We also have the following proposition that gives a sufficient condition implying that η and b can be found in terms of an optimal solution (λ, μ) of the dual.

Proposition 54.4. If $(w, b, \eta, \epsilon, \xi)$ is an optimal solution of Problem (SVM_{s2'}) with $w \neq 0$ and $\eta > 0$, if

$$\max\{2p_f/(p+q), 2q_f/(p+q)\} < \nu < \min\{2p/(p+q), 2q/(p+q)\},$$

then η and b can always be determined from an optimal solution (λ, μ) of the dual in terms of a single support vector.

Proof. By Theorem 54.3 some u_{i_0} and some v_{j_0} is a support vector. As we already explained, Problem (SVM_{s2'}) satisfies the conditions for having a zero duality gap. Therefore, for optimal solutions we have

$$L(w, \epsilon, \xi, b, \eta, \lambda, \mu, \alpha, \beta) = G(\lambda, \mu, \alpha, \beta),$$

which means that

$$\frac{1}{2}w^{\top}w - \nu\eta + \frac{1}{p+q}\left(\sum_{i=1}^{p} \epsilon_i + \sum_{j=1}^{q} \xi_j\right) = -\frac{1}{2} \begin{pmatrix} \lambda^{\top} & \mu^{\top} \end{pmatrix} X^{\top} X \begin{pmatrix} \lambda \\ \mu \end{pmatrix},$$

and since

$$w = -X \begin{pmatrix} \lambda \\ \mu \end{pmatrix},$$

we get

$$\frac{1}{p+q} \left(\sum_{i=1}^{p} \epsilon_i + \sum_{j=1}^{q} \xi_j \right) = \nu \eta - \left(\lambda^\top \quad \mu^\top \right) X^\top X \begin{pmatrix} \lambda \\ \mu \end{pmatrix}. \tag{*}$$

Let $K_{\lambda} = \{i \in \{1, ..., p\} \mid \lambda_i = K_s\}$ and $K_{\mu} = \{j \in \{1, ..., q\} \mid \mu_j = K_s\}$. By definition, $p_f = |K_{\lambda}|$ and $q_f = |K_{\mu}|$ (here we assuming that $K_s = 1/(p+q)$). By complementary slackness the following equations are active:

$$w^{\mathsf{T}}u_i - b = \eta - \epsilon_i \qquad i \in K_{\lambda}$$
$$-w^{\mathsf{T}}v_i + b = \eta - \xi_i \qquad j \in K_{\mu}.$$

But (*) can be written as

$$\frac{1}{p+q} \left(\sum_{i \in K_{\lambda}} \epsilon_{i} + \sum_{j \in K_{\mu}} \xi_{j} \right) = \nu \eta - \left(\lambda^{\top} \quad \mu^{\top} \right) X^{\top} X \begin{pmatrix} \lambda \\ \mu \end{pmatrix}, \tag{**}$$

and since

$$\epsilon_i = \eta - w^{\mathsf{T}} u_i + b$$
 $i \in K_{\lambda}$
 $\xi_j = \eta + w^{\mathsf{T}} v_j - b$ $j \in K_{\mu}$,