

Blaise Tine, Ruobing Han, Hyesoon Kim **Georgia Tech**

Outline

- Motivations
- Vortex GPU Platform
- Compiler Support
- Driver Support
- Software Stack
- Simulation Stack
- Debugging Stack
- The Future of OpenGPU

Motivations

Conventional GPU Architecture Research

- Focus on cycle-level simulation
- ISAs are proprietary
- No Full-system open-source GPU

The true cost of open-GPU research

- RTL is a smaller challenge
- An ISA extension is costly
- Compiler changes
- Software support
- Simulation support
- Debugging support

Motivations – Four Pillars

Simulation

- Pre-RTL evaluation
- Design-space exploration

Compiler

- Enabling language support
- Device-specific optimizations

Software

- User Applications
- OS driver support

Hardware

- RTL implementation
- FPGA Prototype
- **ASIC** fabrication

Vortex GPU Platform

- Supports OpenCL API
- Current Target FPGA:
 - Stratrix10 Intel FPGA
 - 64 cores (1024 H/W threads)
 - @250 MHz, 16 GB/s BW
- Key Features
 - PCIe-based Host communication
 - High-bandwidth Cache sub-system
 - Multi-channel memory system
 - Design scaling & configuration
 - Pipeline elasticity

Vortex: Extending the RISC-V ISA for GPGPU and 3D-Graphics Research Blaise Tine, Fares Elsabbagh, Krishna Yalamarthy, Hyesoon Kim – MICRO21

ISA Extension for GPGPU

Threading model

Thread clustering: Wavefront

Memory model

- Global / shared memory
- Texture / constants memory

Register File

Per-thread registers

Thread scheduling

- Wavefront activation
- Thread mask

Flow control

Split, Join

Synchronization

Wavefront barrier

WSPAWN %waves, %PC

TMC %threads

SPLIT %pred

JOIN

BAR %bar, %waves

TEX %dst, %u, %v, %lod

Implementing Hardware Extensions for Multicore RISC-V GPUs Blaise Tine, Fares, Hyesoon Kim – CARRV22

Compiler Support

Assembler/Disassembler

- Toolchain integration
- Code dump debugging

Automating Code Translation

- Identify code pattern
- Insert new instruction
- Code restructuration
- SW falllback

Sample Applications

- Split/join insertion
- Barrier insertion
- Wspawn insertion
- Texture sampler insertion

segz r3, r1, #0

vx split r3

```
bne r3, #0, @ioin
@phead: csrr r4, #TMASK
@body:
          add r2, r2, #1
          subi r1, r1, #1
          cmp r3, r1, #0
          vx_pred r3
          bne r3, @body
```

@exit: vx tmc r4 @join: vx join

Driver Support

GPU Driver Roles

- Interface between SW and HW
- Low-level OS abstraction
 - Kernel API
 - I/O drivers
- Low-level HW abstraction
 - DRAM controller
 - PCIe controller
 - **GPIO** controller
 - JTAG controller

Software Stack - OpenCL

OpenCL Compiler

- Use POCL Compiler framework
- Added Vortex kernel runtime pass
 - Work items => Vortex threads
 - Wavefront invocations

OpenCL Runtime

- Use POCL Runtime framework
- Added new device target for Vortex
- FPGA Driver uses Intel OPAE API

Software Stack - CUDA

NVVM-IR to SPIR-IR Translation Device-independent instructions Translate with **NVVM IR** SPIR-V IR OpenCL-SPIR-V translator Device independent **Device independent** Build-in function instruction instruction Translate with NVVM-SPIR-V Meta-data selection translator SPIR-V built-in **NVVM** built-in function declaration function declaration SPIR-V to OpenCL meta-data information selectively copy Meta-data information Use POCL Compiler support (For NVVM) (For SPIR-V) Use POCL Runtime support **POCL NVVM-SPIR-V** SPIR-V-OpenCL clang LLVM execute Vortex translator translator **CUDA** OpenCL Object file **NVVM IR SPIR-V** (RISC-V GPU) source code IR (Sec. 3.2) (Sec. 3.4) (Sec. 3.5) (Sec. 3.3) link RISC-V library Supporting CUDA for an extended RISC-V GPU architecture Ruobing Han, Blaise Tine, Jaewon Lee, Jaewoong Sim, Hyesoon Kim – CARRV21 Georgia comparch

Simulation Stack

Cross-Platform Simulation

- FPGA
 - Device (Intel FPGA)
 - ASESIM (Intel ASE)
- RTL Simulation
 - RTLSIM (Processor only)
 - VLSIM (Processor + command processor)
- Cycle-Level Simulation
 - SimX
- A common driver API
 - Same application runs anywhere

Simulation Stack (2)

SimX Emulator

- Full ISA emulation
- Trace generation

SimX Timing Simulation Engine

- **Event-base**
- Communication ports
- Template abstraction

SimX Timing Simulator

- Full GPU Pipeline simulation
- High-Bandwidth Caches
- Ramulator-based Memory System

Debugging Stack

Basic console output

- No console access
- Multiple threads
- Override system calls

RISC-V Debug Extension

- Per-warp-thread registers
- Hardware support
 - Debug module
- Software support
 - Customized for GPU
- Simulation support

Proposed Solutions

Configurable toolchain

- Facilitate compiler support for new extensions
 - e.g. GCC insn syntax
- Configurable driver APIs
 - e.g. OPAE
- Configurable Software APIs
 - e.g. POCL

The Future of OpenGPU

Hardware Extensions

- 3D Graphics
- Graphics Analytics
- Ray Tracing
- Custom Extension

Software Support

- CUDA Native Support
- Vulkan Graphics API

Cross-platform Synthesis

- Altera, Xilinx
- ASIC

SoC Integration

• ESP – Open SoC

Thank You!

Project Website vortex.cc.gatech.edu

