Human Pose Lecture

Dr. Sergio Escalera University of Barcelona

What is articulated human pose?

- Given body kinematic tree, human pose is defined as the vector of joints locations either in 2D (image coordinate in pixels) or 3D (world coordinate in millimeters).
- Human body pose estimation is a way of representing humans in the images,
- It can be represented and estimated from coarse to fine models.
- Classicaly addressed by pictorial structures and graphical models

Challenges

Human pose regression

- The output of the network is directly a vector of (x,y) joints locations,
- This is a difficult task for the network because
 - Pose vector is a highly nonlinear variable,
 - Network must deal with scale and translation as well.

Human pose regression

- The output of the network is directly a vector of (x,y) joints locations,
- - Pose vector is a highly nonlinear variable,
 Solution: cascade of pose regressors.
 - Network must deal with scale and translation as well.

Solution: crop person bounding box as pre-processing.

 (x_i, y_i)

Loss: L1 or L2

Architecture: AlexNet

Cascade of pose regressors

• Given an initial estimation of the joints (in holistic view), iteratively refines the error (in local view).

Cascade of pose regressors

Limitations:

- Sensitive to initial estimation,
- Local solution, easily can stick to local minima,
- Lack of structured predictions.

Results on LSP dataset

Joints heatmaps instead of pose vector

- It is an easier problem for the network,
- Still can be combined with pose regressors,
- The map can be fed into graphical models to learn higher order joint relationships.

Context is important

Which part belongs to a human body?

Context is important

Which part belongs to a human body?

- Local evidence is weak,
- ☐ Larger receptive field = more context,
- ☐ Recover from failures by cascading.

Stacked Hourglass Network

Stacked Hourglass Network: intermediate supervision

Stacked Hourglass Network

Cons:

- Quite heavy in GPU,
- Joints may be confused with background,
- > Still does not explicitly deal with structure.

Intermediate Prediction Accuracy (Validation, PCKh@0.5)

Some results on MPII dataset

Deeply learned compositional models

- 1. We have a compositional model of part-subpart relationships,
- 2. Traditional solutions by modelling the graph (or tree) with Gibbs formulation,
- 3. We want a bottom-up and top-down inference,

Question: How to model it with CNN models?

minimized

Image credit: Tang et al., "Deeply learned compositional models for human pose estimation." ECCV. 2018.

First define updating rule

Bottom-up inference:

(Leaf)
$$S_u^{\uparrow}(w_u) = \phi_u^{leaf}(w_u, \mathbf{I})$$

(And) $S_u^{\uparrow}(w_u) = \sum_{v \in ch(u)} \max_{w_v} [\phi_{u,v}^{and}(w_u, w_v) + S_v^{\uparrow}(w_v)]$

Top-down inference:

(Root)
$$w_u^* = \operatorname{argmax}_{w_u} S_u^{\downarrow}(w_u) \equiv \operatorname{argmax}_{w_u} S_u^{\uparrow}(w_u)$$

(Non-root) $w_v^* = \operatorname{argmax}_{w_v} S_v^{\downarrow}(w_v) \equiv \operatorname{argmax}_{w_v} [\phi_{u,v}^{and}(w_u^*, w_v) + S_v^{\uparrow}(w_v)]$

Revisit stacked hourglass network

Heatmaps of level i (i>0) are composed of heatmaps of level 0 and level i. CNN -> Hourglass Module

Some results comparing to 8-stack hourglass

3D human body pose

- 3D pose is the vector of body joints in 3D space,
- 2D pose is the projection of 3D pose to image plane,
- 3D pose is defined with the same models as 2D pose,
- 3D pose estimation is a challenging task since depth dimension is lost during projection to RGB image.

2d observation

3d ground truth

3d prediction

3D human body pose estimation

Solutions:

- Directly regress 3D pose from RGB image,
- Estimate 2D pose and then regress 3D pose from 2D,
- Apply volumetric heatmaps and estimate 3D pose,
- Apply multi-task learning by the use of different modalities.

3D human body pose estimation

Solutions:

- Directly regress 3D pose from RGB image,
 A difficult problem to the network similar to 2D pose.
- Estimate 2D pose and then regress 3D pose from 2D,
- Apply volumetric heatmaps and estimate 3D pose,
- Apply multi-task learning by the use of different modalities.
 Annotating data for all modalities is not a trivial task for many datasets.

3D human body pose estimation

Solutions:

- Directly regress 3D pose from RGB image,
- Estimate 2D pose and then regress 3D pose from 2D,
- Apply volumetric heatmaps and estimate 3D pose,
- Apply multi-task learning by the use of different modalities.

Lifting 2D joints to 3D: A simple solution

Volumetric heatmaps for 3D pose estimation

- A volumetric heatmap is defined as a tensor in the form of (#Width x #Height x #Depth x #Joints),
- A joint's depth is a continuous value which is discretized into several bins, i.e. #Depth,
- Ground truth heatmap can be defined by a Gaussian.

A simple solution

A simple solution - data augmentation

2638 occluder objects from Pascal VOC

Filter out 'person', 'truncated', 'difficult' and small object segments

Augmented inputs with pasted occluders

Applied with 50% probability, 1–8 objects, at random scale, at random position

Applications

3D hand pose estimation based on depth images (similar strategies applied on RGB images)

3D pose estimation

3D hand pose estimation

Applications

- Human-computer interaction,
- Virtual reality,
- Training robot hands,
- Sign language and gesture recognition.

Voxel to voxel predictions

2D pose estimation

3D pose estimation

3D hand pose estimation

Voxel to voxel predictions

Voxel to voxel predictions - results on NYU dataset

Bonus 1: Volumetric models from 2D (even 3D clothes)

SMPLR: Deep SMPL reverse for 3D human pose and shape recovery Meysam Madadi, Hugo Bertiche, Sergio Escalera

Automatic human face and body analysis

(from Martinez (2019). Context may reveal how you feel. PNAS)

Face

- Identity of the person
- Perceived age
- Perceived gender
- Perceived attractiveness
- Ethnicity/race/skin color
- Head pose
- Gaze direction
- Facial expression of emotion: crying (of sadness)
- Other facial features

+ Body

- Body pose
- Hand pose
- Bodily expression of emotion: crying (of dispair)
- Other body features

+ Context

- Activity/actions/intentions: concert
- Experienced emotion: crying of joy
- Interaction with other people/objects

Automatic human face and body analysis Applications for good

- Human-Computer/Robot interaction
- Early intervention and medical diagnosis (e.g., ASD, depression)
- Augmented reality
- Image synthesis (e.g., digital avatars)
- Education (measuring engagement, effectiveness)
- Gaming
- Driving assistance
- Market research
- Assistive living (e.g., image captioning, fall detection)

Personalized empathic virtual agents

(from Justo et al (2020) Analysis of the interaction between elderly people and a simulated virtual coach. JAIHC)

Digital avatars

Face analysis pipeline

Pre-processing:

- **1. Face detection**: detect bounding box surrounding the face.
 - → Bounding box coordinates regression (xmin, xmax, ymin, ymax).
- **2.** Landmark detection: detect facial landmarks (fiducial points or keypoints).
 - → Keypoint coordinates regression (x,y)
- 3. **Image normalization**: align and normalize the image to reduce variation in face scale and in-plane rotation.

Multi-task learning: optimizing facial landmark detection (the main task) with related/auxiliary tasks.

2014 - TCDCN*

Robust Facial Landmark Detection via a Fully-Convolutional Local-Global Context Network, 2019

Human Pose Lecture

Dr. Sergio Escalera University of Barcelona

