Covid-19 Vaccines

Russell Almond

11/18/2020

Good News! In November, both Pfizer and Moderna announce Phase 3 Vaccine Trials with promising results. With over 30,000 participants in each study they reported the following data.

```
covidVaccines <- tibble(
  Treatment=c("Placebo","Vaccine"),
  Pfizer=c(90,5),ModernaAll=c(95,5),
  ModernaSevere=c(11,0),
  N=c(15000,15000))
covidVaccines.N <- 15000
kable(covidVaccines)</pre>
```

Treatment	Pfizer	ModernaAll	ModernaSevere	N
Placebo	90	95	11	15000
Vaccine	5	5	0	15000

Measures of Effectiveness

We start with a cross-tab

Treatment	Sick	Healthy	Total
Placebo	SP	HP	NP
Vaccine	SV	HV	NV
Total	NS	NH	N

Odds of getting sick

Placebo: \$ SP/HP \$ Vaccine: \$ SV/HV \$

Cross Product (Odds) Ratio

$$OR = \frac{SP/HP}{SV/HV}$$

How much does your odds of getting sick increase if you get the placebo instead of the vaccine.

Risk Ratio

$$RR = \frac{SP/NP}{SV/NV}$$

How much does your probiliby of getting sick increase if you get the placebo instead of the vaccine.

Vaccine Effectiveness

$$VE = 100(1 - \frac{1}{RR})$$

Chi-square test

Null hypothesis is that getting the disease is independent of the vaccine. In other words, OR = RR = 1.

$$SV/NV = SP/NP$$

Large chi-squared value incidates that cross product rate is not 1 (but doesn't tell if placebo or vaccine is better!

Z-score test

Another way to work with these data is to calculate probabilities of infection for each group and the standard errors. Then can use the z-test to compare.

$$p_V = p(S|V) = SV/NV \qquad SE(p_V) = \sqrt{p_V(1 - p_V)/NV}$$

$$p_P = p(S|P) = SP/NP \qquad SE(p_P) = \sqrt{p_P(1 - p_P)/NP}$$

$$z = \frac{p_P - p_V}{\sqrt{SE(p_V)^2 + SE(p_P)^2}}$$

Pfizer Vaccine

There were around 30,000 volunteers in the Phase 3 trials; 15,000 in each arm.

```
covidVaccines %>%
  mutate(p.Pfizer=Pfizer/N) %>%
  mutate(s.Pfizer=sqrt(p.Pfizer*(1-p.Pfizer)/N)) ->
  covidVaccines

select(covidVaccines, Treatment, contains("Pfizer")) %>% kable(digits=c(4,5))
```

Treatment	Pfizer	p.Pfizer	s.Pfizer
Placebo	90	6e-03	0.00063
Vaccine	5	3e-04	0.00015

ggplot(covidVaccines,aes(x=Treatment,y=p.Pfizer,ymin=p.Pfizer-2*s.Pfizer,ymax=p.Pfizer+2*s.Pfizer)) + g

X^2 – Pfizer

In SPSS this is done by producing a cross-tab. We don't have the number of negative cases in each arm of the study, but up to rounding error it is just the sample size, so we will use that.

Diagnosis * Vaccine Crosstabulation

Vaccine							
		Placebo		Placebo Active		Total	
		N	%	N	%	N	%
Diagnosis	No	15000a	99.4%	15000ь	100.0%	30000	99.7%
	Yes	90a	0.6%	5ь	0.0%	95	0.3%
Total		15090	100.0%	15005	100.0%	30095	100.0%

Each subscript letter denotes a subset of Vaccine categories whose column proportions do not differ significantly from each other at the .05 level.

Figure 1: Pfizer Cross Tab

```
chisq.test(as.matrix(select(covidVaccines,Pfizer,N)))
```

##

Pearson's Chi-squared test with Yates' continuity correction

##

Chi-Square Tests

	Value	df	Asymptotic Significance (2-sided)	Exact Sig. (2- sided)	Exact Sig. (1- sided)
Pearson Chi-Square	75.813 ^a	1	.000		
Continuity Correction ^b	74.034	1	.000		
Likelihood Ratio	92.281	1	.000		
Fisher's Exact Test				.000	.000
Linear-by-Linear Association	75.811	1	.000		
N of Valid Cases	30095				

- a. 0 cells (0.0%) have expected count less than 5. The minimum expected count is 47.37.
- b. Computed only for a 2x2 table

Figure 2: Phizer X2

Moderna Vaccine – All Cases

Risk Ratio: 18 Vaccine Effectiveness: 94.4

There were around 30,000 volunteers in the Phase 3 trials; 15,000 in each arm.

```
covidVaccines %>%
  mutate(p.ModernaAll=ModernaAll/N) %>%
  mutate(s.ModernaAll=sqrt(p.ModernaAll*(1-p.ModernaAll)/N)) ->
  covidVaccines

select(covidVaccines,Treatment,contains("ModernaAll")) %>% kable(digits=c(4,5))
```

Risk Estimate

		95% Confidence Interval		
	Value	Lower	Upper	
Odds Ratio for Vaccine (Placebo / Active)	.056	.023	.137	
For cohort Diagnosis = No	.994	.993	.996	
For cohort Diagnosis = Yes	17.899	7.275	44.035	
N of Valid Cases	30095			

Figure 3: Pfizer Risk Ratio

Treatment	ModernaAll	p.ModernaAll	s.ModernaAll
Placebo	95	0.0063	0.00065
Vaccine	5	0.0003	0.00015

ggplot(covidVaccines,aes(x=Treatment,y=p.ModernaAll,ymin=p.ModernaAll-2*s.ModernaAll,ymax=p.ModernaAll+

X^2 – Moderna (All Cases)

In SPSS this is done by producing a cross-tab. We don't have the number of negative cases in each arm of the study, but up to rounding error it is just the sample size, so we will use that.

Diagnosis * Vaccine Crosstabulation

Vaccine							
		Plac	Placebo Active		Total		
		N	%	N	%	N	%
Diagnosis	No	15000a	99.4%	15000ь	100.0%	30000	99.7%
	Yes	95a	0.6%	5ь	0.0%	100	0.3%
Total		15095	100.0%	15005	100.0%	30100	100.0%

Each subscript letter denotes a subset of Vaccine categories whose column proportions do not differ significantly from each other at the .05 level.

Figure 4: Moderna All Cases Cross Tab

chisq.test(as.matrix(select(covidVaccines,ModernaAll,N)))

##

Pearson's Chi-squared test with Yates' continuity correction

Chi-Square Tests

	Value	df	Asymptotic Significance (2-sided)	Exact Sig. (2- sided)	Exact Sig. (1- sided)
Pearson Chi-Square	80.732 ^a	1	.000		
Continuity Correction ^b	78.942	1	.000		
Likelihood Ratio	98.657	1	.000		
Fisher's Exact Test				.000	.000
Linear-by-Linear Association	80.729	1	.000		
N of Valid Cases	30100				

- a. 0 cells (.0%) have expected count less than 5. The minimum expected count is 49.85.
- b. Computed only for a 2x2 table

Figure 5: Moderna All Cases X2

Moderna Vaccine – Severe Cases

Risk Ratio: 19 Vaccine Effectiveness: 94.7

```
covidVaccines %>%
  mutate(p.ModernaSevere=ModernaSevere/N) %>%
  mutate(s.ModernaSevere=sqrt(p.ModernaSevere*(1-p.ModernaSevere)/N)) ->
  covidVaccines

select(covidVaccines, Treatment, contains("ModernaSevere")) %>% kable(digits=c(4,5))
```

Risk Estimate

		95% Confidence Interval		
	Value	Lower	Upper	
Odds Ratio for Vaccine (Placebo / Active)	.053	.021	.129	
For cohort Diagnosis = No	.994	.993	.995	
For cohort Diagnosis = Yes	18.887	7.686	46.408	
N of Valid Cases	30100			

Figure 6: Moderna All Cases Risk Ratio

Treatment	ModernaSevere	p.ModernaSevere	s.ModernaSevere
Placebo	11	7e-04	0.00022
Vaccine	0	0e+00	0.00000

 ${\tt ggplot(covidVaccines, aes(x=Treatment, y=p.ModernaSevere, ymin=p.ModernaSevere-2*s.ModernaSevere, ymax=p.ModernaSevere, ymax=p.ModernaSevere-2*s.Modern$


```
### X^2 - Moderna (All Cases)
```

In SPSS this is done by producing a cross-tab. We don't have the number of negative cases in each arm of the study, but up to rounding error it is just the sample size, so we will use that.

Diagnosis * V	/accine	Crossta	bulation
---------------	---------	---------	----------

Vaccine							
		Placebo		Active		Total	
		N	%	N	%	N	%
Diagnosis	No	15000a	99.9%	15000ь	100.0%	30000	100.0%
	Yes	11a	0.1%	Оь	0.0%	11	0.0%
Total		15011	100.0%	15000	100.0%	30011	100.0%

Each subscript letter denotes a subset of Vaccine categories whose column proportions do not differ significantly from each other at the .05 level.

Figure 7: Moderna Severe Cases Cross Tab

```
chisq.test(as.matrix(select(covidVaccines, ModernaSevere, N)))
##
##
    Pearson's Chi-squared test with Yates' continuity correction
##
## data: as.matrix(select(covidVaccines, ModernaSevere, N))
## X-squared = 9.0869, df = 1, p-value = 0.002574
p <- pull(covidVaccines,p.ModernaSevere)</pre>
s <- pull(covidVaccines,s.ModernaSevere)</pre>
z \leftarrow (p[1]-p[2])/sqrt(sum(s^2))
pz <- 1-pnorm(z)
cat("Z = ",round(z,2), "p = ",round(pz,3),"\n")
## Z = 3.32 p = 0
p <- pull(covidVaccines,p.ModernaSevere)</pre>
RR \leftarrow p[1]/p[2]
VE <- 100*(1-1/RR)
cat("Risk Ratio: ",round(RR,2),
    "Vaccine Effectiveness: ",round(VE,1),"\n")
```

Risk Ratio: Inf Vaccine Effectiveness: 100

Yikes! The estimate for the chances of getting Severe Covid-19 with the virus is 0. Divide by zero error! But probability zero means impossible. That is not right!

Continuity Correction

Fix this by adding a conditinuity correction. We add 1/2 to all of the entries in the table. In particular, this makes the estimated rate for getting severe COVID-19 $\frac{1}{2}/(N+1)$.

Chi-Square Tests

	Value	df	Asymptotic Significance (2-sided)	Exact Sig. (2- sided)	Exact Sig. (1- sided)
Pearson Chi-Square	10.996ª	1	.001		
Continuity Correction ^b	9.087	1	.003		
Likelihood Ratio	15.245	1	.000		
Fisher's Exact Test				.001	.000
Linear-by-Linear Association	10.996	1	.001		
N of Valid Cases	30011				

- a. 0 cells (.0%) have expected count less than 5. The minimum expected count is 5.50.
- b. Computed only for a 2x2 table

Figure 8: Moderna Severe Cases X2

```
covidVaccines %>%
  mutate(p.ModernaSevere=(ModernaSevere+.5)/(N+1)) %>%
  mutate(s.ModernaSevere=sqrt(p.ModernaSevere*(1-p.ModernaSevere)/(N+1))) ->
  covidVaccines

select(covidVaccines,Treatment,contains("ModernaSevere")) %>% kable(digits=c(5,5))
```

Treatment	ModernaSevere	p.ModernaSevere	s.ModernaSevere
Placebo	11	0.00077	0.00023
Vaccine	0	0.00003	0.00005

 ${\tt ggplot(covidVaccines, aes(x=Treatment, y=p.ModernaSevere, ymin=p.ModernaSevere-2*s.ModernaSevere, ymax=p.ModernaSevere)}.$

Risk Ratio: 23 Vaccine Effectiveness: 95.7

References:

- StatNews article on Pfizer vaccine: https://www.statnews.com/2020/11/09/covid-19-vaccine-from-pfizer-and-biontech-is-strongly-effective-early-data-from-large-trial-indicate/
- Official Protocol document from Pfizer: https://www.pfizer.com/science/coronavirus
- Pfizer Press Release: https://www.pfizer.com/news/press-release/press-release-detail/pfizer-and-biontech-announce-vaccine-candidate-against
- Moderna Press Release: https://investors.modernatx.com/news-releases/news-release-details/modernas-covid-19-vaccine-candidate-meets-its-primary-efficacy
- \bullet Entries from Andrew Gelman's Blog: https://statmodeling.stat.columbia.edu/2020/11/16/estimating-efficacy-of-the-vaccine-from-95-true-infections/

https://statmodeling.stat.columbia.edu/2020/11/11/the-pfizer-biontech-vaccine-may-be-a-lot-more-effective-than-you-think/

• How to use SPSS to obtain Odd Ratio and Relative Risk http://brahms.emu.edu.tr/icetin/spss8-RR-OR.pdf