Model Evaluation

Myra O'Regan

October 17, 2017

Model Evaluation

- Focussing on classification models with 2 classes
- Logistic regression
- Support Vector machines
- Classification Trees
- Ensembles

First Things First

- Look at model output
- What would we look at in Trees?
- Big question: Does it make sense?

Test vs Training set

- Split data into Training and Test (80 vs 20)
- Good to have same % of cases in each section
- Use Stratified sampling
- Model built on Training
- Model evaluated on Test set
- Set test should reflect future data !!!

What have we got to work with?

- Test data set independent and target variable for each case
- Using model we can calculate predicted probabilities p_i of belonging to each class
- Remember $p_1 + p_2 = 1$
- Set of corresponding target values
- What is the question?

Two questions

- Are we trying to evaluate how close the predicted probabilities are to the true probabilities?
- Are we trying to see if this model is good for classification

Two models

Two Models

Model 1		Model 2		
p(1)	Target value	p(1)	Target value	
0.95	1	0.24	1	
0.94	1	0.24	1	
0.93	1	0.22	1	
0.85	1	0.22	1	
0.20	0	0.20	0	
0.15	0	0.10	0	
0.05	0	0.05	0	

6 / 39

Some Notation

- Events vs Non events
- 1 vs 0
- + vs -

Predicted prob. of event and target values

- Two columns of data
- · Sort by predicted prob. of an event
- What would they look like for a good model?
- For a bad model??
- For a random model??
- How could we display the data?

Boxplot

Non-events

Events

9 / 39

Margins of Classifier

- Predicted probabilities p_1 and p_0 for each of the two target groups
- For a case if target = 1 margin = p_1 - p_0
- If target =0 margin = p_0 - p_1
- Two things here sign and size
- Should these be big or small?

12 / 39

13 / 39

Confusion Tables

- Pick a threshold c
- For each predicted value of an event pp_i
- If $pp_i <= c$ predict 0 or (non-event)
- If $pp_i > c$ predict 1 or + (event)

Confusion Table

	Predicted		
Actual	+ -		
+	TP	FN	
-	FP	TN	

TP: True Positives; FN = False Negatives

FP: False Positives; TN= True Negatives

$$\begin{aligned} &\mathsf{Accuracy} = 100 * \tfrac{\mathit{TP} + \mathit{TN}}{\mathit{TP} + \mathit{FN} + \mathit{FP} + \mathit{TN}} \\ &\mathsf{Misclassification error} = 100\text{-}\mathsf{Accuracy} \end{aligned}$$

	Predicted		
Actual	+ -		
+	TP	FN	
-	FP	TN	

Measure of accuracy for predicting target events (+)

Sensitivity =
$$100 * \frac{TP}{TP+FN}$$

	Predicted		
Actual	+ -		
+	TP	FN	
-	FP	TN	

Measure of accuracy for predicting non-target events (-)

Specificity =
$$100 * \frac{TN}{FP + TN}$$

	Predicted		
Actual	+ -		
+	200	300	
-	100	400	

Senstivity(TPR)=
$$100*\frac{200}{200+300}=40\%$$

Specificity(TNR) = $100*\frac{400}{400+100}=80\%$
Accuracy = $100*\frac{200+400}{200+400+300+100}=60\%$

Example 1

	Predicted		
Actual	+ -		
+	400	100	
-	300	200	

Accuracy = 60%Sensitivity = 80%Specificity=40%

Example 2

	Predicted		
Actual	+ -		
+	200	300	
-	100	400	

Accuracy = 60%Sensitivity = 40%Specificity=80%

Example 3

	Predicted		
Actual	+ -		
+	2500	2500	
-	10000	85000	

```
\begin{array}{l} {\sf Accuracy} = 88\% \\ {\sf Sensitivity} = 50\% \\ {\sf Specificity} = 89\% \end{array}
```

Example 3 again

```
5,000 events denoted by + 95,000 non-events denoted by - Suppose we had no model what would we do? Assign all to - No Information rate = 0.95
```

Another example

- A model was built to detect landmines
- Let event = land mine present
- Sensitivity vs Specificity vs Accuracy here

Some other stats

	Predicted	
Actual	+ -	
+	Α	В
-	C	D

```
Pos pred. value=A/(A+C);
Neg pred. value=B/(B+D);
Prevalence =(A+B)/(A+B+C+D)
```

Some other stats

	Predicted	
Actual	+ -	
+	Α	В
-	C	D

Detection rate
$$=A/(A+B+C+D)$$
;
Detection Prev. $=(A+C)/(A+B+C+D)$
Balanced accuracy=(Sensitivity + Specificity)/2

Mc Nemar test

	Predicted		
Actual	+	-	
+	Α	В	
-	C	D	

Look at off diagonal cells If no difference we would expect $\frac{B+C}{2}$ in each cell Construct a chi-square to compare the expected value to observed value

Calculation of Mc Nemar

$$\chi^2 = \frac{(Obs-Exp)^2}{Exp} = \frac{(B-\frac{B+C}{2})^2}{\frac{B+C}{2}} + \frac{(C-\frac{B+C}{2})^2}{\frac{B+C}{2}}$$
 This reduces to
$$\frac{(|B-C|-1)^2}{B+C}$$
 df =1

Another use of Mc Nemar

		A misclassified	
		Yes	No
B Misclassified	Yes	Α	В
D MISCIASSITIEU	No	C	D

Kappa Statistic

	Predicted			
		+	-	Total
Actual	+	100	100	200
	-	300	500	800
		400	600	

Kappa Statistic

- Sometimes called Cohen's Kappa Statistic
- Agreement between two raters
- Look at agreement taking into account the accuracy that would be generated by chance
- Printed by the caret package
- Measures relative improvement over random predictor

Calculations

$$Kappa = \frac{(O-E)}{(1-E)}$$

- O is the observed accuracy
- E is the accuracy expected by chance
- Values range form -1 to 1
- 0 no agreement
- 1 is perfect agreement

And more calculations

	Predicted			
		+	-	Total
Actual	+	100	100	200
	-	300	500	800
		400	600	1000

Observed accuracy = (100+500)/1000=0.6

What accuracy would you expect by chance?

	Predicted			
		+	-	Total
Actual	+	80		200
	-		480	800
		400	600	1000

Expected accuracy =
$$(80+480)/1000=0.56$$

$$Kappa = (0.6-0.56)/(1-0.56) = 0.09$$

34 / 39

Another Example

Predicted				
	+ - Total			
Actual	+	1900	100	2000
	-	2800	79200	82000

$$E=0.943$$
; $O=0.988$; $Kappa=0.786$

Measure of uncertainty

Another Example

Predicted					
	+ - Total				
Actual	+	1500	500	2000	
	-	16000	66000	82000	

$$E=0.79$$
; $O=0.817$; $Kappa=0.129$

ROC curve

- Receiver Operating Curve
- Plot Sensitivity -True positive rate (TPR)
- VS
- (100-Specificity) -False Positive rate (FPR)
- For all cutpoints

Very simple example - ROC curve

P(event)	Target Value
0.8	1
8.0	1
0.8	0
0.8	0
0.35	1
0.35	0
0.12	1
0.12	0
0.12	0

Classification tables

Cutoff=0

	Predicted			
		+	-	Total
Actual	+	4	0	4
	-	6	0	6

```
Sensitivity(TPR)=1 or 100%;
Specificity(TNR)= 0;
False positive (FPR)= 1 or 100%
```