Algorithmen und Berechenbarkeit

lernen Aufschrieb

Sina Kiefer

28. Januar 2016

Inhaltsverzeichnis

1	Chomsky-Hierarchie 3							
	1.1	Abschl	usseigenschaften	3				
	1.2	Typen		3				
		1.2.1	Typ-0 (rekursiv aufzählbar)	3				
			Typ-1 (kontextsensitiv)					
		1.2.3	Typ-2 (kontextfrei)	3				
		1.2.4	Typ-3 (regulär)	3				
2	Ents	Entscheidbarkeit 3						
	2.1	Semi-e	ntscheidbar	4				
	2.2	co-sem	i-entscheidbar	4				
3	Turii	Turingmaschine						
4	Reduktion							
5	PKP und MPKP							

1 Chomsky-Hierarchie

Einteilung von Sprachen in Typen (Typ 0-3). Entscheidbare Sprachen sind Typ 1 bis Typ 3 und Teile von Typ 0.

Typ $3 \subset$ Typ $2 \subset$ Typ $1 \subset$ Typ $0 \subset$ alle Sprachen

Typ 3	DFA und NFA
Typ 2	Kellerautomat (PDA)
Typ 1	linear beschränkter Automat (LBA)
Typ 0	Turingmaschine (TM)

1.1 Abschlusseigenschaften

L	Schnitt ∩	Vereinigung ∪	Komplement L
Typ 3	✓	✓	✓
Typ 2	×	✓	×
Typ 1	✓	✓	\checkmark
Typ 0	✓	✓	×

1.2 Typen

1.2.1 Typ-0 (rekursiv aufzählbar)

- Nicht 'nur' rekursiv, die wären entscheidbar!
- Rekursiv aufzählbare Sprachen sind semi-entscheidbar.
- TM muss nicht halten wenn das Wort nicht in L liegt
- Jede entscheidbare Sprache ist rekursiv aufzählbar, aber es gibt rekursiv aufzählbare Sprache, die nicht entscheidbar sind.

1.2.2 Typ-1 (kontextsensitiv)

1.2.3 Typ-2 (kontextfrei)

1.2.4 Typ-3 (regulär)

2 Entscheidbarkeit

- Das Halteproblem *H* ist nicht entscheidbar.
- Ein Sprache L heißt rekursiv aufzählbar, wenn es einen Aufzähler für L gibt.
- Sind $L \subset \Sigma^*$ und $\overline{L} = \Sigma^* \setminus L$ semi-entscheidbar, so ist L entscheidbar.
- Falls $L_1 \le L_2$ und L_2 entscheidbar ist, so ist auch L_1 entscheidbar.
- Eine Sprache L ist genau dann nicht entscheidbar, wenn mindestens eine Sprache L und \overline{L} nicht semi-entscheidbar sind.

L bzw. L_1 und L_2	$L_1 \cap L_2$ (Schnitt)	$L_1 \cup L_2$ (Vereinigung)	$ \overline{L} $
entscheidbar	entscheidbar	entscheidbar	entscheidbar
semi-entscheidbar	semi-entscheidbar	semi-entscheidbar	nicht entscheidbar
co-semi-entscheidbar	•	•	•
nicht entscheidbar	•	•	•

2.1 Semi-entscheidbar

- Die Sprachen H_{all} und $\overline{H_{all}}$ sind nicht semi-entscheidbar.
- Eine Sprache L ist genau dann semi-entscheidbar, wenn L rekursiv aufzählbar ist.
- Eine Sprache heißt semi-entscheidbar, falls es eine Turingmaschine M gibt, welche L erkennt.
- Falls $L_1 \le L_2$ und L_2 semi-entscheidbar ist, so ist auch L_1 semi-entscheidbar.

2.2 co-semi-entscheidbar

• Eine Sprache L heißt co-semi-entscheidbar genau dann wenn \overline{L} semi-entscheidbar ist.

3 Turingmaschine

Def. Eine Funktion $f: \Sigma^* \to \Sigma^* \cup \{\bot\}$ heißt Turing-berechenbar, wenn es eine Turingmaschine M gibt mit $f = f_M$.

Def. Eine Sprache $L \subseteq \Sigma^*$ heißt Turing-entscheidbar, wenn es eine Turingmaschine gibt, die auf allen Eingaben stoppt und die Eingabe w akzeptiert falls $w \in L$ und die Eingabe w verwirft falls $w \notin L$.

Def. (k-Band TM) Eine k-Band Turingmaschine ist eine Verallgemeinerung der Turingmaschine, welche über *k* Speicherbänder mit jeweils unabhängigem Kopf verfügt. Die Zustandsübergangsfunktion hat die Form:

$$\delta: (Q \setminus \{\overline{q}\}) \times \Gamma^k \to Q \times \Gamma^k \times \{L, R, N\}^k$$

Hierbei ist Band 1 das Ein-/Ausgabeband und die Bänder $2, \ldots, k$ sind initial mit lauter Bs beschrieben.

Def. Eine Sprache L wird von einer Turingmaschine M entschieden, wenn M auf jeder Eingabe hält und genau die Wörter aus L akzeptiert.

Def. Eine Sprache L wird von einer Turingmaschine M erkannt, wenn M jedes Wort aus L akzeptiert und kein Wort aus $\mathcal{E}^* \setminus L$ akzeptiert. Auf Eingabe nicht aus L muss M nicht halten.

Satz Eine k-Band Turingmaschine, die mit Rechenzeit t(n) und platz s(n) auskommt, kann von einer 1-Band Turingmaschine M' mit Zeitbedarf $O(t^2(n))$ und Platzbedarf O(s(n)) simuliert werden.

Satz Jede t(n) zeitbeschränkte RAM kann durch eine O(q(n + t(n)))-zeitbeschränkte Turingmaschine simuliert werden für ein Polynom q().

Satz *D* ist nicht Turing-entscheidbar.

Satz Das spezielle Halteproblem H_E ist nicht Turing-entscheidbar.

Satz Sei S eine Teilmenge von R mit $\emptyset \neq S \neq R$. Dann ist die Sprache $L(S) = \{ < M > | M \text{ berechnet eine Funktion aus } S \}$ nicht Turing-entscheidbar.

4 Reduktion

Def. Seien L_1 und L_2 Sprachen über Σ . Dann heißt L_1 auf L_2 reduzierbar – $L_1 \leq L_2$ –, wenn es eine berechenbare Funktion.

$$f:\sum^*\to\sum^*$$

gibt mit $\forall x \in \Sigma^*$

$$x_1 \in L_1 \Leftrightarrow f(x_1) \in L_2$$

5 PKP und MPKP

Def. Postsches Korrespondenzproblem (PKP) Eine Instanz des PKP besteht aus einer Menge

$$K = \left\{ \left[\frac{x_1}{y_1} \right], \left[\frac{x_2}{y_2} \right], \dots, \left[\frac{x_k}{y_k} \right] \right\}$$

wobei x_i und y_i nicht leere Wörter über einem endlichen Alphabet Σ sind. Es soll entschieden werden, ob es eine korrespondierende Folge von Indizes $i_1, \ldots, i_n \in \{1, \ldots, k\}, n \ge 1$ gibt, sodass $x_{i_1} x_{i_2} x_{i_3} \ldots x_{i_n} = y_{i_1} y_{i_2} y_{i_3} \ldots y_{i_n}$.

Def. Modifiziertes PKP (MPKP) entspricht dem PKP aber erzwingt $i_1 = 1$.

Lemma 2.31 MPKP \leq PKP

Lemma 2.32 $H \leq MPKP$

Definitionen

Def Eine Menge M heißt abzählbar, wenn es eine surjektive Funktion $c_{\mathbb{N}} \to M$ gibt. Nicht abzählbare Mengen heißen überabzählbar.