TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN ĐẠI HỌC QUỐC GIA THÀNH PHỐ HỎ CHÍ MINH KHOA CÔNG NGHỆ THÔNG TIN

TOÁN ỨNG DỤNG THỐNG KÊ BÁO CÁO THỰC HÀNH

LAB 01

Mã số sinh viên: 21120582

Họ và Tên: Đinh Hoàng Trung.

Mail: 21120582@student.hcmus.edu.vn.

Họ Tên: Đinh Hoàng Trung.

1. Khái quát bài làm:

- Bài tập được làm trên Visual Studio Code.
- Ma trận đầu vào sẽ được nhập vào file .txt.
 - o Ví du:

```
matrix.txt

1 0 1 0 2 3 4

2 0 0 0 1 2 3

3 0 0 0 0 1 3
```

- Ma trận sau khi được giải nghiệm sẽ xuất ra màn hình terminal (VSC) / console.
- Thư viện được sử dụng: numpy.
- Các hàm theo yêu cầu bài tập:
 - Gauss_elimination(<Ma trận đầu vào>): bán chuẩn ma trận mở rộng truyền vào.
 - o back_substitution(<Ma trận đầu vào>): truyền vào ma trận mở rộng của hệ phương trình có dạng Ax=B, trả về nghiệm của hệ (nghiệm duy nhất/các vector cơ sở của tập nghiệm trong trường hợp có vô số nghiệm) hoặc in ra màn hình thông báo nếu hệ vô số nghiệm.
- Các hàm hỗ trợ:
 - Gauss_jordan_elimination(<Ma trận đầu vào>): Để
 chuẩn hóa ma trận truyền vào, giúp dễ dàng hơn
 trong việc tìm nghiệm của hệ phương trình.
 - swap_row(<Ma trận đầu vào>,<vị trí dòng 1>,<vị trí dòng 2>): hoán vị 2 hàng của ma trận.

Họ Tên: Đinh Hoàng Trung.

o read_file_txt(<tên file>): đọc ma trận từ một tập tin văn bản .txt và lưu vào kiểu dữ liệu ma trận numpy.

2. Gauss_elimination.

2.1. Ý tưởng ban đầu:

- Duyệt từng phần tử của đường chéo chính.
- Kiểm tra phần tử đó có khác 0 hay không, nếu bằng 0 thì hoán vị dòng với bất kì dòng nào có phần tử tại cột đó khác 0.
- Tại dòng của vị trí đang xét, chia dòng đó cho chính vị trí đang xét để đưa giá trị của vị trí đó về 1.
- Dùng phép trừ các dòng phía dưới so với dòng hiện tại để chuẩn hóa cột.
- Lặp lại 3 bước giữa cho đến khi đi hết đường chéo chính.

2.2. Vấn đề gặp phải.

- Trong trường hợp nếu gặp phải cột full giá trị 0 thì không thể xét theo đường chéo chính.

```
[[ 0. 4. 5. 2. 4.]
[ 0. 8. 10. 4. 6.]
[ 0. 6. 6. 6. 6.]
[ 0. 5. 5. 5. 5.]]
```

2.3. Để giải quyết vấn đề này:

- Trong lúc thực hiện kiểm tra 0 và hoán vị đồng thời thực hiện kiểm tra xem cột đó có full giá trị 0 hay không.
- Nếu cột đó full 0 thì đánh dấu và bỏ qua cột hiện tại đang xét, xét tiếp dòng đang xét và nhảy qua cột tiếp theo.

Họ Tên: Đinh Hoàng Trung.

3. Gauss_elimination.

- 3.1. Biến đổi nhỏ trước khi tiến hành giải nghiệm.
 - Đưa các dòng vector 0 xuống cuối cùng đòng thời tính rank của ma trận hệ số và rank của ma trận mở rộng.

```
[[0. 4. 5. 2.]
[0. 0. 1.5 3.]
[0. 0. 0. 6.]
[0. 0. 0. 0.]
[0. 0. 0. 0.]
```

- 3.2. Phân biệt các trường hợp.
 - Có 2 trường hợp:
 - o Vô nghiệm.
 - o Một nghiệm duy nhất.
 - Vô số nghiệm.
 - Để phân biệt được các trường hợp: so sánh giá trị rank_{ma}
 trận hệ số = a và rank ma trận mở rộng = b.
 - Nếu a < b: Phương trính vô nghiệm.
 - Nếu a = b:
 - Phương trình có vô số nghiệm nếu a = b < số biến của hệ (số cột -1).
 - Phương trính có một nghiệm duy nhất nếu a = b = số biến của hệ (số cột 1).
 - Không có trường hợp a > b.
- 3.3. Một tập nghiệm duy nhất.
 - Duyệt từng dòng từ dưới lên trên bắt đầu từ dòng thứ rank
 - 1 để tìm nghiệm của từng biến.
 - Tại dòng đang xét đi từng cột để tính nghiệm của biến.
- 3.4. Vô nghiệm.

Họ Tên: Đinh Hoàng Trung.

- Thông báo ra màn hình là vô nghiệm.

3.5. Vô số nghiệm.

- Trả về ma trận các vector cơ sở của tập nghiệm.
- Các bước xử lí trước khi tìm các vector cơ sở:
 - Chuẩn hóa ma trận.
 - Tìm, đánh dấu và lưu vị trí dòng của các biến phụ thuôc.
 - Khởi tạo giá trị cho trước của các biến tự do.
 Ví dụ: Hệ phương trình có 5 biến và trong đó có 3 biến x1, x3 ,x5 tự do thì giá trị cho trước của 3 biến tư do là:

- Tính các giá trị còn lại cửa các biến phụ thuộc dự trên các giá trị cho trước của các biến tự do.
- Từ đó ta thu được tập các vector cơ sở của tập nghiệm.