変分法の基本原理・

任意の状態ベクトル $|\psi\rangle$ に対して $|\psi\rangle$ でのエネルギー関数 $E(\psi)$ について,

$$E(\psi) = \frac{\left\langle \psi \middle| \hat{H} \middle| \psi \right\rangle}{\left\langle \psi \middle| \psi \right\rangle} \ge E_0$$

なる不等式が成り立つ.ただし E_0 は \hat{H} の固有エネルギーの中で最低のものである.

· 1 次摂動によるエネルギー補正 -

$$E_n^{(1)} = \left\langle n^{(0)} \middle| \hat{V} \middle| n^{(0)} \right\rangle$$

1次摂動による固有ベクトル補正。

$$\left| n^{(1)} \right\rangle = \sum_{m \neq n} \frac{\left\langle m^{(0)} \middle| \hat{V} \middle| n^{(0)} \right\rangle}{E_n^{(0)} - E_m^{(0)}} \left| m^{(0)} \right\rangle$$

- 2 次摂動によるエネルギー補正

$$E_n^{(2)} = \sum_{m \neq n} \frac{\left| \left\langle m^{(0)} \middle| \hat{V} \middle| n^{(0)} \right\rangle \right|^2}{E_n^{(0)} - E_m^{(0)}}$$

・縮退がある場合の摂動論による1次エネルギー補正 -

$$E_n^{(1)} = \frac{1}{2} \left[(V_{aa} + V_{bb}) \pm \sqrt{(V_{aa} - V_{bb})^2 + 4|V_{ab}|^2} \right]$$

相互作用表示

$$|\psi(t)\rangle_{\mathrm{I}} \coloneqq \exp\left(\mathrm{i}\frac{\hat{H}^{(0)}}{\hbar}t\right)|\psi(t)\rangle$$

·朝永·Schwinger 方程式

$$\begin{cases} \mathrm{i}\hbar\frac{\mathrm{d}}{\mathrm{d}t}\,|\psi(t)\rangle_{\mathrm{I}} = \hat{V}_{\mathrm{I}}(t)\,|\psi(t)\rangle_{\mathrm{I}} \\ \hat{V}_{\mathrm{I}}(t) = \exp\left(\mathrm{i}\frac{\hat{H}^{(0)}}{\hbar}t\right)\hat{V}(t)\exp\left(-\mathrm{i}\frac{\hat{H}^{(0)}}{\hbar}t\right) \end{cases}$$

・非定常摂動量子系の時間発展

$$\mathrm{i}\hbar\frac{\mathrm{d}}{\mathrm{d}t}c_m(t) = \sum_n c_n(t)V_{mn}(t)\mathrm{e}^{\mathrm{i}\omega_{mn}t}$$

共鳴条件:

$$\omega = \omega_{21} = \frac{E_2 - E_1}{\hbar}$$

 $|\psi(t_0)\rangle_{\mathrm{I}}=|i
angle$ の時間発展

$$\begin{cases} |\psi(t)\rangle_{\mathrm{I}} &= \left(1 + c_{i,i}^{(1)}(t)\right)|i\rangle + \sum_{n \neq i} c_{n,i}^{(1)}(t)|n\rangle \\ \\ c_{n,i}^{(1)}(t) &= -\frac{\mathrm{i}}{\hbar} \int_{t_0}^t V_{n,i} \mathrm{e}^{i\omega_{ni}t} \,\mathrm{d}t \end{cases}$$

Fermi の黄金律・

$$\omega_{i \to f} = \frac{2\pi}{\hbar} \left| \left\langle f \middle| \hat{V} \middle| i \right\rangle \right|^2 \delta(E_f - E_i)$$

・電磁場中の電子のハミルトニアン -

$$H = \frac{1}{2m}(\boldsymbol{p} + e\boldsymbol{A})^2 - e\phi$$

- 局所ゲージ変換に対して不変な Schrödinger 方程式 -

$$\mathrm{i}\hbar\frac{\partial}{\partial t}\psi = \left[\frac{1}{2m}\left(\hat{\boldsymbol{p}} + e\hat{\boldsymbol{A}}\right)^2 - e\phi\right]\psi$$

- 散乱問題の境界条件

$$\psi(\mathbf{r}) = e^{ikz} + f(\theta) \frac{e^{ikr}}{r}$$

散乱振幅と微分断面積の関係

$$\sigma(\theta) = |f(\theta)|^2$$

- 球対称ポテンシャルの散乱振幅

$$f^{(1)}(\theta) = -\frac{2m}{\hbar^2 q} \int_0^\infty r V(r) \sin qr \, \mathrm{d}r$$

- 部分波展開した散乱の波動関数

$$\psi(\mathbf{r}) = \sum_{l=0}^{\infty} (2l+1)i^l j_l(kr) P_l(\cos\theta) + \sum_{l=0}^{\infty} (2l+1) a_l P_l(\cos\theta) \frac{e^{ikr}}{r}$$

光学定理·

$$\sigma^{\rm tot} = \frac{4\pi}{k} \operatorname{Im} f(0)$$

· 特殊相対性原理 -

あらゆる慣性系で同じ物理法則が成り立つ.

光速度不変の原理 -

あらゆる慣性形で真空中の光の速さは同一である.

· Lorentz 変換 -

$$\begin{pmatrix} ct' \\ x' \end{pmatrix} = \frac{1}{\sqrt{1-(v/c)^2}} \begin{pmatrix} 1 & -v/c \\ -v/c & 1 \end{pmatrix} \begin{pmatrix} ct \\ x \end{pmatrix}$$

速度の合成

$$V = \frac{v + u'}{1 + vu'/c^2}$$

- Lorentz 収縮 -

$$L' = \sqrt{1 - \left(\frac{v}{c}\right)^2} L$$

· 時間の遅れ ·

$$\Delta T = \frac{1}{\sqrt{1 - (v/c)^2}} \Delta \tau$$

- Lorentz 変換に対して共変な Maxwell 方程式・

$$\begin{split} \partial_{\mu}F_{\nu\lambda} + \partial_{\nu}F_{\lambda\mu} + \partial_{\lambda}F_{\mu\nu} &= 0 \\ \partial^{\nu}H_{\nu\mu} &= j_{\mu} \\ \partial_{\mu}j^{\mu} &= 0 \end{split}$$

- Klein-Gordon 方程式 -

$$\left[\frac{1}{c^2}\frac{\partial^2}{\partial t^2} - \boldsymbol{\nabla}^2 + \left(\frac{mc}{\hbar}\right)^2\right]\psi = 0$$

- Dirac 方程式

$$\left(\mathrm{i}\hbar\frac{\partial}{\partial t}+\mathrm{i}\hbar c\boldsymbol{\alpha}\cdot\boldsymbol{\nabla}-\beta mc^2\right)\psi=0$$