Toutes les calculatrices sont interdites, quel qu'en soit le type, ainsi que les agendas électroniques et les téléphones portables.

Cahier réponses

Épreuve de Sciences Industrielles B

Banque PT - 2016

R2bis	bis Débattement		R3 Conclusion sur la mise en place d'une bobine :				
angulaire total du bras porte galet 3 :		Dans la position P_0 , le bras 3 n'est plus en contact avec la bobine et n'interfère plus du tout avec la jante de protection, la mise en place d'une bobine est donc réalisable.				a jante de protection, la mise en place	
R4bis	R4bis Débattement angulaire du bra			R5	R5 Forme du bras porte galet <u>3</u> :		
porte-galet <u>3</u> entre la position P1 et la P2 :							
R6	Direction de $\overrightarrow{C_{2 \to 3}}$: AC			Justification : En isolant l'ensemble $\{1+2\}$ soumis à 2 glisseurs, on obtient la direction de $\overrightarrow{C_{2 \to 3}}$ colinéaire à l'axe AC du vérin.			
R7	Expression littérale : $\ \overrightarrow{C_{2 \to 3}}\ = P_a.\pi$	$ au.rac{D_{piston}^2}{4}$. η_{pis}			n	Résultat: $\ \overrightarrow{C_{2 \to 3}}\ = 2160 N$	
R8	Direction de $\overrightarrow{F_{5 \to 4}}$: Direction de $\overrightarrow{D_{4 \to 3}}$:	_) ₂	Justification: Le contact ponctuel entre le galet et la bobine donne une direction radiale EF_2 pour le glisseur $\overline{F_{5\to 4}}$ (car les liaisons sont parfaites) L'isolement du galet soumis à deux glisseurs $\overline{F_{5\to 4}}$ et $\overline{D_{3\to 4}}$ justifie la direction F_2D_2 commune aux deux glisseurs.			
R9	Bilan des actions mécaniques extérieures sur le bras porte galet <u>3</u> :						

Action mécanique	Point d'application	Direction	Sens	Norme	
$\overrightarrow{C_{2\rightarrow 3}}$	С	AC_2	$A \rightarrow C_2$	$P_a.\pi.\frac{D_{piston}^2}{4}$	
$\overrightarrow{D_{4\rightarrow3}}$	D	F_2D_2	?	?	
$\overrightarrow{B_{0\rightarrow 3}}$	В	?	?	?	
<u> </u>					

R15

$$B_{R\,palier} = 1450 \, N$$

Relation pour déterminer les paliers :

$$B_{R \ palier}.s_0 \leq C_0$$

UCPE206

 \times Convient

Ne convient pas

Justification:

Le tableau figure A-7 donne une capacité statique $\mathcal{C}_0=11$,2 kN pour le roulement choisit.

Or $B_{R \ palier}$. $s_0 = 4,35 \ kN$, le roulement choisit convient parfaitement.

R16

$$\{\tau_{coh\ zone1}\} = \left\{ \begin{array}{ccc} -\overrightarrow{C_{2\rightarrow3}}.\overrightarrow{x_{z1}} & 0 \\ -\overrightarrow{C_{2\rightarrow3}}.\overrightarrow{y_{z1}} & 0 \\ 0 & -\overrightarrow{C_{2\rightarrow3}}.\overrightarrow{y_{z1}}.x_{z1} \end{array} \right\}_{\overrightarrow{(x_{z1};y_{z1};z}}; \vec{z}}$$

R17

K1/						
	Zone	Traction	Compression	Cisaillement	Flexion	Torsion
	Zone1	×		×	X	
R18	Zone2	×		×	×	
	Zone 3		×	×	×	
	Zone 4	×		×	×	

R19

Type de sollicitation	Compression	Traction	Effort tranchant suivant ਕੋ	Effort tranchant suivant \vec{b}	Torsion	Flexion autour de व	Flexion autour de \vec{b}
Profilé 2	≈	≈	≈	≈	+	+	≈
Profilé 3	≈	≈	≈	~	+	+	+
Profilé 4	≈	≈	≈	≈	+	_	+

Profilé proposé : 2

Justification:

Tous les profilés sont équivalents du point de vue de la traction et du cisaillement, on fait donc le choix en fonction de la résistance à la flexion. Le bras 3 est sollicité en flexion uniquement autour de \vec{z} . En prenant $\vec{a}=\vec{z}$, $\vec{c}=\vec{x}$ et $\vec{b}=\vec{y}$, le profilé 2 est celui qui offrira la meilleur résistance.

R22 Composante permettant de déterminer $\| \overline{F_{\mathrm{a-vis}}} \| : Y_{VE}$ **R23** Notation: - TMD/Ox signifie Théorème du Moment Dynamique en projection sur l'axe Ox - TRD/Oz signifie Théorème de la Résultant Dynamique en projection sur l'axe Oz Cochez la (les) case(s) retenue (s). TRD/Ox ☐TMD/Ox ▼ TRD/Oy ☐TMD/Oy ☐ TMD/Oz ☐ TRD/Oz $\|\overrightarrow{\mathbf{F}_{\mathrm{a-vis}}}\| = P_{bob}$ R25 $\mathbf{C_{\mathrm{a_vis}}} = \frac{p_{vis}}{2.\pi.\eta_{vis}} F_{a-vis}$ **R24** $C_{\text{roue_unit}} = \frac{1}{0.25} C_{a_vis}$ **R26 R27** $C_{ma} = 132 N.m$ Justification: On suppose le rendement de l'engrènement parfait Q21: 2 mors chargés **R28** $F_{op} \approx 200 N$ Commentaire : Correspond à un effort élevé, mais réalisable si l'ergonomie de la machine est bien pensée. **R29** Caractéristiques de la bobine de référence à calculer (mettre une croix) : $\times D_{b max int}$ $D_{b max exi}$ $\mid L_{b max}$ $m_{b max}$ $D_{b \ r\'ef \ int}$ Relation littérale : $= \int_{b \max ext}^{2} -\frac{4 \cdot m_{b \max}}{\pi \cdot L_{b \max} \cdot \rho_{mat \max}}$ R30 $J_{b \, r\acute{e}f \, arr \^{e}t/oz} = \frac{m_b \, r\acute{e}f}{8} . \left(D_b^2 \, r\acute{e}f \, int} + D_b^2 \, r\acute{e}f \, ext\right)$ R31 Relation littérale : Résultat : $a_{b max} = -\frac{V_{t\hat{0}le max}^2}{2.D_{stop max}}$ $a_{b \, max} = -0.08 \, ms^{-2}$

R32	Relation littérale :	Résultat :
	$\ddot{\theta}_{b max} = \frac{2. a_{b max}}{D_{b ext}}$	$\ddot{\theta}_{b max} = -0.16 rad. s^{-1}$
R33	Relation littérale :	Résultat :
	$C_{f max} = J_{b \ r\'ef \ arr\^et/Oz}. \ddot{\theta}_{b \ max}$	$C_{f max} = -16 N.m$
R34	Référence du frein à poudre :	
	Le frein de référence FAT 350 convient.	