Dog No				-
Reg. No				

B.Tech DEGREE EXAMINATION, DECEMBER 2023

Fifth Semester

18CSE310J - QUANTUM COMPUTATION

(For the candidates admitted during the academic year 2020 - 2021 & 2021 - 2022)

Note:

i. Part - A should be answered in OMR sheet within first 40 minutes and OMR sheet should be handed over to hall invigilator at the end of 40th minute.
ii. Part - B and Part - C should be answered in answer booklet.

Time: 3 Hours			Max.	Max. Marks: 100			
	PART - A $(20 \times 1 =$ Answer all Que		Mar	ks BL	СО		
1.	Gates used by quantum computing is calle (A) Logic gates (C) Boolean gates	ed (B) Unitary gates (D) Classical gates	1	1	1		
2.	What is the value of "r" in Bloch sphere? (A) 1 (C) 3	(B) 2 (D) 4	1	2	1		
3.	Which one of the following represents the (A) $ Q\rangle = C1 10\rangle + C3 01\rangle$ (C) $ Q\rangle = C1 11\rangle + C3 01\rangle$	unentangled state? (B) Q>= C1 00>+C3 11> (D) Q>=C1 11>+C3 00>	1	2	1		
4.	Gates used in Bells circuit are (A) H and X (C) H and CCNOT	(B) H and Y (D) H and CNOT	1	1	1		
5.	Vertex covering problems comes under who (A) NP (Non deterministic polynomial time) (C) P (Polynomial)	ich complexity classes? (B) NP COMPLETE(Non deterministic polynomial time complete) (D) NP HARD(Non deterministic polynomial time hard)	1	2	2		
6.	The outer product form of Y gate is (A) $Y=-i 0><1 +i 1><0 $ (C) $Y=-i 0><1 -i 1><0 $	(B) Y= i 0><1 - i 1><0 (D) Y= -i 0><1 - i 1><0	1	1	2		
7.	Which gate can formulate any single qubit (A) Toffoli gate (C) Universal gate	gate? (B) Fredkin gate (D) Nand gate	1	2	2		
8.	Square root of Not gate represents (A) X Gate (C) Y Gate	(B) S Gate (D) V gate	1	1	2		
9.	Total number of gate operations in a quantu (A) Qc.depth() (C) Qc.width()	m circuit is given by (B) Qc.size() (D) Qc.height()	1	2	3		
10.	Two successive hadamard operation results (A) Identity Operation (C) RY Operation	in (B) RX Operation (D) RZ Operation	1	2	3		

11.	A function is said to be constant if it prod	uces	1	1	3
	(A) Same output zero for both function(C) Different output for both function with different input	(B) Same output one for both function(D) Both a and b			
12.	Shor algorithm operation is based on		1	1	3
12.	(A) Quantum Fourier transform (C) Search operations	(B) Quantum annealing(D) Quadratic speed up			
13.	Which of the following is not QKD protoc	col?	1	1	4
	(A) BB84	(B) B91			
	(C) Eckert	(D) Grover			
14.	Amplitude amplification is a technique use		1	1	4
	(A) Shor algorithm (C) BB84	(B) Grover algorithm (D) Teleportation			
15	Period finding is a concept used in	(=) 2	1	1	4
13.	(A) Shor algorithm	(B) Grover algorithm			
	(C) BB84	(D) Teleportation			
16.	Inversion process in Grover's is carried or	ut by	1	2	4
	(A) Phase inverter	(B) Diffuser			
	(C) Eigen solver	(D) Period finder			
	The main work of quantum annealers is to		1	1	5
	(A) Search (C) Factorization	(B) Optimization(D) Phase estimation			
10	Protein folding is an use case of		1	2	5
10.	(A) Quantum finance	(B) Quantum chemistry			
	(C) Quantum sensing	(D) Quantum physics			
19.	Nobel Prize in the year 2022 was given work in	n to Alian aspect, John and Anton for the	1	1	5
	(A) Quantum entanglement	(B) Superposition			
	(C) Interference	(D) Superposition and interference			
20.		(D) (O) 11	1	2	5
	(A) Search problem(C) Optimization problem	(B) Query problem (D) Factoring problem			
			Marl	ks BL	CO
	PART - B ($5 \times 4 =$ Answer any 5 (
21.	Illustrate the block sphere representing th	e 6 states with neat sketch.	4	4	1
22.	2. Construct the 4 bells states using the quantum gates.		4	3	1
23.	3. Write the matrix representation of CNOT gate from its outer product		4	3	2
24.	4. Analyze the Pauli gates with their truth tables.		4	4	2
25.	5. Discuss the three types of simulators in Qiskit program.			2	- 3
26.	6. Prepare a quantum circuit for half subtractor using Qiskit Programming.			3	4
27.	Review any two QC Models.		4	2	. 5
	PART - C (5 × 12 = Answer all Qu		Mar	ks BL	СО

28.	(a)	1. 2.	Categorize the postulates of Quantum mechanics (6 marks) Compute the bipartite system and tripartite system (6 marks) (OR)	12	4	1
	(b)	1. 2.	Analyze the advantage of quantum computing over classical computing. (4 marks) Compute the value of 00>, 01>, 11>, 10> (8 marks)			
29.			oulate the matrix of any one three qubit gates from its outer product (OR)	12	4	2
	(b)	1. 2.	Show the 4 elements of Turing machine. (4 marks) Compute a Turing machine program to add 1 to a binary number 1011 with necessary steps in tape. (8 marks)		X	
30.			ret the Deustch Algorithm circuit by deriving all necessary states. (OR)	12	4	3
		'010'	te a circuit diagram which includes oracle and diffuser to search f			
31.		Predic	et the importance of quantum teleportation between Alice and Bob. (OR)	12	3	4
	(b)	Demo	onstrate the use of unstructured database search by an algorithm.			
32.	(a)	Illustr	rate the various applications of quantum computing.	12	4	5
	(b)	Write crypt	about the need of Quantum Machine Learning and quantum ography with simple use case.			

* * * * *