EEL101 Major Exam

Semester II, 2008-09 – Mar 20, 2009 Electrical Engineering, IIT Delhi

Answer all questions in sequence. Each answer should begin in a new page.

Maximum time: 2 hours Maximum points: 35

[2]

[2]

Name, ID, and Group No.:

- 1. An op-amp has a CMRR 1000. In one case, the op-amp is used to achieve a differential amplification where the inputs are $v_1 = +50 \mu V$ and $v_2 = -50 \mu V$. In another case the inputs are $v_1 = +1050 \mu V$ and $v_2 = +950 \mu V$. The difference in output voltage in the two cases would be:
 - a. 0
 - b. 0.1%
 - c. 1.0%
 - d. 10%
 - e. Cannot be calculated because of insufficient parameters
- 2. Consider the following op-amp circuit:

Given, A = 1000.

The output of the circuit V_0 will be approximately:

- a. +12 V
- b. -12 V
- c. +3V
- d. -3V
- . 0 V
- 3. Consider the following op-amp circuit:

Io
The output current will be:

- a. Nearly zero
- b. 1 mA
- c. -1mA
- d. $10 \mu A$
- e. $-10 \,\mu$ A
- 4. Find V_{ab} in the circuit shown below:

- 6. A dc source supplies current to a series combination of $1k\Omega$ and $3k\Omega$ resistors. A voltmeter is used to measure the voltage across the $1k\Omega$ resistor. Determine the lowest resistance which the voltmeter must have so that the measurement error does not exceed 1%. [4]
- 7. Consider the circuit shown below. Is it symmetrical? Calculate the y-parameters of the circuit, and draw the equivalent Π circuit.

8. Find the Thevenin's equivalent of the circuit at the terminal xy. [2,2]

9. The op-amp shown below is ideal and not saturated. Obtain (a) the voltage gain, (b) input resistance, and (c) current i_2 . [2,2,2]

10. (i) What are the modes of field excitation of a DC machine, and under which circumstance do you think one needs a separately excited DC machine? (ii) A 25kW 125V separately excited dc machine is operated at a constant speed of 3000 rpm with a constant field current such that the open-circuit armature voltage is 125V. The armature resistance is 0.02Ω. The terminal voltage of the machine is 128V. (a) Is the machine working as a motor or a generator? (b) Compute the armature current, terminal power, electromagnetic power (in the air gap field), and mechanical torque generated.