

FILE COPY

D3

PCTWORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 5 : C12N 7/00, C12P 21/06 C12Q 1/66	A1	(11) International Publication Number: WO 93/16172 (43) International Publication Date: 19 August 1993 (19.08.93)
(21) International Application Number: PCT/US93/00913		(74) Agent: GEORGE, Kenneth, P.; Amster, Rothstein & Ebenstein, 90 Park Avenue, New York, NY 10016 (US).
(22) International Filing Date: 2 February 1993 (02.02.93)		(81) Designated States: AU, BB, BG, BR, CA, FI, HU, JP, KR, LK, MG, MW, NO, PL, RO, RU, SD, SE, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, SN, TD, TG).
(30) Priority data: 07/833,431 7 February 1992 (07.02.92) US		(Published) <i>With international search report.</i>
(71) Applicants: ALBERT EINSTEIN COLLEGE OF MEDICINE OF YESHIVA UNIVERSITY [US/US]; Yeshiva University, 1300 Morris Park Avenue, Bronx, NY 10461 (US). UNIVERSITY OF PITTSBURGH [US/US]; Cathedral of Learning, Pittsburgh, PA 15260 (US).		
(72) Inventors: JACOBS, William, R., Jr. ; 163 Fordham Street, City Island, NY 10464 (US). BLOOM, Barry, R. ; 61 Summit Drive, Hastings-on-Hudson, NY 10706 (US). HATFULL, Graham, F. ; 6 Forbes Terrace, Pittsburgh, PA 15217 (US).		

(54) Title: MYCOBACTERIAL SPECIES-SPECIFIC REPORTER MYCOBACTERIOPHAGES**(57) Abstract**

This invention relates to mycobacterial species-specific reporter mycobacteriophages (reporter mycobacteriophages), methods of producing such reporter mycobacteriophages and the use of such reporter mycobacteriophages for the rapid diagnosis of mycobacterial infection and the assessment of drug susceptibilities of mycobacterial strains in clinical samples. In particular, this invention is directed to the production and use of luciferase reporter mycobacteriophages to diagnose tuberculosis. The mycobacterial species-specific reporter mycobacteriophages comprise mycobacterial species-specific mycobacteriophages which contain reporter genes and transcriptional promoters therein. When the reporter mycobacteriophages are incubated with clinical samples which may contain the mycobacteria of interest, the gene product of the reporter genes will be expressed if the sample contains the mycobacteria of interest, thereby diagnosing mycobacterial infection.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	FR	France	MR	Mauritania
AU	Australia	GA	Gabon	MW	Malawi
BB	Bahamas	GB	United Kingdom	NL	Netherlands
BE	Belgium	GN	Guinea	NO	Norway
BF	Burkina Faso	GR	Greece	NZ	New Zealand
BG	Bulgaria	HU	Hungary	PL	Poland
BJ	Benin	IE	Ireland	PT	Portugal
BR	Brazil	IT	Italy	RO	Romania
CA	Canada	JP	Japan	RU	Russian Federation
CF	Central African Republic	KP	Democratic People's Republic of Korea	SD	Sudan
CG	Congo	KR	Republic of Korea	SE	Sweden
CH	Switzerland	KZ	Kazakhstan	SK	Slovak Republic
CI	Côte d'Ivoire	LJ	Liechtenstein	SN	Senegal
CM	Cameroon	LK	Sri Lanka	SU	Soviet Union
CS	Czechoslovakia	LU	Luxembourg	TD	Chad
CZ	Czech Republic	MC	Monaco	TG	Togo
DE	Germany	MC	Madagascar	UA	Ukraine
DK	Denmark	ML	Mali	US	United States of America
ES	Spain	MN	Mongolia	VN	Viet Nam
FI	Finland				

MYCOBACTERIAL SPECIES-SPECIFIC REPORTER
MYCOBACTERIOPHAGES

STATEMENT OF GOVERNMENT INTEREST

This invention was made with government support under NIH Grant Number AI26170.

FIELD OF THE INVENTION

This invention relates to mycobacterial species-specific reporter mycobacteriophages (reporter mycobacteriophages), methods of making such reporter mycobacteriophages, and the use of such reporter mycobacteriophages, for example, to rapidly diagnose mycobacterial infection and to assess drug susceptibilities of mycobacterial strains in clinical samples. Specifically, this invention relates to the use of mycobacterial species-specific luciferase reporter mycobacteriophages to diagnose tuberculosis and to assess the drug susceptibilities of the various strains of Mycobacterium tuberculosis (M. tuberculosis).

To produce the mycobacterial species-specific reporter mycobacteriophages of the invention, transcriptional promoters and reporter genes are introduced into the genomes of mycobacterial

species-specific mycobacteriophages. These reporter genes may be the genes for luciferase or the β -galactosidase gene, and provide the DNA which encodes production of a gene product. The reporter mycobacteriophages may be used by incubating same with samples which may contain the specific mycobacteria of interest. If the mycobacteria of interest is present, then the reporter mycobacteriophages introduce the recombinant nucleic acids which encode expression of the gene product into the mycobacteria of interest, and the mycobacteria then express the gene product. The expressed reporter gene product may be detected by a suitable assay, for example, through the detection of photons or the conversion of an easily assayable chemical reaction. The presence of such gene product indicates that the sample contains the mycobacteria of interest, and hence the mycobacterial species-specific reporter mycobacteriophages may be used to detect and thereby diagnose the specific mycobacterial infection. In addition, since signals may not be generated by cells which are not metabolically active in the presence of antibiotics, the mycobacteria species-specific reporter mycobacteriophages of this invention may be used to assess the drug susceptibilities of various strains of mycobacteria. If antibiotic drugs are added to the sample containing the reporter mycobacteriophages and the gene product

is detected, the mycobacteria is metabolically active and hence resistant to the antibiotic drug.

BACKGROUND OF THE INVENTION

In 1990, there was a 10% increase in the incidence of tuberculosis in the United States. In addition, there has been an increase in the appearance of clinical isolates of tuberculosis that are resistant to antibiotics used to treat the disease. This problem is exacerbated by the length of time that is currently needed both to diagnose tuberculosis, and to determine the drug susceptibilities of various strains of M. tuberculosis. As a result, patients with M. tuberculosis may remain infectious for long periods of time without being treated, or may be treated with a drug to which the bacterial strain is resistant. Therefore, a need has arisen in the field for a method of diagnosis of M. tuberculosis (and other mycobacterial infections) which is rapid, sensitive and specific, which method is also capable of assessing the drug susceptibilities of the various strains of M. tuberculosis and other mycobacterial strains. It is critical that a mycobacterial strain be assessed for drug resistance rapidly because a patient infected with a strain of M. tuberculosis or another mycobacteria must be treated immediately with the particular antibiotic drug(s) to which the strain is not resistant, and not with antibiotic drug(s) to

which the strain is resistant, or the patient may die.

Currently, the most rapid test available for the diagnosis of M. tuberculosis is the staining of sputum samples for acid-fast bacilli, which is a tedious procedure, and which procedure has high sensitivity. Alternative methods for diagnosis require cultivation of the bacilli for approximately two to six weeks followed by classification of the cultured organism. Typical diagnostic tools include biochemical tests, analysis of mycolic acids and serotyping. All of these tests are time-consuming. More recently, the use of oligonucleotide probes and Polymerase Chain Reaction have been suggested for the identification of M. tuberculosis species. Although these methods may be useful approaches, their uses in a clinical setting have not yet been determined. Further, these methods do not distinguish between live and dead organisms, and are therefore of limited use in the determination of drug sensitivities of clinical isolates.

In addition, Mycobacterium avium (M. avium) is a mycobacteria which is often found in immunosuppressed patients. This mycobacteria is typically disseminated throughout the bodies of immunosuppressed patients, such as AIDS patients, and causes M. avium infection. Because this mycobacteria often causes death in immunosuppressed patients, it is

necessary to be able to diagnose and assess the drug susceptibilities of the various strains of M. avium.

It is therefore an object of this invention to construct broad mycobacterial host range and

5 mycobacterial species-specific reporter mycobacteriophages.

It is another object of this invention to provide mycobacterial species-specific reporter mycobacteriophages which may be used to rapidly

10 diagnose mycobacterial infections.

It is still another object of this invention to provide mycobacterial species-specific reporter mycobacteriophages which may be used to rapidly assess the drug susceptibilities of different strains of

15 mycobacteria in clinical samples.

It is yet another object of this invention to provide mycobacterial species-specific reporter mycobacteriophages wherein the reporter genes are luciferase genes, which mycobacterial species-specific reporter mycobacteriophages may be used to rapidly

20 diagnose mycobacterial infections and to rapidly assess the drug susceptibilities of various strains of mycobacteria.

It is a further object of this invention to provide mycobacterial species-specific luciferase gene reporter mycobacteriophages which may be used to rapidly diagnos tuberculosis and assess the drug

susceptibilities of the various strains of
M. tuberculosis.

SUMMARY OF THE INVENTION

This invention relates to broad host range and
5 mycobacterial species-specific reporter
mycobacteriophages, (reporter mycobacteriophages),
methods of producing such reporter mycobacteriophages,
and the use of such reporter mycobacteriophages to
rapidly diagnose mycobacterial infection, such as
10 M. tuberculosis, and to distinguish which strains of
the mycobacteria are drug-resistant. To produce these
reporter mycobacteriophages, reporter genes and
transcriptional promoters are introduced into the
genomes of mycobacterial species-specific
15 mycobacteriophages. The promoter and reporter
gene-containing mycobacteriophages (reporter
mycobacteriophages) are then incubated with a
clinical sample which may contain the mycobacteria of
interest, such as M. tuberculosis. The reporter
20 mycobacteriophages are specific for the mycobacteria
which is sought to be detected. The reporter
mycobacteriophages efficiently introduce the
recombinant nucleic acids which encode the expression
of the reporter gene's gene product into the
25 mycobacteria of interest, and the mycobacteria then
express the gene product. A substrate or other means

capable of allowing for the detection of the gene product is then added to the sample. If the gene product or the signal generated by the gene product is detected, the presence of the infectious mycobacteria 5 is known, thereby diagnosing the disease. To assess drug susceptibility of mycobacteria, drugs such as antibiotics may be added to a sample containing the reporter mycobacteriophages of this invention. If the mycobacteria are susceptible to a drug after exposure 10 to the drug, the mycobacteria will be killed. However, drug-resistant mycobacteria will continue to be metabolically active in the presence of the drug, and will continue to express the detectable gene product of the reporter genes.

15 The preferred reporter genes of the present invention are the Firefly luciferase lux gene (FFlux), the luciferase lux genes of Vibrio fischeri, the luciferase lux genes of Xenorhabdus luminescens and the E. coli β -galactosidase gene (lacZ). The 20 preferred promoters of the present invention are hsp60 and L5 gene 62 promoter, and the preferred mycobacteriophages are L5, TM4 and D56A. These reporter mycobacteriophages are preferably used for the rapid diagnosis of tuberculosis and M. avium. 25 infection, and the accurate assessment of drug susceptibilities of the various strains of M. tuberculosis and M. avium.

BRIEF DESCRIPTION OF THE DRAWINGS

The above brief description, as well as further objects and features of the present invention, will be more fully understood by reference to the following detailed description of the presently preferred, albeit illustrative, embodiment of the present invention when taken in conjunction with the accompanying drawings wherein:

FIGURE 1 represents the genome organization of mycobacteriophage L5;

FIGURE 2 represents a luciferase shuttle plasmid pYUB180 wherein reporter gene FFlux is fused to the BCG hsp60 promoter;

FIGURE 3 represents the amount of luciferase activity of M. smegmatis which contains the pYUB180 shuttle plasmid and the FFlux gene;

FIGURE 4 represents the effect of various antibiotic drugs on the metabolic activity of control mycobacteria and drug resistant mycobacteria in the presence of reporter mycobacteriophages which contain luciferase reporter genes;

FIGURE 5 represents shuttle plasmid phAE39 wherein the reported gene is FFlux, the promoter is hsp60, the phage is TM4 and the cosmid is pYUB216.

FIGURE 6 represents luciferase activity of M. smegmatis cells infected with shuttle phasmids phAE39; and

FIGURE 7 represents a flow chart for cloning different promoters into TM4::lux shuttle phasmid phAE39.

DETAILED DESCRIPTION OF THE INVENTION

This invention is directed to mycobacterial species-specific reporter mycobacteriophages, (reporter mycobacteriophages), methods of producing such reporter mycobacteriophages and the use of such reporter mycobacteriophages for the rapid diagnosis of mycobacterial infections and the accurate assessment of mycobacterial drug susceptibilities.

In order to produce such reporter mycobacteriophages, mycobacterial species-specific mycobacteriophage genomes are modified by introducing therein transcriptional promoters and reporter genes whose gene product can be sensitively detected. The reporter mycobacteriophages may then be incubated with clinical samples suspected of containing the mycobacteria of interest, either directly or after culture, and the samples tested for the presence of the reporter gene product, thereby diagnosing mycobacterial infection.

The method of this invention allows for rapid diagnosis because only the amount of time necessary for the reporter mycobacteriophages to infect their host cells and the amount of time necessary for the host cells to synthesize the reporter gene product are

10

required to allow for diagnosis. Typically, the amount of time required for the reporter mycobacteriophages to infect their host cells and for the host cells to synthesize the reporter gene product 5 is between ten minutes and sixteen hours.

The assessment of drug susceptibilities with the reporter mycobacteriophages of this invention is accurate because the reporter mycobacteriophages only allow for the detection of metabolically active 10 mycobacterial organisms, the presence of which metabolic activity indicates that a drug has not killed the mycobacteria and that the mycobacteria is resistant to the drug.

To enhance diagnosis specificity, a series of 15 similar reporter mycobacteriophages, each of which having well-defined but different specificities for mycobacterial species, is selected.

Mycobacteriophage L5, a temperate virus with a broad host-range among mycobacteria, is the most 20 thoroughly characterized of the mycobacteriophages. L5 particles are morphologically similar to the family of phages that includes phage g and contain a linear dsDNA genome with cohesive ends. The inventors have determined the DNA sequence of the entire gene as well 25 as several gene functions. The DNA sequence of the L5 mycobacteriophage is as follows:

* * * S E Q U E N C E * * *

1 GGTCGGTTAT GCGGCCGAGC CATCCTGTAC GGGTTTCCAA GTCGATCAGA GGTAGGGGCC
 61 GGCACAGAAA CCACTCACAT CAGGGCTGTG CGCCTCCAGG GCGCGTGAAC TCCCACACCC
 121 CGGTGTAGTT ACATCCCGGA ATTGTCTAG CGCCTCTCAG GCGCTTCTC ATAACAGTG
 181 ATCTACGCCA CTCTGACGG GTGGCTGTCA AGGATACTCA CCTTCCTAC TAATGAGGGG
 241 CTAAGAGCCC CTCTCTATAG AGCGCCGAC AGGCAGCGC ATAAGAGCGC CACCAGGCC
 301 TCATCTAAAG ACCGGCCCTTG AAGGGCCGGT CATAGAGATC TATTGATCC GGCAACGCC
 361 GGATCTCAAG GCCGCGCCAG TGCAGCGCC TATAGAGGGG TGACTCAACT GTGCATGGCA
 421 CTCGCTCGAG TGCCCACTGG AGCACTCAAC CGGGGAAGTT CGACGTTCTC AACCTGCGAA
 481 TGACGTTGA ATCGTCATCC GCGTAGAA TCCCCGATCT GCGGCCGACC GACTCGTGC
 541 CGGCCTATCT CGCGGCCCTG AATATGCCGC GTCACCGCGA TTACGCCGCC AAGAACGGG
 601 GCGCGCTGCA CTCTTCTT GACGATTAC GGGTTGAGAC CGCGTGGTCG TCCCCCGAGC
 661 GCCTCTCGA CGCGTAAAG CAGGTGGCG CTGCACTCAC GCCGGATTTC AGCCTCTGGA
 721 CGAACATGCC GAAGGGCGC CAGCTATGGA ACgtCTACCG CTCCCGCTGG TGAGCGCGT
 781 ATTGGCAGTC GGAAGGAATC GAGGTGATTC CGACGGCGTG TTGGGCGACT CCCGACACGT
 841 TCGATTCTG TTTGACGGG ATCCCGATGG GATCGACCGT CGCAATTCT TCGATGGGCA
 901 TTCGCTCTTC AAAAGTCGAC CAGGAGCTT TCCGGTACGG ACTACGCCAA CTCATCGATC
 961 GCACTCAACC GCAACTGCTT TTGGCATATG GCCAGCTTCG GCATTGCGAC GACATGGATT
 1021 TACAGAGGT CGCGAATAC CCGACCTACT GGACAGACAG ACgAAAGTGG GAAACTGCG
 1081 ATGGGAGGCC GGGGAAGTAA AGGCGGGCCC GTTCCCAGGA CGCGGACAG CAACCGCAGA
 1141 GGCCTGGAG CCCCGGATC GGGCGGCGTA GGCAGCGTC GAGGGGGGG TGAGCTGCA
 1201 GGGAGCAGCG GAGGGCGCAA GGGAACGGCA GCGCCGGTAC CGGAGGCGTC ACCGGTGGCG
 1261 GCGGAAGTGG AGCCGGCGGC GGTGGCAGCA GCCCCAACAC CCCGGTGC CCCACCGAGC
 1321 TGGAGAAGAA GCGCGGCAGA TACAACCAGA TCGCCATCGA GCCCCAGAAA CAGCACGCC
 1381 CCACCGATGA GAAAGCGCAG GCCAAGCGCA AGCAACTGAT GGATCGAGTC GGAGGAGACT
 1441 GGCAGGCTT GGACCCGGAT CACCACGAG CCATCAAGGT GGCGATGGAT GACGCCATGC
 1501 GGAAGATCCT CTCCGAGGAG GAGATCGTCC ACCGCAACAA GCACTTCGGC GACCTACTCG
 1561 ACTCCGGTCG ACTCAAGTCG CTGTTGAGG TCGGCTTCTC AGCCGGTGGC GACACCCCGA
 1621 CGAACCGCCTCG CTCCTCGAG GACGCCCTGGT TCGGCCAGG CAAGGTCTCC CCGATCTACT
 1681 CGGAACATCGA GTCAACGGC GCTCCGAGC CGGCCCTCGG CATGTAACGGC GGACCAACG
 1741 TCTACATGAA GGACTCGTC AAGGACCGCG TCACCGTAC CATCGGCAC TCGCTGATGT
 1801 CGAGCTGGGAG CGTATTCCCC GGCGCTCTG GCGACGGCGT GGGGCTGTGG GCCAGCCTGT
 1861 CGAAGATCGA GGGGCTGGTC GATCCGAGCA AGACCCGCGA AGAGAACATG CAGGCGGTGT
 1921 ACGACTCGTT CAAGAAGTAC GGCACCCCTGG ACGGCTTCAT CGAGGCGCAG ATCCACGGCG
 1981 GCGTCCTGGT CGAGGACATC AAGAAGGTCG TTGTCACGCA GCCGCCGAGC CGATCTTC
 2041 CCGATAAACT GGACGAACCTT GGAATCCCGT GGAGGTGCA GTAATGGCGC AGATGCAGGC
 2101 GACACACACA ATCGAGGGGT TCCTGCTGT CGAGGTGGCC CCTCGGGCGT TCGTCGCGA
 2161 GAACGGCCAC GTACTGACCC GGCTGTCGGC CACGAGTGGC GCGGGTGGCG AGGGTCTCGA
 2221 GATCCTCAAC TACGAGGGTC GAGGGCGCT CGAGGTCTC GACGAGAAC TCGCCGAAGC
 2281 CCAGCGGGCC AGCGAGGTCG AGGCTGAAC TCGCCGCGAG GTGCCGAAGG AGTGAATT
 2341 GCCGGCTCAG GCCGGCGACA GGAACATACCA GAGGACTGGG AGCTGAATT CCGGCTCCC
 2401 GTCTTCTG CTGCCAACTG GCTTTGCCAG ATCAACGGTC CGGGATGCGT AAGGGCCGCA
 2461 ACCGATGTCG ACCACATCAA GCGCGGGAAC GACCACAGCC GGTCCAATCT GCAGGCAAGC
 2521 TGCCATGTCG GTCACGGCAA GAAATCAGCC GCGGAGGGCG TAGCCCGACG GCGGAAACTT
 2581 AGAGCCCGA GGAAGCGACC ACCCGAACGC CATCCTGGGC GTCGATAAGC GGCCAGGTG
 2641 CCCGCTCCAC CCAGGGAGGTG AACAGTGGGC AGCGAGGCC CAATCGGAAA AGCAGATGAA
 2701 GAGCGGGTTC GTCGGAACAC CCCGGACAGT CCAACCGACA CGATCCAGAT GCGGGTCTG
 2761 GTGACGATCC CGCAGATGGG CGATCTAACG CACGACCGCC GCACGCCA GCTCGTCAAG
 2821 GACATGTACG AGTCGATCAA GCAGTCGGCA GCCGTGAAGT ACTACGAGCC GACCGACTGG
 2881 CAGATGGCCC GACTCGCCCT CTACACACTT AACCAGGAAC TCATCGCAGC CGAGAACAC
 2941 GGCAAGCCCG TGGCGCGAT GAAGCTCACT GCCATCAACC AGATGCTCTC CGCGCTGCTG
 3001 CTGACCGAAG GTGACCGACG CGCGCTCCGA CTGGAAGTCG AACGAGCACC CGCTGACCCCG
 3061 ACAGGGGGGA AGGTGCTTGA CGTGACCGAC GTGCTCAAGC AGCGCTCGC CAAGGCAGGC
 3121 GGCAGGGAGCT GATGGTCCCC CGAGGGTTT CTAGAGCCGC TGCGCTTAC AGCGCTCCC
 3181 CCTCGGGGTA GACATCGAAA GGAACACAT GGCGACCTC GGCAACCCAC TCGACCTCGA

3241	GATGCTCTGC	CTGGTCACAG	GCGGGGACTT	CCGCTGGACC	ATCGATTACC	CGTGGGGTCC
3301	GGGAGAGCTG	TTCCTCGAAC	TCGAGACCGG	CGCGAACAC	AACCGCCTGC	ATCAGGTCTA
3361	TGTCACCGGG	GCGACCGGAG	GCACGTACAC	GCTGAACGTC	AACGGCACCA	ACACCCCCGGC
3421	CATCGACTAC	AACGACGTGT	CGGAGAAATCC	GCAGGGCTG	GCAGGGCACA	TCCAAGAGC
3481	TCTGGACGCA	GCGTCGGAG	CCGAAACGC	TGTCGTGCAT	CCGGTCTCGC	TGTTCCCTGC
3541	GTGGACACTG	AACTTCAAC	TCAACGCCAG	CAAGCCGCTC	ACCGAGCAGT	TGGTCGACGT
3601	GATCAACAAG	GCGCGAACG	ACTTCTTCGA	CACGTTGAC	CAACTACTGC	GGGTCGAC
3661	GGAGATGACG	GTCACCCACA	CCCTGAACCT	CAAGCTCAAG	GTGACCTCG	GGCGCTCGT
3721	CGATGAGGTC	GGTGTCTCA	CGTTCGGGT	CGACGTGACC	AGCCAGGCA	TCATCAACTT
3781	CTTCAACTCC	GTCGCCAAC	TCACCGGAGC	GGTGAACACC	GTCAACGTG	ACTTCTACTG
3841	GAACCGGACG	TATGACATCG	ATGTCACCGG	ATCCCTGGG	CTGAGCCGA	TTCCGGCTAC
3901	TACAGGCCAC	ATCACCAACC	TGGCGGGTAC	CAGCAAGGCC	GTCTCAGTC	CGGTGGTCGA
3961	GCAGGAAAG	AAGAGGCTGA	CCATCTGGCC	GTTCACGGTC	AACGGTGAA	CCGCAACCAT
4021	CAAGGTCGAG	TCCGAAGAGG	CCGACAAGAT	CCCCAACCGC	TGCGCTGGC	AGTTGGTCA
4661	CATGCCGACC	GGCGAGGCA	CCGGCGGCCA	TGCAAAGCAG	CTCGCCGCG	TTTACCGACA
4141	GCCGAGGTAA	CACCGCACCC	ATCAGAGATG	GTGGGCCAGA	CGGCTTCG	GCCGTC
4201	GACGTGTAGC	TCAATGGCAG	AGCGCCCGAC	TGTTAATCGG	GTGGTTGAAG	HTTCAGTCC
4261	TTCCATGTCA	GCGAGGGCTG	AACCGGACCC	GTGTCGGTG	TAGGCACTT	CCGCAGGGCG
4321	TTCCCCAGAG	CGTGGGGAGC	CCCTGCGCTG	TACACGTAGC	TCATTGGTA	GAGCAGGGT
4381	CTCCAAAGCC	GCGGGTCTCA	GGTTCGACTC	CTGGCGTGT	TGCAACACACC	CCTGACTCCT
4441	GCTAGCGGAG	TGTTTCGCTT	TCGGGCCTGG	GGTCTTTTC	CCCGTCGTC	TAATCGGAA
4501	GAACCCCCGG	TCTGGACCGG	GCAATTGAGG	TTCGAGTCCT	TGGGGGGAG	CCAACTTGAC
4561	ATCCACCCGA	AAGGAACAAC	ATGACCTTCA	CACTACCCG	CGAGAGAGCG	CAGTGGTCC
4621	ACGACATGGC	CCCGCGTCGC	GACGGTCTCC	CCTACCGT	CGGGGGGGCG	TTCAACCAACA
4481	ACCCGAGGGT	GTCGACTGAC	TGCTCTGGCC	GGTGTCTG	GACCGGGGCT	TGGTATGGAG
4741	GTCGCACCGA	CTGGGTCTGA	AACCGTTACG	GCTCAACCGA	ATCGTTCCGG	CTCGACCAACA
4801	AGATCGTCTA	CGACCTAGGG	TTCAGCGGA	TGGCCCCAGG	CGGGGGCAGCG	GCCTTGC
4861	TCAAGCCGGT	GATGCTCGT	GGGCTCCAGC	ACGGAGGGCG	CGGGGGTCTAC	TCGCACACCG
4921	CTTGCACGTT	GATGACGATG	GACCACCCCG	GTGGCCCGGT	CAAGATGTCC	GACCAGGGCG
4981	TCGACTGGGA	GTCCCACGGC	AACCGCAACG	GCGTAGGC	CGAACCTTAC	GAGGGCGCAC
5041	GGGCATGGAA	CGACCCCTCTG	TTCCATGACT	TTTGGTACCT	GGACGCAGTC	CTCGAAGACG
5101	AGGGAGACGA	TGACGAATTG	GCTGACCCAG	TTCTAGGGAA	GATGATCCGC	GAGATCCACG
5221	CGTGCCTGTT	CAATCAGACC	GGCTCGACCA	GCGATCTGGC	GACCCCTGGT	GAAGGGCGTA
5281	TCTGGCAGCT	ACACCAAGAA	ATCCACTCGA	TTGACGGCAT	GCTCCACCCG	ATCCACGCTG
5341	AGCGGCGCGC	TCGCGCAGGC	GATCTCGGTG	AGTGCACCCG	AATGTTGTTG	GCGCGAAGG
5401	GCTTGGGCGT	GAAGCGCGAC	GAGGTGACCA	AGGGGTCTA	CCAGAGCATC	CTCGCCGACA
5461	TCGAGCGGGG	CAACCCCGA	GTACTTCAGC	GATACATCGC	AGAAAGAGGT	GGCCTATGAG
5521	CCCCAAGATC	CGACAGACCA	TCTACCTGCT	CGGCACCGCC	GCCCCGGCAC	TGCTGGGCAT
5581	CGTCCTGATC	TGGGGCGGGC	TCGACGCTGA	GTGGGGGCT	GACCTCGGTG	ACATCATG
5641	GGGCGCTGTT	TCGATACTAG	TCTCCGGTGC	GCCGGCCGTA	GCGGCAAGGCA	CCGTACCGAG
5701	CCAGCGCAAG	GACGGCACGT	TGTCCACCA	CCCGGTGGAT	CAGGTACCCA	AGGGCGTGA
5761	GCAGGTGCTC	GCGGCCAGGC	AGAGTGCCGA	GGCTGAAGTC	GCGAAGGTCA	AGCAGGGCCT
5821	GGAGACCGCC	GTCAGGGTT	CTCTCCCCCA	GCTCGGGCCG	CTGGCCACGC	AGATCCTCAA
5881	CGTGGCTGAC	GACACCGTCT	GGCGTCCATG	AGCAAGCCCT	GGCTGTTCAC	CGTCCACCGC
5941	ACAGGCCAGC	CCGACCCGCT	CGGGCCTGGT	CTGCTGCCG	ATACCGCACG	GGACGTACTT
6001	GACATCTACC	GGTGGCAGCC	CATCGGCAAC	TACCCGGCAG	CGGCGTTCCC	GATGTGCCG
6061	TCGGTCGAAA	AGGGTGTGCG	TGAGCTGATC	CTGCAGATCG	AGCTGAAGCT	GGACGCAGAT
6121	CCGTACCGGG	ACTTCGCGCT	GGCCGGCTAC	TCGCAGGGAG	CCATCGTGGT	GGGCCAGGTG
6181	CTCAAGCACC	ACATCATCAA	CCCGAGAGGT	CGACTGCACC	GGTCTCTGCA	CCGGCTCAGG
6241	AAGGTCACT	TCTGGGGTAA	TCGATGCGG	CAGAAGGGCT	TTGCCCACAC	CGACGAGTGG
6301	ATTCAACCAAG	TCGCTGCC	GGACACGATG	GGCATCTCG	AGGACCGACT	GGAGAACCTC
6361	GAGCAGTACG	GCTTGTAGGT	CCGCGACTAC	GCGCACGAG	GCGACATGTA	CGCCTCCATC
6421	AAGGAGGAGC	ACATGACGCA	GTACGAGGT	GCCATTTG	GAATGTTGAT	GAGCGCTAGG
6481	CGATTACATC	GAGGTAAAGG	TCCTCGTATC	GCCCCAGCTA	TCGAGCTTGG	ACAGCGTCCG
6541	ATCTGGGAGG	GAATCGCGAT	GGCCGAGAGC	ATCATCGACG	CCCTCACGTT	CTTCGCCAAG
6601	TCGACCCAA	GCCCCAGCTG	GGCCGATTG	TACAACCGCT	TCCCGGGCGGT	CGAGTTCTA
6661	CGACGAATCT	GAGAAAGGGAG	GGGGGGTGA	CCTCAACAC	CACCACCCGG	AGCTTCCCC
6721	GTCTCCCCCT	CACATCATCG	GGCCGCTCTG	GCAGAAGACG	GTGATGGTG	AGTGGTATCT
6781	GCCTGAGAAG	ACCCCTCGGCT	GGGGAGTC	GAAGTGGCTC	TCCGAGTACG	TGAATACCCC
	TGGGGGGCAT	GACGATCCGA	ACCGTCTG	GACGTGATC	GGCGCTCTCCG	AGGCAGGGT

6841 TCTCGACAAC GAGAACATGT TCATCCCCAC CGACGAGCAG GTACGCCCTGG TCCCTCTGGTG
 6901 GTACCGAGTA GATGACCAGG GCCAGTACAT CTACCGCGAG GGCCTGATCC GCCGGCTCAA
 6961 GGGCTGGGC AAGGATCCGT TCACCGCCGC GCTCTGCTTG GCGGAACCTCT GTGGCCCCGT
 7021 AGCCTTTCA CACTTCGACG CCGACGGTAA CCCGGTCGGC AAGCCCGCTT CAGCCGCGTG
 7081 GATCACCGTC GCGGCCGTCA GCCAGGACCA GACGAAGAAC ACGTTCTCGC TGTTCCCGGT
 7141 GATGATCAGC AAGAAGCTGA AGGCCAGTA CGGCCTGGAC GTGAACCGCT TCATCATCTA
 7201 CTCCCGAGCC GGTGGCCGTA TTGAGGCAGC GACCTCGAGC CCCCGCTCGA TGGAGGGTAA
 7261 CCGCCCGACG TTCGTCGTCC AGAACGAGAC GCAGTGGTGG GGCAAGGCC CGGACGGCAA
 7321 GGTCAATGAA GGCCACGCGA TGGCAGAGGT CATCGAAGGC AACATGACCA AGGTCGAGGG
 7381 CTCCCGCACC CTGTCGATCT GCAACGCCA CATCCCCGGC ACCGAGACGG TCGCCGAGAA
 7441 GGCATGGGAC GAGTACCCAGA AGGTCCAGGC AGGCAGACTCT GTCGACACCG GGATGATGTA
 7501 CGACCGCTG GAAGCCGGCG CCGACACCCC GGCTCCGAG ATCCCCCGC AGAAGGAGGA
 7561 TCCCGAGGGG TTCGAGAAGG GCATCGAGAA GCTCCGCGAG GGCCTGCTCA TCGCCCGAGG
 7621 CGACTCCACC TGGCTGCCGA TAGACGACAT CATCAAGTCG ATTCTGTCGA CCAAGAACCC
 7681 GATCACCGAG TCGCGGCCGA AGTTCCTGAA TCAGGTAAAC GCCGCTGAGG ACTCGTGGCT
 7741 CTCACCGCAG GAATGGAACC GGTGCCAGGT CGACCTGGCC AAGTACCTGG ATAAGCACGG
 7801 CAGGGAGTTG GCTCCGCTGC AGCGCCGTGA CCGGATCACC CTCGGGTTCG ACGGGTCGAA
 7861 GTCCAACGAC TGGACCGCGC TCGTCGGCTG CCGTGTCTGC GACGGCCTGC TGTTCTCAT
 7921 CGACATCTGG GATCCCCAGA AGTACCGCGG GGAGGTTTCC CGCGAAAGACG TTGACGCCAA
 7981 GGTCCATTG GCGTTCGGCG ACTACGACGT GTGCGCTTGC CGCGCCGACG TGAAGGAGTT
 8041 CGAGCGTAC GTCGACCGAGT GGGCCGGAC CTACAAGAAC AGACTCAAGG TCAACGCCAG
 8101 CCCGAACAAAC CCGGTGGCGT TCGACATGCG CGGACAGCAG AAGAGGTTCG CGTTGACTG
 8161 CGAGCGACTC GAGGACGCGG TCCCTGAGGG CGAGGTTCTGG CACGACGGCA ATCCCGTTCT
 8221 GCGCCAACAC GTTCTGAACG CCAAACGACA CCAAACGAAAC TACGACGCCA TCGCATTG
 8281 CAAGGTCAAG AAGGACTCCA GCAAGAAAAT CGACGCTGCA GTCTCGCTG TCCTCGCTT
 8341 CGGGGCGAGA CAGGACTTAC TCATGAGCAA GAAGGCCGT AGCGGCCGG TGTTGATGGT
 8401 TCGATGACAG CACCGCTCCC CGGTATGGAG GAGATCGAAG ACCCCCGCAGT CGTACGAGAA
 8461 GAGATGATCT CGGCCTTCGA GGATGCTTCC AAGGATCTCG CCAGCAACAC CAGCTACTAC
 8521 GACGCTGAGC GCGGGCCAGA GGCCATCGGC GTCACTCGC CGAGAGAGAT GCAAGCAACTG
 8581 CTGGCTCAAGC TCGGATACCC CAGGCTCTAC GTGCACTCGA TCGCCCGAGCG CCAGGCCGT
 8641 GAGGGTTTCC GCCTCGCGA TGCCGACGAG GCTGACGAAG AGCTGTGGCA TGTTGAGGAG
 8701 GCGCAACAAAC TCGACATCGA GGCACCACTG GGCTACACCG ACGCTTACGT TCAACGCCGG
 8761 TCGTTCATCA CGATCAGCAA GCCAGACCC CGCTCGACCC TGGTTGGGA TCAAGAACGTC
 8821 CCGATCATCC GCGTCGAGCC GCCCACCCGA ATGACCGCCG AGATCGACCC CCGGATCAAC
 8881 CGGGTGTCCA AGGCCATCCG AGTCGATAT GACAAGGAGG GCAACCGAGAT TCAGGCTGCC
 8941 ACGCTGTACA CGCCGATGGA GACCATCGGC TGGTCCCGCG CTGACGGTGA GTGGGCTGAG
 9001 TGGTTCAACG TCCCACCGG TCTGGCGTC GTTCCCGTTG TGCCGCTTCC GAACCGGAC
 9061 CGGCTCTCGG ACCTGTACCG CACCACTGAG ATCACGCCG AGCTTCGGTC GATGACCGAC
 9121 GCGGGCGCGC GCATCCTCAT GTTGTGCGAG GCGACCGCCG AGCTGTGGG TGTTCCCCAG
 9181 CGCCTGATCT TCGGCATCAA GCCCCAAGAG ATCGCGCTCG ACTCCGAGAC CGGCCAGACG
 9241 CTGTTCTGATG CGTACCTGGC CGGGATCCTG CGTTCGAGG AGCCTGAGGG CAAGATECCAG
 9301 CAGTCTCTG CAGCCGAGCT GGCCAACTTC ACCAACGCGC TCGATCAGAT CGCCAAACAG
 9361 GTCGCTGCGT ACACGGGATT GCCTCCCCAG TACCTGAGTA CGGCCGCGAGA CAATCCGGCC
 9421 TCCGCTGAGG CGATCAGGGC CGCTGAGAGC CGACTCATCA AGAAGGTCGA CGGGAAGAAC
 9481 CTGATGTTCG GCGGCGCATG GGAAGAGGCC ATGCGGATCG CCTACCGGAT CATGAAGGGC
 9541 GGCACGTTG CCCCACCGT GCTCCGCGAT GAGACCGCTC GGCAGACCC GAGCACTCCC
 9601 ACCTACGCGG CCAAGGCCGA CGCAGCCACG AAGCTGTACG GCAACGGCCA GGGTGTCTAC
 9661 CCGCGTGAAC GTGCTCGCAT CGACATGGG TACTCCGTC AGGAGCGCGA AGAGATGCC
 9721 CGATGGGACG AGGAAGAGGC CGCAATGGGT CTGGCCCTGT TGGGCACGAT GTGCGACGCC
 9781 GACCCGACGG TCCCAGGCTC CCCGAGCCCG ACGGCACCCG CGAAGCCACA GCGGGCCATC
 9841 GAGTCGCTG GTGGTGATGC GTGACCGCAG AGGAGTACCG GGCACGCTCAA GCGCGATCA
 9901 CTGCGGGTCT TGCCACATAC GTCCAGAGGT TCGCTCGCT CTTCTCGGT CCAGCTCTCG
 9961 CTGTAGGTGA GTGGCTGCCA CTGCTGCAGG TGCTGTTCCC CGAAATCCAA CGCGGGTATG
 10021 CAGATGCTGC CGCCTTGGGC AGGGACTTCT ACGACTCCCA ACGCGCACTA CACCAACCCAG
 10081 AGCTGCCCCG GAACGAGAGG TTCCGGGGAG AGCTTCGGTG GGAGTGGTTC GTCCAGAAC
 10141 TGGAGCCCGC TCGAAAAGAG ATGTCGCGAG CGACTCTCC GCGAGTGCAC ACCTCTAAGT
 10201 TGGCTCTGGC CGCAGTTGCG GAAGTGGAGA TGGCAGCACG CGACAGATC ATCGGCGCTG
 10261 TCAAGAACGA TCCGGGCCCCG CAGATCGTGC AGGGCTGGGC GAGGTCGCC ACCGGGCGCG
 10321 AAACATGCGC CTGGTGTCTG ATGTCATCT CACGGGGTGC CGAGCTGAAT CACAAGGGCA
 10381 ACTTCGCTA CAGCTCAGCG GAAGCCGCAG GGCTCAACCT CGATGACGAG ACCGTGATCG

10441 ACCTCTGGAA CGAGTCGGT CACGACCTTG AGAAGTTCCG CGAGGAGACC AGAGAGGACT
 10501 TCGAGAAGTG GCACGCAGGG TGCAGCTGTC TGGTGGTCCC GGTCTTCGAT GTGCAGAACT
 10561 GGCCCAGAAG AGACGCTGCC CTACGGGCGC AGCAACTTTG GATCGAAGCC AGCGACGAAG
 10621 CTGACGACCT CATGCGTCA GGCAAGGGCC GCTCCAAGAA CAAGAACACG GAGACGCTCA
 10681 ACGCGCTCCG ACCGGCCTA GCACGCGGC AAATCACCAT GTCCAACATAC GCCCTCGCTG
 10741 CGTAGTCCCT CGAACCCCCAG GTGGGTTCTC TCAACATGCC CAGGAGGCCA AAACACATGT
 10801 CCGACAACCC CACTCCCGAG AGCACCCCCAG AGGCCGAGAC CCCGGAGGTC GAGAACCGA
 10861 TGGAACCGCA GGGCAAGGTC TTGATGAAG CGTAGCTCA GTCGCTTCG CAGGAGGCTG
 10921 CAGCCGCTCG GGTGGCGAAG AAGGACGCCG TAGAAGCGGC AGAGGCTCGA GTGAAGGCCG
 10981 AGTACGAGGC CAAGCTCGCT GAGCGCAGA CCGCTTACAC CGAACCTGCAG AACCAAGTGG
 11041 GACAGGGCTG GATTGAGCTG GAGAAGGCTC ACCTCTCTCT CGACGCCAG GTGCCAACG
 11101 ACAAGGTTCG GGCCTTTGTC GAGATCTCG AAGGCAACGA CAGGGACAGC ATCGCTGAGT
 11161 CAGTGAAGTC CCGTCTGGAG CTGGTGGCG GATTCGGCAA CAAGAACCCCG AGTCTCGCTG
 11221 TCGACCGCTC TCAGGGTCCG GCGGTAAGC CGCCGATCCC GCTGAACGGT GACCCGATCC
 11281 TCGAGGCCAT CAAGGGCCTG GTCGGGATCA AGAAGTAACC CACCCAAACAG ATCTCAAGGA
 11341 GAGATAAACAA ATGGCAGTCA ACCCTGACCG CACCAAGGCCG TTCTCGGCG TGAACGACCC
 11401 CAAGGTCGCG CAGACCGCCG ACTCGATGTT CGAGGGCTAC CTCGAGCCCG AGCAGGCCA
 11461 GGACTACTTC GCCGAAGCGG AGAAGATCTC CATCGTCCAG CAGTTCGCCC AGAAGATCCC
 11521 GATGGGCACG ACCGGCCAGA AGATCCCAGA CTGGACCGGC GACGTGAGTG CGTCGTGGAT
 11581 CGGTGAAGGC GACATGAAGC CCATCACCAA GGGCAACATG ACCTCGCAGA CCATCGCCCG
 11641 CCACAAGATC GCGACGATCT TCGTGGGCTC GGCGGAAACC GTCCGTGCGA ACCCGGCCAA
 11701 CTACCTGGGC ACCATGCGGA CCAAGGTCG GACCGCCTTC GCGATGGGT TCGACAACGC
 11761 CGCGATCAAC GGCAACGGACA GCGCTTCCC GACCTTCTA GCGCAGACCA CCAAGGAGGT
 11821 CTCGCTGGTG GACCCGGACG GACCGGCTC CAAACGCCGAC CTCACCGTCT ACQACGCGGT
 11881 CGCCGTCAAC GCCCTGTGCG TGTGGTCAA TGCCGGCAAG AAGTGGACCC ACACTCTGCT
 11941 GGACGACATC ACCGAGGCCA TCCTCAACGG CGCGAAGGAC AAGAGCGTC GCCCCTGTGTT
 12001 CATCGAGTCG ACCTACACCG AGGAGAACAG CCGCTTCCGC CTCGGTCCGGA TTGTGGCCCG
 12061 TCCGACCATC CTGAGCGACC ACGTCGCCCTC GGGCACGGTC GTCGGCTACC AGGGTGACTT
 12121 CCGCCAGCTC GTCTGGGGCC AGGTGGCGG CCTGTCCTTC GACGTGACGG ATCAGGCAGC
 12181 TCTGAACCTG GGCACCCCCC AGGCTCCGAA CTTCTGCTCG CTGTGGCAGC ACAACCTCGT
 12241 CGCAGTCCGA GTCGAGGCCG AGTACGCCCTT CCACTGCAAC GACAAGGACG CGTTCGTCAA
 12301 GCTCACGAAC GTGGACGCCA CGGAAGGCTG ATCCAGGCTT GACCTCCACC GGGAGGGGGC
 12361 TCCTCTGGGA GCCCTCTCTC GATGTGGAGC AGGAAGGACCC ACATGCAAT CCAGTCCACC
 12421 CTCACGGCG GTTTCGCGA GGTTCGGAG GAGTCGCCA AGCAGTTGAT CGCCACTGGC
 12481 GGCTGAAAG TGCCCCGGAA ACCGCGAAC ACCAAGACCA AGACCGCTCC TGAGGAGCCC
 12541 AAGAACGAGG AGTAACCCGT GGCTACGCG ACCGCCGAAG ACGTGTGAC GTTGTGGCC
 12601 AAGGAGCCTG AGCCCGAAGT GATGGGCTG ATCGAGCGCC GGCTCCAGCA GATCGAGCGC
 12661 ATGATCAAGC GCGGATCCC CGACCTGGAC GTGAAAGCCG CTGCGTCGGC GACGTTCCGG
 12721 GCGATCTGA TCGACATCGA AGCTGATGCT GTTCTGCGCC TCGTGCATAA CCCGGAGGGC
 12781 TACCTCTCGG AGACCGACGG TGCGTACACC TATCAGCTCC AGGCGGACCT GTCGCAAGGC
 12841 AAGCTCACCA TCCTCGATGA GGAGTGGAG ATCTCTGGGG TCAACTCCCA GAAGCGCATG
 12901 GCGGTCTACG TCCCGAACGT GGTGATGGCG ACGTGAGCGC GAGCGACCGA CACCGCGCCC
 12961 CGATTGCTA TCCGCTGGC ACTCAGGCCG TTACGCCGA TCGGGTCAAC GCGTTTGACT
 13021 GCGATCACGA AGCTGATCCT CCGGTGTGCC GGTGCGTCCA CGACTGGCGC ATCGAGTGGG
 13081 GAAACGTCAA GAAGGCCACC GCCAGATCAC GGTGCGCGGT GCTCTGATGA GCCTCTCGA
 13141 CACCGGTGCC CGGTACCAAGA CCTGCATCGT CTACCCCGAA GAGATGGTCA TCGACTCCGA
 13201 TGGCAACAAG CGGACCAGGC CGTCGAATAC CGGCATCCCG GCCATCGCAC GGTTCCAGGT
 13261 AGCCAACCAAG TCTGGTACGT CGGCACGAGC TGCTGAGCAG GACAACGAGG GTTCTGAGAC
 13321 CGAGAAGGTC TACCGGATGC GGTTCGGCC CTCGTTCAAC AAGGAGCACG GATCTCTCGG
 13381 GGGCCAGTCC CAGATCGAGT GGCGAGACCA GCGGTTGGCG CTCTCGGAG ACGCCACCGT
 13441 CTACGACTCA TCCCCCTGCGT TGGCGGGGT CGACTACACG ATCAAGAGGT ACTGATGGCC
 13501 AAGGTCTACG CGAACGCGAA CAAGTGCAG GCGCGGTACG TCGAGACGAG GGACGCCGTC
 13561 CGAGACGAGC GGAACAAGGT CACCCGCTGA GCAAAGCCA ATCTGGCGCG GCAGAACTCG
 13621 ACCACCCGCA TCACCGACGA GGGCTACTTC CCGGCCACCA TCACCGAGCA AGACGGCGAT
 13681 GTCGACTTCC ACACGATCCT CAACGCGCC AACCGTGGTG CGCTTGAGTT CGGCCACCGC
 13741 CCGTCTGGCT TCTTCGCTGG CACCGACAGC AAACCAACGG AGGCCACTTA CATCTCTCACC
 13801 CGAGCCGCCA TCGGCGGCAC CGTCTCATAA GGAGGTCAAGA TGGCGGAAT GCCTCGCGTC
 13861 CAGGCACTAG CGGGCCCCGAT CCTCCGGTCA GACCCCGAC TGGAGGAGT GACGGTCAGC
 13921 ACATGGGTTC CAGACGTGGA CTTCCGGAG TCCCGATGA TCAACCTCCG CCGCATAGGC
 13981 GGGAGGAGGA ACCCCAAACGC ACCGACGCTG CACACGCTGC CGGTGGTCGA AATGACCGCC

14041	TACACCAGAG	ACGGTCTCAT	CGAGACTGAG	GAGCTGTACG	AGACCGCGCT	AGAGGTTCTC
14101	TACGACCGG	TGGAGAACGG	AACACAAACT	CCCGCAGGGT	ATTIGACCTC	CATCTTCGAG
14161	ACGATGGGCG	CCACTCAGTT	CAGCTCCCTC	TACCAAGGACT	CCTGGCGCAT	CCAGGGTCTG
14221	ATCAGGCTCG	GGTCCGCAG	ACCGAGAAC	ACCCCTAAC	CGAAAGGTAA	AGCCACATGG
14281	CTGAAAAGCA	CGACCGAGTG	TTGACTCGG	CGGTGGCTA	CGTGTACGTC	GGTGGCTCAG
14341	GCACCGCTGC	TCCTACGCCG	GCCTTGCTCA	AGACCATCGA	CCTCAGCAAG	CCCGAGACCT
14401	GGACCGGTGC	TACCGGTTGG	ACGAGCGTCG	GCCACACCAG	CCGAGGCACG	CTCCCTGAGT
14461	TCGGCTTCGA	AGGCGGCGAG	TCCGAGGTCA	AGGGCTCCTG	GCAGAAGAAG	AAGCTCCGCG
14521	AGATCACCAAC	CGAGGGATCCC	ATCGACTACG	TCACGGTCTC	ACTGCACCAAG	TTCGATGAGC
14581	AGTCGCTGGG	TCTGTACTAC	GGCCCCAACG	CCTCTGAGAC	TCCTGGTGTG	TCGGTGTGA
14641	AGACCGGCCA	GACCAACGAG	AAGGCCGTGC	TGGTCGTGAT	CGAAGACGGC	GACATGCGCC
14701	TGGGGCATCA	CGCCCACAAG	GCTGGAGTTC	GCCGCGACGA	CGCGATTGAG	CTGCCCATCG
14761	ATGACCTGGC	TGCGCTGCC	GTCCGGTCA	CCTACCTGGA	CCACGAAGAC	GAGCTGCCGT
14821	TCTCTGGAT	CAACGAAGAC	CTCTTCAACG	TGCCCGAGGT	TCCCGAGGGC	TGATCCCCAC
14881	TTGACAGCCA	CCCCGCTGTC	TACCCCGAGG	GGGGAGGTTT	CCTTGGCGGG	CCTGGCCTCC
14941	CCCTCTCCC	GCAACTCACA	GACCCGCGA	CACTGAAAGG	TTCGCGATGA	CAAACGTATT
15001	CACCATCGAC	GCATTCCGCG	AAGAGGTCAA	GAAGAAGTAC	GTCCTGGTCC	TCATCGGCCT
15061	GTCCGACGAT	GTGACCGTCG	AGCTGAAGCC	GCTGCTGAAG	CTGGGCCAGA	AGGCCCGCGA
15121	AGCGGTGGTC	GAGGTGTTCA	AGGAGTTGCG	GGACATCCCC	GACCTCGAAG	AGGACGACGA
15181	CGACGAGTTG	GTCGATGAGT	ACTCGCTCCA	GGTCTGCGAC	ATCATCGCCA	AGGCGTTCCG
15241	GCTGATCGCC	ACGAAGCCCCA	AGAAGCTGAT	CGCCGCTTG	GACGAGGAAG	CGGATCCCCG
15301	TATCCGCGCA	GAGCTGTATG	CAGCGGTACT	CAACACCTGG	AAGCGAGAGA	CGCAACTGGG
15361	GGAAAGCCGCG	CCCTCGCCGA	GCTGATCGAC	AAGTTCGGCG	GGGGCATCCT	CGCAGACCTG
15421	CTCCAGTACT	ACCGGGTAGA	CCTGCGCGAC	CTGTTCCGCG	ACGAGGATCC	GCTTCGCGCG
15481	AGATTGTTTC	TGTCCTCTGGT	GCTCTGCTT	CCCCAAAGACG	GCGCCTTCTA	CGCAGAACGT
15541	CGTGGTGGGC	AGCAGTACCG	GGGCTGGACC	GAGGACCGCT	ACGCCTCGC	GGACATCTAC
15601	GACGCCATCC	AGGGGGCAA	CCACATCTG	CTGCTGGCGA	ATCGTGTAC	GAAGAAGCCA
15661	AAGCCCAAGG	CACCAAGTC	ATACCCCGGT	CCCGACGACC	TAGAGAAGAC	CACACCGAAG
15721	CGGGGTTCGT	TCGCGCGAAT	GGTCGTGCGA	GCGAAGAAGG	CGGCTCGAGA	GAGAAGGGAA
15781	AGGGAGGAGG	AGAGTGCAGA	ATAGTGTGG	CGTAGAAGTC	GCCCCGATCT	CGGTCAGGTT
15841	CAGCCCACAC	ACCAAGGAGT	TCCGCCGGGA	ACTCAAGACC	GAACCTCGAGA	AGATCGAGCG
15901	GGAGCTTAAG	GGCGATGTGCG	AGATCAACGG	TCATCTCGAT	GGGGCCCGAG	CCAAGGCCGA
15961	CTTCAAGCGC	ATGATGATGTC	AGCTCAAGAC	CGAAGCTGCC	AAGGGCGTTC	ACGTTCCCGGT
16021	CGACGTAACC	GTCGACAAAGA	AGAGCAAGAA	GGGAGGCTTC	CTCGGAGGTC	TCCTCGGCGG
16081	CAGCCGGGGG	CTCGGAGATC	TAGGCGATGA	CGCCGAGAAAG	CGCGTGTCTC	AAGTACAACA
16141	CTTGGCGAAG	TGTCCTCTGG	GCCTCACACG	AGCCGCTCTGG	ATAGGCTGAG	GCATCGTCTC
16201	CGTAGCAGCT	CCGCTGGTCG	GCATCGTGGC	CGGTCTGCTG	GCCGGCTCTG	CGTCGCTGCT
16261	GTCTGGTTTC	GGAGCCGGCG	CTGGCGTAGT	CGCGCTCGGC	ATGGACGGCA	TCAAGGCAGC
16321	CGCCTCGACG	CTGGCCCCGA	CGCTGGAGAC	GGTCAGGCC	GCTGTCTCT	CGACGTTCCA
16381	GCAGGGACTC	ACCCCGGTGT	TCCAGCAGCT	CGGGCCGATG	CTGACCGCGA	TCACCCCCAA
16441	CCTGAGAAC	GTGGCCTCGG	GCCTCGTGA	CATGGCCGGG	TCGATCACCG	ACGTGATCAC
16501	CCAGGCTCTC	GGTCTGCGAC	AGATCCAGAA	CATCCTCAC	AAGACCGGAG	AGTTCTTCAC
16561	GGGCTCTGGC	CCTGTCCTCG	CTACCGGCAC	GCAGGCGTTC	CTGACGCTGT	CCAACGCCGG
16621	CGCGAACCTCG	TTCGGCACGC	TCCCTGGCTCC	CCTGCGAGGAG	TTCACCAACG	GCTTCACAGCA
16681	CATGGTCAAC	CGAGTCACGT	CCAAGGGCT	HTTCGAGGG	GGCATGCAAG	GGCTTTCGCA
16741	GACGCTGGC	AGCGTCTCA	ACCTGTTCAA	CCGGCTCATG	GAGTCGGTC	TGCAGGGCAGT
16801	GGGACAGCTC	GGCGGTCCGC	TGTCGACGTT	CATCAACGGG	TTCCGGAGATC	TCTTCGTC
16861	GCTGATGCCG	GCGCTGACTT	CGGTCTCTGG	TCTGATCGGC	AACGTCCTCG	GGACGCTGGG
16921	CACACAGCTC	GCTCCCATCG	TCACGGCGCT	CACGCCGGCC	TTCCAGACGC	TGGCGAGCAC
16981	GCTCGGCACG	ATGCTCACCG	GAGCCCTCCA	AGCTCTGGGT	CCGATCTGA	CTCAGGTGCG
17041	TACGTTGATC	GGCACGACGC	TGAACACGGC	GCTGCAAGGCT	CTCCAGCCGA	TGCTGCGCGC
17101	GCTCATGCG	AGCTTCCAGC	AGATCTCCGA	CGTACTGGTG	ACCAGTCCTG	CCCCGCACAT
17161	CCCAGGCTCG	GGCACGGCCC	TCGGCCAGGT	CGCAGGCCGCG	TGCTGCGAC	TCGCTCCGAC
17221	GATCATCTCG	ACGGTGGTTC	CGGGCTTCTG	TCAGTGGTC	CCAAGGGTCG	CTGAGCTAGT
17281	TCCGACCATC	GTCAACCTGG	TCCAGTCGTT	CGCCAACCTG	ATGCCGGTGG	TTCTGCCCCCT
17341	GGCGCAGGCT	CTGGTCAGCG	TTGCTGGCGC	GGTGATTCA	GTGGGTGTCT	CCATCGGCCG
17401	CGCGCTCATC	GGCGCGCTGG	CGAACCTCAC	GGAGATCATC	TCCAACGTCA	TCAAGAAGGT
17461	GTCCGAGTGG	GTCAAGCAGCT	TCTCCAGCGG	AGCCCAGCAG	ATCGCTGCGA	AGGCAGCGGA
17521	ACTGCCGGGG	ATGATCCAGT	CGGCTCTCGC	CAACCTGATG	GCCATCGGCC	TGCAGGCCGG
17581	TAAGGATCTC	GTCCAGGGCC	TGATCAACGG	CATCGGCCGG	ATGGTCAGCG	CAUCGUUUA

17641	CAAGGCCAAG	GAGCTGGCGT	CCAGCGTGGC	TGGTGCAGTG	AAGGGCTTCC	TGGGCATCGA
17701	GTCCCCGTCG	AAGTTGTTCA	CCGAGTACGG	CCAGITTCACC	GCCGAGGGAT	TCGGCAACGG
17761	CATGGAGGCA	GGGTTCAAGC	CCGTCATCGA	ACGGGCCAAG	GATCTCGCGG	CTGAGCTGTC
17821	CAGGGCGATG	GAGTCGGGCA	CCGACCCCTC	CGGGATTCTC	GCTGGGCTGG	ATCAGAAATGA
17881	GCTGAAGCAG	ATGCTGGCGG	CTCTCGAAGA	GGAGCGCAAG	CGACTCAAGG	TCGAGAAAGAA
17941	CGGTATCCCC	AAGGGAGACA	AGGCAGGCCG	AGAGGCCTG	CAGAACCCAGC	TCGACCAGAT
18001	CCAGGCGCAG	AAGGACATCC	TGTCTTACCA	CGGTGACCGC	ATCAAGAACG	AGTCTGAGTA
18061	CGGCAGACATG	GCCCCGAAAG	ACCCGTTGGT	GAAGGCAGCC	TCCGGGCTGA	TGAGCCGACC
18121	GGTCGACTTC	GCAGAAAGCGA	CTGGCAAGCA	GTTCCTTTCG	GACATCGGCA	TCAGCGGAGA
18181	TGGGTTCATC	TCGAAGGCCA	TCACCGAGGG	CATCCAGTAC	ATCTTCCAGA	TCGGCTCTGT
18241	CGATGAGGCG	CTGTCGATCA	AGGACCGCGA	GGAGTCGAAG	AACGCGCTGT	CCGTGGTTGG
18301	CCGCTGACTT	GACATCCACC	AGGAGGTAAG	CATTGATCAC	CGACACCATC	GTGAACTCG
18361	AGGGTGTCAA	TGGTGAGCGT	TTCAACTTGA	CGACCGGTGA	CCAGGGTGTG	TACCTGGCCA
18421	CAGACGTGGA	GGGTGTTTC	TACGACCCCTC	CCGTCAGGAT	CGTTGTTGAA	GAGCCGGGGA
18481	ACTACCCCAG	CGCTCGCTAC	TTGTCCCACC	GAGCCCTGAA	GCGAGACATC	GTCTTTGGGG
18541	TCGTCTACCT	CAACGACGCG	AAGCAGGGC	CGCGCTCTG	GCTGTCGCGA	GACTCCGAGT
18601	GGCGCAAGGC	GTGGCGTTC	AACCGCACCT	GCAAGCTCTA	CGTCACCAACC	CCGGACTCCG
18661	GTACCCCTGA	CCTGAAGCTG	GCGCTGTTG	AGTCCCCCAC	CGTCAGAGATG	GACACCAGC
18721	CAAGAGGATAA	ACCCCTTGGAG	GTCAAGGTGA	TGTCTGTCAT	CGCGTACGAC	CCGTTCTGGT
18781	ACGAGGACGA	CAAGGTCTTC	TCGGCCAAGA	CCAAGACCGA	CACCCGGTTG	GACCCGTCGT
18841	TCTGGACGCC	GCCGTGGCCG	TGGGAGGAAC	TGCCCAGGA	GACGCTGCGG	ATCAAGGTG
18901	GCCCGAGCA	GGGTGGGCTA	AACCCCAACCG	ACCAGTACAT	CTTCCCGAAG	TGGACCGTTC
18961	CCGGCTCCAC	CGAGAAGGTG	CCGAACCTTC	CCTGGCCGTT	CCCCCGAAC	GTECCGATCC
19021	CGTGGGAGAC	AGCACCGTTC	ACTCAGTTG	TCATCCCGGA	CTACTCGTTC	GAGGATGAGG
19081	AGTTCCGCAA	CCGCCGGCTC	AAGACGCCGG	GGTTGATCTA	CGGCGAGAAC	TGCGTCATCG
19141	ACACCGACCC	GCGCGAGGAG	CAGATCGTT	CCGAGTCGGG	CTTCCCCGGT	TGGGCTCGGA
19201	TGAACGGTGT	CCGGTCCCGC	AACTCGATCC	CGCCCTACAC	CGAAGAGGCT	GAGTTCTGCA
19261	TAGACGATC	GGGATGCGCT	CCGGGACAGG	TAGTACCTC	CCGGCTCACG	AGGCGTGGT
19321	CGCGTGTCTG	GGGGCTAGAG	TGAGTGGTCT	GACGAGCGTT	CGTGAGGCCG	AAGATCTCTG
19381	GCAGAAAGATC	CAATTGCGGC	GCTGCAAGCG	CGAGCAGGAA	CGGCTCAAGC	ATCCCCACGT
19441	AGAGCTGCGC	GATGGCGACT	TCCGCTGCG	CGGCCTGGTC	GCTGGCGAGC	GGGTGTCGGA
19501	GTGGGAGTTG	ATCGAGAACG	AGACTGGCAC	CTGACCTTGC	CAGCTCTCAC	TGAGCCATTA
19561	CTTGGCGAAG	TGGGTGATGG	ACCACCGGGG	TCGAGCAAAG	CGCAACAGTC	TCATCAACAT
19621	CGAGAAAGCAA	GGCGCTCGAT	GGACCGGGAT	GATGGACAC	TACCGGGTCA	TCAAGACCGA
19681	CCGAGGGGAC	GCTTACATCG	AGATCGTT	TTTGACAGC	TCGAGCAGA	CCAAGCATAT
19741	CCGGGTATGG	TGCAACCCCTG	TCCTACGGCC	CGAGCTGCA	TTCCCCAAGG	TGTGGATCAT
19801	CTTCGGGCCG	GCCAAAGTGGT	GTTTGCTGGT	GACACTGTTG	GTCAACCTGC	TCAGGCTCGA
19861	GACGAGCTTG	TGGACGCTGC	CTGATGACCC	CACGGACATC	AACGAGTGG	TGGGCTCGAG
19921	CTTCAACCCA	GCAAATTGGC	GGAACATCGT	CAAGCCGTT	CCGTTCTGG	CCGACAACTC
19981	ACCGGTACG	ATGGTGTCA	GCCGGTTCGG	GACGTTCTAC	GACACCGCCA	AGAAGATCT
20041	CGAAGACCAT	CAGCTCACGCG	TGACGTGTCG	TCGGTACATC	AAGGACCGCG	ACCCGCATCC
20101	GTTCGAAGAT	CTCAAGGGGG	TCTGGGGAAAT	TGATCCTGTC	GAAGACCTGC	TGCAGAAAGAT
20161	CCCGCTCCGG	GACGGCTCGC	TGGTCTGGGA	CATCGAGGAC	AACTCAGGTT	GGGGCACTCA
20221	GACCGGCTTC	GGGGTTCTGT	GGCTGACCGG	TTCGCTCCGA	GGGATGGTCC	AACTGGCCGG
20281	CGACGGGAC	GTGGAGGGCG	TCGATGTTG	CACCGGGGAC	TACACGTTCC	CAGGGCAGTA
20341	CTACTCCCCC	TGGTTCATGG	GCACCAAGCCC	GATAGCACCC	CACGTCGTGT	TCGAAGAAGG
20401	ACCGCTGACC	GGGATCAAGT	CGTCGGAGTT	CTCGTACTAC	GAGGCCACCG	ACACCAAGCTT
20461	CCTGGCTGGT	GGACAGAGCG	CACCTGGCAT	CAACGAGGGC	ATCTCGGCC	TGGTGAACAT
20521	CGGTGGCGAC	CTGCTGACCT	CGTTCATCAA	CAGCCAGCTC	GCCGCGCTCG	GCGCGGTCGG
20581	TGGAGCGATT	GACCTCCCGC	CTCTGGGCGG	TCTGCTCGAT	GCGGTGTTG	AGCCTCTGTA
20641	CTCCGATGTTG	TTCCGGCGCG	TCATGGAACT	TCCGACTCTG	CGTGCAGATGG	GCATCTCGCT
20701	CCCGATCTCC	GGGCTCGAGG	ACATCGTCAC	CGGACTGGGC	GACTTCCACT	ACTTCGAGAA
20761	CATGGCCGAC	GGGGCGATGA	AGGCCTTAC	GCTGTCAGCG	TTCGCAGCCA	TCGCATCGCA
20821	GATCCACAAG	ACGAGGGCTC	GAACGACCCA	CACCCCTCAAG	GTGTCTGACG	CCGCTCCGTA
20881	CATCTTCGCG	CCAAAGCCCT	ACGGGCACTG	CTGGATCGGA	GATCGCGTCG	GCACGTCGGT
20941	CCTCGGCTAC	CCGGTCGAGC	ACCAAGTTGTT	CGTGGAGCGC	ATCCGCAAGG	TGAAGTACCG
21001	CATCGACAAA	GACGGCATGA	AGCCGTTGGA	GATCGAGATC	GGTTACCGCG	AACCGAAGAA
21061	CCCAGGACTA	CACATCCTCG	AAGAGATCAA	GCGCGTCAAC	GGCGCTCTTG	GCACGCGGGG
21121	GATTCTCTAA	ACCGAAAGGC	ACGCCGATG	ATTCCTCAC	AAGAGTCTCA	CAATCCGAAC
21181	GACCCGCGAC	AGCACGTCAT	GTGGGCGTCA	CGCAATCTCC	CGATGATTG	TGGCGTCGGG

21241 GCGATCACGC ATCCGGGTTA CCTGGCGGAT TGGTCAGAGC ACTTGTGGAA GTGCGGCTTT
 21301 CGGCACGTCG ACTGGCTCCG GGAGCTGGCT GATGAGGACG GCAACATCCA CGTCAGTCAG
 21361 CTTCTGACC AGGAGATCAA GTTCAGCAG CCCTTCCGGG GCCAGCGAAG CGACTACAAC
 21421 AACGCAGCTC GATGGGTGG CAAAGACGAT CCTGACCCAG AGCCCGTGCG TATTCAGAC
 21481 ATTGCGAACG TCACAGACCA GGAGAACAGA GCGATGATCG CGCAGTACGA ACGAGACGGT
 21541 TGGATCAAGG ATGGATCCU² CGGCCAGCG ATAGCCGAGG TCCTGGAGTG ACCCGTTCA
 21601 ACCCAGACTC CATAGGCAG ACAGTGCAC TGCTCGCGT TGCGTTCTG ACCTTCTCGG
 21661 TTCCCAGCATG GTTCACCGGA CGAGCAGCGA AGCACAGCAG TGACATCGGC GAAATCAAGG
 21721 AACAGGTATG TAACACCCAC GACACGAAC TGCGCGATGA CCTCGACAGC GTCAAGGCAG
 21781 ACATCAGCGA CTTGAAAGAG ATTGTGTTGC AAGGGTTCCA CCAGGTGAA GAGTCGATCA
 21841 ACCTCGAGCG CCGTGAGCGG ATCGAAGGGAG ACCGCCGAAA GGAGGTTGCG TGACCTACCC
 21901 CACCAACCCA CTAGAGGCCA TCGGCGCTGA CGGCGCATTC GAGATCGTG GGGCGACTG
 21961 GAGCTTCGGC CAGGACTACA CGAACACAGG CATCCGGGCT CTGTTCACGA TGCCAGCGGT
 22021 CACGATGGAG AACGCTCTCG GCCTGCTCGA AGAGCACCTG CTGAAGCTGC CTCTGGAGGC
 22081 GCTGCAGGGC TTCAAAGACA TGATCCCGA CTGGGTGCAA GGAGCATTG ACACGGTCAC
 22141 CGGCGCTGTG CAGGCGATCA TGAACCGCGT CCAAGACGGC CCGCTGTGTC TGAAGTTGCG
 22201 CGAGTTCAG CTCCTCCCTGC AGCGTCTGCT GAACAAACCG GCGGAGGTCA TCGGCGAGAT
 22261 CCCCCAGACG TTGATCGACG GCCTACAGGA CGCGCTCAAC ACCGTCAACA ACACCATCCA
 22321 GACCATCGTG GACATCGTC TGCAAGCGCT GGGCATCACC CCGGAGGGGG AGCTGATCGA
 22381 CCGGATCTC GACCTGAGCG ATGAGATGGA GTGGCTGCG ACCGCAGCT CGAACGAGC
 22441 TACCGGCATC CAGGACACCT GGAACAAGTT CTGGGGAGCC CTCACCGGGC GCGTCCCAGA
 22501 CCAGGACCAAG ACCGTCGCTG AGCCCCCGA GCGTATCGGC GAGCTGGCG GCACACGTC
 22561 TGCTAACTCG TCTGCCATCG CGGAGCTGCA GCGTCGACTG GACAACCAGC AGAACGCTGG
 22621 CGCGTGGCC GGCGGTGAAGC ACTTCGAGCG ACTGAACATA TCCGGTTGGG ACATCAGGTA
 22681 TTCCAACGGA TCCAGCGGCC GAGGGTAACTA CCGTGCAGC GGCACCAAC TGGTCTGGAT
 22741 GGACGAAGGC AACCAGCAGA ACACCGCGAC GTTCTCGGC ACCAACCCCG CAGACGGAA
 22801 GACAGCCACC GACTACAGA AGATGACGTT GTTCTCGGC ACTATCTCG GTGAGGTTACA
 22861 GACCGTGTTC CGCCCGCAGG GAGGTTGCA CACCCGGCTA TGGGTCGCG TCAACGACAA
 22921 CGCTCCGACC GTGGCCTATCA CCGACGGCGT GTTCGTAGAG ATCGGCGCG TATCGAAGGC
 22981 CCAGATCGGC TACCGCCGCA ACGGCAATGA CAGTTCGTC GGATCTATGG TCGACTGCAC
 23041 CTGGGTGCT GGATCGATCT TCGCTCTGAC CGCCGGCACG GCAACGGTG CTGAGAAGTT
 23101 CGAGGTCTCG AAGAACGGCC CGGTGCTGGC CACATGGTCG GACGACGGCG TCGTCTCCGC
 23161 GATGGGTGCG AACTACCGCC GCTGGGCTG GGAAGGCCAG GCTCGTAACC GCAACCTCGG
 23221 CCAGGGCACT CGGAACCTCGG TCACCCGAGT GACGATCACCC GACAACGATC CTACCGGGC
 23281 AGGCGGTGGA GCTGTCAACG TCGGAGGAGA TGTCGTAGGT GTACTCCCCA TAGAGAACGG
 23341 AGGCACCGGA GCTTCGACAG CTTGGCAGG CCGTACCGCT CTCGGAATCG ATGACCTGGT
 23401 CGAAGATATG TCCGACGTAG TTCGTGGATC CGTGAAGGA CTCCCCTGTA TACCGAAGAT
 23461 CTGGGTAGGA ACAGAAGCTC AGTACACGGC TCTCGCCACC AAGGATCAGT CCACGCTATA
 23521 CTTCAGGACC GCTTAATGAC TGGTATCTCG TTGGGTGTCA ACGACATCCG CAACCTCTCG
 23581 ATATTCTTAG GCGTCAGCAA CAAGATATTG AAGGTCAAGTC TAGGCACAGA AAAGGTCTGG
 23641 CCTGCGTTCA CCCCCGGTGT GACCACGTT GCAACGGTCG GCACGTACAC CTACAAACATC
 23701 CCCGACGGGG CCAAGTTCAT CGACGTATC CTCCCTCGGAG GAGGCGGGGG GGGTAAAGGC
 23761 ATGGCCCTGG CTGACGGCTG GGGCAGAGGT GGAGACGGCC GAGGCTGGC TATCGTCACT
 23821 CTCGAACGCG GGGTACACAT CCCGTGTGCG ACCAAGACGA TCACCGGGCT CGTCGGAGCT
 23881 GGAGGGCGCAG CGGGAGCTGG CTCTGTATTC TCAGGCAAGG CCGGAGGCC CGGAGGAAC
 23941 ACCACGGCGT CCGCTGTGG ATGGTCAGGT TTGACCGCAA CGGGCGGTCC CGGAGGCTCT
 24001 GTGATCGACA TCCCTCAGCGT CGCCGGAAAG TCGCTGGAG ATCGGACCTA CAACGACCAG
 24061 CTCTACATAG GCGGCGCACA ACAGAACTCA GCTGGGGGA ACGGAATGC TCCTGGCGGC
 24121 GGCAGGGCTG GTGCCCAGGT CTCCGCACAG AGCGGGCGGT CGTGGCGCTCG CGGCCAGGGC
 24181 TGGTCTCTCG CGTACTGACA AGAAACCCCC CTCTTTAGGA CTCAGTGTCC TTGGGAGGGG
 24241 GGCTTTTGTC GTTCTCAGGAG GTCTGGCCA GCTTGGACAT CGCCTCAGCG ATAGCCTCGT
 24301 CGCGGGCCTC AGACGCCATC TGGTACTTCA TCGCCATCCT AGGAGTCGTG TGACCGAGAC
 24361 GGGCCATCAG CTCCCTGGTC GTCGACACCG CCTGAGCGGC GAACGTAGCG CCGACAGCGC
 24421 GGAGGTGCGT GATGCGGAGT TCCGGCGAC GATCTTGGC GTAGCCACGC TTACGCGACT
 24481 TGGTGAACGCG GGACTTCGAC AGCCGGTTGC CCTCGCTCGT GGTACCCAGG AATGCCCTCGG
 24541 GGCCCTTGTGTT CATCTTCGTA CGGTCTTCA TGTGGCTCG GATCATCTCC GCGACGTGAG
 24601 GCGGAACCGT CACAGGACGC TTTCGACCGA CGGTCTTGGC GTTGCCAACG ACGATCTTGT
 24661 TCCCCACGCG GGAAGGCCA CGGCGCACCC GGAGCTTCA CGTCACTGGC TCGTCCACG
 24721 TGTCTTGCG GCGAAGCTCG ATCAGCTCTC CGAACCGGGAG GCTCGTCCAC GCCAGGATG²
 24781 ATGCCCGCAT CGGGTAGTGC TCGAAGATCT CAGCGGGCGAC GATGTCCACG TCCTCAGGCG

24841 TCAGCGCCTC TACGTGGCGC TCATCGGCTG CCTTCTGCTC GATCCGGCAC GGGTTCTCTG
 24901 CGATCAGCTT GTCCCTCGACC GCTGTGTCA TCACCGCCCC GAGGACGTG TAGGCATGCC
 24961 GGGGGCAGT CGGGTGCTTC CTACCCATCC CGGCCACCA CGCACGCACC AGAGCTGGCG
 25021 TCATCTCTGT GACGCCACT TCACCTAGCA CCGGGTAGAT GCGGGCTCC CGGTGCCCCG
 25081 TGTACAGATC CCTGGTGGCG TCTGCGAGGT CGCGCTCCAC GAGCCACTTC CGGGTGTACT
 25141 CCTCCAGCGT GATGGCGCTG GCGGTGCTT TCTTCGCCCC CGAGCCAGGC TTCGGCGTCC ATCTTGTGT
 25201 TCTCCATCTC GATGAGCCGC TTCTCGCCCC CGTACACAC CGTCCCGGG GTTGACGTAT GAGGCTTGG
 25261 CGTAGGTCTG CAGGGCGTAG TACCTCACAC CGTCCCGGG GTTGACGTAT GAGGCTTGG
 25321 TCCTCCCGCT GGGGTGAGTC CGGGTGCCTA CGCATCCGCG ACGTGCCAAC TAGGTCTCCT
 25381 CTCGTCGTGA ACGAATTCTAC TTCCACTTAG AGGATGCAGC CGAGAGGGGG TAAAAACCTA
 25441 TTCTACGACC TCGAATTCTAC GTCGGCAGAC ACCCATTCTT CAAACTAGC TACGCGGGTT
 25501 TCTTGACCGG CGCATATGTG GCTGGTCAGA GGGTGTCTTC GCCCTCTGGG CATTTCCTT
 25561 CGATTCCCGT CGGGTGCCTC GTGCGACTCT TCTGACCTGG GCATACGCC TTGCAACGCA
 25621 TCCAGGGGTC TCGAACCTT GATGCTGACA AACGAATAGA GCGGGGGGG TGCGGAACA
 25681 TCCCTGATCT GGCAATTCTTC GATTGGACG GGTGCGTGA AGAGAATAGA CGGGGACAAG
 25741 GACGAGGGGC ATTACACCCA GGTGGAAACCTCCTGGCGTGCAG GCGGGCTGGC GTTCGCCCTG
 25801 GTTGCACCGG GAGTTGCAGC GCTGGCTCG GCCAACGGGG TGGCCCAAGC AGAGATGGTG
 25861 TCGTTCACGG CTCTCAGCGA GACGCTCGTC GCCACGGTCG CCACAGTGGC CCTCAAGCAG
 25921 CCCCTGGTGG TCGACGGCCT GCTGCTGATC CTGTCACCG TCGTATCGGT GGCGGGCAAC
 25981 AACAGTTGGT ACGCGTGGTC CGGCATCATC GCGATGGTGA TCGCTGCGAT CCCTCCGCTC
 26041 GTGGCACACG CCTACCCCCA CCTAACCGTG ATGCTGGCGA AGCAGCACTC GGAGCACGCC
 26101 TGGCTACTGG CGTCGACCCA GAGAACCGCG CCTCGGGGGC TGGAGCCCG TGCCGTTGA
 26161 GAAGTACCTG TCTCGGGCC AATAACATAGA GAACTATGG ATGTAAGGAGG CACAAAAAAA
 26221 CTGCGCCCGA CGGGGACAGA AGGCGACCCC AGGGGCATG TGTCTGCTTC AGTAGACCTT
 26281 TACCCCCCGA GCAAGCCCGA TCATCGCCAT GATGACCCAG ACGGGCAACC ACATCCGCA
 26341 GCGAGTCCGA CGGGGATGTA GGTGATCGC GTGGTCTGC CTGACAGGCA TGACAGTGGG
 26401 GGTGATGAGC GAAAGCAACA CGACCGGGTA CGGGGAGGCC GCGTACCACT GAGGTGCGATC
 26461 CTGCGCCATC GGAGGAGGGCG TGGTCATCCC GACAGCTAC TTGCGATGG GTCGCATCAG
 26521 TTGTTGGGC GGATACTGAT GGTGATCTCG CCACCGGGAT CAGCCGGGA ACACCGAGGT AGTCAGCGGT
 26581 CTCTCGACC GACTCGCGCT GCGATGTAGT TGCGGACGGT CTTGGTCTGC TGACAGGCA TGACAGTGGG
 26641 CGGGCCGTCG GGTGATCTCG GGGGATCTCG CGGGTCTCTC CGTGTTCAT CGGTGTC
 26701 CTCTGGATG GATGCTCTCG GGTGATCTCG GGGGATCTCG CGGGTCTCTC CGTGTTCAT CGGTGTC
 26761 CCGAACCTG GATCACGCC CGATCTCTCG GGCTCTGGAG CGGACGTAC CACATCACGT
 26821 TGACGGTGT CAACACAGACA TCGAGCTGGT TGGCTAGCTG CGGACGTAC CACATCACGT
 26881 CTCCGAGTTC CGGCTGGAGG TCGTCTCGGT TCTCTGGGT GATGACACCG TCTTATCCC
 26941 GGAGGATTT CTGACCTTG TTGGCGATCT CGGCGGCTTC GCCTACGAGA CCCATCGTCA
 27001 CGTAGGAGAG ACCCTCGATC CTGTCGAGT CGGCTGCACC GGGTAGATC GCTGTGTC
 27061 TCGGGCGAT CTGGTAGATG TCGACGTGCA TCAGATCATC ACCGGGAACA ACTGGGCC
 27121 GGGCATCTGG ATGAACACCG GGACGCTGGG GGTGATGTCC GACGAACCG TGCCGCC
 27181 ACAGGGGAC AGGCTCAGGG TGGCGGCAAG GCCGATGATG GCTGCTGCGA TGGTCTTCTT
 27241 CATCTGTTGC TCCAGTAGCT AAGTTCCGAC TCCAGTTCGC GGATACGCC CTGTAGCCCT
 27301 TGGTTTCCA GGTACGCCCT GGCAGGGTT GCCTCGGCCG GGTACCGGGC CTGTCCTTC
 27361 GACGTGGCCT CATCGATTGC CTGCGTGTGC CGGGGATCA GATCTGGGAT GGCAACGTG
 27421 AGACCGCATA TGAAGTCGGC GTCTGGCTCG GAGAGGGGG AGCCACCCAG ATCCTGTCC
 27481 TGGGTCTCCT GTTGTGACCC CGAGATGAC TGATCTCTA GCGCTGGTC GGTCTCGCAG
 27541 ATAGAAGGCG GTTCTACCTC CTCTGGCATC CAGTAAGTCT TCTCAGCCCC GGTGGACTTC
 27601 GCGCACTGCT GGTAGAGGAT GTCGAAGAAC TCGTGGTCT GTTCGTCGGC GGTAAATCACA
 27661 GATCGCTCTC TTCTACCAT TCGTGTAGT AACACGTACA GCGCAGCAG GTGCAAGCAGC
 27721 CGCACCTCGTA GGTGCGTAG TCGTAGTCAT CCCAGTCGTC TTGTCATC TAGCTGTACT
 27781 CCTCTCATGAT TCGGTGCAAC GCACCGCTCG GCACGCGCAT CCTCAGGTG ACCGTTGCT
 27841 TCAACCACGC CCATTGCGC TCGTGGTGA TCTCCACTG GCTCTTGAAT GTGCGTGTCT
 27901 CAACGAGGAA CTCGACAGTC AACGTGTGCA GTCCGTGTG GCTGGCTGG AATCCGATAC
 27961 CGTCCTCGAC GATGTACCGAG GGCAACTCTC GGGCGTGCAGA TAGACGGCC TTGTCGGTCA
 28021 CCAGTACTTC AGGGAAAGGTG TGCTCGGTCA AGGGCGTCCC AGGTATGGGA TGACGCTGGC
 28081 CGCGAACATCA AGGAACACCA TGTGTCCTGG GCAGTCTCG GGGACGTTGT CGGGCGTTC
 28141 GGGGGTGTAG ACGGCGATCT CGTGGCCCTC CAGGGTTCCA AGTCGGTGA GCTGTAGAT
 28201 CGCCAGACCC ATCAGCTCTT CATCGAGACC GTTCGGTGT GGCAGTACAA CTGGCTGG
 28261 TGGCATTAGC CCTCCCTCGG AATACGTAT GCGCTGAAC CGACGGCCGT AATGCCGCT
 28321 GGCAGTTGGA ATCCGAACCG CTCTCGAAC TCCCTCGTTGG TGATGGGGC GTACTCGAAG
 28381 GTTCCGGCA CTACCTCGCC CCCCCCTCG ATCAGGAGGT ACGCACCGGC GCGTACACC

28441 TCCTCGTCGT TCGGCCATCC GACTACGGTC CCGAGGACCG TGAACCTCCT CGGCCTCCATC
 28501 AGGGCACGTC CACTTCGTTG ATGAGGAACC GCATCGGAGG TGGAGTGAGC ATTGCTCGG
 28561 CTATGGCGAT GAGGGCGTTC AACTGACCCCT TCAGCAGCTT CTCCTCGTCG CCTGCGGGAA
 28621 GGTGGCGCAC TCGGCGCTCC ATCTCTTGG CGCGTTCAG ATATTGGTG GCTGTCAAGT
 28681 TGTCTCTT AGTAATCAGC GCCGTAGAGC GAACCCCACG AACGCTTC GACCTCGGG
 28741 TCGGTGCCAA CCAGCACCGG ACCCATCTGT TCTTGATCA GGTGGCCAAT GTGTGCAGCG
 28801 GCTCTCTCAG CCTCTGAGGC GGGCAGAGAC GCGACGATCT CGTCGTGGAT AGGCAACCGT
 28861 AGGTACGGGG TGTATCCGGC CTCGTGGAGG CGAACATCAGAG CCCGACAGGT CACGTCCCCG
 28921 GACGACGACT GGATCATGTA GTTCAGCGCG GAGTATGTCC GCGAGCTGTC CACCGGCAGC
 28981 CGCCGGCCCA TCGCGTTGAC GATGTAGCCG TTGCGGCCAG CTTCCATCGC CAGCTTCTTG
 29041 CTCAGCCGCT CCACACCGGG GTATGTCGCA GAGAACGCTT CATGAACCTCG CTGGCCACA
 29101 GGGATCGAGA TCCCCACTGC CTCAGCGAGA GCCTTCGCCC CACCGCCGTA GACCTTCTGA
 29161 AAGTGGCGG TCTTCCCCAAC CTTTCGGGG ACCTGGGCTG CGTCAGCGGT CATCTGGTGG
 29221 AGGTCCGCAC CGTTCTCGAA TGCCTCGATC ATGTTGCGGT CGCCCGACAG CGCCGCCAGG
 29281 ACGCGAAGCT CTCGCGCTG GTAGTCGACT GAGGCCATCA CATGCCCTGG CTAGCGATG
 29341 AAGCATCGCC GCACGATCCA GTCCGACGAC GGCAGCGTCT GCGCCGGGAT GCCGGTGTAC
 29401 GACATCGCG AGGTCCGGC CTGCACTGGG TTGATGAACG TGTGGCAGCG GTCTCTAGAG
 29461 TCCCTGGTGT CGATGAACCT CTGGACCCAG GTCTCCGCG ACCTCCCCAG CTTCTTAGCC
 29521 TCCCTGAGCGA TGGCGGCAAG CTCGTTGCCA TCTTCGACCA GCTTGTGAG CAGAGCCGCG
 29581 TTGACCTGGC GCTTGCCAGT CTCGGTGCAGA CGGGTGTATCT TGACGCCAT CTCCCTCAAGC
 29641 CCCTCGGCCA GATCCTCGGT CGAGTTGACC TTCTCCACG CGTACTCGGT GAAAGCGATT
 29701 GCCTCCCGA CTCCTCTGATC GGCAACACCAC TTCTCGCGA GGCACCGCGA GTCACCCACA
 29761 TCGAGCAGGA AGCCCCCTGCC GTCGATGTAG CTGCGAGATCT CACTGATCTT GTGCTCTGAC
 29821 GGCACCCAGCG ACCGACTCAGC GTCGGGCACC AACGGTGTCA GGCTTGTCA GACCTCTGGCG
 29881 GTGAAGATCG TGTCCATCCC GGCGTACAGC AGGTACTCCG GGTGGAACAG GTCGATGGTC
 29941 GACCAGATCT TGGCCTTGGT CGTCTGTGC TCGGCGGCTA GCTTGGCCAT GAGCTTCTTG
 30001 ACGTTCTCGG CTCGGTCCTC GGAGATGAAC TTCGCGATCA GCTCTTCGAG CGAGTGGCCG
 30061 AACCCGCCGG CTCGAAGGG CCGGGGTCC ACCAGCTTCG CCAGGATCTG CGTGTCAAGC
 30121 ACGCGGGGCC ACAGACCCCTC CACTCGATC CGGAAGCACT GGTGAGCAG CTGGAGGTGCG
 30181 AAGGAGGCCT TCTGGAGCAC CATGCGCTTG AGAGCGCCGA TGGCGATCCG CACGTCCCTCG
 30241 ATGAACACGT CTCCCAGCTC CACCGGCACC ACCCAGGCTT CGTCTCTGAGT ACCGAACTGG
 30301 ACGAGGCCGC ACTCGAAGGT GTCGCTGTAG ATGTCCTAGCC CGGTGGTCTC AGTGTGACG
 30361 GCGAGGCAGT TCAAGGTGAGC CGGGATGAAG TTGCGGAAGC CTCAGCAGTC CTCTGGGTT
 30421 TCAACGACGT TGACGGTGCAG GAGGTCTCC GAAACCTCAT GCGCAGCTC GATCAAATG
 30481 CTCTCTACT GGAAGTACTG AGGCGAACATC CAGGGTGGCTG AGGCCATCTC CTGATGGCC
 30541 TGCTGCAATGG CCGCTCGAA CGGACAGTCC GGGTCGATGT CCGGCTTGTGA ATGGGTGACG
 30601 ATGATCCGGC TGTTGCCGCC GAAGTGTGAG CTGACCAAGC CCTTGGGGGG CAGCTTCTTC
 30661 AGCGCCTTGA TCAGTTCTC AACCGTGGTC CGCGTAGGGG CCTTGCCTGC AGGCAATGCC
 30721 TCCCCCTCGT ACGGCACGTC CAATGGGATC GTGTACCGCT CAACGTCTT GATCTTCATC
 30781 GAGCCTCTTC CTCTTCGACT ACCTCGCTA CCCGGGGAA TAACCTCGCT AGTTCTGCGG
 30841 GTAGCAATACT TGGGTACTTC TCTCGGGCTT CTCGCGATCGC TACCGCGATC CCAATCAGGG
 30901 CAGCGAGCAG TTCAATTGACG GAGTACGCC ACAGCTCTC CGGGATCTCT TCTCGGGTCA
 30961 TTAGGGTAG ATCCCCCGGA CGGTGGCGCA GATCGTGGCA GGGTTCACGC CGTAGTTCTC
 31021 GGCAGAGATC TTCTGCTTC TACCGGGCAG GTACGCGCTG CGGATGTCTC TGACCTCGCG
 31081 CTCGGTGGC TTCTTGCCTG TCGGCCGGCT CGGGCCGGTC TCAGGCTTGA CCTGAGGCCAG
 31141 CGCCTCGCG AACAGCTCGT TCTCGCTCCG CTGCTTGTAC CGTACCGAC GGTGCTGTC
 31201 AAGCACCTCG TTGAGCGCTG GGGACAACCT GACATTGGCC TCACGCACTA CCTCGACCTC
 31261 TCCGAGCAAG TTCTGATCC GGTAGTCCCT GTCTCGGTTC TCGATGCCA ACCGGTTGTT
 31321 CTCCCTCGGAA AGCATCGAGA CCTTGATTG CGCTCTCTCC AGCGCAGCTT TCAAGGTGCTT
 31381 CTTCCTCATT CAGCGCCCCCT CTCTCGCGG AACTGTTCTG ACTCGCTCTC GGTCTATGTAG
 31441 TAGTAGTAGT CAACGACCTT GTCCCACTTG AAGGGTCCGG ACGTGCGCTC ATCGAACGCG
 31501 ATGATCAGGA CACCCCTTTG GGTGTCTAGG ATCGGCTCCG CAGCCACGAC GTGGAAGCGG
 31561 TCCCTGGAGGG TCAACCGAGT CGCTCTCGCT GCCATGTCAAG TTCTCTCAG TAGCTGTAGG
 31621 GGACATCCGG GATGTCCTGG TAGGGTGTGG GTGCGATCTG TCGGAGCTGC CGAAGCAATT
 31681 CCCCTGCCAG CTCACGGATC TCGGCATCCG CGGCCTCGTG CCAGCGGGCC TTGATGACGT
 31741 ACCGCCACGC CCGATGGTTG CCCGTGACGA CCATCGGTGA GTTCGTCTAG TTCCGGCAGGA
 31801 CAGCTCGCGC TGCCTCGCGG GCCTGCTTGC CGGGCAAGCC CCGGTCAAGCC AGCCGGTTGA
 31861 CGATGTGTTG GTAGACAGCG TCAATCTAG AGCTGACGGA CTCCATGATG TGACGAGGT
 31921 CGTCTCGGTGTC GTCGGGGTGG AGCTTGAACA GAGCCGGGGGG CAGATGGATG CCAAGGTGCG
 31981 TCGGATCCAC ATATCGCTGA GACACCACCG AGAAGCTCAA GTGACGGTGA CGCTCCAGCT

32041 CGGTCAAGCAC CGAACCTGCTG GCCTCGATGT AGAACGTCGC CGAGGCGTGC TCGAACACGC
 32101 TCTCGTGGCC CAGATCGATG ATGTTGGTGA GGTAGTCCTC GTTCTCGGCA GTTGGCGGGT
 32161 TCGGTCGGTG GAACGACCGG TAGCAGTTCC GGCCCGCGAA CTCGGCCAGC TCGTCGGCAT
 32221 CGAAGTCGCC GAAGTAGGGGAA TCTTCGTCCT TGATTCTTC GAAGTCATCG ACCTCGAATC
 32281 CGATGTCCCCG CAACGCACCC GGATCGATCT CGGTGGCAGC GATCAGTTG GCTTCATAC
 32341 TCTCCGCTCA GAGTTGGTGG AACGAGGTCA GCCAGGGGGC AGCGAAGCCC TTCTACAGCT
 32401 CCCCTTGGCT CGTTACCGGC TTCTCGACCT CGGTGGATGT CAAGTAGTCG AGATGACTAC
 32461 TTCTTGTCGG GCCATTGCGC GTACACACTGC TGATCGCGAG GTGCGGTGCA GGAGAACAGC
 32521 GCGTACGGCT TGCCCGTCIT CTTCGAGACG CCCGACTTGT AGACCATCTC GCGGTGCTGG
 32581 CAGTACCGCT TCTCGCCACC AGGCCTTCC TGAGCTGCCCT GCGGGGCGCG AGACTGCTGC
 32641 TGGCCACCGC CGCCGCGCGT GGCGGGCGCG GATCACCAGG AGCCTCGTA GTGGCCTGCG
 32701 ATCTGCTGGA CTTTGTCCAT CAGCGCCTG AACTCGGCGG TGTGACCTT GGCCAGCACG
 32761 TCGGCGGGT CCGCACCCCT CACGACCACC CACGGGTGCG TGTACTGACC GCGAACATTG
 32821 AACGTGGCCG ACACCCCATC GGTGGAGTGC TGGACCGCCA TCGAGTCGG CACAGCAGCC
 32881 GAGGCCGTCG TCACCGTCGC CGACGGCGCG GTCTCAGGCT CAGGAGCAGG GGCCGGCTCG
 32941 GGCTGGGCAG GGGCGGTGCT CCACGGATCG TCGTAGGACA ACTGGTTACC TTTCACTTAA
 33001 TGGGGCATGC GCCGTTGGCG CACTCTTCAT CGACACCGTC TTCGACGGCT TTGGCCGAG
 33061 CAGATTGCGT CTGCTGCTTG GTGATTGCGT CGTACGGAGC CTGCGGGAAAG CTGACTCCG
 33121 GGAAGATCGT GGAGCCCTTG ATGAGCCCCG CGAACCTCTT GAGATCGGCT GCGACATCTT
 33181 CGGCCTCGTA GGCCTCTGGA TGGACGTTGG CCGTGAACGA CACCGCGTT TCAGCCCAGC
 33241 ACATCTGGTA GAGCGCCTGG AACGCCAGGA GCTGGTGGAG GGTCAACTCG TCGGCTGACT
 33301 CAACGATCTC CTCGTCCCAA CCGAGTTCTT CGACAGCGT GACCAACGTG TCCTGGTGC
 33361 GGATCGAAAC CACCTCGGTG TCGGAGCGA AGAGATCTT CTCGATCTCG TAACCCTCGG
 33421 CTGCCAACCT CCGCAGCTCG GCCATGTCGC TGGTGGAGTT GAACCGCACA CGCCGGATGA
 33481 AGTACCGCGA AAAGATCGGG TGGATCCCCT CGAGACTTCC TGGCATCTTC GCCACCGTGC
 33541 CTGTGGGAGC GATGGTTGCG TTCTTCACCG GGACAGGGAT CCTCAGATCA TGGCGAAC
 33601 GTTCGGCCTC TGAGTCGACC TCAGCGGCCA TCTCCCGCA GAACTGGGTG AACCGCTTAT
 33661 CTCCGGTGC CTCGGAGTAC CTGCTACCTG TGAGGGCCAA ATAGGGAGCA ACTCCGAGAT
 33721 GACCCACGCC GATGCGACGG TTTCGTCCA GAACCTCCCG GCTCTTCGGG TCGGCCACTT
 33781 CCGAGAACGT CGCCCGGAGT AGGAATCTCG TCATCAGACG ATGCCCGGG ATCAGGTCGA
 33841 GGTAGTCGGT CTTGCCGGCC GGCGTACGA ACGCCGCCAG GTTGTATGTT CCGAGGTTGC
 33901 ACGGCTCCCA CGGTTCGAGA GTGATCTCGC CGCATGGGTT GGTGCAGACC ACCCGGTTGG
 33961 GCTCACCGAC GTTGGACAGT GACGAGTCCC ACATCCCCGG CTCTCCGTTG CGTACGGCTC
 34021 CCTCGGAGAG TGCCCTGAGC ACTCGGTGGG CTCGCTTCTG CTTGGCATG TCCTCGGGG
 34081 CGACCGCGAA GCTGCGTAG CCCTCCTTGG CCAGACGCCA GAACTCGTGC TCAACCTCGA
 34141 CCGAGATGTT CGTCGTCAG TGCTCGCCCG TGCTCGCTT GATGTTGATG AACCTGTCGA
 34201 TCTGGTAGTC GTCCCGATGTC ATCATGACA TCCCGGCCA CGGCGCACA CGCCCGGGCCA
 34261 CAACACACTG AGCGATGGC TGGTCGACCT CCATCGCGGC GATGCCGTG AGCGTGTATCC
 34321 CTGCGTACTC CGAGAAGATG TTGGCGACCT TCTGCAGCAT CACAGCGAAC GGCAAGGGGG
 34381 CGTGGGCCAC TCCACCGAAC GTCTTGAGCT TGGCCCCCTTG CGGCCGGATG CGGCTCACGT
 34441 CGTACACCCG CTGGTAGTGG ACCGTGCCGG GTCGGTAGTG CGTGTGATC AGATCGACCA
 34501 GCGCAGCGAC CCAGCCCTCT CGTGAGTCTT CGATGGCGTA GGCACCGGCC CAGTCGTGGC
 34561 TGTAGTCGTC CGACAGAAATG CCTACATCTC TCATCGCTG GTAGTCGACA TGCTCTGGAT
 34621 CACAGACGAT CTCGACCCGC AGGGGGTTA CGACCTCGGG GTAGCCTTCG AGGTAGTGGT
 34681 TCGAGTAGTT CGGGGGGACT CCCCCCGCTT CATCAGCGG CATGAACTGT AACTGGAAGT
 34741 GGTCCGAGAT TTCTCGGGC CAGCCAGTA CCCAGCAGTT GAAGAGGTGC TCGCGTTCT
 34801 TGACCCCCGA GGCCCCACAGA TGCCGACCTG CGGGCAGCAC CTTGAACCTTG GTCATCAGAC
 34861 GAAAGAGATC TTCTCGCTC CTTTCCAACA TATGTCGCCG GTCGACAAGA GCAAGATTGC
 34921 CGTCCACGAC CCTCTCGACC GTTTCCGGCC AGGTTTCCCT CGAGCGCTCA GGCTTGGTCC
 34981 TGGCGTAGGT TCGGTTGTAAC ACGAGTTCAC CGGTGGTCC CCAAGGGATT TCGTCAGTC
 35041 ACTACTTCCT CTCAGTCAGT TCGTATCGT TGAAATAGGC GTCGGCAGAG TCGCCGCCAG
 35101 AGAACGAGAC CCCGTACTCG ACCGGGCTG CACCCACGCA CTCGCAGGTA AGCACGCCCT
 35161 TCTTCCCCG GAACATCGGC CAGGTTCCCT TGGAGGGGTG CTTGGTCTCG TCCCCTGGA
 35221 CGATGACCTT GGTGGCCCTC TTCAAGCCGA CTTCCGTTCT CGGTAGCCGG GAGTGAAGCA
 35281 ACCCCCGACG TACAGTCGA GATCTCTTG CGACCGATTC TCCAGTCGA TCGGGCGCTG
 35341 GTGCGGGAAAC AGCTCCGGGA ACACCTCGGC CGGGTACAGC TCCGAACCGG GCAATCCCGTT
 35401 GAAAGTCGGA TCAAGAATGT TGTGATGGC ACCTCCCTCC CAAGAACCTCG GAGATCGGCG
 35461 GCTCGTAGAG GTAGCCATCG CGCAGCTCGG GTTCTCGAT GAGCATGATC GCGATGTTCG
 35521 CTGTGGGGTC AGAGTGCCA TCCCCCTGCG ACTTCGGAT GTCTGGGAAG ATAGCGTGC
 35581 TGCTGGCCCG ACCATCCTTG ACGATGACCT TGCCCTTGTC GTCCCTCTCC ACGCCAGCCG

35641	TGATCGCGAT	GATGTTGACG	TGCTCGGTCA	GCGACTTGTG	AGCGCGGAAC	AACCGGTTCT
35701	GCCCCGCTTT	ATCCTTCGGG	GAGATCCCCT	CGGTGTAGCG	GCTCCTGATC	GCCTCTGCAT
35761	AGCCCCCGTT	CTGAGCGTCC	AGAGCCTTC	TCGCCAGCGG	GAGGATGTCG	ACCAAGGTACC
35821	GATTGGTCGA	CTCCCCCTGC	AGAGCCTCTT	TGACGTTCTC	GGACGAGTAG	TGGCTCGCT
35881	CCTGGAACAA	GTCGCCGGGCC	TTGGCCGCTC	CCGACAGGAT	GTTGCGAAC	TGATTGCGTA
35941	CGTAGTGAAC	TGCCCTCACCA	CGGTGCAAGC	TCTCCAGCGT	CTTCTGGATG	TACGGGCTCT
36001	CGAGGTACCA	GACCCACAGC	TCTTGGATGA	TCTCCCTCGC	TGTCAGGTTG	GTCTCCCAAC
36061	CGATCAGCGC	CTTCCGGGTG	CCCCTGCTGA	ACAGCTTGCG	GATGTCGTG	GTCAAGGCAT
36121	CACCTTTCGT	AGGTACTCCT	CCCAGTCAA	TCGGCGGTG	AGGTGTCGAG	TGACCTCCTC
36181	CGCGAAGACC	TCGCGGACTT	CGCTGGAGGT	GATCTGGCGC	GAACGTGCGT	TCTTGTGAG
36241	GTACGGCAGC	TTGGTGGCTG	TCAAGTTCTA	GACCTCCCAG	ACTCGGCGT	CGACCCGAGAA
36301	CGGGCCTCCG	ACAATCGGAA	CAAGCTCAGG	CTTGACGTGC	TGGCCGTCGA	CCGTCAGCAG
36361	AGCAAAACCA	CTCTGCCAGT	TGGCTGTTGC	ACCCCTGAGG	TACTGAGCTA	GCTTCATGTT
36421	CATCAGGGTG	CCGACCTCCA	TCGACCAACAG	CACCTTCTGG	TTGCCGCGCT	AGCCCAGCGT
36481	GTGTGGCTTG	ATGCCCTGGC	GGTGGGTGTG	TCCGATGATC	ACCGACGTGC	CGAACCGCAT
36541	CATCGCGTTG	TACCGCGGTGT	CAGCGGACTT	CTGCGTCACC	CGGACCCAC	CACGGTGGCC
36601	GTGGGTGGAG	ATCCAGCGTC	GAGCGATCTT	GTAGAACTCA	GGCAGCACGT	CAACACCGAA
36661	CCCGTCGAAG	TCCAGCAGGT	TCTGGAACCTG	GAACGAGCTG	ACGTACTCGA	CCAGCGCCGG
36721	GGCGAACTGG	TGCAAGGTAGT	CGACTGGCCG	GGGGCTGTTG	TTGCCCTCGT	GGACACCAAC
36781	CGGGCCGCTG	TAGACCTGGC	GCAGCGGCTC	CAGGAACCGC	CGCTTGCACT	GCTCGGAGTC
36841	GGGCTTGATC	CGCTGAGCGA	ACTCTTCTT	GGTGCCCTTG	GTCCACCGAG	ACGGGCTCGG
36901	GTAGTCCATC	AGGTCAACCGA	TGTGGACGAC	CTCGTCAGGC	TGGGTGTCCC	CGATGTAGCC
36961	GATGACCGCC	TTCAACTGCT	TGCGATCATC	GAACGGAATC	TGGGTGTCCG	AGATGACGAC
37021	GATGCGCTTG	CTCACTCAGC	GACCTCGGTG	AAGGGGCCCC	GCATACGTT	CTCGTGGGAG
37081	CTGGCGTTGC	CTCCGTACCA	GCGTCGCTTG	CCCACCTTGG	TGTGGTGC	CCCCITGGGG
37141	TAGTAGATCC	ACTTCACTCC	TGTGGCGTTG	GTGACGGTCT	TCACATCGGC	AGGAACGTCC
37201	AGCAAGGTGT	CCCACTGGCG	AGGCCCCCTT	GGATAACCGC	CGTCCCTCGG	GAGCTGCATC
37261	TTCTCCAGAA	CGCCTCGCTA	ACCGCGATG	TGACCCACCG	TGTCCCTGGT	GTAGCCGTT
37321	TCCATGAACC	GGGGGATCTT	CAGCAGGATC	ATCATGACGG	CCACGTCTC	CGGGGTGAAC
37381	TCGACGCCGC	GCTTGTACGC	GCCCCACAGG	GTGCGCATGC	GTTCGTGGTT	CTCCTTGGCG
37441	TCCCCCTAGT	CCTGGGCTCG	CTGTCCTG	ATGATCTCTT	CGGGCGTGGT	CAGAATGCTC
37501	ACAGTCCAGT	CTCCGATGCG	GTGTAGTAGT	CGATCAGCTC	ATCGAGCTG	TCCGGTTGAT
37561	AGCCGAGGAT	CGGCTTGTGG	GTGTCAGTGA	CGACGACGGG	AACCGACATC	GCGTTGAGCA
37621	CCTTGGTGAC	GTAGTCGTAC	GCCTCCGAGT	TGGCGCTGAC	ATCGACTGCG	TCGAAGTCGA
37681	TCCCCGGCAGC	CGTCAGCTTG	TCTTGTGACTC	GCTCGCATGG	CTTGCAGCGG	GGACGGGTGT
37741	ACACCGTGAC	CGGGCGAAC	AGCGTTCTCA	CGTGAGCAC	ATCCCGATCG	ATGTATCGGT
37801	CTCCATACAT	CAGATCCTT	CCAGCAGAGC	AGCTTGTCCC	TGCGATGTGA	CTAGTAGGTT
37861	GACATCCTCG	CCTTCTGGCA	TCGGGATGAT	TCGGCGTTC	GGCAGCGTCT	TCGCCACCGA
37921	CGGGGCGAAC	TCCATACCGG	CGTCGTCGCC	GTGCGCCAGG	ATGTTACCGT	TGCGGTAGCC
37981	CAGGAACAGC	TCTCGGAAGT	ACGGCTTCCA	CTTCTGGGCT	CCGCTGAGCC	CCACCGTCGG
38041	CAGCCCACAC	AGCTCGGCGG	TGATCGTGT	GAGTTCTCCC	TCGCAGATCG	CCATGTCCTT
38101	GCTGTATTG	GTCAAGCGCGT	AGGTGTTGTA	GAGCCGGTCC	TTCTCCCTG	GCATCGACAG
38161	GTACTTCGGT	GTGCCACCGT	CGATTGCGCG	ATACCGGATC	GCAGCTACCG	TCCAGTGACG
38221	CCAGGGCGAC	CACCGCATAT	ACGGAAATCGC	CAGGCGACCCC	CGGTACATCT	CATGTCCTAGG
38281	GAGTGGTCG	TCCACGAATC	CCAGACCGAA	CCGGCTTAGT	TCCGCTCGG	CGGCAGCCCC
38341	GCGACTCGCC	A/ ATACTCGT	CGGCTGGGCT	TCCGGGCAAGG	CTTCTCTGT	ACCGGGACGT
38401	TGCCCTCCAC	A/ ATAGGTT	TCTGCGATTC	GCTTAGCTC	TGCAAATGTC	ACCTCTCTT
38461	CGTGCAGGAAT	GATCGAGATC	ACGTCTCCAC	GGACCCCGCA	GGCCATGCAG	TTGTAGCCCT
38521	GTAGGTCGTA	ACTGACTGCG	GCAGACGGCG	TTTCGTCGCC	GTGGAGGGG	CACAGGCACT
38581	TGTTCCACTC	GTGGTGGTCA	GGTGGTGGTT	CCCAATCCGG	GTGGTAGCGA	AGAATCGCCC
38641	TCGCGATGGG	CGAGTCGTT	ATTCGTCCTC	GTCAAGCTCC	TCCGGGAGAGA	GCCCCTCGAA
38701	GATCCCGTC	AGGACGGCGG	CGAAGCCCTC	GCCGGTCTCC	GTCGCGTCTG	GCATCTCTGC
38761	AATCGCTTT	GCCATGTTTC	CTCCTGGTGG	ATGTCAGTT	CGAGACAGCT	TGTCGCGCTC
38821	GACTGGAGCG	ATGCGCTCCC	CGATGACTTG	GACGGCGCGC	GGGTTAGCGA	GGTACTCGAT
38881	GGCCCCGGTTG	AAGAACCTCGA	TGCACTCC	CGCCCAGCCC	AGCGTGTACT	TGTTGCACAT
38941	CGTGCAGAGC	AACCTCGGA	CGATGCTGT	CTTGTGATG	TGGTCGACCG	ACAGGCCTT
39001	CTTCTTACCG	TTGGCTCGCT	GGCAGATGTA	GCACCGACCA	CCTTGGAACT	CGTAGATCTG
39061	CCAATACTCA	TCGCCGGTGA	TGCCGTAGGT	GGCCAGGATC	CGGGTCTCCC	AGCTCGTAGA
39121	GCTGCAGGCC	GTCTGAACT	CTCGGTGATG	AGTAGCGCAT	CGTGGCCCTG	GATACTTGGC
39181	GTCTCGCGTG	AGCGGGAGCC	CCTGTGCGAC	ACAGTCTTG	CAAGGCTTCC	GCTTGTGCTT

39241	ACGGTCTGACCCGGTACCCGGAGACCT	CTTCGCCGCC	CTCGGCACGC	GCGTCCTCCT	
39301	CCC GTTCTCATCACCATG	CAGAACACG	ACAGCAGGCC	TGCCAGGGAG	ATGTAGAAGG
39361	CCACCAGAAC TTGGCCGCTCACTTCCAT	ACCTCGAAC	CACCA CGGAG	ACAGGCCTT	
39421	ACGCCCTTG TCGAGCGGGG	TCAGCTCGC	CTCATCGTCC	TCACCGAACT	CGAACTCGAT
39481	GCTGGCGATC TCGTAGCCGA	GGATCTGAA	CGACACGTTTC	ATAGGGCGTC	TCCGAAGTTG
39541	ATGACGGGAA TGCCGGCCCT	TTCGGCCTCT	CGCATGCACT	GCCGGGTGCC	GACTGAGTTG
39601	CCGAGGGGAA ACGCCAGACA	GATGTCCGA	CCGGCCCTGA	CCATCTCGAT	TTTGC GGAGG
39661	ATGCCAGCCC GCTTGCCGTA	CGT TCCCAG	TCGGCTCGGT	GCAGCTCGGG	GAGCACGTCC
39721	CATCCCTCT GCTTCATCCC	CCAGGCCAG	CGGTCTGC	TGTCGTCA	GCCGCGAGCG
39781	CCGCCGTGGA CGACCGTGAG	ACCGGAGAAG	GACCGGTGGT	ACTCAGTGGC	CAACGCTTCC
39841	CAGACCGTGG TGCGGTCCTT	CCAGATCCGA	GATCCGGTGA	TCAGTACTCG	CCGCATCAGA
39901	TCGCCTCCCA CTG CAGGCCG	TCTGCGACG	TGACCAGCTC	CGCTTCGTAG	ACGCCGTAGC
39961	GGGTGGCCAG GAAC TGGATC	ATCTGCGCT	GCTGTACCC	GAAGGGACAT	TCTGGACGC
40021	CGCTGATCGG GTATCTGACT	CCGTATTCA	CTTGATCCAC	CGCTTCCGGA	TTCCGTCGAC
40081	GTTCTCTCG GAGACGTTGC	GGGCGAGGCC	GGTGAACCTCC	TGGCCGTGGA	CCTGGTCTC
40141	GATCACCGA GGC TTGCGGG	GATCCGGGCT	CTCCGGGTGCG	ATCCGCTTGT	GGGTCCAGAC
40201	GGTCGCTTC GCTTGATCA	GAGCGCCAG	CACTGCTGG	CGCAGTGGGT	TGGTCTTGC
40261	GGGCATAGCG TTGGAGGTGG	TCATCTGGAT	CCTTCTCTCG	GTGGCTGTCA	AGTCGGTGTG
40321	CGTAGTGAAG CCCCCCCCAGG	CATGCGGCC	CCGCCTGGGG	AGAGTTGATC	AGCCGAGTTC
40381	GATGTCGGGC AGGATCGCC	GGGGCTTGAA	GTTGACCTGG	TAGAAGTCCG	TCGAGACGTT
40441	TGCGCCATCG AACTGCTCCA	TGAAGTAGGA	GACGTTGTCC	GACAGGCCA	GGAGTGCTT
40501	CTTGATCCCG TCCTTGGTCT	TGCAGGTAC	GTGAGGCTTC	TTGACGCGG	TGTCCGCGTT
40561	GATTGAGCAC CGGCCCTGGA	TCTCGAGCAG	GTACTTGTCC	GTGATCCC	TGAAGAACAC
40621	GATCCGGCGA TTGATCTCGA	AGTTGTCAGC	GGCCTTGCTG	ACGTTCTCCG	ATGCGACGTC
40681	GGCGTCGGAG GTACACCGG	AGAGGCCAG	GATCGCCGAT	CCGGCGATGA	GTGCGGTGCG
40741	GATGATCTTC TTCA TGTTCG	CTACTTTCTG	TTTGGTGGAT	GTCAAGTTAG	TGACCGAAGT
40801	CGTTGATCTG CATAGTGTCT	CCGACGAAC	CCAAGGAAGC	GAAGTCTTGT	CCCGACGGGT
40861	CCGACTCTCC CCCCTGGTTC	TTGACCGTGG	AGACGTTGAG	CATGTCGGG	CCGAACCCGT
40921	CCGATACCG TTGGAGAGTG	AGGATCATC	CAGGAACACG	CCCGATCTGA	CCTTTGATGC
40981	CCGACAAACGG GATCGGCTTG	TGCGCGCTG	TGTGCGGCC	GGTACGCTGG	TGGAGCCGA
41041	CGACGCATGA GCCTGTCTCA	CGGCCCATCT	CGTGTAGGTA	GTCCATCAGC	GACTCCAGAC
41101	CCGAGAACGG GTCGTCTCCC	TCGCTTGAA	CGGTGCGGAC	GTTGGTGTAT	TTGTCACCGA
41161	CGATCACCGC TGGGAAGTCC	TCGTAC:GCG	CGTCATACGC	GGCCAGAGCG	TTCTCGATCT
41221	CGTCCAACGA CGGTGATGCC	TTGTACTTGA	ACCGGATCGG	GATCTCGTCT	AGTGAGTCAG
41281	CTACCGCGTC CTCGATGTT	TGCTCGCGA	CAGCCCGCGT	AGCTCGTTCG	AGCGACCAC
41341	CGCTGAGGAT GGACACCGAA	CGGGAGAGCT	GGGTGAACGC	ATCAGAGTCG	GCCGAGAAGT
41401	ACAACGTCGG CACCTTCGAC	TTGAGCGCGT	AGCGGAGGAC	GAACGCCGAC	TTCCGGTGC
41461	CGGGGCCGGC GCAGACCAAG	ACTAGCTGGC	CTCGTCGGAG	ATGTTACCT	TTCTGGTCAA
41521	GCGGGCCCA GACCGGGGGT	AGCGGATCCC	CCGGCGACCC	TCGGATGTAG	AGCGATTGTC
41581	TAGGTGTGTA CACCTTCCTC	CTCGTGGATG	TGATTGACCA	GGTCATAGAT	TCGGTCGCGA
41641	GAGACCAGCC GGGCCCAGGC	GTCGATCCCC	ACGTGGATCT	GTCTCCGGTG	GATGTGTCGG
41701	GACAGGATCA TCGCGAATG	CGTGTGCCG	TGGATCAGGA	TCTTGCCATC	GTCA CGGAGC
41761	CTCCATCTGGG TGTGCGGTC	CTCGCTGGT	TGGTCCCCGA	CGTATGGGAA	GTGGCTCAGC
41821	AGAACATCTG TGTGCCGCC	AGCGTCCCCG	TACAGCGCA	CCCGGATACG	AGCTGCCGT
41881	GACACATGCT CGAACACCAT	CCAGTACGC	CCAACCGCT	TGTGAGCATC	GCGGTTCATC
41941	GGGTGGGGCC CATCGTGGTT	CGCCAGGATC	AGCCGTTTG	GGCCTGGCC	ATCCGAGATC
42001	CACCCGAGGG CATGTATCTG	CCCCCTGGTG	GAGCCAGAGG	AGATGTCA	TAGGATCCAG
42061	ACCGTGTCTG CTTGCCGAC	GACCGAGTCC	CACGCCCTCG	CCAGGGTGGC	GTCGGTCT
42121	TCGACATCAT CGGCCAGGTT	GCGGATCTCC	ATCAGCCGCT	TGTGTCGGAT	GTGTAGATCG
42181	GACGTGAACC AGGTGTTGCT	CATGGCTTCC	TTTCAGAACG	GCGGGCCGTA	CAGCTCGATC
42241	ACCAGCGCGT GCAGCTCTC	TGCCCGCTCG	TCACGCTGA	ATCCGCA	GGAAATCGTC
42301	CGGTGAGGA TTGCGACGAT	CTGGTCGTAG	AGGCTGGGCC	TCACCTCACC	TTCTCGGAT
42361	CGATCACAGGC GTCGTGAATC	GGCCGACCGG	CGCGAGCCGC	GTGCGTCTCG	GCGTCCAAGG
42421	CTCGCTGATC CTGGTCTCATC	AGCCGGGTGC	CGCCAGCTT	GAGGATCTTC	ATGGTCGCC
42481	GACCCCTGTA TCCAGCGCGG	TGCATCGTA	GGACCGAGGC	TGTCTCGTGC	GGGGCTATAAG
42541	GTGACCTCA CGACGGGTGG	TTTGGATCCC	AGTCGTAT	GTCTCCCTCT	CGGTGGCTGT
42601	CAAGTTGGTC ACAGACCGAA	CTCTTCTGG	TACTGCGGA	TGAAGTGGCC	GGCCGTTCAT
42661	GTTCGGCTCG ATACCTCTCG	CGTCACGAAC	TCC TCCCCTG	TCCATCTCCG	ACCGTCCTCG
42721	AACTCGATCA CGATCTCTCG	TCCGGGATGA	CGCACGGCCT	CGCGTGGCC	AAACCTGCGT
42781	GCAGCCTCTG GGGTGGGAA	CGGAAACTTC	TGGGAGGC	ACAGCTCTG	GTGCCACTTC

42841 GGCTTGTCAAG GAATCGGCC CATTTCACG TACGTGTAAC CCGCGTCGGG GTCGAGTCG
 42901 AGCGTTTCT TGTATTCTT CGTGCCTGCC TTAGAGGAA GGTGAGTATC GGTGGCTGTC
 42961 AAGGTGACCT CACTTAAAAA CAGGGCAGCT GTAATTACA TCACAGAACG CGCATTTGTC
 43021 AGGTTCAAGG AGAGGCTCGA AGTCACCAAGC CTGGATCCGA GCCTCGACT CATGGAACCT
 43081 CTCGGTATC CGCTCCCGCG TCCAATCGGT CAGGTCTGAG GGCGCAGTGG GCTTCGCCCT
 43141 GATGCCCTTC TTCCCGCCA TGAAGTAGTC GCCCCTCTTC GGAGCCTCCA CGTCATAGGT
 43201 CATCGGACCG GCGAGCGCT ACACGCCAG CTGGAAGTCG TCACCCGGCG AGTTGCCGGT
 43261 CTTGTAGTC CGGACTCGA GCTCACCGTT GACCACGAG ACCGCGTCGA TGAAACCTCG
 43321 GACGCGGATG CGTCCAGCT CGATGTTGAA CGGAAGCTCG ATGGCCGGCT TGGGCTGTT
 43381 ACACTCCTTG CAGTTGGTGT CTTTCCACGC CTCCGTAGAG CAGATCCCTC GCCCAGGGT
 43441 AGTCCAGATC TGCTGGCCCT TGCCCTTCCG CCACCGCATG AACTTCTCTA CCTGCTCCAG
 43501 TCCAAGGTGG AACCGGCGCT CGATGTCAGC CTCACCGTT TACGGCCCGG ACCAAAACCA
 43561 CCACTCGAAG TTCCGGGTT CGTGCACAG TGCTCCGATC TCCTTGGCGT ACTCTCGCG
 43621 GAAGATCTCT TGTGCCCGT CGAGGCTCAT CTGCCGGCCCC TCGGCCAGAG CCTTCTCGTA
 43681 GACCTCAGCG ACGGTGTGAA ACACGGTGCC CTGCGGCAAC CACGCCGAG GACGAGCCCA
 43741 TACCTGTGCG ATGCGAGCCA GCTTGTACGC CTGCGGGCAA CGTGTGTATT GGTCAACTG
 43801 GCTGACGCTT CGCAGCGGCA GCAATGCTT GGTGTCTGTC ACGCAGCGGC CATCCTCCC
 43861 TTGCCTATCG TCTCGTTCAG CGCCCCGTCG ACAGCGACAC TGAGCAGTT TGCGACCTCC
 43921 GACATGTCAA TCGGATCCTT GGGGAATTGG TCAGCCTGAG TCATCTGAG CACCATCCAC
 43981 TCGGTGCCCT TGTGCGAGTG GATCATGGTC GGATCAAAGC GAGTCCCCG TGCTACGTAC
 44041 TCGACTTTGT TCGCGGAAAG AATCAAATTC GACACAGGCC GATAAAGTCG TGAGGTGTCT
 44101 TTTACACGAG GACTGCGGTA GACGAGCAGA ACTGAGACTG GGTCTTCTGC CAGTTGGCC
 44161 TTCCACCGAG CCTCACACAT CTGCGCAAC AGCCACCCCTG GATGATGGC GATGACTTGC
 44221 GGTGAGGTGT GGACGAGGTT GTCATGCCAC AGCTTGTGCA GCCGAGTGAG GGGCACGGGG
 44281 TTTCCTTCG TTGCGCGGCC TGGGTTGGCT CACACAACCG GTCTGCCAC GACCAGAGGA GTTCACCCCTC
 44341 GAGAGAAAGCT CCTCGATGTC GTCATGCCAC GACAGGAGA TGCTCATCCT CGATGCCCTG
 44401 TTGGTGTGCT CGTTCACCCG GATCAGGAGA ATGGGTCGAA GTCGAGCTAC GGGGACGTA
 44461 CTGAACCCGC CGCGCGGCCAT ACCTTCGTAG GGCTCGATGG ATGGGTCGAA CTCGAGCACT
 44521 AAGTCGCGT CGCGGAGCAT CTTCCACAC GACATAGGC GCTTCTTCTT GTCTCGGAC
 44581 ATCGTGGGA AGCTACCCAC TCGCATGTC ACAGGAGCT CGTAAAGGCC
 44641 TTGACTTTAT CGTGGAGGTT CCGCGTGTCC CACCGCCAGT TCTGCTGGAC GATCTGCC
 44701 GTGGTCAACC GTCTCCGTA GGTCTTCTTG TGCCACGACA CGCTTGTGCG AGTACGCCA
 44761 TACAGCTCTG CGATTTCGGT CTGATTAAC CCCTCCCTGC GAAGATCTTC GATCTCGTG
 44821 AGAGTGAATG GTATTCGGCT AGGGGCGGA ACCACTGCTT TGTGTTGGAT TTTGCCGTC
 44881 ATGTTTCCCT CCATGAGAAA GGTGCGTGC TCTCCGCCGA TTACGGAGAC ATGTTGGTGC
 44941 CTGTCAAGGA TACCCCTAAT TTAGTTGCGT CTGCGGAACC ATATTCAATT GTGTTCCCG
 45001 ACGCCGTGGC CGTCTCCAC TGGGCGTGGG ATCGACTGGC GTTACCGGT CGTAATGTA
 45061 GCGGCCCTGCC CCACTCGGTA GCAAACTTG TGACAGGTAT CACTTAGGTC GCCTCTGTT
 45121 ACACGTGAC CTGGGTTTC ATCGTCACGA CTCTCCTTTC TTAGACAGCC TCAAGATCGT
 45181 TACACCGGCT TCGGAAGATG TACCTTCGCC TTGAATCCGG CCCTTGCAG CTCGAACCTG
 45241 ACCACCTGGC GGGCGGTCTC CTTCAGGTG GACTTCGCCG ACAGCGGCC GACGAACCCG
 45301 TAGCTCTGA TGTACTCCTC GAGGTGCGATG TCGACGTACA GCGTGACAGG GACCACCGAC
 45361 AAGTCACACC TCCAATTGCT GGGGCTTGAT CTGTTGGTC ACGTGCTAGT CGTTCAGCAG
 45421 CGACTGGAAG TCGGAGTCTG TCAAGTCGTC CAACTCATCC TGCTCGAAC GCGCGGGCTC
 45481 GTCATGCCAC GTCTTCCACT GGTCTGGTC GGCGCGGAAC CACTTCCGA GATCCTTGTAT
 45541 GGCCTCGTCC TCGGTGGCGA AGACGTAGGT CTCGAGCACG TCTCGTACT CGACGGTCAG
 45601 CGACCAAGACG GTGATCTTCA CTCCCCGTC ACCTCCGCTT TGTAGTTCAT CTCGCGGTC
 45661 TCCCTCTAGT TGGGTAGCAG TCGGTTGTC TCGCTGTGGC TGATCTGCC AACGATGAAAC
 45721 TGGCGCATCA GATTGCGAC CGAAGCCCG TCCATCCCTT CGGGATGGG CTTGGCGTGG
 45781 CCGAACGTGCC AGTCTCGTGA CGGCCAGCGG AACAGAGTT GGACCTTGTGTC CAGTGAGGTC
 45841 AGGTGCAAGGC ACTGAAACGT CATGCCCTCG AACGGGAACCT CCATCACACC TCCTGTTGA
 45901 CCTTGACGGT GTGGCCTGTC ATTACTCGT GGATTGGAT GCTGGTGCCG AACGTCCTTC
 45961 GCGTCTCGGC CTGAAACTCG GTGGAGCACC CCGAGCACTT CGCTTGTGAA CGCACTAGCA
 46021 GTACCAACGC TTTCTGCGA ATCGGGACTT GCGCCCGTCC CGGTTGCGT TGTCCCGCG
 46081 GGCTTCGCC TCGGTGGATT CGTCACATGA CGGAAGCTCG CCATGCTTGA TGTGCGATGC
 46141 GTCGTCGGCG ACTTTCCGC CCGTGCCTGG GATGTCGGCT GCGCTCCGGT ACTCACAGAG
 46201 CGGGGAAGGCC GATGCGCTCG CGATGATCCC AGCAGGTTG CCTAGAACCA CGGCCAAGCA
 46261 CATCAGCAGA AGCACGTGCC ACGCCTCAT CAGCCCGCCA GCGCGTGGTT CATGCCCGCG
 46321 TTGCGGCCGT CGCGCTGACCG GGGGCGATAG CGCCTGAGGT CGTACCGGGT CGGAGGCTT
 46381 ACGTTCTTGG TGCGAGGATG CGCCTGGCGC AGAGCCAGCG CAGCTCGTTC CTTGCGCCT

46441 CGGTAGAGCA CCAACGCTCC CCCGCCGGCC GATTCCACGG CCTTGTTCCTC CTCGGCGGTC
 46501 AGGCAGTCCT TGACGGCTG GGCAGAACCT GCGATCCACG ACCGGCGGTA GCTCTGAGC
 46561 TGGCCAGCGG TGCTCTCGG CTGTAACCTCC CGGGTGTGAGTACTT GTACCGAGGC
 46621 TCGAAAGCCT GCTCCGGCG GACATTCTCA ACCAGGGCGA TCATCTGCGG CTGCATGATC
 46681 GACCAGAGGA ATTGGAGCCT CTGATGTGG CGGGGCACGC CGTAGACGTA GATCCGCTGA
 46741 CCCGCCGTGA GGCTGGCGTA CACCGTGTGG CAGTGCAGGG CCTGAGCCAT GCCGTGCAGC
 46801 AACAAACGCTT GTGCCGGAAC GTACTTGCCG GTGACGTAGG TGACCCACTG GATGGCGTCG
 46861 GGCAGGTCGG TGGTGTCCAA CCCTTGCTTG CTCGCCTCGA CCTGGGCCAT CTCCAGCCG
 46921 TACTTGGCCA TCAGCTCGAA CGCTTTCGCC TGGAACACAG CCTCTTCCGG CGTACCGGCC
 46981 ACGTCTTCGG CCTGGCGCAG CAGCTTGGCG ACCTTGTCCCT GCATCTTCTT CGTCTTCCG
 47041 TCGATCATGG TCAGTACTCC TTCTTCCAGT TGTTCCGGT GCCCTTGCCG GGGCGCTTCA
 47101 TCTCTCGCTT GCGGTACGG TGCGGCTGCG CGCGCTTGGA GAGACGCAAC TCGAGCGTGTG
 47161 CCTTGAGCTG GTGCGCTCATC TTCTTCACCT CTTCCTGTT AGCGGATCTG GTCGACGTTG
 47221 ATGCAGCGGA CGCGGTCTGG CCCGAACCTCG GGAGCGAACG CCAAGACTTC GTCCTCTCG
 47281 CATGGGAACG CTCGCTGGTC GAACTGTGATT GGGTCGGCCG AAGCCTCGTA TGGATCGGCC
 47341 AAGGCCATCG CTCCGACCGC TGAGCGAAAT GCAACGACGA CGGTGATCAG GTGCTCTTC
 47401 ACTCTTCTTC CCTCCACTTT TGGTCTGCGA GAAGCCTCT GGCAGATCTG ATAGGTTCTGA
 47461 TCTCAGGAGT CACTCATCGC CCTCCAAGAT CTTCAGGTTG GCCAGCAGTG CATTGGCAC
 47521 AGCTCCGATG TGGCCACCGC CCTTACCTCC ACGGCGGGAG TACTCGCGGT TCGCGGCC
 47581 CATGAAGTGG AACCTCGGTG AGCCGTCCTC GTGAACCCAC GAGGCTTCT CGGCGGGCAG
 47641 AGCCCCGGTT ACATCCACCG ACATCGTGA GATGATGTGG TCCCTCTGGA GCCGAGCCTC
 47701 GGTCTCGGG TAGTGGCGAG CTGGATTAC TGCGCCTCGT TGTTGTCATGT CTTCTCTTC
 47761 GGTAGATGTC AAGCTGTCGT CACCACTCTT CGACCGGTAT CGGTTTGTCA CAGCCAGCAA
 47821 GGATCGCGGC GTTGCTGCGG TGATGCCCGT CCCACAGCGT CTTCTGGTCC CTCGAAACCT
 47881 CGAGGGGTTG GAAACGCCAC TCGTTGCAAT AGTTGAGGAT GTCCACGACT TCGTGGACCT
 47941 TGGCCCAGAA CTTGCGGGTC AGCCCTCCCT GGTAGTTGTA GCGGGGGCGTG GTCTGGTAGA
 48001 ACTCTTCGAG CACTGGTCCG CTGTCGGCGA CGGTGCAAGTC GACACCAGCG CAGGACATGC
 48061 AGTCGCTGGC GCGGAGCTGG GCAACTTCAT CGGTGGTCAT GAAACGCCGTG GTCACATCGA
 48121 GCCTTCAGG TGTATGTCAA GCGGCGCGGA CGCCGGAATC GGAGAGGTAG ACGCGGTCA

 48181 CTCCCAGGAA CGGAGCCTGT GTGTTGGCGT GGACGAACGT GTCTTCTCG TAGGGTTGT
 48241 AGGCAGATCTT CGATCCACG AAGTCTTGC GAGAAGCGA GATCAGCTCG CCTACCATGC
 48301 CAGCGTGGAC CACCTTGCGG CGCTCGCGCC GTACCTTGTG GCGGGCGGCC GGCGGAACCA
 48361 CACCCCTTGGC GTGGGCCAGC AGGACGTCGG CGCTCGGTG GATGACTCGA CCCTTGAAGT
 48421 CTCCCTCCAA GGCTTGCACCA GAGTACACCG GCTTGGCTC GCGGTGCGTG CGGTGAGGT
 48481 TCTTGTAGAC GAAGACTCGG ATCGGCTTGG GAGTCATGAG ACCTCCAGTG TGCGAACGGC
 48541 CTTGTAGGCA CTGATGAGTG ACGCCCCCGA CAGCTCGTTA CGTGCAGGT GATACTGTA
 48601 TTTCAGATAC ACGGCTTGGT CGACCGGCTT GTACTCGACC GAAGTGAACCT CGACAACCAT
 48661 CCCGTCGATG ATCGCGAAGT CTCCAGCGC GAGATGGGT GGGAAATTGTA TCTCGGTGTT
 48721 GACTACGGTC ACAGCTTCGA AACCTCCAG GTACCAACGA ACTTGCCGTT GCGCTTGTG
 48781 TATCCGCTC CACCGGGCTC GTACCAATCG ACCTCGAACG CGTAGCGGGC GGCAGCAAGCC
 48841 TCGAGGTGGT CGAGCAGGAC CGGGCGACCC GACCGGGTAG CTTCTCCGGT CAGCCCGCTG
 48901 TCGTTCTTC GGAGCGATGAG CTTGAACACT TGTTGCCCTAC CTTCTGCGA TGTCTGGGA
 48961 GATCTCGGGC AAGACTTTCT TTGCCCCACCG CACGCCGTCC CAGGTGATGT CGAACAGTGC
 49021 CTCGTTAGAAC TGGTCTCGA AGGCTTGTG GCGCTGGCC AGCGTTGTGA CGAGCCGGTC
 49081 GATGCGGTCC TCGTGGAACT TGTAGACCGA GTGGTTGTAC GGCTCAGCCA TATTGGCGTT
 49141 GGCTCGTTTC ACGTCTCAA CCACGATGGC TTCGAATAGG TGGTTAACCA GCTCTCGGT
 49201 CATGTTCTAT CTCTCTCGAG TAGTCGCTGT GCTGGGTCTC GAAGCCTTCG AGGTACCCGA
 49261 CCTCGTCGTC GTACCGCGT GGGTGGCGCC GCCAGTCGTC GCGGGAGCCTT TGACCGCTGG
 49321 CGTTGTAGCA GGCACACAG TCGGGCAGT CCACATCGCT CTGCGCTAG TAGCGGCAA
 49381 CCTCGCCGCC GCAGCGTTGG CAGTCCCCAG CGCTGTAACC AGGGATCAGG AAACCTTGGT
 49441 CGTCGGCTG ATCAGGGATG CGTCGGAAGT TCTTGGCAGG CATAGCTACT CCTCATAGAA
 49501 ACTCGTGGTT GATGGCTCGG TGGGCAGCT CGCGGAAGGT CAGCCCGTCG TCGTACCGGT
 49561 CCCGGTACGT CCAGTCCCGC ATGCTTGTG AACCAAGACC AAAGGTCTCG GTCATGGTAGC
 49621 CGTCCAGCGC GGCCATCCAG GTCTCGAACG TCATGCTTC CCTCACTTCT TTGTGGTCGA
 49681 GAAACAGCACG TTCTCGGGC CGTTGACGCA CAGACCGAA CGGGCACAAAG CCGATCCCT
 49741 GTCGTTGATC AGGTCGATGG CTTTGTGTT CTCCGGCGAG CGCACCGCCG TCGGAAACTC
 49801 GGCGTTGGCT TTGGCGAACG TTGGTGTGAC GAGGCGATG TTGATGCCCT TGTCTTCAA
 49861 GAAGCGCGCC ACGTGCGATGT TGTCCGGGTG TGCGCTGAAG TACAGCGCCA GGTTGTCGAG
 49921 CCTCTGCGAG TGCAAGGTAGA CAGCCGGCGT CTGAACCCCTT GTGAGGCCC AGAACTGGAC
 49981 ATCCGGGTG TCGGGATGA CTCGACCCCA AGCGGCCACA TAGGTGGGCG TGAAGAAGTC

50041 TCCATCCCAG TGGATGCGGA ACAGCTTCGG AGCCTGCGA CGGTGCGAAT CCTTGACGAA
50101 CTCGGCGACC ATCTCGGACA GCAGCGTCAC GGTGCTGTC AAGTCAGCGT CACGCAACAG
50161 TTCCCAGTTG TGCAGCAGGA CCGAGCTGAC AGCCTGCGA ACTTCTCCA GCTTGGCGC
50221 GTAGCACACC TTGGCACAGA AGGCCGTCGC GTCCGGGAG GAGAACGCTT GACCGGAGGG
50281 CAGGCCGATG CTGTTGGCGA TACCTACGGT GGCCTTGGCG CCCTTGGTGA CGTGGACGTA
50341 GTTGGTGACC TTGCGGTCGT TCGAACGCTT CAGCTTGGCC ATACCTAGCC TTCCCTCGGT
50401 GGCTGTCAAG TTGTTGGATA CAAAGCGCCC CGAGAGGGAG TCGAACCCCTC ACACCGCGAA
50461 CCGTCGCGGG GCCACCGTGC CTAGTCGATA GAGGTCACTC GACTCTCGT GACGTAGACC
50521 ACGGTGTTGC CTACGTTCAC CGCGTAGTAC AGGCCATCGG CACCTCGTAG CTITGCGGA
50581 ACCGTGCCCCG ACGTGGCCGT CATGTCCTCG CCCCCAGTCGG CGTTAGGTGC CCAGGTGACT
50641 CGCATGGTGA TCCCTTCAGT AGTCGGTGGC TGTCAAGTCA GCGGATACGG ACGTACCCGT
50701 TGCCCTGAGC GACGTAGATC TTGCCGTGCA TGTAACCGCG CTGCTGCTGG TTCATAATCC
50761 TATTCCCTTC GGTGGCTGTC AAGTCTCAGG CCCAGCGACG AGTCGTCGG CGGGGGCGGC
50821 GCACCTTGGG CGCGTGGCT CGCGGTGCGT TACGGATGGC GGTGCTTACCG GTGATCTCTT
50881 CCAACTGGCG TTCAGCCAGG CCGACAGGCC GGGCGTCACC GGGCAGTTCG ATCTTGTAA
50941 CGAAGTCAGT CCACCCCTTC AGACCCCTCT CCAGCTCGCG ATCCAACAGA CGCGGAGCCG
51001 ACAGCTCAGG CGCAACAAAC GGIGTCTTGA CGCTCTCGCG GGCAGTAACC CGAACCTCAC
50161 GGTGCTCAGC GAAGACTGGC ATAGTTCAC CCTTTGGTGG ATGTCAAGCC TGAGCACCAA
51121 AGCTCAGGGCG TAGTGGGTAG TCGGGAATCG AACCCGATAG CTTCATAGCC ACGTTCTACG

51181 GCTCAGCCAT AGCTCAGCGA TCATTCCATC GCGCCAAGAG CTACCCCTCCC GAATGCCGAA
51241 CCAAAGCTCA GCATTGTAA GTGTGTATTG TCCCCGTGGC TCAGACAGTA TCTATCAGAA
51301 CCTAACCAACA GGTCTACATT TAGTTATCCG CAGTGTCTGC ACTTTAACGG CATCGAGCTT
51361 CCGCCGACCC TCAGTCCTCT GGCAGCGAAC TAAAGGTTG AGTCGGGCTG CGGCCCTTCT
51421 CGGTCTTGGC TGATTCTCAC TCTACCGGAT GTTCCGGTGG CTGTCAGCG GGCGTTTTG
51481 GTGTTGCAAC GATGCCCTCG TTAGCGCCG CTGGCGTAAT GCGCTACCCG CCTGATCTCA
51541 CCGGTCCAAG TTGGTGTATGC TTGCAAGCTTA CCCGATAACC GGGGGCTGT CAAACGGAG
51601 AATCTTGCGC CCGGATTTTC ACCGGCACCG GCACGATCCT CTCGGATCCG CCTACCGCCT
51661 TGCTGCTGCG GTGACACAAG AATGCACTAC TGGCCGGGTG GCTGTCAAGC CCTAATCGCA
51721 AATTGGTGCC CTAGCTGCAG ATATGGCGG TTCTCGGTGG CTGTAAAGGG CACTACGTGC
51781 CGCTATCCG TGCTCACGCT GGACAGTCCT GGCAGCCCGT GCGCCGCATA GGCTGCTCAC
51841 TACGTGCCG GTATCGCGT TGTCGTGCCG CTGTCGTGGT CGTCGCCCCG TCGCTGTCGC
51901 TGGTCTCGGT GGCATCGCTT GACAGTCGGC CCGCTATCCC CGTGTGCCGC TGGTCAGACG
51961 CTAATCCGCT TATTCGCAAT AGGCTGCTCA CTATCGCATC GGTATGCGTA TGCCTGGTC
52021 ACATATCGCT GTGGTGGTGG TGTGGTGTGC GTGTGTTTGC GCTGGTCAGC CGTGTGCGTA
52081 CCGTATCCGC ACACTGTGCT TGTGCGTTG CTGTGTGTCG AGGCCGGCTC TCGCATCGTC
52141 GCATGTCAAC GCGGGTATGG GCGTGTATCG CACGCTTTCG TAGCCGCGTG CGCGGCGCCT
52201 CTCGCATCGC ATCGAGTGTGTT TGCTGTGTCG CTACATCGCG CAGGTCAGAA GGGTAGGGG
52261 GGTTCCCCCT AGGGGTCGGT CCTTGACCGG TCGGTTAT

It is known that during the establishment of lysogeny, the L5 genome becomes integrated into the mycobacterial chromosome and the attachment site (attP). Integration-proficient plasmid vectors have 5 been constructed which efficiently transform both fast-growing and slow-growing mycobacteria through stable integration of the plasmid sequences into the bacterial chromosomal attachment site (attB).

Because the L5 sequence is now known, and 10 because L5 has been previously characterized, the use of transcriptional promoters with this mycobacteriophage may be evaluated efficiently, and host synthesis inhibition may also be evaluated efficiently.

15 Figure 1 represents the genome organization of the entire L5 genome. DNA analysis has indicated that the L5 genome is organized into a right and left arm with the attachment site and integrase at the center of the genome. The integration functions have been 20 successfully employed to construct integration-proficient vectors for mycobacteria.

Part of the L5 genome is not essential for mycobacteriophage growth. It has been demonstrated that all or most of the gene 62-61-60 can be deleted 25 without affecting the cycle of the L5 phage. Therefore, there is a suitable region in the L5 mycobacteriophage for the insertion of reporter

genes. It is critical that reporter genes be inserted into non-essential regions of the mycobacteriophage. Otherwise, the mycobacteriophage will be unable to survive and replicate.

5 The L5 mycobacteriophage may have introduced therein promoter gene 62 fused to reporter gene lacZ, and this reporter mycobacteriophage will be capable of rapid diagnosis of mycobacterial infection and accurate assessment of mycobacterial strain drug
10 susceptibilities.

Another mycobacteriophage which may be successfully used to produce the reporter mycobacteriophages is the mycobacteriophage TM4. TM4 has been used to construct a first generation reporter mycobacteriophage, and has the ability to discriminate between M. tuberculosis and BCG. A shuttle plasmid may be employed with TM4, and may be useful in the construction of recombinant and other mycobacteriophages. Unlike L5, which is a broad
15 host-range mycobacteriophage, TM4 is a species-specific mycobacteriophage. However, TM4 is not as well characterized as the L5 mycobacteriophage, and therefore it is more difficult to analyze its
20 functions.

25 DS6A is a mycobacteriophage that has been found to be specific for the M. tuberculosis complex of mycobacteria. It has been shown to infect both

M. tuberculosis and BCG. It has been demonstrated that DS6A can infect over 3,000 different types of M. tuberculosis strains. Current efforts are under way to develop DS6A shuttle phasmids containing 5 Firefly luciferase genes as the reporter molecule. It is possible that a combination of different mycobacteriophages may be needed to increase specificity and then increase the ability to distinguish drug susceptibilities. DS6A grows on BCG and M. tuberculosis, but does not grow on M. smegmatis.
10

In anticipation of the need for a diverse set of mycobacteriophages that can effect a broad or limited range of mycobacterial cells, a total of more than 50 unique mycobacteriophages have been collected 15 and isolated by the inventors. 21 new mycobacteriophages have been isolated from soil samples from India, France, England, Israel, Tunisia, Carville, LA and New York. In addition, another 30 mycobacteriophages from both the Centers for Disease 20 Control in Atlanta and the World Health Organization Phage Reference Laboratory in Amsterdam were collected. The characterization of the nucleic acid content of the phage particles of 30 of these mycobacteriophages have revealed that all of the 25 mycobacteriophages contain double stranded DNA whose genome sizes range from 45 to 100kb as sized on pulsed field gels. Restriction analysis has shown that all

of these mycobacteriophages are different, except that one of the mycobacteriophages from France had a considerable similarity to the L5 mycobacteriophage, which was originally isolated in Japan. The host range of the mycobacteriophages varies greatly, some being able to infect only M. smegmatis and others being able to infect M. smegmatis, BCG and M. tuberculosis, but not M. avium. These mycobacteriophages may be developed into reporter mycobacteriophages and cosmid cloning systems, and may provide a source of useful transcriptional translation initiating sequences, transcriptional terminators, or host-range specificity genes.

In addition, the choice of reporter gene and its method of expression are critical. It is necessary to choose a reporter gene whose product would not normally be found in clinical samples, but whose product is also easily detectable.

Luciferase reporter genes have been used in many diversified biological systems, including E. coli, cyanobacteria, phytopathogenic bacteria and Bacillus. The presence of luciferase reporter genes can be detected by the emission of photons in the presence of a substrate, such as luciferin or decanal. Luciferin and decanal can permeate mycobacteria, and thereby allow for the detection of gene products, such as photons. Since one molecule of

the luciferase gene product can yield 0.85 photons of light, it is the most sensitive biological reporter molecule known. The preferred reporter genes of this invention are luciferase reporter genes, such as the 5 Firefly lux gene (FFlux), the Vibrio fischeri lux genes and the Xenorhabdus luminescens lux genes, as well as the E. coli β -galactosidase (lacZ) genes. Luciferase genes, especially the Firefly lux gene, generate a high amount of luminescence activity. They 10 generate photons, the detection of which is simple and sensitive, using commercially available luminometers that can detect 100-1000 molecules of luciferase with a linear relationship to enzyme concentration. In addition, it is unlikely that clinical samples will 15 contain significant levels of endogenous luciferase activity.

In choosing transcriptional promoters to be introduced into the mycobacteriophages, it is desirable to use strong promoters since this will 20 increase the sensitivity of the system. In addition, it is important that the promoter be active following mycobacteriophage infection. The best promoter candidates currently available are the BCG hsp60 promoter and the L5 gene 62 promoter, which are of 25 comparable strength. The hsp60 promoter gives good levels of luciferase expression from plasmid recombinants, but lower levels of luciferase

xpression where the mycobacteriophage is TM4. It is possible that the reason for this is that the hsp60 promoter is shut off by the TM4 enzymes following infection, thus producing only a modest level of luciferase. The gene 62 promoter may behave in a similar manner with the TM4 phage since the gene 62 product is a good candidate for the L5 repressor and is expressed at high levels in the absence of other mycobacteriophage functions. Knowing the sequence of the mycobacteriophage used will help in identifying, characterizing and cloning the appropriate promoter to be used in the reporter mycobacteriophages of this invention.

There are several methods which can be utilized to introduce the reporter genes and transcriptional promoters into mycobacterial species-specific mycobacteriophages. One method is the utilization of shuttle phasmids. When utilizing shuttle phasmid technology, it is necessary to know the sequence of the mycobacteriophage so that the reporter genes are inserted into non-essential regions of the mycobacteriophage. Insertion of reporter genes into non-essential regions permits the mycobacteriophage to survive and replicate. In order to use the shuttle phasmid methodology, it is necessary to first generate a cosmid library of large double-stranded recombinant DNA fragments of

mycobacteriophage. This can be done using cosmid cloning in E. coli. Next, the cosmid library is introduced into the mycobacteria of interest to select for cosmids which have been inserted into 5 non-essential regions of the mycobacteriophage. The shuttle phasmids, which consist of the E. coli cosmid, the reporter genes and mycobacteriophage promoters, may then be characterized. Shuttle phasmids can be propagated in E. coli as plasmids, and propagated in 10 mycobacteria as mycobacteriophages.

A second method of introducing the reporter genes and transcriptional promoters into mycobacteriophages is by homologous recombination or PCR. First, non-essential regions of a 15 mycobacteriophage must be determined. Again, in order to do this, it is necessary to know the sequence of the mycobacteriophage. Consequently, L5 is an ideal phage to use with this method as its genome has already been sequenced and characterized by the inventors. Next, plasmids are constructed wherein 20 reporter genes hooked to transcriptional promoters are flanked by mycobacteriophage non-essential region sequences in mycobacterial plasmids. Then, homologous recombination systems or PCR may be utilized in 25 M. smegmatis or E. coli to perform gene replacement whereby the plasmid constructs containing the reporter genes are put into mycobacteriophages.

A third method of introducing reporter genes and transcriptional promoters into mycobacteriophages is by use of transposons. For example, transposon IS1096 may be utilized. In order to use this methodology, reporter genes and transcriptional promoters are put into transposons, and the transposons containing the reporter genes and transcriptional promoters are delivered on plasmids in mycobacteria. Next, it is necessary to grow up the mycobacteriophages on a strain such as M. smegmatis, which strain contains the transposons. At certain frequencies, the transposons will hop into non-essential regions of the mycobacteriophages, thereby introducing themselves therein. The mycobacteriophages are still viable, and contain the reporter genes and transcriptional promoters.

A fourth method of introducing reporter genes and transcriptional promoters into mycobacteriophages is by debilitated phages packaged into phage heads and tails (phage particles). To utilize this methodology, it is necessary to develop helper phage systems which allow for pieces of DNA containing pac sites to be packaged. These helper phages allow for the synthesis of head and tail genes at will in mycobacteria, prevent themselves from being packaged into phage heads and tails, and facilitate packaging of pacmids into phage heads and tails. Helper phage systems may

be generated from the L5 mycobacteriophage. The genome of the helper phage is put into the mycobacterial chromosome, at which time the mycobacteria are grown up. Next, pacmids which 5 comprise phages which have pac sites, reporter genes, transcriptional promoters and mycobacterial replicons are transformed onto the mycobacterial strain. The production of head and tail proteins may be induced, for example, through an increase in temperature, and 10 the pacmids are then packaged into phage heads and tails. The L5 genome has cohesive (cos) termini. This suggests the possibility of constructing L5 cosmid vectors, which could be packaged through the cos sites into L5 particles either in vivo or in 15 vitro. Then, a large number of genes could be easily and efficiently delivered to mycobacteria.

Packaging into phage heads and tails may also be utilized in a fifth methodology wherein the pacmid is a plasmid. The methodology is similar to the 20 methodology wherein a debilitated phage is used, however, instead of using phage pacmids, the pacmids comprise plasmids which have pac sites, reporter genes, transcriptional promoters, and plasmid replicons.

Finally, direct cloning using recombinant DNA 25 techniques in vitro may be used to introduce reporter genes and transcriptional promoters into

mycobacteriophages. This methodology consists of ligating a mycobacteriophage, identifying or introducing unique restriction enzyme sites in non-essential regions of the mycobacteriophage,

5 cleaving the mycobacteriophage with the restriction enzyme sites, and cleaving DNA which encodes the promoter and the reporter gene so that it has the unique sites flanking it on either side. Next, ligation is set up in vitro between the cleaved

10 mycobacteriophage with the unique restriction enzyme sites and the reporter gene cassette. The result is a circular DNA molecule which consists of the mycobacteriophage, the reporter genes and the transcriptional promoters. The circular DNA may then

15 be electroporated directly into mycobacteria.

EXAMPLES

Expression of Reporter Gene lacZ and FFlux in Mycobacteria

A promoter probe vector was constructed which

20 incorporated a truncated E. coli β -galactosidase (lacZ) gene as a reporter probe into a shuttle plasmid vector that replicated in either mycobacteria or E. coli. Random DNA fragments from the three mycobacteriophages Ll, TM4 and Bxbl were cloned into a

25 unique BamH1 site immediately upstream of the lacZ gene and screened for their ability to produce β -galactosidase. This established that lacZ could be

used as a reporter gene in the mycobacteria, and identified the DNA sequences which could effectively express foreign genes in both M. smegmatis and M. tuberculosis. β -galactosidase activity could be
5 detected from lysed cells using OMPG, or from unlysed cells using either X-gal or a fluorescent methylumbelliferyl β -galactosidase derivative. The promoter hsp60 gene highly expressed the lacZ gene in both M. smegmatis and BCG.

10 The FFlux gene was cloned into pMV261 downstream from the hsp60 promoter in plasmid pYUB180 (see Figure 2), which plasmid was shown to express the FFlux gene in M. smegmatis, BCG and M. tuberculosis H37Ra. The expression of the FFlux gene was detected
15 by observing luminescence of mycobacterial clones containing the cloned gene in the dark room, and verified use in photographic film. This demonstrated that the luciferase was expressed in the mycobacteria, and that luciferin, the substrate used, was able to
20 penetrate mycobacterial cell walls and yield photons expressed by the mycobacteria.

Detection of Photons In
Mycobacterial Cells Expressing FF_{lux}

The expression of FF_{lux} from the plasmid
25 pYUB180 in M. smegmatis provided a model with which to determine a minimal number of individual cells

detectable with the luciferase assay. M. smegmatis containing pYUB180 were grown in the presence of kanamycin to ensure that every cell contained the plasmid. The cells were diluted 10-fold serially and
5 the amount of luciferase activity was determined using a luminometer. Figure 3 shows that the amount of luciferase activity from 5×10^7 cells approached 10^8 luciferase units, though at this level of activity the luminometer was unable to yield an
10 accurate measurement. However, the activity decreased in a linear manner down to 1200 units for 500 cells. Hence, 5000 cells expressing the FFlux gene can be clearly discerned above the background measurement, which approaches the number of cells that one would
15 expect to observe in clinical samples.

Distinguishing Drug-Resistant Mycobacteria From Drug-Sensitive Mycobacteria Using Luciferase Activity

Since Firefly luciferase activity requires ATP, and ATP is produced only by living cells which
20 are metabolically active, luciferase is a powerful indicator of the metabolic abilities of a bacterial cell. Since anti-tuberculosis drugs are likely to significantly decrease the metabolic activity of a cell, the measurement of luciferase activity should
25 provide a sensitive means of distinguishing drug-resistant mycobacteria from drug-sensitive mycobacteria.

First, the kinetics of the production of luciferase activity of M. smegmatis containing pYUB180 following the addition of streptomycin, isoniazid, ethambutol, rifampicin, ciprofloxacin, novobiocin or cyanide, added at levels that inhibit the growth of M. smegmatis in plate assays, was measured.

As shown in Figure 4, Panel A, the levels of luciferase production were 100 to 1000 times less at eight hours after the addition of the drugs compared to the untreated control.

Next, this approach was used to distinguish drug-resistant from drug-sensitive mycobacteria. The pYUB180 deposit was transformed into streptomycin-resistant or novobiocin-resistant 15 M. smegmatis mutants. Photon production by the drug-sensitive parent was compared to the streptomycin-resistant or novobiocin-resistant mutants. The drug-resistant mutants continued to produce luciferase activity levels comparable to the 20 untreated parent in the presence of the appropriate antibiotic. In addition, the drug-resistant mutants produced 100 to 1000 times more luciferase activity than the drug-sensitive parent (see Figure 4, Panels B and C). Hence, a luciferase-based assay may be used 25 to determine mycobacterial drug susceptibility.

Construction of TM4 Reporter Mycobacteriophages and
Detection of Photons Following TM4::lux Infection

The first vectors developed to introduce recombinant DNA into mycobacteria were shuttle phasmid 5 phage vectors. Shuttle phasmids have the ability to replicate in E. coli as cosmids and then replicate in mycobacteria as phages. Shuttle phasmids of TM4 which contained the FFlux and lacZ genes transcribed from hsp60 and L1 promoters, respectively, were constructed 10 (see Figure 5).

A deposit of the shuttle phasmid (reporter mycobacteriophage) phAE39 which contains mycobacteriophage TM4, cosmid pYUB216, reporter gene FFlux and promoter hsp60, was made with the American 15 Type Culture Collection on January 12, 1992 and catalogued as ATCC #75183. When the TM4::lux shuttle phasmid phAE39 was mixed with M. smegmatis cells, luciferase activity could be detected within 15 minutes of incubation, and continued to increase 20 slightly over the next 4 hours (see Figure 6). These results show that the TM4::lux mycobacteriophage is capable of introducing the FFlux gene into mycobacterial cells, and that the FFlux gene can be expressed in mycobacteriophage-infected cells. Figure 25 7 represents a flow chart for cloning different promoters into the TM4::lux shuttle phasmid phAE39.

A deposit of the shuttle phasmid (reporter

mycobacteriophage) phAE37 which contains mycobacteriophage TM4, cosmid pYUB216, reporter gene lacZ and promoter L1, was made with the American Type Culture Collection on _____, 1992 and 5 catalogued as ATCC #_____. The TM4::lacZ mycobacteriophage formed bright blue plaques when plated on media containing X-gal.

Construction of the L5 Reporter Mycobacterophage

Strategies for construction of the recombinant 10 L5 mycobacteriophage may be investigated. The possibility of using the shuttle phasmid approach starting with L5 deletion derivatives, in which the size of the genome has been reduced, may also be explored. Initially, the largest gene 62 deletion 15 available should be used. However, other deletion derivatives in which more of the gene 62-61-60 segment is lost should also be isolated. Another approach would be to attempt to introduce genes by homologous recombination with plasmids. Still another approach 20 would be to transpose lux genes onto L5 using either the mini-Mu in vitro transposition system or a mycobacterial transposon such as IS1096.

Recombining reporter genes from recombinant 25 plasmids onto L5 using a double recombination event may also be performed. This involves first constructing a recombinant plasmid that carries a reporter gen (lacZ may be more suitable) inserted

into gene 62 such that both the upstream and downstream parts of gene 62 are present. Advantages of this approach are that lacZ can be easily detected in agar media, that gene 62 is not an essential gene, 5 and that lacZ is efficiently expressed from a promoter immediately upstream of gene 62. An L5 mycobacteriophage lysate may be prepared by growth of the plasmid-containing strain and recombinant mycobacteriophage progeny identified by plating the 10 lysate on wild-type M. smegmatis for individual plaques on agar containing the indicator X-gal.

This recombination approach may be expanded to introduce other gene or DNA segments of the L5 genome. For example, it should be possible to add 15 luciferase genes from FFlux in an identical manner, provided that packaging limits are not exceeded. In addition, inclusion of polylinker containing restriction enzyme sites unique for L5 would open the way for construction of L5 recombinants in vitro. 20 Similar genetic strategies may be used to systematically reduce the size of the L5 genome by deletion of non-essential sequences.

Transposition offers an alternative method for the construction of reporter mycobacteriophages. A 25 transposition system which is available is the mini-Mu in vitro transposition system. This is a defined biochemical reaction in which a mini-Mu transposon

carrying the desired gene is transposed onto the phage genome using purified MuA and MuB proteins. Similar transposition experiments have been tried with L5, but few L5 mini-Mu derivatives have been isolated. It is 5 possible that this is due to the relatively large size of the transposon used. It is necessary to first construct a small Mu transposon which contains the reporter gene, a promoter and the two Mu in order for these experiments to be successful.

10

Development of L5 *in vivo*
and *in vitro* Packaging Systems

g cosmids and packaging systems provide the efficiency of mycobacteriophage infection with the ability to inject large segments of 15 non-mycobacteriophage DNA. Analogous mycobacterial systems would overcome packaging constraints encountered with recombinant mycobacteriophage genomes and allow the introduction of multiple copies or types of reporter genes into mycobacteria, potentially 20 enhancing the sensitivity of the assay. In addition, they would help overcome any problems with host synthesis inhibition.

The development of L5 cosmids and packaging systems is dependent on the finding that the L5 genome 25 contains cohesive termini. The g paradigm suggests that a relatively small region of DNA (approximately 500bp) around the cos-site (in the ligated form) is

necessary to promote packaging. The first series of experiments with L5 would therefore be to identify the segment of the genome required for packaging by constructing a series of plasmids containing the L5 5 cos site and surrounding sequences. Cos activity may be determined by preparation of an L5 lysate on plasmid-containing M. smegmatis strains, followed by the identification of antibiotic-resistant transductants in the lysate, by transduction of 10 M. smegmatis. This assay assumes that plasmid multimers of a total size of approximately 50kb are present in the cell and will be packaged. Although the presence of such multimers has not been demonstrated directly, they are likely to be generated 15 by the homologous recombination system of M. smegmatis. If this assay should fail, cosmid vectors which contain both L5 g cos sites may be constructed. Insertion of 40-45kb of DNA (as in the construction of cosmid libraries) followed by g. 20 packaging in vitro and infection with E. coli will generate 50kb sized molecules containing L5 cos site. These should be isolated from E. coli and introduced by electroporation into M. smegmatis. Assuming that one of these approaches is successful, it would then 25 be possible to define a small segment of L5 DNA required for packaging.

The construction of in vivo cosmid packaging

systems is a particularly attractive idea since it has proven very useful in E. coli. Thermoinducible lysogens of L5 may be suitable for in vivo packaging of L5 cosmids without further modification, since prophage excision may be a temperature-sensitive event. Efficient packaging of extrachromosomal cosmids present in the lysogen may be achieved by simple induction and growth at 42°C.

It is possible that some process other than excision is temperature-sensitive in lysogen induction. If so, it will be necessary to further debilitate the prophage in order to prevent DNA packaging of the prophage. There are a variety of ways to accomplish this. For example, the excise gene itself could be deleted (using a recombination strategy similar to that described above) such as to prevent excision. Another approach is to damage the cohesive termini (by exonucleolytic digestion) of an L5 thermoinducible derivative and construct a defective lysogen. A combination of approaches may be desirable, since even if prophage excision is a temperature-sensitive process, the destruction of cos might effectively reduce the background of spontaneous mycobacteriophage release.

Construction of in vitro packaging systems will follow similar lines. Extracts may be prepared from thermoinducible strains with non-packagable

prophages and assessed for their ability to package exogenously added L5 cosmid or mycobacteriophage DNA. Optimization of conditions should follow both empirical biochemical approaches and the well-established g systems. For example, it may be necessary to supplement the extracts with purified mycobacteriophage products such as the terminase or the tape-measure analogues (genes A/Nu and H of g respectively), neither of which have yet been identified.

Construction of Novel Shuttle Phasmids From Any Mycobacteriophage

Although mycobacteriophages L5 and TM4 can be used in the development of diagnostic luciferase and β -galactosidase shuttle phasmids, there may be other mycobacteriophages, such as the mycobacteriophage DS6A which only infects BCG and M. tuberculosis strains, that might prove to have a more useful host range for clinical isolates. Diagnostic luciferase mycobacteriophages from these other mycobacteriophages may be developed by using the shuttle phasmid methodology described herein that has been proven successful for constructing mycobacteriophage vectors from both TM4 and phage L1.

25 Isolate Mycobacteriophage L5 and TM4 Mutants to Infect the Maximum Number of Clinical Isolates

For the diagnostic luciferase mycobacteriophage system to have maximal use in the clinical laboratory,

it will be essential that to develop a set of diagnostic mycobacteriophages that can efficiently infect any clinical isolate and possibly distinguish M. tuberculosis from M. avium and BCG. Both 5 mycobacteriophages TM4 and L5 appear to have the ability to infect a large number of M. tuberculosis isolates. TM4 is very closely related to phage 33D, a mycobacteriophage that has been found not to infect every M. tuberculosis isolate used to define the 10 mycobacteriophage typing schemes for M. tuberculosis isolates. However, this mycobacteriophage does not infect BCG. TM4 has been found to be almost identical by DNA hybridization and restriction analysis to 33D, and it shares the host-specificity with 33D in that it 15 infects M. tuberculosis, but fails to infect BCG. mycobacteriophage L5 appears to share the same receptor as mycobacteriophage D29 which receptor has been previously shown to infect a very large number of M. tuberculosis isolates. L5, unlike 33D or TM4, 20 infects all three morphotypes of M. avium including a wide range of serovariants.

If L5 or TM4 are found not to infect certain M. tuberculosis isolates, it may be possible to isolate mutants of these mycobacteriophages which 25 plaque on the particular isolate. The inability to plaque on a particular isolate could result from the lack of a mycobacteriophage receptor or be the result

of lysogenization of the isolate with a homoimmune phage. Phage mutants with altered host range specificities or mutants which no longer bind a repressor (equivalent to virulent mutant of g) have 5 been isolated in other systems. Variants of TM4 which can efficiently infect BCG have been isolated at frequencies of 10^7 . Previous work has demonstrated that 33D, similarly to TM4, can not adsorb to BCG cells. Host-range variants of TM4 which not only 10 plaque BCG, but also still plaque M. tuberculosis have been isolated. Similar strategies for M. tuberculosis isolates which are uninfected by L5 or TM4 may be used.

Detecting the Presence of
M. tuberculosis in Clinical Samples

15 The combined sensitivities of luciferase and mycobacteriophage infections should permit the detection of previously undetectable levels of M. tuberculosis cells in sputum, blood samples, or cerebral spinal fluid. A number of preliminary 20 studies to optimize the detection of M. tuberculosis cells in a variety of body samples will be performed.

Detecting M. tuberculosis Grown In Primary
Human Macrophages and Macrophage Cell Lines

As a model system for optimizing detection of 25 M. tuberculosis in infected monocytes and macrophages, primary human monocytes which have been purified by adherence for 1 hour or primary macrophages which have

been cultured for 6 days in microwells will be infected with M. tuberculosis H37Ra at varying multiplicities. The number of cells initially infected will be determined microscopically, and then 5 at various periods of time from 2 hours to 30 days, the cells will be lysed by non-ionic detergent NP40 which has no effect on viability of mycobacteria, concentrated by centrifugation, plated for viable organisms and infected with the luciferase plasmids. 10 Quantitative studies at different moi's and with varying numbers of infected cells will indicate how few bacilli/cell and bacilli/specimen can be detected.

The inability of M. tuberculosis cells isolated from macrophages to be infected with diagnostic 15 shuttle phasmids could result from either the absence of the expression of the mycobacteriophage-receptor or the masking of the receptor with a membrane from a phagosome of the macrophage. The level of expression of phage receptors may be regulated by the environment 20 in which the host cell is grown. For example, the g repressor of E. coli is induced by maltose and repressed by glucose. Studies to identify the receptors for mycobacteriophage L5 have been initiated. Similar studies for mycobacteriophage TM4 25 will also be performed. By identifying the genes encoding the receptor, it is possible to assay gene repression of the mycobacteriophage receptor of

M. tuberculosis cells when grown in macrophages by hybridization for the mRNA synthesis. If the receptor is not expressed in macrophages, it may be necessary to use a mycobacteriophage which recognizes a receptor 5 that is constitutively expressed.

If the receptor is masked by a membrane of the macrophage, the cells isolated from macrophages may be treated with a variety of different detergents to find a treatment that would allow infection of the 10 M. tuberculosis cells with the mycobacteriophages. Again, it may be necessary to cultivate the detergent-treated macrophages in broth for a few generations to gain expression of the receptors. The assays to determine the infectability of macrophages 15 from mycobacteria include not only the luciferase assay for the TM4::lux mycobacteriophages, but also infectious centers assays in which free mycobacteriophages are removed and mycobacteriophage-producing cells are scored by a 20 mixed plating on a lawn of M. smegmatis. This assay would be useful since infectability can be scored even if there are insufficient M. tuberculosis cells to form a bacterial lawn. It is important to re-evaluate the host range specificities of all of the 25 mycobacteriophages in this assay. Free mycobacteriophages can simply be removed through the use of specific anti-mycobacteriophage antibodies.

Detecting M. tuberculosis in Sputum Samples

Sputum from a patient infected with M. tuberculosis contains a mixture of mucoploysaccharide, free M. tuberculosis cells, macrophages containing M. tuberculosis cells and a variety of cellular debris. Sputum samples from patients thought to have pulmonary tuberculosis may be used for a study in which various numbers of M. tuberculosis cells are added to sputum samples found to have no or few organisms by acid-fast staining. A variety of methods can be used to treat sputum samples so as to liquify the mucous and decontaminate the specimen under conditions in which all bacteria other than mycobacteria are killed. Because of the specificity of the phasmids, decontamination may not be as important as preserving the mycobacteriophage receptors. Nonetheless, the sputum samples may be treated initially with 2% w/v NaOH for 30 minutes at 37°C or with 0.5% N-acetyl cysteine + 1% NaOH. Alternatively, the sample may be treated with a variety of hydrolytic enzymes, such as collagenase, to help dissolve the sputum sample. If mycobacteriophage receptors are carbohydrates possibly sensitive to these conditions, other conditions may be utilized or the cells will be cultured 3-16 hours to allow recovery of infectivity before mycobacteriophage infection.

Detecting Mycobacteria In Blood Samples

Tuberculosis has been known to have a bacteremia. If the sensitivity necessary to detect 100 to 200 M. tuberculosis cells in a ml of sample can 5 be obtained, levels of bacteremia in tuberculosis patients which were not previously observable may be observed. White cells should be purified over Ficoil-hypaque and lysed with 2% NP40, 1% SDS or freeze-thawing in the presence of DNase to liberate 10 intracellular mycobacteria. The pellet should then be infected with the diagnostic luciferase mycobacteriophage, or if only few organisms are present they can be concentrated by filtration onto filters, and filter areas cut out and infected.

15 Assuring Specificity On a Variety
 of Clinical Isolates and Species;
 Assessment of False Positives and Negatives

The luciferase assay may be optimized such that positive correlations of M. tuberculosis infections as 20 indicated in the clinical lab may be obtained. The recombinant mycobacteriophages may be tested to ascertain the range of specificity that they have for other mycobacteria, and for the closely related genera Nocardia, Corynebacterium, and Actinomycetes. 25 strains. These strains may be obtained from the ATCC. A number of blinded tests including negative controls, M. tuberculosis-infected patients, samples

from patients infected with M. avium, and samples infected with other non-mycobacterial pathogens may be performed to ascertain the range of specificity.

The ability to rapidly assess the susceptibilities of M. tuberculosis isolates to isoniazid, ethambutol, rifampicin, pyrazinamide and other antibiotics will have a major impact on the treatment of tuberculosis patients. After the isolation of M. tuberculosis cells from a sputum sample, which may take several weeks, the assessment of drug-susceptibilities may take an additional 2 to 9 weeks. Diagnostic reporter mycobacteriophages may allow for evaluations of drug-susceptibilities at the time a sputum sample is collected. Alternatively, this approach would shorten the time necessary to assess drug-susceptibilities of purified M. tuberculosis colonies grown up from clinical samples.

Luciferase Assays for M. tuberculosis Cells in the Presence of Drugs

The results of the experiments suggest that by using luciferase as an indicator for the metabolic ability of the cell, it may be possible to define conditions which will enable us to distinguish drug-resistant mycobacteria from drug-sensitive mycobacteria. To test this hypothesis, isolated

mutants of M. tuberculosis H37Ra which are resistant to isoniazid, rifampicin, ethambutol, or pyrazinamide would be used to generate a set of cogenetic mutants. These independent mutants and the parent strains would 5 be transformed with pYUB180. Luciferase activity will be assessed in the presence and absence of drugs in order to determine the optimal conditions for distinguishing between drug-resistant and drug-sensitive cells. It is quite possible that the 10 window of time to observe differences for different drugs could vary and require different incubation times for each drug.

The choice of the promoter for expressing luciferase may provide a needed parameter to more 15 readily assess drug action. For example, in the case of E. coli, gyrase promoters are greatly stimulated in the presence of gyrase inhibitors.

Clinical isolates of M. tuberculosis may be transformed with PYUB180 and tested for luciferase 20 activity in the presence and absence of drugs. The luciferase assays with mycobacteriophage infections with lux mycobacteriophages on in vitro-grown M. tuberculosis cells will first be optimized, and then extended to M. tuberculosis cells grown in 25 macrophages or isolated from sputum samples.

Critical Assessment of Drug-Susceptibility Testing

As for the detection of M. tuberculosis from clinical samples, the luciferase assay may be optimized so that the drug-susceptibility patterns for any clinical isolate may be obtained. It may be 5 possible to add diagnostic mycobacteriophages to a single clinical specimen, aliquot the mixture into various tubes and add antibiotic drugs. Thus every experiment would have an internal control and each drug-treated sample could be compared to an untreated 10 control. The critical parameter to conclude drug-resistance or sensitivity lies in the comparison.

Although the invention herein has been described with reference to particular embodiments, it is to be understood that these embodiments are merely 15 illustrative of various aspects of the invention. Thus, it is to be understood that numerous modifications may be made in the illustrative embodiments and other arrangements may be devised without departing from the spirit and scope of the 20 invention.

WHAT IS CLAIMED IS:

1. A method of producing mycobacterial species-specific reporter mycobacteriophages which comprises introducing reporter genes and transcriptional promoters into the genomes of mycobacterial species-specific mycobacteriophages wherein upon incubation with the mycobacteria for which said reporter mycobacteriophage is specific, the reporter genes of said reporter mycobacteriophage will express a gene product which is detectable.
- 10 2. The method according to Claim 1 wherein the reporter genes and transcriptional promoters are introduced into the mycobacteriophages by shuttle phasmid technology.
- 15 3. The method according to Claim 1 wherein the reporter genes and transcriptional promoters are introduced into the mycobacteriophages by homologous recombination or PCR.
- 20 4. The method according to Claim 1 wherein the reporter genes and transcriptional promoters are introduced into the mycobacteriophages by transposon technology.
5. The method according to Claim 1 wherein the reporter genes and transcriptional promoters are

introduced into the mycobacteriophages by debilitated phages packaged into page heads and tails.

6. The method according to Claim 1 wherein the reporter genes and transcriptional promoters are introduced into the mycobacteriophages by plasmids packaged into phage heads and tails.

7. The method according to Claim 1 wherein the reporter genes and transcriptional promoters are introduced into the mycobacteriophages by recombinant DNA techniques.

8. The method according to Claim 1 wherein the mycobacteria is M. tuberculosis.

9. The method according to Claim 1 wherein the mycobacterial species-specific mycobacteriophage is L5, TM4 or DS6A.

10. The method according to Claim 1 wherein the reporter genes are luciferase genes or the β -galactosidase gene.

11. The method according to Claim 10 wherein the luciferase genes are selected from the group consisting of Firefly lux gene, Vibrio fischeri lux genes, Xenorhabdus luminescens lux genes and lacZ genes.

12. The method according to Claim 1 wherein the transcriptional promoter is hsp60 or the L5 gene 62 promoter.

13. The method according to Claim 1 wherein
the gene product is photons.

14. The method according to Claim 1 wherein
the gene product is made detectable by contacting said
5 gene product with a substrate.

15. The method according to Claim 14 wherein
the substrate is luciferin or decanal.

16. The mycobacterial species-specific
reporter mycobacteriophage produced by the method of
10 Claim 1.

17. A mycobacterial species-specific reporter
mycobacteriophage comprising a mycobacterial
species-specific mycobacteriophage which contains in
its genome reporter genes and a transcriptional
15 promoter, wherein the reporter genes express a gene
product upon incubation with the mycobacteria for
which the reporter mycobacteriophage is specific.

18. The mycobacterial species-specific
reporter mycobacteriophage according to Claim 17
20 wherein the mycobacteria is M. tuberculosis.

19. The mycobacterial species-specific
reporter mycobacteriophage according to Claim 17
wherein the mycobacterial species-specific
mycobacteriophage is L5, TM4 or DS6A.

25 20. The mycobacterial species-specific
reporter mycobacteriophage according to Claim 17

wherein the reporter genes are luciferase genes or the β -galactosidase gene.

21. The mycobacterial species-specific reporter mycobacteriophage according to Claim 20 wherein the luciferase genes are selected from the group consisting of Firefly lux gene, Vibrio fischeri lux genes, Xenorhabdus luminescens lux genes and lacZ genes.

22. The mycobacterial species-specific reporter mycobacteriophage according to Claim 17 wherein the transcriptional promoter is hsp60 or the L5 gene 62 promoter.

23. The mycobacterial species-specific reporter mycobacteriophage according to Claim 17 wherein the gene product is photons.

24. The mycobacterial species-specific reporter mycobacteriophage according to Claim 17 wherein the gene product is made detectable by contacting said gene product with a substrate.

20 25. The mycobacterial species-specific reporter mycobacteriophage according to Claim 24 wherein the substrate is luciferin or decanal.

26. A method of diagnosing a mycobacterial disease which comprises incubating a sample which may 25 contain myco- bacteria with mycobacterial species-specific mycobacteriophages which contain

reporter genes and transcriptional promoters in their genomes, wherein the reporter genes produce a gene product upon incubation with the mycobacteria for which the mycobacteriophage is specific, and wherein
5 the gene product is detectable.

27. The method according to Claim 26 wherein the mycobacterial disease is tuberculosis.

28. The method according to Claim 26 wherein the mycobacteria is M. tuberculosis.

10 29. The method according to Claim 26 wherein the mycobacterial species-specific mycobacteriophage is L5, TM4 or DS6A.

15 30. The method according to Claim 26 wherein the reporter genes are luciferase genes or the β -galactosidase gene.

31. The method according to Claim 30 wherein the luciferase genes are selected from the group consisting of Firefly lux gene, Vibrio fischeri lux genes, Xenorhabdus luminescens lux genes and lacZ genes.
20

32. The method according to Claim 26 wherein the transcriptional promoter is hsp60 or the L5 gene 62 promoter.

33. The method according to Claim 26 wherein 25 the gene product is photons.

34. The method according to Claim 26 wherein

the gene product is made detectable by contacting said gene product with a substrate.

35. The method according to Claim 34 wherein the substrate is luciferin or decanal.

5 36. The method according to Claim 26 wherein the sample is blood or sputum.

37. A method of assessing drug resistance of a mycobacterial strain which comprises:

10 (a) incubating a sample which contains a myco- bacterial strain with mycobacterial species-specific mycobacteriophages which contain in their genomes transcriptional promoters and reporter genes which produce gene products;

15 (b) adding an anti-mycobacterial drug to the incubation; and

(c) detecting whether the gene product is present in the sample, such presence indicating drug resistance of the 20 mycobacterial strain.

38. The method according to Claim 37 wherein the mycobacterial strain is a strain of M. tuberculosis.

25 39. The method according to Claim 37 wherein the mycobacterial species-specific mycobacteriophage is L5, or TM4 or DS6A.

40. The method according to Claim 37 wherein the reporter genes are luciferase genes or the β -galactosidase.

41. The method according to Claim 40 wherein 5 the luciferase genes are selected from the group consisting of Firefly lux, gene, Vibrio fischeri lux genes, Xenorhabdus luminescens lux genes and lacZ genes.

42. The method according to Claim 37 wherein 10 the gene product is photons.

43. The method according to Claim 37 wherein the transcriptional promoter is hsp60 or the L5 gene 62 promoter.

44. The method according to Claim 37 wherein 15 the anti-mycobacterial drug is selected from the group consisting of streptomycin, isoniazid, ethambutol, rifampicin, ciprofloxacin, novobiocin and cyanide.

45. The method according to Claim 37 wherein 20 the gene product is made detectable by contacting said gene product with a substrate.

46. The method according to Claim 45 wherein the substrate is luciferin or decanal.

47. The method according to Claim 37 wherein the sample is blood or sputum.

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US93/00913

A. CLASSIFICATION OF SUBJECT MATTER

IPC(5) :C12N 07/00; C12P 21/06; C12Q 01/66

US CL :435/ 235.1, 69.8, 8

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

U.S. : 435/ 235.1, 69.8, 8

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
medline, dialog, aps

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	US, A, 4,861,709 (Ulitzer et al.) 29 August 1989, see column 8, 14-17, and 28.	1-47
Y	Revista Cubana de Medicina Tropical, Volume 41, No. 2, issued 1989, M.C.A. Jimenez et al., "Phage Typing Marker Study of Mycobacterium-Tuberculosis Strains from Ethiopia Preliminary Report", pages 192-199, see abstract.	1-47
Y	Nature, Volume 351, issued 06 June 1991, C.K. Stover et al., "New Use of BCG for Recombinant Vaccines", pages 456-460, see entire document.	1-47

 Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:

"A" document defining the general state of the art which is not considered to be part of particular relevance

"E" earlier document published on or after the international filing date

"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other means

"P" document published prior to the international filing date but later than the priority date claimed

"T"

later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X"

document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y"

document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"A"

document member of the same patent family

Date of the actual completion of the international search

Date of mailing of the international search report

15 APRIL 1993

21 APR 1993

Name and mailing address of the ISA/US
Commissioner of Patents and Trademarks
Box PCT
Washington, D.C. 20231

Authorized officer

KATHLEEN L. CHOI

Facsimile No. NOT APPLICABLE

Telephone No. (703) 308-0196

Form PCT/ISA/210 (second sheet)(July 1992)*

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US93/00913

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	Folia Microbiology, Volume 36, No. 5, issued 1991, J. Konicek et al., "Gene Manipulation in Mycobacteria", pages 411-422, see pages 415-417.	1-47
Y	Nature, Volume 327, issued 11 June 1987, W.R. Jacobs Jr. et al., "Introduction to Foreign DNA into Mycobacteria using a Shuttle Phasmid", pages 532-535, see entire document.	1-47
Y	Proceedings of the National Academy of Sciences, Volume 88, issued April 1991, M.H. Lee et al., "Site-specific Integration of Mycobacteriophage L5: Integration-proficient Vectors for <i>Mycobacterium smegmatis</i> , <i>Mycobacterium tuberculosis</i> , and bacille Calmette-Guerin", pages 3111-3115, see entire document.	1-47
Y	Journal of General Virology, Volume 26, No. 1, issued January 1975, J.A. Hewitt, "Miniphage - a Class of Satellite Phage to M13", pages 87-94, see abstract.	5, 6
Y	Journal of Bacteriology, Volume 149, No. 3, issued March 1982, M.J. Orbach et al., "Transfer of Chimeric Plasmids among <i>Salmonella typhimurium</i> Strains by P22 Transduction", pages 985-994, see entire document.	5, 6
Y	Zentralbl. Veterinaermed., Reihe B, Volume 25, No. 5, issued 1982, R. Weiss et al., "Resistance Testing of Bacteria by Firefly Bioluminescence. A Rapid Test", pages 359-71, see abstract.	37-47
Y	Fortschr. Veterinaermed., Volume 35, issued 1982, R. Weiss et al., "Bioluminescent Methods to Test the Antibiotic Sensitivity of Bacteria", pages 323-328, see abstract.	37-47

THIS PAGE BLANK (USPTO)