UNIVERSIDADE FEDERAL DE VIÇOSA DEPARTAMENTO DE ENGENHARIA ELÉTRICA ELT 310 - ELETRÔNICA I PROFESSORA KÉTIA SOARES MOREIRA

PROFESSORA K	ETIA SOARES MOREIRA
Nome:	Matrícula: Turma:
	ROTEIRO DE AULA PRÁTICA 10
Aula	O TRANSISTOR BIPOLAR NA AMPLIFICAÇÃO DE PEQUENOS SINAIS – DIVISOR DE TENSÃO

MATERIAL UTILIZADO:

01 resistor de $3K9 \Omega$ 01 resistor de $10 K\Omega$ 01 resistor de $1K8 \Omega$ 01 resistor de $1K8 \Omega$ 01 resistor de $1K8 \Omega$ 02 capacitores eletrolíticos de $1\mu F$

01 capacitor eletrolíticos de 22µF

OBJETIVOS: Verificar a capacidade de amplificação de um transistor bipolar polarizado por divisor de tensão. / Compreender a utilização do teorema de superposição para a análise de um amplificador transistorizado. / Medição do ganho de corrente e cálculos.

PARTE TEORICA

- 1) Explicar os principais parâmetros na especificação do transistor: a) Pinagem (desenho); b) hfe (faixa de valores); c) hoe; d) potência máxima; e)VCE sat; f) VBE; g) ICO (corrente de saturação reversa)
- 2) Levantamento técnico: Buscar no datasheet os dados principais do transistor PN2222: a) Pinagem (desenho); b) hfe (faixa de valores); c) hoe; d) potência máxima; e)VCE sat; f) VBE; g) ICO (corrente de saturação reversa)
- 3) A Figura 1 mostra um circuito polarização por divisor de tensão. Considerando o valor de β (datasheet), calcule as tensões e correntes do circuito, e preencha a tabela 1:

Tabela 1 - Polarização CC

Transistor	$I_{B}(\mu A)$	I _C (mA)	I _E (mA)	$V_{B}(V)$	$V_{C}(V)$	$V_{CE}(V)$
β =	VR1	VR2	VBE	VBC		
	VKI	V KZ	VDL	VBC		

- 4) Considerando o capacitor CE desconectado (Figura 2), desenhe o modelo re equivalente.
- 5) Considerando o capacitor CE desconectado(Figura 2), deduza e calcule os parâmetros: Zi, Zo, Av e Ai.
- 6) Considerando o capacitor CE conectado (Figura 3), desenhe o modelo re equivalente.
- 7) Considerando o capacitor CE conectado (Figura 3), deduza e calcule os parâmetros: Zi, Zo, Av e Ai.

PARTE PRATICA

OBS: O CAPACITOR CE DEVE SER CONECTADO SOMENTE NA LETRA I DESTA PRÁTICA (Figura 3).

- a) Montar o circuito sem conectar a fonte de tensão senoidal e os capacitores (**Figura 1**). Medir os parâmetros relativos ao ponto quiescente e anotar na tabela 2.
- b) Conectar ao circuito a fonte de sinais senoidal (Vs), os capacitores, exceto CE, e um resistor de carga $RL=39 \text{ K}\Omega$ (entre Vo e terra) (**Figura 2**). Medir os valores de pico a pico e pico das tensões Vs, Vi, Vc, Vo.
- ❖ Anotar na tabela 3. **OBS.** Vs=25mV e f=3kHz;
- **Esboce a forma de onda de** Vs, Vi, Vc, VE e Vo. Considere a componente continua.
- c) Faça o mesmo da letra b, mas considere Vs=250mV e f=3kHz;
- **Esboce a forma de onda de** Vs, Vi, Vc, VE e Vo. Considere a componente continua.
- d) Calcular o ganho de tensão A_{VNL}=Vo/Vi para os sinais obtidos em b).

Tabela 2 - Polarização CC

Transistor	$I_{B}(\mu A)$	I _C (mA)	$I_{E}\left(mA\right)$	$V_{B}(V)$	$V_{C}(V)$	$V_{CE}(V)$
β =	VR1	VR2	VBE	VBC		
β –						

Tabela 3 - b

$V_{S-PP}(V)$	$V_{\text{I-PP}}(V)$	$V_{C-PP}(V)$	$V_{O-PP}(V)$

- e) Qual a componente contínua presente no coletor? Compare com VC da tabela 1.
- f) Qual a componente contínua presente na base? Compare com VB da tabela 1.
- g) Os sinais de Vs e Vo estão em fase? Explique.
- h) Compare o ganho teórico e simulados e conclua.

PARTE PRÁTICA CONTINUAÇÃO

- i) Conectar o capacitor de desvio C_E em paralelo com R_E (**Figura 3**).
- **Esboce a forma de onda de** Vs, Vi, Vc, VE e Vo. Considere a componente continua.
- j) Explique o que ocorre com a forma de onda do sinal de saída, Vo.
- k) O ganho de tensão do amplificador é alterado? Justifique.
- 1) Compare com os valores teóricos e práticos. O que aconteceu com o ganho de tensão? Por quê?
- m)Coloque os resultados da simulação:

Esquema elétrico.

Diagramas nos principais pontos. Explique detalhadamente os resultados da simulação e seus valores.

n) Conclua seus resultados e observações.

Figura 1

Figura 2

