Discrete Geometry I

Saturday, 02/05/2020 (exceptional)

Summer term 2020

Prof. Dr. Mario Kummer, Holger Eble

Exercise sheet 2

Due-date: Tuesday, 12/05/2020 (exceptional), as latex file via GitLab.

Exercise 1 6 Points

In this exercise we examine the assumptions of some theorem that we saw in the lectures.

- a) Let $n \in \mathbb{N}$. Prove that there exists a finite family of convex sets $A_1, \ldots, A_m, m \geq n$, such that any intersection of n distinct A_i 's is non-empty while $\bigcap_{i=1}^m A_i = \emptyset$ holds.
- b) Give an example of a countably infinite familiy of convex sets $\{A_i\}$ in some \mathbb{R}^d , d > 2, such that every d+1 of the A_i share a common point while $\bigcap_{i\in\mathbb{N}}A_i=\emptyset$ holds.

Exercise 2 2 Points

Recall the function space $\mathcal{C}(\mathbb{R}^d)$ and show that the (ring) multiplication of the underlying \mathbb{R} -algebra structure is well-defined. Is $\mathcal{C}(\mathbb{R}^d)$ a finite dimensional real vector space?

Exercise 3 4 Points

Let $I_n : \{(x_1, ..., x_n) \in \mathbb{R}^n : 0 < x_1, ..., x_n < 1\}$. Determine $\chi(I_2)$ and $\chi(I_3)$.

Exercise 4 4 Points

Let $A_1, \ldots, A_m \subset \mathbb{R}^d$ be closed convex sets with $\bigcap_{i=1}^m A_i \neq \emptyset$. Prove that $\chi(\bigcup_{i=1}^m A_i) = 1$.