# Capstone Project on Customer Churn Final Report

Nandha Keshore Utti

**PG-DSBA** Online

March' 22

Date: 19/03/2023

# **Contents**

| Introduction     Brief introduction about the problem statement and the need of solving it    |   |
|-----------------------------------------------------------------------------------------------|---|
| 2. EDA - Data Cleaning and Pre-processing                                                     | ) |
| - Need for variable transformation (if any)                                                   |   |
| 3. EDA - Data visualization and Business implications                                         |   |
| How your analysis is impacting the business?                                                  |   |
| 4. Model building                                                                             | 5 |
| - Clear on why was a particular model(s) chosen. 25 - Effort to improve model performance. 41 | 5 |
| 5. Model validation                                                                           |   |
| 6. Final interpretation / recommendation 5                                                    | 7 |
| - Detailed recommendations for the management/client based on the analysis done 5             |   |

# List of figures

| Fig.1 – Dataset columns' list                                                |    |
|------------------------------------------------------------------------------|----|
| Fig.3 – 'Account_segment' variable categories list after anomaly treatment   | 09 |
|                                                                              | 09 |
| Fig.4 – 'Gender' variable categories list before anomaly treatment           |    |
| Fig.5 – 'Gender' variable categories list after anomaly treatment            |    |
| Fig.6 – Hist plots of all numeric variables                                  |    |
| Fig.7 – Count plot of all categorical variables                              | 13 |
| Fig.8 – Count plots of all discrete variables                                | 14 |
| Fig.9 – Box plots before outlier treatment                                   | 15 |
| Fig. 10 – Box plots after outlier treatment                                  | 16 |
| Fig.11 – Pair plot                                                           |    |
| Fig.12 – Heat map                                                            |    |
| Fig.13 – Churn vs Account_segment plot                                       | 19 |
| Fig.14 – Churn vs CC_Agent_score                                             |    |
| Fig.15 – Churn vs City_Tier                                                  | 20 |
| Fig.16 – Churn vs Gender & Marital status                                    | 20 |
| Fig.17 – Churn vs Account_segment & CC_Contacted_LY                          |    |
| Fig.18 – Revenue vs Account_user_count                                       |    |
| Fig.19 – Account_segment vs Tenure                                           |    |
| Fig.20 – Account_segment vs Complaint_ly                                     |    |
| Fig.21 – Churn vs Account_segment & Coupon_used_for_payment                  |    |
| Fig.22 – Churn variable ratios                                               |    |
| Fig. 23 – Train and Test data set shapes before SMOTE                        |    |
| Fig. 25 — Train and Test data set split percentages after splitting          |    |
| Fig. 26 Target varieble 'Churn' enlit ratio after SMOTE                      |    |
| Fig. 27 CART model ofter fitting on the train date                           |    |
| Fig.27 – CART model after fitting on the train data                          | 27 |
| Fig.29 – ROC curve of train data set from CART model                         | 28 |
| Fig.30 – Confusion matrix of test data set from CART model                   |    |
| Fig.31 – ROC curve of test data set from CART model                          |    |
| Fig.32 – Random-Forest model after fitting on the train data                 |    |
| Fig.33 – Confusion matrix of train data set from RF model                    |    |
| Fig.34 – ROC curve of train data set from RF model                           |    |
| Fig.35 – Confusion matrix of test data set from RF model                     |    |
| Fig.36 – ROC curve of test data set from RF model                            |    |
| Fig.37 – Logistic Regression model after fitting on the train data           |    |
| Fig. 38 – Confusion matrix of train data set from Logistic Regression model. |    |
| Fig.39 – ROC curve of train data set from Logistic Regression model          |    |
| Fig. 40 – Confusion matrix of test data set from Logistic Regression model   |    |
| Fig.41 – ROC curve of test data set from Logistic Regression model           |    |
| Fig. 42 – Statsmodel-Logistic Regression model parameters before removing    |    |
| variables                                                                    |    |
| Fig. 43 – Statsmodel-Logistic Regression model parameters after removing in  | -  |
| variables                                                                    | 37 |

| Fig.44 – LDA model after fitting on the train data                                      |
|-----------------------------------------------------------------------------------------|
|                                                                                         |
| Fig. 45 – Confusion matrix of train data set from LDA model                             |
| Fig. 46 – ROC curve of train data set from LDA model                                    |
| Fig.47 – Confusion matrix of test data set from LDA model                               |
| Fig.48 – ROC curve of test data set from LDA model                                      |
| Fig.49 – KNN model after fitting on the train data                                      |
| Fig.50 – Confusion matrix of train data set from KNN model                              |
| Fig.51 – ROC curve of train data set from KNN model                                     |
| Fig.52 – Confusion matrix of test data set from KNN model                               |
| Fig.53 – ROC curve of test data set from KNN model                                      |
| Fig.54 – GridSearchCV CART model after fitting on the train data 41                     |
| Fig.55 – Best parameters of GridSearchCV CART model                                     |
| Fig. 56 – Confusion matrix of train data set from GridSearchCV CART model 42            |
| Fig.57 – ROC curve of train data set from GridSearchCV CART model                       |
| Fig.58 – Confusion matrix of test data set from GridSearchCV CART model 43              |
| Fig.59 – ROC curve of test data set from GridSearchCV CART model 43                     |
| Fig. 60 – GridSearchCV RF model after fitting on the train data                         |
| Fig.61 – Best parameters of GridSearchCV RF model                                       |
| Fig.62 – Confusion matrix of train data set from GridSearchCV RF model 44               |
| Fig. 63 – ROC curve of train data set from GridSearchCV RF model                        |
| Fig.64 – Confusion matrix of test data set from GridSearchCV RF model 45                |
| Fig. 65 – ROC curve of test data set from GridSearchCV RF model                         |
| Fig. 66 – GridSearchCV KNN model after fitting on the train data                        |
| Fig. 67 – Best parameters of GridSearchCV KNN model                                     |
| Fig. 68 – Confusion matrix of train data set from GridSearchCV KNN model 46             |
| Fig. 69 – ROC curve of train data set from GridSearchCV KNN model                       |
| Fig. 70 – Confusion matrix of test data set from GridSearchCV KNN model 47              |
| Fig.71 – ROC curve of test data set from GridSearchCV KNN model                         |
| Fig.72 – Bagging Classifier model after fitting on the train data                       |
| Fig.73 – Confusion matrix of train data set from Bagging Classifier model 49            |
| Fig.74 – ROC curve of train data set from Bagging Classifier model                      |
| Fig.75 – Confusion matrix of test data set from Bagging Classifier model                |
| Fig.76 – ROC curve of test data set from KNN model                                      |
| Fig.77 – Adaboost Classifier model after fitting on the train data                      |
| Fig. 78 – Confusion matrix of train data set from Adaboost Classifier model 51          |
| <del>-</del>                                                                            |
| Fig. 79 – ROC curve of train data set from Adaboost Classifier model                    |
| Fig. 80 – Confusion matrix of test data set from Adaboost Classifier model 52           |
| Fig.81 – ROC curve of test data set from Adaboost model                                 |
| Fig. 82 – Gradient Boosting Classifier model after fitting on the train data            |
| Fig. 83 – Confusion matrix of train data set from Gradient Boosting Classifier model 53 |
| Fig. 84 – ROC curve of train data set from Gradient Boosting Classifier model           |
| Fig. 85 – Confusion matrix of test data set from Gradient Boosting Classifier model 54  |
| Fig.86 – ROC curve of test data set from Gradient Boosting model 54                     |
| List of tables                                                                          |
| T-11- 1 D-4- form                                                                       |
| Table 1 – Data frame with first sample of 5 rows                                        |
| Table.2 – Dataset information                                                           |

# **Customer Churn**

### 1. Introduction

### **Defining problem statement:**

An e-Commerce company provider is facing a lot of competition in the current market and it has become a challenge to retain the existing customers in the current situation. Hence, the company wants to develop a model through which they can do churn prediction of the accounts and provide segmented offers to the potential churners. In this company, account churn is a major thing because 1 account can have multiple customers. hence by losing one account the company might be losing more than one customer.

You have been assigned to develop a churn prediction model for the company and provide business recommendations on the campaign.

Your campaign suggestion should be unique and be very clear on the campaign offer because your recommendation will go through the revenue assurance team. If they find that you are giving a lot of free (or subsidized) stuff thereby making a loss to the company; they are not going to approve your recommendation. Hence be very careful while providing campaign recommendation.

### **Need of the study/project:**

- Churn analysis is the evaluation of a company's customer loss rate in order to reduce
  it and it can be minimized by assessing your product and how people react to it on
  various factors.
- It's a fact acquiring new customers is a costly affair but losing the existing customers will cost even more for the business or the organization.
- The competition in any market is on a rise and this encourages organizations to focus not only on new business but also on retaining existing customers.
- A customer's intention to stop using a particular product/service may always be a decision formed over time. There are various factors that lead to this decision and it's important for organizations to understand each and every factor so that customers can be convinced to stay and keep making purchases.
- So, there is a need to under customers behavioural analysis by understanding various
  factor considering into account such as their buying pattern, revenue generated by the
  customers, tenure of the customer, activity of the customer towards the purchases etc.
- And this can be done by constantly conducting customer satisfaction surveys and analysing the received feedback.

Ref: https://www.paddle.com/resources/customer-churn-analysis

### **Understanding business/social opportunity:**

• Reducing Risk of the Business: Analysis of customer churn prediction and retaining them is more important than acquiring a new customer in business perspective. Customer churn indicates a direct loss to the business. Selling a new product/service to an existing customer will be much easier than selling it to a new customer. Thus, customer churn can be harmful to the growth of the business.

- *Gain information for improvement:* Dissatisfied customers are a source of constructive feedback for an organization's betterment. An organization will gain information about aspects that need to be improved while implementing strategies to prevent customer churn.
- *Understand the target market:* Constantly working towards the reduction of customer churn will uncover layers of the market which were otherwise unknown. Survey focus groups and other such activities can be carried out to know the target market in a better manner and in turn reduce customer churn.
- Build a competitive advantage in the market: In a world where there is constant
  competition to attain new customers and retain existing ones, having an edge over the
  competition is important. In the process of reducing customer churn, not only do
  customers know unknown aspects of a business but also build a competitive
  advantage over the others in the market.

Ref: https://www.questionpro.com/blog/customer-churn/

### 2. EDA - Data Cleaning and Pre-processing

### Understanding how data was collected in terms of time, frequency and methodology:

- If we look at the feature 'rev\_growth\_yoy', i.e., revenue growth percentage of the account (last 12 months vs last 24 to 13 month), we can say data collected is of ~ 2 years.
- Data collection is mainly focused on customers' personal data, revenue generated by the customers of the account, feedback from the customers.
- Customers' accounts also segmented, can be performed some cluster analysis if required based on the available data.

### Visual inspection of data (rows, columns, descriptive details):

Data frame with sample of first 5 rows:

|   | AccountID | Churn | Tenure | City_Tier | CC_Contacted_LY | Payment        | Gender | Service_Score | Account_user_count | account_segment | CC_Agent_Score |
|---|-----------|-------|--------|-----------|-----------------|----------------|--------|---------------|--------------------|-----------------|----------------|
| ( | 20000     | 1     | 4      | 3.0       | 6.0             | Debit<br>Card  | Female | 3.0           | 3                  | Super           | 2.0            |
|   | 20001     | 1     | 0      | 1.0       | 8.0             | UPI            | Male   | 3.0           | 4                  | Regular Plus    | 3.0            |
| 1 | 20002     | 1     | 0      | 1.0       | 30.0            | Debit<br>Card  | Male   | 2.0           | 4                  | Regular Plus    | 3.0            |
| ; | 20003     | 1     | 0      | 3.0       | 15.0            | Debit<br>Card  | Male   | 2.0           | 4                  | Super           | 5.0            |
| 4 | 20004     | 1     | 0      | 1.0       | 12.0            | Credit<br>Card | Male   | 2.0           | 3                  | Regular Plus    | 5.0            |

Table. 01

• Data set contains 11260 records and 19 features.

### Data set columns' list:

Fig. 01

 No discrepancies found in columns' names, so renaming of the columns is not required.

### **Understanding of attributes (variable info):**

### Dataset information:

- Given data set contains 12 object, 7 numerical variables.
- Some of the numerical variables should be shown as numerical variable, but it is showing as object type.

```
e.g., 'rev_growth_yoy',
'cashback'
```

Table, 02

Account TD

### Data set null information:

- Null values are present in all the variables except 'AccountID', 'Churn', 'rev\_growth\_yoy', 'coupon\_used\_for\_payment'.
- There are no duplicated records in the data set.

| AccountID               | 9   |
|-------------------------|-----|
| Churn                   | 0   |
| Tenure                  | 102 |
| City_Tier               | 112 |
| CC_Contacted_LY         | 102 |
| Payment                 | 109 |
| Gender                  | 108 |
| Service_Score           | 98  |
| Account_user_count      | 112 |
| account_segment         | 97  |
| CC_Agent_Score          | 116 |
| Marital_Status          | 212 |
| rev_per_month           | 102 |
| Complain_ly             | 357 |
| rev_growth_yoy          | 0   |
| coupon_used_for_payment | 0   |
| Day_Since_CC_connect    | 357 |
| cashback                | 471 |
| Login_device            | 221 |
| dtype: int64            |     |

### Removal of unwanted variables:

• 'AccountID' is not a significant variable for the model building.

Sample Data frame after dropping 'AccountID' variable:

|   | Churn | Tenure | City_Tier | CC_Contacted_LY | Payment        | Gender | Service_Score | Account_user_count | account_segment | CC_Agent_Score | Marital_Status |
|---|-------|--------|-----------|-----------------|----------------|--------|---------------|--------------------|-----------------|----------------|----------------|
| 0 | 1     | 4      | 3.0       | 6.0             | Debit<br>Card  | Female | 3.0           | 3                  | Super           | 2.0            | Single         |
| 1 | 1     | 0      | 1.0       | 8.0             | UPI            | Male   | 3.0           | 4                  | Regular +       | 3.0            | Single         |
| 2 | 1     | 0      | 1.0       | 30.0            | Debit<br>Card  | Male   | 2.0           | 4                  | Regular +       | 3.0            | Single         |
| 3 | 1     | 0      | 3.0       | 15.0            | Debit<br>Card  | Male   | 2.0           | 4                  | Super           | 5.0            | Single         |
| 4 | 1     | 0      | 1.0       | 12.0            | Credit<br>Card | Male   | 2.0           | 3                  | Regular +       | 5.0            | Single         |

Table. 04

• Now, Data set is of 11260 records and 18 features.

### **Missing Value treatment:**

- All the variables null values are treated by using mode method except for the variable 'cashback'.
- As 'cashback' variable is continuous in nature, its nulls are treated by mean method. Remaining all the variables have nulls are more of categorical in nature, so these are treated by mode method.

Data set variables after treating null values:

| Churn                   | 0 |
|-------------------------|---|
| Tenure                  | 0 |
| City_Tier               | 0 |
| CC_Contacted_LY         | 0 |
| Payment                 | 0 |
| Gender                  | 0 |
| Service_Score           | 0 |
| Account_user_count      | 0 |
| account_segment         | 0 |
| CC_Agent_Score          | 0 |
| Marital_Status          | 0 |
| rev_per_month           | 0 |
| Complain_ly             | 0 |
| rev_growth_yoy          | 0 |
| coupon_used_for_payment | 0 |
| Day_Since_CC_connect    | 0 |
| cashback                | 0 |
| Login_device            | 0 |
| dtype: int64            |   |

Table. 05

### **Anomalies treatment:**

• Some variables have some special characters in their entries like shown below:

Tenure: #

Gender: F for Female and M for Male

Account\_user\_count: @ Account\_segment: 'Regular Plus & Regular +'; 'Super Plus & Super +' rev per month: + rev\_growth\_yoy: \$ coupon\_used\_for\_payment: #, \$, \* Days Since CC connect: \$ Cashback: \$

Login\_Device: &&&&

- 'Tenure', 'Account\_user\_count', 'rev\_per\_month', 'rev\_growth\_yoy', 'coupon\_used\_for\_payment', 'Days\_Since\_CC\_connect', 'cashback', 'Login\_Device' variables have special characters. So, anomalies in these variables are treated by using mode method.
- 'Account segment' has two different entries for the same kind of segment i.e., for 'Regular + and Super +' like shown below:

```
array(['Super', 'Regular Plus', 'Regular', 'HNI', 'Regular +', nan,
       'Super Plus', 'Super +'], dtype=object)
                             Fig. 02
```

These anomalies are treated by replacing them with the one name like shown below:

array(['Super', 'Regular +', 'Regular', 'HNI', 'Super +'], dtype=object) Fig. 
$$03$$

• 'Gender' also has two different entries for the same kind of gender i.e., F for Female and M for Male.

These anomalies are treated by replacing them with the one name like shown below:

Data types after treating the anomalies:

• It can be seen that data types showing correctly after treating the anomalies.

| Churn                   | int64   |
|-------------------------|---------|
| Tenure                  | float64 |
| City_Tier               | float64 |
| CC_Contacted_LY         | float64 |
| Payment                 | object  |
| Gender                  | object  |
| Service_Score           | float64 |
| Account_user_count      | int64   |
| account_segment         | object  |
| CC_Agent_Score          | float64 |
| Marital_Status          | object  |
| rev_per_month           | float64 |
| Complain_ly             | float64 |
| rev_growth_yoy          | float64 |
| coupon_used_for_payment | float64 |
| Day_Since_CC_connect    | float64 |
| cashback                | float64 |
| Login_device            | object  |
| dtype: object           |         |
|                         |         |

Table. 06

# 3. EDA – Data Visualization and Business Implication

### **Univariate analysis:**

Hist plots of all the numerical variables:



Fig. 06

- None of the variables are symmetrical in nature.
- Remaining all the variables have some skewness in their distributions.
- Let us check the distribution clearly by checking skewness values:

Tenure 3.901903
CC\_Contacted\_LY 1.436919
rev\_per\_month 9.412240
rev\_growth\_yoy 0.752886
Day\_Since\_CC\_connect 1.293829
coupon\_used\_for\_payment 2.575680
cashback 8.966070

dtype: float64

Table. 07

### Interpretations:

- Normally distributed variables: None
- Highly right skewed variables: 'Tenure', 'rev\_per\_month', 'cashback'
- Moderately right skewed variables: 'CC\_Contacted\_LY', 'rev\_growth\_yoy', 'Day\_since\_CC\_connect', 'coupon\_used\_for\_payment'

### Count plots of all categorical variables:

- Customers are most preferred mode of payment is through debit and credit cards, least by COD.
- Majority of the accounts primely owned by males.
- 'Super' and 'Regular +' account segments customers are the most valuable.
- Majority of account owner's marital status is married.
- Customers are preferring mobile login over computer logins.



Fig. 07

### Count plots of all discrete categorical variables:

- Non-churn customers are on majority.
- Customers from Tier-01 city are on majority.
- Customers of the account have given average rating i.e., 3 towards the company's service and same is the trend for towards customer service team also.
- Majority of the accounts have 4 customers users per the account.
- All the customers have not raised complaints towards the services.



### **Outlier treatment:**

Box plots before outlier treatment (for continuous numerical variables only):



Fig. 09

- All the variables have outliers except 'rev\_growth\_yoy'.
- Let us treat the outlier by using IQR method.

# Box plots after outlier treatment (for continuous numerical variables only):



Fig. 10

• Outliers treated successfully.

# **Bivariate analysis:**

# Pair plot:



Fig. 11

• There are no correlations and patterns observed among the variables.

### Heatmap:



Fig. 12

- All the variables have very poor correlation among them.
- 0.42 is the highest correlation observed between 'cashback' & 'Tenure'

# **Multivariate Analysis:**

Let us check the interaction b/w some important variables visually.

### Churn vs Account\_segment:



Fig. 13

• Customers are churning more from 'Regular +' account segment.

# Churn vs CC\_Agent\_score:



Fig. 14

• It is interesting to see that customers given 5 rating to customer care service are churning more compared to customers who given less rating.

### Churn vs City\_Tier:



Fig. 15

• Customers are churning more from Tier-1 & 3 cities.

### Churn vs Gender & Marital status:



Fig. 16

- Customers with single marital status are churning more compared to married customers.
- But, married customers are the majority on non-churners side.

Churn vs Account\_segment & CC\_Contacted\_LY:



Fig. 17

• It looks like 'Regular +' segment customers are dissatisfied even though they contacted the customer care more times than others.

Revenue vs Account\_user\_count:



Fig. 18

- Accounts having 4 users are giving the highest revenue compared to other accounts.
- Revenue is low for the accounts even with 6 users.

### Account\_segment vs Tenure:



Fig. 19

• 'Super' and 'Regular +' segment accounts have long relationship with the company compared to other segments.

### Account\_segment vs Complaint\_ly:



Fig. 20

- 'Super' and 'Regular +' segments account customers have raised the most complaints compared to others.
- 'Super' and 'Regular +' segments account customers are the most active customers both in terms of the generation of the revenue and raising complains to the company.

### Churn vs Account\_segment & Coupon\_used\_for\_payment:



Fig. 21

• Being using most coupons for the payment, 'Regular +' customers are churning more compared to others.

### **Business insights:**

Clustering and its business insights:

- Clustering done by k-Means
- 3 main clusters identified by WSS plot
- We divide these clusters based on 'Tenure':

Cluster-1: ~16 months (Old customers)

Cluster-2: ~9 months (Old to New customers)

Cluster-3: ~6 months (New customers)

- Old customers are gained more cashback compared to other segment customers.
- Old customers given good rating and satisfied towards the company services.
- Old customers only contributing more revenue per month to the company on an average compared to the other segment customers.

Data imbalance and its business context:

- We can have 3 degrees of data imbalance: Mild (20–40%), Moderate (1–20%), and Extreme (<1%)
- Let us check for the given data set's target variable data balance. Ratio of churn (1) and non-churn (0) are as shown below:

0 0.83 1 0.17 Name: Churn, dtype: float64 Fig. 22

• We have 83:17 ratio of data. So, the data is moderately imbalanced.

- Because of this, we lose potentially important information about churners required for the model building.
- Models which built may have accuracy issues which in turn will affect the prediction of churn.
- Incorrect predictions may create loss of the customers to the company which in turn will highly affect the revenue and profits.
- Ideal balanced dataset should be of 70:30 or at least 75:25.
- So, during model building if our current 83:17 ratio creates low accuracy scores. We
  can do over sample the target variable by using SMOTE technique and accuracy
  scores, prediction power of the model can be increased.

### Other business insights:

### Sample Data set description table:

|       | Churn        | Tenure       | City_Tier    | CC_Contacted_LY | Service_Score | Account_user_count | CC_Agent_Score | rev_per_month | Complain_ly  |
|-------|--------------|--------------|--------------|-----------------|---------------|--------------------|----------------|---------------|--------------|
| count | 11260.000000 | 11260.000000 | 11260.000000 | 11260.000000    | 11260.000000  | 11260.000000       | 11260.000000   | 11260.000000  | 11260.000000 |
| mean  | 0.168384     | 10.343783    | 1.647425     | 17.796892       | 2.903375      | 3.704973           | 3.065808       | 5.110302      | 0.276288     |
| std   | 0.374223     | 9.054847     | 0.912763     | 8.570074        | 0.722476      | 1.004383           | 1.372663       | 2.936656      | 0.447181     |
| min   | 0.000000     | 0.000000     | 1.000000     | 4.000000        | 0.000000      | 1.000000           | 1.000000       | 1.000000      | 0.000000     |
| 25%   | 0.000000     | 2.000000     | 1.000000     | 11.000000       | 2.000000      | 3.000000           | 2.000000       | 3.000000      | 0.000000     |
| 50%   | 0.000000     | 9.000000     | 1.000000     | 16.000000       | 3.000000      | 4.000000           | 3.000000       | 4.000000      | 0.000000     |
| 75%   | 0.000000     | 16.000000    | 3.000000     | 23.000000       | 3.000000      | 4.000000           | 4.000000       | 7.000000      | 1.000000     |
| max   | 1.000000     | 37.000000    | 3.000000     | 41.000000       | 5.000000      | 6.000000           | 5.000000       | 13.000000     | 1.000000     |

Table, 08

- ~11% of the accounts are having 0 months of the tenure. We can consider them as new customers' accounts.
- Mean tenure of the customers' accounts is ~11 months.
- 75% of the customers' accounts have tenure less than or equal to 16 months.
- Out of 3 tiers of cities available, ~65% of the customers are from the Tier-1 cities.
- Customers have called the company ~18 times in the last 12 months on an average.
- ~90% of the customers are preferring online payment mode, out of which, ~42% of the people doing payment via debit card only.
- On a rate of 1 to 5, Mean satisfaction score is 3, indicating that company services are meeting the customers expections.
- Outstanding ratings (5) are very less, only 3 of the customers have the 5 rating.
- 4 users are there per account on an average.
- ~37% of the customers belong to Super, Regular + accounts' segments.
- HNI accounts' segment comprises of ~14% of the customers.
- On a rate of 1 to 5, 3 is mean rating given by the customers of the account for the company customer care service. ~70% of the customers are on meets expectations to exceed expectations side towards customer care service.
- Mean revenue per month is ~6.1.
- On an average, ~28% of the customers have reached to customer care in the last 12 months.
- Mean revenue growth percentage is ~16% (last 12 months vs last 24 to 13 month)
- On an average, customers have used coupons ~2 times to make the payment.

• Average monthly cashback per account is ~196.

### 4. Model building

### Model building approach:

- i. Problem identification: It is a binary classification problem –whether an account will churn or not
- ii. Pre-requisite EDA such as Data encoding, Data splitting, SMOTE for the train data set, Data scaling
- iii. Building various classification models such as CART, Random Forest, Logistic Regression, LDA, KNN
- iv. Interpretation of the performance metrics of the built classification models
- v. Tuning of the hyper-parameters for the above built classification models
- vi. Interpretation of the performance metrics of the tuned classification models
- vii. Ensemble modelling such as Bagging, AdaBoosting, GradientBoosting
- viii. Interpretation of the performance metrics of the ensemble models
- ix. Choosing the best and optimum model with based on performance metrics with maximum deviation of 10% between train and test results, focusing particularly on recall value
- x. Getting insights, Analysis of the important features and providing business recommendations to the company

### > Pre-requisite EDA before model building:

### Data Encoding:

• Dataset categorical variables encoded by using get.dummies method.

### Sample data frame after encoding:

| account_segment_Regular | account_segment_Regular<br>+ | account_segment_Super | account_segment_Super<br>+ | Marital_Status_Married | Marital_Status_Single |
|-------------------------|------------------------------|-----------------------|----------------------------|------------------------|-----------------------|
| 0                       | 0                            | 1                     | 0                          | 0                      | 1                     |
| 0                       | 1                            | 0                     | 0                          | 0                      | 1                     |
| 0                       | 1                            | 0                     | 0                          | 0                      | 1                     |
| 0                       | 0                            | 1                     | 0                          | 0                      | 1                     |
| 0                       | 1                            | 0                     | 0                          | 0                      | 1                     |

Table, 09

### Data Splitting:

- Let us split the data into train and test set in 70:30 ratio.
- Shapes of spitted train and test sets are as shown below:

```
Shape of X1_train is (7882, 24)
Shape of X_test is (3378, 24)
Shape of y1_train is (7882, 1)
Shape of y_test is (3378, 1)
```

• Let us check ratio of data after splitting

```
Split percentage of X1_train is 70.0 Split percentage of X_test is 30.0 Split percentage of y1_train is 70.0 Split percentage of y_test is 30.0
```

Fig. 24

• We can see that data successfully split into 70:30 train/test ratio.

### SMOTE:

- Our data set is imbalanced with 83:17 non-churn (0)/churn (1) ratio. So, let us balance this ration by performing SMOTE technique on the train dataset before the model building.
- Shapes of spitted train and test sets after performing the SMOTE on train dataset:

```
Shape of X_train is (13110, 24)
Shape of X_test is (3378, 24)
Shape of y_train is (13110, 1)
Shape of y_test is (3378, 1)
```

Fig. 25

- We can see that train dataset shape increased from 7882 records to 13110.
- Let us check for the target variable's data balance after performing the SMOTE. Ratio of churn (1) and non-churn (0) are as shown below:

Churn 0 0.5 1 0.5 dtype: float64

Fig. 26

• We can see that we created extra records synthetically and balanced the dataset which is good for building the proper model with good performance metrics.

### Data Scaling:

- Let us scale the latest data for the models such as KNN which is distance-based model. It is necessary to scale the data as the feature with a higher value range starts dominating when calculating distances.
- Sample train dataset after scaling:

|   | Tenure    | City_Tier | CC_Contacted_LY | Service_Score | Account_user_count | CC_Agent_Score | rev_per_month | Complain_ly | rev_growth_yoy |
|---|-----------|-----------|-----------------|---------------|--------------------|----------------|---------------|-------------|----------------|
| 0 | 0.079109  | 1.0       | -0.745637       | 3.0           | 3                  | 3.0            | -1.441199     | 1.0         | -0.558963      |
| 1 | -0.626034 | 3.0       | 0.086090        | 2.0           | 3                  | 4.0            | -0.756489     | 0.0         | -0.288212      |
| 2 | 0.549205  | 3.0       | 0.877818        | 3.0           | 3                  | 5.0            | -0.071779     | 0.0         | -0.829715      |
| 3 | 2.194540  | 3.0       | -0.977559       | 3.0           | 4                  | 5.0            | -0.756489     | 0.0         | -1.100467      |
| 4 | -0.743558 | 3.0       | -0.281793       | 3.0           | 4                  | 1.0            | -0.756489     | 0.0         | -0.288212      |

Table. 10

• Sample test dataset after scaling:

|      | Tenure    | City_Tier | CC_Contacted_LY | Service_Score | Account_user_count | CC_Agent_Score | rev_per_month | Complain_ly | rev_growth_yoy |
|------|-----------|-----------|-----------------|---------------|--------------------|----------------|---------------|-------------|----------------|
| 6888 | -0.124840 | 1.0       | 0.261623        | 3.0           | 1                  | 4.0            | -1.073557     | 0.0         | 2.074920       |
| 467  | 1.095895  | 1.0       | -1.132508       | 2.0           | 3                  | 2.0            | -1.073557     | 1.0         | -1.394129      |
| 2347 | -0.235816 | 1.0       | 0.726332        | 2.0           | 3                  | 1.0            | -0.729717     | 0.0         | -1.394129      |
| 1794 | 0.208088  | 1.0       | -0.435441       | 2.0           | 3                  | 3.0            | -1.073557     | 0.0         | -1.394129      |
| 3125 | -1.012647 | 1.0       | 0.493977        | 3.0           | 4                  | 3.0            | 1.333319      | 1.0         | -0.860429      |

Table, 11

### **>** Building various classification models:

Let us build the CART, Random Forest, KNN, Logistic Regression, LDA models

### **Decision Tree Classifier (CART):**

• Let us fit the train dataset by using basic CART model.

```
▼ DecisionTreeClassifier
DecisionTreeClassifier()
```

Fig. 27

• Hyperparameters used by the basic model are as shown below:

```
criterion='gini',

splitter='best',

max_depth=None,

min_samples_split=2,

min_samples_leaf=1,
```

### Accuracy scores:

- For train dataset, 100%
- For test dataset, 92.65%

### Prediction and Model evaluation:

- Train and test datasets are predicted using basic CART model.
- Performance metrics and Model evaluation are shown below:

### Train dataset:

• Confusion matrix:

• Classification report table:

|              | precision | recall | f1-score | support |  |  |
|--------------|-----------|--------|----------|---------|--|--|
| 0            | 1.0       | 1.0    | 1.0      | 6555.0  |  |  |
| 1            | 1.0       | 1.0    | 1.0      | 6555.0  |  |  |
| accuracy     | 1.0       | 1.0    | 1.0      | 1.0     |  |  |
| macro avg    | 1.0       | 1.0    | 1.0      | 13110.0 |  |  |
| weighted avg | 1.0       | 1.0    | 1.0      | 13110.0 |  |  |
| T 11 10      |           |        |          |         |  |  |

Table. 12

- Accuracy score is 100.00%
- ROC\_AUC score is 100.00%
- ROC curve:



### Test dataset:

• Confusion matrix:

• Classification report:

|              | precision | recall   | f1-score | support     |
|--------------|-----------|----------|----------|-------------|
| 0            | 0.966145  | 0.944820 | 0.955364 | 2809.000000 |
| 1            | 0.754358  | 0.836555 | 0.793333 | 569.000000  |
| accuracy     | 0.926584  | 0.926584 | 0.926584 | 0.926584    |
| macro avg    | 0.860252  | 0.890688 | 0.874348 | 3378.000000 |
| weighted avg | 0.930471  | 0.926584 | 0.928071 | 3378.000000 |

Table. 13

- Accuracy score is 92.65%
- ROC\_AUC score is 0.891
- ROC curve:



# Feature importance:

• Top important features for CART building are as shown below:

| Tenure                 | 38.992702 |
|------------------------|-----------|
| Complain_ly            | 14.273146 |
| CC_Agent_Score         | 6.169920  |
| CC_Contacted_LY        | 4.924384  |
| rev_per_month          | 3.930984  |
| cashback               | 3.815659  |
| Day_Since_CC_connect   | 3.670967  |
| City_Tier              | 3.542022  |
| Marital_Status_Married | 3.529643  |
| Table 14               |           |

Table. 14

 Tenure and Complain\_ly are the top two features helping in predicting the churning of the customers.

### **Random Forest:**

• Let us fit the train dataset by using basic Random Forest model.

```
* RandomForestClassifier
RandomForestClassifier()
```

Fig. 32

• Hyperparameters used by the basic model are as shown below:

```
n_estimators=100,

criterion='gini',

max_depth=None,

min_samples_split=2,

min_samples_leaf=1,

max_features='sqrt',

bootstrap=True,

oob_score=False
```

### Accuracy scores:

- For train dataset, 100%
- For test dataset, 97.18%

### Prediction and Model evaluation:

- Train and test datasets are predicted using basic RF model.
- Performance metrics and Model evaluation are shown below:

### *Train dataset:*

• Confusion matrix:

• Classification report table:

|              | precision | recall | f1-score | support |
|--------------|-----------|--------|----------|---------|
| 0            | 1.0       | 1.0    | 1.0      | 6555.0  |
| 1            | 1.0       | 1.0    | 1.0      | 6555.0  |
| accuracy     | 1.0       | 1.0    | 1.0      | 1.0     |
| macro avg    | 1.0       | 1.0    | 1.0      | 13110.0 |
| weighted avg | 1.0       | 1.0    | 1.0      | 13110.0 |

Table. 15

- Accuracy score is 100.00%
- ROC\_AUC score is 100.00%
- ROC curve:



# Test dataset:

• Confusion matrix:

• Classification report:

|              | precision | recall   | f1-score | support     |
|--------------|-----------|----------|----------|-------------|
| 0            | 0.975806  | 0.990744 | 0.983219 | 2809.000000 |
| 1            | 0.950570  | 0.878735 | 0.913242 | 569.000000  |
| accuracy     | 0.971877  | 0.971877 | 0.971877 | 0.971877    |
| macro avg    | 0.963188  | 0.934739 | 0.948230 | 3378.000000 |
| weighted avg | 0.971556  | 0.971877 | 0.971431 | 3378.000000 |

Table. 16

- Accuracy score is 97.18%
- ROC\_AUC score is 0.991
- ROC curve:



# Feature importance:

• Top important features for RF building are as shown below:

| Tenure                 | 26.292520 |
|------------------------|-----------|
| Complain_ly            | 11.524112 |
| cashback               | 6.009295  |
| CC_Agent_Score         | 5.839571  |
| Day_Since_CC_connect   | 5.562774  |
| Marital_Status_Married | 5.390393  |
| CC_Contacted_LY        | 4.622098  |
| rev_per_month          | 4.512067  |
| rev_growth_yoy         | 4.221254  |
| Table 17               |           |

Table. 17

• Tenure and Complain\_ly are the top two features helping in predicting the churning of the customers which is same as CART model.

### **Logistic Regression:**

### Scikit model:

• Let us fit the train dataset by using basic Logistic Regression model.

```
▼ LogisticRegression
LogisticRegression()
```

Fig. 37

• Hyperparameters used by the basic model are as shown below:

```
penalty='12',
tol=0.0001,
C=1.0,
max_iter=100
```

### Accuracy scores:

- For train dataset, 84.79%
- For test dataset, 81.40%

### Prediction and Model evaluation:

- Train and test datasets are predicted using basic Logistic Regression model.
- Performance metrics and Model evaluation are shown below:

### Train dataset:

• Confusion matrix:

• Classification report table:

|              | precision | recall   | f1-score | support      |
|--------------|-----------|----------|----------|--------------|
| 0            | 0.858340  | 0.859649 | 0.858994 | 6555.000000  |
| 1            | 0.859435  | 0.858124 | 0.858779 | 6555.000000  |
| accuracy     | 0.858886  | 0.858886 | 0.858886 | 0.858886     |
| macro avg    | 0.858887  | 0.858886 | 0.858886 | 13110.000000 |
| weighted avg | 0.858887  | 0.858886 | 0.858886 | 13110.000000 |

Table. 18

- Accuracy score is 85.88%
- ROC\_AUC score is 0.918%
- ROC curve:



### Test dataset:

• Confusion matrix:

Fig. 40

• Classification report:

|              | precision | recall   | f1-score | support     |
|--------------|-----------|----------|----------|-------------|
| 0            | 0.933849  | 0.859381 | 0.895069 | 2809.000000 |
| 1            | 0.501892  | 0.699473 | 0.584435 | 569.000000  |
| accuracy     | 0.832445  | 0.832445 | 0.832445 | 0.832445    |
| macro avg    | 0.717870  | 0.779427 | 0.739752 | 3378.000000 |
| weighted avg | 0.861089  | 0.832445 | 0.842745 | 3378.000000 |

Table. 19

- Accuracy score is 83.24%
- ROC\_AUC score is 0.852
- ROC curve:



# **Statsmodel:**

- Statsmodel is built on the train dataset.
- Logistic model parameters are as shown below:

| Intercept                    | 0.786024  |
|------------------------------|-----------|
| Tenure                       | -0.019031 |
| City_Tier                    | 0.051699  |
| CC_Contacted_LY              | 0.004386  |
| Service_Score                | 0.002501  |
| Account_user_count           | 0.033832  |
| CC_Agent_Score               | 0.029427  |
| rev_per_month                | 0.017629  |
| Complain_ly                  | 0.215888  |
| rev_growth_yoy               | -0.003671 |
| coupon_used_for_payment      | 0.016666  |
| Day_Since_CC_connect         | -0.009912 |
| cashback                     | -0.001177 |
| Payment_Credit_Card          | -0.294027 |
| Payment_Debit_Card           | -0.260163 |
| Payment_E_wallet             | -0.205826 |
| Payment_UPI                  | -0.275297 |
| Gender_Male                  | -0.004039 |
| account_segment_Regular      | 0.103544  |
| account_segment_Regular_plus | -0.078688 |
| account_segment_Super        | -0.255078 |
| account_segment_Super_plus   | -0.024911 |
| Marital_Status_Married       | -0.197377 |
| Marital_Status_Single        | -0.045726 |
| Login_device_Mobile          | -0.079083 |
| dtype: float64               |           |

Table. 20

• Logistic model regression results are as shown below:

| Dep. Variable:               | Churn     | R-squared:  |         |       | 529    |        |
|------------------------------|-----------|-------------|---------|-------|--------|--------|
| Model:                       | OLS       | Adi. R-squa | red:    |       | 528    |        |
|                              | t Squares | F-statistic |         |       | 3.2    |        |
|                              | Mar 2023  | Prob (F-sta |         |       | .00    |        |
| Time:                        | 06:49:56  | Log-Likelih |         | -457  |        |        |
| No. Observations:            | 13110     | AIC:        |         |       | 00.    |        |
| Df Residuals:                | 13085     | BIC:        |         |       | 87.    |        |
| Df Model:                    | 24        |             |         |       |        |        |
| Covariance Type:             | nonrobust |             |         |       |        |        |
|                              | coef      |             | t       | P> t  | [0.025 | 0.975] |
| Intercept                    | 0.7860    | 0.033       | 24.133  | 0.000 | 0.722  | 0.850  |
| Tenure                       | -0.0190   | 0.000       | -45.010 | 0.000 | -0.020 | -0.018 |
| City_Tier                    | 0.0517    | 0.004       | 12.941  | 0.000 | 0.044  | 0.060  |
| CC Contacted LY              | 0.0044    | 0.000       | 12.302  | 0.000 | 0.004  | 0.005  |
| Service_Score                | 0.0025    | 0.005       | 0.500   | 0.617 | -0.007 | 0.012  |
| Account_user_count           | 0.0338    | 0.003       | 10.021  | 0.000 | 0.027  | 0.040  |
| CC_Agent_Score               | 0.0294    | 0.002       | 12.566  | 0.000 | 0.025  | 0.034  |
| rev_per_month                | 0.0176    | 0.001       | 16.439  | 0.000 | 0.016  | 0.020  |
| Complain_ly                  | 0.2159    | 0.007       | 32.161  | 0.000 | 0.203  | 0.229  |
| rev_growth_yoy               | -0.0037   | 0.001       | -4.437  | 0.000 | -0.005 | -0.002 |
| coupon_used_for_payment      | 0.0167    | 0.004       | 4.521   | 0.000 | 0.009  | 0.024  |
| Day_Since_CC_connect         | -0.0099   | 0.001       | -9.377  | 0.000 | -0.012 | -0.008 |
| cashback                     | -0.0012   | 0.000       | -8.278  | 0.000 | -0.001 | -0.001 |
| Payment_Credit_Card          | -0.2940   | 0.009       | -32.342 | 0.000 | -0.312 | -0.276 |
| Payment_Debit_Card           | -0.2602   | 0.008       | -31.673 | 0.000 | -0.276 | -0.244 |
| Payment_E_wallet             | -0.2058   | 0.013       | -16.145 | 0.000 | -0.231 | -0.181 |
| Payment_UPI                  | -0.2753   | 0.014       | -19.158 | 0.000 | -0.303 | -0.247 |
| Gender_Male                  | -0.0040   | 0.006       | -0.657  | 0.511 | -0.016 | 0.008  |
| account_segment_Regular      | 0.1035    | 0.020       | 5.058   | 0.000 | 0.063  | 0.144  |
| account_segment_Regular_plus | -0.0787   |             | -6.845  | 0.000 | -0.101 | -0.056 |
| account_segment_Super        | -0.2551   | 0.010       | -25.677 | 0.000 | -0.275 | -0.236 |
| account_segment_Super_plus   | -0.0249   | 0.018       | -1.410  | 0.158 | -0.060 | 0.010  |
| Marital_Status_Married       | -0.1974   |             | -25.072 | 0.000 | -0.213 | -0.182 |
| Marital_Status_Single        | -0.0457   | 0.008       | -5.694  | 0.000 | -0.061 | -0.030 |
| Login_device_Mobile          | -0.0791   |             | -12.225 | 0.000 | -0.092 | -0.066 |
| Omnibus:                     | 75.774    | Durbin-Wats | on:     |       | 545    |        |
| Prob(Omnibus):               | 0.000     | Jarque-Bera | (JB):   |       | 532    |        |
| Skew:                        | 0.136     | Prob(JB):   |         | 1.31e | -15    |        |
| Kurtosis:                    | 2.773     | Cond. No.   |         | 2.05e | +03    |        |

• It can be seen that 'Service\_Score', 'Gender\_Male', 'account\_segment\_Super\_plus' variables have p-value greater than 0.05, indicating these as insignificant variables.

Fig. 42

- We will remove the these variables and built the model as next step.
- Logistic model parameters after removing the insignificant variables are as shown below:

| Tenure -0.019153 City_Tier 0.051604 CC_Contacted_LY 0.004402 Account_user_count 0.034878 CC_Agent_Score 0.029438 rev_per_month 0.017696 Complain_ly 0.215800 rev_growth_yoy -0.003635 coupon_used_for_payment 0.017391 Day_Since_CC_connect -0.009907 cashback -0.001253 Payment_Credit_Card -0.295287 Payment_Debit_Card -0.261415 Payment_E_wallet -0.206592 Payment_UPI -0.277229 account_segment_Regular 0.113704 account_segment_Regular_plus account_segment_Super -0.252898 Marital_Status_Married -0.198002 Marital_Status_Single -0.078814 dtype: float64                                                                                                                                                                                                                                                                                                                                  | Intercept                    | 0.798361  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-----------|
| CC_Contacted_LY         0.004402           Account_user_count         0.034878           CC_Agent_Score         0.029438           rev_per_month         0.017696           Complain_ly         0.215800           rev_growth_yoy         -0.003635           coupon_used_for_payment         0.017391           Day_Since_CC_connect         -0.009907           cashback         -0.001253           Payment_Credit_Card         -0.295287           Payment_Debit_Card         -0.261415           Payment_E_wallet         -0.206592           Payment_UPI         -0.277229           account_segment_Regular         0.113704           account_segment_Regular_plus         -0.079194           account_segment_Super         -0.252898           Marital_Status_Married         -0.198002           Marital_Status_Single         -0.046439           Login_device_Mobile         -0.078814 | Tenure                       | -0.019153 |
| Account_user_count                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | City_Tier                    | 0.051604  |
| CC_Agent_Score         0.029438           rev_per_month         0.017696           Complain_ly         0.215800           rev_growth_yoy         -0.003635           coupon_used_for_payment         0.017391           Day_Since_CC_connect         -0.009907           cashback         -0.001253           Payment_Credit_Card         -0.295287           Payment_Debit_Card         -0.261415           Payment_E_wallet         -0.206592           Payment_UPI         -0.277229           account_segment_Regular         -0.113704           account_segment_Super         -0.079194           Marital_Status_Married         -0.198002           Marital_Status_Single         -0.046439           Login_device_Mobile         -0.078814                                                                                                                                                  | CC_Contacted_LY              | 0.004402  |
| rev_per_month         0.017696           Complain_ly         0.215800           rev_growth_yoy         -0.003635           coupon_used_for_payment         0.017391           Day_Since_CC_connect         -0.009907           cashback         -0.001253           Payment_Credit_Card         -0.295287           Payment_Debit_Card         -0.261415           Payment_E_wallet         -0.206592           Payment_UPI         -0.277229           account_segment_Regular         0.113704           account_segment_Regular_plus         -0.079194           account_segment_Super         -0.252898           Marital_Status_Married         -0.198002           Marital_Status_Single         -0.046439           Login_device_Mobile         -0.078814                                                                                                                                    | Account_user_count           | 0.034878  |
| Complain_ly         0.215800           rev_growth_yoy         -0.003635           coupon_used_for_payment         0.017391           Day_Since_CC_connect         -0.009907           cashback         -0.001253           Payment_Credit_Card         -0.295287           Payment_Debit_Card         -0.261415           Payment_E_wallet         -0.207529           Payment_UPI         -0.277229           account_segment_Regular         0.113704           account_segment_Regular_plus         -0.079194           account_segment_Super         -0.252898           Marital_Status_Married         -0.198002           Marital_Status_Single         -0.046439           Login_device_Mobile         -0.078814                                                                                                                                                                             | CC_Agent_Score               | 0.029438  |
| rev_growth_yoy         -0.003635           coupon_used_for_payment         0.017391           Day_Since_CC_connect         -0.009907           cashback         -0.001253           Payment_Credit_Card         -0.295287           Payment_Debit_Card         -0.261415           Payment_E_wallet         -0.206592           Payment_UPI         -0.277229           account_segment_Regular         0.113704           account_segment_Regular_plus         -0.079194           account_segment_Super         -0.252898           Marital_Status_Married         -0.198002           Marital_Status_Single         -0.046439           Login_device_Mobile         -0.078814                                                                                                                                                                                                                    | rev_per_month                | 0.017696  |
| coupon_used_for_payment         0.017391           Day_Since_CC_connect         -0.009907           cashback         -0.001253           Payment_Credit_Card         -0.295287           Payment_Debit_Card         -0.261415           Payment_E_wallet         -0.206592           Payment_UPI         -0.277229           account_segment_Regular         -0.113704           account_segment_Regular_plus         -0.079194           account_segment_Super         -0.252898           Marital_Status_Married         -0.198002           Marital_Status_Single         -0.046439           Login_device_Mobile         -0.078814                                                                                                                                                                                                                                                              | Complain_ly                  | 0.215800  |
| Day_Since_CC_connect         -0.009907           cashback         -0.001253           Payment_Credit_Card         -0.295287           Payment_Debit_Card         -0.261415           Payment_E_wallet         -0.206592           Payment_UPI         -0.277229           account_segment_Regular         -0.113704           account_segment_Regular_plus         -0.079194           account_segment_Super         -0.252898           Marital_Status_Married         -0.198002           Marital_Status_Single         -0.046439           Login_device_Mobile         -0.078814                                                                                                                                                                                                                                                                                                                 | rev_growth_yoy               | -0.003635 |
| cashback       -0.001253         Payment_Credit_Card       -0.295287         Payment_Debit_Card       -0.261415         Payment_E_wallet       -0.206592         Payment_UPI       -0.277229         account_segment_Regular       0.113704         account_segment_Regular_plus       -0.079194         account_segment_Super       -0.252898         Marital_Status_Married       -0.198002         Marital_Status_Single       -0.046439         Login_device_Mobile       -0.078814                                                                                                                                                                                                                                                                                                                                                                                                             | coupon_used_for_payment      | 0.017391  |
| Payment_Credit_Card         -0.295287           Payment_Debit_Card         -0.261415           Payment_E_wallet         -0.206592           Payment_UPI         -0.277229           account_segment_Regular         -0.113704           account_segment_Regular_plus         -0.079194           account_segment_Super         -0.252898           Marital_Status_Married         -0.198002           Marital_Status_Single         -0.046439           Login_device_Mobile         -0.078814                                                                                                                                                                                                                                                                                                                                                                                                       | Day_Since_CC_connect         | -0.009907 |
| Payment_Debit_Card         -0.261415           Payment_E_wallet         -0.206592           Payment_UPI         -0.277229           account_segment_Regular         -0.113704           account_segment_Regular_plus         -0.079194           account_segment_Super         -0.252898           Marital_Status_Married         -0.198002           Marital_Status_Single         -0.046439           Login_device_Mobile         -0.078814                                                                                                                                                                                                                                                                                                                                                                                                                                                       | cashback                     | -0.001253 |
| Payment_E_wallet         -0.206592           Payment_UPI         -0.277229           account_segment_Regular         0.113704           account_segment_Regular_plus         -0.079194           account_segment_Super         -0.252898           Marital_Status_Married         -0.198002           Marital_Status_Single         -0.046439           Login_device_Mobile         -0.078814                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Payment_Credit_Card          | -0.295287 |
| Payment_UPI         -0.277229           account_segment_Regular         0.113704           account_segment_Regular_plus         -0.079194           account_segment_Super         -0.252898           Marital_Status_Married         -0.198002           Marital_Status_Single         -0.046439           Login_device_Mobile         -0.078814                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Payment_Debit_Card           | -0.261415 |
| account_segment_Regular 0.113704 account_segment_Regular_plus -0.079194 account_segment_Super -0.252898 Marital_Status_Married -0.198002 Marital_Status_Single -0.046439 Login_device_Mobile -0.078814                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Payment_E_wallet             | -0.206592 |
| account_segment_Regular_plus -0.079194<br>account_segment_Super -0.252898<br>Marital_Status_Married -0.198002<br>Marital_Status_Single -0.046439<br>Login_device_Mobile -0.078814                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Payment_UPI                  | -0.277229 |
| account_segment_Super       -0.252898         Marital_Status_Married       -0.198002         Marital_Status_Single       -0.046439         Login_device_Mobile       -0.078814                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | account_segment_Regular      | 0.113704  |
| Marital_Status_Married -0.198002<br>Marital_Status_Single -0.046439<br>Login_device_Mobile -0.078814                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | account_segment_Regular_plus | -0.079194 |
| Marital_Status_Single -0.046439<br>Login_device_Mobile -0.078814                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | account_segment_Super        | -0.252898 |
| Login_device_Mobile -0.078814                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Marital_Status_Married       | -0.198002 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Marital_Status_Single        | -0.046439 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                              | -0.078814 |

Table. 21

• Logistic model regression results after removing the insignificant variables are as shown below:

| OLS Regression Results      |                            |                                            |         |           |                   |        |
|-----------------------------|----------------------------|--------------------------------------------|---------|-----------|-------------------|--------|
| Dep. Variable:<br>Model:    | Churn<br>OLS<br>st Squares | R-squared:<br>Adj. R-squar<br>F-statistic: | red:    | 0.<br>0.  | 529<br>528<br>0.7 |        |
| Date: Fri, 1                | 7 Mar 2023                 | Prob (F-stat                               | istic): | 0         | .00               |        |
| Time:                       | 06:56:43                   | Log-Likeliho                               | ood:    | -457      | 6.5               |        |
| No. Observations:           | 13110                      | AIC:                                       |         | 91        | 97.               |        |
| Df Residuals:<br>Df Model:  | 13088<br>21                | BIC:                                       |         | 93        | 61.               |        |
| Covariance Type:            | nonrobust                  |                                            |         |           |                   |        |
|                             |                            |                                            |         |           |                   |        |
|                             | coef                       | std err                                    | t       | P> t      | [0.025            | 0.975] |
| Intercept                   | 0.7984                     | 0.031                                      | 25.445  | 0.000     | 0.737             | 0.860  |
| Tenure                      | -0.0192                    | 0.000                                      | -46.167 | 0.000     | -0.020            | -0.018 |
| City_Tier                   | 0.0516                     | 0.004                                      | 12.927  | 0.000     | 0.044             | 0.059  |
| CC_Contacted_LY             | 0.0044                     | 0.000                                      | 12.364  | 0.000     | 0.004             | 0.005  |
| Account_user_count          | 0.0349                     |                                            | 10.739  | 0.000     | 0.029             | 0.041  |
| CC_Agent_Score              | 0.0294                     |                                            | 12.610  | 0.000     | 0.025             | 0.034  |
| rev_per_month               | 0.0177                     |                                            | 16.562  | 0.000     | 0.016             | 0.020  |
| Complain_ly                 | 0.2158                     |                                            | 32.163  | 0.000     | 0.203             | 0.229  |
| rev_growth_yoy              | -0.0036                    |                                            | -4.409  | 0.000     | -0.005            | -0.002 |
| coupon_used_for_payment     | 0.0174                     | 0.004                                      | 4.830   | 0.000     | 0.010             | 0.024  |
| Day_Since_CC_connect        | -0.0099                    |                                            | -9.373  | 0.000     | -0.012            | -0.008 |
| cashback                    | -0.0013                    |                                            | -9.965  | 0.000     | -0.002            | -0.001 |
| Payment_Credit_Card         | -0.2953                    |                                            | -32.612 | 0.000     | -0.313            | -0.278 |
| Payment_Debit_Card          | -0.2614                    |                                            | -31.982 | 0.000     | -0.277            | -0.245 |
| Payment_E_wallet            | -0.2066                    |                                            | -16.215 | 0.000     | -0.232            | -0.182 |
| Payment_UPI                 | -0.2772                    |                                            | -19.381 | 0.000     | -0.305            | -0.249 |
| account_segment_Regular     | 0.1137                     |                                            | 6.035   | 0.000     | 0.077             | 0.151  |
| account_segment_Regular_plu |                            |                                            | -7.019  | 0.000     | -0.101            | -0.057 |
| account_segment_Super       | -0.2529                    |                                            | -25.875 | 0.000     | -0.272            | -0.234 |
| Marital_Status_Married      | -0.1980                    |                                            | -25.221 | 0.000     | -0.213            | -0.183 |
| Marital_Status_Single       | -0.0464                    |                                            | -5.794  | 0.000     | -0.062            | -0.031 |
| Login_device_Mobile         | -0.0788                    | 0.006                                      | -12.202 | 0.000     | -0.091            | -0.066 |
|                             |                            |                                            |         |           | ===               |        |
| Omnibus:<br>Prob(Omnibus):  | 74.834<br>0.000            | Durbin-Watso<br>Jarque-Bera                |         | 1.<br>68. | 544               |        |
| Skew:                       | 0.000                      | Prob(JB):                                  | (30):   | 1.42e     |                   |        |
|                             |                            | . ,                                        |         |           |                   |        |
| Kurtosis:                   | 2.780                      | Cond. No.                                  | _       | 1.95e     | +03               |        |
| Fig. 43                     |                            |                                            |         |           |                   |        |

- It can be seen that all the variables have p-value less than 0.05.
- We can say that all the variables are significant for the logistic model except 'Service\_Score', 'Gender\_Male', 'account\_segment\_Super\_plus'.

## **Linear Discriminant Analysis:**

• Let us fit the train dataset by using basic LDA model.

```
    LinearDiscriminantAnalysis

LinearDiscriminantAnalysis()
```

Fig. 44

• Hyperparameters used by the basic model are as shown below:

```
solver='svd',
tol=0.0001
```

#### Accuracy scores:

- For train dataset, 85.74%
- For test dataset, 83.42%

#### Prediction and Model evaluation:

• Train and test datasets are predicted using basic LDA model.

• Performance metrics and Model evaluation are shown below:

Train dataset:

• Confusion matrix:

• Classification report table:

|              | precision | recall   | f1-score | support      |
|--------------|-----------|----------|----------|--------------|
| 0            | 0.856838  | 0.858276 | 0.857557 | 6555.000000  |
| 1            | 0.858038  | 0.856598 | 0.857317 | 6555.000000  |
| accuracy     | 0.857437  | 0.857437 | 0.857437 | 0.857437     |
| macro avg    | 0.857438  | 0.857437 | 0.857437 | 13110.000000 |
| weighted avg | 0.857438  | 0.857437 | 0.857437 | 13110.000000 |

Table. 22

- Accuracy score is 85.74%
- ROC\_AUC score is 0.930%
- ROC curve:



Test dataset:

• Confusion matrix:

• Classification report:

|              | precision | recall   | f1-score | support     |
|--------------|-----------|----------|----------|-------------|
| 0            | 0.932002  | 0.863653 | 0.896526 | 2809.000000 |
| 1            | 0.505806  | 0.688928 | 0.583333 | 569.000000  |
| accuracy     | 0.834221  | 0.834221 | 0.834221 | 0.834221    |
| macro avg    | 0.718904  | 0.776290 | 0.739930 | 3378.000000 |
| weighted avg | 0.860212  | 0.834221 | 0.843771 | 3378.000000 |

Table. 23

- Accuracy score is 83.42%
- ROC\_AUC score is 0.854
- ROC curve:



# **K-Nearest Neighbors:**

• Let us fit the train dataset by using basic KNN model.

```
▼ KNeighborsClassifier
KNeighborsClassifier(n_neighbors=2)
```

Fig. 49

• Hyperparameters used by the basic model are as shown below:

```
n_neighbors=2,
weights='uniform',
algorithm='auto',
leaf_size=30,
p=2,
metric='minkowski'
```

## Accuracy scores:

- For train dataset, 99.87%
- For test dataset, 96.50%

#### Prediction and Model evaluation:

- Train and test datasets are predicted using KNN model.
- Performance metrics and Model evaluation are shown below:

## Train dataset:

• Confusion matrix:

• Classification report table:

|              | precision | recall    | f1-score | support      |
|--------------|-----------|-----------|----------|--------------|
| 0            | 0.997413  | 1.000000  | 0.998705 | 6555.000000  |
| 1            | 1.000000  | 0.997407  | 0.998702 | 6555.000000  |
| accuracy     | 0.998703  | 0.998703  | 0.998703 | 0.998703     |
| macro avg    | 0.998707  | 0.998703  | 0.998703 | 13110.000000 |
| weighted avg | 0.998707  | 0.998703  | 0.998703 | 13110.000000 |
|              | т         | 7-1-1- 04 |          |              |

Table. 24

- Accuracy score is 99.87%
- ROC\_AUC score is 100.00%
- ROC curve:



## Test dataset:

• Confusion matrix:

• Classification report:

|              | precision | recall   | f1-score | support     |
|--------------|-----------|----------|----------|-------------|
| 0            | 0.980364  | 0.977572 | 0.978966 | 2809.000000 |
| 1            | 0.890815  | 0.903339 | 0.897033 | 569.000000  |
| ассигасу     | 0.965068  | 0.965068 | 0.965068 | 0.965068    |
| macro avg    | 0.935589  | 0.940456 | 0.938000 | 3378.000000 |
| weighted avg | 0.965280  | 0.965068 | 0.965165 | 3378.000000 |
|              |           |          |          |             |

Table. 25

- Accuracy score is 96.50%
- ROC\_AUC score is 0.960
- ROC curve:



# ➤ Tuning of the hyper-parameters for the above built classification models CART:

• Let us do the grid search on the train dataset.



• Best parameters and estimator after grid search are as below:

Accuracy scores and validity after grid search:

- For train dataset, 99.88%
- For test dataset, 92.59%
- Accuracy score is not improved for both the train and test datasets after tuning the model using grid search.

#### Prediction and Model evaluation:

- Train and test datasets are predicted using tuned CART model.
- Performance metrics and Model evaluation are shown below:

#### Train dataset:

• Confusion matrix:

• Classification report table:

|              | precision | recall | f1-score | support |
|--------------|-----------|--------|----------|---------|
| 0            | 1.0       | 1.0    | 1.0      | 6555.0  |
| 1            | 1.0       | 1.0    | 1.0      | 6555.0  |
| accuracy     | 1.0       | 1.0    | 1.0      | 1.0     |
| macro avg    | 1.0       | 1.0    | 1.0      | 13110.0 |
| weighted avg | 1.0       | 1.0    | 1.0      | 13110.0 |

Table. 26

- Accuracy score is 100.00%
- ROC\_AUC score is 100.00%
- ROC curve:



# Test dataset:

• Confusion matrix:

Fig. 58

• Classification report:

|              | precision | recall   | f1-score | support    |
|--------------|-----------|----------|----------|------------|
| 0            | 0.949856  | 0.937344 | 0.943559 | 2809.00000 |
| 1            | 0.709571  | 0.755712 | 0.731915 | 569.00000  |
| accuracy     | 0.906750  | 0.906750 | 0.906750 | 0.90675    |
| macro avg    | 0.829713  | 0.846528 | 0.837737 | 3378.00000 |
| weighted avg | 0.909381  | 0.906750 | 0.907909 | 3378.00000 |

Table. 27

- Accuracy score is 90.67%
- ROC\_AUC score is 0.888
- ROC curve:



#### **Random Forest:**

• Let us do the grid search on the train dataset.



Fig. 60

Best parameters and estimator after grid search are as below:

```
{'class_weight': 'balanced', 'criterion': 'log_loss', 'max_features': 'log2', 'min_samples_leaf': 1, 'min_samples_split': 2, 'n
_estimators': 300}
```

Fig. 61

Accuracy scores and validity after grid search:

- For train dataset, 100.00%
- For test dataset, 97.18%
- Accuracy score is not improved for both the train and test datasets after tuning the model using grid search.

#### Prediction and Model evaluation:

- Train and test datasets are predicted using tuned RF model.
- Performance metrics and Model evaluation are shown below:

#### Train dataset:

• Confusion matrix:

Classification report table:

|              | precision | recall | f1-score | support |
|--------------|-----------|--------|----------|---------|
| 0            | 1.0       | 1.0    | 1.0      | 6555.0  |
| 1            | 1.0       | 1.0    | 1.0      | 6555.0  |
| accuracy     | 1.0       | 1.0    | 1.0      | 1.0     |
| macro avg    | 1.0       | 1.0    | 1.0      | 13110.0 |
| weighted avg | 1.0       | 1.0    | 1.0      | 13110.0 |

Table, 28

- Accuracy score is 100.00%
- ROC AUC score is 100.00%

• ROC curve:



## Test dataset:

• Confusion matrix:

• Classification report:

|              | precision | recall   | f1-score | support     |
|--------------|-----------|----------|----------|-------------|
| 0            | 0.974476  | 0.992168 | 0.983242 | 2809.000000 |
| 1            | 0.957529  | 0.871705 | 0.912603 | 569.000000  |
| accuracy     | 0.971877  | 0.971877 | 0.971877 | 0.971877    |
| macro avg    | 0.966002  | 0.931936 | 0.947923 | 3378.000000 |
| weighted avg | 0.971621  | 0.971877 | 0.971344 | 3378.000000 |

Table. 29

- Accuracy score is 97.18%
- ROC\_AUC score is 0.991
- ROC curve:



## **Logistic Regression:**

- Model tuning done by cut-off probability method.
- None of the cut-off has improved the accuracy of the model compared to the basic model
- Maximum accuracy attained is 0.85 with 0.5 probability which is same as basic model

#### LDA:

- Model tuning done by cut-off probability method.
- None of the cut-off has improved the accuracy of the model compared to the basic model.
- Maximum accuracy attained is 0.86 with 0.5 probability which is same as basic model

#### **K Nearest Neighbors:**

• Let us do the grid search on the train dataset.



• Best parameters and estimator after grid search are as below:

```
{'algorithm': 'auto', 'leaf_size': 10, 'n_neighbors': 2, 'p': 1, 'weights': 'distance'} Fig. 67
```

Accuracy scores and validity after grid search:

- For train dataset, 100.00%
- For test dataset, 97.89%
- Accuracy score is improved for both the train and test datasets after tuning the model using grid search.

#### Prediction and Model evaluation:

- Train and test datasets are predicted using tuned RF model.
- Performance metrics and Model evaluation are shown below:

#### Train dataset:

• Confusion matrix:

Fig. 68

• Classification report table:

|              | precision | recall | f1-score | support |
|--------------|-----------|--------|----------|---------|
| 0            | 1.0       | 1.0    | 1.0      | 6555.0  |
| 1            | 1.0       | 1.0    | 1.0      | 6555.0  |
| accuracy     | 1.0       | 1.0    | 1.0      | 1.0     |
| macro avg    | 1.0       | 1.0    | 1.0      | 13110.0 |
| weighted avg | 1.0       | 1.0    | 1.0      | 13110.0 |
|              |           | 20     |          |         |

Table. 30

- Accuracy score is 100.00%
- ROC\_AUC score is 100.00%
- ROC curve:



## Test dataset:

• Confusion matrix:

• Classification report:

|              | precision | recall   | f1-score | support     |
|--------------|-----------|----------|----------|-------------|
| 0            | 0.991385  | 0.983268 | 0.987310 | 2809.000000 |
| 1            | 0.920608  | 0.957821 | 0.938846 | 569.000000  |
| accuracy     | 0.978982  | 0.978982 | 0.978982 | 0.978982    |
| macro avg    | 0.955997  | 0.970544 | 0.963078 | 3378.000000 |
| weighted avg | 0.979464  | 0.978982 | 0.979147 | 3378.000000 |

Table. 31

• Accuracy score is 97.89%

- ROC\_AUC score is 0.981
- ROC curve:



# > Ensemble Modelling

## **Bagging Classifier:**

• Let us fit the train dataset by using Bagging Classifier model.



• Hyperparameters used by the basic model are as shown below:

```
base_estimator=None,
n_estimators=10,
max_samples=1.0,
max features=1.0
```

## Accuracy scores:

- For train dataset, 99.83%
- For test dataset, 96.50%

## Prediction and Model evaluation:

- Train and test datasets are predicted using Bagging Classifier model.
- Performance metrics and Model evaluation are shown below:

#### Train dataset:

• Confusion matrix:

• Classification report table:

|              | precision | recall   | f1-score | support      |  |  |  |
|--------------|-----------|----------|----------|--------------|--|--|--|
| 0            | 0.997715  | 0.999085 | 0.998399 | 6555.000000  |  |  |  |
| 1            | 0.999083  | 0.997712 | 0.998397 | 6555.000000  |  |  |  |
| accuracy     | 0.998398  | 0.998398 | 0.998398 | 0.998398     |  |  |  |
| macro avg    | 0.998399  | 0.998398 | 0.998398 | 13110.000000 |  |  |  |
| weighted avg | 0.998399  | 0.998398 | 0.998398 | 13110.000000 |  |  |  |
|              | TI 11 22  |          |          |              |  |  |  |

- Table. 32
- Accuracy score is 99.83%
- ROC\_AUC score is 100.00%
- ROC curve:



## Test dataset:

• Confusion matrix:

Classification report:

|              | precision | recall   | f1-score | support     |
|--------------|-----------|----------|----------|-------------|
| 0            | 0.972603  | 0.985760 | 0.979137 | 2809.000000 |
| 1            | 0.924670  | 0.862917 | 0.892727 | 569.000000  |
| accuracy     | 0.965068  | 0.965068 | 0.965068 | 0.965068    |
| macro avg    | 0.948637  | 0.924339 | 0.935932 | 3378.000000 |
| weighted avg | 0.964529  | 0.965068 | 0.964582 | 3378.000000 |

Table. 33

- Accuracy score is 96.50%
- ROC\_AUC score is 0.987
- ROC curve:



#### **Adaboost Classifier:**

Let us fit the train dataset by using Adaboost Classifier model.



Fig. 77

Hyperparameters used by the basic model are as shown below:

```
base_estimator=rf,
n estimators=50,
learning rate=1.0,
algorithm='SAMME.R',
random state=1
```

## Accuracy scores:

- For train dataset, 100.00%
- For test dataset, 97.15%

## Prediction and Model evaluation:

- Train and test datasets are predicted using Adaboost Classifier model.
- Performance metrics and Model evaluation are shown below:

## Train dataset:

• Confusion matrix:

• Classification report table:

|              | precision | recall | f1-score | support |
|--------------|-----------|--------|----------|---------|
| 0            | 1.0       | 1.0    | 1.0      | 6555.0  |
| 1            | 1.0       | 1.0    | 1.0      | 6555.0  |
| accuracy     | 1.0       | 1.0    | 1.0      | 1.0     |
| macro avg    | 1.0       | 1.0    | 1.0      | 13110.0 |
| weighted avg | 1.0       | 1.0    | 1.0      | 13110.0 |

Table. 34

- Accuracy score is 100.00%
- ROC\_AUC score is 100.00%
- ROC curve:



## Test dataset:

• Confusion matrix:

• Classification report:

|              | precision | recall   | f1-score | support     |
|--------------|-----------|----------|----------|-------------|
| 0            | 0.974135  | 0.992168 | 0.983069 | 2809.000000 |
| 1            | 0.957447  | 0.869947 | 0.911602 | 569.000000  |
| ассигасу     | 0.971581  | 0.971581 | 0.971581 | 0.971581    |
| macro avg    | 0.965791  | 0.931058 | 0.947335 | 3378.000000 |
| weighted avg | 0.971324  | 0.971581 | 0.971031 | 3378.000000 |

Table. 35

- Accuracy score is 97.15%
- ROC\_AUC score is 0.991
- ROC curve:



# **Gradient Boosting Classifier:**

• Let us fit the train dataset by using Bagging Classifier model.

```
    GradientBoostingClassifier
    GradientBoostingClassifier(random_state=1)
```

Fig. 82

• Hyperparameters used by the basic model are as shown below:

```
loss='log_loss',
learning_rate=0.1,
n_estimators=100,
subsample=1.0,
```

```
criterion='friedman_mse',
min_samples_split=2,
min_samples_leaf=1,
tol=0.0001
```

## Accuracy scores:

- For train dataset, 93.61%
- For test dataset, 90.11%

#### Prediction and Model evaluation:

- Train and test datasets are predicted using Gradient Boosting Classifier model.
- Performance metrics and Model evaluation are shown below:

#### Train dataset:

• Confusion matrix:

• Classification report table:

|              | precision | recall   | f1-score | support      |
|--------------|-----------|----------|----------|--------------|
| 0            | 0.930054  | 0.943249 | 0.936605 | 6555.000000  |
| 1            | 0.942433  | 0.929062 | 0.935699 | 6555.000000  |
| accuracy     | 0.936156  | 0.936156 | 0.936156 | 0.936156     |
| macro avg    | 0.936243  | 0.936156 | 0.936152 | 13110.000000 |
| weighted avg | 0.936243  | 0.936156 | 0.936152 | 13110.000000 |

Table. 36

- Accuracy score is 93.61%
- ROC\_AUC score is 0.983%
- ROC curve:



## Test dataset:

• Confusion matrix:

Fig. 85

• Classification report:

|              | precision | recall   | f1-score | support     |
|--------------|-----------|----------|----------|-------------|
| 0            | 0.941806  | 0.939124 | 0.940463 | 2809.000000 |
| 1            | 0.703640  | 0.713533 | 0.708551 | 569.000000  |
| accuracy     | 0.901125  | 0.901125 | 0.901125 | 0.901125    |
| macro avg    | 0.822723  | 0.826328 | 0.824507 | 3378.000000 |
| weighted avg | 0.901689  | 0.901125 | 0.901400 | 3378.000000 |

Table. 37

- Accuracy score is 90.11%
- ROC\_AUC score is 0.920
- ROC curve:



## 5. Model validation

> Summary and Interpretation of all the performance metrics of the classification models:

Let us summarize the performance metrics of all the classification models performed:

|            | Accuracy | AUC  | Precision | Recall | F1 Score |
|------------|----------|------|-----------|--------|----------|
| CART_Train | 1.00     | 1.00 | 1.00      | 1.00   | 1.00     |
| CART_Test  | 0.93     | 0.89 | 0.75      | 0.84   | 0.79     |
| RF_Train   | 1.00     | 1.00 | 1.00      | 1.00   | 1.00     |
| RF_Test    | 0.97     | 0.99 | 0.95      | 0.88   | 0.91     |
| LOR_Train  | 0.85     | 0.92 | 0.86      | 0.86   | 0.86     |
| LOR_Test   | 0.81     | 0.85 | 0.50      | 0.70   | 0.58     |
| LDA_Train  | 0.86     | 0.93 | 0.86      | 0.86   | 0.86     |
| LDA_Test   | 0.83     | 0.85 | 0.51      | 0.69   | 0.58     |
| KNN_Train  | 1.00     | 1.00 | 1.00      | 1.00   | 1.00     |
| KNN_Test   | 0.97     | 0.96 | 0.89      | 0.90   | 0.90     |

Table. 38

- RF, KNN are performing better in terms of all performance metrics. But there is more than more than 10% deviation between in some metrics for train and test sets. For e.g., Recall value has 12% deviation between train and test sets
- CART model performing very well on train set, but failing for the test set. We can try for tuning this CART model for better performance on the test set also.
- Logistic regression model is not performing well for this dataset. Logistic regression model assumes linear relationship between dependent and independent variables. But there is no such relationship in our dataset.
- LDA also not performing well for this dataset. LDA assumes all the variables to be normally distributed, but some of the variables are skewed in our dataset which is making LDA model poor performance.
- Since we have issue with linear relationship and distribution of variables. Cluster and distance-based models such Decision trees and KNN are giving good results here.
- Since we have plenty of categorical variables in our dataset, RF performing better over Logistic Regressions model and LDA.
- Clearly, out dataset is falling under non-parametric methods. That's why KNN, Decision trees are giving good results.

## > Summary and Interpretation of the performance metrics of the ensemble models

Let us summarize the performance metrics of all the classification models performed:

|                | Accuracy | AUC  | Precision | Recall | F1 Score |
|----------------|----------|------|-----------|--------|----------|
| Bagging_Train  | 1.00     | 1.00 | 1.00      | 1.00   | 1.00     |
| Bagging_Test   | 0.97     | 0.99 | 0.92      | 0.86   | 0.89     |
| Adaboost_Train | 1.00     | 1.00 | 1.00      | 1.00   | 1.00     |
| Adaboost_Test  | 0.97     | 0.99 | 0.96      | 0.87   | 0.91     |
| Gboost_Train   | 0.94     | 0.98 | 0.94      | 0.93   | 0.94     |
| Gboost_Test    | 0.90     | 0.92 | 0.70      | 0.71   | 0.71     |

Table. 39

• Bagging and Adaboost ensemble models are giving good results. But, recall value is poor, it has more than 10% deviation between train and test sets.

• Since bagging and boosting models are also sort of non-parametric models, these are performing better for our dataset.

## > Summary of the tuned classification models in terms of misclassifications:

| Misclassifications/Model | FP  | FN  |
|--------------------------|-----|-----|
| CART                     | 155 | 93  |
| CARTg                    | 176 | 139 |
| RF                       | 26  | 69  |
| RFg                      | 22  | 73  |
| Logistic                 | 395 | 171 |
| LDA                      | 383 | 177 |
| KNN                      | 63  | 55  |
| KNNg                     | 47  | 24  |
| Bagging                  | 40  | 78  |
| Adaboost                 | 22  | 74  |
| Gradientboost            | 171 | 163 |

Table. 40

## > Summary and Interpretation of the tuned classification models:

Let us summarize the performance metrics of all the classification models performed:

|             | Accuracy | AUC  | Precision | Recall | F1 Score |
|-------------|----------|------|-----------|--------|----------|
| CARTg_Train | 1.00     | 1.00 | 1.00      | 1.00   | 1.00     |
| CARTg_Test  | 0.93     | 0.89 | 0.71      | 0.76   | 0.73     |
| RFg_Train   | 1.00     | 1.00 | 1.00      | 1.00   | 1.00     |
| RFg_Test    | 0.97     | 0.99 | 0.96      | 0.87   | 0.91     |
| KNNg_Train  | 1.00     | 1.00 | 1.00      | 1.00   | 1.00     |
| KNNg_Test   | 0.98     | 0.98 | 0.92      | 0.96   | 0.94     |

Table, 41

## **Optimum model selection and Overall Interpretation:**

- KNN model is optimum model for our dataset.
- After performing GridSearchCV on CART, RF, KNN models, KNN has given significant improvement in all the performance metrics for test dataset. All the metrics are within less than 10% deviation.

#### *Interpretations from optimum model:*

- Accuracy for the test set is 98%: Only 2% of the customers churn prediction is wrong.
- Recall vs Precision: Recall is more important than Precision since FNs prediction is more important and valuable than FPs for the company. If FNs are low, more the recall and lesser the risk for the business and the profits.
  - FN- Actually churn, but predicting as non-churn
  - FP- Actually non-churn, but predicting as churn

• More number of FN's are risk for the business, So KNN is the best model for this dataset.

# **6.** Final interpretation / recommendation

#### **Business Insights:**

- From feature importance, we can see tenure, cashback and complain\_ly are the top features. This is indicating customer service in different ways to customers, tenure of the customers, cashback for the purchases, complain cell playing key role in the e-Commerce industry.
- Mean revenue per account per month is less than cashback amount which is why revenue growth is moderate from year to year.
- Primary account holder and other customers are not completely satisfied towards the customer service.
- Customers under high revenue generation are less.
- Majority of the customers confined to Tier-01 cities.

#### **Business recommendations:**

- Customers should be attracted for having long term relationship with the company as average tenure is ~11 months only.
- Customer service team need to be trained well so that customer disappointment by the service will be lesser.
- Tenure based customers segmentation should be done.
- Advertisements and other publicity acts should be done to promote the business in Tier-02, Tier-03 cities.
- Attractive coupons number should be increased per account based on their purchase from the company.
- Products should be displayed on customers browsing history and frequently bought products recommendations also.
- Product recommendation engines can be used to perform email campaigns.
- New items should be highlighted to the customers in effective way.
- Product bundles need to created and should be shown to the customers.
- High rated items should be showcased.