GRAPHS

- Definitions
- The Graph ADT
- Data structures for graphs

What is a Graph?

• A graph G = (V, E) is composed of:

V: set of *vertices*

E: set of *edges* connecting the *vertices* in **V**

- An edge e = (u,v) is a pair of vertices
- Example:

$$V = \{a,b,c,d,e\}$$

Applications

• electronic circuits

find the path of least resistance to CS16

• networks (roads, flights, communications)

mo' better examples

A Spike Lee Joint Production

• scheduling (project planning)

Graphs

4

Graph Terminology

- adjacent vertices: connected by an edge
- degree (of a vertex): # of adjacent vertices

$$\sum_{v \in V} deg(v) = 2(\# edges)$$

 Since adjacent vertices each count the adjoining edge, it will be counted twice

path: sequence of vertices $v_1, v_2, \dots v_k$ such that consecutive vertices v_i and v_{i+1} are adjacent.

More Graph Terminology

• simple path: no repeated vertices

• cycle: simple path, except that the last vertex is the same as the first vertex

Even More Terminology

• connected graph: any two vertices are connected by some path

- subgraph: subset of vertices and edges forming a graph
- connected component: maximal connected subgraph. E.g., the graph below has 3 connected components.

Caramba! Another Terminology Slide!

- (free) tree connected graph without cycles
- forest collection of trees

Connectivity

- complete graph - all pairs of vertices are adjacent

$$m = (1/2) \sum_{\mathbf{v} \in \mathbf{V}} \deg(\mathbf{v}) = (1/2) \sum_{\mathbf{v} \in \mathbf{V}} (\mathbf{n} - 1) = \mathbf{n}(\mathbf{n} - 1)/2$$

 Each of the n vertices is incident to n - 1 edges, however, we would have counted each edge twice!!!
 Therefore, intuitively, m = n(n-1)/2.

Therefore, if a graph is *not* complete,
 m < n(n-1)/2

More Connectivity

• For a tree $\mathbf{m} = \mathbf{n} - 1$

• If m < n - 1, G is not connected

$$\begin{array}{c}
\mathbf{n} = 5 \\
\mathbf{m} = 3
\end{array}$$

Spanning Tree

- A spanning tree of G is a subgraph which
 - is a tree
 - contains all vertices of G

• Failure on any edge disconnects system (least fault tolerant)

AT&T vs. RT&T

(Roberto Tamassia & Telephone)

• Roberto wants to call the TA's to suggest an extension for the next program...

- One fault will disconnect part of graph!!
- A cycle would be more fault tolerant and only requires n edges

Euler and the Bridges of Koenigsberg

Can one walk across each bridge exactly once and return at the starting point?

- Consider if you were a UPS driver, and you didn't want to retrace your steps.
- In 1736, Euler proved that this is not possible

Graph Model(with parallel edges)

- Eulerian Tour: path that traverses every edge exactly once and returns to the first vertex
- Euler's Theorem: A graph has a Eulerian Tour if and only if all vertices have even degree
- Do you find such ideas interesting?
- Would you enjoy spending a whole semester doing such proofs?

Well, look into CS22!

if you dare...

Data Structures for Graphs

- A Graph! How can we represent it?
- To start with, we store the vertices and the edges into two containers, and we store with each edge object references to its endvertices

• Additional structures can be used to perform efficiently the methods of the Graph ADT

Edge List

- The edge list structure simply stores the vertices and the edges into unsorted sequences.
- Easy to implement.
- Finding the edges incident on a given vertex is inefficient since it requires examining the entire edge sequence

Ε

V

Performance of the Edge List Structure

Operation	Time
size, isEmpty, replaceElement, swap	O(1)
numVertices, numEdges	O(1)
vertices	O(n)
edges, directedEdges, undirectedEdges	O(m)
elements, positions	O(n+m)
endVertices, opposite, origin, destination, isDirected, degree, inDegree, outDegree	O(1)
incidentEdges, inIncidentEdges, outIncidentEdges, adjacentVertices, inAdjacentVertices, outAdjacentVertices, areAdjacent	O(m)
insertVertex, insertEdge, insertDirected- Edge, removeEdge, makeUndirected, reverseDirection, setDirectionFrom, setDi- rectionTo	O(1)
removeVertex	O(m)

Adjacency List (traditional)

- adjacency list of a vertex v: sequence of vertices adjacent to v
- represent the graph by the adjacency lists of all the vertices

• Space = $\Theta(N + \Sigma deg(v)) = \Theta(N + M)$

Adjacency List (modern)

• The adjacency list structure extends the edge list structure by adding incidence containers to each vertex.

• The space requirement is O(n + m).

Performance of the Adjacency List Structure

Operation	Time
size, isEmpty, replaceElement, swap	O(1)
numVertices, numEdges	O(1)
vertices	O(n)
edges, directedEdges, undirectedEdges	O(m)
elements, positions	O(n+m)
endVertices, opposite, origin, destination, isDirected, degree, inDegree, out- Degree	O(1)
incidentEdges(v), inIncidentEdges(v), outIncidentEdges(v), adjacentVerti- ces(v), inAdjacentVertices(v), outAdja- centVertices(v)	O(deg(v))
areAdjacent(u, v)	O(min(deg(u), deg(v)))
insertVertex, insertEdge, insertDirected- Edge, removeEdge, makeUndirected, reverseDirection,	O(1)
removeVertex(v)	O(deg(v))

Adjacency Matrix (traditional)

- matrix M with entries for all pairs of vertices
- M[i,j] = true means that there is an edge (i,j) in the graph.
- M[i,j] = false means that there is no edge (i,j) in the graph.
- There is an entry for every possible edge, therefore: Space = $\Theta(N^2)$

Adjacency Matrix (modern)

• The adjacency matrix structures augments the edge list structure with a matrix where each row and column corresponds to a vertex.

	0	1	2	3	4	5	6
0	Ø	Ø	NW 35	Ø	DL 247	Ø	Ø
1	Ø	Ø	Ø	AA 49	Ø	DL 335	Ø
2	Ø	AA 1387	Ø	Ø	AA 903	Ø	TW 45
3	Ø	Ø	Ø	Ø	Ø	UA 120	Ø
4	Ø	AA 523	Ø	AA 411	Ø	Ø	Ø
5	Ø	UA 877	Ø	Ø	Ø	Ø	Ø
6	Ø	Ø	Ø	Ø	Ø	Ø	Ø

• The space requirement is $O(n^2 + m)$

Performance of the Adjacency Matrix Structure

Operation	Time
size, isEmpty, replaceElement, swap	O(1)
numVertices, numEdges	O(1)
vertices	O(n)
edges, directedEdges, undirectedEdges	O(m)
elements, positions	O(n+m)
endVertices, opposite, origin, destination, isDirected, degree, inDegree, outDegree	O(1)
incidentEdges, inIncidentEdges, outIncidentEdges, adjacentVertices, inAdjacentVertices, outAdjacentVertices,	O(n)
areAdjacent	O(1)
insertEdge, insertDirectedEdge, remov- eEdge, makeUndirected, reverseDirection, setDirectionFrom, setDirectionTo	O(1)
insertVertex, removeVertex	O(n ²)