Package 'RFOC'

September 6, 2023

BOXarrows3D	 	 	 	 17
circtics	 	 	 	 19
CONVERTSDR	 	 	 	 20
cross.prod	 	 	 	 21
CROSSL	 	 	 	 22
doNonDouble				23
EApoint				24
egl				
fancyarrows				
faultplane				
FixDip				
flipnodal				
foc.color				31
foc.icolor				
FOCangles				
focleg				
focpoint				
forcerighthand				
getCMT				
GetRake				
GetRakeSense				
getUWfocs				
HAMMERprojXY .				
hudson.net				
hudson.plot				
imageP				
imageSCALE				
imageSH				
imageSV				
inverseTAPE				
jimbo				
JMAT				
justfocXY				
KAMCORN				
lowplane				
$m2tk\ .\ .\ .\ .\ .\ .\ .$				
makeblock3D	 	 	 	 59
makenet	 	 	 	 60
MapNonDouble	 	 	 	 61
mc2cart	 	 	 	 64
mijsdr	 	 	 	 65
MomentDist	 	 	 	 66
MRake	 	 	 	 67
net	 	 	 	 68
$nipXY\ \dots\ \dots\ \dots$	 	 	 	 69
nodalLines	 	 	 	 71
normal.fault				
pcirc	 	 	 	 73

pglyph3D	 														74
phong3D															75
PKAM															77
plotfoc															79
plotmanyfoc .															80
plotMEC															82
PlotPlanes															83
PlotPTsmooth															84
															85
PLTcirc															87
pnet															88
polyfoc															89
Pradfoc															90
Preflect															91
prepFOCS															92
printMEC															93
PROJ3D															94
PTaxes															95
PTXY2															96
qpoint															98
radiateP															99
radiateSH															
radiateSV															
radP															
radSH															
radSV															
rakelegend															
readCMT															
RectDense															
REFLECT															
rotateFoc															
															12
Rotfocphi															13
RotTP															.13 14
															.14 15
rotx3 ROTY														•	15 16
roty3															17
ROTZ															
rotz3															
SDRfoc															
ShadowCLVD															
SHradfoc															
SourceType .															
spherefocgeo															
spline.arrow.															
StrikeDip															
strikeslip.fault	 			 •	 •			 •	 •			•	 •		
CVrodfoc														- 1	22

4 RFOC-package

Index		158
	Z3Darrow	. 156
	xsecmanyfoc	
	Wpoint	
	Wnet	. 152
	widdenMoments	. 151
	Vmoments	. 151
	TRANmat	. 150
	TP2XYZ	. 149
	tosphereL	. 148
	TOSPHERE.DIP	
	TOSPHERE	
	tocartL	
	TOCART.DIP	
	to.spherical	
	tk2uv	
	thrust.fault	
	testrightHAND	
	ternfocgeo	
	ternfoc.point	
	TEACHFOC	
	TapePlot	
	TapeBase	. 133

RFOC-package

Calculates and plot Earthquake Focal Mechanisms

Description

Graphics for statistics on a sphere, as applied to geological fault data, crystallography, earthquake focal mechanisms, radiation patterns, ternary plots and geographical/geological maps. Given strike-dip-rake or a set of fault planes, focal planes, RFOC creates structures for manipulating and plotting earthquake focal mechanisms as individual plots or distributed spatially maps.

RFOC can be used for analysis of plane orientation, geologic structure, distribution of stress and strain analyses.

Details

Visualize focal mechanisms in a number of modes, including: beachball plots, radiation plots, fault planes and ternary diagrams. Shows spatial distribution of spherically distributed data.

Author(s)

Jonathan M. Lees Maintainer: Jonathan M. Lees <jonathan.lees@unc.edu>

RFOC-package 5

References

J. M. Lees. Geotouch: Software for three and four dimensional GIS in the earth sciences. *Computers and Geosciences*, 26(7):751–761, 2000.

K.~Aki and P.~G. Richards. *Quantitative seismology*. University Science Books, Sausalito, Calif., 2nd edition, 2002.

Snyder, John P., 1987, Map Projections-a working manual, USGS-Professional Paper, 383p.

C. Frohlich. Triangle diagrams: ternary graphs to display similarity and diversity of earthquake focal mechanisms. *Physics of the Earth and Planetary Interiors*, 75:193-198, 1992.

See Also

RSEIS, GEOmap, zoeppritz

```
########## plot one focal mechanism:
M = SDRfoc(-25, 34, 16, u = FALSE, ALIM = c(-1, -1, +1, +1), PLOT=TRUE)
######### plot many P-axes:
paz = rnorm(100, mean=297, sd=100)
pdip = rnorm(100, mean=52, sd=20)
net()
focpoint(paz, pdip, col='red', pch=3, lab="", UP=FALSE)
##############
#### Show many Focal mechanisms on a plot:
Z1 = c(159.33, 51.6, 206, 18, 78,
161.89,54.5,257,27,133,
170.03,53.57,-44,13,171,
154.99,50.16,-83,19,-40,
151.09,47.15,123,23,-170,
176.31,51.41,-81,22,122,
153.71,46.63,205,28,59,
178.39,51.21,-77,16,126,
178.27,51.1,-86,15,115,
177.95,51.14,-83,25,126,
178.25,51.18,215,16,27
)
MZ = matrix(Z1, ncol=5, byrow=TRUE)
plot(MZ[,1], MZ[,2], type='n', xlab="LON", ylab="LAT", asp=1)
for(i in 1:length(MZ[,1]))
paste(MZ[i,3], MZ[i,4], MZ[i,5])
```

6 addmecpoints

```
MEC = SDRfoc(MZ[i,3], MZ[i,4], MZ[i,5], u=FALSE, ALIM=c(-1,-1, +1, +1), PLOT=FALSE)
fcol = foc.color(foc.icolor(MEC$rake1), pal=1)
justfocXY(MEC, x=MZ[i,1], y =MZ[i,2], focsiz=0.5, fcol =fcol, fcolback = "white", xpd = TRUE)
}
```

addmecpoints

Add points to Focal Mech

Description

Add a standard set of points to a Focal Mechanism

Usage

```
addmecpoints(MEC, pch = 5)
```

Arguments

MEC MEC structure list pch plotting character

Value

Graphical Side effects

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

See Also

SDRfoc, focpoint

```
MEC= SDRfoc(12,34,-120)
addmecpoints(MEC)
```

addPT 7

addPT

Add P-T Axis to focal plot

Description

Add Pressure and tension Axes to focal mechanism

Usage

```
addPT(MEC, pch = 5)
```

Arguments

MEC MEC structure

pch plotting character

Value

Graphical Side Effect

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

See Also

addPTarrows

```
MEC =SDRfoc(65,25,13, u=FALSE, ALIM=c(-1,-1, +1, +1), PLOT=FALSE) Beachfoc(MEC) addPT(MEC, pch = 5)
```

8 addPTarrows

addPTarrows

Add fancy 3D arrows

Description

Illustrate Pressure and Tension axis on Focal Plot using 3D arrows

Usage

```
addPTarrows(MEC)
```

Arguments

MEC

Mechanism Structure

Value

Graphical Side Effects

Note

This function looks better when plotting the upper hemisphere

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

See Also

focpoint, BOXarrows3D,Z3Darrow

```
MEC = SDRfoc(65,25,13, u=TRUE, ALIM=c(-1,-1, +1, +1), PLOT=TRUE)
addPTarrows(MEC)
```

addsmallcirc 9

addsmallcirc	Small Circle on Stereonet	

Description

Calculate and plot small circle on Stereo net at arbitrary azimuth, orientation and conical angle

Usage

```
addsmallcirc(az, iang, alphadeg, BALL.radius = 1, N = 100, add = TRUE, ...)
```

Arguments

az Azimuth of axis
i ang angle of dip, degrees
alphadeg width of cone in degrees

BALL.radius size of sphere

N NUmber of points to calculate add logical, TRUE=add to existing plot

... graphical parameters

Details

Given the azimuth and dip of a vector, plot the small circle around the pole with conical angle alphadeg

Value

LIST:

x x-coordinates y y-coordinates

Note

alphadeg is the radius of the conic projection

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

See Also

net

Examples

```
net()
addsmallcirc(65, 13, 20, BALL.radius = 1, N = 100, add = TRUE)
addsmallcirc(165, 73, 5.6, BALL.radius = 1, N = 100, add = TRUE)
```

AlongGreat

Get Points Along Great Circle

Description

Using a Starting LAT-LON, return points along an azimuth

Usage

```
AlongGreat(LON1, LAT1, km1, ang, EARTHRAD= 6371)
```

Arguments

LON1 Longitude, point
LAT1 Latitude, point

km1 Kilometers in direction ang

ang Direction from North

EARTHRAD optional earth radius, default = 6371

Details

Returns LAT-LON points along a great circle, so many kilometers away in a specified direction

Value

LIST:

Latitude, destination pointLongitude, destination point

distance in degrees
distkm distance in km

Author(s)

Jonathan M. Lees <jonathan.lees@unc.edu>

alpha95

Examples

```
london = c(51.53333, -0.08333333)
AlongGreat(london[2], london[1], 450, 56)
```

alpha95

95 percent confidence for Spherical Distribution

Description

Calculates conical projection angle for 95% confidence bounds for mean of spherically distributed data.

Usage

alpha95(az, iang)

Arguments

az vector of azimuths, degrees

iang vector of dips, degrees

Details

Program calculates the cartesian coordinates of all poles, sums and returns the resultant vector, its azimuth and length (R). For N points, statistics include:

$$K = \frac{N-1}{N-R}$$

$$S = \frac{81^{\circ}}{\sqrt{K}}$$

$$\kappa = \frac{\log(\frac{\epsilon_1}{\epsilon_2})}{\log(\frac{\epsilon_2}{\epsilon_3})}$$

$$\alpha_{95} = \cos^{-1} \left[1 - \frac{N - R}{R} \left(20^{\frac{1}{N-1}} - 1 \right) \right]$$

where ϵ 's are the relevant eigenvalues of matrix MAT and angles are in degrees.

12 alpha95

Value

LIST:

Ir resultant inclination, degrees
Dr resultant declination, degrees

R resultant sum of vectors, normalized

K K-dispersion valueS spherical variance

Alph95 95% confidence angle, degrees

Kappa log ratio of eignevectors

E Eigenvactors

MAT matrix of cartesian vectors

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

References

Davis, John C., 2002, Statistics and data analysis in geology, Wiley, New York, 637p.

See Also

addsmallcirc

```
paz = rnorm(100, mean=297, sd=10)
pdip = rnorm(100, mean=52, sd=8)
ALPH = alpha95(paz, pdip)
####### draw stereonet
net()
######### add points
focpoint(paz, pdip, col='red', pch=3, lab="", UP=FALSE)
########### add 95 percent confidence bounds
addsmallcirc(ALPH$Dr, ALPH$Ir, ALPH$Alph95, BALL.radius = 1, N = 25,
add = TRUE, lwd=1, col='blue')
######## second example:
paz = rnorm(100, mean=297, sd=100)
pdip = rnorm(100, mean=52, sd=20)
ALPH = alpha95(paz, pdip)
net()
focpoint(paz, pdip, col='red', pch=3, lab="", UP=FALSE)
```

AXpoint 13

```
addsmallcirc(ALPH\$Dr, 90-ALPH\$Ir, ALPH\$Alph95, BALL.radius = 1, N = 25, \\ add = TRUE, lwd=1, col='blue')
```

4 3 /		
ΔΧ	poin	Ŧ
-	DOTII	·

Extract Axis pole on Stereonet

Description

Interactive extract axis point on Stereonet

Usage

```
AXpoint(UP = TRUE, col=2, n=1)
```

Arguments

UP	logical, TRUE=upper hemisphere
col	plotting color
n	maximum number to locate, default=unlimited

Details

Program uses locator to create a vector of poles. Points outside the focal sphere (r>1) are ignored. If n is missing, locator continues until stopped (middle mouse in linux, stop in windows).

Value

phiang	azimuth angle, degrees
dip	dip angle, degrees
X	x-coordinate of cartesian vector
У	y-coordinate of cartesian vector
z	z-coordinate of cartesian vector
gx	x-coordinate of prjection
gy	y-coordinate of prjection

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

See Also

locator, qpoint, EApoint

14 bang

Examples

bang

Angle between two 2D normalized vectors

Description

Calculates the angle between two 2D normalized vectors using dot and cross product

Usage

```
bang(x1, y1, x2, y2)
```

Arguments

x1	x coordinate of first normalized vector
y1	y coordinate of first normalized vector
x2	x coordinate of second normalized vector
y2	y coordinate of second normalized vector

Details

The sign of angle is determined by the sign of the cross product of the two vectors.

Value

angle in radians

Note

Vectors must be normalized prior to calling this routine. Used mainly for vectors on the unit sphere.

Author(s)

Jonathan M. Lees <jonathan.lees@unc.edu>

Beachfoc 15

Examples

```
v1 = c(5,3)
v2 = c(6,1)

a1 = c(5,3)/sqrt(v1[1]^2+v1[2]^2)
a2 = c(6,1)/sqrt(v2[1]^2+v2[2]^2)

plot(c(0, v1[1],v2[1]), c(0, v1[2],v2[2]), type='n', xlab="x", ylab="y")
text(c(v1[1],v2[1]), c(v1[2],v2[2]), labels=c("v1", "v2"), pos=3, xpd=TRUE)

arrows(0, 0, c(v1[1],v2[1]), c(v1[2],v2[2]))

B = 180*bang(a1[1], a1[2], a2[1], a2[2])/pi
title(paste(sep=" ", "Angle from V1 to V2=",format(B, digits=2)))
```

Beachfoc

Plot a BeachBall Focal Mechanism

Description

Plots a focal mechanism in beachball style

Usage

```
Beachfoc(MEC, fcol = gray(0.9), fcolback = "white", ALIM = c(-1, -1, +1, +1))
```

Arguments

MEC	Mechanism Structure
fcol	color for the filled portion of the beachball
fcolback	color for the background portion of the beachball, default='white'
ALIM	Bounding box for beachball, default= $c(-1, -1, +1, +1)$

Details

Beachfoc is run after MEC is set using SDRfoc. Options for plotting the beachball in various modes are controlled by flags set in MEC

Value

Used for its graphical side effect

Author(s)

Jonathan M. Lees <jonathan.lees@unc.edu>

16 Bfocvec

References

K. Aki and P. G. Richards. *Quantitative seismology*. University Science Books, Sausalito, Calif., 2nd edition, 2002. Keiiti Aki, Paul G. Richards. ill.; 26 cm.

See Also

```
CONVERTSDR, SDRfoc, justfocXY
```

Examples

```
MEC = SDRfoc(65,25,13, u=FALSE, ALIM=c(-1,-1, +1, +1), PLOT=TRUE)
Beachfoc(MEC, fcol=MEC$fcol, fcolback="white")
```

Bfocvec

Angles for Ternary plot

Description

Calculates Angles for determining ternary distribution of faults based on P-T axis orientation.

Usage

```
Bfocvec(Paz, Pdip, Taz, Tdip)
```

Arguments

Paz	vector of azimuths, degrees
Pdip	vector of dips, degrees
Taz	vector of azimuths, degrees
Tdip	vector of dips, degrees

Details

This calculation is based on Froelich's paper.

Value

LIST:

Bdip azimuths, degrees
Baz dips, degrees

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

BOXarrows3D 17

References

C. Frohlich. Triangle diagrams: ternary graphs to display similarity and diversity of earthquake focal mechanisms. Physics of the Earth and Planetary Interiors, 75:193-198, 1992.

See Also

ternfoc.point

Examples

```
Msdr = CONVERTSDR(55.01, 165.65, 29.2 )
MEC = MRake(Msdr$M)
MEC$UP = FALSE
    az1 = Msdr$M$az1
    dip1 = Msdr$M$d1
    az2 = Msdr$M$az2
    dip2 = Msdr$M$d2
BBB = Bfocvec(az1, dip1, az2, dip2)
V = ternfoc.point(BBB$Bdip, Msdr$M$pd, Msdr$M$td )
```

BOXarrows3D

Create a 3D Arrow structure

Description

Create and project and plot 3D arrows with viewing Matrix.

Usage

```
BOXarrows3D(x1, y1, z1, x2, y2, z2, aglyph = NULL, Rview = ROTX(0), col = grey(0.5), border = "black", len = 0.7, basethick = 0.05, headlen = 0.3, headlip = 0.02)
```

Arguments

x1	x-coordinates of base of arrows
y1	y-coordinates of base of arrows
z1	z-coordinates of base of arrows
x2	x-coordinates of head of arrows
y2	y-coordinates of head of arrows
z2	z-coordinates of head of arrows
aglyph	glyph structure, default is Z3Darrow
Rview	Viewing matrix
col	fill color

18 BOXarrows3D

border Border color len Length

basethick thickness of the base headlen thickness of the head

headlip width of the overhanging lip

Details

Arrows point from base to head.

Value

Used for graphical side effects.

Note

Any 3D glyph strucutre can be used

Author(s)

Jonathan M. Lees < jonathan.lees@unc.edu>

See Also

Z3Darrow

```
## Not run:
#### animate 10 random arrow vectors
L = list(x1 = runif(10, min=-2, max=2),
   y1 = runif(10, min=-2, max=2),
   z1=runif(10, min=-4, max=4),
   x2 = runif(10, min=-2, max=2),
   y2 = runif(10, min=-2, max=2),
   z2=runif(10, min=-4, max=4)
 headlen = .3
 len = .7
 basethick = 0.05
 headlip = .02
 aglyph = Z3Darrow(len = len , basethick =basethick , headlen =headlen , headlip=headlip )
 theta = seq(from=0, to=2*360, length=200)
 mex = r1*cos(theta*pi/180)
 mey = r1*sin(theta*pi/180)
 mez = seq(from=r1, to =0 , length=length(mex))
```

circtics 19

```
## mez=rep(r1, length=length(mex))
angz = atan2(mey, mex)*180/pi
angx = atan2(sqrt(mex^2+mey^2), mez)*180/pi
pal=c("red", "blue", "green")

## aglyph = gblock

for(j in 1:length(angz))
{
    Rview = ROTZ(angz[j])
    plot(c(-4,4), c(-4,4), type='n', asp=1); grid()

    BOXarrows3D(L$x1,L$y1,L$z1, L$x2,L$y2,L$z2, aglyph=aglyph, Rview=Rview, col=pal)
    Sys.sleep(.1)
}

## End(Not run)
```

circtics

Draw circular ticmarks

Description

Draw circular ticmarks

Usage

```
circtics(r = 1, dr = 0.02, dang = 10, ...)
```

Arguments

```
r radius
dr length of tics
dang angle between tics
... graphical parameters
```

Value

graphical side effects

Author(s)

Jonathan M. Lees < jonathan.lees@unc.edu>

20 CONVERTSDR

Examples

```
phi = seq(from =0, to = 2 * pi, length=360)
    x = cos(phi)
    y = sin(phi)
    plot(x, y, col = 'blue', asp=1, type='l')
    circtics(r = 1, dr = 0.02, dang = 10, col='red')
```

CONVERTSDR

Convert Strike-Dip-Rake to MEC structure

Description

Takes Strike-Dip-Rake and creates planes and pole locations for MEC structure

Usage

```
CONVERTSDR(strike, dip, rake)
```

Arguments

strike angle, degrees, strike of down dip directin
dip angle, degrees, dip is measured from the horizontal NOT from the NADIR
rake angle, degrees

Details

input is strike dip and rake in degrees

Value

```
LIST:
strike
                   strike
dipdir
                   dip
rake
                   rake
F
                   list(az, dip) of F-pole
                   list(az, dip) of G-pole
G
                   list(az, dip) of U-pole
U
                   list(az, dip) of V-pole
                   list(az, dip) of P-pole
                   list(az, dip) of T-pole
Τ
                   list(az1=0, d1=0, az2=0, d2=0, uaz=0, ud=0, vaz=0, vd=0, paz=0, pd =0, taz=0,
                   td=0
```

cross.prod 21

Author(s)

Jonathan M. Lees <jonathan.lees@unc.edu>

See Also

BeachFoc

Examples

```
s=65
d=25
r=13
mc = CONVERTSDR(s,d,r )
```

cross.prod

Vector Cross Product

Description

Vector Cross Product with list as arguments and list as values

Usage

```
cross.prod(B, A)
```

Arguments

B list of x,y,zA list of x,y,z

Value

LIST

x,y,z vector of cross product

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

See Also

RSEIS::xprod

22 CROSSL

Examples

```
B1 = list(x=4, y=9, z=2)
B2 = list(x=2,y=-5,z=4)
cross.prod(B1, B2)
```

CROSSL

Vector Cross Product

Description

returns cross product of two vectors in list format

Usage

```
CROSSL(A1, A2)
```

Arguments

A1	list x,y,z	
A2	list x,y,z	

Value

List

x,y,z input vectoraz azimuth, degreesdip degrees

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

See Also

RSEIS::xprod

```
A1 = list(x=1,y=2, z=3)
A2 = list(x=12,y=-2, z=-5)
N = CROSSL(A1, A2)
```

doNonDouble 23

		_		
doN	Inn	110	ııh	ם ו
uon	NOH	יטט	uv.	ᇿ

Plot Non-double Couple Moment

Description

Plot Non-double Couple Moment

Usage

```
doNonDouble(moments, sel = 1, col=rgb(1, .75, .75))
```

Arguments

moments list of moments: seven elements. See details.

sel integer vector, index of moments to plot

col color, either a single color, rgb, or a color palette

Details

Plot, sequentially the moments using the CLVD (non-double couple component. The first element of the list is the integer index of the event. The next six elements are the moments in the following order, c(Mxx, Myy, Mzz, Mzy, Mxz, Mxy).

If the data is in spherical coordinates, one must switch the sign of the Mrp and Mtp components, so:

Mrr = Mzz Mtt = Mxx Mpp = Myy Mrt = Mxz Mrp = -Myz Mtp = -Mxy

Value

Side effects

Note

If events are read in using spherical rather than cartesian coordinates need a conversion:

```
Mrr = Mzz
Mtt = Mxx
Mpp = Myy
Mrt = Mxz
Mrp = -Myz
Mtp = -Mxy
```

24 EApoint

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

References

Ekstrom, G.; Nettles, M. and DziewoDski, A. The Global CMT Project 2004-2010: centroid-moment tensors for 13,017 earthquakes Physics of the Earth and Planetary Interiors, 2012.

See Also

MapNonDouble, ShadowCLVD, angles, nodalLines, PTaxes

Examples

```
mo = list(n=1, m1=1.035675e+017, m2=-1.985852e+016,
m3=-6.198052e+014, m4=1.177936e+017, m5=-7.600627e+016,
m6=-3.461405e+017)

moments = cbind(mo$n, mo$m1, mo$m2, mo$m3, mo$m4, mo$m5, mo$m6)
doNonDouble(moments)
```

EApoint

Equal-area point stereonet

Description

Interactive locator to calculate x,y orientation, dip coordinates and plots on an equalarea stereonet

Usage

```
EApoint()
```

Details

Used for returning a set of strike/dip angles on Equal-area stereonet plot.

Value

LIST:

phi orientation, degrees
i ang angle of dip, degrees
x x-coordinate
y y-coordinate

egl 25

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

See Also

```
qpoint, focpoint
```

Examples

egl

Tungurahua Cartesian Moment Tensors

Description

Cartesian moment tensors from Tungurahua Volcano, Ecuador

Usage

```
data(egl)
```

Format

A list of 84 moment tensors, each elelment consists of: lam1, lam2, lam3, vec1, vec2,vec3, ratio, force.

Source

See below

References

Kim, K., Lees, J.M. and Ruiz, M., (2014) Source mechanism of Vulcanian eruption at Tungurahua Volcano, Ecuador, derived from seismic moment tensor inversions, *J. Geophys. Res.*, February, 2014. Vol. 119(2): pp. 1145-1164.

26 egl

```
data(egl)
typl1=c(2,4,7,12,13,16,17,18,19,20,24,25,26,27,
28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 40, 43, 50,
59,62,73,74,77,8,79,80,81,83,84)
typl2=c(5,6,8,9,10,11,14,15,22,42,46,47,48,49,
51,52,53,54,55,56,57,58,60,61,63,72,82)
evtns=1:84
par(mfrow=c(1,2))
T1 = TapeBase()
TapePlot(T1)
for(i in 1:length(egl))
i1 = egl[[i]]
E1 = list(values=c(i1$lam1, i1$lam2, i1$lam3),
vectors = cbind(i1$vec1, i1$vec2, i1$vec3))
testrightHAND(E1$vectors)
E1$vectors = forcerighthand(E1$vectors)
mo=sort(E1$values,decreasing=TRUE)
# M=sum(mo)/3
# Md=mo-M
h = SourceType(mo)
h$dip = 90-h$phi
h1 = HAMMERprojXY(h$dip*pi/180, h$lam*pi/180)
if(i %in% typl1) { col="red" }else{col="blue" }
points(h1$x, h1$y, pch=21, bg=col )
}
par(mai=c(0,0,0,0))
hudson.net()
for(i in 1:length(typl1))
egv=egl[[typl1[i]]]
m=c(egv$lam1,egv$lam2,egv$lam3)
col='red'
hudson.plot(m=m,col=col)
}
```

fancyarrows 27

```
for(i in 1:length(typl2))
{
   egv=egl[[typl2[i]]]
   m=c(egv$lam1,egv$lam2,egv$lam3)
   col='blue'
hudson.plot(m=m,col=col,lwd=2)
}
```

fancyarrows

Make fancy arrows

Description

Create and plot fancy arrows. Aspect ratio must be set to 1-1 for these arrows to plot correctly.

Usage

```
fancyarrows(x1, y1, x2, y2, thick = 0.08,
    headlength = 0.4, headthick = 0.2, col = grey(0.5),
    border = "black")
```

Arguments

x1	x tail coordinate
y1	y tail coordinate
x2	x head coordinate
y2	y head coordinate
thick	thickness of arrow
headlength	length of head
headthick	thickness of head
col	fill color
border	color of border

Value

Graphical side effects.

Note

fancyarrows only work if te aspect ratio is set to 1. See example below.

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

28 faultplane

See Also

TEACHFOC

Examples

```
thick = 0.01; headlength = 0.2; headthick = 0.1

x = runif(10, -1, 1)
y = runif(10, -1, 1)

########### MUST set asp=1 here
plot(x,y, asp=1)

fancyarrows(rep(0, 10), rep(0, 10), x, y,
thick =thick, headlength = headlength,
headthick =headthick)
```

faultplane

fault plane projection on focal sphere

Description

given azimuth and dip of fault mechanism, calculate and plot the fault plane.

Usage

```
faultplane(az, dip, col = par("col"), PLOT = TRUE, UP = FALSE, lwd=2, lty=1, ...)
```

Arguments

az	degrees, strike of the plane (NOT down dip azimuth)
dip	degrees, dip from horizontal
col	color for line
PLOT	option for adding to plot
UP	upper or lower hemisphere
lwd	Line Width
lty	Line Type
	graphical parameters

Details

Azimuth is the strike in degrees, not the down dip azimuth as described in other routines.

FixDip 29

Value

list of points along fault plane

x coordinates on focal spherey coordinates on focal sphere

Author(s)

Jonathan M. Lees <jonathan.lees@unc.edu>

See Also

Beachfoc

Examples

```
gcol='black'
border='black'
ndiv=36
phi = seq(0,2*pi, by=2*pi/ndiv);
    x = cos(phi);
    y = sin(phi);

plot(x,y, type='n', asp=1)
    lines(x,y, col=border)
    lines(c(-1,1), c(0,0), col=gcol)
    lines(c(0,0), c(-1,1), col=gcol)

faultplane(65, 34)
```

FixDip

Fix Dip Angle

Description

Fix az, dip angles so they fall in correct quadrant.

Usage

```
FixDip(A)
```

Arguments

List:

A **az** azimuthm angle, degrees **dip** dip angle, degrees

30 flipnodal

Details

```
Quadrants are determined by the sine and cosine of the dip angle: co = cos(dip) si = sin(dip) cos=0 & si>=0] = 1 cos=0 & si>=0] = 2 cos=0 & si<0] = 3 cos=0 & si<0] = 4
```

Value

List:

az azimuthm angle, degrees dip dip angle, degrees

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

See Also

RPMG::fmod

Examples

```
B = list(az=231, dip = -65)
FixDip(B)
```

flipnodal

Flip Nodal Fault Plane

Description

Switch a focal mechanism so the auxilliary plane is the nodal plane.

Usage

```
flipnodal(s1, d1, r1)
```

Arguments

s1	Strike
d1	Dip
r1	Rake

foc.color 31

Details

Fuunction is used for orienting a set of fault planes to line up according to a geologic interpretation.

Value

List:	
s1	Strike
d1	Dip
r1	Rake

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

Examples

```
s=65
d=25
r=13

mc = CONVERTSDR(s,d,r)

mc2 = flipnodal(s, d, r)
```

foc.color

Get color of Focal Mechansim

Description

Based on the rake angle, focal styles are assigned an index and assigned a color by foc.color

Usage

```
foc.color(i, pal = 0)
```

Arguments

```
i index to list of focal rupture styles
pal vector of colors
```

Details

Since the colors used by focal programs are arbitrary, this routines allows one to change the coloring scheme easily.

foc.icolor returns an index that is used to get the color associated with that style of faulting

32 foc.icolor

Value

Color for plotting, either a name or HEX RGB

Author(s)

Jonathan M. Lees <jonathan.lees@unc.edu>

See Also

foc.icolor

Examples

```
fcolors=c("DarkSeaGreen", "cyan1", "SkyBlue1" , "RoyalBlue" , "GreenYellow", "orange", "red")
    foc.color(3, fcolors)
```

foc.icolor

Get Fault Style

Description

Use Rake Angle to determine style of faulting

Usage

```
foc.icolor(rake)
```

Arguments

rake

degrees, rake angle of fault plane

Details

```
The styles are determined by the rake angle strikeslip abs(rake) <= 15.0 or abs((180.0 - abs(rake))) <= 15.0 rev-obl strk-slp (rake >= 15.0 and rake < 45) or (rake >= 135 and rake < 165) oblique reverse (rake >= 45.0 and rake < 75) or (rake >= 105 and rake < 135) reverse rake >= 75.0 and rake < 105.0 norm-oblq strkslp (rake < -15.0 and rake >= -45) or (rake < -135 and rake >= -165) oblq norm (rake < -45.0 and rake >= -75) or (rake < -105 and rake >= -135) normal rake < -75.0 and rake >= -105
```

Value

```
index (1-6)
```

FOCangles 33

Author(s)

Jonathan M. Lees <jonathan.lees@unc.edu>

See Also

foc.color

Examples

foc.icolor(25)

FOCangles

Angles for focal planes

Description

Angles for focal planes

Usage

FOCangles(m)

Arguments

m

moment tensor

Details

Used in MapNonDouble and doNonDouble

Value

vector of 6 angles, 3 for each plane

Note

Lower Hemisphere.

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

See Also

MapNonDouble, doNonDouble, PTaxes, nodalLines

34 focleg

Examples

```
mo = list(n=1, m1=1.035675e+017, m2=-1.985852e+016,
 m3=-6.198052e+014, m4=1.177936e+017,
 m5=-7.600627e+016, m6=-3.461405e+017)
moments = cbind(mo$n, mo$m1, mo$m2, mo$m3, mo$m4, mo$m5, mo$m6)
 di = dim(moments)
   number.of.events = di[1]
moment_11 = moments[,2]
moment_22 = moments[,3]
moment_33 = moments[,4]
moment_23 = moments[,5]
moment_13 = moments[,6]
moment_12 = moments[,7]
i = 1
m=matrix( c(moment_11[i],moment_12[i],moment_13[i],
       moment_12[i], moment_22[i], moment_23[i],
       moment_13[i],moment_23[i],moment_33[i]), ncol=3, byrow=TRUE)
   angles.all = FOCangles(m)
print(angles.all)
```

focleg

Fault style descriptor

Description

Get character string describing type of fault from its style index

Usage

```
focleg(i)
```

Arguments

i index to vector of focal styles

Value

character string used for setting text on plots

focpoint 35

Note

String of characters:

STRIKESLIP Strike slip fault

REV-OBL STRK-SLP Reverse Oblique strike-slip fault

REVERSE Reverse fault

NORM-OBLQ STRKSLP Normal Oblique strike-slip fault

OBLQ NORM Oblique Normal fault

NORMAL Formal fault

Author(s)

Jonathan M. Lees <jonathan.lees@unc.edu>

See Also

foc.icolor, foc.color

Examples

focleg(2)

focpoint

add point on focal sphere

Description

Add points on equal-area focal plot

Usage

```
focpoint(az1, dip1, col = 2, pch = 5, lab = "", cex=1, UP = FALSE, PLOT = TRUE, ...)
```

Arguments

az1	degrees, azimuth angle
dip1	degrees, dip angle
col	color
pch	plot character for point
lab	text lable for point
cex	Character Size
UP	upper or lower hemisphere
PLOT	logical, PLOT=TRUE add points to current plot
	graphical parameters

36 forcerighthand

Value

List of x,y coordinates on the plot

Author(s)

Jonathan M. Lees < jonathan.lees@unc.edu>

See Also

Beachfoc, addrecpoints

Examples

```
### create focal mech
ALIM=c(-1,-1, +1, +1)
s=65
d=25
r = 13
mc = CONVERTSDR(s,d,r)
 MEC = MRake(mc$M)
 MEC\$UP = FALSE
 MEC$icol = foc.icolor(MEC$rake1)
  MEC$ileg = focleg(MEC$icol)
  MEC$fcol = foc.color(MEC$icol)
  MEC$CNVRG = NA
  MEC$LIM = ALIM
### plot focal mech
Beachfoc(MEC, fcol=MEC$fcol, fcolback="white")
### now add the F anf G axes
focpoint(MEC$F$az, MEC$F$dip, pch=5, lab="F", UP=MEC$UP)
    focpoint(MEC$G$az, MEC$G$dip, pch=5, lab="G", UP=MEC$UP)
```

forcerighthand

Force Right-Hand System

Description

Force Right-Hand System

Usage

forcerighthand(U)

getCMT 37

Arguments

U

3 by 3 matrix

Details

Flip vectors so they form a right handed system

Value

matrix

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

See Also

testrightHAND

Examples

```
Mtens = c(-0.412, 0.084, 0.328, 0.398, -1.239, 1.058)
M1 = matrix(c(Mtens[1], Mtens[4], Mtens[5], Mtens[4], Mtens[2],
Mtens[6], Mtens[5], Mtens[6], Mtens[3]), ncol=3, nrow=3, byrow=TRUE)
E1 = eigen(M1)
testrightHAND(E1$vectors)

E1$vectors = forcerighthand(E1$vectors)
testrightHAND(E1$vectors)
```

getCMT

Read CMT

Description

Read and reformat CMT solutions downloaded from the web.

Usage

```
getCMT(fn, skip=1)
```

Arguments

fn character file name

skip number of lines to skip (e.g. header)

38 getCMT

Details

Data can be extracted from web site: http://www.globalcmt.org/CMTsearch.html

The file must be cleaned prior to scanning - on download from the web site there are extra lines on top and bottom of file. Delete these. Leave one line on the top that describes the columns. Data is separated by blanks. The files have a mixture of dates - some with 7 component dates (YYMMDD and others with 14 components YYYYMODDHHMM these are read in separately. Missing hours and minutes areset to zero.

Value

list of CMT solution data:

lon	lon of epicenter
lat	lat of epicenter
str1	strike of fault plane
dip1	dip of fault plane
rake1	rake of fault plane
str2	strike of auxilliary plane
dip2	dip of auxilliary plane
rake2	rake of auxilliary plane
sc	scale?
iexp	exponent?
name	name, includes the date
Elat	exploding latitude, set to lat initially
Elon	exploding longitude, set to lon initially
jd	julian day
yr	year
mo	month
dom	day of month

Note

Use ExplodeSymbols or explode to get new locations for expanding the plotting points.

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

References

http://www.globalcmt.org/CMTsearch.html

G. Ekstrom. Rapid earthquake analysis utilizes the internet. Computers in Physics, 8:632-638, 1994.

GetRake 39

See Also

ExplodeSymbols, spherefocgeo, ternfocgeo

Examples

GetRake

Calculate Rake angles

Description

Calculates rake angles for fault and auxilliary planes

Usage

```
GetRake(az1, dip1, az2, dip2, dir)
```

40 GetRakeSense

Arguments

az1	azimuth in degrees of fault plane 1
dip1	dip in degrees of fault plane 1
az2	azimuth in degrees of auxilliary plane 2
dip2	dip in degrees of auxilliary plane 2
dir	polarity

Details

uses output of CONVERTSDR or MEC structure

Value

```
list of angles for fault plane and auxiallary plane
```

```
az1,dip1, rake1, dipaz1

strike, dip rake and downdip direction for plane 1

az2,dip2,rake2, dipaz2

strike, dip rake and downdip direction for plane 2
```

Author(s)

Jonathan M. Lees <jonathan.lees@unc.edu>

See Also

GetRakeSense, CONVERTSDR, Beachfoc, justfocXY

Examples

```
GetRake(345.000000, 25.000000, 122.000000, 71.000000, 1)
```

GetRakeSense

Get Rake Sense

Description

Get the sense of the focal mechanism rake, from the U, V, P, T vectors

Usage

```
GetRakeSense(uaz, upl, vaz, vpl, paz, ppl, taz, tpl)
```

GetRakeSense 41

Arguments

uaz	Azimuth of U vector
upl	dip of U vector
vaz	Azimuth of V vector
vpl	dip of V vector
paz	Azimuth of P vector
ppl	dip of P vector
taz	Azimuth of T vector
tpl	dip of T vector

Value

1, 0 to make sure the region of the T-axis is shaded and the P-axis is blank.

Note

The convention is for the T-axis to be shaded, so this subroutine determines the order of the polygons to be plotted so that the appropriate regins are filled.

Author(s)

Jonathan M. Lees <jonathan.lees@unc.edu>

See Also

GetRake

```
mc =CONVERTSDR(65,25,13)
angsense = GetRakeSense(mc$U$az, mc$U$dip, mc$V$az, mc$V$dip,mc$P$az, mc$P$dip,mc$T$az, mc$T$dip)
```

42 getUWfocs

getUWfocs	Get UW focals	
-----------	---------------	--

Description

Get UW focal mechansims from a file. These are often called A and M cards

Usage

```
getUWfocs(amfile)
```

Arguments

amfile character, file name

Details

UW focal mechanisms are stored as A and M cards. The A card described the hypocenter the M card describes the focal mechanism.

Value

List:	
lon	numeric, longitude
lat	numeric, latitude
str1	numeric, strike of plane 1
dip1	numeric, dip of plane 1
rake1	numeric, rake of plane 1
str2	numeric, strike of plane 2
dip2	numeric, dip of plane 2
rake2	numeric, rake of plane 2
sc	character, some GMT info for scale
iexp	character, some GMT info for scale
name	character, name
yr	numeric, year
mo	numeric, month
dom	numeric, day of month
jd	numeric, julian day
hr	numeric, hour
mi	numeric, minute
se	numeric, second
z	numeric, depth
mag	numeric, magnitude

getUWfocs 43

Note

Uses UW2 format, so full 4 digit year is required

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

References

http://www.unc.edu/~leesj/XM_DOC/xm_hypo.doc.html

See Also

getCMT

```
## Not run:
##### uwpickfile is an ascii format file from University of Washington
G1 = getUWfocs(uwpickfile)

plot(G1$lon, G1$lat)

MEKS = list(lon=G1$lon, lat=G1$lat, str1=G1$str1,
dip1=G1$dip1, rake1=G1$rake1, dep=G1$z, name=G1$name)

## utm projection
PROJ = GEOmap::setPROJ(type=2, LAT0=mean(G1$lat) , LON0=mean(G1$lon) )

XY = GEOmap::GLOB.XY(G1$lat, G1$lon, PROJ)

plot(range(XY$x), range(XY$y), type='n', asp=1)

plotmanyfoc(MEKS, PROJ, focsiz=0.05)
## End(Not run)
```

44 hudson.net

HAMMERprojXY

Hammer Projection

Description

Hammer Equal Area projection

Usage

```
HAMMERprojXY(phi, lam)
```

Arguments

phi Latitude, radians lam Longitude, radians

Value

list:

x coordinate for plotting y coordinate for plotting

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

Examples

```
HAMMERprojXY(-25*pi/180, -16*pi/180)
```

hudson.net

Hudson Net Plot

Description

Plot a Hudson plot as preparation for plotting T-k values for focal mechanisms.

Usage

hudson.net 45

Arguments

add	logical, TRUE=add to existing plot

POINTS logical, TRUE=add points
TEXT logical, TRUE=add points
colint color for interior lines
colext color for exterior lines

Details

Draws a T-k plot for moment tensors

Value

Graphical Side effects

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

References

Hudson, J.A., Pearce, R.G. and Rogers, R.M., 1989. Source time plot for inversion of the moment tensor, J. Geophys. Res., 94(B1), 765-774.

See Also

hudson.plot

```
hudson.net()
Mtens <- c(-0.412, 0.084, 0.328 ,0.398, -1.239, 1.058)
M1 <- matrix(c(Mtens[1], Mtens[4], Mtens[5], Mtens[4],
Mtens[2], Mtens[6], Mtens[5], Mtens[6], Mtens[3]), ncol=3, nrow=3,
byrow=TRUE)
E1 <- eigen(M1)
hudson.plot(E1$values)</pre>
```

46 hudson.plot

hudson.plot

Hudson Source Type Plot

Description

Hudson Source Type Plot

Usage

```
hudson.plot(m, col = "red", pch = 21, lwd = 2, cex = 1, bg="white")
```

Arguments

m vector of eigen values, sorte	rted
---------------------------------	------

col color

pch plotting char lwd line width

cex character expansion

bg background color for filled symbols

Details

Add to existing Hudson net

Value

Side effects

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

References

Hudson, J.A., Pearce, R.G. and Rogers, R.M., 1989. Source time plot for inversion of the moment tensor, J. Geophys. Res., 94(B1), 765-774.

See Also

hudson.net

imageP 47

Examples

```
hudson.net()

Mtens <- c(-0.412, 0.084, 0.328 ,0.398, -1.239, 1.058)

M1 <- matrix(c(Mtens[1], Mtens[4], Mtens[5], Mtens[4],
    Mtens[2], Mtens[6], Mtens[5], Mtens[6],
    Mtens[3]), ncol=3, nrow=3, byrow=TRUE)

E1 <- eigen(M1)
hudson.plot(E1$values)</pre>
```

imageP

P-wave radiation pattern

Description

Amplitude of P-wave radiation pattern from Double-Couple earthquake

Usage

```
imageP(phiS, del, lam, SCALE = FALSE, UP = FALSE, col = NULL)
```

Arguments

phiS	strike
del	dip
lam	lambda
SCALE	logical, TRUE=add scale on side of plot
UP	upper/lower hemisphere
col	color

Details

This program calls radP to calculate the radiation pattern and it plots the result using the standard image function

Value

Used for the graphical side effect

Author(s)

Jonathan M. Lees < jonathan.lees@unc.edu>

48 imageSCALE

References

K.~Aki and P.~G. Richards. *Quantitative seismology*. University Science Books, Sausalito, Calif., 2nd edition, 2002.

See Also

radP, SDRfoc

Examples

```
\label{eq:mec_spread} $$ MEC = SDRfoc(65,25,13, u=FALSE, ALIM=c(-1,-1, +1, +1), PLOT=FALSE) $$ imageP(MEC$az1, MEC$dip1, MEC$rake1, SCALE=TRUE, UP=MEC$UP, col=rainbow(100))$$
```

imageSCALE

add scale on sice of image

Description

add scale to side of an image plot

Usage

```
imageSCALE(z, col, x, y = NULL, size = NULL, digits = 2, labels = c("breaks", "ranges"), nlab = 10)
```

number of breaks to be plotted

Arguments

z	elevation matrix
col	palette for plotting
X	x location on plot
У	y location on plot
size	length of scale
digits	digits on labels
labels	breaks to be plotted

Value

nlab

Used for graphical side effect

Author(s)

Jonathan M. Lees <jonathan.lees@unc.edu>

imageSH 49

Examples

```
data(volcano)
image(volcano, col=rainbow(100) )
imageSCALE(volcano, rainbow(100), 1.015983, y = 0.874668,
size = .01, digits =
2, labels = "breaks", nlab = 20)
```

imageSH

P-wave radiation pattern

Description

Amplitude of SH-wave radiation pattern from Double-Couple earthquake

Usage

```
imageSH(phiS, del, lam, SCALE = FALSE, UP = FALSE, col = NULL)
```

Arguments

phiS	strike
del	dip
lam	lambda
SCALE	logical, TRUE=add scale on side of plot
UP	upper/lower hemisphere
col	color

Details

This program calls radP to calculate the radiation pattern and it plots the result using the standard image function

Value

Used for the graphical side effect

Author(s)

Jonathan M. Lees <jonathan.lees@unc.edu>

50 imageSV

References

K.~Aki and P.~G. Richards. *Quantitative seismology*. University Science Books, Sausalito, Calif., 2nd edition, 2002.

See Also

```
radSH, SDRfoc
```

Examples

```
\label{eq:mec} $$ MEC = SDRfoc(65,25,13, u=FALSE, ALIM=c(-1,-1, +1, +1), PLOT=FALSE) $$ imageSH(MEC$=21, MEC$=21, MEC$=21, SCALE=TRUE, UP=MEC$=21, col=rainbow(100))$$
```

imageSV

P-wave radiation pattern

Description

Amplitude of SV-wave radiation pattern from Double-Couple earthquake

Usage

```
imageSV(phiS, del, lam, SCALE = FALSE, UP = FALSE, col = NULL)
```

Arguments

phiS	strike
del	dip
lam	lambo

SCALE logical, TRUE=add scale on side of plot

UP upper/lower hemisphere

col color

Details

This program calls radP to calculate the radiation pattern and it plots the result using the standard image function

Value

Used for the graphical side effect

Author(s)

Jonathan M. Lees <jonathan.lees@unc.edu>

inverseTAPE 51

References

K.~Aki and P.~G. Richards. *Quantitative seismology*. University Science Books, Sausalito, Calif., 2nd edition, 2002.

See Also

```
radSV, SDRfoc
```

Examples

```
MEC =SDRfoc(65,25,13, u=FALSE, ALIM=c(-1,-1, +1, +1), PLOT=FALSE) imageSV(MEC$az1, MEC$dip1, MEC$rake1, SCALE=TRUE, UP=MEC$UP, col=rainbow(100))
```

inverseTAPE

Inverse Moment Tensor

Description

Inverse moment tensor from Tape angles.

Usage

```
inverseTAPE(GAMMA, BETA)
```

Arguments

GAMMA Longitude, degrees
BETA CoLatitude, degrees

Details

Uses Tape and Tape lune angles to estimate the moment tensor. This function is the inverse of the SourceType calculation. There are two solutions to the systems of equations.

Vectors are scaled by the maximum value.

Value

Moment tensor list:

Va vector, First solution
Vb vector, First solution

52 jimbo

Note

The latitude is the CoLatitude.

Either vector can be used as a solution.

Orientation of moment tensor is not preserved int he lune plots.

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

References

Tape, W.,and C.Tape(2012), A geometric comparison of source-type plots for moment tensors, Geophys. J. Int., 190, 499-510.

See Also

SourceType

Examples

```
lats = seq(from = -80, to = 80, by=10)
        lons = seq(from=-30, to=30, by=10)

i = 3
j = 3
u = inverseTAPE( lons[i], 90-lats[j] )
```

jimbo

Moment Tensors from the Harvard CMT

Description

Moment Tensors from the Harvard CMT

Usage

```
data(jimbo)
```

Format

A list of 9 moment tensors from the Kamchatka region.

JMAT 53

Source

http://www.globalcmt.org/CMTsearch.html

References

Ekstrom, G.; Nettles, M. & DziewoDski, A. The Global CMT Project 2004-2010: centroid-moment tensors for 13,017 earthquakes Physics of the Earth and Planetary Interiors, 2012.

JMAT

Vertical Rotation matrix

Description

Vertical Rotation matrix

Usage

JMAT(phi)

Arguments

phi

angle, degrees

Details

First rotate to plan, then within plane rotate to view angle.

Value

3 by 3 matrix

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

See Also

ROTX, ROTZ, ROTY

```
phi = 18

MAT = JMAT(phi)

v1 = c(1,1,0)

v2 = MAT
```

justfocXY

_	ustfocXY	
	ustrucki	

Plot focal mechanism

Description

Add simple focal mechanisms to plot

Usage

Arguments

MEC	MEC structure
x	x-coordinate of center
У	y-coordinate of center
focsiz	size of focal sphere in inches
fcol	color of shaded region
fcolback	color of background region
xpd	logical, whether to extend the plot beyond, or to clip

Details

This routine can be used to add focal mechanisms on geographic map or other plot.

Value

Used for graphical side effect

Author(s)

Jonathan M. Lees <jonathan.lees@unc.edu>

See Also

SDRfoc, foc.color

KAMCORN 55

Examples

```
#### read in some data:
Z1 = c(159.33, 51.6, 206, 18, 78,
161.89,54.5,257,27,133,
170.03,53.57,-44,13,171,
154.99,50.16,-83,19,-40,
151.09,47.15,123,23,-170,
176.31,51.41,-81,22,122,
153.71,46.63,205,28,59,
178.39,51.21,-77,16,126,
178.27,51.1,-86,15,115,
177.95,51.14,-83,25,126,
178.25,51.18,215,16,27
MZ = matrix(Z1, ncol=5, byrow=TRUE)
plot(MZ[,1], MZ[,2], type='n', xlab="LON", ylab="LAT", asp=1)
for(i in 1:length(MZ[,1]))
paste(MZ[i,3], MZ[i,4], MZ[i,5])
MEC = SDRfoc(MZ[i,3], MZ[i,4], MZ[i,5], u=FALSE, ALIM=c(-1,-1, +1, +1), PLOT=FALSE)
fcol = foc.color(foc.icolor(MEC$rake1), pal=1)
justfocXY(MEC, x=MZ[i,1], y =MZ[i,2], focsiz=.5, fcol =fcol, fcolback = "white", xpd = TRUE)
}
```

KAMCORN

SDR data from the Harvard CMT catalog

Description

Strike-Dip-Rake and Locations of Harvard CMT catalog for the intersection of the Kamchataka and Aleutian arcs

Usage

data(KAMCORN)

Format

The format is: chr "KAMCORN"

56 KAMCORN

Details

The data is selected fromt eh CMT catalog. Parameters are extracted from the normal distribution. Format of the list of data save in KAMCORN is: list(LAT=0, LON =0, DEPTH=0, STRIKE=0, DIP=0, RAKE=0)

Source

http://www.globalcmt.org/CMTsearch.html

References

G. Ekstrom. Rapid earthquake analysis utilizes the internet. Computers in Physics, 8:632-638, 1994.

```
data(KAMCORN)
plot(KAMCORN$LON, KAMCORN$LAT, xlab="LON", ylab="LAT"
          main="Kamchatka-Aleutian Inersection", asp=1)
######
Paz =vector()
Pdip =vector()
Taz =vector()
Tdip =vector()
h = vector()
v = vector()
IFcol = vector()
Fcol = vector()
for(i in 1:10)
   Msdr = CONVERTSDR(KAMCORN$STRIKE[i],
          KAMCORN$DIP[i], KAMCORN$RAKE[i] )
  MEC = MRake(Msdr$M)
  MEC$UP = FALSE
  IFcol[i] = foc.icolor(MEC$rake1)
   Fcol[i] = foc.color(IFcol[i], 1)
      az1 = Msdr$M$az1
  dip1 = Msdr$M$d1
  az2 = Msdr$M$az2
  dip2 = Msdr$M$d2
  BBB = Bfocvec(az1, dip1, az2, dip2)
  V = ternfoc.point(BBB$Bdip, Msdr$M$pd, Msdr$M$td )
 Paz[i] = Msdr$M$paz
  Pdip[i] = Msdr$M$pd
  Taz[i] = Msdr$M$taz
  Tdip[i] = Msdr$M$td
  h[i] = V$h
  v[i] = V$v
```

lowplane 57

lowplane

Plot one Fault plane on stereonet

Description

takes azimuth and dip and projects the greaat circle on the focla sphere

Usage

```
lowplane(az, dip, col = par("col"), UP = FALSE, PLOT = TRUE)
```

Arguments

az	degrees, azimuth of strike of plane
dip	degrees, dip
col	color of plane
UP	upper/lower hemisphere
PLOT	add to plot

Details

Here azimuth is measured from North, and represents the actual strike of the fault line.

Value

list of x,y coordinates of plane

Author(s)

Jonathan M. Lees <jonathan.lees@unc.edu>

See Also

net

```
net()
lowplane(65,23)
```

58 m2tk

m2tk

Moment tensor to T-k

Description

Moment tensor to T-k

Usage

m2tk(m0)

Arguments

m0

moment tensor eigenvalues, sorted decending

Details

Convert 3 eigen values of a moment tensor to T-k coordinates

Value

list(t, k)

Author(s)

Keehoon Kim<keehoon@live.unc.edu> Jonathan M. Lees<jonathan.lees@unc.edu>

References

Hudson

See Also

tk2uv, hudson.net, hudson.plot

```
v = c(2,-1,-1)
m2tk(v)
```

makeblock3D 59

makeblock3D

Make a 3D block Structure

Description

Given vertices of a 3D block, create a glyph structure (faces and normals)

Usage

```
makeblock3D(block1)
```

Arguments

block1

matrix of vertices

Value

glyph structure list

aglyph list of faces (x,y,z)anorm Normals to faces

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

See Also

ROTZ, ROTY, ROTX, BOXarrows3D, Z3Darrow, TRANmat

makenet makenet

makenet

Equal-Angle Stereonet

Description

Creates but does not plot an Equal-Angle (Schmidt) Stereonet

Usage

```
makenet()
```

Value

list of x,y, values for drawing lines

x1	x-coordinate start of lines
y1	y-coordinate start of lines
x2	x-coordinate end of lines
y2	y-coordinate end of lines

Author(s)

Jonathan M. Lees <jonathan.lees@unc.edu>

References

Snyder, John P., 1987, Map Projections-a working manual, USGS-Professional Paper, 383p. pages 185-186

See Also

net, pnet

```
MN = makenet()
    pnet(MN)
```

MapNonDouble 61

Description

Plot moment tensors on map

Usage

```
MapNonDouble(Locs, moments, sel = 1, siz = 0.2,
col=rgb(1, .75, .75), PLANES = TRUE, add = FALSE, LEG=FALSE)
```

Arguments

Locs	Locations, x,y
moments	list of moments: seven elements. See details.
sel	integer, index of which to plot
siz	size to plot, inches
col	color, either a single color, rgb, or a color palette.
PLANES	logical, whether to add nodal planes, default=TRUE
add	logical, whether to add to plot, default=FALSE
LEG	logical, whether to add focal mech legend based on color coding, default=FALSE

Details

Moment tensors are added to an existing plot. The first element of the list is the integer index of the event. The next six elements are the moments in the following order, c(Mxx, Myy, Mzz, Mzy, Mxz, Mxy).

If the data is in spherical coordinates, one must switch the sign of the Mrp and Mtp components, so:

```
Mrr = Mzz
Mtt = Mxx
Mpp = Myy
Mrt = Mxz
Mrp = -Myz
Mtp = -Mxy
```

A color palette can be provided for some details of the radiation patterns, e.g. col=rainbow(12). If col is NULL, the colors will be chosen according to focal.color from RFOC, based on rake of first nodal plane.

If col is NULL, then the colors are set by foc.color and it is appropriate to add a legend.

MapNonDouble

Value

list:

FOC matrix, focal mechanism angles (strike, dip rake)

LAB matrix, x-y location for labels

Note

If events are read in using spherical rather than cartesian coordinates need a conversion:

```
Mrr = Mzz
Mtt = Mxx
Mpp = Myy
Mrt = Mxz
Mrp = -Myz
Mtp = -Mxy
```

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

References

Ekstrom, G.; Nettles, M. & DziewoDski, A. The Global CMT Project 2004-2010: centroid-moment tensors for 13,017 earthquakes Physics of the Earth and Planetary Interiors, 2012.

See Also

doNonDouble, ShadowCLVD, angles, nodalLines, PTaxes, focal.color, foc.icolor

```
## Not run:
library(maps)
library(GEOmap)

########## load the data
data(widdenMoments)

############### to read in the data from a file,
## GG = scan("widdenMoments.txt",sep=" ",
## what=list(ID=0,Event="",Lat=0,Long=0,Depth=0,Mw=0,ML=0,DC=0,
## CLVD=0,ISO=0,VR=0,nsta=0,Mxx=0,Mxy=0,Mxz=0,
## Myy=0,Myz=0,Mzz=0,Mo=0,Ftest=0) )

GG = widdenMoments
Locs = list(y=GG$Lat,x=GG$Long)
```

MapNonDouble 63

```
ef = 1e20
moments = cbind(GG$ID, ef*GG$Mxx, ef*GG$Myy,
ef*GG$Mzz, ef*GG$Myz, ef*GG$Mxy)
UTAH = map('state', region = c('utah'), plot=FALSE )
mlon = mean(UTAH$x, na.rm=TRUE)
mlat = mean(UTAH$y, na.rm=TRUE)
Gutah
      = maps2GEOmap(UTAH)
######### for mercator projection
PROJ = GEOmap::setPROJ(type = 1, LAT0 = mlat , LON0 = mlon)
Glocs = GEOmap::GLOB.XY(Locs$y, Locs$x, PROJ
######### for UTM projection
PROJ = GEOmap::setPROJ(type = 2, LAT0 = mlat , LON0 = mlon)
Glocs = GEOmap::GLOB.XY(Locs$y, Locs$x, PROJ
LIMlat = expandbound(Gutah$POINTS$lat)
LIMlon = expandbound(Gutah$POINTS$lon)
PLAT = pretty(LIMlat)
PLON = pretty(LIMlon)
######### plot the map
####### Utah is a little rectangular
dev.new(width=9, height=12)
plotGEOmapXY(Gutah,
LIM = c(min(PLON), min(PLAT), max(PLON), max(PLAT)),
            PROJ=PROJ, axes=FALSE, xlab="", ylab="")
### add tic marks
kbox = GEOmap::GLOB.XY(PLAT,PLON, PROJ)
      sqrTICXY(kbox , PROJ, side=c(1,2,3,4), LLgrid=TRUE, col=grey(.7) )
####### add focal mechs
siz = 0.2
MapNonDouble(Glocs, moments, col=NULL, add=TRUE, LEG=TRUE)
 up = par("usr")
   ui = par("pin")
   ratx = (up[2] - up[1])/ui[1]
```

64 mc2cart

```
raty = (up[4] - up[3])/ui[2]
usizx = siz * ratx

AXY = NoOverlap(Glocs$x,Glocs$y, usizx )

MapNonDouble(AXY, moments,col=NULL, add=TRUE, LEG=TRUE)
#### MapNonDouble(NXY, moments,col=NULL, add=TRUE, LEG=TRUE)
### End(Not run)
```

mc2cart

Convert azimuth, dip to Cartesian Coordinates

Description

takes the pole information from a steroplot and returns the cartesian coordinates

Usage

```
mc2cart(az, dip)
```

Arguments

az degrees, orientation angle, from North dip degrees, dip of pole

Value

list of x,y,z values

Author(s)

Jonathan M. Lees <jonathan.lees@unc.edu>

```
v1 = mc2cart(65, 32)

v2 = mc2cart(135, 74)
```

mijsdr 65

mijsdr Moment Tensor to Strike-Dip-Rake	
---	--

Description

Convert a normalized moment tensor from the CMT catalog to Strike-Dip-Rake.

Usage

```
mijsdr(mxx, myy, mzz, mxy, mxz, myz)
```

Arguments

moment moment	tensor 1,1
nyy moment	tensor 2,2
moment moment	tensor 3,3
moment moment	tensor 1,2
moment moment	tensor 1,3
nyz moment	tensor 2,3

Details

the coordinate system is modified to represent a system centered on the source.

Value

Focal Mechanism list

Note

This code will convert the output of the website, http://www.globalcmt.org/CMTsearch.html when dumped in the psmeca (GMT v>3.3) format.

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

References

http://www.globalcmt.org/CMTsearch.html

See Also

getCMT

MomentDist MomentDist

Examples

```
mijsdr(-1.96, 1.07, 0.89, 0.51, 0.08, -0.68)
```

MomentDist

Distance Between Moment Tensors

Description

Calculate the distance between moment tensors based on quaternions.

Usage

```
MomentDist(E1, E2)
```

Arguments

E1 Moment tensor

E2 Moment tensor

Details

Moment tensors should be right handed.

Value

angle in degrees

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

References

Tape and Tape, 2012

See Also

forcerighthand, testrightHAND

MRake 67

Examples

```
Mtens = c(-0.412, 0.084, 0.328, 0.398, -1.239, 1.058)
M1 = matrix(c(Mtens[1], Mtens[4], Mtens[5], Mtens[4], Mtens[2],
Mtens[6], Mtens[5], Mtens[6], Mtens[3]), ncol=3, nrow=3, byrow=TRUE)
Mtens = c(5.054, -2.235, -2.819, -0.476, 5.420, 5.594)
M2 = matrix(c(Mtens[1], Mtens[4], Mtens[5], Mtens[4], Mtens[2],
Mtens[6], Mtens[5],Mtens[6], Mtens[3]), ncol=3, nrow=3, byrow=TRUE)
E1 = eigen(M1)
### make sure these are a right handed system,
    ie x1 cross x2 = x3
E2 = eigen(M2)
### make sure these are a right handed system,
    ie x1 cross x2 = x3
testrightHAND(E1$vectors)
testrightHAND(E2$vectors)
E1$vectors = forcerighthand(E1$vectors)
E2$vectors = forcerighthand(E2$vectors)
testrightHAND(E1$vectors)
testrightHAND(E2$vectors)
MomentDist(E1, E2)
```

MRake

Rake Calculation

Description

Calculate various parameters associated with the Rake or Slip of an earthquake

Usage

MRake(M)

Arguments

М

list(uaz, ud, vaz, vd, paz, pd, taz, td)

68 net

Details

This routine takes the four poles U, V, P, T, and returns a MEC structure. (uaz, ud) = U pole azimuth and dip (vaz, vd)= V pole azimuth and dip (paz, pd)= P pole azimuth and dip (taz, td)= T pole azimuth and dip

Value

returns a MEC structure

Author(s)

Jonathan M. Lees <jonathan.lees@unc.edu>

See Also

CONVERTSDR, GetRakeSense, GetRake

Examples

```
mc = CONVERTSDR(329, 8, 110 )
MEC = MRake(mc$M)
```

net

EqualArea Stereonet

Description

Plot Equal Area Stereo-Net. Lambert azimuthal Equal-Area (Schmidt) from Snyder p. 185-186

Usage

```
net(add = FALSE, col = gray(0.7), border = "black", lwd = 1, LIM = c(-1, -1, +1, +1))
```

Arguments

add logical, TRUE=add to existing plot

col color of lines

border color of outer rim of stereonet

lwd linewidth of lines

LIM bounding area for a new plot

Value

Used for graphical side effects

nipXY 69

Author(s)

Jonathan M. Lees <jonathan.lees@unc.edu>

References

Snyder, John P., 1987, Map Projections-a working manual, USGS-Professional Paper, 383p. pages 185-186

See Also

pcirc

Examples

```
net(FALSE, col=rgb(.8,.7,.7) ,border='blue' )
```

nipXY

Fault-Slip vector plot

Description

Plots a fault plane and the slip vector. Used for geographic representation of numerous focal spheres.

Usage

```
nipXY(MEC, x = x, y = y, focsiz=1, fcol = gray(0.9), nipcol = "black", cex = 0.4)
```

Arguments

MEC	MEC structure
X	coordinate on plot
у	coordinate on plot
focsiz	size in inches
fcol	color for plotting
nipcol	color of slip point
cex	character expansion for slip point

Details

Slip vector is the cross product of the poles to the fault plane and auxilliary planes.

nipXY

Value

```
LIST
Q output of qpoint
N slip vector
```

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

See Also

```
qpoint, CROSSL, lowplane, TOCART
```

```
set.seed(2015)
N = 20
lon=runif(20, 268.1563, 305)
lat=runif(20, 7.593004, 25.926045)
str1=runif(20,50,100)
dip1=runif(20,10, 80)
rake1=runif(20,5, 180)
dep=runif(20,1,15)
name=seq(from=1, to=length(lon), by=1)
Elat=NULL
Elon=NULL
yr = rep(2017, times=N)
jd = runif(N, min=1, max=365)
MEKS = list(lon=lon, lat=lat, str1=str1, dip1=dip1,
rake1=rake1, dep=dep, name=name, yr=yr, jd = jd)
PROJ = GEOmap::setPROJ(type=2, LAT0=mean(lat) , LON0=mean(lon) ) ##
                                                                      utm
XY = GEOmap::GLOB.XY(lat, lon, PROJ)
plot(range(XY$x), range(XY$y), type='n', asp=1, xlab='km', ylab='km')
for(i in 1:length(XY$x))
  Msdr = CONVERTSDR(MEKS$str1[i], MEKS$dip1[i],MEKS$rake1[i])
    MEC = MRake(Msdr$M)
      MEC$UP = FALSE
         jcol = foc.color(foc.icolor(MEC$rake1), pal=1)
nipXY(MEC, x = XY$x[i], y = XY$y[i], focsiz=0.5, fcol = jcol, nipcol = 'black', cex = 1)
}
```

nodalLines 71

nodalLines

Nodal Lines

Description

Add nodal planes to focal mechanism

Usage

```
nodalLines(strike, dip, rake, PLOT=TRUE)
```

Arguments

strike	numeric, strike of fault
dip	numeric, dip of fault
rake	numeric, rake of fault

PLOT logical, add lines to plot, default=TRUE

Details

Lower Hemisphere focal plane.

Value

Side effects

Note

Lower Hemisphere based on FOCangles.

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

See Also

doNonDouble, MapNonDouble, FOCangles

72 normal.fault

Examples

```
mo <- list(n=1, m1=1.035675e+017,
    m2=-1.985852e+016, m3=-6.198052e+014,
    m4=1.177936e+017, m5=-7.600627e+016, m6=-3.461405e+017)
moments <- cbind(mo$n, mo$m1, mo$m2, mo$m3, mo$m4, mo$m5, mo$m6)
doNonDouble(moments)</pre>
```

normal.fault

Normal Fault Cartoon

Description

Illustrate a normal fault using animation

Usage

```
normal.fault(ANG = (45), anim = seq(from = 0, to = 1, by = 0.1),

KAPPA = 4, Light = c(45, 45))
```

Arguments

ANG Angle of dip
anim animation vector

KAPPA Phong parameter for lighting

Light lighting point

Details

Program will animate a normal fault for educational purposes. Animation must be stopped by halting execution.

Value

Graphical Side effects

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

See Also

strikeslip.fault, thrust.fault

pcirc 73

Examples

```
normal.fault(45, anim=0, KAPPA=4, Light=c(-20, 80))
## Not run:
#### execute a stop command to stop this animation
anim= seq(from=0, to=1, by=.1)
normal.fault(45, anim=anim, KAPPA=4, Light=c(-20, 80))
## End(Not run)
```

pcirc

Circle Plot

Description

Add a circle to a plot, with cross-hairs

Usage

```
pcirc(gcol = "black", border = "black", ndiv = 36)
```

Arguments

gcol color of crosshairs

border border color

ndiv number of divisions for the circle

Value

no return values, used for side effects

Author(s)

Jonathan M. Lees <jonathan.lees@unc.edu>

See Also

net

```
net()
pcirc(gcol = "green", border = "purple", ndiv = 36)
```

74 pglyph3D

-		
ng	lvn	h3D

Plot a 3D body on an existing graphic

Description

rotates a body in 3D and plots projection on existing plot

Usage

```
pglyph3D(aglyph, M = diag(1, nrow = 4), M2 = diag(1, nrow = 4),
anorms = list(), zee = c(0, 0, 1), col = "white", border = "black")
```

Arguments

aglyph	glyph structure describing the vertices and normal vectors of a 3D body
М	rotation matrix 1

M2 rotation matrix 2

anorms up vector

zee up vector

col coor of body

border color of border

Details

Hidden sides are removed and phong shading is introduced to create 3D effect.

The input consists of an object defined by a list structure, list(aglyph, anorm) where aglyph is list of 3D polygons (faces) and anorm are outward normals to these faces.

Value

Used for side effect on plots

Note

For unusual rotations or bizarre bodies, this routine may produce strange looking shapes.

Author(s)

Jonathan M. Lees <jonathan.lees@unc.edu>

References

Rogers and Adams, 1990, Mathematical Elements for Computer Graphics, McGraw-Hill, 611p.

See Also

Z3Darrow, ROTX, ROTY, ROTZ

phong3D 75

Examples

```
### create the 3D object
len = .7
basethick=.05
headlip=.02
headlen=.3
#### create a 3D glyph structure
aglyph = Z3Darrow(len = len , basethick =basethick , headlen =headlen ,
headlip=headlip )
#### define the up vector
myzee = matrix(c(0,0,1, 1), nrow=1, ncol=4)
##### set rotation angles:
gamma =12
beta =39
alpha = 62
####### set up rotation matrix
R3 = ROTZ(gamma)
R2 = ROTY(beta)
R1 = ROTZ(alpha)
### create rotation matrix
         R1
M2 =
           R1
plot(c(-1,1), c(-1,1))
 pglyph3D(aglyph$aglyph, anorms=aglyph$anorm , M=M, M2=M2, zee=myzee ,
col=rgb(.7, 0,0))
```

phong3D

Phong shading for a 3D body

Description

Create phong shading for faces showing on the 3D block

76 phong3D

Usage

```
phong3D(aglyph, M = diag(1, nrow = 4), M2 = diag(1, nrow = 4), Light = c(45, 45), anorms = list(), zee = c(0, 0, 1), col = "white", border = "black")
```

Arguments

aglyph 3-D body list of faces and normals

M Rotation Matrix

M2 Viewing Matrix

Light light source direction
anorms normals to faces

zee Up vector for Body
col color for faces

border border color for sides

Details

Uses a standard phong shading model based ont eh dot product of the face normal vector and direction of incoming light.

Value

Graphical Side effect

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

References

Watt, Alan. Fundamentals of Three-dimensional Computer Graphics, Addison-Wesley, 1989, 430p.

See Also

```
makeblock3D, BOXarrows3D, PROJ3D, Z3Darrow, pglyph3D
```

```
########### create a block and rotation matrix, then color it ANG=(45)

DEGRAD = pi/180

y1 = 1.5

y2 = y1 - 1/tan((ANG)*DEGRAD)
```

PKAM 77

```
z1 = 1
  x1 = 1
Ablock1 = matrix(c(0,0,0,
    1,0,0,
    1,y1,0,
    0,y1,0,
    0,0,-1,
    1,0,-1,
    1,y2,-1,
    0,y2,-1), byrow=TRUE, ncol=3)
Nblock1 = makeblock3D(Ablock1)
Light=c(45,45)
angz = -45
angx = -45
R1 = ROTZ(angz)
R2 = ROTX(angx)
          R1
   M =
Z2 = PROJ3D(Nblock1$aglyph, M=M, anorms=Nblock1$anorm, zee=c(0,0,1))
RangesX = range(attr(Z2, "RangesX"))
  RangesY = range(attr(Z2, "RangesY"))
plot( RangesY, RangesY, type='n', asp=1, ann=FALSE, axes=FALSE)
phong3D(Nblock1$aglyph, M=M, anorms=Nblock1$anorm , Light = Light,
zee=c(0,0,1), col=rgb(.7,.5, .5) , border="black")
```

PKAM

P and T-axes data from the Harvard CMT catalog

Description

P and T-axes and Locations of Harvard CMT catalog for the intersection of the Kamchataka and Aleutian arcs

Usage

```
data(PKAM)
```

78 PKAM

Format

The format is: chr "PKAM"

Details

The data is selected from the CMT catalog. Parameters are extracted from the standard web distribution. Format of the list of data save in PKAM is:

itemPazP-axis azimuth angle itemPdipP-axis dip angle itemTazT-axis azimuth angle itemTdipT-axis dip angle itemhhorizontal point to plot on ternary plot itemvertical point to plot on ternary plot itemfcolscolors, not used itemLATSLatitude itemLONSLongitude itemIFcolinteger pointer to internal color itemyryear, not used itemJDHMJulian Day, hour, minute, not used itemJDHMSJulian Day, hour, minute, seconds

Source

http://www.globalcmt.org/CMTsearch.html

References

G. Ekstrom. Rapid earthquake analysis utilizes the internet. Computers in Physics, 8:632-638, 1994.

```
data(PKAM)
##

###### plot the locations:
plot( RPMG::fmod(PKAM$LONS, 360), PKAM$LATS)
######

PlotTernfoc(PKAM$h,PKAM$v,x=0, y=0, siz=1, fcols='black', add=FALSE,
LAB=TRUE)

###### change the colors for the plot

acols = rainbow(7)
fcols = acols[PKAM$IFcol]

######

PlotTernfoc(PKAM$h,PKAM$v,x=0, y=0, siz=1, fcols=fcols, add=FALSE,
LAB=TRUE)
```

plotfoc 79

plotfoc Plot Focal Radiation Patterns

Description

Takes a MEC structure and plots all three radiation patterns.

Usage

plotfoc(MEC)

Arguments

MEC MEC list

Details

Plot makes three figures after calling par(mfrow=c(3,1)).

Value

Graphical Side Effects.

Note

Basic MEC List Structure

az1	azimuth angle plane 1, degrees
dip1	dip angle plane 1, degrees
az2	azimuth angle plane 2, degrees
dip2	dip angle plane 2, degrees
dir	0,1 to determine which section of focal sphere is shaded
rake1	rake angle plane 1, degrees
dipaz1	dip azimuth angle plane 1, degrees
rake2	rake angle plane 2, degrees
dipaz2	dip azimuth angle plane 2, degrees
P	pole list(az, dip) P-axis
T	pole list(az, dip) T-axis
U	pole list(az, dip) U-axis
V	pole list(az, dip) V-axis
F	pole list(az, dip) F-axis
G	pole list(az, dip) G-axis
sense	0,1 to determine which section of focal sphere is shaded
M	list of focal parameters used in some calculations
UP	logical, TRUE=upper hemisphere
icol	index to suite of colors for focal mechanism
ileg	Kind of fault
fcol	color of focal mechanism

80 plotmanyfoc

CNVRG Character, note on convergence of solution LIM vector plotting region (x1, y1, x2, y2)

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

See Also

SDRfoc, Mrake, Pradfoc, radiateSH, radP, radSV, SVradfoc, radiateP, radiateSV, radSH, SHradfoc, imageP, imageSH, imageSV

Examples

```
M = SDRfoc(-25, 34, 16, u = FALSE, ALIM = c(-1, -1, +1, +1), PLOT=FALSE) plotfoc(M)
```

plotmanyfoc

Plot Many Focals

Description

Plot a long list of focal mechanisms

Usage

```
plotmanyfoc(MEK, PROJ, focsiz = 0.5, foccol = NULL,
UP=TRUE, focstyle=1, PMAT = NULL, LEG = FALSE, DOBAR = FALSE)
```

Arguments

MEK	List of Focal Mechanisms, see details
PROJ	Projection
focsiz	focal size, inches
foccol	focal color
UP	logical, UP=TRUE means plot upper hemisphere (DEFAULT=TRUE)
focstyle	integer, 1=beach ball, 2=nipplot, 3=strike-slip, 4=P-T, 5=P, 6=T
PMAT	Projection Matrix from persp
LEG	logical, TRUE= add focal legend for color codes
DOBAR	add strike dip bar at epicenter

plotmanyfoc 81

Details

```
Input MEK list contains

MEKS = list(lon=0, lat=0, str1=0, dip1=0, rake1=0, dep=0, name="", Elat=0, Elon=0)
```

Value

Graphical Side Effects

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

References

Lees, J. M., Geotouch: Software for Three and Four Dimensional GIS in the Earth Sciences, Computers & Geosciences, 26, 7, 751-761, 2000.

See Also

justfocXY

```
set.seed(2015)
N = 20
lon=runif(20, 268.1563, 305)
lat=runif(20, 7.593004, 25.926045)
str1=runif(20,50,100)
dip1=runif(20,10, 80)
rake1=runif(20,5, 180)
dep=runif(20,1,15)
name=seq(from=1, to=length(lon), by=1)
Elat=NULL
Elon=NULL
yr = rep(2017, times=N)
jd = runif(N, min=1, max=365)
MEKS = list(lon=lon, lat=lat, str1=str1, dip1=dip1,
rake1=rake1, dep=dep, name=name, yr=yr, jd = jd)
PROJ = GEOmap::setPROJ(type=2, LAT0=mean(lat) , LON0=mean(lon) ) ##
                                                                        utm
XY = GEOmap::GLOB.XY(lat, lon, PROJ)
plot(range(XY$x), range(XY$y), type='n', asp=1)
plotmanyfoc(MEKS, PROJ, focsiz=0.5)
```

82 plotMEC

plotMEC

Plot a Focal Mechanism

Description

Plot a Focal Mechanism

Usage

```
plotMEC(x, detail = 0, up = FALSE)
```

Arguments

x Mechanism listdetail level of detail

up logical, Upper or lower hemisphere

Value

Side Effects

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

```
mc = CONVERTSDR(65, 32, -34 )
plotMEC(mc, detail=2, up=FALSE)
```

PlotPlanes 83

P1	O.	tΡ	¹l a	ne	25
1 4	. •	u	T a	110	- 0

Plot Fault an Auxilliary Planes

Description

Plot both fault and auxilliary planes

Usage

```
PlotPlanes(MEC, col1 = 1, col2 = 3)
```

Arguments

MEC	MEC structure
col1	color for plane 1
col2	color for plane 2

Details

Given MEC structure and focal mechanism plot both planes. This code adds to existing plot, so net() should be called.

Value

Graphical Side Effects

Author(s)

Jonathan M. Lees <jonathan.lees@unc.edu>

See Also

net, lowplane

```
net()  \label{eq:mfoc1} MFOC1 = SDRfoc(65,25,13, u=FALSE, ALIM=c(-1,-1, +1, +1), PLOT=FALSE) \\ PlotPlanes(MFOC1, 'green', 'red')
```

84 PlotPTsmooth

PlotPTsmooth	Plot Smooth PT-axes	
--------------	---------------------	--

Description

Project PT axes on the sphere and smooth the image. This function requires function kde2d, from the MASS library.

Usage

```
PlotPTsmooth(paz, pdip, x = 0, y = 0, siz = 1, bcol = "white", border = "black", IMAGE = TRUE, CONT = TRUE, cont.col = "black", pal = terrain.colors(100), LABS = FALSE, add = FALSE, NCP=50, NIP=200)
```

Arguments

paz	vector of Axis azimuths, degrees
pdip	vector of dip angles, degrees
x	x-location of plot center in user coordinates
У	y-location of plot center in user coordinates
siz	siz of plot in user coordinates
bcol	color
border	border color
IMAGE	logical, TRUE=create an image plot
CONT	logical, TRUE=add contour lines
cont.col	color of contour lines
pal	pallete for image plot
LABS	text Label for image
add	logical, TRUE=add to plot
NCP	integer, Number of points to use for calculating smoothed contours, default=50
NIP	integer, Number of points to use for calculating smoothed image, default=200

Details

Program requires MASS libary for 2D smoothing routine kde2d.

For calculating contours the kde2d program creates a smoothed 2D image using NCP points per side. For the images, NIP points are used. To reduce the size of plots, or, if the subplots are very small, reduce NIP to a smaller value for faster plotting.

Value

Graphical Side Effect

PlotTernfoc 85

Note

Points that fall on the opposite hemisphere are reflected through the origin.

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

See Also

kde2d

Examples

```
plot(c(-1,1), c(-1,1), asp=1, type='n')

paz = rnorm(100, mean=297, sd=10)
  pdip = rnorm(100, mean=52, sd=8)

PlotPTsmooth(paz, pdip, x=0.5, y=.5, siz=.3, border=NA, bcol='white',
  LABS=FALSE, add=FALSE, IMAGE=TRUE, CONT=FALSE)

taz = rnorm(100, mean=138, sd=10)
  tdip = rnorm(100, mean=12, sd=8)

PlotPTsmooth(taz, tdip, x=-.5, y=.4, siz=.3, border=NA, bcol='white',
  LABS=FALSE, add=FALSE, IMAGE=TRUE, CONT=TRUE)

###################### put them together
  plot(c(-1,1), c(-1,1), asp=1, type='n')
  PlotPTsmooth(paz, pdip, x=0, y=, siz=1, border=NA, bcol='white',
  LABS=FALSE, add=FALSE, IMAGE=TRUE, CONT=FALSE)
  PlotPTsmooth(taz, tdip, x=0, y=, siz=1, border=NA, bcol='white',
  LABS=FALSE, add=TRUE, IMAGE=FALSE, CONT=TRUE)
```

PlotTernfoc

Ternary Distribution of focal mechanisms

Description

Create and plot a ternary diagram using rake angle to distribute focal mechanisms on a ternary diagram.

Usage

```
PlotTernfoc(h, v, x = 0, y = 0, siz = 1, fcols = "black", LABS = FALSE, add = FALSE)
```

86 PlotTernfoc

Arguments

h	x-coordinate on ternary plot
V	y-coordinate of ternary plot
X	x Location of center of Ternary plot
У	y Location of center of Ternary plot
siz	size of plot in user coordinates
fcols	vector of colors associated with each focal mechanism
LABS	logical, TRUE=add labels at vertices of Ternary plot
add	logical, add to plot=TRUE

Value

Used for graphical side effect.

Author(s)

Jonathan M. Lees <jonathan.lees@unc.edu>

References

J. M. Lees. Geotouch: Software for three and four dimensional gis in the earth sciences. Computers & Geosciences, 26(7):751–761, 2000

See Also

ternfoc.point, Bfocvec

```
Z1 = c(159.33, 51.6, 206, 18, 78,
161.89,54.5,257,27,133,
170.03,53.57,-44,13,171,
154.99,50.16,-83,19,-40,
151.09,47.15,123,23,-170,
176.31,51.41,-81,22,122,
153.71,46.63,205,28,59,
178.39,51.21,-77,16,126,
178.27,51.1,-86,15,115,
177.95,51.14,-83,25,126,
178.25,51.18,215,16,27
MZ = matrix(Z1, ncol=5, byrow=TRUE)
h = vector()
v = vector()
Fcol = vector()
for(i in 1:length(MZ[,3]))
```

PLTcirc 87

```
Msdr = CONVERTSDR(MZ[i,3], MZ[i,4], MZ[i,5])
MEC = MRake(Msdr$M)
 MEC$UP = FALSE
 az1 = Msdr$M$az1
 dip1 = Msdr$M$d1
  az2 = Msdr$M$az2
  dip2 = Msdr$M$d2
  BBB = Bfocvec(az1, dip1, az2, dip2)
  V = ternfoc.point(BBB$Bdip, Msdr$M$pd, Msdr$M$td )
  h[i] = V$h
  v[i] = V$v
Fcol[i] = foc.color(foc.icolor(MEC$rake1), pal=1)
}
PlotTernfoc(h,v,x=0, y=0, siz=1, fcols=Fcol, add=FALSE, LAB=TRUE)
MFOC1 = SDRfoc(65,90,1, u=FALSE, ALIM=c(-1,-1, +1, +1), PLOT=FALSE)
   Fcol1 = foc.color(foc.icolor(MFOC1$rake1), pal=1)
 MFOC2 = SDRfoc(135,45,-90, u=FALSE, ALIM=c(-1,-1, +1, +1), PLOT=FALSE)
   Fcol2 = foc.color(foc.icolor(MFOC2$rake1), pal=1)
 MFOC3 = SDRfoc(135,45,90, u=FALSE, ALIM=c(-1,-1, +1, +1), PLOT=FALSE)
   Fcol3 = foc.color(foc.icolor(MFOC3$rake1), pal=1)
justfocXY( MFOC3, fcol = Fcol3, 1.2, -0.9, focsiz = 0.4 )
justfocXY( MFOC2, fcol = Fcol2, -1.2, -0.9, focsiz = 0.4 )
justfocXY( MFOC1, fcol = Fcol1, 0, 1.414443+.2, focsiz = 0.4 )
```

PLTcirc

Circle Plot with Cross Hairs

Description

Plot an arc of a circle with cross-hairs.

Usage

```
PLTcirc(gcol = "black", border = "black", ndiv = 36,
angs = c(-pi, pi), PLOT = TRUE, add = FALSE)
```

Arguments

gcol cross hairs color border border color 88 pnet

ndiv number of divisions

angs vector from angs[1] to angs[2] in radians

PLOT logical, if TRUE plot

add logical, if TRUE add to existing plot

Value

list used for plotting:

x x coordinatesy y coordinatesphi angles, radians

Author(s)

Jonathan M. Lees <jonathan.lees@unc.edu>

Examples

```
PLTcirc(gcol = "purple", border = "black", ndiv = 36, angs = c(-pi, pi), PLOT = TRUE, add = FALSE)

PLTcirc(gcol = NULL, border = "green", ndiv = 36, angs = c(-pi/4, pi/4), PLOT = TRUE, add = TRUE)
```

pnet plot stereonet

Description

Plots stereonet created by makenet

```
pnet(MN, add = FALSE, col = gray(0.7), border = "black", lwd = 1)
```

Arguments

Usage

MN Net strucutre created by makenet add TRUE= add to existing plot

col color of lines

border color for outside border

lwd line width

polyfoc 89

Value

Used Graphical Side Effects.

Author(s)

Jonathan M. Lees <jonathan.lees@unc.edu>

References

```
Snyder, John P., 1987, Map Projections-a working manual, USGS-Professional Paper, 383p. pages 185-186
```

See Also

net, pnet

Examples

```
MN = makenet()
pnet(MN)
```

polyfoc

Polt the focal mechanism polygon

Description

Calculate the projection of the focal mechanism polygon

Usage

```
polyfoc(strike1, dip1, strike2, dip2, PLOT = FALSE, UP = TRUE)
```

Arguments

strike1	strike of plane 1, degrees
dip1	dip of plane 1, degrees
strike2	strike of plane 1, degrees
dip2	dip of plane 2, degrees
PLOT	logical, TRUE = add to plot
UP	upper/lower hemisphere

90 Pradfoc

Value

List of coordinates of polygon

Px x-coordinates of polygon Py y-coordinates of polygon

Author(s)

Jonathan M. Lees <jonathan.lees@unc.edu>

See Also

faultplane

Examples

```
MEC = SDRfoc(13,59,125, PLOT=FALSE)
net()
ply = polyfoc(MEC$az1, MEC$dip1, MEC$az2, MEC$dip2, PLOT = TRUE, UP = TRUE)
```

Pradfoc

Plot P-wave radiation

Description

Plot P-wave radiation with information from the pickfile and waveform data

Usage

```
Pradfoc(A, MEC, GU, pscale, col)
```

Arguments

A Pickfile structure
MEC MEC structure

GU Waveform Event Structure

pscale logical (not used)
col color palette

Details

Image plot of the P radiation pattern

Value

Graphical Side effects

Preflect 91

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

See Also

imageP

Examples

```
\label{eq:mec} \begin{split} \text{MEC = SDRfoc(65, 32, -34, u=TRUE, ALIM=c(-1,-1, +1, +1), PLOT=FALSE)} \\ \text{Pradfoc(NULL, MEC , NULL, TRUE, rainbow(100))} \end{split}
```

Preflect

Reflect a pole through to the lower hemisphere

Description

Takes a vector to a pole and reflects it to the lower hemisphere

Usage

```
Preflect(az, dip)
```

Arguments

az azimuth angle, degrees dip dip in degrees

Value

list

az azimuth angle, degrees

dip dip in degrees

...

Author(s)

Jonathan M. Lees <jonathan.lees@unc.edu>

See Also

REFLECT

92 prepFOCS

Examples

```
z = Preflect(65, -23)

z = Preflect(265, -23)
```

prepFOCS

Prepare Focals

Description

Prepare Focals for plotting. Program cycles through data and prepares a relevant data for further plotting and analysis.

Usage

```
prepFOCS(CMTSOL)
```

Arguments

CMTSOL

see getCMT for the format for the input here.

Details

Used internally in spherefocgeo and ternfocgeo.

Value

List:

Paz P-axis azimuth
Pdip P-axis dip
Taz T-axis azimuth
Tdip T-axis dip

h horizontal distance on ternary plotv vertical distance on ternary plot

fcols focal color
LATS latitudes
LONS longitudes
IFcol index of color

yr year

JDHM character identification
JDHMS character identification

printMEC 93

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

See Also

getCMT, spherefocgeo, ternfocgeo

printMEC

Print focal mechanism

Description

Print focal mechanism

Usage

```
printMEC(x, digits = max(3, getOption("digits") - 3), ...)
```

Arguments

x Mechanism listdigits digits for numeric information... standard printing parameters

Value

Side Effects

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

```
mc = CONVERTSDR(65, 32, -34 )
printMEC(mc)
```

94 PROJ3D

PROJ3D	Project 3D
--------	------------

Description

Project a 3D body after rotation and translation

Usage

```
PROJ3D(aglyph, M = diag(1, nrow = 4), M2 = diag(1, nrow = 4), anorms = list(), zee = c(0, 0, 1))
```

Arguments

aglyph	glyph structure
М	rotation matrix
M2	rotation matrix
anorms	normals to structure
zee	Up direction of body

Details

This function takes a 3D body, rotates it and projects it for plotting. An example glyph is found in Z3Darrow.

Value

Glyph structure

x,y,z	coordinates of rotated body faces
хр	rotated normal vectors
zd	depth mean value of each face

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

See Also

```
makeblock3D, ROTZ, ROTY, ROTX, BOXarrows3D, Z3Darrow, TRANmat
```

PTaxes 95

Examples

```
block1 = matrix(c(0,0,0,
   1,0,0,
   1,0.5,0,
   0,0.5,0,
   0,0,-2,
   1,0,-2,
   1,0.5,-2,
   0,0.5,-2), byrow=TRUE, ncol=3)
 Bblock1 = makeblock3D(block1)
 R3 = ROTX(-40)
 R2 = ROTY(0)
 R1 = ROTZ(20)
 T = TRANmat(.1, 0, 0)
         R1 %*% R2 %*% R3 %*% T
 T2 = TRANmat(1, 0.5, 0)
 MT =
            T2 %*% R1 %*% R2 %*% R3 %*% T
 Z1 = PROJ3D(Bblock1$aglyph, M=MT, anorms=Bblock1$anorm, zee=c(0,0,1))
```

PTaxes

Plot P-T axis on CLVD

Description

Plot P-T axis on CLVD

Usage

```
PTaxes(strike, dip, rake)
```

Arguments

```
strike strike
dip dip
rake rake
```

Details

Lower Hemisphere. Add PT axes on a moment tensor plot

Value

Side effects

96 PTXY2

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

See Also

doNonDouble, MapNonDouble

Examples

PTXY2

Plot P-T Axes

Description

given a focal mechanism, add P-T lines to a plot

Usage

```
PTXY2(x = x, y = y, MEC, focsiz, pt = 0, ...)
```

Arguments

x x-location on plot y y-location on plot

MEC Focal Mechanism list from SDRFOC

focsiz size of mechanism, inches

pt = 0(plot both), 1=only P axes, 2=only T axes, default=0

... graphical parameters

Details

This is a summary plot to be used instead of Beach Balls.

Value

Graphical Side Effects

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

PTXY2 97

References

Lees, J. M., Geotouch: Software for Three and Four Dimensional GIS in the Earth Sciences, Computers & Geosciences, 26, 7, 751-761, 2000.

See Also

```
nipXY, justfocXY
```

```
### HAiti Earthquake Jan, 2010
MEC <- SDRfoc(71, 64, 25, u=FALSE, ALIM=c(-1,-1, +1, +1), PLOT=FALSE)
plot(c(0, 1), c(0,1), type='n', asp=1)
u <- par("usr")</pre>
justfocXY(MEC, x=.5, y=.5, focsiz=0.5,
fcol ='brown' , fcolback = "white", xpd = TRUE)
PTXY2(1.0, .5, MEC ,0.5, col="purple", lwd=3)
nipXY(MEC, x = 0.25, y = .5, focsiz=0.5,
fcol ='purple', nipcol = "black", cex = 0.4)
##### or
set.seed(2015)
N = 20
lon=runif(20, 268.1563, 305)
lat=runif(20, 7.593004, 25.926045)
str1=runif(20,50,100)
dip1=runif(20,10, 80)
rake1=runif(20,5, 180)
dep=runif(20,1,15)
name=seq(from=1, to=length(lon), by=1)
Elat=NULL
Elon=NULL
yr = rep(2017, times=N)
jd = runif(N, min=1, max=365)
MEKS = list(lon=lon, lat=lat, str1=str1, dip1=dip1,
rake1=rake1, dep=dep, name=name, yr=yr, jd = jd)
PROJ = GEOmap::setPROJ(type=2, LAT0=mean(lat) , LON0=mean(lon) ) ##
                                                                        utm
XY = GEOmap::GLOB.XY(lat, lon, PROJ)
plot(range(XY$x), range(XY$y), type='n', asp=1)
for(i in 1:length(XY$x))
  Msdr = CONVERTSDR(MEKS$str1[i], MEKS$dip1[i],MEKS$rake1[i])
    MEC = MRake(Msdr$M)
```

98 apoint

```
MEC$UP = FALSE

jcol = foc.color(foc.icolor(MEC$rake1), pal=1)

PTXY2(XY$x[i], XY$y[i] , MEC ,focsiz=0.5, col=jcol, lwd=3)
}
```

qpoint

Point on Stereonet

Description

Plot a set of (azimuths, takeoff) angles on a stereonet.

Usage

```
qpoint(az, iang, col = 2, pch = 5, lab = "", POS = 4, UP = FALSE, PLOT = FALSE, cex = 1)
```

Arguments

az	vector of azimuths, degrees
iang	vector of incident angles, degrees
col	color
pch	plotting character
lab	text labels
POS	position for labels
UP	logical, TRUE=upper
PLOT	logical, add to existing plot
cex	character expansion of labels

Details

The iang argument represents the takeoff angle, and is measured from the nadir (z-axis pointing down).

Value

List

X	coordinate on plot
У	coordinate on plot

radiateP 99

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

See Also

FixDip, focpoint

Examples

```
d = runif(10, 0, 90)
a = runif(10, 0,360)
net()
qpoint(a, d)
```

radiateP

Plot radiation pattern for P-waves

Description

Plots focal mechanism and makes radiation plot with mark up

Usage

```
radiateP(MEC, SCALE = FALSE, col = col, TIT = FALSE)
```

Arguments

MEC focal mechanism structure
SCALE logical, TRUE=add scale

col color palette
TIT title for plot

Value

Used for side graphical effect

Author(s)

Jonathan M. Lees <jonathan.lees@unc.edu>

See Also

radP, SDRfoc

100 radiateSH

Examples

```
\label{eq:mec_sorted} $$ \mbox{MEC =SDRfoc(65,25,13, u=FALSE, ALIM=c(-1,-1, +1, +1), PLOT=FALSE)} $$ \mbox{radiateP(MEC, SCALE = FALSE, col = rainbow(100), TIT = FALSE)} $$
```

radiateSH

Plot radiation pattern for SH-waves

Description

Plots focal mechanism and makes radiation plot with mark up

Usage

```
radiateSH(MEC, SCALE = FALSE, col = col, TIT = FALSE)
```

Arguments

MEC	focal mechanism structure
SCALE	logical, TRUE=add scale

col color palette
TIT title for plot

Value

Used for side graphical effect

Author(s)

Jonathan M. Lees <jonathan.lees@unc.edu>

See Also

radSH, SDRfoc

```
\label{eq:mec_sorted} $$ MEC = SDRfoc(65,25,13, u=FALSE, ALIM=c(-1,-1, +1, +1), PLOT=FALSE)$ $$ radiateSH(MEC, SCALE = FALSE, col = rainbow(100), TIT = FALSE)$
```

radiateSV 101

rad	i	2	+	۵	C	/
rau	ш	а	L	е	2	v

Plot radiation pattern for SV-waves

Description

Plots focal mechanism and makes radiation plot with mark up

Usage

```
radiateSV(MEC, SCALE = FALSE, col = col, TIT = FALSE)
```

Arguments

MEC	focal mechanism structure
SCALE	logical, TRUE=add scale

col color palette
TIT title for plot

Value

Used for side graphical effect

Author(s)

Jonathan M. Lees <jonathan.lees@unc.edu>

See Also

radSV, SDRfoc

```
MEC =SDRfoc(65,25,13, u=FALSE, ALIM=c(-1,-1, +1, +1), PLOT=FALSE)
radiateSV(MEC, SCALE = FALSE, col = rainbow(100) , TIT = FALSE)
```

102 radP

radP	Radiation pattern for P waves	

Description

calculate the radiation patterns for P waves

Usage

```
radP(del, phiS, lam, ichi, phi)
```

Arguments

del	degrees, angle
phiS	degrees,angle
lam	degrees, angle
ichi	degrees, take off angle

degrees, take off azimuth

Details

phi

Given a focal mechanism strike-dip-rake and a given incident angle (take-off angle) and azimuth, return the P amplitude

Value

Amplitude of the P wave

Author(s)

Jonathan M. Lees <jonathan.lees@unc.edu>

References

K.~Aki and P.~G. Richards. *Quantitative seismology*. University Science Books, Sausalito, Calif., 2nd edition, 2002.

See Also

```
radP, radSV, imageP
```

radSH 103

Examples

```
phiS=65
del=25
lam=13
x = seq(-1, 1, 0.01)
y = x
X = matrix(rep(x, length(y)), nrow= length(x))
Y = t(X)
RAD2DEG = 180/pi
p = RAD2DEG*(pi/2 -atan2(Y, X))
p[p<0] = p[p<0] + 360
R = sqrt(X^2+Y^2)
R[R>1] = NaN
dip =RAD2DEG*2*asin(R/sqrt(2))
### Calculate the radiation pattern
G = radP(del, phiS, lam, dip, p)
### plot values
image(x,y,G, asp=1)
```

radSH

Radiation pattern for SH waves

Description

calculate the radiation patterns for SH waves

Usage

```
radSH(del, phiS, lam, ichi, phi)
```

Arguments

del	degrees, angle
phiS	degrees,angle
lam	degrees, angle
ichi	degrees, take off angle
phi	degrees, take off azimuth

Details

Given a focal mechanism strike-dip-rake and a given incident angle (take-off angle) and azimuth, return the SH amplitude

104 radSV

Value

Amplitude of the SH wave

Author(s)

Jonathan M. Lees <jonathan.lees@unc.edu>

References

K.~Aki and P.~G. Richards. *Quantitative seismology*. University Science Books, Sausalito, Calif., 2nd edition, 2002.

See Also

```
radP, radSV, imageSH
```

Examples

```
phiS=65
del=25
lam=13
x = seq(-1, 1, 0.01)
y = x
X = matrix(rep(x, length(y)), nrow= length(x))
Y = t(X)
RAD2DEG = 180/pi
p = RAD2DEG*(pi/2 -atan2(Y, X))
p[p<0] = p[p<0] + 360
R = sqrt(X^2+Y^2)
R[R>1] = NaN
dip =RAD2DEG*2*asin(R/sqrt(2))
### Calculate the radiation pattern
G = radSH(del, phiS, lam, dip, p)
### plot values
image(x,y,G, asp=1)
```

radSV

Radiation pattern for SV waves

Description

calculate the radiation patterns for SV waves

radSV 105

Usage

```
radSV(del, phiS, lam, ichi, phi)
```

Arguments

del	degrees, angle
phiS	degrees,angle
lam	degrees, angle
ichi	degrees, take off angle

phi degrees, take off azimuth

Details

Given a focal mechanism strike-dip-rake and a given incident angle (take-off angle) and azimuth, return the SV amplitude

Value

Amplitude of the SV wave

Author(s)

Jonathan M. Lees <jonathan.lees@unc.edu>

References

K.~Aki and P.~G. Richards. *Quantitative seismology*. University Science Books, Sausalito, Calif., 2nd edition, 2002.

See Also

```
radP, radSH, imageSV
```

```
phiS=65
del=25
lam=13
x = seq(-1, 1, 0.01)
y = x

X = matrix(rep(x, length(y)), nrow= length(x))
Y = t(X)
RAD2DEG = 180/pi
p = RAD2DEG*(pi/2 -atan2(Y, X))
p[p<0] = p[p<0] + 360

R = sqrt(X^2+Y^2)
R[R>1] = NaN
```

106 rakelegend

```
dip =RAD2DEG*2*asin(R/sqrt(2))
### Calculate the radiation pattern
G = radSV(del, phiS, lam, dip, p)
### plot values
image(x,y,G, asp=1)
```

rakelegend

Focal Legend based on rake

Description

Focal Legend based on rake

Usage

```
rakelegend(corn="topright", pal=1)
```

Arguments

corn position of legend, default="topright"

pal palette number, default=1

Details

Colors are based on earlier publication of Geotouch program.

For pal = 1, colors are, DarkSeaGreen, cyan1, SkyBlue1, RoyalBlue, GreenYellow, orange, red.

Value

Graphical Side Effects

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

References

Lees, J. M., (1999) Geotouch: Software for Three and Four-Dimensional GIS in the Earth Sciences, Computers and Geosciences, 26(7) 751-761.

See Also

foc.color,focleg

readCMT 107

Examples

```
plot(c(0,1), c(0,1), type='n')
rakelegend(corn="topleft", pal=1)
```

readCMT

Read Harvard CMT moment

Description

Read and plot a CMT solution copied from the Harvard CMT website.

Usage

```
readCMT(filename, PLOT=TRUE)
```

Arguments

filename character, file name

PLOT Logical, TRUE=plot mechanisms sequentially

Details

Uses the standard output format.

Value

List of mechanisms and graphical Side effects. Each element in the list consists of a list including: FIRST,yr,mo,dom,hr,mi,sec,name,tshift,half,lat,lon,z,Mrr,Mtt,Mpp,Mrt,Mrp,Mtp. The FIRST element is simply a duplicate of the PDE solution card.

Note

Other formats are available.

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

References

Ekstrom, G.; Nettles, M. and DziewoDski, A. The Global CMT Project 2004-2010: centroid-moment tensors for 13,017 earthquakes Physics of the Earth and Planetary Interiors, 2012.

See Also

doNonDouble, MapNonDouble

108 readCMT

```
## Not run:
Hcmt = readCMT("CMT_FULL_FORMAT.txt")
###### or,
Hcmt = readCMT("CMT_FULL_FORMAT.txt", PLOT=FALSE)
moments = matrix(ncol=7, nrow=length(Hcmt))
Locs = list(y=vector(length=length(Hcmt)) ,x=vector(length=length(Hcmt)))
for(i in 1:length(Hcmt))
P1 = Hcmt[[i]]
####### Note the change of sign for cartesian coordinates
moments[i,] = cbind(i, P1$Mtt, P1$Mpp, P1$Mrr,
       -P1$Mrp, P1$Mrt ,-P1$Mtp)
Locs y[i] = P1 lat
Locs$x[i] = P1$lon
}
mlon = mean(Locs$x, na.rm=TRUE)
mlat = mean(Locs$y, na.rm=TRUE)
PROJ = GEOmap::setPROJ(type = 1, LAT0 = mlat , LON0 = mlon)
Glocs = GEOmap::GLOB.XY(Locs$y, Locs$x, PROJ
LIMlat = expandbound(Locs$y)
LIMlon = expandbound(Locs$x)
PLAT = pretty(LIMlat)
PLON = pretty(LIMlon)
data(worldmap)
par(xpd=FALSE)
plotGEOmapXY(worldmap, LIM = c(LIMlon[1],LIMlat[1] ,LIMlon[2],LIMlat[2]) ,
             PROJ=PROJ, axes=FALSE, xlab="", ylab="")
### add tic marks
kbox = GEOmap::GLOB.XY(PLAT,PLON, PROJ)
      sqrTICXY(kbox , PROJ, side=c(1,2,3,4), LLgrid=TRUE, col=grey(.7) )
####### add focal mechs
```

RectDense 109

```
MapNonDouble(Glocs, moments, col=NULL, add=TRUE)
```

```
## End(Not run)
```

RectDense

Divide a region into rectangles based on density

Description

Given a set of (x,y) points, partition the field into rectangles each containing a minimum number of points

Usage

```
RectDense(INx, INy, icut = 1, u = par("usr"), ndivs = 10)
```

Arguments

INx x-coordinates
INy y-coordinates

icut cut off for number of points

u user coordinates

ndivs number of divisions in x-coordinate

Details

Based on the user coordinates as returned from par('usr'). Each rectangular region is tested for the number of points that fall within icut or greater.

Value

List:

icorns matrix of corners that passed test

ilens vector,number of points in each icorns box ipass vector, index of the corners that passed icut

corners matrix of all corners

lens vector,number of points for each box

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

110 REFLECT

Examples

```
x = rnorm(100)
y = rnorm(100)

plot(x,y)
u = par('usr')
RI = RectDense(x, y, icut=3, u=u, ndivs=10)

rect(RI$icorns[,1],RI$icorns[,2],RI$icorns[,3],RI$icorns[,4], col=NA, border='blue')
```

REFLECT

reflect pole

Description

Reflect pole to lower hemisphere

Usage

```
REFLECT(A)
```

Arguments

Α

structure of azimuth and Dips in degrees

Value

list of:cartesian coordinates of reflected pole

```
    x x-coordinate
    y y-coordinate
    z z-coordinate
    az azimuth, degrees
    dip, degrees
```

Author(s)

Jonathan M. Lees <jonathan.lees@unc.edu>

See Also

Preflect

rotateFoc 111

Examples

```
A = list(az=231, dip = -65)
REFLECT(A)
```

rotateFoc

Rotate Focal Mechanism

Description

Rotate mechanism to vertical plan at specified angle

Usage

```
rotateFoc(MEX, phi)
```

Arguments

MEX Focal Mechanism list phi angle in degrees

Details

Assumed vertical plane, outer hemisphere

Value

Focal Mechanism

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

See Also

plotfoc, SDRfoc, Beachfoc, TEACHFOC, plotmanyfoc, getUWfocs

```
a1 = SDRfoc(90, 90, 90, u = TRUE , PLOT = TRUE)
par(mfrow=c(2,2))
SDRfoc(a1$az1, a1$dip1, a1$rake1, u = TRUE, PLOT = TRUE)
```

112 Rotfocphi

```
ra1 = rotateFoc(a1, -90)
SDRfoc(ra1$az1, ra1$dip1, ra1$rake1, u = TRUE , PLOT = TRUE)
ra1 = rotateFoc(a1, 0)
SDRfoc(a1$az1, a1$dip1, a1$rake1, u = TRUE, PLOT = TRUE)
SDRfoc(ra1$az1, ra1$dip1, ra1$rake1, u = TRUE , PLOT = TRUE)
```

Rotfocphi

Rotate Focal Mechanism

Description

Rotate Focal Mechanism into the vertical plane by a certain number of degrees

Usage

```
Rotfocphi(phi, urot, udip, vrot, vdip, az1, d1, az2, d2, prot, pdip, trot, tdip)
```

Arguments

phi	degrees in plane to rotate
urot	U-vector azimuth
udip	U-vector dip
vrot	V-vector azimuth
vdip	V-vector dip
az1	First plane - azimuth
d1	First plane - dip
az2	Second plane - azimuth
d2	Second plane - dip
prot	P-axis azimuth
pdip	P-axis dip
trot	T-axis azimuth
tdip	T-axis dip

Details

Rotate the focal mech by phi degrees

RotTP 113

Value

list:

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

See Also

xsecmanyfoc, rotateFoc

RotTP

Rotate T-P axes

Description

Rotate T-P axes

Usage

```
RotTP(rotmat, strk1, dip1)
```

Arguments

rotmat rotation matrix, 3 by 3

strk1 strike angle dip1 dip angle

Details

These are used as functions auxiallry to rotateFoc.

Value

list:

strk strike angle dip dip angle

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

See Also

Rotfocphi, TP2XYZ

114 ROTX

Examples

```
phi = 18

MAT = JMAT(phi)

RotTP(MAT, 30, 40)
```

ROTX

X-axis Rotation Matrix

Description

Matrix rotation about the X-axis

Usage

ROTX(deg)

Arguments

deg

Angle in degrees

Value

A 4 by 4 matrix for rotation and translation for 3-D transformation

Author(s)

Jonathan M. Lees <jonathan.lees@unc.edu>

References

Rogers and Adams, 1990, Mathematical Elements for Computer Graphics, McGraw-Hill, 611p.

See Also

ROTY, ROTZ

```
v = c(1,4,5)
A = ROTX(23)
vp = c(v, 1)
```

rotx3

rotx3

Rotate about the x axis

Description

3x3 Rotation about the x axis

Usage

```
rotx3(deg)
```

Arguments

deg

angle, degrees

Details

returns a 3 by 3 rotation matrix

Value

```
matrix, 3 by 3
```

Author(s)

Jonathan M. Lees <jonathan.lees@unc.edu>

See Also

```
roty3, rotz3, ROTX, ROTZ, ROTY
```

```
a = 45
rotx3(a)
```

ROTY ROTY

ROTY

Y-axis Rotation Matrix

Description

Matrix rotation about the Y-axis

Usage

ROTY(deg)

Arguments

deg

Angle in degrees

Value

A 4 by 4 matrix for rotation and translation for 3-D transformation

Author(s)

Jonathan M. Lees <jonathan.lees@unc.edu>

References

Rogers and Adams, 1990, Mathematical Elements for Computer Graphics, McGraw-Hill, 611p.

See Also

ROTX, ROTZ

```
v = c(1,4,5)

A = ROTY(23)

vp = c(v, 1)
```

roty3 117

roty3

Rotate about the y axis

Description

3x3 Rotation about the y axis

Usage

roty3(deg)

Arguments

deg

angle, degrees

Details

returns a 3 by 3 rotation matrix

Value

matrix, 3 by 3

Author(s)

Jonathan M. Lees <jonathan.lees@unc.edu>

See Also

rotz3, rotx3, ROTX, ROTZ, ROTY

```
a = 45
roty3(a)
```

118 ROTZ

 ROTZ

Z-axis Rotation Matrix

Description

Matrix rotation about the Z-axis

Usage

ROTZ(deg)

Arguments

deg

Angle in degrees

Value

A 4 by 4 matrix for rotation and translation for 3-D transformation

Author(s)

Jonathan M. Lees <jonathan.lees@unc.edu>

References

Rogers and Adams, 1990, Mathematical Elements for Computer Graphics, McGraw-Hill, 611p.

See Also

ROTX, ROTY

```
v = c(1,4,5)

A = ROTZ(23)

vp = c(v, 1)
```

rotz3

rotz3

Rotate about the z axis

Description

3x3 Rotation about the z axis

Usage

```
rotz3(deg)
```

Arguments

deg

angle, degrees

Details

returns a 3 by 3 rotation matrix

Value

matrix, 3 by 3

Author(s)

Jonathan M. Lees <jonathan.lees@unc.edu>

See Also

roty3, rotx3, ROTX, ROTZ, ROTY

```
a = 45
rotz3(a)
```

120 SDRfoc

_		Λ.	

Plot a Focal Mechanism from SDR

Description

Given Strike-Dip-Rake plot a focal mechanism

Usage

```
SDRfoc(s, d, r, u = FALSE, ALIM = c(-1, -1, +1, +1), PLOT = TRUE)
```

Arguments

S	strike, degrees
d	dip, degrees
r	rake, degrees
	logical TDHE-um

u logical, TRUE=upper hemisphere

ALIM bounding box on plot
PLOT logical, TRUE=add to plot

Details

The ALIM vector allows one to zoom into portions of the focal mechanism for details when points are tightly clustered.

Value

MEC structure

Note

Basic MEC List Structure

az1	azimuth angle plane 1, degrees
dip1	dip angle plane 1, degrees
az2	azimuth angle plane 2, degrees
dip2	dip angle plane 2, degrees
dir	0,1 to determine which section of focal sphere is shaded
rake1	rake angle plane 1, degrees
dipaz1	dip azimuth angle plane 1, degrees
rake2	rake angle plane 2, degrees
dipaz2	dip azimuth angle plane 2, degrees
P	pole list(az, dip) P-axis
T	pole list(az, dip) T-axis
U	pole list(az, dip) U-axis
V	pole list(az, dip) V-axis

ShadowCLVD 121

F pole list(az, dip) F-axis
G pole list(az, dip) G-axis
sense 0,1 to determine which section of focal sphere is shaded

M list of focal parameters used in some calculations

UP logical, TRUE=upper hemisphere

icol index to suite of colors for focal mechanism

ileg Kind of fault

fcol color of focal mechanism

CNVRG Character, note on convergence of solution LIM vector plotting region (x1, y1, x2, y2)

Author(s)

Jonathan M. Lees <jonathan.lees@unc.edu>

See Also

CONVERTSDR

Examples

```
M = SDRfoc(-25, 34, 16, u = FALSE, ALIM = c(-1, -1, +1, +1), PLOT=TRUE)
```

ShadowCLVD

Plot CLVD focal mechanism

Description

Plot non-double couple part of the focal mechanism provided in the moment tensor.

Usage

```
ShadowCLVD(m, PLOT = TRUE, col=rgb(1, .75, .75))
```

Arguments

m moment tensor

PLOT logical, TRUE means plot

col color, either a single color, rgb, or a color palette

Details

This code is meant to be used with doNonDouble or MapNonDouble functions for plotting the non-double couple components of the moment tensor. A color palette can be provided for some details of the radiation patterns, e.g. col=rainbow(12).

122 ShadowCLVD

Value

Side effects and image list

Note

Lower Hemisphere.

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

See Also

doNonDouble, MapNonDouble

```
######### moment tensor from Harvard CMT catalog
sponent = 26
ef = 1*10^(sponent)
Mrr = 2.375 * ef
Mtt = -2.777 * ef
Mpp = 0.403 * ef
Mrt = 2.800 * ef
Mrp = 1.190 * ef
Mtp = -0.539 * ef
######### convert to cartesian coordinates
Mzz=Mrr
Mxx= Mtt
Myy= Mpp
Mxz= Mrt
Myz= -Mrp
Mxy= -Mtp
m=matrix( c(Mxx,Mxy,Mxz,
      Mxy,Myy,Myz,
      Mxz,Myz,Mzz), ncol=3, byrow=TRUE)
Fi=seq(from=0, by=0.1, to=361)
  ### dev.new()
    plot(cos(Fi*pi/180.0),sin(Fi*pi/180.0),type='l', asp=1 , ann=FALSE, axes=FALSE)
  ShadowCLVD(m, col='red')
```

SHradfoc 123

SH	rad	f_{Δ}	_
ЭΠ	rau	11 00	٠

Plot SH-wave radiation

Description

Plot SH-wave radiation with information from the pickfile and waveform data

Usage

```
SHradfoc(A, MEC, GU, pscale, col)
```

Arguments

Α	Pickfile structure
MEC	MEC structure

GU Waveform Event Structure

pscale logical (not used)
col color palette

Details

Image plot of the SH radiation pattern

Value

Graphical Side effects

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

See Also

imageSH

```
\label{eq:mec} \begin{split} \text{MEC = SDRfoc(65, 32, -34, u=TRUE, ALIM=c(-1,-1, +1, +1), PLOT=FALSE)} \\ \text{SHradfoc(NULL, MEC , NULL, TRUE, rainbow(100))} \end{split}
```

SourceType

SourceType

Moment Tensor Source Type

Description

Given a vector of EigenValues, extract the source type.

Usage

```
SourceType(v)
```

Arguments

V

vector of decreasing eigenvalues

Details

plotting for -30 to 30 degree quadrant.

Value

list:

phi latitude angle in degrees
lam longitude angle in degrees

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

References

Tape, W.,and C.Tape(2012), A geometric comparison of source-type plots for moment tensors, Geophys. J. Int., 190, 499-510.

See Also

HAMMERprojXY, TapeBase, TapePlot

```
SourceType(c(1,-1,1) )
T1 = TapeBase()
m1 = list(Mxx=1.543, Mxy=0.786, Myy=0.336, Mxz=-2.441, Myz=0.353, Mzz=0.961)
i = 1
M1=matrix( c(m1$Mxx[i],m1$Mxy[i],m1$Mxz[i],
```

spherefocgeo 125

```
m1$Mxy[i],m1$Myy[i],m1$Myz[i],
    m1$Mxz[i],m1$Myz[i],m1$Mzz[i]), ncol=3, byrow=TRUE)

E1 = eigen(M1)
    h = SourceType( sort(E1$values, decreasing=TRUE) )
    h$dip = 90-h$phi
    ## cat(paste(h$dip, h$lam, sep=" "), sep="\n")
    h1 = HAMMERprojXY(h$dip*pi/180, h$lam*pi/180)
TapePlot(T1)
    points(h1$x, h1$y, pch=21, bg="red")
```

spherefocgeo

SphereFocGeo

Description

Spherical Projections of PT axes distributed geographically.

Usage

```
spherefocgeo(CMTSOL, PROJ = NULL, icut = 5,
ndivs = 10, bbox=c(0,1, 0, 1), PLOT = TRUE,
add = FALSE, RECT = FALSE, pal = terrain.colors(100))
```

Arguments

CMTSOL	see output of getCMT for list input
PROJ	Map projection
icut	cut off for number of points in box, default=5
ndivs	divisions of map area, default=10
bbox	bounding box for dividing the area, given as minX, maxX, minY, maxY; default=usr coordinates from par() $$
PLOT	logical, default=TRUE
add	logical, add to existing plot
RECT	logical, TRUE=plot rectangles
pal	palette fo rimages in each box

spherefocgeo

Details

Program divides the area into blocks, tests each one for minimum number per block and projects the P and T axes onto an equal area stereonet.

Value

Graphical Side Effects

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

See Also

PlotPTsmooth, ternfocgeo, prepFOCS, RectDense

```
N = 100
LATS = c(7.593004, 25.926045)
LONS = c(268.1563, 305)
lon=rnorm(N, mean=mean(LONS), sd=diff(LONS)/2 )
lat=rnorm(N, mean=mean(LATS), sd=diff(LATS)/2)
str1=runif(N,50,100)
dip1=runif(N,10, 80)
rake1=runif(N,5, 180)
dep=runif(N,1,15)
name=seq(from=1, to=length(lon), by=1)
Elat=NULL
Elon=NULL
yr = rep(2017, times=N)
jd = runif(N, min=1, max=365)
 MEKS = list(lon=lon, lat=lat, str1=str1, dip1=dip1,
 rake1=rake1, dep=dep, name=name, yr=yr, jd = jd)
PROJ = GEOmap::setPROJ(type=2, LAT0=mean(lat) , LON0=mean(lon) ) ##
                                                                        utm
XY = GEOmap::GLOB.XY(lat, lon, PROJ)
plot(range(XY$x), range(XY$y), type='n', asp=1)
  points(XY$x, XY$y)
spherefocgeo(MEKS, PROJ, PLOT=TRUE, icut = 3, ndivs = 4,
 add=TRUE, pal=terrain.colors(100), RECT=TRUE )
```

spline.arrow 127

spline.arrow

Spline Arrow

Description

Given a set of points, draw a spline and affix an arrow at the end.

Usage

```
spline.arrow(x, y = 0, kdiv = 20, arrow = 1,
length = 0.2, col = "black", thick = 0.01,
headlength = 0.2, headthick = 0.1, code = 2, ...)
```

128 spline.arrow

Arguments

x vector, x-coordinatesy vector, y-coordinateskdiv Number of divisions

arrow style of arrow, 1=simple arrow, 2=fancy arrow

length length of head col color of arrow

thick thickness of arrow stem
headlength length of arrow head
headthick thickness of arrow head

code code, 1=arrow on end of spline, 3=arrow on beginning.

... graphical parameters for the line

Details

Can use either simple arrows or fancy arrows.

Value

list of x,y coordinates of the spline and Graphical Side effects

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

See Also

fancyarrows

```
plot(c(0,1), c(0,1), type='n')

G=list()
G$x=c(0.1644,0.1227,0.0659,0.0893,0.2346,
0.3514,0.5518,0.7104,0.6887,0.6903,0.8422)
G$y=c(0.8816,0.8305,0.7209,0.6086,0.5372,
0.6061,0.6545,0.6367,0.4352,0.3025,0.0475)

spline.arrow(G$x, G$y)
```

StrikeDip 129

StrikeDip P	lot Strike Dip Lines
---------------	----------------------

Description

Given a focal mechanism, add Strike Dip lines to a plot.

Usage

```
StrikeDip(x = x, y = y, MEC, focsiz, addDIP = TRUE, ...)
```

Arguments

Х	x-location on plot
у	y-location on plot
MEC	Focal Mechanism list from SDRFOC
focsiz	size of mechanism, inches
addDIP	Logical, TRUE = add dip line perpendicular to strike

graphical parameters

Details

This is a summary plot to be used instead of Beach Balls.

Value

Graphical Side Effects

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

References

Lees, J. M., Geotouch: Software for Three and Four Dimensional GIS in the Earth Sciences, Computers & Geosciences, 26, 7, 751-761, 2000.

See Also

```
nipXY, justfocXY, plotmanyfoc
```

130 StrikeDip

```
### HAiti Earthquake Jan, 2010
MEC <- SDRfoc(71, 64, 25, u=FALSE, ALIM=c(-1,-1, +1, +1), PLOT=FALSE)
plot(c(0, 1), c(0,1), type='n', asp=1)
u <- par("usr")</pre>
focsiz <- 0.5
justfocXY(MEC, x=.5, y=.5, focsiz=0.5,
fcol ='brown' , fcolback = "white", xpd = TRUE)
StrikeDip(1.0, .5 , MEC ,focsiz, col="purple", lwd=3 )
nipXY(MEC, x = 0.25, y = .5, focsiz=0.5,
fcol ='purple', nipcol = "black", cex = 1)
##### or
set.seed(2015)
N = 20
lon=runif(20, 268.1563, 305)
lat=runif(20, 7.593004, 25.926045)
str1=runif(20,50,100)
dip1=runif(20,10, 80)
rake1=runif(20,5, 180)
dep=runif(20,1,15)
name=seq(from=1, to=length(lon), by=1)
Elat=NULL
Elon=NULL
yr = rep(2017, times=N)
jd = runif(N, min=1, max=365)
MEKS = list(lon=lon, lat=lat, str1=str1, dip1=dip1,
rake1=rake1, dep=dep, name=name, yr=yr, jd = jd)
PROJ = GEOmap::setPROJ(type=2, LAT0=mean(lat) , LON0=mean(lon) ) ##
                                                                       utm
XY = GEOmap::GLOB.XY(lat, lon, PROJ)
plot(range(XY$x), range(XY$y), type='n', asp=1)
for(i in 1:length(XY$x))
  Msdr = CONVERTSDR(MEKS$str1[i], MEKS$dip1[i],MEKS$rake1[i])
     MEC = MRake(Msdr$M)
       MEC$UP = FALSE
         jcol = foc.color(foc.icolor(MEC$rake1), pal=1)
StrikeDip(XY$x[i], XY$y[i] , MEC ,focsiz, col=jcol, lwd=3 )
}
```

strikeslip.fault 131

strikeslip.fault	Strikeslip Fault Cartoon
------------------	--------------------------

Description

Illustrate a strikeslip fault using animation

Usage

```
strikeslip.fault(anim = seq(from = 0, to = 1, by = 0.1), KAPPA = 2,
 Light = c(45, 45))
```

Arguments

anim animation vector

KAPPA Phong parameter for lighting

Light lighting point

Details

Program will animate a strikeslip fault for educational purposes. Animation must be stopped by halting execution.

Value

Graphical Side effects

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

See Also

normal.fault, thrust.fault

```
strikeslip.fault(anim=0, Light=c(45,90) )

## Not run:
#### execute a stop command to stop this animation
anim= seq(from=0, to=1, by=.1)
    strikeslip.fault(anim=anim, Light=c(45,90) )

## End(Not run)
```

132 SVradfoc

SVradfoc

Plot SV-wave radiation

Description

Plot SV-wave radiation with information from the pickfile and waveform data

Usage

```
SVradfoc(A, MEC, GU, pscale, col)
```

Arguments

A	Pickfile structure
MEC	MEC structure

GU Waveform Event Structure

pscale logical (not used)
col color palette

Details

Image plot of the SV radiation pattern

Value

Graphical Side effects

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

See Also

imageSV

```
\label{eq:mec} \begin{split} \text{MEC = SDRfoc(65, 32, -34, u=TRUE, ALIM=c(-1,-1, +1, +1), PLOT=FALSE)} \\ \text{SVradfoc(NULL, MEC , NULL, TRUE, rainbow(100))} \end{split}
```

TapeBase 133

TapeBase

Tape Base Lines

Description

Create a structure of Tape Base lines

Usage

```
TapeBase()
```

Details

Program returns the lines and points for plotting a Tape plot. Based on the Hammer projection.

Value

List

Note

The list includes points and other information

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

References

Tape, W., and C. Tape (2012), A geometric comparison of source-type plots for moment tensors, Geophys. J. Int., 190, 499-510.

See Also

TapePlot, HAMMERprojXY

```
T1 =TapeBase()
TapePlot(T1)
```

TapePlot

TapePlot	Tape style Lune Plot

Description

Tape style Lune Plot using Hammer projection

Usage

```
TapePlot(TapeList = list(), add = FALSE, ann = TRUE,
pcol = c(grey(0), grey(0.85), grey(0.95)))
```

Arguments

TapeList List of strokes from TapeBase

add logical, TRUE=add to existing plot

ann logical, TRUE=annotape

pcol 3-vector of colors: inner lines, upper polygon, lower polygon

Details

Plot an Tape net from the TapeBase function.

Value

Side effects

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

References

Tape, W., and C. Tape (2012), A geometric comparison of source-type plots for moment tensors, Geophys. J. Int., 190, 499-510. https://doi.org/10.1111/j.1365-246X.2012.05490.x

See Also

TapeBase, HAMMERprojXY

TEACHFOC 135

Examples

```
T1 = TapeBase()
TapePlot(T1)
data(widdenMoments)
WM = widdenMoments
         par(mfrow=c(1,1), mai=c(0,0,0,0))
         T1 = TapeBase()
        TapePlot(T1)
         for(i in 1:length(WM$Mxx))
          M1=matrix( c(WM$Mxx[i],WM$Mxy[i],WM$Mxz[i],
      WM$Mxy[i],WM$Myy[i],WM$Myz[i],
       WM$Mxz[i],WM$Myz[i],WM$Mzz[i]), ncol=3, byrow=TRUE)
           E1 = eigen(M1)
           h = SourceType( sort(E1$values, decreasing=TRUE) )
           h$dip = 90-h$phi
           ## cat(paste(h$dip, h$lam, sep=" "), sep="\n")
           h1 = HAMMERprojXY(h$dip*pi/180, h$lam*pi/180)
           points(h1$x, h1$y, pch=21, bg="orange")
        }
```

TEACHFOC

Graphical Plot of Focal Mechanism

Description

Plots Beachball figure with numerous vectors and points added and labeled. Useful for teaching about focal mechanisms.

Usage

```
TEACHFOC(s, d, r, up = FALSE)
```

Arguments

```
s strike dip
```

ternfoc.point

```
r rake
```

up logical, TRUE = upper

Value

Graphical side effects

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

See Also

CONVERTSDR, MRake, foc. icolor, focleg, foc. color, focpoint, PlotPlanes, nipXY, fancyarrows

Examples

```
TEACHFOC(65, 32, -34, up=TRUE)
```

ternfoc.point

Plot Ternary Point

Description

Add a point to a ternary plot

Usage

```
ternfoc.point(deltaB, deltaP, deltaT)
```

Arguments

deltaB angle, degrees deltaP angle, degrees deltaT angle, degrees

Details

Plot point on a Ternary diagram using Froelich's algorithm.

Value

List

h vector of x coordinatesv vector of y coordinates

ternfocgeo 137

Note

Use Bfocvec(az1, dip1, az2, dip2) to get the deltaB angle.

Author(s)

Jonathan M. Lees < jonathan.lees@unc.edu>

References

C. Frohlich. Triangle diagrams: ternary graphs to display similarity and diversity of earthquake focal mechanisms. Physics of the Earth and Planetary Interiors, 75:193-198, 1992.

See Also

Bfocvec

Examples

```
Msdr = CONVERTSDR(55.01, 165.65, 29.2 )
MEC = MRake(Msdr$M)
MEC$UP = FALSE
    az1 = Msdr$M$az1
dip1 = Msdr$M$d1
az2 = Msdr$M$az2
dip2 = Msdr$M$d2
BBB = Bfocvec(az1, dip1, az2, dip2)
V = ternfoc.point(BBB$Bdip, Msdr$M$pd, Msdr$M$td )
```

ternfocgeo

Ternary Focals

Description

Ternary plots of rake categories (strike-slip, normal, thrust) distributed geographically.

Usage

```
ternfocgeo(CMTSOL, PROJ = NULL, icut = 5, ndivs = 10,
bbox=c(0,1, 0, 1), PLOT = TRUE, add = FALSE, RECT = FALSE)
```

138 ternfocgeo

Arguments

CMTSOL	see output of getCMT for list input
PROJ	Map projection
icut	cut off for number of points in box, default=5
ndivs	divisions of map area, default=10
bbox	bounding box for dividing the area, given as minX, maxX, minY, maxY; default=usr coordinates from par()
PLOT	logical, default=TRUE
add	logical, add to existing plot
RECT	logical, TRUE=plot rectangles

Details

Program divides the area into blocks, tests each one for minimum number per block and plots a ternary plot for each block.

Value

Graphical Side Effects

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

See Also

PlotTernfoc, spherefocgeo, prepFOCS, RectDense

```
N = 100
LATS = c(7.593004, 25.926045)
LONS = c(268.1563 , 305)
lon=rnorm(N, mean=mean(LONS), sd=diff(LONS)/2 )
lat=rnorm(N, mean=mean(LATS), sd=diff(LATS)/2)

str1=runif(N,50,100)
dip1=runif(N,10, 80)
rake1=runif(N,5, 180)

dep=runif(N,1,15)
name=seq(from=1, to=length(lon), by=1)
Elat=NULL
Elon=NULL
yr = rep(2017, times=N)
jd = runif(N, min=1, max=365)
```

ternfocgeo 139

```
MEKS = list(lon=lon, lat=lat, str1=str1, dip1=dip1,
rake1=rake1, dep=dep, name=name, yr=yr, jd = jd)
PROJ = GEOmap::setPROJ(type=2, LAT0=mean(lat) , LON0=mean(lon) ) ##
                                                                      utm
XY = GEOmap::GLOB.XY(lat, lon, PROJ)
plot(range(XY$x), range(XY$y), type='n', asp=1)
## points(XY$x, XY$y)
ternfocgeo(MEKS , PROJ, PLOT=TRUE, icut = 3,
ndivs = 4, add=TRUE, RECT=TRUE)
points(XY$x, XY$y, pch=8, col="purple" )
############# next restrict the boxes to a specific region
plot(range(XY$x), range(XY$y), type='n', asp=1)
points(XY$x, XY$y)
ternfocgeo(MEKS , PROJ, PLOT=TRUE, icut = 3, ndivs = 5,
bbox=c(-2000,2000,-2000,2000), add=TRUE, RECT=TRUE)
## Not run:
      this example shows a real application with a map
plot(x=range(IZ$x), y=range(IZ$y), type='n', asp=1, axes=FALSE, ann=FALSE)
image(x=IZ$x, y=IZ$y, z=(UZ), col=blues, add=TRUE)
image(x=IZ$x, y=IZ$y, z=(AZ), col=terrain.colors(100) , add=TRUE)
 plotGEOmapXY(haiti.map,
             LIM = c(Lon.range[1],Lat.range[1] ,
Lon.range[2] ,Lat.range[2]),
             PROJ =PROJ, MAPstyle = 2,
MAPcol = 'black' , add=TRUE )
H = rectPERIM(JMAT$xo, JMAT$yo)
antipolygon(H$x ,H$y, col=grey(.85) , corner=1, pct=.4)
sqrTICXY(H , PROJ, side=c(1,2,3,4), LLgrid=TRUE, col=grey(.7) )
ternfocgeo(OLDCMT, PROJ, PLOT=TRUE, add=TRUE)
```

End(Not run)

140 testrightHAND

testrightHAND

Test Right Hand of tensor

Description

Test Right Hand of tensor

Usage

```
testrightHAND(U)
```

Arguments

U

3 by 3 matrix

Details

The fuction eigen does not always produce a right-handed eigenvector matrix. The code tests each cross product to see if it creates a right-hand system.

Value

logical vector

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

See Also

forcerighthand

```
Mtens <- c(-0.412, 0.084, 0.328, 0.398, -1.239, 1.058)

M1 <- matrix(c(Mtens[1], Mtens[4], Mtens[5], Mtens[4],
Mtens[2], Mtens[6], Mtens[5], Mtens[6],
Mtens[3]), ncol=3, nrow=3, byrow=TRUE)

E1 <- eigen(M1)
testrightHAND(E1$vectors)</pre>
```

thrust.fault 141

						_		п.	
+	n	rı	ıc	+	- 1	fa	11		+

Thrust Fault Cartoon

Description

Illustrate a thrust fault using animation

Usage

```
thrust.fault(anim = seq(from = 0, to = 1, by = 0.1), KAPPA = 2,
 Light = c(45, 45))
```

Arguments

anim animation vector

KAPPA Phong parameter for lighting

Light lighting point

Details

Program will animate a thrust fault for educational purposes. Animation must be stopped by halting execution.

Value

Graphical Side effects

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

See Also

strikeslip.fault, thrust.fault

```
thrust.fault(anim=0, KAPPA=4, Light=c(-20, 80))
## Not run:
#### execute a stop command to stop this animation
anim= seq(from=0, to=1, by=.1)
thrust.fault(anim=anim, KAPPA=4, Light=c(-20, 80))
## End(Not run)
```

142 *tk2uv*

tk2uv

Tk2uv

Description

Tk plot to u-v coordinate transformation

Usage

```
tk2uv(T, k)
```

Arguments

T T-value

Details

T and k come from moment tensor analysis.

Value

List: u and v

Author(s)

Keehoon Kim<keehoon@live.unc.edu> Jonathan M. Lees<jonathan.lees@unc.edu>

References

Hudson

See Also

m2tk, hudson.net, hudson.plot

```
v = c(2,-1,-1)

m = m2tk(v)

tk2uv(m$T, m$k)
```

to.spherical 143

				-
tο	sn	her	102	ı I
· ·	22	1101	100	

Convert Cartesian to Spherical

Description

Convert cartesian coordinates to strike and dip

Usage

```
to.spherical(x, y, z)
```

Arguments

X	x-coordinate
у	y-coordinate
z	z-coordinate

Value

LIST

az	angle, degrees
dip	angle, degrees
Х	x-coordinate
у	y-coordinate
Z	z-coordinate

Author(s)

Jonathan M. Lees <jonathan.lees@unc.edu>

See Also

SDRfoc

```
to.spherical(3, 4, 5)
```

144 TOCART.DIP

		_
TOCART	חדו	ה
IUUARI	1111	_

Convert to Cartesian

Description

Convert azimuth and dip to cartesian coordinates

Usage

```
TOCART.DIP(az, dip)
```

Arguments

az	azimuth, degrees		
dip	dip, degrees		

Value

LIST

x	x-coordinate
у	y-coordinate
Z	z-coordinate
az	azimuth, degrees
dip	dip, degrees

Author(s)

Jonathan M. Lees <jonathan.lees@unc.edu>

See Also

to.spherical

```
TOCART.DIP(134, 32)
```

tocartL 145

tocartL

Convert to cartesian coordinate

Description

Convert azimuth-dip to cartesian coordinates with list as argument

Usage

```
tocartL(A)
```

Arguments

A **az** degrees, azimuth **dip** degrees, dip

Value

List

x x-coordinatey y-coordinatez z-coordinate

Note

x positive north, y positive east, z positive downward

Author(s)

Jonathan M. Lees <jonathan.lees@unc.edu>

See Also

TOCART.DIP, RSEIS::TOCART, tosphereL, to.spherical

```
A = list(az=23, dip=84)
tocartL(A)
```

TOSPHERE TOSPHERE

TOSPHERE

Convert to Spherical Coordinates

Description

Get Azimuth and Dip from Cartesian vector on a sphere.

Usage

```
TOSPHERE(x, y, z)
```

Arguments

X	x-coordinate
у	y-coordinate
Z	z-coordinate

Value

```
az azimuth angle, degrees
```

dip, degrees

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

See Also

TOSPHERE.DIP, tosphereL, to.spherical

```
TOSPHERE(3, 4, 5)
```

TOSPHERE.DIP 147

T	\sim	 \neg	_)TP

convert to spherical coordinates

Description

convert to spherical coordinates

Usage

```
TOSPHERE.DIP(x, y, z)
```

Arguments

X	x-coordinate
У	y-coordinate
Z	z-coordinate

Details

takes three components and returns azimuth and dip

Value

List

az	azimuth, degrees
dip	Dip, degrees
X	x-coordinate
у	y-coordinate
Z	z-coordinate

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

See Also

to.spherical

```
TOSPHERE.DIP(3, 4, 5)
```

148 tosphereL

tosphereL

convert to spherical coordinates

Description

convert to spherical coordinates

Usage

```
tosphereL(A)
```

Arguments

Α

list (x,y,z)

Details

takes list of three components and returns azimuth and dip

Value

List

az	azimuth, degrees
dip	Dip, degrees
х	x-coordinate
У	y-coordinate
Z	z-coordinate

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

See Also

TOSPHERE

```
A = list(x=12, y=2, z=-3)
tosphereL(A)
```

TP2XYZ

TP2XYZ

Trend - Dip to XYZ

Description

Convert trend and dip to cartesian coordinates.

Usage

```
TP2XYZ(trend, dip)
```

Arguments

trend trend angle, degrees
dip dip angle, degrees

Details

These are used as functions auxiallry to rotateFoc.

Value

```
vector: x, y, z
```

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

See Also

RotTP

```
TP2XYZ(34, 40)
```

TRANmat

TRANmat

Translation Matrix

Description

Create a 4 by 4 translation matrix

Usage

```
TRANmat(x, y, z)
```

Arguments

X	x-translation
у	y-translation
Z	z-translation

Value

Matrix suitaqble for translating a 3D body.

Author(s)

Jonathan M. Lees <jonathan.lees@unc.edu>

References

Rogers and Adams, 1990, Mathematical Elements for Computer Graphics, McGraw-Hill, 611p.

See Also

ROTX, ROTZ, ROTY

```
zT = TRANmat(5, 4, 2)
```

Vmoments 151

Vmoments

Cartesian Moment Tensors

Description

Cartesian Moment Tensors from Varvryuk

Usage

data(Vmoments)

Format

A list of 9 moment tensors from Vaclav Varvryuk

Source

http://www.ig.cas.cz/en/research-&-teaching/software-download/

References

http://www.ig.cas.cz/en/research-&-teaching/software-download/

widdenMoments

Cartesian Moment Tensors

Description

Cartesian Moment Tensors from Widden Paper in Utah

Usage

data(widdenMoments)

Format

A list of 48 moment tensors from Utah

Source

SRL paper

References

Seismological Research Letters

Wnet Wnet

Wnet

Wulff Stereonet

Description

```
plot a Wulff Stereonet (Equal-Angle)
```

Usage

```
Wnet(add = FALSE, col = gray(0.7), border = "black", lwd = 1)
```

Arguments

add Logical, TRUE=add to existing plot

col color

border border color
lwd line width

Details

Plots equal-angle stereonet as opposed to equal-area.

Value

graphical side effects

Author(s)

Jonathan M. Lees <jonathan.lees@unc.edu>

See Also

net, pnet

Examples

Wnet()

Wpoint 153

W	po	i	n	t.
7.1	\sim	_		·

Plot points on Wulff Stereonet

Description

Adds points to Wulff Equal-Angle Stereonet

Usage

```
Wpoint(az1, dip1, col = 2, pch = 5, lab = "", UP = FALSE)
```

Arguments

azî	azimuth angle, degrees
dip1	dip angle, degrees
col	color
pch	plotting character
lab	label for point
UP	logical, TRUE=Upperhemisphere

Details

Wulff net point is added to existing plot.

Value

graphical side effects

Author(s)

Jonathan M. Lees <jonathan.lees@unc.edu>

See Also

Wnet

```
Wnet()
Wpoint(23, 34)
```

154 xsecmanyfoc

xsecmanyfoc F	Plot Focal Mechs at X-Y position on cross sections
---------------	--

Description

Plot Focal Mechs at X-Y positions on cross sections or other plots that do not have geographic coordinates and projection.

Usage

```
xsecmanyfoc(MEK, theta=NULL, focsiz = 0.5,
foccol = NULL, UP=TRUE, focstyle=1, LEG = FALSE, DOBAR = FALSE)
```

Arguments

MEK List of Focal Mechanisms, see details

focsiz focal size, inches

theta degrees, angle from north for projecting the focal mechs

foccol focal color, default is to calculate based on rake

UP logical, UP=TRUE means plot upper hemisphere (DEFAULT=TRUE)

focstyle integer, 1=beach ball, 2=nipplot

LEG logical, TRUE= add focal legend for color codes

DOBAR add strike dip bar at epicenter

Details

Input MEK list contains

```
MEKS = list(lon=0, lat=0, str1=0, dip1=0, rake1=0, dep=0, name="", Elat=0, Elon=0, x=0, y=0)
```

The x, y coordinates of the input list are location where the focals will be plotted. For cross sections x=distance along the section and y would be depth. The focal mechs are added to the current plot.

Value

Graphical Side Effects

Note

If theta is NULL focals are plotted as if they were on a plan view. If theta is provided, however, the mechs are plotted with view from the vertical cross section. The cross section is taken at two points. Theta should be determined by viewing the cross section with the first point on the left and the second on the right. The view angle is through the section measured in degrees from north.

Author(s)

Jonathan M. Lees<jonathan.lees@unc.edu>

xsecmanyfoc 155

References

Lees, J. M., Geotouch: Software for Three and Four Dimensional GIS in the Earth Sciences, Computers & Geosciences, 26, 7, 751-761, 2000.

See Also

justfocXY, plotmanyfoc

```
########## create and plot the mechs in plan view:
N = 20
lon=runif(20, 235, 243)
     lat=runif(20, 45.4, 49)
     str1=runif(20,50,100)
     dip1=runif(20,10, 80)
     rake1=runif(20,5, 180)
     dep=runif(20,1,15)
     name=seq(from=1, to=length(lon), by=1)
     Elat=NULL
     Elon=NULL
yr = rep(2017, times=N)
jd = runif(N, min=1, max=365)
      MEKS = list(lon=lon, lat=lat, str1=str1, dip1=dip1,
 rake1=rake1, dep=dep, name=name, yr=yr, jd = jd)
     PROJ = GEOmap::setPROJ(type=2, LAT0=mean(lat) , LON0=mean(lon) ) ##
                                                                             utm
     XY = GEOmap::GLOB.XY(lat, lon, PROJ)
     plot(range(XY$x), range(XY$y), type='n', asp=1)
     plotmanyfoc(MEKS, PROJ, focsiz=0.5)
ex = range(XY$x)
why = range(XY$y)
JJ = list(x=ex, y=why)
SWA = GEOmap::eqswath(XY$x, XY$y, MEKS$dep, JJ, width = diff(why) , PROJ = PROJ)
MEKS$x = rep(NA, length(XY$x))
MEKS$y = rep(NA, length(XY$y))
MEKS$x[SWA$flag] = SWA$r
```

156 Z3Darrow

Z3Darrow

Make a 3D arrow

Description

Create the list structure for a 3D arrow.

Usage

```
Z3Darrow(len = 1, basethick = 0.1, headlen = 0.6, headlip = 0.1)
```

Arguments

Length in user coordinatesbasethick Thickness of the baseheadlen Length of the headheadlip Width of the overhang lip

Details

Creates a strucutre suitable for plotting rotated and translated 3D arrows.

Z3Darrow 157

Value

List

aglyph List of vertices of the faces

anorm Outward facing normal vectors to faces

Author(s)

Jonathan M. Lees <jonathan.lees@unc.edu>

See Also

PROJ3D, pglyph3D, phong3D

```
ZA = Z3Darrow(len = 1, basethick = 0.1, headlen = 0.6, headlip = 0.1)
```

Index

* aplot	ROTX, 114
addmecpoints, 6	ROTY, 116
addPT, 7	ROTZ, 118
addPTarrows, 8	* hplot
addsmallcirc, 9	Beachfoc, 15
Beachfoc, 15	imageP, 47
BOXarrows3D, 17	imageSH, 49
circtics, 19	imageSV, 50
fancyarrows, 27	justfocXY, 54
faultplane, 28	net, 68
focpoint, 35	nipXY, 69
imageSCALE, 48	normal.fault, 72
justfocXY, 54	plotfoc, 79
lowplane, 57	PlotPTsmooth, 84
nipXY, 69	PlotTernfoc, 85
pcirc, 73	Pradfoc, 90
pglyph3D,74	radiateP,99
phong3D, 75	radiateSH, 100
PlotPlanes, 83	radiateSV, 101
PlotPTsmooth, 84	SDRfoc, 120
PlotTernfoc, 85	SHradfoc, 123
PLTcirc, 87	strikeslip.fault, 131
pnet, 88	SVradfoc, 132
polyfoc, 89	TEACHFOC, 135
qpoint, 98	thrust.fault, 141
SDRfoc, 120	Wnet, 152
Wpoint, 153	* iplot
* array	AXpoint, 13
bang, 14	EApoint, 24
ROTX, 114	* list
ROTY, 116	CONVERTSDR, 20
ROTZ, 118	* misc
* datasets	AlongGreat, 10
egl, 25	alpha95, 11
jimbo,52	Bfocvec, 16
PKAM, 77	cross.prod, 21
Vmoments, 151	CROSSL, 22
widdenMoments, 151	doNonDouble, 23
* dplot	FixDip, 29

INDEX 159

flipnodal, 30	spherefocgeo, 125
foc.color, 31	spline.arrow, 127
foc.icolor, 32	StrikeDip, 129
FOCangles, 33	TapeBase, 133
focleg, 34	TapePlot, 134
forcerighthand, 36	ternfoc.point, 136
getCMT, 37	ternfocgeo, 137
GetRake, 39	testrightHAND, 140
GetRakeSense, 40	tk2uv, 142
getUWfocs, 42	to.spherical, 143
HAMMERprojXY, 44	TOCART.DIP, 144
hudson.net, 44	tocartL, 145
hudson.plot, 46	TOSPHERE, 146
inverseTAPE, 51	TOSPHERE.DIP, 147
	tosphereL, 148
JMAT, 53	TP2XYZ, 149
KAMCORN, 55	TRANmat, 150
m2tk, 58	xsecmanyfoc, 154
makeblock3D, 59	Z3Darrow, 156
makenet, 60	* package
MapNonDouble, 61	RFOC-package, 4
mc2cart, 64	* spatial
mijsdr, 65	RectDense, 109
MomentDist, 66	* univar
MRake, 67	alpha95, 11
nodalLines, 71	aipiia95, 11
plotmanyfoc, 80	addmecpoints, 6
plotMEC, 82	addPT, 7
Preflect, 91	addPTarrows, 8
prepFOCS, 92	addsmallcirc, 9
printMEC, 93	AlongGreat, 10
PROJ3D, 94	alpha95, 11
PTaxes, 95	AXpoint, 13
PTXY2, 96	AAPOTITE, 13
radP, 102	bang, 14
radSH, 103	Beachfoc, 15
radSV, 104	Bfocvec, 16
rakelegend, 106	BOXarrows3D, 17
readCMT, 107	
RectDense, 109	circtics, 19
REFLECT, 110	CONVERTSDR, 20
rotateFoc, 111	cross.prod, 21
Rotfocphi, 112	CROSSL, 22
RotTP, 113	
rotx3, 115	doNonDouble, 23
roty3, 117	EApoint, 24
rotz3, 119	egl, 25
ShadowCLVD, 121	
SourceType, 124	fancyarrows, 27

INDEX

faultplane, 28	PKAM, 77
FixDip, 29	plotfoc, 79
flipnodal, 30	plotmanyfoc, 80
foc.color, 31	plotMEC, 82
foc.icolor, 32	PlotPlanes, 83
FOCangles, 33	PlotPTsmooth, 84
focleg, 34	PlotTernfoc, 85
focpoint, 35	PLTcirc, 87
forcerighthand, 36	pnet, 88
-	polyfoc, 89
getCMT, 37	Pradfoc, 90
GetRake, 39	Preflect, 91
GetRakeSense, 40	prepFOCS, 92
getUWfocs, 42	printMEC, 93
,	PROJ3D, 94
HAMMERprojXY, 44	PTaxes, 95
hudson.net, 44	PTXY2, 96
hudson.plot, 46	F1X12, 90
, ,	qpoint, 98
imageP, 47	qpoint, 70
imageSCALE, 48	radiateP,99
imageSH, 49	radiateSH, 100
imageSV, 50	radiateSV, 101
inverseTAPE, 51	radP, 102
,	radSH, 103
jimbo, 52	radSV, 104
JMAT, 53	
justfocXY, 54	rakelegend, 106
	readCMT, 107
KAMCORN, 55	RectDense, 109
	REFLECT, 110
lowplane, 57	RFOC (RFOC-package), 4
	RFOC-package, 4
m2tk, 58	rotateFoc, 111
makeblock3D, 59	Rotfocphi, 112
makenet, 60	RotTP, 113
MapNonDouble, 61	ROTX, 114
mc2cart, 64	rotx3, 115
mijsdr, 65	ROTY, 116
MomentDist, 66	roty3, 117
MRake, 67	ROTZ, 118
	rotz3, 119
net, 68	
nipXY, 69	SDRfoc, 120
nodalLines, 71	ShadowCLVD, 121
normal.fault,72	SHradfoc, 123
	SourceType, 124
pcirc, 73	spherefocgeo, 125
pglyph3D,74	spline.arrow, 127
phong3D, 75	StrikeDip, 129

INDEX 161

```
strikeslip.fault, 131
SVradfoc, 132
TapeBase, 133
TapePlot, 134
TEACHFOC, 135
ternfoc.point, \\ 136
ternfocgeo, 137
testrightHAND, 140
thrust.fault, 141
tk2uv, 142
to.spherical, 143
TOCART.DIP, 144
tocartL, 145
TOSPHERE, 146
TOSPHERE.DIP, 147
tosphereL, 148
TP2XYZ, 149
TRANmat, 150
{\tt Vmoments},\, {\color{red}151}
widden Moments, \\ 151
Wnet, 152
Wpoint, 153
xsecmanyfoc, 154
Z3Darrow, 156
```