

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 7 : A61K 39/395, 48/00, C12P 19/34, C12Q 1/68, G01N 33/53, 33/574, 33/546, 33/567		A1	(11) International Publication Number: WO 00/23111
			(43) International Publication Date: 27 April 2000 (27.04.00)
(21) International Application Number: PCT/US99/24331		(81) Designated States: CA, JP, US, European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).	
(22) International Filing Date: 19 October 1999 (19.10.99)			
(30) Priority Data: 60/104,737 19 October 1998 (19.10.98) US		Published <i>With international search report. Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.</i>	
(71) Applicant (<i>for all designated States except US</i>): DIADEXUS LLC [US/US]; 3303 Octavius Drive, Santa Clara, CA 95054 (US).			
(72) Inventors; and (75) Inventors/Applicants (<i>for US only</i>): SALCEDA, Susana [AR/US]; 4118 Crescendo Avenue, San Jose, CA 95136 (US). RECIPON, Herve [FR/US]; 85 Fortuna Avenue, San Francisco, CA 94115 (US). CAFFERKEY, Robert [IE/US]; Apartment #218, 350 Elan Village Lane, San Jose, CA 95134 (US).			
(74) Agents: LICATA, Jane, Massey et al.; Law Offices of Jane Massey Licata, 66 E. Main Street, Marlton, NJ 08053 (US).			

(54) Title: METHOD OF DIAGNOSING, MONITORING, STAGING, IMAGING AND TREATING PROSTATE CANCER

(57) Abstract

The present invention provides new methods for detecting, diagnosing, monitoring, staging, prognosticating, imaging and treating prostate cancer.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav Republic of Macedonia	TM	Turkmenistan
BF	Burkina Faso	GR	Greece			TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's Republic of Korea	NZ	New Zealand		
CM	Cameroon			PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakhstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

**METHOD OF DIAGNOSING,
MONITORING, STAGING, IMAGING AND TREATING PROSTATE CANCER**

FIELD OF THE INVENTION

This invention relates, in part, to newly developed
5 assays for detecting, diagnosing, monitoring, staging,
prognosticating, imaging and treating cancers, particularly
prostate cancer.

BACKGROUND OF THE INVENTION

Cancer of the prostate is the most prevalent malignancy
10 in adult males, excluding skin cancer, and is an increasingly
prevalent health problem in the United States. In 1996, it
was estimated that 41,400 deaths would result from this
disease in the United States alone, indicating that prostate
cancer is second only to lung cancer as the most common cause
15 of death in the same population. If diagnosed and treated
early, when the cancer is still confined to the prostate, the
chances of cure is significantly higher.

Treatment decisions for an individual are linked to the
stage of prostate cancer present in that individual. A common
20 classification of the spread of prostate cancer was developed
by the American Urological Association (AUA). The AUA system
divides prostate tumors into four stages, A to D. Stage A,
microscopic cancer within prostate, is further subdivided into
stages A1 and A2. Sub-stage A1 is a well-differentiated
25 cancer confined to one site within the prostate. Treatment
is generally observation, radical prostatectomy, or radiation.
Sub-stage A2 is a moderately to poorly differentiated cancer
at multiple sites within the prostate. Treatment is radical
prostatectomy or radiation. Stage B, palpable lump within the
30 prostate, is also further subdivided into sub-stages B1 and
B2. In sub-stage B1, the cancer forms a small nodule in one

- 2 -

lobe of the prostate. In sub-stage B2, the cancer forms large or multiple nodules, or occurs in both lobes of the prostate. Treatment for sub-stages B1 and B2 is either radical prostatectomy or radiation. Stage C is a large cancer mass involving most or all of the prostate and is also further subdivided into two sub-stages. In sub-stage C1, the cancer forms a continuous mass that may have extended beyond the prostate. In sub-stage C2, the cancer forms a continuous mass that invades the surrounding tissue. Treatment for both these sub-stages is radiation with or without drugs to address the cancer. The fourth stage, Stage D is metastatic cancer and is also subdivided into two sub-stages. In sub-stage D1, the cancer appears in the lymph nodes of the pelvis. In sub-stage D2, the cancer involves tissues beyond lymph nodes. Treatment for both of these sub-stages is systemic drugs to address the cancer as well as pain.

However, current prostate cancer staging methods are limited. As many as 50% of prostate cancers initially staged as A2, B, or C are actually stage D, metastatic. Discovery of metastasis is significant because patients with metastatic cancers have a poorer prognosis and require significantly different therapy than those with localized cancers. The five year survival rates for patients with localized and metastatic prostate cancers are 93% and 29%, respectively.

Accordingly, there is a great need for more sensitive and accurate methods for the staging of a cancer in a human to determine whether or not such cancer has metastasized and for monitoring the progress of a cancer in a human which has not metastasized for the onset of metastasis.

It has now been found that a number of proteins in the public domain are useful as diagnostic markers for prostate cancer. These diagnostic markers are referred to herein as cancer specific genes or CSGs and include, but are not limited to: Pro109 which is a human zinc- α 2-glycoprotein (Freje et al. Genomics 1993 18(3):575-587); Pro112 which is a human

- 3 -

cysteine-rich protein with a zinc-finger motif (Liebhhaber et al. Nucleic Acid Research 1990 18(13):3871-3879; WO9514772 and WO9845436); Pro111 which is a prostate-specific transglutaminase (Dubbink et al. Genomics 1998 51(3):434-444);
5 Pro115 which is a novel serine protease with transmembrane, LDLR, and SRCR domains and maps to 21q22.3 (Paoloni-Giacobino et al. Genomics 1997 44(3):309-320; WO9837418 and WO987093);
Pro110 which is a human breast carcinoma fatty acid synthase (U.S. Patent 5,665,874 and WO9403599); Pro113 which is a
10 homeobox gene, HOXB13 (Steinicki et al. J. Invest. Dermatol. 1998 111:57-63); Pro114 which is a human tetraspan NET-1 (WO9839446); and Pro118 which is a human JM27 protein (WO9845435). ESTs for these CSGs are set forth in SEQ ID NO:
15 1, 3, 5, 7, 9, 11, 13 and 15 while the full length contigs for these CSGs are set forth in SEQ ID NO:2, 4, 6, 8, 10, 12, 14 and 16, respectively. Additional CSGs for use in the present invention are depicted herein in SEQ ID NO: 17, 18, 19 and 20.

In the present invention, methods are provided for detecting, diagnosing, monitoring, staging, prognosticating, 20 imaging and treating prostate cancer via the cancer specific genes referred to herein as CSGs. For purposes of the present invention, CSG refers, among other things, to native protein expressed by the gene comprising a polynucleotide sequence of SEQ ID NO:1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 25 16, 17, 18, 19 or 20. By "CSG" it is also meant herein polynucleotides which, due to degeneracy in genetic coding, comprise variations in nucleotide sequence as compared to SEQ ID NO: 1-20, but which still encode the same protein. In the alternative, what is meant by CSG as used herein, means the 30 native mRNA encoded by the gene comprising the polynucleotide sequence of SEQ ID NO:1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 or 20, levels of the gene comprising the polynucleotide sequence of SEQ ID NO:1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 or 35 20, or levels of a polynucleotide which is capable of

- 4 -

hybridizing under stringent conditions to the antisense sequence of SEQ ID NO:1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 or 20.

Other objects, features, advantages and aspects of the 5 present invention will become apparent to those of skill in the art from the following description. It should be understood, however, that the following description and the specific examples, while indicating preferred embodiments of the invention are given by way of illustration only. Various 10 changes and modifications within the spirit and scope of the disclosed invention will become readily apparent to those skilled in the art from reading the following description and from reading the other parts of the present disclosure.

SUMMARY OF THE INVENTION

15 Toward these ends, and others, it is an object of the present invention to provide a method for diagnosing the presence of prostate cancer by analyzing for changes in levels of CSG in cells, tissues or bodily fluids compared with levels of CSG in preferably the same cells, tissues, or bodily fluid 20 type of a normal human control, wherein a change in levels of CSG in the patient versus the normal human control is associated with prostate cancer.

Further provided is a method of diagnosing metastatic prostate cancer in a patient having prostate cancer which is 25 not known to have metastasized by identifying a human patient suspected of having prostate cancer that has metastasized; analyzing a sample of cells, tissues, or bodily fluid from such patient for CSG; comparing the CSG levels in such cells, tissues, or bodily fluid with levels of CSG in preferably the 30 same cells, tissues, or bodily fluid type of a normal human control, wherein an increase in CSG levels in the patient versus the normal human control is associated with prostate cancer which has metastasized.

- 5 -

Also provided by the invention is a method of staging prostate cancer in a human which has such cancer by identifying a human patient having such cancer; analyzing a sample of cells, tissues, or bodily fluid from such patient 5 for CSG; comparing CSG levels in such cells, tissues, or bodily fluid with levels of CSG in preferably the same cells, tissues, or bodily fluid type of a normal human control sample, wherein an increase in CSG levels in the patient versus the normal human control is associated with a cancer 10 which is progressing and a decrease in the levels of CSG is associated with a cancer which is regressing or in remission.

Further provided is a method of monitoring prostate cancer in a human having such cancer for the onset of metastasis. The method comprises identifying a human patient 15 having such cancer that is not known to have metastasized; periodically analyzing a sample of cells, tissues, or bodily fluid from such patient for CSG; comparing the CSG levels in such cells, tissue, or bodily fluid with levels of CSG in preferably the same cells, tissues, or bodily fluid type of 20 a normal human control sample, wherein an increase in CSG levels in the patient versus the normal human control is associated with a cancer which has metastasized.

Further provided is a method of monitoring the change in stage of prostate cancer in a human having such cancer by 25 looking at levels of CSG in a human having such cancer. The method comprises identifying a human patient having such cancer; periodically analyzing a sample of cells, tissues, or bodily fluid from such patient for CSG; comparing the CSG levels in such cells, tissue, or bodily fluid with levels of 30 CSG in preferably the same cells, tissues, or bodily fluid type of a normal human control sample, wherein an increase in CSG levels in the patient versus the normal human control is associated with a cancer which is progressing and a decrease in the levels of CSG is associated with a cancer which is 35 regressing or in remission.

- 6 -

Further provided are methods of designing new therapeutic agents targeted to a CSG for use in imaging and treating prostate cancer. For example, in one embodiment, therapeutic agents such as antibodies targeted against CSG or 5 fragments of such antibodies can be used to detect or image localization of CSG in a patient for the purpose of detecting or diagnosing a disease or condition. Such antibodies can be polyclonal, monoclonal, or omniclonal or prepared by molecular biology techniques. The term "antibody", as used herein and 10 throughout the instant specification is also meant to include aptamers and single-stranded oligonucleotides such as those derived from an *in vitro* evolution protocol referred to as SELEX and well known to those skilled in the art. Antibodies can be labeled with a variety of detectable labels including, 15 but not limited to, radioisotopes and paramagnetic metals. Therapeutic agents such as antibodies or fragments thereof can also be used in the treatment of diseases characterized by expression of CSG. In these applications, the antibody can be used without or with derivatization to a cytotoxic agent 20 such as a radioisotope, enzyme, toxin, drug or a prodrug.

Other objects, features, advantages and aspects of the present invention will become apparent to those of skill in the art from the following description. It should be understood, however, that the following description and the 25 specific examples, while indicating preferred embodiments of the invention, are given by way of illustration only. Various changes and modifications within the spirit and scope of the disclosed invention will become readily apparent to those skilled in the art from reading the following description and 30 from reading the other parts of the present disclosure.

DETAILED DESCRIPTION OF THE INVENTION

The present invention relates to diagnostic assays and methods, both quantitative and qualitative for detecting, diagnosing, monitoring, staging and prognosticating cancers

- 7 -

by comparing levels of CSG in a human patient with those of CSG in a normal human control. For purposes of the present invention, what is meant by CSG levels is, among other things, native protein expressed by the gene comprising a 5 polynucleotide sequence of SEQ ID NO:1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 or 20. By "CSG" it is also meant herein polynucleotides which, due to degeneracy in genetic coding, comprise variations in nucleotide sequence as compared to SEQ ID NO: 1-20, but which still encode the 10 same protein. The native protein being detected, may be whole, a breakdown product, a complex of molecules or chemically modified. In the alternative, what is meant by CSG as used herein, means the native mRNA encoded by the gene comprising the polynucleotide sequence of SEQ ID NO:1, 2, 3, 15 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 or 20, levels of the gene comprising the polynucleotide sequence of SEQ ID NO:1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 or 20, or levels of a polynucleotide which is capable of hybridizing under stringent conditions to the 20 antisense sequence of SEQ ID NO:1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 or 20. Such levels are preferably determined in at least one of, cells, tissues and/or bodily fluids, including determination of normal and abnormal levels. Thus, for instance, a diagnostic assay in 25 accordance with the invention for diagnosing overexpression of CSG protein compared to normal control bodily fluids, cells, or tissue samples may be used to diagnose the presence of prostate cancer:

All the methods of the present invention may optionally 30 include determining the levels of other cancer markers as well as CSG. Other cancer markers, in addition to CSG, useful in the present invention will depend on the cancer being tested and are known to those of skill in the art.

- 8 -

Diagnostic Assays

The present invention provides methods for diagnosing the presence of prostate cancer by analyzing for changes in levels of CSG in cells, tissues or bodily fluids compared with levels 5 of CSG in cells, tissues or bodily fluids of preferably the same type from a normal human control, wherein an increase in levels of CSG in the patient versus the normal human control is associated with the presence of prostate cancer.

Without limiting the instant invention, typically, for 10 a quantitative diagnostic assay a positive result indicating the patient being tested has cancer is one in which cells, tissues or bodily fluid levels of the cancer marker, such as CSG, are at least two times higher, and most preferably are at least five times higher, than in preferably the same cells, 15 tissues or bodily fluid of a normal human control.

The present invention also provides a method of diagnosing metastatic prostate cancer in a patient having prostate cancer which has not yet metastasized for the onset of metastasis. In the method of the present invention, a 20 human cancer patient suspected of having prostate cancer which may have metastasized (but which was not previously known to have metastasized) is identified. This is accomplished by a variety of means known to those of skill in the art.

In the present invention, determining the presence of CSG 25 levels in cells, tissues or bodily fluid, is particularly useful for discriminating between prostate cancer which has not metastasized and prostate cancer which has metastasized. Existing techniques have difficulty discriminating between prostate cancer which has metastasized and prostate cancer 30 which has not metastasized and proper treatment selection is often dependent upon such knowledge.

In the present invention, the cancer marker levels measured in such cells, tissues or bodily fluid is CSG, and are compared with levels of CSG in preferably the same cells, 35 tissue or bodily fluid type of a normal human control. That

- 9 -

is, if the cancer marker being observed is just CSG in serum, this level is preferably compared with the level of CSG in serum of a normal human control. An increase in the CSG in the patient versus the normal human control is associated with 5 prostate cancer which has metastasized.

Without limiting the instant invention, typically, for a quantitative diagnostic assay a positive result indicating the cancer in the patient being tested or monitored has metastasized is one in which cells, tissues or bodily fluid 10 levels of the cancer marker, such as CSG, are at least two times higher, and most preferably are at least five times higher, than in preferably the same cells, tissues or bodily fluid of a normal patient.

Normal human control as used herein includes a human 15 patient without cancer and/or non cancerous samples from the patient; in the methods for diagnosing or monitoring for metastasis, normal human control may preferably also include samples from a human patient that is determined by reliable methods to have prostate cancer which has not metastasized.

20 **Staging**

The invention also provides a method of staging prostate cancer in a human patient. The method comprises identifying a human patient having such cancer and analyzing cells, tissues or bodily fluid from such human patient for CSG. The 25 CSG levels determined in the patient are then compared with levels of CSG in preferably the same cells, tissues or bodily fluid type of a normal human control, wherein an increase in CSG levels in the human patient versus the normal human control is associated with a cancer which is progressing and 30 a decrease in the levels of CSG (but still increased over true normal levels) is associated with a cancer which is regressing or in remission.

Monitoring

Further provided is a method of monitoring prostate 35 cancer in a human patient having such cancer for the onset of

- 10 -

metastasis. The method comprises identifying a human patient having such cancer that is not known to have metastasized; periodically analyzing cells, tissues or bodily fluid from such human patient for CSG; and comparing the CSG levels determined in the human patient with levels of CSG in preferably the same cells, tissues or bodily fluid type of a normal human control, wherein an increase in CSG levels in the human patient versus the normal human control is associated with a cancer which has metastasized. In this method, normal human control samples may also include prior patient samples.

Further provided by this invention is a method of monitoring the change in stage of prostate cancer in a human patient having such cancer. The method comprises identifying a human patient having such cancer; periodically analyzing cells, tissues or bodily fluid from such human patient for CSG; and comparing the CSG levels determined in the human patient with levels of CSG in preferably the same cells, tissues or bodily fluid type of a normal human control, wherein an increase in CSG levels in the human patient versus the normal human control is associated with a cancer which is progressing in stage and a decrease in the levels of CSG is associated with a cancer which is regressing in stage or in remission. In this method, normal human control samples may also include prior patient samples.

Monitoring a patient for onset of metastasis is periodic and preferably done on a quarterly basis. However, this may be more or less frequent depending on the cancer, the particular patient, and the stage of the cancer.

Assay Techniques

Assay techniques that can be used to determine levels of gene expression (including protein levels), such as CSG of the present invention, in a sample derived from a patient are well known to those of skill in the art. Such assay methods include, without limitation, radioimmunoassays, reverse transcriptase PCR (RT-PCR) assays, immunohistochemistry

- 11 -

assays, *in situ* hybridization assays, competitive-binding assays, Western Blot analyses, ELISA assays and proteomic approaches: two-dimensional gel electrophoresis (2D electrophoresis) and non-gel based approaches such as mass spectrometry or protein interaction profiling. Among these, 5 ELISAs are frequently preferred to diagnose a gene's expressed protein in biological fluids.

An ELISA assay initially comprises preparing an antibody, if not readily available from a commercial source, specific 10 to CSG, preferably a monoclonal antibody. In addition a reporter antibody generally is prepared which binds specifically to CSG. The reporter antibody is attached to a detectable reagent such as radioactive, fluorescent or enzymatic reagent, for example horseradish peroxidase enzyme 15 or alkaline phosphatase.

To carry out the ELISA, antibody specific to CSG is incubated on a solid support, e.g. a polystyrene dish, that binds the antibody. Any free protein binding sites on the dish are then covered by incubating with a non-specific 20 protein such as bovine serum albumin. Next, the sample to be analyzed is incubated in the dish, during which time CSG binds to the specific antibody attached to the polystyrene dish. Unbound sample is washed out with buffer. A reporter antibody 25 specifically directed to CSG and linked to a detectable reagent such as horseradish peroxidase is placed in the dish resulting in binding of the reporter antibody to any monoclonal antibody bound to CSG. Unattached reporter antibody is then washed out. Reagents for peroxidase activity, including a colorimetric substrate are then added 30 to the dish. Immobilized peroxidase, linked to CSG antibodies, produces a colored reaction product. The amount of color developed in a given time period is proportional to the amount of CSG protein present in the sample. Quantitative results typically are obtained by reference to a standard 35 curve.

- 12 -

A competition assay can also be employed wherein antibodies specific to CSG are attached to a solid support and labeled CSG and a sample derived from the host are passed over the solid support. The amount of label detected which is 5 attached to the solid support can be correlated to a quantity of CSG in the sample.

Nucleic acid methods can also be used to detect CSG mRNA as a marker for prostate cancer. Polymerase chain reaction (PCR) and other nucleic acid methods, such as ligase chain 10 reaction (LCR) and nucleic acid sequence based amplification (NASABA), can be used to detect malignant cells for diagnosis and monitoring of various malignancies. For example, reverse-transcriptase PCR (RT-PCR) is a powerful technique which can be used to detect the presence of a specific mRNA population 15 in a complex mixture of thousands of other mRNA species. In RT-PCR, an mRNA species is first reverse transcribed to complementary DNA (cDNA) with use of the enzyme reverse transcriptase; the cDNA is then amplified as in a standard PCR reaction. RT-PCR can thus reveal by amplification the 20 presence of a single species of mRNA. Accordingly, if the mRNA is highly specific for the cell that produces it, RT-PCR can be used to identify the presence of a specific type of cell.

Hybridization to clones or oligonucleotides arrayed on 25 a solid support (*i.e.* gridding) can be used to both detect the expression of and quantitate the level of expression of that gene. In this approach, a cDNA encoding the CSG gene is fixed to a substrate. The substrate may be of any suitable type including but not limited to glass, nitrocellulose, nylon or 30 plastic. At least a portion of the DNA encoding the CSG gene is attached to the substrate and then incubated with the analyte, which may be RNA or a complementary DNA (cDNA) copy of the RNA, isolated from the tissue of interest. Hybridization between the substrate bound DNA and the analyte 35 can be detected and quantitated by several means including but

- 13 -

not limited to radioactive labeling or fluorescence labeling of the analyte or a secondary molecule designed to detect the hybrid. Quantitation of the level of gene expression can be done by comparison of the intensity of the signal from the 5 analyte compared with that determined from known standards. The standards can be obtained by *in vitro* transcription of the target gene, quantitating the yield, and then using that material to generate a standard curve.

Of the proteomic approaches, 2D electrophoresis is a 10 technique well known to those in the art. Isolation of individual proteins from a sample such as serum is accomplished using sequential separation of proteins by different characteristics usually on polyacrylamide gels. First, proteins are separated by size using an electric 15 current. The current acts uniformly on all proteins, so smaller proteins move farther on the gel than larger proteins. The second dimension applies a current perpendicular to the first and separates proteins not on the basis of size but on the specific electric charge carried by each protein. Since 20 no two proteins with different sequences are identical on the basis of both size and charge, the result of a 2D separation is a square gel in which each protein occupies a unique spot. Analysis of the spots with chemical or antibody probes, or 25 subsequent protein microsequencing can reveal the relative abundance of a given protein and the identity of the proteins in the sample.

The above tests can be carried out on samples derived from a variety of cells, bodily fluids and/or tissue extracts such as homogenates or solubilized tissue obtained from a 30 patient. Tissue extracts are obtained routinely from tissue biopsy and autopsy material. Bodily fluids useful in the present invention include blood, urine, saliva or any other bodily secretion or derivative thereof. By blood it is meant to include whole blood, plasma, serum or any derivative of 35 blood.

- 14 -

In Vivo Targeting of CSGs

Identification of these CSGs is also useful in the rational design of new therapeutics for imaging and treating cancers, and in particular prostate cancer. For example, in 5 one embodiment, antibodies which specifically bind to CSG can be raised and used *in vivo* in patients suspected of suffering from prostate cancer. Antibodies which specifically bind a CSG can be injected into a patient suspected of having prostate cancer for diagnostic and/or therapeutic purposes.

10 The preparation and use of antibodies for *in vivo* diagnosis is well known in the art. For example, antibody-chelators labeled with Indium-111 have been described for use in the radioimmunoscintographic imaging of carcinoembryonic antigen expressing tumors (Sumerdon et al. Nucl. Med. Biol. 1990 17:247-254). In particular, these antibody-chelators have been used in detecting tumors in patients suspected of having recurrent colorectal cancer (Griffin et al. J. Clin. Onc. 1991 9:631-640). Antibodies with paramagnetic ions as labels for use in magnetic resonance imaging have also been described 15 (Lauffer, R.B. Magnetic Resonance in Medicine 1991 22:339-342). Antibodies directed against CSG can be used in a similar manner. Labeled antibodies which specifically bind CSG can be injected into patients suspected of having prostate cancer for the purpose of diagnosing or staging of the disease 20 25 status of the patient. The label used will be selected in accordance with the imaging modality to be used. For example, radioactive labels such as Indium-111, Technetium-99m or Iodine-131 can be used for planar scans or single photon emission computed tomography (SPECT). Positron emitting 30 labels such as Fluorine-19 can be used in positron emission tomography. Paramagnetic ions such as Gadlinium (III) or Manganese (II) can be used in magnetic resonance imaging (MRI). Localization of the label permits determination of the spread of the cancer. The amount of label within an organ or

- 15 -

tissue also allows determination of the presence or absence of cancer in that organ or tissue.

For patients diagnosed with prostate cancer, injection of an antibody which specifically binds CSG can also have a therapeutic benefit. The antibody may exert its therapeutic effect alone. Alternatively, the antibody can be conjugated to a cytotoxic agent such as a drug, toxin or radionuclide to enhance its therapeutic effect. Drug monoclonal antibodies have been described in the art for example by Garnett and Baldwin, Cancer Research 1986 46:2407-2412. The use of toxins conjugated to monoclonal antibodies for the therapy of various cancers has also been described by Pastan et al. Cell 1986 47:641-648. Yttrium-90 labeled monoclonal antibodies have been described for maximization of dose delivered to the tumor while limiting toxicity to normal tissues (Goodwin and Meares Cancer Supplement 1997 80:2675-2680). Other cytotoxic radionuclides including, but not limited to Copper-67, Iodine-131 and Rhenium-186 can also be used for labeling of antibodies against CSG.

Antibodies which can be used in these *in vivo* methods include polyclonal, monoclonal and omniclonal antibodies and antibodies prepared via molecular biology techniques. Antibody fragments and aptamers and single-stranded oligonucleotides such as those derived from an *in vitro* evolution protocol referred to as SELEX and well known to those skilled in the art can also be used.

Small molecules predicted via computer imaging to specifically bind to regions of CSGs can also be designed and synthesized and tested for use in the imaging and treatment of prostate cancer. Further, libraries of molecules can be screened for potential anticancer agents by assessing the ability of the molecule to bind to CSGs identified herein. Molecules identified in the library as being capable of binding to CSG are key candidates for further evaluation for use in the treatment of prostate cancer.

- 16 -

EXAMPLES

The present invention is further described by the following examples. These examples are provided solely to illustrate the invention by reference to specific embodiments.

5 These exemplifications, while illustrating certain aspects of the invention, do not portray the limitations or circumscribe the scope of the disclosed invention.

All examples outlined here were carried out using standard techniques, which are well known and routine to those 10 of skill in the art, except where otherwise described in detail. Routine molecular biology techniques of the following example can be carried out as described in standard laboratory manuals, such as Sambrook et al., MOLECULAR CLONING: A LABORATORY MANUAL, 2nd Ed.; Cold Spring Harbor Laboratory 15 Press, Cold Spring Harbor, N.Y. (1989).

Example 1: Identification of CSGs

Identification of CSGs were carried out by a systematic analysis of data in the LIFESEQ database available from Incyte Pharmaceuticals, Palo Alto, CA, using the data mining Cancer 20 Leads Automatic Search Package (CLASP) developed by diaDexus LLC, Santa Clara, CA.

The CLASP performs the following steps: selection of highly expressed organ specific genes based on the abundance level of the corresponding EST in the targeted organ versus 25 all the other organs; analysis of the expression level of each highly expressed organ specific genes in normal, tumor tissue, disease tissue and tissue libraries associated with tumor or disease; selection of the candidates demonstrating component ESTs were exclusively or more frequently found in tumor 30 libraries. The CLASP allows the identification of highly expressed organ and cancer specific genes. A final manual in depth evaluation is then performed to finalize the CSGs selection.

- 17 -

Clones depicted in the following Table 1 are CSGs useful in diagnosing, monitoring, staging, imaging and treating prostate cancer.

Table 1: CSGs

	Clone ID	Pro #	SEQ ID NO:
5	3424528H1	Pro109	1, 2
	578349H1	Pro112	3, 4
	1794013H1	Pro111	5, 6
	2189835H1	Pro115	7, 8
10	3277219H1	Pro110	9, 10
	1857415	Pro113	11, 12
	1810463H1	Pro114	13, 14
	zr65G11	Pro118	15, 16
	2626135H1		17
15	zd46d08		18
	1712252H1		19
	784583H1		20

Example 2: Relative Quantitation of Gene Expression

20 Real-Time quantitative PCR with fluorescent Taqman probes is a quantitation detection system utilizing the 5'- 3' nuclease activity of Taq DNA polymerase. The method uses an internal fluorescent oligonucleotide probe (Taqman) labeled with a 5' reporter dye and a downstream, 3' quencher dye. 25 During PCR, the 5'-3' nuclease activity of Taq DNA polymerase releases the reporter, whose fluorescence can then be detected by the laser detector of the Model 7700 Sequence Detection System (PE Applied Biosystems, Foster City, CA, USA).

Amplification of an endogenous control is used to 30 standardize the amount of sample RNA added to the reaction and normalize for Reverse Transcriptase (RT) efficiency. Either cyclophilin, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), ATPase, or 18S ribosomal RNA (rRNA) is used as this endogenous

- 18 -

control. To calculate relative quantitation between all the samples studied, the target RNA levels for one sample were used as the basis for comparative results (calibrator). Quantitation relative to the "calibrator" can be obtained 5 using the standard curve method or the comparative method (User Bulletin #2: ABI PRISM 7700 Sequence Detection System).

The tissue distribution and the level of the target gene were evaluated for every sample in normal and cancer tissues. Total RNA was extracted from normal tissues, cancer tissues, 10 and from cancers and the corresponding matched adjacent tissues. Subsequently, first strand cDNA was prepared with reverse transcriptase and the polymerase chain reaction was done using primers and Taqman probes specific to each target gene. The results were analyzed using the ABI PRISM 7700 15 Sequence Detector. The absolute numbers are relative levels of expression of the target gene in a particular tissue compared to the calibrator tissue.

Expression of Clone ID 3424528H1 (Pro109):

For the CSG Pro109, real-time quantitative PCR was 20 performed using the following primers:

Forward Primer:

5'- ATCAGAACAAAGAGGGCTGTGTC - 3' (SEQ ID NO:21)

Reverse Primer:

5'- ATCTCTAAAGCCCCAACCTTC - 3' (SEQ ID NO:22)

25 The absolute numbers depicted in Table 2 are relative levels of expression of the CSG referred to as Pro109 in 12 normal different tissues. All the values are compared to normal stomach (calibrator). These RNA samples are commercially available pools, originated by pooling samples of a particular 30 tissue from different individuals.

- 19 -

Table 2: Relative Levels of CSG Pro109 Expression in Pooled Samples

		Tissue	NORMAL
5	Colon	0.02	
	Endometrium	0.01	
	Kidney	0.48	
	Liver	14.83	
	Ovary	0.08	
	Pancreas	4.38	
10	Prostate	11.24	
	Small Intestine	0.42	
	Spleen	0	
	Stomach	1	
	Testis	0.62	
15	Uterus	0.02	

The relative levels of expression in Table 2 show that with the exception of liver (14.83), Pro109 mRNA expression is higher (11.24) in prostate compared with all other normal tissues analyzed. Pancreas, with a relative expression level 20 of 4.38, is the only other tissue expressing considerable mRNA for Pro109.

The absolute numbers in Table 2 were obtained analyzing pools of samples of a particular tissue from different individuals. They cannot be compared to the absolute numbers 25 originated from RNA obtained from tissue samples of a single individual in Table 3.

The absolute numbers depicted in Table 3 are relative levels of expression of Pro109 in 28 pairs of matching samples and 4 unmatched samples. All the values are compared to 30 normal stomach (calibrator). A matching pair is formed by mRNA from the cancer sample for a particular tissue and mRNA from the normal adjacent sample for that same tissue from the same individual.

- 20 -

Table 3: Relative Levels of CSG Pro109 Expression in Individual Samples

	Sample ID	Tissue	Cancer	Matching Normal Adjacent
5	Pro34B	Prostate 1	5.98	6.06
	Pro65XB	Prostate 2	16.68	3.85
	Pro69XB	Prostate 3	20.46	6.82
	Pro78XB	Prostate 4	1.39	1.4
	Pro101XB	Prostate 5	24.8	9.8
	Pro12B	Prostate 6	9.1	0.2
	Pro13XB	Prostate 7	0.5	9.7
	Pro20XB	Prostate 8	13	12.5
	Pro23B	Prostate 9	16.8	3
10	Ovr100050	Ovary 1	0.4	
	Ovr1028	Ovary 2	1.9	
	Ovr18GA	Ovary 3		0.1
	Ovr206I	Ovary 4		0.1
	Mam12X	Mammary Gland 1	13.5	1.4
15	Mam47XP	Mammary Gland 2	0.7	0.2
	Lng47XQ	Lung 1	2.36	0.03
	Lng60XL	Lung 2	7.39	0.2
	Lng75XC	Lung 3	0.77	0.27
	StoAC44	Stomach 1	0.05	1.19
	StoAC93	Stomach 2	0.55	0.8
	StoAC99	Stomach 3	0.12	3.04
20	ColAS43	Colon 1	16.11	0.07
	ColAS45	Colon 2	0.11	0.08
	ColAS46	Colon 3	4.99	0.4
	Liv15XA	Liver 1	8.43	10.97
25	Liv42X	Liver 2	1.57	20.82

- 21 -

Liv94XA	Liver 3	2.98	9.19
Pan77X	Pancreas 1	36	32
Pan82XP	Pancreas 2	0.09	7.09
Pan92X	Pancreas 3	0.7	0
5 Pan71XL	Pancreas 4	2.48	0.73
Pan10343	Pancreas 5	46	5.5

0 = Negative

In the analysis of matching samples, the higher levels of expression were in prostate, showing a high degree of tissue specificity for prostate tissue. Of all the samples different than prostate analyzed, only 4 cancer samples (the cancer sample mammary 1 with 13.5, colon 1 with 16.11, liver 1 with 8.43, and lung 2 with 7.39) showed an expression comparable to the mRNA expression in prostate. These results confirmed some degree of tissue specificity as obtained with the panel of normal pooled samples (Table 2).

Furthermore, the level of mRNA expression was compared in cancer samples and the isogenic normal adjacent tissue from the same individual. This comparison provides an indication of specificity for the cancer (e.g. higher levels of mRNA expression in the cancer sample compared to the normal adjacent). Table 3 shows overexpression of Pro109 in 6 out of 9 primary prostate cancer tissues compared with their respective normal adjacents. Thus, overexpression in the cancer tissue was observed in 66.66% of the prostate matching samples tested (total of 9 prostate matching samples).

Altogether, the degree of tissue specificity, plus the mRNA overexpression in 66.66% of the primary prostate matching samples tested is indicative of Pro109 being a diagnostic marker for prostate cancer.

- 22 -

Expression of Clone ID 578349H1 (Pro112):

For the CSG Pro112, real-time quantitative PCR was performed using the following primers:

Forward Primer

5' - TGCCGAAGAGGTTCACTGC - 3' (SEQ ID NO:23)

Reverse Primer

5' - GCCACAGTGGTACTGTCCAGAT - 3' (SEQ ID NO:24)

The absolute numbers depicted in Table 4 are relative levels of expression of the CSG Pro112 in 12 normal different 10 tissues. All the values are compared to normal thymus (calibrator). These RNA samples are commercially available pools, originated by pooling samples of a particular tissue from different individuals.

Table 4: Relative Levels of CSG Pro112 Expression in Pooled
15 Samples

Tissue	NORMAL
Brain	2.9
Heart	0.1
Kidney	0.2
Liver	0.2
Lung	7.7
Mammary	4.2
Muscle	0.1
Prostate	5.5
Small Intestine	1.8
Testis	1
Thymus	1
Uterus	21

The relative levels of expression in Table 4 show that 30 Pro112 mRNA expression is the 3rd most highly expressed gene (after uterus and mammary) in the pool of normal prostate tissue compared to a total of 12 tissues analyzed. The absolute numbers in Table 4 were obtained analyzing pools of samples of a particular tissue from different individuals. 35 These results demonstrate that Pro112 mRNA expression is specific for prostate thus indicating Pro112 to be a diagnostic marker for prostate disease especially cancer.

- 23 -

Expression of Clone ID 1794013H1 (Pro111) :

For the CSG Pro111, real-time quantitative PCR was performed using the following primers:

Forward Primer

5 5' - GCTGCAAGTTCTCCACATTGA - 3' (SEQ ID NO:25)

Reverse Primer

5' - CAGCCGCAGGTGAAACAC - 3' (SEQ ID NO:26)

The absolute numbers depicted in Table 5 are relative levels of expression of the CSG Pro111 in 12 normal different 10 tissues. All the values are compared to normal testis (calibrator). These RNA samples are commercially available pools, originated by pooling samples of a particular tissue from different individuals.

Table 5: Relative Levels of CSG Pro111 Expression in Pooled
15 Samples

Tissue	NORMAL
Brain	0.04
Heart	0
Kidney	0
Liver	0
Lung	0.05
Mammary	0.14
Muscle	5166.6
Prostate	1483.72
Small Intestine	0.33
Testis	1
Thymus	0.49
Uterus	0.07

The relative levels of expression in Table 5 show that Pro111 30 mRNA expression is extraordinarily high in the pool of normal prostate (1483.72) compared to all the other tissues analyzed with the exception of muscle (5166.6). These results demonstrate that Pro111 mRNA expression shows specificity for prostate and muscle.

35 The absolute numbers in Table 5 were obtained analyzing pools of samples of a particular tissue from different

- 24 -

individuals. They cannot be compared to the absolute numbers originated from RNA obtained from tissue samples of a single individual in Table 6.

The absolute numbers depicted in Table 6 are relative levels of expression of Pro111 in 48 pairs of matching and 18 unmatched samples. All the values are compared to normal testis (calibrator). A matching pair is formed by mRNA from the cancer sample for a particular tissue and mRNA from the normal adjacent sample for that same tissue from the same individual.

Table 6: Relative Levels of CSG Pro111 Expression in Individual Samples

	Sample ID	Tissue	Cancer	Matching Normal Adjacent
15	Pro101XB	Prostate 1	8.3	21.8
	Pro12B	Prostate 2	2336	133
	Pro13XB	Prostate 3	3.4	23
	Pro20XB	Prostate 4	21.6	121.5
	Pro23B	Prostate 5	19.4	3.7
20	Pro34B	Prostate 6	15	39
	Pro65XB	Prostate 7	8	867
	Pro69XB	Prostate 8	56	94
	Pro78XB	Prostate 9	24	1515
	Pro84XB	Prostate 10	119	15.35
	Pro90XB	Prostate 11	8.08	112.2
25	Pro91XB	Prostate 12	0.88	51.8
	ProC215	Prostate 13	0.3	
	ProC234	Prostate 14	0.35	
	ProC280	Prostate 15	436.5	
	Pro109XB	Prostate 16	3.43	265
30	Pro110	Prostate 17	18.2	8.73

- 25 -

	Pro125XB	Prostate 18	0.34	186
	Pro326	Prostate 19	1392	110
	Pro10R	Prostate 20 (prostatitis)	0.5	
	Pro20R	Prostate 21 (prostatitis)	24.1	
5	Pro258	Prostate 22 (BPH)	4610	
	Pro263C	Prostate 23 (BPH)	0	
	Pro267A	Prostate 24 (BPH)	1.46	
	Pro271A	Prostate 25 (BPH)	0	
	Pro460Z	Prostate 26 (BPH)	1.47	
	ProC032	Prostate 27 (BPH)	14.4	
10	Tst39X	Testis 1	0	0
	Bld32XK	Bladder 1	0.44	0.41
	Bld46XK	Bladder 2	0	0
	Bld66X	Bladder 3	0	0
15	BldTR14	Bladder 4	0	0
	Kid106XD	Kidney 1	0	0
	Kid107XD	Kidney 2	0	0
	Kid109XD	Kidney 3	0	0
20	Pan10343	Pancreas 1	0	0
	Pan71XL	Pancreas 2	0	0
	Pan77X	Pancreas 3	0	0
	Liv15XA	Liver 1	0	0
25	Liv42X	Liver 2	0	0
	ClnAS43	Colon 1	0	0
	ClnAS45	Colon 2	0	0
	ClnAS46	Colon 3	0	0
	ClnAS67	Colon 4	0	0
	ClnAC19	Colon 5	0	0
	ClnAS12	Colon 6	0	0

- 26 -

	Smi21XA	Small Intestine 1	0	0
	SmiH89	Small Intestine 2	0	0
	Lng47XQ	Lung 1	0.7	0
	Lng60XL	Lung 2	0	0
5.	Lng75XC	Lung 3	0	0
	Lng90X	Lung 4	0	0
	Mam12X	Mammary Gland 1	0	1.4
	Mam59X	Mammary Gland 2	0.2	0
	MamA06X	Mammary Gland 3	0	0
10	MamS127	Mammary Gland 4	0	0
	Mam162X	Mammary Gland 5	0	0
	Mam42DN	Mammary Gland 6	0	0
	Ovr103X	Ovary 1	0.14	0
	Ovr10050	Ovary 2	0.2	
15	Ovr1028	Ovary 3	0	
	Ovr10400	Ovary 4	0.2	
	Ovr18GA	Ovary 5		0
	Ovr206I	Ovary 6		0
	Ovr20GA	Ovary 7		0.2
20	Ovr25GA	Ovary 8		0

0= Negative

In the analysis of matching samples, the higher levels of expression were in prostate showing a high degree of tissue specificity for prostate. These results confirm the tissue specificity results obtained with normal pooled samples (Table 5).

Furthermore, the level of mRNA expression in cancer samples and the isogenic normal adjacent tissue from the same individual were compared. This comparison provides an indication of specificity for cancer (e.g. higher levels of mRNA expression in the cancer sample compared to the normal adjacent). Table 6 shows overexpression of Pro111 in 5 out

- 27 -

of 16 primary prostate cancer samples compared with their respective normal adjacent (prostate samples 2, 5, 10, 17, and 19). Similar expression levels were observed in 3 unmatched prostate cancers (prostate samples 13, 14, 15), 2 prostatitis 5 (prostate samples 20, 21), and 6 benign prostatic hyperplasia samples (prostate samples 22 through 27). Thus, there is overexpression in the cancer tissue of 31.25% of the prostate matching samples tested (total of 16 prostate matching samples).

10 Altogether, the high level of tissue specificity, plus the mRNA overexpression in 31.25% of the prostate matching samples tested are indicative of Pro115 being a diagnostic marker for prostate cancer.

Expression of Clone ID 2189835H1 (Pro115):

15 For the CSG Pro115, real-time quantitative PCR was performed using the following primers:

Forward Primer

5' - TGGCTTGAACTCAGGGTCA - 3' (SEQ ID NO:27)

Reverse Primer

20 5' - CGGATGCACCTCGTAGACAG - 3' (SEQ ID NO:28)

The absolute numbers depicted in Table 7 are relative levels of expression of the CSG Pro115 in 12 normal different tissues. All the values are compared to normal thymus (calibrator). These RNA samples are commercially available 25 pools, originated by pooling samples of a particular tissue from different individuals.

Table 7: Relative Levels of CSG Pro115 Expression in Pooled Samples

Tissue	NORMAL
Brain	0.016
Heart	0.002
Kidney	8.08
Liver	2.20
Lung	112.99

- 28 -

Mammary	29.45
Muscle	0.05
Prostate	337.79
Small Intestine	7.54
Testis	1.48
Thymus	1
Uterus	1.4

The relative levels of expression in Table 7 show that Prol115 mRNA expression is higher (337.79) in prostate compared
 10 with all the other normal tissues analyzed. Lung, with a relative expression level of 112.99, and mammary (29.446) are the other tissues expressing moderate levels of mRNA for Prol115. These results establish Prol115 mRNA expression to be highly specific for prostate.

15 The absolute numbers in Table 7 were obtained analyzing pools of samples of a particular tissue from different individuals. They cannot be compared to the absolute numbers originated from RNA obtained from tissue samples of a single individual in Table 8.

20 The absolute numbers depicted in Table 8 are relative levels of expression of Prol115 in 17 pairs of matching and 21 unmatched samples. All the values are compared to normal thymus (calibrator). A matching pair is formed by mRNA from the cancer sample for a particular tissue and mRNA from the
 25 normal adjacent sample for that same tissue from the same individual.

Table 8: Relative Levels of CSG Prol115 Expression in Individual Samples

	Sample ID	Tissue	Cancer	Matching Normal Adjacent
30	Pro12B	Prostate 1	1475.9	190.3
	ProC234	Prostate 2	169.61	
	Pro109XB	Prostate 3		639.53
	Pro101XB	Prostate 4	1985.2	2882.9

- 29 -

	Pro13XB	Prostate 5	34.9	13.9
	Pro215	Prostate 6	525.59	
	Pro125XB	Prostate 7		556.05
	Pro23B	Prostate 8	1891.4	1118.6
5	ProC280	Prostate 9	454.3	
	Pro20XB	Prostate 10	1332.6	
	Pro34B	Prostate 11		362.91
	Pro65XB	Prostate 12		135.06
	Pro69XB	Prostate 13		179.67
10	Pro10R	Prostate 14 (prostatitis)	143.82	
	Pro20R	Prostate 15 (prostatitis)	397.79	
	Pro258	Prostate 16 (BPH)	216.6	
	Pro263C	Prostate 17 (BPH)	601.25	
	Pro267A	Prostate 18 (BPH)	200.28	
15	Pro271A	Prostate 19 (BPH)	111.43	
	Pro460Z	Prostate 20 (BPH)	53.84	
	ProC032	Prostate 21 (BPH)	56.94	
	SmI21XA	Small Intestine 1	28.8	29.9
	SmIH89	Small Intestine 2	70.8	348.5
20	ClnAC19	Colon 1	22.73	446.47
	ClnAS12	Colon 2	116.97	493.18
	Kid106XD	Kidney 1	86.13	41.14
	Kid107XD	Kidney 2	0.26	35.14
	Lng47XQ	Lung 1	5.13	20.98
25	Lng60XL	Lung 2	13.93	114.78
	Lng75XC	Lung 3	16.47	53.79
	Mam12X	Mammary Gland 1	6.25	10.75
	Maml62X	Mammary Gland 2	1.84	2.54
	Mam42DN	Mammary Gland 3	23.08	35.51

- 30 -

Ovr10050	Ovary 1	0.9	
Ovr1028	Ovary 2	261.4	
Ovr103X	Ovary 3	7	0.1
Ovr20GA	Ovary 4		0
5 Ovr25GA	Ovary 5		0

0 = Negative

Higher levels of expression were seen in prostate, showing a high degree of tissue specificity for prostate tissue. Of all the analyzed samples different from prostate, only two cancer samples (colon 2 with 116.97 and ovary 2 with 261.4), and 5 normal adjacent tissue samples (small intestine 2, colon 1, colon 2, kidney 1, and lung 2), showed an expression comparable to the mRNA expression in prostate.

15 These results confirmed the tissue specificity results obtained with the panel of normal pooled samples (Table 7).

Furthermore, the levels of mRNA expression in cancer samples and the isogenic normal adjacent tissue from the same individual were compared. This comparison provides an indication of specificity for the cancer (e.g. higher levels of mRNA expression in the cancer sample compared to the normal adjacent). Table 8 shows higher expression of Pro115 in 3 out of 4 matched prostate cancer tissues (prostate samples 1, 5 & 8).

25 Altogether, the high level of tissue specificity, plus the higher expression in 75% of the prostate matching samples tested, are indicative of Pro115 being a diagnostic marker for prostate cancer.

Expression of Clone ID 3277219H1 (Pro110):

30 For the CSG Pro110, real-time quantitative PCR was performed using the following primers:

Forward Primer

5' - CGGCAACCTGGTAGTGAGTG - 3' (SEQ ID NO:29)

- 31 -

Reverse Primer

5' - CGCAGCTCCTTGTAAACTTCAG - 3' (SEQ ID NO:30)

The absolute numbers depicted in Table 9 are relative levels of expression of the CSG Pro110 in 12 normal different tissues. All the values are compared to normal small intestine (calibrator). These RNA samples are commercially available pools, originated by pooling samples of a particular tissue from different individuals.

Table 9: Relative Levels of CSG Pro110 Expression in Pooled Samples

Tissue	NORMAL
Brain	6.61
Heart	0.7
Kidney	0.74
Liver	7.94
Lung	11.88
Mammary	22.78
Muscle	6.77
Prostate	3.01
Small Intestine	1
Testis	2.58
Thymus	13.74
Uterus	2.61

The relative levels of expression in Table 9 show that Pro110 mRNA expression is not as high in normal prostate (3.01) compared with all the other normal tissues analyzed.

The absolute numbers in Table 9 were obtained analyzing pools of samples of a particular tissue from different individuals. They cannot be compared to the absolute numbers originated from RNA obtained from tissue samples of a single individual in Table 10.

The absolute numbers depicted in Table 10 are relative levels of expression of Pro110 in 33 pairs of matching samples. All the values are compared to normal small intestine (calibrator). A matching pair is formed by mRNA from the cancer sample for a particular tissue and mRNA from

- 32 -

the normal adjacent sample for that same tissue from the same individual.

Table 10: Relative Levels of CSG Pro110 Expression in Individual Samples

	Sample ID	Tissue	Cancer	Matching Normal Adjacent
5	Pro12B	Prostate 1	11.8	0.3
	Pro78XB	Prostate 2	14.3	6.3
	Pro101XB	Prostate 3	33.2	10.7
	Pro13XB	Prostate 4	0.3	0.4
	Pro23XB	Prostate 5	25.5	14.4
	Pro20XB	Prostate 6	43.3	4
	Pro34XB	Prostate 7	31.8	18.7
	Pro65XB	Prostate 8	26.9	3.4
	Pro69XB	Prostate 9	12.5	7
10	Lng75XC	Lung 1	1.9	3
	Lng90X	Lung 2	5.5	0.5
	LngAC11	Lung 3	9.3	9.7
	LngAC32	Lung 4	11.2	2.2
	Lng47XQ	Lung 5	11.3	0.3
	Lng60XL	Lung 6	29.1	6.8
15	Mam12B	Mammary Gland 1	19.8	0
	Mam603X	Mammary Gland 2	13.7	0
	Mam82XI	Mammary Gland 3	73.5	0
	MamA04	Mammary Gland 4	0	24.6
	MamB011X	Mammary Gland 5	17.4	2
	MamC012	Mammary Gland 6	0	12.8
	MamC034	Mammary Gland 7	0	61
	Mam12X	Mammary Gland 8	14	2.2
	Mam59X	Mammary Gland 9	33	2.2

- 33 -

MamA06X	Mammary Gland 10	16.4	0.8
Liv15XA	Liver 1	4.7	0.6
Liv42X	Liver 2	7.5	2.6
Liv94XA	Liver 3	0.4	1.4
ClnAS43	Colon 1	52.9	1.4
ClnAS45	Colon 2	2.1	0.8
ClnAS46	Colon 3	39.8	3.7
SmI21X	Small Intestine 1	0.9	0.1
SmIH89	Small Intestine 2	5.8	0.9

10 0 = Negative

The levels of mRNA expression in cancer samples and the isogenic normal adjacent tissue from the same individual were compared. This comparison provides an indication of specificity for the cancer (e.g. higher levels of mRNA expression in the cancer sample compared to the normal adjacent). Table 10 shows overexpression of Pro110 in 8 of the 9 primary prostate cancer tissues compared with their respective normal adjacent (except prostate 4). Thus, there was overexpression in 88.88% of the cancer prostate tissue as compared to the prostate matching samples tested (total of 9 prostate matching samples).

Although not tissue specific, Pro110 mRNA expression is upregulated in prostate cancer tissues. The mRNA overexpression in 88.88% of the primary prostate matching cancer samples tested is indicative of Pro110 being a diagnostic marker for prostate cancer. Pro110 also showed overexpression in several other cancers tested including small intestine, colon, liver, mammary and lung (see Table 10). Accordingly Pro110 may be a diagnostic marker for other types of cancer as well.

- 34 -

Expression of Clone ID 1857415; Gene ID 346880 (Pro113):

For the CSG Pro113, real-time quantitative PCR was performed using the following primers:

Forward Primer

5' - CGGGAACCTACCAGCCTATG - 3' (SEQ ID NO:31)

Reverse Primer

5' - CAGGCAACAGGGAGTCATGT - 3' (SEQ ID NO:32)

The absolute numbers depicted in Table 11 are relative levels of expression of the CSG Pro113 in 12 normal different 10 tissues. All the values are compared to normal thymus (calibrator). These RNA samples are commercially available pools, originated by pooling samples of a particular tissue from different individuals.

Table 11: Relative Levels of CSG Pro113 Expression in
15 Pooled Samples

Tissue	NORMAL
Brain	0.03
Heart	0
Kidney	0.01
Liver	0
Lung	0
Mammary Gland	0
Muscle	0.04
Prostate	489.44
Small Intestine	0.02
Testis	0.35
Thymus	1
Uterus	0.13

The relative levels of expression in Table 11 show that Pro113 30 mRNA expression is higher (489.44) in prostate compared with all the other normal tissues analyzed. Testis, with a relative expression level of 0.35, uterus (0.13), thymus (1.0), kidney (0.01) and brain (0.03) were among the other tissues expressing lower mRNA levels for Pro113. These 35 results establish that Pro113 mRNA expression is highly specific for prostate.

- 35 -

The absolute numbers in Table 11 were obtained analyzing pools of samples of a particular tissue from different individuals. They cannot be compared to the absolute numbers originated from RNA obtained from tissue samples of a single
 5 individual in Table 12.

The absolute numbers depicted in Table 12 are relative levels of expression of Pro113 in 78 pairs of matching and 25 unmatched tissue samples. All the values are compared to normal thymus (calibrator). A matching pair is formed by mRNA
 10 from the cancer sample for a particular tissue and mRNA from the normal adjacent sample for that same tissue from the same individual. In cancers (for example, ovary) where it was not possible to obtain normal adjacent samples from the same individual, samples from a different normal individual were
 15 analyzed.

Table 12: Relative Levels of CSG Pro113 Expression in Individual Samples

Sample ID	Tissue	Cancer	Matched or Unmatched Normal Adjacent
Pro780B/781B	Prostate 1	375.58	446.29
20 Pro1291B/1292B	Prostate 2	1060	31
Pro139B96/140B96	Prostate 3	41	32
Pro209B96/210B96	Prostate 4	505	255
Pro1256B/1257B	Prostate 5	165.79	141.63
Pro1293B/1294B	Prostate 6	1613.7	874.61
25 Pro694B/695B	Prostate 7	458.6	142.21
Pro1012B/1013B	Prostate 8	1520	864
Pro1222B/1223B	Prostate 9	939	530
Pro845B/846B	Prostate 10	1552.4	374.6
Pro1094B/1095B	Prostate 11	278.37	135.89
30 Pro650B/651B	Prostate 12	532.81	640.85

- 36 -

	Pro902B/903B	Prostate 13	609.05	415.86
	Pro916B/917B	Prostate 14	699.42	401.24
	Pro9821110A/110B	Prostate 15	156	487.8
	ProS9821326A/26B	Prostate 16	744.4	472.8
5	Pro9407c215	Prostate 17	1389.2	
	Pro9407c234	Prostate 18	305.5	
	Pro9407c280A	Prostate 19	894.5	
	Pro9409C010R	Prostate 20 (prostatitis)	269.7	
	Pro9404C120R	Prostate 21 (prostatitis)	299.2	
10	Pro1000258	Prostate 22 (BPH)	149.6	
	Pro4001263C	Prostate 23 (BPH)	576	
	Pro4001267A	Prostate 24 (BPH)	132.1	
	Pro9411C032	Prostate 25 (BPH)	118.2	
	Pro4001460Z	Prostate 26 (BPH)	276.3	
15	Pro4001271A	Prostate 27 (BPH)	58.7	
	Kid1064D/65D	Kidney 1	0	0.1
	Kid1079D/1080D	Kidney 2	0.3	0.02
	Kid1097D/1098D	Kidney 3	35.14	0.32
	Kid1024D/1025D	Kidney 4	1.31	0
20	Kid1183D/1184D	Kidney 5	24.79	0
	Kid1242D/1243D	Kidney 6	0	0
	Bld469K	Bladder 1		2.88
	Bld467K/468K	Bladder 2	2.65	
	Bld327K/328K	Bladder 3	0	4.05
25	Bld470K	Bladder 4		1.64
	Bld665T/664T	Bladder 5	0.21	1.99

- 37 -

	Bld1496K/1497K	Bladder 6	13.55	1.14
	Bld1721K/1722K	Bladder 7	120.16	1.34
	Tst239X/240X	Testis 1	31.5	0.73
	TstS9820647A/47B	Testis 2	15.7	0
5	TstS9820663A/663B	Testis 3	72	1.4
	SknS9821248A/248B	Skin 1	1.8	0.5
	SknS99448A/448B	Skin 2	251.6	0
	Skn99816A/816B	Skin 3	33	0.7
	Sto4004864A4/B4	Stomach 1	14.12	0
10	Sto4004509A3/B1	Stomach 2	40.74	39
	Smi9807A212A/213A	Small Intestine 1	0.1	0
	Smi9802H008/H009	Small Intestine 2	5.8	0.1
	Cln9608B012/B011	Colon 1	4.5	0
	Cln9709c074ra/073ra	Colon 2	65.8	3.1
15	Cln4004709A1/709B1	Colon 3	1.1	0.9
	Cln9405C199/C200	Colon 4	34.76	0.73
	Cln9707c004gb/006ga	Colon 5	90.26	0.96
	Cln96-09-B004/B003	Colon 6	17.9	20.64
	Cln9612B006/B005	Colon 7	17.56	0.3
20	Cln9705F002D/F001C	Colon 8	21.39	0
	ClnCXGA	Colon 9	429.14	142.69
	Pan10343a	Pancreas 1	0	0
	Pan776P/777P	Pancreas 2	0	0.15
	Pan9210/9220	Pancreas 3	7.36	0
25	Pan714L/715L	Pancreas 4	13.57	0.11
	Pan824P/825P	Pancreas 5	0	0
	Lng476Q/477Q	Lung 1	0	0
	Lng605L/606L	Lung 2	0	0.1
	Lng11145B/11145C	Lung 3	85.9	0

- 38 -

	Lng0008632A/32B	Lung 4	23.85	0
	Lng750C/751C	Lung 5	0.32	0.25
	Lng8890A/8890B	Lung 6	10.63	0
	Lng8926A/8926B	Lung 7	15.37	0
5	Lng0010239A/39B	Lung 8	26.17	0
	Lng9502C109R/110R	Lung 9	0.68	0
	LngS9821944a/44b	Lung 10	0	0
	Mam00042D01/42N01	Mammary Gland 1	8.5	0
	Mam59XC	Mammary Gland 2	61.07	0
10	Mam9706A066G/67C	Mammary Gland 3	4.84	0
	Mam14153a1C	Mammary Gland 4	9.72	6.99
	Mam1620F/1621F	Mammary Gland 5	0.91	0
	Mam00014D05	Mammary Gland 6	2.45	0
	End10479B/D	Endometrium 1	133.43	1.12
15	End9705A125A/126A	Endometrium 2	0	0.39
	End9704C281A/282A	Endometrium 3	23.5	1.56
	End680o97/681o97	Endometrium 4	88.89	79.02
	Utr13590/13580	Uterus 1	0.2	0
	Utr850U/851U	Uterus 2	0	0
20	Utr14170/14180	Uterus 3	14	0.4
	Utr233U96/234U96	Uterus 4	8.65	4.64
	CvxVNM00052D01/52N01	Cervix 1	0.82	77.15
	CvxVNM00083D01/83N01	Cervix 2	0.78	221.48
	CvxND00023D01/23N01	Cervix 3	3.25	15.22
25	Ovr10370/10380	Ovary 1	0.1	0
	Ovr10050	Ovary 2	18.96	
	Ovr1028	Ovary 3	0	
	Ovr14638A1C	Ovary 4	3.2	
	Ovr14603A1D	Ovary 5	882.3	
30	Ovr7730	Ovary 6	0	

- 39 -

Ovr9702C018GA	Ovary 7		0.15
Ovr206I	Ovary 8		0
Ovr9702C020GA	Ovary 9		0
Ovr9702C025GA	Ovary 10		0
5 Ovr9701C035GA	Ovary 11		0.07
Ovr9701C050GB	Ovary 12		0.58

0 = Negative

In the analysis of matching samples, the higher levels of expression were in prostate, showing a high degree of 10 tissue specificity for prostate tissue. In addition to the higher expression levels in prostate cancer samples, Pro113 expression was found to be either induced (where not expressed in normal adjacent tissues) or somewhat upregulated in several other cancers. However, the relative expression and the fold 15 increase in prostate cancer samples far exceeds that in other cancer tissues and is highly significant.

Furthermore, the levels of mRNA expression in cancer samples and the isogenic normal adjacent tissue from the same individual were compared. This comparison provides an 20 indication of specificity for the cancer (e.g. higher levels of mRNA expression in the cancer sample compared to the normal adjacent). Table 12 shows overexpression of Pro113 in 13 out of 16 primary prostate cancer tissues compared with their respective normal adjacent (prostate samples 2, 3, 4, 5, 6 7, 25 8, 9, 10, 11, 13, 14, 16). Thus, there was overexpression in the cancer tissue for 81.25% of the prostate matching samples tested. The median for the level of expression in prostate cancer tissue samples is 609, whereas the median for all other cancers is only 7.93, with the exception of one colon sample, 30 colon 9, whose expression was similar to that found in prostate cancer tissues.

Altogether, the high level of tissue specificity, plus the mRNA overexpression in 81.25% of the primary prostate matching samples tested are indicative of Pro113 being a

- 40 -

diagnostic marker for prostate cancer. Expression was also found to be higher in other cancer tissues compared with their respective normal adjacent tissues (kidney, bladder, testis, skin, stomach, small intestine, colon, pancreas, lung, 5 mammary, endometrium, uterus, and ovary) thus indicating Prol13 to be a pan cancer marker.

Expression of Clone ID 1810463H1 (Prol14):

For the CSG Prol14, real-time quantitative PCR was performed using the following primers:

10 Forward Primer

5' - TGGGCATCTGGGTGTC - 3' (SEQ ID NO:33)

Reverse Primer

5' - CGGCTGCGATGAGGAAGTA - 3' (SEQ ID NO:34)

The absolute numbers depicted in Table 13 are relative 15 levels of expression of the CSG Prol14 in 12 normal different tissues. All the values are compared to normal muscle (calibrator). These RNA samples are commercially available pools, originated by pooling samples of a particular tissue from different individuals.

20 **Table 13: Relative Levels of CSG Prol14 Expression in Pooled Samples**

Tissue	NORMAL
Brain	9.7
Heart	0.7
Kidney	414.4
Liver	4
Lung	882.2
Mammary	44
Muscle	1
Prostate	1951
Small Intestine	22
Testis	367.1
Thymus	25.8
Uterus	139.6

35 The relative levels of expression in Table 13 show that Prol14 mRNA expression is higher (1951) in prostate compared with all the other normal tissues analyzed. Lung, with a relative

- 41 -

expression level of 882.2, kidney 414.4, testis 367.1 and uterus 139.6, are the other tissues expressing higher levels of mRNA for Pro114. These results establish Pro114 mRNA expression to be more specific for prostate than other tissues
5 examined.

The high level of tissue specificity is indicative of Pro114 being a diagnostic marker for diseases of the prostate, especially cancer.

Expression of Clone ID zr65g11 (Pro118):

10 For the CSG Pro118, real-time quantitative PCR was performed using the following primers:

Forward Primer

5' - GCCCATCTCCTGCTTCTTAGT - 3' (SEQ ID NO:35)

Reverse Primer

15 5' - CGTGGAGATGGCTCTGATGTA - 3' (SEQ ID NO:36)

The absolute numbers depicted in Table 14 are relative levels of expression of the CSG Pro118 in 12 normal different tissues. All the values are compared to normal kidney (calibrator). These RNA samples are commercially available
20 pools, originated by pooling samples of a particular tissue from different individuals.

Table 14: Relative Levels of CSG Pro118 Expression in Pooled Samples

	Tissue	NORMAL
25	Colon	0.87
	Endometrium	19282
	Kidney	1
	Liver	0
	Ovary	86.22
30	Pancreas	0
	Prostate	962.1
	Small Intestine	0
	Spleen	0.75
	Stomach	0.54
35	Testis	343.7
	Uterus	1064

- 42 -

The relative levels of expression in Table 14 show that Pro118 mRNA expression is the 3rd highest in prostate (962.1) next to endometrium (19282) and uterus (1064), which are female-specific tissues. Testis, with a relative expression level of 343.7 is the only other male tissue expressing moderate levels of mRNA for Pro118. These results establish Pro118 mRNA expression to be highly specific for reproductive tissues including the prostate.

The absolute numbers in Table 14 were obtained analyzing 10 pools of samples of a particular tissue from different individuals. They cannot be compared to the absolute numbers originated from RNA obtained from tissue samples of a single individual in Table 15.

The absolute numbers depicted in Table 15 are relative 15 levels of expression of Pro118 in 59 pairs of matching and 21 unmatched samples. All the values are compared to normal kidney (calibrator). A matching pair is formed by mRNA from the cancer sample for a particular tissue and mRNA from the normal adjacent sample for that same tissue from the same 20 individual.

Table 15: Relative Levels of CSG Pro118 Expression in Individual Samples

Sample ID	Tissue	Cancer	Matching Normal Adjacent
Pro12B	Prostate 1	41700.7	22242.83
ProC234	Prostate 2	40087	
Pro78XB	Prostate 3	4075.6	7066.7
Pro109XB	Prostate 4	334.4	777.2
Pro84XB	Prostate 5	11684	58290
Pro101XB	Prostate 6	21474.13	100720.8
Pro91X	Prostate 7	14849	33717
Pro13XB	Prostate 8	202.57	146.91

- 43 -

	ProC215	Prostate 9	73243	
	Pro125XB	Prostate 10	629.6	521.4
	Pro23B	Prostate 11	157532.6	110654.4
	Pro90XB	Prostate 12	2317	64134
5	ProC280	Prostate 13	42020	
	Pro20XB	Prostate 14	2909.31	
	Pro34B	Prostate 15	29610	23264
	Pro110	Prostate 16	13354	30991
	Pro65XB	Prostate 17	10126	11270
10	Pro69XB	Prostate 18		2671.42
	Pro326	Prostate 19	9962.3	19231
	Pro10R	Prostate 20 (prostatitis)	27355	
	Pro20R	Prostate 21 (prostatitis)	21081	
	Pro258	Prostate 22 (BPH)	79916.32	
15	Pro263C	Prostate 23 (BPH)	108924.5	
	Pro267A	Prostate 24 (BPH)	92910.22	
	Pro271A	Prostate 25 (BPH)	57004.4	
	Pro460Z	Prostate 26 (BPH)	57449.23	
	ProC032	Prostate 27 (BPH)	45781.44	
20	Kid106XD	Kidney 1	3.08	217.36
	Kid107XD	Kidney 2	0	38.36
	Kid109XD	Kidney 3	0	123.5
	Kid10XD	Kidney 4	17.69	67.8
	Kid11XD	Kidney 5	16.74	360.8
25	Kid124D	Kidney 6	0	167.4
	Bld32XK	Bladder 1	0	0
	Bld47K	Bladder 2		36.38
	Bld66X	Bladder 3	0	4.52
	BldTR14	Bladder 4	0	12.17

- 44 -

	BldTR17	Bladder 5	0	0
	Bld46XK	Bladder 6	16.5	0
	Tst39X	Testis 1	116.6	24.35
	Tst647T	Testis 2	856.16	43.5
5	StoAC44	Stomach 1	0	0
	StoAC93	Stomach 2	0	0
	SmI21XA	Small Intestine 1	68.45	0
	SmIH89	Small Intestine 2	0	0
	ClnAC19	Colon 1	149	21.33
10	ClnAS12	Colon 2	0	0
	ClnB34	Colon 3	0	0
	ClnB56	Colon 4	13.04	5.22
	ClnAS43	Colon 5	0	0
	Lng47XQ	Lung 1	0	0
15	Lng60XL	Lung 2	0	0
	Lng75XC	Lung 3	0	3.38
	Lng90X	Lung 4	0	0
	LngBR26	Lung 5	0	26.82
	Pan10343	Pancreas 1	50.47	0
20	Pan77X	Pancreas 2	281.1	0
	Pan92X	Pancreas 3	18.41	0
	Pan71XL	Pancreas 4	0	0
	Pan82XP	Pancreas 5	0	0
	PanC044	Pancreas 6	0	0
25	Mam12X	Mammary Gland 1	0	0
	Mam162X	Mammary Gland 2	0	0
	Mam42DN	Mammary Gland 3	0	0
	MamS127	Mammary Gland 4	12.58	0
	Mam14DN	Mammary Gland 5	0	0
30	End28XA	Endometrium 1	331.9	1824

- 45 -

	End3AX	Endometrium 2	27825	65839
	End4XA	Endometrium 3	10.3	15935
	Utr141O	Uterus 1	18885	18116
	Utr23XU	Uterus 2	3358	7674
5	CvxKS52	Cervix 1	0	0
	CvxKS83	Cervix 2	0	0
	Ovr10050	Ovary 1	72.86	
	Ovr1028	Ovary 2	0	
	Ovr638A	Ovary 3	0	
10	Ovr63A	Ovary 4	90.88	
	Ovr773O	Ovary 5	1.21	
	Ovr1040O	Ovary 6	5.08	
	Ovr105O	Ovary 7	0	
	Ovr1118	Ovary 8	7.41	
15	Ovr103X	Ovary 9		32.78
	Ovr20GA	Ovary 10		0
	Ovr25GA	Ovary 11		1173.83
	Ovr35GA	Ovary 12		313.4
	Ovr50GB	Ovary 13		823.1
20	Ovr18GA	Ovary 14		40.6
	Ovr206I	Ovary 15		1264
	Ovr230A	Ovary 16		1285

0 = Negative

In the analysis of matching samples, the higher levels of expression were in prostate, endometrium, testis, and ovary showing a high degree of tissue specificity for reproductive tissues. These results confirmed the tissue specificity results obtained with the panel of normal pooled samples (Table 14).

Furthermore, the levels of mRNA expression in cancer samples and the isogenic normal adjacent tissue from the same individual were compared. This comparison provides an

- 46 -

indication of specificity for the cancer (e.g. higher levels of mRNA expression in the cancer sample compared to the normal adjacent). Table 15 shows overexpression of Pro118 in 5 out of 14 primary prostate cancer tissues (prostate samples 1, 8, 5 10, 11, 15) compared with their respective normal adjacent. Thus, there was overexpression in the cancer tissue for 35.71% of the prostate matching samples tested (total of 14 prostate matching samples). Expression of Pro118 was similarly higher in 3 unmatched cancer tissues (prostate samples 9, 13, 14), 10 2 prostatitis (prostate samples 20, 21), and 6 benign hyperplasia tissues (prostate samples 22 through 27).

Altogether, the high level of tissue specificity, plus the mRNA overexpression in 35.71% of the primary prostate matching samples tested are indicative of Pro118 being a 15 diagnostic marker for prostate cancer.

- 47 -

What is claimed is:

1. A method for diagnosing the presence of prostate cancer in a patient comprising:

(a) determining levels of CSG in cells, tissues or bodily fluids in a patient; and

(b) comparing the determined levels of CSG with levels of CSG in cells, tissues or bodily fluids from a normal human control, wherein a change in determined levels of CSG in said patient versus normal human control is associated with the presence of prostate cancer.

2. A method of diagnosing metastases of prostate cancer in a patient comprising:

(a) identifying a patient having prostate cancer that is not known to have metastasized;

15 (b) determining CSG levels in a sample of cells, tissues, or bodily fluid from said patient; and

(c) comparing the determined CSG levels with levels of CSG in cells, tissue, or bodily fluid of a normal human control, wherein an increase in determined CSG levels in the patient versus the normal human control is associated with a cancer which has metastasized.

3. A method of staging prostate cancer in a patient having prostate cancer comprising:

(a) identifying a patient having prostate cancer;

25 (b) determining CSG levels in a sample of cells, tissue, or bodily fluid from said patient; and

(c) comparing determined CSG levels with levels of CSG in cells, tissues, or bodily fluid of a normal human control, wherein an increase in determined CSG levels in said patient versus the normal human control is associated with a cancer which is progressing and a decrease in the determined CSG levels is associated with a cancer which is regressing or in remission.

- 48 -

4. A method of monitoring prostate cancer in a patient for the onset of metastasis comprising:
 - (a) identifying a patient having prostate cancer that is not known to have metastasized;
 - 5 (b) periodically determining levels of CSG in samples of cells, tissues, or bodily fluid from said patient; and
 - (c) comparing the periodically determined CSG levels with levels of CSG in cells, tissues, or bodily fluid of a normal human control, wherein an increase in any one of the 10 periodically determined CSG levels in the patient versus the normal human control is associated with a cancer which has metastasized.
5. A method of monitoring a change in stage of prostate cancer in a patient comprising:
 - 15 (a) identifying a patient having prostate cancer;
 - (b) periodically determining levels of CSG in cells, tissues, or bodily fluid from said patient; and
 - (c) comparing the periodically determined CSG levels with levels of CSG in cells, tissues, or bodily fluid of a normal 20 human control, wherein an increase in any one of the periodically determined CSG levels in the patient versus the normal human control is associated with a cancer which is progressing in stage and a decrease is associated with a cancer which is regressing in stage or in remission.
- 25 6. A method of identifying potential therapeutic agents for use in imaging and treating prostate cancer comprising screening molecules for an ability to bind to CSG wherein the ability of a molecule to bind to CSG is indicative of the molecule being useful in imaging and treating prostate cancer.
- 30 7. The method of claim 1, 2, 3, 4, 5 or 6 wherein the CSG comprises SEQ ID NO:1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,

- 49 -

13, 14, 15, 16, 17, 18, 19 or 20 or a polypeptide encoded thereby.

8. An antibody which specifically binds CSG.

9. A method of imaging prostate cancer in a patient
5 comprising administering to the patient an antibody of claim
8.

10. The method of claim 9 wherein said antibody is labeled with paramagnetic ions or a radioisotope.

11. A method of treating prostate cancer in a patient
10 comprising administering to the patient an antibody of claim
7.

12. The method of claim 11 wherein the antibody is conjugated to a cytotoxic agent.

SEQUENCE LISTING

<110> Salceda, Susana
Recipon, Herve
Cafferkey, Robert
diaDexus, LLC

<120> Method of Diagnosing, Monitoring, Staging, Imaging and Treating Prostate Cancer

<130> DEX-0052

<140>

<141>

<150> 60/104,737
<151> 1998-10-19

<160> 36

<170> PatentIn Ver. 2.0

<210> 1
<211> 188
<212> DNA
<213> Homo sapiens

<400> 1
ggtaaacacc tgctttatc atcagaacaa agaggctgtg tcccctgcc tatgaggtcc 60
atttctgaga gttgtggcta atgggcaaga aggttggggc tttagagatt tggataaag 120
atatacaaaca ccáagaaaggt agaaaagaagt gatcagatta gggttactta ggtgatgata 180
tgaactct 188

<210> 2
<211> 9819
<212> DNA
<213> Homo sapiens

<400> 2
cagctgggt ctacccaggt ccatgtcttg gacatgttga gagttttct ggaaggcagg 60
gatacagtgt ggtccaaaaa cacacaaatg cccctactgg cccaggggtt gtcacaatag 120
actggaaaggg tgacacatcc cagcgcttg ccacccatca cacgcacctc ctacccactg 180
gcatccttcc accccaggca cacacaaagc ctcagtcag agatcaactc tggactcagc 240
tctgaatttg catatcctgt gttagattc attcttcata acctctgcc agcctagctt 300
gtgtatcatt ttttttctc tattagggga ggagccccgtc ctggcactcc cattggcctg 360
tagattcacc tccccctgggc agggccccag gacccagat aatatctgtg cctcctgcc 420
agaaccctcc aagcagacac aatggtaaga atgggtccctg tcctgctgtc tctgctgctg 480
cttctgggtc ctgctgtccc ccaggagaac caagatggtg agtggggaaa gcaaggatg 540

gggtgcggag aggactggaa ggaggtgagg aacaggacat gtggctggga gacaggctgg 600
atgcagctgg gataccctgg catacggcag gaatgggtgc ccaaggctgt caactccctc 660
agctcacaca ctccaggag cattcagggc gcctctgcgc tggcccgaaa taagaccttc 720
agaatctga atctaaaacc cctagttac agtaaaaca aagactccaa agaccaagcg 780
acctgcttgg gtagacagt caggacggag taggaaccat atgcctggag ctgcttctgc 840
tcctgttccc tcctcccttc cgatggctgg gtacacctgc ctgacgctga ggaaaagaga 900
gagcagcccc aaggggaaag tggaaaggca ggttgctgg agggatggc ctagaaggaa 960
acccgtgccc aaatcccaca ctcagacacc actgcagtgg gtctggagg cgagtggctg 1020
gaagagaaga gagtgggagc tccggagat caagagtcac tcctaggata agggaaaggag 1080
gctgtttgtg gcatgagaat gtgcaggata aagacatggc agcgaatggc ttctcagttg 1140
tgtgagttta aaattcatga catttacaaa ttgtcagaaa aggtgttata tggtgttat 1200
ataacaatca ctttggatg ttaatctgtat tctgtccaa aatctgaatt actcagggtt 1260
ctccagagaa acagaactaa taggtggtagc acatatacat atatatgtac gtacacatac 1320
atacatacac tgatatacaca tggatacaca cacacatagg aagagattha catatatgtta 1380
tacaaaagag agagagagta gagatttatt ttaagaaatt gactcacact attgggagga 1440
gtaacaagtc ctaaatcttc agagccggcc agcaggctgg agacccaggg aagagttgt 1500
gtcttagtct tgattccaag ggcagactgt aggcagaatt ctttcctt tagggacat 1560
ctgaggctt ttcttctaag gccttcaact gattggatga agcccaccac tatggagagt 1620
aatccacttt actcaagggtc tactgattt tttgtaaaatt aaaaaaaaaa ctgtgggtgc 1680
atagtatgtg tatataatcta tgggttacat gagagggtttt gattcaggca tgcaatgtga 1740
aataatcaca tcataaaaaa tgaggtatcc atcccttcaa gcttttacg tttgtgttac 1800
agacaatcca attataacttt ttgggttatt ttagttttta aaagtatttg attattttt 1860
tattttatca ttttgagac agagtctcac tctgtcaccc aggcaggagt gcagtggcat 1920
gatctggct cactgcaacc tccgcctccc aggttcaagc aattttctg ccteagtc 1980
ctgagtagct aggactacag gcacctgcca ccacacccctgg ctaatttttt tgatattttt 2040
gtagagacgg tttcatcatg ttggccaggc tagtcttgc atcctgaccc cgtgatctgc 2100
ccgccttggc ctcccaaagt gcccggattt caggtgtcag caactgcgcc tggccctct 2160
tttggttatt taaaagtgtt caattttttt atgatttata ttatttttt tgagatggat 2220
tcttggcttgc tcacccaggc tggagtgcag tggcgtgatc ttggcttact gcaaacctcc 2280
gcctgttggg ttcaagcaat tatcttgcct cgggtgtaca ctgccacaca cggcttaactt 2340
atgtatTTT aatagagata gggtttccacc atgttggctt gactggctt gaccccttga 2400
cctcaagtga tccactcaact tcagcctccc agagtgcctgg aattacaggc acgagccacc 2460
acacctggcc ccagttaaat tattattgac tatagtcacc ctgttgcgt atcaaataagt 2520
aggctttatt catttttctt tttttttttt tttttgtgac agagttgccc aggctggaaat 2580
gcagtgggtc aatcttggct cactgcaacc tctgcctccc gggcttaagc gattcttgc 2640
cctcagcctt ctgagtcgcgt gggactacag gtgttgcac ccacgcggc ctaattttatg 2700
tatttttagt agagatgggg ttccaccatg ttggccaggc tggtttgcac ctcctgaccc 2760
caagtgcaccc acctgcctca gcttccaaaa gtgttggaaat tacaggcatg agccaccaca 2820
cctggccccc gttaaatttat tatttactgg agtcaactttt tggtgtatc aaatagttt 2880
ctaactatTTT tttttgtacc cattaaccac cctcccaatt tccccccaaac cctgcctacta 2940
cccttcccaag cctttggtaa ccattccctt actctctatg tccatgaatt caattttagg 3000
gtctactgat taaaaggctt atcacattta gacactcagg agcaagaata attttagtaa 3060
ttgaactagg attctgcctt atgacccatc acatcattag cacctgtgtt aattgtatca 3120
taaaataattt atgaaactat tatggaaatg tccctctctc ccagatccca cttgttacca 3180
aaatgcacagg tacaaccccg ggaattctga gctccatccct agtcttaccc tggcttaatt 3240
cagtctgggt catttcttgc attttctgtt aaattctctt ttctaccctt tctactata 3300
tgtatTTGTC aggttaagct agaagtgttta atttttttt tttttgagat ggagccttgc 3360
tttgcaccc aggttgcgtt gcaactggcat gatctcagct cactgcaagc tccgcctccc 3420

gggttcatgc cattctccctg cctcagccctc ctgagtagct gggactacag gcacccgcca 3480
ccatgcttgg ctaattttt gaattttag tagagacggg gtttaccat gttagccagg 3540
atggtctcgat tctccctgacc tcgtatcca cccgcctcg ggccctaaag tgctgggatt 3600
acaggcgtga gccactgagc ccggacgaaa ttgttattt gtttttttga gacggagtct 3660
caactgtca tccaagctgg agtgcagtgg catgatctt gcttggcga acctctgcct 3720
ctctggttca agtgattttc ctgcctcagc ctccagcatg actgggatta cagggccgca 3780
ccaccatgcc cagctaattt ttgttatttt taatagagat ggggttccac catgttggcc 3840
aggctggtct tcaactcctg atctcaagta atctgcctgc cttggccccc caaagtctcg 3900
ggattacagg catgagccac ggagccccc ctagaaaatgt taatttctaa cgcatgtcag 3960
attccatgca cactgggcaa ggttccatc ctccatgggg tgactcaggg atccaggcca 4020
attgcataattt gagactctt catattatcc tggcccttc aaagtcgtca cctctaggga 4080
tgagaaacaa aaggggaaagc cagctggtag ggtcttggac aagaagaaaag acatcacttc 4140
tgctcacatt ctctttgac aaaactcagt cacatggtcc caatatatct tggaggtggc 4200
tgagtaatgt tatcttcata tgggtcaagc agaggaaaata atgtagtgaa gacacaggat 4260
ggtctctgaa atatcatctc aggcatgaaa gtagagcata ttcactttag tgagcctcca 4320
gtgggtgtgaa gttgatggca ggagaaaagag ctggggaaaga aaaggccagt ggcaggtctc 4380
ccctcttagc cctatgcagc cccacagtgg gacccttgca tggacctcaa ccatcagaat 4440
cttttctttt gcaaggctgtt actctctgac ctatatctac actgggctgtt ccaagcatgt 4500
tgaagacgtc cccgcgtttc aggcccttgg ctcaactaat gacctccagt tcttagata 4560
caacagtaaa gacaggaagt ctcagccat gggactctgg agacagggtgg aaggaatgga 4620
ggatttggaaag caggacagcc aacttcagaa ggccagggag gacatctta tggagaccct 4680
gaaagacatt gttggagtatt acaacgcacag taacggttag tgaataacag accacagggg 4740
tggaaaggctt aacccaagag gcagcccccc cagttgttagt ggcaagggat cagcaggatgt 4800
gaaatagtcc caatcccagg ggaagaacag gagacacagc agaaacacag acatgtccgc 4860
atccccaccca ccccacagca caggtgtcc cccgttcccc atcaatttgc ccatctccat 4920
cccagccctc aggtcacaca ggaagtgtat gcagagtca cttcttatcca ggcacctatg 4980
acctctcacc tccacaccccc acccatcgga ggctgtatacc cccgtgagaa ggcatacagac 5040
tcacccctgt ccagggaggt tgcctggaga gtgagccact ctcaaaagtca ctcagacccctg 5100
ggctcacctg gtgggtctgc cagttcttagc tggtagact gaaacgttcc caaaatatct 5160
ggttgaaatc tgccaaacatt ggagcactga gacctacctc caaacaagtc tggtaatattt 5220
aactatgtct gtttatgaa ggtatgtcaca gtctgtctt atctccctt cagtcctcatt 5280
accttagcaca gggtagcagcc aatattggct caattgaaat ttgtggaaatc cacagagaaa 5340
agcaccggc acacaccgtc gcccgtctc ggggtctcagg aagtgttggg ttcaaaactg 5400
tgggtgttta gagttcttgg gagccctaaa gttctccctt accatacgt gcagacccag 5460
gaagggccac ctgcgtatg gtcagaggag ctgggtggcag agcccggtc gagatggtcc 5520
ctgtcccccc gcccgtgtc tctttctctt aaaccacact gccagccccca aggcagccaa 5580
cctcaggctt ggtgaactgc tgggtttaaa ttatcataga gtgggtgtca aaagatgggc 5640
tactaagtac aaaaatgccc aagggtctac atgggatctg aagatttca aaaggaggca 5700
agaaagagat aggcatgtt ttcaggatg tgggggtgggg gaggtcttgg taaggaaaaat 5760
ggcccaggct gtgtgtcagc aataggagag gagggggcac aggtgtatcag aaaagacact 5820
ggggggaaagca ttgtatggaca ggaatagaaa tggcaagtg gataattaag aggaaggagg 5880
atgaggagat gaacacaggg tattagaaaa taatagaagg cagggtttgg tggctactc 5940
ttgtatccc agcactttgg gaggctgagg caggcagatc acctaagggtc aggagttcga 6000
gaccagcccg gccaacatgg tgaaaaccctg tctctactaa taataaaaaa atagcctggc 6060
atggtggcac acgtctgtgg tcccagctac tcaggaggct gaggcaggag aattgcttga 6120
acccaggagg cagagggtac agtggccaaa atcctaccat tgcaactacag cctgggtgac 6180
aagagtggaaa cgttgtctaa aaacaaaaaaa caaaaaacaa aaaaaggaaa taatagttagc 6240
tgacattac tgagcactta ctttggccca ggccttctca tgagcatata taatgtctc 6300

aatacgcccc taaaacagtg ctcttggcat tgccattca gaggtgagga aatagaggca 6360
 cagggagttt agtggctcca gttcaggcaa cacaccagg tgggggtgggg ggctggggag 6420
 agacctggaa cgtgagccaa gacagcttga gagcttcag agtctatgcc aacagcacca 6480
 accagtgcgt ggttaaacacc tgcttttatac atcagaacaa agaggctgtg tcccctgccc 6540
 tatgaggtcc atttctgaga gttgtggcta atggcaaga aggttggggc tttagagatt 6600
 tgggataaaag atatcaaaca ccagaaaaggt agaaaagaagt gatcagatta gggttactta 6660
 ggtgtatgata tgaactcttc ctagaactga gagaaaaaga gagccttcct ttactcatat 6720
 gaaatcacaa ataattcta tccaatttg aagtacactt tggtgttagtt gtgacagctt 6780
 cctcaggact cagcataaat tcaaacaat aattgtcctt agaagagatg ctatagaaga 6840
 gatagaata tattcatatt ctgtagctt tttttttt agatggagtt ttgctttgt 6900
 cacccaaagct ggagtgcagt gatgcaatct cagctcactg caaactttgc ctccctgggt 6960
 caagggattc tcctgcctca gcctcccgat aactggact acaggtaca ggcatgtgtc 7020
 actactcctg gttaaattttt tttttttttt tttaagactg agtcttgc tgcctttcag 7080
 gctgtatgtac aatggctcca tctcggctca ctacaacttc tgcctccctag gttcaagcga 7140
 ttctcctgc tcagcctcat gagtagctgg gattacaggc atgtgccagc acacccagca 7200
 aattttgtta ttttttagtag agatgaggctt ttaccatgtt ggccaggctg gtctcaaact 7260
 cctgacctca ggtgatcctt tggcctcagc ctcccttaact gctgggatta caggcatgag 7320
 ccactgcgtc cagcctaatt ttatattttt ggttagagat gggtttcacc atattggcca 7380
 ggctggtctc gaactcatga cctaaaggta tccatccctc tcagcctctc aaagtgcgtt 7440
 gattacaagt gtgagccact gggcctgggtt tttttttttt tttttttttt 7500
 tgagataggg ttcactctg tcacccaggg taaaatgcag tagtgtgatt ttggctcatt 7560
 gcagccttga ctcccaggc tgaagtgatc ctcacccaccc agcctcctga gtagctgggg 7620
 ctacaggcat gcaccaccat gctgcgttaa tttttatatt ttttttagtg gtgggatttc 7680
 gccatatcac cctggctggt ctggaaacccc tgggctcaag cgatccactc gcttcagctt 7740
 ctcaaaagtgc tgggattaca ggcattgagcc acagcgcctt ggctgttagct ctcttaagga 7800
 ggaacatatac tcatctgaga caaacctgaa atgcctaaacc aaactgagtt agccctctc 7860
 tgtctgttgt atatatttggaa gtaataaccc atttgtctt gtaataaccc tgcattgtttt 7920
 aattgcaaaa accttttattt cttttgggtt gcccaatgtg caagactaag agttattttt 7980
 ataaaatttct caccaggctg actgtctctc tgcgggttcg ggggagttt cagggtctca 8040
 cgtattgcag ggaagggtttt gttgtgagat cgagaataac agaagcagcg gaggattctg 8100
 gaaatattac tatgatggaa aggactacat tgaattcaac aaagaatcc cagcctgggt 8160
 ccccttcgac ccagcagccc agataacca gcaaaaggta gaggcagaac cagtctacgt 8220
 gcagcgggccc aaggcttacc tggaggagga gtgcctgcg actctgcggaa aatacctgaa 8280
 atacagcaaa aatatccctgg accggcaagg tactcactgc ttcctgctcc ccagtactga 8340
 gcccagaata aaagacgatc tcaggctagg agtcaggca acatcttagt ccggtctcat 8400
 ctgttcctgg atgtccctca gaccccccagc tttcatctt taggatttat tccttcctg 8460
 ggataatata atttgtggtc caaaaagaac atcatcaaaa tttcaggcag aatggggccag 8520
 gaaggccatt ctttcttgat gagtgcccc aaatcatctc caattaacag acaaggagct 8580
 tgaggttagg gaggtgaggg taacactgtc tgtaagaggc agagctggga ctcaattcc 8640
 agatttcaga ttccaaatcc catcgaaaa tatctctaca atgatgcctc ccattctgggt 8700
 ggtggagaga agggaggcggt gtaaaaagtca gccccagaag gacaagagca agccagtg 8760
 agcggaaattt atggctgcaa gctgagactt ggattggaga cgttagtgaga ctgcaggattt 8820
 tgcagtgcgt cagggaaatgt gttgtggat agaggcatgg gctgaacccaa gcagctggac 8880
 tgagacttggg ggacagaact ccaaagccca ctgagatgtg ggaaaacatg gagaagcaca 8940
 cggagcattc acaacttattt gccgtcagag tcaatacatg ggtgaggtgg ggattggca 9000
 agaggaaag cgtcagcctt ccctgatattt ctggaaatgc tcccgccctt ggggggtgggc 9060
 aggtacagag ctgcagcctc tgctgatgc tgacatccag gggtgggggtt aggaagagac 9120
 ctggggccggg agaagtccac ctcaagcctg cagtgtcaca ctctatccctt ccacagatcc 9180

tccctctgtg gtggcacca gccaccaggc cccaggagaa aagaagaaac tgaagtgcct 9240
ggcctacgac ttctacccag gaaaaattga tgtgcactgg actcgccccg gcgagggtgca 9300
ggagcctgag ttacggggag atgttcttca caatgaaat ggcacttacc agtcctgggt 9360
ggtgggtggca gtccccccgc aggacacagc cccctactcc tgccacgtgc agcacagcag 9420
cctggcccag cccctcgtgg tgccctggga ggccagctag gaagcaaggg ttggaggcaa 9480
tgtggatct cagacccagt agctgccctt cctgcctgat gtggagctg aaccacagaa 9540
atcacagtca atggatccac aaggcctgag gagcagtgtg gggggacaga caggaggtgg 9600
atttggagac cgaagactgg gatgcctgat ttgagtagac ttggacccaa aaaatcatct 9660
caccttgagc ccaccccccac cccattgtct aatctgtaga agctaataaa taatcatccc 9720
tccttgccct a cataacaga gaatcccttt ttaacggtg atgcgctgta gaaatgtgac 9780
tagatttct cattggttct gccctcaagc actgaattc 9819

<210> 3

<211> 250

<212> DNA

<213> Homo sapiens

<400> 3

cgcacctgct cggccgagcc agctgccaga atgccaact ggggaggagg caagaaatgt 60
gggggtgtgtc agaagacggt ttactttgcc gaagaggttc agtgcgaagg caacagcttc 120
cataaatctt gtttctgtg catggtctgc aagaagaatc tggacagtac cactgtggcc 180
gtgcattggtg aggagattt ctgcaagtcc tgctacggca agaagtatgg gcccaaaggc 240
tatggctacg 250

<210> 4

<211> 1900

<212> DNA

<213> Homo sapiens

<220>

<221> unsure

<222> (16)

<220>

<221> unsure

<222> (18)

<220>

<221> unsure

<222> (20)

<220>

<221> unsure

<222> (1887)

<220>

<221> unsure

<222> (1894)

<400> 4

acgccttccg cggagnanan caaaacggcg cgcaaggccgg ggcacccag ccgccacttc 60
 cgagagcgc tgccgccccct ggcccggccg agccagctgc cagaatgccc aactggggag 120
 gaggcaagaa atgtggggtg tgtcaagaag acggtttact ttggccgaaga ggttcagtgc 180
 gaaggcaaca gcttccataa atccctgcttc ctgtgcatttgg tctgcagaa gaatctggac 240
 agtaccactg tggccgtgc atggtgagga gatttactgg caagtcctg ctacggcaag 300
 aagtatgggc ccaaaggcta tggctacggg ccaggccgca ggcacccctca gcactgacaa 360
 gggggagtgc ctgggtatca agcacgagga agccctggg ccacaggccc accaccaacc 420
 ccaatggcat ccaaatttgc ccagaagatt ggtggctccg agcgtgccc ccgatgcags 480
 caggcagtct atgctgcggg gaaggtgatt ggtgctggg agtccctggca taaggcctgc 540
 ttccatgttgc ccaagtgtgg caaaggccctt gagtcaaccca ccctggccag acaaggatgg 600
 cgagatttac tgcaaggat gttatgctaa aaacttcggg cccaaagggtt ttgggtttgg 660
 gcaaggagct ggggccttgg tccactctga gtgaggccac catcacccac cacaccctgc 720
 ccactcctgc gcttttccat gccattccat tcccagcagc tttggagacc tccaggattta 780
 ttctctgtc agccctgcca catatcaacta atgacttggaa cttggccatc tggctccctt 840
 tgggttgggg gtctgcctga ggtcccaccc cactaaagggtt cttccagggc ctgggatctg 900
 acaccatcac cagtagggaga cctcagtgtt ttgggtcttag gtgagagcag gcccctctcc 960
 ccacacctcg ccccacagag ctctgttctt agcctctgt gctgcgtgtc catcatcagc 1020
 tgaccaagac acctgaggac acatcttggc acccagagga gcagcagcaa caggctggag 1080
 ggagagggaa gcaagaccaa gatgaggagg ggggaaggct ggttttttg gatctcagag 1140
 attctcctct gtggaaaga ggttgagctt cctgggtgtcc ctcagagtaa gcctgaggag 1200
 tcccagctta gggagttcac tattggaggc agagaggcat gcaggcaggg tccttagggc 1260
 ccctgttct ccaggcctct tgcttttag tctttgtgg atggatagcc tcccacttagg 1320
 actgggagga gaataaccca ggtcttaagg accccaaagt caggatgtt gttgatctc 1380
 tcaaacatct agttccctgc ttgatggag gatcctaattt aaatacctga aacatatatt 1440
 ggcattttatc aatggctcaa atcttcattt atctctggcc ttaaccctgg ctccctgaggc 1500
 tgccggccagc agagcccaagg ccaggcctct gttcttgcca cacctgcctt atcctcagat 1560
 gtggagggag gttaggcactg cctcagtctt catccaaaca ccttccctt tgccttgaga 1620
 cctcagaatc ttccctttaa cccaaacccctt tgcctttcc actccaccct tctccaggga 1680
 cccttagatc acatcaactcc acccctgcca ggccccaggt taggaatagt ggtggagga 1740
 aggggaaagg gctgggcctc accgctccca gcaactgaaa ggacaacact atctggagcc 1800
 acccactgaa agggctgcag gcatggctg taccctaaat gatttctcat ctggtcaata 1860
 aagctgttta gaccagaaaa aaaaaanaaa aaanaaaaagg 1900

<210> 5

<211> 273

<212> DNA

<213> Homo sapiens

<400> 5

gatgcataa aagagctgca agttctccac attgacttct tgaatcagga caacgcccgtt 60
 ttcaccaca catgggagtt ccaaaccgagc agtccctgtgt tccggccgagg acaggtgttt 120
 cacctgcggc tgggtctgaa ccagccctta caatcctacc accaactgaa actggaaattc 180
 agcacaggcc cgaatccttag catcgccaaa cacaccctgg tgggtctcga cccgaggacg 240
 ccctcagacc actacaactg gcaggcaacc ctt 273

<210> 6

<211> 3021
 <212> DNA
 <213> Homo sapiens

<400> 6

tgtggaaagca ccaggcatca gagatagagt cttccctggc attgcaggag agaatctgaa 60
 gggatgatgg atgcatcaa agagctgaa gttctccaca ttgacttctt gaatcaggac 120
 aacgccgtt ctcaccacac atgggaggtc caaacgagca gtcctgtgtt ccggcgagga 180
 caggtgtttc acctgeggct ggtgctgaac cagcccctac aatcctatcca ccaactgaaa 240
 ctggattca gcacagggcc gaatcttgc atcgccaaac acaccctggt ggtgctcgac 300
 ccgaggacgc cctcagacca ctacaactgg caggaaccc ttcaaaatga gtctggcaaa 360
 gaggtcacag tggctgtcac cagttcccc aatgcctaccc tgggcaagta ccaactaaac 420
 gtgaaaactg gaaaccacat ccttaagtct gaagaaaaca tcctataacct tctttcaac 480
 ccatggtgta aagaggacat ggtttcatg cctgatgagg acgagcgaa agagtacate 540
 ctcaatgaca cgggctgcca ttacgtggg gctgcccagaa gatatcaatg caaaccctgg 600
 aactttggtc agtttgagaa aaatgtccctg gactgctgca ttccctgct gactgagac 660
 tccctcaagc ccacagatag gagggacccc gtgctgggt gcaaggccat gtgtgctatg 720
 atgagctttg agaaaggcca gggcgtgctc attggaaatt ggactgggaa ctatgaaggt 780
 ggcacagccc catacaagtg gacaggcagt gccccatcc tgcaagcaga ctacaacacg 840
 aagcaggctg tgtgtttgg ccagtgtctt gttttgtctt ggttgcac tacagtgtc 900
 agagcgttgg gcatccccagc acgcagtgtg acaggcttcg attcagctca cgacacagaa 960
 aggaacctca cggtgacac ctatgtgaat gagaatggca agaaaatcac cagtatgacc 1020
 cacgactctg tcttgaattt ccatgtgtgg acggatgcct ggatgaagcg accggatctg 1080
 cccaaaggct acgacggctg gcaggctgtt gacgcaacgc cgcaaggagcg aagccagggt 1140
 gtcttctgtt gttggccatc accactgacc gccatccgca aaggtgacat ctttattgtc 1200
 tatgacacca gattcgtctt ctcagaagtg aatggtaca ggcctatctg gttggtaag 1260
 atggtaatg ggcaggagga gttacacgtt atttcaatgg agaccacaag catggggaaa 1320
 aacatcagca ccaaggcagt gggccaagac aggccggagag atatcaccta tgagtacaag 1380
 tatccagaag gtcctctga ggagaggcag gttcatggat catgccttcc tccttctcag 1440
 ttctgagagg gacacacac gacctgtaaa agagaacttt cttcacatgt cggtacaatc 1500
 agatgatgtg ctgctggaa actctgttaa ttccacccgtt attcttaaaa ggaagaccgc 1560
 tgccctacaatg aatgtcaaca tcttgggctc ctttgaacta cagttgtaca ctggcaagaa 1620
 gatggcaaaa ctgtgtgacc tcaataagac ctcgcagatc caaggtcaag tattcagaagt 1680
 gactctgacc ttggactcca agacctacat caacagcctg gctatattag atgatgagcc 1740
 agttatcaga ggtttcatca ttgcggaaat tggggatctt aaggaaatca tggcctctga 1800
 agtattcacc tctttccagt accctgagtt ctctatagag ttgcctaaca caggcagaat 1860
 tggccagcta cttgtctgca attgtatctt caagaatacc ctggccatcc ctttgactga 1920
 cgtcaagtcc tctttggaaa gcctggcat ctccctacta cagacctctg accatgggtg 1980
 agtctgcctg aggacgggtc agcctggta gaccatccaa tcccaaataa aatgcacccc 2040
 aataaaaatg gacccaagaa atttatcgta aagttaagtt ccaaacaagt gaaagagatt 2100
 aatgctcaga agattgtct catcaccaag tagccttgc tgatgtgtg gagccttagt 2160
 tgagatttca gcatttctt cttgtggct tagctttcag attatggatg attaaatttg 2220
 atgacttata tgagggcaga ttcaagagcc agcaggtaa aaaggccaac acaaccataa 2280
 gcagccagac ccacaaggcc aggtcctgtt ctatcacagg gtcacccctt tttacagtt 2340
 gaaacaccac ccgaggccac agaatccat cccttccctg agtcatggcc tcaaaaatca 2400
 gggccaccat tggctcaatt caaatccata gatttcgaag ccacagatcc tctccctgga 2460
 gcaagcatga ctatggcag cccagtgtctt ccacctgtt acgacccttgg aagactgccc 2520
 atatcttcag gcatgggtt caccagccctt gaaggccatc gtcaactgga gtgtctctc 2580

agcaactggga tgggcctgat agaagtgcata tctccctccta ttgcctccat tctccctct 2640
 ctatccctga aatccaggaa gtccctctcc tggtgctcca agcagtttga agcccaatct 2700
 gcaaggacat ttctcaaggg ccatgtggtt ttgcagacaa ccctgtcctc aggccctgaac 2760
 tcaccataga gaccatgtc agcaaacggt gaccagcaaa tcctcttccc ttattctaaa 2820
 gctgcccctt gggagactcc agggagaagg cattgcttcc tcctgggtgt gaactcttc 2880
 tttggtattc catccactat cctggcaact caaggctgct tctgttaact gaaggctgct 2940
 ccttcttggt ctgcctccta gagatttgc taaatgtca ataagcttta aattaaactc 3000
 tacttcaaga aaaaaaaacc g 3021

<210> 7

<211> 267

<212> DNA

<213> Homo sapiens

<400> 7

gaacatttcca gataacctatc attactcgat gctgttgcata acagcaagat ggctttgaac 60
 tcagggcac caccagctat tggaccttac tatgaaaacc atggataccca accggaaaac 120
 ccctatcccc cacagccccac tgggttcccc actgtctacg aggtgcattcc ggctcagtagc 180
 taccctgtccc ccgtgccccca gtacgccccg agggtcctga cgccaggcttc caaccccgtc 240
 gtctgcacgc agcccaaatac cccatcc 267

<210> 8

<211> 3443

<212> DNA

<213> Homo sapiens

<400> 8

ggccggccggccg ggccgagtag gcgcgagcta agcaggaggc ggaggcggag gcggaggccg 60
 agggggcgcccc agcgccgcct ggagcgccgc aggtcatatt gaacatttcca gataacctatc 120
 attactcgat gctgttgcata acagcaagat ggctttgaac tcagggcac caccagctat 180
 tggaccttac tatgaaaacc atggataccca accggaaaac ccctatcccc cacagccccac 240
 tgggttcccc actgtctacg aggtgcattcc ggctcagtagc taccctgtccc ccgtgccccca 300
 gtacgccccg agggtcctga cgccaggcttc caaccccgtc gtctgcacgc agcccaaatac 360
 cccatccggg acagtgtgca cctcaaagac taagaaagca ctgtgcattca ccttgaccct 420
 ggggaccttc ctcgtggag ctgcgtggc cgctggctta ctctggaaatg tcatggcag 480
 caagtgcctcc aactctggga tagagtgcga ctccctcaggat acctgcattca accccctctaa 540
 ctgggtgtgat ggcgtgtcac actgccccgg cggggaggac gagaatcggt gtgttcgcct 600
 ctacggacca aacttcatcc ttcagggtgta ctcatctcag aggaagtccct ggcaccctgt 660
 gtgccaagac gactgaaacg agaactacgg gcggggcgccc tgccaggaca tgggctataa 720
 gaataattt tactctagcc aaggaatagt ggatgcacgc ggatccacca gctttatgaa 780
 actgaacaca agtgcggca atgtcgatata ctataaaaaa ctgtaccacca gtgtatgcctg 840
 ttcttcaaaa gcagtgggtt cttaacgcgt tataccctgc ggggtcaact tgaactcaag 900
 ccgccagagc aggtacgtgg gcggcgagag cgccgtcccc gggggctggc cctggcagg 960
 tcagccctgca cgtccagaac gtccacgtgt gcggaggctc catcatcacc cccgagtgga 1020
 tcgtgacacgc cgcccaactgc gtggaaaaac ctcttaacaa tccatggcat tggacggcat 1080
 ttgcggggat tttgagacaa tctttcatgt tctatggagc cgatccacca gtagaaaaag 1140
 tgatttctca tccaaattat gactccaaga ccaagaacaa tgacattgcg ctgtatgaac 1200
 tgcagaagcc tctgactttc aacgacccatg tgaaaccatg gtgtctggcc aaccaggca 1260

tgatgctgca gccagaacag ctctgctgga tttccgggtg gggggccacc gaggagaag 1320
 ggaagacctc agaagtgctg aacgctgcca aggtgcttct cattgagaca cagagatgca 1380
 acagcagata tgtctatgac aacctgatca caccagccat gatctgtgcc ggcttcctgc 1440
 agggaaacgt cgattcttc cagggtgaca gtggagggcc tctggtcaact tcgaagaaca 1500
 atatctggtg gctgataggg gatacaagct ggggtctgg ctgtgcacaaa gcttacagac 1560
 caggagtgtc cggaatgtg atggtattca cggactggat ttatcgacaa atgagggcag 1620
 acggctaatac cacatggtct tcgtccttga cgtcgaaaaaaca atggggctgg 1680
 ttttgccttcc ccgtgcatga tttactctta gagatgatcc agaggtcaact tcatttttat 1740
 taaacagtga acttgtctgg ctggcact ctctgccatt ctgtgcaggg tgcaagtggct 1800
 cccctgccc gcctgctc cctaaccctc tgcggcaag gggtgatggc cggctgggtg 1860
 tgggacttgg cggtcaagtg tggaggagag gggtgagggc tgccccattt agatcttctt 1920
 gctgagtcct ttcaggggc caattttggg tgagcatggg gctgtcacct ctcagctgct 1980
 ggtgacttg agataaaaaa ggagagacat ggaaagggag acagccagg ggcacctgca 2040
 ggggctggcct tggggccac ttggtagtgc ccccagccata cctctccaca aggggatttt 2100
 gctgatgggt tcttagagcc ttagcagccc tggatggtgg ccagaaataa agggaccaggc 2160
 ccttcatggg tggtagcgtg gtatcacct tgcgggggaa acagaaacat tttgttctt 2220
 atggggtag aatatacgaca gtgcgggggaa agcaattggaa aaggaacttg 2280
 ccctgagcac tcctggtgca ggtctccacc tgcacattgg gtggggctcc tgggagggag 2340
 actcagcctt cctccatc ctcctgacc ctgctcttag caccctggag agtgcacatg 2400
 cccctggc tggggcagg ggcacccatc tggcaccatg ttggcctt caggcctgct 2460
 agtcactggg aattggggc catgggggaa atcaaggatg ctcaagttaa ggtacactgt 2520
 ttccatgtt tggggatcata cattgttacc tcagtgtcc tggaaactta gcttttgatg 2580
 tctccaaatgtt gtccacccatc atttaactct ttgaaactgt atcatcttgc ccaagtaaga 2640
 gtggtaggcattt attcagctg ctttgcacaaa atgactggct cctgacttta cgttctataa 2700
 atgaatgtgc tgaagcaaa tgcccatggt ggccggcgaag aagagaaaga tgggggggt 2760
 tttggactt ctgtgtccc ttccaaatgtt gtgggttcc aaccagggggaa agggccctt 2820
 ttgcattggc aagtggccata accatgagca ctactctacc atgggtctgc ctccctggcca 2880
 agcaggctgg tttgcacaaa tggaaatgaat gattctacag cttagactta accttgaat 2940
 ggaaagtctt gcaatccat ttgcaggatc cgtctgtca catgctctg tagagagcag 3000
 cattcccagg gaccctggaa acagttggca ctgtaaatgtt cttgcctccc aagacacatc 3060
 ctaaaagggtt ttgtatggt gaaaacgtt tccttcttta ttggcccttc ttatctt 3120
 gaacaaactgt ttgtctttt ttgtatctt tttaaaactgt aaagttcaat tggaaaatg 3180
 aatatcatgc aaataaaatgtt tgcgatctt ttttcaaactgt aaccactgca tctttgaatg 3240
 tctgcctgtt gagtaggacc agcctccatt tccttataag ggggtgtatgt tgaggctgct 3300
 ggtcagagga ccaaagggtga ggcaaggcca gacttggtgc tcctgtgggtt ggtgcctca 3360
 gttccctgcag cctgtctgtt tggagaggtc cctcaaatgtt ctccttta ttattcttatt 3420
 agtctgttcc catggggcgtg ata

3443

<210> 9
 <211> 254
 <212> DNA
 <213> Homo sapiens

<400> 9
 gtgctgcacc aggccaccat cctgcccac agtgggacac tgcggccat ggtacggctc 60
 ctggaggccct cccgtgcattt cgaggtgtca gagaacggca acctggtagt gaggggaaag 120
 gtgtaccatg gggatgaccc tgacccagg ctcttcgacc acccgaaaag ccccccaccc 180
 aacccacgg agccctt cctggccac gctgaagttt acaaggagct gctctgcgt 240

ggctacgact acgg

254

<210> 10
<211> 8470
<212> DNA
<213> Homo sapiens

<220>
<221> unsure
<222> (4131)

<220>
<221> unsure
<222> (5117)

<220>
<221> unsure
<222> (5552)

<400> 10
cgccgcgtca cacggcagcg gccccggcct ccctctccgc cgcgcgttcag cctcccgctc 60
cgccgcgtctc cagcctcgct ctccggccgc cgcaccggcg cccgcgcctt caccagagca 120
gcccattggagg aggtggtgat tgccggcatg tccgggaagc tgccagagtc ggagaacttg 180
caggagttct gggacaaacct catcggegggt gtggacatgg tcaeggacga tgaccgtcgc 240
tggaaaggcgg ggctctacgg cctgccccgg cggtccggca agctgaagga cctgtcttagg 300
tttgatgcct ccttcttcgg agtccacccc aaggcaggcac acacgatggc ccctcagctg 360
cggtcgctgc tggaagtacac ctatgaagcc atcgtggacg gaggcatcaa cccagattca 420
ctcccgaggaa cacacactgg cgctctgggtg ggctgtgagcg gctctgagac ctccggaggcc 480
ctgagccgag acccccgagac actcggtggc tacagcatgg tgggtgtgcca gcgagcgatg 540
atggccaacc ggctctcctt ctttttcgac ttcagagggc ccagcatacg actggacaca 600
gctctgtctt ccagcctgtat ggccctgcag aacgccttacc aggccatcca cagcgggcag 660
tgccctgcgg ccatcggtgg gggcatcaat gtccctgtga agcccaacac ctccgtcag 720
ttcttgagggc tggggatgtc cagcccccgg ggcacctgtca aggcttcga cacagcgggg 780
aatgggtact gcccgtcgg gggtgtggc gcccgtctgc tgaccaagaa gtccctggcc 840
cggcgggtgt acgccaccat cctgaacgccc ggcaccaata cagatggctt caaggagcaa 900
ggcgtgaccc tcccctcagg ggatatccag gagcagctca tccgctcggt gtaccagtcg 960
gccggagtgcc cccctgagtc atttgaatac atcgaagccc acggcacagg caccaagggt 1020
ggcgacccccc aggagctgaa tggcatcacc cgagccctgt ggcgcaccccg ccaggagccg 1080
ctgcgtcatcg gctccacccaa gtccaaacatg gggcaccccg agccagcctc ggggctggca 1140
gccctggcca aggtgtctgct gtccctggag cacgggcctt gggcccccgg cctgcacttc 1200
catagccccc accctgagat cccagcgtg ttggatggc ggctgcaggt ggtggaccag 1260
ccccctggccg tccgtggcgg caacgtggc atcaacttcc ttggatggc gggctccaaa 1320
cgtgcacatc atccctgaggc ccaacacgc gcccggccccc gcacccggcc cacatgcccac 1380
cctggccctgt ctgtcgccgg ccagcggacg caccctgag gcccgtcaga agctgctgg 1440
gcagggcctc cggcacacgc agggcctggc ttccctgagc atgtgaacga catcgccgt 1500
gtccccgacc accgcccattgc ccttccgtgg ctacgtgtg ctgggtggc agacgcgggt 1560
gcccagaggt gcagcaggtg cccgtggcg agcgcggcgt ctgggttcatc tgctctggga 1620
tgggcacaca gtggcgccgg atggggctga gcctcatgcg cctggaccgc ttccgagatt 1680

.ccatccctacg ctccgatgag gctgtgaacc gattcggcct gaagggtgtca cagctgctgc 1740
 tgagcacaga cgagagcacc tttgatgaca tcgtccattc gtttgtgagc ctgactgcca 1800
 :tccagatagg cctcatagac ctgctgagct gcatggggct gaggccagat ggcacatgtcg 1860
 gccactccct gggggaggtg gcctgtggct acgccacgg ctgcctgtcc caggaggagg 1920
 ccgtcctcgc tgcctactgg aggggacagt gcatcaaaga agcccatctc ccgcggggcg 1980
 ccatggcagc cgtgggcttg tcctgggagg agtgtaaaca ggcgtgcccc ccggcggtgg 2040
 tgcccggcgc cacaactcca aggacacagt caccatctcg ggacctcagg ccccggtgtt 2100
 tgagttcgtg gagcagctga ggaaggagggg tgggtttgcc aaggagggtgc ggaccggcg 2160
 tatggccttc cactcctact tcatacgagc catcgacccc ccactgtgc aggagctaa 2220
 gaaggtgatc cgggagccga agccacgttc agcccgctgg ctacgacacct ctatccccga 2280
 ggcggcgtgg cacagcagcc tggcacgcac gcctccgcg gagtacaatg tcaacaacct 2340
 ggtgagccct gtgtgttcc aggaggccct gtggcacgtg cctgagcacg cggtgtgtct 2400
 ggagatcgcg ccccacgccc tgctgcaggg tggctctgaag cgtggcctga agccgagctg 2460
 caccatcate cccctgatga agaaggatca cagggacaac ctggagttct tccctggccgg 2520
 catcgccagg ctgcacctct caggcatcgac ccacccatccc aatgccttgc tcccacctgt 2580
 ggagttccca gtcctcccgag gaactccctt catctccca ctcatacgat gggaccacag 2640
 cctggcctgg gacgcgcccgg ccggcgagga ctcccccaac ggtcagggtt cccctcagc 2700
 caccatctac acatgcacac caagctccga gtctccgtac cgctacctgg tggaccacac 2760
 catcgacggt cgccgtccctt tcccccgcac tggctacctg agcatagtgt ggaagacgt 2820
 ggcggaccc ctggggctgg ggtcgagca gtcctgtg gtgtttgagg atgtgtgtct 2880
 gcacccaggcc accatcttcg ccaagactgg gacagtgtcc ctggaggtac ggctccctgga 2940
 ggcctccctgt gccttcgagg tggcagagaa cggcaacctg gtatgtgatg ggaaggtgt 3000
 ccagtggat gaccctgacc ccaggctctt cgaccaccccg gaaagcccca cccccaaccc 3060
 cacggagccc ctcttcttgg cccaggctga agtttacaag gagctgcgtc tgggtggcta 3120
 cgactacggc ctcatttcc agggcatctt ggaggccagc ctggaaagggtg actcggggag 3180
 gctgctgtgg aaggataatg ggtgagttca tggacaccat gtcacatgt tccatcttgg 3240
 gtcggccaag cacggcctgt acctgcccac ccgtgtcacc gccatccaca tgcacccctgc 3300
 caccacacagg cagaagctgt acacactgca ggacaaggcc caagtggctg acgtgggtgt 3360
 gagcagggtgg ctgagggtca cagtggccgg aggccgtccac atctccggc tccacactga 3420
 gtcggccccc cggccggcagc aggaggcagca ggtgcccattt ctggagaagt ttgtttcac 3480
 tccccacacg gaggagggggt gcctgtctga gcacgctgtc ctggaggagg agctgcaact 3540
 gtgcaaggggg ctggcaggg cactcgagac caaggtgacc cagcaggggc tgaagatgtt 3600
 ggtgcccggg ctggatgggg cccagatccc cccgggaccc ctcacagcag gaactgcccc 3660
 ggctgttgtc ggctgcctgc aggttcaagc tcaacgggaa ctgcagctg gagctggcgc 3720
 .agggtgtggc ccaggagagg cccaaagctgc cagaggaccc tctgtcagc ggctccctgg 3780
 actcccccggc actcaaggcc tgcctggaca ctggcgtggaa gaacatgccc agcctgaaga 3840
 tgaaggtgtt ggaggtgtctg gcccggcaccg gtcacctgtt tcccccattt ccaggcctgc 3900
 tcagccccca tccccctgtc cagctgagct acacggccac cgaccggccac ccccgaggccc 3960
 tggaggctgc ccaggccgag ctgcagcagc acgacgttgc ccaggccag tggatcccg 4020
 cagaccctgc ccccaagccgc ctggcagccg cggacacttgc ggtgtcaac tggctgtgg 4080
 ctgcctccgg ggacccgcct cagctcttag caacatgggt gtcacccatg nagaagggggg 4140
 ctttctgttc ctgcacacac tgcctccggg gcaccccttc ggggacatcg tggccttcct 4200
 cacctccact gagccgactt atggccaggg catctgagc caggacgcgt gggagagcct 4260
 cttctccagg gtgtcgctgc gcctgggggg cctgaagaag tcccttctacg gtcacccatgt 4320
 ctccctgtgc ccggccggcca ccccgaggaa cagcccccattt tccctggccgg tggacgatac 4380
 cagcttccgc tgggtggagg ctctgaaggg catctgggt gacgaagact cttcccccggc 4440
 ctgtgtggct gaaggccatc aactgttcca ctcggggcgt ggtgggttg gtgaactgtc 4500
 tccggcggaga gcccggccgga acgctccggcgt gtgtgtgtctt ctccaaacctc agcagcacct 4560

cccacgtccc ggaggtggac ccgggctccg cagaactgca gaagggtttg cagggagacc 4620
 tggtgatgaa cgtctaccgc gacggggcct ggggggctt ccgccacttc ctgctggagg 4680
 aggacaagcc tgaggagccg acggcacatg cttttgttag cacccctacc cgggggacc 4740
 tgtccctcca tccgctgggt ctgctctcg ctgcgcctatg cccagccac ctgccttgc 4800
 gcccagctct gcacggctca ctacgcctcc ctcaacttcc gcacatcat gctggccact 4860
 ggcagaactgt cccctgatgc catcccaggg aagtggacct cccaggacag cctgcttaggt 4920
 atggagttct cgggcccaga cgccagcggc aacgtgtga tggactgtgt gcctgccaag 4980
 ggcctggcca cctctgtctt gctgtcaccg gacttccctt gggatgtgcc ttccaactgg 5040
 acgctggagg aggccgcctc ggtgcctgtc gtctacagca cggctacta cgcgctggtg 5100
 gtgcgtgggc gggtgcnccc cggggagacg ctgctcatcc actcgggctc gggcggcgtg 5160
 ggcaggccg ccatgcctat cgcgcctcgt ctgggctgcc gcgtttcac caccgtgggg 5220
 tcggctgaga agcgggcgtt cttccaggcc aggtcccccc agtcgcacag caccagcttc 5280
 gccaactccc gggacacatc cttcgagcag catgtgtgt ggcacacggg cggaaaggc 5340
 gttgacctgg tcttgaactc ctggcggaa gagaagctgc agggcagcgt gaggtgtttg 5400
 gctacgcacg gtcgcttctt gaaaattggc aaatttcgacc ttctcagaa ccacccgcctc 5460
 ggcatggcta tcttcctgaa gaacgtgaca ttccacgggg tccctactgg tgcgttcttc 5520
 aacgagagca gtgctgactg gccggaggtg tngcgttgc tgcaggccgg catccggat 5580
 ggggtggtaa ggcgcctcaa gtgcacgggtt ttccatgggg cccaggtgga ggacgccttc 5640
 cgctacatgg cccaaaggaa gcacattggc aaagtcgtcg tgcaggtgt tgcggaggag 5700
 cccggaggcag tggctgaagg gggccaaacc caagctgtat tccgcctatctt ccaagacatt 5760
 ctgcccggcc cacaagagct acatcatcgc tgggtgtctg ggtggcttcgc gcctggagg 5820
 ggccgcagtgg ctgatacagc gtgggggtgca gaagctcgatg ttgacttctc gctccggat 5880
 cccggacaggc taccaggcca agcaggctccg ccgggtggagg cggccaggccg tacaggtgca 5940
 ggtgtccacc agcaacatca gtcacttgaa gggggcccg ggcctcatttgc cccaggccgc 6000
 gcagctttag gcccgtggc ggcgttctca acctggccgt ggttttgaga gatggcttgc 6060
 tggagaacca gaccccagag ttcttccagg acgtctgcaaa gcccaagtac agcggcacccc 6120
 tgaaccttggc cagggtgacc cgagggcgtt ccctgagctg gactacttttgc tggcttctc 6180
 ctctgtgagc tgcggccgtt gcaatgcggg acagagcaac tacggcttttgc ccaatttccg 6240
 ccatggagcg tatctgttag aaacgcggcc acgaaggccctt cccaggccgtt gccgtgcagt 6300
 gggggcccat cggcgacgtg ggcattttgg tggagacat ggcacccaac gacacgtatcg 6360
 tcagtggcac gctgccccag cgcattttgg tggagacat ggcacccaac gacacgtatcg 6420
 accagccccca catggcttgc agcagcttttgc tgctggctga gaaggctgatgc gcctataggg 6480
 acagggacag ccagcgggac ctggtgagg ccgtggcaca catctggcc atccgcact 6540
 tggctgtgtt caacccctggc agctcaacttgc cggacacttgg cctggactcg ctcatgagcg 6600
 tggaggttgccg ccagacgttgc gaggctgatgc tcaaccttgg tggctccgtg cgcggagggtc 6660
 ggcacactac gctccggaaa ctgcaggagc tggcttgcataaa ggcggatgtatgc ggcagcgtatgc 6720
 tggcatgccc ccacgccccaa ggaggatgtt ctggcccgatc agcagactca gctgaaccttgc 6780
 cgtccctgc tggtaaaccc ggagggcccc accctgtatgc ggctcaacttgc cctgtgcagag 6840
 ctcggagccg cccctgttcc tggtgacccc aatttcgagggtt ctccaccacc gtgttccaca 6900
 gcctggccctc ccggctcgtatc atccccaccc atggccttgc gtcacccca gctgcggcccc 6960
 ttgacagcat ccacagccttgc gtcacttgc acatcgacttgc catcaggcag gtgcagcccc 7020
 agggccccca ccgcgtggcc ggctacttgc acggggccgtt cgtggccctt gaaatgtgt 7080
 cccagctgca gggccaggcag agcccagcc cccacccacaa cagcccttgc ctgttgcacg 7140
 gctcgccccac ctacgtacttgc gcctacaccc agagctaccg ggcacccatcg acccccaggct 7200
 gtgaggctga ggctgagacg gaggccatat gcttcttgc tgcaggatgc acggacatgg 7260
 agcacaacag ggtgctggag ggcgtgtatc cgcgttgc cgcgttgcagg cctagaggag cgtgtggcag 7320
 cccgcgttgc cctgtatc aagagccacc agggccttgc ggcacccaggat cttctactac aagctgatgc 7380
 cggccccggc cttctactac aagctgatgc cgcgttgc gtcacaccc aaggccaaatgttgc 7440

accatggcaa cgtgatgcta ctgcgcgccca agacgggtgg cgccctacggc gaggacctgg 7500
 gcgccgacta caacctctcc caggtatgctg acgggaaagt atccgtccac gtcatcgagg 7560
 gtgaccaccg cacgctgctg gagggcagcg gcctggagtc catcatcagc atcatccaca 7620
 gctccctggc tgagccacgc gtgagcgtgc gggagggcta ggcccggtcc cccgcctgcc 7680
 accggaggcc actccaccat cccccccccca tccccccccca cccccccgcat gcaacgggat 7740
 tgaagggtcc tgccgggtgg accctgtccg gcccagtgc actgcccccc gaggctagct 7800
 agacgttaggt tttaggcattt tccccccac ccggccgcctc ccacggcacc tcggggacac 7860
 cagagctgcc gacttggaga ctccctggct gtgaagagcc ggtggtgccc gtgcccgcag 7920
 gaactggggc tggccctcggt gcccgggtgg ggtctcgctt gtgtttttct gtgtttggat 7980
 ttgcataattt attgcattgc ttgttagagac cccccaggccctt gtcacccctt ccaagactcc 8040
 tcaggcagcg tgggggtccc gcactctgcc cccattttccc cgatgtcccc tgccggcgcg 8100
 ggcagccacc caagccctgtt ggctgcggcc ccctctcgcc caggcattgg ctcagcccg 8160
 ttagtggggg gtcgtggggcc agtcccccgag gactggggccctt ctgcacagggc acacaggggcc 8220
 cggccacacc cagccggccccc ccgcacacggcc accccgtgggg tgctgcccctt atgcccggcg 8280
 ccgggcacca actccatgtt tgggttttgt ctgtgtttgt tttcaagaa atgattcaaaa 8340
 ttgctgcttg gattttgaaa ttactgtaa ctgtcagtgtt acacgtctgg accccgtttc 8400
 atttttcacac caatttggta aaaatgtgc ttcacccctt ccacaattaa accgcacatgtg 8460
 atctccaaaa 8470

<210> 11
 <211> 812
 <212> DNA
 <213> Homo sapiens

<400> 11
 gccgcagccca atcagcgcgc gtccccgggc ccctgcgtct cttgcgtcaa gacggccgtg 60
 ctgagcgaat gcaggcgact tgcgagctgg gagcgattta aaacgctttt gattcccccc 120
 gcctgggtgg ggagagcgag ctgggtggcc cctagattcc ccgcggccgc acctcatgag 180
 ccgaccctcg gctccatggaa gcccggcaat tatgccaccc tggatggagc caaggatatc 240
 gaaggcttgc tgggagcggg agggggggccgg aatctggtcg cccactcccc tctgaccaggc 300
 caccgcggcc cgcctacgtt gatgcgtct gtcaactatg ccccttggaa tctgaccaggc 360
 tcggcggagc gccaaagcaa tgcacccat gcccggggt gcccaggggg acgtccccag 420
 ctccccgtgcc ttatggttac tttggaggcg ggtactactc ctgcccagtg tcccggagct 480
 cgctgaaacc ctgtgcccag gcagccaccc tggccgcgtt ccccgccggag actcccacgg 540
 ccggggaaaga gtaccccgac ccgcggccactg agtttgcctt ctatccggaa tatccggaa 600
 cctaccagcc tatggccagt tacctggacg tgcgtgtggt gcagactctg ggtgtccctg 660
 gagaaccgcg acatgactcc ctgttgcctg tggacagttt ccagtcttgg gctctcgctg 720
 gtggctggaa cagccagatg tggccagg gagaacagaa cccaccagggt cccttttggaa 780
 aggccaggatt tgcagactcc agccggccgc ac 812

<210> 12
 <211> 2385
 <212> DNA
 <213> Homo sapiens

<400> 12
 ataagctggg gtaaaagtatt ttgcgcgtttt ctgccttttag gattttatta gtttctctcc 60
 cccaggccgc agccaatcg cgcgcgtgcc cggggccctg cgtctcttgc gtcaagacgg 120

cggcgtctgag cgaatgcagg cgacttgcga gctgggagcg atttaaaacg ctttgatttc 180
ccccggccctg ggtggggaga gcgagctggg tgccccctag atccccccgc cccgcacctc 240
atgagccgac cctcggctcc atggagcccg gcaattatgc caccttggat ggagccaagg 300
atatcaagg cttgctgggaa gcgggagggg ggcgaatct ggtcgcccac tccccctctga 360
ccagccaccc agccggcgct acgctgatgc ctgtgtcaa ctatgcccccc ttggatctgc 420
caggctcggc ggagccgcca aagcaatgcc acccatgccc tggggtgccc caggggacgt 480
ccccagctcc cgtgccttat ggttactttg gaggcggta ctactcctgc cgagtgtccc 540
ggagctcgct gaaaccctgt gcccaggcag ccaccctggc cgctgatcccc gcggagactc 600
ccacggccgg ggaagagttc cccagccgc ccactgagtt tgccttctat cgggatatac 660
cgggaaccta ccagcctatg gccagttacc tggacgtgtc tgggtgtcaag actctgggt 720
ctccctggaga accgcgcacat gactccctgt tgcctgtgga cagttaccag tcttgggctc 780
tcgctgggtgg ctgaaacagc cagatgtttt gccagggaga acagaacccca ccaggtccct 840
tttggaaaggc agcatttgca gactccagcg ggcagcaccc tcctgacgccc tgcgcctttc 900
gtcgccggccg caagaaacgc attccgtaca gcaaggggca gttgcgggag ctggagccggg 960
agtatgcggc taacaagttc atcaccacagg acaagaggcg caagatctcg gcagccacca 1020
gcctctcgga gcgccagatt accatctggt ttcagaaccg cccgggtcaaa gagaagaagg 1080
ttctcgccaa ggtgaagaac agcgctaccc cttaagagat tccttgcctt gggtgggagg 1140
agcgaaagtg ggggtgtctt ggggagacca ggaacctgccc aagcccaggc tggggccaag 1200
gactctgctg agaggccccct agagacaaca cccttcccag gccactggct gctggactgt 1260
tcctcaggag cggcctgggt acccagtatg tgcagggaga cggaaacccca tgtgacagcc 1320
caetccacca gggttcccaa agaacctggc ccagtcataa tcattcatcc tgacagtggc 1380
aataatcacg ataaccagta ctagctgcca tgatcgtag cctcatattt tctatctaga 1440
gctctgtaga gcactttaga aaccgccttc atgaatttag ctaattatga ataaatttgg 1500
aaggcgatcc ctttcaggg aagctttctc tcagacccccc ttccattaca cctctcaccc 1560
tggtaacagc aggaagactg aggagagggg aacgggcaga ttcgttgtgt ggctgtgtatg 1620
tccggtttagc attttctca gctgacagct ggtaggtgg acaattttagt aggctgtctc 1680
ttcctccctc cttgtccacc ccatagggtg taccactgg tcttggaaagc acccatccctt 1740
aatacgtatg ttttctgtc gtgtaaaaat gaagccagca ggctgccccct agtcagtccct 1800
tccttccaga gaaaaagaga tttgagaaag tgcctggta attcaccatt aatttctcc 1860
cccaaactct ctgagcttcc ccttaatatt tctgggtgtt ctgacccaaag caggtcatgg 1920
tttgggtgagc atttggatc ccagtgaagt agatgtttgt agccctgcat acttagccct 1980
tcccaggcac aaacggagtg gcagagtgtt gccaaccctg tttcccaagt ccacgttagac 2040
agattcacgt gcggaaattct ggaagctgga gacagacggg ctctttgcag agccgggact 2100
ctgagagggc catgaggccc tctgcctctg tgttcattct ctgatgtccct gtacctggc 2160
tcagtgccccg gtgggactca tctcctggcc ggcgcacaaa gccagcgggt tcgtgttgt 2220
ccttcctgca ccttaggctg ggggtggggg gcctgcccgc gcattctcca cgattgagcg 2280
cacaggccctg aagtctggac aacccgcaga accgaagctc cgagcagcgg gtcgggtggcg 2340
agtagtgaaaaat tcggtggcga gcagttgggtg gtggggccgc gccgc 2385

<210> 13
<211> 221
<212> DNA
<213> *Homo sapiens*

```
<400> 13  
dsdnrstatc tttctgtgtg gtgcagccct gttggcagtg ggcatctggg tgtcaatcga 60  
tggggcatcc tttctgaaga ctctcgggcc actgtcgtcc agtgccatgc agtttgtcaa 120  
cgtgggctac ttccctcatcg cagccggccgt tgggtcttt qctcttqqt tccctqqqctq 180
```

ctatggtgct aagactgaga gcaagtgtgc cctcgacg t

221

<210> 14

<211> 1533

<212> DNA

<213> Homo sapiens

<400> 14

gggcacgcag acattctggg aagccacttg ccccacccct gggctgttc ttctttagat 60
 caggaggggc gttgccagg gctgggttg ccaggtggag gcctgctgag gcagtgggt 120
 tggggatcg tctccaggca gcagggggca gcagggtaa ggagaggcta actggccac 180
 ggtggggcca gcaggcgggc agaaggaggc tttaaagcgc ctaccctgccc tgaggtgag 240
 cagtgggtg tgagagccag gccgtccctc tgcctgccc ctcagtggca acacccggga 300
 gctgtttgt cctttagga gcctcagcag ttccctgtt tcagaactca ctgccaagag 360
 ccctgaacag gagccacca ggcagtgtt cagtttcat aagaccatga tgatccttt 420
 caatttgc tctttctgt gtgggtcagc cctgtggca gtggcatct ggggtcaat 480
 cgatggggca tccttctga agatcttcgg gccactgtcg tccagtgc tgcagttgt 540
 caacgtggc tacttctca tcgcagccgg cggtgtggc tttgtcttgc gtttcttgg 600
 ctgctatggt gctaagactg agagcaagtg tgccctcggt acgttcttct tcatacctct 660
 cctcatcttc attgtgtgagg ttgcagctgc tgggtcgcc ttgggttaca ccacaatggc 720
 tgagcacttc ctgacgttgc tggtagtgcc tgccatcaag aaagattatg gttcccagg 780
 agacttcaact caagtgtgga acaccacca gaaagggtc aagtgtgtg gttcaccaa 840
 ctatacgat ttgaggact caccctactt caaagagaac agtgccttcc cccattctg 900
 ttgcaatgac aacgtcacca acacagccaa tgaaacctgc accaagcaaa aggtcacga 960
 caaaaaagta gagggttgc tcaatcagct tttgtatgac atccgaacta atgcagtcac 1020
 cgtgggttgt gtggcagctg gaattggggg cctcgagctg gctgccatga ttgtgtccat 1080
 gtatctgtac tgcaatctac aataagtcca ctctgc tgcactact gtcacccat 1140
 gggactgtg aagaggccacc ctggcaagca gcagtgttgc ggggaggggc caggatctaa 1200
 caatgtcaact tggccagaa tggacctgccc ttctctgtc cagacttggg gctagatagg 1260
 gaccactcct tttaggcgt gcctgacttt cttccattt gttgggtggat ggggtggggg 1320
 cattccagag cctcttaaggt agccaggctt gttgcccatt ccccccagtct attaaaccct 1380
 tgatatgccc cctaggccta gtgggtatcc cagtgtctca ctggggatg agagaaaaggc 1440
 attttatagc ctggcataa gtgaaatcag cagacccctt ggggtggatgt gtagaaggca 1500
 cttcaaaatg cataaacctt ttacaatgtt gcc

1533

<210> 15

<211> 472

<212> DNA

<213> Homo sapiens

<400> 15

tcagagaaaa ctcaaacctt attgagagaa ttttcaaatt ttcagtca ctttcaatgt 60
 gacatcagcc atgtgtgttag cttcagcttgc tttttttt aacttatggc tgcccatctc 120
 ctgcttcttt agtcttagca tgcttaggt taggtggagt cttctttt acatcagagc 180
 catctccacg ctcaactccga gtctttcca gatccatttctc ctggcaatca cttctactt 240
 tacgttcttc gatcgaggt gttccttctc tctttgtcc aggttcaata tcctgattgt 300
 cagttgggtgg ttcctctgtc tgagattcac cgggagccac gaatgcaccc acatcgggg 360
 cttccctgacc atctcttctt cctctggatc ttgtatctac tcgtgactc atcgctgcaa 420

ctagaagatc gtgaactgaa gaaccttgagt cagcagagaaq ccttqqcqaaq aa 472

<210> 16

<211> 478

<212> DNA

<213> Homo sapiens

<400> 16

cttcattctt cgccaggcgc tctgctgact caagttcttc agttcacgat cttcttagttg 60
cagcgatgag tgcacgagtg agatcaagat ccagaggaag aggagatggt caggaggcgc 120
ccgatgttgt tgcatctgt gctcccggtg aatctcagca agagggacca ccaactgaca 180
atcaggatata tgaacctgga caagagagag aaggaacacc tccgatcgaa gaacgtaaag 240
tagaagggtga ttgccaggaa atggatctgg aaaagactcg gagtgagcgt ggagatggct 300
ctgatgtaaa agagaagact ccacctaatac ctaagcatgc taagactaaa gaagcaggag 360
atgggcagcc ataagttaaa aagaagacaa gctgaagcta cacacatggc tgatgtcaca 420
ttgaaaatgt gactgaaaat ttgaaaattc tctcaataaaa gtttgagttt tctctgaa 478

<210> 17

<211> 198

<212> DNA

<213> Homo sapiens

<220>

<221> unsure

<222> (191)

<400> 17

<210> 18

<211> 465

<212> DNA

<213> Homo sapiens

<400> 18

tggagatgga gtatgtatTTT attttacaaa aataaatcac catcttcgga ccattttag 60
actggAACAT ttcgagcaat gagtgcgcca cacggacgag tgccctggg actccctgat 120
gttcgcgtca cccccaggGC cacttggcg cccgcatgag cctcgcttcc cactccccgc 180
ctccaaCTCC ctccctcgc agccgccatt caccttgc tgTTTatTTG tctgcagAGC 240
gcctggacac cggAAAAGGC gatTTCTGA ggcctggag ttggagacAA ttccTGGTTC 300
agaatTTaaa catTTTcta aggtAAGCgc tgctccaaaa ctcttcgccc cgtggggact 360
ttgcaccagg ggcggTTggg aaggaaagtTG gcccTTccacg ggttccTggg caaccgcggc 420
ctgttgaaaa aaggTTctgg gtcaaataat ttaacttcgg aggAG 465

<210> 19

<211> 204

<212> DNA

<213> Homo sapiens

<400> 19

ggcgaaaaca ggccggcgctg gacctgtacc cctacgacgc cgggacggac agcggcttca 60
ccttctccctc ccccaacttc gccaccatcc cgccaggacac ggtgaccgag ataacgttct 120
cctctccctc ccacccggcc aactccttct actacccgcg gctgaaggcc ctgcctccca 180
tcggcagggt gacactggtg cgcc

204

<210> 20

<211> 294

<212> DNA

<213> Homo sapiens

<220>

<221> unsure

<222> (287)

<400> 20

gagatttctc ttcaatggct tcctgtgagc tagagttga aaatatctta aaatctttag 60
cttagagatgg aagttagcttg gacgattttc attatcatgt aaatcgggtc actcaagggg 120
ccaaccacag ctgggagcca ctgctcaggg gaaggttcat atgggacttt ctactgccca 180
aggttctata caggatataa aggtgcctca cagttatagat ctggtagcaa agtaagaaga 240
aacaaacact gatcttttc tgccacccct ctgacccttt ggaactnctc tgac

294

<210> 21

<211> 22

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic

<400> 21

atcagaacaa agaggctgtg tc

22

<210> 22

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic

<400> 22

atctctaaag ccccaacctt c

21

<210> 23
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:Synthetic

<400> 23
tgccgaagag gttcagtgc

19

<210> 24
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:Synthetic

<400> 24
gccacagtgg tactgtccag at

22

<210> 25
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:Synthetic

<400> 25
gctgcaagtt ctccacattg a

21

<210> 26
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:Synthetic

<400> 26
cagccgcagg tgaaaacac

18

<210> 27
<211> 20
<212> DNA
<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:Synthetic

<400> 27

tggcttgaa ctcagggtca

20

<210> 28

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:Synthetic

<400> 28

cggatgcacc tcgttagacag

20

<210> 29

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:Synthetic

<400> 29

cggcaacctg gtagtgagtg

20

<210> 30

<211> 22

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:Synthetic

<400> 30

cgcagtcctc tggtaaacttc ag

22

<210> 31

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:Synthetic

<400> 31
cgggaacctta ccagccatgt

20

<210> 32
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:Synthetic

<400> 32
caggcaacag ggagtcatgt

20

<210> 33
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:Synthetic

<400> 33
tgggcatctg ggtgtcaa

18

<210> 34
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:Synthetic

<400> 34
cggtgcgtat gaggaagta

19

<210> 35
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:Synthetic

<400> 35
gcccatctcc tgcttcttta gt

22

<210> 36

20

WO 00/23111

PCT/US99/24331

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic

<400> 36

cgtggagatg gctctgatgt a

21

21

INTERNATIONAL SEARCH REPORT

International application No. PCT/US99/24331

A. CLASSIFICATION OF SUBJECT MATTER

IPC(7) :Please See Extra Sheet.

US CL :Please See Extra Sheet.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

U.S. : 424/130.1, 141.1, 155.1, 183.1; 435/6, 7.1, 7.23, 7.9, 91.2; 436/501, 504, 505, 547; 514/44; 536/23.5

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

Medline, Biosis, Embase, Cancerlit, Scisearch, WPIDS, USPATFULL
search terms: CSG, cancer specific gene, cancer, diagnosis

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	Database SCISEARCH, Accession Number 307617, OLSSON et al. Reverse transcriptase-polymerase chain reaction assays for prostate cancer. Urologic Clinics of North America. May 1997, Vol. 24 No. 2, pages 367-&.	1-6
Y	CHO-CHUNG et al. Antisense Oligonucleotides for the treatment of cancer. Current Opinion in Therapeutic Patents. 1993, Vol. 3, No. 12, pages 1737-1750, see entire document.	1-6
A,E	BUSSEMAKERS et al. DD3: A new prostate-specific gene, highly overexpressed in prostate cancer. Cancer Research. 01 December 1999, Vol. 59, No. 23, pages 5975-5979.	1-7

Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:	"T"	later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
A document defining the general state of the art which is not considered to be of particular relevance	"T"	
E earlier document published on or after the international filing date	"X"	document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
L document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)	"Y"	document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
O document referring to an oral disclosure, use, exhibition or other means	"&"	document member of the same patent family
P document published prior to the international filing date but later than the priority date claimed		

Date of the actual completion of the international search

10 FEBRUARY 2000

Date of mailing of the international search report

07 MAR 2000

Name and mailing address of the ISA/US
Commissioner of Patents and Trademarks
Box PCT
Washington, D.C. 20231Authorized officer
Diptihaa Bansal
GEETHA P. BANSAL

Facsimile No. (703) 305-3230

Telephone No. (703) 308-0196

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US99/24331

A. CLASSIFICATION OF SUBJECT MATTER:
IPC (7):

A61K 39/395, 48/00; C12P 19/34; C12Q 1/68; G01N 33/53, 33/574, 33/546, 33/567

A. CLASSIFICATION OF SUBJECT MATTER:
US CL :

424/130.1, 141.1, 155.1, 183.1; 435/6, 7.1, 7.23, 7.9, 91.2; 436/501, 504, 505, 547; 514/44; 536/23.5