A-6) なぜ貧富の差が生まれるのか?

社会システム科学 (11/27)

ヤコベンコの確率モデル*

- ・統計物理学に基づく経済モデル
- · 高温で濃度の低い粒子系におけるエネルギー分布 → ボルツマン分布
 - ・系内のエネルギー総量は一定
 - ・粒子同士が衝突すると粒子間でエネルギーが移動

- ・マルチエージェントモデルによるモデル化
 - ・各エージェントの初期資産の分布は一様
 - ・モデル内の資産総量は一定
 - ・二体のエージェントが出会うと手持ち資産が一定量移動

^{*} A. Drăgulescu and V.M. Yakovenko, *Statistical mechanics of money*, Eur. Phys. J. B 17, pp. 723-729 (2000)

シミュレーション

- ・ BEEFのJupyterノートブックをGoogle Colabにアップロード
- ・まず[1.準備]と[2.シミュレーション]を実行してみる。
- ・説明は授業中に行います。

ジニ係数

- ・ 資源の偏りの指標:均等(0) ↔ 一極集中(1)
- ・ローレンツ曲線と均等分配線の間の面積と均等分配線の下の面積の比

Gini = $A / (A + B) = 2 \times A$

Cumulative share of people from lowest to highest incomes

ローレンツ曲線と均等分配線

- ・ローレンツ曲線:所得分配や人口集中の偏りを示すグラフ
- ・ 均等分配線:斜め45度の線(偏りがない場合のローレンツ曲線)

Lorenz Curve

ジニ係数の計算

・ ベクトル $y = (y_1, y_2, \dots, y_n)$ に対して、

Gini =
$$\frac{1}{2n(n-1)\bar{y}} \sum_{i=1}^{n} \sum_{j=1}^{n} |y_i - y_j|$$
 ただし, $\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$

・ または、ベクトル y を整列した \hat{y} に対して、

Gini =
$$\left(\frac{2\sum_{i=1}^{n} i \cdot y_i}{n\sum_{i=1}^{n} y_i} - \frac{n+1}{n}\right) \cdot \frac{n}{n-1}$$

・プログラムでは下の方法で計算をしています。

シミュレーション

- ・ [3.ジニ係数] の部分を実行してみる。
- ・説明は授業中に行います。

会社モデル

[モデル]

- ・ 1体のエージェント(社長)が貸付金 K の提供を受ける(利率 r)
- ・その資金でL名のエージェントを給料Wで雇用(社員)
- ・ Q個の製品を生成: $Q=L^{\beta}K^{1-\beta}$
- ・ 製品の価格は R で Q 名のエージェントに全て売れるものとする

[資産の移動]

- ・ 社長の収入: F = RQ LW rK
- 社員の収入: W
- · 顧客の収入(支出): -R
- ・ 資本家(貸し付けした人)の収入:rK

シミュレーション

- ・ [4.会社モデル] を実行してみる。
- ・説明は授業中に行います。

モデルの発展

- 借金
- 経済成長 → 資源の総量が少しずつ増加する
- ・貯蓄(投資)と金利
- ・ 人口の増減 (年齢や寿命)
- ・空間の導入