1. (3 Punkte) Konstruiere einen DEA über $\Sigma = \{a\}$, der die Sprache der Wörter mit einer geraden Anzahl von a's akzeptiert.

2. (3 Punkte) Konstruiere einen DEA über $\Sigma = \{a, b\}$, der die Sprache der Wörter mit einer geraden Anzahl von a's und einer ungeraden Anzahl b's akzeptiert.

3. (3 Punkte) Konstruiere einen DEA über $\Sigma = \{a, b\}$, der die Sprache $L = \{ab^n a^m : n \ge 2, m \ge 3\}$ akzeptiert.

4. (3 Punkte) Die Sprache L bestehe aus allen Wörtern w über dem Alphabet $\Sigma = \{0,1\}$ mit der folgenden Eigenschaft: Das Wort w enthält mindestens zwei Nullen, zwischen denen der Teilstring 11 vorkommt. Konstruiere einen endlichen Automaten (es darf also ein NEA sein), der genau L akzeptiert.

5. (3 Punkte) Die Sprache L bestehe aus allen Wörtern w über dem Alphabet $\Sigma = \{a, b\}$ mit der folgenden Eigenschaft: Das Wort w enthält aa oder bb. Konstruiere einen endlichen Automaten, der genau L erkennt.

6. (3 Punkte) Konstruiere zu folgendem NEA über dem Alphabet $\Sigma = \{a, b, c\}$ eine DEA, der dieselbe Sprache akzeptiert. Bestimme dazu nach dem Verfahren aus dem Unterricht die neue Zustandsübergangstabelle und zeichne das entsprechende Diagramm.

7. (3 Punkte) Die Sprache L bestehe aus allen Wörtern w über dem Alphabet $\Sigma = \{a, b\}$ mit der folgenden Eigenschaft: Das Wort w enthält aa oder bb. Gib einen regulären Ausdruck für die Sprache L an.

Lösung:

$$L = (a \cup b)^*(aa \cup bb)(a \cup b)^*$$

8. (3 Punkte) Die Sprache L bestehe aus allen Wörtern w über dem Alphabet $\Sigma = \{a, b\}$ mit der folgenden Eigenschaft: Das Wort w enthält höchstens einmal aa und nie bb. Gib einen regulären Ausdruck für die Sprache L an.

Lösung:

$$L = (\epsilon \cup b)(ab)^*(a \cup \epsilon)(ab)^*(\epsilon \cup a)$$

9. (3 Punkte) Gegeben sei der folgende endliche Automat A. Gib einen regulären Ausdruck an, der die Sprache L(A) erzeugt und dabei höchstens zweimal das Vereinigungssymbol \cup enthält.

Lösung:

$$L(A) = (ab^* \cup a^*)(a \cup b)$$

10. (3 Punkte) Zeige mit dem Pumping-Lemma: Die Sprache $L = \{ww | w \in \{0,1\}^*\}$ ist nicht regulär.

Lösung: Annahme: L ist regulär, dann gibt es eine pumping-Länge p von L. Betrachte das Wort $w = 0^p 10^p 1$. In der pumping-Region sind nur Nullen, so dass das aufgepumpte Wort nicht mehr in der Sprache ist. Das ist ein Widerspruch zum pumping-Lemma. Also ist L nicht regulär.

11. (3 Punkte) Zeige mit dem Pumping-Lemma: Die Sprache $L = \{w \in \{0,1\}^* | \text{ w enthält Teilwort 000 genauso häufig wie Teilwort ist nicht regulär.}$

Lösung: Annahme: L ist regulär, dann gibt es eine pumping-Länge p von L. Betrachte das Wort $w = (000)^p (111)^p$.
In der pumping-Region sind nur Nullen, so dass das aufgepumpte Wort nicht mehr in der Sprache ist. Das ist ein
Widerspruch zum pumping-Lemma. Also ist L nicht regulär.