	REPORT D	OCUMENTAT	ION PAGE		OMB No. 0704-0188
maintaining the data need	r this collection of information ed, and completing and review	is estimated to average 1 hour p wing this collection of information	er response, including the time for Send comments regarding this b	reviewing instructions, surden estimate or any of	earching existing data sources, gathering and
Highway, Suite 1204, Arlin	noton VA 22202-4302 Resn	ondente should be autors that	eadquarters Services, Directorate	or information Operation	is and Reports (0704-0188), 1215 Jefferson Davis
1. REPORT DATE		2. REPORT TYPE	ASE DO NOT RETURN YOUR FO	HM TO THE ABOVE A	DDRESS.
		Technical Papers	9	"	B. DATES COVERED (From - To)
4. TITLE AND SUB	TITLE			5	a. CONTRACT NUMBER
				ļ <u>.</u>	h CDANT NUMBER
				"	b. GRANT NUMBER
				5	c. PROGRAM ELEMENT NUMBER
6. AUTHOR(S)					
o. Ad Mon(s)				5	d. PROJECT NUMBER
!				-	2303 e. TASK NUMBER
					Mac8
				5	f. WORK UNIT NUMBER
7 DEDECORMING O	DCANIZATION MANA				
7. PERFORMING U	HGANIZATION NAME	(S) AND ADDRESS(ES	· ·	8	PERFORMING ORGANIZATION
	h Laboratory (AFM	IC)		. 1	EPORT
AFRL/PRS			•		1
5 Pollux Drive Edwards AFB CA	02524 7049			.	15.4
Luwalus AFB CA	93324-7048				
9. SPONSORING / N	MONITORING AGENC	Y NAME(S) AND ADDE	PESS/ES)		
		TAMIL(O) AND ADDI	1235(23)		D. SPONSOR/MONITOR'S CRONYM(S)
Air Force Decem	h Taba a A Ma	(0)	•		
AFRL/PRS	h Laboratory (AFM	(C)		L	
5 Pollux Drive				1	I. SPONSOR/MONITOR'S
Edwards AFB CA	93524-7048				NUMBER(S)
12. DISTRIBUTION	AVAILABILITY STA	TEMENT		<u> </u>	
					1
Approved for publ	ic release; distributi				
ripproved for publ	de release, distributi	on unlimited.			
13. SUPPLEMENTA	RY NOTES		· · · · · · · · · · · · · · · · · · ·		<u> </u>
					† ·
14. ABSTRACT					
TH. ADDITION		•	•		
•					
					i
					j
			•		
-					
			•		
15. SUBJECT TERMS	S				
16. SECURITY CLAS	SIFICATION OF:		17. LIMITATION	10 MINARES	L 400 MANUE CO-
			OF ABSTRACT	18. NUMBER OF PAGES	19a. NAME OF RESPONSIBLE PERSON
a. REPORT	h ADOTDAGE				Leilani Richardson
a. NEFUNI	b. ABSTRACT	c. THIS PAGE			19b. TELEPHONE NUMBER
Unclassified	Unclassified	Unclassified	$(^{\mathbf{A}})$		(include area code) (661) 275-5015

62

Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std. 239.18 ERC# 99-021 2

1 Spreadsheet

MEMORANDUM FOR PRS (I_{n}, μ_{ouse})

FROM: PROI (TI) (STINFO)

28 May 1999

SUBJECT: Authorization for Release of Technical Information, Control Number: AFRL-PR-ED-TP-FY99-0122 Suri and Tinnirello, "Bicyclopropylidene and 1,5-Hexadiyne from Bench Scale to Pilot Scale: Problems and Solutions"

Presentation HEDM Conference

(Statement A)

20021122 014

Bicyclopropylidene and 1,5-Hexadiyne from Bench Scale to Pilot Scale: Problems and Solutions

Suresh C. Suri and Michael Tinnirello

Air Force Research Laboratory/PRS; ERC Inc.

10 East Saturn Blvd., Edwards AFB, CA 93524

E-Mail: suresh_suri@ple.af.mil

DISTRIBUTION STATEMENT A: Approved for Public Release -Distribution Unlimited

Presentation Outline

- Goal
- Criteria for Fuel Selection
- Structural Requirements and Selection for hydrocarbons
- Synthetic Results and Scale Up Challenges
- Future Efforts

Goal

- To come up with a fuel with 2-5% increase of Isp over LOX/RP-1
- LOX/RP-1(del.) = 263 sec*
- LOX/RP-1(calc.)= 300 sec*

* Determined at sea level and 1000 psi chamber pressure

Task Objective

- Survey of energetic hydrocarbons
- Selection of hydrocarbons based on improved theoretical performance
- Synthesis of target hydrocarbons at bench scale
- Easy preparation, Cost effective and safe
- Translate bench-scale synthesis to pilot scale

Criteria for Fuel Selection

- Predicts Better Performance (Isp) Over LOX/RP-1 System
 - Most Desirable Physical Properties
- Lower Vapor Pressure Compared to RP-1
- Higher Dénsity (\geq RP-1 = 0.801 g/mL)
- Freezing Point ($\leq -10^{\circ}$ °C; RP-1 = -41.4° °C)
- Boiling Point ≥ B. P. of RP-1
- Thermally Stable
- Compatible with the Current System

Structural Requirement for High **Energy Contents**

The Energy Contents Can be Increased by Adding Unsaturation in the Molecule -(CH_2)- CH_2 - CH_2 HC=CH

 $\Delta H_{\rm f}/{\rm C} \sim -5$

 ~ 6.25

 ~ 27.1

Kcal/mole

Heat of Formation of Saturated Hydrocarbons

$$\Delta$$
H_f (Obs)

$$\mathrm{CH}_3\mathrm{CH}_3$$

Pentane

$$CH_3(CH_2)_3CH_3$$

$$\Delta H_{\phi}/C = \sim -5 \text{ Kcal/mole}$$

Heat of Formation of Unsaturated Hydrocarbons

$$\Delta H_f(Obs)$$

$$CH_2 = CH_2$$

1,3-Butadiene
$$CH_2$$
= CH - CH = CH_2 +26.11 $\Delta H_f/C = \sim +6.25 \, \text{Kcal/mole}$

$$HC \equiv CH$$

$$\Delta H_{\rho}/C = \sim + 27.1 \text{ Kcal/mole}$$

Structural Requirement for High Energy Contents (Cont....)

The Energy Contents is Also Increased by Incorporating Strain in the Molecule

- Ring Compound

- Cyclopropane

- Cyclobutane

- Cyclopentane

 $\Delta H_{\rm f}$

+ 12.73 Kcal/mole

+ 6.78 Kcal/mole

- 18.44 Kcal/mole

Survey of Hydrocarbons

Cyclopropane $\Delta Hf = 12.7 \text{ Kcal/mole}$ = 0.3 Kcal/gIsp = 312.8ec.

[2.2] Spiropentane $\Delta Hf = 44.4 \text{ Kcal/mole}$ = 0.65 Kcal/gIsp = 311 Sec.

Bicyclopropylidene AHf = 76.1 Kcal/mole = 0.95 Kcal/g Isp = 312.5 Sec.

Cyclopropylacetylene AHf = 64.0 Kcal/mole = 0.97 Kcal/g Isp = 311.3 Sec.

Bicyclopropylacetylene AHf = 73.4 Kcal/mole = 0.69 Kcal/g Isp = 307.2 Sec.

Dicyclopropylidenemethane AHf = 104.6 Kcal/mole

= 1.13 Kcal/gIsp = 313.4 Sec.

Survey of Hydrocarbons

Quadricyclane $\Delta H_f = 72.2 \text{ Kcal/mole}$ = 0.78 Kcal/g $I_{\text{sp}} = 307 \text{ Sec}$

[3]-Triangulane $\Delta H_f = 72.3 \text{ Kcal/mole}$ = 0.77 Kcal/g $I_{sp} = 311.4 \text{ sec}$

Survey of Hydrocarbons

[1.1.1]Propellane and its Derivatives

 $\Delta Hf = 83.0 \text{ Kcal/mole}$ = 1.25 Kcal/gIsp = 316.6 sec

 $\Delta Hf = 51.0 \text{ Kcal/mole}$ = 0.75 Kcal/gIsp = 313.9 sec

 $\Delta Hf = 45.0 \text{ Kcal/mole}$ = 0.54 Kcal/gIsp = 311.2 sec

 $\Delta Hf = 26.0 \text{ Kcal/mole}$ = 0.21 Kcal/gIsp = 308.0 sec

 $\Delta Hf = 95.0 \text{ Kcal/mole}$ = 0.70 Kcal/gIsp = 309.9 sec

Selection of Target Molecules

Bicyclopropylidene $I_{sp} = 312.5$ 86c

Cyclopropylacetylene $I_{sp} = 311.3$ Sec

1,5-Hexadiyne $I_{sp} = 311.8$ Sec

1,7-Octadiyne $I_{sp} = 308.2$ &ec

iterature Methodology

P. LePerchec and J. M. Conia, Tetrahedron Lett. 1970, 1587

A.J. Schipperojn, Rec. Trav. Chim. Pays-Bas 1971, 90, 1110

iterature Methodology

1. A.H. Schmidt, U. Schirmer and J.-M. Conia; Chem. Ber. 1976, 109, 258 2. W. Weber and A.de Meijere; Syn. Comm. 1986, 16, 837

Kulinkovich Reaction

O. G. Kulinkovich, S. V. Sviridov, D. A. Vasilevskii; Synthesis 1991, 234

1. A.de Meijere, S. I. Kozhushkov, T. Spaeth and N. S. Zefirov; *J. Org. Chem.* **1993**, <u>58</u>, 502 2. S.C. Suri; *Technical Report PL-TR-97-3057*, **1997**, p 26

iterature Methodology for 1,5-Hexadiyne

AFRL/PRS Methodology

- Eliminated Use of Free Halogen
- Eliminated Use of Methylene Chloride
- Eliminated Use of Liquid Ammonia/Sodium

Hazard Characteristics of Hydrocarbons

Compound	Olin Matheson Liquid Impact*	Olin Matheson Julius Peters Liquid Impact* Sliding Friction*	NOL Card GAP At Zero Card	
RP-1	96 96 >200, Kgl/cm	>371N	Negative	
Bicyclopropylidene	>200,Kg/cm	133N	Negative	
Cyclopropylacetylene	>200,Kg/cm	78N	Neative	
1,5-Hexadiyne	56 Kg/cm	112N	Negative	
1,7-Octadiyne	148 Kg/cm	100N	Negative	

^{*} Obtained five negative results

Proposed Mechanism of Kulinkovich Reaction

Problems	Consequences	Solution
Rise in temperature (Exothermic reaction)	 Loss of flammable 	 Perform addition of
•	solvent $(F_p=-45)^{\circ}C$	Grignard reagent
	 Product rearranges 	below 0 oC
	to cyclopropyl	 Operation is done
	ethyl ketone	below 30 °C
Water contamination	 Decreases the 	 Purge the reactor with
	concentration of	nitrogen gas all the
	Grignard reagent	time to reduce the
		condensation of water
		vapors in the reactor.
		 Use anhydrous ether
High acid concentration while quenching	Probability of	 Use of low
	formation of	concentration of acid
	rearranged product	
Gummy deposit on the wall of reactor and	Methylcyclopropyl	 Decrease the size of
around cooling coil	carboxylate entraps.	the batch.
	in the gummy	 Try Continuous
	material.	Process
By Products (Isopropanol and Methanol)	Reacts with	 Azetrope removal of
	brominating reagent	Isopropanol &
	in the second step.	methanol using
	-	ethylacetate at ≤ 50
		ာ -

Contamination of Pyridine Carried over to next step Distill off solvent directly from reactor Resulted in thick solid triphenyl phosphine oxide in the reactor. Transfer to rotary evaporator directly and the reactor. The reactor triphenyl phosphine oxide in the reactor. In Parameter in pmethylene chloride with aqueous HCl and triphenyl phosphine oxide in remove 2/3 of dichloromethane followed by treatment with pentane to form free flowing solid In Parameter in pmethylene chloride chloride and triphenyl phosphine oxide in present and the reactor. In Parameter in pmethylene chloride chloride chloride and triphenyl phosphine oxide in pmethylene chloride chloride and triphenyl phosphine oxide in pmethylene chloride chloride and triphenyl phosphine oxide in pmethylene chloride chloride and the reactor.
--

	Problems	Consequences		Solution
•	Exothermic Reaction	 Loss of Product 	•	Reaction vessel is equipped with condensor
				hooked to chiller at ≤ -10 °C.
•	Direct Distillation under high vacuum at room	 Loss of Product 	•	Quenching by adding the reaction mixture into
	temperature			ice-water and extracted with pentane
			•	Distilling off pentane under vacuum using
				water aspirator at dry ice-acetone temperature.
			•	Putting multiple cold-traps in series
•	Purification		•	Using packed column
			•	It further removes traces of pentane

Future Target Molecules

Bicyclopropylacetylene Isp = 307.2 Sec

 $Bicyclopropylidenemethane \\ Isp = 313.4$

Summary

- generating Grignard reagent in situ, thus avoiding handling of moisture The synthesis of 1-cyclopropylcyclopropan-1-ol was developed by sensitive and flammable preformed ethylmagnesium bromide.
- bicyclopropylidene. There is a need to find an alternative synthetic Three steps synthesis was used to prepare 7-8 lbs of route (maximum 2 steps) for it.
- About 200 g of 1,5-hexadiyne was synthesized using environmentally friendly process that eliminates the use of free bromine, controlled solvent dichloromethane and liquid ammonia, was worked out.
- Collected hazard data on bicyclopropylidene and 1,5-hexadiyne