

EBA3400 Programming, Data Extraction and Visualization

Wei-Ting Yang

Department of Data Science and Analytics

Outline

- Course information
- What is programming
- Programming environment
- Introduction to Jupyter notebooks

The agenda for each week

- Synchronous
 - Monday 16:00-17:45

- Asynchronous
 - Exercises/quizzes/video/reading (It will not be counted as part of your grade)
 - The solution to the exercises will be uploaded to itslearning every <u>Wednesday at 15:00</u>

- TA session (Zacky Dhaffa Pratama)
 - Wednesday 16:00-17:00

Course content

Part 1: Basics of programming (w34-40)

- Programming languages
- Programming environment
- Python syntax
- Variables
- Strings and numbers
- Lists
- Conditional statements
- Loop statements
- Functions
- Dictionary, tuple, and set

Part 2: Data extraction and visualization (w41-47)

- Pandas Series and DataFrame
- Read csv files
- Basic statistics
- Data manipulation
- Missing data handling
- Data aggregation
- Data visualization Pandas
- Data visualization Matplotlib
- Data visualization Seaborn
- Time series data

Assessment

Exam	Weight	Date	Duration	Group/Individual	Exam type
Exam-1	40%	30/9/2022 9:00-12:00	3 hours	Individual	Written submission (Jupyter notebook)
Exam-2	30%	Hand-out: 11/11/2022 9:00 Hand-in:18/11/2022 12:00	1 week	Group(1~3)	Written submission (Jupyter notebook)
Exam-3	30%	25/11/2022 13:00-13:45	45 minutes	Individual	Structured test (Multiple-choice)

Other resources (optional)

- Online resources
 - https://docs.python.org/3.8/tutorial/index.html
 - https://www.geeksforgeeks.org/python-programming-language/?ref=shm
 - https://realpython.com/
 - https://www.w3schools.com/python/default.asp

- Books:
 - Python for Everybody
 - Python for Data Analysis

What is programming

What's programming

Programming:

A way to instruct the computer to perform some tasks,

- Calculate the average reported cases over the last 14 days.
- Calculate the quarterly revenue.
- Extract key words from webpages.
- Face recognition.

Java

C++

Ruby

Python

- Python is a high-level programming language
- Created by Guido van Rossum
- Clear, logical code for small and large projects

First released in 1991

2022 Top3

- 1. Python (15.42%)
- 2. C (14.59%)
- 3. Java (12.40%)

Why we should learn programming

Understand the technology is our daily life

Make tasks easier for you

Develop structured thinking and logical skill

Make your job application stand out

How computers work

Processing & Storage

Central Processing Unit (CPU)

Executes the program and performs the computations.

Main memory

- Stores program operations and data while a program is being executed.
- The main memory is fast but is lost when the computer is turned of. This is also known as RAM.

Secondary memory

Stores programs and data long term.

- A 3.0 GHz CPU means that the CPU will perform 3 billion operations per second.
- RAM is short for "random access memory"

Computer hardware

- Computers have two main parts:
 - Hardware: physical parts of the computer.
 - Software: the code that runs on the computer.

controlled based on the voltage.

and 0 (OFF) \rightarrow binary.

binary.

• Each transistor represents a digit of

Binary system for number

Decimal system (also called base-ten system)

$10^3 = 1000$	$10^2 = 100$	$10^1 = 10$	$10^0 = 1$
5	1	3	6

$$(5 \times 1000) + (1 \times 100) + (3 \times 10) + (6 \times 1) = 5136$$

Binary system

256 possible values (0~255)

- 1 Byte = 8 Bits
- 1 Kilobyte (KB) = 1024 Bytes
- 1 Megabyte (MB) = 1024 Kilobytes
- 1 Gigabyte (GB) = 1024 Megabytes
- 1 Terabyte (TB) = 1024 Gigabytes
- 1 Petabyte (PB) = 1024 Terabytes

Binary system for character

 ASCII, stands for American Standard Code for Information Interchange. It is a character encoding standard for electronic communication.

Decimal	Binary	Symbol	Description
0	00000000	NUL	Null char
1	0000001	SOH	Start of Heading
	•••	•••	
97	01100001	a	Lowercase a
98	01100010	b	Lowercase b
99	01100011	С	Lowercase c
100	01100100	d	Lowercase d
101	01100101	е	Lowercase e
102	01100110	f	Lowercase f
103	01100111	g	Lowercase g
104	01101000	h	Lowercase h
105	01101001	i	Lowercase i
•••	•••	•••	
254	11111110	þ	Latin small letter thorn
255	11111111	ÿ	Latin small letter y with diaeresis

Programming language

- Programming languages provide an interface between programmers and machine language (binary code).
- You can use syntax that is **English like** and **easier to understand** to express what you want the computer to do.

Programming language

- A Compiled language: A programming language whose programs are typically translated into machine language by a compiler before being executed. (e.g., C, C++)
- An Interpreted language: A programming language whose program is directly converted and executed by an interpreter. (e.g., python, perl, JavaScript)

Programming environment

Programming environment

- IDE (Integrated Development Environment)
 - A software that provides programmers a set of tools for development.
 - Text editor
 - Build automation tools (compiling computer source code into binary code, packaging binary code, and running automated tests.)
 - Debugging
 - Popular python IDEs: IDLE, Spyder, PyCharm, Thonny, <u>Jupyter Notebook</u>.

Code editor

- A text editor with some added functionalities.
- Popular code editors: Atom, VScode, Vim.

Programming environment

Anaconda is a distribution of packages. It provides everything you need for data science, including conda, numpy, scipy, jupyter notebook, etc.

Project Jupyter

- A project and community whose goal is to "develop open-source software, open-standards, and services for interactive computing across dozens of programming languages"
- "Jupyter" is a reference to the three core programming languages supported by Jupyter, which are Julia, Python, R. Nowadays, the Jupyter system supports over 100 programming languages (called "kernels" in the Jupyter ecosystem).
- Products: Jupyter Notebook, JupyterHub, and JupyterLab.

Jupyter Notebook

 The Jupyter Notebook is an open-source web application that allows you to create and share documents that contain code, equations, visualizations and text.

How do Jupyter Notebooks work?

Open a Jupyter notebook

Open a Jupyter notebook - Step1

Step1
Open Anaconda
Navigator

Open a Jupyter notebook - Step2

Step2
Launch jupyter
notebook

Open a Jupyter notebook - Step3

Step3 jupyter notebook file tree

- A browser window pops up with the jupyter notebook interface.
- You can see a file tree of folders on your computer.

Open a Jupyter notebook - Step4.1

Step4.1
Create a new notebook

Open a Jupyter notebook

Open an existing Jupyter notebook

Download notebooks from itslearning

Open an existing Jupyter notebook

Step3
jupyter notebook
file tree

Open an existing Jupyter notebook

Step4.2
Open an existing notebook

Introduction to Jupyter notebooks

Jupyter Notebook - Cells

The entire contents of a notebook is composed of only <u>cells</u>, code cells and text cells.

Jupyter Notebook - Execution

- To run a piece of code, click on the cell to select it, then
 - [option1] click the play button in the toolbar above.
 - [option2] click the Cell dropdown menu
 - [option3] keyboard shortcut Ctrl+Enter

Jupyter Notebook - Documentation

Accessing documentation in the notebook

Jupyter Notebook - Restart kernel

When to restart the kernel

- The notebook is non-responsive.
 - You may write code that can go into an infinite loop.
- To start over a computation from scratch.

Jupyter Notebook - Text cells

Text can be added to Jupyter Notebooks using Markdown cells.

Jupyter Notebook - Text cells

You can add headings by starting a line with one (or multiple) # followed by a space

Jupyter Notebook - Text cells

Comments

- As programs get bigger and more complicated, they get more difficult to read. It is a good
 idea to add notes to your programs to explain what the program is doing.
- Comments
 - Begin with a # character
 - Ignored by Python interpreter
 - Intended for a person reading the code

Programming language ≠ Jupyter

- Does programming require the notebook? No
 - Notebook is just a type of development environment.
- More python development environments
 - Spyder, PyCharm, Thonny, IDLE, VScode, Atom.

PyCharm

Thonny

Tips for this course

- Learn by doing, practicing. You cannot learn programming only by following lectures.
- Do not just read solutions and be satisfied when you understand it. Write it yourself.
- Programming can be hard, frustrating and time consuming. Free up space in your calendar every week.
- Different people find different things easy. You are encouraged to help each other, but everyone should program on their own.

Backup

File location

• Use getcwd() to get the current working directory of the file.

```
import os
os.getcwd()
```

'C:\\Users\\UserName\\Documents\\python'

