Group Theory

Karan Elangovan

April 28, 2021

Contents

L	Gro	pups	1
	1.1	Group Axioms	1
	1.2	Cosets	2
	1.3	Subgroup Generation	7

1 Groups

1.1 Group Axioms

Definition 1 (Group). A group is an ordered pair (G, \circ) , where $\circ: G^2 \to G$ satisfying

- 1. (Associativity) The \circ operation is associative.
- 2. (Identity) There exists an element $1 \in G$ such that $1 \circ x = x \circ 1 = x$ for all $x \in G$.
- 3. (Inverses) For every element x there exists an element x^{-1} such that $x\circ x^{-1}=x^{-1}\circ x=1.$

From here on we will omit the \circ symbol and just denote it by adjacency, and when the group operation is clear from context, we will refer to a group by its set.

Definition 2 (Subgroup). Given a subset $H \subset G$, we say it forms a subgroup if H is a group under the induced group operation from G.

1.2 Cosets

Given subsets $A, B \subset G$, we may define their product as

$$AB = \{ab : a \in A, b \in B\}.$$

That is, the set of all possible products of elements from A and B. We see that from the associativity of element multiplication that multiplication of subsets is also associative.

In the case that A or B is a singleton, we just write xB and Ax for $\{x\}B$ and $A\{x\}$ respectively. The case that one of A,B is a subgroup and the other a singleton is of particular interest, leading us to the following definition:

Definition 3 (Cosets). Let H be a subgroup of G. Then the left cosets of H in G, G/H are the subsets of the form xH for all $x \in G$. We define the right cosets, $H \setminus G$ similarly.

We have the following results about left and right cosets.

Theorem 1. Let H be a subgroup of G, and $x, y \in G$. Then all of the following hold

- 1. Hx = Hy precisely when $xy^{-1} \in H$.
- 2. |Hx| = |Hy|.
- 3. |Hx| = |xH|.
- 4. Hx = Hy or $Hx \cap Hy = \emptyset$.
- 5. |G/H| = |HG|

Proof. First assume Hx = Hy, then right multiplying by $\{y^{-1}\}$ yields $H(xy^{-1}) = H$. As H is a subgroup, $1 \in H$, so $1(xy^{-1}) = xy^{-1} \in H$. Now assume $xy^{-1} \in H$, then as subgroups are closed under multiplication, we have $Hxy^{-1} = H$, so multiplying by $\{y\}$ yields Hx = Hy. Hence we have (1).

Define $f: Hx \to Hy$ by $f(g) = gx^{-1}y$. This has inverse $f^{-1}(g) = gy^{-1}x$, so f is bijection, so |Hx| = |Hy|. A similar bijection may be defined for (3).

Say that $Hx \cap Hy \neq \emptyset$, so we may choose $g \in Hx \cap Hy$, so we have $h_1, h_2 \in H$ such that $g = h_1x = h_2y$, yielding $xy^{-1} = h_1^{-1}h_2 \in H$, meaning Hx = Hy. \square

Of course by symmetry similar results hold for right cosets.

We now show that there are the same number of left and right cosets.

Theorem 2. Let H be a subgroup of G. Then $|G/H| = |H \setminus G|$.

Proof. We define the map $f: G/H \to H\backslash G$ by

$$f(gH) = Hg$$
.

We first need to show that f is well-defined. Say $g_1H = g_2H$, then $g_1g_2^{-1} \in H$, so $Hg_1 = Hg_2$. Similar logic shows that f is an injection. We also have f is trivially a surjection. So f is a bijection between the left and right cosets. Hence we have $|G/H| = |H \setminus G|$.

In light of the previous result, we make the following definition:

Definition 4 (Index of a Subgroup). Let H be a subgroup of G. We define the index of H in G, [G:H] as the common cardinality of the left cosets and the right cosets of H in G, $|G/H| = |H \setminus G|$.

In light of our work, the next theorem now follows trivially.

Theorem 3 (Lagrange's Theorem). Let G be a subgroup of H, then we have

$$|G| = [G:H]|H|.$$

Proof. The left cosets of H in G form a partition of G, with each equivalency class of cardinality |H|. Hence we have |G| = |H|[G:H].

Theorem 4. Let $K \leq L \leq G$, then we have

$$[G:L][L:K] = [G:K]$$

Proof. Let A and B be left transversals of G/L and L/K, respectively.

First we note that if $a, a' \in A$ and $b, b' \in B$ are such that abK = a'b'K, then we have

$$abKL = a'b'KL$$

$$abL = a'b'L$$

$$aL = a'L$$

$$a = a'$$

$$b = b'.$$

Hence abK = a'b'K precisely when a = a' and b = b'.

Define the mapping $f: A \times B \to AB$ by

$$f(a,b) = ab.$$

This is trivially surjective and is injective by our initial observation. Hence we

have

$$|AB| = |A||B|$$
$$= [G:L][L:K].$$

Define the mapping $g:AB\to G/K$ by

$$g(x) = xK$$
.

By the initial observation this is injective. We see that

$$\cup g(AB) = ABK$$

$$= AL$$

$$= G.$$

So we have that g is surjective. Hence we have

$$[G:K] = |AB|$$
$$= [G:L][L:K].$$

The above result is a generalisation of Lagrange's Theorem, which follows by letting K be the trivial subgroup.

We now derive an upper bound for the index of finite intersections of subgroups.

Theorem 5. Let $H_1, H_2, \ldots, H_m \leq G$. Then we have

$$[G:\cap_{i=1}^{n}H_{i}] \leq \prod_{i=1}^{n}[G:H_{i}].$$

Proof. Consider $H, K \leq G$. Define the mapping $f: K/(H \cap K) \to G/H$ by

$$f(k(H \cap K)) = kH.$$

This is well-defined as $H \cap K \leq H$. Now we show that f is injective:

$$f(k_1(H \cap K)) = f(k_2(H \cap K))$$
$$k_1H = k_2H$$
$$k_1k_2^{-1} \in H \cap K$$
$$k_1(H \cap K) = k_2(H \cap K).$$

So we have that

$$[K:H\cap K]\leq [G:H]$$

$$[G:K][K:H\cap K]\leq [G:K][G:H]$$

$$[G:H\cap K]\leq [G:K][G:H].$$

Hence the result for an arbitrary finite intersection follows from a trivial induction. $\hfill\Box$

In particular this means that a finite intersection of subgroups of finite index has a finite index itself.

Another natural product to consider is that between two subgroups, H and K. Of course in general this is not a subgroup itself, however we may derive a formula for the cardinality of this product when H and K are finite.

Theorem 6. Let H and K be finite subgroups of G. Then we have

$$|HK| = \frac{|H||K|}{|H \cap K|}.$$

Proof. We note that

$$HK = \bigcup \{Hk\}_{k \in K}$$

Now say that $Hk_1 = Hk_2$ for $k_1, k_2 \in K$, then we have that $k_1k_2^{-1} \in H \cap K$, or equivalently $(H \cap K)k_1 = (H \cap K)k_2$. The converse follows trivially. So we have a bijective correspondence between $\{Hk\}_{k \in K}$ and the right cosets of $H \cap K$ in K.

Hence we have

$$\begin{split} |HK| &= |H|[K:H\cap K] \\ &= \frac{|H||K|}{|H\cap K|}. \end{split}$$

1.3 Subgroup Generation

An arbitrary subset $X \subset G$ is not necessarily a subgroup under the induced operation. So we aim to define the notion of the "smallest" subgroup that contains X.

Definition 5 (Generated Subgroup).