SUPPLY CHAIN DATA ANALYSIS USING MICROSOFT POWER BI

"Supply Chain Management (SCM) means managing all the steps needed to make and deliver a product or service — from getting raw materials to delivering the final product to the customer."

OVERVIEW

- Problem Statement
- Datasets Used
- Column Descriptions
- > ETL Process (Extract, Transform, Load)
- Data Model Overview
- > Relationship diagram and explanation
- Calculated Columns
- > Key Measures & KPIs
- Visual insights
- **Conclusion**
- **Recommendations**

PROBLEM STATEMENT

- AtliQ Mart is losing key customers due to poor delivery service.
- Essential products are often not delivered on time or in full.
- This has led to non-renewal of annual contracts by some customers.
- These delivery issues are damaging customer satisfaction and trust.
- Management wants to fix the problem before expanding to new cities.
- The supply chain team will track On-Time (OT%), In-Full (IF%), and On-Time In-Full (OTIF%) daily to monitor and improve performance.

DATASETS USED

This project contains these datasets:

1. dim_customers.csv

2. dim_products.csv

3. dim_date

4. dim_targets_orders

5. fact_order_lines.csv

6. fact_orders_aggregate.csv

COLUMNS DESCRIPTIONS

dim_customers: This table contains all the information about customers.

- customer_id: Unique ID is given to each customer
- customer_name: Name of the customer
- **city:** It is the city where the customer is present

dim_products: This table
contains all the information
about the products

- product_name: It is the name of the product
- product_id: Unique ID is given to each of the products
- category: It is the class to which the product belongs

dim_date: This table contains the dates at daily, monthly level and week numbers of the year

- date: date at the daily level
- mmm_yy: date at the monthly level
- week_no: week number of the year as per the date column

dim_targets_orders: This table
contains all target data at the
customer level

- customer_id: Unique ID that is given to each of the customers
- ontime_target %: Target assigned for Ontime % for a given customer
- infull_target %: Target assigned for infull % for a given customer
- otif_target %: Target assigned for otif % for a given customer

COLUMNS DESCRIPTIONS

fact_order_lines: This table contains all information about orders and each item inside the orders.

- order_id: Unique ID for each order the customer placed
- order_placement_date: It is the date when the customer placed the order
- customer_id: Unique ID that is given to each of the customers
- product_id: Unique ID that is given to each of the products
- order_qty: It is the number of products requested by the customer to be delivered
- agreed_delivery_date: It is the date agreed between the customer and AtliQ Mart to deliver the products
- actual_delivery_date: It is the actual date AtliQ Mart delivered the product to the customer
- delivered_qty: It is the number of products that are actually delivered to the customer

fact_orders_aggregate: This table contains information about OnTime, InFull and OnTime Infull information aggregated at the order level per customer

- order_id: Unique ID for each order the customer placed
- customer_id: Unique ID that is given to each of the customers
- order_placement_date: It is the date when the customer placed the order
- on_time: 'I' denotes the order is delviered on time. '0' denotes the order is not delivered on time.
- in_full: 'I' denotes the order is delviered in full quantity. '0' denotes the order is not delivered in full quantity.
- otif: 'I' denotes the order is delviered both on time and in full quantity. '0' denotes the order is either not delivered on time or not in full quantity.

DATA PREPROCESSING

- > Extract Imported datasets :
- dim_customers.csv
- dim_products.csv
- dim date
- dim_targets_orders
- fact_order_lines.csv
- fact_orders_aggregate.csv

- > Transform
- Renamed and standardized column names
- Removed nulls and irrelevant columns
- Merged tables
- Created custom columns
- Removed duplicates
- Filtered unnecessary records

- > Load
- Loaded all transformed tables into Power BI model
- Created relationships

Measures Created

DATA MODEL OVERVIEW

CALCULATED COLUMNS

- **DATEDIFF()** Used for: Calculating day delay between agreed_delivery_date and actual_delivery_date.
- FORMAT() Used for: Converting order_placement_date into Month name format (e.g., Jan, Feb).
- MONTH() Used for: Extracting month number from order_placement_date.
- **YEAR()** Used for: Extracting year from order_placement_date.
- WEEKNUM() with CONCATENATE() Used for: Creating Week Number labels (e.g., "WI", "W2", etc.).
- Arithmetic Operation (-) Used for: Calculating not-delivered orders = orders_qty delivery_qty.

KEY MEASURES

VOFR% (Measures Volume Fill Rate.) -

CALCULATE(SUM(delivery_qty)) / SUM(order_qty)

IF% (Measures In-Full performance.) -

CALCULATE(COUNT(order_lines[In Full])) / COUNT(order_lines[Total])

OT% (Measures On-Time performance.) -

CALCULATE(COUNT(order_lines[On Time])) / COUNT(order_lines[Total])

OTIF% (Measures On-Time In-Full rate.) -

CALCULATE(COUNT(order_lines[On Time In Full])) / COUNT(order_lines[Total])

LIFR% (Measures Line Item Fill Rate.)

CALCULATE(COUNT(order_lines[In Full])) / [Total Order Line]

Target-Based KPIs:

- IF_avg = AVERAGE(dim_target_orders[In Full %]) / 100
- OT_avg = AVERAGE(dim_target_orders[On Time %]) / 100
- OTIF_avg = AVERAGE(dim_target_orders[OTIF %]) / 100

Custom Measures

Total_order_line:

CALCULATE(COUNT(order lines[order id]))

Used as denominator for other performance metrics.

MAIN KPI & CITY-WISE PERFORMANCE OVERVIEW

Analysis:

Poor delivery performance: OTIF (16.13%), OT (32.80%), and IF (29.33%) are far below targets, with many customers under 25%.

Systemic issue: Despite 96.59% volume delivered, low LIFR and poor OTIF across cities suggest widespread supply chain gaps

NON-DELIVERED ORDERS, CATEGORY-WISE ANALYSIS, AND PRODUCT-LEVEL TRENDS

Analysis:

Surat faces highest delivery issues, contributing 36.72% of non-delivered orders; Dairy leads order volume, making it the biggest contributor to supply gaps.

LIFR remains unstable (~65–68%), with products like "AM Butter 250" underperforming; VOFR is consistently high (~96–97%), indicating timely quantity delivery but incomplete order lines.

PRODUCT, TIME, AND CUSTOMER-BASED ANALYSIS

Analysis:

Milk SKUs drive majority of orders (I.IM-I.3M each); focus on top customers like Vijay Stores and Lotus Mart can significantly impact performance.

Order volume declining from May to August, with key service metrics (OT 47.95%, IF 65.96%) falling short of goals and 457K+ units undelivered.

CONCLUSION

- Overall service performance is poor with low OTIF (16.13%), OT (32.80%), and IF (29.33%).
- High VOFR (96.59%) indicates quantity is shipped, but not on time or in full.
- Surat leads in undelivered volume, pointing to logistical inefficiencies.
- Dairy products dominate order volume, making them critical to supply chain success.
- Top customers drive bulk of business poor service here directly impacts revenue.
- Monthly order volume is declining, signaling potential demand or operational issues.

RECOMMENDATION

- Optimize delivery timelines using route planning and better logistics coordination.
- Improve warehouse operations to boost fulfillment accuracy (LIFR and IF%).
- Strengthen Dairy supply chain, focusing on high-volume SKUs like AM Milk.
- Prioritize top customers with tailored service levels and proactive issue resolution.
- Analyze order drop trends and initiate demand generation or retention efforts.
- Implement real-time monitoring via dashboards to flag OTIF issues early.

