

NTE941M & NTE941SM Integrated Circuit Operational Amplifier

Description:

The NTE941M and NTE941SM (Surface Mount) are general purpose operational amplifiers in 8–Lead DIP type packages and offer many features which make their application nearly foolproof: overload protection on the input and output, no latch—up when the common mode range is exceeded, as well as freedom from oscillators.

Absolute Maximum Ratings:

	
Supply Voltage, V _S	±18V
Differential Input Voltage, V _{ID}	±30V
Common Mode Input Voltage (Note 2), V _{ICM}	±15V
Power Dissipation (Note 1), P _D	500mW
Output Short–Circuit Duration, t _S	Continuous
Operating Temperature Range, Topr	0° to +70°C
Storage Temperature Range, T _{stg}	–65° to +150°C
Junction Temperature, T _J	+100°C
Lead Temperature (During Soldering, 10sec), T _L	+260°C
Thermal Resistance, Junction-to-Ambient, R _{thJA}	
NTE941M	+100°C/W
NTE941SM	+195°C/W

- Note 1. For operation at elevated temperatures, these devices must be derated based on thermal resistance, and T_J Max ($T_J = T_A + (R_{thJA} P_D)$).
- Note 2. For supply voltage less than ± 15 V, the absolute maximum input voltage is equal to the supply voltage.

<u>Electrical Characteristics:</u> $(V_S = \pm 15V, \ 0^{\circ} \le T_A \le +70^{\circ}C \ unless \ otherwise \ specified)$

Parameter	Symbol	Test Cond	Min	Тур	Max	Unit	
Input Offset Voltage	V _{IO}	$R_S \le 10k\Omega$	$T_A = +25^{\circ}C$	_	2.0	6.0	mV
				_	_	7.5	mV
Input Offset Voltage Adjustment Range	V _{IOR}	$V_S = \pm 20V, T_A =$	_	±15	_	V	
Input Offset Current	I _{IO}	$T_A = +25^{\circ}C$		_	20	200	nA
				_	_	300	nA
Input Bias Current	I _{IB}	$T_A = +25^{\circ}C$		_	80	500	nA
				_	_	0.8	μΑ
Input Resistance	r _i	$V_S = \pm 20V, T_A = +25^{\circ}C$		0.3	2.0	_	MΩ
Common Mode Input Voltage Range	V _{ICR}	$T_A = +25^{\circ}C$		_	±12	±13	V
Large Signal Voltage Gain	ge Signal Voltage Gain $ A_V \qquad V_O = \pm 10V, \qquad T_A = +25$ $R_L \ge 2k\Omega \qquad \qquad T_A = +25$		$T_A = +25^{\circ}C$	20	200	_	V/mV
			15	_	_	V/mV	
Output Voltage Swing	Vo	$R_{L} \ge 10k\Omega$ $R_{L} \ge 2k\Omega$		±12	±14	_	V
				±10	±13	_	V
Output Short–Circuit Current	Ios	$T_A = +25^{\circ}C$		_	25	_	mA
Common–Mode Rejection Ratio	CMRR	$R_S \le 10k\Omega$, $V_{CM} = \pm 12V$		70	90	_	dB
Supply Voltage Rejection Ratio	PSRR	$V_S = \pm 20V$ to $\pm 5V$, $R_S \le 10k\Omega$		77	96	_	dB
Transient Response Rise Time	t _{TLH}	T _A = +25°C, Unity Gain		_	0.3	_	μs
Transient Response Overshoot	os]	_	5	_	%	
Transient Response Slew Rate	SR	1	_	0.5	_	V/μs	
Supplu Current	I _D	T _A = +25°C	_	1.7	2.8	mA	
Power Consumption	P _C	T _A = +25°C	_	50	85	mW	

NTE941M 393 (10.0) 393 (10.0) 100 (2.54) 300 (7.62) .070 (1.77) Min

