MATHEMATICA PACKAGE METRICGRAV

Prof. Pietro Frè

University of Torino

Department of Physics

Via P. Giuria, 1, 10125 Torino (Italy)

Einstein Equations in metric formalism

In this Notebook we provide a package to calculate Einstein equations for any given metric in arbitrary dimensions using the metric formalism.

Description of the programme

What the NoteBook does

Given a n-dimensional manifold M whose coordinates we denote x_i and a metric defined over it and provided in the form

$$ds^2 = g_{ij}(x) dx^i \otimes dx^j$$
 (0.1)

The programme extracts the metric tensor $g_{ij}(x)$ calculates its inverse $g^{ij}(x)$ calculates the Christoffel symbols $\Gamma_{ii}{}^k(x)$, then the Riemann tensor, the Ricci tensor and the Einstein tensor.

Initialization and inputs to be supplied

After reading the NoteBook, calculations are intialized in the following way

- 1. First the user types $\mathbf{n}\mathbf{n}$ = positive integer number (which is going to be the dimension \mathbf{n} of the considered manifold)
- 2. First the user types mainmetric. The computer will ask the user to supply three inputs in the following form:
 - a) the set of coordinates as n-vector. That vector must be named **coordi** = $\{x_1,...,x_n\}$
 - b) the set of coordinates differentials as n-vector. That vector must be named **diffe** = $\{dx_1,...,dx_n\}$
 - c) the metric given as a quadratic differential that must be named ds2. The user will type $ds2=g_{\parallel i,\parallel}dx^i dx^j$
- **3.** After providing these inputs the user will type the command metricresume.

Produced outputs

- 1. The Christoffel symbols $\Gamma_{\mu\nu}^{\lambda}$ are encoded in an array $Gam[[\lambda,\mu,\nu]]$.
- **2.** The Riemann tensor $R_{\mu\nu\rho}^{\lambda}$ is encoded in an array $\text{Rie}[[\lambda,\mu,\nu,\rho]]$.

- 3. The curvature 2-form $\mathbf{R} = d\Gamma + \Gamma \wedge \Gamma$ is encoded in an array named $\mathbf{RR}[[\lambda, \mu]]$.
- **4.** The Ricci tensor $\mathbf{R}_{\mu\rho} \equiv R^{\lambda}_{\mu\lambda\rho}$ is encoded in an array named **ricten**[[μ,ρ]].
- **5.** The Einstein tensor $G_{\mu\rho} = R_{\mu\rho} \frac{1}{2} g_{\mu\rho} R$ is encoded in an array **einst**[[μ,ρ]].

The Mathematica code

Examples

The Schwarschild metric

In this section we exemplify the use of the package metricgrav with the case of the Schwarschild metric that we write in the following form

$$ds^{2} = -\left(1 - 2\frac{\mu}{r}\right)dt^{2} + \left(1 - 2\frac{\mu}{r}\right)^{-1}dr^{2} + r^{2}\left(d\theta^{2} + \sin[\theta]^{2}d\phi^{2}\right)$$
 (0.2)

computer calculation of the Riemann, Ricci and Einstein tensors

```
In[5]:= nn = 4;
     mainmetric
     OK I calculate your space, Give me the data
     Give me the dimension of your space
     Your space has dimension n = 4
     Now I stop and you give me two vectors of dimension 4
     vector coordi = vector of coordinates
     vector diffe = vector of differentials
     Next you give me the metric as ds2 =
     Then to resume calculation you print metricresume
Out[6]= \{Null\}
ln[7]:= coordi = \{t, r, \theta, \phi\};
     diffe = {dt, dr, d\theta, d\phi};
     ds2 = -\left(1 - 2\frac{\mu}{r}\right) dt^2 + \left(1 - 2\frac{\mu}{r}\right)^{-1} dr^2 + r^2 \left(d\theta^2 + \sin[\theta]^2 d\phi^2\right);
In[10]:= metricresume
     I resume the calculation
     First I extract the metric coefficients from your data
     Then I calculate the inverse metric
```

Done !

and I calculate also the metric determinant

Done

I perform the calculation of the Christoffel symbols

I finished

the Levi Civita connection is given by:

$$\Gamma[11] = \frac{\mathrm{dr}\,\mu}{\mathrm{r}^2 - 2\,\mathrm{r}\,\mu}$$

$$\Gamma[12] = \frac{dt \mu}{r^2 - 2 r \mu}$$

$$\Gamma[13] = 0$$

$$\Gamma[14] = 0$$

$$\Gamma[21] = \frac{dt (r - 2 \mu) \mu}{r^3}$$

$$\Gamma[22] = -\frac{\mathrm{dr}\,\mu}{\mathrm{r}^2 - 2\,\mathrm{r}\,\mu}$$

$$\Gamma[23] = d\theta (-r + 2\mu)$$

$$\Gamma[24] = -d\phi (r - 2\mu) \sin[\theta]^2$$

$$\Gamma[31] = 0$$

$$\Gamma[32] = \frac{d\theta}{r}$$

$$\Gamma[33] = \frac{dr}{r}$$

$$\Gamma[34] = -d\phi \cos[\theta] \sin[\theta]$$

$$\Gamma[41] = 0$$

$$\Gamma[42] = \frac{d\phi}{r}$$

$$\Gamma[43] = d\phi \operatorname{Cot}[\theta]$$

$$\Gamma[44] = \frac{dr}{r} + d\theta \cot[\theta]$$

Task finished

The result is encoded in an array $\operatorname{Gam}[[\lambda,\mu,\nu]]$

Now I calculate the Riemann tensor

I tell you my steps :

$$b = 2$$

$$b = 3$$

$$b = 4$$

$$a = 2$$

$$b = 1$$

$$b = 2$$

$$b = 3$$

$$b = 4$$

$$a = 3$$

$$b = 3$$

$$a = 4$$

$$b = 3$$

$$b = 4$$

Finished

Now I evaluate the curvature 2-form of your space

I find the following answer

$$R[11] = 0$$

$$R[12] = \frac{2 \mu dt ** dr}{r^2 (r - 2 \mu)}$$

$$R[13] = -\frac{\mu dt ** d\theta}{r}$$

$$R[14] = -\frac{\mu dt ** d\phi Sin[\Theta]^2}{\pi}$$

$$R[21] = \frac{2 (r - 2 \mu) \mu dt ** dr}{r^4}$$

$$R[22] = 0$$

$$R[23] = -\frac{\mu \, dr ** d\theta}{r}$$

$$R[24] = -\frac{\mu \, dr ** d\phi \, Sin[\theta]^2}{r}$$

$$R[31] = -\frac{(r-2\mu) \mu dt ** d\theta}{r^4}$$

$$R[32] = \frac{2 \mu \, dr ** d\theta}{2 r^3 - 4 r^2 \mu}$$

$$R[33] = 0$$

$$R[34] = \frac{2 \mu d\theta ** d\phi Sin[\theta]^2}{r}$$

$$R[41] = -\frac{(r-2\mu) \mu dt ** d\phi}{r^4}$$

$$R[42] = \frac{2 \mu \, dr ** d\phi}{2 r^3 - 4 r^2 \mu}$$

```
R[43] = -\frac{2 \mu d\theta * d\phi}{r}
      R[44] = 0
      The result is encoded in a tensor RR[[\lambda, \mu]]
      Its components are encoded in a tensor Rie[[\lambda, \mu, \nu, \rho]]
       Now I calculate the Ricci tensor
      I have finished the calculation
      The Ricci tensor is zero
      _____
      The Einstein tensor is zero
\text{Out[10]= } \{ \, \text{Null} \, \}
```

The de Sitter metric for a manifold with positive spatial curvature

In this section we exemplify the use of the package metricgrav with the case of the de Sitter metric for a manifold of positive spatial curvature that we write as follows:

$$ds^{2} = -dt^{2} + \frac{Cosh[H * t]^{2}}{H^{2}} \left(\frac{dr^{2}}{1 - r^{2}} + r^{2} \left(d\theta^{2} + Sin[\theta]^{2} d\phi^{2} \right) \right)$$
 (0.3)

computer calculation of the Riemann, Ricci and Einstein tensors

```
ln[11]:= nn = 4;
      mainmetric
      OK I calculate your space, Give me the data
      Give me the dimension of your space
      Your space has dimension n = 4
      Now I stop and you give me two vectors of dimension 4
      vector coordi = vector of coordinates
      vector diffe = vector of differentials
      Next you give me the metric as ds2 =
      Then to resume calculation you print metricresume
Out[12]= \{Null\}
ln[13]:= coordi = \{t, r, \theta, \phi\};
      diffe = {dt, dr, d\theta, d\phi};
      ds2 = -dt^{2} + \frac{Cosh[H*t]^{2}}{H^{2}} \left( \frac{dr^{2}}{1-r^{2}} + r^{2} \left( d\theta^{2} + Sin[\theta]^{2} d\phi^{2} \right) \right);
In[16]:= metricresume
      I resume the calculation
      First I extract the metric coefficients from your data
      Then I calculate the inverse metric
```

```
Done !
and I calculate also the metric determinant
Done
I perform the calculation of the Christoffel symbols
I finished
the Levi Civita connection is given by:
\Gamma[11] = 0
\Gamma[12] = \frac{dr Cosh[Ht] Sinh[Ht]}{H - H r^2}
\Gamma[13] = \frac{d\theta \, r^2 \, Cosh[Ht] \, Sinh[Ht]}{}
\Gamma[14] = \frac{d\phi \, r^2 \, Cosh[Ht] \, Sin[\theta]^2 \, Sinh[Ht]}{}
\Gamma[21] = dr H Tanh[Ht]
\Gamma[22] = \frac{dr r}{1 - r^2} + dt H Tanh[H t]
\Gamma[23] = d\theta r (-1 + r^2)
\Gamma[24] = d\phi r (-1 + r^2) \sin[\theta]^2
\Gamma[31] = d\theta H Tanh[Ht]
\Gamma[32] = \frac{d\theta}{r}
\Gamma[33] = \frac{dr}{r} + dt H Tanh[Ht]
\Gamma[34] = -d\phi \cos[\theta] \sin[\theta]
\Gamma[41] = d\phi H Tanh[Ht]
\Gamma[42] = \frac{d\phi}{r}
\Gamma[43] = d\phi \operatorname{Cot}[\theta]
\Gamma[44] = \frac{dr}{r} + d\theta \cot[\theta] + dt H Tanh[Ht]
Task finished
The result is encoded in an array Gam[[\lambda, \mu, \nu]]
 Now I calculate the Riemann tensor
I tell you my steps :
 a = 1
 b = 1
 b = 2
 b = 3
 b = 4
 a = 2
 b = 1
```

```
b = 2
```

$$b = 3$$

$$b = 4$$

$$a = 3$$

$$b = 1$$

$$b = 2$$

$$b = 3$$

$$b = 2$$

$$b = 3$$

$$b = 4$$

Finished

Now I evaluate the curvature 2-form of your space

I find the following answer

$$R[11] = 0$$

$$R[12] = \frac{2 \, \text{Cosh}[H\,t]^2 \, dt ** dr}{2 - 2 \, r^2}$$

$$R[13] = r^2 Cosh[Ht]^2 dt ** d\theta$$

$$R[14] = r^2 Cosh[Ht]^2 dt ** d\phi Sin[\theta]^2$$

$$R[21] = H^2 dt ** dr$$

$$R[22] = 0$$

$$R[23] = r^2 Cosh[Ht]^2 dr ** d\theta$$

$$R[24] = r^2 Cosh[Ht]^2 dr ** d\phi Sin[\theta]^2$$

$$R[31] = H^2 dt ** d\theta$$

$$R[32] = \frac{2 \cosh[Ht]^2 dr * d\theta}{-2 + 2 r^2}$$

$$R[33] = 0$$

$$R[34] = r^2 Cosh[Ht]^2 d\theta ** d\phi Sin[\theta]^2$$

$$R[41] = H^2 dt ** d\phi$$

$$R[42] = \frac{2 \, \text{Cosh}[H\,t]^2 \, dr \, ** \, d\phi}{-2 + 2 \, r^2}$$

$$R[43] = -r^2 Cosh[Ht]^2 d\theta ** d\phi$$

$$R[44] = 0$$

The result is encoded in a tensor $RR[[\lambda, \mu]]$

Its components are encoded in a tensor $Rie[[\lambda, \mu, \nu, \rho]]$

Now I calculate the Ricci tensor $% \left(1\right) =\left(1\right) \left(1\right)$

1 1 non zero

$$Ricci[11] = -\frac{3 H^2}{2}$$

2 2 non zero

Ricci[22] =
$$\frac{3 \cosh[Ht]^2}{2 - 2 r^2}$$

3 3 non zero

$$Ricci[33] = \frac{3}{2} r^2 Cosh[Ht]^2$$

4 4 non zero

$$Ricci[44] = \frac{3}{2} r^2 Cosh[Ht]^2 Sin[\theta]^2$$

I have finished the calculation

The tensor ricten[$[\mu, \rho]$] giving the Ricci tensor

is ready for inspection or for storing on hard disk

The Einstein tensor is encoded in an array einst and it is ready for inspection $Out[16] = \{Null\}$

In[17]:= MatrixForm[einst]

Out[17]//MatrixForm=

$$\begin{pmatrix} \frac{3\,\mathrm{H}^2}{2} & 0 & 0 & 0 \\ 0 & \frac{3\,\mathrm{Cosh}\,[\mathrm{H}\,\mathrm{t}]^2}{2\,(^{-1}+\mathrm{r}^2)} & 0 & 0 \\ 0 & 0 & -\frac{3}{2}\,\mathrm{r}^2\,\mathrm{Cosh}\,[\mathrm{H}\,\mathrm{t}]^2 & 0 \\ 0 & 0 & 0 & -\frac{3}{2}\,\mathrm{r}^2\,\mathrm{Cosh}\,[\mathrm{H}\,\mathrm{t}]^2\,\mathrm{Sin}\,[\theta]^2 \end{pmatrix} ,$$

In[18]:= scalaron

Out[18]= 6 H^2