INFO 251: Applied Machine Learning

Logistic Regression

Follow

When you use a 10 layer Deep Neural Network where Logistic Regression would suffice

6:33 PM - 26 Sep 2018

911 Retweets **2,894** Likes

Announcements

- Assignment 4 will be posted today
- Quiz 1 scheduled for next Tuesday, 9:40-10:20
 - 10-15 multiple choice and short-answer questions
 - Contact course staff via Piazza if you can't make this time, we are arranging a "make-up" time at 9:00-9:40 on the same day.

Key Concepts (last lecture)

- Overfitting
- Regularization: Intuition
- Regularization: Cost function adjustment
- Ridge
- Lasso
- Cross-validation of regularization hyperparameters
- Coefficient plots

Gradient descent: Example Quiz Question

- To ensure that your gradient descent algorithm is properly converging to a minimum:
 - 1. Plot $J(\theta)$ as a function of θ , and ensure $J(\theta)$ is decreasing
 - 2. Plot $J(\theta)$ as a function of number of iterations, and ensure $J(\theta)$ is decreasing
 - Plot $J(\theta)$ as a function of θ , and make sure $J(\theta)$ is convex
 - Plot $J(\theta)$ as a function of learning rate R, and make sure $J(\theta)$ in monotonic (either constantly increasing or constantly decreasing) in R

Course Outline

- Causal Inference and Research Design
 - Experimental methods
 - Non-experiment methods
- Machine Learning
 - Design of Machine Learning Experiments
 - Linear Models and Gradient Descent
 - Non-linear models
 - Neural models
 - Unsupervised Learning
 - Practicalities, Fairness, Bias
- Special topics

Key Concepts (this lecture)

- Logistic regression
- Simplified sigmoid cost function
- Odds ratios
- Overfitting revisited
- Support vector machines
- Hard vs. soft margins
- Kernel functions

Outline

- Logistic regression (inference)
- Logistic regression (prediction and gradient descent)
- Support vector machines
- Kernels

Logistic regression: Basics

- Logistic regression
 - Models the (linear) relationship between one or more independent variables and one binary dependent variable
 - As with linear regression, can be used for inference and prediction; used to predict (and classify) binary outcomes

Inference	Prediction
What is the effect of an additional year of schooling on whether an individual is eligible for welfare?	Do we predict that an individual with 6 years of education will be eligible for welfare?
What caused the server to go down last week?	Will the server go down this week?
How big a factor is "home court advantage" in whether our team will win or lose?	Are we going to win this week?

Logistic Regression: Idea

- Logistic Regression: Model
 - The logistic regression model assumes that the independent variables have a linear relationship with the logit transformation of the dependent variable
 - i.e., $logit(y) = \alpha + \beta X + \cdots$

Logistic Regression: Idea

- Logit transformation maps probabilities to log of odds ratios
 - Odds ratio: probability success / probability failure, or $\frac{p}{1-p}$
 - Example: Probability success = 0.8
 - Odds ratio is 4
 - "Odds of success are 4 to 1"
- In other words:
 - $logit(p) = log(\frac{p}{1-p}) = \alpha + \beta X + \cdots$
 - $p = \frac{e^{\alpha + \beta X + \cdots}}{1 + e^{\alpha + \beta X + \cdots}}$

Logistic Regression: The logistic function

- Logistic (sigmoid) function: $g(z) = \frac{e^z}{e^z + 1} = \frac{1}{1 + e^{-z}}$
 - Transforms $[-\infty, +\infty] = > [0,1]$
 - Constrains output of our model between o and 1
- In logistic regression, $z = \alpha + \beta X + ...$
 - Logistic is thus: $g(z) = \frac{1}{1 + e^{-(\alpha + \beta X + \cdots)}}$

Logistic Regression: Decision Boundary

- How to interpret g(z)?
 - Probability that y=1
 - $P(y = 1 | x : \alpha, \beta)$
- Simple classifier
 - Predict y=1 if $g(z) \ge 0.5$
 - Predict y=o if g(z)<o.5</p>

- Predict y=1 if z≥o
- Predict y=o if z<o</p>
- Typically, $z = \alpha + \beta X + \cdots$

Logistic Regression: Example

- Example: admission vs. GRE and GPA
 - Start with raw data
 - 2. Fit logistic regression
 - 3. Threshold converts g(z) to classification

Logistic Regression: Coefficients

- How do we interpret the coefficients from a logistic regression?
 - The coefficient tells you what change to expect in the log odds ratio of your dependent variable, for a one-unit increase in your independent variable.
- Ways to make this more intelligible
 - Convert from log odds ratio to odds ratio
 - $\exp(\beta)$
 - Convert from odds ratio to probability
 - $\frac{odds}{1 + odds}$

Logistic Regression: Coefficients

- Example with no predictor variables
 - Likelihood of being honor student

•
$$logit(honor_i) = \alpha + \epsilon_i$$

• i.e., log(p/(1-p)) = -1.12546

Logistic regression			LR ch	01 003	= = =	200 0.00	
Log likelihood	= -111.35502	2		Pseud		=	0.0000
hon	Coef.	Std. Err.	Z	P> z	[95% Cd	onf.	Interval]
intercept	-1.12546	.1644101	-6.85	0.000	-1.44769	97	8032217

Note that p = exp(-1.12546)/(1+exp(-1.12546)) = .245

Cum.	Percent		hon
75.50 100.00	75.50 24.50	151 49	0 1
	100.00	200	Total

stem

intercept

Logistic Regression: Coefficients

- Example with single predictor variable
 - Likelihood of honor student, by major
 - $logit(honor_i) = \alpha + \beta STEM_i + \epsilon_i$

Coef. Std. Err.

.3414294

.5927822

- exp(0.593) = 1.809
 - (this is the odds ratio)
 - (corresponds to p=0.644)
- The odds radio can also be seen in the cross-tabs:
 - Odds for non-STEM: 0.23 (17/74)
 - Odds for STEM: 0.42 (32/77)
 - Odds for STEM 81% higher
 - 0.42 / 0.23 = 1.809
 - 0.644 / (1-0.644) = 1.809

hon	no	yes	Total
0 1	74 17	77 32	151 49
Total	91	109	200

P> | z |

0.083

Outline

- Logistic regression (inference)
- Logistic regression (prediction & gradient descent)
- Support vector machines
- Kernels

Logistic Regression: General formulation

- Model ("hypothesis")
 - $P(Y_i = 1 | x : \theta) = g(z) = \frac{1}{1 + e^{-z}}$
- Parameters
 - θ are the parameters, often α , β
 - If $\theta = (\alpha, \beta)$, $P(Y_i = 1) = \frac{1}{1 + e^{-(\alpha + \beta X_i)}}$
- Cost Function
 - $J(\theta) = \frac{1}{N} \sum_{i=1}^{N} \operatorname{Cost}(\widehat{Y}_i, Y_i)$
 - (more on this shortly)
- Objective
 - $\min_{\theta} J(\theta)$

Logistic Regression: Cost function

Cost Function

- Linear regression: $J(\alpha, \beta) = \frac{1}{2N} \sum_{i=1}^{N} (Y_i \alpha \beta X_i)^2$
- Why not $J(\alpha, \beta) = \frac{1}{2N} \sum_{i=1}^{N} \left(Y_i \frac{1}{1 + e^{-\alpha \beta X_i}} \right)^2$

■ Not convex ⊗

- Sigmoid function is complex, $J(\alpha, \beta)$ is not convex...
- Susceptible to local minima, want to convert to something convex

Logistic Regression: Cost function

- Cost Function (think of $\widehat{Y}_i = \frac{1}{1 + e^{-(\alpha + \beta X_i)}}$)
 - $-\operatorname{Cost}(\widehat{Y}_i, Y_i) = \begin{cases} -\log(\widehat{Y}_i) & \text{if } Y_i = 1\\ -\log(1 \widehat{Y}_i) & \text{if } Y_i = 0 \end{cases}$
 - $\operatorname{Cost}(\hat{Y}_i, Y_i) = -Y_i \cdot \log(\hat{Y}_i) (1 Y_i) \cdot \log(1 \hat{Y}_i)$

- This is convex:
 - If $Y_i = 1$, what is cost if $\hat{Y}_i = 1$? What if $\hat{Y}_i = 0$?
 - No cost if model predicts 1
 - Penalizes mistakes
 - If $Y_i = 0$, what is cost if $\hat{Y}_i = 1$? if $\hat{Y}_i = 0$?
 - No cost if model predicts o
 - Penalizes mistakes

Logistic Regression: Gradient Descent

- Given the cost function $J(\theta)$, we now want to minimize:
 - $J(\theta) = -\frac{1}{N} \sum_{i=1}^{N} Y_i \cdot \log \hat{Y}_i + (1 Y_i) \log (1 \hat{Y}_i)$
- Gradient Descent!
 - $\bullet \quad \theta \leftarrow \theta R \frac{\partial}{\partial \theta} J(\theta)$
- With revised cost function, $\frac{\partial}{\partial \theta} J(\theta) = -\frac{1}{N} \sum_{i=1}^{N} (Y_i \hat{Y}_i) X_i$
 - Note similarities to linear regression! But not identical:
 - Logistic regression: $\hat{Y}_i = \frac{1}{1 + e^{-(\alpha + \beta X_i)}}$
- Gradient Descent Algorithm (logistic regression)
 - Repeat until convergence:
 - $\beta \leftarrow \beta + R \frac{1}{N} \sum_{i=1}^{N} (Y_i \hat{Y}_i) X_i$
 - in other words: $\beta \leftarrow \beta + R \frac{1}{N} \sum_{i=1}^{N} \left(Y_i \frac{1}{1 + e^{-(\alpha + \beta X_i)}} \right) X_i$

Outline

- Logistic regression (inference)
- Logistic regression (prediction and gradient descent)
- Support vector machines
- Kernels

Logistic Regression: Recap

Compare actual vs. predicted values from our logistic regression

Support Vector Machines (SVM): Intuition

SVM's objective: Maximize the Margin

SVM Definition

- SVM defined by a separating plane
 - Represented by a weight vector w, and an intercept b
- Classifier function: $f(x) = sign(w^Tx + b)$
- We can find an SVM classifier by solving the system of constraints (a quadratic programming problem):
 - $\max_{w,b}(\alpha)$
 - where $w^T x b \ge \alpha$
 - and $w^T x b \le -\alpha$
 - with $w^T w = 1$

maximize the margin

for points x in the first class

for points x in the second class

Soft-Margin SVM

- What if there is no separating hyperplane?
 - Introduce penalties ξ_i to mis-classifications
 - Helps prevent overfitting

Image: John Canny

Linear models: Recap

- Linear models rely on some notion of a linear boundary (i.e., a hyperplane)
- But real-world data are typically not linearly separable
- Some classifiers just make a decision as to which class an object is in;
 others estimate class probabilities

Outline

- Logistic regression (inference)
- Logistic regression (prediction and gradient descent)
- Support vector machines
- Kernels

Nonlinearly separable data

Extending linear models

We are modeling y with feature x

- Classes are not separable with this feature
- One solution: non-linear classifier
- Another solution: add features!
 - E.g., X²

Kernel SVM

Kernel Methods: Example

Feature combinations

- Recall our feature space in digit classification
 - 28 x 28 pixels = 784 features
 - with 2nd order features: ~615k features
 - with 3rd order features: ~48om features

- Remember the "curse of dimensionality"?
 - We don't have enough data to train
- Adding interactions can help, but adding too many can hurt

Key Concepts (this lecture)

- Logistic regression
- Simplified sigmoid cost function
- Odds ratios
- Overfitting revisited
- Support vector machines
- Hard vs. soft margins
- Kernel functions