The Deutsch Jozsa Algorithm

Input: A function f on $\Sigma^n \to \Sigma$ which is either balanced or constant.

[Constant: f(x) = 0 for all values of x OR f(x) = 1 for all values of x;

Balanced: f(x) = 0 for half of the inputs and f(x) = 1 for the other half of the inputs]

Output: "1" if f is constant, "0" if it is balanced using a single query to an oracle that computes $U_f(|x\rangle|y\rangle) \rightarrow |x\rangle|y \oplus f(x)\rangle$

The Circuit:

The steps are as follows:

$$|\psi_0\rangle = |0\rangle^{\otimes n} |1\rangle$$

Each of the qubits in $|\psi_0\rangle$ is acted upon by a Hadamard gate,

$$|\psi_{1}\rangle = H|0\rangle^{\otimes n} H|1\rangle$$

$$= \frac{(|0\rangle + |1\rangle)^{n}}{\sqrt{2^{n}}} \otimes \frac{(|0\rangle - |1\rangle)}{\sqrt{2}}$$

$$= \frac{1}{\sqrt{2^{n+1}}} \sum_{x=0}^{2^{n}-1} |x\rangle (|0\rangle - |1\rangle)$$

Now we apply the unitary operation U_f to $|\psi_1\rangle$

$$|\psi_2\rangle = \frac{1}{\sqrt{2^{n+1}}} \sum_{x=0}^{2^{n-1}} U_f(|x\rangle(|0\rangle - |1\rangle))$$

After applying U_f ,

$$=\frac{1}{\sqrt{2^{n+1}}}\sum_{x=0}^{2^{n-1}}(|x\rangle(|0\oplus f(x)\rangle-|1\oplus f(x)\rangle))$$

Since $(|0 \oplus f(x)\rangle - |1 \oplus f(x)\rangle) = (-1)^{f(x)} (|0\rangle - |1\rangle)$, (as studied in the class), therefore

$$|\psi_2\rangle = \frac{1}{\sqrt{2^{n+1}}} \sum_{x=0}^{2^{n-1}} (-1)^{f(x)} |x\rangle (|0\rangle - |1\rangle)$$

At this stage we apply a Hadamard to $\sum_{x=0}^{2^n-1} |x\rangle$ where x represents all possible strings over Σ^n .

Since

$$H(|0\rangle) = (|0\rangle + (-1)^{0}|1\rangle) / \sqrt{2}$$

$$H(|1\rangle) = (|0\rangle + (-1)^1 |1\rangle) / \sqrt{2}$$

and therefore,

$$H|x\rangle = ((-1)^{0.x}|0\rangle + (-1)^{1.x}|1\rangle)/\sqrt{2}$$

$$H|x\rangle = \frac{1}{\sqrt{2}} \sum_{z=0}^{1} (-1)^{xz} |z\rangle$$

However, consider the situation when x is an n bit string, i.e., x has n bits, i.e., x_1 , x_2 , ..., x_n . In that case,

$$H|x\rangle = H|x_1\rangle H|x_2\rangle \dots H|x_n\rangle$$

$$= \frac{1}{\sqrt{2}} \sum_{z_1=0}^{1} (-1)^{x_1 z_1} |z_1\rangle \frac{1}{\sqrt{2}} \sum_{z_2=0}^{1} (-1)^{x_2 z_2} |z_2\rangle \dots \frac{1}{\sqrt{2}} \sum_{z_n=0}^{1} (-1)^{x_n z_n} |z_n\rangle$$

Plugging in this expression in place of $|x\rangle$ in $|\psi_2\rangle$, we get,

$$|\psi_{3}\rangle = \frac{1}{\sqrt{2^{n+1}}} \sum_{x=0}^{2^{n}-1} (-1)^{f(x)} \frac{1}{\sqrt{2}} \sum_{z_{1}=0}^{1} (-1)^{x_{1}z_{1}} |z_{1}\rangle \frac{1}{\sqrt{2}} \sum_{z_{2}=0}^{1} (-1)^{x_{2}z_{2}} |z_{2}\rangle ... \frac{1}{\sqrt{2}} \sum_{z_{n}=0}^{1} (-1)^{x_{n}z_{n}} |z_{n}\rangle (|0\rangle - |1\rangle)$$

$$|\psi_{3}\rangle = \frac{1}{\sqrt{2^{n+1}}} \frac{1}{\sqrt{2^{n}}} \sum_{r=0}^{2^{n}-1} \sum_{z_{1}=0}^{1} (-1)^{f(x)} (-1)^{x_{1}z_{1}} (-1)^{x_{2}z_{2}} ... (-1)^{x_{n}z_{n}} |z_{1}\rangle |z_{2}\rangle ... |z_{n}\rangle$$

$$|\psi_{3}\rangle = \frac{1}{2^{n}} \sum_{x=0}^{2^{n}-1} \sum_{z_{1}}^{1} \sum_{z_{2}...z_{n}=0}^{1} (-1)^{f(x)+x_{1}z_{1}+x_{2}z_{2}+x_{n}z_{n}} |z\rangle \frac{1}{\sqrt{2}} (|0\rangle - |1\rangle), where |z\rangle = |z_{1}\rangle|z_{2}\rangle...|z_{n}\rangle.$$

We can discard the lower qubit $\frac{1}{\sqrt{2}}(|0\rangle - |1\rangle)$

and measure the top qubit(s) only which are:

$$\frac{1}{2^n} \sum_{x=0}^{2^n-1} \sum_{z_1 z_2 \dots z_n=0}^{1} (-1)^{f(x)+x_1 z_1+x_2 z_2+x_n z_n} |z\rangle.$$

What is the probability of measuring the state $|z\rangle = |00...0\rangle$, i.e, $z_1 = z_2 = ... = z_n = 0$? It is given by:

$$P(\text{Measuring all 0s}) = (\frac{1}{2^n} \sum_{x=0}^{2^n-1} (-1)^{f(x)})^2$$

Observe that if f(x) is constant, then either f(x) = 0 for all values of x, leading to

$$P = \frac{1}{2^n} ((-1)^0 + (-1)^0 + \dots (-1)^0)^2 = 2^n / 2^n = 1.$$

Or f(x) = 1 for all values of x leading to,

$$P = \frac{1}{2^n} ((-1)^1 + (-1)^1 + \dots (-1)^1)^2 = 2^n / 2^n = 1.$$

So if f(x) is constant, there is a 100% probability of measuring all 0s the first n qubits.

What happens if f(x) is balanced.

In that case, whenever f(x) = 0, $(-1)^{f(x)} = 1$, and

Whenever f(x) = 1, $(-1)^{f(x)} = -1$,

Therefore, the probability is,

 $P = \frac{1}{2^n} ((-1)^0 + (-1)^1 + ... (-1)^0)$ (this is -1 for half of the inputs and +1 for the other half)

$$= 0 / 2^n = 0$$
.

Hence if f(x) is balanced, there is no chance of measuring all 0s.

This completes the analysis of the algorithm.

The Bernstein-Vazirani Algorithm

To get an idea of the Bernstein-Vazirani Algorithm, we will workout an example here.

Although the Bernstein-Vazirani Problem is somewhat different as compared to Deutsch-Jozsa Problem, the solution is almost similar.

Consider a two-bit string u = (Choose any string that you would like).

Now create a function on a two-bit string i.e., $x = x_1 x_2$ such that

$$f(x) = u \cdot x = u_1 x_1 \oplus u_2 x_2$$

Example: Suppose u = 10.

Then the following function: f(00) = 0, f(01) = 0, f(10) = 1, f(11) = 1 satisfies the above condition.

Note that not all functions on two bits are of this type (i.e. there exists a u that satisfies the dot-product condition). The Bernstein Vazirani Problem states that: [Promise] Suppose we are given a function on $\Sigma^n \to \Sigma$ which can be expressed as a dot product of a string u and the input x . Can you find u , and if yes, using how many queries to f ?			
		Write, discuss and think the Classical Solution here:	
	tum Solution: It turns out, that the quantum solution requires only 1 query to the oracle surprisingly similar to the Deutsch Jozsa Algorithm. It is as follows:		
2	Start with the state: $ 0\rangle^{\otimes n} 1\rangle$ Apply $H 0\rangle^{\otimes n}H 1\rangle$		
3.	Now apply the oracle to this state to get $\frac{1}{\sqrt{2^{n+1}}} \sum_{x=0}^{2^{n+1}} (-1)^{f(x)} x\rangle (0\rangle - 1\rangle)$		
4.	Now apply Hadamard to the top n qubits to get $\frac{1}{2^n} \sum_{x=0}^{2^{n-1}} \sum_{z_1 z_2 \dots z_n=0}^{1} (-1)^{f(x) + x_1 z_1 + x_2 z_2 + x_n z_n} z\rangle$		
5. 6	Finally measure the top n qubits.		
6. 7.	The result of the measurement is your answer u . Try it now for the above two bit function!		