第三章 函数极限

§ 1 函数极限概念

1. 按定义证明下列极限

(1)
$$\lim_{x \to +\infty} \frac{6x+5}{x} = 6$$
 (2) $\lim_{x \to 2} (x^2 - 6x + 10) = 2$

(3)
$$\lim_{x \to \infty} \frac{x^2 - 5}{x^2 - 1} = 1$$
 (4) $\lim_{x \to 2^-} \sqrt{4 - x^2} = 0$

$$(5) \lim_{x \to x_0} \cos x = \cos x_0$$

证 (1) 当 x > 0 时, $\left| \frac{6x+5}{x} - 6 \right| = \frac{5}{x}$ 于是对任给正数 ϵ ,只要

取
$$M = \frac{5}{\epsilon}$$
, 当 $x > M$ 时, 有 $|\frac{6x+5}{x} - 6| < \epsilon$, 故 $\lim_{x \to \infty} \frac{6x+5}{x} = 6$

(2)
$$\pm 0 < |x-2| < 1$$
 \forall , $\pi + (x^2 - 6x + 10) - 2$

$$= |x-2| \cdot |x-4| \le |x-2| (|x-2|+2) < 3|x-2|$$

对任给正数 ε ,只要取 $\delta = \min\{1, \frac{\varepsilon}{3}\}$,则当 $0 < |x-2| < \delta$ 时,有 $|(x^2 - 6x + 10) - 2| < \varepsilon$,故 $\lim_{x \to 2} (x^2 - 6x + 10) = 2$

(3) 当
$$x > 2$$
 时, $\left| \frac{x^2 - 5}{x^2 - 1} - 1 \right| = \frac{4}{|x - 1| |x + 1|} < \frac{4}{x}$ 对任给

正数 ϵ ,只要取 $M = \max\{2, \frac{4}{\epsilon}\}$,当 x > M时,便有 $|\frac{x^2 - 5}{x^2 - 1} - 1| < \epsilon$,故

$$\lim_{r \to \infty} \frac{x^2 - 5}{r^2 - 1} = 1.$$

(4) 由
$$|\sqrt{4-x^2}| = \sqrt{(2+x)(2-x)}$$
 $x \in [-2,2]$ $\leq 2\sqrt{|x-2|} < \varepsilon$ 得 $|x-2| < \frac{\varepsilon^2}{4}$

对任意
$$\epsilon > 0$$
 引 $\delta = \frac{\epsilon^2}{4}$ 只要 $|x-2| < \frac{\epsilon^2}{4}$ 就有 $|\sqrt{4-x^2}| < \epsilon$ 所以 $\lim_{x \to 2^-} \sqrt{4-x^2} = 0$

(5) 因为 $|\cos x - \cos x_0| = 2 |\sin \frac{x - x_0}{2} \sin \frac{x + x_0}{2}| \leqslant |x - x_0|$ 从而对任给正数 ε ,只要取 $\delta = \varepsilon$,当 $0 < |x - x_0| < \delta$ 时就有

 $|\cos x - \cos x_0| < \varepsilon$.

2. 根据定义 2 叙述 $\lim_{x\to x_0} f(x) \neq A$

解 设函数 f 在 x_0 的某空心领域 $U^{\circ}(x_0,\delta')$ 内有定义,A 是一个确定的常数,若存在某个正数 ε ,使得对任意的正数 δ ,总存在 x',满足 $0 < |x' - x_0| < \delta$,且 $|f(x') - A| \ge \varepsilon$,则称当 $x \to x_0$ 时,f(x) 不以 A 为极限,记为 $\lim_{x \to \infty} f(x) \ne A$

3. 设
$$\lim_{x\to x_0} f(x) = A$$
,证明 $\lim_{h\to 0} f(x_0+h) = A$

$$i\mathbb{E}_{:} : \lim_{x \to x_0} f(x) = A$$

 \therefore 则对任给正数 ε ,存在正数 δ ,当 $0<|x-x_0|<\delta$ 时,有 $|f(x)-A|<\varepsilon$.

从而当 $0 < |h| < \delta$ 时有 $0 < |(x_0 + h) - x_0| < \delta$, 于是 $|f(x_0 + h) - A| < \varepsilon$, 故 $\lim_{h \to 0} f(x_0 + h) = A$

反之,设 $\lim_{h\to 0} f(x_0+h) = A$,则任给正数 ε ,存在正数 δ ,

当 $0 < |h| < \delta$ 时,有 $|f(x_0 + h) - A| < \epsilon$

当 $0 < |x - x_0| < \delta$ 时, $h = x - x_0$ 满足 $0 < |h| < \delta$,从而 $|f(x) - A| = |f(x_0 + h) - A| < \varepsilon$,故 $\lim_{x \to x_0} f(x) = A$

4. 证明:若 $\lim_{x\to x_0} f(x) = A$,则 $\lim_{x\to x_0} |f(x)| = |A|$,其逆命题成立吗?当且仅当 A 为何值时反之也成立?

证:由 $\lim_{x\to x_0} f(x) = A$,则对任给正数 ε ,存在正数 δ ,

当
$$0 < |x - x_0| < \delta$$
时有 $: |f(x) - A| < \epsilon$

因此,当
$$0<|x-x_0|<\delta$$
时, $||f(x)|-|A||\leqslant |f(x)-A|<\epsilon$ 故 $\lim_{x\to x_0}|f(x)|=|A|$

但逆命题不真. 如对
$$f(x) = \begin{cases} -1, x > 0 \\ 0, x = 0, , 有 \mid f(x) \mid = \begin{cases} 1 & x \neq 0 \\ 0 & x = 0 \end{cases} \end{bmatrix}$$

 $\lim_{x\to 0} |f(x)| = 1, \text{但}\lim_{x\to 0} f(x)$ 不存在.事实上

$$\lim_{x \to 0^{+}} f(x) = -1 \qquad \lim_{x \to 0^{-}} f(x) = 1$$

当且仅当,A = 0时,反之成立,

5. 证明定理 3.1

定理 3.1 $\lim f(x) = A$ 的充分必要条件是

$$\lim_{x\to x_0^+} f(x) = \lim_{x\to x_0^-} f(x) = A$$

 $\lim_{x \to x_0} f(x) = A$ 则对任给正数 ϵ ,存在正数 δ ,当 证:必要性 $0 < |x - x_0| < \delta$ 时,有 $|f(x) - A| < \varepsilon$. 因此,当 $0 < x - x_0 < \delta$ 时, $|f(x) - A| < \epsilon$, 故 $\lim_{x \to x_0} f(x) = A$, 当 $-\delta < x - x_0 < 0$ 时, 有 $| f(x) - A | < \varepsilon, \Leftrightarrow \lim_{x \to r^{-}} f(x) = A.$

 $\lim_{x \to x_0^+} f(x) = \lim_{x \to x_0^-} f(x) = A, 则对任给正数 \varepsilon, 分别存在$

正数 δ_1 和 δ_2 ,使的当 $0 < x - x_0 < \delta_1$ 或 $0 < x_0 - x < \delta_2$ 时,都有 $|f(x) - A| < \varepsilon$ (1)

现取 $\delta = \min \{\delta_1, \delta_2\},$ $\le 0 < |x - x_0| < \delta$ 时,有 $0 < x - x_0 \le |x - x_0| < \delta \le \delta_1$

 $0 < x_0 - x \le |x - x_0| < \delta \le \delta_2$ 或

因而由(1) 知 $\mid f(x) - A \mid < \epsilon$,故 $\lim_{x \to x} f(x) = A$

6. 讨论下列函数在 $x \rightarrow 0$ 时的极限或左、右极限.

$$(1) \ f(x) = \frac{|x|}{x}; (2) \ f(x) = [x]$$

$$(3) \ f(x) = \begin{cases} 2^x & x > 0 \\ 0 & x = 0 \end{cases}$$

解 (1) 当
$$x > 0$$
 时, $f(x) = \frac{|x|}{x} = 1$ 故 $\lim_{x \to 0^+} f(x) = 1$

当
$$x < 0$$
 时, $f(x) = \frac{|x|}{x} = -1$ 故 $\lim_{x \to 0^{-}} f(x) = -1$

因此 $\lim_{x \to \infty} f(x)$ 不存在.

当
$$-1 < x < 0$$
 时, $f(x) = [x] = -1$ 故 $\lim_{x \to 0^{-}} f(x) = -1$,

因此 $\lim_{x \to \infty} f(x)$ 不存在.

(3) 当
$$x > 0$$
 时 $f(x) = 2^x$ 故 $\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} 2^x = 1$
当 $x < 0$ 时, $f(x) = 1 + x^2$ 故 $\lim_{x \to 0^-} f(x) = \lim_{x \to 0^-} (1 + x^2) = 1$

因此
$$\lim_{x \to \infty} f(x) = 1$$

7. 设
$$\lim_{x \to +\infty} f(x) = A$$
,证明 $\lim_{x \to +\infty} f(\frac{1}{x}) = A$

证明:设 $\lim_{x\to +\infty} f(x) = A$, $\lim_{x\to 0^+} f(\frac{1}{x}) = B$, 下证A = B, 对任给正数

$$\epsilon$$
, 存在 $M > 0$, $\delta > 0$, $\notin x > M$ 时有 $|f(x) - A| < \frac{\epsilon}{2}$ (1)

当
$$0 < x < \delta$$
 时,就有 $|f(\frac{1}{x}) - B| < \frac{\epsilon}{2}$ (2)

令 $\eta = \min\{\delta, \frac{1}{M}\}$,则当 $0 < x < \eta$ 时, $\frac{1}{x} > M$,

从而由(1) 知
$$|f(\frac{1}{x}) - A| < \frac{\varepsilon}{2}$$
 (3)

于是当 0 < x < η 时,由(2) 和(3) 知

$$|A - B| \leq |A - f(\frac{1}{x})| + |f(\frac{1}{x}) - B| < \varepsilon$$

可见 | A - B | ≤ ϵ ,由于 ϵ 的任意性可知

$$\lim_{x \to 0^+} f(\frac{1}{x}) = A = \lim_{x \to +\infty} f(x)$$

8. 证明:对黎曼函数 R(x) 有 $\lim_{x\to x_0} R(x) = 0, x_0 \in [0,1]$

证:[0,1]上的黎曼函数定义如下

$$R(x) = \begin{cases} \frac{1}{q} & \text{当 } x = \frac{p}{q} \text{ 时}(p, q \in N_+, \frac{p}{q}) \text{ 为既约真分数})\\ 0 & \text{当 } x = 0, 1 \text{ 或}(0, 1) \text{ 内的无理数} \end{cases}$$

任取 $x_0 \in [0,1]$,对任意给定的正数 ϵ ,满足不等式 $n \leq \frac{1}{\epsilon}$ 的自然数 $n \leq \frac{1}{\epsilon}$

§ 2 函数极限的性质

1. 求下列极限

(1)
$$\lim_{x \to \frac{\pi}{2}} 2(\sin x - \cos x - x^2)$$
 (2) $\lim_{x \to 0} \frac{x^2 - 1}{2x^2 - x - 1}$

(3)
$$\lim_{x \to 1} \frac{x^2 - 1}{2x^2 - x - 1}$$
 (4) $\lim_{x \to 0} \frac{(x - 1)^3 + (1 - 3x)}{x^2 + 2x^3}$

(5)
$$\lim_{x\to 1} \frac{x^n-1}{x^m-1} (n, m)$$
 为正整数) (6) $\lim_{x\to 4} \frac{\sqrt{1+2x}-3}{\sqrt{x}-2}$

(7)
$$\lim_{x \to 0} \frac{\sqrt{a^2 + x - a}}{x} (a > 0)$$
 (8) $\lim_{x \to +\infty} \frac{(3x + 6)^{70} (8x - 5)^{20}}{(5x - 1)^{90}}$

解 (1)
$$\lim_{x \to \frac{\pi}{2}} 2(\sin x - \cos x - x^2) = 2(1 - \frac{\pi^2}{4})$$

(2) 原式 =
$$\lim_{x\to 0} \frac{0-1}{0-0-1} = 1$$

(3)
$$\lim_{x \to 1} \frac{x^2 - 1}{2x^2 - x - 1} = \lim_{x \to 1} \frac{x + 1}{2x + 1} = \frac{2}{3}$$

(4)
$$\lim_{x \to 0} \frac{(x-1)^3 + (1-3x)}{x^2 + 2x^3} = \lim_{x \to 0} \frac{x-3}{1+2x} = -3$$

(5)
$$\lim_{x \to 1} \frac{x^n - 1}{x^m - 1} = \lim_{x \to 1} \frac{x^{n-1} + x^{n-2} + \dots + x + 1}{x^{m-1} + x^{m-2} + \dots + x + 1} = \frac{n}{m}$$

(6)
$$\lim_{x \to 4} \frac{\sqrt{1+2x}-3}{\sqrt{x}-2} = \lim_{x \to 4} \frac{2(\sqrt{x}+2)}{\sqrt{1+2x}+3} = \frac{4}{3}$$

(7)
$$\lim_{x\to 0} \frac{\sqrt{a^2+x}-a}{x} = \lim_{x\to 0} \frac{1}{\sqrt{a^2+x}+a} = \frac{1}{2a}$$

(8)
$$\lim_{x \to +\infty} \frac{(3x+6)^{70}(8x-5)^{20}}{(5x-1)^{90}} = \lim_{x \to +\infty} \frac{(3+\frac{6}{x})^{70}(8-\frac{5}{x})^{20}}{(5-\frac{1}{x})^{90}} = \frac{3^{70} \cdot 8^{20}}{5^{90}}$$

2. 利用迫敛性求极限

(1)
$$\lim_{x \to -\infty} \frac{x - \cos x}{x}$$
 (2) $\lim_{x \to +\infty} \frac{x \sin x}{x^2 - 4}$

$$\mathbf{g}$$
 (1): $-1 \le \cos x \le 1$: $x - 1 \le x - \cos x \le x + 1$

$$\therefore 1 + \frac{1}{x} \leqslant \frac{x - \cos x}{x} \leqslant 1 - \frac{1}{x}$$

$$\lim_{x \to -\infty} (1 - \frac{1}{x}) = \lim_{x \to -\infty} (1 + \frac{1}{x}) = 1$$

由迫敛性定理,
$$\lim_{x \to \infty} \frac{x - \cos x}{x} = 1$$

$$(2) :: -1 \leqslant \sin x \leqslant 1 \qquad \therefore -x \leqslant x \sin x \leqslant x$$

$$\therefore x \to + \infty \qquad \text{if } x^2 - 4 > 0$$

$$\therefore -\frac{x}{x^2-4} \leqslant \frac{x \sin x}{x^2-4} \leqslant \frac{x}{x^2-4}$$

$$\lim_{x\to+\infty} \left(-\frac{x}{x^2-4}\right) = \lim_{x\to+\infty} \frac{x}{x^2-4} = 0$$

由迫敛性
$$\lim_{x\to+\infty} \frac{x\sin x}{x^2-4} = 0$$

3. 设
$$\lim_{x \to x_0} f(x) = A$$
, $\lim_{x \to x_0} g(x) = B$ 证明:

(1)
$$\lim_{x \to x_0} [f(x) \pm g(x)] = A \pm B$$

$$(2) \lim_{x \to x_0} [g(x) \cdot f(x)] = A \cdot B$$

证明:对任给正数 ϵ ,分别存在正数 δ_1 和 δ_2 ,使

当
$$0<|x-x_0|<\delta_1$$
,有 $|f(x)-A|<rac{\varepsilon}{2}$

当
$$0 < |x - x_0| < \delta_2$$
,有 $|g(x) - B| < \frac{\varepsilon}{2}$

(1) 取 $\delta = \min\{\delta_1, \delta_2\}, \leq 0 < |x - x_0| < \delta$ 时 ①② 同时成立,于是有

(2) 由 $\lim_{x\to x_0} g(x) = B$ 知,存在正数 δ_3 ,使 g(x)在 $U^{\circ}(x_0,\delta_3)$ 上有

界,即存在正数 M,对任给 $x \in U^{\circ}(x_0, \delta_3)$,有 $|g(x)| \leq M$ ③ 取 $\delta = \min\{\delta_1, \delta_2, \delta_3\}$,当 $0 < |x - x_0| < \delta$ 时,①、②、③ 同时成立,

因而
$$| f(x)g(x) - AB | = | g(x)(f(x) - A) + A(g(x) - B) |$$

 $\leq | g(x) | \cdot | f(x) - A | + | A | \cdot | g(x) - B | < \frac{M + | A |}{2} \varepsilon$

由 ε 的任意性知
$$\lim_{x \to x_0} f(x) \cdot g(x) = A \cdot B$$

(3) 由题知 $\lim_{x\to x_0} g(x) = B \neq 0$ 于是 $\lim_{x\to x_0} Bg(x) = B^2 > 0$ 由局部保

号性有,存在 $\delta_4 > 0$, 当 $0 < |x - x_0| < \delta_4$ 时,有 $Bg(x) > \frac{B^2}{2}$ ④

取 $\delta = \min\{\delta_1, \delta_2, \delta_4\}$, 当 $0 < |x - x_0| < \delta$ 时 ①②④ 同时成立,

于是有
$$\mid \frac{f(x)}{g(x)} - \frac{A}{B} \mid = \mid \frac{Bf(x) - Ag(x)}{Bg(x)} \mid$$

 $\leq \frac{1}{\sqrt[\eta]{A^{n-1}}} \mid f(x) - A \mid < \varepsilon$

故
$$\lim_{x \to x_0} \sqrt[n]{f(x)} = \sqrt[n]{A}$$

6. 证明
$$\lim_{x\to 0} a^x = 1(0 < a < 1)$$

证明: $\lim_{n\to\infty}a^{\frac{1}{n}}=1$: 对 $\forall \epsilon>0,\exists N>0,$ 有 $0<1-a^{\frac{1}{N}}<\epsilon$, 由 a^x 是递减的,: $\le 0< x<\frac{1}{N}$ 时,有 $a^x>a^{\frac{1}{N}}$

$$\therefore 0 < 1 - a^x < 1 - a^{\frac{1}{N}} < \varepsilon \quad \mathbb{R} \ \delta = \frac{1}{N} \stackrel{\text{def}}{=} 0 < x < \delta \text{ 时就有}$$

$$0 < |a^x - 1| < 1 - a^x < \varepsilon, \mathbb{P} \lim_{x \to 0^+} a^x = 1$$

另一方面
$$\lim_{n\to\infty} a^{-\frac{1}{n}} = \lim_{n\to\infty} \frac{1}{a^{\frac{1}{n}}} = 1$$
 由上述方法,得 $\lim_{x\to 0^{-}} a^{x} = 1$

$$\therefore \lim_{x\to 0} a^x = 1$$

7. 设
$$\lim_{x \to x_0} f(x) = A$$
, $\lim_{x \to x_0} g(x) = B$

- (1) 若在某 $U^{\bullet}(x_0)$ 内有 f(x) < g(x), 问是否必有 A < B?为什么?
 - (2) 证明:若 A > B,则在 $U'(x_0)$ 内有 f(x) > g(x)

解 (1) 不一定,如 $g(x) = x^2$, f(x) = 0,在 $x_0 = 0$ 的任一 $U^{\circ}(0,\delta)$ 内,有 f(x) < g(x),但 $\lim_{x \to 0} f(x) = \lim_{x \to 0} g(x) = 0$

$$(2) : A > B : \varepsilon_0 = \frac{A-B}{2} > 0 \quad \mathbb{Z} : \lim_{x \to x_0} f(x) = A,$$

$$\therefore$$
 存在正数 δ_1 , 当 $|x - x_0| < \delta_1$ 时

有
$$|f(x) - A| < \frac{A - B}{2}$$
 : $f(x) > \frac{A + B}{2}$ (1)

又 $\lim_{x\to x_0} g(x) = B$ 知:对上述 $\epsilon_0 > 0$,存在正数 δ_2 ,

当
$$0<|x-x_0|<\delta_2$$
时,有 $|g(x)-B|<rac{A-B}{2}$,

$$\therefore g(x) < \frac{A+B}{2} \tag{2}$$

取 $\delta = \min\{\delta_1, \delta_2\},$ 当 $0 < |x - x_0| < \delta$ 时, (1) 与(2) 同时成立,

即有
$$f(x) > \frac{A+B}{2} > g(x)$$
, \therefore 当 $x \in U^0(x_0, \delta)$ 时, $f(x) > g(x)$

8. 求下列极限(其中 n 皆为正整数)

(1)
$$\lim_{x\to 0^{-}} \frac{|x|}{x} \cdot \frac{1}{1+x^{n}}$$
 (2) $\lim_{x\to 0^{+}} \frac{|x|}{x} \cdot \frac{1}{1+x^{n}}$

(3)
$$\lim_{x\to 1} \frac{x+x^2+\cdots+x^n-n}{x-1}$$
 (4) $\lim_{x\to 0} \frac{\sqrt[n]{1+x}-1}{x}$

(5)
$$\lim_{x\to\infty} \frac{[x]}{x}$$
(提示:参照例 1)

$$(1) \lim_{x \to 0^{-}} \frac{|x|}{x} \cdot \frac{1}{1+x^{n}} = \lim_{x \to 0^{-}} \frac{|x|}{x} \lim_{x \to 0^{-}} \frac{1}{1+x^{n}} = -1$$

(2)
$$\lim_{x \to 0^+} \frac{|x|}{x} \cdot \frac{1}{1+x^n} = \lim_{x \to 0^+} \frac{|x|}{x} \lim_{x \to 0^+} \frac{1}{1+x^n} = 1$$

(3) 原式 =
$$\lim_{x \to 1} \left[x^{n-1} + 2x^{n-2} + \dots + (n-2)x^2 + (n-1)x + n \right]$$

= $\frac{n(n+1)}{2}$

(4)
$$\lim_{x\to 0} \frac{\sqrt[n]{1+x}-1}{x}$$

$$=\lim_{x\to 0}\frac{1}{\sqrt[n]{(1+x)^{n-1}}+\sqrt[n]{(1+x)^{n-2}}+\cdots+\sqrt[n]{1+x}+1}=\frac{1}{n}$$

(5): 对任意实数 x,有 $x-1 < [x] \le x$,从而当 x > 0 时,

有
$$1 - \frac{1}{x} < \frac{1}{x}[x] \le 1$$
,故 $\lim_{x \to +\infty} \frac{1}{x}[x] = 1$,当 $x < 0$ 时,

有
$$1 - \frac{1}{x} > \frac{1}{x} [x] \geqslant 1$$
,故 $\lim_{x \to -\infty} \frac{[x]}{x} = 1$, $\lim_{x \to \infty} \frac{[x]}{x} = 1$.

9.(1) 证明: 若
$$\lim_{x\to 0} f(x^3)$$
 存在,则 $\lim_{x\to 0} f(x) = \lim_{x\to 0} f(x^3)$

(2) 若
$$\lim_{x\to 0} f(x^2)$$
 存在,试问是否成立 $\lim_{x\to 0} f(x) = \lim_{x\to 0} f(x^2)$?

证:(1):
$$\lim_{x\to 0} f(x^3)$$
 存在,假设 $\lim_{x\to 0} f(x^3) = A$

∴ 対
$$\forall \epsilon > 0$$
, $\exists \delta > 0$ 使得当 $0 < |x| < \delta^{\frac{1}{3}} < \delta$ 时有 $|f(x^3) - A| < \epsilon$, 令 $t = x^3$ 则 $|t| = |x|^3 < \delta$

$$\therefore |f(t) - A| < \varepsilon \quad \therefore \lim_{x \to 0} f(x) = A = \lim_{x \to 0} f(x^3)$$

(2) 若
$$\lim_{x\to 0} f(x^2) = A$$
 成立,但不一定有 $\lim_{x\to 0} f(x) = \lim_{x\to 0} f(x^2)$

例如:
$$\operatorname{sgn} x = \begin{cases} 1 & x > 0 \\ 0 & x = 0 \\ -1 & x < 0 \end{cases}$$
 $\operatorname{sgn} x^2 = \begin{cases} 1 & x \neq 0 \\ 0 & x = 0 \end{cases}$

对 $\operatorname{sgn} x^2$: $\limsup_{x\to 0} x^2 = 1$ 而 $\limsup_{x\to 0} x$ 不存在, : $\lim_{x\to 0} f(x)$ 不一定等于 $\lim_{x\to 0} f(x^2)$

§3 函数极限存在的条件

1. 叙述函数极限 $\lim_{x\to +\infty} f(x)$ 的归结原则,并应用它证明 $\lim_{x\to +\infty} \cos x$ 不存在.

 $\lim f(x)$ 类型的函数极限的归结原则为: 设 f(x) 在某 $U(+\infty)$ 有定义,则 $\lim_{x\to\infty} f(x)$ 存在的充要条件是:对任何以 $+\infty$ 为极 限的且含于 $U(+\infty)$ 的数列 $\{x_n\}$,极限 $\lim_{n \to \infty} f(x_n)$ 都存在且相等.

设 $x'_{n} = 2n\pi, x''_{n} = n\pi + \frac{\pi}{2}, x'_{n} \rightarrow +\infty, x''_{n} \rightarrow +\infty(n \rightarrow \infty),$ 而 $\cos x'_n = 1, \cos x''_n = 0 (n \to \infty), \ \ \ \ \ \lim_{x \to +\infty} x'_n \neq \lim_{x \to +\infty} x''_n, \ \ \ \ \lim_{x \to +\infty} \cos x$ 不存在.

2. 设f为定义在 $[a, +\infty)$ 上的递增(减)函数,证明: $\lim_{x\to +\infty} f(x)$ 存 在的充要条件是 f 在[a, + ∞) 上有上(下) 界.

由题设 $\lim_{x \to a} f(x)$ 存在,记为 A 即 $\lim_{x \to a} f(x) = A$,由 局部有界性定理可得,存在 $U(+\infty) = (b.+\infty)$ 使 f(x) 在 $U(+\infty)$ 上有界,即存在 $M \subseteq m$,对任给 $x \in U(+\infty)$,都有

$$m \leqslant f(x) \leqslant M \tag{1}$$

又由 f(x) 在[a, + ∞) 上递增知:对任给 $x \in [a,b]$,有 $f(x) \leq f(b+1) \leq M$ (2)

由(1)(2) 可得,对任 $-x \in [a, +\infty)$,有 $f(x) \leq M$,故 f(x) 在 $[a, + \infty)$ 上有上界.

充分性:设 f(x) 在 $[a, +\infty)$ 上有上界,则由确界原理可知 f(x) 在 $[a, +\infty)$ 上有上确界,设 $A = \sup_{x \in [a, +\infty)} f(x)$,则对任给正数 ε ,存在 $x_0 \in [a, +\infty)$ 又因 f(x) 在 $[a, +\infty)$ 上递增,从而当 $x > x_0$ 时,有 $A - \varepsilon < f(x_0) \le f(x) < A + \varepsilon$

因此,当 $x > x_0$ 时, $|f(x) - A| < \varepsilon$, 故 $\lim_{x \to +\infty} f(x) = A$

- 3.(1) 叙述极限 $\lim_{x \to \infty} f(x)$ 的柯西准则;
- (2) 根据柯西准则叙述 $\lim_{x\to\infty} f(x)$ 不存在的充要条件,并应用它证明 $\lim_{x\to\infty} x$ 不存在.
- 解 (1) 设函数 f(x) 在 $U(-\infty)$ 内有定义,则 $\lim_{x\to\infty} f(x)$ 存在的充分必要条件是:对任给的正数 ε ,总存在某一正数 M,使对任何

$$x' < -M, x'' < -M,$$
 都有 $| f(x') - f(x'') | < \epsilon$

(2) 设 f 为定义在 $(-\infty,a]$ 上的函数,若存在正数 ϵ_0 ,对任给正数 M, 总存在 x_1,x_2 ,尽管 $x_1 < -M$, $x_2 < -M$,而 $|f(x_1) - f(x_2)| \ge \epsilon_0$. 则称 $\lim_{n \to \infty} f(x)$ 不存在.

以下用此定义证明 lim sinx 不存在.

取 $\epsilon_0 = \frac{1}{2}$,对任给自然数 n,取 $x_1 = -n\pi$, $x_2 = -n\pi - \frac{\pi}{2}$,于是, $x_1 < -n$, $x_2 < -n$ 而 $|\sin x_1 - \sin x_2| = 1 > \frac{1}{2}$,故 $\lim \sin x$ 不存在.

4. 设 f 在 $U^{\circ}(x_0)$ 内有定义. 证明: 若对任何数列 $\{x_n\} \subset U^{\circ}(x_0)$ 且 $\lim_{n \to \infty} x_n = x_0$, 极限 $\lim_{n \to \infty} f(x_n)$ 都存在,则所有这些极限都相等.

(提示:参见定理 3.11 充分性的证明)

证明:对任何的数列 $\{x_n\}$ $\subset U^{\circ}(x_0,\delta')$,且 $\lim_{n\to\infty} x_n = x_0$,按假设对任给的 $\varepsilon > 0$,总存在正数 $\delta(<\delta')$,使对任何 $x',x'' \in U^{\circ}(x_0,\delta)$,有 $|f(x') - f(x'')| < \varepsilon$,由 $\lim_{n\to\infty} x_n = x_0$,对上述 $\delta > 0$,总存在 N > 0, 当 n,m > N 时有 $x_n,x_m \in U^{\circ}(x_0,\delta)$ 从而有 $|f(x_n) - f(x_m)| < \varepsilon$,于是按数列的柯西收敛准则,数列 $\{f(x_n)\}$ 极限存在,记为 A,即

 $\lim_{n\to\infty}f(x_n)=A.$

设另一数列 $\{y_n\} \in U^{\circ}(x_0, \delta')$,且 $\lim_{n \to \infty} y_n = x_0$,则如上面所证 $\lim_{n \to \infty} f(y_n)$ 存在设为 B. 又证 B = A. 为此考虑数列 $\{Z_n\}: x_1, y_1, x_2y_2 \cdots x_ny_n \cdots$ 易见 $\{Z_n\} \subset U^{\circ}(x_0, \delta')$ 且 $\lim_{n \to \infty} Z_n = x_0$ (见第二章 § 1例7) 故如上面所证, $\{f(Z_n)\}$ 也收敛,于是作为 $\{f(Z_n)\}$ 的两个子列 $\{f(x_n)\}$ 与 $\{f(y_n)\}$ 必有相同的极限.

5. 设 f 为 $U^{\circ}(x_0)$ 上的递增函数,证明 $f(x_0-0)$ 和 $f(x_0+0)$ 都存在,且 $f(x_0-0) = \sup_{x \in U_{\perp}(x_0)} f(x)$, $f(x_0+0) = \inf_{x \in U_{\perp}(x_0)} f(x)$.

证明:仅证 $f(x_0-0)$ 的存在性及有关等式.

 $f(x_1) > A - \epsilon$ 记 $\delta = x_0 - x_1 > 0$, 当 $x \in U^0_-(x_0, \delta)$ 时, 就有 $x > x_1$, 从而由 $f \in U^0_-(x_0)$ 上递增知

$$A + \varepsilon > f(x) \geqslant f(x_1) > A - \varepsilon$$

可见当 $x \in U^{\bullet}_{-}(x_{0},\delta)$ 时, $|f(x) - A| < \varepsilon$,因此 $\lim_{x \to x_{0}} f(x)$ 存在且 $f(x_{0} - 0) = \sup_{x \in U^{-}_{-}(x_{0})} f(x)$,同理可证 $f(x_{0} + 0)$ 也存在

$$\mathbb{H} f(x_0+0) = \inf_{x \in U_{\lambda}^{\bullet}(x_0)} f(x)$$

6. 设 D(x) 为狄利克雷函数, $x_0 \in R$. 证明: $\lim_{x \to x_0} D(x)$ 不存在.

证 由第一章§3知
$$D(x) = \begin{cases} 1, & x \text{ 为有理数} \\ 0, & x \text{ 为无理数} \end{cases}$$

取 $\epsilon_0 = \frac{1}{2}$,对任何 $\delta > 0$,由有理数与实数的稠密性知,在 $U^{\circ}(x_0,\delta)$ 中必有有理数x'和无理数x'',即 $x' \in U^{\circ}(x_0,\delta)$,使得D(x') = 1,D(x'') = 0,于是

 $|D(x') - D(x'')| = 1 > \epsilon_0$,从而由柯西准则知 $\lim_{x \to \infty} D(x)$ 不存在.

7. 证明:若 f 为周期函数,且 $\lim_{x \to \infty} f(x) = 0$ 则 f(x) = 0

证明:假设 $f(x) \neq 0$,则存在 $x_0 \in (-\infty, +\infty)$,使 $f(x_0) \neq 0$

又 : f(x) 为周期函数,不妨设周期为 L > 0,记 $a_n = x_0 + nL$ 则 $a_n \to +\infty$, $(n \to +\infty)$ 由作法可知, $\lim_{n \to +\infty} f(x) = f(x_0) \neq 0$ (1)

又 :
$$\lim_{x \to +\infty} f(x) = 0$$
,由归结原则知 $\lim_{x \to +\infty} f(a_n) = 0$ (2)

(1)(2) 矛盾,故 f(x) = 0

8. 证明定理 3.9

定理 3.9,设函数 f 在点 x_0 的某右邻域 U_+ ° (x_0) 有定义,则极限 $\lim_{x\to x_0^+} f(x) = A$ 的充要条件是:对任何以 x_0 为极限且含于 U_+ ° (x_0) 的

递减数列 $\{x_n\}$ 有 $\lim_{n\to\infty} f(x_n) = A$

证:必要性 设 $\lim_{x\to x_0^+} f(x) = A$,则对任给正数 ϵ ,存在正数 δ ,当 $x_0 < x < x_0 + \delta$ 时,有 $|f(x) - A| < \epsilon$ 设 $\{x_n\}$ 含于 $U^{\circ}(x_0)$ 且递减 趋于 x_0 ,则对上述正数 δ ,存在 N,当 n > N 时,便有 $0 < x_n - x_0 < \delta$,于是,当 n > N 时,便有 $|f(x_n) - A| < \epsilon$,故 $\lim_{x\to x_0} f(x_n) = A$.

充分性(反证) 假设 $\lim_{x\to x_0^+} f(x) \neq A$,则存在某一个正数 ϵ_0 ,不论 正数 δ 多小,总存在一点 x,尽管 $0 < x - x_0 < \delta$,但有

 $|f(x)-A|\geqslant \epsilon_0$,设 U_+ ° $(x_0)=(x_0,x_0+\delta)$,则对 $\delta_1=\frac{\delta}{2}$,存在一

点 x_1 ,使 $0 < x_1 - x_0 < \delta_1$,且 $|f(x_1) - A| \geqslant \epsilon_0$

对 $\delta_2 = \min\{\frac{\delta}{2^2}, x_1 - x_0\}$,存在 x_2 使 $0 < x_2 - x_0 < \delta_2$

 $\mathbb{H} \mid f(x_2) - A \mid \geqslant \epsilon_0, x_2 < x_1$

一般地,对取 $\delta_n = \min\{\frac{\delta}{2^n}, x_{n-1} - x_0\}$,存在 x_n ,使得

 $0 < x_n - x_0 < \delta_n$ 且

$$| f(x_n) - A | \ge \varepsilon_0, x_n < x_{n-1} < \dots < x_2 < x_1$$

这样的数列{x,} 满足

(1)
$$x_n \in U^{\circ}_+(x_0, \delta_n), \exists x_{n+1} < x_n, n = 1, 2, \cdots$$

(2)
$$\mid f(x_n) - A \mid \geqslant \epsilon_0, n = 1, 2, \dots$$

由于 $x_n \in U_+$ ° (x_0, δ_n) ,故有

$$0 < x_n - x_0 < \delta_n \leq \frac{\delta}{2^n} \rightarrow 0 (n \rightarrow \infty)$$

因此, $\lim x_n = x_0$ 可见 x_n 是以 x_0 为极限的递减数列,且含于 $U_+^{\circ}(x_0)$,但由(2)知 $\lim_{n \to \infty} f(x_n) \neq A$,矛盾.

§ 4 两个重要极限

1. 求下列极限

$$(1) \lim_{x \to 0} \frac{\sin 2x}{x}$$

$$(2) \lim_{x \to 0} \frac{\sin x^3}{(\sin x)^2}$$

(3)
$$\lim_{x \to \frac{\pi}{2}} \frac{\cos x}{x - \frac{\pi}{2}}$$
 (4)
$$\lim_{x \to 0} \frac{\tan x}{x}$$

$$(4) \lim_{x \to 0} \frac{\tan x}{x}$$

(5)
$$\lim_{x \to 0} \frac{\tan x - \sin x}{x^3}$$
 (6)
$$\lim_{x \to 0} \frac{\arctan x}{x}$$

(6)
$$\lim_{x\to 0} \frac{\arctan x}{x}$$

$$(7) \lim_{x \to +\infty} x \sin \frac{1}{x}$$

(7)
$$\lim_{x \to +\infty} x \sin \frac{1}{x}$$
 (8)
$$\lim_{x \to a} \frac{\sin^2 x - \sin^2 a}{x - a}$$

(9)
$$\lim_{x \to 0} \frac{\sin 4x}{\sqrt{x+1} - 1}$$

(9)
$$\lim_{x \to 0} \frac{\sin 4x}{\sqrt{x+1} - 1}$$
 (10) $\lim_{x \to 0} \frac{\sqrt{1 - \cos x^2}}{1 - \cos x}$

$$\mathbf{f} \qquad (1) \lim_{x \to 0} \frac{\sin 2x}{x} = 2 \lim_{x \to 0} \frac{\sin 2x}{2x} = 2$$

(2)
$$\lim_{x \to 0} \frac{\sin x^3}{(\sin x)^2} = \lim_{x \to 0} \frac{\sin x^3}{x^3} \cdot \frac{x^2}{(\sin x)^2} \cdot x = 0$$

(3) 设
$$x = t + \frac{\pi}{2}$$
 则 $x \rightarrow \frac{\pi}{2}$ 时相当于 $t \rightarrow 0$,于是

$$\lim_{x \to \frac{\pi}{2}} \frac{\cos x}{x - \frac{\pi}{2}} = \lim_{t \to 0} \frac{-\sin t}{t} = -1$$

(4)
$$\lim_{x \to 0} \frac{\tan x}{x} = \lim_{x \to 0} \frac{\sin x}{x} \cdot \frac{1}{\cos x} = 1$$

$$(5) \lim_{x \to 0} \frac{\tan x - \sin x}{x^3} = \lim_{x \to 0} \frac{\sin x}{x} \cdot \frac{1}{\cos x} \cdot \frac{1 - \cos x}{x^2}$$

$$= \lim_{x \to 0} \frac{2(\sin\frac{x}{2})^2}{(\frac{x}{2})^2} \cdot \frac{1}{4} = \frac{1}{2}$$

(6) 令
$$\arctan x = y$$
,则 $x = \tan y$,且 $x \to 0$ 相当于 $y \to 0$,于是

$$\lim_{x \to 0} \frac{\arctan x}{x} = \lim_{y \to 0} \frac{y}{\tan y} = \lim_{y \to 0} \frac{\cos y}{\sin y} = 1$$

(7) 令
$$y = \frac{1}{x}$$
,于是当 $x \rightarrow + \infty$ 相当于 $y \rightarrow 0^+$,从而

$$\lim_{x \to +\infty} x \sin \frac{1}{x} = \lim_{y \to 0^+} \frac{\sin y}{y} = 1$$

(8)
$$\lim_{x \to a} \frac{\sin^2 x - \sin^2 a}{x - a} = \lim_{x \to a} \frac{2\cos \frac{x + a}{2} \sin \frac{x - a}{2}}{x - a} (\sin x + \sin a)$$

$$= \lim_{x \to a} \frac{\sin \frac{x - a}{2}}{\frac{x - a}{2}} \cdot \cos \frac{x + a}{2} \cdot (\sin x + \sin a) = 2\sin a \cos a = \sin 2a$$

$$(9) \lim_{x \to 0} \frac{\sin 4x}{\sqrt{x+1} - 1} = 4 \lim_{x \to 0} \frac{\sin 4x}{4x} (\sqrt{x+1} + 1) = 8$$

$$(10) \lim_{x \to 0} \frac{\sqrt{1 - \cos x^2}}{1 - \cos x} = \lim_{x \to 0} \frac{\sqrt{2} \sin \frac{x^2}{2}}{2 \sin^2 \frac{x}{2}}$$

$$= \frac{\sqrt{2}}{2} \lim_{x \to 0} \frac{\sin \frac{x^2}{2}}{\frac{x^2}{2}} \cdot \frac{(\frac{x}{2})^2}{\sin^2 \frac{x}{2}} \cdot 2 = \sqrt{2}$$

2. 求下列极限

(1)
$$\lim_{x\to\infty} (1-\frac{2}{x})^{-x}$$
 (2) $\lim_{x\to 0} (1+\alpha x)^{\frac{1}{x}} (\alpha \ \text{为给定实数})$

(3)
$$\lim_{x \to 0} (1 + \tan x)^{\cot x}$$
 (4) $\lim_{x \to 0} (\frac{1+x}{1-x})^{\frac{1}{x}}$

(5)
$$\lim_{x \to +\infty} \left(\frac{3x+2}{3x-1}\right)^{2x-1}$$
 (6) $\lim_{x \to +\infty} \left(1 + \frac{\alpha}{x}\right)^{\beta x} (\alpha, \beta)$ 为给定实数)

$$\mathbf{g} \qquad (1) \lim_{x \to \infty} (1 - \frac{2}{x})^{-x} = \lim_{x \to \infty} \left[\left[1 + \frac{1}{-\frac{x}{2}} \right]^{-\frac{x}{2}} \right]^2 = e^2$$

(2)
$$\lim_{x\to 0} (1+\alpha x)^{\frac{1}{x}} = \lim_{x\to 0} [(1+\alpha x)^{\frac{1}{\alpha x}}]^{\alpha} = e^{\alpha}$$

(3)
$$\lim_{x\to 0} (1 + \tan x)^{\cot x} = \lim_{x\to 0} (1 + \tan x)^{\frac{1}{\tan x}} = e$$

(4)
$$\lim_{x \to 0} (\frac{1+x}{1-x})^{\frac{1}{x}} = \lim_{x \to 0} \frac{(1+x)^{\frac{1}{x}}}{(1-x)^{\frac{1}{x}}} = e^2$$

(5)
$$\lim_{x \to +\infty} \left(\frac{3x+2}{3x-1} \right)^{2x-1} = \lim_{x \to +\infty} \left[\left(1 + \frac{3}{3x-1} \right)^{\frac{3x-1}{3}} \right]^2 \cdot \left(\frac{3x-1}{3x+2} \right)^{\left(-\frac{1}{3}\right)} = e^2$$

(6)
$$\lim_{x \to +\infty} (1 + \frac{\alpha}{x})^{\beta x} = \lim_{x \to +\infty} [(1 + \frac{\alpha}{x})^{\frac{x}{\alpha}}]^{\alpha \beta} = e^{\alpha \beta}$$

3. 证明:
$$\lim_{x\to 0} \{\lim_{n\to\infty} \left[\cos x \cos \frac{x}{2} \cos \frac{x}{2^2} \cdots \cos \frac{x}{2^n}\right]\} = 1$$

证:因为
$$\sin 2x = 2\sin x \cos x = 2^2 \cos x \cos \frac{x}{2} \sin \frac{x}{2}$$

$$= \cdots = 2^{n+1} \cos x \cos \frac{x}{2} \cos \frac{x}{2^2} \cdots \cos \frac{x}{2^n} \sin \frac{x}{2^n}$$

故当 $x \neq 0$ 时,

$$\lim_{n\to\infty} \left[\cos x \cos \frac{x}{2} \cos \frac{x}{2^2} \cdots \cos \frac{x}{2^n}\right]$$

$$= \lim_{n \to \infty} \frac{\sin 2x}{\sin \frac{x}{2^n}} \cdot \frac{1}{2^{n+1}} = \lim_{n \to \infty} \frac{\frac{x}{2^n}}{\sin \frac{x}{2^n}} \cdot \frac{\sin 2x}{2x} = \frac{\sin 2x}{2x}$$

因此
$$\lim_{x\to 0} \{\lim_{n\to\infty} [\cos x \cos \frac{x}{2} \cos \frac{x}{2^2} \cdots \cos \frac{x}{2^n}]\} = \lim_{x\to 0} \frac{\sin 2x}{2x} = 1$$

当 x = 0 时,结论显然成立.

4. 利用归结原则计算下列极限:

(1)
$$\lim_{n\to\infty} \sqrt{n} \sin \frac{\pi}{n}$$
 (2) $\lim_{n\to\infty} (1 + \frac{1}{n} + \frac{1}{n^2})^n$

解 (1):
$$\lim_{x \to \infty} \sqrt{x} \sin \frac{\pi}{x} = \lim_{x \to \infty} \frac{\sin \frac{\pi}{x}}{\frac{\pi}{x}} \cdot \frac{\pi}{\sqrt{x}} = 0$$

∴ 由归结原则可知 $\lim_{n\to\infty} \sqrt{n} \sin \frac{\pi}{n} = 0$

(2) 令
$$g(x) = (1 + \frac{x+1}{x^2})^{\frac{2}{x+1}}(x > 0)$$
 则 $\lim_{x \to \infty} g(x) = e$, 于是,由保导性知:存在 $m > 1$ 使 $x < m$ 时, $1 < \frac{e}{2} < g(x) < 2e$,从而当 $x > m$ 时有

$$g(x)(\frac{e}{2})^{\frac{1}{|x|+1}} < g(x)^{1+\frac{1}{x}} = g(x)g(x)^{\frac{1}{x}} < g(x)(2e)^{\frac{1}{|x|}},$$
由 $\lim_{n\to\infty} \sqrt[n]{a} = 1(a>0)$ 知:上式两端当 $x\to +\infty$ 时均以 e 为极限,于是 $\lim_{x\to +\infty} g(x)^{1+\frac{1}{x}} = e$ 又 $\therefore (1+\frac{1}{n}+\frac{1}{n^2})^n < g(n)^{1+\frac{1}{n}}(n=1,2,\cdots)$ 故由归结原则可得

 $\lim_{n \to \infty} (1 + \frac{1}{n} + \frac{1}{n^2})^n = e$

§ 5 无穷小量与无穷大量

1. 证明下列各式

$$(1)2x - x^2 = O(x)(x \rightarrow 0)$$

$$(2) x \sin \sqrt{x} = O(x^{\frac{3}{2}})(x \rightarrow 0^{+})$$

$$(3)\sqrt{1+x}-1=o(1)(x\to 0)$$

$$(4)(1+x)^n = 1 + nx + o(x)(x \to 0)(n$$
 为正整数)

$$(5)2x^3 + x^2 = O(x^3)(x \to \infty)$$

$$(6)_{0}(g(x)) \pm o(g(x)) = o(g(x))(x \rightarrow x_{0})$$

$$(7)o(g_1(x)) \cdot o(g_2(x)) = o(g_1(x)g_2(x))(x \to x_0)$$

$$\lim_{x\to 0} \frac{2x-x^2}{x} = 2 \quad \therefore 2x-x^2 = O(x), (x\to 0)$$

(2) :
$$\lim_{x\to 0^+} \frac{x\sin\sqrt{x}}{x^{\frac{3}{2}}} = \lim_{x\to 0^+} \frac{\sin\sqrt{x}}{\sqrt{x}} = 1, : x\sin\sqrt{x} = O(x^{\frac{3}{2}}), (x\to 0^+)$$

(3):
$$\lim_{x\to 0} (\sqrt{1+x}-1) = 0, \therefore \sqrt{1+x}-1 = o(1), (x\to 0)$$

(4):
$$\lim_{x\to 0} \frac{(1+x)^n - (1+nx)}{x} = 0, : (1+x)^n = 1+nx+o(x), (x\to 0)$$

(5):
$$\lim_{x\to\infty} \frac{2x^3 + 2x^2}{x^3} = 2, \therefore 2x^3 + 2x^2 = O(x^3), (x\to\infty)$$

(6):
$$\lim_{x \to x_0} \frac{o(g(x) \pm o(g(x)))}{g(x)}$$
, $= \lim_{x \to x_0} \frac{o(g(x))}{g(x)} \pm \lim_{x \to x_0} \frac{o(g(x))}{g(x)}$, $= 0$

$$\therefore o(g(x)) \pm o(g(x)) = o(g(x)), (x \rightarrow x_0)$$

(7):
$$\lim_{x \to x_0} \frac{o(g_1(x)) \cdot o(g_2(x))}{g_1(x)g_2(x)}, = \lim_{x \to x_0} \frac{o(g_1(x))}{g_1(x)} \lim_{x \to x_0} \frac{o(g_2(x))}{g_2(x)} = 0$$
$$\therefore o(g_1(x)) \cdot o(g_2(x)) = o(g_1(x) \cdot g_2(x)), (x \to x_0)$$

2. 运用定理 3.12 求下列极限

(1)
$$\lim_{x \to \infty} \frac{x \arctan \frac{1}{x}}{x - \cos x}$$
 (2)
$$\lim_{x \to 0} \frac{\sqrt{1 + x^2} - 1}{1 - \cos x}$$

解 (1):
$$\lim_{x \to \infty} \frac{\arctan \frac{1}{x}}{\frac{1}{x}} = 1$$
 : $\arctan \frac{1}{x} \sim \frac{1}{x}(x \to \infty)$

由定理 3.12 知
$$\lim_{x \to \infty} \frac{x \arctan \frac{1}{x}}{x - \cos x} = \lim_{x \to \infty} x \cdot \frac{1}{x} \cdot \frac{1}{x - \cos x} = 0$$

(2) :
$$\lim_{x \to 0} \frac{\sqrt{1+x^2-1}}{\frac{1}{2}x^2} = 1, \lim_{x \to 0} \frac{1-\cos x}{\frac{1}{2}x^2} = 1$$

$$\therefore \sqrt{1+x^2} - 1 \sim \frac{1}{2}x^2(x \to 0), 1 - \cos x \sim \frac{1}{2}x^2(x \to 0)$$
(由定

理 3.12 知)
$$\lim_{x \to 0} \frac{\sqrt{1+x^2}-1}{1-\cos x} = \lim_{x \to 0} \frac{\frac{1}{2}x^2}{\frac{1}{2}x^2} = 1$$

3. 证明定理 3.13.

定理 3.13 (i)设 f 在 $U^*(x_0)$ 内有定义且不等于 0, 若 f 为 $x \to x_0$ 时的无穷小量,则 $\frac{1}{f}$ 为 $x \to x_0$ 时的无穷大量.

(\parallel) 若 g 为 $x \to x_0$ 时的无穷大量,则 $\frac{1}{g}$ 为 $x \to x_0$ 时的无穷小量. 证明:(\parallel) \therefore f 为 $x \to x_0$ 时的无穷小量 \therefore $\lim_{x \to x_0} f(x) = 0$

从而对任给正数 M,必存在正数 δ ,当 $0 < |x - x_0| < \delta$ 时,有 $|f(x)| < \frac{1}{M}$ 又 $|x| \in f(x)$ 在 $|x| \in f(x)$ 内不为 $|x| \in f(x)$

$$\therefore x \in U^{\bullet}(x_0,\delta)$$
 时,有 $+\frac{1}{f(x)} > M$, $\therefore \lim_{x \to x_0} \frac{1}{f(x)} = \infty$

(ii) : g(x) 为 $x \rightarrow x_0$ 时的无穷大量

∴ 任给正数 ε , 必存在正数 δ , 当 $0 < |x - x_0| < \delta$ 时, 有 $|g(x)| > \frac{1}{\varepsilon}$ 故 $|\frac{1}{g(x)}| < \varepsilon$, ∴ $\lim_{x \to x_0} \frac{1}{g(x)} = 0$

4. 求下列函数所表示曲线的渐近线

(1)
$$y = \frac{1}{x}$$
 (2) $y = \arctan x$ (3) $y = \frac{3x^3 + 4}{x^2 - 2x}$

 $\lim_{x \to \infty} [f(x) - kx] = \lim_{x \to \infty} f(x) = \lim_{x \to \infty} \frac{1}{x} = 0 \quad \therefore \quad b = 0 \quad \therefore \quad y = \frac{1}{x}$ 表示的曲线的渐近线 y = 0.

$$\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} \frac{1}{x} = + \infty \quad \lim_{x \to 0^-} f(x) = \lim_{x \to 0^-} \frac{1}{x} = - \infty,$$
故垂直新近线为 $x = 0$ (y 轴)

 $(2) \diamondsuit f(x) = \arctan x$

又 :
$$\lim_{x \to +\infty} (f(x) - kx) = \lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \arctan x = \frac{\pi}{2}, \therefore b = \frac{\pi}{2}$$
所以 $y = \arctan x$ 的新近线为 $y = \frac{\pi}{2}$

同理可得当 $x \to -\infty$ 时, $y = \arctan x$ 的渐近线为 $y = -\frac{\pi}{2}$, 因而 $y = \arctan$ 的渐近线为 $y = \pm \frac{\pi}{2}$.

(3)
$$\therefore \frac{3x^3+4}{x^2-2x} = \frac{3x^3+4}{x(x-2)}$$

故有垂直渐近线 $x = 0(v \cdot \mathbf{h})$ 和 x = 2,

$$\lim_{x \to +\infty} \frac{f(x)}{x} = 3 \quad \therefore k = 3$$

$$\lim_{x \to +\infty} (f(x) - 3x) = \lim_{x \to +\infty} \frac{4 + 6x^2}{x^2 - 2x} = 6 \quad \therefore b = 6$$

- \therefore 渐近线为 y = 3x + 6
- 5. 试确定 α 的值,使下列函数与 x^{α} 当 $x \rightarrow 0$ 时为同阶无穷小量:

(1)
$$\sin 2x - 2\sin x$$
 (2) $\frac{1}{1+x} - (1-x)$

(3)
$$\sqrt{1 + \tan x} - \sqrt{1 - \sin x}$$
 (4) $\sqrt[5]{3x^2 - 4x^3}$

解 (1)由于当 $x \rightarrow 0$ 时

$$\sin 2x - 2\sin x = -4\sin x \sin^2 \frac{x}{2} \sim -4x \cdot (\frac{x}{2})^2 = -x^3$$

从而 $\lim_{x\to 0} \frac{\sin 2x - 2\sin x}{x^{\alpha}} = -\lim_{x\to 0} x^{3-\alpha}$,由此可见当 $\alpha = 3$ 时,该极限为 -1,因而当 $\alpha = 3$ 时, $\sin 2x - 2\sin x$ 与 x^{α} 当 $x \to 0$ 时为同阶无穷小量.

(2) 由于当
$$x \to 0$$
 时 $\frac{1}{1+x} - (1-x) = \frac{x^2}{1+x} \sim x^2$

从而
$$\lim_{x\to 0} \frac{\frac{1}{1+x}-(1-x)}{x^{\alpha}} = \lim_{x\to 0} x^{2-\alpha}$$
,由此可见当 $\alpha=2$ 时,该极

限为 1,因此当 $\alpha = 2$ 时, $\frac{1}{1+x} - (1-x)$ 与 x^{α} 当 $x \to 0$ 时为同阶无穷小量.

$$(3)$$
 : 当 $x \rightarrow 0$ 时

$$\sqrt{1 + \tan x} - \sqrt{1 - \sin x} = \frac{\tan x + \sin x}{\sqrt{1 + \tan x} + \sqrt{1 - \sin x}} \sim x$$

$$\therefore \lim_{x\to 0} \frac{\sqrt{1+\tan x}-\sqrt{1-\sin x}}{x^{\alpha}} = \lim_{x\to x_0} x^{1-\alpha},$$

 \therefore 当 $\alpha = 1$ 时, $\sqrt{1 + \tan x} - \sqrt{1 - \sin x}$ 与 x^{α} 当 $x \to 0$ 时为同阶 无穷小量.

∴ 当
$$\alpha = \frac{2}{5}$$
, $\sqrt[5]{3x^2 - 4x^3}$ 与 x^α 当 $x \to 0$ 时为同阶无穷小量.

6. 试确定 α 的值,使下列函数与 x^{α} 当 $x \rightarrow \infty$ 时是同阶无穷大量.

(1)
$$\sqrt{x^2 + x^5}$$
 (2) $x + x^2(2 + \sin x)$

(3)
$$(1+x)(1+x^2)\cdots(1+x^n)$$

解 (1): 当
$$x \to \infty$$
 时 $\sqrt{x^2 + x^5} = x^{\frac{5}{2}} \sqrt{1 + x^{-3}} \sim x^{\frac{5}{2}}$

$$\therefore \lim_{x \to \infty} \frac{\sqrt{x^2 + x^5}}{x^a} = \lim_{x \to \infty} x^{\frac{5}{2} - \alpha}, \therefore \text{ if } \alpha = \frac{5}{2} \text{ if } \sqrt{x^2 + x^5} \text{ if } x^\alpha$$

$$\text{if } x \to \infty \text{ if } \text{ if } \text{if } \text{$$

(2) $\therefore x \to \infty$ 时 $x + x^2(2 + \sin x) = x^2(x^{-1} + 2 + \sin x)$ 从而 $|\frac{x + x^2(2 + \sin x)}{x^{\alpha}}| = |x^{-1} + 2 + \sin x| |x^{2 - \alpha}|$

$$\therefore \, \, \exists \mid x \mid > 1 \, \forall \mid \frac{x + x^2(2 + \sin x)}{x^a} \mid \leqslant 4x^{2-a}$$

∴ 当
$$\alpha = 2 \, \mathbb{H} \mid x \mid > 1 \, \text{时} \mid \frac{x + x^2(2 + \sin x)}{x^2} \mid \leq 4$$

∴ 当 $\alpha = 2$ 时, $x + x^2(2 + \sin x)$ 与 x^{α} 当 $x \rightarrow \infty$ 时是同阶无穷 大量.

(3)
$$\stackrel{\cdot}{=} x \rightarrow \infty$$
 $\stackrel{\cdot}{=} n$, $(1+x)(1+x^2)\cdots(1+x^n)$
= $x^{\frac{n(n+1)}{2}}(1+\frac{1}{x})(1+\frac{1}{x^2})\cdots(1+\frac{1}{x^n}) \sim x^{\frac{n(n+1)}{2}}$

$$\therefore \lim_{n \to \infty} \frac{(1+x)(1+x^2)\cdots(1+x^n)}{x^a} = \lim_{n \to \infty} x^{\frac{n(n+1)}{2}-a}$$

 $\therefore \, \, \stackrel{\cdot}{\rightarrow} \, \alpha = \frac{1}{2} n(n+1) \, \text{时}, (1+x)(1+x^2)\cdots(1+x^n) \, \stackrel{\cdot}{\rightarrow} \, x^a \, \stackrel{\cdot}{\rightarrow} \, x \rightarrow \infty \, \text{时是同阶无穷大量}.$

7. 证明:若 S 为无上界数集,则存在一递增数列 $\{x_n\}$ $\subset S$,使得 $x_n \to +\infty (n \to \infty)$

证明: S 为无上界数集, 故必存在无上界数列 $\{x_n\}$, 又证明之. 对 $\{x_n\}$ 必存在某项 x_{k_1} 满足 $x_{k_1} > 1$, 由于数列 $\{x_n\}$ ($n = k_1 + 1$, $k_2 + 2 + \cdots$) 也无界. 故又存在某一项 $x_{k_2}(k_2 > k_1)$ 使 $x_{k_2} > 2$, 又由于数列 $\{x_n\}$ ($n = k_1 + 1$, $k_2 + 2 \cdots$) 无上界. 故又存在某项 $x_{k_3}(k_3 > k_2)$ 使 $x_{k_3} > 3$, 于是得 $\{x_n\}$ 的一个子列 $\{x_n\}$ 满足 $x_n > k$. 记 n_k 为 n, 则 $\lim x_n = + \infty$.

8. 证明:若f为 $x \rightarrow r$ 时的无穷大量,而函数g在某U°(r)上满足 $g(x) \ge k > 0$,则 fg 为 $x \rightarrow r$ 时的无穷大量.

证明:由题设 f 为 $x \to r$ 时的无穷大量,而在 $U^{\circ}(r)$ 上 $g(x) \geqslant k > 0$,因而对任给正数 G,存在正数 δ ,使 $U^{\circ}(r,\delta) \subset U^{\circ}(r)$, 当 $0 < |x - r| < \delta$ 时有 $|f(x)| > \frac{G}{K}$. 于是,当 $0 < |x - r| < \delta$ 时,便有 $|f(x)g(x)| > \frac{G}{K} \cdot K = G$

∴ fg 为 $x \rightarrow r$ 时的无穷大量.

9. 设
$$f(x) \sim g(x), (x \to x_0)$$
 证明:
 $f(x) - g(x) = o(f(x))$ 或 $f(x) - g(x) = o(g(x))$
证: $f(x) \sim g(x), (x \to x_0)$, 从而

$$\lim_{x \to 0} \frac{f(x) - g(x)}{f(x)} = \lim_{x \to 0} (1 - \frac{g(x)}{f(x)}) = 0$$

$$\therefore f(x) - g(x) = o(f(x))$$
 同理 $f(x) - g(x) = o(g(x))$

总练习题

1. 求下列极限

(1)
$$\lim_{x\to 3^-} (x-[x])$$
 (2) $\lim_{x\to 1^+} ([x]+1)^{-1}$

$$(3) \lim_{x\to\infty} (\sqrt{(a+x)(b+x)} - \sqrt{(a-x)(b-x)})$$

(4)
$$\lim_{x \to +\infty} \frac{x}{\sqrt{x^2 - a^2}}$$
 (5)
$$\lim_{x \to -\infty} \frac{x}{\sqrt{x^2 - a^2}}$$

(6)
$$\lim_{x \to 0} \frac{\sqrt{1+x} - \sqrt{1-x}}{\sqrt[3]{1+x} - \sqrt[3]{1-x}}$$

(7)
$$\lim_{n \to \infty} (\frac{m}{1 - r^m} - \frac{n}{1 - r^n}), m, n$$
 为正整数.

解 (1) 当
$$2 \le x < 3$$
 时, $[x] = 2$ 于是

$$\lim_{x \to 3^{-}} (x - [x]) = \lim_{x \to 3^{-}} (x - 2) = 1$$

(2) 当
$$1 \le x < 2$$
 时, $[x] = 1$, 于是

$$\lim_{x \to 1^+} ([x] + 1)^{-1} = \lim_{x \to 1^+} (1 + 1)^{-1} = \frac{1}{2}$$

$$(3) \lim_{x \to \infty} \left\{ \sqrt{(a+x)(b+x)} - \sqrt{(a-x)(b-x)} \right\}$$

$$=\lim_{x\to\infty}\frac{2(a+b)x}{\sqrt{(a+x)(b+x)}+\sqrt{(a-x)(b-x)}}$$

$$= \lim_{x \to \infty} \frac{2(a+b)}{\sqrt{(1+\frac{a}{x}(1+\frac{b}{x})+\sqrt{(\frac{a}{x}-1)(\frac{b}{x}-1)}}}$$

$$= a + b$$

(4)
$$\lim_{x \to +\infty} \frac{x}{\sqrt{x^2 - a^2}} = \lim_{x \to +\infty} \frac{1}{\sqrt{1 - (\frac{a}{x})^2}} = 1$$

(5)
$$\lim_{x \to \infty} \frac{x}{\sqrt{x^2 - a^2}} = \lim_{x \to \infty} \frac{-1}{\sqrt{1 - a^2 x^{-2}}} = -1$$

(6)
$$\lim_{x \to 0} \frac{\sqrt{1+x} - \sqrt{1-x}}{\sqrt[3]{1+x} - \sqrt[3]{1-x}}$$

$$= \lim_{x \to 0} \frac{\sqrt[3]{(1+x)^2} + \sqrt[3]{1-x^2} + \sqrt[3]{(1-x)^2}}{\sqrt{1+x} + \sqrt{1-x}} = \frac{3}{2}$$

(7) 当 m = n 时, $\lim_{x \to 1} \left(\frac{m}{1 - x^m} - \frac{n}{1 - x^n} \right) = 0$ 当 $m \neq n$ 时, 不 妨设 m < n, 且 m + L = n, 此时

$$\frac{m}{1-x^{m}} - \frac{n}{1-x^{n}}$$

$$= \frac{m(1+x+\cdots+x^{n-1}) - n(1+x+\cdots+x^{m-1})}{(1-x)(1+x+\cdots+x^{m-1})(1+x+\cdots+x^{n-1})}$$

$$= \frac{-L-Lx-\cdots-Lx^{m-1}+mx^{m}+mx^{m+1}+\cdots+mx^{m+L-1}}{(1-x)(1+x+\cdots+x^{m-1})(1+x+\cdots+x^{n-1})}$$

$$= -\frac{mx^{m+L-2}+2mx^{m+L-3}+\cdots+mLx^{m-1}}{(1+x+\cdots+x^{m-1})(1+x+\cdots+x^{n-1})}$$

$$= \frac{-L(m-1)x^{m-2}+L(m-2)x^{m-3}+\cdots+L}{(1+x+\cdots+x^{m-1})(1+x+\cdots+x^{n-1})}, \neq 0$$

$$\lim_{x\to 1} (\frac{m}{1-x^{m}} - \frac{n}{1-x^{n}})$$

$$= -\frac{m[1+2+\cdots+L]+L[(m-1)+(m-2)+\cdots+1]}{nm}$$

$$= -\frac{mL(m+L)}{mn} = \frac{m-n}{2}$$

故不论 m,n 为任何自然数,都有

$$\lim_{x \to 1} \left(\frac{m}{1 - x^m} - \frac{n}{1 - x^n} \right) = \frac{m - n}{2}$$

2. 分别求出满足下述条件的常数 a 与b:

$$(1) \lim_{x \to +\infty} \left(\frac{x^2 + 1}{x + 1} - ax - b \right) = 0$$

$$(2) \lim_{x \to -\infty} (\sqrt{x^2 - x + 1} - ax - b) = 0$$

(3)
$$\lim_{x \to +\infty} (\sqrt{x^2 - x + 1} - ax - b) = 0$$

$$= \lim_{x \to +\infty} (x - 1 + \frac{2}{x+1} - ax - b) = \lim_{x \to +\infty} \left[\frac{2}{x+1} + (1-a)x - (b+1) \right]$$

∴ 只有当
$$a = 1$$
 且 $b = -1$ 时, $\lim_{x \to +\infty} (\frac{x^2 + 1}{x + 1} - ax - b) = 0$

(注意到 $x \rightarrow -\infty$,故可设 x < 0)

所以只有当 $1-a^2=0,1+2ab=0,a-1\neq 0$,即 a=-1,

$$b = \frac{1}{2} \text{ Big}(\sqrt{x^2 - x + 1} - ax - b) = 0$$

(3) 类似于(2) 可知,只有当 $a = 1, b = -\frac{1}{2}$ 才有

$$\lim_{x\to\infty}(\sqrt{x^2-x+1}-ax-b)=0$$

- 3. 试分别举出符合下列要求的函数 f:

(1)
$$\lim_{x \to 2} f(x) \neq f(2)$$
 (2) $\lim_{x \to 2} f(x)$ 不存在

解 (1) 设 $f(x) = \begin{cases} x, x \neq 2 \\ 0, x = 2 \end{cases}$

则 $\lim_{x\to 2} f(x) = 2, f(2) = 0$,于是 $\lim_{x\to 2} f(x) \neq f(2)$

- (2) 设 $f(x) = \frac{1}{x-2}$,此时 $\lim_{x \to 2} f(x)$ 不存在.
- 4. 试给出函数 f 的例子,使 f(x) > 0 恒成立,而在某一点 x_0 处有 $\lim_{x \to x_0} f(x) = 0$,这同极限的局部保号性有矛盾吗?

例如 解

$$f(x) = \begin{cases} x^2, & x \neq 0 \\ 1, & x = 0 \end{cases}$$

在整个实数轴上有 f(x) > 0 恒成立,但在 $x_0 = 0$ 处 $\lim_{x \to \infty} f(x) = 0$, 这与局部保号性不矛盾,在局部保号性定理中要求 $\lim_{x\to x_0} f(x) = A$, $A \neq 0$ 时,而不是 A = 0.

5. 设
$$\lim_{x \to a} f(x) = A, \lim_{x \to A} f(x) = B$$
,能否推出
$$\lim_{x \to a} f(x) = B$$

解 不一定.例如对于函数

$$f(x) = \begin{cases} \frac{1}{q}, & \exists \ x = \frac{p}{q}(p, q) \text{ 互质} \end{cases}$$
时 0, 当 x 为无理数时

及

$$g(x) = \begin{cases} 1, & \exists x \neq 0 \text{ 时} \\ 0, & \exists x = 0 \text{ H} \end{cases}$$

有 $\lim_{x\to 0} f(x) = 0$, $\lim_{x\to 0} g(x) = 1$ 但 $\lim_{x\to 0} g(f(x))$ 不存在. 事实上, g(f(x)) = D(x) 为狄利克雷函数,由§3习题6可知, $\lim_{x\to 0} D(x)$ 不存在.

- (1) $\{x_n\}$ 使得 $x_n \to \infty$ $(n \to \infty)$, $f(x_n) \to 0$ $(n \to \infty)$
- (2) $\{y_n\}$ 使得 $y_n \to \infty (n \to \infty)$, $f(y_n) \to +\infty (n \to \infty)$
- (3) $\{z_n\}$ 使得 $z_n \to \infty (n \to \infty)$, $f(z_n) \to -\infty (n \to \infty)$

解 (1) 令 $x_n = \frac{n\pi}{2}$,此时 $f(x_n) = 0$,于是当 $n \to \infty$ 时,便有 $x_n \to \infty$,且 $f(x_n) \to 0$

- (2) 令 $y_n = 2n\pi$, 此时 $f(y_n) = 2n\pi$, 于是当 $n \to \infty$ 时, 便有 $y_n \to \infty$, 且 $f(y_n) \to +\infty$
- (3) 令 $z_n = (2n+1)\pi$, 此时 $f(z_n) = -(2n+1)\pi$, 于是当 $n \to \infty$ 时,便有 $z_n \to \infty$,且 $f(z_n) \to -\infty$
 - 7. 证明:若数列 $\{a_n\}$ 满足下列条件之一,则 $\{a_n\}$ 是无穷大数列.
 - $(1) \lim_{n \to \infty} \sqrt[n]{|a_n|} = r > 1$
 - (2) $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = S > 1(a_n \neq 0, n = 1, 2, \cdots)$

证:(1) 由题设 $\lim_{n\to\infty} \sqrt[n]{-|a_n|} = r > 1$,于是存在 r_0 ,使 $r > r_0 > 1$, 由保号性知存在 N_1 ,当 $n > N_1$,有 $\sqrt[n]{-|a_n|} > r_0$,即 $|a_n| > r_0^n$,由于 $r_0 > 1$,故 $\lim_{n\to\infty} r_0^n = +\infty$,即对任给正数 G,存在 N_2 ,当 $n > N_2$ 时有

 $r_0^n > G$. 现取 $N = \max\{N_1, N_2\}$ 当 n > N 时,有 $|a_n| > G$. 故 $\{a_n\}$ 是无穷大数列

(2) 由题设 $\lim_{n\to\infty} |\frac{a_{n+1}}{a_n}| = S > 1$, 于是存在 $S_0 > 1$. 使 $S > S_0 > 1$ 由保号性可知存在 N_1 , 当 $n \ge N_1$ 时,便有 $|\frac{a_{n+1}}{a_n}| > S_0$,从而当 $n \ge N_1$ 时,便有 $|a_n| = |a_{N_1}| \cdot \left|\frac{a_{N_1+1}}{a_{N_1}}\right| \cdots \left|\frac{a_n}{a_{n-1}}\right| > |a_{N_1}| \cdot S_0^{n-N_1}$ 而当 $n \to \infty$ 时, $|a_{N_1}| \cdot S_0^{n-N_1}$ 是无穷大数列.于是对任给正数 G,存在 N_2 ,当 $n > N_2$ 时,有 $|a_{N_1}| \cdot S_0^{n-N_1} > G$. 现取 $N = \max\{N_1, N_2\}$. 当 n > N 时有 $|a_n| > G$,故 $\{a_n\}$ 是无穷大数列.

8. 利用上题(1) 的结论求极限.

(1)
$$\lim_{n \to \infty} (1 + \frac{1}{n})^{n^2}$$
 (2) $\lim_{n \to \infty} (1 - \frac{1}{n})^{n^2}$ 解 (1) $\lim_{n \to \infty} \sqrt[n]{(1 + \frac{1}{n})^{n^2}} = \lim_{n \to \infty} (1 + \frac{1}{n})^n = e > 1$ 故 $\lim_{n \to \infty} (1 + \frac{1}{n})^{n^2} = + \infty$

$$(2) : \lim_{n \to \infty} \sqrt[n]{\left[(1 + \left(-\frac{1}{n} \right))^{-n} \right]^{-n}} = \lim_{n \to \infty} \frac{1}{\sqrt[n]{\left[(1 + \left(-\frac{1}{n} \right))^{-n} \right]^{n}}}$$

$$= \lim_{n \to \infty} \frac{1}{\left[1 + \left(-\frac{1}{n} \right) \right]^{-n}} = \frac{1}{e} < 1 : \lim_{n \to \infty} (1 - \frac{1}{n})^{n^{2}} = 0$$

9. 设
$$\lim_{n\to\infty} a_n = +\infty$$
,证明:(1) $\lim_{n\to\infty} \frac{1}{n} (a_1 + a_2 + \cdots + a_n) = +\infty$

(2) 若
$$a_n > 0$$
 $(n = 1, 2, \dots)$ 则 $\lim_{n \to \infty} \sqrt[n]{a_1 a_2 \cdots a_n} = + \infty$

证:(1) 由 $\lim_{n\to\infty}a_n=+\infty$,对任给正数 G,存在 N_1 ,当 $n>N_1$ 时,便 有 $a_n>2G$ 记 $S_n=a_1+a_2+\cdots+a_n$,当 $n>N_1$ 时

$$\frac{S_n}{n} = \frac{S_{N_1}}{n} + \frac{S_n - S_{N_1}}{n - N_1} (1 - \frac{N_1}{n}) > 2G(1 - \frac{N_1}{n})$$
 (1)

由于
$$1 - \frac{N_1}{n} \rightarrow 1 (n \rightarrow \infty)$$
,从而由保号性可知:存在 N_2 ,

当
$$n > N_2$$
 时,有 $|1 - \frac{N_1}{n}| > \frac{1}{2}(2)$ 于是取 $N = \max\{N_1, N_2\}$,

当
$$n > N$$
 时(1),(2) 同时成立.于是 $\frac{S_n}{n} > G$ 故 $\lim_{n \to \infty} \frac{1}{n} (a_1 + a_2 + \dots + a_n) = +\infty$

(2) 由于
$$a_n > 0$$
, $(n = 1, 2, \dots)$ 且 $\lim_{n \to \infty} a_n = +\infty$, 于是 $\lim_{n \to \infty} \ln a_n = +\infty$.

由 (1) 知
$$\lim_{n\to\infty}$$
 $\frac{\ln a_1 + \ln a_2 + \dots + \ln a_n}{n} = + \infty$ 而

$$\lim_{n\to\infty}\frac{\ln a_1+\ln a_2+\cdots+\ln a_n}{n} = \lim_{n\to\infty}\ln \sqrt[n]{a_1a_2\cdots a_n} \quad \overline{\eta} \quad \overline{\eta}$$

$$\lim_{n\to\infty} \ln \sqrt[n]{a_1 a_2 \cdots a_n} = + \infty. \quad \text{id} \lim_{n\to\infty} \sqrt[n]{a_1 a_2 \cdots a_n} = + \infty$$

10. 利用上题结果求极限

$$(1) \lim_{n \to \infty} \sqrt[n]{n!} \qquad (2) \lim_{n \to \infty} \frac{\ln(n!)}{n}$$

解 (1): $\sqrt[n]{n!} = \sqrt[n]{1 \cdot 2 \cdot \dots \cdot n}$,这里 $a_n = n$,且 $\lim_{n \to \infty} a_n = +\infty$,由上题 ② 知 $\lim_{n \to \infty} \sqrt[n]{n!} = +\infty$

(2)
$$: \ln n! = \ln 1 + \ln 2 + \dots + \ln n \quad \mathbb{Z} : \lim_{n \to \infty} \ln n = + \infty$$

∴ 由上题 ① 知
$$\lim_{n\to\infty} \frac{1}{n} (\ln 1 + \ln 2 + \dots + \ln n) = +\infty$$

$$\mathbb{P}\lim_{n\to\infty}\frac{1}{n}\ln(n!)=+\infty$$

11. 设 f 为 $U^{\circ}_{-}(x_0)$ 内的递增函数,证明: 若存在数列 $\{x_n\} \subset U^{\circ}_{-}(x_0)$ 且 $x_n \to x_0 (n \to \infty)$ 使得 $\lim_{n \to \infty} f(x_n) = A$,则有

$$f(x_0 - 0) = \sup_{x \in U_-(x_0)} f(x) = A$$

证:(1) 先证 $\sup_{x \in U_{-}(x_{0})} f(x) = A$. 假设存在 $x' \in U_{-}(x_{0}, \delta)$, 使

$$f(x') > A$$
,记 $\epsilon = \frac{x_0 - x'}{2} > 0$,由于 $x_n \to x_0$, $(n \to \infty)$.故存在 N ,

当
$$n > N$$
 时. 有 $|x_n - x_0| < \frac{x_0 - x'}{2}$, 于是 $x_n > \frac{x_0 + x'}{2}$ 又 f 在

 $U_{-}(x_{0},\delta)$ 内递增,故 $f(x_{n}) \geqslant f(\frac{x_{0}+x'}{2})$,而 $f(\frac{x_{0}+x'}{2}) \geqslant f(x')$ > A 于是 $f(x_{n}) - A > f(x') - A > 0$ $(n = 1,2,\cdots)$ 这与 $f(x_{n}) \rightarrow A$ $(n \rightarrow \infty)$ 矛盾.

(2) 下证 $f(x_0-0) = A$. 由题设 $\lim_{n\to\infty} f(x_n) = A$ 知:对任给正数 ϵ , 存在 N, 当 n > N 时有 $|f(x_n) - A| < \epsilon$ 而 N+1 > N, 故 $|f(x_{n+1}) - A| < \epsilon$

记 $\delta = x_0 - x_{N+1} > 0$, 当 $0 < x_0 - x < \delta$ 时, 有 $x > x_{N+1}$, 从而 $f(x) \geqslant f(x_{N+1})$, 对于任何 $x \in U_-(x_0, \delta)$ 都有 $f(x) \leqslant A$, 于是 $A - \varepsilon < f(x_{N+1}) \leqslant f(x) < A + \varepsilon$ 故 $\lim_{x \to x_0} f(x) = A$.

12. 设函数 f 在 $(0, +\infty)$ 上满足方程 f(2x) = f(x) 且 $\lim_{x\to +\infty} f(x) = A$,证明: $f(x) \equiv A(x \in (0, +\infty))$

$$f(x_0) = f(2x_0) = f(2^2x_0) = \cdots = f(2^nx_0) = \cdots$$

得到数列 $\{x_0,2x_0,2^2x_0,\cdots,2^nx_0,\cdots\}$ 故

$$\lim_{n \to \infty} f(2^n x_0) = f(x_0) = B \tag{1}$$

又因 $\lim_{x\to +\infty} f(x) = A$ 及 $2^n x_0 \to +\infty$ $(n\to +\infty)$,从而由归结原则就

有
$$\lim_{n \to \infty} f(2^n x_0) = A \tag{2}$$

由(1)(2) 可得 B = A 这与 $B \neq A$ 矛盾. 故 $f(x) = A, x \in (0, +\infty)$

13. 设函数 f 在(0, + ∞) 上满足方程 $f(x^2) = f(x)$ 且

$$\lim_{x\to 0^+} f(x) = \lim_{x\to +\infty} f(x) = f(1) \quad \text{iff:} f(x) \equiv f(1) \ x \in (0, +\infty)$$

证:(反证法) 假设 f(x) 在(0, + ∞) 上不恒为 f(1),则必存在 $x_0 \in (0, + \infty)$ 使得 $f(x_0) \neq f(1)$,由方程 $f(x^2) = f(x)$ 可得

$$f(x_0) = f(x_0^2) = f(x_0^{2^2}) = \cdots = f(x_0^{2^n}) = \cdots$$

得到数列 $\{x_0^2, x_0^{2^2}, \cdots, x_0^{2^n}, \cdots\}$

(|) 若
$$x_0 \in (0,1)$$
, 则 $\lim_{n \to \infty} x_0^{2^n} = 0$ 且 $\lim_{n \to \infty} f(x_0^{2^n}) = f(x_0) \cdots (1)$

又因为 $\lim_{x\to 0^+} f(x) = f(1)$ 故由归结原则可得

$$\lim_{n \to \infty} f(x_0^{2^n}) = f(1)\cdots(2)$$

由(1)(2) 可得
$$f(x_0) = f(1)$$

(||) 若
$$x_0 \in (1, +\infty)$$
,则 $\lim_{n \to \infty} x_0^{2^n} = +\infty$ 且

$$\lim_{n \to \infty} f(x_0^{2^n}) = f(x_0) \qquad (1')$$

又因为 $\lim_{x \to \infty} f(x) = f(1)$,故由归结原则可得

$$\lim_{n \to \infty} f(x_0^{2^n}) = f(1) \qquad (2')$$

由(1')(2')可得 $f(x_0) = f(1)$

由(i)(ii)结论可得不论 $x_0 \in (0,1)$ 还是 $x_0 \in (1, +\infty)$ 都有 $f(x_0) = f(1)$,这与 $f(x_0) \neq f(1)$ 相矛盾.

故
$$f(x) \equiv f(1), x \in (0, +\infty)$$

14. 设函数 f 定义在 $(a, +\infty)$ 上, f 在每一个有限区间(a, b)内有界, 并满足

$$\lim_{x \to +\infty} (f(x+1) - f(x)) = A. 证明 \qquad \lim_{x \to \infty} \frac{f(x)}{x} = A$$

证:由题设 $\lim [f(x+1)-f(x)] = A$.对任给正数 ϵ ,必存在正

数
$$x_0 > a$$
,使当 $x \geqslant x_0$ 时,有 $| f(x+1) - f(x) - A | < \frac{\epsilon}{3}$.

现设 $x > x_0 + 1$,于是存在正整数 n(依赖于 x),满足 $n \le x - x_0$ $< n + 1 令 L = x - x_0 - n$,则 $0 \le L < 1$,且 $x = x_0 + n + L$.于是有

$$\left| \frac{f(x)}{x} - A \right| = \left| \frac{n}{x} \left[\frac{f(x) - f(x_0 + L)}{n} - A \right] + \frac{f(x_0 + L)}{x} - \frac{x_0 + L}{x} A \right|$$

显然
$$\left|\frac{n}{x}\left[\frac{f(x)-f(x_0+L)}{n}-A\right]\right| \leqslant \left|\frac{f(x)-f(x_0+L)}{n}-A\right|$$

$$= \frac{1}{n} \left| \sum_{k=1}^{n} \left[f(x_0 + L + k) - f(x_0 + L + k - 1) - A \right] \right|$$

$$\leq \frac{1}{n} \sum_{k=1}^{n} \left| f(x_0 + L + k) - f(x_0 + L + k - 1) - A \right| < \frac{1}{n} \cdot \frac{n}{3} \varepsilon = \frac{\varepsilon}{3}$$
由题设知 $f(x)$ 在 $x_0 \leq x < x_0 + 1$ 上有界,故存在正数 x_1 ,使当 $x > x_1$ 时,便有 $\left| \frac{f(x_0 + L)}{x} \right| < \frac{\varepsilon}{3} (0 \leq L < 1)$
又显然存在正数 x_2 ,使当 $x > x_2$ 时,有 $\left| \frac{x_0 + L}{x} A \right| < \frac{\varepsilon}{3}$
令 $X = \max\{x_0 + 1, x_1, x_2\}$ 于是当 $x > X$ 时,便有
$$\left| \frac{f(x)}{x} - A \right| < \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon$$
故 $\lim_{x \to +\infty} \frac{f(x)}{x} = A$.