System 101

Maël Auzias

ENSIBS - UBS

March 2016

Figure: sys-101.auzias.net

Course details

Objectives

- ► How do *computers* work?
- ▶ What are they made of?
- ► What is an OS?

Course details

Evaluation

- ▶ Short test at the end of each practice
- ► Final exam (1 hour)
- All equal weighting

Material

- ► Slides available at sys-101.auzias.net (github too)
- ➤ **To read**: Modern Operating System Andrew Tanenbaum. ISBN-13: 978-0133591620

Presentation Outline

What is an OS?

OS Concepts

Processes and Thread

System Calls

Operating System

Operating System

Two basic unrelated functions

- provide application programmers a clean abstract set of resources,
- manage hardware resources.

Customers

OS real customers are **programs developpers**, not end users of theses developped programs.

The OS as an API provider

Abstraction challenge

- Hardware design, as well made as it can be, only offer awkward and ugly interface to communicate.
- Instruction set, memory organization, I/O, bus structure are not user friendly.
- Programers need not to worry about all of that thanks to the abstraction level provided by OS.

The OS as the resource manager

Resource challenge

- Orderly allocation of the processors, memoriesy, I/O devices for all the programs competing for them.
- Software resources (files, DB, network access) are also managed by the OS.
- Multiplexing:
 - ► Time multiplexing (CPU, printer),
 - Space multiplexing (RAM, disk).

The OS history

```
1945-55 First generation: vaccum tubes
```

1955-65 Second generation: Transistors and Batch Systems

1965-80 Third generation: ICs¹ and Multiprogramming²

1980-now Fourth generation: Personal Computers

future Fifth generation: any suggestion?

¹Integrated Circuit

²several programs running at once

The OS Zoo

- Mainframe Thousands of disks and millions gigabytes of data (high end web servers, servers for business-to-business transactions). Theses OS are focused on executing many jobs at once.
 - Server Multiple users served at once through a network, they provide print/file/web services.
- Multiprocessor Multiples CPUs are hosted into one system (also called, according to what and how they share it: parallel computers, multicomputers, or multiprocessors).
- Personal Computers Usually used for game, spreadsheet, word processing and web browsing (laptop, desktop).

The OS Zoo

Handheld Small computers offering telephony, address book, web apps. They are becoming more and more sophisticated and blurring the difference between personal computers and handheld computers. Embedded Microwave ovens, (non-smart) TV and swatches, (not connected) cars, Bluray readers... They usual do not allow user-installed softwares. Sensor Node Usually small and simple to run on constraint devices with little RAM/ROM and battery life (TinyOS). RTS³ Industrial process control, avionics, military... Smart Card Credit card.

³Real-Time System

Presentation Outline

What is an OS?

OS Concepts

Processes and Thread

System Calls

OS Concepts

Overview

- Processes,
- ► Address spaces,
- ► Files,
- ► Input/Output,
- Permissions.

Processes

A process is a program being executed.

Each process:

- has an address space (core image),
- has a register (program counter and stack pointer),
- has a list of open files,
- has a list of related processes,
- and all the details needed to run a program.

Process

OS management of Processes

- Execute.
- Save execution state (file pointers list, number of bytes to be read next) in a process table⁴,
- ► Stop.

A process corresponds to its **core image** and its **process table entry**.

⁴Array or linked list

Child Process

Process life

- A system call starts a process.
- Binary code is executed.
 - ► The process can create other processes, called child processes (and so on – tree).
 - ▶ Processes can communicate together using **IPC** means⁵.
- ▶ The OS may send **alarm** signal (interruption) to the process.
- ► The process executes a system call to terminates itself.

⁵Inter Process Communication

Users Process

Process life

- ▶ **UID**⁶ is a unique number assigned to each system user.
- Every process started has the UID of the user who started it.
- Every child process has the UID of its parent.
- One UID is called the super-user. The super-user has all permission.
- Users may also be members of groups. Each group has a GID.

⁶User Identification

Address Space

An address space is a memory location (from 0 to some maximum) and contains:

- executable program,
- program's data,
- program's stack.

Address Space

- Physical memory,
- Virtual memory (swap).

File

OS hide all peculiar disk operations to offer abstracted model of device-independent file management.

- System calls are required to:
 - Create, remove, read and write files; create and remove directories
- File system also match a tree structure.

File

- Path
 - Absolute: from the root directory, starting with /
 - ► Relative: from the current directory⁷, starting with "./" or a directory name.
- Several files may have the same name.
- Each file has a unique absolute path (and an infinity of relative ones).
- Mounted file system, merging trees.

⁷each process has a current working directory. A system call allows process to change their working directory

Special Files

I/O devices are abstracted to be used through same system calls as files do.

- Devices:
 - ▶ Block files,
 - Character files.
 - Special files are kept in /dev.
- ► Pipe:
 - ▶ IPC mean.
 - a special system call needs to be performed to known it's not a real file.

Tree

- Both process and file are structured as tree.
- Process tree are usually not very deep, unlike file trees.
- Process hierarchy are usually short-lived (minutes or less) while directories may exist for years.
- Ownership and protection differs too.

Permissions

u g o : user group other

- Three 3-bit fields
 - read
 - write
 - execute
- rwx rwx rwx do-what-ever-you-want-file
- rwx rwx r-x web-file
- rw- rwx rwx virus
- r-x personal-backup.tgz

Right	File	Directory
r	can read	can list files
W	can write	can add/delete files
×	can execute	can go through

Figure: Permissions meaning

Presentation Outline

What is an OS?

OS Concepts

Processes and Thread

System Calls

Processes and Thread

Overview

- ▶ Why processes are so important?
- What differences between processes and threads?

Processes

- Most important abstraction,
- Turn single-CPU into multiple virtual CPU
- ► Enable pseudo concurrent operations (pseudoparallelism),
- Without, modern computing could not exit.

Processes

Processes

- are instance of executing program
- include currents values of
 - program counter,
 - registers,
 - variables.
- have their own virtual CPU (multiprogramming) considerations about time management, RTS.

The student partying (a fictional analogy)

- The student, at a home party, makes a cocktail.
 - Student: CPU, recipe: program, drinks: data, glasses: resource, action: process.
- While pouring the last ingredient her/his phone rang and s/he answers.
 - Student: CPU, phone-skill: program, phone: resource, phone call details: data, action: process.

A process is an activity having a program, input, output and a state. OS uses scheduling algorithm to determines when to stop/start which process.

Processes

Creation

- System initialization,
- Process creation done by a running process,
- User request,
- Initiation of a batch jobs.

Termination

- Voluntary
 - Normal exit,
 - Frror exit.

- Involuntary
 - Fatal error,
 - Killed by another process.

Process states

State

- a. Running,
- b. Ready,
- c. Blocked.

Transition

- 1. Scheduler pick another process.
- 2. Scheduler pick this process.
- 3. Input available.
- 4. Input required.

Threads

Threads

- 1. Processes within a process.
- 2. Enable to decompose big task into multiple sequential smaller tasks ..
- 3. .. while **sharing** a memory space.
- 4. Easier, faster, to create and destroy than processes as they are lighter.

Web browser example with multiple threads.

Presentation Outline

What is an OS?

OS Concepts

Processes and Thread

System Calls

System calls

System operations

- ▶ Read file, create directory or a process, modify permissions ...
- .. results in a system call.

System calls

System calls procedure

- 1. Switch from the program, within the user space, into the kernel space by executing a TRAP instruction.
- The program starts the execution at a fixed address in the kernel space.
- 3. The kernel code then examine the system call number and execute the matching system call handler.
- 4. The system call handler execute its code and then returnes the control to the program at the instruction following the TRAP instruction.
 - unless the system call blocks (i.e., waiting for an input on the keyboard).
- 5. The program is put back into user space and continues.

Main system calls: Process management

Call	Description
pid = fork()	Create a child process
	(identical to the parent)
pid = waitpid(pid, &stat, opt)	Waif for a child to terminate
s = execve(name, argv, envp)	Execute a program
exit(status)	Terminate a process and return status

Figure: Process management

Main system calls: File management

Description
Open (or create) a file
Close a file
Read data from a file into a buffer
Write data from a buffer into a file
Reposition the pointer within the file
Get file status

Figure: File management

Main system calls: Directory and file system management

Call	Description
s = mkdir(name, mode)	Create a directory
s = rmdir(name)	Delete a directory
s = link(oldpath, newpath)	Make a new name for a file
s = unlink(path)	Delete a name and possibly the file it refers to
s = mount(s, t, fst, f, d)	Mount a filesystem
s = umount(target)	Unmount a filesystem

Figure: Directory and file system management

Main system calls: Miscellaneous management

Call	Description
s = chdir(dirname)	Change the working directory
s = chmod(name, mode)	Change a file's protection bits
s = kill(pid, signal)	Send a signal to a process
seconds = time(&seconds)	Get the elapsed time since $01/01/70$

Figure: Miscellaneous

I hope you liked it and learnt something new!

Figure: sys-101.auzias.net