

CANCER GENOMICS CONSORTIUM

Educating for Best Practices in Clinical Cancer Genomics

Cancer Genome Interpreter (CGI)

https://www.cancergenomeint erpreter.org/home

OncodriveMUT

Identifies potential driver mutations based on prevalence in disease population, computational analyses, prior knowledge of gene, and mutation-

centric measurements.

Cancer Biomarkers Database

Cancer Biomarkers Database is currently curated and maintained under the European Union's Horizon 2020 funding and part of the collaborative effort Global Alliance for Genomics and Health (GA4GH)

Home Page

: CANCER GENOME INTERPRETER

Required Mutation Input Format – Follows HGVS Protein Change Format

- Missense:
 - NM_005157:p.T315I
- Stop:
 - TSC2:p.Q1178*
- In-frame insertion:
 - ENST00000326724:p.P1331_A1332insTP
- In-frame deletion:
 - TP53:p.I254_T256delIIT
 - TP53:p.l254_T256del3
 - TP53:p.l254_T256del
- Frameshift
 - APC:p.I1557fs*30
 - The longitude of the frameshift (till the new reading frame ends in a stop codon) needs to be stated to retrieve the corresponding nucleotide change, which is used to calculate certain metrics used by the CGI; if not available, APC:p.I1557fs is also allowed)

Mutation Input Format: Nucleotide Changes

HGVS = green

Genomic tabular format = orange Either format is acceptable

- Point mutations:
 - chr3:g.178936091G>A
 - chr17 7578412 A G
- Block substitution:
 - chr3:g.41266066TG>AA
 chr3:g.41266066_41266067delinsA
 A
 - chr11 533873 CT AC
- Insertions:
 - chr5:g.170837546_170837547insCT GT chr5:g.170837545C>CTCTG
 - chr17 37881002 G
 GGGCTCCCCA
 chr17 37881003 GGCTCCCCA

Duplications:

 chr3:g.30732988_30732989dupTG chr3:g.30732988_30732989delinsT GTG chr3:30732989_30732990insTG

Deletions:

- chr2:g.234183368_234183372delA
 CTCA
 chr2:g.234183368_234183372del
 chr2:g.234183368_234183372del5
- chr17 37880218
 GTTGAGGGAAAACACA G
 chr17 37880219
 TTGAGGGAAAACACA -

Complex indels:

- chr10:g.52595929_52595931delG
 GGinsTA
 chr10:g.52595929_52595931delins
 TA
- chr7 140453155 CA TCC

Mutation Input Format: Copy Number Alterations (CNAs) and Translocations

- Amplification:
 - ERBB2:amp
- Deletion
 - TP53:del
- Translocation
 - BCR_ABL1 (equivalent to ABL1_BCR)
 - Two underscores in this instance

Mutation Input Format: Uploaded Files

- VCF files (in hg19) or text files can be uploaded into CGI
 - See column title specifications on the website by clicking the '?' next to alterations

Selecting the Appropriate Cancer Type CANCER GO CHAPTER PRES CANCER GO C

- Enter cancer type manually into search bar
- Search through disease ontology tree
- Click to select cancer type and mark pink.
- If disease is not on the list, that means that no specific information for that cancer type resides in CGI
- Some classification of cancer type (even if it is generic) needs to be selected in order to search

Running a Query

- Input Mutations
 - Manually or Add File
- Select Cancer Type
- Click "Run"
- Allow analysis to Run.
 - If you see an error, check your mutation input format
 - Analysis may take several minutes

Results (Normal View)

CANCER GENOME INTERPRETER

- Tab for alterations has sub-tabs
 - Mutations
 - CNAs
 - Translocations
- Can choose to display all data or only abnormalities that are oncogenic or driver mutations

Mutations

Sample Id	Gene	Protein change	Consequence	Domain	▲Oncogenic classification	0
Search here						
default_id	NPM1	p.W288Sfs*12	Frameshift		★ known in: AML	
default_id	APC	p.I1557fs*30	Frameshift		♠ predicted driver: tier 1	
default_id	BRAF	p.D594Efs*18	Frameshift	Pkinase_Tyr	^ predicted driver: tier 2	

CNAs

Sample Id Gene		Cna	▲Oncogenic classification	
Search here				
togi	ERBB2	AMP	♠ known in: BRCA;OV;NSCLC;ST;B	
togi	PTEN	DEL		
tcgi	ERG	DEL	→ predicted passenger	

Translocations

Sample Id	Gene translocation	▲Oncogenic classification	
Search here			
togi	DUX4_IGH	uncertain relevance	

Oncogenic Classifications

Oncogenic classification

Oncogenic potential of the mutation:

- known: the mutation is well-demonstrated to be oncogenic in the tumor type of the sample(s) or in another cancer
- predicted driver or predicted passenger: according to the oncodriveMUT method (tier 1 and 2 represent higher and lower level of stringency of the driver prediction, respectively)
- polymorphism: mutation found at a major allele frequency higher than 1% across the population
- no protein affecting: the mutation does not alter the protein sequence

This pop-up displays when the '?' next to "Oncogenic classification" is clicked.

OK

Advanced View of Results: . Mutations

- Adds the following information to your results tables:
 - Mutations
 - GDNA
 - Transcript
 - Exon
 - Location in relation to last exon of gene (right)
 - Tumor Driver according to CGI group publication (PMID:25759023) – hover over to specify if the gene is a driver in this tumor type or other tumor types.
 - Role mechanism of action (OG, TSG, ambiguous)
 - In Cluster does this mutation fall within more commonly mutated regions in that gene.

Location

The mutation occurs:

- before last exon: before the last exon-intron junction
- **before last portion**: in the last exon before the last 5% of the protein length
- last portion: in the last exon and in the 5% more distal part of the protein

The location of the mutation is important for the portion of the protein affected by a disrupting consequence type and for the possibility of triggering the nonsense-mediated mRNA decay mechanisms in case of a premature stop codon insertion

Therapeutic Information

Biomarkers

- Effect Responsive, No responsive, Resistant, Increased toxicity
- Resist. Indicates any additional alterations that would confer resistance to the therapy
- Evidence level Different from approval status; Early trials (phase I & II), Late trials (phase III, IV), preclinical, Clinical
- Reference indicates reference, may include links to PubMed
- TumorM checked if the tumor type matches a tumor type in which the biomarker has been observed
- BioM indicates match between alteration and the observed biomarker; C = complete match, DM =
 different mutation (different amino acid change), DA = different alteration (biomarker is not a mutation)

Therapeutic Information

Bioactivities

- Compound Chemble compound ID and link to Chemble Compound report card
- Binding potency Highly Potent = >9 (1nM); Potent = >6 (1uM); Weak = >3 (1mM)
 - See Binding p-Activity
- MOA mechanism of action
- Match Checked when mechanism of action coincides with role of gene in cancer
- Type molecular type of compound: oligonucleotide, oligosaccharide, protein, small molecule, unknown
- Status status of clinical approval of compound: Approved, early clinical trials, late clinical trials, pre-clinical, unknown

- Can Download results in zipped folder.
 - No Log in needed
- Can Share results via email as well
- To save your analysis, you will need to log into your account
 - Can log in with Google account

Other Available Downloads

- Select Datasets from top banner
- Zipped folder available for download for the following
 - Cancer Genes
 - Validated Oncogenic Mutations
 - Cancer Biomarkers
 - Cancer Bioactivities

Scenario #1

- You want to make a Pan Cancer gene list from the Cancer Genome Interpreter datasets.
 - Download TSV files and sort to make Cancer list

Making a Pan Cancer List from CGI

- Click on "Datasets" on top banner.
 - Select "Cancer Genes" tab.
 - Click "Download"
 - Save files from downloaded folder
 - Open gene_MoA.tsv (mechanism of action)
 - All genes are listed alphabetically and categorized as Act (activating mutation/alteration), LOF (loss of function), or ambiguous.

Scenario #2

- You have a complex abnormal NGS panel you would like interpreted.
 Which abnormalities are targetable?
 - PTEN deletion
 - IDH1:R132H
 - EGFR amplification
 - CIC: R215W
 - PRKDC frameshift deletion

Converting mutations to correct input format (See slides 6-9)

- PTEN:del
- IDH1:p.R132H
- EGFR:amp
- CIC:p.R215W
- PRKDC:p.1351fs

Select 'Glioma' for cancer type

Results – Go to Prescriptions

- Drugs for EGFR amplification have "No Responsive" effect.
- Target PTEN deletion with MTOR inhibitor or PI3K pathway inhibitor
- Target IDH1 with IDH1 inhibitor
- Cite references in report if necessary

Scenario #3

- You are building an interface to aid in interpretation and analysis of genomic testing results. You would like to incorporate CGI into your product.
 - Use of API

Shared API

- https://www.cancergenomeinterprete
 r.org/rest_api
- API is shared online
- Some of the functionality of the API requires log in to account
 - Can sign up with Google account

Education/ Tutorials

https://www.cancergenomeinterprete
 r.org/faq#q01

Contacts

 <u>bbglab@irbbarcelona.org</u> – Contact for comments, suggestions, bug reports

