

Scalable Storage Management with NVMe-oF

Piotr Wysocki, Rafał Bogdanowicz Intel

Agenda

SD®

- Intel® RSD Overview
- NVMoF management in Intel[®] RSD
- Intel[®] RSD storage service evolution
- Intel® RSD 2.5 Redfish/Swordfish and SPDK mappings

Code availability

SE

- All discussed code available on GitHub:
 - https://github.com/intel/intelRSD
 - It will be presented on SDC Workshop

Data Center Agility, Built on Open Standards

TODAY'S DATA CENTER CHALLENGES

Current Infrastructure

- Fixed ratio of compute, storage, and accelerator resources
- Expensive refresh & scale out
- Outdated software interface
- Cumbersome hardware provisioning process

"an **industry-aligned architecture** for composable, disaggregated infrastructure **built on modern, open standards.**"

1. Source: <u>Quantifying Datacenter Inefficiency: Making the Case for Composable Infrastructure</u>, IDC, Document #US42318917, 2017.

2. Source: <u>Disaggregated Server Architecture Drives Data Center Efficiency and Innovation</u>, Shesha Krishnapura, Intel Fellow and Intel IT CTO, 2017

Intel® RSD Key Attributes

Buy less up front and Save money over time

Compose hardware resources "on the fly"

Interoperable

Choose the best now without vendor lock-in

OEMs with solutions based on RSD

Benefits of Disaggregation and Composability

Buy less up front and Save money over time

Compose hardware resources "on the fly"

Composable

Resource pooling

Maximize utilization of high-value assets and improve agility with dynamic composability

Modular Refresh

Independently scale and upgrade resources with better lifecycle Management

Operational Costs

Improve Power Usage Effectiveness (PUE) and streamline operations and HW management

Intel[®] RSD – Composability

Intel® RSD software functions include:

Resoureces Discovery

Automatically discover and store hardware characteristics and location for all your resources

Node Composition

Dynamically compose compute, storage, and other resources to meet workload specific demands

Telemetry Data

Monitor data center efficiency and detect, diagnose, and help predict resource failures

Intel® RSD – Storage Disaggregation

Disaggregation

Save money over time with modular refresh

Great scalability

Intel® Rack Scale Software stack

Intel® Rack Scale Storage Services

Intel® RSD components in NVMoF

Intel® RSD Storage Service evolution

SDO

Intel® RSD 1.2+ iSCSI Storage Service

Intel® RSD 2.3+
Partitions over NVMe

Intel® RSD 2.4+
Storage Performance
Development Kit

Why SPDK?

The Storage Performance Development Kit – a set of libraries providing:

- High performance
- Scalability
- Low latency
- Efficient use of CPU and memory resources
- Modularity

Storage Service and Common Fabric Model (Redfish + Swordfish)

Intel[®] RSD 2.5 NVM over Fabrics SPDK to Redfish/Swordfish mapping

Intel® RSD 2.5 NVM over Fabrics Redfish/Swordfish actions to SPDK mapping

Intel® RSD 2.5 NVM over Fabrics Redfish/Swordfish actions to SPDK mapping

Intel® RSD 2.5 NVM over Fabrics Redfish/Swordfish actions to SPDK mapping

Thank you