1 Karl's graph

The angle α is 30° in the example $(\pi/6$ in radian). The sine of α which is the height of the red line is

$$\sin \alpha = 1/2.$$

By the theorem of Pythagoras,...

2 Petri Nets

3 Book I, Proposition I

Proposition I

To construct an equilateral triangle on a given finite straight line.

Let AB be the given finite straight line. . . .

4 Book I, Proposition II

Proposition II

To place a a straight line equal to a given straight line \dots

5 Diagrams as Simple Graphs

Johannes Lecture Map 6

ecture 1: Computational roblems Knowledge of several key problems Knowledge of problem encodings Being able to formalize problems

February 2020

Curved Path Construction.

esting effect: Any changes to the clipping area are local to the scope. Thus, if you say \clip somewhere inside a scope, the effect of the \clip command ends

after the end of that scope.

loops to create interesting effects.

1,5	2,5	3,5	4,5	5,5
1,4	2,4	3,4	4,4	5,4
1,3	2,3	3,3	4,3	5,3
1,2	2,2	3,2	4,2	5,2
1,1	2,1	3,1	4,1	5,1

Labeling examples using TikZ.

7,5	8,5	9,5	10,5	11,5	12,5
7,4	8,4	9,4	10,4	11,4	12,4
7,3	8,3	9,3	10,3	11,3	12,3
7,2	8,2	9,2	10,2	11,2	12,2
7,1	8,1	9,1	10,1	11,1	12,1

We can also nest

You can also position labels on curves and, by adding the sloped option, have them rotated such that they match the line's slope.

