Samarium

From Wikipedia, the free encyclopedia

Samarium is a chemical element with symbol **Sm** and atomic number 62. It is a moderately hard silvery metal that readily oxidizes in air. Being a typical member of the lanthanide series, samarium usually assumes the oxidation state +3. Compounds of samarium(II) are also known, most notably the monoxide SmO, monochalcogenides SmS, SmSe and SmTe, as well as samarium(II) iodide. The last compound is a common reducing agent in chemical synthesis. Samarium has no significant biological role and is only slightly toxic.

Samarium was discovered in 1879 by the French chemist Paul Émile Lecoq de Boisbaudran and named after the mineral samarskite from which it was isolated. The mineral itself was earlier named after a Russian mine official, Colonel Vasili Samarsky-Bykhovets, who thereby became the first person to have a chemical element named after him, albeit indirectly. Although classified as a rare earth element, samarium is the 40th most abundant element in the Earth's crust and is more common than such metals as tin. Samarium occurs with concentration up to 2.8% in several minerals including cerite, gadolinite, samarskite, monazite and bastnäsite, the last two being the most common commercial sources of the element. These minerals are mostly found in China, the United States, Brazil, India, Sri Lanka and Australia; China is by far the world leader in samarium mining and production.

The major commercial application of samarium is in samarium-cobalt magnets, which have permanent magnetization second only to neodymium magnets; however, samarium compounds can withstand significantly higher temperatures, above 700 °C (1,292 °F), without losing their magnetic properties, due to the alloy's higher Curie point. The radioactive isotope samarium-153 is the major component of the drug samarium (153Sm) lexidronam (Quadramet), which kills cancer cells in the treatment of lung cancer, prostate cancer, breast cancer and osteosarcoma. Another isotope, samarium-149, is a strong neutron absorber and is therefore added to the control rods of nuclear reactors. It is also formed as a decay product during the reactor operation and is one of the important factors considered in the reactor design and operation. Other applications of samarium include catalysis of chemical reactions, radioactive dating and an X-ray laser.

Samarium, ₆₂Sm

General properties

Name, symbol samarium, Sm

Allotropes α form

Appearance silvery white

Samarium in the periodic table

Atomic number (Z) 62

Group, block group n/a, f-block

Period period 6

Element category \square lanthanide

Standard atomic weight (\pm) (A_r)

150.36(2)^[1]

Electron configuration

[Xe] $4f^6 6s^2$

per shell 2, 8, 18, 24, 8, 2

Physical properties

Phase solid

Melting point 1345 K (1072 °C, 1962 °F)

Physical properties

Samarium is a rare earth metal having a hardness and density similar to those of zinc. With the boiling point of 1794 °C, samarium is the third most volatile lanthanide after ytterbium and europium; this property facilitates separation of samarium from the mineral ore. At ambient conditions, samarium normally assumes a rhombohedral structure (α form). Upon heating to 731 °C, its crystal symmetry changes into hexagonally close-packed (hcp), however the transition temperature depends on the metal purity. Further heating to 922 °C transforms the metal into a body-centered cubic (bcc) phase. Heating to 300 °C combined with compression to 40 kbar results in a double-hexagonally close-packed structure (dhcp). Applying higher pressure of the order of hundreds or thousands of kilobars induces a series of phase transformations, in particular with a tetragonal phase appearing at about 900 kbar. [3] In one study, the dhcp phase could be produced without compression, using a nonequilibrium annealing regime with a rapid temperature change between about 400 and 700 °C, confirming the transient character of this samarium phase. Also, thin films of samarium obtained by vapor deposition may contain the hcp or dhcp phases at ambient conditions.[3]

Samarium (and its sesquioxide) are paramagnetic at room temperature. Their corresponding effective magnetic moments, below $2\mu_B$, are the 3rd lowest among the lanthanides (and their oxides) after lanthanum and lutetium. The metal transforms to an antiferromagnetic state upon cooling to 14.8 K. [4][5] Individual samarium atoms can be isolated by encapsulating them into fullerene molecules. They can also be doped between the C_{60} molecules in the fullerene solid, rendering it superconductive at temperatures below 8 K. [7] Samarium doping of iron-based superconductors – the most recent class of high-temperature superconductors – allows to enhance their transition temperature to 56 K, which is the highest value achieved so far in this series. [8]

External links

Wikipedia: Samarium (https://en.wikipedia.org/wiki/Samarium)

Boiling point 2173 K (1900 °C, 3452 °F)

Density near r.t. 7.52 g/cm³

when liquid, at m.p. 7.16 g/cm³

Heat of fusion 8.62 kJ/mol

vaporization

Molar heat 29.54 J/(mol·K)

capacity

Heat of

Vapor pressure

192 kl/mol

P (Pa)	1	10	100	1 k	10 k	100 k
at T (K)	1001	1106	1240	(1421)	(1675)	(2061)

Atomic properties

Oxidation states 4, **3**, 2, 1 (a mildly basic

oxide)

Electronegativity Pauling scale: 1.17

Ionization1st: 544.5 kJ/molenergies2nd: 1070 kJ/mol

3rd: 2260 kJ/mol

Atomic radius empirical: 180 pm

Covalent radius 198±8 pm

Miscellanea

Crystal structure rhombohedral

Speed of sound 2130 m/s (at 20 °C)

thin rod

 $\begin{array}{ll} \textbf{Thermal} & (r.t.) \ (\alpha, \ poly) \\ \textbf{expansion} & 12.7 \ \mu\text{m/(m·K)} \\ \end{array}$

Thermal conductivity

Electrical (r.t.) (α , poly) 0.940 $\mu\Omega$ ·m

13.3 W/(m·K)

resistivity

Magnetic ordering	paramagnetic ^[2]			
Young's modulus	α form: 49.7 GPa			
Shear modulus	α form: 19.5 GPa			
Bulk modulus	α form: 37.8 GPa			
Poisson ratio	α form: 0.274			
Vickers hardness	410-440 MPa			
Brinell hardness	440-600 MPa			
CAS Number	7440-19-9			
н	listory			
Naming	after the mineral samarskite (itself named after Vasili Samarsky- Bykhovets)			
Discovery and first isolation	Lecoq de Boisbaudran (1879)			

Most stable isotopes of samarium

iso	NA	half-life	DM	DE (MeV)	DP	
¹⁴⁴ Sm	3.08%	is stable with 82 neutrons				
¹⁴⁵ Sm	syn	340 d	ε	-	¹⁴⁵ Pm	
¹⁴⁶ Sm	syn	6.8×10 ⁷ y	α	2.529	¹⁴² Nd	
¹⁴⁷ Sm	15.00%	1.06×10 ¹¹ y	α	2.310	¹⁴³ Nd	
¹⁴⁸ Sm	11.25%	7×10 ¹⁵ y	α	1.986	¹⁴⁴ Nd	
¹⁴⁹ Sm	13.82%	is stable with 87 neutrons				
¹⁵⁰ Sm	7.37%	is stable with 88 neutrons				
¹⁵¹ Sm	syn	90 y	β-	-	¹⁵¹ Eu	
¹⁵² Sm	26.74%	is stable with 90 neutrons				
¹⁵³ Sm	syn	46.284 h	β-	-	¹⁵³ Eu	
¹⁵⁴ Sm	22.74%	is stable v	vith 9	92 neutr	ons	