

Wrocław University of Science and Technology

"Exploratory data analysis of a clinical study group - revealing patient subgroups"

Bogumil M. Konopka

Department of Biomedical Engineering
Faculty of Fundamental Problems of Technology
Wroclaw University of Science and Technology, POLAND

Assessing the influence of Vitamin D Receptor gene polymorphisms ("changes" in DNA)

(Lukasz Laczmanski Ph.D., D. Sc., Wroclaw Medical University)

- Our research hypothesis:
 - VDR polymorphisms influence sex hormone blood levels
- The plan:
 - Explore gathered clinical data
 - Build regression models relating VDR polymorphisms and blood levels of sex hormones

Dataset & questions

• Main questions:

- Are there any outliers in the dataset?
- What subgroups make up for the dataset?
- What are the characteristics of particular subgroups?
- What are the biological reasons that underlie such dataset structure?

515 samples

277 male ♂ 238 female ♀

23 numerical 21 nominal COUNTRY. AGE, REGION, BMI, YEAR.SEASON GLUCOSE, ... OBESITY,...

44 attributes

Dataset & questions

- Main questions:
 - Are there any outliers in the dataset?
 - What subgroups make up for the dataset?
 - What are the characteristics of particular subgroups?
 - What are the biological reasons that underlie such dataset structure?

515 samples

277 male ♂ 238 female ♀

23 numerical 21 nominal COUNTRY. AGE, REGION, BMI, YEAR.SEASON GLUCOSE, ... OBESITY,...

44 attributes

Overview of data processing procedure

Normalization (robust Z-Score)

Outlier
detection
(Mahalanobis
Distance MD)

Hierarchical clustering (Ward's algorithm)

Visualization (PCA biplot)

All based on data variance.

(Murtagh, Legendre, 2014)

Introductory analysis

Male set analysis - outlier removal

- Outliers based on Mahalanobis Distance (MD):
 - 22 patients

- Outlier detection with robust Mahalanobis Distance (rMD):
 - 124 patients

The data set is heterogeneous and may contain subgroups

Male set analysis – hierarchical clustering

Addition of categorical data

Male set analysis – summarizing data

Methodological conclusions

- MD vs rMD plot
 - Emphasis of the data set heterogeneity
- Ward's hierarchical clustering + PCA
 - Consistent grouping & visualization of patient groups
- PCA with biplot vectors
 - Facilitated biological interpretation of structure of the data

Tutorial paper to be submitted to **Statistics in Medicine (Wiley)**

Biological conclusions

- There are 5 distinct patient subgroups
 - Among them patients with elevated FSH and low TESTOSTERONE (hypogonadism)
- There are three groups of attributes:
 - Age-related attributes
 - Obesity-related attributes
 - Sex-hormones related and other

Department and Clinic of Endocrinology, Diabetology and Isotope Therapy, Wroclaw Medical University

Łukasz Łaczmański

Department of Health Promotion, University School of Physical Education, Wroclaw

<u>Felicja Lwow</u>

Additional slides

Why use the Ward's algorithm

Outlier
detection
(Mahalanobis
Distance MD)

Hierarchical clustering (Ward's algorithm)

Visualization (PCA)

$$MD(x_i) = \sqrt{(x_i - \bar{X})S^{-1}(x_i - \bar{X})},$$

where:

$$S$$
 – covariance matrix

$$Var(I) = V(Q) + \sum_{q \in Q} \frac{m_q}{m_I} V(q)$$

Maximize intercluster variance Minimize within cluster variance

$$V(Q) = \sum_{\bar{x}_{q} \in Q} \frac{m_{q}}{m_{I}} (\bar{x}_{q} - \bar{X})^{2} \quad V(q) = \frac{1}{N_{q}} \sum_{x_{i} \in q} (x_{i} - \bar{x}_{q})^{2}$$

Q – partitioning q - cluster

$$T = XW$$
$$X^T X = W \wedge W^T$$

 Λ – diagonal matrix of eigenvalues of X^TX (S)

W – p-by-p matrix whose columns are eigenvectors of X^TX

Outlier detection with Mahalanobis Distance intuition

De Maesschalck R, et al., Chemometrics and Intelligent Laboratory Systems 50 2000. 1–18

Fig. 1. (a) Plot of the simulated data for two variables x_1 and x_2 together with the circles representing equal EDs towards the center point. (b) Plot of the simulated data for two variables x_1 and x_2 together with the ellipses representing equal MDs towards the center point.

chemometrics: Multivariate Statistical Analysis in Chemometrics http://cran.r-project.org/web/packages/chemometrics/index.htmlence and Technology

Male set analysis - outlier removal

- Outliers based on Mahalanobis Distance (MD):
 - 22 patients
- Outlier detection with robust Mahalanobis Distance (rMD):

$$rMD(x_i) = \sqrt{(x_i - \overline{X_k})S_k^{-1}(x_i - \overline{X_k})}$$

- Outliers based on robust MD:
 - 124 patients

Clustering of attributes based on correlation

Female set analysis – outlier removal

- MD and rMD suggest removal of 20 and 70 data points
- Data points are more condensed

Female set analysis – hierarchical clustering

Female set analysis – hierarchical clustering

- Three subgroups have been identified
 - Cluster 3 diabetes
- The set is more homogeneous
- Three groups of attributes have been identified:
 - Age-related attributes
 - Obesity-related attributes
 - Sex-hormones related and other

