ECIE Etablissement de Moirans ZI Centr'alp 170, rue de Chatagnon

38430 Moimns RCS Grenoble 408 363 174

Tel.: +33 4 76 67 36 36 Fax: +33 4 76 55 90 88

Rapport d'essai / Test report

JDE: 104343 N° 61915-A1-R1-E

DELIVRE A / ISSUED TO

: FESYS

Parc des Ruires

3, rue Irène Joliot Curie

38320 EYBENS

Objet / Subject

: Essais de compatibilité électromagnétique conformément aux normes :

Electromagnetic compatibility tests according to the standards:

FCC CFR 47 Part 15, Subpart B.

ANSI C63.4 (2009)

Matériel testé / Apparatus under test :

Produit / Product

Télécommande de traçabilité / Traceability remote control

Marque / Trade mark

FESYS

Constructeur / Manufacturer

FESYS

Type / Model

RUID

N° de série / serial number

000005

FCC ID

YV2-RUID

Date des essais / Test date

: Le 25 Juillet 2010 et du 30 Décembre 2010 au 12 Janvier 2011 / July 25th

, 2010 and from December 30th, 2010 to January 12th, 2011

Lieu d'essai / Test location

: LCIE SUD-EST

ZI Centr'Alp - 170 rue de Chatagnon

38430 MOIRANS - France

Test réalisé par / Test performed by : Jonathan PAUC & Nathalie GAGNAIRE

document comporte / Composition of document: 31 pages

MOIRANS, LE 21 JANVIER 2011/JANUARY 21ST, 2011

Ecrit par / Written by

Anthony MERLIN & Nathalie GAGNAIRE

Approuvé par / Approvéd by ries electriques

OF SUD-EST

A Centr' Alp 170, Rue de Chatagnon

48430 MOIRANS

La reproduction de ce document n'est autorisée que sous sa forme intégrale. Toute réproduction partielle ou toute insertion de résultats dans un texte d'accompagnement en vue de leur diffusion doit recevoir un accord préalable et formel du LCJE. Ce document résulte d'essais effectués sur un spécimen, un échantillon ou une éprouvette. Il ne préjuge pas de la conformité de l'ensemble des produits fabriqués à l'opjet essayé. Sauf indication contraire, la décision de conformité prend en compte l'incertitude de mesures. Il ne préjuge en aucun cas d'une décision de certification.

This document shall not be reproduced, except in full, without t he written approval of the LCIE. This document contains results related only to the item tested. It does not imply the conformity of the whole production to the item tested . Unless otherwise specified; the decision of conformity takes into account the uncertainty of measures. This document does not anticipate any certification decision.

LCIE

53, av du Général Leclerc

Tél: +35 1 40 95 60 60

Société par Actions Simplifiée

Fax : +35 1 40 95 86 56

au capital de 15 745 984 € RCS Nanterre B 408 363 174

92266 Fontenay-aux-Roses cedex France

contact@lcie.fr www.lcie.fr

www.leie.com

Page: 2 / 31

SUMMARY

1.	TEST PROGRAM	3
	APPARATUS UNDER TEST: CONFIGURATION	
3.	MEASUREMENT OF CONDUCTED EMISSION (150KHZ-30MHZ)	7
4.	MEASUREMENT OF RADIATED EMISSION (30MHZ-2GHZ)	9
5.	TEST EQUIPMENT LIST	. 14
6.	UNCERTAINTIES CHART	. 15
7.	ANNEX 1 (GRAPHS)	. 16

Page: 3 / 31

1. TEST PROGRAM

Standard: - FCC Part 15, Subpart B (Digital Devices)

- ANSI C63.4 (2009)

EMISSION TEST	LIMITS		RESULTS (Comments)		
Limits for conducted disturbance at mains ports	Frequency	Quasi-peak value (dBµV)	Average value (dBµV)	PASS	
150kHz-30MHz	150-500kHz	66 to 56	56 to 46		
	0.5-5MHz	56	46		
	5-30MHz	60	50		
Radiated emissions 30MHz-12.5GHz*	88MHz-216Ml 216MHz-960N	m z : 40 dBμV/m Hz : 43.5 dBμV/m MHz : 46.0 dBμV/n Iz : 54.0 dBμV/m	PASS		

^{*§15.33:} The highest internal source of a testing device is defined like more the highest frequency generated or used in the testing device or on which the testing device works or agrees.

If the highest frequency of the internal sources of the testing device is above 1 GHz, measurement must be only performed until 5 times the highest frequency or 40 GHz, while taking smallest of both.

⁻ If the highest frequency of the internal sources of the testing device is lower than 108 MHz, measurement must be only performed until 1GHz.

⁻ If the highest frequency of the internal sources of the testing device ranges between 108 MHz and 500 MHz, measurement must be only performed until 2GHz (EUT frequency max: 416MHz).

⁻ If the highest frequency of the internal sources of the testing device ranges between 500 MHz and 1 GHz, measurement must be only performed until 5GHz.

Page: 4/31

2. APPARATUS UNDER TEST: CONFIGURATION

2.1. HARDWARE IDENTIFICATION (EUT AND AUXILIARIES):

Equipment under test (EUT):

RUID Serial Number: 000005

E.U.T.: RUID

Serial number: 000005

Power supply: FRIWO FW7662/05 (Output 5Vdc – 1.1A)

Inputs/outputs:

1 x USB port (for maintenance only, not tested)

- 1 x DC input
- 1 x Mini USB

• Cables:

1 x USB cable (2m)

Auxiliaries equipment used during test:

Laptop TOSHIBA SATELLITE PS141E-04YC sn: 13594938G

2.2. RUNNING MODE

Running mode 1: Bluetooth & Data Matrix (recording data)

Running mode 2: transfer data to PC by USB communication

Page: 5 / 31

2.3. EUT CONFIGURATION

Configuration 1:

Power supply: - Internal battery

Running mode1: - Bluetooth & Data Matrix

Configuration 2:

<u>Power supply</u>: - Power supply adapter <u>Running mode 1</u>: - Bluetooth & Data Matrix

Configuration 3:

Communication access: - USB

<u>Power supply</u>: - Power supply adapter EGSTON

Running mode 2: - Transfer data

Page: 6/31

2.4. EQUIPMENT MODIFICATIONS

Modifications performed for all tests.

1)

Conductive foam on chip

2) Capacitor C185 (value: $22\mu F$) on ESF for all tests except radiated emission in configuration 1

2.5. SPECIAL ACCESSORIES

None

Page: 7 / 31

3. MEASUREMENT OF CONDUCTED EMISSION (150kHz-30MHz)

3.1. TEST CONDITIONS

Date of test : December 30th, 2010 Test performed by : Jonathan PAUC

Humidity: 30%HR

3.2. SETUP FOR CONDUCTED EMISSIONS MEASUREMENT

The product has been tested according to ANSI C63.4-(2009) and FCC Part 15 subpart B.

The product has been tested with 120V/60Hz power line voltage and compared to the FCC Part 15 subpart B §15.107 limits. Measurement bandwidth was 9kHz from 150 kHz to 30 MHz.

The EUT with its auxiliaries are set on a non-conducting 80cm above the ground reference plane. The distance between the EUT and the LISN is 80cm. The EUT is 40cm away for the vertical ground plane.

The EUT is powered through a LISN (measure). Auxiliaries are powered by another LISN.

Measurement is made with a Rohde & Schwarz ESU8 receiver in peak mode. This was followed by a Quasi-Peak, i.e. CISPR measurement for any strong signal. If the average limit is met when using a Quasi-Peak detector, the EUT shall be deemed to meet both limits and measurement with the average detector is unnecessary. The LISN (measure and auxiliaries) is $50\Omega / 50\mu H$.

The Peak data are shown on plots in annex 1. Quasi-Peak and Average measurements are detailed in a table with frequencies and levels measured.

Interconnecting cables and equipment's were moved to position that maximized emission. A summary of the worst case emissions found in all test configurations and modes is shown on the following page.

Configuration #2

Configuration #3

3.3. DIVERGENCE, ADDITION OR SUPPRESSION ON THE TEST SPECIFICATION

None

Page: 8/31

3.4. MEASUREMENTS RESULTS

Configuration 2:

Mains terminals 120Vac/60Hz:

Measurements are performed on the phase (L1) and neutral (N) of the power line of the EUT.

Measure on L1: graph **Emc#1** (see annex 1)
Measure on N: graph **Emc#2** (see annex 1)

Configuration 3:

Mains terminals 120Vac/60Hz:

Measurements are performed on the phase (L1) and neutral (N) of the power line of the EUT.

Measure on L1: graph **Emc#3** (see annex 1)
Measure on N: graph **Emc#4** (see annex 1)

Mains terminals 120Vac/60Hz:

Measurements are performed on the phase (L1) and neutral (N) of the power line of the PC.

Measure on L1: graph **Emc#5** (see annex 1)
Measure on N: graph **Emc#6** (see annex 1)

RESULT: PASS

4. Measurement of Radiated Emission (30MHz-2GHz)

4.1. TEST CONDITIONS

Date of test : July 25th, 2010 December 30th, 2010 January 12th, 2011
Test performed by : Nathalie GAGNAIRE Jonathan PAUC Nathalie GAGNAIRE

Humidity: 38%HR 32%HR 30%HR

4.2. SETUP FOR RADIATED EMISSIONS MEASUREMENT

The installation of EUT is identical for pre-characterization measures in a 3 meters semi-anechoic chamber and for measures on the 10 meters Open site.

The EUT and auxiliaries are set on the non-conducting table of 80 cm height.

The EUT is powered by 230Vac/50Hz (PC and auxiliaries)

Pre-characterisation measurement:

A pre-scan of all the setup has been performed in a 3 meters semi-anechoic chamber. The distance between EUT and antenna is 3 meters. Test is performed in horizontal (H) and vertical (V) polarization. During the measurement, the EUT is rotated on a 360° range.

The pre-characterization graphs are obtained in PEAK detection.

For frequency band 1GHz to 2GHz, a search is performed in the semi-anechoic chamber in order to determine frequencies radiated by the EUT (Measuring distance reduced to 1m).

Radiated emission test setup for pre-characterisation

Configuration 1
Axis 1 (EUT V)

Configuration 2
Axis 1 (EUT V) & Axis 2 (EUT H)

Page: 9/31

Configuration 3
Axis 1 (EUT V) & Axis 2 (EUT H)

Characterization on 10 meters open site from 30MHz to 2GHz:

The product has been tested according to ANSI C63.4 (2009), FCC part 15 subpart B. Radiated Emissions were measured on an open area test site. A description of the facility is on file with the FCC.

The product has been tested at a distance of **10 meters** (30MHz to 1GHz) and **3 meters** (1GHz to 2GHz) from the antenna and corrected according to requirements of 15.109.e).

Results are compared to the FCC part 15 subpart B §15.109 limits.

Measurement bandwidth was 120kHz from 30 MHz to 1GHz and 1MHz from 1GHz to 2GHz.

Antenna height search was performed from 1m to 4m for both horizontal and vertical polarization. Continuous linear turntable azimuth search was performed with 360 degrees range.

Radiated emission test setup on open site area

Configuration 2
Axis 1 (EUT V) & Axis 2 (EUT H)

Page: 10/31

Configuration 3
Axis 1 (EUT V) & Axis 2 (EUT H)

4.3. DIVERGENCE, ADDITION OR SUPPRESSION ON THE TEST SPECIFICATION

None

Page: 11 / 31

RAPPORT D'ESSAI / TEST REPORT N° 61915-A1-R1-E

4.4. MEASUREMENTS RESULTS

Pre-characterisation measurement (30MHz-1GHz): pre-scan measurement at 3m (PEAK detection, graph examples)

Configuration 1 (Axis 1):

Polarisation H: graph **Emr#1** (see annex 1)
Polarisation V: graph **Emr#2** (see annex 1)

Configuration 2 (Axis 1):

Polarisation H: graph Emr#3 (see annex 1)
Polarisation V: graph Emr#4 (see annex 1)

Configuration 2 (Axis 2):

Polarisation H: graph **Emr#5** (see annex 1)
Polarisation V: graph **Emr#6** (see annex 1)

Configuration 3 (Axis 2):

Polarisation H: graph Emr#7 (see annex 1)
Polarisation V: graph Emr#8 (see annex 1)

Configuration 3 (Axis 1):

Polarisation H: graph **Emr#9** (see annex 1)
Polarisation V: graph **Emr#10** (see annex 1)

QUALIFICATION: 10 / 3 meters measurement on the Open Area Test Site.

Frequency list has been created with semi-anechoic chamber pre-scan results. Measurements are performed using a QUASI-PEAK detection.

Frequency range 30MHz to 1GHz:

Measurements are performed using a QUASI-PEAK detection (RBW=120kHz)

Worst case: Configuration 2 (Axis 1)

No	Frequency (MHz)	Limit Quasi-Peak (dBµV/m)	Measure Quasi-Peak (dBµV/m)	Margin (Mes-Lim) (dB)	Angle Table (deg)	Pol Ant.	Ht Ant. (cm)	Correc. factor (dB)	Comments
1	32.180	40.0	24.3	-15.7	260	V	150	13.6	
2	120.123	43.5	38.2	-5.3	280	V	100	16.6	
3	120.123	43.5	30.3	-13.2	90	Н	300	16.6	
4	228.036	46.0	31.3	-14.7	0	Н	350	14.6	
5	311.889	46.0	37.2	-8.8	0	Н	300	17.8	
6	311.894	46.0	41.7	-4.3	280	V	100	17.8	
7	552.618	46.0	40.9	-5.1	155	V	100	22.6	

Page: 12/31

RAPPORT D'ESSAI / TEST REPORT N° 61915-A1-R1-E

Worst case: Configuration 2 (Axis 2)

No	Frequency (MHz)	Limit Quasi-Peak (dBµV/m)	Measure Quasi-Peak (dBµV/m)	Margin (Mes-Lim) (dB)	Angle Table (deg)	Pol Ant.	Ht Ant. (cm)	Correc. factor (dB)	Comments
1	31.570	40.0	34.8	-5.2	0	V	100	14.2	
2	120.145	43.5	33.5	-10.0	280	V	100	16.6	
3	227.468	46.0	35.2	-10.8	115	Н	350	14.6	
4	259.926	46.0	40.1	-5.9	0	V	100	14.6	
5	312.151	46.0	27.6	-18.4	280	Н	250	17.8	
6	312.340	46.0	32.8	-13.2	280	V	100	17.8	
7	600.666	46.0	42.3	-3.7	180	V	100	23.2	

Worst case: Configuration 3 (Axis 1)

No	Frequency (MHz)	Limit Quasi-Peak (dBµV/m)	Measure Quasi-Peak (dBµV/m)	si-Peak (Mes-Lim)		Pol Ant.	Ht Ant. (cm)	Correc. factor (dB)	Comments
1	31.610	40.0	29.9	-10.1	(deg) 180	V	100	14.0	
2	39.960	40.0	29.5	-10.5	0	V	100	11.5	
3	265.806	46.0	29.4	-16.6	10	Н	350	15.0	
4	312.181	46.0	30.8	-15.2	0	V	100	17.8	

Worst case: Configuration 3 (Axis 2)

No	Frequency	Limit	Measure	Margin	Angle	Pol	Ht	Correc.	Comments
	(MHz)	Quasi-Peak Quasi-Peak		(Mes-Lim)	Table	Ant.	Ant.	factor	
		(dBµV/m)	(dBµV/m)	(dB)	(deg)		(cm)	(dB)	
1	31.563	40.0	32.3	-7.7	0	V	100	14.0	
2	35.925	40.0	27.1	-12.9	0	V	100	11.7	
3	299.613	46.0	26.8	-19.2	350	V	100	17.6	
4	486.068	46.0	30.9	-15.1	0	V	100	21.6	

Note: Measures have been done at 10m distance and corrected according to requirements of 15.109.e) (M@3m = M@10m+10.5dB)

Frequency range 1GHz to 2GHz:

Measurements are performed using a PEAK and Average detection. (RBW = 1MHz)

No	Frequency	Limit	Limit	Limit	Measure	Margin	Angle	Pol	Ht	Correc.	Comments		
	(MHz)	Quasi-Peak	Quasi-Peak	(Mes-Lim)	Table	Ant.	Ant.	factor					
		(dBµV/m)	(dBµV/m) (dB) (deg				(cm)	(dB)					
	No significant frequency observed												

Note: Measures have been done at 3m distance.

RESULT: PASS

Page: 13/31

RAPPORT D'ESSAI / TEST REPORT N° 61915-A1-R1-E

4.5. Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follow:

FS = RA + AF + CF - AG

Where FS = Field Strength

RA = Receiver Amplitude AF = Antenna Factor CF = Cable Factor AG = Amplifier Gain

Assume a receiver reading of 52.5dBµV is obtained. The antenna factor of 7.4 and a cable factor of 1.1 is added. The amplifier gain of 29dB is subtracted, giving field strength of 32 dBµV/m.

 $FS = 52.5 + 7.4 + 1.1 - 29 = 32 dB\mu V/m$

The 32 dB μ V/m value can be mathematically converted to its corresponding level in μ V/m.

Level in $\mu V/m = Common Antilogarithm [(32dB<math>\mu V/m)/20] = 39.8 \mu V/m$.

Page: 14/31

5. TEST EQUIPMENT LIST

USED	N°LCIE	TYPE	COMPANY	REF	CAL_DATE	CAL_DUE	
x	Radiated e	mission measurement (Pre-character	ization)			l .	
х	A7102024	Amplifier 8 GHz	HEROTEK	A1080304A	10/09	10/10	
х	A7486006	Amplifier 0.1MHz – 1300 MHz	HEWLETT PACKARD	8447F	04/10	04/11	
х	C2040145	Antenna Bi-Log XWing	TESEQ	CBL6144	03/10	03/12	
х	C2040146	Antenna Bi-Log XWing	TESEQ	CBL6144	03/10	03/12	
х	C2042027	Antenna horn	EMCO	3115	09/09	09/10*	
х	A5329045	Cable	-	-	12/09	12/10	
х	A5329056	Cable	-	-	02/10	02/11	
Х	A5329057	Cable	-	=	02/10	02/11	
х	A5329183	Cable	-	-	02/10	02/11	
х	A5329189	Cable	UTIFLEX	-	02/10	02/11	
х	D3044016	Semi-Anechoic chamber #1	SIEPEL	-	08/09	08/10*	
х	D3044015	Semi-Anechoic chamber #2	SIEPEL	-	08/09	08/10*	
х	A3169050	Radiated emission comb generator	BARDET	-	-	-	
х	A2642019	Receiver 20Hz – 8GHz	ROHDE & SCHWARZ	ESU8	10/10	10/11	
Х	A4060017	Spectrum analyzer	HEWLETT PACKARD	HP8568B	06/10	06/12	
х	A4060019	Spectrum analyzer display	HP85662A	06/10	06/12		
Х	F2000393	Turntable controller (Cage#2-3)	ETS Lingren	Model 2066	-	-	
х	F2000404	Turntable chamber (Cage#2)	ETS Lingren	Model 2165	-	-	
Х	F2000406	Turntable chamber (Cage#1)	MATURO Gmbh	TT 2.0 SI	-	-	
х	F2000407	Antenna mast (Cage#1)	AM 4.0	-	-		
Х	F2000408	Turntable controller (Cage#1)	MATURO Gmbh	Control Unit	-	-	
x	Radiated e	mission measurement (OATS)			•	•	
Х	A4049060	Adapter quasi-peak	HEWLETT PACKARD	HP85650A	06/10	06/12	
Х	C2040050	Antenna biconic	EMCO	3104C	01/10	01/11	
Х	C2040056	Antenna log-periodic	EMCO	3146	01/10	01/11	
Х	A5329188	Cable OATS (Mast at 10m)	UTIFLEX	=	05/10	05/11	
Х	A5329199	Cable OATS (Mast at 10m)	UTIFLEX	=	05/10	05/11	
Х	A4060030	Pre-selector RF	HEWLETT PACKARD	HP85685A	-	-	
Х	A2642019	Receiver 20Hz – 8GHz	ROHDE & SCHWARZ	ESU8	10/10	10/11	
х	A4060017	Spectrum analyzer	HEWLETT PACKARD	HP8568B	06/10	06/12	
Х	A4060019	Spectrum analyzer display	HEWLETT PACKARD	HP85662A	06/10	06/12	
Х	F2000372	Turntable / Mast controller (OATS)	ETS Lindgren	Model 2066	-	-	
Х	F2000403	Turntable (OATS)	ETS Lindgren	Model 2187	-	-	
x	Conducted	I measurement emission					
Х	A5329415	Cable	-	=	03/10	03/11	
х	D3044010	Faraday Cage	RAY PROOF	=	01/10	01/11	
Х	A3169049	Conducted emission comb generator	BARDET	<u> </u>	-	-	
Х	C2320068	LISN	EMCO	3825/2	05/10	05/11	
х	C2320123	LISN	RHODE & SCHWARZ	RHODE & SCHWARZ ENV216			
х	A7152030	Load 50Ω	-	-	05/10	05/11	
Х	A2642019	Receiver 20Hz – 8GHz	ROHDE & SCHWARZ	ESU8	10/10	10/11	

^{*} under derogation

Page: 15/31

6. **UNCERTAINTIES CHART**

Type de mesure / Kind of measurement	Incertitude élargie laboratoire / Wide uncertainty laboratory (k=2) ± x	Incertitude limite du CISPR / CISPR uncertainty limit± y
Mesure des perturbations conduites en tension sur le réseau d'énergie (triphasé) Measurement of conducted disturbances in voltage on the power port (three phases)	3.6 dB	3.6 dB
Mesure des perturbations conduites en tension sur le réseau d'énergie (monophasé) Measurement of conducted disturbances in voltage on the power port (single line)	3.57 dB	3.6 dB
Mesure des perturbations conduites en tension sur le réseau de télécommunication Measurement of conducted disturbances in voltage on the telecommunication port.	3.28 dB	A l'étude / Under consid.
Mesure des perturbations discontinues conduites en tension Measurement of discontinuous conducted disturbances in voltage	3.47 dB	3.6 dB
Mesure des perturbations conduites en courant Measurement of conducted disturbances in current	2.90 dB	A l'étude / Under consid.
Mesure du champ électrique rayonné sur le site en espace libre de Voiron Measurement of radiated electric field on the Voiron open area test site	5.07 dB	5.2 dB
Mesure du champ électrique rayonné IN SITU de 30 à 1000 MHz IN SITU measurement of radiated electric field from 30 to 1000MHz	A l'étude / Under consideration	5.2 dB
Mesure de la puissance perturbatrice / Measurement of disturbance power	3.37 dB	4.5 dB
Mesure des harmoniques de courant / Measurement of current harmonics	11.11%	1
Mesure du flicker / Flicker measurement	9.26%	/

Les valeurs d'incertitudes calculées du laboratoire étant inférieures aux valeurs d'incertitudes limites établies par le CISPR, la conformité de l'échantillon est établie directement par les niveaux limites applicables. / The uncertainty values calculated by the laboratory are lower than limit uncertainty values defined by the CISPR. The conformity of the sample is directly established by the applicable limits values.

Page: 16/31

7. ANNEX 1 (GRAPHS)

Page: 17/31

Page: 18/31

RAPPORT D'ESSAI / TEST REPORT N° 61915-A1-R1-E

N°d'offre/Nom de projet : **CONDUCTED EMISSIONS** Graph name: Emc#3 **Test configuration:** 120Vac/60Hz Voltage / Frequency: Configuration n°3 - Phase 120Vac 60Hz EN 55011 / Limite / Classe: EN55022/B Peak Measure **QPeak Limit** Line/Port: Phase1 **Average Measure** Average Limit RBW / VBW: 9kHz/Auto 100 dBµV 150kHz 30MHz Fréquence Frequency Peak Lim Avg Avg-LimAvg QPeak LimQPeak QPeak-LimQPeak Avg (MHz) 46.8 22.37 0.506 46 -23.63 41.36 56 -14.64 0.674 51.78 28.74 46 -17.26 44.52 56 -11.48 -16.72 -18.24 39.28 0.982 45.32 27.76 46 56 46.51 28.03 46 -17.97 -16.99 1.434 39.01 56 2.322 42.3 24.97 46 -21.03 35.55 -20.45 56

50

-32.28

27.94

60

-32.06

34.79 17.72

20.054

Page: 19/31

Page: 20 / 31

Page: 21 / 31

Page: 22 / 31

Page: 23 / 31

Page: 24/31

Page : 25 / 31

Page: 26 / 31

Page: 27 / 31

Page: 28 / 31

Page: 29 / 31

RADIATED EMISSIONS

Emr#9

0°-360°

55022/B

Horizontale

100kHz/300kHz

N°d'offre/Nom de projet :

Graph name : Azimuth :

Limite / Classe :

RBW/VBW:

100 dBµ√/m

Antenna position:

Test configuration:
Pol H - Config 3 Axe 2

Peak Measure QPeak Limit@3m

Page: 30 / 31

Peak (dBµV/m)
27.76
27.66
29.2
30.94
38.05

Fréquence (MHz)

Page: 31 / 31

N°d'c	offre/No	m de	proje	et :	1100	101										
Gran	h name	RADIA	AIED	_	mr#		V S		Tes	st configur	ation:					
Azim		•		_	°- 3				╡							
	e / Class					2/B			— Pol V - Config 3 Axe 2							
	na posi	tion :				ale				Daal- Mass			0D-	-1-1:	:46	20
KBW/	RBW/VBW:				UKI	1Z/3	SUU	kHz		Peak Meas	QPeak Limit@3m					
100 dBµ√/m	00															
	Jan Jalla		Mahade		Minde	, aq				The state of the s	Many All Mark	Mala	Mulia	J. Jan. Mayor	havadili	
								-1101	ray y Med							
0.																
	30MHz						*	Fréqu	ience (MHz))				*		1.001GHz
					П	Fre	an	ency (MHz)	Pea	k (dBuV/m	1)					
					F			35.52	. 04	36.23	-,					
					F			41.88		42.19						
					f			62.08		33.25						
								65.8		34.13						
							1	104.28		37.97						
								108.8		35.82						
								114		36.89						
								299.8		36.88						
								312		37.85						
								186.04		35.6						
								397.08		37.6						
							ξ	993.68		39.84						