Topological data analysis Lecture 1

Anton Ayzenberg

ATA Lab, FCS NRU HSE Noeon Research

Spring 2024
Faculty of Computer Science / Yandex Data School

Topology

To start with

Topology = study of shapes.

Topological space = subset of \mathbb{R}^d . Which spaces are considered the same?

Topology

To start with

Topology = study of shapes.

Topological space = subset of \mathbb{R}^d . Which spaces are considered the same?

Homeomorphism

Definition

Let X, Y be topological spaces. $f: X \to Y$ is called a homeomorphism if

- ① f is continuous;
- f is a bijection;

If there exists a homeomorphism $f: X \to Y$, then X, Y are called homeomorphic spaces. Notation $X \cong Y$.

Homeomorphism

Definition

Let X, Y be topological spaces. $f: X \to Y$ is called a homeomorphism if

- f is continuous;
- f is a bijection;

If there exists a homeomorphism $f: X \to Y$, then X, Y are called homeomorphic spaces. Notation $X \cong Y$.

Example: $(-1;1) \cong \mathbb{R}$.

Example: Flat square is homeomorphic to flat circle.

Fact 1: \cong acts like equivalence relation: if $X \cong Y$ and $Y \cong Z$, then $X \cong Z$.

Fact 2: if $X \cong Y$ and X is compact, then Y is compact.

Coffee cup = donut

Also homeomorphic, but do not continuously deform to each other

Invariants

We want to distinguish non-homeomorphic shapes. Use **invariants** of homeomorphism.

Invariants

We want to distinguish non-homeomorphic shapes. Use **invariants** of homeomorphism.

The fundamental invariant in topology

Number of connected components. The set of connected components of X is denoted $\pi_0(X)$.

Fact: $X \cong Y$ implies X, Y have the same number of connected components.

Invariants

We want to distinguish non-homeomorphic shapes. Use **invariants** of homeomorphism.

The fundamental invariant in topology

Number of connected components. The set of connected components of X is denoted $\pi_0(X)$.

Fact: $X \cong Y$ implies X, Y have the same number of connected components.

But we have:

 $\not\cong$

≇

≱

We need more invariants to distinguish them.

• Naive invariants motivated by connectivity

- Naive invariants motivated by connectivity
- Internal dimension

- Naive invariants motivated by connectivity
- Internal dimension
- Number of holes, fundamental group

- Naive invariants motivated by connectivity
- Internal dimension
- Number of holes, fundamental group
- Local properties

- Naive invariants motivated by connectivity
- Internal dimension
- Number of holes, fundamental group
- Local properties
- Orientability

- Naive invariants motivated by connectivity
- Internal dimension
- Number of holes, fundamental group
- Local properties
- Orientability
- ullet Universal constructions $X\mapsto \mathcal{F}(X)$ such that $X\cong Y$ implies $\mathcal{F}(X)\cong \mathcal{F}(Y)$

Homotopy between maps

Equivalence of maps

Continuous maps $f,g:X\to Y$ are called homotopy equivalent, if one can be continuously deformed to another. Formally $f\sim g$ iff there exists a continuous map $F:X\times [0,1]\to Y$ such that F(x,0)=f(x) and F(x,1)=g(x).

Symbol $f \simeq g$.

Homotopy between maps

Equivalence of maps

Continuous maps $f,g\colon X\to Y$ are called homotopy equivalent, if one can be continuously deformed to another. Formally $f\sim g$ iff there exists a continuous map $F\colon X\times [0,1]\to Y$ such that F(x,0)=f(x) and F(x,1)=g(x).

Symbol $f \simeq g$.

Facts:

- Homotopy equivalence is equivalence.
- Homotopy is path in the space $Y^X = \text{Maps}(X, Y)$ of continuous maps from X to Y between f and g.

Homotopy equivalence of spaces

Two topological spaces X, Y are called homotopy equivalent, if there exist continuous maps $h \colon X \to Y$ and $k \colon Y \to X$, such that $h \circ k \simeq \operatorname{id}_Y$ and $k \circ h \simeq \operatorname{id}_X$.

Symbol $X \simeq Y$.

Homotopy equivalence of spaces

Two topological spaces X, Y are called homotopy equivalent, if there exist continuous maps $h\colon X\to Y$ and $k\colon Y\to X$, such that $h\circ k\simeq \operatorname{id}_Y$ and $k\circ h\simeq \operatorname{id}_X$.

Symbol $X \simeq Y$. Informally: two spaces are homotopy equivalent iff one is obtained from another by thinning and thickening.

Homotopy equivalence of spaces

Two topological spaces X, Y are called homotopy equivalent, if there exist continuous maps $h \colon X \to Y$ and $k \colon Y \to X$, such that $h \circ k \simeq \operatorname{id}_Y$ and $k \circ h \simeq \operatorname{id}_X$.

Symbol $X \simeq Y$. Informally: two spaces are homotopy equivalent iff one is obtained from another by thinning and thickening.

A space X is called contractible if $X \simeq pt$ (pt is a 1-point space).

Homotopy equivalence of spaces

Two topological spaces X, Y are called homotopy equivalent, if there exist continuous maps $h\colon X\to Y$ and $k\colon Y\to X$, such that $h\circ k\simeq \operatorname{id}_Y$ and $k\circ h\simeq \operatorname{id}_X$.

Symbol $X \simeq Y$. Informally: two spaces are homotopy equivalent iff one is obtained from another by thinning and thickening.

A space X is called contractible if $X \simeq pt$ (pt is a 1-point space).

Facts:

- Homotopy equivalence is an equivalence.
- Convex sets of \mathbb{R}^n are contractible.
- A graph (its picture) is contractible iff it is a tree.

Homotopy equivalence: some pictures

We allow to make objects thin and thick.

Contractible spaces

Bing's house is an example of a contractible space which cannot be contracted to a point in a tree-like manner.

Invariants of homotopy equivalence:

• Number of connected components

Invariants of homotopy equivalence:

- Number of connected components
- Fundamental group $\pi_1(X)$

Invariants of homotopy equivalence:

- Number of connected components
- Fundamental group $\pi_1(X)$
- Homology vector spaces and Betti numbers (to be discussed)

Invariants of homotopy equivalence:

- Number of connected components
- Fundamental group $\pi_1(X)$
- Homology vector spaces and Betti numbers (to be discussed)

Not invariants:

Dimension

Invariants of homotopy equivalence:

- Number of connected components
- Fundamental group $\pi_1(X)$
- Homology vector spaces and Betti numbers (to be discussed)

Not invariants:

- Dimension
- Local things

Invariants of homotopy equivalence:

- Number of connected components
- Fundamental group $\pi_1(X)$
- Homology vector spaces and Betti numbers (to be discussed)

Not invariants:

- Dimension
- Local things
- Orientability

Constructivity

How can we explain shapes to computer?

Constructivity

How can we explain shapes to computer?

Basically:

- Formulas (and their geometrical interpretations)
- ② Discrete data structures (and their topological interpretations) such as graphs, simplicial complexes, partially ordered sets, etc.

Simplicial complex

(-1)-мерный: Ø

0-мерные:

{1},{2},{3},{4},{5},{6},{7},{8},{9},{10},{11}

1-мерные:

{1,2},{1,9},{2,9},{1,11},{2,11},{9,11},{2,3}, {3,4},{2,5},{4,5},{3,6},{6,7},{6,8},{7,8}, {7,10},{8,10},{7,9},{9,10},{10,11}

2-мерные:

{1,2,9},{1,2,11},{1,9,11},{2,9,11}, {3,4,5},{6,7,8},{7,8,10},{9,10,11}

3-мерные:

{1,2,9,11}

Simplicial complex

Definition

Simplicial complex on a finite vertex set V is a collection $K \subset 2^V$ satisfying the properties:

- \bullet if $I \in K$ and $J \subset I$, then $J \in K$;
- $\emptyset \in K$.

Elements $I \in K$ are called simplices. If |I| = k, we say that I is a (k-1)-dimensional simplex.

- Vertices $\{i\}$ simplices of dim 0;
- 2 Edges $\{i, j\}$ simplices of dim 1;
- **1** Triangles $\{i, j, k\}$ simplices of dim 2;
- etc.

 $\dim K$ is the maximal dimension of simplices of K.

- Graph is (a) a discrete object, (b) a picture.
- ullet Some graphs cannot be drawn in \mathbb{R}^2 without self-intersections.
- ullet But all graphs can be drawn in \mathbb{R}^3

- Graph is (a) a discrete object, (b) a picture.
- ullet Some graphs cannot be drawn in \mathbb{R}^2 without self-intersections.
- ullet But all graphs can be drawn in \mathbb{R}^3

Similarly:

• Simplicial complex K is a discrete object.

- Graph is (a) a discrete object, (b) a picture.
- Some graphs cannot be drawn in \mathbb{R}^2 without self-intersections.
- ullet But all graphs can be drawn in \mathbb{R}^3

Similarly:

- Simplicial complex K is a discrete object.
- In order to understand it as a continuous topological space, some picture in \mathbb{R}^d should be drawn. It is called **the geometrical realization** of K and denoted |K|.

- Graph is (a) a discrete object, (b) a picture.
- Some graphs cannot be drawn in \mathbb{R}^2 without self-intersections.
- ullet But all graphs can be drawn in \mathbb{R}^3

Similarly:

- Simplicial complex K is a discrete object.
- In order to understand it as a continuous topological space, some picture in \mathbb{R}^d should be drawn. It is called **the geometrical realization** of K and denoted |K|.
- It is easy to draw simplicial complex in the space of dimension d = |V|.

Fact: simplicial complex of dim k can be drawn in \mathbb{R}^{2k+1} without self-intersections.

Simplicial complex is a discrete structure and can be encoded in computer. But in general:

- There is no algorithm to check $|K| \cong |L|$ given K and L.
- There is no algorithm to check $|K| \simeq |L|$ given K and L.
- There is no even an algorithm to check $|K| \simeq pt$ given K!

1-dimensional simplicial complexes (aka graphs) are simpler:

- Homeomorphism of two graphs can be checked algorithmically.
- Homotopy equivalence of two graphs can be checked algorithmically.

1-skeleton

Clique complex

*Clique = subgraph isomorphic to full graph.

Clique complex

Clique complex makes it possible to transform a graph into a high-dimensional structure.

Since graphs are everywhere, this observation opens a way to use topological invariants everywhere.