Strukturelle Induktion

Beweismethode für Aussagen über induktiv definierte Objekte

Die vollständige Induktion (Induktion für Aussagen über natürlichen Zahlen) ist ein Spezialfall der strukturellen Induktion.

Beispiel 1

Gegeben sei ein endliches Alphabet A. A^* sei die Menge aller (endlichen) Wörter über A. rev(w) eines Wortes w sei das umgekehrt aufgeschriebene Wort, z.B. rev(informatik) = kitamrofni.

Wir geben folgende induktive Definition an:

Definition: [induktiv]

- a) rev(e) = e (e ist das leere Wort, also ein Wort, das keinen Buchstaben hat)
- b) $rev(w \cdot a) = a \cdot rev(w)$ für $w \in A^*$ und $a \in A$ (\cdot soll die Verknüpfung zweier Wörter bzw. Buchstaben sein)

Satz: Es gilt $rev(u \cdot v) = rev(v) \cdot rev(u)$ für beliebige Wörter $u, v \in A^*$.

Beweis durch strukturelle Induktion über die Struktur von v:

```
IA: für v = e: rev(u \cdot e) = rev(u) = e \cdot rev(u) = rev(e) \cdot rev(u) (nach Def. rev, Teil 1)

IV: für ein v \in A^* gelte: rev(u \cdot v) = rev(v) \cdot rev(u)

IB: für v \cdot a (mit v \in A^*, a \in A) behaupten wir: rev(u \cdot (v \cdot a)) = rev(v \cdot a) \cdot rev(u) Induktionsschluss: rev(u \cdot (v \cdot a)) = rev(u \cdot v \cdot a) (Verknüpfung ist assoziativ) = rev(u \cdot v) \cdot a (Verknüpfung ist assoziativ) = a \cdot rev(u \cdot v) (Definition rev, 2. Teil) = a \cdot (rev(v) \cdot rev(u)) nach Induktionsvoraussetzung = (a \cdot rev(v)) \cdot rev(u) (Verknüpfung ist assoziativ) = rev(v \cdot a) \cdot rev(u) (Definition rev, 2. Teil)
```

Beispiel 2

Definition 1.1: [induktiv] aus der Vorlesung

Die Menge AL(P) aller (aussagenlogischen) Formeln mit Aussagenvariablen aus der Menge P ist definiert durch:

- a) Alle Aussagenvariablen $p \in P$ sind Formeln. $(P \subseteq AL(P))$
- b) t und f sind Formeln.
- c) Sind * ein einstelliger Junktor und φ eine Formel, dann ist auch $*\varphi$ eine Formel.
- d) Sind * ein zweistelliger Junktor und φ und ψ Formeln, dann ist auch $\varphi * \psi$ eine Formel.
- (1. und 2. Induktionsanfang, 3. und 4. Induktionsschluss)

Beweisen Sie Satz 1.3 aus der Vorlesung durch strukturelle Induktion.

Satz 1.3 (Ersetzbarkeitstheorem):

Für drei Formeln $\varphi, \psi, \eta \in \mathbf{AL}(P)$, wobei $\psi \equiv \eta$ und ψ eine Teilformel von φ ist, ailt:

 $\varphi \equiv \varphi'$, wobei φ' entsteht, wenn in φ ein Vorkommen von ψ durch η ersetzt wird.

Beweis:

Induktion über Struktur von Formel φ

IA: φ atomare Formel, d.h. $\varphi \in P$:

$$\Rightarrow \psi = \varphi$$
, also auch $\psi \in P$

Wegen $\psi \equiv \eta$ und $\psi \in P$ ist $\psi = \eta$. $\Rightarrow \varphi = \psi = \eta = \varphi'$, also gilt $\varphi \equiv \varphi'$.

IV 1: $\varphi_1 \equiv \varphi_1'$, wobei φ_1' aus φ_1 durch Ersetzung von ψ durch η entsteht.

IV 2: $\varphi_2 \equiv \varphi_2'$, wobei φ_2' aus φ_2 durch Ersetzung von ψ durch η entsteht.

IBeh.: $\varphi \equiv \varphi'$, wobei φ' aus φ durch Ersetzung von ψ durch η entsteht und

- 1. Fall $\varphi = \neg \varphi_1$
- **2. Fall** $\varphi = \varphi_1 * \varphi_2$, wobei* $\in \{ \lor, \land, \rightarrow, \leftrightarrow \}$

Induktionsschluss:

1. Fall $\varphi = \neg \varphi_1$:

Nach IV 1 ist $\varphi_1 \equiv \varphi_1'$, wobei φ_1' aus φ_1 durch Ersetzung von ψ durch η entsteht.

Nach semantischer Definition von \neg folgt: $\neg \varphi_1 \equiv \neg \varphi'_1$.

Wegen 1. Fall $(\varphi = \neg \varphi_1)$ und $\varphi' = \neg \varphi'_1$ folgt $\varphi = \neg \varphi_1 \equiv \neg \varphi'_1 = \varphi'$, also $\varphi \equiv \varphi'$

2. Fall $\varphi = \varphi_1 * \varphi_2$, wobei $* \in \{ \lor, \land, \rightarrow, \leftrightarrow \}$:

Fall 2.1: ψ kommt in φ_1 vor:

Nach IV 1 ist $\varphi_1 \equiv \varphi_1'$, wobei φ_1' aus φ_1 durch Ersetzung von ψ durch η entsteht. Mit semantischer Definition von * ist dann $\varphi \equiv (\varphi_1' * \varphi_2) = \varphi'$, also $\varphi \equiv \varphi'$

Fall 2.2: ψ kommt in φ_2 vor (analog zu Fall 2.1)

Weitere Beispiele für Strukturen, die induktiv definiert werden können: Bäume, Listen (werden später in der Informatik behandelt, wichtig)