

Simpson Gumpertz & Heger Inc. Consulting Engineers

ATRIUM
STEEL DESIGN

SHEET NO. 1

PROJECT NO. 120470.01

DATE 11 July 2014

BY ARGouveia

CHECKED BY

	1	2	3	4	5	6	7	8	9	10	11	12	23	24	31		32	
FLOOR	BEAM#	Туре	Zx	L	Vu	Lb	Cb	<u>x</u>	Mu	Mn	Р	а	Reinf.	DCR	l, weld ends	I, suggested	weld through	Reinf Type
4	94	W18X50	101	29.2	48.1	1	1	14.5	441.8	448.86	4.167	18.34	WT7X19	0.57	17.00	24.00	3 @ 12	1
4	626	W24X55	134	31	91.48	1	1	19.2	991.6	819.9	72.898	19.17	WT7X45	0.89	29.00	26.00	3 @ 12	2
3	83	W18X50	101	29.2	65.59	1	1	14.5	580.5	496.34	7.407	18.34	WT7X19	0.75	19.00	24.00	3 @ 12	1
3	370	W24X55	134	31	88.82	1	1	19.2	960	819.9	63.283	19.17	WT7X45	0.86	29.00	26.00	3 @ 12	2
3	368	W18X71	146	31	75.13	1	1	16	495.4	547.5	0.029	4.5	WT7X19	0.47	18.00	24.00	3 @ 12	1
2	85	W18X50	101	29.2	42.27	1	1	14.5	437.4	442.52	4.092	18.34	WT7X19	0.57	17.00	24.00	3 @ 12	1
2	352	W18X35	66.5	40.25	30.26	1	1	19.8	300	472.98	15.573	13	C8X13.7	0.90	16.00	16.00	3 @ 12	3
2	417	W18X65	133	31	73.63	1	1	19.2	779.9	746.97	58.359	19.17	WT7X19	0.80	24.00	24.00	3 @ 12	1
ROOF	283	W18X40	78.4	31	42.64	1	1	16.5	353.4	324.37	5.25	14.25	WT7X19	0.78	14.00	14.00	3 @ 12	1
ROOF	304	W18X40	78.4	31	43.95	1	1	16.5	372.1	324.37	7.35	14.25	WT7X19	0.82	14.00	14.00	3 @ 12	1
ROOF	350	W18X40	78.4	31	43.95	1	1	16.3	367.7	336.12	6.1	14	WT7X19	0.81	14.00	14.00	3 @ 12	1
ROOF	554	W6X20	14.9	13.67	2.8	1	1	8	18.2	13.34	3.85	6.6	WT7X19	0.11	35.00	35.00	3 @ 12	1
ROOF	165	W18X40	78.4	31	44.58	1	1	15.5	348	336	5.924	10	WT7X19	0.77	14.00	14.00	3 @ 12	1
ROOF	142	W18X40	78.4	31	43.27	1	1	15.6	358.6	336.12	8.074	7	WT7X19	0.79	14.00	14.00	3 @ 12	1
ROOF	101	W18X40	78.4	31	44.48	1	1	16	351.1	336.12	5.85	11	C3X3.5	1.57	5.00	5.00	3 @ 12	1
ROOF	185	W18X76	163	39	53.31	1	1	26	492.4	611.25	5	14.1	WT7X19	0.44	10.00	10.00	3 @ 12	1
ROOF	225	W21X68	160	31	53.82	1	1	10.5	538.8	600	35.5	10	WT7X19	0.48	10.00	10.00	3 @ 12	1
ROOF	201	W18X76	163	36.6	48.92	1	1	24	418.8	611.25	6.5	14.1	WT7X19	0.38	10.00	10.00	3 @ 12	1
ROOF	211	W18X55	112	34.17	50.59	1	1	21.5	424.3	420	9.2	14.1	WT7X19	0.50	12.00	12.00	3 @ 12	1
ROOF	247	W18X50	101	29.29	46.14	1	1	16.67	325.8	378.75	7.6	14	WT7X19	0.42	13.00	13.00	3 @ 12	1

Yes No

Simpson Gumpertz & Heger Inc. Consulting Engineers

ATRIUM STEEL DESIGN
 SHEET NO.
 1

 PROJECT NO.
 120470.01

 DATE
 11 July 2014

 BY
 ARGouveia

 CHECKED BY

Design of Reinforcement for Steel Members

Beam #: 94

Input User Values:

Member Shape:	W	W18X50	
Yield Strength:	F_y	50	ksi
Member Length:	L	29.2	ft
Reinforcement Length:	L_R	23.2	ft
Braced Length:	L_b	1	ft

Elastic Modulus: LTB Coefficient (F1-1):	E C _b	29000 1	ksi
Distance from Reinforcement to			
End Support:	d_{r}	3	ft

Original Section Properties:

Depth:	d	18	in
Width:	b_f	7.5	in
Area:	Α	14.7	in ²
Moment of Inertia, x:	I_{xw}	800	in⁴
Section Modulus:	S_x	88.9	in ³
Polar Moment of Inertia:	J_{w}	1.24	in⁴

Flange Thickness:	t_f	0.57	in
Web Thickness:	t_w	0.355	in
	k	0.972	in
Moment of Inertia, y	I_{yw}	40.1	in⁴
Plastic Section Modulus, x:	Z	101	in ³

Reinforcement Properties

Leave unused sections = 0 / None

Reinf. Yield Strength:	F_{yr}	36	in
•	,		

Option Currently Choosen:	WT7X19	
DCR	0.57	%
Moment of Inertia Increase	109.36	%
Total Weight	440.8	lbs

Plate	None

Tension Plate Width:	\mathbf{w}_{tp}	in
Tension Plate Thickness:	t_tp	in

Comp. Plate Width:	wc_p	in
Comp. Plate Thickness:	tc _p	in

Channel: C None

Channel Depth:	d_ch	0	in
Channel Flange Width:	b_{fch}	0	in
Channel Flange Thickness:	t_{fch}	0	in
Channel Web Thickness:	t_wch	0	in
	_		2

Channel Mom. of Inertia, x	I_{xch}	0	in⁴
Channel Mom. of Inertia, y	$I_{ m ych}$	0	in⁴
Channel Center of Mass from Y, x	\mathbf{y}_{ch}	0	in⁴
Channel Polar Mom. of Inertia, x	J_ch	0	in⁴

Channel Area: A_{ch} 0 in²

WT:	WT	WT7X19

WT Depth:	d_{wt}	7.05	in	Channel Mom. of Inertia, x	I_{xwt}	23.3	in ⁴
WT Flange Width:	b_{fwt}	6.77	in	Channel Mom. of Inertia, y	$I_{ m ywt}$	13.3	in⁴
WT Flange Thickness:	t_{fwt}	0.515	in	Center of Mass from Flange, x	\mathbf{y}_{wt}	1.54	in⁴

file: https://d.docs.live.net/d24e50bed4b71ef0/Documents/2. Career/SGH/Design of Reinforcement for Steel

Members

Simpson Gumpertz & Heger Inc. Consulting Engineers

ATRIUM
STEEL DESIGN

 SHEET NO.
 1

 PROJECT NO.
 120470.01

 DATE
 11 July 2014

 BY
 ARGouveia

 $\mathsf{F'_L}$

(Lb/rt)^2

35

66.85764

ksi

				CHECKED E	BY		_
WT Web Thickness: WT Area:	t _{wwt} A _{wt}	0.31 5.58	in in ²	Channel Polar Mom. of Inertia, x	J_{wt}	0.398	in ^c
Pre-Loading Conditions	· wt	5.55					
Pre-Load Moment	M_{xi}	419.3282	kip.ft	Stress due to Pre-Load Mom.	f_{bxi}	56.60223	ks
LTB Coefficient:	C _{bi}	1.220437					
Individual Section Propert	ies						
W-Section:							
Neutral Axis	\mathbf{y}_{w}	16.05	in	Tension Flange Mom. Inertia, y	I_{fy}	3645	in
Tension Side Plate:							
Area	A_{tp}	0	in ²	Tension Flange Mom. Inertia, y	I_{tpy}	0	in
Polar Moment of Inertia	${\sf J}_{\sf tp}$	0	in⁴	Tension Flange Mom. Inertia, x	I_{tpx}	0	in
Neutral Axis:	\mathbf{y}_{tp}	0	in				
Compression Side Plate:							
Area	A_{cp}	0	in ²	Tension Flange Mom. Inertia, y	I_{cpy}	0	inʻ
Polar Moment of Inertia	J_{cp}	0	in⁴	Tension Flange Mom. Inertia, x	I_{cpx}	0	in
Neutral Axis:	y_{cp}	18	in				
Built Up Section Propertie	s						
Total Area:	A_{TOT}	20.28	in ²	Neutral Axis:	Υ	12.0576	in
Depth:	D	25.05	in	ccomp:	c_{comp}	12.9924	in
h0	h_0	17.43	in	ctens:	c_{tens}	12.0576	
Moment of Inertia, x	I_{x}	1674.866	in⁴	Moment of Inertia, y:	I_y	53.4	in
Polar Moment of Inertia	J	1.638	in ⁴	Value used if J > 0:	J'	1.638	in
Radius of Gyration, x	r_{x}	9.087744	in	Section Modulus Comp., x	S_{xcomp}	128.911	in
Radius of Gyration, y:	r_y	1.62	in	Section Modulus Tension, x	S_{xtens}	138.905	in'
Plastic Modulus'	Z' _x	105.3997	in³	Plastic Modulus	Z_{x}	236.5855	in
AISC Specifications							
F4-12	a_w	1.333		F4-7	L_p	3.58	ft
F4-11	r_{t}	1.468	in	F4-6a	F_L	35	ks

file: https://d.docs.live.net/d24e50bed4b71ef0/Documents/2. Career/SGH/Design of Reinforcement for Steel

Members

F4-8

F4-5

 L_{r}

 F_{cr}

12.420 ft

4289.145 ksi

F4-6B

Simpson Gumpertz & Heger Inc. Consulting Engineers

ATRIUM	
STEEL DESIGN	

 SHEET NO.
 1

 PROJECT NO.
 120470.01

 DATE
 11 July 2014

 BY
 ARGouveia

 CHECKED BY

 M_{e0}

38787.07 kip.ft

Member Capacity

Original Member Capacity

Original Member, F4-5 F_{cr0} 5235.60 ksi Elastic LTB moment of reinf Reinforced Member J>0 F'_{cr} 4289.14 ksi member, full length:

Modified LTB for Partial Elastic LTB moment of original

Modified LTB for Partial Length Reinforcement: C'_b 0.051 Elastic LTB moment of original member: M_{er} 46076.59 kip.ft Factor β_{LTB} 0.051

Reinforced Member Capacity, Specification F4

Mp M_p 859.41 kip.ft Myc, F4-4 M_{yc} 537.13 kip.ft

<u>Compression Flange Yielding</u> <u>Tension Flange Yielding</u>

Lateral Torsional Buckling

F4-2/F4-3 M_{nLTB} 859.41 kip.ft

Reinforced Section Capacity Section Demand

 ϕMn ϕM_n 773.47 kip.ft M_u 441.8 kip.ft DCR % 0.57 %

file: https://d.docs.live.net/d24e50bed4b71ef0/Documents/2. Career/SGH/Design of Reinforcement for Steel

Members