Model 1: log(PRICE) ~ log(PROPERTYSQFT) + BEDS + BATH

This model explains about 58.9% of the variance in housing prices (Adjusted $R^2 = 0.5884$).

- Property size (log-transformed) is strongly and positively associated with price (β = 1.081, p < 0.001).
- Beds show a small but negative effect on price ($\beta = -0.050$, p < 0.001).
- Baths have a positive effect on price (β = 0.068, p < 0.001).
 Residuals are fairly tight (SE ≈ 0.27), and all predictors are statistically significant.

Model 2: log(PRICE) ~ log(PROPERTYSQFT) + BEDS

This simpler model explains about 57.0% of the variance (Adjusted $R^2 = 0.5699$).

- Property size remains highly significant (β = 1.240, p < 0.001).
- Beds is again negative (β = -- 0.031, p < 0.001), but its effect size is smaller. The model fit is slightly weaker than Model 1, with a higher residual error (SE \approx 0.28).

Model 3: log(PRICE) ~ BEDS + BATH

This model explains only 37.3% of the variance (Adjusted $R^2 = 0.3731$).

- Beds are not significant ($\beta \approx 0$, p = 0.948).
- Baths are strongly positive (β = 0.183, p < 0.001). Model 3 fits the data noticeably worse than the other two, with the largest residual error (SE \approx 0.34).

Comparison:

- Model 1 provides the best overall fit, balancing predictors and explaining the most variance.
- Model 2 is nearly as good but omits Baths, which appear to be an important predictor.
- Model 3 is weakest, as it excludes property size, which is clearly the dominant factor.

Regression: BEDS vs log10(PRICE) - Model Imod_33

Residuals vs Fitted - Model Imod_33

