CSDS 455: Homework 17

Shaochen (Henry) ZHONG, sxz517

Due and submitted on 10/21/2020 Fall 2020, Dr. Connamacher

Hi Kyle, I got one midterm comming so didn't invest as much of time on this as I used to. Sorry if the proofs is kind of sketchy.

Problem 1

 $I\ have\ consulted\ \texttt{https://www.ti.inf.ethz.ch/ew/lehre/GA10/lec-nfz-new-nopause.pdf}\ for\ this\ problem.$

I think it has something to do with Tutte's flow conjectures where every bridgeless graph has a 5-NZF. We already know that the sum of flow along any edge-cut of the graph is 0. So every bridgeless graph must admit a k-NZF. Then we push the k with Tutte's flow conjectures till k=5 as demonstrated in the referenced source.

The other way to think about it might be the fact that if G is 4-NZF, then the flow of an edge e of G is at most 3 and never 0. Assume e is an edge of verticies uv in G. Since G - e is bridgeless, this suggests G is at least 3-connected. So maybe by distributing the f(e) = 3 to each edge, we promote some edge e' to at most f(e') = 4 and therefore become 5-NZF. But I haven't fully rationalized how to do this flow re-distribution yet.

Problem 2

I have consulted http://www.people.vcu.edu/ \sim dcranston/slides/nowhere-zero-talk.pdf and Yuhui Zhang for this problem.

Let $G = G_1 \cup G_2$, say we have flow f_1, f_2 on G_1 and G_2 respectively. We extend f_1 to \hat{f}_1 by assigning weight 0 to edges $\in E(G) - E(G_1)$; and likewise, extend f_2 to \hat{f}_2 by by assigning weight 0 to edges $\in E(G) - E(G_2)$.

Let $f = \hat{f}_1 + k_1 \hat{f}_2$ which is a non-zero flow as f_1 and f_2 are non-zero. We know that $|f(e)| \le (k_1 - 1) + k_1(k_2 - 1) = k_1k_2 - 1$. The statement is therefore proven.