Exceptional directions in hyperbolic FPP

Mahan Mj, School of Mathematics, Tata Institute of Fundamental Research. (mostly joint with Riddhipratim Basu)

Background geometry

Cayley graph: (G, S) group with finite generating set.

$$\mathcal{V}(\Gamma) = \{g|g \in G\}, \ \mathcal{E}(\Gamma) = \{(g,h)|g^{-1}h \in S\}.$$

Hyperbolic groups

A geodesic metric space (X, d) is δ -hyperbolic if for all $x, y, z \in X$, $[x, y] \subset N_{\delta}([x, z] \cup [y, z])$.

G is hyperbolic if $\Gamma(G, S)$ is hyperbolic with respect to some (any) finite S.

Such groups are ubiquitous.

FPP

```
\Gamma = (\mathcal{V}, \mathcal{E}) a graph.
\rho = \text{probability distribution on } \mathbb{R}_+ := (0, \infty)
(\Omega, \mathbb{P}) = (\mathbb{R}_+, \rho)^{\mathsf{E}}.
Random variables X_e: \Omega \to (0, \infty) given by X_e(\omega) iid with law
\rho.
\gamma = \{e_1, \dots e_k\}-edge path. For \omega \in (\Omega, \mathbb{P}), \ell_{\omega}(\gamma) := \sum_{e \in \gamma} \omega(e).
d_{\omega}(x,y) := \inf_{\gamma} \ell_{\omega}(\gamma).
\Upsilon(x,y)(\omega) - \omega-geodesic between x and y-FPP-geodesic
between x and y.
T(x,y)(\omega) = d_{\omega}(x,y) –first passage time between x and y.
```

FPP

```
\Gamma = (\mathcal{V}, \mathcal{E}) a graph. \rho = \text{probability distribution on } \mathbb{R}_+ := (0, \infty) (\Omega, \mathbb{P}) = (\mathbb{R}_+, \rho)^E. Random variables X_e : \Omega \to (0, \infty) given by X_e(\omega) iid with law \rho. \gamma = \{e_1, \cdots e_k\}-edge path. For \omega \in (\Omega, \mathbb{P}), \ell_\omega(\gamma) := \sum_{e \in \gamma} \omega(e). d_\omega(x, y) := \inf_\gamma \ell_\omega(\gamma). \Upsilon(x, y)(\omega) - \omega-geodesic between x and y-FPP-geodesic
```

 $T(x,y)(\omega) = d_{\omega}(x,y)$ -first passage time between x and y. Widely studied for \mathbb{Z}^n .

Study for hyperbolic groups.

between x and y.

Key feature of hyperbolic group G = boundary ∂G .

Use ∂G to parametrize directions.

Measure ν on ∂G = weak limit of uniform measure on

balls-Patterson-Sullivan measure

Almost every with respect to direction ⇒ Patterson-Sullivan measure.

Key feature of hyperbolic group $G = \text{boundary } \partial G$.

Use ∂G to parametrize directions.

Measure ν on ∂G = weak limit of uniform measure on

balls-Patterson-Sullivan measure

Almost every with respect to direction ⇒ Patterson-Sullivan measure.

Key feature of hyperbolic group G = boundary ∂G . Use ∂G to parametrize directions.

Measure ν on ∂G = weak limit of uniform measure on balls—Patterson-Sullivan measure.

Almost every with respect to direction \Rightarrow Patterson-Sullivan measure.

Key feature of hyperbolic group G = boundary ∂G .

Use ∂G to parametrize directions.

Measure ν on ∂G = weak limit of uniform measure on

balls-Patterson-Sullivan measure.

Almost every with respect to direction ⇒ Patterson-Sullivan measure.

Key feature of hyperbolic group G = boundary ∂G .

Use ∂G to parametrize directions.

Measure ν on ∂G = weak limit of uniform measure on balls—Patterson-Sullivan measure.

Almost every with respect to direction ⇒ Patterson-Sullivan measure.

Key feature of hyperbolic group G = boundary ∂G .

Use ∂G to parametrize directions.

Measure ν on ∂G = weak limit of uniform measure on

balls-Patterson-Sullivan measure.

Almost every with respect to direction ⇒ Patterson-Sullivan measure.

Key feature of hyperbolic group G = boundary ∂G .

Use ∂G to parametrize directions.

Measure ν on ∂G = weak limit of uniform measure on

balls-Patterson-Sullivan measure.

Almost every with respect to direction ⇒ Patterson-Sullivan measure.

Key feature of hyperbolic group G = boundary ∂G .

Use ∂G to parametrize directions.

Measure ν on ∂G = weak limit of uniform measure on

balls-Patterson-Sullivan measure.

Almost every with respect to direction ⇒ Patterson-Sullivan measure.

Say that a path σ starting at o has direction ξ if the only accumulation point of σ in ∂G is ξ .

Theorem ((1) Direction Exists)

Say that a path σ starting at o has direction ξ if the only accumulation point of σ in ∂G is ξ .

Theorem ((1) Direction Exists

Say that a path σ starting at o has direction ξ if the only accumulation point of σ in ∂G is ξ .

Say that a path σ starting at o has direction ξ if the only accumulation point of σ in ∂G is ξ .

Theorem ((1) Direction Exists)

Say that a path σ starting at o has direction ξ if the only accumulation point of σ in ∂G is ξ .

Theorem ((1) Direction Exists)

Say that a path σ starting at o has direction ξ if the only accumulation point of σ in ∂G is ξ .

Theorem ((1) Direction Exists)

Say that a path σ starting at o has direction ξ if the only accumulation point of σ in ∂G is ξ .

Theorem ((1) Direction Exists)

Say that a path σ starting at o has direction ξ if the only accumulation point of σ in ∂G is ξ .

Theorem ((1) Direction Exists)

Say that a path σ starting at o has direction ξ if the only accumulation point of σ in ∂G is ξ .

Theorem ((1) Direction Exists)

Say that a path σ starting at o has direction ξ if the only accumulation point of σ in ∂G is ξ .

Theorem ((1) Direction Exists)

Say that a path σ starting at o has direction ξ if the only accumulation point of σ in ∂G is ξ .

Theorem ((1) Direction Exists)

Say that a path σ starting at o has direction ξ if the only accumulation point of σ in ∂G is ξ .

Theorem ((1) Direction Exists)

Say that a path σ starting at o has direction ξ if the only accumulation point of σ in ∂G is ξ .

Theorem ((1) Direction Exists)

Expected passage time from *x* to *y* is given by

$$\mathbb{E}T(x,y) := \int_{\Omega} T(x,y)(\omega) d\mathbb{P}.$$

For $\xi \in \partial G$, define the velocity in the direction of ξ to be

$$v(\xi) := \lim_{n \to \infty} \frac{\mathbb{E}T(o, x_n)}{d(o, x_n)},$$

provided the limit exists.

Assumption: ρ has no atom at 0 and $\exists a > 0$ such that $\int e^{ax^2} d\rho(x) < \infty$

Theorem ((2) Velocity Exists)

For a.e. $\xi \in \partial G$, the velocity $v(\xi)$ in the direction of ξ exists. Further, $v(\xi)$ is constant almost everywhere.

Expected passage time from x to y is given by

 $\mathbb{E} T(x,y) := \int_{\Omega} T(x,y)(\omega) d\mathbb{P}.$ For $\xi \in \partial G$, define the velocity in the direction of ξ to be

$$v(\xi) := \lim_{n \to \infty} \frac{\mathbb{E}T(o, x_n)}{d(o, x_n)},$$

provided the limit exists.

Assumption: ρ has no atom at 0 and $\exists a > 0$ such that $\int e^{ax^2} d\rho(x) < \infty$.

Theorem ((2) Velocity Exists)

For a.e. $\xi \in \partial G$, the velocity $v(\xi)$ in the direction of ξ exists. Further, $v(\xi)$ is constant almost everywhere.

Expected passage time from x to y is given by

$$\mathbb{E} T(x,y) := \int_{\Omega} T(x,y)(\omega) d\mathbb{P}.$$

For $\xi \in \partial G$, define the velocity in the direction of ξ to be

$$V(\xi) := \lim_{n \to \infty} \frac{\mathbb{E}T(o, x_n)}{d(o, x_n)},$$

provided the limit exists.

Assumption: ρ has no atom at 0 and $\exists a > 0$ such that $\int e^{ax^2} d\rho(x) < \infty$.

Theorem ((2) Velocity Exists)

For a.e. $\xi \in \partial G$, the velocity $v(\xi)$ in the direction of ξ exists. Further, $v(\xi)$ is constant almost everywhere.

Expected passage time from x to y is given by

 $\mathbb{E} T(x,y) := \int_{\Omega} T(x,y)(\omega) d\mathbb{P}.$

For $\xi \in \partial G$, define the velocity in the direction of ξ to be

$$v(\xi) := \lim_{n \to \infty} \frac{\mathbb{E}T(o, x_n)}{d(o, x_n)},$$

provided the limit exists.

Assumption: ρ has no atom at 0 and $\exists a > 0$ such that $\int e^{ax^2} d\rho(x) < \infty$.

Theorem ((2) Velocity Exists)

For a.e. $\xi \in \partial G$, the velocity $v(\xi)$ in the direction of ξ exists. Further, $v(\xi)$ is constant almost everywhere.

Expected passage time from x to y is given by

 $\mathbb{E} T(x,y) := \int_{\Omega} T(x,y)(\omega) d\mathbb{P}.$

For $\xi \in \partial G$, define the velocity in the direction of ξ to be

$$v(\xi) := \lim_{n \to \infty} \frac{\mathbb{E}T(o, x_n)}{d(o, x_n)},$$

provided the limit exists.

Assumption: ρ has no atom at 0 and $\exists a > 0$ such that $\int e^{ax^2} d\rho(x) < \infty$.

(2) Velocity Exi

For a.e. $\xi \in \partial G$, the velocity $v(\xi)$ in the direction of ξ exists. Further, $v(\xi)$ is constant almost everywhere.

Expected passage time from x to y is given by

$$\mathbb{E} T(x,y) := \int_{\Omega} T(x,y)(\omega) d\mathbb{P}.$$

For $\xi \in \partial G$, define the velocity in the direction of ξ to be

$$v(\xi) := \lim_{n\to\infty} \frac{\mathbb{E}T(o,x_n)}{d(o,x_n)},$$

provided the limit exists.

Assumption: ρ has no atom at 0 and $\exists a > 0$ such that $\int e^{ax^2} d\rho(x) < \infty$.

For a.e. $\xi \in \partial G$, the velocity $v(\xi)$ in the direction of ξ exists. Further, $v(\xi)$ is constant almost everywhere.

Expected passage time from *x* to *y* is given by

$$\mathbb{E} T(x,y) := \int_{\Omega} T(x,y)(\omega) d\mathbb{P}.$$

For $\xi \in \partial G$, define the velocity in the direction of ξ to be

$$v(\xi) := \lim_{n\to\infty} \frac{\mathbb{E}T(o,x_n)}{d(o,x_n)},$$

provided the limit exists.

Assumption: ρ has no atom at 0 and $\exists a > 0$ such that $\int e^{ax^2} d\rho(x) < \infty$.

For a.e. $\xi \in \partial G$, the velocity $v(\xi)$ in the direction of ξ exists. Further, $v(\xi)$ is constant almost everywhere.

Expected passage time from *x* to *y* is given by

 $\mathbb{E} T(x,y) := \int_{\Omega} T(x,y)(\omega) d\mathbb{P}.$

For $\xi \in \partial G$, define the velocity in the direction of ξ to be

$$v(\xi) := \lim_{n\to\infty} \frac{\mathbb{E}T(o,x_n)}{d(o,x_n)},$$

provided the limit exists.

Assumption: ρ has no atom at 0 and $\exists a > 0$ such that $\int e^{ax^2} d\rho(x) < \infty$.

Theorem ((2) Velocity Exists)

For a.e. $\xi \in \partial G$, the velocity $v(\xi)$ in the direction of ξ exists. Further, $v(\xi)$ is constant almost everywhere.

Expected passage time from *x* to *y* is given by

 $\mathbb{E} T(x,y) := \int_{\Omega} T(x,y)(\omega) d\mathbb{P}.$

For $\xi \in \partial G$, define the velocity in the direction of ξ to be

$$v(\xi) := \lim_{n\to\infty} \frac{\mathbb{E}T(o,x_n)}{d(o,x_n)},$$

provided the limit exists.

Assumption: ρ has no atom at 0 and $\exists a > 0$ such that $\int e^{ax^2} d\rho(x) < \infty$.

Theorem ((2) Velocity Exists)

For a.e. $\xi \in \partial G$, the velocity $v(\xi)$ in the direction of ξ exists. Further, $v(\xi)$ is constant almost everywhere.

Expected passage time from x to y is given by

$$\mathbb{E} T(x,y) := \int_{\Omega} T(x,y)(\omega) d\mathbb{P}.$$

For $\xi \in \partial G$, define the velocity in the direction of ξ to be

$$v(\xi) := \lim_{n\to\infty} \frac{\mathbb{E}T(o,x_n)}{d(o,x_n)},$$

provided the limit exists.

Assumption: ρ has no atom at 0 and $\exists a > 0$ such that $\int e^{ax^2} d\rho(x) < \infty$.

Theorem ((2) Velocity Exists)

For a.e. $\xi \in \partial G$, the velocity $v(\xi)$ in the direction of ξ exists. Further, $v(\xi)$ is constant almost everywhere.

Expected passage time from x to y is given by

$$\mathbb{E} T(x,y) := \int_{\Omega} T(x,y)(\omega) d\mathbb{P}.$$

For $\xi \in \partial G$, define the velocity in the direction of ξ to be

$$v(\xi) := \lim_{n\to\infty} \frac{\mathbb{E}T(o,x_n)}{d(o,x_n)},$$

provided the limit exists.

Assumption: ρ has no atom at 0 and $\exists a > 0$ such that $\int e^{ax^2} d\rho(x) < \infty$.

Theorem ((2) Velocity Exists)

For a.e. $\xi \in \partial G$, the velocity $v(\xi)$ in the direction of ξ exists. Further, $v(\xi)$ is constant almost everywhere.

Expected passage time from x to y is given by

$$\mathbb{E} T(x,y) := \int_{\Omega} T(x,y)(\omega) d\mathbb{P}.$$

For $\xi \in \partial G$, define the velocity in the direction of ξ to be

$$v(\xi) := \lim_{n\to\infty} \frac{\mathbb{E}T(o,x_n)}{d(o,x_n)},$$

provided the limit exists.

Assumption: ρ has no atom at 0 and $\exists a > 0$ such that $\int e^{ax^2} d\rho(x) < \infty$.

Theorem ((2) Velocity Exists)

For a.e. $\xi \in \partial G$, the velocity $v(\xi)$ in the direction of ξ exists. Further, $v(\xi)$ is constant almost everywhere.

Expected passage time from *x* to *y* is given by

$$\mathbb{E} T(x,y) := \int_{\Omega} T(x,y)(\omega) d\mathbb{P}.$$

For $\xi \in \partial G$, define the velocity in the direction of ξ to be

$$v(\xi) := \lim_{n\to\infty} \frac{\mathbb{E}T(o,x_n)}{d(o,x_n)},$$

provided the limit exists.

Assumption: ρ has no atom at 0 and $\exists a > 0$ such that $\int e^{ax^2} d\rho(x) < \infty$.

Theorem ((2) Velocity Exists)

For a.e. $\xi \in \partial G$, the velocity $v(\xi)$ in the direction of ξ exists. Further, $v(\xi)$ is constant almost everywhere.

Second order behavior of passage time $T(1, x_n)$ along geodesics grows linearly.

Theorem

There exists $0 < C_1 < C_2 < \infty$ such that

$$C_1 n \leq \operatorname{Var}(T(1, x_n)) \leq C_2 n.$$

Second order behavior of passage time $T(1, x_n)$ along geodesics grows linearly.

Theorem

There exists $0 < C_1 < C_2 < \infty$ such that

 $C_1 n \leq \operatorname{Var}(T(1, x_n)) \leq C_2 n.$

Second order behavior of passage time $T(1, x_n)$ along geodesics grows linearly.

Theorem

There exists $0 < C_1 < C_2 < \infty$ such that

$$C_1 n \leq \operatorname{Var}(T(1, x_n)) \leq C_2 n.$$

Second order behavior of passage time $T(1, x_n)$ along geodesics grows linearly.

Theorem

There exists $0 < C_1 < C_2 < \infty$ such that

$$C_1 n \leq \operatorname{Var}(T(1, x_n)) \leq C_2 n.$$

Second order behavior of passage time $T(1, x_n)$ along geodesics grows linearly.

Theorem

There exists $0 < C_1 < C_2 < \infty$ such that

$$C_1 n \leq \operatorname{Var}(T(1, x_n)) \leq C_2 n.$$

Two semi-infinite paths σ_1, σ_2 are said to **coalesce** if beyond some x_0 , they coincide.

Theorem ((4) Coalescence of ω -geodesics

Given direction ξ , for a.e. $\omega \in (\Omega, \mathbb{P})$, $o_1, o_2 \in G \omega$ -geodesic rays $[o_1, \xi)_{\omega}$ and $[o_2, \xi)_{\omega}$ a.s. coalesce.

Random backward tree $T(\xi, \omega)$: union of all random geodesics directed towards $\xi \in \partial G$.

Two semi-infinite paths σ_1, σ_2 are said to **coalesce** if beyond some x_0 , they coincide.

Theorem ((4) Coalescence of ω -geodesics)

Given direction ξ , for a.e. $\omega \in (\Omega, \mathbb{P})$, $o_1, o_2 \in G \omega$ -geodesic rays $[o_1, \xi)_{\omega}$ and $[o_2, \xi)_{\omega}$ a.s. coalesce.

Random backward tree $T(\xi, \omega)$: union of all random geodesics directed towards $\xi \in \partial G$.

Two semi-infinite paths σ_1 , σ_2 are said to **coalesce** if beyond some x_0 , they coincide.

Theorem ((4) Coalescence of ω -geodesics)

Given direction ξ , for a.e. $\omega \in (\Omega, \mathbb{P})$, $o_1, o_2 \in G$ ω –geodesic rays $[o_1, \xi)_{\omega}$ and $[o_2, \xi)_{\omega}$ a.s. coalesce.

Random backward tree $T(\xi, \omega)$: union of all random geodesics directed towards $\xi \in \partial G$.

Two semi-infinite paths σ_1 , σ_2 are said to **coalesce** if beyond some x_0 , they coincide.

Theorem ((4) Coalescence of ω -geodesics)

Given direction ξ , for a.e. $\omega \in (\Omega, \mathbb{P})$, $o_1, o_2 \in G$ ω —geodesic rays $[o_1, \xi)_{\omega}$ and $[o_2, \xi)_{\omega}$ a.s. coalesce.

Random backward tree $T(\xi, \omega)$: union of all random geodesics directed towards $\xi \in \partial G$.

Two semi-infinite paths σ_1 , σ_2 are said to **coalesce** if beyond some x_0 , they coincide.

Theorem ((4) Coalescence of ω -geodesics)

Given direction ξ , for a.e. $\omega \in (\Omega, \mathbb{P})$, $o_1, o_2 \in G$ ω —geodesic rays $[o_1, \xi)_{\omega}$ and $[o_2, \xi)_{\omega}$ a.s. coalesce.

Random backward tree $T(\xi, \omega)$: union of all random geodesics directed towards $\xi \in \partial G$.

Two semi-infinite paths σ_1 , σ_2 are said to **coalesce** if beyond some x_0 , they coincide.

Theorem ((4) Coalescence of ω -geodesics)

Given direction ξ , for a.e. $\omega \in (\Omega, \mathbb{P})$, $o_1, o_2 \in G$ ω —geodesic rays $[o_1, \xi)_{\omega}$ and $[o_2, \xi)_{\omega}$ a.s. coalesce.

Random backward tree $T(\xi, \omega)$: union of all random geodesics directed towards $\xi \in \partial G$.

Two semi-infinite paths σ_1 , σ_2 are said to **coalesce** if beyond some x_0 , they coincide.

Theorem ((4) Coalescence of ω -geodesics)

Given direction ξ , for a.e. $\omega \in (\Omega, \mathbb{P})$, $o_1, o_2 \in G \omega$ -geodesic rays $[o_1, \xi)_{\omega}$ and $[o_2, \xi)_{\omega}$ a.s. coalesce.

Random backward tree $T(\xi, \omega)$: union of all random geodesics directed towards $\xi \in \partial G$.

Two semi-infinite paths σ_1 , σ_2 are said to **coalesce** if beyond some x_0 , they coincide.

Theorem ((4) Coalescence of ω -geodesics)

Given direction ξ , for a.e. $\omega \in (\Omega, \mathbb{P})$, $o_1, o_2 \in G \omega$ -geodesic rays $[o_1, \xi)_{\omega}$ and $[o_2, \xi)_{\omega}$ a.s. coalesce.

Random backward tree $T(\xi,\omega)$: union of all random geodesics directed towards $\xi \in \partial G$. Random forward tree $F(1,\omega)$: union of all random geodesics starting at 1.

Two semi-infinite paths σ_1 , σ_2 are said to **coalesce** if beyond some x_0 , they coincide.

Theorem ((4) Coalescence of ω -geodesics)

Given direction ξ , for a.e. $\omega \in (\Omega, \mathbb{P})$, $o_1, o_2 \in G$ ω -geodesic rays $[o_1, \xi)_{\omega}$ and $[o_2, \xi)_{\omega}$ a.s. coalesce.

Random backward tree $T(\xi,\omega)$: union of all random geodesics directed towards $\xi\in\partial G$.

Two semi-infinite paths σ_1 , σ_2 are said to **coalesce** if beyond some x_0 , they coincide.

Theorem ((4) Coalescence of ω -geodesics)

Given direction ξ , for a.e. $\omega \in (\Omega, \mathbb{P})$, $o_1, o_2 \in G$ ω -geodesic rays $[o_1, \xi)_{\omega}$ and $[o_2, \xi)_{\omega}$ a.s. coalesce.

Random backward tree $T(\xi,\omega)$: union of all random geodesics directed towards $\xi \in \partial G$.

Two semi-infinite paths σ_1 , σ_2 are said to **coalesce** if beyond some x_0 , they coincide.

Theorem ((4) Coalescence of ω -geodesics)

Given direction ξ , for a.e. $\omega \in (\Omega, \mathbb{P})$, $o_1, o_2 \in G$ ω -geodesic rays $[o_1, \xi)_{\omega}$ and $[o_2, \xi)_{\omega}$ a.s. coalesce.

Random backward tree $T(\xi,\omega)$: union of all random geodesics directed towards $\xi\in\partial G$.

Two semi-infinite paths σ_1 , σ_2 are said to **coalesce** if beyond some x_0 , they coincide.

Theorem ((4) Coalescence of ω -geodesics)

Given direction ξ , for a.e. $\omega \in (\Omega, \mathbb{P})$, $o_1, o_2 \in G \omega$ —geodesic rays $[o_1, \xi)_{\omega}$ and $[o_2, \xi)_{\omega}$ a.s. coalesce.

Random backward tree $T(\xi,\omega)$: union of all random geodesics directed towards $\xi\in\partial G$.

Definition

A backward tree $T(\xi,\omega)$ has complete ends if for all $\xi' \neq \xi$, there exists $p \in [1,\xi)_{\omega}$ such that $(\xi',p]_{\omega} \subset T(\xi,\omega)$.

Assumption: edge weights are sub-exponential. $T(\xi,\omega)$ contains a union of bi-infinite geodesics $\{(\xi',\xi)_{\omega}\}$, where ξ' ranges over $\partial G \setminus \{\xi\}$.

Theorem

For all $\xi \in \partial G$, there exists a full measure subset $\Omega_{\xi} \subset \Omega$ such that for all $\omega \in \Omega_{\xi}$, the backward tree $T(\xi, \omega)$ has complete ends.

Definition

A backward tree $T(\xi,\omega)$ has complete ends if for all $\xi' \neq \xi$, there exists $p \in [1,\xi)_{\omega}$ such that $(\xi',p]_{\omega} \subset T(\xi,\omega)$.

Assumption: edge weights are sub-exponential. $T(\xi,\omega)$ contains a union of bi-infinite geodesics $\{(\xi',\xi)_{\omega}\}$, where ξ' ranges over $\partial G \setminus \{\xi\}$.

Theorem

For all $\xi \in \partial G$, there exists a full measure subset $\Omega_{\xi} \subset \Omega$ such that for all $\omega \in \Omega_{\xi}$, the backward tree $T(\xi, \omega)$ has complete ends.

Definition

A backward tree $T(\xi,\omega)$ has **complete ends** if for all $\xi' \neq \xi$, there exists $p \in [1,\xi)_{\omega}$ such that $(\xi',p]_{\omega} \subset T(\xi,\omega)$.

Assumption: edge weights are sub-exponential. $T(\xi,\omega)$ contains a union of bi-infinite geodesics $\{(\xi',\xi)_{\omega}\}$, where ξ' ranges over $\partial G \setminus \{\xi\}$.

For all $\xi \in \partial G$, there exists a full measure subset $\Omega_{\xi} \subset \Omega$ such that for all $\omega \in \Omega_{\xi}$, the backward tree $T(\xi,\omega)$ has complete ends.

Definition

A backward tree $T(\xi,\omega)$ has **complete ends** if for all $\xi' \neq \xi$, there exists $p \in [1,\xi)_{\omega}$ such that $(\xi',p]_{\omega} \subset T(\xi,\omega)$.

Assumption: edge weights are sub-exponential. $T(\xi,\omega)$ contains a union of bi-infinite geodesics $\{(\xi',\xi)_{\omega}\}$, where ξ' ranges over $\partial G \setminus \{\xi\}$.

For all $\xi \in \partial G$, there exists a full measure subset $\Omega_{\xi} \subset \Omega$ such that for all $\omega \in \Omega_{\xi}$, the backward tree $T(\xi,\omega)$ has complete ends.

Definition

A backward tree $T(\xi,\omega)$ has **complete ends** if for all $\xi' \neq \xi$, there exists $p \in [1,\xi)_{\omega}$ such that $(\xi',p]_{\omega} \subset T(\xi,\omega)$.

Assumption: edge weights are sub-exponential. $T(\xi, \omega)$ contains a union of bi-infinite geodesics $\{(\xi', \xi)_{\omega}\}$, where ξ' ranges over $\partial G \setminus \{\xi\}$.

For all $\xi \in \partial G$, there exists a full measure subset $\Omega_{\xi} \subset \Omega$ such that for all $\omega \in \Omega_{\xi}$, the backward tree $T(\xi,\omega)$ has complete ends.

Definition

A backward tree $T(\xi,\omega)$ has **complete ends** if for all $\xi' \neq \xi$, there exists $p \in [1,\xi)_{\omega}$ such that $(\xi',p]_{\omega} \subset T(\xi,\omega)$.

Assumption: edge weights are sub-exponential. $T(\xi,\omega)$ contains a union of bi-infinite geodesics $\{(\xi',\xi)_{\omega}\}$, where ξ' ranges over $\partial G \setminus \{\xi\}$.

For all $\xi \in \partial G$, there exists a full measure subset $\Omega_{\xi} \subset \Omega$ such that for all $\omega \in \Omega_{\xi}$, the backward tree $T(\xi,\omega)$ has complete ends.

Definition

A backward tree $T(\xi,\omega)$ has **complete ends** if for all $\xi' \neq \xi$, there exists $p \in [1,\xi)_{\omega}$ such that $(\xi',p]_{\omega} \subset T(\xi,\omega)$.

Assumption: edge weights are sub-exponential. $T(\xi,\omega)$ contains a union of bi-infinite geodesics $\{(\xi',\xi)_{\omega}\}$, where ξ' ranges over $\partial G \setminus \{\xi\}$.

Theorem

For all $\xi \in \partial G$, there exists a full measure subset $\Omega_{\xi} \subset \Omega$ such that for all $\omega \in \Omega_{\xi}$, the backward tree $T(\xi, \omega)$ has complete ends.

Definition

A backward tree $T(\xi,\omega)$ has **complete ends** if for all $\xi' \neq \xi$, there exists $p \in [1,\xi)_{\omega}$ such that $(\xi',p]_{\omega} \subset T(\xi,\omega)$.

Assumption: edge weights are sub-exponential. $T(\xi,\omega)$ contains a union of bi-infinite geodesics $\{(\xi',\xi)_{\omega}\}$, where ξ' ranges over $\partial G \setminus \{\xi\}$.

Theorem

For all $\xi \in \partial G$, there exists a full measure subset $\Omega_{\xi} \subset \Omega$ such that for all $\omega \in \Omega_{\xi}$, the backward tree $T(\xi, \omega)$ has complete ends.

Definition

A backward tree $T(\xi,\omega)$ has **complete ends** if for all $\xi' \neq \xi$, there exists $p \in [1,\xi)_{\omega}$ such that $(\xi',p]_{\omega} \subset T(\xi,\omega)$.

Assumption: edge weights are sub-exponential. $T(\xi,\omega)$ contains a union of bi-infinite geodesics $\{(\xi',\xi)_{\omega}\}$, where ξ' ranges over $\partial G \setminus \{\xi\}$.

Theorem

For all $\xi \in \partial G$, there exists a full measure subset $\Omega_{\xi} \subset \Omega$ such that for all $\omega \in \Omega_{\xi}$, the backward tree $T(\xi, \omega)$ has complete ends.

Definition

A backward tree $T(\xi,\omega)$ has **complete ends** if for all $\xi' \neq \xi$, there exists $p \in [1,\xi)_{\omega}$ such that $(\xi',p]_{\omega} \subset T(\xi,\omega)$.

Assumption: edge weights are sub-exponential. $T(\xi,\omega)$ contains a union of bi-infinite geodesics $\{(\xi',\xi)_{\omega}\}$, where ξ' ranges over $\partial G \setminus \{\xi\}$.

Theorem

For all $\xi \in \partial G$, there exists a full measure subset $\Omega_{\xi} \subset \Omega$ such that for all $\omega \in \Omega_{\xi}$, the backward tree $T(\xi, \omega)$ has complete ends.

Question

Are there points $\xi \in \partial G$, such that there are disjoint ω -geodesics asymptotic to ξ ?

Such points ξ are called **exceptional directions**. (depends on ω).

Question

How many disjoint random geodesics are asymptotic to ξ ?

Question

Are there points $\xi \in \partial G$, such that there are disjoint ω -geodesics asymptotic to ξ ?

Such points ξ are called **exceptional directions**. (depends on ω).

Question

How many disjoint random geodesics are asymptotic to ξ ?

Question

Are there points $\xi \in \partial G$, such that there are disjoint ω -geodesics asymptotic to ξ ?

Such points ξ are called **exceptional directions**. (depends on ω).

Question

How many disjoint random geodesics are asymptotic to ξ ?

Question

Are there points $\xi \in \partial G$, such that there are disjoint ω –geodesics asymptotic to ξ ?

Such points ξ are called **exceptional directions**. (depends on ω).

Question

How many disjoint random geodesics are asymptotic to ξ ?

Question

Are there points $\xi \in \partial G$, such that there are disjoint ω –geodesics asymptotic to ξ ?

Such points ξ are called **exceptional directions**. (depends on ω).

Question

How many disjoint random geodesics are asymptotic to ξ ?

Exceptional directions

Question

Are there points $\xi \in \partial G$, such that there are disjoint ω -geodesics asymptotic to ξ ?

Such points ξ are called **exceptional directions**. (depends on ω).

Question

How many disjoint random geodesics are asymptotic to ξ ?

Called **multiplicity** of ξ .

Definition

Let (X, d_X) and (Y, d_Y) be hyperbolic metric spaces and let $i: Y \to X$ denote a proper embedding. Let ∂X , ∂Y be their (Gromov) boundaries. Also, let \widehat{X} and \widehat{Y} denote their Gromov compactifications. We say that the triple (X, Y, i) admits a **Cannon-Thurston map**, if i extends continuously to $\widehat{i}: \widehat{Y} \to \widehat{X}$.

 $(T(\omega), d_{\omega}^s)$ -back/forward tree with intrinsic simplicial metric d_{ω}^s .

Theorem

Definition

Let (X, d_X) and (Y, d_Y) be hyperbolic metric spaces and let $i: Y \to X$ denote a proper embedding. Let ∂X , ∂Y be their (Gromov) boundaries. Also, let \widehat{X} and \widehat{Y} denote their Gromov compactifications. We say that the triple (X, Y, i) admits a **Cannon-Thurston map**, if i extends continuously to $\widehat{i}: \widehat{Y} \to \widehat{X}$.

 $(T(\omega), d_{\omega}^s)$ -back/forward tree with intrinsic simplicial metric d_{ω}^s .

Theorem

Definition

Let (X, d_X) and (Y, d_Y) be hyperbolic metric spaces and let $i: Y \to X$ denote a proper embedding. Let ∂X , ∂Y be their (Gromov) boundaries. Also, let \widehat{X} and \widehat{Y} denote their Gromov compactifications. We say that the triple (X, Y, i) admits a Cannon-Thurston map, if i extends continuously to $\widehat{i}: \widehat{Y} \to \widehat{X}$.

 $(T(\omega), d_{\omega}^s)$ -back/forward tree with intrinsic simplicial metric d_{ω}^s .

Definition

Let (X, d_X) and (Y, d_Y) be hyperbolic metric spaces and let $i: Y \to X$ denote a proper embedding. Let ∂X , ∂Y be their (Gromov) boundaries. Also, let \widehat{X} and \widehat{Y} denote their Gromov compactifications. We say that the triple (X, Y, i) admits a **Cannon-Thurston map**, if i extends continuously to $\widehat{i}: \widehat{Y} \to \widehat{X}$.

 $(T(\omega), d_{\omega}^{s})$ -back/forward tree with intrinsic simplicial metric d_{ω}^{s} .

Definition

Let (X, d_X) and (Y, d_Y) be hyperbolic metric spaces and let $i: Y \to X$ denote a proper embedding. Let ∂X , ∂Y be their (Gromov) boundaries. Also, let \widehat{X} and \widehat{Y} denote their Gromov compactifications. We say that the triple (X, Y, i) admits a **Cannon-Thurston map**, if i extends continuously to $\widehat{i}: \widehat{Y} \to \widehat{X}$.

 $(T(\omega), d_\omega^{\mathrm{S}})$ -back/forward tree with intrinsic simplicial metric d_ω^{S} .

Definition

Let (X, d_X) and (Y, d_Y) be hyperbolic metric spaces and let $i: Y \to X$ denote a proper embedding. Let ∂X , ∂Y be their (Gromov) boundaries. Also, let \widehat{X} and \widehat{Y} denote their Gromov compactifications. We say that the triple (X, Y, i) admits a **Cannon-Thurston map**, if i extends continuously to $\widehat{i}: \widehat{Y} \to \widehat{X}$.

 $(T(\omega), d_\omega^s)$ -back/forward tree with intrinsic simplicial metric d_ω^s .

Theorem

Theorem

Let G be a hyperbolic group such that G is not virtually free. Then for a.e. $\omega \in \Omega$, exceptional directions in ∂G exist and are dense in it.

For ℙ-a.e. ω, exceptional directions have zero Patterson-Sullivan measure. In fact, they have Hausdorff dimension strictly less than that of ∂G.

Theorem

Let G be a hyperbolic group such that G is not virtually free. Then for a.e. $\omega \in \Omega$, exceptional directions in ∂G exist and are dense in it.

For ℙ-a.e. ω, exceptional directions have zero Patterson-Sullivan measure. In fact, they have Hausdorff dimension strictly less than that of ∂G.

Theorem

Let G be a hyperbolic group such that G is not virtually free. Then for a.e. $\omega \in \Omega$, exceptional directions in ∂G exist and are dense in it.

Theorem

For \mathbb{P} -a.e. ω , exceptional directions have zero Patterson-Sullivan measure. In fact, they have Hausdorff dimension strictly less than that of ∂G .

Theorem

Let G be a hyperbolic group such that G is not virtually free. Then for a.e. $\omega \in \Omega$, exceptional directions in ∂G exist and are dense in it.

Theorem

For \mathbb{P} -a.e. ω , exceptional directions have zero Patterson-Sullivan measure. In fact, they have Hausdorff dimension strictly less than that of ∂G .

Theorem

Let G be a hyperbolic group such that G is not virtually free. Then for a.e. $\omega \in \Omega$, exceptional directions in ∂G exist and are dense in it.

Theorem

For \mathbb{P} -a.e. ω , exceptional directions have zero Patterson-Sullivan measure. In fact, they have Hausdorff dimension strictly less than that of ∂G .

Cardinality of exceptional directions

Theorem

Let G be a hyperbolic group such that $\dim_t \partial G > 1$. Then for a full measure subset and for $T(\omega)$ either the forward or backward tree, the number of exceptional directions must be uncountable.

Let G be a hyperbolic group acting cocompactly on the hyperbolic plane \mathbf{H}^2 such that the Cayley graph Γ is embedded in \mathbf{H}^2 . Then for a full measure subset, and for both forward and backward trees $T(\omega)$, the number of exceptional directions must be countable.

Cardinality of exceptional directions

Theorem

Let G be a hyperbolic group such that $\dim_t \partial G > 1$. Then for a full measure subset and for $T(\omega)$ either the forward or backward tree, the number of exceptional directions must be uncountable.

Let G be a hyperbolic group acting cocompactly on the hyperbolic plane \mathbf{H}^2 such that the Cayley graph Γ is embedded in \mathbf{H}^2 . Then for a full measure subset, and for both forward and backward trees $T(\omega)$, the number of exceptional directions must be countable.

Cardinality of exceptional directions

Theorem

Let G be a hyperbolic group such that $\dim_t \partial G > 1$. Then for a full measure subset and for $T(\omega)$ either the forward or backward tree, the number of exceptional directions must be uncountable.

Theorem

Let G be a hyperbolic group acting cocompactly on the hyperbolic plane \mathbf{H}^2 such that the Cayley graph Γ is embedded in \mathbf{H}^2 . Then for a full measure subset, and for both forward and backward trees $T(\omega)$, the number of exceptional directions must be countable.

Theorem

Let G be hyperbolic such that $\dim_t \partial G = n - 1$. Let $T(\omega)$ be a random backward or forward tree. Then for any ω in a full measure set there exists an exceptional direction $z \in \partial G$ with multiplicity at least n.

Theorem

I here exists $k_0=k_0(1,\delta)$ such for a full measure set there does not exist any direction $\xi\in\partial G$ with multiplicity more than k_0 ,i.e. there do not exist more than k_0 distinct ω -geodesics from 1 in the direction ξ .

Theorem

Let G be hyperbolic such that $\dim_t \partial G = n - 1$. Let $T(\omega)$ be a random backward or forward tree. Then for any ω in a full measure set there exists an exceptional direction $z \in \partial G$ with multiplicity at least n.

Theorem

I here exists $k_0=k_0(1,\delta)$ such for a full measure set there does not exist any direction $\xi\in\partial G$ with multiplicity more than k_0 ,i.e. there do not exist more than k_0 distinct ω -geodesics from 1 in the direction ξ .

Theorem

Let G be hyperbolic such that $\dim_t \partial G = n-1$. Let $T(\omega)$ be a random backward or forward tree. Then for any ω in a full measure set there exists an exceptional direction $z \in \partial G$ with multiplicity at least n.

Theorem

There exists $k_0 = k_0(\Gamma, \delta)$ such for a full measure set there does not exist any direction $\xi \in \partial G$ with multiplicity more than k_0 , i.e. there do not exist more than k_0 distinct ω -geodesics from 1 in the direction ξ .

Theorem

Let G be hyperbolic such that $\dim_t \partial G = n-1$. Let $T(\omega)$ be a random backward or forward tree. Then for any ω in a full measure set there exists an exceptional direction $z \in \partial G$ with multiplicity at least n.

Theorem

There exists $k_0 = k_0(\Gamma, \delta)$ such for a full measure set there does not exist any direction $\xi \in \partial G$ with multiplicity more than k_0 , i.e. there do not exist more than k_0 distinct ω -geodesics from 1 in the direction ξ .

Theorem

Let G be hyperbolic such that $\dim_t \partial G = n - 1$. Let $T(\omega)$ be a random backward or forward tree. Then for any ω in a full measure set there exists an exceptional direction $z \in \partial G$ with multiplicity at least n.

Theorem

There exists $k_0 = k_0(\Gamma, \delta)$ such for a full measure set there does not exist any direction $\xi \in \partial G$ with multiplicity more than k_0 , i.e. there do not exist more than k_0 distinct ω -geodesics from 1 in the direction ξ .

From trees inside to random partitions on boundary

And back

THANK YOU!