SUPERHOMEWORK #2

A car is climbing an inclined road as shown in the figure. The car engine exerts a constant couple T on the rear wheels. All wheels weigh equally m_w and the body weighs m. For simplicity, we consider the motion is completely symmetrical about x-axis. We assume air resistance is negligible.

(hint: Because of symmetry, this problem can be solved like a 2-D motorcycle problem just the front wheel and rear wheel weighs $2m_w$. See video of Example 9 of the General Plane Motion for more details)

- a) Assume wheels roll without slipping on the road and drive all equations of the motion (for body, rear and front wheels).
- b) Develop a computer code in MATLAB that receives $m, m_w, a_1, a_2, h, \phi, T$,

r (radius of each wheel) and generates the following outputs:

- Friction between the road and front and rear wheels.
- Normal reactions on front and rear wheels by the road.
- Acceleration of the car and angular acceleration of the wheels.
- Forces exerted on front and rear axles.
- c) Run your computer code and present your results for numerical values listed in the table (Check if the wheels slip or not ($\mu_s = 0.8$, $\mu_k = 0.6$) and change equations if required).

SUPERHOMEWORK #2

	m (kg)	m_w (kg)	a_1 (m)	$a_2(m)$	h (m)	φ (deg)	T(N.m)	r (m)
1	500	15	1.8	1.5	0.8	0	200	0.35
2	500	15	1.8	1.5	0.8	2	200	0.35
3	500	15	1.8	1.5	0.8	10	600	0.35
4	500	15	1.8	1.5	0.8	5	900	0.35

- d) Use the data listed in the second row of the table for constant parameters and pure rolling condition to
 - Plot a (acceleration) versus m (body mass) $300 \ kg \le m \le 800 \ kg$
 - Plot a versus r (wheel radius) $0.25 m \le r \le 0.5 m$
 - Assume $a_1 + a_2$ is constant and equal to 3 meters ($a_1 + a_2 = 3$ m). Define $\frac{a_1}{a_2} = n$ and $q = \frac{F_1}{F_2}$

 F_1 : Force applied to the front axle F_2 : Force applied to the rear axle

Plot q versus n $0.5 \le n \le 2$

Plot μ_s . $N_{rear\ wheel}$ and $f_{rear\ wheel}$ versus T on the same axes. $300\ N.\ m \le T \le 1000\ N.\ m$

For which value of the couple the rear wheel starts to slip (T_{slip}) ?

Assume the couple changes from 300 N.m to T_{slip} linearly in 30 seconds. Plot Velocity *versus* time ($V_0 = 0$), (0 < t < 30 s).