Practice and sample problems from past exams

- **1.** Prove that if $\vec{a} \cdot \vec{b} = \vec{a} \cdot \vec{c}$ and $\vec{a} \times \vec{b} = \vec{a} \times \vec{c}$, then $\vec{b} = \vec{c}$, provided that $\vec{a} \neq \vec{0}$,
- **2.** Compute the volume of the tetrahedron with the vertices (a, a, a), (-a, -a, a), (-a, a, -a), (a, -a, -a).
- 3. Find the angle between two disjoint diagonals in two adjacent faces of a cube.
- 4. Which of the functions can be transformed into each other by linear changes of coordinates:

$$3xy + y^2$$
, $x^2 + 3xy + 2y^2$, $x^2 + 3xy - 2y^2$?

5. A scalar-valued function f of a vector argument is called *linear* if

$$f(\lambda \vec{u} + \mu \vec{v}) = \lambda f(\vec{u}) + \mu f(\vec{v})$$

for all vectors \vec{u}, \vec{v} and all scalars λ, μ .

Let $\vec{r} = x\vec{i} + y\vec{j} + z\vec{k}$. Which of the following functions of \vec{r} are linear: (a) $f(\vec{r}) = 2 + 3x + 4y + 5z$, (b) $f(\vec{r}) = |\vec{r}|$, (c) $f(\vec{r}) = \vec{r} \cdot \vec{r}$, (d) $f(\vec{r}) = \vec{a} \cdot (\vec{r} \times \vec{b})$, where \vec{a}, \vec{b} are given vectors.

- **6.** Find an equation of the plane passing through the point (1,2,3) and parallel to the plane 2x + 3y = 4z + 5.
- 7. Express the dot-product $\vec{a} \cdot \vec{b}$ of two vectors through the lengths M and N of their sum and difference: $M = |\vec{a} + \vec{b}|$ and $N = |\vec{a} \vec{b}|$.
 - **8.** Compute the area of the quadrilateral ABCD with the vertices:

$$A = (0,0,0), B = (1,2,3,), C = (3,5,8), D = (2,3,5).$$

- **9.** A function f on the plane is said to have a given line as an axis of symmetry if f(P) = f(Q) whenever the points P and Q are symmetric to each other about this line. Find all axes of symmetry of the function $f(x,y) = x^2 + y^2 4xy$.
 - 10. How many axes of symmetry does the function $x^2 + y^2$ have?
- 11. Any ellipse can be described as the set of all points in the plane with a fixed sum of distances to two fixed point, called *foci*.

Locate the foci of the ellipse $ax^2 + by^2 = 1$ assuming that a > b.

12. Identify graphs of the functions: $A = x^2 + y^2 - 2xy$, $B = x^2 + y^2 - xy$, $C = x^2 + y^2$, $D = x^2 + y^2 + 2xy$, $E = x^2 + y^2 + 3xy$.

