The Social Connection

Analysis of Social Connections from Google+

Motivation

 Understanding how social circle forms can reveal real-life and online relationships

Who has the most connections?

- In every friend circle, some people are more connected than others
- We can find the connectors and see how the info spreads

Can Al Predict who you'll be friends with?

 We are analyzing what influences social group formation (how social media platforms recommend connections)

Objective

- Analyze Ego (User) Networks to understand how people group into social circles
- Identify the key features that influence these social connections
- Use machine learning (recommender system) to predict social circles/network structures

Methodology

 Data Exploration and Pre-Processing

2. Model Training and Data Analysis

Evaluation and Comparison of Results using Visual Insights

Dataset

Dataset Name:

What's in the Dataset?

Why this Dataset?

Learning Social Circles in Networks

- Social connection centered around an individual (Ego Network)
- Shows who is connected to whom
- Social Circles → Groups of friends a user belongs to
- User Features → Includes details like workplace, location, education, etc

- Helps us understand how people form social circles online
- Used for predicting relationships & recommending connections

Overall Feature Importance vs. Individual Circles

Overall Feature Importance vs. Individual Circles

Circle 29 Circle 22

Ego 345's Full Social Circle

Ego 345's Close Social Network

Boosting

See what we can get!

Mask one connection and train the model to recover if there's a connection or not

Only use people connection data

Use as recommender system by recommending errors:D

(If people aren't connected but model thinks they should be, then recommend it)

Accuracy: 0.9615

Precision: 0.9479 Recall: 0.9768

Average feature importance: 13.34

Features are people, so shows how impactful being connected to someone is

Similarity-based Link Prediction

This method predicts connections by comparing shared neighbors between two nodes. If two people have many mutual friends, they are more likely to be connected.

In this dataset, we compute Jaccard Similarity for each node pair and predict a link when they share a significant fraction of common neighbors.

Accuracy: 0.9932

Singular Value Decomposition(SVD)

SVD decomposes the network structure into lower-dimensional representations, capturing hidden relationships between nodes.

Here, we apply SVD to the adjacency matrix, using the learned node embeddings to estimate the likelihood of a missing link.

Accuracy: 0.9865

Logistic Regression

We can model the connections between individuals as a linear combination of parameters

We can utilize the most impactful parameters to train our model, resulting in similar accuracy with quicker computation

Accuracy: 0.9996

Comparison

/		
Model	Accuracy	Running time
Boosting	0.9615	6 hours
Jaccard Similarity	0.9932	2.3 seconds
SVD	0.9865	189.7 seconds
Logistic Regression	0.9996	187.3 seconds

