Lecture 3: Model Evaluation

Andreas Wichert

Department of Computer Science and Engineering

Técnico Lisboa

1

Binary Classification

- Binary classification problem in Machine Learning (ML)
 - identifying if a certain patient has some disease using his health record
 - Credit versus No Credit (using Decision Tree lecture 2)
 - Class a versus Class b
- ML trained on a traning set D_t tested on a test set D_{test} with $\emptyset = D_t \cap D_{test}$

$$accuracy = \frac{Correctly\ Classified}{All}$$
 $error\ rate = 1 - accuracy$

Evaluating classification models

- Some types of mistakes that are worse than others
- We are choosing between two models A and B that diagnose a given infectious disease
 - positive if the disease present, negative if the disease not
 - present both models have the **same accuracy**, which model is better?
- model A's mistakes are all false positives
 - cases where the patient is not sick but the model *predicted disease*
- model B where all mistakes are false negatives
 - contagious people are told they are healthy

3

Confusion Matrix

true/actual/target

predicted

		_	
	Р	N	
 Р	True Positives (TP)	False Positives (FP)	TP+FP
N	False Negatives (FN)	True Negatives (TN)	FN+TN
	P=TP+FN	N=FP+TN	All=P+N

Recall/sensitivity

% of positive observations predicted as positive

$$Recall = \frac{TP}{P} = \frac{TP}{TP + FN}$$

Precision

% of positive observations among the observations predicted as positive

$$Precision = \frac{TP}{TP + FP}$$

Precision and Recall

- A high recall value without a high precision does not give us any confidence about the quality of the binary classifier
 - High recall value by classifying all patterns as positive (the recall value will be one); however, the precision value will be very low

$$Recall = \frac{TP}{P} = \frac{TP}{TP + FN} = \frac{All}{All} = 1$$

• By classifying only one pattern correctly as positive, we obtain the maximal precision value of one but a low recall value.

$$Precision = \frac{TP}{TP+FP} = \frac{1}{1+0} = 1$$

5

A precision-recall curve

Both values have to be simultaneously interpreted

Balanced Measure

- Precision and Recall have to be simultaneously interpreted.
- We can combine both values with the harmonic mean

$$F = 2 \cdot \frac{Precision \cdot Recall}{Precision + Recall}$$

- Both values are evenly weighted.
- This measure is also called the balanced measure.

7

A combined measure: F

• Combined measure that assesses this tradeoff is *F* measure (weighted harmonic mean):

$$F = \frac{1}{\alpha \frac{1}{P} + (1 - \alpha) \frac{1}{R}} = \frac{(\beta^2 + 1)PR}{\beta^2 P + R}$$

- However, usually use balanced F₁ measure
 - i.e., with β = 1 or α = $\frac{1}{2}$
 - P=Precision, R=Recall

ROC curve

• For binary classifier indicates the probability of two classes:

C₁ and not C₁

positive class:= C_1

 $p(C_1)$ and **not** $C_1 = 1 - p(C_1)$

negative class := not C_1

If $p(C_1) \ge treshold$ then class C_1

If $p(C_1)$ < treshold then class **not** C_1

Usually the treshold is 0.5

- Niave Bayes, Perceptron, Logistic Regression
 - introduced later in the course

^

ROC Curve

Receiver Operating Characteristic

Recall/sensitivity

• % of positive observations predicted as positive

$$Recall = \frac{TP}{P} = \frac{TP}{TP + FN}$$

Fallout/specificity

• % of negative observations predicted as negative

False Positive Rate = Specificity =
$$\frac{TN}{N} = \frac{TN}{TN+FP}$$

- \bullet To plot the ROC curve, we must first calculate the $\it Recall$ and the $\it Specificity$ for various thresholds, and then plot them against each other
- The further away we are to the curve of the random model, the better

Various thresohlds vor ROC curve

• For binary classifier indicates the probability of two classes:

```
C_1 and not \ C_1 positive class:= C_1 negative class := not \ C_1

If p(C_1) \ge treshold then class C_1

If p(C_1) < treshold then class not \ C_1

Usually the treshold is 0.5
```

- To compute the ROC curve qe chose various thresholds ∈ [0,1]
- We chose threshold=0, then threshold=0.1,..., threshold=0.9, threshold=1

AUC metric (Area Under the Curve)

- ACU quantifies in a **single metric** how well our model classifies the True and False data points.
- AUC goes from values of 0.5(random classifier) to 1 (perfect classifier)

Lift Charts

- Comparing classifiers:
 - 1,000,000 prospective respondents
 - prediction that 0.1% of all households (1,000,000) will respond
 - prediction that 0.4% of a specified 100,000 homes will respond.
 - lift factor=increase in response rate=4
 - Given a classifier that outputs *probabilities* for the predicted class value for each test instance, what to do?

15

Lift Factor

sample success proportion=

(number of positive instances in sample) / sample size

lift factor=

(sample success proportion) / (total test set success proportion)

- Plot the number of respondents as a function of the number of mailings
- Why is response rate dropping with increasing number of mailings?

Evaluation of Lift Chart

- Two extreme points:
 - Lower left: if no solicitations are sent no respondents
 - Upper right: if all households receive offers 1000 respondents
- What is the ideal point in the chart?
- Best to be in the upper left-hand corner of the chart: mail only to those 1000 (out of a million!) who would respond.

17

Evaluating multiclass classifiers

- Most real-world classification problems have more than two classes
 - e.g. identifying risk groups, categorizing documents, recommending products
- Extend binary confusion matrices

		true/actual/target		
_		А	В	С
ſ	Р	True A (TA)	False A (FA)	False A (FA)
predicted	В	False B (FB)	True B (TB)	False B (FB)
l	С	False C (FC)	False C (FC)	True C (TC)

Accuracy is the % of observations along the diagonal

19

 $0 \rightarrow 0$, $3 \rightarrow 3$, $9 \rightarrow 9$, $0 \rightarrow 0$, $2 \rightarrow 2$, $1 \rightarrow 1$, $1 \rightarrow 1$, $3 \rightarrow 3$, $9 \rightarrow 9$ $4 \rightarrow 4$, $1 \rightarrow 1$, $2 \rightarrow 2$, $2 \rightarrow 2$, $1 \rightarrow 1$, $4 \rightarrow 4$, $8 \rightarrow 8$, $0 \rightarrow 0$, $4 \rightarrow 4$ $4 \rightarrow 4$, $1 \rightarrow 7$, $1 \rightarrow 7$, $2 \rightarrow 2$, $4 \rightarrow 9$, $6 \rightarrow 6$, $5 \rightarrow 5$, $5 \rightarrow 5$, $4 \rightarrow 4$ $4 \rightarrow 8$, $2 \rightarrow 2$, $4 \rightarrow 9$, $4 \rightarrow 9$, $4 \rightarrow 4$, $4 \rightarrow 1$, 4

Example of MNIST digits represented by gray images of size 28 × 28

Evaluating multiclass classifiers • Recall/sensitivity, specificity and precision per class • the target class is seen as positive • the negative class is the union of the remaining classes Estimate TN FP TN TN true negative true positive TP true positive FR false positive FP false positive

Overfiting

- The training data contains information about the regularities in the mapping from input to output, but it also contains noise
- There is sampling error and a flexible architecture can model the sampling error really well
- However, we cannot tell which regularities are real and which are caused by sampling error

23

• In general, we try to learn a function $f:\mathbb{R}^n o \mathbb{R}^m$

$$\mathbf{y} = f(\mathbf{x})$$

ullet that is described by a sample of training data D_t of the labeled data set

$$D_t = \{(\mathbf{x}_1, \mathbf{y}_1), (\mathbf{x}_2, \mathbf{y}_2), \cdots, (\mathbf{x}_N, \mathbf{y}_N)\}\$$

• Labels can include multiple things like faces vs. non-faces or manmade objects vs. non-man-made objects

- After learning, the trained network can be seen as an hypothesis h
 that tries to represent the function f and it can be then used for
 mapping new examples
- The hypothesis *h* should represent the function *f* well on the training set. However, ideally, it should generalize from the training data set to unseen **future data points**.
- To try to make sure this is the case, we can validate on an unseen validation (or test set) data set D_v

$$D_v = \{(\mathbf{x}_1', \mathbf{y}_1'), (\mathbf{x}_2', \mathbf{y}_2'), \cdots, (\mathbf{x}_M', \mathbf{y}_M')\} \qquad \emptyset = D_t \cap D_v$$

Mean Squared Error (MSE)

• The validation of the model is done by comparing the hypothesis *h* outputs

$$\mathbf{o}_k = h(\mathbf{x}_k')$$

• with the correct values y'_k of the validation data set D_v by the mean squared error

$$MSE_{Dv}(h) = \sum_{k=1}^{M} \frac{1}{M} \|\mathbf{y}'_k - \mathbf{o}_k\|^2.$$

• The smaller the $\mathit{MSE}(D_v)$ the better the hypothesis h describing the function f

• We can define the mean squared error for the training data set D_t

$$MSE_{Dt}(h) = rac{1}{N} \cdot \sum_{k=1}^{N} \|\mathbf{y}_k - \mathbf{o}_k\|^2,$$

usually

$$MSE_{Dv}(h) > MSE_{Dt}(h)$$
.

27

• If we have two hypothesis h_1 and h_2 with

$$MSE_{Dt}(h_1) < MSE_{Dt}(h_2), \quad MSE_{Dv}(h_1) > MSE_{Dv}(h_2).$$

- then we say that the hypothesis h_1 overfits the training data set D_t
 - h₁ fits better the training examples than h₂performs more poorly over examples it didn't learn.
- It seems as if h_1 learned D_t by heart and not the topological structure that describes the function f
- h_2 learned the corresponding structure and can **generalize**

Cross-Validation

- Estimate the accuracy of a hypothesis induced by a supervised learning algorithm
- Predict the accuracy of a hypothesis over future unseen instances
- Select the optimal hypothesis from a given set of alternative hypotheses
 - Model selection
 - Feature selection
- Combining multiple classifiers (boosting)

29

Holdout Method

• Partition data set $D = \{(v_1, y_1), ..., (v_n, y_n)\}$ into training D_t and validation set $D_h = D \setminus D_t$

Training D_t

Validation D\D_t

Problems:

- makes insufficient use of data
- training and validation set are correlated

Cross-Validation

 k-fold cross-validation splits the data set D into k mutually exclusive subsets D₁, D₂,..., D_k

 Train and test the learning algorithm k times, each time it is trained on D\D_i and tested on D_i

31

Cross-Validation

- Uses all the data for training and testing
- Complete k-fold cross-validation splits the dataset of size m in all (m over m/k) possible ways (choosing m/k instances out of m)
- Leave *n*-out cross-validation sets *n* instances aside for testing and uses the remaining ones for training (leave one-out is equivalent to *n*-fold cross-validation)
- In stratified cross-validation, the folds are stratified so that they contain approximately the same proportion of labels as the original data set

- One major drawback of cross-validation is that the number of training runs that must be performed is increased by a factor of *k*
- How to Evaluate cross-validation for different models (h_1, h_2, h_3) ?
 - We will use t-statistics

The logic of hypothesis testing

- Example: toss a coin ten times, observe eight heads. Is the coin fair (i.e., what is it's long run behavior?) and what is your residual uncertainty?
- You say, "If the coin were fair, then eight or more heads is pretty unlikely, so I think the coin isn't fair."
- Like proof by contradiction: Assert the opposite (the coin is fair) show that the sample result (≥ 8 heads) has low probability p, **reject** the assertion, with residual uncertainty related to p.
- Estimate p with a sampling distribution.

Probability of a sample result under a null hypothesis

• If the coin were fair (p= .5, the *null hypothesis*) what is the probability distribution of r, the number of heads, obtained in N tosses of a fair coin? Get it analytically or estimate it by simulation (on a computer):

// r is num.heads in N tosses

// simulate the tosses

```
· Loop K times
```

- r := 0
- Loop N times
 - Generate a random $0 \le x \le 1.0$
- If x >= p increment r // p is the probability of a head
- Push r onto sampling_distribution
- · Print sampling distribution

35

Sampling distributions

The estimation is constructed by Monte Carlo sampling.

The t test

- Same logic as the Z test, but appropriate when **population standard deviation** is unknown, samples are small, etc.
- Sampling distribution is t, not normal, but approaches normal as samples size increases
- Test statistic has very similar form but probabilities of the test statistic are obtained by consulting tables of the t distribution, not the normal

37

The t test

Suppose N = 5 students have mean IQ = 135, std = 27

Estimate the standard deviation of sampling distribution using the sample standard deviation $\frac{t = \frac{\overline{x} - \mu}{\sqrt{N}} = \frac{135 - 100}{\frac{27}{\sqrt{5}}} = \frac{35}{12.1} = 2.89$

p Values

- We find the probabilities by looking them up in tables, or statistics packages provide them
 - The probability of obtaining a particular sample given the null hypothesis is called the $\it p$ value
- Commonly we reject the H0 when the probability of obtaining a sample statistic given the null hypothesis is low, say p < 0.05
- The null hypothesis is rejected but might be true

39

Paired Sample t Test

- Given a set of paired observations
 - (from two normal populations)

Γ	Α	В	δ=A-B
ſ	x1	у1	x1-x2
	x2	y2	x2-y2
	х3	у3	x3-y3
	x4	у4	x4-y4
ľ	x5	у5	x5-y5

- Calculate the mean \overline{x}_{δ} and the standard deviation s_{δ} of the the differences δ
- H0: μ_{δ} =0 (no difference)
- H0: μ_{δ} =k (difference is a constant)

$$t_{\delta} = \frac{\bar{x}_{\delta} - \mu_{\delta}}{\hat{\sigma}_{\delta}}$$

$$\hat{\sigma}_{\delta} = \frac{s_{\delta}}{\sqrt{N_{\delta}}}$$

Paired sample t Test

- We have two rows of data
 - 94, 86, 12, 90, 66, 40
 - 10, 20, 22, 26, 6, 18
- Are the two rows significantly different?

- For five degrees of freedom in t-student table between p=0.01 and p=0.02, which is less then 0.05, for this reason we have to reject HO! The two rows are significantly different!

Confidence Intervals (σ known)

• Standard error from the standard deviation

$$\sigma_{\bar{x}} = \frac{\sigma_{Population}}{\sqrt{N}}$$

• 95 Percent confidence interval for normal distribution is about the mean

$$\bar{x} \pm 1.96 \cdot \sigma_{\bar{x}}$$

45

Confidence interval when (σ unknown)

- Standard error from the sample standard deviation
- 95 Percent confidence interval for t distribution (t_{0.025} from a table) is

Literature

- Machine Learning A Journey to Deep Learning, A. Wichert, Luis Sa-Couto, World Scientific, 2021
 - Chapter 8