

Optimality, and adaptive feeding

Animal behavior

Very active research area, particularly in evolutionary context

- Behavior integrates many aspects of Biology
 - Physiology (e.g., hormones, neurobiology)
 - Genetics
 - Ecology
 - Evolution

Some areas where evolutionary thinking is applied

- Survival/ avoiding predation
- Feeding/ foraging behavior
- Choosing where to live
- Communication
- Reproductive behavior (sexual selection)
- Parental care
- Social behavior

Concepts to address today

Optimality theory – achieving maximal effect for minimal cost

 Application to studying adaptive feeding behavior

Evidence for natural selection abounds!

- Eurasian oystercatcher feeds on mussels
- Choose "optimal" mussel in feeding:
 - If too small, not enough nourishment
 - If too large, too hard to open
 - Should pick intermediate size
 - Initial models said should pick 50 mm
 - Refined model predicted 30-45 mm because larger ones are covered with barnacles and hard to open

Evidence for natural selection abounds!

- Eurasian oystercatcher feeds on mussels
- Choose "optimal" mussel in feeding:
 - If too small, not enough nourishment
 - If too large, too hard to open
 - Should pick intermediate size
 - Initial models said should pick 50 mm
 - Refined model predicted 30-45 mm because larger ones are covered with barnacles and hard to open
 - They prefer 30-45mm mussels- model fits data!

Selection is everywhere!

- Structures & behaviors appear optimally designed by natural selection for functions
 - Cases where non-optimal, infer "trade-offs" compromises among competing demands

Selection is everywhere!

- Structures & behaviors appear optimally designed by natural selection for functions
 - Cases where non-optimal, infer "trade-offs" compromises among competing demands
- The Adaptationist Program- interpreting data by assuming "the near omnipotence of natural selection in forging organic design and fashioning the best among possible worlds."

 (Gould & Lewontin 1978)

- Spencer asked Galton (pre-1909) to look at his fingerprints
- Galton said he didn't know the function of the patterns, despite people dissecting fingers of unborn children & studying their prints
- Spencer said ridges "obviously" functioned to protect the sweat glands in the valleys

- Spencer asked Galton (pre-1909) to look at his fingerprints
- Galton said he didn't know the function of the patterns, despite people dissecting fingers of unborn children & studying their prints
- Spencer said ridges "obviously" functioned to protect the sweat glands in the valleys
 - Problem: the glands are actually in the ridges.

Why may traits/ behaviors not be perfectly adapted?

- Failure of appropriate mutations to occur
- Single genes causing multiple phenotypic effects (pleiotropy)
 - One allele good for X trait but bad for Y trait
- Insufficient time / changing environment
- ... and many, many more

Optimality is the assumption that, by knowing how natural selection is acting on a trait, we can predict exactly what the trait should look like.

Optimality predictions must be tested & judged, not presumed!

Example: Oxpecker

- Birds that live on large mammals, feed on ticks
 - Dogma that was repeated for many years: mutualism
- No good tests of it until ~2000.
- Explored whether cattle that had oxpeckers had more/less ticks than cattle without oxpeckers

Example: Oxpecker

 Test showed no significant reduction in tickload when had oxpeckers

Example: Oxpecker

 Test showed no significant reduction in tickload when had oxpeckers

 Further tests showed they actually enlarge open wounds and drink blood!

But why do the hosts tolerate them? Class responses!

Negative

The hosts don't tolerate the oxpeckers but just don't have the ability to keep them off.

Neutral

 It's like when a fly is buzzing in my face and after awhile, I just let it pester me because it won't go away.

Advantage

 They strengthen the cattle's immunity. In other words: increase in wounds = increase in small, non-fatal infection = increase antibodies to fight the antigens

Out-there

- Maybe they like the company!
- Oxpeckers generate mini force fields the length of their wingspan that help the cattle's wounds feel better.

But why do the hosts tolerate them? Research results

 Some of the hosts try to get them off - rhinos tried hard, but couldn't get them off half the time when they were at

Topics

Optimality theory

 Application to studying adaptive feeding behavior

What considerations go into optimal feeding?

- Plus: calories from food (energy)
- Minus: energy for getting food
 - Energy used searching, energy used handling, energy used eating & digesting
- Minus: time involved getting food
 - Time for searching, time for handling, time for eating & digesting

Optimal Foraging Formula

<u>Calories obtained from food – Calories expended getting food</u>

Time to get and eat food

- Want prey with highest caloric content
- Want to spend minimal energy getting prey
- •Want to do this in as little time as possible

Do whelk-eating crows feed adaptively?

- Crows in British Columbia pick up whelks that are 4 cm longrarely less than that
- Fly up almost exactly 5 meters and then drop to try to shatter and get snail meat
- Sometimes takes multiple flights to succeed
- Adaptive???

Two parameters: 1) height of drop

- Takes energy to fly high- want to minimize
- BUT want high probability that shell will break
- Examination of the underlying physics:
 - 5m height is optimal for the size shell they are choosing!
 - VERY little increase in probability of shell breaking higher

Two parameters: 2) size of whelk

- Why not pick smaller whelk?
- Experimentally tried 3 sizes (4cm = large)
 - Found that need to fly higher and/ or drop more to break smaller whelk
 - Again, crows chose optimally!

Do we see optimal feeding in humans? Case of *spices*

- Caloric content very low
- Why do we like them?
 - Random (or correlated response to other smell/ taste selection)
 - Direct selection
 - Antimicrobial property?

Many spices known to have antimicrobial properties

- Strong antimicrobial effectiveness in:
 - Cinnamon, cloves, mustard
- Medium antimicrobial effectiveness in:
 - Allspice, cumin, oregano, rosemary, sage, thyme
- Specific inhibitory effects:
 - Garlic: Salmonella, E. coli, Staphylococcus, Bacillus
 - Cloves: Mycotoxigenic Aspergillus

Generate a prediction-

If spices are used because antimicrobial, and given what you may guess about whether the environments are warm/moist,

if we surveyed the following countries, which would you expect to use the most spices in their cuisine?

- * India
- * Hungary
- * Norway

Expectation:

 More antimicrobials needed in environments that favor growth of microbes

		Mean Temp	Mean Precipitation
•	India	26.9 C	117.6cm
•	Hungary	10.3 C	56.3cm
•	Norway	2.8 C	96.0cm

Spices used!

- WAY more spices used in Indian food than other two
- Red arrows designate use of garlic
 & onions in particular

Antimicrobial effectiveness of spices

Almost complete inhibition of bacteria by garlic and onions!

Alternative explanations considered?

Spices provide micronutrients

Spices used to disguise smell of spoiled food

Spices used where they grow

Alternative explanations considered?

- Spices provide micronutrients
 - Doesn't explain correlation with temperature
- Spices used to disguise smell of spoiled food
 - Doesn't make sense evolutionarily
- Spices used where they grow
 - Very weak correlation between where they grow and where they are used
 - Pepper was one of most widely used and grows in very small fraction of the places tested

Finding the best food: honeybee dances

Karl von Frisch Nobel laureate!

 Scout bees come back to hive and give hive mates <u>detailed information</u> about the location of food!

http://www.youtube.com/watch?v=-7ijl-g4jHg

How did people figure out the bee language?

Answer:

- Observation
- Test using robot bees!

Video of robot bee in action:

http://robobiene.mi.fu-berlin.de/videos/presentation_low.avi

More info:

http://robobiene.mi.fu-berlin.de/pmwiki/pmwiki.php?n=Site.TheRobot

See also: http://abstrusegoose.com/a/186.htm for an amusing (but crude) comic

Image Credits, Unit 16-1

- Bird behavior, © 2008 Brian Gratwicke, CC by 2.5, en.wikipedia.org
- Social grooming, © 2004 Derek Jensen, CC by 2.0, en.wikipedia.org
- Mice huddling, © 2006 lamnotanorange, CC by 2.5, en.wikipedia.org
- Gavel, © 2008 Jonathunder, GNU 1.2, en.wikipedia.org
- Oxpecker on ox, © patriesphoto, all rights reserved, www.photoxpress.com
- Oxpecker, © 2007 Farmer Jan, GNU 1.2, en.wikipedia.org
- Oxpecker graphs, (c) 1999 Reprinted with permission from Oxford University Press, all rights reserved, "Red-billed oxpeckers: vampires or tickbirds?" by Paul Weeks, Behavioral Ecology (2000) 11 (2): 154-160, see also Figure 10.2 and 10.3 in Evolutionary Analysis 4/e by Freeman & HerronSpices, © 2008 judepics, CC by 2.0, en.wikipedia.org
- Honey bees, © 2006 siehe Lizenz, GNU 1.2, en.wikipedia.org

Image Credits, Unit 16-1, cont.

- Diverse students, © Monkey Business, all rights reserved, www.photoxpress.com
- Rhino oxpecker graph, © 2004 Reprinted with permission from Wiley & Sons Publishing, all rights reserved, "Interactions Between Red-Billed Oxpeckers and Black Rhinos in Captivity" by Alan McElligott et al, Zoo Biology 23:347–354
- Rhino and oxpecker, © SteveHarePhotography, all rights reserved, www.photoxpress.com
- Bear feeding, © 2007 Carl Chapman, CC by 2.0, en.wikipedia.org
- Crow eating shark, © 2006 Chris 73, CC by-SA 3.0, en.wikipedia.org
- Leopard killing antelope, © 2011 NJR ZA, CC by-SA 3.0, en.wikipedia.org
- Heron with dead fish, © 2010 350z33, GNU 1.2, en.wikipedia.org
- Whelk drop heights, © Joseph Mahaffy, all rights reserved, <u>www.rohan.sdsu.edu</u>
- Topographical map of India, © Jodelet2, CC by-SA 3.0, en.wikipedia.org
- Turtle, © 2007 Bizarria, GNU 1.2, en.wikipedia.org
- Path choice, © Mauro Saivezzo, all rights reserved, www.photoxpress.com

Image Credits, 16-1, cont.

- Scratching head, © dragon_fang, all rights reserved, <u>www.photoxpress.com</u>
- Eurasian Oystercatcher, © 2009 Bjørn Christian Tørrissen, CC by-SA 3.0, en.wikipedia.org
- Doll victory, © ioannis kounadeas, all rights reserved, www.photoxpress.com
- Approved check, © Beboy, all rights reserved, www.photoxpress.com
- Finger, © 2009 Frettie, CC by-SA 3.0, en.wikipedia.org
- Fingerprint, © 2006 Cyrillic, GNU 1.2, en.wikipedia.org
- Honey bee communication, © 2006 Audriusa, GNU 1.2, en.wikipedia.org
- Spice use in India, Hungary & Norway, © 1998 by The University of Chicago, all rights reserved, "Antimicrobial Functions of Spices: Why Some Like it Hot" by Jennifer Billing and Paul W. Sherman, Quarterly Review of Biology, Vol. 73, No. 1, Mar. 1998, pp. 3-49