Konečné automaty Deterministický konečný automat Nedeterministický konečný automat Ukázka výpočtu Použíté zdroje

Typografie a publikování Projekt č.5 - Konečné automaty

Karel Hanák

Vysoké učení technické v Brně Fakulta informačních technologií

4. května 2018

Obsah

- Monečné automaty
- Deterministický konečný automat
- 3 Nedeterministický konečný automat
- 4 Ukázka výpočtu
- Použité zdroje

Co je konečný automat?

Konečný automat model jednoduchého stroje, který se používá na rozhodnutí problému akceptování či zamítnutí slova z jazyka.

Co je konečný automat?

Konečný automat model jednoduchého stroje, který se používá na rozhodnutí problému akceptování či zamítnutí slova z jazyka.

Existují 2 základní druhy konečných automatů:

- Deterministický konečný automat
- Nedeterministický konečný automat

Co je konečný automat?

Konečný automat model jednoduchého stroje, který se používá na rozhodnutí problému akceptování či zamítnutí slova z jazyka.

Existují 2 základní druhy konečných automatů:

- Deterministický konečný automat
- Nedeterministický konečný automat

Věta (1)

Ke každému deterministickému konečnému automatu existuje ekvivalentní nedeterministický konečný automat.

Deterministický konečný automat - DFA

Definice (1)

DFA je uspořádaná pětice $(Q, \Sigma, \delta, q0, F)$, kde:

- Q je konečná neprázdná množina stavů
- Σ je konečná neprázdná abeceda
- ullet δ je přechodová funkce ve tvaru $Q imes \Sigma o Q$
- q0 je počáteční stav, pro který platí q0 ∈ Q
- ullet F je množina akceptujících stavů, pro kterou platí $F\subseteq Q$

DFA má pro každou dvojici stav a symbol pouze jeden přechod.

Nedeterministický konečný automat - NFA

Definice (2)

NFA je uspořádaná pětice $(Q, \Sigma, \delta, q0, F)$, kde:

- Q je konečná neprázdná množina stavů
- Σ je konečná neprázdná abeceda
- δ je přechodová funkce ve tvaru $Q \times \Sigma \cup \{\varepsilon\} \rightarrow 2^Q$
- q0 je počáteční stav, pro který platí q0 ∈ Q
- ullet F je množina akceptujících stavů, pro kterou platí $F\subseteq Q$

NFA může mít pro každou dvojici stav a symbol libovolný počet přechodů.

Ukázka výpočtu

Příklad 1

Mějme definován jazyk $L = \{a.b^*.c\}$ a vstupní slovo w = abbc. Níže je znázorněn výpočet DFA nad vstupním slovem.

Nejprve se provede pro dvojici (q0,a) přechod do q1.

Ukázka výpočtu 2

Příklad 1

Mějme definován jazyk $L = \{a.b^*.c\}$ a vstupní slovo w = abbc. Níže je znázorněn výpočet DFA nad vstupním slovem.

Dále se pro dvojici (q1,b) provede přechod do q1 dvakrát.

Ukázka výpočtu 3

Příklad 1

Mějme definován jazyk $L = \{a.b^*.c\}$ a vstupní slovo w = abbc. Níže je znázorněn výpočet DFA nad vstupním slovem.

Nakonec se pro dvojici (q1,c) provede přechod do akceptujícího stavu F a výpočet je u konce.

Použité zdroje

- Konečný automat https://matematika.cz/konecny-automat
- Nedeterministický konečný automat https://matematika.cz/nedeterministicky-konecny-automat