Week 10: Integration Techniques Part 2

November 3, 2021

1 Trigonometric integrals $(tan^m x sec^n x)$

2 Trigonometric substitution

1 Trigonometric integrals $(tan^m x sec^n x)$

2 Trigonometric substitution

$$\int \tan^m x \sec^n x \, dx.$$

We consider, as above, two cases.

- Case 1: The integral involves an even power of $\sec x$. We save one factor of $\sec^2 x$ and use $\sec^2 x = 1 + \tan^2 x$ to express the remaining factors in terms of $\tan x$. Then substitute $u = \tan x$.
- Case 2: The integral involves an odd power of $\tan x$. We save one factor of $\sec x \tan x$ and use $\tan^2 x = \sec^2 x 1$ to express the remaining factors in terms of $\sec x$. Then substitute $u = \sec x$.
 - Recall that $\int \tan x \, dx = \ln|\sec x| + C$ and $\int \sec x \, dx = \ln|\sec x + \tan x| + C$

Evaluate
$$\int \tan^6 x \sec^4 x \, dx$$
.

Evaluate $\int \tan^6 x \sec^4 x \, dx$.

•
$$\int \tan^6 x \sec^4 x \, dx = \int \tan^6 x \sec^2 x \sec^2 x \, dx =$$
$$\int \tan^6 x (1 + \tan^2 x) \sec^2 x \, dx.$$

- Let $u = \tan x$ and $du = \sec^2 x \, dx$
- $\int u^6 (1+u^2) du = \int u^6 + u^8 du$

Evaluate
$$\int \tan^5 x \sec^7 x \, dx$$
.

Evaluate
$$\int \tan^5 x \sec^7 x \, dx$$
.

•
$$\int \tan^5 x \sec^7 x \, dx = \int \tan^4 x \sec^6 x \sec x \tan x \, dx$$

• Let
$$u = \sec x$$
 and $du = \sec x \tan x dx$

•
$$\int (u^2-1)^2 u^6 du = \int (u^{10}-2u^8+u^6) du$$

$$\bullet \ \frac{u^{11}}{11} - 2\frac{u^9}{9} + \frac{u^7}{7} + C = \frac{\sec^{11}x}{11} - 2\frac{\sec^9x}{9} + \frac{\sec^7x}{7} + C$$

Evaluate
$$\int \tan^3 x \, dx$$
.

Evaluate $\int \tan^3 x \, dx$.

- $\int \tan x \sec^2 x \, dx \int \tan x \, dx$.
- Let $u = \tan x$ and $du = \sec^2 x \, dx$ for the left integral

$$\bullet \ \frac{\tan^2 x}{2} - \ln|\sec x| + C$$

Evaluate
$$\int \sec^3 x \, dx$$
.

Evaluate $\int \sec^3 x \, dx$.

- Use integration by parts where $u = \sec x$, $du = \sec x \tan x \, dx$, $dv = \sec^2 x \, dx$, and $v = \tan x$, and recall the formula $\int u \, dv = uv \int v \, du.$
- $\bullet = \sec x \tan x \int \sec x (\sec^2 x 1) dx$
- $\bullet = \sec x \tan x \int \sec^3 x \, dx + \int \sec x \, dx$
- $\frac{1}{2}(\sec x \tan x + \ln|\sec x + \tan x|) + C$

Exercise

$$\int \tan x \sec^3 x \, dx.$$

• Ans:
$$\frac{1}{3}u^3 + C = \frac{1}{3}\sec^3 x + C$$

$$\int \tan^3 x \sec^6 x \, dx.$$

• Ans:
$$\frac{1}{8} \tan^8 x + \frac{1}{3} \tan^6 x + \frac{1}{4} \tan^4 x + C$$

$$\int \tan^5 x \, dx.$$

• Ans:
$$\frac{1}{4} \sec^4 x - \tan^2 x + \ln|\sec x| + C$$

$$\int \tan^2 x \sec x \, dx.$$

• Ans:
$$\frac{1}{2}(\sec x \tan x - \ln|\sec x + \tan x|) + C$$

1 Trigonometric integrals $(tan^m x sec^n x)$

2 Trigonometric substitution

Trigonometric substitution

We now look at integrals of the form $\int \sqrt{a^2-x^2} \, dx$, where a>0. A good strategy is to change variables from x to θ by using the substitution $x=a\sin\theta$. The identity $1-\sin^2\theta=\cos^2\theta$ allows us to get rid of the root sign because

$$\sqrt{a^2 - x^2} = \sqrt{a^2 - a^2 \sin^2 \theta} = \sqrt{a^2 (1 - \sin^2 \theta)} = \sqrt{a^2 \cos^2 \theta} = a |\cos \theta|$$

If we assume that the range θ is $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, then it becomes $a\cos\theta$

Table of substitutions and trigonometric functions.

Expression	Substitution	Range for θ	Identity
$\sqrt{a^2-x^2}$	$x = a \sin \theta$	$\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$	$1 - \sin^2 \theta = \cos^2 \theta$
$\sqrt{a^2+x^2}$	$x = a \tan \theta$	$\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$	$1 + an^2 heta = ext{sec}^2 heta$
$\sqrt{x^2-a^2}$	$x = a \sec \theta$	$\left[0,\tfrac{\pi}{2}\right)\cup\left[\pi,\tfrac{3\pi}{2}\right)$	$\sec^2\theta - 1 = \tan^2\theta$

$$\sin \theta = \frac{\text{opp}}{\text{hyp}}$$
 $\csc \theta = \frac{\text{hyp}}{\text{opp}}$ $\cos \theta = \frac{\text{adj}}{\text{hyp}}$ $\sec \theta = \frac{\text{hyp}}{\text{adj}}$ $\tan \theta = \frac{\text{opp}}{\text{adj}}$ $\cot \theta = \frac{\text{adj}}{\text{opp}}$

Trigonometric substitutio

Evaluate
$$\int \frac{\sqrt{9-x^2}}{x^2} dx.$$

FIGURE 1
$$\sin \theta = \frac{x}{3}$$

Evaluate
$$\int \frac{\sqrt{9-x^2}}{x^2} dx$$
.

FIGURE 1
$$\sin \theta = \frac{x}{3}$$

Let
$$x = 3\sin\theta$$
, then $dx = 3\cos\theta d\theta$, hence $\sqrt{9 - x^2} = \sqrt{9 - 9\sin^2\theta} = \sqrt{9(1 - \sin^2\theta)} = \sqrt{9\cos^2\theta} = 3|\cos\theta| = 3\cos\theta$

$$\int \frac{\sqrt{9 - x^2}}{x^2} dx = \int \frac{3 \cos \theta}{9 \sin^2 \theta} 3 \cos \theta d\theta$$
$$= \int \frac{\cos^2 \theta}{\sin^2 \theta} d\theta = \int \cot^2 \theta d\theta$$
$$= \int (\csc^2 \theta - 1) d\theta = -\cot \theta - \theta + C$$

See figure 1, we know that $\cot \theta = \frac{\sqrt{9-x^2}}{x}$, we also know that $\theta = \sin^{-1}(\frac{x}{3})$ thus

$$\int \frac{\sqrt{9-x^2}}{x^2} \, dx. = -\frac{\sqrt{9-x^2}}{x} - \sin^{-1}(\frac{x}{3}) + C$$

Find the area enclosed by the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$

FIGURE 2

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

Find the area enclosed by the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$

$$\frac{y^2}{b^2} = 1 - \frac{x^2}{a^2} = \frac{a^2 - x^2}{a^2}$$
 or

•
$$y = \pm \frac{b}{a} \sqrt{a^2 - x^2}$$

FIGURE 2
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

Because the ellipse is symmetric with respect to both axes, the total area A is four times the area in the first quadrant (see Figure 2). The part of the ellipse in the first quadrant is given by the function

$$y = \frac{b}{a}\sqrt{a^2 - x^2}$$
 where $0 \le x \le a$ thus
$$\frac{1}{4}A = \int_0^a \frac{b}{a}\sqrt{a^2 - x^2} dx$$

Let $x=a\sin\theta$, then $dx=a\cos\theta d\theta$. To change the limits of integration, when x=0, $a\sin\theta=0$, so $\theta=0$. When x=a, $a\sin\theta=a$, thus $\theta=\frac{\pi}{2}$.

(continued next slide)

Continued...

$$A = 4\frac{b}{a} \int_0^a \sqrt{a^2 - x^2} \, dx = 4\frac{b}{a} \int_0^{\pi/2} a \cos\theta \cdot a \cos\theta \, d\theta$$
$$= 4ab \int_0^{\pi/2} \cos^2\theta \, d\theta = 4ab \int_0^{\pi/2} \frac{1}{2} (1 + \cos 2\theta) \, d\theta$$
$$= 2ab \left[\theta + \frac{1}{2} \sin 2\theta \right]_0^{\pi/2} = 2ab \left(\frac{\pi}{2} + 0 - 0 \right)$$
$$= \pi ab$$

Find
$$\int \frac{1}{x^2 \sqrt{x^2 + 4}} dx$$
.

FIGURE 3 $\tan \theta = \frac{x}{2}$

FIGURE 3
$$\tan \theta = \frac{x}{2}$$

Find
$$\int \frac{1}{x^2 \sqrt{x^2+4}} dx$$
.

Let $x = 2 \tan \theta$, then $dx = 2 \sec^2 \theta d\theta$, thus

$$\sqrt{x^2+4} = \sqrt{4(\tan^2\theta+1)} = \sqrt{4\sec^2\theta} = 2|\sec\theta| = 2\sec\theta$$

So we have

$$\int \frac{dx}{x^2 \sqrt{x^2 + 4}} = \int \frac{2 sec^2 \theta d\theta}{4 \tan^2 \theta \cdot 2 \sec \theta} = \frac{1}{4} \int \frac{sec\theta}{\tan^2 \theta} d\theta$$

We put everything in terms of $\sin \theta$ and $\cos \theta$:

$$\frac{\sec\theta}{\tan^2\theta} = \frac{1}{\cos\theta} \cdot \frac{\cos^2\theta}{\sin^2\theta} = \frac{\cos\theta}{\sin^2\theta}$$

(continued next slide)

Continued....

Here make the substitution $u = \sin \theta$, we have

FIGURE 3
$$\tan \theta = \frac{x}{2}$$

$$\int \frac{dx}{x^2 \sqrt{x^2 + 4}} = \frac{1}{4} \int \frac{\cos \theta}{\sin^2 \theta} d\theta = \frac{1}{4} \int \frac{du}{u^2}$$
$$= \frac{1}{4} \left(-\frac{1}{u} \right) + C = -\frac{1}{4 \sin \theta} + C$$
$$= -\frac{\csc \theta}{4} + C$$

Using figure 3, we determine that $\csc \theta = \frac{\sqrt{x^2+4}}{x}$, so

$$\frac{dx}{x^2\sqrt{x^2+4}} = -\frac{\sqrt{x^2+4}}{4x} + C$$

Find
$$\int \frac{x}{\sqrt{x^2+4}} dx$$
.

Find
$$\int \frac{x}{\sqrt{x^2+4}} dx$$
.

It would be possible to use the trigonometric substitution $x=2\tan\theta$ here. But the direct substitution $u=x^2+4$ is simpler, because then $du=2x\,dx$ and

$$\int \frac{x}{\sqrt{x^2 + 4}} dx = \frac{1}{2} \int \frac{du}{\sqrt{u}} = \sqrt{u} + C = \sqrt{x^2 + 4} + C$$

Thus, note that even when trigonometric substitutions are possible, they may not give the easiest solution.

Exercise

•
$$\int_0^3 \frac{x}{\sqrt{36-x^2}}$$

• Ans:
$$6 - 3\sqrt{3}$$

• Ans:
$$\ln \left| \frac{\sqrt{1+x^2}-1}{x} \right| + \sqrt{1+x^2} + C$$

•
$$\int \frac{1}{\sqrt{x^2-a^2}} dx$$
, where $a>0$

• Ans:
$$\ln |x + \sqrt{x^2 - a^2}| - \ln a + C$$