問2	論理回路(ハードウェア)	(H30 春-FE 午後問 2)

【解答】

「設問1] aーエ

[設問2] b-オ, c-ア

[設問3] d-オ,e-ア

【解説】

論理回路に関する問題である。論理演算は午前試験,午後試験とも頻出テーマの一 つであり,選択した場合は確実に得点しておきたい。出題の論点は多少異なるものの, この種類の問題は基本情報技術者試験では過去(最近では平成 25 年秋)にも出題さ れているので、参考にするとよい。設問3では表3の内容の理解が必要であるが、計 算値は簡単な四則演算なので、計算ミスなどがなければ正解できる。

問題を解くに当たっては、一つ一つ丁寧に確認、検証することが大切である。なお、 表1及び表2の内容が表示されていない場合でも、理解できていなければならない。

「設問 1]

・空欄 a:XOR(排他的論理和)の内容を考える。入力,出力の内容は表 2 に示され ているので、論理回路に対応させ、確認、検証していけばよい。説明のため、 図1の入力, 出力に記号を対応させた内容を図Aに示す。

図A XOR (排他的論理和)の論理回路

表 2 から, 入力がともに 0 (I1, I2) の場合は, 出力 (O) は 0 である。こ のとき、NAND 回路の出力 P は、表 1 から 1 であり、入力 P、Q によって出 力 (O) が 0 とならなければならないから、回路 a の出力 Q は 0 である。した がって、回路 a は入力がともに 0 (I1, I2) で 0 を出力する回路でなければな らない。選択肢で該当するのは、表 1 から AND (ア) か OR (エ) である。

また,入力で, I1=0, I2=1のときは,出力(O)は1である。このとき, NAND 回路の出力 P は 1 であり、入力 P, Q によって出力(O)が1とならな ければならないから、回路 a の出力 Q は 1 である。したがって、回路 a は入力 I1=0, I2=1で1を出力する回路であり、表1からOR(エ)である。AND回路 では出力Qが0になるので、「OR」(エ)が正解になる。

「設問2]

・空欄 b, c:1桁の2進数 X, Yを入力して、その和の下位桁を Z, 桁上がりを C に 出力する半加算器の論理回路を考える。この関係の真理値表を表 A に、確認の ため、図 B を示す。

表 A 半加算器の真理値表

X	Y	Z .	C
0	0	. 0	0
0	1	1	0
1	0	1	0
1	1	0	1

C:X, Yの加算結果の桁上がりを示す。

図 B 半加算器の論理回路

ZはXとYの和を表し、表1で確認すると、XOR(排他的論理和)の真理 値と等しいので、空欄bの正解は「XOR」(オ)である。また、Cは桁上がり を表し、表1で確認すると、AND(論理積)の真理値と等しいことが分かる。 したがって、空欄 c の正解は「AND」(ア)である。

[設問3]

・空欄 d, e:論理回路に関する内容である。入力 X, Y とパラメタ Wx, Wy で重み 付けして加算した結果とパラメタ T との比較から、出力 Z の値が決まる動作内 容を示した表3の内容を最初に理解しなければならない。この内容が理解でき れば、選択肢にあるパラメタの値を用いた値と出力 Z の値を確認し、AND (論 理積)、NAND(否定論理積)となる内容を見い出せばよい。計算ミスに注意

表3の内容を表Bで説明する。ここで、Wx×X+Wy×Yの合計をRとする。

表 B パラメタ (0.5, 0.5, 0.3) の場合の入出力関係

入	力	$W_X \times X + W_Y \times Y = R$	比較	Т	出力	
X	Y	WXXX WyXI It	加权		Z	
0	0	$(0.5) \times 0 + (0.5) \times 0 = 0$	<	0.3	0	
0	1	$(0.5) \times 0 + (0.5) \times 1 = 0.5$	≧	0.3	1	
1	0	$(0.5) \times 1 + (0.5) \times 0 = 0.5$	≧	0.3	1	
1	1	$(0.5) \times 1 + (0.5) \times 1 = 1$	≧	0.3	1	
パラメタ〔0.5, 0.5, 0.3〕 R <tのとき,< td=""><td>≸, Z=0</td></tのとき,<>				≸, Z=0		
			` R	≥Tのとき	5.7 = 1	

表Bを基に、各選択肢の内容を検証していく。

ア:パラメタ [-0.5, -0.5, -0.8]

出力 Z の内容は,NAND(否定論理積)と一致している。空欄 e の正解は (ア) である。

表 C ア パラメタ (-0.5, -0.5, -0.8) の場合の入出力関係

					- 1.1.
入	カー	$Wx \times X + Wy \times Y = R$	比較	· _T	出力
X	Y	WAXA WYXI = It	山坝	1	Z
0	0	$(-0.5)\times0 + (-0.5)\times0 = 0$	≧	-0.8	1
0	1	$(-0.5)\times0 + (-0.5)\times1 = -0.5$	≧	-0.8	1
1	0	$(-0.5)\times1 + (-0.5)\times0 = -0.5$	≧	-0.8	1
1	1	$(-0.5)\times 1 + (-0.5)\times 1 = -1$	<	-0.8	0

イ:パラメタ [-0.5, -0.5, -0.2]

出力 Z の内容は、NOR(否定論理和)と一致している。

表 D イ パラメタ (-0.5, -0.5, -0.2) の場合の入出力関係

入	力	$W_X \times X + W_Y \times Y = R$	比較	. Т	出力
X	Y				Z
0	0	$(-0.5)\times0 + (-0.5)\times0 = 0$	≧	-0.2	1
Ó	1	$(-0.5)\times0 + (-0.5)\times1 = -0.5$	<	-0.2	0
1	0	$(-0.5)\times 1 + (-0.5)\times 0 = -0.5$	<	-0.2	0
1	1	$(-0.5)\times 1 + (-0.5)\times 1 = -1$	<	-0.2	0

ウ:パラメタ [0.5, 0.5, -0.5]

出力Zの内容は、表1の論理回路と一致するものでない。

表 E ウ パラメタ (0.5, 0.5, -0.5) の場合の入出力関係

		力	$W_X \times X + W_Y \times Y = R$	Liative	Т	出力
	X	Y		比較		Z
	-0	0	$(0.5)\times 0 + (0.5)\times 0 = 0$	≧	-0.5	1
1	0 .	1	$(0.5) \times 0 + (0.5) \times 1 = 0.5$	≧	-0.5	1
	1	0	$(0.5)\times1 + (0.5)\times0 = 0.5$	≧	-0.5	1
	1	1	$(0.5)\times1 + (0.5)\times1 = 1$	≧	-0.5	1

エ:パラメタ [0.5, 0.5, 0.2]

出力 Z の内容は、OR (論理和) と一致している。

表 F エ パラメタ (0.5, 0.5, 0.2) の場合の入出力関係

	入力	777 N.77 777			出力
X	Y	$Wx \times X + Wy \times Y = R$	比較	T	7
0	0	$(0.5)\times 0 + (0.5)\times 0 = 0$	<	0.2	0
0	1	$(0.5)\times0 + (0.5)\times1 = 0.5$		0.2	1 4
1	0	$(0.5)\times1 + (0.5)\times0 = 0.5$	≧	0.2	1
1	1	$(0.5)\times 1 + (0.5)\times 1 = 1$		0.2	1

オ:パラメタ〔0.5, 0.5, 0.8〕

出力 Z の内容は,AND(論理積)と一致している。空欄 d の正解は(オ) である。

表 G オ パラメタ (0.5, 0.5, 0.8) の場合の入出力関係

~7						
入力		$Wx \times X + Wy \times Y = R$	比較	m	出力	
X	Y		JUHX.	T	Z	
0	0	$(0.5)\times0 + (0.5)\times0 = 0$	<	0.8	0	
0	1	$(0.5)\times0 + (0.5)\times1 = 0.5$	<	0.8	0	
1	0	$(0.5)\times1 + (0.5)\times0 = 0.5$	<	0.8	0	
1	1	$(0.5)\times 1 + (0.5)\times 1 = 1$	≥	0.8	1	

この時点で正解が分かったが、(カ)も参考として示す。

カ:パラメタ〔0.5, 0.5, 1.5〕

出力 Z の内容は、表 1 の論理回路と一致するものでない。

表 H カ パラメタ (0.5, 0.5, 1.5) の場合の入出力関係

	(三) 1000000000000000000000000000000000000								
	カ	$W_x \times X + W_y \times Y = R$. 比較	т	出力				
X	Y		DU4X	1	Z				
0	0	$(0.5)\times0 + (0.5)\times0 = 0$	<	1.5	0				
0	1	$(0.5)\times0 + (0.5)\times1 = 0.5$	<	1.5	0				
1	0	$(0.5)\times1 + (0.5)\times0 = 0.5$	<	1.5	0				
1	1	$(0.5)\times 1 + (0.5)\times 1 = 1$	<	1.5	0				