Learning Objectives

• <u>Compare</u> independent t-test vs. paired t-test vs. single sample t-test

 <u>Describe</u> conditions under which we would select an *independent t-test*

- **Conduct** an independent *t*-test
 - With effect size!

Which test to use?

What do we want?

Is our mean different from a specific population mean (µ)?

Do we know the population standard deviation (σ)?

No

z-test

single sample t-test Are these two sample means different from each other?

Are the data correlated or independent?

a.k.a., between-subjects t, Student's t (don't use),
 unpaired t

Requirements:

- Compare 2 groups
- DV is interval/ratio* (for parametric tests)
- DV is approximately normal*
 - $n_1 > 30 \& n_2 > 30$
- Absence of outliers*
- Homogeneity of variance*

^{*}Note that the *t*-test is generally robust to violations of these requirements

Comparison of simplified Conceptual Formulas

$$t_{\rm obt} = \frac{\bar{X}_{\rm obt}}{s_{\bar{X}}}$$

where usually: $\mu = 0$

$$t_{\rm obt} = \frac{\overline{D}_{\rm obt}}{s_{\overline{D}}}$$

where usually: $\mu_{m{D}=0}$ & where: $m{ar{D}}=ar{X}_{
m pre}-ar{X}_{
m post}$

$$t_{\text{obt}} = \frac{\bar{X}_1 - \bar{X}_2}{s_w}$$

where usually: $\mu_{\overline{X}_1-\overline{X}_2}$ = 0 & where: w= weighted estimate of s's

Comparison of Conceptual Formulas

$$t_{\rm obt} = \frac{\bar{X}_{\rm obt} - \mu}{s_{/\sqrt{N}}}$$

$$t_{\rm obt} = \frac{D_{\rm obt} - \mu_D}{s_D/\sqrt{N}}$$

$$t_{\text{obt}} = \frac{(\bar{X}_1 - \bar{X}_2) - (\mu_{\bar{X}_1 - \bar{X}_2})}{s_{(\bar{X}_1 - \bar{X}_2)}/\sqrt{n}}$$

Comparison of Computational Formulas

$$t_{\text{obt}} = \frac{\bar{X}_{\text{obt}} - \mu}{\sqrt{\frac{SS}{N(N-1)}}}$$

$$t_{\text{obt}} = \frac{D_{\text{obt}}}{\sqrt{\frac{SS_D}{N(N-1)}}}$$

$$t_{\text{obt}} = \frac{X_1 - X_2}{\sqrt{\frac{SS_1 + SS_2}{n(n-1)}}}$$

Where n = sample size per condition & when n_1 = n_2

Computational formula for independent *t*-test

$$t_{\text{obt}} = \frac{\bar{X}_1 - \bar{X}_2}{\sqrt{s_w^2(\frac{1}{n_1} + \frac{1}{n_2})}}$$

$$s_w^2 = \frac{df_1 \, s_1^2 + df_2 \, s_2^2}{df_1 + df_2}$$

$$s_w^2 = \frac{{s_1}^2 + {s_2}^2}{2}$$

only when $n_1 = n_2$

Example: Independent t-test

- Survey data
 - -N = 8
 - IV: Early or Late PSYC 218 Section
 - DV: How much do you like spicy food?
 - 1: Not at all
 - 2: Somewhat
 - 3: A lot

ID	Section	Spice Att.	
1	2	3	
2	2	2	
3	1	2	
4	1	1	
5	1	3	
6	2	2	
7	1	1	
8	2	3	
		$\Sigma X_{n_1} = 7$	$SS_1 = 2$

$$t_{\text{obt}} = \frac{\bar{X}_1 - \bar{X}_2}{\sqrt{s_w^2(\frac{1}{n_1} + \frac{1}{n_2})}}$$

$$\bar{X}_1 = \frac{\Sigma X_{n_1}}{n_1} = \frac{7}{4} = 1.75$$

$$s_w^2 = \frac{df_1 \, s_1^2 + df_2 \, s_2^2}{df_1 + df_2}$$

$$s_1^2 = \frac{\Sigma (X_{n_1} - \bar{X}_1)^2}{n_1 - 1} = \frac{SS_1}{4 - 1} = .9167$$

ID	Section	Spice Att.	
1	2	3	
2	2	2	
3	1	2	
4	1	1	
5	1	3	
6	2	2	
7	1	1	
8	2	3	
		$\Sigma X_{n_1} = 7$	$SS_1 = 2$

$$t_{\text{obt}} = \frac{\bar{X}_1 - \bar{X}_2}{\sqrt{s_w^2(\frac{1}{n_1} + \frac{1}{n_2})}}$$

$$\bar{X}_1 = \frac{\Sigma X_{n_1}}{n_1} = \frac{7}{4} = 1.75$$

$$s_w^2 = \frac{df_1 s_1^2 + df_2 s_2^2}{df_1 + df_2}$$

$$s_1^2 = \frac{\Sigma (X_{n_1} - \bar{X}_1)^2}{n_1 - 1} = \frac{SS_1}{4 - 1} = .9167$$

$$N = 8$$
 $n_1 \& n_2 = 4$
 $df = n - 1 = 3$

$$\bar{X}_1 = 1.75$$
 $s_1^2 = .9167$
 $\bar{X}_2 = 2.50$
 $s_2^2 = .3333$

 \bar{X}_2 and s_2^{-2} Calculated same as for group 1

$$t_{\text{obt}} = \frac{\bar{X}_1 - \bar{X}_2}{\sqrt{s_w^2(\frac{1}{n_1} + \frac{1}{n_2})}}$$

$$s_w^2 = \frac{df_1 s_1^2 + df_2 s_2^2}{df_1 + df_2}$$

Assumes:

Homogeneity of

Variance

Computing an average only makes sense for estimates of the same thing

$$N = 8$$
 $n_1 \& n_2 = 4$
 $df = n - 1 = 3$

$$\bar{X}_1 = 1.75$$
 $s_1^2 = .9167$
 $\bar{X}_2 = 2.50$
 $s_2^2 = .3333$

$$s_w^2 = ...$$

$$t_{\text{obt}} = \frac{\bar{X}_1 - \bar{X}_2}{\sqrt{s_w^2 (\frac{1}{n_1} + \frac{1}{n_2})}}$$

$$s_w^2 = \frac{df_1 s_1^2 + df_2 s_2^2}{df_1 + df_2}$$

$$\frac{3 \times .9167 + 3 \times .3333}{3 + 3}$$

$$N = 8$$
 $n_1 \& n_2 = 4$
 $df_1 \& df_1 = 3$

$$\bar{X}_1 = 1.75$$
 $s_1^2 = .9167$
 $\bar{X}_2 = 2.50$
 $s_2^2 = .3333$
 $s_w^2 = .6250$

$$t_{\rm obt}$$
 = ...

$$t_{\text{obt}} = \frac{\bar{X}_1 - \bar{X}_2}{\sqrt{s_w^2(\frac{1}{n_1} + \frac{1}{n_2})}}$$

$$= \frac{\bar{X}_1 - \bar{X}_2}{\sqrt{s_w^2(\frac{1}{n_1} + \frac{1}{n_2})}}$$

$$\frac{-0.75}{\sqrt{.6250(0.5)}} =$$

$$N = 8$$
 $n_1 \& n_2 = 4$
 $df_1 \& df_1 = 3$

$$\bar{X}_1 = 1.75$$
 $s_1^2 = .9167$
 $\bar{X}_2 = 2.50$
 $s_2^2 = .3333$
 $s_w^2 = .6250$

$$t_{\text{obt}} = -1.34$$

$$\propto_{2-\text{tail}} = .05$$

$$t_{\text{crit}} = ...$$

$$t_{\text{obt}} = -1.34$$

 $t_{\text{crit}} = \pm 2.447$

$$-t_{\text{obt}} > -t_{\text{crit}}$$

Decision: Fail to reject H_0

APA reporting (*exact p-value calculated in Jamovi)

"We failed to reject H_0 , t(6) = -1.34, p = .228*. Students in early vs. late sections of PSYC 218 did not detectably differ in their preference for spiciness."

Cohen's d_s

$$N = 8$$

 $n_1 \& n_2 = 4$
 $df_1 \& df_1 = 3$

$$\bar{X}_1$$
= 1.75
 s_1^2 = .9167
 \bar{X}_2 = 2.50
 s_2^2 = .3333
 s_w^2 = .6250

$$t_{\text{obt}} = -1.34$$

 $\propto_{2-\text{tail}} = .05$
 $t_{\text{crit}} = \pm 2.447$

Cohen's
$$d_s = \frac{\bar{X}_1 - \bar{X}_2}{\sqrt{s_w^2}}$$

$$d_s = \frac{\bar{X}_1 - \bar{X}_2}{\sqrt{s_W^2}}$$

How large is this effect?