San José State University Department of Computer Science

Ahmad Yazdankhah

ahmad.yazdankhah@sjsu.edu www.cs.sjsu.edu/~yazdankhah

Deterministic Finite Automata

(Part 3)

Lecture 08 Day 08/31

CS 154
Formal Languages and Computability
Spring 2018

Agenda of Day 08

- Solution and Feedback of HW 1
- Solution and Feedback of Quiz 2
- Summary of Lecture 07
- Lecture 08: Teaching ...
 - Deterministic Finite Automata (Part 3)

Solution and Feedback of HW 1 (Out of 30)

Metrics	Section 1	Section 2	Section 3
Average	22	25	25
High Score	28	30	30
Low Score	14	18	10

Solution and Feedback of Quiz 2 (Out of 27)

Metrics	Section 1	Section 2	Section 3
Average	22	21	21
High Score	25	26	25
Low Score	17	16	14

Definitions

Formal Definition of DFAs

- Here is the formal (mathematical) definition of DFAs:
- A DFA M is defined by the quintuple (5-tuple):

$$M = (Q, \Sigma, \delta, q_0, F)$$

- Where:
 - Q is a finite and nonempty set of states of the transition graph.
 - $-\Sigma$ is a finite and nonempty set of symbols called input alphabet.
 - $-\delta$ is called transition function and is defined as:

$$δ$$
: $Q × Σ → $Q$$

<u></u>Σ mι

- δ must be total function. Why?
- $-q_0 \in Q$ is the initial state of the transition graph.
- $F \subseteq Q$ is the set of accepting states of the transition graph.

Formal Definition of DFAs

Transition Function $\delta: Q \times \Sigma \rightarrow Q$

Example 22

- Let $Q = \{q_0, q_1, q_2\}, \Sigma = \{a, b\}$; Domain = ?, Range = ?
- Domain: $Q \times \Sigma = \{(q_0, a), (q_0, b), (q_1, a), (q_1, b), (q_2, a), (q_2, b)\}$
- Note that the domain contains all possible combination of states and alphabet.
 - Range: $Q = \{q_0, q_1, q_2\}$
 - Rule: Let's assume that this figure is the rule of the function.
- Is this a "total function" or "partial function"? Why?

Transition Function $\delta: Q \times \Sigma \rightarrow Q$

Example 22 (cont'd)

• Write the rule of δ in algebraic notation.

- 0
- How do we show a sub-rule like $\delta(q_1, a) = q_2$ in transition graph?

So, every sub-rule is a transition in transition graph.

Draw the Transition Graph from DFA Definition

Example 22 (cont'd)

$$\delta\colon \begin{cases} \delta(q_0,a) = q_0 \\ \delta(q_0,b) = q_1 \\ \delta(q_1,a) = q_2 \\ \delta(q_1,b) = q_2 \\ \delta(q_2,a) = q_2 \\ \delta(q_2,b) = q_2 \end{cases}, \ \Sigma = \{a\ , b\}$$

- Initial state = q₀
 Final state = {q₁}
- Draw the transition graph.

Formal Definition and Transition Graph

Homework

- Draw a transition graph for the DFA M defined as:
- $Q = \{q_0, q_1, q_2, q_3\}$
- $\Sigma = \{a, b\}$

$$\delta: \begin{cases} \delta(q_0, a) = q_1 \\ \delta(q_0, b) = q_3 \\ \delta(q_1, a) = q_3 \\ \delta(q_1, b) = q_2 \\ \delta(q_2, a) = q_2 \\ \delta(q_2, b) = q_2 \\ \delta(q_3, a) = q_3 \\ \delta(q_3, b) = q_3 \end{cases}$$

- Initial state = q₀
- $F = \{q_2\}$

Homework

Draw a transition graph for

$$\begin{split} \textbf{M} &= (\{\textbf{q}_0,\,\textbf{q}_1,\,\textbf{q}_2\},\,\{\textbf{0},\textbf{1}\},\,\boldsymbol{\delta},\,\textbf{q}_0,\,\{\textbf{q}_1\})\\ \boldsymbol{\delta}(\textbf{q}_0,\,0) &= \textbf{q}_0\\ \boldsymbol{\delta}(\textbf{q}_1,\,0) &= \textbf{q}_0\\ \boldsymbol{\delta}(\textbf{q}_2,\,0) &= \textbf{q}_2\\ \boldsymbol{\delta}(\textbf{q}_0,\,1) &= \textbf{q}_1\\ \boldsymbol{\delta}(\textbf{q}_1,\,1) &= \textbf{q}_2\\ \boldsymbol{\delta}(\textbf{q}_2,\,1) &= \textbf{q}_1 \end{split}$$

Which strings from the following set are accepted?
 {01, 00, 101, 0111, 11001, 100, 1100}

Homework

- Write all elements of the following transition graph.
- Q = ?
- $\Sigma = ?$
- $\delta = ?$
- $q_0 = ?$
- F = ?

Why Total Function

Example 22 (cont'd)

What would happen if δ is NOT total function?

Then at least one member of domain is undefined!

• To see the effect, let's modify δ by making (q₀, a) undefined.

Why Total Function

Example 22 (cont'd)

• What is the effect of δ being partial function?

 If the DFA is in q₀ and the input is a, it does not know where to go!

- It "hangs"!
- So, δ must be total function.

The gray items don't exist!

Total Function from Different Angle

- So, DFAs must know where to go at any moment of their operation.
- This means, in general:
- ① If $\Sigma = \{a_1, a_2, ..., a_n\}$ is the alphabet of a DFA, then ...
 - ... every state q_i , must have an outgoing transition a_k for k = 1, 2, ..., n.

Conclusion

δ being total function is "DFAs' constraint".

Transition Table

 To represent a transition function, we can also use a table called "transition table".

Example 23

 Represent the following transition function by using a transition table.

$$\delta(q_0, a) = q_0
\delta(q_1, a) = q_0
\delta(q_2, a) = q_2
\delta(q_0, b) = q_1
\delta(q_1, b) = q_2
\delta(q_2, b) = q_1$$

1

Associated Language to DFAs

- Every DFA accepts a set of strings.
 - Of course the set can be empty!
- A set of string is called a language.
- Therefore, every DFA accepts a language.

Definition

- The associated language to a DFA is the set of all strings that it accepts.
- The associated language L to the machine M is denoted by L(M).
- Note that this definition can be extended to all types of automata.

Equivalency of Machines

• When are two machines M₁ and M₂ equivalent?

Definition

- Machine M₁ is equivalent to machine M₂ iff L(M₁) = L(M₂).
 - M₁ and M₂ are equivalent iff their associated languages are equal.
- Note that this is also a general definition for all types of automata.

What is wrong with the following definition?
 Two machines are equivalent iff both accept the same language.

(1) What is Computation?

- A machine during its operation transits (aka moves) from one configuration to another.
- Ultimately, when the machine halts, it accepts or rejects a string.
- This sequence of configurations is called "computation".

Definition of Computation

 "Computation" is the sequence of configurations from when the machine starts until it halts.

What is Determinism?

Etymology

- Merriam-Webster dictionary defines "determinism" as:
 - "the belief that all events are caused by things that happened before them and that people have no real ability to make choices or control what happens"
- This is a philosophical definition.
- If something is deterministic, then it will happen (with 100% certainty) and there won't be any other choices.
- Let's see what does it mean in computer science world.

What is Determinism?

Is DFAs' behavior predictable?

 You (an observer) are given a known DFA's configuration at timeframe n.

- Can you predict its configuration at timeframe n+1?
 - Yes, we (an observer) can predict its behavior with 100% certainty.
 - Because during any timeframe, there is one and only one transition.

What is Determinism?

Definition

 A machine is called deterministic iff during any timeframe, there is NO MORE THAN ONE transition.

- This means, the number of transitions can be zero or one.
- In DFAs, it is always one but in other machines, it can be zero as well.
 - Will be covered later.

How can this definition be violated?

References

- Linz, Peter, "An Introduction to Formal Languages and Automata, 5th ed.," Jones & Bartlett Learning, LLC, Canada, 2012
- Kenneth H. Rosen, "Discrete Mathematics and Its Applications, 7th ed.," McGraw Hill, New York, United States, 2012
- Michael Sipser, "Introduction to the Theory of Computation, 3rd ed.," CENGAGE Learning, United States, 2013 ISBN-13: 978-1133187790