Lösungsvorschläge zum Übungsblatt 8

zur Vorlesung Mannigfaltigkeiten

Sommersemester 2016

- **Aufgabe 1.** (a) $\exp: \mathfrak{g} \to G$ hat die Eigenschaften $\frac{\mathrm{d}}{\mathrm{d}t}\big|_{t=0} \exp(tX) = X$ für alle $X \in \mathfrak{g}$ und $\exp(0) = 1_G$. Wegen der Kettenregel gilt $\mathrm{d}\exp_0(X) = \frac{\mathrm{d}}{\mathrm{d}t}\big|_{t=0} \exp(tX) = X$, d.h. $\mathrm{d}\exp_0 = \mathrm{id}_{\mathfrak{g}}$. Laut dem Umkehrsatz gibt es offene Mengen $U \subset \mathfrak{g}$ und $V \subset G$ s.d. $\exp|_U: U \to V$ ein Diffeomorphismus ist.
- (b) Da exp stetig ist, gibt es ein $\varepsilon > 0$ mit der Eigenschaft, daß $\exp(tv) \exp(tw) \in V$ für alle $t \in]-\varepsilon, \varepsilon[$. Betrachte nun die Funktion

$$\begin{split} \widetilde{f}:] - \varepsilon, \varepsilon [&\to \mathfrak{g} \\ t &\mapsto (\exp|_{U})^{-1} \left(\exp(tv) \exp(tw) \right). \end{split}$$

Diese Funktion ist glatt, $\widetilde{f}(0) = 0$ und $\widetilde{f}'(0) = v + w$. Laut Taylors Satz gilt $\widetilde{f}(t) = t(v+w) + o(t)$ für $t \to 0$; daher gilt die Behauptung mit

$$z(t) = \begin{cases} \frac{\tilde{f}(t) - t(v+w)}{t}, & t \neq 0 \\ 0 & t = 0 \end{cases}.$$

Aufgabe 2. (a) Schreibe λ_g für die linke Multiplikation in G mit $g \in G$ und Λ_h für die linke Multiplikation in H mit $h \in H$. Es gelten $X^v(g) = (\mathrm{d}\lambda_g)_{1_G}(v)$ für alle $g \in G$ und $X^{\mathrm{d}F_{1_G}(v)}(h) = (\mathrm{d}\Lambda_h)_{1_H}((\mathrm{d}F)_{1_G}(v))$ für alle $h \in H$. Bemerke, daß

$$dF_g(X^v(g)) = dF_g((d\lambda_g)_{1_G}(v)) = d(F \circ \lambda_g)_{1_G}(v).$$

Da F ein Homomorphismus ist, gilt $(F \circ \lambda_g)(\widetilde{g}) = F(g\widetilde{g}) = F(g)F(\widetilde{g}) = (\Lambda_{F(g)} \circ F)(\widetilde{g})$ für alle $\widetilde{g} \in G$; folglich gilt $d(F \circ \lambda_g)_{1_G}(v) = d(\Lambda_{F(g)} \circ F)_{1_G}(v) = (d\Lambda_{F(g)})_{1_H}(dF_{1_G}(v)) = X^{dF_{1_G}(v)}(F(g)).$

(b) Laut Teil (a) und Aufgabe 3 aus Übungsblatt 6 gilt

$$dF([X^v, X^w]) = [X^{dF_{1_G}(v)}, X^{dF_{1_G}(w)}];$$

ausgewertet auf 1_G ist diese Gleichung nichts anderes als

$$dF_{1_G}([v, w]_{\mathfrak{g}}) = [dF_{1_G}(v), dF_{1_G}(w)]_{\mathfrak{h}}.$$

(c) Die Kurve $t \mapsto c(t) := F(\exp^G(tv)) \in H$ ist glatt, hat die Eigenschaft $c(0) = 1_H$, und erfüllt die Gleichung

$$\dot{c}(t) = dF_{\exp^G(tv)}(X^v) = X^{dF_{1_G}(v)}(c(t)).$$

Andererseits erfüllt $t \mapsto c_1(t) := \exp^H(t(dF_{1_G}(v))) \in H$ dieselbe Gleichung und hat Anfangswert $c_1(0) = 1_H$. Daher gilt $c = c_1$ wegen Eindeutigkeit.

(d) Die Abbildung $F: \mathrm{GL}(n,\mathbb{R}) \to (\mathbb{R}^+,\cdot)$ gegeben durch $A \mapsto \det A$ ist ein glatter Homomorphismus. Außerdem sind $\exp^{\mathbb{R}^+} = e^\cdot$ und $\exp^{\mathrm{GL}(n,\mathbb{R})} = \exp(\cdot)$ (Matrix-Exponential). Daher gilt wegen Teil (c) und Aufgabe 3 aus Übungsblatt 2

$$\det(\exp(a)) = e^{\det_{1_G}(a)} = e^{\operatorname{tr}(a)}$$

für alle $a \in \mathfrak{gl}(n, \mathbb{R})$.

- **Aufgabe 3.** (a) Betrachte $X_1(x,y) := \partial_x$, $X_2(x,y) = \partial_x + y\partial_y$ und $Y(x,y) = \partial_y$. Wir berechnen $[X_1,Y] = 0$ und $[X_2,Y] = -\partial_y$. Daher ist $X_2(x,0) = \partial_x = X_1(x,0)$ und $(\mathcal{L}_{X_1}Y)_0 \neq (\mathcal{L}_{X_2}Y)_0$.
- (b) Der Fluß Φ^X ergibt sich aus dem Gleichungssystem $\dot{x}=x,\,\dot{y}=-y;$ daher gilt

$$\Phi_t^X(x,y) = \begin{pmatrix} e^t & 0\\ 0 & e^{-t} \end{pmatrix} \begin{pmatrix} x\\ y \end{pmatrix}.$$

Ähnlicherweise ergibt sich der Fluß Φ^Y aus dem Gleichungssystem $\dot{x}=y,\,\dot{y}=x\Rightarrow\ddot{x}=\dot{y}=x;$ folglich gilt

$$\Phi_t^Y(x,y) = \begin{pmatrix} \cosh t & \sinh t \\ \sinh t & \cosh t \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}.$$

Einerseits ist

$$\Phi^X_t \circ \Phi^Y_s = \begin{pmatrix} e^t \cosh s & e^t \sinh s \\ e^{-t} \sinh s & e^{-t} \cosh s \end{pmatrix};$$

andererseits

$$\Phi^Y_s \circ \Phi^X_t = \begin{pmatrix} e^t \cosh s & e^{-t} \sinh s \\ e^t \sinh s & e^{-t} \cosh s \end{pmatrix}.$$

Diese Matrizes sind genau dann gleich einander, wenn s = 0 oder t = 0.

Aufgabe 4. (a) Die Vektorfelder X und Y sind glatt, und für alle $(x, y, z) \in \mathbb{R}^3$ sind X(x, y, z) und Y(x, y, z) linear unabhängig, da

$$\alpha (\partial_x + yz\partial_z) + \beta \partial_y = 0 \Leftrightarrow \alpha \partial_x + \beta \partial_y + \alpha yz\partial_z = 0 \Rightarrow \alpha = \beta = 0.$$

Daher definiert $E_p = \operatorname{span}(X_p, Y_p)$ eine 2-dimensionale Distribution auf \mathbb{R}^3 .

(b) Betrachte die Untermannigfaltigkeit $\mathbb{R}^2 \times \{0\} \subset \mathbb{R}^3$. Für alle $(x, y, 0) \in \mathbb{R}^3$ gilt

$$T_{(x,y,0)}(\mathbb{R}^2 \times \{0\}) = \operatorname{span}\{ \partial_x|_{(x,y,0)}, \partial_y|_{(x,y,0)} \} = E_{(x,y,0)}.$$

- (c) Es gilt $[X,Y] = -z\partial_z$. Wenn $[X,Y]_p \in E_p$ wäre, gölte $aX + bY = [X,Y] = -z\partial_z$ für $ab \neq 0$, aber $a\partial_x + b\partial_y + ayz\partial_z = -z\partial_z \Rightarrow a = b = 0$. Folglich ist $[X,Y]_p \notin E_p$, d.h. E ist nicht integrabel.
- (d) Daß die Integrabilitätsbedingung des Satzes von Frobenius nicht gilt impliziert, daß nicht jeder Punkt von \mathbb{R}^3 eine Integralmannigfaltigkeit durch sich zuläßt. In diesem Fall gibt es durch jeden Punkt der Form $(x,y,0)\in\mathbb{R}^3$ eine Integralmannigfaltigkeit.