Study Scheme & Syllabus of

Bachelor of Technology
Computer Science & Engineering

Batch 2021 onwards (3rd -8th Semester)

For

University Main Campus, Constituent Campuses and Affiliated colleges

Department of Academics

I.K. Gujral Punjab Technical University

IK Gujral Punjab Technical University, Kapurthala

Seventh Semester / Eighth Semester

Course	Type of Course	Course Title	Hours per Week		Marks Distribution		Total	Credits	
Code			L	T	P	Internal	External	Marks	
BTCS 701-18	Professional Core Courses	Network Security and Cryptography	3	0	0	40	60	100	3
BTCS 702-18	Professional Core Courses	Data Mining and Data Warehousing	3	0	0	40	60	100	3
BTOE ***	Open Elective Courses	Open Elective-II	3	0	0	40	60	100	3
BTCS ZZZ-18	Professional Elective	Elective- IV	3	0	0	40	60	100	3
BTCS TTT-18	Professional Elective Courses	Elective-V	3	0	0	40	60	100	3
BTCS 703-18	Project	Project-II	0	0	12	120	80	200	6
BTCS ZZZ- 18	Professional Elective	Elective- IV lab	0	0	2	30	20	50	1
BTCS TTT-18	Professional Elective	Elective- V lab	0	0	2	30	20	50	1
	Total		15	0	14	380	420	800	23

Seventh Semester / Eighth Semester

Course Code	Course Title	Marks Distribution		Total	Credits
		Internal	External	Marks	
BTCS 801-18	Semester Training	300	200	500	16

LIST OF ELECTIVES

BTCS XXX-18: Elective-I

BTCS 510-18	Programming in Python
BTCS 513-18	Programming in Python Lab
BTCS 515-18	Computer Graphics
BTCS 518-18	Computer Graphics lab
BTCS 520-18	Web Technologies
BTCS 522-18	Web Technologies lab
BTCS 521-18	Computational Biology
BTCS 523-18	Computational Biology lab

BTCS UUU-18: Elective-II

BTCS 606-18	Simulation and Modelling
BTCS 607-18	Simulation and Modelling Lab
BTCS 608-18	Internet of Things_
BTCS 609-18	Internet of Things lab
BTCS 610-18	Digital Image processing
BTCS 611-18	Digital Image processing lab
BTCS 612-18	Cloud computing
BTCS 613-18	Cloud computing lab

BTCS YYY-18: Elective-III

BTCS 614-18	Software Project Management
BTCS 615-18	Software Project Management Lab
BTCS 616-18	Data Science
BTCS 617-18	Data Science lab
BTCS 618-18	Machine Learning
BTCS 619-18	Machine Learning lab
BTCS 620-18	Mobile Application Development
BTCS 621-18	Mobile Application Development lab

BTCS ZZZ-18: Elective-IV

BTCS 704-18	Deep Learning
BTCS 705-18	Deep Learning Lab
BTCS 706-18	Distributed databases
BTCS 707-18	Distributed databases lab
BTCS 708-18	Computer Vision
BTCS 709-18	Computer Vision lab
BTCS 710-18	Agile Software Development
BTCS 711-18	Agile Software Development lab

IK Gujral Punjab Technical University, Kapurthala

BTCS TTT-18: Elective-V

DICS /12-16	Diockchain rechnologies
BTCS 713-18	Blockchain Technologies Lab
BTCS 714-18	Parallel Computing
BTCS 715-18	Parallel Computing lab
BTCS 716-18	Adhoc and Wireless sensor networks
BTCS 717-18	Adhoc and Wireless sensor networks lal
BTCS 718-18	Quantum Computing
BTCS 719-18	Quantum Computing lab

Open electives offered by the department:

BTCS301-18 Data Structures & Algorithms

BTCS302-18 Object Oritented Programming

BTES401-18 Computer organisation & Arcitecture

BTCS402-18 Operating system

BTCS501-18 Database Management System

BTCS504-18 Computer Networks

SEVENTH / EIGHTTH SEMESTER

Course Code: BTCS 701-18	Course Title: Network Security and	3L:0T:0P	3Credits
	Cryptography		

Detailed Contents:

UNIT 1: Introduction (3 Hours)

Introduction to Cryptography, Security Threats, Vulnerability, Active and Passive attacks, Security services and mechanism, Conventional Encryption Model, CIA model

[5hrs] (CO 1)

UNIT 2: Math Background

Modular Arithmetic, Euclidean and Extended Euclidean algorithm, Prime numbers, Fermat and Euler's Theorem [5hrs] (CO 1)

UNIT 3: Cryptography

Dimensions of Cryptography, Classical Cryptographic Techniques Block Ciphers (DES, AES): Feistal Cipher Structure, Simplifies DES, DES, Double and Triple DES, Block Cipher design Principles, AES, Modes of Operations Public-Key Cryptography: Principles Of Public-Key Cryptography, RSA Algorithm, Key Management, Diffie-Hellman Key Exchange, Elgamal Algorithm, Elliptic Curve Cryptography

[12hrs] (CO 2)

UNIT 4 Hash and MAC Algorithms

Authentication Requirement, Functions, Message Authentication Code, Hash Functions, Security Of Hash Functions And Macs, MD5 Message Digest Algorithm, Secure Hash Algorithm, Digital Signatures, Key Management: Key Distribution Techniques, Kerberos

[6hrs] (CO 3)

UNIT 5 Security in Networks

Threats in networks, Network Security Controls – Architecture, Encryption, Content Integrity, Strong Authentication, Access Controls, Wireless Security, Honeypots, Traffic flow security, Firewalls – Design and Types of Firewalls, Personal Firewalls, IDS, Email Security – PGP, S/MIME

[7hrs] (CO 4)

Course Outcomes:

After undergoing this course, the students will be able to:

CO1: Understand the fundamental principles of access control models and techniques, authentication and secure system design

CO2: Have a strong understanding of different cryptographic protocols and techniques and be able to use them.

CO3: Apply methods for authentication, access control, intrusion detection and prevention.

CO4: Identify and mitigate software security vulnerabilities in existing systems.

Suggested Readings/ Books:

- 1. Cryptography And Network Security Principles And Practice Fourth Edition, William Stallings, Pearson Education
- 2. Modern Cryptography: Theory and Practice, by Wenbo Mao, Prentice Hall PTR
- 3. Network Security Essentials: Applications and Standards, by William Stallings. Prentice Hall
- 4. Cryptography: Theory and Practice by Douglas R. Stinson, CRC press.

Course Code: BTCS	Course Title: Data Warehousing and	3L: 0T: 0P	Credits: 3
-702-18	Data Mining		

Detailed Contents:

UNIT 1:

Data Warehousing Introduction: design guidelines for data warehouse implementation, Multidimensional Models; OLAP- introduction, Characteristics, Architecture, Multidimensional view Efficient processing of OLAP Queries, OLAP server Architecture ROLAP versus MOLAP Versus HOLAP and data cube, Data cube operations, data cube computation.

Data mining: What is data mining, Challenges, Data Mining Tasks, Data: Types of Data, Data Quality, Data Pre-processing, Measures of Similarity and Dissimilarity

[10hrs]

UNIT 2:

Data mining: Introduction, association rules mining, Naive algorithm, Apriori algorithm, direct hashing and pruning (DHP), Dynamic Item set counting (DIC), Mining frequent pattern without candidate generation (FP, growth), performance evaluation of algorithms

Classification: Introduction, decision tree, tree induction algorithms – split algorithm based on information theory, split algorithm based on Gini index; naïve Bayes method; estimating predictive accuracy of classification method

[10 hrs]

UNIT 3:

Cluster analysis: Introduction, partition methods, hierarchical methods, density based methods, dealing with large databases, cluster software

Search engines: Characteristics of Search engines, Search Engine Functionality, Search Engine Architecture, Ranking of web pages, The search engine history, Enterprise Search, Enterprise Search Engine Software.

[10 hrs]

UNIT 4:

Web data mining: Web Terminology and Characteristics, Locality and Hierarchy in the web, Web Content Mining, Web Usage Mining, Web Structure Mining, Web mining Software. [8 hrs]

Suggested Readings / Books:

- 1. Carlo Vercellis, Business Intelligence: Data mining and Optimization for Decision Making, WILEY.
- 2. Han J., Kamber M. and Pei J., b Data mining concepts and techniques, Morgan Kaufmann Publishers (2011) 3rd ed.
- 3. Pudi V., Krishana P.R., Data Mining, Oxford University press, (2009) 1st ed.
- 4. Adriaans P., Zantinge D., Data mining, Pearsoneducation press (1996), 1st ed.
- 5. Pooniah P., Data Warehousing Fundamentals, Willey interscience Publication, (2001), 1st ed.

ELECTIVE IV

Course Code:	BTCS 704-18 Course Title : Deep Lean	<mark>ning</mark>	3L:0T:0P	3Credits

Detailed Contents:

UNIT 1: Machine Learning Basics: Learning, Under-fitting, Overfitting, Estimators, Bias, Variance, Maximum Likelihood Estimation, Bayesian Statistics, Supervised Learning, Unsupervised Learning and Stochastic Gradient Decent.

[4hrs] (CO 1)

UNIT 2: Deep Feedforward Network: Feed-forward Networks, Gradient-based Learning, Hidden Units, Architecture Design, Computational Graphs, Back-Propagation, Regularization, Parameter Penalties, Data Augmentation, Multi-task Learning, Bagging, Dropout and Adversarial Training and Optimization.

[4hrs] (CO 2)

UNIT 3: Convolution Networks: Convolution Operation, Pooling, Basic Convolution Function, Convolution Algorithm, Unsupervised Features and Neuroscientific for convolution Network. [6hrs] (CO 3)

UNIT 4: Sequence Modelling: Recurrent Neural Networks (RNNs), Bidirectional RNNs, Encoder- Decoder Sequence-to-Sequence Architectures, Deep Recurrent Network, Recursive Neural Networks and Echo State networks.

[12hrs] (CO 4)

UNIT 5: Deep Generative Models: Boltzmann Machines, Restricted Boltzmann Machines, Deep Belief Networks, Deep Boltzmann Machines, Sigmoid Belief Networks, Directed Generative Net, Drawing Samples from Auto —encoders.

[14hrs] (CO 5)

Course Outcomes:

After undergoing this course, the students will be able to:

CO1: Comprehend the advancements in learning techniques

CO2: Compare and explain various deep learning architectures and algorithms.

CO3: Demonstrate the applications of Convolution Networks

CO4: Apply Recurrent Network for Sequence Modelling

CO5: Deploy the Deep Generative Models

Suggested Readings/ Books:

Text Books:

- 1. Goodfellow L., Bengio Y. and Courville A., Deep Learning, MIT Press (2016).
- 2. Patterson J. and Gibson A., Deep Learning: A Practitioner's Approach, O'Reilly (2017), 1st ed.

Reference Books:

- 1. Haykin S., Neural Network and Machine Learning, Prentice Hall Pearson (2009), 3rd ed.
- 2. Geron A., Hands-on Machine Learning with Sci-kit and TensorFlow, O'Reilly Media (2017)

Course Code: BTCS 705-18	Course Title: Deep Learning Lab	L:0;T:0;	Credits;1
		2P:	

Detailed List of Tasks:

- Creating a basic network and analyze its performance
- Deploy the Confusion matrix and simulate for Overfitting
- Visualizing a neural network
- Demo: Object Detection with pre-trained RetinaNet with Keras
- Neural Recommender Systems with Explicit Feedback
- Backpropagation in Neural Networks using Numpy
- Neural Recommender Systems with Implicit Feedback and the Triplet Loss
- Fully Convolutional Neural Networks
- ConvNets for Classification and Localization
- Text Classification and Word Vectors
- Character Level Language Model (GPU required)

Suggested Tools Python/R/MATLAB

ELECTIVE V

Course Code:	Course Title: Block Chain	3L:0 T: 0P	Credits: 3
BTCS721-18	Technology		

Detailed Contents:

INTRODUCTION TO BLOCKCHAIN

Blockchain- Public Ledgers, Blockchain as Public Ledgers -Bitcoin, Blockchain 2.0, Smart Contracts, Block in a Blockchain, Transactions-Distributed Consensus, The Chain and the Longest Chain - Cryptocurrency to Blockchain 2.0 - Permissioned Model of Blockchain, Cryptographic -Hash Function, Properties of a hash function-Hash pointer and Merkle tree

BITCOIN AND CRYPTOCURRENCY

A basic crypto currency, Creation of coins, Payments and double spending, FORTH – the precursor for Bitcoin scripting, Bitcoin Scripts, Bitcoin P2P Network, Transaction in Bitcoin Network, Block Mining, Block propagation and block relay, Consensus introduction, Distributed consensus in open environments-Consensus in a Bitcoin network

BITCOIN CONSENSUS

Bitcoin Consensus, Proof of Work (PoW)- Hashcash PoW, Bitcoin PoW, Attacks on PoW, monopoly problem- Proof of Stake- Proof of Burn - Proof of Elapsed Time - Bitcoin Miner, Mining Difficulty, Mining Pool-Permissioned model and use cases, Design issues for Permissioned Blockchains, Execute contracts- Consensus models for permissioned blockchain-Distributed consensus in closed environment Paxos

DISTRIBUTED CONSENSUS

RAFT Consensus-Byzantine general problem, Byzantine fault tolerant system-Agreement Protocol, Lamport-Shostak-Pease BFT Algorithm-BFT over Asynchronous systems, Practical Byzantine Fault Tolerance

HYPER LEDGER FABRIC & ETHERUM

Architecture of Hyperledger fabric v1.1-Introduction to hyperledger fabric v1.1, chain code- Ethereum: Ethereum network, EVM, Transaction fee, Mist Browser, Ether, Gas, Solidity, Smart contracts, Truffle Design and issue Crypto currency, Mining, DApps, DAO

BLOCKCHAIN APPLICATIONS

Internet of Things-Medical Record Management System-Block chain in Government and Block chain Security-Block chain Use Cases –Finance

COURSE OUTCOMES

CO1: Understand emerging abstract models for Block chain Technology.

CO2: Identify major research challenges and technical gaps existing between theory and practice in crypto currency domain.

CO3: It provides conceptual understanding of the function of Blockchain as a method of securing distributed ledgers, how consensus on their contents is achieved, and the new applications that they enable.

CO4: Apply hyperledger Fabric and Etherum platform to implement the Block chain Application.

REFERENCES

- 1. Mastering Blockchain: Deeper insights into decentralization, cryptography, Bitcoin, and popular Blockchain frameworks by Bashir, Imran,2017.
- 2. Arvind Narayanan, Joseph Bonneau, Edward Felten, Andrew Miller, and Steven Goldfeder. Bitcoin and cryptocurrency technologies: a comprehensive introduction. Princeton University Press, 2016.
- 3. Joseph Bonneau et al, SoK: Research perspectives and challenges for Bitcoin and cryptocurrency, IEEE Symposium on security and Privacy, 2015.

Course Code: 713-	Course Title: Block chain	L: T: 2P	Credits:1
18	Technology lab		

- 1. To Develop Naive Block chain construction.
- 2. Design Memory Hard algorithm and its Implementation
- 3. Design Toy application using Blockchain
- 5. Program to Solve a Mining puzzles using Block chain
- 6. The ability to formulate mathematical models and problem-solving skills through programming techniques for addressing real-time problems using appropriate data structures and algorithms.
- 7. The ability to provide design, build, and deploy a distributed application and provide solutions using block chain applications to enhance business measures by sharing information safely and effectively.
- 8. The ability to create crypto currencies and give a strong technical understanding of Block chain technologies with an in-depth understanding of applications, open research challenges, and future directions.