Modular Arithmetic (1)

- > Calculation of the remainder is important.
- Modular Arithmetic provides a convenient method to calculate remainders.
- It was systematically studied by Gauss in the end of the 18th century.

Carl Friedrich Gauss (1777-1855)

Modular Arithmetic (2)

Definition

If A – B is divisible by N, we say

'A and B are congruent (mod N)'

or

`A is congruent to B (mod N)'.

We write

 $A \equiv B \pmod{N}$.

Example

$$2 + 3 \equiv 5 \equiv 0 \pmod{5}$$

$$4 \times 3 \equiv 12 \equiv 2 \pmod{5}$$

3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97 101 103 107 109 113 127 131 137 139 149 151 157 163 167 173 179 181 191 193 197 199

Modular Arithmetic (3)

Example

	$A\backslash B$	0	1	2	3	4	$A\backslash B$	0	1	2	3	4
•	0	0	1	2	3	4	0					
	1	1	2	3	4	0	1	0	1	2	3	4
	2	2	3	4	0	1	2	0	2	4	1	3
	3	3	4	0	1	2	3	0	3	1	4	2
	4	4	0	1	2	3	$\frac{3}{4}$	0	4	3	2	1
	A -	+ B	(m	rod	5)		$A \times B \pmod{5}$					

2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97 101 103 107 109 113 127 131 137 139 149 151 157 163 167 173 179 181 191 193 197 19

Modular Arithmetic (4)

Basic Facts:

$$A \equiv B \pmod{N}$$
 and $C \equiv D \pmod{N}$
 $\Rightarrow A + C \equiv B + D \pmod{N}$,
 $A - C \equiv B - D \pmod{N}$,
 $A \times C \equiv B \times D \pmod{N}$.

We can perform addition (+), subtraction (-), and multiplication (x) in the (mod N)-world. 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97 101 103 107 109 113 127 131 137 139 149 151 157 163 167 173 179 181 191 193 197 199

Modular Arithmetic (5)

3 × 2 ≡ 6 ≡ 1 (mod 5)
2 is the multiplicative inverse to 3 in the (mod 5)-world.

Theorem: Assume P is a **prime number**.

For $1 \le A \le P-1$, there is B satisfying $A \times B \equiv 1 \pmod{P}$.

B is the **multiplicative inverse** to A (mod P).

Modular Arithmetic (6)

Examples (P=7)

- > 1 × 1 ≡ 1 (mod 7) ⇒ 1 is the **multiplicative inverse** to 1.
- \triangleright 2 × 4 ≡ 8 ≡ 1 (mod 7) ⇒ 2 is inverse to 4, and 4 is inverse to 2.
- > 3 × 5 ≡ 15 ≡ 1 (mod 7) \Rightarrow 3 is inverse to 5, and 5 is inverse to 3.
- $ightharpoonup 6 imes 6 \equiv 36 \equiv 1 \pmod{7}$ ightharpoonup 6 is inverse to 6.

Modular Arithmetic (7)

Proof of Thm:

A \times B (mod P) for B = 1, 2, ..., P-1 are **not congruent** (mod P) to each other because if

$$A \times B \equiv A \times C$$
 for some $1 \leq B, C \leq P-1$

$$\Rightarrow$$
 A \times (B - C) \equiv 0

$$\Rightarrow$$
 B - C is divisible by P (P is a **prime number**)

$$\Rightarrow$$
 B \equiv C.

Hence $A \times B \equiv 1$ for some B.

2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97 101 103 107 109 113 127 131 137 139 149 151 157 163 167 173 179 181 191 193 197 199

Interlude: Queen of Mathematics

``Math is the queen of the sciences, and and number theory is the queen of math." (Carl Friedrich Gauss, 1777-1855)

