Se F è una funzione pseudocasuale, allora Π^F è un cifrario sicuro contro attacchi CPA.

In breve: si crea un distinguitore D che usi l'attaccante A e si mostra così che la probabilità di vittoria in PrivK e in D coincidono: la probabilità di PrivK in caso di generatore realmente casuale è ricavabile espandendo PrivK con l'evento Repeat, si ricava quella in caso di FP.

Si considera prima di tutto lo schema $\hat{\Pi}$ del tutto simile a Π^F ma in cui \hat{Gen} sceglie una funzione casuale f_n tra tutte quelle da $\{0,1\}^n$ a $\{0,1\}^n$ ed \hat{Enc} usa f_n al posto di F_k per cifrare.

È possibile costruire un distinguitore D che utilizzi l'avversario A di $PrivK_{A,\hat{\Pi}}^{CPA}$ generando un r ogni volta che A ha intenzione di effettuare una chiamata all'oracolo, ritornandogli poi il risultato di O(r). A questo punto possono succedere due cose:

- Dopo una chiamata all'oracolo, A ottiene un risultato che contiene lo stesso valore random r utilizzato per cifrare m_b , questo porta A ad una vittoria certa. A può effettuare al massimo un numero polinomiale q(n) di richieste all'oracolo, ognuna delle quali ritorna un valore random lungo n scelto uniformemente, portando ad una probabilità che due r coincidano di: $\frac{q(n)}{2^n}$.
- Dopo una chiamata all'oracolo, il valore r ritornato non è mai stato ritornato prima, questo lascia ad A la stessa probabilità di tirare a caso tra m_0 ed m_1 : $\frac{1}{2}$.

Definiamo l'evento $\mathbf{Repeat} = "r$ appartenente al challenge-chipertext passato ad A viene ritornato anche da (almeno) una chiamata all'oracolo". Quindi abbiamo:

$$\begin{array}{l} Pr(PrivK_{A,\hat{\Pi}}^{CPA}(n)=1) = \\ Pr(PrivK_{A,\hat{\Pi}}^{CPA}(n)=1 \ \land \ \mathbf{Repeat}) + Pr(PrivK_{A,\hat{\Pi}}^{CPA}(n)=1 \ \land \ \neg \ \mathbf{Repeat}) \leq \\ Pr(\mathbf{Repeat}) + Pr(PrivK_{A,\hat{\Pi}}^{CPA}(n)=1 \ \land \ \neg \ \mathbf{Repeat}) \leq \\ \frac{q(n)}{2^n} + \frac{1}{2} \end{array}$$

Sappiamo ora che: $Pr(PrivK_{A,\hat{\Pi}}^{CPA}(n)=1) \ \leq \ \frac{1}{2} + \frac{q(n)}{2^n}$

Mentre per un cifrario che utilizza F_k sappiamo che: $Pr(PrivK_{A,\Pi^F}^{CPA}(n)=1) \leq \frac{1}{2} + \epsilon(n)$ dove $\epsilon(n)$ non sappiamo se sia trascurabile o meno.

Per come è costruito il distinguitore D è chiaro che:

$$Pr(PrivK_{A,\hat{\Pi}}^{CPA}(n) = 1) = Pr(D^{f_n}(1^n) = 1)$$

 $Pr(PrivK_{A,\Pi^F}^{CPA}(n) = 1) = Pr(D^{F_k}(1^n) = 1)$

Avendo assunto essere F una funzione pseudocasuale, allora vale che:

$$|Pr(D^{f_n}(1^n) = 1) - Pr(D^{F_k}(1^n) = 1)| \le negl(n)$$

Sostituendo con i valori che abbiamo noti:

$$\begin{array}{l} negl(n) \geq \\ |Pr(D^{f_n}(1^n) = 1) - Pr(D^{F_k}(1^n) = 1)| = \\ |Pr(PrivK_{A,\hat{\Pi}}^{CPA}(n) = 1) - Pr(PrivK_{A,\Pi^F}^{CPA}(n) = 1) \geq \\ \frac{1}{2} + \epsilon(n) - \frac{1}{2} - \frac{q(n)}{2^n} = \\ \epsilon(n) - \frac{q(n)}{2^n} \\ \text{Quindi: } \epsilon(n) \leq negl(n) + \frac{q(n)}{2^n} \text{ è trascurabile.} \end{array}$$