Optimization Lecture

Manickam S. [manickam.somasundaram@proplant-mvi.com]

CAx- and Al-Solutions, MVI Proplant Nord GmbH

November 9, 2023

Introduction

Understand ↔ **Search** ↔ Solve

- Efficient algorithms exist for many problems.
- Implementations of these algorithms are also available.
- The remaining difficulty is often having enough prior knowledge to recognize a problem.

Figure: Johann Bernoulli, thanks for Brachistochrone curve

Transferring the problem to code

(1) The paper box problem

Introduction

Given a square piece of paper, cut the paper at a location x to maximize the volume of the resulting box.

This problem can be formulated as

minimize
$$-V(x,s) = -s^2x$$

subject to $2x + s = L$
 $s,x > 0$.

(1) The paper box problem

Problem instance

minimize
$$-V(x) = -(L-2x)^2x$$

subject to $x \ge 0$
 $x \le L/2$

Problem generalization

Given a smooth function $f: \mathbb{R} \to \mathbb{R}$.

minimize
$$f(x)$$

subject to $x \ge a$
 $x < b$

Solved using differentiation.

(2) The advertisement problem

Introduction

We want equal exposure to 4 segments. Given 2 advertisement channels and their associated reach in units of views/dollar, allocate the money.

$$\begin{pmatrix} 5 \\ 4 \\ 6 \\ 3 \end{pmatrix} x_1 + \begin{pmatrix} 2 \\ 3 \\ 7 \\ 7 \end{pmatrix} x_2 = \begin{pmatrix} 9 \\ 9 \\ 9 \\ 9 \end{pmatrix} + \begin{pmatrix} e_1 \\ e_2 \\ e_3 \\ e_4 \end{pmatrix}$$

This problem can be formulated as

minimize
$$\sum_{i=1}^4 e_i^2 = \mathbf{e}^T \mathbf{e} = \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2.$$

Views per unit of money

(2) The advertisement problem

Problem instance

minimize
$$\mathbf{e}^T \mathbf{e} = \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2$$

Problem generalization

Minimizing $\|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2$ is a *least* squares problem, solved analytically by the equation

$$\mathbf{A}^T \mathbf{A} \mathbf{x} = \mathbf{A}^T \mathbf{b}.$$

Solution

$$\begin{pmatrix} 5 \\ 4 \\ 6 \\ 3 \end{pmatrix} \mathbf{1.5} + \begin{pmatrix} 2 \\ 3 \\ 7 \\ 7 \end{pmatrix} \mathbf{0.4} = \begin{pmatrix} 9 \\ 9 \\ 9 \\ 9 \end{pmatrix} + \begin{pmatrix} -0.7 \\ -1.8 \\ 2.8 \\ -1.7 \end{pmatrix}$$

(3) The constrained advertisement problem

Introduction

Same as before, but constrained by a budget of 1 unit of money.

$$\begin{pmatrix} 5 \\ 4 \\ 6 \\ 3 \end{pmatrix} x_1 + \begin{pmatrix} 2 \\ 3 \\ 7 \\ 7 \end{pmatrix} x_2 = \begin{pmatrix} 9 \\ 9 \\ 9 \\ 9 \end{pmatrix} + \begin{pmatrix} e_1 \\ e_2 \\ e_3 \\ e_4 \end{pmatrix}$$

This problem can be formulated as

minimize
$$\sum_{i=1}^{4} e_i^2 = \mathbf{e}^T \mathbf{e} = \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2$$

subject to
$$x_1 + x_2 = 1$$

Views per unit of money

The constrained advertisement problem

Problem instance

minimize
$$\mathbf{e}^T \mathbf{e} = \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2$$

subject to $\mathbf{x}^T \mathbf{1} = 1$

Problem generalization

Constrained least squares problem, solved by Lagrange multipliers and linear algebra.

$$\begin{pmatrix} 2\mathbf{A}^T\mathbf{A} & \mathbf{1} \\ \mathbf{1} & 0 \end{pmatrix} \begin{pmatrix} \hat{\mathbf{x}} \\ \hat{\mathbf{z}} \end{pmatrix} = \begin{pmatrix} 2\mathbf{A}^T\mathbf{b} \\ \mathbf{d} \end{pmatrix}$$

Solution

$$\begin{pmatrix} 5 \\ 4 \\ 6 \\ 3 \end{pmatrix} \mathbf{0.6} + \begin{pmatrix} 2 \\ 3 \\ 7 \\ 7 \end{pmatrix} \mathbf{0.4} = \begin{pmatrix} 9 \\ 9 \\ 9 \\ 9 \end{pmatrix} + \begin{pmatrix} -5.1 \\ -5.4 \\ -2.6 \\ -4.5 \end{pmatrix}$$

(4) Gradient Descent

- Gradient Descent is a fundamental optimization technique used in machine learning and mathematical optimization.
- ► It is the backbone of training algorithms for various models, such as linear regression and neural networks.
- Gradient Descent aims to find the minimum of a given function by iteratively adjusting model parameters.

10/29

Key Concepts

- ▶ **Objective Function**: The function to be minimized or maximized, typically represented as $J(\theta)$.
- ▶ **Gradient**: The vector of partial derivatives of the objective function with respect to the model parameters, $\nabla J(\theta)$.
- **Learning Rate** (α): A hyperparameter that controls the step size during each iteration.
- ▶ **Iteration**: Each cycle of updating model parameters based on the gradient.

Basic Steps of Gradient Descent

- 1. Start with an initial guess for model parameters, θ .
- 2. Compute the gradient of the objective function with respect to θ .
- 3. Update θ by subtracting the gradient scaled by the learning rate: $\theta \leftarrow \theta \alpha \nabla J(\theta)$.
- 4. Repeat steps 2 and 3 until convergence or a predefined number of iterations.

(5) Simulated Annealing

- Simulated Annealing is a stochastic optimization technique inspired by the annealing process in metallurgy.
- ► It is used to find approximate solutions to optimization and search problems.
- Simulated Annealing is particularly useful for problems with rugged landscapes and multiple local optima.

Figure: Convergence of Gradient Descent

Key Concepts

- Objective Function: The function to be minimized or maximized.
- **State Space**: The set of all possible solutions.
- **Energy**: A measure of the objective function's value.
- ► **Temperature**: A control parameter that regulates exploration vs. exploitation.
- ► **Cooling Rate**: The rate at which temperature decreases during the annealing process.

Basic Steps of Simulated Annealing

- 1. Start with an initial solution.
- 2. Initialize the temperature and cooling rate.
- 3. Iterate through a predefined number of steps or until convergence.
- 4. Perturb the current solution to obtain a neighboring solution.
- 5. Calculate the change in energy between the current and neighboring solutions.
- 6. Accept or reject the neighboring solution based on energy change and temperature.
- 7. Reduce the temperature according to the cooling rate.

Acceptance Probability

The probability of accepting a worse solution:

$$P(\mathsf{accept}) = \exp\left(-\frac{\Delta E}{T}\right)$$

where ΔE is the change in energy, and T is the current temperature.

Key Considerations

- Simulated Annealing is a probabilistic method.
- ► It can escape local optima by accepting worse solutions early in the optimization.
- ► The algorithm's performance depends on the choice of temperature and cooling rate.
- ▶ The convergence to the global optimum is not guaranteed.

Applications

Simulated Annealing is used in various fields, including:

- Combinatorial optimization (e.g., Traveling Salesman Problem).
- ► Machine learning (e.g., training neural networks).
- VLSI design and chip manufacturing.
- Structural optimization in engineering.

Conclusion

- Simulated Annealing is a powerful optimization technique for tackling complex problems.
- ▶ It offers a balance between exploration and exploitation.
- Proper parameter tuning and careful design of the objective function are crucial for success.

(6) The worker-assignment problem

Introduction

Assign 4 workers to 4 tasks, given a matrix *C* specifying to which degree workers enjoy each task.

This amounts to specifying X with entries in $X_{ij} \in \{0,1\}$, i.e.

$$X = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix},$$

The above yields a satisfaction of

$$6+4+8+1=19$$
.

Problem data

$$C = \begin{array}{c} \text{ole} & A & B & C & D \\ \text{ole} & 5 & 6 & 1 & 6 \\ \text{dag} & 4 & 5 & 0 & 1 \\ \text{lise} & 7 & 2 & 1 & 1 \end{array}$$

Solution space growth

n	digits in $n!$
1	1
10	7
25	26
50	65

The worker-assignment problem

Problem instance

minimize
$$-\sum_{i}\sum_{j}C_{ij}X_{ij}$$
 subject to $\sum_{i}X_{ij}=1$ for every j $\sum_{i}X_{ij}=1$ for every i

Problem generalization

This is the assignment problem, solved in $\mathcal{O}(n^3)$ time, not $\mathcal{O}(n!)$.

Solution

$$C_{ij}\widehat{X}_{ij} = egin{array}{cccc} \mathsf{ase} & A & B & C & D \ \mathsf{ole} & \mathsf{5} & \mathsf{6} & \mathsf{1} & \mathsf{6} \ \mathsf{4} & \mathsf{5} & \mathsf{0} & \mathsf{1} \ \mathsf{1} & \mathsf{2} & \mathsf{6} & \mathsf{8} \ \mathsf{7} & \mathsf{2} & \mathsf{1} & \mathsf{1} \ \end{array}$$

$$-\sum_{i}\sum_{j}C_{ij}\widehat{X}_{ij} = 6 + 4 + 6 + 7 = 23$$

(7) The hotel problem

Introduction

We wish to travel 100 units of distance. There are many hotels along the way. Pick hotels to travel ~10 units per day.

Problem instance

Set M = 10. Find a sequence h_1, h_2, \dots, h_n to

minimize
$$\sum_{j} (M - (h_j - h_{j-1}))^2.$$

Examples

Traveling from x=0 to x=6 incurs a penalty of $(10-(6-0))^2=4^2$. Traveling from x=0 to x=11 incurs a penalty of $(10-(11-0))^2=1^2$. There are 31 hotels above, and $2^{31}=2147483648$ possibilities.

The hotel problem

Problem

Let P(j) be the minimal penalty at stop j. Realize that

$$P(j) = \min_{0 \le i < j} (P(i) + (M - (h_j - h_i))^2).$$

Solved in $\mathcal{O}(n^2)$ time, not $\mathcal{O}(2^n)$.

Problem generalization

The solution technique is called dynamic programming (DP). To use DP, we must (1) identify a recursive relationship, (2) define initial conditions and (3) solve problems in correct order.

(8) The magnet problem (Simulated Annealing)

Introduction

We are given 6 magnets. Choose $x_i \in \{-1,1\}$ to minimize the total energy

$$E(\mathbf{x}) = w_{12}x_1x_2 + w_{13}x_1x_3 + \dots + w_{56}x_5x_6.$$

The problem can be formulated as

minimize
$$E(\mathbf{x}) = \mathbf{x}^T \mathbf{W} \mathbf{x}$$

subject to $x_i \in \{-1, 1\}.$

There are 2^{6-1} states, and $E(\mathbf{x})$ is not differentiable. A difficult problem.

Problem

The magnet problem

Problem instance

minimize $E(\mathbf{x}) = \mathbf{x}^T \mathbf{W} \mathbf{x}$ subject to $x_i \in \{-1, 1\}.$

Problem generalization

Simulated annealing balances exploitation and exploration. Widely applicable meta-heuristic.

(8) The egg boiling problem

Introduction

Let b be the boiling time of an egg, c be the cooling time, and s be the amount of salt used. Let $f(b,c,s): \mathbb{R}^3 \to \mathbb{R}$ be the quality of a boiled egg.

This problem can be formulated as

minimize
$$-f(b,c,s)$$

subject to $b,c,s \ge 0$

Evaluating f(b, c, s) is expensive.

The egg boiling problem

Problem generalization

Given a smooth function $f: \mathbb{R}^n \to \mathbb{R}$ which is expensive to evaluate.

minimize
$$f(\mathbf{x})$$

subject to $\mathbf{a} \le \mathbf{x} \le \mathbf{b}$

Clever sampling via bayesian optimization, which builds a probability distribution over functions. Exploration vs. exploitation.

References

- Strang, Gilbert. *Introduction to Applied Mathematics*. Wellesley, Mass: Wellesley-Cambridge Press, 1986.
- Boyd, Stephen, and Lieven Vandenberghe. Introduction to Applied Linear Algebra. Cambridge University Press, 2018.
- Dasgupta, Sanjoy, Christos H. Papadimitriou, and Umesh Virkumar.
 Vazirani. Algorithms. Boston, Mass: McGraw Hill, 2008.
- Duda, Richard O., Peter E. Hart, and David G. Stork. Pattern Classification. 2 edition. New York: Wiley-Interscience, 2000.
- Jasper Snoek, Hugo Larochelle, Ryan P. Adams. Practical Bayesian Optimization of Machine Learning Algorithms. arXiv.org, 2012.
- ChatGPT

Thanks

Thank you for your attention.

For LaTeX source, Python code and questions mail at:

manickam.somasundaram@proplant-mvi.com