Analisi Funzionale

Richiami di topologia in spazi metrici

Prof. Alessio Martini

Politecnico di Torino a.a. 2023/2024

Spazi metrici

Def. Si dice *spazio metrico* un insieme M dotato di una funzione $d: M \times M \rightarrow [0, \infty)$ tale che:

- 1. $\forall x, y \in M : d(x, y) = 0 \iff x = y$ (proprietà di separazione);
- 2. $\forall x, y \in M : d(x, y) = d(y, x)$ (simmetria);
- 3. $\forall x, y, z \in M : d(x, z) \le d(x, y) + d(y, z)$ (disuguaglianza triangolare).

Una tale funzione d è detta distanza o metrica su M. Gli elementi di M sono anche detti punti di M.

Scriviamo anche "lo spazio metrico (M, d)" quando vogliamo specificare simultaneamente l'insieme M e la metrica d su M.

Esempi di spazi metrici

L'insieme \mathbb{F}^n si può dotare di diverse metriche, fra cui:

•
$$d_2(x,y) = \sqrt{\sum_{j=1}^n |x_j - y_j|^2}$$
 (metrica euclidea);

$$ightharpoonup d_1(x,y) = \sum_{j=1}^n |x_j - y_j|$$
 (metrica di Manhattan);

►
$$d_{\infty}(x,y) = \max\{|x_j - y_j| : j = 1,..., n\};$$

► $d_p(x,y) = \left(\sum_{i=1}^n |x_i - y_j|^p\right)^{1/p} \text{ (per } p \in [1,\infty)\text{)}.$

Se n = 1, tutte le metriche d_p coincidono con $d_2(x, y) = |x - y|$.

▶ Se $[a, b] \subseteq \mathbb{R}$, l'insieme $C_{\mathbb{F}}[a, b]$ si può dotare della *metrica* dell'estremo superiore, detta anche *metrica* della convergenza uniforme:

$$d_{\infty}(f,g):=\sup_{t\in [a,b]}|f(t)-g(t)|=\max_{t\in [a,b]}|f(t)-g(t)|;$$

(la seconda uguaglianza è dovuta al teorema di Weierstrass.)

- Se (M, d) è uno spazio metrico ed E è un sottoinsieme di M, allora la restrizione di d a $E \times E$ è una metrica su E (detta metrica indotta),
- che per brevità denotiamo ancora con d.

 Se (M, d_M) e (N, d_N) sono spazi metrici, definiamo la *metrica* prodotto d sul prodotto cartesiano $\Omega = M \times N$ ponendo $d((x, y), (x', y')) := \max\{d_M(x, x'), d_N(y, y')\} \quad \forall x, x' \in M, y, y' \in N.$

Successioni e sottosuccessioni

Def. Sia X un insieme.

- ▶ Una successione a valori in X è una funzione $s : \mathbb{N} \to X$.
- ▶ Per $k \in \mathbb{N}$, il valore s(k) è detto *termine k-esimo* della successione s.
- Se $s(k) = x_k$ per ogni $k \in \mathbb{N}$, al posto di s scriviamo anche $(x_k)_{k \in \mathbb{N}}$ oppure $(x_k)_{k=0}^{\infty}$ oppure (x_0, x_1, x_2, \dots) ; per brevità a volte si scrive $(x_k)_k$ omettendo il dominio \mathbb{N} .

Oss. Attenzione alle parentesi!

- $(x_k)_{k\in\mathbb{N}}$ denota una successione, mentre
- ▶ $\{x_k\}_{k\in\mathbb{N}}$ denota l'insieme dei suoi valori.

Oss. A volte considereremo "successioni"

- $(x_k)_{k=1}^{\infty}$ indicizzate sull'insieme $\mathbb{N}_+ = \{1, 2, 3, \dots\}$, o anche
- $(x_k)_{k=k_0}^{\infty}$ indicizzate su $\{k_0, k_0+1, k_0+2, \ldots\}$ per qualche $k_0 \in \mathbb{Z}$.

Def. Sia X un insieme e sia $(x_n)_{n\in\mathbb{N}}$ una successione a valori in X. Una sottosuccessione di $(x_n)_{n\in\mathbb{N}}$ è una successione della forma $(x_{\sigma(k)})_{k\in\mathbb{N}}$ per qualche $\sigma:\mathbb{N}\to\mathbb{N}$ strettamente crescente.

Successioni convergenti e di Cauchy

Def. Sia (M, d) uno spazio metrico. Sia $(x_n)_{n \in \mathbb{N}}$ una successione a valori in M e sia $x \in M$.

(a) Diciamo che la successione $(x_n)_{n\in\mathbb{N}}$ tende a x (o anche che converge a x), e scriviamo

$$x_n \xrightarrow[n \to \infty]{} x$$
 oppure $\lim_{n \to \infty} x_n = x$ se per ogni $\epsilon > 0$ esiste $N \in \mathbb{N}$ tale che $d(x_n, x) < \epsilon$ per ogni $n > N$. In tal caso, x si dice *limite* della successione $(x_n)_{n \in \mathbb{N}}$.

(b) Diciamo che la successione $(x_n)_{n\in\mathbb{N}}$ è *di Cauchy* se per ogni $\epsilon > 0$ esiste $N \in \mathbb{N}$ tale che $d(x_n, x_m) < \epsilon$ per ogni n, m > N.

Oss. Si ha
$$x_n \xrightarrow[n \to \infty]{} x$$
 se e solo se $\lim_{n \to \infty} d(x_n, x) = 0$.

Prop. Sia (M, d) uno spazio metrico. Siano $(x_n)_{n \in \mathbb{N}}$ una successione a valori in M e $x \in M$.

- (i) Il limite di $(x_n)_n$, se esiste, è unico.
- (ii) Se $(x_n)_n$ converge a x, allora ogni sottosucc. di $(x_n)_n$ converge a x.
- (iii) Se $(x_n)_n$ converge, allora $(x_n)_n$ è di Cauchy.

Spazi metrici completi

Def. Uno spazio metrico (M, d) si dice *completo* se ogni successione di Cauchy a valori in M converge a un punto di M.

Esempi

- $ightharpoonup (\mathbb{Q}, d_2)$ non è completo.
- Per ogni $n \in \mathbb{N}_+$, (\mathbb{F}^n, d_2) è completo, ove $\mathbb{F} = \mathbb{R}$ oppure $\mathbb{F} = \mathbb{C}$.
- ▶ Se $[a,b] \subseteq \mathbb{R}$, allora $(C_{\mathbb{F}}[a,b],d_{\infty})$ è completo.

Prop. Siano (M, d_M) e (N, d_N) spazi metrici. Sia $(M \times N, d)$ lo spazio metrico prodotto.

- (i) Una successione $((x_n, y_n))_{n \in \mathbb{N}}$ a valori in $M \times N$ converge a $(x, y) \in M \times N$ se e solo se $x_n \to x$ in M e $y_n \to y$ in N.
- (ii) Una successione $((x_n, y_n))_{n \in \mathbb{N}}$ a valori in $M \times N$ è di Cauchy se e solo se $(x_n)_{n \in \mathbb{N}}$ è di Cauchy in M e $(y_n)_{n \in \mathbb{N}}$ è di Cauchy in N.
- (iii) Se M e N sono completi, anche il prodotto $M \times N$ è completo.

Distanza dell'estremo superiore fra funzioni

Sia S un insieme. Per $f,g\in\mathcal{F}(S,\mathbb{F})$ definiamo $d_{\infty}(f,g) := \sup |f(t) - g(t)|.$

Si può verificare che, per ogni
$$f,g,h\in\mathcal{F}(S,\mathbb{F}),$$

$$d_{\infty}(f,g)=0\iff f=g,$$

$$d_{\infty}(f,g)=d_{\infty}(g,f),$$

$$d_{\infty}(f,h)\leq d_{\infty}(f,g)+d_{\infty}(g,h).$$

Tuttavia d_{∞} in generale non è una distanza su $\mathcal{F}(S,\mathbb{F})!$ d_{∞} diventa una distanza se ristretta all'insieme delle funzioni limitate

$$\mathcal{F}_b(S,\mathbb{F}) = \bigg\{ f \in \mathcal{F}(S,\mathbb{F}) : \sup_{t \in S} |f(t)| < \infty \bigg\}.$$

Teor. Sia S un insieme. Allora lo spazio metrico $(\mathcal{F}_b(S,\mathbb{F}),d_\infty)$ è completo.

Oss. Per il teorema di Weierstrass, $C_{\mathbb{F}}[a,b] \subseteq \mathcal{F}_b([a,b],\mathbb{F})$.

Convergenza puntuale e convergenza uniforme

Def. Sia S un insieme. Siano $f_n: S \to \mathbb{F}$ per ogni $n \in \mathbb{N}$, e $f: S \to \mathbb{F}$.

(a) Diciamo che la successione $(f_n)_{n\in\mathbb{N}}$ converge puntualmente a f, e scriviamo " $f_n \to f$ puntualmente", se

$$\lim_{n\to\infty} f_n(t) = f(t) \qquad \forall t\in S.$$

(b) Diciamo che la successione $(f_n)_{n\in\mathbb{N}}$ converge uniformemente a f, e scriviamo " $f_n\to f$ uniformemente", o anche $f_n\rightrightarrows f$, se

$$\lim_{n\to\infty}d_{\infty}(f_n,f)=0.$$

Oss. Esplicitando le definizioni, $f_n \to f$ puntualmente se e solo se $\forall t \in [a,b] : \forall \epsilon > 0 : \exists N \in \mathbb{N} : \forall n > N : |f_n(t) - f(t)| < \epsilon;$

invece, $f_n \rightarrow f$ uniformemente se e solo se

$$\forall \epsilon > 0 : \exists N \in \mathbb{N} : \forall n > N : \forall t \in [a, b] : |f_n(t) - f(t)| < \epsilon.$$

Dunque

- la conv. uniforme implica la conv. puntuale
- ▶ ma il viceversa in generale non vale!

Proprietà della convergenza uniforme

Prop. Sia Ω uno spazio topologico.

(i) Se $(f_n)_{n\in\mathbb{N}}$ è una successione in $C(\Omega)$ e $f_n \rightrightarrows f$, allora $f \in C(\Omega)$. Supponiamo ora che $I \subseteq \mathbb{R}$ sia un intervallo. Sia $C^1(I)$ l'insieme

delle funzioni $f: I \to \mathbb{F}$ derivabili con derivata continua.

(ii) Se $(f_n)_{n\in\mathbb{N}}$ è una successione in $C^1(I)$ tale che $f_n \rightrightarrows f$ e $f' \rightrightarrows g$, allora $f \in C^1(I)$ e f' = g.

Infine, sia [a, b] un intervallo chiuso e limitato in \mathbb{R} .

(iii) Se $(f_n)_{n\in\mathbb{N}}$ è una successione in C[a,b] e $f_n \rightrightarrows f$, allora

$$\lim_{n\to\infty}\int_a^b f_n(t)\,dt=\int_a^b f(t)\,dt.$$

Def. Sia (M, d) uno spazio metrico.

(a) Siano $x \in M$ e r > 0. La palla aperta e la palla chiusa di centro x e raggio r sono gli insiemi

$$B(x,r) = \{y \in M : d(x,y) < r\}, \qquad \overline{B}(x,r) = \{y \in M : d(x,y) \le r\}.$$

Scriviamo anche $B_d(x,r)$ e $B_M(x,r)$ al posto di $B(x,r)$.

- (b) Un sottoinsieme E di M si dice *limitato* se esistono $x_0 \in M$ e r > 0 tali che $E \subseteq B(x_0, r)$; in caso contrario, E si dice *illimitato*.
- r > 0 tali che $E \subseteq B(x_0, r)$; in caso contrario, E si dice *illimitato* (c) Una successione $(x_n)_{n \in \mathbb{N}}$ a valori in M si dice *limitata* o *illimitata* a seconda che l'insieme $\{x_n : n \in \mathbb{N}\}$ dei suoi valori
- sia un sottoinsieme limitato o illimitato di M. (d) Un sottoinsieme U di M si dice *intorno* di un punto $x \in M$ se
- esiste r > 0 tale che B(x, r) ⊆ U.
 (e) Un sottoinsieme A di M si dice aperto se è A è intorno di ogni suo punto; in altre parole, se, per ogni x ∈ A, esiste r > 0 tale che B(x, r) ⊆ A.
- (f) Un sottoinsieme C di M si dice *chiuso* se $M \setminus C$ è aperto.

Prop. Sia (M, d) uno spazio metrico.

- (i) La famiglia dei sottoinsiemi aperti di *M* è una *topologia* su *M*:
 - (a) *M* e ∅ sono sottoinsiemi aperti di *M*;
 - (b) se \mathcal{A} è una famiglia di sottoinsiemi aperti di M, allora la loro unione $| \mathcal{A}$ è un sottoinsieme aperto di M;
 - (c) se $A \in B$ sono sottoinsiemi aperti di M, allora $A \cap B$ è un sottoinsieme aperto di M.
- (ii) La famiglia dei sottoinsiemi chiusi di M ha le seguenti proprietà:
 - (a) $M \in \emptyset$ sono sottoinsiemi chiusi di M;
 - (b) se \mathcal{C} è una famiglia non vuota di sottoinsiemi chiusi di M, allora la loro intersezione $\bigcap \mathcal{C}$ è un sottoinsieme chiuso di M;
 - (c) se C e D sono sottoinsiemi chiusi di M, allora $C \cup D$ è un sottoinsieme chiuso di M.
- (iii) Una successione $(x_n)_{n\in\mathbb{N}}$ a valori in M converge a un punto $x\in M$ se e solo se, per ogni sottoinsieme aperto A di M contenente x, esiste $N\in\mathbb{N}$ tale che $x_n\in A$ per ogni n>N.
- (iv) Ogni successione di Cauchy a valori in M è una successione limitata. In particolare, ogni successione convergente è limitata.

Def. Sia (M, d) uno spazio metrico.

(a) Sia $E \subseteq M$. La *chiusura* di E è l'insieme

$$\overline{E} = \bigcap \{C \subseteq M : C \text{ chiuso}, E \subseteq C\}.$$

Scriviamo anche \overline{E}^M o $\overline{E}^{(M,d)}$ al posto di \overline{E} .

(b) Sia $E\subseteq M$. La parte interna di E è l'insieme

$$\mathring{E} = \bigcup \{ A \subseteq M : A \text{ aperto}, A \subseteq E \}.$$

- (c) Sia $E \subseteq M$. La frontiera di E è l'insieme $\partial E = \overline{E} \setminus \mathring{E}$.
- (d) Un sottoinsieme E di M si dice denso in M se $\overline{E} = M$.

Prop. Sia (M, d) uno spazio metrico.

- (i) Un sottoinsieme C di M è chiuso se e solo se, per ogni successione $(x_n)_{n\in\mathbb{N}}$ a valori in C, se $x_n\to x$ in M allora $x\in C$.
- (ii) Sia $E \subseteq M$.
 - La chiusura \overline{E} di E è il più piccolo sottoinsieme chiuso di M che contiene E.
 - ightharpoonup E è chiuso se e solo se $\overline{E} = E$.
 - ▶ $\overline{E} = \{x \in M : x = \lim_{n \to \infty} x_n \text{ per qualche } (x_n)_n \text{ a valori in } E\}$
 - ▶ $\overline{E} = \{x \in M : d(x, E) = 0\},$ ove $d(x, E) := \inf\{d(x, y) : y \in E\}.$
 - La parte interna \mathring{E} di E è il più grande sottoinsieme aperto di M contenuto in E.
 - ightharpoonup E è aperto se e solo se $E = \mathring{E}$.
 - Si ha

$$M \setminus \mathring{E} = \overline{M \setminus E}, \qquad M \setminus \overline{E} = (M \setminus E)^{\circ}.$$

(iii) Sia $E \subseteq M$. Allora E è denso in M se e solo se, per ogni $x \in M$, esiste una successione $(x_n)_n$ a valori in E tale che $x_n \to x$.

Compattezza in spazi metrici

Def. Sia (M, d) uno spazio metrico.

- (a) Un sottoinsieme K di M si dice *compatto* se ogni successione $(x_n)_{n\in\mathbb{N}}$ a valori in K ha una sottosuccessione che converge a un punto di K.
- (b) Un sottoinsieme E di M si dice *relativamente compatto* se \overline{E} è compatto.

Teor. Sia (M, d) uno spazio metrico.

- (i) Sia $K \subseteq M$. Allora K è compatto se e solo se ogni ricoprimento aperto di K (cioè una famiglia di aperti la cui unione contiene K) ha un sottoricoprimento finito.
- (ii) Se $K \subseteq M$ è compatto, allora K è chiuso e limitato.

Oss. In un arbitrario spazio metrico, non tutti i sottoinsiemi chiusi e limitati sono compatti.

Teor. (Heine–Borel) Sia $\mathbb{F} = \mathbb{R}$ oppure $\mathbb{F} = \mathbb{C}$. Nello spazio metrico (\mathbb{F}^n, d_2), un sottoinsieme di \mathbb{F}^n è compatto se e solo se è chiuso e limitato.

Separabilità

Def. Uno spazio metrico (M, d) si dice *separabile* se M ha un sottoinsieme denso al più numerabile.

- Es. Ecco alcuni esempi di spazi metrici separabili.
- (a) (\mathbb{R}^n, d_2) è separabile: il sottoinsieme \mathbb{Q}^n è denso e numerabile.
- (b) (\mathbb{C}^n, d_2) è separabile: il sottoinsieme $(\mathbb{Q} + i\mathbb{Q})^n$ è denso e numerabile, ove $\mathbb{Q} + i\mathbb{Q} = \{x + iy : x, y \in \mathbb{Q}\}.$
- (c) Se $[a,b] \subseteq \mathbb{R}$, allora $(C_{\mathbb{F}}[a,b],d_{\infty})$ è separabile: questa è una conseguenza del teorema di Stone–Weierstrass.
- (d) Se (M, d) è uno spazio metrico separabile e $E \subseteq M$, allora anche (E, d) è separabile.
- (e) Ogni spazio metrico compatto M è separabile.

Funzioni continue e uniformemente continue

Def. Siano (M, d_M) e (N, d_N) spazi metrici.

Una funzione $f: M \to N$ si dice:

- (a) continua in un punto $x \in M$ se, per ogni $\epsilon > 0$, esiste $\delta > 0$, tale
- che $d_N(f(x), f(x')) < \epsilon$ per ogni $x' \in B_M(x, \delta)$;
- (b) continua se f è continua in ogni punto x ∈ M;
 (c) uniformemente continua se, per ogni ε > 0, esiste δ > 0 tale che d_N(f(x), f(x')) < ε per ogni x, x' ∈ M con d_M(x, x') < δ;

(d) un omeomorfismo se f è continua e invertibile, e l'inversa

 $f^{-1}: \mathcal{N} o M$ è a sua volta continua.

Oss. $f: M \to N$ è continua se e solo se

$$\forall x \in M : \forall \epsilon > 0 : \exists \delta > 0 : \forall x' \in M : (d_M(x, x') < \delta \Rightarrow d_N(f(x), f(x')) < \epsilon)$$

 $\forall \epsilon > 0 : \exists \delta > 0 : \forall x \in M : \forall x' \in M : (d_M(x, x') < \delta \Rightarrow d_N(f(x), f(x')) < \epsilon)$ Dunque:

mentre f è uniformemente continua se e solo se

- ▶ ogni funzione uniformemente continua è continua,
- ma il viceversa in generale non vale!

Continuità, topologia e successioni

Prop. Siano (M, d_M) e (N, d_N) spazi metrici e $f: M \to N$. Sono equivalenti:

- (i) $f: M \to N$ è continua;
- (ii) $f^{-1}(A)$ è aperto in M per ogni sottoinsieme aperto A di N;
- (iii) $f^{-1}(C)$ è chiuso in M per ogni sottoinsieme chiuso C di N.

Prop. Siano (M, d_M) e (N, d_N) spazi metrici, $f: M \to N$ e $x \in M$. Sono equivalenti:

- (i) f è continua nel punto x;
- (ii) per ogni successione $(x_n)_n$ a valori in M, se $x_n \to x$ in M, allora $f(x_n) \to f(x)$ in N.

Prop. Siano (M, d_M) e (N, d_N) spazi metrici. Sia $f: M \to N$ uniformemente continua. Se $(x_n)_n$ è una successione di Cauchy in M, allora $(f(x_n))_n$ è una successione di Cauchy in N.

Funzioni lipschitziane

Def. Siano (M, d_M) e (N, d_N) spazi metrici. Sia $L \ge 0$. Una funzione $f: M \to N$ si dice L-lipschitziana (o lipschitziana di costante L) se

$$\forall x, x' \in M: d_N(f(x), f(x')) \leq Ld_M(x, x').$$

Diciamo che f è *lipschitziana* se f è *L*-lipschitziana per qualche $L \ge 0$.

Oss. Se f è L-lipschitziana, allora f è uniformemente continua. (Dato $\epsilon>0$, prendo $\delta=\epsilon/L$.)

Es. Consideriamo \mathbb{R} e i suoi sottoinsiemi come spazi metrici con la metrica euclidea.

- (a) La funzione $f:[0,1]\to\mathbb{R}$ definita da $f(t)=\sqrt{t}$ è uniformemente continua, ma non lipschitziana.
- (b) La funzione $f: \mathbb{R} \to \mathbb{R}$ definita da f(t) = t è 1-lipschitziana.
- (c) La funzione $f: \mathbb{R} \to \mathbb{R}$ definita da $f(t) = t^2$ è continua, ma non uniformemente continua.

Continuità e compattezza

Teor. (Heine–Cantor) Siano M e N spazi metrici, con M compatto. Se $f: M \to N$ è continua, allora f è uniformemente continua.

Teor. Siano M ed N spazi metrici e $f: M \to N$ continua. Se K è un sottoinsieme compatto di M, allora f(K) è un sottoinsieme compatto di N.

Teor. (Weierstrass) Siano M uno spazio metrico compatto e $f: M \to \mathbb{R}$ una funzione continua. Allora f è limitata ed esistono $x, y \in M$ tali che $f(x) = \max f$ e $f(y) = \min f$.

In particolare, $C_{\mathbb{F}}(M) \subseteq \mathcal{F}_b(M,\mathbb{F})$ se M è compatto.

Coroll. Sia M uno spazio metrico compatto. Allora $(C_{\mathbb{F}}(M), d_{\infty})$ è uno spazio metrico completo.