

GBI Tutorium Nr.

Foliensatz 02

Vincent Hahn – vincent.hahn@student.kit.edu | 30. Oktober 2012

<ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 。 < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回

Outline/Gliederung

Besprechung des 1. Übungsblattes

- Wörter und Alphabete
- Vollständige Induktion

30. Oktober 2012

Alphabete

Definition

Ein Alphabet ist eine endliche, nichtleere Menge an "Zeichen" oder "Symbolen".

- $A = \{a, b, d\}$
- $B = \{3, 9, V, k\}$
- Der ASCII-Zeichensatz

Wörter

Definition

Ein Wort über einem Alphabet A ist eine Folge von Zeichen aus A.

- $A = \{H, a, I, o, u, W, e, t\}$ enthält das Wort Hallo Welt
- ..

Menge aller Wörter

Definition

Die Menge aller Wörter über einem Alphabet A sind alle Wörter, in denen nur Zeichen aus A enthalten sind. Dies wird als A^* geschrieben.

Beispiele

Alphabet set $A = \{a, b\}$, dann enthält A*:

- a
- b
- aa
- ab
- ba
-

Konkatenation von Wörtern

Definition

Die Konkatenation zweier Worte w_1 und w_2 aus den Alphabeten A und B wird geschrieben als $w_1 \circ w_2 \in (A \cup B)$

- $A = \{B, e, t\}$ enthält das Wort $w_1 = Bett$
- $B = \{w, a, n, z, e\}$ enthält das Wort $w_2 = wanze$
- $w_1 \circ w_2 = Bettwanze \neq w_2 \circ w_1 = wanzeBett$
- $A \cup B = \{B, e, t, w, a, n, z\}$ (*e* nur einmal!)

Konkatenation von Wörtern

Definition

Die Konkatenation zweier Worte w_1 und w_2 aus den Alphabeten A und B wird geschrieben als $w_1 \circ w_2 \in (A \cup B)$

- $A = \{B, e, t\}$ enthält das Wort $w_1 = Bett$
- $B = \{w, a, n, z, e\}$ enthält das Wort $w_2 = wanze$
- $w_1 \circ w_2 = Bettwanze \neq w_2 \circ w_1 = wanzeBett$
- $A \cup B = \{B, e, t, w, a, n, z\}$ (e nur einmal!)

Konkatenation von Wörtern

Definition

Die Konkatenation zweier Worte w_1 und w_2 aus den Alphabeten A und B wird geschrieben als $w_1 \circ w_2 \in (A \cup B)$

Beispiele¹

- $A = \{B, e, t\}$ enthält das Wort $w_1 = Bett$
- $B = \{w, a, n, z, e\}$ enthält das Wort $w_2 = wanze$
- $w_1 \circ w_2 = Bettwanze \neq w_2 \circ w_1 = wanzeBett$
- $A \cup B = \{B, e, t, w, a, n, z\}$ (*e* nur einmal!)

Mehrfachkonkatenation

Beispiel

w sei ein Wort (zum Beispiel über dem vorherigen Alphabet A).

- w = Bett
- $w^3 = BettBettBett$

Das leere Wort

Definition

Das leere Wort wird mit ϵ geschrieben und hat die Länge 0.

Beispiele

Das leere Wort ist nicht das Leerzeichen.

- $\epsilon \circ w \circ \epsilon = w$
- $w^0 = \epsilon$

Definition

Die Länge eines Wortes w gibt die Anzahl der darin enthaltenen Zeichen an. Gekennzeichnet wird dies mit dem "Pipe-Symbol" |w|.

- |*Hallo*| = 5
- $|w^k| = k \cdot |w|$
- $|\epsilon|=0$
- $|w_1 \circ w_2| = |w_1| + |w_2|$

Definition

Die Länge eines Wortes w gibt die Anzahl der darin enthaltenen Zeichen an. Gekennzeichnet wird dies mit dem "Pipe-Symbol" |w|.

- |*Hallo*| = 5
- $|w^k| = k \cdot |w|$
- $|\epsilon|=0$
- $|w_1 \circ w_2| = |w_1| + |w_2|$

Definition

Die Länge eines Wortes w gibt die Anzahl der darin enthaltenen Zeichen an. Gekennzeichnet wird dies mit dem "Pipe-Symbol" |w|.

- |*Hallo*| = 5
- $|w^k| = k \cdot |w|$
- $|\epsilon| = 0$
- $|w_1 \circ w_2| = |w_1| + |w_2|$

Definition

Die Länge eines Wortes w gibt die Anzahl der darin enthaltenen Zeichen an. Gekennzeichnet wird dies mit dem "Pipe-Symbol" |w|.

- |*Hallo*| = 5
- $|w^k| = k \cdot |w|$
- $|\epsilon| = 0$
- $|w_1 \circ w_2| = |w_1| + |w_2|$

Präfix und Suffix

Definition: Präfix

Ein Präfix ist ein beliebig langer Teil am Anfang eines Wortes. a ist ein Präfix von w, falls gilt: $w = a \circ b$.

Definition: Suffix

Ein Suffix ist ein beliebig langer Teil am Ende eines Wortes. b ist ein Suffix von w, falls gilt: $w = a \circ b$.

Präfix und Suffix

Definition: Präfix

Ein Präfix ist ein beliebig langer Teil am Anfang eines Wortes. a ist ein Präfix von w, falls gilt: $w = a \circ b$.

Definition: Suffix

Ein Suffix ist ein beliebig langer Teil am Ende eines Wortes. b ist ein Suffix von w, falls gilt: $w = a \circ b$.

Aufgaben

Aufgabe

Gegeben sei das Alphabet $A = \{0, 1\}$.

- Welche Worte befinden sich in A⁵?
- Ist auch das leere Wort darin enthalten?
- Was ist der Unterschied zwischen $A^2 \times A^2$ und $A^2 \cdot A^2$?

Aufgaben

Aufgabe

Gegeben sei das Alphabet $A = \{0, 1\}$.

- Welche Worte befinden sich in A⁵?
- Ist auch das leere Wort darin enthalten?
- Was ist der Unterschied zwischen $A^2 \times A^2$ und $A^2 \cdot A^2$?

Aufgaben

Aufgabe

Gegeben sei das Alphabet $A = \{0, 1\}$.

- Welche Worte befinden sich in A⁵?
- Ist auch das leere Wort darin enthalten?
- Was ist der Unterschied zwischen $A^2 \times A^2$ und $A^2 \cdot A^2$?

Definition

Die vollständige Induktion ist eine mathematische Beweismethode, mit der die Gültigkeit einer Aussage für alle natürlichen Zahlen bewiesen werden kann.

Vorgehen

Eine Behauptung ist gegeben.

- Induktionsanfang IA: Zeige die Gültigkeit der Behauptung für das erste Element.
- Induktionsvoraussetzung IV: Wir wissen, dass die Behauptung für eir beliebiges, aber festes Element n gilt.
- Induktionsschritt IS: Prüfe die Gültigkeit für ein darauffolgendes Element n + 1.

Vorgehen

Eine Behauptung ist gegeben.

- Induktionsanfang IA: Zeige die Gültigkeit der Behauptung für das erste Element.
- Induktionsvoraussetzung IV: Wir wissen, dass die Behauptung für eir beliebiges, aber festes Element n gilt.
- ⓐ Induktionsschritt IS: Prüfe die Gültigkeit für ein darauffolgendes Element n + 1.

Vorgehen

Eine Behauptung ist gegeben.

- Induktionsanfang IA: Zeige die Gültigkeit der Behauptung für das erste Element.
- Induktionsvoraussetzung IV: Wir wissen, dass die Behauptung für ein beliebiges, aber festes Element n gilt.
- Induktionsschritt IS: Prüfe die Gültigkeit für ein darauffolgendes Element n + 1.

Vorgehen

Eine Behauptung ist gegeben.

- Induktionsanfang IA: Zeige die Gültigkeit der Behauptung für das erste Element.
- Induktionsvoraussetzung IV: Wir wissen, dass die Behauptung für ein beliebiges, aber festes Element n gilt.
- Induktionsschritt IS: Prüfe die Gültigkeit für ein darauffolgendes Element n + 1.

Behauptung

$$1+2+3+\cdots+n=\frac{n\cdot(n+1)}{2}$$

Beweis

- ① IA: n = 1: Oben einsetzen, passt: 1 = 1.
- IV: "Es gibt ein beliebiges, aber festes n für das die obige Behauptung gilt." Dieses n möchte ich nun k nennen, einfach so :-)
- **3** *IS*: $k \to k + 1$:
 - Links: $1 + 2 + \cdots + k + (k+1) \stackrel{\text{IV}}{=} \frac{k \cdot (k+1)}{2} + (k+1)$
 - Rechts: $\frac{(k+1)\cdot((k+1)+1)}{2} = \frac{(k+1)\cdot(k+2)}{2} = \frac{(k+1)\cdot k}{2} + \frac{(k+1)\cdot 2}{2}$
- Die Behauptung stimmt.

Behauptung

$$1+2+3+\cdots+n=\frac{n\cdot(n+1)}{2}$$

Beweis

- ① IA: n = 1: Oben einsetzen, passt: 1 = 1.
- IV: "Es gibt ein beliebiges, aber festes n für das die obige Behauptung gilt." Dieses n möchte ich nun k nennen, einfach so :-)
- ③ *IS*: $k \to k + 1$:
 - Links: $1 + 2 + \dots + k + (k+1) \stackrel{\text{IV}}{=} \frac{k \cdot (k+1)}{2} + (k+1)$
 - Rechts: $\frac{(k+1)\cdot((k+1)+1)}{2} = \frac{(k+1)\cdot(k+2)}{2} = \frac{(k+1)\cdot k}{2} + \frac{(k+1)\cdot 2}{2}$
- Oie Behauptung stimmt.

Behauptung

$$1+2+3+\cdots+n=\frac{n\cdot(n+1)}{2}$$

Beweis

- ① IA: n = 1: Oben einsetzen, passt: 1 = 1.
- *IV*: "Es gibt ein beliebiges, aber festes n für das die obige Behauptung gilt." Dieses n möchte ich nun k nennen, einfach so :-)
- ③ *IS*: $k \rightarrow k + 1$:

Links:
$$1 + 2 + \dots + k + (k+1) \stackrel{|V|}{=} \frac{k \cdot (k+1)}{2} + (k+1)$$

• Rechts:
$$\frac{(k+1)\cdot((k+1)+1)}{2} = \frac{(k+1)\cdot(k+2)}{2} = \frac{(k+1)\cdot k}{2} + \frac{(k+1)\cdot 2}{2}$$

Oie Behauptung stimmt

Behauptung

$$1 + 2 + 3 + \cdots + n = \frac{n \cdot (n+1)}{2}$$

Beweis

- ① IA: n = 1: Oben einsetzen, passt: 1 = 1.
- 2 IV: "Es gibt ein beliebiges, aber festes n für das die obige Behauptung gilt." Dieses n möchte ich nun k nennen, einfach so :-)
- **3** *IS*: $k \to k + 1$:
 - Links: $1 + 2 + \cdots + k + (k+1) \stackrel{\text{IV}}{=} \frac{k \cdot (k+1)}{2} + (k+1)$
 - Rechts: $\frac{(k+1)\cdot((k+1)+1)}{2} = \frac{(k+1)\cdot(k+2)}{2} = \frac{(k+1)\cdot k}{2} + \frac{(k+1)\cdot 2}{2}$
- Oie Behauptung stimmt.

Behauptung

$$1 + 2 + 3 + \cdots + n = \frac{n \cdot (n+1)}{2}$$

Beweis

- ① IA: n = 1: Oben einsetzen, passt: 1 = 1.
- *IV*: "Es gibt ein beliebiges, aber festes n für das die obige Behauptung gilt." Dieses n möchte ich nun k nennen, einfach so :-)
- **3** *IS*: $k \to k + 1$:
 - Links: $1 + 2 + \cdots + k + (k+1) \stackrel{\text{IV}}{=} \frac{k \cdot (k+1)}{2} + (k+1)$
 - Rechts: $\frac{(k+1)\cdot((k+1)+1)}{2} = \frac{(k+1)\cdot(k+2)}{2} = \frac{(k+1)\cdot k}{2} + \frac{(k+1)\cdot 2}{2}$
- Oie Behauptung stimmt.

Behauptung

$$\forall n \in \mathbb{N}_0 : x_{n+1} = x_n + 2 \land x_0 = 0 \Leftrightarrow x_n = 2 n$$

Lösung

- ① IA: n = 0.
- 2 /V:
- 3 IS

30. Oktober 2012

Behauptung

$$\forall n \in \mathbb{N}_0 : x_{n+1} = x_n + 2 \land x_0 = 0 \Leftrightarrow x_n = 2 n$$

Lösung

- ① IA: n = 0. $x_0 = 0$ (nach Vorgabe) und $2 \cdot 0 = 0$ (die rechte Seite)
 - 2 IV:
- 3 IS

Behauptung

$$\forall n \in \mathbb{N}_0 : x_{n+1} = x_n + 2 \land x_0 = 0 \Leftrightarrow x_n = 2 n$$

Lösung

- ① IA: n = 0. $x_0 = 0$ (nach Vorgabe) und $2 \cdot 0 = 0$ (die rechte Seite)
- ② *IV*: "Für ein beliebiges, aber festes n gilt die obige Behauptung: $x_n = 2 n^n$
- 3 IS:

Behauptung

$$\forall n \in \mathbb{N}_0 : x_{n+1} = x_n + 2 \land x_0 = 0 \Leftrightarrow x_n = 2 n$$

Lösung

- ① IA: n = 0. $x_0 = 0$ (nach Vorgabe) und $2 \cdot 0 = 0$ (die rechte Seite)
- 2 *IV*: "Für ein beliebiges, aber festes n gilt die obige Behauptung: $x_n = 2 n^n$
- 3 IS:

Rechte Seite: $x_{n+1} = 2(n+1)$.

Linke Seite: $x_{n+1} = x_n + 2 \stackrel{\text{IV}}{=} 2n + 2$

