Postadresse: Institut: Telefon: Telefax: D-52056 Aachen, Germany Jägerstraße 17-19, D-52066 Aachen

++49 241 80 96900 ++49 241 80 92184

http://www.xtal.rwth-aachen.de

GRUNDZÜGE DER KRISTALLOGRAPHIE

Lösung zur 10. Übung: Raumerfüllung, Radienquotienten, Paulingsche Regeln

Aufgabe 1:

a) kubisch primitiv:

b) kubisch innenzentriert (Atome berühren sich längs der Raumdiagonalen):

Aufgabe 2:

	$r_K [Å]$	$\frac{r_K}{R_A}$	Koordination	Тур	Bemerkung
SiO_2	0.42	0.32	Tetraeder	Quarz	
${ m TiO_2}$	0.68	0.52	Oktaeder	Rutil	
CaF_2	0.99	0.74	Würfel	Flußspat	
BaF_2	1.34	1.01	Würfel	Flußspat	
CeO_2	0.94	0.71	Würfel	Flußspat	Kleiner als Theorie!
FeF_2	0.74	0.56	Oktaeder	Rutil	
MgF_2	0.66	0.50	Oktaeder	Rutil	
β -MnO ₂	0.60	0.45	Oktaeder	Rutil	
UO_2	0.97	0.73	Würfel	Flußspat	

Werte für r_K nach Ahrens, verwendete Werte $R_{F^-}=1.33 \text{Å}$ und $R_{O^{2-}}=1.32 \text{Å}$ nach Goldschmidt

Aufgabe 3:

	$r_{K,berechnet}$ [Å]	$r_{K,Tabelle}$ [Å]	$\frac{r_{K,berechnet}}{R_A}$
NaCl	1.01	0.97	0.56
AgCl	0.91	1.26	0.50
KCl	1.34	1.33	0.74 †
BaO	1.44	1.34	1.09 †
CaO	1.09	0.99	0.83 †
FeO	0.83	0.74	0.63
MgO	0.79	0.66	0.60
SrO	1.26	1.12	0.95 †

[†] Diese Verbindungen kristallisieren im Steinsalztyp, obwohl die berechneten Radienquotienten größer sind als der Grenzradienquotient für die Würfelkoordination. Damit würde man über die Radieninformation eigentlich die CsCl-Struktur prognostizieren.

Aufgabe 4:

Verbindung			
Kation(en)	Koordinations-		elektrostatische Valenz des Kations
Anion polyeder		zahl	Kompensation der Ladung des Anions?(s. Aufg. 5)
NaCl: Na ⁺	Oktaeder	6	$\frac{+1}{6}$
Cl-	Oktaeder	6	$\sum_{i=1}^{6} EV(Na^{+}) = \sum_{i=1}^{6} \frac{1}{6} = 6 \cdot \frac{1}{6} = +1 = -(-1) \checkmark$
$\begin{array}{ c c c c }\hline \text{CaF}_2: & \text{Ca}^{2+} \\ \hline \end{array}$	Würfel	8	$\frac{+2}{8} = \frac{1}{4}$
F-	Tetraeder	4	$\sum_{i=1}^{2} \frac{1}{6} = \frac{1}{6}$ $\sum_{i=1}^{4} \frac{1}{8} = \frac{1}{4}$ $\sum_{i=1}^{4} \frac{1}{4} = 4 \cdot \frac{1}{4} $
$\overline{\text{TiO}_2:}$ $\overline{\text{Ti}^{4+}}$	Oktaeder		0 0
O^{2-}	Dreieck	3	$\sum_{i=1}^{3} EV(Ti^{4+}) = \sum_{i=1}^{3} \frac{2}{3} = 3 \cdot \frac{2}{3} = +2 = -(-2) \checkmark$
CaTiO ₃ : Ca ²⁺	Kubooktaeder	12	$\frac{1}{i=1} \frac{1}{12} = \frac{1}{6}$
Ti^{4+}	Oktaeder	6	$\frac{+4}{6} = \frac{2}{3}$
O^{2-}	Tetragonale Bipyrami- de (oder gestauchtes / verzerrtes Oktaeder)		$\sum_{i=1}^{6} EV(Kationen) = \checkmark$
alternativ	2fach linear bzgl. Ti ⁴⁺ & 4fach quadratisch planar bzgl. Ca ²⁺	2+4	$\sum_{i=1}^{2} EV(Ti^{4+}) + \sum_{i=1}^{4} EV(Ca^{2+}) = \sum_{i=1}^{2} \frac{2}{3} + \sum_{i=1}^{4} \frac{1}{6}$
			$= 2 \cdot \frac{2}{3} + 4 \cdot \frac{1}{6} = +2 = -(-2) \checkmark$