5. Базис, размерност координати

Александър Гуров 12 януари 2023 г.

Определение 5.1

Непразно множество B на ненулево линейно пространство $V \neq \{\vec{\mathcal{O}}\}$ е базис на V, ако:

- (i) е линейно независима система вектори
- (ii) линейната обвивка l=(B)=V на B съвпада с V

Пример 5.2

Векторите

$$e_i = (\underbrace{0, \dots, 0}_{i-1}, 1, \underbrace{0, \dots, 0}_{n-i}), \in F^n, \quad 1 \le i \le n$$

с единствена нененулева компонента 1 на място і образуват базис на линейното пространство F^n от наредените n-торки от поле F.

<u>Доказателство.</u> За доказателството ще използваме, че за произволни $x_1, ..., x_n \in F$ е в сила:

$$x_1e_1 + x_2e_2 + ... + x_ie_i + ... + x_ne_n = (x_1, ..., x_i, ..., x_n)$$

От $x_1e_1+x_2e_2+...+x_ie_i+...+x_ne_n=(x_1,...,x_i,...,x_n)=(0,...,0)\Longrightarrow x_1=x_2=...=x_i=...=x_n=0$, следователно векторите $e_1,e_2,...e_n$ са линейно независими. Произволната наредена n-торка $x=(x_1,...,x_n)\in F^n$ е линейна комбинация $x=e_1x_1+...+x_ne_n$ на $(e_1,...,e_n)\in F^n$ с коефициенти $(x_1,...,x_n)\in F$, следователно $l(e_1,...,e_n)=F^n$ и по дефиниция е базис на F^n .

Определение 5.3

Линейно пространство V над поле F е крайномерно, ако $V=\{\vec{\mathcal{O}}\}$ или V има краен базис $v_1,...,v_n$.

Линейното пространство на наредените n-торки F^n над поле F е крайномерно, защото има краен базис:

$$e_1,...,e_n,$$
, където $e_i=(\underbrace{0,...,0}_{\text{i-1}},1,\underbrace{0,...,0}_{\text{n-i}}),\in F^n, \ 1\leq i\leq n$

Твърдение 5.4

Линейно пространство V над поле F е крайномерно тогава и само тогава, когато линейната обвивка $l(a_1,...,a_n)=V$ е на краен брой вектори. В такъв случай, ако $V \neq \{\vec{\mathcal{O}}\}$, то можем да изберем базис на V, съставен от подмножество на $\{a_1,...,a_n\}$.

Доказателство Ако $V=\{\vec{\mathcal{O}}\}$, то $V=l(\vec{\mathcal{O}})$ и V има краен базис. Ако V има краен базис $e_1,...,e_n$, то $l(e_1,...,e_n)=V$ е линейна обвивка на краен брой вектори и V е крайномерно пространство. Ако $l(e_1,...,e_n)=V$ е линейна обвивка на краен брой вектори и $e_i=\vec{\mathcal{O}}, \forall i:1\leq i\leq n,$ то $V=\{\vec{\mathcal{O}}\},\ V=l(\vec{\mathcal{O}})$ и V е крайномерно. Ако $l(e_1,...,e_n)=V$ е линейна обвивка на краен брой вектори и съществува $e_i\neq\vec{\mathcal{O}},$ където $1\leq i\leq n,$ след преномериране на e_i като e_1 , то e_1 е линейно независим и $l(e_1)\subsetneq V.$ Ако не съществува $e_i\notin l(e_1)$ при $1\leq i\leq n,$ то $1\leq i\leq n$

Твърдение 5.5

Всеки два базиса на ненулево пространство V над поле F трябва да имат еднакъв брой независими вектори.

Доказателство Нека $a_1,...,a_n$ и $b_1,...,b_n$ са базиси на V. Тогава

$$a_1, ..., a_n \in V = l(b_1, ..., b_n)$$

Спрямо Oсновната лема на линейна алгебра, $n \leq m$, заради линейната независимост. Аналогично

$$b_1, ..., b_n \in V = l(a_1, ..., a_n)$$

От тук следва, че $m \leq n$, спрямо *Основната лема на линейна алгебра*. В този случай m=n и всички два базиса на линейно пространство имат еднакъв брой независими вектори.

Определение 5.6

Броят на независими вектори на базис на линейно пространство V се нарича размерност на V и се бележи с dim(V).

Размерността на нулево пространство $V = \{\vec{\mathcal{O}}\} : dim(V) = 0.$

Размерността на ненулево линейно пространство V, което не е крайномерно: $dim(V) = \infty$

Твърдение 5.7

Следните свойства са еквивалентни за векторите $e_1, ..., e_n$ от линейно пространство V над поле F:

(i) $e_1, ..., e_n$ е базис на V

(ii) всеки вектор $x \in V = l(e_1, ..., e_n)$ има единствено представяне:

$$x = x_1 e_1 + \dots + x_n e_n$$

като линейна комбинация на векторите $e_1,...,e_n$ с коефициенти $x_1,...,x_n$ от полето F. Наредената n-торка $(x_1,...,x_n)$ представлява координатите на х спрямо базиса $e_1,...,e_n$.

<u>Доказателство</u> $(i) \Rightarrow (ii)$ Нека произволен вектор x, принадлежащ на линейното пространство V, има две представяния като линейна комбинация на векторите $e_1, ..., e_n$ с коефициенти $x_1, ..., x_n \in F$ и $y_1, ..., y_n \in F$:

$$x_1e_1 + ... + x_ne_n = x = y_1e_1 + ... + y_ne_n$$

$$(x_1 - y_1)e_1 + \dots + (x_n - y_n)e_n = \vec{\mathcal{O}}$$

Съгласно линейната независимост на $e_1, ..., e_n$ е изпълнено $x_i - y_i = 0, \forall i \in [1, n]$, следователно $x_i = y_i, \forall i \in [1, n]$ и двете представяния съвпадат, тоест х има едно единствено, представяне.

 $(i)\Rightarrow (ii)$ Щом х има единствено представяне като линейна комбинация на $e_1,...,e_n$, то $x\in V=l(e_1,...,e_n)$. В случая когато $x=\vec{\mathcal{O}}$:

$$x_1e_1 + \dots + x_ne_n = \vec{\mathcal{O}} = 0e_1 + \dots + 0e_n$$

съгласно Единствеността на представянето на нулевия вектор като линейна комбинация на $e_1, ..., e_n$, коефициентите $x_1, ..., x_n = 0$.

$$0e_1 + \dots + 0e_n = \vec{\mathcal{O}}$$

Следователно векторите $e_1, ..., e_n$ са линейно независими, което ги прави базис на V.

Твърдение 5.8

Нека V е ненулево линейно пространство над поле F. В този случай е изпълнено:

- (i) dim(V) = n, тогава и само тогава, когато съществуват n на брой независими вектора $e_1, ..., e_n$, принадлежащи на V, и всеки n+1 на брой произволни вектора $a_1, ..., a_{n+1}$ са линейно зависими.
- (ii) $dim(V) = \infty$, тогава и само тогава, когато за всяко естествено число n същестуват n линейно независими вектора $e_1, ..., e_n \in V$.

<u>Доказателство</u> (i) dim(V)=n, следователно съществуват п линейно независими вектора $e_1,...,e_n\in V$ са базис. Нека вземем произволни n+1 вектора от $a_1,...,a_{n+1}\in V$:

$$a_1, ..., a_{n+1} \in V = l(e_1, ..., e_n)$$

Спрямо Основната емата на линейната алгебра, $a_1,...,a_{n+1}$ са линейни зависими, защото n+1>n. В обратната посока, нека $e_1,...,e_n$ са п линейно зависими вектора и $a_1,...,a_{n+1}\in V$ са n+1 линейно зависими вектора. Нека допуснем, че $l(e_1,...,e_n)\neq V$, което означава, че $l(e_1,...,e_n)\subsetneq V$. Следователно съществува $e_{n+1}\in V\setminus l(e_1,...,e_n)$, за който $e_1,...,e_n,e_{n+1}$ са линейно независими, но всички n+1 вектора са линейно зависими, и това противоречие доказва, че $l(e_1,...,e_n)=V$ и е базис на V.

(ii) Нека допуснем, че $dim(V) = \infty$ и съществуват $n \geq 2$ линейно зависими вектора $e_1, ..., e_n$. Нека п е минималната възможна стойност, за която това е изпълнено. Следователно съществуват n-1 линейно зависими вектора $e_1, ..., e_{n-1}$. Съгласно (i) оттук следва, че dim(V) = n-1, което е противоречие и доказва дясната посока. В обратната посока, нека $dim(V) \neq \infty$. От предположението знаем, че за естествено число п съществуват п линейно независими вектора $e_1, ..., e_n \in V$. Нека dim(V) = n. Тогава спрямо (i), трябва да съществуват n+1 линейно зависими вектора, което е в противоречие с предположението. Тогава $dim(V) = \infty$.

Твърдение 5.9

Следните условия са еквивалентни за n вектора $e_1, ..., e_n$ от n-мерно линейно пространство V над поле F:

- (i) $e_1,...,e_n$ са линейно независими
- (ii) $l(e_1,...,e_n) = V$ (iii) $e_1,...,e_n$ е базис на V

Доказателство По определението на базис, от (iii) следват (i) и (ii).

 $(i)\Rightarrow (ii)$ и (iii) Твърдим, че ако $e_1,...,e_n$ са п линейно независими вектора от п-мерно линейно пространство V, то $l(e_1,...e_n)=V$ и $e_1,...e_n$ е базис на V. Нека допуснем, че $l(e_1,...e_n)\neq V$, тогава съществува $e_{n+1}\in V\setminus l(e_1,...e_n)$ и $e_1,...e_n,e_{n+1}$ са линейно независими по Лема за линейна независимост. Но спрямо Твърдение 5.8 (i), щом dim(V)=n, n+1 вектора

са линейно зависими. Това противоречие доказва, че ако $e_1,...e_n$ са линейно независими, то $l(e_1,...e_n)=V$. $(ii)\Rightarrow (i)$ и (iii) Твърдим, че ако $l(e_1,...e_n)=V$, то $e_1,...,e_n$ са линейно независими и следователно базис на V. В противен случай, от линейната зависимост на $e_1,...,e_n$, следва съществуването на индекс $1\leq i\leq n$ с $a\in l(e_1,...,e_{n-1},e_{n+1},...,e_n)$. Тогава:

$$l(e_1, ..., e_{n-1}, e_i, e_{n+1}, ..., e_n) \subseteq l(e_1, ..., e_{n-1}, e_{n+1}, ..., e_n)$$

и с включването

$$l(e_1, ..., e_{n-1}, e_{n+1}, ..., e_n) \subseteq l(e_1, ..., e_{n-1}, e_i, e_{n+1}, ..., e_n)$$

получаваме

$$V = l(e_1, ..., e_{n-1}, e_{n+1}, ..., e_n) = l(e_1, ..., e_n)$$

Съгласно предишно доказателство на Твърдение 5.4, съществува базис на V, който се съдържа в множеството $e_1,...,e_{n-1},e_{n+1},...,e_n$ и размерността на V е $dim(V) \leq n-1$. Това е противоречие с предположението dim(V)=n и доказва, че ако $l(e_1,...e_n)=V$, то $l(e_1,...e_n)=V$ и $e_1,...e_n$ е базис на V.

Твърдение 5.10

Нека V е п-мерно линейно пространство над поле F, а W е подпространство на V. Тогава $dim(W) \leq dim(V) = n$ с равенство dim(W) = dim(V), тогава и само тогава, когато W = V съвпадат.

Доказателство Нека подпространството W на линейното пространство V има $dim(W) \geq dim(V) = n$. Тогава $dim(W) = m \in \mathbb{N}$, то съгласно предишно Твърдение 5.8(i), съществуват m линейно независими вектора $w_1,...,w_m \in W, \ m \geq n+1$. В този случай $dim(W) = \infty$, по Твърдение 5.8 (ii) съществуват m линейно независими вектори $w_1,...,w_m \in W, \forall m \in \mathbb{N}$. Независимо от дали W е крайномерно или не, имаме n+1 линейно независими вектора $w_1,...,w_n,w_{n+1} \in W \subseteq V$. Възоснова на Твърдение 5.8 (i), това е противоречие на dim(W) = n и доказва $dim(W) \leq dim(V)$. Ако dim(W) = dim(V) = n, то произволни n линейно независими вектора

$$e_1, ..., e_n \in W \subseteq V$$

и спрямо Твърдение 5.9 образуват базис на W и базис на V. Следователно

$$W = l(e_1, ..., e_n) = V$$

Твърдение 5.10

Нека $b_1,...,b_k$ са линейно независими вектори от n-мерно линейно пространство V над поле F. Тогава $k \leq n$ и векторите $b_1,...,b_k$ могат да се допълнят до базис $b_1,...,b_k,b_{k+1}...,b_n$ на V.

Доказателство Нека $e_1,...,e_n$ е базис на V. Линейната независимост на $b_1, \overline{..., b_k} \in V = \overline{l}(e_1, ..., e_n)$ изисква $k \leq n$ съгласно Основната лема на линейната алгебра. Същото следва от Твърдение 5.8 (і), съгласно което произволни n+1 вектора в n-мерно пространство V са линейно зависими, така че ако $b_1,...,b_k$ са линейно независими, то $k \leq n$. Ако k = n, то линейно независимите вектори $b_1, ..., b_n$ в n-мерно линейно пространство V образуват базис на V по Твърдение 5.9. За k < n е в сила строго включване $l(b_1,...,b_k)\subsetneq V$, защото от $l(b_1,...,b_k)=V$ за линейно независими вектори $b_1,...,b_k$ следва, че $b_1,...,b_k$ е базис на V и n>dim(V)=k. Избираме вектор $b_{k+1} \in V \setminus l(b_1,...,b_k)$. Тогава $b_1,...,b_k,b_{k+1}$ са линейно независими по Лема за линейна независимост. Ако $\mathrm{k}+1=\mathrm{n},$ то $l(b_1,...,b_k,b_{k+1})=V$. В случая $\mathbf{k}+1<\mathbf{n}$ имаме $l(b1,...,bk,bk+1)\subsetneq V$ и съществува $b_{k+2}\in V\backslash l(b1,...,bk,bk+1)$ 1). Тогава векторите $b_1, ..., b_k, b_{k+1}, b_{k+2}$ са линейно независими по Лема за линейна независимост. Ако продължим по този начин, след краен брой стъпки получаваме и линейно независими вектора $b_1, ..., b_k, b_{k+1}, ..., b_n$ от пмерното пространство V така, че $b_1, ..., b_k, b_{k+1}, ..., b_n$ е базис на V съгласно Твърдение 5.9.