Guilherme Augusto de Macedo, Matheus Liberato Domingues da Silva, Victor Hugo Carlquist da Silva

Modelo de Banco de Dados para Gerenciamento de Pizzaria: Modelagem e Implementação

Campos do Jordão 2013

Guilherme	Augusto	de	Macedo,	Matheus	Liberato	Domingues	da	Silva,	Victor
			Hugo	o Carlquis	t da Silva	Э			

Modelo de Banco de Dados para Gerenciamento de Pizzaria: Modelagem e Implementação

Trabalho final apresentado na disciplina de Banco de Dados II no quarto módulo do curso de Tecnologia em Análise e Desenvolvimento de Sistemas do IFSP-CJO.

Instituto Federal de Educação, Ciência e Tecnologia de São Paulo - campus Campos do Jordão

Orientador: Paulo Giovani de Faria Zeferino

Campos do Jordão 2013

Guilherme Augusto de Macedo, Matheus Liberato Domingues da Silva, Victor Hugo Carlquist da Silva

MODELO DE BANCO DE DADOS PARA GERENCIAMENTO DE PIZZARIA: MODELAGEM E IMPLEMENTAÇÃO/ Guilherme Augusto de Macedo, Matheus Liberato Domingues da Silva, Victor Hugo Carlquist da Silva. – Campos do Jordão, 2013-44 p. : il. (algumas color.) ; 30 cm.

Orientador: Paulo Giovani de Faria Zeferino

Trabalho Final – Instituto Federal de Educação, Ciência e Tecnologia de São Paulo - campus Campos do Jordão, 2013.

1. Complexidade de Algoritmo. 2. Processamento de Imagens. I. Autor. II. Título III. Orientador. IV. Faculdade. V. Título

CDU 02:141:005.7

Guilherme Augusto de Macedo, Matheus Liberato Domingues da Silva, Victor Hugo Carlquist da Silva

Modelo de Banco de Dados para Gerenciamento de Pizzaria: Modelagem e Implementação

Trabalho final apresentado na disciplina de Banco de Dados II no quarto módulo do curso de Tecnologia em Análise e Desenvolvimento de Sistemas do IFSP-CJO.

Banca Examinadora

03 de dezembro de 2013

Prof. Paulo Giovani de Faria Zeferino Orientador

> Prof. Me. Alvaro Costa Neto Convidado 1

Prof. Esp. Alisson Ribeiro Convidado 2

> Campos do Jordão 2013

RESUMO

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum. Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

Palavras-chaves: Complexidade de Algoritmos. Processamento de Imagens. Computação Heterogênea.

ABSTRACT

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum. Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

Key-words: Algorithm Complexity. Image Processing. Heterogeneous Computing.

LISTA DE ILUSTRAÇÕES

Figura 1 — Epatas da metodologia
Figura 2 –
Figura 3
Figura 4
Figura 5 –
Figura 6 –
Figura 7
Figura 8
Figura 9
Figura 10 – Resultado do select
Figura 11 – Resultado do select
Figura 12 – Resultado do select
Figura 13 – Resultado do select
Figura 14 – Resultado do select
Figura 15 – Resultado do select
Figura 16 – Resultado do select
Figura 17 – Resultado do select
Figura 18 – Resultado do select
Figura 19 – Resultado do select
Figura 20 – Resultado do select

LISTA DE TABELAS

SUMÁRIO

Introdução	9
Metodologia Proposta	10
Modelo Conceitual	11
Modelo Lógico	14
Implementação	17
Execução e Testes	24
Consultas	24
Procedimentos armazenados	29
Considerações Finais	34
Referências	35
Anexos	36
ANEXO A – Dados inseridos para teste	37

INTRODUÇÃO

O projeto proposto tem por objetivo a modelagem conceitual, lógica e física de um projeto de Banco de Dados para gerenciamento/automatização de uma pizzaria. A modelagem foi realizada tomando por base os seguintes requisitos:

- 1. Opção de realização de pedidos online;
- 2. Pizzaria delivery;
- 3. Após cadastro, opção do cliente cadastrar dependentes;
- 4. Registro de admissão e demissão de funcionários;
- 5. Log automático das atividades dos funcionários;
- 6. Controle de estoque com base nos fornecedores e nos ingredientes das pizzas;
- 7. Esquema de backup automático da base de dados.

Depois de gerado o modelo físico, implementou-se a solução utilizando o SQL Server Management Studio. Com base nessa implementação, consultas, views, triggers, entre outras rotinas, foram criadas para fins de execução e testes.

Os capítulos seguintes estão divididos em Metodologia Proposta, onde é detalhada a metodologia utilizada para a execução o projeto, seguidos de explicações a respeito do modelo conceitual, lógico e físico. Posteriormente, as consultas realizadas são explicadas, assim como o restante das rotinas elaboradas.

1 METODOLOGIA PROPOSTA

Para a execução dessa trabalho a metodologia foi dividida em três etapas: Criação do modelo conceitual, Criação do modelo lógico, Criação do modelo físico, Implementação e Execução e Testes. A figura 1 ilustra a sequência de execução destas etapas.

Criação do modelo conceitual

Criação do modelo lógico

Criação do modelo físico

Implementação

Execução e Testes

Fonte: Autor

Figura 1 – Epatas da metodologia

2 MODELO CONCEITUAL

Figura 2 –

Figura 3 –

Figura 4 –

Figura 5 –

3 MODELO LÓGICO

Figura 6 -

Figura 7 –

Figura 8 –

Figura 9 –

4 IMPLEMENTAÇÃO

```
O banco de dados foi implementado utilizando o software SQL Server 2010.
USE master
GO
IF EXISTS (select name from sys.databases where name = 'Pizzaria')
        DROP DATABASE Pizzaria
go
CREATE DATABASE Pizzaria
go
USE Pizzaria
go
SET DATEFORMAT dmy
go
— Table Pizzaria. Logins
CREATE TABLE Logins (
  idLogin INT NOT NULL,
  Usuario VARCHAR(45) NULL,
  Senha VARCHAR(20) NULL,
  PRIMARY KEY (idLogin)
GO
— Table Pizzaria. Clientes
CREATE TABLE Clientes (
  id Cliente INT NOT NULL PRIMARY KEY,
  Nome VARCHAR (200) NOT NULL,
  Endereco VARCHAR(200) NULL,
```

```
idLogin INT DEFAULT NULL,
  Telefone VARCHAR(18) NULL,
  CONSTRAINT fk_Clientes_Logins
    FOREIGN KEY (idLogin)
    REFERENCES Logins (idLogin)
    ON DELETE NO ACTION
    ON UPDATE NO ACTION
)
GO
 — Table Pizzaria. Cargos
CREATE TABLE Cargos (
  idCargo INT NOT NULL,
  Salario DECIMAL(6,2) NULL,
  NomeCargo VARCHAR(25) NULL,
  PRIMARY KEY (idCargo)
)
GO
- Table Pizzaria. Funcionarios
CREATE TABLE Funcionarios (
  Nome VARCHAR(45) NULL,
  Endereco VARCHAR(200) NULL,
  Telefone VARCHAR(18) NULL,
  CPF VARCHAR(11) NOT NULL,
  RG VARCHAR(10) NULL,
  NumCarteira VARCHAR(45) NULL,
  DataNascimento DATE NULL,
  idCargo INT NOT NULL,
  PRIMARY KEY (CPF),
  CONSTRAINT \ fk\_Funcionarios\_Cargos
    FOREIGN KEY (idCargo)
    REFERENCES Cargos (idCargo)
    ON DELETE NO ACTION
    ON UPDATE NO ACTION
```

```
GO

    Table Pizzaria. Pedidos

CREATE TABLE Pedidos (
  idPedido INT NOT NULL,
  data DATETIME NULL,
  idCliente INT NOT NULL,
  CPF VARCHAR(11) NOT NULL,
  Endereco VARCHAR(200) NULL,
  PRIMARY KEY (idPedido),
  CONSTRAINT fk_Pedidos_Clientes
    FOREIGN KEY (idCliente)
    REFERENCES Clientes (idCliente)
    ON DELETE NO ACTION
    ON UPDATE NO ACTION,
  CONSTRAINT fk_Pedidos_Funcionarios
    FOREIGN KEY (CPF)
    REFERENCES Funcionarios (CPF)
    ON DELETE NO ACTION
    ON UPDATE NO ACTION
)
GO
— Table Pizzaria. Dependentes
CREATE TABLE Dependentes (
  idDependentes INT NOT NULL,
  Nome VARCHAR(45) NULL,
  idCliente INT NOT NULL,
  PRIMARY KEY (idDependentes),
  CONSTRAINT fk_Dependentes_Clientes
    FOREIGN KEY (idCliente)
    REFERENCES Clientes (idCliente)
    ON DELETE NO ACTION
    ON UPDATE NO ACTION
```

```
)
GO
— Table Pizzaria. Produtos
CREATE TABLE Produtos (
  idProduto INT NOT NULL,
  Nome VARCHAR(45) NULL,
  PRIMARY KEY (idProduto)
)
GO
— Table Pizzaria. Estoques
CREATE TABLE Estoques (
  idEstoque INT NOT NULL,
  Produto VARCHAR(45) NULL,
  Quantidade INT NULL,
  PRIMARY KEY (idEstoque)
)
GO
— Table Pizzaria. Ingredientes
CREATE TABLE Ingredientes (
        idProduto INT NOT NULL,
        idEstoque INT NOT NULL,
        Qtd FLOAT NOT NULL,
        FOREIGN KEY (idProduto)
                         REFERENCES Produtos (idProduto)
                        ON DELETE NO ACTION
                        ON UPDATE NO ACTION,
        FOREIGN KEY (idEstoque)
                        REFERENCES Estoques (idEstoque)
                        ON DELETE NO ACTION
                        ON UPDATE NO ACTION
```

```
GO

    Table Pizzaria. Fornecedores

CREATE TABLE Fornecedores (
  idFornecedor INT NOT NULL,
  Nome VARCHAR(45) NULL,
  CNPJ VARCHAR(25) NULL,
  Endereco VARCHAR(95) NULL,
  Telefone VARCHAR(18) NULL,
  PRIMARY KEY (idFornecedor)
)
GO
— Table Pizzaria. Estoques_Fornecedores
CREATE TABLE Estoques_Fornecedores (
  idEstoque INT NOT NULL,
  idFornecedor INT NOT NULL,
  CONSTRAINT fk_Estoque_has_Fornecedor_Estoque
    FOREIGN KEY (idEstoque)
    REFERENCES Estoques (idEstoque)
    ON DELETE NO ACTION
    ON UPDATE NO ACTION,
  CONSTRAINT fk_Estoque_has_Fornecedor_Fornecedor
    FOREIGN KEY (idFornecedor)
    REFERENCES Fornecedores (idFornecedor)
    ON DELETE NO ACTION
    ON UPDATE NO ACTION
GO
 — Table Pizzaria. Produtos Pedidos
CREATE TABLE Produtos_Pedidos (
```

```
idProduto INT NOT NULL,
  idPedido INT NOT NULL,
  CONSTRAINT fk_Produtos_has_Pedidos_Produtos
    FOREIGN KEY (idProduto)
    REFERENCES Produtos (idProduto)
    ON DELETE NO ACTION
    ON UPDATE NO ACTION,
  CONSTRAINT fk_Produtos_has_Pedidos_Pedidos
    FOREIGN KEY (idPedido)
    REFERENCES Pedidos (idPedido)
    ON DELETE NO ACTION
    ON UPDATE NO ACTION
)
GO
— Table Pizzaria Admissoes
CREATE TABLE Admissoes (
  idAdmissao INT NOT NULL,
  DataAdmissao DATE NULL,
  DataDemissao DATE NULL,
  PRIMARY KEY (idAdmissao)
)
GO
— Table Pizzaria.Funcionarios_Admissoes
CREATE TABLE Funcionarios_Admissoes (
  CPF VARCHAR(11) NOT NULL,
  idAdmissão INT NOT NULL,
  CONSTRAINT fk_Funcionarios_has_Admissão_Funcionarios
    FOREIGN KEY (CPF)
    REFERENCES Funcionarios (CPF)
    ON DELETE NO ACTION
    ON UPDATE NO ACTION,
  CONSTRAINT fk_Funcionarios_has_Admissão_Admissão
    FOREIGN KEY (idAdmissão)
```

```
REFERENCES Admissoes (idAdmissao)
    ON DELETE NO ACTION
    ON UPDATE NO ACTION
)
GO
— Table Pizzaria.Logs
CREATE TABLE Logs (
  idLog INT NOT NULL,
  DescAtividade VARCHAR(200) NULL,
  DataHora DATETIME NULL,
  CPF VARCHAR(11) NOT NULL,
  PRIMARY KEY (idLog),
  CONSTRAINT fk_Log_Funcionarios
    FOREIGN KEY (CPF)
    REFERENCES Funcionarios (CPF)
    ON DELETE NO ACTION
    ON UPDATE NO ACTION
GO
```

5 EXECUÇÃO E TESTES

As execuções e os testes foram feitos utilizando o $software\ SQL\ Server\ Management\ Studio\ 2010.$

5.1 CONSULTAS

USE Pizzaria
go

Lista alimentos e seus fornecedores

SELECT Estoques. Produto as [Alimento], Fornecedores. Nome as [Fornecedor]

INNER JOIN Estoques ON Estoques.idEstoque = Estoques_Fornecedores

INNER JOIN Fornecedores ON Fornecedores.idFornecedor = Estoques_

ORDER BY Fornecedores. Nome, Estoques. Produto

	Aimento	Fornecedor
2001	Abobrinha	Alimentos Já
0.1	Bacon	Alimentos Já
-00	Beringela	Alimentos Já
	Calabresa	Almentos Já
10	Came Seca	Almentos Já
	Champignon	Alimentos Já
1	Farinha de Trigo	Alimentos Já
00	Lombo	Alimentos Já
	Ovo	Alimentos Já
0	Requeijão Cre	Alimentos Já
_	Bróculis	Boa Massa
2	Cebola	Boa Massa
00	Extrato de To	Boa Massa
4	Frango desfiado	Boa Massa
2	Manjericão	Boa Massa
9	Oregano	Boa Massa
7	Palmito	Boa Massa
8	Queijo Mussar	Boa Massa

Figura 10 – Resultado do select

USE Pizzaria

go

- ___
- -- Lista os nomes dos produtos, seus ingredientes e a
- -- quantidade em estoque

SELECT Produtos. Nome, Estoques. Produto, Estoques. Quantidade FROM Ingredie INNER JOIN Produtos ON Produtos.idProduto = Ingredientes.idProduto INNER JOIN Estoques ON Estoques.idEstoque = Ingredientes.idEstoque ORDER BY Produtos. Nome, Estoques. Produto

GO

Figura 11 – Resultado do select

USE Pizzaria

go

— Lista os clientes e os logins de quem o tiver.

CREATE VIEW ClientesComLogin

SELECT Logins. Usuario, Clientes.idCliente FROM Logins
RIGHT JOIN Clientes ON Logins.idLogin = Clientes.idLogin

GO

 ${\tt SELECT * FROM ClientesComLogin}$

GO

Figura 12 – Resultado do select

USE Pizzaria go

— Lista produtos pedidos

CREATE VIEW PedidosRealizados

AS

SELECT Produtos.Nome AS [Produto], Pedidos.idCliente FROM Produtos INNER JOIN Produtos ON Produtos.idProduto = Produtos_Ped INNER JOIN Pedidos ON Pedidos.idPedido = Produtos_Pedidos

GO

SELECT * FROM Pedidos Realizados

GO

Figura 13 – Resultado do select

USE Pizzaria go
Lista dos clientes que fizeram pedidos.
CREATE VIEW ClientesQueFizeramPedidos AS
SELECT ClientesComLogin. Usuario,
${\tt PedidosRealizados.Produto}$

FROM Pedidos Realizados

 $INNER\ JOIN\ Clientes ComLogin\ ON\ Clientes ComLogin\ .\ id\ Cliente\ =\ Pedic$

GO

SELECT ClientesQueFizeramPedidos.Usuario, COUNT(*) AS [Quantidade de PediGROUP BY ClientesQueFizeramPedidos.Usuario

USE Pizzaria

go

Figura 14 – Resultado do select

— Clientes e seus dependentes	
SELECT ClientesComLogin. Usuario, Dependentes. Nome [Nome do dependente INNER JOIN ClientesComLogin ON ClientesComLogin.idCliente = D	-
USE Pizzaria go	
— Funcionrios e Cargos	
SELECT Funcionarios.Nome, Funcionarios.CPF, Cargos.NomeCargo, Cargos. INNER JOIN Cargos ON Cargos.idCargo = Funcionarios.idCargo ORDER BY Cargos.NomeCargo, Funcionarios.Nome	Sala
GO	
USE Pizzaria go	

Funcionrios, cargos e suas admisses

Figura 15 – Resultado do select

SELECT Funcionarios.Nome, Admissoes.DataAdmissao, Cargos.NomeCargo, Cargo INNER JOIN Funcionarios ON Funcionarios.CPF = Funcionarios_AdmissINNER JOIN Admissoes ON Admissoes.idAdmissao = Funcionarios_AdmissINNER JOIN Cargos ON Cargos.idCargo = Funcionarios.idCargo

GO

5.2 PROCEDIMENTOS ARMAZENADOS

USE Pizzaria GO

-- Stored Procedures - Calcula a idade dos funcionrios

 $\label{lem:condition} \begin{tabular}{ll} \textbf{IF EXISTS (select name from sys.procedures where name = `usp_idadeFuncion DROP PROCEDURE usp_idadeFuncionarios \\ \end{tabular}$

Figura 16 – Resultado do select

```
SELECT Nome, DATEDIFF(YEAR, DataNascimento, GETDATE()) — CASE

WHEN GETDATE() < DATEADD(YEAR, DATEADD THEN 1

ELSE 0

END AS 'Idade', CONVERT(VARCHARGE FROM Funcionarios)

GO

EXEC usp_idadeFuncionarios

GO

USE Pizzaria

GO
```

Stored Procedures - Retorna pedidos realizados

 $\label{eq:continuous_procedures} \begin{tabular}{ll} IF EXISTS (select name from sys.procedures where name = `usp_pedidosRealization of the continuous procedures of the continuous procedur$

	Nome	DataAdmissao	NomeCargo	Salario
_	José Benedito	2005-08-30	Pizzaiolo	2000.00
2	Catarina Santos	2007-04-28	Balconista	1000.00
co	Miguel de Souza	2009-06-30	Entregador	1500.00
4	Sérgio Malandro	2009-10-14	Entregador	1500.00
2	Roberto Jefferson	2010-08-15	Gerente	2500.00
9	Amanda Silveira	2010-08-25	Balconista	1000.00
1	Carlos Eduardo	2011-09-30	Balconista	1000.00
00	Miguel de Arrais	2011-10-01	Pizzaiolo	2000.00
6	Carlos Belozo	2011-11-30	Garpon	1500.00
10	Sandra de Sá	2012-04-01	Garçon	1500.00

Figura 17 – Resultado do select

```
CREATE PROCEDURE usp_pedidosRealizados
@nome VARCHAR(45)
```

AS

SELECT F.Nome, C.Nome
Cargo as 'Cargo', Prod.Nome as 'Nome Produto FROM Funcionarios
 ${\rm F}$

INNER JOIN Cargos C ON C.idCargo = F.idCargo

INNER JOIN Pedidos P ON P.CPF = F.CPF

INNER JOIN Produtos_Pedidos PP ON PP.idPedido = P.idPedido

INNER JOIN Produtos Prod ON Prod.idProduto = PP.idProduto

-- WHERE F. Nome = @nome

GO

EXEC usp_pedidosRealizados "Guilherme"

GO

USE Pizzaria

[—] Stored Procedures – Retorna os pedidos do cliente

Figura 18 – Resultado do select

 $\label{eq:continuous} \begin{tabular}{ll} IF EXISTS (select name from sys.procedures where name = `usp_pedidosReal DROP PROCEDURE usp_pedidosRealizadosCliente \\ \end{tabular}$

GO

CREATE PROCEDURE usp_pedidosRealizadosCliente
@nome VARCHAR(45)

AS

SELECT Cli. Nome, as 'Cargo', Prod. Nome, CONVERT
(VARCHAR(10), P. da FROM

Clientes Cli

INNER JOIN Cargos C ON C.idCargo = F.idCargo

INNER JOIN Pedidos P ON P.CPF = F.CPF

INNER JOIN Produtos Pedidos PP ON PP.idPedido = P.idPedido

INNER JOIN Produtos Prod ON Prod.idProduto = PP.idProduto

-- WHERE F. Nome = @nome

GO

EXEC usp_pedidosRealizados 'Miguel de Souza' GO

	Nome	Cargo	Nome Produto	Data do Pedido
_	Sérgio Malandro	Entregador	Calabresa	01/12/2013
2	Sérgio Malandro	Entregador	Frango C/ Catupiry	01/12/2013
~	Sérgio Malandro	Entregador	Lombo	01/12/2013
St	Miguel de Souza	Entregador	Margarita	30/11/2013
10	Miguel de Souza	Entregador	Portuguesa	30/11/2013
60	Miguel de Souza	Entregador	Napolitana	30/11/2013
1	Miguel de Souza	Entregador	Frango Especial	30/11/2013
00	Sérgio Malandro	Entregador	Toscana	30/11/2013
0	Miguel de Souza	Entregador	Nordestina	30/11/2013
9	Sérgio Malandro	Entregador	Vegetariana	30/11/2013

Figura 19 – Resultado do select

	Nome	Cargo	Nome Produto	Data do Pedido
_	Sérgio Malandro	Entregador	Calabresa	01/12/2013
2	Sérgio Malandro	Entregador	Frango C/ Catupiry	01/12/2013
3	Sérgio Malandro	Entregador	Lombo	01/12/2013
4	Miguel de Souza	Entregador	Margarita	30/11/2013
2	Miguel de Souza	Entregador	Portuguesa	30/11/2013
9	Miguel de Souza	Entregador	Napolitana	30/11/2013
1	Miguel de Souza	Entregador	Frango Especial	30/11/2013
00	Sérgio Malandro	Entregador	Toscana	30/11/2013
6	Miguel de Souza	Entregador	Nordestina	30/11/2013
2	Sérgio Malandro	Entregador	Vegetariana	30/11/2013

Figura 20 – Resultado do select

CONSIDERAÇÕES FINAIS

Apesar de parecer simples, criar um banco de dados para uma pizzaria mostrou-se uma tarefa cheia de detalhes a se pensar. Ao ser implementado, tornou-se funcional, sendo possível utilizá-lo em um ambiente real.

REFERÊNCIAS

ANEXO A – DADOS INSERIDOS PARA TESTE

Sed mattis, erat sit amet gravida malesuada, elit augue egestas diam, tempus scelerisque nunc nisl vitae libero. Sed consequat feugiat massa. Nunc porta, eros in eleifend varius, erat leo rutrum dui, non convallis lectus orci ut nibh. Sed lorem massa, nonummy quis, egestas id, condimentum at, nisl. Maecenas at nibh. Aliquam et augue at nunc pellentesque ullamcorper. Duis nisl nibh, laoreet suscipit, convallis ut, rutrum id, enim. Phasellus odio. Nulla nulla elit, molestie non, scelerisque at, vestibulum eu, nulla. Ut odio nisl, facilisis id, mollis et, scelerisque nec, enim. Aenean sem leo, pellentesque sit amet, scelerisque sit amet, vehicula pellentesque, sapien.

USE Pizzaria
GO

Table Pizzaria.Logins

INSERT INTO Logins VALUES

(1, 'Guilherme', 'egmdc321'),
(2, 'Matheus', 'egmdc321'),
(3, 'Victor', 'egmdc321'),
(4, 'Marcelo', 'egmdc321'),
(5, 'Pedro', 'egmdc321'),
(6, 'Joao', 'egmdc321');

GO

Table Pizzaria.Clientes

INSERT INTO Clientes VALUES

- (1, 'Robervaldo', 'Av Ministro Nelson Hungria, 280, Centro, Santo
- (2, 'Valdomiro', 'Av Coronel Sebastio Marcondes da Silva, 149, Ce
- 3, 'Cleidiane', 'Rua Sao Joo, 455, Centro, So Jos de Campos—SP -
- (4, 'Wanilda', 'Rua Quinze De Novembro, 394, Centro, Taubat-SP -
- (5, 'Soleneusa', 'Rua Sao Sebastiao, 289, Centro, Trememb—SP CE
- (6, 'Godofredo', 'Rua Santos Dumont, 876, Centro, Ubatuba—SP CF

```
(7, 'Jaime', 'Rua Belo Horizonte, 255, Centro, Londrina-PR - CEP
        (8, 'Jean', 'Rua Jos Bonifcio, 580, Centro, Maring-PR - CEP 12440
        (9, 'Claudisney', 'Rua Vinte e Trs, 290, Centro, Barbosa-SP - CER
        (10, 'Flvio', 'Rua Santa Rita, 276, Centro, Manaus-AM - CEP 12440
GO
— Table Pizzaria. Cargos
INSERT INTO Cargos VALUES
        (1, 1500, 'Entregador'),
        (2, 1000, 'Balconista'),
        (3, 2500, 'Gerente'),
        (4, 2000, 'Pizzaiolo'),
        (5, 1500, 'Garon');
GO
 - Table Pizzaria. Funcionarios
INSERT INTO Funcionarios VALUES
        ('Roberto Jefferson', 'Rua Conde de Bobadela, 225, Centro, Rio Bi
        ('Amanda Silveira', 'Rua Senador Rocha Lagoa, 235, Centro, Cuiab'
        ('Carlos Eduardo', 'Praa Reinaldo Alves de Brito, 325, Centro, C
        ('Miguel de Arrais', 'Rua Conde de Bobadela, 223, Centro, Joo Pes
        ('Carlos Belozo', 'Praa Silviano Brando, 245, Centro, Belm', '9-9
        ('Sandra de S', 'Rua Conde de Bobadela, 224, Centro, Teresina', '
        ('Srgio Malandro', 'Rua Alvarenga, 425, Centro, Natal', '9-9909-
        ('Miguel de Souza', 'Rua Randolfo Bretas, 525, Centro, Porto Aleg
        ('Catarina Santos', 'Rua Antnio de Albuquerque, 255, Centro, Flor
        ('Jos Benedito', 'Praa Baro do Rio Branco, 909, Centro, Aracaj',
GO
— Table Pizzaria.Pedidos
INSERT INTO Pedidos VALUES
                    '01-12-2013', 1, '12332112363', 'AV Andrmeda, 720, Colored 
                    '30-11-2013', 2, '12332112362', 'Av Anahanguera, 820,
```

```
(3, 30-11-2013, 3, 12332112363, Rua So Joo, 520, Cen
                       '30-11-2013', 4, '12332112362', 'Rua Nelson de Ftima,
                      '29-11-2013', 5 , '12332112362', 'Rua Sebastio da Ros
                      '01-12-2013', 6, '12332112363', 'AV Andrmeda, 720, Ce
                      ^{\prime}30-11-2013^{\prime},~7,~^{\prime}12332112362^{\prime},~^{\prime}Av~Anahanguera\,,~820\,,
                  (7,
                  (8\,,\ '30\,-11\,-2013',\ 8\,,\ '12332112363',\ 'Rua\ So\ Joo\,,\ 520\,,\ Cer
                  (9, '30-11-2013', 9, '12332112362', 'Rua Nelson de Ftima,
                  (10\,,\ '29-11-2013',\ 10\ ,\ '12332112362',\ 'Rua\ Sebastio\ da\ H
GO
  - Table Pizzaria. Dependentes
INSERT INTO Dependentes VALUES
         (1, 'Jos da Silva', 1),
         (2, 'Bertoldo Moraes', 2),
         (3, 'Geovane Cardoso', 3)
GO
— Table Pizzaria. Produtos
INSERT INTO Produtos VALUES
         (1, 'Calabresa'),
         (2, 'Frango C/ Catupiry'),
         (3, 'Lombo'),
         (4, 'Margarita'),
         (5, 'Portuguesa'),
         (6, 'Napolitana'),
         (7, 'Frango Especial'),
         (8, 'Toscana'),
         (9, 'Nordestina'),
         (10, 'Vegetariana')
GO
   Table Pizzaria. Estoques
INSERT INTO Estoques VALUES
         (1, 'Extrato de Tomate', 12),
```

(3,1,18),

(4,1,1),

```
(2, 'Requeijo Cremoso', 10),
         (3, 'Farinha de Trigo', 20),
         (4, 'Queijo Mussarela', 10),
         (5, 'Frango desfiado', 14),
         (6, 'Oregano', 4),
         (7, 'Calabresa', 7),
         (8, 'Bacon', 18),
         (9, 'Ovo', 29),
         (10, 'Cebola', 13),
         (11, 'Queijo parmeso', 13),
         (12, 'Manjerico', 7),
         (13, 'Abobrinha', 3),
         (14, 'Beringela', 9),
         (15, 'Brculis', 10),
         (16, 'Palmito', 21),
         (17, 'Champignon', 12),
         (18, 'Lombo', 11),
         (19, 'Tomate', 2),
         (20, 'Carne Seca', 2);
GO
— Table Pizzaria. Ingredientes
INSERT INTO Ingredientes VALUES
         (1,1,1),
         (1,4,1),
         (1,7,1),
         (1,10,1),
         (2,1,1),
         (2,5,1),
         (2,2,1),
         (3,1,1),
         (3,4,1),
```

- (4,4,1),
- (4,19,1),
- (4,11,1),
- (4,12,1),
- (5,1,1),
- (5,9,1),
- (5,4,1),
- (5,10,1),
- (6,1,1),
- (6,4,1),
- (6,11,1),
- (6,19,1),
- (7,1,1),
- (7,5,1),
- (7,2,1),
- (7,8,1),
- (7,6,1),
- (8,1,1),
- (8,4,1),
- (8,7,1),
- (8,6,1),
- (9,1,1),
- (9,2,1),
- (9,20,1),
- (9,10,1),
- (10,1,1),
- (10, 13, 1),
- (10, 14, 1),
- (10, 15, 1),
- (10, 16, 1),
- (10,17,1);

```
- Table Pizzaria. Fornecedores
INSERT INTO Fornecedores VALUES
         (1, 'Alimentos J', '01010101-01010', 'Rua Carlos Bom Tempo, 2215, G
         (2, 'Boa Massa', '02020202-02020', 'Rua Conde de Monte Cristo, 21,
         (3, 'Frutas ATC', '091942-00130', 'Av. Ministro Celso de Melo, 24
         (4, \text{'RMC Verduras'}, \text{'}192814 - 9049', \text{'Av do Povo}, 545, Taubat', \text{'}54
GO
— Table Pizzaria. Estoques_Fornecedores
INSERT INTO Estoques_Fornecedores
                                     VALUES
         (1,2),
         (2,1),
         (3,1),
         (4,2),
         (5,2),
         (6,2),
         (7,1),
         (8,1),
         (9,1),
         (10,2),
         (11,2),
         (12,2),
         (13,1),
         (14,1),
         (15,2),
         (16,2),
         (17,1),
         (18,1),
         (19,2),
         (20,1)
 GO

    Table Pizzaria. Produtos_Pedidos
```

INSERT INTO Produtos_Pedidos VALUES

```
(1, 1),
        (2, 1),
        (3, 1),
        (4, 2),
        (5, 2),
        (6, 4),
        (7, 4),
        (8, 3),
        (9, 2),
        (10, 3)
GO
 - Table Pizzaria. Admissoes
INSERT INTO Admissoes VALUES
        (1, '30-08-2005', ''),
        (2, ^{2}8-04-2007, ^{1}11-07-2007),
        (3, 30-06-2009, 7)
        (4, '14-10-2009', '')
        (5, '15-08-2010', ''),
        (6, '25-08-2010', '')
        (7, 30-09-2011, 7)
        (8, '01-10-2011', ''),
        (9, 30-11-2011, 7)
        (10, '01-04-2012', ')
GO
-- Table Pizzaria.Funcionarios_Admissoes
INSERT INTO Funcionarios_Admissoes VALUES
        ('12332112360', 1),
        ('12332112361', 2),
        ('12332112362', 3),
        ('12332112363', 4),
        ('12332112364', 5),
```

('12332112365', 6), ('12332112366', 7),

```
('12332112367', 8),
('12332112368', 9),
('12332112369', 10)

GO

Table Pizzaria Logs
```