Tirocinio di Teoria dei Sistemi – Compito 1

Si consideri il sistema a tempo discreto:

$$x(k+1) = Ax(k) + Bu(k).$$

1) Scrivere una funzione MATLAB che, avendo come input (A, B, ν, \bar{x}) , dia come output (se esiste) il controllo $u^*(\cdot)$ che, partendo da x(0) = 0, ottiene $x(\nu) = \bar{x}$, minimizzando l'indice di costo:

$$J_{\nu}(u(\cdot)) = \sum_{h=1}^{\nu-1} \|u(h)\|_{2}^{2}.$$

2) Utilizzando la funzione scritta al punto precedente, e scrivendone altre se opportuno, per un sistema raggiungibile caratterizzato da:

$$A = \left[\begin{array}{cc} \lambda_1 & 0 \\ 0 & \lambda_2 \end{array} \right], \quad B = \left[\begin{array}{c} 1 \\ 1 \end{array} \right],$$

mostrare l'andamento di $J_{\nu}(u^*(\cdot))$, per $\nu=2,\ldots,\nu_{max}$, per diversi valori di \bar{x} sulla circonferenza unitaria.

Visualizzare anche, per alcuni casi scelti, gli andamenti di $u^*(\cdot)$ e della corrispondente risposta nello stato $x^*(\cdot)$ nell'intervallo $[0, \nu]$ (con $u^*(\nu) = 0$).

Ripetere lo studio per diverse coppie (λ_1, λ_2) , interpretando i risultati anche attraverso confronti tra i diversi casi studiati.