F25-Key
Course in Semantics · Ling 531 / 731
McKenzie · University of Kansas

1 Abbreviation of complex types

unabbreviated	abbreviated	domain name
$\langle e, t \rangle$	et	$D_{ m et}$
$\langle e, e \rangle$	ee	D_{ee}
$\langle e, \langle e, t \rangle \rangle$	$\langle e, et \rangle$	$D_{\rm e,et}$
$\langle\langle e, t \rangle, t \rangle$	$\langle et, t \rangle$	$D_{\mathrm{et,t}}$
$\langle\langle e, t \rangle, e \rangle$	$\langle et, e \rangle$	$D_{ m et,e}$
$\langle d, \langle e, t \rangle \rangle$	$\langle d, et \rangle$	$D_{d,et}$
$\langle\langle e, t \rangle, \langle e, t \rangle\rangle$	$\langle et, et \rangle$	$D_{ m et,et}$
$\langle\langle e, t \rangle, \langle\langle e, t \rangle, t \rangle\rangle$	$\langle et, \langle et, t \rangle \rangle$	D _{et,(et,t)}

2 Abbreviation of Lambda-expressions

fully written	subscript type	no type
$\lambda x \in D_e$. $dog(x)$	λx_e . $dog(x)$	λx. dog(x)
$\lambda y \in D_e$. walk(y)	λy _e . walk(y)	λy. walk(y)
$\lambda z \in D_e$. orange(z)	λz_e . orange(z)	λz. orange(z)
$\lambda x \in D_e.\lambda y \in D_e. take(x)(y)$	$\lambda x_e \lambda y_e$. take(x)(y)	λxλy. take(x)(y)
$\lambda x \in D_e. \lambda z \in D_e. \ see(x)(z)$	$\lambda x_e \lambda z_e$. see(x)(z)	$\lambda x \lambda y. \operatorname{see}(x)(z)$
$\lambda a \in D_e.\lambda b \in D_e. \text{ hire(a)(b)}$	$\lambda a_e \lambda b_e$. hire(a)(b)	λaλb. hire(a)(b)
$\lambda f \in D_{\langle e, t \rangle}.\lambda y \in D_e. \ f(y)$	$\lambda f_{(e, t)} \lambda y_e$. $f(y)$	λfλy. f(y)
$\lambda f \in D_{\langle e, t \rangle}.\lambda g \in D_{\langle e, t \rangle}. \exists x [f(x)]$ $= 1 \& g(x) = 1]$	$ \begin{vmatrix} \lambda f_{\langle e, t \rangle} \lambda g_{\langle e, t \rangle}. \ \exists x [f(x) = 1 \& g(x)] \\ = 1 \end{bmatrix} $	$\lambda f \lambda g. \ \exists x [\ f(x) = 1 \& g(x) = 1]$

3 Removal of = 1

(Abbreviate types and lambdas, while you're at it)

[the]	$\lambda f \in D_{(e, t)}$. $\iota x \in C[f(x) = 1]$	λf_{et} . $\iota x[f(x)]$
[red car]	$\lambda x \in D_e$. red(x) = 1 & car(x) = 1	λx_e . red(x) & car(x)
[happy dog]	$\lambda x \in D_e$. happy(x) = 1 & dog(x) = 1	λx_e . happy(x) & dog(x)
[[every]]	$\lambda f \in D_{\langle e, t \rangle}.\lambda g \in D_{\langle e, t \rangle}. \ \forall x [\ f(x) = 1 \rightarrow g(x) = 1\]$	$\lambda f_{\rm et} \lambda g_{\rm et}. \ \forall x [\ f(x) \rightarrow g(x)\]$
[no]	$ \lambda f \in D_{\langle e, t \rangle}. \lambda g \in D_{\langle e, t \rangle}. \ \neg \exists z [\ f(z) = 1 \ \& \ g(z) = 1] $	$\lambda f_{\text{et}} \lambda g_{\text{et}}. \ \neg \exists z [\ f(z) \& g(z)\]$
[[some]]	$\lambda f \in D_{\langle e, t \rangle}.\lambda g \in D_{\langle e, t \rangle}. \exists x [f(x) = 1 \& g(x) = 1]$	$\lambda f_{\text{et}} \lambda g_{\text{et}}$. $\exists x [f(x) \& g(x)]$