1. Introduction to convex optimization

Historically, linear programs were the focus in optimizaiton.

The dividing line betwen tractable and intractable problems was considered to be linear vs non-linear.

But many non-linear problems turned out to be quite tractable.

Increasingly the right distinction is seen as being between convex vs non-convex problems.

2. Convex sets and functions

A convex set $C \subseteq \Re^n$ has the following property.

Take any two points in the set: x, y. Any line segment between the two points has to reside entirely in the set.

That is,
$$tx + (1-t)y \in C$$
 for all $0 \le t \le 1$

Everything about convex functions can be dervied from a property of convex sets.

A convex function $f: \mathbb{R}^n \to \mathbb{R}$ is a function such that $domain(f) \subseteq \mathbb{R}^n$ is convex.

And if you take two points in the domain, the function value

$$f(tx + (1-t)y) \le tf(x) + (1-t)f(y)$$
 for all $0 \le t \le 1$.

i.e. the function evaluated at every point between two points in the domain must always be less than the line segment joining the two points.

What is the domain of a function?

- set of all x such that f(x) is defined and finite.
- sometimes we may drop this: e.g. for $f(x) = \log x$, its domain is \Re^{++} i.e. all $x \ge 0$.

3. Generic form of optimization problem

$$min_{x \in D} f(x)$$

subject to
$$g_i(x) \le 0$$
, $i = 1, ..., m$ and $h_j(x) = 0$, $j = 1, ..., r$

This is a **convex optimization** problem if:

- 1. the functions f and g_i are convex
- 2. h_j are affine, i.e. $h_j(x) = a_j^T x + b_j$

In every convex opt problem: **local minima are global minima**. This is what makes them tractable.

Theorem: If x is feasible ($x \in D$ and it satisfies all constraints), and it minimizes f in a local neighbourhood, i.e. $f(x) \le f(y)$ for all feasible y, $||x - y||_2 \le \rho$ then we know that $f(x) \le f(y)$ for all feasible y.

Proof: by contradiction.

Suppose there is some feasible point z st f(z) < f(x). (strictly smaller)

Then we know $||x-z||_2 \ge \rho$, since x is locally optimal within the radius ρ around x.

Consider tx + (1-t)z = y. These are points on the line segment between x and z. First we will show that y is feasible.

Fact 1: $y \in D$. This is because D is an intersection of convex sets, which are also convex.

Fact 2: $g_i(y) \le 0$. This is because $g_i(tx + (1-t)z) \le tg_i(x) + (1-t)g(z) \le 0$, since by definition g_i is a convex function, and these are the conditions in the original model spec. (use convexity of g)

Fact 3: $h_i(y) = 0$. Why? (use affine/convexity of h)

Hence, y is feasible, that is, everything on the line segment joining x to z is feasible for the optimization problem.

We know that

$$||y-x||_2 = ||tx + (1-t)z - x||_2$$

= $(1-t) ||z-x||_2$

Therefore, we can choose t close to 1 st $||y - x||_2 \le \rho$. That is, we can get y within the ball around x of radius ρ .

We know f is convex. (use convexity of f) So $f(y) = f(tx + (1-t)z) \le tf(x) + (1-t)f(z) < tf(x) + (1-t)f(x) = f(x)$, because we assume that f(z) < f(x).

• This property does not exist for non-convext problems! Which makes things trickier.

But then we have f(y) < f(x) and $||y - x||_2 < \rho$, which contradicts the earlier statement that x is locally optimal in the ball. Hence no such point z can exist.