Permit Number 5168

This table lists the maximum allowable emission rates and all sources of air contaminants on the applicant's property covered by this permit. The emission rates shown are those derived from information submitted as part of the application for permit and are the maximum rates allowed for these facilities, sources, and related activities. Any proposed increase in emission rates may require an application for a modification of the facilities covered by this permit.

Air Contaminants Data

Emission Point No. (1)	Source Name (2)	Air Contaminant Name (3)	Emission	Emission Rates (6)	
			lbs/hour	TPY (4)	
GWDRY1	Gelwhite #1 Steam Dryer Stack	РМ	<0.01	0.02	
GWDRY2	Gelwhite #2 Steam Dryer Stack	PM	<0.01	0.02	
GWDRY3	Gelwhite #3 Steam Dryer Stack	PM	<0.01	0.02	
DC2	Gelwhite Elevator & Rotex Screen Dust	PM	0.08	0.34	
	Collector Stack	PM ₁₀	0.06	0.25	
		PM _{2.5}	0.01	0.04	
DC3	Gelwhite Weigh Hopper & Marion Mixer Dust Collector Stack	PM	0.07	0.31	
		PM ₁₀	0.06	0.23	
		PM _{2.5}	0.01	0.04	
DC6	Gelwhite Pulverizer Mill w/ Inline Heater	PM	0.31	1.35	
	Dust Collector Stack	PM ₁₀	0.23	1.01	
		PM _{2.5}	0.05	0.20	
		VOC (combustion)	0.01	0.04	
		NO _x	0.15	0.64	
		SO ₂	<0.01	<0.01	
		со	0.12	0.54	
DC4	Gelwhite Packaging Dust Collector Stack	РМ	0.07	0.30	
		PM ₁₀	0.05	0.22	
		PM _{2.5}	<0.01	0.04	
BLR4	#4 Cleaver Brooks Boiler Stack	VOC (combustion)	0.04	0.19	

		NO _x	0.13	0.56
		SO ₂	<0.01	0.03
		со	0.45	1.98
		РМ	0.09	0.40
		PM ₁₀	0.09	0.40
		PM _{2.5}	0.09	0.40
BLR5	#5 Cleaver Brooks Boiler Stack	VOC (combustion)	0.04	0.19
		NO _x	0.13	0.56
		SO ₂	<0.01	0.03
		СО	0.45	1.98
		РМ	0.09	0.40
		PM ₁₀	0.09	0.40
		PM _{2.5}	0.09	0.40
BLR6	#6 Cleaver Brooks Boiler Stack	VOC (combustion)	0.04	0.19
		NO _x	0.13	0.56
		SO ₂	<0.01	0.03
		СО	0.45	1.98
		РМ	0.09	0.40
		PM ₁₀	0.09	0.40
		PM _{2.5}	0.09	0.40
B15	Dry Process B15 Crude Silo Dust	РМ	<0.01	<0.01
	Collector Vent	PM ₁₀	<0.01	<0.01
		PM _{2.5}	<0.01	<0.01
B16	Dry Process B16 Crude Silo Dust	РМ	<0.01	<0.01
	Collector Vent	PM ₁₀	<0.01	<0.01
			<0.01	<0.01

		1	1	1
TK1	#1 Amine Tank Vent	VOC (ethanol)	5.59	1.45
		VOC (benzyl chloride)	<0.01	<0.01
		VOC (methyl chloride)	0.25	0.03
TK2	#2 Amine Tank Vent	VOC (ethanol)	3.72	1.45
TK3	#3 Amine Tank Vent	VOC (ethanol)	5.59	1.66
		VOC (benzyl chloride)	<0.01	<0.01
		VOC (methyl chloride)	0.25	0.03
TK4	#4 Amine Tank Vent	VOC (ethanol)	3.72	1.42
TK5	#5 Amine Tank Vent	VOC (ethanol)	7.82	1.42
TK6	#6 Amine Tank Vent	VOC (ethanol)	3.72	1.66
QT3	Flash & Fluid Weight Kettle	VOC (ethanol)	4.84	1.95
		VOC (benzyl chloride)	0.02	<0.01
		VOC (methyl chloride)	0.39	0.03
QT4	Flash & Fluid Weight Kettle	VOC (ethanol)	4.84	1.95
		VOC (benzyl chloride)	0.02	<0.01
		VOC (methyl chloride)	0.39	0.03
BLR10	Thermal Oxidizer #1 Stack	VOC (ethanol)	0.55	-
	(The emission rates	VOC (combustion)	0.04	-
	shown apply during periods when #1 Dry	VOC (benzyl chloride)	<0.01	-
	Process Line (DP1), #2 Dry Process Line	Cl ₂	<0.01	-
	(DP2), and #3 Dry Process Line (DP3)	HCI	2.30	-
	emissions are routed to Thermal Oxidizer #1. If DP2 and DP3	VOC (methyl chloride)	0.16	-
	are not routed to Thermal Oxidizer #1,	NO _x	0.33	-
	lower rates that are consistent with the	SO ₂	<0.01	-
	permit application representations apply.	со	2.66	-
	Note: Thermal Oxidizer #1 shall be	РМ	0.06	-
Project Number: 200910			1	I -

	PM ₁₀	0.06	-
	PM _{2.5}	0.06	-
#1 Dry Process Line Mill, Organo	РМ	<0.01	<0.01
Rebagger, and Packaging Dust	PM ₁₀	<0.01	<0.01
Collector Stack	PM _{2.5}	<0.01	<0.01
Thermal Oxidizer #3 Stack	VOC (ethanol)	0.50	-
(Except during periods	VOC (combustion)	0.02	-
when no DP line emissions are routed	VOC (benzyl chloride)	<0.01	-
process of being	Cl_2	<0.01	-
Oxidizer #3 and	HCI	0.84	-
shutdown.)	VOC (methyl chloride)	0.06	-
	NO _x	0.63	-
	SO ₂	<0.01	-
	со	3.04	-
	РМ	0.02	-
	PM ₁₀	0.02	-
	PM _{2.5}	0.02	-
#2 Dry Process Line Mill and Packaging	РМ	<0.01	<0.01
Dust Collector Stack	PM ₁₀	<0.01	<0.01
	PM _{2.5}	<0.01	<0.01
Thermal Oxidizer #4 Stack	VOC (ethanol)	0.50	-
(Except during periods	VOC (combustion)	0.02	-
emissions are routed	VOC (benzyl chloride)	<0.01	-
process of being	Cl ₂	<0.01	-
Oxidizer #4and	нсі	0.84	-
Thermal Oxidizer #4 is shutdown.)	VOC (methyl chloride)	0.06	-
	Mill, Organo Rebagger, and Packaging Dust Collector Stack Thermal Oxidizer #3 Stack (Except during periods when no DP line emissions are routed to, or are in the process of being routed to, Thermal Oxidizer #3 and Thermal Oxidizer #3 is shutdown.) #2 Dry Process Line Mill and Packaging Dust Collector Stack Thermal Oxidizer #4 Stack (Except during periods when no DP line emissions are routed to, or are in the process of being routed to, Thermal Oxidizer #4 and Thermal Oxidizer #4 is	#1 Dry Process Line Mill, Organo Rebagger, and Packaging Dust Collector Stack Thermal Oxidizer #3 Stack (Except during periods when no DP line emissions are routed to, or are in the process of being routed to, Thermal Oxidizer #4 stack #2 Dry Process Line Mill and Packaging Dust Collector Stack #2 Dry Process Line Phu #2 Dry Process Lin	#1 Dry Process Line Mill, Organo Rebagger, and Packaging Dust Collector Stack PM_10

		NO _x	0.58	-
		SO ₂	<0.01	-
		со	2.82	-
		РМ	0.03	-
		PM ₁₀	0.03	-
		PM _{2.5}	0.03	-
DC7	#3 Dry Process Line Mill, Rebagger, and	РМ	<0.01	<0.01
	Packaging Dust Collector Stack	PM ₁₀	<0.01	<0.01
		PM _{2.5}	<0.01	<0.01
C11	C11 Crude Silo Dust Collector Vent	РМ	0.24	1.03
		PM ₁₀	0.17	0.76
		PM _{2.5}	0.03	0.12
C12	C12 Crude Silo Dust Collector Vent	РМ	0.24	1.03
		PM ₁₀	0.17	0.76
		PM _{2.5}	0.03	0.12
B12	B12 Crude Silo Dust Collector Vent	РМ	<0.01	<0.01
		PM ₁₀	<0.01	<0.01
		PM _{2.5}	<0.01	<0.01
AMD	STPP & Soda Ash Unloading (5)	РМ	0.01	<0.01
	3 ()	PM ₁₀	<0.01	<0.01
		PM _{2.5}	<0.01	<0.01
AMDDC50A	Receiver Hopper Dust Collector Stack	РМ	0.07	0.31
		PM ₁₀	0.05	0.23
		PM _{2.5}	<0.01	0.04
AMDSTPPN	STPP Unloading	РМ	<0.01	<0.01
		PM ₁₀	<0.01	<0.01

		PM _{2.5}	<0.01	<0.01
AMDSAN	Soda Ash Unloading	РМ	<0.01	<0.01
		PM ₁₀	<0.01	<0.01
		PM _{2.5}	<0.01	<0.01
RXNTK1	#1 Reaction Tank	VOC (ethanol)	0.01	0.03
		VOC (benzyl alcohol)	<0.01	<0.01
		VOC (methyl chloride)	0.10	0.04
RXNTK2	#2 Reaction Tank	VOC (ethanol)	0.01	0.03
		VOC (benzyl alcohol)	<0.01	<0.01
		VOC (methyl chloride)	0.10	0.04
PFT1	Flash and Fluid Process #1 Press Feed Tank	VOC (ethanol)	0.01	0.03
		VOC (benzyl alcohol)	<0.01	<0.01
		VOC (methyl chloride)	0.07	0.03
ROOF3	Flash and Fluid Process #3 Press and Conveyors Roof Vent	VOC (ethanol)	1.40	3.52
		VOC (benzyl alcohol)	<0.01	<0.01
		VOC (methyl chloride)	0.06	0.02
PFT3	Flash and Fluid Process #3 Press Feed Tank	VOC (ethanol)	0.12	0.35
		VOC (benzyl alcohol)	<0.01	<0.01
		VOC (methyl chloride)	<0.01	<0.01
ROOF2	Flash and Fluid Process #2 Press and	VOC (ethanol)	0.83	2.75
	Conveyors Roof Vent	VOC (benzyl alcohol)	<0.01	<0.01
		VOC (methyl chloride)	0.03	0.02
FLOAT1	Flash and Fluid Process #1 Float Cells	VOC (ethanol)	1.81	4.07
	(5)	VOC (benzyl alcohol)	0.01	0.01
		VOC (methyl chloride)	0.30	0.17
VFBBGH Project Number: 290819	Flash and Fluid Process Vibrating	VOC (ethanol)	3.40	3.29

	1			Ta
		VOC (combustion)	0.04	0.16
		VOC (benzyl alcohol)	0.50	0.78
		VOC (methyl chloride)	0.03	<0.01
		NO _x	0.78	2.92
		SO ₂	<0.01	0.02
		со	0.66	2.45
		РМ	0.07	0.27
		PM ₁₀	0.07	0.26
		PM _{2.5}	0.06	0.23
3	Flash and Fluid Process ACM Mill Dust	РМ	0.34	1.26
	Collector Stack	PM ₁₀	0.25	0.94
		PM _{2.5}	0.04	0.15
SBAUN	Flash and Fluid Process Schlitterbaun Screen (5)	VOC (ethanol)	0.10	0.23
		VOC (benzyl alcohol)	<0.01	<0.01
		VOC (methyl chloride)	<0.01	<0.01
PFT2	Flash and Fluid Process #2 Press	VOC (ethanol)	0.01	0.03
	Feed Tank	VOC (benzyl alcohol)	<0.01	<0.01
		VOC (methyl chloride)	0.07	0.03
ROOF1	Flash and Fluid Process #1 Press and	VOC (ethanol)	0.78	2.57
	Conveyors Roof Vent	VOC (benzyl alcohol)	<0.01	<0.01
		VOC (methyl chloride)	0.03	0.01
8	Flash and Fluid Process Flash Dryer	VOC (ethanol)	2.61	2.95
	Dust Collector Stack	VOC (combustion)	0.05	0.18
		VOC (benzyl alcohol)	0.38	0.60
		VOC (methyl chloride)	0.02	<0.01
		NO _x	0.63	2.35

		SO ₂	<0.01	0.02
		СО	0.96	3.57
		PM	1.46	5.42
		PM ₁₀	1.09	4.07
		PM _{2.5}	0.23	0.87
7	Flash and Fluid Process Impact Mill	PM	0.10	0.38
	Dust Collector Stack	PM ₁₀	0.08	0.28
		PM _{2.5}	0.01	0.05
BLR11	Thermal Oxidizer #2 Stack	VOC (ethanol)	1.12	-
	Clack	VOC (combustion)	0.07	-
		VOC (benzyl chloride)	<0.01	-
		Cl ₂	<0.01	-
		HCI	0.56	-
		VOC (methyl chloride)	0.09	-
		NO _x	1.25	-
		SO ₂	<0.01	-
		со	5.41	-
		PM	0.09	-
		PM ₁₀	0.09	-
		PM _{2.5}	0.09	-
TK15	Flash and Fluid Process #15 Tank	VOC (ethanol)	0.01	0.03
	Trocess #10 Tarik	VOC (benzyl alcohol)	<0.01	<0.01
		VOC (methyl chloride)	0.08	0.04
TK16	Flash and Fluid Process #16 Tank	VOC (ethanol)	0.01	0.03
	1 100000 II TUTIK	VOC (benzyl alcohol)	<0.01	<0.01
		VOC (methyl chloride)	0.08	0.04

TK19	Flash and Fluid Process #19 Tank	VOC (ethanol)	0.01	0.03
		VOC (benzyl alcohol)	<0.01	<0.01
		VOC (methyl chloride)	0.08	0.04
FLDBDFR	Fluid Bed Filter Receiver Stack	РМ	<0.01	<0.01
		PM ₁₀	<0.01	<0.01
		PM _{2.5}	<0.01	<0.01
DP1FR	DP1 Filter Receiver (5)	РМ	<0.01	<0.01
		PM ₁₀	<0.01	<0.01
		PM _{2.5}	<0.01	<0.01
DP1BBS	DP1 Blendback Station (5)	РМ	<0.01	<0.01
		PM ₁₀	<0.01	<0.01
		PM _{2.5}	<0.01	<0.01
DP2FR	DP2 Filter Receiver (5)	РМ	<0.01	<0.01
		PM ₁₀	<0.01	<0.01
		PM _{2.5}	<0.01	<0.01
DP3FR	DP3 Filter Receiver (5)	РМ	<0.01	<0.01
		PM ₁₀	<0.01	<0.01
		PM _{2.5}	<0.01	<0.01
DP3FR2	DP3 Filter Receiver 2 Stack	РМ	<0.01	<0.01
		PM ₁₀	<0.01	<0.01
		PM _{2.5}	<0.01	<0.01
DP3BS	DP3 Belt Scale Air Vent Filter Receiver	РМ	<0.01	<0.01
	Stack	PM ₁₀	<0.01	<0.01
		PM _{2.5}	<0.01	<0.01
DP3BBS	DP3 Blendback Station (5)	РМ	<0.01	<0.01
		PM ₁₀	<0.01	<0.01

		PM _{2.5}	<0.01	<0.01
FLDBDBBS	Fluid Bed Blendback Station (5)	РМ	<0.01	0.04
		PM ₁₀	<0.01	0.03
		PM _{2.5}	<0.01	<0.01
SPUBBS	SPU Blendback Station (5)	РМ	<0.01	<0.01
		PM ₁₀	<0.01	<0.01
		PM _{2.5}	<0.01	<0.01
SPUTK1	#1 SPU Tank	VOC (ethanol)	0.61	0.19
		VOC (benzyl chloride)	<0.01	<0.01
		VOC (methyl chloride)	0.03	<0.01
SPUTK2	#2 SPU Tank	VOC (ethanol)	<0.01	<0.01
		VOC (benzyl alcohol)	<0.01	<0.01
		VOC (methyl chloride)	<0.01	0.02
SPUTK3	#3 SPU Tank	VOC (ethanol)	<0.01	0.01
		VOC (benzyl alcohol)	<0.01	<0.01
		VOC (methyl chloride)	0.01	0.02
SPUBB	SPU Unloading (5)	РМ	<0.01	<0.01
		PM ₁₀	<0.01	<0.01
		PM _{2.5}	<0.01	<0.01
SPUPRESS	SPU Press (5)	VOC (ethanol)	0.25	0.97
		VOC (benzyl alcohol)	<0.01	<0.01
		VOC (methyl chloride)	<0.01	<0.01
SPUBC100	SPU Press Belt Conveyor (5)	VOC (ethanol)	0.09	0.39
	conveyor (c)	VOC (benzyl alcohol)	<0.01	<0.01
		VOC (methyl chloride)	<0.01	<0.01
FBDRYER Project Number: 290819	SPU Fluidized Bed Dryer Dust Collector	VOC (ethanol)	3.63	-

		VOC (benzyl alcohol)	0.51	-
		VOC (methyl chloride)	0.05	-
		VOC (combustion)	<0.01	0.04
		NO _x	0.16	0.69
		SO ₂	<0.01	<0.01
		со	0.13	0.58
		PM	0.36	1.55
		PM ₁₀	0.27	1.16
		PM _{2.5}	0.05	0.23
GARASDV810	Garamite Spray Dryer Dust Collector Stack	VOC (ethanol)	3.63	-
		VOC (benzyl alcohol)	0.51	-
		VOC (methyl chloride)	0.05	-
		VOC (combustion)	0.05	0.24
		NO _x	0.76	3.34
		SO ₂	<0.01	0.03
		со	0.38	1.65
		PM	0.08	0.35
		PM ₁₀	0.08	0.34
		PM _{2.5}	0.08	0.33
FBDRYER & GARASDV810	Total SPU Fluidized Bed Dryer Dust	VOC (ethanol)	-	3.66
	Collector & Spray Dryer Dust Collector	VOC (benzyl alcohol)	-	0.84
	Stacks	VOC (methyl chloride)	-	0.03
GARABL820	Garamite Spray Dryer Product Receiver	PM	<0.01	<0.01
	Transfer Blower Dust Collector Stack	PM ₁₀	<0.01	<0.01
		PM _{2.5}	<0.01	<0.01
DC8	SPU Mill Dust	PM	0.04	0.16

I	Ī	PM ₁₀	0.03	0.12
		F IVI10	0.03	0.12
		PM _{2.5}	0.01	0.02
BAGGER	SPU Packaging Dust Collector Stack	РМ	0.15	0.66
		PM ₁₀	0.11	0.49
		PM _{2.5}	0.02	0.08
WWTK1	#1 Wastewater Tank	VOC (ethanol)	0.09	-
		VOC (benzyl alcohol)	<0.01	-
		VOC (methyl chloride)	<0.01	-
CLAR	Wastewater Clarifier Tank (5)	VOC (ethanol)	0.46	-
		VOC (benzyl alcohol)	<0.01	-
		VOC (methyl chloride)	<0.01	-
WWTK2	Wastewater Fractionating Sludge Tank	VOC (ethanol)	<0.01	-
		VOC (benzyl alcohol)	<0.01	-
		VOC (methyl chloride)	<0.01	-
POND1	#1 Pond (5)	VOC (ethanol)	<0.01	-
		VOC (benzyl alcohol)	<0.01	-
		VOC (methyl chloride)	<0.01	-
POND2	#2 Pond (5)	VOC (ethanol)	0.41	-
		VOC (benzyl alcohol)	<0.01	-
		VOC (methyl chloride)	<0.01	-
POND3	#3 Pond (5)	VOC (ethanol)	0.51	-
		VOC (benzyl alcohol)	<0.01	-
		VOC (methyl chloride)	<0.01	-
POND6	#6 Pond (5)	VOC (ethanol)	0.89	-
		VOC (benzyl alcohol)	0.01	-
		VOC (methyl chloride)	<0.01	-
	•	•	•	

EQTANK	Equalization Tank	VOC (ethanol)	0.02	-
		VOC (benzyl alcohol)	<0.01	-
		VOC (methyl chloride)	<0.01	-
DAFTANK	DAF Tank	VOC (ethanol)	0.68	-
		VOC (benzyl alcohol)	<0.01	-
		VOC (methyl chloride)	0.02	-
SLUDGETANK	Sludge Tank	VOC (ethanol)	<0.01	-
		VOC (benzyl alcohol)	<0.01	-
		VOC (methyl chloride)	<0.01	-
DAFBP	DAF Belt Press	VOC (ethanol)	0.02	-
		VOC (benzyl alcohol)	<0.01	-
		VOC (methyl chloride)	<0.01	-
DAFBC	DAF Belt Conveyor	VOC (ethanol)	0.02	-
		VOC (benzyl alcohol)	<0.01	-
		VOC (methyl chloride)	<0.01	-
DAFST	DAF Sludge Truck	VOC (ethanol)	0.10	-
		VOC (benzyl alcohol)	<0.01	-
		VOC (methyl chloride)	<0.01	-
	Total Wastewater System	VOC (ethanol)	-	9.74
	(EPNs WWTK1, CLAR, WWTK2,	VOC (benzyl alcohol)	-	0.06
	POND1, POND2, POND3, POND6, EQTANK, DAFTANK, SLUDGETANK, DAFBP, DAFBC, and DAFST)	VOC (methyl chloride)	-	0.14
FUG	Equipment Leak Fugitives (5)	VOC (ethanol)	0.78	3.41
		VOC (benzyl chloride)	<0.01	<0.01
		VOC (benzyl alcohol)	<0.01	<0.01

		VOC (methyl chloride)	<0.01	<0.01
HEXMAIN	Heat Exchanger Maintenance	VOC (ethanol)	2.53	0.22
GARADC110	Garamite Sepiolite Day Hopper Dust	PM	<0.01	<0.01
	Collector Stack	PM ₁₀	<0.01	<0.01
		PM _{2.5}	<0.01	<0.01
GARADC111	Garamite Saponite Day Hopper Dust	РМ	<0.01	<0.01
	Collector Stack	PM ₁₀	<0.01	<0.01
		PM _{2.5}	<0.01	<0.01
GARADT	Garamite Quaternary Amine Day Tanks	VOC (ethanol)	3.92	2.33
		VOC (benzyl alcohol)	0.01	<0.01
		VOC (methyl chloride)	0.10	0.07
GARAR	Garamite Reaction Tanks #1 through #5	VOC (ethanol)	0.10	0.04
		VOC (benzyl alcohol)	<0.01	<0.01
		VOC (methyl chloride)	0.07	0.03
GARABLDG	Garamite Presses #1 & #2, Garamite	VOC (ethanol)	2.00	7.52
	Building Conveyors (5)	VOC (benzyl alcohol)	<0.01	<0.01
		VOC (methyl chloride)	<0.01	<0.01
GARADC181	Garamite Fluid Bed Dryer Dust Collector	VOC (ethanol)	2.72	9.15
	Stack	VOC (benzyl alcohol)	0.05	0.16
		VOC (methyl chloride)	<0.01	<0.01
		VOC (combustion)	0.04	0.19
		NO _x	0.78	3.44
		SO ₂	<0.01	0.02
		со	0.66	2.89
		РМ	0.07	0.32

Transfer Blower Dust Collector Stack PM10 PM25 GARADC185 Garamite Fine Grinding Mill Dust Collector Stack PM25 PM25 PM25 PM 0 0.01 0.02 PM25 0.01 0.02 PM20 PM20 PM20 0.01 0.02 PM20 PM20 0.01 0.02 PM20 PM20 0.01 0.02 PM20 PM20 0.01 0.01 0.01 PM20 PM20 PM20 0.01 0.01 PM25 0.01 0.01 0.01 PM25 0.01 0.01 0.01	1	ı			ı
FBD Product Receiver Transfer Blower Dust Collector Stack PMm			PM ₁₀	0.07	0.30
Transfer Blower Dust Collector Stack PMio Co.01 Co.01 Co.01 PMio Co			PM _{2.5}	0.06	0.27
Collector Stack PMii	GARADC184		РМ	<0.01	<0.01
GARADC185 Garamite Fine Grinding Mill Dust Collector Stack PM < 0.01 0.02 PM10 < 0.01			PM ₁₀	<0.01	<0.01
Grinding Mill Dust Collector Stack PM C0.01 C0.02 PM _{2.5} C0.01 C0.01			PM _{2.5}	<0.01	<0.01
Collector Stack	GARADC185		РМ	<0.01	0.02
GARADC186 Garamite Product Transfer Blower Dust Collector Stack PM <0.01 <0.01 GARADC190 Product Silo Dust Collector 190 Stack PM <0.01		Collector Stack	PM ₁₀	<0.01	0.02
Transfer Blower Dust Collector Stack PM10			PM _{2.5}	<0.01	<0.01
Collector Stack PM10 C0.01 C0.01 C0.01 PM2.5 C0.01 C0.01 C0.01 PM2.5 C0.01 C0.01 C0.01 PM10 C0.01 C0.01 C0.01 PM2.5 C0.01 C0.01 PM3.0 C0.01 C0.01	GARADC186		РМ	<0.01	<0.01
Product Silo Dust Collector 190 Stack			PM ₁₀	<0.01	<0.01
Collector 190 Stack PM10 PM25 Co.01 Co.01 PM25 Co.01			PM _{2.5}	<0.01	<0.01
PM10 <0.01 <0.01 <0.01	GARADC190		РМ	<0.01	<0.01
Product Silo Dust Collector 190A Stack			PM ₁₀	<0.01	<0.01
Collector 190A Stack PM ₁₀ PM _{2.5} Co.01			PM _{2.5}	<0.01	<0.01
PM ₁₀	GARADC190A		РМ	<0.01	<0.01
GARADC190C Bagging Bin Dust Collector Stack PM <0.01 <0.01 PM ₁₀ <0.01			PM ₁₀	<0.01	<0.01
Collector Stack PM ₁₀ PM _{2.5} Co.01			PM _{2.5}	<0.01	<0.01
PM ₁₀ <0.01 <0.01 PM _{2.5} <0.01 <0.01 PM _{2.5} <0.01 <0.01 PM _{2.5} PM <0.01 PM ₁₀ <0.01 PM _{2.5} <0.01 <0.01 PM _{2.5} <0.01 <0.01 PM _{2.5} <0.01 <0.01 PM _{2.5} <0.01 <0.01 PM ₁₀ <0.01 <0.01 <0.01 PM ₁₀ <0.01 <0.01 <0.01 PM ₁₀ <0.01 <0.01 PM ₁₀ <0.01 <0.01 <0.01 PM ₁₀ <0.01	GARADC190C		РМ	<0.01	<0.01
GARADC194 Fugitive Dust Collector Exhaust Fan Stack PM			PM ₁₀	<0.01	<0.01
Exhaust Fan Stack PM ₁₀ PM _{2.5} Central Vacuum Dust Collector Stack PM PM Collector Stack PM Collector Stack PM Collector Stack Co			PM _{2.5}	<0.01	<0.01
PM ₁₀ <0.01 0.01 PM _{2.5} <0.01 <0.01 GARADC195 Central Vacuum Dust Collector Stack PM	GARADC194		РМ	<0.01	0.02
GARADC195 Central Vacuum Dust Collector Stack PM < 0.01 < 0.01 PM ₁₀ < 0.01			PM ₁₀	<0.01	0.01
Collector Stack PM ₁₀ <0.01 <0.01 <0.01			PM _{2.5}	<0.01	<0.01
PM ₁₀ <0.01 <0.01	GARADC195		PM	<0.01	<0.01
PM _{2.5} <0.01 <0.01			PM ₁₀	<0.01	<0.01
			PM _{2.5}	<0.01	<0.01

GARAFT	Filter Press Effluent Inventory Tank for	VOC (ethanol)	0.01	0.04
	Heat Recovery	VOC (benzyl alcohol)	<0.01	<0.01
		VOC (methyl chloride)	<0.01	<0.01
GARABC606	Transfer Belt Conveyor (5)	VOC (ethanol)	0.14	0.63
		VOC (benzyl alcohol)	<0.01	<0.01
		VOC (methyl chloride)	<0.01	<0.01
GARABC800	SPU FBD Feed Belt Conveyor (5)	VOC (ethanol)	0.05	0.20
		VOC (benzyl alcohol)	<0.01	<0.01
		VOC (methyl chloride)	<0.01	<0.01
GARABC801	Transfer Belt Conveyor (5)	VOC (ethanol)	0.13	0.59
		VOC (benzyl alcohol)	<0.01	<0.01
		VOC (methyl chloride)	<0.01	<0.01
GARABC802	Makedown Tank Feed Belt Conveyor	VOC (ethanol)	0.10	0.45
		VOC (benzyl alcohol)	<0.01	<0.01
		VOC (methyl chloride)	<0.01	<0.01
GARAT801	Slurry Makedown Tank	VOC (ethanol)	<0.01	0.01
		VOC (benzyl alcohol)	<0.01	<0.01
		VOC (methyl chloride)	<0.01	0.01
GARAT802	Spray Dryer Feed Tank	VOC (ethanol)	<0.01	0.01
		VOC (benzyl alcohol)	<0.01	<0.01
		VOC (methyl chloride)	<0.01	0.01
SPU-CVDC	SPU Central Vacuum Dust Collector Stack	РМ	0.03	0.14
	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	PM ₁₀	0.02	0.10
		PM _{2.5}	<0.01	0.02
DP-CVDC	DP Central Vacuum Dust Collector Stack	РМ	0.04	0.18
	2 22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	PM ₁₀	0.03	0.14

		PM _{2.5}	<0.01	0.02
ORGANOCVDC	Organo Central Vacuum Dust Collector	РМ	0.04	0.18
	Stack	PM ₁₀	0.03	0.14
		PM _{2.5}	<0.01	0.02
BLR14	Thermal Oxidizer #5 Stack	VOC (ethanol)	0.55	-
	(During periods when	VOC (combustion)	0.02	-
	DP1, DP2, and DP3 emissions are routed	VOC (benzyl chloride)	<0.01	-
	to Thermal Oxidizer #5. Note: Thermal	Cl ₂	<0.01	-
	Oxidizer #5 shall be shut down when Thermal Oxidizer #1 is	HCI	2.30	-
	operating.)	VOC (methyl chloride)	0.16	-
		NO _x	0.32	-
		SO ₂	<0.01	-
		со	0.66	-
		РМ	0.02	-
		PM ₁₀	0.02	-
		PM _{2.5}	0.02	-
BLR15	Thermal Oxidizer #6 Stack	VOC (ethanol)	0.18	-
		VOC (combustion)	0.02	-
		VOC (benzyl chloride)	<0.01	-
		Cl ₂	<0.01	-
		HCI	0.22	-
		VOC (methyl chloride)	0.06	-
		NO _x	0.32	-
		SO ₂	<0.01	-
		со	0.66	-
		РМ	0.02	-

ı	1		T	T
		PM ₁₀	0.02	-
		PM _{2.5}	0.02	-
	Total Thermal Oxidizer Stacks	VOC (ethanol)	-	7.06
	(Thermal Oxidizers #1	VOC (combustion)	-	0.71
	through #6)	VOC (benzyl chloride)	-	0.02
		Cl ₂	-	0.01
		HCI	-	3.62
		VOC (methyl chloride)	-	0.23
		NO _x	-	13.64
		SO ₂	-	0.09
		со	-	63.91
		РМ	-	0.95
		PM ₁₀	-	0.95
		PM _{2.5}	-	0.95
GARAFUG	Garamite Plant Equipment Leak	VOC (ethanol)	0.19	0.81
	Fugitives (5)	VOC (benzyl chloride)	<0.01	<0.01
		VOC (methyl chloride)	<0.01	<0.01
		VOC (benzyl alcohol)	<0.01	<0.01
PILOTRXN1	Pilot Plant Reaction Tank #1	VOC (ethanol)	<0.01	<0.01
	Tallet 1	VOC (benzyl alcohol)	<0.01	<0.01
		VOC (methyl chloride)	<0.01	<0.01
PILOTRXN2	Pilot Plant Reaction Tank #2	VOC (ethanol)	<0.01	<0.01
	, som ne	VOC (benzyl alcohol)	<0.01	<0.01
		VOC (methyl chloride)	<0.01	<0.01
PILOTPRES1	Pilot Plant Filter Press (5)	VOC (ethanol)	<0.01	<0.01
		VOC (benzyl alcohol)	<0.01	<0.01
	J	l		L

		VOC (methyl chloride)	<0.01	<0.01
		Too (meany) emence	-0.01	10.01
PILOTDRYR1	Pilot Plant Niro/Aeromatic Fluid	VOC (ethanol)	0.09	0.30
	Bed Dryer Dust Collector Stack	VOC (benzyl alcohol)	<0.01	0.02
		VOC (methyl chloride)	<0.01	<0.01
		РМ	0.02	0.08
		PM ₁₀	0.01	0.06
		PM _{2.5}	<0.01	<0.01
PILOTMILL1	Pilot Plant Hosokawa ACM Dust Collector Stack	РМ	0.05	0.20
		PM ₁₀	0.03	0.15
		PM _{2.5}	<0.01	0.02
PILOTBAG	Pilot Plant Bagging (5)	РМ	<0.01	<0.01
		PM ₁₀	<0.01	<0.01
		PM _{2.5}	<0.01	<0.01

(1) Emission point identification - either specific equipment designation or emission point number from plot plan.

	Specific							

(3) VOC - volatile organic compounds as defined in Title 30 Texas Administrative Code § 101.1

NO_x - total oxides of nitrogen

SO₂ - sulfur dioxide

PM - total particulate matter, suspended in the atmosphere, including PM₁₀ and PM_{2.5}, as represented

PM₁₀ - total particulate matter equal to or less than 10 microns in diameter, including PM_{2.5}, as

total particulate matter equal to of less than 10 microns in diameter, including 1 m_{2.5}, as

represented

PM_{2.5} - particulate matter equal to or less than 2.5 microns in diameter

CO - carbon monoxide

Cl₂ - chlorine

HCl - hydrogen chloride

- (4) Compliance with annual emission limits (tons per year) is based on a 12 month rolling period.
- (5) Emission rate is an estimate and is enforceable through compliance with the applicable special condition(s) and permit application representations.
- (6) Planned startup and shutdown emissions are included. Maintenance activities other than for the Heat Exchangers are not authorized by this permit.

Date:	October 15, 2018	