```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

!gdown https://d2beiqkhq929f0.cloudfront.net/public_assets/assets/000/001/428/original/bike_sharing.csv?1642089089

From: https://d2beiqkhq929f0.cloudfront.net/public_assets/assets/000/001/428/original/bike_sharing.csv?1642089089
To: /content/bike_sharing.csv?1642089089

100% 648k/648k [00:00<00:00, 862kB/s]

df = pd.read_csv('bike_sharing.csv?1642089089')
df.head()

₹		datetime	season	holiday	workingday	weather	temp	atemp	humidity	windspeed	casual	registered	count	
	0	2011-01-01 00:00:00	1	0	0	1	9.84	14.395	81	0.0	3	13	16	11.
	1	2011-01-01 01:00:00	1	0	0	1	9.02	13.635	80	0.0	8	32	40	
	2	2011-01-01 02:00:00	1	0	0	1	9.02	13.635	80	0.0	5	27	32	
	3	2011-01-01 03:00:00	1	0	0	1	9.84	14.395	75	0.0	3	10	13	
	4	2011-01-01 04:00:00	1	0	0	1	9.84	14.395	75	0.0	0	1	1	

Next steps: Generate code with df

View recommended plots

New interactive sheet

A. Examine dataset structure, characteristics, and statistical summary.

df.info()

→ <class 'pandas.core.frame.DataFrame'> RangeIndex: 10886 entries, 0 to 10885 Data columns (total 12 columns): Non-Null Count Dtype # Column ---0 datetime 10886 non-null object season 10886 non-null int64 10886 non-null int64 holiday workingday 10886 non-null int64 10886 non-null int64 10886 non-null float64 temp atemp 10886 non-null float64 humidity 10886 non-null int64 windspeed 10886 non-null float64 10886 non-null int64 casual 10 registered 10886 non-null int64 11 count 10886 non-null int64 dtypes: float64(3), int64(8), object(1) memory usage: 1020.7+ KB

df.describe()

₹		season	holiday	workingday	weather	temp	atemp	humidity	windspeed	casual	regist
	count	10886.000000	10886.000000	10886.000000	10886.000000	10886.00000	10886.000000	10886.000000	10886.000000	10886.000000	10886.00
	mean	2.506614	0.028569	0.680875	1.418427	20.23086	23.655084	61.886460	12.799395	36.021955	155.55
	std	1.116174	0.166599	0.466159	0.633839	7.79159	8.474601	19.245033	8.164537	49.960477	151.03!
	min	1.000000	0.000000	0.000000	1.000000	0.82000	0.760000	0.000000	0.000000	0.000000	0.00
	25%	2.000000	0.000000	0.000000	1.000000	13.94000	16.665000	47.000000	7.001500	4.000000	36.00
	50%	3.000000	0.000000	1.000000	1.000000	20.50000	24.240000	62.000000	12.998000	17.000000	118.00
	75%	4.000000	0.000000	1.000000	2.000000	26.24000	31.060000	77.000000	16.997900	49.000000	222.00
	max	4.000000	1.000000	1.000000	4.000000	41.00000	45.455000	100.000000	56.996900	367.000000	886.00

df.shape

→ (10886, 12)

There are 10886 rows and 12 coulums in these data

B. Identify missing values and perform Imputation using an appropriate method.

There are no NULL values

C. Analyze the distribution of Numerical & Categorical variables, separately

sns.histplot(Numerical_df)

D. Check for Outliers and deal with them accordingly.

```
sns.boxplot(df)
plt.xticks(rotation=45)
plt.show()
```


There are outliers in these data

```
Q1 = df['temp'].quantile(0.25)
Q3 = df['temp'].quantile(0.75)
IQR = Q3 - Q1
print(IQR)
```

12.29999999999999

```
upper_limit = Q3 + 1.5 * IQR
lower_limit = Q1 - 1.5 * IQR
print(upper_limit)
print(lower_limit)
```

```
→ 44.69
-4.51
```

```
outliers = df[(df['temp'] > upper_limit) | (df['temp'] < lower_limit)]
print(outliers)</pre>
```

Empty DataFrame
Columns: [datetime, season, holiday, workingday, weather, temp, atemp, humidity, windspeed, casual, registered, count]
Index: []

plt.boxplot(df['temp'])
plt.show()

2. Try establishing a Relationship between the Dependent and Independent Variables.

correlation_matrix = df.select_dtypes(include=np.number).corr()
correlation_matrix

	season	holiday	workingday	weather	temp	atemp	humidity	windspeed	casual	registered	count
season	1.000000	0.029368	-0.008126	0.008879	0.258689	0.264744	0.190610	-0.147121	0.096758	0.164011	0.163439
holiday	0.029368	1.000000	-0.250491	-0.007074	0.000295	-0.005215	0.001929	0.008409	0.043799	-0.020956	-0.005393
workingday	-0.008126	-0.250491	1.000000	0.033772	0.029966	0.024660	-0.010880	0.013373	-0.319111	0.119460	0.011594
weather	0.008879	-0.007074	0.033772	1.000000	-0.055035	-0.055376	0.406244	0.007261	-0.135918	-0.109340	-0.128655
temp	0.258689	0.000295	0.029966	-0.055035	1.000000	0.984948	-0.064949	-0.017852	0.467097	0.318571	0.394454
atemp	0.264744	-0.005215	0.024660	-0.055376	0.984948	1.000000	-0.043536	-0.057473	0.462067	0.314635	0.389784
humidity	0.190610	0.001929	-0.010880	0.406244	-0.064949	-0.043536	1.000000	-0.318607	-0.348187	-0.265458	-0.317371
windspeed	-0.147121	0.008409	0.013373	0.007261	-0.017852	-0.057473	-0.318607	1.000000	0.092276	0.091052	0.101369
casual	0.096758	0.043799	-0.319111	-0.135918	0.467097	0.462067	-0.348187	0.092276	1.000000	0.497250	0.690414
registered	0.164011	-0.020956	0.119460	-0.109340	0.318571	0.314635	-0.265458	0.091052	0.497250	1.000000	0.970948
count	0.163439	-0.005393	0.011594	-0.128655	0.394454	0.389784	-0.317371	0.101369	0.690414	0.970948	1.000000

sns.heatmap(correlation_matrix, annot=True)

sns.boxplot(x='workingday', y='count', data=df)

sns.boxplot(x='season', y='count', data=df)

sns.boxplot(x='weather', y='count', data=df)

3. Check if there any significant difference between the no. of bike rides on Weekdays and Weekends?

```
NULL Hypothesis Assumption:
```

Output the result

```
#Null hypothesis (H0) - There is no significant difference between the no. of bike rides on Weekdays and Weekends.
#Alternative hypothesis (Ha) - There is a significant difference between the no. of bike rides on Weekdays and Weekends.

from scipy import stats

# Separate the data into two groups (working day and not working day)
workingday = df[df['workingday'] == 1]['count']
non_workingday = df[df['workingday'] == 0]['count']

# Perform T-test
t_stat, p_value = stats.ttest_ind(workingday, non_workingday)
```

```
t_stat, p_value

# alpha = 0.05

(1.2096277376026694, 0.22644804226361348)

if p_value < 0.05:
    print("Reject the null hypothesis. There is a significant difference between the no. of bike rides on Weekdays and Weekends.")

else:
    print("Fail to reject the null hypothesis. There is no significant difference between the no. of bike rides on Weekdays and Weekends.")

Fail to reject the null hypothesis. There is no significant difference between the no. of bike rides on Weekdays and Weekends.")
```

The T-test for workingday suggests that working day significantly affects the number of cycles rented.

4.Check if the demand of bicycles on rent is the same for different Weather conditions?

5. Check if the demand of bicycles on rent is the same for different Seasons?

```
f_statistic, p_value = f_oneway(df[df['season'] == 1]['count'], df[df['season'] == 2]['count'], df[df['season'] == 3]['count'], df[df['season'] == 3]['co
```

6. Check if the Weather conditions are significantly different during different Season

```
contingency_table = pd.crosstab(df['season'], df['weather'])
contingency_table
```

```
weather
       season
                1759 715 211 1
         1
 Next steps: (
              Generate code with contingency_table
                                                      View recommended plots
                                                                                     New interactive sheet
                1930 604 199 0
The ANOWA for $₹@$or@@nd2@ēather shows that the demand for cycles differs across seasons and weather conditions.
from scipy.stats import chi2_contingency
chi2_statistic, p_value, dof, expected = chi2_contingency(contingency_table)
chi2_statistic, p_value, dof, expected
→ (49.158655596893624,
      1.549925073686492e-07,
      9,
      array([[1.77454639e+03, 6.99258130e+02, 2.11948742e+02, 2.46738931e-01],
              [1.80559765e+03, 7.11493845e+02, 2.15657450e+02, 2.51056403e-01], [1.80559765e+03, 7.11493845e+02, 2.15657450e+02, 2.51056403e-01],
              [1.80625831e+03, 7.11754180e+02, 2.15736359e+02, 2.51148264e-01]]))
if p_value < 0.05:
    print("Reject the null hypothesis. There is a significant difference in weather conditions across different seasons.")
else:
```

The Chi-square test indicates a significant relationship between weather and season, meaning certain weather conditions are more common in specific seasons.

🚁 Reject the null hypothesis. There is a significant difference in weather conditions across different seasons.

print("Fail to reject the null hypothesis. There is no significant difference in weather conditions across different seasons.")

sns.heatmap(contingency_table, annot=True)

