STOCHASTIK

Aufgaben

Kim Thuong Ngo

May 22, 2018

CONTENTS

1	Wa	hrscheinlichkeitstheorie	3
	1.1	Beweis	3
	1.2	Beispiel	3
	1.3	zweifacher Wurf eines Würfels	3

1 BLATT 01:WAHRSCHEINLICHKEITSTHEORIE

1.1 Beweis

Es sei Ω eine Menge. Beweisen Sie, dass die Potenzmenge $P(\Omega)$ eine σ -Algebra ist.

z.z. Potenzmenge $P(\Omega)$ ist eine σ -Algebra

nach Definition 1.1: eine Familie $F\subseteq P(\Omega)$ von Teilmengen des Grundraumes Ω , heißt σ -Algebra

es soll gelten:

- 1. leere Menge liegt in F
- 2. aus $A \in F$ folgt $\Omega \setminus A \in F$
- 3. für $n \in \mathbb{N}$ sei $A_n \in F$, dann gilt $\bigcup_{n \in \mathbb{N}} A_n \in F$

Beweis:

- 1. leere Menge liegt in Potenzmenge $\emptyset \in P(\Omega)$
- 2. aus $A \in P(\Omega)$ folgt $\Omega \setminus A \in P(\Omega)$
- 3. für $n \in \mathbb{N}$ sei $A_n \in P(\Omega)$, dann gilt $\bigcup_{n \in \mathbb{N}} A_n \in P(\Omega)$

1.2 BEISPIEL

Es sei $\Omega = [0,2]$. Bestimmen Sie die kleinste σ -Algebra, welche die Intervalle [0,1] und [1,2] enthält.

$$F = \emptyset, \Omega, [0, 1], [1, 2], [0, 1), (1, 2], [0, 2] \setminus 1, 1$$

- 1. $\emptyset \in F$
- 2. $\Omega \setminus [0,1] = (1,2] \in F$ $\Omega \setminus [1,2] = [0,1) \in F$ $\Omega \setminus ([0,2] \setminus 1) = 1 \in F$
- 3. $[0,1) \cup (1,2] = [0,2] \setminus 1 \in F$

1.3 ZWEIFACHER WURF EINES WÜRFELS

Beschreiben Sie den zweifachen Wurf eines fairen Würfels: Grundraum Ω , σ -Algebra F und Wahrscheinlichkeitsmaß P. Welche Ergebnisse enthält das Ereignis, dass zumindest einmal

die Augenzahl 6 gewürfelt wird. Beschreiben Sie die Augensumme als Zufallsvariable (Abbildungsvorschrift, Zustandsraum). Welche Ergebnisse enthält das Ereignis, dass die Augensumme höchsten 6 ist?

$$\Omega = 1, ..., 6^{2}$$

$$F = P(\Omega)$$

$$P(A) = \frac{|A|}{36}; A \subseteq \Omega$$

$$P(A) = \sum_{w \in A} P(w) = \frac{1}{36}$$

$$X : \Omega \to z = 2, ..., 12$$

$$z = P(Z)$$

$$X(w_{1}, w_{2}) = w_{1} + w_{2}; w_{1}, w_{2} \in \Omega$$

2 Präsenzübung 01

- Es seien A und B Mengen mit $A \subseteq B$. Zeigen Sie, dass die Mengen A und $B \setminus A$ disjunkt sind, und dass $B = A \cup (B \setminus A)$ gilt.
- Es seien A und B Ereignisse mit $A \subseteq B$. Zeigen Sie, dass $P(B) = P(A) + P(B \setminus A)$ und $P(B) \ge P(A)$ gilt.
- Es seien A,B,C Ereignisse. Beschreiben Sie folgende Ereignisse mithilfe der Notation der Mengenlehre dar: A und B treten ein, aber nicht C. Mindestens eines der Ereignisse A,B,C tritt ein.
 - 1.) $(A \cap B) \setminus C$
 - 2.) $A \cup B \cup C$
- Es seien A,B,C Ereignisse. Beschreiben Sie folgende Ereignisse mit Worten: $A \cap B \cap C$ und $\Omega \setminus (A \cup B \cup C)$.
 - 1.) A,B,C treten ein
 - 2.) es treten weder A noch B noch C ein
- Ist $f : \mathbb{R} \to [0, \infty)$ mit $f(x) = 2x\mathbf{1}_{[0,1]}(x)$ die Dichte eines absolut stetigen Wahrscheinlichkeitsraumes?
 - 1.) $f(x) \ge 0$
 - 2.) $\int_0^1 f(x) dx = [x^2]_0^1 = 1^2 0^2 = 1$
 - → erfüllt beide Kriterien

3 BLATT 02: STREUDIAGRAMM UND DICHTE

3.1 STREUDIAGRAMM

Wir betrachten x = (0, 1, 2, 3, 4) und y = (-5, -3, 0, 3, 5). Bestimmen Sie \overline{x} , \overline{y} und $q_{xx} = \frac{1}{n}(x_1^2 + ... + x_n^2)$, $q_{yy} = \frac{1}{n}(y_1^2 + ... + y_n^2)$, $q_{xy} = \frac{1}{n}(x_1y_1 + ... + x_ny_n)$.

Bestimmen Sie die Ausgleichsgerade y = mx + b mit

$$m = \frac{q_{xy} - \overline{x} * \overline{y}}{q_{xx} - \overline{x}^2} undb = \overline{y} - m\overline{x}.$$

Zeichnen Sie das Streudiagramm zu x,y und die Ausgleichsgerade. Bestimmen Sie Pearsons empirischen Korrelationskoeffizienten

$$r(x,y) = \frac{s(x,y)}{s(x)*s(y)}.$$
Hinweis: Es gilt $s(x,y) = \frac{n}{n-1}(q_{xy} - \overline{x}*\overline{y}), s^2(x) = \frac{n}{n-1}(q_{xx} - \overline{x}^2), s^2(y) = \frac{n}{n-1}(q_{yy} - \overline{y}^2)$

$$\overline{x} = \frac{0+1+2+3+4}{-5-3+0+3+5} = 0$$

$$q_{xx} = \frac{1}{5}(0^2+1^2+2^2+3^2+4^2) = 6$$

$$q_{yy} = \frac{1}{5}((-5)^2+(-3)^2+0^2+3^2+5^2) = 13, 6$$

$$q_{xy} = \frac{1}{5}(0*(-5)+1*(-3)+2*0+3*3+4*5) = 5, 2$$

$$m = \frac{5,2-2,0}{6-2^2} = 2, 6$$

$$b = 0-2, 6*2 = -5, 2$$

$$s(x,y) = \frac{5}{4}(5,2-2*0) = 6, 5$$

$$s^2(x) = \frac{5}{4}(6-2^2) = 2, 5$$

$$s^2(y) = \frac{5}{4}(13,6-0^2) = 17$$

$$r(x,y) = \frac{6,5}{\sqrt{2\cdot5*17}} \approx 0,997$$

3.2 FÜNFFACHER WURF EINER MÜNZE

Beschreiben Sie den fünffachen Wurf einer fairen Münze: Grundraum Ω , σ -Algebra F und Wahrscheinlichkeitsmaß P. Ist (Ω, F, P) diskret oder absolut stetig? Für k=0,...,5 sei Z_k das Ereignis, dass genau k-mal Zahl geworfen wird. Welche Ergebnisse enthält Z_k ? Bestimmen

Sie die Wahrscheinlichkeit von Z_k .

0 Kopf, 1 Zahl

$$\Omega = 0, 1^5$$

 $F = P(\Omega)$
 $P(A) = \frac{|A|}{32}$

 (Ω, F, P) diskret

$$Z_k = a \in \Omega|_1(a) = k$$

 $_1(a)$ =Anzahl Einsen in a
 $P(Z_k) = \frac{1}{32} * \binom{5}{4}$

3.3 DICHTE

Der absolut stetige Wahrscheinlichkeitsraum $(\mathbb{R}, B(\mathbb{R}), P)$ habe die Dichte $f : \mathbb{R} \to [0, \infty)$ mit $f(x) = \frac{1}{4}(x+1)\mathbf{1}_{[0,2]}(x)$ die Indikatorfunktion des Intervalls [0,2] ist:

$$\mathbf{1}_{[0,2]}(x) = \begin{array}{c} 1fallsx \in [0,2], \\ 0sonst. \end{array}$$

Ist f tatsächlich eine Dichte? Berechnen Sie die Wahrscheinlichkeit P([0,1]). Zeichnen Sie die Funktion f im Bereich [-1,3] und zeichnen Sie P([0,1]) als Fläche.

$$f(x) > 0$$

$$\int \frac{1}{4} (x+1) \mathbf{1}_{[0,2]}(x) dx$$

$$\int_0^2 \frac{1}{4} x + \frac{1}{4} dx$$

$$= \left[\frac{1}{8} x^2 + \frac{1}{4} x \right]_0^2$$

$$= \left(\frac{1}{2} + \frac{1}{2} \right) - (0+0)$$

$$= 1$$

→ f ist eine Dichte

$$P([0,1]) = {1 \over 0} f(x) dx$$

$$= [{1 \over 8}x^2 + {1 \over 4}x]_0^1$$

$$= ({1 \over 8} + {1 \over 4}) - (0+0)$$

$$= {3 \over 8}$$

4 BLATT 03: RECHENREGELN UND DICHTE

4.1 RECHENREGELN WAHRSCHEINLICHKEITEN

Es seien A,B und C Ereignisse in einem Wahrscheinlichkeitsraum (Ω , F, P) und es gelte P(A) = 55

4.2 Zufallsexperiment mit Kugeln

In einer Urne gibt es acht rote und zwölf blaue Kugeln.

4.2.1 MIT ZURÜCKLEGEN

Mit Zurücklegen werden drei Kugeln zufällig gezogen. Beschreiben Sie dieses zufällige Experiment (Ω, F, P) und bestimmen Sie die Wahrscheinlichkeit, dass alle gezogenen Kugeln rot sind.

4.2.2 OHNE ZURÜCKLEGEN

Ohne Zurücklegen werden drei Kugeln zufällig gezogen. Beschreiben Sie dieses zufällige Experiment (Ω, F, P) und bestimmen Sie die Wahrscheinlichkeit, dass alle gezogenen Kugeln rot sind.

4.3 DICHTE

Der absolut stetige Wahrscheinichkeitsraum $(\mathbb{R}, B(\mathbb{R}), P)$ habe die Dichte $f : \mathbb{R} \to [0, \infty)$ mit

$$f(x) = cexp(-|x|),$$

wobei c eine geeignete Konstante ist.

4.3.1 Konstante c

Bestimmen Sie c.

4.3.2 Verteilungsfunktion F

Berechnen Sie die Verteilungsfunktion F.

4.3.3 Monotonie

Zeigen Sie, dass F strikt monoton wachsend ist.

4.3.4 EIGENSCHAFT VON F

Zeigen Sie, dass $F(x) \in (0,1) \forall x \in \mathbb{R}$ gilt.

4.3.5 Wahrscheinlichkeit P

Bestimmen Sie P([-1,1]) mithilfe von F.

5 BLATT 04: UNABHÄNGIGKEIT

5.1 UNABHÄNGIGE, REELLWERTIGE ZUFALLSVARIABLEN

Es seien X_1, X_2 unabhängige, reellwertige Zufallsvariable, welche beide gemäß Unif([0,1]) verteilt sind.

5.1.1 Wahrscheinlichkeit P

Bestimmen Sie $P([X_1 \le s, X_2 \le t])$ für $s, t \in [0, 1]$.

5.1.2 Verteilungsfunktion F

Bestimmen Sie die Verteilungsfunktion F_M der Zufallsvariable $M:\Omega\to\mathbb{R}$ mit $M(w)=maxX_1(w),X_2(w).$

5.1.3 DICHTE

Bestimmen Sie die Dichte f_M von M.

5.2 Zufallsexperiment: Würfel

Die Flächen von drei fairen Würfeln sind seltsam beschriftet:

- Die Flächen des ersten Würfels tragen dies Augenzahlen 3,3,3,3,6.
- Die Flächen des zweiten Würfels tragen die Augenzahlen 2,2,2,5,5,5.
- Die Flächen des dritten Würfels tragen die Augenzahlen 1,4,4,4,4.

Jeder der drei Würfel wird einmal geworfen. Dabei wird angenommen, dass alle 6^3 Möglichkeiten für die oben liegenden Flächen gleich wahrscheinlich sind.

5.2.1 EXPERIMENT

Beschreiben Sie das zugehörige Experiment.

5.2.2 ZUFALLSVARIABLEN

Beschreiben Sie die Zufallsvaribalen X_1, X_2, X_3 , welche die Augenzahl der 1.,2. und des 3. Würfels angeben.

5.2.3 P BESTIMMEN

Bestimmen Sie $P([X_1 > X_2]), P([X_2 > X_3]), P([X_3 > X_1]).$

5.3 Unabhängigkeit

Es werde der Wahrscheinlichkeitsraum (\mathbb{R} , $B(\mathbb{R})Unif([0,1])$) betrachtet. Außerdem gelte $A_1 = [0, \frac{1}{2}]$, $A_2 = [\frac{1}{2}, 1]$ und $A_3 = [0, \frac{1}{4}] \cup [\frac{3}{4}, 1]$. Überprüfen Sie, ob A_1, A_2 oder A_2, A_3 oder A_3, A_1 oder A_1, A_2, A_3 unabhängig sind.

6 Blatt 05: Transformationssatz

6.1 unabhängige, reellwertige Zufallsvariablen

Es seien X,Y und Z unabhängige Zufallsvariable mit Werten in 0, 1. Außerdem sei X Ber $(\frac{1}{2})$ -verteilt, Y Ber $(\frac{1}{3})$ -verteilt und Z Ber $(\frac{1}{6})$ -verteilt. Die Zufallsvariable S werde durch S(w) = X(w) + Y(w) + Z(w) definiert.

6.1.1 Wahrscheinlichkeitsraum und Zufallsvariablen

Beschreiben Sie einen Wahrscheinlichkeitsraum (Ω, F, P) und drei Zufallsvariablen X, Y, Z: $\Omega \to 0, 1$ so, dass obige Anforderungen erfüllt sind.

6.1.2 ZÄHLDICHTE

Beschreiben Sie die Verteilung P_S von S mithilfe der Zähldichte f_S .

6.1.3 Transformationssatz

Bestimmen Sie E(S) und Var(S) (mithilfe des Transformationssatzes).

6.2 Transformationssatz

Die reellwertige Zufallsvariable X habe eine absolut stetige Verteilung mit Dichte $f_X : \mathbb{R} \to [0,\infty)$, $f_X(x) = \frac{1}{2}(x^3+1)\mathbf{1}_{[-1,1]}$. Bestimmen Sie E(X) und Var(X). Überprüfen Sie Ihre Ergebnisse mithilfe von integrate(...).

6.3 STETIGE VERTEILUNG

Es sei X eine reellwertige Zufallsvariable mit absolut stetiger Verteilung. Außerdem gebe es ein $c \in \mathbb{R}$ mit

$$P([X \ge c + t]) = P([X \le c - t])$$

für alle $t \in \mathbb{R}$.

6.3.1 DICHTE

Welche Gleichung folgt daraus für die Dichte f_X ?

6.3.2 E(X)

Rechnen Sie nach, dass E(X) = c gilt, sofern E(X) existiert.