

Diskrete Strukturen Tutorium

Jay Zhou Technische Universität München Garching b. München, 5. Februar 2023

Algebra

Algebra — Definition

- $-\varphi(n) = |\mathbb{Z}_n^*| = n \cdot \prod_{\substack{p \mid n \text{ Alle Primfaktoren}}} (1 \frac{1}{p})$
- Ordnung: opord n = neutral n op sich selbst ord mal
- -< n> bezeichnet die Gruppe von aller Elemente eines Ordnungsrechens

Algebra — Inverse

Erweiterter Euklidische Algorithmus

$$ggT(54,888) = 54 \cdot 33 + 888 \cdot (-2) = 6$$

Algebra — Modulo

```
\begin{split} &-(a\cdot b)\equiv_n (a\mod n)\cdot (b\mod n)\\ &-a^b\equiv_n (a\mod n)^b\\ &-a^b\equiv_n (a\mod n)^b\mod (n-1) \text{ nur wenn } n\text{ is prim, und } a\text{ nicht teilbar durch } n\\ &-a^{\varphi(n)-1}\equiv_n a^{-1} \end{split}
```

Beispiel:

$$38^5 \equiv_{83} 38^4 \cdot 38 \equiv_{83} 1444^2 \cdot 38 \equiv_{83} 33^2 \cdot 38 \equiv_{83} 1089 \cdot 38 \equiv_{83} 10 \cdot 38 \equiv_{83} 48$$
 $5^{216} \equiv_{13} 25^{108} \equiv_{13} 12^0 \equiv_{13} 1$, da 13 prim ist und 13 nicht teilbar durch 5 $23^{9791} \equiv_{9991} 23^{-1} \equiv_{9991} 2172$, da $9791 = \varphi(9991) - 1$

Aufgaben

b)

Sei n = 1383 mit Primfaktorzerlegung $n = 3^1 \cdot 461^1$ im Weiteren.

- (a) Berechnen Sie $\varphi(n)$.
- (b) Tabellieren Sie den erweiterten euklidischen Algorithmus für a=860 und b=n entsprechend der Vorlesung.
- (c) Berechnen Sie das multiplikative Inverse von a in $\langle \mathbb{Z}_n^*, \cdot_n, 1 \rangle$.

a)
$$\ell(n) = N \cdot \prod_{p \in \{3,461\}} \left(1 - \frac{1}{p}\right) = 1383 \cdot \left(1 - \frac{1}{3}\right) \cdot \left(1 - \frac{1}{461}\right) = 920$$

a	b	[b/a]	α	β
860	1383	1	632	-393
523	860	1	-393	239
337	523	1	239	-154
186	337	1	-154	85
151	186	1	85	-69
35	151	4	-69	16
11	35	3	16	-5
2	11	5	-5	1
1	2	-	1	0

c) Da
$$ggT(860, 1383) = 1$$

 $a^{-1} = \alpha = 632$

gcd=α*a+β*b=1

Danke DSolver:)

dsolver.de

Sei n = 1491 und a = 935 im Weiteren.

- (a) Berechnen Sie $|\mathbb{Z}_n^*|$ für n = 1491.
- (b) Tabellieren Sie den erweiterten euklidischen Algorithmus für a und n entsprechend der Vorlesung.
- (c) Berechnen Sie das multiplikative Inverse von a in $\langle \mathbb{Z}_n^*, \cdot_n, 1 \rangle$.

a)
$$\frac{24}{3} \frac{1491}{1497} = 3.7.71 \Rightarrow |\mathcal{I}_{n}^{*}| = \mathcal{L}(n) = n \cdot \prod_{p \in \{3,7,71\}} (1 - \frac{1}{p})$$

$$= 1491 \cdot (1 - \frac{1}{3}) \cdot (1 - \frac{1}{7}) \cdot (1 - \frac{1}{71})$$

$$= 840$$

b)	а	b	[b/a]	α	β
	935	1491	1	716	-449
	556	935	1	-449	267
	379	556	1	267	-182
	177	379	2	-182	85
	25	177	7	85	-12
	2	25	12	-12	1
	1	2	-	1	0

c) Da
$$ggT(935, 1491) = 1$$

 $a^{-1} = \alpha = 716$

 $gcd = \alpha * a + \beta * b =$

a)
$$2 \quad 24 = 2^3 \cdot 3$$

$$2 \quad 12$$
Aufgabe 14.3 $2 \quad 6$
Sei $n = 24$ im Weiteren. 3

- (a) Bestimmen Sie $|\mathbb{Z}_n^*|$.
- a) $2 \left[24 = 2^3 \cdot 3 \Rightarrow \left| 7 \right|_{n}^* \right| = \mathcal{L}(n) = n \cdot \prod_{p \in \{2,3\}} \left(1 \frac{1}{p} \right)$ $= 24 \cdot (1 - \frac{1}{2}) \cdot (1 - \frac{1}{3})$ = 8
- (b) Tabellieren Sie die Gruppenoperation von $\langle \mathbb{Z}_n^*, \cdot_n, 1 \rangle$ entsprechend der Vorlesung und den Tutorübungen.

b)
$$\mathbb{Z}_{\Lambda}^{*} = \{1, 5, 7, 14, 13, 17, 19, 23\}$$

Beispiel

•24	1	5	7	11	13	17	19	23
1	1	5	7	11	13	17	19	23
5	5	1	11	7	17	13	23	19
7	7	11	1	5	19	23	13	17
						19		
						5		
						1		
19	19	23	13	17	7	11	1	5
23	23	19	17	13	11	7	5	1

Sei n = 24 im Weiteren.

- (a) Bestimmen Sie $|\mathbb{Z}_n^*|$.
- (b) Tabellieren Sie die Gruppenoperation von $\langle \mathbb{Z}_n^*, \cdot_n, 1 \rangle$ entsprechend der Vorlesung und den Tutorübungen.

 $Z_n^* = \{1, 5, 7,$

11, 13, 17.

19,23

(c) Bestimmen Sie $\langle x \rangle$ für jedes $x \in \mathbb{Z}_n^*$ bzgl. $\langle \mathbb{Z}_n^*, \cdot_n, 1 \rangle$

$$\langle 1 \rangle = \left[1 \right] \int_{-\infty}^{\infty} 1^2 \equiv_{24} 1 \text{ (neutrales Elem)}$$
ord = 1

$$\langle 5 \rangle = \{5, 1\}$$
ord = 2

$$\langle 7 \rangle = \{7, 1\}$$
 $7^2 \equiv_{24} 1 \text{ (neutrales Elem)}$
ord = 2

$$\langle 11 \rangle = \{11, 1\}$$

$$\langle 13 \rangle = \{13, 1\}$$

$$\langle 17\rangle = \{17, 1\}$$

$$\langle 19 \rangle = \{19, 1\}$$

$$\langle 23 \rangle = \{23, 1\}$$

$72_{n}^{*} = \{1, 5, 7, 11, 13, 17, 19, 23\}$

Aufgabe 14.3

Sei n=24 im Weiteren.

- (a) Bestimmen Sie $|\mathbb{Z}_n^*|$.
- (b) Tabellieren Sie die Gruppenoperation von $\langle \mathbb{Z}_n^*, \cdot_n, 1 \rangle$ entsprechend der Vorlesung und den Tutorübungen.
- (c) Bestimmen Sie $\langle x \rangle$ für jedes $x \in \mathbb{Z}_n^*$ bzgl. $\langle \mathbb{Z}_n^*, \cdot_n, 1 \rangle$
- (d) Zeichnen Sie den gerichteten Graphen $\langle \mathbb{Z}_n^*, \{(x, x \cdot_n a) \mid a \in \{\sigma, \tau\}\} \rangle$ für $\sigma = 11$ und $\tau = 19$. Beschriften Sie dabei jede Kante mit dem zugehörigen $a \in \{\sigma, \tau\}$.

$$1 \cdot \zeta \equiv_{24} 19$$

	1	5	7	11	13	17	19	23
9	11	7	5	1	23	19	17	23 13 5
7	19	23	7	17	7	11	1	5

Gegeben ist der folgende einfache Graph G über der Knotenmenge V = [8]:

- Sei A die Menge der Automorphismen von G. Geben Sie alle Elemente von A in Zykelschreibweise an.
- Tabellieren Sie die Gruppenoperation von $\langle A, \circ, \mathsf{Id}_A \rangle$ entsprechend der Vorlesung und den Tutorübungen.

$$-Id$$

$$-(2,8)$$

$$-(1,7)(4,6)$$

$$-(1,7)(4,6)(2,8)$$

	(1,7)(2,8)(4,6)	(2,8)	Id	(1,7)(4,6)
(1,7)(2,8)(4.6)	Id	(1,7) (4,6)	(1,7)(2,8)(4,6)	(2,8)
(2,8)	(1,7) (4,6)	Id	(2,8)	(1,7)(2,8)(4,6)
Id	(1,7)(2,8)(4.6)	(2,8)	Id	(1,7) (4.6)
(1,7) (4.6)	(2,8)	(1,7)(2,8)(4.6)	(1,7) (4,6)	Id

Jay Zhou (TUM) | Diskrete Strukturen

EEA Source Code

von Jay aus dem 1. Semester :)

aut Python

```
import sys
a = {}
b = \{\}
k = \{\}
s = \{\}
t = \{\}
a[0] = int(sys.argv[1])
b[0] = int(sys.argv[2])
while a[len(a) - 1] != 0:
              k[len(k)] = int(b[len(b) - 1] / a[len(a) - 1])
              a[len(a)] = b[len(b) - 1] % a[len(a) - 1]
              b[len(b)] = a[len(a) - 2]
l = len(a)
s[l-1]=0
s[l-2]=1
t[l - 2] = 0
t[l-3]=1
for i in range(l - 3):
              s[l-3-i] = t[l-2-i] - k[l-3-i] * s[l-2-i]
             t[l-4-i] = s[l-3-i]
s[0] = t[1] - k[0] * s[1]
print("----")
print(" | a | b | k | s | t |")
 for i in range(l - 1):
             print("|"+str(a[i]) + "" + str(b[i]) + "" + str(k[i]) + "" + str(s[i]) + "" + str(t[i]) +
 print("ggT(" + str(a[0]) + ", " + str(b[0]) + ") = " + str(a[0]) + " * " + str(s[0]) + " + " + str(b[0]) + " * " + str(t[0]) \
             + " = " + str(a[0] * s[0] + b[0] * t[0]))
```


Danke fürs Teilnehmen! Viel Erfolg bei der Klausur :)