

Geometry & Topology Monographs
 Volume 3: Invitation to higher local fields
 Part I, section 17, pages 143–150

17. An approach to higher ramification theory

Igor Zhukov

We use the notation of sections 1 and 10.

17.0. Approach of Hyodo and Fesenko

Let K be an n -dimensional local field, L/K a finite abelian extension. Define a filtration on $\text{Gal}(L/K)$ (cf. [H], [F, sect. 4]) by

$$\text{Gal}(L/K)^{\mathbf{i}} = \Upsilon_{L/K}^{-1}(U_{\mathbf{i}} K_n^{\text{top}}(K) + N_{L/K} K_n^{\text{top}}(L)/N_{L/K} K_n^{\text{top}}(L)), \quad \mathbf{i} \in \mathbb{Z}_+^n,$$

where $U_{\mathbf{i}} K_n^{\text{top}}(K) = \{U_{\mathbf{i}}\} \cdot K_{n-1}^{\text{top}}(K)$, $U_{\mathbf{i}} = 1 + P_K(\mathbf{i})$,

$$\Upsilon_{L/K}^{-1}: K_n^{\text{top}}(K)/N_{L/K} K_n^{\text{top}}(L) \xrightarrow{\sim} \text{Gal}(L/K)$$

is the reciprocity map.

Then for a subextension M/K of L/K

$$\text{Gal}(M/K)^{\mathbf{i}} = \text{Gal}(L/K)^{\mathbf{i}} \text{Gal}(L/M)/\text{Gal}(L/M)$$

which is a higher dimensional analogue of Herbrand's theorem. However, if one defines a generalization of the Hasse–Herbrand function and lower ramification filtration, then for $n > 1$ the lower filtration on a subgroup does not coincide with the induced filtration in general.

Below we shall give another construction of the ramification filtration of L/K in the two-dimensional case; details can be found in [Z], see also [KZ]. This construction can be considered as a development of an approach by K. Kato and T. Saito in [KS].

Definition. Let K be a complete discrete valuation field with residue field k_K of characteristic p . A finite extension L/K is called *ferociously ramified* if $|L : K| = |k_L : k_K|_{\text{ins}}$.

In addition to the nice ramification theory for totally ramified extensions, there is a nice ramification theory for ferociously ramified extensions L/K such that k_L/k_K is generated by one element; the reason is that in both cases the ring extension $\mathcal{O}_L/\mathcal{O}_K$ is monogenic, i.e., generated by one element, see section 18.

17.1. Almost constant extensions

Everywhere below K is a complete discrete valuation field with residue field k_K of characteristic p such that $|k_K : k_K^p| = p$. For instance, K can be a two-dimensional local field, or $K = \mathbb{F}_q(X_1)((X_2))$ or the quotient field of the completion of $\mathbb{Z}_p[T]_{(p)}$ with respect to the p -adic topology.

Definition. For the field K define a base (sub)field B as

$$B = \mathbb{Q}_p \subset K \text{ if } \text{char}(K) = 0,$$

$$B = \mathbb{F}_p((\rho)) \subset K \text{ if } \text{char}(K) = p, \text{ where } \rho \text{ is an element of } K \text{ with } v_K(\rho) > 0.$$

Denote by k_0 the completion of $B(\mathcal{R}_K)$ inside K . Put $k = k_0^{\text{alg}} \cap K$.

The subfield k is a maximal complete subfield of K with perfect residue field. It is called a *constant subfield* of K . A constant subfield is defined canonically if $\text{char}(K) = 0$. Until the end of section 17 we assume that B (and, therefore, k) is fixed.

By v we denote the valuation $K^{\text{alg}*} \rightarrow \mathbb{Q}$ normalized so that $v(B^*) = \mathbb{Z}$.

Example. If $K = F\{T\}$ where F is a mixed characteristic complete discrete valuation field with perfect residue field, then $k = F$.

Definition. An extension L/K is said to be *constant* if there is an algebraic extension l/k such that $L = Kl$.

An extension L/K is said to be *almost constant* if $L \subset L_1L_2$ for a constant extension L_1/K and an unramified extension L_2/K .

A field K is said to be *standard*, if $e(K|k) = 1$, and *almost standard*, if some finite unramified extension of K is a standard field.

Epp's theorem on elimination of wild ramification. ([E], [KZ]) *Let L be a finite extension of K . Then there is a finite extension k' of a constant subfield k of K such that $e(Lk'|Kk') = 1$.*

Corollary. *There exists a finite constant extension of K which is a standard field.*

Proof. See the proof of the Classification Theorem in 1.1.

Lemma. *The class of constant (almost constant) extensions is closed with respect to taking compositums and subextensions. If L/K and M/L are almost constant then M/K is almost constant as well.*

Definition. Denote by L_c the maximal almost constant subextension of K in L .

Properties.

- (1) Every tamely ramified extension is almost constant. In other words, the (first) ramification subfield in L/K is a subfield of L_c .
- (2) If L/K is normal then L_c/K is normal.
- (3) There is an unramified extension L'_0 of L_0 such that $L_c L'_0 / L_0$ is a constant extension.
- (4) There is a constant extension L'_c / L_c such that $L L'_c / L'_c$ is ferociously ramified and $L'_c \cap L = L_c$. This follows immediately from Epp's theorem.

The principal idea of the proposed approach to ramification theory is to split L/K into a tower of three extensions: L_0/K , L_c/L_0 , L/L_c , where L_0 is the inertia subfield in L/K . The ramification filtration for $\text{Gal}(L_c/L_0)$ reflects that for the corresponding extensions of constants subfields. Next, to construct the ramification filtration for $\text{Gal}(L/L_c)$, one reduces to the case of ferociously ramified extensions by means of Epp's theorem. (In the case of higher local fields one can also construct a filtration on $\text{Gal}(L_0/K)$ by lifting that for the first residue fields.)

Now we give precise definitions.

17.2. Lower and upper ramification filtrations

Keep the assumption of the previous subsection. Put

$$\mathcal{A} = \{-1, 0\} \cup \{(\mathfrak{c}, s) : 0 < s \in \mathbb{Z}\} \cup \{(\mathfrak{i}, r) : 0 < r \in \mathbb{Q}\}.$$

This set is linearly ordered as follows:

$$\begin{aligned} -1 &< 0 < (\mathfrak{c}, i) < (\mathfrak{i}, j) \text{ for any } i, j; \\ (\mathfrak{c}, i) &< (\mathfrak{c}, j) \text{ for any } i < j; \\ (\mathfrak{i}, i) &< (\mathfrak{i}, j) \text{ for any } i < j. \end{aligned}$$

Definition. Let $G = \text{Gal}(L/K)$. For any $\alpha \in \mathcal{A}$ we define a subgroup G_α in G .

Put $G_{-1} = G$, and denote by G_0 the inertia subgroup in G , i.e.,

$$G_0 = \{g \in G : v(g(a) - a) > 0 \text{ for all } a \in \mathcal{O}_L\}.$$

Let L_c/K be constant, and let it contain no unramified subextensions. Then define

$$G_{\mathfrak{c}, i} = \text{pr}^{-1}(\text{Gal}(l/k)_i)$$

where l and k are the constant subfields in L and K respectively,

$$\text{pr}: \text{Gal}(L/K) \rightarrow \text{Gal}(l/k) = \text{Gal}(l/k)_0$$

is the natural projection and $\text{Gal}(l/k)_i$ are the classical ramification subgroups. In the general case take an unramified extension K'/K such that $K'L/K'$ is constant and contains no unramified subextensions, and put $G_{\mathfrak{c},i} = \text{Gal}(K'L/K')_{\mathfrak{c},i}$.

Finally, define $G_{\mathfrak{i},i}$, $i > 0$. Assume that L_c is standard and L/L_c is ferociously ramified. Let $t \in \mathcal{O}_L$, $\bar{t} \notin k_L^p$. Define

$$G_{\mathfrak{i},i} = \{g \in G : v(g(t) - t) \geq i\}$$

for all $i > 0$.

In the general case choose a finite extension l'/l such that $l'L_c$ is standard and $e(l'L|l'L_c) = 1$. Then it is clear that $\text{Gal}(l'L/l'L_c) = \text{Gal}(L/L_c)$, and $l'L/l'L_c$ is ferociously ramified. Define

$$G_{\mathfrak{i},i} = \text{Gal}(l'L/l'L_c)_{\mathfrak{i},i}$$

for all $i > 0$.

Proposition. *For a finite Galois extension L/K the lower filtration $\{\text{Gal}(L/K)_\alpha\}_{\alpha \in \mathcal{A}}$ is well defined.*

Definition. Define a generalization $h_{L/K} : \mathcal{A} \rightarrow \mathcal{A}$ of the Hasse–Herbrand function. First, we define

$$\Phi_{L/K} : \mathcal{A} \rightarrow \mathcal{A}$$

as follows:

$$\begin{aligned} \Phi_{L/K}(\alpha) &= \alpha \quad \text{for } \alpha = -1, 0; \\ \Phi_{L/K}((\mathfrak{c}, i)) &= \left(\mathfrak{c}, \frac{1}{e(L|K)} \int_0^i |\text{Gal}(L_c/K)_{\mathfrak{c},t}| dt \right) \quad \text{for all } i > 0; \\ \Phi_{L/K}((\mathfrak{i}, i)) &= \left(\mathfrak{i}, \int_0^i |\text{Gal}(L/K)_{\mathfrak{i},t}| dt \right) \quad \text{for all } i > 0. \end{aligned}$$

It is easy to see that $\Phi_{L/K}$ is bijective and increasing, and we introduce

$$h_{L/K} = \Psi_{L/K} = \Phi_{L/K}^{-1}.$$

Define the upper filtration $\text{Gal}(L/K)^\alpha = \text{Gal}(L/K)_{h_{L/K}(\alpha)}$.

All standard formulas for intermediate extensions take place; in particular, for a normal subgroup H in G we have $H_\alpha = H \cap G_\alpha$ and $(G/H)^\alpha = G^\alpha H/H$. The latter relation enables one to introduce the upper filtration for an infinite Galois extension as well.

Remark. The filtrations do depend on the choice of a constant subfield (in characteristic p).

Example. Let $K = \mathbb{F}_p((t))(\!(\pi)\!).$ Choose $k = B = \mathbb{F}_p((\pi))$ as a constant subfield. Let $L = K(b)$, $b^p - b = a \in K$. Then

- if $a = \pi^{-i}$, i prime to p , then the ramification break of $\text{Gal}(L/K)$ is (\mathfrak{c}, i) ;
- if $a = \pi^{-pi}t$, i prime to p , then the ramification break of $\text{Gal}(L/K)$ is (\mathfrak{i}, i) ;
- if $a = \pi^{-it}$, i prime to p , then the ramification break of $\text{Gal}(L/K)$ is $(\mathfrak{i}, i/p)$;
- if $a = \pi^{-it^p}$, i prime to p , then the ramification break of $\text{Gal}(L/K)$ is $(\mathfrak{i}, i/p^2)$.

Remark. A dual filtration on $K/\wp(K)$ is computed in the final version of [Z], see also [KZ].

17.3. Refinement for a two-dimensional local field

Let K be a two-dimensional local field with $\text{char}(k_K) = p$, and let k be the constant subfield of K . Denote by

$$\mathbf{v} = (v_1, v_2): (K^{\text{alg}})^* \rightarrow \mathbb{Q} \times \mathbb{Q}$$

the extension of the rank 2 valuation of K , which is normalized so that:

- $v_2(a) = v(a)$ for all $a \in K^*$,
- $v_1(u) = w(\bar{u})$ for all $u \in U_{K^{\text{alg}}}$, where w is a non-normalized extension of v_{k_K} on k_K^{alg} , and \bar{u} is the residue of u ,
- $\mathbf{v}(c) = (0, e(k|B)^{-1}v_k(c))$ for all $c \in k$.

It can be easily shown that \mathbf{v} is uniquely determined by these conditions, and the value group of $\mathbf{v}|_{K^*}$ is isomorphic to $\mathbb{Z} \times \mathbb{Z}$.

Next, we introduce the index set

$$\mathcal{A}_2 = \mathcal{A} \cup \mathbb{Q}_+^2 = \mathcal{A} \cup \{(i_1, i_2) : i_1, i_2 \in \mathbb{Q}, i_2 > 0\}$$

and extend the ordering of \mathcal{A} onto \mathcal{A}_2 assuming

$$(\mathfrak{i}, i_2) < (i_1, i_2) < (i'_1, i_2) < (\mathfrak{i}, i'_2)$$

for all $i_2 < i'_2$, $i_1 < i'_1$.

Now we can define G_{i_1, i_2} , where G is the Galois group of a given finite Galois extension L/K . Assume first that L_c is standard and L/L_c is ferociously ramified. Let $t \in \mathcal{O}_L$, $\bar{t} \notin k_L^p$ (e.g., a first local parameter of L). We define

$$G_{i_1, i_2} = \{g \in G : \mathbf{v}(t^{-1}g(t) - 1) \geq (i_1, i_2)\}$$

for $i_1, i_2 \in \mathbb{Q}$, $i_2 > 0$. In the general case we choose l'/l (l is the constant subfield of both L and L_c) such that $l'L_c$ is standard and $l'L/l'L_c$ is ferociously ramified and put

$$G_{i_1, i_2} = \text{Gal}(l'L/l'L_c)_{i_1, i_2}.$$

We obtain a well defined lower filtration $(G_\alpha)_{\alpha \in \mathcal{A}_2}$ on $G = \text{Gal}(L/K)$.

In a similar way to 17.2, one constructs the Hasse–Herbrand functions $\Phi_{2,L/K} : \mathcal{A}_2 \rightarrow \mathcal{A}_2$ and $\Psi_{2,L/K} = \Phi_{2,L/K}^{-1}$ which extend Φ and Ψ respectively. Namely,

$$\Phi_{2,L/K}((i_1, i_2)) = \int_{(0,0)}^{(i_1, i_2)} |\text{Gal}(L/K)_t| dt.$$

These functions have usual properties of the Hasse–Herbrand functions φ and $h = \psi$, and one can introduce an \mathcal{A}_2 -indexed upper filtration on any finite or infinite Galois group G .

17.4. Filtration on $K^{\text{top}}(K)$

In the case of a two-dimensional local field K the upper ramification filtration for K^{ab}/K determines a compatible filtration on $K_2^{\text{top}}(K)$. In the case where $\text{char}(K) = p$ this filtration has an explicit description given below.

From now on, let K be a two-dimensional local field of prime characteristic p over a quasi-finite field, and k the constant subfield of K . Introduce \mathbf{v} as in 17.3. Let π_k be a prime of k .

For all $\alpha \in \mathbb{Q}_+^2$ introduce subgroups

$$\begin{aligned} Q_\alpha &= \{ \{\pi_k, u\} : u \in K, \mathbf{v}(u - 1) \geq \alpha \} \subset VK_2^{\text{top}}(K); \\ Q_\alpha^{(n)} &= \{a \in K_2^{\text{top}}(K) : p^n a \in Q_\alpha\}; \\ S_\alpha &= \text{Cl} \bigcup_{n \geq 0} Q_{p^n \alpha}^{(n)}. \end{aligned}$$

For a subgroup A , $\text{Cl } A$ denotes the intersection of all open subgroups containing A .

The subgroups S_α constitute the heart of the ramification filtration on $K_2^{\text{top}}(K)$. Their most important property is that they have nice behaviour in unramified, constant and ferociously ramified extensions.

Proposition 1. *Suppose that K satisfies the following property.*

- (*) *The extension of constant subfields in any finite unramified extension of K is also unramified.*

Let L/K be either an unramified or a constant totally ramified extension, $\alpha \in \mathbb{Q}_+^2$. Then we have $N_{L/K} S_{\alpha, L} = S_{\alpha, K}$.

Proposition 2. *Let K be standard, L/K a cyclic ferociously ramified extension of degree p with the ramification jump h in lower numbering, $\alpha \in \mathbb{Q}_+^2$. Then:*

- (1) $N_{L/K} S_{\alpha, L} = S_{\alpha+(p-1)h, K}$, if $\alpha > h$;
- (2) $N_{L/K} S_{\alpha, L}$ is a subgroup in $S_{p\alpha, K}$ of index p , if $\alpha \leq h$.

Now we have ingredients to define a decreasing filtration $\{\text{fil}_\alpha K_2^{\text{top}}(K)\}_{\alpha \in \mathcal{A}_2}$ on $K_2^{\text{top}}(K)$. Assume first that \tilde{K} satisfies the condition (*). It follows from [KZ, Th. 3.4.3] that for some purely inseparable constant extension K'/K the field K' is almost standard. Since K' satisfies (*) and is almost standard, it is in fact standard.

Denote

$$\begin{aligned} \text{fil}_{\alpha_1, \alpha_2} K_2^{\text{top}}(K) &= S_{\alpha_1, \alpha_2}; \\ \text{fil}_{i, \alpha_2} K_2^{\text{top}}(K) &= \text{Cl} \bigcup_{\alpha_1 \in \mathbb{Q}} \text{fil}_{\alpha_1, \alpha_2} K_2^{\text{top}}(K) \text{ for } \alpha_2 \in \mathbb{Q}_+; \\ T_K &= \text{Cl} \bigcup_{\alpha \in \mathbb{Q}_+^2} \text{fil}_\alpha K_2^{\text{top}}(K); \\ \text{fil}_{c, i} K_2^{\text{top}}(K) &= T_K + \{ \{t, u\} : u \in k, v_k(u - 1) \geq i \} \text{ for all } i \in \mathbb{Q}_+, \\ &\quad \text{if } K = k\{t\} \text{ is standard;} \\ \text{fil}_{c, i} K_2^{\text{top}}(K) &= N_{K'/K} \text{fil}_{c, i} K_2^{\text{top}}(K'), \text{ where } K'/K \text{ is as above;} \\ \text{fil}_0 K_2^{\text{top}}(K) &= U(1)K_2^{\text{top}}(K) + \{t, \mathcal{R}_K\}, \text{ where } U(1)K_2^{\text{top}}(K) = \{1 + P_K(1), K^*\}, \\ &\quad t \text{ is the first local parameter;} \\ \text{fil}_{-1} K_2^{\text{top}}(K) &= K_2^{\text{top}}(K). \end{aligned}$$

It is easy to see that for some unramified extension \tilde{K}/K the field \tilde{K} satisfies the condition (*), and we define $\text{fil}_\alpha K_2^{\text{top}}(K)$ as $N_{\tilde{K}/K} \text{fil}_\alpha K_2^{\text{top}}(\tilde{K})$ for all $\alpha \geq 0$, and $\text{fil}_{-1} K_2^{\text{top}}(K)$ as $K_2^{\text{top}}(K)$. It can be shown that the filtration $\{\text{fil}_\alpha K_2^{\text{top}}(K)\}_{\alpha \in \mathcal{A}_2}$ is well defined.

Theorem 1. *Let L/K be a finite abelian extension, $\alpha \in \mathcal{A}_2$. Then $N_{L/K} \text{fil}_\alpha K_2^{\text{top}}(L)$ is a subgroup in $\text{fil}_{\Phi_{L/K}(\alpha)} K_2^{\text{top}}(K)$ of index $|\text{Gal}(L/K)_\alpha|$. Furthermore,*

$$\text{fil}_{\Phi_{L/K}(\alpha)} K_2^{\text{top}}(K) \cap N_{L/K} K_2^{\text{top}}(L) = N_{L/K} \text{fil}_\alpha K_2^{\text{top}}(L).$$

Theorem 2. *Let L/K be a finite abelian extension, and let*

$$\Upsilon_{L/K}^{-1} : K_2^{\text{top}}(K)/N_{L/K} K_2^{\text{top}}(L) \rightarrow \text{Gal}(L/K)$$

be the reciprocity map. Then

$$\Upsilon_{L/K}^{-1}(\text{fil}_\alpha K_2^{\text{top}}(K) \mod N_{L/K} K_2^{\text{top}}(L)) = \text{Gal}(L/K)^\alpha$$

for any $\alpha \in \mathcal{A}_2$.

Remarks. 1. The ramification filtration, constructed in 17.2, does not give information about the classical ramification invariants in general. Therefore, this construction can be considered only as a provisional one.

2. The filtration on $K_2^{\text{top}}(K)$ constructed in 17.4 behaves with respect to the norm map much better than the usual filtration $\{U_i K_2^{\text{top}}(K)\}_{i \in \mathbb{Z}_+^n}$. We hope that this filtration can be useful in the study of the structure of K^{top} -groups.

3. In the mixed characteristic case the description of “ramification” filtration on $K_2^{\text{top}}(K)$ is not very nice. However, it would be interesting to try to modify the ramification filtration on $\text{Gal}(L/K)$ in order to get the filtration on $K_2^{\text{top}}(K)$ similar to that described in 17.4.

4. It would be interesting to compute ramification of the extensions constructed in sections 13 and 14.

References

- [E] H. Epp, Eliminating wild ramification, *Invent. Math.* 19 (1973), pp. 235–249
- [F] I. Fesenko, Abelian local p -class field theory, *Math. Ann.* 301 (1995), 561–586.
- [H] O. Hyodo, Wild ramification in the imperfect residue field case, *Advanced Stud. in Pure Math.* 12 (1987) Galois Representation and Arithmetic Algebraic Geometry, 287–314.
- [KS] K. Kato and T. Saito, Vanishing cycles, ramification of valuations and class field theory, *Duke Math. J.*, 55 (1997), 629–659
- [KZ] M. V. Koroteev and I. B. Zhukov, Elimination of wild ramification, *Algebra i Analiz* 11 (1999), no. 6.
- [Z] I. B. Zhukov, On ramification theory in the imperfect residue field case, preprint of Nottingham University 98-02, Nottingham, 1998, www.dpmms.cam.ac.uk/Algebraic-Number-Theory/0113, to appear in Proceedings of the Luminy conference on Ramification theory for arithmetic schemes.

*Department of Mathematics and Mechanics St. Petersburg University
Bibliotechnaya pl. 2, Staryj Petergof
198904 St. Petersburg Russia
E-mail: igor@zhukov.pdmi.ras.ru*