Package 'radiant.multivariate'

July 8, 2016

Type Package
Title Multivariate analysis menu for Radiant. Builds on the radiant.data package
Version 0.5.2
Date 2016-6-29
Description Multivariate analysis menu for Radiant.
Depends R (>= 3.2.0), radiant.data (>= 0.5.2)
Imports shiny (>= 0.13.2.9003),
Suggests devtools (>= 1.8.0), testthat (>= 0.10.0), covr (>= 1.2.0)
<pre>URL https://github.com/radiant-rstats/radiant.multivariate, http: //vnijs.github.io/radiant/</pre>
BugReports https://github.com/radiant-rstats/radiant.multivariate/issues
License AGPL-3 file LICENSE
LazyData true
RoxygenNote 5.0.1
R topics documented:
carpet 2 city 3 city2 3

)		carpe
<u> </u>		Carne

	clean_loadings	4
	computer	4
	conjoint	5
	full_factor	6
	hier_clus	7
	kmeans_clus	8
	mds	9
	movie	10
	mp3	10
	plot.conjoint	11
	plot.full_factor	11
	plot.hier_clus	12
	plot.kmeans_clus	13
	plot.mds	14
	plot.pmap	14
	plot.pre_factor	15
	pmap	16
	pre_factor	17
	radiant.multivariate	18
	radiant.multivariate-deprecated	18
	retailers	18
	shopping	19
	store.full_factor	19
	store.kmeans_clus	20
	summary.conjoint	21
	summary.full_factor	21
	summary.hier_clus	22
	summary.kmeans_clus	23
	summary.mds	24
	summary.pmap	24
	summary.pre_factor	25
	the_table	26
	toothpaste	27
	tpbrands	27
Index		28

carpet Carpet cleaners

Description

Carpet cleaners

Usage

data(carpet)

Format

A data frame with 18 rows and 5 variables

city 3

Details

Rankings reflect the evaluation of 18 alternative carpet cleaners by one respondent. Description provided in attr(carpet, "description")

city

City distances

Description

City distances

Usage

data(city)

Format

A data frame with 45 rows and 3 variables

Details

Distance in miles between nine cities in the USA. The dataset is used to illustrate multi-dimensional scaling (MDS). Description provided in attr(city, "description")

city2

City distances 2

Description

City distances 2

Usage

data(city2)

Format

A data frame with 78 rows and 3 variables

Details

Distance in miles between 12 cities in the USA. The dataset is used to illustrate multi-dimensional scaling (MDS). Description provided in attr(city2,"description")

4 computer

clean_loadings

Sort and clean loadings

Description

Sort and clean loadings

Usage

```
clean_loadings(floadings, cutoff = 0, fsort = FALSE, dec = 8)
```

Arguments

floadings Data frame with loadings

cutoff Show only loadings with (absolute) values above cutoff (default = 0)

fsort Sort factor loadings

dec Number of decimals to show

Details

```
See http://vnijs.github.io/radiant/marketing/full_factor.html for an example in Radiant
```

Examples

```
result <- full_factor("diamonds",c("price","carat","table","x","y"))
clean_loadings(result$floadings, TRUE, .5, 2)</pre>
```

computer

Perceptions of computer (re)sellers

Description

Perceptions of computer (re)sellers

Usage

```
data(computer)
```

Format

A data frame with 5 rows and 8 variables

Details

Perceptions of computer (re)sellers. The dataset is used to illustrate perceptual maps. Description provided in attr(computer, "description")

conjoint 5

	Conjoint analysis	conjoint
--	-------------------	----------

Description

Conjoint analysis

Usage

```
conjoint(dataset, rvar, evar, reverse = FALSE, data_filter = "")
```

Arguments

dataset	Dataset name (string). This can be a dataframe in the global environment or an element in an r_data list from Radiant
rvar	The response variable (e.g., profile ratings)
evar	Explanatory variables in the regression
reverse	Reverse the values of the response variable ('rvar')
data_filter	Expression entered in, e.g., Data > View to filter the dataset in Radiant. The expression should be a string (e.g., "price > 10000")

Details

See http://vnijs.github.io/radiant/marketing/conjoint.html for an example in Radiant

Value

A list with all variables defined in the function as an object of class conjoint

See Also

```
summary.conjoint to summarize results
plot.conjoint to plot results
```

```
result <- conjoint("mp3", rvar = "Rating", evar = "Memory:Shape")
result <- mp3 %>% conjoint(rvar = "Rating", evar = "Memory:Shape")
```

6 full_factor

full_factor	Factor analysis (PCA)
-------------	-----------------------

Description

Factor analysis (PCA)

Usage

```
full_factor(dataset, vars, method = "PCA", nr_fact = 1,
  rotation = "varimax", data_filter = "")
```

Arguments

dataset	Dataset name (string). This can be a dataframe in the global environment or an element in an r_data list from Radiant
vars	Variables to include in the analysis
method	Factor extraction method to use
nr_fact	Number of factors to extract
rotation	Apply varimax rotation or no rotation ("varimax" or "none")
data_filter	Expression entered in, e.g., Data > View to filter the dataset in Radiant. The expression should be a string (e.g., "price > 10000")

Details

```
See  http://vnijs.github.io/radiant/marketing/full\_factor.html \ for \ an \ example \ in \ Radiant
```

Value

A list with all variables defined in the function as an object of class full_factor

See Also

```
summary.full_factor to summarize results
plot.full_factor to plot results
```

```
result <- full_factor("diamonds",c("price","carat","table","x","y"))
result <- full_factor("diamonds",c("price","carat","table","x","y"), method = "maxlik")
result <- diamonds %>% full_factor(c("price","carat","table","x","y"), method = "maxlik")
```

hier_clus 7

hier_clus	Hierarchical cluster analysis	

Description

Hierarchical cluster analysis

Usage

```
hier_clus(dataset, vars, distance = "sq.euclidian", method = "ward.D",
   max_cases = 1000, data_filter = "")
```

Arguments

dataset	Dataset name (string).	This can be a dataframe in	the global environment or an

element in an r_data list from Radiant

vars Vector of variables to include in the analysis

distance Distance method Method

max_cases Maximum number of cases allowed (default is 1000)

expression should be a string (e.g., "price > 10000")

Details

See http://vnijs.github.io/radiant/marketing/hier_clus.html for an example in Radiant

Value

A list of all variables used in hier_clus as an object of class hier_clus

See Also

```
summary.hier_clus to summarize results
plot.hier_clus to plot results
```

```
result <- hier_clus("shopping", vars = "v1:v6")</pre>
```

8 kmeans_clus

kmeans_c	lus	٠

K-means cluster analysis

Description

K-means cluster analysis

Usage

```
kmeans_clus(dataset, vars, hc_init = TRUE, distance = "sq.euclidian",
  method = "ward.D", seed = 1234, nr_clus = 2, data_filter = "")
```

Arguments

dataset	Dataset name (string). This can be a dataframe in the global environment or an element in an r_data list from Radiant
vars	Vector of variables to include in the analysis
hc_init	Use centers from hier_clus as the starting point
distance	Distance for hier_clus
method	Method for hier_clus
seed	Random see to use for kmeans if hc_init is FALSE
nr_clus	Number of clusters to extract
data_filter	Expression entered in, e.g., Data > View to filter the dataset in Radiant. The expression should be a string (e.g., "price > 10000")

Details

See $http://vnijs.github.io/radiant/marketing/kmeans_clus.html \ for \ an \ example \ in \ Radiant$

Value

A list of all variables used in kmeans_clus as an object of class kmeans_clus

See Also

```
summary.kmeans_clus to summarize results
plot.kmeans_clus to plot results
store.kmeans_clus to add cluster membership to the selected dataset
```

```
result <- kmeans_clus("shopping", c("v1:v6"))</pre>
```

mds 9

mds

(Dis)similarity based brand maps (MDS)

Description

(Dis)similarity based brand maps (MDS)

Usage

```
mds(dataset, id1, id2, dis, method = "metric", nr_dim = 2, seed = 1234,
    data_filter = "")
```

Arguments

dataset	Dataset name (string). This can be a dataframe in the global environment or an element in an r_data list from Radiant
id1	A character variable or factor with unique entries
id2	A character variable or factor with unique entries
dis	A numeric measure of brand dissimilarity
method	Apply metric or non-metric MDS
nr_dim	Number of dimensions
seed	Random seed
data_filter	Expression entered in, e.g., Data $>$ View to filter the dataset in Radiant. The expression should be a string (e.g., "price $>$ 10000")

Details

```
See http://vnijs.github.io/radiant/marketing/mds.html for an example in Radiant
```

Value

A list of all variables defined in the function as an object of class mds

See Also

```
summary.mds to summarize results
plot.mds to plot results
```

```
result <- mds("city", "from", "to", "distance")
summary(result)
result <- mds("diamonds", "clarity", "cut", "price")
summary(result)</pre>
```

10 mp3

movie

Conjoint data for Movie theaters

Description

Conjoint data for Movie theaters

Usage

data(movie)

Format

A data frame with 18 rows and 6 variables

Details

Rankings reflect the evaluation of 18 alternative movie theaters by one respondent. Description provided in attr(movie, "description")

mp3

Conjoint data for MP3 players

Description

Conjoint data for MP3 players

Usage

data(mp3)

Format

A data frame with 18 rows and 6 variables

Details

Ratings reflect the evaluation of 18 alternative MP3 players by one respondent. Description provided in attr(mp3,"description")

plot.conjoint 11

nlot conjoint	Plot method for the conjoint function
plot.conjoint	Plot method for the conjoint function

Description

Plot method for the conjoint function

Usage

```
## S3 method for class 'conjoint'
plot(x, plots = "pw", scale_plot = FALSE,
    shiny = FALSE, ...)
```

Arguments

```
x Return value from conjoint

plots Show either the part-worth ("pw") or importance-weights ("iw") plot

scale_plot Scale the axes of the part-worth plots to the same range

shiny Did the function call originate inside a shiny app

further arguments passed to or from other methods
```

Details

See http://vnijs.github.io/radiant/marketing/conjoint.html for an example in Radiant

See Also

```
conjoint to generate results summary.conjoint to summarize results
```

Examples

```
result <- conjoint(dataset = "mp3", rvar = "Rating", evar = "Memory:Shape")
plot(result, scale_plot = TRUE)
plot(result, plots = "iw")</pre>
```

```
plot.full_factor
```

Plot method for the full_factor function

Description

Plot method for the full_factor function

Usage

```
## S3 method for class 'full_factor'
plot(x, shiny = FALSE, ...)
```

12 plot.hier_clus

Arguments

X	Return value from full_factor	
shiny	Did the function call originate inside a shiny app	
	further arguments passed to or from other methods	

Details

```
See http://vnijs.github.io/radiant/marketing/full_factor.html for an example in Radiant
```

See Also

```
full_factor to calculate results
plot.full_factor to plot results
```

Examples

```
result <- full_factor("diamonds",c("price","carat","table"))
plot(result)
result <- full_factor("computer","high_end:business")
summary(result)</pre>
```

plot.hier_clus

Plot method for the hier_clus function

Description

Plot method for the hier_clus function

Usage

```
## S3 method for class 'hier_clus'
plot(x, plots = c("scree", "change"), cutoff = 0.05,
    shiny = FALSE, ...)
```

Arguments

X	Return value from hier_clus
plots	Plots to return. "change" shows the percentage change in within-cluster heterogeneity as respondents are grouped into different number of clusters, "dendro" shows the dendrogram, "scree" shows a scree plot of within-cluster heterogeneity
cutoff	For large datasets plots can take time to render and become hard to interpret. By selection a cutoff point (e.g., 0.05 percent) the initial steps in hierarchical cluster analysis are removed from the plot
shiny	Did the function call originate inside a shiny app
	further arguments passed to or from other methods

plot.kmeans_clus 13

Details

See http://vnijs.github.io/radiant/marketing/hier_clus.html for an example in Radiant

See Also

```
hier_clus to generate results
summary.hier_clus to summarize results
```

Examples

```
result <- hier_clus("shopping", vars = c("v1:v6"))
plot(result, plots = c("change", "scree"), cutoff = .05)
plot(result, plots = "dendro", cutoff = 0)
shopping %>% hier_clus(vars = c("v1:v6")) %>% plot
```

plot.kmeans_clus

Plot method for kmeans_clus

Description

Plot method for kmeans_clus

Usage

```
## S3 method for class 'kmeans_clus'
plot(x, plots = "density", shiny = FALSE, ...)
```

Arguments

```
x Return value from kmeans_clus
plots One of "density", "bar", or "scatter")
shiny Did the function call originate inside a shiny app
... further arguments passed to or from other methods
```

Details

See http://vnijs.github.io/radiant/marketing/kmeans_clus.html for an example in Radiant

See Also

```
kmeans_clus to generate results
summary.kmeans_clus to summarize results
store.kmeans_clus to add cluster membership to the selected dataset
```

```
result <- kmeans_clus("shopping", vars = c("v1:v6"))
plot(result)
shopping %>% kmeans_clus(, vars = c("v1:v6")) %>% plot
```

14 plot.pmap

plot.mds

Plot method for the mds function

Description

Plot method for the mds function

Usage

```
## S3 method for class 'mds'
plot(x, rev_dim = "", fontsz = 1.3, ...)
```

Arguments

```
    x Return value from mds
    rev_dim Flip the axes in plots
    fontsz Font size to use in plots
    further arguments passed to or from other methods
```

Details

See http://vnijs.github.io/radiant/marketing/mds.html for an example in Radiant

See Also

```
mds to calculate results summary.mds to plot results
```

Examples

```
result <- mds("city","from","to","distance")
plot(result)
plot(result, rev_dim = 1:2)
plot(result, rev_dim = 1:2, fontsz = 2)</pre>
```

plot.pmap

Plot method for the pmap function

Description

Plot method for the pmap function

Usage

```
## S3 method for class 'pmap'
plot(x, plots = "", scaling = 2.1, fontsz = 1.3, ...)
```

plot.pre_factor 15

Arguments

Х	Return value from pmap
plots	Components to include in the plot ("brand", "attr"). If data on preferences is available use "pref" to add preference arrows to the plot
scaling	Arrow scaling in the brand map
fontsz	Font size to use in plots
	further arguments passed to or from other methods

Details

See http://vnijs.github.io/radiant/marketing/pmap.html for an example in Radiant

See Also

```
pmap to calculate results
summary.pmap to plot results
```

Examples

plot.pre_factor

Plot method for the pre_factor function

Description

Plot method for the pre_factor function

Usage

```
## S3 method for class 'pre_factor'
plot(x, plots = c("scree", "change"), cutoff = 0.2,
    shiny = FALSE, ...)
```

Arguments

x Return value from pre_factor

Plots to return. "change" shows the change in eigenvalues as variables are grouped into different number of factors, "scree" shows a scree plot of eigen-

values

16 pmap

cutoff	f For large datasets plots can take time to render and become hard to interpret. B	
	selection a cutoff point (e.g., eigenvalues of .8 or higher) factors with the least	
	explanatory power are removed from the plot	
shiny	Did the function call originate inside a shiny app	
	further arguments passed to or from other methods	

Details

```
See http://vnijs.github.io/radiant/marketing/pre_factor.html for an example in Radiant
```

See Also

```
pre_factor to calculate results
summary.pre_factor to summarize results
```

Examples

```
result <- pre_factor("diamonds",c("price","carat","table"))
plot(result)
plot(result, plots = c("change", "scree"), cutoff = .05)</pre>
```

pmap

Attribute based brand maps

Description

Attribute based brand maps

Usage

```
pmap(dataset, brand, attr, pref = "", nr_dim = 2, data_filter = "")
```

Arguments

dataset	Dataset name (string). This can be a dataframe in the global environment or an
	element in an r data list from Radiant

brand A character variable with brand names

attr Names of numeric variables

pref Names of numeric brand preference measures

nr_dim Number of dimensions

expression should be a string (e.g., "price > 10000")

Details

See $\verb|http://vnijs.github.io/radiant/marketing/pmap.html| for an example in Radiant| \\$

pre_factor 17

Value

A list of all variables defined in the function as an object of class pmap

See Also

```
summary.pmap to summarize results
plot.pmap to plot results
```

Examples

```
result <- pmap("computer","brand","high_end:business")</pre>
```

pre_factor

Evaluate if data are appropriate for PCA / Factor analysis

Description

Evaluate if data are appropriate for PCA / Factor analysis

Usage

```
pre_factor(dataset, vars, data_filter = "")
```

Arguments

dataset Dataset name (string). This can be a dataframe in the global environment or an

element in an r_data list from Radiant

vars Variables to include in the analysis

expression should be a string (e.g., "price > 10000")

Details

```
See \verb|http://vnijs.github.io/radiant/marketing/pre_factor.html| for an example in Radiant|
```

Value

A list with all variables defined in the function as an object of class pre_factor

See Also

```
summary.pre_factor to summarize results
plot.pre_factor to plot results
```

```
result <- pre_factor("diamonds",c("price","carat","table"))</pre>
```

18 retailers

```
radiant.multivariate radiant.multivariate
```

Description

radiant.multivariate

Launch Radiant in the default browser

Usage

```
radiant.multivariate()
```

Details

See http://vnijs.github.io/radiant for documentation and tutorials

```
radiant.multivariate-deprecated
```

Deprecated function(s) in the radiant.multivariate package

Description

These functions are provided for compatibility with previous versions of radiant. They will eventually be removed.

Usage

```
save_factors(...)
```

Arguments

Parameters to be passed to the updated functions

Details

save_factors is now a synonym for store.full_factor save_membership is now a synonym for store.kmeans_clus

retailers

Perceptions of retailers

Description

Perceptions of retailers

shopping 19

Usage

```
data(retailers)
```

Format

A data frame with 6 rows and 10 variables

Details

Consumer evaluations for a set of retailers in the Chicago area on 7 attributes. The dataset is used to illustrate perceptual maps. Description provided in attr(retailers, "description")

shopping

Shopping attitudes

Description

Shopping attitudes

Usage

```
data(shopping)
```

Format

A data frame with 20 rows and 7 variables

Details

Attitudinal data on shopping for 20 consumers. Description provided in attr(shopping, "description")

store.full_factor

Store factor scores to active dataset

Description

Store factor scores to active dataset

Usage

```
## S3 method for class 'full_factor'
store(object, ..., name = "")
```

Arguments

object Return value from full_factor

... Additional arguments

name Name of factor score variables

20 store.kmeans_clus

Details

See $http://vnijs.github.io/radiant/marketing/full_factor.html \ for \ an \ example \ in \ Radiant$

See Also

```
full_factor to generate results
summary.full_factor to summarize results
plot.full_factor to plot results
```

Examples

```
full_factor(shopping, "v1:v6", nr_fact = 3) %>%
  store %>%
  head
```

store.kmeans_clus

Add a cluster membership variable to the active dataset

Description

Add a cluster membership variable to the active dataset

Usage

```
## S3 method for class 'kmeans_clus'
store(object, ..., name = "")
```

Arguments

object Return value from kmeans_clus

... Additional arguments

name Name of cluster membership variable

Details

See Also

```
kmeans_clus to generate results
summary.kmeans_clus to summarize results
plot.kmeans_clus to plot results
```

```
kmeans_clus(shopping, vars = c("v1:v6")) %>% store %>% head
```

summary.conjoint 21

summary.conjoint

Summary method for the conjoint function

Description

Summary method for the conjoint function

Usage

```
## S3 method for class 'conjoint'
summary(object, mc_diag = FALSE, dec = 3, ...)
```

Arguments

object Return value from conjoint

mc_diag Shows multicollinearity diagnostics.

dec Number of decimals to show

... further arguments passed to or from other methods

Details

See http://vnijs.github.io/radiant/marketing/conjoint.html for an example in Radiant

See Also

```
conjoint to generate results plot.conjoint to plot results
```

Examples

```
result <- conjoint("mp3", rvar = "Rating", evar = "Memory:Shape")
summary(result, mc_diag = TRUE)
mp3 %>% conjoint(rvar = "Rating", evar = "Memory:Shape") %>% summary(., mc_diag = TRUE)
```

summary.full_factor

Summary method for the full_factor function

Description

Summary method for the full_factor function

Usage

```
## S3 method for class 'full_factor'
summary(object, cutoff = 0, fsort = FALSE, dec = 2,
...)
```

22 summary.hier_clus

Arguments

object Return value from full_factor

cutoff Show only loadings with (absolute) values above cutoff (default = 0)

fsort Sort factor loadings

dec Number of decimals to show

... further arguments passed to or from other methods

Details

```
See http://vnijs.github.io/radiant/marketing/full_factor.html for an example in Radiant
```

See Also

```
full_factor to calculate results
plot.full_factor to plot results
```

Examples

```
result <- full_factor("diamonds",c("price","carat","depth","table","x"))
summary(result)
summary(result, cutoff = 0, fsort = FALSE)
summary(result, cutoff = 0, fsort = TRUE)
summary(result, cutoff = .5, fsort = TRUE)
diamonds %>% full_factor(c("price","carat","depth","table","x")) %>% summary
diamonds %>% full_factor(c("price","carat","depth","table","x")) %>% summary(cutoff = .5)
```

summary.hier_clus

Summary method for the hier_clus function

Description

Summary method for the hier_clus function

Usage

```
## S3 method for class 'hier_clus'
summary(object, ...)
```

Arguments

object Return value from hier_clus
... further arguments passed to or from other methods

Details

```
See http://vnijs.github.io/radiant/marketing/hier_clus.html for an example in Radiant
```

summary.kmeans_clus 23

See Also

```
hier_clus to generate results
plot.hier_clus to plot results
```

Examples

```
result <- hier_clus("shopping", vars = c("v1:v6"))
summary(result)</pre>
```

summary.kmeans_clus

Summary method for kmeans_clus

Description

Summary method for kmeans_clus

Usage

```
## S3 method for class 'kmeans_clus'
summary(object, dec = 2, ...)
```

Arguments

object Return value from kmeans_clus
dec Number of decimals to show

... further arguments passed to or from other methods

Details

See $http://vnijs.github.io/radiant/marketing/kmeans_clus.html \ for \ an \ example \ in \ Radiant$

See Also

```
kmeans_clus to generate results
plot.kmeans_clus to plot results
store.kmeans_clus to add cluster membership to the selected dataset
```

```
result <- kmeans_clus("shopping", vars = c("v1:v6"))
summary(result)
shopping %>% kmeans_clus(vars = c("v1:v6"), nr_clus = 3) %>% summary
```

24 summary.pmap

 ${\tt summary.mds}$

Summary method for the mds function

Description

Summary method for the mds function

Usage

```
## S3 method for class 'mds'
summary(object, dec = 2, ...)
```

Arguments

object Return value from mds

dec Rounding to use for output (default = 2). +1 used for stress measure

... further arguments passed to or from other methods

Details

See http://vnijs.github.io/radiant/marketing/mds.html for an example in Radiant

See Also

```
mds to calculate results plot.mds to plot results
```

Examples

```
result <- mds("city", "from", "to", "distance")
summary(result)
summary(result, dec = 2)
city %>% mds("from", "to", "distance") %>% summary
```

summary.pmap

Summary method for the pmap function

Description

Summary method for the pmap function

Usage

```
## S3 method for class 'pmap'
summary(object, cutoff = 0, dec = 2, ...)
```

summary.pre_factor 25

Arguments

object Return value from pmap

cutoff Show only loadings with (absolute) values above cutoff (default = 0)

dec Rounding to use for output

... further arguments passed to or from other methods

Details

See http://vnijs.github.io/radiant/marketing/pmap.html for an example in Radiant

See Also

```
pmap to calculate results
plot.pmap to plot results
```

Examples

```
result <- pmap("computer","brand","high_end:business")
summary(result)
summary(result, cutoff = .3)
result <- pmap("computer","brand","high_end:dated", pref = c("innovative","business"))
summary(result)
computer %>% pmap("brand","high_end:dated", pref = c("innovative","business")) %>%
summary
```

summary.pre_factor

Summary method for the pre_factor function

Description

Summary method for the pre_factor function

Usage

```
## S3 method for class 'pre_factor'
summary(object, dec = 2, ...)
```

Arguments

object Return value from pre_factor
dec Rounding to use for output

... further arguments passed to or from other methods

Details

```
See http://vnijs.github.io/radiant/marketing/pre_factor.html for an example in Radiant
```

26 the_table

See Also

```
pre_factor to calculate results
plot.pre_factor to plot results
```

Examples

```
result <- pre_factor("diamonds",c("price","carat","table"))
summary(result)
diamonds %>% pre_factor(c("price","carat","table")) %>% summary
result <- pre_factor("computer","high_end:business")
summary(result)</pre>
```

the_table

Function to calculate the PW and IW table for conjoint

Description

Function to calculate the PW and IW table for conjoint

Usage

```
the_table(model, dat, evar)
```

Arguments

model Tidied model results (broom) output from conjoint passed on by summary.conjoint

dat Conjoint data

evar Explanatory variables used in the conjoint regression

Details

```
See http://vnijs.github.io/radiant/marketing/conjoint.html for an example in Radiant
```

See Also

```
conjoint to generate results
summary.conjoint to summarize results
plot.conjoint to plot results
```

```
result <- conjoint(dataset = "mp3", rvar = "Rating", evar = "Memory:Shape")
the_table(result$model, result$dat, result$evar)</pre>
```

toothpaste 27

toothpaste	Toothpaste attitudes
------------	----------------------

Description

Toothpaste attitudes

Usage

```
data(toothpaste)
```

Format

A data frame with 60 rows and 10 variables

Details

Attitudinal data on toothpaste for 60 consumers. Description provided in attr(toothpaste,"description")

tpbrands Toothpaste brands

Description

Toothpaste brands

Usage

data(tpbrands)

Format

A data frame with 45 rows and 4 variables

Details

Perceived (dis)similarity of a set of toothpaste brands. The dataset is used to illustrate multidimensional scaling (MDS). Description provided in attr(tpbrands,"description")

Index

```
*Topic datasets
                                                  radiant.multivariate-package
    carpet, 2
                                                           (radiant.multivariate), 18
    city, 3
                                                  retailers, 18
    city2, 3
                                                  save_factors
    computer, 4
                                                           (radiant.multivariate-deprecated),
    movie, 10
    mp3, 10
                                                  save_membership
    retailers, 18
                                                           (radiant.multivariate-deprecated),
    shopping, 19
                                                           18
    toothpaste, 27
                                                  shopping, 19
    tpbrands, 27
                                                  store.full_factor, 18, 19
                                                  store.kmeans_clus, 8, 13, 18, 20, 23
carpet, 2
                                                  summary.conjoint, 5, 11, 21, 26
city, 3
                                                  summary.full_factor, 6, 20, 21
city2, 3
                                                  summary.hier_clus, 7, 13, 22
clean_loadings, 4
                                                  summary.kmeans_clus, 8, 13, 20, 23
computer, 4
                                                  summary.mds, 9, 14, 24
conjoint, 5, 11, 21, 26
                                                  summary.pmap, 15, 17, 24
                                                  summary.pre_factor, 16, 17, 25
full_factor, 6, 12, 19, 20, 22
                                                  the_table, 26
hier_clus, 7, 12, 13, 22, 23
                                                  toothpaste, 27
                                                  tpbrands, 27
kmeans_clus, 8, 13, 20, 23
mds, 9, 14, 24
movie, 10
mp3, 10
plot.conjoint, 5, 11, 21, 26
plot.full_factor, 6, 11, 12, 20, 22
plot.hier_clus, 7, 12, 23
plot.kmeans_clus, 8, 13, 20, 23
plot.mds, 9, 14, 24
plot.pmap, 14, 17, 25
plot.pre_factor, 15, 17, 26
pmap, 15, 16, 25
pre_factor, 15, 16, 17, 25, 26
radiant.multivariate, 18
radiant.multivariate-deprecated, 18
radiant.multivariate-deprecated-package
        (radiant.multivariate-deprecated),
         18
```