1 Basic concepts

1.1 Parametric vs Nonparametric models

A statistical model postulates a family of possible data generating mechanisms. Examples include:

- (i) Let $X_1, \ldots, X_n \sim^{\text{iid}} \Gamma(m, \theta)$ where m is known and $\theta \in (0, \infty) := \Theta$;
- (ii) Let $Y_i = \alpha + \beta x_i + \varepsilon_i$ for $i \in [n] := \{1, \dots, n\}$, where x_1, \dots, x_n and $\varepsilon_1, \dots, \varepsilon_n \sim^{\text{iid}} \mathcal{N}(0, \sigma^2)$. Here the unknown parameter is $\theta = (\alpha, \beta, \sigma^2) \in \mathbb{R} \times \mathbb{R} \times (0, \infty) := \Theta$.

If the parameter space Θ is finite-dimensional, we speak of a parametric model. When the model is correctly specified, i.e there exists $\theta_0 \in \Theta$ for which the data were generated from the distribution with parameter θ_0 , typically we can use the MLE $\hat{\theta}_n$ to estimate θ_0 , and expect $n^{1/2}(\hat{\theta}_n - \theta_0)$ to converge to a non-degenerate limiting distribution. On the other hand, when the model is misspecified, inferences may be very misleading.

Examples of nonparametric models include:

- (i) Let $X_1, \ldots, X_n \sim^{\text{iid}} F$ for some unknown distribution function F;
- (ii) Let $X_1, \ldots, X_n \sim^{\text{iid}} f$ for some density f belonging to some unknown smoothness class;
- (iii) Let $Y_i = m(x_i) + \varepsilon_i$ for $i \in [n]$, where x_1, \ldots, x_n are known, m belongs to some unknown smoothness class and $\varepsilon_1, \ldots, \varepsilon_n$ are iid with $\mathbb{E}(\varepsilon_1) = 0$, $\operatorname{Var}(\varepsilon_1) = \sigma^2$.

Such infinite-dimensional models are much less vulnerable to model misspecification. Typically however, we will pay a price in terms of a slower rate of convergence.

1.2 Estimating an arbitrary distribution function

Let \mathcal{F} denote the set of all distribution functions on \mathbb{R} . The *empirical distribution function* \mathbb{F}_n of real-valued random variables X_1, \ldots, X_n is defined by

$$\mathbb{F}_n(x) = \mathbb{F}_n(x, X_1, \dots, X_n) = \frac{1}{n} \sum_{i=1}^n \mathbb{1}\{X_i \le x\}.$$

Theorem (Glivenko-Cantelli Theorem). Let $X_1, \ldots, X_n \sim^{iid} F \in \mathcal{F}$ and let \mathbb{F}_n denote the empirical distribution function of X_1, \ldots, X_n . Then

$$\sup_{x \in \mathbb{R}} |\mathbb{F}_n(x) - F(x)| \xrightarrow{a.s} 0 \text{ as } n \to \infty.$$

Proof. Let $\varepsilon > 0$ and $k := \left\lceil \frac{1}{\varepsilon} \right\rceil$. Let $x_0 = -\infty$, $x_i = \inf\{x \in \mathbb{R} : F(x) \ge i/k\}$ for $i \in [k-1]$ and $x_k = \infty$. Writing F(x-) for $\lim_{y \uparrow x} F(y)$, note that for $i \in [k]$

$$F(x_{i-1}) - F(x_{i-1}) \le \frac{i}{k} - \frac{i-1}{k} = \frac{1}{k} \le \varepsilon.$$

Now define the event

$$\Omega_{n,\varepsilon} = \left\{ \max_{i \in [k]} \sup_{m > n} |\mathbb{F}_m(x_i) - F(x_i)| \le \varepsilon \right\} \cap \left\{ \max_{i \in [k]} \sup_{m > n} |\mathbb{F}_m(x_i -) - F(x_i -)| \le \varepsilon \right\}$$

Noting that both $\mathbb{F}_n(x) = \frac{1}{n} \sum_{i=1}^n \mathbb{1}\{X_i \leq x\}$ and $\mathbb{F}_n(x-) = \frac{1}{n} \sum_{i=1}^n \mathbb{1}\{X_i < x\}$ are both sample averages of i.i.d random variables, we have by a union bound and the SLLN that

$$\mathbb{P}_F(\Omega_{n,\varepsilon}^c)$$

$$\leq \sum_{i=1}^{k} \mathbb{P}_{F} \left(\sup_{m \geq n} |\mathbb{F}_{m}(x_{i}) - F(x_{i})| > \varepsilon \right) + \sum_{i=1}^{k} \mathbb{P}_{F} \left(\sup_{m \geq n} |\mathbb{F}_{m}(x_{i}) - F(x_{i})| > \varepsilon \right)$$

$$\xrightarrow{a.s.} 0.$$

Now let $x \in \mathbb{R}$ and find $i_* \in [k]$ such that $x \in [x_{i_*-1}, x_{i_*})$. Then for any $n_0 \in \mathbb{N}$ and $n \ge n_0$,

$$\begin{split} \mathbb{F}_n(x) - F(x) &\leq \mathbb{F}_n(x_{i_*} -) - F(x_{i_* - 1}) \\ &= \mathbb{F}_n(x_{i_*} -) - F(x_{i_*} -) + F(x_{i_*} -) - F(x_{i_* - 1}) \\ &\leq \max_{i \in [k]} \sup_{m \geq n_0} |\mathbb{F}_m(x_i -) - F(x_i -)| + \varepsilon. \end{split}$$

We also have

$$\begin{split} F(x) - \mathbb{F}_n(x) &\leq F(x_{i_*} -) - \mathbb{F}_n(x_{i_*-1}) \\ &= F(x_{i_*} -) - F(x_{i_*-1}) + F(x_{i_*-1}) - \mathbb{F}_n(x_{i_*-1}) \\ &\leq \varepsilon + \max_{i \in [k]} \sup_{m \geq n_0} |\mathbb{F}_m(x_i) - F(x_i)|. \end{split}$$

It follows that

$$\mathbb{P}_F\left(\sup_{n\geq n_0}\sup_{x\in\mathbb{R}}|\mathbb{F}_n(x)-F(x)|>2\varepsilon\right)\leq \mathbb{P}_F(\Omega^c_{n_0,\varepsilon})\to 0 \text{ as } n_0\to\infty.$$

Since $\varepsilon > 0$ was arbitrary, we conclude that

$$\mathbb{P}_{F}\left(\sup_{x\in\mathbb{R}}|\mathbb{F}_{n}(x)-F(x)|\to0\right) = \mathbb{P}_{F}\left(\bigcap_{L=1}^{\infty}\bigcup_{n_{0}=1}^{\infty}\left\{\sup_{n\geq n_{0}}\sup_{x\in\mathbb{R}}|\mathbb{F}_{n}(x)-F(x)|\leq\frac{1}{L}\right\}\right)$$

$$=\lim_{L\to\infty}\lim_{n_{0}\to\infty}\mathbb{P}_{F}\left(\sup_{n\geq n_{0}}\sup_{x\in\mathbb{R}}|\mathbb{F}_{n}(x)-F(x)|\leq\frac{1}{K}\right)$$

$$=1$$

In fact, we can say much more:

Theorem (Dvoretzky-Kiefer-Wolfowitz Theorem). Under the conditions of the previous theorem, for every $\varepsilon > 0$,

$$\mathbb{P}_F\left(\sup_{x\in\mathbb{R}}|\mathbb{F}_n(x)-F(x)|>\varepsilon\right)\leq 2e^{-2n\varepsilon^2}.$$

Proof. Not given.

Corollary (Uniform Glivenko-Cantelli). *Under the conditions of the Glivenko-Cantelli Theorem*,

$$\sup_{F \in \mathcal{F}} \mathbb{P}_F \left(\sup_{m \ge n} \sup_{x \in \mathbb{R}} |\mathbb{F}_m(x) - F(x)| > \varepsilon \right) \to 0 \text{ as } n \to \infty.$$

Proof. By a union bound and the DKW inequality,

$$\sup_{F \in \mathcal{F}} \mathbb{P}_F \left(\sup_{m \ge n} \sup_{x \in \mathbb{R}} |\mathbb{F}_m(x) - F(x)| > \varepsilon \right) \le \sup_{F \in \mathcal{F}} \sum_{m \ge n} \mathbb{P}_F \left(\sup_{x \in \mathbb{R}} |\mathbb{F}_m(x) - F(x)| > \varepsilon \right) \\
\le 2 \sum_{m \ge n} e^{-2m\varepsilon^2} \\
\frac{2e^{-2n\varepsilon^2}}{1 - e^{-2\varepsilon^2}} \to 0 \text{ as } n \to \infty.$$

As another application of the DKW inequality, consider the problem of finding a confidence bound for F. Given $\alpha \in (0,1)$, set $\varepsilon_n = \varepsilon_n(\alpha) := \left\{\frac{1}{2n}\log\left(\frac{2}{\alpha}\right)\right\}^{1/2}$. Then, by the DKW Theorem,

$$\mathbb{P}_F\left(\max\{0, \mathbb{F}_n(x) - \varepsilon_n\} \le F(x) \le \min\{\mathbb{F}_n(x) + \varepsilon_n, 1\} \ \forall x \in \mathbb{R}\right) \ge 1 - \alpha.$$

In fact, let $U_1, \ldots, U_n \sim^{\text{iid}} \mathcal{U}[0,1]$ and let \mathbb{G}_n denote their empirical distribution. Define the quantile function $F^{-1}:(0,1]\to(-\infty,\infty]$ by $F^{-1}(p):=\inf\{x\in\mathbb{R}:F(x)\geq p\}$ (i.e the generalised inverse). Since F is increasing and right-continuous, we have $\{x\in\mathbb{R}:F(x)\geq p\}=[F^{-1}(p),\infty)$, so $\{U_i\leq F(x)\}=\{F^{-1}(U_i)\leq x\}$. Hence

$$\mathbb{G}_n(F(x)) = \frac{1}{n} \sum_{i=1}^n \mathbb{1}\{U_i \le F(x)\} = \frac{1}{n} \sum_{i=1}^n \mathbb{1}\{F^{-1}(U_i) \le x\} = d \frac{1}{n} \sum_{i=1}^n \mathbb{1}\{X_i \le x\} = \mathbb{F}_n(x).$$

So

$$\sup_{x \in \mathbb{R}} |\mathbb{F}_n(x) - F(x)| = \sup_{x \in \mathbb{R}} |\mathbb{G}_n(F(x)) - F(x)| \le \sup_{t \in [0,1]} |\mathbb{G}_n(t) - t|$$

with equality if F is continuous. Thus if F is continuous, the distribution of $\sup_{x \in \mathbb{R}} |\mathbb{F}_n(x) - F(x)|$ does not depend on F!

Other generalisations of the Glivenko-Cantelli Theorem include Uniform Laws of Large Numbes (ULLN). Let X_1, X_2, \ldots, X_n be iid, taking values in some measurable space $(\mathcal{X}, \mathcal{A})$, and let \mathcal{G} denote a family of real-valued measurable functions on \mathcal{X} . We say \mathcal{G} satisfies a ULLN if

$$\sup_{g \in \mathcal{G}} \left| \frac{1}{n} \sum_{i=1}^{n} g(X_i) - \mathbb{E}g(X) \right| \xrightarrow{a.s.} 0.$$

Remark. \mathcal{G} may be uncountable, so this random variable could be non measurable. But we can get around this by working with an outer probability $\mathbb{P}^*(A) = \inf\{\mathbb{P}(B) : B \in \mathcal{F}, \ B \supseteq A\}.$

Thus, in the Glivenko-Cantelli Theorem we proved that $\{\mathbb{1}\{\cdot \leq x\} : x \in \mathbb{R}\}$ satisfies a ULLN. In general, proving a ULLN requires control of the 'size' of \mathcal{G} , which can be measured for instance through its metric entropy (see van de Geer, 2000).

1.3 Concentration Inequalities

Definition. A random variable X is sub-Gaussian with variance parameter σ^2 if

$$\mathbb{E}(e^{tX}) < e^{t^2 \sigma^2/2} \quad \forall t \in \mathbb{R}.$$

Remark. It can be shown (see Example Sheet) that any such random variable must satisfy $\mathbb{E}(X) = 0$ and $\text{Var}(X) \leq \sigma^2$. Note also that we have equality in the definition if $X \sim \mathcal{N}(0, \sigma^2)$.