

CLASSIFYING JOB PLACEMENT AND SALARY PREDICTION USING MACHINE LEARNING

İLAYDA AKINET

CAN KANKILIÇ

AHMET YUSUF DEMİR

PRESENTATION OUTLINE

Introduction

Algorithms and Motivation

Experimental Scheme

Results

Improvements

INTRODUCTION

University students often face concerns about job placement and salary prospects after graduation.

Using data from 700 individuals, this model can support students in planning their careers, guide recruiters in hiring decisions, and help universities improve their programs.

This project addresses these concerns by developing a machine learning model to:

- Predicts if a person will get a job based on their personal and academic information.
- Estimates the salary for those who are successfully placed.

ALGORITHMS AND MOTIVATION

Job Placement Prediction:

We selected the K-Nearest Neighbors (KNN)
 algorithm due to its strong performance in
 binary classification problems. KNN effectively
 groups similar data points based on proximity,
 making it ideal for predicting whether an
 individual will secure a job.

Salary Prediction:

 Initially, Linear Regression was chosen for its simplicity and suitability for continuous data prediction. However, when better accuracy was desired, we moved to Random Forest Regression, which accounts for non-linear relationships and reduces overfitting.

EHPERIMENTAL SCHEME

Dataset Preparation

KNN with 560 training points and 140 test points.

Linear Regression with 412 training and 148 test points.

DATASET PREPARATION

Attributes like ID, Name, and Degree were removed as they provided no predictive value. ("In our dataset, all recorded degrees were 'Bachelor's'.")

Strings were encoded to numerical values for machine learning compatibility.

▲ gender = Gender of individual	# age =	△ stream =	△ college_name =	△ placement_status = indicated individual placed or not	# salary = Salary earned upon placement	# gpa =	# years_of_experie = Years of work experience
Female 52% Male 48%	23 26	Computer Science 31% Information Tech 22% Other (334) 48%	University of Calif 6% University of Mich 6% Other (614) 88%	Placed 81% Not Placed 19%	0 68.0k	3.4 3.9	1 3
Male	25	Computer Science	Harvard University	Placed	60000	3.7	2
Female	24	Electrical Engineering	Massachusetts Institute of Technology	Placed	65000	3.6	1
Male	26	Mechanical Engineering	Stanford University	Placed	58000	3.8	3
Female	23	Information Technology	Yale University	Not Placed	0	3.5	2
Male	24	Computer Science	Princeton University	Placed	62000	3.9	2
Female	25	Electronics and Communication	Columbia University	Placed	63000	3.7	1
Male	26	Information Technology	California Institute of Technology	Placed	59000	3.8	3
Female	24	Computer Science	University of Chicago	Not Placed	0	3.6	2
Male	25	Electrical Engineering	University of Pennsylvania	Placed	64000	3.7	2
Female	23	Mechanical Engineering	Northwestern University	Placed	57000	3.5	1
Male	24	Computer Science	Duke University	Placed	61000	3.9	2
Female	25	Electronics and Communication	Johns Hopkins University	Not Placed	0	3.8	3
Male	26	Information Technology	University of CaliforniaBerkeley	Placed	63000	3.7	2
Female	24	Computer Science	University of MichiganAnn Arbor	Placed	64000	3.6	1
Male	23	Electrical Engineering	University of CaliforniaLos Angeles	Placed	66000	3.8	3

JOB PLACEMENT PREDICTION USING KNN

Accuracy: 0.98				
Classification	Report: precision	recall	f1-score	support
0 1	0.94 0.99	0.97 0.98	0.96 0.99	34 106
accuracy macro avg weighted avg	0.97 0.98	0.98 0.98	0.98 0.97 0.98	140 140 140

SALARY PREDICTION USING LINEAR REGRESSION

Linear Regression: RMSE ≈ 1885, indicating predictions were off by approximately \$1885.

R^2 Score: 0.30 Predicted Salary Real Salary 622 64066 60000 88 65640 67000 164 64863 64000 492 65534 65000 664 66226 66000 247 65805 68000 94 63625 66000
622 64066 60000 88 65640 67000 164 64863 64000 492 65534 65000 664 66226 66000 247 65805 68000
88 65640 67000 164 64863 64000 492 65534 65000 664 66226 66000 247 65805 68000
164 64863 64000 492 65534 65000 664 66226 66000 247 65805 68000
492 65534 65000 664 66226 66000 247 65805 68000
664 66226 66000 247 65805 68000
 247 65805 68000
247 65805 68000
94 63625 66000
308 65524 66000
518 62615 63000
443 65661 66000

Mean Squared Error: 674383.02 R^2 Score: 0.87 Predicted Salary Real Salary

RANDOM FOREST FOR BETTER RESULTS

Random Forest Regression improved accuracy, significantly reducing error margins. With Random Forest, the Root Mean Squared Error (RMSE) was reduced to 821.21, and the R² score increased to 0.87.

"GENDER", AND "STREAM" ATTRIBUTES REMOVED

Accuracy: 0.99					
Classification F	Report: Tecision	recall	f1-score	support	
0 1	1.00 0.99	0.97 1.00	0.99 1.00	34 106	
accuracy macro avg weighted avg	1.00 0.99	0.99 0.99	0.99 0.99 0.99	140 140 140	

Root	: Mean Squared	Error: 8	26.92			
R^2 Score: 0.87						
	Predicted Sal	ary Rea	l Salary			
622	60	000	60000			
88	66	674	67000			
164	64	000	64000			
492	65	000	65000			
664	65	893	66000			
247	67	870	68000			
94	66	000	66000			
308	66	000	66000			
518	62	838	63000			
443	65	893	66000			

IMPROVEMENTS

1

FEATURE ENGINEERING

Enhance the dataset by including additional factors such as industry trends, regional salary variations, and economic indicators to improve the predictive power of the model.

2

ALGORITHM TUNING

Perform hyperparameter
optimization for KNN and Random
Forest algorithms to maximize
accuracy and minimize errors.
Techniques like grid search or
random search can be applied.

3

CROSS-VALIDATION

Implement k-fold cross-validation to
ensure the reliability and
generalizability of the model's
performance across different data
splits.

REAL-WORLD VALIDATION

Test the model on real-world
HR or recruitment data to
assess its practical applicability
and identify potential gaps for
refinement.

THANK YOU FOR YOUR ATTENTION

