Amendments to the Claims

Please replace previously pending claims with the following list of claims:

1. (Currently amended) A method for induction of apoptosis of cancer cells comprising administering to a patient in need thereof a composition comprising an effective amount of a gold(III) complex of formula:

or a pharmaceutically acceptable salt thereof, wherein:

 $R_1,\,R_4,\,R_7 \text{ and } R_{10} \text{ are each independently -H, -halo, -(C_1-C_6)alkyl or -O(C_1-C_6)alkyl, -(6-membered)aryl or -(5 to 10-membered)heteroaryl, each of which may be substituted with one or more -halo, -(C_1-C_6)alkyl, -O(C_1-C_6)alkyl, -OSO_2 or -NO_2;$

 R_2 , R_3 , R_5 , R_6 , R_8 , R_9 , R_{11} and R_{12} are each independently -H, -(C_1 - C_6)alkyl, each of which may be substituted with one or more -C(O)OR₁₃, -halo or =O groups;

 R_{13} is -(C_1 - C_6)alkyl;

each X^p is independently a pharmaceutically acceptable counter-ion;

m is an integer ranging from -3 to 5;

p is an integer ranging from -3 to 3;

n is equal to the absolute value of m/p; and

a pharmaceutically acceptable carrier.

2. (Original) The method of claim 1, wherein R₂, R₃, R₅, R₆, R₈, R₉, R₁₁ and R₁₂ are each -H.; X^p is Cl⁻; m is 1; and n is 1.

3. (Original) The method of claim 2, wherein R_1 , R_4 , R_7 and R_{10} are each phenyl.

- 4. (Original) The method of claim 2, wherein R_1 , R_4 , R_7 and R_{10} are each -4-methylphenyl.
- 5. (Original) The method of claim 2, wherein R_1 , R_4 , R_7 and R_{10} are each -4-methoxyphenyl.
- 6. (Original) The method of claim 2, wherein R_1 , R_4 , R_7 and R_{10} are each -4-bromophenyl.
- 7. (Original) The method of claim 2, wherein R_1 , R_4 , R_7 and R_{10} are each -4-chlorophenyl.
- 8. (Original) The method of claim 2, wherein R_1 , R_4 , R_7 and R_{10} are each -3,4,5-trimethoxyphenyl.
- 9. (Currently amended) The method of claim 2, wherein R₁, R₄, R₇ and R₁₀ are each -3,4,5-trifluorophenyl -pentafluorophenyl.
- 10. (Original) The method of claim 1, wherein R_1 , R_4 , R_7 and R_{10} are each -H; R_2 , R_3 , R_5 , R_6 , R_8 , R_9 , R_{11} and R_{12} are each -ethyl; X^p is Cl^- ; m is 1; and n is 1.
- 11. (Original) The method of claim 1, wherein R_1 , R_4 , R_7 and R_{10} are each -H; and R_2 and R_{11} are each -ethyl; R_3 , R_5 , R_9 and R_{12} are each -methyl; R_6 and R_8 are each -methyl-3-propanoate; X^p is Cl^r ; m is 1; and n is 1.
- 12. (Currently amended) The method of claim 1, wherein R₁, R₄, R₇ and R₁₀ are each -4-(N-methyl)pyridinium <u>pyridyl</u>; R₂, R₃, R₅, R₆, R₈, R₉, R₁₁ and R₁₂ are each -H; X^p is Cl⁻; m is 5; and n is 5.

13. (Currently amended) The method of claim 1, wherein R_1 , R_4 , R_7 and R_{10} are each -4-sulfanatophenyl sulfonatophenyl; R_2 , R_3 , R_5 , R_6 , R_8 , R_9 , R_{11} and R_{12} are each -H; X^p is Na^+ ; m is +3; and n is 3.

14. (Original) A method for induction of apoptosis of cancer cells comprising administering to a patient in need thereof a composition comprising an effective amount of a gold(III) complex of formula:

$$\begin{bmatrix} R_{4} & R_{1} & R_$$

or a pharmaceutically acceptable salt thereof, wherein:

 R_1 - R_{12} are each independently -H, -halo, -(C_1 - C_6)alkyl or -O(C_1 - C_6)alkyl which may be substituted with one or more -O(C_1 - C_6)alkyl or -halo;

X is a counter-anion; and a pharmaceutically acceptable carrier.

- 15. (Original) The method of claim 14, wherein R₁-R₄ are each -H; and X is Cl⁻.
- 16. (Original) The method of claim 15, wherein R₅-R₁₂ are each -H.
- 17. (Original) The method of claim 15, wherein R_5 , R_7 - R_9 and R_{11} - R_{12} are each -H; and R_6 and R_{10} are each -Cl.
- 18. (Original) The method of claim 15, wherein R_5 , R_7 , R_9 and R_{10} are each -H; and R_6 , R_8 , R_{10} and R_{12} are each -Cl.
- 19. (Original) A method for induction of apoptosis of cancer cells comprising administering to a patient in need thereof a composition comprising an effective amount of a gold(III) complex of formula:

$$\begin{bmatrix} R_4 & R_3 & R_2 \\ R_4 & R_1 \\ Y-N & N-Y \\ R_6 & R_1 & R_{12} \\ R_7 & R_8 & R_{12} \\ R_{11} & R_{10} \end{bmatrix}$$

or a pharmaceutically acceptable salt thereof, wherein:

(a) R_1 - R_{12} are each independently -H, -halo, -(C_1 - C_6)alkyl -O(C_6)alkyl which may be substituted with one or more -O(C_1 - C_6)alkyl or -halo; or

(b) R_1 and R_4 are absent; and R_2 and R_3 together form a 6-membered aryl ring of formula

Y is
$$X = \begin{bmatrix} 0 & 0 & 0 \\ -C & 0 & -S \\ 0 & 0 \end{bmatrix}$$
;

 R_{13} and R_{14} are each -H or -halo;

X is a counter-anion; and

a pharmaceutically acceptable carrier.

20. (Original) The method of claim 19, wherein

Y is
$$X = \begin{bmatrix} 0 \\ -C \end{bmatrix}$$
; and

X is Cl⁻.

- 21. (Original) The method of claim 20, wherein R_1 - R_{12} are each -H.
- 22. (Original) The method of claim 20, wherein R_1 - R_4 are each -methyl; and R_5 - R_{12} are each -H.
- 23. (Original) The method of claim 20, wherein R_1 and R_4 - R_{12} are each -H; and R_2 and R_3 are each -phenyl.

24. (Original) The method of claim 20, wherein R_1 and R_4 are absent; R_2 and R_3 together form R_{13} R_{14} ; and

R₅-R₁₂ are each -H.

25. (Currently amended) A method for inhibition of reverse transcriptase of Human Immunodeficiency virus-1 comprising administering to a patient in need thereof a composition comprising an effective amount of a gold(III) complex of formula:

a pharmaceutically acceptable salt thereof, wherein:

 R_1 , R_4 , R_7 and R_{10} are each independently -H, -halo, -(C_1 - C_6)alkyl or -O(C_1 - C_6)alkyl, -(6-membered)aryl or -(5 to 10-membered)heteroaryl, each of which may be substituted with one or more -halo, -(C_1 - C_6)alkyl, -O(C_1 - C_6)alkyl, -OSO₂ or -NO₂;

 R_2 , R_3 , R_5 , R_6 , R_8 , R_9 , R_{11} and R_{12} are each independently -H, -(C₁-C₆)alkyl, each of which may be substituted with one or more -C(O)OR₁₃, -halo or =O groups;

 R_{13} is -(C_1 - C_6)alkyl;

each X^p is independently a pharmaceutically acceptable counter-ion;

m is an integer ranging from -3 to 5;

p is an integer ranging from -3 to 3;

n is equal to the absolute value of m/p; and

a pharmaceutically acceptable carrier.

26. (Original) The method of claim 25, wherein R₂, R₃, R₅, R₆, R₈, R₉, R₁₁ and R₁₂ are each -H.; X^p is Cl⁻; m is 1; and n is 1.

- 27. (Original) The method of claim 26, wherein R_1 , R_4 , R_7 and R_{10} are each phenyl.
- 28. (Original) The method of claim 26, wherein R_1 , R_4 , R_7 and R_{10} are each -4-methylphenyl.
- 29. (Original) The method of claim 26, wherein R_1 , R_4 , R_7 and R_{10} are each -4-methoxyphenyl.
- 30. (Original) The method of claim 26, wherein R_1 , R_4 , R_7 and R_{10} are each -4-bromophenyl.
- 31. (Original) The method of claim 26, wherein R_1 , R_4 , R_7 and R_{10} are each -4-chlorophenyl.
- 32. (Original) The method of claim 26, wherein R_1 , R_4 , R_7 and R_{10} are each -3,4,5-trimethoxyphenyl.
- 33. (Currently amended) The method of claim 26, wherein R_1 , R_4 , R_7 and R_{10} are each -3,4,5-trifluorophenyl -pentafluorophenyl.
- 34. (Original) The method of claim 25, wherein R_1 , R_4 , R_7 and R_{10} are each -H; R_2 , R_3 , R_5 , R_6 , R_8 , R_9 , R_{11} and R_{12} are each -ethyl; X^p is Cl^2 ; m is 1; and n is 1.
- 35. (Original) The method of claim 25, wherein R_1 , R_4 , R_7 and R_{10} are each -H; and R_2 and R_{11} are each -ethyl; R_3 , R_5 , R_9 and R_{12} are each -methyl; R_6 and R_8 are each -methyl-3-propanoate; X^p is Cl^r ; m is 1; and n is 1.
- 36. (Currently amended) The method of claim 25, wherein R₁, R₄, R₇ and R₁₀ are each -4-(N-methyl)pyridinium pyridyl; R₂, R₃, R₅, R₆, R₈, R₉, R₁₁ and R₁₂ are each -H; X^p is Cl'; m is 5; and n is 5.

- 37. (Currently amended) The method of claim 25, wherein R_1 , R_4 , R_7 and R_{10} are each -4-sulfanatophenyl sulfonatophenyl; R_2 , R_3 , R_5 , R_6 , R_8 , R_9 , R_{11} and R_{12} are each -H; X^p is Na^+ ; m is =3; and n is $\frac{5}{3}$.
- 38. (Original) A method for inhibition of reverse transcriptase of Human Immunodeficiency virus-1 comprising administering to a patient in need thereof a composition comprising an effective amount of a gold(III) complex of formula:

$$\begin{bmatrix} R_{4} & R_{3} & R_{2} & R_{1} & R_$$

or a pharmaceutically acceptable salt thereof, wherein:

 R_{1} - R_{12} are each independently -H, -halo, -(C_{1} - C_{6})alkyl or -O(C_{1} - C_{6})alkyl which may be substituted with one or more -O(C_{1} - C_{6})alkyl or -halo;

X is a counter-anion; and a pharmaceutically acceptable carrier.

- 39. (Original) The method of claim 38, wherein R_1 , R_1 ', R_2 and R_2 ' are each -H; and X is Cl^- .
 - 40. (Original) The method of claim 39, wherein R_3 - R_{10} are each -H.
- 41. (Original) The method of claim 38, wherein R_3 , R_5 - R_7 and R_9 - R_{10} are each -H; and R_4 and R_8 are each -Cl.
- 42. (Original) The method of claim 38, wherein R_3 , R_5 , R_7 and R_9 are each -H; and R_4 , R_6 , R_8 and R_{10} are each -Cl.
- 43. (Original) A method for inhibition of reverse transcriptase of Human Immunodeficiency virus-1 comprising administering to a patient in need thereof a composition comprising an effective amount of a gold(III) complex of formula:

$$\begin{bmatrix} R_4 & R_3 & R_2 & R_1 & R_1 & R_2 & R_1 & R_2 & R_2 & R_1 & R_2 & R_2 & R_1 & R_2 & R_$$

or a pharmaceutically acceptable salt thereof, wherein:

(a) R_1 - R_{12} are each independently -H, -halo, -(C_1 - C_6)alkyl -O(C_6)alkyl which may be substituted with one or more -O(C_1 - C_6)alkyl or -halo; or

(b) R_1 and R_4 are absent; and R_2 and R_3 together form a 6-membered aryl ring of formula

Y is
$$X = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
;

R₁₃ and R₁₄ are each -H or -halo;

X is a counter-anion; and

a pharmaceutically acceptable carrier.

44. (Original) The method of claim 43, wherein

Y is
$$x = \frac{0}{-C}$$
; and

X is Cl.

- 45. (Original) The method of claim 44, wherein R_1 - R_{12} are each -H.
- 46. (Original) The method of claim 44, wherein R_1 - R_4 are each -methyl; and R_5 - R_{12} are each -H.
- 47. (Original) The method of claim 44, wherein R_1 and R_4 - R_{12} are each --H; and R_2 and R_3 are each -phenyl.

48. (Original) The method of claim 44, wherein R_1 and R_4 are absent; R_2 and R_3 together

form

R₅-R₁₂ are each -H.

49. (Currently amended) A pharmaceutical composition comprising an effective amount of a gold(III) complex of formula:

$$\begin{bmatrix} R_{12} & R_1 & R_2 \\ R_{10} & R_3 & R_4 \\ R_{10} & R_4 & R_5 \\ R_{10} & R_{10} & R_5 \end{bmatrix}$$

or a pharmaceutically acceptable salt thereof, wherein:

 R_1 , R_4 , R_7 and R_{10} are each independently -H, -halo, -(C_1 - C_6)alkyl or -O(C_1 - C_6)alkyl, -(6-membered)aryl or -(5 to 10-membered)heteroaryl, each of which may be substituted with one or more -halo, -(C_1 - C_6)alkyl, -O(C_1 - C_6)alkyl, -OSO₂ or -NO₂;

 R_2 , R_3 , R_5 , R_6 , R_8 , R_9 , R_{11} and R_{12} are each independently -H, -(C_1 - C_6)alkyl, each of which may be substituted with one or more -C(O)OR₁₃, -halo or =O groups;

 R_{13} is -(C_1 - C_6)alkyl;

each X^p is independently a pharmaceutically acceptable counter-ion;

m is an integer ranging from -3 to 5;

p is an integer ranging from -3 to 3;

n is equal to the absolute value of m/p; and

a pharmaceutically acceptable carrier.

50. (Original) The composition of claim 49 further comprising 3'-azido-2',3'-dideoxythymidine.

51. (Original) A pharmaceutical composition comprising an effective amount of a gold(III) complex of formula:

$$\begin{bmatrix} R_4 & R_1 & R_1 \\ R_4 & R_1 & R_1 \\ R_5 & R_1 & R_1 \end{bmatrix}$$

or a pharmaceutically acceptable salt thereof, wherein:

 $R_{1}\text{--}R_{12} \text{ are each independently -H, -halo, -(C}_{1}\text{--}C_{6}) alkyl \text{ or -O(C}_{1}\text{--}C_{6}) alkyl \\$ which may be substituted with one or more -O(C}_{1}\text{--}C_{6}) alkyl or -halo;

X is a counter-anion; and a pharmaceutically acceptable carrier.

- 52. (Original) The composition of claim 51 further comprising 3'-azido-2',3'-dideoxythymidine.
- 53. (Original) A pharmaceutical composition comprising an effective amount of a gold(III) complex of formula:

$$\begin{bmatrix} R_{4} & R_{1} & R_$$

or a pharmaceutically acceptable salt thereof, wherein:

- (a) R_1 R_{12} are each independently -H, -halo, -(C_1 - C_6)alkyl -O(C_6)alkyl which may be substituted with one or more -O(C_1 - C_6)alkyl or -halo; or
- (b) R_1 and R_4 are absent; and R_2 and R_3 together form a 6-membered aryl ring of formula

Application No.: 10/663,894 Docket No.: V9661.0041

Y is
$$X = \begin{bmatrix} 0 \\ -C \end{bmatrix}$$
 or $\begin{bmatrix} 0 \\ -S \\ 0 \end{bmatrix}$;

R₁₃ and R₁₄ are each -H or -halo;

X is a counter-anion; and

a pharmaceutically acceptable carrier.

- 54. (Original) The composition of claim 53 further comprising 3'-azido-2',3'-dideoxythymidine.
- 55. (Original) A method for inhibition of reverse transcriptase of Human Immunodeficiency virus-1 comprising administering to a patient in need thereof a composition comprising an effective amount of a gold(III) complex of claim 50.
- 56. (Original) A method for inhibition of reverse transcriptase of Human Immunodeficiency virus-1 comprising administering to a patient in need thereof a composition comprising an effective amount of a gold(III) complex of claim 52.
- 57. (Original) A method for inhibition of reverse transcriptase of Human Immunodeficiency virus-1 comprising administering to a patient in need thereof a composition comprising an effective amount of a gold(III) complex of claim 54.
- 58. (Currently amended) A complex formed between a ligand and a gold(III) complex of formula:

$$\begin{bmatrix} R_{12} & R_1 & R_2 \\ R_{11} & R_2 & R_3 \\ R_{10} & R_4 & R_4 \\ R_8 & R_7 & R_6 \end{bmatrix}^{m}$$

or a pharmaceutically acceptable salt thereof, wherein:

 R_1 , R_4 , R_7 and R_{10} are each independently -H, -halo, -(C_1 - C_6)alkyl or -O(C_1 - C_6)alkyl, -(6-membered)aryl or -(5 to 10-membered)heteroaryl, each of which may be substituted with one or more -halo, -(C_1 - C_6)alkyl, -O(C_1 - C_6)alkyl, -OSO₂ or -NO₂;

 R_2 , R_3 , R_5 , R_6 , R_8 , R_9 , R_{11} and R_{12} are each independently -H, -(C₁-C₆)alkyl, each of which may be substituted with one or more -C(O)OR₁₃, -halo or =O groups;

 R_{13} is -(C_1 - C_6)alkyl;

each X^p is independently a pharmaceutically acceptable counter-ion;

m is an integer ranging from -3 to 5;

p is an integer ranging from -3 to 3; and

n is equal to the absolute value of m/p.

- 59. (Original) The complex of claim 58, wherein the ligand is selected from the group consisting of porphyrins, metalloporphyrins, amino acids, peptides, polypeptides, proteins, nucleotides, polynucleotides, deoxyribonucleic acid, and ribonucleic acid.
- 60. (Original) A complex formed between a ligand and a gold(III) complex of formula:

$$\begin{bmatrix} R_4 & R_1 & R_1 \\ R_5 & R_1 & R_1 \\ R_6 & R_7 & R_{12} & R_{11} \end{bmatrix}^+ X^-$$

or a pharmaceutically acceptable salt thereof, wherein:

 R_{1} - R_{12} are each independently -H, -halo, -(C_1 - C_6)alkyl or -O(C_1 - C_6)alkyl which may be substituted with one or more -O(C_1 - C_6)alkyl or -halo; and

X is a counter-anion.

- 61. (Original) The complex of claim 60, wherein the ligand is selected from the group consisting of porphyrins, metalloporphyrins, amino acids, peptides, polypeptides, proteins, nucleotides, polynucleotides, deoxyribonucleic acid, and ribonucleic acid.
- 62. (Original) A complex formed between a ligand and a gold(III) complex of formula:

$$\begin{bmatrix} R_{4} & R_{1} & R_$$

or a pharmaceutically acceptable salt thereof, wherein:

- (a) R_1 R_{12} are each independently -H, -halo, -(C_1 - C_6)alkyl -O(C_6)alkyl which may be substituted with one or more -O(C_1 - C_6)alkyl or -halo; or
- (b) R_1 and R_4 are absent; and R_2 and R_3 together form a 6-membered aryl ring of formula

Y is
$$X = \begin{bmatrix} 0 & \text{or } -\frac{0}{10} \\ -\frac{0}{10} & \text{or } -\frac{0}{10} \end{bmatrix}$$
;

 R_{13} and R_{14} are each -H or -halo; and X is a counter-anion.

63. (Original) The complex of claim 62, wherein the ligand is selected from the group consisting of porphyrins, metalloporphyrins, amino acids, peptides, polypeptides, proteins, nucleotides, polynucleotides, deoxyribonucleic acid, and ribonucleic acid.