

Curso Técnico em Informática – 1º. Módulo Disciplina de Arquitetura de Computadores Professor: Alex Sandro Forghieri

Conversões entre Bases Numéricas

1) Conversão de Decimal para Binário

A conversão de decimal para binário (ou seja da base 10 para a base 2), consiste em dividir progressivamente o valor decimal por 2, obtendo-se um resultado e um resto. De referir que o resultado em cada iteração terá sempre o valor de 0 ou 1. Deve-se dividir o número até que o quociente da divisão seja igual a 0 (zero).

Depois de finalizado o calculo, basta agrupar todos os valores (ou seja, os restos de cada iteração) de baixo para cima.

Resultado: 22₍₁₀₎> 10110₍₂₎

Outra forma desta conversão (mais prática) é usando informação da tabela CIDR e atribuindo pesos às potências de 2. Exemplo para valores até 255.

2) Conversão de Decimal para Octal

A conversão de decimal para octal (ou seja da base 10 para a base 8), consiste em dividir progressivamente o valor decimal por 8, obtendo-se um resultado e um resto. De referir que o resultado em cada iteração terá sempre um valor menor que 7.

Tal como no exemplo anterior, depois de finalizado o calculo, basta agrupar todos os valores (ou seja, os restos de cada iteração) no sentido ascendente.

Resultado:407₍₁₀₎> 627₍₈₎

3) Conversão de Decimal para Hexadecimal

A conversão de decimal para hexadecimal(ou seja da base 10 para a base 16), consiste em dividir progressivamente o valor decimal por 16, obtendo-se um resultado e um resto. Não esquecer que o sistema hexadecimal utiliza os símbolos:0,1,2,3,4,5,6,7,8,9 do sistema decimal e as letras A,B,C,D,E,F.

(Equivalências: A=10,B=11,C=12,D=13,E=14eF=15)

O resultado da conversão deverá ser também obtido, reunindo o valor dos restos, no sentido ascendente.

Resultado:53120₍₁₀₎> CF80₍₁₆₎

- 1) Conversão de bases decimal para octal e hexadecimal
 - a) 99₍₁₀₎ para? (2)
 - b) 325₍₁₀₎ para? (2)
 - c) 7858₍₁₀₎ para? (2)
 - d) 28591₍₁₀₎ para? ₍₂₎
 - e) Converta sua idade para binário.
 - f) 2596₍₁₀₎ para ?₍₈₎
 - g) 12652₍₁₀₎ para ?₍₈₎
 - h) 6939₍₁₀₎ para ?₍₁₆₎
 - i) 56756₍₁₀₎ para ?₍₁₆₎

4) Conversão de Binário para Decimal

A conversão de números do sistema binário para decimal é feito através de multiplicações. Para isso, pode-se montar uma tabela, conforme ilustrado abaixo, para facilitar o cálculo. Usa-se a base 2 e eleva-se ao expoente, de acordo com a posição que o algarismo ocupa no número. A inserção dos expoentes inicia-se da direita para a esquerda, sendo que o 1º. expoente é zero, depois 1 e assim, por diante. Depois efetua-se o somatório, conforme exibido abaixo.

O exemplo a seguir converte $100110_{(2)}$ para decimal, que neste caso o resultado é $38_{(10)}$

Observe que os algarismos a esquerda da tabela, são preenchidos com valores ZERO, mas eles são opcionais.

0	0	1	0	0	1	1	0
2 ⁷ = 128	$2^6 = 64$	$2^5 = 32$	$2^4 = 16$	$2^3 = 8$	$2^2 = 4$	$2^1 = 2$	20 = 1
0 * 128	0 * 64	1 * 32	0 * 16	0 * 8	1 * 4	1 * 2	0 * 1

$$0 + 0 + 32 + 0 + 0 + 4 + 2 + 0 = 38_{(10)}$$

O exemplo a seguir converte $10110101_{\tiny (2)}$ para decimal, que neste caso o resultado é $181_{\tiny (10)}$

1	0	1	1	0	1	0	1
$2^7 = 128$	$2^6 = 64$	$2^5 = 32$	$2^4 = 16$	$2^3 = 8$	$2^2 = 4$	$2^1 = 2$	20 = 1
1 * 128	0 * 64	1 * 32	1 * 16	0 * 8	1 * 4	0 * 2	1 * 1

$$128 + 0 + 32 + 16 + 0 + 4 + 0 + 1 = 181_{(10)}$$

- a) 101010₍₂₎ em ₍₁₀₎?
- b) 11001100₍₂₎ em ₍₁₀₎?
- c) 111011010001₍₂₎ em ₍₁₀₎?
- d) 1000000000000000₍₂₎ em ₍₁₀₎?

5) Conversão de Octal para Decimal

A conversão de números da base **octal** para a base **decimal** é semelhante a conversão de binário para decimal, porém utilizamos 8 no lugar do número 2. Vamos converter o número 5422₍₈₎ para a base **decimal** seguindo os mesmos passos da conversão anterior.

1. Pegar cada algarismo, multiplicar por 8, elevado ao expoente. Lembrando que os expoentes partem de zero, sendo incrementados de 1 em 1, da direita para a esquerda.

$$5422 - (5 \times 8^3) + (4 \times 8^2) + (2 \times 8^1) + (2 \times 8^0)$$

2. Vamos obter o cálculo de cada exponenciação

$$= (5 \times 512) + (4 \times 64) + (2 \times 8) + (2 \times 1)$$

3. Agora vamos obter o cálculo dos termos da soma.

$$= (2560) + (256) + (16) + (2) = 2834$$

4. Resultado

$$5422_{(8)} = 2834_{(10)}$$

Vamos converter o número 777₍₈₎ para a base decimal seguindo os mesmos passos acima, porém com explicação um pouco diferente.

777

$$7 \times 8^{0} = (7 \times 1) = 7$$
 $7 \times 8^{1} = (7 \times 8) = 56$
 $7 \times 8^{2} = (7 \times 64) = 448$

Soma =
$$(7 + 56 + 448) = 511$$

6) Conversão de Hexadecimal para Decimal

O procedimento desta conversão é bem similar a conversão de Octal para Decimal. A diferença é que agora utilizando 16, mas lembre-se: é necessário substituir as letras A, B, C, D, E e F por 10, 11, 12, 13, 14 e 15.

Vamos converter o número 2AF₍₁₆₎ para a base decimal seguindo os mesmos passos da conversão anterior.

1. Pegar cada algarismo, multiplicar por 16, elevado ao expoente. Lembrando que os expoentes partem de zero, sendo incrementados de 1 em 1, da direita para a esquerda.

$$2\ 10\ 15 \rightarrow (2\ x\ 16^2) + (10\ x\ 16^1) + (15\ x\ 16^0)$$

2. Vamos obter o cálculo de cada exponenciação

$$= (2 \times 256) + (10 \times 16) + (15 \times 1)$$

3. Agora vamos obter o cálculo dos termos da soma.

$$= (256) + (160) + (15) = 687$$

4. Resultado

$$2AF_{(16)} = 687_{(16)}$$

Vamos converter o número B12₍₁₆₎ para a base decimal seguindo os mesmos passos acima, porém com explicação um pouco diferente.

B12

$$2 \times 16^{0} = (2 \times 1) = 2$$

 $1 \times 16^{1} = (1 \times 16) = 16$
 $11 \times 16^{2} = (11 \times 256) = 2816$

Soma =
$$(7 + 56 + 2816) = 2834$$

- a) 24961₍₈₎ em ₍₁₀₎?
- b) 83920₍₈₎ em ₍₁₀₎?
- c) 26692₍₂₎ em ₍₁₀₎?
- d) 249AF₍₁₆₎ em ₍₁₀₎?
- e) 3B920₍₁₆₎ em ₍₁₀₎?
- f) AC692₍₁₆₎ em ₍₁₀₎?

7) Conversão de Binário para Octal

A conversão de números da base binária para a base octal, é parecida com a conversão binário-decimal, mas antes é preciso separar os dígitos binários de 3 em 3 da direita para a esquerda. Vejamos um exemplo: - vamos converter o número $10011011101_{(2)}$ para octal.

1. Separamos os dígitos binários 3 em 3 da direita para a esquerda.

10 011 011 101

2. Agora fazemos a conversão binário-decimal para cada grupo separadamente.

4°. Grupo		3°. Grupo			2°. Grupo			1°. Grupo		
1	0	0	1	1	0	1	1	1	0	1
2 ¹ x1	2ºx0	2 ² x0	2 ¹ x1	2ºx1	2 ² x0	2 ¹ x1	2ºx1	2 ² x1	21x0	2ºx1
2	0	0	2	1	0	2	1	4	0	1
2		3			3			5		

Resultado até o momento = 2 3 3 5

3. Unimos novamente os dígitos e temos o número na base octal.

2335₈

4. Resposta

 $10011011101_{(2)} = 2335_{(8)}$

8) Conversão de Binário para Hexadecimal

A conversão de números da base **binária** para a base **hexadecimal** é quase idêntica à anterior, só que agora separamos os dígitos binários **de 4 em 4 da direita para a esquerda** e antes de unir os dígitos ao final, trocamos os números 10, 11, 12, 13, 14 e 15 por A, B, C, D, E e F. Vejamos um exemplo: - vamos converter o número **10011011101**₍₂₎ para **hexadecimal**.

1. Separamos os dígitos binários de 4 em 4 da direita para a esquerda.

100 1101 1101

2. Agora fazemos a conversão binário-decimal para cada grupo separadamente.

3°. Grupo			2°. Grupo				1°. Grupo			
1	0	0	1	1	0	1	1	1	0	1
2^2x1	2 ¹ x0	2°x0	2 ³ x1	2 ² x1	2 ¹ x0	2ºx1	2 ³ x1	2 ² x1	2 ¹ x1	2ºx1
4	0	0	8	4	0	1	8	4	2	1
	4			13				3		

Resultado até o momento = 4 13 13

3. Trocamos os números maiores que 9 por letra

4 D D

4. Unimos novamente os dígitos e temos o número na base **hexadecimal**.

 $4DD_{(16)}$

5. Resposta

 $10011011101_{(2)} = 4DD_{(16)}$

- a) $11000010_{(2)}$ para $?_{(8)}$
- b) 11111111₍₂₎ para ?₍₈₎
- c) 1011101010₍₂₎ para ?₍₈₎
- d) 011001010₍₂₎ para ?₍₁₆₎
- e) 11111111₍₂₎ para ?₍₁₆₎
- f) 1011101010₍₂₎ para ?₍₁₆₎

9) Conversão de Octal para Binário

Nessa conversão temos que pensar no contrário da conversão **binário-octal**. Convertemos cada dígito do número **octal** para a base **binária** separadamente. Vamos converter o número 2335₍₈₎ para a base **binária**.

1. Separamos os dígitos do número octal.

2 3 3 5

2. Agora fazemos a conversão de cada dígito separadamente para binário como se fosse número da base **decimal**.

010 011 011 101

3. Unimos novamente os dígitos e temos o número na base **binária** (neste momento podemos eliminar os 0s a esquerda).

 $10011011101_{(2)}$

10) Conversão de Hexadecimal para Binário

Da mesma forma que a anterior, nessa conversão temos que pensar no contrário da conversão **binário-hexadecimal**. Convertemos cada dígito do número **hexadecimal** para a base **binária** separadamente. Vamos converter o número 4DD₍₁₆₎ para a base **binária**.

1. Separamos os dígitos do número hexadecimal.

4 D D

2. Convertemos as letras para número seguindo aquela ordem já mencionada.

4 13 13

3. Agora fazemos a conversão de cada dígito separadamente para binário como se fosse número da base **decimal**.

0100 1101 1101

4. Unimos novamente os dígitos e temos o número na base **binária** (neste momento podemos eliminar os 0s a esquerda).

100110111012

- a) 3670₍₈₎ em ₍₂₎?
- b) 66122₍₈₎ em ₍₂₎?
- c) 1212₍₈₎ em ₍₂₎?
- d) 2B14₍₁₆₎ em ₍₂₎?
- e) AF36₍₁₆₎ em ₍₂₎?
- f) 3D14F₍₁₆₎ em ₍₂₎?