Discriminant

Définition 1. On appelle discriminant du polynôme du second degré $ax^2 + bx + c$ le nombre $\Delta = b^2 - 4ac$

El Calculez le discriminant des polynômes du second degré suivants. $\begin{array}{c} \mathtt{b.} \ 3x^2 + 5x - 2 \\ \mathtt{d.} \ x^2 + 2x \end{array}$

a.
$$2x^2 - 3x + 1$$

b.
$$3x^2 + 5x - 2$$

c.
$$4x^2 - 4x + 1$$

d
$$x^2 + 3x + 3$$

Propriété 1. Si $ax^2 + bx + c$ est un polynôme du second degré et Δ son discriminant, alors : $lpha=-rac{b}{2a}$ et $eta=-rac{\Delta}{4a}$

$$\alpha = -\frac{b}{2a}$$
 et $\beta = -\frac{\Delta}{4a}$

Déterminez lpha et eta pour les polynômes du second degré suivants. En déduire la forme canonique.

a.
$$2x^2 + 3x - 5$$

b.
$$3x^2 + 5x + 10$$

c.
$$5x^2 - x + 6$$

d.
$$2x^2 - 12x + 18$$

e.
$$3x^2-x-4$$

f.
$$x^2 + 2x + 5$$

g.
$$7x^2 - 14x + 7$$

h.
$$x^2 - 2x - 3$$

Propriété 2. Considérons un polynôme du second degré et Δ son discriminant :

- ullet Si $\Delta>0$, alors le polynôme admet deux racines réelles distinctes.
- ullet Si $\Delta=0$, alors le polynôme admet une seule racine réelle.
- ullet Si $\Delta < 0$, alors le polynôme n'admet pas de racine réelle.

Déterminez le nombre de racines réelles des polynômes du second degré suivants en calculant leur discriminant.

a.
$$2x^2 + 3x - 5$$

b.
$$3x^2 + 5x + 10$$

c.
$$5x^2 - x + 6$$

d.
$$2x^2 - 12x + 18$$

e.
$$3x^2 - x - 4$$

f.
$$x^2 + 2x + 5$$

g.
$$7x^2 - 14x + 7$$

$$\mathsf{h.}\ x^2-2x-3$$

Propriété 3. Considérons un polynôme du second degré de discriminant $\Delta>0$. Les racines de ce polynôme sont données par :

$$x_1=rac{-b-\sqrt{\Delta}}{2a}$$
 et $x_2=rac{-b+\sqrt{\Delta}}{2a}$

E4 Calculez les racines des polynômes du second degré suivants.

a.
$$27x^2+27x-12$$
 avec $\Delta=45^2$

b.
$$64x^2+32x-5$$
 avec $\Delta=48^2$

E5 Déterminez les racines des polynômes du second degré suivants.

a.
$$5x^2+3x-6$$
 avec $\Delta=129$

b.
$$-3x^2+7x+2$$
 avec $\Delta=73$

E6 Calculez les racines des polynômes du second degré suivants.

a.
$$3x^2+2x-\frac{15}{4}$$
 avec $\Delta=49$

a.
$$3x^2+2x-\frac{15}{4}$$
 avec $\Delta=49$ b. $5x^2-2x-\frac{8}{5}$ avec $\Delta=36$

Variations

Définition 2. Une parabole est une courbe plane symétrique par rapport à un axe et d'équation de la forme $y=ax^2+bx+c$ où a, bet c sont des constantes avec $a \neq 0$.

Définition 3. Le sommet d'une parabole est le point situé à l'intersection de l'axe de symétrie et de la parabole.

Propriété 4. Si f est une fonction polynôme dusecond degré de la forme $f(x) = ax^2 + bx + c$, alors f change de variation en $\alpha = -\frac{b}{2a}$.

Si a>0, alors f est décroissante sur $]-\infty;\alpha]$ et croissante sur $[\alpha;+\infty[$.

Si a < 0, alors f est croissante sur $]-\infty; \alpha]$ et décroissante sur $[\alpha; +\infty[$.

E7 Dressez le tableau de variations.

$$\overline{ extbf{a.} \ f(x)} = 3x^2 - 12x + 19 \quad extbf{b.} \ f(x) = -5x^2 + 10x - 1$$

b.
$$f(x) = -5x^2 + 10x - 10$$

c.
$$f(x) = 6x^2 + 36x + 46$$
 d. $f(x) = -x^2 - 18x - 82$

d
$$f(r) = -r^2 - 18r - 85$$

Sommet

Propriété 5. Dans le plan rapporté à un repère orthonormé, la courbe représentative d'une fonction polynôme du second degré est une parabole dont le sommet a pour coordonnées (lpha;f(lpha)) où $lpha=-rac{b}{2a}$.

E8 Calculez les coordonnées du sommet de la parabole puis donner une représentation de la parabole dans un repère orthonormé.

a.
$$f(x) = 2x^2 - 4x + 4$$

b.
$$f(x) = -3x^2 - 12x - 13$$

c.
$$f(x) = -4x^2 + 24x - 33$$

d.
$$f(x) = 5x^2 + 40x + 78$$