DAY 2

In last section, we have discussed Thales theorem. In this section, we shall discuss applicability of this theorem.

1. If a line intersects sides AB and AC of a \triangle ABC at D and E respectively and is parallel

to BC, prove that
$$\frac{AD}{AB} = \frac{AE}{AC}$$

[Example 1]

Sol:- In \triangle ABC, if DE | |BC

∴ By Thales Theorem
$$\frac{AD}{DB} = \frac{AE}{EC}$$
....i)

To Prove:
$$\frac{AD}{AB} = \frac{AE}{AC}$$

LHS: $\frac{AD}{AB} = \frac{AD}{AD + DB}$

$$= \frac{\frac{AD}{DB}}{\frac{AD}{DB} + 1}$$
 [Divide numerator and denominator DB]

$$= \frac{\frac{AE}{EC}}{\frac{AE}{EC}+1} = \frac{\frac{AE}{EC}}{\frac{AE+EC}{EC}}$$
 [Using i)]
$$= \frac{AE}{AE+EC} = \frac{AE}{AC}$$

Hence the result.

[Ex 6.2, Q3]

Given LM | CB and LN | CD Sol:-

In ΔABC, LM | CB

By Thales Theorem
$$\frac{AM}{AB} = \frac{AL}{AC}$$
i)

In ΔADC, LN | CD

By Thales Theorem
$$\frac{AL}{AC} = \frac{AN}{AD}$$
ii)
From i) & ii), we get $\frac{AM}{AB} = \frac{AN}{AD}$

From i) & ii), we get
$$\frac{AM}{AB} = \frac{AN}{AD}$$
Hence the result

3. In given fig, DE | AC and DF | AE. Prove that $\frac{BF}{FF} = \frac{BE}{FC}$

[Ex 6.2, Q4]

Given DE | AC and DF AE Sol:-In $\triangle ABC$, DE | AC

By Thales Theorem
$$\frac{BD}{DA} = \frac{BE}{EC}$$
i)

In ΔBAE, DF | AE

By Thales Theorem
$$\frac{BD}{DA} = \frac{BF}{FE}$$
ii)
From i) & ii), we get $\frac{BE}{EC} = \frac{BF}{FE}$ Hence the result

4. ABCD is a trapezium in which AB | DC and its diagonals intersect each other at the point O. Show that $\frac{AO}{BO} = \frac{CO}{OD}$ [Ex 6.2, Q9]

Sol: Given AB | DC

Const. Draw OE | AB | DC

Proof: In $\triangle ABC$, $AB \mid \mid OE$

By Thales Theorem
$$\frac{AO}{OC} = \frac{BE}{EC}$$
i)

In $\triangle BCD$, $OE \mid \mid CD$

By Thales Theorem
$$\frac{BO}{OD} = \frac{BE}{EC}$$
ii)

From i) & ii), we get
$$\frac{AO}{OC} = \frac{BO}{OD}$$
 or $\frac{AO}{BO} = \frac{CO}{OD}$

Hence the result

5. ABCD is a trapezium in which AB || DC. E and F are points on non parallel sides AD and BC respectively such that EF || AB. Show that $\frac{AE}{ED} = \frac{BF}{FC}$ [Example 2]

Sol:- Given AB | EF | CD

Const. Join diagonal AC Which intersects EF at O.

Proof: In $\triangle ACD$, EO | CD {as EF | CD}

By Thales Theorem
$$\frac{AE}{ED} = \frac{AO}{OC}$$
i)

In $\triangle ABC$, OF | AB {as $AB \mid | EF$ }

By Thales Theorem
$$\frac{AO}{OC} = \frac{BF}{FC}$$
ii)

From i) & ii), we get $\frac{AE}{ED} = \frac{BF}{FC}$ Hence the result

6. Prove that a line drawn through the mid point of one side of a triangle parallel to another side bisects the third side. [Ex 6.2, Q7]

Sol :- Given In \triangle ABC, DE | BC and D is mid point of AC *i. e.* AD = DB i)

To Prove: DE bisects AC i.e. AE = EC

Proof: In ∆ABC, DE | BC

By Thales Theorem
$$\frac{AD}{DB} = \frac{AE}{EC}$$

$$\Rightarrow \frac{DB}{DB} = \frac{AE}{EC} \qquad \text{[by i)]}$$

$$\Rightarrow 1 = \frac{AE}{EC} \Rightarrow AE = EC$$

Hence the result

