الفرض المحروس الأول في مادة الرياضيات

* التمرين الأول: (04 نقاط)

حدد صحة أو خطأ كل عبارة من العبارات التالية مع التبرير

$$S_n = 7^{n+1} - 1:$$
 فإن $S_n = 6 \Big[1 + e^{Ln7} + e^{2Ln7} + e^{3Ln7} + \dots + e^{nLn7} \Big]$ فإن (1) من اجل كل عدد طبيعي n اذا كان (1) من اجل كل عدد طبيعي

$$\lim_{x\to a} \frac{xf(a)-af(x)}{x-a} = f(a)-af'(a)$$
: اذا كانت f دالة قابلة للاشتقاق عند كل a من f فإن (2)

$$y'+2y=8$$
 : هي: $f(x)=3e^{-2x}+4$ المعادلة التفاضلية من الشكل $y'=ay+b$ والتي حل لها $y'+2y=8$

* التمرين الثاني: (07 نقاط)

$$g(x)=(2-x)e^x-2$$
 بالجزء الأولى: لتكن الدالة g المعرفة على المجال g

. $\lim_{x \to +\infty} g(x)$ و $\lim_{x \to -\infty} g(x)$ احسب (1

ب – ادرساتجاه تغیر الدالة g ثم شكل جدول تغیراتها .

1,5<lpha<1,6 تقبل حلين احدهما معدوم والأخر $g\left(x
ight)=0$ عين ان المعادلة $g\left(x
ight)=0$

 \square على $g\left(x
ight)$ على \square

$$\begin{cases} f(x) = \frac{x^2}{e^x - 1}; x \neq 0 \\ f(0) = 0 \end{cases}$$
 : بالكن الدالة f المعرفة على المحال المعرفة على المحال المحرفة على المحرفة

. $\left(O;ec{i}^{ec{i}},ec{j}^{ec{j}}
ight)$ تثيلها البياني في المستوي المنسوب إلى المعلم المتعامد والمتجانس $\left(C_{f}^{ec{i}}
ight)$

 \Box برهن ان الدالة f مستمرة على - أ - (1

ب – بين انالدالة f قابلة للاشتقاق عند $oldsymbol{0}$ ، ثم اكتب معادلة المماس (Δ) للمنحنى والمبدأ

 $\lim_{x \to -\infty} f\left(x\right) = 0$ برهن ان ا $\lim_{x \to +\infty} f\left(x\right) = 0$ و فسر النتيجة بيانيا ، ثم احسب (2

$$f'(x) = \frac{x \cdot g(x)}{(e^x - 1)^2} : x \neq 0$$
 عدد حقیقي عدد حقیقي 1 – أ – بین أنه من أجل كل عدد حقیقي 3

ب – استنتج اتجاه تغير الدالة fثم شكل جدول تغيراتها

.
$$f\left(lpha
ight)$$
 . أم استنتج حصراً لـ $f\left(lpha
ight)$. أم استنتج حصراً لـ $f\left(lpha
ight)$

 $y=-x^2$ المنحنى البيانى الذي معادلته (γ) (5

 (γ) النسبة الى (C_f) واستنتج وضعية المنحنى $f(x)+x^2$ بالنسبة الى f(x)

$$\lim_{x \to -\infty} f(x) + x^2 = 0$$
 ب

 $\left(C_{f}
ight)$ ارسم $\left(\Delta
ight)$ ارسم $\left(\Delta
ight)$ أثنائسئ المنحنى ا $\left(\Delta
ight)$

* إذا أردت ان تحلق مع النسور فلا تضيع و قتك مع الدجاج

* التاريخ: / 10 / 2021

* المدة: ساعـة

* ثانوية جبايلي عبد الحفيظ - أولف * المستوى : الثالثة تسيير و اقتصاد

* الفرض الأول للفصل الأول في مادة الرياضيات *

* التمرين الأول: (03 نقاط)

الدالة f المعرفة والقابلة للاشتقاق على المجال ∞ , $+\infty$ ، يعطى جدول تغيراتها التالى

أذكر صحة أو خطا العبارات التالية مع التعليل

X	0	1	+∞
f'(x)	+	. 0	_
f(x)			1

$$f(x) \leq 1$$
:]0 , $+\infty$ [من اجل کل x من اجل کل (1

$$f'(x) \leq 0$$
: $]0$, 1 طلى المجال (2

$$]\mathbf{0}$$
 , $+\infty[$ المعادلة $f(x)=\mathbf{0}$ تقبل حلين في المجادلة (3

$$f$$
 المستقيم الذي معادلة له : $y=1$ هو مماس لمنحنى الدالة (4

في النقطة ذات الفاصلة 1

* التمرين الثاني: (07 نقاط)

$$\begin{cases} U_0=1 \\ U_{n+1}-\frac{2}{3}U_n=\frac{2}{3} \end{cases} ; n\in\square$$
 المتتالية (U_n) العددية معرفة على (U_n) بما يلي:

 U_{2},U_{1} : احسب الحدين -1

 $U_n < 2$: n برهن بالتراجع انه من اجل كل عدد طبيعي -2

متزایدة تاما (U_n) متزایدة استنتج ان المتتالیة (U_n) متزایدة تاما من اجل کل عدد طبیعی متزایدة تاما U_n : n متزایدة تاما

 $V_n = U_n - 2$ المعرفة على $U_n = V_n - 2$ المتتالية $V_n = V_n - 2$

أ- برهن ان المتتالية (V_n) هندسية يطلب تعيين اساسها وحدها الاول.

n بدلالة n واستنتج البدلالة V_n بدلالة U_n

 $\lim_{n\to\infty}S_n$. بدلالة $S_n=U_0+U_1+....+U_n=1$ على المجموع $S_n=1$ احسب المجموع . $S_n=1$

* إذا أردت ان تحلق مع النسور فلا تضيع و قتك مع الدجاج