

Random Forests Intro

What happens when our lonely tree, grows into a mighty forest?

Objectives

In the next 45 minutes, students will be able to...

- explain and build a classification random forest
- discuss the differences between bagging and a random forest
- 3. interpret how tuning "n_estimators" will effect the random forest model's variance

Ensemble Methods

- Combination of many weak models
- Example: Jellybeans in a Jar
 - Individuals all have poor guesses
 - Average of poor guesses turns out to be a great guess
- Works for Classification or Regression

Decision Trees Review

- Strengths of an individual Tree
 - O _
 - 0 _
 - 0_

- Weaknesses of an individual Tree
 - 0
 - O _

Decision Trees Review

- Strengths of an individual Tree
 - Quick computation time
 - Useful for various data types
 - easy to explain
- Weaknesses of an individual Tree
 - high variance
 - propensity to overfit

Decision Trees Cont...

- How is a split determined for an individual tree?
- What would be the difference between two decision trees trained with the same data?

Decision Trees Cont...

- How is a split determined for an individual tree?
 - Numerical feature:
 - Split at a threshold (like a percentile or value)
 - Categorical feature:
 - Split on value (is or is not value)
 - Information Gain
- What would be the difference between two decision trees trained with the same data?
 - Since each split is mathematically determined and all features are considered for each split, there would be no difference

Move to ipython Notebook: Part 1

Bagging

- Bagging:
 - "bootstrap" + "aggregation"
- procedure used to reduce variance of a statistical learning method

Move to ipython Notebook: Part 2

A Random Forest

- "ensemble" aka "forest" of decision trees
- Each tree gets a vote
- combination of decision tree simplicity and flexibility to gain better accuracy

Random Forest vs. Bagging

- Bagging
 - Bagging decision trees are pretty cool, but the trees still tend to look pretty similar
 - all features are considered for splitting a node
- Random Forest
 - Bootstrapped datasets
 - Only a random selection of features are chosen for each split in each decision tree

Check for Success

- You are successful today if you can ...
 - Explain Bagging in 1 2 sentences.
 - Express why Random
 Forests work better than traditional Bagging.
 - Explain how changing n_estimators will affect the Random Forest model's variance.