NIS is used to determine the consistency of designed Filter. For calculating NIS I used below formula:

Normalized Innovation Squared (NIS)
$$\varepsilon = (z_{k+1}-z_{k+1|k})^T \cdot S_{k+1|k}^{-1} \cdot (z_{k+1}-z_{k+1|k})$$

Step for calculating NIS:

- 1. Calculated NIS using the above formula for both Laser as well as Radar.
- 2. Created and saved the calculated NIS_laser and NIS_radar text files.
- 3. Changed the noise_ax and noise_ay values which eventually impacts the process noise and finally the NIS values.
- 4. Calculated NIS with noise_ax and noise_ay set to 9 as well as 5.
- 5. Plotted the NIS values for Laser, with degree of freedom 2 and compared against chi squared distribution value of 5.991 (5%).
- 6. Plotted the NIS values for Radar, with degree of freedom 3 and compared against chi squared distribution value of 7.81 (5%).

$\varepsilon \sim \chi^2$					
C	df	X ² 950	X ² 900	X ² 100	X ² 050
	1	0.004	0.016	2.706	3.841
n R	2	0.103	0.211	4.605	5.991
	3	0.352	0.584	6.251	7.815
	4	0.711	1.064	7.779	9.488
	5	1.145	1.610	9.236	11.070

7. To review all the NIS values for both Laser and Radar with different noise_ax and noise_ay check Folder NIS Calculations.