Singular Value Decomposition Matrix Computations — CPSC 5006 E

Julien Dompierre

Department of Mathematics and Computer Science Laurentian University

Sudbury, November 16, 2009

Singular Value Decomposition

- Diagonalization. Orthogonal diagonalization.
- The URV decomposition orthogonal spaces four fundamental subspaces
- The SVD existence properties.
- Pseudo-inverses and the SVD
- Use of SVD for least-squares problems
- Use of SVD as a theoretical tool
- Applications of the SVD
- Sections 2.5.1 2.5.5 and 5.5.1 5.5.4 of the textbook

Similar Matrices

Definition

Let A and B be square matrices of the same size. A is similar to B if there is an invertible matrix P such that $P^{-1}AP = B$, or equivalently, $A = PBP^{-1}$. Writing Q for P^{-1} , we have $Q^{-1}BQ = A$. So B is also similar to A, and we say simply that A and B are similar. Changing A into $P^{-1}AP$ is called a similarity transformation.

Example: Let

$$A = \begin{bmatrix} 2 & 0 \\ 1 & 1 \end{bmatrix}, B = \begin{bmatrix} -3 & 2 \\ -10 & 6 \end{bmatrix}, P = \begin{bmatrix} -2 & 1 \\ 3 & -1 \end{bmatrix}, P^{-1} = \begin{bmatrix} 1 & 1 \\ 3 & 2 \end{bmatrix}.$$

Then

$$P^{-1}AP = \left[\begin{array}{cc} 1 & 1 \\ 3 & 2 \end{array}\right] \left[\begin{array}{cc} 2 & 0 \\ 1 & 1 \end{array}\right] \left[\begin{array}{cc} -2 & 1 \\ 3 & -1 \end{array}\right] = \left[\begin{array}{cc} -3 & 2 \\ -10 & 6 \end{array}\right] = B.$$

Similar Matrices and Eigenvalues

Theorem (Theorem 4)

If $n \times n$ matrices A and B are similar, then they have the same characteristic polynomial and hence the same eigenvalues (with the same multiplicities).

Proof.

Let A and B be similar matrices. Hence there exists a matrix P such that $B = P^{-1}AP$. The characteristic polynomial of B is $det(B - \lambda I) = |B - \lambda I|$.

$$|B - \lambda I| = |P^{-1}AP - \lambda I| = |P^{-1}AP - P^{-1}\lambda IP|$$

= |P^{-1}(A - \lambda I)P| = |P^{-1}||A - \lambda I||P|
= |A - \lambda I|

The characteristic polynomials of A and B are identical. This means that their eigenvalues are the same.

Similar Matrices and Eigenvalues

Let A and B be similar matrices:

$$A = \left[\begin{array}{cc} 2 & 0 \\ 1 & 1 \end{array} \right], B = \left[\begin{array}{cc} -3 & 2 \\ -10 & 6 \end{array} \right].$$

The characteristic polynomial of A is

$$|A-\lambda I| = \begin{vmatrix} 2-\lambda & 0 \\ 1 & 1-\lambda \end{vmatrix} = (2-\lambda)(1-\lambda) = \lambda^2 - 3\lambda + 2.$$

The characteristic polynomial of B is

$$|B-\lambda I| = \begin{vmatrix} -3-\lambda & 2 \\ -10 & 6-\lambda \end{vmatrix} = (-3-\lambda)(6-\lambda)-(2)(-10) = \lambda^2-3\lambda+2.$$

Diagonalizable Matrices

Definition

A square matrix A is said to be **diagonalizable** if A is similar to a diagonal matrix, that is, there exists an *invertible* matrix P such that $A = PDP^{-1}$ where D is a diagonal matrix.

The Diagonalization Theorem

Theorem

Let A be an $n \times n$ matrix.

- (a) If A has n linearly independent eigenvectors, it is diagonalizable.
- (b) If A is diagonalizable, then it has n linearly independent eigenvectors.

In fact, $A = PDP^{-1}$, with D a diagonal matrix, if and only if the columns of P are n linearly independent eigenvectors of A. In this case, the diagonal entries of D are eigenvalues of A that correspond, respectively, to the eigenvectors in P.

In other words, A is diagonalizable if and only if there are enough eigenvectors to form a basis of \mathbb{R}^n . We call such a basis an **eigenvector basis**.

The Diagonalization Theorem

Proof.

Let A have eigenvalues $\lambda_1, ..., \lambda_n$, (which need not to be distinct), with corresponding *linearly independent* eigenvectors $v_1, ..., v_n$. Let P be the matrix having $v_1, ..., v_n$ as column vectors:

$$P = [v_1 \ v_2 \ \cdots \ v_n].$$

Since $Av_1 = \lambda_1 v_1$, ..., $Av_n = \lambda_1 v_n$, matrix multiplication in terms of columns gives

$$AP = A[v_1 \cdots v_n] = [Av_1 \cdots Av_n] = [\lambda_1 v_1 \cdots \lambda_n v_n]$$
$$= [v_1 \cdots v_n] \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_n \end{bmatrix} = P \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_n \end{bmatrix}$$

Since the columns of P are linearly independent, P is non singular and invertible. Thus

$$P^{-1}AP = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_n \end{bmatrix} = D.$$

To diagonalize an $n \times n$ matrix A, the diagonalization theorem can be implemented in four steps.

- **Step 1**: Find the eigenvalues of *A*.
- **Step 2**: Find *n* linearly independent eigenvectors of *A*. This is a critical step. If it fails, the diagonalization theorem says that *A* cannot be diagonalized.
- **Step 3**: Construct P from the n linearly independent eigenvectors in step 2.
- **Step 4**: Construct *D* from the **corresponding** eigenvalues.
- **Step 5 (Optional)**: Check that it works! *A* should be equal to PDP^{-1} . To avoid computing P^{-1} , simply verify that AP = PD.

Let

$$A = \left[\begin{array}{rrr} 1 & 3 & 3 \\ -3 & -5 & -3 \\ 3 & 3 & 1 \end{array} \right]$$

Step 1: Find the eigenvalues of *A*.

$$0 = \det(A - \lambda I) = \begin{vmatrix} 1 - \lambda & 3 & 3 \\ -3 & -5 - \lambda & -3 \\ 3 & 3 & 1 - \lambda \end{vmatrix}$$
$$= -\lambda^3 - 3\lambda^2 + 4 = -(\lambda - 1)(\lambda + 2)^2$$

The eigenvalues are $\lambda = 1$ and $\lambda = -2$ which is of multiplicity 2.

Step 2: Find *n* linearly independent eigenvectors of *A*. With $\lambda = 1$, the linear system to solve is

$$A - \lambda I = \begin{bmatrix} 0 & 3 & 3 \\ -3 & -6 & -3 \\ 3 & 3 & 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}.$$

Using Gaussian elimination, we get the row reduced echelon form

$$A - \lambda I = \begin{bmatrix} 0 & 3 & 3 \\ -3 & -6 & -3 \\ 3 & 3 & 0 \end{bmatrix} \approx \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}.$$

We deduced than $x_3 = r \in \mathbb{R}$, $x_2 = -r$ and $x_1 = r$. The eigenvector v_1 corresponding to the eigenvalue $\lambda = 1$ is

$$v_1 = r \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$$
.

With $\lambda = -2$, the linear system to solve is

$$A - \lambda I = \begin{bmatrix} 3 & 3 & 3 \\ -3 & -3 & -3 \\ 3 & 3 & 3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}.$$

Using Gaussian elimination, we get the row reduced echelon form

$$A - \lambda I = \begin{bmatrix} 3 & 3 & 3 \\ -3 & -3 & -3 \\ 3 & 3 & 3 \end{bmatrix} \approx \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$

We deduced than $x_3 = s \in \mathbb{R}$, $x_2 = r \in \mathbb{R}$ and $x_1 = -r - s$. The eigenvectors $v_{2,3}$ corresponding to the eigenvalue $\lambda = -2$ are

$$v_{2,3} = \begin{bmatrix} -r - s \\ r \\ s \end{bmatrix} = r \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix} + s \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$$

Step 3: Construct *P* from the 3 linearly independent eigenvectors in step 2.

$$P = \begin{bmatrix} v_1 & v_2 & v_3 \end{bmatrix} = \begin{bmatrix} 1 & -1 & -1 \\ -1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}.$$

Step 4: Construct *D* from the **corresponding** eigenvalues.

$$D = \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -2 \end{array} \right].$$

Step 5 (Optional): Check that it works! *A* should be equal to PDP^{-1} . To avoid computing P^{-1} , simply verify that AP = PD.

$$AP = \begin{bmatrix} 1 & 3 & 3 \\ -3 & -5 & -3 \\ 3 & 3 & 1 \end{bmatrix} \begin{bmatrix} 1 & -1 & -1 \\ -1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 2 \\ -1 & -2 & 0 \\ 1 & 0 & -2 \end{bmatrix}.$$

$$PD = \left[\begin{array}{rrr} 1 & -1 & -1 \\ -1 & 1 & 0 \\ 1 & 0 & 1 \end{array} \right] \left[\begin{array}{rrr} 1 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -2 \end{array} \right] = \left[\begin{array}{rrr} 1 & 2 & 2 \\ -1 & -2 & 0 \\ 1 & 0 & -2 \end{array} \right].$$

Power of a Matrix

For any diagonal matrix D

$$D = \begin{bmatrix} d_{11} & 0 & & 0 \\ 0 & d_{22} & & \\ & & \ddots & \\ 0 & & & d_{nn} \end{bmatrix}, \quad D^k = \begin{bmatrix} d_{11}^k & 0 & & 0 \\ 0 & d_{22}^k & & \\ & & \ddots & \\ 0 & & & d_{nn}^k \end{bmatrix}.$$

If A is similar to a diagonal matrix D under the similarity transformation $A = PDP^{-1}$, then

$$A^{k} = (PDP^{-1})^{k} = \underbrace{(PDP^{-1})\cdots(PDP^{-1})}_{k \text{ times}} = PD^{k}P^{-1}.$$

Symmetric Matrices

A **symmetric matrix** is a matrix such that $A^T = A$. Such a matrix is necessarily *square*. Its main diagonal entries are arbitrary, but its other entries occur in pairs — on opposite side of the diagonal.

Symmetric Matrices and Eigenvectors

$\mathsf{Theorem}$

If A is a symmetric matrix, then any two eigenvectors from different eigenspaces are orthogonal.

Proof.

Let v_1 and v_2 be eigenvectors that correspond to distinct eigenvalues, say λ_1 and λ_2 . To show that $v_1 \cdot v_2 = 0$, compute

$$\lambda_1 v_1 \cdot v_2 = (\lambda_1 v_1)^T v_2 = (Av_1)^T v_2 \quad \text{Since } v_1 \text{ is an eigenvector}$$

$$= (v_1^T A^T) v_2 = v_1^T (Av_2) \quad \text{Since } A^T = A$$

$$= v_1^T (\lambda_2 v_2) \quad \text{Since } v_2 \text{ is an eigenvector}$$

$$= \lambda_2 v_1^T v_2 = \lambda_2 v_1 \cdot v_2.$$

Hence $(\lambda_1 - \lambda_2)(v_1 \cdot v_2) = 0$. But $\lambda_1 - \lambda_2 \neq 0$, so $v_1 \cdot v_2 = 0$.

Orthogonal Diagonalization

Recall that an $n \times n$ matrix P is **orthogonal** if $P^{-1} = P^T$. The columns of P are pairwise orthogonal and are of length one.

Definition

A square matrix A is said to be **orthogonally diagonalizable** if there are an orthogonal matrix P and a diagonal matrix D such that

$$A = PDP^{-1} = PDP^{T}$$
.

Orthogonal Diagonalization

Theorem

An $n \times n$ matrix A is orthogonally diagonalizable if and only if A is a symmetric matrix.

Orthogonally diagonalizable \Rightarrow symmetric matrix.

Assume that A is orthogonally diagonalizable. Thus there exists an orthogonal matrix P and a diagonal matrix D such that $A = PDP^T$. Use the properties of transpose to get

$$A^{T} = (PDP^{T})^{T} = (P^{T})^{T}D^{T}P^{T} = PDP^{T} = A.$$

Thus A is symmetric.

Symmetric matrix \Rightarrow orthogonally diagonalizable.

This one is difficult.

To diagonalize an $n \times n$ symmetric matrix A, the orthogonal diagonalization theorem can be implemented in four steps.

- **Step 1**: Find the eigenvalues of *A*.
- **Step 2**: For each eigenvalue, find the corresponding eigenspace.

Find an orthonormal basis for this eigenspace. (Use the

Gram-Schmidt process if necessary.)

Step 3: Construct P from the n linearly independent eigenvectors in step 2.

Step 4: Construct *D* from the **corresponding** eigenvalues.

Step 5 (Optional): Check that it works! A should be equal to PDP^{T} .

$$A = \left[\begin{array}{rrr} 3 & -2 & 4 \\ -2 & 6 & 2 \\ 4 & 2 & 3 \end{array} \right]$$

Step 1: Find the eigenvalues of *A*.

$$0 = \det(A - \lambda I) = \begin{vmatrix} 3 - \lambda & -2 & 4 \\ -2 & 6 - \lambda & 2 \\ 4 & 2 & 3 - \lambda \end{vmatrix}$$
$$= -\lambda^3 + 12\lambda^2 - 21\lambda - 98 = -(\lambda + 2)(\lambda - 7)^2$$

The eigenvalues are $\lambda=-2$ and $\lambda=7$ which is of multiplicity 2.

Step 2: Find *n* linearly independent eigenvectors of *A*. With $\lambda = 7$, the linear system to solve is

$$A - \lambda I = \begin{bmatrix} -4 & -2 & 4 \\ -2 & -1 & 2 \\ 4 & 2 & -4 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}.$$

Using Gaussian elimination, we get the row reduced echelon form

$$A - \lambda I = \begin{bmatrix} -4 & -2 & 4 \\ -2 & -1 & 2 \\ 4 & 2 & -4 \end{bmatrix} \approx \begin{bmatrix} 1 & 1/2 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$

We deduced than $x_3=s\in {\rm I\!R}$, $x_2=r\in {\rm I\!R}$ and $x_1=-r/2+s$. The eigenvectors $v_{1,2}$ corresponding to the eigenvalue $\lambda=7$ are

$$v_{1,2} = \begin{bmatrix} -r/2 + s \\ r \\ s \end{bmatrix} = r \begin{bmatrix} -1 \\ 2 \\ 0 \end{bmatrix} + s \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$$

This basis may be converted via orthogonal projection to an orthogonal basis for the eigenspace.

$$z_{1} = v_{1} = \begin{bmatrix} -1 \\ 2 \\ 0 \end{bmatrix}$$

$$z_{2} = v_{2} - proj_{z_{1}}v_{2} = v_{2} - \frac{v_{2} \cdot z_{1}}{z_{1} \cdot z_{1}} z_{1}$$

$$= \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} - \frac{-1}{5} \begin{bmatrix} -1 \\ 2 \\ 0 \end{bmatrix} = \begin{bmatrix} 4/5 \\ 2/5 \\ 1 \end{bmatrix}$$

The vectors z_1 and z_2 can be normalized to get

$$u_1 = \begin{bmatrix} -1/\sqrt{5} \\ 2/\sqrt{5} \\ 0 \end{bmatrix}$$
 and $u_2 = \begin{bmatrix} 4/\sqrt{45} \\ 2/\sqrt{45} \\ 5/\sqrt{45} \end{bmatrix}$

With $\lambda = -2$, the linear system to solve is

$$A - \lambda I = \begin{bmatrix} 5 & -2 & 4 \\ -2 & 8 & 2 \\ 4 & 2 & 5 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}.$$

Using Gaussian elimination, we get the row reduced echelon form

$$A - \lambda I = \begin{bmatrix} 5 & -2 & 4 \\ -2 & 8 & 2 \\ 4 & 2 & 5 \end{bmatrix} \approx \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0.5 \\ 0 & 0 & 0 \end{bmatrix}.$$

We deduced than $x_3 = r \in \mathbb{R}$, $x_2 = -r/2$ and $x_1 = -r$. The eigenvector u_3 corresponding to the eigenvalue $\lambda = -2$ is

$$u_3 = r \begin{bmatrix} -1 \\ -1/2 \\ 1 \end{bmatrix} = \begin{bmatrix} -2/3 \\ -1/3 \\ 2/3 \end{bmatrix}.$$

Step 3: Construct *P* from the 3 linearly independent eigenvectors in step 2.

$$P = \begin{bmatrix} u_1 & u_2 & u_3 \end{bmatrix} = \begin{bmatrix} -1/\sqrt{5} & 4/\sqrt{45} & -2/3 \\ 2/\sqrt{5} & 2/\sqrt{45} & -1/3 \\ 0 & 5/\sqrt{45} & 2/3 \end{bmatrix}.$$

Step 4: Construct *D* from the **corresponding** eigenvalues.

$$D = \left[\begin{array}{ccc} 7 & 0 & 0 \\ 0 & 7 & 0 \\ 0 & 0 & -2 \end{array} \right].$$

Step 5 (Optional): Check that it works! A should be equal to PDP^{T} .

$$PDP^{T} = \begin{bmatrix} -1/\sqrt{5} & 4/\sqrt{45} & -2/3 \\ 2/\sqrt{5} & 2/\sqrt{45} & -1/3 \\ 0 & 5/\sqrt{45} & 2/3 \end{bmatrix} \begin{bmatrix} 7 & 0 & 0 \\ 0 & 7 & 0 \\ 0 & 0 & -2 \end{bmatrix} \begin{bmatrix} -1/\sqrt{5} & 2/\sqrt{5} & 0 \\ 4/\sqrt{45} & 2/\sqrt{45} & 5/\sqrt{45} \\ -2/3 & -1/3 & 2/3 \end{bmatrix} = \begin{bmatrix} 3 & -2 & 4 \\ -2 & 6 & 2 \\ 4 & 2 & 3 \end{bmatrix} = A$$

The Spectral Theorem for Symmetric Matrices

Theorem

An $n \times n$ symmetric matrix A has the following properties:

- a. A has n real eigenvalues, counting multiplicities.
- b. The dimension of the eigenspace for each eigenvalue λ equals the multiplicity of λ as a root of the characteristic equation.
- c. The eigenspaces are mutually orthogonal, in the sense that eigenvectors corresponding to different eigenvalues are orthogonal.
- d. A is orthogonally diagonalizable.

The set of eigenvalues of a matrix A is sometimes called the **spectrum** of A.

Spectral Decomposition

Let A be an $n \times n$ orthogonally diagonalizable matrix. A can be written as $A = PDP^{-1}$, where the columns of P are orthonormal eigenvectors u_1, \ldots, u_n of A and the corresponding eigenvalues $\lambda_1, \ldots, \lambda_n$ are in the diagonal matrix D. Then, we can write A as follow

$$A = \lambda_1 u_1 u_1^T + \lambda_2 u_2 u_2^T + \dots + \lambda_n u_n u_n^T.$$

Each term in this equation is an $n \times n$ matrix of rank 1. This representation of A is called a **spectral decomposition** of A because it breaks up A into pieces determined by the spectrum (eigenvalues) of A.

The Singular Values of an $m \times n$ Matrix

Let A be an $m \times n$ matrix. Then A^TA is symmetric and can be orthogonally diagonalized. Let $\{v_1,...,v_n\}$ be an orthonormal basis for \mathbb{R}^n consisting of normalized eigenvectors of A^TA , and let $\lambda_1,...,\lambda_n$ be associated eigenvalues of A^TA .

The eigenvalues of A^TA are all non negative and by renumbering, we may assume they are arranged in decreasing order $\lambda_1 > \lambda_2 > \cdots > \lambda_n$.

The **singular values** of an $m \times n$ matrix A are the square roots of the eigenvalues of A^TA , denoted by $\sigma_1 = \sqrt{\lambda_1}, \cdots, \sigma_n = \sqrt{\lambda_n}$ and arranged in decreasing order.

The singular values of A are the lengths of vectors Av_1, \dots, Av_n , where $\{v_1, \dots, v_n\}$ forms an orthonormal basis for \mathbb{R}^n consisting of eigenvectors of A^TA .

The Singular Values and Col Space

Theorem

Suppose $\{v_1, \dots, v_n\}$ is an orthonormal basis of \mathbb{R}^n consisting of eigenvectors of A^TA , arranged so that the corresponding eigenvalues of A^TA satisfy $\lambda_1 \geq \lambda_2 \geq \dots \geq \lambda_n$, and suppose A has r nonzero singular values. Then $\{Av_1, \dots, Av_n\}$ is an orthogonal basis for Col A, and rank A = r.

The singular Value Decomposition

The SVD decomposition of A involves an $m \times n$ "diagonal" matrix Σ of the form

$$\Sigma_{m \times n} = \left[\begin{array}{cc} D_{r \times r} & 0_{r \times n - r} \\ 0_{m - r \times r} & 0_{m - r \times n - r} \end{array} \right]$$

where D is an $r \times r$ diagonal matrix for some r not exceeding the smaller of m and n.

Theorem

Let A be an $m \times n$ matrix with rank r. Then there exists an $m \times n$ "diagonal" matrix Σ for which the diagonal entries in D are the first r singular values of A, $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_r > 0$, and there exist an $m \times m$ orthogonal matrix U and an $n \times n$ orthogonal matrix V such that

$$A = U\Sigma V^T$$
.

The singular Value Decomposition

Definition

Any factorization $A = U\Sigma V^T$, with U and V orthogonal, Σ as before, and positive diagonal entries in D, is called a **singular** value decomposition (or **SVD**) of A. The matrices U and V are not uniquely determined by A, but the diagonal entries of Σ are necessarily the singular values of A. The columns of U in such a decomposition are called **left singular vectors** of A, and the columns of V are called **right singular vectors** of A.

Method for the Singular Value Decomposition

To construct a singular value decomposition of a matrix A:

- Step 1. Find an orthogonal diagonalization of A^TA ; i.e. find the eigenvalues of A^TA and a corresponding orthonormal set of eigenvectors.
- Step 2. **Set up** V and Σ ; Arrange the eigenvalues of A^TA in decreasing order. The corresponding unit eigenvectors are the right singular vectors of A and form the columns of V. The square roots of the eigenvalues are the singular values. The nonzero singular values $\sigma_1, \cdots, \sigma_r$ are the diagonal entries of D. The matrix Σ is the same size of A, with D in its upper-left corner and with 0's elsewhere.
- Step 3. **Construct U**; The first r columns of U are the normalized vectors obtained from Av_1, \dots, Av_r . Add n-r columns in U to form an orthonormal basis.
- Step 4. (optional) **Check that it works!** A should be equal to $U\Sigma V^T$.

Singular Value Decomposition — Step 1

Find the SVD of the matrix $A = \begin{bmatrix} 2 & -1 \\ 2 & 2 \end{bmatrix}$.

Step 1. Find an orthogonal diagonalization of A^TA ; i.e. find the eigenvalues of A^TA and a corresponding orthonormal set of eigenvectors.

Step 1 is itself composed of 5 steps...

Step 1.1: Find the eigenvalues of A^TA .

Step 1.2: For each eigenvalue, find the corresponding eigenspace.

Find an orthonormal basis for this eigenspace. (Use the

Gram-Schmidt process if necessary.)

Step 1.3: Construct P from the n linearly independent eigenvectors in step 2.

Step 1.4: Construct *D* from the **corresponding** eigenvalues.

Step 1.5 (Optional): Check that it works! A^TA should be equal to PDP^T .

Step 1.1: Find the eigenvalues of A^TA .

$$A = \begin{bmatrix} 2 & -1 \\ 2 & 2 \end{bmatrix}, \quad A^{T}A = \begin{bmatrix} 8 & 2 \\ 2 & 5 \end{bmatrix}$$
$$A^{T}A - \lambda I = \begin{bmatrix} 8 - \lambda & 2 \\ 2 & 5 - \lambda \end{bmatrix}$$
$$\det(A^{T}A - \lambda I) = \lambda^{2} - 13\lambda + 36 = (\lambda - 9)(\lambda - 4)$$
$$\lambda_{1} = 9, \quad \lambda_{2} = 4.$$

Step 1.2: For each eigenvalue, find the corresponding eigenspace. For $\lambda_1 = 9$,

$$A^{T}A - 9I = \begin{bmatrix} -1 & 2 \\ 2 & -4 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
$$\begin{bmatrix} -1 & 2 \\ 2 & -4 \end{bmatrix} \approx \begin{bmatrix} -1 & 2 \\ 0 & 0 \end{bmatrix}$$

From row 2, we have $x_2 = r \in \mathbb{R}$. From row one, we have $-1x_1 + 2x_2 = 0$, then $x_1 = 2r$. The eigenspace is then

$$v_1 = r \begin{bmatrix} 2 \\ 1 \end{bmatrix}, r \in \mathbb{R}.$$

$$v_1 = \left[\begin{array}{c} 2/\sqrt{5} \\ 1/\sqrt{5} \end{array} \right].$$

Step 1.2: For each eigenvalue, find the corresponding eigenspace. For $\lambda_2 = 4$.

$$A^{T}A - 4I = \begin{bmatrix} 4 & 2 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
$$\begin{bmatrix} 4 & 2 \\ 2 & 1 \end{bmatrix} \approx \begin{bmatrix} 4 & 2 \\ 0 & 0 \end{bmatrix}$$

From row 2, we have $x_2 = r \in \mathbb{R}$. From row one, we have $4x_1 + 2x_2 = 0$, then $x_1 = -r/2$. The eigenspace is then

$$v_2 = r \begin{bmatrix} -1/2 \\ 1 \end{bmatrix}, r \in \mathbb{R}.$$

$$v_2 = \left[\begin{array}{c} -1/\sqrt{5} \\ 2/\sqrt{5} \end{array} \right].$$

Step 1.3: Construct P from the n linearly independent eigenvectors in step 2.

$$P = \left[\begin{array}{cc} 2/\sqrt{5} & -1/\sqrt{5} \\ 1/\sqrt{5} & 2/\sqrt{5} \end{array} \right]$$

Step 1.4: Construct *D* from the **corresponding** eigenvalues.

$$D = \left[\begin{array}{cc} 9 & 0 \\ 0 & 4 \end{array} \right]$$

Step 1.5 (Optional): Check that it works! A^TA should be equal to PDP^T .

$$A^TA = \left[\begin{array}{cc} 8 & 2 \\ 2 & 5 \end{array} \right] = \left[\begin{array}{cc} 2/\sqrt{5} & -1/\sqrt{5} \\ 1/\sqrt{5} & 2/\sqrt{5} \end{array} \right] \left[\begin{array}{cc} 9 & 0 \\ 0 & 4 \end{array} \right] \left[\begin{array}{cc} 2/\sqrt{5} & 1/\sqrt{5} \\ -1/\sqrt{5} & 2/\sqrt{5} \end{array} \right].$$

Step 2: Set up V and Σ ; Arrange the eigenvalues of A^TA in decreasing order. The corresponding unit eigenvectors are the right singular vectors of A and form the columns of V. The square roots of the eigenvalues are the singular values. The nonzero singular values $\sigma_1, \dots, \sigma_r$ are the diagonal entries of D. The matrix Σ is the same size of A, with D in its upper-left corner and with 0's elsewhere.

$$\sigma_1=\sqrt{\lambda_1}=\sqrt{9}=3$$
 and $\sigma_2=\sqrt{\lambda_2}=\sqrt{4}=2.$
$$\Sigma=\begin{bmatrix}3&0\\0&2\end{bmatrix}$$

$$V=P=\begin{bmatrix}2/\sqrt{5}&-1/\sqrt{5}\\1/\sqrt{5}&2/\sqrt{5}\end{bmatrix}$$

Step 3; Construct U; The first r columns of U are the normalized vectors obtained from Av_1, \dots, Av_r . Add n-r columns in U to form an orthonormal basis.

$$u_1 = \frac{1}{\sigma_1} A v_1 = \frac{1}{3} \begin{bmatrix} 2 & -1 \\ 2 & 2 \end{bmatrix} \begin{bmatrix} 2/\sqrt{5} \\ 1/\sqrt{5} \end{bmatrix} = \begin{bmatrix} 1/\sqrt{5} \\ 2/\sqrt{5} \end{bmatrix}$$
$$u_2 = \frac{1}{\sigma_2} A v_2 = \frac{1}{2} \begin{bmatrix} 2 & -1 \\ 2 & 2 \end{bmatrix} \begin{bmatrix} -1/\sqrt{5} \\ 2/\sqrt{5} \end{bmatrix} = \begin{bmatrix} -2/\sqrt{5} \\ 1/\sqrt{5} \end{bmatrix}$$

Since $\{u_1, u_2\}$ is a basis for \mathbb{R}^2 , let

$$U = \begin{bmatrix} 1/\sqrt{5} & -2/\sqrt{5} \\ 2/\sqrt{5} & 1/\sqrt{5} \end{bmatrix}$$

Step 4: (optional) Check that it works! A should be equal to $U\Sigma V^T$.

$$A = U\Sigma V'$$

$$= \begin{bmatrix} 1/\sqrt{5} & -2/\sqrt{5} \\ 2/\sqrt{5} & 1/\sqrt{5} \end{bmatrix} \begin{bmatrix} 3 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 2/\sqrt{5} & 1/\sqrt{5} \\ -1/\sqrt{5} & 2/\sqrt{5} \end{bmatrix}$$

$$= \begin{bmatrix} 2 & -1 \\ 2 & 2 \end{bmatrix}$$

Find the SVD of the matrix $A = \begin{bmatrix} 7 & 1 \\ 0 & 0 \\ 5 & 5 \end{bmatrix}$.

Step 1. Find an orthogonal diagonalization of A^TA ; i.e. find the eigenvalues of A^TA and a corresponding orthonormal set of eigenvectors.

Step 1.1: Find the eigenvalues of A^TA .

$$A^{T}A = \begin{bmatrix} 74 & 32 \\ 32 & 26 \end{bmatrix}$$

$$A^{T}A - \lambda I = \begin{bmatrix} 74 - \lambda & 32 \\ 32 & 26 - \lambda \end{bmatrix}$$

$$\det(A^{T}A - \lambda I) = \lambda^{2} - 100\lambda + 900 = (\lambda - 90)(\lambda - 10)$$

$$\lambda_{1} = 90, \quad \lambda_{2} = 10.$$

Step 1.2: For each eigenvalue, find the corresponding eigenspace. For $\lambda_1 = 90$,

$$A^{T}A - 90I = \begin{bmatrix} -16 & 32 \\ 32 & -64 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
$$\begin{bmatrix} -16 & 32 \\ 32 & -64 \end{bmatrix} \approx \begin{bmatrix} -1 & 2 \\ 0 & 0 \end{bmatrix}$$

From row 2, we have $x_2 = r \in \mathbb{R}$. From row one, we have $-1x_1 + 2x_2 = 0$, then $x_1 = 2r$. The eigenspace is then

$$v_1 = r \begin{bmatrix} 2 \\ 1 \end{bmatrix}, r \in \mathbb{R}.$$

$$v_1 = \left[\begin{array}{c} 2/\sqrt{5} \\ 1/\sqrt{5} \end{array} \right].$$

Step 1.2: For each eigenvalue, find the corresponding eigenspace. For $\lambda_2 = 10$,

$$A^{T}A - 10I = \begin{bmatrix} 64 & 32 \\ 32 & 16 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
$$\begin{bmatrix} 64 & 32 \\ 32 & 16 \end{bmatrix} \approx \begin{bmatrix} 2 & 1 \\ 0 & 0 \end{bmatrix}$$

From row 2, we have $x_2 = r \in \mathbb{R}$. From row one, we have $2x_1 + 1x_2 = 0$, then $x_1 = -r/2$. The eigenspace is then

$$v_2 = r \begin{bmatrix} -1/2 \\ 1 \end{bmatrix}, r \in \mathbb{R}.$$

$$v_2 = \left[\begin{array}{c} -1/\sqrt{5} \\ 2/\sqrt{5} \end{array} \right].$$

Step 1.3: Construct P from the n linearly independent eigenvectors in step 2.

$$P = \left[\begin{array}{cc} 2/\sqrt{5} & -1/\sqrt{5} \\ 1/\sqrt{5} & 2/\sqrt{5} \end{array} \right]$$

Step 1.4: Construct *D* from the **corresponding** eigenvalues.

$$D = \left[\begin{array}{cc} 90 & 0 \\ 0 & 10 \end{array} \right]$$

Step 1.5 (Optional): Check that it works! A^TA should be equal to PDP^T .

$$A^{T}A = \begin{bmatrix} 74 & 32 \\ 32 & 26 \end{bmatrix} = \begin{bmatrix} 2/\sqrt{5} & -1/\sqrt{5} \\ 1/\sqrt{5} & 2/\sqrt{5} \end{bmatrix} \begin{bmatrix} 90 & 0 \\ 0 & 10 \end{bmatrix} \begin{bmatrix} 2/\sqrt{5} & 1/\sqrt{5} \\ -1/\sqrt{5} & 2/\sqrt{5} \end{bmatrix}$$

Step 2: Set up V and Σ ; Arrange the eigenvalues of A^TA in decreasing order. The corresponding unit eigenvectors are the right singular vectors of A and form the columns of V. The square roots of the eigenvalues are the singular values. The nonzero singular values $\sigma_1, \dots, \sigma_r$ are the diagonal entries of D. The matrix Σ is the same size of A, with D in its upper-left corner and with 0's elsewhere.

$$\sigma_1 = \sqrt{\lambda_1} = \sqrt{90} = 3\sqrt{10}$$
 and $\sigma_2 = \sqrt{\lambda_2} = \sqrt{10}.$

$$\Sigma = \left[\begin{array}{cc} 3\sqrt{10} & 0 \\ 0 & \sqrt{10} \\ 0 & 0 \end{array} \right]$$

$$V = P = \begin{bmatrix} 2/\sqrt{5} & -1/\sqrt{5} \\ 1/\sqrt{5} & 2/\sqrt{5} \end{bmatrix}$$

Step 3; Construct U; The first r columns of U are the normalized vectors obtained from Av_1, \dots, Av_r . Add n-r columns in U to form an orthonormal basis.

$$u_1 = \frac{1}{\sigma_1} A v_1 = \frac{1}{3\sqrt{10}} \begin{bmatrix} 7 & 1 \\ 0 & 0 \\ 5 & 5 \end{bmatrix} \begin{bmatrix} 2/\sqrt{5} \\ 1/\sqrt{5} \end{bmatrix} = \begin{bmatrix} 1/\sqrt{2} \\ 0 \\ 1/\sqrt{2} \end{bmatrix}$$

$$u_2 = \frac{1}{\sigma_2} A v_2 = \frac{1}{\sqrt{10}} \begin{bmatrix} 7 & 1\\ 0 & 0\\ 5 & 5 \end{bmatrix} \begin{bmatrix} -1/\sqrt{5}\\ 2/\sqrt{5} \end{bmatrix} = \begin{bmatrix} -1/\sqrt{2}\\ 0\\ 1/\sqrt{2} \end{bmatrix}$$

Since $\{u_1,u_2\}$ is not a basis for \mathbb{R}^3 , we need a unit vector u_3 that is orthogonal to both u_1 and u_2 . The vector $u_3 = \begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix}^T$ must satisfy the set of equations $u_1 \cdot u_3 = u_1^T u_3 = 0$ and $u_2 \cdot u_3 = u_2^T u_3 = 0$. These are equivalent to the linear equations

$$\begin{bmatrix} 1/\sqrt{2} & 0 & 1/\sqrt{2} \\ -1/\sqrt{2} & 0 & 1/\sqrt{2} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\left[\begin{array}{ccc} 1/\sqrt{2} & 0 & 1/\sqrt{2} \\ -1/\sqrt{2} & 0 & 1/\sqrt{2} \end{array}\right] \approx \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 0 & 1 \end{array}\right]$$

From row 2, we have that $x_3=0$, From row 1, we have that $x_1=0$, and no condition on x_2 . So $x_2=r\in {\rm I\!R}$. The eigenspace orthogonal to u_1 and u_2 is $\begin{bmatrix} 0 & r & 0 \end{bmatrix}^T$ and a normal basis is $\begin{bmatrix} 0 & 1 & 0 \end{bmatrix}^T$.

Therefore let

$$U = \left[\begin{array}{ccc} 1/\sqrt{2} & -1/\sqrt{2} & 0 \\ 0 & 0 & 1 \\ 1/\sqrt{2} & 1/\sqrt{2} & 0 \end{array} \right].$$

Step 4: (optional) Check that it works! *A* should be equal to $U\Sigma V^T$.

$$A = U\Sigma V^{T}$$

$$= \begin{bmatrix} 1/\sqrt{2} & -1/\sqrt{2} & 0\\ 0 & 0 & 1\\ 1/\sqrt{2} & 1/\sqrt{2} & 0 \end{bmatrix} \begin{bmatrix} 3\sqrt{10} & 0\\ 0 & \sqrt{10}\\ 0 & 0 \end{bmatrix} \begin{bmatrix} 2/\sqrt{5} & 1/\sqrt{5}\\ -1/\sqrt{5} & 2/\sqrt{5} \end{bmatrix}$$

$$= \begin{bmatrix} 7 & 1\\ 0 & 0\\ 5 & 5 \end{bmatrix}.$$