DRAFT Primordial Black Holes and Loop Quantum Gravity: Implications for Cosmology

Antoine Dierckx

Supervisors:

Sébastien Clesse, Université Libre de Bruxelles (ULB) Francesca Vidotto, Western University

Contents

1	Intr	roduction	2
	1.1	Motivation and Background	4
		1.1.1 Cosmology	4
		1.1.2 Primordial Black Holes	4
		1.1.3 Loop Quantum Gravity	6
		1.1.4 Loop Quantum Cosmology	6
		1.1.5 Remnants	6
	1.2	Objectives of the Thesis	6
	1.3	Structure of the Thesis	4
2	Ove	erview of Cosmology	:
	2.1	Standard Cosmological Model	
		2.1.1 Basic equations	
		2.1.2 Inflation	
		2.1.3 Cosmic Microwave Background	
	2.2	Early Universe Physics	
		2.2.1 Necessity of Primordial Black Holes	•
		2.2.2 Alternative scenarios	•
3	ъ.		
3		mordial Black Holes	4
	3.1	Formation Mechanisms of PBHs	4
		3.1.1 PBH formation during inflatio and during radiation or matter domination	4
	0.0	3.1.2 Critical parameters for PBH formation	4
	3.2	PBHs as Dark Matter Candidates	4
		3.2.1 mass spectra of PBHs	4
	0.0	3.2.2 Observational constraints on PBHs	4
	3.3	Role of PBHs in Cosmology	4
		3.3.1 Contribution of PBHs to structure formation	4
	3.4	Gravitational wave signals related to PBH mergers	4
	3.5	Evaporation of PBHs and Remnants	4
		3.5.1 Hawking radiation	4
	3.6	Remnants	4
A	Ma	thematical Details of LQC Derivations	6
R	Niii	merical Codes and Data	7

Chapter 1

Introduction

This is the introduction to the thesis.[1]

- 1.1 Motivation and Background
- 1.1.1 Cosmology
- 1.1.2 Primordial Black Holes
- 1.1.3 Loop Quantum Gravity
- 1.1.4 Loop Quantum Cosmology
- 1.1.5 Remnants
- 1.2 Objectives of the Thesis
- 1.3 Structure of the Thesis

Chapter 2

Overview of Cosmology

- 2.1 Standard Cosmological Model
- 2.1.1 Basic equations
- 2.1.2 Inflation
- 2.1.3 Cosmic Microwave Background
- 2.2 Early Universe Physics
- 2.2.1 Necessity of Primordial Black Holes
- 2.2.2 Alternative scenarios

Chapter 3

Primordial Black Holes

- 3.1 Formation Mechanisms of PBHs
- 3.1.1 PBH formation during inflatio and during radiation or matter domination
- 3.1.2 Critical parameters for PBH formation
- 3.2 PBHs as Dark Matter Candidates
- 3.2.1 mass spectra of PBHs
- 3.2.2 Observational constraints on PBHs
- 3.3 Role of PBHs in Cosmology
- 3.3.1 Contribution of PBHs to structure formation
- 3.4 Gravitational wave signals related to PBH mergers
- 3.5 Evaporation of PBHs and Remnants
- 3.5.1 Hawking radiation
- 3.6 Remnants

Bibliography

 $[1]\ \ R.\ L.\ \ Workman\ \ and\ \ Others.\ \ Review\ of\ Particle\ Physics.\ \ PTEP,\ 2022:083C01,\ 2022.$

Appendix A

Mathematical Details of LQC Derivations

Mathematical Details of LQC Derivations

Appendix B

Numerical Codes and Data

Here is the mathematica notebook used for this master thesis:

```
(* :: Package:: *)
(* :: Title:: *)
(*PBH - v1*)
(* ::Subtitle:: *)
(*Constants*)
(* :: Input:: *)
(*(* Taken from the PDG, in SI *)*)
(*c = 299792458)
                                                                  (*speed of light
    in vacuum, [m s^-1]*)*)
(*h = 6.62607015*10^{-34})
                                                      (*Planck constant [Js]*)*)
(*hbar = h/2*Pi
                                                                (*reduced Planck
  constant [Js]*)*)
(*Q_e = 1*)
(**)
(**)
```