SkillSwap

Plateforme d'Échange de Compétences

Application mobile sociale dédiée à l'échange de compétences pair-à-pair, favorisant l'apprentissage communautaire et le mentorat assisté par IA.

<u>Réalisé par :</u>

- Youcef Islam CHEHBOUB
- Abdellatif ESSID
- Mohamed ALLAOUI CHARIF
- Soufiane ALAEDDINE
- Sara TISSEMLAL

Sommaire

01	
	ne → Solution → Impact
02	
Vision, (Cible & Parties prenantes
03	
MVP&\	Valeur
04	
Parcour	rs Utilisateur (MVP)
05	
Archited	cture Microservices
06	
Diagran	nme – Architecture MVP
07	
Outils &	Protocoles
08	
Modèle	de Données & RGPD
09	
Modèle	de Conception de Données
10	
Vue log	ique des entités et dépendances
11	
	ion physique et stockage
12	
Choix d	es Bases de Données
13	
Cluster	& Haute Disponibilité
14	
Tables r	modélisées, clés et index
15	
Étude &	α choix de réplication
16	
Configu	ıration des clusters
17	
Gestion	des défaillances de nœud
18	

Sécurité, Qualité & Roadmap

1. SkillSwap : Échange de Compétences Simplifié

Problème → Solution → Impact

1

Problème

Apprentissage coûteux et rigide

Solution

Plateforme mobile d'échange pair-à-pair

Impact

Démocratisation de l'apprentissage

2. Vision, Cible & Parties prenantes

Personas principaux

Apprenant

Recherche de nouvelles compétences

Enseignant

Partage d'expertise

Mentor

Accompagnement personnalisé

Stakeholders clés

Admin

Gestion plateforme

Modération

Contrôle qualité

Support

Assistance utilisateurs

DevOps

Infrastructure technique

3. MVP & Valeur

Fonctionnalités Clés

Profil & Compétences

Gestion des expertises

Matching intelligent

Mise en relation optimisée

Chat temps réel

Communication fluide

Sessions planifiées

Organisation des échanges

Système d'avis

Confiance et qualité

KPI Produit

Activation J+7

65% des utilisateurs actifs après 7 jours.

Rétention S4

40% des utilisateurs retenus après 4 semaines.

NPS (Net Promoter Score)

NPS supérieur à 50, indiquant une forte satisfaction.

Made with **GAMMA**

4. Parcours Utilisateur (MVP)

Timeline du parcours :

01 02 03

Inscription Matching Chat

Création profil et compétences Découverte de partenaires compatibles Premier contact et négociation

04

Session Avis

Échange de compétences planifié Évaluation mutuelle post-session

Écran UI exemple :

Points de friction adressés :

Confiance

Qualité

Simplicité

5. Architecture Microservices

Schéma architectural

Tableau des services

Authentification	Gestion accès & JWT	Tous services
Compétences	Matching & recherche	Mobile, Admin
Sessions	Planification	Chat, Notifications
Chat	Messagerie temps réel	Mobile
Avis	Évaluations	Sessions, Profils
Notifications	Push & Email	Tous services
Administration	Modération	Admin panel

Technologies: REST + WebSocket + Events

6. Diagramme – Architecture MVP

7. Outils & Protocoles

Frontend

- React Native/Expo
- TypeScript
- React Query
- AsyncStorage

Backend

- Node.js
- Express
- Socket.io
- Mongoose

Notifications

- Expo Notifications
- Resend
- Mailgun

Sécurité

- JWT
- bcrypt
- Zod/Yup
- Helmet
- CORS
- Rate limiting

Observabilité

- pino
- Prometheus

8. Modèle de Données & RGPD

ERD haut niveau avec entités principales

Les principales entités de notre modèle de données incluent :

- UTILISATEUR
- SESSION
- MESSAGE
- AVIS
- COMPETENCE

Exemples PK/FK/Index

- SESSION : PK(id_session), INDEX(statut, date_debut)
- MESSAGE : PK(id_message), FK(id_session), INDEX(cree_le)
- AVIS : PK(id_avis), UNIQUE(id_session, id_emetteur)

Conformité RGPD

- Minimisation des données
 Collecte et traitement uniquement des données strictement nécessaires à l'objectif défini.
- Consentement explicite
 Obtention d'un accord clair et sans équivoque des utilisateurs avant toute collecte ou traitement de données.
- Droit à l'effacement
 Mise en place de mécanismes permettant aux utilisateurs de demander la suppression de leurs données personnelles.
- Chiffrement des données sensibles
 Implémentation de mesures de sécurité robustes pour
 protéger les informations personnelles contre tout accès
 non autorisé.

9. Modèle de Conception de Données

Ce modèle met en lumière les entités métier principales et leurs relations essentielles pour l'expérience apprenant 🔂 enseignant.

10. Vue logique des entités et dépendances

Le modèle logique détaille les attributs, les clés primaires et étrangères, ainsi que les dépendances fonctionnelles, guidant l'implémentation des schémas dans les bases de données.

11. Répartition physique et stockage

Ce diagramme illustre la répartition physique des composants système et la stratégie de stockage, montrant comment les données sont distribuées et stockées dans l'infrastructure.

12. Choix des Bases de Données

Comparaison MongoDB/Redis/Elasticsearch vs PostgreSQL

MongoDB/Redis/Elasticsearch pour:

- Temps réel (chat, notifications)
- Recherche avancée (compétences)
- Flexibilité des schémas

3 critères de choix :

1 Latence <100ms pour temps réel

- 2 Cohérence
 - Forte pour paiements, éventuelle pour social

PostgreSQL pour:

- Transactions critiques (paiements)
- Cohérence ACID
- Intégrité référentielle

3 Coût

Optimisation ressources selon usage

13. Cluster & Haute Disponibilité

Stratégies de Haute Disponibilité

MongoDB (Domaine Social)

Stratégie Actif-Actif pour une performance et une disponibilité élevées dans un environnement distribué.

- **Configuration**: Sharding pour la scalabilité horizontale et Replica Sets pour la redondance.
- Write Concerns:
 - w:1 pour les messages (faible latence privilégiée).
 - majority pour les sessions (haute cohérence privilégiée).
- Élections automatiques : Assurent la continuité du service en cas de défaillance du nœud primaire.

PostgreSQL (Domaine Paiements)

Stratégie Actif-Passif pour garantir la cohérence ACID et l'intégrité des données transactionnelles.

- Configuration :
 - Primaire + Standby Synchrone (haute disponibilité locale).
 - DR Asynchrone (Site de Reprise) pour la résilience régionale.
- Récupération: WAL (Write-Ahead Log) et PITR (Point-In-Time Recovery) pour une récupération robuste des données.
- Bascule automatique: Patroni pour la gestion et la bascule automatique vers le Standby en cas de problème sur le Primaire.

SLA Cibles (RPO/RTO)

MongoDB

• **RPO**: ≤ 5 minutes

• **RTO**: ≤ 10 minutes

PostgreSQL

• **RPO**: \approx 0 (pour le standby synchrone)

• RTO: ≤ 2 minutes

Gestion des Défaillances de Nœud

MongoDB

Les Replica Sets gèrent automatiquement les défaillances des nœuds primaires via un processus d'élection. Le sharding assure que la perte d'un shard ne compromet pas l'ensemble des données, et les données sont distribuées et répliquées.

PostgreSQL

Patroni orchestre la détection et la promotion automatique d'un nœud standby synchrone en primaire. En cas de défaillance majeure (ex: perte de site), le DR asynchrone permet une récupération avec un RPO maîtrisé, mais avec une intervention manuelle requise.

14. Étude & choix de réplication

Comparaison des techniques de réplication :

Technique	Avantages	Limites	Usage SkillSwap
Synchrone	Cohérence forte (RPO≈0)	Latence élevée, dépend réseau	Paiements PostgreSQL (transactions critiques)
Asynchrone	Faible latence, haute capacité	RPO>0 (données récentes perdues)	Chat, profils, mise en relation (MongoDB)
Semi-synchrone	Compromis cohérence/latence	Complexité, besoin quorum	Sessions sensibles (write concern majority)
Multi-leader	Écritures locales multi-régions	Conflits possibles	Non retenu (conflits trop élevés)

Décision finale: Cohérence différenciée

MongoDB en réplication asynchrone (write concern adapté par collection) + PostgreSQL en réplication synchrone locale + DR asynchrone.

Cette approche optimise les performances selon les besoins métier tout en garantissant la cohérence des données critiques.

15. Configuration des clusters

Domaine social MongoDB — Actif–Actif (sharding + replica sets)

Sharding et Réplication

- Shards par segment fonctionnel (users+skills, sessions+messages)
- Chaque shard = replica set
 (primary + 2 secondary + arbiter optionnel)

Infrastructure Redondante

Mongos redondants, 3 config servers

Stratégies de Lecture/ Écriture

- Write concerns différenciés : w:1
 (messages), w:"majority", j:true
 (sessions/reviews)
- Read preference primary temps réel, secondary pour reporting

Paiements PostgreSQL — Actif-Passif (primaire + standby synchrone + DR)

Haute Disponibilité Locale

 Primaire et standby synchrone dans des AZ distinctes

Reprise après Désastre (DR)

 Standby DR asynchrone (autre région) + WAL archiving S3 pour PITR

Orchestration et Supervision

- Bascule orchestrée via
 HAProxy/pgbouncer + Patroni
- Monitoring du replication_lag, tests de failover trimestriels

16. Gestion des défaillances de nœud

MongoDB - Processus de récupération

01	02		03
Détection	Isolement		Continuité
Prometheus et Ops Manager (heartbeat, temps de réponse >2s)	Nœud marqué dowr routage	n, mongos cesse le	Élection nouveau primary <15s, retryable writes
04		05	
Remédiation		Post-mortem	
Runbook SRE, diagnostic, redémarrage, réi	ntégration	Analyse causes, mis	se à jour runbook

PostgreSQL - Processus de failover

01	02		
Détection	Promotion		
Patroni observe heartbeat	Réplique synchrone promue primary, HAProxy bascule		
03	04		
Notification	Restauration		
Alerte PagerDuty, message Slack, dashboards incident	Ancien primary réintégré ou isolé, DR si régional		
05	06		
Vérifications	Documentation		
Smoke tests, contrôle intégrité, inventaire transactions	Rapport panne, mise à jour runbooks, actions correctives		

17. Sécurité, Qualité & Roadmap

Sécurité

Conclusion & Prochaines Étapes

Récapitulatif des points clés

- Plateforme d'échange de compétences pair-à-pair
- Architecture microservices scalable et résiliente
- Stratégie de données hybride (MongoDB + PostgreSQL)
- Haute disponibilité et sécurité
 RGPD

Appel à l'action

- Validation du MVP avec utilisateurs pilotes
- Développement de la v1.0 sur 6 mois
- Recherche de partenaires techniques et financiers

Contact

Équipe SkillSwap

Email: contact@skillswap.fr

Prêts à révolutionner l'apprentissage collaboratif