1. a) Suppose the first k components are nonzero.

Because $\sum_{i=1}^{k} x_i = 1$ and $\log x$ is a concave function,

$$-H(x) \ge \log\left(\frac{\sum_{i=1}^k x_i}{k}\right) = \log\left(\frac{1}{k}\right) = -\log(k).$$

Because $k \le n$, $H(x) \le \log(k) \le \log(n)$.

b)
$$H(\bar{x}) = -\sum_{i=1}^{n} \frac{1}{n} \log \left(\frac{1}{n}\right) = -\log \left(\frac{1}{n}\right) = \log(n).$$

Because $H(x) \leq \log(n)$, $H(\bar{x})$ sis the maximum of H(x).

$$Hessian(H(x)) = \begin{bmatrix} (-1)^{n-1}(n-2)! \frac{1}{x_1^{n-1}} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & (-1)^{n-1}(n-2)! \frac{1}{x_n^{n-1}} \end{bmatrix}.$$

Apparently, Hessian(H(x)) is positive-definite.

H(x) is strictly concave.

So \bar{x} is the unique maximum.

2. a) Let $\mu = EX$, for $a < u < \mu < s < b$.

Apparently, there exists $\theta \in [0,1]$ such that $\theta u + \bar{\theta} s = \mu$.

Because,
$$f$$
 is convex.
$$\frac{f(\mu) - f(s)}{\mu - s} = \frac{f(\theta u + \overline{\theta}s) - f(s)}{\theta u + \overline{\theta}s - s} = \frac{f(\theta u + \overline{\theta}s) - f(s)}{\theta(u - s)} \le \frac{f(u) - f(s)}{(u - s)}$$

For the same reason, $\frac{f(u)-f(\mu)}{u-\mu} \ge \frac{f(u)-f(s)}{(u-s)}$.

So,
$$\frac{f(u)-f(\mu)}{u-\mu} \ge \frac{f(\mu)-f(s)}{\mu-s}$$
.

b) Take
$$\beta = \sup \frac{f(\mu) - f(s)}{\mu - s}$$
. Because $\frac{f(u) - f(\mu)}{u - \mu} \ge \frac{f(\mu) - f(s)}{\mu - s}$, $\beta < +\infty$.

Obviously, $\beta > -\infty$.

So, there exists β such that $f(x) \ge f(\mu) + \beta(x - \mu), \forall x \in (a, b)$

c) therefore, $f(X) \ge f(\mu) + \beta(X - \mu)$

Namely, $f(X) \ge f(EX) + \beta(X - EX)$.

$$Ef(X) \ge f(EX)$$

$$3. \quad Hessian(\log(1+e^{3x_1+2x_2})) = \begin{bmatrix} \frac{9e^{3x_1+2x_2}}{(1+e^{3x_1+2x_2})^2} & \frac{6e^{3x_1+2x_2}}{(1+e^{3x_1+2x_2})^2} \\ \frac{6e^{3x_1+2x_2}}{(1+e^{3x_1+2x_2})^2} & \frac{4e^{3x_1+2x_2}}{(1+e^{3x_1+2x_2})^2} \end{bmatrix}.$$

$$D_1 = \frac{9e^{3x_1 + 2x_2}}{(1 + e^{3x_1 + 2x_2})^2}, \ D_2 = 0$$

So $\log (1 + e^{3x_1 + 2x_2})$ is convex.

Therefore, $\{x: \log(1 + e^{3x_1 + 2x_2}) \le 2\}$ is convex.

Because Ax + b is an affine function, so S is convex.

- 4. a) It's a convex optimization problem.
 - b) It's not a convex optimization problem.