# Chapter 6 The Operational Amplifier



# The Operational Amplifier

The operational amplifier or op amp for short, finds daily usage in a large variety of electronic applications.







Copyright © 2013 The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

# The Op Amp Circuit Element

op amps have three principal terminals:



# The Ideal Op Amp

#### **Ideal Op Amp Rules**

- No current ever flows into either input terminal.
- There is no voltage difference between the two input terminals.

The op amp *acts* to make this happen!

# The Inverting Amplifier

More appropriately KCL

 Apply KVL, Ohm's law, and the ideal op amp rules to find

$$v_{out} = -\frac{R_f}{R_1} v_{in}$$



# The Inverting Amplifier

Example:  $v_{in}(t)=5 \sin 3t \text{ mV}, R_f=47 \text{ k}\Omega, R_I=4.7 \text{ k}\Omega$ 





# The Non-inverting Amplifier



 $v_{out} = \left(1 + \frac{R_f}{R_1}\right) v_{in}$ 

To solve, use KVL, KCL, and op amp rules.
Suggested circuit variables to perform the circuit analysis



# The Non-inverting Amplifier

Example:  $v_{in}(t)=5 \sin 3t \text{ mV}, R_f=47 \text{ k}\Omega, R_I=4.7 \text{ k}\Omega$ 





# The Voltage Follower

 $\mathbf{v}_{out}(t) = \mathbf{v}_{in}(t)$ 



this design allows connection of a practical voltage source to a load without experiencing voltage droop!

# The Summing Amplifier



This amplifier performs the *operation* of adding.

It also introduces a gain of -R/R

# Cascaded Stages



Op amps can be combined in stages to create the desired relationship between the outputs and the inputs.

# A Reliable Voltage Source

This circuit will produce an accurate voltage regardless of the age of the battery  $V_{\rm bat}$ .



Zener diode: i=0 if v<4.7 volts

### A Reliable Current Source



With a reference voltage source  $V_{\text{ref}}$ , we can drive a constant current  $I_s = V_{\text{ref}} / R_{\text{ref}}$  through any load  $R_L$ .

# A More Detailed Op Amp Model

The op amp can be modeled as a dependent voltage source, with the following components

as shown:

• input resistance  $R_i$ 

• output resistance  $R_o$ 

open loop gain A



# Inverting Amplifier with a Real Op Amp



For a 741op amp (A=200,000,  $R_i$ =2M $\Omega$ ,  $R_o$ =75 $\Omega$   $v_{out}(t)$  = -49.997 sin 3t mV.

An ideal op amp produces  $v_{out}(t) = -50 \sin 3t \text{ mV}$ . [Analyze the detailed op amp model using nodal analysis.]

#### Example:

$$v_{in}(t)=5 \sin 3t \text{ mV},$$

$$R_f=47 \text{ k}\Omega,$$

$$R_1=4.7 \text{ k}\Omega$$



# An Ideal Op Amp

When  $A=\infty$ ,  $R_o=0$   $\Omega$ , and  $R_i=\infty$   $\Omega$ , the op amp behaves according to the ideal op amp rules.

 $(v_d=0 \text{ and } i_{in}=0)$ 



# Common Mode Rejection

When  $v_1 = v_2 = v_{CM}$ , the output should be zero, but real op amps produce a small "common mode" voltage  $v_{oCM}$ .

$$A_{CM} = |v_{oCM}/v_{CM}|$$



# **Negative Feedback**

- The enormous but unpredictable gain of the op amp is made usable through negative feedback.
- When  $v_{in}$  goes up,  $v_d$  goes down, and the op amp reacts by lowering  $v_{out}$  until the "unwanted" non-zero  $v_d$  is pushed back to zero.

this "feedback" resistor allows the output to affect the input terminal.

# **Power Supplies**

- An op amp requires power supplies.
- Usually, equal and opposite voltages are connect to the V<sup>+</sup> and V<sup>-</sup> terminals.
- Typical values are 5 to 24 volts.
- The power supply ground must be the same as the signal ground.

in this example +18V is connected to V<sup>+</sup> and -18 V is connected to V<sup>-</sup>

Offset null

Offset null

# Saturation

 $v_{out} = 10v_{in}$ , but only up to the  $\pm 18$  V supplies



# Input Offset Voltage

Non-zero output "offsets" can be removed:



## Slew Rate and Input Frequency

Slew rate is the maximum V/µs for output.



examples: input (green) and output (red)

# The Comparator

Op amps in open loop can be used to make decisions. In this case, is  $v_{in} > 2.5 \text{ V}$ ?



# **Example: Comparator Design**

Design a circuit that provides a "logic 1" 5 V output if a certain voltage signal drops below 3 V, and zero volts otherwise.

Answer:



# The Instrumentation Amplifier

This device allows precise amplification of small voltage differences:



$$v_{out} = K(v_+ - v_-)$$