Reading Material

CS 5135/6035 Learning Probabilistic Models Lecture 17: Multiparameter Models

Gowtham Atluri

October 28, 2018

- Gelman et al. Bayesian Data Analysis
 - Chapter 3. Introduction to multiparameter models
- Kevin Murphy, Conjugate Bayesian analysis of the Gaussian distribution

 $https://www.cs.ubc.ca/{\sim}murphyk/Papers/bayesGauss.pdf$

Gowtham Atlur

S 5135/6035 Learning Probabilistic Models

ber 28, 2018 1 /

CS 5135/6035 Lear

tober 28, 2018

Topics

- Multiparameter models
- Joint posterior density
- Nuisance parameters
- Conditional posterior density
- Marginal posterior density
- Univariate Gaussian parameter estimation
 - \bullet Marginal posteriors for μ and σ^2
- Multivariate Gaussian parameter estimation

Bayesian Estimation: Single-Parameter models

Scenario: Coin toss experiment (where 2 heads and 8 tails are observed)

 \bullet Goal is to estimate θ

Mixture of Priors: $\pi_1 p_1(\theta) + \pi_2 p_2(\theta)$ Jeffreys prior: $p(\theta) \propto \sqrt{n/\theta(1-\theta)}$

) Jeffreys prior: $p(\theta) \propto \sqrt{n/\theta(1-\theta)}$

Gowtham Atlur

CS 5135/6035 Learning Probabilistic Models

ctober 28, 2018 3/2

Bayesian Estimation: Single-Parameter models

Scenario: The temperatures, in Celsius, in Minneapolis during the first week of March 2018 are observed as $\{-2.5, -9.9, -12.1, -8.9, -6.0, -4.8, 2.4\}$

- Goal is to estimate μ , assuming σ^2 is known.
- Natural Conjugate Gaussian Prior $p(\mu) = \mathcal{N}(0,1)$
- Posterior is also Gaussian $p(\mu|y) = \mathcal{N}(\mu_p, \sigma_p^2)$

owtham Atluri CS 5135/6035 Learning Probabilistic Model

stobox 20 2010 E

Point and Interval estimation

CS 5135/6035 Learning Probabilistic Models

Multiparameter Models

- Virtually every practical problem in statistics involves more than one
- $\bullet \ \theta = (\theta_1, \theta_2, \dots, \theta_k)$
 - For example, $\theta = (\mu, \sigma^2)$ when data is Gaussian $\mathcal{N}(\mu, \sigma^2)$
- Bayesian approach for estimating the joint posterior $p(\theta|y)$
 - For example, $p(\mu, \sigma^2|y)$ in the case of the Gaussian
- Although a problem may include several parameters of interest
 - conclusions are often drawn about one, or a few, parameters at a time
 - \bullet e.g., one may be interested in a point-estimate of the mean $\mu.$
- The parameters in the joint posterior about which one is not interested in making inferences are referred to as nuisance parameters

Averaging over 'nuisance parameters'

- A joint posterior for $\theta = (\theta_1, \theta_2)$ is expressed as $p(\theta_1, \theta_2|y)$
 - $p(\theta_1, \theta_2|y) \propto p(y|\theta_1, \theta_2)p(\theta_1, \theta_2)$
- Let us say, we are only interested in inference for θ_1
 - then θ_2 is a nuisance parameter.
- E.g., $y|\mu, \sigma^2 \sim \mathcal{N}(\mu, \sigma^2)$ where $\mu(=\theta_1)$ and $\sigma^2(=\theta_2)$ are unknown
 - interest commonly centers on μ .
- We seek conditional distribution of the parameter of interest, given the observed data: $p(\theta_1|y)$
- ullet This is derived from the joint posterior density by marginalizing $heta_2$

$$p(\theta_1|y) = \int p(\theta_1, \theta_2|y) d\theta_2$$

Averaging over 'nuisance parameters'

• Alternatively, joint posterior density can be factored to yield

$$p(\theta_1|y) = \int p(\theta_1|\theta_2, y)p(\theta_2|y)d\theta_2$$

- This can be treated as a mixture of conditional posterior $p(\theta_1|\theta_2,y)$
 - Where mixing weights are $p(\theta_2|y)$
 - ullet Note that $p(heta_2|y)$ depends on both data and prior model
- Rarely this integral is evaluated explicity, generally simulation is used
 - Step 1: First θ_2 is drawn from the marginal posterior $p(\theta_2|y)$
 - Step 2: Then θ_1 is drawn from its conditional posterior $p(\theta_1|\theta_2,y)$
 - Thus integration is performed indirectly

Normal data with a noninformative prior

Scenario: The temperatures, in Celsius, in Minneapolis during the first week of March 2018 are observed as $\{-2.5, -9.9, -12.1, -8.9, -6.0, -4.8, 2.4\}$

- Goal is to estimate μ and σ^2
- We will use the noninformative prior $p(\mu, \sigma^2) \propto 1/\sigma^2$
 - ullet assumes that μ and σ^2 are independent
- Data points y follow a Gaussian distribution

$$\mathcal{N}(y|\mu,\sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} exp(-\frac{1}{2\sigma^2}(y-\mu)^2)$$

Likelihood

$$p(y|\mu,\sigma^2) = \frac{1}{(2\pi\sigma^2)^{n/2}} \exp\left(-\frac{1}{2\sigma^2} \sum_{i=1}^{n} (y_i - \mu)^2\right)$$

Joint posterior for Gaussian

$$\begin{split} \rho(y|\mu,\sigma^2) &= \frac{1}{(2\pi\sigma^2)^{n/2}} \exp\Big(-\frac{1}{2\sigma^2} \sum_{i=1}^n (y_i - \mu)^2\Big) \qquad \rho(\mu,\sigma^2) \propto 1/\sigma^2 \\ \rho(\mu,\sigma^2|y) &\propto (\sigma^2)^{-n/2} \exp\Big(-\frac{1}{2\sigma^2} \sum_{i=1}^n (y_i - \mu)^2\Big) \times \frac{1}{\sigma^2} \\ &= (\sigma^2)^{-1-n/2} \exp\Big(-\frac{1}{2\sigma^2} \sum_{i=1}^n (y_i - \bar{y} + \bar{y} - \mu)^2\Big) \\ &\vdots \\ &= (\sigma^2)^{-(n+2)/2} \exp\Big(-\frac{1}{2\sigma^2} \left[\sum_{i=1}^n (y_i - \bar{y})^2 + n(\bar{y} - \mu)^2\right]\Big) \\ &= (\sigma^2)^{-(n+2)/2} \exp\Big(-\frac{1}{2\sigma^2} \left[(n-1)s^2 + n(\bar{y} - \mu)^2\right]\Big) \end{split}$$

where
$$s^2 = \frac{1}{n-1} \sum_{i=1}^n (y_i - \overline{y})^2$$
 is the sample variance

Determining the marginal posterior

$$\begin{split} p(\mu,\sigma^2|y) &= (\sigma^2)^{-(n+2)/2} \exp\left(-\frac{1}{2\sigma^2}\left[(n-1)s^2 + \textit{n}(\overline{y}-\mu)^2\right]\right) \end{split}$$
 where $s^2 = \frac{1}{n-1}\sum_{i=1}^n (y_i - \overline{y})^2$ is the sample variance

To determine the marginal posterior for μ , we need to do marginalization

$$p(\mu|y) = \int p(\mu, \sigma^2|y) d\sigma^2 = \int p(\mu|\sigma^2, y) p(\sigma^2|y) d\sigma^2$$

For this we need to determine $\underbrace{p(\mu|\sigma^2,y)}_{\text{conditional posterior}} \text{ and } \underbrace{p(\sigma^2|y)}_{\text{marginal posterior}}$

Choice of conditional posterior $p(\mu|\sigma^2, y)$

Estimating parameters of a Gaussian (unknown μ , known σ^2)

• Given a training data $y = \{y_1, \dots, y_n\}$ drawn *i.i.d* from a Gaussian $\mathcal{N}(y|\mu, \sigma^2)$ with unknown mean μ and a given variance σ^2

$$\mathcal{N}(y|\mu,\sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{1}{2\sigma^2}(y-\mu)^2\right)$$

 \bullet Choosing a Gaussian prior over μ

$$p(\mu) = (2\pi\sigma_0^2)^{-n/2} \exp\left[\frac{1}{2\sigma_0^2}(\mu - \mu_0)^2\right]$$

ullet Our posterior over parameter μ

$$\mathcal{N}(\mu|\mu_{p},\sigma_{p}^{2})=rac{1}{\sqrt{2\pi\sigma_{p}^{2}}} exp\Big(-rac{1}{2\sigma_{p}^{2}}(\mu-\mu_{p})^{2}\Big)$$

where

$$\mu_{p} = \sigma_{p}^{2} \left(\frac{\mu_{0}}{\sigma_{0}^{2}} + \frac{\sum_{i} y_{i}}{\sigma^{2}}\right); \qquad \sigma_{p}^{2} = \frac{1}{\frac{1}{\sigma_{p}^{2}} + \frac{n}{\sigma^{2}}}$$

Gowtham Atluri

S 5135/6035 Learning Probabilistic Models

ber 28, 2018 13

Marginal posterior distribution $p(\sigma^2|y)$

• We can derive this as $p(\sigma^2|y) = \int p(\mu, \sigma^2|y) d\mu$

$$=\int (\sigma^2)^{-(n+2)/2} \exp\Big(-\frac{1}{2\sigma^2}\Big[(n-1)s^2+\underbrace{n(\overline{y}-\mu)^2}_{\text{simple normal integral}}\Big]\Big) d\mu$$

$$\begin{array}{ll} \textit{p}(\sigma^{2}|\textit{y}) & \propto (\sigma^{2})^{-(n+2)/2} exp\left(-\frac{1}{2\sigma^{2}}(n-1)s^{2}\right) \sqrt{2\pi\sigma^{2}/n} \\ & \propto (\sigma^{2})^{-(n+1)/2} exp\left(-\frac{(n-1)s^{2}}{2\sigma^{2}}\right) \end{array}$$

This can be mapped to an Inverse-Gamma distribution

$$f(x) = \frac{1}{\Gamma(\alpha)\beta^{\alpha}} x^{-(\alpha+1)} e^{-1/x\beta}$$

where
$$\alpha=-1+(n+1)/2=\frac{n-1}{2}$$
 and $\beta=\frac{2}{s^2(n-1)}$

Gowtham Atluri

S 5135/6035 Learning Probabilistic Models

tober 28, 2018

Marginal posterior distribution $p(\mu|y)$

To determine the marginal posterior for μ , we need to do marginalization

$$p(\mu|y) = \int p(\mu, \sigma^2|y) d\sigma^2 = \int p(\mu|\sigma^2, y) p(\sigma^2|y) d\sigma^2$$

$$p(\mu|\sigma^2, y) = \mathcal{N}(\mu|\mu_p, \sigma_p^2); \qquad \mu_p = \sigma_p^2 \left(\frac{\mu_0}{\sigma_0^2} + \frac{\sum_i y_i}{\sigma^2}\right); \qquad \sigma_p^2 = \frac{1}{\frac{1}{\sigma_0^2} + \frac{n}{\sigma^2}}$$

$$p(\sigma^2|y) = \mathit{InvGamma}(\alpha, \beta); \qquad \alpha = \frac{n-1}{2} \qquad \beta = \frac{2}{s^2(n-1)}$$

- While it may not always be possible, in this case $p(\mu|y)$ can be derived analytically
- We will use a sampling approach that is more widely applicable

Sampling Algorithm

$$\begin{split} p(\mu|y) &= \int p(\mu,\sigma^2|y) d\sigma^2 = \int p(\mu|\sigma^2,y) p(\sigma^2|y) d\sigma^2 \\ p(\mu|\sigma^2,y) &= \mathcal{N}(\mu|\mu_p,\sigma_p^2); \qquad \mu_p = \sigma_p^2 \Big(\frac{\mu_0}{\sigma_0^2} + \frac{\sum_i y_i}{\sigma^2}\Big); \qquad \sigma_p^2 = \frac{1}{\frac{1}{\sigma_0^2} + \frac{n}{\sigma^2}} \\ p(\sigma^2|y) &= \mathit{InvGamma}(\alpha,\beta); \qquad \alpha = \frac{n-1}{2} \qquad \beta = \frac{2}{s^2(n-1)} \end{split}$$

Algorithm:

- Step 1: Sampling σ^2
 - ullet Compute lpha and eta
 - Sample 1000 values of $\sigma^2 | y \sim InvGamma(\alpha, \beta)$
- ullet Step 2: Sampling μ
 - Assume a prior μ_0, σ_0^2
 - ullet repeat for sample of $\sigma^2|y$
 - ullet Compute posterior parameters μ_p, σ_p^2
 - Sample a value of μ from $\mu | \sigma^2, y \sim \mathcal{N}(\mu | \mu_p, \sigma_p^2)$

Gowtham Atlu

CS 5135/6035 Learning Probabilistic Models

er 28, 2018 1

rtham Atluri CS 5135/6035 Learning Probabilistic Mo

October 28, 2018 16

Julia code: Function to generate μ samples

```
function generate_mu_samples(y,mu_0, sigma_0_sq)
    n = length(y);
    # Generating samples of Sigma^2
    s_sq = (sum((y.-mean(y)).^2))/(n-1);
    a = (n-1)/2;
    b = s_sq^2*(n-1)/2;
    d_sig_sq_given_y = InverseGamma(a,b);
    sample_sig_sq = rand(d_sig_sq_given_y,1000);
    ## using Sigma^2 to generate mu samples
    sigma_p_sq = 1./((1/sigma_0_sq).+(n./(sample_sig_sq)));
    mu_p = sigma_p_sq.*(mu_0/sigma_0_sq + sum(y)./(sample_sig_sq));
    sample_mu = zeros(1000);
    for i=1:1000
        d_mu_given_sig_sq_y = Normal(mu_p[i],sigma_p_sq[i]);
        sample = rand(d_mu_given_sig_sq_y,1);
        sample_mu[i] = sample[1];
    end
    return sample_mu;
end
```

Julia code: Generation and visualization of μ samples

wtham Atluri CS 5135/6035 Learning Probabilistic Mode

ls

7 / 23

CS 5135/6035 Learning Probabilistic Models

October 28, 2018

Visualizing density of μ samples

Gowtham Atlur

CS 5135/6035 Learning Probabilistic Models

ober 28, 2018 19

Multivariate Gaussian

Let $\mathbf{y}=(y_1,\ldots,y_k)$ have a multivariate Gaussian distribution, i.e. $\mathbf{y}\sim\mathcal{N}_k(\boldsymbol{\mu},\mathbf{\Sigma})$ with mean $\boldsymbol{\mu}$ and a covariance matrix $\mathbf{\Sigma}$.

The probability density function (pdf) for y is

$$p(\mathbf{y}) = (2\pi)^{-k/2} |\mathbf{\Sigma}|^{-1/2} \exp\left(-\frac{1}{2}(\mathbf{y} - \boldsymbol{\mu})^{\top} \mathbf{\Sigma}^{-1} (\mathbf{y} - \boldsymbol{\mu})\right)$$

Modelling height and weight of subjects in a survey.

Samples	Weight	Height
1	77.4	182.6
2	58.5	161.3
3	63.1	161.2
4	68.6	177.7
5	59.3	157.8
6	76.7	170.4

Gowtham Atlu

CS 5135/6035 Learning Probabilistic Model

Posterior over $\mu : p(\mu|\mathbf{y}_1, \dots, \mathbf{y}_k, \mathbf{\Sigma}) = \mathcal{N}(\mu_p, \mathbf{\Lambda}_p)$

• We need to derive the marginal posteriors and the point estimates

 $\mathcal{N}(\mathbf{z}|\boldsymbol{\mu}, \boldsymbol{\Sigma}) \qquad \mathbf{z} = \left(\begin{array}{c} \mathbf{x} \\ \mathbf{y} \end{array}\right) \qquad \boldsymbol{\mu} = \left(\begin{array}{c} \boldsymbol{\mu}_{\mathbf{x}} \\ \boldsymbol{\mu}_{\mathbf{y}} \end{array}\right), \qquad \boldsymbol{\Sigma} = \left(\begin{array}{cc} \boldsymbol{\Sigma}_{\mathbf{xx}} & \boldsymbol{\Sigma}_{\mathbf{xy}} \\ \boldsymbol{\Sigma}_{\mathbf{yx}} & \boldsymbol{\Sigma}_{\mathbf{yy}} \end{array}\right)$

Bayesian Estimation for a Multivariate Gaussian

28 2018 20

Bayesian Estimation for a Multivariate Gaussian

Assume we know Σ , and we want to estimate $\mu = (\mu_W, \mu_H)$,

- ullet We first begin with a prior $p(\mu)$
 - ullet preferably a natural conjugate prior $\mu \sim \mathcal{N}(oldsymbol{\mu}_0, oldsymbol{\Lambda}_0)$
- We write the likelihood

$$p(\pmb{y}_1,\ldots,\pmb{y}_k|\pmb{\mu},\pmb{\Sigma}) \propto \exp\left(-rac{1}{2}\sum_{i=1}^n(\pmb{y}_i-\pmb{\mu})^{ op}\pmb{\Sigma}^{-1}(y_i-\pmb{\mu})
ight)$$

• We derive the posterior (similar to the univariate Gaussian case)

$$p(\boldsymbol{\mu}|\mathbf{y}_1,\ldots,\mathbf{y}_k,\mathbf{\Sigma}) = \mathcal{N}(\boldsymbol{\mu}_p,\mathbf{\Lambda}_p)$$

where
$$\mathbf{\Lambda}_p^{-1} = \mathbf{\Lambda}_0^{-1} + n\mathbf{\Sigma}^{-1}$$

$$\mu_p = (\mathbf{\Lambda}_0^{-1} + n\mathbf{\Sigma}^{-1})^{-1}(\mathbf{\Lambda}_0^{-1}\mu_o + n\mathbf{\Sigma}^{-1}\overline{\mathbf{y}})$$

Gowtham Atluri

CS 5135/6035 Learning Probabilistic Models

October 28, 2018

Gowtham At

from them

• Recall from MvGaussian discussion

ullet We compute point estiamtes for μ_W and μ_H

CS 5135/6035 Learning Probabilistic Models

• We derive the marginal posteriors (using this MvGaussian property)

• $p(\mu_W|\mathbf{y}_1,\ldots,\mathbf{y}_k)\sim\mathcal{N}(\mu_1,\Sigma_{11})$ and $p(\mu_H|\mathbf{y}_1,\ldots,\mathbf{y}_k)\sim\mathcal{N}(\mu_2,\Sigma_{22})$

October 28, 2018

22/2

Summary

- Bayesian approach generalizes to multiparameter models
- Even though we estimate joint posterior, we are often interested in estimates for some of the parameters only
- We need to derive the marginal posterior

$$p(\theta_1|y) = \int p(\theta_1, \theta_2|y) d\theta_2 = \int p(\theta_1|\theta_2, y) p(\theta_2|y) d\theta_2$$

- Sampling approach
 - Sample $\theta_2 \sim p(\theta_2|y)$
 - Sample $\theta_1 \sim p(\theta_1 | \theta_2, y)$
 - ullet Plot the histogram of $heta_1$ samples
- Example
 - \bullet Univariate Gaussian when both μ and σ^2 are unknown
- ullet Multivariate Gaussian when μ is unknown and $oldsymbol{\Sigma}$ is known