Clustering

Tozammel Hossain

What is Clustering Analysis?

- Aka binning/segmentation/hashing
- Finding similarities between data according to the characteristics found in the data and grouping similar data objects into clusters
 - Number of clusters is not known ahead of time
- Cluster: A collection of data objects
 - similar (or related) to one another within the same group
 - dissimilar (or unrelated) to the objects in other groups
- A type of Unsupervised Learning: no predefined classes

Clustering Applications

Typical applications

- As a **stand-alone tool** to get insight into data distribution
- As a preprocessing step for other algorithms

Biology:

 Taxonomy of living things: kingdom, phylum, class, order, family, genus and species

Information retrieval:

Document clustering

Land use:

 Identification of areas of similar land use in an earth observation database

Clustering Applications

Marketing:

 Help marketers discover distinct groups in their customer bases, and then use this knowledge to develop targeted marketing programs

City-planning:

 Identifying groups of houses according to their house type, value, and geographical location

Climate:

 Understanding earth climate, find patterns of atmospheric and ocean

Economic Science:

market research

Clustering as a Preprocessing Tool

Summarization of data

Finding K-nearest Neighbors

 Localizing search to one or a small number of clusters

Outlier detection

 Outliers are often viewed as those "far away" from any cluster

Image Processing

Compression: cluster similar colors -> replace
 all the colors within a cluster with one color

What Is Good Clustering?

- A good clustering method will produce high quality clusters
 - high <u>intra-class</u> similarity: **cohesive** within clusters
 - low <u>inter-class</u> similarity: **distinctive** between clusters

Clustering Types

- Representative-based Clustering
- Hierarchical Clustering
- Density-based Clustering
- Spectral and Graph Clustering

Representative-based Clustering

- aka Prototype based clustering
- Given n data points and the number of desired cluster k
 - partition the dataset into k groups or cluster
- Data points in cluster are summarized with representative point
 - Mean (aka centroid) of data points is popular
- Brute-force/exhaustive approach
 - generate all possible partitions of n points into k clusters:
 - $k^n/k!$: computationally infeasible with large n
 - evaluate some optimization score for each of them
 - retain the clustering that yields the best score

The K-Means Clustering Method

- Given k, the k-means algorithm is implemented in four steps:
 - Partition objects into k nonempty subsets
 - Compute seed points as the centroids of the clusters of the current partitioning (the centroid is the center, i.e., mean point, of the cluster)
 - Assign each object to the cluster with the nearest seed point
 - Go back to Step 2, stop when the assignment does not change $E = \sum_{i=1}^k \sum_{p \in C_i} (p c_i)^2$

C

An Example of K-Means Clustering

Until no change

Comments on K-Means

- Efficient algorithm: runs very fast
- Often terminates at a local optimal
- Cons:
 - Applicable only to objects in a continuous ndimensional space
 - Using the k-modes method for categorical data
 - In comparison, k-medoids can be applied to a wide range of data
 - Need to specify k, the number of clusters, in advance
 - there are ways to automatically determine the best k
 - Sensitive to noisy data and outliers
 - Not suitable to discover clusters with non-convex shapes

PAM: A Typical K-Medoids Algorithm

sklearn implementation

n_init = 10:

 run 10 times independently with different rando centroids

max_iter = 300:

- max number of iteration for each run
- stops if it converges early

tol=1e-04

- stop if change in center <tol
- cluster_centers_: a signature

```
from sklearn.cluster import KMeans
km = KMeans(
    n_clusters=3, init='random',
    n_init=10, max_iter=300,
    tol=1e-04, random_state=0
)
y_km = km.fit_predict(X)
```

Choosing K

Elbow method

- Distortion/inertia vs K
- Distortion: SSE $I = \sum_{i} (d(i, cr))$
- identify the value of k where the distortion begins to decrease most rapidly

Hierarchical Clustering

- Use distance matrix as clustering criteria
 - No need to choose k
 - Need a terminating condition

Agglomerative Clustering

- Use a link method and the dissimilarity matrix
- Merge nodes that have the least dissimilarity
- Eventually all nodes belong to the same cluster

Dendrogram: Shows How Clusters are Merged

- Decompose data points to several levels of nested partitioning
 - Tree of clusters
- A clustering is obtained by cutting the dendrogram at the desired level

Steps 1 and 2

 Start with clusters of individual points and a proximity matrix

	р1	p2	рЗ	p4	р5	<u>L</u>
p1						
<u>p2</u>						
<u>p2</u> <u>p3</u>						
р4 р5						
-						

Intermediate Situation

 After some merging steps, we have some clusters

	C1	C2	C3	C4	C 5
C1					
C2					
C 3					
C4					
C5					

Proximity Matrix

Step 4

 We want to merge the two closest clusters (C2 and C5) and update the proximity matrix

C1

C2

C3

C5

p12

C4

C3

Step 5

 The question is "How do we update the proximity matrix?"

	ı		C2		
		C1	U C5	C3	C4
	C1		?		
C2 U	C 5	?	?	?	?
	C 3		?		
	<u>C4</u>		?		

How to Define Inter-Cluster Distance

	p1	p2	р3	p4	p 5	<u> </u>
p1						
p2						
p3						
<u>р4</u> р5						

- MIN
- MAX
- Group Average
- Distance Between Centroids
- Other methods driven by an objective function
 - Ward's Method uses squared error

- Group Average
- Distance Between Centroids
- Other methods driven by an objective function
 - Ward's Method uses squared error

- Other methods driven by an objective function
 - Ward's Method uses squared error

- Group Average
- Distance Between Centroids
- Other methods driven by an objective function
 - Ward's Method uses squared error

- Other methods driven by an objective function
 - Ward's Method uses squared error

Distance between Clusters

Clusters are merge based on distance

Single link:

 smallest distance between an element in one cluster and an element in the other, i.e., dist(Ki, Kj) = min dist(t_ip, t_jq)

Complete link:

largest distance between an element in one cluster and an element in the other, i.e., dist(Ki, Kj) = max dist(t_ip, t_jq)

Average:

avg distance between an element in one cluster and an element in the other, i.e., dist(Ki, Kj) = avg dist(t_ip, t_jq)

• Ward:

based on minimizing the variance between clusters (SSE)

Issues with Hierarchical Clustering

- Can never undo what was done previously
 - Compare with k-means
- Do not scale well
 - time complexity $O(n^2)$

Density-Based Clustering

- Clustering based on density (local cluster criterion), such as densityconnected points
- Major features:
 - Discover clusters of arbitrary shape
 - Handle noise
 - One scan
 - Need density parameters as termination condition
- Example
 - DBSCAN, OPTICS, DENCLUE

Density-Based Clustering: Basic Concepts

- Classifying points based on the characteristic of their local neighborhood
- Two parameters:
 - Eps: Maximum radius of the neighborhood
 - MinPts: Minimum number of points in an Epsneighborhood of that point
- N_{Eps}(p): {q belongs to D | dist(p,q) ≤
 Eps}

DBSCAN: Density-Based Spatial Clustering of Applications with Noise

- Relies on a density-based notion of cluster:
 - A cluster is defined as a maximal set of densityconnected points
- Discovers clusters of arbitrary shape in spatial databases with noise

DBSCAN: Core, Border and Noise Points

Original Points

Point types: core, border and noise

Eps = 10, MinPts = 4

DBSCAN: The Algorithm

- A point is considered reachable from another point if there is a path consisting of core points between the starting and ending point
- Any point that is not reachable is considered an outlier

X is density reachable from Y, but Y is not density reachable from X

a. Density-reachability of points

X and Y are density connected by Z.

b. Density connectivity of points

DBSCAN: The Algorithm

- Arbitrary select a point p
- Retrieve all points density-reachable from p w.r.t. Eps and MinPts
- If p is a core point, a cluster is formed
- If p is a border point, no points are density-reachable from p and DBSCAN visits the next point of the database
- Continue the process until all of the points have been processed

Measures of Cluster Validity

- Numerical measures that are applied to judge various aspects of cluster validity, are classified into the following two types.
 - Supervised: Used to measure the extent to which cluster labels match externally supplied class labels.
 - Entropy
 - Often called external indices because they use information external to the data
 - Unsupervised: Used to measure the goodness of a clustering structure without respect to external information.
 - Sum of Squared Error (SSE)
 - Often called internal indices because they only use information in the data
- You can use supervised or unsupervised measures to compare clusters or clusterings

Unsupervised Measures: Cohesion and Separation

- Cluster Cohesion: Measures how closely related are objects in a cluster
- Cluster Separation: Measure how distinct or well-separated a cluster is from other clusters
- Example:
 - Silhoutte score
 - Duhn Index