第12章 分子发光分析法

- 荧光分析法 (Fluorescence Analysis)
- 磷光分析法 (Phosphorescence Analysis)
- 化学发光分析法 (Chemiluminescence Analysis)
- 生物发光分析法 (Bioluminescence Analysis)

第一部分

分子荧光分析法

Molecular Fluorescence Analysis

第一节 基本原理

荧光现象

一. 荧光磷光的产生

1)振动弛豫

——碰撞形式传递能量,从高振动能层至低振动能层,10-12 s

2) 内转换

不同电子能级的振动能层重叠时,电子可在<mark>重叠的能层之间</mark>通过振动耦合产生无辐射跃迁, 10-11--13 s

3) 外转换

受激分子<mark>与溶剂或其它分子相互作用</mark>发生能量转换而使荧光或磷光强度减弱甚至消失的过程,也称"熄灭"或"猝灭"

4) 系间跨跃

系间跨跃是发生在两个不同多重态之间的无辐射跃迁,如从S1到T1, 该跃迁是禁阻的。然而,当不同多重态的两个电子能层有较大重叠时, 可通过自旋-轨道耦合而产生无辐射跃迁,该过程称为系间跨跃。

激发态→基态的能量传递途径

电子处于激发态是不稳定状态,返回基态时,通过辐射跃迁(发光)和无辐射跃迁等方式失去能量;

激发态停留时间短、返回速度快的途径,发生的几率大,发光 强度相对大;

<mark>荧光: 10⁻⁷~10⁻⁹ s</mark>,第一激发单重态的最低振动能级→基态;

<mark>磷光: 10-4~10 s</mark>; 第一激发三重态的最低振动能级→基态;

荧光的产生

- 基态分子吸收外界激发光,发生能级跃迁至各个激 发态
- 激发态不稳定,通过振动驰豫和内转换,回迁至第一电子激发态的最低振动能层
- 由此向基态的各个振动能层回迁的过程中,以发射 电磁辐射的方式释放能量,即为荧光

$$S_1^{\nu_0} \to S_0^{\nu_i}$$

二.激发光谱和发射光谱

激发光谱

- ——选择荧光的最大发射波长λem为测量波长
- ——改变激发光波长,测量荧光发射强度的变化
- ——以激发光波长为横坐标,以荧光强度为纵坐标,作图

发射光谱

- ——选择最大激发波长λex为激发波长
- ——扫描测量不同荧光发射波长下对应的荧光发射强度
- ——以发射波长为横坐标,以荧光强度为纵坐标,作图

荧光 强度

特点:

——λem > λex Stock 位移

——荧光光谱形状与激发波长无关

——镜像规则

——激发光谱与吸收光谱密切联系,<mark>意义相同,形状相似,坐</mark> 标不同

三. 产生荧光的条件

- 强(紫外-可见)光吸收 ε 较高, $\pi \to \pi^*$ 跃迁
- 一定的<mark>荧光量子产率</mark> φ (量子效率, 荧光效率)

●影响 φ的因素

- —— π 电子共轭度 \uparrow ,大 π 键范围 \uparrow , ϕ \uparrow
- ——刚性平面↑, φ↑
- ——给电子基团, -OH, -OR, -NH₂, p- π 共轭 ϕ ↑
- ——<mark>吸电子基团, -COOH, -C=O, -NO₂, -X, φ ↓ 猝</mark>灭

刚性平面结构

荧光素(Φ =0.92) 酚酞(Φ →0)

茐(Φ=1.0)

联苯 $(\Phi \rightarrow 0)$

〇

$$C$$
 H_2
 b

联苯

四. 荧光强度

● 定量关系

● 定量通式

$$I_f = KC$$

● 影响 I_f 的因素

——温度[↑], I_f ↓ (无辐射跃迁)

——溶剂

——pH值(影响存在形式)

——内滤和自吸

——荧光猝灭,猝灭剂,多种机理:碰撞,反应,三重态,电子转移

五. 定量方法

- 实际定量公式: I_f = KC + b
- 定量方法
 - ——标准曲线法
 - ——单标准对照法
- I_f单位——<mark>荧光强度</mark>(Fluorescence intensity)光强度/坎德拉cd
 - ——实验测定 I_f 已转化为电信号

通常无固定单位,或取任意单位(Arbitrary Unit)

同一实验,保持一致;不同实验,无可比性

——原因: K的多变性

第二节 荧光光谱仪

一. 组成

光源,单色器,样品池,检测器,信号显示记录装置

- 光源——氙灯、汞灯、激光器
- 单色器——光栅,滤光片
- 试样池——四面透光,石英
- 检测器——光电二极管,光电倍增管, 光子计数器,高灵敏CCD
- 信号显示记录装置——记录仪,计算机

紫外-可见分光光度计 测量池(吸收池)

荧光分光光度计 样品池

图4.30 某些带通玻璃滤光片的透射特性

荧光分析仪

紫外-可见分光光度计

两者差别:

- ——高强度光源
- ——直角光路
- ——四面透光样品池
- ——出射光加单色器

第三节 荧光分析法特点

- 灵敏度高
- ——通常高于紫外-可见法2-4个数量级(保守估计)
- ——激光诱导荧光(Laser induced fluorescence, LIF) 可达到单分子检测水平
- ----原因:

吸收光谱法: $A = KC = -lg(I/I_0)$ —— I_0 [↑], A不变

——<mark>亮背景下测定光减少</mark>

荧光法: $I_f = KC = K_1 I_0 C \longrightarrow I_0^{\uparrow}$, I_f 正比 ↑

——暗背景下测定光增加

- 选择性强——特征吸收、发射
- 试样量少
- 参数多——激发、发射光谱, 荧光强度, 荧光效率, 荧光寿命
- 局限性——具有天然荧光的物质不多,多数试样需标记或衍生化处理
- 在生物和生命分析中应用广泛

荧光染料表

	peak	Emission peak hwavelength (nm)		350 351 UV Argon	ę.	Fluorochrome	Excitation peak wavelength (nm)	Emission peak wavelength (nm)	
Alexa Fluor 350	346	442	Antibody labeling	400		Cascade Blue	372	456	Antibody labeling
Indo-1	350	405/480	Ca2+ (2-wavelength fluorescence)		/	BFP	380	440	Blue fluorescent protein
Hoechst 33342	355	465	A-T range of nucleic acid		()	DiOCs(3)	480	501	Endoplasmic reticulum
Hoechst 33258	365	465	A-T range of nucleic acid	450		DiO	484	501	Positive ionicity, tracer
4,6-diamidino-2- phenylindole HCI (DAPI)	372	456	A-T range of nucleic acid		//-	GFP	488	507	Green fluorescent protein
Lucifer yellow CH	430	535	Tracer, fixable	488 Argon		FM 1-4 3	488	520	Synapse, endoplasmic ret
Alexa Fluor 430		541	- // A	500		Cy2	489	506	Antibody labeling
	431		Antibody labeling			FITC	490	520	Antibody labeling
CFP	433,455	475,501	Cyanin fluorescent protein	543 Green HeNe	3	YOYO 1	490	510	DNA
Acridine orange	490	530/640	Single/double stained nucleic acid	550	/ // //	Alexa Fluor 488	495	519	Antibody labeling
Carboxy SNARF-1	490	580/630	pH indicator	568 Krypton	/// ///		1		
Calcein	495	520	Bone growth		18/1////		i i		
Marocyanine 540	500	572	Membrane potential		1//////	BCECF-AM	500	530	pH indicator
Rhodamine 123	500	540	Mitochondria, Apoptosis		N/N///-	BODIPY FL	503	512	Antibody labeling
Calcium Green	506	526	pH indicator Bone growth Membrane potential Mitochondria, Apoptosis Calcium indicator	633 RedHeNe	## N/////	Propidium iodide	530	615	DNA, RNA
Fluo-3	506	526	Calcium indicator	650	 	Alexa Fluor 532	531	554	Antibody labeling
YFP	513	527	Yellow fluorescent protein		/ 	TRITC	541	572	Antibody labeling
		A manager	pH indicator		/ ////	Dil	550	565	Positive ionicity, tracer
Carboxy SNARF-1	530	1	(2-wavelength fluorecence)	700		СуЗ	552	565	Antibody labeling
Ethidium bromide	545	605	DNA, RNA		////	Alexa Fluor 568	578	603	Antibody labeling
Evans blue	550	610	Retrograde labeling	260000	111	Alexa Fluor 594	590	617	Antibody labeling
RFP (DsRed)	558	583	Red fluorescent protein	750nm 750 diode laser	_// //_	Texas Red	596	620	Antibody labeling
Pararosaniline-Feulgen	560	625	DNA	750 Glode laser	11-	Cy5	650	667	Antibody labelling
NAME OF A PROPERTY OF THE PARTY OF		-			1 -	Cy7	743	767	Antibody labeling

绿色荧光蛋白(Green Fluorescent Protein, GFP)

2008 年诺贝尔化学奖授予下村修(Osamu Shimomura)、马丁•沙尔菲(Martin Chalfie)和钱永健(Roger Y. Tsien)三人,以表彰他们"发现和发展了绿色荧光蛋白质"技术。

美、德三名科学家 分享2014年诺贝尔化学奖

瑞典皇家科学院当地时间10月8日宣布

挨里克・贝齐格 美国科学家

斯特凡・黑尔 德国科学家

威廉・莫纲 美国科学家

获奖理由 发展超分辨率荧光显微镜所作的贡献

今年诺贝尔化学奖奖金共800万瑞典克朗(约合111万美元),将由三位获奖者平分

Eric Betzig

Stefan V. Hell

Prize share: 1/3 Prize share: 1/3

Villian E. **L**oerner

光学显微镜的极限

光衍射而形成圆孔衍射图样——"爱里斑"(Airy Disk)(阿贝)爱里斑的直径决定了理想光学系统的最高分辨率 在光学显微镜中,这个数值大概是光波波长的小一半,0.2微米 = 200纳米。

(A), (B)爱里斑; (C)分辨率及瑞利判据

电子显微镜(分辨率能达到0.2纳米) 电子显微镜也是遵循衍射规律的。不同的是电子波长比光波短1000倍。

- 莫纳是第一个能够探测单个荧光分子的人
- 1989 年观测到单个荧光分子
- 1997年发现变异的绿色荧光蛋白可以随意打开和 关闭,当他用波长 488nm 的光线去激发某种蛋白 质时,它开始发出荧光,但一会荧光就消失了。此 后不管他再使用任何光线去照射它,这个蛋白质都 无法再发出荧光。
- 但是,当他用波长为 405nm 的光线去照射它的时候,蛋白质又再次复活并发出荧光。莫纳将这些可以被激发的蛋白质融入溶胶,使其均匀分布在其中,这使得单个分子之间的距离就能大于阿贝衍射极限。

William E. Moerner

光激活定位显微镜(Photoactivated localization microscopy, PALM)技术

Eric Betzig

光激活定位显微镜(Photoactivated localization microscopy, PALM)技术

溶酶体膜在不同显微镜下的成像结果。(左)传统光学显微镜成像;(中)光激活定位显微镜成像;(右)放大的光激活定位显微镜成像。

庄小威发明超分辨率显微镜(STORM, stochastic optical reconstruction microscopy)

STED(受激发射损耗, stimulated emission depletion)荧光成像技术技术

STED显微镜原理

在传统光学显微镜下, 分辨率低于0.2微米

3 最后成像的分辨率大大提高

2 扫描整个样品

1 在STED显微镜下, 只有纳米体积内的 荧光分子有效

Stefan W. Hell

第二部分 化学发光分析法 Chemiluminescence Analysis

- <mark>定义</mark>——利用化学反应过程中产生的化学能 提供分子激发的能量所产生的发光。
- 条件——反应释放能量
 - ——能量可为物质所接受而激发
 - —— 有一定的发光效率
- 种类——直接:

$$A + B \rightarrow D + C^* \rightarrow C + h\gamma$$

Luminol(化学发光试剂)+H₂O₂+OH-→蓝光

Luminol(化学发光试剂)+H₂O₂+OH-→蓝光

种类

——间接:

$$A + B \rightarrow D + C^*$$

 $C^* + F \rightarrow C + F^* \rightarrow F + h\gamma$

如光棒

荧光颜料+过氧草酸酯+过氧化氢

——生物发光

Mg²⁺ + ATP + 荧光素 +荧光素酶 +O₂ → 562 nm

化学发光检测仪——微光测量仪

组成——流通样品池,检测器,信号显示记录装置

化学发光分析法特点

- ——灵敏度高(背景极低)
- ——应用范围有限
- ——通常发光时间短(数秒)
- ——多数试样需标记或衍生化

作业

1. P413, 2

- 2. 为什么分子荧光分析法的灵敏度通常比分子吸收法的要高?
- 3. 简述上转换发光材料的特点和应用?