C2H5	130.16
1	vanillate Ethylene		C10H12O4	196.15
-			CH2: CH2	28.04

No.	Crystal- line form	Sp. gr. H ₂ O=1	Melting- point	Boiling- point	Solubi 1	lity in gms 100 c.c. of	. per
140.	and color	(A)Air=1	point C	*C	Water	Alcohol	Ether
1							. 1
3 4	colorl. liq. colorl. colorl. liq.	1.037°° 1.086	46	206.5-7.5 218.5 229 (226)	i.	v. s. ∞	v. s.
5	colorl.	1.015	21	218	i.	8.	8.
6 7 8 9 10 11 12	colorl. liq. colorl. liq. colorl. liq. colorl. liq. colorl. liq. colorl. liq.	1.118 ²⁰ ° 0.896 0.819 ²⁰ °	44	215 295 285 119 98.3 135	dec. i. i. 2.4 ²⁰ °	s. v. s. s.	s. ∞ v. s. ∞
13 14 15	colorl. liq. colorl. liq. colorl. liq.	0.755° 0.818^{18} 0.993		63.6 122-4 221	s. v. sl. s.	8 8 	ω ω
16 17 18 19	liq. colorl. liq. colorl. liq. colorl. liq.	0.937 ^{17°} 0.959°° 0.9520° 1.135	1.3	148.6 165 164-6 231	sl. s. v. sl. s. s. dil. a.	& 	v. s. ∞
20 21	colorl. liq. colorl. prisms	1.044	-20.8 98	216.5	i. v. s.	ω v. s.	ο v. s.
22	colorl. liq.	1.184	-24.5	208	i.; sl. dec.	dec. h.	• • • • • •
23 24	colorl. liq. colorl. liq.	0.837 ²⁰ ° 1.1060°	-99.5	91-3 161	i. s. dec.	s. s.	8.
25 26 27 28 29	rhombic crystals liq. colorl. liq.	1.357 ²⁰ ° 1.209	70	248 177 280	15.616° s. dec. sl. s.	s. dec. ∞	s. alk. v. s.
30 31	colorl. liq.	1.007 ²³ ° 1.039	::::::	146(142) 221 (227)	i. i.	8	8 8
32	colorl. liq.	ļ		226-8	i.	ω .	œ
33	colorl. liq.			228			
34	colorl. liq.	0.873		158-9	i.	, so	8
35	colorl. liq.	0.869200	<u> </u>	158-9	i.	8.	8.
36	colorl. liq.	0.865210		162	i.	8.	8.
37 38	colorl. liq.	1.369 1.21318°	92	164-7	i. v. s.	v. s.	ω
39 40 41	prisms colorl. liq. colorl. gas	0.87720° 0.978(A)	. 44 -169	144.5 292 -102.7	i. i. 25.60°c.0	v. s. 360 c.c.	σ v. s. s.

No.	Name .	Synonyms	Formula	Mol. wt.
1	Ethylene acetate		(CH ₃ ·COO) ₂ C ₂ H ₄	146.11
2 3	alcohol.	See ethylene glycol glycol dibromide.		
4	bromide chloride	glycol dibromide.	CH ₂ Br·CH ₂ Br·····	187.96
5	cyanhydrine	glycol cyanhydrine	HO·CH ₂ ·CH ₂ ·CN	98.94 71.07
6	cyanide	succinonitrile	CN·CH2·CH2·CN	60.0
7	diamine		NH2·CH2·CH2NH2•	60.10
8	diphenyl ether	• • • • • • • • • • • • • • • • • • • •	C ₂ H ₄ (OC ₆ H ₅) ₂	214.19
9 10	glycol " monoacetate	glycol glycol monoacetate	HOCH ₂ ·CH ₂ OH HOCH ₂ ·CH ₂ OOCCH ₃	62.06 102.07
11	iodide	glycol diiodide	CH ₂ I · CH ₂ I	281.98
12 13	nitrate	glycol dinitrate	NO3 · CH2 · CH2 · NO3	152.12
14	nitriteoxide	glycol dinitrite	NO2 · CH2 · CH2 · NO2	120.12
15	Ethylidene di-		C ₂ H ₄ O CH ₃ ·CHB _{r2}	44.04 187.96
16	bromide dichloride		CH ₃ ·CHCl ₂	98.94
17	diiodide		CH ₃ ·CHI ₂	281.98
18	urea	• • • • • • • • • • • • • • • • • • • •	C ₈ H ₆ ON ₂	86.15
19 20	Eucalyptol	cineol	C10H18O	154.20
20	Eugenol (1, 4, 3).	eugenic acid	$C_8H_5 \cdot C_6H_3 \cdot (OH)(OCH_8)$	164.15
21	methyl ether ·		C3H5 · C6H3 : (OCH3)2	178.17
22	(1, 2, 4) Flavaniline		NH2·C6H4·C9H5N·	234.28
23	Flavopurpurin	trihydroxy-anthra-	CH ₃ C ₁₄ H ₅ O ₂ ·(OH) ₃	256.13
. · I		quinone (1, 2, 6)	0111102 (011)8	200.10
24 25	Fluoran		C ₂₀ H ₁₂ O ₈	300.20 190.16
26	Fluorene	·····	(C ₆ H ₄) ₂ :CH ₂	
27	Fluorescein		ConH10Os	166.15 332.20
28	Fluoroform		CHF ₂	70
29 30	Formaldehyde		HCHO	30.03
31	Formamide		HCONH ₂ . C ₆ H ₆ NHOCH	45.08 121.14
32	Formic acid	-	H-COOH	
33	Fructose	laevulose, fruit	C ₆ H ₁₂ O ₆	46.03 180.13
34	Fuchsin.	sugar See rosaniline		
35	Fulminuric acid	See rosantiine	CaHaOaNa	129.14
36	Fumaric acid		HOOC·CH:CH.	116.05
37	Furfural	funfunaldaharda	COOH . I	
88	Furfuran	furfuraldehyde	C ₄ H ₄ O·CHO	96.06 68.0 5
19	Furfuryl alcohol		C4H2O·CH2OH	98.08

ORGANIC COMPOUNDS (Continued)

	`		•		•		
No.	Crystal- line form	Sp. gr. H ₂ O=1	Melting- point °C	point	Solub	ility in gr 100 c.c. o	ns. per f
	and color	(A)Air=1		- °C	Water	Alcohol	Ether
		•					
[1 2	colorl. liq.	1.1280°		186–7	14.3	s.	s
3 4	colorl. liq. colorl. liq.	2.189 1.265	9-10	131	v. sl. s.	8.	& &
5	colori. liq.	1.059°		84 221–3	sl. s.	s. co	s.
6	colorl.		51-2	265-7	v. s.	v. s.	8.
7	colorl.	0.902	(54.5) 10 (1H ₂ O)	d. 117	s.		v. sl. s.
8	colorl.		98.5		v. sl. s. c. ; s. h.	sl. s.	v. s.
9 10	colorl. liq. colorl. liq.	1.115 1.108	::::::	197–7.5 182	δ. II.	ω s.	sl. s.
11	yel. prisms	2.07	81-2	*	șl. s.	s.	s.
12 13	yel. liq. liq.	1.4838° 1.2160°		96-8	i. i.	s. s.	8.
14	colori, liq.	0.8970°		14	σ.	<u></u>	œ
15	liq.	2.100		110-12.5	i.	v. s.	v. s.
16 17	colorl. liq.	1.178 2.840°		58–60 178	0.5520°	v. s.	v. s.
18	liq. colorl.	2.04	154	dec.	i. v. sl. s.	v. s. sl. s.	v. s. v. sl. s.
19	need. colorl. liq.	0.92720°	-1-3	176	i.	&	l
20	colorl. liq.	1.063180		247.5 (253)	v. sl. s.	ω	ω ,
21	colorl. liq.	1.03525°		250-3 (244)	i.	∞	ω
22	colorl. prisms		97		v. sl. s.	v. s.	s. bz.
23	yel. need.		459		v. sl. s. h.	s. h.	sl. s.
24	need.		180 (175)			8.	
25	colorl. monocl.	• • • • • • • • • • • • • • • • • • • •	109-10	•••••		sl. s. c.	v. s.
26 27	colorl. leaf.		113-6	295		sl. s.	v. s.
28	or. powd.		dec. 290	2040atm.	i.; s. alk. sl. s.	s. 500 c.c.	s. s. l. s. chl.
29	colorl, gas colorl, liq.	1.337	,	-21	8.	s.	s.
30 31	colorl.	1.337 1.144	46	192–5 d.	ω 8.	ω v. s.	sl. s. s.
32	prisms colorl. liq.	1.21820°	8.6	100.8	8	ω	l
33	need. f. w.	1.555°	94-5		v. s.	20	8.
34 35	colorl.		exp. 145				
36	prisms	1 605	-	1. 000	8.	8.	s.
	colorl. prisms	1.625	286–7	sub. 200	0.65160	s.	s.
37 38	colorl—yel. colorl.	1.15920° 0.944	-36.5	161 31.5	j. 913°	8.	э.
	need.				- ·	v. s.	v. s.
39	colorl. liq.	1.13620°		168-70	8.	v. s.	v. s.
				-			
							,

Explodes by percussion or on heating to 114-16° C.

No.	Name	Synonyms	Formula	Mol. wt.
1 2	Galactose (d.) Gallic acid (3, 4, 5)		C ₆ H ₁₂ O ₆ (HO) ₃ C ₆ H ₂ COOH	180.03 188.11
3 4 5	Geraniol	See dextrose	+H ₂ O C ₉ H ₁₅ ·CH ₂ OH CH ₃ ·COOC ₁₀ H ₁₇	154.20 196.22
6 7	pentacetate phenyl hydra-		$C_6H_7O_5(OCCH_3)_5$ $C_6H_{12}O_5N_2HC_6H_5$	390.26 270.29
. 8	$zone (\alpha)$ $phenyl hydra zone (\beta)$		$C_6H_{12}O_5N_2HC_6H_5$	270.29
.9 10	Glutamic acid (r.) Glutaric acid	glutaminic acid	C ₃ H ₅ (NH ₂)(COOH) ₂ HOOC·(CH ₂) ₃ · COOH	147.14 132.09
11	Glyceric acid		НОСН₂-СНОН - СООН	106.07
12	aldehyde	`	НОСН₂-СНОН - СНО	90.07
13	Glycerine		HOCH ₂ ·CHOH· CH ₂ OH	92.08
14 15 16 17	Glyceryl chlorhydrine (\alpha). diacetate. dichlorhydrine	See chlorhydrine α See diacetin See dichlorhydrine (1, 3)		•.
18	(α, β) .	See dichlorhydrine (2, 3)		l .
19	(α, β) . dinitrate	(2, 3)	C ₃ H ₅ (OH)(NO ₃) ₂ + ₃ H ₂ O	202.30
20 21 22	ether monoacetate. mononitrate (α)	- See monacetin	C ₃ H ₅ O ₃ C ₃ H ₅ CH ₂ OH·CHOH·	130.11 137.12
23 24 25 26 27	triacetate. tribromhydrine. trichlorhydrine. trinitrate. trinitrite	See triacetin See tribromhydrine See trichlorhydrine See nitroglycerine	CH ₂ NO ₃ CH ₂ NO ₂ ·CHNO ₂ ·	179.18
28 29	GlycidGlycin	glycocoll	CH_2NO_2 $C_2H_3O \cdot CH_2OH \cdot$ $CH_2(NH_2) \cdot COOH \cdot$	74.07 75.09
30	Glycocoholic acid.		C24H29O4 · NH · CH2 ·	465.52
31 32 33 34 35	Glycogen	ethylene glycol	COOH (C ₆ H ₁₆ O ₆) _x	162.11 _x 62.06 60.04 75.09 124.97
36	chlorhydrine	drine ethylene chlorhy-	CH ₂ OH·CH ₂ Cl	80.51
37	cyanhydride	drine ethylene cyanhy-	CH2OH·CH2CN	71.07
38 39	diacetate. dibromide.	dride See ethylene acetate See ethylene bromide	. '	

No.	Crystal- line form	Sp. gr. H ₂ O=1	Melting- point	Boiling- point	Solubil	ity in gme 100 c.c. of	s. per
	and color	(A)Air=1	°C		Water	Alcohol	Ether
1 2	hex. tab. triclinic	1.6944°	168-70 222-40	dec.	v. s. 1.16 ²⁵ °	sl. s. 27 . 225°	2.515
3 4 5	colorl. liq. colorl. liq.	0.881 0.915		229–30 242–5 d.	i. v. sl. s.	ω v. s.	8
. 7	need.		130 144–5	subl.	v. sl. s. v. s.	1.3215° v. s. h.	2.115° v. sl. s.
8	need.		115-6			s.	
9 10	colorl. colorl. monocl.		208 d. 97.5	302–4 d.	1 64 ²⁰ °	v. sl. s. v. s.	v. s.
11	syrup				∞ .	ω,	i.; v. s. acet.
12			abt. 132		sl. s.	v. sl. s.	v. sl. s.
13	colorl. liq.	1.26020°	17*	290	∞	ω ,	i.
14 15 16				•			
17 18							
19		1.47anh.	26		7.7	v. s.	s.
20	colorl. liq.	1.091		171-2	œ .	ω	· œ
21 22		1.40	5.8		70 ¹⁵ °	v. s.	sl. s. 🦿
23 24 25						4 -	
26 27	yel. liq.			150	i.	dec.	s.
28 29	colorl. colorl. monocl.	1.165°° 1.161	231–5 d.	161–2 d.	∞ 23 c.	∞ v. sl. s.	ω i.
30	colorl.		132-4 (152)		0.33 с.	v. s.	v. sl. s.
31 32 33 34 35	wh. amor. colorl. liq. plates colorl. liq.	1.115	abt. 240 95-7 120	197–7.5 147	v. s. v. s. v. s.	i. ∞ v. s. h. sl. s.	i. sl. s. sl. s. sl. s.
36	colorl. liq.	1.223°		128	∞		
37	colorl. liq.	1.0590°		221-3	&	œ	.s.
38 39		1.41		: ·		e far e a	

^{*} Solidifies at a much lower temperature.

No.	Name	Synonyms	Formula	Mol. wt.
1 2 3 4 5 6 7	Glycol dichloride. dicyanide. diiodide. dinitrate. dinitrite. monoacetate. urea	See ethylene chloride See ethylene cyanide See ethylene rodide See ethylene nitrate See ethylene nitrite See ethylene glycol hydantoin	monoacetate CsH4OsN2	100.1
8	Glycolid		C4H4O4	116.0
9	Glycollic acid	hydroxyacetic acid	CH2(OH) COOH	76.0
10 11 12	anhydride Glyoxal Glyoxalic acid	oxalaldehyde glyoxylic acid	C ₄ H ₆ O ₅ CHO·CHO CHO·COOH+H ₂ O.	134.0° 58.0° 92.0
13	Glyoxalin		C ₈ H ₄ N ₂	68.1
14	Glyoxime		HON: CH CH:	88.1
15	Guaiacol		HO·C ₆ H ₄ ·OCH ₃ (o)	124.1
16 17	Guanidine Guanine		NH: C(NH ₂) ₂ C ₅ H ₅ ON ₅	59.1 151.2
18 19	Gun cotton. See Haematein		C16H12O6	300.1
20	Haematin		C32H32N4Fe4	695.8
21	Haematoxylin		C16H14O6+3H2O	356.2
22	Hemimelitic acid	benzene tricar- boxylic acid	C ₆ H ₃ (COOH) ₃	212.1
23 24 25 26 27 28	Heptane (n.) Heptoic acid (n.) . Heptyl acetate (n.) alcohol aldehyde	(1, 2, 3)	CH ₂ · (CH ₂) ₅ · CH ₃ CH ₃ · (CH ₂) ₅ · COOH CH ₂ · COOC ₇ H ₁₅ CH ₃ · (CH ₂) ₅ · CH ₂ OH CH ₃ · (CH ₂) ₅ · CHO CH ₃ · (CH ₂) ₅ · CHO	100.1 130.1 158.2 116.1 114.1 115.2
29 30 31	ether	heptene	CH ₂ NH ₂ (C ₇ H ₁₅) ₂ O HCOO·C ₇ H ₁₅ CH ₃ ·(CH ₂) ₄ ·CH:	214.3 144.1 98.1
32	Hesperidine		CH ₂ C ₂₂ H ₂₆ O ₁₂ ;	482.3
33 34 35	Hexabrom ethane Hexachlor benzene ethane		$(C_{50}H_{60}O_{22})$ $CBr_3 \cdot CBr_3$	403.7 284.7 236.1
36	Hexadecane		C16H34	226.3
37	Hexaethyl benzene	·····	C6(C2H5)6	246.3
01	nezaetnyi penzene	<u>-</u>	C6(C2H5)6	246

No.	Crystal- line form	Sp. gr. H ₂ O=1	Melting- point	Boiling- point	Solubi	lity in gm 100 c.c. of	s. per
	and color	(A)Air=1	°C	°C	Water	Alcohol	Ether
	*						
1 2 3				-			
4		-					
5 6 7			017			,	
8	colorl. need.	••••	215		s.; v. s. h.	••••	
9	colorl. leaf. leaf. f. eth.	•••••	86-7 78-9	dec.	i.; v. s. acet.	sl. s.	sl. s.
0	powd.	•••••	128-30		i.; c. s. h.	s. i.	8. i.
1 2	colorl.	1.14	15	50.5	V. S. V. S.	s.	8.
3	rhomb.		88-9	255	v. s.	v. s.	8.
4	prisms rhomb.		178		v. s. h.	s.	8.
5	tab. f. w. colorl.	1.140 15 °	31-2	205	1.6150	s.	8.
6	prisms cryst.				v. s.	v. s.	
7 8	colorl. need.		dec. abv. 360	•••••	i.; s. alk.	v. sl. s.	v. sl. s
9	brown plates	••••••			0.6200	sl. s.	sl. s. sl. s.
0	brown powd.		,	•••••	s. alk.	s. h.	
1	tetrag.	•••••	140	•••••	v. sl. s.	8.	8.
2	colorl. need.		185 d. (195)	•••••	sl. s.	•••••	8.
3	colorl. liq.	0.689 0.921	-io	$98.4 \\ 224$	i. 0.2415°	100 8.	ε.
5	liq. colorl. liq.	0.874 0.830		190 175.8	i. s.	8. ∞	8. ©
8	colorl. liq. colorl. liq.	0.822 0.7820°		153–5 155–7	sl. s. v. sl. s.	s. &	8 8
9	colorl. liq.	0.8150° 0.8940°		261 176–7	i. i.	8.	s. s.
1	colorl. liq.	0.703190		98-9	i	s.	8.
2	sm. need.	••••••	251 d.	••••••	sl. s.	al. a.	i.
3 4 5	rhombic monocl. rhomb. tabl.	2.044280	d. 210 229 184-7	326 subl.	i. i. i.	sl. s. i. c. v. s.	sl. s. v. sl. s v. s.
6	colorl. leaf.	$0.775^{18}{}^{\circ}$	18	287.5- 91.0	i.	8	œ
7	colorl. monocl.	0.831200	129	298	i.	8.	V. 8.

No.	Name	Synonyms	Formula	Mol. wt.
1	Hexahydro-anthra-		C14H16	184.20
2 3	cene benzene benzoic acid		$C_{6}H_{12}$	84.12 128.14
4 5 6 7 8 9 10	cumene	See piperidine	C ₆ H ₁₁ ·C ₃ H ₇ CH ₃ ·C ₆ H ₁₀ ·C ₃ H ₇ C ₆ H ₆ (COOH) ₆ C ₆ H ₉ (CH ₃) ₃ (1, 3, 5) C ₁₀ H ₁₄ HO·C ₆ H ₁₀ ·COOH C ₆ H ₁₁ ·CH ₃	126.20 140.26 348.16 226.19 134.16 144.14 98.16
$\begin{array}{c} 12 \\ 13 \end{array}$	xýlene (m.) " (p.)		$C_6H_{10}(CH_3)_2$ $C_6H_{10}(CH_3)_2$	112.17 112.17
14	Hexahydroxy benzene		C ₆ (OH) ₆	174.13
15	Hexaiodobenzene		C ₆ I ₆	833.55
16	Hexamethyl ben- zene		C6(CH3)6	162.21
17	Hexamethylene- tetramine	urotropine	C6H12N4	140.17
18 19 20 21 22 23 24 25	Hexane (n.) Hexenyl alcohol Hexoic aldehyde Hexyl acetate (n.) alcohol formate Hexylene (n.) Hippuric acid	benzoyl glycine	CH ₂ (CH ₂) ₂ CH ₃ C ₃ H ₁₁ OH. CH ₃ (CH ₂) ₄ CHO. CH ₃ COOC ₆ H ₁₃ CH ₃ (CH ₂) ₄ -CH ₂ OH HCOOC ₆ H ₃ CH ₃ (CH ₂) ₄ CH: CH ₂ CH ₃ (CO: NHCH ₂ COOH	86.15 100.13 110.13 144.17 102.15 130.16 84.13 179.16
2 6	Homopyrocatechin		CH ₃ ·C ₆ H ₃ ·(OH) ₂ (1, 3, 4)	124.10
27	Homotropine		C16H21O3N	275.26
28	hydrobromide		C16H21O3N·HBr	356.19
29	Hydrastin		C ₂₁ H ₂₁ O ₆ N	383.32
30 31 32 33	hydrochloride Hydrazo-benzene. benzoic acid (o.). naphthalene		$\begin{array}{l} C_{21}H_{21}O_6N\cdot HC1. \\ C_6H_5\cdot NH\cdot NH\cdot C_6H_5 \\ (HOOC\cdot C_6H_4\cdot NH\cdot)_2 \\ C_{10}H_7\cdot NH\cdot NH\cdot \\ C_{10}H_7 \end{array}$	407.81 184.24 272.25 284.25
34	(1, 1') naphthalene		C ₁₀ H ₇ ·NH·NH· C ₁₀ H ₇	284.2 5
35 36	(2, 2') toluene (o.) " (p.)		(CH ₃ ·C ₆ H ₄ ·NH) ₂ (CH ₃ ·C ₆ H ₄ ·NH) ₂	212.28 212.28
37 38	Hydrindene $(1, 2)$ Hydrindene (α)		C ₆ H ₄ : C ₂ H ₄ : CH ₂ C ₉ H ₈ O	118.13 132.11
39 40	Hydro-anthracene. atropic acid	See dihydro-anthrac phenyl propionic acid (a)	ene CH ₂ ·CH(C ₆ H ₅)· COOH	150.13

			7				
No.	Crystal- line form	Sp. gr. H ₂ O=1	Melting- point	Boiling- point		ility in gm 100 c.c. of	
	and color	(A)Air=1	°C	े °C	Water	Alcohol	Ether
1	colorl. leaf.		63	290	i.; v. s. bz.	v. s.	v. s.
3	colorl. liq. colorl. monocl.	0.7470° 1.048	30	79 233	i. sl. s.	v. s.	v. s.
4 5 6	colorl. liq. colorl. liq.	0.787 ²⁰ ° 0.796		147-50 171-3	i. i.	v. s. v. s.	v. s. v. s.
7 8 9	cryst. colorl. liq. colorl. liq.	0.934%°	dec.	135–8 abt. 205	v. s.	v. s.	v. s.
10 11	tab. colorl. liq.	0.76920	111	iòi-ż'	v. s. i.	v. s.	v. s. ∞
12 13	colorl. liq.	0.771 ^{21°} 0.769 ^{20°}		118-9 120.5- 1.0	i.		
14	need.	••••	dec. 200		sl. s.	sl. s.	sl. s.
15	redbr. need.	• • • • • • • • • • • • • • • • • • • •	140–50 d.				• • • • • • •
16	colorl. rhomb.		164	264		sl. s.	•••••
17	rhomb. f. al.	0.00000	280-1		83120	3	v. sl.
18 19	colorl. liq. colorl. liq.	0.660 ²⁰ ° 0.891 ¹⁰ ° 0.834 ²⁰ °	-94	69 137	i. v. s.	50 ³³ °	8
20 21 22	liq. colorl. liq. colorl. liq.	0.890° 0.820°		116-8 169.2 157	i. i. sl. s.	v. s. v. s.	v. s. v. s. ∞
23 24	colorl. liq.	0.8980° 0.68320°	-98.5	153.6 68-70	i.	8 8	8 8
25	colorl. rhomb.	1.37121°	187-90	051.0	3320°	sl. s.	sl. s.
26 27	colorl.	•••••	51 96.5–7.5	251-2	v. s. sl. s.	v . s.	v. s.
28	prisms colorl.	,	213.8		17.525	3.3	s. i.
29	prisms colorl. prisms		132	.,	0.025 ⁸⁰ °	0.74250	0.8250
30 31	powd. colorl. tab.	1.158	131 (126)	dec.	s. ° v. sl. s.	5160	s. s.
32 33	colorl. leaf. colorl. leaf.		205 275		i. i.	s. v. s.	v. s.
34	colorl. flocks		162-4		i.	sl. s.	v. s.
35 36	colorl. leaf. colorl. monocl.	0.957	165 133–4 (128)	dec.	v. sl. s. i.	s. v. s.	s. v. s.
37 38	colorl. liq. rhomb. tab.	0.957 1.10145°	41	176 244	i. v. sl. s.	∞ v. s.	ω 8.
39 40	colorl. liq.	• • • • • • • • • • • • • • • • • • • •		264-5	sl. s.		,

	·			
No.	Name	Synonyms	Formula	Mol. wt.
1	Hydro- benzamide	tribenzaldiamine	(C ₆ H ₅ ·CH) ₈ N ₂	298.17
2	benzoïn		[C ₆ H ₅ ·CH(OH)·] ₂ .	214.19
3	carbostyril	-	C ₉ H ₉ ON	147.16
4	cinnamic acid	phenyl propionic acid (\$\beta\$)	C ₆ H ₅ ·CH ₂ ·CH ₂ · COOH	150.13
5	" aldehyde		C ₆ H ₅ ·CH ₂ ·CH ₂ · CHO	134.13
6	coumaric acid (p.)	phenol propionic acid (\$\beta\$)	HO·C ₆ H ₄ ·(CH ₂) ₂ · .	166.13
7 8	cyanic acid naphthoquinone	prussic acid	HNC C ₁₀ H ₆ (OH) ₂	27.06 160.11
9	(1, 2) naphthoquinone		C10H6(OH)2	160.11
10 11	(1, 4) quinone (p.). quinone dimethyl	See quinol	C ₆ H ₄ (OCH ₃) ₂	138.12
12	ether quinone ethyl		HO·C6H4·OC2H5	138.12
13 14	ether Hydroxy-acetic acid anthraquinone (2)	See glycollic acid	C ₆ H ₄ : (CO) ₂ : C ₆ H ₃ .	224.07
15	azo benzene (o.).		OH HO·C ₆ H ₄ ·N:N·	198.16
16	" " (p.).		C6H5 HO C6H4·N:N·	198.16
17 18	benzaldehyde (o.) (m.)		C6H5 HO·C6H4·CHO HO·C6H4·CHO	122.08 122.08
19	" (p.)		HO·C ₆ H ₄ ·CHO	122.08
20 21	benzamide (o.) (m.).		HO·C ₆ H ₄ ·CONH ₂ HO·C ₆ H ₄ ·CONH ₂	137.10 137.10
22 23 24	benzoic acid (o.) " (m.)		HO·C ₆ H ₄ ·CONH ₂ HO·C ₆ H ₄ ·COOH HO·C ₆ H ₄ ·COOH	137.10 138.08 138.08
25	" " (p.)		HO·C ₆ H ₄ ·COOH	138.08
26 27 28	benzyl alcohol (o.) "" (m.) "" (p.)	saligenin	HO·C ₆ H ₄ ·CH ₂ OH HO·C ₆ H ₄ ·CH ₂ OH HO·C ₆ H ₄ ·CH ₂ OH	124.10 124.10 124.10
29	butyric acid (α)		CH ₂ ·CH ₂ CH(OH)·	104.08
30	caproic acid	oxycaproic acid	COOH CH ₃ ·(CH ₂) ₃ ·CH	133.13
31 32 33	cinnamic acid. citric acid isobutyric acid (\alpha)	See coumaric acid	(OH) · COOH C ₃ H ₃ (OH) ₂ · (COOH) ₃ (CH ₃) ₂ · C(OH) COOH	208.14 104.08
	1	*		

Jo.	Crystal- line form	Sp. gr. $H_2O=1$	Melting- point	Boiling- point		ility in gm 100 c.c. of	
	and color	(A)Air=1	°C		Water	Alcohol	Ether
	,			-	-		
1	colorl. prisms	,	101	••,•••,•,	i.	v. s.	v. s.
2	leaf. f. al.		138	abt. 300	0.25; c. 1.3 h.	v. s.	
3	colorl. prisms		163	•••,•••	v. ɛl. s.	v. s.	v. s.
4	f. al. colorl.	1.071490	48.7	279.8	0.59^{20}	v. s.	s.
5	need. colorl. liq.			208 (223)	i.	17	
6	colorl.		128-9		v. s. h.	v. s.	v. s.
7	monoel. colorl. liq. colorl. leaf.	0.69718°	-10-12 * 60	25.2	∞ s. alk.	ω	v.s. (∞
9	colorl. need.		175		s. h.	v. s. h.	v. s.
0	colorl. leaf.		55-6	216.6	i.	s. bz.	
2	leaf.		66	246-7	al.	v. s.	v. s.
3 4	yel. leaf.		302	sub.	v. sl. s.	s.	8.
5	need.		82.5-3.0	• • • • • • •	sl. s.; s. alk.	s.	8.
6	prisms. f.		152		v. sl. h.	v. s.	v. s.
.7 .8	liq. colorl.	1.159 ²¹ °	-20 104	196.7 240	v. sl. s. s. h.	σ v. s.	о 8.
9	need. colorl.		115-6	sub.	sl. s.	v. s.	v. s.
0 21	need. yel. leaf. colorl. leaf.		140 167 (170.5)	270 d.	s. sl. s. c.; s. h.	v. s.	v. s.
2 3 4	need. need. f. w.		162 158 200	sub.	sl. s. 0.1820° 0.9218°	v. s. 5015°	sl. s. 23 . 4 ¹⁷⁰ 9 . 7 ¹⁷
25	rhomb.	1.404220	210 (214)	dec.	0.79150	v. s.	9.417
26	rhombic	1.161250	86 (82) 67	sub. 300 d.	6.7 ^{22°} v. s. h.	v. s. v. s.	v. s. v. s.
27 28	need. colorl.		110 (125)	u.	8.	v. s.	v. s.
9	need. colorl.		43	255–60 d.	8.	S.	s.
0	colorl.		60-2	sub. 100			· · · · · ·
1	97					100	200
2 3	liq. colorl. prisms		79	212	V. S. V. S.	v. s. v. s.	v. s. v. s.

No.	Name	Synonyms	Formula	Mol. wt.
	Hydroxy-			
1	isophthalic acid (2) (1, 3)		HO·C ₆ H ₃ ·(COOH) ₂ +H ₂ O	200.10
2	isophthalic acid (4) (1, 3)		HO·C ₆ H ₃ ·(COOH) ₂	182.09
3	isophthalic acid		HO·C ₆ H ₃ ·(COOH) ₂ +2H ₂ O	218.12
4	(5) (1, 3) phthalic acid (3)		HO·C ₆ H ₃ ·(COOH) ₂	182.09
5	(1,2) phthalic acid (4)		HO·C ₆ H ₃ ·(COOH) ₂	182.09
6 7	$(1, 2)$ propionic acid (α) . pyridine (2)	See lactic acid a pyridone	HO·C ₆ H ₄ N	95.08
8	" (3) " (4)	β pyridone γ pyridone	HO·C ₆ H ₄ N HO·C ₆ H ₄ N+H ₂ O	95.08 113.09
10 11	quinol quinoline (2)	carbostyril	C ₆ H ₃ (OH) ₃ (1, 2, 4) HO·C ₉ H ₆ N	126.08 145.11
12	" (4)	kyanuran See malic acid	HO·C9H6N+3H2O.	199.16
13 14	succinic acid. terephthalic acid	See mairc acra	HO·C ₆ H ₃ ·(COOH) ₂	182.09
15	(2) (1, 4) toluic acid (1, 2, 3)		CH3·C6H3·(COOH)	152.10
16	""(1,2,4)		(OH) CH ₃ ·C ₆ H ₃ ·(COOH)	152.10
17	" " (1, 2, 5)		(OH) CH ₃ ·C ₆ H ₃ ·(COOH)	161.11
18	" " (1, 2, 6)		(OH)+½H2O CH2·C6H2·(COOH)	152.10
19	" " (1, 3, 2)		(OH) CH ₃ ·C ₆ H ₃ ·(COOH)	152.10
20	" " (1, 3, 4)		(OH) CH ₃ ·C ₆ H ₃ ·(COOH)	152.10
21	" " (1, 3, 5)		(OH) CH ₈ ·C ₆ H ₈ ·(COOH)	152.10
22	" (1, 3, 6)		(OH) CH ₃ ·C ₆ H ₃ ·(COOH)	161.11
23	" " (1, 4, 2)		(OH)+½H ₂ O CH ₃ ·C ₆ H ₃ ·(COOH)	152.10
24	" " (1,4,3)	• • • • • • • • • • • • • • • • • • • •	(OH) CH ₃ ·C ₆ H ₃ ·(COOH)	152.10
25	urea		(OH) NH ₂ ·CO·NH(OH).	76.06
26	/ valeric acid (α) .	• • • • • • • • • • • • • • • • • • • •	CH ₂ ·(CH ₂) ₂ ·CH	118.11
27	Hyoscine	scopolamine	(OH) · COOH C ₁₇ H ₂₁ O ₄ N	303.26
28	hydrobromide	*************	C17H21O4N·HBr	438.24
29 30 31	Hyoscyamine hydrobromide Hypnoacetin		+3H ₂ O C ₁₇ H ₂₃ O ₃ N C ₁₇ H ₂₃ O ₈ NHBr C ₁₆ H ₁₅ O ₃ N	289.28 370.21 269.21
31	Hypnoacetin	•	C16H15O8N	269

No.	Crystal- line form	Sp. gr. H ₂ O=1	Melting- point	Boiling- point	Solub	ility in gn 100 c.c. of	ns. per f
	and color	(A)Air=1	.	C	Water	Alcohol	Ether
1	colorl.	•••••	243		v. sl. s.	v. s.	v. s.
2	need. colorl.		305	2232	c.; s. h. sl. s. h.	v. s.	v. s.
3	need.		288	sub.	18100°;	v. s.	v. s.
4	need. colorl.		dec.		sl. s. c. 20 ¹⁷ °	s.	s.
5	prisms colorl		181 d.	••,•••	3100	v. s.	8.
6	rosettes colorl. need. f.		106–7	280–1	v. s.	v. s.	8.
8	bz. need. colorl.		129 148.5		v. s. 100	v. s. v. s.	v. sl. s.
10 11	monocl. colorl. colorl. pr. f. al.		anh. 140.5 199–200	subl.	v. s. v. sl. s. c.; v. s. h.	v. s. v. s.	v. s. v. s.
12 13	colorl.		201		0.4715	s.	sl. s.
14	powd.		subl.		sl. s.	·v. s.	s.
15	need. f. w.		168		0.14250	v. s.	v. s.
16	need f. w		172 (183)		sl. s.	v. s.	v. s.
17	sm. need. f. w.		177 anh.		sl. s.	v. s.	v. s.
18	glit. need. f. w.	,	145-6 (183)		s.	v. s.	v. s.
19	long need. f. w.		163-4	,	v. s. h.	s. chl.	•••••
20	long. need. f. w.		151		v. sl. s.	v. s.	v. s.
21	tabl. f. w.	••••••	208 (210)	subl.	s.	•••••	
22	need. f. w.		172–3 anh.		s. h.	v. s.	v. s.
23	long, need.		206-7	subl.	v. sl. s.	v. s.	s.
25	monocl. f. al. colorl.		177	•••••	v. sl. s.	8.	•••••
26	need. colorl.		31		v. s.	s. v. s.	v. s.
27	need. colorl.		56-7	·····	10.5150	v. s.	v. s.
28	prisms colorl.		193-4		66.625°	6.3250	i.
29 30 31	rhomb. need. prisms colorl. leaf.	.,	108.5 151.8 160		5. v. s. v. sl. s.	v. s. 50 0.2835°	s. 0.06 v. sl. s
	f. al.		100	•••••		0.20	7. 134. 13

No.	Name	Synonyms	Formula	Mol. wt.
1	Hypogaeic acid		C ₁₅ H ₂₉ ·COOH	254.32
2	Hypoxanthine		C5H4ON4	136.10
3	Imino-acetic acid.		NH·(CH ₂ COOH) ₂	133 · 09
4	aceto-nitrile		NH·(CH ₂ ·CN) ₂	95.09
5 6	ethyl alcohol Indican		NH · (CH · CH ₂ · OH) ₂ C ₁₄ H ₁₇ O ₆ N+3H ₂ O	103.10 349.26
7	Indigo	indigotine	C16H10O2N2	262.17
8 9	carminedicarboxylic acid	soluble indigo	C ₁₆ H ₈ O ₂ N ₂ (SO ₃ N ₈) ₂ C ₁₈ H ₁₀ O ₆ N ₂	466.28 350.19
10	white		C16H12O2N2	264 .19
11 12	Indol Inosite (i.)		$C_8H_7N_{\cdots}$ $C_6H_{12}O_6+2H_2O_{\cdots}$	117.11 216.16
13 14 15 16 17	Iodeosine. Iodo-acetic acid . aniline (o.)	See erythrosine	CH ₂ I·COOH IC ₆ H ₄ ·NH ₂ IC ₆ H ₄ ·NH ₂ IC ₆ H ₄ ·NH ₂	185.95 219.01 219.01 219.01
18 19 20 21 22 23 24 25	benzene		C ₆ H ₆ I CH ₂ : CHI CH ₃ : CHI CH ₂ I. CH ₂ . COOH IC ₆ H ₄ : CH ₃ IC ₆ H ₄ : CH ₃ IC ₆ H ₄ : CH ₃ CHI ₃	203.99 153.95 199.97 199.97 218.01 218.01 218.01 393.77
26	Iodosobenzene		C ₆ H ₅ IO	219.99
27	Iodoxybenzene		C6H5IO2	235.99
28 29 30 31	Ionone (α)		C ₁₃ H ₂₀ O C ₁₃ H ₂₀ O C ₁₃ H ₂₀ O C ₈ H ₅ O ₂ N	192.23 192.23 192.23 147.09
32 33	chloride Isatinic acid		C ₈ H ₄ ONCl NH ₂ ·C ₆ H ₄ ·CO· COOH	165.54 165.14
34 35 36	Isatoxime Isoamyl-acetate acetic acid		C ₂ H ₅ O ₂ N ₂ CH ₃ ·COOC ₅ H ₁₁ (CH ₃) ₂ ·CH(CH ₂) ₃ COOH	162.11 130.15 130.15
37	alcohol	isobutyl carbinol.	$(CH_3)_2 \cdot CH \cdot (CH_2)_2$ OH	88.12
38	" (sec.)	methyl isopropyl carbinol	(CH ₃) ₂ ·CH·CH(OH) CH ₃	88.12
39	amine		(CH ₃) · CH · CH ₂ · CH ₂ · NH ₂	72.1
40	benzene		C6H5. C5H11	148.1

No.	Crystal- line form	Sp. gr. H ₂ O=1	Melting- point	Boiling- point	Solub	ility in gm 100 c.c. of	s. per
110.	and color	(A)Air=1			Water	Alcohol	Ether
1	colorl.		33		i.	v. s.	s.
2	need. need.	•••••	d. 150		0.07 ^{19°} ; 1.4 ^{100°}		••••••
3	colorl.		abt. 225		2.435°	i.	i.
4	colorl. lf.		75		s.	s.	sl. s.
5 6	colorl. br. liq.		28 176–7 anh.	270 dec.	σ v. s.	v. s.	8.
7	rhomb.		390–2 d.		i.; s. h. anil.	i.	i.; s. h. chl.
8 9	blue powd. blue powd.				s. i.; s. H ₂ SO ₄	sl. s. i.	i
10	white powd.				i.; s. alk.	s.	8.
11 12	colorl. leaf. colorl. monocl.		52 225	253-4	s. h. 17.5 ²⁴ °	v. s. i. (abs.)	v. s. i.
13 14 15 16 17	yel. need. leaf. need. or		82 57 (60-1) 25-7 63 (67-8)	dec.	i. v. sl. s. i. i.	s. v. s. s.	v. sl. s.
18 19	pr. liq.	2.0800	-28.5	188.2 56	i. i.	8. ©	ω ω v. s.
20 21 22	prisms leaf. liq.	1.697 ²⁰ ° 1.698 ²⁰ °	44.5–5.5 82 	211 (204) 204	sl. s. 825° i. i.	v. s. v. s. ∞	v. s. v. s.
23 24 25	leaf. yel. hex.	1.090~	35 119 subl.	211.5	i. 0.0125°	v. s. 1.3 ^{18°} ; 7.8 ^{78°}	v. s. 13.625°
26	amor.		expl. abt. 210		s.	s.	i.
27	need.		expl. 230-8		v. sl. s.	v. s. bz.	v. s. chl.
28 29 30 31	colorl. liq. colorl. liq. colorl. liq. red need. f, al.	0.934 0.949 0.939	198-9	120.6 ^{12mm} 134.6 ^{12mm} 144 ^{16mm} subl.	v. sl. s. v. sl. s. v. sl. s. v. sl. s. c. s. h.	ω ω v. s. s.	σ σ v. s. sl. s.
32 33	br. need. wh. powd.		180 d. dec.		i. sl. s.	s.	v s.
34 35 36	yel. need. colorl. liq. colorl. liq.	0.876 0.91219°	202 d.	139 209	v. sl. s. 0.1625° sl. s. h.	8.	s. alk.
37	colorl. liq.	0.810 ²⁰ °		130	3.322°	ω	∞
38	colorl. liq.	0.819190		112.5	sl. s.	- ∞	œ
39	colorl. liq.	0.747		95	v. sl. s.	. ω	8
40	colorl. liq.	0.885180		193 (201)	i.	œ	_ ∞

	Name	Synonyms	Formula	Mol. wt.
1	Isoamyl- benzoate		C ₆ H ₅ ·COOC ₅ H ₁₁	192.19
2	bromide		(CH ₃) ₂ ·CH·(CH ₂) ₂ Br	151.03
3 4 5	butyrate chlorcarbonate chloride		$C_3H_7 \cdot COOC_5H_{11} \dots Cl \cdot COOC_5H_{11} \dots (CH_3)_2 \cdot CH \cdot (CH_2)_2$	158.19 150.58 106.57
6	cyanide	capronitrile	$\begin{array}{c c} Cl \\ (CH_3)_2 \cdot CH \cdot (CH_2)_2 \cdot \end{array}$	97.13
7	ether		C ₅ H ₁₁ ·O·C ₅ H ₁₁	158.23
8	formate		H·COOC ₅ H ₁₁	116.13
9	iodide		$(CH_3)_2 \cdot CH \cdot (CH_2)_2I$	198.03
10	isobutyrate		$(CH_3)_2 \cdot CH \cdot COOC_5$ H_{11}	158.19
11	isocyanide		(CH ₃) ₂ ·CH·(CH ₂) ₂ · NC	97.13
12	isovaleriate		C4H9·COOC5H11	172.21
13	mustard oil		C ₅ H ₁₁ ·NCS	129.21
14	nitrate		(CH ₃) ₂ ·CH·(CH ₂) ₂ · NO ₃	133.16
15	nitrite		$(\overset{\circ}{\mathrm{CH}_3})_2 \cdot \overset{\circ}{\mathrm{CH}} \cdot (\overset{\circ}{\mathrm{CH}_2})_2 \cdot \overset{\circ}{\mathrm{NO}_2}$	-117.16
16	phenol (p.)	•••••	C ₅ H ₁₁ ·C ₅ H ₄ ·OH	164.18
17	phenyl ketone		C.H., CO. C.H.	176.19
18	propionate		$C_5H_{11} \cdot CO \cdot C_6H_5 \dots CH_3 \cdot CH_2 \cdot COOC_5$	144.17
-	propromiser	***************************************	H ₁₁	177.17
9	∘ salicylate		HO.C.H. COOC	208.19
20	sulphide		(C ₅ H ₁₁) ₂ S	174.28
21	urea		NH ₂ ·CO·NH (C₅H ₁₁)	130.16
22	Isobutane	trimethyl methane	(CH ₃) ₂ ·CH·CH ₃ CH ₃ ·COOC ₄ H ₃	58.10
23	Isohutyl-acetate	,	CH ₃ ·COOC ₄ H ₉	116.13
24	alcohol	isopropyl carbinol	(CH3)2·CH·CH2OH	74.10
5	aldehyde		(CH ₃) ₂ ·CH·CHO	72.08
26	amine	• • • • • • • • • • • • • • • • • • • •	(CH ₃) ₂ ·CH·CH ₂ · NH ₂	73.12
27	benzene		C6H5·C4H9	134.16
8	benzoate		C6H5 · COOC4H9	178.17
9	bromide		(CH ₃) ₂ ·CH·CH ₂ Br.	137.01
10	butyrate		C ₈ H ₇ ·COOC ₄ H ₉	144.17
1	chlorcarbonate		Cl·COOC ₄ H ₉	136.55
2	chloride		(CH ₃) ₂ ·CH·CH ₂ Cl .	92.55
3	cyanide	isovaleronitrile	(CH ₃) ₂ ·CH·CH ₂ · CN	83.14
4	ether		C ₄ H ₉ ·O·C ₄ H ₉	146.19
5	formate		H.COOC.H.	102.11
6	iodideisocyanide	• • • • • • • • • • • • • • • • • • • •	(CH ₃) ₂ ·CH·CH ₂ I	184.06
٠	ьосувшае	• • • • • • • • • • • • • • • • • • • •	$(CH_3)_2 \cdot CH \cdot CH_2 \cdot NC$	83.11
8	isovaleirate		C4H9·COO·C4H9	158.19
9	ketone		C4H9 · CO · C4H9 · · · ·	142.20
0	mustard oil		C4H NCS	115.19

No.	Crystal- line form	Sp. gr. H ₂ O=1	Melting- point	Boiling- point	Solubi	lity in gm 100 c.c. of	s. per
	and color	(A)Air=1			Water	Alcohol	Ether
1 2	eolorl. liq. colorl. liq.	0.993 ^{19°} 1.219		261 120-0.6	i i.	s. s.	•••••
3 4 5	colorl. liq. colorl. liq. colorl. liq.	0.8820° 1.02425° 0.880		178.6 151-6 100-1	v. sl. s. dec. i.	v. s.	v. s.
6	liq.	0.807		155.5	i.	8.	8
7 8 9 10	colorl. liq. colorl. liq. liq. colorl. liq.	0.781 0.8940° 1.47320° 0.8760°		173 123.3 148.2 168.8	i. v. sl. s. i.	s. s. s.	8 8 8.
11	liq.			137	i.	s.	s.
12 13 14	colorl. liq. liq. liq.	0.858 ^{19°} 0.942 1.000 ^{7.5°}		194 183–4 147	v. sl. s. v. sl. s. v. sl. s.	s. v. s. s.	s. v. s. v. s.
15	liq.	0.880		94-5	v. sl. s.	· œ	. ω
16	need f. h.		92-3	255	v. sl. s. h.	v. s.	v. s.
17 18	w. colorl. liq. colorl. liq.	0.8880		241.5-2.5 160.2	i. 0.0925°	v. s. s.	v. s. s.
19	colorl. liq.	1.04525°		270	i.	v. s.	ω .
20 21	colorl. liq.	0.84320°	89-91	213–16	i. sl. s.	v. s.	v. s.
22 23 24 25 26	gas. colorl. liq. colorl. liq. colorl. liq. colorl. liq.	* 0.6030° 0.87120° 0.806 0.79420° 0.735	-108	-11 116.3 106.5 63-4 68	i. 0.6325° 9.518° 11	8. 8 8 8 8	8. & & & & & &
27 28	colorl. liq.	0.873 1.002		171-1.5 237 (241.5)	i. i.	& &	88
29 30 31 32 33	liq. colorl. liq. liq. colorl. liq. liq.	1.260 0.866 1.04025° 0.880 0.80720°		90-1 156.9 127-30 69 129-9.5	i. v. sl. s. dec. i. sl. s.	8 8 8 8 8 8	8 8 8 8 8
34 35 36 37	colorl. liq. colorl. liq. colorl. liq. colorl. liq.	0.885 ^{20°} 1.614 0.787 ^{4°}	-90.7	122-2.5 98.5 120 114-7	sl. s. 1 i. sl. s.	& & & & 8.	& & & & 8.
38 39 40	colorl. liq. colorl. liq. liq.	0.84825° 0.83320° 0.94320°		167-70 181-2 162	i. i. i.	ά V. s. V. s.	σ v. s. v. s.

^{*} Specific gravity of the liquid.

No.	Name	Synonyms	Formula	Mol. wt.
1	Isobutyl- nitrate		(CH ₃) ₂ ·CH·CH ₂ ·	119.13
 2	nitrite		NO ₃ (CH ₃) ₂ ·CH·CH ₂ ·	103.10
3 4 5 6 7	phenyl ketone Isobutyric acid amide anhydride Isocarbostyril	1 hydroxy-isoquin- oline	NO ₂ C ₄ H ₅ ·CO·C ₆ H ₅ (CH ₅) ₂ ·CH·COOH. (CH ₃) ₂ ·CH·CONH ₂ [(CH) ₂ ·CH·CO] ₂ O. C ₅ H ₇ ON	162.17 88.08 87.13 158.16 145.11
8	Isocinchomeronic acid		C ₅ H ₃ N·(COOH) ₂ +H ₂ O	185.14
9 10	Isocitric acid Isocrotonic acid		C ₆ H ₈ O ₇ +H ₂ O CH ₂ ·CH: HC· COOH	210.11 86.07
11 12	Isodurene		C ₆ H ₂ (CH ₃) ₄ (1, 2, 3, 5) C ₃ H ₅ ·C ₆ H ₃ (OCH ₃) OH	134.16 164.15
13	Isohydrobenzoin .		C14H12(OH)2	214.18
14 15	Isomalic acid Isomannid		CH ₃ ·C(OH)(COOH) ₂ C ₆ H ₁₀ O ₄	134.07 146.11
16	Isonicotinic acid		C ₅ H ₄ N·COOH(4)	123.08
17 18	Isopentane Isophthalic acid (m.)		(CH ₃) ₂ CHCH ₂ CH ₃ . C ₆ H ₄ (COOH) ₂	72.12 166.09
19 20	aldehyde (m.) nitrile		C ₆ H ₄ (CHO) ₂ C ₆ H ₄ (CN) ₂	118.09 128.09
21	Isoprene		CH ₂ : CH·C(CH ₃):	68.09
22	Isopropyl-acetate.	***************************************	CH ₃ ·COO·CH(CH ₅) ₂	102.11
23 24 25 26 27	acetylenealcoholaminebenzene.benzoic acid (o.)	See cumene	(CH ₃) ₂ CH·C: CH CH ₃ ·CH(OH)·CH ₃ (CH ₃) ₂ CHNH ₂ (CH ₃) ₂ ·CH·C ₆ H ₄ ·	68.09 60.08 59.11 164.15
28 29 30 31	bromide chloride cyanide ether		COOH (CH ₃) ₂ CH · Br (CH ₃) ₂ CH · Cl (CH ₃) ₂ CH · CN (CH ₃) ₂ CH · O · (CH ₃) ₂ CH · O ·	122.99 78.53 69.12 102.15
32 33 34 35	ethyleneiodideisocyanideketone		CH(CH ₃) ₂ (CH ₃) ₂ CH·CH: CH ₂ (CH ₃) ₂ CH·I (CH ₃) ₂ CH·NC (CH ₂) ₂ CH·CO· CH(CH ₃) ₂	70.11 169.93 69.11 114.15
36 37 38	mercaptan methyl benzene (p.). phenyl ketone	See cymene (p.)	(CH ₃) ₂ CH·CO·C ₆ H ₅	148.15
39	pyridine (1)		(CH ₃) ₂ CH·C ₅ H ₄ N	121.17

No.	Crystal- line form	Sp. gr. H ₂ O=1	Melting- point	Boiling- point		lity in gm 0 c.c. of	s. per
140.	and color	(A)Air=1		°C	Water	Alcohol	Ether
1 2 3 4 5 6 7	colorl. liq. liq. colorl. liq. colorl. liq. colorl. leaf. colorl. liq. colorl.	1.021 0.908°° 0.993 0.94525°	128-9 208-9	123 67 225-6 155 216-20 182.5	i. i. 2020° v. s. dec. sl. s.	S. CO CO V. S. dec. V.S.	ω ω ω sl. s. sl, s.
8	colorl. leaf.	• • • • • • • • • • • • • • • • • • • •	236	subl.	v. sl. s.	v. sl. s.	v. sl. s.
9 10	prisms need.	1.031	15.5	169-9.3	v. sl. s. 40	v. sl. s.	v. sl. s.
11 12	liq.	0.896°° 1.091}§°		195–7 267.5	i. sl. s.	s. s.	s.
13	cotorl. monocl.		119.5		0.21150	v. s.	v. s.
14 15 16	monoci. colorl. monocil. colorl.	20	dec. . 87 315	274 d.	v. s. v. s. sl. s. c.;	v. s. sl. s. v. sl. s.	v. s. i. v. sl. s.
17 18	need. colorl. liq. colorl. need.	0.628	abt. 300	31 subl.	v. s. h. i. 0.01325°; 0.22 h.	& 8.	∞
19 20	need. colorl. need.		89 158-9		sl. s. sl. s.	v. s. s. h.	
21	colorl. liq.	0.69100		35.8	i.	ω	ω
22	colorl. liq.	0.9170°		90–3	sl. s.	ω	8
23 24 25 26	colorl. liq. colorl. liq. colorl. liq.	0.685°° 0.7892°° 0.69018°		28-9 82.8 32.2	i. ∞ ∞	8 8 8	8 8 8
20 27	colorl. pr.		51		s. h.		
28 29 30 31	colorl. liq. colorl. liq. colorl. liq. colorl. liq.	1.31025° 0.85725°		59-60 35-6 107-8 69	i. v. sl. s. sl. s. sl. s.	8 8 8 8	8 8 8
32 34 34 35	colorl. liq. liq. colorl. liq. colorl. liq.	1.70525° 0.760° 0.80620°		21.2 89.5 87 123.7	i. i. i. i.	8 8 8 8	8 8 8
36 37							
38 39	colorl. liq.	0.9340		217 158-9	i. sl. s.	8. ()	8. ©

No.	l Name			
	Name	Synonyms	Formula	Mol. wt.
1 2	Isopropyl- pyridine (3) sulphide		(CH ₃) ₂ CH · C ₅ H ₄ N (CH ₃) ₂ CH · S	121.17 118.20
3	Isopurpurin.	See anthrapurpurin	CH(CH ₈) ₂	
5	Isoquinoline Isosaccharic acid .		C ₉ H ₇ N [CH(OH)·CH	129.18 192.09
6 7	Isosuccinic acid Isovaleric acid		(COOH)]2O CH ₃ ·CH(COOH) ₂ (CH ₃) ₂ ·CH·CH ₂ ·	118.07 102.11
8	aldehyde		COOH (CH ₃) ₂ ·CH·CH ₂ ·	86.11
9	Ketene Lactamide		CHO CH ₂ : CO CH ₃ ·CH(OH)·CO	42.03 89.10
11	Lactic acid (i.)		NH₂ CH₃·CH(OH) COOH	90.08
12 13	anhydride Lactide		C6H ₁₀ O ₅	162.11 144.09
14	Lactose	milk sugar	C12H22O11+H2O	360.25
15 16	Lactyl urea Laevulinic acid		C ₄ H ₅ O ₂ N ₂ +H ₂ O CH ₃ ·CO·(CH ₂) ₂ ·	131.16 116.09
17	aldehyde	•••••	COOH CH ₃ ·CO·(CH ₂) ₂ ·	100.09
18 19	Laevulose. Lauric acid	See fructose	CHO C ₁₁ H ₂₃ ·COOH	200.26
20	aldehyde		C11H23 · CHO	172.26
21	Lepidine	•••••	CH ₃ ·C ₉ H ₆ N(py. 4).	143.16
22	Leucine (l.)		CH ₃ ·(CH ₂) ₃ ·CH (NH ₂)·COOH	131.14
23	Leuco-aniline	•••	(NH ₂)·COOH (NH ₂ ·C ₆ H ₄) ₂ ·CH· C ₆ H ₃ ·CH ₃ (NH ₂)	303.39
24 25	" " (p.) Leuco-malachite- green		CH(C ₆ H ₄ ·NH ₂) ₃ C ₆ H ₅ ·CH·[C ₆ H ₄ · N(CH ₂) ₂] ₂	289.28 330.34
26 27 28	Limonene (d. or l.) Linalool (d. or l.) Linalyl acetate		C ₁₀ H ₁₆ C ₁₀ H ₁₈ O CH ₃ ·COOC ₁₀ H ₁₇	136.18 154.19 196.22
9 10 11 12 13 14	Linoleic acid	dimethyl pyridine """ """	C ₁₈ H ₃₂ O ₂ . (CH ₃) ₂ · C ₅ H ₃ N. (CH ₃) ₂ · C ₆ H ₂ N. (CH ₃) ₂ · C ₅ H ₃ N. (CH ₃) ₂ · C ₅ H ₃ N. C ₆ H ₂ N· (COOH) ₂	280.35 107.12 107.12 107.12 107.12 185.14
5	Maleic acid	•••••	+H₂O COOH CH : CH COOH	116.05
6	anhydride		C ₄ H ₂ O ₃	98.04

No.	Crystal- line form	Sp. gr. $H_2O=1$	Melting- point	Boiling- point	1	lity in gms 100 c.c. of	o. por
.,	and color	(A)Air=1	**C	°C	Water	Alcohol	Ether
1 2	liq. liq.	0.9440°		177-8 120.5	i.	ω s.	ω 8.
3 4 5	colorl. rhomb.	1.099200	24.6 185	240.8 dec.	v. sl. s. v. s.	v. s.	v. s.
6	colorl. pr.	1.455 0.95622°	135 d.	i76	44.30° 4.220°	v. s. ∞	v. s. ∞
8	colorl. liq.	0.820°°		92.5	al. s.	8.	8.
9 10	gas colorl.	1.13800	74	-56 · · · · · ·	dec. v. s.	s. v. s.	s.
11	colorl.	1.249		119 ^{12mm}	; œ	ω .	ω .
12 13	amor. colorl. monocl.	0.862100	250–60 d. 128	255	v. sl. s. v. sl. s. c.	v. s. v. sl. s.	v. s.
14	colorl.	1.52520°	abt. 200 d.		17c.; 40 h.	i.	i. sl.
15 16	rhomb. colorl. leaf.	1.137250	anh. 145 33	245-6	v. s. v. s.	v. s. v. s.	v. s. v. s.
17	colorl. liq.	1.016		186-8 d.	∞ .	ω	` œ
18 19	colorl. need.	0.86460°	43.6 (48)	dec.	i.	8.	8.
20	colorl. leaf.		44.5	184-5 100mm	i.	8.	s.
21	colorl. liq.	1.08620		266 (261–3)	v. sl. s.	ω	8
22	colorl. leaf.	1.293180	283–5 d.		2.4220	0 07 ¹⁷ °; 0 12 h.	10.9 g ac. a
23	colorl.		abt. 100		v. sl. s. h.	v. s.	v. sl. s
24 25	colorl. leaf.		148 93–4		i. i.	s. v. s.	v. s.
26 27 28	colorl. liq. colorl. liq. colorl. liq.	0.85310° 0.873 0.91		176.5 195-9 abt. 220 d.	i. v. sl. s. v. sl. s.	8 8 8	& & &
29 30 31 32 33 34	yel. oil. colorl. liq. colorl. liq. colorl. liq. colorl. liq. leaf.	0.921 0.947° 0.938 0.942°°	<-18 235	154-6.5 157-9 142-3 163.5-4.5	20 ∞ c.	&	ω i.
35	colorl.	1.590	130		5010°	s.	s.
36	prisms colorl. trimet.	0.934190	56-7	202			····

3		T ===	1	1
No.	Name	Synonyms	Formula	Mol. wt.
1	Malic acid (d. or l.)		COOH · CH ₂ · CH	134.07
2	" " (i.)		COOH · CH ₂ · CH	134.07
3	Malonic acid		(OH)COOH CH ₂ · (COOH) ₂	104.08
4	amide		CH ₂ ·(CO·NH ₂) ₂	168.07
5 6 7	Malononitrile Maltose Mandelic acid (i.).	malt sugar	CH ₂ ·(CN) ₂ C ₁₂ H ₂₂ O ₁₁ +H ₂ O C ₆ H ₅ ·CH(OH)·	66.05 360.25 152.10
8	Manitol (d.)	mannite	COOH C6H8(OH)6	182.15
9	Mannose (d.)		C ₆ H ₁₂ O ₆	180.13
10 11	Margaric acid Meconine		C ₁₆ H ₃₃ ·COOH C ₁₀ H ₁₀ O ₄	270.36 194.13
12 13	Melene Melissic acid		C ₃₀ H ₆₀ C ₂₉ H ₅₉ ·COOH	420.63 452.63
14	Mellitic acid	·	C6(COOH)6	342.11
15	Menthol (l.)		C10H19OH	156.21
16 17 18 19 20	Menthone (l.) Mercuric fulminate Mercury ethyl methyl Mesaconic acid		C ₁₀ H ₁₈ O Hg(ONC) ₂ +½H ₂ O Hg(C ₂ H ₅) ₂ Hg(CH ₃) ₂ CH ₃ (COOH)C: CH	154.20 293.10 258.10 230.06 130.08
21 22 23	Mesitylene (1, 3, 5) Mesitylinic acid Mesotartaric acid		COOH C ₆ H ₅ (CH ₅) ₂ (CH ₅) ₂ ·C ₆ H ₅ ·COOH (HO) ₂ ·C ₂ H ₂ · (COOH) ₂ ·H ₂ O	120.15 150.13 168.08
24	Mesoxalic acid	• • • • • • • • • • • • • • • • • • • •	(COOH) ₂ +H ₂ O (HO) ₂ ·C·(COOH) ₂ .	136.05
25	Metaldehyde	•••••	(C ₂ H ₄ O) ₄	176.19
26	Methacetine	p. methoxy-acet- aminophenol	CH3O·C6H4·NH	165.14
27 28	Methane Methoxy-benzoic		COCH ₃ CH ₄ CH ₃ O·C ₆ H ₄ ·COOH	16.03 152.10
29	acid (o.) Methoxy-benzoic	•••••	CH ₃ O·C ₆ H ₄ ·COOH	152.10
30	acid (m.) Methyl acetanilide	•••••	CH ₃ CO·N(CH ₃)·	149.18
31 32	acetateaceto-acetate	***************************************	C_6H_5 $CH_3 \cdot COO \cdot CH_3 \cdot$ $CH_3CO \cdot CH_2 \cdot COO \cdot$	74.07 116.09
33	aceto-acetic ether		CH ₃ CO·CH(CH ₃).	144.14
34 35 36	acridine (2) acrylate acrylic acid		COO·C ₂ H ₅ CH ₃ ·C ₁₈ H ₈ N CH ₃ O ₂ ·CH ₃ . CH ₂ : C(CH ₃)·COOH	193.17 86.07 86.07
				. •

No.	Crystal- line form	Sp. gr. H ₂ O=1	Melting- point	Boiling- point	Solubi	lity in gma .00 c.c. of	s. per
110.	and color	(A) Air=1		*C	Water	Alcohol	Ether
1	colorl;	1.595	100	dec.	v. s.	sl. s.	sl. s.
2	need. colorl.	1.60120°	133	dec.	v. s.	v. s.	v. s.
3	colorl.		132	dec.	>100	s.	s.
4	triel. colorl.		170		8.380	i. abs.	
5	need. colorl.		29-30	218-9	13.3	40	20
6	fine need.	1.540 ¹⁷ °		3:	v. s. 16 ²⁰ °	v. sl. s. c.	s.
7	colorl. rhomb.	1.3614°	118	dec.		s.	
8	colorl.	1.521	166		15.618°	v. sl. abs.	i.
8	colorl.		132-3		250	v. sl. s.	i.
10	prisms colorl.	0.85360°	59.9	227100mm	i.	sl. s.	v. s.
ĩĭ	colorl.		102-2.5		0.14 c.; 4.5 h.	• • • • • •	
12	need. colorl.	0.89	62	370-80	i.	s. h.	
13	colorl.		90		i.	sl. s. c.; v. s. h.	v. sl. s
14	scales colorl.		286-8	dec.	v. s.	8.	
15	need. colorl.	0.890	42	210	sl. s.	v. s.	v. s.
16	colorl. liq.	0.89620°		207	sl. s.	00	ω
17	rhomb.		expl. 180	159	0.07 ^{12°}	sl. s. h. sl. s.	s.
18	liq.	2.444 3.069		96	i.	51. 5.	
19 20	liq. colorl.	3.000	202	subl.	2.7 ^{18°} ; v. s. h	39	s.
21	need.	0.86320°	166	164.5	1 i	S.	8.
22	monocl.		166 140-3	subl.	v. sl. s. 120 ¹⁵ °	v. s.	
23	colorl. tab.	1.666	1.		v. s.	s.	8.
24	del. need.		119–20			1.870°	0.585
25	colorl. tetrag.		subl. 112–5		i.		1.
26	colorl.		127		211.0	12.721°	v. s. cl
27	gas	0.558 (A)	-184	-153	5.45 c.c.º	52.2 c.c	. s.
28	monocl.	1.180	98.5		0.530°		
29	colorl.		167	subl.	sl. s.; v. s. h		v. s.
30	colorl.		102	245	s.	8.	
31 32	colorl. liq.	0.964 1.0379°		57.5 (54 170	31.920° v. sl. s.	80	8 8
33	colorl. liq.			186.8		8.	8.
- 5-5			101 5		v. s. ba	v. s.	v. s.
34	yel'sh colorl. liq.	0.9730°	131.5-4.	80.3	V. S. D.	s. v. s.	s.
35 36	colori. nq.	0.01520°	14	162-3	8.	ω,	. 00
,	prisms		1		1	1	

NT_ !	N T	~		Mol.
No.	Name	Synonyms	Formula	wt.
	Methyl			
1	alcohol		CH3OH	32.0
2	allene		CH2: C: CH·CH3	54.0
3	allyl amine/		CH ₂ ·NH·C ₂ H ₅	71.
4	" carbinol	•••••	$CH_2: CH \cdot CH_2 \cdot CH$ $(OH) \cdot CH_3$	86.
5	" ether		(OH) · CH ₃	
6	amine	•••••	CH ₃ ·O·C ₃ H ₅ CH ₃ NH ₂	72. 31.
7	amine hydro-		CH ₂ NH ₂ ·HCl	67.
8	chloride amino-acetate	***************************************		
-		•••••	NH2·CH2·COO·CH3	89.6
9	" -benzoate (o.)	•••••	NH ₂ ·C ₆ H ₄ ·COO· CH ₃	151.
0	" " (p.)	•••••	NH2·C6H4·COO·	151.1
1	" -propionic	••••	CH ₃ ·CH(NHCH ₃)·	103.1
2	acid (α) amyl ketone	******	COOH CH ₃ ·CO·C ₅ H ₁₁	114.1
3	aniline	****************	C6H5·NHCH3	107.
4	anthracene (α)	******************	C14H9 · CH3	192.
5	" (β)	•••••	C14H9 · CH3.	192.
6	anthranilate		H2N · C6H4 · COO	151.1
7	anthraquinone (2)		CH ₃ C ₁₄ H ₇ O ₂ ·CH ₃	222.1
8	arsine		CH ₃ ·AsH ₂	91.9
9	auramine	•••••	CH ₃ N·C·[C ₆ H ₄ .	281.3
0	benzoate		$N(CH_3)_2$	
ĭ .	bonzoul costst	• • • • • • • • • • • • • • • • • • • •	C6H6 · COO · CH3	136.1
	benzoyl-acetate.	•••••	C6H5CO·CH2·COO· CH3	178.1
2	benzyl-ketone	• • • • • • • • • • • • • • • • • •	CH* CO CH*C*H*	134.1
3	bromide	•••••	CH ₃ Br	94.9
1	butyl amine		CH ₃ Br CH ₃ ·NH·C ₄ H ₉	87.1
5	" carbinol		CH ₈ ·CH(OH)·C ₄ H ₆	102.1
3	etner	***************************************	CH ₃ ·O·C ₄ H ₉	88.1
	ketone		CH3·CO·C4H9	100.1
3	butyrate		C ₈ H ₇ ·COO·CH ₈	102.1
9	butyrone		C8H16O	128.1
)	caprate	*************	C9H19 · COO · CH2	186.2
<u> </u>	caproate		C ₅ H ₁₁ ·COO·CH ₂	130.1
2	caprylate		C7H15 · COO · CH2 · · · · NH2 · COO · CH3 · · ·	158.1
3	carbamate		$NH_2 \cdot COO \cdot CH_3 \cdot$	75.0
Ł	carbanilide		CH ₃ ·C ₆ H ₅ N·CO· NH·C ₆ H ₅	226.2
5	carbostyril (γ)	lepidone	C9H6(CH3)ON	159.1
3	chloracetate		CH2Cl·COO·CH3	108.5
	chlorcarbonate		Cl·COO·CH ₃	94.4
3	chloride	chloromethane	CH ₃ Cl	50.4
)	cinnamate		C ₆ H ₅ ·CH:CH· COO·CH ₃	162.1
	crotonate (α)		C ₃ H ₅ ·COO·CH ₃	100.0
, ,				
	cyan-acetate		CH2(CN) · COO · CH3	99.0

No.	Crystal- line form	Sp. gr. H ₂ O=1	Melting- point	Boiling- point	Solubi	lity in gm 100 c.c. of	s. per
210.	and color	(A)Air=1	°C	°C	Water	Alcohol	Ether
.1 2 3 4	colorl. liq. colorl. liq. colorl. liq. colorl. liq.	0.79815°	-97.1	66 118-9 65 115-6	ω i. ω 12.5	& & 	8 8
5 6	colorl. liq.	$\substack{0.77 \\ 0.699^{-10.8}}$		46 -6.7	v. sl. s. 1150 ¹²⁰ c.c.	ω s.	
7	leaf.	•••••	226-7		v. s.	8.	i.
8	colorl. liq.			abt. 130 d.			• • • • • • • •
9	colorl.	1.168	24.5	,	s.	v. s.	v.s.
10	colorl. leaf.		112 (102)				• • • • • •
11 12 13 14 15	colorl. rhomb. colorl. liq. yellow liq. colorl. leaf. colorl. scales	0.835°° 0.9872°°	260 d. 199–200 199–200 (207) 24.5	151 195.5	s. v. sl. s. v. sl. s. s. bz. s. bz. sl. s.	v. sl. s. c. abs. s. s. sl. s. v. s.	s. ∞ sl. s. v. s.
17	yel'sh		177	subl.	v. s. bz.	v. sl. s.	s.
18 19	need. gas gr'n'sh yel.		130-3	2	v. sl. s.	v. s. v. s.	v. s.
20 21	colorl. liq. colorl. liq.	1.094	-12.3	199 260–5 d.	v. sl. s. i.	8 8	8 8
22 23 24 25 26 27 28 29 30 31 32 33 34	colorl. gas colorl. liq. colorl. liq. colorl. liq. colorl. liq. colorl. liq. colorl. liq. colorl. liq. colorl. liq. colorl. liq. colorl. liq. colorl. liq. colorl. ab. colorl. need. colorl. need.	1.019°° 1.732°° 0.737 0.833°° 0.763°° 0.830°° 0.830°° 0.919°° 0.827	27 <-84 	215 4.5 91 136 70.3 127 102.3 180 223.5 150 193 177	i. sl. s v. sl. s. v. sl. s. s. s. i. i. i. i. 21711° i. v. sl. s. c.		V. S. V. S
36 37 38 39	colorl, liq. colorl, liq. colorl, gas colorl.	0.920 1.04236°	-91.5 36	130-2 72-5 -23.7 260	v. sl. s. dec. 400 c,c. i.	∞ ∞ 3500 c.c. v. s.	eo eo s.
40 41	colorl. liq.	0.98140	-22.5	120.7 204	i.	v. s. ∞	v. s. ∞

No.	Name	Synonyms	Formula	Mol. wt.
	Methyl	-		
2	cyanidediazoamino- benzene (4)	acetonitrile	$\begin{array}{c} \mathrm{CH_3 \cdot CN} & \dots \\ \mathrm{CH_3 \cdot C_6 H_4 \cdot N_2 \cdot NH} \\ \mathrm{C_6 H_5} \end{array}$	41.0 211.2
3 4	diethyl amine diethyl amino- benzene (o.)	••••••	CH ₃ N(C ₂ H ₅) ₂ CH ₃ ·C ₆ H ₄ ·N(C ₂ H ₅) ₂	87.1 163.2
5	diethyl amino- benzene (p.)		CH ₃ ·C ₆ H ₄ ·N(C ₂ H ₅) ₂	163.2
6 7	diethyl carbinol. diphenylamine		$(C_2H_5)_2 \cdot C(OH) \cdot CH_3$ $(C_6H_5)_2NCH_3$	102.1 183.1
8 9	etherethyl acetic acid		$CH_3 \cdot O \cdot CH_3 \cdot \cdot CH_3 \cdot CH(C_2H_5) \cdot$	46.0 102.1
10	" acetone	•••••	$\begin{array}{c} \text{COOH} \\ \text{CH}_3 \cdot \text{CO} \cdot \text{CH}(\text{C}_2\text{H}_5) \cdot \\ \text{CH}_3 \end{array}$	100.1
11 12	" aniline ethyl benzene (o.)		$C_6H_5 \cdot N(CH_3)C_2H_5$. $CH_3 \cdot C_6H_4 \cdot C_2H_5$.	135.10 120.14
13 14 15	" " (m.) " (p.) " carbonate.		CH ₃ ·C ₆ H ₄ ·C ₂ H ₅ CH ₃ ·C ₆ H ₄ ·C ₂ H ₅	120.14 120.14
16 17	" ether		CH ₃ ·CO ₃ ·C ₂ H ₅ CH ₃ ·O·C ₂ H ₅ CH ₃ ·CO·C ₂ H ₅	104.00 60.00
18 19	" ketoxime " oxalate		CH ₃ ·C(NOH)·C ₂ H ₅ CH ₃ ·OOC·COO·	72.0 87.1 132.0
20 21	" succinate " sulphide		$egin{array}{c} C_2H_5 \ C_7H_{12}O_4 \dots \ CH_3 \cdot S \cdot C_2H_5 \dots \end{array}$	160.1
22	formate		H·COO·CH ₃	76.1 60.0
23 24	furfurol glycerate	•••••	CH ₃ ·C ₄ H ₂ O·CHO. CH ₂ OH·CHOH·	110.00 120.00
25 26	glycolate heptenone	•••••	$\begin{array}{c} \text{COO} \cdot \text{CH}_3 \\ \text{CH}_2(\text{OH}) \cdot \text{COO} \cdot \text{CH}_3 \\ (\text{CH}_3)_2\text{C} : \text{CH}(\text{CH}_2)_2 \end{array}$	90.0 126.1
27 28	hyptyl ether hexyl ketone		$\begin{array}{c} \mathrm{COCH_3} \\ \mathrm{CH_3 \cdot O \cdot C_7 H_{15} \dots } \\ \mathrm{CH_3 \cdot CO \cdot C_6 H_{13} \dots } \end{array}$	130.1 128.1
29 30	hydrazine hydrazo-benzene		NH2·NH·CH3 CH3·C6H4·NH·NH·	46.0 198.2
31	(o.) hydrazo benzene (m.)	••••••	C_6H_5 $CH_3 \cdot C_6H_4 \cdot NH \cdot NH \cdot$ C_6H_5	198.2
32	hydrazo benzene	. :	CH ₃ ·C ₆ H ₄ ·NH·NH·	198.2
33	hydrogen sul- phate	methyl sulphuric acid	CtH ₅ ·HSO ₄ ······	112.1
34	iodide	iodomethane	CH ₈ I	141.9
35 36	isoamyl ketone ketoxime		$CH_3 \cdot CO \cdot C_5H_{11} \dots CH_3 \cdot C(NOH) \cdot C_5H_{11}$	114.1 129.1
37 38	isobutyl amine		CH3·NH·C4H9	87.1
39	" ketone. isobutyrate		CH ₃ ·CO·C ₄ H ₉ ····· (CH ₃) ₂ ·CH·COO· CH ₃	100.1 102.1
10	isocyanide	methyl carbyl- amine	CH ₃ ·NC	41.0

No.	Crystal- line form	Sp. gr. H ₂ O=1	Melting- point	Boiling- point °C	Solubi	lity in gm 100 c.c. of	s. per
	and color	(A)Air=1	- ℃	*C	Water	Alcohol	Ether
					:		
2	colorl. liq. yel'sh leaf.	0.791	-41 90-1	81.5	& 	& •••••	
3 4	colorl. liq. colorl. liq.			63-5 227-8	v. s.		
5	colorl. liq.	0.924		229			
6 7 8 9	colorl. liq. colorl. liq. colorl. gas. colorl. liq.	0.82420° 1.05215° 0.93828°	-138.5 <-80	123 296 -34 177	sl. s. i. 3700 c.c. sl. s.	s. v. s. ∞	ν. s. ∞
10	colorl. liq.	0.818		118	sl. s.	ω .	ω '
11 12 13 14 15 16 17 18 19	colorl. liq. colorl. liq. colorl. liq. colorl. liq. colorl. liq. colorl. liq. colorl. liq. colorl. liq.	0.873 0.869%° 0.865 1.00227° 0.7250° 0.805%° 0.91924° 1.1560°	-14.5	201 158-9 158-9 162 109.2 10.8 80.6 152-3 173.8	i. i. i. i. s. s. s. 10 i.	s. s. s. c c c c c	s. s. s. cc cc cc cc cc cc cc cc cc cc cc cc cc
20 21 22 23 24	colorl. liq. liq. colorl. liq. colorl. liq. liq.	1.0930° 0.980 1.109	-105	208.2 70 32.3 187 239-44	i. i. 30.420° 3.3	v. s.	v. s. ∞ v. sl. s.
25 26	colorl. liq. colorl. liq.	1.168 ¹⁸ ° 0.855		151.2 173-4 (170)	i	 &	
27 28 29 30	colorl. liq. colorl. liq. colorl. liq. colorl. leaf.	0.795°° 0.820	-16 101-2	149.8 172.5 87.5	i. i. v. s. i.	& & & &	8 8 8
31	colorl. prisms f. lgr.		59-61			v. s.	
32	colorl.		86-7			v. s.	v. s. bz
33	scales oil		<-30		v. s.	8.	8.
34	colorlbr.	2.285		42.5 (45)	1.4200	&	ω
35 36 37 38 39	liq. colorl. liq. colorlyel. colorl. liq. colorl. liq. colorl. liq.	0.818 ¹⁷ ° 0.888 ²⁰ ° 0.722 ¹⁸ ° 0.803 ¹⁹ ° 0.912 ⁰⁹		144 195–6 d. 76–8 116 (119) 92.3		& & &	& & &
40	colorl. liq.	0.7564°		59.6	1015°	8.	80

No.	Name	Synonyms	Formula	Mol. wt.
	Methyl			
1	isopropyl benzene (m.)	••••••	CH ₃ ·C ₆ H ₄ CH(CH ₃) ₂	134.16
3	" ketone " ketoxime		$\begin{array}{c} \mathrm{CH_3 \cdot CO \cdot CH(CH_3)_2} \\ \mathrm{CH_3 \cdot C(NOH) \cdot CH} \\ \mathrm{(CH_3)_2} \end{array}$	86.10 101.12
4	isosuccinate		CH ₈ ·CH·(COO·	146.1
5 6	isovaleriate lactate		CH ₃) ₂ C ₄ H ₉ ·COO·CH ₃ CH ₃ ·CH(OH)·COO·	116.18 104.08
7 8 9 10	malate malonate mercaptan mustard oil	methyl isothio-	CH ₃ C ₂ H ₄ O·(COO·CH ₃) ₂ CH ₂ ·(COO·CH ₃) ₂ CH ₃ ·SH CH ₃ ·NCS	162.11 132.09 48.10 73.10
11 12	naphthalene (α) . (β) .	cyanate	C ₁₀ H ₇ ·CH ₃ C ₁₀ H ₇ ·CH ₃	142.14 142.14
13	naphthylamine	•••••	C10H7·NHCH8	157.18
14	" (g)		C10H7·NHCH8	157.15
15 16 17	naphthyl ether (α) " (β) nitrate	nerolin	C ₁₀ H ₇ ·O·CH ₃ C ₁₀ H ₇ ·O·CH ₃ CH ₃ ·NO ₃	158.14 158.14 77.04
18 19	nitrite nitrobenzoate (o.)		CH ₃ ·NO ₂ ······· NO ₂ ·C ₆ H ₄ ·COO·CH ₃	61.04 181.11
20	" (m.)		NO2 · C6H4 · COO ·	181.11
21	" (p.)	. •••••••••	CH ₃ NO ₂ ·C ₆ H ₄ ·COO·	181.11
22 23	nitrolic acid nonyl ketone	•••••	CH ₃ HC(NOH)NO ₂ CH ₃ ·CO·C ₉ H ₁₉	58.04 170.23
24	orange	Na salt of helian-	(CH ₃) ₂ N·C ₆ H ₄ ·N ₂ ·	327.27
25 26	palmitate phenyl acetate	thine	$ \begin{array}{c c} C_6H_4 \cdot SO_8N_8 \\ C_{15}H_{31} \cdot COO \cdot CH_3 \\ C_6H_5 \cdot CH_2 \cdot COO \cdot \end{array} $	270.36 150.13
27 28	" carbinol " ether.	See anisol	$CH_3 \cdot CH(OH) \cdot C_6H_5$	122.12
29 30	phosphine	dimethyl phthalate	CH ₃ ·PH ₂	48.08
31	propargyl ether.	······	CH ₃ ·O·C ₃ H ₃	70.07
32 33	propionate propyl acetic acid		$C_2H_5 \cdot COO \cdot CH_3 \dots$ $CH_3 \cdot CH(C_3H_7) \cdot$	88.08 116.13
34	" amine		COOH CH ₃ ·NH·C ₃ H ₇	73.12
35 36	" ether		CH ₃ ·O·C ₃ H ₇ CH ₃ ·CO·C ₃ H ₇	74.10 86.11
37	" ketoxime		CH3 · C(NOH) · C3H7	101.12
38 39	pyridine. pyrrol (1)	See picoline	C4H4N·CH3	81.09

No.	Crystal- line form	Sp. gr. H ₂ O=1	Melting- point	Boiling- point	Solubi	lity in gm 100 c.c. of	s. per
. 110.	and color	(A)Air=1	F°C	, c	Water	Alcohol	Ether
	colorl. liq.	0.862200		175–6			
1	_			1 7			00
3	colorl. liq. colorl. liq.	0.805		95 157–8	v. sl. s.		
4	colorl. liq.	1.107		179	v. sl. s.	8	ω .
5 6	colorl. liq. colorl. liq.	0.901°° 1.094		116.7 144.8	v. sl. s. s., d.	ω s.	& 8.
7 8 9 10	colorl. liq. colorl. liq. gas	1.160 1.069 ⁸⁷ °	-62 -130.5 35	242-6 181.5 5.8 119	v. s. v. sl. s. i. v. sl. s.	& & v. s. &	ω ω v. s. v. s.
11 12	colorl. liq. colorl. monocl.	1.001190	-22 32.5	240-2 242	i. i.	v. s. v. s.	v. s. v. s.
13	red oil	•		293	i.	v. s.	v. s.
14	darkens in			298			
15 16 17	colorl. liq. colorl. leaf. liq.	1.096 1.18222°	72	269 274 65-6, exp.	i. sl. s. sl. s.	v. s. sl. s. s.	v. s. v. s. s.
18 19	gas yel. oil	0.991 1.286 ²⁰ °	-i3	-12 275 (286-9)	i	s. œ	s. ©
20			78.5 (70)	279		sl. s. methyl	
21	yel. leaf.		96		i.	s.	s.
22 23	need. colorl.	0.829186	64 15 *	224 (230)	v. s. i.	s.	v. s. s.
24	yel. powd.				v. s.	s.	i.
25 26	colorl. colorl. liq.	1.044	28	220	i. i.	s. œ	8. ထ
27	colorl. liq.			202-4	i.	00	∞
28 29 30	gas			-14	sl. s.	sl. s.	v. s.
31 32 33	colorl. liq. colorl. liq. colorl. liq.	0.83 0.91520° 0.9410°	<-75	61-2 79.9 193	sl. s. 6.5 ^{20°} 0.57 ^{17°}	& & s.	ထ ထ 8.
34 35 36 37 38	colori. liq. colori. liq. colori. liq. colori. liq.	0.720 ¹⁷ ° 0.746°° 0.812 0.907 ²⁰ °		62-4 38.9 102 168	s. s. v. sl. s. s.	8	 8 8 8
39	colorl. liq.	0.915		114-0	1.		

[•] Solidifies at 6° C.

				T
37		_		Mol.
No.	. Name	Synonyms	Formula	wt.
	Methyl			
2	pyruviate quinoline (2)	quinaldine artificial oil of	C ₃ H ₃ O ₃ ·CH ₃ ······	102.07
3	salicylate	artificial oil of	CH ₃ ·C ₉ H ₆ N HO·C ₆ H ₄ ·COO·CH ₃	143.13 152.10
<i>_</i>		wintergreen	no cant coo chi	152.10
4	stearate		C17H35 · COO · CH3	298.40
5 6	sulphate		(CH ₃) ₂ ·SO ₄	126.12
7	sulphite	******************	(CH ₃) ₂ ·S (CH ₃) ₂ ·SO ₃	62.12 110.12
7 8	sulphocyanate	methyl thiocyanate	CH ₃ ·SCN	73.10
.9	sulphonic acid.		CH ₃ ·HSO ₃	96.10
10 11	" chloride tartrate.		CH ₃ SO ₂ Cl	114.55
12	tetramethylene .	See dimethyl tartrate	C.H.	70.11
13	trichlor-acetate .		C_5H_{10}	177.42
14	trimethyl acetate		(CH3)sC·COO·CH3	116.13
15 16	trimethylene	•••••	C ₄ H ₈ NH ₂ ·CO·NHCH ₃	56.08
	urea	•••••	NH2·CO·NHCH3	74.09
17	uric acid (1)		C ₆ H ₆ O ₈ N ₄	182.12
18	""(3)		$C_6H_6O_3N_4+\frac{1}{2}H_2O$	191.13
19	" " (7)		$C_6H_6O_3N_4+H_2O$	200.13
20	valeriate	• • • • • • • • • • • • • • • • • • • •	C4H9·COO·CH3	116.13
21	Methylal		$CH_2 \cdot (OCH_3)_2 \dots$	76.08
22 23	Methylene acetate bromide	an	(CH ₃ ·COO) ₂ CH ₂	132.09
24	chloride	dibrom-methane dichlor-methane	$ m CH_2Br_2$ $ m CH_2Cl_2$	173.86 84.93
25	iodide	diiodo methane	CH ₂ I ₂	267.86
26 27	Michler's ketone.	See tetramethyldiami	nobenzophenone (4, 4')	,
28	Milk sugar. Monacetin (α)	See lactose glyceryl monace-	CH (OH) CH(OH)	104 11
	Monaceum (d)	tate	$CH_2(OH) \cdot CH(OH) \cdot CH_2 \cdot OOC \cdot CH_3$	134.11
29	Morphine		C17H19O8N+H2O	303.26
30	hydrochloride		C.T. O.V. TOI	0== =0
	nyurocmonue		C ₁₇ H ₁₉ O ₃ N·HCl +3H ₂ O	375.76
31	sulphate	• • • • • • • • • • • • • • • • • • • •	(C ₁₇ H ₁₉ O ₃ N) ₂ H ₂ SO ₄	758.64
32	Mucic acid		+5H ₂ O COOH · (CHOH) ₄ ·	210.11
.			COOH	210.11
33	Murexide	NH4 salt of pur-	C8H4O6N5·NH4	200 10
		puric acid	$+H_2O$	302.18
34	Myricyl alcohol		C30H61 · OH	438.65
1	19			
35	Myristic acid		C13H27 · COOH	228.29
36	M		4 4 4	
	Myristine	trimyristine	(C ₁₄ H ₂₇ O ₂) ₈ C ₈ H ₅	722.91
37	Naphthalene	•••••	C10H8	128.11
38	disulphonic acid		C10H6 · (SO3H)2	288.23
	(2, 6)			
	ı	1		

No.	Crystal- line form	$\begin{array}{c} \mathrm{Sp.\ gr.} \\ \mathrm{H}_{2}\mathrm{O} = 1 \end{array}$	Melting- point	Boiling- point	Solubi 10	lity in gm 0 c.c. of	s. per
	and color	(A) Air = 1	.c		Water	Alcohol	Ether
1 2 3	colorl. liq. colorl. liq. colorl. liq.	1.154°° 1.186	-8.3	134-7 246-7 224	v. sl. s. sl. s.	ω	ω
4 5 6 7 8 9 10	colorl. liq. colorl. liq. colorl. liq. colorl. liq. colorl. liq. colorl. liq.	1.352°° 0.846 ²¹ ° 1.046 1.069 ²⁴ °	38 -10 -83 51	188.36 38 121.5 133 d. 130 160	i. v. sl. s. i. dec. i. v. s.	s. s. s. co	s. s. s. co
12 13 14 15 16	colorl. liq. colorl. liq. gas colorl. prisms	1.67385° 1.0440°	34	39-40 191-2 101 4-5 dec.	i. dec. sl. s. v. s.	œ dec. œ v. s. v. s.	∞ s. ∞ v. s. sl. s.
17	colorl.		d. 400		0.05100°		• • • • • •
18	colorl. pr. f. w.	.:	d. 360	·····	0.38100°	v. sl. s.	s. alk.
19	colorl. leaf.		d. 370–80		1.25100°	s. alk.	
20 21 22 23 24 25 26 27	colorl. liq. colorl. liq. colorl. liq. liq. colorl. liq. yel. liq.	0.910°° 0.872 2.498 1.377 3.333	4	127.3 45.5 170 97 42 180 d.	v. sl. s. v. s. 1.15 ^{20°} 2 ^{20°} i.	8 8 8 8 8	& & & & & & & & & &
28	colorl. liq.	1.221		dec.	v. s.	v. s.	sl. s.
29	colorl. need.	1.32	230 d.		0.03	0.6 2.38	0.02 i.
30 31	need.		d. 250		5.72 6.66	0.22	i.
32	colori.		206 d.		0.3314°	i.	
33	powd. purp.				s.	i.	i.
34	powd. colorl. need. f.		85		i.	s.	s.
35	eth. colorl. leaf.		53.8	250.5 100mm	i.	v. sl. s.	v. sl. s
36	glit. need. f. eth.		55				· s.
37	colorl. monocl.	1.152	80	218	i.	5.3 abs.	v. s.
38	need.			l	v. s.	8.	i

NT.	Mama	Q	Formula	Mol.
No.	Name	Synonyms	Formula	wt.
1	Naphthalene disulphonic acid		C ₁₀ H ₆ ·(SO ₂ H) ₂	288.2
2	$(2, 7)$ sulphonic acid (α) (β)		C ₁₀ H ₇ ·SO ₃ H+H ₂ O . C ₁₀ H ₇ ·SO ₃ H	226.1 208.1
4	sulphonic chloride (α)		C ₁₀ H ₇ ·SO ₂ ·Cl	194.5
5 6	$ \begin{array}{ccc} " & " & (\beta) \\ \text{Naphthalic acid} \\ (1, 8) \end{array} $	•••••	$\begin{bmatrix} C_{10}H_7 \cdot SO_2 \cdot Cl & \dots \\ C_{10}H_6 \cdot (COOH)_2 & \dots \end{bmatrix}$	194.5 216.1
7 8	Naphthamide (α) . (β) .		C ₁₀ H ₇ ·CO·NH ₂ C ₁₀ H ₇ ·CO·NH ₂	171.14 171.14
9	Naphthoic acid (α)	•••••	C ₁₀ H ₇ ·COOH	172.1
10	" "(ß)	•••••	C10H7 · COOH · · · · ·	172.1
11 12	aldehyde (α) (β)		C ₁₀ H ₇ ·CHO	156.13 156.13
13	Naphthol (α)		C ₁₀ H ₇ ·OH	144.1
14 15	" (β) Naphthol sulphonic acid $(1, 2)$		C ₁₀ H ₇ ·OH HO·C ₁₀ H ₆ ·SO ₃ H	144.1 224.1
16	Naphthol sulphonic acid (2, 6)		HO·C10H6·SO3H	224.1
17	Naphthonitrile (α)	naphthyl cyanide	C10H7 · CN	153.1
18 19	" (β) Naphthoquinone (α)		C ₁₀ H ₇ ·CN C ₁₀ H ₆ O ₂	153.1 158.1
20	" (B)		C10H6O2	158.1
21	Naphthyl acetate (α)		CH ₃ ·COO·C ₁₀ H ₇	186.1
22 23	amine (α)	•••••	$\begin{array}{c} \text{CH}_3 \cdot \text{COO} \cdot \text{C}_{10}\text{H}_7 \dots \\ \text{C}_{10}\text{H}_7 \cdot \text{NH}_2 \dots \dots \end{array}$	186.14 143.13
24	" hydrochlo- ride (α)		C ₁₀ H ₇ ·NH ₂ ·HCl	179.6
25 26 27	" $(\beta) \dots$ " hydrochlo- " ride (β)		C ₁₀ H ₇ ·NH ₂ C ₁₀ H ₇ ·NH ₂ ·HCl	143.13 179.6
28	" sulphonic acid (1, 4)	naphthionic acid.	NH ₂ ·C ₁₀ H ₆ ·SO ₃ H +½H ₂ O	200.1
9 80 81	cyanide. ether (α) (β)	See naphtho-nitrile	$\begin{array}{c} C_{10}H_7 \cdot O \cdot C_{10}H_7 \dots \\ C_{10}H_7 \cdot O \cdot C_{10}H_7 \dots \end{array}$	270.2 270.2
32 33 34	hydrazine (α) (β) ketone (α, β)		C ₁₀ H ₇ ·NH·NH ₂ C ₁₀ H ₇ ·NH·NH ₂ C ₁₀ H ₇ ·CO·C ₁₀ H ₇	158.1 158.1 282.1
5		ne. See diamino-na		202.1
			.	,

No.	Crystal- line form	Sp. gr. H ₂ O=1	Melting- point	Boiling- point	Solubi	lity in gm 100 c.c. of	s. per
	and color	(A)Air=1	· °C	•c	Water	Alcohol	Ether
1	leaf.				v. s.	8.	i.
2 3 4	leaf. tab.		90 161 67		s. s. i.	s. s.	sl. s. v. s.
5 6	" colorl. need.		77 *	•••••	i. v. sl. s.	s. sl. s.	v. s. sl. s.
7 8 9	f. al. colorl. f. al. colorl. tab. colorl.		202 192 160	300	v. sl. s. sl. s. v. sl. s. h.	v. sl. s. sl. s. v. s. h.	s.
10	need. colorl. need.	·	184	>300	v. sl. s. h.	v. s.	v. s.
11 12	liq. colorl. leaf.		61	292	i. s. h.	s. v. s.	s. v. s.
13	f. w. colorl.	1.2244°	94	278-80	sl. s. h.;	v. s.	v. s.
14 15	monocl. colorl. leaf. colorl. tab.	1.2174°	122 >250	285-6	sl. s. h.	v. s.	v. s.
16	colorl. leaf.	••••••	122		v. s.	v. s.	
17	colorl.	1.117 15 °	37.5	299	i.	v. s.	v. s.
18 19	colorl. leaf. yel need.	1.09488°	66 125	304-5	i. sl. s.	s. s.	s. v. s.
20	red need.		d. 115–20		8.	s.	
21	need. f. al.		44.8		s. h.	s.	v. s.
22 23	need. colorl. need.	i i i i i i i i i i i i i i i i i i i	68.5 50	300	i. 0.17	v. s. v. s.	v. s. v. s.
24	need.				3.7720°	v. s.	8.
25 26	leaf. f. w. leaf.		111-2	306	s. v. s.	s. v. s.	s.
27 28	need. f. w.				† 0.0215°	v. sl. s.	v. sl. s.
29 30 31 32 33 34	colorl. leaf colorl. leaf colorl. leaf colorl. leaf colorl. need. f.		110 105 116 124–5 135	>360 abt. 360	i. v. sl. s. c s. chl.	s. h. s. h. v. s. h. v. s. h. 1.314°	s. v. s. v. s. chl. s. bz. v. s.
35	al.	1 300000].		1		

The anhydride forms at 150° C.; this melts at about 270° C.
 † All other naphthylamine sulphonic acids have similar solubilities.

No.	Name °	Synonyms	Formula	Mol. wt.
1	Narceïne	•••••	C ₂₃ H ₂₇ O ₈ N+3H ₂ O	499.39
2	hydrochloride		C23H27O8N·HCl	535.86
3	Narcotine	•••••	+3H ₂ O C ₂₂ H ₂₃ O ₇ N	413.30
4 5 6	Nicotine salicylate Nicotinic acid		C ₁₀ H ₁₄ N ₂	162.18 300.26 123.08
7 8	Nitraniline (o.) (m.)	•••••	NO2 · C6H4 · NH2 NO2 · C6H4 · NH2	138.10 138.10
9	" (p.)	•••••	NO2·C6H4·NH2	138.10
10	Nitro-alizarine (α)	•••••	(HO) ₂ ·C ₁₄ H ₅ O ₂ ·NO ₂	285.14
11	" " (β)	alizarine orange	(HO) ₂ ·C ₁₄ H ₅ O ₂ ·NO ₂	285.14
12 13	anisol (o.) " (p.)	•••••	NO ₂ ·C ₆ H ₄ ·OCH ₃ ···· NO ₂ ·C ₆ H ₄ ·OCH ₃ ····	153.10 153.10
14	anthracene (9)	nitrosoanthron	C14H9·NO2	223.15
15	anthraquinone (α)		C ₆ H ₄ : (CO) ₂ : C ₆ H ₃ .	253.14
16	benzaldehyde (o.)	•••••	NO ₂ NO ₂ ·C ₆ H ₄ ·CHO	151.09
17 18	" (m.) " (p.)	•••••	NO ₂ ·C ₆ H ₄ ·CHO NO ₂ ·C ₆ H ₄ ·CHO	151.09 151.09
19 20	benzamide (o.) (m.).	•••••	$\begin{array}{c} NO_2 \cdot C_6H_4 \cdot CO \cdot NH_2 \\ NO_2 \cdot C_6H_4 \cdot CO \cdot NH_2 \end{array}$	166.10 166.10
21	" (p.)	•••••	$NO_2 \cdot C_6H_4 \cdot CO \cdot NH_2$	166.10
22	benzanilide (m.)		NO2·C6H4·CO·NH·	242.16
23 24 25 26 27 28	benzene benzoic acid (o.) " " (m.) " " (p.) benzonitrile (o.). " (m.)		C6H6 C6H6 NO2 NO2 C6H4 COOH NO2 C6H4 COOH NO2 C6H4 COOH NO2 C6H4 CN NO2 C6H4 CN	123.08 167.08 167.08 167.08 148.09 148.09
29	" (p.).		NO2·C6H4·CN	148.09
30 31	benzophenone (o.) (m.)		$\begin{array}{c} NO_2 \cdot C_6H_4 \cdot CO \cdot C_6H_5 \\ NO_2 \cdot C_6H_4 \cdot CO \cdot C_6H_5 \end{array}$	227.15 227.15
32	" (p.)		NO2 · C6H4 · CO · C6H5	227.15
33 34	benzoquinone benzyl alcohol (o.)		$ \begin{array}{c} NO_2 \cdot C_6H_3O_2 \dots \\ NO_2 \cdot C_6H_4 \cdot CH_2OH \end{array} $	153.06 153.10

No.	Crystal- line form	Sp. gr. H ₂ O=1	Melting- point	Boiling- point		llity in gm 100 c.c. of	
	and color	(A)Air=1	*C	•c	Water	Alcohol	Ether
1	colorl. prisms f. w.		170	•••••	0.078130	0.1	
2	yel. cryst.		190–2 anh.		sl. s.	8.	
3	colorl.		176		i.	1 ²⁰ °	0.8
4	f. al. liq.	1.010 ²⁰ °		247.3	œ .	∞ .	œ
5	plates		117.5 228-9	subl.	s. sl. s. c.;	s. s. h.	v. sl. s.
6	colorl. need.	••••••		subi.	s. h.	5. 11.	V. 51. 5.
7	need. f. al. yel. need.	1.443 1.398 ¹⁸ °	71.4 114	285	v. sl. s. sl. s.	s. s.	s.
	f. al.		(111.8)	200		ь.	8.
9	yel. need. f. al.	1.437	146.5	• • • • • •	0.08 ^{19°} ; 2.2 ^{100°}	s.	8.
10	yel. need. f. al.	•••••	289 d.		sl. s.	s.	s. alk.
11	or. need. f. bz.	••••••	244 d.		sl. s.	8.	s. chl.
12 13	yel. oil colorl.	1.268 ²⁰ ° 1.233 ²⁰ °	9 54	265 258–60	i. v. sl. s. c.	ω 8.	∞ v. s.
14	plates yel. need.	,,	146		v. s. bz.	v. s. CS2	
15	f. al. yel. need.		228-30	subl.	i.	sl. s.	sl. s.
16	yel. need.		44.5	153^{23mm}	v. sl. s.	v. s.	v. s.
17 18	f. w. need. colorl. prisms		58 106	164 ^{23mm}	v. sl. s. sl. s. h.	s. v. s.	v. s. s.
19 20	need. yel need. f. w.		174-6 140-2	317 310–5	s. h. s. h.	s. s.	s. s.
21	need.		197-8 (201.4)		v. sl. s.	s.	s.
22	leaf. fr. w.		153-4	subl.	v. sl. s. c.	s.	s.
23	yel. liq.		5.4	210	v. sl. s.	v. s. c.	v. s.
24 25	need. f. w. leaf. f. w.	1.5754° 1.4944°	148 140		0.68 ^{20°} 0.31 ^{20°}	2810° 3310°	21.6 ^{11°} 25.1 ^{11°}
26	leaf. f. w.	1.55032°	238		0.0420°	0.0910°	2.211°
27 28	silky need. need.		109 117-8		s. h. sl. s.	s. s.	S.
29	leaf. f. al.		(115) 147		sl. s. c.	sl. s. c.;	s. chl.
30	colorl.		105			s. h. sl. s. abs.	4-
31	colorl. need.		94-5	•••••		8.	
32	f. al. colorl. leaf.		138			s.	
33 34	f. al. yel. need.	`	d.abt.206 74		v. s. h. sl. s. c.	s. s.	sl. s. s.

No.	Name	Synonyms	Formula	Mol. wt.
1 2	Nitro- benzyl alcohol(m.) " (p.)		NO ₂ ·C ₆ H ₄ ·CH ₂ OH. NO ₂ ·C ₆ H ₄ ·CH ₂ OH.	153.10 153.10
3 4	" cyanide(o) " (p.)	••••••	NO ₂ ·C ₆ H ₄ ·CH ₂ CN. NO ₂ ·C ₆ H ₄ ·CH ₂ CN.	162.11 162.11
5 6 7	bromoform chloroform. cinnamic acid (o.)	See chlor-picrin	CBr ₃ NO ₂	297.78
8		••••••	NO ₂ ·C ₆ H ₄ ·CH:CH· COOH	193.11
1	(m.)	••••••	NO ₂ ·C ₆ H ₄ ·CH:CH· COOH	193.11
9	. (р.)	••••••	NO2·C6H4·CH:6CH· COOH	193.11
10	diethyl aniline (m.)	••••••	$NO_2 \cdot C_6H_4 \cdot N(C_2H_5)_2$	194.18
11 12 13	" (p.) dimethyl amine. " aniline(m.)	••••••	NO ₂ ·C ₆ H ₄ ·N(C ₂ H ₅) ₂ (CH ₃) ₂ N·NO ₂ NO ₂ ·C ₆ H ₄ ·N(CH ₃) ₂	194.18 114.09 166.14
14	" " (p.)		NO2 · C6H4 · N(CH3)2	166.14
15 16 17	diphenyl (o.) (p.)	• • • • • • • • • • • • • • • • • • • •	C6H5 · C6H4 · NO2 C6H5 · C6H4 · NO2	199.14 199.14
18	ethane glycerine	glyceryl trinitrate	$C_2H_5 \cdot NO_2 \cdot C_3H_5(NO_3)_3 \cdot \cdot \cdot \cdot$	75.06 227.09
19	guanidine		NH2·CNH·NHNO2	104.08
20 19 22	methane naphthalene (α) . (β) .	······································	CH ₃ · NO ₂ C ₁₀ H ₇ · NO ₂ C ₁₀ H ₇ · NO ₂	27.04 173.11 173.11
23	naphthoic acid		C10H6(NO2) COOH	217.12
24 25	(8, 1) naphthol (2, 1) (4, 1).	***************************************	NO ₂ ·C ₁₀ H ₆ ·OH NO ₂ ·C ₁₀ H ₆ ·OH	189.12 189.12
26 27 28	" (1, 2). " (5, 2). " (8, 2).		NO ₂ ·C ₁₀ H ₆ ·OH NO ₂ ·C ₁₀ H ₆ ·OH NO ₂ ·C ₁₀ H ₆ ·OH	189.12 189.12 189.12
29	naphthylamine		NO2 · C10H6 · NH2	188.13
30	" $(2, 1)$ $(1, 2)$		NO2 · C10H6 · NH2	188.13
31	" (5, 2)	• • • • • • • • • • • • • • • • • • • •	NO2 · C10H6 · NH2	188.13
32 33 34	phenol (o.) (m.)		NO ₂ ·C ₁₀ H ₆ ·NH ₂ NO ₂ ·C ₆ H ₄ ·OH NO ₂ ·C ₆ H ₄ ·OH	188·13 139.08 139.08
35	" (p.)		NO2·C6H4·OH	139.08
36	phthalic acid (3)	•••••	NO ₂ ·C ₆ H ₃ ·(COOH) ₂	211.09
	\$ ** · · · ·			

No.	Crystal- line form	Sp. gr. H ₂ O=1	Melting- point	Boiling- point	Solubi	lity in gm 100 c.c. of	s. per
110.	and color	(A)Air=1	°C	.c	Water	Alcohol	Ether
						•	•
1 2	rhomb. need. f. w.		27 93	i79.3	sl. s. c.; s. h.	v. s.	v. s.
3 4	need. f. w. prisms f. al.		82.5-4.0 114-6		s. h. i.	s.	s.
5 6		2.811120	10	127 ^{118mm}	i.	8.	8.
7	sc. or need. f. al.		240		i. c.	sl. s. c.	
8	yel. need.		196-7		v. sl. s.		
9	prisms f.		284-6		v. sl. s.	sl. s. h.	v. sl. s.
10	yel. oil			288-90		•••••	
11 12 13	need.	i .313 ¹⁷ °	77-8 57-8 60-1	187 280–5 d.	8. i.	v. s. h. s. s.	sl. s. lgr. s. s.
14	eth. need. f. al.		163-4		i.	s.	s, conc. HCl
15 16 17 18	leaf. f. al. need. f. al. liq. colorlyel.	1.056 1.601	37 114 13	320 340 114-5 expl. 260	i. i. sl. s. 0.12	v. s. sl. s. c. ∞ 25	v. s. s. co
19	liq. need.		230 (240)		v. sl. s. c.; sl. s. h.	sl. s.	į i.
20 21 22	liq. yel. need. rhomb.	1.144	-26 61 79	101 304	sl. s. i. i.	s. alk. s. v. s.	s. 2.815° v. s.
23	need. prisms		215		0.04 c.	4.6	sl. s.
24 25	f. al. leaf. yel. need.		128 164		v. sl. s. s. h.	sl. s. v. s.	
26	f. w. yel.		103 147			v. sl. s. c. v. s.	v. s.
27 28	yel. need.		144-5		s.	v. s.	
29	f. w. yel. pr. f. al.		144			s.	
30	or. yel.		abt. 125	i	s. h.	v. s.	
31	red. need.		143.5			v. s. h.	s. bz.
32 33 34	red need. prisms tab.		103.5 45.2 96	214	v. sl. s. c sl. s. c.;	v. s. v. s. v. s.;	v. s. v. s.
35	monoel.	,	114	279 d.	s. h. sl. s. c.;	v. s.	v. s.
36	yel. monocl. f. eth.		219–20		s. h. sl. s.	v. s.	v. s.

No.	Name	Synonyms	Formula	Mol.
				wt.
.	Nitro-			
1	phthalic acid (4)	•••••••••••••••••••••••••••••••••••••••	NO ₂ ·C ₆ H ₃ ·(COOH) ₂ +H ₂ O	229.1
2 3 4	phthalide (5) propane		NO2 · C8H5O	163.09
4	quinoline (5)		CH3·CH2·CH2·NO2 NO2·C9H6N	89.08 174.1
5	" (6)		NO2 · C9H6N	174.1
6	" (7)		NO2 · C9H6N	174.11
8	salicylic acid (3).	••••••	NO2 · C ₉ H ₆ N	174.11
			COOH+H ₂ O (3,2,1)	201.10
9	" " (5).		NO. C.H.(OH)	183.09
10	styrene (o.)	1	COOH (5, 2, 1) NO ₂ ·C ₆ H ₄ ·CH: CH ₂	149.11
				149.11
11	" (m.) " (p.)	••••••	NO2 · C6H4 · CH : CH2	149.11
13	thiophene (2)		NO ₂ ·C ₆ H ₄ ·CH : CH ₂ NO ₂ ·C ₄ H ₃ S	149.11
14	toluene (o.)		NO2·C6H4·CH3	129.11 137.10
15	" (m.)		I NO2 · C ₆ H ₄ · CH ₂	137.10
1	" (p.)		NO2 · C6H4 · CH3	137.10
17	o-toluidine (3)		NO ₂ ·C ₆ H ₃ ·CH ₃ (NH ₂) (3, 1, 2)	152.12
18	" " (4)		NO2 · C6H2 · CH2	152.12
9	" " (5)		(NH ₂) (4, 1, 2) NO ₂ ·C ₆ H ₃ ·CH ₃	152.12
20	" " (6)		(NH_2) (5, 1, 2) $NO_2 \cdot C_6H_3 \cdot CH_3$	152.12
1	m- " (2)		$(NH_2) (6, 1, 2) NO_2 \cdot C_6H_3 \cdot CH_3$	152.12
2	" " (4)		$(NH_2) (2, 1, 3) NO_2 \cdot C_6H_3 \cdot CH_3$	152.12
3	" " (5)		(NH ₂) (4, 1, 3) NO ₂ ·C ₆ H ₂ CH ₃	152.12
4	""(6)		(NH ₂) (5, 1, 3) NO ₂ ·C ₆ H ₃ ·CH ₃	152.12
5	p- " (2)		(NH ₂) (6, 1, 3) NO ₂ ·C ₆ H ₃ ·CH ₃	152.12
6	" " (3)		(NH_2) $(2, 1, 4)$ $NO_2 \cdot C_6H_3 \cdot CH_3$	
7	urethane	-	(NH ₂) (3, 1, 4) NO ₂ ·NH·COO·C ₂ H ₅	152.12
8	urea		/	134.08
			NH2·CO·NHNO2	105.06
9 3	Nitroform	trinitro-methane	CH(NO ₂) ₃ NO·C ₆ H ₄ ·NH ₂	151.04 122.10
1	aniline (p.) benzene		C ₆ H ₅ NO	107.08
-				101.00
2	benzoic acid (o.)	••••••	NO2·C6H4·COOH	167.09
3	diethylamine diethylaniline (p.)		(C ₂ H ₅) ₂ N·NO	102.12
- 1	cary tannine (p.)		$NO \cdot C_6H_4 \cdot N(C_2H_5)_2$	178.18

No.	Crystal- line form	Sp. gr. H ₂ O=1	Melting- point	Boiling- point	Solub	ility in gn 100 c.c. of	ıs. per
	and color	(A)Air=1		C	Water	Alcohol	Ether
1	need.		161		s.	s.	s.
2	need, f. al.		141		i. c.	-s.	s.
3	lia.	1.011		131	v. sl. s.	ω.	ω
5	need. f. w. need.		72 149–50	subl. subl.	sl. s. h. v. sl. s. c. s. h.	s. bz. v. sl. s.	v. sl. s
6	need. f. al.		132-3			v. sl. s.	v. s.
7	need. f. al.		88-9		v. sl. s. c.	s. v. s.	s.
8	long need.	•••••	144 anh.	•••••	0.13 с.		v. s.
9	need.	••••	228-30	• • • • • • • • • • • • • • • • • • • •	0.07 c.; s. h.	v. s.	v. s.
10	colorl. liq.	••••••	12-13.5	•••••	s. conc. H ₂ SO ₄		
11 12	pr. f. lgr.	•••••	-5 29		s. lgr.	s. abs. v. s. h.	s.; s. lg v. s.
13	monocl.		44	224-5	i.	v. s.	v. s.
14	yel. liq.	1.168	-10.5	220.4	v. sl. s. c.	ω ω	8
15 16	colorl.	1.168 ²² ° 1.286 ²⁰ °	15.9 52	$\frac{232}{237.7}$	v. sl. s. c. v. sl. s.	s.	v. s.
17	need. or. prisms	••••••	96		v. s. bz.	v. s.	v. s.
18	monoel.	1.365	179			s.	s.
19	yel. need.	1.366	127-8	••,•••	v. sl. s. h.	v. s.	a
20	yel. leaf.	1.378	91.5		1.3 h.	v. s.	v. s.
21	yel. need.		53		sl. s.	v. s.	
22	yel. leaf. f. w.		109	•••••	s. h.	v. s.	v. s.
23	or. need.		98		v. sl. s.	v. s.	v. s.
24	yel. need.		138		s. a.	8.	
25	yel. monocl.		77.5	• • • • • • •	s.	sl. s. CS ₂	
26	red. pr. f. al.	1.312	114 (116-7)		v. sl. s. h.		
27	colorl. leaf. fr. lgr.		64		v. s.	s. lgr.	•••••
28	cryst. powd.	*****	dec.		sl. s.	v. s.	v. s.
29 30	colorl. oil steel blue		15 173-4	exp.	s. s. bz.	s.	:::::
31	need. colorl. monocl.		67.5-8.0			s.	s.
32	f. eth. colorl. f. abs. al.		210 d.		v. sl. s. bz.	s.	v. sl.
33	vel. liq.	0.951180		175.4	8.	ω	ω
34	need.		84		sl. s.	v. s.	v. s.
	I	I	1		1	1	1

	.1			
Ņo	. Name	Synonyms	Formula	Mol. wt.
1 2 3	Nitroso- diisopropylamine dimethylamine dimethylaniline (p.)		[(CH ₃) ₂ ·CH] ₂ N·NO (CH ₃) ₂ N·NO NO·C ₆ H ₄ ·N(CH ₃) ₂ .	130.16 74.08 150.14
4	diphenylamine	•••••	$(C_6H_5)_2 \cdot N \cdot NO \dots$	198.16
5	dipropylamine	•••••	(CH ₃ ·CH ₂ ·CH ₂) ₂ N· NO	130.16
6	naphthol (2, 1).	•••••	NO · C ₁₀ H ₆ · OH	173.12
7	" (4, 1).		NO · C10H6 · OH	173.12
8	" (1, 2).		NO · C10H6 · OH	173.12
9	naphthylamine		NO · C10H6NH2	188.13
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 27 28 29 30 31 32	phenol (p.) toluene (o.) Nonane (n.) Nondecylic acid Nonyl alcohol Nonylic acid Octane (n.) Octyl alcohol (n.) aldehyde amine formate Oenanthol Oenanthylic acid Oleic acid Oleic acid Oxalyl chlorid Oxamic acid Oxamic acid Oxamic acid Oxamic acid Oxamilic acid Oxamilic acid Oxamilic acid Oxamilic acid	quinone monoxime heptylic aldehyde heptylic acid triolein	NO C6H4 OH NO C6H4 CH2 C9H20. C9H20. C18H37 COOH C8H140H CH2 C8H17 COOH C8H140H CH2 C8H15 CH2 C8H15 CH2 C8H15 CH2 C8H15 CH2 C8H15 CH2 C8H15 CH2 C8H15 COOH C18H17 COOH C18H17 COOH C18H17 COOH C18H17 COOH C0OH C0OH C0OH C0OH COOH COOH COOH	123 .08 121 .10 128 .21 298 .40 144 .21 158 .18 114 .18 130 .18 130 .18 130 .18 130 .18 130 .18 128 .17 129 .20 158 .19 14 .15 282 .36 885 .12 126 .06 165 .11 240 .19 133 .11
33 34	Palmitin	tripalmitin	(C ₁₅ H ₃₁ ·COO) ₂ C ₂ H ₅	807.04
35	Palmito-nitrile		C ₁₅ H ₂₇ ·COOH	252.30
36	Papaverine		C ₁₅ H ₃₁ ·CN	237.34 339.28
37	Parabanic acid	oxalyl urea	C ₃ H ₂ O ₃ N ₂	114.05
38	Paraformaldehyde		(CH ₂ O) _x	$(30.02)_x$
55	,		(

yel. yel. green scales yel. tab. yel. liq. yel. need. f. bz. yel. brown pr. f. al.	H ₂ O=1 (A)Air=1	90int °C 46 87.8 66.5 147–8 (152) abt. 193 d.	194 .5 148 296 (200–5)	v. sl. s. v. sl. s. v. sl. s. v. sl. s. v. sl. s. v. sl. s. v. sl. s. c.	v. s	Ether s. s. bz. co
green scales yel. tab. yel. liq. yel. need. f. bz. yel. brown pr.	0.924	87.8 66.5 147–8 (152) abt. 193	148 296 (200–5)	v. s. v. sl. s. v. sl. s.	σ s. v. sl. s. c.; s. h. σ	s. s. bz.
green scales yel. tab. yel. liq. yel. need. f. bz. yel. brown pr.	0.924	87.8 66.5 147–8 (152) abt. 193	148 296 (200–5)	v. s. v. sl. s. v. sl. s.	σ s. v. sl. s. c.; s. h. σ	s. s. bz.
green scales yel. tab. yel. liq. yel. need. f. bz. yel. brown pr.	0.924	66.5 147–8 (152) abt. 193	296 (200–5)	v. sl. s. v. sl. s.	s. v. sl. s. c.; s. h. ∞	s. s. bz.
scales yel. tab. yel. liq. yel. need. f. bz. yel. brown pr.		66.5 147–8 (152) abt. 193	 296 (200–5)	v. sl. s.	v. sl. s. c.; s. h. ∞	s. bz.
yel. liq. yel. need. f. bz. yel. brown pr.		147–8 (152) abt. 193	296 (200–5)		s. h. ∞	
yel. need. f. bz. yel. brown pr.		(152) abt. 193	(200-5)		ω	∞
f. bz. yel. brown pr.		(152) abt. 193		v. sl. s. c.		
yel. brown pr.		abt. 193			v. s.	8.
				i.	v. s.	v. s.
f. al.		109.5		v. sl. s.	2.4 ^{13°} ; v. s. h.	v. s.
gr'n, need.		(106) 150-2		sl. s. h.	v. s. n.	v. s.
		120-30 d.		s.	v. s.	v. s.
cryst.		72-2.5		v. s. chl.	v. s.	v. s.
colorl. liq.	0.718 ^{20°}	-51				v. s.
leaf. f. al.	0.04009		212 5			ω
	0.842		253-4			8.
colorl lia				i.	۱ ۱	
	0.8380°	-17.9	195.5	s.	∞	ω.
	0.82120°					∞
			176			v. s.
				i.		
						s.
	0.921					8. co
	0.89112					77 0
	1 659	90 *		9 5150		1.2150
	1.000 .	33		0.0	11.51.51	1
		-12	64	dec.	dec.	s.
colorl.		210 d.		1.4140	v. sl. s.	
wh. powd.	1.47630°	417-9 d.		i.		i.
rhombic						v. s. i.
scales		(252.5)	•••••	'		l
need, f. w.	à · à i à à à · ·		3		8.	s. s.
	0.85362	62.6	dec.	1.	9.5-	P*
	0.866800	65.5		i.	v. sl. s.	v. s.
			1	i.	v. s.	v. s.
	1	1				
colorl. tab.	0.82231°	29(31)	251.5 100mm		s.	8.
colorl. need. f.		146-7		v.sl. s. h	v. s.; v. s. chl.	0.39100
colorl. pl.		227-35		4.780	v. s.	sl. s.
wh. amor.		sub. abt.		v. s.	i.	i.
powd. colorl.	0.999	10.5	124	10		
	gr'n. need. f. ak. yel. need. cryst. colorl. liq. leaf. f. ak. colork. liq. liq. colork. liq. colork. liq. colork. liq. colork. liq. colork. liq. colork. liq. colork. liq. colork. liq. colork. liq. colork. liq. colork. liq. colork. liq. colork. liq. colork. liq. colork. wh. powd. rhombic scales need. f. w. colork. c	gr'n. need. f al. yel. need. cryst. iq. leaf f al. colorl. liq. loas of colorl. liq. colorl. need. colorl. need. colorl. need. colorl. colorl. need.	gr'n. need. f. al. yel. need. cryst. Colorl. liq. leaf. f. al. oclorl. liq. leaf. f. al. oclorl. liq. liq. olorl. need. colorl. olorl. olorl. liq. olo	gr'n. need. f. al. vel. need. cryst 150-2 f. al. vel. need. cryst 120-30 d. cryst 166.5 colorl. liq. 0.71820 -5. 213.5 liq. 0.8420 -5. 213.5 liq. 0.8420 -5. 6. 6. 125.5 colorl. liq. 0.8380 -17.9 lip. 5. colorl. liq. 0.8380 -17.9 lip. 5. colorl. liq. 0.8380 -17.9 lip. 5. colorl. liq. 0.85020 -17.9 lip. 5. colorl. liq. 0.85020 -17.9 lip. 5. colorl. liq. 0.85020 -15.5 colorl. liq. 0.85020 -15.5 colorl. liq. 0.85020 -15.5 colorl. liq. 0.85020 -15.5 colorl. liq. 0.85020 -15.5 colorl. liq. 0.85020 -15.5 colorl. liq. 0.85020 -15.5 colorl. liq. 0.86620 -12.0 d. liq. 0.86620 -12.0	gr'n. need. f. al. vel. need. colorl. liq. colorl. colorl. liq. colorl. colorl. liq. colorl. colorl. colorl. liq. colorl. colorl. liq. colorl. colorl. liq. colorl. liq. colorl. colorl. liq. colorl. li	150-2

^{*} Anhydrous form melts at 187° C.

No.	Name	Synonyms	Formula	Mol. wt.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	Pararosaniline Pelargonic acid Penta-brombenzene chlor benzene chlorethane decane (n.) ethyl benzene "benzoic acid "benzoic acid "penol diamine Pentaminobenzene Pentane (n.) Perchlorethane Perchlorethane	cyclo pentanecadaverine See hexachlorethane	C(OH) · (CaH4 · NH2) a CH3 · (CH2) · COOH CeHBr5 · ClsCe · NH2 CcHCls · CHCl2 CCH3 · (CH2) ta · CH5 CCH3 · (CH3) ta · CH5 CcH4 · (CH3) ta · CH5 CcH4 · (CH3) ta · CH5 CcH5 · Cc · COOH (CH3) b · Ce · COOH (CH3) c · Ce · COOH (CH3) c · Ce · COOH (CH3) c · CeH4 CCH1 · (CH2) b · NH2 CcH1 · (NH2) b CcH1 · CeH5 CcH1 · CeH5 CcH1 · CeCl5 · COOH CcH1 · CeH5 CcH1 · CeCl5 · CeCl5	158.19 472.64 265.36 250.34 202.32 212.33 218.21 192.19 164.10 70.08 102.16 153.17 72.12 418.62
18 19	Perseite (d. or l.). Phenacetin.	See acetphenetidide	C7H16O7	212.16
20 21 22	Phenanthrene- Phenanthrene- quinone	See acetphenetiatae	C ₁₄ H ₁₀ C ₁₄ H ₈ O ₂	178.15 208.13
23 24 25 26	Phenanthrol Phenazine Phenetol Phenocoll	phenyl ethyl ether aminoacetyl-para- phenetidine	$\begin{array}{c} \text{C}_{14}\text{H}_{9} \cdot \text{OH} \dots \\ \text{C}_{12}\text{H}_{8}\text{N}_{2} \dots \\ \text{C}_{6}\text{H}_{5} \cdot \text{O} \cdot \text{C}_{2}\text{H}_{5} \dots \\ \text{C}_{2}\text{H}_{5}\text{O} \cdot \text{C}_{6}\text{H}_{4} \cdot \text{NH} \cdot \\ \text{CO} \cdot \text{CH}_{2}(\text{NH}) \\ + \text{H}_{2}\text{O} \end{array}$	194.15 180.14 122.12 211.19
27	Phenol	carbolic acid	C ₆ H ₅ ·OH	94.08
28 29	-phthalein Phenyl-acetanilide		$\begin{array}{c} C_{20}H_{14}O_4. \dots \\ C_6H_5 \cdot NH \cdot OC \cdot CH_2 \cdot \\ C_6H_5 \end{array}$	318.21 211.18
30 31 32	acetaldehyde acetate acetic acid		C ₆ H ₅ ·CH ₂ ·CHO CH ₃ ·COO·C ₆ H ₅ C ₆ H ₅ ·CH ₂ ·COOH	120.10 136.10 136.10
33 34	acetylene acridine (9)		$C_6H_5 \cdot C \vdots CH \cdot \cdot C_6H_5 \cdot C_{13}H_8N \cdot \cdot$	$102.09 \\ 255.21$
35	amino-propionic acid (β, α)	phenyl alanine	C ₆ H ₅ ·CH ₂ ·CH (NH ₂)COOH	165.14
36	amino-propionic acid (β, β)		$C_6H_5 \cdot CH(NH_2) \cdot$	165.14
37	benzoate		$CH_2 \cdot COOH$ $C_6H_5 \cdot COO \cdot C_6H_5 \dots$	198.15
38	benzoic acid (o.).		C6H5 · C6H4 · COOH.	198.15
39	" " (m.)		C6H5 · C6H4 · COOH.	198.15
40	" " (p.)		C6H5·C6H4·COOH.	198.15
41	benzylamine		C6H5·NH·CH2·	183.18
42	carbamate	••••••	C_6H_5 $C_6H_5 \cdot COONH_2 \cdot \dots$	137.10

No.	Crystal- line form	Sp. gr. H ₂ O=1	Melting- point	Boiling- point	Solubi	lity in gn 100 c.c. of	ns. per
	and color	(A)Air=1	c	c	Water	Alcohol	Ether
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	leaf. colorl. leaf. need. f. al. need. f. al. liq. colorl. liq. colorl. liq. colorl. liq. solorl. liq. syrup need. f. al. colorl. liq. syrup need. colorl. liq. syrup	0.910 0.769 ²⁰ 1.834 0.769 ²⁰ 0.899 ¹⁰ 0.751 ²⁰ 0.885 0.634 1.900	188-9 12.5 159-60 232 85-6 -22 10 <-20 53 210.5 125 abt. 9	253-4 subl. 	i. sl. s. s. bz	s. s. s. v. s. v. sl. s. c v. sl. s. s. s. s. s. s. sl. s. i. c sl. s. sl. s. sl. s. sl. s. sl. s. sl. s.	s. s. s. v. s. v. s
18 19 20 21	colorl. need. colorl. leaf. or. need.	1.063100°	100 202	340 360	i. sl. s. h.	10 h. sl. s.	v. s. sl. s.
22 23 24 25 26	need. yel. need. colorl. liq. wh. need.	0.98200	110 (170)	abt. 360 172	sl. s. v. sl. s. i. sl. s.	v. s. 2 s. s.	v. s. sl. s. ∞
27	colorl. need.	1.07220°	42.5-3.0	183	6.716°;	œ ·	v. s.
28 29	triclinic prisms f. al.		250-3 117		sl. s. i.	8. 3.3	sl. s. s.
30 31 32	colorl. liq. colorl. liq. colorl. leaf.	1.032 1.0930°	76.5	193-4 196 265.5	v. sl. s. v. sl. s. v. s. h. sl. s. c.	ω ω v. s.	ω ω v. s.
33 34	colorl. liq. yel. need. f. al.	0.937120	181.5–2.5	139–42 403–4	i. i.	∞ sl. s.	ω s.; v. s. bz.
35	prisms		263-5 d.		s.	v. sl.	i.
36	monoel.		120-1		s.	v. s.	v. sl. s.
37	colorl. monocl.		68-9	314	v. sl. s.	s.	8.
38	colorl.		110–1	343	sl. s. h.	v. s.	
39	colorl. leaf.		160-1 (166)		sl. s.	v. s.	v. s.
40	colorl.		218-9 (224)	subl.	v. sl. s. h.	v. s.	v. s.
41	pr. f. al.		32	298-300		s	
42	leaf.		141		sl. s.; s. h.	v. s.	v. s.

No.	Name	Synonyms	Formula	Mol. wt.
1 2	Phenyl- carbylamine chloride cyanide.	isocyanphenyl chloride See benzonitrile	C ₆ H ₅ ·NCCl ₂	174.01
3 4	disulphide ditolylmethane		$(C_6H_5)_2S_2C_6H_5 \cdot CH \cdot (C_6H_4 \cdot CH_3)_2$	218.26 272.27
5	ether		$C_6H_5 \cdot O \cdot C_6H_5 \cdot \dots$	170.14
6 7	ethyl alcohol " amine	benzyl carbinol	$\substack{ \mathbf{C_6H_5 \cdot CH_2 \cdot CH_2OH} \\ \mathbf{C_6H_5 \cdot CH_2 \cdot CH_2 \cdot NH_2} }$	121.12 122.14
8 9	glucosazone (d.) glycine	anilino acetic acid	$C_{18}H_{22}O_4N_4$ $C_6H_5 \cdot NH \cdot CH_2 \cdot$ $COOH$	358.31 151.12
10 11	glyoxylic acid hydrazine	benzoy formic acid	C ₆ H ₅ ·CO·COOH C ₆ H ₆ ·NH·NH ₂	150.09 108.11
12 13	$\begin{array}{l} \text{hydroxylamine}(\pmb{\beta}) \\ \text{isocyanide} \dots \end{array}$	phenyl carbylamine	$\begin{array}{c} C_6H_5\cdot NH\cdot OH \dots \\ C_6H_5\cdot NC \dots \end{array}$	109.10 103.09
14 15	methyl ketone. mustard oil	See aceto-phenone phenyl isothio- cyanate	C ₆ H ₅ ·NCS:	135.15
16 17 18 19 20	naphthalene (α) " (β) naphthylamine (α) " (β) naphthyl ketone (α)		C10H7 · C6H5 · · · · · · · · · · · · · · · · · · ·	204.18 204.18 219.19 219.19 232.18
21 22 23	" (\$\beta\$) nitramine prop olic acid		$C_{10}H_7 \cdot CO \cdot C_6H_5 \dots$ $C_6H_5 \cdot NH(NO_2) \dots$ $C_6H_5 \cdot C \vdots C \cdot COOH$	232.18 138.10 146.09
24 25	pyridine $(\alpha) \dots (\beta) \dots$	•••••	C ₆ H ₅ ·C ₅ H ₄ N C ₆ H ₅ ·C ₅ H ₄ N	155.14 155.14
26 27 28	(γ) quinoline (α) sal'cylate	salol	$C_6H_5 \cdot C_5H_4N \cdot \cdot C_6H_5 \cdot C_9H_6N \cdot \cdot HO \cdot C_6H_4 \cdot COO \cdot C_6H_5$	155.14 205.16 214.14
29	semi carbazide (1)		C ₆ H ₅ ·NH·NH·CO· NH ₂	151.14
30	sulphide		(C ₆ H ₅) ₂ S	186.20
31 32 33 34 35 36 37	toluene (o.) " (m.) " (p.) tolyl ketone (o.) " (m.) " (p.) urea		C6H5 · C6H4 · CH3 ·	168.16 168.16 168.16 196.17 196.17 196.17
38 39	urethane Phenylene diamine.	ethylphenyl car- bamate See <i>diamino-benzene</i>	C ₆ H ₅ ·NH·COO· C ₂ H ₅	165.14

No.	Crystal- line form	Sp. gr. H ₂ O=1	Melting- point	Boiling- point	Solubi	lity in gm 100 c.c. of	s. per
2.0.	and color	(A)Air=1	- °C	°C	Water	Alcohol	Ether
1	colorl. oil			209			
2 3 4	need.	*********	60-1 55-6	310 d.	i. v. s. bz.	s. s.	s. v. s.
5 6 7	colorl. monocl. colorl. liq. whyel.	1.073 ²⁰ ° 1.024 0.958 ²⁴ °	28	252-3 (259) 212 197-8	v. sl. s. 1.620° 4	5 ∞ v. s.	s. ∞ v. s.
8 9	liq. yel. need. colorl.		217 125–7		v. sl. s. s.	s. h.	sl. s.
10 11	colorl. yellow.	1.097 ²³ °	65–6 17.5	243.5 sl. d.	v. s. sl. s.	v. s. ∞	 æ
12 13	need. colorl grn. liq.	0.978		81-2 165-6	2 c.; 10 h. dec.	v. s. dec.	v. s. s.
14 15	liq.	1.138	-21	221	i.	s. ,	s.
16 17 18 19 20	colorl. liq. colorl. leaf. colorl. leaf. need. rhombic		102-2.5 60-2 107.5-8.0 75.5	324-5 345 395 385	v. s. bz. s. chl. i.	v. s. v. s. v. s. s. 2.4 ^{12°}	v. s. v. s. v. s. s.
21 22 23	need. leaf. f. lgr. long need.		82 46–6.5 136–7	exp. subl.	i. s. v. sl. s.	2 c. v. s. v. s.	v. s.
24 25	liq. oil			269-71 269.5- 70.5	i. i.	v. s. v. s.	v. s. v. s.
26 27 28	leaf. f. w. need. f. al. colorl. rhomb.	1.26130°	77 84–6 42.5	274-5 300	v. sl. s. h. sl. s. v. sl. s.	s. v. s. h. 21.525°	s. v. s. v. s.
29	leaf. f. al.		172	• • • • • •	sl. s. c.; s. h.	v. s.	
30	liq.	1.119¦§°		296	i.	s.	ω; ω bz.
31 32 33 34 35 36 37	colorl. liq. colorl. liq. colorl. liq. colorl. liq. colorl. liq. monocl. monocl.	1.0310° 1.01527° 1.08818°	-2-3 <-18 59-60* 146.5-7.0	258-60 272-7 263-7 315-6 314-6 326	i. i. i. ∞ bz. v. s. bz. sl. s. c.; v. s. h	s. s. s. v. s. v. s.	S. S. S. V. S. V. S. V. S.
38 39	need. f. w.		51.5-2.0		v. sl. s.	v. s.	v. s.
.,0			,				

^{*} A hexagonal form melts at 55° C. 227

No.	Name	Synonyms	Formula	Mol. wt.
1	Phloridzin		C21H24O10+2H2O	472.33
2	Phloroglucinol	trihydroxybenzene	C ₆ H ₃ ·(OH) ₃ +2H ₂ O.	162.11
3 4 5 6 7	triethyl ether trimethyl ether Phoron Phosgene. Phthalamide	(3, 1, 5) See carbonyl chloride	C ₆ H ₃ ·(OC ₂ H ₅) ₃ C ₆ H ₂ ·(OCH ₂) ₃ C ₉ H ₁₄ O C ₆ H ₄ ·(CO·NH ₂) ₂ (o.)	210.02 168.14 138.16
8	Phthalic acid		C ₆ H ₄ · (COOH) ₂ (o.)	166.09
9 10 11 12	aldehyde anhydride Phthalide Phthalimide		C ₆ H ₄ ·(CHO) ₂ (0.) C ₆ H ₄ ·(CO) ₂ O (0.) C ₈ H ₆ O ₂ C ₆ H ₄ : (CO) ₂ : NH	134.09 148.06 134.08 147.06
13	Phthalyl chloride (o.)		$C_6H_4 \cdot (CO \cdot Cl)_2 \cdot \dots$	202.99
14	Picene	• • • • • • • • • • • • • • • • • • • •	C22H14	278.22
15 16 17 18	Picoline (α) (β) Picolinic acid (2) .	methyl pyridine (2) " " (3) " (4) pyridine carbonic acid (2)	CH ₃ ·C ₅ H ₄ N CH ₂ ·C ₅ H ₄ N CH ₃ ·C ₅ H ₄ N C ₅ H ₄ N ₅ COOH	93.10 93.10 93.10 123.08
19	Picramic acid (4, 6, 2)	dinitroaminophenol (4, 6, 2, 1)	(NO ₂) ₂ (NH ₂)·C ₆ H ₂ ·	199.10
20	Picramide	trinitroaniline	OH NH ₂ ·C ₆ H ₂ ·(NO ₂) ₃	228.10
21	Picric acid	trinitrophenol (1, 2, 4, 6)	(1, 2, 4, 6) $HO \cdot C_6H_2 \cdot (NO_2)_3$	229.08
22 23	Picryl chloride Pilocarpine		$\begin{array}{c} (1, 2, 4, 6) \\ \text{Cl} \cdot \text{C}_6\text{H}_2 \cdot (\text{NO}_3)_3 \dots \\ \text{C}_{11}\text{H}_{16}\text{O}_2\text{N}_2 \dots \end{array}$	295.45 208.20
24	hydrochloride		C11H16O2N2·HCl	244.67
25 26 27	nitrate Pinacoline Pinacone		$C_{11}H_{16}O_2N_2 \cdot HNO_3 \cdot CH_3 \cdot CO \cdot C(CH_3)_3 \cdot \cdot (CH_3)_2 \cdot C(OH) \cdot $	271.22 100.13 118.14
28 29 30 31 32	Pinene (\alpha)hydrochloride Piperic acid Piperidine Piperine	hexahydropyridine	C(OH) · (CH ₃) ₂ C ₁₀ H ₁₆ C ₁₀ H ₁₆ HCl C ₁₂ H ₁₀ O ₄ C ₆ H ₁₁ N C ₅ H ₁₀ N · CO · C ₄ H ₄	136.18 172.65 218.14 85.12 285.25
33 34	Piperonal Populin	heliotropin benzoyl salicin	$\begin{array}{c} C_{6}H_{3}: O_{2}: CH_{2} \\ CH_{2}\cdot O_{2}\cdot C_{6}H_{3}\cdot CHO \\ C_{20}H_{22}O_{8}+2H_{2}O \end{array}$	150.09 426.31
35 36 37 38 39 40	Propane		CH ₃ ·CH ₂ ·CH ₃ CH ₃ ·COO·C ₃ H ₃ CH: C·CH ₂ OH CH: C·COOH C ₂ H ₄ ·CH: NOH C ₂ H ₅ ·CO·NH ₂	44.08 98.07 56.05 70.03 73.08 73.08

No.	line form	Sp. gr. $H_2O=1$	Melting- point	point		100 c.c. of	s. per
	and color	(A)Air=1	- ℃		Water	Alcohol	Ether
1	need.	1.430190	108-9*		0.1 c.; v. s. h.	v. s.	v. sl. s.
2	rhombic		anh. 217-9	subl. d.	v. s. n. v. s.	v. s.	v. s.
3. 4.5 5	colorl. colorl. pr. pale yel.	0.885 ²⁰ °	43 52 28	255.5 198.5	i.	v. s. v. s.	v. s. v. s.
6	colorl.		219-20		i.	i.	i.
8	rh'bd'r. colorl. rhomb.	1.585	184 d.		0.54 ^{14°} ; 18 ^{99°}	v. s.	0.69150
9 10 11	colorl. pr. need. f. w.	1.5274°	56 128 73	284.5 290	s. v. sl. s. v. sl. s.	s. s. v. s.	s. sl. s.
12	need.		228.5	subl.	v. sl. s.	v. sl. s. bz.	sl. s.
13	colorl. liq.	••••••	0	281.5 518-20	dec.	dec. sl. s. chl.	8.
14 15	colorl. leaf.	0.950	364	129	sl. s. h. bz. v. s.	sı. s. cnı.	œ
16	colorl. liq.	0.961		143.5	ω	ω .	00
17 18	colorl. liq. need. f. w.	0.957	136	143.1 subl.	ω v. s.	v. s.	σ v. sl. s.
19	monocl. f. chl.	•••••	168-9		0.14220	8.	sl. s.; v. s. bz.
20	yel. tab.		188		i.	i.	s. acet. a.
21	yel, leaf. f. w.	1.76719°	122	exp.	1.2220° 6.33100°	5.9214.80	1.08130
22 23	yel. pr. colorl.		81-2 34	::::::	i. v. s.	s. v. s.	s. sl. s.
24	need. deliq.cryst.		200-4		333	43; 10 abs.	i.; sl. s. chl.
25 26	prisms colorl. liq.	0.800	178	106	16 ²⁰ ° v. sl. s.	6.260°	i. s.
27	colorl.	0.967	35-8	172–3	s. c.; v. s. h.	v. s.	
28 29	colorl. liq.	0.859 ²⁰ °	125	156	v. sl. s. i.	∞ abs. v. s.	ω s.
30	yel. need.		216-7		v. sl. s.	s. h.	8.
31 32	colorl. liq. colorl. monocl.	0.862200	-17 129-30	106	v. sl. s. c.	6.7; 2360°	2.8
33 34	need. f. w.		37 anh. 180	263	0.2 c. 0.05 c.	v. s	v. s. s.
35	need. colorl. gas colorl. liq.	1.558 (A) 1.00520°		-38-9 124.5	6.5c.c. ^{18°}	790c.c.17°	926c.c. ¹⁷
36 37	colorl. liq.	0.972200		114-5	s.	ω	∞
38 39	need.	0.92620	6 21.5	144 d. 131-5	s.	8.	s.
40	colorl. leaf.	0.96080°	79	213	s.	s.	s.

^{*} Anhydrous form melts about 170° C. with decomposition. 229

A A A A A A A A A	Mol. wt.	Formula	Synonyms	Name	No.
Propionic acid aldehyde CH3·CH2·COOH CH3·CH2·CHO CH3·CH2·CHO CH3·CH2·COOH CH3·CH2·COOH CH3·CH2·COOH CH3·CH2·COOH CH3·CH2·COOH CH3·CH2·COOH CH3·CH2·COOH CH3·CH2·COOH CH3·CH2·CH3·CH2·CH3·CH2·CH3·CH3·CH3·CH3·CH3·CH3·CH3·CH3·CH3·CH3	149 . 1	CaHs · NH · CO · CaH		Propionanilide	1
Authoride Proponal dipropyl barbituric acid CH3 · CH2 · CH3 · CH2 · CH3 ·	74.0	CH3 · CH2 · COOH		Propionic acid	2
anhydride Proponal dipropyl barbituric acid C16H1s03N2 2 2	58.0	CH ₈ ·CH ₉ ·CHO		aldehyde	3
Proposal	130.1	[CHarCHarCO]aO		anhydride	4
Propyl acetate CH3 · COO · C3H7 C3H7 · C1 · CH	212.2	C10H16O3N2	dipropyl barbituric	Proponal	5
Section Call Circ Cir	102.1	CH3 · COO · C3H7			
Saconol. CH3: CH2: CH3: OH.	68.0	$ \mathbf{C_{3}H_{7} \cdot C : CH \dots } $		acetylene	
amiline CH3 : CH2 : CH3 : CH2 : CH3 : NH2	60.0	CH ₃ ·CH ₂ ·CH ₂ OH		alcopol	
11 benzene CaH ₅ CH ₂ CH ₂ CH ₃ 1 12 benzoste CaH ₅ COO · C ₃ H ₇ 1 13 benzoit acid (o.) CaH ₇ COO · C ₃ H ₇ 1 14 " (p.) CaH ₂ COO · C ₃ H ₇ 1 15 bromide CaH ₂ CH ₂ CH ₃ COO · C ₃ H ₇ 1 16 butyrate CaH ₂ COO · C ₃ H ₇ 1 17 carbamate CaH ₂ COO · C ₃ H ₇ 1 18 chloride CH ₃ · CH ₂ CH ₂ CH ₃ 1 18 chloride CH ₃ · CH ₂ CH ₃ CH ₃ 1 19 chloride (sec.) CH ₃ · CH ₂ · CH ₃ · CH ₂ · CH ₃ 19 chloride (sec.) CH ₃ · CH ₂ · CH ₃ · CH ₂ · CH ₃ · CH ₂ · CH ₃ 19 chloride (sec.) CH ₃ · CH ₂ · CH ₃ · CH ₃ · CH ₂ · CH ₃ ·	59.1	CH3·CH2·CH2NH2.		amine (n.)	
Denzene CaHs CH2 CH2 CH3 1	135.1	$C_6H_5 \cdot NH(C_8H_7) \dots$		aniline	
benzoic acid (o.) CaHr CaHa COOH 11	120.1	C6H5 · CH2 · CH2 · CH3		benzene	
14 bromide CH1 COOH 11	164.1	C6H5 · COO · C3H7		benzoate	12
Dromide CH3 · CH2 · CH3 F 11	164.1	C3H7·C6H4·COOH.		penzoic acid (o.).	
Stormate CH3 · CH2	164.1	C ₃ H ₇ ·C ₆ H ₄ ·COOH.		hvemide (p.)	
17 carbamate	122.9	CH3·CH2·CH2Br			
18	130.1	U3H7·COO·C3H7			
19 chloride (sec.) cyanide butyro-nitrile CH3 · CH2 · CH2 · CH2 · CN2 · CH2 · CH2 · CH3 · CH3 · CH2 · CH3 · C	103.0	NH2·COOC ₃ H ₇ ,			
cyanide cyanida cyan	78.5	CH ₃ ·CH ₂ ·CH ₂ Cl		eblorido (cos)	
21 ether. C3H7·O·C3H7. 14 12 formate. C3H7·O·C3H7. 14 12 hexyl ketone. C3H7·O·C3H7. 12 12 hexyl ketone. C3H7·CO·C3H3. 12 12 hexyl ketone. C3H7·O·C3H3. 12 25 iodide. CH3·CH2·CH2I. 16 26 mercaptan. COO·C3H7. 12 28 naphthylamine(α) CuH7·NH·C3H7. 14 29 nitramine. C3H7·NO3. 16 30 nitrate. C3H7·NO3. 16 31 nitrite. C3H7·NO3. 16 31 nitrite. C3H7·CO·C3H3. 12 32 phenol (m.). butyro-phenone. C3H7·CO·C3H3. 12 33 phenyl ketone. propionate. C4H.O6·CO3H7)2. 12 34 propionate. C4H.O6·CO3H7. 12 35 sulphide. C4H.O6·CO3H7. 12 36 tartrate. C4H.O6·CO3H7. 12 <td>78.5</td> <td>CH3.CHCI.CH3</td> <td>Line in the second</td> <td>avanida</td> <td></td>	78.5	CH3.CHCI.CH3	Line in the second	avanida	
1	69.0	CH3·CH2·CH2·CN.			
1	102.1	C3H7.U.C3H7		formate	
24 hydroxylamine (β) C3H7 NHOH 125 166 CH3 CH2 CH	88.0	H.COO.C3H7			
CH3 CH2 CH2 CH2 16	156.2	C-H- NHOH			
Sovaleriate CH3 CH2 CH2 10 10 10 10 10 10 10 1	75.1	Canti Milon			_
Col. Ca. Ca. Ca. Ca. Ca. Ca. Ca. Ca. Ca. Ca	169.9	CH ₃ ·CH ₂ ·CH ₂ I		iodide	
The properties The properties The properties	144.1	(CH ₃) ₂ ·CH·CH ₂ ·	•••••	isovaleriate	20
The second color of the	76.1	CH. CH. CH. SH		mercaptan	
29	185.2	C10H2.NH.C0H.		$naphthylamine(\alpha)$	
Mitrate CaHr NOs 16	104.1	C2H2: NH(NOa)		nitramine	29
nitrite	105.0	C3H7·NO2		nitrate	
Dennyl ketone Dutyro-phenone C ₃ H ₇ · CO· C ₆ H ₅ 14 14 15 15 16 16 16 16 16 16	89.0	CaH7·NO2		nitrite	
Dennyl ketone Dutyro-phenone C ₃ H ₇ · CO· C ₆ H ₅ 14 14 15 15 16 16 16 16 16 16	136.1	C ₃ H ₇ ·C ₆ H ₄ ·OH		$\mathbf{phenol} \; (\mathbf{m.}) \ldots$	32
Propionate	148.1	C ₃ H ₇ ·CO·C ₆ H ₅		phenyl ketone	
Sulpinde	116.1	$C_2H_5 \cdot COO \cdot C_8H_7 \dots$			
wrea. C ₂ H ₇ ·NH·CO·NH ₂ 10 10 10 10 10 10 10 1	118.2	(C ₃ H ₇) ₂ S			
Propylene.	228.1	$C_4H_4O_6 \cdot (C_3H_7)_2 \dots$			
Box Bromide CH CH CH CH CH CH CH C	102.1	C ₈ H ₇ ·NH·CO·NH ₂		urea	
Chloride Chloride	42.0	CH ₈ ·CH: CH ₂	39		
Second Color Col	201.9	CH ₃ ·CHBr·CH ₂ Br.			
12 Oxide OH OH OH	112.9			glygol (or)	
22 oxide	76.0		•••••	g.y cor (cr)	-
Protocatechuic Article	58.0			oxide	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	172.1	(HO) ·· C.H ·· COOH		Protocatechuic	
Saldehyde (3, 4, 1) Pseudo-cumene Collaboration Pseudo-cumidine. Pseudo-cumidine. Pseudo-cumidine.				acid (3, 4, 1)	
Pseudo-cumene trimethyl benzene C ₆ H ₂ · (CH ₃) ₃ (1, 2, 4) 12 13 14 15 15 15 15 15 15 15	138.0	(HO)2·C6H2·CHO		aldehyde (3, 4, 1)	
7 Pseudo-cumidine. (CH ₃) ₃ ·C ₆ H ₂ ·NH ₂ 13 8 Pulegone. (C ₁₀ H ₁₄ O 15	120.1	C ₆ H ₃ ·(CH ₃) ₃ (1, 2, 4)	trimethyl benzene	Pseudo-cumene	6
8 Pulegone CaHago	135.10	$(CH_3)_3 \cdot C_6H_2 \cdot NH_2$ (1, 2, 4, 5)		Pseudo-cumidine.	7
				Pulagona	Q
	152.18	C ₁₀ H ₁₆ O	•••••	Purine	9
9 Purine C ₅ H ₄ N ₄ 12	120.10	C5H4N4			- I

No.	Crystal- line form	Sp. gr. $H_2O=1$	Melting- point °C	Boiling- point °C	Solubi	lity in gm 100 c.c. of	
	and color	(A)Air=1	-0		Water	Alcohol	Ether
1 2 3 4 5	colorl. leaf. colorl. liq. colorl. liq. colorl. liq. colorl.	0.987 ^{20°} 0.807 ^{20°} 1.017	104 -22 -81 145	140.7 48.8 168.6	0.42 ²⁴ ° 0.20 ²⁰ ° dec. 0.06 c.; 1.4 ¹⁰⁰ °	v. s. ∞ ∞ dec. v. s.	v. s. ∞ ∞ v. s.
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	colorl. liq. colorl. liq. colorl. liq. colorl. liq. liq. liq. liq. leaf. f. al. colorl. leaf. liq. colorl. liq. colorl. liq. colorl. liq. colorl. liq. colorl. liq. colorl. liq.	0.891 ^{18°} 0.804 ^{28°} 0.719 ^{28°} 0.949 ^{18°} 0.862 ^{28°} 1.032 1.364 0.879 0.89518° 0.8593° 0.794 ^{28°} 0.794 ^{28°} 0.744 ^{28°} 0.744 ^{28°} 0.744 ^{28°}	58 (60)	102 48-9 97.4 49. 122 158 229.5 272 140 71.5 143 194-5 46.5 36.5 118 90.7 81	2.3620° i. S. i. v. sl. s. s. sl. s. h. 0.2520° v. s. 0.2720° sl. s. s. 8. 8. 8. 8.		S
22 23 24 25 26	colorl. liq. colorl. liq. need. f. eth. colorl. liq.	0.901 ^{20°} 0.824 ^{20°} 1.748	abt. 46	267 102.4 153-6	v. sl. s. 0.11 ^{20°} i.	& & &	& & & &
27 28 29 30 31 32 33 34 35 36 37 38 39 40	liq. oil liq. colorl. liq. colorl. liq. colorl. liq. colorl. gas. colorl. liq. colorl. liq.	1.166 1.051°	26 8.5 107	67-8 abt. 317 128 ^{40mm} 110.5 57 228 220-2 122.4 141.5-2.5 303	sl. s. v. sl. s. i. 0.5 i. i. s. 44.6 c.c 0.2520° 0.2720°	s. v. s.	v. s. v. s.
42 43 44 45 46	colorl. liq. colorl. monocl. colorl. tab colorl. liq.	0.859 1.5424° anh. 0.87920°	35 199 d. 153-4 -57.5	dec. 169.8	33 s. 5 i.	v. s.	σ s. v. s.
47 48 49	colorl. need. f. al. colorl. liq. mic. need. f. al.	0.932	216-7	234-5 221-2 dec.	i. v. s.	s. ∞ s.	∞ v. sl. s.
		1					

No.	Name	Synonyms	Formula	Mol. wt.
1	Purpurine (1, 2, 4)	trioxyanthraqui-	C ₆ H ₄ ·(CO) ₂ ·C ₆ H·	256.13
2	Pyrantin	none	(OH) ₃ C ₁₂ H ₁₃ O ₃ N	219.17
3 4 5	Pyrazine Pyrazole Pyrazoline		C ₄ H ₄ N ₂ . C ₃ H ₄ N ₂ . C ₃ H ₆ N ₂ .	80.07 68.07 70.08
6	Pyrene		C16H10	202.16
7 8 9 10	Pyridazine Pyridine sulphonic acid (3) Pyridone. Pyrocatechin.	See hydroxypyridine See catechol	C4H4N2	80.07 79.08 159.14
12	Pyrocoll		C ₄ H ₃ N · (CO) ₂ · NC ₄ H ₃	186.12
13	Pyrogallol	pyrogallic acid	C ₆ H ₃ ·(OH) ₃ (1, 2, 3)	126.08
14	trimethyl ether.		C6H3 (OCH3)3	168.14
15	Pyromellitic acid.	benzene tetracar- bonic acid (1, 2, 4, 5)	(1, 2, 3) C ₆ H ₂ ·(COOH) ₄ +2H ₂ O	290.13
16	Pyromucic acid		C ₄ H ₈ O·COOH	112.06
17 18	Pyrone		CH ₄ O ₂ CH ₃ ·CH(COOH)·	96.06 132.09
19 20 21 22	Pyrrol	pentazane pyroracenic acid	CH ₂ ·COOH C ₄ H ₄ : NH	67.07 71.10 69.09 88.05
23	Quercite (d.)		C6H7 · (OH) 5 · · · · · ·	164.13
24	Quercitrine		C21H22O12+2H2O	502.31
25 26	Quinaldine. See Quinhydrone	methyl quinoline (2)	C6H4.O2.C6H4.	218.14
27	Quinic acid		$(OH)_2$ $(HO)_4 \cdot C_6H_7 \cdot COOH$	192.13
28	Quinine		C20H24O2N2	324.31
29	hydrochloride		C20H24O2N2·HCl	396.81
30	sulphate		+2H ₂ O (C ₂₀ H ₂₄ O ₂ N ₂) ₂ H ₂ SO ₄	872.81
31	Quinol	hydroquinone	+7H ₂ O C ₆ H ₄ ·(OH) ₂ (p.)	110.08
32 33	Quinoline Quinolinic acid	pyridine dicarbonic	C_9H_7N	129.11 167.09
34	Quinone	acid (2, 3) benzoquinone	C6H4·O2	108.06
35	Racemic acid		[CH(OH) · COOH] ₂ +H ₂ O	168.08

No.	Crystal- line form	Sp. gr. H ₂ O=1	Melting- point	Boiling- point		ility in gn 100 c.c. of	
	and color	(A)Air=1	_ °C	C	Water	Alcohol	Ether
1	red need. f. al.		256	dec.	s.	s.	s.
2	pr. f. al.		155		0.075 ^{17°} ; 1.2 ^{100°} ;	v. s. h.	i.
3 4 5	pr. f. w. need f. al. colorl. liq.		47 69.5–70.0	118 186-8 144	ω v. s. ω	v. s. v. s. ∞	v. s. v. s.
6	monocl.		148-9		i.	1.4	v. s.
7 8 9 10	colorl. liq. liq. need.	1.111}8° 0.990	-8	206 115 	ω ω v. s.	v. s. o v. sl. s.	v. s. œ i:
11 12	yel. leaf.		268.9	subl.	i.	v. sl. s.	v. sl. s.
13	need. or leaf.		133	293 d.	v. s.	100 ²⁵ °	v. s.
14	colorl. need.	• • • • • • • • • • • • • • • • • • • •	47	235 (241)	• • • • • •	v. s.	v. s.
15	triclinic tab.		anh. 264 d.	•••••	14.216°	v. s.	
16	monocl.		132-4	subl.	3.6 ¹⁵ °; v. s. h.	v. s.	v. s.
17 18	prisms triclinic	i:4ii · · · ·	32.5 112 (118)	315	v. sl. s. v. s.	s. v. s.	v. s. vs
19 20 21 22	colorl. liq. colorl. liq. liq. colorl.	$0.967^{21}^{\circ} \ 0.852^{22.5}^{\circ} \ 0.910^{20}^{\circ} \ 1.288^{18}^{\circ}$	13.6	130 87 . 5–8 . 5 90 165 sl.	i. ∞ v. s. ∞	v. s. & & &	v. s. & & & &
23	colorl. monocl.	1.58513°	234 (225)	d.	10 c.	sl. s.	i.
24	yel. need. or leaf.		168 d.		v. sl. s.	sl. s.	0.8
25 26	dk. gr'n.			subl.	s. h.	v. s.	v. s.
27	pr. colorl. – monocl.	1.637	161.6	dec.	40°°	8.	v. sl. s.
28	silky need. f. bz.		174–5		0 .05725°	166	22
29	silky need.	•••••	156–190		5.625°	16625°	0.42250
30	silky need.		205 (2H ₂ O)		0.1425°	1.1625°	sl. s.
31	hex. pr. f. w.		169	285	5.9150	V. 8.	v. s.
32 33	colorl. liq. monocl.	1.090	-22.6 231 d.	236.2	sl. s. 0.55 ^{6.5} °	sl. s.	ο v. sl. s.
34	pr. yel, pr. f. w.	1.31 otla	115.7	subl.	sl. s.	v. s.	v. s.
35	eolorl: tricl.	is (Tex	205–6		20.620°	2.1 c.	•••••
-	4						

No.	Name	Synonyms	Formula	Mol. wt.
1	Raffinose		C ₁₈ H ₈₂ O ₁₆ +5H ₂ O	594.43
2	Resorcinol	dihydroxybenzene	C ₆ H ₄ ·(OH) ₂ (m.)	110.08
3 4 5 6 7	dimethyl ether Retene Rhamnose Ricinoleïc acid Rosaniline	(m.) isodulcite	C ₆ H ₄ · (OCH ₃) ₂ C ₁₈ H ₁₈ C ₆ H ₁₂ O ₅ +H ₂ O. C ₁₈ H ₃₄ O ₃ C(OH)· (CH ₃ · C ₆ H ₃ · NH ₂)· (C ₆ H ₄ · NH ₂) ₂	138.12 234.23 182.14 298.36 319.30
8 9	Rosolic acid Rufigallic acid		$C_{20}H_{16}O_{3}$ $C_{14}H_{2}O_{2}\cdot(OH)_{6}$	304.23 304.13
10 11	Sabinene Saccharine		$\begin{array}{c} C_{10}H_{16}\\ C_{7}H_{5}O_{8}NS\end{array}$	136.18 183.15
12 13 14	Safrol Salicin Salicyl amide		$\begin{array}{c} C_{10}H_{10}O_2 \dots \dots \\ C_{13}H_{13}O_2 \cdot (OH)_5 \dots \\ HO \cdot C_6H_4 \cdot CO \cdot NH_2 \\ (o.) \end{array}$	162.13 286.21 137.10
15	Salicylic acid		HO·C ₆ H ₄ ·COOH (o.)	138.08
16 17	aldehyde Saligenin		HO·C ₆ H ₄ ·CHO (o.) HO·C ₆ H ₄ ·CH ₂ OH	122.08 124.10
18	Salipyrine	antipyrene salicyl-	(0.) C ₁₈ H ₁₈ O ₄ N ₂	326.25
19 20	Salol. Santonin	ate See phenyl salicytate	C ₁₅ H ₁₈ O ₈	246.22
21	Sarcolactic acid	paralactic acid	CH₃·CH(OH) ·	90.06
22 23	Sarcosine Sebacic acid	methyl glycine	CH ₂ NH·CH ₂ ·COOH (CH ₂) ₈ ·(COOH) ₂	89.08 202.19
24 25	Semicarbazide hydrochloride		$\begin{array}{c} NH_2 \cdot CO \cdot NH \cdot NH_2 \cdot \\ NH_2 \cdot CO \cdot NH \cdot NH_2 \cdot \\ HCl \end{array}$	75.07 111.54
26	Silver fulminate		Ag ₂ C ₂ N ₂ O ₂	299.79
27 28 29	Skatole	methyl indole (3). pinol hydrate	C ₉ H ₉ N	131.13 138.19 112.06
30	Sorbinose		C6H12O6	180.13
31 32	Sorbite (d.) Sparteine		$\begin{array}{c} C_6H_{14}O_6+\frac{1}{2}H_2O \dots \\ C_{15}H_{26}N_2 \dots \end{array}$	191.15 234.30
33	bisulphate		$^{\mathrm{C_{15}H_{26}N_2\cdot H_2SO_4}}_{+5\mathrm{H_2O}}$	422.45
34 35 36 37	StarchStearic acid Stearine Stearolic acid	tristeraine	C ₁₈ H ₁₂ O ₂) ₃ C ₃ H ₅ C ₁₈ H ₂₂ O ₂	(162.11)x 284.38 891.20 280.35

No.	Crystal- line form	Sp. gr. H ₂ O=1	Melting- point	Boiling- point		lity in gm 10 c.c. of	s. per
	and color	(A)Air=1	°C		Water	Alcohol	Ether
1	need.	1.465	118-9		14 ²⁰ °	v. s.	• • • • • •
2	colorl. tab.	1.272	anh. 116	276.5	v. s.	v. s.	v. s.
3 4	colorl. liq. leaf.	1.080°° 1.13	98.5	214-5 390	v. sl. s.	s. v. s. h.	s. s.
5	colorl. f. w.	1.471	92-3		50 с.	v. sl. s.	
6	colorl.	0.945	16-7		i,	ω	ω
7	red need.				sl. s.	8.	8.
8	red leaf.	• • • • • • • • •	270	dec.	v. sl. s.	v. s. h.	8.
9	or. red				i.	s. conc. H ₂ SO ₄	s.; s. alk.
0	colorl. liq.	0.84020°	1 1	162-66	i.	ω .	ω
ĭ	colorl.		220 d.		0.43250	3.1	
<u> </u>	monocl.	1 108	1 ,,	999	:	v. s.	v. s.
2	colorl. colorl. leaf.	$1.108 \\ 1.43$	201	233	3.6150	8.	i.
4	colori. leaf.	1.40	138 (140)	270 d.	sl. s.	8.	
	colori. icar.	•••••	200 (220)			Na ₂ CO ₃	
200	11.				0 0 mm 1	sol.	47 0000
5	colorl,		158		0.27^{20} °	46.8525°	47.6825°
6	need.	1.173130	-10	196.5	sl. s.	v. s.	v. s.
7	colorl.	1.161 ²⁵ °	86	subl.100	v. s.	v. s.	v. s.
1	rhomb.					١,,١	
8	cryst.		92		0.515°; 4.0100°	v. s. chl.	8.
,	powd.			-	4.0100		
5	colorl. pr.	1.187	169-70		0.02 c.;	8.	sl. s.
				·	0.4 h.		œ
1	liq.				ω	, w	Cap.
2	rhomb.		210 d.		v. s.	sl. s.	
3	thin colorl.		133-3.5	295100mm	0.1170	v. s.	v. s.
. 1	leaf.		96		2.0100° v. s.	8.	s. bz.
5	pr. f. al. prisms		175 d.		v. s. v. s.	i. abs.	i.
9	prisms		110 a.	•••••	_		
6	sm. need.	.,	exp.	• • • • • • • • • • • • • • • • • • • •	sl. s.	s. NH₄OH	i. HNO
7	leaf. f. lgr.		95	265-6	0.05 с.	v. s.	
8	colorl.		150	270–1 228 d.	3.3150	V. 8.	v. s. v. s.
9	colorl.	• • • • • • • • • •	134.5	228 a.	sl. s.	v. s.	V. S.
1	need. f. w.						
0	colorl.	1.654	164		200	v. sl. s. h.	
	rhomb.				_	v. sl. s.	
1 2	colorl.	1.020200	110-11	abt. 328	s. v. sl. s.	V. 81. 8.	v. s.
-	colorl. oil.	1.020		d.	~		
3	rh'b'dr.		136		9125°	42250	i.
4	wh. amor.	1.5	no m. p.		i.	i.	i.
5	colorl. leaf.	0.84380°	69.3	291100mm	i.	2.5 c.	v. s.
6	colorl.	0.862800	71-1.5		į.	v. sl. s.	8.
	colorl. pr.	1	48	260	i.	sl. s. c.	v. s.
7	f. al.		1				l .

		_		Mol.
No.	Name	Synonyms	Formula	wt.
1 2	Stilbene Strychnine	diphenyl ethylene	C ₆ H ₅ ·CH : CH · C ₆ H ₅ C ₂₁ H ₂₂ O ₂ N ₂	180.17 334.30
3	hydrochloride		C21H22O2N2·HCl	397.79
4	nitrate	,	$+1\frac{1}{2}H_2O \ C_{21}H_{22}O_2N_2 \cdot HNO_3 \ .$	397.32
5	sulphate		$(C_{21}H_{22}O_2N_2)_2 \cdot H_2SO_4 + 5H_2O$	856.76
6	Suberic acid	,	$(CH_2)_6 \cdot (COOH)_2 \dots$	174.15
7 8	Suberone Succinamide	cycloheptanone	C ₇ H ₁₂ O	112.13 116.10
9	Succinic acid		HOOC·CH ₂ ·CH ₂ · COOH	118.07
10	anhydride		(CH ₂ ·CO) ₂ ·O	100.05
11 12 13	Succinimide	See ethylene cyanide	C4H5O2N+H2O	117.08 154.97
14	Succinyl chloride.		Cloc·CH ₂ ·CH ₂ · COCl	342.24
15	Sucrose	cane sugar	C ₁₂ H ₂₂ O ₁₁	
16	Sulphamine benzoic acid (o.) Sulphanilic acid	aminobenzene sul-	$ \begin{array}{c} \operatorname{NH}_2 \cdot \operatorname{SO}_2 \cdot \operatorname{C}_6 \operatorname{H}_4 \cdot \\ \operatorname{COOH} \\ \operatorname{NH}_2 \cdot \operatorname{C}_6 \operatorname{H}_4 \cdot \operatorname{SO}_3 \operatorname{H} (p.) \end{array} $	201.16 191.17
17	Sulphoacetic acid	phonic acid (p.)	+H ₂ O +SO ₃ H·CH ₂ ·COOH	158.12
18	Sulphobenzid		+H ₂ O	218.20
19	Sulphobenzoic acid		$\begin{array}{c} (C_6H_5)_2 \cdot SO_2 \cdot \dots \cdot \\ SO_3H \cdot C_6H_4 \cdot COOH \\ +3H_2O \end{array}$	256.18
20	Sulphobenzoic acid (m.)		SO ₃ H·C ₆ H ₄ ·COOH +2H ₂ O	236.16
21	Sulphobenzoic acid (p.)		SO ₃ H·C ₆ H ₄ ·COOH +3H ₂ O	256.18
$\begin{array}{c} 22 \\ 23 \end{array}$	Sulphocyanic acid Sulphonal	thiocyanic acid acetone diethyl sulphone	$ \begin{array}{c} \text{CNSH} \\ (\text{CH}_3)_2\text{C}(\text{SO}_2\text{C}_2\text{H}_5)_2 \end{array} $	59.08 228.28
24	Tannic acid	tannin	C14H10O9	322.15
25	Tartaric acid (i.)	mesotartaric acid.	HOOC(CHOH) ₂ · COOH+H ₂ O	168.08
26	(d. or l.)		HOOC(CHOH) ₂ . COOH	150.07
27	Tartronic acid	,	$CH(OH) \cdot (COOH)_2 + \frac{1}{2}H_2O$	129.06
28 29 30 31 32 33	Terephthalic acid. aldehyde nitrile Terpinene Terpineol Terpine hydrate	X	C ₆ H ₄ ·(COOH) ₂ (p.) C ₆ H ₄ ·(CHO) ₂ (p.). C ₆ H ₄ ·(CN) ₂ (p.) C ₁₀ H ₁₆ ·(CN) ₂ (p.) C ₁₀ H ₁₈ O C ₁₀ H ₂₀ O ₂ +H ₂ O	166.09 134.09 128.09 136.18 154.19 190.23
٠	•			

No.	Crystal- line form	Sp. gr. H ₂ O=1	Melting- point	Boiling- point	Solubi	lity in gm 100 c.c. of	s. per
	and color	(A)Air=1		, c	Water	Alcohol	Ether
1 2	colorl. tab. tetr. f. al.		124 abt. 268	306–7	i. 0.01625°	sl. s. 0.9	v. s. 0.018
3	colorl.		d.		2.9 c.	1.7	
4	trim.		dec.		2.4250	0.8325°	0.6425° chl.
5	need. colorl. pr.		anh. 200		3.2250	1.525°	i.
6	colorl.		140	abt. 300	0.14160	s.	v. sl. s.
7 8	or tab. oil colorl. need.	0.969°°	242-3	180	sl. s. 0.45 ¹⁵ °; 11 ¹⁰⁰ °	v. s. i,	s. i.
9	colorl. monocl.	1.564	185	234	6.820°; 121100°	sl. s.	sl. s.
10	colorl. need.	1.104 ²⁰ °	119.6		i.	s.	v. sl. s
11 12	f. al. octah'dr.		124	287-8	v. s.	s.	v. sl. s.
13	colorl.	1.412	16-7	190–2	•••••		
14	colorl. monocl.	1.58818°	abt. 160– 70 d.		200 с.	sl. s.	
15	rh'b'dr.		165–7 (155)		v. s.	v. s.	v. s.
16	rhomb. pl.		d. 280		0.89150	v. sl. s.	v. sl. s.
17	tab. f. w.		84-6		s.	v. s.	i.
18 19	tab. trim.		123–4 anh. 250*		i. 50	sl. s. v. s.	sl. s. i.
20			anh. 141				v. s.
21	need.		259-60		v. s.	v. s.	v. s.
$\begin{array}{c} 22 \\ 23 \end{array}$	liq. prisms		5 126	300 d.	ω 2 ¹⁵ °; 6.7 ¹⁰⁰ °	v. s. 50 h. abs.	v. s. sl. s.
24	amor.		abt. 200		20	167	v. sl. s.
25	tab.	1.666	140-3 anh.		125 с.		
26	colorl.	1.76	168-70		139 ²⁰ °	v. s.	v. sl. s.
27	monocl. colorl. pr. f. eth.		185–7 d.		v. s.	v. s.	sl. s.
28 29 30 31 32 33	powd. need. f. w. colorl. colorl. liq. colorl. rhomb.	0.865 ²⁰ ° 0.936 ²⁰ °	subl. 116 215 (222) 25 116–7	245–8 179–82 218	v. v. sl. s. 1.5100° i. i. i. 0.525°	v. sl. s. v. s. sl. s. o v. s. 10	v. sl. s. v. sl. s. sl. s. v. s. v. s.
				1	i .		J

^{*} The anhydride melts at 118° C.

- 1				
No.	Name	Synonyms	Formula	Mol. wt.
1	Terpinolene		C10H16	136.1
3	Tetrabrom-ethane (sym.)		CHBr ₂ ·CHBr ₂	345.8
4	fluorescein Tetrachlor-acetone (sym.)	See eosine	CHCl ₂ ·CO·CHCl ₂ +2H ₂ O	231.9
5	aniline		NH CHCL	230.9
6 7 8	benzene		(1, 2, 3, 4, 5) C ₆ H ₂ Cl ₄ (1, 2, 3, 4). C ₆ H ₂ Cl ₄ (1, 2, 3, 5). C ₆ H ₂ Cl ₄ (1, 2, 3, 5).	215.88 215.88
9	ethaneSee ac	etylene tetrachloride	00112014 (1, 2, 4, 0).	215.8
10 11 12	ethylene Tetradecane (n.). Tetraethyl-ammo-		CCl ₂ : CCl ₂ C ₁₄ H ₃₀ (C ₂ H ₅) ₄ NOH	165.88 198.31 147.22
13	nium hydroxide benzene (sym.) .	••••	C ₆ H ₂ ·(C ₂ H ₅) ₄	190.25
14	urea	•••••	$(C_2H_5)_2N \cdot CO \cdot N$ $(C_2H_5)_2$	158.22
15	Tetrahydro- benzene	•••••	C ₆ H ₁₀	82.1
16 17 18	naphthalene naphthylamide		$\begin{array}{c} C_{10}H_{12}$	132.14 147.16 147.16
19 20	quinoline Tetrahydroxy- benzene (sym.)		C ₉ H ₁₁ N C ₆ H ₂ · (OH) ₄ (1, 2, 4, 5)	133.14 142.08
21	Tetramethyl- ammonium hydroxide		(CH ₃) ₄ ·NOH+5H ₂ O	181.2
22 23	benzene $(1, 2, 3, 4)$ (1, 2, 3, 5)	See isodurene	C ₆ H ₂ ·(CH ₈) ₄	134.16
24	(1, 2, 4, 5)	durene	С ₆ Н ₂ · (СӉ ₃) ₄	134.16
25 26	diamino-benzo- phenone leuco-aniline	Michler's ketone	(CH ₃) ₂ N·C ₆ H ₄ ·CO· C ₆ H ₄ ·N(CH ₃) ₂	268 · 27
27	Tetramethyl-urea		[(CH ₃) ₂ ·N·C ₆ H ₄] ₂ · CH·C ₆ H ₄ ·NH ₂ (CH ₃) ₆ N·CO ₃	345.36 116.14
28	Tetramethylene-		(CH ₃) ₂ N·CO· N(CH ₃) ₂ NH ₂ ·(CH ₂) ₄ ·NH ₂	88.14
29	diamine Tetranitro- diphenyl diphenyl methane		C12H6 · (NO2)4 C12H8 · (NO2)4	334.15 348.17
1	methane		C(NO ₂) ₄	196.05
2	naphthalene (α) .	•••••	C ₁₀ H ₄ ·(NO ₂) ₄	308.12
33 34	(1,3,6,8) $(1,3,5,8)$		C10H4 · (NO2)4	308.12
5		•••••	C ₁₀ H ₄ · (NO ₂) ₄	308.12
00	phenol	•••••	$HO \cdot C_6H \cdot (NO_2)_4$ (1, 2, 3, 4, 6)	274.09

	No.	Crystal- line form	$H_2O=1$	Melting- point	Boiling- point	Solubi	lity in gma	s./per
		and color	(A)Air=1	F°C		Water	Alcohol	Ether
•	1 2	colorl. liq.	2.972	<-20	183–5	i. i.	8 8	8 8
	3 4			48		,		
	5			118		v. s. bz.	v. s.	v. s.
	6 7 8	need. need. monocl.	1.858 ²¹ °	45-6 50-1 140-1	254 246 243-6	i	sl. s. v. sl. s. sl. s h.	v. s. s.
	9 10 11 12	colorl. liq.	1.608 ²⁵ ° 0.765 ²⁰ °	-19 5.5 d. 190	119 252.5	i. i.	σ v. s. s.	∞ v. s. ∴
	13	colorl. liq.	0.888	13	250	i.	v. s.	v. s.
	14	liq.			210-5	s. a.		
	15	colorl. liq.			82-4			
	16 17 18 19 20	colorl. liq. oil liq. colorlbr. leaf.	0.981 ^{13°} 1.034 ^{15°} 1.063 ¹ 5°	abt. 20 215–20	205 277 251–2 251	i. s. dil. a. v. sl. s. s.	v. s. ∞ s.	v. s. v. s.
	21			62-3	dec.	∞ 63°	v. s.	·····
	22	colorl.	0.88290	-4	204			
	23 -24	monocl.	0.838810	79	abt. 190	v. s. bz.	v. s.	V. 8.
-	25	glit. leaf.		171.5 (174)	d. 360		v. s.	v. s.
	26	glit. cryst.		151-2			v. sl. s.	• • • • • • • • • • • • • • • • • • • •
	27	liq.	0.972		177		v. s.	v. s.
	28	leaf.		27-8	159	' v. s.		••••••
	29 30	yel. pr. f.		140 172		i.	sl. s. i.	sl. s. i.
	31 32	rhomb.	1.650	13 259	126 exp.	i. v. sl. s.	s. v. sl. s.	s. v. sl. s.
	33	long need. f. al.		203	exp.	i.		
•	34	yel. tetr. f. acet.		194-5		v. s.	sl. s.	sl. s. chl.
	35	yel. need.	,	130	exp.!	v. s.	v. sl. s. bz.	v. sl. s. lgr.

-			-	1
No.	Name	Synonyms	Formula	Mol. wt.
1	Tetraphenyl-ethane (sym.)		(C ₆ H ₆) ₂ CH · CH (C ₆ H ₆) ₂	334.31
2	ethylene		(C ₆ H ₅) ₂ C: C(C ₆ H ₅) ₂	332.29
3	urea		(C ₆ H ₅) ₂ N·CO·	220.25
4 5 6	Tetrolic acid Tetronal Thebaine	paramorphine	$\begin{array}{c} N(C_6H_6)_2 \\ CH_3 \cdot C : C \cdot COOH \\ C_9H_{20}O_4S_2 \\ C_{19}H_{21}O_3N \end{array}$	84.05 256.33 311.27
√7	hydrochloride		C ₁₉ H ₂₁ O ₃ N·HCl +H ₂ O	365.76
8 9	Theine. Theobromine	See caffeine dimethylxanthine.	C7H8O2N4	180.14
10	Theophylline		C7H8O2N4+H2O	198.16
11 12	Thiazole Thio-acetamide		C ₃ H ₃ NS CH ₃ ·CS·NH ₂	85.11 75.12
13 14 15 16 17	acetanilide acetic acid benzoic acid carbonyl chloride. cyanic acid. See	See thio-phosgene sulphocyanic acid	C ₆ H ₅ ·NH·CS·CH ₂ . CH ₂ ·COSH C ₆ H ₅ ·COSH	151.18 76.10 138.14
18 19 20 21 22	cyanuric acid diphenyl-amine . naphthene phenol phosgene	benzothiophene phenyl mercaptan thiocarbonyl chloride	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	177.25 199.20 134.15 110.14 114.99
23 24 25 26 27	semicarbazide urea Thiophene Thujone Thymol	tanacetone methyl-isopropyl	NH ₂ ·CS·NH·NH ₂ . NH ₂ ·CS·NH ₂ . C ₄ H ₄ S. C ₁₀ H ₁₆ O. CH ₃ ·C ₆ H ₃ (OH)	91.14 76.12 84.11 152.18 150.16
28	Tiglic acid	phenol (3, 6)	C ₂ H ₇ CH ₃ CH : C(CH ₃)	100.09
29 30 31 32 33	Tin diethyltetraethyltetramethylTolaneTolidine (o.)	diphenyl acetylene 4, 4'-diamino- 3, 3'-dimethyl-	COOH Sn(C ₂ H ₅) ₂ Sn(C ₃ H ₅) ₄ Sn(CH ₃) ₄ C ₆ H ₅ ·C : C·C ₆ H ₅ . (NH ₂)CH ₃ : C ₆ H ₃ . C ₆ H ₃ ·CH ₃ (NH ₂)	176.80 234.90 178.82 178.15 212.22
34	Toluamide (o.)	diphenyl	CH ₃ ·C ₆ H ₄ ·CO·NH ₂	135.12
35 36	" (m.) " (p.)	•••••	$\begin{array}{c} CH_3 \cdot C_6H_4 \cdot CO \cdot NH_2 \\ CH_3 \cdot C_6H_4 \cdot CO \cdot NH_2. \end{array}$	135.12 135.12
37 38	Toluenesulphonic acid (o.)	•••••••••••••••••••••••••••••••••••••••	C ₆ H ₅ ·CH ₈ ··········· CH ₃ ·C ₆ H ₄ ·SO ₈ H +2H ₂ O	92.10 208.19
				i

No.	Crystal- line form	Sp. gr. H ₂ O=1	Melting- point	Boiling- point	Solubi	lity in gm 100 c.c. of	s. per
-101	and color	(A)Air=1	•°C		Water	Alcohol	Ether
1	colorl. need. f. chl.	1.182	209	279–83	s. acet.	sl. s. h.	14 bz.
2	colorl. monocl.		221	415–25	i.	v. sl. s.	v. s. bz.
3	colorl.		183		i. ,		
4 5 6	colorl. tab. glit. leaf. glit. pr. f. al.		76 85 193	203	v. s. 0.22 c. v. sl. s.	v. s. v. s. 10 c.; v. s. bz.	v. s. v. s. 0.71 ¹⁰ ° v. s. chl
7 -	rhomb.	• • • • • • • • •				6.3100	
8	rhomb. f. w.	•••••	337	subl.	0.03 ^{18°} ; 0.67 ^{100°}	0.023170	0.95 h. chl.
10	need. f. w.	• • • • • • • • • • • • • • • • • • • •	264		0.44 ¹⁵ °; 1.3 ³⁷ °	sl. s.	sl. s.
11 12	colorl. liq. monocl. tab. f. eth.	1.20017°	i08 · · ·	117	v. s.	8.	8.
13 14 15 16	need. colorl. liq.	1.074100	75 24	dec. 93	i. œ i.	s. alk.	 & &
17 18 19 20 21 22	yel. need. rhomb. leaf liq. red liq.	1.078 1.508	d. 200 180 31 	371 d. 221 168 73	v. s. h. v. s. bz. i. i.	v. sl. s. sl. s. v. s. s.	v. sl. s. s. s.
23 24 25 26 27	need. f. w. prisms liq. colorl. liq. colorl. pl.	1.071 0.91320° 0.97915°	181-3 180 49.6	84 203 228–32	s. 9 i. 0.083 ^{15°} ; 0.11 ^{100°}	v. sl. s. s. v. s.	v. sl. s. s.H ₂ SO v. s.
28	colorl. pr.	0.964760	64.5	198.5	sl. s. c.; v. s. h.	s.	8.
29 30 31 32 33	oil colorl. liq. colorl. leaf. colorl. sc. f. h. w.	1.187 ²³ ° 1.314 ⁰ °	60 129–30	dec. 181 78 275–300	i. i. i. sl. s.	s. s. v. s.	s. v. s. v. s.
34	colorl.		abt. 139		sl. s. c.; v. s. h.		v. s.
35 36	colorl.		94 (97) 158-9 (165)	::::::	sl. s. c.; sl. s. c.; v. s. h.	v. s.	sl. s.
37 38	f. w. colorl. liq. cryst.	0.866200		111 12925mm	i. v. s.	ω s.	8
	1 2] .				

No.	Name	Synonyms	Formula	Mol. wt.
1	Toluene súlphonic acid (m.)		CH ₃ ·C ₆ H ₄ ·SO ₃ H +H ₂ O	190.14
2	" " (p.)		CH ₃ ·C ₆ H ₄ ·SO ₈ H +4H ₂ O	244.17
3 4	" amide (o.) Toluic acid (o.)		$CH_3 \cdot C_6H_4 \cdot SO_2 \cdot NH_2$ $CH_3 \cdot C_6H_4 \cdot COOH$	171.18 136.10
5	" " (m.)		CH ₃ ·C ₆ H ₄ ·COOH	136.10
6	" " (p.)		CH ₃ ·C ₆ H ₄ ·COOH	136.10
7	's anhydride (o.)		(CH ₃ ·C ₆ H ₄ ·CO) ₂ O	254.19
8 9 10 11 12	Toluidine (o.)	amino-toulene (o.) " " (m.) " (p.)	CH ₃ · C ₆ H ₄ · NH ₂ CH ₃ · C ₆ H ₄ · NH ₂ CH ₃ · C ₆ H ₄ · NH ₂ CH ₃ · C ₆ H ₄ · CN CH ₃ · C ₆ H ₄ · CN	107.12 107.12 107.12 117.11 117.11
13 14	" (p.) Toluylene diamine (2, 4)	diamino-toluene	$\begin{array}{c} CH_3 \cdot C_6H_4 \cdot CN \dots \\ CH_3 \cdot C_6H_3 \cdot (NH_2)_2 \dots \end{array}$	117.11 122.14
15	Toluylene diamine		$\mathrm{CH_3 \cdot C_6H_3 \cdot (NH_2)_2}$.	122.14
16	Tolyl acetic acid (o.)		CH ₃ ·C ₆ H ₄ ·CH ₂ · COOH	150.13
14	" " (p.)		CH ₃ ·C ₆ H ₄ ·CH ₂ · COOH	150.13
18	carbinol (o.)		CH ₃ ·C ₆ H ₄ ·CH ₂ OH.	122.12
19 20	" (m.) " (p.)	,	CH ₃ ·C ₆ H ₄ ·CH ₂ OH. CH ₃ ·C ₆ H ₄ ·CH ₂ OH.	122.12 122.12
21 22 23 24	chloride (o.) " (m.) " (p.) hydrazine (o.)		CH ₃ ·C ₆ H ₄ ·CH ₂ Cl CH ₃ ·C ₆ H ₄ ·CH ₂ Cl CH ₃ ·C ₆ H ₄ ·CH ₂ Cl CH ₃ ·C ₆ H ₄ ·NH·NH ₂	140.57 140.57 140.57 122.12
25 26	" (p.)		$\begin{array}{c} CH_3 \cdot C_6H_4 \cdot NH \cdot NH_2 \\ CH_3 \cdot C_6H_4 \cdot NH(OH) \end{array}$	122.12 123.12
27 28 29	mustard oil (o.). " (p.). phenyl ketone. S	ee phenyl tolyl ketone	$\begin{array}{c} \mathrm{CH_3 \cdot C_6H_4 \cdot NCS} \dots \\ \mathrm{CH_3 \cdot C_6H_4 \cdot NCS} \dots \end{array}$	149.17 149.17
30 31	Triacetin	glyceryl triacetate Bismarck brown	(CH ₃ ·COO) ₃ C ₃ H ₅ NH ₂ ·C ₆ H ₄ ·N ₂ ·C ₆ H ₃ (NH ₃) ₂ (3 2 4)	218.16 227.21
32 33	Tribrom-acetic acid aniline		(NH ₂) ₂ (3, 2', 4') CBr ₃ ·COOH Br ₃ ·C ₆ H ₂ ·NH ₂	296.78 329.83
34 35	benzene (sym.) . hydrine	glyceryl tribrom-	(2, 4, 6, 1) $C_6H_3 \cdot Br_3 (1, 3, 5)$ $CH_2Br \cdot CHBr \cdot CH_2$	314.81 280.82
36	phenol (sym.)	hydrine	Br HO·C ₆ H ₂ Br ₃ (2, 4, 6)	330.81

No.	Crystal- line form	Sp. gr. H ₂ O=1	Melting- point	Boiling- point	Solu 1	blity in gr 00 c.c. of	ns. per
-	and color	(A)Air=1	°C	.c	Water	Alcohol	Ether
		,					
1	need.				v. s.	8.	•••••
2	leaf, or pr.		92		v. s.	8.	•••••
3 4	octahd'r. colorl. need.		155 102 (104)	259	0.19° s. h.	3.65° v. s.	s. chl.
5	colorl. pr. f. w.		110.5	263	1.671000	v. s.	v. s.
6	colorl. need.		176–7	275	s. h.	v. s.	v. s.
7	colorl. f. eth.		36-7	abt. 325			
8	liq.	1.00315° 0.98920°		199.5 203	sl. s. sl. s.	& &	& &
10 11	leaf.	0.998	42.9 (45)	200.5 205.2	0.74 ²¹ ° i.		
12	liq.		,	208-10	0.085 c.; 1.67 h.		
13 14	colorl.		38 (29.5) 99	217.3 280	i. s.	v. s. v. s.	v. s. v. s.
15	f. lgr. colorl. sc.	•••••	88.5	265	8.		•••••
16	colorl.	• • • • • • • •	88-9		v. s. h.		
17	colorl. need.		91	266	sl. s. c.; v. s. h.	• • • • • •	•••••
18	colorl.	1.023 ⁴⁰ °	34	223	1 c.	v. s.	v. s.
19 20	colorl. liq. colorl. need.	1.036°°	<-20 59	217 217	5 c. sl. s. c.	v. s.	s. v. s.
21 22 23	colorl. liq.	`		197-9 195-6 200	i. i. i.	v. s. v. s. v. s.	v. s. v. s. v. s.
24	colorl. tab.		56	• • • • • • • • • • • • • • • • • • • •	v. s. chl.	v. s.	v. s.
25 26	colorl. leaf. colorl. leaf. f. bz.	,	65–6 (61) 94	240-4 d.	v. s. bz. 1 c.; 50 h.	v. s. v. s.	v. s. v. s.
27 28 29	1. U2.		26-7	238-9 242.4	i. i.	v. s. v. s.	v. s.
30 31	colorl. liq. or. red.	1.161 1 5°	143.5	258-9 	sl. s.	ο v. s.	v. s.
32 33	colorl. lab. sm. need.		135 119	245 d.	v. s. i.	v. s. sl. s.	v.s. s.
34 35	need. prisms	2.436230	119.6 16	278 220	i. i.	sl. s. h.	
36	monoel. pr.		92(96)	subl.	al. s.	v. s.	8.

No.	Name	Synonyms	Formula	Mol. wt.
_	Tribrom-			
1	resorcinol	••••••	$(HO)_2 \cdot C_6 H \cdot Br_3$ $(2, 4, 6)$	346.8
2 3	Tributyl amine Tributyrine	See butyrene	(C4H9)3N	185.2
4	Tricarballylic acid	·····	(CH ₂ ·COOH) ₂ ·CH· COOH	176.0
5 6	Trichlor-acetal		CCl ₃ ·CH(OC ₂ H ₅) ₂	221.5
7	acetamide acetic acid		CCl ₃ ·CO·NH ₂ ····· CCl ₃ ·COOH······	162.4 163.3
8	acetyl chloride		CCl ₃ ·COCl	181.8
ıŏ	benzene ethane (α)		$C_6H_3Cl_3\ (1, 2, 4)\dots \\ CCl_3\cdot CH_3\dots$	181.4 133.4
11	" (β)		CH ₂ Cl·CHCl ₂	133.4
_	ethyl alcohol	•••••	CCl ₃ ·CH ₂ OH	149.4
l3 l4	ethylene hydrine	glyceryl trichlor- hydrine	CHCl: CCl ₂ CH ₂ Cl·CHCl·CH ₂ Cl	131.4 147.4
15	hydroquinone		(HO) ₂ ·C ₆ H·Cl ₃ (2, 3, 5)	213.4
16	methane methyi-chloro-	See chloroform diphosgene	Cl·COO·CCl ₃	197.8
.8	formate phenol	anphiosgono		
9	•		$HO \cdot C_6H_2 \cdot Cl_3$ $(2, 4, 6)$	197.4
ŏ	propane $(1, 2, 3)$. quinone	See trichlorhydrine	O2 · C6H · Cl3	211.4
1	Tricyanogen chloride	cyanuric chloride	(2, 3, 5) C ₈ N ₃ Cl ₃	184.4
2	Tridecane (n.)		C13H28	184.2
3	Tridecylene Triethyl		C13H26	182.2
4	aminearsine		(C ₂ H ₅) ₈ N	101.1
6	benzene (sym.)		(C ₂ H ₅) ₃ A ₈ C ₆ H ₃ ·(C ₂ H ₅) ₃	$162.1 \\ 162.2$
7 8	carbinol		(1, 3, 5) (C ₂ H ₅) ₃ ·COH	116.1
9	phosphine phosphite		$(C_2H_5)_3 \cdot P$	118.1 166.1
0	Trihydroxy-benzoic acid	pyrogallol car-	HOOC.C.H. (OT)	170.0
1	glutaric acid	boxylic acid	(2, 3, 4) COOH · (CHOH) ₃ ·	180.0
2	(d. or l.) glutaric acid (i.)		COOH · (CHOH)3 ·	180.0
3	pyridine (sym.)		NC ₅ H ₂ ·(OH) ₃	127.0
4	Triiodo-acetic acid		(2, 4, 6) CI ₃ ·COOH	437.7
5	Triisobutyl amine		(C ₄ H ₉) ₃ N	185.28
6	Trimellitic acid	•••••	C ₆ H ₃ ·(COOH) ₃ (1, 2, 4)	210.0
7	Trimesic acid (sym.)	•••••	C ₆ H ₃ ·(COOH); (1, 3, 5)	210.0
8	Trimethyl-acetic		(CH ₃) ₃ C·COOH	102.1

Jo.	Crystal- line form	Sp. gr. H ₂ O=1	Melting- point	Boiling- point	Solub	oility in gn 100 c.c. of	ns. per
,0.	and color	(A)Air=1	*C	*°C	Water	Alcohol	Ether
	,		111		sl. s.	v. s.	s.
1	need.		111			v. s.	v. s.
2 3	,	0.77820°		216.5	•••••		
4	colorl.		166	dec.	v. s.	v. s.	sl. s.
5	tab. f. w.	1.288	141	197 239	0.5. v. sl. s.	∞ v. s.	ο V. S.
6 7	colorl.	1.63060	57.3	195	v. s.	8.	s.
8	colorl. liq.	1.466100	16-17	118 213	i.		
9	colorl. liq.	1.32526°		74.5 114	i. i.	α .	∞ ∞
2	rhomb.	1.4780° 1.55023°	i8	151	sl. s.	, α	ω .
3	colorl. liq.	1.46038°	-70	87.1 158	i. i.	∞	ω
4		1.417			0.6150	v. s.	v. s.
5	prisms		134	subl.	0.0~	V. S.	
16				127 . 5-80			
18	rhomb.		68	244	0.08250	v. s.	v. s.
19 20	yel. leaf.	1	165-6		i.	sl. s.	v. s.
21	·		146	190	sl. s.	v. s.	v. s.
22 23	colorl. liq.	0.757 ²⁰ ° 0.845	-6.2	234 233	i. i.	v. s. v. s.	v. s. v. s.
				89	v. s.		œ
24 25	colorl. liq.	0.733 1.151		140 d.			v. s.
26	colorl. liq.	0.864170		214-8	i.	v. s.	1
27	colorl. liq.	0.840 ²⁰ ° 0.812		140-2 127	sl. s. i.	s. s.	s. s.
28 29	colorl. liq.		d. 195–	155.5-6.5		v. s.	v. s. v. s.
30	need. f. w.	• • • • • • • • • • • • • • • • • • • •	200				s. acet
31	colorl. f.		128		v. s.	v. s.	
32	colorl. tab.	······································	152 d.		v. s.	v. s. h.	s. acet
33	f. acet. cryst.		d. 220-	 	8.		
34	yel. leaf	0.785210	150 d.	184-6	s. i.	v. s.	
35 36	colorl. liq.	0.785	216 d.		s. h.		s.
37	colorl. pr.		(228) 345-50	subl. <300	s.	v. s.	8.
38	f. w. colorl.	0.9055°	35.5	163.7	2.2	v. s.	v. s.

No.	Name	Synonyms	Formula	Mol. wt.
	Trimethyl-			
1	amine		(CH ₂) ₂ N	59.3
3	amine hydro-		(CH ₃) ₃ N	95.
3	chloride			
4 5	arsinebenzoic acid	•••••••••	(CH ₃) ₃ A ₈ (CH ₃) ₃ ·C ₆ H ₂ ·COOH	120.
٠,	Deliable acid		(1, 2, 4, 5)	164.
_		No. of the second	(1, 2, 1, 0)	
6	" "	β -isodurylic acid.	(CH ₃) ₃ ·C ₆ H ₂ ·COOH	164.
7	carbinol		(1, 3, 5) (CH)-COH	74
8	citrate		(CH ₃) ₃ COH C ₆ H ₅ O ₇ (CH ₃) ₃	74. 234.
1			Culton Chiana	ZOI.
9	phosphate		(CH ₃) ₃ PO ₄	140.
0	phosphine	See collidine (\gamma)	(CH ₃) ₃ P	76.
2	urea	see containe (\gamma)	(CH ₈)NH·CO·	102.
_			$N(CH_2)_2$	102.
3	Trimethylene	cyclo-propane	C3H6	42.
4	glycol	• • • • • • • • • • • • • • • • • • • •	CH ₂ (OH) · CH ₂ · CH ₂ (OH)	76.
5	Trimyristine	See myristine	CH ₂ (OH)	•
_	Trinitro-			
6 7	benzene	•••••	C ₆ H ₃ ·(NO ₂) ₃ (1, 2, 4) C ₆ H ₃ (NO ₂) ₃ (1, 3, 5)	213.
8	" (sym.) .		$\begin{array}{c} C_6H_3(NO_2)_3 \ (1, 3, 5) \\ 2, 4, 6-(NO_2)_3 \cdot C_6H \end{array}$	213.
٠	Crosor	••••••	CH ₂ (OH) (1 3)	243.
9	naphthalene		CH ₃ (OH) (1, 3) C ₁₀ H ₅ · (NO ₂) ₃ (1, 2, 5)	263.
	1.			
0			C10H5 · (NO2)3 (1, 3, 5)	263:
•	••••	••••••	010118 (1402)8 (1,3,3)	200.
1	"	•••••	$C_{10}H_5 \cdot (NO_2)_3 (1, 3, 8)$	263.
2	phenol (sym)	See picric acid		
3			HO · C6H2 · (NO2)8	229
4	tertiary-butyl-	4:6-:-1 1	(1, 2, 3, 6)	
*	toluene (2, 4, 6)	artificial musk	(NO ₂);C ₆ H·CH; [C(CH ₃);]	283.
5	toluene (sym.).	"T. N. T."	CH3·C6H2·(NO2)2	227.
			CH ₃ ·C ₆ H ₂ ·(NO ₂) ₃ (1, 2, 4, 6)	
6	44	• • • • • • • • • • • • • • • • • • • •		007
Ī.,	•••••	• • • • • • • • • • • • • • • • • • • •	$CH_3 \cdot C_6H_2 \cdot (NO_2)_3$	227.
7		*******	(1, 2, 3, 4) CH ₃ ·C ₆ H ₂ ·(NO ₂) ₃ (1, 2, 4, 5) 4, 4', 4"-(NO ₂ ·	227.
8	triphenyl carbinol		(1, 2, 4, 5)	
۰	tripnenyi carbinoi	•••••	4, 4', 4"-(NO ₂ . C ₆ H ₄) ₃ . COH	395.2
9	" methane		4. 4'. 4"-(NO2:	379.2
-			4, 4', 4"-(NO ₂ · C ₆ H ₄) ₃ ·CH	0.0
0	xylene	'	(OTT) O TT (ATC)	
٦	Ayrene	•••••	$(CH_3)_2 \cdot C_6H \cdot (NO_2)_3$	241.1
1 -	"		(1, 4) (2, 4, 6) $(CH_3)_2 \cdot C_6 H \cdot (NO_2)_3$	241.1
2	(D.:1		(1, 3) (2, 4, 6) C ₈ H ₁₈ O ₄ S ₂ .	
4 1	Trional		C8H18O4S2	242.3

	· · · · · · · · · · · · · · · · · · ·						
No.	Crystal- line form	Sp. gr. H ₂ O=1	Melting- point	Boiling- point	Solubil 1	ity in gms 00 c.c. of	. per
140.	and color	(A)Air=1	°C	°C `	Water	Alcohol	Ether
1 2 3	colorl.	0.662-5°	271−5 d.	3.5	v. s. v. s.	v. s. s.	s. i.
5	liq. colorl. need. f.		149–50	<100	sl. s. v. sl. s. h.	v. s.	v. s.
6	colorl.		152	• • • • • • • • • • • • • • • • • • • •	v. sl. s.	v. s.	v. s.
7 8	colorl. colorl. tricl.		25 78.5–9.0	82.9 283–7 d.	v. s.	s	
9 10 11		1.220		197 40	i	8.	8. 8.
12			75.5	232.5	v. s.	v. s.	8.
13 14	gas visc. liq.	1.053180	-126.6	-34 214	i. ∞	v. s.	v. s.
15		=1	-		, ,	-	
16 17 18	yel. yl. pl. f. bz. yel. need.	1.688	57.5 122 105-6		sl. s. 0.04 ^{16°} 0.22 ^{20°} ; 0.81 ^{100°}	1.916° v. s.	v. s. v. s.
19	f. w. colorl. need.		112-3			s.	
20	f. al. yel. monocl.		122		v. s. chl.	v. s.	v. s. glac. acet. a.
21	f. chl. monocl. f. chl.		218		v. sl. s. chl.	0.046 ²³ ° (88%)	v. sl. s.
22 23	need.		117		sl. s.	v. s.	v. s.
24	need. f. al.		96-7			s.	
25	colorl. monocl.	1.654	82 (80.8)		0.0215	v. sl. s. c. v. s. h.	al. s.
26	f. al. leaf. f. al.	1.62	112		i.	sl. s. c.	v. s.
27			104		i.	sl. s. c.	v. s.
28	cryst. f.		171-2		s. bz.	sl. s. h.	sl. s.
29	bz. sc. f. bz.		206-7 (203)		v. sl. s. glac. acet. a	v. sl. s. bz.	v. sl. s.
30	need.		139		v. sl. s.		
31	need.		182	\	i.	v.sl.s.c.	
32	colorl. tab		76	dec.	0.3	V. s.	v. s.
	1			ľ	4	<u> </u>	

No.	Name	Synonyms	Formula	Mol. wt.
1 2	Trioxymethylene	metaformaldehyde (isomer of above).	C ₃ H ₆ O ₃	90.06
3	Tripalmitin	See palmitin		Î
4	Triphenyl-acetic acid		(C ₆ H ₅) ₃ C·COOH	288.23
5	amine		(C ₆ H ₅) ₈ N	245,22
6	benzene		$C_6H_3 \cdot (C_6H_5)_3 (1,3,5)$	306.26
7 8	carbinol methane		(C ₆ H ₅) ₃ COH (C ₆ H ₅) ₃ CH	260.22 244.22
9	phosphine		(C ₆ H ₅) ₈ P	262.25
10	Tripropyl- amine		(C ₃ H ₇) ₃ N	143.22
11 12	Tristearine Tropacocaine	See stearine	C ₈ H ₁₄ ON · CO · C ₆ H ₅	245.24
13	hydrochloride		C8H14ON · CO · C6H5 ·	281.71
14 15	Tropine Tyrosine	•••••	HCl C ₈ H ₁₅ ON HO·C ₆ H ₄ ·CH ₂ ·	141.26 181.14
16 17 18	Undecane (n.) Undecylene Undecylenic acid.	•••••	CH(NH)·COOH C11H24	156.25 154.23 184.21
19	Undecylic acid		COOH C ₁₀ H ₂₁ ·COOH	186.23
20	Urea Urethane	carbamide ethyl carbamate	$ \begin{array}{c} \text{NH}_2 \cdot \text{CO} \cdot \text{NH}_2 \dots \\ \text{NH}_2 \cdot \text{COO} \cdot \text{C}_2 \text{H}_5 \dots \end{array} $	60.06 89.08
22	Uric acid Uvic acid	pyrotritartaric acid	C5H4O3N4 (CH3)2·C4HO·COOH	168.10 140.10
4	Uvitic acid		CH ₃ ·C ₆ H ₃ ·(COOH) (1, 3, 5)	180.11
5 6 7	Valeric acidaldehydeanhydrideValero nitrile	See butyl cyanide	CH ₂ ·(CH ₂) ₃ ·COOH C ₄ H ₉ ·CHO	102.11 86.11 186.19
9	Vanillic acid	·····	CH ₂ O·C ₆ H ₂ (OH)	168.10
0	alcohol		COOH (3, 4, 1) CH ₃ O·C ₆ H ₃ (OH)	154.12
1	Vanilline	jj	CH ₂ OH (3, 4, 1) CH ₃ O·C ₆ H ₃ (OH) CHO (3, 4, 1)	152.10
3	Veratrol Veronal		C ₈ H ₄ ·(OCH ₃) ₂ (o.) C ₈ H ₁₂ O ₃ N ₂	138.12 184.16
				5.5 <u>12</u>

ORGANIC COMPOUNDS (Continued)

No.	Crystal- line form	ne form HoO=1 pc	Melting- point	Boiling- point	Solubility in gms. per 100 c.c. of		
	and color	(A)Air=1	°C		Water	Alcohol	Ether
1 2	wh. long need.		171 60–1	subl.	i. s.	i. s.	i. s.
3 4	monocl.		264 d.		sl. s.	8.	sl. s.
5	pr. monocl.		127	347-8	s. acet.	sl. s.	v. s. bz
6	pr. f. eth. rhomb. tab. f. eth.	1.206	169–70		s. bz.	sl. s.	sl. s.
.7 .8	hex. pr. colorl. leaf.	1.057 88 °	162 92	abt. 360 358-9	v. s. bz. v. s. chl.	v. s. sl. s. c.; v. s. h.	v. s. v. s.
9	monocl.	• • • • • • • • • • • • • • • • • • • •	75 (79)	abt. 360	i.	8.	v. s.
10	colorl. liq.	• • • • • • • • • • • • • • • • • • • •		157	v. sl. s.	∞	8.
11 12	glit. cryst. f. eth.	•••••	49		sl. s.	v. s.; v. s. bz.	v. s.; v. s. chl
13	need.		271 (283 d.)		8.		• • • • • •
14 15	need. sm. silky need.		63 abt. 295 d.	229	v. s. 0.04 ¹⁷ °; 0.65 ¹⁰⁰ °	v. s. 0.01 ¹⁷ °; i. abs.	v. s. i.
16 17	colorl. liq.	0.741 ²⁰ ° 0.773 ²⁰ °	-26.5	194.5 abt. 195	i. i.	8 8	& &
18	colorl.	0.907240	24.5				•••••
19	scales		28.5	212.5 100mm	i.	v. s.	
20 21	tetr. colorl. need. f.	1.323 0.986 ²¹ °	132.6 49-50	dec. 180	v. s. c.	5 c. v. s.	sl. s. v. s.
22 23	lgr. scales colorl. need.	1.85+	dec. 135		0.06 h. 0.25 ¹⁰⁰ °	i. v. s.	i. v. s.
24	colorl. need. f. w.		287-8	subl.	sl. s.	v. s.	v. s.
25 26	colorl. liq.	0.94220° 0.81911°	-58.5	186-6.4 103.4	3.716° sl. s.	ω	ω
27 28	colorl. liq.	0.013		215	dec. h.		
29 29	colorl.		207		0.12140	v. s.	v. s.
30	need. colorl. need.		115	dec.	v. s. h.	v. s.	v. s.
31	colorl. need. f. w.	•••••	80–1		1. c.; 5 h.	v. s.	v. s.
32	colorl.	1.086	23	205-6	sl. s. 0.6920°;	s. s.	s. v. s.
33	cryst. powd.		191 (182)		8,3100°	ő.	V. 8.
	1						

PHYSICAL CONSTANTS OF

No.	Name	Synonyms	Formula	Mol. wt.
1	Vinyl acetic acid		CH ₂ : CH·CH ₂ ·	86.07
2 3 4	bromide chloride ether		COOH CH2: CHBr CH2: CHCl. CH2: CH-O-CH:	106.95 62.49 70.07
5	sulphide		CH ₂ : CH·S·CH:	86.13
6 7	XantheneXanthine		CH ₂ C ₁₃ H ₁₀ O C ₅ H ₄ O ₂ N ₄	182.14 152.10
8 9 - 10	Xylene (o.) " (m.) " (p.)	xylol (o.) " (m.)	C ₆ H ₄ ·(CH ₂) ₂ C ₆ H ₄ ·(CH ₃) ₂ C ₆ H ₄ ·(CH ₃) ₂	106.12 106.12 106.12
11	Xylenol (1, 2, 3).		(CH ₃) ₂ ·C ₆ H ₃ ·OH	122.12
12 13 14	" (1, 2, 4). " (1, 3, 2). " (1, 3, 4).		(CH ₃) ₂ ·C ₆ H ₃ ·OH (CH ₃) ₂ ·C ₆ H ₃ ·OH (CH ₃) ₂ ·C ₆ H ₃ ·OH	122.12 122.12 122.12
15 16	" $(1, 3, 5)$." $(1, 4, 3)$.		(CH ₃) ₂ ·C ₆ H ₃ ·OH (CH ₃) ₂ ·C ₆ H ₃ ·OH	122.12 122.12
17 18	Xylic acid. See di Xylidine $(1, 2, 3)$.	methy lbenzoic acid dimethyl-amino	(2, 4) (CH ₃) ₂ ·C ₆ H ₃ ·NH ₂	121.14
19	" (1, 2, 4).	benzene (1, 2, 3) dimethyl-amino	(CH ₃) ₂ ·C ₆ H ₈ ·NH ₂	121.14
20	" (1,3,2).	benzene (1, 2, 4) dimethyl-amino	(CH ₈) ₂ ·Ç ₆ H ₃ ·NH ₂	121.14
21	" (1,3,4).	benzene (1, 3, 2) dimethyl-amino	(CH ₈) ₂ ·C ₆ H ₈ ·NH ₂	121.14
22	" (1, 3, 5).	benzene (1, 3, 4) dimethyl-amino	(CH ₃) ₂ ·C ₆ H ₃ ·NH ₂	121.14
23	" (1,4,3).	benzene (1, 3, 5) dimethyl-amino benzene (1, 4, 3)	(CH ₃) ₂ ·C ₆ H ₃ ·NH ₂	121.14
24	Xylose	Denzene (1, 4, 5)	C5H10O5	150.11
25	Xylyl hydrazine (1, 3, 4)	,	(CH ₈) ₂ C ₆ H ₃ ·NH· NH ₂	136.14
26	Yohimbine		C22H28O3N2	368.35
27 28	Zinc ethyl methyl	zinc methide	$\mathbf{Zn}(\mathbf{C}_2\mathbf{H}_5)_2$ $\mathbf{Zn}(\mathbf{CH}_3)_2$	123.47 95.48
			· .	
	l `	1		

ORGANIC COMPOUNDS (Continued)

line form H ₂ O=1 p		Melting- point	Boiling- point	Solubility in gms. per 100 c.c. of		
and color	(A)Air=1	c	•C	Water	Alcohol	Ether
\$1.4. .		<-20	168	s.	œ	©
	1.517	16 (23)	_12	i	80	œ
colorl. liq.			39		s.	œ ·
oil	0.913		101	sl. s.	, ∞	∞
leaf. f. al. yelwh.		>360	312–5	v. sl. s. 0.067 ¹⁰⁰ °	sl. s. 0.033 ¹⁷ °	s. v. s. alk.
colorl. liq.	0.88120° 0.86620°	-28 -54	142 139.2	i. i.	v. s. v. s.	v. s. v. s.
colorl.	•••••	15	138	i.	8.	v. s.
long. need. f. w.		75	218	s.	s.	••••
need. f. w. colorl. leaf.		65 49	211.2	s. s. h.	s. s.	•••••
colori.	•••••				8	000
colorl.	i.i69	64 or 68 74.5	$219.5 \\ 211.5$	sl. s. s.	s. s.	v. s
liq.	0.991	<-15	224-6	v. sl. s.	v. s.	v. s. /
monocl.	1.076170	49	225	sl. s.	v. s. lgr.	••••
liq.	0.980		216 (212)			
liq.			216.5 (212)	v. sl. s.		•••••
liq.	0.993°°					• • • • •
		1				
need.		Į.				
eth.			l			v. s.
need.		I	1			s.; s. ch
colorl. liq.	1.18	-28 -40 =	118 46	dec.	dec.	s.
				-		
		1				
-						
						1
	line form and color and color. liq. oil leaf. f. al. yelwh. powd. colorl. liq. colorl. liq. colorl. long. need. f. w. need. f. w. colorl. monocl. liq. monocl. liq. liq. liq. liq. liq. liq. need. f. w. colorl. need. f. w. colorl. need. f. w. colorl. need. f. w. colorl. colorl. liq. liq. liq. liq. liq. liq. need. f. colorl.	line form and color A	Inine form and color	Inine form and color	Crystate H2O=1	Crystaline form and color

CONSTANTS OF ANIMAL

Amount A		Solidify point (Specific grav- ity at 15.5° C.	Name	No.
Beech-nut		- 10 to		Almond	1
Black mustard	• • • • • •		*********	Rooch-nut	
4 Candlenut 0.925 0.960-0.9679 - 10 to 5 Castor 0.9250 0.9259 6 Cocoanut 0.923-0.930 0 to 7 Cod liver 0.923-0.930 0 to 9.923-0.930 0 to 9.9250 0.922-0.925 0.992-0.925 0.992-0.925 0.992-0.925 0.992-0.935 0.992-0.935 0.992-0.935 0.992-0.935 0.992-0.935 0.992-0.935 0.992-0.935 0.992-0.935 0.992-0.935 0.992-0.935 0.992-0.935 0.992-0.935 0.992-0.937 0.992-0.937 0.992-0.937 0.992-0.937 0.992-0.937 0.992-0.993 0.992-0	- 17			Black mustard	3
Castor 0.9259 0.9259 0.9250 0.9250 0.923 0.920 0.9250 0.9213 0.9250 0.9213 0.9250 0.922 0.9250 0.922 0.9250 0.922 0.9250 0.922 0.9250 0.922 0.9250 0.922 0.9250 0.922 0.9250				Candlenut	4
0 Cotol liver. 0.923−0.930 0 tc 8 Corn (maize). 0.9213−0.9250 − 10 tc 9 Cotton seed. 0.922−0.925 − 10 Croton. 0.926−0.9350 − 10 tc 11 Grape seed. 0.926−0.9350 − 10 tc 12 Hazel nut. 0.9146−0.9170 − 10 tc 13 Hemp seed. 0.925−0.9280 − 14 14 Lard oil. 0.915−0.9175 − 4 15 Linseed. 0.932−0.937 − 17 tc 15 Linseed. 0.929−0.933 − 17 tc 16 Menhaden. 0.929−0.933 − 17 tc 18 Olive 0.9130−0.9180 − 19 Palm 0.9210−0.9240 − 20 Palm kernel. 0.91190−0.9180 − 21 Peach kernel. 0.9180−0.9215 Below 22 Peanut (Arachis) 0.917−0.9209 − 23 Poppys seed. 0.9255−0.9268 −				Castor	5
Coun (maixe)	22-14			Cocoanut	6
Cotton seed 0.922-0.925 10 10 10 10 10 10 10 1				Cod liver	
Corton				Corn (maize)	
Crape seed	1 to 0	_			
12 Hazel nut 0.9146-0.9170 -10 to 13 Hemp seed 0.9255-0.9280 -255-0.9280 14 Lard oil 0.915-0.9175 -4 15 Linseed 0.932-0.937 -17 to 16 Menhaden 0.929-0.933 0.9175 0.915-0.9185 - -17 to 18 Olive 0.9150-0.9180 - 0.9210-0.9240 - - - 0.9210-0.9240 - - 20 Palm kernel 0.9180-0.9215 - 0.911940 20 Peanut (Arachis) 0.917-0.9209 - 2 Peanut (Arachis) 0.917-0.9209 - - 2 Peanut (Arachis) 0.9255-0.9268 - 2 Peanut (Arachis) 0.9255-0.9268 - 0.917-0.9209 - - - 2 Peanut (Arachis) 0.9255-0.9268 - 0.9133-0.9168 - 2 - 2 - 0.917-0.9209 - - 2 - 2 - 2 - - - -	- 16	10		Croton	
13 Hemp seed 0.9255-0.9280				Grape seed	
14 Lard oil. 0.915-0.9175 -4 15 Linseed. 0.929-0.933 -17 tr 16 Menhaden. 0.929-0.933 -17 tr 17 Neat's foot. 0.9150-0.9180 -9150-0.9180 18 Olive. 0.9150-0.9240 - 19 Palm. 0.9210-0.9240 - 20 Palm kernel. 0.9180-0.9215 Below 21 Peach kernel. 0.9180-0.9215 Below 22 Peanut (Arachis). 0.917-0.9209 - 29 Poppy seed. 0.9255-0.9268 - 24 Porpoise (body oil). 0.9258-0.9350 - 25 Pumpkin seed. 0.9133-0.9168 - 2 tr 26 Rape. 0.9133-0.9168 - 2 tr 27 Safflower (saffron). 0.9246-0.9280 - 13 tr 28 Seal. 0.9244-0.9336 - 2 tr 29 Sesame. 0.9203-0.9237 - 4 tr 30 Soja bean (Soya, Soyy). 0.924-0.9279 -	o — 20 — 27	- 10 60		Hazel nut	
15 Linseed 0.932-0.937 -17 to 16 Menhaden 0.929-0.933 -17 to 17 Next's foot 0.9133-0.9175 0 18 Olive 0.9150-0.9180 - 19 Palm 0.9210-0.9240 - 20 Palm kernel 0.9180-0.9215 Below 21 Peach kernel 0.9180-0.9215 Below 22 Peanut (Arachis) 0.917-0.9209 - 23 Poppy seed 0.9255-0.9268 - 24 Porpoise (body oil) 0.9258-0.9360 - 25 Pumpkin seed 0.9133-0.9168 - 2 to 26 Rape 0.9133-0.9168 - 2 to 27 Safflower (saffron) 0.9244-0.9336 - 2 to 28 Seal 0.9244-0.9336 - 2 to 29 Sesame 0.9240-0.9279 - 8 to 30 Soja bean (Soya, Soy) 0.924-0.9279 - 8 to <t< td=""><td></td><td></td><td></td><td></td><td></td></t<>					
16 Menhaden 0.929-0.933 17 Neat's foot 0.9133-0.9175 0 18 Olive 0.9150-0.9180 - 19 Palm 0.9210-0.9240 - 20 Palm kernel 0.91190 20 21 Peach kernel 0.9180-0.9215 Below 22 Peanut (Arachis) 0.917-0.9209 - 23 Poppy seed 0.9258-0.9268 - 24 Porpoise (body oil) 0.9258-0.9350 - 25 Pumpkin seed 0.9137-0.9168 - 2 27 Safflower (saffron) 0.9248-0.9280 - 13 tc 28 Seal 0.9244-0.9336 - 2 t 29 Sesame 0.9203-0.9237 - 4 t 30 Soja bean (Soya, Soy) 0.924-0.9279 - 8 tc 31 Sperm 0.875-0.8808 - - 16 to 32 Sunflower 0.924-0.9258 - 16 to - 33 Tung (Chinese wood oil) 0.9410-0.9440 0.9440 0.9					
17 Neat's foot 0.9133-0.9175 0 18 Olive 0.9150-0.9180 - 19 Palm 0.9210-0.9240 - 20 Palm kernel 0.911940 20 21 Peach kernel 0.9180-0.9215 Below 22 Peanut (Arachis) 0.917-0.9209 - 23 Poppy seed 0.9255-0.9268 - 24 Porpoise (body oil) 0.9258-0.9380 - 25 Pumpkin seed 0.9187 - 2 26 Rape 0.9133-0.9168 - 2 to 27 Safflower (saffron) 0.9246-0.9280 - 13 to 28 Seal 0.9244-0.9336 - 2 to 29 Sesame 0.9243-0.9277 - 8 to 30 Soja bean (Soya, Soy) 0.924-0.9279 - 8 to 31 Sperm 0.924-0.9258 - 16 to 32 Sunflower 0.9410-0.9440 - 16 to	0 – 21 – 4	-17 00			
18 Ölive 0.9150-0.9180 - 19 Palm 0.9210-0.9240 - 20 Palm kernel 0.9119-0.9215 20 21 Peach kernel 0.9180-0.9215 Below 22 Peanut (Arachis) 0.917-0.9209 - 23 Poppoise (body oil) 0.9258-0.9268 - 24 Porpoise (body oil) 0.9258-0.9350 - 25 Pumpkin seed 0.9197 - 2 26 Rape 0.913-0.9168 - 2 to 27 Safflower (saffron) 0.9244-0.9336 - 2 to 28 Seal 0.9244-0.9336 - 2 to 29 Sesame 0.9240-0.9270 - 8 to 30 Soja bean (Soya, Soy) 0.924-0.9279 - 8 to 31 Sperm 0.875-0.8908 - 16 to 32 Sunflower 0.924-0.9278 - 16 to 33 Tung (Chinese wood oil) 0.9410-0.9440		۸ ا			
19					
20	0 00 2	_			
21 Peach kernel 0.9180-0.9215 Below 22 Peanut (Arachis) 0.917-0.9209 - 23 Poppy seed 0.9255-0.9268 - 24 Porpoise (body oil) 0.9258-0.9350 - 25 Pumpkin seed 0.9137-0.9168 - 27 Safflower (saffron) 0.9246-0.9280 - 28 Seal 0.9244-0.9336 - 21 29 Sesame 0.9203-0.9237 - 24 30 Soja bean (Soya, Soy) 0.924-0.9279 - 8 tc 31 Sperm 0.875-0.8908 - 16 to - 32 Sunflower 0.924-0.9288 - 16 to - 33 Tung (Chinese wood oil) 0.9410-0.9440 34 Walnut 0.9259	0.5-24	90	0.0210-0.0210	Polm kornel	
22 Peanut (Arachis) 0.917-0.9209 23 Poppy seed 0.9255-0.9268 24 Porpoise (body oil) 0.9258-0.9350 25 Pumpkin seed 0.9133-0.9168 26 Rape 0.9133-0.9168 27 Safflower (saffron) 0.9244-0.9280 28 Seal 0.9244-0.9336 29 Sesame 0.9243-0.9237 30 Soja bean (Soya, Soy) 0.924-0.9279 31 Sperm 0.875-0.8808 32 Sunflower 0.924-0.9258 33 Tung (Chinese wood oil) 0.9410-0.9440 34 Walnut 0.9259				Peach kernel	
23 Poppy seed. 0.9258-0.9268 24 Porpoise (body oil). 0.9258-0.9350 25 Pumpkin seed. 0.9197 26 Rape. 0.9133-0.9168 - 2 to 27 Safflower (saffron). 0.9246-0.9280 - 13 to 28 Seal. 0.9244-0.9336 - 2 to 29 Sesame. 0.9203-0.9237 - 4 to 30 Soja bean (Soya, Soy). 0.924-0.9279 - 8 to 31 Sperm. 0.875-0.8808 - 16 to 32 Sunflower 0.924-0.9258 - 16 to 33 Tung (Chinese wood oil). 0.9410-0.9440 34 Walnut. 0.9259	3 to 0			Peanut (Arachis)	
24 Porpoise (body oil) 0.9258-0.9350 25 Pumpkin seed. 0.9197 26 Rape. 0.9133-0.9168 - 2 to 27 Safflower (saffron) 0.9246-0.9280 - 13 to 28 Seal. 0.9244-0.9236 - 2 to 29 Sesame. 0.9203-0.9237 - 4 to 30 Soja bean (Soya, Soy) 0.924-0.9279 - 8 to 31 Sperm. 0.875-0.8808 32 Sunflower. 0.924-0.9258 - 16 to 33 Tung (Chinese wood oil) 0.9410-0.9440 34 Walnut. 0.9259	- 18	-		Poppy seed	
25 Pumpkin seed 0.9183-0.9168 -2 tc 26 Rape. 0.9133-0.9168 -2 tc 27 Safflower (saffron) 0.9246-0.9280 -13 tc 28 Seal. 0.9244-0.9336 -2 tc 29 Sesame. 0.9203-0.9237 -4 tc 30 Soja bean (Soya, Soy) 0.924-0.9279 -8 tc 31 Sperm. 0.875-0.8808 32 Sunflower. 0.924-0.9258 -16 to 33 Tung (Chinese wood oil) 0.9410-0.9440 34 Walnut. 0.9259	- îĕ			Porpoise (body oil)	
26 Rape 0.9133-0.9168 -2 tc 27 Safflower (saffron) 0.9246-0.9280 -13 tc 28 Seal 0.9244-0.9336 -2 tc 29 Sesame 0.9203-0.9237 -4 t 30 Soja bean (Soya, Soy) 0.924-0.9279 -8 tc 31 Sperm 0.875-0.8808 32 Sunflower 0.924-0.9258 -16 to - 33 Tung (Chinese wood oil) 0.9410-0.9440 34 Walnut 0.9259 -	- 16		0.9197	Pumpkin seed	
27 Safflower (saffron) 0.9244-0.9280 -13 tr 28 Seal 0.9244-0.9336 -2 tr 29 Sesame 0.9203-0.9237 -4 tr 30 Soja bean (Soya, Soy) 0.924-0.9279 -8 tr 31 Sperm 0.875-0.8808 32 Sunflower 0.924-0.9258 -16 to 33 Tung (Chinese wood oil) 0.9410-0.9440 34 Walnut 0.9259	o — 10	- 2 to	0.9133-0.9168		26
28 Seal 0.9244-0.9336 -2 t 29 Sesame 0.9203-0.9237 -4 t 30 Soja bean (Soya, Soy) 0.924-0.9279 -8 tc 31 Sperm 0.875-0.8808 22 Sunflower 0.924-0.928 -16 to 32 Sunflower 0.924-0.9259 -16 to 34 Walnut 0.9240-0.9440	o - 18	- 13 to		Safflower (saffron)	
30 Soja bean (Soya, Soy) 0 924-0 9279 31 Sperm 0 875-0 8808 32 Sunflower 0 924-0 9278 33 Tung (Chinese wood oil) 0 9410-0 9440 34 Walnut 0 9240-0 9259	to - 3	- 2 t			
31 Sperm. 0.875-0.8808 32 Sunflower. 0.924-0.9258 33 Tung (Chinese wood oil) 0.9410-0.9440 34 Walnut 0.9259	to - 6	4 t			
32 Sunflower 0.924-0.9258 - 16 to - 33 Tung (Chinese wood oil) 0.9410-0.9440 440 440 440 440 0.9259		- 8 to			
33 Tung (Chinese wood oil) 0.9410-0.9440	15.5				
34 Walnut 0.9259 -	_ 18.5	- 16 to -			
	z to 3				
00 1 W naie	- 27.5	_	0.9259		
	_ iė ė	- 15 to -			

AND VEGETABLE OILS

No.	Saponification value	Iodine value	Hehner's number	Maumené number	Acid value
1	189-193	93-104	96.2	51-53	0.5-5.0
3	174	96-110	95.1	43	1.36-7.35
5	189-195 176-184 246-268	153-164 82-90 8-9.5	95.5 88.6–90	46-47 21	8.1 0.14-14.60 5-50
6	182-189 188-193	135-198 111-130	95.3-97.5 93-96	102-115 81-86	0.36-25 1.35-2.86
8 9 10	193-195 193-215	106-115 102-106	95-96 89.0	75-90	0.0
10 11 12	178.5 192	96 83–90	92 95.6	53 36	16.2
13 14	192.5 195–196	148-160 65-85	96.2	97 41 –4 5	
15 16	189–195 190–195	175-200 150-170	95.5	103-126 123-128	0.8-10 5-8
17 18	194–197 185–196	66-72 75-88	95	43-49 41.5 -4 7	4-10 1.9-50
19 20	200-203 244-248	52-56 10-17	91 - 95 87.6-96		20-1 8 5-2
21 22	189-193 189-196	93-109 83-103	95.8	42.5 45-67	0.5-5.
23 24	190.1-197 195-225	132.6-136 110-120	95.2 85.5	86-88 50-61	0.7-1 1.
25 26	188.4-190.2 167.7-179	120-131 94-106	96.2 95.1	51-64	1.4-13.
27 28	186.6-194.4 178-196	$130-150 \\ 129.4-152.4$	95.4 95.5 95.7	65.5	0.2
29 30	188-193 190.6-192.5 120-147.4	103-115 124-143 70.4-96.4	95.7 95	87-88 51	13.
31 32 33	188-194 190-197	119-135 156-176	95 96.2	72	11. Under 1
34 35	188.7-191 188-194	143-151.7 110-136	95.4 93.5	96-110 85-92	
36	170-178	92-103	96.2	44-49	5.

CONSTANTS OF ANIMAL

No.	Name	Refractive index	Temper- ature of	Reichert- Meissl number
. 6-1	Or the State of th		reading	number
1	Almond	1.4555	60°	1
2	Beech-nut.	1.1000		
3	Black mustard	1.4740-1.4770	15.5	
4	Candlenut	1.4760	25	
5	Castor	1.4799	15	1.
6	Cocoanut	1.4410	60	6.7-8.
7	Cod liver	1.4800-1.4852	15	0.8-0.9
8	Corn (maize)	1.4766	15	4-
9	Cotton seed	1.4743-1.4752	15	0.9
10	Croton	1.4757-1.4770	27	12-13.
11	Grape seed	1.4713	25	0.35-1.
12	Hazel nut		•••••	
13	Hemp seed	1.4702-1.4720	15.5	
14	Lard oil	1.4702-1.4720	15.5	·····ò.ò
15	Linseed	1.4820-1.4892	25	2.
16 17	Menhaden	1.4695-1.4708	15	2.
18	Neat's foot	1.4698-1.4716	15	l ő:
19	Olive	1.4510	60	1.
20	Palm	1.4431	60	5.0-7.
21	Peach kernel	1.4697-1.4705	25	0.0
22	Peanut (Arachis)	1.4707-1.4730	15.5	
23	Poppy seed	1.4766-1.4774	15.5	Ö.
24	Porpoise (body oil)	1.4677	25	46.
25	Pumpkin seed	1.4724-1.4738	25	
26	Rane	1.4720-1.4757	15	O.
27	Rape	1,4770	16	0.0-1.6
28	Seal	1.4776		0.96-1.6
29	Sesame	1.4748-1.4762	15	1.
30	Soja (Soya, Soy)	1.4760-1.4775	15.5	
31	Sperm	1.4646-1.4655	20	0.
32	Sunflower	1.4611	60	
33	Tung (Chinese wood oil)	1.5110-1.5202	20	
34	Walnut	1.4804		
35	Whale	1.4762	20	0.7-2.0
36	White mustard	1.4750	15.5	,

AND VEGETABLE OILS (Continued)

/	IIi		Insoluble :	Fatty Acids	
No.	Unsaponi- fiable matter	Melting- point °C.	Solidifying- point °C.	Iodine value	Acid value
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 27 28 29 30 31 33 33 33 33 33 33 33 33 33 33 33 33	0.5-1.0 0.3-0.6 0.2 0.5-1.5 1.5 73-1.64 0.55 0.3-0.5 0.1-0.6 0.46-1.0 0.46-1.0 0.55 0.54-0.94 0.43 3.7 0.58-1.0 0.38-1.4 0.95-1.32 0.31 0.41.3 0.41.3	13-14 16-12 20-21 13 .24-27 22-25 18-20 35-38	9.5-12 17 13.3 16-20 13-24 14-16 32-35 18.6-19 18-20 19-20 15 13.3-17 26.1 17-22 20-25 13.0-13.5 28-29 16.2	93.5-96.5 114 87-93 185.7 86.6-88.3 8.4-8.8 164-171 113-125 111-115 111-112 99-132 87.5-90.1 141 	204 179.2 192.1 258 204-207 198.4 201.6-203.9 201.1 87.4 200.6 196-198.8 201.2-206.3 193 204-207 251-265 205-209.9 201.6 199 190.4-198 196-201.6 23.6 201.6 23.6 201.8
34 35 36	0.5-1.0 0.5-3.3	15-20 14-18 12-16		150 130.3–132 94.7–110.4	

CONSTANTS OF

1 Beef marrow 0.9311-0.938 15 31-29	No.	Name	Specific Gravi		Solidifying
	1 2 3 4 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 22 22 22 22 22 22 4	Beef marrow Beef tallow Beeswax Bone fat Butter fat Carnatha wax Chinese vegetable tallow Cocoa butter Cotton seed stearin Goose (domestic) Goose (wild) Hare fat Horse fat Human fat Insect (Chinese) wax Japan wax (tallow) Lard (hog fat) Laurel (bayberry) oil Mutton tallow Myrtle wax Nutmeg (mace) butter Rabbit fat (tame) Rabbit fat (wild) Spermaceti	0.943-0.952 0.962-0.970 0.914-0.916 0.936-0.942 0.990-1.0 0.918-0.923 0.9229-0.9300 0.916-0.922 0.9349 0.916-0.922 0.9349 0.934-0.938 0.935 0.935-0.953 0.935-0.953 0.935-0.953	15 15 15 15 15 15 15 15 15 15 15 15 15 1	31-29 35-27 60.5-63.4 15-17 19-24.5 80-87 21.5-27.3 16-22 18-20 17-23 20-45 80.5-81 48.5-50.8 27.1-29.9 24-25 36-41 39-45 40-44 22-24 17-22 42-9

Name	Refractive in	Refractive index		
		° C	Meissl number	
Beef marrow			2.2	
Beef tallow			0.8	
Beeswax	1.4398-1.4451	75	0.34-0.5	
Bone fat	1 4 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			
Butter fat	1.4590-1.4620		20.6-33.	
Carnaüba wax	1.4520-1.4541	84		
Chinese vegetable tallow	1.4510		0.6	
Cocoa butter	1.4565-1.4578	40	0.2-0.8	
Goose (domestic)	1.4593-1.4596			
Goose (wild)		40	0.2-0.	
Hare fat	1.4586	40	l	
Horse fat	1.4603-1.4717	40	2.6	
Human fat	1.459-1.4613	40	1.64-2.1 0.25-0.5	
Insect (Chinese) wax	1.103 1.4015			
Japan wax (tallow)	1 4577-1 4501	40		
Lard (hog fat)	1 4530	60	0.49-1.	
Laurel (bayberry) oil	. 1 4643	40	3.2-5.	
Mutton tallow	1.4501	60	3.2-3.	
Myrtle wax	1 4262	80	Ö.,	
Nutmeg (mace) butter	1 4704	40	1-4	
Rabbit lat (tame)	1.4587	40	2.6	
Rabbit fat (wild)			1.4-5.	
Spermaceti	. 1			
operm ou	1.4646-1.4655	20	Ö.	
Wool wax	1.4781-1.4822	40		

FATS AND WAXES

No.	Saponifi- cation value	Iodine value	Hehner's number	Unsaponi- fiable matter	Acid value
1 2 3 4 5 6 7 8 9 10 112 13 14 15 16 17 18 19 221 223 244 225 26	196-199.6 193.2-200 88-97.6 190-195 220-237 78-88 199-206 192-202 195-197 193.3-199 80.4-91.65 217.5-237.5 195.2-196.6 192-195.2 205.7-217 153.5-161 202.6 199.3 122.7-134.6 120-147.4	39-55.4 35.4-47.5 8.3-11 46.3-55.8 26-38 13.5-23-38 34.3-37 89-103 59-71.5 90-102.2-107 71.4-86.3 1.4 4.2-15.1 49.9-70.4 4.2-15.1 49.9-70.4 59.8 3.5-9.3 70.4-96.4 17.1-28.9	95.6 86.5-89.8 93.94.5 95.9 95.4 95.4 95.5 95.5	1.1-1.63 0.23 51.5 39-42	0.54-1.28 26.3 1.7-14 3-4.4 17-44.8 6.2 7.2 0.5-1.35 13.2

		Insoluble Fat	ty Acids	<u> </u>
No.	Melting- point °C.	Solidifying point °C.	Iodine value	Acid value
1 2 3	45-46 43-47 67.2	37.9-40 37.9-46.2	55.5 41.3 55.7–57.4	204.5 197.2
1 2 3 4 5 6 7 8	30 38–40 85 47–57	33–37 40–56	28-31 34.2	210-220 182-208.5 190
	48-53 27-30 37-41 34-40	$egin{array}{c} 46-51 \\ 35.1 \\ 31-32 \\ 32-34 \end{array}$	32.6-39 94 65.3 65.1	202.4 196.4
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25	44-50 37.5-39.5 35.5 92.2	36-41 37.7 30.5	93.3 83.9-87.1 64	209 202.6
16 16 17 18	54.5–59.6 35–47	53-56.5 34-42	64.2 81.6–82	213.7 201.8
. 20 21	46-54 47.5-48.5 42.5 40-50	39-41 46 40-45 37-41	34.8 31.6 64.4	230.9 218.1
23 24 25 26	39–41 13.3–21.4 41.8	35–36 16.1	101.1 88-99 17	209.5

COMMON NAMES OF CHEMICALS, THEIR CORRECT CHEMICAL NAMES AND FORMULÆ

CHENTONE	INDEED HILD FOR	
Common Name	Chemical Name	Formula
Aldehyde	Acetaldehyde	Сн₃сно
Alum flour	Generally refers to potas- sium aluminum sulfate	K ₂ Al ₂ (SO ₄)·24H ₂ O
AluminaAmidol	Aluminum oxide Diaminophenol	Al ₂ O ₃ C ₆ H ₃ (NH ₂) ₂ OH·
Antichlor	hydrochloride Sodium thiosulfate	2HCl Na ₂ S ₂ O ₃ ·5H ₂ O C ₆ H ₅ NHCOCH ₄
Antifebrin	Acetanilide	Sb ₂ O ₃
Antimony glance	Antimony trisulfide	
Antimony vermilion	Antimonous oxysulfide Nitric acid Nitric acid + hydrochloric	HNO ₃
Aqua regia	Nitric acid + hydrochloric acid Arsenious oxide	HNO ₈ + 3HCl As ₂ O ₃
Aspirin	Acetyl-salicylic acid	C ₆ H ₄ (COOH
Baking sodaBaryta	Sodium bicarbonate Barium oxide	NaHCOs BaO
BarytesBenzolBitter salt	Barium sulfate Benzene Magnesium sulfate	C ₆ H ₆
Black ashBlanc-fixe	Impure sodium carbonate. Barium sulfate	BaSO ₄
Blue copperas	Calcium hypochlorite	CaOCl ₂
Blue stone	Copper sulfate Nickel sulfate	CuSO ₄ ·5H ₂ O NiSO ₄ ·7H ₂ O
Bone ash	Impure calcium phosphate. Boric acid Sodium tetraborate	H ₃ BO ₃
BoraxBrimstoneBurnt alum	Sulfur	Na ₂ B ₄ O ₇ ·10H ₂ O K ₂ Al ₂ (SO ₄) ₄
	Anhydrous potassium aluminum sulphate Calcium oxide	CaO
Burnt lime	Refers to the chloride.	CdS
Calomel	Mercurous chloride Sucrose	HgCl C12H22O11 C4H4OH
Carbonic anhydride Carborundum	Phenol. Carbon dioxide Silicon carbide	CO ₂ SiC
"Caustic" refers to the hy	droxide of a metal. Calcium carbonate	CaCO ₃
Chili niter	Sodium nitrate	NaNOs K2Cr2(SO4)4-24H2O
Chrome green	fate Chromium oxide	Cr ₂ O ₃
Chromic acid	Lead chromate	PbCrO ₄ CrO ₃
Cobalt black	Cobalt oxideSodium chloride Ferrous sulfate	NaCl FeSO4:7H+O

COMMON NAMES OF CHEMICALS, THEIR CORRECT CHEMICAL NAMES AND FORMULÆ (Continued)

Common Name	Chemical Name	Formula -
Corn sugar	Glucose	C ₆ H ₁₂ O ₆ · H ₂ O HgCl ₂ Al ₂ O ₃
CorundumCream of tartar	Aluminum oxide Potassium acid tartrate	KHC ₆ H ₄ O ₆
Cresylic acid Derinatol	Mixture of the three cresols. Basic bismuth gallate	Bi(OH) 2C7H 5O5
Dextrose	Glucose	$ \begin{array}{c} \text{C}_6\text{H}_{12}\text{O}_6\cdot\text{H}_2\text{O} \\ \text{MgSO}_4\cdot7\text{H}_2\text{O} \end{array} $
Epsom salts "Flowers of" a metal is a Fluorspar Formalin	Forty per cent solution of	CaF ₂
Fruit sugar	formaldehyde in water Fructose Sodium sulfate Ethyl alcohol	C ₆ H ₁₂ O ₆ Na ₂ SO ₄ ·10H ₂ O C ₂ H ₅ OH
Grain alcoholGrape sugarGreen vitriol	Glucose	C ₆ H ₁₂ O ₆ · H ₂ O FeSO ₄ · 7H ₂ O
Gypsum	Calcium sulfate	$ \begin{bmatrix} \text{CaSO}_4 \cdot 2\text{H}_2\text{O} \\ \text{Na}_2\text{S}_2\text{O}_3 \cdot 5\text{H}_2\text{O} \end{bmatrix} $
Laughing gasLemon chrome	Barium chromate	N ₂ O BaCrO ₄
LevuloseLime	Fructose	C ₆ H ₁₂ O ₆ C ₈ O
LithargeLithopone	Lead monoxideZinc sulfide + barium sulfate	ZnS+BaSO4
Lunar caustic	Silver nitrate	AgNOs. MgO
Marble Metol	Calcium carbonate Monomethylpara-amido- metacresol sulfate or chloride	(C ₆ H ₃ (OH)CH ₃ NHCH ₃) ₂ ·H ₂ SO ₄
Microcosmic salt	Sodium ammonium Hydrogen phosphate	Na(NH4)HPO4 •4H2O
Milk of barium	Barium hydroxide Magnesium hydroxide Lactose	Ba(OH) ₂ ·8H ₂ O Mg(OH) ₂ C ₁₂ H ₂₂ O ₁₁ ·H ₂ O
Milk sugar	Lead tetroxide Ferrous ammonium sulfate	Pb ₈ O ₄
"Muriate of" a metal is syn Muriatic acid	onymous with the chloride Hydrochloric acid	
Niter	Potassium nitrate	KNO3 H ₂ SO ₄ +SO ₈
Nordhausen acidOil of almond, artificialOil of mirbane	Benzaldehyde	C ₆ H ₅ CHO C ₆ H ₅ NO ₂
Oil of mustard, artificial Oil of vitriol Oil of wintergreen, artificial.	I Sulfuric acid	H_2SO_4
Pearl ash	Potassium carbonate Barium sulfate	BaSO4
Phosgene	Carbonyl chloride	1 COC12 2 CaSO4+1H2O
Plumbago Precipitated chalk	Calcium carbonate	CaCO ₃ Fe ₄ (Fe(CN) ₆) ₃
Prussian blue Prussic acid	Hydrocyanic acid	HCN

COMMON NAMES OF CHEMICALS, THEIR CORRECT CHEMICAL NAMES AND FORMULÆ (Continued)

	- Into Tokinobia	(Continued)
Common Name	Chemical Name	Formula
Pyrolusite . Quick lime . Quinol . Realgar . Red lead . Red prussiate of potash . Rochelle salt . Sal ammoniac . Sal soda . Salol .	Calcium oxide Hydroquinone Arsenic disulfide Lead tetroxide Potassium ferricyanide Potassium sodium tartrate Ammonium chloride Sodium carbonate	CaO C6H4(OH)2(1.4) As2S2 Pb3O4 K3Fe(CN)6 KNaC4H4Oc4H4O
Salt Salt cake Salt of lemon }	Sodium chloride Impure sodium sulfate Potassium acid oxalate	NaCl KHC ₂ O ₄ ·H ₂ O
Salt of tartar	Potassium carbonate	K ₂ CO ₃
Salt peter. Scheele's, green. Silica. Slaked lime. Soda. Sodium hyposulfite. Soluble glass. Soluble tartar Sulfuric ether. Sugar of lead. Sugar of milk Table salt. Tartar emetic. T. N. T.	trate Trinitro toluene	CuHAsO ₃ SiO ₂ Ca(OH) ₂ Na ₂ CO ₃ ·10H ₂ O Na ₂ SiO ₃ ·5H ₂ O Na ₂ SiO ₃ ·5H ₂ O Na ₂ SiO ₃ ·5H ₂ O Na ₂ SiO ₃ ·5H ₂ O C(C ₄ H ₃) ₂ O (C ₄ H ₃) ₂ O C(C ₄ H ₃) ₂ O C ₁ SH ₂ CO ₁ ·1H ₂ O NaCl 2K(SbO)C ₄ H ₄ O ₄ · 1H ₂ O C ₆ H ₂ (CH ₃)(NO ₂) ₈
Turnbull's blue Ultramarine yellow Unslaked lime Venetian red Verdigris Vermilion "Vitriolate of" a metal is	Barium chromate	CaO
Washing soda. Water glass	Sodium carbonate Sodium silicates dissolved in water	Na ₂ CO ₃ · 10H ₂ O
Whiting Wood alcohol Yellow prussiate of potash Zinc white	Basic lead carbonate. Zinc sulfate. Calcium carbonate. Methyl alcohol. Potassium ferrocyanide. Zinc oxide. Zinc sulfate.	CaCO3 CH3OH K4Fe(CN)6·3H2O ZnO

PERIODIC ARRANGEMENT OF THE ELEMENTS — MENDELEJEFF'S (REVISED TO 1917)

SERIES	ZERO GROUP	GROUP I R ₂ O	GROUP II RO	GROUP III R ₂ O ₃	GROUP IV RH ₄ RO ₂	GROUP V RH ₃ R ₂ O ₅	GROUP VI RH ₂ RO ₃	GROUP VII RH R ₂ O ₇		GROUP VIII	RO ₄
0		Hydrogen H = 1.008									
2	Helium He = 4.00	Lithium Li = 6.94	Glucinum (Beryllium) Gl = 9.1	Boron B = 11.0	Carbon C = 12.00	Nitrogen N = 14.01	Oxygen O = 16.00	Fluorine F = 19.0		,	Į.
3	Neon Ne = 20.2	Sodium Na = 23.00	Magnesium Mg = 24.32	$\begin{array}{c} Aluminum \\ Al = 27.1 \end{array}$	Silicon Si = 28.3	Phosphorus $P = 31.04$	$\begin{array}{c} \text{Sulphur} \\ \text{S} = 32.06 \end{array}$	Chlorine $Cl = 35.46$,		
4	Argon A = 39.88	Potassium K = 39.10	Calcium Ca = 40.07	Scandium Sc = 44.1	Titanium Ti = 48.1	$\begin{array}{c} Vanadium \\ V = 51.0 \end{array}$	Chromium Cr = 52.0	$\begin{array}{l} \text{Manganese} \\ \text{Mn} = 54.93 \end{array}$	$\begin{array}{c} \text{Iron} \\ \text{Fe} = 55.84 \end{array}$	$ \begin{array}{c} \text{Cobalt} \\ \text{Co} = 58.97 \end{array} $	
5		Copper Cu = 63.57	$ Zine \\ Zn = 65.37 $	Gallium Ga = 69.9	Germanium Ge = 72.5	Arsenic As = 74.96	Selenium Se = 79.2	Bromine $Br = 79.92$, (Cu)
6	Krypton Kr = 82.92	Rubidium Rb = 85.45	Strontium Sr = 87.63	Yttrium Yt = 88.7	Zirconium Zr = 90.6	Columbium (Niobium) Cb = 93.5	Molybdenum Mo = 96.0		Ruthenium Ru = 101.7		Palladium Pd = 106.7 (Ag)
7		Silver Ag = 107.88	Cadmium Cd = 112.40	Indium In = 114.8	$ \begin{array}{c} \text{Tin} \\ \text{Sn} = 118.7 \end{array} $	Antimony Sb = 120.2	Tellurium Te = 127.5	Iodine I = 126.92			
-8	Xenon Xe = 130.2	Caesium Cs = 132.81	Barium Ba = 137.37	Lanthanum La = 139.0	Cerium Ce = 140.25	Praesodym- ium Pr = 140.9	Neodymium Nd = 144.3			•	· · · · · · · ·
9		Samarium Sa = 150.4		Gadolinium Gd = 157.3	Terbium Tb = 159.2		Erbium Er = 167.7				
10		Thulium Tm = 168.5	1. 2	Ytterbium (Neoytter- bium) Yb = 173.5		Tantalum Ta = 181.5	Tungsten W = 184.0	11	Osmium Os = 190.9	Iridium Ir = 193.1	Platinum Pt = 195.2 (Au)
11		Gold Au = 197.2	Mercury Hg = 200.6	Thalium Tl = 204.0	$\begin{array}{c} \text{Lead} \\ \text{Pb} = 207.2 \end{array}$	Bismuth Bi = 208.0	·				
12	Niton Nt = 222.4		Radium Ra = 226.0		Thorium Th = 232.4		Uranium U = 238.2		514		
-	(261)						1				

QUALITATIVE ANALYSIS SCHEME

(From A. A. Noyes' Qualitative Analysis, by permission.)

Basic Constituents

Separation of the Basic Constituents into Groups

Precipitate:	Filtrate: Saturate w	Filtrate: Saturate with H ₂ S gas.								
Silver-Group (Bi, Pb, Ag, Hg), as chlorides.	Precipitate: Copper-Group as sulphides. Treat with (NH ₄) ₂ S ₄ .	Group and Tin-	Filtrate: add NH ₄ OH and (NH ₄) ₂ S.							
	Residue: Copper-Group (Hg, Pb, Bi, Cu, Cd), as sulphides. Solution: (Tin-Group As, Sb, Sn), as ammonium sulpho-salts.		Dissolve in acid, add NaOH and H ₂ O ₂ . Alkaline-Earth A		Filtrate: Alkali-Group					
-			Aluminum-Group (Al, Cr, Zn),	Precipitate: Iron-Group (Mn, Fe, Co, N as hydroxides.	as carbonates.	(NH4, K, Ña) as nitrates.				
		Anal	ysis of the Silver-Gro	oup		-				
Precipitate: BiOCl	, PbCl ₂ , AgCl, Hg ₂ Cl ₂ .	Treat with H	Cl.			***************************************				
Solution BiCl ₃ . Evaporate, pour in	to Residue: PbCl2,	AgCl, Hg ₂ Cl ₂ . T	Treat with hot water							
water.	Solution: PbCl2.	Add H ₂ SO ₄ .	Residue: AgCl, Hg2	Cl ₂ . Pour NH ₄ C	H through the filter.					
Precipitate: BiOC	Precipitate: PbS	D4.	Black residue: Hg	and NH ₂ HgCl.	Solution: (NH ₃) ₂ AgCl. Add HN					
	1	1								

QUALITATIVE ANALYSIS SCHEME (Continued)

Separation of the Copper and Tin Groups

	Residue: HgS, PbS,	Bi ₂ S ₈ , CuS, Cd	ıs. s	Solution (N	H ₄) ₈ A ₈ S ₄ , (NH ₄) ₈ SbS ₄ , (NH ₄)₂SnS₃. Add HCl.
				Precipitat	e: As ₂ S ₅ , Sb ₂ S ₅ , SnS ₂ .	Filtrate: NH ₄ Cl. Reject.
			Analys	sis of the C	opper-Group	
Residue fi	om Ammonium Su	lphide Treatme	ent: HgS, PbS	S, Bi ₂ S ₈ , Cu	nS, CdS. Boil with HNO ₃ .	
Residue:	HgS.	Solution: Pb	, Bi, Cu, Cd as	nitrates.	Add H ₂ SO ₄ , evaporate, add v	vater.
Aud Diz 5		Precipitate:	Filtrate: add	NH ₄ OH.		
Residue: Sulphur.	Solution: HgBr ₂ . Add SnCl ₂ .	PbSO ₄ . Dissolve in NH ₄ Ac.	Precipitate: Add Na ₂ SnO	Bi(OH) ₈ .	Filtrate: Cu(NH ₃) ₄ SO ₄ , Cd(NH ₃) ₄ SO ₄ .
	White or gray precipitate:	Add K ₂ CrO ₄ .	Black Residu		To a small part add HAc an K ₄ Fe(CN) ₆ .	d To the remainder add KCN and H_2S .
	Hg ₂ Cl ₂ or Hg.	Yellow precipitate: PbCrO ₄ .			Red precipitate: Cu ₂ Fe(CN) White precipitate: Cd ₂ Fe(CN) ₆ .	Yellow precipitate: CdS. Solution K ₂ Cu(CN) ₄ .

QUALITATIVE ANALYSIS SCHEME (Continued)

Analysis of the Tin-Group

Solution: SbCl3, SnCl4. Dilute to 50 c.c	., heat, and pass in H ₂ S.	Residue: As ₂ S ₅ . Dissolve in HCl an KClO ₃ .	
Orange Precipitate: Sb ₂ S ₃ . Dissolve in HCl, add Sn and Pt.	Solution: SnCl ₄ . Cool, dilute, pass in H ₂ S.	Solution: H2AsO4. Add NH4OH.	
Black deposit; Sb. Treat with NaClO.	Yellow Precipitate: SnS2. Evaporate without filtering, add Pb, boil.	NH ₄ Cl and MgCl ₂ .	
Black deposit: Sb.	Solution: SnCl ₂ . Add HgCl ₂ .	White precipitate: MgNH ₄ AsO ₄ . Dissolve in HCl and add H ₂ S.	
	White precipitate: Hg ₂ Cl ₂ .	Yellow precipitate: As ₂ S ₅ , As ₂ S ₃ and S	

Separation of the Aluminum and Iron Groups

The Ammonium Hydroxide, and Ammonium Sulphide Precipitate: Al(OH)₃, Cr(OH)₃, FeS, ZnS, MnS, CoS, NiS. Dissolve in HCl and HNO₃, add NaOH.

Precipitate: Fe(OH)₃, Mn(OH)₂, Co(OH)₂, Ni(OH)₂. Solution: NaAlO₂, NaCrO₂, Na₂ZnO₂. Add Na₂O₂ and filter.

Filtrate: NaAlO2, Na2CrO4, Na2ZnO2.

Precipitate: Fe(OH)3, MnO(OH)2, Co(OH)3, Ni(OH)2.

QUALITATIVE ANALYSIS SCHEME (Continued)

Analysis of the Aluminum-Group

Precipitate: Al(OH) ₃ . Dissolve in HNO ₃ , Add Co(NO ₃) ₂ , evaporate, ignite. Blue residue: Co(AlO ₂) ₂ .		Filtrate: add HAc and BaCl ₂ .				
		Precipitate: BaCrO4.	Filtrate: Zinc salt. Pass in H ₂ S.			
		Dissolve in HCl and H ₂ SO ₃ , evaporate.	White precipitate: ZnS. Dissolve in HNO			
		Green color: CrCls.	Add Co(NO ₃) ₂ and Na ₂ CO ₃ , ignite.			
			Green residue: CoZnO ₂ .			
A. Phosphate absent:	MnO(OH)2, 1	lroxide and peroxide: Fe(OH) ₂ , Co(OH) ₃ , Ni(OH) ₂ , Zn(OH) ₂ . SrCO ₃ , CaCO ₃ , MgCO ₃ , FePO ₄ , Ca ₃ (PO ₄) ₂ , eevaporate, heat with HNO ₃ and KClO ₃ .	etc.			
A. Phosphate absent: B. Phosphate present Dissolve in HN Precipitate: MnO ₂ .	MnO(OH) ₂ , I : Also BaCO ₃ , IO ₃ and H ₂ O ₂ , Solution: Test	$S_{r}^{r}CO_{r}$, $C_{0}^{r}CO_{r}$, $M_{0}^{r}CO_{r}$, $FePO_{4}$, $Ca_{3}^{r}(PO_{4})_{2}$, $S_{r}^{r}CO_{r}$	•			
A. Phosphate absent: B. Phosphate present Dissolve in HN Precipitate: MnO ₂ . Add HNO ₃ and	MnO(OH) ₂ , F : Also BaCO ₃ , IO ₃ and H ₂ O ₂ , Solution: Test	t a portion for a phosphate with (NH ₄) ₂ MoO ₄	ooil.			

QUALITATIVE ANALYSIS 'SCHEME (Continued)

Separation of Zinc, Nickel and Cobalt

Hydrogen sulphic	le precipitate:	ZnS, NiS, CoS. Treat with	h dil. HCl.	* 4		
Solution: ZnCl ₂ , NiCl	2, CoCl2, add I	NaOH and Na ₂ O ₂ .		Residue: NiS, CoS. Dissolve in HCl and HN		
Filtrate: Na ₂ ZnO ₂ . Add HAc and H ₂ S.	Precipitat	te: Ni(OH)2, Co(OH)3, add H	ICl, evaporate.	-		
White precipitate: Zn	Residue:	NiCl ₂ , CoCl ₂ , add HCl and ether.				
-	Yellow re taric acid	sidue: NiCl ₂ . Dissolve in water, add tar- , NaOH and H ₂ S.		Blue solution: CoCl ₂ , evaporate, add HAc a KNO ₂ .		
	Brown co	loration: presence of nickel.		Yellow precipitate: K₃Co(NO₂)6.		
		Analysis of the A	lkaline-Earth Gr	Froup		
Ammonium carbons Dissolve in HA	te precipitate: c, add NH4Ac	BaCO ₃ , SrCO ₃ , CaCO ₃ , Mg and K ₂ CrO ₄ .	zCO3, (NH4)2CO	ე₃.		
Precipitate: BaCrO ₄ . Dissolve in HCl, evap	orate.	Filtrate: add NH4OH and	d alcohol.			
Test in flame.	Add HAc, NH4Ac, and	Precipitate: SrCrO ₄ . Treat with (NH ₄) ₂ CO ₃ .	Filtrate: C Add (NH ₄):	Ca and Mg salts.)2C ₂ O ₄ .		
Green Color: Ba.	K₂CrO₄.	Residue: SrCO ₃ . Dissolve in HAc.	Precipitate: (Dissolve in di	CaC ₂ O ₄ . Filtrate: add NH ₄ OH and Na ₂ HPO		
	Precipitate: BaCrO4.	Add CaSO ₄ .	H ₂ SO ₄ , add al			
	3	Precipitate: SrSO ₄ .	Precipitate: (CaSO ₄ .		

Filtrate from Ammo	onium Carbonate	precipitate: NH4, N	a, K salts.	Evaporate and ignite the reside	ue.	
Vapor: NH4 salts.	Residue: KCl,	NaCl. Add HClO4	evaporate, ac	ld alcohol.		
Residue: KCl NasCo(NO2)6.		O ₄ . Dissolve in hot	water, add	Solution: NaClO ₄ . Saturate with HCl gas.		
•		Z NaCO(NOs)		Precipitate: NaCl. Dissol	ve in water, add K ₂ H ₂ Sb ₂ O ₇ .	
. •	Yellow precipi	itate: K2NaCO(NO2)	··	Crystalline precipitate: Naz	H ₂ Sb ₂ O ₇ .	
		Aci Detection of the 1	dic Constitu Readily Volati	ients le Acidic Constituents		
Vapors: CO ₂ , SC	2, H ₂ S, NO ₂ , Cl ₂ ,	Heat the s Br2, I2, HCN. Exp	substance with ose to the var	dilute H ₂ SO ₄ . pors:		
Ba(OH) ₂ solution.		PbAc paper.	Starch and I		Fe(OH) ₂ or Fe(OH) ₃ and NaOH on paper.	
White turbidity: BaCO ₃ or BaSO ₃ . (Shows carbonate, sulphite or thiosulphate.)		Black color: PbS. (Shows sulphide.)	Blue color: chlorate, bro	I ₂ (Shows nitrite, hypochlorite, omate, or iodide.)	Formation of Na ₄ Fe(CN). Dip in HCl.	
*	• ,				Blue color: Fe ₄ (Fe(CN) ₆) (Shows cyanide.)	

Detection of the Acidic Constituents Precipitated from Acid Solutions by Barium and Silver Salts

To a HNO3 solution of the substance add Cd(NO3)2.

To a HNO₃ solution of the substance add BaCl₂.

							(-:-0)2.			
Precipitate: BaSO ₄ .	SO ₄ . lows phate.) Precipitate: Filtrate: add N BaSO ₄ .			Yellow precipitate: CdS.	Filtrate: add AgNO	3.				
(Shows sulphate.)			BaSO ₄ .	H ₄ Ac.	(Shows sulphide.)	Precipitate: AgCl,	Filtrate: AgClOs			
		(Shows sulphite.)	te.) Ye		(Shows sulphite.)	Yellow precipita BaCrO ₄ .	te: Filtrate: add		AgBr, AgI, Ag2(CN) ₂ , AgSCN, (Shows halides,	AgBrO ₃ . Add H ₂ SO ₃ .
			(Shows chromat	Precipitate: CaF ₂ . (Shows fluoride.)		cyanide or thio- cyanates.)	Precipitate: AgCl AgBr. (Shows chlorate or bro- mate.)			
Fo portions o	f the HN	IO ₃ sol	Detec	tion of Phosphate and the	he Separate Halides					
Add (NH ₄) ₂ M	OO4.	Add :	FeCl ₃ .	Add NaAc, HAc, KM	nO ₄ and CHCl ₃ .					
Yellow precipi NH4)3PO4, 12 Shows phospl	MoO3.	Red of	CN)3.	Chloroform layer, purp I ₂ . (Shows iodide.)	ole: Water layer: add	l H ₂ SO ₄ , more KMnO	4 and CHCl3.			
onows phospi	nate.)	(Shov	vs thiocyanate.)		Chloroform layer orange: Br ₂ . (Shows bromide.)	HNOs and AgNOs	out the Br2, add			
			14 tj. t			Precipitate: AgCl. (Shows chloride.)				

FLAME AND BEAD TESTS

Flame Colorations

VIOLET.

Potassium compounds. Purple red through blue glass. Easily obscured by sodium flame. Bluish green through green glass. Rubidium and Caesium compounds impart same flame as potassium compounds. BLUES.

Azure. — Copper chloride. Copper bromide gives azure blue followed by green. Other copper compounds give same coloration when moistened with hydrochloric acid.

Light Blue. — Lead, Arsenic, Selenium.

GREENS.

Emerald. — Copper compounds except the halides, and when

not moistened with hydrochloric acid.

Pure Green. — Compounds of thallium and tellurium.

Yellowish.—Barium compounds. Some molybdenum compounds. Borates, especially when treated with sulphuric acid or when burned with alcohol.

Bluish. — Phosphates with sulphuric acid.

Feeble. — Antimony compounds. Ammonium compounds.

Whitish. — Zinc.

REDS.

Carmine. — Lithium compounds. Violet through blue glass. Invisible through green glass. Masked by barium flame.

Scarlet. — Strontium compounds. Violet through blue glass.

Yellowish through green glass. Masked by barium flame.

Yellowish. — Calcium compounds. Greenish through blue glass. Green through green glass. Masked by barium flame. Yellows.

Yellow. All sodium compounds. Invisible with blue glass.

OXIDES WHICH IMPART DECIDED COLORS TO THE BEADS Borax, Beads

Oxides of	Oxidizing Flame	Reducing Flame
Chromium Cobalt Copper Iron Manganese Molybdenum Nickel Titanium Tungsten Uranium Vanadium	Green Blue Greenish blue Yellow Violet Colorless Brown Colorless Colorless Red Colorless	Green Blue Red-opaque Green Colorless Brown Gray-opaque Yellow Brown Green Green

FLAME AND BEAD TESTS (Continued)

Salt of Phosphorus Beads

Oxides of	Oxidizing Flame	Reducing Flame
Chromium Cobalt Copper Iron Manganese Molybdenum Nickel Titanium Tungsten Uranium Vanadium	Green Blue Blue Brown Violet Colorless Yellow Colorless Colorless Green Yellow	Green Blue Red-opaque Colorless Colorless Green Yellow Violet Blue Green Green

Sodium Carbonate Bead

Manganese	Green	Colorless
	<u> </u>	

PREPARATION AND PROPER CONCENTRATION OF LABORATORY REAGENTS FOR GENERAL USE

Dilute Acids. Sulphuric acid. One volume strong acid to 6 volumes water.

Nitric Acid. One volume strong acid to 2 volumes water.

Hydrochloric acid. Five volumes strong acid to 8 volumes

Acetic acid. One volume strong acid to $2\frac{1}{2}$ volumes water. Dilute Bases. Potassium hydroxide. 280 grams per liter of solution with water.

Sodium hydroxide. 200 grams per liter of solution with

Ammonium hydroxide. One volume strong ammonia (sp. gr.

90) to 2 volumes water.

Other Reagents. Ammonium sulphide. 600 cc. ammonium hydroxide is saturated with hydrogen sulphide. Dilute to one

liter with ammonium hydroxide.

Sodium sulphide. Dissolve 200 grams sodium hydroxide in 800 cc. water. Saturate 400 cc. of this solution with hydrogen sulphide. Add the remaining 400 cc. of sodium hydroxide and dilute the whole to one liter.

Ammonium chloride. 267.5 grams per liter of solution with

Ammonium carbonate. 200 grams solid salt dissolved in 350

cc. ammonium hydroxide and dilute with water to 1 liter.

Ammonium acetate. Dilute 300 cc. strong acetic acid with 300 cc. water and neutralize with strong ammonia. Dilute to 1 liter.

Sodium acetate, 136.14 grams per liter with water.

Sodium phosphate, 119.45 grams per liter with water. Calcium chloride, 109.51 grams per liter with water.

Magnesium sulphate, 123.28 grams per liter with water.

Barium chloride, 122.17 grams per liter with water. Ferric chloride, 54.11 grams per liter with water and add suffi-

cient HCl to keep in solution. Potassium ferrocyanide, 105.72 grams per liter with water.

Lead acetate, 189.51 grams per liter with water.

Stannous chloride, 112.72 grams of the solid salt plus 200 cc. 5N HCl diluted to 1 liter with water. Add metallic tin to the solution in the bottle to keep it from oxidizing.

Mercurous nitrate, 262.34 grams per liter with water. Add sufficient nitric acid to keep solution clear and put metallic mer-

cury in the bottle to prevent oxidation.

Cobalt nitrate, 145 grams per liter with water. Ammonium oxalate, 35.5 grams per liter with water. Mercuric chloride, 67.8 grams per liter with water. Zinc sulphate, 71.9 grams per liter with water.

Manganese sulphate, 55.78 grams per liter with water. Nickel sulphate, 70.22 grams per liter with water. Cadmium sulphate, 64.05 grams per liter with water. Copper sulphate, 62.4 grams per liter with water.

Miscellaneous Reagents. Aqua regia, mix 1 part HNO3 with

three parts of concentrated HCl.

Silver nitrate N/10, 17 grams per liter with water.

Magnesia mixture, dissolve 68 grams crystallized MgCl₂ and 165 grams NH₄Cl in 300 cc. water. Add 300 cc. dilute ammo-

nium hydroxide and dilute to 1 liter.

Molybdate solution, dissolve 60 grams molybdic oxide (MoO₃) in 440 cc. of water and 60 cc. strong ammonia (sp. gr. 90). Pour into 500 cc. of cold nitric acid which has been diluted 250 cc. concentrated acid to 250 cc. water. Let stand in a warm place several days. Decant or filter before using.

Phenolsulphonic acid, dissolve 150 grams of phenol in 600

grams of concentrated sulphuric acid.

Yellow ammonium sulphide, 50 to 75 grams of sulphur to a

liter of colorless ammonium sulphide.

Ferrous sulphate, dissolve 200 grams FeSO₄.7H₂O in a liter of water. Place scraps of iron in the solution and add a few drops of H₂SO₄ from time to time.

SPECIAL SOLUTIONS AND REAGENTS

Acid Cuprous Chloride. Cover the bottom of a two-liter flask with copper oxide, extend from the top to the bottom of the bottle several pieces of copper wire, and fill the bottle with 1.10 sp. gr. hydrochloric acid. Shake occasionally, and when solution becomes nearly colorless pour into reagent bottles containing copper wire. The stock bottle should be kept filled with 1.10 hydrochloric acid.

Ammoniacal Cuprous Chloride. The acid solution, described above, is treated with ammonia until a slight odor of this reagent is noticeable. Copper wire should be kept in the solution.

Ammonium Molybdate. Mix well 100 gm. of molybdic acid with 400 cc. of distilled water and add 80 cc. of ammonia (sp. gr. 0.90). When complete solution has taken place pour slowly and with stirring into a mixture of 400 cc. of nitric acid (sp. gr. 1.42) and 600 cc. of distilled water. Add 50 milligrams of microcosmic salt, allow to stand 24 hrs. and filter.

Cochineal. Extract 1 gm. of cochineal for four days with

20 cc. of alcohol and 60 cc. of distilled water. Filter.

Congo Red. Dissolve 0.5 gm. of congo red in 90 cc. of dis-

tilled water and 10 cc. of alcohol.

Eschka's Compound. Two parts of calcined magnesia are thoroughly mixed with one part of anhydrous sodium carbonate.

Fehling Solution. A. The Copper Sulphate Solution. Dissolve 34.66 gm. of copper sulphate (CuSO₄·5H₂O) in water and dilute to 500 cc. B. The Alkaline Tartrate Solution. Dissolve

173 gm. of potassium sodium tartrate (Rochelle salt, $KNaC_4H_4O_{6^*}$ 4 $H_2O)$ and 50 gm. of sodium hydroxide in water and dilute when cold to 500 cc. For use, mix equal volumes of the two solutions at the time of using.

Fuchsin-Sulphurous Acid. To a solution of 0.5 gm. of fuchsin and 9 gm. of sodium bisulphite in 500 cc. of water add 10 cc. of hydrochloric acid. Keep in well-stoppered bottles

and away from light.

Iodo-potassium Iodide. Dissolve 5 gm. of iodine and 10 gm.

of potassium iodide in 100 cc. of water.

Magnesia Mixture. Dissolve 110 gm. of magnesium chloride in a small amount of water. To this solution add 280 gm. of ammonium chloride and 700 cc. of ammonia (sp. gr. 0.90), and dilute to 2000 cc. After standing several hours the solution is filtered. From time to time filter off any silica that may accumulate from the reagent bottle.

Mayer's Reagent. Dissolve 1.35 gm. of mercuric chloride

and 5 gm. of potassium iodide in 100 cc. of water.

Methyl Orange Solution. Dissolve 1 gm. of methyl orange

in 1000 cc. of water.

Methyl Red. Dissolve 0.20 gm. of methyl red in 100 cc. of alcohol.

Millon's Reagent. Dissolve 1 part of mercury in 1 part of cold fuming nitric acid. Dilute with twice the volume of water

and decant the clear solution after several hours.

Nessler's Solution. Dissolve 50 gm. of potassium iodide in the smallest possible quantity of cold water. Add a saturated solution of mercuric chloride until an excess is indicated by the formation of a precipitate. Add 400 cc. of a 50% solution of potassium hydroxide. Make up to 1 liter, allow to settle, and draw off the clear solution.

Phenolphthalein. Dissolve 1 gm. of phenolphthalein in 100

cc. of alcohol.

Soap Solution. Dissolve 100 gm. of dry castile soap in 1 liter of 80% alcohol. Allow to stand several days and dilute with 70% to 80% alcohol until 6.4 cc. produces a permanent lather with 20 cc. of standard calcium solution. The latter solution is made by dissolving 0.2 gm. of calcium carbonate in a small amount of dilute hydrochloric acid, evaporating to dryness, and making up to 1 liter.

Sodium Cobaltic Nifrite. Dissolve 4 gm. of cobalt chloride and 10 gm. of sodium nitrite in 50 cc. of distilled water, add

2 cc. of acetic acid and make up to 100 cc.

Starch. Dissolve 5 gm. of soluble starch in cold water, pour the solution into 2 liters of hot water and boil for a few minutes.

Keep in a glass-stoppered bottle.

Starch Solution from other than soluble starch. One part of starch is made into an emulsion with water and this is poured into 200 parts of boiling water, the boiling continued a few minutes, then the solution allowed to stand. Use only the clear solution.

Tannic Acid. Dissolve 1 gm. of tannic acid in 1 cc. of alcohol, and make up to 10 cc. with water.

Tincture of Iodine. To 50 cc. of water add 70 gm. of iodine and 50 gm. of potassium iodide. Make up to 1 liter with alcohol.

Trinitrophenol Solution. Dissolve 1 gm. of trinitrophenol

in 100 cc. of water. Cool and filter.

Turmeric Tincture. Digest the ground turmeric root with several small quantities of water. Dry the residue and digest it several days with six times its weight of alcohol, and filter.

Turmeric Paper. Impregnate white, unsized paper with the

tincture, and dry.

DECI-NORMAL SOLUTIONS OF SALTS AND OTHER REAGENTS

Name.	Formula.	At. or mol. wt.	Hydrogen equivalent.	One H equiv. in gms.
Acetic acid Ammonium Ammonium chloride Ammonium sulphate Ammonium sulphate Ammonium sulphocyanate Barium Barium carbonate Barium chloride Barium hydroxide Barium oxide Barium oxide Barium oxide Barium oxide Calcium Calcium Calcium Calcium carbonate Calcium chloride Calcium chloride Calcium chloride Calcium chloride Calcium oxide Copper oxide Copper oxide Copper oxide Copper sulphate Cyanogen Hydrochloric acid Hydrocyanic acid	Ba BaCO ₃ BaCO ₂ Ba(OH) ₂ Ba(OH) ₂ BaO Ba(OH) ₂ BaO Br CaCO ₃ CaCO ₃ CaCO ₃ CaCO ₄ CaCO ₄ Ca(OH) ₂ CaO CaCO CuCO ₄ CuCO CuCO CuCO CuSO _{4.5} H ₂ O. CN HCI.	17. 03 18. 04 53. 50 132. 14 76. 12 137. 37 197. 37 244. 32 40. 07 100. 07 110. 99 219. 08 74. 08 75. 46 210. 11 58. 97 63. 57 79. 52 249. 71 26. 02	HC ₂ H ₃ O ₂ . NH ₃ O ₃ . NH ₄ . NH ₄ . NH ₄ Cl. ½(NH ₄) ₂ SO ₄ . NH ₄ Cls. ½Ba ½BaCO ₃ . ½BaCO ₃ . ½Ba(OH) ₂ . ½BaO Br. ½CaCls. ¼CaCls. .697 7.612 6.869 9.869 12.216 8.569 7.669 7.992 2.004 5.004 5.550 10.954 3.704 3.546 7.992 2.949 3.179 3.179 3.979 12.486 2.602 3.642	

DECI-NORMAL SOLUTIONS OF SALTS AND OTHER REAGENTS (Continued.)

and the second s				
Name.	Formula.	At. or mol. wt.	Hydrogen equivalent.	One H equiv. in gms.
Iodine	I	90.06 134.07 24.32	I	12.692 9.006 6.703 1.216 4.217
Magnesium carbonate Magnesium chloride Magnesium chloride	MgCO ₃ MgCl ₂ MgCl ₂ .6H ₂ O	95.24 203.33	½MgCO ₈ ½MgCl ₂ ½MgCl ₂ .6H ₂ O	4.762 10.166
Magnesium oxide	MgO Mn MnSO4	54.93	½MgO ½Mn ½MnSO4	2.016 2.747 7.550
Mercuric chloride	HgCl ₂ Ni	271.52 58.68	HgCl ₂	13.576 2.934 6.302
Nitric acid	HNO3 N N ₂ O ₅	14.01 108.02	HNO ₃	1.401 5.401
Oxalic acid Oxalic acid Oxalic anhydride	H ₂ C ₂ O ₄ H ₂ C ₂ O ₄ .2H ₂ O. C ₂ O ₃	126.06	$\frac{1}{2}$ H ₂ C ₂ O ₄	4.502 6.303 3.601
Phosphoric acid	H ₈ PO ₄ K	39.10	½C ₂ O ₃ ½H ₃ PO ₄ K KHCO ₃	3.269 3.910 10.011
Potassium carbonate Potassium chloride	K ₂ CO₃ KCl	138.21 74.56	¼K₂CO₃. KCl. KCN.	6.910 7.456 6.512
Potassium cyanide Potassium hydroxide Potassium oxide	KOH K₂O	56.11 94.20	KOH	5.611 4.710
Potassium permanganate for Co estimation Potassium permanganate for	ł	l	¼KMnO₄ ⅓KMnO₄	2.634 5.268
Mn estimation Potassium tartrate Silver	K ₂ H ₄ C ₄ O ₆		½K ₂ H ₄ C ₄ O ₆ Ag	11.313 10.788
Silver nitrate	AgNO3 Na	169.89 23.00	AgNO ₃ Na NaHCO ₃	
Sodium carbonate	Na ₂ CO ₃ NaCl	106.01 58.46	Na ₂ CO ₃ NaClNaOH.	5.301 5.846 4.001
Sodium hydroxide Sodium oxide Sodium sulphide	Na ₂ O	62.00 78.06	NaOH ½Na ₂ O ½Na ₂ S ½H ₂ SO ₄	3.100
Sulphuric acid	SO ₃	80.06 150.07	12SO3 12C4H6O6	4.003 7.504
ZincZinc sulphate	$\mathbf{Z_{nSO_4.7H_2O}}$.	65.37 287.54	$\frac{1}{2}$ Zn. $\frac{1}{2}$ ZnSO ₄ .7H ₂ O	3.269 14.377

DECI-NORMAL SOLUTIONS OF OXIDATION AND REDUCTION REAGENTS

Name		V 11011 10			
Antimony. Sb. 120.20 \$Sb. 6.010 Arsenic trisulphide Ass. 74.96 \$As. 3.748 Arsenic trisulphide Ass25. 246.10 \$Ass25. 6.153 Arsenous oxide Bao? 197.92 \$Ass.03. 4.948 Barium peroxide Bao? 169.37 \$BaO2. 8.499 Barium peroxide, hydrated Ca. 40.07 \$Ca. 2.200 Calcium Carbonate Ca. 100.07 \$Ca. 2.200 Calcium carbonate Ca. (Cl.O). 100.07 \$Ca. (Co. 5.00 Calcium wide Ca. 6.00 \$56.07 \$Ca. 2.200 Calcium wide Ca. 6.00 \$56.07 \$Ca. 2.200 Chlorine Ca. 35.46 Cl. 3.546 Chromium trioxide CrO3. 100.00 \$CrO3. 3.333 Ferrous ammonium sulphate FeSO4(NH4)2 Bydrogen peroxide HaO2. 34.02 \$H2O2. 1.701 Hydrogen sulphide HaS. 34.08 \$H2S. 1.704 Iodine I. 126.92 I. 100 Iron oxide, ferrous FeO. 71.84 FeO. 7.184 Iron oxide, ferric FeCO. 71.84 FeO. 7.184 Iron oxide, ferr		Formula.	mol.		equiv.
Arsenic trisulphide	(4)			·	
Arsenic trisulphide					
Arsenious oxide. Ass. 246. 10			120.20	3Sb	
Arsenous oxide			74.96	şAs	
Barium peroxide, hydrated BaO _{2.8} H ₃ O 313.50 BaO _{2.8} SH ₂ O 15 675 Calcium Ca Ca 40.07 Ca 2 004 Calcium carbonate Ca CO _{2.8} 100.07 Ca Co _{2.8} 5 004 Calcium hypochlorite Ca CO _{2.8} 100.07 Ca CO _{2.8} 5 004 Calcium oxide Ca Ca Co _{3.8} 100.00 Ca Ca Co _{3.8} 100.00 Co _{3.8} Ca ClO _{2.8} 3.546 Cl			246.10	\$A82S3	
Barium peroxide, hydrated BaO _{2.8} H ₃ O 313.50 BaO _{2.8} SH ₂ O 15 675 Calcium Ca Ca 40.07 Ca 2 004 Calcium carbonate Ca CO _{2.8} 100.07 Ca Co _{2.8} 5 004 Calcium hypochlorite Ca CO _{2.8} 100.07 Ca CO _{2.8} 5 004 Calcium oxide Ca Ca Co _{3.8} 100.00 Ca Ca Co _{3.8} 100.00 Co _{3.8} Ca ClO _{2.8} 3.546 Cl			197.92	12AS2U3	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		BaO ₂	109.37		
Calcium carbonate	Calairent peroxide, nydrated.		40.07	2 Da U2.8 H2U	
Calcium hypochlorite Ca(ClO)2 142 99 \$\frac{1}{2}\$ Ca(ClO)2 7 150 Calcium oxide CaO 56 07 \$\frac{1}{2}\$ CaO 2 804 Chlorine Cl 35 46 Cl 3 546 Chromium trioxide CrO2 10 00 00 \$\frac{1}{2}\$ CrO3 3 33 Ferrous ammonium sulphate FeSO4(NH4)2 392 15 FeSO4(NH4)2SO4 6 HzO Hydroferrocyanic acid Hre(CN)6 21 596 HzGC(N)6 21 596 Hydrogen peroxide HzO2 34 02 \$\frac{1}{2}\$ HzO2 1 701 Hydrogen sulphide HaS 34 08 \$\frac{1}{2}\$ HzO2 1 701 Hydrogen sulphide HaS 34 08 \$\frac{1}{2}\$ HzO2 1 701 Hydrogen ferrous FeO 75 84 Iron oxide, ferric Fe 55 84 Iron oxide, ferric Fe2O3 159 68 \$\frac{1}{2}\$ FeO3 7 984 Lead peroxide MnO2 86 33 \$\frac{3}{2}\$ MnO2 11 90 Marganese peroxide MnO2 86 33 \$\frac{3}{2}\$ MnO2 1 34 Nitric acid NvO3 76 02 \$\frac{2}{2}\$ No2 1 80 Oxalic acid </td <td>Calcium corboneta</td> <td>Caco</td> <td>100.07</td> <td>i Co CO</td> <td></td>	Calcium corboneta	Caco	100.07	i Co CO	
Calcium oxide CaO 56.07 3 CaO 2.804 Chlorine Cl. 35.46 Cl. 3.546 Cl. 3.546 Cl. 3.546 Cl. 3.546 Cl. 3.546 Cl. 3.546 Cl. 3.546 Cl. 3.546 Cl. 3.546 Cl. 3.333 Sp. 215 FeSO4(NH4)2SO4 39.215 FeSO4 31.26 FeSO4 19.215 FeSO4 19.215 FeSO4 19.215 FeSO4 19.215 FeSO4 19.215 FeSO4 19.215 FeSO4 19.215 FeSO4 19.215 FeSO4 19.215 FeSO4 19.215 FeSO4 19.215 FeSO4 19.215 FeSO4 19.215 FeSO4 19.215 FeSO4 19.215 FeSO4 19.215 FeSO4 </td <td></td> <td>Ca(CIO)</td> <td>149 00</td> <td>i Ca(CIO)</td> <td></td>		Ca(CIO)	149 00	i Ca(CIO)	
Chlorine			56 07	liCon	
Ferrous ammonium sulphate					
Ferrous ammonium sulphate	Chromium triorido	C	100.40	lic-o-	
Hydroferrocyanic acid	Formous ammonium sulphata	Foso (NH.)	302 15	FeSO (NH.) SO.	
Hydroferrocyanic acid. H ₄ Fe(CN) ₆ . 21.596 H ₄ Fe(CN) ₆ . 21.596 Hydrogen peroxide. H ₄ O ₂ . 34.02 H ₂ O ₃ . 1.701 Hydrogen sulphide. H ₈ S. 34.08 H ₂ S. 1.701 Hydrogen sulphide. H ₈ S. 34.08 H ₂ S. 1.701 Hydrogen sulphide. H ₈ S. 34.08 H ₂ S. 1.701 Iodine. I. 126.92 1.2692 12.692 Iron. Fe. 55.84 Fe. 5.584 Fe. 5.584 Iron oxide, ferrous. FeO. 71.84 FeO. 71.84 FeO. 71.84 Iron oxide, ferric. Fe ₂ O ₃ . 159.68 Fe ₂ O ₃ . 7.984 Lead peroxide. PbO ₃ . 239.20 PbO ₂ . 11.960 Manganese peroxide. MnO ₂ . 86.93 MnO ₂ . 4.347 Nitric acid. HNO ₃ . 83.02 HNO ₃ . 2.101 Nitrogen trioxide. N ₂ O ₃ . 76.02 HNO ₃ . 2.101 Nitrogen trioxide. N ₂ O ₃ . 76.02 H ₂ O ₃ . 1.801 Nitrogen pentoxide. N ₂ O ₃ . 76.02 H ₂ O ₃ . 1.801 Oxalic acid. C ₂ H ₂ O ₄ . 90.03 C ₂ H ₂ O ₄ . 4.502 Oxalic acid. C ₂ H ₂ O ₄ . 90.03 C ₂ H ₂ O ₄ . 24.04 4.502 Oxalic acid. C ₂ H ₂ O ₄ . 90.03 C ₂ H ₂ O ₄ . 24.00 0.800 Oxalic acid. C ₂ H ₂ O ₄ . 22.66 KClO ₃ . 12.266 KClO ₃ . 12.266 KClO ₃ . 12.260 Cyclossium chromate. K ₂ Cr ₂ O ₇ . 294.20 K ₂ Cr ₂ O ₇ . 4.903 Oxalic acid. Ch ₂ O ₄ O ₄ O ₄ . 12.266 KClO ₃	rerrous ammonium suipnate		092.10	1 6H ₀ O	39.210
Hydrogen peroxide	Hydroformonyania agid		215 06	H.Fe(CN)	21 508
Hydrogen sulphide					
Iodine			34.02	IH-S	
Iron Fe					
Iron oxide, ferrous					
Iron oxide, ferric.					
Lead peroxide PbO₂ 239 .20 3PbO₂ 11 .960 Manganese peroxide MnO₂ 86 .93 3MnO₂ 4 .347 Nitrogen trioxide NxO₂ 76 .02 3NzO₃ 1.901 Nitrogen trioxide NxO₂ 76 .02 3NzO₃ 1.801 Nitrogen pentoxide NxO₂ 108 .02 8NzO₂ 1.801 Oxalic acid CzHzO₄ 90 .03 3CHzO₄ 4.502 Oxygen O 16 .00 3CHzO₃ 1.212.0 6.303 Oxygen O 16 .00 3CHzO₃ 1.2 .256 KClO₃ 1.2 .256 Potassium bichromate KcCrO₂ 294 .20 3KzCrO₃ 4.903 Potassium bichromate KcClO₃ 12 .256 Potassium chromate KcClO₃ 122 .56 KClO₃ 12 .256 Potassium ferrocyanide KcFe(CN)₅ 38 .33 kcFe(CN)₅ 36 .833 Potassium ferrocyanide KcFe(CN)₅ 38 .33 kcFe(CN)₅ 36 .833 Potassium permanganate KClO₄ 11 .11 kCNO₃ 3 .370 Potassium permanganate KClO₄ 138 .66 KClO₄ 13 .866			150 60	IT.O.	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		DbO.	920 90	LiPhO.	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		MrO.	86 03	IMPO.	11.500
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		HNO	83 00	IHNO.	2 101
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Nitrogen trioxide	N-O	76 02	iN _o O _o	1 201
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			108.02	1N ₂ O ₃	1 200
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			00.02	1.C. H.O.	
Oxygen O 16.00 0 0.80 0.80 Potassium bichromate. KCrQ-7 294.20 0 KgCrQ-7 4.903 Potassium chlorate. KClO ₃ . 122.56 KClQ-7 4.903 Potassium chromate. KsCrQ-1 194.20 kg-CrQ-1 9.710 Potassium ferrocyanide. KsFe(CN)s. 368.33 KsFe(CN)s. 36.833 Potassium ferrocyanide. KsFe(CN)s. 422.38 KsFe(CN)s. 36.833 Potassium iodide. Ksi. 166.02 Ksi. 16.602 Ksi. 16.602 Ksi. Potassium permanganate. KNOs. 101.11 kNOs. 3.370 Potassium permanganate. KClO4. 138.66 KClO4. 13.866 Potassium permanganate. KMnOs. 158.03 kMnOs. 3.161 Sodium chlorate. NaClOs. 106.46 NaClOs. 10.646 Sodium phosphate, sec. NasHPOs. 358.24 kMnOs. 2.834 Sodium thiosulphate. Nas2SQOs.5HzO 248.20 Nas2SQOs.5HzO. 24.820 Stannous chloride. SnCl. 189.62 kSnCl. 2.95nCl. 9.481 Stannous chloride.					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			16.00	10	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Potassium highromata	K.Cr.O.	204 20	i K-Cr-O-	
$ \begin{array}{llllllllllllllllllllllllllllllllllll$			122 56	KCIO.	
$ \begin{array}{llllllllllllllllllllllllllllllllllll$			104 20	iK-C-O.	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			368 33	K.Fe(CN)	
Potassium iodide		K.Fe(CN)	422 38	K.Fe(CN) 3HeO	
Potassium iodide	1 Otassium leitocyamue		122.00	1141 6(011)6.01120	12.200
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Potaggium iodida		166 02	lkt	16 602
$ \begin{array}{llllllllllllllllllllllllllllllllllll$		KNO.	101 11	kNO.	
Potassium permanganate. KMnO4 158 .03 KMnO4 3 .161		KCIO.	138 56	KCIO.	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		KMnO4	158 03	åKMnO₄	
Sodium nitrate			106.46	NaCiO ₂	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			85.01	åNaNO₂	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Sodium phosphate, sec	Na ₂ HPO ₄ .	358.24	¹ 3Na₂HPO₄.12H₂O	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Sodium thiogulphate	Nasson 5Han	248 20	Nesson 5HeO	24 820
Stannous oxide SnO. 134.70 \$ SnO. 6.735 Sulphur dioxide SO2 64.06 \$ SO2 3.203 Tin Sn 118.70 \$ Sn 5.935		SnClo	180 62	iSnCl.	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			134 70	IISnO	
Tin	Sulphur dioxide		64 06	IISO.	
			118.70	iSn.	
					1 5.550

SOLUBILITY CHART

	,																		-		-	_	_
	Acetate.	Arsenate.	Arsenite.	Borate.	Bromide.	Carbonate.	Chlorate.	Chloride.	Chromate.	Cyanide.	Ferricyanide	Ferrocyanide.	Fluoride.	Hydroxide.	Iodide.	Nitrate.	Oxalate.	Oxide.	Phosphate.	Silicate.	Sulphate.	Sulphide.	Tartrate.
Al	A A A A A A A A A A A A A A A A A A A	WAAAAAW	W A A A 	A W :A A W W A A W ::	WWWWWWWWWWWWWWWWWWWWW		W	D WW WW WW WW WW A WW A WW A WW A WW A	O .W A A A A W A A W	- :W : w w A W A a A A W W W W	W .w .AW .II .W IW W I	W W W W I I A W A	I W W a A W W A A W W A A W	H AW :WAAWAAAWAAAAA :	OI WW WW AWWW WW AWWW WW A		AWAAAAA WAA .WAAAA	A .AWAAAAWAAAAA	d AW WAAAAAA .WAAAAAA	© a A A A A A A W A A A A A A	W W W W W W W	S AWAWAAAA WAAAAAAW	WWAAAWWW .W WWAW
Mn Hg' Hg" Ni K	W W W	A W A W	A W A W	··· A W A W	a W W W I	A A W A	WW	W W W I W	W A W A	A A W I	X I W I W	A I W I W	W W W	M W	W W I	W W W W W W	W A A W A	A A W A W	A W A W	W	W W W	A W A W	W A A W A W
Ag Na Sn'''' Sn'' Sr	W W W W	W A A A A	Ä	Ä	W W W W	W A A	W W W	W W W W	W A W W	W ··· A A	W W A	I W	W W W a	W A A A A	W W W W	w W W	W W A A A	A A W	A A A	W A A	W W W a W	W A A W A	W A A

W Soluble in water.

A Insoluble in water but soluble in acids.

w Sparingly soluble in water but soluble in acids.

a Insoluble in water and only sparingly soluble in acids.

I Insoluble in both water and acids.

SOLUBILITY OF INORGANIC SALTS IN WATER

The table shows the number of grams of the substance indicated by the formula at the side which can be dissolved in 100 grams of water at the temperature in degrees Centigrade given at the top.

Substance.	0°	10°	20°	30°	40°-	50°	60°	70°	80°	90°	100°
AgNO ₂	115.0	160.0	215.0	270.0	335.0	400.0	470.0	550.0	650.0	760.0	910.0
Ag NO ₃	31.3 3.0	33.5	36.2	40.4 8.4	45.7	52.1	59.1 24.8	66.2	73.1	80.8	89.1 154.0
Al ₂ (NH ₄) ₂ (SO ₄) ₄ B ₂ O ₂	2.6 1.1	4.5 1.5	6.6 2.2	9.1	12.4 4.0	15.9	21.1 6.2	27.0	35.2 9.5		15.7
BaCl ₂ Ba(NO ₃) ₂	31.6 5.0	33.3 7.0	35.7 9.2	38.2 11.6	40.8 14.2	43.6 17.1	46.4 20.3	49.4 23.6	52.4 27.0	55.6 30.6	58.8 34.2
Ba(OH) ₂ .8H ₂ O CaCl ₂	1.7 59.5	2.5 65.0	3.9 74.5	iòi.ò	8.2 115.3		20.9 136.8	141.7	101.4 147.0	152.7	159.0
Al ₂ (N H ₄) ₂ (SO ₄) ₄ B ₂ O ₃ BaCl ₂ Ba(NO ₃) ₂ Ba(OH) ₂ ,8H ₂ O CaCl ₂ Ca(OH) ₂ CdSO ₄ , §H ₂ O	0.185 76.5	0.176 76.0	0.165 76.6		0.141 78.5		0.116 83.7	Bec	0.094 omes	CdS	0.077 O4
CoCl ₂	40.5	45.0	50.0	56.5	65.0	93.5	94.0	95.0	H ₂ O 96.0	at	74° 103.0
CoCl ₂	161.4 9.3	174.4 14.9	186.5 23.0	197.3 33.9	208.0 47.2	$218.5 \\ 64.4$	229.0 83.8	$\frac{239.5}{107.0}$	250.0 134.0	260.1 163.0	270.5 197.0
Cs ₂ SO ₄ Cu(NO ₃) ₂	167.1 81.8	173.1	178.7 125.0	184.1	189.9 159.8	194.9	199.9 179.1	205.0	210.3 207.8	214.9	220.3
Cs ₂ SO ₄	14.9		20.0 68.5	25.5	29.5	33.6 82.0	39.0	45.7	53.5 104.0	$ \begin{array}{c} 62.7 \\ 105.0 \end{array} $	73.5 106.0
Fe ₂ Cl ₆ Fe _S O ₄	74.4 15.6	81.9 20.8	91.8 26.4	33.0	40.2	315.1 48.6	55.0	56.0	525.8 50.6	43.0	535.7
		2.0	7.4	8.4	9.6	11.3	13.9	17.3	24.3	37.1	54.0
HgCl ₂ KBr K ₂ CO ₃	54.0 105.0		65.0	114.0	76.0 117.0	121.0	86.0 127.0	i33.0	95.5 140.0	147.0	105.0 156.0
KClKClO ₃	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	31.2 5.0	7.1	10.1	14.5	19.7	26.0	32.5	39.6	47.5	56.0
K ₂ CrO ₄ K ₂ Cr ₂ O ₇	58.9	60.9 8.5	62.9 13.1	65.0	67.0 29.2	1. :	50.5	73.0	75.1 73.0	77.1	79.1 102.0
KHCO3 KI	1 99 8	977	33.2 144.2	39.0 152.3	45.3 160 0	52.2 168 0	176.0	184.0	192.0	201.0	209.0
KNO ₃ KOH	13.3	20.9	1 21 A	1 45 R	63.9 136.0	85.5 140.0	109.9 146.0	$138.0 \\ 151.0$	169.0 159.0	204.0 168.0	246.0 178.0
K ₂ PtCl ₆	0.7	0.9	1.1	1.4 13.0	1.8 14.8	16.5	2.6 18.2	19.8	21.4	22.8	24.1
LiOHMgCl ₂ MgSO ₄ .7H ₂ O	12.7	12.7	54.5	1	57.5		61.0	14.4	15.3 66.0		17.5 73.0
			43.9	40.9 45.3	45.6	50.4	55.0 55.2	59.6	64.2	68.9	
MB4Cl NH4HCO ₃ NH4NO ₃ (NH4) ₂ SO ₄ NaBr	29.7 11.9	33.3 15.9		27.0		1		60.2		1	l
NH ₄ NO ₃ (NH ₄) ₂ SO ₄	118.3 70.6	73.0		78.0	297.0 81.0	84.4	88.0	91.6	95.3	740.0 99.2	103.3
NaBr Na ₂ B ₄ O ₇ Na ₂ CO ₃ .10H ₂ O	79.5	84.5 1.6		3.9	۱	10.5	117.0 20.0	24.4	31.4	40.8	120.5 52.3
$Na_2CO_3.7H_2O$	20.4	26.3	33.5	43.5		47.5			45.2		45.2
NaCl NaClO ₃ Na ₂ CrO ₄ Na ₂ Cr ₂ O ₇ NaHCO ₃ Na ₂ HPO ₄ NaI NaNO ₃ NaOH	35.6	35.7	35.8	36.0	H ₂ O)	36.7	37.1	37.5	38.0	38.5	39.1
Na ₂ CrO ₄	31.7	50.2	90.0	107	96.0	105.0	115.0	323 0	124.0		126.0
NaHCO3	6.9	8.2	9.6	11.1	12.7	14.5	16.4	04 0			98
NaI	159.0	169.0	179.0	190.0	205.0	228.0	257.0	136 0	295.0	161	302.
NaNO3 NaOH Na4P ₂ O ₇	42.0	51.5 3.9	109.0	119.0	129.0	145.0	174.0	25	313.0)	
N84P2U7	3.2	3.8	0.2	9.8	13.6	4 11.3		1 20.6	, 30.0	1	1

SOLUBILITY OF INORGANIC SALTS IN WATER (Cont.)

Substance.	0°	10°	20°	30°	40°	50°	60°	70°	80°	90°	100°
Na ₂ SO ₃	14.1		28.7		49.5						33.0
Na ₂ SO ₄ .10H ₂ O	5.0	9.0	19.4	40.0		omes	Na ₂ S	O ₄ at	32°		
Na ₂ SO ₄ .7H ₂ O	19.6			Na ₂ -	48.2		45.5			42.9	42.7
37 CO			· = 0	SO ₄	100 0	100 5	000 =				
Na ₂ S ₂ O ₃	52.5	61.0			102.6						
NiCl ₂		60.0	64.0			*^ ^	81.0	: ٠ نيز ١٠	ء نفد ا	l. <u></u>	٠
NiSO4	27.2			42.5				59.4	63.2	68.8	
PbBr ₂	0.5									1::2::	4.8
Pb(NO ₃) ₂	36.5	44.4		60.7						117.4	
RbCl	77.0	84.4	91.1		103.5						
RbNO ₈	19.5	33.0	53.3		116.7						
Rb_2SO_4	36.4	42.6	48.2						75.0	78.7	
SnI ₂			1.0					2.5			
SrCl ₂	44.2		53.9	60.0		74.4		89.6			101.9
Sr(NO ₃) ₂			70.8	87.6				95.6	97.2	99.0	101.1
Th(SO ₄) ₂ .9H ₂ O	0.7	1.0	1.4	2.0							
$Th(SO_4)_2.4H_2O$					4.0						
TlCl	0.2		0.3								
TlNO3	3.9		9.6	14.3			46.2			200.0	414.0
Tl_2SO_4	2.7	3.7	4.9	6.2	7.6	9.2	10.9	12.7		16.5	
Yb2(SO4)3	44.2						10.4	7.2	6.9	5.8	4.7
Zn(NO ₃) ₂	94.8			l. .	206.9						
ZnŠO ₄					70.0	76.8		89.0	86.0	92.0	78.5

SOLUBILITY OF CANE SUGAR IN WATER

Grams of sugar in 100 grams of water, temperature in degrees Centigrade.

	0°	10°	20°	30°	40°	50°	60°	70°	80°	90°	100°
C ₁₂ H ₂₂ O ₁₂	179.2	190.5	203.9	219.5	238.1	260.4	287.3	320.5	362.1	415.7	487.2

INDICATORS

R. T. Thomson's table, showing the hydrogen atoms replaced by NaOH or KOH when a compound neutral to the indicator is formed. The blank spaces indicate that the end-reaction is obscure.

(From Cohn's Indicators and Test-papers, John Wiley and Sons, publishers, by permission.)

Acid	Formula	Methyl- orange	Phenolp	ohthalein	Litmus		
		Cold	Cold	Boiling	Cold	Boiling	
Sulphuric	H ₂ SO ₄	2	2	2	2	2	
Hydrochloric	HCl	1	1	ī	ī	ī	
Nitric	HNO ₃	1	1	1	1	1	
Thiosulphuric	$H_2S_2O_3$	$ar{2}$	$\bar{2}$	$ar{2}$	$\bar{2}$	$\bar{2}$	
Carbonic	H ₂ CO ₃	Ō	1 dilute	Õ	1.7	lō	
Sulphurous	H ₂ SO ₃	ĺĺ	2		1	l	
Hydrosulphuric	H_2S	l ō	1 dilute	~ 0	1	0	
Phosphoric	H ₃ PO ₄	1	2		1		
Arsenic	H ₃ A ₈ O ₄	ī	$\bar{2}$		1	::	
Arsenous	H ₃ AsO ₃	4			0	Ö	
Nitrous	HNO ₂	indicator	1		l i	1	
		destroyed			l -		
Silicie	H ₄ SiO ₄	0			0	0	
Boric	H ₃ BO ₃	ĺ					
Chromic	H ₂ CrO ₄	i	2	2	1	1	
Oxalic	H ₂ C ₂ O ₄	·	2 2	2 2	2	2	
Acetic	HC2H3O2	l ::	ī	1	nearly	l	
Butyric	HC4H7O2		î	·· î	nearly	١	
Succinic	H ₂ C ₄ H ₄ O ₄	l ::	2	2	nearly	l ::	
Lactic	HC ₈ H ₅ O ₈	l ::	lī	::-	1	1	
Tartaric	H ₂ C ₄ H ₄ O ₆	::	1 2 3		2	- ::	
Citric	H ₃ C ₆ H ₅ O ₇	::	ا 3	::	l	::	

TABLE OF INDICATORS

Water has a concentration of H⁺ ion of 10⁻⁷ and of OH⁻ ion of 10⁻⁷ moles per liter. Due to hydrolysis the composition of a titrated weak acid solution is basic and of a titrated weak base, acid. A truly neutral titrated solution of a strong acid or base has the same concentration of H⁺ and OH⁻ as water.

Indicator	Cd	olor	OH concen- tration at	H ⁺ concentration at	For titration
Indicator	Alkaline	Acid	change	change	of
Benzopurpurin		Yellow	1	10-14	Very weak acids
Trinitrobenzene	Orange	Colorless	10-1	10-13	Very weak acids
Thymolphthalein.	Blue	Colorless	10-4	10-10	Weak acids
Phenolphthalein*.	Red	Colorless	10-5	10-9	Weak acids
Cochineal	Lilac	Yellow	10-8	10-6	Strong acids or bases
Litmus	Violet	Red	10	107	Strong acids or bases
Congo red	Orange	Violet	10-8	10-6	Strong acids or bases
Methyl red	Yellow	Pink	10-8	10-6	Strong acids or bases
Rosolic acid	Red	Yellow	10-7	10	Strong acids or bases
Alizarin		Greenish yellow	10-9	10-6	Weak bases
Methyl orange**.	Yellow	Pink	10-9	10-5	Ammonia and weak bases

^{*} May be used in the presence of weak bases. presence of carbon dioxide or hydrogen sulphide.

^{**} May be used in the

GRAVIMETRIC FACTORS AND THEIR LOGARITHMS

To facilitate the use of the table the group of substances weighed given under each element as well as the substances sought under each substance weighed are arranged in the alphabetical order of their formulæ.

AlCls. Al-Os. O. 38282 9 . 58300 Al ₂ Os. Al. O. 53033 9 . 72455 AlCls. 2. 6122 10. 41700 AlPO4. 2. 3897 10. 37834 Al ₂ (SO ₄) ₃ 3. 3501 10. 52506 Al ₂ (SO ₄) ₃ 3. 3501 10. 52506 Al ₂ (SO ₄) ₃ 3. 3501 10. 52506 Al ₂ (SO ₄) ₃ 3. 3501 10. 52506 Al ₂ (SO ₄) ₃ 3. 3501 10. 52506 Al ₂ (SO ₄) ₃ 3. 3501 10. 52506 Al ₂ (SO ₄) ₃ 4. 6. 5232 10. 81446 Al ₂ (SO ₄) ₃ 24H ₂ O. 9. 2860 10. 96791 Al ₂ (SO ₄) ₃ 24H ₂ O. 9. 2860 10. 96791 Al ₂ (SO ₄) ₃ 24H ₂ O. 0. 58875 9 . 76474 Al ₂ (SO ₄) ₃ 24H ₂ O. 0. 58875 9 . 76474 Al ₂ (SO ₄) ₃ Al ₂ O ₃ 0. 0. 41841 9 . 62166 P ₂ O ₅ 0. 58875 9 . 76474 Al ₂ (SO ₄) ₃ Al ₂ O ₃ 0. 0. 1769 Al ₂ (SO ₄) ₃ 24H ₂ O. 1. 17190 Al ₂ (SO ₄) ₃ 24H ₂ O. Al ₂ O ₃ 0. 10. 9769 Ammonium: NH.= 18.04 Agr. NH ₄ Br. 0. 90813 9. 95815 NH ₄ Cl. 0. 49592 9. 69541 NH ₄ Cl. 0. 37323 9. 57198 AgCl. NH ₄ Cl. 0. 37323 9. 57284 AgBr. NH ₄ Cl. 0. 37323 9. 57284 AgBr. NH ₄ Cl. 0. 37323 9. 57286 NH ₄ Cl. 0. 366281 NH ₄ Cl. 0. 366281 NH ₄ Cl. 0. 36774 9. 89620 NH ₄ Cl. 0. 68873 9. 68782 NH ₄ Cl. 0. 68169 9. 83355 NH ₄ Cl. 0. 68281 NH ₄ Cl. 0. 37320 9. 57788 NH ₄ Cl. 0. 37323 9. 57198 NH ₄ Cl. 0. 37323 9. 57198 NH ₄ Cl. 0. 37323 9. 57198 NH ₄ Cl. 0. 37323 9. 57288 AgBr. NH ₄ Cl. 0. 37323 9. 57288 NH ₄ Cl. 0. 686281 NH ₄ Cl. 0. 37323 9. 57288 NH ₄ Cl. 0. 686281 NH ₄ Cl. 0. 58678 NH ₄ Cl. 0. 58678 NH ₄ Cl. 0. 58678 NH ₄ Cl. 0. 58678 NH ₄ Cl. 0. 58678 NH ₄ Cl. 0. 58678 NH ₄ Cl. 0. 58679 NH ₄ Cl. 0. 58679 NH ₄ Cl. 0. 58794 NH ₄ Cl. 1. 4669 NH ₄ C								
Al = 27.1 Al	Weighed	Sought	Factor		Weighed	Sought	Factor	Loga- rithm
Al = 27.1 Al								10
Al. Al.0.				10		NIT NO.	E 7190	
AlCls. Al-Os. 0. 38228 9. 58300 Al ₂ Os. Al. 0. 5. 0. 38228 9. 58300 Al ₂ Os. Al. 0. 5. 5033 9. 72455 AlCls. 2. 6122 10. 47100 Al ₂ Os. 3. 310. 32506 Al ₂ Os. 3. 3501 10. 52506 Al ₂ Os. 3. 501 10. 52506 Al ₂ Os. 3. 501 10. 52506 Al ₂ Os. 3. 501 10. 52506 Al ₂ Os. 3. 501 10. 52506 Al ₂ Os. 3		AlaOa	1 8856		14			
AlCls	A	AlPO				(NH4)2SO4		10.67358
Algos Al	AlCl3				NH3	MgNH ₄ P		
AlPO_n 2.3887 10.37834 NH_Cl 3.1415 10.49714 Al_s(SO_a)_s 18H_3O 6.5232 10.81446 NH_NO_3 4.6941 10.66664 K_2SO_4 Al_s (SO_a)_s 2.4H_2O 9.2860 10.96791 (NH_a)_sSO_4 Al_s(SO_a)_3 2.4H_2O 0.22193 9.34621 NH_OH 2.0577 10.31338 NH_OH 2.0577 10.31338 NH_OH 2.0577 10.31338 NH_OH 2.0577 10.31338 NH_OH 2.0577 10.31338 NH_OH 2.0577 10.31338 NH_OH 2.0577 10.31338 NH_OH 2.0577 10.31338 NH_OH 2.0577 10.31338 NH_OH 2.0577 10.31338 NH_OH 2.0577 10.31338 NH_OH 2.0577 10.31338 NH_OH 2.0577 10.31338 NH_OH 2.0577 10.31338 NH_OH 2.0577 10.5868 NH_OH 2.0577 10.5868 NH_OH 2.0577 10.5868 NH_OH 2.0577 10.5868 NH_OH 2.0577 10.5868 NH_OH 2.0577 10.5868 NH_OH 2.0577 10.5868 NH_OH 2.0577 10.5868 NH_OH 2.0577 10.5868 NH_OH 2.0577 10.5868 NH_OH 2.0577 10.5868 NH_OH 2.0578 NH_OH 2.0577 10.5868 NH_OH 2.0578 NH_OH 2.0577 10.5868 NH_OH 2.0578 NH_OH 2.0578 NH_OH 2.0578 NH_OH 2.0578 NH_OH 2.0578 NH_OH 2.0578 NH_OH 2.0578 NH_OH 2.0578 NH_OH 2.0578 NH_OH 2.0578 NH_OH 2.05868 NH_OH 2.05868 NH_OH 2.05868 NH_OH 2.05868 NH_OH 2.05868 NH_OH 2.05868 NH_OH 2.05868 NH_OH 2.05868 NH_OH 2.05868 NH_	Al_2O_3					O4 · 6H2O .		11.15884
Als(SO ₄)s 3.3501 10.52506 NH ₁ /2CO ₅ 2.8207 10.45036 NH ₂ /CO ₅ 2.8207 10.45036 NH ₂ /CO ₅ 2.8207 10.45036 NH ₂ /CO ₅ 2.8207 10.45036 NH ₂ /CO ₅ 4.6413 10.66664 NH ₂ /CO ₅ 4.6994 10.67264 (NH ₂)sO ₄ 4.6994 10.67464 (NH ₂)sO ₄ 4.6994 10.67264 (NH ₂)sO ₄ 4.6994 10.67464 (NH ₂)sO ₄ 4.6994 10.67464 (NH ₂)sO ₄ 4.6994 10.67464 (NH ₂)sO ₄ 4.6994 10.67464 (NH ₂)sO ₄ 4.6994 10.67476 (NH ₂)sO ₄ 4.6994 10.67476 (NH ₂)sO ₄ 4.6994 10.67476 (NH ₂)sO ₄ 4.6994 10.67476 (NH ₂)sO ₄ 4.6994 10.67476 (NH ₂)sO ₄ 4.6994 10.67476 (NH ₂)sO ₄ 4.6994 10.67476 (NH ₂)sO ₄ 4.6994 10.67476 (NH ₂)sO ₄ 4.6994 10.67476 (NH ₂)sO ₄ 4.6994 10.67476 (NH ₂)sO ₄ 4.6994 10.67476 (NH ₂)sO ₄ 4.6994 10.67476 (NH ₂)sO ₄ 4.6994 10.67476 (NH ₂)sO ₄ 4.6994 10.67476 (NH ₂)sO ₄ 4.6994 10.67476 (NH ₂)sO ₄ 4.6994 10.67476 (NH ₂)sO ₄ 4.6994 10.67476 (NH ₂)sO ₄ 4.6994 10.67476 (NH ₂)sO ₄ 4.699								
Al ₂ (SO ₄)-Al ₂ (SO ₄ -Al ₂ (SO ₄)-Al ₂ (SO ₄ -Al ₂ (SO ₄)-Al ₂ (SO ₄ -Al ₂ (SO ₄)-Al ₂ (SO ₄ -Al ₂ (SO ₄)-Al ₂ (SO ₄ -Al ₂ (SO ₄)-Al ₂ (SO ₄ -Al ₂ (NH ₄)-Al ₂ (SO ₄)-Al ₂ (S						NH4CI		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Ale(SO4)3	3.3301	10.52500		NH HCO2		
K_SO_A_lz (SO_4): 24HzO			6.5232	10.81446		NH ₄ NO ₃		10.67204
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			0.0-0-			(NH ₄) ₂ O	1.5288	10.18435
AlpO4						NH₄OH	2.0577	
Al ₂ (SO ₄) ₃ . Al ₂ (SO ₄) ₃ . Al ₂ (SO ₄) ₃ . Al ₂ (SO ₄) ₃ . Al ₂ (SO ₄) ₃ . 18H ₂ O K ₂ SO ₄ . Al ₂ (SO ₄) ₃ . 24H ₂ O. Al ₂ O ₃ . O.15330 9.18554 NH ₄ Cl. NH ₄ Cl			9.2860	10.96791		(NH ₄) ₂ PtCl ₆	13.0372	
AlpO4. Al		(NH ₄) ₂ SO ₄ ·				(NH4)2SU4		
AlPO4.		24H ₀ O	8 8730	10 04811		D+	5 7311	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	AlPO					SO3		10.37110
Al ₂ (SO ₄) ₃ Al ₂ (SO ₃) ₃ Al ₂ (SO ₃) ₃ Al ₂ (SO ₄) ₃ Berror Al ₂ Al ₂ (SO ₄) ₃ Al ₂ O ₃ Al	1111 04				NH4	C1		10.29350
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		P ₂ O ₅			~	MgNH ₄ PO ₄		
18H ₂ O Al ₂ O ₃ O.15330 9.18554 NH ₄ Cl 2.96560 10.47211 (NH ₄) ₂ PtCl ₅ 12.3068 11.09011 10.73321 (NH ₄) ₂ PtCl ₅ 12.3068 11.09011 10.47331 10.47312 (NH ₄) ₂ PtCl ₅ 12.3068 11.09011 10.47331		Al_2O_3	0.29850	9.47494		·6H ₂ O		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		410	0 15000	0 10774				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		A12O3	0.15330	9.1800,4		(NHACI	12 3068	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							5 4101	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		*			NH ₄ Br	Ag		10.04185
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Al ₂ O ₃	0.10769	9.03218			1.9169	10.28261
CÓ d) A CO CO CO CO CO CO CO			1 - 1					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					NH ₄ Cl			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		A1-O-	0 11960	0 05186			0 66281	
$\begin{array}{llllllllllllllllllllllllllllllllllll$					H			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ammonium:		1	10.20020	H	N		9.41809
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$NH_4 =$	1		İ	ll .	NH3		9.50286
NH.d.					1	NH_4		
NH.d.	Ag					(NH4)2O		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						(NH ₄) ₀ PtCl ₀		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	AgBr					Pt	1.8243	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			0.37323	9.57198	(NH ₄) ₂			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		NH ₄ I				NH3	0.35460	10.54974
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		(NH ₄) ₂ SO ₄				>777	0 01 740	0 00001
NH ₄ Cl 1.5087 10.17861 NH ₄ Cl 1.4669 10.16641 NH ₄ Cl 1.4669 10.16641 NH ₄ Cl 1.4669 10.16641 NH ₄ 0.87535 9.94215 0.94275 9.32788 NH ₄ NO ₃ NH ₅ 0.21274 9.32788 NH ₄ NO ₃ NH ₅ 0.21274 9.32788 NH ₄ NO ₃ NH ₅ 0.21274 9.32818 NH ₄ NO ₃ NH ₅ 0.21274 9.32818 NH ₄ NO ₃ NH ₅ 0.74470 9.32911 NH ₄ NO ₃ NH ₅ 0.67470 9.32911 NH ₄ NO ₃ NH ₅ NH ₅ 0.58802 NH ₄ NO ₃ NH ₅ NH ₅ NH ₅ NH ₅ 0.58802 9.31978 NH ₅ 0.65418 9.31578 NH ₅ 0.65418 NH ₅ 0.65						NH3		
HCl. NH.Cl	C1				NH41			10 20035
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	HCl				ll			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		NH ₄ I			NH4NO3.	NH3	0.21274	9.32785
PO4 NHs. 0.06936 8.84116 NHs. 0.07347 8.86619 (NH4)2O 0.10607 9.02559 NHs. 1.2153 10.08477 NHs. 1.2877 10.10980 NHs. 0.65418 9.81570 0.65418 0.654	$MgNH_4$		1		ll .	(NH ₄) ₂ PtCl ₆	2.7735	10.44303
NH4 0.07347 8.88619 (NH4)2O. MgNH4PO4 (NH4)2O. 0.10607 9.02559 (6H2O. 9.4279 10.97441 N 0.53802 9.73080 NH4 1.2877 10.10980 NH5. 0.65418 9.81570	PO ₄ ·		0 00000		II	N ₂ O ₅	0.67470	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	6H ₂ O *				(ATTL) O		1.2193	10.08609
N NH ₃ 1.2153 10.08477 N 0.53802 9.73080 NH ₄ 1.2877 10.10980 NH ₃ 0.65418 9.81570					(NH4)2O.		0.4970	10 07//1
NH ₄ 1.2877 10.10980 NH ₃ 0.65418 9.81570	N	NH2				N .0H2O		
NH ₄ Cl 3.8187 10.58191 NH ₄ Cl 2.0545 10.31271		NH.			ll	NH ₃		
	4	NH₄Cl						10.31271
)	1	l)	1	J	1

GRAVIMETRIC FACTORS AND THEIR LOGARITHMS (Continued)

Weighed	Sought	Factor	Loga- rithm	Weighed	Sought	Factor	Loga- rithm
Ammonium: (NH ₄) ₂ O.	$(\mathrm{NH_4})_2\mathrm{PtCl_6} \ \mathrm{N_2O_5} \ldots \ldots \ \mathrm{Pt} \ldots$	8.5260 2.0741 3.7489	-10 10.93075 10.31683	Antimony: Sb ₂ O ₃ Sb ₂ O ₄	Sb ₂ S ₅ KSbOC ₄ H ₄	1.3894	-10 10.14283
NH4OH.	N NH3	0.39971 0.48599 0.51475	10.57381 9.60175 9.68663 9.71160		$O_6 \cdot \frac{1}{2}H_2O$. Sb Sb ₂ O ₃	2.1886 0.78975 0.94746	
	NH4Cl (NH4)2PtCl6 Pt	1.5264 6.3343 2.7846	9.71100 10.18366 10.80170 10.44476		Sb ₂ O ₅ Sb ₂ S ₃ Sb ₂ S ₅	1.0526 1.1057 1.3164	10.02225 10.04364 10.11939
(NH ₄) ₂ Pt Cl ₆	NH ₃	0.07670	8.88482		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.75031 0.90014 0.95006	9.95431 9.97775
	NH₄Cl NH₄Cl NH₄NO₃	0.08126 0.24097 0.36054	8.90985 9.38196 9.55697		$\begin{array}{c} \mathrm{Sb_2S_5} \\ \mathrm{KSbOC_4H_4} \\ \mathrm{O_6 \cdot \frac{1}{2}H_2O}. \end{array}$	1.2506	10.09712 10.29553
	(NH ₄) ₂ O NH ₄ OH (NH ₄) ₂ SO ₄	0.11721 0.15787 0.29759	9.06925 9.19830 9.47362		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.71424 0.85685 0.90439	9.85384 9.93290 9.95636
(NH ₄) ₂ SO ₄	BaSO ₄ H ₂ SO ₄	1.7665 0.74224	10.24611 9.87054	Sb ₂ S ₅	Sb ₂ O ₅ Sb Sb ₂ O ₃ .]	0.95192 0.59995 0.71974	9.97860 9.77812 9.85718
	N NH ₃ (NH ₄) ₂ PtCl ₆	0.21207 0.25782 3.3604	9.32648 -9.41131 10.52639	Arsenic:	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.75967 0.79960	9.88063 9.90287
° N2O5	Pt SO ₃ NH ₃	1.4772 0.60587 0.31531	10.16944 9.78238 9.49874	i .	As ₂ O ₃	1.3202 1.5336	10.12063 10.18571
Pt	NH ₄ NO ₃ (NH ₄) ₂ O NH ₃	1.4821 0.48214 0.17449	10.17089 9.68317 9.24176		As ₂ S ₃ As ₂ S ₅ BaSO ₄	1.6415 2.0692 4.6711	10.21524 10.31580 10.66942
•	NH4 NH4NO3 (NH4)2O	0.18484 0.82018 0.26680	9.26679 9.91391 9.42619		Mg ₂ As ₂ O ₇ MgNH ₄ AsO ₄ ·½H ₂ O	2.0715 1.9227 0.75748	10.31629 10.28405 9.87937
SO ₃	NH ₄ OH (NH ₄) ₂ SO ₄ NH ₃	0.35913 0.67695 0.42554	9.55524 9.83056 9.62894		As	1.1616	10.06508 10.09461 10.19518
Antimony: Sb = 120.2	(NH ₄) ₂ SO ₄	1.6505	0.21762		BaSO ₄ Mg ₂ As ₂ O ₇ MgNH ₄ As	3.5382	10.54878 10.19565
$KSbOC_4$ H_4O_6 $\frac{1}{2}H_2O$	Sb	0.36168	9.55832	As ₂ O ₅	O ₄ ·½H ₂ O As As ₂ S ₃	1.9227 0.65203 1.0704	10.28405 9.81429 10.02955
CII.	Sb ₂ O ₃ Sb ₂ O ₄ Sb ₂ S ₃	0.43390 0.45796 0.50640	9.63739 9.66083 9.7044 9		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.3493 3.0458 1.3504	10.13011 10.48370 10.13057
Sb	KSbOC ₄ H ₄ O ₆ ·½H ₂ O. Sb ₂ O ₃	2.7649 1.1997	10.44168 10.07907	AsO ₃	$\begin{array}{c} \mathrm{MgNH_4As} \\ \mathrm{O_4 \cdot \frac{1}{2}H_2O} \\ \mathrm{BaSO_4 \cdot \cdot \cdot \cdot} \end{array}$	1.6556 2.8476	10.21897 10.45448
	Sb ₂ O ₄ Sb ₂ O ₅ Sb ₂ S ₃	1.2662 1.3328 1.4001	10.10251 10.12476 10.14616	İ	$\begin{array}{c} \mathbf{Mg_2As_2O_7} \\ \mathbf{MgNH_4As} \\ \mathbf{O_4 \cdot \frac{1}{2}H_2O}. \end{array}$	1.2629	10.10136 10.18975
Sb ₂ O ₈	$\begin{array}{c} \operatorname{Sb_2S_5} \dots \\ \operatorname{KSbOC_4H_4} \\ \operatorname{O_6} \cdot \frac{1}{2}\operatorname{H_2O} . \end{array}$	1.6639 2.3047	10.22013 10.36261		BaSO ₄ Mg ₂ As ₂ O ₇ MgNH ₄ As	2.5198 1.1175	10.40137 10.04823
	Sb	0.83355 1.0555 1.1109	9.92093 10.02344 10.04569	As ₂ S ₃	O ₄ · ½H ₂ O . As As ₂ O ₃	1.3700 0.60918 0.80423	9.78475 9.90538
	Sb ₂ S ₈	1.1671	10.06711		A32O5	0.93425	9.97046

			(00000				
Weighed	Sought	Factor	Loga- rithm	Weighed	Sought >	Factor	Loga- rithm
Arsenic: As ₂ S ₃	As ₂ S ₅ Mg ₂ As ₂ O ₇	1.2605 1.2619	10.10054 10.10102	Barium: BaSiF ₆	Ba BaF ₂	0.49118 0.62705	-10 9.69124 9.73909 9.79730
As ₂ S ₅	As	0.48327 0.63800 0.73715	9.68419 9.80482 9.86756	${\bf BaSO_4\dots}$	BaO Ba BaCl ₂	0.54839 0.58849 0.89230	9.76974 9.95051
BaSO ₄	As	0.21408 0.28263 0.32832	9.33058 9.45122 9.51630		BaCl ₂ ·2H ₂ O BaCO ₃ Ba(NO ₃) ₂	1.0467 0.84554 1.1198	10.01982 9.92713 10.04914
	As ₂ O ₅ AsO ₃ AsO ₄	0.35117 0.39686	9.54552 9.59864		BaO ₂ BaS	0.65703 0.72557 0.72583	9.81759 9.86068 9.86083
Mg ₂ As ₂ O ₇	As ₂ O ₃ As ₂ O ₅	0.48273 0.63730 0.74033	9.68371 9.80435 9.86943	CO ₂	BaO BaCO ₃	3.4853 4.4853	10.54224 10.65179
	AsO ₄	0.79183 0.89490 0.79244		$\begin{array}{c} \textbf{Bismuth:} \\ \textbf{Bi} = 208 \\ \textbf{Bi} \dots \dots \end{array}$	Bi ₂ O ₃	1.1154 1.2474	10.04743 10.09601
MgNH ₄ AsO ₄ · }H ₂ O	As	0.39383	9.59532	BiAsO4	BioCl Bi ₂ S ₃ Bi	1.2312 0.59948 0.66866	10.09033 9.77778
31120	As ₂ O ₃ As ₂ O ₅ As ₀ O ₃	0.51993 0.60399 0.64603	9.71595 9.78103	Bi(NO ₃) ₃ •5H ₂ O.	Bi ₂ O ₃	0.47922	9.68054
Barium:	AsO ₄	0.72993		Bi ₂ O ₃	BiOCl BiOCl	0.53594 0.89654 1.1184	9.72912 9.95257 10.04858
Ba = 137.37 Ba	BaCO ₃	1.4368	10.15739		Bi(NO ₃) ₃ · 5H ₂ O···· BiONO ₃ ····	2.0867 1.2328	10.31946 10.09090
	$\begin{array}{c} BaCrO_4\\ BaSiF_6\\ BaSO_4\end{array}$	1.8457 2.0359 1.6993	10.26604 10.30876 10.23027	BiOCl	Bi(NO ₃) ₃ · 5H ₂ O	0.80166	10.27088
BaCl ₂	BaCO ₃ BaCrO ₄ BaSO ₄	1.2170	9.97661 10.08526 10.04949	BiONO ₃			9.95142 10.04232 9.90910
BaCl ₂ ·2 H ₂ O BaCO ₃		0.95524 0.69610	9.98019 9.84261	Bi ₂ S ₃	BiOCl Bi Bi ₂ O ₃	0.81221	9.90967
Dacos	BaCl ₂ BaCrO ₄	1.0551 1.2842	10.02339 10.10865 10.11867	B=11	B ₂ O ₃ KBF ₄	3.1818	10.50268
	BaO BaSO ₄	1.1827	9.89046 10.07287	B ₂ O ₃	KBF₄ B H₃BO₃	0.31428	10.24849
BaCrO4.		0.5419	5 9.73396 5 9.91474		KBF ₄ Na ₂ B ₄ O ₇ · 10H ₂ O	2.7297	10.55665 10.43612
BaF ₂	BaO BaSiF ₆	0.6050		H ₃ BO ₃	B ₂ O ₃ KBF ₄ B	2.0331 0.0872	10.30816 8.94068
	BaCO3 BaSO4 BaCO3	. 0.8930	3 9.95087	,	$ \begin{array}{c} B_2O_3\\ H_3BO_3\\ Na_2B_4O_7 \end{array} $	0.2775	9.69184
BaO	BaCrO ₄ BaSiF ₆ BaSO ₄	. 1.6526 . 1.8235	10.21819	Bromine:	10 H ₂ O .	. 0.7576	
BaO ₂	CO_2 BaSO ₄	. 0.2868 1.3782	9 9.4577 10.1393	Ag		1.1858	10.07400
BaS	. BaSO4	1.3///	10.1391	1		1	1

GRAVIMETRIC FACTORS AND THEIR LOGARITHMS (Continued)

			(00110				
Weighed	Sought	Factor	Loga- rithm	Weighed	Sought	Factor	Loga- rithm
Bromine:			-10	Calcium:			10
AgBr	Br	0.42556	9.62896	CaCO ₃	CaCl2	1 1001	-10 10.04498
	BrO ₃	0.68114	9.83324	Cacos	$Ca(HCO_3)_2$.	1.1091	10.04498
	HBr	0.43113	9.63461		CaO	0.56031	
Br	Ag	1.3498	10.13029	,	CaSO ₄	1.3602	10.13360
	AgBr		10.37104		CaSO ₄ ·2H ₂	1.0002	10.10000
-	O		9.00038		0	1.7204	10.23563
${\bf BrO_3}$	Ag		9.92600		HCl	0.72890	9.86267
TTD	AgBr	1.4681	10.16676	CaF_2	CaSO ₄	1.7437	10.24147
HBr	Ag	1.3324	10.12463	Ca(HC	a aa		1
O	AgBr Br	2.3195 9.9913	10.36539 10.99962	O ₃) ₂	CaCO ₃	0.61737	9.79055
Cadmium:	DI	9.9913	10.99902	Ca(NO ₃) ₂	CaO	0.34592	9.53898
Cd = 112.4		1		CaO	N ₂ O ₅ Ca	0.65830 0.71465	9.81842 9.85409
Čd	CdCl2	1.6308	10.21239	(a0	CaCl ₂	1.9793	10.29652
	CdO	1.1426	10.05780		CaCO ₃	1.7847	10.25157
	CdS	1.2852	10.10897	1	Ca(HCO ₃) ₂ .	2.8908	10.46102
	CdSO ₄	1.8546	10.26825		Ca ₃ (PO ₄) ₂	1.8449	10.26593
$CdCl_2$	Cd	0.61321	9.78761		CaSO ₄	2.4279	10.38523
	CdO	0.70051	9.84541		$CaSO_4 \cdot 2H_2$		
	CdS	0.78802	9.89654		0	3.0687	10.48695
CHANO	CdSO ₄	1.1371	10.05580		C1	1.2649	10.10204
Ca(NO ₃) ₂	Cd	0.47543	9.67708		MgO	0.71910	9.85679
	CdO	0.54310 0.61103	9.73488 9.78600	G (DO)	SO_3	1.4279	10.15470
	CdSO₄	0.88173	9.78000	Ca ₃ (PO ₄) ₂	CaO	0.54209	9.73407
CdO	Cd	0.87539	9.94220		$CaSO_4Mg_2P_2O_7$	1.3162	10.11932
040	CdCl2	1.4276	10.15459		(NH ₄) ₃ PO ₄ .	0.71777	9.85598
	Cd(NO ₃) ₂	1.8413	10.26512		12MoO ₃	12.0989	11.08275
	CdS	1.1251	10.05119		P ₂ O ₅	0.45787	9.66075
	$CdSO_4$	1.6235	10.21045	CaS	BaSO ₄		10.51003
CdS	Cd	0.77807	9.89102		BaSO ₄	1.7148	10.23421
	$ CdCl_2 $	1.2690	10.10346		Ca	0.29435	9.46886
	Cd(NO ₃) ₂	1.6366	10.21394		CaCl ₂	0.81532	9.91133
CARO	Cdo	0.88883	9.94882	l I	CaCO3	0.73511	9.86635
$CdSO_4$	Cd CdCl ₂	0.53919 0.87940	9.73174 9.94419		CaF ₂	0.57350	9.75853
	Cd(NO ₃) ₂	1.1341	10.05465		CaO	0.41189	9.61478
	CdO	0.61595	9.78955	CaSO ₄ .	SO₃	0.58811	9.76946
Calcium:	0	0.01000	0.10000	2H ₂ O	BaSO ₄	1.3559	10.13223
Ca =				21120	CaCO ₃	0.58126	9.76437
40.07					CaO	0.32569	9.51280
BaSO ₄	CaS	0.30900	9.48996		SO3	0.46503	9.66748
	CaSO4	0.58317	9.76580	CaWO4	WO₃	0.80530	9.90596
	CaSO ₄ ·2H ₂	0 505-0	0.00===	Cl	Ca	0.56500	9.75205
C	O CaCl ₂	0.73752	9.86777		CaCl ₂	1.5650	10.19451
Ca	CaCO ₃	2.7699	10.44246	ا مما	CaO	0.79060	9.89796
	CaO		10.39748 10.14591	CO ₂	CaO	1.2743	10.10528
	CaSO ₄	3.3973	10.14591	17701	CaCOs	2.2743	10.35685
	Ci	1.7699	10.33113	HCl	$CaCO_3$ $Ca_3(AsO_4)_2$		10.13733
Ca ₃ (As		2000	, - II 00	MgO	CaO	1.2821 1.3906	10.10793 10.14321
O ₄) ₂	Mg2As2O7	0.77995	9.89207	Mg ₂ P ₂ O ₇	Cas(PO4)		10.14321
CaCl ₂	Ca CaCO ₃	0.36103	9.55754	(NH ₄) ₈	Ca ₃ (PO ₄) ₂	1.0002	10.11102
	CaCO ₃	0.90162	9.95502	PO ₄ .			
	CaO	0.50518	9.70345	12MoO ₃	Cas(PO4)2	0.08265	8.91725
	CaSO4	1.2265	10.08867	N ₂ O ₅	Ca(NOs)s		10.18158
CaCOa	C1	0.63899	9.80549	P ₂ O ₅	Ca ₃ (PO ₄) ₂ .	2.1840	10.33925
CaCO ₈	Са	0.40043	9.60252	SO ₃	CaO	0.70035	9.84532
. 1	l l			, ,	, 1		

Weighed	Sought	Factor	Loga- rithm	Weighed	Sought	Factor	Loga- rithm
Calcium: SO3	CaSO4	1.7003	-10 10 <u>23053</u>	Carbon: FeCO ₃	CO ₂	0.37986	-10 9.57962
WO	CaSO ₄ · 2H ₂ O····	2.1504	10.33252	$\begin{array}{c} \text{Fe(HC} \\ \text{O}_{3})_{2} \dots \end{array}$	CO ₂	0.49481	9.69444
WO ₃ Carbon: C =	CaWO ₄	1.2418	10.09404	HCN	AgCN	3.9922 4.9549	10.60121
12.005	HCN	0.05040	9.39879		AgCN	1.6568 2.0563	10.21927 10.31309
A-CN	HCN	0.25049	9.78074	KHCO3	$CO_2 \dots CO_2 \dots$	0.31840 0.43954	9.50297 9.64300
•	HCN	0.20182	9.30496 9.68691		CO_2	0.46714	9.66945 9.77495
BaCO ₃	C CO ₂	0.06082	8.78390 9.34819	Li ₂ O	CO_2	0.64756 1.4727	10.16711
BaO	CO ₂	0:30402 0:28692	9.48290 9.45776	MgCO ₃ Mg(HC	CO ₂	0.52185	9.71755
	CO ₂ , bicar- bonate	0.57384	9.75879	MnO	CO_2	0.60139 0.62035	9.77916 9.79264
C	BaCO ₃	16.4411 3.6656	11.21593 10.56414	NaHCO ₃ .	CO_2	0.41512 0.52378	9.61817 9.71915
CaCO ₃ Ca(HC	CO ₂	0,43972	9.64318	(NH ₄) ₂	CO ₂	0.70976	9.85111
CaO	$CO_2 \dots CO_2 \dots$	0.54295 0.78482	9.73476 9.89477	CO ₃	CO ₂	0.45796	9.66083
~	CO ₂ , bicar- bonate	1.5696	10.19579	PbCO ₃	CO_2	0.55664 0.16469	9.74557 9.21667
CO ₂	$BaCO_3$ $Ba(HCO_3)_2$.	4.4863 2.9473	10.65189 10.46942	Sr(HC	CO ₂	0.29807	9.47432
	BaO	3.4853 0.27281	10.54224 9.43586	O ₃) ₂	CO_2	0.41978 0.42463	9.62302 9.62801
	Ca(HCO3)2.	2.2742 1.8416	10.35683 10.26519	Chlorine: Cl = 35.46			
	CaO COs	1.2742 1.3636	10.10524 10.13469	Ag	Cl HCl	0.32870 0.33796	9.52886
	FeCO3 Fe(HCO3)2.	2.6325 2.0210	10.42037 10.30557	AgCl	Cl HCl	0.24738 0.25435	9.39337 9.40543
	K ₂ CO ₃ KHCO ₃	3.1407 2.2751	10.49703 10.35700	BaCrO ₄ . Ca	Cl Cl	0.27988 1.7699	9.44697 10.24795
	K ₂ O Li ₂ CO ₃	2.1407 1.6790	10.33056 10.22505	C1	Ag AgCl	3.0423 4.0423	10.48320 10.60663
	LiHCO3	1.5443 0.67901	10.18873 9.83188 10.28246		Ca	3.5730 0.56500	10.55303 9.75205
	$ \begin{array}{c} \text{MgCO}_3 \dots \\ \text{Mg(HCO}_3)_2 \end{array} $	1.9163 1.6628	10.22084		HCl K	1.0284 1.1027	10.01216 10.04244
-	MgO MnCO₃	0.91626 2.6119	9.96202 10.41696		KCl Li	2.1026 0.19579	10.32277 9.29162
	Mn(HCO ₃) ₂ MnO	2.0106 1.6119	10.30333 10.20734		Mg MgCl ₂	"0.34292 1.3430	9.53519 10.12805
	Na ₂ CO ₃	2.4089 1.9092	10.38182 10.28085		MnO ₂	1.2257 0.64862	10.08840 9.81199
	Na ₂ O	1.4089 2.1836	10.14888 10.33917	1	NaCl	0.50874	10.21712 9.70650
	NH4HCO3 PbCO3	1.7965 6.0721	10.25443 10.78334	HCl	PbCrO ₄	2.9590	10.65870 10.47114
	SrCO ₃ Sr(HCO ₃) ₂	3.3550 2.3822	10.52569 10.37698		AgCl NH₄Cl	1.4669	10.59457 10.16641
CO ₈	SrO BaCO ₃	2.3550 3.2892	10.37199 10.51709	K	(NH ₄) ₂ SO ₄	N 90691	10.25806 9.95756
	CO ₂	0.73336	9.86532	KCI	či	U.47558	9.67723

Weighed	Sought	Factor	Loga- rithm	Weighed	Sought	Factor	Loga- rithm
Chlorine:	Cl	5.10947	-10 10.70838	Cobalt: Co(NO ₃) ₂			-10
	<u>C</u> 1	2.9162	10.46481	.6H ₂ O.	Co	0.20258	9.30661
$egin{array}{c} \mathbf{MgCl_2} \\ \mathbf{MnO_2} \end{array}$	Cl	0.74465 0.81583		Co(NO ₂) ₃ (KNO ₂) ₃	Co	0.13037	9.11517
Na	či	1.5417	10.18801		C ₀ O	0.16574	9.21943
NaCl	Ci	0.60657	9.78288	C ₀ O	Co	0.78657	9.89574
NH4 PbCrO4	Cl	1.9656 0.21943	10.29350 9.34130	_	Co(NO ₂) ₃ (KNO ₂) ₃ .	6.0335	10.78057
Chromium:	01	0.21010	0.01100		C03O4	1.0711	10.02985
Cr = 52				-	CoSO ₄	2.0679	10.31553
$BaCrO_4$	Cr	0.20529	9.31236		(CoSO ₄) ₂ (K ₂ SO ₄) ₃ .	5.5545	10.74465
	CrO ₃	0.29992 0.39469		C03O4	Co	0.73433	9.86890
	CrO ₄	0.45784			CoO	0.93358	9.97015
	Cr2(SO4)3.			CoSO ₄	CoO	0.38038 0.48358	9.58022 9.68447
Cr	18H ₂ O BaCrO ₄	1.4139 4.8712	10.15042 10.68764	CoSO ₄ .	000	0.40000	3.00111
Or	Cr ₂ O ₃		10.16481	7H ₂ O	Co	0.20975	9.32170
	PbCrO ₄	6.2154	10.79347	(CoSO ₄) ₂	C ₀ O	0.26666	9.42596
Cr_2O_3	BaCrO ₄		10.52293	(K ₂ S	l·		
	Cr CrO3	0.68422	9.83519	O ₄) ₃	Co	0.1416	9.15109
CrO_3	BaCrO ₄	2.5336	10.40376		C ₀ O	0.18003	9.25534
*	Cr_2O_3		9.88081	Copper: Cu =			
	K ₂ CrO ₄ K ₂ Cr ₂ O ₇	1.9420 1.4693	10.28825 10.16731	63.57	•		,
	PbCrO ₄	3.2320	10.50947		(C ₂ H₃)		
CrO_4	BaCrO ₄	2.1842	10.33928	Cu	$\operatorname{Cu_2}\left\{ egin{array}{c} \operatorname{O_2} \cdot \left\{ \operatorname{As} \right. \right. \right\}$	3.9880	10.60076
	PbCrO ₄	2.7862	10.44501		$(O_2)_3$		
Cr ₂ (SO ₄) ₃ · 18H ₂ O	BaCrO ₄	0.70727	9.84959		CuCNS	1.9136	10.28185
101120	PbCrO ₄	0.90220			CuO Cu ₂ O	1.2517 1.1258	10.09750 10.05147
K ₂ CrO ₄	CrO ₃	0.51494	9.71175	,	Cu ₂ S	1.2522	10.09767
K ₂ Cr ₂ O ₇ .	PbCrO ₄ CrO ₃	1.6637 0.68028	10.22108 9.83269		CuSO ₄	`	1
K2C12O7 .	PbCrO ₄	2.1971	10.34185	(C ₂ H ₃)	5H₂O	3.9281	10.59418
PbCrO ₄	Cr	0.16089	9.20653	- \ O ₀ /	a	0 05075	0 00004
	Cr ₂ O ₃ CrO ₃	0.23515 0.30941	9.37135 9.49053	Cu (As	Cu	0.25075	9.39924
•	CrO4	0.35891		(O ₂) ₈)	Mg ₂ As ₂ O ₇	0.91874	9.96319
	Cr2(SO4)3·			CuCNS	Cu	0.52259	9.71816
	18H ₂ O K ₂ CrO₄	1.1084 0.60087	10.04470 9.77878		CuO	0.65412	9.81566
	K ₂ Cr ₂ O ₇	0.45514	10.65815	CuO	CuCNS	0.79891 1.5288	9.90250 10.18435
Cobalt:	9				Cu ₂ S	1.0004	10.00017
Co = 58.97					CuSO ₄ ·5H ₂		
Со	Co(NO ₃) ₂ 6H ₂ O	4.9361	10.69339	Cu ₂ O	O Cu	3.1382 0.88824	10.49668 9.94853
	Co(NO ₂) ₃	1.0001	10.0000		Cu ₂ S	1.1122	10.04618
	(KNO ₂) ₃ .	7.6706	10.88483	CuSO ₄			
	CoO Co3O4	1.2714 1.3618	10.10426 10.13411	5H ₂ O	Cu CuO	0 · 25458 0 · 31865	9.40582 9.50331
	CoSO4	2.6290	10.13411		Cu_2S	0.31877	9.50348
	CoSO ₄ ·7H ₂				(C ₂ H ₃)		
	O (CoSO ₄)2	4.7675	10.67829	Mg2A82O7	Cu_2 Cu_2	1.0885	10.08081
	(K ₂ SO ₄) ₃ .	7.0616	10.84890		$(o_2)_3$		
	(222004)8 .	1	1	1		l	ı

Weighed	Sought	Factor	Loga- rithm	Weighed	Sought	Factor	Loga- rithm
Fluorine: F = 19 $BaF_2 \dots$ $BaSiF_6 \dots$	$egin{array}{c} \mathbf{BaSiF_6} \dots \\ \mathbf{BaF_2} \dots \\ \mathbf{F} \dots \end{array}$	1.5948 0.62705 0.40762		0	O H	7.9365 0.11190 0.12595	
CaF_2	HF	0.42924 0.51602 0.37294 0.50880 0.48675 0.51258	9.63270 9.71267 9.57163 9.70655 9.68730 9.70976	I = 126.92 Ag AgI	HI I HI IO ₃	1.1859 1.1765 0.54484 0.54055 0.74497	9.73283 9.87214
CaSO ₄ F	H_2SiF_6 F HF $BaSiF_6$ CaF_2 $CaSO_4$	1.6228 0.27914 0.29395 2.45330 2.05447 3.5824	10.21028 9.44582 9.46827 10.38975 10.31270 10.55417		IO4	0.81313 0.71091 0.77904 0.84328 1.8354 0.41703	9.91016 9.85181 9.89156 9.92597 10.26373 9.62016
	H ₂ SiF ₆ K ₂ SiF ₆ BaSiF ₅ CaF ₂ CaSO ₄ K ₂ SiF ₆	1.2660 1.9342 2.3297 1.9509 3.4019 1.8368	10.10242 10.28651 10.36730 10.29024 10.53172 10.26406		PdI ₂	1.4092 2.5868 0.84998 1.8500 0.42034 1.4204	10.15240
2HF 6HF H ₂ SiF ₆	H ₂ SiF ₆ H ₂ SiF ₆ BaSiF ₆ CaF ₂ F 2HF 6HF	0.61620 0.78992 0.27728	10.55708 10.07997 10.28733 9.78972 9.89758 9.44292	IO ₄	TIIAgIPdI2AgIPdI2PdI2	2.6074 1.3423 1.0306 1.2298 0.94421 1.7333	10.41620 10.12786 10.01309 10.08984 9.97507 10.23887
KF K₂SiF₅	6HF SiF ₄ SiF ₆ K ₂ SiF ₆ F HF H ₂ SiF ₆	0.83182 0.72270 0.98601 1.8976 0.51700 0.54443 0.65451	9.92003 9.85896 9.99388 10.27820 9.71349 9.73594 9.81598	I ₂ O ₇	AgI	1.2836 0.98553 1.8091	10.14819 10.03342 10.29722 10.10844 9.99361 10.25747 10.37984
	KF SiFe BaSiFe H ₂ SiFe BaSiFe	0.52699 0.64534 2.6814 1.3837 1.9654 1.0141	9.72180 9.80979 10.42837 10.14104 10.29345 10.00612	PdI ₂	III HI I IO3I IO4I	2.3790 0.70965 0.70404 0.97031	10.37640 9.85104 9.84760 9.98691 10.02493 9.96658
Gold: $Au = 197.2$	K ₂ SiF ₆ AuCl ₃ HAuCl ₄ .	1.5394	10.19021 10.18736 10.32010	TII	$egin{array}{cccccccccccccccccccccccccccccccccccc$		10.00633 9.58724 9.58380 9.72311 9.76113 9.70278
AuCl ₃ HAuCl ₄ . 4H ₂ O KAu	4H ₂ O KAu(CN) ₄ ·H ₂ O Au	1.8172 0.64959 0.47852	10.25941 9.81264 9.67990		I ₂ O ₇	0.55275	9.74253
(CN) ₄ · H ₂ O Hydrogen: H=1.008	Au H ₂ O		9.74059 10.95116	CO ₂	blue Fe ₇ (CN) ₁₈ FeO FeCO ₃ Fe(HCO ₃) ₂	1 .8349 1 .6325 2 .6325	9.64582 10.26362 10.21285 10.42037 10.30557

			(
Weighed	Sought	Factor	Loga- rithm	Weighed	Sought	Factor	Loga- rithm
Iron:			-10	Iron:			-10
Fe	Fe(HCO ₃) ₂ .	3.1851	10.50313	FeSO ₄			
	FeO	1.2865	10.10943	7H ₂ O	Fe	0.20086	9.30289
-	Fe ₂ O ₃ FePO ₄	1.4298 2.7020	10.15527 10.43168	FeSO4.	Fe ₂ O ₃	0.28718	9.45815
	FeS	1.5741	10.45103	(NH ₄) ₂			ſ
	FeSO ₄	2.7203	10.43462	SO ₄ ·			· '
	FeSO ₄ ·7H ₂			6H ₂ O	Fe	0.14239	9.15348
	$egin{array}{c} \mathrm{O} \ldots \mathrm{O} \\ \mathrm{FeSO_4} \end{array}$	4.9787	10.69712	Fe ₂ (SO ₄) ₃	Fe_2O_3 Fe_2O_3	0.20360 0.39934	9.30878 9.60134
	(NH ₄) ₂ SO ₄			Mg9A89O7	FeAsO ₄	1.2542	10.09838
~	6H ₂ O	7.0227	10.84650	SO ₃	FeO	0.89733	9.95295
	Mg2As2O7	0.79714	9.90162	L .	FeSO ₄	1.8973	10.27814
FeCls	Fe ₂ O ₃	0.49211	9.69212	Lead: $Pb = 207.2$	-		l
(CN) ₁₈ ,				BaSO4	PbSO ₄	1.2991	10.11364
prussian	Ag		10.35418	Pb	PbCl ₂	1.3426	10.12795
	CN	0.54496			PbCO₃	1.2896	10.11045
FeCO ₃	$egin{array}{c} { m CO_2} \dots & { m FeO} \dots \end{array}$	0.37986 0.62017	9.57962		(PbCO ₃) ₂ · Pb(OH) ₂ .	1.2478	10.09601
-	Fe ₂ O ₃	0.68924			PbCrO ₄	1.5598	10.19307
Fe			1		PbO	1.0772	10.03230 م
$(HCO_3)_2$	<u>C</u> O ₂	0.49480	9.69443		PbO ₂	1.1544	10.06236
	Fe	0.31396	9.49687 9.60629		PbS	1.1547	10.06247 10.16542
	$FeO \dots Fe_2O_3 \dots$	0.40392 0.44889	9.65214	PbCl ₂	PbSO ₄	1.4636 0.74500	9.87216
FeO	$\overrightarrow{CO_2}$	0.61254	9.78713	1001	PbO	0.80253	9.90447
	FeCO3	0.77728	9.89058	Pb		l	
	FeHCO3	1.6124 2.47577	10.20749 10.39371	(C ₂ H ₃ O ₂) ₂ 3H ₂ O	PbCrO ₄	0.85210	9.93049
J. 10	Fe ₂ O ₃	1.1114	10.04585	01120	PbSO ₄	0.79953	9.90283
	FePO ₄	2.1002	10.32226	PbC₀₃	Pb	0.77545	9.88955
	FeS	1.2236	10.08764 10.04704		PbO	0.83533	9.92186
Fe ₃ O ₄	$SO_3 \dots \dots Fe_2O_3 \dots \dots$	1.1144 1.0346	10.04704	(PbCO ₃) ₂	PbSO ₄	1.1350	10.05500
Fe ₂ O ₃	Fe	0.69940	9.84473	·Pb	l	l	
	Fe FeCl ₃	2.0318	10.30788	(OH) ₂	Pb	0.80142	
	$FeCO_3Fe(HCO_3)_2$.	1.4509 2.2278	10.16164 10.34786		PbCrO ₄	1.2501	10.09694 10.06930
	$Fe(HCO_3)_2$.	2.2278	10.34786	PbCrO4	Pb	0.64109	
	FeO	0.89980	9.95415		Pb(C ₂ H ₃ O ₂) ₂		
	Fe ₃ O ₄	0.96657	9.98523		3H ₂ O	1.1736	10.06952
	FeS	1.8898	10.27641 10.04179		(PbCO ₃) ₂ · Pb(OH) ₂ .	0.79994	9.90306
	FeSO ₄	1.9026	10.27935		PbO	0.69059	9.83922
	FeSO ₄ ·7H ₂ O	3.4821	10.54184		Pb ₃ O ₄	0.70710	
	FeSO ₄			Ph/NO.	PbSO ₄	0.93830 0.67387	9.97234 9.82858
	(NH ₄) ₂ SO ₄ · 6H ₂ O	4.91157	10.69122	FD(14O3)2	PbO ₂	0.72218	9.85865
	Fe ₂ (SO ₄) ₃	2.5041	10.39865		PbSO ₄	0.91558	9.96170
FePO₄	Fe	0.37010		PbO	Pb	0.92832	
	FeO Fe ₂ O ₃	0.47615 0.52920			PbCl ₂ PbCO ₃	1.2461	10.09556 10.07799
FeS	Fe	0.52920		I	PbCrO ₄	1.4480	10.07798
	FeO	0.81729	9.91238		Pb(NO ₃) ₂	1.4840	10.17143
TR-00	Fe ₂ O ₃	0.90830	9.95823		PbS	1.0720	10.03019
FeSO ₄	Fe Fe ₂ O ₃	0.36761		PbO2	PbSO ₄	1.3587	10.13312 9.93763
1	SO ₃	0.52706			Pb(NO ₈) ₂	1.3847	10.14136
	1	1	1	II .	1	1	1

			(0022				
Weighed	Sought	Factor	Loga- rithm	Weighed	Sought	Factor	Loga- rithm
			10	T '41 '	`		-10
$\begin{array}{c} \textbf{Lead:} \\ \textbf{PbO}_2 \end{array}$	PbSO₄	1.2678	-10 10.10305	Lithium: Li ₃ PO ₄	Li ₂ SO ₄ · H ₂ O	1.6572	10.21937
Pb ₃ O ₄	PbCrO ₄	1.4142	10.15051	Li ₂ SO ₄	Li	0.12625	9.10123
1 0304	PbSO ₄	1.3270	10.12287	2.2004	LiCl	0.77133	9.88724
Pb(OH)2.	Pb	0.85898	9.93398		Li ₂ O	0.27178	9.43422
PbS	Pb Pb	0.86580	9.93742	SO ₃	Li ₂ O	0.37322	9.57196
	Pb0	0.93288	9.96983		Li ₂ SO ₄	1.3732	10.13773
	PbSO ₄	1.2675		Magnesium:			
$PbSO_4$	BaSO ₄	0.76974 0.68324		Mg = 24.32			
	Pb Pb(C ₂ H ₃	0.00024	9.00401	BaSO4	MøSO4	0.51570	9.71240
	O ₂) ₂ ·3H ₂ O	1.2508	10.09721	_ Bubou	MgSO4 MgSO4·		
	PbCO3	0.88109			7H ₂ O	1.0559	10.02362
	(PbCO ₃) ₂ ···	• • • • • • • • • • • • • • • • • • • •	1	Br	Mg	0.15213	9.18222
*	Pb(OH)2.	0.85254	9.93071		$MgBr_2$	1.1520	10.06146
	PbCrO ₄	1.0658	10.02768		MgBr ₂ ·	1.8282	10 . 26203
~	Pb(NO ₃) ₂	1.0922	10.03830	CI	6H ₂ O		9.53519
	Pb0	0.73600 0.78876	9.86688 9.89694	C1	Mg MgCl ₂	1.3430	10.1280
	PbO_2 Pb_3O_4	0.75359			MgCl ₂ ·	1.0100	
	PbS	0.78896			6H ₂ O	2.8672	10.45746
Lithium:	200			CO2	MgCO₃	1.9163	10.28246
Li = 6.94	İ			_	MgO	0.91626	9.96202
CO ₂	Li ₂ CO ₃	1.6790	10.22505	I	Mg	0.09581	8.98140 10.03978
	LiHCO3	1.5443	10.18873	3.7	MgI ₂	1.0958	10.81778
. .	Li ₂ O	0.67901	9.83188 10.78601	Mg	Br	2.9162	10.4648
Li	LiCl Li ₂ CO ₃	6.1096 5.3227	10.72614		Ĭ	10.4380	11.01860
	Li ₂ O	2.1539	10.33322		MgO	1.6579	10.21950
	Li ₃ PO ₄	5.5629	10.74530		$Mg_2P_2O_7$	4.5790	10.6607
	Li ₂ SO ₄	7.9207	10.89876		MgSO ₄	4.9449	10.69459
LiCl	Li	0.16368		MgBr ₂	Br	0.86806	9.9385
	Li ₂ CO ₃	0.87124	9.94013	MgBr ₂ ·	-	0.54698	9.7379
	Li ₂ O	0.35227		$egin{array}{c} 6\mathrm{H}_2\mathrm{O} \dots \ \mathrm{MgCl}_2\dots \end{array}$	Br	0.74465	
	Li ₃ PO ₄ Li ₂ SO ₄	0.91052 1.2965	9.95929 10.11277	WigCi2	$Mg_2P_2O_7$	1.1692	10.0679
T.i.CO.	CO ₂	0.59559		MgBr ₂ ·		1 212002	l
Liiz Coa	CO ₂ Li	0.18789		6H ₂ O	Br	0.54698	
×	LiCl	1.1479	10.05987	MgCl ₂ ·6H ₂ O	Cl	0.34877	
	LiHCO ₈	1.8395	10.26469	3.5.63	$Mg_2P_2O_7$	0.54765	9.7385
	Li ₂ O	0.40444		$egin{array}{c} \mathbf{MgCl_2} \cdot \\ \mathbf{KCl} \cdot \end{array}$	1	1	
LiHCO3	Li ₃ PO ₄ CO ₂	1.0451 0.64756	10.01916 9.81128	6H ₂ O	Mg ₂ P ₂ O ₇	0.40072	9.6028
Lincos.	Li ₂ CO ₃	0.54366		MgCO ₃	CO ₂	0.52185	9.7175
	Li ₂ O	0.21960		1.28000	Mg(HCO ₃) ₂	1.7355	10.2394
Li ₂ O	CO ₂	1.4727	10.16811	 -	$MgO \dots$	0.47818	9.6795
	Li	0.46427			$Mg_2P_2O_7$	1.3206	10.1208
	LiCl	2.8381	10.45302	Mg(HC	34.00	0.57619	9.7605
	Li ₂ CO ₃	2.4630	10.39315	O ₃) ₂	MgCO3 MgO		
	LiHCO3 LiaPO4	4.5482 2.5842	10.65784 10.41231	ll.	Mg ₂ P ₂ O ₇		
	Li ₂ SO ₄	3.6794	10.41231	MgI ₂	I	0.91258	9.9602
, 's	SO ₃	2.6794	10.42804	MgO	$CO_2 \dots$	1.0914	10.0379
Li ₈ PO ₄	Li	0.17976	9.25470		Mg	0.60317	9.7804
	LiCl	1.0983	10.04071	ll .	MgCO3	2.0912	10.3204 10.5598
	LiCO ₃	0.95689			Mg(HCO ₃) ₂	3.6294 2.7619	10.5596
	LiHCO₃	1.7601	10.24553	II.	$Mg_2P_2O_7$		10.4750
		U 00400	1 0 50700	H			
	Li ₂ O Li ₂ SO ₄		9.58769 10.15333		MgSO ₄ Mg		

			(Cont	mueu)			
		1	I _		1		Ī
Weighed	Sought	Factor	Loga-	Weighed	Sought	Factor	Loga-
	190.00		rithm	· · oignou	Dought	Lactor	rithm
-							
Man.			40	L -			
Magnesium:	MgCl₂	0.85524	-10	Manganese:	3.5.0		-10 7
N1g21 2O7	MgCl ₂ ·	0.80024	9.93209	Mn ₃ O ₄	MnO Mn ₂ O ₃	0.93006 1.0349	
	6H ₂ O	1-8260	10.26150		MnO ₂	1.1398	10.01492 10.05685
	MgCl ₂ ·KCl·	1.0200		1	MnSO ₄	1.9803	10.29673
	6H ₂ O	2.4955	10.39716	MnO ₂	Mn ₃ O ₄	0.87730	9.94315
	MgCO₃	0.75719	9.87920	l	$Mn_2P_2O_7$	1.6332	10.21303
	Mg(HCO ₃) ₂	1.3141	10.11862	Mn ₂ P ₂ O ₇ .	Mn	0.38691	9.58761
,	MgO MgSO4	0.36207 1.0810	9.55879 10.03383		MnCO3	0.80952	
*	MgSO ₄ .	1.0010	10.00000		MnO MnO ₂	0.49961 0.61231	9.69863 9.78697
	7H ₂ O	2.2135	10.34508		MnSO ₄	1.0635	10.02674
$MgSO_4$	BaSO ₄	1.9391	10.28760	MnS	Mn	0.63145	9.80034
	Mg	0.20203			MnCO3	1.3212	10.12097
	MgO	0.33494			MnO	0.81538	9.91136
	Mg ₂ P ₂ O ₇	0.92507	9.96617	M-90	MnSO ₄	1.7357	10.23947
MgSO ₄	SO ₃	0.66506	9.82286	MnSO ₄	$BaSO_4$ Mn_3O_4	1.5460 0.50509	10.18921
7H ₂ O	BaSO4	0.94702	9.97636		$Mn_2P_2O_7$	0.50509	9.70337 9.97325
	Mg ₂ P ₂ O ₇	0.45178	9.65493		MnS	0.57613	9.76052
~~	SO3	0.32480	9.51162	·	SO3	0.53023	9.72446
SO₃	MgO	0.50362	9.70210	SO3	MnO	0.88596	9.94741
	MgSO4	1.5036	10.17713		MnSO ₄	1.8860	10.27554
	MgSO₄ · 7H₂O	3.0788	10.48838	Mercury: Hg = 200.6	İ		
Manganese:	11120	0.0100	10.40000	Hg	HgCl	1.1768	10.07069
Mn = 54.93	_		,	-15	HgCl ₂	1.3535	10.07003
BaSO ₄	MnSO ₄	0.64687	9.81082		$_{\mathrm{HgO}}$	1.0797	10.03330
CO ₂	MnCO3	2.6119	10.41696	~-	$\overline{\text{HgS}}$	1.1598	10.06438
Mn	MnO $MnCO_3$	1.6119	10.20734	HgCl	Hg	0.84978	9.92931
14111	MnO	2.0923 1.2913	10.32062 10.11102		HgCl₂ HgNO₃	1.1502 1.1102	10.06078
	Mn_2O_3	1.4369	10.15744		Hg ₂ O	0.88364	10.04538 9.94629
	Mn ₃ O ₄	1.3884	10.14251		HgO	0.91756	9.96264
MnCO ₃	$CO_2 \dots$	0.38287	9.58305		HgS	0.98560	9.99370
	Mn	0.47795	9.67938	$HgCl_2$	Hg	0.73880	9.86853
	MnO Mn ₃ O ₄	0.61716 0.66358	9.79040 9.82189		HgCl	0.86940	9.93922
_	Mn ₂ P ₂ O ₇	1.2353	10.09177	Hg(CN)2	HgS	0.85688 0.92097	9.94292
	MnS	0.75690	9.87904	HgNO3	HgCl	0.90078	9.96425 9.95462
Mn(HC					HgS	0.88595	9.94741
O ₃) ₂	MnCO3	0.64950	9.81258	Hg(NO ₃) ₂	HgS	0.71672	9.85535
	MnO Mn_3O_4	0.40084 0.43099	9.60298	Hg(NO ₃) ₂	TT G	0 05000	0 0045-
MnO	CO ₂	0.43099	9.63447 9.79267	$\mathbf{H_{2}O}\dots$	HgS	0.67902 1.1317	9.83188
	Mn	0.77442	9.88898	11g2O	HgCl HgS	1.1153	10.05371 10.04739
	$MnCO_3$	1.6203	10.20960	HgO	Hg	0.92612	9.96667
	MnHCO3	2.4947	10.39702		HgCl	1.0898	10.03736
	Mn ₂ O ₃	1.1128	10.04641		HgS		10.03104
·-	Mn_3O_4 $Mn_2P_2O_7$	1.0752 2.0016	10.03149 10.30137	HgS	HgCl ₂		10.06707
	MnS	1.2264	10.30137		$\begin{array}{c} \operatorname{Hg}(\operatorname{CN})_2 \dots \\ \operatorname{Hg}\operatorname{NO}_3 \dots \end{array}$		10.03575
-	SO3	1.1287	10.05258		Hg(NO ₂).		10.05258′ 10.14467
Mn_2O_3	Mn	0.69593	9.84256		Hg(NO3)2	1.0000	-U. 177U/
	MnO	0.89865	9.95359		Hg(NO ₃) ₂ . H ₂ O	1.4727	10.16711
Mn.O.	Mn ₃ O ₄	0.96623	9.98508		Hg_2O	0.89659	9.95259
Mn ₃ O ₄	M_{nCO_3}	0.72026 1.5070	9.85749 10.17811		HgO	0.93097	9.96894
	Mn(HCO ₃) ₂		10.17811	HgSO4	HgSO ₄	1.2751	10.10554
	(11003)2	0200	10.00000	iigoU4	HgS	v. (8424	9.89445
	<u>-</u>						

Weighed	Sought	Factor	Loga- rithm	Weighed	Sought	Factor	Loga- rithm
Molybde- num: Mo=96. Mo	MoO3 MoS3 PbMoO4	1.5000 2.0019 3.8239	-10 10.17609 10.30144 10.58251	Nickel: NiSO ₄ 7H ₂ O	Ni	0.20894 0.26591 0.55097	-10 9.32011 9.42494 9.74113
MoO₃	MoS ₃ (NH ₄) ₂	0.66667 1.3346	9.82391 10.12535	N = 14.01 AgNO ₂	$ ext{HNO}_2 \dots \ ext{N}_2 ext{O}_3 \dots \dots$	0.30554 0.24699	9.48507 9.39269
	MoO ₄ (NH ₄) ₃ PO ₄ · 12M ₀ O ₃	1.3617	10.13408 10.03596	HNO ₂ HNO ₃	AgNO ₂ N	3.2729 0.22231 0.27023	10.51493 9.34696 9.43173
MoS₃	Mo MoO3 (NH4)2	0.49953 0.74930	9.69856 9.87466		NH ₄ Cl (NH ₄) ₂ PtCl ₆ Pt	0.84893 3.5230 1.5480	9.92887 10.54691 10.18997
(NH ₄) ₂ MoO ₄	MoO ₄	1.0201 0.73437	9 . 86592	KNO3	SO ₃ N ₂ O ₅ HNO ₃	0.63520 0.53417 4.4982	9.80291 9.72768 10.65304
	MoS ₃ (NH ₄) ₃ PO ₄ · 12MoO ₃	0.9803 0.79778	9.99136 9.90188		NaNO3 NH3 NH4Cl	6.0678 1.2155 3.8187	10.78303 10.08477 10.58191
(NH ₄) ₈ PO ₄ · 12MoO ₈	MoO ₃ (NH ₄) ₂	0.92053	9.96404		(NH ₄) ₂ PtCl ₆ (NH ₄) ₂ SO ₄ NO ₂ N ₂ O ₃	4.7156 3.2841 2.7131	11.19995 10.67354 10.51641 10.43346
PbMoO4.	MoO ₄ Mo MoO ₃ (NH ₄) ₂	1.2535 0.26144 0.39216	10.09812 9.41737 9.59346		NO3 N2O5 Pt SO3		10.64602 10.58603 10.84301 10.45594
Nickel:	MoO ₄	0 53399	9.72753	NaNO ₃	$egin{array}{lll} N_1 & \dots & \dots & \dots \\ N_2 O_5 & \dots & \dots & \dots \\ Ag N O_2 & \dots & \dots \end{array}$	0.16481 0.63533 4.0487	9.21697 9.80300 10.60731
Ni = 58.68 Ni	Ni, gly- oxime Ni(NO ₃)2·	4.9236	10.69228	N ₂ O ₅	N KNO3 N	0.36858 1.8721 0.25940	9.56654 10.27232 9.41397
	6H ₂ O NiO NiSO ₄	4.9556 1.2726 2.6370	10.69510 10.10471 10.42111	,	NaNO3 NH3 (NH4)2PtCl ₆ (NH4)2SQ4	1.5740 0.31531 4.1101 1.2232	10.19700 9.49874 10.61392 10.08750
Ni, gly-	NiSO ₄ . 7H ₂ O	4.7861	10 . 67998	NO2	Pt SO ₃ N	1.8071 0.74116 0.30450	10.25698 9.86991 9.48359
oxime Ni(NO ₃) ₂ · 6H ₂ O.	Ni	0.2031 0.20179	9.30771 9.30490	NO ₃ NH ₃	N	0.22593 3.7006 0.82268	9.35398 10.56827 9.91523
NiO	NiO NiSO4 Ni	0.25681 0.53212 0.78576	9.40961 9.72601 9.89529	NH₄Cl	N ₂ O ₅ HNO ₃ N	3.1714 1.1780 0.26187	10.50126 10.07113
	Ni(NO ₃) ₂ . 6H ₂ O NiSO ₄ NiSO ₄ .	3.8939 2.0720	10.59039 10.31639	(NH ₄) ₂ Pt Cl ₆	HNO3 N N ₂ O ₅	0.28380 0.06310 0.24327	9.45301 8.80005 9.38609
NiSO4	7H ₂ O Ni Ni(NO ₃) ₂ .	3.7607 0.37922	10.57527 9.57889	(NH ₄) ₂ SO ₄	N	0.21206 0.81753	9.32646
7 38 y	6H ₂ O NiO NiSO ₄	1.8793 0.48262	10.27400 9.68361	Pt	N	0.64570 0.14345 0.55338	9.81003 9.15699
	7H ₂ O	1.81149	10 . 25886	SO ₃	HNO3	1.5741	10.19703

Weighed	Sought	- A	T	11		ĺ	1
J		Factor	Loga- rithm	Weighed	Sought	Factor	Loga- rithm
Midmonos			10				
Nitrogen: SO ₃	N	0.34999	-10 9.54406	Phos- phorus:			_10
. 1:	N ₂ O ₅	1.3492	10.13008	P ₂ O ₅	AlPO4	1.7190	-10 10.23526
Phos-	,	1		1200	FePO ₄	2.1238	10.32711
phorus:		1		l	$Mg_2P_2O_7$	1.5662	10.19483
P = 31.04 $AgPO_4$	D	0.07414	8.87004		Na ₂ HPO ₄	1.9996	10.30094
	P PO₄	0.07414	9.35603		Na ₂ HPO ₄ . 12H ₂ O	5.0428	10.70267
lj.	P ₂ O ₅	0.16968	9.22963		NaNH ₄ HP	0.0420	10.70207
$Ag_4P_2O_7$.	P	0.10251	9.01077		O4 · 4H2O .	2.9441	10.46896
	PO4	0.31388	9.49676		(NH ₄) ₃ PO ₄ ·		
Al ₂ O ₃	P ₂ O ₅ P ₂ O ₅	0.23461	9.37035		12MoO ₈	26.4243	11.42200
	PO ₄	1.3890 0.77830	10.14308 9.89115	II.P.O.	$egin{array}{ll} U_2P_2O_{11}\dots \ P\dots \end{array}$	5.0287 0.08689	10.70146 8.93897
	P ₂ O ₅	0.58175	9.76474	021 2011	PO4	0.26604	9.42495
Ca ₃ (PO ₄) ₂]	P ₂ O ₅	0.45787	9.66075		P_2O_5	0.19886	
FePO ₄	PO4	0.62991	9.79928	Platinum:			
$Mg_2P_2O_7$.	P ₂ O ₅	0.47080	9.67289	Pt = 195.26			
	Na ₂ HPO ₄ Na ₂ HPO ₄ .	1.2756	10 . 10571	H ₂ PtCl ₆ ·		2	
*	12H ₂ O	3.2164	10.50744	6H ₂ O	K ₂ PtCl ₆	0.93844	9.97239
1	NaNH ₄	, ,		K ₂ PtCl ₆	$_{6\mathrm{H}_{2}\mathrm{O}}^{\mathrm{H}_{2}\mathrm{PtCl}_{6}}$	1.0656	10.02761
	HPO4·4H2O	1.8771	10.27373		Pt	0.40151	9.60370
1	P	0.27861	9.44511		$PtCl_4$	0.69326	9.84090
l i	PO4	0.85384 0.63852	9.93138 9.80517		PtCl ₄ ·5H ₂ O	0.87856	9.94377
Na ₂ HPO ₄	Mg ₂ P ₂ O ₇	0.78395	9.89429	(NH ₄) ₂			
11	P2O5	0.50010	9.69906	PtCls	Pt	0.43960	9.64306
Na ₂			i		PtCl ₄ PtCl ₆	0.75904	9.88026
HPO ₄ · 12H ₂ O . I	Mg ₂ P ₂ O ₇	0 91000		Pt	H ₂ PtCl ₆ ·····	0.91876	9.96320
121120.	P ₂ O ₅	0.31006 0.19830	9.49256 9.29733	1	6H ₂ O	2.6558	10.42419
NaNH4		0.19000	9.29100		K_2PtCl_6	2 4906	10.39630
HPO4.					(NH ₄) ₂ PtCl ₆	2.2748	10.35694
4H ₂ O	$Mg_2P_2O_7$	0.53244	9.72627		PtCl. 5H-O		10.23720 10.34007
(NH ₄) ₈	P ₂ O ₅	0.33966	9.53104	PtCl	PtCl ₄ ·5H ₂ O K ₂ PtCl ₆ ····		10.15910
PO				2004	(NH ₄) ₂ PtCl ₆	1 3175	10.11974
12MoO ₃ I	P	0.01653	8.21842		Pt	0.57917	9.76280
Į.	PO₄	0.05063	8.70441	PtCl6	(NH ₄) ₂ PtCl ₆	1.0884	10.03680
P	P ₂ O ₅ Ag ₃ PO ₄	0.03784	8.57800	PtCl ₄ · 5H ₂ O	K ₂ PtCl ₆	1.1382	10.05623
1	Ag ₄ P ₂ O ₇		11.12996 10.98923		Pt		9.65993
	$Mg_2P_2O_7$			Potassium:			
	(NH ₄) ₃ PO ₄ ·		- 1	K=39.1	1		
,	12MoO ₃		11.78158	Ag	KBr		10.04268
ļ.	P ₂ O ₅ U ₂ P ₂ O ₁₁		10.35958		KCl	0.69114	
PO4	AgPO4		11.06104 10.64397		KClO ₄		10.05541 10.10870
	Ag ₄ P ₂ O ₇	3.1860	10.50324		KCN	0.60354	
<u> </u>	AIPO₄	1.2845	10.10885		KI	1.5390	10.18722
	FePO4	1.5875	10.20072	AgBr	KBr	0.63375	9.80192
	Mg ₂ P ₂ O ₇ (NH ₄) ₃ PO ₄ .	1.1712	10.06862	AgCl	KBrO₃	0.88934	9.94907 9.71614
	2MoO3	19.7591	11.29559		KCl KClO₃	0.52017 0.85503	9.71614
1	$U_2P_2O_{11}\ldots$	3.7588	10.57505		KClO₄l	0.96666	9.98527
P_2O_5	Ag ₃ PO ₄	5.8935	10.77038	AgCN	KCN	0.48630	9.68690
- 15	Ag ₄ P ₂ O ₇	4.2623	10.62965	AgI	KI	0.70707	9.84946
1.0	ΑΙ ₂ Ο ₃	0.71933	9.85692	1	KIO3	0.91148	9.95975

			(00220				
Weighed	Sought	Factor	Loga- rithm	Weighed	Sought	Factor	Loga- rithm
D-4		· · · · · ·	-10	Potassium:			-10
Potassium: BaCrO4	K2CrO4	0.76650	9 88451	K ₂ CO ₃	KCl	1.0790	10.03303
Dacros	K ₂ Cr ₂ O ₇	0.58019	9.76357		KOH	0.81201	9.90956
BaSO4	KHSO4	0.58334	9.76592	77 00	K ₂ O	$0.68161 \\ 3.5178$	9.83354
	K ₂ S	0.47235	9.67426	K ₂ CO ₃	$KPtCl_{6}$ $K_{2}SO_{4}$	1.2609	$10.54627 \\ 10.10068$
TO.	K ₂ SO ₄	0.74652	9.87304 9.68952	K2CrO4	BaCrO ₄	1.3045	10.11549
Br	KBr	$0.48924 \\ 1.4892$	10.17296	K ₂ Cr ₂ O ₇	BaCrO4	1.7236	10.23643
CaF ₂	KF 2H ₂ O	2.4108	10.38216		KCl	0.50699	9.70500
CaF ₂ CaSO ₄	KF·2H ₂ O	1.3829	10 . 14079		K₂Q	0.32019	9.50541
Cl	K	1.1027	10.04244	KF·2H ₂ O	$\begin{array}{c} CaF_2 \\ CaSO_4 \end{array}$	$0.41480 \\ 0.72310$	9.61784 9.85920
	KCl	2.1026	$10.32277 \\ 10.53861$	KHAsO4.	Mg ₂ As ₂ O ₇	0.71172	9.85232
	KClO₃ KClO₄	$\frac{3.4563}{3.9075}$	10.59190		KČL	0.74480	9.87204
	K ₂ O	1.3282	10.12328	1111000	K ₂ O	0.94098	9.97358
CO2	K ₂ O	2.1407	10.12328 10.33056		K ₂ PtCl ₆	4.8563	10.68631
	K2CO2	3.1407	10 . 49703		K ₂ SO ₄	0.87034 1.7143	9.93969 10.23409
I		1.3081	10.11663	KHSO4	$\begin{array}{c} BaSO_4 \\ K_2SO_4 \end{array}$	0.63986	9.80609
T Z	KIO3	1.6863	10.22692 10.31048	кі	Ag	0.64981	9.81278
K	Br Cl	2.0440 0.90691	9.95756	111	AgI	1.4143	10.15054
	KBr	3.0440	10.48355		I	0.76448	9.88337 9.37202
	KCl	1.9069	10.28033		K	0.23551	9.37202
	KI	4.2460	10.62798	7770	K_2O	$0.28370 \\ 1.0971$	9.45286 10.04025
	K ₂O	1.2046	10.08084 10.41261	KIO ₈	AgI	0 59304	9.77308
	KNO3 K2PtCl6	2.5859 6.2169	10.41201	K ₂ MnO ₄ .	I	0.59304 0.38686	9.77308 9.58756
	K ₂ SO ₄	2.2284	10.34799	Highlandy.	MnS	0.44128	9.64471
	Pt	2.4961	10.34799 10.39727	KMnO4	$ Mn_2O_3 $	0.48259	9.68358
K ₃ AsO ₄	Mg ₂ As ₂ O ₇	0.60596	9.78244		MnS	0.55047	9.74073 10.01017
KBr	Ag	0.90640	10.95732	KNO2	K ₂ SO ₄	1.0237 0.44660	9.64992
	AgBr	1.5779 0.67149	10.19808 9.82704	KNO3	TC .	0.38671	9.58739
	Br K	0.32852			KCi	0.73742	9.86772
	K ₂ O	0.39573	9.59740	1	K ₂ O	0.46583	9.66823
KBrO ₈	AgBr	1.1244	10.05093		K ₂ PtCl ₆	2.4042 0.13857	10.38096 9.14165
KCl	Ag	1.4469	10.16043 10.28386		N NH3	0.16843	
	AgCl	1.9225 0.47558	9.67723		NO	1.0.29681	9.47248
	CÍ K	0.52440			N ₂ O ₅	0.53417 0.75287	9.72768
	K ₂ CO ₃	0.92677	9.96609	K ₂ O	. Cl	0.75287	9.87672
1. 19	K ₂ Cr ₂ O ₇	1.9705	10.29480 10.12796	2	CO_2	0.46714	
	KHCO:	1.3427	10.12796		KBr	0.83015 2.5270	10.40260
	KNO3 K2O	1.3560 0.63169			KCi	1.5830	10.19949
	K ₂ PtCl ₆	3.2602	10.51324		K ₂ CO ₃	1.4671	10.16646
	K ₂ SO ₄	1.1685	10.06763	31	K ₂ Cr ₂ O ₇	3.1231	10.49459
4	Pt	1.3090	10.11694		KHCO₃	1.0627	10.02642
KClO ₈	. ΙΑ <i>α</i>	0.88022	9.94459		KOH	3.5248	10.54714 10.07602
	AgCl	1.1696	10.06802 9.46139		KNO	2.14660	10.33177
KCIO	Ag	0.28933	9.89130	31	K2PtCl6	5.1610	10.74273
ACIO.	AgCl	1.0345	10.01473	3	K ₂ PtCl ₆ K ₂ SO ₄	1.8499	10.26715
		1 2 . 1 . 2)	IN2O5	1.1467	10.05945
	CĪ	0.25592	0.1001				
	CĪ	0.28219	9.45054	KOH	. K₂CO₃	1.2315	10.09044
	KCI	0.28219 0.53811	9 9 . 45054 1 9 . 73087	7 .	K ₂ O	0.83942	9.92398
KCN	CI K KCl K ₂ O	0.28219 0.53811 0.33992	9.45054 1 9.73087 2 9.53138	K ₂ PtCl ₆ .	K ₂ O	0.83942 0.16056 0.28427	9.92398 9.20564 9.45378
KCN K ₂ CO ₃	CI K KCl K ₂ O AgCN	0.28219 0.53811 0.33992	9 9 . 45054 1 9 . 73087 2 9 . 53138 10 . 31310	K ₂ PtCl ₆ .	K ₂ O	0.83942 0.16056 0.28427	9.92398 9.20564 9.45378

			· ·				
Weighed	Sought	Factor	Loga- rithm	Weighed	Sought	Factor	Loga- rithm
Potassium:			-10	Silicon:			10
K ₂ PtCl ₆	KHCO3	0.20591	9.31369		H ₂ SiO ₃	1.2988	-10 10.11355
	KNO3	0.41595	9.61904		K ₂ SiF ₆	3.6567	10.56309
	K ₂ O	0.19376			Si	0.46933	
	K2SO4	0.35844	9.55442	1 a.a ·	SiF4	1.7296	10.23796
	K ₂ SO ₄ .Al ₂ (SO ₄) ₃ .		i.	SiO ₂	SiO ₈	1.2653	10.10220
	24H ₂ O.	1.9521	10.29050	1	Si ₂ O	1.5307 1.3980	10.18488 10.14551
	K2SO4.Cr2	1.0021	1-0.2000	11	Si(OH)4	1.5975	10.14331
	(SO ₄) ₃ ·		١.	SiO₃	$ISiO_2$	0.79031	9.89780
TZ (1	24H ₂ O.	2.0545	10.31269	∥ SiO₄	$ SiO_2$	0.65331	9.81512
$\mathbf{K}_{2}\mathbf{S}$	BaSO4	$2.1171 \\ 1.5804$	10.32574	Si ₂ O	SiO ₂	0.71530	
K ₂ SiO ₃	K ₂ SO ₄ SiO ₂	0.30929	10.19877 9.59139	Si(OH)	SiO ₂	0.62598	9.79656
K ₂ SO ₄	BaSO ₄	1.3396	10 12698	Ag = 107.88			l
	KCl	0.85573	9.93234		AgBr	1.7408	10.24076
	K2CO3	0.79307	9.89931	-	AgCl	1.3287	10.12343
	KHCO3	1.1490	10.06032	•	AgCN	1.2411	10.09381
	KHSO4	1.5628	10.19390		AgI	2.1765	10.33776
	KNO ₂ KNO ₃	$0.97682 \\ 1.1604$	9.98981 10.06461		AgNO3	1.5748 1.0742	10.19723 10.03107
	K₂O	0.54057	9.73285		Ag ₂ O Ag ₃ PO ₄	1.2932	10.03107
\ . · ·	K ₂ PtCl ₆	2.7899	10.44559	li i	Ag ₄ P ₂ O ₇ .	1.4034	10.14719
	K_2S	0.63273	9.80122		Br	0.74083	9.86972
TZ 00 41	SO_3	0.45943	9.66222		Cl	0.32870	9.51680
K ₂ SO ₄ ·Al ₂ (SO ₄) ₃ ·	1			AD	$[I, \dots, I]$	1.1765	10.07059
24H ₂ O	K2PtCl6	0.51228	9.70951	AgBr	Ag Br	0.57443 0.42556	9.75924 9.62896
$\mathbf{K_{2}SO_{4}}$	1121 0016	0.01228	0.10901	AgCl	Aσ	0.75261	9.87657
Cr2(SO4)3.	1 1			AgCl	AgNO3	1.1852	10.07380
24H ₂ O	K2PtCl6	0.48673	9.68729	li i	Ag ₂ O	0.80842	9.90764
$Mg_2As_2O_7$		1.6503	10.21756	4 007	[ÇI	0.24738	9.39337
Mn ₂ O ₃	K ₂ HA ₈ O ₄	1.4050 2.5848	10.14768		Ag	0.80573	9.90619
14111208	K2MnO4	2.0721	10.41244	AgI	Ag I	0.45945 0.54055	9.66224 9.73283
MnS	K ₂ MnO ₄ .	2.2661	10.31642 10.35528	Ag ₂ O	Ag	0.93095	9.96893
	KMnO4	1.8166	10.25926		AgCl	1.2370	10.09236
N	KNO ₃	7.2169	10.85835	Ag ₃ PO ₄	Ag	0.77317	9.88828
NH3	KNO3	5.9372	10.77358	Ag ₄ P ₂ O ₇	Ag	0.71253	9.85281
NO N ₂ O ₃	KNO3		10.52752 10.35008	Br	Ag AgBr	1.3498 2.3498	10.13028 10.37104
N_2O_5	K ₂ O	0.87207	9.94055	C1	Ag		10.48320
	KNO.	1.8721	10.27232	1	AgCl	4.0423	10.60663
Pt	<u>K</u>	0.40062	9.60273	I	Ag	0.84998	9.92941
g:O.	KCl	0.76394	9.88306	g	AgI	1.8500	10.26717
SiO_2 SO_3	K ₂ SiO ₃	$\begin{bmatrix} 2.5622 \\ 2.1766 \end{bmatrix}$	10.40861 10.33778	Na = 23		- 1	
Silicon:	11200 4	2.1700	10.33779	Ag	NaBr	0.95622	9.98056
Si = 28.3		1	l		NaCl	0.54190	9.98056 9.73392
BaSiF ₆	SiF4	0.37294	9.57163		NaI		10.14292
H ₂ SiO ₃	SiO_2 SiO_2	0.21561	9.33367	AgBr	NaBr	0.54802 0.40784	9.73880 9.61049
K ₂ SiF ₆	SiF ₄	$0.76993 \\ 0.47301$	9.88645 9.67487	AgCl	NaCl NaI	0.40784	9.80516
12011 6	SiO ₂	0.27347	9.43691	BaSO ₄	NaHSO 4.	0.51437	9.71128
Si	$\widetilde{\operatorname{SiO}}_{2}$	2.1307	10.32853		NaHSO4		_
SiF4	SiO_2 $BaSiF_6$	2.6814	10.42837 10.32513		H ₂ O	0.59153	9.77198
	K ₂ SiF ₆	2.1141	10.32513	[]:	Na ₂ S	0.33440	9.52427
SiO.	SiO ₂	0.57815 4.6380	9.76204 10.66633	1.	Na ₂ SO ₃	0.54003	9.73242
SIO2	BaSiF6	, ±.0000	10.00033		Na ₂ SO ₃ . 7H ₂ O	1.0803	10 03354
-				<u> </u>	1120	¥.0000 i	10.00001

	l		Loga-			-	Loga-
Weighed	Sought	Factor	rithm	Weighed	Sought	Factor	
	1		Humi	_	-		rithm
		ļ					
O	l	1	10	g 1			
Sodium: BaSO ₄	NT- 00	0.60858	-10	Sodium:	3.7	0.00040	-10
DasO4	Na ₂ SO ₄ Na ₂ SO ₄	0.00000	9.78432	NaBr	Na	0.22348	9.34923
	10H ₂ O.	1.3804	10.14001	NaCl	Na ₂ O	0.30120	
B ₂ O ₃	Na ₂ B ₄ O ₇ .	1.4429	10.15922	Naci	Ag	1.8453 2.4520	10.26608
D2O3	Na ₂ B ₄ O ₇ .	1.4429	10.10922		AgCl Cl	0.60657	10.38951
	10H ₂ O.	2.7297	10.43612		Na	0.39343	9.78288 9.59487
Br	Na	0.28779	9.45907	1	Na ₂ CO ₃	0.90661	9.95742
, Бі	NaBr	1.2878	10.10984	i .	NaHCO3.	1.4370	10.15746
	Na ₂ O	0.38788	9.58870		Na ₂ HPO ₄ .	1.2150	10.08456
CaCl2	NaCl	1.0534	10.02259		Na ₂ O	0.53028	9.72451
CaCOs	Na ₂ CO ₃	1.0590	10.02492	Na ₂ CO ₃	Na ₂ SO ₄	1.2150	10.08458
CaF ₂	NaF	1.0757	10.03168	1102003	CaCO ₃	0.94423	9.97508
	Na ₂ CO ₃	1.8898	10.27642		CaO	0.52915	9.72358
CaSO ₄	Na ₂ CO ₃	0.77867	9.89135		CaO CaSO4	1.2842	10.10863
Č1	Na	0.64862	9.81193		$\widetilde{CO_2}$	0.41509	
	NaCl	1.6486	10.21712		Na	0.43396	9.63745
10.0	lNa₂Ol	0.87422	9.94162	1 .	Na NaCl	1.1030	10.04258
CO ₂	Na ₂ CO ₃	2.4089	10.38182		NaHCO3.	1.5850	110.20003
	Na ₂ O	1.4089	10.14888	l	Na ₂ O	0.58490	9.76708
H ₈ BO ₈	Na ₂ B ₄ O ₇	0.81420	9.91073		NaOH	0.75486	9.87787
	Na ₂ B ₄ O ₇ ·				Na ₂ SO ₄	1.3402	10.12717
_	10H ₂ O.	1.5404	10.18763	Na ₂ CO ₃ ·			
I	Na	0.18122	9.25820	10H ₂ O.	Na ₂ SO ₄	0.49643	9.69585
	NaI	1.1812	10.07233	NaF	CaFe	0.92965	9.96832
TZDE	Na ₂ O	0.24425	9.38783	Na ₂ HAs			
KBF ₄	Na2B4O7.	0.40047	9.60257	O3	$Mg_2As_2O_7$	0.91348	9.96070
1	Na ₂ B ₄ O ₇ ·	0 85505	0 05045	Na ₂ HAs	35 4 0	0.00400	
Mar. As-On	10H ₂ O Na ₂ HA ₈ O ₃	$0.75765 \\ 1.0947$	9.87947 10.39300	04	Mg ₂ As ₂ O ₇	$0.83490 \\ 0.27379$	9.92163
MIG2AS2O7	Na.HASO3	1.1978	10.39300	NaHCO ₃ .	Na NaCl	0.27379	9.43741
$MgCl_2$	Na ₂ HAsO ₄ NaCl	1.1978 1.2276	10.08906		Na ₂ CO ₃	0.63090	9.84254 9.79996
Mg ₂ P ₂ O ₇ .	Na ₂ HPO ₄ .	1.2756	10.10571		Na ₂ O	0.36901	9.79990
Migzi 201.	Na ₂ HPO ₄	1.2100	10.105/1	NaNH4	14a2O	0.30301	9.00704
	12H ₂ O.	3.2169	10.50744	HPO4.			
	NaNH4HP	0.2100	10.00.11	4H ₂ O	$Mg_2P_2O_7$.	0.53244	9.72627
	O ₄ 4H ₂ O	1.8781	10.27373	11120	NH3	0.08144	8.91084
	Na ₄ P ₂ O ₇ ·				P ₂ O ₅	0.33966	9.53104
	10H ₂ O.	2.0036	10.30181	Na ₂ HPO ₄	$Mg_2P_2O_7$.	0.78395	9.89429
Na	Br	3.4748	10.54093		Na_2O	0.43646	9.63995
	C1	1.5417	10.18801		Na ₄ P ₂ O ₇ .	0.93656	9.97154
	I	5.5182	10.74180		P_2O_5	0.50010	9.69906
	NaBr	4.4747	10.65077	Na ₂ HPO ₄ ·			
1	NaCl	2.5418	10.40514 10.36255	12H ₂ O.	$Mg_2P_2O_7$.	0.31086	9.49256
	Na ₂ CO ₃	2.3044	10.36255		Na ₄ P ₂ O ₇ .	0.37139	9.56981
	NaHCO3.		10.56259	37 7700	P ₂ O ₅	0.19830	9.29733
	NaI	6.5183	10.81413	NaHSO3.	SO_2	0.61555	9.78926
	Na ₂ O		10.12963	NaHSO4	BaSO ₄	1.9441	10.28872
Na ₂ B ₄ O ₇	Na ₂ SO ₄	3.0883	10.48972	NaHSO4	Pago.	1 6007	10 00000
	$\mathbf{H_3BO_3}$	$0.69308 \\ 1.2282$	9.84078	H ₂ O	BaSO4	1.6905	10.22802
	KBF ₄		10.08927 10.39743	NaI	Ag	$0.71958 \\ 1.5661$	9.85708 10.19484
Na ₂ B ₄ O ₇ .	4	4.4311	10.09140		AgI	0.84659	9.92767
10H ₂ O	B_2O_4	0.36634	9.56388		I Na	0.54059 0.15341	9.92707
101120.	H ₃ BO ₃	0.64918	9.81237		Na ₂ O	$0.13341 \\ 0.20678$	9.15550
	KBF ₄	1.3199	10.12053	l NaNO. I	Na ₀ O	0.36467	9.56189
NaBr	Ag	1.0458	10.01944	1101108	N N	0.16481	0.21697
	AgBr	1.8247	10.26120		N	0.20038	9.30185
	Br	0.77654	9.89016		NO	0.35302	9.54780
7						2.20002	2.51,50

Weighed	Sought	Factor	Loga- rithm	Weighed	Sought	Factor	Loga- rithm					
Sodium:		l	10	Strontium:			-10					
bourum.	N ₂ O ₅	0.63533	$\begin{array}{c c} -10 \\ 9.80300 \end{array}$	O-	SrCO3	1.6847	10.22652					
Na₂O	Br	2.5781	10.41130	11	Sr0	$1.1827 \\ 2.0962$	$10.07285 \\ 10.32142$					
Na ₂ O	C1	1.1439 0.70968	10.05838 9.85106	SrCl ₂	SrSO₄ SrCO₃	0.93110	9.96900					
11020	I	4.0942	10.61217		SrO	0.65363	9.81533					
	Na	0.74194	9.87037	SrCO ₃	SrSO ₄	$1.1586 \\ 0.29804$	10.06393					
	NaBr NaCl	3.3200 1.8858	$ 10.52114 \\ 10.27549$	51008	Sr	0.59358	9.47428 9.77348					
	Na ₂ CO ₃	1.7097	10.27549			1.0740	10.03100					
	NaI	4.8350	10.68440		Sr(HCO ₃) ₂ .	$\frac{1.4201}{1.4337}$	10.15232 10.15645					
7	Na ₂ HPO ₄ NaOH	$\begin{array}{c} 2.2911 \\ 1.2906 \end{array}$	10.36005 10.11079		Sr(NO ₃) ₂ SrO	0.70198	9.84633					
	Na ₂ SO ₄	$\frac{1.2900}{2.2913}$	10.11079		SrSO ₄	1.2443	10.09493					
	N ₂ O ₅	1.7422	10.24111	SI(IIC	SrCOa	0.70417	9.84768					
NaOH	SO3 Na ₂ CO ₃	1.2913	10.11103	03)2	SrO	0.49432	9.69401					
114011	Na ₂ O	$1.3247 \ 0.77484$	10.12213 9.88921	Sr(NO ₃) ₂	SrCO3	0.69751	9.84355					
Na ₄ P ₂ O ₇ ·			1	SrO	SrSO4	$0.86790 \\ 0.77256$	9.93847 9.88793					
10H ₂ O. Na ₂ S	Mg ₂ P ₂ O ₇ BaSO ₄	$\begin{bmatrix} 0.49911 \\ 2.9904 \end{bmatrix}$	9.69820	510	SO₃ Sr	0.77250	9.92715					
Na ₂ SO ₃	BaSO ₄	1.8517	10.47573		$SrCl_2$	1.5299	10.18467					
	SO ₂	0.50817	10.26757 9.70601		SrCO ₃		10.15367					
$ m Na_2SO_3 \cdot 7H_2O$	BaSO ₄	0.00500	0.00047	SrSO4	Sr(HCO ₃) ₃ . SO ₃	$\begin{bmatrix} 2.0228 \\ 0.43584 \end{bmatrix}$	10.30599 9.63933					
11120	SO ₂	$0.92569 \\ 0.25403$	9.96647 9.40489		Sr	0.47705	9.67856					
Na_2SO_4	BaSO ₄	1.6432	10.21569		$SrCl_2$	0.86314	9.93608					
	Na NaCl	0.32381	9.51029		$SrCO_3$ $Sr(NO_3)_2$	$0.80369 \\ 1.1522$	9.90509 10.06153					
	Na ₂ CO ₃	0.82303 0.74616	9.91542 9.87283	1 1	SrÒ	0.56416	9.75140					
	Na ₂ CO ₃ ·			Sulphur: S=32.06								
	10H ₂ O Na ₂ O	$2.0144 \\ 0.43644$	10.30415	As ₂ S ₃	H ₂ S	0.41539	9.61846					
	SO3	0.56356	9.63992 9.75094	7 70	H ₂ S S	0.39053	9.59165					
Na ₂ SO ₄ ·		-		BaSO ₄	H_2S H_2SO_3	0.14598 0.35161	9.16429 9.54606					
10H₂O . N	BaSO ₄	$0.72444 \\ 6.0678$	9.86000		H ₂ SO ₄	0.42015	9.62340					
NH ₃	NaNO3	4.9918	$10.78303 \\ 10.69826$	i	S	0.13734	9.13780					
	INa.NH₄HPI	10.0500			SO ₂	0.27443 0.34297	9.43843 9.53526					
NO	O4·4H2O NaNO3	$12.2790 \\ 2.8327$	$11.08416 \\ 10.45220$		SO4	0.41152	9.61439					
N_2O_5	NaNO3	1.5740	10.19700	[CdS	H ₂ S	0.23589	9.37271					
P ₂ O ₅	Na ₂ O	0.57397	9.75889	H ₂ S	S As ₂ S ₃	0.22193 2.4074	9.34622 10.38155					
F2O5	Na ₂ HPO ₄ Na ₂ HPO ₄ .	1.9996	10.30094		Basu	6.8503	10.83571					
	1 12H ₂ O	5.0428	10.70267		Çds	4.2393	10.62729					
	NaNH ₄ HP	0.0441	10 40000	H ₂ SO ₃	SO ₃ BaSO ₄	$2.3495 \\ 2.8441$	10.37098 10.45394					
SO ₂	$0_4 \cdot 4H_2O$ NaHSO ₃	$2.9441 \\ 1.6246$	$10.46896 \\ 10.21075$		BaSO4	2.3801	10.37660					
	$ Na_2SO_3 $	1.9678	10.29398		(NH ₄) ₂ SO ₄ .	$1.3472 \\ 0.81631$	10.12943 9.91186					
	Na ₂ SO ₃ . 7H ₂ O	2 026"	10 50511	(NH ₄) ₂	SO ₃	0.01031	9.91190					
SO ₃	Na ₂ O	$3.9365 \\ 0.77442$	10.59511 9.88898	SO4	<u>so₃</u>	0.60592	9.78242					
	Na ₂ SO ₄	1.7744	10.24905		H ₂ SO ₄	0.74227	9.87056					
Strontium: Sr=87.63					As_2S_3 $BaSO_4$	2.5587 7.2810	10.40802 10.86219					
CO_2	SrCO3	3.3550	10.52569	~_	CdS BaSO4	4.5059	10.65378					
SO ₃	SrO	1.2994	10.11207	SO ₂	BaSO ₄	$\frac{3.6439}{2.9157}$	10.56157 10.46474					
	SrSO ₄	2.2944	10.36067	SO4	BaSO ₄	2.4300	10.46474					

	(1	1		
Weighed	Sought	Factor	Loga- rithm	Weighed	Sought	Factor	Loga- rithm
Tin:				Uranium:	\		-10
Sn = 118.7			-10	UO2	U3O8		10.01682
Šn	SnCl ₂	1.5975	10.20344	1	$U_2P_2O_{11}$	1.3221	10.12126
М	SnCl ₂ ·2H ₂ O	1.9010	10.27898	U ₃ O ₈	Ŭ	0.84809	9.92844
	SnCl ₄	2.1949	10.34141	0.00	ŬO ₂	0.96202	9.98318
		2.1949	10.04141		UO2(NO3)2	0.80202	0.00010
	SnCl4(NH4		100000	1	0 03(1403)5.	1.7885	10.25249
	Cl)2	3.0964	10.49086		6H ₂ O	1.7880	10.25249
	SnO	1.1348	10.05492	UO ₂	1	ľ	l
	SnO_2	1.2696	10.10367	(NO ₃) ₂ .	1		l
$SnCl_2$	Sn	0.62599	9.79657	6H ₂ O	U3O8	0.55914	9.74752
	SnO_2	0.79475	9.90023		U	0.67624	
\mathbf{SnCl}_{2} .	DHO2	0.,01.0	0.000	U ₂ P ₂ O ₁₁			
	Sn	0.52609	9.72102		UO ₂	0.76709	9.88485
2H ₂ O				Vanadium:	1		
	SnO_2	0.66785	9.82468	V = 51	1	1	
$SnCl_4$	Sn	0.45559	9.65857	77	V ₂ O ₅	1.7843	10.25147
	SnO_2	0.57841	9.76224	<u>v.</u>			
SnCl ₄ (N	· · ·	l	1	VO4	V ₂ O ₅	0.79130	
H ₄ Cl) ₂ .	Sn	0.32296	9.50915	V ₂ O ₅	V	0.56045	
11401/2.	SnO ₂	0.41002	9.61281		VO4	1.2638	10.10166
			9.94508	Zinc:			1
SnO	Sn	0.88122				l	1
	SnO_2	1.1188	10.04875	$Z_{n} = 65.37$	7 00	l	l
SnO_2	Sn	0.78766	9.89634		ZnSO4.		
	$SnCl_2$	1.2583	10.09975		7H ₂ O	1.2318	10.09054
	$SnCl_2 \cdot 2H_2O$	1.4973	10.17531	Zn	ZnO	1.2447	10.09508
	SnCl4	1.7289	10.23777		Zn2P2O7	2.3315	10.36763
	SnCl ₄				ZnS	1.4904	10.17330
	(NH ₄ Cl) ₂ .	2.4389	10.38719	ZnCl2	ZnO	0.59702	
					ZnO	0.64903	
	SnO	0.89383	9.90120		7	0.80338	
Titanium:		1		ZnO	Zn		
Ti = 48.1				i	$ZnCl_2$	1.6749	10.22401
Ti	TiO2	1.6652	10.22148		ZnCO3	1.5407	10.18773
TiO2	Ti	0.60051	9.77852		$Zn_2P_2O_7$	1.8773	10.27254
Tungsten:				ł	ZnS	1.1974	10.07828
W = 184	l	ł	1.1	Zn ₂ P ₂ O ₇	Zn	0.42891	9.63237
W	WO2	1.1739	10.06963		$\mathbf{Z}_{\mathbf{n}}\mathbf{O}$	0.53390	
VV					BaSO ₄	2.3959	10.37947
****	₩O₃	1.2609	10.10067				
WO_2	<u>w</u>	0.85187			Zn	0.67094	
WO₃	W	0.79310	• 9.89933	1	ZnO	0.83516	9.92177
Uranium:	1		1	1	ZnSO ₄ ·		1
U = 238.2			1		7H ₂ O	2.9506	10.46991
Ŭ	UO2	1.1343	10.05473	ZnSO ₄ ·	1		
· · · · · · ·	U ₃ O ₈	1.1791	10.07155		BaSO ₄	0.81182	9.90946
	U ₂ P ₂ O ₁₁	1.4997	10.17600		ZnO	0.28299	
TTO	TT 2011	0.88157			ZnS	0.33884	
UU2	U	0.00107	9.94520	1	шь	U.30004	0.02000
	I	1	1		1		

HEATS OF FORMATION AND SOLUTION

The following table gives the heat of formation and heat of solution in small calories. To convert to British Thermal Units

multiply the values by 0.003968.

The values are given for a temperature of about 15° C. unless otherwise stated. The heat of solution is given in most cases for a definite number of water molecules to one of the substance. Where this is not stated the dilution may be understood to be such that additional dilution produces a negligible thermal effect.

In the second column the formulæ indicate the substances entering the reaction or the nature of the compound where only

the heat of solution is given.

(Compiled from various sources.)

(complication) various sources,						
Name.	Formula.	Physical state.	Heat of forma- tion. Calories.	Water. mols.	Heat of solution. Calories.	
Acetic Acid	C ₂ , H ₄ , O ₂	liquid	117,200	200	+375	
	Al. Br3	solid	121,950	2970	+85,300°	
carbide	Al4, C3	solid	232,000		1 00,000	
chloride	Al. Cls	solid	161,800	2500	+153,690	
	AlCl ₃			1250	+76.845	
fluoride	Al, F ₃	dil. sol.	275,220			
hydroxide	Al. Os. Hs	solid	301,300			
hydroxide	Al ₂ , O ₃ , 3H ₂ O	solid	288,920			
iodide	Al, I ₃	solid	70,300	2250	+89,000°	
oxide[phate	Al2. O3	solid	392,600		·	
potassium sul-	K ₂ Al ₂ (SO ₄) ₄ .24H ₂ O			. 2400	-20,240	
silicate	Al2, Si2, O7	solid	767,500			
silicate	Al2, Si2, O0, H4	solid	927,420			
sulphate	Al ₂ , S ₃ , O ₁₂	dil. sol.	879,700			
sulphide	Al2. S3	solid	126,400			
Ammonia	N, H ₃	gas	12,000			
ammonia	N, H3	liquid	21,000			
Ammonium		-				
acetate	N , H_7 , C_2 , O_2	solid	150,250	200	+25024°	
bromide	N, H ₄ , Br NH ₃ , HBr	solid	65,350	200	-4,380	
bromide	NH3, HBr	solid	45,500			
carbonate	N_2 , H_8 , C , O_3 , Aq N_2 , H_5 , C , O_3	diløsol.	221,600			
carbonate, acid.	N2, H5, C, O3	solid	208,600	220-440	-6,300°	
chloride	IN. H4. Cl	solid	76,800	200	-3,08818°	
chloride	NH ₃ , HCl	solid	41,900			
chloride	NH4, Cl		75,790			
chloroplatinite	(NH ₄) ₂ PtCl ₄			660	-8;480	
cyanate	N ₂ , H ₄ , C, O, Aq	dil. sol.	68,900		,,,,	
cyanide	N ₂ , H ₄ , C NH ₃ , HCN	solid	2,300	820	-4,400	
cyanide	NH ₃ , HCN	solid	20,600			
ferrocyanide	$(NH_4)_4$ Fe $(CN)_6.3$ H ₂ O	-:;	.227.111.		-6,800 ¹⁴ °	
fluoride	N, H4, F	solid	101,250		-1,500	
fluoride	NH ₈ , HF	solid	37,300			
fluosilicate	N_2 , H_8 , Si , F_6	solid	458,900	2400	-8,4007°	
hydroxide	N, H ₅ , O	,:, , .	88,800			
hydroxide	N, H ₅ , O, Aq	dil. sol.	90,000			
iodide	N, H4, I	solid	49,300	200	-3,550	
iodide	NH3, HI	solia	43,460		· · · · · · · · · ·	
iodide	NH4, I	sona	49,310	000.110	-6,200 ¹⁵	
nitrate	N ₂ , H ₄ , O ₃		88,060 {	220-440 200	-6,320	
nitrate nitrite	NH ₃ , HNO ₃ N ₂ , H ₄ , O ₂		34,800 68,950	400	-4.75012.5°	
11101100	,,					

			Heat of		
Name.	Formula.	Physical state.	forma- tion. Calories.	Water mols.	Heat of solution. Calories.
Ammonium				1	
Ammonium	N ₂ , H ₈ , C ₂ , O ₄	colid	270,100	345-690	-8,000
oxalate	(NIII.) CO. II.O.	șonu	210,100	395-790	-11,500
oxalate	(N H4)2C2C4.H2C	331	102 000		
pnospnate	N_3, H_{12}, P, O_4, Aq	an. son.	403,000		•••••
(di-basic).	N ₂ , H ₉ , P, O ₄ , Aq	dil. sol	375,000		
(mbas.).	N, H_6, P, O_4, Aq	dil. sol.	341,200		
sulphate	N_2 , H_8 , S , O_4	solid	283,500	400	-2,370
sulphate, acid	N, H_5, S, O_4	solid	244,600	200	-20
suipnace, per}	1112, 118, 102, 108	SULL	392,900	1100	-9,700°.4°
sulphide	N_2 , H_8 , S	solid	66,200		
sulphide, acid	N2, H ₃ , S. N2, H ₃ , S. NH ₃ , H ₂ S. N2, H ₃ , S, O ₃ . (NH ₄) ₂ SO ₃ .H ₂ O N2, H ₄ C, S. N4, H ₂ S N, H ₅ S N, H ₅ S.	solid	40,000	890	-3,25012.5°
sulphide, acid.	NH ₂ , H ₂ S	solid	22,400		
sulphite	No. Ho. S. O.	solid	215,500	440	-1,5408°
sulphite	(NHA) SO HO			440	-5,36010°
gulphograpato	N. H. C S	aolid	20,700		-5,67012°
sulphocyanace	NEL ELS	solid	22,400	890	-3,25018
suiphydrate	N II C	solid	40,000	000	
suipnydrate	N, IL5, S	sona	40,000		
amumony ;			000 700		
acid (stibnic)	$3H_2O$, Sb_2 , O_5	solid	228,780		
acid (stibnous).	$3H_2O$, Sb_2 , O_3	solid	167,420		
bromide	Sb, Br ₃	solid	61,400 91,390		
chloride, tri	Sb, Cl ₃	solid	91,390	1100	+8,910
chloride, penta-	3H ₂ O, Sb ₂ , O ₅ 3H ₂ O, Sb ₂ , O ₃ Sb, Br ₃	liquid	104,870	1100	+35,200
fluoride	Sb. F3	solid	141,000		
hydride (stib-	Sb. H ₃	gas const	-34,270	l	
ine)		vol.	·		
	Sb, H ₃	const.	-33,960	l	
- 1		nress.			
iodido	Sb, I ₃	solid.	28,800	l	
omide twi	gh. O.	golid	166,900	l	
oxide, tri-	GL O	solid	131,200	::::::	
oxide, penta	502,05	soliu	170 600		
oxycnioriae	SD_2 , O_2 , O_1	Solid	179,600		
	Sb ₂ , S ₃	sona	34,400		
Arsenic		١,,,	017 000	· .	400
acid	H ₃ , As, O ₄	solid	215,630		-400
bromide	As, Br ₃	solid	45,500		
chioride	AS, Cl3	nquia	71,390		
chloride	As, Cl ₃	solid	—71,500		
iodide	As, I ₃	solid	13,500		
hydride (arsine)	As (cryst.), H ₃	gas	44,200		
oxide, tri	As ₂ , O ₃ , Aq	solid	154,670		-7,550
oxide	As2. O3. Aq	dil. sol.	147,120 156,400		
oxide	As ₂ (cryst.), O ₃	solid	156,400		-7,500
Oxide, tm-	AS(CTVSL.), U2, AC	1011. 801.	148,900		
oxide penta-	As ₂ , O ₅	solid.	219,380		
ovide penta-	Aso Os Ag	dil. sol.	225,380		
Aurichlorhydric	Au Cl H 4H ₀ O	solid	76,950	400	-5,830
Acid	114, 614, 12, 122,61	00.24	7,000		,
Aurobromhydric	Au, Br4, H, Aq	dil sol	41,165	1000	-11,400
Acid	Au, Dia, II, Aq	u 50	11,100	(5H ₂ O)	,
Barium				(02220)	
	Po (C. H.O.), 2H.O	1		800	-1,150
acetate	$Ba(C_2H_3O_2)_2.3H_2O$	الموانية	940 900	600	+5,20010.89
acetate	Da, U4, H6, U4	SOLICE	349,300	1 000	T-0,200.00
arsenate	Ba ₃ , As ₂ , O ₈ p p t'd	soira	629,200		14.000
promide	Ba, C ₄ , H ₆ , O ₄ Ba ₃ , As ₂ , O ₈ p'p't'd Ba, Br ₂ Ba, Br ₂ , 2H ₂ O	laoiid	172,100	400	+4,980
bromide	Ba, Br ₂ , 2H ₂ O	solid .	181,210	400	-4,130
carbonate	Ba, C, O3	amorph.	282,500		
carbonate	Ba, C, O ₃	cryst.	283,000	`	
carbonate	BaO, CO ₂	solid	63,440		
chlorate	Ba, Cl_2, O_6	solid	171,200	500-1000	-6,70010°
chlorate	Ba, C, O ₃ . Ba, C, O ₃ . BaO, CO ₂ . Ba, Cl ₂ , O ₆ . Ba(ClO ₃).H ₂ O.			600	-11,240
		l	<u> </u>		!

HEATS OF	FORMATION A	ND SO	DOLLON	(COII	mucu)
Name.	Formula.	Physical state.	Heat of forma- tion. Calories.	Water . mols.	Heat of solution. Calories.
Di					
Barium	D CI O ATT O		170 710		
chlorate	Ba, Cl ₂ , O ₆ , $6H_2O$ Ba, Cl ₂ , O ₈	solid	179,710	FFA 1100	-1,80000
chlorate, per	$[Ba, Cl_2, O_8$	solid	201,400	550-1100	
chlorate, per	$[Ba, (ClO_4)_2, 3H_2O]$.:	*********	650-1300	-9,400
chloride	Ba, Cl2	solid	196,880	400	+2,070
chloride	Ba, Cl2, 2H2O	solid	203,880 48,300	400	-4,930 +1,800°
cyanide	Ba, C ₂ , N ₂	solid	48,300		-2,560
cyanide	Ba, (ClO ₄) ₂ , 3H ₂ O Ba, Cl ₂ Ba, Cl ₂ , 2H ₂ O Ba, C ₂ , N ₂ Ba(CN) ₂ , 2H ₂ O				-2,500 -11,400 ¹⁴
ierrocyamice	Dazre(ON)6.01120		222,600		-1,900
nuoride	Ba, F ₂	precip. solid	37,500		-1,500
hadraid		solid	217,000		+12,260
hydroxide	Ba, H ₂ . Ba, O ₂ , H ₂ Ba(OH) ₂ , 8H ₂ O	sonu	211,000	400	-15,210
hydroxide	Ba_1, Br_2, O_2, Aq	dil. sol.	168,400	400	10,210
hypochlorite	Ba , Cl_2 , O_2 , Aq	dil. sol.	175,200		
hypophosphite	Bo H. P. O. Ag	dil. sol.	403,000		
hypophosphite.	Ba, H_4 , P_2 , O_4 , Aq Ba H_4 (PO_2) ₂ , H_2O	un. son.	200,000	800	+290
iodide	Bo To	solid	136,100		+10,30016°
iodide	Ba, I ₂ Ba, I ₂ , 7H ₂ O	solid	153,510	500	-6,850
		polid	228,400	400	-9,400
nitrate	Ba (NO.) H.O	50		800	-8,60012°
nitride	Ba (NO ₃) ₂ .H ₂ O. Ba ₃ , N ₂ . Ba, N ₂ , O ₈ . Ba, O.	solid	149,400		
nitrite	Ba. No. O.	solid	179,600		
oxide	Ba. O	solid	126,380		+34,520
				666	+7,060
ovido non	IR ₀ O ₀	leolid	139,400	l	
oxide, per	BaO. O	solid	18,360		
phosphate, tri	Ba ₃ , P ₂ , O ₈	cryst.	969,100		
phosphate, di	BaO, O	solid	424,600		
phosphate, mono	Ba, H ₄ , P ₂ , O ₈	solid	735,900 69,900		
selenide	Ba, Se	solid	69,900		
sincate	Da, Di, Us	Isour	328,100		
sulphate	Ba, S, O4	solid	340,200		-5,580
sulphide	Ba, S.	solid	102,900		+7,300
_ sulphide	Ba, S, Aq	dil. sol.	107,800		
Beryllium	- a	1 ,, ,	155 000	1	1 44 500
chloride	Be, Cl ₂ BeSO ₄ .4H ₂ O	solid	155,000	400	$+44,500 \\ +1,100$
sulphate	BeSU4.4H2U			1 200	71,100
Bismuth	n: a	solid	90,630	1600	+7,83018°
chloride	Bi, Cl ₃ Bi, O ₃ , H ₃	solid	171 700		T1,000~
hydroxide	Bi ₂ , O ₃ , 3H ₂ O	golid	137,740		
hydroxide oxide	Bi. O.	solid	171,700 137,740 137,800		
Boric Acid	Bi ₂ , O ₃ B ₂ O ₃ , 3H ₂ O	solid	16,400	800	-10,790 ¹⁸
Boron	D208, 02220	1	,		
bromide	B, Br3	liauid	43,200	l	
chloride	B. Cla	gas	89,100		
chloride	B, Cl ₃ B, Cl ₃ B, F ₃	liquid	93,400		
fluoride	B, F ₃	gas	234,800		
oxide	B ₂ , O ₃	solid	272,600		+7,300
Bromic Acid	B ₂ , O ₃	dil. sol.	12,500		
Bromine	i .			1	l
chloride	Br, Cl	liquid	700		
Cadmium	۱	1	FF 000	I	I
bromide	Cd, Br ₂ , 4H ₂ O	solid	75,200 82,930 181,890	•••••	
bromide	Ca, Br ₂ , 4H ₂ O	lsolid	82,930	• • • • • • • • • • • • • • • • • • • •	
carbonate	Ca, C, O₃	solid	181,890	400	+3,010
chloride	ICd, Cl. 9H.O	solid	93,240 98,530	400	+760
chioride	ICI C N	leelid	-35,200	1 200	1'''
cyanide	Cd, C, O3. Cd, Cl2. Cd, Cl2. Cd, Cl2, 2H ₂ O Cd, C ₂ , N ₂ . Cd, 2CN, Aq.	dil sol	+33,960		l
cyanide	ou, 2014, Aq	Juli. 501.	1 '00,000	١	l

	l	/	Heat of)	
		701		137a4an	Heat of
Name.	Formula.	Physical	forma-	Water	solution.
Name.	Formula.	state.	tion.	mols.	Calories.
			Calories.		Calulies.
Cadmium					
Avarida	Cd, F ₂ , Aq	dil. sol.	123,500		
indonae	104, 72, 44	solid	65,680	• • • • • • • • • • • • • • • • • • • •	
hydroxide	Ca, O, H ₂ O		40,000	400	-960
iodide	[Cd, I2	solid	48,830		
nitrate	ICd, N2, O6, H2O	solid	113,300	400	+4,180
nitrate	Cd. No. Oc. 4H ₂ O	solid	121,160 66,300	400	-5,040
amida	Ca' O''	solid	66.300		
oxide	Cd, Se	solid, cry.	14,300	*****	
selenide	Ca, Se	sond, cry.		••••	
selenide	Cd, Se	solid	23,700	••••	
	· .	precip.			
sulphate	Cd, SO ₂ , O ₂	solid	150,470	400	+10,740
	Ca g d.	solid	219,900		l
Buiphace	Cd, SO ₂ , O ₂ . Cd, S, O ₄ . CdSO ₄ , H ₂ O. CdSO ₄ , §H ₂ O. Cd, S, xH ₂ O. Cd, Te.	Solice	220,000	400	+6,050
sulphate	CasU4. H ₂ U				
sulphate	CdSO4.§H2O	solid	*****	400	+2,660
sulphide	Cd. S. xH2O	solid	34,350		
tollurida	Cd Te	solid, cry.	16,600	l	
Ossailam	ou, 10	Jona, 623.	,		
Caesium	la. n.	20114	47,700	l	-3,250
bromide	Cs, Br	solid	41,100		
carbonate	Cs ₂ O, CO ₂	solid	97,530		
carbonate.	IC82, C, O3	solid	274,540		
corbonate acid	Ca H C O	solid	232,920	1	
carbonato, acid.	Can H Co.	solid	232,920 11,250 109,860	1	
carponate, acid.	CsOH, CO2	solid	100 860	1	-4,750 ¹⁵ ° +8,350
chloride	Cs, Cl		100,000		10 250
fluoride	(Cs, F	solid	106,600	1	T0,000
hydroxide	Cs, F. Cs, O, H. CsOH.H ₂ O	solid	101,300	330	+15,880
hydrovide	CsOH H ₂ O	1			+4,317
indida	Ca T	solid	83,600	1	-1,450
iodide	Cs, 1	solid	83,600 82,700 28,260		+83,200
oxide, mon	C82, O	Solid	00,100	1	1 00,200
oxide, di	CS, I. CS, I. CS, I. CS, O. CS, O. CS, O. CS, O. CS, O. CS, O. CS, O. CS, S, O. CS, H, S, O4.	solid	20,200		
oxide, tri	[Cs ₂ O ₂ , O	solid	18,000		
ovide tetr-	Cs2O2. O	Isolid	12,500	1	
gulaboto	Cs S O	solid	12,500 349,830 282,900	1	-4,970
suiphave	C. H & O.	solid	282,900	1	-3,730
sulphate, acid	Cs, II, S, O4	Sona	202,000	1	1 -,
Laicmm	1	1	998 000	440	+7,00015°
acetate	Ca, C ₄ , H ₆ , O ₄ Ca (C ₂ H ₃ O ₂) ₂ .H ₂ O	solid	335,000		E 400179
acetate	$ \mathbf{Ca}(\mathbf{C_2H_3O_2})_2,\mathbf{H_2O}$			600	+5,400170
aluminate.	l ' - '	1		1	
" mono	Ca, Al ₂ , O ₄	solid	524,550	1	
" A;	Ca2, Al2, O5	solid	658,900	1	1
" di	Oaz, A12, Og	solid	789,050		1
tri	Ca3, Al2, O6				
aluminum sili-	Ca3, Al2, Si2, O10	solid	1,195,600	• • • • •	
cate	1	1		I	
arsenate	ICas, As2, Os	solid	732,800		1
bromide	Ca ₃ , As ₂ , O ₈ Ca, Br ₂ Ca, Br ₂ , 6H ₂ O	solid	732,800 154,920	400	+24,510
bromide	Co Bro 6HoO	solid	180,520	400	1,090
promide	Ca, Diz, Ulizo	golid	13,150		1
carbide	Ca, C2	150114	269,100	1	
carbonate	Ca, C ₂	sona .	209,100		
	i .	precip.		i	l
carbonate	Ca, C, O ₃	solid	270,800		• • • • • • •
oar bonate	1, -,	rhomb.		1	1
	CaO, CO2	solid	43,300	1	1
carbonate	CaO, CO2		20,000	1	1
	la 0 00	precip.	40 000	1	1
carbonate	CaO, CO ₂	(calcite)	42,000	1	+17,410
chloride	Ca, Cl2	solid	190,400	300	T 17,210
chloride	Ca. Cl. 6H2O	solid	205,640	400	-4,05516°
orranida	ICe Ce No Ac	dil. sol.	38,300	1	
f	Ca, Cl ₂ , 6H ₂ O Ca, C ₂ , N ₂ , Aq Ca ₂ Fe(CN) ₆ .12H ₂ O Ca, F ₂ .		1	1	-4,600 ¹⁰
ierrocyanide	Carre(CN)6.12112U	lacilid	218,400	1	1
fluoride	Ua, F2	BOHG	210,100	1	1
	1	precip.	000 000	1	9 700
fluoride	Ca, F ₂ Ca, H ₂ Ca, O, H ₂ O	solid	239,200		-2,700
hydride	ICa. H2	solid	46,200		1
herdrovida	C. O. H.O.	solid	160,540	2500	+2,790
nyuroxius	100, 0, 1120			<u> </u>	

				\ <u>`</u>	
		D	Heat of		Heat of
Name.	Formula.	Physical		Water	solution.
		state.	tion.	mols.	Calories.
			Calories.		
Calcium					
hydroxide	Ca, O2, H2	solid	236,000	ĺ	
iodide	Ca. To	solid	127,400	400	+27,690
nitrate .	Ca. Na Oa	Isolid	127,400 216,770	400	+3,950
nitrate	Ca(NO ₃) ₂ .4H ₂ O			400	-7,250
nitride		solid	112,200		·
nitrite	H ₂ N ₂ O ₂ , Ca(OH),	dil. sol.	21,600		
ovoloto	2H ₂ O	l	010.000		1
oxalate oxide	Ca, C ₂ , O ₄	precip.	312,900 151,900		1.40.000
oxide, per	Con o	solid	5,400	2500	+18,330
oxide, per	CaO, O	solid	156,010		
phosphate	Cas. Ps. Os	solid	919,200		
silicate	Ca ₃ , P ₂ , O ₈	solid	344,400		
silicate	CaO, SiO ₂	solid	33,100		
selenide	Ca, Se	solid	58,000		
sulphate	CaO, SiO ₂	solid	261,360		+2,92090
sulphate	Ca, SO ₂ , O ₂ , 2H ₂ O	sona			
	G 90 177 0	(gypsum)	266,100		-69010°
	CaSO ₄ .½H ₂ O				+3,560100
sulphate	CaSO _{4.4} H ₂ O		110 000	400	-7,970
sulphide sulphydrate	Ca, S Ca, S ₂ , H ₂ , Aq	Solid	112,200	• • • • • • • • • • • • • • • • • • • •	+6,310
Carbon			125,300	•••••	· · · · · · · · ·
chloride, di	C2, Cl4	oas	-1,150		
chloride, di	C2, Cl4	liquid	+6,000		
chloride, di	C2 (diamond), Cl4	liquid	45,500		
chloride, tri	C2 (diamond), Cl6	solid	107,400		
			21,030		
chioride, tetra	C, Cl4	liquid	28,200		
chloride, tetra	C, Cl ₄ C (diamond), Cl ₄ C (diamond), Cl ₄	gas	68,500 75,700		· · · · • • • •
orida mon-	C (diamond), Cit	nquia	75,700		• • • • • • • •
oxide, mon-	C, O	gas	29,000 26,100	:::::	• • • • • • •
oxide, di-	C (diamond), O2 C (diamond), O2 C, O, Cl2 C, O, S	rag	97,000		
oxide, di	C (diamond), O2	gas	97,000 94,310 44,000		
oxychloride	C, O, Cl ₂	gas	44,000		
oxysulphide	C, O, S	solid	37,030		
anibhide, di	C, S ₂	gas	-25,400		· · · · · · · · ·
Cerium	C, S ₂	liquid	19,000		
	co o	1:-	1 004 000		
Chloric acid	Ce, O ₂ Cl, O ₃ , H, Aq	dil sol	+224,600 22,000		• • • • • • •
Chlorine		1	22,000	•••••	
oxide, mon	Cl ₂ , O S, O ₃ , H, Cl	gas	-17,930	1	
Chlorosulphonic	S, Ó3, H, Cl	gas	+127,400		
acid.		ļ . ļ			
acid	S, O ₃ , H, Cl	liquid	140,200		
Chromium	C-P- ett o		i		1 500
bromide (ic)	CrBr ₃ .6H ₂ O CrBr ₃ .6H ₂ O	green		••••	+700
chloride (ic)	CrCl ₂ , Aq, Cl	dil sol	56,700	• • • • •	+14,350
V	O. O.z., A.q., OI	violet	90,700		• • • • • • • • • • • • • • • • • • • •
chloride (ic)	CrCls				+35,900
chloride (ic)	2CrClo 13Ho∩	green			-100
chloride (ic)	2CrCl ₃ .13H ₂ O	gray		1	+24.040
chloride (ous)	2CrCl ₃ .13H ₂ O CrCl ₂ . CrCl ₂ .4H ₂ O				+18,600
cnioride (ous)	CrCl2.4H2O				+2,000
oxide (ic)	Cr ₂ , O ₃	cryst.	267,800	• • • • •	• • • • • • •
oxide tri-	Cr ₂ , O ₃	amorpn.	243,800 140,000	220	+1,900199
Omitatoj 012	C., C	SUILU	140,000	220	⊥1'800ra,

Name.	Formula.	Physical state.	Heat of formation. Calories.	Water mols.	Heat of solution. Calories.
Olana and instance					
Chromium sulphate (ic) sulphate (ic)	Cr ₂ (SO ₄) ₃ .8H ₂ O Cr ₂ (SO ₄) ₃ .16H ₂ O	green violet			$^{+13,600}_{+6,200}$
Cobalt	012(004)8.101120	110100		1	1 5,255
bromide (ous)	Co, Br2, Aq	dil. sol.	79 040	1	
chloride (ous)	Co, Cl ₂	solid	72,940 76,700	400	+18,340
chloride (ous)	CoCl ₂ .6H ₂ O		. 10,100	400	-2,850
fluoride (ous)	Co F. A.	dil. sol.	199 900	200	2,000
hadrae (ous)	Co, F ₂ , Aq Co ₂ , O ₃ , 3H ₂ O	solid	122,200 149,380		
hydroxide (ic)	1002, U3, 3H2U	solid	22,580		
hydroxide (ic)	2Co(OH) ₂ , O, H ₂ O	solid			
nydroxide (ous)	Co, O, H ₂ O Co, I ₂ , Aq CoO, N ₂ O ₅ , Aq Co, N ₂ , O ₆ , 6H ₂ O	Sono	63,400		
iogiae (ons)	Co, 12, Aq	dii. 801.	40,700	• • • • • •	
nitrate (ous)	CoU, N ₂ U ₅ , Aq	an son	84,540	1	-4.960
nitrate (ous)	Co, N ₂ , O ₆ , 6H ₂ O	solid	120,680	400	
			57,500	••••	
oxide (ous)	Ço, Ö	amorph.	57,500		
oxide (ous, ic)	Co ₃ , O ₄ Co, Se	solid	193,400	••••	
selenide (ous)	Co, Se	cryst.	9,900		
selenide (ous)	Co, Se. Co, So, Se. Co, O, SO ₃ , Aq. Co, O ₂ , SO ₂ , 7H ₂ O. Co, S, xH ₂ O. Co, Te.	precip.	13,900		
sulphate (ous)	Co. O. SO ₃ , Aq	dil. sol.	88,070		l
sulphate (ous).	Co. O2. SO2. 7H2O	solid	164,970 19,730	800	-3,570
sulphide (ous)	Co. S. xH ₂ O	solid	19,730		
telluride (ous)	Co. Te	solid	13,000		
Copper	00, 10	3011.92	20,000		
acetate (ic)	Cu C H O	solid	213,900	320	+2,40016°
acetate (ic)	Cu , C_4 , H_6 , O_4	00114	=10,000	440	+80010°
bromide (ie)	Cu, Br ₂	solid	32,600	400	+8,250
bromide (ie)	CuBr ₂ .4H ₂ O		02,000		-1,5008°
bromide (ous)	Cu Br	golid	24,980	:::::	
promide (ous)	Cu, Br	nnooin	142,800		:::::::
carbonate (ic).	Cu, C, O3	precip.	28,600		
eniorate (ic)	Cu, Ci2, O6, Aq	un. son.	51,400	600	+11,800
choride (ic)	Cu, Cl2	Sond		400	+4,210
chioride (1c)	Cu, Cl ₂ , 2H ₂ O	Solid	58,500	400	
chioride (ous)	Cu, Cl ₂ , O ₆ , Aq	solid	35,400		
cyanide (ous)	Cu, C, N	sona	-22,050	••••	
nuoride (ic)	Cu, F2, Aq	dil. sol.	+89,600		
iodide (ous)	Cu, I	solid	16,260		
nitrate (ic)	Cu, N2, O6, 6H2O	solid	92,940	400	-10,710
oxide (ic)	Qu, O	solid	37,700	•••••	
oxide (ic)	[Cu₂O, O	solid	36,200		
oxide (ous)	Cu, N ₂ , O ₆ , 6H ₂ O Cu, O Cu ₂ O, O Cu ₂ O, O Cu ₂ O	solid	37,700 36,200 43,800		
selenide (ic)	Cu, Se	precip.	4,800	(
selenide (ous)	Cu ₂ , Se	cryst.	8,000		
sulphate (ic)	Cu, O ₂ , SO ₂	solid	111,490	400	+15,800
sulphate (ic)	$ Cu, O_2, SO_2, H_2O$	solid	117,950 130,040 181,700	400	+9,340
sulphate (ic)	Cu, O ₂ , SO ₂ , 5H ₂ O	solid	130,040	400	-2,750
sulphate (ic)	Cu, S, O4	sona	181,700		
sulphide (ic)	Cu, S	solid	10,100	1	
sulphide (ous)	Cu ₂ , S	solid	20,300		
telluride	Cu ₂ , Te	solid	8,200 74,000		
Cvanic acid	C (diam.), N, O, H,	dil. sol.	74,000	l	
•	Ι Ασ	1	1	1	l .
Cyanogen	IC. N.	gas	-65,700	l	1
cyanogen	C2 (diamond). N2	gas	-73,900	l	
cvanogen	C2 (diamond), No	lliquid	+68,500	1	1
chloride	C (diamond), N. Cl	gas	35,200		1
chloride	C (diamond), N. Cl.	liquid	-26,800	1	1
iodide	C ₂ (diamond), N ₂ C ₂ (diamond), N ₂ C (diamond), N, Cl C (diamond), N, Cl C (diamond), N, Cl C (diamond), N, I	solid	-39,200	l	-2,800
Dysprosium	•	1		١	1 -,
sulphate	Dv2(SO4)8.8H2O	1	1	1200	+6,300
Erbium acetate	Dy ₂ (SO ₄) ₈ .8H ₂ O Er (C ₂ H ₃ O ₂) ₃ .4H ₂ O			1500	+700
	1	1	1	1	1

Name.	Formula.	Physical state.	Heat of forma- tion. Calories.	Water mols.	Heat of solution. Calories.
Ferric and Ferrous salts, see under					
Iron Fluosilicic acid Glucinum (Beryl- lium)	Si, F6, H2, Aq	dil. sol.	374,400		
chloridesulphate	Gl, Cl ₂ GlSO ₄ .4H ₂ O	solid	155,000	400	+44,500 + 1,100]
Gold bromide (ic)	Au, Br3	solid	8,850	2000	- 3,760
bromide (ous)	Au, Br	solid	$-80 \\ +22,820$	900	+ 4,450
chloride (ic)	Au, Cl ₃	Solid	+44,840	600	-1,690
chloride (ous)	Au, Cl. Au ₂ , O ₃ , 3H ₂ O. Au, I. N ₂ , H ₄ , Aq.	solid	5,810		
hydroxide (ic)	Au ₂ ,_O ₃ , 3H ₂ O	solid	-13,190		
_iodide (ous)	Au, I	solid	-5,520		
Hydrazine	N2, H4, Aq	dil. sol.	+1,700	• • • • • •	
Hydrobromic scid	N ₃ , H, Aq H, Br	an. son.	58,200 8,600		+20,000
			22,000		+17,400
Hydrocyanic acid	C (diamond), N, H C (diamond), N, H C (diamond), N, H	gas	-30,500		1
	C (diamond), N, H	liquid	-24,800		
	C (diamond), N, H	dil. sol.	-24,400		
Hydroferricyanic acid	H ₃ , Fe, C ₆ N ₆ , Aq	dil. sol.	-127,500	• • • • • • • • • • • • • • • • • • • •	
acid Hydroferrocyanic acid	Hs, Fe, C6, N6, Aq H4, Fe, C6, N6	dil. sol. solid	$-147,500 \\ -102,000$		+500
ooid	H4, Fe, C6, N6	solid	-122,000		
Hydrofluoric acid	H, F	gas	+38,500		
	<u> Н, Е</u>	liquid	45,700 50,300		
Hydr(o)iodic acid	H, F. H, F. H, F. H, I.	dil. sol. gas	50,300 -6,400		+19,600
nyarogen	2	f			` .
oxide (water)	H ₂ , O	liquid	+69,000°		
oxide	H₂, O	solia	70,400°° 58,300°°		
nerovide	H ₂ , O. H ₂ , O ₂ , Aq. H ₂ O, O, Aq. H ₃ O ₂ .	dil sol	45,300		
peroxide	H ₂ O. O. Ag	dil. sol.	-23,060		
peroxide	H ₂ , O ₂	liquid	+46,840		
seieniae	I H19. 50	10'98	-19,400		+ 9,300
sulphide	{H₂, S	gas	+2,730		+ 4,560
Hydrosulphurous	H ₂ , S. H ₂ , Te S ₂ , O ₄ , H ₂ , Aq	gas dil sol	$-34,900 \\ +156,100$		
acid	1	ł		1	
Hydroxylamine	N, H ₃ , O, Aq N, H ₃ , O	solid	24,290 27,600		- 2,800
Iodic acid Iodine	I, O ₃ , H	solid	57,960		- 2,160
bromide	I, Br I, Cl	solid	2,500		l
chloride, mono-	<u>[I, Cl</u>	solid	6,800		
chloride, mono-	II. Cl	lliquid	5,820		
chloride, tri	I, Cl ₃	solid	21,490		- 1,790
oxide, pent Lron		i	45,030		_ 1,790
acetate (ic)	Fe, C_6 , H_9 , O_6 , Aq (NH ₄)Fe(SO ₄) ₂ .	dil. sol.	359,350	 	
ammonium sul-	(NH ₄)Fe(SO ₄) ₂ .			500	-16,600
phate (ic)	12H ₂ O	1		1	l
ammonium sul- phate (ous)	6H ₀ O				- 9,800
bromide (ic)	Fe, Br ₃ , Aq	dil. sol.	95,450	l″	

Name.	Formula.	Physical state.	Heat of forma- tion. Calories.	Water mols.	Heat of solution. Calories.
Iron					
	Fe, Br ₂ , Aq	dil. sol.	78,070 184,500		
carbonate (ous).	Fe, Br ₂ , Aq Fe, C, O ₃ Fe, C, O ₃ FeO, CO ₂ Fe, Cl ₃ FeCl ₂ , Cl 2FeCl ₃ .5H ₂ O	cryst.	178,800		
carbonate	Fe, C, O3	precip.	24,500	•••••	
carbonate	FeO, CO2	golid	96,040	1000	+32,680
chloride (ic)	FeCl. Cl	solid	13,990		
chloride (ic)	PECIS, CI			2400	$+2\times21,000$
chloride (ic)	FeCl ₃ .6H ₂ O		l l	1200	+5,650
chloride (10)	Fe, Cl ₂	solid	82,200	350	1+17.850
			li l	1000	+ 9,700 ²⁰ °
chloride (ous)	FeCl ₂ .2H ₂ O Fe ₇ , C ₁₈ , N ₁₈ Fe ₇ , F ₃ , Aq Fe ₇ , F ₂ , Aq			400	+ 2,750
forrocvanide (ic)	Fez. Cie. Nie	precip.	-317,000		
fluoride (ic)	Fe, Fa, Aq	dil. sol.	+162,900		
fluoride (ous)	Fe, F2, Aq	dil. sol.	127,000 2×95,570 2×27,290	• • • • • •	
hydroxide (ic)	Fe, F2, AQ	solid	$2 \times 95,570$		
hydroxide (ic)	$2\text{Fe}(OH)_2$, O, H_2O	solid	2×27,290		
hydroxide (ous)	Fe, O, H ₂ O	solid	68,280		
iodide (ic)	Fe, I ₃ , Aq	dil. sol.	23,850		
iodide (ous)	IFA Io Ari	lan. son.	47,650 314,300		
nitrate (ic)	\mathbf{Fe} , \mathbf{N}_3 , \mathbf{O}_9 , \mathbf{Aq}	dil. sol.	314,300		
nitrate (ous)	$ \mathbf{Fe}, \mathbf{N}_2, \mathbf{O}_6, \mathbf{Aq}, \dots \rangle$	dil. sol.	119,000		
oxide (ic)	Fe ₂ , O ₃	Solid	197,700 65,700		
oxide (ous)	Fe, O	solid	270,800		
oxide (ous, 1c).	Fe ₃ , O ₄	sona	210,000	500	-16,000
pot. sul. (ic)	KFe(SO ₄) ₂ .12H ₂ O K ₂ Fe(SO ₄) ₂ .6H ₂ O				-10,700
pot. sul. (ous).	Fe, Se	cryst	16,000		
selenide (ous)	Fe, Se	precip.	15,200		
selenide (ous)	Fe, Si, O ₃	solid	254,600		
silicate	Fe, Si, O ₃ Fe ₂ , S ₃ , O ₁₂ , Aq Fe ₂ , O ₃ , 3SO ₃ , Aq Fe, SO ₂ , O ₂ , Aq	dil. sol.	650,500		
sulphate (ic)	Fee. Os. 3SOs. Ag	dil. sol.	224,900		
sulphate (ous).	Fe. SO2, O2, Aq	dil. sol.	93,200		– 4,510
sulphate (ous).	Fe, SO ₂ , O ₂ , 7H ₂ O	. solid	169,040	400	- 4,510
sulphate (ous).	Fe, S, O4, Aq	. dil. sol.	234,900		
sulphide (ous).	Fe, S, O4, Aq Fe, S, xH ₂ O	. solid	24,000		
telluride (ous).	Fe, Te	. cryst.	12,000		
Lanthanum	1	1	175,300	1	
chloride	. La, Cl2	. solid	447,300		
_ oxide	La ₂ , O ₃	. sona	121,000	l	
Lead	Ph. C. H. O.	. solid	231,100	440	+ 1,40016°
acetate	Pb, C ₄ , H ₆ , O ₄ Pb(C ₂ H ₃ O ₂) ₂ .3H ₂ O. Pb(C ₂ H ₃ O ₂) ₂ .3H ₂ O.			800	6,140
acetate	Pb(C2H3O2)2.3H2O.			240	- 5,50011°
bromide	Pb, Br ₂	. solid	64,450	25,000	-10,040
carbonate	. Pb, C, O ₃	. solid	166,700	1 *****	- 6,800
chloride	Pb, Cl ₂	. solid	83,900	1800	- 0,000
dithionate	$. PbS_2O_6.4H_2O$		107 600	400	- 8,540
fluoride	$ Pb, F_2$. precip.	107,600		
iodide	. Pp. 13	. solid	39,800 105,460	400	- 7,610
nitrate	. Pb, N2, O6	. sond	205,300		
oxalate	. PD, C2, O4	. precip.	50,300	1	
oxide, mon	Pb. S206.4H20 Pb. F2 Pb, I2 Pb, N2, O6 Pb, C2, O4 Pb, O PbO, O	solid	12,600	1	
oxide, per	Pb, O ₂	solid	62,400)	
oxide, per	PhBr ₂ . PhO	solid	3,300)	
oxybromide	PbBr, 2PbO	solid	4,700)	
oxybromide	PbBr ₂ , 3PbO	. solid	6,300		
oxychloride	PbCl2, PbO	solid	5,300		
oxychloride	PbCl ₂ , 2PbO	solid	6,600	{ ;·····	
oxychloride	PbCl ₂ , PbO PbCl ₂ , 2PbO PbCl ₂ , 3PbO	solid	6,700	' ·····	
, .	1	1	1		

	I OIGHIIIION A	110 50	DUTTON	(COII	mueu)
Name.	Formula.	Physical state.	Heat of formation. Calories.	Water mols.	Heat of solution. Calories.
Lead					
orviodide	PbI ₂ , PbO Pb, H, P, O ₃ Pb, Se	201:4	9 000		1
nhognhite	Ph H P O	sona	3,600		
golonido	Db. 80	sona	227,700		
selenide	Ph Se	precip.	14,300		
sulphate	Pb, Se	cryst.	17,000 216,210		
sulphate	Ph SO O	solid	145,130		
sulphide.	Ph S	procin	20,300	• • • • • •	
sulphocyanate	Ph. Co. No. So.	precip.	6,100		
telluride	Pb. Te	solid	6,200		
thiosulphate	Pb. S2. O3	golid	145,600	••••	
Lithium	,,	Sona	110,000		
bromide	Li, Br	bilos	79,960	l	+11,331
carbide	Li, Br Li2, C2 LiO, (CO ₂) Li, Cl	solid	11,300	:::::	
carbonate	LiO. (CO ₂)	solid .	54,230	• • • • • • • • • • • • • • • • • • • •	
chloride	Li. Cl	solid	93,810	230	+ 8,440
cvanide	Li, Cl. Li, C, N, Aq. Li, F 2LiF, SiF ₄ . Li, H. Li, H. Li, O, H. LiOH H ₂ O Li, I. Li, I. Li, I. Li, N, O ₃ . Lie, N ₂ . Lie, N ₂ .	dil sol	32,600		T 0,440
fluoride	Li. F	solid	120,000	• • • • • • • • • • • • • • • • • • • •	- 3,120
fluosilicate	2LiF. SiF.	golid	25,200	800	+ 1,800
hvdride	Li. H	golid	21,600	000	T 1,000
hydroxide	Li. O. H	solid	112,300	400	+ 5,800
hydroxide	LiOH.H.O	Sona	112,500		+51015°
iodide	Li. I	hilos	61,210		+14,886
nitrate	Li. N. Oa	solid	111,610	100	+300
nitride	Lis. No	solid	93,500	100	T-000
oxide	Li ₂ , O	solid	143,300	222	+31,20015
oxide	4Li ₂ O. 5H ₂ O.	Sond		888	+ 8,18215
oxide	4Li ₂ O. 3H ₂ O			888	+16,02615
selenide	Liz. Se	solid	83,000	000	+10,70020
selenide	H ₂ O, 5H ₂ O. 4Li ₂ O, 3H ₂ O. Li ₂ , Se. Li ₂ Se.9H ₂ O.		00,000	1146-	-12,200
	1	1 1		6426	
silicate	Li ₂ , Si, O ₃	solid	347,100		
suipnate	L12, S, O4	solid	334,170	200	+6,050
suipnate	Li ₂ , S, O ₄ Li ₂ , S, O ₄ , H ₂ O Li ₂ , S, Aq. Li ₂ , S, H, Aq	solid	336,810	400	+ 3.410
suipnide	L12, S, Aq	dil. sol.	115,400		
sulphydrate	L1, S, H, Aq	dil. sol.	64,110		l
www.greenin					
ammonium					
pnospnate:	Mg , N , H_4 , P , O_4	cryst.	898,800		
suipnate	Mg, N, H ₄ , P, O ₄ MgSO ₄ (NH ₄) ₂ SO ₄ .				- 9,700
1-1-1-1-	01120	l I			-
suipnite	3(MgSO ₃ .6H ₂ O),	solid	-2,100		
	$(NH_4)_2SO_3$				
arsenate	Mg ₃ , As ₂ , O ₄	cryst.	+712,600 121,700		
promide	Mg, Br ₂	solid	121,700		+43,300
carponate	Mg, C, O₃	precip.	266,600		
chloride	Mg, Cl ₂	solid	151,010	800	+35,920
evenide	Mg, Cl ₂ , 6H ₂ O	solid	183,980	400	+2,950
dithionete	Mg, C2, N2, Aq	dil. sol.	34,000		
ditinonate	Mg, S2, U6, 6H2U	solid	390,570	400	+ 2,960
hudrovido	Mg, F2	precip.	208,100		+2,778
iodida	Mg, U2, II2	sond	217,800		
nitrota	Me N. O. eu C	sond	84,800	400	49,800
ovido	Mg, N2, U6, 0H2U	soiid	210,520 143,900		- 4,220
nhoenhoto	Mg, U	sond	143,900		
not abloride	Mg3, F2, U ₈	coiióia	910,600		
not obloride	MagCl att o rou	solid	3,100		`
not gulphoto	Mago: K So	sond	2,700		
not sulphate	Mago. W.go. ett o	sona	3,300	600	+10,600
sodium sulphoto	3(MgSO3.6HaO), (NH4)2SO3 Mgs, As2, O4. Mg, Br2, Mg, Clo. Mg, Cl2, 6H2O. Mg, C2, N2, Aq. Mg, S2, O6, 6H2O. Mg, S2, O2, H2. Mg, N2, O6, 6H2O. Mg, N2, O6, 6H2O. Mg, N2, O6, 6H2O. Mg, O2, H2. Mg, O2, H2. Mg, O2, H2. Mg, O3, Mg, O6, O6, O6, O6, O6, O6, O6, O6, O6, O6	solid	23,920 3,700	600	-10,020
sourcin surpliate	MEGOU4, INEEDU4	sona	3,700 }	• • • • •	• • • • • • • • • • • • • • • • • • • •
			,		

					
Name.	Formula.	Physical state.	Heat of forma- tion. Calories.	Water mols.	Heat of solution. Calories.
Magnesium	l ·		201 700	400	1 00 000
sulphate	Mg, S, O ₄	solid	301,500	400 400	$+20,280 \\ +13,300$
sulphate	MgSO4.H ₂ O			400	-3,800
sulphate	MgSO4.7H2O	colid	79,400		- 5,600
sulphide	Mg, S	solid	282,000		
sulphite	Mg, S, O ₃ Mg, S ₂ , H ₂ , Aq	dil. sol.	110,860		
sulphydrate	Mg, 52, 112, Aq	un. son	110,000		
Manganese	Mn, Br2, Aq	dil. sol.	107,000		
bromide carbide	Mno C	solid	9,900		
carbonate	Mn C O	amorp.	207,000		
carbonate	Mn C O	crystal	208,600		
carbonate	MnO CO	solid	27,600 111,990		
chloride	Mn. Cle	solid	111,990	350	+16,010
chloride	Mn. Cla. 4H2O	solid	126,460	400	+ 1,540
dithionate	Mn, 2SO ₂ , O ₂ , 6H ₂ O	solid	188,600	400	+ 1,930
fluoride	Mn. F2. Aq	dil. sol.	156,800		
fluoride			209,500 94,770		
hardrovido	Mn O HoO	Isolid	94,770		
iodide	Mn, I ₂ , A ₂ Mn, N ₂ , O ₆ , 6H O Mn, O Mn, O	dil. sol.	76,200		
nitrate	Mn, N ₂ , O ₆ , 6H O	solid	153,050	400	- 6,150
oxide (ous)	Mn, O	. solid	90,800		
oxide (di-)	$M_n, O_2 \dots \dots$	solid	126,000	• • • • • •	
oxide (ous, ic).	Mn3, O4	solid	324,900		
phosphate	M_{n_3} , P , O_8	lcollora	737,500	600	1 6 200
pot. sulphate	MnSO ₄ , K ₂ SO	. solid	12 946	600	+ 6,380
pot. sulphate	Mn3, O4, Mn3, P, O8 MnSO4, K2SO MnSO4, K2SO4, 4H2O	. sona	13,846 22,400	000	- 6,440
selenide			21,600		
selenide	Mn, Se	. cryst.	5,400		
silicate	MnU, SiU2	. solid	1,200		- 9,700
sodium sulphate	MINDU4, Na2SU4	. solid	249,400	400	+13,790
suipnate	Mn, SO ₂ , O ₂	. solid	184,760	400	+ 7,820
suipnate	Mr. 80. 0. 5H.0	solid	192,540	400	+40
sulphate	Mn, SO ₂ , O ₂ , 5H ₂ O Mn, S, xH ₂ O	solid	45,600		1
				1	.,
acetate (ic)	Hg, C ₄ , H ₆ , O ₄ Hg, C ₂ , H, O ₂	. solid	196,900		- 3,800
acetate (018)	Hg. C. H. O	. solid	101,050		
			40,600		- 3,400 ¹²
bromide (ous).	Hg, Br	solid	24,500 53,300	1	
chloride (ic)	. Hg, Cl ₂	. solid	53,300	300	- 3,300
chloride (ous).	. Hg, Cl	. solid	31,300	1010	- 3,00015
cyanide (ic)	. Hg, (CN)2	. solid	11,400	1010	- 3,000
fulminate	Hg, Br. Hg, Cl2. Hg, Cl2. Hg, CN)2. Hg, Y2, C2, O2. Hg, N2, C2, O4. Hg, N2, C4, Aq. Hg, N2, O6, \$ Hg, OHg, N, O3, H2O. Hg, N, O3, H2O. Hg, N, O3, Aq. Hg, N, O3, Aq. Hg, N, O3, Aq.	. solid	$-62,900 \\ +25,200$:::::	
iodide (ic)	. Hg, 12	. solid	14,300		
iodide (ous)	Hg, 1	. Sona	57,400		
nitrate (ic)	Hg, N2, O6, Aq	solid	57,400		
nitrate (ic)	Hg, N, O, 3 H2O	solid	34,700		1
nitrate (ous)	. Hg, N, O3, 1120	dil sol	28,900		1
nitrate (ous)	Hg, Ns	solid	-144,600		
nitride, tri-(ous	7 日g, 八。	solid	+21,500		
oxide (10)	Hg, N3, N6, Hg, O	solid	2,200		
ovybromide (id	HoBro. HgO.	solid	3,300		
oxychloride (ic	HgCla HgO	. solid	3,300)	
oxychloride	HgCl2, 2HgO	solid	6,300)	
oxychloride	HgCl ₂ , 3HgO	solid	8,000)	1
oxychloride	HgCl ₂ , 3HgO HgCl ₂ , 4HgO	solid	10,000)	
potassium br	0- HgBr2, KBr	. solid	-1,000	יייי וי	
mide (ic)	1	1	1	000	0.750
	0- HgBr ₂ , 2KBr			600	-9,750
mide (ic)	1	1		1	

				(0011	meta Cu)
Name.	Formula.	Physical state.	Heat of forma- tion. Calories.	Water mols.	Heat of solution. Calories.
Mercury	2.4				
potassium chlo- ride (ic)	HgCl ₂ , KCl	solid	2,400	770	9,50014
pot. chlo. (ic) pot. chlo. (ic)	HgCl ₂ , 2KCl	solid	3,800	930	-15,00014
pot. chlo. (ic)	HgCl ₂ , 2KCl Hg, Cl ₂ , 2KCl, H ₂ O	solid	60,620	600	-16,390
pot. iodide (ic)	HgI ₂ , 2KI Hg, Se	solid	28,680	800	- 9,810
selenide (ic)	Hg, Se	precip.	6,300		,
sulphate (ic)	Hg, S, O ₄	solid	165,100		
sulphate (ous)	Hg ₂ , S, O ₄ Hg, S Hg, C ₂ , N ₂ , S ₂	solid	175,000		
sulphoavanete	Hg, C. N. C.	precip.	10,600	• • • • •	
Moiybaenum	}		-50,200	••••	
oxide, di	Mo, O2	solid	+142,800		
oxide, tri	Mo, O ₃	solid	167,000		
Neodymium	N. 1. Cl	١		e,	
chioride	Nd, Cl ₃ Nd, Cl ₅ , 6H ₂ O Nd, I ₃ Nd ₂ , O ₂	solid	249,500		+35,40017
enioriae	Nd, Cl3, 6H2O	solid	268,900		+ 7,60015
ozido	Nd. O	solid	157,700		+48,90019
sulphate	Nda Sa 60-	sona	435,100	• • • • •	1 00 70014
sulphide	Nd ₂ , S ₃ , 6O ₂	solid	928,200 285,900		+36,50014
Nickel	11(42) 03	sonu	200,900	••••	
bromide	Ni, Br ₂ , Aq	dil. sol.	71,820		
chloride	Ni, Cl2	Isolid I	74.530	400	+19,170
chloride	INICIo. 6H-()	leolid l	20,330	400	- 1,160
cyanide	Ni, C_2, N_2, \dots	precip.	-23,400	• • • • •	
dithionate	N1, O2, 2SO2.6H2O	solid	+154,790	400	- 2,420
fluoride	Ni, C ₂ , N ₂ Ni, O ₂ , 2SO ₂ .6H ₂ () Ni, F ₂ , Aq	dil sol.	120,800		
hydroxide (ic)			120,380	••••	
hydroxide (ic)	2Ni (OH)2, O, H2O	solid	-1,300	• • • • •	
hydroxide (ous) iodide		solid	+60,840	• • • • •	
nitrate	Ni O Not Ag	dil. sol. dil. sol.	41,400 83,420	••••	· · · · · · · · ·
nitrate	Ni, O, N ₂ O ₅ , Aq Ni, N ₂ , O ₆ , 6H ₂ O	solid	120,710	400	- 7,470
oxide	Ni, O	solid	57 000	400	- 7,470
1			57,900 14,700	• • • • •	• • • • • • •
selenide	Ni. Se.	cryst.	9,900	• • • • •	
sulphate	Ni, Se. Ni, Se. Ni, O, SO ₃ , Aq. Ni, O ₂ , SO ₂ , 7H ₂ O Ni, S, xH ₂ O	dil. sol.	86,950		
sulphate	Ni, O ₂ , SO ₂ , 7H ₂ O	solid	162,530	800	- 4,250
sulphide	Ni, S, xH ₂ O	solid	17,390		
	Ni, Te	cryst.	11,600		
Vitric acid	IN, U2, H	liquid 1	41,600	300	+ 7,480
acid	N, O3, H	gas	34,400	' • • • • •	
Vitrogen carbide	N2C2				70.000
oxide (ic)	N O	gas	_21 600	• • • • • •	-73,000
oxide (ous)	N, O	gas	$-21,600 \\ -20,600$		
oxide (ous)	N ₂ , O	liquid	-18,000	•••••	
oxide, pent	IN9. U5	oras I	-1,200	.,	
oxide, pent	N2, O5	liquid	+3,600		
oxide, pent	N ₂ , O ₅	solid	11,900		
oxide, tetr	IN2. O4	gas	-2,650		
oxide, tri	N2, O3	gas	-21,400		
selenide	IN Se I	solid	-42,300		
sulphide	[th, st	solid	-31,900 +197,600		
Oxalic acid	$[H_2, C_2, O_4, \dots,]$	solid			
oxalic acid Palladium	N, S. H ₂ , C ₂ , O ₄ . H ₂ C ₂ O ₄ .2H ₂ O			530	— 8,590
am. chloride			40,000	ı	
. will office	PdCl ₂ , 2NH ₃	5011G	40,000 31,000	•••••	• • • • • • • •
am, chloride	PACIO ZNHO ZNH- 1				
am. chloride	PdCl ₂ , 2NH ₃ , 2NH ₃ PdI ₂ , 2NH ₃	solid	. 34,000	•••••	• • • • • • • •

TIERTO OF		1	Hoot of 1	1	
		Physical	Heat of forma-	Water	Heat of
Name.	Formula.	state.	tion.	mols.	solution
		Suave.	Calories.		Calories
Palladium	PdI ₂ , 2NH ₃ , 2NH ₃ Pd, Br ₂ Pd, C ₂ , N ₂ Pd, O, H ₂ O Pd, O ₂ , 2H ₂ O Pd, I ₂ Pd, I ₂ Pd, I ₂ Pd, I ₂ Pd, I ₂ Pd, I ₂ Pd, I ₃ Pd, Cl ₂ , 2KCl Cl, O ₄ , H I, O ₄ , H, Aq Mn ₂ , O ₇ , H ₂ O, Aq	bilos	25,800		
am. iodide	Pd12, 2NH3, 2NH3	solid	24,900		
bromide	Pd, Br ₂	golid	-52,600		
cyanide	Pd, C2, N2	solid	+21,000		
hydroxide	Pd, O, 12O	solid	30,430		
nyaroxide	Pd T ₀	precip.	13,400		
iodide	Pd I HoO	solid	18,180		
not bromide	PdBr. 2KBr. Ag	dil. sol.	2,800		
not chloride	Pd. Cl. 2KCl	solid	52,670		
Perchloric acid	Cl. O4. H	liquid	18,800 47,680		+20,300
Periodic acid	I. O. H. Ag	dil. sol.	47,680		
Permanganic acid	Mn2, O7, H2O, Aq	dil. sol.	$2 \times 93,550$		
Phosphonium				l	1
bromide	P,* H4, Br	solid	40,300	• • • • •	
iodide	P,* H4, Br P,* H4, I	solid	28,100	•••••	
Phosphoric acid	[1	992 202	l	110 100
	P, O3, H	solid	226,600	200	+10,100 +5,350
ortho	P, O ₄ , H ₃ P, O ₄ , H ₃ P ₂ , O ₇ , H ₄ P ₂ , O ₇ , H ₄	liding	300,080	120	$\begin{array}{c} + & 5,350 \\ + & 2,690 \end{array}$
ortho	P, O_4, H_3	solid .	302,600		T 2,090
руго	$[P_2, O_7, H_4$	liidina	533,400 535,700		+ 7,900
pyro	P_2 , O_7 , H_4	song	535,700		7 1,000
Phosphorous acid	·	1:	137,660		1
hypo	P, O2, H3	liquid	139,970		-170
hypo	[₽, Q₂, Ḥ₃	Sona	224 630	120	+ 2,940
ortho	P, O3, H3	Inquia	224,630 227,700	120	-130
ortho	[Ε, O3, H3	Solid	369,900	550	+35,600
_ pyro	P, O ₂ , H ₈ P, O ₂ , H ₈ P, O ₃ , H ₃ P, O ₃ , H ₃ P ₂ , O ₅ , H ₄ , Aq	. sona	300,000	000	1 00,000
Phosphorus	P, Brs. P, Brs. P, Cls. P, Cls. P, Cls. P, Cls. P, * H ₃	20114	44,800		1
bromide, tri	P, Br3	lsolid	59,050		
bromide, penta-	P, Br5	liquid	76,600	1000	+65,140
chloride, tri	IP, Cla	gas	76,600 69,700		
chioride, tri	. E, C13	leolid	109,200		1
chioride, penta-	D * U.	orga.	4,900	1	}
hydride (phos	-[F,* H3	. gas	1 2,000		
phine)	P. * H.	solid	53,400	1	
nyariae (sona)	D T.	solid	53,400 10,900		1
iodide, tri	P. T.	solid	19,800		
nitride	P _{12;} * H ₆ P, I ₃ P ₂ , I ₄ P ₃ , V ₅ P ₅ , V ₅ P ₇ , O, Br ₅ P, O, Cl ₃ P, O, Cl ₃	Solid	81,500	1	
oride pent-	P. 05	. solid	365,200	550	+35,600
oxybromide	.IP. O. Br3	. solid	105,800 143,900 77,530		
oxychloride	.IP. O. Cls	. solid	143,900		
sulphide, sesqui	- P4. S3	. solid	77,530		
Platinic acid		ı	1	1	0.00
brom-	H ₂ PtBr ₄ .9H ₂ O			1	- 2,900
chlor	. H ₂ PtCl ₆ .6H ₂ O		1	450	+ 4,340
			1 40 400	1	1 0 500
bromide	Pt, Br4	. solid	42,400	1	+ 9,860
chloride	. Pt, Cl ₄	. solid	60,400		+19,600
hydride	. Pt ₁₀ , H	. solid	14,200		
hydroxide	. Pt, O, H ₂ O	. solid	19,220		
iodide	Pt, I4	. solid	17,400 17,000		1
oxide	. Pt, O	. solid	17,000		
			100 000	200	+ 3,34
anatata	K , C_2 , H_3 , O_2	. solid	175,700		T 3,34
anconota	IKo Ag () An	mu. soi.	396,200		1
	. K ₂ , H, As, O ₄ , Aq	dii. sol.	339,800 284,000		1
arsenate					
arsenate arsenate, acid	$$ K , H_2 , As , O_4 , Aq	. 011. 801.	201,000	200	- 9.76
arsenate, acid. bromate	K ₂ , H, As, O ₄ , Aq K, H ₂ , As, O ₄ , Aq K, Br, O ₃ K, Br	solid	84,300 95,310	200	

^{*} P refers to white phosphorus where starred.

				(COM	mucuj
Name.	Formula.	Physical state.	Heat of formation. Calories.	Water mols.	Heat of solution. Calories.
(Dicar ponace)		1	59,260 32,310 281,100 94,260 233,300 95,860	2000 800 400 400 400	-12,260 -10,610 + 6,490
chloropalladate chloroplatinate chloroplatinite. chlorostannate. chromate. cyanide cyanide cyanate. dichromate.	K. Cl K. PdCla K. PdCla Pt. Cla. 2 KCl Pt. Cla. 2 KCl Pt. Cla. 2 KCl SnCla. 2 KCl K. PdCla K. Cla K.	solid solid solid solid solid solid solid solid	89,500 45,170 24,160 30,100 67,100 102,500 226,440	200 600 800 543 180 175 660 400	- 4,440 -15,000 -13,760 -12,220 - 3,380 - 5,250 - 2,90020 - 3,010 - 5,200200 - 16,700
ferricyanide. ferricyanide. ferrocyanide. ferrocyanide. ferrocyanide. ferrocyanide. fluoride. fluoride. fluoride, acid. fluosilicate. hydroxide. hydroxide. hydroxide. hydroxide.	K ₃ , Fe, C ₆ , N ₆ . K ₂ , Fe, 6CN. K ₄ , Fe, 6CN. K ₄ , Fe, 6CN. K ₄ , Fe, 6CN. K ₄ , Fe, 6CN. K ₄ , Fe, 6CN. K ₄ , Fe, 6CN. K ₄ , Fe, 6CN. K ₄ , Fe, 6CN. K ₄ , Fe, 6CN. K ₄ , Fe, CN. K ₄ , Fe, CN. K ₄ , Fe, CN. K ₅ , O, H ₂ O. K ₇ , O, H ₂ O. K ₈ , O, H ₂ O. K ₈ , O, H ₂ O. K ₁ , I. K ₁ , I. K ₁ , I. K ₁ , I. K ₁ , I. K ₂ , O, Aq. K ₁ , I. K ₂ , O, Aq. K ₃ , N, O ₂ , Aq. K ₄ , C ₂ , O ₄ . K ₅ , CO ₄ , H ₂ O ₅ K ₈ , H ₁ O ₅ , O ₄ K ₈ , H ₁ O ₄ , Aq. K ₈ , H ₁ O ₄ , Aq. K ₈ , P, O ₄ , Aq. K ₈ , P, O ₄ , Aq. K ₈ , H ₁ , P, O ₄ , Aq. K ₁ , I. K ₁ , P, O ₄ , Aq. K ₁ , P, O ₄ , Aq. K ₁ , P, O ₄ , Aq.	solid solid	41,600 263,300 137,200 358,900 	400 820 940 400 250 500 885 200 200 465–930 800 200–400	-14,400 ¹² -12,000 ¹² -16,900 ¹¹ -1,000 ²⁰ -1,000 ²⁰ -6,000 -1,3290 -6,780 -11,800 -5,110 -8,520 -4,740 ¹⁵ -7,410 -9,600 -15,700 +75,000 12,100 ¹⁰
selenideselenideselenideselenideselenidesulnhate	K, I, O.4, Aq. K, Mn, O.4. K.3, P, O.4, Aq. K.2, H, P, O.4, Aq. K.1, H, P, O.4, Aq. KH2PO K2, SO. K2Se.9H2O K2Se.14H2O K5Se.19H2O K5Se.19H2O K2, SO. S	solid	107,700 200,050 483,600 429,200 374,400 79,600 	700	- 10,20016° - 4,850 + 8,50013° - 19,20014° - 20,40013° - 29,30014° - 6,380

Name.	Formula.	Physical state.	Heat of forma- tion. Calories.	Water mols.	Heat of solution. Calories.
Potassium sulphate, acid		solid	276,100	200	- 3,800
sulphate, per	K_2, S_2, O_8	solid	454,500 474,200	3300	-14,550
sulphide mono-	K ₂ , S. K ₂ S.2H ₂ O	solid	103,500	732	+10,00018°
sulphide mono-	K ₂ S.2H ₂ O K ₂ S.5H ₂ O		••••••		+ 3,800 ^{18°} - 5,200 ^{16°}
sulphide mono sulphide tetra	K2. S4	solid	118,600	600	+ 1,40010°
sulphide tetra	$K_2S_4.\frac{1}{2}H_2O$	solid	273,200	350	$-1,212^{16}$ + $1,440^{12}$
sulphitesulphite	K ₂ , S, O ₃ K ₂ SO ₃ .H ₂ O			245	+ 1,10012°
sulphide, acid	K, H, S, O ₃ , Aq K, C, N, S K, CN, S	dil. sol. solid	211,300 49,800	200	- 6,100 ¹³ °
sulphocyanate	K. C.N. S	solid	86,700	200	
sulphydrate	K, S, H	solid	64,500	154- 1568	+77017°
sulphydrate	KSH.½H2O			1308	+60016°
thionate, di	K2. S2. O6	solid	415,720	500	-13,010
thionate, tri	K ₂ , S ₃ , O ₆ K ₂ , S ₄ , O ₆	solid solid	405,850 397,210	500 500	$\begin{bmatrix} -12,460 \\ -13,150 \end{bmatrix}$
thionate, tetra- thionate, penta-	l Ko. St. Ot	sona	390,100	l	1
thionate, penta-	$- K_2S_5O_6.1\frac{1}{2}H_2O$		272,300	2030 950	-13,100 ¹⁰ ° - 5,000 ¹⁰ °
thiosulphate	K_2 , S_2 , O_3	solid	212,300	350	- 6,20014°
Praseodymium	1 .		410 400		
oxide, tri Rubidium	Pr ₂ , O ₃	solid	412,400		
bromide	Rb, Br	solid	95,700		- 2,450
carbonate	Rb ₂ O, CO ₂	solid	97,420 231,920		$\begin{array}{c} + 9,077 \\ + 4,731 \end{array}$
carponate, acid	Rb, Cl	solid	105.000		- 4,46015°
fluoride	Rb, F	solid	107,950 101,990		+ 5,800 +14,26415°
hydroxide	Rb, H, C, C Rb, Cl Rb, F. Rb, O, H RbOH.H ₂ O	Sona	101,000		+3,700250
					-65015° +300
iodide	Rb, I	solid	80,650 83,500		+80,000
sulphate	Rb ₂ , O	solid	344,680		- 6 600
sulphate, acid. Selenium	Rb, H, S, O ₄	solid	277,370		- 3,730
chloride	Se ₂ ,* Cl ₂	liquid	22,150		
chloride, tetra-	Se ₂ ,* Cl ₂ Se,* Cl ₄ Se,* H ₂	. solid	46,160 -19,400		+ 9,300
			-25,100		+ 9,300
hydroxide (ic).	Se, O ₂ , H ₂	dil. sol.	+79,300	,	
hydroxide (ous) Se, O ₂ , H ₂	. solid	$52,400 \\ -42,300$		
oxide, di	Se,* O ₂	solid	+57.080		-740
Selenic acid	Se, O ₄ , H ₂ Se, O ₃ , H ₂ , Aq	liquid	128,220 124,500		+16,800
Silicon	. 50, 03, 112, 114		1		, , , , , , , ,
carbide	. Si, C	. solid	2,000 71,000	:::::	
-1-1	Si, Br ₄	lmag	121,800 128,100		
chloride, tetra-	Si, Cla. Si, F4. Si, H4.	. liquid	128,100 239,800	:::::	
nuoride, tetra- hydride	Si. H4	gas gas	-6.700		
iodide, tetra	Si, I4	solid	+6,700	1	
OXIGE GI-	151. U2	. ISOIIG	191,000 10,400		
Silver acetate	Si, S ₂	. solid	95,600		- 4,300 ^{10,0}

^{*} Amorphous selenuim.

carbide. A carbonate A chloride A chloride 2 cyanate A	Formula. Ag, Br	Physical state. solid s	Heat of formation. Calories. 23,400 43,575 120,500 29,000 29,500 +23,100 -31,410 23,200	Water mols.	Heat of solution. Calories.
bromide	Ag, C. Ag2, O, CO2. Ag, Cl. 2Ag, Cl. Ag, Ç, N, O.	solid solid solid solid solid	43,575 120,500 29,000 29,500 +23,100 -31,410		
sulphate. A sulphate. A sulphate. A sulphide. A sulphocyanate A thionate, di. A sodium acctate acctate aluminate aluminate amide. A arsenate acid. A arsenate, acid. A arsenate, acid. A borate, tetraborate, tetraborate, tetraborate, tetraborate, tetraborate, tetraborate, tetraborate, tetraborate acid. A bromide. A bromide. A bromide. A bromoplatinate 2 bromoplatinate 2 carbonate acarbonate acarbonate acarbonate acarbonate acarbonate acarbonate acarbonate acarbonate acarbonate. A carbonate acarbonate O ₂ , O ₂ . Agg, S, O ₄ . Agg, S, O ₄ . Agg, S, S, S, S, S, S, S, S, S, S, S, S, S,	solid solid	14,200 28,700 11,300 7,000 7,000 11,300 -1,800 -1,800 -1,800 -1,800 -21,900 -21,900 -21,900 -21,900 -21,900 -30,000 33,500 -329,700 -38,100 -4,400 -4,272,640 -76,880 -227,700 84,800 97,900 73,720 -7	200 200 440 200 400 200 400 200 400 300 670 300 600 800 800 400 300 600 800 300 600 800 300 600 800 100	+ 3,40010° - 1,50010° - 1,50010° - 5,440 - 8,800 - 8,35011° - 4,480 - 10,360 + 3,870 - 4,810 - 12,60020° - 12,60020° - 4,45011° - 4,710 - 9,990 - 4,45011° - 4,710 - 9,990 - 4,45011° - 4,710 - 1,180 - 5,60010° - 1,180 - 8,540 - 1,010 - 1,180 - 8,540 - 1,580011° - 4,80013° - 5,0009° - 1,0006°	
dithionate see under thionate.	N8UN.ZH2U	•••••	•••••	•••	— 4,400°°

				•	
Name.	Formula.	Physical state.	Heat of forma- tion. Calories.	Water mols.	Heat of solution. Calories.
Sodium					
fluoride	Na F	solid	109,300	400	60012°
fluosilicate	Na, F	solid	35,400		
formete	NaCHO2 Na, O, H			150	-52012°
hydroxide	Na, O, H	solid	102,700	200	+9,940
hydroxide	Na ₂ , O, H ₂ O Na, Cl, O, Aq	solid	102,700 135,380 84,700		• • • • • • •
hypochlorite	Na, Cl, Q, Aq	dil. sol. dil. sol.	198,400		• • • • • • • •
hypophosphite	Na ₂ , H, P, O ₂ , Aq	solid	69,080	200	+ 1,200
iodide	Na, I	solid	74.310	300	- 4,010
manganate	Mn. O3. Na ₂ O	solid	169,000		
manganata		solid	49,400		
molybdate	MoO ₂ , Na ₂ O ₂	solid	101,200		
molybdate	MoO3, Na2O	solid	181,500	200	- 5,030
nitrate	Na, N, U3	solid solid	110,700	200	- 0,000
oxalate	Na_2, C_2, C_4 Na, H, C_2, O_4	solid	315,000 258,200 100,700		
oxalate, acid	Nac O	solid	100,700		+56,500
oxide, per	Na ₂ , O ₂	solid	119,800		
oxide, per perchlorate	Na ₂ , O ₂ Na, Cl, O ₄ Na ₃ , P, O ₄	solid	100,300	200-400	— 3,500 10
phos. (trisod.)	Na ₃ , P, O ₄	solid	452,400		*********
phos. (trisod.)	INGOPOLIZHOU.	1		670	-14,50020
phos. (disod.) phos. (disod.) phos. (disod.)	Na ₂ , H, P, O ₄ Na ₂ HPO ₄ .2H ₂ O	solid	414,900	400 400	$+5,640 \\ -390$
phos. (disod.)	Na ₂ HPO ₄ .7H ₂ O			400	-11,000
phos. (disod.)	Na ₂ HPO ₄ .12H ₂ O			400	-22,830
phos. (mono-	Na, H ₂ , P, O ₄ , Aq	dil. sol.	355,000	100	,
sodium)	1	1 .	000,000		••••
phos. pyro	Na ₄ , P ₂ O ₇	1		800	+11,850
phos. pyro phosphite	Na ₄ P ₂ O ₇ .10H ₂ O			800	-11,670
phosphite	Na_2 , H, P, O	solid	285,100	550	+ 9,150 +75015°
phosphite, acid	Na, H ₂ , P, O ₃	solid	333,800	550 550	- 5,3001
phosphite, acid.	Na_2 , Se, O_4 , Aq	dil. sol.	262,300	000	
selenate, acid	Na, H, Se, O4, Aq		203,200		
selenide	Na ₂ , Se	solid	60,900	789-	+18,6001
selenide, acid.	Na, H, Se, Aq	dil sol	35,300	- 25 87	
selenide, acid.	Na ₂ Se.4½H ₂ O	un. 501.	1	1030-	- 7,900 ¹³
вывшив	1.0200.12120	1		2125	
selenide	Na ₂ Se.9H ₂ O			723-	$-10,600^{13}$
			}	1352	00 000
selenide	Na ₂ Se.16H ₂ O	· · · · · · · · ·		1476- 3572	-22,000 ¹
stannate	Na ₂ O, Sn, O ₂	soiid	172,600		
	Na ₂ , S, O ₄		328,100	400{	fused+46
				400	efflor.+17
sulphate	Na ₂ SO ₄ .H ₂ O Na ₂ , SO ₂ , O ₂ , 10H ₂ O.	solid	276,730	400	-18,760
	Na, H, S, O4		269,100	200	+ 1,190
	Na ₂ , S		89,300	584-	-800
suipnide	. Na2, S	. Soliu	00,000	1027	+15,0001
sulphide	. Na ₂ S.4½H ₂ O	.		589-	•
aulahida	Na ₂ S.5H O			1059 513-	- 5,000 ¹
sulpnide	1	1		1167	- 6,6001
sulphide	. Na ₂ S.9H ₂ O	.		774-	
	l a .	dil col	105,200	1495	-16,720 ¹
sulphide, bi sulphide, tri		dil sol	107,000	1	

-				(0022	
Name.	Formula.	Physical state.	Heat of forma- tion. Calories.	Water mols.	Heat of solution. Calories.
sulphide, tetrasulphocyanate sulphydrate sulphydrate thionate, dithionate, trithionate, trithionate, trithionate, trithionate, tetrathionate, tetrathiosulphate tungstate. Stannic acid.	Sr (C ₂ H ₃ O ₂).½H ₂ O Sr ₃ , As ₂ , O ₃ Sr, Br ₂ Sr Br ₂ 6H ₂ O	solid dil. sol. dil. sol. solid solid solid solid solid solid solid solid solid solid solid solid solid solid solid	99,000 39,200 56,300 56,300 398,810 405,090 387,500 256,300 265,070 94,700 133,500 345,600	600 400 400 675 620 440 400 	+ 9,800 ^{17°} + 4,400 ^{16°} - 1,500 ^{18°} - 5,370 - 10,100 ^{10°} - 9,700 ^{10°} - 11,370 - 5,600 ^{12°} + 5,300 ^{12°} + 16,110 - 7,200
carbonate carbonate chloride chloride cyanide cyanide cyanide cyanide cyanide dithionate fluoride hydrate hydroxide hydroxide hydroxide hydroxide iodide jutrate nitrate oxide oxide, per- phosphate selenide sulphytrate Sulphur	Sr, C, O ₃ SrO, CO ₂ Sr, C, O ₃ SrO, CO ₂ Sr, Cl ₂ Sr, Cl ₂ Sr, C ₂ Sr, C ₂ Sr, C ₂ Sr, C ₂ Sr, C ₂ Sr, C ₂ Sr, C ₂ Sr, C ₂ Sr, C ₂ Sr, C ₂ Sr, F ₂ Sr, H ₂ Sr, O ₂ Sr, O ₂ Sr, O ₂ Sr, O ₂ Sr, O ₂ Sr, O ₂ Sr, O ₂ Sr, O ₂ Sr, O ₂ Sr, O ₂ Sr, O ₂ Sr, O ₂ Sr, O ₂ Sr, O ₃ Sr, O ₄ Sr, O ₄ Sr, O ₄ Sr, O ₄ Sr, O ₅ Sr, O ₅ Sr, O ₆ Sr, O ₇ Sr, O ₈ Sr, O ₈ Sr, O ₈ Sr, S ₇ Sr, S ₈ Sr, S ₇	amorp. cryst. solid	181,010 278,100 279,200 57,300 184,700 203,190 47,000 234,400 45,600 217,300 146,140 	400 400 400 100 400 400 400	- 7,220
bromide	S2, Br2. S2, Cl2. S2, Cl2. S3, O2. S4, O2. S5, O2. S5, O3. S5, O3. S6, O3. S6, O3. S7, O3. S8, O3. S8, O3. S9, O3. S9, O4. S9, O5, Cl2. S9, O7, Cl2. S9, O7, Cl2. S9, O7, Cl2. S9, O7, Cl2. S9, O7, Cl2. S9, O7, Cl2.	liquid solid gas liquid gas	2,000 14,260 13,600 69,280 74,700 91,900 103,240 103,700 -9,710 +89,780 40,900 47,400	1600	+ 1,500 +39,170 +37,290

IIIAIO OI	FORMATION				
Name.	Formula.	Physical state.	Heat of forma- tion. Calories.	Water mols.	Heat of solution. Calories.
Sulphur pentoxy dichlo- ride	S ₂ , O ₅ , Cl ₂	liquid	159,400		
Sulphuric acid	S, O4, H2	liquid	192,200	1600	+17,850
1	SO ₃ , H ₂ O	dil gol	21,300 316,400		
Lantallim	S ₂ , O ₈ , H ₂ , Aq S ₂ , O ₃ , H ₂ , Aq		141,700		
oxide	$egin{array}{ll} Ta_2, O_5 \\ Te, O_4, H_2, Aq \end{array}$	solid dil. sol.	301,500 166,740		
Tellurium chloride	Te. Cla	solid	77,380		
oxide	Te, Cl_4	solid	78,300	(
Tellurous acid	[Te, Us, H2	sona	145,600		
bromide	T!, Br T!, Brs, Aq T!, Cl TI, Cls, Aq TI, F, Aq TI, G, 3H2O TI, O, H TI, I, Aq TI, I, N, Os TI, N, Os	solid	41,290		
bromide, tri	Tl, Br3, Aq	dil. sol.	56,450	4500	-10,100
chloride	[<u>T</u>], Cl	solid dil. sol.	48,580 89,250	4500	10,100
chloride, tri	TI, Cls, Aq	dil. sol.	52,000		
hydroxide (ic)	Ti. Os. 3H2O	solid	2×43,170 56,910	1	
hydroxide (ous)	Ti, O, H	solid	56,910	235	- 3,150
iodide	<u>Tl, I</u>	solid	30,180		
iodide, tri	Tl, I3, Aq	dil. sol.	10,820	300	- 9,970
nitrate (ous)	TI, N, O3	solid solid	58,150 42,240	570	- 3,080
oxide	Tl ₂ , O	precip.	13,400	1	
selemue	Tle S O4.	solid	220,980	1600	- 8,280
sulphate (ous)	Tl ₂ , SO ₂ , O ₂	solid	149,900		
suipniae	Tl ₂ , S	solid	19,650		
			279,440	l	l
thionic, di	S_2 , O_6 , H_2 , Aq	dil. sol.	272,900		
thionic, tri	S. O. H. Ag	dil. sol.	272,900 260,790	,	
thionic penta	S ₂ , O ₆ , H ₂ , Aq S ₃ , O ₆ , H ₂ , Aq S ₄ , O ₆ , H ₂ , Aq S ₅ , O ₆ , H ₂ , Aq	dil. sol.	261,200		
Thorium	00, 00,2,1			1	1
chloride	Th, Cl	. solid	300,200		
oxide	Th, O2	. solid	326,000		
Tin	C- D-	solid	98,000	970	+16,600
bromide (ic) bromide (ous).		golid	61,500	l	- 1,600
chloride (ic)	ISn. Cla	, Isona	129,800	300	+29,920
chloride (ous).	Sn, Cl2	. sona	80,790	300	+350
chloride (ous).	IG-CL STLO			200	- 5,370
hydroxide (ous)		. solid	68,090		
oxide (ic)	$\begin{bmatrix} Sn, O_2 \dots \end{bmatrix}$	leolid	137,200 70,700	1	
oxide (ous) pot. chloride	Sn, U. 2KCl	solid	24,160	800	- 3,380
Titanium			1		1
oxide	. Ti, O2	. amorp.	215,600		
oxide	. Ti, O2	eryst.	218,400		
Tungsten	W 0	aolid	131,400	1	l
oxide, di		solid	196,300	1	1
oxide, tri Vanadium			1		1
oxide	. V ₂ , O ₅	solid	310,500		
Water see hydro		l	1		1
gen oxide.		1		1	1.
Zinc	Zn, C4, H6, O4	. solid	267,400	720	+ 9,80028
acetate	TT O		201,100	800	+ 7,00023
actionic			1	1	<u> </u>

Name.	Formula.	Physical state.	Heat of formation. Calories.	Water mols.	Heat of solution. Calories.
bromide. carbonate chloride cyanide dithionate. fluoride hydroxide hydroxide iodide nitrate oxide. pot. sulphate selenide sulphate. sulphate. sulphate. sulphate. sulphate. sulphate sulphate sulphate sulphate sulphate sulphate sulphate sulphate sulphate sulphate sulphate sulphate sulphate sulphate Sulphate Sulphate Sulphate Sulphate Sulphate Sulphate Sulphate Sulphate	Zn, Cl ₂ Zn, C ₂ , N ₂ Zn, 2SO ₂ , O ₂ , 6H ₂ O Zn, F ₂ , Aq Zn, O, H ₂ O Zn, O, H ₂ O Zn, O ₂ , H ₂ Zn, I ₂ Zn, I ₂ Zn, O ₂ , N ₂ O ₄ , 6H ₂ O Zn, O ₃ ZnSO ₄ , K ₂ SO ₄ , 6H ₂ O Zn, Se Zn, Se Zn, Se Zn, Se Zn, O ₂ , SO ₂ Zn, O ₂ , SO ₂ Zn, O ₂ , SO ₂ Zn, O ₂ , SO ₂ , H ₂ O Zn, O ₂ , SO ₂ , H ₂ O Zn, O ₂ , SO ₂ , Th ₂ O Zn, O ₂ , SO ₂ , Th ₂ O Zn, O ₂ , SO ₂ , Th ₂ O Zn, O ₂ , SO ₂ , Th ₂ O Zn, O ₃ , SO ₂ , Th ₂ O Zn, O ₃ , SO ₂ , Th ₂ O Zn, O ₅ , SO ₅ , Th ₂ O	solid precip. solid	76,000 194,200 97,400 173,850 140,000 82,680 83,500 49,231 140,820 4,145 23,950 30,300 229,600 158,990 167,470 181,880 43,000 181,880	500 400 300 400 400 600 400 400	+ 4,200°° +15,030 +15,630 +15,630 +11,310 - 5,840 +7,910 -11,900 +18,430 + 9,950 - 4,260

HEATS OF FORMATION AND COMBUSTION

FOR ORGANIC COMPOUNDS

The heat of formation is given in gram calories per gram molecular weight for the formation of the compound from the elements in the state in which they exist at ordinary temperatures. Carbon is assumed to be in its crystalline form, the diamond.

The heat of combustion is also given in gram calories per gram molecular weight. The compound is assumed to be originally at ordinary temperature and the products of combustion returned to ordinary temperature.

Name	Formula	Physical state	Heat of formation.	Heat of combustion. Calories
Acetamide	CH ₂ CHOCH ₂ CONH ₂ CH ₃ .COOH	gas solid solid liquid	57,100 51,000 78,400 119,700 117,200 112,100	269,500 282,700 209,400
Acetone	(CH ₃ CO) ₂ O CH ₃ ·CO·CH ₃	liquid	152,300 145,600 66,300 58,800	431,900
Acetonitrile (methyl cyanide) Acetylene Acetylurea Alcohol. see Ethyl	CH ₃ ·CH	liquid gas solid	450 -58,100 129,000	291,600 315,700 360,900
	C ₅ H ₁₂ O	liquid gas liquid gas	91,600 80,900 -11,200 -19,800	793,900 818,500
Benzene		solid solid liquid gas	-42,400 -1,800 -4,100 -11,300	776,900
Bromomethane	C ₆ H ₆ .COOH	liquid gas	94,200 91,900 13,700 130,300	772,900
Camphor	C ₁₀ H ₁₆ O	liquid solid solid	128,800 80,300 85,600 75,700 68,500	524,400 1,414,700
Chloroform	C ₆ H ₄ (OH) ₂	solid liquid gas	87,600 53,900 46,600	685,200 107,000
Dichlormethane (Methylene chloride)		gas	37,800 31,400	426,000
Dimethylamine Ethane Ether	$CH_3 \cdot CH_3 \cdot$	gas liquid	4,100 23,300 70,500 62,800	372,300 651,700
	CH ₃ ·COO·C ₂ H ₅ ······	igas	116,100 105,200	537,100
	C ₂ H ₅ ·OH	liquid gas	69,900 59,800 -14,600	325,700 341,100
mulylene		<u> </u>		

HEATS OF FORMATION AND COMBUSTION (Continued)

FOR ORGANIC COMPOUNDS

Name	Formula	Physical state	Heat of forma- tion. Calories	Heat of com- bustion. Calories
Formic acid	н-соон	solid liquid	104,000 101,500	61,700
Fructose	C ₆ H ₁₂ O ₆	gas solid solid solid	96,700 303,900 302,600 165,600	675,900 677,200
Hydroquinone Lactose	C ₆ H ₄ · (OH) ₂ · · · · · · · · · · · · · · · · · · ·	liquid solid solid	161,700 87,300 537,400	397,200 685,500 1,351,400
Methane Methyl alcohol	C12H22O11	gas liquid	538,100 18,900 61,700 53,300	1,350,700 213,500 170,600
	CH ₃ NH ₂	gas liquid	9,900 33,900 29,000	256,900
	H-COO-CH3 C4H6O4	liquid gas solid	94,800 87,900 186,000	238,700 398,200
-		liquid solid liquid solid	181,700 -22,800 -27,400 7,800	1,241,800
	C ₃ H ₅ (NO ₃) ₂	liquid	5,100 -2,000 14,700	733,200
Oleic acid	C"H" COOH	gas	28,800 21,800 188,000	169,800 2,682,000
	COOH-COOH CH ₂ -(CH ₂)14-COOH C ₆ H ₆ -OH	التسينا	197,600 214,400 207,200	60,200 2,398,400
Propulene	CH ₃ ·CH ₂ ·CH ₃ ·······	liquid gas	36,800 34,500 30,500 -9,400	736,000 528,400 499,300
Sucrose	$C_{11}H_{22}O_{11}$	solid solid	89,400 535,600	683,400 1,355,000
Tetrachlor-ethylene	CH ₃ ·(CH ₂) ₁₆ ·COOH HOOC·CH ₂ ·CH ₂ ·COOH HOOC(CHOH) ₂ ·COOH CCl ₂ ·CCl ₂	solid	227,600 229,800 . 302,300 45,500	2,711,800 354,400 281,000
Toluene	CH ₂ -CH ₃	liquid gas	2,300 -5,400 5,900	933,800 964,700
Urea	CH ₃) ₃ N. NH ₂ ·CO·NH ₂ . C ₆ H ₄ ·(CH ₃) ₂ .	liquid gas	5,600 1,400 80,800	592,000 151,500
2 - 22	O111 (O118)2	nquia	15,200	1,084,300

HEATS OF COMBUSTION

Heat of combustion in gram calories per gram. Products of combustion gaseous unless stated.

Substance	Calories per gram of substance	Observer
Acetylene	11,923	Thomsen
Alcohol, see Ethyl alcohol		
Amyl alcohol	8,958	Favre & Silbermann
Asphalt	9,532	Slossen & Colburn
Benzene	9,977	Stohmann
Butter	9,200	
Carbon, crystal to CO2	7,859	Berthelot
Carbon disulphide	3,244	
Casein	5,860	Danie & Cillania
Charcoal to CO ₂	8,080	Favre & Silbermann
Coal, anthracite	70,000-84,000	• • • • • • • • • • • • •
bituminous	61,000-87,000	
lignite	45,000-79,000	
Coke	8,000 590	Thomsen
Copper to CuO:	1,290	Roux and Sarran
Dynamite, 75 %	5,700	toux and barran
Egg white	8,100	
yolk Ethyl alcohol	7,080	
Ethylene	11,293	Berthelot
Fats, animal, mean	9,500	Boronoro
Gas, coal	5,800-11,000	
Glycerine, CO ₂ and liq.	0,000	
H ₂ O	4,316	Stohmann
Graphite	7,901	Berthelot
Gunpowder	720-750	
Hemoglobin	5,900	
Hydrogen, to liquid	33,900	Mean
, , ,	34,500	Berthelot
to gas	29,150	**
Iron to Fe ₂ O ₃	1,582	
Magnesium to MgO	6,077	
Methane	13,063	Favre & Silbermann
Methyl alcohol	5,307	D 41-1-4
Naphthalene	9,354	Berthelot
Oil, cotton seed	9,500	
lard	9,200-9,400	Stohmann
olive	9,328-9,442 9,800	Dominann
paraffin	11,094	Mohler
petroleum, crude		Willier
" rofined		
" refined " Russian	11,045 10,800	· · ·

HANDBOOK OF CHEMISTRY AND PHYSICS. HEATS OF COMBUSTION (Continued)

Calories Observer per gram Substance of substance Oil, 9,489 Stohmann rape..... 10,000 Gibson Stohmann 10,340 Paraffin..... Bainbridge 5,940 8,400 Berthelot 7,407 Silicon to SiO2..... Wood 4,774 4,771 Beech Birch.... 4,620

5,085

SULPHURIC ACID

Specific Gravity of Aqueous Solutions. Lunge, Isler and Naef

200	1.0								
Sp. gr.	Deg.	Deg.	Per cent.	Total H ₂ SO ₄	Sp. gr.	Deg.	Deg. Twad-	Per cent.	Total H ₂ SO ₄
15° C.	Bé.	Twad- dell.	H ₂ SO ₄ by wt.	kg. in 1 liter.	15° C.	Bé.	dell.	H ₂ SO ₄ by wt.	kg. in 1 liter.
1.000	0.0	0		0.001	$1.210 \\ 1.215$	$25.0 \\ 25.5$	42 43		$0.346 \\ 0.355$
1.005	0.7	1		0.009	$1.210 \\ 1.220$	$\frac{25.5}{26.0}$	44		0.364
1.010	1.4	2		0.016	1.220 1.225	26.4	45		0.373
1.015	2,1	3		0.023			46		0.382
1.020	2.7	4		0.031	1.230	26.9	47		0.391
1.025	3.4	5		0.039	1.235	27.4			$0.391 \\ 0.400$
1.030	4.1	6	4.49	0.046	1.240	27.9	48		
1.035	4.7	7	5.23		1.245	28.4	49		0.409
1.040	5.4	8	5.96		1.250	28.8	50		0.418
1.045	6.0	9	6.67	0.071	1.255	$\frac{29.3}{5}$	51		0.426
1.050	6.7	10	7.37	0.077	1.260	29.7	52		0.435
1.055	7.4	11		0.085	1.265	30.2	53		0.444
1.060	8.0	12		0.093	1.270	30.6			0.454
1.065	8.7	13	9.47	0.102	1.275	31.1	55		0.462
1.070	9.4	14	10.19	0.109	1.280	31.5	56		0.472
1.075	10.0	15	10.90		1.285	32.0			0.481
1.080	10.6	16	11.60		1.290	32.4			0.490
1.085	11.2	17	12.30	0.133	1.295	32.8			0.500
1.090	11.9	18	12.99		1.300	33.3			0.510
1.095	12.4		13.67	0.150	1.305	33.7	61		0.519
1.100	13.0			0.158	1.310	34.2			[0.529]
1.105	13.6	21		0.166	1.315	34.6			[0.538]
1.110	14.2	22	15.71		1.320	35.0			0.548
1.115	14.9	23		0.183	1.325	35.4			0.557
1.120	15.4	24	17.01	0.191	1.330	35.8			0.567
1.125	16.0		17.66		1.335	36.2			0.577
1.130	16.5		18.31	0.207	1.340	36.6			0.586
1.135	17.1	27	18.96	0.215	1.345	$\frac{37.0}{27}$			0.596
1.140	17.7	28	19.61	0.223	1.350	37.4			0.614
1.145	18.3		20.26		1.355	37.8			0.624
1.150	18.8		20.91		1.360	38.2			0.633
1.155	19.3		21.55		1.365	38.6			0.643
1.160	19.8		22.19		1.370	39.0 39.4			0.653
1.165	20.3		22.83		1.375				0.662
1.170	20.9		23.47		1.380	39.8 40.1			30.672
1.175	21.4		24.12			40.5			0.682
1.180	22.0		24.76		1.390	40.8			0.692
1.185	22.5		25.40		1.395	41.2			0.702
1.190	23.0		26.04		1.400	41.6		50.1	30.711
1.195	23.5		26.68		1.405	42.0	- 1		50.721
1.200	24.0		27.3		1.415	42.3			60.730
1.205	24.5	5 41	27.9	5 0.337	1.419	12.		01.0	5,5.100
		<u> </u>							

SULPHURIC ACID (Continued)

Sp. gr. at 15° C.	Deg. Bé.	Deg. Twad- dell.	Per cent. H ₂ SO ₄		Sp. gr. at 15° C.	Deg. Bé.	Deg. Twad- dell.	Per cent. H ₂ SO ₄	Total H ₂ SO ₄ kg. in
			by wt.					by wt.	1 liter.
1.420	42.7	84		0.740	1.645	56.6	129	72.55	1.193
1.425	43.1	85	52.63		1.650	56.9	130	72.96	1.204
1.430	43.4	86	53.11		1.655	57.1	131		1.215
1.435	43.8	87		0.769	1.660	57.4	132		1.225
1.440	44.1	88		0.779	1.665	57.7	133		1.230
1.445	44.4	89		0.789	1.670	57.9	134		1.246
1.450	44.8	90		0.798	1.675	58.2	135		1.259
1.455	45.1	91		0.808	1.680	58.4	136	75.50	1.268
$1.460 \\ 1.465$	45.4 45.8	92		0.817	1.685	58.7	137		1.278
1.470	46.1	93	56.43		1.690	58.9	138	76.38	
1.475	46.4	95		0.837	1.695	59.2	139		1.301
1.480	46.8	96		$0.846 \\ 0.856$	1.700	59.5	140	77.17	1.312
1.485	47.1	97		0.865	1.705	59.7	141		1.323
1.490	47.4	98		$0.805 \\ 0.876$		60.0	142		1.334
1.495	47.8			0.885	1.715	60.2	143		1.346
1.500	48.1		50 70	0.896	1.725	60.4	144		
1.505	48.4			$0.890 \\ 0.906$	1.730	60.6	145		1.369
1.510	48.7	102		$0.900 \\ 0.916$	1.735	$60.9 \\ 61.1$	146		1.381
1.515	49.0			0.926	1.740	61.4	147 148		1.392
1.520	49.4	104		0.936	1.745	$61.4 \\ 61.6$	149	81.12	1.404
1.525	49.7	105		0.946	1.750	61.8	150	81.56	$1.416 \\ 1.427$
1.530	50.0	106	62.53		1.755	62.1	151	82.00	1.439
1.535	50.3	107	63 00	0.967	1.760	62.3	152	82.44	1.459
1.540	50.6	108		0.977	1.765	62.5	153	83.01	1.465
1.545	50.9	109	63.85		1.770	62.8	154	83.51	1.478
1.550	51.2	110		0.996	1.775	63.0	155	84.02	
1.555	51.5	111	64.67		1.780	63.2	156		1.504
1.560	51.8	112	65.20	1.017	1.785	63.5	157		1.519
1.565	52.1	113	65.65	1.027	1.790	63.7	158	85.70	1.534
1.570	52.4	114	66.09		1.795	64.0	159	86.30	1.549
1.575	52.7	`115	66.53		1.800	64.2	160	86.92	1.564
1.580	53.0	116	66.95		1.805	64.4	161	87.60	1.581
1.585	53.3	117	67.40		1.810	64.6	162	88.30	1.598
1.590	53.6	118	67.83		1.815	64.8	163	89.16	1.618
1.595	53.9	119	68.26	1.089	1.820	65.0	164	90.05	
1.600	54.1	120	68.70	1.099	1.821	::		90.20	
1.605	54.4	121	69.13		1.822	65.1	• • •	90.40	
1.610	54.7	$\frac{122}{123}$	69.56		1.823	اء نما		90.60	
$1.615 \\ 1.620$	55.0 55.2	123	70.00		1.824	65.2	:::	90.80	1.656
1.620 1.625	55.5	124	$70.42 \\ 70.85$		1.825	اء عن	165	91.00	1.661
1.630	55.8	126	$70.85 \\ 71.27$		1.826	65.3	• • •	91.25	1.666
1.635	56.0	127	71.70	1 179	$1.827 \\ 1.828$	65 4	• • •	91.50	1.671
	56.3	128	72.12	1 189	1.829	65.4	• • • •	91.70	1.676
010	00.0	120	. 2.12	1.102	1.049	• • • •	•••	91.90	1.081

SULPHURIC ACID (Continued)

Sp. gr. at 15°C.	Deg. Bé.	Deg. Twad- dell.	1 112004	Total H ₂ SO ₄ kg. in 1 liter.	Sp. gr. at 15°C.	Deg. Bé.	Deg. Twad- dell.	Per. cent. H ₂ SO ₄ by wt.	Total H ₂ SO ₄ kg. in 1 liter.
1.832	65.5 65.6	166 	92.10 92.43 92.70 92.97	1.692 1.698	1.840 1.8405 1.8410 1.8415		168	95.95 96.38 97.35	1.759 1.765 1.774 1.792
1.834 1.835 1.836 1.837	65.7 65.8	167 	93.25 93.56 93.80 94.25 94.60 95.00	1.717 1.722 1.730 1.739	1.8410 1.8405 1.8400 1.8395 1.8390 1.8385			98.52 98.72 98.77 99.12	1.808 1.814 1.816 1.817 1.823 1.826

ACETIC ACID

Specific Gravity of Aqueous Solutions, at 15° C. Oudemans

Specific gravity.	Pr. ct. by wt.	Specific gravity.	Per cent.	Specific gravity.	Per cent.	Specific gravity.	Per cent.
0.9992	0	1.0363	26	1.0631	52	1.0748	78
1.0007	ĭ	1.0375	27	1.0638	53	1.0748	79
1.0022		1.0388	28	1.0646	54	1.0748	80
1.0037	$\begin{vmatrix} 2 \\ 3 \end{vmatrix}$	1.0400	$\overline{29}$	1.0653	55	1.0747	81
1.0052		1.0412	30	1.0660	56	1.0746	82
1.0052	5 6	1.0424	31	1.0666	57	1.0744	83
1.0083	6	1.0436	$\begin{vmatrix} 32 \end{vmatrix}$	1.0673	58	1.0742	84
1.0098	7	1.0447	33	1.0679	59	1.0739	85
1.0113	8	1.0459	34	1.0685	60	1.0736	86
1.0113	9	1.0470	35	1.0691	61	1.0731	87
1.0142	10	1.0481	36	1.0697	62	1.0726	88
1.0157	l ii l	1.0492	37	1.0702	63	1.0720	89
1.0171	12	1.0502	38	1.0707	64	1.0713	90
1.0185	13	1.0513	39	1.0712	65	1.0705	91
1.0200	14	1.0523	40	1.0717	66	1.0696	92
1.0200	15	1.0533	41	1.0721	67	1.0686	83
1.0214	16	1.0543	42	1.0725	68	1.0674	94
1.0242	17	1.0552	43	1.0729	69	1.0660	95
1.0242 1.0256	18	1.0562	44	1.0733	70	1.0644	96
1.0250	19	1.0571	45	1.0737	71	1.0625	97
	20	1.0580	46	1.0740	$ \hat{72}^{\cdot} $	1.0604	98
1.0284		1.0589	47	1.0742	73	1.0580	. 99
1.0298	21	1.0598	48	1.0744	74	1.0553	100
1.0311	22		ا مَدَ ا	1.0746	75	1,000	
1.0324	23	1.0607	49 e 50	1.0747	76		
1.0337	24.	1.0615	51	1.0748	77		
1.0350	25	1.0623	01	1.0740	1	<u> </u>	'

NITRIC ACID

SPECIFIC GRAVITY OF AQUEOUS SOLUTIONS

Sp. gr. at 15° C.	Degrees Baumé.	Degrees Twaddell.	Per cent HNO ₃ by weight.	Total HNOs kg. in 1 liter.
1.000	0.0	0	0.10	0.001
1.005	0.7	ľ	1.00	0.010
1.010	1.4	2	1.90	0.019
1.015	2.1	3	2.80	0.028
1.020	2.7	2 3 4	3.70	0.038
1.025	3.4	5	4.60	0.047
1.030	4.1	5 6 7	5.50	0.057
1.035	4.7	7	6.38	0.066
1.040	5.4	1 8	. 7.26	0.075
1.045	6.0	9	8.13	0.085
1.050	6.7	10	8.99	0.094
1.055	7.4	11	9.84	0.104
1.060	8.0	12	10.68	0.113
1.065	8.7	13	11.51	0.123
1.070	9.4	14	12.33	0.132
1.075	10.0	15	13.15	0.141
1.080	10.6	16	13.95	0.151
1.085	11.2	17	14.74	0.160
1.090	11.9	18	15.53	0.169
1.095	12.4	19	16.32	0.179
1.100	13.0	20	17.11	0.188
1.105	13.6	21	17.89	0.198
1.110	14.2	22	18.67	0.207
1.115	14.9	23	19.45	0.217
1.120	15.4	24	20.23	0.227
1.125	16.0	25	21.00	0.236
1.130	16.5	26	21.77	0.246
1.135	17.1	27	22.54	0.256
1.140	17.7	28	23.31	0.266
1.145	18.3	29	24.08	0.276
1.150	18.8	30	24.84	0.286
1.155	19.3	31	25.60	0.296
1.160	19.8	32	26.36	0.306
1.165	20.3	33	27.12	0.316
1.170	20.9	34	27.88	0.326
1.175	21.4	35	28.63	0.336
1.180	22.0	36	29.38	0.347
1.185	22.5	37	30.13	0.357
1.190	23.0	38	30.88	0.367
1.195	23.5	39	31.62	0.378
1.200	24.0	40	32.36	0.388
1.205	24.5	41	33.09	0.399
1.210	25.0	42 🕈	33.82	0.409
1:215	25.5	43	34.55	0.420

324

NITRIC ACID (Continued)

	Sp. gr. at 15° C.	Degrees Baumé.	Degrees Twaddell.	Per cent HNO3 by weight.	Total HNOs kg. in 1 liter.
_	1.220	26.0	44	35.28	0.430
	1.225	26.4	45	36.03	0.441
	1.230	26.9	46	36.78	0.452
	1.235	27.4	47	37.53	0.463
	1.240	27.9	48	38.29	0.475
	1.245	28.4	49	39.05	0.486
	1.250	28.8	50	39.82	0.498
	1.250 1.255	29.3	51	40.58	0.509
	1.260	$\frac{29.3}{29.7}$	52	41.34	0.521
		$\frac{29.7}{30.2}$	53	42.10	0.533
	1.265		54	42.87	0.535 0.544
	1.270	30.6		43.64	0.556
	1.275	31.1	55		0.568
	1.280	31.5	56	44.41	
	1.285	32.0	57	45.18	0.581
	1.290	32.4	58	45.95	0.593
	1.295	32.8	59	46.72	0.605
	1.300	33.3	60	47.49	0.617
	1.305	33.7	61	48.26	0.630
	1.310	34.2	62	49.07	0.643
	1.315	34.6	63	49.89	0.656
	1.320	35.0	64	50.71	0.669
	1.325	35.4	65	51.53	0.683
	1.330	35.8	66	52.37	0.697
	1.3325	36.0	66.5	52.80	0.704
	1.335	36.2	67	53.22	0.710
	1.340	36.6	68	54.07	0.725
	1.345	37.0	69	54.93	0.739
	1.350	37.4	70	55.79	0.753
٠.	1.355	37.8	71	56.66	0.768
	1.360	38.2	72	57.57	0.783
	1.365	38.6	73	58.48	0.798
		39.0	74	59.39	0.814
	1.370	39.4	75	60.30	0.829
	$1.375 \\ 1.380$	39.4	76	61.27	0.846
		40.0	10	61.92	0.857
	1.3833		77	62.24	0.862
	1.385	40.1	78	63.23	0.879
	1.390	40.5		64.25	0.896
	1.395	40.8	79	64.25 65.30	0.890
	1.400	41.2	80		0.914
	1.405	41.6	81	66.40	0.953
	1.410	42.0	82	67.50	0.952
	1.415	42.3	83	68.63	
	1.420	42.7	84	69.80	0.991
	1.425	43.1	85	70.98	1.011
	1.430	43.4	86	72.17	1.032
	1.435	43.8	87	73.39	1.053
	1.440	44.1	88	74.68	1.075

NITRIC ACID (Continued)

Sp. gr. at 15° C.	Degrees Baumé.	Degrees Twaddell.	Per cent HNO ₃ by weight.	Total HNOs kg. in 1 liter.
1.445	44.4	89	75.98	1.098
1.450	44.8	90	77.28	1.121
1.455	45.1	91	78.60	1.144
1.460	45.4	92	79.98	1.168
1.465	45.8	93	81.42	1.193
1.470	46.1	94	82.90	1.219
1.475	46.4	95	84.45	1.246
1.480	46.8	96	86.05	1.274
1.485	47.1	97	87.70	1.302
1.490	47.4	98	89.60	1.335
1.495	47.8	99	91.60	1.369
1.500	48.1	100	94.09	1.411
1.505	48.4	101	96.39	1.451
1.510	48.7	102	98.10	1.481
1.515	49.0	103	99.07	1.501
1.520	49.4	104	99.67	1.515

HYDROCHLORIC ACID SPECIFIC GRAVITY OF AQUEOUS SOLUTIONS

Sp. gr. at 15° C.	Deg. Bé.	Deg. Twad- dell.	Per cent. HCl.	Total HCl kg. per liter.	Sp. gr. at 15° C.	Deg. Bé.	Deg. Twad- dell.	Per cent. HCl.	Total HCl kg. per liter.
1.000 1.005 1.010 1.015 1.020 1.025 1.030 1.035 1.040 1.045 1.050 1.055	0.0 0.7 1.4 2.1 2.7 3.4 4.1 4.7 5.4 6.0 6.7 7.4	1 2 3 4 5 6 7 8 9 10 11 12	1.15 2.14 3.12 4.13 5.15 6.15 7.15 8.16 9.16 10.17 11.18 12.19	0.0016 0.012 0.022 0.032 0.042 0.053 0.064 0.074 0.085 0.096 0.107 0.118 0.129	1.120 1.125 1.130 1.135 1.140 1.1425 1.145 1.150 1.152 1.155 1.160 1.163	18.3 18.8 19.0 19.3 19.8 20.0	24 25 26 27 28 29 30 31 32	22 .86 23 .82 24 .78 25 .75 26 .70 27 .66 28 .14 28 .61 29 .57 29 .95 30 .55 31 .52 32 .10	0.255 0.267 0.278 0.291 0.303 0.315 0.322 0.328 0.340 0.345 0.353 0.366 0.373
1.065 1.070 1.075 1.080 1.085 1.090 1.095 1.100 1.105	8.7 9.4 10.0 10.6 11.2 11.9 12.4 13.0 13.6 14.2	14 15 16 17 18 19 20 21	14.17 15.16 16.15 17.13 18.11 19.06 20.01 20.97	0.141 0.152 0.163 0.174 0.186 0.197 0.209 0.220 0.232 0.243	1.165 1.170 1.171 1.175 1.180 1.185 1.190 1.195 1.200	20.3 20.9 21.0 21.4 22.0 22.5 23.0 23.5 24.0	33 34 35 36 37 38 39	32.49 33.46 33.65 34.42 35.39 36.31 37.23	0.379 0.392 0.394 0.404 0.418 0.430 0.443 0.456

AMMONIUM HYDROXIDE

Specific Gravity of Aqueous Solutions at 15° C.

Specific gravity	Per cent NH ₃	Total NH ₃ g. per liter	Specific gravity	Per cent NH ₃	Total NH ₃ g. per liter
1.000	0.00	0.0	0.940	15.63	146.9
0.998	0.45	4.5	0.938	16.22	152.1
0.996	0.91	9.1	0.936	16.82	157.4
0.994	1.37	13.6	0.934	17.42	162.7
0.992	1.84	18.2	0.932	18.03	168.1
0.990	2.31	ϕ 22.9	0.930	18.64	173.4
0.988	2.80	27.7	0.928	19.25	178.6
0.986	3.30	32.5	0.926	19.87	184.2
0.984	3.80	37.4	0.924	20.49	189.3
0.982	4.30	42.2	0.922	21.12	194.7
0.980	4.80	47.0	0.920	21.75	200.1
0.978	5.30	51.8	0.918	22.39	205.6
0.976	5.80	56.6	0.916	23.03	210.9
0.974	6.30	61.4	0.914	23.68	216.3
0.972	6.80	66.1	0.912	24.33	221.9
0.970	7.31	70.9	0.910	24.99	227.4
0.968	7.82	75.7	0.908	25.65	232.9
0.966	8.33	80.5	0.906	26.31	238.3
0.964	8.84	85.2	0.904	26.98	243.9
0.962	9.35	89.9	0.902	27.65	249.4
0.960	9.91	95.1	0.900	28.33	255.0
0.958	10.47	100.3	0.898	29.01	260.5
0.956	11.03	105.4	0.896	29.69	266.0
0.954	11.60	110.7	0.894	30.37	271.5
0.952	12.17	115.9	0.892	31.05	277.0
0.950	12.72	121.0	0.890	31.75	282.6
0.948	13.31	126.2	0.888	32.50	288.6
0.946	13.88	131.3	0.886	33.25	294.6
0.944	14.46	136.5	0.884	34.10	301.4
0.942	15.04	141.7	0.882	34.95	308.3

POTASSIUM HYDROXIDE

SPECIFIC GRAVITY OF AQUEOUS SOLUTIONS AT 15° C.

PAFFICIETO	GRAVITY OF	AQUEOUS	SOLUTIONS AT	15° C.
Specific gravity	Deg. Baumé	Deg. Twaddell	Per cent KOH by wt.	KOH, kg. per cu. m.
1.007	1	1.4	0.9	9
1.014	2 -	2.8	1.7	17 26
$1.022 \\ 1.029$	3	4.4	2.6	26
1.029	2 3 4 5 6 7 8	5·8 7·4	3·5 4·5	36 46
1.045	6	9.0	5.6	40
1.052	7	10.4	6.4	58 67
1.060	8	12.0	7.4	78
1.067	9 10	13.4	8.2	88
1.075	10	15.0	9.2	99
1.083	11	16.6	10 · 1	109
1.091	12	18.2	10.9	119
1.100	13 14	20.0	12.0	132
$1.108 \\ 1.116$	14	$egin{array}{c} 21\cdot 6 & \circ \ 23\cdot 2 & \end{array}$	12.9	143
1.125	15 16	25·2 25·0	13.8	153
1.134	17	26.8	14·8 15·7	167
1.142	18	28.4	16.5	178 188
$\overline{1} \cdot \overline{152}$	19	30.4	17.6	203
1.162	20	$32 \cdot 4$	18.6	216
1.171	21	$34 \cdot 2$	19.5	228
1.180	22	36.0	20.5	242
1.190	23	38.0	21.4	255
1·200 1·210	24 25	40.0	22.4	269
1.210	25 26	$\begin{array}{c} 42 \cdot 0 \\ 44 \cdot 0 \end{array}$	23·3 24·2	282
1.231	27	46.2	24·2 25·1	295 309
1.241	28	48.2	26.1	324
$\mathbf{1\cdot 252}$	29	50.4	27.0	338
1.263	30	52 · 6	28.0	353
1.274	31	54.8	28.9	368
1.285	32	57 ⋅0	29.8	385
$1.297 \\ 1.308$	33	$\begin{array}{c} \mathbf{59 \cdot 4} \\ \mathbf{61 \cdot 6} \end{array}$	30.7	398
1.320	34 35 36	64.0	31 · 8 32 · 7	416 432
1.332	36	66.4	33.7	449
1.345	37	69.0	34.9	469
1.357	38	71 4	35.9	487
1 · 370	39	74 · 0	36.9	506
1.383	40	76.6	37 · 8	522
1·397 1·410	41	$\frac{79.4}{82.0}$	38.9	543
1.424	42 43	82.0 84.8	39·9 40.9	563 582
1.438	44	87.6	40.9 42·1	582 605
1.453	45	90.6	43.4	631
1.468	46	93.6	44.6	655
1.483	47	96 6	45.8	679
1.498	48	99.6	47 · 1	706
1.514	49	102.8	48.3	731
1.530	50	106.0	49.4	756
1 · 546 1 · 563	51 52	$109 \cdot 2 \\ 112 \cdot 6$	50.6	779
1.580	52 53	116.0	$\begin{array}{c} 51 \cdot 9 \\ 53 \cdot 2 \end{array}$	811 840
1.597	54	119.4	54·5	870 870
1.615	55	123.0	55.9	902
1.634	56	126 . 8	57.5	940

SODIUM HYDROXIDE

SPECIFIC GRAVITY OF AQUEOUS SOLUTIONS AT 15° C.

Specific gravity	Deg. Baumé	Deg. Twaddell	Per cent NaOH by wt.	NaOH, kg. per cu. m.	
1.007	1	1.4	0.59	6.0	
1.014	2 3 4 5 6 7 8 9	2.8	1.20	12.0	
1.022	3	4.4	1.85	18.9	
1.029	4	5.8	2.50	25.7	
1.036	5	$7 \cdot 2$	3 · 15	32.6	
1.045	6	9.0	3.79	39.6	
1.052	7	10 · 4	4.50	47.3	
1.060	8	12.0	5.20	55.0	
1.067	9	13.4	5.86	62.5	
1.075	10 11	15.0	6 · 58	70.7	
1.083	11	16.6	7.30	79.1	
1.091	12	18.2	8.07	88.0	
1.100	13	20.0	8.78	96.6	
1.108	14	21.6	9.50	105.3	
1.116	15	23 · 2	10.30	114.9	
1.125	16	25.0	11.06	$124 \cdot 4$	
1.134	16 17	26.8	11 90	134.9	
$1 \cdot 142$	18	28 4	12 · 69	145.0	
1.152	19	30.4	13 · 50	155.5	
1 162	20	32 · 4	14.35	$166 \cdot 7$	
$\overline{1} \cdot \overline{171}$	21	$34 \cdot 2$	15.15	$177 \cdot 4$	
1.180	$\overline{22}$	36.0	16.00	188⋅8	
1.190	22 23	38.0	16.91	$201 \cdot 2$	
1.200	24	40.0	17.81	$213 \cdot 7$	
1.210	25	42.0	18.71	$226 \cdot 4$	
1.220	26	44.0	19.65	$239 \cdot 7$	
1.231	27	46.2	20.60	253 · 6	
1.241	28	48.2	21.55	$267 \cdot 4$	
$1.\overline{252}$	29	50.4	22.50	281.7	
1.263	30	52.6	$23 \cdot 50$. 296⋅8	
1.274	31	54 8	24 · 48	$311 \cdot 9$	
1.285	32	57.0	25.50	$327 \cdot 7$	
1.297	33	59⋅4	26.58	$344 \cdot 7$	
1.308	34	61.6	27.65	361.7	
1.320	35	64.0	28.83	380 · 6	
1.332	36	66 · 4	30.00	399 · 6	
1.345	37	69 0	31 · 20	419.6	
1.357	38	71.4	32.50	441.0	
1.370	39	74.0	33.73	462 · 1	
1 · 383	40	76.6	35.00	484 · 1	
1.397	41	79.4	36.36	507.9	
1.410	42	82.0	37 · 65	530.9	
1.424	43	₩ 84.8	39.06	556 · 2	
1.438	44	87.6	40.47	582.0	
1.453	45	90.6	42.02	610.6	
1.468	46	93 · 6	43.58	639 · 8	
1.483	47	96.6	45.16	669 · 7	
1.498	48	99.6	46.73	700.0	
1.514	49	102.8	48.41	732.9	
1.530	50	106.0	50 · 10	766 - 5	

POTASSIUM CARBONATE

SPECIFIC GRAVITY OF AQUEOUS SOLUTIONS AT 15° C.

Specific gravity	Per cent K ₂ CO ₃	Specific gravity	Per cent K ₂ CO ₃	Specific gravity	Per cent K ₂ CO ₃
		1 · 18265 1 · 19286 1 · 20344 1 · 21402 1 · 22459 1 · 23517 1 · 24575 1 · 25681 1 · 25787 1 · 27893 1 · 28999	19 20 21 22 23 24 25 26 27 28	1.38279 1.38476 1.40873 1.41870 1.43104 1.44338 1.45573 1.46807 1.48041 1.49314 1.50588	37 38 39 40 41 42 43 44 45 46
1 · 11238 1 · 12219 1 · 13199 1 · 14179 1 · 15200 1 · 16222 1 · 17243	12 13 14 15 16 17 18	1·30105 1·31261 1·32417 1·33573 1·34729 1·35885 1·37082	30 31 32 33 34 35 36	1·51861 1·53135 1·54408 1·55728 1·57048 1·57079	48 49 50 51 52 51 · 024

SODIUM CARBONATE

SPECIFIC GRAVITY OF AQUEOUS SOLUTIONS AT 15° C.

	ecific avity	Per cent Na ₂ CO ₃ +10H ₂ O	Per cent Na ₂ CO ₃	Specific gravity	Per cent Na ₂ CO ₃ +10H ₂ O	Per cent Na ₂ CO ₃
1. 1. 1. 1. 1. 1. 1. 1.	0038 0076 0141 0153 0192 0231 0270 0309 0348 0388 0428 0468 0508	1 2 3 4 5 6 7 8 9 10 11 12 13	·370 .741 1·112 1·482 1·853 2·223 2·594 2·965 3·335 3·706 4·447 4·817 5·188	1.0628 1.0668 1.0708 1.0748 1.0789 1.0830 1.0831 1.0912 1.0953 1.0994 1.1035 1.1076 1.1117	16 17 18 19 20 21 22 23 24 25 27 28 29	5.929 6.299 6.670 7.011 7.412 7.782 8.153 8.523 8.523 8.9264 9.635 10.005 10.376
	0588	15	5.558	1.1200	30	11.118

SODIUM CHLORIDE

Specific Gravity of Aqueous Solutions at 15° C. (Gerlach).

Specific gravity.	Per cent NaCl.	Specific gravity.	Per cent NaCl.	Specific gravity.	Per cent NaCl.
1.00725	1	1.07335	10	1.14315	19
1.01450	2	1.08097	11	1.15107	20
1.02174	3	1.08559	12	1.15931	21
1.02899	4	1.09622	13	1.16755	22
1.03624	5	1.10344	14	1.17580	23
1.04366	6	1.11146	15	1.18404	24
1.05108	7	1.11938	16	1.19228	25
1.05851	8	1.12730	17	1.20098	26
1.06593	9	1.13523	18	1.20433	26,395

POTASSIUM CHLORIDE

Specific Gravity of Aqueous Solutions at 15° C. (Gerlach).

Specific gravity.	Per cent KCl.	Specific gravity.	Per cent KCl.	Specific gravity.	Per cent KCl.
1.00650 1.01300 1.01950 1.02600 1.03250 1.03916 1.04582 1.05248 1.05914	1 2 3 4 5 6 7 8 9	1.06580 1.07271 1.07962 1.08652 1.09345 1.10036 1.10750 1.11465	10 11 12 13 14 15 16 17	1.12179 1.12894 1.13608 1.14348 1.15088 1.15828 1.16568 1.17234	18 19 20 21 22 23 24 24.9

AMMONIUM CHLORIDE

Specific Gravity of Aqueous Solutions at 15° C. (Gerlach).

Specific gravity.	Per cent NH ₄ Cl.	Specific gravity.	Per cent NH ₄ Cl.	Specific gravity.	Per cent NH ₄ Cl.
1.00316	1	1.03081	10	1.05648	19
1.00632	2	1.03370	11	1.05929	20
1.00948	3	1.03658	12	1.06204	21
1.01264	4	1.03947	13	1.06479	22
1.01580	5	1.04325	14	1.06754	23
1.01880	6	1.04524	15	1.07029	24
1.02180	7	1.04805	16	1.07304	25
1.02481	8	1.05806	17	1.07575	26
1.02781	9	1.05367	18	1.07658	26,297

ETHYL ALCOHOL

Specific Gravity of Mixtures of Ethyl Alcohol and Water by Volume and by Weight

Giving the specific gravity at 15.56° C. referred to water at the same temperature. To reduce to specific gravity referred to water at 4° C. multiply by 0.99908.

(U. S. Department of Agriculture.)

-		(U. S. I	Pepartme	nt of Agricult	ure.)		
Specific gravity.	Per cent alcohol by volume.	Per cent alcohol by weight.	Grams alcohol per 100 c.c.	Specific gravity.	Per cent alcohol by volume.	Per cent alcohol by weight.	Grams alcohol per 100 c.c.
1.00000 0.99984 0.99968 0.99953 0.99937 0.99907 0.99892 0.99877 0.99849 0.99849 0.99849 0.99849 0.9975 0.99760 0.99745 0.99761 0.99761 0.99687 0.99658 0.99643 0.99643 0.99658 0.99658	0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.10 1.20 1.30 1.40 1.50 1.70 1.80 2.10 2.20 2.30 2.40 2.50 2.80	0.00 0.08 0.16 0.24 0.32 0.40 0.56 0.64 0.79 0.87 0.95 1.03 1.11 1.27 1.35 1.43 1.59 1.67 1.75 1.81 1.99 2.07 2.15	0.00 c.c. 0.00 0.08 0.16 0.24 0.32 0.40 0.56 0.64 0.71 0.79 0.95 1.03 1.11 1.19 1.27 1.35 1.43 1.51 1.59 1.66 1.74 1.82 1.90 1.98 2.06 2.14	0.99431 0.99417 0.99403 0.99390 0.99376 0.99363 0.99335 0.99322 0.99308 0.99255 0.99251 0.99255 0.99215 0.99215 0.99202 0.99189 0.99175 0.99149 0.99136 0.99149 0.99136 0.99123 0.99111 0.99098 0.99072 0.99072	3.90 4.00 4.10 4.20 4.30 4.40 4.50 4.60 4.70 4.80 5.10 5.20 5.30 5.50 5.70 6.00 6.10 6.20 6.50 6.70	3.12 3.28 3.36 3.44 3.52 3.68 3.76 3.84 4.00 4.08 4.16 4.24 4.40 4.48 4.56 4.64 4.72 4.80 4.88 4.96 5.13 5.21 5.21 5.37	3.10 3.18 3.34 3.42 3.50 3.56 3.74 3.89 4.05 4.13 4.21 4.45 4.68 4.76 4.84 4.92 5.08 5.16 5.22
0.99571 0.99557 0.99543 0.99529 0.99515	2.90 3.00 3.10 3.20 3.30	2.31 2.39 2.47 2.55 2.64	2.30 2.38 2.46 2.54 2.62	0.99047 0.99034 0.99021 0.99009 0.98996	6.80 6.90 7.00 7.10 7.20	5.45 5.53 5.61 5.69 5.77	5.40 5.48 5.56 5.64 5.72
0.99501 0.99487 0.99473 0.99459 0.99445	3.40 3.50 3.60 3.70 3.80	2.72 2.80 2.88 2.96 3.04	2.70 2.78 2.86 2.94 3.02	0.98984 0.98971 0.98959 0.98947 0.98934	7.30 7.40 7.50 7.60 7.70	5.86 5.94 6.02 6.10 6.18	5.72 5.80 5.88 5.96 6.04 6.11
		j					

ETHYL ALCOHOL (Continued)

Specific Gravity of Mixtures of Ethyl Alcohol and Water by Volume and by Weight

-					· · · · · · · · · · · · · · · · · · ·		
	Per cent	Per cent	Grams		Per cent	Per cent	
Specific	alcohol	alcohol	alcohol	Specific	alcohol	alcohol	alcohol
gravity.	by	by	per 100 c.c.	gravity.	by volume.	by weight.	per 100 c.c.
	volume.	weight.	100 6.6.			Worght.	
0.98922	7.80	6.26	6.19	0.98435	12.00	9.67	9.52
	7.90	6.34	$6.19 \\ 6.27$	0.98424	12.10	9.75	9.60
0.98909		6.42	6:35	0.98413	12.10	9.83	9.68
0.98897	8.00				12.20	9.92	9.76
0.98885	8.10	6.50	6.43	0.98402		10.00	9.70
0.98873	8.20	6.58	6.51	0.98391	12.40		$9.84 \\ 9.92$
0.98861	8.30	6.67	6.59	0.98381	12.50	10.08	
0.98849	8.40	6.75	6.67	0.98370	12.60	10.16	10.00
0.98837	8.50	6.83	6.75	0.98359	12.70	10.24	10.07
0.98825	8.60	6.91	6.83	0.98348	12.80	10.33	10.15
0.98813	8.70	6.99	6.91	0.98337	12.90	10.41	10.23
0.98801	8.80	7.07	6.99	0.98326	13.00	10.49	10.31
0.98789	8.90	7.15	7.07	0.98315	13.10	10.57	10.39
0.98777	9.00	7.23	7.14	0.98305	13.20	10.65	10.47
0.98765	9.10	7.31	7.22	0.98294	13.30	10.74	10.55
0.98754	9.20	7.39	7.30	0.98283	13.40	10.82	10.63
0.98742	9.30	7.48	7.38	0.98273	13.50	10.90	10.71
0.98730	9.40	7.56	7.46	0.98262	13.60	10.98	10.79
0.99719	9.50	7.64	7.54	0.98251	13.70	11.06	10.87
0.98707	9.60	7.72	7.62	0.98240	13.80	11.15	10.95
0.98695	9.70	7.80	7.70	0.98230	13.90	11.23	11.03
0.98683	9.80	7.88	7.78	0.98219	14.00	11.31	11.11
0.98672	9.90	7.96	7.85	0.98209	14.10	11.39	11.19
0.98660	10.00	8.04	7.93	0.98198	14.20	11.47	11.27
0.98649	10.10	8.12	8.01	0.98188	14.30	11.56	11.35
0.98637	10.20	8.20	8.09	0.98177	14.40	11.64	11.43
0.98626	10.20	8.29	8.17	0.98167	14.50	11.72	11.51
0.98614	10.40	8.37	8.25	0.98156	14.60	11.80	11.59
	10.50	8.45	8.33	0.98146	14.70	11.88	11.67
$0.98603 \\ 0.98592$	10.60	8.53	8.41	0.98135	14.80	11.97	11.75
0.98580	10.70	8.61	8.49	0.98125	14.90	12.05	11.82
	10.80	8.70	8.57	0.98114	15.00	12.13	11.90
0.98569	10.80	8.78	8.65	0.98104	15.10	12.21	11.98
0.98557	11.00	8.86	8.73	0.98093	15.20	12.29	12.06
0.98546		8.94	8.81	0.98083	15.30	12.38	12.14
0.98535	11.10	9.02	8.89	0.98073	15.40	12.46	12.22
0.98524	11.20		8.97	0.98063	15.50	12.54	12.30
0.98513	11.30	9.11		0.98052	15.60	12.62	12.37
0.98502	11.40	9.19	9.05		15.70	12.02 12.70	12.45
0.98491	11.50	9.27	9.13	0.98042	15.70	12.79	12.43 12.53
0.98479	11.60	9.35	9.21	0.98032	15.80	12.79	12.53 12.61
0.98468	11.70	9.43	9.29	0.98021	16.00	12.87	12.69
0.98457	11.80	9.51	9.36	0.98011		13.03	12.09 12.77
0.98446	11.90	9.59	9.44	0.98001	16.10	15.05	12.11
	1	1	1		1		

ETHYL ALCOHOL (Continued)

SPECIFIC GRAVITY OF MIXTURES OF ETHYL ALCOHOL AND WATER BY VOLUME AND BY WEIGHT

Specific gravity.	Per cent alcohol by volume.	Per cent alcohol by weight.	Grams alcohol per 100 c.c.	Specific gravity.	Per cent alcohol by volume.	Per cent alcohol by weight.	Grams alcohol per 100 c.c.
0.97991 0.97980 0.97980 0.97990 0.97950 0.97940 0.97929 0.97899 0.97889 0.97889 0.97889 0.97889 0.97889 0.97888 0.97888 0.97888	16.20 16.30 16.40 16.50 16.60 16.70 16.80 17.00 17.10 17.20 17.30 17.40 17.50 17.70 17.80 17.90 18.10 18.20	weight. 13.12 13.29 13.37 13.45 13.53 13.62 13.70 13.78 13.86 13.40 14.11 14.19 14.27 14.435 14.44 14.52 14.68 14.77		0.97568 0.97558 0.97557 0.97527 0.97527 0.97517 0.97497 0.97487 0.97446 0.97446 0.97416 0.97416 0.97416 0.97496 0.97375 0.97375 0.97355		weight. 16.59 16.67 16.84 16.92 17.01 17.26 17.34 17.51 17.59 17.67 17.784 17.92 18.00 18.09 18.17 18.26	100 c.c. 16.18 16.26 16.34 16.42 16.50 16.56 16.74 16.82 16.90 17.06 17.14 17.22 17.30 17.38 17.46 17.54 17.62 17.78
0.97768 0.97758 0.97748 0.97728 0.97728 0.97708 0.97688 0.97688 0.97658 0.97658 0.97658 0.97638 0.97638 0.97638 0.97638 0.977638 0.977638 0.977638 0.977638	18.40 18.50 18.60 18.70 18.80 19.00 19.10 19.20 19.30 19.40 19.50 19.60 19.70 19.80 19.90 20.00 20.10 20.20	14.94 15.02 15.10 15.18 15.27 15.38 15.43 15.51 15.51 15.59 15.68 15.76 15.84 15.93 16.01 16.09 16.18 16.26 16.34 16.42	14.60 14.68 14.76 14.84 14.92 15.00 15.08 15.15 15.23 15.31 15.39 15.47 15.55 15.63 15.71 15.79 15.87 15.95 16.03 16.10	0.97345 0.97335 0.97334 0.97314 0.97304 0.97294 0.97283 0.97263 0.97263 0.97263 0.97232 0.97232 0.97211 0.97201 0.97191 0.97180 0.97170 0.97159 0.97149	22.60 22.70 22.80 23.00 23.10 23.20 23.30 23.40 23.50 23.60 23.70 24.00 24.10 24.20 24.30 24.40	18. 42 18. 51 18. 58 18. 68 18. 76 18. 84 18. 92 19. 01 19. 17 19. 25 19. 34 19. 42 19. 51 19. 59 19. 67 19. 78	17. 86 17. 94 18. 02 18. 10 18. 18 18. 26 18. 33 18. 41 18. 49 18. 57 18. 65 18. 73 18. 18 19. 04 19. 12 19. 20 19. 28 19. 34

ETHYL ALCOHOL (Continued)

Specific Gravity of Mixtures of Ethyl Alcohol and Water by Volume and by Weight

Specific	Per cent	Per cent alcohol	Grams alcohol	Specific	Per cent alcohol	Per cent alcohol	Grams alcohol
gravity.	by	by	per	gravity.	by	by	per
	volume.	weight.	100 c.c.	_	volume.	weight.	100 c.c.
0.97139	24.60	20.09	19.52	0.96681	28.80	23.64	22.85
	24.70		19.60	0.96669	28.90	23.72	22.93
0.97128		20.18		0.96658	29.00	23.81	23.01
0.97118	24.80	20.26	19.68	0.96646	29.10	23.89	23.09
0.97107	24.90	20.35	19.76				23.17
0.97097	25.00	20.43	19.84	0.96635	29.20	23.98	23.17 23.25
0.97086	25.10	20.51	19.92	0.96623	29.30	24.06	
0.97076	25.20	20.60	20.00	0.96611	29.40	24.15	23.33
0.97065	25.30	20.68	20.08	0.96600	29.50	24.23	23.41
0.97055	25.40	20.77	20.16	0.96587	29.60	24.32	23.49
0.97044	25.50	20.85	20.24	0.96576	29.70	24.40	23.57
0.97033	25.60	20.93	20.32	0.96564	29.80	24.49	23.65
0.97023	25.70	21.02	20.40	0.96553	29.90	24.57	23.73
0.97012	25.80	21.10	20.47	0.96541	30.00	24.66	23.81
0.97001	25.90	21.19	20.55	0.96529	30.10	24.74	23.89
0.96991	26.00	21.27	20.63	0.96517	30.20	24.83	23.97
0.96980	26.10	21.35	20.71	0.96505	30.30	24.91	24.04
0.96969	26.20	21.44	20.79	0.96493	30.40	25.00	24.12
0.96959	26.30	21.52	20.87	0.96481	30.50	25.08	24.20
0.96949	26.40	21.61	20.95	0.96469	30.60	25.17	24.28
0.96937	26.50	21.69	21.03	0.96457	30.70	25.25	24.36
0.96926	26.60	21.77	$\frac{21.03}{21.11}$	0.96445	30.80	25.34	24.44
0.96926	26.70	21.86	21.19	0.96433	30.90	25.42	24.52
0.96905	26.80	$\frac{21.80}{21.94}$	$\frac{21.13}{21.27}$	0.96421	31.00	25.51	24.60
0.96894	26.90	$\frac{21.94}{22.03}$	$\frac{21.27}{21.35}$	0.96409	31.10	25.60	24.68
0.96883		$\frac{22.03}{22.11}$	$\frac{21.33}{21.43}$	0.96396	31.20	25.68	24.76
	27.00			0.96384	31.30	25.77	24.84
0.96872		22.20	21.51	0.96372	31.40	25.85	24.92
0.96861	27.20	22.28	$21.59 \\ 21.67$	0.96360	31.50	25.94	25.00
0.96850	27.30	22.37			31.60	26.03	25.08
0.96839	27.40	22.45	21.75	0.96347	31.70	26.03 26.11	$\frac{25.08}{25.16}$
0.96828	27.50	22.54	21.83	0.96335	31.80	$26.11 \\ 26.20$	25.10 25.24
.0.96816	27.60	22.62	21.90	0.96323		26.28	25.24 25.32
0.96805	27.70	22.71	21.98	0.96310	31.90		
0.96794	27.80	22.79	22.06	0.96298	32.00	26.37	25.40
0.96783	27.90	22.88	22.14	0.96285	32.10	26.46	25.48
0.96772	28.00	22.96	22.22	0.96273	32.20	26.54	25.56
0.96761	28.10	23.04	22.30	0.96260	32.30	26.63	25.64
0.96749	28.20	23.13	22.38	0.96248	32.40	26.71	25.71
0.96738	28.30	23.21	22.45	0.96235		26.80	25.79
0.96726	28.40	23.30	22.53	0.96222	32.60	26.89	25.87
0.96715	28.50	23.38	22.61	0.96210	32.70		25.95
0.96704	28.60	23.47	22.69	0.96197	32.80		26.03
0.96692	28.70	23.55	22.77	0.96185	32.90	27.14	26.11
	1			11			
_							

ETHYL ALCOHOL (Continued)

Specific Gravity of Mixtures of Ethyl Alcohol and Water by Volume and by Weight

		VV A	ER BI	VOLUM	E AND BY	WEIGHT		Wind .
	Specific gravity.	Per cent alcohol by volume.	Per cent alcohol by weight.	alcohol per	Specific gravity.	Per cent alcohol by volume.	Per cent alcohol by weight.	alcohol per
	0.96172 0.96159	33.00 33.10	$27.23 \\ 27.32$	26.19 26.27	0.95603 0.95589	37.20 37.30	30.88 30.96	29.52
	0.96146	33.20	27,40	26.35	0.95574	37.40	31.05	29.60
	0.96133	33.30	27.49	26.43	0.95560	37.50	$31.03 \\ 31.14$	29.68
	0.96120	33.40	27.57	26.51	0.95545	37.60	$31.14 \\ 31.23$	$29.76 \\ 29.84$
	0.96108	33.50	27.66	26.59	0.95531	37.70	$31.23 \\ 31.32$	$\frac{29.84}{29.92}$
	0.96095	33.60	27.75	26.67	0.95516	37.80	31.40	30.00
	0.96082	33.70	27.83	26.75	0.95502	37.90	$31.40 \\ 31.49$	30.08
1	0.96069	33.80	27.92	26.82	0.95487		$31.49 \\ 31.58$	30.16
	0.96056	33.90	28.00	26.90	0.95472	38.10	31.67	30.10
	0.96043	34.00	28.09	26.98	0.95457	38.20	31.76	$30.24 \\ 30.32$
	0.96030	34.10	28.18	27.06	0.95442		$31.76 \\ 31.85$	30.32
	0.96016	34.20	28.26	27.14	0.95427			30.48
	0.96003	34.30	28.35	27.22	0.95413			30.56
	0.95990	34.40	28.43	27.30	0.95398			30.64
	0.95977	34.50	28.52	27.38	0.95383		32.20	30.72
	0.95963	34.60	28.61	27.46	0.95368		32.29	30.79
	0.95950	34.70	28.70	27.54	0.95353		32.37	30.87
	0.95937	34.80	28.78	27.62	0.95338		32.46	30.95
	0.95923	34.90	28.87	27.70	0.95323			31.03
	0.95910	35.00	28.96	27.78	0.95307	39.20		31.11
	0.95896	35.10	29.05	27.86	0.95292	39.30	32.72	31.18
	0.95883	35.20	29.13	27.94	0.95277			31.26
	0.95869	35.30	29.22	28.02	0.95262			31.34
	0.95855	35.40	29.30	28.09	0.95246			31.42
	0.95842	35.50	29.38	28.17	0.95231			31.50
	0.95828	35.60	29.48	28.25	0.95216	39.80		31.58
	0.95814	35.70	29.57	28.33	0.95200		33.27	31.66
	0.95800	35.80	29.65	28.41	0.95185	40.00		31.74
	0.95787	35.90	29.74	28.49	0.95169		33.44	31.82
	0.95773	36.00	29.83	28.57	0.95154	40.20		31.90
	0.95759	36.10	29.92	28.65	0.95138			31.98
	0.95745	36.20		28.73	0.95122			32.06
	0.95731	36.30	30.09	28.81	0.95107			32.14
	0.95717 0.95703	36.40		28.88	0.95091			32.22
				28.96	0.95075			32.30
	0.95688			29.04	0.95059			32.38
	0.95674 0.95660			29.12	0.95044			32.46
	0.95646			29.20	0.95028		34.24	32.54
	0.95632			29.29	0.95012			32.62
	0.95618			29.36	0.94996			32.70
	0.90010	94 . 10	ou.79	29.44	0.94980	41.30	34.50	32.78
-								

ETHYL ALCOHOL (Continued)

SPECIFIC GRAVITY OF MIXTURES OF ETHYL ALCOHOL AND WATER BY VOLUME AND BY WEIGHT

Specific gravity.	Per cent alcohol by volume.	Per cent alcohol by weight.	Grams alcohol per 100 c.c.	Specific gravity.	Per cent alcohol by volume.	Per cent alcohol by weight.	Grams alcohol per 100 c.c.
0.94964 0.94948	41.40 41.50	34.59 34.68	32.86 32.93	0.94258 0.94241	45.60 45.70	38.39 38.48	36.19 36.26
0.94932	41.60	34.77	33.01	0.94223	45.80	38.57	36.34
0.94916	41.70	34.86	33.09	0.94206	45.90	38.66	36.42
0.94900	41.80	34.95	33.17	0.94188	46.00	38.75	36.50
0.94884	41.90	35.04	33.25	0.94170	46.10	38.84	36.58
0.94868	42.00	35.13	33.33	0.94152	46.20	38.93	36.66
0.94852	42.10	35.22	33.41	0.94134	46.30	39.03	36.74
0.94835	42.20		33.49	0.94116	46.40	39.12	36.82
0.94810	42.30		33.57	0.94098	46.50	39.21	36.90
0.94802	42.40		33.65	0.94080	46.60	39.30	36.98
0.94786	42.50		33.73	0.94062	46.70	39.39	37.06
0.94770	42.60		33.81	0.94044	46.80	39.49	37.13
0.94753	42.70		33.89	0.94026	46.90	39.58	37.21
0.94737	42.80	35.85	33.97	0.94008	47.00	39.67	37.29
0.94720	42.90	35.94	34.04	0.93990	47.10	39.76	37.37
0.94704	43.00	36.03	34.12	0.93971	47.20	39.85	37.45
0.94687	43.10	36.12	34.20	0.93953	47.30	39.95	37.53
0.94670	43.20	36.21	34.28	0.93934	47.40	40.04	37.61
0.94654	43.30		34.36	0.93916	47.50	40.13	37.69
0.94637	43.40	36.39	34.44	0.93898	47.60	40.22	37.77
0.94620	43.50	36.48	34.52	0.93879	47.70	40.32	37.85
0.94603	43.60	36.57	34.60	0.93861	47.80	40.41	37.93
0.94586			34.68	0.93842	47.90	40.51	38.01
0.94570	43.80	36.75	34.76	0.93824	48.00	40.60	38.09
0.94553			34.84	0.93805	48.10	40.69	38.17
0.94536			34.91	0.93786	48.20	40.78	38.25
0.94519			34.99	0.93768	48.30	40.88	38.33
0.94502			35.07	0.93749	48.40	40.97	38.41
0.94484	44.30	37.21	35.15	0.93730	48.50	41.06	38.49
0.94467	44.40	37.30	35 . 23	0.93711	48.60	41.15	38.57
0.94450	44.50	37.39	35.31	0.93692	48.70	41.24	38.65
0.94433	44.60	37.48	35.39	0.93679	48.80	41.34	38.72
0.94416	44.70	37.57	35.47	0.93655	48.90	41.43	38.80
0.94398	44.80	37.66	35.55	0.93636	49.00	41.52	38.88
0.94381	44.90	37.76	35.63	0.93617	49.10	41.61	38.96
0.94364	45.00	37.84	35.71	0.93598	49.20	41.71	39.04
0.94346	45.10	37.93	35.79	0.93578	49.30	41.80	39.12
0.94329	45.20	38.02	35.87	0.93559	49.40	41.90	39.20
0.94311	45.30	38.12	35.95	0.93540	49.50	41.99	39.28 39.36
$0.94294 \\ 0.94276$	45.40 45.50	38 . 21 38 . 30	$36.03 \\ 36.11$	0.93521	49.60 49.70	$\frac{42.08}{42.18}$	39.44
0.944/0	40.00	06.66	30.11	0.95502	19.70	74.10	09.44

ETHYL ALCOHOL (Continued)

Specific Gravity of Mixtures of Ethyl Alcohol and Water by Volume and by Weight

Specific gravity.	Per cent alcohol by volume.	Per cent alcohol by weight.	Grams alcohol per 100 c.c.	Specific gravity.	Per cent alcohol by volume.	Per cent alcohol by weight.	Grams alcohol per 100 c.c.
0.93482 0.93463 0.93463 0.9325 0.9305 0.9285 0.9264 0.9222 0.9201 0.9180 0.9158 0.9136 0.9113 0.9061 0.9068 0.9044 0.9021 0.8997 0.8974 0.8925 0.8900 0.8876	49.80 49.90 50.00 51.00 52.00 54.00 55.00 56.00 57.00 58.00 60.00 61.00 62.00 63.00 64.00 65.00 66.00 67.00 68.00 69.00 71.00	weight. 42.27 42.37*	39.52 39.60	0.8773 0.8747 0.8747 0.8721 0.8694 0.8667 0.8639 0.8611 0.8583 0.8554 0.8496 0.8465 0.8465 0.8465 0.8465 0.8339 0.8339 0.8322 0.8336 0.8272 0.8236 0.8199 0.8161 0.8079 0.8035	75.00 76.00 77.00 78.00 79.00 80.00 81.00 82.00 83.00 84.00 85.00 86.00 87.00 88.00 99.00 991.00 992.00 993.00 995.00 996.00 997.00 998.00	weight.	100 c.c.
0.8850 0.8825 0.8799	72.00 73.00 74.00			0.7989 0.7939	100.00		

^{*} For specific gravity of mixtures by weight see following table.

ETHYL ALCOHOL

Specific Gravity of Mixtures of Ethyl Alcohol and Water by Weight

The table gives the specific gravity at the temperature indicated referred to water at 4° C.

water at 4	C.	(U. 8	S. Bureau	of Standard	ls.)		
Per cent alcohol by weight.	ĺ15° C.	20° C.	25° C.	Per cent alcohol by weight.	15° C.	20° C.	25° C.
weight. 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	0.9913 0.99725 0.99368 0.99197 0.99383 0.98877 0.98581 0.98581 0.98581 0.98581 0.98680 0.97683 0.97683 0.97683 0.97683 0.97680	0.99824 0.99636 0.99437 0.99102 0.99274 0.99102 0.98936 0.98776 0.98470 0.983185 0.97047 0.97522 0.97781 0.97522 0.97781 0.97522 0.97781 0.97522 0.97781 0.97620 0.97630 0.96730 0.96730 0.96730 0.96599 0.96457	0.99708 0.99521 0.99338 0.99539 0.9938 0.98915 0.988815 0.98815 0.98336 0.98336 0.97752 0.97612 0.97744 0.97336 0.97192 0.97612 0.97961 0.96852 0.96497 0.96497 0.96497 0.96352	51 52 53 54 55 56 57 58 59 61 62 63 64 66 67 68 69 71 72 73 74	0.91566 0.91344 0.91120 0.90895 0.90670 0.90493 0.90215 0.89287 0.89528 0.89528 0.89528 0.88580 0.88580 0.88580 0.88580 0.88580 0.88580 0.8759 0.87664 0.87428	0.91164 0.90940 0.90740 0.90745 0.90284 0.90284 0.89805 0.89805 0.89816 0.8915 0.88418 0.87950 0.87716 0.87244 0.87780 0.87244 0.87080 0.87780 0.87244 0.87080 0.8750 0.87	0.90758 0.90530 0.90307 0.90079 0.89652 0.89392 0.89392 0.88931 0.88500 0.88766 0.88200 0.87530 0.87580 0.86821 0.86584 0.865622 0.85862 0.85862 0.85862 0.85862 0.85862 0.85862 0.85862 0.85834
25 26 27 28 30 31 32 33 34 36 37 38 39 40 41 42 44 45 46 47 48 49	0. 96430 0. 96289 0. 95897 0. 95897 0. 95845 0. 955688 0. 95360 0. 95310 0. 94087 0. 94471 0. 94482 0. 94089 0. 93893 0. 93893 0. 93893 0. 93893 0. 92855 0. 92855 0. 92225 0. 92225 0. 92225 0. 922006 0. 922006	0. 96171 0. 96071 0. 95868 0. 95751 0. 95255 0. 95255 0. 95215 0. 95042 0. 94865 0. 94499 0. 94341 0. 94311 0. 94119 0. 93924 0. 93725 0. 93524 0. 93524 0. 9293 0. 9293 0. 9294 0. 9293 0. 9293 0. 9294 0. 9294 0. 9294 0. 9294 0. 9294 0. 9294 0. 9294 0. 9293 0. 9294 0. 92	0.95897 0.957577 0.95412 0.952412 0.952412 0.95277 0.95412 0.95271 0.94152 0.94152 0.94152 0.94152 0.93567 0.93760 0.93567 0.93760 0.9355 0.9355 0.92732 0.92159 0.92159 0.92159 0.92159 0.92159 0.92159 0.92159 0.92159 0.92159 0.92159 0.92159 0.92159 0.92159	76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99	0.85755 0.85270 0.850270 0.85028 0.84781 0.84584 0.84286 0.84037 0.83786 0.83279 0.83786 0.83279 0.82235 0.81986 0.84488 0.84687 0.80548 0.8054 0.80548 0.8054	0.85384 0.84840 0.84584 0.84349 0.8410 0.84349 0.8410 0.83852 0.83602 0.833697 0.82583 0.82323 0.82060 0.81795 0.81255 0.80979 0.81255 0.80979 0.79838 0.79940 0.79838	0.84893 0.84403 0.84103 0.83909 0.83690 0.836410 0.83159 0.82652 0.823137 0.81873 0.81873 0.81080 0.80534 0.80534 0.80534 0.79689 0.79490 0.79490 0.79890 0.79809 0.79800

TABLES OF THE MANUFACTURING CHEMISTS' ASSOCIATION

SULPHURIC ACID

Authorities - W. C. FERGUSON; H. P. TALBOT

This table has been approved and adopted as a standard by the Manufacturing Chemists' Association of the United States. Specific Gravity determinations were made at 60° F., compared with water at 60° F.

From the Specific Gravities the corresponding degrees Baumé

were calculated by the following formula:

Baumé =
$$145 - \frac{145}{\text{Sp. Gr.}}$$

Baumé Hydrometers for use with this table must be graduated by the above formula, which formula should always be printed on the scale.

66° Baumé = Sp. Gr. 1.8354.

1 cu. ft. water at 60° F. weighs 62.37 lbs. av. Atomic weights from F. W. Clarke's table of 1901. O = 16. $H_2SO_4 = 100$ per cent.

	H_2SO_4	O. V.	60°
O. V.	93.19	100.00	119.98
60°	77.67	83.35	100.00
50°	62.18	66.72	80.06

Acids stronger than 66° Bé. should have their percentage compositions determined by chemical analysis.

Bé.°	Sp. gr.	Tw.°	Per cent H ₂ SO	Weight of 1 cu. ft. in lbs. av.	Per cent O. V.	Pounds O. V. in 1 cu. ft.	* Freezing (melting) point.
0 1 2 3 4	1.0000 1.0069 1.0140 1.0211 1.0284	0.0 1.4 2.8 4.2 5.7	$egin{array}{c} 0.00 \\ 1.02 \\ 2.08 \\ 3.13 \\ 4.21 \\ \end{array}$	62.37 62.80 63.24 63.69 64.14	$egin{array}{c} 0.00 \\ 1.09 \\ 2.23 \\ 3.36 \\ 4.52 \\ \end{array}$	0.00 .68 1.41 2.14 2.90	32.0° F. 31.2 "- 30.5 " 29.8 " 28.9 "
5 6 7 8	1.0357 1.0432 1.0507 1.0584 1.0662	7.1 8.6 10.1 11.7 13.2	5.28 6.37 7.45 8.55 9.66	64.60 65.06 65.53 66.01 66.50	5.67 6.84 7.99 9.17 10.37	3.66 4.45 5.24 6.06 6.89	28.1 " 27.2 " 26.3 " 25.1 " 24.0 "
10 11 12 13 14	1.0741 1.0821 1.0902 1.0985 1.1069	14.8 16.4 18.0 19.7 21.4	10.77 11.89 13.01 14.13 15.25	66.99 67.49 68.00 68.51 69.04	11.56 12.76 13.96 15.16 16.36	7.74 8.61 9.49 10.39 11.30	22.8 " 21.5 " 20.0 " 18.3 " 16.6 "

^{*} Calculated from Pickering's results, Journal of London Chemical Society, vol. 57, p. 363.

SULPHURIC ACID (Continued)

Bé.°	Sp. gr.	Tw.°	Per cent H ₂ SO ₄	Weight of 1 cu. ft. in lbs. av.	Per cent O. V.	Pounds O. V. in 1 cu.ft.	* Freezing (melting) point.
15	1.1154	23.1	16.38	69.57	17.58	12.23	14.7 F.
16	1.1240	24.8	17.53	70.10	18.81	13.19	12.6 "
17	1.1328	26.6	18.71	70.65	20.08	14.18	10.2 "
18	1.1417	28.3	19.89	71.21	21.34	15.20	7.7 "
19	1.1508	30.2	21.07	71.78	22.61	16.23	4.8 "
20	1.1600	32.0	22. 25	72.35	23.87	17.27	+ 1.6 ".
21	1.1694	33.9	23. 43	72.94	25.14	18.34	- 1.8 ".
22	1.1789	35.8	24. 61	73.53	26.41	19.42	- 6.0 ".
23	1.1885	37.7	25. 81	74.13	27.69	20.53	-11 ".
24	1.1983	39.7	27. 03	74.74	29.00	21.68	-16 "
25	1.2083	41.7	28. 28	75.36	30.34	22.87	-23 "
26	1.2185	43.7	29. 53	76.00	31.69	24.08	≠30 "
27	1.2288	45.8	30. 79	76.64	33.04	25.32	-39 "
28	1.2393	47.9	32. 05	77.30	34.39	26.58	-49 "
29	1.2500	50.0	33. 33	77.96	35.76	27.88	-61 "
30	1.2609	52.2	34.63	78.64	37.16	29.22	-74 "
31	1.2719	54.4	35.93	79.33	38.55	30.58	-82 "
32	1.2832	56.6	37.26	80.03	39.98	32.00	-96 "
33	1.2946	58.9	38.58	80.74	41.40	33.42	-97 "
34	1.3063	61.3	39.92	81.47	42.83	34.90	-91 "
35	1.3182	63.6	41.27	82.22	44. 28	36.41	-81 "
36	1.3303	66.1	42.63	82.97	45. 74	37.95	-70 "
37	1.3426	68.5	43.99	83.74	47. 20	39.53	-60 "
38	1.3551	71.0	45.35	84.52	48. 66	41.13	-53 "
39	1.3679	73.6	46.72	85.32	50. 13	42.77	-47 "
40 41 42 43 44	1.3810 1.3942 1.4078 1.4216 1.4356	76.2 78.8 81.6 84.3 87.1	48. 10 49. 47 50. 87 52. 26 53. 66	86.13 86.96 87.80 88.67 89.54	51.61 53.08 54.58 56.07 57.58	44.45 46.16 47.92 49.72 51.56	-41 " -35 " -31 " -27 " -23 "
45	1.4500	90.0	55.07	90.44	59.09	53.44	-20 "
46	1.4646	92.9	56.48	91.35	60.60	55.36	-14 "
47	1.4796	95.9	57.90	92.28	62.13	57.33	-15 "
48	1.4948	99.0	59.32	93.23	63.65	59.34	-18 "
49	1.5104	102.1	60.75	94.20	65.18	61.40	-22 "

^{*}Calculated from Pickering's results, Journal of London Chemical Society, vol. 57, p. 363,

SULPHURIC ACID (Continued)

Bé.°	Sp. gr.	Tw.°	Per cent H ₂ SO ₄	Weight of 1 cu. ft. in lbs. av.		Pounds O. V. in 1 cu.ft.	*Freezing (melting) point.
50 51 52 53 54	1.5263 1.5426 1.5591 1.5761 1.5934	105.3 108.5 111.8 115.2 118.7	62. 18 63. 66 65. 13 66. 63 68. 13	95.20 96.21 97.24 98.30 99.38	66.72 68.31 69.89 71.50 73.11	63. 52 65. 72 67. 96 70. 28 72. 66	-27 F. -33 " -39 " -49 " -59 "
55 56 57 58 59	1.6111 1.6292 1.6477 1.6667 1.6860	122.2 125.8 129.5 133.3 137.2	69.65 71.17 72.75 74.36 75.99	100.48 101.61 102.77 103.95 105.16	74.74 76.37 78.07 79.79 81.54	75.10 77.60 80.23 82.95 85.75	- 7 Below - 40
60 61 62 63 64	1.7059 1.7262 1.7470 1.7683 1.7901	145.2	77.67 79.43 81.30 83.34 85.66	106.40 107.66 108.96 110.29 111.65	83.35 85.23 87.24 89.43 91.92	88.68 91.76 95.06 98.63 102.63	+12.6 F. 27.3 " 39.1 " 46.1 " 46.4 "
$64\frac{1}{4}$ $64\frac{3}{4}$ 65 $65\frac{1}{4}$	1.7957 1.8012 1.8068 1.8125 1.8182		87.04 87.81	112.00 112.34 112.69 113.05 113.40	93.40 94.23 95.13	103.75 104.93 106.19 107.54 108.97	43.6 " 41.1 " 37.9 " 33.1 " 24.6 "
$\begin{array}{c} 65\frac{1}{2} \\ 65\frac{3}{4} \\ 66 \end{array}$	1.8239 1.8297 1.8354	164.8 165.9 167.1	91.80	113.76 114.12 114.47	98.51	110.60 112.42 114.47	13.4 " -1 " -29 "

^{*}Calculated from Pickering's results, Journal of London Chemical Society, vol. 57, p. 363.

APPROXIMATE BOIL- ING POINTS	Per cent 60°	Pounds 60° in 1 cu. ft.	Per cent 50°	Pounds 50° in 1 cu. ft
50° Bé. 295 F. 60° " 386 " 61° " 400 " 62° " 415 " 63° " 432 " 64° " 451 " 65° " 485 "• 66° " 538 "	61.93 63.69 65.50 67.28 69.09 70.90 72.72 74.55 76.37 78.22	53.34 55.39 57.50 59.66 61.86 64.12 66.43 68.79 71.20 73.68	77.36 79.56 81.81 84.05 86.30 88.56 90.83 93.12 95.40 97.70	66.63 69.19 71.83 74.53 77.27 80.10 82.98 85.93 88.94 92.03

SULPHURIC ACID (Continued)

FIXED POINTS

	IXED					Ī	i
	Per cent		Per cent	Per cent	Pounds 60°	Per cent	Pounds 50°
Sp. gr.	H ₂ SO ₄	Sp. gr.	H ₂ SO ₄	60°	in 1 cu. ft.	50°	in 1 cu. ft
~							
			20.04	00.00	F C 01	100 00	05 00
1.0000		1.5281	62.34	80.06	76.21	100.00	95.20
1.0048		1.5440	63.79	81.96	78.85	102.38	98.50
1.0347		1.5748	66.51	00.00	01.74	104 74	
1.0649		1.6272	71.00	83.86	81.54	104.74	101.85
1.0992	14.22	1.6679	74.46	85.79	84.33	107.15	105.33
1.1353	19.04		77.54	87.72	87.17	109.57	108.89
1.1736	23.94	1.7258	79.40	1			
1.2105	28.55	1.7472	81.32	89.67	90.10	112.01	112.55
1.2513	33.49	1.7700	83.47	91.63	93.11	114.46	116.30
1.2951		1.7959	86.36	93.67	96.26	117.00	120.24
1.3441	44.15	1.8117	88.53	95.74	99.52	119.59	124.31
1.3947			89.75	97.84	102.89	122.21	128.52
1.4307		1.8275	91.32				
1.4667			93.19	100.00	106.40	124.91	132.91
1.4822		1.0001	00.10	102.27	110.10	127.74	137.52
1.1022	00.11			104.67	114.05	130.75	142.47
	<u> </u>	<u> </u>		107.30	118.34	134.03	147.82
ATJ	OWANG	E FOR	TEM-	110.29		137.76	153.81
,1111		RATURE		120.20			
At 10°	Bé029°	Bé. or .000	023 Sp. Gr	111.15	124.49	138.84	155.50
= 1° 1	۳.			1112.06	125.89	139.98	157.25
$At 20^{\circ} I = 1^{\circ} I$	Bé036°	Bé. or .000	034 Sp. Gr.	113.05	127.40	141.22	159.14
		Bé. or .000	39 Sn. Gr.	114.14	129.03	142.57	161.17
= 1° F	٠		•	115.30	130.75	144.02	163.32
At 40°]	Bé031°	Bé. or .000)41 Sp. Gr.				
		Bé. or .000)45 Sp. Gr.	116.65	132.70	145.71	165.76
= 1° I	₹			1118, 19	134.88	147.63	168.48
At 60°	Bé026°	Bé. or .000)53 Sp. Gr.	119.98		149.87	171.56
= 1° I	F. BA. 026°	Bé. or .000)57 Sp. Gr.			1	
= 1° I	₹.	Bé or 00	-				·

At 66° Bé. .0235° Bé. or .00054 Sp. Gr.

NITRIC ACID

Authority - W. C. FERGUSON

This table has been approved and adopted as a Standard by the Manufacturing Chemists' Association of the United States.

Specific Gravity determinations were made at 60° F., com-

pared with water at 60° F.

From the Specific Gravities, the corresponding degrees Baumé were calculated by the following formula:

Baumé =
$$145 - \frac{145}{\text{Sp. Gr.}}$$

Baumé Hydrometers for use with this table must be graduated by the above formula, which formula should *always* be printed on the scale.

Atomic weights from F. W. Clarke's table of 1901. O = 16.

Allowance for Temperature

At
$$10^{\circ}-20^{\circ}$$
 Be. $-1/30^{\circ}$ Be. or .00029 Sp. Gr. = 1° F. $20^{\circ}-30^{\circ}$ Be. $-1/23^{\circ}$ Be. or .00044 " " = 1° F. $30^{\circ}-40^{\circ}$ Be. $-1/20^{\circ}$ Be. or .00060 " " = 1° F. $40^{\circ}-48.5^{\circ}$ Be. $-1/17^{\circ}$ Be. or .00084 " " = 1° F.

Bé.°	Sp. gr.	Tw.°	Per cent HNO ₃ .	Bé.°	Sp. gr.	Tw.°	Per cent HNO ₃ .
10.00 10.25 10.50 10.75 11.00 11.25 11.50 12.25 12.75 13.00 13.25 13.50 13.75 14.00	1.0741 1.0761 1.0781 1.0801 1.0821 1.0841 1.0861 1.0902 1.0922 1.0943 1.0964 1.1027 1.1027 1.1048 1.1069	14.82 15.22 16.02 16.42 17.22 17.62 18.04 18.44 18.84 19.28 19.70 20.12 20.54 20.96 21.38	12.86 13.18 13.49 13.81 14.13 14.44 14.76 15.07 15.41 15.72 16.05 16.39 16.72 17.05 17.38 17.71 18.04	15. 25 15. 50 16. 00 16. 25 16. 50 17. 00 17. 25 17. 75 18. 00 18. 25 18. 50 19. 25	1.1176 1.1197 1.1219 1.1240 1.1262 1.1284 1.1306 1.1328 1.1350 1.1373 1.1395 1.1417 1.1440 1.1462 1.1485 1.1508 1.1531	23. 52 23. 94 24. 38 24. 80 25. 24 25. 68 27. 00 27. 46 27. 90 28. 34 28. 80 29. 24 29. 70 30. 16 30. 62	19. 70 20. 02 20. 36 20. 69 21. 03 21. 36 21. 70 22. 04 22. 38 22. 74 23. 08 23. 42 23. 77 24. 11 24. 47 24. 82 25. 18
14.25 14.50 14.75 15.00	1.1090 1.1111 1.1132 1.1154	21.80 22.22 22.64 23.08	18.37 18.70 19.02 19.36	19.75 20.00	1.1554 1.1577 1.1600 1.1624	31.08 31.54 32.00 32.48	25.53 25.88 26.24 26.61

NITRIC ACID (Continued)

			HNO3.	Bé.°	Sp. gr.	Tw.°	HNO3.
20.50	1.1647	32.94	26.96	31.50	1.2775	55.50	43.89
20.75	1.1671	33.42	27.33	31.75	1.2804	56.08	44.34
21.00	1.1694	33.88	27.67	32.00	1.2832	56.64	44.78
21.25	1.1718	34.36	28.02	32.25	1.2861	57.22	45.24
21.50	1.1741	34.82	28.36	32.50	1.2889	57.78	45.68
21.75	1.1765	35.30	28.72	32.75	1.2918	58.36	46.14
22.00	1.1789	35.78	29.07	33.00	1.2946	58.92	46.58
22.25	1.1813	36.26	29.43	33.25	1.2975	59.50	47.04
22.50	1.1837	36.74	$\frac{1}{29.78}$	33.50	1.3004	60.08	47.49
22.75	1.1861	37.22	30.14	33.75	1.3034	60.68	47.95
23.00	1.1885	37.70	30.49	34.00	1.3063	61.26	48.42
23.25	1.1910	38.20	30.86	34.25	1.3093	61.86	48.90
23.50	1.1934	38.68	31.21	34.50	1.3122	62.44	49.35
23.75	1.1959	39.18	31.58	34.75	1.3152	63.04	49.83
24.00	1.1983	39.66	31.94	35.00	1.3182	63.64	50.32
$\frac{24.25}{24.25}$	1.2008	40.16	32.31	35.25	1.3212	64.24	50.81
24.50	1.2033	40.66	32.68	35.50	1.3242	64.84	51.30
24.75	1.2058	41.16	33.05	35.75	1.3273	65.46	51.80
25.00	1.2083	41.66	33.42	36.00	1.3303	66.06	52.30
25.25	1.2000 1.2109	42.18	33.80	36.25	1.3334	66.68	52.81
25.50	1.2109 1.2134	42.68	34.17	36.50	1.3364	67.28	53.32
25.75	1.2160	43.20	34.56	36.75	1.3395	67.90	53.84
26.00	1.2185	43.70	34.94	37.00	1.3426	68.52	54.36
26.25	1.2100 1.2211	44.22	35.33	37.25	1.3457	69.14	54.89
26.50	1.2236	44.72	35.70	37.50	1.3488	69.76	55.43
26.75	1.2262	45.24	36.09	37.75	1.3520	70.40	55.97
27.00	1.2288	45.76	36.48	38.00	1.3551	71.02	56.52
27.25	1.2314	46.28	36.87	38.25	1.3583	71.66	57.08
27.50	1.2340	46.80	37.26	38.50	1.3615	72.30	57.65
27.75	1.2367	47.34	37.67	38.75	1.3647	72.94	58.23
28.00	1.2393	47.86	38.06	39.00	1.3679	73.58	58.82
28.25	1.2420	48.40	38.46	39.25	1:3712	74.24	59.43
28.50	1.2446	48.92	38.85	39.50	1.3744	74.88	60.06
28.75	1.2473	49.46	39.25	39.75	1.3777	75.54	60.71
29.00	1.2500	50.00	39.66	40.00	1.3810	76.20	61.38
29.25	1.2527	50.54	40.06	40.25	1.3843	76.86	62.07
29.50	1.2554	51.08	40.47	40.50	1.3876	77.52	62.77
29.75	1.2582	51.64	40.89	40.75	1.3909	78.18	63.48
30.00	1.2609	52.18	41.30	41.00	1.3942	78.84	64.20
30.25	1.2637	52.74	41.72	41.25	1.3976	79.52	64.93
30.50	1.2664	53.28	$\frac{1}{42}.14$	41.50	1.4010	80.20	65.67
30.75	1.2692	53.84	42.58	41.75	1.4044	80.88	66.42
31.00	1.2719	54.38	43.00	42.00	1.4078	81.96	67.18
31.25	1.2747	54.94	43.44	42.25	1.4112	82.24	67.95

NITRIC ACID (Continued)

Bé.°	Sp. gr.	Tw.°	Per cent HNO ₃ .	Bé.°	Sp. gr.	Tw.°	Per cent HNOs.
42.50 42.75 43.00 43.25 43.50 44.75 44.25 44.50 44.75 45.00 45.25	1.4181 1.4216 1.4251	82.92 83.62 84.32 85.02 85.72 86.42 87.12 87.84 88.56 89.28 90.00 90.72	68. 73 69. 52 70. 33 71. 15 71. 98 72. 82 73. 67 74. 53 75. 40 76. 28 77. 17 78. 07	45.75	1.4610 1.4646 1.4684 1.4721 1.4758 1.4796 1.4834 1.4872	92. 20 92. 92 93. 68 94. 42 95. 16 95. 92 96. 68 97. 44 98. 20 98. 96 99. 74	79.03 80.04 81.08 82.18 83.33 84.48 85.70 86.98 88.32 89.76 91.35 93.13 95.11
				· · · · · · · · · · · · · · · · · · ·			i

HYDROCHLORIC ACID

Authority - W. C. FERGUSON

This table has been approved and adopted as a standard by the Manufacturing Chemists' Association of the United States. Specific Gravity determinations were made at 60° F., com-

pared with water at 60° F.

From the Specific Gravities, the corresponding degrees Baumé were calculated by the following formula:

Baumé =
$$145 - \frac{\text{Sp. Gr.}}{145}$$

Baumé Hydrometers for use with this table must be graduated by the above formula which formula should always be printed on the scale.

Atomic weights from F. W. Clarke's table of 1901. O = 16.

Allowance for Temperature

$$10^{\circ}-15^{\circ}$$
 Bé. — 1/40° Bé. or .0002 Sp. Gr. for 1° F. 15° – 22° Bé. — 1/30° Bé. or .0003 " " " 1° F. 22° – 25° Bé. — 1/28° Bé. or .00035 " " " 1° F.

Bé.°	Sp. gr.	Tw.°	Per cent HNO ₃ .	Bé.°	Sp. gr.	Tw.°	Per cent HNO3.
1.00	1.0069	1.38	1.40	10.25	1.0761	15.22	15.22
2.00	1.0140	2.80	2.82	10.50	1.0781	15.62	15.62
3.00	1.0211	4.22	4.25	10.75	1.0801	16.02	16.01
4.00	1.0284	5.68	[5.69]		1.0821	16.42	16.41
5.00	1.0357	7.14	7.15		1.0841	16.82	16.81
5.25	1.0375	7.50	7.52		1.0861	17.22	17.21
5.50	1.0394	7.88	7.89	11.75	1.0881	17.62	17.61
5.75	1.0413	8.26	8.26	12.00	1.0902	18.04	18.01
6.00	1.0432	8.64	8.64		1.0922	18.44	18.41
6.25	1.0450	9.00	9.02	12.50	1.0943	18.86	18.82
6.50	1.0469	9.38	9.40		1.0964	19.28	19.22
6.75	1.0488	9.76	9.78	13.00	1.0985	19.70	19.63
7.00	1.0507	10.14	10.17	13.25	1.1006	20.12	20.04
7.25	1.0526	10.52	10.55	13.50		20.54	20.45
7.50	1.0545	10.90	10.94	13.75	1.1048	20.96	20.86
7.75	1.0564	11.28	11.32	14.00			21.27
8.00	1.0584	11.68	11.71	14.25	1.1090		21.68
8.25	1.0603	12.06	12.09	14.50	1.1111	22.22	22.09
8.50	1.0623	12.46	12.48	14.75	1.1132	22.64	22.50
8.75	1.0642	12.84	12.87	15.00	1.1154	23.08	22.92
9.00	1.0662	13.24	13.26	15.25	1.1176		23.33
9.25	1.0681	13.62	13.65	15.50	1.1197	23.94	23.75
9.50	1.0701	14.02	14.04	15.75	1.1219	24.38	24.16
9.75	1.0721	14.42	14.43	16.0	1.1240	24.80	24.57
10.00	1.0741	14.82	14.83	16.1	1.1248	24.96	24.73

HYDROCHLORIC ACID (Continued)

	, · · · · · · · · · · · · · · · · · · ·						
Bé.°	Sp. gr.	Tw.°	Per cent HNO ₃ .	Bé.°	Sp. gr.	Tw.°	Per cent HNO ₃ .
16.2	1.1256	25.12	24.90	20.9	1.1684	33.68	33.12
16.3	1.1265	25.30	25.06	21.0	1.1694	33.88	33.31
16.4	1.1274	25.48	25.23	21.1	1.1703	34.06	33.50
16.5	1.1283	25.66	25.39	21.2	1.1713	34.26	33.69
16.6	1.1292	25.84	25.56		1.1722	34.44	33.88
16.7	1.1301	26.02	25.72	$\frac{21.0}{21.4}$	1.1732	34.64	34.07
16.8	1.1310	26.20	25.89	21.5	1.1741	34.82	34.26
16.9	1.1319	26.38	26.05	21.6	1.1751	35.02	34.45
17.0	1.1328	26.56	26.22	$\frac{21.0}{21.7}$	1.1760	35.20	34.64
17.1	1.1336	26.72	26.39	21.8	1.1770	35.40	34.83
$\tilde{17}.\tilde{2}$	1.1345	26.90	26.56	21.9	1.1779	35.58	35.02
17.3	1.1354	27.08	26.73	$\frac{21.0}{22.0}$	1.1789	35.78	35.21
17.4	1.1363	27.26	26.90	$\frac{22.0}{22.1}$	1.1798	35.96	35.40
17.5	1.1372	27.44	27.07	22.2	1.1808	36.16	35.59
17.6	1.1381	27.62	27.24	$\frac{22.3}{2}$	1.1817	36.34	35.78
$\overline{17.7}$	1.1390	27.80	27.41	22.4	1.1827	36.54	35.97
17.8	1.1399	27.98	27.58	$\frac{22.5}{2}$	1.1836	36.72	36.16
17.9	1.1408	28.16	27.75	22.6	1.1846	36.92	36.35
18.0	1.1417	28.34	27.92	$\frac{22.7}{2}$	1.1856	37.12	36.54
18.1	1.1426	28.52	28.09	22.8	1.1866	37.32	36.73
18.2	1.1435	28.70	28.26	22.9	1.1875	37.50	36.93
18.3	1.1444	28.88	28.44	23.0	1.1885	37.70	37.14
18.4	1.1453	29.06	28.61	23.1	1.1895	37.90	37.36
18.5	1.1462	29.24	$\frac{28.78}{28.78}$	$\frac{23.1}{23.2}$	1.1904	38.08	37.58
18.6	1.1471	29.42	28.95	$\frac{23.2}{23.3}$	1.1914	38.28	37.80
18.7	1.1480	29.60	29.13	23.4	1.1924	38.48	38.03
18.8	1.1489	29.78	29.30	$\frac{23.5}{2}$	1.1934	38.68	38.26
18.9	1.1498	29.96	29.48	23.6	1.1944	38.88	38.49
19.0	1.1508	30.16	29.65	23.7	1.1953	39.06	38.72
19.1	1.1517	30.34	29.83	23.8	1.1963	39.26	38.95
19.2	1.1526	30.52	30.00	23.9	1.1973	39.46	39.18
19.3	1.1535	30.70	30.18	24.0	1.1983	39.66	39.41
19.4	1.1544	30.88	30.35	24.1	1.1993	39.86	39.64
19.5	1.1554	31.08	30.53	24.2	1.2003	40.06	39.86
19.6	1.1563	31.26	30.71	24.3	1.2013	40.26	40.09
19.7	1.1572	31.44	30.90	24.4	1.2023	40.46	40.32
19.8	1.1581	31.62	31.08	24.5	1.2033	40.66	40.55
19.9	1.1590	31.80	31.27	24.6	1.2043	40.86	40.78
10.0	1.1600	32.00	31.45	24.7	1.2053	41.06	41.01
20.1	1.1609	32.18	31.64	24.8	1.2063	41.26	41.24
20.2	1.1619	32.38	31.82	24.9	1.2073	41.46	41.48
20.3	1.1628	32.56	32.01	25.0	1.2083	41.66	41.72
20.4	1.1637	32.74	32.19	25.1	1.2093	41.86	41.99
20.5	1.1647	32.94	32.38	25.2	1.2103	42.06	42.30
20.6	1.1656	33.12	32.56	25.3	1.2114	42.28	42.64
20.7	1.1666	33.32	32.75	25.4	1.2124	42.48	43.01
20.8	1.1675	33.50	32.93	25.5	1.2134	42.68	43.40
					!		

AQUA AMMONIA

Authority - W. C. FERGUSON

This table has been approved and adopted as a standard by the Manufacturing Chemists' Association of the United States. Specific Gravity determinations were made at 60° F., com-

pared with water at 60° F.

From the Specific Gravities, the corresponding degrees Baumé were calculated by the following formula:

Baumé =
$$\frac{140}{\text{Sp. Gr.}} - 130$$
.

Baumé Hydrometers for use with this table must be graduated by the above formula, which formula should *always* be printed on the scale.

Atomic weights from F. W. Clarke's table of 1901. O = 16.

Allowance for Temperature

The coefficient of expansion for Ammonia Solutions varying with the temperature, correction must be applied according to the following table:

Corrections to be added for each degree below 60° F.			Corrections to be subtracted for each degree above 60° F.					
Degrees Baumé	40° F.	50° F.	70° F.	80° F.	90° F.	100° F.		
14 16 18 20 22	0.015 Bé. 0.021 " 0.027 " 0.033 " 0.039 "	0.023 " 0.029 " .0:036 " 0.042 "	0.020 Bé. 0.026 " 0.031 " 0.037 " 0.043 "	0.022 Bé. 0.028 " 0.033 " 0.038 " 0.045 "	0.024 Bé. 0.030 " 0.035 " 0.040 " 0.047 "	0.026 Bé. 0.032 " 0.037 " 0.042 "		
26	0.053 "	0.057 "	0.057 "	0.059 "				

Bé.°	Sp. gr.	Per cent NH ₃ .	Bé.°	Sp. gr.	Per cent NH ₃ .
10.00 10.25 10.50 10.75 11.00 11.25 11.50 11.75	1.0000 0.9982 0.9964 0.9947 0.9929 0.9912 0.9894 0.9876 0.9859	0.00 0.40 0.80 1.21 1.62 2.04 2.46 2.88 3.30	12.25 12.50 12.75 13.00 13.25 13.50 13.75 14.00 14.25	0. 9842 0. 9825 0. 9807 0. 9790 0. 9773 0. 9756 0. 9739 0. 9722 0. 9705	3.73 4.16 4.59 5.02 5.45 5.88 6.31 6.74 7.17

AQUA AMMONIA (Continued)

Be.°	Sp. Gr.	Per cent NH ₃ .	Be.°	Sp. gr.	Per cent NH ₃ .
14.50 14.75	0.9689 0.9672	7.61 8.05	$22.00 \\ 22.25$	0.9211 0.9195	21.60
14.75 15.00		8.49			22.08
$15.00 \\ 15.25$	0.9655	8.93	22.50	0.9180	22.56
15.50	$0.9639 \\ 0.9622$	9.38	22.75 23.00	0.9165	$23.04 \\ 23.52$
15.50 15.75	0.9622	9.38	$23.00 \\ 23.25$	0.9150	23.52 24.01
16.00	0.9589	10.28	23.25 23.50	$0.9135 \\ 0.9121$	$24.01 \\ 24.50$
16.25	0.9573	10.28	$\frac{25.50}{23.75}$		24.30 24.99
16.20 16.50	0.9575	11.18	$23.73 \\ 24.00$	0.9106	24.99 25.48
16.75	0.9540	11.16	$24.00 \\ 24.25$	0.9091	25.48 25.97
17.00	0.9524	12.10	$24.25 \\ 24.50$	0.9076	26.46
17.25	0.9524	12.10	$24.50 \\ 24.75$	0.9061 0.9047	26.40 26.95
17.50	0.9492	13.02	25.00	0.9047	$20.95 \\ 27.44$
17.75	0.9475	13.49	$25.00 \\ 25.25$	0.9032	$27.44 \\ 27.93$
18.00	0.9459	13.49	$25.25 \\ 25.50$	0.9018	28.42
18.25	0.9444	14.43	25.75	0.9003	28.91
18.50	0.9428	14.90	26.00	0.8974	29.40
18.75	0.9412	15.37	26.25	0.8960	29.89
19.00	0.9396	15.84	26.50	0.8946	30.38
19.25	0.9380	16.32	26.75	0.8931	30.87
19.50	0.9365	16.80	27.00	0.8917	31.36
19.75	0.9349	17.28	$\frac{27.25}{27.25}$	0.8903	31.85
20.00	0.9333	17.76	27.50	0.8889	32.34
20.25	0.9318	18.24	$\frac{5}{27.75}$	0.8875	32.83
20.50	0.9302	18.72	28.00	0.8861	33.32
20.75	0.9287	19.20	28.25	0.8847	33.81
21.00	0.9272	19.68	28.50	0.8833	34.30
21.25	0.9256	20.16	28.75	0.8819	34.79
21.50	0.9241	20.64	29.00	0.8805	35.28
21.75	0.9226	21.12			

SPECIFIC GRAVITY OF GASES AND VAPORS

	For-	Mol.	Mass of 1 liter	Density	, air = 1	Density	y, O=1
Name	mula	wt.	in g. 760mm. 0° C.	Ob- served	Com- puted	Ob- served	Theo- ret.
Acetylene	C ₂ H ₂	26.02	1.1708	0.9056	0.9056	0.8193	0.8133
Air	O2112	20.02	1.2928	0.5050	1.0000	0.0100	0.0100
Ammonia	NH ₈	17.03	0.7708	0.5962	0.5963	0.5394	0.5321
Argon	A	39.88	1.7828	1.379	1.378	1.248	1.247
Bromine	Br ₂	159.84	7.1388	5.524	5.524		
Butane	C4H10	58.08	2.5985	2.01		1.82	1.8155
Carbon dioxide	CO ₂	44.	1.9768	1.5288	1.5289	1.3832	1.3766
monoxide	CO I	28.	1.2501	0.9670	0.9670	0.8749	0.8752
oxychloride	COCl ₂	98.92	4.5313	3.505		3.171	3.0914
oxysulphide	cos	60.07	2.7201	2.104		1.904	1.8786
Chlorine	Cl2	70.92	3.2204	2.491	2.4906	2.254	2.2162
monoxide	Cl ₂ O	86.92	3.8874	3.007		2.72	2.716
Cyanogen	C ₂ N ₂	52.02	2.3348	1.806	1.8353	1.634	1.6257
Ethane	C_2H_6	30.05	1.3567	1.0494	1.0496	0.9494	0.9392
Ethyl chloride	C ₂ H ₅ Cl	64.49	2.8700	2.22	2.257	2.01	2.0159
Ethylene	C ₂ H ₄	28.03	1.2644	0.978	0.9753	0.885	0.8762
Fluorine	F ₂	38.	1.6354	1.265		1.145	1.187
Helium	He	4.00	0.1769	0.1368	1.0000	0.1238	0.125
Hydrochloric acid	HCI	36.47	1.6394	1.2681	1.2683	1.1473	1.1396
Hydrofluoric acid.	**** 1	20.01	0.9218	0.713		0.645	0.625
Hydriodic acid	HI H	127.93 2.016	5.7245 0.08982	4.428 0.06948	0.06949	4.01 0.06286	4.029
Hydrogen	H ₂ Se	81.21	3.6134	2.795	2.850	2.529	0.06297 2.538
sulphide	H ₂ Se	34.08	1.5392	1.1895	1.1773	2.029	2.000
telluride	H ₂ Te	129.52	5.8034	4.489	1.1110	4.062	4.066
Krypton	Kr	82.92	3.6431	2.818	2.832	2.550	2.556
Methane	CH ₄	16.03	0.7167	0.5544	0.5544	0.5016	0.5011
Methyl chloride	ČH ₃ Cl	50.48	2.3044	1.7825	1.785	1.6127	1.578
Neon	Ne	20.20	0.8713	0.674		0.610	0.625
Nitric oxide	NO	30.01	1.3401	1.0366	1.0366	0.9397	0.9391
Nitrous oxide	N ₂ O	44.02	1.9781	1.5301	1.5303	1.3844	1.3754
Nitrosyl chloride.	NOCI	65.47	2.9864	2.31		2.09	2.046
Oxygen	O ₂	32.	1.4289	1.1053	1.1053	1.000	1.0000
Phosphine	PH ₃	34.06	1.5293	1.1829	1.1830	1.0702	1.063
Silicon fluoride	SiF ₄	104.30	4.6541	3.60	2.2222	3.26	3.259
Sulphur dioxide	SO ₂	64.07	2.9268	2.2639	2.2638	2.0482	2.0034
Xenon	X .	130.2	5.7168	4.422	4.506	4.001	4.00

DEHYDRATION OF METALLIC SULPHATES

Metallic sulphates.	Temp. of beginning of decomposition, °C.	Products formed.	Color of products.
CaSO _{4.2} H ₂ O	38	CaSO ₄ .H ₂ O	White
CaSO ₄ .H ₂ O	80	2CaSO ₄ .H ₂ O	White
2CaSO ₄ .H ₂ O	149	CaSO ₄	White
2CaSO ₄ .H ₂ O MgSO ₄ .7H ₂ O	19	MgSO ₄ .6H ₂ O	White
MgSO ₄ .6H ₂ O	38 .	MgSO ₄ .2H ₂ O	White
MgSO4.2H ₂ O	112	MgSO ₄ .H ₂ O.	White
MgSO ₄ .H ₂ O	203	MgSO ₄	White
CdSO ₄ , § H ₂ O	30	MgSO ₄ . CdSO ₄ .2H ₂ O	White
CdSO4.2H ₂ O	41	CdSO ₄ .H ₂ O	White
CdSO ₄ .H ₂ O	170	ICdSO4	White
CoSO ₄ .7H ₂ O	14	CoSO ₄ .4H ₂ O	Rose
CoSO ₄ .4H ₂ O	58	CoSO ₄ ,H ₂ O	Lilac
CoSO ₄ .H ₂ O	276	CoSO4	Lilac
NiSO4.7H ₂ O	40	NiSO4.4H ₂ O	Green
NiSO4.4H ₂ O	106	NiSO ₄ .H ₂ O	
NiSO ₄ .H ₂ O	279	NiSO4	Orange
ZnSO4.7H ₂ O	25	ZnSO ₄ .6H ₂ O	White
ZnSO4.6H ₂ O	28	ZnSO ₄ .2H ₂ O	White
ZnSO4.2H ₂ O	115	ZnSO ₄ .H ₂ O	White
ZnSO ₄ .H ₂ O	225	ZnSO ₄	White
MnSO _{4.5} H ₂ O	25	MnSO ₄ .2H ₂ O	Pale peach blosson
MnSO ₄ .2H ₂ O	60	MnSO4.H2O	Paler than above
MnSO ₄ .H ₂ O	152	MnSO4	Paler than above
CuSO ₄ .5H ₂ O	27	CuSO ₄ .3H ₂ O CuSO ₄ .H ₂ O	Blue
CuSO ₄ .3H ₂ O	. 193	CuSO4.H2O	Pale blue
CuSO ₄ . H ₂ O	155	CuSO ₄	White
Al ₂ (SO ₄) ₃ .13H ₂ O	51	Al ₂ (SO ₄) ₃ .13H ₂ O	White
Al ₂ (SO ₄) ₈ .10H ₂ O	82	Al ₂ (SO ₄) ₃ .10H ₂ O	White
Al ₂ (SO ₄) ₃ .7H ₂ O	97 109	Al ₂ (SO ₄) ₃ .7H ₂ O	White
Al ₂ (SO ₄) ₈ .4H ₂ O		Al ₂ (SO ₄) ₃ .4H ₂ O	White
Al ₂ (SO ₄) ₈ ,4 H ₂ OAl ₂ (SO ₄) ₈ ,H ₂ O	180 316	Al ₂ (SO ₄) ₃ .H ₂ O	White
FeSO ₄ .7H ₂ O	316 21	Al ₂ (SO ₄) ₃	White
FeSO4.4H ₂ O	80 80	FeSO ₄ .4H ₂ O FeSO ₄ .H ₂ O	Light apple green
FeSO ₄ .H ₂ O	406	Foods SO	W IIITO
- 0.004.1120	*200	Fe ₂ O ₃ , SO ₃	i enowish green

DECOMPOSITION OF ANHYDROUS METALLIC SULPHATES

Metallic sulphate.	Temp. at beginning of decom- position, ° C.	Temp. of energetic decomposi- tion, ° C.	Products of decomposition.	Color of product.
FeSO ₄		480	Fe ₂ O ₃ , 2SO ₄	Yellow brown
Fe ₂ O ₃ , 2SO ₃	492	560	Fe ₂ O ₃	Red
Bi ₂ (SO ₄) ₃		639	5Bi ₂ O ₃ , 4(SO ₃) ₃	White
Al ₂ (SO ₄) ₃		639	Al ₂ O ₃	White
PbSO ₄	637	705	6PbO, 5SO ₃	White
CuSO4	653	670	2CuO, SO₃	Orange
MnSO4	699	790	Mn ₃ O ₄	Dark red to black
ZnSO4	702	720	3ZnO, 2SO ₃	White
2CuO, SO3	702	736	CuO	Black
NiSO4	703	764	NiO	
CoSO4	720	770	C ₀ O	
3ZnO, 2SO3	755	767		White
CdSO4	827	846	5CdO, SO3	White
5Bi ₂ O ₃ , 4(SO ₃) ₃	-870	890	Bi ₂ O ₃ (?)	Yellow
5CdO, SO3		890	CdO	Brown
MgSO4	890	972	MgO	White
Ag2SO4		925	Ag	Silver white
6PbO, 5SO3	952	962	2PbO, SO ₃ (?)	White to yellow
CaSO4		l	CaO	White
BaSO4			BaO	White
			1	

DEGREE OF IONIZATION

IN NORMAL SOLUTION AT 18° UNLESS INDICATED

Acids

Nitric acid 0.82 Hydrochloric acid 0.784 Sulfuric acid 0.510 Hydrofluoric acid 0.070 0.082	† Permanganic acid
--	--------------------

^{*} In o.1 M. solution; primary ionization. † In N/2 solution, at 25°.

Bases

Potassium hydroxide 0.77 Sodium hydroxide 0.73 Barium hydroxide 0.69	‡ Strontium hydroxide ‡ Barium hydroxide ‡ Calcium hydroxide	0.92
Lithium hydroxide 0.63 Ammonium hydroxide		

‡ In N/64 solution, at 25°.

Salts

Approximate degree of ionization for active salts in N/10 solution:

Type R+R-(e.g. KCl)	0 . 86
Type R^+ $(R^-)_2$ (e.g. BaCl ₂) Type $(R^+)_2R^-$ (e.g. K_2SO_4) Type $R^{++}R^-$ (e.g. BaSO ₄)	0.72
Type $(R^+)_2R^ (e.g. K_2SO_4)$	0
Type $R^{++}R^{-}$ – (e.g. $BaSO_4$)	

SOLUBILITY PRODUCT

The solubility product (or ion product constant) is the product of the concentrations of the ions in the saturated solution of a difficultly soluble salt. The concentrations are expressed as moles per liter of solution. The number of cations (or anions) resulting from the dissociation of one molecule of the salt, appears in the formula for calculations of the solubility product as the exponent of the concentration of the cation (or anion).

If two solutions, each containing one of the ions of a difficultly soluble salt, are mixed, no precipitation takes place unless the product of the ion concentrations in the mixture is greater than

the solubility product.

In a solution containing two salts which yield a common ion the ratio of solubilities of the two salts is the ratio of the solubility products.

Substance	Solubility product at temperature noted	Substance	Solubility product at temperature noted
Barium carbonate. Barium oxalate Barium oxalate Barium sulfate Calcium carbonate. Calcium carbonate. Calcium sulfate Cadmium sulfate Cobalt sulfide Cupric sulfide Mercurous chloride Mercurous iodide. Mercurous iodide Mercurous iodide Magnesium carbonate Magnesium oxalate Magnesium oxalate Magnesium oxalate Magnesium ammonium phosphate	$\begin{array}{c} 1.3 \times 10^{-21} \ (21^{\circ}) \\ 1.2 \times 10^{-28} \ (25^{\circ}) \\ 4 \times 10^{-54} \ (25^{\circ}) \\ 2.6 \times 10^{-5} \ (12^{\circ}) \\ 8.5 \times 10^{-5} \ (18^{\circ}) \end{array}$	Manganese sulfide Nickel sulfide Lead carbonate. Lead chromate Lead oxalate Lead sulfide Silver chloride Silver bromide Silver iodide Silver bromate Silver bromate Silver bromate Silver iodate Silver iodate Silver thiocyanate Strontium oxalate. Strontium sulfate. Zinc sulfide	1.4×10-15 (18°) 1.4×10-24 (18°) 3.3×10-14 (18°) 3.5×10-14 (18°) 3.5×10-14 (25°) 1.0×10-8 (18°) 1.5×10-10 (25°) 4.4×10-13 (25°) 9.0×10-17 (25°) 5.77×10-16 (25°) 3.4×10-8 (25°) 3.4×10-8 (25°) 1.6×10-49 (18°) 1.1×10-12 (25°) 5.6×10-13 (25°) 5.6×10-13 (25°) 5.6×10-13 (25°) 5.6×10-13 (25°) 5.6×10-13 (18°) 1.2×10-23 (25°)

DISSOCIATION CONSTANTS OF ACIDS

Name	Formula	Constant for the first hydrogen	Temp. °C.	Constant for the second hydrogen	Temp.
Acetic	CH ₃ COOH	1.8×10⁻⁵	25	i i	
Arsenious	H ₃ AsO ₃	6×10 ⁻¹⁰	25	1	
Arsenic	H3A8O4	5×10⁻³	25		
Benzoic	C ₆ H ₅ COOH	6×10⁻⁵	25		
Boric	H ₃ BO ₃	5×10-10	15		
Butyric	CH ₃ (CH ₂) ₂ COOH	1.5×10⁻⁵	25		
Carbonic	H ₂ CO ₃	3×10-7	18	3×10-11	
Chromic	H ₂ CrO ₄			6×10 ⁻⁷	
Dichlor acetic	CHCl ₂ COOH	5.1×10 ⁻²			
Formic	HC00H	2.14×10-4			
Hydrocyanic	HCN	7×10 ⁻¹⁰		100	
Hydro-sulfuric	H ₂ S	9×10 ⁻⁸	18	1×10 ⁻¹⁵	
Hypo-chlorous	HClO	3.7×10 ⁻⁸	17		1
Lactic	СН₃СНОНСООН	1.4×10-4	25		
Malonic	CH ₂ (COOH) ₂	1.6×10⁻³	25	2.1×10⁻6	25
Monochlor acetic.		1.55×10⁻³			
Nitrous	HNO ₂	4×10⁻⁴	25		
Oxalic	(COOH)2	3.8×10 ⁻²	25	4.9×10⁻⁵	25
Phenol	C ₆ H ₅ OH	1.1×10 ⁻¹⁰			
Phosphoric	H ₃ PO ₄	1.1×10 ⁻²	25	2×10⁻⁻	
Propionic	CH ₃ CH ₂ COOH	1.4×10 ⁻⁵	25		
Sulfuric	H_2SO_4			3×10 ⁻²	25
Sulfurous	H ₂ SO ₃	1.7×10 ⁻²	25	-5×10⁻6	. 25
Succinic	C ₂ H ₄ (COOH) ₂				
Trichlor acetic	CCl ₃ COOH	3×10⁻¹	18		

DISSOCIATION CONSTANTS OF BASES

Name	Formula	Constant	Temp. ℃
Ammonium hydroxide Aniline Dimethyl-aniline Ethylamine Methylamine Monomethyl-aniline Silver hydroxide	C ₆ H ₅ NH ₂ . C ₆ H ₅ N(CH ₃) ₂ C ₂ H ₅ NH ₂ . CH ₃ NH ₂ . C ₆ H ₅ NHCH ₃	1.8×10 ⁻⁵ 3.5×10 ⁻¹⁰ 2.4×10 ⁻¹⁰ 5.6×10 ⁻⁴ 5×10 ⁻⁴ 7.4×10 ⁻⁹ 1.1×10 ⁻⁴	18 25 25 60

ELECTROMOTIVE FORCE SERIES OF METALS

ChromiumCr	1.276 1.075 0.770	Lead Pb Hydrogen (H) Copper Cu Asensenie As Bismuth Bi Antimony Sb Mercury Hg Silver Ag	0.148 0.000 0.336 0.748 0.771
CadmiumCd IronFe	0.420 0.340	SilverAg PalladiumPd	
CobaltCo	0.232	PlatinumPt	0.863
NickelNi TinSn	$\begin{array}{c} 0.228 \\ 0.192 \end{array}$	GoldAu	1.079

1. Any metal will replace any other metal, below it in the series. thus:

```
= FeSO_4 + Cu
Fe +CuSO<sub>4</sub>
=ZnSO_4+H_2
                           Cu insoluble.
                           Ag insoluble.
Ag+CuSO4
                = No action. Ag below Cu.
```

Note.—It is true that dilute and conc. HNO3 and hot conc. H2SO4 will dissolve most of the metals. When they thus dissolve metals below hydrogen in the series, the action is an oxidizing one, and the acids are reduced to NO and SO₂ respectively. The metal is first oxidized to the oxide, the acid being thus at the same time reduced, and the oxide thus formed then reacts with the acid molecule present, and goes into solution as a salt. .

(a)
$$Cu + (dilute) H_2 SO_4 = No action.$$

(b) $Cu + 2 (hot conc.) H_2SO_4 = CuSO_4 + SO_2 + 2H_2O.$

In (b), the Cu is first converted to CuO, thus

 $Cu + H_2SO_4 = CuO + H_2O + SO_2$

then the CuO reacts with another molecule of H2SO4. thus

$$\begin{array}{c} CuO + H_2SO_4 = CuSO_4 + H_2O. \\ 3Cu + 2HNO_3 = 3CuO + 2NO + H_2O \\ 3CuO + 6HNO_3 = 3Cu(NO_3)_2 + 3H_2O \\ 3Cu + 8HNO_3 = 3Cu(NO_3)_2 + 2NO + 4H_2O. \end{array}$$

to and including Mn can not be completely reduced to the metal state, even in a current of hydrogen. The oxides of Cd and succeeding metals are easily reduced, and far down the list, the oxides of silver, platinum, mercury, and gold are reduced (decomposed into metal and oxygen) even by heat alone.

3. In Regard to Ease of Rusting. (Oxidation in the Air.)—The alkali and alkaline-earth metals rust very rapidly and with considerable evolution All the metals down to copper rust with comparative ease. The metals below copper do not rust. Assuming the electrolytic theory of the process of rusting to be true, these facts are just about what might

Added

have been predicted.
4. In Regard to the Occurence of the Metals in the Free State in Nature. -Natural waters are frequently dilute solutions of carbonic, nitric, humic, etc., acids. As such they contain displaceable hydrogen. Metals above hydrogen in the E.M.F. series scarcely, if ever, occur in the free state in nature, but are practically without exception found in the combined state, as sulphides, carbonates, etc. Metals below hydrogen are frequently found in the free state in nature. Thus gold is found in the form of nuggets found in the free state in nature. of metallic gold. However, metals below hydrogen are also found in the combined state, as cinnabar, HgS, etc.

5. In Regard to Action of the Metals on Water.—The alkali and alkaline-earths metal displace hydrogen from water, even in the cold,

and with evolution of much heat. Mg and succeeding metals will displace hydrogen from steam. Metals at the bottom of the list will not

place hydrogen from steam. Metals at the bottom of the list will not displace hydrogen from steam.

6. In Regard to the Solubility and Stability of Hydroxides.—The alkali metal oxides have great avidity for water, forming hydroxides. The alkaline-earth metal oxides react with less readiness, forming hydroxides. MgO reacts slowly and incompletely with water, forming the hydroxide. All the other metallic oxides and hydroxides are insoluble in water and have no perceptible reaction therewith. When a solution of NaOH acts on solutions of solts of the metals the alkeli metal selts are not precipitated. The alkaline-earth metal salts are not precipitated unless in very concentrated solution. All the other metal solutions are acted upon, with precipitation of hydroxides, except in the case of copper which first gives precipitation of hydroxides, except in the case of copper which nist gives copper hydroxide (blue), and which, on warming, changes to copper oxide (black). Also in the case of arsenic, no precipitate falls, sodium arsenite being formed. In the case of the last metals in the series, the oxide is precipitated, instead of the hydroxide, thus NaOH acting on salts of Sb, Hg, Ag, Pd, Pt, and Au, causes a precipitation of the oxide of these metals. Bismuth, as an exception, gives a normal hydroxide.

7. In Regard to Carbonates.—The alkali metals form normal stable, soluble carbonates not exclude corporates the desired of the salkali metals.

soluble carbonates, not easily decomposed on heating. The alkaline-earth metals form normal carbonates, which are insoluble in water, and which decompose upon heating, leaving the oxide, carbon dioxide being evolved. When sodium carbonate solution acts on solutions of all the other metals, when somme carbonate solution acts on solutions of all the other metals, as a rule, a basic carbonate is precipitated, being insoluble in water, and decomposed by heat into oxide and carbon dioxide. If the solution is cold, Ag, Hg, Cd, Fe, and Mn give normal carbonates. If the solution is warm, Sb, Hg, Ag, Pd, Pt, and Au give a precipitate of the oxide, instead of the carbonate, thus showing the instability of the carbonates of the lowest metals in the series.

in voltaic cells, the farther apart the metals chosen, the greater the electromotive force of the voltaic cell. Thus the Al-Au couple gives a greater

For complete information, see Alex. Smith's Gen. Inorganic Chem., pages 361-363: 664-680. J. W. Mellor's Modern Inorg. Chem., pages 362-376.

8. In Regard to Voltaic Cells.—In choosing metals to acts as electrodes

TABLES SHOWING THE FUNCTIONS, USES AND COMPOSITIONS OF FOODS

FUNCTIONS AND USES OF FOOD IN THE BODY.

Protein.—Builds and repairs tissue:

Albumen (white of eggs) Casein (curd of milk)

Lean meat

Gluten of grains

Fats. — Are stored as fat:

Fat of meats, butter, olive oil, oils of corn, wheat and other grains.

Carbohydrates. — Are transformed into fat:

Sugar, starch, etc.

All serve as fuel to yield energy in the forms of heat and muscular power.

Mineral Matter of Ash. - Shares in forming bones and assist in processes of digestion.

Phosphates of lime potash, soda, etc.

Food is that which, taken into the body, builds tissue and yields energy.

TABLES SHOWING THE FUNCTIONS, USES AND COMPOSITIONS OF FOOD (Continued)

DIETARY STANDARDS

For a man in full vigor at moderate muscular work, per day

	Protein	Energy
Food eatenFood digested	Grams 100 95	Large calories 3500 3200

MINERAL MATTER (REQUIRED PER DAY)

	grams
Phosphoric acid, (P ₂ O ₅)	3 to 4
Sulphuric acid, (SO ₈)	2 to 3.5
Potassium oxide, (K ₂ O)	2 to 3
Sodium oxide, (Na ₂ O)	4 to 6
Calcium oxide, (CaO)	0.7 to 1.0
Magnesium oxide. (MgO)	0.3 to 0.5
Iron, (Fe)	0.006 to 0.012
Chlorine, (Cl)	6 to 8

These tables are compiled from charts of the United States Department of Agriculture, prepared by C. F. Langworthy, expert in charge of nutrition investigations.

Name of the food material	Protein.	Fat.	Carbo- hy- drates.	Ash.	Water.	Fuel value in cal- ories per lb.
Apple	0.4	0.5	14.2	0.3	84.6	290
Bacon	9.4	67.4		4.4	18.8	3030
Beef suet	4.7	81.8		0.3	13.2	3510
Butter	1.0	85.0		3.0	11.0	3410
Buckwheat	10.0	2.2	73.2	2.0	12.6	1600
Beefsteak	18.6	18.5		1.0	61.9	1130
Buttermilk	3.0	0.5	4.8	0.7	91.0	160
Bean, fresh shelled	9.4	0.6	29.1	2.0	58.9	740
Bean, green string.		0.3	7.4	0.8	89.2	195
Bean, navy dry		1.8	59.6	3.5	12.6	1600
Banana	1.3	0.6	22.0	0.8	75.3	460
Codfish, fresh		0.4		1.2	82.6	325
Codfish, salt	21.5	0.3		24.7	53.5	410
Corn, dried		4.3	73.4	1.5	10.8	1800
Corn, green		1.1	19.7	0.7	75.4	500
Corn bread	7.9	4.7	46.3	2.2	38.9	1205
Cream cheese		33.7	2.4	3.8	34.2	1950
Cottage cheese	2 2 2	1.0	$\frac{1}{4.3}$	1.8	72.0	510
Cream	2.5	18.5	4.5	0.5	74.0	865
Oleani	_ 2.0	1 23.0		, ,,,		, , ,

TABLES SHOWING THE FUNCTIONS, USES AND COMPOSITIONS OF FOODS—Continued

COMPOSITIO	10 CF	FUU.	D2-C	ontinu	ea	
NAME OF THE FOOD MATERIAL	PROTEIN	FAT	CARBO- HYDRATES	яву	WATER	FUEL VALUE IN CALORIES PER LB.
Candy stick			96.5	0.5	3.0	1785
Celery	1.1		3.4	1.0	94.5	85
Chestnut	10.7	7.0	74.2	2.2	5.9	1875
Cocoanut, dried	6.3	57.4	31.5	1.3	3.5	3125
Dried beef	30.0	6.6	1	9.1	54.3	840
Egg, whole	14.8	10.5	ļ	1.0	73.7	700
Egg, white	13.0	0.2		0.6	86.2	265
Egg, yolk	16.1	33.3	}	1.1	49.5	1608
Fig, dried	4.3	0.3	74.2	2.4	18.8	1475
Fruit, canned	1.1	0.1	21.1	0.5	77.2	415
Grapes	1.3	1.6	19.2	0.5	77.4	450
Grape juice, unfermented	0.2	}	7.4	0.2	92.2	150
Herring, smoked	36.4	15.8		13.2	34.6	1355
Honey	0.4	l	81.2	0.2	18.2	1520
Jelly, fruit		ļ	78.3	0.7	21.0	1455
Lard	١	100.0	ŀ			4080
Lamb chop	17.6	28.3		1.0	53.1	1540
Mackerel	18.3	7.1		1.2	73.4	645
Macaroni	3.0	1.5	15.8	1.3	78.4	415
Milk, whole	3.3	4.0	5.0	0.7	87.0	310
Milk, skimmed	3.4	0.3	5.1	0.7	90.5	165
Molasses	2.4		69.3	3.2	2 5 1	1290
Oat	11.8	5.0	69.2	3.0	11.0	1720
Olive oil	l	100.0				4080
Oyster	6.2	1.2	3.7	2.0	86.9	235
Onion	1.6	0.3	9.9	0.6	87.6	225
Pork chop	16.9	30.1		1.0	52.0	1580
Parsnip	1.6	0.5	13.5	1.4	83.0	230
Potato	2.2	0.1	18.4	1.0	78.3	385
Peanut	25.8	38.6	22.4	2.0	9.2	2500
Peanut butter	29.3	46.5	17.1	5.0	2.1	2825
Rye	12.2	1.5	73.9	1.9	10.5	1750
Rice	8.0	2.0	77.0	1.0	12.0	1720
Rolled oats, cooked	2.8	0.5	11.5	0.7	84.5	285
Raisins	2.6	3.3	76.1	3.4	14.6	1605
Smoked ham	16.1	38.8	100 0	4.8	40.3	1940
Sugar granulated			100.0	0.0	10.0	1860
Sugar, maple	10	0.6	82.8	0.9	16.3	1540
Strawberry	1.0	1.6	7.4	0.6	90.4	180
Toasted bread	$11.5 \\ 12.2$	1.7	$61.2 \\ 73.7$	1.7 1.8	24.0	1420 1750
Wheat White bread	9.2	1.3	53.1	1.8	10.6 35.3	1215
Whole wheat bread	9.2	0.9	49.7	1.1	38.4	1140
	16.6	63.4	16.1	1.4	2.5	3285
Walnut	10.0	J. 4	10.1	1.4	ن. ت	0400

PROPERTIES OF MATTER

DENSITY OF VARIOUS SOLIDS

The approximate density of various solids at ordinary atmospheric temperature.

(Selected principally from the Smithsonian Tables.)

Substance. Grams per cu. cm. Substance. Substance.	2.9-5.9 1.27 • 2.64-2.76 2.30-2.72 1.3-1.4 2.31-2.33 4.9-5.3 3.0 0.917 0.91-0.93 1.83-1.92 0.86.	Pounds per cu. ft. 150-175 180-370 80 165-172 144-170 80-85 144-145 306-330 187 57.2 57-58 114-120 54
Aghabater, carbonate 2.69-2.78 168-173 Glue Granite Gran	2.9-5.9 1.27 • 9 1.27 • 2.64-2.76 2.30-2.72 1.3-1.4 2.31-2.33 4.9-5.3 3.0 0.917 0.91-0.93 1.83-1.92 0.86.	180-370 80 165-172 144-170 80-85 144-145 306-330 187 57.2 57-58 114-120
Brick	2 68-2.76 4.9-5.2 3.7-4.1 2.6-2.8 0.99-1.28 2.6-3.2 2.76-3.00 3.5 2.2 0.7-1.15 0.87-0.91 0.84 1.07 2.3-2.5 2.6-2.9 4.95-5.1 2.65 1.07 2.18 2.14-2.36 2.50-2.65 2.21 2.07 2.0-3.9	81-87 167-171 167-171 301-324 231-26 160-177 62-80 165-200 172-225 218 137 44-72 54-57 52 67 143-156 162-181 309-318 165 67 136 134-147 156-165 142 133 125-240
2 no no no no no con con con con con con	2.6-3.3 2.6-2.8 1.53 1.61 2.7-2.8 0.91-0.97	162-205 162-175 95 100 168-174

DENSITY OF VARIOUS SOLIDS (Continued)

Substance.	Grams per cu. cm.	Pounds per cu. ft.	Substance.	Grams per cu. cm.	Pounds per cu. ft.
Tourmaline Wax, sealing Wood (seasoned) alder apple ash bamboo basswood beech blue gum birch box butternut cedar cherry dogwood ebony elm hickory holly	3.0-3.2 1.8 0.42-0.68 0.65-0.85 0.31-0.40 0.32-0.59 0.70-0.90 1.00 0.51-0.77 0.95-1.16 0.38 0.49-0.57 0.70-0.90 1.11-1.33 0.54-0.60 0.60-0.93	41-52 40-53 19-25 20-37 43-56 62 32-48 59-72 24 30-35 43-56 47 69-83 34-37	lignum vitæ locust locust locust locust locust malogany Honduras. Spanish. maple oak pear pine, pitch white yellow plum poplar satinwood spruce sycamore teak, Indian African walnut	1.17-1.33 0.67-0.71 0.91 0.65 0.65-0.75 0.60-0.90 0.61-0.73 0.35-0.50 0.35-0.50 0.35-0.50 0.35-0.50 0.35-0.50 0.35-0.50	73-83 42-44 57 41 53 89-47 37-56 38-45 52-53
juniperlarch	0.56 0.50-0.56	35 31–35	water gum willow	1.00 0.40-0.60	62 24–37

For the specific gravity of *alloys* see Composition and Physical Properties of Alloys.

For the specific gravity of the *elements* see Physical Constants of the Elements.

For specific gravity of *inorganic compounds* see Physical Constants of Inorganic Compounds.

^a For specific gravity of organic compounds see Physical Constants of Organic Compounds.

DENSITY OF WATER

The temperature of maximum density for pure water, free from $air = 3^{\circ}.98$ C.

The density at this temperature = 0.999973 (C. G. S.).

(International Bureau of Weights and Measures, 1910.)

DENSITY OF VARIOUS LIQUIDS (Selected from Smithsonian Tables.)

Liquid.	Grams per cu.cm.	Pounds per cu.ft.	Temp.
Acetone	0.792 0.791 0.810 0.899 0.950-0.965 1.480 0.736 0.66-0.69 1.260	92.4 49.4 49.4 50.5 56.1 59.2–60.2 92.3 45.9 41.0–43.0 78.6	0° 0 0 0 0 15 18 0
Milk		52.9 - 50.5	0 15
castor. cocoanut cotton seed creosote linseed, boiled. olive.	$\begin{bmatrix} 0.925 \\ 0.926 \\ 1.040 - 1.100 \\ 0.942 \end{bmatrix}$	57.7 60.2 64.9–68.6 58.8	15 15 16 15 15
turpentine	0.873	54.2	

HYDROMETER CONVERSION TABLES

Showing the Relation between Density (C. G. S.) and Degrees Baumé for Densities less than Unity.

Degrees Baumé.							
.00	.01	.02	. 03	.04			
103.33 70.00 45.00 25.56 10.00	99.51 67.18 42.84 23.85	95.81 64.44 40.73 22.17	92.22 61.78 38.68 20.54	88.75 59.19 36.67 18.94			
Degrees Baumé.							
	De	grees Baumé	i.				
. 05	.06	egrees Baumé	. 08	. 09			
	103.33 70.00 45.00 25.56	.00 .01 103.33 99.51 70.00 67.18 45.00 42.84 25.56 23.85	.00 .01 .02 103.33 99.51 95.81 70.00 67.18 64.44 45.00 42.84 40.73 25.56 23.85 22.17	.00 .01 .02 .03 103.33 99.51 95.81 92.22 70.00 67.18 64.44 61.78 45.00 42.84 40.73 38.68 25.56 23.85 22.17 20.54			

HYDROMETER CONVERSION TABLES (Continued)

Showing the Relation between Density (C. G. S.) and the Baumé and Twaddell Scales for Densities above Unity.

Density.	Degrees Baumé.	Degrees Twaddell.	Density.	Degrees Baumé.	Degrees Twaddell.
1.00	0.00	0	1.41	42.16	82
1.01	1.44	2	1.42	42.89	84
1.02	2.84	4	1.43	43.60	86
1.03	4.22	6	1.44	44.31	88
1.04	5.58	8	1.45	45.00	90
1.05	6.91	10	1.46	45.68	92
1.06	8.21	12	1.47	46.36	94
1.07	9.49	14	1.48	47.03	96
1.08	10.74	16	1.49	47.68	98
1.09	11.97	18	1.50	48.33	100
1.10	13.18	20	1.51	48.97	102
1.11	14.37	22	1.52	49.60	104
1.12	15.54	24	1.53	50.23	106
1.13	16.68	26	1.54	50.84	108
1.14	17.81	28	1.55	51.45	110
1.15	18.91	30	1.56	52.05	112
1.16	20.00	32	1.57	52.64	114
1.17	21.07	34	1.58	53.23	116
1.18	22.12	36	1.59	53.80	118
1.19	23.15	38	1:60	54.38	120
1.20	24.17	40	1.61	54.94	122
1.21	25.16	42	1.62	55.49	124
1.22	26.15	44	1.63	56.04	126
1.23	27.11	46	1.64	56.58	128
1.24	28.06	48	1.65	57.12	130
1.25	29.00	50	1.66	57.65	132
1.26	29.92	52	1.67	58.17	134
1.27	30.83	54	1.68	58.69	136
1.28	31.72	56	1.69	59.20	138
$\frac{1.29}{1.30}$	$\frac{32.60}{33.46}$	58 60	$1.70 \\ 1.71$	59.71	140
1.30	$33.40 \\ 34.31$	62	1.71 1.72	$60.20 \\ 60.70$	142 144
1.31 1.32	35.15	64	$\frac{1.72}{1.73}$		144
1.32 1.33	$\begin{array}{c} 35.15 \\ 35.98 \end{array}$	66	1.73	$61.18 \\ 61.67$	146
1.34	36.79	68	1.74		148
1.34	37.59	70	1.76	$62.14 \\ 62.61$	150
1.36	38.38	70	1.77	63.08	154
1.37	39.16	74	1.78	63.54	156
1.38	$39.10 \\ 39.93$	76	1.79	63.99	158
1.39	40.68	78	1.80	64.44	160
1.40	41.43	80	21.80		
		·	64	• • • • •	<u> </u>

ABSOLUTE DENSITY OF WATER

DENSITY IN GRAMS PER CUBIC CENTIMETER, COMPUTED FROM THE RELATIVE VALUES BY THIESEN, SCHEEL AND DISSELHORST (1900), AND THE ABSOLUTE VALUE AT 3°.98 C. BY THE INTERNATIONAL BUREAU OF WEIGHTS AND MEASURES (1910).

										
Degrees	0,	1	2	3	4	5	6	7	8	9
0	0.999841	847	854	860	866	872	878	884	889	895
ĭ	900	905	909	914	918	923	927	930	934	938
	941	944	947	950	953	955	958	960	962	964
2	965	967	968	969	970	971	972	972	973	973
$egin{array}{c} 2 \ 3 \ 4 \end{array}$	973	973	973	972	972	972	970	969	968	966
. *	"	0.0	0.0	0	ا - ا	١١	•••			
5	965	963	961	959	957	955	952	950	947	944
6	941	938	935	931	927	924	920	916	911	907
5 6 7 8 9	902	898	893	888	883	877	872	866	861	855
8	849	843	837	830	824	817	810	803	796	789
9	781	774	766	758	751	742	734	726	717	709
								00.5	205	015
10	700	691	682	673	664	654	645	635	625	615
11	605	595	585	574	564	553	542	531	520	509
12	498	486	475	463	451	439	427	415	402	390
13	377	364	352	339	326	312	299	285	272	258
14	244	230	216	202	188	173	159	144	129	114
1.5	000	084	069	054	038	023	007	*991	*975	*959
15	099	926	910	893	877	860	843	826		792
16	$0.998943 \\ 774$	757	739	722	704	686	668	650		613
17	595	576	558		520		482	463		424
18 19	405	385	365	345	325	305	285	265		224
19	400	900	300	010	020	000	200			
20	203	183	162	141	120	099	078	056	035	013
$\overline{21}$	0.997992	970	948	926	904	882	860	837	815	792
22	770	747	724	701	678	655	632	608		561
23	538	514	490	466	442	418	394	369		320
24	296	271	246	221	196	171	146	120	095	069
	-							***	*000	*000
25	044	018		*967		*914		*862		*809
$\begin{array}{c} 26 \\ 27 \end{array}$	0.996783	756		703			621	594		540
27	512	485		429		373	345	317		261 *973
28	232	204					060	031		
29	0.995944	914		855			766	736		
30	646	616	586	555	525	494	464	433	402	371

RELATIVE DENSITY AND VOLUME OF WATER

The mass of one cubic centimeter of water at 4°C is taken as unity. The absolute density in C. G. S. units is obtained by multiplying the relative density by 0.99973.

(Smithsonian Tables, compiled from Various Authors.)

Temp. C. Density. Volume. Temp. C. Density. Volume −10 0.99815 1.00186 +35 0.99406 1.00598 −9 843 157 36 371 633 −7 892 108 38 299 706 −6 912 088 39 262 743 −5 0.99930 1.00070 40 0.99224 1.00782 −4 945 055 41 186 821 −3 958 042 42 147 861 −2 970 031 43 107 901 −1 979 021 44 066 943 +0 0.99987 1.0013 45 0.99025 1.00985 1 993 007 46 0.98982 1.01028 2 997 003 47 940 072 3 9999 001 48 <		(SIMOMBOHIAH	Laines, Comp	ica iroin	various Autil	ors.)
-9 843 157 36 371 633 -8 869 131 37 336 669 -6 912 088 39 262 743 -5 0.99930 1.00070 40 0.99224 1.00782 -4 945 055 41 186 821 -3 958 042 42 147 861 -2 970 031 43 107 901 -1 979 021 44 066 943 +0 0.99987 1.00013 45 0.99025 1.00985 1 993 007 46 0.98982 1.01028 2 997 003 47 940 072 3 999 001 48 896 116 4 1.00000 1.00000 49 852 162 7 993 007 52 715 301	Temp. ° C.	Density.	Volume.	Temp.	Density.	Volume
-9 843 157 36 371 633 -7 892 108 38 299 706 -6 912 088 39 262 743 -5 0.99930 1.00070 40 0.99224 1.00782 -4 945 055 41 186 821 -3 958 042 42 147 861 -2 970 031 43 107 901 -1 979 021 44 066 943 +0 0.99987 1.00013 45 0.99025 1.00985 1 993 007 46 0.98982 1.01028 2 997 003 47 940 072 3 999 001 48 896 116 4 1.00000 1.00001 50 0.9807 1.01207 6 997 003 51 762 254	-10	0.99815	1.00186	+35	0.99406	1.00598
-8 869 131 37 336 669 -6 912 088 39 262 743 -5 0.99930 1.00070 40 0.99224 1.00782 -4 945 0.55 41 186 821 -3 958 042 42 147 861 -2 970 031 43 107 901 -1 979 021 44 066 943 +0 0.99987 1.00013 45 0.99025 1.00985 1 993 007 46 0.98982 1.01028 2 997 003 47 940 072 3 999 001 48 896 116 4 1.00000 1.00000 49 852 162 5 0.99999 1.00001 50 0.98807 1.01207 6 997 003 51 762 25	-9	843	157			
-7 892 108 38 299 706 -6 912 088 39 262 743 -5 0.99930 1.00070 40 0.99224 1.00782 -4 945 055 41 186 821 -3 958 042 42 147 861 -2 970 031 43 107 901 -1 979 021 44 066 943 +0 0.99987 1.00013 45 0.99025 1.00985 1 993 007 46 0.98982 1.01028 2 997 003 47 940 072 3 999 001 48 896 116 4 1.00000 49 852 162 5 0.99999 1.00001 50 0.98807 1.01207 6 997 003 51 762 254						
-6 912 088 39 262 743 -5 0.99930 1.00070 40 0.99224 1.00782 -4 945 055 41 186 821 -3 958 042 42 147 861 -2 970 031 43 107 901 -1 979 021 44 066 943 +0 0.99987 1.00013 45 0.99025 1.00985 1 993 007 46 0.98882 1.01028 2 997 003 47 940 072 3 999 001 48 896 116 4 1.0000 1.00000 49 852 162 5 0.99999 1.00001 50 0.98807 1.01207 6 997 003 51 762 254 7 993 007 52 715 301 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
-5 0.99930 1.00070 40 0.99224 1.00782 -4 945 055 41 186 821 -3 958 042 42 147 861 -2 970 031 43 107 901 +0 0.99987 1.00013 45 0.99025 1.00985 1 993 007 46 0.98982 1.01028 2 997 003 47 940 072 3 999 001 48 896 116 4 1.00000 1.00000 49 852 162 5 0.99999 1.00001 50 0.98807 1.01207 6 997 003 51 762 254 7 993 007 52 715 301 8 988 012 53 669 349 9 981 019 54 621 398 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
-4 945 055 41 186 821 -3 958 042 42 147 861 -2 970 031 43 107 901 +0 0.99987 1.00013 45 0.99025 1.00985 1 993 007 46 0.98982 1.01028 2 997 003 47 940 072 3 999 001 48 896 116 4 1.00000 1.00000 49 852 162 5 0.99999 1.00001 50 0.98807 1.01207 6 997 003 51 762 254 7 993 007 52 715 301 8 988 012 53 669 349 9 981 019 54 621 398 10 0.99973 1.00027 55 0.98573 1.01448 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						1.00782
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					186	821
-1 979 021 44 066 943 +0 0.99987 1.00013 45 0.99025 1.00985 1 993 007 46 0.98982 1.01028 2 997 003 47 940 072 3 999 001 48 896 116 4 1.00000 1.00001 50 0.98807 1.01207 6 997 003 51 762 254 7 993 007 52 715 301 8 988 012 53 669 349 9 981 019 54 621 398 10 0.99973 1.00027 55 0.98573 1.01448 11 963 037 60 324 705 12 952 048 65 059 979 13 940 060 70 0.97183 1.02270 </td <td></td> <td>958</td> <td>042</td> <td>42</td> <td>147</td> <td>861</td>		958	042	42	147	861
-1 979 021 44 066 943 +0 0.99987 1.00013 45 0.99025 1.00985 1 993 007 46 0.98982 1.01028 2 997 003 47 940 072 3 999 001 48 896 116 4 1.0000 1.00001 50 0.98807 1.01207 6 997 003 51 762 254 7 993 007 52 715 301 8 988 012 53 669 349 9 981 019 54 621 398 10 0.99973 1.00027 55 0.98573 1.01448 11 963 037 60 324 705 12 952 048 65 059 979 13 940 060 70 0.97781 1.02270 <td>-2</td> <td>970</td> <td>031</td> <td>43</td> <td>107</td> <td>901</td>	-2	970	031	43	107	901
+0 0.99987 1.00013 45 0.99025 1.00985 1 993 007 46 0.98982 1.01028 2 997 003 47 940 072 3 999 001 48 896 116 4 1.00000 1.00001 50 0.98807 1.01207 6 997 003 51 762 254 7 993 007 52 715 301 8 988 012 53 669 349 9 981 019 54 621 398 10 0.99973 1.00027 55 0.98573 1.01448 11 963 037 60 324 705 12 952 048 65 059 979 13 940 060 70 0.97781 1.02270 14 927 073 75 489 576 </td <td>-1</td> <td>979</td> <td></td> <td></td> <td></td> <td></td>	-1	979				
1 993 007 46 0.98982 1.01028 2 997 003 47 940 072 3 999 001 48 896 116 4 1.00000 1.00000 49 852 162 5 0.99999 1.00001 50 0.98807 1.01207 6 997 003 51 762 254 7 993 007 52 715 301 8 988 012 53 669 349 9 981 019 54 621 398 10 0.99973 1.00027 55 0.98573 1.01448 11 963 037 60 324 705 12 952 048 65 059 979 13 940 060 70 0.9781 1.02270 14 927 073 75 489 1.02270						
2 997 003 47 940 072 3 999 001 48 896 116 4 1.00000 1.00000 49 852 162 5 0.99999 1.00001 50 0.98807 1.01207 6 997 003 51 762 254 7 993 007 52 715 301 8 988 012 53 669 349 9 981 019 54 621 398 10 0.99973 1.00027 55 0.98573 1.01448 11 963 037 60 324 705 12 952 048 65 059 979 13 940 060 70 0.97781 1.02270 14 927 073 75 489 576 15 0.99913 1.00087 80 0.97183 1.02899 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
4 1.00000 1.00000 49 852 162 5 0.99999 1.00001 50 0.98807 1.01207 6 997 003 51 762 254 7 993 007 52 715 301 8 988 012 53 669 349 9 981 019 54 661 398 10 0.99973 1.00027 55 0.98573 1.01448 11 963 037 60 324 705 12 952 048 65 059 979 13 940 060 70 0.97781 1.02270 14 927 073 75 489 576 15 0.99913 1.00087 80 0.97183 1.02289 16 897 103 85 0.96865 1.03237 17 880 120 90 534	1					
4 1.00000 1.00000 49 852 162 5 0.99999 1.00001 50 0.98807 1.01207 6 997 003 51 762 254 7 993 007 52 715 301 8 988 012 53 669 349 9 981 019 54 661 398 10 0.99973 1.00027 55 0.98573 1.01448 11 963 037 60 324 705 12 952 048 65 059 979 13 940 060 70 0.97781 1.02270 14 927 073 75 489 576 15 0.99913 1.00087 80 0.97183 1.02899 16 897 103 85 0.96865 1.03237 17 880 120 90 534	2					
5 0.99999 1.00001 50 0.98807 1.01207 6 997 003 51 762 254 7 993 007 52 715 301 8 988 012 53 669 349 9 981 019 54 621 398 10 0.99973 1.00027 55 0.98573 1.01448 11 963 037 60 324 705 12 952 048 65 059 979 13 940 060 70 0.97781 1.02270 14 927 073 75 489 576 15 0.99913 1.00087 80 0.97183 1.02899 16 897 103 85 0.96865 1.03237 17 880 120 90 534 590 18 862 138 95 192 95	3					116
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4		1.00000	49	852	162
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	0.99999	1.00001	50	0.98807	1.01207
8 988 012 53 669 349 9 981 019 54 621 398 10 0.99973 1.00027 55 0.98573 1.01448 11 963 037 60 324 705 12 952 048 65 059 979 13 940 060 70 0.97781 1.02270 14 927 073 75 489 576 15 0.99913 1.00087 80 0.97183 1.02899 16 897 103 85 0.96865 1.03237 17 880 120 90 534 590 18 862 138 95 192 959 19 843 157 100 0.95838 1.04343 20 0.99823 1.00177 110 0.9510 1.0515 21 802 198 120 0.9434	- 6	997	003			
8 988 012 53 669 349 9 981 019 54 661 398 10 0.99973 1.00027 55 0.98573 1.01448 11 963 037 60 324 705 12 952 048 65 059 979 13 940 060 70 0.97781 1.02270 14 927 073 75 489 576 15 0.99913 1.00087 80 0.97183 1.02299 16 897 103 85 0.96865 1.03237 17 880 120 90 534 590 18 862 138 95 192 959 19 843 157 100 0.95838 1.04343 20 0.99823 1.00177 110 0.9510 1.0515 21 802 198 120 0.9434	7	993				
9 981 019 54 621 398 10 0.99973 1.00027 55 0.98573 1.01448 11 963 037 60 324 705 12 952 048 65 059 979 13 940 060 70 0.9781 1.02270 14 927 073 75 489 576 15 0.99913 1.00087 80 0.97183 1.02899 16 897 103 85 0.96865 1.03237 17 880 120 90 534 590 18 862 138 95 192 959 19 843 157 100 0.95838 1.04343 20 0.99823 1.00177 110 0.9510 1.0515 21 802 198 120 0.9434 1.0601 22 780 221 130 0.93	8			53		
10 0.99973 1.00027 55 0.98573 1.01448 11 963 037 60 324 705 12 952 048 65 059 979 13 940 060 70 0.97781 1.02270 14 927 073 75 489 576 15 0.99913 1.00087 80 0.97183 1.02899 16 897 103 85 0.96865 1.03237 17 880 120 90 534 590 18 862 138 95 192 959 19 843 157 100 0.95838 1.04343 20 0.99823 1.00177 110 0.95383 1.04343 21 802 198 120 0.9434 1.0601 22 780 221 130 0.9352 1.0693 23 756 244 140	ă					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	12					979
15 0.99913 1.00087 80 0.97183 1.02899 16 897 103 85 0.96865 1.03237 17 880 120 90 534 590 18 862 138 95 192 959 19 843 157 100 0.95838 1.04343 20 0.99823 1.00177 110 0.9510 1.0515 21 802 198 120 0.9434 1.0601 22 780 221 130 0.9352 1.0693 23 756 244 140 0.9264 1.0794 24 732 268 150 0.9173 1.0902 25 0.99707 1.00294 160 0.9075 1.1019 26 681 320 170 0.8973 1.1145 27 654 347 180 0.8668 1.1279 28 626 375 <			060	70	0.97781	1.02270
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				75	489	576
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	15	0.99913	1.00087	80	0.97183	
17 880 120 90 534 590 18 862 138 95 192 959 19 843 157 100 0.95838 1.04343 20 0.99823 1.00177 110 0.9510 1.0515 21 802 198 120 0.9434 1.0601 22 780 221 130 0.9352 1.0693 23 756 244 140 0.9264 1.0794 24 732 268 150 0.9173 1.0902 25 0.99707 1.00294 160 0.9075 1.1019 26 681 320 170 0.8973 1.1145 27 654 347 180 0.8866 1.1279 28 626 375 190 0.8750 1.1429 29 597 405 200 0.8628 1.1590 30 0.99567 1.00435 <td< td=""><td>16</td><td>897</td><td>103</td><td>85</td><td></td><td></td></td<>	16	897	103	85		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	17	880	120			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						1.0794
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						1.0902
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					0.9075	1.1019
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			320	170	0.8973	
28 626 375 190 0.8750 1.1429 29 597 405 200 0.8628 1.1590 30 0.99567 1.00435 210 0.850 1.177 31 537 466 220 0.837 1.195 32 505 497 230 0.823 1.215 33 473 530 240 0.809 1.236	27	654	347	180		
29 597 405 200 0.8628 1.1590 30 0.99567 1.00435 210 0.850 1.177 31 537 466 220 0.837 1.195 32 505 497 230 0.823 1.215 33 473 530 240 0.809 1.236						
30 0.99567 1.00435 210 0.850 1.177 31 537 466 220 0.837 1.195 32 505 497 230 0.823 1.215 33 473 530 240 0.809 1.236						
31 537 466 220 0.837 1.195 32 505 497 230 0.823 1.215 33 473 530 240 0.809 1.236						
32 505 497 230 0.823 1.215 33 473 530 240 0.809 1.236			1.00100			
33 473 530 240 0.809 1.236						
1.200						
34 440 563 250 0.794 1.259						
	34	440	563	250	0.794	1.259

DENSITY AND VOLUME OF MERCURY

Based on the Density of Mercury at 0° C. by Thiesen and Scheel (1898)

(Selected from Smithsonian Tables.)

Temp.	Mass in gr. per cu.cm.	Vol. of 1 gr. in cu.cms.	Temp.	Mass in gr. per cu.cm.	Vol. in 1 gr. in cu.cms.
-10	13.6202	$0.0734205 \\ 4338 \\ 4472$	30°	13.5217	0.0739552
-9	6177		31	5193	9686
-8	6152		32	5168	9820
$-7 \\ -6$	6128	4606	33	5144	9953
	6103	4739	34	5119	40087
$-5 \\ -4$	13.6078	0.0734873	35	13.5095	0.0740221
	6053	5006	36	5070	0354
$-3 \\ -2$	6029 6004	5140 5273 5407	37 38 39	5046 5021 4997	0488 0622 0756
-1 0 1	5979 13.5955 5930	0.0735540 5674	40 50	13.4973 4729	0.0740891
$\frac{1}{2}$	5906	5808	60	4486	3569
	5881	5941	70	4244	4910
4 5	5856	6075	80	4003	6252
	13.5832	0.0736209	90	13.3762	0.0747594
6	5807	6342	100	3522	8939
7	5782	6476	110	3283	50285
8	5758	6610	120	3044	1633
9	5733	6744	130	2805	2982
	13.5708	0.0736877	140	13.2567	0.0754334
$\begin{array}{c} 11 \\ 12 \end{array}$	5684	7011	150	2330	5688
	5659	7145	160	2093	7044
13 14	5634 5610	7278 7412	170 180 190	1856 1620 13.1384	8402 9764 0.0761128
15 16 17	13.5585 5561 5536	0.0737546 7680 7813	200 210	13.1384 1148 0913	2495 3865
18	5512	7947	220	0678	5239
19	5487	8081	230	0443	6616
$\begin{array}{c} 20 \\ 21 \\ 22 \end{array}$	13.5462 5438 5413	0.0738215 8348 8482	$oxed{240}{250}{260}$	13.0209 12.9975 9741	0.0767996 9381 70769
$\begin{array}{c} 22 \\ 23 \\ 24 \end{array}$	5389	8616	270	9507	2161
	5364	8750	280	9273	3558
25	13.5340	0.0738883	290	12.9039	0.0774958
26	5315	9017	300	8806	6364
27	5291	9151	310	8572	7774
28	5266	9285	320	8339	9189
29	5242	9419	330	8105	80609
30	13.5217	0.0739552	340 350	12.7872 7638	0.0782033 3464
			360	7405	4900

DENSITY OF AQUEOUS SOLUTIONS

(Selected from Smithsonian Tables.)

Substance. Parts of solute in 100 parts of solution by weight. Ammonium chloride. 1.015 1.030 1.044 1.058 1.072											
Parts of solute in 100 parts of solution by weight.	Density in grams per cubic centimeter.							ت ت			
Ammonium chloride. 1.015 1.030 1.044 1.058 1.072	Substance.	Parts of solute in 100 parts of solution by weight.							0		
Barium chloride. 1.045 1.094 1.147 1.205 1.269 1.254 1.319 1.469 1.653 1.887 1.232 1		5	10	15	20	25	30	40	50	60	Temp.
Barium chloride. 1.045 1.094 1.147 1.205 1.269 1.254 1.319 1.469 1.653 1.887 1.232 1	Ammonium chloride	1.015	1.030	1.044	1.058	1.072					15.
Cadmium chloride. 1. 043 .087 .188 .193 .254 .319 .469 .653 .887 .1887											15.
Calcium chloride 1 0.41 1 0.86 1 1.32 1 1.232 1 2.26 1 4.02 1 1.20 1 1.20 1 1.29 1 1.78 1 2.89 1 1 1.09 1 1.09 1 1.18 1 1.289 1 1 1 1.09 1 1.08 1 1.04 1 1.092 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 1 2 1 2 1 2 1 3 1 1 1 3 1<								1 469		1 887	
Cane sugar. 1. 019 1. 039 1. 060 1. 082 1. 129 1. 178 1. 289 1. 278 1. 289 1. 278 1. 289 1. 278 1. 289 1. 278 1. 289 1. 289 1. 289 1. 288 1. 289 1. 289 1. 288 1. 289 1. 288 1. 289 1. 289 1. 288 1. 289 1. 288 1. 289 1. 289 1. 288 1. 289 1. 288 1. 289 1. 289 1. 288 1. 289 1. 288 1. 289 1. 289 1. 288 1. 289 1. 289 1. 289 1. 288 1. 289 1. 289 1. 289 1. 289 1. 289 1. 289 1. 289 1. 289 1. 289 1. 289 1. 289 1. 289 1. 289 1. 289 1. 289 1. 289 1. 289 1. 289 1. 289 1. 289 1. 289 1. 289 1. 289 1. 289 1. 289 1. 289 1. 289 1. 289											15.
Copper sulphate											17.5
Mercuric chloride 1. 041 1.092 2 2 Potassium bichromate 1. 035 1.071 1.08 1.04 1.082 1.076 1.229 1.286 1.410 1.538 1.666 1.094 1.054 1.054 1.054 1.054 1.054 1.055 1.073 1.141 1.57 1.205 1.254 1.364 1.054 1.054 1.055 1.073 1.114 1.57 1.205 1.254 1.364 1.054 1.732 1.064 1.094 1.055 1.074 1.118 1.64 1.216 1.269 1.394 1.544 1.732 1.064 1.094 1.095 1.055 1.073 1.114 1.069 1.224 1.279 1.331 1.436 1.539 1.642 1.064 1.064 1.064 1.065 1.064 1.065 1.											18.
Potassium bichromate. 1.035 1.071 1.108										• • • •	
chloride 1. 040 1. 082 1. 027 1. 076 1. 229 1. 286 1. 410 1. 538 1. 666 11 chloride 1. 031 1. 065 1. 099 1. 135						• • • •	• • • •	• • • •		•••	20.
chloride 1.031 1.065 1.099 1.135 1.135 1.205 1.254 1.364 1.136 1.205 1.254 1.364 1.136 1.205 1.254 1.364 1.216 1.269 1.394 1.544 1.732 1.205 1.2	Potassium bichromate.	1.035	1.071	1.108			4.330				19.5
bromide							1.286		1.538		
iodide											15.
nitrate											19.5
Sodium hydroxide 1. 058 1.14 1. 169 1. 224 1.279 1. 331 1.436 1.539 1.642 1. 640 1. 642 1. 644	iodide	1.036	1.076	1.118	1.164	1.216	1.269	1.394	1.544	1.732	19.5
Sodium hydroxide 1. 058 1.144 1. 169 1. 224 1. 279 1. 331 1. 436 1. 539 1. 642 1. 640 1. 6	nitrate	1.031	1.064	1.099	1.135	١					15.
chloride	Sodium hydroxide	1.058	1.114	1.169	1.224	1.279	1.331	1.436		1.642	15.
Silver nitrate											15.
							1 322				
Zinc chloride											
sulphate 1.027 1.057 1.089 1.122 1.156 1.191 1.269 1.351 1.443 2											

DENSITY OF ALCOHOL

DENSITY OF ETHYL ALCOHOL IN GRAMS PER CUBIC CENTIMETER, COMPUTED FROM MENDELEJEFF'S FORMULA

(Selected from Smithsonian Tables.)

0	1	2	3	4
.80625 .79788 .78945 .78097	.80541 .79704 .78860 .78012	.80457 .79620 .78775 .77927	.80374 .79535 .78691 .77841	.80290 .79451 .78606 .77756
5	6	7	8	9
.80207 .79367 .78522 .77671	.80123 .79283 .78437 .77585	.80039 .79198 .78352 .77500	.79956 .79114 .78267 .77414	.79872 .79029 .78182 .77329
	.79788 .78945 .78097 .78097 .80207 .79367 .78522	.79788 .79704 .78945 .78860 .78097 .78012 5 6 .80207 .80123 .79367 .79283 .78522 .78437	.79788 .79704 .79620 .78945 .78860 .78775 .78097 .78012 .77927 5 6 7 .80207 .80123 .80039 .79367 .79283 .79198 .78522 .78437 .78352	.80625 .80541 .80457 .80374 .79788 .79704 .79620 .79535 .78945 .78860 .78775 .78691 .78097 .78012 .77927 .77841 5 6 7 8 .80207 .80123 .80039 .79956 .79367 .79283 .79198 .79114 .78522 .78437 .78352 .78267

DENSITY OF DRY AIR

At the Temperature t, and under the Pressure H cm. of Mercury, the Density of Air

 $= \frac{0.001293}{1 + 0.00367 t} \frac{H}{76}.$

(From Miller's Laboratory Physics, Ginn & Co. publishers, by permission.)

		Pre	ssure H in	Centime	ters.		Proportional
t	72.0	73.0	74.0	75.0	76.0	77.0	Parts.
10 11 12 13 14	178 173	193 190 186	0.001215 210 206 202 198	0.001231 227 222 218 214	243 239 234	0.001264 259 255 251 246	0.1 2 0.2 3 0.3 5 0.4 7 0.5 8 0.6 10 0.7 12
15 16 17 18 19	157 153 149	165	189 185	205	217 213	0.001242 238 233 229 225	0.8 14 0.9 15 16 cm.
20 21 22 23 24	137 134 130	148	169 165 161	185 181 177	1 197 7 193	216 212 208	0.4 6 0.5 8 0.6 10 0.7 11 0.8 13 0.9 14
2! 20 2: 2: 2:	118 7 1118 8 1119	130 1 126	149 146 3 142 3 138	168 163 153 153	1 177 7 173 8 169	190 192 188 184	0.2 3 0.3 4 0.4 6 0.5 7 0.6 9 0.7 10 0.8 12

DENSITY OF SATURATED VAPORS AT THE TEMPERATURE OF NORMAL EBULLITION

Vapor.	Temp. ° C.	Density.
Acetic acid	61.2 34.6 78.3 64.7	0.00315 0.00275 0.00443 0.00311 0.00164 0.00121 0.000596

DENSITY OF GASES IN LIQUID AND SOLID FORM

Temperatures marked * are the temperatures of normal ebullition.

	Liqu	id.	Sol	id.	
Gas.	Temp.	D g/cm ³ .	Temp.	D g/cm ³ .	Observer.
Acetylene	- 23.5	0.52			Mathias, 1909
Air (20.9% oxygen). Ammonia	- 10.7	0.40 0.92 0.65			Andreeff, 1859
Argon	+ 16.3 -187.*	0.61 1.41			Andreeff, 1859 Baly & Donnan, 1902
Carbon dioxide	- 60. + 20.	1.19 0.77	- 79 .	1.53	Behn, 1910
Carbon monoxide	-190.*	.79		::::	Amagat
Chlorine	- 68. - 33.6* + 20. - 21.	.86 1.56 1.41 0.41			Baly & Donnan Knietsch, 1890 Knietsch, 1890 Cailletet & Mathias.
Ethylene	+ 10. -269.*	$0.21 \\ 0.122$			1886 Kamerling-Onnes &
Hydrogen	$-253.* \\ -61.$	0.07 0.86	-260 .		Perrier, 1910 Dewar, 1904
Nitrogen	-196.* $-20.$ $+17.$	0.804 1.0 .80	-253. 		Dewar, 1904 Cailletet & Mathias Villard, 1897
Oxygen	- 23. -182.7*	0.89	-253.	••••	Cailletet & Haute- feuille, 1881 Kamerling-Onnes &
Sulphur dioxide	-205. - 10.* + 20.	1.25 1.46 1.38			Perrier, 1910 Baly & Donnan Pierre Cailletet & Mathias

ELASTIC CONSTANTS FOR SOLIDS

Young's Modulus and Modulus of Rigidity
The values can be considered only as approximations. They are for
ordinary atmospheric temperatures.

-	Young's	Modulus.	Modulus of rigidity.		
Material.	Dynes per sq.cm.	Pounds per sq.in.	Dynes per sq.cm.	Pounds per sq.in.	
Aluminum	7×1011	10.2×106	2.5×10 ¹¹	3.63×10 ⁶	
Bismuth	3.2	4.65	1.24	1.80	
Brass	9.2	13.4	3.7	5.38	
Bronze	10.6	15.4	4.06	5.91	
phosphor	12.0	17.4	4.36	6.32	
Cadmium	5.0	7.26	2.45	3.56	
Copper	10.	14.5	4.2	6.10	
German silver	10.8	15.7	4.5	6.54	
Glass ordinary	4.7-7.8	6.83-11.3	1.8-3.2	2.62-4.65	
crown	6.5-7.8	9.45-11.3	2.6-3.2	3.78-4.65	
flint	5.0-6.0		2.0-2.5	2.91-3.63	
Gold, pure	8.0	11.6	3.0	4.36	
Granite	1.46	2.12	0.0	100	
Ice	.28	.407			
Iron, drawn	20.0	29.1	8.00	11.6	
cast	11.5	16.8	5.10	7.41	

ELASTIC CONSTANTS FOR SOLIDS (Continued)

Young's Modulus and Modulus of Rigidity (Continued)

. "	Young's	Modulus.	Modulus of rigidity.		
Gas.	Dynes per sq.cm.	Pounds per sq.in.	Dynes per sq.cm.	Pounds per sq.in.	
Ivory Lead. Magnesium Manganin Nickel Platinum-Platinum. Quartz, crystal: to axis to axis to axis Siber. Rhodium. Silver, pure Steel, ordinary mild. cast. drawn.	.9×10 ¹¹ 1.7 4.2 12.4 22.0 17.0 21.4 10.30 7.85 5.6 28.0 7.5 22.0 19.5 18.8	1.31×10 ⁶ 2.47 6.10 18.0 32.0 24.7 31.1 15.0 11.4 8.14 40.7 10.9 32.0 28.3 27.3	0.7×10 ¹¹ 1.7 4.65 8.0 6.5 3.0 2.7 8.00 7.50	1.02×10 ⁴ 2.47 6.70 11.6 9.45 4.36 3.94 11.6 10.9	
invar Tantalum Tin	14.1 18.6 5.0	20.3 27.0 7.26	5.63 2.0	8.18 2.91	
Wood Zinc	.03-1.0 9.0	.0436-1.45 13.1	3.4	4.94	

Bulk Modulus, Limit of Elasticity and Breaking Strain
The values can be considered only as approximations. They are for ordinary atmospheric temperatures.

nary aumost	morro com	peratures.			
		F ELAS-	Breakin	Bulk Mod-	
Material.	Dynes per sq.cm.	Pounds per sq.in.	Dynes per sq.cm.	Pounds per sq.in.	ulus Dynes per sq.cm.
Aluminum	5.0×108	7.25×10 ³	10-25×108	14.5-36.3×108	7.0×1011
Bismuth					3.0
Broom			2248.	3270.	6.1
Brass Bronze	5 0-12	7 25-17 4	20 -40	2958.	8.9
Cadmium .	0.0 12.				4.12
Copper	0. 5-20.0	0 73-20 0	16 -45	23.2-65.3	12.0
German	0.0-20.0	10.10-20.0	10. 10.	120.2 00.0	12.0
/ silver				1	15.0
Glass:					10.0
		l	ł	1	4.0-5.9
crown					3.6-3.8
flint			11.0	15.0	16.0
Gold			11.0	15.6	10.0
Iron:	l		1	00	1
drawn		29.	66.	96.	15.4
cast		25.	33.	48.	9.6
\mathbf{Lead}			3.	4.4	0.76
Manganin.		1			12.1
Nickel	1	1	42.	61.	17.0
Platinum.			36.	52.	24.0
Quartz		1		1	.3.7
Silver	15.	22.	28.	41.	3.7 10.0
Steel, mild	20100.	29145.	35150.	51218.	16.0
Tin			8.	12.	5.0
Zinc		1 :5:::::	6.	8.7	3.5
		<u>,</u>			

COMPRESSIBILITY OF LIQUIDS

Contraction in unit volume per atmosphere.

Liquid.	Temp.	Pressures in atmospheres.	Coefficient.	Observer.
Acetone	0.	1-500	82×10 ⁻⁶	Amagat, 1893
7	0.	500-1000	59.	""
14	0.	1000-1500	47.	"
	99.5	8.94-36.5	276.	"
Amyl alcohol	17.7	8	90.5	Röntgen, 1891
Benzene C ₆ H ₆ .	12.9	0.4-18	87.	Suchodski, 1910
	34.9	2–18	100.	"
	99.9	4.5-19	190.	"
Butvl alcohol	17.4	8	90.	Röntgen
Carbon disul-				
phide	0.	1-500	66.	Amagat, 1893
	49.2	1000-1500	51	"
Carbon tetra-			·	-
${f chloride} \ldots$	20.	100-200	90.7	Richards, 1907
Chlorobenzene	13.	0.4-18	67.	Suchodski, 1910
	35.	0.4-18	77.	u
	100.	0.4–18	127.	"
Chloroform	0.		101.	Grimaldi, 1887
	20.		128.	"
1	40.	• • • • • • • • • • • • • • • • • • • •	162.	"
	60.		204.	"
•	100.	8-9	211.	Amagat
	100.	19–34	206.	Amagat
1	20.	1-98		D: 1 1: 0 Ct . 11
: **			94.	Richards&Stall, 1904
	20.	98.7–197.4	89.	Richards&Stall, 1904
	20.	197.4–296.1	80.	Richards&Stall, 1904
Ether	12.2	0.4-17.5	163.	Suchodski, 1910
	34.8	2–19	207.	",
	63.	8.6-34.3	293.	Amagat, 1893
*	78.5	8.6-34.3	363.	","
	99.	8.6-36.5	523.	"
Ethyl acetate	13.3	8.1-37.4	104.	
Ethyl alcohol	28.	150-400	81.	Barus, 1890
•	65.	150-400	100.	"
	100.	150-400	132.	"
	185.	150-400	245.	"
	310.	150-400	1530.	u
	28.	150-200	86.	"
	100.	150-200	168.	· lu
	310.	150-200	4200.	"
	1010.	100-200	4200.	

COMPRESSIBILITY OF LIQUIDS (Continued)

Contraction in unit volume per atmosphere.

Liquid.	Temp.	Pressures in atmospheres.	Coefficient.	Observer.
Ethyl alcohol:				
muly alconor.	0.	1-50	$96. \times 10^{-6}$	Amagat, 1893
	20.	1-50	112.	"
	40.	1-50	125.	"
	Õ.	100-200	85.	"
	ő.	300-400	73.	"
•	Ŏ.	500-600	64.	"
	ő.	900-1000	52.	"
Ethyl bromide.	10.1	1-500	89.6	Amagat
Dony i bronnac.	10.1	500-1000	63.4	"
	13.7	0.4 - 18.5	113.	Suchodski, 1910
	35.	2–19	138.	"
Ethyl chloride.	Ö.	1-500	103.	Amagat, 1893
Littly I construct.	Ö.	500-1000	69.2	"
	11.	8.5-34.2	138.	"
	62.	12.7-32.8	255.	"
	99.	12.8-34.5	495.	"
Ethyl iodide	10.6	1-500	73.8	Amagat
Edity (Todado: 11		500-1000	56.2	"
Fluor-benzene.	13.9	0.4-18	88.	Suchodski, 1910
Fidor bonzone.	35.3	0.4-18	103.	. "
	99.7	4.3-18.5	190.	"
Glycerine	14.9	1-10	22.	De Metz, 1890
Mercury	0.	1	3.92	Amagat
microury	15.	100-200	3.76	Richards, 1907
Methyl acetate	14.3	8.1-37.5	97.	Amagat
1.1.0011.	99.	8.3-37	250.	""
Methyl alcoho	0.	1-500	79.4	"
<u></u>	0.	500-1000	58.3	" "
	14.7	8.5–371	104.	"
	100.	8.7-37.3	221.	"
Nitric acid	20.3	1-32	338.	
Palmitic acid.	65.	20-100	88.	Barus, 1890
	100.	20-100	99.	i "
Paraffine	64.	20-100	84.	"
· ·	100.	20-100	107.	
Oil, almond	. 17.		55.	Quincke
olive	. 20.5		63.	"
turpentine	. 19.7		79.	
Toluene	. 10.	1-5.25	79.	DeHeen, 1885
	100.	1-5.25	150.	" "
\mathbf{X} ylene	. 10.	1-5.25	74.	
	100.	1-5.25	132.	1

COMPRESSIBILITY OF LIQUIDS (Continued)

Contraction in unit volume per atmosphere.

Liquid.	Temp.	Pressures in atmospheres.	Coefficient.	Observer.
Water	0.	1–25	52.5×10 ⁻⁶	Amagat, 1893
*	10. 20.	1-25 1-25	50.0 49.1	"
	0.	25-50	51.6	"
	10.	25-50	49.2	"
	20. 0.	25-50 100-200	47.6 49.2	"
	10.	100-200	46.1	"
	20. 50.	100-200 100-200	44.2 42.5	"
	100.	100-200	46.8	"
*	0.	500-1000	41.6	"
	0. 0.	1000-1500 1500-2000	35.8 32.4	- "
	Ö.	2000-2500	29.2	"
	0.	2500-3000	26.1	· "

ELASTIC CONSTANTS FOR GASES

For short ranges of pressure, at a constant temperature, the volume of a gas is inversely proportional to the pressure or pressure Xvolume = a constant. (Boyle's Law.)

For high pressures, the table below shows the relative volumes at various temperatures. The volume at 0° C. and 76 cm. pressure (1 atmosphere) being taken as 1,000,000.

(From Smithsonian Tables.)

Atm.	Oxygen.			Air.			
	0°	99°.5	199°.5	0°	99°.4	200°.4	
100	9265			9730			
200	4570	7000	9095	5050	7360	9430	
300	3208	4843	6283	3658	5170	6622	
400	2629	3830	4900	3036	4170	5240	
500	2312	3244	4100	2680	3565	4422	
600	2115	2867	3570	2450	3180	3883	
700	1979	2610	3202	2288	2904	3502	
800	1879	2417	2929	2168	2699	3219	
900	1800	2268	2718	2070	2544	3000	
1000	1735	2151		1992	2415	2828	
		Nitrogen.		Hydrogen.			
Atm.		1	· ·		1	1	
	00	99°.5	199°.6	0°	99°.3	200°.5	
	"	88.0	100 .0	0-	35 .5	200 .0	
100	9910						
100 200	ļ	7445	9532	5690	7567	9420	
	9910	7445 5301	9532 6715	5690 4030	7567 5286	9420 6520	
200	9910 5195 3786 3142	7445 5301 4265	9532 6715 5331	5690 4030 3207	7567 5286 4147	9420 6520 5075	
200 300	9910 5195 3786 3142 2780	7445 5301 4265 3655	9532 6715 5331 4515	5690 4030 3207 2713	7567 5286 4147 3462	9420 6520 5075 4210	
200 300 400 500 600	9910 5195 3786 3142 2780 2543	7445 5301 4265 3655 3258	9532 6715 5331 4515 3973	5690 4030 3207 2713 2387	7567 5286 4147 3462 3006	9420 6520 5075 4210 3627	
200 300 400 500 600 700	9910 5195 3786 3142 2780 2543 2374	7445 5301 4265 3655 3258 2980	9532 6715 5331 4515 3973 3589	5690 4030 3207 2713 2387 2149	7567 5286 4147 3462 3006 2680	9420 6520 5075 4210 3627 3212	
200 300 400 500 600 700 800	9910 5195 3786 3142 2780 2543 2374 2240	7445 5301 4265 3655 3258 2980 2775	9532 6715 5331 4515 3973 3589 3300	5690 4030 3207 2713 2387 2149 1972	7567 5286 4147 3462 3006 2680 2444	9420 6520 5075 4210 3627 3212 2900	
200 300 400 500 600 700	9910 5195 3786 3142 2780 2543 2374	7445 5301 4265 3655 3258 2980	9532 6715 5331 4515 3973 3589	5690 4030 3207 2713 2387 2149	7567 5286 4147 3462 3006 2680	9420 6520 5075 4210	

COEFFICIENT OF FRICTION

(From Rankine's Compilation, 1858; Smithsonian Tables.)

Materials.	Coefficient of friction.	Angle of repose in degrees.
Wood on wood, dry	. 25 50	14.0-26.5
Wood on wood, soapy	.20	11.5
Metals on oak, dry	.5060	26.5-31.0
Metals on oak, wet	.2426	13.5-14.5
Metals on oak, soapy	.20	11.5
Metals on elm, dry	.2025	11.5-14.0
Hemp on oak, dry	.53	28.0
Hemp on oak, wet	.33	18.5
Leather on oak	.2738	15.0-19.5
Leather on metals, dry	.56	29.5
Leather on metals, wet	.36	20.0
Leather on metals, greasy	.23	13.0
Leather on metals, oilv	.15	8.5
Metals on metals, dry	.1520	8.5-11.5
Metals on metals, wet	.3	16.5
Smooth surfaces occasionally greased	.0708	4.0-4.5
Smooth surfaces continually greased	.05	3.0
Smooth surfaces, best results	.03036	1.75 - 2.0
Steel on agate, dry	.20	11.5
Steel on agate, oiled	.107	6.1
Iron on stone	.3070	16.7-35.0
Wood on stone	about .40	22.0
Masonry and brick work, dry	.6070	33.0-35.0
Masonry and brick work, damp mortar	.74	36.5
Masonry on dry clay	51	27.0
Masonry on moist clay	33	18.25
Earth on earth.	.25-1.00	14.0-45.0
Earth on earth, dry sand, clay and		
mixed earth	.3875	21.0-37.0
Earth on earth, damp clay		45.0
Earth on earth, wet clay	.31	17.0
Earth on earth, shingle and gravel	.81–1.11	39.0-48.0

RESISTANCE TO CRUSHING FOR VARIOUS MATERIALS

Approximate values in pounds per square inch.							
Material.	Resistance to crushing in lbs. per sq. in.	Material.	Resistance to crushing in lbs. per sq.in.				
Brick: soft burned. hard burned. vitrified Brownstone Concrete	3000-6000 4500-6500 8500-25000 7300-23600 800-3800	Granite Limestone Marble Sandstone Tufa	9700-34000 6000-25000 7600-20700 2400-29300 7700-11600				

TENSILE STRENGTH OF METALS

(Selected from Smithsonian Tables.)

Given in pounds per square inch. The values can be considered only as approximations.

Metal.	Tensile Strength in lbs. per sq.in.
Aluminum wire	30000-40000
Brass wire	50000-150000
Bronze wire, phosphor, hard drawn	110000-140000
Bronze wire, silicon, hard drawn	95000-115000
Bronze	60000-75000
Copper wire, hard drawn	60000-70000
Gold wire	20000
Iron, cast	13000-33000
Iron wire, hard drawn	80000-120000
Iron wire, annealed	50000-60000
Lead, cast or drawn	2600-3300
Palladium	39000
Platinum wire	50000
Silver wire	42000
Steel	80000-330000
Steel wire, maximum	460000
Steel, specially treated nickel steel	250000
Steel, piano wire, 0.033 in. diam	
Steel, piano wire, 0.051 in. diam	325000-337000
Tin, cast or drawn	4000-5000
Zinc, cast	7000-13000
Zinc, drawn	22000-30000

MODULUS OF RUPTURE. TRANSVERSE TESTS FOR VARIOUS WOODS

(Smithsonian Tables.)

Material.	Modulus, lbs. per sq.in.	Material.	Modulus, lbs. per sq.in.
Ash, white. Basswood Beech. Cedar, red. Cedar, white. Cypress, bald Elm, white Fir, red Hemlock Hickory, pignut	8,340 16,200 11,800 6,300 7,900 10,300 13,270 9,480	Maple, sugar Maple, white Oak, red. Oak, white. Pine, white. Pine, red Poplar. Spruce, pine. Walnut, black	9,400

HARDNESS

SCALE OF HARDNESS

3 Calcite 6 Feldspar 10 Dia 7 Quartz	amond
---	-------

HARDNESS OF MATERIALS

The numbers give only the order of arrangement as to hardness.

(From Smithsonian Tables.)

Agate	7.	Hematite	6.
Alabaster		Hornblende	5. 5
Alum		Iridium	6.
Aluminum	2.0	Iridosmium	7.
Amber	2-2.5	Iron	4-5.
Andalusite	7.5	Kaolin	1.
Anthracite	2.2	Lead	
	3.3	Loess (0°)	6.1
Antimony		Magnetite	0.3
Apatite		Magnetite	6.
Aragonite		Marble	3-4.
Arsenic		Meerschaum	
Asbestos		Mica	2.8
Asphalt		Opal	4-6.
Augite		Orthoclase	6.
Barite	3.3	Palladium	4.8
Beryl		Phosphor bronze	4.
Bell-metal	4.	Platinum	4.3
Bismuth	2.5	Plat-iridium	6.5
Boric acid	3.	Pyrite	6.3
Brass	3–4.	Quartz:	7.
Calanime	5.	Rock-salt	2.
Calcite	3.	Ross' metal	2.5-3.0
Copper	2.5-3.	Silver chloride	1.3
Corundum	9.	Sulphur	1.5 - 2.5
Diamond	10.	Stibnite	2.
Dolomite	3.5-4.	Serpentine	3–4 .
Feldspar	6.	Silver	2 .5–3.
Flint	7.	Steel	5-8.5
Fluorite	4.	Talc	1.
Galena	2.5	<u>T</u> in	1.5
Garnet	7.	Topaz	8.
Glass		Tourmaline	7.3
Gold	2.5-3.	Wax (0°)	0.2
Graphite	0.5-1.	Wood's metal	3.
Gypsum	1.6-2.	Zinc	2.5

SURFACE TENSION OF VARIOUS LIQUIDS IN CONTACT WITH AIR

(Compiled from Various Sources.)

Liquid.	Temp. ° C.	Tension, dynes per cm.	Observer.
Acetic acid. Acetone. Alcohol, ethyl. Alcohol, methyl. Anilin. Benzol (C ₆ H ₆). Bromine. Carbon disulphide. Chloroform. Ether. Glycerine. Hydrochloric acid. Mercury. Oil, olive. Oil, turpentine. Petroleum.	20 17.5 22.5 -21 20 20 20 18 20 18 20	23.5 23.3 21.7 23.0 44.1 29.4 62.1 31.7 26.7 16.8 65.2 72.9 520. 33.5 27.1 25.9	Ramsay & Shields Jaeger Magie Ramsay & Shields Volkmann Cantor Quincke Magie Magie Brunner Cantor Quincke Mean of various Mean of various Magie

SURFACE TENSION OF AQUEOUS SOLUTIONS

	1		
Salt in solution. D s	ensity of solution.	Temp. ° C.	Tension in dynes per cm. against air.
Calcium chloride. Calcium chloride. Copper sulphate. Hydrochloric acid. Hydrochloric acid. Hydrochloric acid. Potassium chloride. Potassium chloride. Sodium chloride. Sodium chloride. Sodium chloride. Sodium oleate. Sodium oleate.	1.282 1.351 1.277 1.178 1.119 1.089 1.024 1.170 1.101 1.193 1.107 1.302 turated 1.445 1.264 1.398 1.104	15-16 19 19 15-16 20 20 20 15-16 15-16 20 20 12 20 15 15 15-16 15-16	81.8 95.0 90.2 78.6 73.6 74.5 75.3 82.8 80.1 85.8 80.5 83.5 25.0 79.7 79.7 83.3 77.8

SURFACE TENSION OF FUSED SOLIDS

(With One Exception from Quincke, 1868.)

Substance.	Gas with which liquid is in contact.	Temp. ° C.	Surface tension, dynes per cn
Antimony	. CO ₂	432.	245.
Borax	. air	fusion	212
Copper	. air	fusion	581.
Gold *	. air	1070	612
${\bf Iron}. \dots \dots \dots \dots$. air	fusion	950
Lead	. CO ₂	330	448.
Phosphorus	CO_2	fusion	41.2
Platinum	air	2000	1658.
${f Potassium} \ldots \ldots \ldots$		58	371.
${f Potassium\ chloride.\dots}$		fusion	93.
Silver	. air	1000	782.
${f Selenium} \ldots \ldots \ldots$	air	fusion	70.
Sodium		90	258.
Sodium chloride		fusion	115.
Sugar	. air	160	66.9
Sulphur	. air	111	42.
Γin	. CO ₂	fusion	352.
Zinc		360	877.

^{*} Heydweiller.

SURFACE TENSION OF WATER AND ALCOHOL

SURFACE TENSION FOR WATER AND ALCOHOL (ETHYL) IN CONTACT WITH AIR IN DYNES PER CENTIMETER (From Smithsonian Tables.)

Temp.	Surface tension, dynes per centimeter.		Temp.	Surface tension, dynes, per centimeter.		
° C.	Water.	Ethyl alcohol.	° C.	Water.	Ethyl alcohol.	
0 5 10 15 20 25 30 35 40 45 50	75.6 74.9 74.2 73.5 72.8 72.1 71.4 70.7 70.0 69.3 68.6	23.5 -23.1 22.6 22.2 21.7 21.3 20.8 20.4 20.0 19.5 19.1	55 60 65 70 75 80 85 90 95	67.8 67.1 66.4 65.7 65.0 64.3 63.6 62.9 62.2 61.5	18.6 18.2 17.8 17.3 16.9	

VISCOSITY OF WATER AND OTHER LIQUIDS

(1) Thorpe-Rodgers, 1894; (2) Gartenmeister, 1890.

Coefficient	of	viscosity.	C.	G.	S.

	Coefficient of viscosity, C. G. S.							
Temp.	Water (1)	Alcohol, ethyl (1)	Chloro- form (1)	Ether (2)	Benzol (1)	Acetic acid (2)	Carbon bisul- phide (1)	Amyl acetate (2)
0 10 20 30 40 50 60 70 80 90	.01778 .01303 .01002 .00798 .00654 .00548 .00468 .00406 .00356 .00316	.01770 .01449 .01192 .00990 .00828 .00698	.00700 .00626 .00564 .00511 .00466 .00390	.0026	.00902 .00759 .00649 .00562 .00492 .00437	.0150 .0126 .0109 .0094 .0082	.00429 .00396 .00367 .00342 .00319	.0106 .0089 .0077 .0065 .0058

VISCOSITY OF LIQUIDS Coefficient of Viscosity in C. G. S. Units

Liquid.	Temp.	Viscosity.	Observer.
Acetone	16 .	.0033 0.0033 0.010	Thorpe-Rodgers Forch Thorpe-Rodgers
Carbon dioxide (liquid) . Glycerine	20.3	$egin{array}{c} 0.00071 \ 42.2 \ 8.3 \ \end{array}$	Warburg-Babo Schottner Schottner
Mercury	0. 20. 300.	0.0170 0.0157 0.0093	Koch Koch Koch
Olive oilSulphuric acid	15. 20.	0.9890 0.22	Brodmann Graham

VISCOSITY OF GASES

C. G. S. Units.

Gas.	Temp.	Viscosity.	Observer.
Air	0 ·	0.000173	Breitenbach
	-20 ·	0.000129	Breitenbach
	15 ·	0.000145	Breitenbach
Chlorine	20.	0.000147	Graham
	0.	0.000086	Markowski
	10.9	0.000171	Obermayer
Oxygen	0.	0.000193 0.000090 0.000132	Markowski Puluj Mever-Schumani

DIFFUSION

GASES INTO AIR

Gas or vapor.	Temp. C.	Coefficient of diffusion, sq.cm./sec.	Observer.
Alcohol, vapor Carbon dioxide. Carbon disulphide Ether, vapor. Hydrogen Oxygen. Water, vapor.	0.0 19.9 19.9 0.0	0.137 0.139 0.102 0.089 0.634 0.178 0.239	Winkelmann Mean of various Winkelmann Winkelmann Obermayer Obermayer Guglielmo

AQUEOUS SOLUTIONS INTO PURE WATER Concentration in gram-molecules per liter.

Substance.	Concen- tration.	Temp.	Diffusion sq.cm./day.	Observer.
Acetic acid	0.2	13.5	0.77	Scheffer
	1.0	12.	0.74	Arrhenius
	2.0	12.	0.69	Arrhenius
	3.0	12.	0.68	
	4.0	12.	0.66	Arrhenius
Ammonia	1.0	15.23	1.54	Abegg
Barium chloride	0.2	8.	0.66	Scheffer
Bromine	0.1	12.	0.8	Euler
Cadmium sulphate	2.0	19.04	0.246	Seitz
Calcium chloride	2.0	10.	0.68	Schuhmeister
Chlorine	0.1	12.	1.22	Euler
Copper sulphate	0.1	17.	0.39	Thovert
Formic acid	1.0	12.	0.97	Abegg
Glycerine	0.1	10.14	0.357	Heimbrodt
	0.2	10.1	3.55	Heimbrodt
	1.0	10.14	0.339	Heimbrodt
Hydrochloric acid	0.1	19.2	2.21	Thovert
	1.0	12.	2.09	Arrhenius
	2.0	12.	2.21	Arrhenius
Iodine	0.1	12.	(0.5)	Euler
Magnesium sulphate	1.0	7.	0.30	Scheffer
Nitric acid	0.1	19.5	2.07	Thovert
Potassium bromide	1.0	10.	1.13	Schuhmeister
carbonate	3.0	10.	0.60	Schuhmeister
chloride	0.1	17.5	1.38	Thovert
chloride	4.0	10.	1.27	Schuhmeister
hydrate	0.1	13.5	1.72	Thovert
	1.0	12.	1.72	Arrhenius
7.1	3.0	12.	1.89	Arrhenius
Silver nitrate	0.1	12.	0.985	Thovert
Sodium acetate	0.2	12.	0.67	Kawalki
chloride	0.1	15.0	0.94	Thovert
	0.2	15.0	0.94	Thovert
	1.0	15.0	0.94	Thovert
hydrate	1.0	14.3	0.964	Heimbrodt
nyurate	1.0	12.	1.11	Thovert
iodide	1:0	10.	0.80	Schuhmeister
Sugar.	2.0	10. 12.	0.90	Schuhmeister
SugarSulphuric acid	1.0	12. 12.	0.254	Arrhenius
Sarbuaric scia	1.0	12. 12.	1.12	Arrhenius
Urea	2.0		1.16	Arrhenius
U16a	$0.1 \\ 0.2$	14.8 14.8	0.97	Heimbrodt
Zinc acetate	2.0	18.05	0.969	Heimbrodt
valle acclaic	2.0		0.210	Seitz
sulphate	1.0	0.04 14.8	0.120 0.236	Seitz
Duipmato	1.0	14.0	U. 230	Seitz

OSMOTIC PRESSURE OF AQUEOUS SOLUTIONS

FOR A MEMBRANE OF FERROCYANIDE OF COPPER

Dissolved Substance.	Gms.substance in 1 cm. sol.	Temp.	Pressure, cm. Hg.	Observer.
Glycerine/ Gum arabic Gum arabic Phenol (carbolic acid)	.00199 0.0099 0.164 .00127	0 15.5 15.6 0	36.7 7.0 119.3 - 23.3	Pfeffer Pfeffer Naccari
	Gmmol. sub- stance per gm. sol.		Pressure in atm.	
Glucose	.0001 .0005 .0010	10.2 10.2 10.0	2.39 11.55 23.80	Morse,1911 Morse,1911 Morse,1911
Saccharose (cane sugar)	.0001 .0005 .0010	10.0 10.0 10.0	2.50 12.30 25.69	Morse,1911 Morse,1911 Morse,1911
	Gmmol. sub- stance in 1 ccm. sol.			
Potassium carbonate ferrocyanidenitrateSodium citrate (acid)	.00005 .00005 .00005 .00005	15 15 15 15	1.17 3.44 1.56 4.32	Adie, 1891 Adie, 1891 Adie, 1891 Adie, 1891

HEAT

CONVERSION OF THERMOMETER SCALES

 Degrees C. $\times 1.8+32=$ Degrees F.
 Degrees $\frac{(F,-32)4}{9}=$ Degrees R.

 Degrees $\frac{F,-32}{1.8}=$ Degrees C.
 Degrees $\frac{R.\times 5}{4}=$ Degrees C.

 Degrees $\frac{R.\times 9}{4}+32=$ Degrees F.
 Degrees $\frac{C.\times 4}{5}=$ Degrees R.

For Centigrade-Fahrenheit Conversion Tables see under Measures and Units.

REDUCTION OF MERCURY IN GLASS THERMOMETER READING TO THE HYDROGEN SCALE

JENA NORMAL GLASS, 16111

(From Miller's Laboratory Physics, Ginn & Co., publishers, by permission.)

Reading) 0°	10	20	30	40	50
Correction	0°.000	-0.055	-0.090	-0.109	-0.115	-0.109
Reading	50°	60	70	80	90	100
Correction	-0°.109	-0.096	-0.076	-0.053	-0.027	0.000

COEFFICIENT OF THERMAL EXPANSION LINEAR

The coefficient given is the increase in length per unit length (measured at 0° C.) per degree Centigrade.

Substance	Temp. °C.	Coefficient	Observer
		×10⁻⁴	
Aluminum	-191 to +16		Henning, 1907
•		0.255	Voigt, 1893
		0.2313	Fizeau, 1869
· ·		0.3150	Chatelier
Aluminum-bronze	20	0.170	National Physica
		<i>t</i>	Laboratory
Antimony	-180 to +13	0.1023	Grüneisen, 1910
		0.12	Fizeau, 1869
		0.1088	Grüneisen, 1910
parallel to axis	10-90	0.1730	Fizeau, 1869
perpendicular to axis		0.0828	
Arsenic		0.0386	"
Bismuth	-180 to +15	0.1298	i ·
		0.1345	1
parallel to axis		0.1537	l
perpendicular to axis	10-90	0.1084	
Brass			
cast		0.1875	Smeaton
wire		0.1930	
66Cu, 34Zn	20	0.189	National Physical Laboratory
Brick		0.095	National Physical
DIROR		0.000	Laboratory
Bronze		,	
3Cu, 1Sn	16.6-100		Daniell
·	16.6-350	0.2116	"
,	16.6-957		"
93.5Cu, 6.5Sn	16-100	0.365	Bein, 1912
90Cu, 10Sn	0-900		Le Chatelier, 1889
80Cu, 20Sn	0-800		'
70Cu, 30Sn	0-700	0.295	"
phosphor			
97.6Cu, 2Sn, 0.2P		0.168	Mean
Cadmium	-183 to +14	0.446	Grüneisen, 1901
	-20	0.288	Matthiessen, 1866
	0-100	0.3159	1 "
	10-90	0.2939	Fizeau
	315	0.316	Vicentini & Omodei

COEFFICIENT OF THERMAL EXPANSION (Continued)

LINEAR

The coefficient given is the increase in length per unit length (measured at 0° C.) per degree Centigrade.

Calcite, parallel to axis perpendicular to axis and canothouc cano	Substance	Temp. °C.	Coefficient	Observer
Cactet, paralies to axis Cautehoue Carbon			0.2514 × 10-4	Benoit 1888
Caoutchoue	Calcite, parallel to axis	0-85	_0 0558	Denoit, 1000
Carbon diamond gas carbon	perpendicular to axis		0.657-0.686	Various
diamond 400 0.0184 0.0	Caoutchoue	17–25	0.770	
Capert April Apr		40	0 0118	Fizeau, 1869
Cement and concrete	diamond	40	0.0540	"
Cement and concrete. 40 0 1336 4 29 0 1523 1523 1520 170 1523 1520 170 1523 1520 170 1523 1520 170 1523 1520 1523 1520 1523 1520 1523 1520 1			0.0786	1
Cobalt	Cement and concrete		0.10-0.14	• • • • • • • • • • • • • • • • • • • •
Constantan				
Copper	Constantan			Metional Physical
Copper	60Cu, 40Ni	20	0.170	
Copper	* *	_101 to ±16	0 1202	Henning, 1907
Copper		0-38	0.1448	Guillaume, 1896
Copper				
Diamond, see Carbon Ebonite 25-35 0.842 Schotte Dittenberger, 1902			l	
Diamond, see Carbon Color	Copper	-191 to +16	0.1409	Henning, 1907
Diamond, see Carbon Ebonite 25-35 0.842 Kohlrausch Benoit Description				Dittenberger 1902
Ebonite.	Discussed and Comban	0-020	0.1007	Dittemberger, 1002
Emerald, parallel to axis perpendicular to a	Diamond, see Caroon	25-35	0.842	Kohlrausch
Perpendicular to axis Properticular to axis Prop	Emerald parallel to axis	0-85	-0.0135	Benoit
Fluor spar, CaF2	nerpendicular to axis		+0.0100	l
German silver 60Cu, 15Ni, 25Zn Glass tube	Fluor spar, CaF ₂	0-100	0.195	Pfaff
Gold	Galena		0.199	Dfoff
Glass tube. 0.100 0.0833 0.085 soft. 0.085 0.085 hard. 0.097 hard. 0.100 0.0891 0.0788 plate. 0.100 0.0891 0.0788 Jena thermometer 16 0.000 0.0788 Jena thermometer 16 0.000 0.058 0.180 59 0 0.100 0.058 0.180 59 0 0.100 0.058 0.180 Gold. 0.100 0.182 0.182 0.183 0.1	German silver	0-100	0.100	1 1811
tube	60Cu, 15Ni, 25Zii		1	
soft hard 0.083 Senct hard 0.100 0.0891 Lavoisier & Laplace crown 0-100 0.0897 Lavoisier & Laplace flint 50-60 0.0788 Pulfrich Jena thermometer 0-100 0.081 Pulfrich 16ur 0-100 0.058 Henning, 1907 59iii -191 to +16 0.0424 Henning, 1907 Gold -183 to +16 0.132 Grüneisen, 1910 Gold-copper 0-100 0.1552 Matthiessen 2Au, 1Cu 0-100 0.1523 " Gold-platinum 0.083 " 2Au, 1Pt 0.083 Nat. Phys. Lab. Gun metal 0.183 Nat. Phys. Lab. Gutta percha 1.983 Russner, 1882 Ice -20 to -10.510 Vincent, 1902 Indium 40 0.417 Fizeau, 1869		0-100	0.0833	
hard	soft			Schott
O-100 O.8897 Fulfrich	hard			Tarreigien & Taplace
The first So So So So So So So S	plate			Lavoisier & Lapiace
Jena thermometer	dint			Pulfrich
16111 normal				1
Total Content of the content of th	16 ^{III} normal	0-100	0 081	Schott
Gold	59111	0-100	010.058	Hammin 1007
Gold-copper 2Au, 1Cu Gold-platinum 0-100 0.1552 Matthiessen 2Au, 1Cu Gold-platinum 0-100 0.1523 " 2Au, 1Pt 0.083 Matthiessen 0.083 Matthiessen 0.183 Matthi		-191 to +19	8 0. 0424 8 0.129	
Gold-copper O-100 0.1552 Matthiessen 2Au, 1Cu O-100 0.1523 " Gold-platinum O-100 0.1523 " Granite O.083 O.183 Nat. Phys. Lab. Gun metal O.183 Russner, 1882 Ice O-20 to -10.510 Color O-10 to 00.507 Indium O-10 to 00.507 Gold	Gold	16-10	00 143	Grunessen, 1010
2Au, 1Cu 0-100 0.1523 " Gold-platinum 0.083 0.083 Nat. Phys. Lab. Granite 0.183 Nat. Phys. Lab. Russner, 1882 Gutta percha 1.983 Russner, 1882 Ice -20 to -10.510 Vincent, 1902 Indium 40 0.417 Fizeau, 1869	Gold-copper	0-10	0 0 1552	Matthiessen
Gold-platinum 0-100 0.1523 2Au, 1Pt Granite 0.083 Gut metal 0.183 Ice 1.983 Ice 1.983 Indium 1.9	2Au. 1Cu			
Granite 0.083 Gun metal 0.183 Gutta percha 1.983 Ice -20 to -10.510 -10 to 0/0.507 Vincent, 1902 Indium 40 0.417 Fizeau, 1869	Gold-platinum	0-10	0 0.1523	1 "
Gun metal. 0.183 Nat. Phys. Lab. 1.983 Russner, 1882 Ice -20 to -10, 510 -10 to 00, 507 Vincent, 1902 Indium 40 0.417 Vincent, 1869		1	0.000	
Gutta percha 1,983 Russner, 1882 Ice -20 to -10.510 Vincent, 1902 Indium 40 0.417 Fizeau, 1869	Granite		0.000	Nat Phys. Lab.
Ice20 to -1 0. 510 Vincent, 1902 Fizeau, 1869	Cutte perche		1.983	
T		-20 to -	1 0.510	1
T		-10 to	0 0 . 507	
	Indium	4	00.417	Fizeau, 1869
Octobe	Invar, see Nickel steel	100 1 1	en 927	Dewar 1902
Tron		-188 to 1	90 0571	Grüneisen, 1910
soft 40 0 1210 Fizeau, 1869 cast		1 -190 to 11	70.0907	Henning, 1907
cast 40[0.1061 cast -190 to +16[0.0850 Henning, 1907		4	0 0 1210	
cast190 to +16 0.0850 Henning, 1907	cast	. 4	0 0.1061	Hanning 1007
	cast	. -190 to +1	บเชาน เปรอบ	tremme, 1907

COEFFICIENT OF THERMAL EXPANSION (Continued)

LINEAR

The coefficient given is the increase in length per unit length (measured at 0°C.) per degree Centigrade.

Substance	Temp. °C.	Coefficient	Observer
Iron, wrought	-18 to +100	0.1140 × 10-4	Andrews
steel		0.1322	Fizeau 1869
steel, annealed	40	0.1095	Fizeau, 1869 Fizeau, 1869
steel, 1.2% C		0.105	Le Chatelier, 1899
44	100-200	0.115	Le Chavener, 1099
"	100-200 200-300	0.110	l
"	200-300	0.10	l "
	300-400	0.15	1 7
"	400-500	0.14	l ::
"	500-600	0.16	,
	600-700	0.16	•
	above 900	0.29	
Lead	-183 to +14	0.2708	Grüneisen, 1910
	-183 to +14 18-100	0.2940	G. 4., 1010
Lead-tin		0.2508	Smeaton
2Pb. 1Sn	0 100	0.2000	Smeaton
Magnesium	109 44 115	0 0140	la
arangaronum	-183 to +15 18-100	0.2140	Grüneisen, 1910
and the same of th	18-100	U.2608	l "
cast	20-100	0.2696	C. D. H., 1917
wrought	20-100	0.2673	"
Magnalium	0–13	0.22	Guillaume, 1902
96Al, 4Mg			
86Al, 14Mg	12-39	0.238	Stadhagen, 1901
Marble	15-100	0.117	Fröhlich
Masonry		0.04-0.07	Tomich
Mercury	-183 to -39		D 1000
	-78 to -38		Dewar, 1902
Nickel	-191 to +16	0.41	Grunmach, 1901
THOROX			Henning, 1907
i	10 050	0.1279	Fizeau
	16-250	0.1397	Holborn & Day,
	375–1000	0.1346	Holborn & Day,
Nickel steel			1901
10% Ni	90	0.100	
	20	0.130	Nat. Phys. Lab.
20	20	0.195	
30	20	0.120 0.009	
36 (Invar)	20	0.009	
40	20	0.060	
50	20	0.097	
80	20	0.125	** ** **
Osmium	40	0.0657	Fizeau
Palladium	40	0 1176	12000
	0-100	0 1104	Matthiessen
Paraffine	0_16	1 066	
	16-29	0.1104 1.066 1.303	Rodwell
l	38-49	4 771	
Phoenhorous	00-49	1.04	
Phosphorous	0-44	1.24	Laduc, 1891
Platinum	40	0.0899	Fizeau
Platinum iridium	40	0.0884	Fizeau
10D+ 1Tm		0 1500	3.6.443.4
10Pt, 1Ir			Matthiessen
Platinum silver	0-100	0.1020	
Platinum silver		-	_
Platinum silver	20-790	0.0413	Braun
Platinum silver		0.0413	Holborn & Grün-
Platinum silver	20-790 0-100	0.0413 0.031	Holborn & Grün- eisen
Platinum silver	20-790 0-100	0.0413 0.031 0.025	Holborn & Grün-

COEFFICIENT OF THERMAL EXPANSION (Continued)

LINEAR

The coefficient given is the increase in length per unit length (measured at 0° C.) per degree Centigrade.

Substance	Temp. °C.	Coefficient	Observer
Quartz (crystal)	4004	0.000.410	a.1. 1
parallel to axis	-190 to +16	0.0521×10^{-4}	Scheel
	0-80	0.0797	Benoit, 1888
perpendicular to axis	0-80 -191 to +16	0.1337	Honning 1007
fused	-191 to +10	0.00230	Henning, 1907 Chappius, 1903
	0-30	0.0042	Scheel, 1907
	0-100	0.0050 0.00546	Randall, 1910
	0-300	0.00585	realitain, 1010
Rhodium	40	0.0850	Fizeau
Rock salt	40	0.0850 0.4040	
Rubidium	2-17	0.862	Elsa Deuss, 1911
Ruthenium	1 40	0.0963	Fizeau
Sandstone	$\bar{20}$	0.07-0.12	
Selenium	-180 to 0	0.372	Dorsey, 1908
	40	0.3680	Fizeau
Silicon	40	0.0763	l "
Silver	-191 to +16	0.1704	Henning, 1907
	1 \ 20	0.188	Voigt, 1893
Slate	20	0.06-0.10	
Solder, see Lead-tin			~ .
Speculum metal	20	0.193	Smeaton
68Cu, 32Sn		0 000	1000
Sodium	-188 to +17	0.622	Dewar, 1902
Sulphur, crystal	40	0.6413	Fizeau, 1869
Tellurium	40	0.1675	
Thallium	40	0.3021	Grüneisen, 1910
Tin	-183 to +16	0.2237	Gruneisen, 1910
m	18-100	0.0832	Pfaff
Topaz, axis a		0.0836	1.1911
" b		0.0472	
Tourmaline C	0-100	0.01.2	
parallel to axis	0-100	0.0937	"
perpendicular to axis	0-100	0.0773	"
Tungsten		0.0336	Colin, 1910
Type metal	17-254	0.1952	Daniell
Vulcanite	. 0–18	0.6360	Mayer
Wood	l .		
parallel to fiber		0.0051	01-4-1
ash	0-100	0.0951	Glatzel Villari
beech	2-34	0.0257 0.0649	Villari
chestnut		0.0565	**
elm		0.0361	
mahogany maple		0.0638	**
oak		0.0492	"
pine		0.0541	
walnut		0.0658	"
across fiber	1	1	1
beech	. 2-34	0.614	"
chestnut	. 2-34	0.325	"
elm	.1 -2-34	0.443	1 "
mahogany	1 2-34	0.404	"
maple	. 2-34	0.484 0.544	1 "
oak	. 2-34	H0.544	16
pine		10.341	1
_ walnut		0.484	
Zinc	- 180 to 0	JU.204	Dorsey, 1908
Zilic		0.2628	Thiesen, Scheel & Sell, 1895

EQUATION FOR THE LINEAR EXPANSION OF SOLIDS

If l_0 is the length at 0° C. the length at t° C. is $l_t = l_0 (1 + \alpha t + \beta t^2)$.

The table gives the values of these coefficients.

Substance.	Temp. limits. ° C.	α.	β.	Observer.
Aluminum Brass Copper Gold Iron, pure Lead Nickel Platinum	10-90 10-90 0-38 10-90 0-38	.2221×10 ⁻⁴ .1781 .1596 .1410 .1145 .2829 .1255 .0868	.114×10 ⁻⁷ .098 .102 .042 .071 .120 .057 .013	Fizeau Fizeau Fizeau Guillaume Fizeau Guillaume Holborn and
Tin	10-90 10-90 10-90	.1862 .2094 .2969	.074 .175 — .0635	Valentine Fizeau Fizeau Fizeau

CUBICAL EXPANSION OF SOLIDS

The coefficient of cubical expansion for a solid is approximately three times the linear coefficient.

The experimental values for various solids are given in the following table. The coefficient is the increase in volume per unit volume per degree Centigrade.

Substance.	Temp. ° C.	Coefficient.	Observer.
Antimony	0-100	0.3167×10-4	Matthieson
Bismuth		0.4000	Kopp
Diamond	40	0.0354	Fizeau
Fluor spar	14-47	0.6235	Kopp
Glass, white tube.	0-100	0.2648	Regnault
green tube	0-100	0.2299	Regnault
Jena	0–100	0.2533	Reichsanstalt
Ice	-20 to -1	1.1250	Brunner
Iceland spar	50-60	0.1447	Pulfrich
Iron	0-100	0.3550	Dulong and Petit
Porcelain	0-100	0.1080	Deville and Troost
Quartz	50-60	0.3530	Pulfrich
Rock salt	50-60	1.2120	Pulfrich

CUBICAL EXPANSION OF LIQUIDS

The table gives the mean coefficient of cubical expansion for the range 0-100° C. and the values of the quantities α , β and γ in the equation $V_t = V_0 (1 + \alpha t + \beta t^2 + \gamma t^3)$.

(From Smithsonian Tables.)

		- I	14 12			
Liquid.	Temp. Range ° C.	Mean coef. 0-100° C.	α	β	γ	Observer.
Acetic acid	16–107	.001433	1.0630×10-3			
Acetone	0-54	1616	1.3240	3.8090	0.8798	Zander '
Alcohol:			0.0000	0.6573	1.1846	Pierre
amyl	-15 to +80	• • • • • •	$0.8900 \\ 1.0414$	0.7836		Kopp
ethyl. sp.gr8095	1 0-80		0.7450	1.850	0.730	Recknagel
ethyl, 50% by volume	10.00		0.1430	17.900	11.87	Recknagel
ethyl, 30% by volume methyl		1433		1.5649	0.9111	Pierre
Benzene	11-81	1385		1.2775	0.8065	Kopp
Bromine	-7 to +60	1168	1.0382	1.7114	0.5447	Pierre
Calcium chloride:					· ·	Decker
CaCl ₂ , 5.8% solution		0506		4.2742		Decker
CaCl ₂ , 40.9% solution	17-24	0510		0.8571 1.3706	1.9122	Pierre
Carbon disulphide	-34 to +60	1468		4.6647	1.7433	Pierre
Chloroform	0-63	1399 2150		2.3592	4.0051	Pierre
Ether	-10 to +36	0534		0.4895	1.0002	\mathbf{Emo}
Glycerine		3001	0.1000			
HCl+6.25H ₂ O	0-30	0489	0.4460	0.430		Marignac
HCl+50H ₂ O		0933	0.0625	8.710	1	Marignac

CUBICAL EXPANSION OF LIQUIDS (Continued)

Liquid.	Temp. Range ° C.	Mean coef. 0-100° C.	α	β	γ	Observer.
MercuryOlive oilPotassium chloride:	24–299	.000742	$0.18182 \times 10^{-3} \\ 0.6821$	0.00078×10-6 1.1405	539 ×10-8	Scheel Spring
KCl, 2.5% solution KCl, 24.3% solution Potassium nitrate:		0572 0477				Decker Decker
KNO ₃ , 5.3% solution KNO ₃ , 21.9% solution Phenol, C ₆ H ₆ O		0539 0577				Nicol Nicol
Sodium chloride, NaCl, 1.6%	21-120	1009	0.8994	0.1073 1.396		Pinette Frankenheim
solution Sodium sulphate, Na ₂ SO ₄ , 24% solution	10–40	1067 0611		10.462 2.516		Marignac Marignac
Sodium nitrate, NaNO ₈ , 36.2% solution Sulphuric acid:	20 –78	0627		1.075		Nicol
$\hat{\mathrm{H}_{2}}\mathrm{SO_{4}}$	0-30	0489 0799	0.2835	0.864 5.160		Marignac Marignac
Turpentine	-9 to +106 0-33	1051	0040	1.959 8.505		Kopp Scheel

COEFFICIENTS OF EXPANSION OF GASES AT CONSTANT PRESSURE

Change in volume per unit volume per degree Centigrade.

(From Smithsonian Tables.)

Gas.	Temp. °C.	Pressure in cm. of mercury.	Coeffi- cient.	Observer.
Acetylene	0	76.	.003772	Leduc, 1912
Acetylene	0–100	76.	3739	Leduc, 1912
Air	0-100	76.	3670	Regnault, 1842
Air	0-100	100.1	36728	Chappuis, 1903
Ammonia	0 100	76.	3860	Leduc, 1912
Ammonia	0-100	76.	3800	Leduc, 1912
Carbon dioxide	Ŏ -OO	76.	3751	Leduc, 1912
Carbon dioxide	ŏ-100	76.	3723	Leduc, 1912
Carbon dioxide	0-20	51.8	37128	Chappuis, 1903
Carbon dioxide	0- 40	51.8	37100	Chappuis, 1903
Carbon dioxide	0-100	51.8	37073	Chappuis, 1903
Carbon dioxide	0-20	99.8	37602	Chappuis, 1903
Carbon dioxide	0-100	99.8	37410	Chappuis, 1903
Carbon dioxide	0-20	137.7	37972	Chappuis, 1903
Carbon dioxide	0-100	137.7	37703	Chappuis, 1903
Carbon dioxide	0-100	2621.	1097	Baly-Ramsay, 189
	64-100	2621.	6574	Baly-Ramsay, 189
Carbon dioxide	0-100	76.	3669	Regnault, 1842
Carbon monoxide	0-100	76.	3900	Leduc, 1912
Chlorine	0-100	76.	3830	Leduc, 1912
Chlorine		76.	396	Leduc, 1912
Cyanogen	0 0–100	76.	387	Leduc, 1912
Cyanogen			3770	Leduc, 1912
Hydrochloric acid	0 100	76. 76.	3734	Leduc, 1912
Hydrochloric acid	0-100	100.0	36600	Chappuis, 1903
Hydrogen	0-100		332	Amagat, 1890
Hydrogen	0-100	200. atm	295	Amagat, 1890
Hydrogen	0-100	400. atm	261	Amagat, 1890
Hydrogen	0-100	600. atm	242	
Hydrogen	0-100	800. atm	3673	Amagat, 1890 Leduc, 1912
Nitrogen	0 100	76.	3671	Leduc, 1912
Nitrogen	0-100	76.	3719	Regnault, 1842
Nitrous oxide	0-100	76.	486	Amagat
Oxygen	0-100	100. atm	534	Amagat
Oxygen	0-100	200. atm	459	Amagat
Oxygen	0-100	400.[atm	357	Amagat
Oxygen	0-100	600. atm	288	Amagat
Oxygen	0-100	800. atm	241	Amagat
Oxygen	0-100		3903	Regnault, 1842
Sulphur dioxide	0-100	76. 98.	3980	Regnault, 1842
Sulphur dioxide			4187	Hirn, 1862
Water vapor	0-119	76.		Hirn, 1862
Water vapor	0-141	76.	4189	
Water vapor	0-162	76.	4071	Hirn, 1862
Water vapor	0-200	76.	3938	Hirn, 1862 Hirn, 1862
Water vapor	0-247	76.	3799	IIII, 1002

COEFFICIENT OF EXPANSION OF GASES AT

Change in pressure per unit pressure per degree Centigrade.

(From Smithsonian Tables.)

	-			
Con	Temp.	Pressure	Coeffi-	01
Gas.	° C.	em. of Hg.	cient.	Observer.
Acetylene	0	76.	.003741	Leduc, 1912
Acetylene	0-100	76.	3726	Leduc, 1912
Air		.6	37666	Meleander, 1890-92
Air		1.3	37127	Meleander, 1890–92
Air		10.0	36630	Meleander, 1890-92
Air		25.4	36580	Meleander, 1890-92
Air	0-100	75.2 100.1	36660 36744	Meleander, 1890-92
Air	0-100	76.0	36650	Chappuis, 1903 Regnault, 1842
Air	:::::	200.0	36903	Regnault, 1842
Air		2000.	38866	Regnault, 1842
Air		10000.	4100	Regnault, 1842
Ammonia	0	76.	3800	Leduc, 1912
Ammonia	0-100	76.	3770	Leduc, 1912
Argon		51.7	3668	Keunen-Randall, 1896
Carbon dioxide	0-20	51.8	36985	Chappuis, 1903
Carbon dioxide	0-40	51.8	36972	Chappuis, 1903
Carbon dioxide	0-100	51.8	36981	Chappuis, 1903
Carbon dioxide	0-20	99.8	37335	Chappuis, 1903
Carbon dioxide Carbon dioxide	0-100 0-100	99.8 100.0	$37262 \\ 37248$	Chappuis, 1903
Carbon dioxide	0-100	76.	37248 3724	Chappuis, 1892
Carbon dioxide	0-100	76.	3714	Leduc, 1912 Leduc, 1912
Carbon monoxide	0 100	76.	36667	Regnault, 1842
Cyanogen	0	76.	3870	Leduc, 1912
Cyanogen	0-100	76.	3830	Leduc, 1912
Ethane	0	7 6.	3780	Leduc, 1912
Ethane	0-100	76. 56.7	3750 3665	Leduc, 1912
Helium				Keunen-Randall, 1896
Hydrochloric acid	4.144	76 .	3740	Leduc, 1912
Hydrochloric acid	0–100 0	76. 76.	3721	Leduc, 1912
Hydrogen	0-100	76.	3663 3664	Leduc, 1912
Hydrogen	16-132	0.0077	3328	Leduc, 1912 Baly-Ramsay, 1894
Hydrogen	15-132	.025	3623	Baly-Ramsay, 1894
Hydrogen	12-105	.47	3656	Baly-Ramsay, 1894
Hydrogen	0-100	100.0	36626	Chappuis, 1903
Methane	0	76 .	3680	Leduc, 1912 Leduc, 1912
Methane	0-100	76.	3678	
Nitrogen	0 100	76. 76.	3672	Leduc, 1912
Nitrogen Nitrogen	0-100 13-132	6.06	$\frac{3672}{3021}$	Leduc, 1912
Nitrogen	9-133	.53	3290	Baly-Ramsay, 1894 Baly-Ramsay, 1894
Nitrogen	0-20	100.2	36754	Chappuis, 1903
Nitrogen	0-100	100.2	36744	Chappuis, 1903
Oxygen	0	76.	3673	Leduc, 1912
Oxygen	0-100	76.	3672	Leduc, 1912
Oxygen	11-132	.007	4161	Baly-Ramsay, 1894
Oxygen	9-132	.25	3984	Baly-Ramsay, 1894
Oxygen	11-132	.51 1.9	3831 36683	Baly-Ramsay, 1894 Meleander, 1891
OxygenOxygen		18.5	36690	Meleander, 1891
Nitrous oxide		76.	3676	Meleander, 1891 Regnault, 1842
Sulphur dioxide, SO2		76.	3845	Regnault, 1842
				i Provito i IOIA

REDUCTION OF GAS VOLUME

VALUES OF (1+at) FOR TEMPERATURES FROM 0 TO 120° C.

T	0	1	2	3	4	5	6	7	8	9 _
00 10 20 30 40 50 60 70 80 90 100	1.2936 1.3303 1.3670	1.1138 1.1505 1.1872 1.2239 1.2606 1.2973 1.3340 1.3707	1.1541 1.1908 1.2275 1.2642 1.3009 1.3376 1.3743	1.2312 1.2679 1.3046 1.3413	1.0514 1.0881 1.1248 1.1615 1.1982 1.2349 1.2716 1.3083 1.3450 1.3817	1.0917 1.1284 1.1651 1.2018 1.2385 1.2752 1.3119 1.3486 1.3853	1.0954 1.1321 1.1688 1.2055 1.2422 1.2789 1.3156 1.3523 1.3890	1.0991 1.1358 1.1725 1.2092 1.2459 1.2826 1.3193 1.3560 1.3927	1.1762 1.2129 1.2496 1.2863 1.3230 1.3597 1.3964	1.2165 1.2532 1.2899 1.3266 1.3633
120	1.4404			Damagan	DEG ED	OM 700	то 78	Омм	OF ME	RCURY.

н	0.	1	2	3	4	5	6	7	8	9
700 710 720 730 740 750 760 770	0.9474 0.9605 0.9737 0.9868 1.0000 1.0132	0.9355 0.9487 0.9618 0.9750 0.9882 1.0013 1.0145	0.9368 0.9500 0.9632 0.9763 0.9895	0.9513 0.9645 0.9776 0.9908 1.0039	0.9395 0.9526 0.9658 0.9789 0.9921 1.0353	0.9408 0.9539 0.9671 0.9803 0.9934 1.0066	0.9289 0.9421 0.9553 0.9684 0.9816 0.9947 1.0079 1.0211	0.9434 0.9566 0.9697 0.9829 0.9961 1.0092	0.9447 0.9579 0.9711 0.9842 0.9974 1.0105	0.9461 0.9592 0.9724 0.9855 0.9987 1.0118

SPECIFIC HEAT OF WATER AND MERCURY

Values for water from 0-100° C. are the mean of various determinations including Calendar and Blonsfield, 1912; above 100, Regnault's values recomputed by Guillaume, 1912.
Values for mercury 0-80° C. due to Barnes and Cooke; 90-140°, mean of Winkelmann, Naccari and Milthaler; above 140°, mean of Naccari

and Milthaler.

Specific heat in normal calories (15° C.).

Temp.	Water.	Mercury.	Temp.	Water.	Mercury.
0	1.00874	.03346	80	1.00239 1.00329	.03284
5 10	1.00477 1.00184	.03340 .03335 .03330	85 90 95	1.00329 1.00433 1.00534	.03277
15 20	1.00000 0.99859 0.99765	.03325	100	1.00645	.03269 .03262
25 30 35	0.99765 0.99745 0.99743	.03316	120 130	1.0110 1.0144 1.0174	.03255
40 45	0.99761	.03308	140 150	1.0206 1.0240	.03241
50 55	0.99829	.03300	160 170	1.0275 1.0313	.0322
60 65	0.99934 1.00001	.03294	180 190	1.0353 1.0395	.0320
70 75	1.00077 1.00158	.03289	200	1.0439	

SPECIFIC HEAT OF ELEMENTS

Element.	Temp. °C.	Specific heat, Cal./gm.	Observer.
Aluminum	-240.6	0.0092	Nernst, 1911
	-233.	0.0165	<i>u</i>
*	-190.	0.0889	"
	-190 to -82	0.1466	Koref, 1911
	-76 to -1	0.1962	la "
	17–100	0.217	Schimpff, 1910
	15-435	$0.236 \\ 0.274$	Tilden, 1902
Antimony	500 -186 to -79	0.274	Bontschew
Anumony	-188 to +20	0.0468	Behn, 1900 Richards & Jackson,
,	Ť	0.0408	1910
	20	0.0503	Gaede, 1902
	100	0.0513	"
	200	0.0520	Naccari, 1887
A	300	0.0537	
Arsenic, gray, crystal	0-100	0.0000	W: 1 1000
black amor	0-100 0-100	$0.0822 \\ 0.0861$	Wigand, 1903
DIAGE AIIIOI	-188 to +20	0.0301	Richards & Jackson,
	-100 00 +20	0.0704	1910
Barium	-185 to +20	0.068	Nordmeyer-Ber- nouli, 1907
Beryllium	0–100	0.425	Nilson & Pettersson, 1880
Bismuth	-188 to +20	0.0284	Richards & Jackson, 1910
	-79 to +17	0.0285	Schimpff, 1910
	17-100	0.0303	гониц ри, 1010
liquid	280-360	0.0363	Person
Boron, amor	-191 to -78	0.071	Koref, 1911
*	-78-0	0.165	"
	0-100	0.307	Moissan & Gautier
Dramina galid	0-234	0.357	TZ 6 1011
Bromine, solid	-191 to -81 -78 to -20	0.070	Koref, 1911
liquid	1-32	$0.084 \\ 0.107$	Regnault, 1849 Andrews, 1848
Cadmium	-186 to -79	0.107	Behn, 1910
Cuamum	-79 to +18	0.0537	", 1910
	20	0.0549	Gaede, 1902
	100	0.0566	""
	200	0.0594	Naccari, 1887
_	300	0.0617	"
Caesium	0-26	0.048	Eckardt & Graefe,
Calcium	-185 to +20	0.157	Nordmeyer & Ber-
	0-20	0.145	nouli, 1906 Bernini, 1907

Element.	Temp.	°C.	Specific heat, Cal./gm.	Observer.
Calcium		0-157	0.152	Bernini, 1907
Carbon: gas carbon		24-68	0.204	Bettendorff & Wüll-
	-	0-24	0.165	ner Weber, 1875
charcoal		-243	0.105	Nernst, 1911
graphite		-243 -203	0.003	"
'	100 +	o –78	0.060	Dewar, 1905
	-100 (11	0.160	Weber, 1875
		138	0.254	"
	1	642	0.445	u
diamond		-233		Nernst, 1911
mamonu		-185	0.0025	
•	-1881	to -78	0.019	Dewar, 1905
		to +18	0.079	"
		11	0.113	Weber, 1875
9 •		140		\
		247	0.303	l "
		606		
Cerium		0-100		Hillebrand, 1876
Chlorine, liquid		0-24		Knietsch
Chromium	-188	to $+20$	0.0793	Richards & Jackson,
*			0.000	1910 Schimpff, 1910
		$t_{0} + 17$		Semmon, 1910
		17-100		Adler, 1903
	,	100 400		Auler, 1909
Cobalt	-188	to +20		Richards & Jackson, 1910
		15-100	0.1035	Tilden, 1900
		15–100 15–185		1902
	,	300	1 1 1 1 1 1	Göbl, 1911
			(0.145	"
		*508	$\{0.125$	"
•		800	0.160	"
	1	1000	0.184	"
		*1116	, j ~ 50.270	"
	1	*1112	1 (0.110 /	"
Copper		-253		Nernst, 1911
Coppe		-213		"
	_188	-198 to +20		Richards & Jackson,
	-100			1910
	-79	to +18	0.0883	Behn, 1900
`		20	0.0912	Gaede, 1902
	1	15-10	0.0930	5 Bartoli & Stracciati

^{*} Temperatures of Transformation.

Element.	Temp. °C.	Specific heat, Cal./gm.	Observer.
Copper:			
.	100	0.0942	Gaede, 1900
	200	0.0963	Naccari, 1887
	900	0.1259	Richards, 1893
Didymium	0-100	0.046	Hillebrand, 1876
Gallium, liquid	13-110	0.080	Berthelot, 1878
solid	12-23	0.079	""
Germanium	0–100	0.074	Pettersson - Hedel- lius, 1881
Glucinium	0-46	0.397	Nilson & Pettersson, 1880
	0–300	0.505	Nilson & Pettersson, 1880
Gold	−188 to −20	0.0297	Richards & Jackson, 1910
	-79 to +17	0.0297	Schimpff, 1910
	0-100	0.0316	Voille, 1877
·	17-100	0.031	Schimpff
	0-900	0.0345	Voille, 1879
Hydrogen, liq	-253	6.0	Dewar, 1901
Indium	-186 to -79	0.0263	Behn, 1900
	-79 to +18	0.0303	"
	18-100	0.0323	"
Iodine	-243	0.031	Nernst, 1911
	-193	0.043	"
	-189 to -76	0.0467	" 1910
	-76-0	0.0516	"
,;	9-98	0.054	Regnault
liquid	107–180	0.108	Favre & Silbermann, 1863
Iridium	-186 to -79	0.0263	Behn, 1900
	-79 to +18	0.0302	"
	18–100	0.0323	"
· · ·	0-900	0.0371	Violle, 1879
Iron	-186 to -79	0.0721	Behn, 1900
!	-79 to +18	0.1000	"
	18–100	0.113	
	300	0.138	Naccari, 1887
*	0-650	0.138	Weiss & Beck, 1908
	650	0.195	" "
cast	850	0.23	**
	20-100		Schmitz, 1903
wrought hard drawn	15-100 20-100		Nichol, 1881
Lanthanum	0-100 0-100	$0.1146 \\ 0.0448$	Hill, 1901
	0-100	0.0110	Hillebrand, 1876

Element.	Temp. °C.	Specific heat, Cal./gm.	Observer.
Lead		0.0120	Nernst, 1911
	-233	0.0220	"
	-173	0.0275	
	-192 to +20	0.0293	Schmitz, 1903
	-186 to -79	0.0291	Behn, 1910
Algebra and Algebra	° -79 to +18	0.0300	g 1
	20-100	0.0305	Schmitz, 1903
	100	0.0313	Gaede, 1902
•	300	0.0338	Naccari, 1887
liquid	360	0.0410	Spring, 1886
Lithium	−191 to −80	0.52	Koref, 1911
	-100	0.5997	Laemmel, 1905
	0	0.7951	"
	50	0.9063	" "
	100	1.0407	".
	190	1.3745	
	0-100	1.09	Bernini, 1907
Magnesium	-185 to +20	0.222	Nordmeyer-Ber-
•			nouli, 1907
	-186 to -79	0.189	Behn, 1900
* .	-79 to +18	0.233	1
•	17–100		Schimpff, 1910
	325		Stücker, 1905
2	625		
Manganese	-188 to +20	0.093	Richards & Jackson, 1910
•	-100	0.0979	Laemmel, 1905
	0		"
	100	0.1143	"
	325		Stücker, 1905
Mercury:			
solid	-213		Pollitzer, 1911
. " "	-183		"
"	-185 to +20	0.032	Nordmeyer-Ber- nouli, 1907
"	-78 to -40	0.0315	Regnault, 1849
liquid	(0.03340	Barnes & Cooke, 1903
**	20		3 ""
"	40	0.03309	9 " "
"	60	0.0329	
"	100		Naccari, 1888
- u	200	0.0323	"
"	250	0.0321	
Molybdenum	-185 to +20	0.062	Nordmeyer-Ber- nouli, 1907
		1	1

	Temp. °C.	Cal./gm.	Observer.
Molybdenum:			
	15-93	0.072	Guichard & Defacqz
	60	0.0647	Stücker, 1905
	475	0.0750	"
Nickel	-185 to +20	0.092	Nordmeyer-Ber nouli, 1907
	-186 to -79	0.0743	Behn, 1900
	-79 to +18	0.0983	"
	15-100	0.1089	Tilden, 1900
	100	0.1128	Pionchon, 1886
	0-200	0.1140	Weiss & Beck, 1908
	0-400	0.1256	<i>" "</i>
AT*: 11 . 1	0-800	0.131	" "
Nitrogen, liquid.	-208 to -196	0.0284	Alt, 1904
Osmium	19-98	0.311	Regnault
Oxygen, liquid Palladium	-200 to -183	0.35	Andrews
ranadium	-186 to +18 -79 to +18	0.0528	Behn, 1900
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0-100	$0.0567 \\ 0.0592$	V:-11- 1070
	0-100	$0.0592 \\ 0.0632$	Violle, 1878
	0-900	$0.0652 \\ 0.0672$	"
Phosphorus, yel-	0-300	0.0012	
low	-188 to +20	0.169	Richards & Jackson, 1910
	-186 to +20	0.17-	Nordmeyer-Ber- nouli, 1907
	7–30	0.190	Regnault
red	0-51	0.1829	Wiegand, 1906
Platinum	-180 to +18	0.0293	Behn, 1900
	15–100		Bartoli & Stracciati, 1895
	0-500	0.0347	Violle, 1878
	100	0.0275	Tilden, 1903
	500	0.0356	White
	600	0.0344	
,	800	0.0369	"
	1000 1200	$0.0382 \mid 0.0398 \mid$	"
	1500	0.0368	u
Potassium	-185 to +20		Nordmeyer-Ber- nouli, 1907
*	0-22	0.188	Bernini, 1906
	22-56	0.192	"" 1900
liquid	78–100	0.217	"
· ·	100-157	0.224	···
	3		-

Element.	Temp. °C.	Specific heat, Cal./gm.	Observer.
Rhodium	10–97	0.0580	Regnault, 1861
Ruthenium	0-100	0.061	Bunsen, 1870
Selenium	-188 to +18	0.068	<u></u>
crystal	22-63	0.084	Bettendorf&Wüllner
Silicon	-185 to +20	0.123	Nordmeyer-Ber-
D11100111			nouli, 1907 Russell, 1912
amorphous	-190 to -80	0.091	Russell, 1912
	-79 to +17	0.147	Schimpff, 1910
	3-50	0.179	Russell, 1912
crystal	-40	0.136	Weber, 1875
	21	0.170	
100	129	0.196	"
Silver	-186 to -70	0.0496	Behn, 1900
	-79 to +18	0.0544	"
	-233	0.0175	Nernst, 1911
	-193	0.040	"
	15–100	0.05625	Bartoli & Stracciati, 1895
	500	0.0581	Tilden, 1900
	800	0.076	Pionchon, 1886
fluid	907-1100	0.0748	"
Sodium	-185 to +20	0.253	Nordmeyer-Ber- nouli, 1907
	-80	0.266	Thum, 1906
	-40 -40		"
	0		"
	100	0.323	· ".
Sulphur	-188 to +18		
rhombic	0-54		Wiegand, 1906
monocl	0-52		"
liquid	119-147	0.235	Naccari, 1887
Tantalum	-185 to +20	0.033	Nordmeyer-Ber-
2021002022			nouli, 1907
	58	0.036	v. Bolton, 1905
	1400	0.043	
Tellurium	-188 to +18	0.047	
crystal	15-100	0.0483	Kopp, 1865
OZ J D COZZ V V V V V V V V V V V V V V V V V V	15-300		Tilden, 1904
Thallium	-185 to +20	0.038	Nordmeyer-Ber- nouli, 1907
	20-100	0.0326	Schmitz, 1903
Thorium	0-100		Nilson, 1883
Tin	-186 to -79	1	Nilson, 1883 Behn, 1900
тш	-79 to +18	1 1 1 1 1 1 1	7, 2000
	20	1 1 1 1 1 1 1 1 1	Gaede, 1902
	1.		
	1-,		

SPECIFIC HEAT OF ELEMENTS (Continued)

Element.	Temp. °C.	Specific heat, Cal./gm.	Observer.
Tin			
	100	0.0565	Gaede, 1902
liquid	250-350	0.0608	Pionchon, 1887
π.	1100	0.0758	, 200
gray	0–18	0.0589	Wigand, 1907
Titanium	-185 to +20	0.082	Nordmeyer-Ber-
	,		nouli, 1907
	20	0.142	Weiss, 1910
Tungsten	-185 to +20	0.036	Nordmeyer-Ber- nouli, 1907
~	15-93	0.034	Guichard & Defacqz
•	20-100	0.034	Gin, 1908
Uranium	0–98	0.028	Blümcke, 1885
. 1	11–98	0.062	Regnault, 1840
Vanadium	0-100	0.1153	Mache, 1897
Zinc	-192 to +20	0.0836	Schmitz, 1903
	-186 to -79	0.080	Behn, 1900
	−79 to +18	0.0895	"
***	-233	0.0268	Nernst, 1911
	-193	0.063	"
* .	20	0.0924	Gaede, 1900
	100	0.0951	"
	300	0.1040	Naccari, 1887
Zirconium	0-100	0.0660	Mixter-Dana, 1873
	0–100	0.068	Wedekind & Lewis, 1910

COLOR SCALE OF TEMPERATURE

This table is the result of an effort to interpret in terms of thermometric readings, the common expressions used in describing temperatures. It is obvious that the values are only approximations.

Color.	Temperature, °C.
Incipient red heat Dark red heat Bright red heat Yellowish red heat Incipient white heat White heat	650–750 850–950 1050–1150

SPECIFIC HEAT OF VARIOUS SOLIDS

Values given in calories per gram.

Substance.	Temp. ° C.	Sp. heat.	Observer.
Alloys, bell metal.	15-98	0.0858	Regnault
brass, red	0	.08991	Lorenz
brass, yellow	0	.08831	Lorenz
German silver	0-100	.09464	Tomlinson
Asbestos	20-98	.195	Ulrich
Basalt	20-100	.20	Mean
Calespar	0-100	.2005	Lindner
Carborundum	3-44	.162	-
Cellulose, dry		.37	Mean
Cement, powder	200-10	.20	1
Chalk	20-99	.214	Regnault
Charcoal	10	.16	Weber, 1875
Clay, dry	20-100	.22	Mean
Ebonite	20-100	.40	Louguinine, 1882
Glass, normal ther-			1 ,
mometer	19-100	.1988	Wachsmuth
crown	10-50	.161	KH. Meyer
flint	10-50	117	H. Meyer
Granite	12-100	.192	Joly
Ice	-200	168	
400	-180	.199	Nernst, 1910 Nernst, 1910
	-160	.230	Nernst, 1910
	-140	262	Nernst, 1910
`.	-100	325	Nernst, 1910
. `	- 60	392	Nernst, 1910
	- 20	.480	Nernst, 1910
4.	-10	.530	Nernst, 1910
India rubber (Para)	?-100	.481	Gee and Terry
Leather, dry		.36	0.000
Marble	0-100	.21	
Mica (Mg)	20-98	2061	Ulrich
Paraffin	0-20	.6939	R. W. Weber
Porcelain	15-950	.26	Harker, 1905
Quartz	12-100	.188	Joly
Rock-salt	13-45	219	Kopp
Sugar	20	274	Hess, 1888
Vulcanite	20-100	3312	A. M. Mayer
Wood	20 100	.42	
W 000			

SPECIFIC HEAT OF CHEMICAL ELEMENTS (Cont.

Values given in calories per gram.

Element.	Temp. ° C.	Sp. heat.	Observer.
Phosphorus, red	0-51	0.1829	Wiegand, 1906
yellow	13-36	.202	Wiegand, 1906
Platinum	-186 - +18	.0293	Behn, 1898-1900
Platinum	0-100	.0323	Viollé, 1878
Platinum	500	. 0356	White, 1909
Rhodium	10-97	.0580	Regnault, 1840-1861
Silver	0-100	.0559	Bunsen, 1870–1887
Silver	500	.0581	Tilden, 1900–1903
Sulphur, rhombic	0-54	.1728	Wiegand, 1906
monoclinic	0-52	. 1809	Wiegand, 1906
Tin, cast	21-109	.0551	Spring, 1886–1895
Titanium	0-100	.1125	Nilson-Pettersson, 1887
Tungsten	0-100	.0336	Mache, 1897
Uranium	0-98	.028	Blümcke, 1885
Vanadium	0-100	.1153	Mache, 1897
Zinc	0-100	.0935	Bunsen, 1870–1887
Zinc	300	.1040	Naccari, 1887-88

SPECIFIC HEAT FOR AQUEOUS SOLUTIONS

Giving the specific heat referred to that of water at the same temperatures. Concentration of the solutions is stated as the number of molecules of water to each molecule of the solutes (anhydrous.)

Values from Marignac, Thomsen and others.

	Temp.	Concentration			
Substance	°C.	25	50	100	
Acetic acid	21–52 21–53	0.957	0.977	0.987 0.870	
Anuminum surphate Ammonium acetate	17.5	0.911	0.951	0.976	
chloride	18	0.881	0.937	0.966	
hydroxide	18		0.999		
nitrate	18	0.880	0.929	0.962	
sulphate	19-51	0.803	0.879	0.933	
Barium chloride	22-27		0.780	0.875	
Cadmium sulphate	12	0.696	0.813	0.893	
Calcium acetate	22-52		0.896	0.939	
chloride	21-51	0.754	0.851	0.917	
nitrate		0.760	0.846	0.911	
Chromic acid	21-53	0.825	0.896	0.942	
Copper chloride		0.779	0.864	0.920	
nitrate	18-50		0.826	0.899	
_ sulphate	18-23		0.841	0.908	
Ferric chloride	0-98	0.666	0.750	0.854	

SPECIFIC HEAT OF AQUEOUS SOLUTIONS (Continued)

Giving the specific heat referred to that of water at the same temperatures. Concentration of the solutions is stated as the number of molecules of water to each molecule of the solutes (anhydrous).

Values from Marignac, Thomsen and others.

SPECIFIC HEAT OF GASES

Giving the specific heat of gases at constant pressure in calories per gram and the ratio of the specific heat at constant pressure to that at constant volume.

Values are for atmospheric pressure. (Selected from Smithsonian Tables.)

	Specific heat at constant pressure.			Ratio of specific heats.			
Gas or vapor.	Temp.	Sp. ht.	Obs.*	Temp.	Ratio Cp/Cv	Obs.*	
Acetone Air Air Air Air Air Alcohol Ammonia Argon Benzol Bromine Carbon dioxide Carbon monoxide Carbon disluphide Chlorine Chloroform Ether Hydrochloric acid Hydrogen Hydrogen sulphide Methane	26-110 0-100 0-200 20-630 108-220 23-100 20-90 34-115 83-228 15-100	0.3468 0.2374 0.2375 0.2429 0.4534 0.5202 0.1233 0.2990 0.0555 0.2025 0.2425 0.1241 0.1241 0.1241 0.1241 0.1241 0.2451		53 0 0 20	1.133 1.3172 1.667 1.403 1.293 1.403 1.205		
Nitrogen		0.2438	R R		1.41	C,	
Nitrous oxide. Oxygen. Sulphur dioxide. Water vapor. Water vapor. Water vapor.	16-207 13-207 16-202 0 100	$\begin{array}{c} 0.2262 \\ 0.2175 \end{array}$	R R R T T	0 5–14 16–34 78 94	1.311 1.3977 1.256 1.274 1.33	Wr L-P Mr B J	

۴A	Austin
В	Beyme
C	Cazin
~~	D

C Cazin D Dittenberger J Jaeger

L Low L-P Lummer & Pringsheim Mr Muller

N Niemeyer P Pagliani

R Regnault
S Strecker
T Thiesen
W Wiedemann
Wr Wüllner

BOILING-POINT OF WATER.

(Hydrogen Scale)

Pressure			,	Tenths	of milli	meters				
mn.	.0	.1	.2	.3	.4	.5	.6	.7	.8	.9
700	97.714	718	722	725	729	733	737	741	745	749
701	753	757	761	765	769	773	777	781	785	789
702	792	796	800	804	808	812	816	820	824	828
703	832	836	840	844	847	851	855	859	863	867
704	871	875	879	883	887	891	895	899	902	906
705	97.910	914	918	922	926	930	934	938	942	946
706	949	953	957	961	965	969	973	977	981	985
707	989	993	996	*000	*004	*008	*012	*016	*020	*024
708	98.028	032	036	040	043	047	051	055	059	063
709	067	071	075	079	082	086	090	094	098	102
710	98.106	110	114	118	121	125	129	133	137	141
711	145	149	153	157	160	164	168	172	176	180
712	184	188	192	195	199	203	207	211	215	219
713	223	227	230	234	238	242	246	250	254	258
714	261	265	269	273	277	281	285	289	292	296
715	98.300	304	308	312	316	320	323	327	331	335
716	339	343	347	351	355	358	362	366	370	374
717	378	382	385	389	393	397	401	405	409	412
718	416	420	424	428	432	436	440	443	447	451
719	455	459	463	467	470	474	478	482	486	490
720	98.493	497	501	505	509	513	517	520	524	528
721	532	536	540	544	547	551	555	559	563	567
722	570	574	578	582	586	590	593	597	601	605
723	609	613	617	620	624	628	632	636	640	643
724	647	651	655	659	662	666	670	674	678	682
725	98.686	689	693	697	701	705	709	712	716	720
726	724	728	732	735	739	743	747	751	755	758
727	762	766	770	774	777	781	785	789	793	797
728	800	804	808	812	816	819	823	827	831	835
729	838	842	846	850	854	858	861	865	869	873
730	98.877	880	884	888	892	896	899	903	907	911
731	915	918	922	926	930	934	937	941	945	949
732	953	956	-960	964	968	972	975	979	983	987
733	991	994	998	*002	*006	*010	*013	*017	*021	*025
734	99.029	032	036	040	044	048	051	055	059	063
735	99.067	070	074	078	082	085	089	093	097	101
736	104	108	112	116	119	123	127	131	135	138
737	142	146	150	153	157	161	165	169	172	176
738	180	184	187	191	195	199	203	206	210	214
739	218	221	225	229	233	236	240	244	248	252
740	99.255	259	263	267	270	274	278	282	285	289
741	293	297	300	304	308	312	316	319	323	327
742	331	334	338	342	346	349	353	357	361	364
743	368	372	376	379	383	387	391	394	398	402
744	406	409	413	417	421	424	428	432	436	439
745	99.443	447	451	454	458	462	466	469	473	477
746	481	484	488	492	495	499	503	507	510	514
747	518	522	525	529	533	537	540	544	548	551
748	555	559	563	566	570	574	578	581	585	589
749	592	596	600	604	607	611	615	619	622	626

[•] See also under Vapor Tension.
405

BOILING-POINT OF WATER (Continued)

(Hydrogen Scale)

Programa				Tenth	s of mill	imeter	3			
Pressure mm.	.0	.1	.2	.3	.4	.5	.6	.7	.8	.9
750	99.630	633	637	641	645	648	652	656	659	663
751	667	671	674	678	682	686	689	693	697	700
752	704	708	712	715	719	723	726	730	734	738
753	741	745	749	752	756	760	764	767	771	775
754	778	782	786	790	793	797	801	804	808	812
755	99.815	819	823	827	830	834	838	841	845	849
756	852	856	860	863	867	871	875	878	882	886
757	889	893	897	900	904	908	911	915	919	923
758	926	930	934	937	941	945	948	952	956	959
759	963	967	970	974	978	982	985	989	993	996
760	100.000	004	007	011	015	018	022	026	029	033
761	037	040	044	048	052	055	059	063	066	070
762	074	077	081	085	088	092	096	099	103	107
763	110	114	118	121	125	129	132	136	140	143
764	-147	151	154	158	162	165	169	173	176	180
765	100.184	187	191	195	198	202	206	209	213	216
766	220	224	227	231	235	238	242	246	249	253
767	257	260	264	268	271	275	279	283	286	290
768	293	297	300	304	308	311	315	319	322	326
769	330	333	337	341	344	348	352	355	359	363
770	100.366	370	373	377	381	384	388	392	395	399
771	403	406	410	414	417	421	424	428	432	435
772	439	442	446	450	453	457	461	464	468	472
773	475	479	483	486	490	493	497	501	504	508
774	511	515	519	522	526	530	533	537	540	544
775	100.548	551	555	559	562	566	569	573	577	580
776	584	588	591	595	598	602	606	609	613	616
777	620	624	627	631	634	638	642	645	649	653
778	656	660	663	667	671	674	678	681	685	689
779	692	696	689	703	707	710	714	718	721	725
780	100.728	732	735	739	743	746	750	753	757	761
781	764	768	772	775	779	782	786	789	793	797
782	800	804	807	811	815	818	822	825	829	833
783	836	840	843	847	851	854	858	861	865	869
784	872	876	879	883	886	890	894	897	901	904
785	100.908	912	915	919	922	926	929	933	937	940
786	944	947	951	954	958	962	965	969	972	976
787	979	983	987	990	994	997	*001	*005	*008	*012
788	101.015	019	022	026	029	033	037	040	044	047
789	051	054	058	062	065	069	072	076	079	083
790	101.087	090	094	097	101	104	108	112	115	119
791	.122	126	129	133	136	140	144	147	151	154
792	158	161	165	168	172	176	179	183	186	190
793	193	197	200	204	207	211	215	218	222	225
794	229	232	236	239	243	246	250	254	257	261
795 796 797 798 799 800	101.264 300 335 370 406 101.441	268 303 339 374 409	271 307 342 377 413	275 310 346 381 416	278 314 349 385 420	282 317 353 388 423	286 321 356 392 427	289 324 360 395 430	293 328 363 399 434	296 332 367 402 437

MELTING AND BOILING TEMPERATURES

Temperature of Fusion for Various Substances for Atmospheric Pressure

For the melting- and boiling-points of the chemical elements and of inorganic compounds see under Physical Constants of the Elements, and Physical Constants of Inorganic Compounds.

Substance.	Temp. of fusion °C.	Substance.	Temp. of fusion C.
Acetylene Alcohol, ethyl Brass	-81 -130. 900. 31-31.5 177.7 120. -63.2 -117.6	German silver. Glass. Glycerine. Olive oil. Paraffin Resin Sea water Sugar (cane).	1100. 17. 2-6 55. 135.

Boiling-point for Various Substances

Giving the boiling-point at atmospheric pressure and the variation per cm. pressure near 76 cm.

-		
Substance.	Temp. ° C.	Variation.
Acetone	57.	0.39
Acetylene	$\begin{array}{c} -72.2 \\ 78.3 \end{array}$	0.34
methyl	$\begin{array}{c} 64.7 \\ 148 \end{array}$	0.35
Amyl acetate	80.	0.43
Camphor:	$205. \\ 61.2$	$\begin{array}{c} 0.56 \\ 0.41 \end{array}$
Chloroform Ether	34.6	0.40
GasolineGlycerine	70–90. 291.	
Turpentine	159.	

MELTING POINT OF ICE—VARIATION WITH PRESSURE

(From Tamann, 1900, by permission.)

Pressure in kg. per sq.cm.	Temp. ° C.	Pressure in kg. per sq.cm.	Temp. ° C.
1 336 615 890 1155	$\begin{array}{c} 0.0 \\ -2.5 \\ -5.0 \\ -7.5 \\ -10.0 \end{array}$	1410 1625 1835 2042 2200	$ \begin{array}{r} -12.5 \\ -15.0 \\ -17.5 \\ -20.0 \\ -22.1 \end{array} $

BOILING POINTS OF WATER-ALCOHOL MIXTURES

(P. N. Evans, Journal of Industrial and Engineering Chemistry.)

Boiling point,	Weight alco	per cent hol in	Boiling point,	Weight per cent alcohol in		
О.	Liquid.	Vapor.	°C.	Liquid.	Vapor.	
78.2	91	92	86.5	18	71	
78.4	85	89	87.0	17	70	
78.6	82	88	87.5	16	69	
78.8	80	87	88.0	15	68	
79.0	78	86	88.5	13	67	
79.2	76	85	89.0	12	65	
79.4	74	85	89.5	11	63	
79.6	72	84	90.0	10	61	
79.8	69	84	90.5	ĩŏ	59	
80.0	67	83	91.0	-ğ	57	
80.2	64	83	91.5		55	
80.4	62	82	92.0	8 8 7	53	
80.6	59	82	92.5	7	51	
80.8	56	81	93.0	6	49	
81.0	53	81	93.5	ě l	46	
81.2	50	80	94.0	š	44	
81.4	47	80	94.5	5	$\frac{11}{42}$	
81.6	45	80	95.0	4	39	
81.8	43	79	95.5	4	36	
82.0	41	79	96.0	3	33	
82.5	36	78	96.5	š	30	
83.0	33	78	97.0	$\tilde{2}$	27	
83.5	30	77	97.5	$\bar{2}$	23	
84.0	27	76	98.0	5 4 4 3 2 2 1 1	19	
84.5	25	75	98.5	ī	15	
85.0	23	74	99.0	ō	10	
85.5	21	73	99.5	Ŏ	5	
86.0	20	72	100.0	ŏ	ŏ	

MOLECULAR ELEVATION OF BOILING POINT

Showing the elevation of the boiling point due to the addition of one gram molecular weight of dissolved substance, for various solvents.

Solvent.	Constant for 1 gm. mol. wt. dissolved in 100 gms. solvent.	Constant for 1 gm. mol. wt. dissolved in 100 c.c. of solvent at its boiling point.
Acetone		22.2
Benzene	26.7	32.0
Chloroform	36.6	26.0
Ether	21.1	30.3
Ethyl alcohol	11.5	15.6
Water		5.4

MOLECULAR DEPRESSION OF FREEZING POINT

Showing the depression of the freezing point due to the addition of one gram molecular weight of dissolved substance, for various solvents.

	Solvent.	Depression for 1 gm. mol. wt. dissolved in 100 gms. of solvent, °C.
Benzene Ethylene d Formic acie Nitrobenze Phenol	libromidedne.	

CRITICAL AND VAN DER WAALS' CONSTANTS FOR GASES

	Critical.			Van der Waals'.	
Name.	Temp.,	Pressure,	Density, gms. per cm.3	а	b
Acetylene	36.5	61.6	0.2315	0.00880	0.00230
Air	-140	39		0.00257	0.00156
Ammonia	130	115.0	<i>.</i>	0.00798	0.00161
Aniline	425.6	52.3		0.05282	0.00611
Argon	-117.4	52.9		0.00259	0.00135
Benzene	288.5	47.9	0.3045	0.03726	0.00537
Bromine	302	131		0.01434	0.00202
Carbon bisulphide	273	72.9	9.4408	0.02316	0.00343
Carbon dioxide	31.1	73	0.464	0.00717	0.00191
Carbon monoxids	-141.1	35.9	0.328	0.00275	0.00168
Chlorine	146	93.5	0.547	0.01063	0.00205
Chloroform	260	54.9		0.0293	0.00445
Ethane	34	50.2		0.01060	0.0028
Ether	197	35.8	0.2622	0.03496	0.00602
Ethyl alcohol	243	62.7	0.2755	0.02407	0.00377
Ethylene	10	51.7	0.210	0.00877	0.00251
Helium	-268	2.3		0.0000615	0.0000995
Hydrochloric acid	52.3	86	/ 	0.00697	0.00173
Hydrogen	-234.5	20	0.03346	0.00042	0.00088
Hydrogen sulphide	100	88.7		0.00888	0.00193
Krypton	- 62.5	54.3		0.00462	0.00178
Methane	- 95.5	50		0.00357	0.00162
Neon	-205	l			0.00102
Nitric oxide, NO	- 93.5	71.2	0.524	0.00257	0.00116 °
Nitrogen	-146	33	0.3269	0.00259	0.00165
Nitrogen tetroxide, NO2.	171.2	147		0.00756	0.00138
Nitrous oxide, N2O	38.8	77.5	0.454	0.00710	0.00184
Oxygen	-118	50	0.4292	0.00273	0.00142
Sulphur dioxide	155.4	78.9	0.520	0.01316	0.00249
Water	365	194.6	0.329	0.0118	0.00150
Xenon	14.7	57.2		0.00818	0.00230

FREEZING MIXTURES

A is the proportion of the substance named in the first column to be added to the proportion of the substance given in column B. The table gives the temperature of the separate ingredients and the temperature attained by the mixture.

(From Smithsonian Tables.)

Substance.	A	В	Initial Temp. ° C.	Temp. ° C. attained by mixt.
NaC ₂ H ₃ O ₂ (cryst.)	85	H ₂ O 100	10.7	- 4.7
NH ₄ Cl	30	H ₂ O 100	13.3	-5.1
NaNO ₃	75	H ₂ O 100	13.2	-5.3
Na ₂ S ₂ O ₃ (cryst.)	110	H ₂ O 100	10.7	- 8.0
KI	140	H ₂ O 100	10.8	-11.7
CaCl ₂ (cryst.)	250	H ₂ O 100	10.8	-12.4
NH ₄ NO ₃	60	H_2O 100	13.6	-13.6
CaCl ₂	30	* Snow 100	- 1	-10.9
NH ₄ Cl	25	Snow 100	$-\tilde{i}$	-15.4
NH ₄ NO ₃	45	Snow 100	$-\bar{1}$	-16.75
NaNO ₃	50	Snow 100	$-\bar{1}$	-17.75
NaCl	33	Snow 100	- 1	-21.3
Naci	(1	Snow 1.097	- 1	-37.0
· '	1 î	Snow 2.52	- 1	-30.0
$H_2SO_4+H_2O_2$	\ i	Snow 4.32	– 1 .	-25.0
$(66.1\% H_2SO_4)$	1 ī	Snow 7.92	- 1	-20.0
	l ī	Snow 13.08	- 1	-16.0
	} ī	Snow .49	0	-19.7
Marin Armania	1	Snow .61	0	-39.0
	1	Snow .70	0.	-54.9
CaCl ₂ +6H ₂ O	∤ 1	Snow .81	.0	-40.3
Cuci2 0212	1	Snow 1.23	0	-21.5
	1	Snow 2.46	. 0	-9.0
	1	Snow 4.92	0	-4.0
11 1 -1 40	} 77	Snow 73.	0	-30.0
Alcohol at 4°	1	CO ₂ solid		-72.0
Chloroform		CO ₂ solid		-77.0
Ether		CO ₂ solid		-77.0
Liquid SO ₂		CO ₂ solid		-82.0
	(1.		20	-4.0
	1	Snow 94	0	-4.0
NIII NO	1	H ₂ O 1.20	1. 10	-14.0
NH_4NO_8	1 1	Snow 1.20	0	-14.0
	1	H_2O 1.31	10	-17.5
	1	Snow 1.31	0	-17.5

^{*} Or finely pulverized ice.

HEAT EQUIVALENT OF FUSION

The table gives the heat equivalent in calories per gram at the temperature of fusion.

(From Smithsonian Tables.)

Substance.	Temp. ° C.	Heat cal/g.	Observer,
Aluminum	658.	76.8	Glaser
Ammonia	-75.	108.	Massol
Benzole	5.4	30.6	Mean
Bromine	-7.3	16.2	Regnault
Bismuth	268.	12.64	Person
Cadmium	320.7	13.66	Person
Calcium chloride	28.5	40.7	Person
Copper	1083	42.	Mean
Iron, gray cast		$\overline{23}$.	Grumer
white cast		33.	Grumer
slag		50.	Grumer
Iodine		11.71	Favre & Silbermann
Ice	0	79.24	Regnault
Ice	Ŏ	80.02	Bunsen
Ice from sea water	-8.7	54.0	Petterson
Lead	327	5.86	Rudberg
Mercury	-39	2.82	Person
Naphthalene	79.87	35.62	Pickering
Nickel	1435	4.64	Pionchon
Palladium	1545	36.3	Violle
Phosphorus	44.2	4.97	Petterson
Platinum	1755	27.2	Violle
Potassium	62	15.7	Joannis
Potassium nitrate	333.5	48.9	Person
Phenol	25.37	24.93	Petterson
Paraffin	52.40	35.10	Batelli
Silver	961	21.07	Person
Sodium	97	31.7	Joannis
Sodium nitrate	305.8	64.87	Joannis
phosphate	36.1	66.8	Joannis
Spermaceti	43.9	36.98	Batelli
Sulphur	115	9.37	Person
Tin	232	14.0	Mean
Wax (Bees')	61.8	42.3	Mean
Zinc.`	419	28.13	Mean

HEAT EQUIVALENT OF VAPORIZATION

The table gives the heat equivalent (or latent heat) of vaporization in calories per gram, at the temperature of ebullition, and at the pressure of the vapor for that temperature.

(Principally from the Smithsonian Tables.)

Substance.	Temp. °C.	Heat Cal/g.	Observer.
Acetic acid	118*	84.9	Ogier
Air		50.97	Fenner-Richtmyer
Alcohol: amyl	131*	120	Schall
ethyl	78.1*	205	Wirtz
ethyl	0	236	Regnault
methyl	64.5*	2.67	Wirtz
methyl	0	289	Ramsay & Young
Ammonia	7.8	294.2	Regnault
Ammonia	11	291.3	Regnault
Ammonia	16	297.4	Regnault
Ammonia	17	296.5	Regnault
Benzene	80.1*	92.9	Wirtz
Bromine	61*	45.6	Andrews
Carbon dioxide, liq	- 25	72.23	
	0	57.48	
Carbon dioxide, liq.	12.35	44.97	Mathias
Carbon dioxide, liq.	22.04	31.8	Mathias
Carbon dioxide, liq.		14.4	Mathias
Carbon dioxide, liq.	29.85	$\frac{14.4}{3.72}$	Mathias
Carbon dioxide, liq.	30.82		Wirtz
Carbon disulphide	46.1*	83.8	
Carbon disulphide	0	90	Regnault Wirtz
Chloroform	60.9*	58.5	
Ether	34.5*	88.4	Wirtz
Ether	34.9	90.5	Andrews
Ether	0	94	Regnault
Iodine	184*	23.95	Favre & Silbermann
Mercury	357*	65	Mean
Nitrogen	-195.6*	47.65	
Oxygen	-182.9*	50.97	
Sulphur dioxide	0	91.2	Cailletet & Mathias
Sulphur dioxide	30	80.5	Cailletet & Mathias
Sulphur dioxide	65	68.4	Cailletet & Mathias
Turpentine	159.3	74.04	
Water	100	535.9	Andrews
Water	0	596.8	Dieterici, 1889
Water	20	585.3	Smith, 1908
Water	40	574.0	Henning, 1909
Water	60	562.9	Henning, 1909
Water	80	551.1	Henning, 1909
Water		538.7	Henning, 1909
Water		525.3	Henning, 1909
Water		510.9	Henning, 1909
Water		496.6	Henning, 1909
Water	1 7.7.2	482.2	Henning, 1909

Temperature values marked * are those of normal ebullition, at 76 cm. pressure.

413

CHANGE IN VOLUME DUE TO FUSION

The table gives the variation in volume expressed in c.cm. for one gram of the substance.

Substance.	Variation, cm.	Observer.
Aluminum	+0.019	Toepler, 1894
Bismuth	-0.0034	Toepler, 1894
Cadmium	+0.0064	Toepler, 1894
Iron	-0.0085	Wrightson, Roberts, 1881
Lead	+0.0034	Toepler, 1894
Tin	+0.0039	Toepler, 1894
Water	-0.083*	Toepler, 1894
Zinc	+0.0105	Toepler, 1894

^{*}For one cubic centimeter.

FIXED POINTS FOR HIGH TEMPERATURES

° Temperatures are for 76 cm. pressure.

Substance.	Boiling-point ° C.	Variation per cm. pressure, C.
Alcohol, ethyl	78.26	0.34
Aniline	184.	0.51
Benzene	80.	0.43
Chloro benzene	132.	0.50
Diphenylamine	302.	
Mercury	356.	,
Naphthaline	218.	0.59
Sulphur	445.2	
Toluidine, $o \dots \dots \dots$	199.7	0.58
Toulene	109.2	0.45
Water	100.	0.37
Xylene, m	138.8	0.50
Zinc	930.	

Substance.	Melting point	Substance.	Melting point °C.
Aluminum Copper Gold Nickel		Platinum	1775 800 232 419

VAPOR TENSION OF WATER

TENSION OF AQUEOUS VAPOR, -30 to 0° C., OVER WATER

The tension is given in millimeters of mercury at 0° C.

(From International Bureau of Weights and Measures.)

Temp.	0.0	0.2	0.4	0.6	0.8
-30	0.3805			,	
$ \begin{array}{r} -29 \\ -28 \\ -27 \\ -26 \\ -25 \end{array} $	0.4185	0.4106	0.4028	0.3952	0.3878
	0.4598	0.4512	0.4428	0.4346	0.4265
	0.5047	0.4954	0.4862	0.4772	0.4684
	0.5535	0.5433	0.5333	0.5236	0.5141
	0.6064	0.5955	0.5847	0.5741	0.5637
$ \begin{array}{r} -24 \\ -23 \\ -22 \\ -21 \\ -20 \end{array} $	0.6637 0.7258 0.7930 0.8656 0.9441	0.6518 0.7130 0.7792 0.8506 0.9279	$\begin{array}{c} 0.6402 \\ 0.7003 \\ 0.7655 \\ 0.8359 \\ 0.9120 \end{array}$	0.6288 0.6879 0.7520 0.8214 0.8963	0.6175 0.6757 0.7388 0.8071 0.8808
-19	1.0288	1.0114	0.9941	0.9772	0.9605
-18	1.1202	1.1013	1.0828	1.0646	1.0465
-17	1.2187	1.1985	1.1785	1.1588	1.1394 »
-16	1.3248	1.3030	1.2814	1.2602	1.239 3
-15	1.4390	1.4155	1.3924	1.3695	1.3470
-14	1.5618	1.5366	1.5117	1.4872	1.4629
-13	1.6939	1.6667	1.6399	1.6135	1.5874
-12	1.8357	1.8065	1.7776	1.7493	1.7214
-11	1.9880	1.9567	1.9258	1.8953	1.8653
-10	2.1514	2.1178	2.0847	2.0520	2.0198
- 9	2.3266	2.2905	2.2550	2.2199	2.1854
- 8	2.5143	2.4758	2.4378	2.4002	2.3632
- 7	2.7153	2.6740	2.6332	2.5930	2.5534
- 6	2.9304	2.8863	2.8427	2.7997	2.7572
- 5	3.1605	3.1132	3.0665	3.0205	2.9751
$ \begin{array}{r} -4 \\ -3 \\ -2 \\ -1 \\ -0 \end{array} $	3.4065	3.3560	3.3062	3.2570	3.2084
	3.6693	3.6153	3.5620	3.5095	3.4576
	3.9499	3.8923	3.8355	3.7794	3.7240
	4.2493	4.1878	4.1271	4.0672	4.0082
	4.5687	4.5032	4.4385	4.3747	4.3116

VAPOR TENSION OF WATER

Tension of Aqueous Vapor. 40 to 0° C., Over Ice

The tension is given in millimeters of mercury, (Juhlin and Marvin.)

	(Juhlin and Marvin.)							
Temp.	0.	1.	2.	3.	4.			
-40 -30 -20 -10	0.105 0.292 0.787 1.974	0.095 0.264 0.714 1.806	0.085 0.238 0.648 1.650	0.076 0.215 0.589 1.506	0.068 0.193 0.534 1.375			
Temp.	5.	6.	7.	8.	9.			
-40 -30 -20 -10	0.061 0.173 0.484 1.257	0.054 0.156 0.438 1.148	0.048 0.141 0.397 1.048	0.043 0.127 0.358 0.955	0.038 0.115 0.324 0.868			
Temp.	.0	.1	.2	3	.4			
-10 - 9 - 8 - 7 - 6 - 5 - 4 - 3 - 2 - 1 - 0	1.974 2.154 2.347 2.557 2.785 3.032 3.299 3.586 3.894 4.223 4.579	1.956 2.136 2.327 2.535 2.761 3.006 3.271 3.556 3.862 4.189 4.543	1.939 2.118 2.307 2.514 2.738 2.981 3.244 3.527 3.831 4.155 4.507	1.922 2.100 2.287 2.492 2.715 2.956 3.217 3.498 3.799 4.122 4.470	1.905 2.082 2.268 2.470 2.692 2.931 3.190 3.469 3.768 4.089 4.434			
Temp.	.5	.6	.7	.8	.°.9			
-10 - 9 - 8 - 7 - 6 - 5 - 4 - 3 - 2 - 1	1.888 2.064 2.249 2.449 2.669 2.906 3.163 3.440 3.737 4.056 4.398	1.872 2.046 2.230 2.428 2.646 2.882 3.136 3.411 3.706 4.023 4.362	1.855 2.028 2.211 2.407 2.624 2.857 3.110 3.382 3.676 3.990 4.327	1.838 2.010 2.192 2.387 2.601 2.833 3.084 3.354 3.646 3.958 4.292	1.822 1.992 2.173 2.367 2.579 2.809 3.058 3.326 3.616 3.926 4.257			

HANDBOOK OF CHEMISTRY AND PHYSICS VAPOR TENSION OF WATER

TENSION OF AQUEOUS VAPOR, 0 TO 100° C.

The tension is given in millimeters of mercury at 0° C.

(International Bureau of Weights and Measures.)

	•				
Temp.	0.0	0.2	0.4	0.6	0.8
0	4.5687	4.6350	4.7022	4.7703	4.8393
1	4.9091	4.9798	5.0515	5.1240	5.1975
2	5.2719	5.3472	5.4235	5.5008	5.5790
3	5.6582	5.7383	5.8195	5.9017	5.9850
4	6.0693	6.1546	6.2410	6.3285	6.4171
5	6.5067	6.5974	6.6893	6.7824	6.8765
6	6.9718	7.0682	7.1658	7.2646	7.3647
7	7.4660	7.5685	7.6722	7.7772	7.8834
8	7.9909	8.0998	8.2099	8.3214	8.4342
9	8.5484	8.6641	8.7810	8.8993	9.0189
10	9.1398	9.2623	9.3863	9.5117	9.6387
11	9.7671	9.8969	10.028	10.161	10.296
12	10.432	10.570	10.709	10.850	10.993
13	11.137	11.283	11.430	11.580	11.731
14	11.884	12.038	12.194	12.352	12.512
15	12.674	12.837	13.003	13.170	13.339
16	13.510	13.683	13.858	14.035	14.214
17	14.395	14.578	14.763	14.950	15.139
18	15.330	15.524	15.719	15.917	16.117
19	16.319	16.523	16.730	16.939	17.150
20	17.363	17.579	17.997	18.018	18.241
21	18.466	18.694	18.924	19.157	19.392
22	19.630	19.870	20.113	20.359	20.607
23	20.858	21.111	21.367	21.626	21.888
24	22.152	22.420	22.690	22.963	23.239
25	23.517	23.799	24.084	24.371	24.662
26	24.956	25.252	25.552	25.855	26.161
27	26.471	26.783	27.099	27.418	27.740
28	28.065	28.394	28.727	29.062	29.401
29	29.744	30.090	30.440	30.793	31.149
30	31.510	31.873	32.341	32.612	32.988
31	33.366	33.749	34.136	34.526	34.920
32	35.318	35.720	36.126	36.536	36.951
33	37.369	37.791	38.218	38.649	39.084
34	39.523	39.966	40.414	40.866	41.323

VAPOR TENSION OF WATER (Continued)

TENSION OF AQUEOUS VAPOR, 0 TO 100° C.

In millimeters of mercury.

•	1	1	1	1	1.
Temp.	0.0	0.2	0.4	0.6	0.8
35	41.784	42.250	42.720	43.195	43.674
36	44.158	44.646	45.139	45.637	46.140
37	46.648	47.160	47.677	48.200	48.727
38	49.259	49.796	50.339	50.886	51.439
39	51.997	52.560	53.128	53.702	54.281
40	54.865	55.455	56.051	56.652	57.258
41	57.870	58.488	59.111	59.741	60.376
42	61.017	61.664	62.316	62.975	63.640
4 3	64.310	64.987	65.670	56.359	67.055
44	67.757	68.465	69.180	69.901	70.628
45	71.362	72.102	72.850	73.603	74.364
46	75.131	75.906	76.687	77.475	78.270
47	79.071	79.880	80.696	81.520	82.350
48	83.188	84.034	84.886	85.746	86.614
49	87.488	88.371	89.261	90.159	91.064
50	91.978	92.900	93.829	94.766	95.711
51	96.664	97.626	98.595	99.573	100.56
52	101.55	102.56	103.57	104.59	105.62
53	106.65	107.70	108.76	109.82	110.89
54	111.97	113.06	114.16	115.27	116.39
5 5	117.52	118.65	119.80	120.95	122.12
56	123.29	124.48	125.67	126.87	128.09
57	129.31	130.54	131.79	133.04	134.30
58	135.58	136.86	138.15	139.46	140.77
59	142.10	143.43	144.78	146.14	147.51
60	148.88	150.27	151.68	153.09	154.51
61	155.95	157.39	158.85	160.32	161.80
62	163.29	164.79	166.31	167.83	169.37
63	170.92	172.49	174.06	175.65	177.25
64	178.86	180.48	182.12	183.77	185.43
65	187.10	188.79	190.49	192.20	193.93
66	195.67	197.42	199.18	200.96	202.75
67	204.56	206.38	208.21	210.06	211.92
68	213.79	215.68	217.58	219.50	221.43
69	223.37	225.33	227.30	229.29	231.29

VAPOR TENSION OF WATER (Continued)

TENSION OF AQUEOUS VAPOR, 0 TO 100° C.

In millimeters of mercury.

Temp.	0.0	0.2	0.4	0.6	0.8
70	233.31	235.34	237.39	239.45	241.52
71	243.62	245.72	247.85	249.98	252.14
72	254.30	256.49	258.69	260.91	263.14
73	265.38	267.65	269.93	272.23	274.54
74	276.87	279.21	281.58	283.96	286.35
75	288.76	291.19	293.64	296.11	298.59
76	301.09	303.60	306.14	308.69	311.26
77	313.85	316.45	319.07	321.72	324.38
78	327.05	329.75	332.47	335.20	337.95
79	340.73	343.52	346.33	349.16	352.01
80	354.87	357.76	360.67	363.59	366.54
81	369.51	372.49	375.50	378.53	381.58
82	384.64	387.73	390.84	393.97	397.12
83	400.29	403.49	406.70	409.94	413.19
84	416.47	419.77	423.09	426.44	429.81
85	433.19	436.60	440.04	443.49	446.97
86	450.47	454.00	457.54	461.11	464.71
87	468.32	471.96	475.63	479.32	483.03
88	486.76	490.52	494.31	498.12	501:95
89	505.81	509.69	513.60	517.53	521.48
90	525.47	529.48	533.51	537.57	541.65
91	545.77	549.90	554.07	558.26	562.47
92	566.71	570.98	575.28	579.61	583.96
93	588.33	592.74	597.17	601.64	606.13
94	610.64	615.19	619.76	624.37	629.00
95	633.66	638.35	643.06	647.81	652.59
96	657.40	662.23	667.10	672.00	676.92
97	681.88	686.87	691.89	696.93	702.02
98	707.13	712.27	717.44	722.65	727.89
99	733.16	738.46	743.80	749.17	754.57
100	760.00	765.47	770.97	776.50	782.07

VAPOR TENSION OF WATER

TENSION OF AQUEOUS VAPOR, 100-230° C.

Giving the vapor tension in millimeters of mercury, in pounds per square inch and the corresponding temperature Fahrenheit.

(From Regnault—Smithsonian Tables.)

		Press	ure.		,	Press	ure.	
	Temp.	mm,	Pounds per sq.in.	Temp.•	Temp.•	mm.	Pounds per sq.in.	Temp.
	100	760.00	14.70	212.0	145	3125.55	60.44	293.0
	101	787.59	15.23	213.8	146	3212.74	62.13	294.8
	102	816.01	15.79	215.6	147	3301.87	63.86	296.6
	103	845.28	16.35	217.4	148	3392.98	65.62	298.4
	104	875.41	16.94	219.2	149	3486.09	67.41	300.2
	105	906.41	17.53	221.0	150	3581.2	69.26	302.0
	106	938.31	18.15	222.8	151	3678.4	71.14	303.8
	107	971.14	18.78	224.6	152	3777.7	73.06	305.6
	108	1004.91	19.44	226.4	153	3879.2	75.02	307.4
	109	1039,65	20.11	228.2	154	3982.8	77.03	309.2
٠,	110	1075.37	20.80	230.0	155	4088.6	79.07	311.0
	111	1112.09	21.51	231.8	156	4196.6	81.22	312.8
	112	1149.83	22.24	233.6	157	4306.9	83.29	314.6
	113	1188.61	22.99	235.4	158	4419.5	85.47	316.4
	114	1228.47	23.76	237.2	159	4534.4	87.69	318.2
	115	1269.41	24.55	239.0	160	4651.6	89.96	320.0
	116	1311.47	25.37	240.8	161	4771.3	92.27	321.8
	117	1354.66	26.20	242.6	162	4893.4	94.63	323.6
	118	1399.02	27.06	244.4	163	5017.9	97.04	325.4
	119	1444.55	27.94	246.2	164	5145.0	99.50	327.2
	120	1491.28	28.85	248.0	165	5274.5	102.01	329.0
	121	1539.25	29.78	249.8	166	5406.7	104.56	330.8
	122	1588.47	30.73	251.6	167	5541.4	107.18	332.6
	123	1638.96	31.70	253.4	168	5678.8	109.84	334.4
	124	1690.76	32.70	255.2	169	5818.9	112.53	336.2
	125	1743.88	33.72	257.0	170	5961.7	115.29	338.0
	126	1798.35	34.78	258.8	171	6107.2	118.11	339.8
	127	1854.20	35.86	260.6	172	6255.5	120.98	341.6
	128	1911.47	36.97	262.4	173	6406.6	123.90	343.4
	129	1970.15	38.11	264.2	174	6560.6	126.87	345.2
	130	2030.28	39.26	266.0	175	6717.4	129.91	347.0
	131	2091.94	40.47	267.8	176	6877.2	133.00	348.8
	132	2155.03	41.68	269.6	177	7040.0	136.15	350.6
	133	2219.69	42.93	271.4	178	7205.7	139.35	352.4
	134	2285.92	44.21	273.2	179	7374.5	142.62	354.2
	135	2353.73	45.52	275.0	180	7546.4	145.93	356.0
	136	2423.16	46.87	276.8	181	7721.4	149.32	357.8
	137	2494.23	48.24	278.6	182	7899.5	152.77	359.6
	138	2567.00	49.65	280.4	183	8080.8	156.32	361.4
	139	2641.44	51.06	282.2	184	8265.4	159.84	363.2
	140	2717.63	52.55	284.0	185	8453.2	163.47	365. 4
	141	2795.57	54.07	285.8	186	8644.4	167.17	366. 8
	142	2875.30	55.60	287.6	187	8838.8	170.94	368.6
	143	2956.86	57.16	289.4	188	9036.7	174.76	370.4
	144	3040.26	58.79	291.2	189	9238.0	178.65	372.2

^{*} These are the temperatures at which water boils under pressures shown. 420

VAPOR TENSION OF WATER (Continued)

TENSION OF AQUEOUS VAPOR, 100-230° C.

Giving the vapor tension in millimeters of mercury, in pounds per square inch and the corresponding temperature Fahrenheit.)

(From Regnault-Smithsonian Tables.)

	Press	ure.	. · · ·		Press	ure.	
Temp. ° C.	mm.	Pounds per sq.in.	Temp.	Temp.	mm.	Pounds. per sq.in.	Temp. ° F.
190 191 192 193 194 195 196 197 198	9442.7 9650.9 9862.7 10078.0 10297.0 10519.6 10746.0 10975.0 11209.8	182.61 186.63 190.72 194.88 199.13 203.43 207.81 212.25 216.77	374.0 375.8 377.6 379.4 381.2 383.0 384.8 386.6 388.4	210 211 212 213 214 215 216 217 218 219	14324.8 14611.3 14902.2 15197.5 15497.2 15801.3 16109.9 16423.2 16740.9 17063.3	277.01 282.58 288.21 293.92 299.72 305.57 311.57 317.62 323.78 330.01	410.0 411.8 413.6 415.4 417.2 419.0 420.8 422.6 424.4 426.2
200 201 202 203 204 205 206 207 208 209	11447.5 11689.0 11934.4 12183.7 12437.0 12694.3 12955.7 13221.1 13490.8 13764.5 14042.5	221.37 226.04 230.79 235.61 240.54 245.49 250.53 255.67 260.88 266.18 271.55	390.2 392.0 393.8 395.6 397.4 399.2 401.0 402.8 404.6 406.4 408.2	220 221 222 223 224 225 226 227 228 229	17390.4 17722.1 18058.6 18399.9 18746.1 19097.0 19452.9 19813.8 20179.6 20550.5	336.30 342.70 349.21 355.81 362.50 369.29 376.17 383.15 390.22 397.40	428.0 429.8 431.6 433.4 435.2 437.0 438.8 440.6 442.4 444.2

VAPOR TENSION OF MERCURY

(From Gebhardt, Hertz, Regnault, Van der Plaats, and others.)

Temp. ° C.	Pressure, mm.	Temp. ° C.	Pressure, mm.
. 0	0.0004	200	18.3
20	0.0013	220	33.7
4 0	0.006	240	59.
60	0.03	260	98
80	0.09	280	156.
100	0.28	300	246.
120	0.8	320	371.
140	1.85	340	548.
160	4.4	360	790.
180	9.2		

LOWERING OF VAPOR PRESSURE BY SALTS IN AQUEOUS SOLUTIONS

The table gives the reduction of the vapor pressure in millimeters due to the presence of the number of grammolecules of salt per liter of water given at the head of the columns, at the temperature 100° C., at which temperature the vapor pressure of oure water is 76.0 centimeters.

(From smithsonian Tables.)

Substance	0.5	1.0	2.0	3.0	4.0	5.0	6.0	8.0	10.0
Ammonium chloride.	12.0	23.7	45.1	69.3	94.2		138.2		
Barium chloride Calcium chloride	16.4 17.0	$\frac{36.7}{39.8}$	77.6 95.3	166 6	1			110.0	210.0
Ferrous sulphate Potassium hydroxide.	5.8	10.7	24.0	42.4	140.0			200 5	207 0
Potassium iodide Sodium chloride	12.5	25.3	52.2	82.6	$112.2 \\ 111.0$	141.5	171.8	225.5	278.5
Sodium hydroxide Sulphuric acid	11.8	22.8	48.2	77.3	107.5	139 1	172 5	243 3	314.0
Zinc sulphate	4.9	10.4	21.5	42.1	66.2	198.4	247.0	343.2	

CONSTANTS OF THE KINETIC THEORY OF GASES

Giving the velocity, mean free path and diameter of molecules for various gases and vapors at 0° C. and 760 mm. pressure.

Gas.	Mean vel. cm./s.	Mean free path, cm.	Diam. cm.	Observer,
Ammonia Argon Benzene Carbon dioxide	3.81	8.84 21	3.23 6.6	Schultze, 1901
Chlorine Chloroform	2.86	5.6 4.07 2.3	4.76 6.3	Breitenbach 1899 Graham, 1846
Ether Ethyl alcohol. Helium.	2.8 3.5	$egin{array}{c} 2.3 \\ 2.1 \\ 3.2 \\ 25.1 \end{array}$	6.6 5.3 1.9	Puluj, 1878 Puluj, 1878 Puluj, 1878 Schultze, 1901
Hydrogen Nitrogen		16.3 8.61	2.38 3.27	Puluj, 1878 Markowski, 1904
Oxygen Water vapor	4.25 5.7	9.06 5.7	3.19 4.0	Markowski, 1904 Puluj, 1878

NUMBER OF MOLECULES IN A MOLECULE-GRAM

Perrin, 1909–11	6 2×1028
Perrin (Brownian movement)	6 85 °
Millikan, 1910.	6.2

MASS OF THE HYDROGEN ATOM

1.46×10-24 grams.

VAPOR PRESSURES OF

In centimeters

(Principally from

Temp. ° C.	Carbon bisulphide,	Carbon dioxide, CO ₂ .	Carbon tetrachloride, CCl4.	Chloroform, CHCls.	Ethyl Alcohol, C2H6O.	Ethyl Ether, C4H10O.	Acetic acid.	Acetone, CaHeO.	Ammonia, NHa.
-30		•••••							86.61
-25 -20 -15 -10 - 5	6.16 7.94	1300.70 1514.24 1758.25 2034.02 2344.13	 .98 1.35 1.85 2.48		 .33 .51 .65 .91	6.89 8.93 11.47 14.61			110.43 139.21 173.65 214.46 264.42
0 5 10 15 20	16.00 19.85 24.41	2690.66 3075.38 3499.86 3964.69 4471.66	3.29 4.32 5.60 7.17 9.10	5.97 10.05 16.05	1.27 1.76 2.42 3.30 4.45	18.44 23.09 28.68 35.36 43.28	0.35 0.64 1.18	i7.96	318.33 383.03 457.40 543.34 638.78
25 30 35 40 45	43.46 51.97	5020.73 5611.90 6244.73 6918.44 7631.46	11.43 14.23 17.55 21.48 26.08	20.02 24.75 30.35 36.93 44.60	5.94 7.85 10.29 13.37 17.22	52.59 63.48 76.12 90.70 107.42	2.01 3.42	42.01	747.70 870.10 1007.02 1159.53 1328.73
50 55 60 65 70	85.71 100.16 116.45 134.75 155.21		31.44 37.63 44.74 52.87 62.11	53.50 63.77 75.54 88.97 104.21	27.86 35.02 43.69	126.48 148.11 172.50 199.89 230.49	5.63 8.83 13.70	72.59 86.05 101.43	1515.83 1721.98 1948.21 2196.51 2467.55
75 80 85 90 95	177.99 203.25 231.17 261.91 296.63		$97.51 \\ 112.23$	121.42 140.76 162.41 186.52 213.28	81.29 98.64 118.93	264.54 302.28 343.95 389.83 440.18	20.23 29.27	161.10 186.18 214.17	2763.00 3084.31 3433.09 3810.92 4219.57
100 105 110 115 120	332.51 372.72 416.41 463.74 514.88		$188.74 \\ 212.91$	275.40 311 10	$236.76 \\ 277.34$	555.62 621.46 693.33	41.7 58.2 79.4	279.73 317.70 359.40 405.00 454.69	4660.82
125 130 135 140 145	569.97 629.16 692.59 760.40 832.69		299.69 333.86 370.90	438.66 488.51 542.25 600.02 661.92	432.30 496.42 567.46		106.7	508.62 566.97 629.87 697.44	••••
150 155 160 165	909.59		454.31 501.02 551.31 605.38		731.84 825.92		184.7 		

VARIOUS SUBSTANCES

of mercury.

Regnault.)

-									
Temp. ° C.	Benzol, CeHs.	Camphor,	Methyl alcohol, CÉ40.	Naphthalene.	Nitrous oxide, N2O.	Pictet's fluid, 64SO ₂ +44CO ₂ by weight.	Sulphur dioxide, SO ₂ .	Hydrogen sulphide, H ₂ S.	Terpentine, C ₁₀ H ₁₆ .
-30						58.52	28.75		
-25 -20 -15 -10 - 5	 .58 .88 1.29 1.83		.41 .63 .93 1.35 1.92		1569.49 1758.66 1968.43 2200.80 2457.92	67.64 74.48 89.68 101.84 121.60	37.38 47.95 60.79 76.25 94.69	374.93 443.85 519.65 608.46 706.60	
0 5 10 15 20	3 42	0.006 0.010 0.015	2.68 3.69 5.01 6.71 8.87	0.005 0.005	2742.10 3055.86 3401.91 3783.17 4202.79	167.20	206.49	820.63 949.08 1089.63 1244.79 1415.15	.21 .29 .44
25 30 35 40 45	9.59 12.02 14.93 18.36 22.41	0.026 0.060	11.60 15.00 19.20 24.35 30.61	0.013 0.032	4664.14 5170.85 6335.98	$ \begin{array}{r} 338.20 \\ 383.80 \\ 434.72 \end{array} $	$343.18 \\ 401.48 \\ 467.02$	1601.24 1803.53 2002.43 2258.25 2495.43	.69 1.08
50 55 60 65 70	27.14 32.64 39.01 46.34 54.74	0.255	38.17 47.22 57.99 70.73 85.71	0.081 0.183 0.395		521.36	712.50	2781.48 3069.07 3374.02 3696.15 4035.32	1.70 2.65 4.06
75 80 85 90 95	64.32 75.19 87.46 101.27 116.75	0.915	103.21 123.85 147.09 174.17 205.17	0.74 1.26				••••	6.13 9.06
100 105 110 115 120	134.01 153.18 174.44 197.82 223.54		240.51 280.63 325.96 376.98 434.18	1.85 2.73 4.02				••••	13.11 18.60 25.70
125 130 135 140 145	251.71 282.43 315.85 352.07 391.21		498.05 569.13 647.93 733.71 830.89	6.19				••••	34.90 46.40
150 155 160 165	433.37 478.65 527.14 568.30		936.13		i			•••••	60.50 68.60 77.50

HEAT CONDUCTIVITY

Giving the quantity of heat in calories which is transmitted per second through a plate one centimeter thick across an area of one square centimeter when the temperature difference is one degree Centigrade.

METALS

Substance	Temp.	Conduc- tivity	Observer
.1	-160	0.514	Lees, 1908
Aluminum	18	0.314	Jaeger & Diesselhorst,
	18	0.504	1900 Lees, 1908
· ·	100	$0.304 \\ 0.492$	Jaeger & Diesselhorst,
	200		1900
	100	0.49	Angell, 1911
	200	0.55	"
·	300	$0.64 \\ 0.76$	"
`	400 600	1.01	1 "
A	000	0.0442	Lorenz 1881
Antimony	100	0.040	Lorenz, 1881
	0-30	0.042	Berget, 1890
Bismuth	-186	0.025	Macchia, 1907
Dismath	0	0.0177	Lorenz
•	18	0.0194	Jaeger & Diesselhorst,
	100	0.0161	Jaeger & Diesselhorst, 1900
Brass (70Cu+30Zn)	-160	0.181	Lees, 1908
(70Cu+30Zn)	17	0.260	<i>""</i> "
yellow	0	0.204	Lorenz
\mathbf{red}	0	0.246	77 A 1. 1
Bronze, aluminum (90Cu, 10Al)		0.18	Van Aubel
Cadmium	-160	0.239	Lees, 1908
Cadmidin	0	0.220	Lorenz
	18	0.222	Jaeger & Diesselhorst
en de la companya de la companya de la companya de la companya de la companya de la companya de la companya de	100	0.216	Jaeger & Diesselhorst 1900
Constantan	18	0.054	Jaeger & Diesselhorst
(60Cu, 40Ni)	100	0.064	Jaeger & Diesselhorst
Copper, pure	-160	1.097	Lees, 1908
Copper, paro	13	1.00	Angström, 1863
	18	0.918	Jaeger & Diesselhorst 1900
~			
		· ·	

HEAT CONDUCTIVITY (Continued)

METALS

Substance	Temp. °C.	Conduc- tivity	Observer
Copper, pure	100	0.908	Jaeger & Diesselhorst
$\mathcal{H} = \mathbb{R}^{n}$	100-197	1.043	Hering, 1910
÷.	100-268	0.969	""
	100-370		-
	100-541		"
-	100-837	0.858	
German silver		0.070	Lorenz, 1881
		0.089	100°
(52Cu, 26Zn, 22Ni)		0.10	Glage, 1905
Gold	17	0.705	Barratt, 1914
	18	0.700	Jaeger & Diesselhorst, 1900
	100	0.703	Jaeger & Diesselhorst, 1900
Iridium	17	0.141	Barratt, 1914
Iron, pure	18	0.161	Jaeger & Diesselhorst
	100	0.151	" . "
	100-727	0.202	Hering, 1910
	100-1245		"
wrought		0.152	Lees, 1908
_		0.144	Jaeger & Diesselhorst
:		0.143	" "
cast		0.109	" "
	100	0.108	**
	100	0.114	Callendar
Steel		$0.111 \\ 0.113$	T and 1000
Steel		$0.115 \\ 0.115$	Lees, 1908
		0.113	Jaeger & Diesselhorst
		0.107	"" RESERVED
Lead		0.092	Lees, 1908
Dead	18	0.083	Jaeger & Diesselhorst
		0.082	"
Magnesium	0-100	0.376	Lorenz, 1881
Manganin	18	0.15186	Jaeger & Diesselhorst
(84Cu, 4Ni, 12Mn)	100	0.06310	. "
, , ,		0.035	Lees, 1908
Mercury		0.0148	H. F. Weber, 1880
•		0.0189	" "
	. 17	0.0197	R. Weber, 1902
Molybdenum	17	$0.346 \\ 0.129$	Barratt, 1914
Nickel		'0 100	Lees, 1908

HEAT CONDUCTIVITY (Continued)

METALS

Substance	Temp.	Conduc- tivity	Observer
Nickel	18	0.142	Jaeger & Diesselhorst,
	100	0.138	Jaeger & Diesselhorst,
	600	0.126 0.088	Angell, 1911
	1200	0.068 0.058	" "
Palladium		0.1683	Jaeger & Diesselhorst, 1900
Platinum		0.182 0.1664	Jaeger & Diesselhorst,
	100	0.1733	Jaeger & Diesselhorst,
Platinum-iridium 10 % Ir	17	0.074	Barratt, 1914
Platinum-rhodium 10 % Rh	17	0.072	Barratt, 1914
Platinoid Rhodium		$0.060 \\ 0.210$	Lees, 1908 Barratt, 1914
Silver, pure	-160	$0.998 \\ 0.974$	Lees, 1908
		1.006	Jaeger & Diesselhorst, 1900
		0.992	Jaeger & Diesselhorst, 1900
Tin	-160	0.192	Lees, 1908
		$0.1528 \\ 0.155$	Lorenz, 1881
			Jaeger & Diesselhorst, 1900
		0.145	Jaeger & Diesselhorst, 1900
		0.1423	Lorenz, 1881
Tantalum		0.130	Barratt, 1914
Tungsten		0.476	Caslidas
XX7 11 11		0.35	Coolidge
Wood's alloy	100	0.0319	H. F. Weber Lees, 1908
Zinc	-100	0.278	Jaeger & Diesselhorst
		$0.2653 \\ 0.2619$	Jaeger & Diessemorst

HEAT CONDUCTIVITY (Continued)

VARIOUS SOLIDS

Approximate values at ordinary temperatures.

Substance	Conductivity	Observer
Asbestos fiber, 500° C.	0.00019	Randolph, 1912
paper	0.0006	
Pupu	0.0004	Lees-Chorlton, 1896
Basalt	0.0052	Hecht, 1903
Brick, common red	0.0015	Herschel-Lebour &
Direct, common reactive		Dunn, 1879
Blotting paper	0.00015	Lees-Charlton, 1896
Carbon	0.00018	need enamed, 1000
Carborundum	$0.01 \\ 0.0005$	Lorenz
brick, 150°-1200°	0.0032-0.0027	Wologdine
Condboord	0.0005	Wologuine
Cardboard	0.0003	Lees-Chorlton, 1896
Cement, Portland		
Chalk	0.0020	Herschel-Lebour & Dunn, 1879
Concrete, cinder	0.00081	
stone	0.0022	Norton
Cork	0.00072	G. Forbes, 1875
	0.00013	Lees, 1892–8
Cotton wool	0.000043	G. Forbes
felted	0.000033	"
Diatomic earth	0.00013	Hutton-Blard
Earth's crust, ave	0.004	
Ebonite	0.00042	Lees
,	0.00014	Barratt, 1914
Eiderdown	0.000011	Peclet, 1878
Felt	0.000087	
Fiber, red	0.0011	Barratt, 1914
Fire brick	0.00028	Hutton-Blard
	0.0011	Barratt, 1914
Flannel	0.00023	
Flannel	0.0085	Barratt, 1914
100°	0.0095	"
Glass		* *
crown (window)	0.0025	Lees, 1892–8
flint	0.002	""
Tong	0.001-0.002	"
goda 20°	0.0017	Barratt, 1914
100°	0.0018	7
soda, 20°	0.0045-0.0050	Poole, 1912
500°	0.0040	7 777
Graphite	0.012	
Graphite brick, 300° to	0.014	
700°	0.24	Wologdine, 1909
100	J. 2.	1,, 5,5,5

HEAT CONDUCTIVITY (Continued)

VARIOUS SOLIDS (Continued)

Approximate values at ordinary temperatures.

Substance	Conductivity	Observer
Gutta percha	0.00048	Péclet, 1878
Gypsum	0.0031	R. Weber, 1878
Haircloth, felt	0.000042	G. Forbes
Ice	0.005	
3	0.0039	
	0.0022	Forbes, 1875
Infusorial earth 100°	0.00034	Skinner
Infusorial earth, 100° 300°	0.00040	"
pressed bricks, 100°.	0.00030	"
Lamp black, 100	0.00007	Randolph, 1912
Lasthon combide	0.00042	Loss Charlton 1906
Leather, cowhide chamois		Lees-Chorlton, 1896
Lime	0.00015 0.00029	
		Hutton-Blard
Linen	0.00021	Lees-Chorlton, 1896
Magnesia, MgO	0.00016-0.00045	Hutton-Blard
brick, 50°-1130°	0.0027-0.0072	Wologdine, 1909
Magnesium carbonate,	0 00000	a 1.
100°	0.00023	Skinner
300°	0.00025	_ "
Marble	0.0071	Lees, 1892–8
Mica, perpendicular to		L ',
cleavage plane	0.0018	Lees
Paper	0.0003	"
Paraffine	0.0006	"
_ ⁻ 0°	0.00023	R. Weber, 1878
Plaster of Paris	0.00070	Lees-Chorlton, 1896
Porcelain	0.0025	Lees, 1892–8
165°–1055°	0.0039-0.0047	Wologdine, 1909
Quartz, parallel to axis .	0.030	Lees, 1892–8
perpendicular to axis.	0.16	"
Rubber, para	0.00045	<i>"</i>
Sand, dry	0.00093	Herschel-Lebour & Dunn, 1879
Sandstone	0.0055	Herschel-Lebour & Dunn, 1879
Sawdust	0.00012	G. Forbes, 1875
Silica, fused, 20°	0.00012	Barratt, 1914
1000	0.00257	Dallatt, 1914
Silica brick, 100° to	0.00200	
1000° C	0 000 0 000	Walandina 1000
2:11-	0.002-0.003	Wologdine, 1909
Silk	0.000095	Lees-Chorlton, 1896
Slate	0.004700	Lees, 1892–8

HEAT CONDUCTIVITY (Continued)

VARIOUS SOLIDS (Continued)

Approximate values at ordinary temperatures.

Substance	Conductivity	Observer
Snow, compact	0.00051	Hjeltström
Soil, dry	0.00033	Lees-Chorlton, 1896
Wax, bees'	0.00009	G. Forbes
Wood, fir to axis	0.0003	
morphondicular to axis	0.00030	
perpendicular to axis.	0.00009	•••••
	Liquids	
Acetic acid	0.00047	H. F. Weber
Amyl alcohol	0.000328	"
Aniline, 12°	0.00041	
Aniline, 12°	0.000333	H. F. Weber
Carbon disulphide, 9° 1		
to 15°	0.000343	**
to 15°	0.000288	"
Ether, 9°–15°	0.000303	"
Ethyl alcohol	0.000423	"
Ethyl alcohol	0.000637	Graetz
Methyl alcohol	0.000495	H. F. Weber
Oils: olive	0.000395	Wachsmuth
castor	0.000425	"
petroleum, 13°	0.000355	Graetz
turnentine	0.000325	"
Vaseline, 25°. Water, 4°	0.00044	Lees
Water 4°	0.00138	H. F.Weber
0°	0.00120	
17°	0.00131	R. Weber
20°	0.00143	Milner & Chattock
<u> </u>	Gases	***************************************
Air, 0°	0.0000568	Winklemann
Argon, 0°	0.0000389	Schwarze
Ammonia gas, 0°	0.0000458	Winklemann
Carbon dioxide, 0°	0.0000307	
monoxide	0.0000499	"
Ethylene	0.0000395	
Helium, 0°		Schwarze
Helium, 0°	0.000327	Winklemann
100°	0.000369	
Methane, 7°-8°		Winklemann
Nitric oxide, NO. 8°1	0.0000460	
Nitrogen, 7°-8°	0.0000524	
Nitrous oxide, NoO	0.0000350	
Nitrous oxide, N ₂ O Oxygen, 7°-8°	0.0000563	
On J Bon , 1 O	0.000000	1

PROPERTIES OF

METRIC AND

The heat units used are the large calorie, 15° to 16° C. and the B.T.U., 62° to 63° F. The heat of the liquid, q, is the heat required to raise unit mass of water from 0° C. (32° F.) to the temperature indicated. The heat of vaporization is the heat required to vaporize unit mass of water at the indicated temperature and pressure. Total heat involved, H = r + q. The heat of vaporization overcomes external pressure and changes the state from liquid to vapor at constant temperature and pressure. If u is the change

from liq	quid to vapor at constant temperature and pressure. If u is the								change	
	I	ressure	•	Hea the lie		Hea vapor tio	riza -	lent o	equiva- f inter- work.	
Temperature degrees Centigrade.	Millimeters of mer- cury.	Kilograms per square centimeter.	Pounds per square inch.	Calories per kilogram.	B.T.U. per pound.	Calories per kilogram.	B.T.U. per pound.	Calories per kilogram.	B.T.U. per pound.	Temperature, degrees Fahrenheit.
t	p	p	p	q	q	r	r	ρ	ρ	t
0 1 2	4.924	0.00623 0.00670 0.00719	0.0952	0.00 1.01 2.02	0.0 1.8 3.6	594.9	1071.7 1070.8 1069.9	565.3 564.7 564.0	1017.5 1016.4 1015.3	32 33.8 35.6
3 4 5	6.097	0.00772 0.00829 0.00889	0.1179	3.03 4.03 5.04	5.5 7.3 9.1	593.3	1069.0 1068.0 1067.1	563.4 562.8 562.2	1014.2 1013.1 1011.9	.37.4 39.2 41
6 7 8	7.511	0.00953 0.01021 0.01093	0.1453	6.04 7.05 8.05	10.9 12.7 14.5	591.8	1066.1 1065.2 1064.2	561.5 560.9 560.2	1010.7 1009.6 1008.5	42.8 44.6 46.4
9 10 11	9.205	0.01170 0.01252 0.01338	0.1780	9.05 10.06 11.06	18.1	590.2	1063.3 1062.3 1061.3	559.6 559.0 558.3	1007.4 1006.2 1005.0	48.2 50 51.8
12 13 14	11.226	0.01429 0.01526 0.01629	0.2171	13.06	23.5	588.6	1060.4 1059.4 1058.5	557.7 557.1 556.5	1003.9 1002.7 1001.6	53.6 55.4 57.2
15 16 17	13.624	0.01737 0.01852 0.01974	0.2635	16.06	28.9	587.0	1057.6 1056.6 1055.7	555.9 555.2 554.6	1000.5 999.4 998.3	59 60.8 62.6
18 19 20	15.460 16.456 17.51	0.02102 0.02237 0.02381	0.3182	19.06	34.3	585.4	1054.7 1053.8 1052.8	553.9 553.3 552.7	997.1 996.0 994.8	64.4 66.2 68
21 22 23	18.62 19.79 21.02	0.02532 0.02691 0.02858	0.3827	22.06	39.7	583.9	1051.9 1051.0 1050.0	551.5	993.7 992.6 991.4	69.8 71.6 73.4
24 25 26	22.32 23.69 25.13	0.03035 0.03221 0.03417	0.4581	25.05	45.1	582.3	1049.1 1048.1 1047.2	550.2 549.5 548.9	989.1	75.2 77 78.8
27 28 29	26.65 28.25 29.94	0.03623 0.03841 0.04071	0.5463	28.05	50.5	580.7	1046.2 1045.2 1044.3	547.6	985.7	80.6 82.4 84.2
30	31.71	0.04311	0.6132	30.04	54.1	579.6	1043.3	546.3	983.4	86

SATURATED STEAM

ENGLISH UNITS

in volume the external work is pu and the corresponding amount of heat is Apu where A is the reciprocal of the mechanical equivalent of heat. The part of the heat of vaporization not used in external work is considered used in changing the state from liquid to vapor. The heat required for this work may be reprethe state from input to vapor. The near required for his work may be represented by $\rho = r - Apu$. (From Peabody, Steam and Entropy Tables, John Wiley and Sons, Inc., publishers, by permission.)

	Heat e lent of e wo	external			Specific um		Den	sity.	7
Temperature, degrees Centigrade.	Calories per kilogram.	B.T.U. per pound.	Entropy of the liquid.	Entropy of vaporization.	Cubic meters per kilo.	Cubic feet per pound.	Kilos per cubic meter.	Pounds per cubic foot.	Temperature, degrees Fahrenheit,
t	A pu	A pu	θ	$\frac{r}{T}$	8	8	1/8	1/8	[t
0 1 2	30.1 30.2 30.4	54.2 54.4 54.6	0.0000 0.0037 0.0074	2.1804 2.1706 2.1609	206.3 192.7 180.0	3304 3087 2884	0.00485 0.00519 0.00556	0.000303 0.000324 0.000347	32 33.8 35.6
3 4 5	30.5 30.5 30.6	54.8 54.9 55.2	0.0110 0.0146 0.0183	2.1513 2.1416 2.1320	168.2 157.2 147.1	2694 2518 2356	0.00595 0.00636 0.00680	0.000371 0.000397 0.000424	37.4 39.2 41
6 7 8	30.8 30.9 31.0	55.4 55.6 55.7	0.0219 0.0256 0.0290	2.1225 2.1130 2.1036	137.7 129.0 120.9	2206 2067 1937	0.00726 0.00775 0.00827	0.000453 0.000484 0.000516	42.8 44.6 46.4
9 10 11	31.1 31.2 31.3	55.9 56.1 56.3	0.0326 0.0361 0.0397	2.0943 2.0850 2.0758	113.4 106.3 99.8	1816 1703 1599	0.00882 0.00941 0.01002	0.000551 0.000587 0.000625	48.2 50 51.8
12 13 14	31.4 31.5 31.6	56.5 56.7 56.9	0.0433 0.0467 0.0502	2.0667 2.0576 2.0486	93.7 88.1 82.9	1502 1411 1327	0.01067 0.01135 0.01206	0.000666 0.000709 0.000754	55.4
15 16 17	31.7 31.8 31.9	57.1 57.3 57.4	0.0537 0.0571 0.0607	2.0396 2.0308 2.0220	77.9 73.3 69.1	1248 1174 1105	0.01283 0.01364 0.01447	0.000801 0.000852 0.000905	
18 19 20	32.0 32.1 32.2	57.6 57.8 58.0	0.0641 0.0675 0.0709	2.0132 2.0045 1.9959	65.1 61.3 57.8	982 926	0.01536 0.01631 0.01730	0.000961 0.001018 0.001080	
21 22 23	32.3 32.4 32.5	58.2 58.4 58.6	0.0743 0.0776 0.0811	1.9873 1.9788 1.9703	51.5	873 824 778	0.01835 0.01942 0.02058	0.001145 0.001214 0.001286	71.6
24 25 26	32.6 32.8 32.9	58.8 59.0 59.2	0.0845 0.0878 0.0911	1.9620 1.9536 1.9453	43.40	735 695 657	0.02178 0.02304 0.02436	0.001361 0.001439 0.001522	77
27 28 29	33.0 33.1 33.2	59.3 59.5 59.7	0.0945 0.0978 0.1011		36.74 34.78	622 589 557	0.02575 0.02722 0.02875	0.001608 0.001698 0.001795	82.4
30	33.3	59.9	0.1044	1.9126	32.95	528	0.03035	0.001894	86

PROPERTIES OF

							1	PROF	FKIII	S OF
		Pressure.	•	Hea the li	t of quid.	vapo	at of oriza- on.	lent o	equiva- of inter- work.	
Temperature, degrees Centigrade.	Millimeters of mer- cury.	Kilograms per square centimeter.	Pounds per square inch.	Calories per kilogram.	B.T.U. per pound.	Calories per kilogram.	B.T.U. per pound.	Calories per kilogram.	B.T.U. per pound.	Temperature, degrees Fahrenheit,
t	p	p	p	q	q	r	r	ρ	ρ	ŧ
31 32 33	33.57 35.53 37.59	0.04564 0.04830 0.05111	0.6871	31.04 32.04 33.04	55.9 57.7 59.5	578.6	1042.4 1041.4 1040.4	545.7 545.1 544.4	982.2 981.0 979.9	87.8 89.6 91.4
34 35 36	39.75 42.02 44.40	0.05404 0.05713 0.06037	0.8126	34.03 35.03 36.03	61.3 63.1 64.9	576.9	1039.4 1038.5 1037.5	543.7 543.1 542.5	978.7 977.6 976.4	93.2 95 96.8
37 38 39	46.90 49.51 52.26	0.06376 0.06731 0.07105	0.9574	37.02 38.02 39.02	66.6 68.4 70.2	575.3 574.7	1036.5 1035.5 1034.5	541.8 541.2 540.5	975.2 974.0 972.8	98.6 100.4 102.2
40 41 42	55.13 58.14 61.30	0.07495 0.07905 0.08334	1.1243 1.1854	40.02 41.01 42.01	72.0 73.8 75.6	5/3.6	1033.5 1032.5 1031.5	539.9 539.2 538.6	971.7 970.5 969.3	104 105.8 107.6
43 44 45	64.59 68.05 71.66	0.08782 0.09252 0.09743	1.3159 1.3858	43.01 44.01 45.00	77.4 79.2 81.0	571.9	1030.5 1029.4 1028.4	537.9 537.2 536.5	968.2 966.9 965.7	109.4 111.2 113
46 47 48	75.43 79.38 83.50	0.10256 0.10792 0.11353	1.5350	46.00 47.00 48.00	82.8 84.6 86.4	570.2	1027.4 1026.4 1025.3	535.8 535.1 534.4	964.5 963.3 962.0	114.8 116.6 118.4
49 50 , 51	87.80 92.30 96.99	0.13187	1.7849	48.99 49.99 50.99	88.2 90.0 91.8	568.4	1024.3 1023.2 1022.2	533.7 533.0 532.3	960.8 959.6 958.4	120.2 122 123.8
52 53 54	101.88 106.99 112.30	0.14546 0.15268		51.99 52.99 53.98	93.6 95.4 97.2	566.8 566.2	1021.2 1020.2 1019.1	531.7 531.1 530.4	957.2 956.0 954.7	125.6 127.4 129.2
55 56 57	117.85 123.61 129.63	0.16023 0.16806 0.17624	2.506	54.98 55.98 56.98	99.0 100.8 102.6	564.5	1018.1 1017.1 1016.1	529.7 529.1 528.4	953.5 952.3 951.1	131 132.8 134.6
58 59 60	135.89 142.41 149.19	0.19362 0.20284		57.98 58.97 59.97	106.2	563.4 562.8	1015.1 1014.1 1013.1	527.7 527.1 526.4	949.9 948.7 947.5	136.4 138.2 140
61 62 63	156.24 163.58 171.20	0.2224 0.2328	3.021 3.163 3.310	60.97 61.97 62.97	111.6	562.2 561.7 561.1	1012.0 1011.0 1009.9	525.7 525.1 524.4	946.3 945.1 943.8	141.8 143.6 145.4
64 65 66	179.13 187.36 195.92	0.2547 0.2664	3.464 3.623 3.789	63.98 64.98 65.98	117.0	559.9	1008.9 1007.8 1006.8	523.7 523.0 522.3	942.6 941.3 940.1	147.2 149 150.8
67 68 69	204.80 214.02 223.58	0.2784 0.2910 0.3040	3.960 4.139 4.324	66.98 67.98 68.98	122.4	558.2	1005.8 1004.7 1003.6	521.7 521.0 520.3	938.9 937.6 936.3	152.6 154.4 156.2
70	233.53	0.3175	4.516	69.98	126.0	556.9	1002.5	519.5	935.0	158

SATURATED STEAM (Continued)

DATO	ICA I ISI	011	////// (
	Heat ed lent of e wor	xternal			Specific		Dens	sity.	
Temperature, degrees Centigrade.	Calories per kilogram.	B.T.U. per pound.	Entropy of the liquid.	Entropy of vaporization.	Cubic meters per kilo.	Cubic feet per pound.	Kilos per cubic meter.	Pounds per cubic foot.	Temperature, degrees Fahrenheit.
t	Apu	A pu	θ	\vec{T}	8	8	1/8	8	t
31	33.4	60.2	0.1077	1.9046	31.24	501	0.03376	0.001996	87.8
32	33.5	60.4	0.1110	1.8966	29.62	474.7		0.002107	89.6
33	33.6	60.5	0.1142	1.8886	28.08	449.7		0.002224	91.4
34	33.7	60.7	0.1175	1.8806	26.62	426.5	0.03960	0.002345	93.2
35	33.8	60.9	0.1207	1.8728	25.25	404.7		0.002471	95
36	33.9	61.1	0.1239	1.8650	23.98	384.2		0.002603	96.8
37	34.0	61.3	0.1272	1.8572	22.78	364.9	0.04619	0.002740	98.6
38	34.1	61.5	0.1304	1.8494	21.65	346.8		0.002884	100.4
39	34.2	61.7	0.1336	1.8417	20.58	329.7		0.003033	102.2
40 41 42	34.3 34.4 34.5	$61.8 \\ 62.0 \\ 62.2$	0.1368 0.1399 0.1431	1.8341 1.8265 1.8189	19.57 18.61 17.69	313.5 298.0 283.3	0.0511 0.0537 0.0565	0.003190 0.003356 0.003530	105.8 107.6
43 44 45	34.6 34.7 34.8	$62.3 \\ 62.5 \\ 62.7$	0.1463 0.1494 0.1526	1.8113 1.8038 1.7693	16.82 16.01 15.25	269.5 256.5 244.4	0.0595 0.0625 0.0656	0.003711 0.003899 0.004092	111.2 113
46 47 48	35.0 35.1 35.2	62.9 63.1 63.3	0.1557 0.1588 0.1619	1.7889 1.7815 1.7742	14.54 13.86 13.21	233.0 222.1 211.7	0.0688 0.0722 0.0757	0.004292 0.004502 0.004724	116.6 118.4
49	35.3	63.5	0.1650	1.7669	12.60	201.9	0.0794	0.00495	120.2
50	35.4	63.6	0.1682	1.7597	12.02	192.6	0.0832	0.00519	122
51	35.5	63.8	0.1713	1.7525	11.47	183.8	0.0872	0.00544	123.8
52	35.6	64.0	0.1743	1.7454	10.96	175.5	0.0912	0.00570	125.6
53	35.7	64.2	0.1774	1.7383	10.47	167.7	0.0955	0.00596	127.4
54	35.8	64.4	0.1804	1.7312	10.00	160.3	0.1000	0.00624	129.2
55	35.9	64.6	0.1835	1.7173	9.56	153.2	0.1046	0.00653	131
56	36.0	64.8	0.1865		9.14	146.5	0.1094	0.00683	132.8
57	36.1	65.0	0.1895		8.74	140.1	0.1144	0.00713	134.6
58	36.2	65.2	0.1925	1.6967	8.36	134.0	0.1196	0.00746	136.4
59	36.3	65.4	0.1955		8.00	128.3	0.1250	0.00779	138.2
60	36.4	65.6	0.1986		7.66	122.8	0.1305	0.00814	140
61	36.5	65.7	0.2016	1.6764	7.34	117.6	0.1362	0.00850	141.8
62	36.6	65.9	0.2046		7.03	112.7	0.1422	0.00887	143.6
63	36.7	66.1	0.2075		6.74	108.0	0.1484	0.00926	145.4
64	36.8	66.3	0.2105	1.6563	6.46	103.5	0.1548	0.00966	147.2
65	36.9	66.5	0.2135		6.19	99.2	0.1615	0.01008	149
66	37.0	66.7	0.2164		5.94	95.1	0.1684	0.01051	150.8
67	37.1	66.9	0.2194	1.6366	5.70	91.3	0.1754	0.01095	152.6
68	37.2	67.1	0.2223		5.47	87.6	0.1828	0.01142	154.4
69	37.3	67.3	0.2253		5.25	84.1	0.1905	0.01189	156.2
70	37.4	67.4	0.2282	1.6235	5.04	80.7	0.1984	0.01239	158

PROPERTIES OF

Pressure. Heat of the liquid. Heat of t		PROPERTIES									
t p p p q q r r ρ ρ t 71 243.8 0.3315 4.715 70.98 127.8 556.4 1001.5 518.8 933.9 161.6 73 265.6 0.3611 5.136 72.99 131.4 555.2 999.4 517.4 931.4 163.4 74 277.1 0.3767 5.358 73.99 133.2 554.6 998.3 516.7 930.1 165.2 76 301.3 0.4096 5.826 76.00 136.8 553.4 997.3 516.0 938.2 151.3 922.6 168.8 77 314.0 0.4269 6.072 77.00 138.6 552.9 995.2 514.7 926.4 170.6 78 327.2 0.4449 6.327 78.00 142.2 551.7 993.0 513.3 922.6 172.4 79 340.9 0.4628 6.867 80.01 144.0	,		Pressure	•			vapo	oriza-	lent	of inter-	
t p p q q r r ρ t 71 243.8 0.3315 4.715 70.98 127.8 556.4 1001.5 518.8 933.9 159.8 72 254.5 0.3460 4.921 71.99 129.6 555.8 1000.4 518.1 932.6 161.6 74 277.1 0.3767 5.385 73.99 133.2 554.6 998.3 516.7 930.1 165.4 75 289.0 0.3929 5.589 74.99 135.0 554.6 997.3 516.0 928.8 167 76 301.3 0.4096 5.826 76.00 136.8 553.4 996.2 515.3 927.6 168.8 77 314.0 0.4229 6.072 77.00 138.6 552.9 995.2 514.7 926.4 170.6 78 327.2 0.4429 6.327 78.00 14.0 551.1 991.9 514.0 922.6 <th>Temperature degrees Centigrade</th> <td>Millimeters of mer- cury.</td> <td>Kilograms per square centi- meter.</td> <td>Pounds per square inch.</td> <td>Calories per kilogram.</td> <td>B.T.U. per pound.</td> <td>Calories per kilogram.</td> <td>B.T.U. per pound.</td> <td>Calories per kilogram.</td> <td>B.T.U. per pound.</td> <td>Temperature, degrees Fahrenheit.</td>	Temperature degrees Centigrade	Millimeters of mer- cury.	Kilograms per square centi- meter.	Pounds per square inch.	Calories per kilogram.	B.T.U. per pound.	Calories per kilogram.	B.T.U. per pound.	Calories per kilogram.	B.T.U. per pound.	Temperature, degrees Fahrenheit.
72	t	p	p	p	q	q	1	r	ρ	ρ	t
76 301.3 0.4096 5.826 76.00 136.8 553.4 996.2 515.3 927.6 168.8 77 314.0 0.4269 6.072 77.00 138.6 552.9 995.2 514.7 926.4 170.6 78 327.2 0.4449 6.327 78.00 140.4 552.3 994.1 514.0 925.2 172.4 80 355.1 0.4828 6.867 80.01 144.0 551.1 991.9 512.6 922.6 172.4 81 369.7 0.5026 7.150 81.02 145.8 550.5 990.8 511.9 921.3 177.8 82 384.9 0.5233 7.745 83.03 149.4 551.1 991.9 512.6 922.6 177.8 84 416.7 0.5665 8.058 84.03 151.2 548.7 987.6 509.8 917.6 183.2 85 450.8 0.6129 8.717 86.04 154.9 <	72	254.5	0.3460	4 021	71.99	129.6	555.8	1000.4	518.1	932.6	161.6
78 327.2 0.4449 6.327 78.00 140.4 552.3 994.1 514.0 925.2 172.4 799 340.9 0.4635 6.592 79.01 142.2 551.7 993.0 513.3 923.9 174.2 80 355.1 0.4828 6.867 80.01 144.0 551.1 991.9 512.6 922.6 176.8 82 384.9 0.5233 7.443 82.02 145.8 550.5 990.8 511.9 921.3 177.8 82 416.7 0.5665 8.058 84.03 151.2 548.7 987.6 509.8 917.6 183.4 416.7 0.5665 8.058 84.03 151.2 548.7 987.6 509.8 917.6 183.5 179.6 183.5 185.8 185.4 416.7 0.5665 8.058 84.03 151.2 548.7 987.6 509.8 917.6 183.5 185.8 185.4 416.7 0.5665 8.058 84.03 151.2 548.7 987.6 509.8 917.6 183.5 185.8 185.4 416.7 0.5665 8.058 84.03 151.2 548.7 987.6 509.8 917.6 183.5 185.8 185.4 416.7 0.5665 8.058 84.03 151.2 548.7 987.6 509.8 917.6 183.5 185.8 185.4 487.1 0.6623 9.419 88.06 158.5 546.2 983.2 506.9 912.5 190.4 185.6 190.6 185.5 546.2 983.2 506.9 912.5 190.4 185.6 190.5 185.5 546.2 983.2 506.9 912.5 190.4 190.5 185	74 75 76	289.0	0.3929	5.358 5.589 5.826	74.99	135.0	554.0	997.3	516.0	928.8	167
81 389 7 0.5026 7.150 81.02 145.8 550.5 990.8 511.9 921.3 177.8 82 384.9 0.5233 7.443 82.02 147.6 549.9 989.8 511.2 920.1 179.6 177.8 83 400.5 0.5243 7.745 83.03 149.4 549.3 988.7 510.5 991.8 8 183.2 84 416.7 0.5665 8.058 84.03 151.2 548.1 986.5 509.1 916.3 185.2 85 433.5 0.5894 8.383 85.04 153.1 548.1 986.5 509.1 916.3 185.2 88 487.1 0.6623 9.419 88.06 158.5 546.2 983.2 506.9 912.5 196.4 188.6 84 487.1 0.6623 9.419 88.06 158.5 546.2 983.2 506.9 912.5 190.4 188.6 91.0 189.5 190.4 1	78	327.2	0.4449	6.327	78.00	140.4	552.3	994.1	514.0	925.2	172.4
84 416.7 0.5665 8.058 84.03 151.2 548.7 987.6 509.8 917.6 183.2 85 433.5 0.5894 8.383 85.04 153.1 548.1 986.5 509.1 916.3 186 86 450.8 0.6129 8.717 86.4 154.9 547.4 985.4 508.3 915.0 186.8 87 468.6 0.6371 9.062 87.05 156.7 546.8 984.3 507.6 912.7 186.6 89 506.1 0.6623 9.419 88.06 165.5 546.2 983.2 506.9 912.5 189.4 90 525.8 0.7149 10.167 90.07 162.1 544.9 980.9 505.4 999.9 99.5 194.9 91 546.1 0.7710 10.966 92.08 165.7 543.7 978.7 504.2 908.5 199.4 92 567.1 0.7710 10.966 92.08 <t< th=""><th>81</th><td>369.7</td><td>0.5026</td><td>7.150</td><td>81.02</td><td>144.0 145.8 147.6</td><td>550.5</td><td>990.8</td><td>511.9</td><td>921.3</td><td>177.8</td></t<>	81	369.7	0.5026	7.150	81.02	144.0 145.8 147.6	550.5	990.8	511.9	921.3	177.8
87	84	400.5 416.7 433.5	0.5665	8.058	84.03	151.2	548.7	987.6	509.8	917.6	183.2
90 525.8 0.7149 10.167 90.07 162.1 544.9 980.9 505.4 909.9 194.2 195.8	87	468.6	0.6371	9.062	87.05	156.7	546.8	984.3	507.6	913.7	188.6
93 588.7 0.8004 11.384 93.09 167.5 543.1 977.6 503.3 906.0 199.4 611.0 0.8307 11.815 94.10 169.3 542.5 976.5 502.6 904.7 201.2 95 634.0 0.8620 12.260 95.11 171.2 541.9 975.4 501.9 903.4 201.2 97 682.1 0.9274 13.190 97.12 174.8 540.6 973.1 500.4 900.8 206.6 97 682.1 0.9274 13.190 97.12 174.8 540.6 973.1 500.4 900.8 206.6 98 707.3 0.9616 13.678 98.13 176.6 539.9 971.9 499.6 899.4 206.6 99 733.3 0.9970 14.180 99.14 178.5 539.3 970.8 498.9 898.2 210.2 100 760.0 1.033 14.697 100.2 180.3 538.7 969.7 498.2 896.9 212 102 815.9 1.1093 15.778 102.2 182.1 538.1 968.5 497.5 895.5 213.8 103 845.1 1.1490 16.342 103.2 185.7 536.8 966.2 496.1 892.9 217.4 104 875.1 1.1898 16.923 104.2 185.7 536.8 966.2 496.1 892.9 217.4 105 906.1 1.2319 17.522 105.2 183.9 537.4 969.7 498.2 890.3 217.4 106 937.9 1.2752 18.137 106.2 191.2 182.1 538.6 964.0 494.7 890.3 221.8 106 937.9 1.2752 18.137 106.2 191.2 534.9 962.8 493.1 887.6 222.8 107 970.6 1.3196 18.769 107.2 193.0 534.9 962.8 493.1 886.3 222.8 109 1038.8 1.4123 20.089 109.3 196.7 532.9 959.3 491.6 885.0 222.8	90	525.8	0.7149	10.167	90.07	162.1	544.9	980.9	505.4	909.9	194
96 657.7 0.8942 12.718 96.12 173.0 541.2 974.2 501.9 902.1 204.8 97.6 82.1 0.9274 13.190 97.12 174.8 540.6 973.1 500.4 990.8 206.6 98 707.3 0.9616 13.678 98.13 176.6 539.9 971.9 499.6 899.4 206.6 993.3 0.9616 19.914 178.5 539.9 971.9 499.6 899.4 206.6 19.00 760.0 1.0333 14.697 100.2 180.3 538.7 969.7 498.2 896.9 212 101 787.5 1.0707 15.229 101.2 182.3 538.7 969.7 498.2 896.9 212 102 815.9 1.1093 15.778 102.2 183.9 537.4 967.3 496.8 894.1 215.6 103 845.1 1.1490 16.342 103.2 185.7 536.8 966.2 496.1 892.9 127.4 104 875.1 1.1898 16.923 104.2 185.7 536.8 966.2 496.1 892.9 127.4 105 993.7 9 1.2752 181.37 106.2 191.2 534.9 962.8 493.9 889.0 221.4 107 970.6 1.3196 18.769 107.2 191.2 534.9 962.8 493.9 889.0 221.6 107 970.6 1.3196 18.769 107.2 193.0 534.2 961.6 493.1 887.6 222.6 108 1004.3 1.3653 19.420 108.2 194.8 533.6 960.5 492.4 886.3 222.8 109 1038.8 1.4123 20.089 109.3 196.7 532.9 959.3 491.6 885.0 228.2	93	588.7	0.7710 0.8004 0.8307	10.966 11.384 11.815	93.09	167.5	543.1	977.6	503.3	906.0	199.4
99 733.3 0.9970 14.180 99.14 178.5 539.3 970.8 498.9 898.2 210.2 100 760.0 1.0333 14.697 100.2 180.3 538.7 960.7 498.2 896.9 212 101 787.5 1.0970 15.229 101.2 182.1 538.1 968.5 497.5 895.5 213.8 103 845.1 1.1490 16.342 103.2 185.7 536.8 966.2 496.1 892.9 101.2 104 875.1 1.1898 16.923 104.2 185.7 536.8 966.2 496.1 892.9 101.2 182.1 536.8 966.2 496.1 892.9 101.2 105 906.1 1.2319 17.522 105.2 180.4 535.6 964.0 494.7 890.3 221.6 106 937.9 1.2752 18.137 106.2 191.2 534.9 962.8 493.9 889.0 222.8 107 970.6 1.3196 18.769 107.2 191.2 534.9 962.8 493.1 887.6 222.8 109.3 1094.3 1.3653 19.420 108.2 194.8 533.6 960.5 492.4 886.3 222.8 109 1088.8 1.4123 20.089 109.3 196.7 532.9 959.3 491.6 885.0 228.2	96 97	657.7 682.1	0.8942	12.718	96.12	173.0	541.2	974.2	501.1	902.1	204.8
102 815.9 1.1093 15.778 102.2 183.9 537.4 967.3 496.8 894.1 215.6 104 875.1 1.1898 16.923 104.2 185.7 536.2 965.1 496.1 892.9 217.4 105 906.1 1.2319 17.522 105.2 189.4 535.6 964.0 494.7 890.3 221.9 106 937.9 1.2752 18.137 106.2 191.2 534.9 962.8 493.0 889.0 222.8 107 970.6 1.3196 18.769 107.2 193.0 534.2 961.6 493.1 887.6 224.6 108 1004.3 1.3653 19.420 108.2 194.8 533.6 960.5 492.4 886.3 226.4 109 1038.8 1.4123 20.089 109.3 196.7 532.9 959.3 491.6 885.0 228.2	99 100	733.3 760.0	0.9970	14.180	98.13 99.14 100.2	178.5	539.3	970.8	498.9	898.2	210.2
105 906.1 1.2319 17.522 105.2 189.4 533.6 964.0 493.7 891.3 221 106 937.9 1.2752 18.137 106.2 191.2 534.9 962.8 493.9 889.0 222.8 107 970.6 1.3196 18.769 107.2 193.0 534.2 961.6 493.1 887.6 224.6 108 1004.3 1.3653 19.420 108.2 194.8 533.6 960.5 492.4 886.3 226.4 109 1038.8 1.4123 20.089 109.3 196.7 532.9 959.3 491.6 885.0 228.2	102 103	815.9 845.1	1.1093	15.778	102 2	183.9	537.4	967.3	496.8	894.1	215.6
108 1004 3 1 3653 19 420 108 2 104 3 533 6 900 5 493 1 867 0 226.4 109 1038 8 1 4123 20 089 109 3 196 7 532 9 959 3 491 6 885 0 228.2	105 106	906.1 937.9	1.1898 1.2319 1.2752	16.923 17.522 18.137	104.2 105.2 106.2	189.4	535.6	964.0	494.7	890.3	221
110 1074.5 1.4608 20 777 110 3 198 5 532 3 958 1 400 9 932 3 932	108 109	1004.3	1.3653	19.420	108.2	194.8	533.6	960.5	492.4	886.3	226.4
883.6 230	110	1074.5	1.4608	20.777	110.3	198.5	532.3	958.1	490.9	883.6	230

SATURATED STEAM (Continued)

		quiva- external rk.			Specific		Dens	sity.	
Temperature, degrees, Centigrade.	Calories per kilogram.	B.T.U. per pound.	Entropy of the liquid.	Entropy of vaporization.	Cubic meters per kilo.	Cubic feet per pound.	Kilos per - cubic meter.	Pounds per cubic foot.	Temperature, degrees Fahrenheit.
t	A pu	A pu	θ	\overline{T}	8	8	8	8	t
71	37.6	67.6	0.2311	1.6171	4.838	77.5	0.2067	0.01290	159.8
72	37.7	67.8	0.2340	1.6107	4.647	74.4	0.2152	0.01344	161.6
73	37.8	68.0	0.2639	1.6044	4.466	71.5	0.2239	0.01398	163.4
74	37.9	68.2	0.2398	1.5981	4.294	68.8	0.2329	0.01453	165.2
75	38.0	68.5	0.2427	1.5918	4.130	66.2	0.2421	0.01510	167
76	38.1	68.6	0.2456	1.5856	3.973	63.7	0.2517	0.01570	168.8
77	38.2	68.8	0.2484	1.5793	3.822	61.2	0.2616	0.01634	170.6
78	38.3	68.9	0.2513	1.5731	3.676	58.8	0.2720	0.01700	172.4
79	38.4	69.1	0.2541	1.5670	3.537	56.6	0.2827	0.01767	174.2
80	38.5	69.3	0.2570	1.5609	3.404	54.5	0.2938	0.01835	176
81	38.6	69.5	0.2598	1.5548	3.277	52.5	0.3052	0.01905	177.8
82	38.7	69.7	0.2626	1.5487	3.156	50.6	0.3168	0.01976	179.6
83	38.8	69.9	0.2654	1.5426	3.040	48.71	0.3289	0.02053	181.4
84	33.9	70.0	0.2682	1.5366	2.929	46.92	0.3414	0.02131	183.2
85	39.0	70.2	0.2711	1.5307	2.824	45.23	0.3541	0.02211	185
86	39.1	70.4	0.2739	1.5247	2.723	43.62	0.3672	0.02293	186.8
87	39.2	70.6	0.2767	1.5187	2.627	42.08	0.3807	0.02376	188.6
88	39.3	70.7	0.2795	1.5128	2.534	40.59	0.3946	0.02463	190.4
89	39.4	70.9	0.2823	1.5069	2.444	39.15	0.4091	0.02554	192.2
90	39.5	71.0	0.2851	1.5010	2.358	37.77	0.4241	0.02648	194
91	39.6	71.3	0.2879	1.4952	2.275	36.45	0.4395	0.02743	195.8
92	39.7	71.5	0.2906	1.4894	2.197	35.19	0.4552	0.02842	197.6
93	39.8	71.6	0.2934	1.4836	2.122	34.00	0.4713	0.02941	199.4
94	39.9	71.8	0.2961	1.4779	2.050	32.86	0.4878	0.03043	201.2
95	40.0	72.0	0.2989	1.4723	1.980	31.75	0.505	0.03149	203
96	40.1	72.1	0.3016	1.4666	1.913	30.67	0.523	0.03260	204.8
97	40.2	72.3	0.3043	1.4609	1.849	29.63	0.541	0.03375	206.6
98	40.3	72.5	0.3070	1.4552	1.787	28.64	0.560	0.03492	208.4
99	40.4	72.6	0.3097	1.4496	1.728	27.69	0.579	0.03611	210.2
100	40.5	72.8	0.3125	1.4441	1.671	26.78	0.598	0.03734	212
101	40.6	73.0	0.3152	1.4386	1.617	25.90	0.618	0.03861	
102	40.6	73.2	0.3179	1.4330	1.564	25.06	0.639	0.03990	
103	40.7	73.3	0.3205	1.4275	1.514	24.25	0.661	0.04124	
104	40.8	73.5	0.3232	1.4220	1.465	23.47	0.683	0.04261	222.8
105	40.9	73.7	0.3259	1.4165	1.419	22.73	0.705	0.04400	
106	41.0	73.8	0.3286	1.4111	1.374	22.01	0.728	0.04543	
107	41.1	74.0	0.3312	1.4057	1.331	21.31	0.751	0.04692	224.6
108	41.2	74.2	0.3339	1.4003	1.289	20.64	0.776	0.04845	226.4
109	41.3	74.3	0.3365	1.3949	1.248	19.99	0.801	0.0500	228.2
110	41.4	74.5	0.3392	1.3895	1.209	19.37	0.827	0.0516	230

PROPERTIES OF

***************************************					PROPERII	ES OF
ا		Pressure.	Heat of the liquid.	Heat of vaporiza- tion.	Heat equiva- lent of inter- nal work.	
Temperature, degrees Centierade	Millimeters of mer- cury.	Kilograms per square centi- meter. Pounds per square inch.	Calories per kilogram. B.T.U. per pound.	Calories per kilogram. B.T.U. per pound.	Calories per kilogram. B.T.U. per pound.	Temperature, degrees Fahrenheit.
- t	p	$p \mid p$	$q \mid q$	r r	PP	t
111 112 113	1111.1 1148.7 1187.4	1.5617 22.214	111.3 200.3 112.3 202.1 113.3 203.9	531.6 956.9 530.9 955.7 530.3 954.5	490.2 882.3 489.4 880.9 488.7 879.5	231.8 233.6 235.4
114 115 116	1227.1 1267.9 1309.8	1.7238 24.518	114.3 205.8 115.3 207.6 116.4 209.4	529.6 953.3 528.9 952.1 528.2 950.8	487.9 878.2 487.1 876.8 486.3 875.4	237.2 239 240.8
117 118 119	1352.8 1397.0 1442.4	1.8993 27.015	117.4 211.2 118.4 213.0 119.4 214.9	527.5 949.5 526.9 948.4 526.2 947.2	485.5 484.8 484.0 872.6 871.3	242.6 244.4 246.2
120 121 122	1488.9 1536.6 1585.7	2.0891 29.715 2.1556 30.664	120.4 121.4 122.5 220.4	525.6 946.0 524.9 944.8 524.2 943.5	483.4 482.6 481.8 868.6 867.1	248 249.8 251.6
123 124 125	1636.0 1687.5 1740.5	2.2241 31.637 2.2943 32.64 2.3663 33.66	123.5 222.2 124.5 224.1 125.5 225.9	523.5 942.3 522.8 941.0 522.1 939.8	481.0 865.8 480.2 864.3 479.4 863.0	253.4 255.2 257
126 127 128	1794.7 1850.3 1907.3	2.4401 34.71 2.5156 35.78 2.5931 36.88	126.5 227.7 127.5 229.5 128.6 231.4	521.4 938.6 520.7 937.3 520.0 936.1	478.6 477.8 477.0 860.2 477.0 858.8	258.8 260.6 262.4
129 130 131	1965.8 2025.6 2086.9	2.6726 38.01 2.7540 39.17 2.8373 40.36	129.6 233.3 130.6 235.1 131.6 236.9	519.3 934.8 518.6 933.6 517.9 932.3	476.3 857.4 475.5 856.0 474.7 854.6	264.2 266 267.8
132 133 134	2149.8 2214.0 2280.0	3.0999 44.09	132.6 238.7 133.7 240.6 134.7 242.4	517.3 931.1 516.6 929.8 515.9 928.5	474.0 853.2 473.3 851.8 472.5 850.4	269.6 271.4 273.2
135 136 137	2347.5 2416.5 2487.3	3.1916 45.39 3.2854 46.73 3.3816 48.10	135.7 244.2 136.7 246.0 137.7 247.9	515.1 927.2 514.4 925.9 513.7 924.6	471.6 848.9 470.8 847.5 470.1 846.1	275 276.8 278.6
138 139 140	2559.7 2633.8 2709.5	3.581 50.93	138.8 249.7 139.8 251.6 140.8 253.4	513.0 923.3 512.3 922.1 511.5 920.7	469.3 844.6 468.5 843.3 467.6 841.8	280.4 282.2 284
141 142 143	2787,1 2866.4 2947.7	3.897 55.43 1	142.8 257.1	510.1 918.1	466.8 840.2 466.1 838.9 465.3 837.4	285.8 287.6 289.4
145	3030.5 3115.3 3202.1	4.121 58.60 1 1 4.236 60.24 1 4.354 61.92	144.9 260.8 145.9 262.7 146.9 264.5	507.8 914.1	464.4 835.9 463.6 834.5 462.8 833.1	291.2 293 294.8
148	3290.8 3381.3 3474.0	4.597 65.39 1	149.0 268.2	505.6 910.1 4	462.0 831.6 461.2 830.1 460.4 828.7	296.6 298.4 300.2
150	3568.7	4.852 69.01 1	151.0 271.9	504.1 907.4 4	159.5 827.2	302
-						

SATURATED STEAM (Continued)

	lent of	equiva- external ork.			Specifi um		Den	sity.	
Temperature, degrees Centigrade.	Calories per kilogram.	B.T.U. per pound.	Entropy of the liquid.	Entropy of vaporization.	Cubic meters per kilo.	Cubic feet per pound.	Kilos per cubic meter.	Pounds per cubic foot.	Temperature, degrees Fahrenheit.
t .	A pu	Apu	θ.	$rac{r}{T}$	8	8	$-\frac{1}{8}$	1/8	t
111	41.4	74.6	0.3418	1.3842	1.172	18.77	0.853	0.0533	231.8
112	41.5	74.8	0.3445	1.3789	1.136	18.20	0.880	0.0550	233.6
113	41.6	75.0	0.3471	1.3736	1.101	17.64	0.908	0.0567	235.4
114	41.7	75.1	0.3498	1.3683	1.068	17.10	0.936	0.0585	237.2
115	41.8	75.3	0.3524	1.3631	1.036	16.59	0.965	0.0603	239
116	41.9	75.4	0.3550	1.3579	1.005	16.09	0.995	0.0622	240.8
117	42.0	75.6	0.3576	1.3527	0.9746	15.61	1.026	0.0641	242.6
118	42.1	75.8	0.3602	1.3475	0.9460	15.16	1.057	0.0659	244.4
119	42.2	75.9	0.3628	1.3423	0.9183	14.72	1.089	0.0679	246.2
120	42.2	76.0	0.3654	1.3372	0.8914	14.28	1.122	0.0700	248
121	42.3	76.2	0.3680	1.3321	0.8653	13.86	1.156	0.0721	249.8
122	42.4	76.4	0.3705	1.3269	0.8401	13.46	1.190	0.0743	251.6
123	42.5	76.5	0.3731	1.3218	0.8158	13.07	1.226	0.0765	253.4
124	42.6	76.7	0.3756	1.3167	0.7924	12.69	1.262	0.0788	255.2
125	42.7	76.8	0.3782	1.3117	0.7698	12.33	1.299	0.0811	257
126	42.8	77.0	0.3807	1.3067	0.7479	11.98	1.337	0.0835	258.8
127	42.9	77.1	0.3833	1.3017	0.7267	11.64	1.376	0.0859	260.6
128	43.0	77.3	0.3858	1.2967	0.7063	11.32	1.416	0.0883	262.4
129	43.0	77.4	0.3884	1.2917	0.6867	11.00	1.456	0.0909	264.2
130	43.1	77.6	0.3909	1.2868	0.6677	10.70	1.498	0.0935	266
131	43.2	77.7	0.3934	1.2818	0.6493	10.40	1.540	0.0961	267.8
132	43.3	77.9	0.3959	1.2769	0.6315	10.12	1.583	0.0988	269.6
133	43.3	78.0	0.3985	1.2720	0.6142	9.839	1.628	0.1016	271.4
134	43.4	78.1	0.4010	1.2672	0.5974	9.569	1.674	0.1045	273.2
135	43.5	78.3	0.4035	1.2623	0.5812	9.309	1.721	0.1074	275
136	43.6	78.4	0.4060	1.2574	0.5656	9.060	1.768	0.1104	276.8
137	43.6	78.5	0.4085	1.2526	0.5506	8.820	1.816	0.1134	278.6
138	43.7	78.7	0.4110	1.2479	0.5361	8.587	1.865	0.1165	280.4
139	43.8	78.8	0.4135	1.2431	0.5219	8.360	1.916	0.1196	282.2
140	43.9	78.9	0.4160	1.2383	0.5081	8.140	1.968	0.1229	284
141	43.9	79.1	0.4185	1.2335	0.4948	7.926	2.021	0.1262	285.8
142	44.0	79.2	0.4209	1.2288	0.4819	7.719	2.075	0.1296	287.6
143	44.0	79.3	0.4234	1.2241	0.4694	7.519	2.130	0.1330	289.4
144	44.2	79.5	0.4259	1.2194	0.4574	7.326	2.186	0.1365	291.2
145	44.2	79.6	0.4283	1.2147	0.4457	7.139	2.244	0.1401	293
146	44.3	79.7	0.4307	1.2100	0.4343	6.957	2.303	0.1437	294.8
147	44.4	79.9	0.4332	1.2054	0.4232	6.780	2.363	0.1475	296.6
148	44.4	80.0	0.4356	1.2008	0.4125	6.609	2.424	0.1513	298.4
149	44.5	80.1	0.4380	1.1962	0.4022	6.443	2.486	0.1552	300.2
150	44.6	80.2	0.4405	1 1916	0.3921	6.282	2.550	0.1592	302

PROPERTIES OF

		INOFERIE									25 OF
			Pressure) .		at of iquid.	vapo	at of oriza- on.	lent e	equiva- of inter- work.	
Temperature,	Centigrade	Millimeters of mer- cury.	Kilograms per square centi- meter.	Pounds per square inch.	Calories per kilogram.	B.T.U. per pound.	Calories per kilogram.	B.T.U. per pound.	Calories per kilogram.	B.T.U. per pound.	Temperature, degrees Fahrenheit.
	ŧ	p	р	p	q	q	r	·r	ρ	ρ	t
15	2	3665.3	4.984	70.88	152.1	273.8	503.4	906.1	458.7	825.7	303.8
15		3761.1	5.118	72.79	153.1	275.6	502.6	904.7	457.9	824.2	305.6
15		3861.9	5.255	74.74	154.1	277.4	501.9	903.3	457.1	822.7	307.4
15	5	3963	5.395	76.73	155.1	279.2	501.1	901.9	456.3	821.2	309.2
15		4073	5.538	78.76	156.2	281.1	500.3	900.5	455.4	819.6	311
15		4181	5.684	80.84	157.2	283.0	499.6	899.2	454.6	818.2	312.8
15	8	4290	5.833	82.96	158.2	284.8	498.8	897.8	453.8	816.7	314.6
15		4402	5.985	85.12	159.3	286.7	498.1	896.5	453.0	815.3	316.4
15		4517	6.141	87.33	160.3	288.5	497.3	895.1	452.1	813.7	318.2
16	1	4633	6.300	89.59	161.3	290.4	496.5	893.7	451.2	812.2	320
16		4752	6.462	91.89	162.3	292.2	495.7	892.3	450.4	810.7	321.8
16		4874	6.628	94.25	163.4	294.1	494.9	890.9	449.5	809.2	323.6
16	4	4998	6.796	96.65	164.4	295.9	494.2	889.5	448.7	807.7	325.4
16		5124	6.967	99.09	165.4	297.7	493.4	888.1	447.9	806.2	327.2
16		5253	7.142	101.58	166.5	299.6	492.6	886.7	447.0	804.7	329
16	7	5384	7.320	104.11	167.5	301.5	491.9	885.4	446.3	803.3	330.8
16		5518	7.502	106.71	168.5	303.3	491.1	883.9	445.4	801.7	332.6
16		5655	7.688	109.35	169.5	305.1	490.3	882.5	444.6	800.1	334.4
16 17 17	Ō	5794 5937 6081		112.04 114.79 117.59	170.6 171.6 172.6	307.0 308.9 310.7	489.5 488.7 487.9	881.0 879.6 878.3	443.7 442.8 441.9	798.5 797.0 795.6	336.2 338 339.8
17	3	6229	8.469	120.45	173.7	312.6	487.1	876.9	441.1	794.1	341.6
17		6379	8.673	123.36	174.7	314.5	486.3	875.4	440.2	792.5	343.4
17		6533	8.882	126.33	175.7	316.3	485.5	873.9	439.4	790.9	345.2
17	7	6689	9.094	129.35	176.8	318.2	484.7	872.4	438.5	789.3	347
17		6848	9.310	132.43	177.8	320.0	483.9	871.0	437.7	787.8	348.8
17		7010	9.531	135.56	178.8	321.8	483.1	869.5	436.8	786.2	350.6
17 17 18	9	7175 7343 7514		138.75 142.00 145.30	179.9 180.9 181.9	323 .7 325 .6 327 .5	482.3 481.4 480.6	868.1 866.6 865.1	436.0 435.0 434.2	784.7 783.1 781.5	352.4 354.2 356
18	3	7688	10.453	148.67	183.0	329.3	479.8	863.6	433.3	779.9	357.8
18		7866	10.695	152.11	184.0	331.2	479.0	862.2	432.5	778.4	359.6
18		8046	10.940	155.60	185.0	333.0	478.2	860.7	431.6	776.9	361.4
18	4	8230	11.189	159.15	186.1	334.9	477 .4	859.2	430 8	775.3	363.2
18	5	8417	11.444	162.77	187.1	336.8	476 .6	857.7	429 9	773.7	365
18	6	8608	11.703	166.46	188.1	338 6	475 .7	856.3	429 0	772.2	366.8
18	8	8802	11.967	170.21	189.2	340 5	474.8	854.7	428.0	770.5	368.6
18		8999	12.235	174.02	190.2	342.4	474.0	853.2	427.2	768.9	370.4
18		9200	12.508	177.90	191.2	344.2	473.2	851.7	426.3	767.4	372.2
19	0	9404	12.786	181.85	192.3	346.1	472.3	850.2	425.4	765.8	374

SATURATED STEAM (Continued)

	Heat e	external			Specifi		Den	sity.	
Temperature, degrees Centigrade.	V Calories per	nd B.T.U. per pound.	Entropy of the liquid.	Entropy of vaporization.	Cubic meters per kilo.	« Cubic feet per pound.	Kilos per « !— cubic meter.	Pounds per cubic foot.	Temperature, degrees Fabrenheit.
		80.4	0.4429		0.3824	6.126	2.615	0.1632	303.8
151 152 153	44.6 44.7 44.8	80.5 80.6	0.4453 0.4477	1.1870 1.1824 1.1778	0.3729 0.3637	5.974 5.826	2.682 2.750	0.1674 0.1716	305.6 307.4
154	44.8	80.7	0.4501	1.1733	0.3548	5.683	2.818	0.1759	309.2
155	44.9	80.9	0.4525	1.1688	0.3463	5.546	2.888	0.1803	311
156	45.0	81.0	0.4549	1.1644	0.3380	5.413	2.959	0.1847	312.8
157	45.0	81.1	0.4573	1.1599	$\begin{array}{c} 0.3298 \\ 0.3218 \\ 0.3140 \end{array}$	5.282	3.032	0.1893	314.6
158	45.1	81.2	0.4596	1.1554		5.154	3.108	0.1940	316.4
159	45.2	81.4	0.4620	1.1509		5.029	3.185	0.1988	318.2
160	45.3	81.5	0.4644	1.1465	0.3063	4.906	3.265	0.2038	320
161	45.3	81.6	0.4668	1.1421	0.2989	4.789	3.345	0.2088	321.8
162	45.4	81.7	0.4692	1.1377	0.2920	4.677	3.425	0.2138	323.6
163	45.5	81.8	0.4715	1.1333	$\begin{array}{c} 0.2855 \\ 0.2792 \\ 0.2729 \end{array}$	4.571	3.503	0.2188	325.4
164	45.5	81.9	0.4739	1.1289		4.469	3.582	0.2238	327.2
165	45.6	82.0	0.4763	1.1245		4.368	3.664	0.2289	329
166	45.6	$82.1 \\ 82.2 \\ 82.4$	0.4786	1.1202	0.2666	4.268	3.751	0.2343	330.8
167	45.7		0.4810	1.1159	0.2603	4.168	3.842	0.2399	332.6
168	45.7		0.4833	1.1115	0.2540	4.070	3.937	0.2457	334.4
169	45.8	82.5	0.4857	1.1072	0.2480	3.975	4.032	0.2516	336.2
170	45.9	82.6	0.4880	1.1029	0.2423	3.883	4.127	0.2575	338
171	46.0	82.7	0.4903	1.0987	0.2368	3.794	4.223	0.2636	339.8
172	46.0	82.8	0.4926	1.0944	0.2314	3.709	4.322	0.2696	341.6
173	46.1	82.9	0.4949	1.0901	0.2262	3.626	4.421	0.2758	343.4
174	46.1	83.0	0.4972	1.0859	0.2212	3.545	4.521	0.2821	345.2
175	46.2	83.1	0.4995	1.0817	0.2164	3.467	4.621	0.2884	347
176	46.2	83.2	0.5018	1.0775	0.2117	3.391	4.724	0.2949	348.8
177	46.3	83.3	0.5041	1.0733	0.2072	3.318	4.826	0.3014	350.6
178	46.3	83.4	0.5064	1.0691	0.2027	3.247	4.933	0.3080	352.4
179	46.4	83.5	0.5087	1.0649	0.1983	3.177	5.04	0.3148	354.2
180	46.4	83.6	0.5110	1.0608	0.1941	3.109	5.15	0.3217	356
181	46.5	83.7	0.5133	1.0567	0.1899	3.041	5.27	0.3288	357.8
182	46.5	83.8	0.5156	1.0525	0.1857	2.974	5.38	0.3362	359.6
183	46.6	83.8	0.5178	1.0484	0.1817	2.911	5.50	0.3435	361.4
184	46.6	83.9	0.5201	1.0443	0.1778	2.849	5.62	0.3510	363.2
185	46.7	84.0	0.5224	1.0403	0.1740	2.787	5.75	0.3588	365
186	46.7	84.1	0.5246	1.0362	0.1702	2.727	5.88	0.3667	366.8
187	46.8	. 84.2	0.5269	1.0321		2.669	6.00	0.3746	368.6
188	46.8	84.3	0.5291	1.0280		2.614	6.13	0.3826	370.4
189	46.9	84.3	0.5314	1.0240		2.560	6.26	0.3906	372.2
190	46.9	84.4	0.5336	1.0200	0.1565	2.507	6.39	0.3989	374

PROPERTIES OF

								LOI	LIKILI	20 OF
		Pressure	•	Hea the li			t of riza- n.	lent o	equiva- of inter- work.	_
Temperature, degrees/ Centigrade.	Millimeters of mer- cury.	Kilograms per square centi- meter.	Pounds per square inch.	Calories per kilogram.	B.T.U. per pound.	Calories per kilogram.	B.T.U. per pound.	Calories per kilogram.	B.T.U. per pound.	Temperature, degrees Fahrenheit.
t	p	p	p	q	q	r	r	ρ	ρ	t
191	9612	13.355	185.87	193.3	347.9	471.5	848.7	424.5	764.2	375.8
192	9823		189.96	194.4	349.8	470.6	847.1	423.6	762.5	377.6
193	10038		194.11	195.4	351.7	469.8	845.6	422.8	761.0	379.4
19 <u>4</u>	10256	14.247	198.33	196.4	353.5	468.9	844.1	421.9	759.4	381.2
195	10479		202.64	197.5	355.4	468.1	842.5	421.0	757.7	383
196	10705		207.01	198.5	357.3	467.2	841.0	420.1	756.1	384.8
197	10934	15.184	211.45	199.5	359.2	466.4	839.5	419.2	754.6	386.6
198	11168		215.96	200.6	361.1	465.6	838.0	418.4	753.0	388.4
199	11406		220.56	201.6	362.9	464.7	836.4	417.4	751.3	390.2
200	11647		225.23	202.7	364.8	463.8	834.8	416.5	749.7	392
201	11893		229.98	203.7	366.7	462.9	833.3	415.6	748.1	393.8
202	12142		234.80	204.7	368.5	462.1	831.8	414.8	746.6	395.6
203	12395	17.202	239.71	205.8	370.4	461.2	830.2	413.8	744.9	397.4
204	12653		244.69	206.8	372.3	460.3	828.6	412.9	743.3	399.2
205	12915		249.75	207.9	374.1	459.4	827.0	412.0	741.6	401
206	13181		254.89	208.9	376.0	458.6	825.4	411.1	740.0	402.8
207	13452		260.13	210.0	377.9	457.7	823.8	410.2	738.3	404.6
208	13727		265.45	211.0	379.8	456.8	822.2	409.3	736.7	406.4
209	14006	19.428	270.85	212.0	381.6	455.9	820.6	408.4	735.1	408.2
210	14290		276.34	213.1	383.5	455.0	819.1	407.5	733.6	410
211	14578		281.91	214.1	385.4	454.1	817.4	406.6	731.9	411.8
212	14871		287.57	215.2	387.3	453.2	815.8	405.7	730.2	413.6
213	15168		293.31	216.2	389.2	452.4	814.3	404.9	728.7	415.4
214	15470		299.16	217.3	391.1	451.5	812.7	404.0	727.1	417.2
215	15778	21.876	305.10	218.3	392.9	450.6	811.0	403.1	725.4	419
216	16090		311.14	219.3	394.8	449.6	809.3	402.1	723.7	420.8
217	16406		317.26	220.4	396.7	448.7	807.7	401.2	722.1	422.6
218	16728	23.188	323.48	221.4	398.5	447.8	806.1	400.3	720.5	424.4
219	17055		329.81	222.5	400.4	446.9	804.5	399.4	718.9	426.2
220	17387		336.24	223.5	.402.3	446.0	802.9	398.5	717.3	428

SATURATED STEAM (Concluded)

	lent of	equiva- external ork.	· 0	1.	Specifi um		Den	sity.	
Temperature, degrees Centigrade,	Calories per kilogram.	B.T.U. per pound.	Entropy of the liquid.	Entropy of vaporization.	Cubic meters per kilo.	Cubic feet per pound.	Kilos per cubic meter.	Pounds per cubic foot.	Temperature, degrees Fahrenheit.
t	A pu	A pu	θ	$\frac{r}{T}$	8	8	1 8	1 8	t
191	47.0	84.5	0.5358	1.0160	0.1533	2.456	6.52	0.4072	375.8
192	47.0	84.6	0.5381	1.0120	0.1501	2.405	6.66	0.4158	377.6
193	47.0	84.6	0.5403	1.0080	0.1470	2.355	6.80	0.4246	379.4
194	47.0	84.7	0.5426	1.0040	0.1440	2.306	6.94	0.4336	381.2
195	47.1	84.8	0.5448	1.0000	0.1411	2.259	7.09	0.4426	383
196	47.1	84.9	0.5470	0.9961	0.1382	2.214	7.23	0.4516	384.8
197	47.2	84.9	0.5492	0.9922	0.1354	2.169	7.38	0.4610	386.6
198	47.2	85.0	0.5514	0.9882	0.1327	2.126	7.53	0.4704	388.4
199	47.3	85.1	0.5536	0.9843	0.1300	2.083	7.69	0.4801	390.2
200	47.3	85.1	0.5558	0.9804	$\begin{array}{c} 0.1274 \\ 0.1249 \\ 0.1225 \end{array}$	2.041	7.84	0.4900	392
201	47.3	85.2	0.5580	0.9765		2.001	8.00	0.4998	393.8
202	47.3	85.2	0.5602	0.9727		1.962	8.16	0.510	395.6
203	47.4	85.3	0.5624	0.9688	0.1201	1.923	8.33	0.520	397.4
204	47.4	85.3	0.5646	0.9650	0.1177	1.885	8.50	0.531	399.2
205	47.4	85.4	0.5668	0.9611	0.1153	1.847	8.67	0.541	401
206	47.5	85.4	0.5690	0.9572	0.1130	1.810	8.85	0.552	402.8
207	47.5	85.5	0.5712	0.9534	0.1108	1.774	9.03	0.564	404.6
208	47.5	85.5	0.5733	0.9496	0.1086	1.739	9.21	0.575	406.4
209	47.5	85.5	0.5755	0.9458	0.1065	1.705	9.39	0.587	408.2
210	47.5	85.5	0.5777	0.9420	0.1044	1.673	9.58	0.598	410
211	47.5	85.5	0.5799	0.9382	0.1024	1.640	9.77	0.610	411.8
212	47.5	85.6	0.5820	0.9344	0.1004	1.608	9.96	0.622	413.6
213	47.5	85.6	0.5842	0.9307	0.0984	1.577	10.16	0.634	415.4
214	47.5	85.6	0.5863	0.9269	0.0965	1.546	10.36	0.647	417.2
215	47.5	85.6.	0.5885	0.9232	0.0947	1.516	10.56	0.660	419
216	47.5	85.6	0.5906	0.9195	0.0928	1.486	10.78	0.673	420.8
217	47.5	85.6	0.5927	0.9157	0.0910	1.458	10.99	0.686	422.6
218	47.5	85.6	0.5948	0.9120	0.0893	1.430	11.20	0.699	424.4
219	47.5	85.6	0.5969	0.9084	0.0876	1.403	11.41	0.713	426.2
220	47.5	85.6	0.5991	0.9047	0.0860	1.376	11.62	0.727	428

HIGH AND LOW TEMPERATURES OBTAINED BY VARIOUS MEANS

Absolute zero, -273° C.

Freezing-point of helium. Freezing-point of hydrogen. Boiling-point of hydrogen. Boiling-point of liquid air at atmospheric pressure. Freezing-point of carbon dioxide.	-259 -252 -192
Industrial furnaces +1700 t Bunsen burner Oxy-coal gas flame Oxy-hydrogen flame Oxy-acetylene flame. Electric arc (furnace)	1870 2000 2800 3500

(Sun's Temperature, 5000° C.)

HEAT VALUES OF FUEL

(From Smithsonian Tables.)

Fuel.	Calories per gm.	B.T.U. per lb.
Coal:		
Lignite		
low grade	3247	5845
high grade	6764	12175
Sub-bituminous		
low grade	5115	9207
high grade	5865	10557
Bituminous		
low grade	6088	10958
high grade	7852	14134
Semi-bituminous	* .	
Low grade		14121
high grade	8166	14699
Semi-anthracite	7612	13702
Anthracite	1	1 gard
low grade	6987	12577
high grade	7417	13351
Peats (air dried):		
From Franklin Co., N. Y	5726	10307
From Sawyer Co., Wis	4867	8761
Liquid fuel:		
Petroleum ether	12215	21987
Gasoline	11250	20250
Kerosene	11100	19980
Fuel oils, heavy petroelum or refinery residue	10350	18630
Alcohol, fuel or denatured with 7-9 per cent		
water and denaturing material	6455	11619

HYGROMETRIC AND BAROMETRIC TABLES

CONVERSION TABLE FOR BAROMETRIC READINGS

U.S. inches to cm.

Inches.	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
27.0	68.580	.606	.631	.656	.682	.707	.733	.758	.783	.809
27.1	.834	.860	.885	.910	.936	.961	.987	*.012	*.037	*.063
27.2	69.088	.114	.139	.164	.190	.215	.241	.266	.291	.317
27.3	.342	.368	.393	.418	.444	.469	.495	.520	.545	.571
27.4	.596	.622	.647	.672	.698	.723	.749	.774	.799	.825
27.5	.850	.876	.901	.926	.952	.977	*.002	*.028	*.053	*.079
27.6	70.104	.130	.155	.180	.206	.231	.257	.282	.307	.333
27.7	.358	.384	.409	.434	.460	.485	.511	.536	.561	.587
27.8	.612	.638	.663	.688	.714	.739	.765	.790	.815	.841
27.9	.866	.892	.917	.942	.968	.993	*.018	*.044	*.069	*.095
28.0	71.120	. 146	.171	.196	.222	.247	.273	.298	.323	.349
28.1	.374	. 400	.425	.450	.476	.501	.527	.552	.577	.603
28.2	.628	. 654	.679	.704	.730	.755	.781	.806	.831	.857
28.3	.882	. 908	.933	.958	.984	*.009	*.035	*.060	*.085	*.111
28.4	72.136	. 162	.187	.212	.238	.263	.289	.314	.339	.365
28.5	.390	.416	.441	.466	.492	.517	.543	.568	.593	.619
28.6	.644	.670	.695	.720	.746	.771	.797	.822	.847	.873
28.7	.898	.924	.949	.974	*.000	*.025	*.051	*.076	*.101	*.127
28.8	73.152	.178	.203	.228	.254	.279	.305	.330	.355	.381
28.9	.406	.432	.457	.482	.508	.533	.559	.584	.609	.635
29.0	.660	.686	.711	.736	.762	.787	.813	.838	.863	.889
29.1	.914	.940	.965	.990	*.016	*.041	*.067	*.092	*.117	*.143
29.2	74.168	.194	.219	.244	.270	.295	.321	.346	.371	.397
29.3	.422	.448	.473	.498	.524	.549	.575	.600	.625	.651
29.4	.676	.702	.727	.752	.778	.803	.829	.854	.879	.905
29.5 29.6 29.7 29.8 29.9	.930 75.184 .438 .692 .946	.956 .210 .464 .718 .972	.981 .235 .489 .743 .997	.260 .514 .768	*.032 .286 .540 .794 *.048	.311 .565 .819	.337 .591 .845	.362 .616 .870	.387 .341 .895	*.159 .413 .667 .921 *.175
30.0	76.200	. 226	.251	.277	.302	.327	.353	.378	.404	.429
30.1	.454	. 480	.505	.531	.556	.581	.607	.632	.658	.683
30.2	.708	. 734	.759	.785	.810	.835	.861	.886	.912	.937
30.3	.962	. 988	*.013	*.039	*.064	*.089	*.115	*.140	*.166	*.191
30.4	77.216	. 242	.267	.293	.318	.343	.369	.394	.420	.445
30.5	.470	.496	.521	.547	.572	.597	.623	.648	.674	.699
30.6	.724	.750	.775	.801	.826	.851	.877	.902	.928	.953
30.7	.978	*.004	*.029	*.055	*.080	*.105	*.131	*.156	*.182	*.207
30.8	78.232	.258	.283	.309	.334	.359	.385	.410	.436	.461
30.9	.486	.512	.537	.563	.588	.613	.639	.664	.690	.715

TEMPERATURE CORRECTION, BRASS SCALE

METRIC

To reduce readings of a mercurial barometer with a brass scale to 0° C. subtract the appropriate quantity as found in the table.

		· · · · · · · · · · · · · · · · · · ·	Obs	erved h	eight in	centime	eters.		
Temp. °C.	70	71	72	73	74	75	76	77	78
	cm.	em.	cm.	em.	cm.	cm.	cm.	cm.	cm.
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
1	.011	.011	.012	.012	.012	.012	.012	.012	.013
2	.023	.023	.023	.024	.024	.024	.024	.025	.025
3	.034	.034	.035	.035	.036	.036	.037	.037	.038
4	.045	.046	.046	.047	.048	.048	.049	.050	.050
5	0.056	0.057	0.058	0.059	0.060	0.060	0.061	0.062	0.063
6	.068	.069	.069	.071	.072	.072	.073	.074	.075
7	.079	.080	.081	.082	.083	.085	.086	.087	.088
8	.090	.092	.093	.094	.095	.097	.098	.099	.101
9	.102	.103	.104	.106	.107	.109	.110	.112	.113
10	0.113	0.114	0.116	0.118	0.119	0:121	0.122	0.124	0.126
11	.124	.126	.128	.129	.131	.133	.135	.137	.138
12	.135	.137	.139	.141	.143	.145	.147	.149	.151
13	.147	.149	.151	.153	.155	.157	.159	.161	.164
14	.158	.160	.163	.165	.167	.169	.172	.174	.176
15 -	0.169	0.172	0.174	0.177	0.179	0.181	0.184	0.186	0.189
16	.181	.183	.186	.188	.191	.194	.196	.199	.201
17	.192	.195	.197	.200	.203	.206	.208	.211	.214
18	.203	.206	.209	.212	.215	.218	.221	.224	.227
19	.215	.218	.221	.224	.227	.230	.233	.236	.239
20	0.226	0.229	0.232	0.236	0.239	0.242	0.245	0.248	0.252
21	.237	.241	.244	.247	.251	.254	.258	.261	.264
22	.249	.252	.256	.259	.263	.266	.270	.273	.277
23	.260	.264	.267	.271	.275	.278	.282	.286	.290
24	.271	.275	.279	.283	.287	.291	.294	.298	.302
25	0.283	0.287	0.291	0.295	0.299	0.303	0.307	0.311	0.315
26	.294	.298	.302	.306	.311.	.315	.319	.323	.327
27	.305	.310	.314	.318	.323	.327	.331	.336	.340
28	.317	.321	.326	.330	.335	.339	.344	.348	.353
29	.328	.333	.337	.342	.347	.351	.356	.361	.365
30	0.339	0.344	0.349	0.354	0.359	0.363	0.368	0.373	0 378

CONVERSION TABLE FOR PRESSURE UNITS

Correct for mercury at 0° C.

Cms. of Hg.	Grams per sq.cm.	Dynes per sq.cm. $(g = 980)$.	Lbs. per sq.in.
1 2 3 4 5	13.5956 27.1912 40.7868 54.3824 67.9780 81.5736	13,323.7 26,647.4 39,971.1 53,294.8 66,618.4 79,942.1	0.193376 0.386752 0.580123 0.773504 0.966880 1.160256
7 8 9	95.1692 108.7648 122.3604	93,265.8 106,589.5 119,913.2	1.353632 1.547008 1.740384

TEMPERATURE CORRECTION, GLASS SCALE

METRIC

To reduce readings of a mercurial barometer with a glass scale to 0° C. subtract the appropriate quantity as found in table.

Temp.			Obse	erved he	eight in	centime	eters.		
° C.	70	71	72	73	74	75	76	77	78
	cm.								
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
1	.012	.012	.013	.013	.013	.013	.013	.013	.014
2	.025	.025	.025	.026	.026	.026	.026	.027	.027
3	.036	.036	.037	.037	.038	.038	.039	.039	.040
4	.048	.049	.049	.050	.051	.051	.052	.053	.053
, 6 7 8 9	0.060 .073 .085 .096 .109	0.061 .074 .086 .098 .110	0.062 .074 .087 .099 .111	0.063 .076 .088 .100 .113	0.064 .077 .089 .101 .114	0.064 .077 .091 .103 .116	0.065 .078 .092 .104 .117	0.066 .079 .093 .105 .119	0.067 .080 .094 .107 .120
10	0.121	0.122	0.·124	0.126	0.127	0.129	0.130	0.132	0.134
11	.133	.135	.137	.138	.140	.142	.144	.146	.147
12	.144	.146	.148	.150	.152	.154	.156	.158	.160
13	.157	.159	.161	.163	.165	.167	.169	.171	.174
14	.169	.171	.174	.176	.178	.180	.183	.185	.187
15	0.181	0.184	0.186	0.189	0.191	0.193	0.196	0.198	0.201
16	.194	.196	.199	.201	.204	.207	.209	.212	.214
17	.205	.208	.210	.213	.216	.219	.221	.224	.227
18	.217	.220	.223	.226	.229	.232	.235	.238	.241
19	.230	.233	.236	.239	.242	.245	.248	.251	.254
20	0.242	0.245	0.248	0.252	0.255	0.258	0.261	0.264	0.268
21	.254	.258	.261	.264	.268	.271	.275	.278	.281
22	.266	.269	.273	.276	.280	.283	.287	.290	.294
23	.278	.282	.285	.289	.293	.296	.300	.304	.308
24	.290	.294	.298	.302	.306	.310	.313	.317	.321
25	0.303	0.307	0.311	0.315	0.319	0.323	0.327	0.331	0.335
26	.315	.319	.323	.327	.332	.336	.340	.344	.348
27	.326	.331	.335	.339	.344	.348	.352	.357	.361
28	.339	.343	.348	.352	.357	.361	.366	.370	.375
29	.351	.356	.360	.365	.370	.374	.379	.384	.388
30	0.363	0.368	0.373	0.378	0.383	0.387	0.392	0.397	0.402

MASS OF WATER VAPOR IN SATURATED AIR

Mass in grams per cubic meter.

(From Smithsonian Tables.)

Temp.	0.0	1.0	2.0	3.0	4.0	5.0	6.0	7.0	8.0	9.0
-20 -10	0.892 2.154	0.810 1.978	0.737 1.811	0.673 1.658	0.613 1.519	0.557 1.395	0.505 1.282		0.413 1.079	
-10 - 0	4.835	4.468	4.130	3.813	3.518	3.244				
$^{+0}_{10}$	4.835 9.330	5.176 9.935	5.538 10.574	5.922 11.249	6.330 11.961	6.761 12.712				8.757
20	17.118	18.143	19.222	20.355	21.546	22.796 39.187	24.109	25.487	26.933	28.450

REDUCTION OF BAROMETER READINGS TO STANDARD TEMPERATURE

BRASS SCALE, BRITISH UNITS.

The table gives the corrections for the barometer reading in inches and the temperature in degrees Fahrenheit for a brass scale graduated to be correct at 62° F. The correction is to be subtracted.

-				Observ	ed heig	ht in in	ches.		
Temp.	27.0	27.5	28.0	28.5	29.0	29.5	30.0	30.5	31.0
32	0.009	0.009	0.009	0.009	0.009	0.009	0.010	0.010	0.010
34	.013	.014	.014	.014	.014	.015	.015	.015	.015
36	.018	.019	.019	.019	.020	.020	.020	.021	.021
38	.023	.024	.024	.025	.025	.025	.026	.026	.027
40	.028	.029	.029	.030	.030	.031	.031	.032	.032
42	.033	.034	.034	.035	.036	.036	.038	.037	.038
44	.038	.039	.039	.040	.041	.041	.042	.043	.044
46	.043	.044	.044	.045	.046	.047	.048	.048	.049
48	.048	.049	.050	.050	.051	.052	.053	.054	.055
50	.053	.054	.055	.055	.057	.058	.058	.059	.060
52	.058	.059	.060	.060	.062	.063	.064	.065	.066
54	.062	.063	.065	.066	.067	.068	.069	.071	.072
56	.067	.068	.070	.071	.072	.074	.075	.076	.077
58	.072	.073	.075	.076	.078	.079	.080	.082	.083
60	.077	.078	.080	.081	.083	.084	.086	.087	.089
62	.082	.083	.085	.086	.088	.090	.091	.093	.094
64	.087	.088	.090	.092	.093	.095	.097	.098	.100
66	.092	.093	.095	.097	.099	.100	.102	.104	.105
68	.097	.098	.100	.102	.104	.106	. 107	.109	.111
70	.102	.103	.105	.107	.109	.111	.113	.115	.117
72	.107	.108	.110	.102 .107 .112	.114	.116	.118	.120	.122
74	.111	.113	.116	1.117	.120	.122	.124	.126	.128
76	.116	.118	.121	.123	.125	.127	. 129	.131	.133
78	.121	.123	.126	.128	.130	.132	.135	.137	.139
80	.126	.128	.131	.133	.135	.138	.140	.142	. 145
82	. 131	. 133	.136	.138	.141	.143	.146	.148	.150
84	.136	.138	.141	.143	.146	.148	.151	.153	.156
86	.141	.143	.146	.148	.151	.154	.156	.159	.162
88	.146	.148	.151	.154	.156	.159	.162	.165	.167
90	.151	.153	.156	.159	.162	.165	.167	.170	.173
92	.156	.158	.161	.164	.167	.170	.173	.176	.178
94	.160	.163	.166	.170	.172	.175	.178	.181	.184
96	165	.168	.171	.174	.178	.181	.184	.187	.190
98	.170	.173	.177	.179	. 183	.186	.189	192	.195

CORRECTION FOR CAPILLARY DEPRESSION OF MERCURY IN A GLASS TUBE

Correction to be added

			Corre	CHOIL TO	Je added	<u> </u>						
Diam.	Height of meniscus in centimeters.											
of tube.	0.04	0.06	0.08	0.10	0.12	0.14	0.16	0.18				
em.	cm.	em.	cm.	cm.	cm.	cm.	cm.	cm.				
0.4	0.083	0.122	0.154	0.198	0.237		-	l				
0.5	.047	.065	.086	.119	. 145	0.180						
0.6	.027	.041	.056 `	.078	.098	.121	0.143					
0.7	.018	.028	.040	.053	.067	.082	.097	.113				
0.8		`.020	.029	.038	.046	.056	.065	0.077				
0.9	l	0.015	0.021	0.028	0.033	0.040	0.046	0.052				
1.0		·	.015	.020	.025	.029	.033	.037				
1.1	1		.010	.014	.018	021	.024	.027				
1.2	::::	1	.007	.010	.013	.015	.018	.019				
1.3	1		.004	.007	.010	.012	.013	.014				
	<u> </u>											

REDUCTION OF BAROMETER TO SEA LEVEL

METRIC UNITS

Correction to be added (in cm.)
(From Smithsonian Tables.)

		Observe	ь Неіснт	IN CENTI	METERS.	
Height above sea level in meters.	55	60	65	70	75	80
100 200 300 400 500 600 700 800 900 1000 1300 1400 1500 1600 1700 1800 1900 2000 2100 2200 2300 2400	0108 0118 0129 0140 0151 0162 0172 0183 0194 0204 0215 0226 0237 0248 0259			.0014 .0028 .0041 .0055 .0068 .0096 .0109 .0123 .0137 .0150 .0164 .0178 .0191	.0015 .0030 .0044 .0059 .0073 .0088 .0102 .0117 .0131 .0146	.0016 .0032 .0047 .0063 .0078

ENGLISH UNITS

		Овя	SERVED I	Неіснт	ін Інсні	ES.	
Height above sea level in feet.	20	22	24	26	28	30	32
500 1000 1500 2000 2500 3000 3500 4000 4500 5500				.078 .155 .233 .311 .389 .467 .545 .623 .701	.084 .167 .251 .335 .419 .503	.090 .179 .269 .359	.096
6000 6500 7000	.718 .777 .837	.789 .655 .721	.862 .934 1.005	`.	`,		1 1
7500	.897	.787	1.003				
8000	.957	.853					
8500 9000	1.016 1.076	.918 .984					
9500	1.136	1.050					r.

REDUCTION OF BAROMETER TO LATITUDE 45°

METRIC SCALE

For latitudes below 45° , subtract the correction; for latitudes greater than 45° it is to be added. Corrections in cm.

(From Smithsonian Meteorological Tables.)

.		Овяв	RVED HEIG	HT OF BA	ROMETER II	N CENTIME	rers.
Lati	tude.	68	70	72	74	76	78
25°	65°	0.116	0.120	0.123	0.127	0.130	0.133
26	64	.111	.115	.118	.121	.125	.128
27	63	.106	.110	.113	.116	119	122
28	62	. 101	.104	.107	.110	.113	.116
29	61	.096	.099	102	.104	. 107	.110
30	60	0.091	0.094	0.096	0.098	0.101	0.104
31	59	.085	.087	.090	.092	.095	.097
32	58	.079	.082	.084	.086	.089	.091
33	57	.074	.076	.078	.080	.082	.084
34	56	.068	.070	.072	.074	.076	.078
35	. 55	0.062	0.064	0.066	0.067	0.069	0.071
36	54	.056	.058	.059	.061	.063	.064
37	53	.050	.051	.053	.054	.056	.057
38	52	.044	.045	.046	.048	.049	.050
39	51	.038	.039	.040	.041	.042	.043
40	50	0.031	0.032	0.033	0.034	0.035	0.036
41	49	.025	.026	.027	.027	.028	.029
42	48	.019	.019	.020	.021	.021	.022
43	47	.013	.013	7.013	.014	014	.014
44	46	.006	.007	.007	.007	.007	. 007

ENGLISH SCALE Corrections in inches.

Lati	tude.	Observed Height in Inches.									
		25	26	27	28	29	30				
25°	65°	0.043	0.044	0.046	0.048	0.050	0.051				
26	64	.041	.043	.044	.046	.048	.049				
27	63	.039	.041	.042	.044	.045	.047				
28	62	.037	.039	.040	.042	.043	.045				
29	61	.035	.037	.038	.039	.041	.042				
30	60	0.033	0.035	0.036	0.037	0.039	0.040				
31	59	.031	.032	.034	.035	.036	.037				
32	58	.029	.030	.032	.033	.034	.035				
33	57	.027	.028	.029	.030	.031	.032				
34	56	.025	.026	.027	.028	. 029	.030				
35	55	0.023	0.024	0.025	0.025	0.026	0.027				
36	54	.021	.021	.022	.023	. C34	. 025				
37	53	.018	.019	.020	.021	.021	.022				
38	52	.016	.017	.017	.018	.019	.019				
39	51	.014	.014	.015	.015	.016	.017				
40	50	0.012	0.012	0.012	0.013	0.013	0.014				
41	49	.009	.010	.010	.010	.011	.011				
42	48	.007	.007	.008	.008	.008	.008				
43	47	.005	.005	.005	.005	.005	.006				
44	46	.002	.002	.003	.003	. 003	. 003				

RELATIVE HUMIDITY—DEW-POINT

The table gives the relative humidity of the air for temperature t and dewpoint d.

(From Smitheonian Meteorological Tables)

Depression		DE	w-point (d) .		
of dew-point t-d °C.	-10	0	+10	+20	+30
0.0	100%	100%	100%	100%	100%
0.0	98	99	99	99	99
0.4	97	97	97	98	98
0.4	95	96	96	96	97
0.8	94	94	95	95	96
1.0	92	93	94	94	94
1.2	91	92	92	93	93
1.4	90	90	91	92	92
1.6	88	89	90	91	91
1.8	87	88	89	90	90
2.0	86	- 87	88	88	89
2.2	84	85	86	87	88
2.4	83	84	85	86	87
2.6 2.8	82 80	83 82	84 83	85 84	86 85
3.0	79	81	82	83	84
3.2	78	80	81	82	83
3.4	77	79	80	81	82
3.6	76	77	79	80	82
3.8	75	76	78	79	81
4.0	73	75	77	78	80
4.2	72	74	76	77	79
4.4	71	73	75	77	78
4.6	70	72	74	76	77
4.8	69	71	73	75	76
5.0	68	70	72	74	75 75
5.2	67	69	71	73	74
5.4	66	68	70	72	
5.6	65	67	69	71 70	73 72
5.8	64	66	69		
6.0	63 62	66 65	68 67	70 69	71 71
$\begin{array}{c c} 6.2 \\ 6.4 \end{array}$	61	$\begin{array}{c} 64 \\ 64 \end{array}$	66	68	70
	60	63	65	67	69
6.6 6.8	60	62	64	66	68
7.0	59	61	63	66	68
7.2	58	- 60	63	65	67
7.4	57	60	62	64	66
7.6	56	59	61	63	65
7.8	55	58	60	63	65

451

RELATIVE HUMIDITY—DEW-POINT (Continued)

Depression		Dı	W-POINT (d)	•	
of dew-point t-d°C.	-10	0	+10	+20	+30
8.0	54	57	60	62	64
8.2	54	56	59	61	63
8.4	53	56	58	60	63
8.6	52	55	57	60	62
8.8	51	54	57	59	61
9.0	51	53	56	58	61
9.2	50	53	-55	58	60
9.4	49	52	-55	57	59
9.6	48	51	54	56	59
9.8	48	51	-53	56	59
10.0	47	50	53	55	57
10.5	45	48	51	54	
11.0	44	47	49	52	
11.5	42	45	48	51	
12.0	41	44	47	49	
12.5	39	42	45	48	
13.0	38	41	44	46	
13.5	37	40	43	45	
14.0	35	38	41	44	
14.5	34	37	40	43	
15.0	33	36	39	42	
15.5	32	35	38	40	
16.0	31	34	37	39	
16.5	30	33	36	38	
17.0	29	32	35	37	
17.5	28	31	34	36	
18.0	27	30	33	35	
18.5	26	29	32	34	
19.0	25	28	31	33	
19.5	24	27	30	33	
20.0 21.0 22.0 23.0 24.0	24 22 21 19 18	26 25 23 22 21	29 27 26 24 23	32	
25.0 26.0 27.0 28.0 29.0	17 16 15 14 13	19 18 17 16 15	22 21 20 19 - 18	5	
30.0	12	14	17		

REDUCTION OF PSYCHROMETRIC OBSERVATION

For the reduction of observations with the wet and dry bulb thermometer. Assuming the relative velocity of the air to the thermometer bulbs is at least three meters per second; if t is the temperature of the air as indicated by the dry bulb, t_w , the temperature of the wet bulb, B, the barometric pressure, and E_w , the vapor tension of water corresponding to t_w , then the actual vapor tension is

$$E = E_{en} - 0.00066B(t - t_{en})[1 + 0.00115(t - t_{en})].$$

The value of the term

$$0.00066B(t-t_w)[1+0.00115(t-t_w)]$$

is given in the following table.

(From Miller's Laboratory Physics, Ginn & Co., publishers, by permission.)

$t-t_w$		BARO	METRIC I	Pressure	B IN C	CENTIME	rers.	
• • • • • •	70.0	71.0	72.0	73.0	74.0	75.0	76.0	77.0
•	cm.	cm.	cm.	em.	cm.	em.	cm.	cm.
1	0.047	0.048	0.048	0.049	0.050	0.050	0.051	0.052
2	.093	.094	.096	.097	.098	.100	. 101	.103
2	.139	.141	.143	.145	.147	.149	.152	.154
1 2 3 4	.186	.189	. 191	.194	. 197	. 199	.202	.204
5	0.232	0.236	0.239	0.243	0.246	0.249	0.252	0.256
ĕ	.279	.283	.287	.291	. 295	.299	.303	.307
5 6 7 8	.326	.331	.336	.340	.345	.350	.354	.359
ġ	.373	.379	.384	.389	.395	.400	.405	.41
9	.421	.427	.432	.438	.444	.450	456	.462
10	0.468	0.474	0.481	0.488	0.494	0.501	0.508	0.51
îĭ	.515	.522	.530	. 537	.544	.551	. 559	. 56
12	.562	.570	.578	. 586	. 594	. 602	.611	.61
13	.610	.618	.627	.636	. 645	. 653	. 662	.67
14	.658	.667	.676	.686	. 695	.705	.714	.72
15	0.706	0.716	0.726	0.736	0.746	0.756	0.766	0.77
16	.754	.764	.775	.786	.796	.807	.818	.82
17	.802	.813	.824	.836	.847	.859	.870	.88
18	.850	.862	.874	.886	.898	.910	.922	.93
19	.898	.911	.923	.936	.949	.962	.975	.98
20	0.946	0.960	0.973	0.987	1.000	1.014	1.027	1.04

SOUND

VELOCITY OF SOUND

SOLIDS

Approximate values.
(From Smithsonian Tables.)

	, ,			·
		Veloc.,	Veloc.,	le .
Substance.	Temp.	meters	feet	Observer.
E a B B G G G G G G G G G G G G G G G G G	° C.	per sec.	per sec.	0.220202.
		Per see.		
Metals:				Í
Aluminum		5104	16740	Masson
Brass		3500	11480	Various
Cadmium		2307	7570	Masson
Cobalt		4724	15500	Masson
Copper	20	3560	11670	Wertheim
Copper	100	3290	10800	Wertheim
Copper	200	2950	9690	Wertheim
Gold, soft	20	1743	5717	Wertheim
Gold, hard		2100	6890	Various
Iron and soft steel		5000	16410	Various
Iron	20	5130	16820	Wertheim
Iron	100	5300	17390	Wertheim
Iron	200	4720	15480	Wertheim
Iron	- 20	4990	16360	Wertheim
Iron cast steel				
Iron cast steel	200	4790	15710	Wertheim
Lead	20	1227	4026	Wertheim
Magnesium		4602	15100	Melde
Nickel		4973	16320	Masson
Palladium		3150	10340	Various
Platinum	20	2690	8815	Wertheim
Platinum	100	2570	8437	Wertheim
Platinum	200	2460	8079	Wertheim
Silver	20	2610	8553	Wertheim
Silver	100	2640	8658	Wertheim
Tin		2500	8200	Various
Zinc		3700	12140	Various
Various:			I	
Brick		3652	11980	Chladni
Clay rock		3480	11420	Gray and Milne
Cork		500	1640	Stefan
Granite		3950	12960	Gray and Milne
Marble		3810	12500	Gray and Milne
Paraffin	15	1304	4280	Warburg
Slate		4510	14800	Gray and Milne
Tallow	16	390	1280	Warburg
Glass, from		5000	16410	Various
Glass, to		6000	19690	Various
Ivory		3013	9886	Ciccone & Campanile
Ivory Vulcanized rubber	0	54	177	Exner
_Wax	17	880	2890	Stefan
Woods:	1	000		
Ash, along the fiber		4670	15310	Wertheim
Ash saves the rines		1390	4570	Wertheim
Ash, across the rings Ash, along the rings	• • • • •	1260	4140	Wertheim
Booch along the rings		3340	10960	Wertheim
Beech, along the fiber		4120	13516	Wertheim
Elm, along the fiber		4640	15220	Wertheim
Fir, along the fiber		4110	13470	Wertheim
Maple, along the fiber	• • • • •			
Oak, along the fiber		3850	12620	Wertheim
Pine, along the fiber		3320	10900 14050	Wertheim Wertheim
Poplar, along the fiber	1	4280		
Sycamore, along fiber	::::	4460	14640	Wertheim

VELOCITY OF SOUND (Continued)

LIQUIDS AND GASES (From Smithsonian Tables.)

Substance.	Temp.	Veloc., meters per sec.	Veloc., feet per sec.	Observer.
Liquids:				
Alcohol, 95%	12.5	1241.	4072.	Dorsing, 1908
Alcohol		1213.	3890.	Dorsing, 1908
Ammonia, conc	16.	1663.	5456.	Dorsing, 1908
Benzine		1166.	3826.	Dorsing, 1908
Carbon bisulphide	15.	1161.	3809.	Dorsing, 1908
Chloroform	15.	983.	3225.	Dorsing, 1908
Ether	15.	1032.	3386.	Dorsing, 1908
Ether	15.	1470.	4823.	Dorsing, 1908
NaCl. 15% sol	15.	1530.	5020.	Dorsing, 1908
NaCl, 20% sol	15.	1650.	5414.	Dorsing, 1908
Turpentine oil	15.	1326.	4351.	Dorsing, 1908
Water, air-free		1441.	4728.	Dorsing, 1908
Water, air-free	19.	1461.	4794	Dorsing, 1908
Water, air-free	31.	1505.	4938.	Dorsing, 1908
Water, Lake Geneva	9.	1435.	4708.	Colladon-Sturm
Water, Seine River		1437.	4714.	Wertheim
Water, Seine River	30.	1528.	5013.	Wertheim
Water, Seine River		1724.	5657.	Wertheim
Gases:	00.	1724.	0001.	W el theim
Air, dry, CO ₂ -free	0.	331.78	1088.5	Rowland
Air, dry, CO2-Hee	١ ٧.	331.36		Violle, 1900
Air, dry,	0.	331.92	1089.0	Thiesen, 1908
Air 1 atmosphere		331.7	1088.	Mean
			1089.	Mean (Witkowski)
Air 25 atmospheres		332.0	1098.	Mean (Witkowski)
Air 50 atmospheres Air 100 atmospheres		334.7	1150.	Mean (Witkowski)
Air 100 atmospheres		350.6 344.	1129.	Mean (Witkowski)
Air	100.	386.	1266.	Stevens
Air		553.	1814.	Stevens
		700.	2297.	Stevens
Air		415.	1361.	Masson
Ammonia	0.	337.1	1106.	Wullner
Carbon dioxide	0.	258.0	846.	Bückendahl, 1906
Carbon disulphide	i ő:	189.	606.	Masson
Chlorine	. J %.	205.3	674.	Strecker
Ethylene	0.	314.	1030.	Dulong
Hydrogen	: ŏ:		4165.	Dulong
Hydrogen	, N.	1269.5 490.4	1609.	Zoch
Mothers	0.	432.	1417.	Masson
Methane Nitric oxide	: ŏ:	325.	1066.	Masson
Nitrous oxide	, N.		859.	Dulong
Oxygen	0.	261.8 317.2	1041.	Dulong
Vapors:	· · · ·	317.2	1041.	Luiong
Alcohol	1	230.6	756.	Masson
Ether	0.	179.2	588.	Masson
Water	١ ٧.		1315.	Masson
Water	100.	401. 404.8	1328.	Treitz, 1903
Water	130.	424.4	1392.	Treitz, 1903

MUSICAL SCALES

(From Miller's Laboratory Physics, Ginn & Co., publishers, by permission

VIBRATION FREQUENCY OF TONES IN THE MUSICAL SCALE FOR HIGHER OR LOWER OCTAVES ARE OBTAINED BY MULTIPLYING BY SOME POWER OF 2

	iatonic scale. =256.	Musi	cal equal-tempe A ₈ = 4	ered chroma 135.	atic scale.
$egin{array}{c} C_3 \\ D_3 \\ E_3 \\ F_3 \\ G_3 \\ A_3 \\ B_3 \\ C_4 \\ \end{array}$	256. 288. 320. 341.33 384. 426.66 480. 512.	C ₃ C# ₃ D ₃ D# ₅ E ₃ F ₃ F# ₅	258.65 274.03 290.33 307.59 325.88 345.26 365.79	G ₃ G# ₃ A ₃ A# ₃ B ₃ C ₄	387.54 410.58 435 . 460.87 488.27 517.30

ELECTRICITY AND MAGNETISM

SPARKING POTENTIAL OR DIELECTRIC STRENGTH

ATR

Potential in volts necessary to produce a spark in air at atmospheric pressure and ordinary temperatures, the potential required depends on the shape and size of the electrodes and increases with the pressure of the air.

(From Smithsonian Tables.)

	Delma electronia	Ball electrodes	s, 1 cm. diam.
Spark length, cm.	Point electrodes, steady potential.	Steady potential.	Alternating potential.
.02		1530	
.04		2430	
.06		3240	
.08		3990	3770
.10	3720	4560	4400
.2	4680	8490	7510
.3	5310	11340	10480
	5970	14340	13360
.4 .5	6300	17220	16140
.6	6840	20070	18700
.8	8070	24780	23820
1.0	8670	27810	28380
2.0	10140	45480	42950
3.0	11250	46710	12000
4.0	12210	49100	
5.0	13050	50310	
6.0	10000	00010	• ', '
8.0		52400	ere de la Section de la Section de la Section de la Section de la Section de la Section de la Section de la Se La companya de la Section de la Section de la Section de la Section de la Section de la Section de la Section
10.0	•••••	74300	
10.0		14900	

SPECIFIC INDUCTIVE CAPACITY

Solids

Atmospheric temperatures except where noted.

(From Smithsonian Tables.)

Substance.	Wave length.	Specific inductive capacity.	Observer.
Asphalt	80 .	2.68	v. Pirani, 1903
Caoutchouc	00		Gordon, 1879
Calcspar:			
⊥to axis	∞	8.49	Fallinger, 1902
to axis	∞ '	7.56	Fallinger, 1902
Diamond	. 00	16.5	v. Pirani, 1903
Ebonite	00		Winklemann, 1889
Glass flint, extra			1
heavy	∞	9.90	Hopkinson, 1891
hard crown	×	6.96	Hopkinson, 1891
lead (Powell)	×	5 4-8 0	Gray-Dobbie, 1898
Jena, barium	× ×	7 8-8 5	Löwe, 1898
Gutta percha	-	3 3-4 0	(submaring data)
Too 50 C	1200	9.5 4.9	(submarine-data) Thwing, 1894
Ice-5° C	5000	2 16	Abegg, 1897
1000	75	1 76_1 99	Behn-Kiebitz, 1904
-190°	75	1.70-1.00	Schmidt, 1903
Iodine, cryst	75	0.00	Schmidt 1002
Marble, Carrara		E 66 E 07	Schmidt, 1903
Mica	∞	5.00-5.97	Elsas, 1891
Mica, Canadian am-			TO 10721
ber	80		E. Wilson
Paraffin	4.7		Zietkowski, 1900
Phosphorus, yellow	75	3.60	Schmidt, 1903
Porcelain, hard			G. 1 100=
(Royal Berlin)	∞ .	5.73	Starke, 1897
Quartz:			F 11: 1000
ito axis	00		Fallinger, 1902
to axis	∞		Fallinger, 1902
Selenium	. 00		Vonwiller-Mason, 1907
Shellac	- 00		Winkelmann, 1889
Sulphur, amorphous	00		v. Pirani, 1903
Sulphur, cast, fresh	.œ	4.22	v. Pirani, 1903
Wood, dry:			
red beech	∞	4.83-2.51	
red beech	∞	7.73-3.63	
oak	∞	4.22-2.46	
oak	90	6.84 - 3.64	

SPECIFIC INDUCTIVE CAPACITY (Continued)

GASES

The specific inductive capacity of a vacuum is taken as unity. Wavelengths of the measuring current greater than 10,000 cm.

(Dielectric constant.)

Gas.	Temp. ° C.	Pressure in atmos- pheres.	Specific inductive capacity.	Observer.
Air	0	1	1.000590	Boltzmann, 1875
Air	19	20	1.0108	Tangl, 1907
Air		40	1.0218	Tangl, 1907
Air		60	1.0330	Tangl, 1907
Air		80	1.0439	Tangl, 1907
Air		100	1.0548	Tangl, 1907
Ammonia	20	1	1.00718	Bädeker, 1901
Carbon bisulphide	0	1	1.00290	Klemenčič
Carbon bisulphide	100	1	1.00239	Bädeker
Carbon dioxide	0	1	1.000985	Klemenčič
Carbon dioxide	15	10	1.008	Linde, 1895
Carbon dioxide		20	1.020	Linde, 1895
Carbon dioxide		40	1.060	Linde, 1895
Carbon monoxide	0	1	1.000690	Boltzmann
Ethylene	0	1	1.00131	Boltzmann
Hydrochloric acid	100	1	1.00258	Bädeker
Hydrogen	0	1	1.000264	Boltzmann
Methane	0	1	1.000944	Boltzmann
Nitrous oxide (N2O).	0	1	1.00116	Boltzmann
Nitrous oxide (N2O).	15	10	1.010	Linde, 1895
Nitrous oxide (N2O).		20	1.025	Linde, 1895
Nitrous oxide (N ₂ O).		40	1.070	Linde, 1895
Sulphur dioxide		1	1.00993	Bädeker
Sulphur dioxide	0	1	1.00905	Klemenčič
Water vapor	145	4	1.00705	Bädeker
		1	1	

Liquids

Where the wave-length is not specified it is greater than 10,000 cm.

Liquid.	Temp.	Wave length.	Specific induc- tive ca- pacity.	Observer.
Acetic acid	$ \begin{array}{r} 18 \\ 0 \\ -191 \end{array} $	8 8 8	9.7° 26.6 1.43	Francke, 1893 Abegg, 1897 v. Pirani, 1903
Alcohol: amyl amyl ethyl ethyl	$\begin{array}{c} 0\\ +20\\ \text{frozen}\\ -120 \end{array}$	8 8 8 8	17.4 16.0 2.7 54.6	Abegg-Seitz, 1899 Abegg-Seitz, 1899 Abegg-Seitz, 1899 Abegg-Seitz, 1899

SPECIFIC INDUCTIVE CAPACITY (Continued) LIQUIDS (Continued)

	LIQUI	DS (Cor	immaea)	
Liquid.	Temp.	Wave length.	Specific induc- tive ca- pacity.	01
Alcohol:		,		`
ethyl	-80	∞	44.3	Abore Soite 1900
ethyl	-40	80	35.3	Abegg-Seitz, 1899,
ethyl	0	80	28.4	Abegg-Seitz, 1899 Abegg-Seitz, 1899
ethyl	+20	80	25.8	Abegg-Seitz, 1899
ethyl	17	200	$\frac{25.8}{24.4}$	Drude, 1896
ethyl	17	75	23.0	Drude, 1896
ethyl	17	53	20.6	Marx, 1898
ethyl	17	4	8.8	Marx, 1898
ethyl	17	0.4	5.0	
methyl	ō	0.1	35.0	Lampa, 1896 Abegg-Seitz, 1899
methyl	+20	80	31.2	Abegg-Seitz, 1899
propyl	1 720	∞ ∞	24.8	Abegg-Seitz, 1899
propyl	+20	× ×	22.2	
Ammonia	-34	75	21-23	Abegg-Seitz, 1899 Goodwin-Thomp-
Ammonia	-04	1 '0	21-23	
Amyl acetate	19	∞ .	4.81	son, 1899 Löwe, 1898
Anilin	18	∞	7 916	Turner, 1900
Benzol (Benzene)	18	∞	0.000	Turner, 1900
Bromine	23	84	3.18	Schlundt
Carbon bisulphide.	20	∞ ∞		Tangl, 1903
Carbon dioxide	-5	- ∞	1.60	Linde, 1895
Chlorine	-60	- 80	2.15	Linde, 1895
Chloroform	18	∞ ∞	$\frac{2.13}{5.2}$	
Ethyl ether	0	∞ ∞	4.68	Turner, 1900
Ethyl ether	20	∞ ∞	4.30	Abegg, 1897 Tangl, 1903
Glycerine	15	1200	56.2	Thwing, 1894
Hydrogen peroxide	10	1200	30.2	111WIIIg, 1094
46% in H ₂ O	18	75	84.7	Calvert, 1900
Hydrogen sulphide.	10	8	5.93	Eversheim, 1904
Nitrous oxide, N ₂ O.	-88	× ×	1.93	Hasenhörl, 1900
Oils:	-66	~	1.50	masennon, 1900
castor	11	∞	4.67	Arons-Rubens, 1892
cottonseed	14	00	3.10	Salvioni, 1888
linseed	13	80	3.35	Salvioni, 1888
olive	20	00	3.11	Heinke, 1896
petroleum		2000	2.13	Marx
sperm	20	2000	3.17	Hopkinson, 1881
turpentine	20	00	2.23	Hopkinson, 1881
Oxygen	-182	∞	1.49	Fleming-Dewar,
70.			امما	1896
Phenol	48	73	9.68	Drude, 1896
Sulphur dioxide	20	∞ .	14.0	Eversheim, 1904
Water	18	∞	81.07	Turner, 1900

SPARKING POTENTIAL OR DIELECTRIC STRENGTH

VARIOUS INSULATORS.

Potential to puncture in kilovolts per centimeter. 1 kilovolt = 1000 volts.

Substance.	Thickness used mm.	Kilovolts per cm.
Air, liquid. Ebonite Fiber Glass Guttapercha Kerosene Linen, varnished Mica.	1.0 0.1 1.0	40-90 300-1100 20 300-1500 80-200 164 100-200 1500-2200 300-700
Oils: castor. castor. cottonseed. lard. linseed, raw. raw. boiled. lubricating. olive. paraffin paraffin sperm, mineral mineral natural. natural.	0.2 1.0 0.2 1.0 0.2 1.0 0.2 1.0 0.2 1.0 0.2 1.0 0.2	190 130 70 140 40 185 90 190 80 50 170 75 215 160 180 85
turpentine turpentine Papers:	$\begin{array}{c} 0.2 \\ 1.0 \end{array}$	160 110
beeswaxed. blotting Manilla paraffined varnished.		770 150 25 500 100–250
Paraffin: melted solid, melt. point 43°. solid, melt. point 70°. Rubber Vaseline. Xylol	0.2	75 350 450 160–500 90–130 140 80

ELECTROMOTIVE FORCE AND COMPOSITION OF VOLTAIC CELLS

STANDARD CELLS (From Smithsonian Tables.)

Name of cell.	Negative pole.	Solution.	Positive pole.	Depolarizer.	E.M.F. in volts.
		Saturated solution of CdSO ₄ Saturated solution of ZnSO ₄	Mercury Mercury	Paste of Hg ₂ SO ₄ and CdSO ₄ Paste of Hg ₂ SO ₄ and ZnSO ₄ .	1.0183 at 20° C. 1.4328 at 15° C.

Temperature equations:

Clark cell:

 $E_t = 1.4328[1 - 0.00119(t - 15) - 0.000007(t - 15)^2]$ volt

Weston cell:

 $E_t = 1.0183[1 - 0.0000406(t - 20) - 0.00000095(t - 20)^2 + 0.00000001(t - 20)^3]$ volt

DOUBLE FLUID CELLS

Name of cell.	Negative pole.	Solution.	Positive pole.	Solution.	E.M.F. in volts.
	Amal. zinc		Carbon	Fuming nitric acid	1.94
	Amal. zinc	12 parts K ₂ Cr ₂ O ₇ to 25			1.86
Bichromate	Amal. zinc	parts H ₂ SO ₄ and 100 parts H ₂ O. 1 part H ₂ SO ₄ to 12 parts H ₂ O	Carbon	1 part H ₂ SO ₄ to 12 parts H ₂ O 12 parts K ₂ Cr ₂ O ₇ to 100	2.00
Daniell	Amal. zinc	1 part H ₂ SO ₄ to 4 parts H ₂ O	Copper	parts H ₂ O Saturated solution of	2.03
Daniell	Amal. zinc	5% solution of ZnSO ₄ +6H ₂ O,	Copper	CuSO ₄ +5H ₂ O Saturated solution of	1.06
		1 part NaCl to 4 parts H ₂ O		CuSO ₄ +5H ₂ O Saturated solution of	1.08
		1 part H ₂ SO ₄ to 12 parts H ₂ O		CuSO ₄ +5H ₂ O Fuming nitric acid	1.05 1.93
Grove	Amal. zinc	Solution of ZnSO ₄		HNOs density 1.33	1.66

*

ELECTROMOTIVE FORCE AND COMPOSITION OF VOLTAIC CELLS (Continued)

DOUBLE FLUID CELLS (Continued)

Name of cell.	Negative pole.	Solution.	n, density 1.136 Platinum . HNOs density 1.33 n, density 1.14 Platinum . HNOs density 1.19		E.M.F. in volts.	
Grove	Amal. zincAmal. zincAmal. zinc	H ₂ SO ₄ solution, density 1.14]	1.79 1.66 1.88
•		Single Fluid Cells				
Name of cell.	Negative pole.	Solution.		Positive pole.		E.M.F.
Leclanché Amal. zinc Edison-Lalande Amal. zinc Chloride of silver Zinc		Solution of caustic potash	Coppe	n, depolarizer: mangan- eroxide with powd. carbon r, depolarizer, CuO depolarizer: silver ide		1.46 0.70 1.02
		STORAGE CELLS				
Name of cell.	Negative pole.	Solution.		Positive pole.		E.M.F.
Lead accumulator. Regnier (1) Regnier (2) Main Edison	Copper	CuSO ₄ + H ₂ SO ₄	PbO ₂ PbO ₂ i PbO ₂ .	n H ₂ SO ₄ el oxide	$\begin{array}{c} 2.3 \\ 2.5 \\ 1.1 \end{array}$	6 to 0.85, erage, 1.3 6

CONTACT DIFFERENCE OF POTENTIAL

METALS

The values in the table give the potential in volts of the metal at the top of the column with respect to the metal named at the left.

(Tabulated from results by Pellat, 1881.)

	Anti- mony.	Bis- muth.	Brass.	Cop- per.	Gold.	Iron.
Antimony Bismuth Brass Copper Gold Iron Lead Nickel Platinum Silver Tin. Zine Carbon* Mercury	+.08 +.06 +.30 +.48 +.15 26 +.06 +.46 +.50 16 41	08 0 +.07 +.22 +.40 +.07 34 02 +.39 +.42 24 49	06 07 0 15 +.33 0 41 09 +.32 +.35 31 56 +.41	30 22 +.15 0 +.18 15 56 24 +.17 +.20 71 +.37 +.37	48 40 33 18 0 33 74 42 01 +.02 64 89	15 07 0 +.15 +.33 0 41 09 +.32 +.35 31 56 +.48 +.50

t land	Lead.	Nickel.	Plati- num.	Silver.	Tin.	Zinc.	Car- bon,
AntimonyBismuth	+.34	06 +.02	46 39	42	+.16 +.24	+.49	
Brass	$\begin{array}{c c} +.41 \\ +.56 \\ +.74 \end{array}$	$+.09 \\ +.24 \\ +.42$	32 17 $+.01$	35 20 02	$+.31 \\ +.46 \\ +.64$	$+.56 \\ +.71 \\ +.89$	41 37
IronLeadNickel	$+.41 \\ 0 \\ +.32$	+.09 32	- 32 - 73 - 41	35 76 44	+.31 10 +.22	+.56	48 85
Platinum	+.73 +.76	$+.41 \\ +.44$	+.03	03	+.63 +.66	+.88 +.91	11
TinZincCarbon*	+.85	22 47	63 88 +.11	66 91	$\begin{array}{c} 0 \\25 \\ +.79 \end{array}$		79 -1.10
Mercury	<u> </u>		+.16				+.09

^{*} Ayrton and Perry.

DIFFERENCE OF POTENTIAL BETWEEN METALS IN SOLUTIONS OF SALTS

The table gives the difference in potential in hundredths of a volt between zinc in a normal solution of sulphuric acid and the metal named at the head of the columns in the solution named at the side. The signs given refer to the external difference of potential.

(Magnanini.)

	(Magi	iamim.)					
	Difference of potential in centivolts.						
Strength of the solution in gramme molecules per liter.	Zine.	Cad- mium.	Lead.	Tin.	Cop- per.	Silver.	
0.5 Sulphuric acid	0.0 -32.1 -42.5 1.4 11.8 11.5 72.8 1510. 2.9	36.6 19.5 15.5 35.6 31.9 32.3 61.1 34.7 39.9 32.4 31.9	51.3 31.8 32.0 50.8 42.6 51.0 78.4 51.0 53.8 51.3 51.2 51.6	51.3 0.2 -1.2 51.4 31.1 40.9 68.1 40.9 57.7 50.9 50.3 52:6	100.7 80.2 77.0 101.3 81.2 95.7 123.6 95.7 105.3 81.2 80.9	121.3 95.8 104.0 120.9 105.7 114.8 132.4 114.8 120.9 101.7 101.3	

SPECIFIC RESISTANCE AND TEMPERATURE COEFFICIENT

FOR METALS

Resistance in ohms of unit length and unit cross-section at 0° C.

Metal.	Specific resistance.	Variation of resistance per ohm per dgeree C., at 20° C.
Aluminum	2.6-3.0×10-6	.0039
Antimony		.0039
Arsenic		.0042
Bismuth	. 108.0	.0045
Brass	. 8.5	.0040
Cadmium	6.2-7.0	.0042
Cobalt	9.8	. 0033
Constantin		0000 1
Copper, annealed	1.55-1.63	
hard drawn	1.61-1.68	
pure	. 1.54	.0041
Gas carbon	. 5000.	0005
German silver		.00036
Gold	2.04-2.09	.0037
Iron, commercial	9.7-12.0	.0055
cast hard		
Lead		.0042
Magnesium	4.1-5.0	.0039
Manganin		.00003
Mercury	. 94.	.0009
Nickel		.0060
Platinum	9.0-15.5	.0038
Platinum iridium		.0012
Silver	1.5-1.7	.0040
Steel, hard		.0016
soft		0042
Tantalum		.0027
$\underline{\mathbf{T}}$ in		.0043
Tungsten		.0039
Zinc	5.56-6.04	.0040

RESISTANCE OF ELECTROLYTES

Resistance of aqueous solutions of various salts and acids in ohms per centimeter cube for a temperature of 18° C.

(From observations by Kohlrausch.)

Salt.	Number of grams of salt in 100 grams solution.							
Bait.	5	10	15	20	25	30	40	. 50
Acetic acid		5.63		622.5 2.97		714.	925.	1351.
Copper nitrate	52 9	15.7 31.2	11.7 23.7	9.82				
Hydrochloric acid Potassium iodide Silver nitrate	29.5	1.59 14.7 21.0	1.34	6.88		4.34	3.16	
Sodium carbonate	22.2	14.2	12.0				6.39	5.39
hydroxide Sulphuric acid	5.08 4.79	3.20 2.55	2 89 1.84	3.06 1.53	3.68 1.39	4.95		1.85
Zinc chloridesulphate	20.70	13.75 31.2	24.1	10.96 21.4	20.8	10.80 22.5	11.83	15.87
(Concentration) Nitric acid	6.2 3.2	12 4 1.84	18.6 1.45	24.8 1.30	31. 1,28	37.2 1.32	43.4 1.43	
(Concentration) Potassium hydroxide	8.4 3.67	12.6 2.66	16.8 2.19	21. 1.96	25.2 1.85	29.4 1.84	33.6 1.91	

SAFE CARRYING CAPACITY OF COPPER WIRE (From Collins' Design and Construction of Induction Coils, by permission.)

Brown & Sharpe gauge.	Diameter in mils.	Area in circular mils.	Number of amperes, exposed work.	Number of amperes, confined spaces.
18	40	1.624	5	3
17	45	2.048	6	
16	51	2.583	8	6
15	57	3.257	10	6 8
14	64	4.106	$\overline{16}$	12
13	72	5.178	19	14
12	81	6.530	$\overline{23}$	17
11	91	8.234	· 27	$\bar{2i}$
10	102	10.380	32	25
9	114	13.090	39	29
8	128	16.510	46	33
• 7	144	20.820	56	39
6 5 4 3 2 1	162	26.250	65	45
5	182	33.100	77	53
4	204	41.740	92	63
3	229	52.630	110	• 75
2	258	66.370	131	88
	289	83.690	156	105
0	325	105.500	185	125
00	365	133.100	220	150

CONDUCTIVITY OF STANDARD SOLUTIONS

Giving the conductivity in reciprocal ohms (mho) per cm. for NaCl, KCl, H₂SO₄ and MgSO₄ for various temperatures. Solutions are as follows:—H₂SO₄,—maximum conductivity (18° C.); dissolve 378 g. of 97% acid in pure water and dilute to 1 liter. Density at 18° C., 1,23. MgSO₄,—maximum conductivity (18° C.); dissolve in 1 liter of distilled water 552 g. of MgSO₄7H₂O. Density at 18° C., 1,190.
NaCl,—solution saturated at all temperatures given. An excess of NaCl in distilled water, about 450 g. per liter. D = 1,2014 (18° C.).
KCl,—normal solution, 74.59 grams per liter of solution at 18° C. Dissolve 74.555 grams (weighed in air) of KCl and dilute to 1 liter. Density, 1.04492.

Solution.	Solution.		0° C.			5°			10°			15°
H ₂ SO ₄	0.1345 0.06541 al 0.00715		0.7952 0.03402 0.1555 0.07414 0.00822 0.000896			0.6408 0.03963 0.1779 0.08319 0.00933 0.001020		0.7028 0.04555 0.2014 0.09252 0.01048 0.00114				
	10	3°		17	•		18	•		19° *	_	20°
H ₂ SO ₄	0.71 0.04 0.20 0.09 0.01 0.00	$676 \\ 62 \\ 441$	0. 0. 0.	727 047 211 096 010	99 1 31 95	0. 0. 0.	739 049 216 098 011	922 80 822 119	0. 0. 0.	7522 05046 2209 10014 01143 00125	0. 0. 0.	7645 05171 2259 10207 01167 001278
	2	1°		22	•		23	•		24°		25°
H ₂ SO ₄	0.77 0.05 0.23 0.10 0.01	297 309 400	0. 0. 0.	789 054 236 105 012	124 30 594 215	0. 0. 0.	801 055 241 107 012	551 11 789 239	0. 0. 0.	8135 05679 2462 10984 01264 00138	0.0	8257 05808 2513 11180 01288 001413
	2	 6°	-	27	•	-	28	3°	-	29°	=	30°
H ₂ SO ₄	0.0	5937	0000	. 849 . 060 . 26 . 11 . 01	067 16 574	000		197	0.0	. 8740 . 06328 . 2721 	000	. 8860 . 06459 . 2774

EQUIVALENT CONDUCTIVITY OF AQUEOUS SOLUTIONS

The conductivity is given in reciprocal ohms per centimeter cube. Concentration is given in milli-equivalents of solute per liter of solution. Corrected for conductance of water except in case of the strong acids.

			
	Concentra-		
* 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	tion		
Substance.	milli-	18° C.	100° C.
	equivalents per liter.		
	per nter.		
A42	0	9.47	770
Acetic acid	0.	347.	773.
	10.	14.50	25.1
	30.	8.50	14.7
	80.	5.22	9.05
	100.	4.67	8.10
*Ammonium acetate	0.	99.8	338.
	10.	91.7	300.
	25.	88.2	286.
*Ammonium chloride	0.	131.1	415.
	ž .	126.5	399.
45	10.	122.5	382.
	30.	118.1	302.
Ammonium hydroxide	0.	238.	647.
Ammonium nydroxide	10.	9.66	
			23.2
	30.	5.66	13.6
D	100.	3.10	7.47
Barium ferrocyanide	0.	91.	521.
	2.	46.9	202.3
	12.5	30.4	129.8
Barium hydroxide	0.	222.	645.
, · ·	2.	215.	591.
The state of the s	10.	207.	548.
4	50.	191.1	478.
	100.	180.1	443.
Barium nitrate	0.	116.9	385.
	2.	109.7	352.
	10.	101.	322.
	40.	88.7	280.
	80.	81.6	258.
	100.		
Calcium ferrocyanide		79.1	249.
Carcium ferrocyanide	0.	88.	512.
	100.	21.9	84.3
	200.	20.6	77.5
Calairan in it	400.	202.	76.2
Calcium nitrate	0.	70.4	369.
	2.	66.5	346.5
	50.	55.6	276.8
	100.	51.9	255.5
•	200.	48.3	234.4

^{*} Values have been corrected for hydrolysis.

EQUIVALENT CONDUCTIVITY OF AQUEOUS SOLUTIONS (Continued)

	10 .	1	T-
	Concentra- tion		
Substance.	milli-	18° C.	100° C.
	equivalents	1	
	per liter.		
Hydrochloric acid	0,	379.	850.
	2.	373.6	826.
	10.	368.1	807.
	80.	353.	762.
	100.	350.6	754.
Lanthanum nitrate	0.	75.4	413.
	2.	68.9	363.5
	12.5	61.4	311.2
	50.	54.	261.4
	100.	49.9	236.7
	200.	46.	210.8
Magnesium sulphate	200.	114.1	426.
magnesium surphate	2.	94.3	302.
	10.	76.1	234.
	20.	67.5	190.
	40.	59.3	160.
	80.	52.	136.
	100.	49.8	130.
TATEL 1	200.	43.1	1d0.
Nitric acid	0.	377.	826.
	2.	371.2	806.
· · ·	10.	365.	786.
	50.	353.7	750.
701	100.	346.4	728.
Phosphoric acid	0.	338.3	730.
	2.	283.1	498.
	10.	-203.	308.
	50.	122.7	168.
	100.	95.7	128.
Potassium chloride	0.	130.1	414.
	2.	126.3	393.
	10.	122.4	377.
	80.	113.5	342.
	100.	112.	336.
Potassium citrate	0.	76.4	420.
	2.	71.	381.2
$T = \frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \right)$	$\frac{1}{5}$.	67.6	357.2
	50.	54.4	273.
And the second of the second o	100.	50.2	247.5
	300.	43.5	209.5
Potassium nitrate	0.	80.8	384.
	3.	78.6	370.3
	12.5	75.3	351.5
		10.0	001.0

EQUIVALENT CONDUCTIVITY OF AQUEOUS SOLUTIONS (Continued)

	(Continued)	,	
Substance.	Concentra- tion milli- equivalents per liter.	18° C.	100° C.
Potassium nitrate	50.	70.7	326.1
Determine forms arrapide	100.	67.2	308.5
Potassium ferrocyanide	$\begin{bmatrix} 0. \\ 2. \end{bmatrix}$	98.4	527. 427.6
	50.	84.8 58.2	272.4
	100.	53.	245.
	206.	48.8	222.3
	400.	45.4	203.1
Potassium oxalate	0.	79.4	419.
	$\mathbf{\hat{z}}$.	74.9	389.3
*	50.	63.	312.2
	100.	59.3	288.9
	200.	55.8	265.1
Potassium sulphate	0.	132.8	455.
•	2.	124.8	402.
	10.	115.7	365.
	40 .	104.2	320.
	80.	97.2	294.
	100	95.	286.
Silver nitrate	0.	115.8	3 67.
	2.	112.2	353.
	10.	108.	337.
	20.	105.1	326.
	40.	101.3	312.
	80.	96.5	294.
Cadi	100.	94.6	289.
Sodium acetate	$egin{array}{c} 0. \ 2. \end{array}$	78.1	285.
•	10.	74.5	268. 253.
	80.	$\begin{array}{c} 71.2 \\ 63.4 \end{array}$	203. 221.
Sodium chloride	0.	109.	362.
Soutum emoriae	$\overset{0}{2}$.	105.6	349.
	10.	102.	336.
•	80.	93.5	301.
	100.	92.0	296.
Sodium hydroxide	0.	216.5	594.
coulding arounds	$\tilde{2}$.	212.1	582.
	20.	205.8	559.
	50.	200.6	540.
Sulphuric acid	0.	383.	891.
•	2.	353.9	571.
	10.	309.	446.
4	50 .	253.5	384.
Secretary of the second	100.	233.3	369.

THE EQUIVALENT CONDUCTANCE OF THE SEPARATE IONS

(From Smithsonian Physical Tables.)

Ion.	0°	18°	25°	50°	75°	100°	i28°	156°
K	40. 4 26. 40. 2 32. 9 33. 30. 35.	64.6 43.5 64.5 54.3 55 51 61.	$50.9 \\ 74.5$	115 82 115 101 104 98 119	159 116 159 143 149 142 173	206 155 207 188 200 191 235	263 203 264 245 262 252 312	317 249 319 299 322 312 388
$\begin{array}{c} \mathrm{Cl}\mathrm{NO_3}\mathrm{C_2H_3O_2} \end{array}$	41.1 40.4 20.3	65.5 61.7 34.6	75.5 70.6 40.8	116 104 67	160 140 96	207 178 130	264 222 171	318 263 211
$\frac{1}{2}SO_4$ $\frac{1}{2}C_2O_4$ $\frac{1}{3}C_6H_5O_7$	39. 36.	68 63 60.	79. 73. 70.	125 115 113	163 161	234 213 214	303 275	370
#Fe(CN)6 HOH	58. 240. 105.	95. 314. 172.	350. 192.	173 465 284	565 360	321 644 439	722 525	777 592

RESISTANCE OF VARIOUS SUBSTANCES

Solids

Resistance in ohms per centimeter cube.

		
Substance.	Temp. ° C.	Resistance, ohms.
Celluloid	16	2-80×10°
Ebonite		$2-30\times10^{15}$
Fiber	1	2-10×107
Glass		9×10 ¹³
Ice	-1	5×109
Mica		5-10×10 ¹³
Paper variable with dryness		$1-1000\times10^{9}$
Paraffin		$3-300\times10^{16}$
Paraffin paper		1-20×10 ¹⁶
Porcelain	50	2×10^{15}
enameled	210	6×109
porous	20	2×106
Quartz crystal	20	1×10^{14}
fused	101	4×10^{11}
Rock salt	20	9×10^{16}
Slate	1	$2-4\times10^{8}$
Sulphur, prismatic		70-390×10 ¹³
octahedral		(resistance too high
		for measurement.)
Varnish	16	2×10^{12}
Wood dry		.5-10×10 ⁸
green		5-10×103
Zirconium oxide	1200	1.2×10^{3}

Liquids

Resistance in ohms per centimeter cube.

Substance.	Temp. ° C.	Resistance, ohms.
Alcohol, ethyl		3×10 ⁶
Oils, olive		1.5×10^{12}
Petroleum		$\begin{array}{c} 1 \times 10^{16} \\ 2 \times 10^{16} \\ 0.5 \times 10^{6} \end{array}$

FUSED SALTS (Poincaré.)

Substance.	Temp. ° C.	Resistance, ohms.
Calcium chloride	750 355	.862 .714 2.20
Silver nitrateSodium chloride fused	350 750	.820 .294

THERMOELECTRIC POWER

The table gives the electromotive force in microvolts per degree difference in temperature between the two junctions, for various metals with lead. The temperature given is the mean temperature of the two junctions. A is the thermo-electric power at 0 $^{\circ}$ C. and B the coefficient in the equation for the thermoelectric power at any temperature,

$$Q = A + Bt$$

where t is the mean temperature of the two junctions. The thermoelectric power of any two metals in the table may be found by subtracting the value for the first from that of the second, a positive difference indicating that the current will flow from the cold to the hot junction in the second

The sign of the values given is so chosen that if A is positive the current flows in the metal listed from the cold to the hot junction.

is positive Q increases with the temperature.

(Principally from the Smithsonian Physical Tables.)

Metal.	A micro- volts.	B micro- volts per ° C.	Temp. ° C.	Thermo- electric power, micro- volts.	Neu- tral point.
Aluminum ¹	0.76	-0.0039	20	0.68	195
Antimony comm'lpressed wire ² pure ⁸ Argentan ¹ Arsenic ² Bismuth comm'lpress-	11.94	-0.018 0.0506	20 -100-+100 20 20	-6.0 -1.49 12.95 13.56	- 236
ed wire ² pure pressed wire ² commercial ⁴ Brass ⁵		-0.0026	20 20 50 0.260	97.0 89.0 39.9 -0.65	
Cadmium ¹	- 2.63	-0.0424	20 20 50	$ \begin{array}{r} -3.48 \\ 22. \\ +19.3 \end{array} $	- 62
Copper ¹	1.34	-0.0094 +0.019	20 20 -100=+100	$ \begin{array}{r} -1.52 \\ -0.10 \\ +10.7 \end{array} $	- 143
Gold ¹	-2.80 -17.15	$-0.0101 \\ 0.0482$		-3.0 -16.2 -17.5	- 277 356
pianoforte wire ² Magnesium ¹ Manganin ⁸	- 2.22	0.0094 0.003	20 -100-+100	-2.03 1.12	236
Mercury ²	6.18	0.0355 +0.011	20 50 20 0-200	0.413 15.50 6.9 +3.04	- 174
Platinum-iridium alloys: 85%Pt +15%Irt 90%Pt +10%Irt	- 7.90 - 5.90			-8.03 -5.63 -807.	-1274 444
Selenium ²	- 2.12	0.0147	20 20	$ \begin{array}{r} -807. \\ -2.41 \\ -3.00 \\ -10.62 \end{array} $	- 144 347
Steel ¹ Tellurium ² Tin, commercial ⁴			20 50	-502. -0.33	
Tin ¹ Zinc ¹				-2.79	- 98

OBSERVERS: ¹Tait. ² Matthiesen. ³ Dewar & Fleming, 1895. ⁴ Ed. Becquerel. ⁵ Steinmann. ⁶ Noll, 1894.

MAGNETIC CONSTANTS OF IRON

Permeability of Transformer Iron

Giving M, the total magneto motive force applied. M/l, the magneto motive force per unit length of iron circuit. B the total induction, B/a the induction per unit cross-section of iron, M/B, the magnetic reluctance of the iron circuit and Bl/Ma, the permeability; showing the typical relations of the magnetic constants for varying field.

(From Smithsonian Tables.)

М.	M/l.	В.	B/a.	Reluctance $M/B = K$.	Permeability Bl/Ma = \mu.
20	0.597	218 ×10 ³ 587 878 1091 1219 1330 1405 1475 1532 1581 1618 1692	1406	0.917×10-4	2360
40	1.194		3790	0.681	3120
60	1.791		5660	0.683	3180
80	2.338		7040	0.734	2960
100	2.985		7860	0.819	2640
120	3.582		8580	0.903	2410
140	4.179		9060	0.994	2186
160	4.776		9510	1.090	2000
180	5.373		9880	1.180	1850
200	5.970		10200	1.270	1720
220	6.567		10430	1.360	1590
260	7.761		10910	1.540	1410

MAGNETIC PROPERTIES OF IRON AND STEEL

(From Gumlich, 1909.)

Sample.	Coer- cive force.	Residual <i>B</i> .	Maximum permea- bility.	B for H = 150.	4πI for saturation.
Electrolytic iron. The same annealed. Cast steel. The same annealed. Steel hardened. Cast iron. The same annealed. Electrical iron in sheets annealed.	2.83	11400	1850	19200	21620
	0.36	10800	14400	18900	21630
	1.51	10600	3550	18800	21420
	0.37	11000	14890	19100	21420
	52.4	7500	110	11700	18000
	11.4	5100	240	10400	16400
	4.6	5350	600	11000	16800

SATURATION CONSTANTS FOR MAGNETIC SUBSTANCES

Substance.	Field in- tensity. (For sat	Induced magnet- ization. uration.)		Field in- tensity. (For sat	Induced magnet- ization, uration.)
Cobalt	9000 2000 4000 7000	1300 1700 1200 200	Nickel, hard annealed Vicker's steel	7000	400 515 1600

MAGNETIC SUSCEPTIBILITY OF VARIOUS SUBSTANCES

METALS

Magnetic susceptibility or the ratio of the magnetic moment per unit volume to the magnetizing field is given for various substances. The value is negative for diamagnetic bodies, positive for paramagnetic bodies.

(C. G. S. Electromagnetic units.)

Substance.	Temp.	Susceptibility (vacuum =0).	Observer.
Aluminum Antimony Bismuth. Copper Gold. Lead Mercury Platinum Selenium Silver Tellurium Zine Iron annealed Nickel Steel tempered	15	-1.8×10 ⁻⁴ -4.6 -13.3 -1.33 -4.5 -1.21 -2.1 +29.0 -1.54 -1.8 -1.94 -1.16 +37.4×10¹ +4.×10¹ +3.4×10¹	Curie, 1895 Curie, 1895 Becquerel, 1855 Hanriot & Raoult, 1911 Becquerel St. Mayer J. Königsberger, 1898 Curie, 1895 Becquerel, 1855 Curie, 1895 Owen, 1912 For weak fields For H = 100 C. G. S. For weak fields

INORGANIC COMPOUNDS

Substance.	Temp.	Susceptibility (vacuum =0).	Observer.
Boric acid Cobalt sulphate (7H ₂ O). Copper sulphate (5H ₂ O) Ferric chloride. Ferrous sulphate (7H ₂ O). Glass. Nickel sulphate (7H ₂ O) Potassium bichromate. Potassium chloride. Potassium ferrocyanide Quartz. Sodium chloride.	18	-0.88×10 ⁻⁴ +76.3 +13.4 +287 +95.3 -0.15 +37. +0.36 -1.09 +16.0 -1.20 -1.02	Meslin, 1906 Meslin, 1906 Meslin, 1906 Mile. Feytis, 1911 Meslin, 1906 Meslin, 1906 Faraday, 1853 Meslin, 1906 Curie, 1895 Meslin, 1906 J. Königsberger Meslin, 1906

LIQUIDS

Substance.	Temp.	Susceptibility (vacuum =0).	Observer.
Acetic acid. Alcohol, ethyl. Benzene. Chloroform Ether. Glycerine. Sulphuric acid. Water.		-0.61 -0.65 -0.69 -0.86 -0.61 -0.81 -0.77 -0.72	Meslin, 1906 Meslin, 1906 Meslin, 1906 Meslin, 1906 Meslin, 1906 Meslin, 1906 Quincke, 1885 Piccard, 1912

VARIATION OF RESISTANCE DUE TO A MAGNETIC FIELD

Візмитн

The table shows the proportional values of the resistance for values of the magnetic field from 0 to 35,000 and for different temperatures. The resistance at 0° C. and H=0 is taken as 1.

Proportional values of resistance.

(From Smithsonian Tables.)

H. Gauss.	-192°	-135°	-100°	-37°	0°	+18°	+60°	+100°	+183°
20000	0.40 1.16 2.32 4.00 5.90 8.60 10.8 12.9 15.2 17.5 19.8	0.60 0.87 1.35 2.06 2.88 3.80 4.76 5.82 6.95 8.15 9.50	0.70 0.86 1.20 1.60 2.00 2.43 2.93 3.50 4.11 4.76 5.40	0.88 0.96 1.10 1.29 1.50 1.72 1.94 2.16 2.38 2.60 2.81	1.00 1.08 1.18 1.30 1.43 1.57 1.71 1.87 2.02 2.18 2.33	1.08 1.11 1.21 1.32 1.42 1.54 1.67 1.80 1.93 2.06 2.20	1.25 1.26 1.31 1.39 1.46 1.54 1.62 1.70 1.79 1.88 1.97	1.42 1.43 1.46 1.51 1.57 1.62 1.67 1.73 1.80 1.87 1.95	1.79 1.80 1.82 1.85 1.87 1.89 1.92 1.94 1.96 1.99 2.03
	$25.5 \\ 30.7 \\ 35.5$	$13.3 \\ 18.2 \\ 20.35$	$\begin{bmatrix} 7.30 \\ 9.8 \\ 12.2 \end{bmatrix}$	3.50 4.20 4.95	2.73 3.17 3.62	2.52 2.86 3.25	2.22 2.46 2.69	2.10 2.28 2.45	2.09 2.17 2.25

VARIOUS METALS

The table gives the per cent. change in the resistance due to a field of 10,000 gauss with respect to the value at 0° C. and H=0.

(Grumach.)

Metal.	Per cent. change.	Metal	Per cent. change.
Cadmium Cobalt Copper Gold Lead Nickel	-0.53 +0.004	Palladium Platinum Silver Tantalum Tin Zine	$+0.0005 \\ +0.004 \\ +0.0003 \\ +0.002$

INTERNAL RESISTANCE OF VARIOUS VOLTAIC CELLS

The internal resistance is subject to large variations; the values given can be considered only approximate.

Cell.	Resistance, ohms.	Cell.	Resistance, ohms.
Edison-Lalande	$egin{array}{c} 0.85 \ 1-5 \ 4. \ 0.2-1.0 \end{array}$	Grove	0.08-0.40

HALL EFFECT

If a strip of metal of thickness t, in which a current i is flowing (longitudinally) is subjected to a transverse magnetic field H, a difference of potential E is produced at opposite points at the side of the strip. E=RX+Hi/t where R is a constant specific with different metals and E, H, i and t in C. G. S. units. The table gives values obtained at ordinary room temperatures, $18-24^\circ$ C. If the value of R is independent of the field, or nearly so, the field intensity is not given. The positive sign indicates that if a strip of metal were considered to be in the plane of this page with its long axis horizontal, the primary current flowing from left to right and the magnetic field directed away from the observer, normal to the plane of the strip, the upper edge of the strip would be at a higher potential than the lower.

Substance.	Field strength, gausses.	R.	Observer.
Aluminum. Antimony. Bismuth. Bismuth. Cadmium. Carbon. Cobalt. Copper. Gold. Iron. Lead. Magnesium. Nickel. Platinum. Silver. Tellurium. Tin. Zinc.	3463 	$\begin{array}{c}00038 \\ +0.219 \\ -10.27 \\ -4.95 \\ +.00055 \\17 \\ +.24 \\00052 \\00066 \\ +.0108 \\ .00009 \\00094 \\0047 \\00024 \\00083 \\ +530. \\00004 \\ +.00033 \end{array}$	Von Ettinghausen & Nernst, 1886 Barlow, 1903 Von Ettinghausen & Nernst, 1886 Von Ettinghausen & Nernst, 1886 Von Ettinghausen & Nernst, 1886 Von Ettinghausen & Nernst, 1886 Hall, 1885 Hall, 1885 Hall, 1885 Zahn, 1904 Von Ettinghausen & Nernst, 1886 Von Ettinghausen & Nernst, 1886 Von Ettinghausen & Nernst, 1886 Von Ettinghausen & Nernst, 1886 Von Ettinghausen & Nernst, 1886 Von Ettinghausen & Nernst, 1886 Von Ettinghausen & Nernst, 1886 Von Ettinghausen & Nernst, 1886 Von Ettinghausen & Nernst, 1886

ELECTROCHEMICAL EQUIVALENTS

Grams per coulomb.

Element.	Va- lence.	Equiv.	Element.	Va- lence.	Equiv.
Aluminum .	3	0936×10^{-3}	Iron	3	1929×10^{-3}
Antimony	3	. 4153	Lead \dots	$egin{array}{c} 2 \\ 2 \end{array}$	1.0731
Antimony	5	. 2492	Magnesium.	2	. 1260
Bismuth	. 3	. 7185	Mercury	1	2.0788
Cadmium	2	. 5824	Mercury	2 2 2 2	1.0394
Chromium .	3	. 1796	Nickel	2	.3040
Cobalt	$\mathbf{\hat{2}}$. 3055	Oxygen	2	. 0829
Copper	1	. 6588	Platinum	2	1.0104
Copper	2	. 3294	Silver	1	1.1180
Gold	3	. 6812	Tin	2	. 6166
Hydrogen	1	.0105	Tin	4	.3083
Iron	2	. 2893	Zinc	2	. 3387

MAGNETIC INCLINATION OR DIP AND HORIZONTAL INTENSITY

The mean or limiting values are given for the territory covered by the State named. The horizontal intensity is given in gausses. The table is compiled from the results of the U. S. Coast and Geodetic Survey for 1911 and 1912.

State.	Dip, deg	Dip, degrees.		Horizontal intensity.	
Alabama	62. to	66.	.23 to		
Alaska	67.	74.	. 16	. 21	
Arizona	59.	- 1	.27		
Arkansas	63.	65.	. 24	. 25	
California	58.	62.	.25	.27	
Colorado	67.	68.	.22	.23	
Connecticut	72.	73.	17	.18	
Delaware	70.	71.5	19	.20	
Florida	57.	58.	27	.29	
Georgia	62.	66.	. 23	.26	
Hawaii	39.	٠٠٠- ا	. 29	.20	
daho	69.	.1.	.23		
ndiana	69.	72.		à.	
ome			. 18	.21	
owa	$\frac{71}{2}$.	73.	. 18	. 20	
Cansas	67.	69.	. 21	. 23	
Kentucky	68.	70.	. 20	.22	
Maine	74.	76 .	.14	. 16	
Maryland	70.5		.20		
Massachusetts	73.		. 17		
Michigan	73.	76.	.15	. 18	
Mississippi	61.	66.	.24	.26	
Missouri	67.	7ĭ.	.20	.22	
Montana	70.	72.	. 18	20	
Vebraska	70.	71.	20	.20	
lew Hampshire	73.	74.	.16	. 17	
New Jersey	71.	14.	.19	.17	
New Mexico	63.	0=		0.5	
Now Vork		65.	. 24	. 25	
New York	74 .		. 16	. 17	
orth Carolina	<u>6</u> 6.	<u>68</u> .	.21	. 23	
orth Dakota	74.	77.	. 15	. 16	
Phio	71.	73 .	.18	. 20	
Oklahoma		67.	.23	. 25	
regon		69.	.21		
ennsylvania	71.	72 .	.18	. 19	
hilippines	0.	23.	.37	.39	
orto Rico	49.	50.	. 29	.30	
outh Carolina	66.	67.	.23		
outh Dakota		74.	.17	. 19	
ennessee		68.	.22	.23	
exas		63.	.25	.29	
Jtah		67. I	.22	.23	
ermont		75.	.16	.17	
Virginia		70.	.20	:21	
Vashington	71.	•••		. 41	
Vest Virginia	70.5	l	. 19		
Viceoncin		70	. 20		
Visconsin		76.	. 15	.17	
Vyoming	68.	72.	. 19	. 22	

MAGNETIC DECLINATION

An annual decrease in declination is indicated by the negative sign, an increase by the positive.

(From U. S. Coast and Geodetic Survey)

State.	Station.	Mag	netic de ar	eclinatio d tenth	n in de	grees	Ann. Chge.
Duate.		1870	1880	1890	1900	1910	(1910).
Ala Alaska	Montgomery Sitka Kodiak Unalaska St. Michael	29.0 E 25.6 E 20.1 E	3.9 E 29.3 E 25.1 E 19.6 E 24.7 E	3.2 E 29.5 E 24.7 E 19.0 E 23.1 E	2.8 E 29.7 E 24.4 E 18.3 E 22.1 E	2.9 E 30.2 E 24.1 E 17.5 E 21.4 E	012
Ariz Ark Cal	Holbrook	13.7 E 8.2 E 14.4 E	13.7 E 13.6 E 7.6 E 14.6 E 17.5 E	13.4 E 13.5 E 7.0 E 14.6 E 17.5 E	13.5 E 13.7 E 6.6 E 14.9 E 17.8 E	13.9 E 14.3 E 6.9 E 15.5 E 18.5 E	+.072 +.077 +.023 +.083 +.075
Cal Colo Conn Del	Redding Pueblo Glenwood Sp Hartford Dover	16.3 E	18.2 E 13.5 E 16.1 E 9.4 W 5.3 W	18.3 E 13.0 E 15.7 E 9.8 W 5.9 W	18.6 E 12.9 E 15.6 E 10.4 W 6.4 W	19.3 E 13.3 E 16.1 E 11.0 W 7.0 W	+.075 +.050 +.062 +.097 +.080
D. C Fla Ga Hawaii	Jacksonville Tampa	3.1 E	3.0 W 2.4 E 3.3 E 3.2 E 9.8 E	3.6 W 1.8 E 2.8 E 2.6 E 10.1 E	4.2 W 1.3 E 2.3 E 2.1 E 10.4 E	4.7 W 1.2 E 2.0 E 2.0 E 10.6 E	+.075 033 013 033
Idaho Ill Ind Ia	Boise	18.6 E	17.9 E 18.7 E 4.7 E 2.6 E 9.1 E	17.7 E 18.6 E 4.1 E 2.0 E 8.4 E	17.8 E 18.8 E 3.6 E 1.4 E 7.9 E	18.4 E 19.4 E 3.4 E 1.1 E 8.1 E	+.067 +.075 013 030 +.017
Kans Ky La	Ness City Lexington Princeton	12.2 E 2.5 E 5.6 E	10.7 E 11.9 E 1.9 E 5.0 E 7.4 E	10.1 E 11.4 E 1.2 E 4.3 E 6.9 E	9.8 E 11.1 E 0.7 E 3.8 E 6.6 E	10.1 E 11.4 E 0.5 E 3.7 E 6.8 E	+.030 +.040 033 017 +.030
Me Md Mass	Portland Baltimore	12.8 W 3.8 W	4.4 W	13.9 W 5.0 W 12.0 W	19.0 W 14.4 W 5.6 W 12.6 W 11.0 W	6.1 W 13.1 W	+.100 +.100 +.075 +.100 +.097
Mich Minn Miss	Lansing Northome Mankato	2.1 E 10.0 E 10.9 E	3.8 E 1.3 E 9.3 E 10.4 E 6.9 E	3.0 E 0.5 E 8.6 E 9.5 E 6.4 E	2.3 E 0.0 E 8.0 E 9.0 E 6.0 E	2.0 E 0.4 E 8.1 E 9.1 E 6.2 E	027 +.040 +.017 +.020 +.017
Mo Mont	Forsyth Helena	18.6 E 19.8 E 11.7 E	8.7 E 18.4 E 19.6 E 11.2 E 14.8 E	8.0 E 17.9 E 19.4 E 10.5 E 14.3 E	7.6 E 17.8 E 19.5 E 10.2 E 14.2 E	7.9 E 18.3 E 20.0 E 10.5 E 14.5 E	+.020 +.050 +.062 +.033 +.043

MAGNETIC DECLINATION (Continued)

An annual decrease in declination is indicated by the negative sign and an increase by the positive.

(From U. S. Coast and Geodetic Survey.)

State.	Station.	Mag	Ann. Chge,				
		1870	1880	1890	1900	1910	(1910)
Nevada N. H N. J N. Mex	Elko	16.9 E 11.1 W 6.0 W	17.7 E 17.0 E 11.6 W 6.7 W 12.5 E	17.6 E 17.0 E 12.0 W 7.2 W 12.1 E	17.8 E 17.3 E 12.5 W 7.8 W 12.0 E	18.3 E 17.8 E 13.0 W 8.4 W 12.4 E	+.077 +.083 +.100 +.082 +.060
N. Mex N. Y N. C	Elmira	13.6 E 9.1 W 5.4 W 1.0 W 1.5 E	13.4 E 9.8 W 6.3 W 1.6 W 0.8 E	13.0 E 10.2 W 7.0 W 2.2 W 0.2 E	13.0 E 10.8 W 7.6 W 2.8 W 0.4 W	13.5 E 11.4 W 8.1 W 3.3 W 0.7 W	+.062 +.093 +.075 +.057 +.047
N. Dak Ohio Okla	Dickinson	17.4 E 1.2 E 9.8 E	13.5 E 17.0 E 0.6 E 9.4 E 10.5 E	12.7 E 16.4 E 0.0 E 8.8 E 9.9 E	12.4 E 16.2 E 0.7 W 8.5 E 9.7 E	12.8 E 16.6 E 1.1 W 8.9E 10.1 E	+.030 +.040 +.047 +.033 +.043
Oregon Penn P. R	Detroit Philadelphia Altoona	20.0 E 20.1 E 5.5 W 3.1 W	20.2 E 20.4 E 6.3 W 3.8 W	20.2 E 20.5 È 6.8 W 4.5 W	20.4 E 20.8 E 7.4 W 5.1 W 1.0 W	21.0 E 21.5 E 8.0 W 5.6 W 2.0 W	+.077 +.080 +.083 +.067
R. I	Newport	12.6 E 16.3 E	10.8 W 1.4 E 12.1 E 15.8 E 2.6 E	11.3 W 0.8 E 11.4 E 15.3 E 2.0 E	11.9 W 0.2 E 11.1 E 15.1 E 1.5 E	12.4 W 0.1 W 11.4 E 15.4 E 1.3 E	+.100 +.043 +.030 +.042 033
Tenn Texas	Huntington Houston San Antonio Pecos Floydada	8.9 E 9.6 E 11.0 E	5.5 E 8.5 E 9.3 E 10.8 E 10.9 E	4.9 E 7.9 E 8.9 E 10.4 E 10.4 E	4.4 E 7.7 E 8.7 E 10.3 E 10.3 E	4.3 E 8.1 E 9.1 E 10.7 E 10.7 E	$ \begin{array}{r}008 \\ +.042 \\ +.050 \\ +.060 \\ +.052 \end{array} $
Utah Vermont Va Wash	Salt Lake City Rutland Richmond Lynchburg Wilson Creek	10.6 W 1.8 W 0.5 W	16.5 E 11.2 W 2.5 W 1.2 W 21.9 E	16.3 E 11.6 W 3.1 W 1.8 W 22.1 E	16.5 E 12.1 W 3.7 W 2.4 W 22.4 E	17.0 E 12.7 W 4.2 W 2.8 W 22.9 E	+.070 +.100 +.067 +.057 +.075
Wash W. Va Wis Wyo	Charleston Madison	0.2 W 7.2 E 16.0 E	22.3 E 0.9 W 6.4 E 15.8 E 16.9 E	22.6 E 1.5 W 5.6 E 15.4 E 16.6 E	23.0 E 2.1 W 5.0 E 15.3 E 16.6 E	23.5 E 2.6 W 4.9 E 15.7 E 17.0 E	+.083 +.057 017 +.053 +.060

LIGHT

PHOTOMETRIC STANDARDS

VALUE OF VARIOUS STANDARDS IN INTERNATIONAL CANDLES

Standard Pentane Lamp, burning pentane	10.0 candles
Standard Hefner Lamp, burning amyl acetate	0.9 ''
Guardard Heller Damp, burning and a color oil	9.6
	1.0 "
Standard English Sperm Candle, about	1.0

The Carcel unit is the horizontal intensity of the carcel lamp, burning 42 grams of colza oil per hour. For a consumption between 38 and 46 grams per hour the intensity may be considered proportional to the consumption.

The Hefner unit is the horizontal intensity of the Hefner lamp burning amyl acetate, with a flame 4 cm. high. flame is l mm. high, the intensity I = 1 + 0.027(l - 40).

STANDARD CANDLES

The horizontal intensity may be considered proportional to the rate of consumption of material if the variation is small.

	French.	English.	German.
Material	2 pts. stearic acid 1 pt. palmitic		Paraffin
Temp. of fusion. Wick (cotton) Height of flame. Rate of consumption of material Horizontal intensity in Internat. candles	1.34	4.5 cm.	55° C. 24 to 25 threads 5 cm. 7.7 g. per hr. 1.11

MEAN HORIZONTAL CANDLE POWER OF VARIOUS LIGHT SOURCES

GIVEN IN INTERNATIONAL CANDLES.

(Lux, 1907.)

Source.	Total power consumed in watts.	Mean horizontal candle power.	Efficiency in watts per candle (spherical)
Acetylene flame Electric arcs:	96	6.9	17.7
Carbon, open air, continuous current	435	171	0.92
	181	98	2.27
	350	816	0.34
	199	393	0.64
	691	3060	0.25
amenttantalum filamenttungsten filamenttungsten filament, gas filled Incandescent gas mantle, vertical	98	28.3	4.54
	44	31.1	1.83
	38	32.7	1.59
	1000	1670	0.66
	717	96.3	8.9
inverted	571	96.3	7.7
	181	108	2.12

PRIMARY COLOR SENSATIONS PRODUCED BY VARIOUS LIGHT SOURCES

The relative values of the excitation of the three primary sensations are given.

(Ives, 1911.)

Source.	Red.	Green.	Blue.
Black body at 5000° absolute	33	33	33
Blue sky	29	30	41
Clouded sky	35	34	31
Sun	38	37	25
Hefner lamp	38 54	40	6
Acetylene flame	49	40	11
Incandescent carbon filament	49 51	41	8
Tungsten filament	48	41	11
Nernst filament	49	40	11
Electric arc, carbon	41 29	36	$\overline{23}$
Mercury arc	29	30	41
Flaming arc	. 52	37.5	10.5
Incandescent gas mantle, thorium		0,.0	20.0
with 0.25 part in 100 of cerium	42	41	17

INTRINSIC BRILLIANCY OF SURFACE INTENSITY OF LIGHT SOURCES

GIVEN IN INTERNATIONAL CANDLES PER SQUARE CENTIMETER.

· Sources.	Surface intensity.	Observer.
Electric arc:	16000	Blondel, 1897
current of 10 amperes	19500	Blondel, 1897
current of 25 amperes	30000	Rey & Blondel, 1902
current of 250 amperes	4000	itely & Biolides, 1002
Flaming arc	0.4-0.6	
petroleum lamp, round wick		Stockhausen, 1910
petroleum lamp, flat wick	.67	Stockhausen, 1910
gas, argand burner	1.14	Stockhausen, 1910
acetylene, flat flame	5.6	Stockhausen, 1910
Incandescent electric:		
filament of carbon (3.3 watts		
per candle)	75 .	Blondel, 1911
filament of tungsten (1.2		m
watts per candle)	150.	Blondel, 1911
Nernst	350-470	Ives & Luckiesch, '11
Gas mantle	4.8-6.7	
Mercury arc	2.5	Ives & Luckiesch
Moon	0.4	Pickering, 1908 Nordmann, 1910
Star (Algol)	840000 160000	Palaz, 1893
Sun at zenith	100000	1 alaz, 1000

WAVE LENGTHS OF VARIOUS RADIATIONS

	Microns
D*-((V)	0.0001
Röntgen (X) rays	0.051
Shortest ultra-violet radiation in the solar spectrum	
(limited by atmospheric absorption)	0.292
Limit of the visible spectrum	0.390
Violet, wave length best representing the color	0.410
Violet, wave length best representing the color	0.390-0.422
Wave lengths included	0.470
Blue, representative	0.422-0.492
Includes	0.520
Green, representative	0.492-0.535
Includes	0.535
Maximum visual intensity, about	0.580
Yellow, representative	0.535-0.586
Includes	0.600
Orange, representative	0.586-0.647
Includes	0.650
Red, representative	0.630
Includes	
Limit of the visible spectrum	0.810
Limit of the solar spectrum	5.300
Infra-red (heat waves)	
Includes	0.810-314.00
Shortest measured Hertzian wave	4000.
Used for wireless telegraphy	100-5000 meters
483	

VARIATION IN THE SENSITIVENESS OF THE EYE WITH THE WAVE LENGTH

FOR LOW INTENSITIES

(König.)

Wave length Mean sensitive-											
ness	0.02	0.06	0.23	0.49	0.81	1.00	0.81	0.49	0.22	0.077	0.026

WAVE LENGTHS OF THE FRAUNHOFER LINES

SUN'S SPECTRUM

At 15° C. and 76 cm. pressure. Wave length in microns (Fabry and Buisson system).

Line.	Due to	Wave length in Microns.	Line.	Due to	Wave length in microns.
U t T s	Fe Fe Fe Fe Fe, Mn Fe, Ti	2947.9 2994.4 3020.7 3047.6 (3099.9 3100.0 3100.7 3179.3	h g G F b4 b2 b	H Ca {Ca {Fe H Mg Mg	4101.9 4226.7 { 4307.7 { 4307.9 4340.5 4861.4 5167.3 5172.7
R Q P O N M L K H	Fe Ti {Fe Fe Fe Fe Ca Ca	3286 .8 3361 .2 { 3440 .6 3441 .0 3581 .2 3719 .9 3820 .4 3933 .7 3968 .5	$egin{array}{c} b_1 \ E \ D_2 \ D_1 \ C \ B \ A \ Z \ Y \end{array}$	Fe Na Na H O O	5183.6 5269.6 5890.0 5895.9 6562.8 6867.2 7593.8 8228.5 8990.0

WAVE LENGTHS FOR SPECTROSCOPE CALIBRATION

Source.	Wave length.	Source.	Wave length.
Potassium flame Potassium flame B, solar Lithium flame C, solar or hydrogen tube. D1, solar or sodium flame. D2, solar or sodium flame. Thallium flame	0.7666 0.6867 0.6708 0.6563 0.5896 0.5893	F, solar or magnesium flame b ₂ , solar or magnesium flame F, solar or hydrogen tube. Strontium flame. G, solar or hydrogen tube. H ₁ , solar H ₂ , solar .	0.5184 0.5173 0.4867 0.4608 0.4308 0.3969

WAVE LENGTH OF PRINCIPAL LINES OF VARIOUS ELEMENTS

SOLIDS

Wave lengths of the most prominent lines in microns. The letters a, s and f after a wave length indicate its occurrence as a strong line in the arc, spark of flame spectrum respectively.

Aluminum	.3082	a, s	Caesium	.4555	a, f
* **	.3092	a, s		.4593	a, f
	.3587	B		.6723	a.
	.3944	a, s		.6974	a
	.3961	a, s	Calcium	.3934	a, s
	.5697	s		.3969	a, s
	.5723	s	, ,	.4227	a, s, f
Antimony	.3268	s	Calcium chloride		,, -
Anumony	.6005	S	in the Bunsen		
	.6079	s	flame also gives		
	.6130	8	lines not due to	1	
	_		calcium	.5517	
Arsenic	.2745	. 8	caicium	.5543	
	.2861	S		.6181	
	.3923	s		.6202	
	.4037	8 .			-
Barium	.3891	8	la .	.6265	
	.4131	s	Cerium	.4012	s
	.4554	a, s		.4134	8
* 15 m	.4934	a, s		.4150	8
***	. 5535	a, s, f		.4165	8
	.5853	a, s		.4187	s,
4 4 4	.6141	a, s	` `	.4297	s]
4 (1)	.6497	a, s		.4527	8
Barium chloride in				.4628	S.
the Bunsen flame				.5274	S
gives other lines			1	. 5353	8 .
not due to bar-			Chromium*	.4255	a, s
ium	.5136			.4275	a, s
	.5242			.4290	a, s
	. 5313				•
Bismuth	.3596	s		.4559	8
Dipiliation	.4723	a, s		.4588	S
	.4994	s	1.	.5205	a, s
Cadmium	.3611	a, s		.5206	a, s
Caumium	.4678	a, s		.5209	a, s
	.4800	a, s		.5410	a
	.5086	a, s	Cobalt†	.3846	a, s
	.5338	8		.3873	a, s
	.5378	s	'	3894	a, s
*. *.	.6439	a, s		4531	a, z
	.0100	۰۰, ۵			

^{*} More than twenty fairly prominent lines occur in the spark spectrum of chromium having wave lengths from .2763 to .3606 μ .
† A large number of lines occur in the arc and spark spectrum of cobalt having wave lengths less than .3600 (ultraviolet).

WAVE LENGTH OF PRINCIPAL LINES OF VARIOUS ELEMENTS (Continued)

Solids (Continued)

0.1.11.70	1	, , , , , , , , , , , , , , , , , , ,			· -
Cobalt (Cont.)		a	Iron*	.4046	a, s
*	.4780	a, s		.4064	a, s
	.4793	a, s		.4071	a, s
	.4814	a, s		.4118	a
•	.4840	a, s		.4132	a, s
	.4868	a, s		.4134	a
Copper	.3248	a		.4143	\mathbf{a}
~oppor	.3274	a		.4144	a, s
	4023	a		.4187	a, s
	4063	a.		.4188	a, s
4.1	.5106	a, s		.4191	a
	.5153	a, s		.4198	a, s
	.5218	a, s	•	.4199	a, s
	.5700	a	,	.4202	a, s
	.5782	a, s		4227	a, s
~	1 1	. ,		.4234 $.4236$	a, s
Gold	.2428	a, s		.4250	a, s
	.2676	a, s		.4251	a, s
the second	.2802	8		.4261	a, s
	.3898	S.		.4272	a, s
Sec. 19	.4065	s		.4282	a, s
	.4315	s		.4294	a, s a, s
	.6278	8	1 ,	.4299	a, s
Iodine (spark)	.5159			.4308	a, s
rodino (spark)	.5244			.4315	a, s
	.5339			.4326	a, s
6 . 1	.5349			.4337	a
	.5408			.4384	a, s
	.5448			.4405	a, s
- A - A - A - 2	.5471			.4415	a, s
	.5631	`		.4476	a
	. 5686			.4528	a, s
	.5716			.4655	a, s
	.5741			.4736	a
	.5766			.4892	a
-	.5781		F	.4921	a, s
· .	. 5961			.4957	a, s
Iridium	2000	_ 1		.5139	a, s
inaium	.3606	S		.5167	a, s
	.3653	8		.5192	a, s
	.3800	8		.5227	ар
	.3903	8	·	.5233	a, s
	.4400	8		.5267	a, s
	. 1100	a, s		.5270	a, s

^{*}The ultraviolet spectrum of iron shows over 100 lines of intensity comparable with those listed above.

486

WAVE LENGTH OF PRINCIPAL LINES OF VARIOUS ELEMENTS (Continued)

Solids (Continued)

Iron (Cont.)	5284	a, s	Lithium (Cont.).	.4602	a, s
	.5302	a, s		.6104	a
	.5324	a		.6708	a, s,
	.5328	a	Mercury	.2537	a
	.5372	a	Wieredry	.2967	a, s
	.5397	a	·	.3022	
	.5406	a		.3023	a
	.5447	a			8
	.5455	a. a.		.3126	a, s
	.5570			.3132	a, s
		a	* a	.3341	a, s
	.5573	a	•	.3650	a, s
	.5587	a	 	.3654	a, s
	.5616	a		. 3663	a, s
	. 5659	a		.3984	8
	.5763	a		.4046	a, s
	. 5862	a		.4078	a, s
	.5930	a	1	.4358	a, s
	.6065	a		.5426	8
	.6137	a.		.5461	a, s
	.6138	a		.5770	a, s
and the second	.6192	a	II	.5791	a, s
Ÿ.	.6231	a		.5804	
	.6253	a		.0004	8 ,
	6302	a	Magnesium	1.2796	a, s
	.6318	a		.2803	a, s
	.6337	I	1	.2852	a, s,
		a		.3097	a, f
	6400	1	11	.3829	a, s,
	.6495	a	11	.3832	a, s,
	.6546	a	11	.3838	a, s,
	. 6593	a	11	.4481	8
Lead*	3640	a, s	II.	.5173	
Deau	.3684		1	.5183	a, s
	.3740	a, s		.0100	a, s
	.3786	a, s	Manganese	.3807	a, s
		8		.4031	a, s
	3854	.8		.4033	a
	.4058	a, s		.4035	a
	1.4245	8	11	.4042	a
	.4387	8		.4754	a
	. 5374	S		.4784	a
	.5547	8.₀		.4824	a, s
	. 5608	8	11	.6014	a, 8
	.6657	s	1	.6017	
T !sl !	. 4132	_		.6022	a, s
${f Lithium}.\dots$. .4132	a	11	.0022	a, s

^{*}The arc and spark spectra of lead include a large number of lines in the ultraviolet not given above.

WAVE LENGTH OF PRINCIPAL LINES OF VARIOUS ELEMENTS (Continued)

Solids (Continued)

Molybdenum	.3635	8	Radium (Cont.)	.4826	s, f
	.3688		1	.5661	8
	.3798		II .	.5814	8
	.3864	a, s	band .6130-	.6330	f
= 1	.3903	a, s	.0100	.6349	f
	.3961	s s	band .6530-	.6700	f
•	.5506	a, s	Dance . 0000-	.0700	
	.5533	a, s	Rubidium	.4202	a, s, f
	.5570	, ,		.4215	a, s, f
	.0010	a, s	Harris and the second	.6207	a, f
	.6030	s		.6298	a, s, f
		В	1	.7806	a, f
Nickel	.4714	a, s	1	.7811	a
	.4855	a, s		.7950	a, f
	.4866	a, s		1 1	٠, ١
	.4873	s	Selenium	. 4606	8
	. 5035	a, s		.4840	8
	.5081	a	1	.4842	8
	.5477	a		.4972	8
	.5893	8		.4993	8
A				.5094	8
Osmium	.3753	8	1	.5142	8
	.4067	8		.5176	ŝ
	.4136	8		.5225	8
	.4212	8		.5270	s
	.4261	8 🔻		.5305	8
	.4294	8	G:1:		
	.4421	s	Silicon	.2516	a, s
Platinum	.3687	s		.2881	a, s
	.3923	8	Silver	.3281	a, s
	.4552	8		.3383	a, s
•	.5228			.4055	a, s
	.5301	a, s		.4212	a
	.5369	S S		.5209	a, s
	1	B		.5466	
Potassium	.3447	a, s, f	la :		a, s
	.4044	a, s, f	Sodium	. 3302	a, s, f
	.6911	a´´		. 3303	a, s, f
	. 6939	a		. 5683	a
٠.	.7665	a, s, f		.5688	a
	.7699	a, s, f		. 5890	a, s, f
Radium	.3650			. 5896	a, s, f
		8		.6154	a
	3815	S		.6161	a
`*	.4341	à	Q44*	10-0	
	4/146	3	Strontium	.4078	a, s
1					,
	.4533	s s	- ,	.4216 .4607	a, s

WAVE LENGTH OF PRINCIPAL LINES OF VARIOUS ELEMENTS (Continued)

Solids (Continued	11	
-------------------	----	--

		TILDIS (C	onunueu)		
Strontium com-			Tin	.3801	B
pounds, chloride,				.4525	
nitrata eta cirro			 		a, s
nitrate, etc., give				.5564	8)
other bands not			1	.5589	S
due to strontium	.6032			.5632	a, s
	.6060			.5799	8
	.6351			.6453	
	.6464	14			8
			Tungsten	.4843	8
	.6597			.5059	s
	.6664		4 **	.5224	8
	.6694			.5514	8
Sulphur	.4465	~			8
Suipitur		S	Uranium	.5478	8
	.4486	ន		1.5480	8
	.4525	S		.5482	8
	1.4552	8		.5494	
	.5021	8	4.4		8
	.5033	8	I	. 5528	s
6			Zinc	.3345	a, s
	. 5201	8		.4680	a, s
	.5215	8		.4722	•
	. 5320	S		.4811	a, s
	.5343	8			a, s
	.5605	s		.4912	S
	.5640	8		.4925	S
4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	.6290	s		. 6103	8 '
				.6362	a, s
Tantalum	.3906	s	Zirconium	.3958	
	.4059	s	Zircomum		a, s
	.4080	s		. 3982	a_
	.4101	s		.3991	a, s
	.4124	s		.3999	s .
cm 11:			1	.4049	a. s.
Thallium	.2918	a		.4073	a.
	. 3230	a		.4081	a
	.3519	a, s		.4149	
•	.3529	a			a, s
	.3776	a, s, f		.4156	a, s
	.4737			.4161	a, s
_		8		.4360	a, s
	.5351	a, s, f		.4371	a, s
Thorium	.3221	s		.4380	a, s
Sec. 1	.3272	8		.4443	8
	.3291	s		.4494	8
	.3301	8			
1- 1-				.4497	a, s
for the second	.3314	8		.4688	8
	.3508	8		.4710	8
	.3539	s	9	.4739	8
•	.4019	s .		.4772	8
	.4382	š		.4816	8
1	.4391	8 -			
	.4555			.6128	. 8
	.4000	8	l	.6142	- B

WAVE LENGTH OF PRINCIPAL LINES OF VARIOUS ELEMENTS (Continued)

ı	7	~	~

Air (spark) line due to	N .3995	Bromine	.4785
in (ppini) in a day to	N .4447	210111101111111111111111111111111111111	.5332
	N .4631		.6150
	O .4642		.6351
	N .4643	Chlorina Direlan	.0001
	.5001	Chlorine, Plücker	.3851
	N .5005	tube	
	N .5679	1	.3861
Argon, Plücker tube	11 .0013		.4133
(blue spectrum)	.3491		.4253
(blue spectrum)	.3560		.4344
	.3589		.4794
F	.3638		.4810
	.3729	·	.4819
*	.3850		.5423
	.4072	Helium	.3188
	.4104		.3888
	.4228		.4026
	.4331		.4471
			.5016
	.4348	1	.5876
	.4426	i i	:6678
	.4430		
·	.4806	Hydrogen	.4102
(red spectrum)	.4158		.4341
()	.4191		.4861
	.4198		.6563
	.4200	Nitrogen	See air
	.4259		
•	.4511	Oxygen	See air
	.6965		
	.7067		

RELATIVE STIMULATION OF THE THREE PRIMARY COLOR SENSATIONS BY DIFFERENT WAVE LENGTHS

Wave										1
	0.36μ	0.38	0.40	0.42	0.44	0.46	0.48	0.50	0.52	0.54
Red Green Blue	0.0 0.0 0.0	0.0 0.0 10.5	$2.0 \\ 0.0 \\ 29.0$	$1.0 \\ 0.0 \\ 52.0$	1.0 0.0 76.0	$1.0 \\ 2.0 \\ 78.0$		23.0	$23.0 \\ 61.0 \\ 16.0$	39.0 87.0 7.0
Wave length	0.56μ	0.58	0.60	0.62	0.64	0.66	0.68	0.70	0.72	0.74
Red Green Blue			71.5 37.0 0.0	59.0 10.0 0.0	30.0 2.5 0.0	12.0 1.0 0.0	5.0 0.0 0.0	2.0 0.0 0.0	1.0 0.0 0.0	0.0 0.0 0.0

INDEX OF REFRACTION OF OPTICALLY ISOTROPIC SOLIDS

(From Smithsonian Tables.)

		,	
Substance.	Line of spec- trum.	Index of refraction.	Observer.
Agate (light color)	red	1.537	De Senarmont
Ammonium chloride	D	1.642	Grailich
Arsenite	\bar{D}	1.755	DesCloiseaux
Barium nitrate	D	1.572	Fock
Bell metal	\overline{D}	1.005	Beer
Blende	Li	2.342	Ramsay
Blende	Na	2.369	Ramsay
Blende	$T\tilde{l}$	2.401	Ramsay
Boric acid	C	1.462	Bedson & C. Williams
Boric acid	\check{D}	1.463	Bedson & C. Williams
Boric acid	F	1.470	Bedson & C. Williams Bedson & C. Williams
Borax (vitrified)	\overline{C}	1.512	Bedson & C. Williams
Borax (vitrified)	Ď	1.515	Bedson & C. Williams
Borax (vitrified)	F	1.521	Bedson & C. Williams
Camphor	D	1.532	Kohlrausch
Camphor	\bar{D}	1.546	Mülheims
Diamond (colorless).	red	2.414	DesCloiseaux
Diamond (colorless).	green	2.428	DesCloiseaux
Diamond (brown)	B	2.461	Schrauf
Diamond (brown).	\overline{D}	2.470	Schrauf
Diamond (brown)	E	2.479	Schrauf
Ebonite	\overline{D}	1.6	Ayrton & Perry
Fuchsin	\boldsymbol{A}	2.03	Means
Fuchsin	B	2.19	Means
Fuchsin	C	2.33	Means
Fuchsin	G	1.97	Means
Fuchsin	H	1.32	Means
Garnet (different		£ .	
varieties)	D	1.74-1.90	Various
Gum arabic	red	1.480	Jamin
Gum arabic	red	1.514	Wollaston
Hanyne	D	1.496	Tschichatscheff
Helvine	D	1.739	Levy & Lecroix
Obsidian	D	1.482 - 1.496	Various
Opal	D	1.406	Various
Opal	D	1.450	Various
Pitch	red	1.531	Wollaston
Potassium bromide .	D	1.559	Topsöe and Chris- tiansen
chlorstannate	D	1.657	Topsöe and Chris-
iodide	D	1.667	tiansen Topsöe and Chris-
Phosphorus	D	2.144	tiansen Gladstone & Dale
and are a second of the second		1	l .

INDEX OF REFRACTION OF OPTICALLY ISOTROPIC SOLIDS (Continued)

Substance.	Line of spec- trum.	Index of refraction.	Observer.
Resins: aloes. Canada balsam. colophony. copal. mastic. Peru balsam Selenium, vitreous. Selenium, vitreous. Selenium, vitreous. Selenium, vitreous. Silver bromide. chloride. iodide. Sodalite, blue. Sodalite, clear like water. Sodium chlorate. Spinel. Strontium nitrate.	red red red red D A B C D D D D D D D D D D D D D D D D D D	1.619 1.528 1.528 1.548 1.528 1.535 1.593 2.612 2.680 2.729 2.93 2.253 2.061 2.182 1.483 1.515 1.716 1.567	Jamin Wollaston Jamin Jamin Wollaston Baden Powell Wood Wood Wood Wornicke Wernicke Wernicke Feusner Jessaud DesCloiseaux Fock;

INDEX OF REFRACTION OF UNIAXIAL CRYSTALS

	Index of refraction.				
Substance.	Line of spec- trum.	Ordi- nary ray.	Extra- ordi- nary ray.	Observer.	
Alunite (alum stone)	red red red red green D D D	1.639 1.589 1.570 1.96 2.854 1.767 1.584 1.309 1.539 1.587 1.637	1.635 1.582 1.566 2.60 3.199 1.759 1.762 1.578 1.313 1.541 1.336 1.619	Levy & Lacroix Schrauf Various Various De Senarmont DesCloiseaux DesCloiseaux DesCloiseaux DesCloiseaux Meyer Kohlrausch Schrauf Heusser Jeroféjew Jeroféjew	

INDEX OF REFRACTION OF BIAXIAL CRYSTALS

	Index of refraction.					
Substances.	Line of spec- trum.	Mini- mum.	Inter- medi- ate.	Maxi- mum.	Observer.	
Borax Copper sulphate Gypsum Mica (muscovite) Potassium bichromate nitrate sulphate Sugar (cane)	D D D	1.514 1.521 1.560 1.720 1.335 1.493	1.537 1.523 1.594 1.738 1.506 1.495	1.543 1.530 1.598 1.820 1.506 1.498 1.572	Dufet Kohlrausch Mülheims Pulfrich Dufet Schrauf Topsöe & Christiansen Calderon	
Sulphur (rhombic) Topaz (Brazilian)	D D				Schrauf Mülheims	

INDEX OF REFRACTION OF GLASS

RELATIVE TO AIR

	Wave length in microns.							
Variety.	.361	.434	.486	.589 (Na)	.656	.768	1.20	2.00
Zinc crown Higher dispersion crown Light flint Heavy flint Heaviest flint	1.546 1.614 1.705	1.528 1.533 1.594 1.675 1.945	1.527 1.585 1.664	1.520 1.575 1.650	1.517 1.571 1.644	$1.514 \\ 1.567 \\ 1.638$	1.507 1.559 1.628	1.497 1.549 1.617

INDEX OF REFRACTION OF ROCK SALT, SILVINE, CALCITE, FLUORITE AND QUARTZ

(Compiled from data of Martens, Paschen, and others.)

Wave length.	Rock salt.	Silvine, KCl.	Fluorite.	Calcspar, ordinary ray.	Calcspar, extraor- dinary ray.	Quartz, ordinary ray.	Quartz, extraor- dinary ray.
9.185 0.198 0.340 0.589 0.760 0.884 1.179 1.229 2.324 2.357 3.536 5.893 8.840	1.893 1.544 1.534 1.530 1.526 1.523 1.516 1.502	1.827 1.490 1.481 1.478 1.475 1.473 1.469 1.461	1.496 1.434 1.431 1.430 1.428 1.421 1.414 1.387 1.331	1.701 1.658 1.650	1.578 1.506 1.486 1.483 1.479 1.474	1.676 1.651 1.567 1.544 1.539	1.690 1.664 1.577 1.553 1.548

INDEX OF REFRACTION, LIQUIDS

(From Smithsonian Tables.)

Substance.	Temp.	Index of refrection for spectrum lines.			Observer.	
		_ c	D	F	H	·
Acetone	10.	1.363	1.365	1.369		Korten
Almond oil	0	1.476	1.478	1.485		Olds
Anilin	20.			1.604		Weegman
Aniseed oil	21.4			1.565		Willigen
Aniseed oil	15.1			1.574		Baden Powell
Benzene	10			1.515		Gladstone
Benzene	21.5		1.498	1.510	1.530	Gladstone
Bitter almond oil	20	1.539		1.562		Landolt
Bromnaphthalin	20			1.682		Walter
Carbon disulphide	0			1.669		Ketteler
Carbon disulphide	20			1.652		Ketteler
Carbon disulphide	.10			1.659		Gladstone
Carbon disulphide	19			1.635		Dufet _
Cassia oil	10			1.639		Baden Powell
Cassia oil	22.5	1.593		1.631	1.699	Baden Powell
Cedar oil	22	امففنا	1.515		• • •	Texier
Chinolin	20		1.617		. * : : .	Gladstone
Chloroform	10			1.456		Gladstone & Dale
Chloroform	30		1.440		1.456	Gladstone & Dale
Chloroform	20		1.446		• • •	Lorenz
Cinnamon oil	23.5	1.608	1.619	1.651		Willigen
Ether	15	1.355				Gladstone & Dale
Ether	15			1.364	1.371	Kundt
Ethyl alcohol	10	1.368			• • • •	Korten
Ethyl alcohol Ethyl alcohol	20	1.364	1.361	1.370	• • • •	Korten
Ethyl alcohol	15	1.362	1.001	1.300	1 375	Korten
Glycerine	20	1.471		1.478	1.5/5	Gladstone & Dale Landolt
Methyl alcohol	15	1.331			1.342	Baden Powell
Olive oil	ŏ	1.474			1.042	Olds
Rock oil	l ŏ l	1.435			• • • •	Olds
Turpentine oil	10.6	1.472			1.494	Frauenhofer
Turpentine oil		1.469				Willigen
Toluene		1.491				Bruhl
Water		1.331			1 344	Means

DISPERSION

The dispersion for various types of optical glass is shown in the following table. $n_D = \text{index}$ of refraction for the D line (of the solar spectrum) and n_F and n_C the index for the F and C lines respectively $(n_F - n_D)$ shows the dispersion for these two wave lengths.

Glass.	n_D	$(n_F - n_C)$
Light phosphate crown. Barium-silicate crown. High-dispersion crown Borate flint. Extra light flint Heavy flint Heaviest flint.	1.5399 1.5262 1.5686 1.5398 1.7174	.00737 .00909 .01026 .01102 .01142 .02434 .04882

INDEX OF REFRACTION, AQUEOUS SOLUTIONS

Substance.	Density.	Temp. °C.	Index for $\lambda = .5893$ (Na)	Observer.
Ammonium chloride .	1.067	27.05	1.379	Willigen
Ammonium chloride.	1.025	29.75	1.351	Willigen
Calcium chloride	1.398	25.65	1.443	Willigen
Calcium chloride	1.215	22.9	1.397	Willigen
Calcium chloride	1.143	25.8	1.374	Willigen
Hydrochloric acid	1.166	20.75	1.411	Willigen
Nitric acid	1.359	18.75	1.402	Willigen
Potash (caustic)	1.416	11.0	1.403	Frauenhofer
Potassium chloride	Normal	solution	1.343	Bender
Potassium chloride	Double	normal	1.352	Bender
Potassium chloride	Triple	normal	1.360	Bender
Soda (caustic)	1.376	21.6	1.413	Willigen
Sodium chloride	1.189	18.07	1.378	Schutt
Sodium chloride	1.109	18.07	1.360	Schutt
Sodium chloride	1.035	18.07	1.342	Schutt
Sodium nitrate	1.358	22.8	1.385	Willigen
Sulphuric acid	1.811	18.3	1.437	Willigen
Sulphuric acid	1.632	18.3	1.425	Willigen
Sulphuric acid	1.221	18.3	1.370	Willigen
Sulphuric acid	1.028	18.3	1.339	Willigen
Zinc chloride	1.359	26.6	1.402	Willigen
Zinc chloride	1.209	26.4	1.375	Willigen

INDEX OF REFRACTION OF METALS

FOR SODIUM LIGHT (Drude.)

Metal.	Index of refraction.	Metal.	Index of refraction.
Aluminum. Antimony Bismuth. Cadmium. Copper. Gold. Iron Lead. Magnesium.	3.04 1.90 1.13	Mereury. Nickel. Platinum Silver Steel Tin, solid Tin, fluid Zinc.	1.73 1.79 2.06 0.181 2.41 1.48 2.10 2.12

DIFFUSED REFLECTION (ALBEDO)

Ratio of total quantity of light reflected by a surface to the total incident light.

White pinewood. Paper, ordinary white Black velvet. Snow.	.6070 .004	Blotting paper, white. blue yellow Earth, moist	$\begin{array}{c} .25 \\ .40 \end{array}$
---	---------------	---	---

INDEX OF REFRACTION, GASES

Values are relative to a vacuum and for a temp. of 0° C. and 760 mm. pressure.

(From Smithsonian Tables.)

	1		
Substance.	Kind of light.	Indices of refraction.	Observer.
Acetone	D	1.001079-1.001100	
Air	D	1.0002926	Perreau
Ammonia	white	1.000381-1.000385	
Ammonia	D	1.000373-1.000379	
Argon	D	1.000281	Rayleigh
Benzene	D	1.001700-1.001823	
Bromine	D	1.001132	Mascart
Carbon dioxide	white	1.000449-1.000450	
dioxide	D	1.000448-1.000454	
disulphide	white	1.001500	Dulong
disulphide	D	1.001478-1.001485	
monoxide	white	1.000340	Dulong
monoxide	white	1.000335	Mascart
Chlorine	white	1.000772	Dulong
Chlorine	D	1.000773	Mascart
Chloroform	D	1.001436-1.001464	
Cyanogen	white	1.000834	Dulong
Cyanogen	D	1.000784-1.000825	-
Ethyl alcohol	D	1.000871-1.000885	
ether	D	1.001521-1.001544	_
Helium	D	1.000036	Ramsay
Hydrochloric acid	white	1.000449	Mascart
Hydrochloric acid	D	1.000447	Mascart
Hydrogen	white	1.000138-1.000143	_
Hydrogen	D	1.000132	Burton
sulphide	D	1.000644	Dulong
sulphide	D.	1.000623	Mascart
Methane	white	1.000443	Dulong
Methane	Į <u>D</u>	1.000444	Mascart
Methyl alcohol	D	1.000549-1.000623	
Methyl ether	D _.	1.000891	Mascart
Nitric oxide	white	1.000303	Dulong
Nitric oxide	D	1.000297	Mascart
Nitrogen	white	1.000295-1.000300	
Nitrogen Nitrous oxide	D white	1.000296-1.000298 1.000503-1.000507	
Nitrous oxide	winte D	1.000516	Mascart
Owner	white	1.000272-1.000280	Macart
Oxygen	white D	1.000272-1.000280	
Pentane	D	1.000271-1.000272	Mascart
Sulphur dioxide	white	1.000665	Dulong
Sulphur dioxide	WILLE D	1.000686	Ketteler
Water	white	1.000261	Jamin
Water	WINCE D	1.000249-1.000259	o amin
		1.000210-1.000209	

COEFFICIENT OF TRANSPARENCY OF UVIOL GLASS FOR THE ULTRA-VIOLET

For a thickness of 1 mm.

Wave length, microns	0.280	0.309	0.325	0.346	0.361	0.383	0.397
Uviol crown	0.56	0.95	0.990	0.996	Ö.999	1.000	1.000

REFLECTION OF LIGHT BY GLASS IN AIR

The table gives the per cent of the incident light which is reflected from the surface of glass in air assuming an index of refraction of 1.55; represents the angle of incidence and R to per cent of light reflected.

(Computed according	g to Fresnel's formula, see page	223.)
---------------------	----------------------------------	-------

i	$oldsymbol{R}$	i	\boldsymbol{R}	i	R
0° 5 10 15 20 25 30	4.65 4.65 4.66 4.66 4.68 4.73 4.82	35° 40 45 50 55 60	4.98 5.26 5.73 6.50 7.74 9.73	65° 70 75 80 85 90	12.91 18.00 26.19 39.54 61.77 100.

REFLECTION BY TRANSPARENT MEDIA IN AIR

FOR NORMAL INCIDENCE

The table gives the per cent of the normally incident light which is reflected by transparent media of various indices of refraction. n = index of refraction, R = reflected light, i = angle of incidence = 0.

(Computed from Fresnel's formula.)

\overline{n}	R	n	R	n	R
1.0 1.1 1.2 1.3 1.4 1.5	0.00 0.23 0.83 1.70 2.78 4.00 5.33	1.7 1.8 1.9 2.0 2.1 2.2 2.3	6.72 8.16 9.63 11.11 12.6 14.1 15.5	2.4 2.5 2.6 2.7 2.8 2.9 3.0	17.0 18.4 19.8 21.1 22.5 23.8 25.0

COEFFICIENT OF TRANSPARENCY OF GLASS FOR THE INFRA-RED

Normal incidence thickness 1 cm.

Wave length, microns	0.7	1.1	1.7	2.3	2.7	3.1
Crown, borateborosilicateFlint, lightheavy	i.00	.74	.61 .82	.33 .45	.034	.019

REFLECTION OF LIGHT BY METALS

The table gives the per cent of normally incident light which is reflected by the polished surface of various metals.

Wave length.	Anti- mony.	Bronze (68Cu, 68Sn).	commer-	Gold, electro- lytic.	Iron.	Magna- lium, Mach's.	Mag- ne- sium.	Mer- cury, backed glass.
. 251 . 288 . 305 . 326 . 357		.30	25.9 24.3 25.3 24.9 27.3	38.8 34.0 31.8 28.6 27.9		67.0 70.6 72.2 75.5 81.2		
.385 .420 .450 .500	• • • • • • • • • • • • • • • • • • • •	.53	28.6 32.7 37.0 43.7 47.7	27.1 29.3 33.1 47.0 74.0	.55	83.9 83.3 83.4 83.3 82.7		72.8 70.9 71.2
.600 .650 .700 .800 1.00	.53 .55	.64 .70	71.8 80.0 83.1 88.6 90.1	84.4 88.9 92.3 94.9	.57 .59 .65	83.0 82.7 83.3 84.3 84.1	.73 	69.9 71.5 72.8
2.0 3.0 4.0 9.0	.60 .65 .68 .72	.80 .86 .88 .93	95.5 97.1 97.3 98.4	96.8 96.9 98.0	.78 .84 .89 .94	86.7 87.4 88.7 90.6	.77 .80 .83 .93	

Wave length.	Nickel, electro- lytic.	Plati- num, electro- lytic.	Silver, chemi- cally depos- ited.	Silver- backed glass.	Specu- lum metal.	Steel.	Tung- sten.
.251 .288 .305 .326 .357	37.8 42.7 44.2 45.2 48.8	33.8 38.8 39.8 41.4 43.4	34.1 21.2 9.1 14.6 74.5		29.9 37.7 41.7 51.0	32.9 35.0 37.2 40.3 45.0	
.385 .420 .450 .500	49.6 56.6 59.4 60.8 62.6	45.4 51.8 54.7 58.4 61.1	81.4 86.6 90.5 91.3 92.7	85.7 86.6 88.2	53.1 56.4 60.0 63.2 64.0	47.8 51.9 54.4 54.8 54.9	.49
.600 .650 .700 .800	64.9 66.6 68.8 69.6 72.0	64.2 66.5 69.0 70.3 72.9	92.6 94.7 95.4 96.8 97.0	88.1 89.1 89.6	64.3 65.4 66.8 	55.4 56.4 57.6 58.0 63.1	.51 .54 .62
2.0 3.0 4.0 9.0	83.5 88.7 91.1 95.6	80.6 88.8 91.5 95.4	97.8 98.1 98.5 98.7		80.4 86.2 88.5 92.2	76.7 83.0 87.8 92.9	.85 .90 .93 .95

TRANSMISSIBILITY FOR RADIATIONS

Ratio of the transmitted light to the incident light for a definite thickness of the substance, usually 1 cm.

GLASS.

Glass in general is opaque to the ultra-violet and infra-red. Uviol glass is transparent to the longer radiations of the ultra-violet. Coefficient of transparency of glass for visible and ultra-violet radiations.

		, 1	Norma)	incide	ence, t	hickne	ss 1 cn	α.	
Wave length microns	0.309	0.330	0.347	0.357	0.361	0.375	0.384	0.388	0.396
Crown, ordinary Crown, borosili-	• • • •					.947			6.
cate Flint, ordinary Flint, heavy		0.65	0.88 0.0i	0.72	0.95 0.16		0.972 0.58	0.975 0.904	0.986
	1	1	Vorma	l incide	ence, t	hickne	ss 1 cn	α.	
Wave length,	0.400	1	1	1		hickne	1		0.677
Wave length, microns Crown, ordinary Crown, borosili-		0.415	1	0.425	0.434		0.500		

See also pp. 175 and 176.

QUARTZ

Quartz is very transparent to the ultra-violet and to the visible spectrum, but opaque for the infra-red beyond 7.0μ .

(Pflüger.)

Wave length, microns	0.19	0.20	0.21	0.22
Transmission for 1 mm	.67	.84	.92	.94

FLUORITE

Fluorite is very transparent to the ultra-violet, nearly to 0.10μ . Coefficient of transparency at $\lambda=186$ is found by Pflüger to be 0.80.

For the infra-red the values are given in a table below.

TRANSMISSIBILITY FOR RADIATIONS (Continued)

ROCK SALT AND SYLVINE AND FLUORITE

TRANSPARENCY FOR THE INFRA-RED.

Thickness 1 cm.

Wave length, microns.	Rock salt.	Sylvine KCl.	Fluorite	
8. 9. 10. 12. 14. 16. 18. 19. 20.7 23.7	0.995 .995 .993 .931 .661 .275 .096 .006	1.000 .988 .995 .975 .936 .862 .758 .585	.844 .543 .164 .010 .000	

PHOSPHORESENCE BY CATHODE RAYS

SUBSTANCES LUMINOUS UNDER EXCITATION BY CATHODE RAYS.

Substance (with calcium oxide).	Wave lengths of principal bands in microns. (Urbain, 1909.)
Ellronium oxide	0.480, 0.489, 0.585, 0.675 0.416-0.426, 0.469 0.589-0.593, 0.613, 0.625 0.392, 0.419-0.429, 0.458 0.488, 0.604, 0.606, 0.626, 0.634

One part.	100 parts.	Wave length.	Color.	Observer.
Antimony oxide Antimony trisul-	calcium oxide	0.560	yellow	Bruninghaus, 1910
phide Bismuth oxide Bismuth sulphate. Manganous car-	calcium oxide calcium sulphate	0.569 0.522 0.640		Bruninghaus, 1910 Bruninghaus, 1910 Bruninghaus, 1910
oxide	bonate calcium oxide			Bruninghaus, 1910 Lecoq & Boisbaudran 1886
sulphate	calcium phosphate Ca ₃ (PO ₄) ₂ calcium sulphate	0.633 0.540		Bruninghaus, 1910 Lecoq & Boisbaudran, 1886
sulphide	calcium sulphide	0.589	yellow	

FLUORESCENCE OF ORGANIC SUBSTANCES IN SOLUTION

EXCITATION BY WHITE LIGHT.

Substance.	Solvent.	Wave length microns.	Observer.
Anthracene Eosine	alcohol or water alcohol water (alkaline) alcohol water water water	0.436 0.589 0.460 0.542 0.632 0.437 0.65	Stark & Meyer, 1907

FLUORESCENCE

GASES AND VAPORS.

Gas or vapor.	Condition.	Excitation.	Color or wave length of emitted light.	Observer.
Iodine	Vapor at or- dinary tem- perature.	$\lambda = .546\mu$	Strongest bands $\lambda = .5460 \mu, .5774 \mu$.5730, .5796	Wood, 1911
Mercury .		Spark between aluminum electrodes	λ = .59003000	Wood, 1909
Oxygen	perature	Mercury arc in quartz tube	Strongest lines \[\lambda = .1849, .1851 \] (ultra-violet)	Streubing, 1910
Potassium	Vapor, 300°– 400° C.	White light	Many strong lines from .6416- .6768, strongest .6544 and .6584	
Rubidium	Vapor, at 270° C.	White light (elec. arc)	Strong red band $\lambda = .69006620$.	Dunoyer, 1912
Sodium	Vapor at 350° C.	White light (elec. arc)	$D, \lambda = .5893$ (mean)	Dunoyer, 1912

SPECIFIC ROTATION

The tables give the specific rotation in degrees for one decimeter; + signifies right-handed rotation, - left. Rotation is for sodium light.

Liquids

Liqui d.	Temp.	Specific Rotation. Degrees.	Observer.		
Amyl alcohol Camphor Cedar oil Citron oil.	204 15 15	$ \begin{array}{r} -5.7 \\ +70.33 \\ -30 \text{ to } -40 \\ +62 \end{array} $	Le Bel Gernez		
Menthol Nicotine Oil of turpentine	35.2 22.7 15	$ \begin{array}{r} -49.7 \\ +150.0 \\ -20 \text{ to } -40 \end{array} $	Paterson & Taylor Molby		

SOLUTIONS

Giving the rotation for one decimeter, for one gram of active substance in one cubic centimeter of solution.

Active substance.	Solvent.	Temp.	Spec. rot.	Observer.
Albumen, egg Camphor Dextrose (β) Glucose (β) Lactose	water ether water water water	15 20 15	-25 to -38 +57. +52.5 +51.4 56.	Darmois, 1910 Tanret, 1896
Maltose Quinine sulphate Sugar cane Tartaric acid	water alcohol water water	20 17 20 20	$+136.9 \\ -57.5 \\ 66.5 \\ +13.44$	Oudemans, 1876 Wendel, 1898

Solids

(Rotation per millimeter.)

Substance.	Rotation.	Substance.	Rotation.
Cinnabar (HgS)	32.5	Quartz	21.7
Lead hyposulphate.	5.5	Sodium bromate	2.8
Potassium	8.4	Sodium chlorate	3.13

MAGNETO OPTIC ROTATION

Verdet's Constant: $\rho = \frac{\alpha}{tH \cos \theta}$

The specific power of magnetic rotation ρ , is expressed in the above formula, where α is the total angle of rotation in minutes, t the thickness of the substance in centimeters, H the magnetic field intensity in gausses and θ the angle between the direction of the magnetic field and the path of light.

SOLIDS For sodium light. (Values from the Smithsonian Tables.)

Substance.	Temp. °C.	Verdet's Constant, Minutes.	Observer.
Amber Blende Diamond. Fluorspar. Glass, crown. flint flint, dense Quartz (to axis) Rock salt. Selenium Sylvine	15 15 15 18–20 15 18–20 15 15	0.0095 0.2234 0.0127 0.0087 0.0203 0.0420 0.0647 0.0172 0.0355 0.4625 0.0283	Quincke Becquerel Becquerel Becquerel Quincke Becquerel Quincke Becquerel Becquerel Becquerel Becquerel

LIQUIDS For sodium light.

The state of the s	For souru	m ngnv.		
Substance.	Density g/cm.3	Temp.	Verdet's Constant, minutes.	Observer.
Acetone	0.7947	20	0.0113	Jahn
Acids: (see also solutions in water) acetic hydrochloric	$1.0561 \\ 1.2072$	21 15	0.0105 0.0224	Perkin Perkin
hydrobromic	1.7859	15	0.0343	Perkin
nitricsulphuric	1.5190	13 15	$0.0070 \\ 0.0121$	Perkin Becquerel
sulphurousAlcohols: amyl		15 15	$0.0153 \\ 0.0131$	Becquerel Becquerel
ethyl	$0.7929 \\ 0.7915$	18-20 18-20	0.0107 0.0094	Quincke Quincke
methyl Benzine	0.8796	20	0.0297	Jahn
Carbon disulphide	1.2644 1.4	18-20	0.0441 0.0164	Quincke Jahn
Phosphorus (melted) Sulphur (melted)			0.1316 0.0803	Becquerel Becquerel
Toluene		28.4	0.0269	Becquerel
WaterXylene	1	1 4 -	0.0221	Schönrock Becquerel
Zinc bichloride			0.0437	Becquerel

MAGNETO OPTIC ROTATION (Continued)

AQUEOUS SOLUTIONS
For sodium light.

Salt.	Density, g/cm³.	Temp.	Verdet's constant, minutes.	Observer.
Acids: hydrochloric	1.1856	15	0.0219	Perkin
hydrochloric	1.1279	15	0.0193	Perkin
hydrochloric	1.0323	20	0.0150	Jahn
nitric	1.3560	20.	0.0105	Perkin
Ammonia	0.8918	15	0.0153	Perkin
Bromides: barium	1.5399	20	0.0215	Jahn
potassium	1.1424	20	0.0163	Jahn
sodium	1.1351	20	0.0165	Jahn
Carbonate of potas-			1.1	
sium	1.1960	20	0.0140	Jahn
Carbonate of sodium.	1.1006	20	0.0140	Jahn
Chlorides: barium	1.2897	20	0.0168	Jahn
cadmium	1.3179	20	0.0185	Jahn
calcium	1.1504	20	0.0165	Jahn
iron (ferrous)	1.4331	15	0.0025	Becquerel
iron (ferric)	1.6933	15	-0.2026	Becquerel
lithium	1.0619	20	0.0145	Jahn
mercury	1.0381	- 16	0.0137	Schönrock
potassium	1.6000	15	0.0163	Becquerel
sodium	1.2051	15	0.0180	Becquerel
zinc	1.2851	15	0.0196	Verdet
Bichromate of potas-	•		0.0200	, craci
sium	1.0786	15	0.0126	Verdet
Iodides: potassium	1.6743	15	0.0338	Becquerel
Sulphates: barium	1.1788	20	0.0134	Jahn
potassium	1.0475	20	0.0133	Jahn
sodium	1.0661	20	0.0135	Jahn

GASES For sodium light.

- 0- Boulding Ingilly.								
Substance.	Pressure.	Temp.	Verdet's constant, minutes.	Observer.				
Atmospheric air Carbon dioxide. Carbon disulphide. Ethylene. Nitrogen. Nitrous oxide. Oxygen. Sulphur dioxide. Sulphur dioxide.	atmos. 74 cms. atmos. atmos. atmos. atmos. atmos.	ordinary ordinary ordinary ordinary ordinary	6.83×10 ⁻⁶ 13.00 23.49 34.48 6.92 16.90 6.28 31.39 38.40	Becquerel Becquerel Bichat Becquerel Becquerel Becquerel Becquerel Becquerel Bichat				

MISCELLANEOUS TABLES

α RAYS

The α rays are thought to be positively charged particles, moving with a high velocity. They are only slightly deviable by a strong magnetic or electric field and have small penetrating power. The initial velocity has been found to be about $2\times10^\circ$ cms./s. The mass of each particle is 6.2×10^{-24} g. (Rutherford and Geiger, 1910.) The charge carried by each, as measured by the same authors, is 9.3×10^{-10} electro static units.

B RAYS

The β rays are similar to the cathode rays produced by an electric discharge in a vacuum tube. They are judged to be negatively charged particles moving with high velocity. They are much more penetrating than the α rays, and are strongly deviated by a magnetic or electric field. The velocity of the moving particle is in the neighborhood of that of light, about 2×10^{10} cm./s. The charge on each particle is approximately 4.7×10^{-10} electro static units.

γ RAYS

The γ rays are similar to the X rays and are not deviable by magnetic or electric fields. They are more penetrating than either the α or β rays, and are considered to be of the nature of wave pulses in the ether.

RÖNTGEN RAYS

Scale of Hardness

The "radiochrometer" of Benoist consists of a disk of silver 0.11 mm. thick, which is surrounded by 12 sectors of aluminum ranging in thickness from 1 to 12 millimeters. The sector which shows the same absorption as the central disk gives the degree of hardness according to Benoist. The relation of this to other scales is shown below.

Benoist	2	3	4	5	6	7	8
Wehnelt1.8	3-2	5	6.5	7.5	8	9	10-11
Walter2.0							

The absorption of rays is very nearly proportional to the mass of substance penetrated.

IONIZATION DUE TO RÖNTGEN RAYS IN VARIOUS GASES

From Smithsonian Physical Tables

	Relative i	. •		
Gas	Soft rays, Strutt	Hard rays, Eve	Density	
Hydrogen Air Oxygen Carbon dioxide Cyanogen Sulphur dioxide Chloroform Methyl iodide Carbon tetrachloride Hydrogen sulphide	0.11 1.00 1.39 1.60 1.05 7.97 31.9 72.0 45.3	0.42 1.00 2.3 4.6 13.5 4.9 0.9	0.069 1.00 1.11 1.53 1.86 2.19 4.32 5.05 5.31 1.18	

MEAN ABSORPTION COEFFICIENTS

(From Smithsonian Physical Tables)

If I_0 be the intensity of a parallel beam of homogeneous radiation incident normally on a plate of absorbing material of thickness t, then $I = I_0 e^{-\lambda x}$ gives the intensity I at the depth x. Because of the great homogeneity of the secondary X-rays they were used in the determination of the following coefficients. The coefficients λ have been divided by the density d.

ABSORBER

Radiator	С.	Mg.	Al.	Fe.	Ni.	Cu.	Zn.	Ag.	Sn.	Pt.	Au.
Cr. Fe	15.3 10.1 80.0 6.6 5.2 4.3 2.5 2.0	126. 80. 64. 52. 41. 35. 19. 16.	136. 88. 72. 59. 48. 39. 22. 19.	104. 66. 67. 314. 268. 221. 134. 116.	129. 84. 67. 56. 63. 265. 166. 141.	143. 95. 75. 62. 53. 56. 176. 150. 24.	170. 112. 92. 74. 61. 50. 204. 175.	580. 381. 314. 262. 214. 175. 105. 88. 13.	714. 472. 392. 328. 272. 225. 132. 112.	(517.) 340. 281. 236. 194. 162. 106. 93. 56.	(507.) 367. 306. 253. 210. 178. 106. 100. 61.

X-RAY SPECTRA AND ATOMIC NUMBERS

(From Smithsonian Physical Tables)

Kaye has shown that an element excited by sufficiently rapid cathode rays emits characteristic Rontgen radiations. These have been analyzed and the wave lengths obtained by Moseley (Phil. Mag. 27, p. 703, 1914) using a crystal of potassium ferrocyanide as a grating. The "K" series of elements shows 2 lines α and β , the "L" series several. The wave lengths of the α and β lines of each series are given in the following table. $Q_K = (v/\frac{2}{4} v_0)^{\frac{3}{2}}$; $Q_L = (v/5/38 v_0)^{\frac{1}{2}}$ where v is the frequency of the α line and v0 the fundamental Rydberg frequency. The atomic number for the K series = $Q_K + 1$; for the L series = $Q_L + 7.4$ approximately. $v_0 = 3.29 \times 10^{10}$.

Element	a line λ×10 ⁸ cm.	Q _K	Atomic number N	$\begin{vmatrix} \beta & \text{line} \\ \lambda \times 10^8 & \text{cm.} \end{vmatrix}$	Element	α line $\lambda \times 10^8$ cm.	$Q_{\mathbf{L}}$	Atomic number N	β line $\lambda \times 10^8$ cm.
58 Al	8.364 7.142 4.750 3.759 3.368 2.758 2.519 2.301 2.111 1.946 1.798 1.662 1.549 1.445 0.838	12.0 13.0 16.0 18.0 19.0 21.0 22.0 23.0 24.0 25.0 26.0 27.0 28.0 29.0 38.1	13 14 17 19 20 22 23 24 25 26 27 28 29 30 39	7.912 6.729 3.463 3.094 2.524 2.297 2.093 1.818 1.765 1.629 1.506 1.402 1.306	Zr. Cb. Mo. Ru. Rh. Pd. Ag. Sn. Sb. La. Ce. Pr. Md. Sa. Eu. Eu.	6.091 5.749 5.423 4.861 4.622 4.385 4.170 3.619 3.458 2.567 (2.471) 2.382 2.208 2.130	32.8 33.8 34.8 36.7 37.7 38.7 39.6 42.6 43.6 49.5 50.6 51.5 54.5 55.5	40 41 42 44 45 46 47 50 51 57 58 59 60 62 63	5.507 5.187 4.660 4.168 3.245 2.471 2.360 2.265 2.175 2.008 1.925

X-RAY SPECTRA AND ATOMIC NUMBERS

(From Smithsonian Physical Tables)

Element	$\begin{array}{c} \mathfrak{a} \; \mathrm{line} \\ \lambda \times 10^{8} \; \mathrm{cm}. \end{array}$	Qĸ	Atomic number N	$\beta_{ m line} \ \lambda \times 10^8 { m cm}.$	Element	$\lambda \times 10^8 \text{ cm}.$	QL	Atomic number N	β line $\lambda \times 10^8$ cm.
Zr	0.794 0.750 0.721 0.638 0.584 0.560	39.1 40.2 41.2 43.6 45.6 46.6	40 41 42 44 46 47		Gd. Ho. Er. Ta. W. Os. Ir. Pt. Au.	2.057 1.914 1.790 1.525 1.486 1.397 1.354 1.316 1.287	56.5 58.6 60.6 65.6 66.5 68.5 69.6 70.6 71.4	64 66 68 73 74 76 77 78 79	1.853 1.711 1.591 1.330 1.201 1.155 1.121 1.092

Moseley's summary condensed is as follows: Every element from Al to Au is characterized by an integer N which determines its X-ray spectrum; N is identified with the number of positive units of electricity in its atomic nucleus. The order of these atomic numbers (N) is that of the atomic weights except where the latter disagrees with the order of the chemical properties. Known elements correspond with all the numbers between 13 and 79 except 3. There are here 3 possible elements still undiscovered. The frequency of any line in the X-ray spectrum is approximately proportional to A $(N-b)^2$, where A and b are constants. All X-ray spectra of each series are similar in structure differing only in wave lengths.

RADIOACTIVITY RADIOACTIVE SUBSTANCES

A list of the fully recognized radioactive substances and transformation products. In each series, each product is obtained from the substance preceding. The table gives also (1) the rays emitted, (2) the transformation period, that is, the time taken for half the active product to undergo change and (3) the radioactive constant, λ , the proportion of active matter which undergoes change each second.

Substance	,	Properties, etc.	Atomic wt.	Rays	Transforma- tion period T	Transformation constant
Uranium I		Soluble in excess (NH ₄) ₂ CO ₃ . One gram emits 2.37×10 ⁴ a particles per second	238.5 234.5	a a	5×10° yrs. 2×10° yrs.?	1.4×10 ⁻¹⁰ yrs. 7×10 ⁻⁷ yrs.
		ically allied to Th	230.5	β, λ	24.6 days	0.0282 days
Uranium Y Ionium		Probably branch product exists in small quantity Nonseparable from Th. Soluble in excess of ammon. oxalate. Carried down by H ₂ O ₂ in pres-	230.5?	β	(21.5) 1.5 days	0.46 days
		ence of U salts	230.5	α	2×10^{5} yrs. (3×10^{4})	3.5×10 ⁻⁶ yrs.
Radium	•••••	Chemical properties of Ba. Characteristic spect. Spontaneously luminous. RBr ₂ and RCl ₂ less soluble than BaBr ₂ and BaCl ₂ . One gr. in equilibrium emits 13.6×10 ¹⁰ a particles per sec.	226.4	α, β	2000 yrs. (1750)	3.5×10 ⁻⁶ yrs.
Radium emanation	n (Niton)	Inert gas, density 111 H. Boiling point -65° C., density of solid 5-6	222	a	3.85 days	0.180 days
Radium A	•••••	Acts as solid. Has + charge, deposits on cathode in electric field. Volatile at 800-900° C. Soluble in strong acids	218	a	3 min.	0.231 min.

Substance	Properties, etc.	Atomic wt.	Rays	Transformation period	Transforma- tion constant λ
Radium B	Like Ra A. Volatile 600-700° C. Precipitated by BaSO4. Separated pure by recoil from Ra A. Physically like Ra A, chemically like Ra B. Vol-	214	β, γ	26.8 min.	0.0258 min.
Radium C2	atile 800–1300° C. Deposited on Cu and Ni. Perhaps a mixture Probably branch product. Separated by recoil from Ra C	214 210?	α, β, γ β	19.5 min.	0.0355 min.
Radium D	Radio lead. Separated with Pb. Not separable. Volatile below 1000° C. Soluble in strong acids. Reactions analogous to Pb. Volatile at red heat.	210	Slow $\boldsymbol{\beta}$	16.5 yrs.	0 042 yrs.
Radium E ₁	Soluble in cold acetic acid	210	β	6.2 days (5 days) 4.8 days	$\begin{array}{c c} 1.3 \times 10^{-6} \text{ sec.} \\ (.139 \text{ day}) \\ 1.7 \times 10^{-6} \text{ sec.} \end{array}$
Radium F (Polonium)	Separated with Bi. Probably changes to Pb. Volatile about 1000° C	210	α	136 days (140)	0.00510 day
Actinium	Probably branch product Ur series. Chemically allied to lanthanum. Precipitated by oxalic acid in acid solutions. With thorium and rare earths.		None		
Radio-actinium	Slightly volatile at high temperature. Insoluble in NH ₄ OH. Not precipitated by NH ₄ OH. Chemical properties analogous to Ra.		α, β α	19.5 days	0.0355 day
Actinium emanation Actinium A	Inert gas, condenses -120 to -150		ā	3.9 sec. 0.002 sec.	0.178 sec. 350 sec.
Actinium CActinium D			$\begin{array}{c c} \operatorname{Slow} \beta \\ \alpha \\ \beta + \gamma \end{array}$	36 min. 2.1 min. 4.7 min.	0.0193 min. 0.33 min. 0.147 min.

RADIOACTIVITY (Continued) RADIOACTIVE SUBSTANCES

A list of the fully recognized radioactive substances and transformation products. In each series, each product is obtained from the substance preceding. The table gives also (1) the rays emitted, (2) the transformation period, that is, the time taken for half the active product to undergo change and (3) the radioactive constant, λ , the proportion of active matter which undergoes change each second.

Substance	Properties, etc.	Atomic wt.	Rays	Transforma- tion period	Transformation constant λ
Thorium	Volatile in arc. Colorless salts not spontaneous by phosphorescent salts precipitated by NH ₄ OH and oxalic acid.	232	a	1.3×10 ¹⁰ yrs. (3×10 ¹⁰)	5.3×10 ⁻¹¹ yr
Mesothorium 1	Chemical properties analogous to Ra, from which it is inseparable. Chemically allied to thorium, from which it is non-	228 228	None $\boldsymbol{\beta}, \boldsymbol{\gamma}$	5.5 yrs. 6.2 yrs.	0.126 yr. 0.112 yr.
Thorium X	separable. Chemically analogous to Ra. Soluble in NH4OH. Inert gas. Condenses just above —120° C	228 224 220	α, β α	2 yrs. 3.65 days 54 sec.	0.347 yr. 0.190 day 0.0128 sec.
Thorium B	Volatile under 630° C. Positively charged. Sol- uble in strong acids	216	a	0.14 sec.	4.95 sec.
Thorium C	630° C. and below 730° C	212 212	β, γ α, β	10.6 hours 60 min.	0.0654 hour 0.0118 min.
Thorium D	products respectively from Th C	212 208 39.1 85.5	$eta_{oldsymbol{eta}}^{oldsymbol{a}}\gamma$	Short 3.1 min.	0.224 min.

RADIOACTIVITY, PROPERTIES OF RAYS

Range of the a particle at 76.0 cm. and 15° C. Initial velocity is deduced from formula $V^s = aR$, where R is range. Velocity for RaC of range 7.06 at 20° is assumed 2.06×10^9 cm. per sec. or $v = 1.077r^{1/3}$.

If μ is the coefficient of absorption, d the thickness of absorbing medium, I_0 the intensity before passage, — the intensity after passage $I = I_0 e^{-d\mu}$. μ for β rays is in terms of cms. of Al; for γ rays, cms. of lead.

		a Ray	ys	•	β Rays		
Substance	Range cm.	Initial velocity cm. per sec.	Kinetic energy ergs.	Total number of ions produced by a part.	Absorption coefficient (Al)	Velocity, vel. of light taken as 1	Absorption coefficient (Pb)
Uranium 1	2.50 2.90	1.45×109 1.53	0.65×10 ⁻⁵ 0.72	1.26×10 ⁵ 137	15510	Wide range	0.72
Ionium Radium Radium Radium emanation Radium A Badium B Radium Cı	3.30 4.16 4.75 6.94	1.56×10° 1.61 1.73 1.82 	0.75×10 ⁻⁵ 0.79 0.92 1.01	1.40×10 ⁵ 1.50 1.74 1.88	312 13, 80, 890 13, 53	0.52-0.65 	4 to 6 0.50
Radium C2Radium DRadium ERadium F (Polonium)		1.68	0.87	1.63	0.33, 0.39 43	Wide range	

RADIOACTIVITY, PROPERTIES OF RAYS (Continued)

	•	a_R	ays		β Ray	78	γ Rays
Substance	Range cm.	Initial velocity cm. per sec.	Kinetic energy ergs.	Total number of ions produced by a part.	Absorption coefficient (Al)	Velocity, vel. of light taken as 1	Absorption coefficient (Pb)
Actinium Radio-actinium Actinium X Actinium X Actinium A Actinium B Actinium B Actinium C Actinium D	4.80 4.40 5.70 6.50	1.83×10° 1.76 1.94×10° 2.02	1.02×10 ⁻⁵ 0.94 1.15×10 ⁻⁵ 1.25	1.89×10 ⁵ 1.79 2.10×10 ⁵ 2.27 2.02	140 		0.217 (AI)
Thorium Mesothorium 1 Mesothorium 2 Radiothorium 2 Thorium X Thorium anation Thorium A Thorium B Thorium C Thorium C	3.87 5.7 5.5 5.9 5.0 8.6	1.50×10° 1.70 1.94 1.90 1.97 1.85 2.22	0.69×10 ⁻⁶ 0.89 1.15 1.10 1.19 1.05 1.53	1.32×10 ⁵ 1.66 2.1 2.0 2.2 1.9 2.0	20–385 330. 110. 15.6 24.8	0.37-0.66 .4751 	0.53 Weak
PotassiumRubidium	,			•••••	38, 102 380, 1020		<u> </u>

DECLINATION OF THE SUN AND EQUATION OF TIME

Dat	te.	Decli- nation.	Diff. 1 day.	Equation of time.	Date.	Decli- nation.	Diff. 1 day.	Equati of tim	
Jan. Feb.	0 10 20 30 9	-23.1 -22.0 -20.2 -17.7 -14.7	0.11 0.18 0.25 0.30 0.34	m s + 3 15 + 7 42 +11 13 +13 32 +14 27	July 9 19 29 Aug. 8 18	+22.4 +20.9 +18.8 +16.2 +13.2	0.15 0.21 0.26 0.30 0.34	m + 4 + 5 + 6 + 5 + 3	8 49 58 13 27 44
Mar.	19 1 11 21 31	$\begin{array}{c} -11.3 \\ -7.6 \\ -3.8 \\ +0.2 \\ +4.1 \end{array}$	0.37 0.38 0.40 0.39 0.38	+14 5 +12 36 +10 15 + 7 23 + 4 19	Sept. 7 17 27 Oct. 7	$\begin{array}{c} + 9.8 \\ + 6.2 \\ + 2.3 \\ - 1.5 \\ - 5.4 \end{array}$	0.36 0.39 0.39 0.38 0.38	+ 1 - 1 - 5 - 8 -12	11 59 26 55 4
Apr. May	10 20 30 10 20	+ 7.9 +11.4 +14.7 +17.6 +19.9	0.35 0.33 0.29 0.23 0.18	+ 1 23 - 1 5 - 2 52 - 3 48 - 3 45	17 27 Nov. 6 16 26	-9.2 -12.7 -15.9 -18.7 -20.9	0.35 0.32 0.26 0.22 0.16	-14 -16 -16 -15 -12	31 0 16 7 36
June	30 9 19 29	+21.7 +22.9 +23.4 +23.3	0.12 0.05 0.01 0.09	$\begin{vmatrix} -2 & 49 \\ -1 & 11 \\ +0 & 55 \\ +3 & 2 \end{vmatrix}$		-22.5 -23.3 -23.4 -22.6	0.08 0.01 0.08	- 8 - 4 + 0 + 5	54 17 41 34

MEAN PLACES OF STARS

Jan. 0, 1913 (Ephemeris, 1913.)

Name of star.	Right	Ascen.	Annual Var.	Dec	lination.	Annual Var.
a Andromeda (Alpheratz). a Ursse Min. (Polaris). a Arietis. a Persei. a Tauri (Aldebaran). a Aurigæ (Capella). β Orionis (Rigel). ε Orionis. β Aurigæ. Canis Majoris. c Canis Majoris (Sirius). ε Canis Majoris (Sirius). ε Canis Majoris. α Can. Min. (Procyon). α Hydræ. α Leonis (Regulus). α Ursæ Majoris. β Leonis (Denebola). ε Ursæ Majoris (Alioth). α Virginis (Spica). α Boötis (Arcturus). β Ursæ Minoris. α Scorpii (Antares). λ Scorpii α Ophiuchi. ε Ursæ Minoris.	12 50 13 20 14 11 14 50 16 24 17 27 17 30 18 (19.0 15.9 6.3 55.6 15.6 121.4 47.9 12.4 12.5 12.4 12.5 12.4 12.5 12.4 12.5 12.4 12.5 12.4 12.5	+28.06 +3.27 +3.427 +3.44.43 +2.88 +3.04 +2.64 +2.36 +2.36 +3.14 +2.95 +3.16 +2.65 +3.16 +2.65 +3.16 +2.65 +3.16 +2.65 +3.16 +2.78	+88 +29 +16 +45 - 1 +447 -16 -28 +12 +62 +15 +50 +19 +726 -37 +126 +86	, "36 36 55 55 29 4 38 2 15 24 0 6 15 24 0 6 15 14 2 15 24 0 6 15 14 2 15 2 15 11 10 26 54 25 54 28 25 54 28 25 54 28 25 54 28 25 28 28 28 28 28 28 28 28 28 28 28 28 28	+18. 58 +17. 12. 98 + 7. 41 + 3. 89 + 4. 31 + 2. 46 + 0. 59 - 1. 55 - 19. 59 - 17. 52 - 19. 50 - 18. 85 - 18. 85 - 14. 72 - 18. 83 - 14. 72 - 18. 83 - 14. 72 - 18. 83 - 14. 72 - 18. 18. 18. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19
α Lyræ (Vega)α Cygni (Deneb)α Aquilæ (Altair)α Pisc. Aust. (Fomalhaut)α Pegasi (Markab)	20 38 19 40 22 52	3 .27.9 3 32.3 2 50.8	$\begin{array}{c} + 2.04 \\ + 2.93 \\ + 3.32 \end{array}$	+44 + 8 -30	5 1.1	

APPROXIMATE CORRECTION FOR REFRACTION

FOR ASTRONOMICAL OBSERVATIONS

Corresponding to temperature of 50° F., and to a barometric pressure of 29.6 inches.

(From Young's General Astronomy, by permission.)

Altitude.	Refraction.	Altitude.	Refraction.	Altitude.	Refraction.
0 1 2 3 4	34 50 24 22 18 06 14 13 11 37	11 12 13 14 16	4 47.7 4 24.5 4 04.4 3 47.0 3 18.2	30 35 40 45 50 55	7 " 1 39.5 1 22.1 1 08.6 57.6 48.3
5 6 7 8 9 10	9 45 8 23 7 19 6 29 5 49 5 16	18 20 22 24 26 28	2 55.5 2 37.0 2 21.6 2 08.6 1 57.6 1 48.0	55 60 65 70 80 90	40.3 33.2 26.8 20.9 10.2 0.0

For every 5° F. by which the temperature is less than 50° F., add one per cent to the tabular refraction, and decrease it in the same ratio for temperatures above 50° F.

Increase the tabular refraction by three and a half per cent for every inch of barometric pressure above 29.6 inches, and decrease it in the same ratio below that point. These corrections for temperature and pressure, though only approximate, will give a result correct within 2" except in extreme cases.

DATA IN REGARD TO THE EARTH

(Radius, U. S. C. & G. Survey.)

Equatorial radius, 6,378,388 meters, 3,963.399 miles. Polar radius, 6,365,909 meters, 3,949.992 miles.

1° latitude at the equator = 68.70 miles.

1° latitude at the pole = 69.41 miles.

Mean density of the earth, 5.52 g. per cu.cm.

Mean distance from the earth to the sun

149,500,000 kilometers, 92,900,000 miles.

Mean distance from the earth to the moon 384,393 kilometers, 238,854 miles.

DATA CONCERNING THE SOLAR SYSTEM

(Values from Young's General Astronomy, by permission.)

Name.	Mean dis. from sun, millions of miles.	Period in years.	Mean dia. in miles.	Mass, the earth =1.	Mean density, water = 1.
Mercury	36.0	0.24	3030	0.047	4.70
Venus	67.2	0.62	7700	0.82	4.94
The earth	92.9	1.00	7917.6	1.000	5.55
Mars	141.5	1.88	4230	0.107	3.92
Jupiter	483.3	11.86	86500	317.7	1.32
Saturn	886.0	29.46	73000	94.8	0.72
Uranus	1781.9	84.02	31900	14.6	1.22
Neptune	2791.6	164.78	34800	17.0	1.11
Sun			866400	332000.	1.39
Moon			2163	0.0123	3.39

METEOROLOGICAL DATA

THE ATMOSPHERE

Total mass, estimated by Elkholm; 5.2×10^{21} grams, 11.4×10^{18} pounds. Composition:
The total volume =1.

Substance.	Elevation.						
Substance.	Sea level.	10000 meters.	50000 meters.				
Argon. Carbon dioxide. Helium. Hydrogen. Neon. Nitrogen. Oxygen.	0.009 0.0003 0.000015 0.0001 0.000015 0.780 0.210	0.006 0.00015 0.0000 0.00035 0.00002 0.812 0.182	0.0003 0.0000 0.00126 0.136 0.0000 0.792 0.070				

Atmospheric Potential

^{*}The potential of the atmosphere increases with the elevation 130 to 200 volts per meter.

VELOCITY OF SEISMIC WAVES IN THE EARTH'S CRUST

	4 to 14 kilometers per sec.
Transverse	3 to 10 kilometers per sec.

Angular Radius of Halos and Rainbows

Coronæ due to small water drops	1° to 10°
Small halo, due to 60° angles of ice crystals	22°
Large halo, due to 90° angles of ice crystals	46°
Rainbow, primary	41° 20′
Rainbow, secondary	52° 15′

SOLAR CONSTANT

The energy falling on one sq.cm. area at normal incidence equals 1.92 small calories per minute.

ACCELERATION DUE TO GRAVITY, LATITUDE, LONGITUDE AND ELEVATION UNITED STATES

Station.	I	atitud	le.	Longitude	(Gree	nwich).	Elevation, meters.	cm/sec.2
•		,	"		,	"	-	
Atlanta, Ga	33	44	58	84	23	18	324	979.523
Austin, Iex. (University)	30	17	11	97	44	14	189	
Austin, 1ex. (Capitol)	30	16	30	97	44	16	170	979.282
Baltimore, Md	39	17	50	76	37	30	30	979.287
Boston, Mass	42	2i	33	71	03	50	22	980.096
Calias, Me	45	ĩi	11	67	16	54		980.395
Cambridge, Mass	42	22	48	71	07	45	38	980.630
Charleston S C	32	47	14	79			14	980.397
Charleston, S. C. Charlottesville, Va.	38	02	01	79	56	03	6	979.545
Chicago, Ill.	41	47	25	78	30	16	166	979.937
Cincinnati, Ohio.				87	36	03	182	980.277
Cleveland Ohio	39	08	20	84	25	20	245	980.003
Cleveland, Ohio.	41	30	22	81	36	38	210	980.240
Colorado Springs, Colo	38	50	44	104	49	02	1841	979.489
Deer Park, Md	39	25	02	79	19	50	770	979.934
Denver, Colo.	39	40	36	104	56	55	1638	979.608
Ellsworth, Kansas	38	43	43	98	13	32	469	979.925
Ft. Egbert, Eagle, Alaska	64	47	22	141	12	24	174	982.182
Galveston, Texas. Grand Canyon, Wyo.	29	18	12	94	47	29	1 3	979.271
Grand Canyon, Wyo	44	43	-16	110	29	44	2386	979.898
Grand Junerion, Colo	39	04	09	108	33	56	1398	979.632
Green River, Utah.	38	59	23	110	09	56	1243	
Gunnison, Colo	38	32	33	106	56	02	2340	979.635
Ithaca, N. Y.	42	27	04	76	29	00		979.341
Kansas City, Mo	39	05	50	94	35	21	247	980.299
Key West, Fla	24	33	33	81	48	25	278	979.989
Laredo, Texas.	$\frac{27}{27}$	30	29	99			1 1	978.969
Little Rock, Ark	34	44	57		31	12	129	979.081
Lower Geyser Basin, Wyo	34 44	33	21	92	16	24	89	979.720
Madison, Wis. (Univ. of Wis.)				110	48	08	2200	979.931
New Orleans La	43	04	35	89	24	00	270	980.364
New Orleans, La	29	56	58	90	04	14	2	979.323
New York, N. Y.	40	48	27	73	57	43	38	980.266
Norris Geyser Basin, Wyo	44	44	09	110	42	02	2276	979.949

ACCELERATION DUE TO GRAVITY, LATITUDE, LONGITUDE AND ELEVATION (Continued) UNITED STATES (Continued)

	UNITED STATES	(Conunaca)		
Station.	Latitude.	Longitude (Greenwich).	Elevation, meters.	cm/sec².
Philadelphia, Pa. Pike's Peak, Colo. Pleasant Valley Junction, Utah Princeton, N. J. Salt Lake City, Utah San Francisco, Cal. St. Louis, Mo. Terre Haute, Ind. Wallace, Kans. Washington, C. & G. S. Washington, Smithsonian.	38 50 20 39 50 47 40 20 57 40 46 04 37 47 00 38 38 03 39 28 42 38 54 44 38 53 20	75 11 40 105 02 02 111 00 46 74 39 28 111 53 46 124 46 00 90 12 13 87 23 49 101 35 26 77 00 32 77 01 32 71 48 28	16 4293 2191 64 1322 114 154 151 1005 14 10	980. 195 978. 953 979. 511 980. 177 979. 802 979. 965 980. 000 980. 071 979. 754 980. 111 980. 113 980. 323

FOREIGN CITIES

Station.	Latitude.	Longitute (Paris).	Elevation, meters.	cm/sec ² .
Berlin Calcutta, India Cape of Good Hope, Africa Honolulu, Hawaii London (Greenwich) Madrid. Melbourne, Australia Paris Rio de Janeiro, Brazil Rome St. Petersburg. Shanghai, China Stockholm Tokio, Japan Valparaiso, Chili.	-33 56 +21 18 +51 17 +40 24 -37 50 +48 50 -22 54 +41 54 +59 56 +31 12 +59 21 +35 43	$\begin{array}{c} \circ \\ +11 \\ +86 \\ 1 \\ +16 \\ 9 \\ -160 \\ 12 \\ -2 \\ 12 \\ -6 \\ 11 \\ +142 \\ 38 \\ -6 \\ 12 \\ -6 \\ 12 \\ -6 \\ 12 \\ -6 \\ 12 \\ -6 \\ 12 \\ -6 \\ 12 \\ -6 \\ 12 \\ -6 \\ 12 \\ -6 \\ 12 \\ -6 \\ 12 \\ -6 \\ 12 \\ -6 \\ -7 \\ -6 \\ -7 \\ -7 \\ -7 \\ -7 \\ -7$	38 6 11 3 48 656 27 60 45 59 2 8 45 18 0	981.287 978.822 979.659 978.966 981.188 979.985 980.943 978.801 980.350 981.938 979.43 981.943 979.630

MOMENT OF INERTIA FOR VARIOUS BODIES

The mass of the body is indicated by m.

Body.	Axis.	Moment of inertia	
Uniform thin rod	Normal to the length, at one end	m^{l^2}	
Uniform thin rod	Normal to the length, at the center	$m\frac{l^2}{12}$	
Thin rectangular sheet, sides a and b	Through the center parallel to b	$m\frac{a^2}{12}$	
Thin rectangular sheet, sides a and b	Through the center perpendicular to the sheet	$m\frac{a^2+b^2}{12}$	
Thin circular sheet of radius r	Normal to the plate through the center	$m\frac{r^2}{2}$	
Thin circular sheet of radius r	Along any diameter	$m\frac{r^2}{4}$	
Thin circular ring. Plane figure formed by two con- centric circles of radius r ₁ and r ₂	Through center normal to plane of ring	$m\frac{r_1^2+r_2^2}{2}$	
Thin circular ring. Plane figure formed by two concentric circles of radius, r_1 and r_2	Any diameter	$m\frac{r_1^2+r_2^2}{4}$	
Rectangular parallelopiped, edges a , b , and c	Through center perpendicular to face ab, (parallel to edge c)	$m\frac{a^2+b^2}{12}$	
Sphere, radius r	Any diameter	$m_{\overline{5}r^2}^2$	
Spherical shell, external radius, r_1 internal, radius r_2	Any diameter	$m_{\bar{5}}^{2} \frac{(r_{1}^{5} - r_{2}^{5})}{(r_{1}^{3} - r_{2}^{3})}$	

MOMENT OF INERTIA FOR VARIOUS BODIES (Continued)

The mass of the body is indicated by m.

	Body.	Axis.	Moment of inertia.
	Spherical shell, very thin, mean radius, r	Any diameter	$m\frac{2r^2}{3}$
	Right circular cylinder of radius r , length l	The longitudinal axis of the solid	$m\frac{r^2}{2}$
	Right circular cylinder of radius r , length l	Through center perpendicular to the axis of the figure, (transverse diameter)	$m\left(\frac{r^2}{4} + \frac{l^2}{12}\right)$
Ć٦	Hollow circular cylinder, length l , external radius r_1 internal radius r_2	The longitudinal axis of the figure	$m\frac{(r_1^2+r_2^2)}{2}$
521	Thin cylindrical shell, length l , mean radius, r	The longitudinal axis of the figure	mr^2
	Hollow circular cylinder, length l , external radius r , internal radius r_2	Transverse diameter	$m\left[\frac{r_1^2+r_2^2}{4}+\frac{l^2}{12}\right]$
	Hollow circular cylinder, length l, very thin, mean radius r	Transverse diameter	$m\left(\frac{1}{2}+\frac{1}{12}\right)$
	Elliptic cylinder, length l , transverse semiaxes a and b	Longitudinal ax.	$m\left(\frac{a^2+b^2}{4}\right)$
٠.	Right cone, altitude h, radius of base r	Axis of the figure	$m\frac{3}{10}r^2$
	Spheroid of revolution, equatorial radius r	Polar axis	$m\frac{2r^2}{5}$
	Ellipsoid, axes 2a, 2b, 2c	Axis 2a	$m\frac{(b^2+c^2)}{5}$

ACCELERATION DUE TO GRAVITY AND LENGTH OF THE SECONDS PENDULUM

FOR SEA LEVEL AT DIFFERENT LATITUDES

Latitude.	cm./sec. ²	ft./sec.2	Length in cm.	Length in ins
0° 5 10 15 20	977.989 8.029 .147 .339 .600	32.0862 .0875 .0916 .0977 .1062	99.0910 .0950 .1079 .1265 .1529	39.0121 .0137 .0184 .0261 .0365
25 30 31 32 33	978.922 9.295 .374 .456 .538	32.1168 .1290 .1316 .1343 .1370	99.1855	39.0493 .0642
34 35 36 37 38	979.622 .707 .793 .880 .963	32.1398 .1425 .1454 .1490 .1511	. 2651	.0806
39 40 41 42 43	980.057 .147 .237 .327 .418	32.1540 .1570 .1607 .1630 .1659	.3096	.0982
44 45 46 47 48	980.509 .600 .691 .782 .873	32.1688 .1719 .1748 .1778 .1808	.3555	.1163
49 50 51 52 53	980.963 1.053 .143 .231 .318	32.1838 .1867 .1896 .1924 .1954	99.4014	39.1344
54 55 56 57 58	981.407 .493 .578 .662 .744	32.1983 .2011 .2039 .2067 .2094	.4459	.1520
59 60 65 70 75	981.825 .905 2.278 .600 .861	32.2121 .2147 .2276 .2375 .2460	.4876 .5255 .5581 99.5845	.1683 .1832 .1960 39.2065
80 85 90	983.053 .171 .210	32.2523 .2562 .2575	.6040 .6160 .6200	.2141 .2188 .2204

ATOMIC AND MOLECULAR CONSTANTS

(From Smithsonian Physical Tables)

Elementary electrical charge,	
charge on electron. (e = 4.774×10^{-10} e.s.u.	
$\frac{1}{2}$ charge on α particle, $= 1.591 \times 10^{-20}$ e.m.u.	
$= 1.591 \times 10^{-19} \text{ coulombs}$	
Mass of an electron, $m = about 8.8 \times 10^{-28} \text{ grams}$	
Patio e/m small velocities. $e/m = 1.770 \times 10^{\circ} e.m.u.gm$	
Radius of an electron, $l = about 1 \times 10^{-13}$ cm.	
Number of molecules per gram	
molecule. $N = 6.06 \times 10^{28} \text{ gr}^{-1}$	
Number of gas molecules per cc	
760^{mm} , 0° C., $n = 2.70 \times 10^{19}$	
Kinetic energy of a molecule at	
$0 ^{\circ}\text{C}$. $E_0 = 5.62 \times 10^{-14} \text{ergs}$	~
Constant of molecular energy.	
E_0/T , $\epsilon = 2.06 \times 10^{-16} \text{ ergs/degree}$	38
Constant of entropy equation)	
$(Poltgmenn) - R/N = K = 1.37 \times 10^{-10}$	
$p_0V_0/TN = (2/3) \epsilon$	
$p_0V_0/TN = (2/3) \epsilon$, Elementary "Wirkungsquan-	
$n = 0.02 \times 10^{-6} \text{ erg. sec.}$	
Mass of hydrogen atom. = 1.64×10^{-24} gram	
Radius of an atom, $=$ about 10^{-8} cm.	
Rydberg's fundamental fre-	
quency $V_0 = 3.28880 \times 10^{18}$	100
Rydberg's constant = $\frac{V_0}{C}$ = 109675.	
Mol (e) of gas, 76cm pressure,	
0° C., = 22.4 liters	
$PV_m = RT$, $V_m = vol.$ of molec.	
wt. in grams,	
when P in grams per cm ² , V_m	
in cm ³ , $R = 84.780$ gram. cm.	
when P in atmospheres, V_m in	
liter, $R = 0.08204 l. atm.$	
when P in dynes, V_m in cm ³ , $R = 8.31 \times 10^5$ ergs	
$ m H_2 He N_2 O_2 Xe CO_2 He$	I_2O
Sq. rt. of mean sq. molec.	
veloc., cm./sec. at 0°C.	
$\times 10^{-4}$ 18.4 13.1 4.93 4.61 2.28 3.92 7	.08
Man free noth am V	
10^6 18. 28. 9.4 9.9 5.6 6.4 7	.2
Molecular diameter cm.	
$\times 10^8$ 2.2 2.2 3.3 3.0 3.4 4.2 3	3.8

MISCELLANEOUS CONSTANTS

Mean radius of the earth, 6.371×10^8 cm. =6371 kilometers. 1 degree of latitude at 40° =69 miles.

1 knot or nautical mile=1' of arc on the earth's surface at the equator.

Mean density of the earth, 5.52 grams per cu.cm.

Constant of gravitation, $K = 6.667 \times 10^{-8}$ = the attraction in dynes between two gram masses one centimeter apart.

Acceleration due to gravity at sea level, lat. 45°=980.60 cm. per sec. per sec. = 32.172 feet per sec. per sec.

Length of seconds pendulum at sea level, lat. 45°=99.356 cm. = 39.116 in.

Density of mercury at 0° C. = 13.5955 g. per c.c.

Density of water, maximum at 3.98° C. =0.999973 g. per c.c. Density of dry air at 0° C. and 760 mm. = .001293 g. per c.c.

Velocity of sound in dry air at 0° C., 33,136 cm. per sec. = 1089 feet per sec.

Velocity of light in a vacuum = 2.9989 × 1010 cm, per sec. = 984×10^6 feet per sec.

Heat equivalent of fusion of water 79.24 cal. per gram.

Heat equivalent of vaporization of water, 535.9 cal. per gram. Coefficient of expansion of gases, .003665.

Specific heat of air, at constant pressure, 0.238.

Electrochemical equivalent of silver, 0.001118 g. per sec. per ampere.

Mean wave length of sodium light, .00005893 cm. or 5893.

angström units.

Absolute wave length of red cadmium line in air, 760 mm. pressure. 15° C., angström units: 6438.4722 (Michelson); 6438.4696 (Fabry and Perot).

GREEK ALPHABET

Greek	Greek	English	Greek	Greek	English
letter	name	equivalent	letter	name	equivalent
Α α Β β Γ γ Δ δ Ε ξ Η η Θ ι Κ κ Μ μ	Alpha Beta Gamma Delta Epsilon Zeta Eta Theta Iota Kappa Lambda Mu	a b g d ĕ z ē th i k l m	Nν ξ ο ο π ρ σ σ τ τ υ φ Χ χ ψ Ω ω	Nu Xi Omicron Pi Rho Sigma Tau Upsilon Phi Chi Psi Omega	n x ŏ p r s t u ph ch ps ŏ

DEFINITIONS AND FORMULÆ

FUNDAMENTAL CHEMICAL LAWS

Scientific laws are statements of facts which have been estab-

lished by direct experiment.

Boyle's Law for Gases.—At a constant temperature the volume of a given quantity of any gas varies inversely as the pressure to which the gas is subjected. This idea is expressed in the following formulæ:

PV = a constant, or P = 1/V, or V = 1/P, or $PV = P_1V_1$

The Law of Combining Weights.—If the weights of elements which combine with each other be called their "combining weights," then elements always combine either in the ratio of their combining weights or of simple multiples of these weights.

Law of Definite Proportions.—In every sample of each compound substance the proportions by weight of the constituent

elements are always the same.

Dalton's Law of Partial Pressures.—The pressure exerted by a mixture of gases is equal to the sum of the separate pressures which each gas would exert if it alone occupied the whole volume. This fact is expressed in the following formula:

$$PV = V(p_1 + p_2 + p_3, \text{ etc.})$$

Faraday's Law.—The amounts of decomposition effected by the passage of equal quantities of electricity through them are, for the same electrolyte, equal, and for different electrolytes are proportional to the combining weights of the elements or radicles which are deposited.

Gay-Lussac's Law for Gases (or Charles' Law).—At a constant pressure, the volume of a given quantity of any gas increases about 1/273 of its volume at 0° C. for each rise of 1° C. and at constant volume the pressure of a given quantity of any gas increases about 1/273 of the pressure at 0° C. for each rise of 1° C. in temperature.

Gay-Lussac's Law of Combining Volumes.—If gases interact and form a gaseous product, the volumes of the reacting gases and the volumes of the gaseous products are to each other in very simple proportions, which can be expressed by small whole

numbers.

Hess' Law of Constant Heat Summation.—The amount of heat generated by a chemical reaction is the same whether reaction takes place in one step or in several steps, or all chemical meactions which start with the same original substances, and end with the same final substances, liberate the same amounts of heat, irrespective of the process by which the final state is reached.

Henry's Law.—The amount of gas which a liquid will dissolve is directly proportional to the pressure of the gas. This holds for all gases which do not unite chemically with the solvent.

The Law of Mass Action.—At a constant temperature the product of the active masses on one side of a chemical equation when divided by the product of the active masses on the other side of the chemical equation is a constant, regardless of the amounts of each substance present at the beginning of the action.

Law of Multiple Proportions.—Two elements may combine in more than one proportion by weight, but if so, the weights of one element which combine with a fixed weight of the other

element, are always in a simple ratio to each other.

The Periodic Law.—The physical and chemical properties of the elements are functions of their atomic weights, and most of these properties are periodic functions of the atomic weights.

FUNDAMENTAL CHEMICAL THEORIES

A scientific hypothesis is an endeavor to form a rational mental picture of the causes which lead to a group of observed facts even though these causes may not be subject to direct proof.

A scientific theory is an hypothesis whose consequences have been so thoroughly tested by experiment that it has become generally accepted as the correct explanation for a group of facts.

The Atomic Theory.—All elementary forms of matter are composed of very small unit quantities called atoms. The atoms of a given element all have the same size and weight. The atoms of different elements have different size and weight. Atoms of the same or different elements unite with each other to form very small unit quantities of compound substances called molecules.

Avogadro's Theory.—Equal volumes of all gases under the same conditions of temperature and pressure contain equal

numbers of molecules.

The Electrolytic Dissociation or Ionization Theory.—When an acid, base or salt is dissolved in water or any other dissociating solvent, a part or all of the molecules of the dissolved substance are broken up into parts called ions, some of which are charged with positive electricity and are called cations, and an equivalent number of which are charged with negative electricity and are called anions.

Electrolytic Solution Tension Theory (or the Helmholtz Double Layer Theory).—When a metal, or any other substance capable of existing in solution as ion is placed in water or any other dissociating solvent, a part of the metal or other substance passes into solution in the form of ions, thus leaving the remainder of the metal or substance charged with an equivalent amount of electricity of opposite sign from that carried by the ions. This establishes a difference in potential between the metal and the solvent in which it is immersed.

The Electron Theory.—An atom of any element consists of a definite number of unit negative charges of electricity moving in orbits inside the atom with velocities which approach the

velocity of light.

DEFINITION OF CHEMICAL TERMS

An Acid is any substance which yields hydrogen ions.

The Active Mass of a substance is the number of gram-molec-

ular-weights per liter in solution, or in gaseous form.

Adsorption. The ability of a solid to condense gases, liquids, or dissolved substances on their surfaces is called adsorption. It is a manifestation of the force of adhesion.

An Atom is the smallest unit quantity of an element that is

capable of entering into chemical combination.

A Base is any substance which yields hydroxyl ions.

A Balanced or Reversible Action is one which can be caused to proceed in either direction by suitable variation in the conditions of temperature, volume, pressure or of the quantities of reacting substances.

A Catalytic Agent is a substance which by its mere presence alters the velocity of a reaction, and may be recovered unaltered

in nature or amount at the end of the reaction.

A Colligative Property is a property numerically the same for a group of substances, independent of their chemical nature.

A Constitutive Property is a property which depends on the

constitution or structure of the molecule.

A Cryohydrate is the solid which separates when a saturated solution freezes. It contains the solvent and the solute in the same proportions as they were in the saturated solution.

The Combining Weight of an element or radicle is its atomic

weight divided by its valence.

Eutectic, a term applied to the mixture of two or more sub-

stances which has the lowest melting point.

The Hydrogen Equivalent of a substance is the number of replaceable hydrogen atoms in 1 molecule or the number of atoms of hydrogen with which 1 molecule could react.

The Heat of Combustion of a substance is the amount of heat evolved by the combustion of 1 gram molecular weight of the

An Ion is a charged atom or group of atoms in solution. Solutions always contain equivalent numbers of positive and negative

A Molecule is the smallest unit quantity of matter which can exist by itself and retain all the properties of the original substance.

A Molar Solution contains 1 gram molecular weight of dis-

solved substance per liter of solution.

A Normal Solution contains 1 gram molecular weight of dissolved substance divided by the hydrogen equivalent of the substance per liter of solution.

Oxidation is any process which increases the proportion of

oxygen or acid-forming element or radicle in a compound.

Reduction is any process which increases the proportion of hydrogen or base-forming elements or radicle in a compound. A Salt is any substance which yields ions, other than hydrogen

or hydroxyl ions.

The Solubility Product or precipitation value is the product of the concentrations of the ions of a substance in a saturated solution of the substance.

527

A METHOD OF BALANCING EQUATIONS FOR OXIDATION-REDUCTION REACTIONS

On the left-hand side of the equation write the formulæ for all the compounds entering into the reaction. On the righthand side write the formulæ for all the compounds formed in the reaction.

Determine the L.C.M. (least common multiple) of the numbers representing the changes in valence per molecule of

the oxidizing and reducing agents.

The quotient obtained in dividing the L. C. M. by the number representing the valence change per molecule is the number of molecules of that compound required, or formed.

The reaction between FeSO₄, KMnO₄, and H_2SO_4 serves to illustrate. Following the rule as given above we write, KMnO₄ + FeSO₄ + $H_2SO_4 \rightarrow K_2SO_4 + MnSO_4 + Fe_2(SO_4)_3 + H_2O$.

The valence change of manganese is five, that of iron is two per molecule of Fe₂(SO₄)₃. The L.C.M. of these two numbers

is ten.

The quotient obtained by dividing the L. C. M. by the valence change of manganese is two. Therefore two molecules of KMnO₄ are required. The quotient obtained by dividing the L. C. M. by the valence change of iron per molecule of $Fe_2(SO_4)_3$ is five. Five molecules of $Fe_2(SO_4)_3$ are formed. Ten molecules of $FeSO_4$ are needed. From the two molecules of KMnO₄ used one molecule of K_2SO_4 is formed, as well as two molecules of MnSO₄.

Eighteen sulfate radicals are used in forming the salts; ten of these radicals are supplied by the FeSO₄ used, the other eight must be supplied by the free acid. The sixteen hydrogens form eight molecules of water.

The complete equation is, therefore,

 $2KMnO_4 + 10FeSO_4 + 8H_2SO_4 \rightarrow K_2SO_4 + 2MnSO_4 + 5Fe_2(SO_4)_3 + 8H_2O.$

ONE HUNDRED COMPLETED CHEMICAL EQUATIONS

- 1. $H_2 PtCl_6 + 2KCl = 2HCl + K_2PtCl_6$
- 2. $K_2PtCl_6 + heat = 2KCl + Pt + 2Cl_2$
- 3. $KHC_4H_4O_6 + NaOH = KNaC_4H_4O_6 + H_2O$
- 4. $Na_2O_2 + 2H_2O = 2NaOH + H_2O_2$
- 5. $2KMnO_4 + 3H_2SO_4 + 5H_2O_2 = K_2SO_4 + 2MnSO_4 + 8H_2O_4 + 5O_2$.
 - $6.2KI + H_2O_2 = 2KOH + I_2$
 - 7. $2\text{AuCl}_3 + 3\text{H}_2\text{O}_2 + 6\text{NaOH} = 6\text{NaCl} + 6\text{H}_2\text{O} + 3\text{O}_2 + 2\text{Au}$
- 8. $MnCl_2 + 2KOH + H_2O_2 = 2KCl + H_2O + MnO \cdot (OH)_2$ (brown)
 - 9. $2\text{NiCl}_2 + 4\text{KOH} + \text{H}_2\text{O}_2 = 4\text{KCl} + 2\text{Ni} (\text{OH})_3 (\text{black})$
 - 10. $2\text{CoCl}_2 + 4\text{KOH} + \text{H}_2\text{O}_2 = 4\text{KCl} + 2\text{Co}(\text{OH})_3 \text{ (black)}$
 - 11. $MgCl_2 + Na_2HPO_4 + NH_3 \stackrel{\text{def}}{=} 2NaCl + MgNH_4PO_4$
 - 12. $2\text{BaCl}_2 + \text{K}_2\text{Cr}_2\text{O}_7 + \text{H}_2\text{O} = 2\text{BaCrO}_4 + 2\text{HCl} + 2\text{KCl}$
 - 13. $AlCl_3 + 3KOH = 3KCl + Al(OH)_3$
 - 14. Al $(OH)_3 + 3KOH = 3H_2O + Al(OK)_3$
- 15. $2AlCl_3 + 3Na_2S_2O_3 + 3H_2O = 6NaCl + 3S + 3SO_2 + 2Al$ (OH)₃
 - 16. $2\text{CrCl}_3 + 3(\text{NH}_4)_2\text{S} + 6\text{H}_2\text{O} = 6\text{NH}_4\text{Cl} + 3\text{H}_2\text{S} + 2\text{Cr}(\text{OH})_3$ 17. $\text{CrCl}_3 + 8\text{NaC}_2\text{H}_3\text{O}_2 + 4\text{H}_2\text{O} + 3\text{Cl} = 6\text{NaCl} + 8\text{HC}_2\text{H}_3\text{O}_2$
- + Na₂CrO₄
 - 18. $2\text{CrCl}_3 + 3\text{MnO}_2 + 2\text{H}_2\text{O} = 3\text{MnCl}_2 + 2\text{H}_2\text{CrO}_4$
 - 19. $K_2Cr_2O_7 + 2KOH = H_2O + 2K_2CrO_4$
- 20. $K_2Cr_2O_7 + 6FeSO_4 + 7H_2SO_4 = 7H_2O + K_2SO_4 + 3Fe_2(SO_4)_3 + Cr_2(SO_4)_3$
 - 21. $K_2Cr_2O_7 + 6HI + 4H_2SO_4 = K_2SO_4 + Cr_2(SO_4)_3 + 7H_2O + 6I$
 - 22. $K_2Cr_2O_7 + 14HCl = 2KCl + 2CrCl_3 + 7H_2O + 3Cl_2$ 23. $FeCl_2 + 2KCN = 2KCl + Fe(CN)_2$
 - 24. $FeCN_2 + 4KCN = K_4[Fe(CN)_6]$
 - 25. $FeCl_3 + 3NaC_2H_3O_2 = 3NaCl + Fe(C_2H_3O_2)_3$
- 26. $Fe(C_2H_3O_2)_3 + 2H_2O = 2HC_2H_3O_2 + Fe(OH)_2(C_2H_3O_2)$ 27. $K_4[Fe(CN)_6] + 6H_2SO_4 + 6H_2O = 2K_2SO_4 + FeSO_4 + 3(NH_4)_2SO_4 + 6CO$
 - 28. $2\text{MnO}_2 + 8\text{HCl} = 4\text{H}_2\text{O} + 2\text{MnCl}_2 + 2\text{Cl}_2$
- 29. $2MnSO_4 + 5PbO_2 + 6HNO_3 = 2PbSO_4 + 3Pb(NO_3)_2 + 2H_2O_4 + 2HMnO_4$
 - 30. $2HMnO_4 + 14HCl = 8H_2O + 2MnCl_2 + 5Cl_2$
 - 31. $MnSO_4 + 2Na_2CO_3 + O_2 = 2CO_2 + Na_2SO_4 + Na_2MnO_4$
- 32. $2KMnO_4 + 10FeSO_4 + 8H_2SO_4 = K_2SO_4 + 2MnSO_4 + 5Fe_2$ (SO₄)₃ + $8H_2O$
 - 33. $2KMnO_4 + 3MnSO_4 + 2H_2O = K_2SO_4 + 5MnO_2 + 2H_2SO_4$
 - 34. $NiCl_2 + 6NH_3 = Ni(NH_3)_6Cl_2$ 35. $NiCl_2 + 2KCN = 2KCl + Ni(CN)_2$
 - 35. $N_1Cl_2 + 2KCN = 2KCl + N_1(CN)$ 36. $N_1(CN)_2 + 2KCN = K_2N_1(CN)$
 - 37. $CoCl_2 + 2KNO_2 = Co(NO_2)_2 + 2KCl$
 - 38. $Co(NO_2)_2 + 2HNO_2 = H_2O + NO + Co(NO_2)_3$
 - 39. $Co(NO_2)_3 + 3KNO_2 = K_3Co(NO_2)_6$
 - 40. $3\text{Zn} + 8\text{HNO}_3 = 3\text{Zn}(\text{NO}_3)_2 + 4\text{H}_2\text{O} + 2\text{NO}$ 41. $\text{Zn} + 2\text{KOH} = \text{K}_2\text{ZnO}_2 + \text{H}_2$
 - 42. $Zn(OH)_2 + 2NH_4Cl + 4NH_3 = Zn(NH_3)_6Cl_2 + 2H_2O$
 - 43. $ZnCl_2 + 2KCN = 2KCl + Zn(CN)_2$

```
44. Zn(CN)_2 + 2KCN = K_2Zn(CN)_4
   45. 3Hg + 8HNO_3 = 3Hg(NO_3)_2 + 4H_2O + 2NO
   46. HgCl_2 + 2NH_3 = NH_4Cl + HgNH_2Cl
   47. 3 \text{HgCl}_2 + 2 \text{H}_2 \text{S} = 4 \text{HCl} + \text{Hg}_3 \text{Cl}_2 \text{S}_2 (white)
   48. Hg_3Cl_2S_2 + H_2S = 2HCl + 3HgS
   49. 3Hg(NO_3)_2 + 6FeSO_4 = 2Fe(NO_3)_3 + 2Fe_2(SO_4)_3 + 3Hg
   50. 2HgCl + 2NH_8 = NH_4Cl + HgNH_2Cl + Hg
   51. Hg_2(NO_3)_2 + H_2S = 2HNO_3 + HgS + Hg
   52. Hg_2(NO_3)_2 + 2KCN = 2KNO_3 + Hg(CN)_2 + Hg
   53. Pb(NO_3)_2 + 2KOH = Pb(OH)_2 + 2KNO_3
   54. Pb(OH)_2 + 2KOH = K_2PbO_2 + 2H_2O
   55. 2PbCl_2 + H_2S = 2HCl + PbCl_2.PbS (orange)
   56. PbCl_2.PbS + H_2S = 2PbS + 2HCl
   57. 3PbS + 8HNO_3 = 3Pb(NO_3)_2 + 4H_2O + 2NO + 3S
   58. BiCl_3 + H_2O = 2HCl + BiOCl
   59. SnCl_2 + 2KOH = 2KCl + Sn(OH)_2 (white ppt.)
   60. Sn(OH)_2 + 2KOH = K_2SnO_2 + 2H_2O (soluble)
   61.2 \text{BiCl}_3 + 6 \text{KOH} = 2 \text{Bi}(\text{OH})_3 + 6 \text{KCl}
   62. 2Bi(OH)_3 + 3K_2SnO_2 = 3H_2O + 3K_2SnO_3 + Bi_2 (black)
   63. 3Cu + 8HNO_3 = 4H_2O + 3Cu(NO_3)_2 + 2NO
   64. Cu + H_2SO_4 = H_2O + SO_2 + CuO
   65. CuO + H_2SO_4 = CuSO_4 + H_2O
   66. 2\text{CuSO}_4 + 2\text{NH}_4\text{OH} = (\text{NH}_4)_2\text{SO}_4 + \text{Cu}_2\text{SO}_4 \cdot (\text{OH})_2
   67. Cu_2SO_4(OH)_2 + (NH_4)_2SO_4 + 6NH_3 = 2\Gamma Cu(NH_3)_4
(SO_4) . H_2O (soluble, blue)
   68. 2Cu(NH_3)_4SO_4 . H_2O + 9KCN = Cu_2(CN)_8NH_4 . K_5 +
2K_2SO_4 + 6NH_3 + NH_4CNO
   69. Cd(NO_3)_2 + 2KCN = 2KNO_3 + Cd(CN)_2
   70. Cd(CN)_2 + 2KCN = K_2Cd(CN)_4
   71. K_2Cd(CN)_4 + H_2S = 2KCN + 2HCN + CdS
   72. H_3AsO_4 + H_2S = H_2O + S + H_3AsO_3
   73. 2H_3AsO_3 + 3H_2S = 6H_2O + As_2S_3
   74. As_2S_3 + 3(NH_4)_2S = 2(NH_4)_3AsS_3
   75. 2(NH_4)_3AsS_3 + 6HCl = 6NH_4Cl + As_2S_3 + 3H_2S
   76. As_2S_5 + 3(NH_4)_2S = 2(NH_4)_2AsS_4
   77. 2(NH_4)_8AsS_4 + 6HCl = As_2S_5 + 3H_2S + 4NH_4Cl. Anti-
mony reactions same as arsenic
   78. 3\text{Sn} + 4\text{HNO}_3 + \text{H}_2\text{O} = 3\text{H}_2\text{SnO}_3 + 4\text{NO}_3
   79. SnCl_2 + H_2S = SnS + 2HCl
   80. SnS + (NH_4)_2S_2 = (NH_4)_2SnS_3
   81. (NH_4)_2SnS_3 + 2HCl = 2NH_4Cl + H_2S + SnS_2
   82. SnCl_4 + 2H_2S = SnS_2 + 4HCl
   83. SnS_2 + (NH_4)_2S = (NH_4)_2SnS_3
   84. SnO_2 + 2KCN = 2KCNO + Sn (fusion)
   85. 2Au + 2HNO_3 + 6HCl = 4H_2O + 2NO + 2AuCl_3
   86. 2AgNO_3 + 2KOH = 2KNO_3 + H_2O + Ag_2O
   87. Ag_2O + 2NH_4OH = 2(AgNH_3)OH + H_2O
   88. AgCl + 2NH_4OH = Ag(NH_3)_2Cl + 2H_2O
   89. AgCl + 2KCN = KAg(CN)_2 + KCl
   90. 6NH_4OH + 2NH_3 + 3Cl_2 = 6H_2O + 6NH_4Cl + N_2
   91. 6\text{NaOH} + 3\text{Cl}_2 = 5\text{NaCl} + \text{NaClO}_3 + 3\text{H}_2\text{O}
   92. H_2SO_4 + 2HI = H_2O + H_2SO_3 + I_2
```

93. $H_2SO_4+8HI=4H_2O+H_2S+4I_2$

93. $2Na_2S_2O_3+I_2=2NaI+Na_2S_4O_6$

95. $H_3PO_4 + 12(NH_4)_2MoO_4 + 21HNO_3 = (NH_4)_3PO_4.12MoO_4$

 $+21(NH_4)NO_3+12H_2O$

 $96. (NH_4)_3 PO_4 \cdot 12M_0O_4 + 24NH_4OH = (NH_4)_3 PO_4 + 12(NH_4)_2 M_0O_4 + 12H_2O$

97. $6\text{FeSO}_4 + 3\text{H}_2\text{SO}_4 + 2\text{HNO}_3 = 3\text{Fe}_2(\text{SO}_4)_3 + 4\text{H}_2\text{O} + 2\text{NO}_3$

98. $Fe(NO_3)_2 + NO = Fe(NO_3)_2NO$

99. $KClO_3+3H_2SO_4+6FeSO_4=3Fe_2(SO_4)_3+3H_2O+KCl$

100. $Na_2SiO_3 + 2NH_4Cl + 2H_2O = 2NaCl + 2NH_4OH + H_2SiO_3$

PHYSICAL TERMS, QUANTITIES AND UNITS

Mechanics

Unit of Time.—The second, 1/86400 of a mean solar day.

One of the three fundamental units of the C. G. S. system.

Unit of Length.—The centimeter, 1/100 the length of the International Prototype Meter, at Paris, at zero degrees centigrade. One of the three fundamental units of the C. G. S. system. The standard in the British system is the yard, the prototype of which is kept by the British government. The United States standard yard is defined as 3600/3937 meter.

Unit of Area.—The square centimeter. The area of a square whose sides are one centimeter in length. Other units of area

are similarly derived.

Unit of Volume.—The cubic centimeter, the volume of a cube whose edges are one centimeter in length. Other units of volume are derived in a similar manner.

Mass.—Quantity of matter.

Units of Mass.—The gram is 1/1000 the quantity of matter in the International Prototype Kilogram; one of the three fundamental units of the C. G. S. system. The British standard of mass is the pound, of which a standard is preserved by the government. The United States standard mass is the avoirdupois pound defined as 1/2_20462 kilogram.

înertia.—The resistance offered by a body to a change of its state of rest or motion. A particular aspect of a mass; the

terms are practically synonymous.

Density.—Concentration of matter, measured by the mass per unit volume, expressed as grams per cubic centimeter.

Specific Gravity.—The ratio of the mass of a body to the mass

of an equal volume of water at 4° C.

Angle.—The ratio between the arc and the radius of the arc. Units of Angle.—The radian, the angle subtended by an arc equal to the radius; the degree, 1/360 part of a circumference.

Solid Angle.—Measured by the ratio of the surface of the portion of a sphere enclosed by the conical surface forming the angle, to the square of the radius of the sphere.

Unit of Solid Angle.—The steradian, the solid angle which encloses a surface on the sphere equivalent to the square of the

radius.

Speed.—Time rate of motion measured by the distance moved over in unit time. Unit—one centimeter per second.

Velocity.—Time rate of motion in a fixed direction. Unit—

one centimeter per second.

Angular Velocity.—Time rate of angular motion about a

center. Unit—one radian per second.

Acceleration.—The time rate of change of velocity either in speed or direction measured by the change in unit time. Unit—one centimeter per second per second.

Angular Acceleration.—The time rate of change of angular

velocity. Unit—one radian per second per second.

Momentum.—Quantity of motion measured by the product of mass and velocity. Unit—one gram-centimeter per second.

Angular Momentum or Moment of Momentum.—Quantity of angular motion measured by the product of the angular velocity and the moment of inertia. Unit—unnamed, its nature is expressed by g.cm²/sec.

Force.—That which changes the state of rest or motion in matter, measured by the rate of change of momentum. Unit—the dyne, the force which will produce the change of velocity of

one centimeter per second in a gram mass in one second.

Moment of Force or Torque.—The effectiveness of a force to produce rotation about a center, measured by the product of the force and the perpendicular distance from the line of action of the force to the center. Unit—the dyne-centimeter.

Gravitation.—The universal attraction existing between all

material bodies.

Acceleration Due to Gravity.—The acceleration of a body freely falling in a vacuum. Unit—one centimeter per second per second.

Weight.—The force with which a body is attracted toward the center of the earth. The weight of any fixed mass varies

according to its geographical position.
Unit of Weight.—The dyne.

Moment of Inertia.—A measure of the effectiveness of mass in rotation. In the rotation of a rigid body not only the body's mass, but the distribution of the mass about the axis of rotation determines the change in the angular velocity resulting from the action of a given torque for a given time. Moment of inertia in rotation is analogous to mass (inertia) in simple translation. The unit is g. cm.²

Period in uniform circular motion is the time of one com-

plete revolution.

Centripetal Force.—The force required to keep a moving mass in a circular path. Centrifugal force is the name given to the outward force of a mass in rotation.

Simple Harmonic Motion.—If a point move uniformly in a circle, the motion of its projection on the diameter (or any straight line in the same plane) is simple harmonic motion.

Displacement at any instant. The distance of a vibrating or oscillating particle from its position of equilibrium or the center of the circle of reference.

Amplitude. — The maximum value of the displacement.

Phase.—The fraction of a whole period which has elapsed since the moving particle last passed through its middle position

in a positive direction.

Work.—When a force acts against resistance to produce motion in a body the force is said to do work. Work is measured by the product of the force acting and the distance moved through against the resistance.

Units of Work.—The erg, a force of one dyne acting through

one centimeter. The joule is 10⁷ ergs.

Power.—The time rate at which work is done.

Units of Power.—The watt, one joule (ten million ergs) per second; the kilowatt is equal to 1000 watts; the horse-power, 33,000 foot-pounds per minute, is equal to 746 watts.

Energy.—The capability of doing work. Units of energy

the same as of work.

Potential Energy.—Energy due to position of one body with respect to another or to the relative parts of the same body.

Kinetic Energy.—Energy due to motion.

Simple Machine.—A contrivance for the transfer of energy and for increased convenience in the performance of work.

Mechanical advantage of a machine is the ratio of the distance through which force is applied to the distance through which resistance is overcome, also called the velocity ratio.

Efficiency is the ratio of the work done by a machine to the

work done upon it.

Elasticity.—The property by virtue of which a body recovers

from deformation produced by force.

Stress.—The force producing or tending to produce deformation in the body measured by the force applied per unit area. Unit—one dyne per square centimeter.

Strain.—The deformation resulting from a stress measured by the ratio of the change to the total value of the dimension in

which the change occurred.

Modulus of Elasticity.—The stress required to produce unit strain, which may be a change of length (Young's modulus); a twist or shear (modulus of rigidity) or of volume (bulk modulus).

Limit of Elasticity.—The smallest value of the stress pro-

ducing permanent alteration.

Coefficient of Restitution of two bodies on impact, the ratio of the difference in velocity before impact to the difference after impact.

Viscosity.—All liquids possess a definite resistance to change of form and many solids show a gradual yielding to forces tending to change their form. This property is called viscosity.

Pressure.—Force applied to, or distributed, over a surface; measured as force per unit area. Unit—the barye, one dyne per square centimeter. The mega-barye is equal to 10° dynes per square centimeter. Pressure is also measured by the height of the column of mercury or water which it supports.

Surface Tension.—The tension exhibited by the free surface

of liquids measured in dynes per centimeter.

Heat

Temperature.—The condition of a body which determines the transfer of heat to or from other bodies. The unit of temperature is the Centigrade degree, 1/100 the difference in temperature between that of melting ice and boiling water at 76 centimeters pressure. The degree Fahrenheit is 1/180 and the degree Reaumur is 1/80 the above-mentioned difference of

temperature.

Heat Quantity is measured by the change of temperature produced. The unit of heat is the calorie, the quantity of heat necessary to change the temperature of one gram of water from 3.5° C. to 4.5° C. (called a small calorie). If the temperature changed involved is from 14.5 to 15.5° C. the unit is the normal calorie. The mean calorie is 1/100 the quantity of heat necessary to raise one gram of water from 0° C. to 100° C. The large calorie is equal to 1000 small calories. The British thermal unit is the heat required to raise the temperature of one pound of water at its maximum density, 1° F. It is equal to 252 calories.

Coefficient of Thermal Expansion.—The coefficient of linear expansion is the ratio of the change in length per degree to the length at 0° C. The coefficient of surface expansion is two times the linear coefficient. The coefficient of volume expansion (for solids) is three times the linear coefficient. The coefficient of volume expansion for liquids is the ratio of the change in volume per degree to the volume at 0° C. The value of the coefficient varies with temperature. The coefficient of volume expansion for a gas under constant pressure is nearly the same for all gases and temperatures and is equal to 0.00367 for 1° C.

Absolute Zero.—The temperature at which a gas would show no pressure if the general law for gases should hold for all tem-

peratures. It is equal to -273° C. or -459.4° F.

Specific Heat.—The quantity of heat necessary to cause a unit change of temperature in unit mass measured in C. G. S.

units as calories per gram per degree centigrade.

Thermal Capacity or Water Equivalent.—The total quantity of heat necessary to raise any body or system unit temperature, measured as calories per degree centigrade in the C. G. S. system.

Heat Equivalent, or Latent Heat, of Fusion.—The quantity of heat necessary to change one gram of solid to a liquid with

no temperature change.

Latent Heat of Vaporization.—The quantity of heat necessary to change one gram of liquid to vapor without change of temperature. Both the above quantities are measured as calories

per gram.

Thermal Conductivity.—Time rate of transfer of heat by conduction, through unit thickness, across unit area for unit difference of temperature. It is measured as calories per second per square centimeter for a thickness of one centimeter and a difference of temperature of 1°C.

Mechanical Equivalent of Heat is the quantity of energy

which, when transformed into heat, is equivalent to unit quan-

tity of heat, 4.18×10^7 ergs = 1 calorie (20° C.).

Isothermal. — When a gas passes through a series of pressure and volume variations without change of temperature the changes are called isothermal. A line on a pressure-volume diagram representing these changes is called an isothermal line.

Adiabatic. — A body is said to undergo an adiabatic change when its condition is altered without gain or loss of heat. The line on the pressure volume diagram representing the above

change is called an adiabatic line.

Entropy. — A quantity depending on the quantity of heat in a body and on its temperature, which, when multiplied by any lower temperature (minimum available), gives the unavailable energy, or unavoidable waste when mechanical work is derived from the heat energy of the body.

Absolute Humidity. — Mass of water vapor present in the

atmosphere measured as grams per cubic meter.

Relative Humidity. — The ratio of the quantity of water vapor present in the atmosphere to the quantity which would saturate at the existing temperature.

Wave Motion and Sound

Wave Motion: — A progressive disturbance propagated in a medium by the periodic vibration of the particles of the medium. Transverse wave motion is that in which the vibration of the particles is perpendicular to the direction of propagation. Longitudinal wave motion is that in which the vibration of the particles is parallel to the direction of propagation.

Pitch of sound is determined by the frequency or number

of vibrations per second.

Intensity or loudness of a sound depends upon the energy of the wave motion. The term intensity as used in physics is measured by the energy transmitted per second through one square centimeter of surface.

Quality or timbre of a sound depends on the coexistence with the fundamental of other vibrations of various frequencies

and amplitudes.

Lissajou's Figures. — The path described by a particle which is simultaneously displaced by two simple harmonic motions at right angles, when the periods of the two motions are in the ratio of two small whole numbers, shows a variety of characteristic curves called Lissajou's figures.

Beats. — Two tones of slightly different frequencies sounded together interfere to give a sound of regularly varying intensity. The number of beats per second is the difference in frequency

of the two tones.

Static Electricity

Unit Quantity of electricity or charge is the quantity which, when concentrated at a point and placed at unit distance from an equal and similarly concentrated quantity, is repelled with unit force. If the distance is one centimeter and the force of repulsion one dyne and the surrounding medium a vacuum,

we have the electrostatic unit of quantity. The coulomb =

3×10° electrostatic units.

Line of Force.—A line such that its direction at every point is the same as the direction of the force which would act on a small positive charge placed at that point. A line of force is defined as starting from a positive charge and ending on a negative charge.

Conductors.—A class of bodies which are incapable of supporting electric strain. A charge given to a conductor spreads to

all parts of the body.

Dielectrics or Insulators or Non-Conductors.—A class of bodies supporting an electric strain. A charge on one part of a non-conductor is not communicated to any other part.

Electric Surface Density.—Quantity of electricity per unit area.

Intensity of Electric Field is measured by the force exerted on unit charge. Unit field intensity is the field which exerts

the force of one dyne on unit positive charge.

Electric Potential at any point is measured by the work necessary to bring unit positive charge from an infinite distance. Difference of potential between two points is measured by the work necessary to carry unit positive charge from one to the other. If the work involved is one C. G. S. unit of work we

have the electrostatic unit of potential.

Electromotive Force is defined as that which causes a flow of current. The electromotive force of a cell is measured by the maximum difference of potential between its plates. The volt is the electromotive force which performs work at the rate of one joule per second (one watt) in producing a current of one ampere. A watt hour is the work equivalent to a current of one ampere at a pressure of one volt flowing for one hour. A kilowatt hour equals 1000 watt hours. A volt equals 108 electro static units of potential.

Capacity is measured by the charge which must be communicated to a body to raise its potential one unit. Electrostatic unit capacity is that which requires one electrostatic unit of charge to raise its potential one electrostatic unit. The

farad = 9×10^{11} electrostatic units.

Specific Inductive Capacity.—The ratio of the capacity of a condensor with a given substance as dielectric to the capacity of the same condenser with air or a vacuum as dielectric is called the specific inductive capacity.

Magnetism

Unit Magnetic Pole or Quantity of Magnetism.—Two unit quantities of magnetism concentrated at points unit distance apart in a vacuum repel each other with unit force. If the distance involved is one centimeter and the force one dyne the quantity of magnetism at each point is one C. G. S. unit of magnetism.

Surface Density of Magnetism.—Quantity of magnetism

per unit area.

Magnetic Line of Force is a line which at every point has the direction of the magnetic force at that point.

Magnetic Field Intensity is measured by the force acting on unit magnetic pole. The unit of magnetic field intensity, the gauss, is that field which exerts a force of one dyne on unit magnetic pole.

Magnetic Moment of a magnet is given by the product of the quantity of magnetism in each pole by the distance between

the poles.

Intensity of Magnetization is given by the quotient of magnetic moment of a magnet by its volume or it is magnetic moment

per unit volume.

Declination.—The angle between the vertical plane containing the direction of the earth's field at any point and a plane containing the geographic north and south meridian.

Dip.—The angle measured in a vertical plane between the

direction of the earth's magnetic field and the horizontal.

Paramagnetic bodies are those which tend to set the longest dimension parallel to the magnetic field, e.g., iron, cobalt, nickel.

Diamagnetic bodies tend to set the longest dimension across

the magnetic field, e.g., bismuth.

Hysteresis.—The magnetization of a sample of iron or steel due to a magnetic field which is made to vary through a cycle of values, lags behind the field. This phenomenon is called hysteresis.

Current Electricity

Electric Current.—The rate of transfer of electricity. transfer at the rate of one electrostatic unit of electricity in one second is the electrostatic unit of current. The electromagnetic unit of current is a current of such strength that one centimeter of the wire in which it flows is pushed sideways with a force of one dyne when the wire is at right angles to a magnetic field of unit intensity. The practical unit of current is the ampere, a transfer of one coulomb per second.

Conductivity.—A property of electric conductors depending on their dimensions, material and temperature which determines the current produced by a given electromotive force. The practical unit of conductivity is the mho, the reciprocal of

the ohm.

Resistance.—The reciprocal of conductivity. The unit of resistance, the legal ohm is defined as the resistance to an unvarying current of a column of mercury at 0° C., 14.4521 grams in mass, of a constant cross-section, and 106.3 centimeters long. The cross-section is nearly one square millimeter.

Specific Resistance.—The resistance at 0° C. of a portion of

substance of unit length and cross-section.

Temperature Resistance Coefficient.—The ratio of the change of resistance in a wire due to a change of temperature of 1° C.

to its resistance at 0° C.

Induction.—Any change in the intensity or direction of a magnetic field causes an electromotive force in any conductor in the field. The induced electromotive force generates an induced current if the conductor forms a closed circuit.

Self-Induction.—The change in magnetic field due to the variation of a current in a conducting circuit causes an induced electromotive force in the circuit itself. This phenomenon is known as self-induction. It is measured as electromotive force produced in a conductor by unit rate of variation of the current through it. Units of self-induction are the centimeter (electro structure) and the henry, which is equal to 10° centimeters of inductance.

Mutual Induction.—A change of current in a conductor is accompanied by a change of magnetic field which induces an electromotive force in a neighboring circuit. The mutual induction is measured by the electromotive force induced in one circuit by unit rate of variation of current in the other.

Units, as of self-induction.

Light -

Index of Refraction for any substance is the ratio of the velocity of light in a vacuum to its velocity in the substance. It is also the ratio of the sine of the angle of incidence to the sine of the angle of refraction. In general, the index of refraction for any substance varies with the wave length of the refracted light.

Minimum Deviation.—The deviation or change of direction of light passing through a prism is a minimum when the angle

of incidence is equal to the angle of emergence.

Principal Focus of a lens or spherical mirror is the point of convergence of light coming from a source at an infinite distance.

Conjugate Foci.—Under proper conditions light divergent from a point on or near the axis of a lens or spherical mirror is focused at another point. The point of convergence and the position of the source are conjugate foci.

Spherical Aberration.—When large surfaces of spherical mirrors or lenses are used the light divergent from a point source cannot be exactly focused at a point. The phenomenon is

known as spherical aberration.

Chromatic Aberration.—Due to the difference in the index of refraction for different wave lengths, light of various wave lengths from the same source cannot be focused in a point by a simple lens. This is called chromatic aberration.

Achromatic. — A term applied to lenses signifying their more

or less complete correction for chromatic aberration.

Magnifying Power of an optical instrument is the ratio of the angle subtended by the image of the object seen through the instrument to the angle subtended by the object when seen by the unaided eye at a distance of 25 cms. (10 ins.)

Resolving Power of a telescope or microscope is indicated by the minimum separation of two objects for which they appear distinct and separate when viewed through the instrument.

Angular Aperture of an objective is the largest angular extent of wave surface which it can transmit.

Numerical Aperture is the sine of half the angular aperture, used as a measure of the optical power of the objective.

Dispersion.—The difference between the index of refraction of any substance for any two wave lengths is a measure of the dispersion for these wave lengths, called the coefficient of dispersion.

Diffraction.—If the light source were a point the shadow of any object would have its maximum sharpness; a certain amount of illumination, however, would be found within the geometrical shadow due to the diffraction of the light at the edge of the

object.

Polarized Light.—Light which exhibits different properties in different directions at right angles to the line of propagation is said to be polarized. Specific rotation is the power of liquids to rotate the plane of polarization. It is stated in terms of specific rotation or the rotation in degrees per decimeter per unit density.

PHYSICAL FORMULÆ

Mechanics

Composition of Vectors.—If the angle between two vectors is A, and their magnitudes a and b, their resultant,

$$c = \sqrt{a^2 + b^2 + 2ab \cos A}.$$

Velocity.—If s is space passed over in time t, the velocity,

$$v = \frac{s}{t}$$
.

Uniformly Accelerated Motion.—If v_0 is the initial velocity, v_t the velocity after time t, the acceleration,

$$a = \frac{v_t - v_0}{t}.$$

The velocity after time t,

$$v_t = v_0 + at$$
.

Space passed over in time t,

$$s = v_0 t + \frac{1}{2}at^2.$$

Velocity after passing over space s,

$$v_s = \sqrt{v_0^2 + 2as}$$
.

Space over in the nth second,

$$s = v_0 + \frac{1}{2}a(2n-1)$$
.

Falling Bodies.—Symbols as for uniformly accelerated motion except that $v_0 = 0$ and g is the acceleration due to gravity. The above formulæ become, — air resistance neglected,

$$v_t = gt$$
, $s = \frac{1}{2}gt^2$, $v_s = \sqrt{2gs}$.

Bodies Projected Vertically Upward.—If v is the velocity of projection, the time to reach greatest height, neglecting the resistance of the air,

$$t=\frac{v}{a}$$

Greatest height,

$$h=\frac{v^2}{2g}.$$

Projectiles.—For bodies projected with velocity v at an angle α with the horizontal, the time to highest point of flight,

$$t=\frac{v\sin\alpha}{a}.$$

Total time of flight,

$$T=\frac{2v\sin\alpha}{g}.$$

Maximum height,

$$h=\frac{v^2\sin^2\alpha}{2a}.$$

Horizontal range,

$$R = \frac{v^2 \sin 2\alpha}{g}.$$

In the above equations the resistance of the air is neglected. Angular Velocity.—If the angle described in time t is θ , the angular velocity,

 $\omega = \frac{\theta}{t}$.

Angular Acceleration.—If the initial angular velocity is ω_0 , and the velocity after time t is $\equiv \omega_t$, the angular acceleration,

$$A = \frac{\omega_t - \omega_0}{t}.$$

The angular velocity after time t,

$$\omega_t = \omega_0 + At$$

The angle swept out in time t,

$$\theta = \omega_0 t + \frac{1}{2} A t^2.$$

The angular velocity after movement through the arc θ ,

$$\omega = \sqrt{\omega_0^2 + 2A\theta},$$

Momentum.—A mass m moving with velocity v has a momentum

M = mv.

Angular momentum of a mass whose moment of inertia is I, rotating with angular velocity ω , is

Force.—For a case m and an acceleration a,

$$F = ma$$

Moment of Force or Torque.—If a force F acts to produce rotation about a center at a distance d from the line in which the force acts, the force has a torque,

$$T = Fd$$
.

Gravitation.—The force of attraction between two masses, m and m', separated by a distance r, k being the constant of gravitation,

$$F = k \frac{mm'}{r^2}.$$

(If m and m' are given in grams, and r in centimeters, F will be in dynes if $k = 6.658 \times 10^{-8}$.)

Weight of mass m, where g is the acceleration due to gravity,

$$W = ma_q$$
.

Acceleration Due to Gravity at any Latitude and Elevation. If ϕ is the latitude and H the elevation in centimeters the acceleration in C. G. S. units is,

g=980.616-2.5928 cos $2\phi+0.0069$ cos² $2\phi-3.086\times 10^{-6}H$. (Helmert's equation.)

Uniform Circular Motion.—If r is the radius of a chrcle, s the linear speed in the arc, ω the angular velocity and T the period or time of one revolution, the angular velocity is,

$$\omega = \frac{s}{r} = \frac{2\pi}{T}.$$

The acceleration toward the center is

$$a = \frac{s^2}{r} = \omega^2 r = \frac{4\pi^2 r}{T^2}$$
.

The centrifugal force for a mass m,

$$F = \frac{ms^2}{r} = m\omega^2 r = \frac{4\pi^2 mr}{T^2}.$$

Application to the Solar System.—If M is the mass of the sun, G the constant of gravitation, P the period of the planet and r the distance of the planet from the sun, then the mass of the sun

$$M = \frac{4\pi^2 r^3}{GP^2}$$
 (G=6.657 for C. G. S. units.)

If P is the period and r the distance of a satellite revolving around the planet, the above expression for M gives the mass of the planet. The formula is written on the assumption that the orbit of the planet or satellite is circular, which is only approximately true.

Simple Harmonic Motion.—If r is the radius of the reference circle, ω the angular velocity of the point in the circle, θ the angular displacement at the time t after the particle passes the mid-point of its path, the linear displacement,

$$x = r \sin \theta = r \sin \omega t$$
.

The velocity at the same instant,

$$v = r\omega \cos \theta = \omega \sqrt{r^2 - x^2}$$
.

The acceleration,

$$a = -\omega^2 x.$$

The force for a mass m,

$$F = -m\omega^2 x = -\frac{4\pi^2 mx}{T^2}.$$

The period

$$T = 2\pi \sqrt{\frac{x}{a}}$$
.

The Pendulum.—For a simple pendulum of length *l*, for a small amplitude, the period,

 $T = 2\pi \sqrt{\frac{\overline{l}}{a}}$, or $g = 4\pi^2 \frac{l}{T^2}$.

For a sphere suspended by a wire of negligible mass where d is the distance from the knife edge to the center of the sphere whose radius is r, the length of the equivalent simple pendulum,

$$l = d + \frac{2r^2}{5d}.$$

If the period is P for an arc θ , the time of vibration in an infinitely small arc is approximately,

$$T = \frac{P}{1 + \frac{1}{4}\sin^2\frac{\theta}{4}}.$$

Foucault's Pendulum.—The rate of rotation in degrees per hour of a line on the surface of the earth relative to the plane of a Foucault's pendulum at latitude ϕ is,

$$\omega = 15 \sin \phi$$
.

Work.—If a force F act through a space s, the work done is W = Fs.

Power.—If an amount of work W is done in time t the power or rate of doing work is,

$$P = \frac{W}{t} = \frac{Fs}{t}.$$

Energy.—The potential energy of a mass m, raised through a distance h, where g is the acceleration due to gravity, is

$$PE = mgh.$$

The kinetic energy of mass m, moving with a velocity v, is

$$KE = \frac{1}{2}mv^2$$
.

Simple Machines.—If a force P applied through a distance p results in a force F through a distance f, neglecting friction,

$$Pp = Ff$$
.

Mechanical advantage in the case stated above is $\frac{f}{p}$.

If the force applied to overcome friction alone is x, the efficiency is,

 $E = \frac{Ff}{(P+x)p}$.

Mass by Weighing on a Balance with Unequal Arms.—If W_1 is the value for one side, W_2 the value for the other, the true mass,

 $W = \sqrt{W_1 W_2}$.

Sensitiveness of a Balance.—If w is the weight of the beam, h the distance of the center of gravity below the knife edge, a the length of the balance arms and x a small mass added to one pan, the deflection θ produced is given by

$$\tan \theta = \frac{a}{wh}x.$$

Elastic Coefficients

Young's modulus by stretching.—If an elongation s is produced by the weight of the mass m, in a wire of length l, and radius r, the modulus,

$$M = \frac{mgl}{\pi r^2 s}.$$

Young's modulus by bending, bar supported at both ends. If a flexure s is produced by the weight of mass m, added midway between the supports separated by a distance l, for a rectangular bar with vertical dimensions of cross-section a and horizontal dimension b, the modulus is,

$$M = \frac{mgl^3}{4sa^3b}.$$

For a cylindrical bar of radius r,

$$M = \frac{mgl^3}{12\pi r^4 s}.$$

For a bar supported at one end. In the case of a rectangular bar as described above,

$$M = \frac{4mgl^3}{8a^3b}.$$

For a round bar supported at one end,

$$M = \frac{4mgl^3}{3\pi r^4 s}.$$

Modulus of Rigidity.—If a couple C(=mgx) produces a twist of θ radians in a bar of length l and radius r, the modulus is

$$M = \frac{2Cl}{\pi r^4 \theta}$$
.

Coefficient of Restitution.—Two bodies moving in the same straight line with velocities v_1 and v_2 respectively, collide and after impact move with velocities v_3 and v_4 . The coefficient of restitution is

$$C = \frac{v_4 - v_3}{v_2 - v_1}.$$

Viscosity.—Flow of liquids through a tube; where l is the length of the tube, r its radius, t the difference of pressure at the ends, η the coefficient of viscosity, the volume escaping per second,

$$v = \frac{\pi p r^4}{8l\eta}$$
 (Poiseuille.)

Rate of Fall of a Small Sphere in a Fluid.—Where V is the maximum velocity, r the radius of the sphere, M_{δ} the mass of the same volume of liquid, g the acceleration due to gravity and η the coefficient of viscosity,

$$V = \frac{(M_s - M_l)g}{6\pi r\eta}.$$

Diffusion.—If the concentration (mass of solid per unit volume of solution) at one surface of a layer of liquid is d_1 , and at the other surface d_2 , the thickness of the layer h and the area under consideration A, then the mass of the substance which diffuses through the cross-section A in time t is,

$$m = KA \frac{(d_2 - d_1)}{h} t.$$

where K is the coefficient of diffusion.

Surface Tension.—The total force along a line of length l on the surface of a liquid whose surface tension is T,

$$F = lT$$
.

Capillary Tubes.—If a liquid of density D rises a height h in a tube of internal radius r the surface tension is.

$$T = \frac{rhDg}{2}$$
.

Pressure.—The pressure due to a force F distributed over an area A.

$$P = \frac{F}{A}$$
.

Hydrostatic pressure on an area A at a distance h from the surface of a liquid of density D is,

$$F = PA \text{ (total pressure)} = AhDg.$$

Archimedes' Principle.—A body of volume V immersed in a liquid of density D is buoyed up by a force

$$F = DgV$$
.

Velocity of Efflux of a Liquid.—If h is the distance from the opening to the free surface of the liquid, the velocity of efflux is

$$V = \sqrt{2gh}$$
.

Diminution of Pressure at the Side of a Moving Stream.— If a fluid of density d moves with a velocity v the diminution of pressure due to the motion is (neglecting viscosity),

$$p = hdg = \frac{1}{2}dv^2$$
.

Boyle's Law.—For a perfect gas, changing from pressure p and volume v to pressure p' and volume v' without change of temperature.

pv = p'v'

Altitudes with the Barometer.—If b1 and b2 denote the corrected barometer readings at two stations, t the mean of the temperatures t1 and t2 of the air at the two stations, e1 and e2, the tension of water vapor at the two stations, h the mean height above sea level, ϕ the latitude, then the difference in elevation in centimeters is

 $H = 1,843,000(\log b_1 - \log b_2)(1 + 0.00367t)(1 + 0.0026\cos 2\phi)$ $+0.00002h + \frac{3}{2}k$). $k = \frac{1}{2} \left(\frac{e_1}{h_1} + \frac{e_2}{h_2} \right).$

where

An approximate formula, sufficient for differences not over 1000 meters is

 $H = 1,600,000 \cdot \frac{b_1 - b_2}{b_1 + b_2} (1 + 0.004t).$

Heat

Thermal Expansion.—If l_0 is the length at 0° C., α the the coefficient of linear expansion, the length at t° C. is,

$$l_t = l_0(1 + \alpha t).$$

General Formula for Thermal Expansion.—The rate of thermal expansion varies with the temperature. The general equation giving the magnitude m_t (length or volume) at a temperature t, where m_0 is the magnitude at 0° C., is

$$m_t = m_0(1 + \alpha t + \beta t^2 + \gamma t^3 \dots)$$

where α , β , γ , etc., are empirically determined coefficients.

Volume expansion. If V represents volume and β the coefficient of expansion,

$$V_t = V_0(1+\beta t).$$

For solids,

 $\beta = 3\alpha$ (approximately).

Expansion of Gases.—For an original volume V_0 at 0° C. the volume at t° C. (at constant pressure) is

$$V_t = V_0(1 + 0.00367t)$$
.

General Law for Gases:

$$p_t v_t = p_0 v_0 \left(1 + \frac{t}{273} \right)$$
.

Reduction of a Gas Volume to 0° C., 760 mm. Pressure.—If V is the original volume of a gas at temperature t and pressure H the volume at 0° C. and 760 mm. pressure will be,

$$V_0 = \frac{V}{(1+\alpha t)} \frac{H}{760}.$$

If d is the original density the density at 0° C. and 760 mm. pressure will be,

 $d_0 = d(1+\alpha t)\frac{760}{H},$

 $\alpha = 0.00367$ approximately.

Gas Thermometer.—Where P_0 , P_s , and P_x represent the total pressures with the bulb at 0° C., at the boiling-point of water and at the unknown temperature respectively, t_s the temperature of steam and t_x the unknown temperature,

$$t_x = t_s \frac{P_x - P_0}{P_s - P_0}$$

(approximately). The total pressure on the gas in the bulb is the sum of barometric pressure at the time and that measured by the manometer.

546

Specific Heat.—If a quantity of heat H calories is necessary to raise the temperature of m grams of a substance from t_1 to t_2 ° C., the specific heat,

 $s = \frac{H}{m(t_2 - t_1)}.$

Specific Heat by the Method of Mixtures.—Where a mass m_1 of the substance is heated to a temperature t_1 , then placed in a mass of water m_2 at a temperature t_2 contained in a calorimeter with stirrer (of same material) of mass m_3 , specific heat of the calorimeter c, v the volume of the immersed portion of the thermometer, t_3 the final temperature, the specific heat of the substance.

 $s = \frac{(m_2 + m_3c + 0.46v)(t_3 - t_2)}{m_1(t_1 - t_3)}.$

Black's Ice Calorimeter.—If a body of mass m and temperature t melts a mass m' of ice, its temperature being reduced to 0° C., the specific heat of the substance is,

$$s = \frac{80.1m'}{mt}.$$

Bunsen's Ice Calorimeter.—A body of mass m at temperature t causes a motion of the mercury column of l centimeters in a tube whose volume per unit length is v. The specific heat is

$$s = \frac{884lv}{mt}$$
.

Conduction of Heat.—If the two opposite faces of a cube of a substance are maintained at temperatures t_1 and t_2 , the heat conducted across the cube of section a and thickness d in a time T will be,

 $Q = K \frac{(t_2 - t_1)aT}{d}.$

K is a constant depending on the nature of the substance, designated as the specific heat conductivity.

Wave Motion and Sound

Velocity of a Wave.—The velocity of propagation in terms of wave length λ and period T or frequency n is,

$$V = \frac{\lambda}{T} = n\lambda$$
.

Velocity of a transverse wave in a stretched cord. If T is the tension of the cord and m the mass per unit length,

$$V = \sqrt{\frac{T}{m}}.$$

Velocity of Sound.—In terms of elasticity (bulk modulus) E and density d,

$$V = \sqrt{\frac{E}{d}}$$
.

Frequency of Vibrating Strings.—For a string of length l, tension T, density d, and radius r, the frequency is

$$n = \frac{1}{2rl} \sqrt{\frac{T}{\pi d}}.$$

Organ Pipes.—The frequency of vibration in a closed organ pipe of length I, where V is the velocity of sound in air, is

$$n = \frac{V}{4l}$$
 (fundamental.)

In an open pipe,

$$n = \frac{V}{2l}$$
 (approximate.)

Velocity of sound in air at a temperature t,

$$V = 33,136 + 60.7t$$
 cm. per sec.

Static Electricity

Force between Two Charges.—If two charges q and q' are at a distance r in a vacuum, the force between them is,

$$F = \frac{qq'}{r^2}.$$

Field Intensity, or force exerted on unit charge at a point distant r from a charge q in a vacuum,

$$H = \frac{q}{r^2}$$
.

If the dielectric in the above cases is not a vacuum the dielectric constant K must be introduced. The formulæ become,

$$F = \frac{qq'}{Kr^2}. \qquad H = \frac{q}{Kr^2}.$$

The value of K is frequently considered unity for air. If the dielectric constant of a vacuum is considered unity the value for air at 0° C. and 760 mm. pressure is 1.000576.

Potential at a point due to a charge q at a distance r.

$$V = \frac{q}{Kr}.$$

Capacity in terms of charge and potential. A conductor charged with a quantity q to a potential V has a capacity,

$$C = \frac{q}{V}$$
.

Capacity of a spherical conductor of radius r,

$$C = Kr$$
.

Capacity of two concentric spheres of radii r and r,

$$C = K \frac{rr'}{r - r''}$$

Capacity of a parallel plate condenser, the area of whose plates is A and the distance between them d,

$$C = \frac{KA}{4\pi d}$$
.

Magnetism

Force between Two Magnetic Poles.—If two poles of strength m and m' are separated by a distance r in a medium whose permeability is μ (unity for a vacuum), the force between them is

$$F = \frac{mm'}{\mu r^2}.$$

The strength of a magnetic field at a point distant r from an isolated pole of strength m is,

$$H=\frac{m}{\mu r^2}.$$

Magnetic Moment.—If the poles are separated by a distance which is great compared with the dimensions of the magnet, the magnetic moment of a magnet of length l whose poles have values of +m and -m is,

$$M = ml$$
.

Couple acting on a magnet of magnetic moment ml in a field of strength H. If the magnet is perpendicular to the direction of the field,

$$C = Hml = HM$$
.

If the angle between the magnet and the field is 0,

$$C = Hml \sin \theta$$
.

Action of One Magnet on Another.—The turning moment experienced by a magnet of pole strength m' and length 2l' placed at a distance r from another magnet of length 2l and pole strength m, where the center of the first magnet is on the axis (extended) of the second and the axis of the first is perpendicular to the axis of the second,

$$C = 8 \frac{mm'll'}{r^3} = \frac{2MM'}{r^3}.$$

If the first magnet is deflected through an angle θ , the expression becomes,

 $C = \frac{2MM'}{r^3} \cos \theta.$

Period of vibration of a magnet of magnetic moment M and moment of inertia I vibrating in a field of strength H,

$$T = 2\pi \sqrt{\frac{K}{MH}}.$$

Magnetic Induction.—If a substance of permeability μ is placed in a magnetic field H the magnetic induction in the substance,

 $B = \mu H$.

If I is the magnetic moment for unit volume,

 $B = H + 4\pi I$.

The susceptibility,

$$K = \frac{I}{H}, \qquad \mu = 1 + 4\pi K.$$

Tractive Force of a Magnet.—If a magnet with induction B has a pole face of area A the force is,

$$F = \frac{B^2 A}{8\pi}.$$

If B and A are in C. G. S. units, A will be in dynes.

Current Electricity

Ohm's Law.—Current in terms of electromotive force E and resistance R,

 $i = \frac{E}{R}$.

Current in a Simple Circuit.—The current in a circuit including an external resistance R and a cell of electromotive force E, and internal reistance r,

$$i = \frac{E}{R+r}$$

For two cells in parallel,

$$i = \frac{E}{R + \frac{r}{2}}.$$

For two cells in series,

$$i = \frac{2E}{R + 2r}.$$

Resistance of a conductor at 0° C., of length l, cross-section s and specific resistance ρ ,

$$R_0 = \rho \frac{l}{s}$$
.

Resistance of a conductor at a temperature t whose resistance at 0° C. is R_0 and whose temperature resistance coefficient is α ,

$$R_t = R_0(1 + \alpha t).$$

Resistance of Conductors in Series and Parallel.—The total resistance of any number of resistances joined in series is the sum of the separate resistances. The total resistance of conductors in parallel whose separate resistances are r_1 , r_2 , r_3 , . . . r_n is given by the formula

$$\frac{1}{R} = \frac{1}{r_1} + \frac{1}{r_2} + \frac{1}{r_3} \cdot \cdot \cdot + \frac{1}{r_3}.$$

R is the total resistance.

For two terms this becomes,

$$R=\frac{r_1r_2}{r_1+r_2}.$$

Wheatstone's Bridge.—If the resistances r_1 , r_2 , r_3 , and r_4 form the arms of a Wheatstone's bridge in order as the circuit (omitting cell and galvanometer connections) is traced, when the bridge is balanced,

$$\frac{r_1}{r_2} = \frac{r_4}{r_3}$$
 or $\frac{r_1}{r_4} = \frac{r_2}{r_3}$.

Heat Effect.—The heat in calories developed in a circuit by an electric current i flowing through a resistance r for a time t is,

$$H = \frac{ri^2t}{4.18} = \frac{Eit}{4.18}.$$

Electromagnetic Field.—The intensity of the magnetic field at the center of a circular conductor of radius r in which a current i flowing is,

 $H = \frac{2\pi i}{r}.$

If the circular coil has n turns, the magnetic intensity at the center is.

$$H = \frac{2\pi ni}{r}$$
.

Tangent Galvanometer.—A tangent galvanometer with n turns, of radius r, in the earth's field H, has a deflection θ . The current flowing is.

$$i = \frac{Hr}{2\pi n} \tan \theta.$$

If $\frac{2\pi n}{r} = G$ (the galvanometer constant),

$$i = \frac{H}{G} \tan \theta$$
.

Electrolysis.—If a current i flows for a time t and deposits a metal whose electrochemical equivalent is e, the mass deposited

$$m = eit.$$

Light

Spherical Mirrors.—If R is the radius of curvature, F principal focus, and f_1 and f_2 any two conjugate focal distances,

$$\frac{1}{f_1} + \frac{1}{f_2} = \frac{1}{F} = \frac{2}{R}.$$

Lenses.—For a single thin lens whose surfaces have radii of curvature r_1 and r_2 , whose principal focus is F, the index of the fraction n and conjugate focal distances f_1 and f_2 ,

$$\frac{1}{F} = \frac{1}{f_1} + \frac{1}{f_2} = (n-1) \left(\frac{1}{r_1} + \frac{1}{r_2} \right).$$

Radius of Curvature from Spherometer Readings.—If l is the mean length of the sides of the triangle formed by the points of the three legs, d the spherometer reading, the radius of curvature of the surface is

$$R = \frac{l^2}{6d} + \frac{d}{2}.$$

Index of Refraction.—If i is the angle of incidence, r the angle of refraction, v the velocity of light in the first medium, v' the velocity in the second medium, the index of refraction n,

$$n = \frac{\sin i}{\sin r} = \frac{v}{v'}$$
.

For a prism of angle A where light passes at the angle of minimum deviation D, the index of refraction,

$$n = \frac{\sin \frac{1}{2}(A, +D)}{\sin \frac{1}{2}A}.$$

Reflection of Light by a Transparent Medium in Air. (Fresnel's Formulæ).—If i is the angle of incidence, r the angle of refraction, n_1 the index of refraction for air (nearly equal to unity), n_2 index of refraction for a medium, then the ratio of the reflected light to the incident light is,

$$R = \frac{1}{2} \left[\frac{\sin^2(i-r)}{\sin^2(i+r)} + \frac{\tan^2(i-r)}{\tan^2(i+r)} \right].$$

If i=0 (normal incidence), and $n_1=1$ (approximate for air).

$$R = \left(\frac{n_2 - 1}{n_2 + 1}\right)^2.$$

Diffraction Grating.—If s is the distance between the rulings, d the angle of diffraction, then the wave length where the angle of incidence is 90° is (for the *n*th order spectrum),

$$\lambda = \frac{\sin d}{n}$$
.

If i is the angle of incidence, d the angle of diffraction, s the distance between the rulings, n the order of the spectrum, the wave length is,

$$\lambda = \frac{s}{n}(\sin i + \sin d).$$

Specific Rotation.—If there are n grams of active substance in v cubic centimeters of solution and the light passes through l centimeters, r being the observed rotation in degrees, the specific rotation (for 1 centimeter),

$$[\alpha] = \frac{rv}{nl}$$
.

LABORATORY ARTS AND RECIPES

ACID PROOF WOOD STAIN

SOLUTION No. 1 SOLUTION No. 2

125 grams of copper sulphate 150 grams of good fresh anilin oil 125 grams of potassium chlorate 180 grams of concentrated hydrochloric acid 1000 grams of water

Wood must be free from paint, varnish, grease or chemicals. Apply two coats of solution No. 1 boiling hot with a paint brush, allowing each coat to dry thoroughly before the next coat is applied. Then apply two coats of solution No. 2 in the same way. When the wood is completely dried wash off excess chemicals with hot soapsuds. Finish with raw linseed oil. Polish comes from rubbing the oil down well with a cloth or sponge. Whenever the tables get dingy again go over them with a coat of linseed oil and rub smooth.

BLUE PRINT PAPER, Formula for Sensitizing

Solution A:	Water50. c.c.,	8.5 oz.
	Iron and ammonium citrate10. grams,	
Solution B:	Water 50. c.c.,	8.5 oz.
	Potassium ferricyanide 8. grams,	1.4 oz.

Filter separately. The solutions, which may be preserved separately for some time, are best kept in the dark. For use, mix, in a dark room or by an artificial light of low intensity,

equal quantities of the two solutions.

Any non-absorbent paper may be sensitized by brushing the solution over it rapidly with a soft, wide, flat brush, going over the surface twice, the second coat being applied in a direction at right angles to the first. An alternative method is to lower the paper, beginning at one edge, on to the surface of the solution in a tray and allow it to float for a few seconds. Care must be taken to exclude air bubbles. After sensitizing by either method, the paper should be hung by one edge in a dark room to dry.

CEMENTS

Glues of all kinds are useful for wood, leather, paper and glass, where the joints are not required to be waterproof.

For waterproof joints of nearly all substances, including metals, shellac may be used. Flakes of solid shellac may be

used with heat or it may be used as a solution in alcohol.

Kotinsky cement, Chatterton's compound and other resinous cements are used for similar purposes and in the same way as solid shellac. Glass cells made up with compounds of this nature may be made impervious to alcohol by painting over the joints with a rubber cement made by melting up small pieces of rubber tubing and adding carbon disulphide to make a thin syrup.

For celluloid a cement made by dissolving celluloid shavings

in acetone is recommended.

Brass fittings are usually cemented on glass tubing with sealing wax. The glass tube should be wound with thread or twine to secure a close fit. The glass and the brass fitting should be warmed slightly above the melting-point of wax. (Thick, or pressed glass should be warmed slowly.) Wax may be applied to both parts and the thread well saturated with the melted wax. Enough should be used to insure filling the space

completely. Join the parts while the wax is very soft and clamp

in position until it is thoroughly cold.

For optical purposes, cementing glass, etc., Canada balsam is universally employed, and makes a permanent and nearly invisible joint.

CLEANING MERCURY

Mercury may be cleaned sufficiently for many laboratory purposes without distilling. Allow the mercury to fall in a fine spray-into a quantity of dilute nitric acid, 25 parts of acid to 75 parts distilled water. After being passed through the acid one or more times it should be passed through distilled water and dried. Most of the water may be removed with a clean filter, and the mercury heated in a porcelain dish to about 110° C. To produce the spray the stem of a glass funnel may be drawn down so as to leave only a small opening for the escape of mercury or a glass tube with a capillary point attached to a funnel with a tightly fitting rubber tube.

A three- to four-foot length of one-inch glass tube closed at one end and supported in a vertical position may be used to contain the acid solution. If a small glass tube be fused into the lower closed end of the large tube, and bent so as to stand up for a distance a little greater than 1/13.6, the column of acid solution in the large tube, a U-tube is formed in which a short column of mercury supports the long column of acid solution.

The end of the small tube should be bent over at the top so as to facilitate the delivery of the mercury and a short piece of clean rubber tubing with a pinch-cock put on at the start; as soon as mercury enough has collected in the bottom of the tube the pinch-cock may be opened. The mercury will rise nearly or quite to the top of the small tube, and as the quantity increases will be delivered from the small tube as fast as it falls in the spray.

The reversed end of the small tube should be short to avoid forming a siphon, which would completely empty the apparatus.

An efficient procedure, especially if the mercury is greasy, consists in spraying the mercury by means of the above apparatus, first, through a dilute solution (10%) of potassium hydroxide, then through dilute nitric acid (10-15%) and finally through distilled water.

CLEANING OPTICAL SURFACES FOR SILVERING

(From Miller's Laboratory Physics, Ginn & Co., publishers, by permission.)

Probably the most important part of the silvering process is

the proper cleaning of the surface to be silvered.

The surface is thoroughly cleaned of grease or other organic matter by the usual methods, using alcohol or chromic acid. Then it should be carefully cleaned with strong nitric acid, the whole surface being firmly rubbed with pure cotton tied to a rod of wood or glass. Care should be taken not to injure the surface. Rinse with water, and then wash the surface thoroughly with a strong solution of caustic potash, rubbing with a

cotton brush as before. Finally, rinse with distilled water, and keep the surface wet until it is placed in the silvering solution. If the distilled water wets the whole surface uniformly the cleaning may be sufficient; if it does not wet uniformly, the operations must be repeated. The fingers should not touch the edges of the glass during the latter cleaning operations, as a layer of organic matter is apt to spread over the surface and render the silvering uneven.

Dr. Brashear recommends that the surface, after the washings described above, be rubbed with prepared chalk on a cotton wad until it is thoroughly dry and clean. It may then be put

into the silvering solution at one's convenience.

COLORED LIQUIDS

For rendering columns of water easily visible, add a few drops of one per cent alcoholic solution of fluorescein to a liter of water. The dilute solution of fluorescein is bright green by reason of its fluorescence, although colorless by transmitted light.

A small quantity of an aqueous (1%) solution of uranine (the sodium salt of fluorescein) may be used in place of the

alcoholic solution mentioned above.

If solutions showing color by transmission are desired, dilute aqueous may be made with any of the following dyes:

Color Dye Erythrosine Pink Pink (green fluorescence) Eosine Rhodamine B Pink (red fluorescence) Ponceau 2R Scarlet Naphthol green Green Bluish green Methylene green Methylene blue Blue Methyl violet Purple

CROSS HAIRS

The spider lines which serve as an index in reading telescopes may be quickly replaced in an emergency by single silk fibers (from ordinary sewing silk) attached by soft wax. Single fibers

may easily be removed from an untwisted strand.

Spider web should be used in permanent work. The fibers of the egg nest of certain species are employed and may be obtained of most dealers in scientific apparatus. In mounting them the following suggestions may be useful: The cross hair diaphragm of the telescope should be removed and clamped in a horizontal position. A bow of brass wire, about No. 28, should be employed to stretch the fiber. A background of black velvet makes the fibers more easily visible. With soft wax or other convenient adhesive ready on both tips of the bow, a fiber of the required length is to be disentangled with tweezers and wrapped several times about the ends of the bow under tension sufficient to straighten the fiber. The fiber, now con-

veniently handled by the wire bow, should be cautiously lowered onto the diaphragm in the proper position, the wire left hanging.

A small drop of shellac varnish applied at each side will hold the fiber in position as soon as it is thoroughly dry, after which the ends of the fiber should be cut away.

FLUORESCENT SCREENS

For observations of the ultra-violet spectrum, moisten a small quantity of anthracene with water and brush a thin layer over a ground-glass surface. On drying most of the anthracene will adhere to the glass. The prepared surface should be placed so as to receive the radiation directly, glass being comparatively opaque to the shorter wave lengths.

GLASS-GRINDING FLUID

Turpentine	45	c.cm.
Ether (ethyl oxide)	22.5	c.cm.
Camphor gum		

To be used with powdered emery for grinding glass.

For smoothing edges a sheet of emery cloth moistened with the above solution may be used.

Plane surfaces should be ground on thick plate glass.

For grinding glass stoppers use coarse emery, turn in one direction, finish with fine emery.

LABELS FOR BOTTLES

Ordinary gummed labels written upon, preferably, with India ink, may be protected after being gummed to the bottle by a coat of lacquer or varnish. A more complete protection is obtained by painting the label, after it is in place, with melted paraffin.

MIRRORS FOR SPECTROMETER ADJUSTMENT

A small square of thick plate glass with edges ground smooth and silvered on one surface affords a means of accurate adjustment.

To avoid the necessity of frequently resilvering, which arises where the mirrors are in constant use, the following course is

suggested:

From selected German plate mirror 2 to 3 mm. thick, cut two pieces of the same size, say 4×5 cm. Remove the protective layer of varnish or paint from both pieces by soaking in alcohol and rubbing with cotton, being careful not to injure the silver surface. From one piece remove every trace of varnish by repeated rinsing, dry and polish the silver surface thus exposed by stroking lightly with a chamois rouge pad. From the other piece remove the silver by nitric acid, wash thoroughly in distilled water and dry. Cement the clear piece on the silver face of the other with Canada balsam. This is accomplished by placing two or three drops of Canada balsam in xylol (obtained in collapsible tubes) on the center of the silver face, and

evenly lowering upon it the clear glass. The balsam should spread rapidly to the edges of the plates. Minute bubbles of air in the balsam film are harmless; if large bubbles are present the plates should be slipped apart, cleaned with alcohol and the process repeated.

The balsam will be sufficiently hard in a few days to allow the excess to be scraped from the edges and the plates bound together with lantern slide binding strip. Gentle heat may be

used to harden the balsam more rapidly.

POLARITY TEST PAPER

Dissolve one gram of phenolphthalein in a small quantity of alcohol. Add the solution of phenolphthalein to 100 c.cm. of a 10 per cent solution of potassium chloride in distilled water. Filter paper should be soaked in the solution and dried. A strip of paper moistened with water and placed in contact with the two terminals will show a bright red stain at the negative terminal.

SILVERING GLASS

Brashear's Process

(From Miller's Laboratory Physics, Ginn & Co., publishers, by permission.)

Two solutions are required, one, the reducing solution, should be prepared at least a week before it is used, and it may be made in large quantity and kept in stock with advantage; the other solution is to be prepared when used.

REDUCING SOLUTION

For silvering, the mirror may rest face up on the bottom of a suitable dish; it may stand on edge, or be supported in any manner, face downward, dipping into the upper part of the solution. In the latter case, the mirror may be fastened with wax to a stick laid across the dish, or it may be supported on glass feet or on paraffined wood wedges. Dr. Brashear recommends that the mirror, if round, form the bottom of the silvering dish, which is completed by wrapping a strip of paraffined paper around the edge of the mirror, this being held in place by rubber bands or fastened with several wrappings of cord.

Having selected a dish and support for the mirror, measure with water the quantity of solution that will be required to make a layer a centimeter or two thick over the surface to be silvered. For each 150 c.cm. of final solution, 1 g. of silver nitrate and 0.5 g. of caustic potash (purified by alcohol will be required. Dissolve the silver and potash separately, using quantities of water of the proportion of 100 c.cm. to 1 g.

of the solid. Ordinary graduates or flasks are the most convenient form of vessel in which to mix the solutions. Into the silver nitrate solution pour a few drops of dilute aqua ammonia. The solution will turn to a dark brown color; add ammonia little by little till the precipitate is nearly but not quite redissolved. Now add the potash solution, when a precipitate will again be formed. This is to be nearly, but not entirely, redissolved by the addition of more ammonia, a few drops being sufficient this time. After the ammonia has been added shake or stir the solution well and wait a minute or two to be certain that it does not entirely clear. If by chance too much ammonia has been used, a little silver nitrate is to be dissolved and added, a few drops at a time, till a permanent precipitate is formed. This excess of silver must be present, the solution showing a decided brown tint. The solution may be filtered, though usually this is not necessary.

A quantity of reducing solution equal to about a twenty-fifth part of the solution just prepared is measured out. The mirror, having been properly cleaned and rinsed with distilled water, is placed in position. The reducing solution is poured into the silver and potash solution, and mixed by a quick shaking of the graduate or stirring with a glass rod; the whole is then poured into the dish. If the mirror is immersed face down, care is necessary to remove air bubbles; the mirror may well be immersed after the solution is in, being dipped in at one side first. If the mirror is at the bottom of the dish, after cleaning it is covered with a thin layer of water, and the prepared solutions are poured into the dish without further trouble. In the latter case the dish must be rocked during the time of deposition.

The solution soon turns to a black color, which in a few minutes will turn to a brown; and when it becomes a light gray and the precipitate is flocculent, which may be in ten or fifteen minutes, the operation is at an end. If the mirror is allowed to remain in the solution too long, the surface will have a bleached appearance, which polishing will hardly remove. Remove the mirror, rinse with water, and carefully wipe off the sediment with a tuft of absorbent cotton. It is then set on edge to dry; a rinsing with alcohol will facilitate the drying, or all water may be safely taken up by pressing clean blotting paper over the surface.

When dry, the surface may be polished, if necessary, with a small pad of chamois leather stuffed with cotton, on which is spread a little rouge. Small, circular strokes of the pad, with light pressure, will soon bring out the deep luster of the silver. A uniform temperature of the bath and the glass, of about

20° is essential to success.

Since fulminating silver is liable to be produced by the action of ammonia on silver oxide, especially in a warm room, all solutions should be thrown away as soon as the silvering operation is completed. The used solutions may be poured into a large jar, in which is thrown some common salt; this causes the silver to be precipitated as the chloride, and about 90 per cent of the original silver may be recovered.

559

ROCHELLE SALTS PROCESS

(From Miller's Laboratory Physics, Ginn & Co., publishers, by permission.)

For depositing the uniform thin film of silver required on the half-silvered glass of the interferometer, the following method is more suitable than the one described above, as the silver is deposited more slowly. If a thick film is desired, two or more successive deposits may be made, each of which may require an hour's time.

Dissolve 5 g. of silver nitrate in 300 c.cm. of distilled water, and add dilute aqua ammonia until the precipitate formed is nearly, but not entirely, redissolved in the manner explained in the preceding method. Filter the solution and add water to

make 500 c.cm.

Dissolve one g. of silver nitrate in a small quantity of water and pour into about half a liter of boiling water; dissolve 0.83 g. of Rochelle salts in a small quantity of water, and add to the boiling solution. Continue the boiling for half an hour, till the gray precipitate collects as a powder in the bottom of the flask. Filter hot, and add water to make 500 c.cm.

These solutions may be kept in the dark for a month or two. For silvering, equal volumes of the two solutions are mixed, and the glass is supported in the mixture in whatever fashion is convenient. Various methods are mentioned in the preceding article. The thickest possible deposit may require an hour's time. A second deposit may be made upon the first if necessary to secure the desired thickness. The drying and polishing may

be carried out as described above.

A half-silvered film will be produced in about a minute; only experience can determine when the proper thickness has been secured. The glass appears as though it were very lightly smoked. A film that reflects a little more than half the light incident at 45° is desirable for interferometer use. A simple method of testing is to look at two similar gas flames, one seen through the film and the other seen reflected by it. It is well to silver at once all four surfaces of the two plane-parallel plates of the interferometer and to select for use that film which is of the proper and most uniform thickness.

SOAP SOLUTION FOR SOAP FILM EXPERIMENTS

Pure castile or palm-oil soap	1 oz.
Distilled water	8 oz.
Pure glycerine	4 oz.

Cut the soap in thin shavings and dissolve in the water. When the solution is complete, add the glycerine and mix very thoroughly. On standing the liquid becomes clear at the bottom. The clear portion may conveniently be removed by a siphon and preserved indefinitely.

SODIUM LIGHT

Paper is to be soaked in a saturated solution of common salt, borax or other salt of sodium, and dried. When wrapped around a Bunsen burner, secured by a twist of wire and pushed up into the edge of the flame, a sodium flame of considerable intensity is obtained. As the ash of the paper breaks away it must be occasionally raised. Lithium chloride may be used in place of or with sodium salt to give the lithium line for spectrometric measurement. Sheet asbestos (thin) may replace the paper if convenient.

SOLDERS

Composition by weight.			Tem- Metals for		Flux com-			
Lead.	Tin	Cop- per.	Zinc.	Sil- ver.	Gold.	perature of fusion.	which it is used.	monly used.
1 3	1 5	:::	:::	::	:::	188° C. 176	Lead Zinc	Tallow Zinc chloride with 25% HCl
2	5		•••		•••	170	Copper brass	Zinc chloride (neutral) or resin
				-			Iron	Zinc chloride or ammo- nium chloride
		2	1				Iron or cop-	
		55	45			880	Iron, copper or brass	Borax
		4.5	0.5	15.0	· · · ·	1005	Iron, copper or gold	Borax
		6.5	2.0	11.0		983	Iron, copper or gold	Borax
		4		6	10		Gold	

STOPCOCK GREASE

Vaseline	16 parts
Pure gum rubber	8 parts
Paraffin	

Melt all together. More paraffin may be added if the compound is not stiff enough.

UNIVERSAL WAX

(1) A soft wax useful in the laboratory may be made by melting together paraffin, vaseline and paraffin oil in various proportions according to the pliability desired.

(2) Another authority recommends equal quantities of beeswax and turpentine (by weight). It is customary to color the

wax by adding finely-powdered Venetian red.

(3) Melt together 1 part of Venice turpentine and 5 parts of beeswax. Color with vermilion.

PHOTOGRAPHIC FORMULÆ

Developers for Plates and Films

Note. - Pure water, preferably distilled, should be used in all solutions. Chemicals should be dissolved in the order given. The abbreviation "anhy." is used in connection with sodium sulphite and carbonate to indicate the anhydrous or dried salt. If crystals are used about twice the quantity is necessary.

AMIDOL (Diamidophenol)

I to the second		
AmidolSodium sulphite, anhyWater	2–3 gr. 12 gr. 1 oz.	4.5–7 gm. 29 gm. 1000 cc.
Solution mixed as above will keep about	ut one week.	-
2		•.
Stock solution of sodium sulphite:	- 1.	
Sodium sulphite, anhy	2 oz. 0.5 oz. 20 oz.	100 gm. 25 gm. 1000 cc.
Boil after dissolving in warm water when needed by adding dry amidol to sulphite which keeps for a long period:	er. Develop o the stock	er is made solution of
Stock solution of sodium sulphite Water	2 oz. 10 oz. 20–30 gr.	200 cc. 4.5–7 gm. 1000 cc.
ELON. See under Metol-Hy	droquinone	
Glycin		•
Boiling waterSodium sulphite, anhy	4 oz. 1.25 oz.	1000 cc. 312 gm.
When dissolved add:		
Glycin	1 oz.	250 gm.
Slowly add: Potassium carbonate (dry)	5 oz.	1250 gm.
Forms thick cream; for use, shake		

Keeps indefinitely in stock solution, - slow acting, free from 562

Normal, 1 oz. stock solution to 15 oz. water; for less contrast

use more water up to 30 oz.

stain.

PHOTOGRAPHIC FORMULÆ (Continued)

Hydroquinone

1

Normal developer: -

Mormai developer.	2.2	
Water Hydroquinone	20 oz. 100 gr.	1000 cc. 11.5 gm.
Sodium sulphite, anhy	0.75 oz.	38 gm.
Sodium sulpinite, amy	1.5 oz.	75 gm.
Sodium carbonate, anhy		•
Becomes inert below 16° C. (60° F.).	ls a rat	her slow de-
veloper.		
Solution A: —		
Water	20 oz.	1000 cc.
Hydroquinone	160 gr.	18 gm.
Sodium sulphite, anhy	1 oz.	50 gm.
Citric acid	60 gr.	7 gm.
Potassium bromide	40 gr.	4.5 gm.
	6	- 0
Solution B: —		40
Sodium hydroxide (stick)	160 gr.	18 gm.
Water	20 oz.	1000 c.c.
For use take A 1 oz : B 1 oz : water.	2 oz.	
A more rapid developer than No. 1 but	tends to	great density
in high lights.		-
III IIIgii IIgii 165.		
Developer for process work: —		
Solution A:—		
	40 oz.	1000 cc.
Water	1 oz.	25 gm.
Hydroquinone	1 oz.	25 gm.
Potassium metabisulphite	1 oz.	25 gm.
Potassium bromide	1 02.	20 B
Solution B:—		
Water	40 oz.	
Potassium hydroxide (caustic potash).	2 oz.	$50~\mathrm{gm}$.
- 1 to A and	D W:11	dovolon in 3
To develop use equal parts A and	D. WIII	Tee developer
minutes at 65° F. (18° C.). Inert below once only; if yellow stain occurs reduce by	romide to	half quantity
once only; if yellow stain occurs reduce b	tomue to	man quantury.

METOL 1000 cc. 20 oz. Water, warm..... 17 gm. 150 gr. Metol.... 63 gm. 1.25 oz. Sodium sulphite, anhy..... 1.75 oz. 88 gm. Sodium carbonate, anhy..... 1.8 gm. 16 gr. Potassium bromide.....

Always dissolve metol first.

For use dilute with equal part water for portraiture; for land-scape use two parts of water to one of stock solution. Gives detail without density except by prolonged development.

PHOTOGRAPHIC FORMULÆ (Continued)

METOL-HYDROQUINONE

Note: — Elon may be metol, in equal quantity.	used	with	hydroquinone	in	place	of

Solution A:—
Dissolve in the order given:

Solution A:-

Dissolve in the order given:		
Water Metol Hydroquinone. Sodium sulphite, anhy Solution B:—	64 oz. 120 gr. 120 gr. 2 oz.	1820 cc. 7.8 gm. 7.8 gm. 57 gm.
Water	16 oz. 2 oz.	455 cc. 57 gm.

For use take A, 4 oz.; B, 1 oz.; water, 4 oz.

FACTOR 15

Monomet		1, 5
Water Monomet Sodium sulphite, anhy Sodium carbonate, anhy Potassium bromide, 10% sol	120	1000 cc. 2.2 gm. 14 gm. 14 gm. 2-4 cc.
Transfer and the last transfer and the last transfer and the last transfer and tran		2~4 CC.

Use 1 part stock solution with 1 part water; gives soft negatives.

MONOMET-HYDROQUINONE

Water. Monomet. Hydroquinone. Sodium sulphite, anhy. Sodium carbonate, anhy. Potassium bromida 10% sol	20 oz. 16 gr. 32 gr. 120 gr. 120 gr.	1000 cc. 2 gm. 4 gm. 14 gm. 14 gm.
Potassium bromide, 10% sol	20 drops	2-4 cc.

For use take one part stock solution with one part water.

ORTOL

Ortol	140 gr. 70 gr. 20 oz.	16 gm. 8 gm. 1000 cc.
Solution B:— Sodium carbonate, anhy Sodium sulphite, anhy Potassium bromide Water	1.25 oz. 1.75 oz. 10–20 gr. 20 oz.	63 gm. 88 gm. 1.1–2.3 gm. 1000 cc.

For rapid developer take A, 1 part; B, 1 part. For slower, softer development take A, 1 part; B, 1 part; water, 1 part.

564

PHOTOGRAPHIC FORMULÆ (Continued)

$\mathbf{p}_{\mathtt{A}}$	RAMT	порн	ENOL

Water, boiling	20 oz.	1000 cc.
Potassium metabisulphite	6 oz.	$300~\mathrm{gm}$.
Paramidophenol	2 oz.	100 gm.

Add sodium or potassium hydroxide in small quantities to dissolve the precipitate first formed.

For use take 1 part stock solution with 20 parts water.

Pyro 1

Solution A:— Water Oxalic acid Pyrogallic acid	16 oz. 12 gr. 1 oz.	455 cc. 0.8 gm. 28 gm.
Solution B:— Water Sodium sulphite, anhy	16 oz. 2 oz.	455 cc. 57 gm.
Solution C:— Water Sodium carbonate, anhy	16 oz. 1 oz.	455 cc. 28 gm.

For immediate use mix 1 part each of A, B and C with 10 parts water.

Factor 12

2

Hurter and Driffield standard developer for plate t	esting: —
Pyro	8 parts
Sodium sulphite, crystal	40 "
Water to make	1000 "

FACTORS

If the image first appears after immersion in the developer for a certain time, then this period of time multiplied by the "factor" for the particular developer used will give the total time required for full, normal development. The factor for the degree of development desired may well be determined by experiment; the following are suggested.

Amidol, 2 gr. per oz	18
Glycin8-	12
Hydroquinone42	– 5
Metal	30
Metol-hydroguinone	14
Ortol	10

PHOTOGRAPHIC FORMUI	Æ(Continu	ed)
Pyro, without bromide: —		
		18
4		$\overline{12}$
3 " " "		10
4 " " "	• • • • • • • • • • •	8
5 " " "		6
With 1 part bromide to 4 parts pyro: -	<u> </u>	
1 gr. pyro per oz		9
		5
3 " " " "		41/2
4 " " " "		4
7071111 7 707 7		
FORMULÆ FOR TANK DE	VELOPMEN	T
Water	48 oz.	1360 сс.
Sodium sulphite, anhy	115 gr.	7.5 gm.
Sodium carbonate, anhy	90 gr.	5.8 gm.
Pyro	45 gr.	2.9 gm.
Dissolve immediately before use. Use	full strongth	S
Develop 15 minutes at 65° F. (18° C.)	·	•
Solution A:— 2		
Water	16 oz.	455 сс.
Oxalic acid	10 gr.	0.65 gm.
Pyro	1 oz.	28 gm.
Solution B:—	1 02.	20 gm
Water	16 oz.	455 cc.
Sodium sulphite, anhy	3 oz.	
Solution C:—	0 02.	85 gm.
Water	16 oz.	422
Sodium carbonate, anhy	10 oz. 1 oz.	455 cc.
		28 gm.
For use take A, 1 part; B, 1 part; C, 1 Develop 30 minutes at 65° F. (18° C.) for	l part; water best regults	r, 61 parts.
For temperature 60° F. develop 35 min	COOUTEDATION.	
" 65° F. " 30 "	• *	
" " 70° F. " 25 "		
20		
Stock solution:	, t	
Hot water (200° F.)	60 oz.	1700
Sodium carbonate, anhy	2 oz.	1700 cc.
Glycin	0.5 oz.	57 gm. 14 gm.
Sodium sulphite, anhy	0.5 oz.	14 gm.
Dissolve in order. For use take sto		
water, 58 parts.		6 parts;
For temperature 60° F. develop 30 min " " 65° F. " 25 "	utes.	
" " 70° F. " 20 "	,	
70 F. 20		
500		

PHOTOGRAPHIC FORMULÆ (Continued)

DEVELOPER FOR LANTERN SLIDES

1		
Water	20 oz.	568 cc.
Hydroquinone	60 gr.	$3.9~\mathrm{gm}$.
Sodium sulphite, anhy	$120~\mathrm{gr}.$	7.8 gm.
Potassium bromide	6 gr.	$0.4~\mathrm{gm}$.
Citric, acid	6 gr.	$0.4~\mathrm{gm}$.
Sodium carbonate, anhy	1 oz.	28 gm.
Use full strength.		
2	<i>*</i>	
Solution A:—		
Water	24 oz.	682 cc.
Sodium sulphite, anhy	3 oz.	85 gm.
Hydroquinone		$9.7~\mathrm{gm}$.
Solution B:—		
Water	16 oz.	455 cc.
Potassium carbonate, anhy	2 oz.	57 gm.
Potassium bromide		1 gm.
For use take A, 3 parts; B, 2 parts.		

FIXING BATHS FOR PLATES OR FILMS

Α.	Water(1 gallon)	128 oz.	Α.	3600 cc.
	Hypo (sodium thiosulphate)	32 oz.		850 gm.
B.	Water	32 oz.		852 cc.
٠.	Sodium sulphite, anhy	3 oz.		85 gm.
	Sulphuric acid, C. P.	0.5 oz.		14 cc.
	Chrome alum, powd	2 oz.		56 gm.

Note: - Be sure to mix Solution B exactly in given proportions and rotation.

Always pour B into A while stirring well. If this is not done

precipitation will take place.

During the cold season one half the quantity of Solution B is

sufficient for full quantity of Solution A.

This bath remains clear after frequent use, does not discolor the negatives and hardens the film to such a degree that the negatives can be washed in warm water and dried by artificial heat if necessary. They should be left in the bath ten to twenty minutes after the bromide of silver appears to have been dissolved, to insure permanency, freedom from stain and perfect hardening.

If the bath becomes exhausted by continued use, replace it

by a new one.

It is not advisable to use this bath, which contains sulphuric acid, in metal developing tanks. 567

PHOTOGRAPHIC FORMULÆ (Continued)

PLAIN FIXING BATH

Water	32 oz.	852 cc.
Hypo (sodium thiosulphate)	8 oz.	227 gm
Hypo (sodium thiosulphate) Do not use the bath when it is disco	plored: it must	he made
fresh each day.	rorow, it must	be made

INTENSIFICATION

Prepare the following solution, which will keep and work well

until exhausted.		
No. 1. Water	16 oz. 120 gr. 120 gr.	455 cc. 7.8 gm. 7.8 gm.
No. 2. Number 2 should be mixed fresh. Water	8 oz. 1 oz.	227 cc. 28 gm.

After the negative is well fixed and washed, immerse in No. 1 until it has become thoroughly whitened, and after rinsing carefully place it in No. 2, leaving it there until entirely cleared. In case sufficient intensification has not been gained, wash for ten minutes, repeat the operation and finally wash well. If after intensification the negative is too dense it may be reduced by placing it for a few seconds in water 16 oz., hypo 1 oz.

If the negative has not been thoroughly fixed and washed before intensification, stains will ensue.

REDUCTION

	Water	16 oz.	455 cc.
	Hypo (sodium thiosulphate)	1 oz.	28 gm.
В.	Water	16 oz.	455 cc.
	Potassium ferricyanide	1 oz.	28 gm.

As this solution is affected by light, the bottle containing it should be of amber color or wrapped in opaque paper and kept in the dark when not in use.

Mix for immediate use: —

A	•	•	٠	•	•	•	•			•															8	parts
в	•	٠	•	•	•	•	•	•	٠	•	•	•	•	٠	•	•	•	•	•		•				1	part

Use in subdued daylight.

The negative can be placed in this solution directly after fixing. If a dry negative is to be reduced, it must be soaked in water for at least half an hour before applying the solution. To avoid streaks, always rinse the negative before holding it up for examination. As soon as sufficiently reduced wash thoroughly.

IRON CLEARING SOLUTION

.!	To	remove	yellow	stain	caused	by	pyro	\mathbf{or}	hydroquinone	,
d	evelo	pper, was	h well to	o free :	from hvi	วด้อย	ก่าได้กไล	ce i	n	

developer, wash wen to free from hypo an	iu piace m	
Water	20 oz.	568 cc.
Ferrous sulphate, pure	3 oz.	85 gm.
Sulphuric acid, C. P	1 oz.	28 gm.
Powdered alum	1 oz.	28 gm.
until stein is sone than week well		O ; .

until stain is gone, then wash well.

DEVELOPERS FOR GASLIGHT PAPERS HYDRO-METOL

$oldsymbol{1}$		
Water	16 oz.	455 cc.
Metol	18 gr.	1.2 gm.
Hydroguinone	18 gr.	$1.2~\mathrm{gm}$.
Sodium sulphite, dry	204 gr.	13 gm.
Sodium carbonate, dry	408 gr.	26 gm.
Potassium bromide	10 gr.	$0.6~\mathrm{gm}$.

If the whites fail to develop without fog, 10% potassium bromide solution may be added, a few drops at a time, until the desired results are obtained.

Water (soft or distilled)2	40 oz.	1000 сс.
MetolSodium sulphite (dried powd.)	15 gr. 1 oz.	1 gm. 28 gm.
Hydroquinone	60 gr.	4 gm.
Potassium bromide (10% solution)	$rac{3}{4}$ oz. $40~\mathrm{drops}$	$21~\mathrm{gm}$. $40~\mathrm{drops}$

Fixing Bath

Hypo	16 oz.
Dissolve, then add the following acid hardener:	

64 07

Water5 oz.Sodium sulphite (dried powd.) $\frac{1}{2}$ oz.Acetic acid, 25%3 oz.Alum (powd.) $\frac{1}{2}$ oz.

This fixing bath is also excellent for dry plates and films, and will keep indefinitely before using; therefore it can be made up some time in advance. One pint of the bath should fix at least fifty 4×5 prints. The acid fixing bath can be used repeatedly. It keeps with but little care. It will by degrees become alkaline by the gradual addition of developer adhering to the prints. It should be discarded entirely when it becomes frothy, and a fresh bath prepared.

DIAPHRAGM NUMBERS

	1	equals	$\mathbf{F}/4$	U.S.	32	equals	F/22
"	4	-11	$\mathbf{F}/8$	"	64	-"	$\mathbf{F}/32$
"	8	"	$\mathbf{F}/11$	"	128	",	F/45
"	16	"	F /16	"	256	"	F/64
				569			-

MEASURES AND UNITS

WEIGHTS AND MEASURES

U. S. System

LENGTH

Inches.	Feet.	Yards.	Rods.	Miles.
12 36 198	$\begin{array}{c} 1\\ 3\\ 16\frac{1}{2}\\ 5280 \end{array}$	$\begin{array}{c} 1\\ 5\frac{1}{2}\\ 1760 \end{array}$	1 320	1

- 1 fathom = 6 feet
- 1 furlong =40 rods = 660 feet
- 1 knot or nautical mile=1.15 statute miles=1' of arc on the earth's surface at the equator
- 1 surveyor's chain = 66 feet = 100 links (each link = 7.92 inches)
- 1 engineer's chain = 100 feet = 100 links
- 1 mil = .001 inch

AREA

Square inches.	Square feet.	Square yards.	Square rods.	Acres.
144 1296	$ \begin{array}{r} 1\\ 9\\ 272\frac{1}{4}\\ 43560 \end{array} $	1 30 ¹ / ₄ 4840	1 160	1

- 1 square mile = 640 acres
- 1 acre = 10 square chains (surveyor's)
- 1 sq. mil = .000001 sq.in.
- 1 circular mil = .000000785 sq.in. (area of a circle whose diameter is one mil)

VOLUME

1728 cubic inches = 1 cubic foot 27 cubic feet = 1 cubic yard

WEIGHTS AND MEASURES (Continued) '

U. S. System (Continued)

LIQUID MEASURE

Gills.	Pints.	Quarts.	Gallons.	Cubic inches.
4 8 32	1 2 8	1 4	i	28.38 57.75 231.

1 hogshead = 63 gallons

1 tun = 252 gallons

1 British imperial gallon = 277.3 cu.in. = 1.2 U. S. gallons

APOTHECARIES' FLUID MEASURE

Minims (M).	Fluid drams (f 3).	Fluid ounces (f 3).	Pints (o).	Gallons (c).
60 480 7680	1 8 128	-1 16 128	1 8	1

DRY MEASURE

Pints.	Quarts.	Pecks.	Bushels.	Cubic inches.
2 16	1 8 32	1 4	i	67.2 537.6 2150.4

¹ British imperial bushel=2218.2 cu.in.=1.03 U.S. bushels

MASS

 ${\tt Note.}$ —Three systems are in use—avoir dupois, troy and apothecaries'. The grain is the same in all.

AVOIRDUPOIS—COMMERCIAL

Grains.	Drams.	Ounces.	Pounds.	Tons.
27.34 437.5 7000.	1 16 256	1 16	1 2000	1

1 long ton = 2240 lbs. = 20 hundred weight (long)

1 hundred weight (short measure) = 100 lbs.

1 pound avoirdupois = the mass of 27.70 cu.in. of water weighed in air at 35.85° F. barometer pressure 30 in. of mercury.

 $^{1 \}text{ cord} = 128 \text{ cu.ft.}$

WEIGHTS AND MEASURES (Continued)

U.S. System (Continued)

TROY WEIGHT

Grains.	Pennyweight.	Ounces.	Pounds.	
24 480 5760	1 20 240	1 12	1 ,	

¹ pound troy = .823 pound avoirdupois 1 carat = 3.2 grains

APOTHECARIES' WEIGHT

The grain, ounce and pound are the same as in troy weight.

Grains (gr.).	Scruples (3).	Drams (3).	Ounces (3).	Pounds (lb.).
20 60 480 5760	1 3 24 288	1 8 96	1 12	1

Тіме

Seconds.	Minutes.	Hours.	Days.	Years.
60 3600 86400	1 60 2040	1 24	1	
			365.24 365.256	1 (common) 1 (sidereal)

ANGLE

Seconds.	Minutes.	Degrees.	Circumference.
60	1	1	1
3600	60	360	

radian =57.°2958=206265"

²π radians=1 circumference.

HANDBOOK OF CEEMISTRY AND PHYSICS

WEIGHTS AND MEASURES (Continued)

Metric System

LENGTH

1 millimeter	=	.001	meter
1 centimeter	=	.01	meter
1 decimeter	=	.1	meter
1 meter			
1 dekameter	= 10).	meters
1 hektometer	= 100). '	meters
1 kilometer	= 1000).	meters
1 myriameter	=10000	١.	meters
1 micron	=.	001 ı	nm. (symbol μ)
1 ångström u	nit = .	0000	001 mm.

1 micromillimeter = .000001 mm.

AREA

1 square millimeter	r = .0000001 square meter
1 square centimeter	r = .00001 square meter
1 square decimeter	= .001 square meter
1 centare	=1 square meter
1 are	=100 square meters
1 hectare	=10,000 square meters

VOLUME AND CAPACITY

	milliliter			001	liter = 1 cubic centimeter
1	centiliter	=)1	liter
1	deciliter	=		l	liter
1	liter	=	1	cul	bic decimeter, 1000 cubic centimeters
1	dekaliter	=	10	lite	rs
1	hektoliter	=	100	lite	rs
1	kiloliter	=	1000	lite	rs = 1 cubic meter = 1,000,000 cu.cm.

MASS

	milligram	=	.001	gram
1	centigram	=	.01	gram
1	decigram	=	.1	gram
1	gram			,
1	dekagram	=10	grams	
1	hektogram	=100	grams	
1	kilogram	=1000	grams	
1	myriagram	=10000	grams	
1	quintol	=100000	grams	
1	millier or	tonneau =	=100000	00 grams

1 cubic centimeter of water at ordinary temperature weighs about 1 gram

HANDBOOK OF CHEMISTRY AND PHYSICS

MISCELLANEOUS REDUCTION FACTORS

- π radians = 180 degrees
- 1 degree = 0.017453 radian
- 1 radian = 57° . 2958 = 3437'.75 = 206265''.
- 1 sidereal second = 0.99727 mean solar second
- 1 pound per cubic foot = .01602 gram per cubic centimeter
- 1 foot per second per second = 30.4796 cm. per second per second 1 poundal = 13825 dynes
- 76 cm. of mercury at 0° C. (g.=980)=1.012630 dynes per sq.cm. or 14.697 pounds per sq.in.
- 1 foot-pound (g. = 980) = 13.55×10^6 ergs
- 1 foot-poundal = 421.390 ergs
- 1 horse power (g. = 980) = 745.2 watts
- 1 mean calorie = 4.184×107 ergs (mechanical equivalent of heat)
- 1 B.T.U. = 251.99 calories.
- 1 calorie = 0.003968 B.T.U.
- 1 B.T.U. per pound = 0.5556 calorie per gram
- 1 calorie per gram = 1.800 B.T.U. per pound

RELATIONS OF ELECTRICAL UNITS

- 1 ohm = 10^9 electromagnetic units = $1/9 \times 10^{-11}$ electrostatic units, 1 volt = 10^8 electromagnetic units = $1/3 \times 10^{-2}$ electrostatic units 1 ampere = 10^{-1} electromagnetic units = 3×10^9 electrostatic units 1 coulomb = 10^{-1} electromagnetic units = 3×10^9 electrostatic
 - 1 farad = 10^{-9} electromagnetic units = 9×10^{11} electrostatic units
 - 1 farad = 1,000,000 microfarads.

VALUE OF THE GAS CONSTANT R FOR VARIOUS UNITS

Units of pressure.	Units of volume.	R per gram molecule.
Atmospheres	Volume at 0° C.	0.003662
Atmospheres	c.cm.	82.07
Atmospheres		0.08207
Atmospheres		
Dynes per sq.cm. (barye)	c.cm.	8.3156×107
Kilograms per sq.m. (g. =		3.02007(20
980.6)	c.cm.	8.48×10 ⁵
· ·		R per lb. molecule.
Pounds per sq.in	cu.in.	18510.
Pounds per sq.in	cu.ft.	10.71
Atmospheres	cu.in.	1260.
Atmospheres	cu.ft.	0.729

FACTORS FOR CONVERSION OF ENERGY UNITS

(From Perkins' Introduction to General Thermodynamics, John Wiley & Sons, publishers, by permission.)

	Gram- Calories. (4° C.).	B.T.U.•	Joules.	Foot- pounds.	Kilogm meters.	Liter-atmos.	Cu.ftatmos.	Foot- Poundals	Horse-power Hours.
Gram-calorie B.T.U Joule Foot-pound Kilogrmeter Liter-atmos	.2389	3.968 ×10-3 1 9.482 ×10-4 1.286 ×10-3 9.298 ×10-3 9.607 ×10-2	1055. 1. 1.356 9.806	777.9 .73756 1. 7.2327	.4267 107.5 .1019 .113826 1. 10.333	10.41 9.689 ×10-3 1.3381×10-2	1.459 ×10-3 .3676 3.485 ×10-4 4.7253×10-4 3.4177×10-3 3.5319×10-2	25030. 23.73 32.174 232.7	1.5591 ×10-6 3.929 ×10-4 3.725 ×10-7 5.0505 ×10-7 3.6529 ×10-6 3.7734 ×10-5

^{*} At temp. of maximum density.

CONVERSION OF PRESSURE UNITS

(From Perkins' Introduction to General Thermodynamics, John Wiley & Sons, publishers, by permission.)

	Dynes per sq.cm.	Grams per sq.cm.	Kilo. per sq. meter.	Mm. of Mercury.	Atmospheres.	Lbs. per sq.in.	Lbs. per sq.ft.
Dynes per sq. centimeter Gram per sq. centimeter Kilogram per sq. meter Millimeter of mercury Atmosphere Pound per square inch Pound per square foot	980.6 98.06 133.2 1013200. 68944	1	10 1 13.595 10333 703.12	7.3551×10^{-1} 7.3551×10^{-2} 1 760 51.715	9.8697 ×10-7 9.6777 ×10-4 9.6777 ×10-5 1.3158 ×10 ³ 1 6.8046 ×10-2 4.7252 ×10-4	1.4223×10-2 1.4223×10-3 1.9337×10-2 14.696	2.0481 2.0481 ×10-1 2.7845 2116.32 144

In the two tables above the numbers show the value of the energy or pressure unit named at the left in the units named at the top. For example, 1 gram-calorie is equivalent to 3.968×10⁻³ B.T.U.

COMPARISON OF METRIC AND CUSTOMARY UNITS FROM 1 TO 10

Length

INCHES MILLI-	INCHES CENTI-	FEET METERS	U.S. METERS	U.S. KILO- MILES METERS
0.03937 = 1 0.07874 = 2 0.11811 = 3 0.15748 = 4	$\begin{array}{rcl} 0.3937 &=& 1 \\ 0.7874 &=& 2 \\ 1 &=& 2.54001 \\ 1.1811 &=& 3 \end{array}$	$\begin{array}{ccc} 2 & = 0.609601 \\ 3 & = 0.914402 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{rcl} 1 & = & 1.60935 \\ 1.24274 & = & 2 \end{array} $
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5 = 1.524003 6 = 1.828804	4.374444 = 4	2.48548 = 4 $3 = 4.82804$
1 = 25.4001 2 = 50.8001 3 = 76.2002 4 = 101.6002		8 = 2.438405 9 = 2.743205 9.84250 = 3 13.12333 = 4	5.468056 = 5 6 = 5.486411 6.561667 = 6 7 = 6.400813	4 = 6.43739 4.34959 = 7 4.97096 = 8 5 = 8.04674
5 = 127.0003 6 = 152.4003 7 = 177.8004 8 = 203.2004 9 = 228.6005	6 = 15.24003 7 = 17.78004 8 = 20.32004	$\begin{array}{r} 19.68500 = 6 \\ 22.96583 = 7 \end{array}$	7.655278 = 7 8 = 7.315215 8.748889 = 8 9 = 8.229616 9.842500 = 9	6 = 9.65608 7 = 11.26543 8 = 12.87478

COMPARISON OF METRIC AND CUSTOMARY UNITS FROM 1 TO 10-Continued

Area

SQUARE		SQUARE CENTI- INCHES METERS	SQUARE SQUARE FEET METERS	SQUARE SQUARE YARDS METERS	SQUARE SQUARE MILES KILO- METERS
0.00155 0.00310 0.00465 0.00620	= 2 = 3	$\begin{array}{cccc} 0.1550 &=& 1 \\ 0.3100 &=& 2 \\ 0.4650 &=& 3 \\ 0.6200 &=& 4 \end{array}$	1 = 0.09290 2 = 0.18581 3 = 0.27871 4 = 0.37161	$ \begin{array}{rcl} 1 & = 0.8361 \\ 1.1960 & = 1 \\ 2 & = 1.6723 \\ 2.3920 & = 2 \end{array} $	$\begin{array}{rcl} 0.3861 &=& 1 \\ 0.7722 &=& 2 \\ 1 &=& 2.5900 \\ 1.1583 &=& 3 \end{array}$
0.0075 0.00930 3 0.01085 0.01240 0.01395	= 6 = 7 = 8	0.7750 = 5 0.9300 = 6 1 = 6.452 1.0850 = 7 1.2400 = 8	5 = 0.46452 6 = 0.55742 7 = 0.65032 8 = 0.74323 9 = 0.83613	3 = 2.5084 3.5880 = 3 4 = 3.3445 4.7839 = 4 5 = 4.1807	$\begin{array}{rcl} 1.5444 &=& 4 \\ 1.9305 &=& 5 \\ 2 &=& 5.1800 \\ 2.3166 &=& 6 \\ 2.7027 &=& 7 \end{array}$
1 2 3 4	= 645.16 = 1,290.33 = 1,935.49 = 2,580.65	1.3950 = 9 2 = 12.903 3 = 19.355 4 = 25.807	$ \begin{array}{rcl} 10.764 &=& 1 \\ 21.528 &=& 2 \\ 32.292 &=& 3 \\ 43.055 &=& 4 \end{array} $	5.9799 = 5 6 = 5.0168 7 = 5.8529 7.1759 = 6	3 = 7.7700 3.0888 = 8 3.4749 = 9 4 = 10.3600
5 6 7 8 9	= 3,225.81 = 3,870.98 = 4,516.14 = 5,161.30 = 5,806.46	5 = 32.258 6 = 38.710 7 = 45.161 8 = 51.613 9 = 58.065	53.819 = 5 64.583 = 6 75.347 = 7 86.111 = 8 96.875 = 9	8 = 6.6890 8.3719 = 7 9 = 7.5252 9.5679 = 8 10.7639 = 9	5 = 12.9500 6 = 15.5400 7 = 18.1300 8 = 20.7200 9 = 23.3100

COMPARISON OF METRIC AND CUSTOMARY UNITS FROM 1 TO 10-Continued

	Volume						
CUBIC	CUBIC MILLI- METERS	CUBIC CUBIC CENTI- INCHES METERS	CUBIC CUBIC FEET METERS	CUBIC CUBIC YARDS METERS	ACRES HECTARES		
0.000061 0.000122 0.000183 0.000244	= 2 = 3	0.0610 = 1 0.1220 = 2 0.1831 = 3 0.2441 = 4	1 = 0.02832 2 = 0.05663 3 = 0.08495 4 = 0.11327	1 = 0.7646 1.3079 = 1 2 = 1.5291 2.6159 = 2	1 = 0.4047 2 = 0.8094 2.471 = 1 3 = 1.2141		
0.000305 0.000366 0.000427 0.000488 0.000549	= 6 = 7 = 8	0.3051 = 5 0.3661 = 6 0.4272 = 7 0.4882 = 8 0.5492 = 9	5 = 0.14159 6 = 0.16990 7 = 0.19822 8 = 0.22654 9 = 0.25485	3 = 2.2937 3.9238 = 3 4 = 3.0582 5 = 3.8228 5.2318 = 4	4 = 1.6187 4.942 = 2 5 = 2.0234 6 = 2.4281 7 = 2.8328		
1 2 3 4	= 16,387.2 = 32,774.3 = 49,161.5 = 65,548.6	1 = 16.3872 2 = 32.7743 3 = 49.1615 4 = 65.5486	35.314 = 1 $70.629 = 2$ $105.943 = 3$ $141.258 = 4$	$\begin{array}{l} 6 & = 4.5874 \\ 6.5397 & = 5 \\ 7 & = 5.3519 \\ 7.8477 & = 6 \end{array}$	7.413 = 3 8 = 3.2375 9 = 3.6422 9.884 = 4		
5 6 7 8 9	= 81,935.8 = 98,323.0 = 114,710.1 = 131,097.3 = 147,484.5	5 = 81.9358 6 = 98.3230 7 = 114.7101 8 = 131.0973 9 = 147.4845	176.572 = 5 211.887 = 6 247.201 = 7 282.516 = 8 317.830 = 9	8 = 6.1165 9 = 6.8810 9.1556 = 7 10.4635 = 8 11.7715 = 9	12.355 = 5 14.826 = 6 17.297 = 7 19.768 = 8 22.239 = 9		

COMPARISON OF METRIC AND CUSTOMARY UNITS FROM 1 TO 10-Continued

Capacity

•				
LITERS LIC	U.S. MILLI- U.S- QUID LITERS CARIES' UNCES (CC.) DRAMS	U.S. MILLI- APOTHE- LITERS CARIES' (CC.)	U.S. LIQUID LITERS QUARTS	U.S. LIQUID LITERS GALLONS
1 = 0.03 2 = 0.06 3 = 0.10 4 = 0.13	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{rcl} 0.8115 &=& 1 \\ 1 &=& 1.2322 \\ 1.6231 &=& 2 \\ 2 &=& 2.4645 \end{array}$	$\begin{array}{lll} 1 & = 0.94636 \\ 1.05668 & = 1 \\ 2 & = 1.89272 \\ 2.11336 & = 2 \end{array}$	0.26417 = 1 0.52834 = 2 0.79251 = 3 1 = 3.78543
5 = 0.16 6 = 0.20 7 = 0.23 8 = 0.27 9 = 0.30	0288 5 = 1.3525 3670 6 = 1.6231 7051 7 = 1.8936	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3 = 2.83908 3.17005 = 3 4 = 3.78543 4.22673 = 4 5 = 4.73179	1.05668 = 4 1.32085 = 5 1.58502 = 6 1.84919 = 7 2 = 7.57087
$\begin{array}{r} 29.574 \ = \ 1 \\ 59.147 \ = \ 2 \\ 88.721 \ = \ 3 \\ 118.295 \ = \ 4 \end{array}$	8 = 2.1641 9 = 2.4346 11.0901 = 3 14.7869 = 4	4.8692 = 6 5 = 6.1612 5.6807 = 7 6 = 7.3934	5.28341 = 5 6 = 5.67815 6.34009 = 6 7 = 6.62451	2.11336 = 8 2.37753 = 9 3 = 11.35630 4 = 15.14174
147.869 = 5 177.442 = 6 207.016 = 7 236.590 = 8 266.163 = 9	18.4836 = 5 22.1803 = 6 25.8770 = 7 29.5737 = 8 33.2704 = 9	6.4923 = 8 7 = 8.6257 7.3038 = 9 8 = 9.8579 9 = 11.0901	7.39677 = 7 8 = 7.57088 8.45345 = 8 9 = 8.51723 9.51014 = 9	5 = 18.92717 6 = 22.71261 7 = 26.49804 8 = 30.28348 9 = 34.06891

COMPARISON OF METRIC AND CUSTOMARY UNITS FROM 1 TO 10—Continued

_	U.S. DRY LITERS	U.S. LITERS	DEKA- U.S. LITERS PECKS.	U.S. HECTO- BUSHELS LITERS	U.S. HECTO- BUSHELS LITERS PER PER ACRE HECTARE
	0.9081 = 1 $1 = 1.1012$ $1.8162 = 2$ $2 = 2.2025$	$\begin{array}{rrrr} 0.11351 &=& 1 \\ 0.22702 &=& 2 \\ 0.34053 &=& 3 \\ 0.45404 &=& 4 \end{array}$	$\begin{array}{rcl} 0.8810 &=& 1 \\ 1 &=& 1.1351 \\ 1.7620 &=& 2 \\ 2 &=& 2.2702 \end{array}$	$\begin{array}{cccc} 1 & = 0.35239 \\ 2 & = 0.70479 \\ 2.83774 & = 1 \\ 3 & = 1.05718 \end{array}$	1.14840 = 1 2 = 1.74156
580	2.7242 = 3 3 = 3.3037 3.6323 = 4 4 = 4.4049 4.5404 = 5	0.56755 = 5 0.68106 = 6 0.79457 = 7 0.90808 = 8 1 = 8.80982	2.6429 = 3 3 = 3.4053 3.5239 = 4 4 = 4.5404 4.4049 = 5	4 = 1.40957 5 = 1.76196 5.67548 = 2 6 = 2.11436 7 = 2.46675	3.44519 = 3 $4 = 3.48311$
	5.4485 = 6.6074 6.3565 = 7	1.02157 = 9 2 = 17.61964 3 = 26.42946 4 = 35.23928	6 = 6.8106	8 = 2.81914 8.51323 = 3 9 = 3.17154 11.35097 = 4	6 = 5.22467
	7 = 7.7086 7.2646 = 8 8 = 8.8098 8.1727 = 9 9 = 9.9110	5 = 44.04910 6 = 52.85892 7 = 61.66874 8 = 70.47856 9 = 79.28838	7.0479 = 8 7.9288 = 9 8 = 9.0808	14.18871 = 5 17.02645 = 6 19.86420 = 7 22.70194 = 8 25.53968 = 9	8 = 6.96622 8.03879 = 7 9 = 7.83700 9.18719 = 8 10.33558 = 9

COMPARISON OF METRIC AND CUSTOMARY UNITS FROM 1 TO 10—Continued

Weight (or Mass)

	GRAINS	GRAMS	AVOIRDU- POIS OUNCES	GRAMS	TROY OUNCES	GRAMS	AVOIRDU- POIS POUNDS	KILO- GRAMS	TROY POUNDS	KILO- GRAMS
•	1 2 3 4	= 0.06480 = 0.12960 = 0.19440 = 0.25920	0.03527 = 0.07055 = 0.10582 = 0.14110 =	= 2 = 3	0.03215 = 0.06430 = 0.09645 = 0.12860 =	2 3	2 = 2.20462 =	0.45359 0.90718 1 1.36078	2 = 2.67923 =	0.37324 0.74648 1 1.11973
581	5 6 7 8 9	= 0.32399 = 0.38879 = 0.45359 = 0.51839 = 0.58319	0.17637 = 0.21164 = 0.24692 = 0.28219 = 0.31747 =	= 6 = 7 = 8	0.16075 = 0.19290 = 0.22506 = 0.25721 = 0.28936 =	6 7 8	4.40924 = 5 =	$2.26796 \\ 2.72155$	5.35846 = 6 =	1.49297 1.86621 2 2.23945 2.61269
•	15.4324 30.8647 46.2971 61.7294	= 2 = 3	3 =	= 28.3495 = 56.6991 = 85.0486 = 113.3981	2 =	31.10348 62.20696 93.31044 124.41392	8 = 8.81849 =	3.17515 3.62874 4 4.08233	8.03769 =	3.35918
	77.1618 92.5941 108.0265 123.4589 138.8912	= 6 = 7 = 8	6 = 7 = 8 =	= 141.7476 = 170.0972 = 198.4467 = 226.7962 = 255.1457	6 = 7 = 8 =	217.72437	13.22773 = 15.43236 = 17.63698 =	6 7	13.39614. = 16.07537 = 18.75460 = 21.43383 = 24.11306 =	6 7 8

COMPARISON OF THE VARIOUS TONS AND POUNDS IN USE IN THE UNITED STATES

From 1 to 10 Units

<i>,</i>	Long tons	Short tons	Metric tons	Kilograms	Avoirdupois pounds	Troy pounds
	0.00036735 0.00044643 0.00073469 0.00089286 0.00098421	0.00041143 0.00050000 0.00082286 0.00100000 0.00110231	0.00037324 0.00045359 0.00074648 0.00090718 0.00100000	0.37324 0.45359 0.74648 0.90718 1.	0.822857 1. 1.64571 2. 2.20462	1. 1.21528 2. 2.43056 2.67923
	0.00110204 0.00133929 0.00146939 0.00178571 0.00183673	$\begin{array}{c} 0.00123429 \\ 0.00150000 \\ 0.00164571 \\ 0.00200000 \\ 0.00205714 \end{array}$	0.00111973 0.00136078 0.00149297 0.00181437 0.00186621	1.11973 1.36078 1.49297 1.81437 1.86621	2.46857 3. 3.29143 4. 4.11429	3. 3.64583 4. 4.86111 5.
	0.00196841 0.00220408 0.00223214 0.00257143 0.00267857	0.00220462 0.00246857 0.00250000 0.00288000 0.00300000	0.00200000 0.00223945 0.00226796 0.00261269 0.00272155	$egin{array}{c} 2. \\ 2.23945 \\ 2.26796 \\ 2.61269 \\ 2.72155 \\ \end{array}$	4. 40924 4. 93714 5. 5. 76000 6.	5.35846 6. 6.07639 7. 7.29167
	0.00293878 0.00295262 0.00312500 0.00330612 0.00357143	0.00329143 0.00330693 0.00350000 0.00370286 0.00400000	0.00298593 0.00300000 0.00317515 0.00335918 0.00362874	2.98593 3. 3.17515 3.35918 3.62874	6.58286 6.61387 7. 7.40571 8.	8. 8.03769 8.50694 9. 9.72222

COMPARISON OF THE VARIOUS TONS AND POUNDS IN USE IN THE UNITED STATES (Continued)

From 1 to 10 Units

	•		170110 1 00	10 0 11110	· · · · / · · · · · · · · · · · · · · ·	Ď.
	Long tons	Short tons	Metric tons	Kilograms	Avoirdupois pounds	Troy pounds
	0.00393683	0.00440924	0.00400000	4.	8.81849	10.71691
	0.00401786	0.00450000	0.00408233	4.08233	9.	10.93750
	0.00492103	0.00551156	0.00500000	5.	11.0231	13.39614
	0.00590524	0.00661387	0.00600000	6.	13.2277	16.07537
	0.00688944	0.00771618	0.00780000	7.	15.4324	18.75460
583	0.00787365 0.00885786 0.89287 0.98421	0.00881849 0.00992080 1. 1.10231 1.12000 .	0.00800000 0.00900000 0.9718 1.	8. 9. 907.18 1,000. 1,016.05	17.6370 19.8416 2,000. 2,204.62 2,240.00	21. 43383 24. 11306 2,430. 56 2,679. 23 2,722. 22
	1.78571	2.	1.81437	1,814.37	4,000.00	4,861.11
	1.96841	2.20462	2.	2,000.00	4,409.24	5,358.46
	2.	2.24000	2.03209	2,032.09	4,480.00	5,444.44
	2.67857	3.	2.72155	2,721.55	6,000.00	7,291.67
	2.95262	3.30693	3.	3,000.00	6,613.87	8,037.69
	3.	3.36000	3.04814	3,048.14	6,720.00	8,166.67
	3.57143	4.	3.62874	3,628.74	8,000.00	9,722.22
	3.93683	4.40924	4.	4,000.00	8,818.49	10,716.91
	4.	4.48000	4.06419	4,064.19	8,960.00	10,888.89
	4.46429	5.	4.53592	4,535.92	10,000.00	12,152.78

COMPARISON OF THE VARIOUS TONS AND POUNDS IN USE IN THE UNITED STATES (Continued)

Long to	ns Short tons	Metric tons	Kilograms	Avoirdupois pounds	Troy pounds
4 0010			F 000 00	11,023.11	13,396.14
4.9210		5.	5,000.00		
5.	5.60000	5.08024	5,080.24	11,200.00	13,611.11
5.3571		5.44311	5,443.11	12,000.00	14,583.33
5.9052	4 6.61387	6.	6,000.00	13,227.73	16,075.37
6.	6.72000	6.09628	6,096.28	13,440.00	16,333.33
6.2500	0 7.	6.35029	6,350.29	14,000.00	17,013.89
6.8894		7.	7,000.00	15,432.36	18,754.60
7	7.84000	7.11232	7,112.32	15,680.00	19,055.56
7.1428		7.25748	7,257.48	16,000.00	19,444.44
7.8736		8.	8,000.00	17,636.98	21,433.83
1.0100	0.01019	0.	0,000.00	11,000.00	22,100.00
8.	8.96000	8.12838	8,128.38	17,920.00	21,777.78
8.0357		8.16466	8,164.66	18,000.00	21,875.00
8.8578		9.	9,000.00	19,841.60	24,113.06
9.	10.08000	9.14442	9.144.42	20,160.00	24,500.00
ð.	10.0000	U. 14112	0,111.12	20,200.00	
		l .	I		

ENGTHS — CENTIMETERS TO INCHES

0.1 to 100 Units

1 centimeter = 0.393700 inches

The values found in the body of the table give, in inches, the lengths indicated in centimeters at the top and side.

-		0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	;0 9
	0 1 2 3 4 5	0.39370 0.78740 1.1811 1.5748 1.9685	0.82677 1.2205 1.6142 2.0079	0.47244 0.86614 1.2598 1.6535 2.0472	0.90551 1.2992 1.6929 2.0866	0.55118 0.94488 1.3386 1.7323 2.1260	0.98425 1.3780 1.7717 2.1654	0.62992 1.0236 1.4173 1.8110 2.2047	0. 27559 0. 66929 1. 0630 1. 4567 1. 8504 2. 2441	0.70866 1.1024 1.4961 1.8898 2.2835	0.74803 1.1417 1.5354 1.9291 2.3228
	6 7 8 9	2.3622 2.7559 3.1496 3.5433	2.4016 2.7953 3.1890 3.5827	2.4409 2.8346 3.2283 3.6220	2.4803 2.8740 3.2677 3.6614	2.5197 2.9134 3.3071 3.7008	2.5591 2.9528 3.3465 3.7402	2.5984 2.9921 3.3858 3.7795	2.6378 3.0315 3.4252 3.8189	2.6772 3.0709 3.4646 3.8583	2.7165 3.1102 3.5039 3.8976

		0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9		
								*.					
	10	3.9370	3.9764	4.0158	4.0551	4.0945	4.1339	4.1732	4.2126	4.2520	4.2913		
	11	4.3307	4.3701	4.4094	4.4488	4.4882	4.5276	4.5669	4.6063	4.6457	4.6850		
	12	4.7244	4.7638	4.8031	4.8425	4.8819	4.9213	4.9606	5.0000	5.0394	5.0787		
	13	5.1181	5.1575	5.1968	5.2362	5.2756	5.3150	5.3543	5.3937	5.4331	5.4724		
	14	5.5118	5.5512	5.5905	5.6299	5.6693	5.7087	5.7480	5.7874	5.8268	5.8661		
	15	5.9055	5.9449	5.9842	6.0236	6.0630	6.1024	6.1417	6.1811	6.2205	6.2598		
	16	6.2992	6.3386	6.3779	6.4173	6.4567	6.4961	6.5354	6.5748	6.6142	6.6535		
	17	6.6929	6.7323	6.7716	6.8110	6.8504	6.8898	6.9291	6.9685	7.0079	7.0472		
	18	7.0866	7.1260	7.1653	7.2047	7.2441	7.2835	7.3228	7.3622	7.4016	7.4409		
	19	7.4803	7.5197	7.5590	7.5984	7.6378	7.6772	7.7165	7.7559	7.7953	7.8346		
	20	7.8740	7.9134	7.9527	7.9921	8.0315	8.0709	8.1102	8.1496	8.1890	8.228		
	21	8.2677	8.3071	8.3464	8.3858	8.4252	8.4646	8.5039	8.5433	8.5827	8.6220		
	22	8.6614	8.7008	8.7401	8.7795	8.8189	8.8583	8.8976	8.9370	8.9764	9.015		
	23	9.0551	9.0945	9.1338	9.1732	9.2126	9.2520	9.2913	9.3307	9.3701	9.409		
	24	9.4488	9.4882	9.5275	9.5669	9.6063	9.6457	9.6850	9.7244	9.7638	9.803		
	25	9.8425	9.8819	9.9212	9.9606	10.000	10.039	10.079	10.118	10.157	10.197		
	26	10.236	10.276	10.315	10.354	10.394	10.433	10.472	10.512	10.551	10.591		
	27	10.630	10.669	10.709	10.748	10.787	10.827	10.866	10.905	10.945	10.984		
	2 8	11.024	11.063	11.102	11.142	11.181	11.220	11.260	11.299	11.339	11.378		
	29	11.417	11.457	11.496	11.535	11.575	11.614	11.654	11.693	11.732	11.772		
		}			1			1		İ	1		
		i	I	1 .	i	i	1	i	1	1	1		

	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
30	11.811	11.850	11.890	11.929	11.968	12.008	12.047	12.087	12.126	12.165
31	12.205	12.244	12.283	12.323	12.362	12.402	12.441	12.480	12.520	12.559
32	12.598	12.638	12.677	12.717	12.756	12.795	12.835	12.874	12.914	12.953
33	12.992	13.031	13.071	13.110	13.150	13.189	13.228	13.268	13.307	13.346
34	13.386	13.425	13.465	13.504	13.543	13.583	13.622	13.661	13.701	13.740
35	13.780	13.819	13.858	13.898	13.937	13.976	14.016	14.055	14.094	14. 134
36	14.173	14.213	14.252	14.291	14.331	14.370	14.409	14.449	14.488	14.528
37	14.567	14.606	14.646	14.685	14.724	14.764	14.803	14.842	14.882	14.921
38	14.961	15.000	15.039	15.079	15.118	15.157	15.197	15.236	15.276	15.315
39	15.354	15.394	15.433	15.472	15.512	15.551	15.591	15.630	15.669	15.709
40	15.748	15.787	15.827	15.866	15.905	15.945	15.984	16.024	16.063	16.102
41	16.142	16.181	16.220	16.260	16.299	16.339	16.378	16.417	16.457	16.49
42	16.535	16.575	16.614	16.654	16.693	16.732	16.772	16.811	16.850	16.890
43	16.929	16.968	17.008	17.047	17.087	17.126	17.165	17,205	17.244	17.283
44	17.323	17.362	17.402	17.441	17.480	17.520	17.559	17.598	17.638	17.677
45	17.717	17.756	17.795	17.835	17.874	17.913	17.953	17.992	18.031	18.071
46	18.110	18.150	18.189	18.228	18.268	18.307	18.346	18.386	18.425	18.46
47	18.504	18.543	18.583	18.622	18.661	18.701	18.740	18.779	18.819	18.858
48	18.898	18.987	18.976	19.016	19.055	19.094	19.134	19.173	19.213	19.252
49	19.291	19.331	19.370	19.409	19.449	19.488	19.526	19.567	19.606	19.64

	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
50	19.685	19.724	19.764	19.803	19.842	19.882	19.921	19.961	20.000	20.039
51	20.079	20.118	20.157	20.197	20.236	20.276	20.315	20.354	20.394	20.433
52	20.472	20.512	20.551	20.591	20.630	20.669	20.709	20.748	20.787	20.827
53	20.866	20.905	20.945	20.984	21.024	21.063	21.102	21.142	21.181	21.220
$5\overline{4}$	21.260	21.299	21.339	21.378	21.417	21.457	21.496	21.535	21.575	21.614
55	21.654	21.693	21.732	21.772	21.811	21.850	21.890	21.929	21.968	22.008
56	22.047	22.087	22.126	22.165	22.205	22.244	22.283	22.323	22.362	22.402
57	22.441	22.480	22.520	22.559	22.598	22.638	22.677	22.716	22.756	22.795
58	22.835	22.874	22.913	22.953	22.992	23.031	23.071	23.110	23.150	23.189
59	23.228	23.268	23.307	23.346	23.386	23.425	23.465	23.504	23.543	23.583
60	·23.622	23.661	23.701	23.740	23.779	23.819	23.858	23.898	23.937	23.976
61	24.016	24.055	24.094	24.134	24.173	24.213	24.252	24.291	24.331	24.370
62	24.409	24.449	24.488	24.528	24.567	24.606	24.646	24.685	24.724	24.764
63	24.803	24.842	24.882	24.921	24.961	25.000	25.039	25.079	25.118	25.157
64	25.197	25.236	25.276	25.315	25.354	25.394	25.433	25.472	25.512	25.551
65	25.591	25.630	25.669	25.709	25.748	25.787	25.827	25.866	25.905	25.945
66	25.984	26.024	26.063	26.102	26.142	26.181	26.220	26.260	26.299	26.339
67	26.378	26.417	26.457	26.496	26.535	26.575	26.614	26.653	26.693	26.732
68	26.772	26.811	26.850	26.890	26.929	26.968	27.008	27.047	27.087	27.126
69	27.165	27.205	27.244	27.283	27.323	27.362	27.402	27.441	27 . 480	27.520
					1		1	1 -	1.	1

	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
				1				-\	- ·	
70	27.559	27.598	27.638	27.677	27.716	27.756	27.795	27.835	27.874	27.913
71	27.953	27.992	28.031	28.071	28.110	28.150	28.189	28.228	28.268	28.307
72	28.346	28.386	28.425	28.465	28.504	28.543	28.583	28.622	28.661	28.701
73	28.740	28.779	28.819	28.859	28.898	28.937	28.976	29.016	29.055	29.094
74 \	29.134	29.173	29.213	29.252	29.291	29.331	29.370	29.409	29.449	29.488
75	29.528	29.567	29.606	29.646	29.685	29.724	29.764	29.803	29.842	29.882
76	29.921	29.961	30.000	30.039	30.079	30.118	30.157	30.197	30.236	30.276
77	30.315	30.354	30.394	30.433	30.472	30.512	30.551	30.590	30.630	30.669
78	30.709	30.748	30.787	30.827	30.866	30.905	30.945	30.984	31.024	31.063
79	31.102	31.142	31.181	31.220	31.260	31.299	31.339	31.378	31.417	31.457
80	31.496	31.535	31.575	31.614	31.653	31.693	31.732	31.772	31.811	31.850
81	31.890	31.929	31.968	32.008	32.047	32.087	32.126	32.165	32.205	32.244
82	32.283	32.323	32.362	32.402	32.441	32.480	32.520	32.559	32.598	32.638
83	32.677	32.716	32.756	32.795	32.835	32.874	32.913	32.953	32.992	33.031
84	33.071	33.110	33.150	33.189	33.228	33.268	33.307	33.346	33.386	33.425
85	33.465	33.504	33.543	33.583	33.622	33.661	33.701	33.740	33.779	33.819
86	23.858	33.898	33.937	33.976	33.016	34.055	34.094	34.134	34.173	34.213
87	34.252	[34.291]	34.331	34.370	34.409	34.449	34.488	34.527	34.567	34.606
88	34.646	34.685	34.724	34.764	34.803	34.842	34.882	34.921	34.961	35.000
89	35.039	35.079	35.118	35.157	35.197	35.236	35.276	35.315	35.354	35.394
	1	1	1		,	1			1	1

986

		0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9			
, 			-	_	-			-						
	90	35.433	35.472	35.512	35.551	35.590	35.630	35.669	35.709	35.748	35.787			
	91	35.827	35.866	35.905	35.945	35.984	36.024	36.063	36.102	36.142	36.181			
	92	36.220	36.260	36.299	36.339	36.378	36.417	36.457	36.496	36.535	36.575			
	93	36.614	36.653	36.693	36.732	36.772	36.811	36.850	36.890	36.929	36.968			
,	94	37.008	37.047	37.087	37.126	37.165	37.205	37.244	37.283	37.323	37.362			
	95	37.402	37.441	37.480	37.520	37.559	37.598	37.638	27.677	37.716	37.756			
	96	37.795	37.835	37.874	37.913	37.953	37.992	38.031	38.071	38.110	38.150			
	97	38.189	38.228	38.268	38.307	38.346	38.386	38.425	38.464	38.504	38.543			
	98	38.583	38.622	38.661	38.701	38.740	38.779	38.819	38.858	38.898	38.937			
8	99	38.976	39.016	39.055	39.094	39.034	39.173	39.213	39.252	39.291	39.331			

LENGTHS - INCHES TO CENTIMETERS

From 0.1 to 100 Units

1 inch = 2.54001 centimeters

The values found in the body of the table give, in centimeters, the lengths indicated in inches at the top and side.

	0.0	* 0.1	0.2	0.3	0.4 .	0.5	0.6	0.7	0.8	0.9
0 1 2 3 4 5	2.5400 5.0800 7.6200 10.160 12.700	5.3340 7.8740 10.414 12.954	3.0480 5.5880 8.1280 10.668 13.208	0.76200 3.3020 5.8420 8.3820 10.922 13.462	3.5560 6.0960 8.6360 11.176 13.716	$3.8100 \\ 6.3500$	4.0640 6.6040	1.7780 4.3180 6.8580 9.3980 11.938 14.478	7.1120	4.8260 7.3660
6 7 8 9	15.240 17.780 20.320 22.860	15.494 18.034 20.574 23.114	15.748 18.288 20.828 23.368	16.002 18.542 21.082 23.622	16.256 18.796 21.336 23.876	16.510 19.050 21.590 24.130	16.764 19.304 21.844 24.384	17.018 19.558 22.098 24.638	17.272 19.812 22.352 24.892	17.526 20.066 22.606 25.146

LENGTHS — INCHES TO CENTIMETERS (Continued)

	N -		LEM	71113 — 1	CILES 1	O CENT		Contin	ucu)		
,		0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
_									7	***************************************	
											·
	10	25.400	25.654	25.908	26.162	26.416	26.670	26.924	27.178	27.432	27.686
	11	27.940	28.194	28.448	28.702	28.956	29.210	29.464	29.718	29.972	30.226
	12	30.480	30.734	30.988	31.242	31.496	31.750	32.004	32.258	32.512	32.766
	13	33.020	33.274	33.528	33.782	34.036	34.290	34.544	34.798	35.052	35.306
	14	35.560	35.814	36.068	36.322	36.576	36.830	37.084	37.338	37.592	37.846
	15	38.100	38.354	38.608	38.862	39.116	39.370	39.624	39.878	40.132	40.386
	16	40.640	40.894	41.148	41.402	41.656	41.910	42.164	42.418	42.672	42.926
Ċτ	17	43.180	43.434	43.688	43.942	44.196	44.450	44.704	44.958	45.212	45.466
592	18	45.720	45.974	46.228	46.482	46.736 49.276	46.990	47.244 49.784	47.498 50.038	47.752	48.006
	19	48.260	48.514	48.768	49.022	49.270	49.000	49.704	50.058	50.292	50.546
	20	50.800	51.054	51.308	51.562	51.816	52.070	52,324	52,578	52.832	53.086
	21	53.340	53.594	53.848	54.102	54.356	54.610	54.864	55.118	55.372	55.626
	$\frac{21}{22}$	55.880	56.134	56.388	56.642	56.896	57.150	57.404	57.658	57.912	58.166
	$\frac{22}{23}$	58.420	58.674	58.928	59.182	59.436	59.690	59.944	60.198	60.452	60.706
	$\frac{24}{24}$	60.960	61.214	61.468	61.722	61.976	62.230	62.484	62.738	62.992	63.246
	25	63.500	63.754	64.008	64.262	64.516	64.770	65.024	65.278	65.532	65.786
	26	66.040	66.294	66.548	66.802	67.056	67.310	67.564	67.818	68.072	68.326
	27	68.580	68.834	69.088	69.342	69.596	69.850	70.104	70.358	70.612	70.866
	28	71.120	71.374	71.628	71.882	72.136	72.390	72.644	72.898	73.152	73.406
	29	73.660	73.914	74.168	74.422	74.676	74.930	75.184	75.438	75.692	75.946
						1					
			1	1	<u> </u>	1	l	l	<u> </u>	<u> </u>	l

LENGTHS — INCHES TO CENTIMETERS (Continued)

	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
30	76.200	76. 454	76. 708	76. 962	77. 216	77. 470	77.724	77. 978	78.232	78. 486
31	78.740	78. 994	79. 248	79. 502	79. 756	80. 010	80.264	80. 518	80.772	81.026
32	81.280	81. 534	81. 788	82. 042	82. 296	82. 550	82.804	83. 058	83.312	83.566
33	83.820	84. 074	84. 328	84. 582	84. 836	85. 090	85.344	85. 598	85.852	86.106
34	86.360	86. 614	86. 868	87. 122	87. 376	87. 630	87.884	88. 138	88.392	88.646
35	88.900	89. 154	89. 408	89. 662	89. 916	90. 170	90.424	90. 678	90.932	91.186
36	91.440	91. 694	91. 948	92. 202	92. 456	92. 710	92.964	93. 218	93.472	93.726
37	93.980	94. 234	94. 488	94. 742	94. 996	95. 250	95.504	95. 758	96.012	96.266
38	96.520	96. 774	97. 028	97. 282	97. 536	97. 790	98.044	98. 298	98.552	98.806
39	99.060	99. 314	99. 568	99. 822	100. 08	100. 33	100.58	100. 84	101.09	101.35
40	101.60	101.85	102. 11	102.36	102.62	102. 87	103. 12	103. 38	103.63	103.89
41	104.14	104.39	104. 65	104.90	105.16	105. 41	105. 66	105. 92	106.17	106.43
42	106.68	106.93	107. 19	107.44	107.70	107. 95	108. 20	108. 46	108.71	108.97
43	109.22	109.47	109. 73	109.98	110.24	110. 49	110. 74	111. 00	111.25	111.51
44	111.76	112.01	112. 27	112.52	112.78	113. 03	113. 28	113. 54	113.79	114.05
45	114.30	114.55	114. 81	115.06	115.32	115. 57	115. 82	116. 08	116.33	116.59
46	116.84	117.09	117. 35	117.60	117.86	118. 11	118. 36	118. 62	118.87	119.13
47	119.38	119.63	119. 89	120.14	120.40	120. 65	120. 90	121. 16	121.41	121.67
48	121.92	122.17	122. 43	122.68	122.94	123. 19	123. 44	123. 70	123.95	124.21
49	124.46	124.71	124. 97	125.22	125.48	125. 73	125. 98	126. 24	126.49	126.75

LENGTHS — INCHES TO CENTIMETERS (Continued)

_					IIIOIII .	TO CENT	TIME TEN	.S (COILLI	uueu)		
		0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
_								-		-	
		1						1		1	1
	50	127.00	127.25	127.51	127.76	128.02	128.27	128.52	128.78	129.03	129.29
	51	129.54	129.79	130.05	130.30	130.56	130.81	131.06	131.32	131.57	131.83
	52	132.08	132.33	132.59	132.84	133.10	133.35	133.60	133.86	134.11	134.37
	53	134.62	134.87	135.13	135.38	135.64	135.89	136.14	136.40	136.65	136.91
	54	137.16	137.41	137.67	137.92	138.18	138.43	138.68	138.94	139.19	139.45
	55	139.70	139.95	140.21	140.46	140.72	140.97	141.22	141.48	141.73	141.99
	56	142.24	142.49	142.75	143.00	143.26	143.51	143.76	144.02	144.27	144.53
***	57	144.78	145.03	145.29	145.54	145.80	146.05	146.30	146.56	146.81	147.07
75 24 24	5 8	147.32	147.57	147.83	148.08	148.34	148.59	148.84	149.10	149.35	149.61
	59	149.86	150.11	150.37	150.62	150.88	151.13	151.38	151.64	151.89	152.15
				1		`	1				
	60	152.40	152.65	152.91	153. 16	153.42	153.67	153.92	154.18	154.43	154.69
	61	154.94	155. 19	155.45	155.70	155.96	156.21	156.46	156.72	156.97	157.23
	62	157.48	157.73	157.99	158.24	158.50	158.75	159.00	159.26	159.51	159.77
	63	160.02	160.27	160.53	160.78	161.04	161.29	161.54	161.80	162.05	162.31
	64	162.56	162.81	163.07	163.32	163.58	163.83	164.08	164.34	164.59	164.85
	65	165.10	165.35	165.61	165.86	166.12	166.37	166.62	166.88	167.13	167.39
	66	167.64	167.89	168.15	168.40	168.66	168.91	169.16	169.42	169.67	169.93
	67	170.18	170.43	170.69	170.94	171.20	171.45	171.70	171.96	172.21	172.47
	68	172.72	172.97	173.23	173.48	173.74	173.99	174.24	174.50	174.75	175.01
	69	175.26	175.51	175.77	176.02	176.28	176.53	176.78	177.04	177.29	177.55
]			, ,				
_					1		1	1	1	1	1

ģ

LENGTHS - INCHES TO CENTIMETERS (Continued)

	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
71 180 72 181 73 182 74 183 75 199 76 199 77 199 78 199 79 20 81 20 81 20 82 20 81 20 82 21 84 21 85 21 86 21 87 22 88 22 88 22 88 22	0.34 1 2.88 1 5.42 1 7.96 1 0.50 3 3.04 3 5.58 8.12 0 0.66 3 3.20 3 5.58.28 3 8.82 3 8.82 3 8.82 3 8.82 3 8.82 3 8.82 3 8.82 3 8.82 3 8.82 3 8.82 3 8.82 3 8.82 3 8.82 3 8.82 3 8.82 3 8.82 3 8.82 3 8.83 3 8.84 3 8.85 3 8	180.59 183.13 185.67	178. 31 180. 85 183. 39 185. 93 188. 47 191. 01 193. 55 196. 09 198. 63 201. 17 203. 71 206. 25 208. 79 211. 33 213. 87 216. 41 218. 95 221. 49 224. 03 226. 57	178. 56 181. 10 183. 64 186. 18 188. 72 191. 26 193. 80 196. 34 198. 88 201. 42 203. 96 206. 50 209. 04 211. 58 214. 12 216. 66 219. 20 221. 74 224. 28 226. 82	178. 82 181. 36 183. 90 186. 44 188. 98 191. 52 194. 06 196. 60 199. 14 201. 68 204. 22 206. 76 209. 30 211. 84 214. 38 216. 92 219. 46 222. 00 224. 54 227. 08	179. 07 181. 61 184. 15 186. 69 189. 23 191. 77 194. 31 196. 85 199. 39 201. 93 204. 47 207. 01 209. 55 212. 09 214. 63 217. 17 219. 71 222. 25 224. 79 227. 33	179. 32 181. 86 184. 40 186. 94 189. 48 192. 02 194. 56 197. 10 199. 64 202. 18 204. 72 207. 26 209. 80 212. 34 214. 88 217. 42 219. 96 222. 50 225. 04 227. 58	179. 58 182. 12 184. 66 187. 20 189. 74 192. 28 194. 82 197. 36 199. 90 202. 44 204. 98 207. 52 210. 06 212. 60 215. 14 217. 68 220. 22 222. 76 225. 30 227. 84	179. 83 182. 37 184. 91 187. 45 189. 99 192. 53 195. 07 197. 61 200. 15 202. 69 205. 23 207. 77 210. 31 212. 85 215'. 39 217. 93 220. 47 223. 01 225. 55 228. 09	180.09 182.63 185.17 187.71 190.25 192.79 195.33 197.87 200.41 202.95 205.49 208.03 210.57 213.11 215.65 218.19 220.73 223.27 225.81 228.35

LENGTHS -- INCHES TO CENTIMETERS (Continued)

	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
90 91 92 93 94 95 96 97 98	228.60 231.14 233.68 236.22 238.76 241.30 243.84 246.38 248.92 251.46	228. 85 231. 39 233. 93 236. 47 239. 01 241. 55 246. 09 246. 63 249. 17 251. 71	229. 11 231. 65 234. 19 236. 73 239. 27 241. 81 244. 35 246. 89 249. 43 251. 97	229. 36 231. 90 234. 44 236. 98 239. 52 242. 06 244. 60 247. 14 249. 68 252. 22	229.62 232.16 234.70 237.24 239.78 242.32 244.86 247.40 249.94 252.48	229.87 232.41 234.95 237.49 240.03 242.57 245.11 247.65 250.19 252.73	230.12 232.66 235.20 237.74 240.28 242.82 245.36 247.90 250.44 252.98	230.38 232.92 235.46 238.00 240.54 243.08 245.62 248.16 250.70 253.24	230. 63 233. 17 235. 71 238. 25 240. 79 243. 33 245. 87 248. 41 250. 95 253. 49	230.89 233.43 235.97 238.51 241.05 243.59 246.13 248.67 251.21 253.75

LENGTHS - METERS TO FEET

From 1 to 1,000 Units

Reduction factor: 1 meter = 3.280833333 feet

The values found in the body of the table give, in feet, the length indicated in meters at the top and side.

	0	1	2	3	4	5	6	7	8.	9
0 10 20 30 40 50 60 70 80 90	32.808 65.617 98.425 131.23 164.04 196.85 229.66 262.47 295.28	3.2808 36.089 68.898 101.71 134.51 167.32 200.13 232.94 265.75 298.56	6.5617 39.370 72.178 104.99 137.80 170.60 203.41 236.22 269.03 301.84	9.8425 42.651 75.459 108.27 141.08 173.88 206.69 239.50 272.31 305.12	13.123 45.932 78.740 111.55 144.36 177.17 209.97 242.78 275.59 308.40	16.404 49.213 82.021 114.83 147.64 180.45 213.25 246.06 278.87 311.68	19.685 52.493 85.302 118.11 150.92 183.73 216.54 249.34 282.15 314.96	22.966 55.774 88.583 121.39 154.20 187.01 219.82 252.62 285.43 318.24	26.247 59.055 91.863 124.67 157.48 190.29 223.10 255.91 288.71 321.52	29.528 62.336 95.144 127.95 160.76 193.57 226.38 259.19 291.99 324.80

0	1	2	3	4	5	6	7	8	9
100 328.08 110 360.86 120 393.76 130 426.51 140 459.32 150 492.14 160 524.93 170 557.74 180 590.55 190 623.36 200 656.17 210 688.98 220 721.78 230 754.59 240 787.44 250 820.21 260 853.02 270 885.83 280 918.63 290 951.44	364.17 396.98 429.79 462.60 495.41 528.21 561.02 593.83 626.64 659.45 692.26 725.06 725.787 790.68 823.49 856.30 889.11 921.91	334.65 367.45 400.26 433.07 465.88 498.69 531.50 564.30 597.11 629.92 662.73 695.54 728.35 761.15 793.96 826.77 859.58 892.39 925.20 958.00	337.93 370.73 403.54 436.35 469.16 501.97 534.78 567.58 600.39 633.20 666.01 698.82 731.63 764.43 797.24 830.05 862.86 895.67 928.48 961.28	341.21 374.02 406.82 439.63 472.44 505.25 538.06 570.87 603.67 636.48 669.29 702.10 734.91 767.72 800.52 833.33 866.14 898.95 931.76 964.57	344.49 377.30 410.10 442.91 475.72 508.53 541.34 574.15 606.95 639.76 672.57 705.38 738.19 771.00 803.80 836.61 869.42 902.23 935.04 967.85	347.77 380.58 413.39 446.19 479.00 511.81 544.62 577.43 610.24 643.04 675.85 708.66 741.47 774.28 807.09 839.89 872.70 905.51 938.32 971.13	351.05 383.86 416.67 449.47 482.28 515.09 547.90 580.71 613.52 646.32 679.13 711.94 744.75 777.56 810.37 843.17 875.98 908.79 941.60 974.41	354.33 387.14 419.95 452.56 518.37 551.18 583.99 616.80 649.61 682.41 715.22 748.03 780.84 813.65 846.46 879.26 912.07 944.88 977.69	357.61 390.42 423.23 456.04 488.84 521.65 554.46 587.27 620.08 652.89 685.69 718.50 751.31 784.12 816.93 849.74 882.54 915.35 948.16 980.97

LENGTHS — METERS TO FEET (Continued)

_		0	1	2	3	4	5 .	6	7	8	9
-											
	300	984.25	987.53	990.81	994.09	997.37	1,000.7	1,003.9	1,007.2	1,010.5	1,013.8
	310	1,017.1	1,020.3	1,023.6	1,026.9	1,030.2	1,033.5	1,036.7	1,040.0	1,043.3	1,046.6
	320	1,049.9	1,053.1	1,056.4	1,059.7	1,063.0	1,066.3	1,069.6	1,072.8	1,076.1	1,079.4
	330	1,082.7	1,086.0	1,089.2	1,092.5	1,095.8	1,099.1	1,102.4	1,105.6	1,108.9	1,112.2
	340	1,115.5	1,118.8	1,122.0	1,125.3	1,128.6	1,131.9	1,135.2	1,138.4	1,141.7	1,145.0
	350	1,148.3	1,151.6	1,154.9	1,158.1	1,161.4	1,164.7	1,168.0	1,171.3	1,174.5	1,177.8
-	360	1,181.1	1,184.4	1,187.7	1,190.9	1,194.2	1,197.5	1,200.8	1,204.1	1,207.3	1,210.6
	370	1,213.9	1,217.2	1,220.5	1,223.8	1,227.0	1,230.3	1,233.6	1,236.9	1,240.2	1,243.4
599	380	1,246.7	1,250.0	1,253.3	1.256.6	1,259.8	1,263.1	1,266.4	1,269.7	1,273.0	1,276.2
9	390	1,279.5	1,282.8	1,286.1	1,289.4	1,292.6	1,295.9	1,299.2	1,302.5	1,305.8	1,309.1
							1 000 =	1 000 0	1 007 0	1,338.6	1,341.9
	400	1,312.3	1,315.6	1,318.9	1,322.2	1,325.5	1,328.7	1,332.0	1,335.3		1,374.7
	410	1,345.1	1,348.4	1,351.7	1,355.0	1,358.3	1,361.5	1,364.8	1,368.1	1,371.4	1,407.5
	420	1,378.0	1,381.2	1,384.5	1,387.8	1,391.1	1,394.4	1,397.6	1,400.9	1,404.2	1,440.3
	430	1,410.8	1,414.0	1,417.3	1,420.6	1,423.9	1,427.2	1,430.4	1,433.7	1,437.0	1,440.3 $1,473.1$
	440	1,443.6	1,446.8	1,450.1	1,453.4	1,456.7	1,460.0	1,463.3	1,466.5	1,469.8	1,505.9
	450	1,476.4	1,479.7	1,482.9	1,486.2	1,489.5	1,492.8	1,496.1	1,499.3	1,502.6	
	460	1,509.2	1,512.5	1,515.7	1,519.0	1,522.3	1,525.6	1,528.9	1,532.1	1,535.4	1,538.7 $1,571.5$
	470	1,542.0	1,545.3	1,548.6	1,551.8	1,555.1	1,558.4	1,561.7	1,565.0	1,568.2	1,604.3
	480	1,574.8	1,578.1	1,581.4	1,584.6	1,587.9	1,591.2	1,594.5	1,597.8	1,601.0 1,633.9	1,637.1
	490	1,607.6	1,610.9	1,614.2	1,617.5	1,620.7	1,624.0	1,627.3	1,630.6	1,055.9	1,007.1
		1	1	I			1				
							<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>

LENGTHS - METERS TO FEET (Continued)

- :	0	1	2	3	4 .	5	6	7	8	9
v.									-	
500	1,640.4	1,643.7	1.647.0	1.650.3	1.653.5	1 656 8	1 660 1	1 663 4	1 666 7	1,669.9
510	1,673.2	1,676.5								1,702.8
520	1,706.0	1,709.3					1 725 7			1,735.6
	1,738.8	1,742.1	1,745.4				1.758.5			1,768.4
		1,774.9	1,778.2	1.781.5		1.788.1				1,801.2
	1,804.5	1,807.7		1.814.3	1.817.6					1,834.0
		1,840.5	1,843.8	1,847.1	1.850.4					1,866.8
			1,876.6	1,879.9						1,899.6
		1,906.2	1,909.4	1,912.7	1,916.0					1,932.4
590	1,935.7	1,939.0	1,942.3	1,945.5	1,948.8	1,952.1	1,955.4	1,958.7	1,961.9	1,965.2
600	1,968.5	1,971.8	1,975.1	1,978.3	1.981.6	1.984.9	1.988.2	1.991.5	1 994 7	1,998.0
			2,007.9	2,011.2	2,014.4					2,030.8
				2,044.0	2,047.2		2,053.8			2,063.6
					2,080.0	2,083.3	2,086.6			2,096.5
		2,103.0	2,106.3		2,112.9	2,116.1		2,122.7		2,129.3
		2,135.8	2,139.1	2,142.4	2,145.7	2,148.9	2,152.2	2,155.5		2,162.1
					2,178.5	2,181.8	2.185.0	2,188.3		2,194.9
						2,214.6	2,217.8	2,221.1	2,224.4	2,227.7
						2,247.4	2,250.7	2,253.9	2,257.2	2,260.5
บชบ	4,203.8	2.267.1	12.270.3	12.273 6	12.276.9	2,280.2	2,283.5	2,286.7	2,290.0	2,293.3
	510 520 530 540 550 550 560 570 580 600 6610 6620 630 640 650 660 670	500 1,640.4 510 1,673.2 520 1,706.0 530 1,738.8 540 1,771.7 550 1,804.5 560 1,837.3 570 1,902.9 590 1,935.7 600 1,968.5 610 2,001.3 620 2,034.1 630 2,066.9 640 2,099.7 650 2,132.5 660 2,132.5 660 2,132.5 670 2,198.2 680 2,231.0	500 1,640.4 1,643.7 510 1,673.2 1,676.5 520 1,706.0 1,709.3 530 1,738.8 1,742.1 540 1,771.7 1,774.9 550 1,804.5 1,807.7 560 1,837.3 1,840.5 570 1,870.1 1,873.4 580 1,902.9 1,906.2 1,935.7 1,939.0 600 1,968.5 1,971.8 610 2,001.3 2,004.6 620 2,034.1 2,037.4 630 2,066.9 2,070.2 640 2,099.7 2,103.0 630 2,132.5 2,135.8 630 2,165.4 2,168.6 6370 2,198.2 2,201.4 6380 2,231.0 2,234.2	500 1,640.4 1,643.7 1,647.0 510 1,673.2 1,676.5 1,679.8 520 1,706.0 1,709.3 1,712.6 530 1,738.8 1,742.1 1,745.4 1,771.7 1,774.9 1,778.2 550 1,804.5 1,807.7 1,811.0 560 1,837.3 1,840.5 1,843.8 570 1,870.1 1,873.4 1,876.6 1,902.9 1,906.2 1,909.4 1,935.7 1,939.0 1,942.3 600 1,968.5 1,971.8 1,975.1 610 2,001.3 2,004.6 2,007.9 620 2,034.1 2,037.4 2,040.7 630 2,066.9 2,070.2 2,073.5 640 2,099.7 2,103.0 2,106.3 650 2,132.5 2,135.8 2,139.1 6300 2,198.2 2,201.4 2,204.7 380 2,198.2 2,201.4 2,204.7 380 2,231.0 2,234.2 2,237.5	500 1,640.4 1,643.7 1,647.0 1,650.3 1,520 1,706.0 1,709.3 1,712.6 1,715.9 530 1,738.8 1,742.1 1,745.4 1,748.7 540 1,771.7 1,774.9 1,778.2 1,781.5 550 1,804.5 1,807.7 1,811.0 1,814.3 570 1,870.1 1,873.4 1,876.6 1,879.9 1,902.9 1,906.2 1,909.4 1,912.7 590 1,935.7 1,939.0 1,942.3 1,945.5 610 2,001.3 2,004.6 2,007.9 2,011.2 630 2,066.9 2,070.2 2,073.5 2,076.8 640 2,099.7 2,103.0 2,106.3 2,109.6 2,132.5 2,135.8 2,139.1 2,142.4 6370 2,198.2 2,201.4 2,204.7 2,208.0 2,380 2,231.0 2,234.2 2,237.5 2,240.8	500	500	500	500	500

LENGTHS — METERS TO FEET (Continued)

,		0	1	2	3	4	5	6	7	8	9
-		~	7								
	700	2,296.6	2,299.9	2,303.1	2,306.4	2,309.7	2,313.0	2,316.3	2,319.5	2,322.8	2,326.1
	710	2,329.4	2,332.7	2,336.0	2,339.2	2,342.5	2,345.8	2,349.1	2,352.4	2,355.6	2,358.9
	720	2,362.2	2,365.5	2,368.8	2,372.0	2,375.3	2,378.6	2,381.9	2,385.2	2,388.4	2,391.7
	730	2,395.0	2,398.3	2,401.6	2,404.9	2,408.1	2,411.4	2,414.7	2,418.0	2,421.3	2,424.5
	740	2,427.8	2,431.1	2,434.4	2,437.7	2,440.9	2,444.2	2,447.5	2,450.8	2,454.1	2,457.3 $2,490.2$
	750	2,460.6	2,463.9	2,467.2	2,470.5	2,473.7	2,477.0	2,480.3	2,483.6	2,486.9	2,490.2
	760	2,493.4	2,496.7	2,500.0	2,503.3	2,506.6	2,509.8	2,513.1	2,516.4	2,519.7	2,523.0
	770	2,526.2	2,529.5	2,532.8	2,536.1	2,539.4	2,542.6	2,545.9	2,549.2	2,552.5	2,555.8
	780	2,559.1	2,562.3	2,565.6	2,568.9	2,572.2	2,575.5	2,578.7	2,582.0	2,585.3	2,588.6
	790	2,591.9	2,595.1	2,598.4	2,601.7	2,605.0	2,608.3	2,611.5	2,614.8	2,618.1	2,621.4
	800	2,624.7	2,627.9	2,631.2	2,634.5	2,637.8	2,641.1	2,644.4	2,647.6	2,650.9	2,654.2
	810	2,657.5	2,660.8	2,664.0	2,667.3	2,670.6	2,673.9	2,677.2	2,680.4	2,683.7	2,687.0
	820	2,690.3	2,693.6	2,696.8	2,700.1	2,703.4	2,706.7	2,710.0	2,713.2	2,716.5	2,719.8
	830	2,723.1	2,726.4	2,729.7	2,732.9	2,736.2	2,739.5	2,742.8	2,746.1	2,749.3	2,752.6
	840	2,755.9	2,759.2	2,762.5	2,765.7	2,769.0	2,772.3	2,775,6	2,778.9	2,782.1	2,785.4
	850	2,788.7	2,792.0	2,795.3	2,798.6	2,801.8	2,805.1	2,808.4	2,811.7	2,815.0	2,818.2 2,851.0
	860	2,821.5	2,824.8	2,828.1	2,831.4	2,834.6	2,827.9	2,841.2	2,844.5	2,847.8	2,851.0
	870	2,854.3	2,857.6	2,860.9	2,864.2	2,867.4	2,870.7	2,874.0	2,877.3	2,880.6	2,883.9
	880	2,887.1	2.890.4	2,893.7	2,897.0	2,900.3	2,903.5	2,906.8	2,910.1	2,913.4	2,916.7
	890	2,919.9	2,923.2	2,926.5	2,929.8	2,933.1	2,936.3	2,939.6	2,942.9	2,946.2	2,949.5
			1		4	1	1			1	Ì

LENGTHS -- METERS TO FEET (Continued)

	0	1	2	3	4	5	6	7	8	9
900	2,952.8	2,956.3	2,959.3	2,962.6	2,965.9	2,969.2	2,972.4	2,975.7	2,979.0	2,982.3
910	2,985.6	2,988.8	2,992.1	2,995.4	2,998.7	3,002.0	3,005.2	3,008.5	3,011.8	3,015.1
920	3,018.4	3,021.6	3,024.9	3,028.2	3,031.5	3,034.8	3,038.1	3,041.3	3,044.6	3,047.9
930	3,051.2	3,054.5	3,057.7	3,061.0	3,064.3	3,067.6	3,070.9	3,074.1	3,077.4	3,080.7
940	3,084.0	3,087.3	3,090.5	3,093.8	3,097.1	3,100.4	3,103,7	3,106.9	3,110.2	3,113.5
950	3,116.8	3,120.1	3,123.4	3,126.6	3,129.9	3,133.2	3,136.5	3,139.8	3,143.0	3,146.3
960	3,149.6	3,152.9	3,156.2	3,159.4	3,162.7	3,166.0	3,169.3	3,172.6	3,175.8	3,179.1
970	3,182.4	3,185.7	3,189.0	3,192.3	3,195.5	3,198.8,	3,202.1	3,205.4	3,208.7	3,211.9
980	3,215.2	3,218.5	3,221.8	3,225.1	3,228.3	3,231.6	3,234.9	3,238.2	3,241.5	3,244.7
990	3,248.0	3,251.3	3,254.6	3,257.9	3,261.1	3,264.4	3,267.7	3,271.0	3,274.3	3,277.6

LENGTHS - FEET TO METERS

From 1 to 1,000 Units

Reduction factor: 1 foot = 0.3048006096 meter

The values found in the body of the table give, in meters, the lengths indicated in feet at the top and side.

	0	1 .	2	3	4	5	6	7	8	9
0 10 20 30 40 50 60 70 80 90	3.0480 6.0960 9.1440 12.192 15.240 18.288 21.336 24.384 27.432	0.30480 3.3528 6.4008 9.4488 12.497 15.545 18.593 21.641 24.689 27.737	0.60960 3.6576 6.7056 9.7536 12.802 15.850 18.898 21.946 24.994 28.042	0.91440 3.9624 7.0104 10.058 13.106 16.154 19.202 22.250 24.298 28.346	1.2192 4.2672 7.3152 10.363 13.411 16.459 19.507 22.555 25.603 28.651	4.5720	1.8288 4.8768 7.9248 10.973 14.021 17.069 20.117 23.165 26.213 29.261	2.1336 5.1816 8.2296 11.278 14.326 17.374 20.422 23.470 26.518 29.566		2.743 5.791 8.839 11.887 14.935 17.983 21.031 24.079 27.127 30.175

LENGTHS — FEET TO METERS (Continued)

	0	1	2	3	4	5	6	7	8	9
100	30.480	30.785	31.090	31.394	31.699	32.004	32.309	32.614	32.918	33.223
110	33.528	33.833	34.138	34.442	34.747	35.052	35.357	35.662	35.966	36.271
120	36.576	36.881	37.186	37.490	37.795	38.100	38.406	38.710	39.014	39.319
130	39.624	39.929	40.234	40.538	40.843	41.148	41.453	41.758	42.062	42.367
140	42.672	42.977	43.282	43.586	43.891	44.196	44.501	44.806	45.110	45.415
150	45.720	46.025	46.330	46.634	46.939	47.244	47.549	47.854	48.169	48.463
160	48.768	49.073	49.378	49.683	49.987	50.292	50.697	50.902	51.207	51.511
170	51.816	52.121	52.426	52.731	53.035	53.340	53.645	53.950	54.255	54.559
180	54.864	55.169	55.474	55.779	56.083	56.388	56.693	56.998	57.303	57.607
190	57.912	58.217	58.522	58.827	59.131	59.436	59.741	60.046	60.351	60.655
200	60.960	61.265	61.570	61.875	62.179	62.484	62.789	63.094	63.399	63.703
210	64.008	64.313	64.618	64.923	65.227	65.532	65.837	66.142	66.447	66.751
220	67.056	67.361	67.666	67.971	68.275	68.580	68.885	69.190	69.495	69.799
230	70.104	70.409	70.714	71.019	71.323	71.628	71.933	72.238	72.543	72.847
240	73.152	73.457	73.762	74.067	74.371	74.676	74.981	75.286	75.591	75.895
250	76.200	76.505	76.810	77.115	77.419	77.724	78.029	78.334	78.639	78.943
260	79.248	79.553	79.858	80.163	80.467	80.772	81.077	81.382	81.687	81.991
270	82.296	82.601	82.906	83.211	83.515	83.820	84.125	84.430	84.735	85.039
280	85.344	85.649	85.954	86.259	86.563	86.868	87.173	87.478	87.783	88.087
290	88.392	88.697	89.002	89.307	89.611	89.916	90.221	90.526	90.831	91.135

LENGTHS — FEET TO METERS (Continued)

_								-			
		0	1	2	. 3	4,	5	6	7	8	9
_	١.						20				
	300	91.440	91.745	92.050	92.355	92.659	92.964	93.269	93.574	93.879	94.183
	['] 310	94.488	94.793	95.098	95.403	95.707	96.012	96.317	96.622	96.927	97.231
	320	97.536	97.841	98.146	98.451	98.755	99.060	99.365	99.670	99.975	100.28
	330	100.58	100.89	101.19	101.50	101.80	102.11	102.41	102.72	103.02	103.33
	340	103.63	103.94	104.24	104.55	104.85	105.16	105.46	105.77	106.07	106.38
	350	106.68	106.99	107.29	107.59	107.90	108.20	108.51	108.81	109.12	109.42
	360	109.73	110.03	110.34	110.64	110.95	111.25	111.56	111.86	112.17	112.47
	370	112.78	113.08	113.39	113.69	114.00	114.30	114.61	114.91	115.21	115.52
605	380	115.82	116.13	116.43	116.74	117.04	117.35	117.65	117.96	118.26	118.57
Я	390	118.87	119.18	119.48	119.79	120.09	120.40	120.70	121.01	121.31	121.62
	400	121.92	122.23	122.53	122.83	123.14	123.44	123.75	124.05	124.36	124.66
	410	124.97	125.27	125.58	125.88	126.19	126.49	126.80	127.10	127.41	127.71
	420	128.02	128.32	128.63	128.93	129.24	129.54	129.85	130.15	130.45	130.76
	430	131.06	131.37	131.67	131.98	132.28	132.59	132.89	133.20	133.50	133.81
	440	134.11	134.42	134.72	135.03	135.33	135.64	135.94	136.25	136.55	136.86
	450	137.16	137.47	137.77	138.07	138.38	138.68	138.99	139.29	139.60	139.90
	460	140.21	140.51	140.82	141.12	141.43	141.73	142.04	142.34	142.65	142.95
	470	143.26	143.56	143.87	144.17	144.48	144.78	145.09	145.39	145.69	146.00
	480	146.30	146.61	146.91	147.22	147.52	147.83	148.13	148.44	148.74	149.05
	490	149.35	149.56	149.96	150.27	150.57	150.88	151.18	151.49	151.79	152.10
		1	1		1						
		ŀ			İ			1		1	

LENGTHS — FEET TO METERS (Continued)

	0	1	. 2	3	4	5	6	7	8	9
							· ·			
500	152.40	152.71	153.01	153.31	153.62	153.92	154.23	154.53	154.84	155.14
510	155.45	155.75	156.06	156.36	156.57	156.97	157.28	157.58	157.89	158.19
520	158.50	158.80	159.11	159.41	159.72	160.02	160.33	160.63	160.93	161.24
530	161.54	161.85	162.15	162.46	162.76	163.07	163.37	163.68	163.98	164.29
540	164.59	164.90	165.20	165.51	165.81	166.12	166.42	166.73	167.03	167.34
550	167.64	167.95	168.25	168.55	168.86	169.16	169.47	169.77	170.08	170.38
560	170.69	170.99	171.30	171.60	171.91	172.21	172.52	172.82	173.13	173.43
570	173.74	174.04	174.35	174.65	174.96	175.26	175.57	175.87	176.17	176.48
5 80	176.78	177.09	177.39	177.70	178.00	178.31	178.61	178.92	179.22	179.53
5 90	179.83	180.14	180.44	180.75	181.05	181.36	181.66	181.97	182.27	182.58
600	182.88	183.19	183.49	183.79	184.10	184.40	184.71	185.01	185.32	185.62
610	185.93	186.23	186.54	186.84	187.15	187.45	187.76	188.06	188.37	188.67
620	188.98	189.28	189.59	189.89	190.20	190.50	190.81	191.11	191.41	191.72
630	192.02	192.33	192.63	192.94	193.24	193.55	193.85	194.16	194.46	194.77
640	195.07	195.38	195.68	195.99	196.29	196.60	196.90	197.21	197.51	197.82
650	198.12	198.43	198.73	199.03	199.34	199.64	199.95	200.25	200.56	200.86
660	201.17	201.47	201.78	202.08	202.39	202.69	203.00	203.30	203.61	203.91
670	204.22	204.52	204.83	205.13	205.44	205.74	206.05	206.35	206.65	206.96
680	207.26	207.57	207.87	208.18	208.48	208.78	209.09	209.40	209.70	210.01
690	210.31	210.62	210.92	211.23	211.53	211.84	212.14	212.45	212.75	213.06
	1				1 .	1		-		
	1	1	,				1, :			1

$\textbf{LENGTHS} \longrightarrow \textbf{FEET} \quad \textbf{TO} \quad \textbf{METERS} \; (\textbf{Continued})$

	0	. 1	. 2	3	4	5	6	7	8	9
700	213.36	213.67	213.97	214.27	214.58	214.88	2 15. 19	215.49	215.80 218.85	216.10 219.15
$\begin{array}{c} 710 \\ 720 \end{array}$	$216.41 \\ 219.46$	$216.71 \\ 219.76$	$\begin{vmatrix} 217.02 \\ 220.07 \end{vmatrix}$	$217.32 \\ 220.37$	$217.63 \\ 220.68$	$\begin{vmatrix} 217.93 \\ 220.98 \end{vmatrix}$	$218.24 \\ 221.29$	$218.54 \\ 221.59$	213.89	219.16 222.20
730	$219.40 \\ 222.50$	222.81	223.11	223.42	223.72	224.03	224.33	224.64	224.94	225.25
740	225.55	225.86	226.16	226.47	226.77	227.08	227.38	227.69	227.99	228.30
750	228.60	228.91	$229.21 \\ 232.26$	$229.51 \\ 232.56$	$229.82 \\ 232.87$	230.12 233.17	$\begin{vmatrix} 230.43 \\ 233.48 \end{vmatrix}$	230.73 233.78	$231.04 \\ 234.09$	$\begin{vmatrix} 231.34 \\ 234.39 \end{vmatrix}$
760 770	$\begin{vmatrix} 231.65 \\ 234.70 \end{vmatrix}$	$231.95 \\ 235.00$	232.20 235.31	231.61	231.92	236.22	236.53	236.83	237.13	237.44
780	237.74	238.05	238.35	238.66	238.96	239.27	239.67	239.88	240.18	240.49
790	240.79	241.10	241.40	241.71	242.01	242.32	242.62	242.93	243.23	243.54
800	243.84	244.15	244.45	244.75	245.06	245.36	245.67	245.97	246.28	246.5
810	246.89	247.19	247.50	247.80	248.11	248.41	248.72	249.02	249.33	249.63
820	249.94	250.24	250.55	250.85	251.16	251.46	251.77	$252.07 \\ 255.12$	$252.37 \\ 255.42$	252.68 255.73
830 840	252.98 256.03	$253.29 \\ 256.34$	$253.59 \\ 256.64$	$253.90 \\ 256.95$	$254.20 \\ 257.25$	$254.51 \\ 257.56$	254.81 257.86	253.12 258.17	253.42 258.47	258.78
850	259.08	259.39	259.69	259.99	260.30	260.60	260.91	261.21	261.52	261.8
860	262.13	262.43	262.74	263.04	263.35	263.65	263.96	264.26	264.57	264.8
870	265.18	265.48	265.79	266.09	266.40	266.70	267.01	$267.31 \\ 270.36$	$267.61 \\ 270.66$	267.92 270.92
880 890	$268.22 \\ 271.27$	$268.53 \\ 271.57$	$\begin{vmatrix} 268.83 \\ 271.88 \end{vmatrix}$	$\begin{vmatrix} 269.14 \\ 272.19 \end{vmatrix}$	$269.44 \\ 272.49$	$269.75 \\ 272.80$	$\begin{vmatrix} 270.05 \\ 273.10 \end{vmatrix}$	270.30 273.41	$\frac{270.00}{273.71}$	274.0
990	211.21	211.01	211.00	2.19	2.2.10	2.2.00	2.3.10	[5.11		[1.0
		1		4	1	1	1		1	

LENGTHS — FEET TO METERS (Continued)

. 0	1	2	3	4	5	6	7	8	9
900 274.	37 277.67 42 280.72 46 283.77 51 286.82 56 289.87 51 292.91 56 295.96 70 299.01	274. 93	275.23	275. 54	275.84	276.15	276. 45	276, 76	277.06
910 277.		277. 98	278.28	278. 59	278.89	279.20	279. 50	279, 81	280.11
920 280.		281. 03	281.33	281. 64	281.94	282.25	282. 55	282, 85	283.16
930 283.		284. 07	284.38	284. 68	284.99	285.29	285. 60	285, 90	286.21
940 286.		287. 12	287.43	287. 73	288.04	288.34	288. 65	288, 95	289.26
950 289.		289. 17	290.47	290. 78	291.08	291.39	291. 69	292, 00	292.30
960 292.		293. 22	293.52	293. 83	294.13	294.44	294. 74	295, 05	295.35
970 295.		296. 27	296.57	296. 88	297.18	297.49	297. 79	298, 10	298.40
980 298.		299. 31	299.62	299. 92	300.23	300.53	300. 84	301, 14	301.45
990 301.		302. 36	302.67	302. 97	303.28	303.58	303. 89	304, 19	304.50

LENGTHS - KILOMETERS TO MILES

From 1 to 1,000 Units

Reduction factor: 1 kilometer = 0.6213699495 mile

Values found in the body of the table give, in miles, the length indicated in kilometers at the top and side.

	0	1	2	<i>i</i> 3	4	5	6	7	8	9
0 10 20 30 40 50 60 70 80 90	6.2137 12.427 18.641 24.855 31.069 37.282 43.496 49.710 55.923	0. 62137 6. 8351 13. 049 19. 262 25. 476 31. 690 37. 904 44. 117 50. 331 56. 945	1.2427 7.4564 13.670 19.884 26.098 32.311 38.525 44.739 50.952 57.166	1.8641 8.0778 14.292 20.505 26.719 32.933 39.146 45.360 51.574 57.787	2.4855 .8.6992 14.913 21.127 27.340 33.554 39.768 45.981 52.195 58.409			4.3496 10.563 16.777 22.991 29.204 35.418 41.632 47.845 54.059 60.273	4.9710 11.185 17.398 23.612 29.826 36.039 42.253 48.467 54.681 60.894	5.5923 11.806 18.020 24.233 30.447 36.661 42.875 49.088 55.302 61.516

_						1210 10		(Continu	ieu)	-	7
	- 1	0	1	2	3	• 4	5	6	7	8	9
-											
	100	62.137	62.758	63.380	64.001	64.622	65.244	65.865	66.487	67.108	67,729
	110	68.351	68.972	69.593	70.215	70.836	71.458	72.079	72.700	73.322	73.943
	120	74.564	75.186	75.807	76.429	77.050	77.671	78.293	78.914	79.535	80.157
	130	80.778	81.399	82.021	82.642	83.264	83.885	84.506	85.128	85.749	86.370
	140	86.992	87.613	88.235	88.856	89.477	90.099	90.720	91.341	91.963	92.584
	150	93.205	93.827	94.448	95.070	95.691	96.312	96.934	97.555	98.176	98.798
	160	99.419	100.04	100.66	101.28	101.90	102.53	103.15	103.77	104.39	105.01
	170	105.63	106.25	106.88	107.50	108.12	108.74		109.98	110.60	111.23
610	180	111.85	112.47	113.09	113.71	114.33	114.95	115.57	116.20	116.82	117.44
0	190	118.06	118.68	119.30	119.92	120.55	121.17	121.79	122.41	123.03	123.65
	200	124.27	124.90	125.52	126.14	126.76	127.38	128.00	128.62	129.24	129.87
	210	130.49	131.11	131.73	132.35	132.97	133.59	134.22	134.84	135.46	136.08
	220	136.70	137.32	137.94	138.57	139.19	139.81	140.43	141.05	141.67	142.29
	230	142.92	143.54	144.16	144.78	145.40	146.02	146.64	147.26	147.89	148.51
	240	149.13	149.75	150.37	150.99	151.61	152.24	152.86	153.48		154.72
	250	155.34	155.96	156.59	157.21	157.83	158.45	159.07	159.69	160.31	160.93
	260	161.56	162.18	162.80	163.42	164.04	164.66	165.28	165.91	166.53	167.15
	270	167.77	168.39	169.01	169.63	170.26	170.88	171.50	172.12	172.74	173.36
	280	173.98	174.60	175.23	175.85	176.47		177.71	178.33	178.95	179.58
	290	180.20	180.82	181.44	182.06	182.68	183.30	183.93	184.55	185.17	185.79
			1								
_		l .	1					1		1	l ;

	0	1,	. 2	3	4	5	6	7	8	9
·		, ,			-					
300	186.41	187.03	187.65	188.28	188.90	189.52	190.14	190.76	191.38	192.00
310	192.62	193.25	193.87	194.49	195.11	195.73	196.35	196.97	197.60	198.22
320	198.84	199.46	200.08	200.70	201.32	201.95	202.57	203.19	203.81	204.43
330	205.05	205.67	206.29	206.92	207.54	208.16	208.78	209.40	210.02	210.64
340	211.27	211.89	212.51	213.13	213.75	214.37	214.99	215.62	216.24	216.80
350	217.48	218.10	218.72	219.34	219.96	220.59	221.21	221.83	222.45	223.0'
360	223.69	224.31	224.94	225.56	226.18	226.80	227.42	228.04	228.66	229.29
370	229.91	230.53	231.15	231.77	232.39	233.01	233.64	234.26	234.88	235.50
380	236.12	236.74	237.36	237.98	238.61	239.23	239.85	240.47	241.09	241.7
390	242.33	242.96	243.58	244.20	244.82	245.44	246.06	246.68	247.31	247.9
400	248.55	249.17	249.79	250.41	251.03	251.65	252.28	252.90	253.52	254.1
410	254.76	255.38	256.00	256.63	257.25	257.87	258.49	259.11	259.73	260.3
420	260.98	261.60	262.22	262.84	263.46	264.08	264.70	265.32	265.95	266.5
430	267.19	267.81	268.43	269.05	269.67	270.30	270.92	271.54	272.16	272.7
440	273.40	274.02	274.65	275.27	275.89	276.51	277.13	277.75	278.37	279.0
450	279.62	280.24	280.86	281.48	282.10	282.72	283.34	283.97	284.59	285.2
460	285.83	286.45	287.07	287.69	288.32	288.94	289.56	290.18	290.80	291.4
470	292.04	292.67	293.29	293.91	294.53	295.15	295.77	296.39	297.01	297.6
480	298.26	298.88	299.50	300.12	300.74	301.36	301.99	302.61	303.23	303.8
490	304.47	305.09	305.71	306.34	306.96	307.58	308.20	308.82	309.44	310.0

	0	1	2	.3	4	5	6	7	8	9
500	310.68	311.31	311.93	312.55	313.17	313.79	314.41	315.03	315.66	316.2
510	316.90	317.52	318.14	318.76	319.38	320.01	320.63	321.35	321.87	322.4
520	323.11	323.73	324.36	324.98	325.60	326.22	326.84	327.46	328.08	328.7
530	329.33	329.95	330.57	331.19	331.81	332.43	333.05	333.68	334.30	334.9
540	335.54	336.16	336.78	337.40	338.03	338.65	339.27	339.89	340.51	341.1
550	341.75	342.37	343.00	343.62	344.24	344.86	345.48	346.10	346.72	347.3
560	347.97	348.59	349.21	349.83	350.45	351.07	351.70	352.32	352.94	353.5
570	354.18	354.80	355.42	356.04	356.67	357.29	357.91	358.53	359.15	359.7
580	360.39	361.02	361.64	362.26	262.88	363.50	364.12	364.74	365.37	365.9
590	366.61	367.23	367.85	368.47	369.09	369.72	370.34	370.96	371.58	372.2
600	372.82	373.44	374.06	374.69	375.31	375.93	376.55	377.17	377.79	378.4
610	379.04	379.66	380.28	380.90	381.52	382.14	382.76	383.39	384.01	384.6
620	385.25	385.87	386.49	387.11	387.73	388.36	388.98	389.60	390.22	390.8
630	391.46	392.08	392.71	393.33	393.95	394.57	395.19	395.81	396.43	397.0
640	397.68	398.30	398.92	399.54	400.16	400.78	401.40	402.03	402.65	403.2
650	403.89	404.51	405.13	405.75	406.38	407.00	407.62	408.24	408.86	409.4
660	410.10	410.73	411.35	411.97	412.59	413.21	413.83	414.45	415.08	415.7
670	416.32	416.94	417.56	418.18	418.80	419.42	420.05	420.67	421.29	421.9
680	422.53	423.15	423.77	424.40	425.02	425.64	426.26	426.88	427.50	428.1
690	428.75	429.37	429.99	430.61	431.23	431.85	432.47	433.09	433.72	434.3
	1	ł		1					1	
1	1			1 .	1		į .	1	1	1

	0	1	2	3	4	. 5	6	7	. 8.	9
710 720 730 740 750 760	434.96 441.17 447.39 453.60 459.81 466.03 472.24 478.45 484.67	435.58 441.79 448.01 454.22 460.44 466.65 472.86 479.08 485.29	436.20 442.42 448.63 454.84 461.06 467.27 473.48 479.70 485.91	436.82 443.04 449.25 455.46 461.68 467.89 474.11 480.32 486.53	437.44 443.66 449.87 456.09 462.30 468.51 474.73 480.94 487.15	438.07 444.28 450.49 456.71 462.92 469.13 475.35 481.56 487.78	438.69 444.90 451.11 457.33 463.54 469.76 475.97 482.18 488.40	439.31 445.52 451.74 457.95 464.16 470.38 476.59 482.80 489.02	439.93 446.14 452.36 458.57 464.78 471.00 477.21 483.43 489.64	440.55 446.76 452.98 459.19 465.41 471.62 477.83 484.05 490.26
790 800 810 820 830 840 850 860 870 880	490. 88 497. 10 503. 31 509. 52 515. 74 521. 95 528. 16 534. 38 540. 59 546. 81	491.50 497.72 503.93 510.14 516.36 522.57 528.79 535.00 541.21 547.43	492. 13 498. 34 504. 55 510. 77 516. 98 523. 19 529. 41 535. 62 541. 83 548. 05 554. 26	492.75 498.96 505.17 511.39 517.60 523.81 530.03 536.24 542.46 548.67 554.88	493.37 499.58 505.80 512.01 518.22 524.44 530.65 536.86 543.08 549.29 555.50	493.99 500.20 506.42 512.63 518.84 525.06 531.27 537.49 543.70 549.91 556.13	494.61 500.82 507.04 513.25 519.47 525.68 531.89 538.11 544.32 550.53 556.75	495.23 501.45 507.66 513.87 520.09 526.30 532.51 538.73 544.94 551.16 557.37	495.85 502.07 508.28 514.49 520.71 526.92 533.14 539.35 545.56 551.78 557.99	496.47 502.69 508.90 515.12 521.33 527.54 539.97 546.18 552.40 558.61

-							`	,		
***************************************	0	1	2	3	4	5	6	7	8	9
900 910 920 930 940 950 960 970 980 990	559.23 565.45 571.66 577.87 584.09 590.30 596.52 602.73 608.94 615.16	559.85 566.07 572.28 578.50 584.71 590.92 597.14 603.35 609.56 615.78	560. 48 566. 69 572. 90 579. 12 585. 33 591. 54 597. 76 603. 97 610. 19 616. 40	561. 10 567. 31 573. 52 579. 74 585. 95 592. 17 598. 38 604. 59 610. 81 617. 02	561.72 567.93 574.15 580.35 586.57 592.79 599.98 605.21 611.43 617.64	562.34 568.55 574.77 580.98 587.19 593.41 599.62 605.84 612.05 618.26	562.96 569.17 575.39 581.60 587.82 594.03 600.24 606.46 612.67 618.88	563.58 569.80 576.01 582.22 588.44 594.65 600.86 607.08 613.29 619.51	564.20 570.42 576.63 582.85 589.06 595.27 601.49 607.70 613.91 620.13	564.83 571.04 577.25 583.47 589.68 595.89 602.11 608.32 614.53 620.75

LENGTHS - MILES TO KILOMETERS

From 1 to 1,000 Units

Reduction factor: 1 mile = 1.609347219 kilometers

Values found in the body of the table give, in kilometers, the length indicated in miles at the top and side.

615 -			1		1			· · · · · · · · · · · · · · · · · · ·			
		0	1	2	3	4	5	6	7	8	9
	0		1.6094	3.2187	4.8280	6.4374	8.0467	9.6561	11.265	12.875	14.484
	10	16.094	17.703	19.312	20.922	22.531	24.140	25.750	27.359		30.578
	20		33.796	35.406	37.015	38.624	40.234	41.843	43.452		46.671
	30	48.280	49.890	51.499	53.109	54.718	56.327	57.937	59.546	61.155	62.765
	40	64.374	65.983	67.593	69.202	70.811	72.421	74.030	75.639	77.249	78.858
	50	80.467	82.077	83.686	85.295	86.905	88.514	90.123	91.733	93.342	94.952
	60	96.561	98.170	99.780	101.39	103.00	104.61	106.22	107.83	109.44	111.05
	70	112.65	114.26	115.87	117.48	119.09	120.70	122.31	123.92	125.53	127.14
	80	128.75	130.36	131.97	133.58	135.19	136.79	138.40	140.01	141.62	143.23
	90	144.84	146.45	148.06	149.67	151.28	152.89	154.50	156.11	157.72	159.33
	ł			1 4 1	19 11 11					ŀ	

LENGTHS — MILES TO KILOMETERS (Continued)

	0	1.	2	3	4	5	6	7	8	9
100	160.94	162.54	164.15	165.76	167.37	168.98	170.59	172.20	173.81	175.42
110	177.03	178.64	180.25	181.86	183.47	185.07	186.68	188.29	189.90	191.51
120	193.12	194.73	196.34	197.95	199.56	201.17	202.78	204.39	206.00	207.61
130	209.22	210.82	212.43	214.04	215.65	217.26	218.87	220.48	222.09	223.70
140	225.31	226.92	228.53	230.14	231.75	233.36	234.96	236.57	238.18	239.79
150	241.40	243.01	244.62	246.23	247.84	249.45	251.06	252.67	254.28	255.89
160	257.50	259.10	260.71	262.32	263.93	265.54	267.15	268.76	270.37	271.98
170	273.59	275.20	276.81	278.42	280.03	281.64	283.25	284.85	286.46	288.07
180	289.68	291.29	292.90	294.51	296.12	297.73	299.34	300.95	302.56	304.17
190	305.78	307.39	308.99	310.60	312.21	313.82	315.43	317.04	318.65	320.26
200	321.87	323.48	325.09	326.70	328.31	329.92	331.53	333.13	334.74	336.35
210	337.96	339.57	341.18	342.79	344.40	346.01	347.62	349.23	350.84	352.45
220	354.06	355.67	357.28	358.88	360.49	362.10	363.71	365.32	366.93	368.54
230	370.15	371.76	373.37	374.98	376.59	378.20	379.81	381.42	383.02	384.63
240	386.24	387.86	389.46	391.07	392.68	394.29	395.90	397.51	399.12	300.73
250	402.34	403.95	405.56	407.16	408.77	410.38	411.99	413.60	415.21	416.82
260	418.43	420.04	421.65	423.26	424.87	426.48	428.09	429.70	431.31	432.91
270	434.52	436.13	437.74	439.35	440.96	442.57	444.18	445.79	447.40	449.01
280	450.62	452.27	453.84	455.45	457.05	458.66	460.27	461.88	463.49	465.10
290	466.71	468.32	469.93	471.54	473.15	474.76	476.37	477.98	479.59	481.19
										•

LENGTHS — MILES TO KILOMETERS (Continued)

	0	1.	2	3	4	5	6	7	. 8	9
300 310 320 340 350 370 380 370 400 410 420 430 440 450 460 470 480	482.80 498.90 514.99 531.08 547.18 563.27 579.37 595.46 611.55 627.65 643.74 659.83 675.93 692.02 708.11 724.21 740.30 756.39 772.49	484,41 500,51 516,60 532,39 548,79 564,88 580,97 597,07 613,16 629,25 645,35 661,44 677,54 693,63 709,72 725,82 741,91 756,00 774,10 790,19	486.02 502.12 518.21 534.30 550.40 566.49 582.58 598.68 614.77 630.86 646.96 663.05 679.14 695.24 711.33 727.42 743.52 759.61 775.71 791.80	487.63 503.73 519.82 535.91 552.01 584.19 600.29 616.38 632.47 648.57 664.66 680.75 696.85 712.94 729.03 745.13 761.22 777.31 793.41	489.24 505.34 521.43 537.52 553.62 569.71 585.80 601.90 317.99 634.08 650.18 666.27 662.36 698.46 714.55 730.64 746.74 762.83 778.92 795.02	490.85 506.94 523.04 539.13 555.22 571.32 587.41 603.51 619.60 635.69 651.79 667.88 683.97 700.07 716.16 732.25 748.35 764.44 780.53 796.63	6 -492.46 508.55 524.65 540.74 556.83 572.93 589.02 605.12 621.21 637.30 653.40 669.49 685.58 701.68 717.77 733.86 749.96 766.05 782.14 798.24	7 494.07 510.16 526.26 542.35 558.44 574.54 590.63 606.72 622.82 638.91 655.00 671.10 687.19 703.28 719.38 735.47 767.66 783.75 799.85	495.68 511.77 527.87 543.96 560.05 576.15 592.24 608.33 624.43 640.52 656.61 672.71 688.80 704.89 720.99 737.08 753.17 769.27 785.36 801.45	9 497.29 513.38 529.48 545.57 561.66 577.76 593.85 609.94 626.04 642.13 658.22 674.32 690.41 706.50 722.60 738.69 754.78 770.88 786.97 803.06

LENGTHS - MILES TO KILOMETERS (Continued)

		0	1	2	3	4	5	6	7	8	9
		-							İ		
	500 510 520	804.67 820.77 836.86	806.28 822.38 838.47	807.89 823.99 840.08	809.50 825.60 841.69	811.11 827.20 843.30	812.72 828.81 844.91	814.33 830.42 846.52	815.94 832.03 848.13	817.55 833.64	819.16 835.25
	530 540	852.95 869.05	854.56 870.66	856.17 872.27	857.78 873.88	859.39 875.48	861.00 877.09	862.61 878.70	864.22 880.31	849.74 865.83 881.92	851.34 867.44 883.53
⇒ °	550 560 570	901.23 917.33	886.75 902.84 918.94	888.36 904.45 920.55	889.97 906.06 922.16	891.58 907.67 923.77	893.19 909.28 925.37	894.80 910.89 926.98	896.41 912.50 928.59	898.02 914.11 930.20	899.63 915.72 931.81
200	580 590		935.03 951.12	936.64 952.73	938.25 954.34	939.86 955.95	941.47 957.56	943.08 959.17	944.69 960.78	946.30 962.39	947.91 964.00
	600 610 620	981.70 997.80	967.22 983.31 999.40	968.83 984.92 1,001.0	970.44 986.53 1,002.6	972.05 988.14 1,004.2	973.66 989.75 1,005.8	975.26 991.36 1,007.5	976.87 992.97 1,009.1	978.48 994.58 1,010.7	980.09 996.19 1,012.3
	640	1,013.9 1,030.0 1,046.1	1,015.5 1,031,6 1,047.7	1,017.1 $1,033.2$ $1,049.3$	1,018.7 1,034.8 1,050.9	1,020.3 1,036.4 1,052.5	1,021.9 1,038.0 1,054.1	1,023.5 1,039.6 1,055.7	1,025.2 1,041.2 1,057.3	1,026.8 1,042.9 1,059.0	1,028.4 1,044.5 1,060.6
	670	1,062.2 1,078.3 1,094.4	1,063.8 1,079.9 1,096.0	1,065.4 1,081.5 1,097.6	1,067.0 1,083.1 1,099.2	1,068.6 1,084.7 1,100.8	1,070.2 1,086.3 1,102.4	1,071.8 1,087.9 1,104.0	1,073.4 1,089.5	1,075.0 1,091.1 1,107.2	1,076.7 1,092.7 1,108.8
		1,110.4	1,112,1	1,113.7	1,115.3	1,116.9	1,118.5	1,120.1	1,121.7	1,123.3	1,124.9

LENGTHS - MILES TO KILOMETERS (Continued)

							1	1	
0	1	2	3	*4	5	6	7	8	9
700 1,126.5	1,128.2	1,129.8	1,131.4	1,133.0	1,134.6	1,136.2	1,137.8	1,139.4	1,141.0
710 1,142.6	1,144.2	1,145.9	1,147.5	1,149.1	1,150.7	1,152.3	1,153.9	1,155.5	1,157.1
710 1,142.0	1,160.3	1,161.9	1,163.6	1,165.2	1,166.8	1,168.4	1,170.0	1,171.6	1,173.2
730 1,174.8	1,176.4	1,178.0	1,179.7	1.181.3	1,182.9	1,184.5	1,186.1	1,187.7	1,189.3
740 1,174.8	1,192.5	1,194.1	1,195.7	1,197.4	1,199.0	1,200.6	1,202.2	1,203.8	1,205.4
750 1,207.0	1,208.6	1,210.2	1,211.8	1,213.4	1,215.1	1,216.7	1,218.3	1,219.9	1,221.5
760 1,223.1	1,224.7	1,226.3	1,227.9	1,229.5	1,231.2	1,232.8	1,234.4	1,236.0	1,237.6
770 1,239.2	1,240.8	1,242.4	1,244.0	1,245.6	1,247.2	1,248.9	1,250.5	1,252.1	1,253.7
780 1,255.3	1,256.9	1,258.5	1,260.1	1,261.7	1.263.3	1,264.9	1,266.6	1,268.2	1,269.8
780 1,235.3	1,273.0	1,274.6	1,276.2	1,277.8	1,279.4	1,281.0	1,282.6	1,284.3	1,285.9
0001 007 5	1,289.1	1,290.7	1,292.3	1,293.9	1,295.5	1,297.1	1,298.7	1,300.4	1,302.0
800 1,287.5 810 1,303.6	1,305.2	1,306.8	1,308.4	1,310.0	1,311.6	1,313.2	1,314.8	1,316.4	1,318.1
820 1,319.7	1,321.3	1,322.9	1,324.5	1,326.1	1,327.7	1,329.3	1,330.9	1,332.5	1,334.1
830 1,335.8	1,337.4	1,339.0	1,340.6	1,342.2	1,343.8	1,345.4	1,347.0	1,348.6	1,350.2
840 1,351.9	1,353.5	1,355.1	1,356.7	1,358.3	1,359.9	1,361.5	1,363.1	1,364.7	1,366.3
850 1,367.9	1,369.6	1,371.2	1,372.7	1,374.4	1,376.0	1,377.6	1,379.2	1,380.8	1,382.4
860 1,384.0	1,385.6	1,387.3	1,388.9	1,390.5	1,392.1	1,393.7	1,395.3	1,396.9	1,398.5
870 1,400.1	1,401.7	1,403.4	1,405.0	1,406.6	1,408.2	1,409.8	1,411.4	1,413.0	1,414.6
880 1,416.2	1,417.8	1,419.4	1,421.1	1,422.7	1,424.3	1.425.9	1,427.5	1,429.1	1,430.7
890 1,432.3	1,433.9	1,435.5	1,437.1	1,438.8	1,440.4	1,442.0	1,443.6	1,445.2	1,446.8
090 1,402.0	1,400.9	1,150.0	1-,-3		,	1			li.
1							Į.	I	

LENGTHS - MILES TO KILOMETERS (Continued)

	0	1	2	,3	4	5	6	7	8	9
910 920 930 940 950 960 970	1,448.4 1,464.5 1,480.6 1,496.7 1,512.8 1,528.8 1,545.0 1,561.1 1,577.2 1,593.3	1,450.0 1,466.1 1,482.2 1,498.3 1,514.4 1,530.5 1,546.6 1,562.7 1,578.8 1,594.9	1,451.6 1,467.7 1,483.8 1,499.9 1,516.0 1,532.1 1,548.2 1,564.3 1,580.4 1,596.5	1,453.2 1,469.3 1,485.4 1,501.5 1,517.6 1,533.7 1,549.8 1,565.9 1,582.0 1,598.1	1,454.8 1,470.9 1,487.0 1,503.1 1,519.2 1,535.3 1,551.4 1,567.5 1,583.6 1,599.7	1,456.5 1,472.6 1,488.6 1,504.7 1,520.8 1,536.9 1,553.0 1,569.1 1,585.2 1,601.3	1,458.1 1,474.2 1,490.3 1,506.3 1,522.4 1,538.5 1,554.6 1,570.7 1,586.8 1,602.9	1,459.7 1,475.8 1,491.9 1,508.0 1,524.1 1,540.1 1,556.2 1,572.3 1,588.4 1,604.5	1,461.3 1,477.4 1,493.5 1,509.6 1,525.7 1,541.8 1,557.8 1,573.9 1,590.0 1,606.1	1,462.9 1,479.0 1,495.1 1,511.2 1,527.3 1,543.4 1,559.5 1,575.6 1,591.6 1,606.7

CAPACITIES - LITERS TO LIQUID QUARTS

From 1 to 1,000 Units

Reduction factor: 1 liter = 1.056681869 liquid quarts

The values found in the body of the table give, in liquid quarts, the capacities indicated in liters at the

_ top a	nd side.									
	0	1	2	3	4	5	6	.7	8	9
0 10 20 30 40 50 60 70 80	21.134 31.700 42.267 52.834 63.401 73.968 84.535	43.324 53.891 64.458 75.024 85.591	2:1134 12:680 23:247 33:814 44:381 54:947 65:514 76:081 86:648 97:215	3.1701 13.737 24.304 34.871 45.437 56.004 66.571 77.138 87.705 98.271	4.2267 14.794 25.360 35.927 46.494 57.061 67.628 78.194 88.761 99.328	5.2834 15.850 26.417 36.984 47.551 58.118 68.684 79.251 89.818 100.38	6.3401 16.907 27.474 38.041 48.607 59.174 69.741 80.308 90.875 101.44	7.3968 17.964 28.530 39.097 49.664 60.231 70.798 81.365 91.931 102.50	8.4535 19.020 29.587 40.154 50.721 61.288 71.854 82.421 92.988 103.55	9.5101 20.077 30.644 41.211 51.777 62.344 72.911 83.478 94.045 104.61

CAPACITIES — LITERS TO LIQUID QUARTS (Continued)

	1	0	1	2	3	4	5	6	7	8	9
	1									-	
	100	105.67	106.72	107.78	108.84	109.89	110.95	112.01	113.06	114.12	115.18
	110	116.24	117.29	118.35	119.41	120.46	121.52	122.58	123.63	124.69	125.75
	120	126.80	127.86	128.92	129.97	131.03	132.09	133.14	134.20	135.26	136.31
	130	137.37	138.43	139.48	140.54	141.60	142.65	143.71	144.77	145.82	146.88
	140	147.94	148.99	150.05	151.11	152.16	153.22	154.28	155.33	156.39	157.45
	150	158.50	159.56	160.62	161.67	162.73	163.79	164.84	165.90	166.96	168.01
	160	169.07	170.13	171.18	172.24	173.30	174.35	175.41	176.47	177.52	178.58
	170	179.64	180.69	181.75	182.81	183.86	184.92	185.98	187.03	188.09	189.15
ŝ	. 180	190.20	191.26	192.32	193.37	194.43	195.49	196.54	197.60	198.66	199.71
	190	200.77	201.83	202.88	203.94	205.00	206.05	207.11	208.17	209.22	210.28
	1					,		•			
	200	211.34	212.39	213.45	214.51	215.56	216.62	217.68	218.73	219.79	220.85
	210	221.90	222.96	224.02	225.07	226.13	227.19	228.24	229.30	230.36	231.41
	22 0	232.47	233.53	234.58	235.64	236.70	237.75	238.81	239.87	240.92	241.98
	230	243.04	244.09	245.15	246,21	247.26	248.32	249.38	250.43	251.49	252.55
	240	253.60	254.66	255.72	256.77	257.83	258.89	259.94	261.00	262.06	263.11
	250	264.17	265.23	266.28	267.34	268.40	269.45	270.51	271.57	272.62	273.68
	260	274.74	275.79	276.85	277.91	278.96	280.02	281.08	282.13	283.19	284.25
	270	285.30	286.36	287.42	288.47	289.53	290.59	291.64	292.70	293.76	• 294.81
	280	295.87	296.93	297.98	299.04	300.10	301.15	302.21	303.27	304.32	305.38
	290	306.44	307.49	308.55	309.61	310.66	311.72	312.78	313.83	314.89	315.95
	1				-						
			L	· ·			· · · · · · · · · · · · · · · · · · ·			<u> </u>	1

CAPACITIES - LITERS TO LIQUID QUARTS (Continued)

	0	1	2	3	4	5	6	7	8	9
					5					
300 310 320 330 340 350 360 370	317.00 327.57 338.14 348.71 359.27 369.84 380.41 390.97	318.06 328.63 339.19 349.76 360.33 370.90 381.46 392.03	319.12 329.68 340.25 350.82 361.39 371.95 382.52 393.09	320.17 330.74 341.31 351.88 362.44 373.01 383.58 394.14	321.23 331.80 , 342.36 , 352.93 363.50 374.07 384.63 395.20	322.29 332.85 343.42 353.99 364.56 375.12 385.69 396.26	323.34 333.91 344.48 355.05 365.61 376.18 386.75 397.31	324.40 334.97 345.53 356.10 366.67 377.24 387.80 398.37	325.46 336.02 346.59 357.16 367.73 378.29 388.86 399.43	326.51 337.08 347.65 358.22 368.78 379.35 389.92 400.48
380 390 400	401.54 412.11 422.67	402.60 413.16 423.73	403.65 414.22 424.79	404.71 415.28 425.84	405.77 416.33 426.90	406.82 417.39 427.96	407.88 418.45 429.01	408.94 419.50 430.07	409.99 420.56 431.13	411.05 421.62 432.18
410 420 430 440 450	443.81 454.37 464.94	434.30 444.86 455.43 466.00 476.56	435.35 445.92 456.49 467.05 477.62	436.41 446.98 457.54 468.11 478.68	437.47 448.03 458.60 469.17 479.73	438.52 449.09 459.66 470.22 480.79	439.58 450.15 460.71 471.28 481.85	440.64 451.20 461.77 472.34 482.90	441.69 452.26 462.83 473.39 483.96	442.75 453.32 463.88 474.45 485.02
460 470 480 490	486.07 496.64 507.21	487.13 497.70 508.26 518.83	488.19 498.75 509.32 519.89	489.24 499.81 510.38 520.94	490.30 500.87 511.43 522.00	491.36 501.92 512.49 523.06	492.41 502.98 513.55 524.11	493.47 504.04 514.60 525.17	494.53 505.09 515.66 526.23	495.58 506.15 516.72 527.28
			<u></u>							

CAPACITIES — LITERS TO LIQUID QUARTS (Continued)

7			C	APACITIE	S — LITER	ks TO LI	Onm On	ARTS (Co	ntinuea)			
		0	1	2	3	4	5	6	7	8	9	
	500 510 520 530	538.91 549.47 560.04	529.40 539.96 550.53 561.10	530.45 541.02 551.59 562.15	531.51 542.08 552.64 563.21	532.57 543.13 553.70 564.27	533.62 544.19 554.76 565.32	534.68 545.25 555.81 566.38	535.74 546.30 556.87 567.44	536.79 547.36 557.93 568.49	537.85 548.42 558.98 569.55	HANDBOOK (
624	540 550 560 570 580 590	570.61 581.18 591.74 602.31 612.88	571.66 582.23 592.80 603.37 613.93 624.50	572.72 583.29 593.86 604.42 614.99 625.56	573.78 584.35 594.91 605.48 616.05 626.61	574.83 585.40 595.97 606.54 617.10 627.67	575.89 586.46 597.03 607.59 618.16 628.73	576.95 587.52 598.08 608.65 619.22 629.78	578.00 588.57 599.14 609.71 620.27 630.84	579.06 589.63 600.20 610.76 621.33 631.90	580.12 590.69 601.25 611.82 622.39 632.95	OF CHEMISTRY
	600 610 620 630 640 650 660 670 680 690	644.58 655.14 665.71 676.28 686.84 697.41 707.98 718.54	635.07 645.63 656.20 666.77 677.33 687.90 698.47 709.03 719.60 730.17	636.12 646.69 657.26 667.82 678.39 688.96 699.52 710.09 720.66 731.22	637.18 647.75 658.31 668.88 679.45 690.01 700.58 711.15 721.71 732.28	638.24 648.80 659.37 669.94 680.50 691.07 701.64 712.20 722.77 733.34	639.29 649.86 660.43 670.99 681.56 692.13 702.69 713.26 723.83 734.39	640.35 650.92 661.48 672.05 682.62 693.18 703.75 714.32 724.88 735.45	641.41 651.97 662.54 673.11 683.67 694.24 704.81 715.37 725.94 736.51	642.46 653.03 663.60 674.16 684.73 695.30 705.86 716.43 727.00 737.56	643.52 654.09 664.65 675.22 685.79 696.35 706.92 717.49 728.05 738.62	Y AND PHYSICS
											-,	

CAPACITIES — LITERS TO LIQUID QUARTS (Continued)

_											
. /		0	1	2	3	4	5	6	7	8	9 '
,				1 .		*				-	
	700 710 720 730 740 750 760	739.68 750.24 760.81 771.38 781.94 792.51 803.08	740.73 751.30 761.87 772.43 783.00 793.57 804.13	741.79 752.36 762.92 773.49 784.06 794.62 805.19	742.85 753.41 763.98 774.55 785.11 795.68 806.25	743.90 754.47 765.04 775.60 786.17 796.74 807.30	744.96 755.53 766.09 776.61 787.23 797.79 808.36	746.02 756.58 767.15 777.72 788.28 798.85 809.42	747.07 757.64 768.21 778.77 789.34 799.91 810.47	748.13 758.70 769.26 779.83 790.40 800.96 811.53	749.19 759.75 770.32 780.89 791.45 802.02 812.59
625	770 780 790	813.65 824.21 834.78	814.70 825.27 835.84	815.76 826.33 836.89	816.82 827.38 837.95	817.87 828.44 839.01	818.93 829.50 840.06	819.99 830.55 841.12	821.04 831.61 842.18	822.10 832.67 843.23	823.16 833.72 844.29
	800 810 820 830 840 850 860 870 880	845.35 855.91 866.48 877.05 887.61 898.18 908.75 919.31 929.88	846.40 856.97 867.54 878.10 888.67 899.24 909.80 920.37 930.94	847.46 858.03 868.59 879.16 889.73 900.29 910.86 921.43 931.99	848.52 859.08 869.65 880.22 890.78 901.35 911.92 922.48 933.05	849.57 860.14 870.71 881.27 891.84 902.41 912.97 923.54 934.11	850.63 861.20 871.76 882.33 892.90 903.46 914.03 [924.60 935.16	851.69 862.25 872.82 883.39 893.95 904.52 915.09 925.65 936.72	852.74 863.31 873.88 884.44 895.01 905.58 916.14 926.71 937.28	853.80 864.37 874.93 885.50 896.07 906.63 917.20 927.77 938.33	854.86 865.42 875.99 886.56 897.12 907.69 918.26 928.82 939.39 949.96
-	890	940.47	941.50	942.56	953.62	944.67	945.73	946.79	947.84	948.90	949.90

CAPACITIES - LITERS TO LIQUID QUARTS (Continued)

To Exem yours (continue)													
7		6		5	4		3	2	1	0			
11. 21. 32. 42.	96 97 99	57.35 67.92 78.49 89.05 99.62 10.2 20.8 31.3 41.9 52.5	1,0 1,0 1,0	956.30 966.86 977.43 988.00 998.56 1,009.1 1,019.7 1,030.3 1,040.8 1,051.4	8.6 9.2 9.8	96 97 98	954.18 964.75 975.32 985.88 996.45 1,007.0 1,017.6 1,028.2 1,038.7 1,049.3	1,016.5 1,027.1 1,037.7		951.01 961.58 972.15 982.71 993.28 1,003.8 1,014.4 1,025.0 1,035.5 1,046.1	960 970 980	626	
					0.3	1,05	1,049.3	1,048.2	1,047.2	1,046.1	990	526	

63.406

72.870

82.333

91.797

64.352

73.816

83.280

92.743

65.299

74.862

84.226

93.690

CAPACITIES - LIQUID QUARTS TO LITERS

From 1 to 1,000 Units

Reduction factor; 1 liquid quart = 0.9463586241 liter

The values found in the body of the table give, in liters, the capacities indicated in liquid quarts at the top and side. 0 8 0.946361.8927 2.8391 3.78544.73185.6782 6.62457.5709 8.5172 9.463611.353 12.303 17.034 10 10.410 13.24914.195 15.142 16.088 17.98120 18.927 19:874 20.82021,766 22.713 23.659 24.60525.55226.498 27.44430 28.391 29.337 30.283 31.23032.176 33.123 34.069 35.015 35.962 36.908 40 37.854 38.801 39.747 40.693 42.586 44.479 46.372 41,640 43,533 45,425 50 47.318 48.264 49.211 50.157 51.103 52.050 52.996 53 942 54.889 55.835

60.567

70.031

79.494

88.958

61.513

70.977

80,440

89.904

62,460

71.923

81.387

90.850

57.728

67.191

76.655

86.119

58.674

68.138

77.601

87.065

59.621

69.084

78.548

88.011

56.782

66.245

75.,709

85.172

60

70

80

90

CAPACITIES — LIQUID QUARTS TO LITERS (Continued)

	0	1	2	3	4	5	, 6	7	8	9
100	94.636	95.582	96.529	97.475	98,421	99.368	100.31	101.26	102.21	103.15
110	104.10	105.05	105.99	106.94	107.88	108.83	109.78	110.72	111.67	112.62
120	113.56	114.51	115.46	116.40	117.35	118.29	119.24	120.19	121.13	122.08
130	123.03	123.97	124.92	125.87	126.81	127.76	128.70	129.65	130.60	131.54
140	132.49	133.44	134.38	135.33	136.28	137.22	138.17	139.11	140.06	141.01
150	141.95	142.90	143.85	144.79	145.74	146.69	147.63	148.58	149.52	150.47
160	151.42	152.36	153.31	154.26	155.20	156.15	157.10	158.04	158.99	159.93
170	160.88	161.83	162.77	163.72	164.67	165.61	166.56	167.51	168.45	169.40
180	170.34	171.29	172.24	173.18	174.13	175.08	176.02	176.97	177.92	178.86
190	179.81	180.75	181.70	182.65	183.59	184.54	185.49	186.43	187.38	188.33
200	189.27	190.22	191.16	192.11	193.06	194.00	194.95	195.90	196.84	197.79
210	198.74	199.68	200.63	201.57	202.52	203.47	204.41	205.36	206.31	207.25
220	208.20	209.15	210.09	211.04		212.93	213.88	214.82	205.31 215.77	216.72
230		218.61	219.56	220.50	221.45	222.39	223.34	224.29	225.23	226.18
$\frac{240}{240}$	227.13	228.07	229.02	229.97	230.91	231.86	232.80	233.75	234.70	235.64
250	236.59	237.54	238.48	239.43	240.38	241.32	242.27	243.21	244.16	245.11
260 260	246.05	247.00	247.95	248.89	249.84	250.79	251.73	252.68	253.62	254.57
270	255.52	256.46	257.41	258.36	259.30	260.25	261.19	262.14	263.09	264.03
280	264.98	265.93	266.87	267.82	268.77	269.71	270.66	271.60	272.55	273.50
290	274.44	275.39	276.34	277.28	278.23	279.18	280.12	281.07	282.01	282.96

CAPACITIES — LIQUID QUARTS TO LITERS (Continued)

	0	1	2	3	4	5	6	7	. 8	9
			. ,		1					
300	283.91	284.85	285.80	286.75	287.69	288.64	289.59	290.53	291.48	292.42
310	293.37	294.32	295.26	296.21	297.16	298.10	299.05	300.00	300.94	301.89
320	302.83	303.78	304.73	305.67	306.62	307.57	308.51	309.46	310.41	311.35
330	312.30	313.24	314.19	315.14	316.08	317.03	317.98	318.92	319.87	320.82
340	321.76	322.71	323.65	324.60	325.55	326.49	327.44	328.39	329.33	330.28
350	331.23	332.17	333.12	334.06	335.01	335.96	336.90	337.85	338.80	339.74
360	340.69	341.64	342.58	343.53	344.47	345.42	346.37	347.31	348. 26	349.21
370	350.15	351.10	352.05	352.99	353.94	354.88	355.83	356.78	357.72	358.67
380	359.62	360.56	361.51	362.46	363.40	364.35	365.29	366.24	367.19	368.13
390	369.08	370.03	370.97	371.92	372.87	373.81	374.76	375.70	376.65	377.60
400	378.54	379.49	380.44	381.38	382.33	383.28	384.22	385.17	386.11	387.06
410	388.01	388.95	389.90	390.85	391.79	392.74	393.69	394.63	395.58	396.52
420	397.47	398.42	399.36	400.31	401.26	402.20	403.15	404.10	105.04	405.99
430	406.93	407.88	408.83	409.77	410.72	411.67	412.61	413.56	414.51	415.45
440	416.40	417.34	418.29	419.24	420.18	421.13	422.08	423.02	423.97	424.92
450	425.86	426.81	427.75	428.70	429.65	430.59	431.54	432.49	433.43	434.38
460	435.32	436.27	437.22	438.16	439.11	440.06	441.00	441.95	442.90	443.84
470	444.79	445.73	446.68	447.63	448.57	449.52	450.47	451.41	452.36	453.31
480	454.25	455.20	456.14	457.09	458.04	458.98	459.93	460.88	461.82	462.77
490	463.72	464.66	465.61	466.55	467.50	468.45	469.39	470.34	471.29	472.23

CAPACITIES—LIQUID QUARTS TO LITERS (Continued)

						<u> </u>		·		<u> </u>	
		0	1	2	3	4	5	6	7	8	9
	500	473.18	474.13	475.07	476.02	476.96	477.91	478.86	479.80	480.75	481.70
	510	482.64	483.59	484.54	485.48	486.43	487.37	488.32	489.27	490.21	491.16
	520	492.11	493.05	494.00	494.95	495.89	496.84	497.78	498.73	499.68	500.62
	530	501.57	502.52	503.46	504.41	505.36	506.30	507.25	508.19	509.14	500.02 510.09
	540	511.03	511.97	512.93	513.87	514.82	515.77	516.71	517.66	518.60	519.55
	550	520.50	521.44	522.39	523.34	524.28	525.23	526.18	527.12	528.07	529.01
	560	529.96	530.91	531.85	532.80	533.75	534.69	535.64	536.59	537.53	538.48
	570	539.42	540.37	541.32	542.26	543.21	544.16	545.10	546.05	547.00	547.94
630	580	548.89	549.83	550.78	551.73	552.67	553.62	554.57	555.51	556.46	557.41
8	590	558.35	559.30	560.24	561.19	562.14	563.08	564.03	564.98	565.92	566.87
	600	567.82	568.76	569.71	570.65	571.60	572.55	573.49	574.44	575.39	576.33
	610	577.28	578.23	579.17	580.12	581.06	582.01	582.96	583.90	584.85	585.80
	620	586.74	587.69	588.64	589.58	590.53	591.47	592.42	593.37	594.31	595.26
1	630	596.21	597.15	598.10	599.05	599.99	600.94	601.88	602.83	603.78	604.72
	640	605.67	606.62	607.56	608.51	609.45	610.40	611.35	612.29	613.24	614.19
	650	615.13	616.08	617.03	617.97	618.92	619.86	620.81	621.76	622.70	623.65
	660	624.60	625.54	626.49	627.44	628.38	629.33	630.27	631.22	632.17	633.11
	670	634.06	635.01	635.95	636.90	637.85	638.79	639.74	640.68	641.63	642.58
	680	643.52	644.47	645.42	646.36	647.31	648.26	649.20	650.15	651.09	652.04
	690	652.99	653.93	654.88	655.83	656.77	657.72	658.67	659.61	660.56	661.50
			1			1 1 1					1
	,			<u> </u>		1 .		<u> </u>	1	1	1

CAPACITIES — LIQUID QUARTS TO LITERS (Continued)

	0	1	2	3	4	5	6	7	8	9
700	662.45	663.40	664.34	665.29	666.24	667.18	668.13	669.08	670.02	670.97
710	671.91	672.86	673.81	674.75	675.70	676.65	677.59	678.54	679.49	680.43
720	681.38	682.32	683.27	684.22	685.16	686.11	687.06	688.00	688.95	689.90
730	690.84	691.79	692.73	693.68	694.63	695.57	696.52	697.47	698.41	699.30
740	700.31	701.25	702.20	703.14	704.09	705.04	705.98	706.93	707.88	708.8
750	709.77	710.72	711.66	712.61	713.55	714.50	715.45	716.39	717.34	718.2
760	719.23	720.18	721.13	722.07	723.02	723.96	724.91	725.86	726.80	727.7
770	728.70	729.64	730.59	731.54	732.48	733.43	734.37	735.32	736.27	737.2
780	738.16	739.11	740.05	741.00	741.95	742.89	743.84	744.78	745.73	746.6
790	747.62	748.57	749.52	750.46	751.41	752.36	753.30	754.25	755.19	756.1
800	757.09	758.03	758.98	759.93	760.87	761.82	762.77	763.71	764.66	765.6
810	766.55	767.50	768.44	769.39	770.34	771.28	772.23	773.18	774.12	775.0
820	776.01	776.96	777.91	778.85	779.80	780.75	781.69	782.64	783.58	784.5
830	785.48	786.42	787.37	788.32	789.26	790.21	791.16	792.10	793.05	793.9
840	794.94	795.89	796.83	797.78	798.73	799.67	800.62	801.57	802.51	803.4
850	804.40	805.35	806.30	807.24	808.19	809.14	810.08	811.03	811.98	812.9
860	813.87	814.81	815.76	816.71	817.65	818.60	819.55	820.49	821.44	822.3
870	823.33	824.28	825.22	826.17	827.12	828.06	829.01	829.96	830.90	831.8
880	832.80	833.74	834.69	835.63	836.58	837.53	838.47	839.42	840.37	841.3
890	842.26	843.21	844.15	845.10	846.04	846.99	847.94	848.88	849.83	850.7

CAPACITIES - LIQUID QUARTS TO LITERS (Continued)

					A077 A	OMETO	10 111	EARD (CO.	nunueu)		1
		0	1.11	2	3	4	5	6	7	8	9
	900	851.72	852.67	853.62	854.56	855.51	856.45	857.40	858.35	859.29	860.24
	910	861.19	862.13	863.08	864.03	864.97	865.92	866.86	867.81	868.76	869.70
	920	870.65	871.60	872.54	873.49	874.44	875.38	876.33	877.27	878.22	879.17
	930	880.11	881.06	882.01	882.95	883.90	884.85	885.79	886.74	887.68	888.63
	940	889.57	890.52	891.47	892.42	893.36	894.31	895.26	896.20	897.15	898.09
	950	899.04	899.99	900.93	901.88	902.83	903.77	904.72	905.67	906.61	907.56
	960	908.50	909.45	910.40	911.34	912.29	913.24	914.18	915.13	916.08	917.02
	970	917.97	918.91	919.86	920.81	921.75	922.70	923.65	924.59	925.54	926.49
.	980	927.43	928.38	929.32	930.27	931.22	932.16	933.11	934.06	935.00	935.95
633 20	990	936.90	937.84	938.79	939.73	940.68	941.63	942.57	943.52	944.47	945.41

WEIGHTS - KILOGRAMS TO AVOIRDUPOIS POUNDS

From 1 to 1,000 Units

Reduction factor: 1 kilogram = 2.204622341 avoirdupois pounds

The values found in the body of the table give, in avoirdupois pounds, the weights indicated in kilograms at the top and side.

쯠 —		0	1	2	3	4	5	6	7	8	9
-				1.6							
	0	[<i>.</i>]	2.2046	4.4092	6.6139	8.8185	11.023	13.278	15.432		19.842
	10	22.046	24.251	26.456	28.660	30.865	33.069	35.274	37.479		
	20	44.092	46.297	48.502	50.706	52.911	55,116	57.320	59.525	61.729	63.934
	30	66.139	68.343	70.548	72.753	74.957	77.162	79.366	81.571	83.776	85.980
	40	88.185	90.390	92.594	94.799	97.003	99.208	101.41	103.62	105.82	108.03
	50	110.23	112.44	114.64	116.85	119.05	121.25	123.46	125.66	127.87	130.07
	60	132.28	134.48	136.69	138.89	141.10	143.30	145.51	147.71	149.91	152.12
	70	154.32	156.53	158.73	160.94	163.14	165.35	167.55	169.76	171.96	174.17
. '	80	176.37	178.57	180.78	182.98	185.19	187.39	189.60	191.80	194.01	196.20
	90	198.42	200.62	202.83	205.03	207.23	209.44	211.64	213.85	216.05	218.26
		1.		4 34 2 34			13.575				

WEIGHTS — KILOGRAMS TO AVOIRDUPOIS POUNDS (Continued)

	7									
	0	1	2	3	4	5	6	7	8	9
100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290	220.46 242.51 264.55 286.60 308.65 330.69 352.74 374.79 396.83 418.88 440.92 462.97 485.02 507.06 529.11 551.16 573.20 595.25 617.29 639.34	222.67 244.71 266.76 288.81 310.85 332.90 354.94 376.99 399.04 421.08 443.13 465.18 487.22 509.27 531.31 553.36 575.41 597.45 619.50 641.55	224.87 246.92 268.96 291.01 313.06 3357.15 379.20 401.24 423.29 445.33 467.38 489.43 511.47 533.52 555.56 577.61 599.66 621.70 643.75	227.08 249.12 271.17 293.21 315.26 337.31 359.35 381.40 403.45 425.49 447.54 469.58 491.63 513.68 535.72 557.77 579.82 601.86 623.91 645.95	229.28 251.33 273.37 295.42 317.47 339.51 361.56 383.60 405.65 427.70 449.74 471.79 493.84 515.88 537.93 559.97 582.02 604.07 626.11 648.16	231.49 253.53 275.58 297.62 319.67 341.72 363.76 385.81 407.86 429.90 451.95 473.99 496.04 518.09 540.13 562.18 584.22 606.27 628.32 650.36	233.69 255.74 277.78 299.83 321.87 343.92 365.97 388.01 410.06 432.11 454.15 476.20 498.24 520.29 542.34 564.38 586.43 608.48 630.52 652.57	235.89 257.94 279.99 302.03 324.08 346.13 368.17 390.22 412.26 434.31 456.36 478.40 500.45 522.50 544.54 566.59 588.63 610.68 632.73 654.77	238.10 260.15 282.19 304.24 326.28 348.33 370.38 392.42 414.47 436.52 458.56 480.61 502.65 524.70 546.75 568.79 590.84 612.89 634.93 656.98	240.30 262.35 284.40 306.44 328.49 350.54 372.58 394.63 416.67 438.72 460.77 482.81 504.86 526.90 548.95 571.00 593.04 615.09 637.14 659.18

WEIGHTS — KILOGRAMS TO AVOIRDUPOIS POUNDS (Continued)

310 683.43 685.64 687.84 690.05 692.25 694.46 696.66 698.87 701.07 703. 320 705.48 707.68 709.89 712.09 714.30 716.50 718.71 720.91 723.12 725. 330 727.53 729.73 731.93 734.14 736.35 738.55 740.75 742.96 745.16 747. 340 749.57 751.78 753.98 756.19 758.39 760.59 762.80 765.00 767.21 769. 350 771.62 773.82 776.03 778.23 780.44 782.64 784.85 787.05 789.25 791. 360 793.66 795.87 798.07 800.28 802.48 804.69 806.89 809.10 811.30 813. 370 815.71 817.91 820.12 822.32 824.53 826.73 828.94 831.14 833.35 835. 380 837.76 839.96 842.17 844.37 846.58 848.78 850.98 853.19 855.38 857. 390 859.80 862.01 864.21 866.42 868.62 870.83 873.03 875.24 877.44 879. 400 881.85 884.05 886.26 888.46 890.67 892.87 895.08 897.28 899.49 901. 400 881.85 884.05 886.26 888.46 890.67 892.87 895.08 897.28 899.49 901. 400 881.85 884.05 886.26 888.46 890.67 892.87 895.08 897.28 899.49 901. 400 903.90 906.10 908.30 910.51 912.71 914.92 917.12 919.33 921.53 923	i	ν.	0	1	2	3	4	5	5 6	7	8	9
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	635	310 320 330 340 350 360 370 380 390 400 410 420 430 440 450 470 480	661.39 683.43 705.48 727.53 749.57 771.62 793.66 815.71 837.76 859.80 881.85 903.90 925.94 947.99 970.03 992.08 1,014.1 1,036.2 1,058.2	663.59 685.64 707.68 729.73 751.78 773.82 795.87 817.91 839.96 862.01 884.05 906.10 928.15 950.20 972.24 994.28 1,016.3 1,038.4 1,060.4	665.80 687.84 709.89 731.93 753.98 776.03 798.07 820.12 842.17 864.21 886.26 908.30 930.35 952.40 974.44 996.49 1,018.5 1,040.6 1,062.6	668.00 690.05 712.09 734.14 756.19 778.23 800.28 822.32 844.37 866.42 888.46 910.51 932.56 954.60 976.65 998.69 1,020.7 1,042.8 1,064.8	670.21 692.25 714.30 736.35 758.39 780.44 802.48 824.53 846.58 868.62 890.67 912.71 934.76 956,71 978.85 1,000.9 1,022.9 1,045.0 1,067.0	672.41 694.46 716.50 738.55 760.59 782.64 804.69 826.73 848.78 870.83 892.87 914.92 936.96 959.01 981.06 1,003.1 1,025.1 1,047.2 1,069.2	674.61 696.66 718.71 740.75 762.80 784.85 806.89 828.94 850.98 873.03 895.08 917.12 939.17 961.22 983.26 1,005.3 1,027.4 1,049.4	676.82 698.87 720.91 742.96 765.00 787.05 809.10 831.14 853.19 875.24 897.28 919.33 941.37 963.42 985.47 1,007.5 1,029.6 1,051.6	679.02 701.07 723.12 745.16 767.21 789.25 811.30 833.35 855.38 877.44 899.49 921.53 943.58 965.62 987.67 1,009.7 1,031.8 1,053.8 1,075.9	681.23 703.27 725.32 747.37 769.41 791.46 813.51 835.55 857.60 879.64 901.69 923.74 945.78 967.83 989.88 1,011.9 1,034.0 1,056.0 1,078.1 1,100.1

WEIGHTS - KILOGRAMS TO AVOIRDUPOIS POUNDS (Continued)

_		0	1	2	. 3	4	5	6	7	8	9 -
	500 510 520	1,102.3 1,124.4 1,146.4	1,104.5 1,126.6 1,148.6	1,106.7 1,128.8 1,150.8	1,108.9 1,131.0 1,153.0	1,111.1 1,133.2 1,155.2	1,113.3 1,135.4 1,157.4	1,115.5 1,137.6 1,159.6	1,117.7 1,139.8 1,161.8	1,119.9 1,142.0 1,164.0	1,122.2 1,144.2 1,166.2
	530 540 550 560 570	1,168.4 1,190.5 1,212.5 1,234.6 1,256.6	1,170.7 1,192.7 1,214.7 1,236.8 1,258.8	1,172.9 1,194.9 1,217.0 1,239.0 1,261.0	1,175.1 1,197.1 1,219.2 1,241.2	1,177.3 1,199.3 1,221.4 1,243.4	1,179.5 $1,201.5$ $1,223.6$ $1,245.6$	1,181.7 1,203.7 1,225.8 1,247.8	1,183.9 1,205.9 1,228.0 1,250.0	1,186.9 1,208.1 1,230.2 1,252.2	1,188.3 1,210.3 1,232.4 1,254.4
	580 590 600	1,278.7 1,300.7	1,238.8 1,280.9 1,302.9 1,325.0	1,201.0 1,283.1 1,305.1 1,327.2	1,263.2 1,285.3 1,307.3 1,329.4	1,265.5 1,287.5 1,309.5 1,331.6	1,267.7 1,289.7 1,311.8 1,333.8	1,269.9 1,291.9 1,314.0 1,336.0	1,272.1 1,294.1 1,316.2 1,338.2	1,274.3 1,296.3 1,318.3 1,340.4	1,276.5 1,298.5 1,320.6 1,342.6
	610 620 630 640	1,344.8 1,366.9 1,388.9 1,411.0	1,347.0 1,369.1 1,391.1 1,413.2	1,349.2 1,371.3 1,393.3 1,415.4	1,351.4 1,375.5 1,395.5 1,417.6	1,353.6 1,375.7 1,397.7 1,419.8	1,355.8 1,377.9 1,399.9 1,422.0	1,358.0 1,380.1 1,402.1 1,424.2	1,360.3 1,382.3 1,404.3 1,426.4	1,362.5 1,384.5 1,406.5 1,428.6	1,364.7 1,386.7 1,408.8 1,430.8
	650 660 670 680	1,433.0 1,455.1 1,477.1 1,499.1	1,435.2 1,457.3 1,479.3 1,501.3	1,437.4 1,459.5 1,481.5 1,503.6	1,439.6 1,461.7 1,483.7 1,505.8	1,441.8 1,463.9 1,485.9 1,508.0	1,444.0 1,466.1 1,488.1 1,510.2	1,446.2 1,468.3 1,490.3 1,512.4	1,448.4 1,470.5 1,492.5 1,514.6	1,450.6 1,472.7 1,494.7 1,516.8	1,452.8 1,474.9 1,496.9 1,519.0
	690	1,521.2	1,523.4	1,525.6	1,527.8	1,530.0	1,532.2	1,534.4	1,536.6	1,538.8	1,541.0

WEIGHTS - KILOGRAMS TO AVOIRDUPOIS POUNDS (Continued)

								, ' 			L.
		0 -	1	2	3	4	5	6	7	8	9
-								2			
7	700	1,543.2	1,545.4	1,547.6	1.549.8	1,552.1	1,554.3	1,556.5	1,558.7	1,560.9	1,563.1
	710	1,565.3	1,567.5	1,569.7	1,571.9	1,574.1	1,576.3	1,578.5	1,580.7	1,582.9	1,585.1
	720	1,587.3	1,589.5	1,591.7	1,593.9	1,596.1	1,598.4	1,600.6	1,602.8	1,605.0	1,607.2
	730	1,609.4	1,611.6	1,613.8	1,616.0	1,618.2	1,620.4	1,622.6	1,624.8	1,627.0	1,629.2
	740	1,631.4	1,633.6	1,635.8	1,638.0	1,640.2	1,642.4	1,644.6	1,646.9	1,649.1	1,651.3
	750	1,653.5	1,655.7	1,657.9	1,660.1	1,662.3	1,664.5	1,666.7	1,668.9	1,671.1	1,673.3
	760	1,675.5	1,677.7	1,679.9	1,682.1	1,684.3	1,686.5	1,688.7	1,690.9	1,693.2	1,695.4
- 5	770	1,697.6	1,699.8	1,702.0	1,704.2	1,706.4	1,708.6	1,710.8	1,713.0	1,715.2	1,717.4
	780	1,719.6	1,721.8	1,724.0	1,726.2	1,728.4	1,730.6	1,732.8	1,735.0	1,737.2	1,739.4
	790	1,741.7	1,743.9	1,746.1	1,748.3	1,750.5	1,752.7	1,754.9	1,757.1	1,759.3	1,761.5
٠	800	1 769 7	1,766.0	1,768.1	1,770.3	1,772.5	1,774.7	1,776.9	1,779.1	1,781.3	1,783.5
	810	1,763.7	1,787.9	1,790.2	1,792.4	1,794.6	1,796.8	1,799.0	1,801.2	1,803.4	1,805.6
	820	1,785.7 $1,807.8$	1,810.0		1,814.4	1,816.6	1,818.8	1,821.0	1,823.2	1,825.4	1,827.6
	830	1,829.8	1,832.0	$1,812.2 \\ 1,834.2$	1,836.5	1,838.7	1,840.9	1,843.1	1,845.3	1,847.5	1,849.7
	840	1,851.9	1,854.1	1,856.3	1,858.5	1,860.7	1,862.9	1,865.1	1,867.3	1,869.5	1,871.7
	850	1,873.9	1,876.1	1,878.3	1,880.5	1,882.7	1,885.0	1,887.2	1,889.4	1,891.6	1,893.8
	860	1,896.0	1,898.2	1,900.4	1,902.6	1,904.8	1,907.0	1,909.2	1,911.4	1,913.6	1,915.8
	870	1,918.0	1,920.2	1,900.4 $1,922.4$	1,924.6	1,926.8	1,929.0	1,931.2	1,933.5	1,935.7	1,937.9
	880	1,940.1	1,942.3	1,922.4 $1,944.5$	1,946.7	1,948.9	1,951.1	1,953.3	1,955.6	1,957.7	1,959.9
	890	1,962.1	1,964.3	1,966.5	1,968.7	1,970.9	1,973.1	1,975.3	1,977.5	1,979.8	1,982.0
•	000	1,502.1	1,004.0	1,500.0	1,000.1	1,570.5	1,010.1	1-,010.0	1,011.0	1-,510.0	-,:02.0
					1	7				1	ı

WEIGHTS - KILOGRAMS TO AVOIRDUPOIS POUNDS (Continued)

· (0	1	2	3	4	5	6	7	8	9
910 2,0 920 2,0 930 2,0 940 2,0 950 2,0 960 2,1 970 2,1 980 2,1	006.2 028.3 050.3 072.3 094.4 116.4 138.5	2,140.7 2,162.7	1,988.6 2,010.6 2,032.7 2,054.7 2,076.8 2,098.8 2,120.8 2,142.9 2,164.9 2,187.0	1,990.8 2,012.8 2,034.9 2,056.9 2,079.0 2,101.0 2,123.1 2,145.1 2,167.1 2,189.2	1,993.0 2,015.0 2,037.1 2,059.1 2,081.2 2,103.2 2,125.3 2,147.3 2,169.3 2,191.4	1,995.2 2,017.2 2,039.3 2,061.3 2,083.4 2,105.4 2,127.5 2,149.5 2,171.6 2,193.6	1,997.4 2,019.4 2,041.5 2,063.5 2,085.6 2,107.6 2,129.7 2,151.7 2,173.8 2,195.8	1,999.6 2,021.6 2,043.7 2,065.7 2,087.8 2,109.8 2,131.9 2,153.9 2,176.0 2,198.0	2,001.8 2,023.8 2,045.9 2,067.9 2,090.0 2,112.0 2,134.1 2,156.1 2,178.2 2,200.2	2,004.0 2,026.0 2,048.1 2,070.1 2,092.2 2,114.2 2,136.3 2,158.3 2,180.4 2,202.4

WEIGHTS - AVOIRDUPOIS POUNDS TO KILOGRAMS

From 1 to 1,000 Units

Reduction factor: 1 avoirdupois pound = 0.4535924277 kilogram

The values found in the body of the table give, in kilograms, the weights indicated in avoirdupois pounds at the top and side.

63	0	1	2	3	4	5	6	7	8	, 9
0 10 20 30 40 50 60 70 80 90	4.5359 9.0719 13.608 18.144 22.680 27.216 31.751 36.287 40.823		0. 90718 5. 4431 9. 9790 14. 515 19. 051 23. 587 28. 123 32. 659 37. 195 41. 731	1.3608 5.8967 10.433 14.969 19.504 24.040 28.576 33.112 37.648 42.184			2.7216 7.2575 11.793 16.329 20.865 25.401 29.937 34.473 39.009 43.545			4.0823 8.6183 13.154 17.690 22.226 26.762 31.298 35.834 40.370 44.906

WEIGHTS — AVOIRDUPOIS POUNDS TO KILOGRAMS (Continued)

				,						
	0	1	2	3	4	5	6	7	8	9
100 110 120 130 140 150 160 170	45.359 49.895 54.431 58.967 63.503 68.039 72.575 77.111	45.813 50.349 54.885 59.421 63.957 68.492 73.028 77.564	46.266 50.802 55.338 59.874 64.410 68.946 73.482 78.018	46.720 51.256 55.792 60.328 64.864 69.400 73.936 78.471	47.174 51.710 56.245 60.781 65.317 69.853 74.389 78.925 83.461	47.627 52.163 56.699 61.235 65.771 70.307 74.843 79.379 83.915	48.081 52.617 57.153 61.689 66.224 70.760 75.296 79.832 84.368	48.534 53.070 57.606 62.142 66.678 71.214 75.750 80.286 84.822	48. 988 53. 524 58. 060 62. 596 67. 132 71. 668 76. 204 80. 739 85. 275	49. 442 53. 978 58. 513 63. 049 67. 585 72. 121 76. 657 81. 193 85. 729
180 190 200 210 220 230 240 250 260 270 280	81.647 86.183 90.718 95.254 99.790 104.33 108.86 113.40 117.93 122.47 127.01	82.100 86.636 91.172 95.708 100.24 104.78 109.32 113.85 118.39 122.92 127.46	82.554 87.090 91.626 96.162 100.70 105.23 109.77 114.31 118.84 123.38 127.91	83.007 87.543 91.179 96.615 101.15 105.69 110.22 114.76 119.29 123.83 128.37	83.461 87.997 92.533 97.069 101.60 106.14 110.68 115.21 119.75 124.28 128.82	83. 915 88. 451 92. 986 97. 522 102. 06 106. 59 111. 13 115. 67 120. 20 124. 74 129. 27	84. 368 88. 904 93. 440 97. 976 102. 51 107. 05 111. 58 116. 12 120. 66 125. 19 129. 73	84, 822 89, 358 93, 894 98, 430 102, 97 107, 50 112, 04 116, 57 121, 11 125, 65 130, 18	85.275 89.811 94.347 98.883 103.42 107.96 112.49 117.03 121.56 126.10 130.63	90. 256 94. 801 99. 337 103. 87 108. 41 112. 94 117. 48 122. 02 126. 55 131. 09

WEIGHTS — AVOIRDUPOIS POUNDS TO KILOGRAMS (Continued)

	0	1	2	3	4	5	6	7	8	9
										,
300	136.08	136.53	136.98	137.44	137.89	138.35	138.80	139.25	139.71	140.16
310	140.61	141.07	141.52	141.97	142.43	142.88	143.34	143.79	144.24	144.70
320	145.15	145.60	146.06	146.51	146.96	147.42	147.87	148.32	148.78	149.23
330	149.69	150.14	150.59	151.05	151.50	151.95	152.41	152.86	153.31	153.77
340	154.22	154.68	155.13	155.58	156.04	156.49	156.94	157.40	157.85	158.30
350	158.76	159.21	159.66	160.12	160.57	161.03	161.48	161.93	162.39	162.84
360	163.29	163.75	164.20	164.65	165.11	165.56	166.01	166.47	166.92	167.38
370	167.83	168.28	168.74	169.19	169.64	170.10	170.55	171.00	171.46	171.91
380	172.37	172.82	173.27	173.73	174.18	174.63	175.09	175.54	175.99	176.45
390	176.90	177.35	177.81	178.26	178.72	179.17	179.62	180.08	180.53	180.98
400	181.44	181.89	182.34	182.80	183.25	183.70	184.16	184.61	185.07	185.52
410	185.97	186.43	186.88	187.33	187.79	188.24	188.69	189.15	189.60	190.00
420	190.51	190.96	191.42	191.87	192.32	192.78	193.23	193.68	194.14	194.59
430	195.04	195.50	195.95	196.41	196.86	197.31	197.77	198.22	198.67	199.13
440	199.58	1200.03	200.49	200.94	201.40	201.85	202.30	202.76	203.21	203.66
450	204.12	204.57	205.02	205.48	205.93	206.38	206.84	207.29	207.75	208.20
460	208.65	209.11	209.56	210.01	210.47	210.92	211.37	211.83	212.28	212.73
470	213.19	213.64	214.10	214.55	215.00	215.46	215.91	216.36	216.82	217.27
480	217.72	218.18	218.63	219.09	219.54	219.99	220.45	220.90	$221.35 \\ 225.89$	$\begin{vmatrix} 221.81 \\ 226.34 \end{vmatrix}$
490	222.26	222.71	223.17	223.62	224.07	224.53	224.98	225.44	220.09	440.04

WEIGHTS - AVOIRDUPOIS POUNDS TO KILOGRAMS (Continued)

	0	1	2	3	4	5	6	7	* 8	9
1 1			-							
500	226.80	227.25	227.70	228.16	228.61	229.06	229.52	229.97	230, 42	230.88
510	231.33	231.79	232.24	232.69	233.15	233.60	234.05	234.51	234.96	235.41
520		236.32	236.78	237.23	237.68	238.14	238.59	239.04	239.50	239.95
530	240.40	240.86	241.31	241.76	242.22	242.67	243.13	243.58	244.03	244.49
540	244.94	245.39	245.85	246.30	246.75	247.21	247.66	248.12	248.57	249.02
550	249.48	249.93	250.38	250.84	251.29	251.74	252.20	252.65	253.10	253.56
560	254.01	254.47	254.92	255.37	255.83	256.28	256.73	257.19	257.64	258.09
570	258.55	259.00	259.45	259.91	260.36	260.82	261.27	261.72	262.18	262.63
580	263.08	263.54	263.99	264.44	264.90	265.35	265.81	266.26	266.71	267.17
590	267.62	268.07	268.53	268.98	269.43	269.89	270.34	270.79	271.25	271.70
600	272.16	272.61	273.06	273.52	273.97	274.42	274.88	275.33	275.78	276.24
610	276.69	277.14	277.60	278.05	278.51	278.96	279.41	279.87	280.32	280.77
620	281.23	281.68	282.13	282.59	283.04	283.50	283.95	284.40	284.86	285.31
630	285.76	286.22	286.67	287.12	287.58	288.03	288.48	288.94	289.39	289.85
640	290.30	290.75	291.21	291.66	292.11	292.57	293.02	293.47	293.93	294.38
650	294.84	295.29	295.74	296.20	296.65	297.10	297.56	298.01	298.46	298.92
660	299.27	299.82	300.28	300.73	301.19	301.64	302.09	302.55	303.00	303.45
670	303.91	304.35	304.81	305.27	305.72	306.17	306.63	307.08	307.54	307.99
680	308.44	308.90	309.38	309.80	310.26	310.71	311.16	311.62	312.07	312.53
690	312.98	313.43	313.89	314.34	314.79	315.25	315.70	316.15	316.61	317.06
		1	1	1	1			1	525.01	011.00

WEIGHTS - AVOIRDUPOIS POUNDS TO KILOGRAMS (Continued)

710 322.05 322.50 322.96 323.41 323.86 324.32 324.77 325.23 325.68 326.13 720 326.59 327.04 327.49 327.95 328.40 328.85 329.31 329.76 330.22 330.66 730 331.12 331.58 332.03 332.48 332.94 333.39 333.84 334.30 334.75 335.26 740 335.66 336.11 336.57 337.02 337.47 337.93 338.83 338.83 339.29 339.79 750 340.19 340.65 341.10 341.56 342.01 342.91 342.46 342.92 343.37 343.82 344.22 760 344.73 349.72 350.17 350.63 351.08 351.53 351.99 352.44 352.89 353.3 780 353.80 354.26 354.71 355.16 355.62 356.07 356.52 356.98 357.43 357.43 790 358.34		0 .	1	2	3 .	4	5	6	7	8	9
790 358.34 358.79 359.25 359.70 360.15 360.61 361.06 361.51 361.97 362.4 800 362.87 363.33 363.78 364.23 364.69 365.14 365.60 366.05 366.50 366.50 810 367.41 367.86 368.32 368.77 369.22 369.68 370.13 370.59 371.04 371.9 820 371.95 372.40 372.85 373.31 373.76 374.21 374.67 375.12 375.57 376.0 830 376.48 376.94 377.39 377.84 378.30 378.75 379.20 379.66 380.11 380.5 840 381.02 381.47 381.92 382.38 382.83 383.29 383.74 384.19 384.65 385.1 850 385.55 386.01 386.46 386.91 387.37 387.82 388.28 388.73 389.18 389.6	710 720 730 740 750 760 770	322.05 326.59 331.12 335.66 340.19 344.73 349.27	322.50 327.04 331.58 336.11 340.65 345.18 349.72	322.96 327.49 332.03 336.57 341.10 345.64 350.17	323.41 327.95 332.48 337.02 341.56 346.09 350.63	323.86 328.40 332.94 337.47 342.01 346.54 351.08	324.32 328.85 333.39 337.93 342.46 347.00 351.53	324.77 329.31 333.84 338.38 342.92 347.45 351.99	325.23 329.76 334.30 338.83 343.37 347.91 352.44	325. 68 330. 22 334. 75 339. 29 343. 82 348. 36 352. 89	321.60 326.13 330.65 335.23 339.74 344.28 348.83 353.34 357.88
830 376.48 376.94 377.39 377.84 378.30 378.75 379.20 379.66 380.11 380.5 840 381.02 381.47 381.92 382.38 382.83 383.29 383.74 384.19 384.65 385.1 850 385.55 386.01 386.46 386.91 387.37 387.82 388.28 388.73 389.18 389.6	800 810	362.87 367.41	363.33 367.86	363.78 368.32	364.23 368.77	364.69 369.22	365.14 369.68	365.60 370.13	366.05 370.59	366.50 371.04	366.9 371.4
	830 840	376.48 381.02	$376.94 \\ 381.47$	$377.39 \\ 381.92$	$377.84 \\ 382.38$	378.30 382.83	378.75 383.29	$379.20 \\ 383.74$	$379.66 \\ 384.19$	$380.11 \\ 384.65$	380.5 385.1 389.6 394.1

WEIGHTS - AVOIRDUPOIS POUNDS TO KILOGRAMS (Continued)

	0	1	2	3	4	5	6	7	8	9
900 910 920 930 940 950 960 970 980	412.77 417.31 421.84 426.38 430.91 435.45 439.98 444.52	408.69 413.22 417.76 422.29 426.83 431.37 435.90 440.44 444.97 449.51	409.14 413.68 418.21 422.75 427.28 431.82 436.36 440.89 445.43 449.96	409.59 414.13 418.67 423.20 427.74 432.27 436.81 441.35 445.88 450.42	410.05 414.58 419.12 423.66 428.19 432.73 437.26 441.80 446.33 450.87	410.50 415.04 419.57 424.11 428.64 433.18 437.72 442.25 446.79 451.32	410.95 415.49 420.03 424.56 429.10 433.63 438.17 442.71 447.24 451.78	411.41 415.94 420.48 425.02 429.55 434.09 438.62 443.16 447.70 452.23	411.86 416.40 420.93 425.47 430.01 434.54 439.08 443.61 448.15 452.69	412.32 416.85 421.39 425.92 430.46 435.00 439.53 444.07 448.60 453.14

TEMPERATURES

CENTIGRADE TO FAHRENHEIT FAHRENHEIT TO CENTIGRADE

TEMPERATURES — CENTIGRADE TO FAHRENHEIT

Conversion Table

The values in the body of the table give, in degrees Fahrenheit, the temperatures indicated in degrees Centigrade at the top and side.

 1° C. = 1.8° F.

For	temperatures	helow	O٥	\mathbf{C}
TOL	ocmperatures.	DETOM	v	·

Θ.					or compere	itales bei	ow o c.				
646	Temp. °C.	0	1	2	3 ,	4	5	6	7	8	9
	0 - 10	$+32.0 \\ +14.0$	30.2 12.2	28.4 10.4	26.6 8.6	24.8 6.8	23.0 5.0	$21.2 \\ 3.2$	19.4 +1.4	17.6 - 0.4	15.8 - 2.2
	- 20 - 30	$\begin{vmatrix} -4.0 \\ -22.0 \end{vmatrix}$	5.8 23.8	$7.6 \\ 25.6$	$9.4 \\ 27.4$	$ \begin{array}{c c} 11.2 \\ 29.2 \end{array} $	13. 0 31. 0	14.8 32.8	16.6 34.6	18.4 36.4	20.2 38.2
	- 40 - 50 - 60	$\begin{vmatrix} -40.0 \\ -58.0 \\ -76.0 \end{vmatrix}$	41.8 59.8 77.8	$43.6 \\ 61.6 \\ 79.6$	$egin{array}{cccc} 45.4 \ 63.4 \ 81.4 \end{array}$	$\begin{array}{c c} 47.2 \\ 65.2 \\ 83.2 \end{array}$	$49.0 \\ 67.0 \\ 85.0$	50.8 68.8 86.8	52.6 70.6 88.6	54.4 72.4 90.4	$egin{array}{c} 56.2 \ 74.2 \ 92.2 \end{array}$
	- 70 - 80	- 94.0 - 112.0	95.8 113.8	$97.6 \\ 115.6$	99.4 117.4	101.2 119.2	$103.0 \\ 121.0$	$104.8 \\ 122.8$	106.6 124.6	108.4 126.4	$110.2 \\ 128.2$
	- 90	- 130.0	131.8	133.6	135.4	137.2	139.0	140.8	142.6	144.4	146.2

Temp. °C.	0	1	2	3	4	5	6	7	8	9
- 100	-148.0	149.8	151.6	153.4	155.2	157.0	158.8	160.6	162.4	164.2
- 110 - 110	-166.0	167.8	169.6	171.4	173.2	175.0	176.8	178.6	180.4	182.2
- 120	-184.0	185.8	187.6	189.4	191.2	193.0	194.8	196.6	198.4	200.2
- 130	-202.0	203.8	205.6	207.4	209.2	211.0	212.8	214.6	216.4	218.2
- 140	-220.0	221.8	223.6	225.4	227.2	229.0	230.8	232.6	234.4	236.2
-150	-238.0	239.8	241.6	243.4	245.2	247.0	248.8	250.6	252.4	254.2
- 160	-256.0	257.8	259.6	261.4	263.2	265.0	266.8	268.6	270.4	272.2
-170	-274.0	275.8	277.6	279.4	281.2	283.0	284.8	286.6	288.4	290.2
- 180	-292.0	293.8	295.6	297.4	299.2	301.0	302.8	304.6	306.4	308.2
- 190	-310.0	311.8	313.6	315.4	317.2	319.0	320.8	322.6	324.4	326.2
- 200	-328.0	329.8	331.6	333.4	335.2	337.0	338.8	340.6	342.4	344.2
-210	-346.0	347.8	349.6	351.4	353.2	355.0	356.8	358.6	360.4	362.2
-220	-364.0	365.8	367.6	369.4	371.2	373.0	374.8	376.6	378.4	380.2
- 230	-382.0	383.8	385.6	387.4	389.2	391.0	392.8	394.6	396.4	398.2
- 240	-400.0	401.8	403.6	405.4	407.2	409.0	410.8	412.6	414.4	416.2
-250	-418.0	419.8	421.6	423.4	425.2	427.0	428.8	430.6	432.4	434.2
- 260	-436.0	437.8	439.6	441.4	443.2	445.0	446.8	448.6	450.4	452.2
-270	-454.0	455.8	457.6	459.4						
	1						1		2.5	

For	$^{\circ}\mathbf{C}$	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
interpolation	$^{\circ}\mathbf{F}$	0.18	0.36	0.54	0.72	0.90	1.08	1.26	1.44	1.62	1.80

Conversion Table

		:			- composi						
_	Temp. °C.	0	1	2	3	4	5 , V	6	7	. 8	9
	0	32.0	33.8	35.6	37.4	39.2	41.0	42.8	44.6	46.4	48.2
	10	50.0	51.8	53.6	55.4	57.2	59.0	60.8	62.6	64.4	66.2
	20	68.0	69.8	71.6	73.4	75.2	77.0	78.8	80.6	82.4	84.2
	30	86.0	87.8	89.6	91.4	93.2	95.0	96.8	98.6	100.4	102.2
	40	104.0	105.8	107.6	109.4	111.2	113.0	114.8	116.6	118.4	120.2
	50	122.0	123.8	125.6	127.4	129.2	131.0	132.8	134.6	136.4	138.2
6	60	140.0	141.8	143.6	145.4	147.2	149.0	150.8	152.6	154.4	156.2
648	70	158.0	159.8	161.6	163.4	165.2	167.0	168.8	170.6	172.4	174.2
	80	176.0	177.8	179.6	181.4	183.2	185.0	186.8	188.6	190.4	192.2
	90	194.0	195.8	197.6	199.4	201.2	203.0	204.8	206.6	208.4	210.2
	,	\	· ·	,				_			,
	100	212.0	213.8	215.6	217.4	219.2	221.0	222.8	224.6	226.4	228.2
	110	230.0	231.8	233.6	235.4	237.2	239.0	240.8	242.6	244.4	246.2
	120	248.0	249.8	251.6	253.4	255.2	257.0	258.8	260.6	262.4	264.2
	130	266.0	267.8	269 .6.	271.4	273.2	275.0	276.8	278.6	280.4	282.2
	140	284.0	285.8	287.6	289.4	291.2	293.0	294.8	296.6	298.4	300.2
	150	302.0	303.8	305.6	307.4	309.2	311.0	312.8	314.6	316.4	318.2
	160	320.0	321.8	323.6	325.4	327.2	329.0	330.8	332.6	334.4	336.2
	170	338.0	339.8	341.6	343.4	345.2	347.0	348.8	350.6	352.4	354.2
	180	356.0	357.8	359.6	361.4	363.2	365.0	366.8	368.6	370.4	372.2
	190	374.0	375.8	377.6	379.4	381.2	383.0	384.8	386.6	388.4	390.2
		-:					333.0	331.0	330.0	550.1	333.2

TEMPERATURES — CENTIGRADE TO	FAHRENHEIT	(Continued)
------------------------------	------------	-------------

	1 17 141	FERMI O.		UII II UILLI						
Temp. °C.	. 0	1	2	3	4	5	6	7	8	9
200 210 220 230 240 250 260	392.0 410.0 428.0 446.0 464.0 482.0 500.0	393.8 411.8 429.8 447.8 465.8 483.8 501.8	395.6 413.6 431.6 449.6 467.6 485.6 503.6	397.4 415.4 433.4 451.4 469.4 487.4 505.4	399.2 417.2 435.2 453.2 471.2 489.2 507.2	401.0 419.0 437.0 455.0 473.0 491.0 509.0	402.8 420.8 438.8 456.8 474.8 492.8 510.8	404.6 422.6 440.6 458.6 476.6 494.6 512.6	406.4 424.4 442.4 460.4 478.4 496.4 514.4	408.2 426.2 444.2 462.2 480.2 498.2 516.2
270 280 290	518.0 536.0 554.0 572.0	519.8 537.8 555.8 573.8	521.6 539.6 557.6	523.4 541.4 559.4 577.4	525.2 543.2 561.2	527.0 545.0 563.0 581.0	528.8 546.8 564.8	530.6 548.6 566.6	532.4 550.4 568.4 586.4	534.2 552.2 570.2
310 320 330 340	590.0 608.0 626.0 644.0	591.8 609.8 627.8 645.8	593.6 611.6 629.6 647.6	595.4 613.4 631.4 649.4	597.2 615.2 633.2 651.2	599.0 617.0 635.0 653.0 671.0	600.8 618.8 636.8 654.8 672.8	602.6 620.6 638.6 656.6 674.6	604.4 622.4 640.4 658.4 676.4	606.2 624.2 642.2 660.2 678.2
350 360 370. 380 390	662.0 680.0 698.0 716.0 734.0	663.8 681.8 699.8 717.8 735.8	665.6 683.6 701.6 719.6 737.6	667.4 685.4 703.4 721.4 739.4	669.2 687.2 705.2 723.2 741.2	689.0 707.0 725.0 743.0	690.8 708.8 726.8 744.8	692.6 710.6 728.6 746.6	694.4 712.4 730.4 748.4	696.2 714.2 732.2 750.2
For interpola	l ation	°C °F		.2 0.3 .36 0.5		0.5 0.90		.7\ 0.8 .26 1.44	0.9 1.62	1.0 1.80

Conversion Table

_			·			TOTAL CO CINC					
	Temp. °C.	. 0	1	2	3	4	5	6	7	8	9
	400 410	752.0 770.0	753.8 771.8	755.6 773.6	757.4 775.4	759.2 777.2	761.0 779.0	762.8 780.8	764.6 782.6	766.4 784.4	768.2 786.2
	420 430 440	788.0 806.0 824.0	789.8 807.8 825.8	791.6 809.6 827.6	793.4 811.4 829.4	795.2 813.2 831.2	797.0 815.0 833.0	798.8 816.8	800.6 818.6	802.4 820.4	804.2 822.2
650	450 460	842.0 860.0	843.8 861.8	845.6 863.6	847.4 865.4	849.2 867.2	851.0 869.0	834.8 852.8 870.8	836.6 854.6 872.6	838.4 856.4 874.4	840.2 858.2 876.2
0	470 480 490	878.0 896.0 914.0	879.8 897.8 915.8	881.6 899.6 917.6	883.4 901.4 919.4	885.2 903.2 921.2	887.0 905.0 923.0	906.8	890.6 908.6	892.4 910.4	894.2 912.2
	500	932.0	933.8	935.6	937.4	939.2	941.0	924.8 942.8	926.6 944.6	928.4 946.4	930.2 948.2
	510 520 530	950.0 968.0 986.0	951.8 969.8 987.8	953.6 971.6 989.6	955.4 973.4 991.4	957.2 975.2 993.2	959.0 977.0 995.0	960.8 978.8 996.8	962.6 980.6	964.4 982.4	966.2 984.2
	540 550	1004.0 1022.0	1005.8 1023.8	$1007.6 \\ 1025.6$	$1009.4 \\ 1027.4$	$1011.2 \\ 1029.2$	1013.0 1031.0	1014.8 1032.8	998.6 1016.6 1034.6	1000.4 1018.4 1036.4	$\begin{array}{ c c c }\hline 1002.2\\ 1020.2\\ 1038.2\\ \hline\end{array}$
	560 570 580	1040.0 1058.0 1076.0	$1041.8 \\ 1059.8 \\ 1077.8$	$egin{array}{c} 1043.6 \ 1061.6 \ 1079.6 \end{array}$	1045.4 1063.4 1081.4	$1047.2 \\ 1065.2 \\ 1083.2$	1049.0 1067.0 1085.0	1050.8 1068.8	$1052.6 \\ 1070.6$	1054.4 1072.4	$1056.2 \\ 1074.2$
	590	1094.0	1095.8	1075.6	1099.4	1101.2	1103.0	1086.8 1104.8	1088.6 1106.6	1090.4 1108.4	$1092.2 \\ 1110.2$

	Temp. °C.	0	1	2	3	4	5	6	7	8	9
-6	600 610 620 630 640 650 660 670 680 690	1112.0 1130.0 1148.0 1166.0 1184.0 1202.0 1220.0 1238.0 1256.0 1274.0	1113.8 1131.8 1149.8 1167.8 1185.8 1203.8 1221.8 1239.8 1257.8 1275.8	1115.6 1133.6 1151.6 1169.6 1187.6 1205.6 1223.6 1241.6 1259.6 1277.6	1117.4 1135.4 1153.4 1171.4 1189.4 1207.4 1225.4 1243.4 1261.4 1279.4	1119.2 1137.2 1155.2 1173.2 1191.2 1209.2 1227.2 1245.2 1263.2 1281.2	1121.0 1139.0 1157.0 1175.0 1193.0 1211.0 1229.0 1247.0 1265.0 1283.0	1122.8 1140.8 1158.8 1176.8 1194.8 1212.8 1230.8 1248.8 1266.8 1284.8	1124.6 1142.6 1160.6 1178.6 1196.6 1214.6 1232.6 1250.6 1268.6 1286.6	1126.4 1144.4 1162.4 1180.4 1198.4 1216.4 1234.4 1252.4 1270.4 1288.4	1128.2 1146.2 1164.2 1182.2 1200.2 1218.2 1236.2 1254.2 1272.2 1290.2
-651	700 710 720 730 740 750 760 770 780 790	1292.0 1310.0 1328.0 1346.0 1364.0 1382.0 1400.0 1418.0 1436.0	1293.8 1311.8 1329.8 1347.8 1365.8 1383.8 1401.8 1419.8 1437.8 1455.8	1295.6 1313.6 1331.6 1349.6 1367.6 1385.6 1403.6 1421.6 1439.6 1457.6	1297. 4 1315. 4 1333. 4 1351. 4 1369. 4 1387. 4 1405. 4 1423. 4 1441. 4 1459. 4	1299. 2 1317. 2 1335. 2 1353. 2 1371. 2 1389. 2 1407. 2 1426. 2 1443. 2 1461. 2	1301.0 1319.0 1337.0 1355.0 1373.0 1391.0 1409.0 1427.0 1445.0	1302.8 1320.8 1338.8 1356.8 1374.8 1392.8 1410.8 1428.8 1446.8	1304.6 1322.6 1340.6 1358.6 1376.6 1394.6 1412.6 1430.6 1448.6	1306. 4 1324. 4 1342. 4 1360. 4 1378. 4 1396. 4 1414. 4 1432. 4 1450. 4 1468. 4	1308. 2 1326. 2 1344. 2 1362. 2 1380. 2 1398. 2 1416. 2 1434. 2 1452. 2 1470. 2
_	For		$^{\circ}\mathrm{C}$.2 0.3		0.5		.7 0.8		1.0
	interpola	tion	$^{\circ}\mathbf{F}$	0.18 0	.36 0.5	4 0.72	0.90	1.08 1	.26 1.4	4 1.62	1.80

Conversion Table

					or temper	atures abe	, vc o o.				
١.	Temp. °C.	0	1	2	3	4	5	6	7	8	9
652	800 810 820 830 • 840 850 860 870 880	1472.0 1490.0 1508.0 1526.0 1544.0 1562.0 1580.0 1598.0 1616.0 1634.0	1473.8 1491.8 1509.9 1527.8 1545.8 1563.8 1581.8 1599.8 1617.8 1635.8	1475.6 1493.6 1511.6 1529.6 1547.6 1565.6 1583.6 1601.6 1619.6 1637.6	1477. 4 1496. 4 1513. 4 1531. 4 1549. 4 1567. 4 1585. 4 1621. 4 1639. 4	1479.2 1497.2 1515.2 1533.2 1551.2 1569.2 1587.2 1605.2 1623.2	1481.0 1499.0 1517.0 1535.0 1553.0 1571.0 1589.0 1607.0 1625.0	1482.8 1500.8 1518.8 1536.8 1554.8 1572.8 1590.8 1608.8 1626.8	1484.6 1502.6 1520.6 1538.6 1556.6 1574.6 1592.6 1610.6 1628.6	1486. 4 1504. 4 1522. 4 1540. 4 1558. 4 1576. 4 1594. 4 1612. 4 1630. 4	1488.2 1506.2 1524.2 1542.2 1560.2 1578.2 1596.2 1614.2 1632.2
	900 910 920 930 940 950 960 970 980	1652.0 1670.0 1688.0 1706.0 1724.0 1742.0 1760.0 1778.0 1796.0 1814.0	1653.8 1671.8 1689.8 1707.8 1725.8 1743.8 1761.8 1779.8 1797.8 1815.8	1655.6 1673.6 1691.6 1709.6 1727.6 1745.6 1763.6 1781.6 1799.6 1817.6	1657. 4 1675. 4 1693. 4 1711. 4 1729. 4 1747. 4 1765. 4 1783. 4 1801. 4 1819. 4	1641.2 1659.2 1677.2 1695.2 1713.2 1731.2 1749.2 1767.2 1785.2 1803.2 1821.2	1643.0 1661.0 1679.0 1697.0 1715.0 1751.0 1769.0 1787.0 1805.0 1823.0	1644.8 1662.8 1680.8 1698.8 1716.8 1734.8 1752.8 1770.8 1788.8 1806.8 1824.8	1646.6 1664.6 1682.6 1700.6 1718.6 1736.6 1754.6 1772.6 1790.6 1806.6 1826.6	1648.4 1666.4 1684.4 1702.4 1738.4 1756.4 1774.4 1792.4 1810.4 1828.4	1650.2 1668.2 1686.2 1704.2 1722.2 1740.2 1758.2 1776.2 1794.2 1812.2 1830.2

	Temp. °C.	0	1	2	. 3 ,	4	5	6	;: 7 °	8	9
	1000 1010 1020 1030 1040 1050 1060 1070	1832.0 1850.0 1868.0 1886.0 1904.0 1922.0 1940.0	1833.8 1851.8 1869.8 1887.8 1905.8 1923.8 1941.8 1959.8	1835.6 1853.6 1871.6 1889.6 1907.6 1925.6 1943.6 1961.6	1837.4 1855.4 1873.4 1891.4 1909.4 1927.4 1945.4 1963.4	1839.2 1857.2 1875.2 1893.2 1911.2 1929.2 1947.2 1965.2	1841.0 1859.0 1877.0 1895.0 1913.0 1931.0 1949.0 1967.0	1842.8 1860.8 1878.8 1896.8 1914.8 1932.8 1950.8 1968.8	1844.6 1862.6 1880.6 1898.6 1916.6 1934.6 1952.6 1970.6	1846.4 1864.4 1882.4 1900.4 1918.4 1936.4 1954.4 1972.4	1848. 2 1866. 2 1884. 2 1902. 2 1920. 2 1938. 2 1956. 2 1974. 2
653	1080 1090	1976.0 1994.0	1977.8 1995.8	1979.6 1997.6	1981.4 1999.4	1983.2 2001.2	1985.0 2003.0	1986.8 2004.8	1988.6 2006.6	1990.4 2008.4	$1992.2 \\ 2010.2$
i .	1100 1110 1120 1130 1140 1150 1160 1170 1180 1190	2012.0 2030.0 2048.0 2066.0 2084.0 2102.0 2120.0 2138.0 2174.0	2013.8 2031.8 2049.8 2067.8 2085.8 2103.8 2121.8 2139.8 2157.8 2175.8	2015.6 2033.6 2051.6 2069.6 2087.6 2105.6 2123.6 2141.6 2159.6 2177.6	2017.4 2035.4 2053.4 2071.4 2089.4 2107.4 2125.4 2143.4 2161.4 2179.4	2019. 2 2037. 2 2055. 2 2073. 2 2091. 2 2109. 2 2127. 2 2145. 2 2163. 2 2181. 2	2021.0 2039.0 2057.0 2075.0 2093.0 2111.0 2129.0 2147.0 2165.0 2183.0	2022.8 2040.8 2058.8 2076.8 2094.8 2112.8 2130.8 2148.8 2166.8 2184.8	2024.6 2042.6 2060.6 2078.6 2096.6 2114.6 2132.6 2150.6 2168.6 2186.6	2026. 4 2044. 4 2062. 4 2080. 4 2098. 4 2116. 4 2134. 4 2152. 4 2170. 4 2188. 4	2028. 2 2046. 2 2064. 2 2082. 2 2100. 2 2118. 2 2136. 2 2154. 2 2172. 2 2190. 2
	For		$^{\circ}\mathrm{C}$.2 0.3		0.5		7 0.8	0.9	1.0
	interpola	tion	$^{\circ}\mathrm{F}$	0.18 0	0.5°	4 0.72	0.90	1.08 1	$.26 ext{ } 1.4$	1.62	1.80

Conversion Table

For temperatures above 0° C.

Т	'emp. °C.	0	1	2	3	4	5	6	7	8	9
	1200	2192.0	2193.8	2195.6	2197.4	2199.2	9901 0	0000 0	0004.0	2222	
	1210	2210.0	2211.8	2213.6	2215.4	2199.2	2201.0	2202.8	2204.6	2206.4	2208.2
	1220	2228.0	2229.8	2231.6	2233.4		2219.0	2220.8	2222.6	2224.4	2226.2
	1230	2246.0	2247.8	2249.6		2235.2	2237.0	2238.8	2240.6	2242.4	2244.2
	1240	2264.0	2265.8	2267.6	2251.4	2253.2	2255.0	2256.8	2258.6	2260.4	2262.2
	1250	2282.0	2283.8		2269.4	2271.2	2273.0	2274.8	2276.6	2278.4	2280.2
	1260	2300.0	2301.8	2285.6	2287.4	2289.2	2291.0	2292.8	2294.6	2296.4	2298.2
	$\frac{1200}{1270}$	2318.0		2303.6	2305.4	2307.2	2309.0	2310.8	2312.6	2314.4	2316.2
	1270	2336.0	2319.8	2321.6	2323.4	2325.2	2327.0	2328.8	2330.6	2332.4	2334.2
			2337.8	2339.6	2341.4	2343.2	2345.0	2346.8	2348.6	2350.4	2352.2
	1290	2354.0	2355.8	2357.6	2359.4	2361.2	2363.0	2364.8	2366.6	2368.4	2370.2
	1300	2372.0	2373.8	2375.6	2377.4	2379.2	2381.0	2382.8	2384.6	2386.4	2388.2
	1310	2390.0	2391.8	2393.6	2395.4	2397.2	2399.0	2400.8	2402.6	2404.4	2406.2
	1320	2408.0	2409.8	2411.6	2413.4	2415.2	2417.0	2418.8	2420.6	2422.4	2400.2
	1330	2426.0	2427.8	2429.6	2431.4	2433.2	2435.0	2436.8	2438.6	2440.4	
	1340	2444.0	2445.8	2447.6	2449.4	2451.2	2453.0	2454.8	2456.6	2458.4	2442.2
	1350	2462.0	2463.8	2465.6	2467.4	2469.2	2471.0	2472.8	2474.6	2476.4	2460.2
	1360	2480.0	2481.8	2483.6	2485:4	2487.2	2489.0	2490.8	2492.6	$2470.4 \\ 2494.4$	2478.2
	1370	2498.0	2499.8	2501.6	2503.4	2505.2	2507.0	2508.8	2510.6		2496.2
	1380	2516.0	2517.8	2519.6	2521.4	2523.2	2525.0	2526.8	2510.0 2528.6	2512.4	2514.2
	1390	2534.0	2535.8	2537.6	2539.4	2541.2	2523.0 2543.0	2544.8	2546.6	2530.4	2532.2
		1 1 1			_000.1	-011.2	2010.0	40TT.0	4010.0	2548.4	2550.2

Temp. °C.	0	1	2	3	4	5	6	7	8 .	9
1400	2552.0	2553.8	2555.6	2557.4	2559.2	2561.0	2562.8	2564.6	2566.4	2568.2
1410	2570.0	2571.8	2573.6	2575.4	2577.2	2579.0	2580.8	2582.6	2584.4	2586.2
1420	2583.0	2589.8	2591.6	2593.4	2595.2	2597.0	2598.8	2600.6	2602.4	2604.2
1430	2606.0	2607.8	2609.6	2611.4	2613.2	2615.0	2616.8	2618.6	2620.4	2622.2
1440	2624.0	2625.8	2627.6	2629.4	2631.2	2633.0	2634.8	2636.6	2638.4	2 640.2
1450	2642.0	2643.8	2645.6	2647.4	2649.2	2651.0	2652.8	2654.6	2656.4	2658.2
1460	2660.0	2661.8	2663.6	2665.4	2667.2	2669.0	2670.8	2672.6	2674.4	2676.2
1470	2678.0	2679.8	2681.6	2683.4	2685.2	2687.0	2688.8	2690.6	2692.4	2694.5
1480	2696.0	2697.8	2699.6	2701.4	2703.2	2705.0	2706.8	2708.6	2710.4	2712.5
1490	2714.0	2715.8	2717.6	2719.4	2721.2	2723.0	2724.8	2726.6	2728.4	2730.
1500	2732.0	2733.8	2735.6	2737.4	2739.2	2741.0	2742.8	2744.6	2746.4	2748.
1510	2750.0	2751.8	2753.6	2755.4	2757.2	2759.0	2760.8	2762.6	2764.4	2766.
1520	2768.0	2769.8	2771.6	2773.4	2775.2	2777.0	2778.8	2780.6	2782.4	2784.
1530	2786.0	2787.8	2789.6	2791.4	2793.2	2795.0	2796.8	2798.6	2800.4	2802.
1540	2804.0	2805.8	2807.6	2809.4	2811.2	2813.0	2814.8	2816.6	2818.4	2820.
1550	2822.0	2823.8	2825.6	2827.4	2829.2	2831.0	2832.8	2834.6	2836.4	2838.
1560	2840.0	2841.8	2843.6	2845.4	2847.2	2849.0	2850.8	2852.6	2854.4	2856.
1570	2858.0	2859.8	2861.6	2863.4	2865.2	2867.0	2868.8	2870.6	2872.4	2874.
1580	2876.0	2877.8	2879.6	2881.4	2883.2	2885.0	2886.8	2888.6	2890.4	2892.
1590	2894.0	2895.8	2897.6	2899.4	2901.2	2903.0	2904.8	2906.6	2908.4	2910.
For	<u> </u>	°C	0.1 0	$\frac{1}{.2}$ 0.3	0.4	0.5	0.6 0	.7 0.8	0.9	1.0
interpola	ation	°F		36 0.5		0.90	1.08 1	.26 1.4	4 1.62	1.80

Conversion Table

_	Temp. °C.	0	1	2	3	4	5	6	7	8	9
	1600	2912.0	2913.8	2915.6	2917.4	2919.2	2921.0	2922.8	2924.6	2926.4	2928.2
	1610	2930.0	2931.8	2933.6	2935.4	2937.2	2939.0	2940.8	2942.6	2944.4	2946.2
	1620	2948.0	2949.8	2951.6	2953.4	2955.2	2957.0	2958.8	2960.6	2962.4	2964.2
	1630	2966.0	2967.8	2969.6	2971.4	2973.2	2975.0	2976.8	2978.6	2980.4	2982.2
	1640	2984.0	2985.8	2987.6	2989.4	2991.2	2993.0	2994.8	2996.6	2998.4	3000.2
	1650	3002.0	3003.8	3005.6	3007.4	3009.2	3011.0	3012.8	3014.6	3016.4	3018.2
0 10	$1660 \\ 1670$	3020.0 3038.0	3021.8	$3023.6 \\ 3041.6$	3025.4	$3027.2 \\ 3045.2$	$3029.0 \\ 3047.0$	3030.8 3048.8	3032.6	3034.4	3036.2
ò	1670 1680	3056.0	3057.8	3059.6	$3043.4 \\ 3061.4$	3045.2 3063.2	3065.0	3066.8	3050.6 3068.6	3052.4 3070.4	$3054.2 \\ 3072.2$
	1690	3074.0	3075.8	3077.6	3079.4	3081.2	3083.0	3084.8	3086.6	3088.4	3090.2
		3014.0	3013.8	3011.0	5019.4	3031.2	3003.0	3031.8	3030.0	3033.4	3090.2
	1700 [*]	3092.0	3093.8	3095.6	3097.4	3099.2	3101.0	3102.8	3104.6	3106.4	3108.2
	1710	3110.0	3111.8	3113.6	3115.4	3117.2	3119.0	3120.8	3122.6	3124.4	3126.2
	1720	3128.0	3129.8	3131.6	3133.4	3135.2	3137.0	3138.8	3140.6	3142.4	3144.2
	1730	3146.0	3147.8	3149.6	3151.4	3153.2	3155.0	3156.8	3158.6	3160.4	3162.2
	1740	3164.0	3165.8	3167.6	3169.4	3171.2	3173.0	3174.8	3176.6	3178.4	3180.2
	1750	3182.0	3183.8	3185.6	3187.4	3189.2	3191.0	3192.8	3194.6	3196.4	3198,2
	1760	3200.0	3201.8	3203.6	3205.4	3207.2	3209.0	3210.8	3212.6	3214.4	3216.2
	1770	3218.0	3219.8	3221.6	3223.4	3225.2	3227.0	3228.8	3230.6	3232.4	3234.2
	1780	3236.0	3237.8	3239.6	3241.4	3243.2	3245.0	3246.8	3248.6	3250.4	3252.2
	1790	3254.0	3255.8	3257.6	3259.4	3261.2	3263.0.	3264.8	3266.6	3268.4	3270.2

Temp. °C.	0	. 1	2	3	4	5	6	7	8	9
1800	3272.0	3273.8	3275.6	$3277.4 \\ 3295.4$	$3279.2 \\ 3297.2$	$3281.0 \\ 3299.0$	3282.8 3300.8	3284.6 3302.6	$3286.4 \\ 3304.4$	3288.2 3306.2
1810 1820	3290.0 3308.0	3291.8 3309.8	3293.6 3311.6	3313.4	$3297.2 \\ 3315.2$	3317.0	3318.8	3320.6	3322.4	3324.2
1830	3326.0	3327.8	3329.6	3331.4	3333.2	3335.0	3336.8	3338.6	3340.4	3342.2
1840	3344.0	3345.8	3347.6	3349.4	3351.2	3353.0	3354.8	3356.6	3358.4	3360.2
1850	3362.0	3363.8	3365.6	3367.4	3369.2	3371.0	3372.8	3374.6	3376.4	3378.2
1860	3380.0	3381.8	3383.6	3385.4	3387.2	3389.0	3390.8	3392.6	3394.4	3396.2
1870	3398.0	3399.8	3401.6	3403.4	3405.2	3407.0	3408.8	3410.6	3412.4	3414.2
1880	3416.0	3417.8	3419.6	3421.4	3423.2	3425.0	3426.8	3428.6	3430.4	3432.2
1890	3434.0	3435.8	3437.6	3439.4	3441.2	3443.0	3444.8	3446.6	3448.4	3450.2
1900	3452.0	3453.8	3455.6	3457.4	3459.2	3461.0	3462.8	3464.6	3466.4	3468.2
1910	3470.0	3471.8	3473.6	3475.4	3477.2	3479.0	3480.8	3482.6	3484.4	3486.2
1920	3488.0	3489.8	3491.6	3493.4	3495.2	3497.0	3498.8	3500.6	3502.4	3504.2
1930	3506.0	3507.8	3509.6	3511.4	3513.2	3515.0	3516.8	3518.6	3520.4	3522.2
1940	3424.0	3525.8	3527.6	3529.4	3531.2	3533.0	3534.8	3536.6	3538.4	3540.2
1950	3542.0	3543.8	3545.6	3547.4	3549.2	3551.0	3552.8	3554.6	3556.4	3558.2
1960	3560.0	3561.8	3563.6	3565.4	3567.2	3569.0	3570.8	3572.6	3574.4	3576.2
1970	3578.0	3579.8	3581.6	3583.4	3585.2	3587.0	3588.8	3590.6	3592.4	3594.2
1980	3596.0	3597.8	3599.6	3601.4	3603.2	3605.0	3606.8	3608.6	3610.4 3628.4	3612.2
1990	3614.0	3615.8	3617.6	3619.4	3621.2	3623.0	3624.8	3626.6	3028.4	3630.2
For	`	°C	0.1 0.	2 0.3	0.4	0.5	0.6 0.	7 0.8	0.9	1.0
interpola	tion	$^{\circ}\mathbf{F}$		36 0.54	0.72	0.90	1.08 1	26 1.4	4 1.62	1.80

Conversion Table

Т	emp. °C.	0	1	· 2	3 '	4	5	6	7	8	9
	2000	3632.0	3633.8	3635.6	3637.4	3639.2	3641.0	3642.8	3644.6	3646.4	3648.2
	2010	3650.0	3651.8	3653.6	3655.4	3657.2	3659.0	3660.8	3662.6	3664.4	3666.2
	2020	3668.0	3669.8	3671.6	3673.4	3675.2	3677.0	3678.8	3680.6	3682.4	3684.2
	2030	3686.0	3687.8	3689.6	3691.4	3693.2	3695.0	3696.8	3698.6	3700.4	3702.2
	2040	3704.0	3705.8	3707.6	3709.4	3711.2	3713.0	3714.8	3716.6	3718.4	3720.2
	2050	3722.0	3723.8	3725.6	3727.4	3729.2	3731.0	3732.8	3734.6	3736.4	3738.2
	2060	3740.0	3741.8	3743.6	3745.4	3747.2	3749.0	3750.8	3752.6	3754.4	3756.2
	2070	3758.0	3759.8	3761.6	3763.4	3765.2	3767.0	3768.8	3770.6	3772.4	3774.2
	2080	3776.0	3777.8	3779.6	3781.4	3783.2	3785.0	3786.8	3788.6	3790.4	3792.5
	2090	3794.0	3795.8	3797.6	3799.4	3801.2	3803.0	3804.8	3806.6	3808.4	3810.5
	2100	3812.0	3813.8	3815.6	3817.4	3819.2	3821.0	3822.8	3824.6	3826.4	3828.
	2110	3830.0	3831.8	3833.6	3835.4	3837.2	3839.0	3840.8	3842.6	3844.4	3846.
	2120	3848.0	3849.8	3851.6	3853.4	3855.2	3857.0	3858.8	3860.6	3862.4	3864.2
	2130	3866.0	3867.8	3869.6	3871.4	3873.2	3875.0	3876.8	3878.6	3880.4	3882.2
	2140	3884.0	3885.8	3887.6	3889.4	3891.2	3893.0	3894.8	3896.6	3898.4	3900.2
	2150	3902.0	3903.8	3905.6	3907.4	3909.2	3911.0	3912.8	3914.6	3916.4	3918.2
	2160	3920.0	3921.8	3923.6	3925.4	3927.2	3929.0	3930.8	3932.6	3934.4	3936.2
	2170	3938.0	3939.8	3941.6	3943.4	3945.2	3947.0	3948.8	3950.6	3952.4	3954.2
	2180	3956.0	3957.8	3959.6	3961.4	3963.2	3965.0	3966.8	3968.6	3970.4	3972.2
	2190	3974.0	3975.8	3977.6	3979.4	3981.2	3983.0	3984.8	3986.6	3988.4	3990.:

TEMPERATURES—CENTIGRADE TO FAHRENHEIT (Continued)

								Jonatha Garage		
Temp. °C.	0	1	2	3	` 4	5	6	7	8	9
9900	2000 0	2002.0	2005 6	2007.4	0000 0	4001.0	4000 0	1004.0	4000 4	
2200	3992.0	3993.8	3995.6	3997.4	3999.2	4001.0	4002.8	4004.6	4006.4	4008.2
2210	4010.0	4011.8	4013.6	4015.4	4017.2	4019.0	4020.8	4022.6	4024.4	4026.2
2220	4028.0	4029.8	4031.6	4033.4	4035.2	4037.0	4038.8	4040.6	4042.4	4044.2
2230	4046.0	4047.8	4049.6	4051.4	4053.2	4055.0	4056.8	4058.6	4060.4	4062.2
2240	4064.0	4065.8	4067.6	4069.4	4071.2	4073.0	4074.8	4076.6	4078.4	4080.2
2250	4082.0	4083.8	4085.6	4087.4	4089.2	4091.0	4092.8	4094.6	4096.4	4098.2
2260	4100.0	4101.8	4103.6	4105.4	4107.2	4109.0	4110.8	4112.6	4114.4	4116.2
2270	4118.0	4119.8	4121.6	4123.4	4125.2	4127.0	4128.8	4130.6	4132.4	4134.2
2280	4136.0	4137.8	4139.6	4141.4	4143.2	4145.0	4146.8	4148.6	4150.4	4152.2
2290	4154.0	4155.8	4157.6	4159.4	4161.2	4163.0	4164.8	4166.6	4168.4	4170.2
		-			,					
2300	4172.0	4173.8	4175.6	4177.4	4179.2	4181.0	4182.8	4184.6	4186.4	4188.2
2310	4190.0	4191.8	4193.6	4195.4	4197.2	4199.0	4200.8	4202.6	4204.4	4206.2
2320	4208.0	4209.8	4211.6	4213.4	4215.2	4217.0	4218.8	4220.6	4222.4	4224.2
2330	4226.0	4227.8	4229.6	4231.4	4233.2	4235.0	4236.8	4238.6	4240.4	4242.2
2340	4244.0	4245.8	4247.6	4249.4	4251.2	4253.0	4254.8	4256.6	4258.4	4260.2
2350	4262.0	4263.8	4265.6	4267.4	4269.2	4271.0	4272.8	4274.6	4276.4	4278.2
2360	4280.0	4281.8	4383.6	4285.4	4287.2	4289.0	4290.8	4292.6	4294.4	4296.2
2370	4298.0	4299.8	4301.6	4303.4	4305.2	4307.0	4308.8	4310.6	4312.4	4314.2
2380	4316.0	4317.8	4319.6	4321.4	4323.2	4325.0	4326.8	4328.6	4330.4	4332.2
2390	4334.0	4335.8	4337.6	4339.4	4341.2	4343.0	4344.8	4346.6	4348.4	4350.2
								1020.0	1010.1	1000.2
For		$^{\circ}\mathrm{C}$	0.1 0	.2 0.3	0.4	0.5	0.6 0.	7 0.8	0.9	1.0
interpo	lation -	$^{\circ}\mathbf{F}$	0.18 0	.36 0.5	4 0.72	0.90	1.08 1.	26 1.44	1.62	1.80

Conversion Table

r	Гетр. °С.	0 .	. 1	2	3	4	5	6	7	8	9
	2400	4352.0	4353.8	4355.6	4357.4	4359.2	4361.0	4362.8	4364.6	4366.4	4368.2
	2410	4370.0	4371.8	4373.6	4375.4	4377.2	4379.0	4380.8	4382.6	4384.4	4386.2
	2420	4388.0	4389.8	4391.6	4393.4	4395.2	4397.0	4398.8	4400.6	4402.4	4404.2
	2430	4406.0	4407.8	4409.6	4411.4	4413.2	4415.0	4416.8	4418.6	4420.4	4422.2
	2440	4424.0	4425.8	4427.6	4429.4	4431.2	4433.0	4434.8	4436.6	4438.4	4440.2
	2450	4442.0	4443.8	4445.6	4447.4	4449.2	4451.0	4452.8	4454.6	4456.4	4458.2
	2460	4460.0	4461.8	4463.6	4465.4	4467.2	4469.0	4470.8	4472.6	4474.4	4476.2
	2470	4478.0	4479.8	4481.6	4483.4	4485.2	4487.0 4505.0	4488.8 4506.8	4490.6 4508.6	4492.4 4510.4	$ \begin{array}{c} 4494.2 \\ 4512.2 \end{array}$
	2480	4496.0	4497.8 4515.8	$4499.6 \\ 4517.6$	4501.4 4519.4	$4503.2 \\ 4521.2$	4523.0	4524.8	4526.6	4528.4	4512.2
	2490	4514.0	4010.0	4017.0	4019.4	4021.2	4020.0	4024.0	4020.0	4020.4	4000.2
	2500	4532.0	4533.8	4535.6	4537.4	4539.2	4541.0	4542.8	4544.6	4546.4	4548.2
	2510	4550.0	4551.8	4553.6	4555.4	4557.2	4559.0	45 60.8	4562.6	4564.4	4566.2
	2520	4568.0	4569.8	4571.6	4573.4	4575.2	4577.0	4578.8	4580.6	4582.4	4584.2
	2530	4586.0	4587.8	4589.6	4591.4	4593.2	4595.0	4596.8	4598.6	4600.4	4602.2
	2540	4604.0	4605.8	4607.6	4609.4	4611.2	4613.0	4614.8	4616.6	4618.4	4620.2
	2550	4622.0	4623.8	4625.6	4627.4	4629.2	4631.0	4632.8	4634.6	4636.4	4638.2
	2560	4640.0	4641.8	4643.6	4645.4	4647.2	4649.0	4650.8	4652.6	4654.4	4656.2
	2570	4658.0	4659.8	4661.6	4663.4	4665.2	4667.0	4668.8	4670.6	4672.4	4674.2
:	2580	4676.0	4677.8	4679.6	4681.4	4683.2	4685.0	4686.8	4688.6	4690.4	4692.2
	2590	4694.0	4695.8	4697.6	4699.4	4701.2	4703.0	4704.8	4706.6	4708.4	4710.2

,	Temp. °C.	0	1	2	3	4	5	6	7	8	9
	2600	4712.0	4713.8	4715.6	4717.4	4719.2	4721.0	4722.8	4724.6	4726.4	4728.2
	2610	4730.0	4731.8	4733.6	4735.4	4737.2	4739.0	4740.8	4742.6	4744.4	4746.2
	2620	4748.0	4749.8	4751.6	4753.4	4755.2	4757.0	4758.8	4760.6	4762.4	4764.2
	2630	4766.0	4767.8	4769.6	4771.4	4773.2	4775.0	4776.8	4778.6	4780.4	4782.2
	2640	4784.0	4785.8	4787.6	4789.4	4791.2	4793.0	4794.8	4796.6	4798.4	4800.2
	2650	4802.0	4803.8	4805.6	4807.4	4809.2	4811.0	4812.8	4814.6	4816.4	4818.2
	2660	4820.0	4821.8	4823.6	4825.4	4827.2	4829.0	4830.8	4832.6	4834.4	4836.2
	2670	4838.0	4839.8	4841.6	4843.4	4845.2	4847.0	4848.8	4850.6	4852.4	4854.2
	2680	4856.0	4857.8	4859.6	4861.4	4863.2	4865.0	4866.8	4868.6	4870.4	4872.2
661	2690	4874.0	4875.8	4877.6	4879.4	4881.2	4883.0	4884.8	4886.6	4888.4	4890.2
	2700	4892.0	4893.8	4895.6	4897.4	4899.2	4901.0	4902.8	4904.6	4906.4	4908.2
	2710	4910.0	4911.8	4913.6	4915.4	4917.2	4919.0	4920.8	4922.6	4924.4	4926.2
	2720	4928.0	4929.8	4931.6	4933.4	4935.2	4937.0	4938.8	4940.6	4942.4	4944.2
	2730	4946.0	4947.8	4949.6	4951.4	4953.2	4955.0	4956.8	4958.6	4960.4	4962.2
	2740	4964.0	4965.8	4967.6	4969.4	4971.2	4973.0	4974.8	4976.6	4978.4	4980.2
	2750	4982.0	4983.8	4985.6	4987.4	4989.2	4991.0	4992.8	4994.6	4996.4	4998.2
	2760	5000.0	5001.8	5003.6	5005.4	5007.2	5009.0	5010.8	5012.6	5014.4	5016.2
	2770	5018.0	5019.8	5021.6	5023.4	5025.2	5027.0	5028.8	5030.6	5032.4	5034.2
	2780	5036.0	5037.8	5039.6	5041.4	5043.2	5045.0	5046.8	5048.6	5050.4	5052.2
	2790	5054.0	5055.8	5057.6	5059.4	5061.2	5063.0	5064.8	5066.6	5068.4	5070.2
	For	1	°C	0.1 0.	$\frac{1}{2}$ 0.3	0.4	0.5	0.6 0.	7 0.8	0.9	1.0
	interpolat	tion .	-		36 0.54				26 1.44		1.80

Conversion Table

_	Temp. °C.	0	1	2	. 3	4	5	6	7	8	9
	2800	5072.0	5073.8	5075.6	5077.4	5079.2	5081.0	5082.8	5084.6	5086.4	5088.2
	2810	5090.0	5091.8	5093.6	5095.4	5097.2	5099.0	5100.8	5102.6	5104.4	5106.2
	2820	5108.0	5109.8 5127.8	$5111.6 \\ 5129.6$	5113.4 5131.4	$5115.2 \\ 5133.2$	5117.0 5135.0	5118.8 5136.8	$5120.6 \\ 5138.6$	5122.4 5140.4	5124.2 5142.2
	$2830 \\ 2840$	5126.0 5144.0	5145.8	5147.6	5149.4	5151.2	5153.0	5154.8	5156.6	5158.4	5160.2
	2850	5162.0	5163.8	5165.6	5167.4	5169.2	5171.0	5172.8	5174.6	5176.4	5178.2
	2860	5180.0	5181.8	5183.6	5185.4	5187.2	5189.0	5190.8	5192.6	5194.4	5196.2
	2870	5198.0	5199.8	5201.6	5203.4	5205.2	5207.0	5208.8	5210.6	5212.4	5214.2
	2880	5216.0	5217.8	5219.6	5221.4	5223.2	5225.0	5226.8	5228.6	5230.4	5232.2
	2890	5234.0	5235.8	5237.6	5239.4	5241.2	5243.0	5244.8	5246.6	5248.4	5250.2
	2900	5252.0	5253.8	5255.6	5257.4	5259.2	5261.0	5262.8	5264.6	5266.4	5268.2
	2910	5270.0	5271.8	5273.6	5275.4	5277.2	5279.0	5280.8	5282.6	5284.4	5286.2
	2920	5288.0	5289.8	5291.6	5293.4	5295.2	5297.0	5298.8	5300.6	5302.4	5304.2
	2930	5306.0	5307.8	5309.6	5311.4	5313.2	5315.0	5316.8	5318.6	5320.4 5338.4	$\begin{bmatrix} 5322.2 \\ 5340.2 \end{bmatrix}$
	$\frac{2940}{2950}$	$5324.0 \\ 5342.0$	5325.8 5343.8	$5327.6 \\ 5345.6$	5329.4 5347.4	$5331.2 \\ 5349.2$	5333.0 5351.0	$5334.8 \\ 5352.8$	5336.6 5354.6	5356.4	5358.2
	2960	5360.0	5361.8	5363.6	5365.4	5349.2 5367.2	5369.0	5370.8	5372.6	5374.4	5376.2
	2970	5378.0	5379.8°	5381.6	5383.4	5385.2	5387.0	5388.8	5390.6	5392.4	5394.2
	2980	5396.0	5397.8	5399.6	5401.4	5403.2	5405.0	5406.8	5408.6	5410.4	5412.2
	2990	5414.0	5415.8	5417.6	5419.4	5421.2	5423.0	5424.8	5426.6	5428.4	5430.2

				21111010	(Constant)					
Temp. °C.	0	1	2	3	4	5	6	7	8	9
					-					
3000	5432.0	5433.8	5435.6	5437.4	5439.2	5441.0	5442.8	5444.6	5446.4	5448.2
3010	5450.0	5451.8	5453.6	5455.4	5457.2	5459.0	5460.8	5462.6	5464.4	5466.2
3020	5468.0	5469.8	5471.6	5473.4	5475.2	5477.0	5478.8	5480.6	5482.4	5484.2
3030	5486.0	5487.8	5489.6	5491.4	5493.2	5495.0	5496.8	5498.6	5500.4	5502.2
3040	5504.0	5505.8	5507.6	5509.4	5511.2	5513.0	5514.8	5516.6	5518.4	5520.2
3050	5522.0	5523.8	5525.6	5527.4	5529.2	5531.0	5532.8	5534.6	5536.4	5538.2
3060	5540.0	5541.8	5543.6	5545.4	5547.2	5549.0	5550.8	5552.6	5554.4	5556.2
3070	5558.0	5559.8	5561.6	5563.4	5565.2	5567.0	5568.8	5570.6	5572.4	5574.2
3080	5576.0	5577.8	5579.6	5581.4	5583.2	5585.0	5586.8	5588.6	5590.4	5592.2
3090	5594.0	5595.8	5597.6	5599.4	5601.2	5603.0	5604.8	5606.6	5608.4	5610.2
For		°C	0.1 0	2 0.3	0.4	0.5	0.6 0.	7 0.8	0.9	1.0
interpola	tion	$^{\circ}\mathbf{F}$	0.18 0	.36 0.54	0.72	0.90	1.08 1.	26 1.44	1.62	1.80

TEMPERATURES - FAHRENHEIT TO CENTIGRADE

Conversion Table

The values in the body of the table give in degrees Centigrade the temperatures indicated in degrees Fahrenheit at the top and side.

1° F. = 0.5556° C.

Temperatures below 0° F.

6				Te	mperature	s below () ·F.	<u> </u>			
664	Temp. ° F.	0	1	2	3	4	5	6	7	8 :	9
	0 - 10 - 20 - 30 - 40 - 50 - 60 - 70 - 80 - 90	- 17. 78 - 23. 33 - 28. 89 - 34. 44 - 40.00 - 45. 56 - 51. 11 - 56. 67 - 62. 22 - 67. 78	18.33 23.89 29.44 35.00 40.56 46.11 51.67 57.22 62.78 68.33	18.89 24.44 30.00 35.56 41.11 46.67 52.22 57.78 63.33 68.89	19. 44 25. 00 30. 56 36. 11 41. 67 47. 22 52. 78 58. 33 63. 89 69. 44	20.00 25.56 31.11 36.67 42.22 47.78 53.33 58.89 64.44 70.00	20.56 26.11 31.67 37.22 42.78 48.33 53.89 59.44 65.00 70.56	21.11 26.67 32.22 37.78 43.33 48.89 54.44 60.00 65.56 71.11	21.67 27.22 32.78 38.33 43.89 49.44 55.00 60.56 66.11 71.67	22.22 27.78 33.33 38.89 44.44 50.00 55.56 61.11 66.67 72.22	22.78 28.33 33.89 39.44 45.00 50.56 56.11 61.67 67.22 72.78

TEMPERATURES - FAHRENHEIT TO CENTIGRADE (Continued)

_		1151411	EKATOK	EG-FA		11 10	CENTION	CADE (C	munueu)		
	Temp. ° F.	0	1	2	3	4	5	6	7	8	9
_	- 100 - 110	-73.33 -78.89	73.89 79.44	74.44 80.00	75.00 80.56	75.56 81.11 86.67	76.11 81.67 87.22	76.67 82.22	77.22 82.78	77.78 83.33	78.33 83.89
	- 120 - 130 - 140 - 150	$ \begin{array}{r} -84.44 \\ -90.00 \\ -95.56 \\ -101.11 \end{array} $	85.00 90.56 96.11 101.67	85.56 91.11 96.67 102.22	86.11 91.67 97.22 102.78	92.22 97.78 103.33	92.78 98.33 103.89	87.78 93.33 98.89 104.44	88.33 93.89 99.44 105.00	88.89 94.44 100.00 105.56	$\begin{array}{r} 89.44 \\ 95.00 \\ 100.56 \\ 106.11 \end{array}$
	- 160 - 170 - 180 - 190	$ \begin{array}{r} -106.67 \\ -112.22 \\ -117.78 \\ -123.33 \end{array} $	107.22 112.78 118.33 123.89	107.78 113.33 118.89 124.44	108.33 113.89 119.44 125.00	108.89 114.44 120.00 125.56	109.44 115.00 120.56 126.11	110.00 115.56 121.11 126.67	110.56 116.11 121.67 127.22	$\begin{array}{c} 111.11 \\ 116.67 \\ 122.22 \\ 127.78 \end{array}$	111.67 117.22 122.76 128.33
665	- 200 - 210	-128.89 -134.44	129.44 135.00	130.00 135.56	130.56 136.11	131.11 136.67	131.67 137.22	132.22 137.78	132.78 138.33	133.33 138.89	133.89 139.44
,	-220 -230 -240 -250	$ \begin{array}{r} -140.00 \\ -145.56 \\ -151.11 \\ -156.67 \end{array} $	$\begin{array}{ c c c c }\hline 140.56\\ 146.11\\ 151.67\\ 157.22\\ \hline \end{array}$	$\begin{array}{ c c c c }\hline 141.11\\ 146.67\\ 152.22\\ 157.78\\\hline \end{array}$	141.67 147.22 152.78 158.33	142.22 147.78 153.33 158.89	142.78 148.33 153.89 159.44	143.33 148.89 154.44 160.00	143.89 149.44 155.00 160.56	144.44 150.00 155.56 161.11	145.00 150.56 156.11 161.67
	- 260 - 270 - 280	$ \begin{array}{r r} -162.22 \\ -167.78 \\ -173.33 \end{array} $	163.78 168.33 173.89	163.33 168.89 174.44	163.89 169.44 175.00	164.44 170.00 175.56	165.00 170.56 176.11	165.56 171.11 176.67	166.11 171.67 177.22	166.67 172.22 177.78	$\begin{array}{ c c c c }\hline 167.22\\ 172.78\\ 178.33\\ \hline \end{array}$
-	- 290 For	-178.89	$\begin{array}{ c c c }\hline 179.44\\ \hline \text{PF} & 0\\ \hline \end{array}$	180.00	180.56	0.4	$\begin{array}{c c} 181.67 \\ \hline 0.5 & 0 \\ \end{array}$	$\begin{array}{ c c c c c }\hline 182.22 \\ \hline .6 & 0.7 \end{array}$	182.78	0.9	183.89
	interpola	tion °	\mathbf{C} 0	.06 0.1	0.17	0.22	0.28 0	,33 0.3	9 0.44	0.50	0.56

TEMPERATURES — FAHRENHEIT TO CENTIGRADE (Continued)

Conversion Tables

Temperature below 0° F.

_									` `		
	Temp. ° F.	0	1	. 2	3	4	. 5	6	7 .	8	9
666	- 300 - 310 - 320 - 330 - 340 - 350 - 360 - 370	- 184. 44 - 190. 00 - 195. 56 - 201. 11 - 206. 67 - 212. 22 - 217. 78 - 223. 33	185.00 190.56 196.11 201.67 207.22 212.78 218.33 223.89	185.56 191.11 196.67 202.22 207.78 213.33 218.89 224.44	186.11 191.67 197.22 202.78 208.33 213.89 219.44 225.00	186.67 192.22 197.78 203.33 208.89 214.44 220.00 225.56	187.22 192.78 198.33 203.89 209.44 215.00 220.56 226.11	187.78 193.33 198.89 204.44 210.00 215.56 221.11 226.69	188.33 193.89 199.44 205.00 210.56 216.11 221.67 227.22	188.89 194.44 200.00 205.56 211.11 216.67 222.22 227.78	189. 44 195. 00 200. 56 206. 11 211. 67 217. 22 222. 78 228. 33
	- 380 - 390	$\begin{bmatrix} -228.89 \\ -234.44 \end{bmatrix}$	229.44 235.00	230.00 235.56	230.56 236.11	$\begin{vmatrix} 231.11 \\ 236.67 \end{vmatrix}$	$\begin{vmatrix} 231.67 \\ 237.22 \end{vmatrix}$	232.22 237.78	232.78 238.33	233.33 238.89	233.89 239.44
	- 400 - 410 - 420 - 430 - 440 - 450	- 240.00 - 245.56 - 251.11 - 256.67 - 262.22 - 267.78	240.56 246.11 251.67 257.22 262.78 268.33	241.11 246.67 252.22 257.78 263.33 268.89	241.67 247.22 252.78 258.33 263.89 269.44	242.22 247.78 253.33 258.89 264.44 270.00	242.78 248.33 253.89 259.44 265.00 270.56	243.33 248.89 254.44 260.00 265.56 271.11	243.89 249.44 255.00 260.56 266.11 271.67	244.44 250.00 255.56 261.11 266.67 272.22	245.00 250.56 256.11 261.67 267.22 272.78

 $-459.4^{\circ} \text{ F.} = -273^{\circ} \text{ C.} = \text{absolute zero.}$

					omporava.		<u> </u>				
7	Гетр. ° F	О	1 .	2	3	4	5	6	· , 7	8	9
	0	- 17.78	17.22	16.67	16.11	15.56	15.00	14.44	13.89	13.33	12.78
	+ 10	-12.22	11.67	11.11	10.56	10.00	9.44	8.89	8.33	7.78	7.22
	20	- 6.67	6.11	5.56	5.00	4.44	3.89	3.33	2.78	2.22	1.67
	30	- 1.11	-0.56	0.00	+0.56	+1.11	+1.67	+2.22	+2.78	+3.33	+3.89
	40	+4.44	5.00	5.56	6.11	6.67	7.22	7.78	8.33	8.89	9.48
	50	10.00	10.56	11.11	11.67	12.22	12.78	13.33	13.89	14.44	15.04
	60	15.56	16.11	16.67	17.22	17.78	18.33	18.89	19.44	20.00	20.50
	70	21.11	21.67	22.22	22.78	23.33	23.89	24.44	25.00	25.56	26.16
	80	26.67	27.22	27.78	28.33	28.89	29.44	30.00	30.56	31.11	31.61
9	90	32.22	32.78	33.33	33.89	34.44	35.00	35.56	36.11	36.67	37.27
					1	-					1
	100	37.78	38.33	38.89	39.44	40.00	40.56	41.11	41.67	42.22	42.72
	110	43.33	43.89	44.44	45.00	45.56	46.11	46.67	47.22	47.78	48.33
	120	48.89	49.44	50.00	50.56	51.11	51.67	52.22	52.78	53.33	53.89
	130	54.44	55.00	55.56	56.11	56.67	57.22	57.78	58.33	58.89	59.44
	140	60.00	60.56	61.11	61.67	62.22	62.78	63.33	63.89	64.44	65.00
	150	65.56	66.11	66.67	67.22	67.78	68.33	68.89	69.44	70.00	70.56
	160	71.11	71.67	72.22	72.78	73.33	73.89	74.44	75.00	75.56	76.11
	170	76.67	77.22	77.78	78.33	78.89	79.44	80.00	80.56	81.11	81.67
	180	82.22	82.78	83.33	83.89	84.44	85.00	85.56	86.11	86.67	87.22
	190	87.78	88.33	88.89	89.44	90.00	90.56	91.11	91.67	92.22	92.78
	For	0	F 0.	1 0.2	0.3	0.4	0.5 0	6 0.7	0.8	0.9	1.0
	interpolat	ion °	C 0.	.06 0.1		0.22		.33 0.3	9 0.44	0.50	0.56

$\begin{array}{c} \textbf{TEMPERATURES} - \textbf{FAHRENHEIT} \quad \textbf{TO} \quad \textbf{CENTIGRADE} \quad \textbf{(Continued)} \\ Conversion \quad Tables \end{array}$

Temperatures above 0° F.

_											
	Temp. °F.	0	1	2	3	4	5	6	7	. 8	9
	200	93.33	93.89	94.44	95.00	95.56	96.11	96.67	97.22	97.78	98.33
	210	98.89	99.44	100.00	100.56	101.11	101.67	102.22	102.78	103.33	103.89
	220	104.44	105.00	105.56	106.11	106.67	107.22	107.78	108.33	108.89	109.44
	$\begin{array}{c} 230 \\ 240 \end{array}$	$110.00 \\ 115.56$	110.56 116.11	111.11 116.67	$111.67 \\ 117.22$	$112.22 \\ 117.78$	112.78 118.33	113.33 118.89	113.89 119.44	114.44	115.00
	$\begin{array}{c} 240 \\ 250 \end{array}$	121.11	121.67	122.22	122.78	123.33	123.89	124.44	125.00	120.00 125.56	120.56 126.11
	260 260	126.67	127.22	127.78	128.33	128.89	129.44	130.00	130.56	131.11	131.67
	270	132.22	132.78	133.33	133.89	134.44	135.00	135.56	136.11	136.67	137.22
	280 s	137.78	138.33	138.89	139.44	140.00	140.56	141.11	141.67	142.22	142.78
	290	143.33	143.89	144.44	145.00	145.56	146.11	146.67	147.22	147.78	148.33
	300	148.89	149.44	150.00	150.56	151.11	151.67	152.22	152.78	153.33	153.89
	310	154.44	155.00	155.56	156.11	156.67	157.22	157.78	158.33	158.89	159.44
	320	160.00	160.56	161.11	161.67	162.22	162.78	163.33	163.89	164.44	165.00
	330	165.56	166.11	166.67	167.22	167.78	168.33	168.89	169.44	170.00	170.56
	340 350	171.11 176.67	171.67 177.22	172.22	172.78	173.33	173.89	174.44	175.00	175.56	176.11
	360	182.22	182.78	177.78 183.33	178.33 183.89	178.89 184.44	179.44 185.00	180.00 185.56	180.56 186.11	181.11 186.67	181.67 187.22
	370	187.78	188.33	188.89	189.44	190.00	190.56	191.11	191.67	192.22	192.78
	380	193.33	193.89	194.44	105.00	195.56	196.11	196.67	197.22	197.78	198.33
	390	198.89	194.94	200.00	200.56	201.11	201.67	202.22	202.78	203.33	203.89

TEMPERATURES - FAHRENHEIT TO CENTIGRADE (Continued)

						CLITTIGE	CADE (C	ommucu)		-
Temp. ° F.	. 0	1	2	3	4	5	6	7	8	9
400		205.00	205.56	206.11	206.67	207.22	207.78	208.33	208.89	209.44
710	210.00	210.56	211.11	211.67	212.22	212.78	213.33	213.89	214.44	215.00
420	215.56	216.11	216.67	217.22	217.78	218.33	218.89	219.44	220.00	220.56
430	221.11	221.67	222.22	222.78	223.33	223.89	224.44	225.00	225.56	226.11
440		227.22	227.78	228.33	228.89	229.44	230.00	230.56	231.11	231.67
450		232.78	233.33	233.89	234.44	235.00	2 35.56	236.11	236.67	237.22
460		238.33	238.89	239.44	240 .00	240.56	241.11	241.67	242.22	242.78
470		243.89	244.44	245.00	245.56	246.11	246.67	247.22	247.78	248.33
480		249.44	250.00	250.56	251.11	251.67	252.22	252.78	253 .33	253.89
490	254.44	255.00	2 55.56	256.11	256.67	257.22	257.78	258.33	258.89	259.44
	4.1.2				-	1				
500		260.56	261.11	261.67	262.22	262.76	263.33	2 63.89	264.44	265.00
510		266.11	266.67	267.22	267.78	268.33	268.89	2 69.44	270.00	270.56
520		271.67	272.22	272.78	273.33	27 3.89	274.44	275.00	275.56	276.11
530	276.67	277.22	277.78	278.33	278.89	279.44	280.00	280.56	281.11	281.67
540	282.22	282.78	283.33	283.89	284.44	285.00	285.56	286.11	286.67	287.22
550		288.33	288.89	289.44	290.00	290.56	291.11	291.67	292.22	292.78
560		293.89	294.44	295.00	295.56	296.11	296.67	297.22	297.78	298.33
570		299.44	300.00	300.56	301.11	301.67	302.22	302.78	303.33	303.84
580		305.00	305.56	306.11	306.67	307.22	307.78	308.33	308.89	309.49
590	310.00	310.56	311.11	311.67	312.22	312.78	313.33	313.89	314.44	315.00
		1	1 .	1	1	<u> </u>				1
For	•	$\dot{\mathbf{F}}$ 0.	1 0.2	0.3	0.4	0.5 0.	6 0.7	0.8	0.9	1.0
interpo	lation °	C 0,	06 0.13	0.17	0.22	0.28 0	.33 0.3	9 0.44	0.50	0.56

TEMPERATURES — FAHRENHEIT TO CENTIGRADE (Continued) Conversion Tables

Temperatures above 0° F.

					p				×		
	Temp. °F.	. 0	1	2	, 3	4	5	6	7	` 8	9
-		The			e Carl						
	600	315.56	316.11	316.67	317.22	317.78	318.33	318.39	319.44	320.00	320.56
	610	321.11	321.67	322.22	322.78	323.33	323.89	324.44	325.00	32 5.56	326.11
	620	326.67	327.22	327.78	328.33	328.89	329.44	330.00	330.56	331.11	331.67
	630	332.22	332.78	333.33	333.89	334.44	335.00	335.56	356.11	336.67	337.22
	640	337.78	338.33	338.89	339.44	340.00	340.56	341.11	341.67	342.22	342.78
	650	343.33	343.89	344.44	345.00	345.56	346.11	346.67	347.22	347.78	348.33
670	660	348.89	349.44	350.00	350.56	351.11	351.67	352.22	352.78	353.33	353.89
6	670	354.44	355.00	355.56	356.11	356.67	357.22	357.78	358.33	358.89	359.44
	680	360.00	360.56	361,11	361.67	362.22	362.78	363.33	363.89 369.44	364.44 370.00	$365.00 \\ 370.56$
	690	365.56	366.11	366.67	367.22	367.78	368.33	368.89	309.44	370.00	370.50
	700	371.11	371.67	372.22	372.78	373.33	373.89	374.44	375.00	375.56	376.11
	710	376.67	377.22	377.78	378.33	378.89	379.44	380.00	380.56	381.11	381.67
	720	382.22	382.78	383.33	383.89	384.44	385.00	385.56	386.11	386.67	387.22
	730_	387:78	388.33	388.89	389.44	390.00	390.56	391.11	391.67	392.22	392.78
	740	393.33	393.89	394.44	395.00	395.56	396.11	396.67	397.22	397.78	398.33
	750	398.89	399.44	400.00	400.56	401.11	401.67	402.22	402.78	403.33	403.89
	760	404.44	405.00	405.56	406.11	406.67	407.22	407.78	408.33	408.89	409.44
	770	410.00	410.56	411.11	411.67	412.22	412.78	413.33	413.89	414.44	415.00
	780	415.56	416.11	416.67	417.22	417.78	418.33	418.89	419.44	420.00	420.56
	790	421.11	421.67	420 22	422.78	423.33	42 3.89	424.44	425.00	425.56	426.11
				No.	. ,	1					

Maria 1 - 1 m	ENGLISHED TO STAND WITH	and the transfer of the transf	*	Mary a may have	The state of the s
S			• ,		
	TEMPERATURES—	FAHRENHEIT TO	CENTIGRADE	(Concluded)	· · · · · · · · · · · · · · · · · · ·

				diff.	B11 10	CEMIL	KADE (C	onciuaea))		
Temp. 0° F.	0	1	2	3	4	5	6	7	8	9	
800 810 820 830 840 850 860 870 880 890	426.67 432.22 437.78 443.33 448.89 454.44 460.00 465.56 471.11 476.67	427.22 432.78 438.33 443.89 449.44 455.00 460.56 466.11 471.67 477.22	427.78 433.33 438.89 444.44 450.00 455.56 461.11 466.67 472.22 477.78	428.33 433.89 439.44 445.00 450.56 456.11 461.67 467.22 472.78 478.33	428.89 434.44 440.00 445.56 451.11 456.67 462.22 467.78 473.33 478.89	429.44 435.00 440.56 446.11 451.67 457.22 462.78 468.33 473.89 479.44	430.00 435.56 441.11 446.67 452.22 457.78 463.33 468.89 474.44 480.00	430.56 436.11 441.67 447.22 452.78 458.33 463.89 469.44 475.00 480.56	431.11 436.67 442.22 447.78 453.33 458.89 464.44 470.00 475.56 481.11	431.67 437.22 442.78 448.33 453.89 459.44 465.00 470.56 476.11 481.67	HANDBOOK OF CHEM
900 910 920 930 940 950 960 970 980 990	482.22 487.78 493.33 498.89 504.44 510.00 515.56 521.11 526.67 532.22	482.78 488.33 493.89 499.44 505.00 510.56 516.11 521.67 527.22 532.78	483.33 488.89 494.44 500.00 505.56 511.11 516.67 522.22 527.78 533.33	483.89 489.44 495.00 500.56 506.11 511.67 517.22 522.78 523.33 533.89	484. 44 490. 00 495. 56 501. 11 506. 67 512. 22 517. 78 523. 33 528. 89 534. 44	485.00 490.56 496.11 501.67 507.22 512.78 518.33 523.89 529.44 535.00	485.56 491.11 496.67 502.22 507.78 513.33 518.89 524.44 530.00 535.56	486. 11 491. 67 497. 22 502. 78 508. 33 513. 89 519. 44 525. 00 530. 56 536. 11	486.67 492.22 497.78 503.33 508.89 514.44 520.00 525.56 531.11 536.67	487. 22 492. 78 498. 33 503. 89 509. 44 515. 00 520. 56 526. 11 531. 67 537. 22	CHEMISTRY AND PHYSICS
For interpolat	°F ion °C			0.3 0.17		0.5 0.6		0.8 0.44		0.10 0.56	

WIRE TABLES

COMPARISON OF WIRE GAUGES

DIAMETER OF WIRE IN INCHES

Gauge No.	Brown & Sharpe.	Birmingham . or Stub's.	Washburn & Moen.	Imperial or Brit. Std.	Stub's Steel.	U. S. Std. plate.	Music wire.
00000000 0000000 000000 00000 0000 0000	 .4600 .4096	 .454 .425 .380	 .3938 .3625 .3310		::	.46875 .4375 .40625 .375 .34375	.0083 .0087 .0095 .0100 .0110 .0120 .0133
0 1 2 3 4	.2893 .2576 .2294	.340 .300 .284 .259 .238	.3065 .2830 .2625 .2437 .2253	.324 .300 .276 .252 .232	.227 .219 .212 .207	.3125 .28125 .265625 .25 .234375	.0144 .0156 .0166 .0178 .0188
5 6 7 8 9	.1620 .1443 .1285	.220 .203 .180 .165 .148	.2070 .1920 .1770 .1620 .1483	.212 .192 .176 .160 .144	.204 .201 .199 .197 .194	.203125 .1875 .171875 .15625	.0202 .0215 .0230 .0243 .0256
10 11 12 13 14	.09074 .08081 .07196	.134 .120 .109 .095 .083	.1350 .1205 .1055 .0915 .0800	.128 .116 .104 .092 .080	.191 .188 .185 .182 .180	.1093 75 .093 75	.0270 .0284 .0296 .0314 .0326
15 16 17 18	.04526 .04030	.072 .065 .058 .049 .042	.0720 .0625 .0540 .0475 .0410	.072 .064 .056 .048 .040	.178 .175 .172 .168 .164	.0625 .05625 .05	.0345 .0360 .0377 .0395 .0414
20 21 22 23 24	.02846 2.02535 3.02257	.035 .032 .028 .025 .022	.0348 .0318 .0286 .0258 .0230	.036 .032 .028 .024 .022	.161 .157 .155 .153 .151	.028125	.0434 .0460 .0483 .0515 .0550

COMPARISON OF WIRE GAUGES (Continued)

DIAMETER OF WIRE IN INCHES

Gauge No.	Brown & Sharpe.	Birmingham or Stub's.	Washburn & Moen.	Imperial or Brit. Std.	Stub's steel.	U. S. Std. plate.	Music wire.
25 26 27 28 29	.01594 .01419 .01264	.020 .018 .016 .014 .013	.0204 .0181 .0173 .0162 .0150	.020 .018 .0164 .0149 .0136	. 143 . 139	.01875 .0171875 .015625	.0586 .0626 .0658 .0720 .0760
30 31 32 33	.01003 .008928 .007950 .007080 .006304	.012 .010 .009 .008 .007	.0140 .0132 .0128 .0118 .0104	.0124 0116 .0108 .0100	.120 .115 .112		.0800 .0820 .0860 .0900
35 36 37 38	.005614 .005000 .004453 .003965	005	0095	.0084 .0076 .0068 .0060	.108 .106 .103 .101	.0078125 .00703125	.0950
39 40	.003531	••••		.0052		•	

TWIST DRILL AND STEEL WIRE GAUGE

INCHES

No.	Size.	No.	Size.	No.	Size.	No.	Size.	No.	Size.	No.	Size.
1	.2280	11	.1910	21	.1590	31	.1200	42	.0960	51	.0670
2	.2210	12	.1890	22	.1570	32	.1160		.0935	52	.0635
3	.2130	13	.1850	23	.1540	33	.1130		.0890	53	.0595
4	.2090	14	.1820	24	.1520	34	.1110	44	.0860	54	.0550
5	.2055	15	.1800	25	.1495	35	.1100	45	.0820	55	.0520
6	.2040	16	.1770	26	.1470	36	.1065	46	.0810	56	.0465
9	.2010 .1990 .1960 .1935	17 18 19 20	.1730 .1695 .1660 .1610	27 28 29 30	.1440 .1405 .1360 .1285	37 38 39 40	.1040 .1015 .0995 .0980	48 49	.0785 .0760 .0730 .0700		.0430 .0420 .0410 .0400

DIMENSIONS OF WIRE

STUB'S GAUGE

Giving the diameter and cross-section in English and metric system for the Birmingham or Stub's gauge.

Gauge No.	Diameter in ins.	Section in sq.ins.	Diameter in cms.	Section in sq.cms.
0000	0.454	0.16188	1.1532	1.0444
000	,425	.14186	.0795	0.9152
00	.380	.11341	0.9652	.7317
0	.340	.09079	.8636	.5858
1	0.300	0.07069	0.7620	0.4560
2	.284	.06335	.7214	.4087
3	.259	.05269	.6579	.3399
4	.238	.04449	.6045	.2870
5	.220	.03801	.5588	.2452
6	0.203	0.03237	0.5156	0.20881
7	.180	.02545	.4572	.16147
8	.165	.02138	.4191	.13795
9	.148	.01720	.3759	.11099
10	.134	.01410	.3404	.09098
11	0.120	0.011310	0.3048	0.07297
12	.109	.009331	.2769	.06160
13	.095	.007088	.2413	.04573
14	.083	.005411	.2108	.03491
15	.072	.004072	.1829	.02627
16	0.065	0.0033183	0.16510	0.021409
17	.058	.0026421	.14732	.017046
18	.049	.0018857	.12446	.012166
19	.042	.0013854	.10668	.008938
20	.035	.0009621	.08890	.006207
21	0.032	0.0008042	0.08128	0.005189
22	.028	.0006158	.07112	.003973
23	.025	.0004909	.06350	.003167
24	.022	.0003801	.05588	.002452
25	.020	.0003142	.05080	.002027
26	0.018	0.0002545	0.04572	0.0016417
27	.016	.0002011	.04064	.0012972
28	.014	.0001539	.03556	.0009932
29	.013	.0001327	.03302	.0008563
30	.012	.0001181	.03048	.0007297
31	0.010	0.00007854	0.02540	0.0005067
32	.009	.00006362	.02286	.0004104
33	.008	.00005027	.02032	.0003243
34	.007	.00003848	.01778	.0002483
35	.005	.00001963	.01270	.0001267
36	0 004	0 00001257	0.01016	0.0000811

DIMENSIONS OF WIRE (Continued)

BRITISH STANDARD GAUGE

Giving the diameter and cross-section in English and metric system for the British Standard Gauge.

Gauge No.	Diameter in ins.	Section in sq.ins.	Diameter in cms.	Section in sq.cms.
7-0 •	0.500	0.1963	1.2700	1.267
6-0	.464	.1691	.1.1786	1.091
5-0	0.432	0.1466	1.0973	0.9456
4-0	.400	.1257	1.0160 0.9449	.8107
3-0 2-0	.372 .348	.1087	.8839	.7012 .6136
2-0 0	324	.0825	.8230	.5319
i	0.300	0.07069	0.7620	0.4560
$ar{f 2}$.276	.05983	.7010	. 3858
2 3 4 5	.252	.04988	.6401	.3218
4	.232	.04227	.5893 .5385	.2727
	0.192	0.02895	0.4877	0.18679
9	.176	.02433	.4470	.15696
6 7 8 9	160	.02010	4064	12973
	.144	.01629	.3658	.10507
10	.128	.01287	.3251	.08302
11	0.116	0.010568	0.2946	0.06818
12 13	.104	.008495	.2642	.05480
14	.080	.005027	2032	.03243
15	.072	.004071	.1829	.02627
16	0.064	0.003217	0.16256	0 020755
17	. 056	.002463	.14224	.015890
18	.048	.001810	.12192	.011675
19 20	.040	.001018	.09144	006567
21	0.032	0.0008042	0.08128	0.005189
22	.028	.0006158	07112	003973
23	.024	.0004524	.06096	.002922
24	.022	.0003801	.05588	.002452
25	.020	.0003142	.05080	
26 27	0.0180 .0164	0 0002545 0002112	0.04572 .04166	0.0016417 .0013628
28	.0148	0001728	.03759	.0011099
29	.0136	.0001453	.03454	.0009363
-30	.0124	.0001208	.03150	.0007791
31	0.0116	0.00010568	0.02946	0.0006818
32 33	.0108	00009161	.02743 .02540	.0005910
34	.0092	.00006648	02337	.0004289
35	.0084	.00005542	.02134	.0003575
36	0.0076	0.00004536	0.01930	0.0002927
37	.0068	.00003632	.01727	.0002343
38 39	.0060 .0052	.00002827	.01524	.0001824 .0001370
40	.0048	.00001810	.01219	.0001167
41	0.0044	0.00001521	0.01118	0.0000982
42	.0040	.00001257	.01016	.0000811
43	.0036	.00001018	.00914	.0000656
44 45	.0032 .0028	.00000804	.00813	.0000519
46	0.0024	0.0000010	0.00610	0.0000212
47	.0020	.00000314	.00508	.0000212
48	.0016	.00000201	.00406	.0000129
49	.0012	.00000113	.00305	.0000073
50	.0010	0000079	. 00254	0000051

PLATINUM WIRE TABLE, BROWN & SHARPE GAUGE

GIVING DIAMETER AND APPROXIMATE MASS

GAUGE No.	10	11	12	13	14	15	16
Diameter in dec. in	0.106	0.091	0.081	0.072	0.064	0.057	0.051
Approximate mass in grams, per foot	37.5	28.0	22.0	17.5	14.0	11.0	9.0
GAUGE No.	17	18	19	20	21	22	
Diameter in dec. in	0.045	0.041	0.036	0.032	0.029	0.026	
Approximate mass in grams, per foot	7.0	5.7	4.4	3.4	2.9	2.3	
GAUGE NO.	23	24	25	26	27	28	
Diameter in dec. in	0.023	0.020	0.018	0.016	0.014	0.013	
Approximate mass in in grams, per foot	1.8	1.4	1.1	0.9	0.7	0.6	
GAUGE No.	29	30	31	32	33	34	35
	0.0115	0.010	0.009	0.008	0.007	0.0063	0.005 6
Approximate mass in in grams, per foot	0.45	0.35	0.28	0.22	0.17	0.15	0.11

RESISTANCE OF ALUMINUM WIRE

GIVING THE RESISTANCE OF HARD DRAWN ALUMINUM WIRE AT 20° C. (From the Bureau of Standards.)

Gauge	Ohms per	Ohms per	Gauge	Ohms per	Ohms per
number.	1000 ft.	kilometer.	number.	1000 ft.	kilometer.
0000 0C0 00 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	0.0804 .101 .128 .161 .203 .323 .408 .514 .648 .817 1.03 1.30 1.64 2.07 2.61 3.29 4.14 5.22 6.59 8.31	0.264 .333 .419 .529 .667 .8411 1.06 1.34 1.69 2.13 2.68 3.38 4.26 5.38 6.78 8.55 10.8 13.6 17.1 21.6 27.3 34.4 43.3	20 21 21 22 23 24 25 26 27 28 29 30 31 32 33 34 36 37 38 39	16.7 21.0 26.5 33.4 42.1 53.1 67.0 84.4 106. 134. 169. 213. 269. 339. 428. 540. 681. 858. 1080. 1360.	54.6 68.9 86.9 110. 138. 174. 220. 277. 349. 440. 555. 700. 883. 1110. 1400. 1770. 2230. 2820. 3550. 4480. 5640.

DIMENSIONS OF WIRE, B. & S. GAUGE,

U. S.

Diameter and cross-section of wires. Brown & Sharpe Gauge, mass of pure hard-drawn copper wire at 32° F. (density 8.90).

Gauge number.	Diam. in ins.	Cross-section in sq.in.	Pounds per ft.	Feet per lb.
0000	0.4600	0.1662	0.6412	1.560
000	.4096	.1318	. 5085	1.967
00	.3648	.1045	. 4033	2.480
0	.3249	.0829	.3198	3.127
1 2 3	0.2893	0.06573	0.2536	3.943
Z.	.2576	.05213	.2011	4.972
3 4	.2294	.04134	.1595	6.270
5	.2043	.03278	.1265 .1003	7.905
				9.969
6 7 8 9	0.1620	0.02062	0.07955	12.57
7	.1443	.01635	.06309	15.85
8	.1285	.01297	.05003	19.99
19	.1144	.01028	.03968	25.20
10	.1019	.00815	.03146	31.78
11	0.09074	0.006467	0.02495	40.08
12	.08081	.005129	.01979	50.54
13	.07196	.004067	.01569	63.72
14	.06408	.003225	.01244	80.35
15	.05707	.002558	. 00987	101.32
16	0.05082	0.002028	0.007827	127.8
17	.04526	.001609	.006207	161.1
18	.04030	.001276	.004922	203.2
19 20	.03589	.001012	.003904	256.2
	.03196	.000802	.003096	323.1
21	0.02846	0.0006363	0.002455	408.2
22	.02535	.0005046	.001947	513.6
23 24	.02257	.0004001	.001544	647.7
2 4 25	.02010	.0003173	.001224	816.7
				1029.9
26	0.01594	0.0001996	0.0007700	1298.
27	.01419	.0001583	.0006107	1638.
28	.01264	.0001255	.0004843	2065.
29 30	.01126 .01003	.0000995	.0003841	2604.
ου	.01003	.0000789	.0003046	3283.
31	0.008928	0.00006260	0.0002415	4140.
32	.007950	.00004964	.0001915	5221.
33 34	.007080	.00003937	.0001519	6583.
35	.005614	.00003122	.0001205 .0000955	8301.
		.1		10468.
36 37	0.005000	0.00001963	0.00007576	13200.
	.004453	.00001557	.00006008	16644.
38 39	.003965	.00001235	.00004765	20988.
40	.003531	.00000777	.00003778	26465. 33372.
20			.00002550	00012.

MASS AND RESISTANCE FOR COPPER

Measure

Electrical resistance of pure hard-drawn copper wire at $32^{\circ}\,F.$ (density 8.90.)

	ı			
Gauge number.	Ohms per ft.	Ft. per ohm.	Ohms per lb.	Lbs. per ohm.
0000	0.00004629	21601.	0.00007219	13852.
000	.00005837	17131.	.00011479	8712.
000	.00003331	13586.	.00018253	5479.
ő	.00009282	10774.	.00029023	3445.
1	0.0001170	8544.	0.0004615	2166.8
1 2 3	.0001476	6775.	.0007338	1362.8
3	.0001861	5373.	.0011668	857.0
4 5	.0002347	4261.	.0018552	539.0
5	.0002959	3379.	.0029499	339.0
6 7	0.0003731	2680.	0.004690	213.22
7	.0004705	2125.	.007458	134.08
8	.0005933	1685.	.011859	$84.32 \\ 53.03$
9.	.0007482	1337.	.018857	33.35
10	.0009434	1060.		
11	0.001190	840.6	0.04768	20.973
12	.001500	666.6	.07581	13.191
13	.001892	528.7	.12054	8.296
14	.002385	419.2	.19166	5.218
15	.003008	332.5	.30476	3.281
16	0.003793	263.7	0.4846	2.0636
17	.004783	209.1	.7705	1.2979 0.8162
18	.006031	165.8	1.2252	
19	.007604	131.5	1.9481 3.0976	.5133 .3228
20	.009589	104.3	3.0970	
21	0.01209	82.70	4.925	0.20305
22	.01525	65.59	7.832	.12768
23	.01923	52.01	12.453	.08030
24	.02424	41.25	19.801	.05051
25	.03057	32.71	31.484	.03176
26	0.03855	25.94	50.06	0.019976
27	.04861	20.57	79.60	.012563
28	.06130	16.31	126.57	.007901
29	.07729	12.94	201.26	.004969
30	.09746	10.26	320.01	.003125
31	0.1229	8.137	508.8	0.0019654
32	.1550	6.452	809.1	.0012359
33	. 1954	5.117	1286.5	.0007773
34	.2464	4.058	2045.6	.0004889
35	.3107	3.218	3252.6	.0003074
36	0.3918	2.552	5172.	0.0001934
37	.4941	2.024	8224.	.0001216
		1.605	13076.	.0000765
38	.6230			
38 39 40	. 6230 . 7856 . 9906	1.273 1.009	20792. 33060.	.0000481

DIMENSIONS OF WIRE B. & S. GAUGE,

Metric

Diameter, cross-section of wires, Brown & Sharpe gauge, mass of pure hard-drawn copper wire at 0 $^{\circ}$ C. (density 8.90).

Gauge number.	Diam. in cm.	Cross-section in sq.cm.	Grams per meter.	Meters per gram.
0000	1.1684	1.0722	954.3	0.001048
000	.0405	0.8503	756.8	.001322
00	0.9266	.7643	600.1	.001666
0	. 8251	. 5348	475.9	.002101
1	0.7348	0.4241	377.4	0.002649
2	.6544	.3363	299.3	.003341
. 3	.5827 .5189	.2667 .2115	237.4 188.2	.004213 .005312
1 2 3 4 5	.4621	.1677	149.3	.006699
e ·	0.4115	0.13302	118.39	0.00845
7	.3665	.10549	93.88	.01065
6 7 8 9	.3264	.08366	74.45	.01343
~ 9	.2906	.06634	59.04	.01694
10	.2588	.05261	46.82	.02136
11 12	0.2305	0.04172	37.13	0.02693
12	.2053	.03309	29.45	.03396
13 14	.1828 .1628	.02624 .02081	23.35 18.52	.04282
15	.1450	.01650	14.69	. 05 4 00 . 06809
16	0.12908	0.013087	11.648	0.0859
17	11495	.010378	9.237	.1083
18	.10237	.008231	7.325	1365
19	.09116	.006527	5.809	.1721
20	.08118	.005176	4.607	.2171
21 22	0.07229	0.004105	3.653	0.2737
22 23	.06438	.003255	2.898 2.298	.3450
23 24	.05106	.002047	1.822	. 4352 . 5488
25	.04545	.001624	1.445	.6920
26	0.04049	0.0012876	1.1459	0.873
27	.03606	.0010211	.9088	1.100
28	.03211	.0008098	.7207	1.388
29 30	.02859 .02546	.0006422	.5715 .4532	1.750
	.02540		1	2.206
31	0.02268	0.0004039	0.3594	2.782
32	.02019	.0003203	.2850	3.508
33 34	.01798 .01601	.0002540 .0002014	.2261	4.424 5.578
35	.01426	.0001597	.1422	7.034
36	0.01270	0.0001267	0.1127	8.87
37	.01131	.0001005	.0894	11.18
38	.01007	.0000797	.0709	14.10
39	.00897	.0000632	.0562	17.78
40	.00799	. 0000501	.0446	22.43

MASS AND RESISTANCE FOR COPPER (Continued)

System

Electrical resistance of pure hard-drawn copper wire at 0° C. (density 8.90).

Gauge	Ohms per	Meters per	Ohms per	Grams per
number.	meter.	ohm.	gram.	ohm.
0000	0.0001519	6584.	0.000001592	6283000.
000	.0001915	5221.	.000002531	3951000.
00	.0002415	4141.	.000004024	2485000.
0	.0003045	3284.	.000006398	1563000.
1	0.0003840	2604.	0.000001017	928900.
2	.0004842	2065.	.000001618	618200.
3	.0006106	1638.	.000002572	388800.
4	.0007699	1299.	.000004090	244500.
5	.0009709	1030.	.000006504	153800.
6	0.001224	816.9	0.00001034	96700.
7	.001544	647.8	.00001644	60820.
8	.001947	513.7	.00002615	38250.
9	.002455	407.4	.00004157	24050.
10	.003095	323.1	.00006610	15130.
11	0.003903	256.2	0.00010511	9514.
12	.004922	203.2	.00016712	5984.
13	.006206	161.1	.00026574	3763.
14	.007826	127.8	.00042254	2367.
15	.009868	101.3	.00067187	1488.
16	0.01244	80.37	0.0010683	936.1
17	.01569	63.73	.0016987	588.7
18	.01979	50.54	.0027010	370.2
19	.02495	40.08	.0042948	232.8
20	.03146	31.79	.0068290	146.4
21	0.03967	25.21	0.010859	92.09
22	.05002	19.99	.017266	57.92
23	.06308	15.85	.027454	36.42
24	.07954	12.57	.043653	22.91
25	.10030	9.97	.069411	11.88
26	0.12647	7.907	0.11037	9 060
27	.15948	6.270	.17549	5 698
28	.20110	4.973	.27904	3 584
29	.25358	3.943	.44369	2 254
30	.31976	3.127	.70550	1 417
31	0.4032	2.480	1.1218	0.8914
32	.5084	1.967	1.7837	.5606
33	.6411	1.560	2.8362	.3526
34	.8085	1.237	4.5097	.2217
35	1.0194	0.981	7.1708	.1394
36	1.2855	0.7779	11.376	0.08790
37	1.6210	.6169	18.130	.05516
38	2.0440	.4892	28.828	.03469
39	2.5775	.3880	45.838	.02182
40	3.2501	.3076	72.885	.01372

CROSS-SECTION AND MASS OF WIRES

U. S. Measure

Diameters are given in mils (1 mil = .001 in.), and area in square mils (1 sq. mil = .000001 sq.in.). For sections and masses for one-tenth the diameters given, divide by 100 and for sections and masses for ten times the diameter multiply by 100.

,			Pounds ;	per foot.	
Diam. in mils.	Cross-sec. in sq. mils.	Copper, density 8.90.	Iron, density 7.80.	Brass, density 8.56.	Aluminum density 2.67.
10	78.54	0.000303	0.0002656	0.0002915	0.0000909
11	95.03	0367	03214	03527	01100
12	113.10	0436	03825	04197	01309
13	132.73	0512	04488	04926	01536
14	153.94	0594	05206	05713	01782
15	176.71	0.000682	0.0005976	0.0006558	0.0002045
16	201.06	0776	06799	07461	02327
17	226.98	0876	07675	08423	02627
18	254.47	0982	08605	09443	02946
19	283.53	1094	09588	10522	03282
20	314.16	0.001212	0.001062	0.001166	0.0003636
21	346.36	1336	1171	1285	04009
22	380.13	1467	1286	1411	04400
23	415.48	1603	1405	1542	04809
24	452.39	1746	1530	1679	05237
25	490.87	0.001894	0.001660	0.001822	0.0005682
26	530.93	2046	1795	1970	06147
27	572.56	2209	1936	2125	06628
28	615.75	2376	2082	2285	07127
29	660.52	2549	2234	2451	07646
30	706.86	0.002727	0.002390	0.002623	0.0008182
,31	754.77	2912	2552	2801	08737
32	804.25	3103	2720	2985	09309
33	855.30	3300	2892	3174	09900
34	907.92	3503	3070	3369	10509
35	962.11	0.003712	0.003253	0.003570	0.001114
36	1017.88	3927	3442	3777	1178
37	1075.21	4149	3636	3990	1245
38	1134.11	4376	3844	4218	1316
39	1194.59	4609	4040	4433	1383
40	1256.64	0.004849	0.004249	0.004664	0.001455
41	1320.25	5094	4465	4900	1528
42	1385.44	5346	4685	5141	1604
43	1452.20	5603	4911	5389	1681
44	1520.53	5867	5142	5643	1760
45	1590.43	0.006137	0.005378	0 005902	0.001841
46	1661.90	6412	5620	6167	1924
47	1734.94	6694	5867	6438	2008
48	1809.56	6982	6119	6715	2095
49	1885.74	7276	6377	6998	2183
50	1963.50	0.007576	0.006640	0.007287	0.002273
51	2042.82	7882	6908	7581	2365
52	2123.72	8194	7181	7881	2458
53	2206.18	8512	7460	8187	2554
54	2290.22	8837	7744	8499	2651

CROSS-SECTION AND MASS OF WIRES (Continued)

U. S. Measure (Continued)

Diameters are given in mils (1 mil = .001 in.), and area in square mils (1 sq. mil = .000001 sq. in.). For sections and masses for one-tenth the diameters given, divide by 100 and for sections and masses for ten times the diameter multiply by 100.

			Pounds	per foot.	
Diam. in mils.	Cross-sec. in sq. mils.	Copper, density 8.90.	Iron, density 7.80.	Brass, density 8.56.	Aluminum, density 2.67.
55	2375.83	0.009167	0.008034	0.008817	0.002750
56	2463.01	09504	08329	09140	2851
57	2551.76	09846	08629	09470	2954
58	2642.08	10195	08934	09805	3058
59	2733.97	10549	09245	10146	3165
60	2827.43	0.01091	0.00956	0.01049	0.003273
61	2922.47	1128	0988	1085	3383
62	3019.07	1165	1021	1120	3495
63	3117.25	1203	1054	1157	3608
64	3216.99	1241	1088	1194	3724
65	3318.31	0.01280	0.01122	0.01231	0.003841
66	3421.19	1320	1157	1270	3960
67	3525.65	1360	1192	1308	4081
68	3631.68	1401	1228	1348	4204
69	3739.28	1443	1264	1388	4328
70	3848.45	0.01485	0 01302	0.01429	0.004456
71	3959.19	1528	1339	1469	4583
72	4071.50	1571	1377	1511	4713
73	4185.39	1615	1415	1553	4845
74	4300.84	1660	1454	1596	4978
75	4417.86	0.01705	0.01494	0.01639	0.005114
76	4536.46	1751	1534	1684	5251
77	4656.63	1797	1575	1728	5390
78	4778.36	1844	1616	1773	5531
79	4901.67	1892	1658	1819	5674
80	5026.55	0.01939	0.01700	0.01865	0.005818
81	5153.00	1988	1743	1912	5965
82	5281.02	2038	1786	1960	6113
83	5410.61	2088	1830	2008	6263
84	5541.77	2138	1874	2057	6415
85	5674.50	0.02189	0.01919	0.02106	0.006568
86	5808.80	2241	1964	2156	6724
87	5944.68	2294	2010	2206	6881
88	6082.12	2347	2057	2257	7040
89	6221.14	2400	2104	2309	7201
90	6361.73	0.02455	0.02151	0.02360	0.007364
91	6503.88	2509	2199	2414	7528
92	6647.61	2565	2248	2467	7695
93	6792.91	2621	2297	2521	7863
94	6939.78	2678	2347	2575	8033
95	7088.22	0.02735	0.02397	0.02630	0.008205
96	7238.23	2793	2448	2686	8378
97	7389.81	2851	2499	2742	8554
98	7542.96	2910	2551	2799	8731
99	7697.69	2970	2603	2857	8910
100	7853.98	0.03030	0.02656	0.02915	0.009091

CROSS-SECTION AND MASS OF WIRES (Continued)

Metric Measure

Diameters are given in thousandths of a centimeter and area of section in square thousandths of a centimeter. $1 \text{ (cm./1000)}^2 = .000001 \text{ sq. cm.}$ For sections and masses for diameters 1/10 or 10 times those of the table, divide or multiply by 100.

	Cross-section		Grams per	meter.	
Diam. in	in square	Copper,	Iron,	Brass,	Aluminum
thousandths	thousandths	density	density	density	density
of a cm.	of a cm.	8.90.	7.80.	8.56.	2.67.
10	78.54	0.06990	$\begin{array}{c} 0.06126\\.07412\\.08822\\.10353\\.12008\end{array}$	0.06723	0.02097
11	95.03	.08458		.08135	.02537
12	113.10	.10065		.09681	.03020
13	132.73	.11813		.11362	.03544
14	153.94	.13701		.13177	.04110
15 16 17 18	176.71 201.06 226.98 254.47 283.53	0.1573 .1789 .2020 .2265 .2523	0.1378 .1568 .1770 .1985 .2212	0.1513 .1721 .1943 .2178 .2427	0.04718 .05368 .06060 .06794 .07570
20	314.16	0.2796	0.2450	0.2689	0.08388
21	346.36	.3083	.2702	.2965	.09248
22	380.13	.3383	.2965	.3254	.10149
23	415.48	.3698	.3241	.3557	.11093
24	452.39	.4026	.3529	.3872	.12079
25	490.87	0.4369	0.3829	0.4202	0.1311
26	530.93	.4725	.4141	.4545	.1418
27	572.56	.5096	.4466	.4901	.1529
28	615.75	.5480	.4803	.5271	.1644
29	660.52	.5879	.5152	.5654	.1764
30	706.86	0.6291	0.5514	0.6051	0.1887
31	754.77	.6717	.5887	.6461	.2015
32	804.25	.7158	.6273	.6884	.2147
33	855.30	.7612	.6671	.7321	.2284
34	907.92	.8081	.7082	.7772	.2424
35	962.11	0.856	0.7504	0.8236	0.2569
36	1017.88	.906	.7939	.8713	.2718
37	1075.21	.957	.8387	.9204	.2871
38	1134.11	1.012	.8866	.9730	.3035
39	1194.59	.063	.9318	1.0230	.3190
40	1256.64	1.118	0.980	1.076	0.3355
41	1320.25	.175	1.030	.130	.3525
42	1385.44	.233	.081	.186	.3699
43	1452.20	.292	.133	.243	.3877
44	1520.53	.353	.186	.302	.4060
45	1590.43	1.415	1.241	1.361	0.4246
46	1661.90	.479	.296	.423	.4437
47	1734.94	.544	.353	.485	.4632
48	1809.56	.611	.411	.549	.4832
49	1885.74	.678	.471	.614	.5035
50	1963.50	1.748	1.532	1.681	. 5243
51	2042.82	.818	.593	.753	. 5454
52	2123.72	.890	.657	.818	. 5670
53	2206.18	.964	.721	.888	. 5891
54	2290.22	2.038	.786	.960	. 6115

CROSS-SECTION AND MASS OF WIRES (Continued) Metric Measure (Continued)

Diameters are given in thousandths of a centimeter and area of section in square thousandths of a centimeter. 1 (cm./1000)² = .000001 sq. cm. For sections and masses for diameters 1/10 or 10 times those of the table, divide or multiply by 100.

	Cross-section		Grams per	meter.	
Diam. in	in square	Copper,	Iron,	Brass,	Aluminum,
thousandths	thousandths	density	density	density	density
of a cm.	of a cm.	8.90.	7.80.	8.56.	2.67.
55	2375.83	2.114	1.853	2.034	0.6343
56	2463.01	192	.921	.108	.6576
57	2551.76	.271	.990	.184	.6813
58	2642.08	.351	2.061	.262	.7054
59	2733.97	.433	.132	.340	.7300
60	2827.43	2.516	2.205	2.420	0.7549
61	2922.47	.601	.280	.502	.7803
62	3019.07	.687	.355	.584	.8061
63	3117.25	.774	.431	.668	.8323
64	3216.99	.863	.509	.760	.8589
65	3318.31	2.953	2.588	2.840	0.8860
66	3421.19	3.045	.669	.929	.9135
67	3525.65	.138	.750	3.018	.9413
68	3631.68	.232	.833	.109	.9697
69	3739.28	.328	.917	.201	.9984
70	3848.45	3.426	3.003	3.295	1.028
71	3959.19	.524	.088	.389	.057
72	4071.50	.624	.176	.485	.087
-73	4185.39	.725	.265	.583	.117
74	4300.84	.828	.355	.682	.148
75	4417.86	3.932	3.446	3.782	1.180
76	4536.46	4.037	.538	.883	.211
77	4656.63	.144	.632	.986	.243
78	4778.36	.253	.727	4.090	.276
79	4901.67	.362	.823	.177	.309
80	5026.55	4.474	3.921	4.303	1.342
81	5153.00	.586	4.019	.411	.376
82	5281.02	.700	.119	.521	.410
83	5410.61	.815	.220	.631	.445
84	5541.77	.932	.323	.744	.480
85	5674.50	5.050	4.426	4.857	1.515
86	5808.80	.170	.531	.972	.551
87	5944.68	.291	.637	5.089	.587
88	6082.12	.413	.744	.206	.624
89	6221.14	.537	.852	.325	.661
90	6361.73	5.662	4.962	5.446	1.699
91	6503.88	.788	5.073	.567	.737
92	6647.61	.916	.185	.690	.775
93	6792.91	6.046	.298	.815	.814
94	6939.78	.176	.413	.940	.853
95	7088.22	6.309	5.529	6.068	1.893
96	7238.23	.442	.646	.196	.933
97	7389.81	.577	.764	.326	.973
98	7542.96	.713	.884	.457	2.014
99	7697.69	.851	6.004	.589	.055
100	7853.98	6.990	6.126	6.723	2.097

APPROXIMATE RESISTANCE OF WIRES

Giving the resistance in ohms of one centimeter length at 20°C. Owing to varying composition and physical condition, these values can be considered only as approximations.

Gauge No. B. & S.	Diam. in cms.	Brass	Con- stantin	German silver	Iron	Manganin
10 12 14 16 18 20 22 24 26 27 28 30 32 34 36 40	.2588 .2053 .1628 .1291 .1024 .08118 .06438 .05106 .04049 .03606 .03211 .02546 .02019 .01601 .01270	.00014 .00023 .00037 .00058 .00091 .00147 .0027 .0059 .0075 .0093 .0147 .024 .038	.00093 .00148 .0024 .0037 .0059 .0150 .024 .038 .041 .096 .153 .24 .39	.00056 .00089 .00142 .0023 .0036 .0057 .0090 .0144 .023 .029 .036 .058 .092 .148 .23	.00023 .00036 .00058 .00092 .00146 .0023 .0037 .0059 .0093 .0118 .0148 .024 .038	.00080 .00127 .0020 .0032 .0051 .0081 .0129 .021 .033 .041 .052 .083 .131 .209 .33

PROBLEMS

THE METHOD OF SOLVING CHEMICAL PROBLEMS

(From Talbot's Quantitative Analysis, by permission.)

Detailed solutions of a few typical problems are given below. The student should study these carefully, and assure himself that

they are fully understood.

1. A "chemical factor" expresses the ratio between a specific quantity of a chemical compound and the equivalent quantity of some other body. For example, if it is wished to determine the weight of sulphur which corresponds to a specific weight of barium sulphate, the latter is multiplied by the factor, or ratio, represented by the fraction $\frac{8}{\text{BaSO}_4}$, or $\frac{32.07}{233.50} = 0.1373$. It may also $\frac{32.07}{233.50} = 0.1373$.

be expressed by the proportion $BaSO_4: S = wt$. $BaSO_4: x$, from which it is plain that $x = \frac{32.07}{233.50}$. wt. $BaSO_4$.

Again, if the weight of FeO in Fe₂O₃ is desired, the factor becomes $\frac{2 \text{ FeO}}{\text{Fe}_2\text{O}_3} = \frac{144.04}{160.04} = 0.9000$. Similarly, the factor for the

conversion of KCl to K_2O is $\frac{K_2O}{2 \text{ KCl}} = \frac{94.22}{149.12} = 0.6320$. The loga-

rithmic equivalents of these values are called log factors.

In the calculation of these factors, the atomic or molecular relations of the two substances must be kept clearly in mind; thus, it is plainly incorrect to express the ratio of ferrous to ferric oxide by the fraction $\frac{\text{FeO}}{\text{Fe}_2\text{O}_3}$, since each molecule of the higher

oxide must correspond to two molecules of the lower. Carelessness in this respect is one of the most frequent sources of error.

2. To calculate the volume of a reagent required for a specific operation, it is necessary to know the exact reaction which is to be brought about, and, as with the calculation of factors, to keep in mind the molecular relations between the reagent and the substance reacted upon. For example, to estimate the weight of barium chloride necessary to precipitate the sulphur from 0.1 gram

of pure pyrite (FeS₂), the proportion should stand $2BaCl_2$. $2H_2O$: 120.16

 $FeS_2 = x : 0.1$, where x represents the weight of the chloride *Talbot's "Quantitative Analysis."

required. Each of the two atoms of sulphur will form a molecule of sulphuric acid upon oxidation, which, in turn, will require a molecule of the barium chloride for precipitation. To determine the quantity of the barium chloride required, it is necessary to include in its molecular weight the water of crystallization, since this is inseparable from the chloride when it is weighed. This applies equally to other similar instances.

If the strength of an acid is expressed in percentage by weight, due regard must be paid to its specific gravity. For example, hydrochloric acid (sp. gr. 1.12) contains 23.8 per cent HCl by

weight; i.e., 0.2666 gram.

3. No rules for universal application to "indirect gravimetric analyses" can be laid down. A single example will be explained. Given a mixture of KCl + NaCl weighing 0.15 gram, which contains 53 per cent chlorine, to calculate the weight of KCl

and NaCl in the mixture.

The weight of chlorine in the mixture is (0.15×0.53) or 0.0795 gram. Assuming that this chlorine was all in combination with potassium, the corresponding weight of KCl would be 0.1672 gram (Cl: KCl = 0.0795:0.1672). This is an excess of 0.0172 gram over the actual weight of the mixture, and it is plain that this difference is occasioned by the replacement of certain of the molecules of potassium chloride, weighing 74.56 units, by molecules of sodium chloride weighing 58.50 units. To express this, let it be supposed that the mixture is made up of n molecules

KCl and n' molecules NaCl; then it may be said that n KCl + 58.50 74.56 74.56

n' NaCl = 0.15 gram, and n' KCl + n' KCl = 0.1672 gram, then by subtracting the first equation from the second it is shown 74.56 58.50

that n' (KCl – NaCl) = 0.0172 gram. That is, the difference in weight is equal to n' times the difference in the molecular weights of the two chlorides. The actual weight of NaCl present (x) is equal

to 58.50n', or, since $n' = \frac{0.0172}{74.56 - 58.50}$, $x = 58.50 \left(\frac{0.0172}{74.56 - 58.50} \right)$. This may be expressed in the form (74.56 - 58.50); 58.50 =

This may be expressed in the form (74.56 - 58.50) : 58.50 = 0.0172 : x, from which x = 0.0626. The weight of NaCl subtracted from that of the mixture gives the weight of KCl.

The weights of the chlorides may also be calculated algebraically by solving the equations x+y=0.15 and $\frac{35.45}{74.56}x+\frac{35.45}{58.50}y$

= 0.0795, where x is the weight of KCl and y is the weight of

NaCl in the mixture.

4. It is sometimes desirable to weigh out such a quantity of substance for analysis, that the number of cubic centimeters of standard solution entering into the reaction shall represent directly the percentage of the desired constituent. This may be readily done, by considering the relation of the solution to a normal solution and the atomic or molecular weight of the desired component. For example, suppose it is desired to calculate such a weight for K₂CO₃ in pearl ash, when a half-normal acid solution

is used. Since half-normal acid and alkali solutions are equivalent, and since by definition the half-normal K_2CO_3 solution contains 34.55 grams per liter, each cubic centimeter of the acid solution must be equivalent to 0.03455 gram K_2CO_3 . Hence, 100 cc. would neutralize 3.455 gram pure K_2CO_3 and this becomes the desired weight of the pearl ash. Similarly the required weight of limonite where the iron (Fe) is to be determined by means of a deci-normal $K_2Cr_2O_7$ solution is 0.5602 gram.

5. One of the most frequently recurring cases in volumetric analysis is that in which it is wished to express the value of a specific solution in terms of some substance other than that against which it has been standardized as for instance, the value of a permanganate solution which has been standardized against oxalic acid, in terms of iron. Although such problems apparently vary widely, there are common principles which can be applied to them all. These are stated below, and the student should assure himself that they are fully understood.

Suppose, for example, it is desired to find the iron value (Fe) of a permanganate solution, of which 1 cc. is equivalent to 0.006302

gram $C_2H_2O_4$. $2H_2O$.

From a comparison of the reactions it is seen that 10 molecules of ferrous sulphate and 5 molecules of oxalic acid each react with the same amount (2 molecules) of the permanganate. These two quantities being, then, equivalent to the same third quantity, must be equivalent to each other; in other words, 10 molecules of ferrous sulphate and 5 molecules of oxalic acid have the same reducing power. But, as stated above, the value is desired in terms of metallic iron (Fe), not FeSO₄, but as it is plain that 10FeSO₄ are equivalent to 10Fe, it is proper to make the proportion

 $^{560.2}_{10 \text{ Fe}}: 5\text{C}_2\text{H}_2\text{O}_4 \cdot 2\text{ H}_2\text{O} = x : 0.006302$

in which x=0.005602 gram. Here, again, as in example 2, it is necessary to include the water of crystallization in the molecular

weight of the oxalic acid, as it is weighed with it.

The same conclusion is arrived at, if we consider the relation of the solution to the normal. As given, it is deci-normal and must, therefore, be equivalent to a deci-normal solution of iron. From the equations circd, it is seen that 10FeSO₄, unite with 5O, therefore each molecule is equivalent to 1 hydrogen atom in reducing power. The normal solution must, then, contain 1 gram-molecule of ferrous sulphate, or 56.02 grams Fe, and each cubic centimeter of the deci-normal solution would contain 0.005602 gram, the value obtained above.

Again, suppose the value of the same permanganate solution were desired in terms of molybdenum (Mo), the reactions with

permanganate being

 $5M_{012}O_{19} + 17Mn_2O_7 = 60MoO_3 + 34MnO$, and $5C_2H_2O_4 \cdot 2H_2O + Mn_2O_7 = 2MnO + 10CO_2 + 15H_2O$. (Mn₂O₇ is the anhydride of HMnO₄.)

It is plain that in these equations as they stand, the molecular quantities of oxidizing agent are not equal. They can be made so by simply multiplying the second equation by 17, and they then become,

 $5\text{Mo}_{12}\text{O}_{19} + 17\text{Mn}_2\text{O}_7 = 34\text{MnO} + 60\text{MoO}_3$, and $85\text{C}_2\text{H}_2\text{O}_4$. $2\text{H}_2\text{O} + 17\text{Mn}_2\text{O}_7 = 34\text{MnO} + 170\text{ CO}_2 + 255\text{ H}_2\text{O}$.

It is now possible to reason in the same way as before, and to conclude that 85 molecules of the oxalic acid have the same reducing power as 5 molecules of the oxide Mo₁₂O₁₉, or 60 atoms of molybdenum. Accordingly,

5758.8 10714.25 $60\text{Mo}: 85\text{C}_2\text{H}_2\text{O}_4.2\text{H}_2\text{O}$: : x: 0.006302

in which x 0.003387 gram.

Since 5Mo₁₂O₁₉ unite with 85O, a normal solution of the former as a reducing agent, would contain 1/170 of the 5 gram-molecules or 33.87 grams Mo, and the deci-normal solution 3.387 grams per liter. This agrees with the values already obtained.

6. It is sometimes necessary to calculate the value of solutions according to the principles just explained, when several successive reactions are involved. Such problems may be solved by a series of proportions, but it is usually possible, after stating these to eliminate the common factors and solve but a single one.

For example, suppose it is desired to express the value of a permanganate solution, of which 1 cc. = 0.008 gram iron (Fe), in terms of calcium oxide (CaO). The reactions involved in the volumetric determination of calcium are the following; CaCl₂ + (NH₄)₂C₂O₄ = CaC₂O₄ + 2NH₄Cl; CaC₂O₄ + H₂SO₄ + 2H₂O = CaSO₄ + C₂H₂O₄ · 2H₂O; 5C₂H₂O₄ · 2H₂O + 2KMnO₄ + 3H₂SO₄ = K₂SO₄ + MnSO₄ + 10CO₂ + 18H₂O.

From the considerations stated under 5, the following propor-

tions may be made.

10Fe: $5C_2H_2O_4$. $2H_2O = 0.008$: x $5C_2H_2O_4$. $2H_2O$: $5CaC_2O_4 = x$: y $5CaC_2O_4$: 5CaO = y: x

Canceling the common factors, there remains simply

 $^{560.2}_{10\text{Fe}}$: $^{280.4}_{5}_{10}$ = 0.008 : z

Similarly, from the reactions, the equivalent of the iodine liberated may be calculated in terms of MnO₂ as follows: Supposing the weight of iodine to be 0.5 gram then

2I : 2KI = 0.5 : x 2KI : 2Cl = x : y 2Cl : 2HCl = y : z $2HCl : MnO_2 = z : w$

Canceling the common factors, there remains

 $2I : MnO_2 = 0.5 : w$

To solve such problems as 5 and 6, it is necessary to know the reactions involved, and the way in which the various components' break up; then to compare the reactions and to search for those molecular quantities of the compounds in question, which are equivalent in their action upon a common agent. Having found these, as shown above, express the molecular ratio between them 253.7 86.99

in the form of a proportion; as, for example, $2I : MnO_2 = 0.5 : w$.

Expressed in the form $w = \frac{86.99}{253.7}$ 0.5, it is plain that this ratio is

in no way different in principle from the chemical factor mentioned in paragraph 1; indeed, it is the factor for the conversion of iodine to manganese dioxide.

PROBLEMS IN ELEMENTARY PHYSICS

1. A map is drawn to the scale 1 mile to the inch. What area on the map in square centimeters represents 10 square miles? Ans. 64.5 sq.cm.

2. Express a velocity of 2500 cm. per second in feet per minute.

Ans. 4921.2 feet per minute.

3. A rectangular tank 15 cm.×163 mm.×6 meters, inside measurements, is filled with water. Express the mass of the water in kilograms. One c.cm. of water weighs 1 gram (approximately). Ans. 146.7 kg.

4. The radius of a circle is 12 cm., what is the angle in degrees

subtended by an arc of 16 cm.? Ans. 76.39°

5. The pitch of the screw in a micrometer caliper is 0.5 mm.; the rotating head of the instrument carries 50 divisions; the vernier of the shank over which the head turns has 10 divisions which occupy the space of 9 smallest divisions on the head. What is the smallest distance which can be measured without estimation? Ans. 0.001 mm.

6. How far from the point of observation must a scale be placed in order that 1 cm. on the scale will subtend an angle of

1 minute? Ans. 3438 cm.

7. A river is 1 kilometer in width, and the current has a velocity of 4 km. per hour. What direction must be taken by a launch moving at 8 km. per hour in order to land directly opposite the starting point? What will be the total time for the trip? Ans.

The launch must steer 30° upstream; 8.7 minutes.

8. A pendulum having a period of 1 second and a pendulum of nearly the same period are arranged so that it is possible to observe when the two reach the mid point of their respective oscillations at the same instant going in the same direction. The time elapsing between coincidences is 106 seconds. If the unknown is shorter than the known pendulum, what is its period? Ans. 0.9906 sec.

9. A body starts from rest and moves for 10 seconds with a uniform acceleration of 5 cm./sec.2, for the next 20 seconds it moves uniformly at the velocity acquired and is finally brought to rest with a uniform acceleration of -5. cm./sec.2, what is the total space covered and the time occupied? Ans. 1500 cm., 40 sec.

10. Find the value of a constant force which, acting on a mass of 500 grams for 2 seconds, produces an increase in velocity

of 10 cm./sec. Ans. 2500 dynes.

11. What is the weight in dynes of a sphere whose mass is 100 grams? If a spherical mass of 1000 kg. is placed vertically beneath the body so that their centers are separated by a distance of 50 cm., what is the apparent increase in weight? (g. = 980. cm./sec.2, the gravitational constant = 6.66×10^{-8} , C. G. S.) Ans. 98,000 dynes; .0026 dyne.

12. A uniform bar, 100 cm. long, is supported on a knife edge 30 cm. from one end. A mass of 500 g. is suspended at a distance of 5 cm. and a mass of 200 g. at a distance of 60 cm from the same end. If the system is in equilibrium, what is the mass of the bar? Ans. 325 g.

13. The beam of a balance is 25 cm. long and weighs 50 g. If the center of gravity is 0.05 cm, below the central knife edge through what angle will the beam be deflected by the addition of 0.001 gram to one of the pans? Ans. 0° 17.2'

14. The mean radius of the earth is about 6,370,000 meters. What is the acceleration toward the center of a point on the equator due to the rotation of the earth? Ans. 2910.3 meters

per sec. per sec.

15. If the period of simple harmonic motion is 10 seconds and the amplitude 20 cm., what is the displacement, velocity and acceleration 2 seconds after the particle has passed its mid point in a positive direction? Ans. Displacement 19.02 cm.,

velocity 3.88 cm./sec., acceleration -7.51 cm./sec.2.

16. A body of 60 g. mass falls freely from rest for 6 seconds. what is its momentum and kinetic energy at the end of the period? (g. = 980 cm./sec.².) How far does the body fall? How much work would be done in raising it to its original position? Ans. Momentum, 352,800 g. cm./sec.; kinetic energy, 1.037×109 ergs; space passed over 17,640 cm.; potential energy

(mgh) 1.037×10^9 ergs.

17. What power is delivered by a hoisting engine in pulling a mass of 200 kg., (1) Upward against gravity, 5 meters per second; (2) along a horizontal plane whose coefficient of friction with the block is 0.20 at the rate of 2 meters per second; (3) along a perfectly smooth (frictionless) horizontal plane at any velocity; (4) up an incline of 45° with the horizontal with a coefficient of friction of 0.1 at the rate of 1 meter (measured along the incline) per second? (The hoisting apparatus is to be considered frictionless.) Ans. (1) 980 watts. (2) 784 watts. (3) No work is done. (4) 15,240 watts.

18. A bullet fired from a gun 1 cm. in internal diameter and 75 cm. long has a muzzle velocity of 500 meters per second. What uniform pressure in the barrel would cause this velocity if the bullet weighs 25 g.? Ans. 1.061×109 dynes per sq. cm.

19. The pitch of a jack screw is 1 cm; the power is applied at the end of a lever 24 cm. long. When force of 30,000 dynes is applied at the lever the lifting force is 1,200,000 dynes, what

portion of the force applied is used to overcome friction? What

is the efficiency? Ans. 22,040 dynes; 34.1%.

20. It is required to find the density of a cylinder of alloy. A ballast load is placed on one pan of the balance, which requires 292.560 g. to counterbalance. The sample is added to the pan containing the weights and the amount to effect equilibrium is reduced to 88.480 g. When the sample is suspended below the pan in water (density 0.9977) the mass necessary in the pan is 148.627 g. The density of the brass weights was 8.45, the density of air at the temperature and pressure of the experiment 0.00115. Find the true density, making correction for buovancy of the air. Ans. 3.383.

21. The cross-section of the stem of an hydrometer has an area of 0.2 sq.cm. The total volume immersed when the instrument floats in water at 4° C. is 6. cu.cm. If in another liquid the hydrometer sinks until 8 cm. additional length of stem is immersed, what is the specific gravity the liquid? Ans.

0.7894.

22. The volume of the cylinder of an air pump cleared at each stroke of the piston is 2000 cc. If the volume of the vessel to be exhausted with connecting tubes is 4000 cc., what pressure should be obtained by 10 strokes? Ans. 0.0173 the original pressure.

23. Water at a temperature of 20.3° C. rises to a height of 6.128 cm. in a tube whose radius is 0.0247. Compute the surface tension, taking g. =980. Ans. 74.15 dynes/cm.

24. A glass tube closed at one end is 100 cm. long. A column of mercury 91 cm. long is poured into the tube and it is then inverted with the lower (open) end in a dish of mercury. The air now fills 40 cm. at the top of the tube and a column of mercury 58 cm. long is supported below. What is the barometric pressure? Ans. 74.84 cm.

25. A wire 100 cm. long and 0.3 mm. in radius is stretched 2 mm. by the addition of a weight of 10 kilos. Compute the value of Young's Modulus. Ans. 17.3×1011 dynes/sq.cm.

26. The thermal coefficient of linear expansion of brass is 0.000018. A cylindrical bar is 100 cm. long at 20° C. and has a density of 8.450, what is the length and density at 0° C? Ans. Length 99.964 cm., density 8.451 g./cm.3.

27. A steel rod is measured with a brass scale at 15° C. The rod appears to be 200 cm. long. The scale is correct at 0° C. What is the true length of the rod at 0°? The coefficient of

expansion for steel is .000011. Ans. 200.021 cm.

28. If the volume of a portion of gas is 1000 ccm. under a pressure of 30.5 cm. of mercury and at a temperature 0° C., what will be the volume under a pressure of 29.5 cm. and a

temperature of 20° C.? Ans. 1109 c. cm.

29. The mass of a copper calorimeter is 110 grams. It contains 400 grams of water at a temperature of 16°C. A solid • mass of 60 grams at a temperature of 98° C. is placed in the water. The temperature reaches equilibrium at 21° C. Neglecting radiation, find the specific heat of the solid. Ans. 0.443 cal./g.

693

30. Two hollow brass cones fit together and are arranged so that the outer cone can be rotated while the inner cone may be held stationary by the application of a force sufficient to overcome the friction between the cones. A horizontal pulley 30 cm. in diameter is attached to the inner cone and a cord wrapped around this pulley and passing over another pulley at the side supports a weight of 100 grams. The mass of the two cones is 400 g., and 25 cc. of water is placed in the inner cone. The outer cone is votated rapidly appared to keep the weight. is rotated rapidly enough to keep the weight suspended and makes 1500 revolutions. What temperature change will occur in the cones, neglecting radiation? (The mechanical equivalent of heat is 4.18×107 ergs.) Ans. 5.33° C.

31. A source of sound whose frequency is 2000 per sec. is moving toward the observer at the rate of 7200 kilometers per hour. The temperature of the air is 20° C. What is the apparent pitch? Ans. 2116.4 What is the apparent pitch? Ans. 2116.4

32. What are the relative potentials of two insulated conducting spheres charged with equal quantities of electricity if their radii are 5 and 10 cm. respectively? Ans. 2 to 1.

33. What is the force acting between two concentrated positive charges of 6 and 8 units, separated by a distance of 4 cm. in air? Ans. 3 dynes.

34. What is the resistance of 48,500 cm. of copper wire 1 millimeter in diameter at 0° C.? The specific resistance of copper is .0000017.

Ans. 0.26 ohm.

Ans. 0.20 onm.

35. A circuit is composed of 8 cells in two groups. The two groups are in parallel and each consists of 4 cells in series. The electromotive force of each cell is 1.4 volts and the internal resistance 0.1 ohm. The external circuit consists of a series of 5 coils, each having a resistance of the consists of a series of 5 coils, each having a resistance of the consists of a series of 5 coils, each having a resistance of the consists of a series of 5 coils, each having a resistance of the consists of the con 200 ohms. If a galvanometer whose resistance is 1000 ohms is placed in parallel with one of the coils, what current will flow through the galvanometer? Ans. 0.0011 amp.

Ans. 0.0011 amp.

36. A cell whose electromotive force is 1 volt and internal resistance 5 ohms is connected in series with a resistance of 2000 ohms and a galvanometer whose resistance is 98 ohms. The galvanometer terminals are connected by a shunt having a resistance of 1 ohm and the scale is 25 cm. from the mirror. The deflection, observed by a telescope, is 0.55 What is the figure of merit-that is, the current which would cause a scale deflection of 1 mm. if the scale were 1 meter from the mirror? Ans. 0.000000229 amp.

37. The horizontal intensity of the earth's magnetism at a certain locality is 0.20 gauss and the dip is 70°; what is the value of the total intensity? Ans. 0.585 gauss.

38. A standard candle and an electric incandescent of unknown intenwhen placed 100 cm. from the candle. The standard candle is found to have consumed spermaceti at the rate of 124 grains per hour during the test. If the intensity of the candle is 1 international candle when burning 120 grains per hour, what is the horizontal candle power of the unknown? Ans. 15.47 international candles.

39. An object 43.6 cm. from a concave spherical mirror gives a sharp image 66.5 cm. from the mirror; find the principal focus and radius of curvature of the mirror. Ans. Focus 26.33 cm., radius of curvature,

40. Light divergent from a point source 20.5 cm. from a double concave lens has its divergence increased by the lens so that it appears to come from a point 113.9 cm. from the lens (on the same side as the source). The radius of curvature of both faces is 25.1 cm., what is the principal focus and index of refraction of the lens? Ans. Principal focus — 25.0 cm.; index of refraction 1.50.

41. The angle of minimum deviation of a prism is observed and found to be 60° 2.5′. If the angle of the prism is 59° 54′, what is the index of

refraction of the material of the prism? Ans. 1.734.

$oldsymbol{A}$	PAGE
Aberration, chromatic, definition	538 538
" spherical, " Absolute density of water, 0-39° C	365
" humidity, definition	535 534
" zero, definition	527
Absorption, definition	539
Acceleration definition and unit	532
" due to gravity and length of seconds pendulum for various	522
latitudes	541
" due to gravity, definition and unit	532
" " " latitude, longitude and elevation of various	
cities	518 323
Acetic acid, specific gravity of aqueous solutions	538
Acid burns, treatment of	12
" definition	. 321
" proof wood stain	554
Acidic constituents, detection of	$\frac{267}{527}$
Active mass, definition	
Adiabatic, definition Air, density of, 10–29° C., 72–77 cm.	369
" thermometer, formula	OIU
Albedo for various substances	495 368
Alcohol, density of, 0-39° C	
" surface tension of	380
'Algebraia formula	13
Alkali burns, treatment of group, analysis of	12 267
Alkeline earth group analysis of	266
Alkaline earth group, analysis of	90
Alpha rays	900
Altitudes from barometric readings, formula	OIU
"group, analysis of	
" mains register on of	. 077
Ammonium chloride, specific gravity of aqueous solutions.	331
"hydroxide, specific gravity of aqueous solutions	. 551
Amplitude in simple harmonic motion, definition	532
Analysis anion	201
of the alkali group	267 266
" " aluminum group	265
" " conner group	263
" " iron group	200
" " silver group. " " tin group.	. 204
" ashama for qualitative	262
Analytic geometry	. 40
Angle, definition and unit	. 531
695	

	PAGE
Angular acceleration, formula	
anerture of chiectives definition	540
Angular acceleration, formula aperture of objectives, definition momentum definition and write	538
	532
	64
velocity, definition and unit	532
	540
Annulus, area of	267
Amilia, area of	20
Antidotes of poisons Aperture of objectives, angular, definition.	11
Aperture of objectives, angular, definition	538
" " numerical "	999
Aperture of objectives, angular, definition numerical, Apothecaries' fluid measure.	538
"" words	571
weight	572
	15
	368
" diffusion of	
" index of refraction of " magneto-optic rotation of " osmotic pressure of "	382
" " " " " " " " " " " " " " " " " " "	495
" magneto-optic rotation of	504
	383
	466
" surface towards of	402
" surface tension of " " yapor tension of	379
	422
michineues principle, formilia	545
	67
" unit of	17
A mid-land of the control of the con	531
Arithmetical progression, formula	14
	`517
Atmospheric potential	
Atom, definition	517
Atomic and male all and a second market and a	527
Atomic and molecular constants.	523
Atomic theory	526
weights of the elements	27
Avoradro's theory	
	FOR
Avogadro's theory	87 526
Avoirdupois weight.	526 571
Avoirdupois weight	
Avoirdupois weight. B	
Avoirdupois weight. B	571
B Balance, sensitiveness of, formula	571 543
Balance, sensitiveness of, formula Balanced action, definition	571 543 527
Balance, sensitiveness of, formula Balanced action, definition	571 543
Balance, sensitiveness of, formula Balanced action, definition Balancing chemical equations Barometric readings formula for altitude from	571 543 527 528
Balance, sensitiveness of, formula Balanced action, definition Balancing chemical equations Barometric readings formula for altitude from	543 527 528 545
Balance, sensitiveness of, formula Balanced action, definition Balancing chemical equations Barometric readings formula for altitude from	543 527 528 545 445
Balance, sensitiveness of, formula Balanced action, definition Balancing chemical equations Barometric readings formula for altitude from	543 527 528 545 445 449
Balance, sensitiveness of, formula . Balanced action, definition . Balancing chemical equations . Barometric readings, formula for altitudes from . Barometer readings, inch-centimeter conversion table . "reduction to sea level and latitude 45° . "temperature correction for .	571 543 527 528 545 445 449 446
Balance, sensitiveness of, formula. Balanced action, definition. Balancing chemical equations. Barometric readings, formula for altitudes from Barometer readings, inch-centimeter conversion table. " reduction to sea level and latitude 45°. " temperature correction for. Barve, unit of pressure definition.	571 543 527 528 545 445 449 446 533
Balance, sensitiveness of, formula. Balanced action, definition. Balancing chemical equations. Barometric readings, formula for altitudes from Barometer readings, inch-centimeter conversion table. " reduction to sea level and latitude 45°. " temperature correction for. Barve, unit of pressure definition.	571 543 527 528 545 445 449 446
Balance, sensitiveness of, formula. Balanced action, definition. Balancing chemical equations. Barometric readings, formula for altitudes from Barometer readings, inch-centimeter conversion table. " reduction to sea level and latitude 45°. " temperature correction for. Barve, unit of pressure definition.	543 527 528 545 445 449 446 533 527
B Balance, sensitiveness of, formula. Balanced action, definition Balancing chemical equations. Barometric readings, formula for altitudes from Barometer readings, inch-centimeter conversion table " reduction to sea level and latitude 45° " temperature correction for Barye, unit of pressure, definition Base, definition Basic constituents, separation of Baumé hydrometer scale, conversion table	543 527 528 545 445 446 533 527 262
B Balance, sensitiveness of, formula. Balanced action, definition Balancing chemical equations. Barometric readings, formula for altitudes from Barometer readings, inch-centimeter conversion table " reduction to sea level and latitude 45° " temperature correction for Barye, unit of pressure, definition Base, definition Basic constituents, separation of Baumé hydrometer scale, conversion table	543 527 528 545 445 446 533 527 262 363
B Balance, sensitiveness of, formula. Balanced action, definition Balancing chemical equations. Barometric readings, formula for altitudes from Barometer readings, inch-centimeter conversion table " reduction to sea level and latitude 45° " temperature correction for Barye, unit of pressure, definition Base, definition Basic constituents, separation of Baumé hydrometer scale, conversion table	543 527 528 545 445 446 533 527 262 363 269
B Balance, sensitiveness of, formula Balanced action, definition Balancing chemical equations Barometric readings, formula for altitudes from Barometer readings, inch-centimeter conversion table " reduction to sea level and latitude 45° Barye, unit of pressure, definition Base, definition Base, definition Base, definition Basic constituents, separation of Baumé hydrometer scale, conversion table Bead and flame tests Beats in sound, definition.	543 527 528 545 445 446 533 527 262 363 269 535
Balance, sensitiveness of, formula . Balanced action, definition . Balancing chemical equations . Barometric readings, formula for altitudes from . Barometre readings, inch-centimeter conversion table . "reduction to sea level and latitude 45° . "temperature correction for . Barye, unit of pressure, definition . Base, definition . Basic constituents, separation of . Baumé hydrometer scale, conversion table . Bead and flame tests . Beats in sound, definition . Bets rays .	543 527 528 545 445 446 533 527 262 363 269
B Balance, sensitiveness of, formula Balanced action, definition Balancing chemical equations Barometric readings, formula for altitudes from Barometer readings, inch-centimeter conversion table. " reduction to sea level and latitude 45° " temperature correction for Barye, unit of pressure, definition Base, definition Basic constituents, separation of Baumé hydrometer scale, conversion table. Bead and flame tests Beats in sound, definition Bets rays Binomial series.	543 527 528 545 445 446 533 527 262 363 269 535 505
B Balance, sensitiveness of, formula Balanced action, definition Balancing chemical equations Barometric readings, formula for altitudes from Barometer readings, inch-centimeter conversion table. " reduction to sea level and latitude 45° " temperature correction for Barye, unit of pressure, definition Base, definition Basic constituents, separation of Baumé hydrometer scale, conversion table. Bead and flame tests Beats in sound, definition Bets rays Binomial series.	543 527 528 545 445 446 533 527 262 363 269 535 505
B Balance, sensitiveness of, formula Balanced action, definition Balancing chemical equations Barometric readings, formula for altitudes from Barometer readings, inch-centimeter conversion table. " reduction to sea level and latitude 45° " temperature correction for Barye, unit of pressure, definition Base, definition Basic constituents, separation of Baumé hydrometer scale, conversion table. Bead and flame tests Beats in sound, definition Bets rays Binomial series.	543 527 528 545 545 445 446 533 527 262 363 269 535 505
B Balance, sensitiveness of, formula Balanced action, definition Balancing chemical equations Barometric readings, formula for altitudes from Barometer readings, inch-centimeter conversion table "reduction to sea level and latitude 45° "temperature correction for Barye, unit of pressure, definition Base, definition Base, definition Basic constituents, separation of Baumé hydrometer scale, conversion table Bead and flame tests Beats in sound, definition Beta rays Birmingham wire gauge Birmingham wire gauge Blue print paper, sensitizing formula	543 527 528 545 445 446 533 527 262 363 269 535 505 675 554
B Balance, sensitiveness of, formula Balanced action, definition Balancing chemical equations Barometric readings, formula for altitudes from Barometer readings, inch-centimeter conversion table. " reduction to sea level and latitude 45° " temperature correction for Barye, unit of pressure, definition Base, definition Base, definition Basic constituents, separation of Baumé hydrometer scale, conversion table. Bead and flame tests Bead and flame tests Beats in sound, definition Bets rays Binomial series Birmingham wire gauge Blue print paper, sensitizing formula Bolling point, molecular elevation of	571 543 528 545 445 449 446 533 527 262 363 505 15 675 409
Balance, sensitiveness of, formula Balanced action, definition Balancing chemical equations Barometric readings, formula for altitudes from Barometre readings, inch-centimeter conversion table "reduction to sea level and latitude 45° temperature correction for Barye, unit of pressure, definition Basic constituents, separation of Baumé hydrometer scale, conversion table. Bead and flame tests Beats in sound, definition Beta rays Binomial series Birmingham wire gauge Blue print paper, sensitizing formula Boilling point, molecular elevation of "" of the elements	543 527 528 545 445 446 533 527 269 535 505 15 675 409 93
B Balance, sensitiveness of, formula Balanced action, definition Balancing chemical equations Barometric readings, formula for altitudes from Barometer readings, inch-centimeter conversion table "reduction to sea level and latitude 45° "temperature correction for Barye, unit of pressure, definition Base, definition Base, definition Basic constituents, separation of Baumé hydrometer scale, conversion table Bead and flame tests. Beats in sound, definition Beta rays Binomial series Birmingham wire gauge. Blue print paper, sensitizing formula Boiling point, molecular elevation of "of the elements ""finorganic compounds	571 543 528 545 445 449 446 533 527 262 363 505 15 675 409
Balance, sensitiveness of, formula Balanced action, definition Balancing chemical equations Barometric readings, inch-centimeter conversion table "reduction to sea level and latitude 45° temperature correction for Barye, unit of pressure, definition Base, definition Basic constituents, separation of Baumé hydrometer scale, conversion table Bead and flame tests Beats in sound, definition Beta rays Binomial series Birmingham wire gauge Blue print paper, sensitizing formula Boilling point, molecular elevation of """ of the elements """ of reagic compounds """ inorganic compounds """ organic compounds """ organic compounds	543 527 528 545 449 446 5327 262 363 269 535 505 675 409 93
B Balance, sensitiveness of, formula Balanced action, definition Balancing chemical equations Barometric readings, formula for altitudes from Barometer readings, inch-centimeter conversion table "reduction to sea level and latitude 45° "temperature correction for Barye, unit of pressure, definition Base, definition Base, definition Basic constituents, separation of Baumé hydrometer scale, conversion table Bead and flame tests. Beats in sound, definition Beta rays Binomial series Birmingham wire gauge. Blue print paper, sensitizing formula Boiling point, molecular elevation of "of the elements "" forganic compounds "" organic compounds "" organic compounds "" "yarous substances	543 527 528 545 445 446 533 5262 363 269 535 505 15 6554 409 93 143
Balance, sensitiveness of, formula Balanced action, definition Balancing chemical equations Barometric readings, formula for altitudes from Barometer readings, inch-centimeter conversion table "reduction to sea level and latitude 45° "temperature correction for Barye, unit of pressure, definition Base, definition Base, definition Base, definition Base constituents, separation of Baumé hydrometer scale, conversion table Bead and flame tests Beats in sound, definition Beta rays Biromial series Birnmingham wire gauge Blue print paper, sensitizing formula Boiling point, molecular elevation of "of the elements "inorganic compounds "inorganic compounds "inorganic compounds "inorganic compounds "inorganic compounds "inorganic compounds "inorganic compounds "inorganic compounds "inorganic compounds "inorganic compounds "inorganic compounds	571 543 527 528 5445 449 446 533 527 262 363 505 675 549 93 943 407
Balance, sensitiveness of, formula Balanced action, definition Balancing chemical equations Barometric readings, formula for altitudes from Barometer readings, inch-centimeter conversion table "reduction to sea level and latitude 45° "temperature correction for Barye, unit of pressure, definition Base, definition Base, definition Base, definition Base constituents, separation of Baumé hydrometer scale, conversion table Bead and flame tests Beats in sound, definition Beta rays Biromial series Birnmingham wire gauge Blue print paper, sensitizing formula Boiling point, molecular elevation of "of the elements "inorganic compounds "inorganic compounds "inorganic compounds "inorganic compounds "inorganic compounds "inorganic compounds "inorganic compounds "inorganic compounds "inorganic compounds "inorganic compounds "inorganic compounds	571 543 527 528 545 445 446 433 527 528 445 446 533 527 528 545 545 545 545 545 545 545 54
Balance, sensitiveness of, formula Balanced action, definition Balancing chemical equations Barometric readings, formula for altitudes from Barometre readings, inch-centimeter conversion table "reduction to sea level and latitude 45° temperature correction for Barye, unit of pressure, definition Base, definition Basic constituents, separation of Baumé hydrometer scale, conversion table. Bead and flame tests Beats in sound, definition Bets rays Binomial series Birmingham wire gauge Blue print paper, sensitizing formula Boiling point, molecular elevation of """" of the elements """" inorganic compounds """" various substances """ various substances """ water, 700-800 mm. """ "high pressures, see under vapor tension	571 543 527 528 545 545 449 446 445 449 537 262 533 527 262 535 505 515 675 449 93 943 440 944 440 944 440 944 440 944 440 944 944
B Balance, sensitiveness of, formula Balancing chemical equations Barometric readings, formula for altitudes from Barometer readings, inch-centimeter conversion table. " reduction to sea level and latitude 45° " temperature correction for Barye, unit of pressure, definition. Base, definition. Base, definition. Base, definition. Basic constituents, separation of Baumé hydrometer scale, conversion table. Bead and flame tests. Beats in sound, definition. Beta rays. Biromial series. Birmingham wire gauge. Birmingham wire gauge. Birmingham wire gauge. Boiling point, molecular elevation of " of the elements " " inorganic compounds " " " organic compounds " " " organic compounds " " " various substances " " " avater, 700–800 mm. " " high pressures, see under vapor tension.	543 527 528 545 445 445 545 445 533 527 545 545 545 545 505 535 505 554 409 409 407 405 425 447
Balance, sensitiveness of, formula Balanced action, definition Balancing chemical equations Barometric readings, inch-centimeter conversion table "reduction to sea level and latitude 45° "temperature correction for Barye, unit of pressure, definition Base, definition. Basic constituents, separation of Baumé hydrometer scale, conversion table. Bead and flame tests. Beats in sound, definition. Beta rays. Binomial series. Birmingham wire gauge. Blue print paper, sensitizing formula Boiling point, molecular elevation of """ of the elements. """ or ganic compounds. """ organic compounds. """ various substances. """ various substances. """ water, 700–800 mm. """ in pressures, see under vapor tension. """ bloyle's law, formula. """ statement.	571 543 527 528 545 545 449 446 445 449 537 262 533 527 262 535 505 515 675 449 93 943 440 944 440 944 440 944 440 944 440 944 944
B Balance, sensitiveness of, formula Balanced action, definition Balancing chemical equations Barometric readings, formula for altitudes from Barometer readings, inch-centimeter conversion table " "eduction to sea level and latitude 45° " "temperature correction for Barye, unit of pressure, definition Base, definition Base, definition Basic constituents, separation of Baumé hydrometer scale, conversion table Bead and flame tests. Beats in sound, definition Beta rays Binomial series Birmingham wire gauge. Blue print paper, sensitizing formula Boiling point, molecular elevation of " of the elements " " inorganic compounds " " " organic compounds " " " " avrious substances " " " water, 700–800 mm. high pressures, see under vapor tension. Boyle's law, formula. " "statement " Brashear's process of silvering glass.	543 527 528 545 445 446 533 5262 363 505 505 505 544 449 449 440 940 940 940 940 940 940 9
B Balance, sensitiveness of, formula Balancing chemical equations Barometric readings, formula for altitudes from Barometer readings, inch-centimeter conversion table. " reduction to sea level and latitude 45° " temperature correction for Barye, unit of pressure, definition. Base, definition. Base, definition. Base, definition. Basic constituents, separation of Baumé hydrometer scale, conversion table. Bead and flame tests. Beats in sound, definition. Beta rays. Biromial series. Birmingham wire gauge. Birmingham wire gauge. Birmingham wire gauge. Boiling point, molecular elevation of " of the elements " " inorganic compounds " " " organic compounds " " " organic compounds " " " various substances " " " avater, 700–800 mm. " " high pressures, see under vapor tension.	543 527 528 545 445 445 545 445 533 527 545 545 545 545 505 535 505 554 409 409 407 405 425 447

696

Brilliancy of light sources, intrinsic British Standard Gauge, dimensions of wire. "thermal unit, definition. Brown and Sharpe Gauge, dimensions of wire. Bulk modulus, table. Burns and scalds, treatment of.	483 676 534 678 371 12
c	
Calculus	26
Calorie, unit of heat, definition	534
Calorimeters, formulæ for	547 482
Candles, standard	481
Canacity, definition	536
formulæ for	549
Capillary depression, correction for, table	448
Carcel unit, photometric	481 466
Carrying capacity for copper wire Catalytic agent, definition Cathode rays, phosphorescence caused by Cells, electromotive force and composition of	527
Cathode rays, phosphorescence caused by	500
Cells, electromotive force and composition of	404
" voltaic, internal resistance of	476
Cements	554
Centigrade degree, definition	534 646
Centrifugal force, definition.	532
Centripetal force, definition	532
Change of volume due to fusion	414
Charles' law for gases	525
Chemical definitions	527
" equations	528 525
" theories	526
Chord length of	19
Chord, length of	538
Circle, equations of	28
Circles, area and radius of inscribed and circumscribed	17
" circumference, area, etc., formulæ" " and " table	19 67
Circular motion, uniform, formulæ	541
Circumferences and areas of circles, table	67
Circumscribed circles, radius and area of	17
" polygons, area and perimeter. Cleaning mercury. " optical surfaces.	_18
Cleaning mercury	555 555
Cobalt, separation of	266
Continuent of expansion for gases	391
	376
" restitution, definition	533
" " formula	544
" thermal expansion, definition temperature-resistance, definition	534 537
" " table	465
Coefficients, elastic formulæ	543
" " <u>+-11-</u>	370
" of thermal expansion tables	384
Colligative property, definition. Color and crystalline form of inorganic compounds. """ organic compounds.	527 98
Color and crystalline form of inorganic compounds	143
Color scale of temperature	400
Color scale of temperature. Color sensations produced by various light sources.	482
" relative stimulation by different wave length	490
Colored liquids for demonstration purposes	556
Combinations, algebraic formulæ	14 527
Combinations, algebraic formulae. Combining weight, definition	525

697

	IAGE
Common names of chemicals	. 258
Composition and uses of foods	252
" of typical alloys.	. 90
"vectors, formula. Compounds, physical constants of inorganic. "organic."	. 539 . 98
" " organic	. 90 . 142
Compressibility of liquids.	. 372
Compressibility of liquids. Concentration of laboratory reagents.	271
Conduction of heat, formula	. 547
Conductivity, electric, definition	547
"thermal, definition	. 534
Conductors definition	. 426
Conductors, definition	. 536
Conjugate foci, definition	. 22 . 538
Conjugate foci, definition. Constants, critical, for gases miscellaneous numerical	410
" miscellaneous numerical	. 66
Constitutive property, definition	. 527
Contact, difference of potential	464
Contrast developer	. 563
Conversion factors for energy units	. 575
pressure units	. 575
metric and English systems	. 576
of barometric readings (inch-centimeter)	. 445
" pressure units, table	446
" thermometer scales	:0, 000
" metric-English units	585
" metric-English units	646
Copper and tin group separation of	263
group, analysis of	263
Correction for capillary depressions of mercury in a glass tube	448
Coulomb, limit of quantity of electricity, definition	530
Couple acting on a magnet, formula	546
(Pritical constants for masses	410
Cross hairs Crushing resistance of brick and stone. Cryohydrate, definition. Crystalline form and color of inorganic compounds. """ Organic compounds.	556
Crushing resistance of brick and stone	376
Crystalling form and color of inorgania compounds	409
" " " organic compounds	. 98 . 143
Crystals, index of refraction of	531
Cube roots, table of	64
Cube roots, table of	. ĭ5
Cubes, table . Cubical expansion of liquids	64
Cubical expansion of liquids	389
solids	388
Current capacity for copper wire	466
Current, electric, definition Cylinder, surface and volume	537
Cymider, surface and volume	22
D	
Dalton's law	525
Dalton's law. Date of discovery of the elements.	93
Deci-normal solutions of reagents	. 274
Deci-normal solutions of reagents. Declination of the sun and equation of time.	515
Declination, magnetic, dennition	537
" table Decomposition of anhydrous metallic sulphates	479
Definite proportions, law of	353
Definitions, chemical	525 527
" physical	E01
Degree of ionization, table Dehydration of metallic sulphates Density and volume of mercury, -10 to +360° C. "to critical, for gases."	354
Dehydration of metallic sulphates	352
Density and volume of mercury, -10 to +360° C	367
" critical, for gases	410
" definition	412

	LVGE
Density of air, 10-29° C.; 72-77 cm	369
" alcohol, 0-39° C	368
" alloys	90
aqueous solutions, miscellaneous	368 370
" gases in liquid and solid form	363
" liquids" " saturated vapors at the boiling point	369
" saturated steam	433
" " solids	362
" water, absolute, 0-39° C	365
maximum	363
" relative " (specific gravity) of aqueous solutions	$\frac{366}{317}$
" " elements	92
" " inorganic compounds	99
" " organic compounds	143
Depression, correction for capillary	448
" of the freezing point, molecular	409
Derivation of the names of the elements	92
Derivatives, elementary forms. Detection of acidic constituents.	26 267
Developing formulæ, photographic	562
Dew point, relative humidity from	451
Diamagnetic definition	537
Diamagnetic, definition Diaphragm systems for photographic lenses Dielectric definition	469
Dielectric definition	536
" strength for air	457
" strength for air" " various insulators	461
Dietary standards	314
Dietary standards. Difference of potential for metals. "" and electrolytes. Diffraction, definition.	464
and electrolytes	464 539
Diffraction, definition	553
" grating, formula	495
Diffusion formula	544
Diffusion, formula	382
" gases	545
gases. Diminution of pressure at the side of a moving stream, formula.	545
Dip, magnetic, dennition	537
	537
Discoveries of the elements.	93
" " date	494
" definition	539
definition	532
Dissociation constants of acids and bases	356
Drill gauge, sizes	674
Drill gauge, sizes. Dyne, unit of force, definition	532
E	F10
Earth, data in regard to	516 482
Efficiency of light sources	545
Efflux of a liquid, formula.	543
Elastic constants for gases	375
" " solids	370
" limit, definition	533
" table	371
Elasticity, definition	533
Electric current definition	537 574
Electrical units, relations of	477
Electrochemical equivalents	466
Electrolytes, resistance of	526
" solution tension theory	526
Electrolysis, formula.	552
Electrolysis, formula	551

699

Electromotive force, definition	
Electromotive roles, deminion	536
or standard cens	462
VOITAIC CEIIS	462
" series of metals	357
Electron theory	526
Elements, atomic weight of	87
" boiling point of	93
" data of discovery	
uate of discovery	93
" derivation of the names of	92
" discoverers of	93
tisouveres of	90
meiting point of	93
" occurrence of	93
" nomination ammangament of	261
periodic arrangement of	
physical constants of	92
" principal valence of	87
" specific gravity of	92
near or	394
" symbols of	92
" symbols of wave length of the principal spectrum lines	
wave length of the principal spectrum lines	485
Elevation, latitude and longitude and acceleration due to gravity for vari-	
ove places	518
ous places	
ous places. Elevation of the boiling point, molecular	409
Ellipse, circumference and area of	20
A counting of	29
equations of	
Energy, definition	533
" formula	543
"	
units, conversion factors	575
Entropy, definition	535
" values for saturated steam	433
Values for Saturated Steam.	
Equation for the linear expansion of solids	388
" of time and declination of the sun	515
Equations, chemical	529
" of analytical geometry	28
" quadratic formula for solution	13
Erg, unit of work and energy, definition.	533
Erg, unit of work and energy, definition	
Eutectic, definition	527
Eutectic, definition	527
Expansion coefficient for gases	527 391
Expansion coefficient for gases	527 391 384
Expansion coefficient for gases	527 391
Expansion coefficient for gases	527 391 384 546
Expansion coefficient for gases. "thermal" of gases, formula. thermal, formula.	527 391 384 546 546
Expansion coefficient for gases " " thermal " of gases, formula " thermal, formula Exponential series	527 391 384 546 546 15
Expansion coefficient for gases "thermal "of gases, formula "thermal, formula Exponential series Exponentials, table of	527 391 384 546 546 15 52
Expansion coefficient for gases "thermal "of gases, formula "thermal, formula Exponential series Exponentials, table of	527 391 384 546 546 15 52
Expansion coefficient for gases " " thermal " of gases, formula " thermal, formula Exponential series	527 391 384 546 546 15
Expansion coefficient for gases "thermal "of gases, formula "thermal, formula Exponential series Exponentials, table of	527 391 384 546 546 15 52
Expansion coefficient for gases " " thermal " of gases, formula " thermal, formula Exponential series Exponentials, table of Exponents, relations of	527 391 384 546 546 15 52
Expansion coefficient for gases " " thermal " of gases, formula " thermal, formula Exponential series Exponentials, table of Exponents, relations of	527 391 384 546 546 15 52 13
Expansion coefficient for gases " " thermal " of gases, formula " thermal, formula Exponential series Exponentials, table of Exponents, relations of	527 391 384 546 546 15 52 13
Expansion coefficient for gases. " thermal " of gases, formula. " thermal, formula. Exponential series. Exponentials, table of. Exponents, relations of. F Factors, algebraic.	527 391 384 546 546 15 52 13
Expansion coefficient for gases " " thermal " of gases, formula " thermal, formula Exponential series Exponentials, table of Exponentials, table of Factors, algebraic " gravimetric	527 391 384 546 546 15 52 13 281
Expansion coefficient for gases " " thermal " of gases, formula " thermal, formula Exponential series Exponentials, table of Exponentials, table of Factors, algebraic " gravimetric	527 391 384 546 546 15 52 13 281 534
Expansion coefficient for gases " " thermal " of gases, formula " thermal, formula Exponential series Exponentials, table of Exponentials, table of Factors, algebraic " gravimetric	527 391 384 546 546 15 52 13 281 534
Expansion coefficient for gases " " thermal " of gases, formula " thermal, formula Exponential series Exponentials, table of Exponents, relations of F Factors, algebraic gravimetric Fahrenheit degree, definition Fahrenheit-Centigrade conversion table	527 391 384 546 546 15 52 13 281 534 646
Expansion coefficient for gases " " thermal " of gases, formula. " thermal, formula. Exponential series. Exponentials, table of. Exponents, relations of. Factors, algebraic. " gravimetric. Fahrenheit degree, definition. Fahrenheit-Centigrade conversion table. Falling bodies, formulæ	527 391 384 546 546 15 52 13 281 534 646 539
Expansion coefficient for gases " " thermal " of gases, formula. " thermal, formula. Exponential series. Exponentials, table of. Exponents, relations of. Factors, algebraic. " gravimetric. Fahrenheit degree, definition. Fahrenheit-Centigrade conversion table. Falling bodies, formulæ	527 391 384 546 546 15 52 13 281 534 646 539 525
Expansion coefficient for gases " " thermal " of gases, formula. " thermal, formula. Exponential series. Exponentials, table of. Exponents, relations of. Factors, algebraic. " gravimetric. Fahrenheit degree, definition. Fahrenheit-Centigrade conversion table. Falling bodies, formulæ	527 391 384 546 546 15 52 13 281 534 646 539 525
Expansion coefficient for gases " " thermal " of gases, formula thermal, formula Exponential series Exponentials, table of Exponents, relations of F Factors, algebraic " gravimetric Fahrenheit degree, definition Fahrenheit-Centigrade conversion table Falling bodies, formulæ Faraday's law Farad, unit of capacity, definition	527 391 384 546 546 15 52 13 281 534 646 535 525 536
Expansion coefficient for gases " " thermal " of gases, formula " thermal, formula Exponential series Exponentials, table of Exponents, relations of Factors, algebraic " gravimetric Fahrenheit degree, definition Fahrenheit-Centigrade conversion table Falling bodies, formulæ Faraday's law Farad, unit of capacity, definition Fats and waxes, constants of	527 391 384 546 546 15 52 13 281 534 646 539 525 536 256
Expansion coefficient for gases " " thermal " of gases, formula " thermal, formula Exponential series Exponentials, table of Exponentials, table of Exponents, relations of F Factors, algebraic	527 391 384 546 546 15 52 13 281 534 646 539 525 536 256 536
Expansion coefficient for gases " " thermal " of gases, formula Exponential series Exponentials, table of Exponentials, table of Exponents, relations of Factors, algebraic " gravimetric Fahrenheit degree, definition Fahrenheit-Centigrade conversion table Falling bodies, formulæ Faraday's law Farad, unit of capacity, definition Fats and waxes, constants of Field intensity, electric, definition Fats and waxes, constants of Field intensity, electric, definition	527 391 384 546 546 15 52 13 281 534 646 539 525 536 256 536
Expansion coefficient for gases " " thermal " of gases, formula Exponential series Exponentials, table of Exponentials, table of Exponents, relations of Factors, algebraic " gravimetric Fahrenheit degree, definition Fahrenheit-Centigrade conversion table Falling bodies, formulæ Faraday's law Farad, unit of capacity, definition Fats and waxes, constants of Field intensity, electric, definition Fats and waxes, constants of Field intensity, electric, definition	527 391 384 546 546 15 52 13 281 534 646 539 525 536 256 548
Expansion coefficient for gases " " thermal " of gases, formula " thermal, formula Exponential series Exponentials, table of Exponentials, table of Exponents, relations of F Factors, algebraic gravimetric Fahrenheit degree, definition Fahrenheit-Centigrade conversion table Falling bodies, formulæ Faraday's law Farad, unit of capacity, definition Fats and waxes, constants of Field intensity, electric, definition " " formulæ " " magnetic definition " " " formulæ " " magnetic definition	527 391 384 546 546 15 52 13 281 534 646 539 5256 536 536 549
Expansion coefficient for gases " " thermal " of gases, formula " thermal, formula Exponential series Exponentials, table of Exponentials, table of Exponents, relations of F Factors, algebraic gravimetric Fahrenheit degree, definition Fahrenheit-Centigrade conversion table Falling bodies, formulæ Faraday's law Farad, unit of capacity, definition Fats and waxes, constants of Field intensity, electric, definition " " formulæ " " magnetic definition " " " formulæ " " magnetic definition	527 391 384 546 546 15 52 13 281 534 646 539 525 536 536 548 549 31
Expansion coefficient for gases " " thermal " of gases, formula " thermal, formula Exponential series Exponentials, table of Exponentials, table of Exponents, relations of F Factors, algebraic gravimetric Fahrenheit degree, definition Fahrenheit-Centigrade conversion table Falling bodies, formulæ Faraday's law Farad, unit of capacity, definition Fats and waxes, constants of Field intensity, electric, definition " " formulæ " " magnetic definition " " " formulæ " " magnetic definition	527 391 384 546 546 15 52 13 281 534 646 539 5256 536 536 549
Expansion coefficient for gases " " thermal " of gases, formula " thermal, formula Exponential series Exponentials, table of Exponentials, table of Exponents, relations of Factors, algebraic " gravimetric Fahrenheit degree, definition Fahrenheit-Centigrade conversion table Falling bodies, formulæ Faraday's law Farad, unit of capacity, definition Fats and waxes, constants of Field intensity, electric, definition " magnetic, definition Five place logarithm table Fixed points for high temperature testing.	527 391 384 546 546 15 52 13 281 534 646 539 525 536 548 549 311
Expansion coefficient for gases " " thermal " of gases, formula " thermal, formula Exponential series Exponentials, table of Exponentials, table of Exponents, relations of F Factors, algebraic " gravimetric Fahrenheit degree, definition Fahrenheit-Centigrade conversion table Falling bodies, formulæ Faraday's law Farad, unit of capacity, definition Fats and waxes, constants of Field intensity, electric, definition " " formulæ " " magnetic, definition Five place logarithm table Fixed points for high temperature testing Fixing bath, formula	527 391 384 546 546 15 52 13 281 534 646 539 5256 536 548 549 31 414 567
Expansion coefficient for gases " " thermal " of gases, formula " thermal, formula Exponential series Exponential series Exponentials, table of Exponents, relations of F Factors, algebraic " gravimetric Fahrenheit degree, definition Fahrenheit-Centigrade conversion table Falling bodies, formulæ Faraday's law Farad, unit of capacity, definition Fats and waxes, constants of Field intensity, electric, definition " " magnetic, definition Five place logarithm table Fixed points for high temperature testing Fixing bath, formula Flame and bead test	527 391 384 546 546 525 13 281 534 646 539 525 536 256 548 549 31 414 569
Expansion coefficient for gases " " thermal " of gases, formula " thermal, formula Exponential series Exponentials, table of Exponentials, table of Exponents, relations of F Factors, algebraic " gravimetric Fahrenheit degree, definition Fahrenheit-Centigrade conversion table Falling bodies, formulæ Faraday's law Farad, unit of capacity, definition Fats and waxes, constants of Field intensity, electric, definition " " formulæ " " magnetic, definition Five place logarithm table Fixed points for high temperature testing Fixing bath, formula Flame and bead test Fluorescence, gases and vanors	527 391 384 546 546 15 52 13 281 534 646 539 5256 536 548 549 31 414 567
Expansion coefficient for gases " " thermal " of gases, formula " thermal, formula Exponential series Exponentials, table of Exponentials, table of Exponents, relations of F Factors, algebraic " gravimetric Fahrenheit degree, definition Fahrenheit-Centigrade conversion table Falling bodies, formulæ Faraday's law Farad, unit of capacity, definition Fats and waxes, constants of Field intensity, electric, definition " " formulæ " " magnetic, definition Five place logarithm table Fixed points for high temperature testing Fixing bath, formula Flame and bead test Fluorescence, gases and vanors	527 391 384 546 546 52 13 281 534 6539 5256 536 548 549 311 414 567 269 501
Expansion coefficient for gases " " thermal " of gases, formula " thermal, formula Exponential series Exponentials, table of Exponentials, table of Exponents, relations of F Factors, algebraic " gravimetric Fahrenheit degree, definition Fahrenheit-Centigrade conversion table Falling bodies, formulæ Faraday's law Farad, unit of capacity, definition Fats and waxes, constants of Field intensity, electric, definition " " formulæ " " magnetic, definition Five place logarithm table Fixed points for high temperature testing Fixing bath, formula Flame and bead test Fluorescence, gases and vanors	527 391 546 546 546 15 52 13 281 13 281 534 646 539 548 548 549 31 414 457 269 501 501
Expansion coefficient for gases " " thermal " " of gases, formula Exponential series Exponential series Exponentials, table of Exponentials, table of Exponents, relations of Factors, algebraic Gravimetric Fahrenheit degree, definition Fahrenheit-Centigrade conversion table Falling bodies, formulae Faraday's law Farad, unit of capacity, definition Fats and waxes, constants of Field intensity, electric, definition " " magnetic, definition Five place logarithm table Fixed points for high temperature testing Fixing bath, formula Flame and bead test Fluorescence, gases and vapors Organic substances Fluorescent screen for observation of ultraviolet light	527 391 546 546 546 152 13 281 534 646 539 5256 536 548 549 507 501 507 501 507
Expansion coefficient for gases " " thermal " " of gases, formula Exponential series Exponential series Exponentials, table of Exponentials, table of Exponents, relations of Factors, algebraic Gravimetric Fahrenheit degree, definition Fahrenheit-Centigrade conversion table Falling bodies, formulae Faraday's law Farad, unit of capacity, definition Fats and waxes, constants of Field intensity, electric, definition " " magnetic, definition Five place logarithm table Fixed points for high temperature testing Fixing bath, formula Flame and bead test Fluorescence, gases and vapors Organic substances Fluorescent screen for observation of ultraviolet light	527 391 546 546 546 15 522 13 13 281 534 646 539 525 536 549 31 414 567 269 501 501 558
Expansion coefficient for gases " " thermal " of gases, formula Exponential series Exponentials, table of Exponentials, table of Exponents, relations of F Factors, algebraic " gravimetric Fahrenheit degree, definition Fahrenheit-Centigrade conversion table Falling bodies, formulæ Faraday's law Farad, unit of capacity, definition Fats and waxes, constants of Field intensity, electric, definition " " magnetic, definition Five place logarithm table Fixed points for high temperature testing Fixing bath, formula Flame and bead test Fluorescence, gases and vapors " organic substances Fluorescence, screen for observation of ultraviolet light.	527 391 546 546 546 15 522 13 13 281 534 646 539 525 536 549 31 414 567 269 501 501 558
Expansion coefficient for gases " " thermal " " of gases, formula Exponential series Exponential series Exponentials, table of Exponentials, table of Exponents, relations of Factors, algebraic Gravimetric Fahrenheit degree, definition Fahrenheit-Centigrade conversion table Falling bodies, formulae Faraday's law Farad, unit of capacity, definition Fats and waxes, constants of Field intensity, electric, definition " " magnetic, definition Five place logarithm table Fixed points for high temperature testing Fixing bath, formula Flame and bead test Fluorescence, gases and vapors Organic substances Fluorescent screen for observation of ultraviolet light	527 391 546 546 546 152 13 281 534 646 539 5256 536 548 549 507 501 507 501 507

	FAGE
Force between two charges, formula	548
" magnetic poles, formula	549
" definition and unit	532
" formula	541
" tractive of a magnet	550
Formation, heats of	298
Formulæ, algebraic	13
" mensuration	17
of inorganic compounds	98
" organic compounds	142
organic compounds	
" photographic	562
physical	539
trigonometric	23
Foucault's pendulum, formula	547
Fraunhofer lines, wave lengths of	484
Freezing mixtures. " point, molecular depression of	411
" point, molecular depression of	409
Frequency of vibrating strings, formula	548
Friction, coefficient of	376
Fuel heat values of	444
Fuel, heat values of	54
" in a right-angled triangle	23
" signs and limits of value	24
signs and times of value	24
relations of	
sums of angles	24
militible angles	25
Fundamental units	531
Fusion, heat equivalent of definition	534
" volume change due to	414
G	
Galvanometer, tangent, formula	552
Galvanometer, tangent, formula	505
Gamma rays	505 574
Gamma rays. Gas constant, value for various units. Gasthermometer, formula	505
Gamma rays. Gas constant, value for various units. Gasthermometer, formula	505 574
Gamma rays. Gas constant, value for various units. Gas thermometer, formula. " volume, reduction of.	505 574 546 393
Gamma rays. Gas constant, value for various units. Gas*thermometer, formula. " volume, reduction of. Gases and vapors, specific gravity.	505 574 546 393 355
Gamma rays. Gas constant, value for various units. Gas thermometer, formula. " volume, reduction of. Gases and vapors, specific gravity. " constants of the kinetic theory.	505 574 546 393 355 422
Gamma rays. Gas constant, value for various units. Gas thermometer, formula. " volume, reduction of. Gases and vapors, specific gravity. " constants of the kinetic theory.	505 574 546 393 355 422 410
Gamma rays. Gas constant, value for various units. Gas thermometer, formula. " volume, reduction of. Gases and vapors, specific gravity. " constants of the kinetic theory. " critical temperature, pressure, etc. " density of, in liquid and solid form.	505 574 546 393 355 422 410 370
Gamma rays. Gas constant, value for various units. Gas'thermometer, formula. " volume, reduction of. Gases and vapors, specific gravity. " constants of the kinetic theory. " critical temperature, pressure, etc. " density of, in liquid and solid form. " diffusion of.	505 574 546 393 355 422 410 370 382
Gamma rays. Gas constant, value for various units. Gas chermometer, formula. "volume, reduction of. Gases and vapors, specific gravity. "constants of the kinetic theory. "critical temperature, pressure, etc. density of, in liquid and solid form. "diffusion of. "elastic constants of	505 574 546 393 355 422 410 370 382 375
Gamma rays. Gas constant, value for various units. Gas chermometer, formula. " volume, reduction of. Gases and vapors, specific gravity. " constants of the kinetic theory. " critical temperature, pressure, etc. " density of, in liquid and solid form " diffusion of. " exansion coefficient for.	505 574 546 393 355 422 410 370 382 375 391
Gamma rays. Gas constant, value for various units. Gas ethermometer, formula. "volume, reduction of. Gases and vapors, specific gravity. "constants of the kinetic theory. "critical temperature, pressure, etc. density of, in liquid and solid form. diffusion of. elastic constants of. expansion coefficient for. "formulæ.	505 574 546 393 355 422 410 370 382 375 391 546
Gamma rays. Gas constant, value for various units. Gas chermometer, formula. "volume, reduction of. Gases and vapors, specific gravity. "constants of the kinetic theory. "critical temperature, pressure, etc. density of, in liquid and solid form. "diffusion of. "elastic constants of. "expansion coefficient for. "ormula. "index of refrection of.	505 574 546 393 355 422 410 370 382 375 391 546 496
Gamma rays. Gas constant, value for various units. Gas chermometer, formula. "volume, reduction of. Gases and vapors, specific gravity. "constants of the kinetic theory. "critical temperature, pressure, etc. density of, in liquid and solid form. "diffusion of. "elastic constants of. "expansion coefficient for. "ormula. "index of refrection of.	505 574 546 393 355 422 410 370 382 375 391 546 496
Gamma rays. Gas constant, value for various units. Gas chermometer, formula. "volume, reduction of. Gases and vapors, specific gravity "constants of the kinetic theory. "critical temperature, pressure, etc. density of, in liquid and solid form diffusion of. elastic constants of expansion coefficient for. "formulæ. "index of refraction of. specific heat of. "Van der Waals' constants for.	505 574 546 393 355 422 410 370 382 375 391 546 496 404 410
Gamma rays. Gas constant, value for various units. Gas chermometer, formula. "volume, reduction of. Gases and vapors, specific gravity "constants of the kinetic theory. "critical temperature, pressure, etc. density of, in liquid and solid form diffusion of. elastic constants of expansion coefficient for. "formulæ. "index of refraction of. specific heat of. "Van der Waals' constants for.	505 574 546 393 355 422 410 370 382 375 391 496 404 410 381
Gamma rays. Gas constant, value for various units. Gas chermometer, formula. "volume, reduction of. Gases and vapors, specific gravity "constants of the kinetic theory. "critical temperature, pressure, etc. density of, in liquid and solid form diffusion of. elastic constants of expansion coefficient for. "formulæ. "index of refraction of. specific heat of. "Van der Waals' constants for.	505 574 546 393 355 422 410 370 382 375 391 546 404 410 381 469
Gamma rays. Gas constant, value for various units. Gas chermometer, formula. "volume, reduction of. Gases and vapors, specific gravity "constants of the kinetic theory. "critical temperature, pressure, etc. density of, in liquid and solid form diffusion of. "elastic constants of "expansion coefficient for. "formulæ. "index of refraction of. "specific heat of. "Van der Waals' constants for. "viscosity of. Gaslight paper, developer for. Gauss. unit of magnetic field, definition.	505 574 546 393 355 422 410 370 382 375 391 546 496 404 410 381 459 537
Gamma rays. Gas constant, value for various units. Gas chermometer, formula. "volume, reduction of. Gases and vapors, specific gravity "constants of the kinetic theory. "critical temperature, pressure, etc. density of, in liquid and solid form diffusion of. "elastic constants of "expansion coefficient for. "formulæ. "index of refraction of. "specific heat of. "Van der Waals' constants for. "viscosity of. Gaslight paper, developer for. Gauss. unit of magnetic field, definition.	505 574 546 393 355 422 410 370 382 375 391 546 404 410 381 469
Gamma rays. Gas constant, value for various units. Gas 'thermometer, formula. "volume, reduction of. Gases and vapors, specific gravity. "constants of the kinetic theory. "critical temperature, pressure, etc. "density of, in liquid and solid form. "diffusion of. "elastic constants of. "expansion coefficient for. "formulæ. "index of refraction of. "specific heat of. "Van der Waals' constants for. "viscosity of. Gaslight paper, developer for. Gauss, unit of magnetic field, definition. Gay-Lussac's law.	505 574 546 393 355 422 410 370 382 375 391 546 496 404 410 381 459 537
Gamma rays. Gas constant, value for various units. Gas 'thermometer, formula. "volume, reduction of. Gases and vapors, specific gravity. "constants of the kinetic theory. "critical temperature, pressure, etc. "density of, in liquid and solid form. "diffusion of. "elastic constants of. "expansion coefficient for. "formula. "index of refraction of. "specific heat of. "Van der Waals' constants for. "viscosity of. Gaslight paper, developer for. Gauss, unit of magnetic field, definition. Gay-Lussac's law. Geometrical progression. Geometry, analytical.	505 574 546 393 355 422 410 370 382 375 391 546 404 410 381 469 537 525
Gamma rays. Gas constant, value for various units. Gas 'thermometer, formula. "volume, reduction of. Gases and vapors, specific gravity. "constants of the kinetic theory. "critical temperature, pressure, etc. "density of, in liquid and solid form. "diffusion of. "elastic constants of. "expansion coefficient for. "formula. "index of refraction of. "specific heat of. "Van der Waals' constants for. "viscosity of. Gaslight paper, developer for. Gauss, unit of magnetic field, definition. Gay-Lussac's law. Geometrical progression. Geometry, analytical.	505 574 546 393 355 422 410 370 382 375 391 546 496 404 414 469 537 525
Gamma rays. Gas constant, value for various units. Gas thermometer, formula. "volume, reduction of. Gases and vapors, specific gravity "constants of the kinetic theory. "critical temperature, pressure, etc. "density of, in liquid and solid form. diffusion of. "elastic constants of expansion coefficient for. "formula. "index of refraction of. "specific heat of. "Van der Waals' constants for. "viscosity of. Gaslight paper, developer for. Gauss, unit of magnetic field, definition. Geometry, analytical. "formulæ.	505 574 546 393 355 422 410 375 391 546 404 410 381 469 537 525 14
Gamma rays. Gas constant, value for various units. Gas thermometer, formula. "volume, reduction of. Gases and vapors, specific gravity "constants of the kinetic theory. "critical temperature, pressure, etc. "density of, in liquid and solid form. diffusion of. "elastic constants of expansion coefficient for. "formula. "index of refraction of. "specific heat of. "Van der Waals' constants for. "viscosity of. Gaslight paper, developer for. Gauss, unit of magnetic field, definition. Geometry, analytical. "formulæ.	505 574 546 393 355 422 410 382 375 391 546 496 404 410 381 469 537 525 14 28
Gamma rays. Gas constant, value for various units. Gas thermometer, formula. "volume, reduction of. Gases and vapors, specific gravity "constants of the kinetic theory. "critical temperature, pressure, etc. density of, in liquid and solid form. diffusion of. elastic constants of. expansion coefficient for "formula. "index of refraction of. "specific heat of. "Van der Waals' constants for. "Viscosity of. Gaslight paper, developer for Gauss, unit of magnetic field, definition. Gay-Lussac's law. Geometrical progression. Geometry, analytical. "formula. Glass grinding fluid. "index of refraction of.	505 574 546 393 355 422 410 375 382 375 391 546 404 410 381 469 537 525 17 557 493
Gamma rays. Gas constant, value for various units. Gas'thermometer, formula. " volume, reduction of. Gases and vapors, specific gravity. " constants of the kinetic theory. " critical temperature, pressure, etc. " density of, in liquid and solid form. " diffusion of. " elastic constants of " expansion coefficient for. " index of refraction of. " yan der Waals' constants for. " Van der Waals' constants for. " viscosity of. Gaslight paper, developer for. Gauss, unit of magnetic field, definition. Gay-Lussac's law. Geometrical progression. Geometry, analytical. " formulæ. Glasss grinding fluid. " index of refraction of.	505 574 546 393 355 422 410 382 370 382 375 546 496 404 410 381 469 537 525 148 287 549 557
Gamma rays. Gas constant, value for various units. Gas'thermometer, formula. "volume, reduction of. Gases and vapors, specific gravity. "constants of the kinetic theory. "critical temperature, pressure, etc. "density of, in liquid and solid form. "diffusion of. "elastic constants of. "expansion coefficient for. "formula. "index of refraction of. "specific heat of. "Van der Waals' constants for. "Viscosity of. Gaslight paper, developer for. Gay-Lussac's law. Geometrical progression. Geometry, analytical. "formula. Glass grinding fluid. "index of refraction of. "comparison. "Gametrical formula. "Gametrical formula. "Gametrical formula. "Grating, diffraction, formula.	505 574 546 393 355 420 370 382 391 546 494 410 381 469 537 528 14 489 537 548 557 555 553
Gamma rays. Gas constant, value for various units. Gas'thermometer, formula. "volume, reduction of. Gases and vapors, specific gravity. "constants of the kinetic theory. "critical temperature, pressure, etc. "density of, in liquid and solid form. diffusion of. elastic constants of expansion coefficient for "formula. "index of refraction of. "specific heat of Van der Waals' constants for "viscosity of. Gaslight paper, developer for Gauss, unit of magnetic field, definition Gay-Lussac's law. Geometrical progression Geometry, analytical. "formula. Glass grinding fluid. "index of refraction of. "critical definition. Gravinetric factors and their logarithms.	505 574 393 355 422 375 382 375 382 375 382 404 410 381 464 496 525 147 525 525 147 549 555 553 553 553 554 549 549 549 549 549 549 549 549 549
Gamma rays. Gas constant, value for various units. Gas'thermometer, formula. " volume, reduction of Gases and vapors, specific gravity. " constants of the kinetic theory. " critical temperature, pressure, etc. " density of, in liquid and solid form " diffusion of " elastic constants of " expansion coefficient for " formula. " index of refraction of " yan der Waals' constants for " Van der Waals' constants for " viscosity of Gaslight paper, developer for Gauss, unit of magnetic field, definition Gay-Lussac's law Geometrical progression Geometry, analytical " formula Glass grinding fluid. " index of refraction of " to clean Graving diffraction, formula Gravinetric factors and their logarithms Gravintstion, definition	505 574 4393 355 422 410 370 381 375 391 496 404 410 469 537 525 14 288 17 555 553 281 281
Gamma rays. Gas constant, value for various units. Gas'thermometer, formula. " volume, reduction of Gases and vapors, specific gravity. " constants of the kinetic theory. " critical temperature, pressure, etc. " density of, in liquid and solid form " diffusion of " elastic constants of " expansion coefficient for " formula. " index of refraction of " yan der Waals' constants for " Van der Waals' constants for " viscosity of Gaslight paper, developer for Gauss, unit of magnetic field, definition Gay-Lussac's law Geometrical progression Geometry, analytical " formula Glass grinding fluid. " index of refraction of " to clean Graving diffraction, formula Gravinetric factors and their logarithms Gravintstion, definition	505 574 546 393 355 410 370 382 375 391 537 525 141 469 464 410 381 469 410 381 469 410 381 469 410 410 410 410 410 410 410 410 410 410
Gamma rays. Gas constant, value for various units. Gas'thermometer, formula. "volume, reduction of. Gases and vapors, specific gravity. "constants of the kinetic theory. "critical temperature, pressure, etc. "density of, in liquid and solid form. diffusion of. elastic constants of expansion coefficient for "formula. "index of refraction of. "specific heat of Van der Waals' constants for "viscosity of. Gaslight paper, developer for Gauss, unit of magnetic field, definition Gay-Lussac's law. Geometrical progression Geometry, analytical. "formula. Glass grinding fluid. "index of refraction of. "critical definition. Gravinetric factors and their logarithms.	505 574 546 393 355 410 370 382 410 381 496 410 410 410 410 410 410 410 410 410 410

${f H}$	-	PAGE
Hall effect		477
Halos and rainbows, angular radius		517
narquess, scale and table		270
Hartshorn, ammonium carbonate carbamate		no
Heat conductivity, definition		594
" formula for		547
" table" effect of electric current, formula		426
" equivalent of fusion, table	· · · · · ·	, 551
valorization, table	• • • • • •	412 413
equivalents, definition		524
" of combustion	31	7 310
dennition		527
formation and solution, table		298
" 'vaporization of saturated steam quantity, definition and units		432
" specific tables	• • • • • •	534
" specific, tables" value of fuels	• • • • • •	393 444
Hefner unit, photometric.		481
Hefner unit, photometric. Helmert's equation for acceleration due to gravity at any latituderation.	ide and	401
		541
Helmholtz' double layer theory Henry, unit of inductance, definition		526
Henry, unit of inductance, definition		538
Henry's law. Hess' law.		525
High and low temperatures.		525
Humidity, definition		444 525
Humidity, definition. "relative, from the dew point. Hydrochloric acid, specific gravity of aqueous solutions		451
Hydrochloric acid, specific gravity of aqueous solutions	320	3. 347
mydrogen atom, mass of		422
" equivalent definition		527
" thermometer scale, reduction to		384
Hydrosulphuric acid, hydrogen sulphide	• • • • • •	363 112
Hyperbola, equations of	• • • • • •	29
Hydrosulphuric acid, hydrogen sulphide. Hyperbola, equations of. Hypo, hyposhulphite of soda, sodium thiosulphate.		132
${f I}$		
Ice, melting point at various pressures		407
Imperial or British standard wire gauge		676
index of refraction, dennition		538
formulæ	• • • • •	552
" " of aqueous solutions	• • • • • •	495
" gases		492 496
liquids, various		494
metais		495
rock salt, sylvine, etc.		493
solids, various		491
Indicators. Induction, definition.	• • • • •	280
		537 531
Inorganic compounds, boiling point of	• • • • • •	99
Inorganic compounds, boiling point of crystalline form and color of		98
formulæ for		98
melting point of		99
molecular weight of		98
" physical constants of solubility of	• • • • •	98
" specific gravity of		. 99
inscribed circles, radius and area		17
Instribed polygons, area and perimeter		18
Insulators, definition		536
" resistance of		476
AMOUNT OF THE HUMIN TOTAL STATE OF THE STATE		22

	FAGE
Intensity of electric field, definition	536
"" " mount is feld definition	537
" magnetic field, definition	
magnetization, definition	537
sound, dennition	535
Internal resistance of voltaic cells	476
Intrinsic brillianer of light sources	483
The lace of maney of light sources.	
Ion, definition	527
Ionization constants	356
" theory	526
Iron group, analysis of	265
Total group, analysis of	
Isothermal, definition	535
•	
${f J}$	
To the limits of sixeds (Information)	533
Joule, unit of work, dennition	
Joule, unit of work, definition	534
~	
\mathbf{K}	
	~~~
Kilowatt hour, definition	536
Kinetic energy, definition	533
" theory constants for gases	422
theory companies for gases	
·	
${f L}$	
Labels for bottles	557
	567
Lantern slide developer	
Large calorie, definitionLatent heat of fusion, definition	534
Latent heat of fusion, definition	534
" " toble	412
" table" vaporization, definition	534
vaporization, definition	
" " table	413
Latitude and longitude, acceleration due to gravity and elevation for	
various cities	518
various cities	505
Laws, chemical	525
Length, unit of	531
Lenses, formula	552
Lenses, formula. Light sources, candle power and efficiency.	482
Light sources, candle power and emclency	482
" color sensations produced by	
	483
Limit of elasticity, definition.  " " table.  Line of force, magnetic, definition. " " " force definition.	533
" " table	371
Time of force mountain definition	536
Line of force, magnetic, denintion	500
of an electric field, definition	000
Linear expansion, coefficients, table	384
Liquids, compressibility of	372
" subject expension of	389
ti January	363
density of	303
specific near of	402
" surface tension of	379
" risposity of	381
Timing Comment of Continue	535
" viscosity of	
Logarithmic series	16
Logarithmic series. Logarithms, explanation of the use of table.	29
" five place table	31
ff	49
" five place table " natural or Naperian, table of the trigonometric functions, table	49
of the trigonometric functions, table	59
Low and high temperatures by various means	444
Lune, area of	22
$oldsymbol{M}$	
IVI.	
Maclaurin's series	15
Magnetic constants of iron oto	474
Magnetic constants of iron, etc	470
decination	479
declination intensity, definition	537
	4770
" inclination of the Earth's field	478

Magnetic induction, formula. 558 "intensity of the Earth's field. 478
" intensity of the Earth's field
iron oxide, ferroso ferric oxide
moment, deminion
" formula
" pole, unit of
Magneto-optic rotation, table
Magnifying power, definition 538 Mass action, law of 526
Mass definition and unit
· " of the hydrogen atom
water vapor in saturated air 447
Mean places of the stars
Mechanical equivalent of heat, definition
Megabarye, unit of pressure, definition
Welting point of the elements
anoys
ice at various pressures
· morganic compounds
" " organic compounds
" " various substances
Manguration tormules
Metals, index of refraction of
Meteorological data 511 Metric and English system conversion tables 576, 58
Metric and English system conversion tables
Mercury, density and volume, $-19$ to $+360^{\circ}$ C
" specific heat 393
Mercury, vapor tension of
Mho, unit of conductivity, definition
Minimum deviation, definition
Mirrors for spectrometer adjustment 557 Mirrors, spherical, formula 552
Mirrors, spherical, formula
Moduli, elastic, formulæ
Modulus, bulk, table
" of elasticity, definition 53
" rigidity, table
" rupture for woods
" Young's, table 370
Molar solution, definition
Molecular constants. 52: Molecular depression of the freezing point. 40:
Molecular depression of the freezing point
" elevation of the boiling point. 400 " weights and their logarithms 80
" weights and their logarithms
" " organic compounds
Molecule, definition
Molecules, number in a molecule gram
Moment of force, definition and unit
" " formula
" inertia, definition and unit
for various bodies
Momentum, definition and unit
" formula
" proportions, law of
Music wire gauge
Musical scales
Mutual induction, definition
N
Naperian (natural) logarithms, table
Natural logarithms, base of
/04

	AGE
Natural logarithms from common logarithms, formula	66
" table	49
" table	54
Nichal connection of	
Nickel, separation of	200
Nitric acid, specific gravity of aqueous solutions	344
Normal solution, definition  Normal (deci-) solutions of reagents	527
Normal (deci-) solutions of reagents	274
Numbers, sums of, formula.	14
Numerical aperture of an objective, definition	538
Numbers, sums of, formula Numerical aperture of an objective, definition	66
" table	64
of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of th	
Occurrence of the elements. Ohm, unit of resistance, definition	93
Ohm, unit of resistance, definition	537
Ohm's law, formula	550
Oils, constants of	252
Ones of service	548
Organ pipes, formulæ. Organic compounds, boiling point of crystalline form and color	143
Organic compounds, boiling point of	
crystalline form and color	143
" formulæ of	143
" melting point of molecular weight of	143
" molecular weight of	142
	142
" specific gravity of	143
" solubility of	143
" synonyms of	142
Operation and strong adultions	383
Osmotic pressure of aqueous solutions	
Oxidation and reduction equations, method or balancing	528
Oxidation, definition	527
· · · · · · · · · · · · · · · · · · ·	
	-
Paner gaslight developer for	569
Paper, gaslight, developer for	20
Paper, gaslight, developer for	
Paper, gaslight, developer for	20 29
Paper, gaslight, developer for	20 29 551
Paper, gaslight, developer for	20 29 551 537
Paper, gaslight, developer for Parabola, area of equations of Parallel, formula for resistances in Paramagnetic, definition Pendulum, simple, formula.	20 29 551 537 542
Paper, gaslight, developer for . Parabola, area of .  "equations of . Parallel, formula for resistances in . Paramagnetic, definition . Pendulum, simple, formulæ .  "Foucault's formula .	20 29 551 537 542 542
Paper, gaslight, developer for Parabola, area of  "equations of Parallel, formula for resistances in Paramagnetic, definition Pendulum, simple, formulae  "Foucault's formula  "esconds, length of	20 29 551 537 542 542 522
Paper, gaslight, developer for Parabola, area of  "equations of Parallel, formula for resistances in Paramagnetic, definition Pendulum, simple, formulae  "Foucault's formula  "esconds, length of	20 29 551 537 542 542 522 18
Paper, gaslight, developer for Parabola, area of  "equations of Parallel, formula for resistances in Paramagnetic, definition Pendulum, simple, formulæ.  "Foucault's formula  "seconds, length of Perimeter of geometric figures Period in uniform circular motion, definition	20 29 551 537 542 542 522 18 532
Paper, gaslight, developer for Parabola, area of  " equations of Parallel, formula for resistances in Paramagnetic, definition Pendulum, simple, formula.  " Foucault's formula.  " seconds, length of Perimeter of geometric figures Period in uniform circular motion, definition.  " of vibration of a magnet, formula.	20 29 551 537 542 542 522 18 532 550
Paper, gaslight, developer for Parabola, area of equations of equations of Parallel, formula for resistances in Paramagnetic, definition Pendulum, simple, formulæ.  "Foucault's formula seconds, length of seconds, length of Perimeter of geometric figures. Period in uniform circular motion, definition of vibration of a magnet, formula.  Periodic arrangement of the elements.	20 29 551 537 542 542 522 18 532 550 261
Paper, gaslight, developer for Parabola, area of  "equations of Parallel, formula for resistances in Paramagnetic, definition Pendulum, simple, formula.  "Foucault's formula.  "seconds, length of Perimeter of geometric figures Period in uniform circular motion, definition  "of vibration of a magnet, formula. Periodic arrangement of the elements Permeability, table.	20 29 551 537 542 542 522 18 532 550 261 474
Paper, gaslight, developer for Parabola, area of  "equations of Parallel, formula for resistances in Paramagnetic, definition Pendulum, simple, formula.  "Foucault's formula.  "seconds, length of Perimeter of geometric figures Period in uniform circular motion, definition  "of vibration of a magnet, formula. Periodic arrangement of the elements Permeability, table.	20 29 551 537 542 542 522 18 532 550 261 474
Paper, gaslight, developer for Parabola, area of  "equations of Parallel, formula for resistances in Paramagnetic, definition Pendulum, simple, formula.  "Foucault's formula.  "seconds, length of Perimeter of geometric figures. Period in uniform circular motion, definition  "of vibration of a magnet, formula. Periodic arrangement of the elements. Permeability, table. Permutations, formula Phase in simple harmonic motion, definition	20 29 551 537 542 542 522 18 532 550 261 474
Paper, gaslight, developer for Parabola, area of  "equations of Parallel, formula for resistances in Paramagnetic, definition Pendulum, simple, formula.  "Foucault's formula.  "seconds, length of Perimeter of geometric figures Period in uniform circular motion, definition  "of vibration of a magnet, formula. Periodic arrangement of the elements. Permetations, formula Permutations, formula Phase in simple harmonic motion, definition Phosphorescence by cathode rays.	20 29 551 537 542 542 522 18 532 550 261 474
Paper, gaslight, developer for Parabola, area of  "equations of Parallel, formula for resistances in Paramagnetic, definition Pendulum, simple, formula.  "Foucault's formula.  "seconds, length of Perimeter of geometric figures Period in uniform circular motion, definition  "of vibration of a magnet, formula. Periodic arrangement of the elements. Permetations, formula Permutations, formula Phase in simple harmonic motion, definition Phosphorescence by cathode rays.	20 29 551 537 542 522 18 532 550 261 474 14 533
Paper, gaslight, developer for Parabola, area of  "equations of Parallel, formula for resistances in Paramagnetic, definition Pendulum, simple, formulæ.  "Foucault's formula  "seconds, length of Perimeter of geometric figures Period in uniform circular motion, definition  "of vibration of a magnet, formula Periodic arrangement of the elements Permeability, table Permutations, formula Phase in simple harmonic motion, definition Phosphorescence by cathode, rays.	20 29 551 537 542 522 18 532 550 261 474 533 500 562
Paper, gaslight, developer for Parabola, area of  "equations of Parallel, formula for resistances in Paramagnetic, definition Pendulum, simple, formulæ.  "Foucault's formula  "seconds, length of Perimeter of geometric figures Period in uniform circular motion, definition  "of vibration of a magnet, formula Periodic arrangement of the elements Permeability, table Permutations, formula Phase in simple harmonic motion, definition Phosphorescence by cathode, rays.	20 29 551 537 542 522 18 532 550 261 474 533 562 481
Paper, gaslight, developer for Parabola, area of "equations of Parallel, formula for resistances in Paramagnetic, definition Pendulum, simple, formula. "Foucault's formula. "Foucault's formula. "Seconds, length of Perimeter of geometric figures. Period in uniform circular motion, definition "of vibration of a magnet, formula. Periodic arrangement of the elements. Permeability, table. Permutations, formula Phase in simple harmonic motion, definition. Phosphorescence by cathode, rays. Photographic formula. Photometric standards Physical constants of inoreanic compounds.	20 29 551 537 542 542 522 522 532 550 261 474 533 500 562 481 98
Paper, gaslight, developer for Parabola, area of "equations of Parallel, formula for resistances in Paramagnetic, definition Pendulum, simple, formula. "Foucault's formula. "Foucault's formula. "Seconds, length of Perimeter of geometric figures. Period in uniform circular motion, definition "of vibration of a magnet, formula. Periodic arrangement of the elements. Permeability, table. Permutations, formula Phase in simple harmonic motion, definition. Phosphorescence by cathode, rays. Photographic formula. Photometric standards Physical constants of inoreanic compounds.	20 29 551 537 542 522 18 532 550 261 474 533 500 562 481
Paper, gaslight, developer for Parabola, area of  "equations of Parallel, formula for resistances in Paramagnetic, definition Pendulum, simple, formula.  "Foucault's formula.  "seconds, length of Perimeter of geometric figures. Period in uniform circular motion, definition  "of vibration of a magnet, formula. Periodic arrangement of the elements. Permeability, table. Permutations, formula Phase in simple harmonic motion, definition. Phosphorescence by cathode, rays. Photographic formulæ. Photometric standards Physical constants of inorganic compounds.  """ organic compounds.  """ the elements.	20 29 551 537 542 542 532 550 261 474 533 500 562 481 98 142 74
Paper, gaslight, developer for Parabola, area of  "equations of Parallel, formula for resistances in Paramagnetic, definition Pendulum, simple, formula  "Foucault's formula  "seconds, length of Perimeter of geometric figures Period in uniform circular motion, definition  of vibration of a magnet, formula Periodic arrangement of the elements Permeability, table Permutations, formula Phase in simple harmonic motion, definition Phosphorescence by cathode, rays Photographic formula Photometric standards Physical constants of inorganic compounds  """ organic compounds  ""  ""  definitions  definitions  definitions	20 29 551 532 542 522 18 532 550 474 530 562 481 98 142 531
Paper, gaslight, developer for Parabola, area of  "equations of Parallel, formula for resistances in Paramagnetic, definition Pendulum, simple, formula  "Foucault's formula  "seconds, length of Perimeter of geometric figures Period in uniform circular motion, definition  "of vibration of a magnet, formula Periodic arrangement of the elements Permeability, table Permutations, formula Phase in simple harmonic motion, definition Phosphorescence by cathode, rays Photographic formula Photometric standards Physical constants of inorganic compounds  "organic compounds."  "the elements  "efinitions  "the formula	20 29 551 532 542 522 18 532 550 474 533 562 481 98 142 731 539
Paper, gaslight, developer for Parabola, area of  "equations of Parallel, formula for resistances in Paramagnetic, definition Pendulum, simple, formula  "Foucault's formula  "seconds, length of Perimeter of geometric figures Period in uniform circular motion, definition  "of vibration of a magnet, formula Periodic arrangement of the elements Permeability, table Permutations, formula Phase in simple harmonic motion, definition Phosphorescence by cathode, rays Photographic formula Photometric standards Physical constants of inorganic compounds  "organic compounds."  "the elements  "efinitions  "the formula	20 29 5517 542 542 522 532 550 261 474 533 562 4818 142 531 531 531 532 532 532 543 543 543 543 543 543 543 543 543 543
Paper, gaslight, developer for Parabola, area of "equations of Parallel, formula for resistances in Paramagnetic, definition Pendulum, simple, formula. "Foucault's formula. "seconds, length of. Perimeter of geometric figures. Period in uniform circular motion, definition "of vibration of a magnet, formula. Periodic arrangement of the elements. Permeability, table. Permutations, formula Phase in simple harmonic motion, definition Phosphorescence by cathode, rays. Photographic formula. Photometric standards Physical constants of inorganic compounds. """ organic compounds. Physical constants of inorganic compounds. """ the elements. "" "" organic compounds. "" "" "" organic compounds. "" "" "" "" "" "" "" "" "" "" "" "" ""	20 29 551 542 542 525 532 550 261 474 533 562 481 98 142 531 539 66
Paper, gaslight, developer for Parabola, area of  "equations of Parallel, formula for resistances in Paramagnetic, definition Pendulum, simple, formulæ.  "Foucault's formula  "seconds, length of. Perimeter of geometric figures Period in uniform circular motion, definition  "of vibration of a magnet, formula Periodic arrangement of the elements. Permeability, table. Permutations, formula Phase in simple harmonic motion, definition Phosphorescence by cathode, rays. Photographic formulæ. Photometric standards Physical constants of inorganic compounds.  "organic compounds.  "the elements.  definitions  "formulæ.  "properties of alloys Pi (n), multiples, fractions, roots, and powers of	20 29 5517 542 542 552 261 14 533 500 98 142 481 98 142 531 539 92 66 673
Paper, gaslight, developer for Parabola, area of "equations of Parallel, formula for resistances in Paramagnetic, definition Pendulum, simple, formula. "Foucault's formula. "seconds, length of. Perimeter of geometric figures Period in uniform circular motion, definition of vibration of a magnet, formula. Periodic arrangement of the elements. Permeability, table. Permutations, formula Phase in simple harmonic motion, definition Phosphorescence by cathode, rays. Photographic formula. Photometric standards Physical constants of inorganic compounds. """ organic compounds. """ the elements. """ the elements. "" "" organic compounds. "" "" the elements. "" "" unultiples, fractions, roots, and powers of Piano wire gauge. Pitch of sound definition.	20 29 551 551 542 542 18 532 550 474 14 474 14 533 500 562 481 92 66 673 535 673 535
Paper, gaslight, developer for Parabola, area of  "equations of Parallel, formula for resistances in Paramagnetic, definition Pendulum, simple, formula  "Foucault's formula  "seconds, length of Perimeter of geometric figures Period in uniform circular motion, definition  "of vibration of a magnet, formula Periodic arrangement of the elements Permeability, table Permutations, formula Phase in simple harmonic motion, definition Phosphorescence by cathode, rays Photographic formula Photometric standards Physical constants of inorganic compounds  "organic compounds."  "the elements  definitions  "organic compounds."  "the elements  "effinitions  "organic properties of alloys  "properties of alloys Pi (π), multiples, fractions, roots, and powers of Planets, data in regard to	20 29 551 537 542 522 18 532 552 1474 14 533 562 481 74 531 539 66 673 535 555 67
Paper, gaslight, developer for Parabola, area of  "equations of Parallel, formula for resistances in Paramagnetic, definition Pendulum, simple, formulæ.  "Foucault's formula  "seconds, length of Perimeter of geometric figures Period in uniform circular motion, definition  "of vibration of a magnet, formula Periodic arrangement of the elements Permeability, table. Permutations, formula Phase in simple harmonic motion, definition Phosphorescence by cathode, rays Photographic formulæ. Photometric standards Physical constants of inorganic compounds.  """  "the elements  definitions  "organic compounds.  ""  "the elements  definitions  "organic compounds.  ""  "the elements  "properties of alloys  Pi (π), multiples, fractions, roots, and powers of. Platinum wire, table.	20 29 551 551 542 542 52 18 532 261 474 144 533 539 92 6673 531 531 677
Paper, gaslight, developer for Parabola, area of  "equations of Parallel, formula for resistances in Paramagnetic, definition Pendulum, simple, formula  "Foucault's formula  "seconds, length of Perimeter of geometric figures Period in uniform circular motion, definition  "of vibration of a magnet, formula  Periodic arrangement of the elements Permeability, table Permutations, formula Phase in simple harmonic motion, definition  Phosphorescence by cathode, rays Photographic formula  Photometric standards Physical constants of inorganic compounds  ""organic compounds.  "" the elements  "efinitions  " formula  " properties of alloys Pi (m), multiples, fractions, roots, and powers of Piano wire gauge Pitch of sound, definition Planets, dats in regard to Platinum wire, table Poisons antidotes of	20 29 551 551 552 552 18 552 550 261 474 453 562 481 98 174 531 539 663 5663 5566 481 74 531 531 532 666 663 5566 742 745 747 747 747 747 747 747 747 747 747
Paper, gaslight, developer for Parabola, area of  "equations of Parallel, formula for resistances in Paramagnetic, definition Pendulum, simple, formula  "Foucault's formula  "seconds, length of Perimeter of geometric figures Period in uniform circular motion, definition  "of vibration of a magnet, formula  Periodic arrangement of the elements Permeability, table Permutations, formula Phase in simple harmonic motion, definition  Phosphorescence by cathode, rays Photographic formula  Photometric standards Physical constants of inorganic compounds  ""organic compounds.  "" the elements  "efinitions  " formula  " properties of alloys Pi (m), multiples, fractions, roots, and powers of Piano wire gauge Pitch of sound, definition Planets, dats in regard to Platinum wire, table Poisons antidotes of	20 29 551 551 542 542 52 18 532 261 474 144 533 539 92 6673 531 531 677
Paper, gaslight, developer for Parabola, area of  "equations of Parallel, formula for resistances in Paramagnetic, definition Pendulum, simple, formula  "Foucault's formula  "seconds, length of Perimeter of geometric figures Period in uniform circular motion, definition  "of vibration of a magnet, formula  Periodic arrangement of the elements Permeability, table Permutations, formula Phase in simple harmonic motion, definition  Phosphorescence by cathode, rays Photographic formula  Photometric standards Physical constants of inorganic compounds  ""organic compounds.  "" the elements  "efinitions  " formula  " properties of alloys Pi (m), multiples, fractions, roots, and powers of Piano wire gauge Pitch of sound, definition Planets, dats in regard to Platinum wire, table Poisons antidotes of	20 29 551 551 542 542 18 552 261 474 47 481 98 142 72 66 673 531 539 966 673 5516 677 558
Paper, gaslight, developer for Parabola, area of  "equations of Parallel, formula for resistances in Paramagnetic, definition Pendulum, simple, formulæ.  "Foucault's formula  "seconds, length of Perimeter of geometric figures Period in uniform circular motion, definition  "of vibration of a magnet, formula Periodic arrangement of the elements Permeability, table. Permutations, formula Phase in simple harmonic motion, definition Phosphorescence by cathode, rays Photographic formulæ. Photometric standards Physical constants of inorganic compounds.  """  "the elements  definitions  "organic compounds.  ""  "the elements  definitions  "organic compounds.  ""  "the elements  "properties of alloys  Pi (π), multiples, fractions, roots, and powers of. Platinum wire, table.	20 29 551 551 552 542 552 18 532 550 261 14 533 562 481 74 539 92 667 535 516 677 11 539

	PAGE
Polyhedra, surface and volume	21
Potaggium carbonate, specific gravity of aqueous solutions	330
" chloride, specific gravity of aqueous solutions	331
" hydroxide, specific gravity of aqueous solutions	328
Potential difference of contact	464
" difference of metals in electrolytes	464
" electric definition	536
CICCUITO, CICITITOTORIA, A CARACTERIA CONTRACTORIA CONTRACTORIA CONTRACTORIA CONTRACTORIA CONTRACTORIA CONTRACTORIA CONTRACTORIA CONTRACTORIA CONTRACTORIA CONTRACTORIA CONTRACTORIA CONTRACTORIA CONTRACTORIA CONTRACTORIA CONTRACTORIA CONTRACTORIA CONTRACTORIA CONTRACTORIA CONTRACTORIA CONTRACTORIA CONTRACTORIA CONTRACTORIA CONTRACTORIA CONTRACTORIA CONTRACTORIA CONTRACTORIA CONTRACTORIA CONTRACTORIA CONTRACTORIA CONTRACTORIA CONTRACTORIA CONTRACTORIA CONTRACTORIA CONTRACTORIA CONTRACTORIA CONTRACTORIA CONTRACTORIA CONTRACTORIA CONTRACTORIA CONTRACTORIA CONTRACTORIA CONTRACTORIA CONTRACTORIA CONTRACTORIA CONTRACTORIA CONTRACTORIA CONTRACTORIA CONTRACTORIA CONTRACTORIA CONTRACTORIA CONTRACTORIA CONTRACTORIA CONTRACTORIA CONTRACTORIA CONTRACTORIA CONTRACTORIA CONTRACTORIA CONTRACTORIA CONTRACTORIA CONTRACTORIA CONTRACTORIA CONTRACTORIA CONTRACTORIA CONTRACTORIA CONTRACTORIA CONTRACTORIA CONTRACTORIA CONTRACTORIA CONTRACTORIA CONTRACTORIA CONTRACTORIA CONTRACTORIA CONTRACTORIA CONTRACTORIA CONTRACTORIA CONTRACTORIA CONTRACTORIA CONTRACTORIA CONTRACTORIA CONTRACTORIA CONTRACTORIA CONTRACTORIA CONTRACTORIA CONTRACTORIA CONTRACTORIA CONTRACTORIA CONTRACTORIA CONTRACTORIA CONTRACTORIA CONTRACTORIA CONTRACTORIA CONTRACTORIA CONTRACTORIA CONTRACTORIA CONTRACTORIA CONTRACTORIA CONTRACTORIA CONTRACTORIA CONTRACTORIA CONTRACTORIA CONTRACTORIA CONTRACTORIA CONTRACTORIA CONTRACTORIA CONTRACTORIA CONTRACTORIA CONTRACTORIA CONTRACTORIA CONTRACTORIA CONTRACTORIA CONTRACTORIA CONTRACTORIA CONTRACTORIA CONTRACTORIA CONTRACTORIA CONTRACTORIA CONTRACTORIA CONTRACTORIA CONTRACTORIA CONTRACTORIA CONTRACTORIA CONTRACTORIA CONTRACTORIA CONTRACTORIA CONTRACTORIA CONTRACTORIA CONTRACTORIA CONTRACTORIA CONTRACTORIA CONTRACTORIA CONTRACTORIA CONTRACTORIA CONTRACTORIA CONTRACTORIA CONTRACTORIA CONTRACTORIA CONTRACTORIA CONTRACTORIA CONTRACTORIA CONTRACTORIA CONTRACTORIA CONTRACTORIA CONTRACTORIA CONTRACTORIA CONTRACTORIA CONTRACTORIA CONTRACTORIA CONTRACTORIA CONTRACTORIA CONTRACTORIA CONTRACTORIA CONTRACTORIA CONTRACTORIA CONTRACTORIA CONTRA	533
energy, deminion,	
Pound avoirdupois, U. S. standard	531
Pounds and tons, comparison of	582
Power, definition and unit	533
Power, formula	533
Precipitation value or solubility product, definition	409
Preparation of laboratory reagents	271
Pressure, critical for gases	410
" definition and units	533
" definition and units	545
" formula	545
" of saturated steam	432
" units, conversion factors	575
" table	446
Principal focus, definition	538
" valence of the elements	87
Prior surface and volume	21
Prism, surface and volume.  Problems, method of solving chemical	687
Problems, incline of solving chemical	691
" in elementary physics	14
Progression, arithmetical and geometrical	540
Projectiles, formulæ of saturated steam	432
of saturated steam	
Proportion	13
Psychrometric tables	453
Pyramid, surface and volume	21
Q.	
	13
Quadratic equations, solution of	13 17
Quadratic equations, solution of	17
Quadratic equations, solution of	17 262
Quadratic equations, solution of	17 262 535 535
Quadratic equations, solution of	17 262 535 535 531
Quadratic equations, solution of	17 262 535 535 531 64
Quadratic equations, solution of	17 262 535 535 531 64 483
Quadratic equations, solution of	17 262 535 535 531 64 483 510
Quadratic equations, solution of	17 262 535 535 531 64 483 510 552
Quadratic equations, solution of	17 262 535 535 531 64 483 510 552 517
Quadratic equations, solution of	17 262 535 535 531 64 483 510 552
Quadratic equations, solution of	17 262 535 535 531 64 483 510 552 517 505 274
Quadratic equations, solution of	17 262 535 535 531 64 483 510 552 517 505
Quadratic equations, solution of Quadrilaterals, area of Qualitative analysis scheme Quality of sound Quantity of electricity, unit of, definition  Radian, unit of angle, definition Radians from degrees, conversion table Radiations, wave length of Radioactive substances Radios of curvature, reduction from spherometer readings Rainbows and halos, angular radius of Rays, alpha, beta and gamma Reagents, deci-normal solutions of preparation and concentration of	17 262 535 535 531 64 483 510 552 517 505 274
Quadratic equations, solution of Quadrilaterals, area of Qualitative analysis scheme Quality of sound Quantity of electricity, unit of, definition  R Radian, unit of angle, definition Radians from degrees, conversion table Radiations, wave length of Radioactive substances Radius of curvature, reduction from spherometer readings Rainbows and halos, angular radius of Rays, alpha, beta and gamma Reagents, deci-normal solutions of preparation and concentration of Reaumur degree, definition	17 262 535 535 531 64 483 510 552 517 505 274 271
Quadratic equations, solution of Quadrilaterals, area of Qualitative analysis scheme Quality of sound Quantity of sound Quantity of electricity, unit of, definition  R Radian, unit of angle, definition Radians from degrees, conversion table Radiations, wave length of Radioactive substances Radius of curvature, reduction from spherometer readings Rainbows and halos, angular radius of Rays, alpha, beta and gamma Reagents, deci-normal solutions of preparation and concentration of Reaumur degree, definition Reciprocals, table of Reduction definition	17 262 535 535 535 531 64 483 510 552 517 505 274 271 534 64
Quadratic equations, solution of Quadrilaterals, area of Qualitative analysis scheme Quality of sound Quantity of sound Quantity of electricity, unit of, definition  R Radian, unit of angle, definition Radians from degrees, conversion table Radiations, wave length of Radioactive substances Radius of curvature, reduction from spherometer readings Rainbows and halos, angular radius of Rays, alpha, beta and gamma Reagents, deci-normal solutions of preparation and concentration of Reaumur degree, definition Reciprocals, table of Reduction definition	17 262 535 535 535 531 64 483 510 552 517 505 274 271 534 64
Quadratic equations, solution of Quadrilaterals, area of Qualitative analysis scheme Quality of sound Quantity of sound Quantity of electricity, unit of, definition  R Radian, unit of angle, definition Radians from degrees, conversion table Radiations, wave length of Radioactive substances Radius of curvature, reduction from spherometer readings Rainbows and halos, angular radius of Rays, alpha, beta and gamma Reagents, deci-normal solutions of preparation and concentration of Reaumur degree, definition Reciprocals, table of Reduction definition	17 262 535 535 535 531 64 483 510 552 517 505 274 271 534 64
Quadratic equations, solution of Quadrilaterals, area of Qualitative analysis scheme Quality of sound Quantity of sound Quantity of electricity, unit of, definition  R Radian, unit of angle, definition Radians from degrees, conversion table Radiations, wave length of Radioactive substances Radius of curvature, reduction from spherometer readings Rainbows and halos, angular radius of Rays, alpha, beta and gamma Reagents, deci-normal solutions of preparation and concentration of Reaumur degree, definition Reciprocals, table of Reduction definition	17 262 535 535 535 531 64 483 510 552 517 505 274 271 534 64
Quadratic equations, solution of Quadrilaterals, area of Qualitative analysis scheme Quality of sound Quantity of sound Quantity of electricity, unit of, definition  R Radian, unit of angle, definition Radians from degrees, conversion table Radiations, wave length of Radioactive substances Radius of curvature, reduction from spherometer readings Rainbows and halos, angular radius of Rays, alpha, beta and gamma Reagents, deci-normal solutions of "preparation and concentration of Reaumur degree, definition Reciprocals, table of Reduction, definition Reduction, definition  "factors, miscellaneous of barometer readings to sea level and lat. 45° "gas volume "gas volume "gas volume "gas volume "gas volume "gas volume "gas volume "gas volume "gas volume "gas volume "gas volume "gas volume "gas volume "gas volume "gas volume "gas volume "gas volume "gas volume "gas volume "gas volume "gas volume "gas volume "gas volume "gas volume "gas volume "gas volume gas volume "gas volume gas volume gas volume gas volume gas volume gas volume gas volume gas volume gas volume gas volume gas volume gas volume gas volume gas volume gas volume gas volume gas volume gas volume gas volume gas volume gas volume gas volume gas volume gas volume gas volume gas volume gas volume gas volume gas volume gas volume gas volume gas volume gas volume gas volume gas volume gas volume gas volume gas volume gas volume gas volume gas volume gas volume gas volume gas volume gas volume gas volume gas volume gas volume gas volume gas volume gas volume gas volume gas volume gas volume gas volume gas volume gas volume gas volume gas volume gas volume gas volume gas volume gas volume gas volume gas volume gas volume gas volume gas volume gas volume gas volume gas volume gas volume gas volume gas volume gas volume gas volume gas volume gas volume gas volume gas volume gas volume gas volume gas volume gas volume gas volume gas volume gas volume gas volume gas volume gas volume gas volume gas volume gas volume gas volume gas volume gas volume gas volume gas vo	17 262 535 535 535 531 64 483 510 552 517 505 274 271 534 64 449 393 453
Quadratic equations, solution of Quadrilaterals, area of Qualitative analysis scheme Quality of sound Quantity of sound Quantity of electricity, unit of, definition  R Radian, unit of angle, definition Radians from degrees, conversion table Radiations, wave length of Radioactive substances Radius of curvature, reduction from spherometer readings Rainbows and halos, angular radius of Rays, alpha, beta and gamma Reagents, deci-normal solutions of "preparation and concentration of Reaumur degree, definition Reciprocals, table of Reduction, definition Reduction, definition  "factors, miscellaneous of barometer readings to sea level and lat. 45° "gas volume "gas volume "gas volume "gas volume "gas volume "gas volume "gas volume "gas volume "gas volume "gas volume "gas volume "gas volume "gas volume "gas volume "gas volume "gas volume "gas volume "gas volume "gas volume "gas volume "gas volume "gas volume "gas volume "gas volume "gas volume "gas volume gas volume "gas volume gas volume gas volume gas volume gas volume gas volume gas volume gas volume gas volume gas volume gas volume gas volume gas volume gas volume gas volume gas volume gas volume gas volume gas volume gas volume gas volume gas volume gas volume gas volume gas volume gas volume gas volume gas volume gas volume gas volume gas volume gas volume gas volume gas volume gas volume gas volume gas volume gas volume gas volume gas volume gas volume gas volume gas volume gas volume gas volume gas volume gas volume gas volume gas volume gas volume gas volume gas volume gas volume gas volume gas volume gas volume gas volume gas volume gas volume gas volume gas volume gas volume gas volume gas volume gas volume gas volume gas volume gas volume gas volume gas volume gas volume gas volume gas volume gas volume gas volume gas volume gas volume gas volume gas volume gas volume gas volume gas volume gas volume gas volume gas volume gas volume gas volume gas volume gas volume gas volume gas volume gas volume gas volume gas volume gas volume gas volume gas volume gas vo	17 262 535 535 535 531 64 483 510 552 517 505 274 271 534 64 449 393 453
Quadratic equations, solution of Quadrilaterals, area of Qualitative analysis scheme Quality of sound. Quantity of sound. Quantity of electricity, unit of, definition.  Radian, unit of angle, definition. Radians from degrees, conversion table. Radiations, wave length of Radioactive substances. Radius of curvature, reduction from spherometer readings. Rainbows and halos, angular radius of. Rays, alpha, beta and gamma. Reagents, deci-normal solutions of. preparation and concentration of. Reaumur degree, definition. Reciprocals, table of Reduction, definition "factors, miscellaneous. "of barometer readings to sea level and lat. 45° "gas volume. "psychrometric observations. Reflection, diffused. "of light by glass in air.	17 262 535 535 535 531 64 483 510 552 517 505 271 534 64 64 527 574 449 493 493
Quadratic equations, solution of Quadrilaterals, area of Qualitative analysis scheme Quality of sound. Quantity of sound. Quantity of electricity, unit of, definition.  Radian, unit of angle, definition. Radians from degrees, conversion table. Radiations, wave length of Radioactive substances. Radius of curvature, reduction from spherometer readings. Rainbows and halos, angular radius of. Rays, alpha, beta and gamma. Reagents, deci-normal solutions of. preparation and concentration of. Reaumur degree, definition. Reciprocals, table of Reduction, definition "factors, miscellaneous. "of barometer readings to sea level and lat. 45° "gas volume. "psychrometric observations. Reflection, diffused. "of light by glass in air.	17 262 535 535 535 531 64 483 510 552 517 505 271 534 64 64 527 574 449 493 493
Quadratic equations, solution of Quadrilaterals, area of Qualitative analysis scheme Quality of sound. Quantity of sound. Quantity of electricity, unit of, definition.  Radian, unit of angle, definition. Radians from degrees, conversion table. Radiations, wave length of Radioactive substances. Radius of curvature, reduction from spherometer readings. Rainbows and halos, angular radius of. Rays, alpha, beta and gamma. Reagents, deci-normal solutions of. preparation and concentration of. Reaumur degree, definition. Reciprocals, table of Reduction, definition "factors, miscellaneous. "of barometer readings to sea level and lat. 45° "gas volume. "psychrometric observations. Reflection, diffused. "of light by glass in air.	17 262 535 535 535 531 64 483 510 552 517 505 271 534 64 64 527 574 449 493 493
Quadratic equations, solution of Quadrilaterals, area of Qualitative analysis scheme Quality of sound. Quantity of sound. Quantity of electricity, unit of, definition.  Radian, unit of angle, definition. Radians from degrees, conversion table. Radiations, wave length of Radioactive substances. Radius of curvature, reduction from spherometer readings. Rainbows and halos, angular radius of. Rays, alpha, beta and gamma. Reagents, deci-normal solutions of. preparation and concentration of. Reaumur degree, definition. Reciprocals, table of Reduction, definition "factors, miscellaneous. "of barometer readings to sea level and lat. 45° "gas volume. "psychrometric observations. Reflection, diffused. "of light by glass in air.	17 262 535 535 535 531 64 483 510 552 517 505 271 534 64 64 527 574 449 493 493
Quadratic equations, solution of Quadrilaterals, area of Quality of sound Quantity of sound Quantity of electricity, unit of, definition  R Radian, unit of angle, definition Radians from degrees, conversion table Radiations, wave length of Radioactive substances Radius of curvature, reduction from spherometer readings Rainbows and halos, angular radius of Rays, alpha, beta and gamma Reagents, deci-normal solutions of preparation and concentration of Reaumur degree, definition Reciprocals, table of Reduction, definition Reduction, definition  "factors, miscellaneous of barometer readings to sea level and lat. 45° "gas volume "gas volume "gas volume "gas volume "gas volume "gas volume "transparent media in air, formula "transparent media in air, formula "table "table	17 2625 535 535 535 531 64 483 510 5527 517 505 274 444 449 453 453 497 498 553 498 498 498
Quadratic equations, solution of Quadrilaterals, area of Qualitative analysis scheme Quality of sound. Quantity of sound. Quantity of electricity, unit of, definition.  Radian, unit of angle, definition. Radians from degrees, conversion table. Radiations, wave length of Radioactive substances. Radius of curvature, reduction from spherometer readings. Rainbows and halos, angular radius of. Rays, alpha, beta and gamma. Reagents, deci-normal solutions of. preparation and concentration of. Reaumur degree, definition. Reciprocals, table of Reduction, definition "factors, miscellaneous. "of barometer readings to sea level and lat. 45° "gas volume. "psychrometric observations. Reflection, diffused. "of light by glass in air.	17 262 535 535 535 531 64 483 510 552 517 505 271 534 64 64 527 574 449 493 493

	PAGE
Refraction, index of for crystals	492
" " " liquids	494
" " metals	495
" " rock, salt, sylvine, quartz, etc	493
" " solids, various	491
ti ti fammula	553
Relative density and volume of water, -10 to +250° C	366
Relative density and volume of water, -10 to +250 C	
" humidity from the dew point	451
dennition	535
" stimulation of the three primary color sensation by different	
wave lengths	490
Resistance definition	537
Resistance in parallel and series, formulæ	551
of a conductor, formula	551
" aluminum wire, table	677
" copper wire, table	678
tt tt electrolytee	466
electroly tes	
various insulators	472
VOIDALU CELIS	476
" wire, approximate	686
" " specific table	465
" specific table	465
" specific table temperature coefficient, definition	537
" table	465
tt to amphine	376
" to crushing	476
variation due to a magnetic field	
Resolving power, definition	538
Reversible action, definition	527
Rhombus, area of Right angled triangle, trigonometric functions for	17
Right angled triangle, trigonometric functions for	23
Rigidity, modulus of	370
Rochelle salts process for silvering glass	560
Röntgen rays, scale of hardness	505
Roots, cubes and square, table	64
Roots, cubes and square, table	503
Rotation, magneto optic	
ROTATION, Specific, formula	553
Rupture, modulus for woods	377
a	
S	
Salt, definition	527
Saturation constants	355
Scale, musical	455
Seconds pendulum length of for sea level various latitudes	522
Sector of an annulus, area of	20
" " " - ila	19
a circle, area of	19
Segment of a circle, area of	
Seismic waves, velocity of	517
Self-induction definition	538
Sensitiging formula for blue nent namer	554
Sensitiveness of the eve. variation with wave length	484
Separation of the aluminum and iron group	264
" " hosic constituents into groups	262
" " copper and tin group	263
	266
Series, algebraic formula for resistance in	15
" formula for registance in	551
of metals, electromotive force	357
Of metals, electromotive force	23
Signs of the trigonometric functions	262
Silver group analysis of	
Silvering glass	558
Silvering glass Simple harmonic motion, definition	532
" formulæ	542
" machine, definition	533
" " formulæ	543
Soap solution for soap films	560
Sedium conherente annife gravity of aqueous solutions	330

	PAGE
Sodium chloride, specific gravity of aqueous solutions	331
" hydroxide, specific gravity of aqueous solutions	329
" light, to produce. Solar constant. Solar spectrum, wave length of Fraunhofer lines.	561
Solar constant	517
Solar spectrum, wave length of Fraunnoier lines	484
" system, data concerning	516 561
Solders	513
Solids cubical expansion of	388
" fused, surface tension of	380
" linear expansion of	384
" various, density of	362
" specific heat of	401 277
mear expansion of various, density of specific heat of Solubility chart for inorganic compounds of cane sugar	279
" of inorganic salts at various temperatures	278
" inorganic compounds	
" organic compounds	143
" organic compounds product, definition	527
" table	355
Solution, heat of	298
Solution tension theory	526
Solutions, aqueous, see under aqueous solutions.	274
" deci-normal density of aqueous	368
Sound, velocity of	454
Snarking notential for air	457
Sparking potential for air	461
Specific gravity, definition	531
" of aqueous solutions	321
" " " of acetic acid	323
" " " " alcohol	332
" " ammonium chloride	331 327
" " " " " hydroxide " " hydrochloric acid	327 326
" " " " nitric acid	324
" " " " potassium carbonate	330
" " " " potassium chloride	313
" " " " hydroxide	328
" " " sodium carbonate	330
" " " chloride	331
" " " " " hydroxide	329
" " suipnuric acid	321 351
" gases and vaporsinorganic compounds	99
" " organic compounds	143
" the elements	92
" heat, definition	534
" formula	547
" of ageous solutions	402
" " gases	404
mercurv	393 394
" " the elements	402
" " solids	401
11 11 11 maton	393
inductive capacity, definition	536
	458
" resistance, definition	537
" tables	468
rotation, formula	553 502
table	485
Spectroscope celibration wave lengths for	484
Spectroscope calibration, wave lengths for	484
Speed, definition and unit	032
Sphere, surface and volume	21

708

	`	PAGE
Spherical aberration, definition		. 538
mirrors, formula		
polygon, area		. 22
segment, surface and volume		. 22
triangle, area of	• • • •	. 22
Spheroid, surface and volume	• • • •	$\frac{22}{100}$
Spherometer readings, reduction of	• • • •	. 552
Square roots, table of	• • • •	. 64 . 14
" table of	• • • •	. 64
table of	• • • •	. 554
Standard candles	• • • •	. 481
Standard candles	• • • •	. 462
Stars, mean places of	• • • •	. 515
Steam, properties of saturated		. 432
Steam, properties of saturated. Steradian, unit of solid angle, definition		. 531
Stopcock grease Stops for photographic lenses, comparison of systems Straight line, equations of		. 561
Stops for photographic lenses, comparison of systems		. 469
Straight line, equations of		. 28
Strain, definition Strength of metals, tensile		. 533
Strength of metals, tensile		. 377
Stress, definition		. 414
Stress, definition. Stub's gauge, dimensions of wire		. 675
" steel wire gauge		. 673
Sugar, solubility of		. 279
Sulphates, decomposition of anhydrous		. 353
dehydration of		352
Sulphuric acid, specific gravity of aqueous solutions		. 321
Sums of angles, trigonometric functions of		. 24
" " numbers	. <b></b> .	. 14
Sun, declination of	• • • •	. 515
Surface and volume of solids	• • • •	$\frac{21}{200}$
density of electric charge, definition	• • • •	. 536
" magnetism, definition tension, definition and unit	• • • •	. 536
" "formula	• • • •	. 533 . 544
10rmula	• • • •	. 380
" of alcohol	• • • •	. 379
" aqueous solutions " fused solids		
" " various liquids		. 379
" water	• • • •	380
Susceptibility, magnetic	• • • •	475
Symbols of the elements		
Synonyms of organic compounds		142
Synonymb of organic compounds		
and the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second o		
T		
Tangent galvanometer, formulæ		552
Tank developers, photographic		566
Taylor's series		15
Taylor's series		393
" correction for barometer readings		446
" critical for gases		
" definition and units		534
" fixed points for calibration		413
for maximum density of pure water resistance coefficient, definition		362
resistance coefficient, definition	<b>.</b> .	537
" table Temperatures, high and low		465
Temperatures, high and low	<b></b>	444
Tensile strength of metals	• • • • •	377
Tension, surface, see under surface tension.		
" vapor, see under vapor tension.		478
Terrestrial magnetism, constants of		269
Tests, flame and bead	• • • •	106
Theories, chemical	• • • • •	526
1 HOULION, CHOMHUAL		040

	534
	534 384
expansion coemcients	546
	473
Thermometer, gas formula	546
	384
	515 531
" unit of	264
	134
Tons and pounds — comparison of	582
Torque, definition and unit	532
" formula. Tractive force of a magnet.	541 550
	499
Transparency, coefficient of, for glass	497
Transparency, coefficient of, for glass	553
Triangle, area of	17
Triangles, formulæ for solution of	, 23 23
Trigonometric formulæ Trigonometric functions, logarithms of	59
" natural	54
" relations in triangles	25
series	16 572
	364
Twist drill gauge	50
Twist dilli gadgo	
$\overline{\mathbf{U}}$	
	531
Units, fundamentar.	561
Universal wax	
Universal wax	570
Universal wax. U. S. standard weights and measures.	
Universal wax. U. S. standard weights and measures V	570
Universal wax. U. S. standard weights and measures.  V Valence of the elements.	570 87
Universal wax U. S. standard weights and measures  V Valence of the elements	570 87 410
Universal wax U. S. standard weights and measures  V Valence of the elements	570 87 410 369 415
Universal wax U. S. standard weights and measures  V Valence of the elements Van der Waals' constants for gases Vapor density of saturated vapors at the boiling point Vapor pressure, see under vapor tension Vapor pressure, see under vapor tension	570 87 410 369 415 422
Universal wax U. S. standard weights and measures  V Valence of the elements Van der Waals' constants for gases Vapor density of saturated vapors at the boiling point Vapor pressure, see under vapor tension Vapor pressure, see under vapor tension	87 410 369 415 422 421
Universal wax. U. S. standard weights and measures.  V Valence of the elements. Van der Waals' constants for gases. Vapor density of saturated vapors at the boiling point. Vapor pressure, see under vapor tension. Vapor tension, lowering by salts in solution.  of mercury.  of mercury.  of mercury.  of "" "vapors substances.	87 410 369 415 422 421 424
Universal wax U. S. standard weights and measures.  Valence of the elements. Van der Waals' constants for gases. Vapor density of saturated vapors at the boiling point. Vapor pressure, see under vapor tension. Vapor tension, lowering by salts in solution.  """ yarious substances.  """ water.  """ water.	87 410 369 415 422 421
Universal wax U. S. standard weights and measures.  Valence of the elements. Van der Waals' constants for gases. Vapor density of saturated vapors at the boiling point. Vapor pressure, see under vapor tension. Vapor tension, lowering by salts in solution.  """ yarious substances.  """ water.  """ water.	570 87 410 369 415 422 421 424 415 534 484
Universal wax U. S. standard weights and measures  V Valence of the elements. Van der Waals' constants for gases. Vapor density of saturated vapors at the boiling point. Vapor pressure, see under vapor tension. Vapor tension, lowering by salts in solution.  '' of mercury.  '' '' various substances.  '' water Vaporization, heat equivalent of, definition. Variation in sensitiveness of the eye.	570 87 410 369 415 422 421 424 415 534 484 476
Universal wax U. S. standard weights and measures  Valence of the elements Van der Waals' constants for gases Vapor density of saturated vapors at the boiling point Vapor pressure, see under vapor tension Vapor tension, lowering by salts in solution  " of mercury " " various substances " " water Vaporization, heat equivalent of, definition Variation in sensitiveness of the eye  of resistance due to magnetic field	570 87 410 369 415 421 421 421 476 539
Universal wax U. S. standard weights and measures  V Valence of the elements Van der Waals' constants for gases Vapor density of saturated vapors at the boiling point Vapor pressure, see under vapor tension. Vapor tension, lowering by salts in solution.  " " arious substances.  " " water Vaporization, heat equivalent of, definition Variation in sensitiveness of the eye.  " of resistance due to magnetic field Vectors, composition of, formula. Velocity, definition and unit.	570 87 410 369 415 422 421 424 415 534 484 476
Universal wax  Valence of the elements. Van der Waals' constants for gases. Vapor density of saturated vapors at the boiling point Vapor pressure, see under vapor tension. Vapor tension, lowering by salts in solution.  " of mercury. " " various substances. " " water. Vaporization, heat equivalent of, definition Variation in sensitiveness of the eye.	570 87 410 369 415 422 421 424 415 534 476 539 545
Universal wax U. S. standard weights and measures  V Valence of the elements. Van der Waals' constants for gases. Vapor density of saturated vapors at the boiling point Vapor pressure, see under vapor tension. Vapor tension, lowering by salts in solution.  "of mercury" "various substances. "water Vaporization, heat equivalent of, definition Variation in sensitiveness of the eye. of resistance due to magnetic field Vectors, composition of, formula. Velocity, definition and unit. "formula. "of efflux, formula. "effection of comula.	570 87 410 369 415 422 421 424 476 539 545 548
Universal wax.  Valence of the elements. Van der Waals' constants for gases. Vapor density of saturated vapors at the boiling point. Vapor pressure, see under vapor tension. Vapor tension, lowering by salts in solution.  " of mercury. " " various substances. " " water. Vaporization, heat equivalent of, definition. Variation in sensitiveness of the eye.  of resistance due to magnetic field. Vectors, composition of, formula. Velocity, definition and unit. " of efflux, formula. " of efflux, formula. " of efflux, formula. " " sound, formula. " " sound, formula. " " " table	570 87 410 369 415 422 421 424 415 534 476 539 545 548 454
Universal wax.  Valence of the elements. Van der Waals' constants for gases. Vapor density of saturated vapors at the boiling point. Vapor pressure, see under vapor tension. Vapor tension, lowering by salts in solution.  " of mercury. " " various substances. " " water. Vaporization, heat equivalent of, definition. Variation in sensitiveness of the eye.  of resistance due to magnetic field. Vectors, composition of, formula. Vectority, definition and unit. " of efflux, formula. " of efflux, formula. " " sound, formula. " " sund, formula. " " table . " " waves, formula.	570 87 410 369 415 422 421 424 476 539 545 548
Universal wax  Valence of the elements. Van der Waals' constants for gases. Vapor density of saturated vapors at the boiling point Vapor pressure, see under vapor tension. Vapor tension, lowering by salts in solution.  " of mercury. " " various substances. " " water. Vaporization, heat equivalent of, definition Variation in sensitiveness of the eye.	570 87 410 369 442 421 424 415 534 476 539 545 454 545 454 533 544
Universal wax U. S. standard weights and measures  Valence of the elements. Van der Waals' constants for gases. Vapor density of saturated vapors at the boiling point. Vapor pressure, see under vapor tension. Vapor tension, lowering by salts in solution.  """ various substances.  """ water Vaporization, heat equivalent of, definition. Variation in sensitiveness of the eye.  of resistance due to magnetic field. Vectors, composition of, formula.  """ of efflux, formula.  """ of efflux, formula.  """ waves, formula.  """ waves, formula.  """ waves, formula.  """ waves, formula.  """ formula.  """ formula.  """ formula.	570 87 410 369 442 421 424 415 534 476 539 545 545 545 533 544 533 544 545 534 534
Universal wax U. S. standard weights and measures  Valence of the elements. Van der Waals' constants for gases. Vapor density of saturated vapors at the boiling point. Vapor pressure, see under vapor tension. Vapor tension, lowering by salts in solution.  """ various substances.  """ water Vaporization, heat equivalent of, definition. Variation in sensitiveness of the eye.  of resistance due to magnetic field. Vectors, composition of, formula.  """ of efflux, formula.  """ of efflux, formula.  """ waves, formula.  """ waves, formula.  """ waves, formula.  """ waves, formula.  """ formula.  """ formula.  """ formula.	570 87 410 369 415 422 421 424 415 534 457 532 545 454 534 438 1381
Universal wax  Valence of the elements.  Van der Waals' constants for gases.  Vapor density of saturated vapors at the boiling point.  Vapor pressure, see under vapor tension.  Vapor tension, lowering by salts in solution.  " of mercury.  " " various substances.  " " water.  Vaporization, heat equivalent of, definition.  Variation in sensitiveness of the eye.  of resistance due to magnetic field.  Vectors, composition of, formula.  Velocity, definition and unit.  " of efflux, formula.  " of efflux, formula.  " sound, formula.  " waves, formula.  " table.  " waves, formula.  " formulæ.  " of gases.  " water and other liquids.  Voltaic cells, electromotive force and composition of	570 87 410 369 442 421 424 415 534 476 539 545 545 545 533 544 533 544 545 534 534
Universal wax  Valence of the elements.  Van der Waals' constants for gases.  Vapor density of saturated vapors at the boiling point.  Vapor pressure, see under vapor tension.  Vapor tension, lowering by salts in solution.  " of mercury.  " " various substances.  " " water.  Vaporization, heat equivalent of, definition.  Variation in sensitiveness of the eye.  of resistance due to magnetic field.  Vectors, composition of, formula.  Velocity, definition and unit.  " of efflux, formula.  " of efflux, formula.  " sound, formula.  " waves, formula.  " table.  " waves, formula.  " formulæ.  " of gases.  " water and other liquids.  Voltaic cells, electromotive force and composition of	570 87 410 369 415 422 424 415 534 447 532 545 545 545 545 545 547 533 812 447 653 653 653 653 653 654 654 654 654 654 654 654 654 654 654
Universal wax  Valence of the elements.  Van der Waals' constants for gases.  Vapor density of saturated vapors at the boiling point.  Vapor pressure, see under vapor tension.  Vapor tension, lowering by salts in solution.  " of mercury.  " " various substances.  " " water.  Vaporization, heat equivalent of, definition.  Variation in sensitiveness of the eye.  of resistance due to magnetic field.  Vectors, composition of, formula.  Velocity, definition and unit.  " of efflux, formula.  " of efflux, formula.  " sound, formula.  " waves, formula.  " table.  " waves, formula.  " formulæ.  " of gases.  " water and other liquids.  Voltaic cells, electromotive force and composition of	570 87 410 369 415 422 424 415 534 4476 532 5539 5454 5454 5533 462 476 5367
Universal wax  Valence of the elements.  Van der Waals' constants for gases.  Vapor density of saturated vapors at the boiling point  Vapor pressure, see under vapor tension.  Vapor tension, lowering by salts in solution.  " of mercury.  " " various substances.  " " water.  Vaporization, heat equivalent of, definition  Variation in sensitiveness of the eye.  of resistance due to magnetic field.  Vectors, composition of, formula.  Velocity, definition and unit.  " formula.  " of efflux, formula.  " is ound, formula.  " water, formula.  " " waves, formula.  " " waves, formula.  " " formula.  " " waves, formula.  " " waves, formula.  " " waves, formula.  " " waves, formula.  " " water and other liquids.  Voltaic cells, electromotive force and composition of internal resistance of  Volt, definition.  Volt, definition.  Volt, definition.  Volt, definition.	570 870 410 369 415 421 421 421 421 421 431 532 447 653 454 534 447 653 447 653 447 653 447 653 447 653 447 653 447 653 447 653 447 653 447 653 447 653 447 653 447 653 653 653 653 653 653 653 653 653 653
Universal wax  Valence of the elements.  Van der Waals' constants for gases.  Vapor density of saturated vapors at the boiling point.  Vapor pressure, see under vapor tension.  Vapor tension, lowering by salts in solution.  " of mercury.  " " various substances.  " " water.  Vaporization, heat equivalent of, definition.  Variation in sensitiveness of the eye.  of resistance due to magnetic field.  Vectors, composition of, formula.  Velocity, definition and unit.  " of efflux, formula.  " of efflux, formula.  " " waves, formula.  " " waves, formula.  " " formula.  " " formula.  " " waves, formula.  " " waves, formula.  Viscosity, definition.  " formula.  " waves, formula.  " " water and other liquids.  Voltaic cells, electromotive force and composition of internal resistance of volt, definition.  Volt, definition.  " " " water, table.  " " " water, table.  " " " " " " " " " " table.  " " " " " " " " " " " " " " " " " " "	570 870 410 3415 421 421 421 421 421 431 532 532 544 433 4476 533 4476 533 4476 533 4476 533 4476 533 4476 533 4476 533 4476 533 4476 533 4476 533 5476 5476 5476 5476 5476 5476 5476 5476
Universal wax  Valence of the elements.  Van der Waals' constants for gases.  Vapor density of saturated vapors at the boiling point.  Vapor pressure, see under vapor tension.  Vapor tension, lowering by salts in solution.  " of mercury.  " " water.  Vaporization, heat equivalent of, definition.  Variation in sensitiveness of the eye.  of resistance due to magnetic field.  Vectors, composition of, formula.  Velocity, definition and unit.  " of efflux, formula.  " of efflux, formula.  " sound, formula.  " table.  " waves, formula.  " formulæ.  " of gases.  " water and other liquids.  Voltaic cells, electromotive force and composition of internal resistance of water and density of mercury, table.  " " water, table.  " " water, table.  " " water, table.  " " " warface of solidis.  " " " " " " " " table.  " " " " " " " " " " " " " " " " " " "	570 870 410 3415 421 421 421 421 421 431 532 532 544 433 4476 533 4476 533 4476 533 4476 533 4476 533 4476 533 4476 533 4476 533 4476 533 4476 533 5476 5476 5476 5476 5476 5476 5476 5476

$\mathbf{w}$	PAGE
Washburn and Moen wire gauge	673
Water, absolute density, table	365
" boiling point of	352
boiling point of	420
" equivalent, definition	534
" maximum density of	362
" relative density and volume, table	366
" specific heat, table	393
" surface tension, table	380
" vapor, mass in saturated air	447
" vapor tension of, table	415
" viscosity of, table	381
Watt, unit of power, definition	533
Wax, soft or universal	561
Waxes and fats, constants of	256
Wave length for spectroscopic calibration	484
" of the Fraunhofer lines	484
" " " principal lines of the elements	485
" " various radiations	483
" motion, definition	535
" velocity of, formula	547
Weight, definition and unit	532
" " conversion factors	576
" (mass) of one liter of various gases	351
Weights and magnings tables	570
Weights and measures, tables	453
Wheatstone's bridge, formula	551
Wine approximate resistance for various metals	686
Wire, approximate resistance for various metals.  "cross section and mass for copper, iron, brass and aluminum	683
dimensions of British Standard Gauge	676
" " mass and resistance for copper	678
" "Stub's Gauge	675
" gauges, comparison of	673
gauges, comparison of	674
" tables	673
Wolfram, tungsten	96
Woods, modulus of rupture for	377
Wood stain, acid proof	554
Work, definition and unit	533
" formula	542
iorinuis	
and the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of th	
$\mathbf{X}$	
X rays, scale of hardness	505
Y	
	531
Yard, U. S. standard, metric equivalent for	543
Young's modulus, formulæ	370
" table	310
· · · · ·	
$oldsymbol{z}$	
	nee

	아이들이 많은 아이를 가장하는 것이 있는 사람들이 되었다. 그는 그는 그를 가장 하지만	
	그 그 사람들이 되었다. 그 사람들은 그는 그는 그는 그를 모르는 것이 되었다. 사람들은 사람들은 사람들이 되었다.	
100	하다 맛있는 바로 그는 모든 속에 하는 모든 그가 뭐 그는 모든 모든 모든 모든 그 가는 이 없는데 되었다.	
		d
	ကြီးကို ကြောင့်သည် သည်သည်။ သူလင်းသည်။ လေသို့ သည်သည် သည်သည်။ လေသည် သည်သည် သည်သည် သည်သည်။ လေသည်သည်။ လေသည်လည်း မောက်ကြောင်းသည် ကြောင်းသည် ကြောင်းသည် ကြောင်းသည် သည်သည် သည်သည် သည် သည် သည် သည်သည် သည်သည် သည်	
	rangan galangga a dalah karangga karangga pangga na miningga karangga na miningga karangga karangga na miningg	
	الطائب أنكاب الأكثب أنجيئ بالمحتك بالأنبان والمتعدد ويتعال والمعامي ويحاج وتعيد ويسرج ويعافوه ولأفا والإنجاب	
	والمناز والمراكب والمراكب والازماع والمناور المستري المحاسب والمعاور والمساور والمساورة والمستروع ولا والمارا	
	in applications for the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contra	
	in a sa a laborar de la capación de la capación de la capación de la capación de la capación de la capación de	
	andrologia po nikin e populacija iz piekiteri	
1,	وها الربول الأوراد الرائي الأراث الإستان والاستان والمناف ووود والمراز والأواد والمنافرة	
-		Ì,
	요즘 선생님 사람들은 보다 보고 있는 것이 없는 것이 없는 것이 없는 것이다. 그렇게 되었다면 보다 없는 것이다. 그렇게 되었다면 보다 없는 것이다면 보다 없다면 없다면 없다면 보다 없다면 없다면 다른데 없다면 되었다면 없다면 없다면 없다면 되었다면 없다면 없다면 없다면 없다면 없다면 없다면 없다면 없다면 없다면 없	
	ကြုံများသည်။ မြေများသည်။ မေးကြောင်းသည်။ မေးများများများသည်။ မေးကြောင်းသည်။ မေးကြောင်းသည်။ မြေများသည်။ မြေများသည	
	الأنام الفين الأسويل فأناد بكأ أأفور بكي عام الماء الموام المواد والمواد الموجد الموجوع المعام أنق فحواج في	
	ကြောက်သို့သို့ ရေသည်။ မေရို မေရိုမေရ မေရ မေရ မေရ မေရ မေရ မေရ သည် သည် (၁၈၂၄) သို့ပြီး (သို့သည်) (၁၈၂၄) (၁၈၂၄) က	
	ကြောင်းများသည်။ မောက်များသည်။ မေရာက်များသည်။ ကြောင်းများသည်။ ကြောင်းများသည်။ ကြောင်းများသည်။ ကြောင်းများသည်။ က	
	Breeze, and a result of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the se	
1		
	transa da de la companya da de la companya da de la companya da de la companya da de la companya da de la comp	
	마르크 (1985년 - 1985년 - 1985년 - 1985년 - 1985년 - 1985년 - 1985년 - 1985년 - 1985년 - 1985년 - 1985년 - 1985년 - 1985년 - 1 - 1985년 - 1985년 - 1985년 - 1985년 - 1985년 - 1985년 - 1985년 - 1985년 - 1985년 - 1985년 - 1985년 - 1985년 - 1985년 - 1985	
( · ·	. 1985년 - 1985년 - 1985년 - 1985년 - 1985년 - 1985년 - 1986년 - 1986년 - 1986년 - 1986년 - 1986년 - 1986년 - 1986년 - 1986	
	aka Pala Maraji ke paraja ana arat 1912 mereberah mendelengan terbagian diberah meneberah Seberah Maraji Kebad Paraji anggalanggalanggalanggan diberah mendelengan pengengan pengelanggan pengelanggan diberah Maraji mendele	
	والمرابع والمرابع والمرابع والمرابع والمرابع والمرابع والمرابع والمرابع والمرابع والمرابع والمرابع والمرابع والمرابع	
	Agreement of the first control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of th	
	redesign from the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the con	
1.	The second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of th	
	and the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second o	÷
		ŝ
	ત્રા સ્ટુપ્ત કરવા મુખ્યત્વે તે પાસન વસ્તુ માનું મુખ્યત્વે મુખ્ય એક કરવા છે. આ ફોર્ડ જેલ્લું જિલ્લો જો જોઈ હાલું	
	Anger en fille for the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of th	
	그렇게 살아보다 하는 사람들은 사람들이 되는 사람들이 되었다. 그는 사람들이 살아 살아 살아 없다.	
4,		
	생기에 가장 하지 않아 그 아이에 아이에 나는 사람들은 사람들은 사람들이 되었다.	
	and the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second o	
( · ;	personal and the second of the second of the second of the second of the second of the second of the second of	
	terenganjaran kangaliaran kangaliaran baratan kangan bermatan bermatan bermatan bermatan bermatan bermatan ber	
-,*		
4		
	를 하고 한 것을 하면 하면 하다 하네요. 그 모습니다 하네요. (Here Here) 전투 현재하는 (Here) [18	

# Ainsworth Precision Balances

Are used by Critical Assayers and Chemists in Smelting, Chemical and Steel Works, Industrial Laboratories and Educational Institutions Everywhere.

SENSITIVITIES 0.1 to 0.001 mg.



# This Type LL Analytical Balance WITH VERNIER RIDER CARRIER Patented

Enables weighing up to 50 milligrams with the rider on the beam which is also used for balancing. No weights below 50 milligrams are required to be handled. Superior to any similar device and cheaper.

Send for Catalog A-O showing our complete line of balances and weights.



THE PRECISION FACTORY

DENVER,COLO.

• U.S.A. •

#### RUBBER TUBING



Rubber tubing suitable for chemical laboratory work must be of special composition to withstand the hard usage and particular requirements.

Serious difficulty and embarrassment will result should it give out unexpectedly in the midst of an important experiment.

The various grades of tubing herein listed are especially compounded to meet the demands of the Chemical Laboratory—a selection based upon the recommendation of Professors in charge of some of the largest high

schools and colleges throughout the United States.

Several years of successful use of these tubings in the largest and most important laboratories of the country has convinced us of their superiority for the work.

The same high standard of quality will be maintained, as we realize the importance of supplying the trade with such goods as will prove satisfactory and add to our long list of patrons.

The compounds of our various tubings are carefully made and contain

no foreign substance which might cause rubber to deteriorate.

The various materials are chosen with the object of supplying a product of low specific gravity. The compound is not adulterated in order to accomplish this, therefore we are able to give an unusual number of feet of tubing per pound. All grades of tubing are of the lowest specific gravity consistent with good quality of stock.

Rubber tubing may be had in five different grades which are especially adapted to the various laboratory work. We also give a list showing the approximate number of feet per pound of tubing from which the cost per foot can be quickly computed for the various sizes and grades.

No. 423 White Wrapped Tubing No. 435 White Wrapped Pressure Tubing

No. 462 Antimony Tubing No. 508 Antimony Tubing, hand made No. 572 Pure Gum Tubing, hand made

Inside Measurements	Approximate Number of Feet per Pound Tubing.					
weasurements.	No. 572.	No. 508.	No. 462.	No. 435.	No. 423.	
inch	150 65 48 32 22 17	110 53 36 25 16 13	77 39 25 19 14 9	20 13 10 8 6 5	64 33 22 17 13	

Pure Gum Tubing carried in stock in \$ and \$ in. All other sizes not listed, made to order.

#### RUBBER STOPPERS



The compound used in our rubber Stoppers has received the same consideration and careful selection as our Rubber Tubing. The points considered were to obtain a compound of exceptional wearing quality, at the same time have a maximum flexibility which would be retained as long as the life of the stopper, the lasting qualities of the stock being of most importance.

These stoppers are made in the sizes termed "The New Chemists' Style." The taper is such as will make a most suitable and tight joint-

Three styles of stoppers are carried in stock in all sizes mentioned with one-hole, two-hole and without holes. In addition three-hole stopper can be furnished when ordered in quantities which permit of special manufacture and can be had in two weeks from date of order.

The holes are of different size, depending upon size of stopper, graduated from  $\frac{4}{12}$ " in the No. 00 to a  $\frac{1}{12}$ " hole in the No. 13 stopper. This is essential on account of the larger tubing required where large stoppers are used, also on account of impracticability of a large hole in small stopper.

The approximate number of stoppers per pound is shown on the list, from which the cost per dozen can be readily computed. You will note that all prices on rubber material are per pound. This we find most satisfactory, as it does not burden certain sizes with additional charge to overcome a lower quotation on other sizes. You can readily realize the impossibility of figuring the prices accurately and giving a just price on all the various sizes due to slight fluctuations in weight.

#### No. 483 Chemists' Stoppers

Carried in stock in sizes Nos. 00 to 13. Solid, One Hole or Two Holes.

Order by No.	Approximate No. of Stoppers per Pound.	Diameter at Top.	Diameter at Bottom.	Length.
00 0 1 2 3 4 5 6 7 8 9 10 11 12 13	150 per lb. 80 85 50 40 26 215 12 17 6 5 5	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	in.  1

# RUBBER APRONS

# No. 1290

A LOW priced equipment for which there is a big demand, owing to its lightness and serviceability. Used especially where experimental work is not continuous.

## No. 1230

A MEDIUM grade material of heavier weight, which will give excellent service; also used around automobiles or where greasy substances are used.

## No. 1260

SED principally by medical students where cleanliness must be practiced, and also in laboratories where lady students perform their own experiments.

## No. 1215

OUR best set made of the highest grade material for constant use in laboratories; also used extensively for other innumerable purposes. Its lasting qualities make it especially adaptable where severe service and constant use prevails, affording protection against the most trying conditions.



THE Apron is cut to fit the body, and will in no way hamper the movements of the student. The construction permits raising or lowering to fit any size person with comfort.

The apron is 36 inches wide and 46 inches long. Extra lengths may be had at an increase of 10 per cent over the list price.

CHEMICAL RUBBER CO.

CLEVELAND, - - - - - - OHIO

# Complete Equipment for The Modern Laboratory

In addition to our own rubber products we are now prepared to furnish promptly from stock everything required in the equipment of a complete modern laboratory.

Lines that we feature especially include

Pyrex Glassware
Whatman Filter Papers
Baker's C.P. Chemicals
Freas Ovens
Hydrometers
Hoskin's Furnaces
Brown Pyrometers
Vitreosil—Pure
Fused Silica
Gas Testing Apparatus

Analytical Balances
Porcelain
Thermometers
Platrinum Ware
Electric Hot Plates
Water Stills
Laboratory Hardware
Laboratory Furniture

Descriptive literature and quotations gladly submitted.

LABORATORY SUPPLY DIVISION

The Chemical Rubber Company
Cleveland, Ohio

#### AN UNEXCELLED STOCK OF Chemicals -- Reagents

For quality, for completeness of assortment, our stock of Chemicals is nowhere surpassed.

Assembled with the utmost discrimination the Chemicals are not only thoroughly dependable but of the highest uniformity. And through the exercise of equal care and foresight these are available at all times in abundant quantities at the lowest prices.

## Besides a representative stock of Baker's Analyzed Chemicals

we offer the best products of other laboratories and manufacturers of note including, Merck, Mallinckrodt, Baker & Adamson, Eastman Kodak Co., Squibb and Harmer Laboratories.

To secure prompt deliveries send your requisitions to us. Better than 95% of orders received are filled immediately from stock notwithstanding frequent market shortages.

## The Chemical Rubber Company Cleveland, Ohio

#### Precision Graduated Chemical Glassware

If any class of goods in our comprehensive stock of laboratory equipment has been the subject of more thought, more painstaking care than another it is the graduated glassware.

We have recognized the need of accuracy by an attention to detail that is evidenced in the superior character of our cylinders, flasks, burettes and pipettes. This is true both of our regular line and those that are offered with

## Factory or U.S. Bureau of Standards Certificate

Nothing has been admitted to our stock that cannot be guaranteed in this essential feature.

While this policy has barred inferior grades, the difference in price is far less in all instances than the difference in quality.

LABORATORY SUPPLY DIVISION

The Chemical Rubber Company
Cleveland, Ohio

### Our Money Back Policy A Guarantee of Quality

HETHER of our own manufacture or not, the goods we sell carry our unequivocal guarantee of reliability and the assurance that they have been rightly priced.

If an article proves unsatisfactory for any cause whatsoever, we will gladly replace it.

If it is found that the same quality may be obtained elsewhere for less than our price, the goods may be returned and credit will be allowed or money promptly refunded.

Under this policy, cheerfully executed at all times, carte blanche orders may be given with all the safety and protection of those placed upon quotations.

The Chemical Rubber Company
Cleveland, Ohio





































