

1 DIVLTQSPAS LAVSLGQRAT MSCRAGESVD IFGVGFLHWY QOKPGOPPKL
 51 LIYRASNLES GIPVRFSGTG SRTDFTLIID PVEADDVATY YCQOTNEDPY
101 TFGGGTKLEI KGGGGSGGGG SGGGGSGGGG SGGGGSGGGG SEVOLQOSGA
151 ELVEPGASVK LSCTASGFNI KDTYMHWVKQ RPEQGLEWIG RIDPANGNSK
201 YVPKFQGKAT ITADTSSNTA YLQLTSLTSE DTAVYYCAPF GYYVSDYAMA
251 YWGQGTSVTV SS (SEQ ID NO:1)

FIG._ 1A

1 GACATCGTCC TGACCCAGAG CCCGGCAAGC CTGGCTGTTT CCCTGGGCCA
 51 GCGTGCCACT ATGTCCTGCA GAGCGGGTGA GTCTGTTGAC ATTTTCGGTG
 101 TCGGTTTTCT GCACCTGGTAC CAACAGAAAC CGGGTCAGCC GCCAAAACCTG
 151 CTGATCTATC GTGCTTCTAA CCTGGAGTCC GGCATCCCGG TACGTTCTC
 201 CGGTACTGGC TCTCGTACTG ATTTTACCCCT GATTATCGAC CCGGTGGAAG
 251 CAGACGATGT TGCCACCTAC TATTGCCAGC AGACCAAACGA GGATCCGTAC
 301 ACCTTCGGTG GCGGTACTAA ACTGGAGATC AAAGGCGGTG GTGGTTCTGG
 351 TGGTGGTGGT AGCGGCGGGCG GTGGTAGC^{GG} TGGCGGTGGC AGCGGTGGTG
 401 GTGGCTCTGG TGGCGGTGGC TCTGAAGTGC AGCTGCAGCA GTCCGGTGC
 451 GAGCTCGTTG AACCGGGCGC TTCTGTGAAA CTGTCTTGCA CTGCATCTGG
 501 TTTCAACATT AAGGACACCT ACATGCAC^{TG} GGTGAAACAA CGCCCGGAAC
 551 AGGGTCTGGA GTGGATCGGT CGCATCGA^{TC} CGGCTAACGG TAACAGAAA
 601 TACGTGCCAA AATTCCAGGG TAAAGCAA^{CC} ATCACTGCTG ATACCTCCTC
 651 TAAACACTGCT TACCTGCAGC TGACTTCC^{CT} GACTAGCGAA GACACCGCGG
 701 TTTATTACTG CGCTCCGTTG GGCTACTA^{TG} TCAGCGATTA CGCAATGGCC
 751 TACTGGGTC AGGGCACCTC TGTTACCG^{TT} TCTAGC (SEQ ID NO:3)

FIG._ 1B

263 TPVSEKQL AEVVANTITP LMKAQSVPGM AVAVIYQGKP
 301 HYYTFGKADI AANKPVTPQT LFELGSISKT FTGVLGGDAI ARGEISLDDA
 351 VTRYWPQLTG KQWQGIRMLD LATYTAGGLP LQVPDEVTDN ASLLRFYQNW
 401 QPQWKPGTTR LYANASIGLF GALAVKPSGM PYEQAMTTRV LKPLKLDHTW
 451 INVPKAEEAH YAWGYRDGKA VRVSPGMLDA QAYGVKTNVQ DMANWVMANM
 501 APENVADASL KQGIALAQSR YWRIGSMYQG LGWEMLNWPV EANTVVETSF
 551 GNVVALAPLPV AEVNPPAPPV KASWVHKTGS TGGFGSYVAF IPEKQIGIVM
 602 LANTSYPNPA RVEAAYHILE ALQ (SEQ ID NO:11)

FIG._ 1C

1 ACACCGGTGT CAGAAAAACA GCTGGCGGAG GTGGTCGCGA ATACGATTAC
 51 CCCGCTGATG AAAGCCCAGT CTGTTCCAGG CATGGCGGTG GCGTTATTT
 101 ATCAGGGAAA ACCGCACTAT TACACATTG GCAAGGCCGA TATCGCGCG
 151 AATAAACCCG TTACGCCTCA GACCCTGTTG GAGCTGGGTT CTATAAGTAA
 201 AACCTTCACC GGC GTTTAG GTGGGGATGC CATGCTCGC GGTGAAATT
 251 CGCTGGACGA TGCGGTGACC AGATACTGGC CACAGCTGAC GGCAAGCAG
 301 TGGCAGGGTA TTCGTATGCT GGATCTCGCC ACCTACACCG CTGGCGGCCT
 351 GCCGCTACAG GTACCGGATG AGGTCACGGA TAACGCCTCC CTGCTGCGCT
 401 TTTATCAAAA CTGGCAGCCG CAGTGGAAAGC CTGGCACAAAC GCGTCTTTAC
 451 GCCAACGCCA GCATCGGTCT TTTGGTGCG CTGGCGGTCA AACCTTCTGG
 501 CATGCCCTAT GAGCAGGCCA TGACGACGCG GGTCTTAAG CGCTCAAGC
 551 TGGACCATAC CTGGATTAAC GTGCCGAAAG CGGAAGAGGC GCATTACGCC
 601 TGGGGCTATC GTGACGGTAA AGCGGTGCGC GTTTCGCCGG GTATGCTGGA
 651 TGCACAAGCC TATGGCGTGA AAACCAACGT GCAGGATATG GCGAACTGGG
 701 TCATGGCAAA CATGGCGCCG GAGAACGTG CTGATGCCTC ACTTAAGCAG
 751 GGCATCGCGC TGGCGCAGTC GCGCTACTGG CGTATCGGGT CAATGTATCA
 801 GGGTCTGGGC TGGGAGATGC TCAACTGGCC CGTGGAGGCC AACACGGTGG
 851 TCGAGACGAG TTTGGTAAT GTAGCACTGG CGCCGTTGCC CGTGGCAGAA
 901 GTGAATCCAC CGGCTCCCCC GGTCAAAGCG TCCTGGGTCC ATAAAACGGG
 951 CTCTACTGGC GGGTTGGCA GCTACGTGGC CTTTATTCCCT GAAAAGCAGA
 1001 TCGGTATTGT GATGCTCGCG AATACAAGCT ATCCGAACCC GGCACGCGTT
 1051 GAGGCAGGCAT ACCATATCCT CGAGGCAGCTA CAG (SEQ ID NO:12)

FIG._ 1D

1 DIVLTQSPAS LAVSLGQRAT MSCRAGESVD IFVGFLHWY QOKPGOPPKL
 51 LIYRASNLES GIPVRFSGTG SRTDFTLIID PVEADDVATY YCQQTNEDPY
 101 TFGGGTKLEI KGGGGSGGGG SGGGGSGGGG SGGGGSGGGG SEVOLOQSGA
 151 ELVEPGASVK LSCTASGFNI KDTYMHWVKQ RPEQGLEWIG RIDPANGNSK
 201 YVPKFQGKAT ITADTSSNTA YLQLTSLTSE DTAVYYCAPF GYYVSDYAMA
 251 YWGQGTSVTV SSTPVSEKQL AEVVANTITP LMKAQSVPGM AVAVIYQGKP
 301 HYYTFGKADI AANKPVTPTQ LFELGSISKT FTGVLGGDAI ARGEISLDDA
 351 VTRYWPQLTG KQWQGIRMLD LATYTAGGLP LQVPDEVTDN ASLLRFYQNW
 401 QPQWKPGTTR LYANASIGLF GALAVKPSGM PYEQAMTTRV LKPLKLDHTW
 451 INVPKAEEAH YAWGYRDGKA VRVSPGMLDA QAYGVKTNVQ DMANWVMANM
 501 APENVADASL KQGIALAQSR YWRIGSMYQG LGWEMLNWV EANTVVETSF
 551 GNVALAPLPV AEVNPPAPPV KASWVHKTGS TGGFGSYVAF IPEKQIGIVM
 601 LANTSYPNPA RVEAAYHILE ALQ (SEQ ID NO:2)

FIG._ 1E

1 GACATCGTCC TGACCCAGAG CCCGGCAAGC CTGGCTGTT CCCTGGGCCA
 51 GCGTGCCACT ATGTCCTGCA GAGCGGGTGA GTCTGTTGAC ATTTTCGGTG
 101 TCGGTTTTCT GCACCTGGTAC CAACAGAAAC CGGGTCAGCC GCCAAAAGTG
 151 CTGATCTATC GTGCTTCTAA CCTGGAGTCC GGCATCCCGG TACGTTCTC
 201 CGGTACTGGC TCTCGTACTG ATTTTACCCCT GATTATCGAC CCGGTGGAAG
 251 CAGACGATGT TGCCACCTAC TATTGCCAGC AGACCAACGA GGATCCGTAC
 301 ACCTTCGGTG GCGGTACTAA ACTGGAGATC AAAGGGCGTG GTGGTTCTGG
 351 TGGTGGTGGT AGCGGCGGCG GTGGTAGCGG TGGCGGTGGC AGCGGTGGTG
 401 GTGGCTCTGG TGGCGGTGGC TCTGAAGTGC AGCTGCAGCA GTCCGGTGC
 451 GAGCTCGTTG AACCGGGCGC TTCTGTAAA CTGCTTGCA CTGCATCTGG
 501 TTTCAACATT AAGGACACCT ACATGCACTG GGTGAAACAA CGCCCGAAC
 551 AGGGTCTGGA GTGGATCGGT CGCATCGATC CGGCTAACGG TAACAGCAA
 601 TACGTGCCAA AATTCCAGGG TAAAGCAACC ATCACTGCTG ATACCTCCTC
 651 TAACACTGCT TACCTGCAGC TGACTTCCCT GACTAGCGAA GACACCGCGG
 701 TTTATTACTG CGCTCCGTTC GGCTACTATG TCAGCGATTA CGCAATGGCC
 751 TACTGGGGTC AGGGCACCTC TGTTACCGTT TCTAGCACAC CGGTGTCAGA
 801 AAAACAGCTG GCGGAGGTGG TCGCGAATAC GATTACCCCG CTGATGAAAG
 851 CCCAGTCTGT TCCAGGCATG GCGGTGGCCG TTATTATCA GGGAAAACCG
 901 CACTATTACA CATTTGGCAA GGCGATATC GCGCGAATA AACCCGTTAC
 951 GCCTCAGACC CTGTTCGAGC TGGGTTCTAT AAGTAAAACC TTCACCGCG
 1001 TTTTAGGTGG GGATGCCATT GCTCGCGGTG AAATTTCGCT GGACGATGCG
 1051 GTGACCAGAT ACTGGCCACA GCTGACGGGC AAGCAGTGGC AGGGTATTCC
 1101 TATGCTGGAT CTCGCCACCT ACACCGCTGG CGGCCTGCCG CTACAGGTAC
 1151 CGGATGAGGT CACGGATAAC GCCTCCCTGC TGCGCTTTA TCAAAACTGG
 1201 CAGCCGCAGT GGAAGCCTGG CACAACGCGT CTTTACGCCA ACGCCAGCAT
 1251 CGGTCTTTT GGTGCGCTGG CGGTCAAACC TTCTGGCATG CCCTATGAGC
 1301 AGGCCATGAC GACCGGGTC CTTAAGCCGC TCAAGCTGGA CCATACCTGG
 1351 ATTAACGTGC CGAAAGCGGA AGAGGCGCAT TACGCCCTGG GCTATCGTGA
 1401 CGGTAAAGCG GTGCGCGTT CGCCGGGTAT GCTGGATGCA CAAGCCTATG
 1451 GCGTGAAAAC CAACGTGCAG GATATGGCGA ACTGGGTAT GGCAAACATG
 1501 GCGCCGGAGA ACGTTGCTGA TGCCCTCACTT AAGCAGGGCA TCGCGCTGGC
 1551 GCAGTCGCGC TACTGGCGTA TCGGGTCAAT GTATCAGGGT CTGGGCTGGG
 1601 AGATGCTCAA CTGGCCCGTG GAGGCCAACA CGGTGGTCGA GACGAGTTTT
 1651 GGTAAATGTAG CACTGGCGCC GTTGCCCGTG GCAGAAGTGA ATCCACCGGC
 1701 TCCCCCGGTC AAAGCGTCCT GGGTCCATAA AACGGGCTCT ACTGGCGGGT
 1751 TTGGCAGCTA CGTGGCCTTT ATTCCCTGAAA AGCAGATCGG TATTGTGATG
 1801 CTCGCGAATA CAAGCTATCC GAACCCGGCA CGCGTTGAGG CGGCATACCA
 1851 TATCCTCGAG GCGCTACAG (SEQ ID NO:4)

FIG._1F

1 DIVLTQSPAS LSVSLGORAT MSCRAGESVD IFVGVLHWY QOKPGQPPKL
 51 LIYRASNLES GIPVRFSGTG SGTDFTLIID PVEADDVATY YCQQTNEDPY
 101 TFGGGTKLEI KGGGGSGGGG SGGGGSGGGG SGGGGSGGGG SEVOLQOSGA
 151 ELVEPGASVK LSCTASGFNI KDTYMHWVKQ RPEOGLEWIG RIDPANGNSK
 201 YVPKFQGKAT ITADTSSNTA YLQLTSLTSE DTAVYYCAPF GYYVSDYAMA
 251 YWGQGTSVTV SS (SEQ ID NO:5)

FIG._2A

1 GACATCGTCC TGACCCAGAG CCCGGCAAGC CTGTCTGTT CCCTGGGCCA
 51 GCGTGCCACT ATGTCCTGCA GAGCGGGTGA GTCTGTTGAC ATTTTCGGTG
 101 TCGGTTTTCT GCACGGTAC CAACAGAAAC CGGGTCAGCC GCCAAAACGTG
 151 CTGATCTATC GTGCTTCTAA CCTGGAGTCC GGCATCCCGG TACGTTCTC
 201 CGGTACTGGC TCTGGTACTG ATTTTACCT GATTATCGAC CCGGTGGAAG
 251 CAGACGATGT TGCCACCTAC TATTGCCAGC AGACCAACGA GGATCCGTAC
 301 ACCTTCGGTG GCGGTACTAA ACTGGAGATC AAAGGCCTGTG GTGGTTCTGG
 351 TGGTGGTGGT AGCGGTGGCG GTGGTAGCGG TGGCGGTGGC AGCGGTGGTG
 401 GTGGCTCTGG TGGCGGTGGC TCTGAAGTGC AGCTGCAGCA GTCCGGTGCG
 451 GAGCTCGTTG AACCGGGCGC TTCTGTGAAA CTGTCTTGCA CTGCATCTGG
 501 TTTCAACATT AAGGACACCT ACATGCACTG GGTGAAACAA CGCCCAGAAC
 551 AGGGTCTGGA GTGGATCGGT CGCATCGATC CGGCTAACGG TAACAGCAAA
 601 TACGTGCCAA AATTCCAGGG TAAAGCAACC ATCACTGCTG ATACCTCCTC
 651 TAACACTGCT TACCTGCAGC TGACTTCCCT GACTAGCGAA GACACCGCGG
 701 TTTATTACTG CGCTCCGTTC GGCTACTATG TCAGCGATTG CGCAATGGCC
 751 TACTGGGTC AGGGCACCTC TGTTACCGTT TCTAGC (SEQ ID NO:6)

FIG._2B

262 TPVSEKQL AEVVANTITP LMAAQSVPGM AVAVIYQGKP
 301 HYYTFGKADI AANKPVTPQT LFELGSISKT FTGVLGDDAI ARGEISLDDA
 351 VTRYWPQLTG KQWQGIRMLD LATYTAGGLP LQVPDEVTDN ASLLRFYQNW
 401 QPQWKPGTTR LYANASIGLF GALAVKPSGM PYEQAMTTRV LKPLKLDHTW
 451 INVPKAEEAH YAWGYRDGKA VRVSPGMLDA QAYGVKTNVQ DMANWVMANM
 501 APENVADASL KQGIALAQSR YWRIGSMYQG LGWEMLNWPV EANTVVETSF
 551 GNVVALAPLPV AEVNPPAPPV KASWVHKTGS TGGFGAYVAF IPEKQIGIVM
 601 LANTSYPNPA RVEAAYHILE ALQ (SEQ ID NO:13)

FIG._3

1 DIVLTQSPAS LSVSLGORAT MSCRAGESVD IFVGVLHWY QQKPGQOPPKL
51 LIYRASNLES GIPVRFSGTG SGTDFTLIID PVEADDVATY YCQQTNEDPY
101 TFGGGTKLEI KGCGGSGGGGG SGCGGSGGGGG SGCGGSGGGGG SEVOLQOSGA
151 ELVEPGASVK LSCTASGFNI KDTYMHVVKQ RPEQGLEWIG RIDPANGNSK
201 YVPKFQGKAT ITADTSSNTA YLQLTSLTSE DTAVYYCAF GYYVSDYAMA
251 YWGQGTSVTV SSTPVSEKQL AEVVANTITP LMKAQSVPGM AVAVIYQGKP
 301 HYYTFGKADI AANKPVTPQT LFELGSISKT FTGVLGDDAI ARGEISLDDA
 351 VTRYWPQLTG KQWQGIRMLD LATYTAGGLP LQVPDEVTDN ASLLRFYQNW
 401 QPQWKPGTTR LYANASIGLF GALAVKPSGM PYEQAMTTRV LKPLKLDHTW
 451 INVPKAEEAH YAWGYRDGKA VRVSPGMLDA QAYGVKTNVQ DMANWVMANM
 501 APENVADASL KQGIALAQSR YWRIGSMYQG LGWEMLNWPV EANTVVETSF
 551 GNVVALAPLPV AEVNPPAPPV KASWVHKTGS TGGFGSYVAF IPEKQIGIVM
 601 LANTSYPNPA RVEAAYHILE ALQ (SEQ ID NO:7)

FIG._4A

1 GACATCGTCC TGACCCAGAG CCCGGCAAGC CTGTCTGTT CCCTGGGCCA
 51 GCGTGCCACT ATGTCCTGCA GAGCGGGTGA GTCTGTTGAC ATTTCGGTG
 101 TCGGTTTCT GCACGGTAC CAACAGAAAC CGGGTCAGCC GCCAAAATG
 151 CTGATCTATC GTGCTTCTAA CCTGGAGTCC GGCATCCCGG TACGTTCTC
 201 CGGTACTGGC TCTGGTACTG ATTTTACCT GATTATCGAC CCGGTGGAAG
 251 CAGACGATGT TGCCACCTAC TATTGCCAGC AGACCAACGA GGATCCGTAC
 301 ACCTTCGGTG GCGGTACTAA ACTGGAGATC AAAGGCGGTG GTGGTTCTGG
 351 TGGTGGTGGT AGCGGTGGCG GTGGTAGCGG TGGCGGTGGC AGCGGTGGTG
 401 GTGGCTCTGG TGGCGGTGGC TCTGAAGTGC AGCTGCAGCA GTCCGGTGCG
 451 GAGCTCGTTG AACCGGGCGC TTCTGTGAAA CTGTCTTGCA CTGCATCTGG
 501 TTTCAACATT AAGGACACCT ACATGCAGT GGTGAAACAA CGCCCAGAAC
 551 AGGGTCTGGA GTGGATCGGT CGCATCGATC CGGCTAACCG TAACAGCAAA
 601 TACGTGCCAA AATTCCAGGG TAAAGCAACC ATCACTGCTG ATACCTCCTC
 651 TAACACTGCT TACCTGCAGC TGACTTCCT GACTAGCGAA GACACCGCGG
 701 TTTATTACTG CGCTCCGTTG GGCTACTATG TCAGCGATTA CGCAATGGCC
 751 TACTGGGTC AGGGCACCTC TGTTACCGTT TCTAGCACAC CGGTGTCAGA
 801 AAAACAGCTG GCGGAGGTGG TCGCGAATAC GATTACCCCG CTGATGAAAG
 851 CCCAGTCTGT TCCAGGCATG GCGGTGGCCG TTATTTATCA GGGAAAACCG
 901 CACTATTACA CATTGGCAA GGCGATATC GCGCGAATA AACCCGTTAC
 951 GCCTCAGACC CTGTTCGAGC TGGTTCTAT AAGTAAAACC TTCACCGCGG
 1001 TTTTAGGTGG GGATGCCATT GCTCGCGGTG AAATTCGCT GGACGATGCG
 1051 GTGACCAGAT ACTGGCCACA GCTGACGGGC AAGCAGTGGC AGGGTATTGCG
 1101 TATGCTGGAT CTCGCCACCT ACACCGCTGG CGGCCTGCCG CTACAGGTAC
 1151 CGGATGAGGT CACGGATAAC GCCTCCCTGC TGCGCTTTA TCAAAACTGG
 1201 CAGCCGCACT GGAAGCCTGG CACAACCGT CTTTACGCCA ACGCCAGCAT
 1251 CGGTCTTTT GGTGCGCTGG CGGTCAAACC TTCTGGCATG CCCTATGAGC
 1301 AGGCCATGAC GACGCGGGTC CTTAAGCCGC TCAAGCTGGA CCATACCTGG
 1351 ATTAACGTGC CGAAAGCGGA AGAGGCGCAT TACGCCTGGG GCTATCGTGA
 1401 CGGTAAAGCG GTGCGCGTT CGCCGGGTAT GCTGGATGCA CAAGCCTATG
 1451 GCGTAAAAAC CAACGTGCAG GATATGGCGA ACTGGGTAT GGCAAACATG
 1501 GCGCCGGAGA ACGTTGCTGA TGCCCTCACCT AAGCAGGGCA TCGCGCTGGC
 1551 GCAGTCGCGC TACTGGCGTA TCGGGTCAAT GTATCAGGGT CTGGGCTGGG
 1601 AGATGCTCAA CTGGCCCGTG GAGGCCAACCA CGGTGGTCGA GACGAGTTTT
 1651 GGTAAATGTAG CACTGGCGCC GTTGGCCGTG GCAGAACTGA ATCCACCGGC
 1701 TCCCCCGGTC AAAGCGTCCT GGGTCCATAA AACGGGCTCT ACTGGCGGGT
 1751 TTGGCAGCTA CGTGGCCTTT ATTCTGAAA AGCAGATCGG TATTGTGATG
 1801 CTCGCGAATA CAAGCTATCC GAACCCGGCA CGCGTTGAGG CGGCATACCA
 1851 TATCCTCGAG GCGCTACAG (SEQ ID NO:9)

FIG._4B

1 DIVLTOSPAS LSVSLGQRAT MSCRAGESVD IFGVGFLHWY QOKPGQPPKL
51 LIYRASNLES GIPVRFSGTG SGTDFTLIID PVEADDVATY YCQQTNEDPY
101 TFGGGTKLEI KGGGGSGGGG SGGGGSGGGG SGGGGSQGGG SEVOLQOQSGA
151 ELVEPGASVK LSCTASGFNI KDTYMHWVKQ RPEQGLEWIG RIDPANGNSK
201 YVPKFQGKAT ITADTSSNTA YLQLTSLTSE DTAVYYCAPF GYYVSDYAMA
251 YWGQGTSVTV SSTPVSEKQL AEVVANTITP LMAQSVPGM AVAVIYQGKP
301 HYYTFGKADI AANKPVTPQT LFELGSISKT FTGVLGDDAI ARGEISLDDA
351 VTRYWPQLTG KQWQGIRMLD LATYTAGGLP LQVPDEVTDN ASLLRFYQNW
401 QPQWKPGTTR LYANASIGLF GALAVKPSGM PYEQAMTTRV LKPLKLDHTW
451 INVPKAEEAH YAWGYRDGKA VRVSPGMLDA QAYGVKTNVQ DMANWVMANM
501 APENVADASL KQGIALAQSR YWRIGSMYQG LGWEMLNWPV EANTVVETSF
551 GNVVALAPLPV AEVNPPAPPV KASWVHKTGS TGGFGAYVAF IPEKQIGIVM
601 LANTSYPNPA RVEAAYHILE ALQ (SEQ ID NO:8)

FIG._4C

1 GACATCGTCC TGACCCAGAG CCCGGCAAGC CTGTCTGTT CCCTGGGCCA
 51 GCGTGCCACT ATGTCCTGCA GAGCGGGTGA GTCTGTTGAC ATTTTCGGTG
 101 TCGGTTTCT GCACGGTAC CAACAGAAAC CGGGTCAGCC GCCAAAATG
 151 CTGATCTATC GTGCTTCTAA CCTGGAGTCC GGCATCCC GG TACGTTCTC
 201 CGGTACTGGC TCTGGTACTG ATTTTACCC GATTATCGAC CCGGTGGAAG
 251 CAGACGATGT TGCCACCTAC TATTGCCAGC AGACCAACGA GGATCCGTAC
 301 ACCTTCGGTG GCGGTACTAA ACTGGAGATC AAAGGCGGTG GTGGTTCTGG
 351 TGGTGGTGGT AGCGGTGGCG GTGGTAGCGG TGGCGGTGGC AGCGGTGGTG
 401 GTGGCTCTGG TGGCGGTGGC TCTGAAGTGC AGCTGCAGCA GTCCGGTGGC
 451 GAGCTCGTTG AACCGGGCGC TTCTGTGAAA CTGTCTTGCA CTGCATCTGG
 501 TTTCAACATT AAGGACACCT ACATGCACTG GGTGAAACAA CGCCCGGAAC
 551 AGGGTCTGGA GTGGATCGGT CGCATCGATC CGGCTAACGG TAACAGCAA
 601 TACGTGCCAA ATTCCAGGG TAAAGCAACC ATCACTGCTG ATACCTCCTC
 651 TAACACTGCT TACCTGCAGC TGACTTCCCT GACTAGCGAA GACACCGCGG
 701 TTTTATTACTG CGCTCCGTT GGCTACTATG TCAGCGATTA CGCAATGGCC
 751 TACTGGGGTC AGGGCACCTC TGTTACCGTT TCTAGCACAC CGGTGTCAGA
 801 AAAACAGCTG GCGGAGGTGG TCGCGAATAC GATTACCCCG CTGATGGCGG
 851 CCCAGTCTGT TCCAGGCATG GCGGTGGCCG TTATTTATCA GGGAAAACCG
 901 CACTATTACA CATTTGGCAA GGCGATATC GCGGCGAATA AACCCGTTAC
 951 GCCTCAGACC CTGTTCGAGC TGGGTTCTAT AAGTAAAACC TTCACCGGGC
 1001 TTTTAGGTGG GGATGCCATT GCTCGCGGTG AAATTCGCT GGACGATGCG
 1051 GTGACCAGAT ACTGGCCACA GCTGACGGGC AAGCAGTGGC AGGGTATTG
 1101 TATGCTGGAT CTCGCCACCT ACACCGCTGG CGGCCTGCCG CTACAGGTAC
 1151 CGGATGAGGT CACGGATAAC GCCTCCCTGC TGCGCTTTA TCAAAACTGG
 1201 CAGCCGCAGT GGAAGCCTGG CACAACCGT CTTTACGCCA ACGCCAGCAT
 1251 CGGTCTTTT GGTGCGCTGG CGGTCAAACC TTCTGGCATG CCCTATGAGC
 1301 AGGCCATGAC GACCGGGTC CTTAAGCCGC TCAAGCTGGA CCATACCTGG
 1351 ATTAACGTGC CGAAAGCGGA AGAGGCCAT TACGCCCTGG GCTATCGTA
 1401 CGGTAAAGCG GTGCGCTTT CGCCGGGTAT GCTGGATGCA CAAGCCTATG
 1451 GCGTGAAAAC CAACGTGCAG GATATGGCGA ACTGGGTCAT GGCAAACATG
 1501 GCGCCGGAGA ACGTTGCTGA TGCCTCACTT AAGCAGGGCA TCGCGCTGGC
 1551 GCAGTCGCGC TACTGGCGTA TCGGGTCAAT GTATCAGGGT CTGGGCTGGG
 1601 AGATGCTCAA CTGGCCCGTG GAGGCCAACA CGGTGGTCGA GACGAGTTT
 1651 GGTAAATGTAG CACTGGCGCC GTTGGCCCGTG GCAGAAGTGA ATCCACCGGC
 1701 TCCCCCGGTC AAAGCGTCCCT GGGTCCATAA AACGGGCTCT ACTGGCGGGT
 1751 TTGGCGCGTA CGTGGCCTTT ATTCCCTGAAA AGCAGATCGG TATTGTGATG
 1801 CTCGCGAATA CAAGCTATCC GAACCCGGCA CGCGTTGAGG CGGCATACCA
 1851 TATCCTCGAG GCGCTACAG (SEQ ID NO:10)

FIG.-4D

1 AGGAATTATC ATATGAAATA CCTGCTGCCG ACCGCTGCTG CTGGTCTGCT
 51 GCTCCTCGCT GCCCAGCCGG CCATGGCCGA CATCGCCTG ACCCAGAGCC
 101 CGGCAAGCCT GTCTGTTCC CTGGGCCAGC GTGCCACTAT GTCCCTGCAGA
 151 GCGGGTGAGT CTGTTGACAT TTTCGGTGTG GGTGTTCTGC ACTGGTACCA
 201 ACAGAAACCG GGTCAAGCCG CAAAAGTCT GATCTATCGT GCTTCTAAC
 251 TGGAGTCCGG CATCCCGGTA CGTTTCTCCG GTACTGGCTC TGGAAGTGT
 301 TTTCACCTGA TTATCGACCC GGTGGAAGCA GACGATGTTG CCACCTACTA
 351 TTGCCAGCAG ACCAACGAGG ATCCGTACAC CTCGGTGGC GGTACTAAC
 401 TGGAGATCAA AGGCGGTGGT GGTTCTGGTG GTGGTGGTAG CGGTGGCGGT
 451 GGTAGCGGTG CGGGTGGCAG CGGTGGTGGT GGCTCTGGTG CGGGTGGCTC
 501 TGAAGTGCAG CTGCAGCAGT CCGGTGCCGA GCTCGTTGAA CCGGGCGCTT
 551 CTGTGAAACT GTCTTGCACT GCATCTGGTT TCAACATTAA GGACACCTAC
 601 ATGCACTGGG TGAAACAAACG CCCGGAACAG GGTCTGGAGT GGATCGGTG
 651 CATCGATCCG GCTAACGGTA ACAGCAAATA CGTGCAAAAA TTCCAGGGTA
 701 AAGCAACCAT CACTGCTGAT ACCTCCTCTA ACACTGCTTA CCTGCAGCTG
 751 ACTTCCCTGA CTAGCGAAGA CACCGCGGTT TATTACTGCG CTCCGTTCGG
 801 CTACTATGTC AGCGATTACG CAATGGCCTA CTGGGGTCAG GGCACCTCTG
 851 TTACCGTTTC TAGCACACCG GTGTCAGAAA AACAGCTGGC GGAGGTGGTC
 901 GCGAATACGA TTACCCCGCT GATGGCGGCC CAGTCTGTTG CAGGCATGGC
 951 GGTGGCCGTT ATTTATCAGG GAAAACCGCA CTATTACACA TTTGGCAAGG
 1001 CCGATATCGC GGCAGATAAA CCCGTTACGC CTCAGACCT GTTCGAGCTG
 1051 GGTTCTATAA GTAAAACCTT CACCGCGGTT TTAGGTGGGG ATGCCATTGC
 1101 TCGCGGTGAA ATTCGCTGG ACGATGCCGT GACCAGATAC TGGCCACAGC
 1151 TGACGGGCAA GCAGTGGCAG GGTATTGCGA TGCTGGATCT CGCCACCTAC
 1201 ACCGCTGGCG GCCTGCCGCT ACAGGTACCG GATGAGGTCA CGGATAACGC
 1251 CTCCTGCTG CGCTTTTATC AAAACTGGCA GCCGCAGTGG AAGCCTGGCA
 1301 CAACCGTCT TTACGCCAAC GCCAGCATCG GTCTTTTGG TCGCCTGGCG
 1351 GTCAAACCTT CTGGCATGCC CTATGAGCAG GCCATGACGA CGCGGGTCCT
 1401 TAAGCCGCTC AAGCTGGACC ATACCTGGAT TAACGTGCCG AAAGCGGAAG
 1451 AGGCGCATT A CGCCTGGGGC TATCGTGACG GTAAAGCGGT CGCGCTTTCG
 1501 CCGGGTATGC TGGATGCACA AGCCTATGGC GTGAAAACCA ACGTGCAGGA
 1551 TATGGCGAAC TGGGTATGG CAAACATGGC GCCGGAGAAC GTTGCTGATG
 1601 CCTCACTTAA GCAGGGCATC GCGCTGGCGC AGTCGCGCTA CTGGCGTATC
 1651 GGGTCAATGT ATCAGGGTCT GGGCTGGAG ATGCTCAACT GGCCC GTGGA
 1701 GGCCAACACG GTGGTCGAGA CGAGTTTGG TAATGTAGCA CTGGCGCCGT
 1751 TGCCCGTGGC AGAAGTGAAT CCACCGGCTC CCCC GGTC TAAAGCCTGG
 1801 GTCCATAAAA CGGGCTCTAC TGGCGGGTTT GGC GCGTACG TGGCCTTTAT
 1851 TCCTGAAAAG CAGATCGGTA TTGTGATGCT CGCGAATACA AGCTATCCGA
 1901 ACCCGGCACG CGTTGAGGCG GCATACCAT A TCCTCGAGGC GCTACAGTAG
 1951 GAATTGAGC TCCGTCGACA AGCTTGCGGC CGCACTCGAG ATCAAACGGG
 2001 CTAGCCAGCC AGAACTCGCC CCCGAAGACC CCGAGGATGT CGAGCACCAC
 2051 CACCAACCAC ACTGAGATCC GGCTGCTAAC AAAGCCGAA AGGAAGCTGA
 2101 GTGGCTGCT GCCACCGCTG AGCAATAACT AGCATAACCC CTTGGGGCCT
 2151 CTAACCGGGT CTTGAGGGGT TTTTGCTGA AAGGAGGAAC TATATCCGGA
 2201 TTGGCGAATG GGACGCGCCC TGTAGCGCGC CATTAAGCGC GGC GGGGTGTG
 2251 GTGGTTACGC GCAGCGTGAC CGCTACACTT GCCAGCGCCC TAGCGCCCC
 2301 TCCTTTCGCT TTCTTCCCTT CCTTCTCGC CACGTTCGCC GGCTTTCCCC

FIG._4E-1

2351 GTCAAGCTCT AAATCGGGGG CTCCCTTTAG GGTTCCGATT TAGTGCTTTA
 2401 CGGCACCTCG ACCCCAAAAAA ACTTGATTAG GGTGATGGTT CACGTAGTGG
 2451 GCCATCGCCC TGATAGACGG TTTTCGCC TTTGACGTTG GAGTCACGT
 2501 TCTTAATAG TGGACTCTTG TTCCAAACTG GAACAACACT CAACCCTATC
 2551 TCGGTCTATT CTTTGATTATAAAGGGATT TTGCCGATTTCGGCTATTG
 2601 GTTAAAAAAAT GAGCTGATTAAACAAAATT TAACGCGAATT TTTAACAAAA
 2651 TATTAACGCT TACAATTCC TGATGCGGTATTTCTCCTTACGCACTGT
 2701 GCGGTATTC ACACCGCATA TGGTGCACTC TCAGTACAAT CTGCTCTGAT
 2751 GCCGCATAGT TAAGCCAGCC CCGACACCCG CCAACACCCG CTGACGCGCC
 2801 CTGACGGGCT TGTCTGCTCC CGGCATCCGC TTACAGACAA GCTGTGACCG
 2851 TCTCCGGGAG CTGCATGTGT CAGAGGTTT CACCGTCATC ACCGAAACGC
 2901 GCGAGACGAA AGGGCCTCGT GATACGCCTA TTTTATAGG TTAATGTCAT
 2951 GATAATAATG GTTCTT~~A~~GA CGTCAGGTGG CACTTTCGG GGAA~~A~~TGTGC
 3001 GCGGAACCCC TATTGTTA TTTTCTAAA TACATTCAAAT TATG~~E~~ATCCG
 3051 CTCATGAGAC AATAACCCTG TGGCAGCATIC ACCCGACGCA CTTT~~G~~CGCCG
 3101 AATAAAATACC TGTGACGGAA GATCACTCG CAGAATAAAT AAATCCTGGT
 3151 GTCCCTGTTG ATACCGGGAA GCCCTGGGCC AACTTTGGC GAAA~~A~~TGAGA
 3201 CGTTGATCGG CACGTAAGAG GTTCCAACCTT TCACCATAAT GAAATAAGAT
 3251 CACTACCGGG CGTATTTTT GAGTTATCGA GATTTTCAGG AGCT~~A~~AGGAA
 3301 GCTAAAATGG AGAAAAAAAT CACTGGATAT ACCACCGTTG ATAT~~A~~TCCCA
 3351 ATGGCATCGT AAAGAACATT TTGAGGCATT TCAGTCAGTT GCTC~~A~~ATGTA
 3401 CCTATAACCA GACCGTT~~C~~AG CTGGATATTA CGGCCTTTTAAAG~~A~~CCGTA
 3451 AAGAAAAATA AGCACAAAGTT TTATCCGGC TTTATTCA~~C~~AA TTCTTGCCCC
 3501 CCTGATGAAT GCTCATCCGG AATTCCGTAT GGCAATGAAA GACG~~G~~TGAGC
 3551 TGGTGATATG GGATAGTGTGTT CACCC~~T~~TGTT ACACCGTTT CCAT~~G~~GCAA
 3601 ACTGAAACGT TTTCATCGCT CTGGAGTGAA TACCACGACG ATTTCCGGCA
 3651 GTTTCTACAC ATATATT~~C~~GC AAGATGTGGC GTGTTACGGT GAAAACCTGG
 3701 CCTATT~~T~~CCC TAAAGGGTTT ATTGAGAATA TGTTTT~~T~~CGT CTCAGCCAAT
 3751 CCCTGGGTGA GTTTCACCAAG TTTGATTAA AACGTGGCCA ATATGGACAA
 3801 CTTCTTCGCC CCCGTTTCA CGATGGCAA ATATTATACG CAAGGCGACA
 3851 AGGTGCTGAT GCCGCTGGCG ATT~~C~~AGGTTC ATCATGCCGT CTG~~T~~GATGGC
 3901 TTCCATGT~~C~~ GCAGAA~~T~~GCT TAATGAATTAA CAACAGTACT GCGATGAGTG
 3951 GCAGGGCGGG GCGTAA~~A~~GAC AGATCGCTGA GATAGGTGCC TCAC~~T~~GATTA
 4001 AGCATTGGTA ACTGT~~C~~AGAC CAAGTTACT CATATATACT TTAGATTGAT
 4051 TTAAAAC~~T~~TC ATT~~T~~TT~~A~~ATT TAAAAGGATC TAGGTGAAGA TCCTTTTGAA
 4101 TAATCTCATG ACCAAAATCC CTTAACGTGA GTTTCGTT~~C~~ CACT~~G~~GAGCGT
 4151 CAGACCCCGT AGAAAAGATC AAAGGATCTT CTTGAGATCC TTTTTTCTG
 4201 CGCGTAATCT GCTGCTTGCA AACAAAAAA CCACCGCTAC CAGCGGTGGT
 4251 TTGTTGCCG GATCAAGAGC TACCAACTCT TTTCCGAAG GTA~~A~~CTGGCT
 4301 TCAGCAGAGC GCAGATACCA AATACTGTTC TTCTAGTGTAA CGCGTAGTTA
 4351 GGCCACCACT TCAAGAA~~C~~TC TGTAGCACCG CCTACATACC TCGCTCTGCT
 4401 AATCCTGTTA CCAGTGGCTG CTGCCAGTGG CGATAAGTCG TGTCTTACCG
 4451 GGTTGGACTC AAGACGATAG TTACCGGATA AGGCGCAGCG GTCGGGCTGA
 4501 ACGGGGGGTT CGTGCACACA GCCCAGCTTG GAGCGAACGA CCTACACCGA
 4551 ACTGAGATAC CTACAGCGTG AGCTATGAGA AAGCGCCACG CTTCCCAGAAG
 4601 GGAGAAAGGC GGACAGGTAT CCGGTAAGCG GCAGGGTCGG AACAGGAGAG
 4651 CGCACGAGGG AGCTTCCAGG GGGAAACGCC TGGTATCTT~~A~~TAGTCCTGT

FIG._4E-2

10 / 39

4701 CGGGTTTCGC CACCTCTGAC TTGAGCGTCG ATTTTTGTGA TGCTCGTCAG
4751 GGGGGCGGAG CCTATGGAAA AACGCCAGCA ACGCGGCCCTT TTTACGGTTC
4801 CTGGCCTTT GCTGGCCTT TGCTCACATG TTCTTTCCCTG CGTTATCCCC
4851 TGATTCTGTG GATAACCCTA TTACCGCCCTT TGAGTGAGCT GATACCGCTC
4901 GCCGCAGCCG AACGACCGAG CGCAGCGAGT CAGTGAGCGA GGAAGCGGAA
4951 GAGCGCCCAA TACGCAAACC GCCTCTCCCC GCGCGTTGGC CGATTCTTA
5001 ATGCAGCTGG CACGACAGGT TTCCCGACTG GAAAGCGGGC AGTGAGCGCA
5051 ACGCAATTAA TGTGAGTTAG CTCACTCATT AGGCACCCCA GGCTTTACAC
5101 TTATGCTTC CGGCTCGTAT GTTGTGTGGA ATTGTGAGCG GATAACAATT
5151 TCACACAGGA AACAGCTATG ACCATGATTA CGCCAAGCTA TTTAGGTGAC
5201 ACTATAGAAT ACTCAAGCTT TCTAGATTAA GG

FIG._4E-3

FIG._5**FIG._6**

ADEPT 14L; EB101.1/pHR19.2, CAB1.11i**FIG._7****FIG._8**

13 / 39

Lane 1: Molecular Weight Standard; Lanes 3-5: Unrelated Proteins; Lane 6: CAB1.11i.

FIG._9

FIG._ 10A

FIG._ 10B

15 / 39

FIG._11**FIG._12**

FIG._ 13**FIG._ 14**

FIG._ 15A

Case ID	ASM	Sample ID	Sample Pathology
<u>CI0000000255</u>	DF5	FR00005C7B	Adenocarcinoma of lung
<u>CI0000005496</u>	FF5	FR5B337147	Adenocarcinoma of lung
<u>CI0000011577</u>	FF1	FR5B34059F	Adenocarcinoma of lung
<u>CI7000000241</u>	AF4	FR00033A78	Adenocarcinoma of lung
<u>CI0000007518</u>	AF5	FR0001FD15	Carcinoma of lung, squamous cell
<u>CI0000008475</u>	HF4	FR65EE0784	Adenocarcinoma of colon, metastatic
<u>CI0000015252</u>	FF2	FR5B342166	Adenocarcinoma of colon

FIG._ 15B

Case Diagnosis	Tissue of Origin/Site of Finding	H/E
Adenocarcinoma of lung Grade: AJCC G3: Poorly differentiated Stage: IIIA	Lung/Lung	<u>4X</u> <u>20X</u>
Adenocarcinoma of lung Grade: AJCC G3: Poorly differentiated Stage: IIIB	Lung/Lung	<u>4X</u> <u>20X</u>
Adenocarcinoma of lung Grade: AJCC G2: Moderately differentiated Stage: IIIA	Lung/Lung	<u>4X</u> <u>20X</u>
Adenocarcinoma of lung Grade: AJCC G2: Moderately differentiated Stage: IIIA	Lung/Lung	<u>4X</u> <u>20X</u>
Carcinoma of lung, squamous cell Grade: AJCC G3: Poorly differentiated Stage: IIIA	Lung/Lung	<u>4X</u> <u>20X</u>
Adenocarcinoma of colon, metastatic Grade: Not Reported Stage: IV	Colon/Liver	<u>4X</u> <u>20X</u>
Adenocarcinoma of colon Grade: AJCC G3: Poorly differentiated Stage: IIIB	Cecum/Cecum	<u>4X</u> <u>20X</u>

FIG._ 15C

Anti-Human Cytokeratin AE1/AE3	CAB/GCR3708 (0.2ug/ml)
Immunogenicity: Tumor (100%, Variable to 3+ Cyto) Necrosis (Variable to 3+ EC) Specificity: High <u>4x</u> <u>20x</u> <u>SF00029758</u>	Immunogenicity: Tumor (100%, Variable to 3+ Cyto) Mixed inflammatory cells (Variable to 1+ Cyto) Specificity: High <u>4x</u> <u>20x</u> <u>SF00029756</u>
	Immunogenicity: Tumor (15%, Variable to 3+ Cyto) Intra-alveolar macrophages (Variable to 2+ Cyto) Mixed inflammatory cells (Variable to 2+ Cyto) Specificity: High <u>4x</u> <u>20x</u> <u>SF0002975B</u>
	Immunogenicity: Tumor (100%, 2+ Cyto) Cellular stroma (1+ Cyto) Chronic inflammatory cells (Variable to 1+ Cyto) Specificity: High <u>4x</u> <u>20x</u> <u>SF0002977F</u>
	Immunogenicity: Tumor (75%, Variable to 3+ Cyto) Cellular stroma (Variable to 2+ Cyto) Necrosis (Variable to 2+ EC) Intra-alveolar macrophages (Variable to 2+ Cyto) Specificity: High <u>4x</u> <u>20x</u> <u>SF0002978B</u>
	Immunogenicity: Tumor (100%, 3+ Cyto) Fibrotic stroma (1+ Cyto) Necrosis (Variable to 3+ EC) Specificity: High <u>4x</u> <u>20x</u> <u>SF0002975F</u>
Immunogenicity: Tumor (98%, Variable to 3+ Mem, Variable to 3+ Cyto) Fibrotic stroma (Variable to 1+ Cyto) Normal liver parenchyma (2+ Cyto) Necrosis (Variable to 3+ EC) Specificity: High <u>4x</u> <u>20x</u> <u>SF0002976A</u>	Immunogenicity: Tumor (95%, Variable to 3+ Mem, Variable to 3+ Cyto) Fibrotic stroma (Variable to 1+ Cyto) Normal liver parenchyma (1+ Cyto) Necrosis (Variable to 3+ EC) Specificity: High <u>4x</u> <u>20x</u> <u>SF0002976B</u> Normal liver parenchyma shows positive staining (1+)
	Immunogenicity: Tumor (85%, Variable to 3+ Mem, Variable to 3+ Cyto) Cellular stroma (1+ Cyto) Normal muscle (Variable to 2+ Cyto) Specificity: High <u>4x</u> <u>20x</u> <u>SF00029783</u>

FIG._ 15D

CAB/GCR5517 (0.2ug/ml)	CAB/GCR6798 (0.2ug/ml)
Immunogenicity: Tumor (100%, Variable to 3+ Cyto) Mixed inflammatory cells (Variable to 3+ Cyto) Necrosis (Variable to 2+ EC) Specificity: High <u>4x</u> <u>20x</u> <u>SF00029757</u>	Immunogenicity: Tumor (100%, Variable to 3+ Cyto) Mixed inflammatory cells (Variable to 1+ Cyto) Specificity: High <u>4x</u> <u>20x</u> <u>SF00029753</u>
Immunogenicity: Tumor (40%, Variable to 3+ Cyto) Intra-alveolar macrophages (Variable to 2+ Cyto) Mixed inflammatory cells (Variable to 2+ Cyto) Specificity: High <u>4x</u> <u>20x</u> <u>SF0002975C</u>	Immunogenicity: Tumor (10%, Variable to 2+ Cyto) Intra-alveolar macrophages (Variable to 2+ Cyto) Mixed inflammatory cells (Variable to 2+ Cyto) Specificity: High <u>4x</u> <u>20x</u> <u>SF00029759</u>
Immunogenicity: Tumor (100%, 2+ Cyto) Cellular stroma (1+ Cyto) Chronic inflammatory cells (Variable to 1+ Cyto) Specificity: High <u>4x</u> <u>20x</u> <u>SF00029780</u>	Immunogenicity: Tumor (100%, 2+ Cyto) Cellular stroma (1+ Cyto) Chronic inflammatory cells (Variable to 1+ Cyto) Specificity: High <u>4x</u> <u>20x</u> <u>SF0002977D</u>
Immunogenicity: Tumor (85%, Variable to 3+ Cyto) Cellular stroma (Variable to 2+ Cyto) Necrosis (Variable to 2+ EC) Intra-alveolar macrophages (Variable to 2+ Cyto) Specificity: High <u>4x</u> <u>20x</u> <u>SF0002978C</u>	Immunogenicity: Tumor (75%, Variable to 3+ Cyto) Cellular stroma (Variable to 2+ Cyto) Necrosis (Variable to 2+ EC) Intra-alveolar macrophages (Variable to 2+ Cyto) Specificity: High <u>4x</u> <u>20x</u> <u>SF00029789</u>
Immunogenicity: Tumor (100%, 3+ Cyto) Fibrotic stroma (1+ Cyto) Necrosis (Variable to 3+ EC) Specificity: High <u>4x</u> <u>20x</u> <u>SF00029760</u>	Immunogenicity: Tumor (100%, 3+ Cyto) Fibrotic stroma (1+ Cyto) Necrosis (Variable to 3+ EC) Specificity: High <u>4x</u> <u>20x</u> <u>SF0002975D</u>
Immunogenicity: Tumor (98%, Variable to 3+ Mem, Variable to 3+ Cyto) Fibrotic stroma (Variable to 1+ Cyto) Normal liver parenchyma (2+ Cyto) Necrosis (Variable to 3+ EC) Specificity: High <u>4x</u> <u>20x</u> <u>SF00029769</u>	Immunogenicity: Tumor (95%, Variable to 3+ Mem, Variable to 3+ Cyto) Fibrotic stroma (Variable to 1+ Cyto) Normal liver parenchyma (1+ Cyto) Necrosis (Variable to 3+ EC) Specificity: High <u>4x</u> <u>20x</u> <u>SF00029765</u> Normal liver parenchyma shows positive staining (1+)
Immunogenicity: Tumor (85%, Variable to 3+ Mem, Variable to 3+ Cyto) Cellular stroma (1+ Cyto) Normal muscle (Variable to 2+ Cyto) Specificity: High <u>4x</u> <u>20x</u> <u>SF00029784</u>	Immunogenicity: Tumor (95%, Variable to 3+ Mem, Variable to 3+ Cyto) Cellular stroma (1+ Cyto) Normal muscle (Variable to 2+ Cyto) Specificity: High <u>4x</u> <u>20x</u> <u>SF00029781</u>

FIG._ 15E

CAB/GCR8886 (0.196ug/ml)	No Antibody Control (Prediluted)
Immunogenicity: Tumor (100%, Variable to 3+ Cyto) Mixed inflammatory cells (Variable to 1+ Cyto) Specificity: High <u>4x</u> <u>20x</u> <u>SF00029754</u>	Immunogenicity: N/A Specificity: Unknown <u>SF00029755</u>
Immunogenicity: Tumor (10%, Variable to 2+ Cyto) Intra-alveolar macrophages (Variable to 2+ Cyto) Mixed inflammatory cells (Variable to 2+ Cyto) Specificity: High <u>4x</u> <u>20x</u> <u>SF0002975A</u>	
Immunogenicity: Tumor (100%, 2+ Cyto) Cellular stroma (1+ Cyto) Chronic inflammatory cells (Variable to 1+ Cyto) Specificity: High <u>4x</u> <u>20x</u> <u>SF0002977E</u>	
Immunogenicity: Tumor (75%, Variable to 3+ Cyto) Cellular stroma (Variable to 2+ Cyto) Necrosis (Variable to 2+ EC) Intra-alveolar macrophages (Variable to 2+ Cyto) Specificity: High <u>4x</u> <u>20x</u> <u>SF0002978A</u>	
Immunogenicity: Tumor (100%, 3+ Cyto) Fibrotic stroma (1+ Cyto) Necrosis (Variable to 3+ EC) Specificity: High <u>4x</u> <u>20x</u> <u>SF0002975E</u>	
Immunogenicity: Tumor (95%, Variable to 3+ Mem, Variable to 3+ Cyto) Fibrotic stroma (Variable to 1+ Cyto) Normal liver parenchyma (1+ Cyto) Necrosis (Variable to 3+ EC) Specificity: High <u>4x</u> <u>20x</u> <u>SF00029766</u>	Immunogenicity: N/A Specificity: Unknown <u>SF00029767</u>
Normal liver parenchyma shows positive staining (1+)	
Immunogenicity: Tumor (95%, Variable to 3+ Mem, Variable to 3+ Cyto) Cellular stroma (1+ Cyto) Normal muscle (Variable to 2+ Cyto) Specificity: High <u>4x</u> <u>20x</u> <u>SF00029782</u>	

<u>CI0000017970</u>	HF1	FR65EE7B3D	Adenocarcinoma of colon
<u>CI0000010013</u>	AF2	FR00028F2E	Adenocarcinoma of pancreas, metastatic
<u>CI0000009651</u>	AF1	FR0002B111	Adenocarcinoma of pancreas, ductal
<u>CI0000008690</u>	CF4	FR00027B0E	Adenocarcinoma of pancreas, ductal
<u>CI0000007678</u>	AF3	FR0002575B	Adenocarcinoma of pancreas, ductal
<u>CI0000009736</u>	AF2	FR0002BAB4	Adenocarcinoma of pancreas, ductal

FIG._ 15F

23 / 39

Adenocarcinoma of colon Grade: AJCC G3: Moderately differentiated Stage: IIIC	Colon/Colon	<u>4X</u> <u>20X</u>
Adenocarcinoma of pancreas, metastatic Grade: Not Reported Stage: IV	Pancreas/Omentum	<u>4X</u> <u>20X</u>
Adenocarcinoma of pancreas, ductal Grade: AJCC G2: Moderately differentiated Stage: IIB	Pancreas/Pancreas	<u>4X</u> <u>20X</u>
Adenocarcinoma of pancreas, ductal Grade: AJCC G1: Well differentiated Stage: IIA	Pancreas/Pancreas	<u>4X</u> <u>20X</u>
Adenocarcinoma of pancreas, ductal Grade: AJCC G2: Moderately differentiated Stage: III	Pancreas/Pancreas	<u>4X</u> <u>20X</u>
Adenocarcinoma of pancreas, ductal Grade: AJCC G2: Moderately differentiated Stage: IIB	Pancreas/Pancreas	<u>4X</u> <u>20X</u>

FIG._15G

24 / 39

	Immunogenicity: Tumor (100%, 3+ Cyto) Cellular stroma (1+ Cyto) Necrosis (Variable to 3+ EC) Specificity: High <u>4x</u> <u>20x</u> <u>SF00029787</u>
Immunogenicity: Tumor (100%, 3+ Cyto) Fibroadipose tissue (Variable to 1+ Cyto) Specificity: High <u>4x</u> <u>20x</u> <u>SF0002977C</u>	Immunogenicity: Tumor (100%, 3+ Cyto) Fibroadipose tissue (Variable to 2+ Cyto) Specificity: High <u>4x</u> <u>20x</u> <u>SF0002977A</u>
	Immunogenicity: Tumor (100%, 3+ Cyto) Desmoplastic stroma (Variable to 2+ Cyto) Specificity: High <u>4x</u> <u>20x</u> <u>SF00029771</u>
	Immunogenicity: Tumor (100%, 3+ Cyto) Myxoid stroma (Variable to 2+ Cyto) Specificity: High <u>4x</u> <u>20x</u> <u>SF0002976D</u>
	Immunogenicity: Tumor (85%, Variable to 3+ Cyto) Cellular stroma (Variable to 1+ Cyto) Chronic pancreatitis (Variable to 1+ Cyto) Specificity: High <u>4x</u> <u>20x</u> <u>SF00029763</u>
	Immunogenicity: Tumor (100%, 3+ Cyto) Chronic pancreatitis (Variable to 2+ Cyto) Fibrotic stroma (Variable to 2+ Cyto) Specificity: High <u>4x</u> <u>20x</u> <u>SF00029775</u>

FIG._ 15H

Immunogenicity: Tumor (100%, 3+ Cyto) Cellular stroma (1+ Cyto) Necrosis (Variable to 3+ EC) Specificity: High <u>4x</u> <u>20x</u> <u>SF00029788</u>	Immunogenicity: Tumor (100%, 3+ Cyto) Cellular stroma (1+ Cyto) Necrosis (Variable to 3+ EC) Specificity: High <u>4x</u> <u>20x</u> <u>SF00029785</u>
Immunogenicity: Tumor (100%, 3+ Cyto) Fibroadipose tissue (Variable to 2+ Cyto) Specificity: High <u>4x</u> <u>20x</u> <u>SF0002977B</u>	Immunogenicity: Tumor (100%, 3+ Cyto) Fibroadipose tissue (Variable to 2+ Cyto) Specificity: High <u>4x</u> <u>20x</u> <u>SF00029777</u>
Immunogenicity: Tumor (100%, 3+ Cyto) Desmoplastic stroma (Variable to 2+ Cyto) Specificity: High <u>4x</u> <u>20x</u> <u>SF00029772</u>	Immunogenicity: Tumor (100%, 3+ Cyto) Desmoplastic stroma (Variable to 2+ Cyto) Specificity: High <u>4x</u> <u>20x</u> <u>SF00029770</u>
Immunogenicity: Tumor (100%, 3+ Cyto) Myxoid stroma (Variable to 2+ Cyto) Specificity: High <u>4x</u> <u>20x</u> <u>SF0002976E</u>	Immunogenicity: Tumor (100%, 3+ Cyto) Myxoid stroma (Variable to 2+ Cyto) Specificity: High <u>4x</u> <u>20x</u> <u>SF0002976B</u>
Immunogenicity: Tumor (85%, Variable to 3+ Cyto) Cellular stroma (Variable to 1+ Cyto) Chronic pancreatitis (Variable to 1+ Cyto) Specificity: High <u>4x</u> <u>20x</u> <u>SF00029764</u>	Immunogenicity: Tumor (85%, Variable to 3+ Cyto) Cellular stroma (Variable to 1+ Cyto) Chronic pancreatitis (Variable to 1+ Cyto) Specificity: High <u>4x</u> <u>20x</u> <u>SF00029761</u>
Immunogenicity: Tumor (100%, 3+ Cyto) Chronic pancreatitis (Variable to 2+ Cyto) Fibrotic stroma (Variable to 2+ Cyto) Specificity: High <u>4x</u> <u>20x</u> <u>SF00029776</u>	Immunogenicity: Tumor (100%, 3+ Cyto) Chronic pancreatitis (Variable to 1+ Cyto) Fibrotic stroma (Variable to 1+ Cyto) Specificity: High <u>4x</u> <u>20x</u> <u>SF00029773</u>

FIG.-15I

26 / 39

Immunogenicity: Tumor (100%, 3+ Cyto) Cellular stroma (1+ Cyto) Necrosis (Variable to 3+ EC) Specificity: High <u>4x</u> <u>20x</u> <u>SF00029786</u>	
Immunogenicity: Tumor (100%, 3+ Cyto) Fibroadipose tissue (Variable to 2+ Cyto) Specificity: High <u>4x</u> <u>20x</u> <u>SF00029778</u>	Immunogenicity: N/A Specificity: N/A <u>SF00029779</u>
Immunogenicity: Tumor (100%, 3+ Cyto) Desmoplastic stroma (Variable to 2+ Cyto) Specificity: High <u>4x</u> <u>20x</u> <u>SF0002976F</u>	
Immunogenicity: Tumor (100%, 3+ Cyto) Myxoid stroma (Variable to 2+ Cyto) Specificity: High <u>4x</u> <u>20x</u> <u>SF0002976C</u>	
Immunogenicity: Tumor (85%, Variable to 3+ Cyto) Cellular stroma (Variable to 1+ Cyto) Chronic pancreatitis (Variable to 1+ Cyto) Specificity: High <u>4x</u> <u>20x</u> <u>SF00029762</u>	
Immunogenicity: Tumor (100%, 3+ Cyto) Chronic pancreatitis (Variable to 2+ Cyto) Fibrotic stroma (Variable to 2+ Cyto) Specificity: High <u>4x</u> <u>20x</u> <u>SF00029774</u>	

FIG._ 15J**FIG._ 15A FIG._ 15B FIG._ 15C FIG._ 15D FIG._ 15E****FIG._ 15F FIG._ 15G FIG._ 15H FIG._ 15I FIG._ 15J****FIG._ 15**

FIG.- 16A

FIG._ 16B-1

Dosing Interval Related to Plasma Melphalan Exposure***FIG._ 16B-2***

30 / 39

Plasma and Kidney Exposure to is Decreased with Increased Interval Between GCR CAB1.11i and GCR GC-mel Administration

FIG._17

Efficacious Tumor Melphalan Exposures Achieved at Each Time Interval While Systemic Melphalan Exposure Decreased

• Efficacy demonstrated at 24 hr interval in TLS174T xenograft mouse model

FIG._18

31 / 39

FIG.. 19A

04-066 Completed

FIG.. 19B

FIG._21

**Avg. % Body Wt. Loss – GC-mel Injection 72 Hrs.
(Study Day 9) Post GCR-8886 Injection**

FIG._22A

35 / 39

**Avg. % Body Wt. Loss – GC-mel Injection 96 Hrs.
(Study Day 10) Post CAB1.11i Injection**

FIG._22B

**Plasma CAB1.11i Concentration-time Profile in Rats
Results**

Female Rats

Male Rats

FIG.-23

FIG._25**FIG._26**