Implementing BMS transformations

Mike Boyle

May 19, 2015

Outline

- Motivation
 - Problems in the waveforms
 - Center-of-mass drifts
 - Cleaning up waveforms
- Asymptotic symmetries (BMS group)
 - Definition (with Penrose diagrams)
 - Requirements
 - Interpolation
 - Spin-weighted functions
- Conclusions

Motivation

A waveform mystery

SXS:BBH:0004

The center of mass

SXS:BBH:0004

Correcting the center of mass

$$\min_{oldsymbol{x}_0,oldsymbol{v}_0}\int_{t_i}^{t_f}ig|oldsymbol{x}_{\mathsf{CoM}}(t)-ig(oldsymbol{x}_0+oldsymbol{v}_0\,tig)ig|^2\,dt$$

Correcting the center of mass

$$\min_{\boldsymbol{x}_0, \boldsymbol{v}_0} \int_{t_i}^{t_f} \left| \boldsymbol{x}_{\mathsf{CoM}}(t) - (\boldsymbol{x}_0 + \boldsymbol{v}_0 t) \right|^2 dt$$

$$m{x}_0 = rac{4(t_f^2 + t_f t_i + t_i^2) \int m{x}_{ ext{CoM}}(t) \, dt - 6(t_f + t_i) \, \int m{x}_{ ext{CoM}}(t) \, t \, dt}{(t_f - t_i)^3}$$

$$\mathbf{v}_0 = \frac{12 \int \mathbf{x}_{CoM}(t) t dt - 6 \int \mathbf{x}_{CoM}(t) dt}{(t_f - t_i)^3}$$

Corrected waveform

SXS:BBH:0004'

Correcting the catalog

Asymptotic symmetries

Standard ambiguities

- ▶ Time translation
- ▶ Phase rotation

Symmetry transformations

- Time translation
- Space translation
- Supertranslation
- Rotation
- ► Boost

Symmetry transformations

- Time translation
- Space translation
- Supertranslation
- Rotation
- ▶ Boost

Bondi-Metzner-Sachs (BMS) group

Penrose diagram

Two observers

Null rays

Sphere

Rotated sphere

Boosted sphere

Coordinates on 9+

Local time \rightarrow retarded time

u = t - r

Time translation

$$t \mapsto t + \delta t$$
$$u \mapsto u + \delta t$$

Coordinates on 9+

Space translation

$$\mathbf{X} \mapsto \mathbf{X} + \delta \mathbf{X}$$

$$u \mapsto u - \delta \mathbf{x} \cdot \hat{\mathbf{n}}$$

Spacetime translation

$$u \mapsto u + \sum_{\ell=0,1;m} \alpha_{\ell,m} Y_{\ell,m}(\theta,\phi)$$

Supertranslation

Supertranslation

BMS transformations

$$\theta \mapsto \theta'$$

$$\phi \mapsto \phi'$$

$$u \mapsto K(\theta', \phi') [u - \alpha(\theta', \phi')]$$

BMS transformations

$$\theta \mapsto \theta'$$

$$\phi \mapsto \phi'$$

$$u \mapsto K(\theta', \phi') [u - \alpha(\theta', \phi')]$$

$$h\mapsto \frac{e^{-2i\lambda}}{K^b}\left[h-\bar{\eth}^2\alpha\right]$$

BMS transformations

$$\theta \mapsto \theta'$$

$$\phi \mapsto \phi'$$

$$u \mapsto K(\theta', \phi') [u - \alpha(\theta', \phi')]$$

$$h(u, \theta, \phi) \mapsto \frac{e^{-2i\lambda(\theta', \phi')}}{K^b(\theta', \phi')} \left[h(u', \theta', \phi') - \bar{\eth}^2 \alpha(\theta', \phi') \right]$$

Summary

- Waveform comparisons
- Must understand ambiguities
- Ambiguities present in NR where we don't want them
 - ▶ We can remove them!
- Ambiguities absent in PN where we do want them
 - We can insert them!