Chapter 5: Linear Discriminant Functions (Sections 5.5-5.6)

- Criterion Functions
- Relaxation Procedures

Obvious choice

The number of samples misclassified by a

$$J(a; y_1, \mathbf{L} y_n)$$

This function is piecewise constant so not good for gradient descent

Perceptron Criterion Function

The sum of misclassified sample functions

$$J_p(a) = \sum_{x \in Y} (-a^t y)$$

- This function is never negative ($a^t y \le 0$)
- q It is proportional to the sum of the distances from the misclassified samples to the decision boundary $r = \frac{g(x)}{\|a\|}$

Batch Perceptron Algorithm

- Begin initialize a, θ, k=0,β(0)
- Do k=k+1
- Find y`s belong to Y (a^ty≤0)
- $\bullet \quad a = a + b(k) \sum_{y \in Y} y$
- Until Y={} or $|b(k)\sum_{y \in Y} y| < q$
- Return a
- end

Batch refers to the fact that a group of samples is used when computing each weight update

Example

A simple two-dimensional example with a(0)=0 and $\beta(k)=1$

$$k=1: a = y_1 + y_2 + y_3$$

$$k=2: a = a + y_3$$

$$k=3: a = a + y_1$$

$$k=4: a = a + y_3$$

Note that the misclassified samples satisfy $a^t y \le 0$

SINGLE-SAMPLE vs. BATCH

- Design alternatives:
 - Single-sample mode: weights are updated after each training sample.
 - Batch mode: weights updated after seeing all samples, at the end of a complete training pass.
- Single-sample mode (also known as case update):

Weights are updated after each training sample:

$$w \leftarrow w - \beta(p) \nabla J(w)$$

- Advantage: faster convergence (at least, at the beginning of training).
- Disadvantages:
 - Sensitive to noise (i.e. isolated out-of-boundary training samples).
 - Tendency to oscillate in the vicinity of the minimum.
- Batch mode (also known as epoch update):

Throughout a training pass p, the errors corresponding to each sample k, are accumulated:

$$\nabla J_o(w) = \Sigma \nabla J_k(w)$$

At the end of the pass, all the weights are updated at once (based on the cumulative error):

$$w \leftarrow w - \beta(p) \nabla J_p(w)$$

Fixed-Increment Single-Sample

Perceptron

a(1): arbitary

$$a(k+1)=a(k)+y^k: k \ge 1$$

Example: two categories augmented weight (y=[1,x])

Perceptron Criterion

- If training samples are linearly separable, then the perceptron algorithm (batch or single) achieves the solution (can be shown!)
- It is not as fast as it should be!
- Searching another criterions

Relaxation + Margin

Perceptron Criterion Function

$$J_p(a) = \sum_{y \in Y} (-a^t y)$$

Another Criterion:

$$J_q(a) = \sum_{y \in Y} (a^t y)^2$$

Gradient of J_{α} is continuous

But! Convergence to the boundary, J_q is dominated by longest sample vectors

q Solution:

$$J_r(a) = \frac{1}{2} \sum_{y \in Y} \frac{(a^t y - b)^2}{\|y\|^2}$$

Y is the set of samples for which a^ty≤b (misclassified)

So
$$\nabla J_r = \sum_{y \in Y} \frac{a^t y - b}{\|y\|^2} y$$

Batch relaxation + margin

- Begin initialize a, b, k=0,β(0)
- Do k=k+1
- Find y`s belong to Y (a^ty≤b)

$$a \longleftarrow a + b(k) \sum_{y \in Y} \frac{b - a^t y}{\|y\|^2} y$$

- Until Y={}
- Return a
- end

Single-Sample relaxation + margin

- Begin initialize a, b, k=0,β(0)
- Do k=k+1
- If $a^t y^k \le b$ then $a \longleftarrow a + b(k) \frac{b a^t y^k}{\|y^k\|^2} y^k$
- Until a^ty^k>b for all y^k
- Return a
- end

Single-Sample relaxation + margin

Geometrical interpretation

- a(k) is moved a certain fraction (β) of the distance from a(k) to the hyperplane $a^ty^k=b$.
- If $\beta=1$, a(k) is moved exactly to the hyperplane (or relaxed).
- If β <1, $a^t(k+1)y^k$ is still less than b (underrelaxation)
- If $\beta>1$, $a^t(k+1)y^k$ is greater than b (overrelaxation)

Restriction on β to the range 0< β <2

$$a(k+1) = a(k) + b \frac{b - a^{t}(k)y^{k}}{\|y^{k}\|^{2}} y^{k}$$

$$a^{t}(k+1)y^{k}-b=(1-b)(a^{t}(k)y^{k}-b)$$

FIGURE 5.14. In each step of a basic relaxation algorithm, the weight vector is moved a proportion η of the way toward the hyperplane defined by $\mathbf{a}^t \mathbf{y}^k = b$. From: Richard O. Duda, Peter E. Hart, and David G. Stork, *Pattern Classification*. Copyright © 2001 by John Wiley & Sons, Inc.

FIGURE 5.15. At the left, underrelaxation ($\eta < 1$) leads to needlessly slow descent, or even failure to converge. Overrelaxation ($1 < \eta < 2$, shown at the right) describes overshooting; nevertheless, convergence will ultimately be achieved. From: Richard O. Duda, Peter E. Hart, and David G. Stork, *Pattern Classification*. Copyright © 2001 by John Wiley & Sons, Inc.