T 7 •	α T	4	\circ	4
Vienna	. (') . .		`~	
vicilia			. e) .	

User Manual

Copyright © 2010–2012, Institute for Microelectronics, Vienna University of Technology.

Project Head:

Karl Rupp

Code Contributors:

Evan Bollig
Philipp Grabenweger
Volodymyr Kysenko
Nikolay Lukash
Günther Mader
Vittorio Patriarca
Florian Rudolf
Astrid Rupp
Philippe Tillet
Markus Wagner
Josef Weinbub
Michael Wild

Institute for Microelectronics Vienna University of Technology Gußhausstraße 27-29 / E360 A-1040 Vienna, Austria/Europe

Phone +43-1-58801-36001 FAX +43-1-58801-36099

Web http://www.iue.tuwien.ac.at/

Contents

In	trod	uction	1
1	Inst	tallation	3
	1.1	Dependencies	3
	1.2	Generic Installation of ViennaCL	4
	1.3	Get the OpenCL Library	4
	1.4	Building the Examples and Tutorials	5
2	Bas	sic Types	8
	2.1	Scalar Type	8
	2.2	Vector Type	9
	2.3	Dense Matrix Type	11
	2.4	Structured Matrix Types	12
	2.5	Sparse Matrix Types	14
	2.6	Proxies	18
3	Bas	sic Operations	19
	3.1	Vector-Vector Operations (BLAS Level 1)	19
	3.2	Matrix-Vector Operations (BLAS Level 2)	19
	3.3	Matrix-Matrix Operations (BLAS Level 3)	19
4	Alg	orithms	22
	4.1	Direct Solvers	22
	4.2	Iterative Solvers	23
	4.3	Preconditioners	24
	4.4	Fast Fourier Transform	29
	4.5	Bandwidth Reduction	30
	4.6	Eigenvalue Computations	31
	4.7	QR Factorization	32
	4.8	Singular Value Decomposition	33

	4.9	Nonnegative Matrix Factorization	33
5	Cor	afiguring Contexts and Devices	34
	5.1	Context Setup	34
	5.2	Switching Contexts and Devices	35
	5.3	Setting OpenCL Compiler Flags	36
6	Cus	stom Compute Kernels	37
	6.1	Setting up the Source Code	37
	6.2	Compilation of the Source Code	38
	6.3	Launching the Kernel	38
7	Usi	ng ViennaCL in User Provided OpenCL Contexts	40
	7.1	Passing Contexts to ViennaCL	40
	7.2	Wrapping Existing Memory with ViennaCL Types	41
8	Aut	omated User-Kernel Generation	43
9	Ker	nel Parameter Tuning	4 4
	9.1	Start Tuning Runs	44
	9.2	Load Best Parameters at Startup	45
10	Inte	erfaces to Other Libraries	46
	10.1	ublas	46
	10.2	Eigen	47
	10.3	MTL 4	48
11	Ben	achmark Results	49
	11.1	Vector Operations	49
	11.2	Matrix-Vector Multiplication	50
	11.3	Iterative Solver Performance	50
12	Des	ign Decisions	51
	12.1	Transfer CPU-GPU-CPU for Scalars	51
	12.2	Transfer CPU-GPU-CPU for Vectors	52
	12.3	Solver Interface	5 3
	12.4	Iterators	5 3
	12.5	Initialization of Compute Kernels	53
Ve	ersio	ning	5 5

55

Change Logs	56
License	68
Bibliography	6 4

Introduction

The Vienna Computing Library (ViennaCL) is a scientific computing library written in C++. It allows simple, high-level access to the vast computing resources available on parallel architectures such as GPUs and multi-core CPUs by using OpenCL. The primary focus is on common linear algebra operations (BLAS levels 1, 2 and 3) and the solution of large sparse systems of equations by means of iterative methods. In ViennaCL 1.3.x, the following iterative solvers are implemented (confer for example to the book of Y. Saad [1]):

- Conjugate Gradient (CG)
- Stabilized BiConjugate Gradient (BiCGStab)
- Generalized Minimum Residual (GMRES)

A number of preconditioners is provided with ViennaCL 1.3.1 in order to improve convergence of these solvers, cf. Chap. 4.

The solvers and preconditioners can also be used with different libraries due to their generic implementation. At present, it is possible to use the solvers and preconditioners directly with types from the ublas library, which is part of Boost [2]. The iterative solvers can directly be used with Eigen [3] and MTL 4 [4].

Under the hood, <code>ViennaCL</code> uses <code>OpenCL</code> [5] for accessing and executing code on compute devices. Therefore, <code>ViennaCL</code> is not tailored to products from a particular vendor and can be used on many different platforms. At present, <code>ViennaCL</code> is known to work on modern GPUs from NVIDIA and AMD (see Tab. 1) as well as on CPUs using either the AMD Accelerated Parallel Processing SDK (formerly ATI Stream SDK) or the Intel OpenCL SDK.

Double precision arithmetic on GPUs is only possible if it is provided by the GPU. There is no double precision emulation in ViennaCL.

Double precision arithmetic using the ATI Stream SDK or AMD APP SDK may not be fully OpenCL-certified. See Sec. 1.3.2 for details.

Compute Device	float	double
NVIDIA Geforce 86XX GT/GSO	ok	-
NVIDIA Geforce 88XX GTX/GTS	ok	-
NVIDIA Geforce 96XX GT/GSO	ok	-
NVIDIA Geforce 98XX GTX/GTS	ok	-
NVIDIA GT 230	ok	-
NVIDIA GT(S) 240	ok	-
NVIDIA GTS 250	ok	-
NVIDIA GTX 260	ok	ok
NVIDIA GTX 275	ok	ok
NVIDIA GTX 280	ok	ok
NVIDIA GTX 285	ok	ok
NVIDIA GTX 465	ok	ok
NVIDIA GTX 470	ok	ok
NVIDIA GTX 480	ok	ok
NVIDIA GTX 560	ok	ok
NVIDIA GTX 570	ok	ok
NVIDIA GTX 580	ok	ok
NVIDIA GTX 590	ok	ok
NVIDIA Quadro FX 46XX	ok	-
NVIDIA Quadro FX 48XX	ok	ok
NVIDIA Quadro FX 56XX	ok	-
NVIDIA Quadro FX 58XX	ok	ok
NVIDIA Tesla 870	ok	-
NVIDIA Tesla C10XX	ok	ok
NVIDIA Tesla C20XX	ok	ok
ATI Radeon HD 45XX	ok	-
ATI Radeon HD 46XX	ok	-
ATI Radeon HD 47XX	ok	-
ATI Radeon HD 48XX	ok	essentially ok
ATI Radeon HD 54XX	ok	-
ATI Radeon HD 55XX	ok	-
ATI Radeon HD 56XX	ok	-
ATI Radeon HD 57XX	ok	-
ATI Radeon HD 58XX	ok	essentially ok
ATI Radeon HD 59XX	ok	essentially ok
ATI Radeon HD 68XX	ok	-
ATI Radeon HD 69XX	ok	essentially ok
ATI FireStream V92XX	ok	essentially ok
ATI FirePro V78XX	ok	essentially ok
ATI FirePro V87XX	ok	essentially ok
ATI FirePro V88XX	ok	essentially ok

Table 1: Available arithmetics in <code>ViennaCL</code> provided by selected GPUs. At the release of <code>ViennaCL</code> 1.3.1, the Stream SDK (APP SDK) from AMD/ATI may not comply to the <code>OpenCL</code> standard for double precision extensions, but we have not observed problems with the latest version of the SDK. Support for AMD devices is now per default enabled in <code>ViennaCL</code>, see Sec. 1.3.2.

Chapter 1

Installation

This chapter shows how <code>ViennaCL</code> can be integrated into a project and how the examples are built. The necessary steps are outlined for several different platforms, but we could not check every possible combination of hardware, operating system and compiler. If you experience any trouble, please write to the maining list at

viennacl-support@lists.sourceforge.net

1.1 Dependencies

ViennaCL uses the CMake build system for multi-platform support. Thus, before you proceed with the installation of ViennaCL, make sure you have a recent version of CMake installed.

To use ViennaCL, the following prerequisites have to be fulfilled:

- A recent C++ compiler (e.g. GCC version 4.2.x or above and Visual C++ 2010 are known to work)
- OpenCL [5, 6] for accessing compute devices (GPUs); see Section 1.3 for details. (optional, since iterative solvers can also be used standalone with other libraries (ublas, Eigen, MTL4))

The full potential of ViennaCL is only available with the following optional libraries:

- CMake [7] as build system (optional, but highly recommended for building examples)
- ublas (shipped with Boost [2]) provides the same interface as ViennaCL and allows to switch between CPU and GPU seamlessly, see the tutorials.
- Eigen [3] can be used to fill ViennaCL types directly. Moreover, the iterative solvers in ViennaCL can directly be used with Eigen objects.
- MTL 4 [4] can be used to fill ViennaCL types directly. Even though MTL 4 provides its own iterative solvers, the ViennaCL solvers can also be used with MTL 4 objects.

1.2 Generic Installation of ViennaCL

Since ViennaCL is essentially a header-only library (the only exception is described in Chapter 9), it is sufficient to copy the folder <code>viennacl/</code> either into your project folder or to your global system include path. On Unix based systems, this is often <code>/usr/include/</code> or <code>/usr/local/include/</code>. If the OpenCL headers are not installed on your system, you should repeat the above procedure with the folder <code>CL/</code>.

On Windows, the situation strongly depends on your development environment. We advise users to consult the documentation of their compiler on how to set the include path correctly. With Visual Studio this is usually something like C:\Program Files\Microsoft Visual Studio 9.0\VC\include and can be set in Tools -> Options -> Projects and Solutions -> VC++-Directories. The include and library directories of your OpenCL SDK should also be added there.

If multiple OpenCL libraries are available on the host system, one has to ensure that the intended one is used.

1.3 Get the OpenCL Library

In order to compile and run OpenCL applications, a corresponding library (e.g. libOpenCL.so under Unix based systems) and is required. If OpenCL is to be used with GPUs, suitable drivers have to be installed. This section describes how these can be acquired.

Note, that for Mac OS X systems there is no need to install an OpenCL capable driver and the corresponding library. The OpenCL library is already present if a suitable graphics card is present. The setup of ViennaCL on Mac OS X is discussed in Section 1.4.2.

1.3.1 NVIDIA Driver

NVIDIA provides the <code>OpenCL</code> library with the GPU driver. Therefore, if a NVIDIA driver is present on the system, the library is too. However, not all of the released drivers contain the <code>OpenCL</code> library. A driver which is known to support <code>OpenCL</code>, and hence providing the required library, is 260.19.21. Note that the latest NVIDIA drivers do not include the <code>OpenCL</code> headers anymore. Therefore, the official <code>OpenCL</code> headers from the Khronos group <code>[5]</code> are also shipped with <code>ViennaCL</code> in the folder <code>CL/</code>.

1.3.2 AMD Accelerated Parallel Processing SDK (formerly Stream SDK)

AMD provides the <code>OpenCL</code> library with the Accelerated Parallel Processing (APP) SDK [8]. At the release of <code>ViennaCL</code> 1.3.1, the latest version of the SDK is 2.4. If used with AMD GPUs, recent AMD GPU drivers are typically required. If <code>ViennaCL</code> is to be run on multicore CPUs, no additional GPU driver is required. The installation notes of the APP SDK provides guidance throughout the installation process [9].

If the SDK is installed in a non-system wide location on UNIX-based systems, be sure to add the <code>OpenCL</code> library path to the <code>LD_LIBRARY_PATH</code> environment variable. Otherwise, linker errors will occur as the required library cannot be found.

It is important to note that the AMD APP SDK may not provide OpenCL certified double precision support [10] on some CPUs and GPUs. In ViennaCL1.0.x, double precision was only experimentally available in ViennaCL by defining one of the preprocessor constants

```
// for CPUs:
#define VIENNACL_EXPERIMENTAL_DOUBLE_PRECISION_WITH_STREAM_SDK_ON_CPU
// for GPUs:
#define VIENNACL_EXPERIMENTAL_DOUBLE_PRECISION_WITH_STREAM_SDK_ON_GPU
```

prior to any inclusion of ViennaCL header files. With ViennaCL 1.3.x, this is not necessary anymore and double precision support is enabled by default — provided that it is available on the device.

The functions norm_1, norm_2, norm_inf and index_norm_inf are known to cause problems on GPUs in double precision using ATI Stream SDK v2.1.

1.3.3 INTEL OpenCL SDK

ViennaCL works fine with the INTEL OpenCL SDK on Windows and Linux. The correct linker path is set automatically in CMakeLists.txt when using the CMake build system, cf. Sec. 1.2.

1.4 Building the Examples and Tutorials

For building the examples, we suppose that CMake is properly set up on your system. The other dependencies are listed in Tab. 1.1.

Before building the examples, customize CMakeLists.txt in the ViennaCL root folder for your needs. Per default, all examples using ublas, Eigen and MTL4 are turned off. Please enable the respective examples based on the libraries available on your machine. Directions on how to accomplish this are given directly within the CMakeLists.txt file.

1.4.1 Linux

To build the examples, open a terminal and change to:

```
$> cd /your-ViennaCL-path/build/
```

Execute

```
$> cmake ..
```

to obtain a Makefile and type

```
$> make
```

Tutorial No.	Dependencies
tutorial/amg.cpp	OpenCL, ublas
tutorial/bandwidth-reduction.cpp	-
tutorial/blas1.cpp	OpenCL
tutorial/blas2.cpp	OpenCL, ublas
tutorial/blas3.cpp	OpenCL, ublas
tutorial/custom-kernels.cpp	OpenCL
tutorial/custom-context.cpp	OpenCL
tutorial/fft.cpp	OpenCL
tutorial/iterative.cpp	OpenCL, ublas
tutorial/iterative-ublas.cpp	ublas
tutorial/iterative-eigen.cpp	Eigen
tutorial/iterative-mtl4.cpp	MTL 4
tutorial/matrix-range.cpp	OpenCL, ublas
tutorial/qr.cpp	OpenCL, ublas
tutorial/spai.cpp	OpenCL, ublas
tutorial/eigen-with-viennacl.cpp	OpenCL, Eigen
tutorial/mtl4-with-viennacl.cpp	OpenCL, MTL 4
tutorial/vector-range.cpp	OpenCL, ublas
tutorial/viennacl-info.cpp	OpenCL
benchmarks/blas3.cpp	OpenCL
benchmarks/opencl.cpp	OpenCL
benchmarks/solver.cpp	OpenCL, ublas
benchmarks/sparse.cpp	OpenCL, ublas
benchmarks/vector.cpp	OpenCL

Table 1.1: Dependencies for the examples in the examples / folder

to build the examples. If some of the dependencies in Tab. 1.1 are not fulfilled, you can build each example separately:

```
$> make blas1  #builds the blas level 1 tutorial
$> make vectorbench  #builds vector benchmarks
```

Speed up the building process by using jobs, e.g. make -j4.

Execute the examples from the build/ folder as follows:

```
$> examples/tutorial/blas1
$> examples/benchmarks/vectorbench
```

Note that all benchmark executables carry the suffix bench.

1.4.2 Mac OS X

The tools mentioned in Section 1.1 are available on Macintosh platforms too. For the GCC compiler the Xcode [11] package has to be installed. To install CMake and Boost external portation tools have to be used, for example, Fink [12], DarwinPorts [13] or MacPorts [14].

Such portation tools provide the aforementioned packages, CMake and Boost, for macintosh platforms.

If the CMake build system has problems detecting your Boost libraries, determine the location of your Boost folder. Open the CMakeLists.txt file in the root directory of ViennaCL and add your Boost path after the following entry: IF (\$CMAKE_SYSTEM_NAME MATCHES "Darwin")

The build process of ViennaCL on Mac OS is similar to Linux.

1.4.3 Windows

In the following the procedure is outlined for Visual Studio: Assuming that an OpenCL SDK and CMake is already installed, Visual Studio solution and project files can be created using CMake:

- Open the CMake GUI.
- Set the ViennaCL base directory as source directory.
- Set the build/directory as build directory.
- Click on 'Configure' and select the appropriate generator (e.g. Visual Studio 9 2008)
- If either Boost or some OpenCL paths cannot be found, please select the advanced view and provide the required paths manually
- Click again an 'Configure'
- Click on 'Generate'
- The project files can now be found in the ViennaCL build directory, where they can be opened and compiled with Visual Studio (provided that the include and library paths are set correctly, see Sec. 1.2).

The examples and tutorials should be executed from within the build/ directory of ViennaCL, otherwise the sample data files cannot be found.

Chapter 2

Basic Types

This chapter provides a brief overview of the basic interfaces and usage of the provided data types. The term GPU refers here and in the following to both GPUs and multi-core CPUs accessed via <code>OpenCL</code> and managed by <code>ViennaCL</code>. Operations on the various types are explained in Chapter 3. For full details, refer to the reference pages in the folder <code>doc/doxygen</code>.

2.1 Scalar Type

The scalar type <code>scalar<T></code> with template parameter T denoting the underlying CPU scalar type (float and double, if supported - see Tab. 1) represents a single scalar value on the GPU. <code>scalar<T></code> is designed to behave much like a scalar type on the CPU, but library users have to keep in mind that every operation on <code>scalar<T></code> requires to launch the appropriate compute kernel on the GPU and is thus much slower then the CPU equivalent.

Be aware that operations between objects of type scalar<T> (e.g. additions. comparisons) have large overhead. For every operation, a separate compute kernel launch is required.

2.1.1 Example Usage

The scalar type of ViennaCL can be used just like the built-in types, as the following snippet shows:

```
float cpu_float = 42.0f;
double cpu_double = 13.7603;
viennacl::scalar<float> gpu_float(3.1415f);
viennacl::scalar<double> gpu_double = 2.71828;

//conversions and t
cpu_float = gpu_float;
gpu_float = cpu_double; //automatic transfer and conversion

cpu_float = gpu_float * 2.0f;
cpu_double = gpu_float - cpu_float;
```

Interface	Comment
v.handle()	The GPU handle

Table 2.1: Interface of vector<T> in ViennaCL. Destructors and operator overloads for BLAS are not listed.

Mixing built-in types with the ViennaCL scalar is usually not a problem. Nevertheless, since every operation requires OpenCL calls, such arithmetics should be used sparsingly.

In the present version of ViennaCL, it is not possible to assign a scalar<float> to a scalar<double> directly.

2.1.2 Members

Apart from suitably overloaded operators that mimic the behavior of the respective CPU counterparts, only a single public member function handle() is available, cf. Tab. 2.1.

2.2 Vector Type

The main vector type in <code>ViennaCL</code> is <code>vector<T</code>, alignment>, representing a chunk of memory on the compute device. <code>T</code> is the underlying scalar type (either float or double if supported, cf. Tab. 1, complex types are not supported in <code>ViennaCL</code> 1.3.1) and the optional argument alignment denotes the memory the vector is aligned to (in multiples of <code>sizeof(T)</code>). For example, a vector with a size of 55 entries and an alignment of 16 will reside in a block of memory equal to 64 entries. Memory alignment is fully transparent, so from the end-user's point of view, alignment allows to tune <code>ViennaCL</code> for maximum speed on the available compute device.

At construction, vector<T, alignment> is initialized to have the supplied length, but the memory is not initialized to zero. Another difference to CPU implementations is that accessing single vector elements is very costly, because every time an element is accessed, it has to be transferred from the CPU to the compute device or vice versa.

2.2.1 Example Usage

The following code snippet shows the typical use of the vector type provided by ViennaCL. The overloaded function <code>copy()</code> function, which is used similar to <code>std::copy()</code> from the C++ Standard Template Library (STL), should be used for writing vector entries:

```
std::vector<ScalarType> stl_vec(10);
viennacl::vector<ScalarType> vcl_vec(10);

//fill the STL vector:
for (unsigned int i=0; i<vector_size; ++i)
    stl_vec[i] = i;

//copy content to GPU vector (recommended initialization)
copy(stl_vec.begin(), stl_vec.end(), vcl_vec.begin());</pre>
```

Interface	Comment
CTOR(n)	Constructor with number of entries
v(i)	Access to the <i>i</i> -th element of v (slow!)
v[i]	Access to the <i>i</i> -th element of v (slow!)
v.clear()	Initialize v with zeros
<pre>v.resize(n, bool preserve)</pre>	Resize v to length n. Preserves old values if bool
	is true.
v.begin()	Iterator to the begin of the matrix
v.end()	Iterator to the end of the matrix
v.size()	Length of the vector
v.swap(v2)	Swap the content of v with v2
<pre>v.internal_size()</pre>	Returns the number of entries allocated on the
	GPU (taking alignment into account)
v.empty()	Shorthand notation for v.size() == 0
v.clear()	Sets all entries in v to zero
v.handle()	Returns the GPU handle (needed for custom
	kernels, see Chap. 6)

Table 2.2: Interface of vector<T> in ViennaCL. Destructors and operator overloads for BLAS are not listed.

```
//manipulate GPU vector here

//copy content from GPU vector back to STL vector
copy(vcl_vec.begin(), vcl_vec.end(), stl_vec.begin());
```

The function copy() does not assume that the values of the supplied CPU object are located in a linear memory sequence. If this is the case, the function <code>fast_copy</code> provides better performance.

Once the vectors are set up on the GPU, they can be used like objects on the CPU (refer to Chapter 3 for more details):

```
// let vcl_vec1 and vcl_vec2 denote two vector on the GPU
vcl_vec1 *= 2.0;
vcl_vec2 += vcl_vec1;
vcl_vec1 = vcl_vec1 - 3.0 * vcl_vec2;
```

2.2.2 Members

At construction, vector<T, alignment> is initialized to have the supplied length, but memory is not initialized. If initialization is desired, the memory can be initialized with zero values using the member function clear(). See Tab. 2.2 for other member functions.

Accessing single elements of a vector using operator() or operator[] is very slow! Use with care!

One important difference to pure CPU implementations is that the bracket operator as well as the parenthesis operator are very slow, because for each access an <code>OpenCL</code> data transfer has to be initiated. The overhead of this transfer is orders of magnitude. For example:

The difference in execution speed is typically several orders of magnitude, therefore direct vector element access should be used only if a very small number of entries is accessed in this way. A much faster initialization is as follows:

In this way, setup costs for the CPU vector and the ViennaCL vector are comparable.

2.3 Dense Matrix Type

matrix<T, F, alignment> represents a dense matrix with interface listed in Tab. 2.3. The second optional template argument F specifies the storage layout and defaults to row_major. Since ViennaCL 1.1.0, also column_major memory layout can be used. The third template argument alignment denotes an alignment for the rows and columns for row-major and column-major memory layout (cf. alignment for the vector type).

2.3.1 Example Usage

The use of matrix<T, F> is similar to that of the counterpart in ublas. The operators are overloaded similarly.

```
//set up a 3 by 5 matrix:
viennacl::matrix<float> vcl_matrix(4, 5);

//fill it up:
vcl_matrix(0,2) = 1.0;
vcl_matrix(1,2) = -1.5;
vcl_matrix(2,0) = 4.2;
vcl_matrix(3,4) = 3.1415;
```

Accessing single elements of a matrix using operator() is very slow! Use with care!

A much better way is to initialize a dense matrix using the provided copy () function:

Interface	Comment
CTOR(nrows, ncols)	Constructor with number of rows and columns
mat(i,j)	Access to the element in the <i>i</i> -th row and the <i>j</i> -
	th column of mat
<pre>mat.resize(m, n,</pre>	Resize mat to m rows and n columns. Currently,
bool preserve)	the boolean flag is ignored and entries always
	discarded.
<pre>mat.size1()</pre>	Number of rows in mat
<pre>mat.internal_size1()</pre>	Internal number of rows in mat
<pre>mat.size2()</pre>	Number of columns in mat
<pre>mat.internal_size2()</pre>	Internal number of columns in mat
<pre>mat.clear()</pre>	Sets all entries in v to zero
<pre>mat.handle()</pre>	Returns the GPU handle (needed for custom
	kernels, see Chap. 6)

Table 2.3: Interface of the dense matrix type matrix<T, F> in ViennaCL. Constructors, Destructors and operator overloads for BLAS are not listed.

```
//copy content from CPU matrix to GPU matrix
copy(cpu_matrix, gpu_matrix);

//copy content from GPU matrix to CPU matrix
copy(gpu_matrix, cpu_matrix);
```

The type requirement on the <code>cpu_matrix</code> is that <code>operator()</code> can be used for accessing entries, that a member function <code>sizel()</code> returns the number of rows and that <code>sizel()</code> returns the number of columns. Please refer to Chap. 10 for an overview of other libraries for which an overload of <code>copy()</code> is provided.

2.3.2 Members

The members are listed in Tab. 2.3. The usual operator overloads are not listed explicitly

2.4 Structured Matrix Types

Structured matrix types are experimental in ViennaCL 1.3.1. Interface changes as well as considerable performance improvements may be included in future releases!

There are a number of structured dense matrices for which some algorithms such as matrix-vector products can be computed with much lower computational effort than for the general dense matrix case. In the following, four structured dense matrix types included in ViennaCL are discussed. Example code can be found in examples/tutorial/structured -matrices.cpp.

2.4.1 Circulant Matrix

A circulant matrix is a matrix of the form

$$\begin{pmatrix} c_0 & c_{n-1} & \dots & c_2 & c_1 \\ c_1 & c_0 & c_{n-1} & & c_2 \\ \vdots & c_1 & c_0 & \ddots & \vdots \\ c_{n-2} & & \ddots & \ddots & c_{n-1} \\ c_{n-1} & c_{n-2} & \dots & c_1 & c_0 \end{pmatrix}$$

and available in ViennaCL via

```
#include "viennacl/circulant_matrix.hpp"

std::size_t s = 42;
viennacl::circulant_matrix circ_mat(s, s);
```

The circulant_matrix type can be manipulated in the same way as the dense matrix type matrix. Note that writing to a single element of the matrix is structure-preserving, e.g. changing circ_mat(1,2) will automatically update circ_mat(0,1), circ_mat(2,3) and so on.

2.4.2 Hankel Matrix

A Hankel matrix is a matrix of the form

$$\left(\begin{array}{cccc}
a & b & c & d \\
b & c & d & e \\
c & d & e & f \\
d & e & f & q
\end{array}\right)$$

and available in ViennaCL via

```
#include "viennacl/hankel_matrix.hpp"

std::size_t s = 42;
viennacl::hankel_matrix hank_mat(s, s);
```

The hankel_matrix type can be manipulated in the same way as the dense matrix type matrix. Note that writing to a single element of the matrix is structure-preserving, e.g. changing hank_mat(1,2) in the example above will also update hank_mat(0,3), hank_mat(2,1) and hank_mat(3,0).

2.4.3 Toeplitz Matrix

A Toeplitz matrix is a matrix of the form

$$\left(\begin{array}{ccccc}
 a & b & c & d \\
 e & a & b & c \\
 f & e & a & b \\
 g & f & e & a
\end{array}\right)$$

and available in ViennaCL via

```
#include "viennacl/toeplitz_matrix.hpp"

std::size_t s = 42;
viennacl::toeplitz_matrix toep_mat(s, s);
```

The toeplitz_matrix type can be manipulated in the same way as the dense matrix type matrix. Note that writing to a single element of the matrix is structure-preserving, e.g. changing toep_mat(1,2) in the example above will also update toep_mat(0,1) and toep_mat(2,3).

2.4.4 Vandermonde Matrix

A Vandermonde matrix is a matrix of the form

$$\begin{pmatrix} 1 & \alpha_1 & \alpha_1^2 & \dots & \alpha_1^{n-1} \\ 1 & \alpha_2 & \alpha_2^2 & \dots & \alpha_2^{n-1} \\ 1 & \vdots & \vdots & \vdots \\ 1 & \alpha_m & \alpha_m^2 & \dots & \alpha_m^{n-1} \end{pmatrix}$$

and available in ViennaCL via

```
#include "viennacl/vandermonde_matrix.hpp"

std::size_t s = 42;
viennacl::vandermonde_matrix vand_mat(s, s);
```

The <code>vandermonde_matrix</code> type can be manipulated in the same way as the dense matrix type <code>matrix</code>, but restrictions apply. For example, the addition or subtraction of two Vandermonde matrices does not yield another Vandermonde matrix. Note that writing to a single element of the matrix is structure-preserving, e.g. changing <code>vand_mat(1, 2)</code> in the example above will automatically update <code>vand_mat(1, 3)</code>, <code>vand_mat(1, 4)</code>, etc.

2.5 Sparse Matrix Types

There are two different sparse matrix types provided in ViennaCL, compressed_matrix and coordinate_matrix.

In ViennaCL 1.3.1, the use of compressed_matrix is encouraged over coordinate_matrix

2.5.1 Compressed Matrix

compressed_matrix<T, alignment> represents a sparse matrix using a compressed sparse row scheme. Again, T is the floating point type. alignment is the alignment and defaults to 1 at present. In general, sparse matrices should be set up on the CPU and then be pushed to the compute device using <code>copy()</code>, because dynamic memory management of sparse matrices is not provided on <code>OpenCL</code> compute devices such as GPUs.

Interface	Comment	
CTOR(nrows, ncols)	Constructor with number of rows and	
	columns	
<pre>mat.set()</pre>	Initialize mat with the data provided as ar-	
	guments	
<pre>mat.reserve(num)</pre>	Reserve memory for up to num nonzero en-	
	tries	
<pre>mat.size1()</pre>	Number of rows in mat	
<pre>mat.size2()</pre>	Number of columns in mat	
<pre>mat.nnz()</pre>	Number of nonzeroes in mat	
mat.resize(m, n,	Resize mat to m rows and n columns. Cur-	
bool preserve)	rently, the boolean flag is ignored and entries	
	always discarded.	
<pre>mat.handle1()</pre>	Returns the GPU handle holding the row in-	
	dices (needed for custom kernels, see Chap. 6)	
<pre>mat.handle2()</pre>	Returns the GPU handle holding the col-	
	umn indices (needed for custom kernels, see	
	Chap. 6)	
<pre>mat.handle()</pre>	Returns the GPU handle holding the entries	
	(needed for custom kernels, see Chap. 6)	

Table 2.4: Interface of the sparse matrix type compressed_matrix<T, F> in ViennaCL. Destructors and operator overloads for BLAS are not listed.

2.5.1.1 Example Usage

The use of compressed_matrix<T, alignment> is similar to that of the counterpart in ublas. The operators are overloaded similarly. There is a direct interfacing with the standard implementation using a vector of maps from the STL:

```
//set up a sparse 3 by 5 matrix on the CPU:
std::vector< std::map< unsigned int, float> > cpu_sparse_matrix(4);

//fill it up:
cpu_sparse_matrix[0][2] = 1.0;
cpu_sparse_matrix[1][2] = -1.5;
cpu_sparse_matrix[3][0] = 4.2;

//set up a sparse ViennaCL matrix:
viennacl::compressed_matrix<float> vcl_sparse_matrix(4, 5);

//copy to OpenCL device:
copy(cpu_sparse_matrix, vcl_sparse_matrix);

//copy back to CPU:
copy(vcl_sparse_matrix, cpu_sparse_matrix);
```

The copy() functions can also be used with a generic sparse matrix data type fulfilling the following requirements:

• The constliterator1 type is provided for iteration along increasing row index

- The constliterator2 type is provided for iteration along increasing column index
- .begin1 () returns an iterator pointing to the element with indices (0,0).
- .end1 () returns an iterator pointing to the end of the first column
- When copying to the cpu type: Write operation via operator()
- When copying to the cpu type: resize (m, n, preserve) member (cf. Tab. 2.4)

The iterator returned from the cpu sparse matrix type via begin1() has to fulfill the following requirements:

- .begin() returns an column iterator pointing to the first nonzero element in the particular row.
- .end() returns an iterator pointing to the end of the row
- Increment and dereference

For the sparse matrix types in ublas, these requirements are all fulfilled. Please refer to Chap. 10 for an overview of other libraries for which an overload of copy () is provided.

2.5.1.2 Members

The interface is described in Tab. 2.4.

2.5.2 Coordinate Matrix

In the second sparse matrix type, <code>coordinate_matrix<T</code>, <code>alignment></code>, entries are stored as triplets (i,j,val), where i is the row index, j is the column index and val is the entry. Again, <code>T</code> is the floating point type. The optional <code>alignment</code> defaults to 1 at present. In general, sparse matrices should be set up on the CPU and then be pushed to the compute device using <code>copy()</code>, because dynamic memory management of sparse matrices is not provided on <code>OpenCL</code> compute devices such as GPUs.

2.5.2.1 Example Usage

The use of coordinate_matrix<T, alignment> is similar to that of the first sparse matrix type compressed_matrix<T, alignment>, thus we refer to Sec. 2.5.1.1

2.5.2.2 **Members**

The interface is described in Tab. 2.5.

Note that preconditioners in Sec. 4.3 do not work with coordinate_matrix yet.

Interface	Comment	
CTOR(nrows, ncols)	Constructor with number of rows and	
	columns	
<pre>mat.reserve(num)</pre>	Reserve memory for up to num nonzero en-	
	tries	
<pre>mat.size1()</pre>	Number of rows in mat	
<pre>mat.size2()</pre>	Number of columns in mat	
<pre>mat.nnz()</pre>	Number of nonzeroes in mat	
mat.resize(m, n,	Resize mat to m rows and n columns. Cur-	
bool preserve)	rently, the boolean flag is ignored and entries	
	always discarded.	
<pre>mat.resize(m, n)</pre>	Resize mat to m rows and n columns. Does	
	not preserve old values.	
<pre>mat.handle12()</pre>	Returns the GPU handle holding the row and	
	column indices (needed for custom kernels,	
	see Chap. 6)	
<pre>mat.handle()</pre>	Returns the GPU handle holding the entries	
	(needed for custom kernels, see Chap. 6)	

Table 2.5: Interface of the sparse matrix type coordinate_matrix<T, A> in ViennaCL. Destructors and operator overloads for BLAS are not listed.

2.5.3 ELL Matrix

A sparse matrix in ELL format of type <code>ell_matrix</code> is stored in a block of memory of size $N \times n_{\max}$, where N is the number of rows of the matrix and n_{\max} is the maximum number of nonzeros per row. Rows with less than n_{\max} entries are padded with zeros. In a second memory block, the respective column indices are stored.

The ELL format is well suited for matrices where most rows have approximately the same number of nonzeros. This is often the case for matrices arising from the discretization of partial differential equations using e.g. the finite element method. On the other hand, the ELL format introduces substantial overhead if the number of nonzeros per row varies a lot.

For an example use of an ell_matrix, have a look at examples/benchmarks/sparse.cpp.

Note that preconditioners in Sec. 4.3 do not work with ell_matrix yet.

2.5.4 Hybrid Matrix

The higher performance of the ELL format for matrices with approximately the same number of entries per row and the higher flexibility of the CSR format is combined in the hyb_matrix type, where the main part of the system matrix is stored in ELL format and excess entries are stored in CSR format.

For an example use of an hyb_matrix, have a look at examples/benchmarks/sparse.cpp.

2.6 Proxies

Similar to ublas, ViennaCL provides range and slice objects in order to conveniently manipulate dense submatrices and vectors. The functionality is provided in the headers viennacl/vector_proxy.hpp and viennacl/matrix_proxy.hpp respectively. A range refers to a contiguous integer interval and is set up as

```
std::size_t lower_bound = 1;
std::size_t upper_bound = 7;
viennacl::range r(lower_bound, upper_bound);
```

A slice is similar to a range and allows in addition for arbitrary increments (*stride*). For example, to create a slice consisting of the indices 2, 5, 8, 11, 14, the code

```
std::size_t start = 2;
std::size_t stride = 3;
std::size_t size = 5
viennacl::slice s(start, stride, size);
```

In order to address a subvector of a vector v and a submatrix of a matrix M, the proxy objects v_sub and M_sub are created as follows:

As a shortcut, one may use the free function <code>project()</code> in order to avoid having to write the type explicitly:

```
project(v, r);  //returns a vector_range as above
project(M, r, r); //returns a matrix_range as above
```

In the same way vector_slices and matrix_slices are set up.

The proxy objects can now be manipulated in the same way as vectors and dense matrices. In particular, operations such as vector proxy additions and matrix additions work as usual, e.g.

```
vcl_sub += vcl_sub; //or project(v, r) += project(v, r);
M_sub += M_sub; //or project(M, r, r) += project(M, r, r);
```

Submatrix-Submatrix products are computed in the same manner and are handy for many block-based linear algebra algorithms.

Example code can be found in examples/tutorial/vector-range.cpp and examples/tutorial/matrix-range.cpp

Chapter 3

Basic Operations

The basic types have been introduced in the previous chapter, so we move on with the description of the basic BLAS operations.

3.1 Vector-Vector Operations (BLAS Level 1)

ViennaCL provides all vector-vector operations defined at level 1 of BLAS. Tab. 3.1 shows how these operations can be carried out in ViennaCL. The function interface is compatible with ublas, thus allowing quick code migration for ublas users.

For full details on level 1 functions, refer to the reference documentation located in doc/doxygen/

3.2 Matrix-Vector Operations (BLAS Level 2)

The interface for level 2 BLAS functions in ViennaCL is similar to that of ublas and shown in Tab. 3.2.

For full details on level 2 functions, refer to the reference documentation located in doc/doxygen/

3.3 Matrix-Matrix Operations (BLAS Level 3)

Full BLAS level 3 support is since ViennaCL 1.1.0, cf. Tab. 3.3. While BLAS levels 1 and 2 are mostly memory-bandwidth-limited, BLAS level 3 is mostly limited by the available computational power of the respective device. Hence, matrix-matrix products regularly show impressive performance gains on mid- to high-end GPUs when compared to a single CPU core.

Again, the ViennaCL API is identical to that of ublas and comparisons can be carried out immediately, as is shown in the tutorial located in examples/tutorial/blas3.cpp.

Verbal	Mathematics	ViennaCL
swap	$x \leftrightarrow y$	swap(x,y);
stretch	$x \leftarrow \alpha x$	x *= alpha;
assignment	$y \leftarrow x$	y = x;
multiply add	$y \leftarrow \alpha x + y$	y += alpha * x;
multiply subtract	$y \leftarrow \alpha x - y$	y -= alpha * x;
inner dot product	$\alpha \leftarrow x^{\mathrm{T}}y$	inner_prod(x,y);
L^1 norm	$\alpha \leftarrow \ x\ _1$	$alpha = norm_1(x);$
L^2 norm	$\alpha \leftarrow \ x\ _2$	$alpha = norm_2(x);$
L^{∞} norm	$\alpha \leftarrow \ x\ _{\infty}$	$alpha = norm_inf(x);$
L^{∞} norm index	$i \leftarrow \max_i x_i $	<pre>i = index_norm_inf(x);</pre>
plane rotation	$(x,y) \leftarrow (\alpha x + \beta y, -\beta x + \alpha y)$	plane_rotation(alpha,
		beta, x, y);

Table 3.1: BLAS level 1 routines mapped to ViennaCL. Note that the free functions reside in namespace viennacl::linalg

As for performance, ViennaCL yields decent performance gains at BLAS level 3 on midto high-end GPUs compared to CPU implementations using a single core only. Nevertheless, one must not expect to obtain the reported peak performance of hundreds of GFLOPs for the multiplication of arbitrary matrices. These rates can typically only obtained when tailoring the compute kernel(s) to a particular device and certain matrix dimensions, while ViennaCL provides kernels that represent a good compromise between efficiency and portability among a large number of different devices and device types.

Verbal	Mathematics	ViennaCL
matrix vector product	$y \leftarrow Ax$	y = prod(A, x);
matrix vector product	$y \leftarrow A^{\mathrm{T}}x$	y = prod(trans(A), x);
inplace mv product	$x \leftarrow Ax$	x = prod(A, x);
inplace mv product	$x \leftarrow A^{\mathrm{T}}x$	x = prod(trans(A), x);
scaled product add	$y \leftarrow \alpha A x + \beta y$	y = alpha * prod(A, x) + beta
		* У
scaled product add	$y \leftarrow \alpha A^{\mathrm{T}} x + \beta y$	y = alpha * prod(trans(A), x)
		+ beta * y
tri. matrix solve	$y \leftarrow A^{-1}x$	y = solve(A, x, tag);
tri. matrix solve	$y \leftarrow A^{\mathrm{T}^{-1}}x$	y = solve(trans(A), x, tag);
inplace solve	$x \leftarrow A^{-1}x$	inplace_solve(A, x, tag);
inplace solve	$x \leftarrow A^{\mathrm{T}^{-1}}x$	inplace_solve(trans(A), x,
		tag);
rank 1 update	$A \leftarrow \alpha x y^{\mathrm{T}} + A$	A += alpha * outer_prod(x,y);
symm. rank 1 update	$A \leftarrow \alpha x x^{\mathrm{T}} + A$	A += alpha * outer_prod(x,x);
rank 2 update	$A \leftarrow \alpha(xy^{\mathrm{T}} + yx^{\mathrm{T}}) + A$	A += alpha * outer_prod(x,y);
		A += alpha * outer_prod(y,x);

Table 3.2: BLAS level 2 routines mapped to ViennaCL. Note that the free functions reside in namespace viennacl::linalg

Verbal	Mathematics	ViennaCL
matrix-matrix product	$C \leftarrow A \times B$	C = prod(A, B);
matrix-matrix product	$C \leftarrow A \times B^{\mathrm{T}}$	<pre>C = prod(A, trans(B));</pre>
matrix-matrix product	$C \leftarrow A^{\mathrm{T}} \times B$	C = prod(trans(A), B);
matrix-matrix product	$C \leftarrow A^{\mathrm{T}} \times B^{\mathrm{T}}$	<pre>C = prod(trans(A), trans(B));</pre>
tri. matrix solve	$C \leftarrow A^{-1}B$	C = solve(A, B, tag);
tri. matrix solve	$C \leftarrow A^{\mathrm{T}^{-1}}B$	C = solve(trans(A), B, tag);
tri. matrix solve	$C \leftarrow A^{-1}B^{\mathrm{T}}$	<pre>C = solve(A, trans(B), tag);</pre>
tri. matrix solve	$C \leftarrow A^{\mathrm{T}^{-1}}B^{\mathrm{T}}$	C = solve(trans(A), trans(B),
		tag);
inplace solve	$B \leftarrow A^{-1}B$	<pre>inplace_solve(A, trans(B), tag);</pre>
inplace solve	$B \leftarrow A^{\mathrm{T}^{-1}}B$	<pre>inplace_solve(trans(A), x, tag);</pre>
inplace solve	$B \leftarrow A^{-1}B^{\mathrm{T}}$	<pre>inplace_solve(A, trans(B), tag);</pre>
inplace solve	$B \leftarrow A^{\mathrm{T}^{-1}}B^{\mathrm{T}}$	inplace_solve(trans(A), x, tag);

Table 3.3: BLAS level 3 routines mapped to ViennaCL. Note that the free functions reside in namespace viennacl::linalg

Chapter 4

Algorithms

This chapter gives an overview over the available algorithms in ViennaCL. The focus of ViennaCL is on iterative solvers, for which ViennaCL provides a generic implementation that allows the use of the same code on the CPU (either using ublas, Eigen, MTL4 or OpenCL) and on the GPU (using OpenCL).

4.1 Direct Solvers

ViennaCL 1.3.1 provides triangular solvers and LU factorization without pivoting for the solution of dense linear systems. The interface is similar to that of ublas

```
using namespace viennacl::linalg; //to keep solver calls short
viennacl::matrix<float> vcl_matrix;
viennacl::vector<float> vcl_rhs;
viennacl::vector<float> vcl_result;

/* Set up matrix and vectors here */

//solution of an upper triangular system:
vcl_result = solve(vcl_matrix, vcl_rhs, upper_tag());
//solution of a lower triangular system:
vcl_result = solve(vcl_matrix, vcl_rhs, lower_tag());
//solution of a full system right into the load vector vcl_rhs:
lu_factorize(vcl_matrix);
lu_substitute(vcl_matrix, vcl_rhs);
```

In <code>ViennaCL 1.3.x</code> there is no pivoting included in the LU factorization process, hence the computation may break down or yield results with poor accuracy. However, for certain classes of matrices (like diagonal dominant matrices) good results can be obtained without pivoting.

It is also possible to solve for multiple right hand sides:

```
using namespace viennacl::linalg; //to keep solver calls short
viennacl::matrix<float> vcl_matrix;
viennacl::matrix<float> vcl_rhs_matrix;
viennacl::matrix<float> vcl_result;

/* Set up matrices here */
```

```
//solution of an upper triangular system:
vcl_result = solve(vcl_matrix, vcl_rhs_matrix, upper_tag());

//solution of a lower triangular system:
vcl_result = solve(vcl_matrix, vcl_rhs_matrix, lower_tag());
```

4.2 Iterative Solvers

ViennaCL provides different iterative solvers for various classes of matrices, listed in Tab. 4.1. Unlike direct solvers, the convergence of iterative solvers relies on certain properties of the system matrix. Keep in mind that an iterative solver may fail to converge, especially if the matrix is ill conditioned or a wrong solver is chosen.

For full details on linear solver calls, refer to the reference documentation located in doc/doxygen/ and to the tutorials

The iterative solvers can directly be used for ublas, Eigen and MTL4 objects! Please have a look at Chap. 10 and the respective tutorials in the examples/tutorials/folder.

In ViennaCL 1.3.1, GMRES using ATI GPUs yields wrong results due to a bug in Stream SDK v2.1. Consider using newer versions of the Stream SDK.

Customized error tolerances can be set in the solver tags. The convention is that solver tags take the relative error tolerance as first argument and the maximum number of iteration steps as second argument. Furthermore, after the solver run the number of iterations and

Method	Matrix class	ViennaCL
Conjugate Gradient (CG)	symmetric posi- tive definite	y = solve(A, x, cg_tag());
Stabilized Bi-CG (BiCGStab)	non-symmetric	y = solve(A, x, bicgstab_tag());
Generalized Minimum Residual (GMRES)	general	y = solve(A, x, gmres_tag());

Table 4.1: Linear solver routines in ViennaCL for the computation of y in the expression Ay = x with given A, x.

the estimated error can be obtained from the solver tags as follows:

```
// conjugate gradient solver with tolerance 1e10
// and at most 100 iterations:
viennacl::linalg::cg_tag custom_cg(1e-10, 100);
vcl_result = viennacl::linalg::solve(vcl_matrix, vcl_rhs, custom_cg);
//print number of iterations taken and estimated error:
std::cout << "No. of iters: " << custom_cg.iters() << std::endl;
std::cout << "Est. error: " << custom_cg.error() << std::endl;</pre>
```

The BiCGStab solver tag can be customized in exactly the same way. The GMRES solver tag takes as third argument the dimension of the Krylov space. Thus, a tag for GMRES(30) with tolerance 1E-10 and at most 100 total iterations (hence, up to three restarts) can be set up by

```
viennacl::linalg::gmres_tag custom_gmres(1e-10, 100, 30);
```

4.3 Preconditioners

ViennaCL ships with a generic implementation of several preconditioners. The preconditioner setup is expect for simple diagonal preconditioners always carried out on the CPU host due to the need for dynamically allocating memory. Thus, one may not obtain an overall performance benefit if too much time is spent on the preconditioner setup.

The preconditioner also works for ublas types!

In the following it is assumed that the sparse linear system of equations is given as follows:

```
using viennacl::compressed_matrix;

typedef compressed_matrix<float> SparseMatrix;
SparseMatrix vcl_matrix;
viennacl::vector<float> vcl_rhs;
viennacl::vector<float> vcl_result;

/* Set up matrix and vectors here */
```

4.3.1 Incomplete LU Factorization with Threshold (ILUT)

The incomplete LU factorization preconditioner aims at computing sparse matrices lower and upper triangular matrices L and U such that the sparse system matrix is approximately given by $A \approx LU$. In order to control the sparsity pattern of L and U, a threshold strategy is used (ILUT) [1]. Due to the serial nature of the preconditioner, the setup as well as each application of ILUT to the residual is computed on the CPU.

Two parameters can be passed to the constructor of ilut_tag: The first specifies the maximum number of entries per row in L and U, while the second parameter specifies the drop tolerance.

4.3.2 Incomplete LU Factorization with Static Pattern (ILU0)

Similar to ILUT, ILU0 computes an approximate LU factorization with sparse factors L and U. While ILUT determines the location of nonzero entries on the fly, ILU0 uses the sparsity pattern of A for the sparsity pattern of L and U [1]. Due to the serial nature of the preconditioner, the setup as well as each application of ILU0 to the residual is computed on the CPU.

Two parameters can be passed to the constructor of $iluo_tag$: The first parameter specifies the lower row and column index for which ILU0 should be computed, while the second parameter specifies the upper bound on the row and column indices considered. For example, the parameter set (2,5) is supplied, ILU0 is computed for the diagonal block A(2:4,2:4), where $2:4=\{2,3,4\}$. By default, ILU0 is computed for the full system matrix.

4.3.3 Block-ILU

To overcome the serial nature of ILUT and ILU0 applied to the full system matrix, a parallel variant is to apply ILU to diagonal blocks of the system matrix. This is accomplished by the block_ilu preconditioner, which takes the system matrix type as first template argument and the respective ILU-tag type as second template argument (either ilut_tag or ilu0_tag).

A third argument can be passed to the constructor of block_ilu_precond: Either the number of blocks to be used (defaults to 4), or an index vector with fine-grained control over the blocks. Refer to the Doxygen pages in doc/doxygen for details.

4.3.4 Jacobi Preconditioner

A Jacobi preconditioner is a simple diagonal preconditioner given by the reciprocals of the diagonal entries of the system matrix *A*. Use the preconditioner as follows:

4.3.5 Row Scaling Preconditioner

A row scaling preconditioner is a simple diagonal preconditioner given by the reciprocals of the norms of the rows of the system matrix *A*. Use the preconditioner as follows:

The tag viennacl::linalg::row_scaling_tag() can be supplied with a parameter denoting the norm to be used. A value of 1 specifies the l^1 -norm, while a value of 2 selects the l^2 -norm (default).

Description	ViennaCL option constant
Classical Ruge-Stüben (RS)	VIENNACL_AMG_COARSE_RS
One-Pass	VIENNACL_AMG_COARSE_ONEPASS
RS0	VIENNACL_AMG_COARSE_RS0
RS3	VIENNACL_AMG_COARSE_RS3
Aggregation	VIENNACL_AMG_COARSE_AG
Smoothed aggregation	VIENNACL_AMG_COARSE_SA

Table 4.2: AMG coarsening methods available in ViennaCL. Per default, classical RS coarsening is used.

Description	ViennaCL option constant	
Direct	VIENNACL_AMG_INTERPOL_DIRECT	
Classic	VIENNACL_AMG_INTERPOL_ONEPASS	
RS0 coarsening	VIENNACL_AMG_INTERPOL_RS0	
RS3 coarsening	VIENNACL_AMG_INTERPOL_RS3	

Table 4.3: AMG interpolation methods available in ViennaCL. Per default, direct interpolation is used.

4.3.6 Algebraic Multigrid

Algebraic Multigrid preconditioners are experimental in ViennaCL 1.3.1. Interface changes as well as considerable performance improvements may be included in future releases!

Algebraic Multigrid preconditioners depend on ublas.

Algebraic multigrid mimics the behavior of geometric multigrid on the algebraic level and is thus suited for black-box purposes, where only the system matrix and the right hand side vector are available [15]. Many different flavors of the individual multigrid ingredients exists [16], of which the most common ones are implemented in ViennaCL.

The two main ingredients of algebraic multigrid are a coarsening algorithm and an interpolation algorithm. The available coarsening methods are listed in Tab. 4.2. The available interpolation methods are given in Tab. 4.3. In addition, the following parameters can be controlled in the amg_tag and can be passed to the constructor:

- Strength of dependence threshold (default: 0.25)
- Interpolation weight (default: 1)
- Jacobi smoother weight (default: 1)
- Number of pre-smoothing steps (default: 1)
- Number of post-smoothing steps (default: 1)
- Number of coarse levels

Note that the efficiency of the various AMG flavors are typically highly problemspecific. Therefore, failure of one method for a particular problem does NOT imply that other coarsening or interpolation strategies will fail as well.

4.3.7 Sparse Approximate Inverses

Sparse Approximate Inverse preconditioners are experimental in ViennaCL 1.3.1. Interface changes as well as considerable performance improvements may be included in future releases!

Sparse Approximate Inverse preconditioners depend on ublas.

An alternative construction of a preconditioner for a sparse system matrix A is to compute a matrix M with a prescribed sparsity pattern such that

$$||AM - I||_F \to \min , \qquad (4.1)$$

where $\|\cdot\|_F$ denotes the Frobenius norm. This is the basic idea of sparse approximate inverse (SPAI) preconditioner. It becomes increasingly attractive because of their inherent high degree of parallelism, since the minimization problem can be solved independently for each column of M. ViennaCL provides two preconditioners of this family: The first is the classical SPAI algorithm as described by Grote and Huckle [17], the second is the factored SPAI (FSPAI) for symmetric matrices as proposed by Huckle [18].

SPAI can be employed for a CPU matrix M of type MatrixType as follows:

The first parameter denotes the residual norm threshold for the full matrix, the second parameter the maximum number of pattern updates, and the third parameter is the threshold for the residual of each minimization problem.

For GPU-matrices, only parts of the setup phase are computed on the CPU, because compute-intensive tasks can be carried out on the GPU:

```
// setup SPAI preconditioner, GPU-assisted
viennacl::linalg::spai_precond<GPUMatrixType>
    spai_gpu(vcl_matrix, viennacl::linalg::spai_tag(1e-3, 3, 5e-2));

//solve (e.g. using conjugate gradient solver)
vcl_result = viennacl::linalg::solve(vcl_matrix,
```

```
vcl_rhs,
viennacl::linalg::bicgstab_tag(),
spai_gpu);
```

The GPUMatrixType is typically a viennacl::compressed matrix type.

For symmetric matrices, FSPAI can be used with the conjugate gradient solver:

Our experience is that FSPAI is typically more efficient than SPAI when applied to the same matrix, both in computational effort and in terms of convergence acceleration of the iterative solvers.

At present, there is no GPU-accelerated FSPAI included in ViennaCL.

Note that FSPAI depends on the ordering of the unknowns, thus bandwidth reduction algorithms may be employed first, cf. Sec. 4.5.

4.4 Fast Fourier Transform

The fast Fourier transform is experimental in ViennaCL 1.3.1. Interface changes as well as considerable performance improvements may be included in future releases!

Since there is no standardized complex type in OpenCL at the time of the release of ViennaCL 1.3.1, vectors need to be set up with real- and imaginary part before computing a fast Fourier tranform (FFT). In order to store complex numbers z_0 , z_1 , etc. in a viennacl:: vector, say v, the real and imaginary parts are mapped to even and odd entries of v respectively: $v[0] = Real(z_0)$, $v[1] = Imag(z_0)$, $v[2] = Real(z_1)$, $v[3] = Imag(z_1)$, etc.

The FFT of ${\rm v}$ can then be computed either by writing to a second vector output or by directly writing the result to ${\rm v}$

```
viennacl::fft(v, output);
viennacl::inplace_fft(v);
```

Conversely, the inverse FFT is computed as

```
viennacl::ifft(v, output);
viennacl::inplace_ifft(v);
```


In ViennaCL 1.3.1 the FFT with complexity $N \log N$ is computed for vectors with a size of a power of two only. For other vector sizes, a standard discrete Fourier transform with complexity N^2 is employed. This is subject to change in future versions.

4.5 Bandwidth Reduction

Bandwidth reduction algorithms are experimental in ViennaCL 1.3.1. Interface changes as well as considerable performance improvements may be included in future releases!

The bandwidth of a sparse matrix is defined as the maximum difference of the indices of nonzero entries in a row, taken over all rows. A low bandwidth typically allows for the use of efficient banded matrix solvers instead of iterative solvers. Moreover, better cache utilization as well as lower fill-in in LU-factorization based algorithms can be expected.

For a given sparse matrix with large bandwidth, ViennaCL provides routines for renumbering the unknowns such that the reordered system matrix shows much smaller bandwidth. Typical applications stem from the discretization of partial differential equations by means of the finite element or the finite difference method. The algorithms employed are as follows:

- Classical Cuthill-McKee algorithm [19]
- Modified Cuthill-McKee algorithm [19]
- Gibbs-Poole-Stockmeyer algorithm, cf. [20]

The modified Cuthill-McKee algorithm also takes nodes with small, but not necessarily minimal degree as root node into account and may lead to better results than the classical Cuthill-McKee algorithm. A parameter $a \in [0,1]$ controls the number of nodes considered: All nodes with degree d fulfilling

$$d_{\min} \le d \le d_{\min} + a(d_{\max} - d_{\min})$$

are considered, where d_{\min} and d_{\max} are the miminum and maximum nodal degrees in the graph. A second parameter gmax specifies the number of additional root nodes considered.

The algorithms are called for a matrix of a type compatible with std::vector< std::map <int, double> > by

and return the permutation array. In ViennaCL 1.3.1, the user then needs to manually reorder the sparse matrix based on the permutation array. Example code can be found in examples/tutorial/bandwidth-reduction.cpp.

4.6 Eigenvalue Computations

Two algorithms for the computations of the eigenvalues of a matrix A are implemented in ViennaCL:

- The Power Iteration [21]
- The Lanczos Algorithm [22]

Depending on the parameter tag either one of them is called. Both algorithms can be used for either ublas or ViennaCL compressed matrices.

In order to get the eigenvalue with the greatest absolut value the power iteration should be called

The lanczos algorithm returns a vector of the largest eigenvalues with the same type as the entries of the matrix.

The algorithms are called for a matrix object A by

```
std::vector<double> largest_eigenvalues = viennacl::linalg::eig(A, ltag);
double largest_eigenvalue = viennacl::linalg::eig(A, ptag);
```

4.6.1 Power Iteration

The Power iteration aims at computing the eigenvalues of a matrix by calculating the product of the matrix and a vector for several times, where the resulting vector is used for the next product of the matrix and so on. The computation stops as soon as the norm of the vector converges.

The final vector is the eigenvector to the eigenvalue with the greatest absolut value.

To call this algorithm, piter_tag must be used. This tag has only one parameter:

terminationfactor defines the accuracy of the computation, i.e. if the new norm of the eigenvector changes less than this parameter the computation stops and returns the corresponding eigenvalue (default: 1e - 10).

The call of the constructor may look like the following:

```
viennacl::linalg::piter_tag ptag(1e-8);
```

Example code can be found in examples/tutorial/power-iter.cpp.

4.6.2 The Lanczos Algorithm

In order to compute the eigenvalues of a sparse high-dimensional matrix the lanczos algorithm can be used to find these. This algorithm reformulates the given high-dimensional matrix in a way such that the matrix can be rewritten in a tridiagonal matrix at much lower dimension. The eigenvalues of this tridiagonal matrix are equal to the largest eigenvalues of the original matrix.

The eigenvalues of the tridiagonal matrix are calculated by using the bisection method [21].

To call this lanczos algorithm, lanczos_tag must be used. This tag has several parameters that can be passed to the constructor:

- The exponent of epsilon for the tolerance of the reorthogonalization, defined by the parameter factor (default: 0.75)
- The method of the lanczos algorithm: 0 uses partial reorthogonalization, 1 full reothogonalization and 2 does not use reorthogonalization (default: 0)
- The number of eigenvalues that are returned is specified by num_eigenvalues (default: 10)
- The size of the krylov space used for the computations can be set by the parameter krylov_size (default: 100). The maximum number of iterations can be equal or less this parameter

The call of the constructor may look like the following:

```
viennacl::linalg::lanczos_tag ltag(0.85, 15, 0, 200);
```

Example code can be found in examples/tutorial/lanczos.cpp.

4.7 QR Factorization

A matrix $A \in \mathbb{R}^{n \times m}$ can be factored into A = QR, where $Q \in \mathbb{R}^{n \times n}$ is an orthogonal matrix and $R \in \mathbb{R}^{n \times m}$ is upper triangular. This so-called QR-factorization is important for eigenvalue computations as well as for the solution of least-squares problems [21]. ViennaCL provides a generic implementation of the QR-factorization using Householder reflections in file viennacl/linalg/qr.hpp. An example application can be found in examples/tutorial/qr.hpp.

The Householder reflectors v_i defining the Householder reflection $I - \beta_i v_i v_i^{\mathrm{T}}$ are stored in the columns below the diagonal of the input matrix A [21]. The normalization coefficients β_i are returned by the worker function <code>inplace_qr</code>. The upper triangular matrix R is directly written to the upper triangular part of A.

```
std::vector<ScalarType> betas = viennacl::linalg::inplace_qr(A, 12);
```

If A is a dense matrix from ublas, the calculation is carried out on the CPU using a single thread. If A is a <code>viennacl::matrix</code>, a hybrid implementation is used: The panel factorization is carried out using ublas, while expensive BLAS level 3 operations are computed on the OpenCL device using multiple threads.

Typically, the orthogonal matrix Q is kept in inplicit form because of computational efficiency However, if Q and R have to be computed explicitly, the function recover can be used:

```
viennacl::linalg::recoverQ(A, betas, Q, R);
```

Here, A is the inplace QR-factored matrix, betas are the coefficients of the Householder reflectors as returned by inplace_qr, while Q and R are the destination matrices.

4.8 Singular Value Decomposition

Singular Value Decomposition is experimental in ViennaCL 1.3.1. Interface changes as well as considerable performance improvements may be included in future releases!

Singular Value Decomposition in ViennaCL 1.3.1 is provided for row-major dense matrices only.

Any matrix *A* can be factored as

$$A = U\Sigma V^{\mathrm{T}} \tag{4.2}$$

with orthogonal matrices U and V and a diagonal matrix Σ consisting of non-negative diagonal entries only.

The implementation in viennacl/linalg/svd.hpp provides the singular value decomposition as follows:

```
viennacl::matrix<ScalarType> A(size1, size2);
viennacl::matrix<ScalarType> U(size1, size1);
viennacl::matrix<ScalarType> V(size2, size2);
viennacl::linalg::svd(A, U, V);
```

The input matrix A is overwritten with Σ .

4.9 Nonnegative Matrix Factorization

Nonnegative Matrix Factorization is experimental in ViennaCL 1.3.1. Interface changes as well as considerable performance improvements may be included in future releases!

In various fields such as text mining, a matrix V needs to be factored into factors W and H such that the function

$$f(W, H) = ||V - WH||_{\mathrm{F}}^2$$

is minimized. The algorithm proposed by Lee and Seoung [23] is available in ViennaCL in the header file viennacl/linalg/nmf.hpp as

```
viennacl::matrix<ScalarType> V(size1, size2);
viennacl::matrix<ScalarType> W(size1, k);
viennacl::matrix<ScalarType> H(k, size2);

viennacl::linalg::nmf_config conf;
viennacl::linalg::nmf(v_ref, w_nmf, h_nmf, conf);
```

For an overview of the parameters (tolerances) of the configuration object conf, please refer to the Doxygen documentation in doc/doxygen/.

Configuring Contexts and Devices

Support for multiple devices was officially added in OpenCL 1.1. Among other things, this allows e.g. to use all CPUs in a multi-socket CPU mainboard as a single OpenCL compute device. Nevertheless, the efficient use of multiple OpenCL devices is far from trivial, because algorithms have to be designed such that they take distributed memory and synchronization issues into account.

Support for multiple devices and contexts was introduced in ViennaCL with version 1.1.0. In the following we give a description of the provided functionality.

5.1 Context Setup

Unless specified otherwise (see Chap. 7), ViennaCL silently creates its own context and adds all available default devices with a single queue per device to it. All operations are then carried out on this context, which can be obtained with the call

```
viennacl::ocl::current_context();
```

This default context is identified by the ID 0 (of type long). ViennaCL uses the first platform returned by the OpenCL backend for the context. If a different platform should be used on a machine with multiple platforms available, this can be achieved with

```
viennacl::ocl::setup_context_platform_index(id, platform_index);
```

where the context ID is id and platform_index refers to the array index of the platform as returned by clGetPlatformIDs().

By default, only the first device in the context is used for all operations. This device can be obtained via

```
viennacl::ocl::current_context().current_device();
viennacl::ocl::current_device(); //equivalent to above
```

A user may wish to use multiple contexts, where each context consists of a subset of the available devices. To setup a context with ID id with a particular device type only, the user has to specify this prior to any other <code>ViennaCL</code> related statements:

```
//use only GPUs:
viennacl::ocl::set_context_device_type(id, viennacl::ocl::gpu_tag());
//use only CPUs:
```

```
viennacl::ocl::set_context_device_type(id, viennacl::ocl::cpu_tag());
//use only the default device type
viennacl::ocl::set_context_device_type(id, viennacl::ocl::default_tag());
//use only accelerators:
viennacl::ocl::set_context_device_type(id, viennacl::ocl::accelerator_tag()
);
```

Instead of using the tag classes, the respective <code>OpenCL</code> constants <code>CL_DEVICE_TYPE_GPU</code> etc. can be supplied as second argument.

Another possibility is to query all devices from the current platform:

```
std::vector< viennacl::ocl::device > devices =
   viennacl::ocl::platform().devices();
```

and create a custom subset of devices, which is then passed to the context setup routine:

```
//take the first and the third available device from 'devices'
std::vector< viennacl::ocl::device > my_devices;
my_devices.push_back(devices[0]);
my_devices.push_back(devices[2]);

//Initialize the context with ID 'id' with these devices:
viennacl::ocl::setup_context(id, my_devices);
```

Similarly, contexts with other IDs can be set up.

For details on how to initialize ViennaCL with already existing contexts, see Chapter 7.

The library user is reminded that memory objects within a context are allocated for all devices within a context. Thus, setting up contexts with one device each is optimal in terms of memory usage, because each memory object is then bound to a single device only. However, memory transfer between contexts (and thus devices) has to be done manually by the library user then. Moreover, the user has to keep track in which context the individual <code>ViennaCL</code> objects have been created, because all operands are assumed to be in the currently active context.

5.2 Switching Contexts and Devices

ViennaCL always uses the currently active context with the currently active device to enqueue compute kernels. The default context is identified by ID '0'. The context with ID id can be set as active context with the line.

```
viennacl::ocl::switch_context(id);
```

Subsequent kernels are then enqueued on the active device for that particular context.

Similar to setting contexts active, the active device can be set for each context. For example, setting the second device in the context to be the active device, the lines

```
viennacl::ocl::current_context().switch_device(1);
```

are required. In some circumstances one may want to pass the device object directly, e.g. to set the second device of the platform active:

```
std::vector<viennacl::ocl::device> const & devices =
    viennacl::ocl::platform().devices();
viennacl::ocl::current_context().switch_device(devices[1]);
```

If the supplied device is not part of the context, an error message is printed and the active device remains unchanged.

5.3 Setting OpenCL Compiler Flags

Each context provides a member function .build_options(), which can be used to pass OpenCL compiler flags prior to compilation. Note that flags need to be passed to the context prior to the compilation of the respective kernels, i.e. prior the first instantiation of the respective matrix or vector types.

To pass the -cl-mad-enable flag to the current context, the line

```
viennacl::ocl::current_context().build_options("-cl-mad-enable");
```

is sufficient. Confer to the OpenCL standard for a full list of flags.

Custom Compute Kernels

For custom algorithms the built-in functionality of <code>ViennaCL</code> may not be sufficient or not fast enough. In such cases it can be desirable to write a custom <code>OpenCL</code> compute kernel, which is explained in this chapter. The following steps are necessary and explained one after another:

- Write the OpenCL source code
- Compile the compute kernel
- Launching the kernel

A tutorial on this topic can be found at examples/tutorial/custom-kernels.cpp.

6.1 Setting up the Source Code

The <code>OpenCL</code> source code has to be provided as a string. One can either write the source code directly into a string within C++ files, or one can read the <code>OpenCL</code> source from a file. For demonstration purposes, we write the source directly as a string constant:

The kernel takes three vector arguments <code>vec1</code>, <code>vec2</code> and <code>result</code> and the vector length variable <code>size</code> abd computes the entry-wise product of the vectors <code>vec1</code> and <code>vec2</code> and writes the result to the vector <code>result</code>. For more detailed explanation of the <code>OpenCL</code> source code, please refer to the specification available at the Khronos group webpage [5].

6.2 Compilation of the Source Code

The source code in the string constant my_compute_kernel has to be compiled to an OpenCL program. An OpenCL program is a compilation unit and may contain several different compute kernels, so one could also include another kernel function inplace_elementwise_prod which writes the result directly to one of the two operands vec1 or vec2 in the same program.

The next step is to register the kernel elementwise_prod included in the compiled program:

```
my_prog.add_kernel("elementwise_prod");
```

Similarly, one proceeds with other kernels in the compiled program. The next step is to extract the kernel object my_kernel from the compiled program:

```
viennacl::ocl::kernel & my_kernel = my_prog.get_kernel("elementwise_prod");
```

Now, the kernel is set up to use the function elementwise_prod compiled into the program my_prog.

Note that C++ references to kernels and programs may become invalid as other kernels or programs are added. Therefore, first allocate the required ViennaCL objects and compile/add all custom kernels, before you start taking references to custom programs or kernels.

Instead of extracting references to programs and kernels directly at program compilation, one can obtain them at other places within the application source code by

```
viennacl::ocl::program & prog =
   viennacl::ocl::current_context().get_program("my_compute_program");
viennacl::ocl::kernel & my_kernel = my_prog.get_kernel("elementwise_prod");
```

This simplifies application development considerably, since no program and kernel objects need to be passed around.

6.3 Launching the Kernel

Before launching the kernel, one may adjust the global and local work sizes (readers not familiar with that are encouraged to read the OpenCL standard [5]). The following code specifies a one-dimensional execution model with 16 local workers and 128 global workers:

```
my_kernel.local_work_size(0, 16);
my_kernel.global_work_size(0, 128);
```

In order to use a two-dimensional execution, additionally parameters for the second dimension are set by

```
my_kernel.local_work_size(1, 16);
my_kernel.global_work_size(1, 128);
```

However, for the simple kernel in this example it is not necessary to specify any work sizes at all. The default work sizes (which can be found in <code>viennacl/ocl/kernel.hpp</code>) suffice for most cases.

To launch the kernel, the kernel arguments are set in the same way as for ordinary functions. We assume that three ViennaCL vectors vec1, vec2 and result have already been set up:

```
viennacl::ocl::enqueue(my_kernel(vec1, vec2, result, vec1.size()));
```

Per default, the kernel is enqueued in the first queue of the currently active device. A custom queue can be specified as optional second argument, cf. the reference documentation located in doc/doxygen/.

Using ViennaCL in User Provided OpenCL Contexts

Many projects need similar basic linear algebra operations, but essentially operate in their own <code>OpenCL</code> context. To provide the functionality and convenience of <code>ViennaCL</code> to such existing projects, existing contexts can be passed to <code>ViennaCL</code> and memory objects can be wrapped into the basic linear algebra types <code>vector</code>, <code>matrix</code> and <code>compressed_matrix</code>. This chapter is devoted to the description of the necessary steps to use <code>ViennaCL</code> on contexts provided by the library user.

An example of providing a custom context to ViennaCL can be found in examples/tutorial/custom-contexts.cpp

7.1 Passing Contexts to ViennaCL

ViennaCL 1.3.1 is able to handle an arbitrary number of contexts, which are identified by a key value of type long. By default, ViennaCL operates on the context identified by 0, unless the user switches the context, cf. Chapter 5.

According to the OpenCL standard, a context contains devices and queues for each device. Thus, it is assumed in the following that the user has successfully created a context with one or more devices and one or more queues per device.

In the case that the context contains only one device my_device and one queue my_queue, the context can be passed to ViennaCL with the code

If a context ID other than 0, say, id is used, the user-defined context has to be selected using

```
viennacl::ocl::switch_context(id);
```

It is also possible to provide a context with several devices and multiple queues per device. To do so, the device IDs have to be stored in a STL vector and the queues in a STL map:

```
cl_context my_context = ...;
cl_device_id my_device1 = ...; //a device in my_context
cl_device_id my_device2 = ...; //another device in my_context
cl_command_queue my_queue1 = ...; //a queue for my_device1
cl_command_queue my_queue2 = ...; //another queue for my_device1
cl_command_queue my_queue3 = ...; //a queue for my_device2
//setup existing devices for ViennaCL:
std::vector<cl_device_id> my_devices;
my_devices.push_back(my_device1);
my_devices.push_back(my_device2);
//setup existing queues for ViennaCL:
std::map<cl_device_id,</pre>
         std::vector<cl_command_queue> > my_queues;
my_queues[my_device1].push_back(my_queue1);
my_queues[my_device1].push_back(my_queue2);
my_queues[my_device2].push_back(my_queue3);
//supply existing context with multiple devices
//and queues to ViennaCL using id '0':
viennacl::ocl::setup_context(0, my_context, my_devices, my_queues);
```

It is not necessary to pass all devices and queues created within a particular context to <code>ViennaCL</code>, only those which <code>ViennaCL</code> should use have to be passed. <code>ViennaCL</code> will by default use the first queue on each device. The user has to care for appropriate synchronization between different queues.

7.2 Wrapping Existing Memory with ViennaCL Types

Now as the user provided context is supplied to ViennaCL, user-created memory objects have to be wrapped into ViennaCL data-types in order to use the full functionality. Typically, one of the types scalar, vector, matrix and compressed_matrix are used:

```
cl_mem my_memory1 = ...;
cl_mem my_memory2 = ...;
cl_mem my_memory3 = ...;
cl_mem my_memory4 = ...;
cl_mem my_memory5 = ...;

//wrap my_memory1 into a vector of size 10
viennacl::vector<float> my_vec(my_memory1, 10);

//wrap my_memory2 into a row-major matrix of size 10x10
viennacl::matrix<float> my_matrix(my_memory2, 10, 10);
```

The following has to be emphasized:

- Resize operations on ViennaCL data types typically results in the object owning a new piece of memory.
- copy() operations from CPU RAM usually allocate new memory, so wrapped memory is "forgotten"
- On construction of the ViennaCL object, clRetainMem() is called once for the provided memory handle. Similarly, clReleaseMem() is called as soon as the memory is not used any longer.

The user has to ensure that the provided memory is larger or equal to the size of the wrapped object.

Be aware the wrapping the same memory object into several different ViennaCL objects can have unwanted side-effects. In particular, wrapping the same memory in two ViennaCL vectors implies that if the entries of one of the vectors is modified, this is also the case for the second.

Automated User-Kernel Generation

While ViennaCL provides a convenient means of including custom compute kernels, cf. Chap. 6, it can be rather tedious to come up with a good compute kernel, or to come up with many similar kernels differing in small details only. For the case of BLAS level 1 and level 2 operations, ViennaCL now provides an automated kernel generator, which takes a high-level specification of the operations and create one or more suitable OpenCL kernels. This allows for high-performance implementations of algorithms which may otherwise lead to spurious temporary objects.

As our second example, we consider the operation

$$\mathbf{x} = \mathbf{A} \times [(\mathbf{y} \cdot (\mathbf{y} + \mathbf{z}))\mathbf{y} + \mathbf{z}],$$

where x, y and z denote vectors, A is a dense matrix, and the dot denotes the vector dot product. With the proposed generator it is sufficient to write the following C++ code:

```
// Instantiation of the symbolic variables
symbolic_vector<0, NumericT> sX;
symbolic_matrix<1, NumericT> sA;
symbolic_vector<2, NumericT> sY;
symbolic_vector<3, NumericT> sZ;

//Creation of the custom operation
custom_operation my_op(
sX = prod(sA, inner_prod(sY, sY+sZ) * sY + sZ)
);
```

where NumericT is either float or double. The custom operation object my_op can then be enqueued like any other kernel:

```
//Execution of the custom operation
viennacl::ocl::enqueue(my_op(x,A,y,z));
```

Here, x, y, z are of type viennacl::vector<NumericT> and A is of type viennacl::matrix <NumericT>.

Sample code can be found in tests/src/generator_*.cpp

Kernel Parameter Tuning

The choice of the global and local work sizes for OpenCL kernels typically has a considerable impact on the obtained device performance. The default setting in ViennaCL is — with some exceptions — to use the same global and local work sizes for each compute kernel. To obtain highest performance, optimal work sizes have to be determined for each kernel in dependence of the underlying device.

9.1 Start Tuning Runs

ViennaCL 1.3.1 ships with a automated tuning environment, which tries to determine the best kernel parameters for the available device. At present, only kernel parameters for the first device are optimized. The tuning programs are located in

- examples/parameters/vector.cpp: Tuning for vector kernels
- examples/parameters/matrix.cpp: Tuning for matrix kernels
- examples/parameters/sparse.cpp: Tuning for sparse matrix kernels

and are built together with other examples when using CMake. The executables are

- vectorparams,
- matrixparams,
- sparseparams

respectively and are executed without additional parameters. During execution, these programs create three XML files <code>vector_parameters.xml</code>, <code>matrix_parameters.xml</code> and <code>sparse_parameters.xml</code>, which hold the best parameter set.

At present, only ViennaCL types with standard alignment are benchmarked. Higher performance can be obtained when allowing further memory alignments and comparing different implementations. This, however, is not yet available, but may be part of future versions.

9.2 Load Best Parameters at Startup

In order to load the best parameters at each startup, the parameter reader located at viennacl/io/kernel_parameters.hpp can be used. The individual kernels for the respective ViennaCL types can be loaded with the lines

where the filename is as usual relative to current working directory. A simple example doing just that can be found in examples/parameters/parameter_reader.cpp. In principle, kernel parameters can all be located in a single XML file, from which the call to read_kernel_parameters() will then extract the relevant ones for the respective ViennaCL type and the available device.

Please note that in order to read the parameters, the project has to be linked with pugixml [24], which is shipped with ViennaCL in external/

Interfaces to Other Libraries

ViennaCL aims at compatibility with as many other libraries as possible. This is on the one hand achieved by using generic implementations of the individual algorithms, and on the other hand by providing the necessary wrappers.

The interfaces to third-party libraries provided with ViennaCL are explained in the following subsections. Please feel free to suggest additional libraries for which an interface should be shipped with ViennaCL.

Since it is unlikely that all third-party libraries for which <code>ViennaCL</code> provides interfaces are installed on the target machine, the wrappers are disabled by default. To selectively enable the wrappers, the appropriate preprocessor constants <code>VIENNACL_HAVE_XXXX</code> have to be defined <code>prior</code> to any <code>#include</code> statements for <code>ViennaCL</code> headers. This can for example be assured by passing the preprocessor constant directly when launching the compiler. With <code>GCC</code> this is for instance achieved by the <code>-D</code> switch.

10.1 ublas

Since all types in ViennaCL have to same interface as their counterparts in ublas, most code written for ViennaCL objects remains valid when using ublas objects.

```
//Option 1: Using ViennaCL:
using namespace viennacl;
using namespace viennacl::linalg;

//Option 2: Using ublas:
//using namespace boost::numeric::ublas;

matrix<float> dense_matrix(5,5);
vector<float> dense_vector(5,5);
compressed_matrix<float> sparse_matrix(1000, 1000);

//fill with data:
dense_matrix(0,0) = 2.0;
....

//run solvers
vector<float> result1 = solve(dense_matrix, dense_vector, upper_tag());
vector<float> result2 = viennacl::linalg::solve(sparse_matrix, dense_vector, cg_tag());
```

The above code is valid for either the <code>ViennaCL</code> namespace declarations, or the <code>ublas</code> namespace. Note that the iterative solvers are not part of <code>ublas</code> and therefore the explicit namespace specification is required. More examples for the exchangability of <code>ublas</code> and <code>ViennaCL</code> can be found in the tutorials in the <code>examples/tutorials/folder</code>.

When using the iterative solvers, the preprocessor constant VIENNACL_HAVE_UBLAS must be defined prior to any other ViennaCL include statements. This is essential for enabling the respective wrappers.

Refer in particular to iterative-ublas.cpp for a complete example on iterative solvers using ublas types.

10.2 Eigen

To copy data from Eigen [3] objects to ViennaCL, the copy()-functions are used just as for ublas and STL types:

```
//from Eigen to ViennaCL
viennacl::copy(eigen_vector, vcl_vector);
viennacl::copy(eigen_densematrix, vcl_densematrix);
viennacl::copy(eigen_sparsematrix, vcl_sparsematrix);
```

In addition, the STL-compliant iterator-version of viennacl::copy() taking three arguments can be used for copying vector data. Here, all types prefixed with eigen are Eigen types, the prefix vcl indicates ViennaCL objects. Similarly, the transfer from ViennaCL back to Eigen is accomplished by

```
//from ViennaCL to Eigen
viennacl::copy(vcl_vector, eigen_vector);
viennacl::copy(vcl_densematrix, eigen_densematrix);
viennacl::copy(vcl_sparsematrix, eigen_sparsematrix);
```

The iterative solvers in ViennaCL can also be used directly with Eigen objects:

```
using namespace viennacl::linalg; //for brevity of the following lines
eigen_result = solve(eigen_matrix, eigen_rhs, cg_tag());
eigen_result = solve(eigen_matrix, eigen_rhs, bicgstab_tag());
eigen_result = solve(eigen_matrix, eigen_rhs, gmres_tag());
```

When using the iterative solvers with Eigen, the preprocessor constant VIENNACL_HAVE_EIGEN must be defined prior to any other ViennaCL include statements. This is essential for enabling the respective wrappers.

Refer to iterative-eigen.cpp and eigen-with-viennacl.cpp for complete examples.

10.3 MTL 4

The following lines demonstate how ViennaCL types are filled with data from MTL 4 [4] objects:

```
//from Eigen to ViennaCL
viennacl::copy(mtl4_vector, vcl_vector);
viennacl::copy(mtl4_densematrix, vcl_densematrix);
viennacl::copy(mtl4_sparsematrix, vcl_sparsematrix);
```

In addition, the STL-compliant iterator-version of viennacl::copy() taking three arguments can be used for copying vector data. Here, all types prefixed with mtl4 are MTL 4 types, the prefix vcl indicates ViennaCL objects. Similarly, the transfer from ViennaCL back to MTL 4 is accomplished by

```
//from ViennaCL to MTL4
viennacl::copy(vcl_vector, mtl4_vector);
viennacl::copy(vcl_densematrix, mtl4_densematrix);
viennacl::copy(vcl_sparsematrix, mtl4_sparsematrix);
```

Even though MTL 4 provides its own set of iterative solvers, the iterative solvers in ViennaCL can also be used:

```
using namespace viennacl::linalg; //for brevity of the following lines
mtl4_result = solve(mtl4_matrix, mtl4_rhs, cg_tag());
mtl4_result = solve(mtl4_matrix, mtl4_rhs, bicgstab_tag());
mtl4_result = solve(mtl4_matrix, mtl4_rhs, gmres_tag());
```

Our internal tests have shown that the execution time of MTL 4 solvers is equal to ViennaCL solvers when using MTL 4 types.

When using the iterative solvers with MTL 4, the preprocessor constant VIENNACL_HAVE_MTL4 must be defined prior to any other ViennaCL include statements. This is essential for enabling the respective wrappers.

Refer to iterative-mtl4.cpp and mtl4-with-viennacl.cpp for complete examples.

Benchmark Results

We have compared the performance gain of <code>ViennaCL</code> with standard CPU implementations using a single core. The code used for the benchmarks can be found in the folder <code>examples/benchmark/</code> within the source-release of <code>ViennaCL</code>. Results are grouped by computational complexity and can be found in the subsequent sections.

CPU	AMD Phenom II X4-965
RAM	8 GB
OS	Funtoo Linux 64 bit
Kernel for AMD cards:	2.6.33
AMD driver version:	10.4
Kernel for Nvidia cards:	2.6.34
Nvidia driver version:	195.36.24
ViennaCL version	1.0.0

Compute kernels are not fully optimized yet, results are likely to improve considerably in future releases of ViennaCL

Due to only partial support of double precision by GPUs from ATI at the time of these benchmarks, double precision arithmetics is not included, cf. Tab. 1.

When benchmarking ViennaCL, first a dummy call to the functionality of interest should be issued prior to taking timings. Otherwise, benchmark results include the just-in-time compilation, which is a constant independent of the data size.

11.1 Vector Operations

Benchmarks for the addition of two vectors and the computation of inner products are shown in Tab. 11.1.

Compute Device	add, float	add, double	prod, float	prod, double
CPU	0.174	0.347	0.408	0.430
NVIDIA GTX 260	0.087	0.089	0.044	0.072
NVIDIA GTX 470	0.042	0.133	0.050	0.053
ATI Radeon 5850	0.026	_	0.105	-

Table 11.1: Execution times (seconds) for vector addition and inner products.

Compute Device	float	double
CPU	0.0333	0.0352
NVIDIA GTX 260	0.0028	0.0043
NVIDIA GTX 470	0.0024	0.0041
ATI Radeon 5850	0.0032	-

Table 11.2: Execution times (seconds) for sparse matrix-vector multiplication using compressed_matrix.

11.2 Matrix-Vector Multiplication

We have compared execution times of the operation

$$y = Ax, (11.1)$$

where A is a sparse matrix (ten entries per column on average). The results in Tab. 11.2 shows that by the use of ViennaCL and a mid-range GPU, performance gains of up to one order of magnitude can be obtained.

11.3 Iterative Solver Performance

The solution of a system of linear equations is encountered in many simulators. It is often seen as a black-box: System matrix and right hand side vector in, solution out. Thus, this black-box process allows to easily exchange existing solvers on the CPU with a GPU variant provided by ViennaCL. Tab. 11.3 shows that the performance gain of GPU implementations can be significant. For applications where most time is spent on the solution of the linear systems, the use of ViennaCL can reduce the total execution time by about a factor of five.

Compute Device	CG, float	CG, double	GMRES, float	GMRES, double
CPU	0.407	0.450	4.84	7.58
NVIDIA GTX 260	0.067	0.092	4.27	5.08
NVIDIA GTX 470	0.063	0.087	3.63	4.68
ATI Radeon 5850	0.233	-	22.7	-

Table 11.3: Execution times (seconds) for ten iterations of CG and GMRES without preconditioner. Results for BiCGStab are similar to that of CG.

Design Decisions

During the implementation of ViennaCL, several design decisions have been necessary, which are often a trade-off among various advantages and disadvantages. In the following, we discuss several design decisions and their alternatives.

12.1 Transfer CPU-GPU-CPU for Scalars

The ViennaCL scalar type scalar<> essentially behaves like a CPU scalar in order to make any access to GPU ressources as simple as possible, for example

```
float cpu_float = 1.0f;
viennacl::linalg::scalar<float> gpu_float = cpu_float;

gpu_float = gpu_float * gpu_float;
gpu_float -= cpu_float;
cpu_float = gpu_float;
```

As an alternative, the user could have been required to use <code>copy</code> as for the vector and matrix classes, but this would unnecessarily complicate many commonly used operations like

```
if (norm_2(gpu_vector) < 1e-10) { ... }
```

or

```
gpu_vector[0] = 2.0f;
```

where one of the operands resides on the CPU and the other on the GPU. Initialization of a separate type followed by a call to copy is certainly not desired for the above examples.

However, one should use scalar<> with care, because the overhead for transfers from CPU to GPU and vice versa is very large for the simple scalar<> type.

Use scalar<> with care, it is much slower than built-in types on the CPU!

12.2 Transfer CPU-GPU-CPU for Vectors

The present way of data transfer for vectors and matrices from CPU to GPU to CPU is to use the provided <code>copy</code> function, which is similar to its counterpart in the Standard Template Library (STL):

```
std::vector<float> cpu_vector(10);
ViennaCL::LinAlg::vector<float> gpu_vector(10);

/* fill cpu_vector here */

//transfer values to gpu:
copy(cpu_vector.begin(), cpu_vector.end(), gpu_vector.begin());

/* compute something on GPU here */

//transfer back to cpu:
copy(gpu_vector.begin(), gpu_vector.end(), cpu_vector.begin());
```

A first alternative approach would have been to to overload the assignment operator like this:

```
//transfer values to gpu:
gpu_vector = cpu_vector;

/* compute something on GPU here */

//transfer back to cpu:
cpu_vector = gpu_vector;
```

The first overload can be directly applied to the <code>vector-class</code> provided by <code>ViennaCL</code>. However, the question of accessing data in the <code>cpu_vector</code> object arises. For <code>std::vector</code> and C arrays, the bracket operator can be used, but the parenthesis operator cannot. However, other vector types may not provide a bracket operator. Using STL iterators is thus the more reliable variant.

The transfer from GPU to CPU would require to overload the assignment operator for the CPU class, which cannot be done by <code>ViennaCL</code>. Thus, the only possibility within <code>ViennaCL</code> is to provide conversion operators. Since many different libraries could be used in principle, the only possibility is to provide conversion of the form

```
template <typename T>
operator T() {/* implementation here */}
```

for the types in ViennaCL. However, this would allow even totally meaningless conversions, e.g. from a GPU vector to a CPU boolean and may result in obscure unexpected behavior.

Moreover, with the use of copy functions it is much clearer, at which point in the source code large amounts of data are transferred between CPU and GPU.

12.3 Solver Interface

We decided to provide an interface compatible to ublas for dense matrix operations. The only possible generalization for iterative solvers was to use the tagging facility for the specification of the desired iterative solver.

12.4 Iterators

Since we use the iterator-driven <code>copy</code> function for transfer from CPU to GPU to CPU, iterators have to be provided anyway. However, it has to be repeated that they are usually VERY slow, because each data access (i.e. dereferentiation) implies a new transfer between CPU and GPU. Nevertheless, CPU-cached vector and matrix classes could be introduced in future releases of <code>ViennaCL</code>.

A remedy for quick iteration over the entries of e.g. a vector is the following:

```
std::vector<double> temp(gpu_vector.size());
copy(gpu_vector.begin(), gpu_vector.end(), temp.begin());
for (std::vector<double>::iterator it = temp.begin();
    it != temp.end();
    ++it)
{
    //do something with the data here
}
copy(temp.begin(), temp.end(), gpu_vector.begin());
```

The three extra code lines can be wrapped into a separate iterator class by the library user, who also has to ensure data consistency during the loop.

12.5 Initialization of Compute Kernels

Since OpenCL relies on passing the OpenCL source code to a built-in just-in-time compiler at run time, the necessary kernels have to be generated every time an application using <code>ViennaCL</code> is started.

One possibility was to require a mandatory

```
viennacl::init();
```

before using any other objects provided by ViennaCL, but this approach was discarded for the following two reasons:

- If viennacl::init(); is accidentally forgotten by the user, the program will most likely terminate in a rather uncontrolled way.
- It requires the user to remember and write one extra line of code, even if the default settings are fine.

Initialization is instead done in the constructors of ViennaCL objects. This allows a fine-grained control over which source code to compile where and when. For example, there is no reason to compile the sparse matrix compute kernels at program startup if there are no sparse matrices used at all.

Moreover, the just-in-time compilation of all available compute kernels in ViennaCL takes several seconds. Therefore, a request-based compilation is used to minimize any overhead due to just-in-time compilation.

The request-based compilation is a two-step process: At the first instantiation of an object of a particular type from <code>ViennaCL</code>, the full source code for all objects of the same type is compiled into a <code>OpenCL</code> program for that type. Each program contains plenty of compute kernels, which are not yet initialized. Only if an argument for a compute kernel is set, the kernel actually cares about its own initialization. Any subsequent calls of that kernel reuse the already compiled and initialized compute kernel.

When benchmarking ViennaCL, first a dummy call to the functionality of interest should be issued prior to taking timings. Otherwise, benchmark results include the just-in-time compilation, which is a constant independent of the data size.

Versioning

Each release of ViennaCL carries a three-fold version number, given by

ViennaCL X.Y.Z.

For users migrating from an older release of ViennaCL to a new one, the following guidelines apply:

- X is the *major version number*, starting with 1. A change in the major version number is not necessarily API-compatible with any versions of ViennaCL carrying a different major version number. In particular, end users of ViennaCL have to expect considerable code changes when changing between different major versions of ViennaCL.
- Y denotes the *minor version number*, restarting with zero whenever the major version number changes. The minor version number is incremented whenever significant functionality is added to <code>ViennaCL</code>. The API of an older release of <code>ViennaCL</code> with smaller minor version number (but same major version number) is *essentially* compatible to the new version, hence end users of <code>ViennaCL</code> usually do not have to alter their application code, unless they have used a certain functionality that was not intended to be used and removed in the new version.
- Z is the *revision number*. If either the major or the minor version number changes, the revision number is reset to zero. Releases of ViennaCL, that only differ in their revision number, are API compatible. Typically, the revision number is increased whenever bugfixes are applied, compute kernels are improved or some extra, not significant functionality is added.

Always try to use the latest version of ViennaCL before submitting bug reports!

Change Logs

Version 1.3.x

Version 1.3.1

The following bugfixes and enhancements have been applied:

- Fixed a compilation problem with GCC 4.7 caused by the wrong order of function declarations. Also removed unnecessary indirections and unused variables.
- Improved out-of-source build in the src-version (for packagers).
- Added virtual destructor in the runtime_wrapper-class in the kernel generator.
- Extended flexibility of submatrix and subvector proxies (ranges, slices).
- Block-ILU for compressed_matrix is now applied on the GPU during the solver cycle phase. However, for the moment the implementation file in viennacl/linalg/detail/ilu/opencl_block_ilu.hpp needs to be included separately in order to avoid an OpenCL dependency for all ILU implementations.
- SVD now supports double precision.
- Slighly adjusted the interface for NMF. The approximation rank is now specified by the supplied matrices W and H.
- Fixed a problem with matrix-matrix products if the result matrix is not initialized properly (thanks to Laszlo Marak for finding the issue and a fix).
- The operations C+=prod(A,B) and C-=prod(A,B) for matrices A, B, and C no longer introduce temporaries if the three matrices are distinct.

Version 1.3.0

Several new features enter this new minor version release. Some of the experimental features introduced in 1.2.0 keep their experimental state in 1.3.x due to the short time since 1.2.0, with exceptions listed below along with the new features:

- Full support for ranges and slices for dense matrices and vectors (no longer experimental)
- QR factorization now possible for arbitrary matrix sizes (no longer experimental)

- Further improved matrix-matrix multiplication performance for matrix dimensions which are a multiple of 64 (particularly improves performance for NVIDIA GPUs)
- Added Lanczos and power iteration method for eigenvalue computations of dense and sparse matrices (experimental, contributed by Günther Mader and Astrid Rupp)
- Added singular value decomposition in single precision (experimental, contributed by Volodymyr Kysenko)
- Two new ILU-preconditioners added: ILU0 (contributed by Evan Bollig) and a blockdiagonal ILU preconditioner using either ILUT or ILU0 for each block. Both preconditioners are computed entirely on the CPU.
- Automated OpenCL kernel generator based on high-level operation specifications added (many thanks to Philippe Tillet who had a lot of *fun fun fun* working on this)
- Two new sparse matrix types (by Volodymyr Kysenko): ell_matrix for the ELL format and hyb_matrix for a hybrid format (contributed by Volodymyr Kysenko).
- Added possibility to specify the OpenCL platform used by a context
- Build options for the OpenCL compiler can now be supplied to a context (thanks to Krzysztof Bzowski for the suggestion)
- Added nonnegative matrix factorization by Lee and Seoung (contributed by Volodymyr Kysenko).

Version 1.2.x

Version 1.2.1

The current release mostly provides a few bug fixes for experimental features introduced in 1.2.0. In addition, performance improvements for matrix-matrix multiplications are applied. The main changes (in addition to some internal adjustments) are as follows:

- Fixed problems with double precision on AMD GPUs supporting cl_amd_fp64 instead of cl_khr_fp64 (thanks to Sylvain R.)
- Considerable improvements in the handling of matrix_range. Added project() function for convenience (cf. Boost.uBLAS)
- Further improvements of matrix-matrix multiplication performance (contributed by Volodymyr Kysenko)
- Improved performance of QR factorization
- Added direct element access to elements of compressed_matrix using operator() (thanks to sourceforge.net user Sulif for the hint)
- Fixed incorrect matrix dimensions obtained with the transfer of non-square sparse Eigen and MTL matrices to ViennaCL objects (thanks to sourceforge.net user ggrocca for pointing at this)

Version 1.2.0

Many new features from the Google Summer of Code and the $I\mu E$ Summer of Code enter this release. Due to their complexity, they are for the moment still in *experimental* state (see the respective chapters for details) and are expected to reach maturity with the 1.3.0 release. Shorter release cycles are planned for the near future.

- Added a bunch of algebraic multigrid preconditioner variants (contributed by Markus Wagner)
- Added (factored) sparse approximate inverse preconditioner (SPAI, contributed by Nikolay Lukash)
- Added fast Fourier transform (FFT) for vector sizes with a power of two, standard Fourier transform for other sizes (contributed by Volodymyr Kysenko)
- Additional structured matrix classes for circulant matrices, Hankel matrices, Toeplitz matrices and Vandermonde matrices (contributed by Volodymyr Kysenko)
- Added reordering algorithms (Cuthill-McKee and Gibbs-Poole-Stockmeyer, contributed by Philipp Grabenweger)
- Refurbished CMake build system (thanks to Michael Wild)
- Added matrix and vector proxy objects for submatrix and subvector manipulation
- Added (possibly GPU-assisted) QR factorization
- Per default, a viennacl::ocl::context now consists of one device only. The rationale is to provide better out-of-the-box support for machines with hybrid graphics (two GPUs), where one GPU may not be capable of double precision support.
- Fixed problems with viennacl::compressed_matrix which occurred if the number of rows and columns differed
- Improved documentation for the case of multiple custom kernels within a program
- Improved matrix-matrix multiplication kernels (may lead to up to 20 percent performance gains)
- Fixed problems in GMRES for small matrices (dimensions smaller than the maximum number of Krylov vectors)

Version 1.1.x

Version 1.1.2

This final release of the ViennaCL 1.1.x family focuses on refurbishing existing functionality:

• Fixed a bug with partial vector copies from CPU to GPU (thanks to sourceforge.net user kaiwen).

- Corrected error estimations in CG and BiCGStab iterative solvers (thanks to Riccardo Rossi for the hint).
- Improved performance of CG and BiCGStab as well as Jacobi and row-scaling preconditioners considerably (thanks to Farshid Mossaiby and Riccardo Rossi for a lot of input).
- Corrected linker statements in CMakeLists.txt for MacOS (thanks to Eric Christiansen).
- Improved handling of ViennaCL types (direct construction, output streaming of matrixand vector-expressions, etc.).
- Updated old code in the coordinate_matrix type and improved performance (thanks to Dongdong Li for finding this).
- Using size_t instead of unsigned int for the size type on the host.
- Updated double precision support detection for AMD hardware.
- Fixed a name clash in direct_solve.hpp and ilu.hpp (thanks to sourceforge.net user random).
- Prevented unsupported assignments and copies of sparse matrix types (thanks to sourceforge.net user kszyh).

Version 1.1.1

This new revision release has a focus on better interaction with other linear algebra libraries. The few known glitches with version 1.1.0 are now removed.

- Fixed compilation problems on MacOS X and OpenCL 1.0 header files due to undefined an preprocessor constant (thanks to Vlad-Andrei Lazar and Evan Bollig for reporting this)
- Removed the accidental external linkage for three functions (we appreciate the report by Gordon Stevenson).
- New out-of-the-box support for Eigen [3] and MTL 4 [4] libraries. Iterative solvers from ViennaCL can now directly be used with both libraries.
- Fixed a problem with GMRES when system matrix is smaller than the maximum Krylov space dimension.
- Better default parameter for BLAS3 routines leads to higher performance for matrix-matrix-products.
- Added benchmark for dense matrix-matrix products (BLAS3 routines).
- Added viennacl-info example that displays infos about the OpenCL backend used by ViennaCL.
- Cleaned up CMakeLists.txt in order to selectively enable builds that rely on external libraries.
- More than one installed OpenCL platform is now allowed (thanks to Aditya Patel).

Version 1.1.0

A large number of new features and improvements over the 1.0.5 release are now available:

- The completely rewritten OpenCL back-end allows for multiple contexts, multiple devices and even to wrap existing OpenCL resources into ViennaCL objects. A tutorial demonstrates the new functionality. Thanks to Josip Basic for pushing us into that direction.
- The tutorials are now named according to their purpose.
- The dense matrix type now supports both row-major and column-major storage.
- Dense and sparse matrix types now now be filled using STL-emulated types (std:: vector< std::vector<NumericT> > and std::vector< std::map< unsigned int, NumericT> >)
- BLAS level 3 functionality is now complete. We are very happy with the general outof-the-box performance of matrix-matrix-products, even though it cannot beat the extremely tuned implementations tailored to certain matrix sizes on a particular device yet.
- An automated performance tuning environment allows an optimization of the kernel parameters for the library user's machine. Best parameters can be obtained from a tuning run and stored in a XML file and read at program startup using pugixml.
- Two now preconditioners are now included: A Jacobi preconditioner and a row-scaling preconditioner. In contrast to ILUT, they are applied on the OpenCL device directly.
- Clean compilation of all examples under Visual Studio 2005 (we recommend newer compilers though...).
- Error handling is now carried out using C++ exceptions.
- Matrix Market now uses index base 1 per default (thanks to Evan Bollig for reporting that)
- Improved performance of norm_X kernels.
- Iterative solver tags now have consistent constructors: First argument is the relative tolerance, second argument is the maximum number of total iterations. Other arguments depend on the respective solver.
- A few minor improvements here and there (thanks go to Riccardo Rossi and anonymous sourceforge.net users for reporting the issues)

Version 1.0.x

Version 1.0.5

This is the last 1.0.x release. The main changes are as follows:

• Added a reader and writer for MatrixMarket files (thanks to Evan Bollig for suggesting that)

- Eliminated a bug that caused the upper triangular direct solver to fail on NVIDIA hardware for large matrices (thanks to Andrew Melfi for finding that)
- The number of iterations and the final estimated error can now be obtained from iterative solver tags.
- Improvements provided by Klaus Schnass are included in the developer converter script (OpenCL kernels to C++ header)
- Disabled the use of reference counting for OpenCL handles on Mac OS X (caused seg faults on program exit)

Version 1.0.4

The changes in this release are:

- All tutorials now work out-of the box with Visual Studio 2008.
- Eliminated all ViennaCL related warnings when compiling with Visual Studio 2008.
- Better (experimental) support for double precision on ATI GPUs, but no norm_1, norm_2, norm_inf and index_norm_inf functions using ATI Stream SDK on GPUs in double precision.
- Fixed a bug in GMRES that caused segmentation faults under Windows.
- Fixed a bug in const_sparse_matrix_adapter (thanks to Abhinav Golas and Nico Galoppo for almost simultaneous emails on that)
- Corrected incorrect return values in the sparse matrix regression test suite (thanks to Klaus Schnass for the hint)

Version 1.0.3

The main improvements in this release are:

- Support for multi-core CPUs with ATI Stream SDK (thanks to Riccardo Rossi, UPC. BARCELONA TECH, for suggesting this)
- inner_prod is now up to a factor of four faster (thanks to Serban Georgescu, ETH, for pointing the poor performance of the old implementation out)
- Fixed a bug with plane_rotation that caused system freezes with ATI GPUs.
- Extended the doxygen generated reference documentation

Version 1.0.2

A bug-fix release that resolves some problems with the Visual C++ compiler.

- Fixed some compilation problems under Visual C++ (version 2005 and 2008).
- All tutorials accidentally relied on ublas. Now tut1 and tut5 can be compiled without ublas
- Renamed aux/ folder to auxiliary/ (caused some problems on windows machines)

Version 1.0.1

This is a quite large revision of ViennaCL 1.0.0, but mainly improves things under the hood.

- Fixed a bug in lu_substitute for dense matrices
- Changed iterative solver behavior to stop if a certain relative residual is reached
- ILU preconditioning is now fully done on the CPU, because this gives best overall performance
- All OpenCL handles of ViennaCL types can now be accessed via member function handle()
- Improved GPU performance of GMRES by about a factor of two.
- Added generic norm_2 function in header file norm_2.hpp
- Wrapper for clFlush() and clFinish() added
- Device information can be queried by device.info()
- Extended documentation and tutorials

Version 1.0.0

First release

License

Copyright (c) 2010, 2011 Institute for Microelectronics, TU Wien

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Bibliography

- [1] Y. Saad, *Iterative Methods for Sparse Linear Systems*, *Second Edition*. Society for Industrial and Applied Mathematics, April 2003.
- [2] "Boost C++ Libraries." [Online]. Available: http://www.boost.org/
- [3] "Eigen Library." [Online]. Available: http://eigen.tuxfamily.org/
- [4] "MTL 4 Library." [Online]. Available: http://www.mtl4.org/
- [5] "Khronos OpenCL." [Online]. Available: http://www.khronos.org/opencl/
- [6] "NVIDIA OpenCL." [Online]. Available: http://www.nvidia.com/object/cuda_opencl_new.html
- [7] "CMake." [Online]. Available: http://www.cmake.org/
- [8] "ATI Stream SDK." [Online]. Available: http://developer.amd.com/gpu/ATIStreamSDK/Pages/default.aspx
- [9] "ATI Stream SDK Documentation." [Online]. Available: http://developer.amd.com/gpu/ATIStreamSDK/pages/Documentation.aspx
- [10] "ATI Knowledge Base Double Support." [Online]. Available: http://developer.amd.com/support/KnowledgeBase/Lists/KnowledgeBase/DispForm.aspx?ID=88
- [11] "Xcode Developer Tools." [Online]. Available: http://developer.apple.com/technologies/tools/xcode.html
- [12] "Fink." [Online]. Available: http://www.finkproject.org/
- [13] "DarwinPorts." [Online]. Available: http://darwinports.com/
- [14] "MacPorts." [Online]. Available: http://www.macports.org/
- [15] U. Trottenberg, C. Oosterlee, and A. Schüller, Multigrid. Academic Press, 2001.
- [16] U. M. Yang, Numerical Solutions of Partial Differential Equations on Parallel Computers, ser. Lecture Notes in Computational Science and Engineering. Springer, 2006, ch. Parallel Algebraic Multigrid Methods High Performance Preconditioners, pp. 209–236.
- [17] M. J. Grote and T. Huckle, "Parallel Preconditioning with Sparse Approximate Inverses," *SIAM J. Sci. Comp.*, pp. 838–853, 1997.
- [18] T. Huckle, "Factorized Sparse Approximate Inverses for Preconditioning," *J. Super-comput.*, pp. 109–117, 2003.

- [19] E. Cuthill and J. McKee, "Reducing the bandwidth of sparse symmetric matrices," in *Proceedings of the 1969 24th National Conference*, ser. ACM '69. ACM, 1969, pp. 157–172.
- [20] J. G. Lewis, "Algorithm 582: The gibbs-poole-stockmeyer and gibbs-king algorithms for reordering sparse matrices," *ACM Trans. Math. Softw.*, vol. 8, pp. 190–194, 1982.
- [21] G. H. Golub and C. F. Van Loan, *Matrix Computations*. John Hopkins University Press, 1996.
- [22] H. D. Simon, "The lanczos algorithm with partial reorthogonalization," *Mathematics of Computation*, vol. 42, pp. 115–142, 1984.
- [23] D. D. Lee and S. H. Seung, "Algorithms for Non-negative Matrix Factorization," in *Advances in Neural Information Processing Systems* 13, 2000, p. 556562.
- [24] "pugixml." [Online]. Available: http://code.google.com/p/pugixml/