Basic Signals and Signal Properties

o One with negative amplitude and time delayed

14 October 2017

A Pulse Signal:

Refer to Signals and Communications Year 1!

• Generated using two step functions

Deterministic Signals - value of signal at time t, can be obtained from mathematical expressions

Stochastic Signals - random values, only know probability of a value being the output

Can calculate

- o Mean value simplest calculation
- o Variance in Value

•
$$\sigma_x^2 = E\{x^2(t)\} - [E\{x(t)\}]^2$$

Odd part:
$$\bullet \ \frac{1}{2}[x(t)-x(-t)]$$
 Even part:
$$\bullet \ \frac{1}{2}[x(t)+x(-t)]$$

•
$$\frac{1}{2}[x(t)+x(-t)]$$

Continuous - Laplace Transforms - FT is a subset

Discrete - Z-Transforms - DFT is a subset

Exponential Function - e^{st}

•
$$s = \sigma + j\omega$$

•
$$e^{st} = e^{(\sigma+j\omega)t} = e^{\sigma t}e^{j\omega t} = e^{\sigma t}(\cos\omega t + \sin\omega t)$$

- Can use to model:
 - o A constant
 - o Regular exponential
 - o Any sinusoid
 - o Exponentially varying sinusoid

Discrete-Time Exponential - $e^{\lambda n}$

- λ is complex
- map λ to $\gamma -> \gamma = e^{\lambda}$
- Re{λ} < 0 exponential decay
- $Re\{\lambda\} > 0$ exponential growth
- $Re\{\lambda\} = 0$ constant amplitude oscillates based on $Im\{\lambda\}$

Systems Basics

21 October 2017 00:1

Show that a system is linear:

- show that output scales the same as input is scaled
- show that outputs can be summed if inputs are summed

Small-signal analysis - approximate into small linear systems

Superposition:

- zero-input component
 - o t = 0
 - o initial conditions
- · zero-state component
 - o t>0
 - o input of x(t)

total response = zero-input response + zero-state response (Decomposition property)

Time - Continuous vs Discrete

Amplitude - Analogue vs Digital

Invertible System

• one-to-one mapping of input to output exist

Stable System

bounded input gives bounded output - BIBO

Linear Differential System

- D operator
 - $\circ \quad D^N y \dots = D^M x \dots$
- M <= N
 - else
 - o system is a (M-N)th differentiator
 - unstable unbounded output

Essential bandwidth:

•
$$|H(\omega_0)|^2 = \left[\frac{1}{\sqrt{2}}|H(0)|\right]^2$$

Dynamic System

- output depends on entire past inputs
- stores history memory

Finite-memory System

• memory lasts on past T units of time

Instantaneous System

- no memory
- · just depends on current input

Casual, x(t)=0, t<0Non-casual, above rule doesn't apply Anti-casual, $x(t)=0, t\geq 0$

Casual System

- depends on
 - o x(t)
 - t <= t₀
- practical systems must be casual

Non-Casual

- can still be realised
 - o when independent variable is not time

· post-process - already have data values

Linear

test with $ax_1 + bx_2$

Casual

must have x(t) no future values

Time-varying

do test with x(t-t_o)

Total response

21 October 2017 03

zero-input

- set up DE from circuit / system
- auxiliary equation for DE
- find y(t) in terms of auxiliary terms
 - o must be real

zero-state

- compute x(t) from DE
 - o sub in y(t)
 - o gives input required to sustain system state

Input = characteristic mode (auxiliary / natural frequencies)

- causes resonance type behaviour
- system has no obstacle to this input

For an LTI system, input of $e^{j\omega_0 t}$ and TF H(s) output is $H(j\omega_0)e^{j\omega_0 t}$

LTI System Output

$y(t) = x(t) * h(t) = \int_{-\infty}^{+\infty} x(\tau) * h(t - \tau) d\tau$

Unit Impulse Response:

- For a system, Q(D)y(t) = P(D)x(t)
- the $\delta(t)$ response,
- $h(t) = [P(D)y_n(t)]u(t)$
 - $Q(D)\mathbf{y}_n(t) = 0$
 - Initial Conditions:
 - $y_n^{(N-1)}(0) = 1$
 - rest >>> = 0

Convolution Properties:

•
$$x_1(t) * x_2(t) = x_2(t) * x_1(t)$$

•
$$x_1(t) * [x_2(t) * x_3(t)] = [x_1(t) * x_2(t)] * x_3(t)$$

•
$$x_1(t) * [x_2(t) + x_3(t)] = x_1(t) * x_2(t) + x_1(t) * x_3(t)$$

•
$$x_1(t-T_1) * x_2(t-T_2) = c(t-T_1-T_2)$$

•
$$x_1(t) * \delta(t) = x_1(t)$$

- two signals have duration T_1 and T_2 ,
 - \circ then duration of convolution of these two signals = $T_1 + T_2$

Properties of convolution

No	$x_1(t)$	$x_2(t)$	$x_1(t) * x_2(t)$
1	x(t)	$\delta(t-T)$	x(t-T)
2	$e^{\lambda t}u(t)$	u(t)	$\frac{1-e^{\lambda t}}{-\lambda}u(t)$
3	u(t)	u(t)	tu(t)
4	$e^{\lambda_1 t}u(t)$	$e^{\lambda_2 t}u(t)$	$\frac{e^{\lambda_1 t} - e^{\lambda_2 t}}{\lambda_1 - \lambda_2} u(t), \lambda_1 \neq \lambda_2$
5	$e^{\lambda t}u(t)$	$e^{\lambda t}u(t)$	$te^{\lambda t}u(t)$
6	$te^{\lambda t}u(t)$	$e^{\lambda t}u(t)$	$\frac{1}{2}t^2e^{\lambda t}u(t)$

Convolution in Systems

04 November 2017

20:46

Natural vs Forced Responses

- characteristic nodes can also appear in zero-state response
- after grouping
 - o natural response
 - sum of characteristics nodes
 - forced response
 - remaining nodes

Two LTI systems connected:

In Parallel:

•
$$y(t) = h_1(t) * x_1(t) + h_2(t) * x_2(t)$$

In Series:

- $y(t) = h_1(t) * h_2(t) * x(t)$
 - o order is not important

Integrator:

- Can be before or after LTI in series
 - o same output

Laplace Transformations

07 November 2017 21:

Frequency Domain

Components of the form e^{st}

$$s = \alpha + j\omega$$

Summary of most important Laplace transform pairs

No	x(t)	X(s)
1	$\delta(t)$	1
2	u(t)	$\frac{1}{s}$
3	tu(t)	$\frac{1}{s^2}$
4	$t^n u(t)$	$\frac{n!}{s^{n+1}}$

Properties:

1. Time Shifting

$$\mathcal{L}\{x(t-t_0)\} = e^{-st_0}X(s)$$

2. Frequency Shifting

$$\mathcal{L}\{e^{s_0t}x(t)\} = X(s - s_0)$$

3. Time-Differentiation

$$\mathcal{L}\left\{\frac{dx(t)}{dt}\right\} = sX(s) - x(0-t)$$

4. Frequency-Differentiation

$$\mathcal{L}\{tx(t)\} = -\frac{dX(s)}{ds}$$

5. Time-Integration

$$\mathcal{L}\left\{\int_{0-}^{\infty} x(\tau)d\tau\right\} = \frac{X(s)}{s}$$

6. Frequency-Integration

$$\mathcal{L}\left\{\frac{x(t)}{t}\right\} = \int_{s}^{\infty} X(z)dz$$

7. Scaling

$$\mathcal{L}\{x(at)\} = \frac{1}{a}X\left(\frac{s}{a}\right)$$

The Linear Laplace Transform

(casual signals)

$$X(s) = \mathcal{L}\{x(t)\} = \int_0^\infty x(t)e^{-st}dt$$

Region Of Convergence

Values of s for which $\mathcal{L}\{x(t)\}$ are valid

Finding Inverse Laplace Transforms

- 1. Manipulate X(s)
- 2. find matches to known Laplace Transforms

Initial Value Theorem

Time-Convolution

$$\mathcal{L}\{x_1(t) * x_2(t)\} = X_1(s)X_2(s)$$

Frequency Convolution

$$\mathcal{L}\{x_1(t)x_2(t)\} = \frac{1}{2\pi j}X_1(s) * X_2(s)$$

Final Value Theorem

$$y(\infty) = \lim_{s \to 0} sY(s)$$

 $y(0+) = \lim_{s \to \infty} sY(s)$

Impulse Response h(t)

$$\mathcal{L}\{h(t)\} = H(s)$$

then

$$Y(s) = H(s)X(s)$$

Repeated Time-Differentiation

$$\mathcal{L}\left\{\frac{d^n x(t)}{dt^n}\right\} = s^n X(s) - s^{n-1} x(0^-) - s^{n-2} \dot{x}(0^-) - \dots - x^{(n-1)} (0^-)$$

LTI System DE

- 1. Convert terms into Freq using Laplace Transform (Time-Differentiation property)
- 2. get into from Y(s) = ...
 - a. terms transferred from RHS to LHS are zero-input
 - b. LHS come from zero-state
- 3. convert back to y(t) using matching method for inverse Laplace

Initial Conditions for Capacitor

$$V(s) = \frac{1}{cs}I(s) + \frac{v(0^{-})}{s}$$

Initial Conditions for Inductor

$$V(s) = L(sI(s) - i(0^{-})) = LsI(s) - Li(0^{-})$$

Fourier Transform

19 November 2017 19:25

$$\begin{split} X(\omega) &= \mathcal{F}[x(t)] = \int_{-\infty}^{\infty} x(t) e^{-j\omega t} dt \\ x(t) &= \mathcal{F}^{-1}[X(\omega)] = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega) e^{j\omega t} d\omega \end{split}$$

Duality

If
$$x(t) \Leftrightarrow X(\omega)$$
 then $X(t) \Leftrightarrow 2\pi x(-\omega)$

Operation	x(t)	$X(\omega)$
Scalar multiplication	kx(t)	$kX(\omega)$
Addition	$x_1(t) + x_2(t)$	$X_1(\omega) + X_2(\omega)$
Conjugation	$x^*(t)$	$X^*(-\omega)$
Duality	X(t)	$2\pi x(-\omega)$
Scaling (a real)	x(at)	$\frac{1}{ a }X\left(\frac{\omega}{a}\right)$
Time shifting	$x(t-t_0)$	$X(\omega)e^{-j\omega t_0}$
Frequency shifting (ω_0 real)	$x(t)e^{j\omega_0t}$	$X(\omega-\omega_0)$
Time convolution	$x_1(t) * x_2(t)$	$X_1(\omega)X_2(\omega)$
Frequency convolution	$x_1(t)x_2(t)$	$\frac{1}{2\pi}X_1(\omega)*X_2(\omega)$
Time differentiation	$\frac{d^nx}{dt^n}$	$(j\omega)^n X(\omega)$
Time integration	$\int_{-\infty}^t x(u)du$	$\frac{X(\omega)}{j\omega} + \pi X(0)\delta(\omega)$

19 November 2017

$$X(j\omega) = X(s)|_{s=j\omega}$$

Fourier -- Laplace

$$X(\omega) = X(j\omega)$$
?
if $x(t)$ is absolutely integrable

Area Under is FINITE $\int_{-\infty}^{\infty} |x(t)| dt < \infty$

· BIBO stability exists when

$$\int_{\tau=-\infty}^{\infty} |h(\tau)| d\tau < \infty$$

- Recall that very often h(t) is a linear combination of causal exponential functions of the form $x(t) = e^{at}u(t)$.
- For stability we require that $Re\{a\} < 0$.
- These function contribute with the term $\frac{1}{s-a}$ to the transfer function in the Laplace domain. The constant a which zeroes the denominator of $\frac{1}{s-a}$ or, in other words, makes the term $\frac{1}{s-a}$ infinite is called a **pole** of the transfer function.
- Therefore, in order to achieve stability, the poles of the transfer function of a causal system must lie on the left half of the s -plane.

Frequency Response Plots

23 November 2017 23:18

To find frequency response:

- System has transfer function H(s)
- sub: s = jw , to get $H(jw) = \frac{j\omega + \alpha}{j\omega + \beta}$
- Amplitude Response = |H(jw)|
- Phase Response = $\angle H(jw) = \tan^{-1}\left(\frac{\omega}{\alpha}\right) \tan^{-1}\left(\frac{\omega}{\beta}\right)$

$$H(s) = \frac{K(s+a_1)(s+a_2)}{s(s+b_1)(s^2+b_2s+b_3)}$$

Poles - roots of the denominator polynomial

Zeros - roots of the numerator polynomial

Using
$$s = jw$$

And rearrange

Express in decibel - log components are SUMMED

Amplitude:

- find new horizontal
- get asymptotes separately
- sum asymptotes
- apply corrections
 - o a CF 2x away 1dB
 - a CF 5x away 0.17
 dB
 - o a CF at, 3dB

Pole at the origin

Amplitude:

- $-20 \log w$
 - o -20dB / decade
 - \circ crosses axis at $\omega = 1$

Phase:

• $-j\omega \rightarrow -90$

Zero at the origin

Amplitude:

- 20 log w
 - o 20dB / decade
 - \circ crosses axis at $\omega = 1$

Phase:

• $j\omega \rightarrow +90$

1st order pole at -a

Amplitude:

- $w \ll a$, 0
- $w \gg a$, $-20log\omega + 20loga$
 - -20dB / decade
 - \circ crosses axis at $\omega = a$
 - is also the corner frequency
 - max error is -3dB at CF

Phase:

- $-\tan^{-1}\left(\frac{\omega}{a}\right)$
- $\omega \leq a/10,0$
- $\omega \geq 10a$, -90
- slope of -45° per decade connects
 - o crosses w-axis at $\omega = a/10$

1st order zero at -a

Amplitude:

- $w \ll a$, 0
- $w \gg a$, $20log\omega + 20loga$
 - o 20dB / decade
 - \circ crosses axis at $\omega = a$
 - is also the corner frequency
 - max error is +3dB at CF

Phase:

- $\tan^{-1}\left(\frac{\omega}{a}\right)$
- $\omega \leq a/10$, 0
- $\omega \ge 10a$, +90
- slope of +45° per decade connects
 - o crosses w-axis at $\omega = a/10$

2nd order pole

Amplitude: (zero is reflection in x-axis)

- $express \ as \ s^2 + 2\zeta \omega_n s + \omega_n^2$
- $w \ll \omega_n$, 0
- $w \gg \omega_n$, $-40log\omega 40loga$
 - o -40dB / decade
 - \circ crosses axis at $\omega = \omega_n$
 - is also the corner frequency
 - \circ max error depends on ζ (< 1)

Phase:

- - \circ actual depends on ζ
- mirror image for a zero

$$|H(s)|_{s=p} = b_0 \frac{product\ of\ the\ distances\ of\ zeros\ to\ p}{product\ of\ the\ distances\ of\ poles\ to\ p}$$

$$\angle H(s)_{s=p} = sum\ of\ zeros' angles\ to\ p\ - sum\ of\ poles' angles\ to\ p$$
 add $\pi to\ phase\ if\ b_0$ is negative

POLES – $\max gain \ at \ \omega_0$

 $ZEROS - \min gain at \omega_0$

moving -a closer to Im axis increases the enhancement/suppression

Single pole: $|H(j\omega)| = \frac{K}{d}$

Complex conjugate poles: $|H(j\omega)| = \frac{K}{dd'}$

Phase effect:

- o starts at 0
- \circ increases, and tends to $-\pi$ as $\omega \to \infty$

Complex conjugate zeros:

- gain suppression
- $|H(j\omega)| = Krr'$

Phase effect:

- o starts at 0
- \circ increases, and tends to π as $\omega \to \infty$

Bandpass Filters:

• like wall of poles, but now around $\omega=\omega_0$, $not~\omega=0$ o (+-w₀)

Low Pass:

- simplest case gain 1 at $\omega = 0$, 0 elsewhere
 - one pole on the real axis
- Wall of poles (Butterworth)
 - \circ want gain 1 at $0 \le \omega \le \omega_c$
 - $\circ~$ 0 gain for $\omega>\omega_c$
 - o ideal has a semicircle of infinite poles

Butterworth:

• filters with poles evenly distributed around left half of unit circle

Sallen-Key:

•
$$H(s) = \frac{1}{1 + C_2(R_1 + R_2)s + C_1C_2R_1R_2s^2}$$

• assuming
$$\omega_c = 1$$
, chose $C_1C_2R_1R_2 = 1$

$$\bullet \ \ \text{assuming} \ \omega_c = 1, chose \ C_1C_2R_1R_2 = 1$$

$$\bullet \ \ \text{n even,} \ C_2\big(R_1+R_2\big) = -2\cos\big(\frac{2k+n-1}{2n}\pi\big)$$

To get a Butterworth filter of order n, cascade n/2 Sallen-Keys

- set n = n, and k=1,2... as adding more Sallen-Keys then add an RC at end if n is odd

Notch:

- 0 gain around ω_0
- zeros at $\pm \omega_0$
 - o forces two poles, for gain to be 1 elsewhere
 - \circ complex conjugate poles, along the semicircle of $\pm \omega_0$

Signal Transmission

29 November 2017

Distortionless system

 $\begin{aligned} |H(\omega)| &= G_0 - constant \\ \angle H(\omega) &= -\omega t_d - linear, passes\ through\ origin, slope\ of\ t_d \end{aligned}$

Group delay: $t_g(\omega) = -rac{d}{d\omega} \angle H(\omega) - if\ constant - phase\ is\ linear$

LP: linear and pass through origin

BP:

- only liner through band on interest
- $H(\omega) = G_0 e^{j[\phi_0 \omega t_g]}$
- output envelope remains undistorted
- output carrier gets extra ϕ_0
 - o considered distortionless as message contained in envelope
- for input
 - $\circ x(t)e^{j\omega_c t}$
- output

$$\circ y(t) = G_0 x \Big(t - t_g \Big) e^{j \left[\omega_c \left(t - t_g \right) + \phi_0 \right]}$$

- $\circ \ \textit{G}_0 \ \textit{gain at} \ \omega_\textit{c}$
- \circ t_q slope of tangent at ω_c
- $\circ \phi_0$ y intercept by tangent at ω_c

In a real signal.

derived from Parseval's

$$\Delta E_x = \frac{1}{\pi} \int_{\omega_1}^{\omega_2} |X(\omega)|^2 d\omega$$

Windowing:

- multiply a signal by rectangular window
- energy leaks out from mainlobe to sidelobe
- mainlobe is $\frac{4\pi}{T}$ around $\omega=0$ for a window amplitude T

To reduce truncation - increase width
To reduce leakage - avoid big discontinuity

Sampling - Quantization

09 December 2017

BHz, with Fourier transform $X(\omega)$ (depicted real for convenience).

ie sampled signal has the following spectrum.

Reconstruct - **lowpass** filter with $B \le \omega_c \le f_s - B$

- filter should have gain of T_s as sampled has amplitude A/T_s
- convolution with sinc function in time domain

Ideal Reconstruction:

- using a LPF with $h(t) = sinc(2\pi Bt)$
- Interpolation Formula:

• recovered
$$x(t) = \sum_{n} x(nT_s) sinc(2\pi Bt - n\pi)$$

- o summing the weighted, and shifted sinc caused by each sample
 - gives the original signal

Aliasing:

- · sampling lower than Nyquist frequency
- can't distinguish between different signals
- before sampling, bandlimit input to $\frac{f_s}{2}Hz$ with a low pass filter
 - o this is an anti-aliasing filter

Practical Sampling:

- train of pulses instead of impulse
- baseband copy has amplitude A/4 = pulse width / period

Spectral width = 2B

Spectral sampling theorem: - sample in frequency domain

• x(t) is time-limited to τ seconds

17:26

- then sampling rate = $R Hz > \tau s$
- periodic extension of $x(t) \rightarrow x_{T_0}(t)$, $T_0 > \tau$
- $X_{T_0}(\omega)$ is the sampled version of $X(\omega)$
 - \circ samples separated by $f_0 = \frac{1}{T_0}$
 - o amplitude scaled by $\frac{1}{T_0}$

Reconstruct:

- spectral sample rate $R = T_0 > \tau$ samples/Hz
- Spectral interpolation formula

$$\circ X(\omega) = \sum_{n=-\infty} X(n\omega_0) sinc\left(\frac{\omega T_0}{2} - n\pi\right) e^{-j(\omega - n\omega_0)T_0} , \quad T_0 > \tau$$

DFT:

- repeat a time-limited signal and take it's samples
 - the spectrum is also sampled and periodically repeated
- relate samples of X(w) to samples of x(t)
- spectral sample rate $R = T_0$
 - \circ spectral samples spaced out by $f_0 = \frac{1}{T_0}$
- sample rate $f_s = \frac{1}{T_s}$
 - \circ signal samples spaced out by T_s
- for discrete signal
 - $\circ~$ in one period T_0
 - # samples, $N_0 = \frac{T_0}{T_s}$
- for discrete spectrum
 - \circ in one period f_s
 - o # samples, $N_0' = \frac{f_s}{f_0}$
- $N_0' = N_0$

if x(nT) and $X(r\omega_0)$ are the n^{th} and r^{th} samples

DFT:
$$X_r = \sum_{n=i}^{i+N_0-1} \left[\frac{T_0}{N_0} \mathbf{x}(\mathbf{n}T) \right] e^{-jnr\Omega_0}$$

IDFT:
$$x_n = \frac{1}{N_0} \sum_{r=i}^{i+N_0-1} [X(r\omega_0)] e^{jnr\Omega_0}$$
, $\omega_0 = \frac{2\pi}{T_0}$

$$\Omega_0 = \omega_0 T_s = \frac{2\pi}{N_0}$$

z - Transform

09 December 2017 17:26

$$z = e^{sT}$$
- time advance by T seconds
$$\Rightarrow \mathbf{z}^{-1} = e^{-sT} \rightarrow sampling \ period \ delay$$

All discrete-time systems can be expressed via z

for discrete-time $x_n = x[n]$

<u>Unilateral z-transform: (casual)</u>

$$X[z] = \sum_{n=0}^{n=\infty} x[n]z^{-n}$$

Bilateral z-transform:

$$X[z] = \sum_{n=-\infty}^{n=\infty} x[n]z^{-n}$$

Union of ROC's covers z-plane

Inverse found same as Laplace inverse method

Useful series to remember: $1+x+x^2+x^3+\cdots=\frac{1}{1-x}$, |x|<1

System	Signal	Continuous-time	Discrete-time
Both	Both	Laplace	Z
Stable	Convergent	Fourier	DFT

s-plane to z-plane

S	Z
Im-axis	unit circle
LHS plane	inner unit-circle
RHS-plane	outer unit-circle

Stable only if ROC of H(z) is within unit-circle

if CASUAL, stable if poles of H(z) lie within unit-circle

Shift property:

$$Z\{x[n-m]\} = z^{-m}X(Z)$$

A few key transforms:

x[n]	X[z]	ROC
$\gamma^n u[n]$	$\frac{z}{z-\gamma}$	$ z > \gamma $
$-\gamma^n u[-n-1]$ (casual)	$\frac{z}{z-\gamma}$	$ z < \gamma $
$\delta[n]$	1	
u[n]	$\frac{z}{z-1}$	z > 1
$\cos \beta n u[n]$	$\frac{z(z-\cos\beta)}{z^2-2z\cos\beta+1}$	z > 1

		z —transform Table
No.	x[n]	X[z]
1	$\delta[n-k]$	z^{-k}
2	u[n]	$\frac{z}{z-1}$
3	nu[n]	$\frac{z}{(z-1)^2}$
4	$n^2u[n]$	$\frac{z(z+1)}{(z-1)^3}$
5	$n^3u[n]$	$\frac{z(z^2+4z+1)}{(z-1)^4}$
6	$\gamma^n u[n]$	$\frac{z}{z-\gamma}$
7	$\gamma^{n-1}u[n-1]$	$\frac{1}{z-\gamma}$
8	$n\gamma^nu[n]$	$\frac{\gamma z}{(z-\gamma)^2}$

	z —transi	orm lable
No.	x[n]	X[z]
10	$\frac{n(n-1)(n-2)\cdots(n-m+1)}{\gamma^m m!} \gamma^n u[n]$	$\frac{z}{(z-\gamma)^{m+1}}$
11a	$ \gamma ^n \cos \beta n u[n]$	$\frac{z(z - \gamma \cos\beta)}{z^2 - (2 \gamma \cos\beta)z + \gamma ^2}$
11b	$ \gamma ^n \sin \beta n u[n]$	$\frac{z \gamma \sin\beta}{z^2 - (2 \gamma \cos\beta)z + \gamma ^2}$
12a	$r \gamma ^n\cos{(\beta n+\theta)}u[n]$	$\frac{rz[z\cos\theta - \gamma \cos(\beta - \theta)]}{z^2 - (2 \gamma \cos\beta)z + \gamma ^2}$
12b	$r \gamma ^n \cos(\beta n + \theta)u[n]$ $\gamma = \gamma e^{j\beta}$	$\frac{(0.5re^{j\theta})z}{z-\gamma} + \frac{(0.5re^{-j\theta})z}{z-\gamma^*}$
12c	$r \gamma ^n\cos{(\beta n+\theta)}u[n]$	$\frac{z(Az+B)}{z^2+2az+ \gamma ^2}$
	$r = \sqrt{\frac{A^2 \gamma ^2 + B^2 - 2AaB}{ \gamma ^2 - a^2}}$ $\beta = \cos^{-1}$	$\theta = \tan^{-1} \frac{Aa - B}{A\sqrt{ \gamma ^2 - a^2}}$

	Properties of convolution				
No	$x_1(t)$	$x_2(t)$	$x_1(t) * x_2(t)$		
1	x(t)	$\delta(t-T)$	x(t-T)		
2	$e^{\lambda t}u(t)$	u(t)	$\frac{1-e^{\lambda t}}{-\lambda}u(t)$		
3	u(t)	u(t)	tu(t)		
4	$e^{\lambda_1 t}u(t)$	$e^{\lambda_2 t}u(t)$	$\frac{e^{\lambda_1 t} - e^{\lambda_2 t}}{\lambda_1 - \lambda_2} u(t), \lambda_1 \neq \lambda_2$		
5	$e^{\lambda t}u(t)$	$e^{\lambda t}u(t)$	$te^{\lambda t}u(t)$		
6	$te^{\lambda t}u(t)$	$e^{\lambda t}u(t)$	$\frac{1}{2}t^2e^{\lambda t}u(t)$		

Fourier:

Operation	x(t)	$X(\omega)$
Scalar multiplication	kx(t)	$kX(\omega)$
Addition	$x_1(t) + x_2(t)$	$X_1(\omega) + X_2(\omega)$
Conjugation	$x^*(t)$	$X^*(-\omega)$
Duality	X(t)	$2\pi x(-\omega)$
Scaling (a real)	x(at)	$\frac{1}{ a }X\left(\frac{\omega}{a}\right)$
Time shifting	$x(t-t_0)$	$X(\omega)e^{-j\omega t_0}$
Frequency shifting (ω_0 real)	$x(t)e^{j\omega_0t}$	$X(\omega-\omega_0)$
Time convolution	$x_1(t)*x_2(t)$	$X_1(\omega)X_2(\omega)$
Frequency convolution	$x_1(t)x_2(t)$	$\frac{1}{2\pi}X_1(\omega)*X_2(\omega)$
Time differentiation	$\frac{d^nx}{dt^n}$	$(j\omega)^n X(\omega)$
Time integration	$\int_{-\infty}^t x(u)du$	$\frac{X(\omega)}{j\omega} + \pi X(0)\delta(\omega)$

Summary of most important Laplace transform pairs

No	x(t)	X(s)
1	$\delta(t)$	1
2	u(t)	$\frac{1}{s}$
3	tu(t)	$\frac{1}{s^2}$
4	$t^nu(t)$	$\frac{n!}{s^{n+1}}$

Discrete Fourier Series:

$$x[n] = \sum_{k = \langle N \rangle} a_k e^{jkw_0 n}$$

$$a_k = \frac{1}{N} \sum_{n = \langle N \rangle} x[n] e^{-jkw_0 n}$$

$$w_0 = \frac{2\pi}{N}$$

train of impulse FS:

$$\frac{1}{T}\sum e^{-jk\omega_0t}$$

$$\frac{u[n-a] * u[n-b]}{\delta[n-a] * \delta[n-b]} = (n-a-b+1)u[n-a-b]$$

1st order: amplitude w>>a +-20dB/decade phase +- 90, at 0.1x 10x

Origin:

constant phase +-90 amplitude : +-20db at w=1

2nd order pole:

$$s^2 + 2\zeta \omega_n s + \omega_n^2$$

 $w \gg \omega_n$, $-40~dB/decade$
phase
 $\omega \ll \omega_n$, 0°
 $\omega \gg \omega_n$, -180°