Содержание

1	Задание	2
2	Жордан Мари Энмон Камиль	3
3	Информация о выборе главного столбца	4
4	Тестовый пример	6
5	Матричные разложения	7
6	SVD	8
7	Большая система	12
8	Вывод	12
9	Приложение	13

1 Задание

Для матрицы $A \ c \ N = 5$ столбцами выполните следующее.

- 0. Постройте тестовый пример(вычислите вектор правых частей b), точным решением которого является вектор, состоящий из единиц. Изменяя первый элемент вектора b, постройте основную задачу, точного решения НЕ имеющую.
- 1. Решите переопределенную СЛАУ Ax = b в смысле наименьших квадратов с помощью QR разложения с выбором главного столбца, используя отражения Хаусхолдера (не формируя матрицу Q в явном виде).
 - 2. Укажите норму невязки полученного решения для основной задачи.
- 3. Продемонстрируйте правильность работы метода на тестовом примере (с точным решением).
- 4. Вычислите в явном виде матрицу Q, не выполняя перемножений и не формируя в явном виде матрицы промежуточных отражений.
- 5. Сформируйте в явном виде матрицу перестановок Π . Запишите полученное разложение в виде матричного равенства $A\Pi = QR$. Проверьте его непосредственным перемножением (представьте матрицу $A\Pi QR$).
- 6. Найдите SVD разложение матрицы A, используя одноименную функцию библиотеки numpy.linalg. Решите исходную задачу с помощью найденного разложения.
- 7. Найдите псевдообратную к A матрицу A^+ , используя полученное SVD разложение. Сравните друг с другом и единичной матрицей произведения A^+A и AA^+ . Решите исходную задачу с помощью псевдообратной матрицы.
 - 8. Выполните п.п. 1 и 6 для основной задачи большего порядка.

Исходные данные

Матрица A имеет N столбцов и N+1 строку. Ее элементы задаются для четных вариантов (по списку в журнале группы) $A_{ij} = (i-j)^2$; для нечетных вариантов (по списку в журнале группы) $A_{ij} = i+j-2ij$; $(1 \le i \le N+1, 1 \le j \le N-1)$. В первые шесть элементов N - го столбца (для всех вариантов) впишите дату рождения Вашего тезки-математика в формате "mm.yyyy".

2 Жордан Мари Энмон Камиль

Дата рождения 01.1838, Лион.

Французский математик, известный благодаря своим фундаментальным работам в теории групп и «Курсу анализа». Он родился в Лионе и учился в Политехнической школе. По образованию Жордан был инженером; позже он преподавал в Политехнической школе и Коллеж де Франс.

3 Информация о выборе главного столбца

Шаг 1.

Норма 0 столбца = 7.416198 Норма 1 столбца = 5.567764 Норма 2 столбца = 18.41195 Норма 3 столбца = 31.28898 Норма 4 столбца = 11.78983

	0	1	2	3	4
0	0.0	1.0	2.0	3.0	0.0
1	1.0	0.0	-1.0	-2.0	1.0
2	2.0	-1.0	-4.0	-7.0	1.0
3	3.0	-2.0	-7.0	-12.0	8.0
4	4.0	-3.0	-10.0	-17.0	3.0
5	5.0	-4.0	-13.0	-22.0	8.0

Промежуточная матрица с зануленным столбцом

	0	1	2	3	4
0	-31.288976	-5.529104	-18.409040	7.350832	10.610766
1	0.000000	0.380828	0.190414	0.571242	0.381098
2	0.000000	0.332899	0.166449	0.499348	-1.166159
3	0.000000	0.284969	0.142485	0.427454	4.286585
4	0.000000	0.237039	0.118520	0.355559	-2.260671
5	0.000000	0.189110	0.094555	0.283665	1.192073

Шаг 2.

Норма 1 подстолбца =0.6549879Норма 2 подстолбца =0.327494Норма 3 подстолбца =0.9824819Норма 4 подстолбца =5.139226

	0	1	2	3	4
0	-31.288976	-5.529104	-18.409040	7.350832	10.610766
1	0.000000	0.380828	0.190414	0.571242	0.381098
2	0.000000	0.332899	0.166449	0.499348	-1.166159
3	0.000000	0.284969	0.142485	0.427454	4.286585
4	0.000000	0.237039	0.118520	0.355559	-2.260671
5	0.000000	0.189110	0.094555	0.283665	1.192073

Промежуточная матрица с зануленным столбцом

	0	1	2	3	4
0	-31.288976	10.610766	-18.409040	7.350832	-5.529104
1	0.000000	-5.139226	-0.064993	-0.194979	-0.129986
2	0.000000	0.000000	0.220404	0.661211	0.440807
3	0.000000	0.000000	-0.055842	-0.167525	-0.111683
4	0.000000	0.000000	0.223114	0.669341	0.446227
5	0.000000	0.000000	0.039402	0.118205	0.078803

Шаг 3.

Норма 2 подстолбца = 0.3209801Норма 3 подстолбца = 0.9629402Норма 4 подстолбца = 0.6419601

	0	1	2	3	4
0	-31.288976	10.610766	-18.409040	7.350832	-5.529104
1	0.000000	-5.139226	-0.064993	-0.194979	-0.129986
2	0.000000	0.000000	0.220404	0.661211	0.440807
3	0.000000	0.000000	-0.055842	-0.167525	-0.111683
4	0.000000	0.000000	0.223114	0.669341	0.446227
5	0.000000	0.000000	0.039402	0.118205	0.078803

Промежуточная матрица с зануленным столбцом

	0	1	2	3	4
0	-31.288976	10.610766	7.350832	-18.409040	-5.529104
1	0.000000	-5.139226	-0.194979	-0.064993	-0.129986
2	0.000000	0.000000	-0.962940	-0.320980	-0.641960
3	0.000000	0.000000	0.000000	0.000000	0.000000
4	0.000000	0.000000	0.000000	0.000000	0.000000
5	0.000000	0.000000	0.000000	0.000000	0.000000

Полученная треугольная система

$$R = \begin{pmatrix} -31.288976 & 10.610766 & 7.350832 & -18.409040 & -5.529104 \\ 0.0000000 & -5.139226 & -0.194979 & -0.064993 & -0.129986 \\ 0.0000000 & 0.000000 & -0.962940 & -0.320980 & -0.641960 \\ 0.000000 & 0.000000 & 0.000000 & 0.000000 & 0.000000 \\ 0.000000 & 0.000000 & 0.000000 & 0.000000 & 0.000000 \\ 0.000000 & 0.000000 & 0.000000 & 0.000000 & 0.000000 \end{pmatrix}$$
 (1)

$$\tilde{b} = \begin{pmatrix} -37.26552161 \\ -5.52918474 \\ -1.92588031 \\ 0. \\ 0. \\ 0. \end{pmatrix}$$
 (2)

Найденное решение

$$x = \begin{pmatrix} 0.\\ 2.\\ 0.\\ 2.\\ 1. \end{pmatrix} \tag{3}$$

Невязка решения $\rho = 7.10542 \cdot 10^{-28}$

4 Тестовый пример

$$A = \begin{pmatrix} 0.0 & 1.0 & 2.0 & 3.0 & 0.0 \\ 1.0 & 0.0 & -1.0 & -2.0 & 1.0 \\ 2.0 & -1.0 & -4.0 & -7.0 & 1.0 \\ 3.0 & -2.0 & -7.0 & -12.0 & 8.0 \\ 4.0 & -3.0 & -10.0 & -17.0 & 3.0 \\ 5.0 & -4.0 & -13.0 & -22.0 & 8.0 \end{pmatrix} b = \begin{pmatrix} 6. \\ -1. \\ -9. \\ -10. \\ -23. \\ -26. \end{pmatrix}$$
(4)

Точным решением является вектор из единиц.

Полученная система

$$R = \begin{pmatrix} -31.288976 & 10.610766 & 7.350832 & -18.409040 & -5.529104 \\ 0.000000 & -5.139226 & -0.194979 & -0.064993 & -0.129986 \\ 0.000000 & 0.000000 & -0.962940 & -0.320980 & -0.641960 \\ 0.000000 & 0.000000 & 0.000000 & 0.000000 & 0.000000 \\ 0.000000 & 0.000000 & 0.000000 & 0.000000 & 0.000000 \\ 0.000000 & 0.000000 & 0.000000 & 0.000000 & 0.000000 \end{pmatrix}$$
 (5)

$$\tilde{b} = \begin{pmatrix} -37.26552161 \\ -5.52918474 \\ -1.92588031 \\ 0. \\ 0. \\ 0. \end{pmatrix}$$

$$(6)$$

Полученное решение системы приведенной выше

$$x = \begin{pmatrix} 2.\\1.\\2.\\0.\\0. \end{pmatrix} \tag{7}$$

Тестовая задача точного решения не имеющая

$$A = \begin{pmatrix} 0.0 & 1.0 & 2.0 & 3.0 & 0.0 \\ 1.0 & 0.0 & -1.0 & -2.0 & 1.0 \\ 2.0 & -1.0 & -4.0 & -7.0 & 1.0 \\ 3.0 & -2.0 & -7.0 & -12.0 & 8.0 \\ 4.0 & -3.0 & -10.0 & -17.0 & 3.0 \\ 5.0 & -4.0 & -13.0 & -22.0 & 8.0 \end{pmatrix} b = \begin{pmatrix} \boxed{7.} \\ -1. \\ -9. \\ -10. \\ -23. \\ -26. \end{pmatrix}$$
 (8)

rank(A) = 3, rank(A|b) = 4 система точного решения не имеет.

5 Матричные разложения

Матрица Q

	0	1	2	3	4	5
0	-0.095880	-0.197961	-0.691842	0.280312	0.250449	0.575911
1	0.063920	-0.062608	-0.537858	-0.767396	0.093471	-0.324144
2	0.223721	0.267326	-0.423274	0.275405	-0.769061	-0.178946
3	0.383522	-0.764812	-0.032893	0.300761	0.067973	-0.414505
4	0.543322	0.538032	-0.115307	0.240289	0.545107	-0.217132
5	0.703123	-0.104943	0.196275	-0.329371	-0.187940	0.558815

Матрица перестановок Π

	0	1	2	3	4
0	0.0	0.0	1.0	0.0	0.0
1	0.0	0.0	0.0	0.0	1.0
2	0.0	0.0	0.0	1.0	0.0
3	1.0	0.0	0.0	0.0	0.0
4	0.0	1.0	0.0	0.0	0.0

Проверим равенство $A\Pi = QR$:

	0	1	2	3	4
0	6.661338e-15	-2.886580e-15	-1.110223e-15	5.551115e-15	1.443290e-15
1	-6.661338e-16	-6.661338e-16	0.000000e+00	6.661338e-16	1.110223e-16
2	-3.552714e-15	1.110223e-15	8.881784e-16	-4.440892e-16	2.220446e-16
3	-5.329071e-15	0.000000e+00	4.440892e-16	-2.664535e-15	-4.440892e-16
4	-1.065814e-14	2.220446e-15	1.776357e-15	-5.329071e-15	-8.881784e-16
5	-1.065814e-14	1.776357e-15	1.776357e-15	-7.105427e-15	-8.881784e-16

Таблица 1: АП - QR

6 SVD

	0	1	2	3	4	5
0	0.089725	-0.212609	-0.688312	-0.502896	0.359235	-0.301693
1	-0.065307	-0.069055	-0.536902	0.829588	0.119578	0.013719
2	-0.213226	0.268281	-0.428060	-0.236973	-0.323654	0.733768
3	-0.410932	-0.750861	-0.021238	-0.033963	-0.507228	-0.091970
4	-0.523288	0.555389	-0.125240	-0.025027	-0.289069	-0.563773
5	-0.706770	-0.076188	0.196445	-0.030729	0.641138	0.209949

Таблица 2: U

	0
0	3.894933e+01
1	4.951476e+00
2	1.196871e+00
3	8.183017e-16
4	3.183863e-16

Таблица 3: Singular values

	0	1	2	3	4
0	-0.188747	0.141768	0.472282	0.802797	-2.770269e-01
1	0.011218	-0.068785	-0.148787	-0.228790	-9.595104e-01
2	-0.815015	-0.524567	-0.234119	0.056328	5.094924e-02
3	0.293785	-0.047160	-0.787035	0.540410	-7.155734e-17
4	0.462266	-0.835330	0.283860	0.089203	5.551115e-17

Таблица 4: V^T

Полученное решение при помощи SVD-разложения

	0
0	1.0
1	1.0
2	1.0
3	1.0
4	1.0

Проверка ортогональности матриц V и U

	0	1	2	3	4	5
0	1.000e+00	-2.775e-17	8.326e-17	8.326e-17	-1.110e-16	5.551e-17
1	-2.775e-17	1.000e+00	-1.422e-16	-3.252e-17	2.081e-16	-2.671e-16
2	8.326e-17	-1.422e-16	1.000e+00	-1.812e-16	-5.551e-17	-4.857e-17
3	8.326e-17	-3.252e-17	-1.812e-16	1.000e+00	-5.204e-17	-8.239e-17
4	-1.110e-16	2.081e-16	-5.551e-17	-5.204e-17	1.000e+00	-1.110e-16
5	5.551e-17	-2.671e-16	-4.857e-17	-8.239e-17	-1.110e-16	1.000e+00

Таблица 5: $U^T U$

	0	1	2	3	4	5
0	1.000e+00	2.315e-16	2.498e-16	-2.636e-16	5.551e-17	1.526e-16
1	2.315e-16	1.000e+00	1.578e-16	-3.144e-17	1.101e-16	-8.803e-17
2	2.498e-16	1.578e-16	1.000e+00	2.498e-16	5.551e-17	-1.665e-16
3	-2.636e-16	-3.144e-17	2.498e-16	1.000e+00	-4.857e-17	-1.283e-16
4	5.551e-17	1.101e-16	5.551e-17	-4.857e-17	1.000e+00	1.804e-16
5	1.526e-16	-8.803e-17	-1.665e-16	-1.283e-16	1.804e-16	1.000e+00

Таблица 6: UU^T

	0	1	2	3	4
0	1.000000e+00	1.665335e-16	-2.775558e-17	-2.081668e-17	-6.475048e-17
1	1.665335e-16	1.000000e+00	1.110223e-16	-1.942890e-16	-4.831531e-18
2	-2.775558e-17	1.110223e-16	1.000000e+00	1.595946e-16	-1.742552e-16
3	-2.081668e-17	-1.942890e-16	1.595946e-16	1.000000e+00	8.782203e-18
4	-6.475048e-17	-4.831531e-18	-1.742552e-16	8.782203e-18	1.000000e+00

Таблица 7: VV^T

	0	1	2	3	4
0	1.000000e+00	5.551115e-17	9.020562e-17	-9.119900e-17	1.372776e-16
1	5.551115e-17	1.000000e+00	-9.020562e-17	-8.399565e-17	3.000320e-17
2	9.020562e-17	-9.020562e-17	1.000000e+00	-7.997363e-17	-1.290107e-16
3	-9.119900e-17	-8.399565e-17	-7.997363e-17	1.000000e+00	1.942890e-16
4	1.372776e-16	3.000320e-17	-1.290107e-16	1.942890e-16	1.0000000e+00

Таблица 8: V^TV

	0	1	2	3	4
0	38.949331	0.000000	0.000000	0.0	0.0
1	0.000000	4.951476	0.000000	0.0	0.0
2	0.000000	0.000000	1.196871	0.0	0.0
3	0.000000	0.000000	0.000000	0.0	0.0
4	0.000000	0.000000	0.000000	0.0	0.0
5	0.000000	0.000000	0.000000	0.0	0.0

Таблица 9: Σ

Проверка матричного равенства $U^TAV = \Sigma$

Псевдообратная матрица

	0	1	2	3	4
0	2.131628e-14	0.000000e+00	-1.665335e-15	-2.780609e-15	-1.548767e-16
1	-1.332268e-15	8.881784e-16	2.775558e-16	-2.151431e-16	-4.302666e-16
2	-2.508410e-15	1.734723e-16	1.110223e-15	-7.537641e-16	-5.725431e-16
3	-1.013208e-15	-1.333499e-16	1.510774e-16	-1.308964e-18	-2.318506e-17
4	-3.298696e-16	-8.472348e-16	-3.166872e-16	1.304668e-16	2.052876e-16
5	8.426199e-16	1.250281e-17	4.588944e-16	3.547494e-16	-3.331899e-17

Таблица 10: $U^TAV - \Sigma$

Если $A=U\Sigma V^T$ - сингулярное разложение матрицы A, тогда $A^+=V\Sigma^+U^T$ Из алгоритма решение СЛАУ с помощью SVD разложения:

$$c = U^T b, y = \Sigma^+ c, x = V y \Rightarrow x = V \Sigma^+ U^T b = A^+ b$$

	0	1	2	3	4	5
0	0.467793	0.365766	0.293131	0.014752	0.089077	-0.130518
1	0.304955	0.236036	0.183108	0.018243	0.045270	-0.087613
2	0.142117	0.106306	0.073086	0.021734	0.001464	-0.044707
3	-0.020721	-0.023423	-0.036937	0.025225	-0.042342	-0.001802
4	0.011261	-0.009009	-0.068694	0.147523	-0.109234	0.028153

Таблица 11: A^+

Решение с помощью псевдообратной матрицы

$$\begin{array}{c|c}
0 \\
0 \\
1 \\
1.0 \\
2 \\
1.0 \\
3 \\
4 \\
1.0 \\
\end{array}$$

Сравнение AA^+ и A^+A

Судя по результатам перемножения псевдообратной матрицы на изначальную, их произведения не равны между собой и не равны единичной.

	0	1	2	3	4	5
0	0.527027	0.378378	0.218468	0.137387	-0.078829	-0.182432
1	0.378378	0.297297	0.225225	0.090090	0.063063	-0.054054
2	0.218468	0.225225	0.300676	-0.104730	0.314189	0.046171
3	0.137387	0.090090	-0.104730	0.733108	-0.199324	0.343468
4	-0.078829	0.063063	0.314189	-0.199324	0.597973	0.302928
5	-0.182432	-0.054054	0.046171	0.343468	0.302928	0.543919

Таблица 12: *AA*⁺

	0	1	2	3	4
0	7.000000e-01	4.000000e-01	1.000000e-01	-2.000000e-01	-2.220446e-16
1	4.000000e-01	3.000000e-01	2.000000e-01	1.000000e-01	-2.220446e-16
2	1.000000e-01	2.000000e-01	3.000000e-01	4.000000e-01	-3.330669e-16
3	-2.000000e-01	1.000000e-01	4.000000e-01	7.000000e-01	5.551115e-17
4	1.387779e-16	-9.714451e-17	-2.775558e-16	-5.551115e-16	1.0000000e+00

Таблица 13: $A^{+}A$

7 Большая система

N	SV	D	Hausholder		
1 V	Точность	Время	Точность	Время	
5	1.49144e-30	0.0009965	1.2154e-28	0.001996	
10	2.35048e-26	0.001991	3.1756e-26	0.004164	
100	1.4927e-17	0.009149	2.2106e-19	2.1235	
500	8.41267e-13	0.5747	2.7845e-14	1579.5157	
1000	1.9031e-12	4.1839	_	>часа	

8 Вывод

В ходе лабораторной работы был реализован метод наименьших квадратов для решения переопределенной СЛАУ с помощью QR разложения с выбором главного столбца, используя отражения Хаусхолдера. Также были сформированы матрицы Q и Π в явном виде, проверена истинность матричного равенства $A\Pi-QR$. Была создана подпрограмма для решения исходной задачи с использованием SVD разложения и псевдообратной матрицы. Выполнены вычислительные эксперименты для задач большего порядка, из которых видно, что порядок точности найденного решения обоих методов примерно равен, а временная составляющая уступает у отражений Хаусхолдера.

9 Приложение

```
import numpy as np
              import pandas as pd
             import time
              # Число столбцов в матрице А
             N = 500
              # Вектор перестановок
             trans = np.linspace(1, N, N)
                       Ввод матрицы А
             A = np.zeros((N + 1, N))
             for i in range(N + 1):
11
                            for j in range(N):
                                          A[i][j] = i + j - 2 * i * j
13
              # MM. \(\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gamma\Gam
             happy_birthday = [0, 1, 1, 8, 3, 8]
15
             for i in range(6):
16
                            A[i][N - 1] = happy_birthday[i]
17
              # копия матрицы А
18
             Atr = A.copy()
19
              # Тестовый пример
20
              # Вектор точного решения
21
             solution = np.zeros(N)
22
             for i in range(N):
23
                            solution[i] = 1
24
              # Вектор правой части
25
             b = np.dot(A, solution)
26
              # Представление в виде столбца N+1 x 1
27
             b = b.reshape((N + 1, 1))
28
              # Копирование вектора правой части
29
             btr = np.copy(b)
30
             btr = btr.reshape(N + 1)
31
32
              # Инициализация матрицы Q
33
             Q = np.eye(N + 1)
34
              # Матрица перестановок
             Matr_of_swap = np.eye(N)
36
              # функция перестановки столбцов в матрице
             def swap(A, n1, n2):
```

```
if n1 != n2:
41
             # Перестановка в матрице А
42
             temp1 = A[:, n1].copy()
43
             temp2 = A[:, n2].copy()
44
             A[:, n2] = temp1[:]
45
             A[:, n1] = temp2[:]
46
             # Перестановка, для восстановления вектора решения
47
             temp3 = trans[n1 - 1]
48
             trans[n1 - 1] = trans[n2 - 1]
49
             trans[n2 - 1] = temp3
50
51
52
    # Отражения Хаусхолдера
53
    def householder_mod(A, b):
        # допуск к измененнию локальной переменной, как к
             глобальной
        global Q
        for k in range(N):
57
            print(k + 1, 'Шаг Хаусхолдера')
             # номер ведущего столбца
59
            h = -1
60
             # норма ведущего столбца
61
             sr = -1
             # выбор ведущего столбца
63
            for j in range(k, N):
64
                 print("Норма", j - k, "столбца = ",
65
                    format(np.linalg.norm(A[k:, j]), '.7'), "\\\ ")
                 if np.linalg.norm(A[k:, j]) > sr:
66
                     h = j
67
                     sr = np.linalg.norm(A[k:, j])
68
             # Условие на проверку равенства нулю всех столбцов на
69
             \hookrightarrow k-шаге алгоритма
             if sr \le 10 ** (-8):
70
                 break
71
             # Перестановка ведущего столбца на первое место на
72
                 k-шаге в матрице A
             swap(A, k, h)
73
             # Перестановка столбцов в матрице перестановок
             swap(Matr_of_swap, k, h)
75
             # ведущий столбец
            main_column = A[k:, k]
             # норма ведущего столбца
            norm_main_column = sr
79
```

```
# единичный базисный вектор
80
             e_1 = np.zeros(len(main_column))
81
             e_1[0] = 1
82
             # вектор w в отражениях Хаусхолдера
83
             w = np.zeros((1, N + 1 - k))
84
             # вычисление w, исходя из условия на выбор знака
85
             if main_column[0] >= 0:
86
                 w[0] = main\_column + norm\_main\_column * e_1
87
             else:
                 w[0] = main\_column - norm\_main\_column * e_1
89
90
             # Матрица Хаусхолдера
91
             mainE = np.eye(N + 1)
             mainE[k:N + 1, k:N + 1] = np.eye(N + 1 - k) - 2 /
                 (np.linalg.norm(w[0]) ** 2) *
                 np.dot(np.transpose(w), w)
             # вычисление матрицы Q
             Q = np.dot(Q, mainE)
95
             \# A^T * w
97
             b_{help} = np.dot(np.transpose(A[k:N + 1, k:N + 1]),
              → np.transpose(w))
             \# (w, b)
99
             bb_help = np.dot(w, b[k:N + 1])
100
             \# 2/(w,w)
101
             beta_help = 2 / np.dot(w, np.transpose(w))[0][0]
102
             # Поэлементно вычитаем из вектора правой части и
103
                 матрицы
             for i in range(k, N + 1):
104
                 b[i] -= beta_help * np.dot(bb_help, w)[0][i - k]
105
                 for j in range(k, N):
106
                      A[i][j] -= beta_help * np.dot(np.transpose(w),
107
                          np.transpose(b_help))[i - k][j - k]
        return A, b
108
109
    # обратный ход метода Гаусса
110
    def gauss(A, B):
111
         sol = np.zeros(len(A[0]))
112
        for i in range(len(A[0]) - 1, -1, -1):
113
             s = 0
             if i == len(A[0]) - 1:
                 sol[i] = B[i] / A[i][i]
             else:
```

```
for j in range(i + 1, len(A[0]), 1):
118
                       s += A[i][j] * sol[j]
119
                  sol[i] = (B[i] - s) / A[i][i]
120
         return sol
121
122
    # вычисление ранга треугольной матрицы
123
    def rank_matrix(A):
124
         rank = 0
125
         for i in range(N):
126
              if abs(A[i][i]) \le 10 ** (-8):
127
                  break
128
              else:
129
                  rank += 1
130
         return rank
131
132
    # функция перестановки компонент вектора решения
133
    def trsol(pst, sol):
         true_sol = np.zeros(len(pst))
135
         for i in range(len(pst)):
136
              true\_sol[pst[i] - 1] = sol[i]
137
         return true_sol
138
139
    # Решение методом SVD разложения
140
    def svd_solve(A, B):
141
         # Инициализация вектора решения
142
         solution = np.zeros(len(A[0]))
143
         # SVD разложение
144
         U, S, V_t = np.linalg.svd(Atr)
145
         # ранг матрицы
146
         \mathbf{r} = 0
147
         # вспомогательный вектор у
148
         y = np.zeros(len(A[0]))
149
         # Вычисление ранга по сингулярным числам
150
         for i in range(len(S)):
151
              if S[i] > 10 ** (-8):
152
                  r += 1
153
         # Вспомогательный вектор c = U^T * b
154
         c = np.dot(np.transpose(U), B)
155
         # вычисление вектора у
156
         for i in range(r):
             y[i] = c[i] / S[i]
         # дополнение нулями компонент с r + 1 до n
         y.resize(N)
160
```

```
# Псевдообратная матрица \kappa матрице Sigma^+
161
         sigm = np.zeros((N + 1, N))
162
        for i in range(r):
163
             sigm[i][i] = S[i]
164
         # вычисление решения
165
         solution = np.dot(np.transpose(V_t), y)
166
         # вычисление точности
167
        acurrancy = (np.linalg.norm(np.dot(sigm, y).reshape((N + 1,
168
             1)) - c)) ** 2
        return solution, acurrancy
169
170
    # Получение псевдообратной матрицы
171
    def Generalized_inverse(A):
172
         # SVD разложение
        U, S, V_t = np.linalg.svd(A)
         # вычисление псевдообратной матрицы Sigma^+
        sigm_plus = np.zeros((N, N + 1))
        for i in range(3):
177
             sigm_plus[i][i] = 1 / S[i]
178
        return np.dot(np.dot(np.transpose(V_t), sigm_plus),
179
             np.transpose(U))
180
```