DissertationStructure

Contents

Abstract								 															1
Background								 															1
Research								 															2
Resutls								 															3
Conclusion					 																 		3

Abstract

- What I did:
 - Investigation of the subnetworks based on citee
 - Comparing the differences in structure.
 - Showing that they are structurally disperate.
 - * No correlation
 - * Temporal changes in order occur in one network not the other.

Background

Literature review

- Intro to scale free networks
 - Expand on this section further
 - More focus on the history / core texts
 - * Price
 - * Barbarasi
 - * Newman
- Citation networks / Graph theory
 - Include more primary research on academic citation networks.
 - Contrast between patent and citation networks mainly already present in this section from lit review.
- Innovation Evolution
 - Talking about the study of patent systems as innovation / evolutionary systems and other unique ways of looking at it, not necessarily as a citation network.
- Patent citation networks (drilled down)
 - This is the research closest to what I'm doing.
 - Talk about valverde paper here and the other similar papers.
- Conclusion

Summary of related work

- Valverde and similar studies
- Debate between log-normal and power-law distributions
 - Difficulty in proving
 - Sectors where this has been proven one way over the other
 - Debate within citation networks
 - Debate within Patent networks

Research

Pipeline

- Raw data
 - Different schema, xml, txt, sgml (different versions within that)
 - Different variables being captured.
 - Size and scope of the data.
- Parsing
 - Schema of parsed data.
 - Methodology / flowchart for parsing function
 - How different schema caused problems / dictated how parsing function had to work.
- Cleaning
 - Different things checked for / cleaned.
 - Things not cleaned / why
- Mongodb / processing
 - Why use database
 - * Big Data, processing required grouping and processing data in ways it was not already ordered.
 - Why choose mongodb
 - $\ast\,$ MapReduce, designed for BigData, javascript backend language makes ease of use.
- (r used for final analysis)

Reproduce Valverde

- Number of patents vs. time
 - Cumulative number of patents vs time.
 - Fitting the distribution (power-law vs exponential)
- Order of citations vs. time
 - Fitting the distribution (pl, exp, pois, log-normal)

Comparing Cited by Examiner to Cited by Other

- Splitting the data into two (Cited by Examiner and Cited by Other)
- Repeat the above for the two seperate datasets
 - Patents vs. time
 - * Cumulative
 - * Fitting distribution
 - Order of citations vs. time
 - * Fitting the distribution
- Correlation
 - Scatterplot
 - Pearson correlation coefficient
 - Average of A for given B.
- Mean degree by year

•

Resutls

Conclusion