CSE 211 (Theory of Computation)

Atif Hasan Rahman

Department of Computer Science and Engineering Bangladesh University of Engineering & Technology

Adapted from slides by Dr. Muhammad Masroor Ali

- Three areas of theory of computation
 - Automata
 - Computability
 - Complexity
- Linked by the question
 - What are the fundamental capabilities and limitations of computers?

- Automata
 - Automaton a machine made in imitation of a human being
 - DFA, NFA
 - Context-free grammar (CFG), pushdown automata (PDA)
- Computability
 - Decidability
 - What can or cannot be solved
- Complexity
 - Tractability
 - What can or cannot be solved "efficiently"
 - Time complexity: P, NP, NP-complete, NP-hard
 - Space complexity: PSPACE

"Computer science is no more about computers than astronomy is about telescopes."

- Edsger W. Dijkstra

- Computation and computability
 - Building fast vehicles vs can we exceed the speed of light?
 - Building efficient engines vs can we build a perpetual motion machine?

Models of Computation

- Finite Automata
 - DFA, NFA
 - Limited amount of memory
 - Applications in compilers, control units of hardware, etc.
- Context-free grammar
 - More expressive than finite automata
 - Applications in compilers, Al and many other areas
- Turing Machine
 - Even more powerful
 - Can simulate a computer!
 - Problems Turing machine cannot solve are beyond theoretical limits of computation

Alan Turing

- "father of theoretical computer science and artificial intelligence" - wiki
- Proposed Turing machines
 - A general model of computation
 - Can simulate a computer
- Helped break the Enigma code during WW II
- Proposed the Turing test for AI
 - Distinguishing humans and computers through interrogation

Syllabus

- Regular languages
 - Regular expressions
- Finite automata
 - Deterministic finite automata (DFA)
 - Nondeterministic finite automata (NFA)
- Context-free languages
 - Context free grammars (CFG)
 - Pushdown automata (PDA)
- Turing machines
 - Equivalence with a computer
- Decidability
- Complexity
 - Time and space complexity

Syllabus

- Regular languages
 - Regular expressions
- Finite automata
 - Deterministic finite automata (DFA)
 - Nondeterministic finite automata (NFA)
- Context-free languages
 - Context free grammars (CFG)
 - Pushdown automata (PDA)
- Turing machines
 - Equivalence with a computer
- Decidability
- Complexity
 - Time and space complexity

Syllabus

- Regular languages
 - Regular expressions
- Finite automata
 - Deterministic finite automata (DFA)
 - Nondeterministic finite automata (NFA)
- Context-free languages
 - Context free grammars (CFG)
 - Pushdown automata (PDA)
- Turing machines
 - Equivalence with a computer
- Decidability
- Complexity
 - Time and space complexity

Regular Languages

- Regular languages
 - Languages recognized by finite automata DFA, NFA
 - Languages described by regular expressions
- Limitations
 - Finite number of states
 - Hence finite amount of memory
- An example of a non-regular language

Regular Languages

- Regular languages
 - Languages recognized by finite automata DFA, NFA
 - Languages described by regular expressions
- Limitations
 - Finite number of states
 - Hence finite amount of memory
- An example of a non-regular language

•
$$B = \{0^n 1^n | n \ge 0\}$$

Regular Languages

- Regular languages
 - Languages recognized by finite automata DFA, NFA
 - Languages described by regular expressions
- Limitations
 - Finite number of states
 - Hence finite amount of memory
- An example of a non-regular language
 - $B = \{0^n 1^n | n \ge 0\}$

Context-Free Languages

- Context-Free Languages
 - Languages described by context-free grammars (CFG)
 - Languages recognized by pushdown automata (PDA)
- Extensively used in compilers (parsers)
- First used in study of human languages

Logistics

- Email
 - atif.bd@gmail.com
- Textbook
 - J. E. Hopcroft, R. Motwani, and J. D. Ullman, *Introduction to Automata Theory, Languages, and Computation*
- Reference books
 - M. Sipser, Introduction to the Theory of Computation
 - H. R. Lewis and C. H. Papadimitriou, Elements of the Theory of Computation