EPFL - CMS Analyse II

1.6.19

Série 21

1. Calculer

- (a) $\sin i$
- (b) $\cos i$
- (c) $\tan(1+i)$
- 2. Exprimez $\cosh(z)$ et $\sinh(z)$ en fonction de $\sin(iz)$ et $\cos(iz)$. Déduisez-en des formules d'addition pour $\cosh(2z)$ et $\sinh(2z)$.
- 3. Décomposez $\cos(x+iy)$ et $\sin(x+iy)$ en leur parties réelles et imaginaires.
- **4.** Montrez que pour z = x + iy, on a

$$|\cos(z)|^2 = \sinh^2(y) + \cos^2(x)$$

et

$$|\sin(z)|^2 = \sinh^2(y) + \sin^2(x).$$

Que peut-on en conclure pour les valeurs de $|\sin z|$ et $|\cos z|$? Quelle différence notable existe-t-il avec le cas réel?

- **5.** Résolvez pour $z \in \mathbb{C}$
 - (a) $\exp(z) = 1$
 - (b) $\sin(z) = 1$
- **6.** Soit $\{z_n\}_{n\in\mathbb{N}} = \{x_n + iy_n\}_{n\in\mathbb{N}} = \{[r_n, \varphi_n]\}_{n\in\mathbb{N}}$ une suite de nombres complexes. Pour $z \in \mathbb{C}^*$, montrez l'équivalence entre les affirmations suivantes:
 - (a) $\lim_{n\to\infty} z_n = z$.
 - (b) $\lim_{n\to\infty} |z_n z| = 0$.
 - (c) $\lim_{n\to\infty} x_n = x$ et $\lim_{n\to\infty} y_n = y$.
 - (d) $\lim_{n\to\infty} r_n = r$ et $\lim_{n\to\infty} \varphi_n = \varphi \mod 2\pi$.

oblème récréatif: On choisit trois points A B et C distincts au hazard sur le cercle unit \tilde{A} $\tilde{\mathbb{C}}$ centr \tilde{A} $\tilde{\mathbb{C}}$ en (0,0). (Faire un dessin). Quelle est la probabilit \tilde{A} $\tilde{\mathbb{C}}$ que le triangle de sommets ABC contiennent le centre du cercle?

EPFL - CMS Analyse II

Solutions

S1 (a) $i \frac{e^1 - e^{-1}}{2}$

- (b) $\frac{e^1 + e^{-1}}{2}$
- (c) $\frac{\sin(2) i \cosh(2)}{\cosh(2) + \cos(2)}$

S2 $\sinh(2z) = 2\sinh(z)\cosh(z)$, $\cosh(2z) = \cosh^2(z) + \sinh^2(z)$. $\cos(x+iy) = \cos(x)\cosh(y) - i\sin(x)\sinh(y)$, $\sin(x+iy) = \sin(x)\cosh(y) + i\cos(x)\sinh(y)$

S4
$$P_4(X) = (X+2)^4 - 11(X+2)^3 + 44(X+2)^2 - 75(X+2) + 45$$

S5 (a) $z = i2k\pi, k \in \mathbb{Z}$

(b)
$$z = \pi/2 + 2k\pi, k \in \mathbb{Z}$$