
Q No. 1 Briefly answer each of the following:

 $[5 \times 2 + 1 \times 4 = 14 \text{ points}]$

- (i) Differentiate between SAR and SHL instructions with one example each.
- (ii) Using shift and add instructions multiply a decimal number X_{10} by 23_{10} . Assume that the result does not exceed the range of a16-bit register.
- (iii) Why an assembly procedure cannot be implemented using JMP instructions?
- (iv) Why stack parameters are considered more convenient than register parameters. Justify your answer.
- $(v) \qquad \text{Provide the contents of registers where indicated, after execution of the following instructions:} \\$

Note: SOLVE THIS PART HERE.

MOV AL, 41h

MOV BL, 56h

TEST AL, 56h

CMP AL, BL

JNE L1

ADD AL, 32h

L1:

MOV DX, 0

MOV AX, 8003H

MOV CX, 100H

DIV CX

AL = _______, DX = ______, DX = _______

(vi) Give the contents of the following registers, along with the run-time stack, when the following instructions are executed. Initially, consider ESP = 00001FF8h.

Note: SOLVE THIS PART HERE. No Marks will be awarded without proper working using the stack diagrams.

X1 DWORD 25H			
X2 DWORD 27H			
MAIN PROC			
	PUSH 6H		
	PUSH 5H		
	CALL P1		
11500000Н	MOV RESULT, EAX	; ESP:	
MAIN ENDP			
P1 PROC			
115000A4H	PUSH EBP		
	MOV EBP, ESP	; EBP:	
	MOV EAX, [EBP+8]		
	ADD EAX, [EBP+12]	; EAX:	
	PUSH OFFSET X1		
	PUSH OFFSET X2	; ESP:	
	POP ESI		
	POP EBX		
	ADD [ESI], EAX	; X2:	
	ADD [EBX], EAX	; X1:	
	MOV ESP, EBP		
	POP EBP		
	RET 8	; EIP:	

Q. No. 2 (i) Suppose the following data is received from a wireless sensor node operating in a smart building and is stored in EAX register, as shown in Figure 1. You are required to write an assembly language program with the corresponding data definition directives that would extract the data items and store them at memory locations Sequence_Number, Revision_Count, Status, and Sensor_Data.

a) Bits 0 to 11 reflect an integer Sequence Number of the packet being sent.

1 bit

- b) Bits 12 14 show an integer Revision Count of the packet.
- c) Bit 15 is the Status of the sensor flag (0 Forwarded Data and 1 Sensed Data)

3 bits

12 bits

d) Bits 16 - 31 contain the Sensor_Data.

16 bits

P1 ENDP

[04 points]

Sensor_Data	Status	Revision_	Sequence_Number
		Count	

Figure: 1

(ii) Write an assembly language code to implement the following high-level language code showing the use of LEA instruction and OFFSET assembler directive. [04 points]

```
char moon [20];
void star_array () {
    char cell[20];
    for (int i=19; i>=0; i--) {
        cell[i] = '*';
        moon[i] = 'x';
    }
}
```

- Q. No. 3 (i) Write a recursive procedure in x86 assembly language that divides a number by another number and stops when dividend is less than or equal to 5h. Consider dividend = D4A4h and divisor = Ah.

 [04 points]
 - (ii) Implement the following pseudo-code in assembly language. Also, give the corresponding data definition directives: [04 points]

STAY BRIGHT