Álgebra Linear - Lista de Exercícios 7

escreva seu nome aqui

1 de outubro de 2021

1.	Se $AB = 0$, as colunas de B estão em qual espaço fundamental de A ? E as linhas de A estão em qu	ıal
	espaço fundamental de B ? É possível que A e B sejam 3×3 e com posto 2 ?	

Resolução:

2. Se Ax = b e $A^{T}y = 0$, temos $y^{T}x = 0$ ou $y^{T}b = 0$?

Resolução:

3. O sistema abaixo não tem solução:

$$\begin{cases} x + 2y + 2z = 5\\ 2x + 2y + 3z = 5\\ 3x + 4y + 5z = 9 \end{cases}$$

Ache números y_1, y_2, y_3 para multiplicar as equações acima para que elas somem 0 = 1. Em qual espaço fundamental o vetor y pertence? Verifique que $y^Tb = 1$. O caso acima é típico e conhecido como a Alternativa de Fredholm: ou Ax = b ou $A^Ty = 0$ com $y^Tb = 1$.

Resolução:

4. Mostre que se $A^TAx=0$, então Ax=0. O oposto é obviamente verdade e então temos $N(A^TA)=N(A)$.

Resolução:

5. Seja A uma matriz 3×4 e B uma 4×5 tais que AB = 0. Mostre que $C(B) \subset N(A)$. Além disso, mostre que posto(A) + posto $(B) \leq 4$.

Resolução:

- 6. Sejam $\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}$ vetores não-zeros de \mathbb{R}^2 .
 - (a) Quais são as condições sobre esses vetores para que cada um possa ser, respectivamente, base dos espaços $C(A^T)$, N(A), C(A) e $N(A^T)$ para uma dada matriz A que seja 2×2 . Dica: cada espaço fundamental vai ter somente um desses vetores como base.

Resolução:

(b) Qual seria uma matriz A possível?

Resolução:

7. Ache S^{\perp} para os seguintes conjuntos:
(a) $S = \{0\}$
(b) $S = span\{[1, 1, 1]\}$
(c) $S = span\{[1, 1, 1], [1, 1, -1]\}$
(d) $S = \{[1,5,1],[2,2,2]\}.$ Note que S não é um subespaço, mas S^\perp é.
Resolução:
(a)

- (b)
- (c)
- (d)
- 8. Seja A uma matriz 4×3 formada pela primeiras 3 colunas da matriz identidade 4×4 . Projeta o vetor b = [1, 2, 3, 4] no espaço coluna de A. Ache a matriz de projeção P.

Resolução:

9. Se $P^2 = P$, mostre que $(I - P)^2 = I - P$. Para a matriz P do exercício anterior, em qual subespaço a matriz I - P projeta?

Resolução: