KSI: Machine Learning & AI Dual certification

Project build under the guidance of Professor Nitesh Karmakar

Project 2: Public and Private University

Machine Learning: KMeans Clustering

Name: Mohammed Faraz Hussain

College: Terna Engineering College, Nerul

Roll number: TE-B-24

ID number: <u>TU3F1920077</u>

Email: <u>farazhussain503@gmail.com</u>

Terna Mail: mohammedhussain@ternaengg.ac.in
Phone number: +91 9082905016 / +91 7303272780

Table of Contents

Sr.No	Title
1	Introduction
2	Aim and Objective
3	About Dataset
4	Implementation
5	Conclusion
` 6	References

Introduction

K-Means Clustering is an unsupervised machine learning algorithm.

In contrast to traditional supervised machine learning algorithms, K-Means attempts to classify data without having first been trained with labeled data.

Once the algorithm has been run and the groups are defined, any new data can be easily assigned to the most relevant group.

Aim and Objective

We will attempt to use KMeans Clustering to cluster Universities into two groups, Private and Public.

Unlike supervised learning, clustering is considered an unsupervised learning method since we don't have the ground truth to compare the output of the clustering algorithm to the true labels to evaluate its performance. We only want to try to investigate the structure of the data by grouping the data points into distinct subgroups.

In K-Means, each cluster is associated with a centroid. The main objective of the K-Means algorithm is to minimize the sum of distances between the points and their respective cluster centroid.

About Dataset

The dataset is a CSV(comma separated value) having 777 rows × 18 columns.

- **Private:** A factor with levels No and Yes indicating private or public university
- Apps: Number of applications received
- Accept: Number of applications accepted
- Enroll: Number of new students enrolled
- Top1operc: Percentage new students from top 10% of high school class
- Top25perc: Percentage of new students from top 25% of their high school class
- F.Undergrad: Number of full-time undergraduates
- P.Undergrad: Number of part-time undergraduates
- Outstate: Out-of-state tuition
- Room.Board: Room and board costs
- Books: Estimated book costs
- Personal: Estimated personal spending
- PhD: Percentage of faculty with PhDs
- Terminal: Percentage of faculty with a terminal degree (PhD/JD/MD/MBA/etc)
- S.F.Ratio: Student/faculty ratio
- perc.alumni: Percentage alumni who donate
- Expend: Instructional expenditure per student
- Grad.Rate: Graduation rate

<u>Implementation</u>

- **Importing Libraries** 1.
- Importing Dataset and Read the data (from csv) 2.
- 3.
- Identify the dependent and independent variables. Check if the data has missing values or the data is 4. categorical or not. Visualize the data.
- 5.
- Applying K means Clustering 6.
- **Model Evaluation** 7.

1. <u>Importing Libraries</u>

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

matplotlib inline
sns.set_style('whitegrid')
plt.style.use('fivethirtyeight')

import warnings
warnings.filterwarnings('ignore')
```

2. <u>Importing Dataset</u>

	Private	Apps	Accept	Enroll	Top10perc	Top25perc	F.Undergrad	P.Undergrad	Outstate	Room.Board	Books
Abilene Christian University	Yes	1660	1232	721	23	52	2885	537	7440	3300	450
Adelphi University	Yes	2186	1924	512	16	29	2683	1227	12280	6450	750
Adrian College	Yes	1428	1097	336	22	50	1036	99	11250	3750	400
Agnes Scott College	Yes	417	349	137	60	89	510	63	12960	5450	450
Alaska Pacific University	Yes	193	146	55	16	44	249	869	7560	4120	800
Worcester State College	No	2197	1515	543	4	26	3089	2029	6797	3900	500
Xavier University	Yes	1959	1805	695	24	47	2849	1107	11520	4960	600
Xavier University of Louisiana	Yes	2097	1915	695	34	61	2793	166	6900	4200	617
Yale University	Yes	10705	2453	1317	95	99	5217	83	19840	6510	630
York College of Pennsylvania	Yes	2989	1855	691	28	63	2988	1726	4990	3560	500

Personal	PhD	Terminal	S.F.Ratio	perc.alumni	Expend	Grad.Rate
2200	70	78	18.1	12	7041	60
1500	29	30	12.2	16	10527	56
1165	53	66	12.9	30	8735	54
875	92	97	7.7	37	19016	59
1500	76	72	11.9	2	10922	15
1200	60	60	21.0	14	4469	40
1250	73	75	13.3	31	9189	83
781	67	75	14.4	20	8323	49
2115	96	96	5.8	49	40386	99
1250	75	75	18.1	28	4509	99

2.1 Checking rows and columns

3. Identify the dependent and independent variables.

- We don't have any dependent variable, such problems fall into the category of unsupervised learning
- Since we don't have that frame of reference in unsupervised learning, thus the name
- No frame of reference means there is no dependent variable

4. Check if the data has missing values or the data is categorical or not.

Dataset has no categorical values Check for missing/NaN/Null values and drop those columns

4.1: Concise summary of data

```
data.info()
<class 'pandas.core.frame.DataFrame'>
Index: 777 entries, Abilene Christian University to York College of Pennsylvania
Data columns (total 18 columns):
# Column Non-Null Count Dtype
 0 Private 777 non-null object
1 Apps 777 non-null int64
2 Accept 777 non-null int64
 3 Enroll
                777 non-null int64
4 Top10perc 777 non-null int64
 5 Top25perc 777 non-null int64
6 F.Undergrad 777 non-null int64
 7 P.Undergrad 777 non-null int64
 8 Outstate 777 non-null int64
 9 Room.Board 777 non-null int64
10 Books 777 non-null int64
11 Personal 777 non-null int64
12 PhD 777 non-null int64
13 Terminal 777 non-null int64
 14 S.F.Ratio 777 non-null float64
 15 perc.alumni 777 non-null int64
 16 Expend 777 non-null int64
17 Grad.Rate 777 non-null int64
dtypes: float64(1), int64(16), object(1)
memory usage: 115.3+ KB
```

4.2: Statistical measures about the data

In [9]:	1	data.descri	be()						
		Apps	Accept	Enroll	Top10perc	Top25perc	F.Undergrad	P.Undergrad	Outstate
	count	777.000000	777.000000	777.000000	777.000000	777.000000	777.000000	777.000000	777.000000
	mean	3001.638353	2018.804376	779.972973	27.558559	55.796654	3699.907336	855.298584	10440.669241
	std	3870.201484	2451.113971	929.176190	17.640364	19.804778	4850.420531	1522.431887	4023.016484
	min	81.000000	72.000000	35.000000	1.000000	9.000000	139.000000	1.000000	2340.000000
	25%	776.000000	604.000000	242.000000	15.000000	41.000000	992.000000	95.000000	7320.000000
	50%	1558.000000	1110.000000	434.000000	23.000000	54.000000	1707.000000	353.000000	9990.000000
	75%	3624.000000	2424.000000	902.000000	35.000000	69.000000	4005.000000	967.000000	12925.000000
	max	48094.000000	26330.000000	6392.000000	96.000000	100.000000	31643.000000	21836.000000	21700.000000
ibe()									
ibe() Room.B	oard	Books	Personal	PhD	Terminal	S.F.Ratio	perc.alumni	Expend	Grad.Rate
.,			Personal 777.000000	PhD 777.000000	Terminal 777.000000	S.F.Ratio 777.000000	perc.alumni 777.000000	Expend 777.000000	Grad.Rate 777.00000
Room.B	00								
Room.B	00 384	777.000000 549.380952	777.000000	777.000000	777.000000	777.000000	777.000000	777.000000	777.00000
Room.Be 777.00000 4357.5263	00 384 416	777.000000 549.380952 165.105360	777.000000 1340.642214	777.000000 72.660232	777.000000 79.702703	777.000000 14.089704	777.000000 22.743887	777.000000 9660.171171	777.00000 65.46332
Room.B6 777.00000 4357.5263 1096.6964	00 384 416 000	777.000000 549.380952 165.105360 96.000000	777.000000 1340.642214 677.071454	777.000000 72.660232 16.328155	777.000000 79.702703 14.722359	777.000000 14.089704 3.958349	777.000000 22.743887 12.391801	777.000000 9660.171171 5221.768440	777.00000 65.46332 17.17771
Room.B6 777.00000 4357.5263 1096.6964 1780.0000	00 384 416 000	777.000000 549.380952 165.105360 96.000000	777.000000 1340.642214 677.071454 250.000000	777.000000 72.660232 16.328155 8.000000	777.000000 79.702703 14.722359 24.000000	777.000000 14.089704 3.958349 2.500000	777.000000 22.743887 12.391801 0.000000	777.000000 9660.171171 5221.768440 3186.000000	777.00000 65.46332 17.17771 10.00000
Room.Bd 777.00000 4357.5263 1096.6964 1780.0000 3597.0000	00 384 416 000 000	777.000000 549.380952 165.105360 96.000000 470.000000	777.000000 1340.642214 677.071454 250.000000 850.000000	777.000000 72.660232 16.328155 8.000000 62.000000	777.000000 79.702703 14.722359 24.000000 71.000000	777.000000 14.089704 3.958349 2.500000 11.500000	777.000000 22.743887 12.391801 0.000000 13.000000	777.000000 9660.171171 5221.768440 3186.000000 6751.000000	777.00000 65.46332 17.17771 10.00000 53.00000 65.00000

5. Visualizing the Data

<u>Histogram of Outstate Tuition based on the Private:</u>

Histogram of Grad.Rate based on the Private:

- School with a graduation rate of higher than 100%
- Notice how there seems to be a private school with a graduation rate of higher than 100%

We need to set that school's graduation rate to 100% so it makes sense.

```
In [15]:

1  data['Grad.Rate']['Cazenovia College'] = 100

In [16]:

1  data[data['Grad.Rate'] > 100]

Private Apps Accept Enroll Top10perc Top25perc F.Undergrad P.Undergrad Outstate Room.Board Books Personal
```

Now there is no school with graduation rate higher than 100%

- We can see there are no data points that fall outside 100.
- No school with graduation rate higher than 100%

6. Applying K means Clustering

7. Model Evaluation

- There is no perfect way to evaluate clustering if we don't have the labels, however, we do have the labels, so we take advantage of this to evaluate our clusters.
- Create a new column for df called 'Cluster', which is a 1 for a Private school, and a 0 for a public school.

```
In [28]:

1 data.Private.value_counts()

1 565
0 212
Name: Private, dtype: int64
```

7.1: Creating a confusion matrix and classification report to see how well the K means clustering worked without being given any labels.

```
from sklearn.metrics import confusion_matrix, classification_report, accuracy_score
   print(confusion matrix(data.Private, kmeans.labels ))
   print(classification_report(data.Private, kmeans.labels_))
[[ 74 138]
[ 34 531]]
           precision recall f1-score support
               0.69
                     0.35
                            0.46
              0.79 0.94 0.86
                              0.78
   accuracy
              0.74
                      0.64
  macro avg
weighted avg
              0.76
                      0.78
                              0.75
```

```
In [30]: 1 print(accuracy_score(data.Private, kmeans.labels_))
0.7786357786357786

In [31]: 1 print(f'Accuracy: {accuracy_score(data.Private, kmeans.labels_) * 100}%')
Accuracy: 77.86357786357786%
```

Accuracy: 77.86%

Conclusion

Thus, we got the accuracy to be 77.86% which is not so bad considering the algorithm is purely using the features to cluster the universities into 2 distinct groups.

References

- https://towardsdatascience.com/k-means-clustering
 -of-university-data-9e8491068778
- https://medium.com/analytics-vidhya/k-means-clustering-43d0136bf005
- https://www.kaggle.com/faressayah/k-means-cluste-ring-private-vs-public-universities