MODÉLISATION ÉPIDÉMIQUE TIPE 2022-2023

SOEUNG Raphaël

Année scolaire 2022-2023

Introduction

Figure 1 - Manille, capitale des Philippines

Plan

- 1 Modèle SIS homogène
- 2 Modèle SIS hétérogène

- 1 Modèle SIS homogène
 Définition du modèle
 Étude qualitative
 Résolution numérique
- 2 Modèle SIS hétérogène

- Modèle SIS homogène Définition du modèle Étude qualitative Résolution numérique
- 2 Modèle SIS hétérogène

Graphe représentatif du modèle SIS homogène

Notations

 ${\mathscr S}$: compartiment des individus sains,

 β : taux d'infection,

 γ : taux de guérison.

Équation différentielle non linéaire

On note I la proportion d'individus de la population totale qui sont dans le compartiment \mathscr{I} , S celle de ceux qui sont dans le compartiment \mathscr{I} . On suppose alors que l'équation différentielle non linéaire suivante décrit le modèle :

$$I'(t) = \beta S(t)I(t) - \gamma I(t)$$

$$\stackrel{S = (1 - I)}{\iff} I'(t) = \beta (1 - I(t))I(t) - \gamma I(t) \qquad (*).$$

- 1 Modèle SIS homogène Définition du modèle Étude qualitative Résolution numérique
- 2 Modèle SIS hétérogène

Contexte

On suppose $\beta>0$ et $\gamma>0$ et on note le champ de vecteurs $f:\mathbb{R}\to\mathbb{R}$ définie par :

$$f(y) = \beta(1-y)y - \gamma y.$$

Théorème

Pour toute condition initiale $(t_0, x_0) \in \mathbb{R} \times [0, 1]$, l'équation différentielle (*) vérifie :

- (i) il existe une unique solution globale, notée I,
- (ii) $\forall t \in \mathbb{R}, I(t) \in [0,1],$
- (iii) I est monotone,
- (iv) si $R_0 \leq 1$, alors I est de limite nulle en $+\infty$,
- (v) si $R_0 > 1$, alors I est de limite $1 \frac{1}{R_0}$ en $+\infty$.

Outils mathématiques

Outils mathématiques

- Théorème de Cauchy-Lipschitz,
- Lemme des bouts ou de sortie des compacts.

- Modèle SIS homogène Définition du modèle Étude qualitative Résolution numérique
- 2 Modèle SIS hétérogène

Résolution numérique

Cas $\gamma > \beta$

 $\underline{ \mbox{Figure 2}} - \mbox{\'e} \mbox{volution de l'épidémie pour le cas } \gamma > \beta$

Résolution numérique

 $\mathsf{Cas}\; \gamma = \beta$

 $\underline{ \mbox{Figure 3}} - \mbox{\'e} \mbox{volution de l'épidémie pour le cas } \gamma = \beta$

Résolution numérique

Cas $\gamma < \beta$

Figure 4 – Évolution de l'épidémie pour le cas $\gamma < \beta$

- 1 Modèle SIS homogène
- 2 Modèle SIS hétérogène

Définition du modèle Matrice de la génération suivante et R_0 Étude de cas

Définition du modèle

Système d'équations différentielles

Pour une population divisée en $n \in \mathbb{N}^*$ classes, le modèle est décrit par un système de n équations différentielles défini par :

$$\forall k \in [1, n], \frac{dI_k}{dt} = (1 - I_k) \sum_{l=1}^n \beta_{k,l} \gamma_l - \gamma_k I_k.$$

Matrice de la génération suivante et R_0

Définition — Matrice de la génération suivante

Pour un modèle à $n \in \mathbb{N}^*$ classes notées de 1 à n, on appelle matrice de la génération suivante la matrice carrée de taille n dont le coefficient d'indice $(i,j) \in [\![1,n]\!]^2$ vaut $\frac{k(i,j)}{\gamma_j}$.

Définition — R₀

Le R_0 est défini comme étant égal au rayon spectral de la matrice de la génération suivante.

Étude de cas — Graphe

Étude de cas — Matrice de la génération suivante

$$\begin{bmatrix} \frac{\beta_{1,1}}{\gamma_1} & 0 & 0 & 0\\ \frac{\beta_{2,1}}{\gamma_1} & \frac{\beta_{2,2}}{\gamma_2} & 0 & 0\\ 0 & \frac{\beta_{2,3}}{\gamma_2} & \frac{\beta_{3,3}}{\gamma_3} & 0\\ 0 & 0 & \frac{\beta_{4,3}}{\gamma_3} & \frac{\beta_{4,4}}{\gamma_4} \end{bmatrix}$$

Étude de cas — Graphe pour le premier cas

Étude de cas — Premier cas

$$\begin{bmatrix} 2 & 0 & 0 & 0 \\ 1 & \frac{1}{2} & 0 & 0 \\ 0 & 4 & \frac{1}{3} & 0 \\ 0 & 0 & 3 & 1 \end{bmatrix}$$

Étude de cas — Premier cas

$$R_0 = 2$$

Étude de cas — Graphe pour le deuxième cas

Étude de cas — Deuxième cas

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & 2 & 0 & 0 \\ 0 & 4 & \frac{1}{3} & 0 \\ 0 & 0 & 3 & 1 \end{bmatrix}$$

Étude de cas — Deuxième cas

$$R_0 = 2$$

Étude de cas — Graphe pour le troisième cas

Étude de cas — Troisième cas

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 100 & 2 & 0 & 0 \\ 0 & 100 & \frac{1}{3} & 0 \\ 0 & 0 & 100 & 1 \end{bmatrix}$$

Étude de cas — Troisième cas

$$R_0 = 2$$