KANGDA WEI

L.F. Peterson Building, Room 330, 435 Nagle St, College Station, TX 77843 (919) 904-5280 \$\diamongalarama.edu \$\diamongalarama.edu\$

RESEARCH INTEREST

Natural Language Processing, Deep Learning, Discourse Analysis, Large Language Model

EDUCATION

Texas A&M University

College Station, TX

Doctor of Philosophy in Computer Science

Aug 2023 - Present

• Graduate Research Assistant: Advised by Professor Ruihong Huang.

The University of North Carolina at Chapel-Hill

Master of Science in Computer Science

Chapel-Hill, NC Aug 2022 - May 2023

• Graduate Teaching Assistant: COMP431 Internet Service and Protocol, COMP211 System Fundamentals

The University of North Carolina at Chapel-Hill

Chapel-Hill, NC

B.S. in Computer Science, B.S. in Statistics and Operational Research

Aug 2019 - May 2022

• **GPA**: 3.812/4.0

• Relevant coursework: Foundation of Programming, Data Structures, Algorithms and Analysis, Computational Photograph, Optimization, Structured Prediction, Machine Learning & Deep Learning, Programming Language, Time Series, Simulation Analysis, Stochastic Modeling, Linear Algebra, Computer Organization, Reinforcement Learning

Online courses

• Stanford CS224n (NLP), Machine Learning, Deep Learning Specialization Series taught by Andrew Ng on Coursera

RESEARCH EXPERIENCE

When Do Decompositions Help for Machine Reading?

Johns Hopkins University

Visiting Research Assistant, Mentor: Prof.Benjamin van Durme

Baltimore, MD

May 2022 - May 2023

- Explored the effect of decomposition on machine reading with an exhaustive set of variants across a range of models over the high-level Question Decomposition Meaning Representation (QDMR) BREAK dataset.
- Discovered that question decomposition is not helpful for machine reading but rather harmful.
- Conducted a qualitative error analysis, showing that machine reading using question decomposition struggle due to compound error and question decomposition in bad formats.
- Published paper at Proceedings of the Empirical Methods in Natural Language Processing 2023.

Leveraging Multiple Teachers for Test-Time Adaptation of Language-Guided Classifiers

The University of North Carolina at Chapel Hill

Chapel Hill, NC

Apr 2022 - May 2023

Research Assistant, Mentor: Prof.Shashank Srivastava • Present a framework for test-time adaptation of language explanation-guided classifiers towards a specific task

- during inference.
- Achieved 8% higher classification accuracy by utilizing label aggregation with language model (LM) for test-time adaptation, and three times better accuracy comparing to baselines with zero-shot learning.
- Further improved the accuracy by 20% by incorporating self-learning by fine-tuning pre-trained LM on noisy labeled
- Conducted qualitative analysis for framework's interpretability.
- Simplify and improve the label aggregation technique by replacing hand-written labeling functions with LM.
- Published paper at Findings of the Empirical Methods in Natural Language Processing 2023.

Compositional Generalization for Kinship Prediction through Data Augmentation

The University of North Carolina at Chapel Hill

Chapel Hill, NC

Research Assistant, Mentor: Prof.Shashank Srivastava

Feb 2021 - Mar 2022

- Evaluated empirically the utility of data augmentation and intermediate structured representations towards compositional generalization for the task of kinship prediction from a story.
- Tested the impact of incorporating data augmentation and intermediate structured data on model's performance. Data augmentation boosted generalization performance by around 20% on average relative to a baseline model from prior work.
- Found that predicting and using intermediate kinship graphs led to a deterioration in the generalization of kinship prediction.
- Published paper at Proceedings of the 4th Workshop of Narrative Understanding (WNU2022).

A Multilingual COVID-19 Question Answering System

University of California, Santa Barbara

Santa Barbara, CA

Visiting Research Assistant, Mentor: Prof. William Wang

May 2021 - Aug 2021

- Established a multilingual COVID-19 Question Answering system using mBERT and XLM-Roberta models.
- Focused primarily on building and training the Reading Comprehension part of the QA system, including collecting and processing the data, and performing machine translation on large-scale natural language dataset.
- Performed large-scale neural machine translation on entire CORD-19 dataset to acquire data in Chinese and French to alleviate the data scarcity problem in foreign languages.
- Reached an F1 score of 60.5 for the reading comprehension model of the final QA system.

PUBLICATIONS

- Kangda Wei, Dawn Lawrie, Benjamin Van Durme, Yunmo Chen, Orion Weller. When Do Decompositions Help for Machine Reading? *Proceedings of the Empirical Methods in Natural Language Processing 2023*
- Kangda Wei, Sayan Ghosh, Rakesh Menon, and Shashank Srivastava. Leveraging Multiple Teachers for Test-Time Adaptation of Language-Guided Classifiers. Findings of the Empirical Methods in Natural Language Processing 2023
- Kangda Wei, Sayan Ghosh, and Shashank Srivastava. 2022. Compositional Generalization for Kinship Prediction through Data Augmentation. *In Proceedings of the 4th Workshop of Narrative Understanding (WNU2022)*, pages 1319, Seattle, United States. Association for Computational Linguistics.
- *Songhe Wang, *Kangda Wei, Lei Lin, Weizi Li. Spatial-temporal Analysis of COVID-19's Impact on Human Mobility: the Case of the United States, in the 20th and 21st Joint COTA International Conference of Transportation Professionals. *Co-author: equal contribution

NOTABLE PORJECTS

Email Plug-in Startup

Jan 2022 - May 2022

- Built a classification model from scratch for email classification using PyTorch and Huggingface Transformer.
- Increased the model accuracy from 0.32 to 0.84 with limited amount of annotated data.

Cyber-infrastructure: Web-based Application for Sharing Neural Imaging Data Sep 2020 - Jan 2021

- Built a website where users can register and login to access the neural imaging data of patients.
- Practiced the basis of front-end and back-end engineering using Python Flask and Firebase.

SKILLS

- Programming Languages/Frameworks: Python, Java, JavaScript, C, HTML, CSS, MATLAB, R, PyTorch, Linux
- Software & Tools: PyCharm, VS Code, Spyder, Jupter Notebook, Tableau, Latex, Anaconda, RStudio
- Language: Chinese (native), English (proficient)