AEM - Problem komiwojażera

Dawid Białek 131731, Bartosz Mila 131804 30 marca 2020

1. Krótki opis zadania.

Rozważany problem to zmodyfikowany problem komiwojażera. Dany jest zbiór wierzchołków i macierz symetrycznych odległości pomiędzy każdą parą wierzchołków. Należy znaleźć najkrótszą ścieżkę zamkniętą przechodzącą przez dokładnie 50% wszystkich wierzchołków (w przypadku nieparzystej liczby wierzchołków zaokrąglamy w górę). Wybór wierzchołków do ścieżki jest elementem rozwiązania. Minimalizowane kryterium to długość zamkniętej ścieżki.

2. Opis obu zaimplementowanych algorytmów w pseudokodzie.

Wersja zachłanna:

- Wybierz losowo pierwszy punkt z dostępnych punktów
- Wybierz drugi punkt położony najbliżej pierwszego
- Dopóki nie połączono połowy istniejących punktów:
 - Dla każdego punktu nie należącego do grafu:
 - Sprawdź koszt dodania punktu dla każdej krawędzi
 - Dodaj najlepszy punkt do grafu

Wersja zachłanna z żalem:

- Wybierz losowo pierwszy punkt z dostępnych punktów
- Wybierz drugi punkt położony najbliżej pierwszego
- Wybierz trzeci punkt wg. najmniejszego kosztu dodania na tym etapie żal jest identyczny dla wszystkich punktów
- Dopóki nie połączono połowy istniejących punktów:
 - Dla każdego punktu nie należącego do grafu:
 - Sprawdź koszt dodania punktu dla każdej krawędzi
 - Dodaj koszty do tablicy rozwiązań punktu i posortuj
 - Oblicz żal punktu
 - Dodaj punkt o największym żalu do grafu

3. Wyniki eksperymentu obliczeniowego.

	Algorytm 1	Algorytm 2
Średnia ścieżka	12445.03	15680.37
Najdłuższa ścieżka	13266	16765
Najkrótsza ścieżka	11095	15007

Tabela 1. Wyniki dla zbioru kroA

	Algorytm 1	Algorytm 2
Średnia ścieżka	11870.49	16017.39
Najdłuższa ścieżka	13926	17048
Najkrótsza ścieżka	10346	14497

Tabela 2. Wyniki dla zbioru kroB

4. Wizualizacje najlepszych rozwiązań dla każdej kombinacji.

Rysunek 1. Wizualizacja dla zbioru kroA i algorytmu 1

Rysunek 2. Wizualizacja dla zbioru kroA i algorytmu 2

Rysunek 3. Wizualizacja dla zbioru kroB i algorytmu 1

Rysunek 4. Wizualizacja dla zbioru kroB i algorytmu 2

5. Wnioski.

Na podstawie przeprowadzonych testów dla grafu składającego się z połowy dostępnych punktów wynika, iż algorytm zachłanny bez żalu uzyskał lepsze wyniki w porównaniu do wersji algorytmu z żalem.

6. Kod programu (np. w postaci linku).

https://github.com/Kurkum/AEM_1