Serial No.	Questions	СО	Blo om 's Ta xo no my Le vel	Dif fic ult y Le vel	Co mp etit ive Ex am Qu est ion Y/ N	Area	Торіс	Un it	M ar ks
1	Define Binary Operations.	CO4	K1	Lo w	N			4	2
2	Define Internal Binary Operations.	CO4	K1	Lo w	N			4	2
3	Define External Binary Operations.	CO4	K2	Me diu m	N			4	2
4	Define Group.	CO5	K2	Me diu m	N			4	2
5	Define Sub-Group of a Group.	CO5	K1	Me diu m	N			4	2
6	Define order of Group and Order of an element of Group.	CO4	K2	Lo w	N			4	2
7	Define Normal subgroup.	CO5	K2	Me diu m	N			4	2
8	Define Abelian Group.	CO5	K1	Lo w	N			4	2
9	Define Group Homomorphism.	CO4	K2	Lo w	N			4	2
10	Define product of two permutations on n symbols. Explain it by an example on 5 symbols.	CO4	K2	Me diu m	N			4	2
11	Define i) a cycle ii) a transposition.	CO4	K2	Lo w	N			4	2
12	Define disjoint cycles with help of an example.	CO4	K1	Me diu m	N			4	2
13	Let $a, b \in (G, *)$, where G is a Group. Show that $(a * b)^{-1} = b^{-1}a^{-1}$.	CO4	K2	Me diu m	N			4	2

14	Let $C_1 = (2\ 3\ 7)$, and $C_2 = (1\ 4\ 3\ 2)$ be cycles in S_8 . Find C_1C_2 and express it as product of transpositions.	CO4	K2	Hi gh	N		4	2
15	Define i) a permutation, ii) a symmetric group.	CO5	K2	Hi gh	N		4	2
16	Give an example of a semi-group which is not a group.	CO4	K2	Me diu m	Y		4	2
17	Define inverse of a permutations. IF $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 3 & 1 & 4 & 4 & 2 & 7 & 6 \end{pmatrix} \in S_7 \text{ then find } \sigma^{-1}.$	CO4	K2	Me diu m	Y		4	2
18	Let $\alpha = (1\ 3\ 2\ 5)(1\ 4\ 3)(2\ 5)\epsilon S_5$, Find α^{-1} and express it as a product of disjoint cycles. State whether $\alpha^{-1} \in S_5$.	CO4	K2	Me diu m	N		4	6
19	Define Even & Odd permutations. Show that order of Odd permutation is Even.	CO4	K2	Me diu m	N		4	6
20	Show that every subgroup of an Abelian/Cyclic group is Normal.	CO4	K2	Me diu m	N		4	6
21	Show that in any Group $(G,*)$, Identity and inverse of any element is unique.	CO4	K2	Me diu m	N		4	6
22	Show that Quotient group of an Abelian group is Abelain.	CO4	K3	Hi gh	Y		4	6
23	Define Quotient group and give one example.	CO5	К3	Me diu m	Y		4	6
24	Sate and Prove Lagrange theorem.	CO4	K3	Me diu m	Y		4	6
25	Define Field with the help of an example.	CO5	К3	Me diu m	Y		4	6
26	Define Ring with the help of an example.	CO5	K3	Me diu m	Y		4	6
27	Define Integral Domain with the help of an example.	CO5	K2	Me diu m	Y		4	6
28	Consider the set \mathbb{Q} of rational numbers, and let $*$ be the operation on \mathbb{Q} defined by	CO4	K2	Me diu	Y		4	6

	a*b=a+b-ab					1	I	T	
				m					
	(a) Find $3 * 4$, $2 * (-5)$ and $7 * 1/2$.								
	(b) Is (Q,*) a semigroup? Is it commutative?								
	(c) Find the identity element for *.								
29	In a group $G = (A, *)$.	CO4	K2	Me	N			4	6
	Show that if $a^2 = e$ for all a in a group G , then	001	112	diu	1			<u> </u>	
	G is commutative.			m					
30		CO4	К3	Hi	N			4	6
	Let $a * H$ and $b * H$ be two cosets of H . Then	001	113	gh	1			ľ	Ü
	either $a * H$ and $b * H$ are disjoint or they are			8					
21	identical.	CO4	K3	Hi	N			4	6
31	Suppose $a^2 = a$ for every $a \in R$. (Such a ring is	CO4	NO		IN			4	0
	called a <i>Boolean</i> ring). Prove that <i>R</i> is			gh					
	commutative.								
32	State and prove that Lagrange's theorem. Let	CO4	K3	Hi	N			4	6
	G be a group of order p, where p is a prime.			gh					
	Find all subgroups of G.								
	C I								
33	Show that the composition of homomorphism	CO4	К3	Hi	N			4	6
	is a homomorphism.			gh					
34	Show that inverse of a bijective	CO5	K3	Hi	N			4	6
	homomorphism from $G \to \bar{G}$, is an			gh					
	homomorphism from $\bar{G} \to G$								
35	Show that in a ring <i>R</i> :	CO4	K3	Hi	N			4	6
	(a) $(-a)(-b) = ab$;			gh					
	(b) $(-1)(-1) = 1$, if R has an identity element								
	1.								
36	Show that set of cubic roots of unity is a Group	CO4	К3	Hi	N			4	6
	under multiplication.		110	gh	- '			•	Ü
37	Show that in a Ring \mathbf{R} with identity element 0	CO4	К3	Me	Y			4	6
	and unity element 1, $\forall a \in R, a. 0 = 0 = 0. a.$			diu			<u>'</u>		
				m					
38	Show that $Z_5 = \{0,1,2,3,4\}$ is a Ring under	CO5	K3	Me	N			4	6
	addition and multiplication modulo 5.			diu					
				m					
39	Let $(R, +, .)$ be a Ring with unity. Show that	CO4	K3	Me	N			4	6
	$\forall a \in R$,			diu					
				m					
	1. $(-1).a = -a$								
	2. (-1).(-1) = 1								
40		CO5	K3	Lo	N			4	9
		001	TTO	W	3.7				0
41		CO4	K3	Me	N			4	9
				diu					
12	Chove that aroung field is an Internal Demail	COF	I/2	m Mo	NT			Λ	0
42	Show that every field is an Integral Domain.	CO5	K3	Me	N			4	9
				diu					
43	Lot 7 depote the set of integers (0.1.2 n.1)	CO4	K3	m Hi	N			4	9
43	Let Z_n denote the set of integers {0,1,2,,n-1}.	CO4	KJ		IN			4	9
				gh					

	 Let * be binary operation on Z_n such that a * b = the remainder of ab divided by n a) Construct the table for the operation * for n=7. b) Show that (Z_n, *) is a semi-group for any n. 							
44	Consider the Group $G = \{1,2,3,4,5,6\}$ under multiplication modulo 7. (a) Find the multiplication table of G . (b) Find 2^{-1} , 3^{-1} , 6^{-1} .	CO4	K3	Hi gh	N		4	9
45	Consider the ring $Z_{10} = \{0, 1, 2,, 9\}$ of integers modulo 10. (a) Find the units of Z_{10} . (b) Find -3 , -8 , and 3^{-1} .	CO4	К3	Hi gh	N		4	9
46	Prove that $F = \{a + b\sqrt{2} \mid a, b \text{ rational}\}$ is a field.	CO5	К3	Hi gh	Y		4	9
47	Prove that $F = \{ a + b\sqrt{2}2 \mid a, b \text{ integers} \}$ is an integral domain but not a field.	CO5	К3	Hi gh	N		4	9
48	Show that $F = \{a + ib : a, b \text{ are } rational \text{ numbers}\}$ is a Field under usual addition and multiplication.	CO5	К3	Me diu m	N		4	9
49	Show that Z_7 is a field under addition and multiplication modulo 7.	CO5	К3	Me diu m	Y		4	9
50	Show that $R = \{0,2,4,6,8\}$ is an integral Domain under addition and multiplication modulo 10.	CO5	К3	Hi gh	N		4	9

Signature of PC:

Signature of Dean:

IQAC:

Appendix II:

Bloom's Taxonomy Levels Distribution of Questions in Question Bank

School of SBAS

Course Name : Linear Algerba and differential Equations Course Code : MATH1006

Serial	Bloom's Taxonomy Level	Percentage Distribution
No.		
1	Knowledge	10%
2	Understand	30%
3	Apply	60%

Signature of Course co-ordinator:
Signature of PC:
Signature of Dean:
IQAC:

Appendix III:

Bloom's Taxonomy Levels Distribution of Questions in Question Bank

School of SBAS

Course Name : Linear Algerba and differential Equations Course Code : MATH1006

Serial No.	Difficulty Level	Percentage Distribution
1	Low	20%
2	Medium	60%
3	High	20%

Signature of Course co-ordinator:
Signature of PC:
Signature of Dean:
IQAC: