

BOLTED CONNECTIONS

Problem 1): Two plates 12×60 mm are connected in *Lap Joint* with 16 mm \emptyset – 04 No. Find Strength of Joint?

Ultimate Strength of Bolt Material = $400 N/mm^2$

Ultimate Strength of Plate Material = 410 N/mm^2

Figure is Given

Typical S/C Of Lap Joint (Single Shear)

Answer: Given data: a) $F_{ub} = 400 \ N/_{mm^2}$

- b) If Edge Distance (e) is not given then $e = 1.5 \times d_0$
- c) $F_{uP} = 410 \ N/mm^2$
- d) If Pitch (P) is not given then $P = 2.5 \times d$
- e) Dia. Of Bolt = d = 16 mm
- f) Dia. Of Bolt Hole = $d_0 = 16 + 2 = 18 \text{ mm}$

Step 1): Design Strength of one Bolt in Shear (V_{ds})

$$V_{ds} =$$
 1/ $\gamma \ [rac{F_u}{\sqrt{3}} \ (n_n \, A_{nb} \, + \, n_s \, A_{sb}) \]....$ IS 800-2007; cl. 10.3.3 ; pg. 75

Where $F_u = F_{ub} = 400 N/mm^2$

 n_n = No. of shear planes with threads intercepting shear planes. = 1 (Lap

Joint – single Shear)

 A_{Sb} = Nominal Plain Shank Area of the Bolt.

Anb =
$$\pi$$
/4 (d-0.9382 p)² = 363.997 or
= 0.78 to 0.80 (π d²/4)
= 156.82

Taking Least Value

 A_{nb} = Net shear area of bolts at threads. = 156.82 mm^2

 n_s = No. of shear planes without threads intercepting shear planes. = 0

γ = Partial safety factor for Bolt Material = 1.25 IS 800-2007 ; Table 5 ; pg. 30

$$V_{ds} = 28975 N$$

Step 2): Design Strength of one Bolt in Bearing (V_{bs})

$$V_{bs} = 1/\gamma \; (2.5 \; K_b \; d \; t \; F_u)$$
IS 800-2007; cl. 10.3.4 ; pg. 75

Where,
$$F_u = F_{ub} = 400 \, N/mm^2$$

d = 16 mm; t = Thickness of plate = 12 mm

y = Partial safety factor for Bolt Material = 1.25 IS 800-2007; Table 5; pg. 30

$$V_{ds} = 1/\gamma \left[\frac{F_u}{\sqrt{3}} \left(n_n A_{nb} + n_s A_{sb} \right) \right] = 1/1.25 \left[\frac{400}{\sqrt{3}} \left(156.82 + 0 \right) \right]$$

$$V_{bs} = 75264 N$$

Since,
$$V_{ds} < V_{bs}$$

$$\therefore$$
 Strength Of bolt = $V_{ds} = 28.975 \ KN$

Step 3): To Find Design Tensile Strength of Plate

$$T_{dg} = 16.3636$$
 KN

Where , n = no. of Bolt Holes in weakest s/c (considering see s/c 1-1) = 1

$$A_n = (60-18) \times 12 = 504 \text{ mm}^2$$

 $F_u = F_{up} = 410 \text{ N/mm}^2$

$$T_{dn} = 14.8780 \text{ KN}$$

Problem 2): Determine Design Strength of 22 mm Ø Bolt for the case given below.

- i) Lap Joint
- ii) Single Cover Butt Joint With 12 mm cover plates.
- iii) Double Cover Butt Joint With 10 mm cover plates.

The main plate is 16 mm thick.

Ultimate Strength of Bolt Material = 400 Mpa

Ultimate Strength of Plate Material = 410 Mpa

Answer: Given data: a) $F_{ub} = 400 \frac{N}{mm^2}$

b)
$$F_{uP} = 410 \, N/mm^2$$

- C) Dia. Of Bolt = d = 22 mm
- d) Dia. Of Bolt Hole = $d_0 = 22 + 2 = 24 \text{ mm}$
- e) Edge Distance (e) $e = 1.5 \times d_0 = 1.5 \times 24 = 36 \text{ mm say } 40 \text{ mm}$
- f) Pitch (P) $P = 2.5 \times d = 2.5 \times 22 = 55$ say 60 mm
- a) Lap Joint:

(a) Shearing off a rivet in a lap joint.

i) Design Strength of one Bolt in Shear (Single shear - Lap Joint) (V_{ds})

$$V_{ds} =$$
 1/ $\gamma \ [rac{F_u}{\sqrt{3}} \ (n_n \, A_{nb})]$ IS 800-2007; cl. 10.3.3 ; pg. 75

$$A_{nb} = 1(Single\ shear)$$

$$A_{nb} = 0.78 \times \frac{\pi (22)^2}{4} =$$

$$V_{ds} = 1/1.25 \ [\frac{400}{\sqrt{3}} \ (1 \times A_{nb})] = 54781 \ N = 54.781 \ KN$$

ii) Design Strength of one Bolt in Bearing (V_{bs})

$$V_{bs} = 1/\gamma \ (2.5 \ K_b \ d \ t \ F_u)$$
IS 800-2007; cl. 10.3.4 ; pg. 75

6 Design Of Bolted Connections

Where,
$$F_u = F_{ub} = 400 \, N/_{mm^2}$$

d = 22 mm; t = Thickness of plate = 16 mm

γ = Partial safety factor for Bolt Material = 1.25 IS 800-2007 ; Table 5 ; pg. 30

$$V_{bs} = 1565696 \, N$$

Design Strength Of the bolt = Lesser of the above values = 54781 N = 54.781 KN

b) Single Cover Butt Joint With 12 mm cover plates. :

i) Design Strength of Bolt in Shear (Single shear) (V_{ds})

$$V_{ds} = 54781 \text{ N}$$

ii) Design Strength of Bolt in Bearing (V_{bs})

$$V_{bs} =$$
 1/ γ (2.5 $K_b \ d \ t \ F_u$)IS 800-2007; cl. 10.3.4 ; pg. 75

Where,
$$F_u = F_{ub} = 400 \, N/mm^2$$

d=22 mm; t=Lesser of the Thickness of plate from above =12 mm

γ = Partial safety factor for Bolt Material = 1.25 IS 800-2007 ; Table 5 ; pg. 30

:
$$V_{bs} = 117427 \text{ N}$$

7 Design Of Bolted Connections

c) Double Cover Butt Joint With 10 mm cover plates.

Bolts are in Double Shear;

Fig. 9.16. Shearing off a rivet in double cover butt joint.

i) Design Strength of Bolt in Shear (Double shear) (V_{ds})

$$V_{ds} = \{ 1/\gamma \ [\frac{F_u}{\sqrt{3}} \ (n_n A_{nb})] \}$$
 $n_n = 2 \ (Double \ shear)$
 $= 2\{ 1/\gamma \ [\frac{F_u}{\sqrt{3}} \ (A_{nb})] \} = 2 \times 54781 = 109562 \ N$

ii) Design Strength of Bolt in Bearing (V_{bs})

$$V_{bs} =$$
 1/ γ (2.5 $K_b \ d \ t \ F_u$)IS 800-2007; cl. 10.3.4 ; pg. 75

Where,
$$F_u = F_{ub} = 400 N/_{mm^2}$$

d = 22 mm;

t = a) Thickness of main Plate = 16 mm __ Taking Least Value

b) Sum of thicknesses of cover plates = 10 + 10 = 20 mm

y = Partial safety factor for Bolt Material = 1.25 IS 800-2007 ; Table 5 ; pg. 30

$$V_{bs} = 1565696 \text{ N}$$

Design Strength Of the bolt = Lesser of the above all values = 54.781

Problem 3): Investigate (Design) the Safety of Lap Joint having plates 12 mm and 15 mm thick. Each plate is 75 mm wide. With bolts of Grade 4.6; 16 mm Ø Grade of plate is 410 Mpa

Factored load = 75 KN

Answer:

As per IS 1367;

Grades of Bolt	Ultimate Strength of Bolt Material (Fub) N/mm ²	Yiels Stress of Bolt Material (Fy) in Mpa $= (\ 0.6 \times Fub\)$
4.6	400	240
4.8	420	320
5.6	500	300
5.8	520	400

Given data: a) From the table, Ultimate stress Of Bolt Material = $F_{ub} = 400 \, N/_{mm^2}$

- b) Yield stress Of Bolt Material $Fy = 240 \frac{N}{mm^2}$
- b) Ultimate stress Of Plate Material $F_{uP} = 410 \frac{N}{mm^2}$
- b) Yield stress Of Plate Material $Fy = 250 \text{ N/}_{mm^2}$ Assume
- c) Dia. Of Bolt = d = 16 mm
- d) Dia. Of Bolt Hole = $d_0 = 16 + 2 = 18 \text{ mm}$
- e) Edge Distance (e) = $1.5 \times d_0 = 27$ say 30 mm
- f) Pitch (P) = $2.5 \times d = 40 \text{ mm}$
- g) Factored Load = 75 KN = 75000 N

Step 1): Design Strength of one Bolt in Shear (V_{ds})

$$V_{ds} =$$
 1/ $\gamma \ [rac{F_u}{\sqrt{3}} \ (n_n \, A_{nb})]$ IS 800-2007; cl. 10.3.3 ; pg. 75

Where
$$F_u = F_{ub} = 400 \, N/mm^2$$

 n_n = No. of shear planes with threads intercepting shear planes. = 1 (Lap Joint)

 A_{Sb} = Nominal Plain Shank Area of the Bolt.

γ = Partial safety factor for Bolt Material = 1.25 IS 800-2007 ; Table 5 ; pg. 30

$$V_{ds} =$$
 1/ 1.25 $\left[\frac{400}{\sqrt{3}}\left(1\times0.78\,\times\!\frac{\pi\,(16)^2}{4}\right)\right]$ = 28.975 KN

Step 2): Design Strength of one Bolt in Bearing (V_{bs})

$$V_{bs} = 1/\gamma \ (2.5 \ K_b \ d \ t \ F_u)$$
IS 800-2007; cl. 10.3.4 ; pg. 75

Where,
$$F_u = F_{ub} = 400 \frac{N}{mm^2}$$

d = 16 mm;

t = Lesser of the Thickness of plate from above = 12 mm

γ = Partial safety factor for Bolt Material = 1.25 IS 800-2007 ; Table 5 ; pg. 30

 $V_{bs} = 1/1.25 (2.5 \times 0.490 \times 16 \times 12 \times 400)$ = 75.264 KN

Thus, no. of bolts required =
$$\frac{\text{Factored Load}}{\text{Bolt Value}}$$

= $\frac{75000}{28975}$ = 2.6 say 3

Now, draw figure and show arrangement of bolts.

Step 3): Check For the Strength of the Plate;

I. Yielding Consideration : $T_{dg} = 1/\gamma (A_g F_y)$

.....IS 800-2007; cl. 6.2; pg. 32

Where, $A_g = \text{Gross Area Of plate S/c} = (75 \times 12) = 900 \text{ } mm^2$

 F_y = Yield Strss Of the plate = 250 $N/_{mm^2}$

γ = Partial Safety Factor for failure by Yielding = 1.10

...... IS 800-2007; Table 5; pg. 30

$$T_{dg} = 201917 \text{ N} = 201.91 \text{ KN}$$

II Rupture Consideration : $T_{dn} = 1/\gamma$ ($0.9 A_n F_u$)............. IS 800-2007; cl. 6.3.1; pg. 32

γ = Partial Safety Factor for failure by Rupture = 1.25

......IS 800-2007; Table 5; pg. 30

 A_n = Net effective area of the member = $((b) - (n \ do)) \times t$

$$= (75 - 18) \times 12 = 684 \ mm^2$$

Where , n = no. of Bolt Holes in weakest s/c = 1 (See Fig. section x - x)

Where,
$$F_u = F_{up} = 410 \ N/mm^2$$

$$T_{dn} = 204545$$
 N = 204.54 KN

Problem 3): The Lap Joint having two plates Of 120×8 mm which transmit factored load of 120 KN. Design the S/c ?

Use 12 mm diameter Bolt of Grade 4.6 and plates Of Grade 410.

Answer:

As per IS 1367;

Grades of Bolt	Ultimate Strength of Bolt Material (Fub) N/mm ²	Yiels Stress of Bolt Material (Fy) in Mpa $= (\ 0.6 \times Fub\)$
4.6	400	240
4.8	420	320
5.6	500	300
5.8	520	400

Given data: a) From the table, Ultimate stress Of Bolt Material = $F_{ub} = 400 \, N/mm^2$

- b) Yield stress Of Bolt Material $Fy = 240 \frac{N}{mm^2}$
- b) Ultimate stress Of Plate Material $F_{uP} = 410 \frac{N}{mm^2}$
- c) Dia. Of Bolt = d = 12 mm
- d) Dia. Of Bolt Hole = $d_0 = 12 + 2 = 14 \text{ mm}$
- e) Edge Distance (e) = $1.5 \times d_0 = 21$ say 20 mm
- f) Pitch (P) = $2.5 \times d = 30 \text{ mm}$
- g) Factored Load = 120 KN = 120000 N

a) Design:

Step 1): Design Strength of one Bolt in Shear (V_{ds})

Where
$$F_u = F_{ub} = 400 \ ^{N}/_{mm^2}$$

 $n_n = \text{No. of shear planes with threads intercepting shear planes.} = 1 (Lap Joint)$

 A_{Sh} = Nominal Plain Shank Area of the Bolt.

γ = Partial safety factor for Bolt Material = 1.25 IS 800-2007 ; Table 5 ; pg. 30

$$V_{ds} = 1/1.25 \left[\frac{400}{\sqrt{3}} \left(1 \times 0.78 \times \frac{\pi (12)^2}{4} \right) \right] = 16.298 \text{ KN}$$

Step 2): Design Strength of one Bolt in Bearing (V_{bs})

$$V_{bs} = 1/\ {
m Y}\ (2.5\ K_b\ d\ t\ F_u)$$
IS 800-2007; cl. 10.3.4 ; pg. 75

Where,
$$F_u = F_{ub} = 400 \, N/mm^2$$

$$d = 12 \text{ mm}$$
;

t = Lesser of the Thickness of plate from above = 8 mm

γ = Partial safety factor for Bolt Material = 1.25 IS 800-2007 ; Table 5 ; pg. 30

$$V_{bs} = 1/1.25 (2.5 \times 0.519 \times 12 \times 8 \times 400)$$

= 39.398 KN

Since,
$$V_{ds} < V_{bs}$$

∴ Bolt Value =
$$V_{ds}$$
 = 16.298 KN

Thus, no. of bolts required = $\frac{\text{Factored Load}}{\text{Bolt Value}}$

$$=\frac{120000}{16298}=7.36 \, say \, 08$$

Now, draw figure and show arragment of bolts.

Step 3): Check For the Strength of the Plate;

I. Yielding Consideration : $T_{dq} = 1/\gamma (A_q F_v)$

.....IS 800-2007; cl. 6.2 ; pg. 32

Where, $A_g = \text{Gross Area Of plate S/c} = (120 \times 8) = 960 \text{ } mm^2$

$$F_y$$
 = Yield Strss Of the plate = 250 N/mm^2

γ = Partial Safety Factor for failure by Yielding = 1.10

......IS 800-2007 ; Table 5 ; pg. 30

$$T_{dg} = 218182 \text{ N} = 218.18 \text{ KN}$$

II Rupture Consideration : $T_{dn} = 1/\gamma$ ($0.9 A_n F_u$)............. IS 800-2007; cl. 6.3.1; pg. 32

 γ = Partial Safety Factor for failure by Rupture = 1.25

...... IS 800-2007 ; Table 5 ; pg. 30

 A_n = Net effective area of the member = $((120) - (n \times d_0)) \times t$

$$= ((120) - (2 \times 14)) \times 8 = 736 \ mm^2$$

Where , n=no. of Bolt Holes in weakest s/c=2 (See section x-x in figure)

$$F_u = F_{up} = 410 \quad N/_{mm^2}$$

$$T_{dn} = 221990 \text{ N} = 221.99 \text{ KN}$$

Problem 5) *Imp*.: Find The efficiency of the Butt joint shown in fig. Bolts are 16 mm diameer of grade 4.6. cover plates are 8 mm thick.

Answer: As per IS 1367;

Grades of Bolt	Ultimate Strength of Bolt Material (Fub) N/mm ²	Yiels Stress of Bolt Material (Fy) in Mpa $= (\ 0.6 \times Fub\)$
4.6	400	240
4.8	420	320
5.6	500	300
5.8	520	400

Given data: a) From the table, Ultimate stress Of Bolt Material = $F_{ub} = 400 \, N/mm^2$

b) Yield stress Of Bolt Material $Fy = 240 \frac{N}{mm^2}$

c) Dia. Of Bolt = d = 16 mm

d) Dia. Of Bolt Hole = $d_0 = 16 + 2 = 18 \text{ mm}$

- e) Edge Distance (e) = 30 mm (Given in Fig.)
- f) Pitch (P) = 50 mm (Given in Fig.)
- i) Design Strength of one Bolt in Shear (Double shear) (V_{ds}) Step 1)

$$V_{ds} = \{ 1/\gamma [\frac{F_u}{\sqrt{3}} (n_n A_{nb})] \}$$

Where
$$F_u = F_{ub} = 400 \ N/_{mm^2}$$

 $n_n = \text{No. of shear planes with threads intercepting shear planes.} = 2 (Butt$ it. With two Cover plates)

 A_{nb} = Net shear area of bolts at threads = 156.82 mm^2

Anb =
$$\pi/4$$
 (d-0.9382 p)² = 750.40 or
= 0.78 to 0.80 (π d²/4) Taking Least Value

y = Partial safety factor for Bolt Material = 1.25 IS 800-2007 ; Table 5 ; pg. 30

$$V_{ds} = \{ 1/1.25 \ [\frac{400}{\sqrt{3}} (2 \times 156.82)] \}$$

$$V_{ds} = 57.95 \text{ KN}$$

ii) Design Strength of one Bolt in Bearing (V_{bs})

$$V_{bs} = 1/\ {\rm Y}\ (2.5\ K_b\ d\ t\ F_u)$$
IS 800-2007; cl. 10.3.4 ; pg. 75

Where,
$$F_u = F_{ub} = 400 \ ^{N}/_{mm^2}$$

$$d = 16 \text{ mm}$$
;

t = a) Thickness of main Plate = 12 mm

b) Sum of thicknesses of cover plates = 8 + 8 = 16 mm Taking Least Value t = 12 mm

γ = Partial safety factor for Bolt Material = 1.25 IS 800-2007 ; Table 5 ; pg. 30

∴
$$V_{bs} = 85.25$$
 KN

∴ Total Design Strength of four (considering S/c 1-1 & 2-2.) Bolts (V_b) = 4 × 57.95 = 231.8 KN

Step 2): Design Strength of the Plate in;

I. Yielding Consideration : $T_{dg} = 1/\gamma (A_g F_y)$

Where, $A_g = \text{Gross Area Of plate S/c} = (160 \times 12) = 1920 \ mm^2$

 F_y = Yield Strss Of the plate = $250 \frac{N}{mm^2}$

γ = Partial Safety Factor for failure by Yielding = 1.10

......IS 800-2007 ; Table 5 ; pg. 30

:
$$T_{dg} = 436.36$$
 KN

$$A_n$$
 = Net effective area of the member = $((160) - (2 \times d_0)) \times t$
= $((160) - (2 \times 18)) \times 12 = 1488 \ mm^2$

Where , n = no. of Bolt Holes in weakest s/c = 2 (considering section 2-2)

Where,
$$F_u = F_{up} = 410 \frac{N}{mm^2}$$

Design strength of plate $(T_d) = 436.25$ KN

Design strength of bolts $(V_b) = 231.8 \text{ KN}$

$$\therefore efficiency = \left(\frac{V_b}{T_d}\right) \times 100$$
$$= 53.13 \%$$

Problem 6): Find The *efficiency* of the Single bolted Butt joint with Double cover plates of5 mm connecting main plate of 8mm thickne. Use 16 mm diameter bolts of grade 4.6 at pitch of 45 mm.

Answer: As per IS 1367;

Grades of Bolt	Ultimate Strength of Bolt Material (Fub) N/mm ²	Yiels Stress of Bolt Material (F_y) in Mpa = ($0.6 \times F_{ub}$)
4.6	400	240
4.8	420	320
5.6	500	300
5.8	520	400

Given data: a) From the table, Ultimate stress Of Bolt Material = $F_{ub} = 400 \, N/mm^2$

- b) Yield stress Of Bolt Material $Fy = 240 \frac{N}{mm^2}$

- e) Dia. Of Bolt = d = 16 mm
- f) Dia. Of Bolt Hole = $d_0 = 16 + 2 = 18 \text{ mm}$
- g) Pitch (P) = 45 mm

Single Bolted Butt Joint (Double Cover)

Since Butt joint is Butt type, (*Double shear*)

No.Of bolts covered per pitch length on each side of joint = 1

Consider per pitch length of joint;

Step 1) i) Design Strength of one Bolt in Shear (*Double shear*) (V_{ds})

$$V_{ds} = \{ 1/\gamma \ [\frac{F_u}{\sqrt{3}} \ (n_n A_{nb})] \}$$
......cl 10.3.3, pg 75
 Where $F_u = F_{ub} = 400 \ N/mm^2$

 n_n = No. of shear planes with threads intercepting shear planes. = 2 (Butt jt. – *Double shear*)

γ = Partial safety factor for Bolt Material = 1.25 IS 800-2007 ; Table 5 ; pg. 30

$$V_{ds} =$$
 1/ 1.25 $\left[\frac{400}{\sqrt{3}}\left(2 \times 0.78 \times \frac{\pi \ (16)^2}{4}\right)\right]$ = 57.950 kN

ii) : Design Strength of one Bolt in Bearing (V_{bs})

Where,
$$F_u = F_{ub} = 400 \frac{N}{mm^2}$$

d = 16 mm;

t = Lesser of the Thickness of plate from. i) 5+5=10 mm: ii) 8 mm

γ = Partial safety factor for Bolt Material = 1.25 IS 800-2007 ; Table 5 ; pg. 3

$$V_{bs} = 1/1.25 (2.5 \times 16 \times 8 \times 400)$$

= 102.400 KN

Step 2): Design Strength of the Plate in;

$$T_{dq} = 81.818 \text{ KN}$$

II Rupture Consideration : $T_{dn} = 1/\gamma$ ($0.9 A_n F_u$)............ IS 800-2007; cl. 6.3.1; pg. 32

γ = Partial Safety Factor for failure by Rupture = 1.25

...... IS 800-2007; Table 5; pg. 30

 A_n = Net effective area of the member = $((45) - (1 \times d_0)) \times t$

$$= ((45) - (1 \times 18)) \times 8 = mm^2$$

Where , n = no. of Bolt Holes in weakest s/c = 1 (per pitch length)

Where,
$$F_u = F_{up} = 410 \ ^{N}/_{mm^2}$$

$$T_{dn} = 63.763 \text{ KN}$$
Since; $V_{ds} < V_{bs} < T_{dn} < T_{dg}$

Least Design strength per pitch length $(V_b) = V_{ds} = 57.950 \text{ KN}$

Step 3): Design Strength of the Solid Plate per pitch lngth;

γ = Partial Safety Factor for failure by Rupture = 1.25

...... IS 800-2007 ; Table 5 ; pg. 30

 A_n = Net effective area of the member = $45 \times 8 = 360 \ mm^2$

Where,
$$F_u = F_{up} = 410 \frac{N}{mm^2}$$

$$T_d = 106.272 \text{ KN}$$

Design strength of plate $(T_d) = 106.272 \text{ KN}$

$$\frac{\therefore efficiency =}{\left(\frac{V_b}{T_d}\right) \times 100 = 54.50 \%}$$

Problem 7): Find The *efficiency* of the Double bolted Butt joint with Double cover plates of 6 mm connecting main plate of 8 mm thick. Use 16 mm diameter bolts of grade 4.6 at pitch of 50 mm.

Answer: As per IS 1367;

Grades of Bolt	Ultimate Strength of Bolt Material (Fub) N/mm ²	Yiels Stress of Bolt Material (F_y) in Mpa = ($0.6 \times F_{ub}$)
4.6	400	240
4.8	420	320
5.6	500	300
5.8	520	400

Given data: a) From the table, Ultimate stress Of Bolt Material = $F_{ub} = 400 \, N/_{mm^2}$

- b) Yield stress Of Bolt Material $Fy = 240 \frac{N}{mm^2}$
- c) Ultimate stress Of Plate Material $F_{uP} = 410 \, N/mm^2$ Assume
- e) Dia. Of Bolt = d = 16 mm
- f) Dia. Of Bolt Hole = $d_0 = 16 + 2 = 18 \text{ mm}$: g) Pitch (P) = 50 mm

Double Bolted Butt Joint (Double Cover)

Since Butt joint is Butt type, (*Double shear*)

No.Of bolts covered per pitch length on each side of joint = 2

Consider per pitch length of joint;

Step 1) i) Design Strength of two Bolt in Shear (*Double shear*) (V_{ds})

$$V_{ds} = \{ 1/\gamma \ [\frac{F_u}{\sqrt{3}} \ (n_n A_{nb})] \}$$
......cl 10.3.3, pg 75
Where $F_u = F_{ub} = 400 \ N/mm^2$

 n_n = No. of shear planes with threads intercepting shear planes. = 2 (Butt jt. – *Double shear*)

γ = Partial safety factor for Bolt Material = 1.25 IS 800-2007 ; Table 5 ; pg. 30

$$V_{ds} = 2 \left[\frac{1}{1.25} \times \frac{400}{\sqrt{3}} \left(2 \times 0.78 \times \frac{\pi (16)^2}{4} \right) \right] = 115.90 \text{ KN}$$

ii) : Design Strength of Two Bolt in Bearing (V_{bs})

$$V_{bs}\!=\!2$$
 { 1/ γ (2.5 d t F_{u})}IS 800-2007; cl. 10.3.4 ; pg. 75

Where,
$$F_u = F_{ub} = 400 \frac{N}{mm^2}$$

d = 16 mm:

t = Lesser of the Thickness of plate from. i) 6+6=12 mm

ii) 8 mm

t = 8 mm

γ = Partial safety factor for Bolt Material = 1.25 IS 800-2007 ; Table 5 ; pg. 3

$$V_{bs} = 2 \{ 1/1.25 (2.5 \times 16 \times 8 \times 400) \}$$

= **204.800 KN**

Step 2): Design tensile Strength of the Plate per pitch length in;

:
$$T_{dg} = 90.909$$
 KN

II Rupture Consideration : $T_{dn} = 1/\gamma$ (0.9 A_n F_u).............. IS 800-2007; cl. 6.3.1; pg. 32

y = Partial Safety Factor for failure by Rupture = 1.25

...... IS 800-2007; Table 5; pg. 30

 A_n = Net effective area of the member = $(50 - 18) \times 8 = 256 \quad mm^2$

Where , n = no. of Bolt Holes in weakest s/c = 1 (per pitch length)

Where,
$$F_u = F_{up} = 410 \frac{N}{mm^2}$$

$$\therefore T_{dn} = 75.571 \text{ KN}$$

Since;
$$T_{dn} < T_{dg} < V_{ds} < V_{bs}$$

Least Design strength per pitch length $(V_b) = T_{dn} = 75.571$ KN

Step 3): Design Strength of the Solid Plate per pitch lngth;

γ = Partial Safety Factor for failure by Rupture = 1.25

 A_n = Net effective area of the member = $50 \times 8 = 400 \ mm^2$

Where,
$$F_u = F_{up} = 410 \frac{N}{mm^2}$$

$$T_d = 118.80$$
 KN

Design strength of plate $(T_d) = 118.80 \text{ KN}$

∴ efficiency =

$$\left(\begin{array}{c} \frac{V_b}{T_d}\right) \times 100 = 64 \%$$