

Performance

Exercices Architecture des ordinateurs

1 | Benchmark du processeur & Performance

Les	quelles des propositions suivantes sont correctes ?
0 0 0	Le temps wall clock time est le temps total écoulé, y compris les E/S, les frais généraux du système d'exploitation, etc. Le multithreading améliore le débit d'un processus. Le temps CPU n'inclut pas le temps d'E/S. Le multithreading améliore le temps d'exécution d'un processus. per/benchmark-01
Qu	est-ce que le débit (throughput)?
0 0 0	performance par Watt (le nombre de FLOPS par Watt) le taux de traitement du travail (n tâches/seconde) le temps entre le début et la fin de l'événement/tâche/programme (n secondes) le pourcentage de temps pendant lequel un système est opérationnel per/benchmark-02
Qu	'est-ce que le SPEC?
0	est une benchmark développée pour mesurer la performance basée sur la dernière fonction- nalité de l'application Java. est un benchmark qui évalue les caractéristiques de puissance et de performance des ordina- teurs de classe serveur de volume. est la norme mondiale pour mesurer les performances graphiques sur la base d'applications professionnelles. est une combinaison de bechmark conçue pour fournir des mesures de performance qui
	Qui

O peuvent être utilisées pour comparer des charges de travail informatiques intensives sur dif-

per/benchmark-03

1.4 Quel est l'objectif du Benchmark EEMBC ?

férents systèmes informatiques.

	 pour évaluer les performances des microprocesseurs embarqués pour évaluer les performances du calcul des nombres entiers pour mesurer l'efficacité énergétique de différents systèmes informatiques pour évaluer les performances en virgule flottante
	per/benchmark-04
1.5	Lequel des éléments suivants est une mesure de l'efficacité énergétique ?
	 ☐ flops ☐ MIPS ☐ Performance par watt ☐ Consommation électrique
	per/benchmark-05
	La consommation d'énergie et les performances par watt sont toutes deux portantes pour un système embarqué.
	☐ Faux per/benchmark-06
	•
1.7	 Performances du processeur Un programme est composé de 5'000 instructions en virgule flottante et de 25'000 instructions en nombres entiers. Le processeur A a une fréquence d'horloge de 2,0 GHz. Les instructions en virgule flottante prennent 7 cycles et les instructions en nombre entier prennent 1 cycle. a) Combien de temps faut-il à ce processeur pour exécuter le programme ? b) Quel est le CPI moyen de ce processeur pour le programme donné ? c) Le processeur A exécute le programme 2 composé de 100'000 instructions en virgule flottante et de 50'000 instructions en virgule entière. Quel est le CPI moyen de ce programme ? d) Le processeur B a un CPI moyen pour le programme 2 de 3, 5. Sa fréquence d'horloge est de 1,8 GHz. Combien de temps faut-il pour exécuter le programme ? e) Quel processeur est le plus rapide et de combien ?
	Le processeur est fois plus rapide que le processeur
	per/performance-01
1.8	Performances du processeur Considérons les deux conceptions de machines suivantes avec leurs CPI respectifs pour divers types d'instructions. L'ordinateur A et l'ordinateur B ont le même jeu d'instructions :

Instruction Type	CPI_A	CPI_B	Compiler 1 Mix
Data Manipulation	1.5	1.0	25%
Arithmetic	1.0	1.5	30%
Shifting	1.0	1.2	10%
Branching	4.0	2.0	25%
Multiply	20	12	10%

- a) Quel est le CPI moyen pour chacun des ordinateurs utilisant ce programme?
- b) L'ordinateur A a un temps de cycle clock de 0,5ns. L'ordinateur B tourne à 1,8GHz. Rédigez une déclaration quantitative comparant les deux ordinateurs.
- c) Quelle devrait être la fréquence d'horloge de l'ordinateur le plus lent pour obtenir des performances égales à celles de l'ordinateur le plus rapide ?

per/performance-02

1.9 Performances du processeur

Un CPU fonctionne à une fréquence de base de 2GHz. Il exécute un programme de 5 millions d'instructions avec la combinaison d'instructions donnée. newline Quel est le temps d'exécution du programme ?

Instruction	Frequency	$\mathrm{CPI}_{\mathrm{instr}}$
ALU	50%	3
Load	20%	5
Store	10%	4
Branch	20%	3

per/performance-03

1.10 Performances du processeur

Un CPU est conçue pour obtenir des performances optimales sur un programme donné qui présentant les caractéristiques suivantes. 25% de toutes les instructions sont des instructions en virgule flottante avec un CPI moyen de 4.0, de plus le programme contient 2% d'instructions FPSQR avec un CPI moyen de 20. Toutes les autres instructions ont un CPI moyen de 1.33.

Il existe deux alternatives de conception :

- 1. Diminuer le CPI des instructions FPSQR à 2.0
- 2. Diminue la moyenne du CPI de toutes les instructions en virgule flottante à 2.5

Quel est le meilleur choix?

per/performance-04

1.11 Performances du processeur

Nous voulons acheter un nouvel ordinateur. Il exécutera principalement les programmes P_1 et P_2 . Quel poids doivent avoir les programmes $(w_1$ et $w_2)$ pour que :

a) CPU A soit le meilleur achat?

- b) CPU B soit le meilleur achat?
- c) CPU C soit le meilleur achat?

Program	CPU_A	CPU_B	\Box CPU $_C$
Program P_1 (sec)	1	10	100
Program P_2 (sec)	100	10	1

per/performance-05

1.12 Performances du processeur

Étant donné les performances suivantes de deux programmes sur trois CPU, utilisez la moyenne géométrique pour calculer quel ordinateur est le plus rapide :

- a) CPU A est le plus rapide!
- b) CPU B est le plus rapide!
- c) CPU C est le plus rapide!

Program	CPU_A	CPU_B	CPU_C
P_1 (sec)	40	15	20
P_2 (sec)	40	1000	150

per/performance-06

1.13 Performances du processeur

Calculez le CPI moyen pour 5 millions d'instructions des fréquences d'instruction suivantes :

Instruction	Frequency	$\mathrm{CPI}_{\mathrm{instr}}$
ALU	40%	4
Load	30%	6
Store	5%	5
Branch	25%	4

La fréquence d'horloge du processeur est de 2 GHz.

per/performance-07

1.14 Quelle est la meilleure mesure pour comparer les performances?

- moyenne arithmétiquemoyenne géométrique
- médiane
- performance maximale
- O moyenne harmonique

per/performance-08

1.15 Performances du processeur

Calculez le temps d'exécution en ms, en supposant que l'on utilise un CPU avec les fréquences d'instruction suivantes :

Instruction	Frequency	$\mathrm{CPI}_{\mathrm{instr}}$
ALU	45%	5
Load	25%	6
Store	10%	5
Branch	20%	3

Pour 2 millions d'instructions et une fréquence CPU de 3GHz.

per/performance-09

1.16 Loi d'amdahl

Une amélioration de l'unité d'exécution en virgule flottante a généré des instructions en virgule flottante 2x plus rapides. En moyenne, 10% de toutes les instructions sont des instructions à virgule flottante pour ce processeur.

Quel sera le gain de vitesse global?

per/amdahls-law-01

1.17 Loi d'amdahl

Nous voulons une accélération globale de 2 et pouvons accélérer les instructions en virgule flottante par 4 fois.

Quelle devrait être la fraction des instructions en virgule flottante ?

per/amdahls-law-02

1.18 Loi d'amdahl

Un programme se compose de deux éléments différents. L'élément A a une durée de 15 unités de temps et l'élément B une durée de 5 unités de temps. Il existe deux variantes d'optimisation :

- 1. Optimation de la partie A par deux fois
- 2. Optimation de la partie B par cinq fois

Quelle optimisation est la plus avantageuse? Quelles sont les implications?

per/amdahls-law-03