Network layer: [Slides lightly modified from Kurose & Ross] Chapter: Network Layer: 4-1

- Network layer: overview
 - data plane
 - control plane
- What's inside a router
 - input ports, switching, output ports
 - buffer management, scheduling
- IP: the Internet Protocol
 - datagram format
 - addressing
 - network address translation
 - IPv6

- Generalized Forwarding, SDN
 - Match+action
 - OpenFlow: match+action in action
- Middleboxes

Network-layer services and protocols

- transport segment from sending to receiving host
 - sender: encapsulates segments into datagrams, passes to link layer
 - receiver: delivers segments to transport layer protocol
- network layer protocols in every Internet device: hosts, routers
- routers:
 - examines header fields in all IP datagrams passing through it
 - moves datagrams from input ports to output ports to transfer datagrams along end-end path

Two key network-layer functions

network-layer functions:

- forwarding: move packets from a router's input link to appropriate router output link
- routing: determine route taken by packets from source to destination
 - routing algorithms

analogy: taking a trip

- *forwarding:* process of getting through single interchange
 - routing: process of planning trip from source to destination

Network layer: data plane, control plane

Data plane:

- local, per-router function
- determines how datagram arriving on router input port is forwarded to router output port

Control plane

- network-wide logic
- determines how datagram is routed among routers along endend path from source host to destination host
- two control-plane approaches:
 - traditional routing algorithms: implemented in routers
 - software-defined networking (SDN): implemented in (remote) servers

Access Networks

- If access network is "switched"
 - Just like any other packet-switched network
 - Layer 2 (switched on Mac addresses)

- If the access network is shared medium, then we need to figure out how to share the medium
 - Wireless (eg WiFi, Satellite)
 - Classical ethernet

Per-router control plane

Individual routing algorithm components in each and every router interact in the control plane

Software-Defined Networking (SDN) control plane Remote controller computes, installs forwarding tables in routers

Network service model

Q: What service model for "channel" transporting datagrams from sender to receiver?

example services for *individual* datagrams:

- guaranteed delivery
- guaranteed delivery with less than 40 msec delay

example services for a *flow* of datagrams:

- in-order datagram delivery
- guaranteed minimum bandwidth to flow
- restrictions on changes in interpacket spacing

Network-layer service model

Network Architecture		Service	Quality of Service (QoS) Guarantees?				
		Model	Bandwidth	Loss	Order	Timing	
	Internet	best effort	none	no	no	no	

Internet "best effort" service model

No guarantees on:

- i. successful datagram delivery to destination
- ii. timing or order of delivery
- iii. bandwidth available to end-end flow

Network-layer service model

Network Architecture		Service	Quality of Service (QoS) Guarantees?				
		Model	Bandwidth	Loss	Order	Timing	
	Internet	best effort	none	no	no	no	
	ATM	Constant Bit Rate	Constant rate	yes	yes	yes	
	ATM	Available Bit Rate	Guaranteed min	no	yes	no	
	Internet	Intserv Guaranteed (RFC 1633)	yes	yes	yes	yes	
	Internet	Diffserv (RFC 2475)	possible	possibly	possibly	no	

Reflections on best-effort service:

- simplicity of mechanism has allowed Internet to be widely deployed adopted
- sufficient provisioning of bandwidth allows performance of real-time applications (e.g., interactive voice, video) to be "good enough" for "most of the time"
- replicated, application-layer distributed services (datacenters, content distribution networks) connecting close to clients' networks, allow services to be provided from multiple locations
- congestion control of "elastic" services helps

It's hard to argue with success of best-effort service model

Network layer: "data plane" roadmap

- Network layer: overview
 - data plane
 - control plane
- What's inside a router
 - input ports, switching, output ports
 - buffer management, scheduling
- IP: the Internet Protocol
 - datagram format
 - addressing
 - network address translation
 - IPv6

- Generalized Forwarding, SDN
 - Match+action
 - OpenFlow: match+action in action
- Middleboxes

Router architecture overview

high-level view of generic router architecture:

Input port functions

link layer:

e.g., Ethernet (chapter 6)

decentralized switching:

- using header field values, lookup output port using forwarding table in input port memory ("match plus action")
- goal: complete input port processing at 'line speed'
- input port queuing: if datagrams arrive faster than forwarding rate into switch fabric

Input port functions

link layer:

e.g., Ethernet (chapter 6)

decentralized switching:

- using header field values, lookup output port using forwarding table in input port memory ("match plus action")
- destination-based forwarding: forward based only on destination IP address (traditional)
- generalized forwarding: forward based on any set of header field values

Destination-based forwarding

	forwarding table					
Destination	Destination Address Range					
11001000 through	00010111	00010000	00000000		n	
11001000 through	00010111	000 <mark>10000</mark>	00000100		3	
_	00010111	000 <mark>10000</mark>	00000111		3	
11001000	00010111	00011000	11111111			
11001000 through	00010111	000 <mark>11001</mark>	00000000		2	
11001000	00010111	000 <mark>11111</mark>	11111111			
otherwise					3	

Q: but what happens if ranges don't divide up so nicely?

longest prefix match

when looking for forwarding table entry for given destination address, use *longest* address prefix that matches destination address.

Destination .	Link interface			
11001000	00010111	00010***	*****	0
11001000	00010111	00011000	*****	1
11001000	00010111	00011***	*****	2
otherwise				3

examples:

which interface?	10100001	00010110	00010111	11001000
which interface?	10101010	00011000	00010111	11001000

longest prefix match

when looking for forwarding table entry for given destination address, use *longest* address prefix that matches destination address.

Destination Address Range	Link interface
11001000 00010111 00010*** ****	* * 0
11001000 000 0111 00011000 ****	* * 1
11001000 match! 1 00011*** *****	* * 2
otherwise	3

examples:

11001000 00010111 00010 110 10100001 which interface?
11001000 00010111 00011000 10101010 which interface?

longest prefix match

when looking for forwarding table entry for given destination address, use *longest* address prefix that matches destination address.

match!

11001000

Destination A	Link interface			
11001000	00010111	00010***	*****	0
11001000	00010111	00011000	*****	1
11001000	00010111	00011 * * *	*****	2
otherwise	1			3

examples:

longest prefix match

11001000

when looking for forwarding table entry for given destination address, use *longest* address prefix that matches destination address.

Destination	Link interface			
11001000	00010111	00010***	*****	0
11001000	00010111	00011000	*****	1
11001000	000 0111	00011***	*****	2
otherwise	 _ match!			3
11001000	_	00010110	10100001	which interface?

00011000

examples:

- we'll see why longest prefix matching is used shortly, when we study addressing
- longest prefix matching: often performed using ternary content addressable memories (TCAMs)
 - content addressable: present address to TCAM: retrieve address in one clock cycle, regardless of table size
 - Cisco Catalyst: ~1M routing table entries in TCAM

Switching fabrics

- transfer packet from input link to appropriate output link
- switching rate: rate at which packets can be transfer from inputs to outputs
 - often measured as multiple of input/output line rate
 - N inputs: switching rate N times line rate desirable

Switching fabrics

- transfer packet from input link to appropriate output link
- switching rate: rate at which packets can be transfer from inputs to outputs
 - often measured as multiple of input/output line rate
 - N inputs: switching rate N times line rate desirable
- three major types of switching fabrics:

Switching via memory

first generation routers:

- traditional computers with switching under direct control of CPU
- packet copied to system's memory
- speed limited by memory bandwidth (2 bus crossings per datagram)

Switching via a bus

- datagram from input port memory to output port memory via a shared bus
- bus contention: switching speed limited by bus bandwidth
- 32 Gbps bus, Cisco 5600: sufficient speed for access routers

Switching via interconnection network

- Crossbar, Clos networks, other interconnection nets initially developed to connect processors in multiprocessor
- multistage switch: nxn switch from multiple stages of smaller switches
- exploiting parallelism:
 - fragment datagram into fixed length cells on entry
 - switch cells through the fabric, reassemble datagram at exit

Switching via interconnection network

- scaling, using multiple switching "planes" in parallel:
 - speedup, scaleup via parallelism
- Cisco CRS router:
 - basic unit: 8 switching planes
 - each plane: 3-stage interconnection network
 - up to 100's Tbps switching capacity

Input port queuing

- If switch fabric slower than input ports combined -> queueing may occur at input queues
 - queueing delay and loss due to input buffer overflow!
 - Head-of-the-Line (HOL) blocking: queued datagram at front of queue prevents others in queue from moving forward

output port contention: only one red datagram can be transferred. lower red packet is *blocked*

one packet time later: green packet experiences HOL blocking

Output port queuing

• Buffering required when datagrams arrive from fabric faster than link transmission rate. Drop policy: which datagrams to drop if no free buffers?

Datagrams can be lost due to congestion, lack of buffers

 Scheduling discipline chooses among queued datagrams for transmission

Priority scheduling – who gets best performance, network neutrality

Output port queuing

- buffering when arrival rate via switch exceeds output line speed
- queueing (delay) and loss due to output port buffer overflow!

How much buffering?

- RFC 3439 rule of thumb: average buffering equal to "typical" RTT (say 250 msec) times link capacity C
 - e.g., C = 10 Gbps link: 2.5 Gbit buffer
 - more recent recommendation: with N flows, buffering equal to

$$\frac{\mathsf{RTT} \cdot \mathsf{C}}{\sqrt{\mathsf{N}}}$$

- but too much buffering can increase delays (particularly in home routers)
 - long RTTs: poor performance for realtime apps, sluggish TCP response
 - recall delay-based congestion control: "keep bottleneck link just full enough (busy) but no fuller"

Buffer Management

Abstraction: queue

buffer management:

- drop: which packet to add, drop when buffers are full
 - tail drop: drop arriving packet
 - priority: drop/remove on priority basis
- marking: which packets to mark to signal congestion (ECN, RED)

Packet Scheduling: FCFS

packet scheduling: deciding which packet to send next on link

- first come, first served
- priority
- round robin
- weighted fair queueing

Abstraction: queue

FCFS: packets transmitted in order of arrival to output port

- also known as: First-in-firstout (FIFO)
- real world examples?

Scheduling policies: priority

Priority scheduling:

- arriving traffic classified, queued by class
 - any header fields can be used for classification
- send packet from highest priority queue that has buffered packets
 - FCFS within priority class

Scheduling policies: round robin

Round Robin (RR) scheduling:

- arriving traffic classified, queued by class
 - any header fields can be used for classification
- server cyclically, repeatedly scans class queues, sending one complete packet from each class (if available) in turn

Scheduling policies: weighted fair queueing

Weighted Fair Queuing (WFQ):

- generalized Round Robin
- each class, i, has weight, w_i, and gets weighted amount of service in each cycle:

$$\frac{w_i}{\sum_j w_j}$$

 minimum bandwidth guarantee (per-traffic-class)

Sidebar: Network Neutrality

What is network neutrality?

- technical: how an ISP should share/allocation its resources
 - packet scheduling, buffer management are the mechanisms
- social, economic principles
 - protecting free speech
 - encouraging innovation, competition
- enforced *legal* rules and policies

Different countries have different "takes" on network neutrality

Sidebar: Network Neutrality

2015 US FCC *Order on Protecting and Promoting an Open Internet:* three "clear, bright line" rules:

- no blocking ... "shall not block lawful content, applications, services, or non-harmful devices, subject to reasonable network management."
- no throttling ... "shall not impair or degrade lawful Internet traffic on the basis of Internet content, application, or service, or use of a nonharmful device, subject to reasonable network management."
- no paid prioritization. ... "shall not engage in paid prioritization"

ISP: telecommunications or information service?

Is an ISP a "telecommunications service" or an "information service" provider?

• the answer really matters from a regulatory standpoint!

US Telecommunication Act of 1934 and 1996:

- *Title II:* imposes "common carrier duties" on *telecommunications services*: reasonable rates, non-discrimination and *requires regulation*
- Title I: applies to information services:
 - no common carrier duties (not regulated)
 - but grants FCC authority "... as may be necessary in the execution of its functions".

Network layer: "data plane" roadmap

- Network layer: overview
 - data plane
 - control plane
- What's inside a router
 - input ports, switching, output ports
 - buffer management, scheduling
- IP: the Internet Protocol
 - datagram format
 - addressing
 - network address translation
 - IPv6

- Generalized Forwarding, SDN
 - match+action
 - OpenFlow: match+action in action
- Middleboxes

Network Layer: Internet

host, router network layer functions:

IP Datagram format

32 bits IP protocol version number total datagram head. type of ver length length (bytes) header length(bytes) service len fragment fragmentation/ "type" of service: 16-bit identifier | flgs offset reassembly diffserv (0:5) time to upper header • ECN (6:7) header checksum live layer checksum TTL: remaining max hops 32-bit source IP address source IP address (decremented at each router) Maximum length: 64K bytes destination IP address Typically: 1500 bytes or less upper layer protocol (e.g., TCP or UDP) options (if any) e.g., timestamp, record overhead route taken 20 bytes of TCP payload data 20 bytes of IP (variable length, = 40 bytes + app typically a TCP layer overhead for or UDP segment) TCP+IP Network Layer: 4-42

IP addressing: introduction

- IP address: 32-bit identifier associated with each host or router interface
- interface: connection between host/router and physical link
 - router's typically have multiple interfaces
 - host typically has one or two interfaces (e.g., wired Ethernet, wireless 802.11)

dotted-decimal IP address notation:

IP addressing: introduction

- IP address: 32-bit identifier associated with each host or router interface
- interface: connection between host/router and physical link
 - router's typically have multiple interfaces
 - host typically has one or two interfaces (e.g., wired Ethernet, wireless 802.11)

dotted-decimal IP address notation:

IP addressing: introduction

Q: how are interfaces actually connected?

A: we'll learn about that in chapters 6, 7

223.1.1.1 223.1.2. 223.1.1.2 223,1,1,4 223.1.2.9 A: wired Ethernet interfaces 223.1.3.27 connected by 223.1.1.3 Ethernet switches 223.1.3.1 223.1.3.2

For now: don't need to worry about how one interface is connected to another (with no intervening router)

A: wireless WiFi interfaces connected by WiFi base station

Subnets

- What's a subnet?
 - device interfaces that can physically reach each other without passing through an intervening router
- IP addresses have structure:
 - subnet part: devices in same subnet have common high order bits
 - host part: remaining low order bits

network consisting of 3 subnets

Subnets

Recipe for defining subnets:

- detach each interface from its host or router, creating "islands" of isolated networks
- each isolated network is called a *subnet*

subnet mask: /24

(high-order 24 bits: subnet part of IP address)

Subnets

- where are the subnets?
- what are the /24 subnet addresses?

IP addressing: CIDR

CIDR: Classless InterDomain Routing (pronounced "cider")

- subnet portion of address of arbitrary length
- address format: a.b.c.d/x, where x is # bits in subnet portion of address

IP addresses: how to get one?

That's actually two questions:

- 1. Q: How does a *host* get IP address within its network (host part of address)?
- 2. Q: How does a *network* get IP address for itself (network part of address)

How does *host* get IP address?

- hard-coded by sysadmin in config file (e.g., /etc/rc.config in UNIX)
- DHCP: Dynamic Host Configuration Protocol: dynamically get address from as server
 - "plug-and-play"