Hypernetwork-PPO for Continual Reinforcement Learning

Philemon Schöpf, Sayantan Auddy, Jakob Hollenstein, Antonio Rodriguez-Sanchez

Intelligent and Interactive Systems Group
University of Innsbruck
Innsbruck, Austria

2022-11-10

Motivation

- Goal: Learn multiple tasks sequentially
- Cannot revisit old environment when learning new tasks
- Do not forget old skills

Hypernetworks

- Network that outputs a network
- Task ID as input
- Target networks determine policy/dynamics
- Regularization on changes of outputs for old tasks

DoorGym

- Based on OpenAl Gym
- Robot arms try to open doors
- Multiple handles, opening directions
- Our experiments
 - "Floating hook" robot
 - 6 different kinds of doors

Metric	PPO-finetuning	HN-PPO
Accuracy	0.20 ± 0.035	0.81 ± 0.041
Remembering	0.47 ± 0.060	$\textbf{1.00}\pm0.0024$

HN regularization is required for CL performance

HN regularization is required for CL performance

Conclusion

- HN-PPO is very effective against catastrophic forgetting
- Single-task success rate comparable to PPO
- Regularization crucial for HN-PPO's CL capability
- Limitations
 - Seed dependence
 - Previous task checkpoint dependence