STAT 331 - APPLIED LINEAR MODELS

FANTASTIC MODELS AND HOW TO ABUSE THEM

Jose Luis Avilez
Faculty of Mathematics
University of Waterloo

Chapter 1

Introduction

Definition 1.1. We define a **statistical model** as an equation

$$y = \mu + \epsilon$$

where μ is a **deterministic** component and ϵ is a **stochastic** component (or noise).

Definition 1.2. A **response** variable is denoted Y and its values are (y_1, \ldots, y_n) ; an **independent** variable is denoted X and its values are (x_1, \ldots, x_n) ; the **regression slope** is denoted β ; the **noise** term is denoted ϵ ; the regression equation is then given by

$$Y = \beta X + \epsilon$$

Definition 1.3. To emphasise that the model applies to each potential experiment, we index using our dataset (i.e. $\{(x_i, y_i)\}_{i=1,\dots,n}$ are data points) to say

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i$$

Definition 1.4. We say that the noise is exhibits **homoscedasticity** if each ϵ_i has equal variance. **Heteroscedasticity** means they have unequal variances.

Definition 1.5. In a **simple linear model** there is only one explanatory variable and we make the following assumptions for the error term ϵ :

- 1. ϵ_i is normally distributed for each i
- 2. $E(\epsilon_i) = 0$, for i = 1, 2, ..., n
- 3. $\operatorname{Var}(\epsilon_i) = \sigma^2$
- 4. ϵ_i and ϵ_j are independent random variables for $i \neq j$

Theorem 1.6. In a simple linear model, if we take x_i to be deterministic and each y_i as a random variable, $E(y_i) = \beta_0 + \beta_1 x_i$.

Proof. Trivial.

Definition 1.7. We define a general linear model¹ as

$$y = \beta_0 + \beta_1 x_1 + \ldots + \beta_p x_p$$

Note that it has multiple independent variables. A more efficient way to write this is in matrix form

$$\vec{y} = X\vec{\beta} + \vec{\epsilon}$$

Except, no sane person puts those funny hats on top of their vectors, so we shall simply write $y = X\beta + \epsilon$ where X is the design matrix. Note it has a column of 1s to multiply out the constant β_0 term.

Definition 1.8. We say that a model is "parsimonious" if it is "economic" and has "low complexity". We use inverted commas since these are not well-defined mathematical constructs.

¹Not to be confused with **generalised**.

Chapter 2

Simple Linear Regression

For this chapter, we explore the consequences of Definition 1.5 and how to test their assumptions.

To obtain estimates of the parameters in a simple linear model we have two available methods: (i) **maximum likelihood estimation**, and (ii) **least squares estimate**. The former requires distributional assumptions; the latter does not.

Theorem 2.1. For a simple linear model, the maximum likelihood estimators are given by $\hat{\beta}_1 = \frac{S_{xy}}{S_{xx}}$ and $\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}$

Proof. Given that the y_i are independent, we have that the likelihood function is

$$L(\beta_0, \beta_1, \sigma^2) = f(y_1, \dots, y_n | \beta_0, \beta_1, \sigma^2) = \prod_{i=1}^n f(y_i | \beta_0, \beta_1, \sigma^2)$$

Under the normality assumption for y_i , we then have

$$f(y_i|\beta_0, \beta_1, \sigma^2) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{1}{2\sigma^2}(y_i - \beta_0 - \beta_1 x_1)^2\right)$$

Thus, the log-likelihood function is given by

$$l(\beta_0, \beta_1, \sigma^2) = -\frac{n}{2}\log(2\pi) - \frac{n}{2}\log(\sigma^2) - \frac{1}{2\sigma^2}\sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_1)^2$$

The remainder of the result follows from maximising the log-likelihood for the parameters. We show the computation in an upcoming Theorem.

Definition 2.2. We say that $\hat{\beta_0}$ and $\hat{\beta_1}$ are least squares estimates if they minimise the equation

$$S(\beta_0, \beta_1) = \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i)^2$$

Theorem 2.3. The least squares estimates are equal to the maximum likelihood estimates¹.

Proof. Taking partial derivatives with respect to the parameters, we obtain,

$$\frac{\partial S}{\partial \beta_0} = -2\sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_i)$$

$$\frac{\partial S}{\partial \beta_1} = -2\sum_{i=1}^n x_i(y_i - \beta_0 - \beta_1 x_i)$$

¹Proofs for this theorem can be seen in Lectures 1 and 4 of Shalizi's notes

To maximise the parameters, we set the partial derivatives to zero. It is easy to see that the first expression is minimised when $\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}$. Minimising the second expression requires a bit more algebraic mumbo-jumbo.

$$0 = \sum_{i=1}^{n} x_{i}(y_{i} - \beta_{0} - \beta_{1}x_{i})$$

$$= \sum_{i=1}^{n} (x_{i}y_{i}) - \beta_{0} \sum_{i=1}^{n} x_{i} - \beta_{1} \sum_{i=1}^{n} x_{i}^{2}$$

$$= \sum_{i=1}^{n} x_{i}y_{i} - n\bar{x}(\bar{y} - \beta_{1}\bar{x}) - \beta_{1} \sum_{i=1}^{n} x_{i}^{2}$$

$$= \sum_{i=1}^{n} x_{i}y_{i} - n\bar{x}\bar{y} - n\beta_{1}\bar{x}^{2} - \beta_{1} \sum_{i=1}^{n} x_{i}^{2}$$

$$\iff$$

$$\hat{\beta}_{1} = \frac{\sum_{i=1}^{n} (x_{i}y_{i}) - n\bar{x}\bar{y}}{\sum_{i=1}^{n} x_{i}^{2} + n\bar{x}^{2}}$$

$$= \frac{S_{xy}}{S_{xx}}$$

Ta-da!

Definition 2.4. The following two equations are called **normal equations**:

$$n\hat{\beta}_0 + \left(\sum x_i\right)\hat{\beta}_1 = \sum y_i \tag{2.1}$$

$$\left(\sum x_i\right)\hat{\beta}_0 + \left(\sum x_i^2\right)\hat{\beta}_1 = \sum x_i y_i \tag{2.2}$$

Definition 2.5. The **residual**, e_i , of the fitted value at x_i is $e_i = y_i - \hat{\mu}_i = y_i - (\hat{\beta}_0 + \hat{\beta}_1 x_i)$.

Theorem 2.6. In a regression line fitted by the least squares estimate procedure, the following are facts about residuals:

- 1. $\sum e_i = 0$
- 2. $\sum e_i x_i = 0$
- 3. $\sum \hat{\mu_i} e_i = 0$

Proof. Follows from the minimisation procedure used in Theorem 2.3.

Theorem 2.7. The maximum likelihood estimate of σ^2 is $\hat{\sigma}^2 = \frac{S(\hat{\beta_0}, \hat{\beta_1})}{n}$.

Theorem 2.8. The estimated value of σ^2 using the least squares estimate method is

$$S^2 = \frac{S(\hat{\beta_0}, \hat{\beta_1})}{n-2}$$

We call this the least square error and it has n-2 degrees of freedom. In R, the summary output for a linear model is the **residual standard error**, which is simply $S = \sqrt{S^2}$.

Proof. Exercise.

Theorem 2.9. The mean squared error, S^2 is an unbiased estimate for σ^2 . That is, $E(S^2) = \sigma^2$.

Theorem 2.10. The estimators $\hat{\beta}_0$, $\hat{\beta}_1$ are unbiased; that is $E\left[\hat{\beta}_{0,1}\right] = \beta_{0,1}$. The estimator $\hat{\mu}_0$ is also unbiased.

Proof. We can write

$$\hat{\beta}_1 = \frac{S_{xy}}{S_{xx}} = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^n (x_i - \bar{x})^2} = \sum_{i=1}^n c_i y_i$$

where $c_i = \frac{x_i - \bar{x}}{S_{xx}}$. Thus,

$$E\left[\hat{\beta}_{1}\right] = E\left[\sum c_{i}y_{i}\right] = \sum c_{i}E\left[y_{i}\right] = \sum c_{i}E\left[\beta_{0} + \beta_{1}x_{i}\right] = E\left[\beta_{0}\right]\sum c_{i} + \beta_{1}\sum c_{i}E\left[x_{i}\right] = \beta_{1}\frac{S_{xx}}{S_{xx}} = \beta_{1}$$

Likewise,

$$\mathrm{E}\left[\hat{\beta}_{0}\right] = \mathrm{E}\left[y_{i} - \hat{\beta}_{1}x_{i}\right] = \bar{y} - \beta_{1}\bar{x} = \beta_{0}$$

Theorem 2.11. The estimator $\hat{\mu}$ is an unbiased estimate for μ and S^2 is an unbiased estimator for σ^2 .

Proof. The first follows easily from Theorem 2.10. The second estimator requires finding a pivotal quantity which follows a chi-squared distribution with n-2 degrees of freedom. I'll provide details later.

Theorem 2.12. The following are the variances for the estimators:

1. Var
$$(\hat{\beta}_1) = \frac{\sigma^2}{S_{xx}}$$

2. Var
$$\left(\hat{\beta}_0\right) = \sigma^2 \left[\frac{1}{n} + \frac{\bar{x}^2}{S_{xx}}\right]$$

3.
$$\operatorname{Var}(\hat{\mu_0}) = \sigma^2 \left[\frac{1}{n} + \frac{(x_0 - \bar{x})^2}{S_{xx}} \right]$$

Proof. The first two follow by our usual variance formulas. The third point requires writing

$$\operatorname{Var}(\hat{\mu_0}) = \operatorname{Var}\left(\hat{\beta}_0 + \hat{\beta}_1 x_0\right) = \operatorname{Var}\left(\bar{y} - \hat{\beta}_1 \bar{x} + \hat{\beta}_1 x_0\right) = \operatorname{Var}\left(\bar{y} + \hat{\beta}_1 (x_0 - \bar{x})\right)$$

and using the independence² of \bar{y} and $\hat{\beta}_1$.

Theorem 2.13. $\hat{\beta}_1 \sim N(\beta_1, \frac{\sigma^2}{S_{xx}})$

Proof. Follows from the fact that it is a linear combination of y_i , each of which is normally distributed.

Theorem 2.14. $\frac{\hat{\beta}_1 - \beta_1}{\frac{s}{\sqrt{S_{TT}}}} \sim t(n-2)$

Proof. Follows from Theorem 2.13.

Theorem 2.15. $\frac{\hat{\mu}_0 - \mu_0}{\sigma \left[\frac{1}{n} + \frac{(x_0 - \bar{x})^2}{S_{xx}} \right]^{\frac{1}{2}}} \sim N(0, 1).$

Theorem 2.16. If $Z \sim N(0,1)$ and $S \sim \chi_d$ where Z and S are independent, then $\frac{Z}{\sqrt{S/d}} \sim t_d$.

²The professor claimed this. I am not entirely convinced... I'll check this at a later date.

Chapter 3

Matrix Algebra

This chapter is a review from some facts from MATH 146 and MATH 245. I will state the theorems and definitions without proof. If you wish to see proofs of these statements, please find the set of notes titles "MATH 245 - Fantastic Theorems and How to Prove Them". Some of the notes here are extracted verbatim from the aforementioned notes.

Definition 3.1. A matrix $A \in M_{m \times n}(\mathbb{F})$ is the rectangular array:

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}$$

Yes, I know, it's embarrassing not to remember the order m and n come in. Oops.

Definition 3.2. Let $A \in M_{m \times n}(\mathbb{F})$ and $B \in M_{n \times p}(\mathbb{F})$. We define the **product** of A and B as

$$(AB)_{ij} = \sum_{k=1}^{n} A_{ik} B_{kj} \quad \text{for } 1 \le i \le m, \quad 1 \le j \le p$$

Note that, in general, matrix multiplication is commutative.

Definition 3.3. The trace of a matrix is the linear transformation $tr: M_{n \times n}(\mathbb{F}) \to \mathbb{F}$ defined as

$$tr(A) = \sum_{i=1}^{n} A_{ii}$$

Definition 3.4. The **transpose** of a matrix, denoted A^t or A', is its reflection across the main diagonal. Two matrices are **symmetric** if $A^t = A$.

Definition 3.5. Let V be a vector space over $\mathbb{F} = \mathbb{C}$ or \mathbb{R} . An **inner product** on V is a function that assigns to every ordered pair of vectors $x, y \in V$ a scalar, denoted $\langle x, y \rangle$, such that the following hold:

- 1. $\langle x+z,y\rangle = \langle x,y\rangle + \langle z,y\rangle$
- 2. $\langle cx, y \rangle = c \langle x, y \rangle$
- 3. $\overline{\langle x, y \rangle} = \langle y, x \rangle$
- 4. $\langle x, x \rangle > 0$ if x > 0

Definition 3.6. Let V be an inner product space. We say that $v, w \in V$ are **orthogonal** if $\langle v, w \rangle = 0$.

¹They may be found here: https://github.com/jlavileze/Fantastic-Theorems.

Definition 3.7. Let V be an inner product space. The **norm** of $v \in V$ is the non-negative real number $||v|| = \sqrt{\langle v, v \rangle}$.

Definition 3.8. A set of vectors $\{v_1, \ldots, v_n\}$ in V is said to be **linearly dependent** if there exists scalars $a_1, \ldots, a_n \in \mathbb{F}$, not all zero, such that

$$a_1v_1 + \ldots + a_nv_n = 0$$

If a set is not linearly dependent, it is said to be **linearly independent**.

Definition 3.9. The rank of a matrix $A \in M_{r \times c}(\mathbb{F})$ is the largest number of linearly independent rows or columns².

Definition 3.10. We say that a matrix $A \in M_{m \times m}(\mathbb{F})$ is **nonsingular** if its rank is m. The matrix is **singular** otherwise.

Definition 3.11. Let $A \in M_{n \times n}(\mathbb{F})$. If n = 1 so that $A = (A_{11})$ we define the determinant of A to be $\det(A) = A_{11}$. For $n \geq 2$, we define the determinant recursively as:

$$\det(A) = \sum_{j=1}^{n} (-1)^{1+j} A_{1j} \cdot \det(\widetilde{A}_{1j})$$

In fact, the determinant can be computed by cofactor expansion along any row or column.

Theorem 3.12. A matrix is nonsingular if and only if its determinant is nonzero³.

Theorem 3.13. Here are some awesome facts about determinants:

- 1. $\det(AB) = \det A \det B$
- 2. $\det(A^t) = \det(A)$
- 3. Determinants are invariant under Type III elementary row operations.
- 4. Multiplying a row or column by a scalar $c \in \mathbb{F}$ scales the determinant by c.

²It is an awful idea to define the rank of a linear transformation in terms of a matrix. Apologies to the reader for this heinous crime.

³In fact, there is a big equivalence theorem between ranks, reduced row echelon forms, existence of inverses, factorisation into elementary row and column operations, and determinants. The proof of the equivalence is a beautiful exercise in a first course in Linear Algebra. We refer you to Ross Willard's MATH 146 Winter 2017 notes for a statement and a proof of it.