Bayesian estimation of bivariate regression models via MCMC

Applied Bayesian Statistics
Winter Term 2018

Bayesian
estimation of
bivariate
regression
models via MCMC

Susumu Shikano

Introduction

Alternative approach Deriving the posterior

Gibbs sampling

Metropolis-Hasting

Slice Sampling

MCMC

Algorithm

Wrap up

Susumu Shikano GSDS

Linear Regression Model

Two approaches to obtain posterior

- · Conjugacy analysis
 - Conjugacy: The property that the prior and posterior have the same probability form depending on the form of the distribution used to calculate the likelihood.
 - · Posterior can be obtained analytically.

Bayesian estimation of bivariate regression models via MCMC

Susumu Shikano

ntroduction

Alternative

Deriving the posterior

Gibbs sampling

Metropolis-Hasting Algorithm

Slice Sampling

MCMC

Linear Regression Model

Two approaches to obtain posterior

- Conjugacy analysis
 - Conjugacy: The property that the prior and posterior have the same probability form depending on the form of the distribution used to calculate the likelihood.
 - · Posterior can be obtained analytically.
- Deriving posterior per Gibbs Sampling
 - Conjugacy is not must.
 - Use of MCMC.

Bayesian estimation of bivariate regression models via MCMC

Susumu Shikano

ntroduction

Alternative approach Deriving the posterior

Gibbs sampling

Metropolis-Hasting Algorithm

Slice Sampling

MCMC

Today's session

- An alternative approach to obtain posterior
 - Derive conditional posterior
 - Run Gibb sampling
- Gibbs sampling and its alternatives
 - Gibbs sampling
 - Metropolis-Hasting algorithm
 - Slice Sampling

Bayesian
estimation of
bivariate
regression
models via MCMC

Susumu Shikano

Introduction

Alternative approach Deriving the posterior

Gibbs sampling

Metropolis-Hasting

Algorithm
Slice Sampling

10110

MCMC Wrap up

Conditional posterior for the slope parameter β_1

Prior:

$$f(\beta_1) = f_N(\mu_1^0, V_1^0) = \frac{1}{\sqrt{2\pi V_1^0}} \exp\left\{-\frac{(\beta_1 - \mu_1^0)'(\beta_1 - \mu_1^0)}{2V_1^0}\right\}$$
$$= \frac{1}{\sqrt{2\pi V_1^0}} \exp\left\{-\frac{(\beta_1 - \mu_1^0)^2}{2V_1^0}\right\}$$

· Likelihood:

$$f(\mathbf{y}|\beta, \sigma^2) = \prod_{i}^{n} \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{(y_i - \mathbf{X}\beta)'(y_i - \mathbf{X}\beta)}{2\sigma^2}\right\}$$
$$= \prod_{i}^{n} \frac{1}{\sqrt{\pi\sigma^2}} \exp\left\{-\frac{(y_i - \beta_0 - \beta_1 x_i)^2}{2\sigma^2}\right\}$$

estimation of bivariate regression models via MCMC

Bayesian

Susumu Shikano

Introduction

Alternative approach

Deriving the posterior

011

Gibbs sampling

Metropolis-Hasting Algorithm Slice Sampling

MCMC

Conditional posterior for the slope parameter β_1

$$f(\beta_1|y,\beta_0,\sigma^2) \propto f(\beta_1)f(y|\beta_0,\beta_1,\sigma^2)$$

Bayesian estimation of bivariate regression models via MCMC

Susumu Shikano

Introduction

Alternative approach

Deriving the posterior

Gibbs sampling

Metropolis-Hasting Algorithm

Slice Sampling

MCMC

MCMC

Conditional posterior for the slope parameter β_1

$$f(\beta_1|y,\beta_0,\sigma^2) \propto f(\beta_1)f(y|\beta_0,\beta_1,\sigma^2)$$

$$\propto \frac{1}{\sqrt{2\pi V_1^0}} \exp\left\{-\frac{(\beta_1-\mu_1^0)^2}{2V_1^0}\right\} \times$$

$$\prod_i^n \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{(y_i-\beta_0-\beta_1x_i)^2}{2\sigma^2}\right\}$$

Bayesian
estimation of
bivariate
regression
models via MCMC

Susumu Shikano

Introduction

Alternative approach

Deriving the posterior

Gibbs sampling

Metropolis-Hasting Algorithm

Slice Sampling

MCMC

Conditional posterior for the slope parameter β_1

$$\begin{split} f(\beta_{1}|y,\beta_{0},\sigma^{2}) & \propto & f(\beta_{1})f(y|\beta_{0},\beta_{1},\sigma^{2}) \\ & \propto & \frac{1}{\sqrt{2\pi V_{1}^{0}}} \exp\left\{-\frac{(\beta_{1}-\mu_{1}^{0})^{2}}{2V_{1}^{0}}\right\} \times \\ & \prod_{i}^{n} \frac{1}{\sqrt{2\pi\sigma^{2}}} \exp\left\{-\frac{(y_{i}-\beta_{0}-\beta_{1}x_{i})^{2}}{2\sigma^{2}}\right\} \\ & \propto & \exp\left\{-\left(\frac{1}{2V_{1}^{0}}+\frac{\sum_{i}^{n}X_{i}^{2}}{2\sigma^{2}}\right)\beta_{1}^{2}+\right. \\ & \left.\left(\frac{\mu_{1}^{0}}{V_{1}^{0}}+\frac{\sum_{i}^{n}(y_{i}-\beta_{0})x_{i}}{\sigma^{2}}\right)\beta_{1}+const\right\} \end{split}$$

Bayesian estimation of bivariate regression models via MCMC

Susumu Shikano

Introduction

Alternative approach

Deriving the posterior

...

Gibbs sampling

Metropolis-Hasting Algorithm

Slice Sampling

MCMC

If a pdf can be expressed as...

$$f(\theta) \propto \exp(a\theta^2 + b\theta + const)$$

The corresponding distribution is a normal distribution: $N\left(-\frac{b}{2a}, -\frac{1}{2a}\right)$

estimation of bivariate regression models via MCMC

Bayesian

Susumu Shikano

Introduction

Alternative approach

Deriving the posterior

Gibbs sampling

Metropolis-Hasting Algorithm

Slice Sampling

MCMC

If a pdf can be expressed as...

$$f(\theta) \propto \exp(a\theta^2 + b\theta + const)$$

The corresponding distribution is a normal distribution: $N\left(-\frac{b}{2a}, -\frac{1}{2a}\right)$

Conditional posterior for β_1 : $N(\mu_1^*, V_1^*)$

$$\mu_{1}^{*} = V_{1}^{*} \left(\frac{\mu_{1}^{0}}{V_{1}^{0}} + \frac{\sum_{i}^{n} (y_{i} - \beta_{0}) x_{i}}{\sigma^{2}} \right)$$

$$V_{1}^{*} = \left(\frac{1}{V_{1}^{0}} + \frac{\sum_{i}^{n} x_{i}^{2}}{\sigma^{2}} \right)^{-1}$$

estimation of bivariate regression models via MCMC Susumu Shikano

Bayesian

Introduction

Alternative approach

Deriving the posterior

Gibbs sampling

Metropolis-Hasting

Slice Sampling

MCMC

Wrap up

Algorithm

Conditional posterior for the intercept β_0 : $N(\mu_0^*, V_0^*)$

Analogously to the conditional posterior for β_1 :

$$\mu_0^* = V_0^* \left(\frac{\mu_0^0}{V_0^0} + \frac{\sum_{i}^{n} (y_i - \beta_1 x_i)}{\sigma^2} \right)$$

$$V_0^* = \left(\frac{1}{V_0^0} + \frac{n}{\sigma^2} \right)^{-1}$$

estimation of bivariate regression models via MCMC

Bayesian

Susumu Shikano

Introduction

Alternative approach

Deriving the posterior

Gibbs sampling

Metropolis-Hasting Algorithm

Slice Sampling

MCMC Wrap up

4.7

Conditional posterior for β_0 and β_1

Bayesian estimation of bivariate regression models via MCMC

Susumu Shikano

Introduction

Alternative approach

Deriving the posterior

Gibbs sampling

Metropolis-Hasting Algorithm

Slice Sampling

MCMC

Conditional posterior for β_0 and β_1

• It is also possible to derive conditional posterior for β_0 and β_1 .

Bayesian estimation of bivariate regression models via MCMC

Susumu Shikano

Introduction

Alternative approach

Deriving the posterior

Gibbs sampling

Metropolis-Hasting Algorithm

Slice Sampling

MCMC

Conditional posterior for β_0 and β_1

- It is also possible to derive conditional posterior for β_0 and β_1 .
- Prior: multivariate normal.

Bayesian estimation of bivariate regression models via MCMC

Susumu Shikano

Introduction

Alternative approach

Deriving the posterior

Gibbs sampling

Metropolis-Hasting

Slice Sampling

MCMC

Algorithm

Conditional posterior for β_0 and β_1

- It is also possible to derive conditional posterior for β_0 and β_1 .
- Prior: multivariate normal.
- For more details see Shikano (2014) Bayesian estimation of regression models,...

Bayesian estimation of bivariate regression models via MCMC

Susumu Shikano

Introduction

Alternative approach

Deriving the posterior

Gibbs sampling

Metropolis-Hasting Algorithm

Slice Sampling

MCMC

Conditional posterior for σ^2

$$f(\sigma^{2}|y,\beta_{0},\beta_{1}) \propto f_{\Gamma^{-1}}(\sigma^{2})f(y|\beta_{0},\beta_{1},\sigma^{2})$$

$$\propto \frac{a0^{d0}}{\Gamma(d0)} \left(\sigma^{2}\right)^{-d0-1} \exp\left(-\frac{a0}{\sigma^{2}}\right)$$

$$\prod_{i}^{n} \frac{1}{\sqrt{2\pi\sigma^{2}}} \exp\left\{-\frac{(y_{i}-\beta_{0}-\beta_{1}x_{i})^{2}}{2\sigma^{2}}\right\}$$

$$\propto \left(\sigma^{2}\right)^{-d0-1-\frac{n}{2}}$$

$$\exp\left\{-\frac{1}{\sigma^{2}}\left(a0+\frac{1}{2}\sum_{i}^{n}(y_{i}-\beta_{0}-\beta_{1}x_{i})^{2}\right)\right\}$$

estimation of bivariate regression models via MCMC

Bayesian

Susumu Shikano

Introduction

Alternative approach

Deriving the posterior

Cibbo compling

Gibbs sampling

Metropolis-Hasting Algorithm

Slice Sampling

MCMC Wrap up

4.9

Conditional posterior for σ^2

$$\sigma^{2}|y,\beta_{0},\beta_{1}\sim IG\left(a0+rac{1}{2}\sum_{i}^{n}(y_{i}-\beta_{0}-\beta_{1}x_{i})^{2},d0+rac{n}{2}
ight)$$

bivariate regression models via MCMC Susumu Shikano

Bayesian estimation of

Introduction

Alternative approach

Deriving the posterior

Gibbs sampling

Metropolis-Hasting Algorithm Slice Sampling

MCMC

Conditional posterior

Bayesian estimation of bivariate regression models via MCMC

Susumu Shikano

Introduction

Alternative

approach

Deriving the posterior

City and position

Gibbs sampling

Metropolis-Hasting Algorithm

Slice Sampling

MCMC

Wrap up

 σ^2 is set to 253.11. Prior for β_1 is N(0, 10000).

Conditional posterior

$\beta_1 | \beta_0, \sigma^2$

Bayesian estimation of bivariate regression models via MCMC

Susumu Shikano

Introduction

Alternative

approach Deriving the posterior

Gibbs sampling

Metropolis-Hasting Algorithm

Slice Sampling

MCMC

^σ² is set to 253.11. Prior for β₁ is N(0, 10000).

Conditional posterior

Bayesian estimation of bivariate regression models via MCMC

Susumu Shikano

Introduction

Alternative approach

Deriving the posterior

Gibbs sampling

Metropolis-Hasting

Algorithm

Slice Sampling

MCMC

Simulation-based MCMC algorithm

- Obtaining the joint distribution from individual conditional distributions.
 - $f(\beta_0, \beta_1, \sigma^2)$ from...

Bayesian estimation of bivariate regression models via MCMC

Susumu Shikano

Introduction

Alternative approach Deriving the posterior

Gibbs sampling

Metropolis-Hasting Algorithm

Slice Sampling

MCMC

Simulation-based MCMC algorithm

- Obtaining the joint distribution from individual conditional distributions.
 - $f(\beta_0, \beta_1, \sigma^2)$ from...
 - $f(\beta_0|\beta_1,\sigma^2)$, $f(\beta_1|\beta_0,\sigma^2)$ and $f(\sigma^2|\beta_0,\beta_1)$
 - 1 Choose a starting value $\beta_1^{(0)}$ and $\sigma^{2(0)}$
 - 2 Draw $\beta_0^{(1)}$ from $f(\beta_0|\beta_1^{(0)}, \sigma^{2(0)})$.
 - 3 Draw $\beta_1^{(1)}$ from $f(\beta_1|\beta_0^{(1)}, \sigma^{2(0)})$.
 - 4 Draw $\sigma^{2(1)}$ from $f(\sigma^2|\beta_0^{(1)},\beta_1^{(1)})$.
 - 6
 - 6 Draw $\beta_0^{(g)}$ from $f(\beta_0|\beta_1^{(g-1)}, \sigma^{2(g-1)})$.
 - 7 Draw $\beta_1^{(g)}$ from $f(\beta_1|\beta_0^{(g)}, \sigma^{2(g-1)})$.
 - 8 Draw $\sigma^{2(g)}$ from $f(\sigma^2|\beta_0^{(g)}, \beta_1^{(g)})$.

Bayesian
estimation of
bivariate
regression
models via MCMC

Susumu Shikano

Introduction

Alternative approach Deriving the posterior

Gibbs sampling

Metropolis-Hasting Algorithm

Slice Sampling

MCMC

> chain

Bivariate regression model

> chain					
		beta0	beta1	sigma.sqr	
starting.v	alue	NA	0.000000	1.0000	
Iteration	1	59.52691	-2.654881	847.7251	
Iteration	2	62.76098	-4.367976	966.1888	
Iteration	3	69.56556	-4.469316	877.0900	
Iteration	4	63.97678	-4.759496	704.2265	
Iteration	5	71.45450	-5.533939	576.5033	
Iteration	6	75.19838	-7.264575	511.4502	
Iteration	7	81.29282	-9.173630	772.7803	
Iteration	8	92.61787	-14.100181	592.2868	
Iteration	9	104.85203	-12.859007	395.7271	
Iteration	10	99.47174	-13.724145	275.8063	
Iteration	11	100.49510	-14.362180	552.9542	
Iteration	12	108.28597	-17.344073	311.3477	
Iteration	13	111.61257	-17.510766	281.4529	
Iteration	14	111.68330	-15.617246	315.2950	
Iteration	15	112.97822	-18.594780	358.8411	
Iteration	16	115.27897	-19.137953	286.8063	
Iteration	17	121.49736	-19.647173	205.9642	

An example Markov Chain

Bayesian estimation of bivariate regression models via MCMC

Susumu Shikano

Introduction

Alternative approach

Deriving the posterior

Gibbs sampling

Metropolis-Hasting Algorithm

Slice Sampling

MCMC

> chain

Bivariate regression model

> chain					
		beta0	beta1	sigma.sqr	
starting.v	alue	NA	0.000000	1.0000	
Iteration	1	59.52691	-2.654881	847.7251	
Iteration	2	62.76098	-4.367976	966.1888	
Iteration	3	69.56556	-4.469316	877.0900	
Iteration	4	63.97678	-4.759496	704.2265	
Iteration	5	71.45450	-5.533939	576.5033	
Iteration	6	75.19838	-7.264575	511.4502	
Iteration	7	81.29282	-9.173630	772.7803	
Iteration	8	92.61787	-14.100181	592.2868	
Iteration	9	104.85203	-12.859007	395.7271	
Iteration	10	99.47174	-13.724145	275.8063	
Iteration	11	100.49510	-14.362180	552.9542	
Iteration	12	108.28597	-17.344073	311.3477	
Iteration	13	111.61257	-17.510766	281.4529	
Iteration	14	111.68330	-15.617246	315.2950	
Iteration	15	112.97822	-18.594780	358.8411	
Iteration	16	115.27897	-19.137953	286.8063	
Iteration	17	121.49736	-19.647173	205.9642	

An example Markov Chain

Bayesian estimation of bivariate regression models via MCMC

Susumu Shikano

Introduction

Alternative approach

Deriving the posterior

Gibbs sampling

Metropolis-Hasting Algorithm

Slice Sampling

MCMC

Bivariate regression model

Bayesian estimation of bivariate regression models via MCMC

Susumu Shikano

Introduction

Alternative approach

Deriving the posterior

Gibbs sampling

Metropolis-Hasting Algorithm

Slice Sampling

MCMC

Bivariate regression model

After some iterations (burn-in), the chain converged to an invariant distribution.

Bayesian estimation of bivariate regression models via MCMC

Susumu Shikano

Introduction

Alternative approach Deriving the posterior

Gibbs sampling

Metropolis-Hasting Algorithm

Slice Sampling

MCMC

Bivariate regression model

After 100 iterations.

Bayesian estimation of bivariate regression models via MCMC

Susumu Shikano

Introduction

Alternative approach

Deriving the posterior

Gibbs sampling

Metropolis-Hasting Algorithm

Slice Sampling

MCMC

Metropolis-Hasting Algorithm?

- More general MCMC of the Gibbs sampling
- Differently from the Gibbs sampling, the full set of the conditional posterior for all parameters is not required.

Bayesian estimation of bivariate regression models via MCMC

Susumu Shikano

Introduction

Alternative approach Deriving the posterior

Gibbs sampling

Metropolis-Hasting Algorithm

Slice Sampling

MCMC

Basic idea

Random draws from a posterior $f(\beta|y)$. The MH algorithm can be described by the following iterative steps for t = 1, ..., T:

- 2 Generate new candidate values β' from a proposal distribution $q(\beta'|\beta)$
- 3 Calculate $\alpha = \min\left(1, \frac{f(\beta'|y)q(\beta|\beta')}{f(\beta|y)q(\beta'|\beta)}\right) = \min\left(1, \frac{f(y|\beta')f(\beta')q(\beta|\beta')}{f(y|\beta)f(\beta)q(\beta'|\beta)}\right).$
- 4 Update $\beta^{(t)} = \beta'$ with probability α (acceptance). Otherwise set $\beta^{(t)} = \beta$ (rejection of β').

Bayesian estimation of bivariate regression models via MCMC

Susumu Shikano

Introduction

Alternative approach Deriving the posterior

Gibbs sampling

Metropolis-Hasting Algorithm

Slice Sampling

MCMC

Application: Inverse Gamma Distribution

 You obtained as posterior (=product of prior and likelihood) the following density function:

$$f(\theta) = \frac{a^d}{\Gamma(d)} \theta^{-d-1} \exp\left(-\frac{a}{\theta}\right)$$

Bayesian
estimation of
bivariate
regression
models via MCMC

Susumu Shikano

Introduction

Alternative approach Deriving the posterior

Gibbs sampling

Metropolis-Hasting

Slice Sampling

MCMC

Application: Inverse Gamma Distribution

 You obtained as posterior (=product of prior and likelihood) the following density function:

$$f(\theta) = \frac{a^d}{\Gamma(d)} \theta^{-d-1} \exp\left(-\frac{a}{\theta}\right)$$

Which form has the distribution?

Bayesian estimation of bivariate regression models via MCMC

Susumu Shikano

Introduction

Alternative approach

Deriving the posterior

Gibbs sampling

Metropolis-Hasting

Slice Sampling

MCMC

Application: Inverse Gamma Distribution

 You obtained as posterior (=product of prior and likelihood) the following density function:

$$f(\theta) = \frac{a^d}{\Gamma(d)} \theta^{-d-1} \exp\left(-\frac{a}{\theta}\right)$$

- · Which form has the distribution?
- What is the expected value?

Bayesian
estimation of
bivariate
regression
models via MCMC

Susumu Shikano

Introduction

Alternative approach Deriving the posterior Gibbs sampling

Metropolis-Hasting Algorithm

Slice Sampling

MCMC

Application: Inverse Gamma Distribution

 You obtained as posterior (=product of prior and likelihood) the following density function:

$$f(\theta) = \frac{a^d}{\Gamma(d)} \theta^{-d-1} \exp\left(-\frac{a}{\theta}\right)$$

- · Which form has the distribution?
- What is the expected value?
- What is the variance?
- ...

Bayesian
estimation of
bivariate
regression
models via MCMC

Susumu Shikano

Introduction
Alternative

approach
Deriving the posterior
Gibbs sampling

Metropolis-Hasting Algorithm

Slice Sampling

MCMC

Application: Inverse Gamma Distribution

 Parameter values: a=2, d=3

• Initial value: 30

 Proposal dist.: normal distribution with sd=3

Bayesian
estimation of
bivariate
regression
models via MCMC

Susumu Shikano

Introduction

Alternative approach

Deriving the posterior

Gibbs sampling

Metropolis-Hasting Algorithm

Slice Sampling
MCMC

Application: Inverse Gamma Distribution

 Parameter values: a=2, d=3

• Initial value: 30

 Proposal dist.: normal distribution with sd=3

Bayesian estimation of bivariate regression models via MCMC

Susumu Shikano

Introduction

Alternative approach Deriving the posterior

Gibbs sampling

Metropolis-Hasting Algorithm

Slice Sampling
MCMC

Application: Inverse Gamma Distribution

 Parameter values: a=2, d=3

Initial value: 30

 Proposal dist.: normal distribution with sd=3

Bayesian estimation of bivariate regression models via MCMC

Susumu Shikano

Introduction

Alternative approach

Deriving the posterior

Gibbs sampling

Metropolis-Hasting Algorithm

Slice Sampling
MCMC

Application: Inverse Gamma Distribution

 Parameter values: a=2, d=3

• Initial value: 30

 Proposal dist.: normal distribution with sd=3

Bayesian estimation of bivariate regression models via MCMC

Susumu Shikano

Introduction

Alternative approach Deriving the posterior

Gibbs sampling

Metropolis-Hasting Algorithm

Slice Sampling
MCMC

Application: Inverse Gamma Distribution

Parameter values: a=2, d=3

• Initial value: 30

 Proposal dist.: normal distribution with sd=3

Bayesian estimation of bivariate regression models via MCMC

Susumu Shikano

Introduction

Alternative approach

Deriving the posterior

Gibbs sampling

Metropolis-Hasting Algorithm

Slice Sampling
MCMC

Application: Inverse Gamma Distribution

 Parameter values: a=2, d=3

Initial value: 30

 Proposal dist.: normal distribution with sd=3

Bayesian estimation of bivariate regression models via MCMC

Susumu Shikano

Introduction

Alternative approach

Deriving the posterior

Gibbs sampling

Metropolis-Hasting Algorithm

Slice Sampling
MCMC

Application: Inverse Gamma Distribution

Parameter values: a=2, d=3

Initial value: 30

 Proposal dist.: normal distribution with sd=3

Bayesian estimation of bivariate regression models via MCMC

Susumu Shikano

Introduction

Alternative approach Deriving the posterior

Gibbs sampling

Metropolis-Hasting Algorithm

Slice Sampling
MCMC

Application: Inverse Gamma Distribution

 Parameter values: a=2, d=3

Initial value: 30

 Proposal dist.: normal distribution with sd=3

Bayesian estimation of bivariate regression models via MCMC

Susumu Shikano

Introduction

Alternative approach

Deriving the posterior

Gibbs sampling

Metropolis-Hasting

Slice Sampling
MCMC

Application: Inverse Gamma Distribution

 Parameter values: a=2, d=3

Initial value: 30

 Proposal dist.: normal distribution with sd=3

Bayesian estimation of bivariate regression models via MCMC

Susumu Shikano

Introduction

Alternative approach Deriving the posterior

Gibbs sampling

Metropolis-Hasting Algorithm

Slice Sampling
MCMC

Application: Inverse Gamma Distribution

 Parameter values: a=2, d=3

Initial value: 30

 Proposal dist.: normal distribution with sd=3

Bayesian estimation of bivariate regression models via MCMC

Susumu Shikano

Introduction

Alternative approach

Deriving the posterior

Gibbs sampling

Metropolis-Hasting Algorithm

Slice Sampling
MCMC

WOWO

Application: Inverse Gamma Distribution

Parameter values: a=2, d=3

Bayesian estimation of bivariate regression models via MCMC

Susumu Shikano

Introduction

Alternative approach

Deriving the posterior

Gibbs sampling

Metropolis-Hasting Algorithm

Slice Sampling

MCMC

Application: Inverse Gamma Distribution

- Parameter values: a=2, d=3
- Average of IG: $\frac{a}{d-1} = 1$

Bayesian estimation of bivariate regression models via MCMC

Susumu Shikano

Introduction

Alternative approach

Deriving the posterior

Gibbs sampling

Metropolis-Hasting Algorithm

Slice Sampling
MCMC

IVICIVIC

Application: Inverse Gamma Distribution

 MH also works even if we know only the following posterior

$$f(\theta) = \frac{a^d}{\Gamma(d)} \theta^{-d-1} \exp\left(-\frac{a}{\theta}\right)$$
$$\propto \theta^{-d-1} \exp\left(-\frac{a}{\theta}\right)$$

Bayesian estimation of bivariate regression models via MCMC

Susumu Shikano

Introduction

Alternative approach
Deriving the posterior

Gibbs sampling

Metropolis-Hasting

Slice Sampling

MCMC

Application: Inverse Gamma Distribution

 MH also works even if we know only the following posterior

$$f(\theta) = \frac{a^d}{\Gamma(d)} \theta^{-d-1} \exp\left(-\frac{a}{\theta}\right)$$
$$\propto \theta^{-d-1} \exp\left(-\frac{a}{\theta}\right)$$

• $\frac{f(y|\beta')f(\beta')q(\beta|\beta')}{f(y|\beta)f(\beta)q(\beta'|\beta)}$ can cancel out the constant term!

Bayesian estimation of bivariate regression models via MCMC

Susumu Shikano

Introduction

Alternative approach

Deriving the posterior

Gibbs sampling

Metropolis-Hasting

Slice Sampling

MCMC

A drawback of MH Algorithm

If a proposal distribution's variance of proposal distribution is

- too small: Markov chains converge very slowly.
- too large: acceptance rate is too small (inefficient).

Any algorithm which requires no proposal distribution?

Bayesian
estimation of
bivariate
regression
models via MCMC

Susumu Shikano

Introduction

Introduction

Alternative approach Deriving the posterior

Gibbs sampling

Metropolis-Hasting Algorithm

lice Sampling

Slice Sampling

MCMC

Procedure

- Goal: Generation of random numbers from a pdf f(x)
- You have no program for f(x).
 - 1 Choose a starting value x_0 for which $f(x_0) > 0$.
 - 2 Sample a y value uniformly between 0 and $f(x_0)$.
 - 3 Draw a horizontal line across the curve at this y position.
 - Sample a point (x, y) from the line segments within the curve.
 - **5** Repeat from step 2 using the new x value.

Bayesian
estimation of
bivariate
regression
models via MCMC

Susumu Shikano

Introduction

Alternative approach

Deriving the posterior

Gibbs sampling

Metropolis-Hasting Algorithm

Slice Sampling

MCMC

Example: IG(a=2,d=3) with $x_0 = 1$

estimation of bivariate regression models via MCMC

Bayesian

Susumu Shikano

Introduction

Alternative approach
Deriving the posterior

Gibbs sampling

Metropolis-Hasting

Algorithm

Slice Sampling

MCMC

Example: IG(a=2,d=3) with $x_0 = 1$

Bayesian estimation of bivariate regression models via MCMC

Susumu Shikano

Introduction

Alternative approach
Deriving the posterior

Gibbs sampling

Metropolis-Hasting

Algorithm
Slice Sampling

MCMC

Example: IG(a=2,d=3) with $x_0 = 1$

Bayesian estimation of bivariate regression models via MCMC

Susumu Shikano

Introduction

Alternative approach Deriving the posterior

Gibbs sampling

Metropolis-Hasting

Algorithm

Slice Sampling

MCMC

MCMC

Example: IG(a=2,d=3) with $x_0 = 1$

Bayesian estimation of bivariate regression models via MCMC

Susumu Shikano

Introduction
Alternative

approach
Deriving the posterior

Gibbs sampling

Metropolis-Hasting

Algorithm

Slice Sampling

MCMC

Example: IG(a=2,d=3) with $x_0 = 1$

Bayesian estimation of bivariate regression models via MCMC

Susumu Shikano

Introduction
Alternative

approach
Deriving the posterior

Gibbs sampling

Metropolis-Hasting

Algorithm

Slice Sampling

MCMC

Example: IG(a=2,d=3) with $x_0 = 1$

estimation of bivariate regression models via MCMC

Bayesian

Susumu Shikano

Introduction

Alternative approach Deriving the posterior

Gibbs sampling

Metropolis-Hasting Algorithm

Slice Sampling

MCMC

Example: IG(a=2,d=3) with $x_0 = 1$

Bayesian estimation of bivariate regression models via MCMC

Susumu Shikano

Introduction

Alternative approach
Deriving the posterior

Gibbs sampling

Metropolis-Hasting

Algorithm

Slice Sampling

MCMC

Example: IG(a=2,d=3) with $x_0 = 1$

Bayesian estimation of bivariate regression models via MCMC

Susumu Shikano

Introduction

Alternative approach
Deriving the posterior

Gibbs sampling

Metropolis-Hasting

Algorithm

Slice Sampling

MCMC

Example: IG(a=2,d=3) with $x_0 = 1$

Bayesian estimation of bivariate regression models via MCMC

Susumu Shikano

Introduction

Alternative approach Deriving the posterior

Gibbs sampling

Metropolis-Hasting

Slice Sampling

MCMC

Algorithm

MCMC

Example: IG(a=2,d=3) with $x_0 = 1$

Bayesian estimation of bivariate regression models via MCMC

Susumu Shikano

Introduction

Alternative approach Deriving the posterior

Gibbs sampling

Metropolis-Hasting

Slice Sampling

мсмс

Wrap up

Algorithm

Example: IG(a=2,d=3) with $x_0 = 1$

Bayesian estimation of bivariate regression models via MCMC

Susumu Shikano

Introduction

Alternative approach Deriving the posterior

Gibbs sampling
Metropolis-Hasting

Algorithm

Slice Sampling

.....

MCMC

Example: IG(a=2,d=3) with $x_0 = 1$

Bayesian estimation of bivariate regression models via MCMC

Susumu Shikano

Introduction

Alternative approach
Deriving the posterior

Gibbs sampling

Metropolis-Hasting

Algorithm

Slice Sampling

MCMC

MCMC

Example: IG(a=2,d=3) with $x_0 = 1$

Bayesian estimation of bivariate regression models via MCMC

Susumu Shikano

Introduction

Alternative approach Deriving the posterior

Gibbs sampling

Metropolis-Hasting

Slice Sampling

мсмс

Wrap up

Algorithm

Example: IG(a=2,d=3) with $x_0 = 1$

Bayesian estimation of bivariate regression models via MCMC

Susumu Shikano

Introduction

Alternative approach Deriving the posterior

Gibbs sampling

Metropolis-Hasting

Slice Sampling

MCMC

Wrap up

Algorithm

Example: IG(a=2,d=3) with $x_0 = 1$

Bayesian estimation of bivariate regression models via MCMC

Susumu Shikano

Introduction

Alternative approach Deriving the posterior

Gibbs sampling

Metropolis-Hasting

Algorithm

Slice Sampling

MCMC

Example: IG(a=2,d=3) with $x_0 = 1$

Bayesian estimation of bivariate regression models via MCMC

Susumu Shikano

Introduction

Alternative approach Deriving the posterior

Gibbs sampling
Metropolis-Hasting

Algorithm

Slice Sampling

Slice Sampling

MCMC

Example: IG(a=2,d=3) with $x_0 = 1$

Bayesian estimation of bivariate regression models via MCMC

Susumu Shikano

Introduction

Alternative approach Deriving the posterior

Gibbs sampling

Metropolis-Hasting Algorithm

Slice Sampling

MCMC

Bayesian estimation of bivariate regression models via MCMC

Susumu Shikano

Introduction

Alternative approach Deriving the posterior Gibbs sampling

Metropolis-Hasting Algorithm

lice Sampling

MCMC

Bayesian estimation of bivariate regression models via MCMC

Susumu Shikano

Introduction

Alternative approach

Deriving the posterior

Gibbs sampling

Metropolis-Hasting Algorithm

Slice Sampling

MCMC

Bayesian estimation of bivariate regression models via MCMC

Susumu Shikano

Introduction

Alternative approach

Deriving the posterior

Gibbs sampling

Metropolis-Hasting Algorithm

Slice Sampling

MCMC

Bayesian estimation of bivariate regression models via MCMC

Susumu Shikano

Introduction

Alternative approach Deriving the posterior

Gibbs sampling

Metropolis-Hasting Algorithm

MCMC

Bayesian estimation of bivariate regression models via MCMC

Susumu Shikano

Introduction

Alternative approach Deriving the posterior

Gibbs sampling

Metropolis-Hasting Algorithm

Slice Sampling

MCMC

Bayesian estimation of bivariate regression models via MCMC

Susumu Shikano

Introduction

Alternative approach Deriving the posterior

Gibbs sampling

Metropolis-Hasting Algorithm

Slice Sampling

MCMC

Gibbs, MH and Slice sampling

Bayesian estimation of bivariate regression models via MCMC

Susumu Shikano

Introduction
Alternative

approach
Deriving the posterior
Gibbs sampling

Metropolis-Hasting Algorithm

Slice Sampling

MCMC

Gibbs, MH and Slice sampling

Tools for random number generation based on a certain distribution...

Bayesian estimation of bivariate regression models via MCMC

Susumu Shikano

Introduction
Alternative

approach

Deriving the posterior

Gibbs sampling

Metropolis-Hasting

Algorithm

Slice Sampling

MCMC

Gibbs, MH and Slice sampling

- Tools for random number generation based on a certain distribution...
- with many iterations.

Bayesian estimation of bivariate regression models via MCMC

Susumu Shikano

Introduction

Alternative

approach Deriving the posterior

Gibbs sampling Metropolis-Hasting

Algorithm Slice Sampling

MCMC Wrap up

Gibbs, MH and Slice sampling

- Tools for random number generation based on a certain distribution...
- with many iterations.
- Random number generation in each iteration depends on the last iteration.

Bayesian
estimation of
bivariate
regression
models via MCMC

Susumu Shikano

Introduction

Introduction
Alternative

approach

Deriving the posterior

Gibbs sampling

Metropolis-Hasting

Slice Sampling

MCMC

Algorithm

Gibbs, MH and Slice sampling

- Tools for random number generation based on a certain distribution...
- · with many iterations.
- Random number generation in each iteration depends on the last iteration.
- → Markov-Chain-Monte-Carlo

Bayesian
estimation of
bivariate
regression
models via MCMC

Susumu Shikano

Introduction

Alternative

approach

Deriving the posterior

Gibbs sampling

Metropolis-Hasting Algorithm

Slice Sampling

мсмс

Gibbs, MH and Slice sampling

- Tools for random number generation based on a certain distribution...
- · with many iterations.
- Random number generation in each iteration depends on the last iteration.
- → Markov-Chain-Monte-Carlo

Bayesian
estimation of
bivariate
regression
models via MCMC

Susumu Shikano

Introduction

Alternative approach

Deriving the posterior

Gibbs sampling

Metropolis-Hasting Algorithm

Slice Sampling

MCMC

Gibbs, MH and Slice sampling

- Tools for random number generation based on a certain distribution...
- · with many iterations.
- Random number generation in each iteration depends on the last iteration.
- → Markov-Chain-Monte-Carlo

Bayesian
estimation of
bivariate
regression
models via MCMC

Susumu Shikano

Introduction

Alternative approach Deriving the posterior

Gibbs sampling

Metropolis-Hasting Algorithm

Slice Sampling

MCMC

Markov chain

A stochastic process satisfying the Markov property.

Bayesian estimation of bivariate regression models via MCMC

Susumu Shikano

Introduction
Alternative

approach

Deriving the posterior

Gibbs sampling
Metropolis-Hasting

Slice Sampling

MCMC

Algorithm

Markov chain

- A stochastic process satisfying the Markov property.
- Markov property: the probability distribution at t + 1 depends only on the state of the system at t.

Bayesian estimation of bivariate regression models via MCMC

Susumu Shikano

Introduction

Alternative approach Deriving the posterior

Gibbs sampling Metropolis-Hasting Algorithm

Slice Sampling

MCMC

Markov chain

- A stochastic process satisfying the Markov property.
- Markov property: the probability distribution at t + 1 depends only on the state of the system at t.
- In a finite state space with all probabilities positive, there is a unique invariant distribution.

Bayesian
estimation of
bivariate
regression
models via MCMC

Susumu Shikano

Introduction

Introduction

Alternative approach
Deriving the posterior

Gibbs sampling

Metropolis-Hasting Algorithm

Slice Sampling

MCMC

Markov chain

- · A stochastic process satisfying the Markov property.
- Markov property: the probability distribution at t + 1 depends only on the state of the system at t.
- In a finite state space with all probabilities positive, there is a unique invariant distribution.
 - Condition: The chain has to be irreducible and aperiodic.
 - For large enough n, the initial state plays almost no role.

Bayesian
estimation of
bivariate
regression
models via MCMC

Susumu Shikano

Introduction

Alternative approach Deriving the posterior

Gibbs sampling

Metropolis-Hasting Algorithm

Slice Sampling

мсмс

Advantages: simple and straightforward interpretation!

- Quite easy since we generate a "dataset" of draws from MC.
- Simple calculation of any quantity of interest:
 - the expected value or the median of that posterior, just calculate those of the generated draws.
 - 95% credible intervals, just find the 2.5th and 97.5th percentiles of the draws.
- You need just descriptive statistics to describe MC.

Bayesian
estimation of
bivariate
regression
models via MCMC

Susumu Shikano

Introduction

Alternative approach
Deriving the posterior

Gibbs sampling

Metropolis-Hasting Algorithm

Slice Sampling

MCMC

Wrap up

Bayesian regression models

- In conjugacy analysis posterior can be derived analytically.
- The larger n/the smaller the dispersion of prior, the more similar results with the maximum likelihood.
- Alternative to conjugacy analysis:
 - Deriving conditional posterior
 - Run Gibbs sampling (one of MCMC)
 - Obtain joint and marginal posterior
- Gibbs sampling is one possible MCMC algorithm.

Bayesian
estimation of
bivariate
regression
models via MCMC

Susumu Shikano

Introduction

Alternative approach Deriving the posterior

Gibbs sampling

Gibbs sampling

Metropolis-Hasting Algorithm

Slice Sampling

MCMC

Rejection Sampling

Rejection Sampling or Acceptance Rejection Sampling

- Goal: Generation of random numbers from a pdf f(x)
- You have no program for f(x), but for another distribution g(x)
 - 1 You find a constant c so that $f(x) \le cg(x)$ for all x.
 - 2 You generate a random number x^* from g(x).
 - 3 You generate a random number u from U[0, 1].
 - 4 If $u \le f(x^*)/cg(x^*)$ you accept x^* as random number from f(x). Otherwise you reject it.
 - 6 Go to Step 2.

Bayesian estimation of bivariate regression models via MCMC

Susumu Shikano

Rejection Sampling

Markov process

- A stochastic process X_t taking values...
 - in the finite set $S = \{1, 2, \dots, s\}$
 - *t*: time or iteration

Bayesian estimation of bivariate regression models via MCMC

Susumu Shikano

Rejection Sampling

Markov process

- A stochastic process X_t taking values...
 - in the finite set $S = \{1, 2, \dots, s\}$
 - t: time or iteration
- pii is transition probabilities
 - $p_{ij} = \Pr(X_{t+1} = j | X_t = i), i, j, \in S.$

Bayesian estimation of bivariate regression models via MCMC

Susumu Shikano

Rejection Sampling

Markov process

- A stochastic process X_t taking values...
 - in the finite set $S = \{1, 2, \dots, s\}$
 - *t*: time or iteration
- p_{ij} is transition probabilities

•
$$p_{ij} = \Pr(X_{t+1} = j | X_t = i), i, j, \in S.$$

 Markov property: the probability distribution at t + 1 depends only on the state of the system at t. estimation of bivariate regression models via MCMC

Bayesian

Susumu Shikano

Rejection Sampling

Markov process

- A stochastic process X_t taking values...
 - in the finite set $S = \{1, 2, \dots, s\}$
 - *t*: time or iteration
- p_{ij} is transition probabilities

•
$$p_{ij} = \Pr(X_{t+1} = j | X_t = i), i, j, \in S.$$

- Markov property: the probability distribution at t + 1 depends only on the state of the system at t.
- Note that p_{ij} are constant over t.

Bayesian estimation of bivariate regression models via MCMC

Susumu Shikano

Rejection Sampling

Transition matrix

- Transition probabilities: p_{ii}

 - $p_{ij} \ge 0$ $\sum_{j=1}^{s} p_{ij} = 1$
- $s \times s$ transition matrix $P = \{p_{ii}\}$

Bayesian estimation of bivariate regression models via MCMC

Susumu Shikano

Rejection Sampling

Transition matrix

- Transition probabilities: p_{ii}

 - $p_{ij} \ge 0$ $\sum_{j=1}^{s} p_{ij} = 1$
- $s \times s$ transition matrix $P = \{p_{ii}\}$
- Distribution at t + 2?

Bayesian estimation of bivariate regression models via MCMC

Susumu Shikano

Rejection Sampling

Transition matrix

- Transition probabilities: p_{ii}

•
$$p_{ij} \ge 0$$

• $\sum_{j=1}^{s} p_{ij} = 1$

- $s \times s$ transition matrix $P = \{p_{ii}\}$
- Distribution at t + 2?

•
$$p_{ij}^{(2)} = \sum_k p_{ik} p_{kj}$$

Bayesian estimation of bivariate regression models via MCMC

Susumu Shikano

Rejection Sampling

Transition matrix

- Transition probabilities: p_{ii}

•
$$p_{ij} \ge 0$$

• $\sum_{j=1}^{s} p_{ij} = 1$

- $s \times s$ transition matrix $P = \{p_{ii}\}$
- Distribution at t + 2?
 - $p_{ij}^{(2)} = \sum_k p_{ik} p_{kj}$
 - This is given by $PP \equiv P^2$

Bayesian estimation of bivariate regression models via MCMC

Susumu Shikano

Rejection Sampling

Invariant distribution

- The probability distribution $\pi = (\pi_1, \dots \pi_s)'$ is invariant for P
- if $\pi' = \pi' P$,
- or $\pi_j = \sum_i \pi_i p_{ij}$ for $j = 1, \dots, s$.

Bayesian estimation of bivariate regression models via MCMC

Susumu Shikano

Rejection Sampling

Invariant distribution

- The probability distribution $\pi = (\pi_1, \dots \pi_s)'$ is invariant for P
- if $\pi' = \pi' P$,
- or $\pi_j = \sum_i \pi_i p_{ij}$ for $j = 1, \dots, s$.
- Note that π' is an eigenvector of P.

Bayesian estimation of bivariate regression models via MCMC

Susumu Shikano

Rejection Sampling

Theorem

- Suppose *S* is finite and $p_{ij} > 0 \ \forall i, j$.
- Then there exists a unique probability distribution $\pi_j, j \in \mathcal{S}$
- such that $\sum_{i} \pi_{i} p_{ij} = \pi_{i} \forall j \in S$.
- Further, $|\boldsymbol{p}_{ii}^{(n)} \pi_j| \leq r^n$,
- where 0 < r < 1, for all i, j and $n \ge 1$.

Bayesian estimation of bivariate regression models via MCMC

Susumu Shikano

Rejection Sampling

Theorem

- Suppose *S* is finite and $p_{ij} > 0 \ \forall i, j$.
- Then there exists a unique probability distribution π_j , $j \in S$
- such that $\sum_{i} \pi_{i} p_{ij} = \pi_{j} \forall j \in S$.
- Further, $|p_{ii}^{(n)} \pi_j| \leq r^n$,
- where 0 < r < 1, for all i, j and $n \ge 1$.

Substantive meaning of the theorem

- In a finite state space with all probabilities positive, there is a unique invariant distribution.
- For large enough *n*, the initial state plays almost no role.

Bayesian
estimation of
bivariate
regression
models via MCMC

Susumu Shikano

Rejection Sampling

More generalized Theorem

- Let P be irreducible and aperiodic over a finite state space.
- Then there exists a unique probability distribution $\pi_j, j \in \mathcal{S}$
- such that $\sum_{i} \pi_{i} p_{ij} = \pi_{j} \forall j \in S$
- and $|p_{ii}^{(n)} \pi_j| \le r^{n/\nu}$,
- where 0 < r < 1, for all i, j and for some positive integer ν .

Bayesian estimation of bivariate regression models via MCMC

Susumu Shikano

Rejection Sampling

More generalized Theorem

- Let P be irreducible and aperiodic over a finite state space.
- Then there exists a unique probability distribution $\pi_j, j \in \mathcal{S}$
- such that $\sum_{i} \pi_{i} p_{ij} = \pi_{j} \forall j \in S$
- and $|p_{ii}^{(n)} \pi_i| \le r^{n/\nu}$,
- where 0 < r < 1, for all i, j and for some positive integer ν .

- Irreducible: starting from state *i*, the process can reach any other state with positive probability.
- Aperiodic: if $p_{ii}^{(n)} > 0 \ \forall i$ and for sufficiently large n.

Bayesian
estimation of
bivariate
regression
models via MCMC

Susumu Shikano

Rejection Sampling

Markov Chains in Continuous Spaces

Markov-Process taking values in $\mathbb R$

- $f_{(X_1,...,X_n|X_0=x_0)}(x_1,...,x_n) = p(x_0,x_1)p(x_1,x_2)\cdots p(x_{n-1},x_n)$
- p(x, y): Transitional kernel
- Invariant density: $\pi(y) = \int_{\mathbb{R}} \pi(x) p(x, y) dx$.

Bayesian
estimation of
bivariate
regression
models via MCMC

Susumu Shikano

Rejection Sampling