

Introduction to DLM

- It is difficult to deal with the non-stationary time series
- We need to assume that some distributional properties of the process that generate the observations do not change with time
- Dynamic regression avoids this by explicitly allowing temporal variability in the regression coefficients and by letting some of the system properties to change in time
- Many classical time series models can be formulated as DLMs, including ARMA, ARIMA, GARCH models
- The main goals are short-term forecasting, intervention analysis and monitoring

Source: PySSM: Bayesian Inference of Linear Gaussian State Space Models in Python, by C.M.Strickland et al.

Source: Introduction to Dynamic Linear Models for Time Series Analysis, by Marko Laine, https://arxiv.org/abs/1903.11309v2

State space modeling (SSM)

- We have a set of states that evolve in time, but our observations of these states contain statistical noise, and hence we are unable to ever directly observe the "true" states.
- The goal of the state space model is to infer information about the states, given the observations, as new information arrives.
- A famous algorithm for carrying out this procedure is the Kalman Filter.
- Applications: engineering control problems, including guidance & navigation, spacecraft trajectory analysis, etc., quantitative finance and macroeconomics
- Example: a radar tracks a target, i.e. determine its location, speed, and acceleration, while the estimates of its location were received gradually and with noise. We need to construct a model of optimal, continuously updated estimates of the position and speed of an object based on the results of a time series of inaccurate measurements of its location.

Truth; filtered process; observations.

Source: https://en.wikipedia.org/wiki/Kalman filter

State space models

- The model:
 - Discrete time $t_1, t_2, ..., t_T$,
 - Model for states of the system,
 - Model for observations of the system.
- The state of the system is described by a vector of finite dimension (the state vector).
- At each time cycle, the linear operator converts the state vector into another state vector (deterministic state change), adds some normal noise vector (random factors) and, probably, a control vector that simulates the effect of the control system.

■ The model:

- Discrete time $t_1, t_2, ..., t_T$,

- Model for states of the system: $x_t = Fx_{t-1} + Bu_t + w_t$

 \blacksquare x_t is a current state of the system,

- \blacksquare *F* is a state transition matrix,
- \blacksquare u_t is a control vector,
- \blacksquare B is a control matrix,
- w_t is an error of the model, $w_t \sim N(0, Q)$, Q is a covariance matrix
- Model for observations of the system.

Evolution of the system

Control over system

- Simple example: robot, one-dimensional movement
- - x_t is a current state of the system,
 - F is a state transition matrix,
 - u_t is a control vector,

We cannot control the robot (just watch), so this part is 0

- B is a control matrix,
- w_t is an error of the model, $w_t \sim N(0, Q)$, Q is a covariance matrix

- Simple example: robot, one-dimensional movement
- - x_t is a current state of the system:
 - The state of the system is complex: the position of the drone, its velocity and acceleration, so $x_t = (s_t, v_t, a_t)^T$;
 - *F* is a state transition matrix:
 - w_t is an error of the model, $w_t \sim N(0, Q)$, Q is a covariance matrix

- Simple example: robot, one-dimensional movement
- - x_t is a current state of the system:
 - The state of the system is complex: the position of the drone, its velocity and acceleration, so $x_t = (s_t, v_t, a_t)^T$;
 - *F* is a state transition matrix:
 - In case of movement with constant acceleration $x_t = x_0 + v_0 t + \frac{at^2}{2}$, so $F = \begin{bmatrix} 1 & \Delta t & \frac{\Delta t^2}{2} \\ 0 & 1 & \Delta t \\ 0 & 0 & 1 \end{bmatrix}$
 - w_t is an error of the model, $w_t \sim N(0, Q)$, Q is a covariance matrix

- Simple example: robot, one-dimensional movement
- - x_t is a current state of the system:
 - The state of the system is complex: the position of the drone, its velocity and acceleration, so $x_t = (s_t, v_t, a_t)^T$;
 - *F* is a state transition matrix:
 - In case of movement with constant acceleration $x_t = x_0 + v_0 t + \frac{at^2}{2}$, so $F = \begin{bmatrix} 1 & \Delta t & \frac{\Delta t^2}{2} \\ 0 & 1 & \Delta t \\ 0 & 0 & 1 \end{bmatrix}$
 - w_t is an error of the model (bumps in the road, wind, noise, etc.), $w_t \sim N(0, Q)$, Q is a covariance matrix

- Simple example: robot, one-dimensional movement
- Model for states of the system $x_t = Fx_{t-1} + w_t$
 - x_t is a current state of the system:
 - The state of the system is complex: the position of the drone, its velocity and acceleration, so $x_t = (s_t, v_t, a_t)^T$;
 - *F* is a state transition matrix:
 - In case of movement with constant acceleration $x_t = x_0 + v_0 t + \frac{at^2}{2}$, so $F = \begin{bmatrix} 1 & \Delta t & \frac{\Delta t^2}{2} \\ 0 & 1 & \Delta t \\ 0 & 0 & 1 \end{bmatrix}$
 - w_t is an error of the model (bumps in the road, wind, noise, etc.), $w_t \sim N(0, Q)$, Q is a covariance matrix
- Observation model: $z_t = Hx_t + v_t$,
 - z_t is measurements made by sensors,
 - v_t is a vector of measurement errors, $v_t \sim N(0, R)$, R is a covariance matrix

- Simple example: robot, one-dimensional movement
- Model for states of the system $x_t = Fx_{t-1} + w_t$
 - x_t is a current state of the system:
 - The state of the system is complex: the position of the drone, its velocity and acceleration, so $x_t = (s_t, v_t, a_t)^T$;
 - *F* is a state transition matrix:
 - In case of movement with constant acceleration $x_t = x_0 + v_0 t + \frac{at^2}{2}$, so $F = \begin{bmatrix} 1 & \Delta t & \frac{\Delta t^2}{2} \\ 0 & 1 & \Delta t \\ 0 & 0 & 1 \end{bmatrix}$
 - w_t is an error of the model (bumps in the road, wind, noise, etc.), $w_t \sim N(0, Q)$, Q is a covariance matrix

 In general $\dim(z_t) \neq \dim(x_t)$!
- Observation model: $z_t = Hx_t + v_t$,
 - z_t is measurements made by sensors,
 - v_t is a vector of measurement errors, $v_t \sim N(0, R)$, R is a covariance matrix

- Simple example: robot, one-dimensional movement
- Model for states of the system $x_t = Fx_{t-1} + w_t$
 - x_t is a current state of the system:
 - The state of the system is complex: the position of the drone, its velocity and acceleration, so $x_t = (s_t, v_t, a_t)^T$;
 - *F* is a state transition matrix:
 - In case of movement with constant acceleration $x_t = x_0 + v_0 t + \frac{at^2}{2}$, so $F = \begin{bmatrix} 1 & \Delta t & \frac{\Delta t^2}{2} \\ 0 & 1 & \Delta t \\ 0 & 0 & 1 \end{bmatrix}$
 - w_t is an error of the model (bumps in the road, wind, noise, etc.), $w_t \sim N(0,Q)$, Q is a covariance matrix
- Observation model: $z_t = Hx_t + v_t$, If we can measure only position, then $H_t = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$
 - z_t is measurements made by sensors,
 - v_t is a vector of measurement errors, $v_t \sim N(0, R)$, R is a covariance matrix

- Simple example: robot, one-dimensional movement
- Model for states of the system $x_t = Fx_{t-1} + w_t$
 - x_t is a current state of the system:
 - The state of the system is complex: the position of the drone, its velocity and acceleration, so $x_t = (s_t, v_t, a_t)^T$;
 - *F* is a state transition matrix:
 - In case of movement with constant acceleration $x_t = x_0 + v_0 t + \frac{at^2}{2}$, so $F = \begin{bmatrix} 1 & \Delta t & \frac{\Delta t^2}{2} \\ 0 & 1 & \Delta t \\ 0 & 0 & 1 \end{bmatrix}$
 - w_t is an error of the model (bumps in the road, wind, noise, etc.), $w_t \sim N(0, Q)$, Q is a covariance matrix
- Observation model: $z_t = Hx_t + v_t$, If we can measure position and speed, then $H_t = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$
 - z_t is measurements made by sensors,
 - v_t is a vector of measurement errors, $v_t \sim N(0, R)$, R is a covariance matrix

- Simple example: robot, one-dimensional movement
- Model for states of the system $x_t = Fx_{t-1} + w_t$
 - x_t is a current state of the system:
 - The state of the system is complex: the position of the drone, its velocity and acceleration, so $x_t = (s_t, v_t, a_t)^T$;
 - *F* is a state transition matrix:
 - In case of movement with constant acceleration $x_t = x_0 + v_0 t + \frac{at^2}{2}$, so $F = \begin{bmatrix} 1 & \Delta t & \frac{\Delta t^2}{2} \\ 0 & 1 & \Delta t \\ 0 & 0 & 1 \end{bmatrix}$
 - w_t is an error of the model (bumps in the road, wind, noise, etc.), $w_t \sim N(0, Q)$, Q is a covariance matrix
- Observation model: $z_t = Hx_t + v_t$, If we can measure speed from two sensors, then $H_t = \begin{bmatrix} 0 & 0 \\ 1 & 1 \\ 0 & 0 \end{bmatrix}$
 - z_t is measurements made by sensors,
 - v_t is a vector of measurement errors, $v_t \sim N(0, R)$, R is a covariance matrix

- Simple example: robot, one-dimensional movement
- Model for states of the system $x_t = Fx_{t-1} + w_t$
 - x_t is a current state of the system:
 - The state of the system is complex: the position of the drone, its velocity and acceleration, so $x_t = (s_t, v_t, a_t)^T$;
 - *F* is a state transition matrix:
 - In case of movement with constant acceleration $x_t = x_0 + v_0 t + \frac{at^2}{2}$, so $F = \begin{bmatrix} 1 & \Delta t & \frac{\Delta t^2}{2} \\ 0 & 1 & \Delta t \end{bmatrix}$
 - w_t is an error of the model (bumps in the road, wind, noise, etc.), $w_t \sim N(0, Q)$, Q is a covariance matrix If we can measure speed from two sensors, one in km/h (as in
- Observation model: $z_t = Hx_t + v_t$,

- z_t is measurements made by sensors, $z_t = z_t$ is measurements made by sensors, $z_t = z_t = z_t$

 v_t is a vector of measurement errors, $v_t \sim N(0, R)$, R is a covariance matrix

- Second-order Difference Equation: $y_{t+1} = \phi_0 + \phi_1 y_t + \phi_2 y_{t-1}$
- Model for states of the system $x_t = Fx_{t-1}$
 - $x_t = (1, y_t, y_{t-1})^T$ is a state vector;
 - $-F = \begin{bmatrix} 1 & 0 & 0 \\ \phi_0 & \phi_1 & \phi_2 \\ 0 & 1 & 0 \end{bmatrix}$ is a state transition matrix;
- Observation model: $z_t = Hx_t$,
 - z_t is measurements made by sensors and $H = \begin{bmatrix} 0 & 1 & 0 \end{bmatrix}$

- Autoregressive Process: $y_{t+1} = \phi_1 y_t + \phi_2 y_{t-1} + \phi_3 y_{t-2} + \phi_4 y_{t-3} + w_{t+1}$
- Model for states of the system $x_t = Fx_{t-1} + w_t$
 - $x_t = (y_t, y_{t-1}, y_{t-2}, y_{t-3})^T$ is a state vector;

$$-F = \begin{bmatrix} \phi_1 & \phi_2 & \phi_3 & \phi_4 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$
 is a state transition matrix;

- w_t is an error of the model (bumps in the road, wind, noise, etc.), $w_t \sim N(0,Q)$, Q is a covariance matrix
- Observation model: $z_t = Hx_t$,
 - z_t is measurements made by sensors and $H = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$

- Linear Time Trend: $y_t = at + b$
- Model for states of the system $x_t = Fx_{t-1}$
 - $x_t = (1, 1)^T$ is a state vector;
 - $F = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ is a state transition matrix;
- Observation model: $z_t = Hx_t$,
 - z_t is measurements made by sensors and $H = \begin{bmatrix} a & b \end{bmatrix}$

- Local level model
- Model for states of the system $x_t = Fx_{t-1} + w_t$
 - $x_t = \mu_t$, is a state vector;
 - F = [1] is a state transition matrix;
- Observation model: $z_t = Hx_t + v_t$,
 - z_t is measurements made by sensors and H = [1]

 $z_t = \mu_t + v_t$ mean level process $\mu_t = \mu_{t-1} + \epsilon_1$

- Local trend model
- Model for states of the system $x_t = Fx_{t-1} + w_t$
 - $x_t = (\mu_t, \alpha_t)^T$ is a state vector;
 - $F = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ is a state transition matrix;
- Observation model: $z_t = Hx_t + v_t$,
 - z_t is measurements made by sensors and $H = \begin{bmatrix} 1 & 0 \end{bmatrix}$

 $z_t = \mu_t + \nu_t$ mean level process $\mu_t = \mu_{t-1} + \alpha_{t-1} + \epsilon_1$ change in the mean $\mu_t - \mu_{t-1}$ is controlled by the trend process $\alpha_t = \alpha_{t-1} + \epsilon_2$

- Kalman filtering is an algorithm that uses a series of measurements observed over time, containing statistical noise and other inaccuracies, and produces estimates of unknown variables that tend to be more accurate than those based on a single measurement alone, by estimating a joint probability distribution over the variables for each timeframe.
- The algorithm works in a two-step process:
 - prediction step, where the Kalman filter produces estimates of the current state variables, along with their uncertainties (because next measurement will be necessarily corrupted with some amount of error, including random noise).
 - correction (or update) step, where these estimates are updated using a weighted average,
 with more weight being given to estimates with higher certainty.
- The algorithm is recursive. It can run in real time,; no additional past information is required. using only the present input measurements and the previously calculated state and its uncertainty matrix

- Simplest example first (from <u>KALMAN FILTERS (archive.org</u>))
- One dimensional random variable x_t satisfies a linear dynamic equation $x_t = Fx_{t-1} + w_t$. F is a known number, assume F = 0.9. White noise $w_t \sim N(0,100)$

- Simplest example first (from <u>KALMAN FILTERS (archive.org)</u>)
- One dimensional random variable x_t satisfies a linear dynamic equation $x_t = Fx_{t-1} + w_t$. F is a known number, assume F = 0.9. White noise $w_t \sim N(0,100)$
- The initial estimate (a priori estimate) of x_0 is 1000, the variance of error is P=40000
- So, our estimation of x_0 will be called x_e and x_e is 1000. The variance of the error in this estimate is defined by $P = E[(x_0 x_e)^2]$

- Simplest example first (from <u>KALMAN FILTERS (archive.org)</u>)
- One dimensional random variable x_t satisfies a linear dynamic equation $x_t = Fx_{t-1} + w_t$. F is a known number, assume F = 0.9. White noise $w_t \sim N(0,100)$
- The initial estimate (a priori estimate) of x_0 is 1000, the variance of error is P=40000
- So, our estimation of x_0 will be called x_e and x_e is 1000. The variance of the error in this estimate is defined by $P = E[(x_0 x_e)^2]$
- Prediction step. Now we would like to estimate x_1 . Using the dynamic equation, we get $x_1 = Fx_0 + w_0$
- The new best estimate of x_1 should be $x_e^{new} = Fx_e$ (1)

- Simplest example first (from <u>KALMAN FILTERS (archive.org)</u>)
- One dimensional random variable x_t satisfies a linear dynamic equation $x_t = Fx_{t-1} + w_t$. F is a known number, assume F = 0.9. White noise $w_t \sim N(0,100)$
- The initial estimate (a priori estimate) of x_0 is 1000, the variance of error is P=40000
- So, our estimation of x_0 will be called x_e and x_e is 1000. The variance of the error in this estimate is defined by $P = E[(x_0 x_e)^2]$
- Prediction step. Now we would like to estimate x_1 . Using the dynamic equation, we get $x_1 = Fx_0 + w_0$
- The new best estimate of x_1 should be $x_e^{new} = Fx_e$ (1)
- This is because mean value of w_t is zero. Here $x_e^{new} = Fx_e = 0.9 * 1000 = 900$

- Simplest example first (from <u>KALMAN FILTERS (archive.org)</u>)
- One dimensional random variable x_t satisfies a linear dynamic equation $x_t = Fx_{t-1} + w_t$. F is a known number, assume F = 0.9. White noise $w_t \sim N(0,100)$
- The initial estimate (a priori estimate) of x_0 is 1000, the variance of error is P=40000
- So, our estimation of x_0 will be called x_e and x_e is 1000. The variance of the error in this estimate is defined by $P = E[(x_0 x_e)^2]$
- Prediction step. Now we would like to estimate x_1 . Using the dynamic equation, we get $x_1 = Fx_0 + w_0$
- The new best estimate of x_1 should be $x_e^{new} = Fx_e$ (1)
- This is because mean value of w_t is zero. Here $x_e^{new} = Fx_e = 0.9 * 1000 = 900$
- The variance of the error of this estimate is $P^{new} = E[(x_1 x_e^{new})^2]$

- Simplest example first (from <u>KALMAN FILTERS (archive.org)</u>)
- One dimensional random variable x_t satisfies a linear dynamic equation $x_t = Fx_{t-1} + w_t$. F is a known number, assume F = 0.9. White noise $w_t \sim N(0,100)$
- The initial estimate (a priori estimate) of x_0 is 1000, the variance of error is P=40000
- So, our estimation of x_0 will be called x_e and x_e is 1000. The variance of the error in this estimate is defined by $P = E[(x_0 x_e)^2]$
- Prediction step. Now we would like to estimate x_1 . Using the dynamic equation, we get $x_1 = Fx_0 + w_0$
- The new best estimate of x_1 should be $x_e^{new} = Fx_e$ (1)
- This is because mean value of w_t is zero. Here $x_e^{new} = Fx_e = 0.9 * 1000 = 900$
- The variance of the error of this estimate is $P^{new} = E[(x_1 x_e^{new})^2]$. As $x_1 = Fx_0 + w_0$ and $x_e^{new} = Fx_e$, the variance of error is $P^{new} = E[(x_1 x_e^{new})^2] = E[(Fx_0 + w_0 Fx_e)^2]$

- Prediction step. The new best estimate of x_1 should be $x_e^{new} = Fx_e$ (1)
- This is because mean value of w_t is zero. Here $x_e^{new} = Fx_e = 0.9 * 1000 = 900$
- The variance of the error of this estimate is $P^{new} = E[(x_1 x_e^{new})^2]$. As $x_1 = Fx_0 + w_0$ and $x_e^{new} = Fx_e$, the variance of error is $P^{new} = E[(x_1 x_e^{new})^2] = E[(Fx_0 + w_0 Fx_e)^2]$

- Prediction step. The new best estimate of x_1 should be $x_e^{new} = Fx_e$ (1)
- This is because mean value of w_t is zero. Here $x_e^{new} = Fx_e = 0.9 * 1000 = 900$
- The variance of the error of this estimate is $P^{new} = E[(x_1 x_e^{new})^2]$. As $x_1 = Fx_0 + w_0$ and $x_e^{new} = Fx_e$, the variance of error is $P^{new} = E[(x_1 x_e^{new})^2] = E[(Fx_0 + w_0 Fx_e)^2] = E[F^2(x_0 x_e)^2] + E[w_0^2] + 2E[F(x_0 x_e)w_0]$, but w_0 is uncorrelated with x_0 and x_e , so $P^{new} = F^2E[(x_0 x_e)^2] + E[w_0^2]$

- Prediction step. The new best estimate of x_1 should be $x_e^{new} = Fx_e$ (1)
- This is because mean value of w_t is zero. Here $x_e^{new} = Fx_e = 0.9 * 1000 = 900$
- The variance of the error of this estimate is $P^{new} = E[(x_1 x_e^{new})^2]$. As $x_1 = Fx_0 + w_0$ and $x_e^{new} = Fx_e$, the variance of error is $P^{new} = E[(x_1 x_e^{new})^2] = E[(Fx_0 + w_0 Fx_e)^2] = E[F^2(x_0 x_e)^2] + E[w_0^2] + 2E[F(x_0 x_e)w_0]$, but w_0 is uncorrelated with x_0 and x_e , so $P^{new} = F^2E[(x_0 x_e)^2] + E[w_0^2]$
- As $E[(x_0 x_e)^2] = P$ and $E[w_0^2] = Q$, then $P^{new} = F^2P + Q$ (2)

- Prediction step. The new best estimate of x_1 should be $x_e^{new} = Fx_e$ (1)
- This is because mean value of w_t is zero. Here $x_e^{new} = Fx_e = 0.9 * 1000 = 900$
- The variance of the error of this estimate is $P^{new} = E[(x_1 x_e^{new})^2]$. As $x_1 = Fx_0 + w_0$ and $x_e^{new} = Fx_e$, the variance of error is $P^{new} = E[(x_1 x_e^{new})^2] = E[(Fx_0 + w_0 Fx_e)^2] = E[F^2(x_0 x_e)^2] + E[w_0^2] + 2E[F(x_0 x_e)w_0]$, but w_0 is uncorrelated with x_0 and x_e , so $P^{new} = F^2E[(x_0 x_e)^2] + E[w_0^2]$
- As $E[(x_0 x_e)^2] = P$ and $E[w_0^2] = Q$, then $P^{new} = F^2P + Q$ (2)
- For our example $P^{new} = F^2P + Q = 0.81 * 40000 + 100 = 32500$

- Prediction step. The new best estimate of x_1 should be $x_e^{new} = Fx_e$ (1)
- This is because mean value of w_t is zero. Here $x_e^{new} = Fx_e = 0.9 * 1000 = 900$
- The variance of the error of this estimate is $P^{new} = E[(x_1 x_e^{new})^2]$. As $x_1 = Fx_0 + w_0$ and $x_e^{new} = Fx_e$, the variance of error is $P^{new} = E[(x_1 x_e^{new})^2] = E[(Fx_0 + w_0 Fx_e)^2] = E[F^2(x_0 x_e)^2] + E[w_0^2] + 2E[F(x_0 x_e)w_0]$, but w_0 is uncorrelated with x_0 and x_e , so $P^{new} = F^2E[(x_0 x_e)^2] + E[w_0^2]$
- As $E[(x_0 x_e)^2] = P$ and $E[w_0^2] = Q$, then $P^{new} = F^2P + Q$ (2)
- For our example $P^{new} = F^2P + Q = 0.81 * 40000 + 100 = 32500$
- Correction step. We make a noisy measurement y of x according to the linear equation $z_t = Hx_t + v_t$, here v_t is a white noise N(0, R), R = 10000, H = 1, so $z_1 = Hx_1 + v_1$

- Prediction step. The new best estimate of x_1 should be $x_e^{new} = Fx_e$ (1)
- This is because mean value of w_t is zero. Here $x_e^{new} = Fx_e = 0.9 * 1000 = 900$
- The variance of the error of this estimate is $P^{new} = E[(x_1 x_e^{new})^2]$. As $x_1 = Fx_0 + w_0$ and $x_e^{new} = Fx_e$, the variance of error is $P^{new} = E[(x_1 x_e^{new})^2] = E[(Fx_0 + w_0 Fx_e)^2] = E[F^2(x_0 x_e)^2] + E[w_0^2] + 2E[F(x_0 x_e)w_0]$, but w_0 is uncorrelated with x_0 and x_e , so $P^{new} = F^2E[(x_0 x_e)^2] + E[w_0^2]$
- As $E[(x_0 x_e)^2] = P$ and $E[w_0^2] = Q$, then $P^{new} = F^2P + Q$ (2)
- For our example $P^{new} = F^2P + Q = 0.81 * 40000 + 100 = 32500$
- Correction step. We make a noisy measurement y of x according to the linear equation $z_t = Hx_t + v_t$, here v_t is a white noise N(0, R), R = 10000, H = 1, so $z_1 = Hx_1 + v_1$.
- Suppose $z_1 = 1200$, but if we wanted to estimate z_1 before we look at the measured value we would use $z_e = H * x_e^{new} = 1 * 900 = 900$

- Correction step. We make a noisy measurement y of x according to the linear equation $z_t = Hx_t + v_t$, here v_t is a white noise N(0, R), R = 10000, H = 1, so $z_1 = Hx_1 + v_1$.
- Suppose $z_1 = 1200$, but if we wanted to estimate z_1 before we look at the measured value we would use $z_e = H * x_e^{new} = 1 * 900 = 900$

- Correction step. We make a noisy measurement y of x according to the linear equation $z_t = Hx_t + v_t$, here v_t is a white noise N(0, R), R = 10000, H = 1, so $z_1 = Hx_1 + v_1$.
- Suppose $z_1 = 1200$, but if we wanted to estimate z_1 before we look at the measured value we would use $z_e = H * x_e^{new} = 1 * 900 = 900$

our sensor

■ The new best estimate of z_1 is given by $x_e^{newer} = Kz_1 + (1 - K)z_e$

The noisy estimations from

The our prediction of what the measurement should be according to our model

- Correction step. We make a noisy measurement y of x according to the linear equation $z_t = Hx_t + v_t$, here v_t is a white noise N(0, R), R = 10000, H = 1, so $z_1 = Hx_1 + v_1$.
- Suppose $z_1 = 1200$, but if we wanted to estimate z_1 before we look at the measured value we would use $z_e = H * x_e^{new} = 1 * 900 = 900$
- The new best estimate of z_1 is given by $x_e^{newer} = Kz_1 + (1 K)z_e$ $x_e^{newer} = Kz_1 + (1 K)Hx_e^{new}$ $x_e^{newer} = x_e^{new} + K(z_1 z_e) \quad (3)$
- K is a number called the Kalman gain.

- Correction step. We make a noisy measurement y of x according to the linear equation $z_t = Hx_t + v_t$, here v_t is a white noise N(0, R), R = 10000, H = 1, so $z_1 = Hx_1 + v_1$.
- Suppose $z_1 = 1200$, but if we wanted to estimate z_1 before we look at the measured value we would use $z_e = H * x_e^{new} = 1 * 900 = 900$
- The new best estimate of z_1 is given by $x_e^{newer} = Kz_1 + (1 K)z_e$ $x_e^{newer} = Kz_1 + (1 K)Hx_e^{new}$ $x_e^{newer} = x_e^{new} + K(z_1 z_e) \quad (3)$
- K is a number called the Kalman gain.
- In our example $(z_1 z_e) = 1200 900 = 300$. Let's find optimal K using optimization technique

- Correction step. We make a noisy measurement y of x according to the linear equation $z_t = Hx_t + v_t$, here v_t is a white noise N(0, R), R = 10000, H = 1, so $z_1 = Hx_1 + v_1$.
- Suppose $z_1 = 1200$, but if we wanted to estimate z_1 before we look at the measured value we would use $z_e = H * x_e^{new} = 1 * 900 = 900$
- The new best estimate of z_1 is given by $x_e^{newer} = Kz_1 + (1 K)z_e$ $x_e^{newer} = Kz_1 + (1 K)Hx_e^{new}$ $x_e^{newer} = x_e^{new} + K(z_1 z_e) \quad (3)$
- K is a number called the Kalman gain.
- Let us compute the variance of the resulting error: $P^{newer} = E[(x_1 x_e^{newer})^2] =$

- Correction step. We make a noisy measurement y of x according to the linear equation $z_t = Hx_t + v_t$, here v_t is a white noise N(0, R), R = 10000, H = 1, so $z_1 = Hx_1 + v_1$.
- Suppose $z_1 = 1200$, but if we wanted to estimate z_1 before we look at the measured value we would use $z_e = H * x_e^{new} = 1 * 900 = 900$
- The new best estimate of z_1 is given by $x_e^{newer} = Kz_1 + (1 K)z_e$ $x_e^{newer} = Kz_1 + (1 K)Hx_e^{new}$ $x_e^{newer} = x_e^{new} + K(z_1 z_e) \quad (3)$
- K is a number called the Kalman gain.
- Let us compute the variance of the resulting error: $P^{newer} = E[(x_1 x_e^{newer})^2] =$

$$=E\left[\left(x_{1}-x_{e}^{new}-K(z_{1}-z_{e})\right)^{2}\right]=E\left[\left(x_{1}-x_{e}^{new}-K(Hx_{1}+v_{1}-H*x_{e}^{new})\right)^{2}\right]=E\left[\left(x_{1}-x_{e}^{new}-K(Hx_{1}+v_{1}-H*x_{e}^{new})\right)^{2}\right]=E\left[\left(x_{1}-x_{e}^{new}-K(Hx_{1}+v_{1}-H*x_{e}^{new})\right)^{2}\right]=E\left[\left(x_{1}-x_{e}^{new}-K(Hx_{1}+v_{1}-H*x_{e}^{new})\right)^{2}\right]=E\left[\left(x_{1}-x_{e}^{new}-K(Hx_{1}+v_{1}-H*x_{e}^{new})\right)^{2}\right]=E\left[\left(x_{1}-x_{e}^{new}-K(Hx_{1}+v_{1}-H*x_{e}^{new})\right)^{2}\right]=E\left[\left(x_{1}-x_{e}^{new}-K(Hx_{1}+v_{1}-H*x_{e}^{new})\right)^{2}\right]=E\left[\left(x_{1}-x_{e}^{new}-K(Hx_{1}+v_{1}-H*x_{e}^{new})\right)^{2}\right]=E\left[\left(x_{1}-x_{e}^{new}-K(Hx_{1}+v_{1}-H*x_{e}^{new})\right)^{2}\right]=E\left[\left(x_{1}-x_{e}^{new}-K(Hx_{1}+v_{1}-H*x_{e}^{new})\right)^{2}\right]=E\left[\left(x_{1}-x_{e}^{new}-K(Hx_{1}+v_{1}-H*x_{e}^{new})\right)^{2}\right]$$

- Correction step. We make a noisy measurement y of x according to the linear equation $z_t = Hx_t + v_t$, here v_t is a white noise N(0, R), R = 10000, H = 1, so $z_1 = Hx_1 + v_1$.
- Suppose $z_1 = 1200$, but if we wanted to estimate z_1 before we look at the measured value we would use $z_e = H * x_e^{new} = 1 * 900 = 900$
- The new best estimate of z_1 is given by $x_e^{newer} = Kz_1 + (1 K)z_e$ $x_e^{newer} = Kz_1 + (1 K)Hx_e^{new}$ $x_e^{newer} = x_e^{new} + K(z_1 z_e) \quad (3)$
- K is a number called the Kalman gain.
- Let us compute the variance of the resulting error: $P^{newer} = E[(x_1 x_e^{newer})^2] =$

$$=E\left[\left(x_{1}-x_{e}^{new}-K(z_{1}-z_{e})\right)^{2}\right]=E\left[\left(x_{1}-x_{e}^{new}-K(Hx_{1}+v_{1}-H*x_{e}^{new})\right)^{2}\right]=E\left[\left(1-KH)(x_{1}-x_{e}^{new})-Kv_{1}\right)^{2}\right]=E\left[\left(1-KH\right)^{2}E\left[\left(x_{1}-x_{e}^{new}\right)^{2}+K^{2}*E\left[v_{1}^{2}\right]\right]=E\left[\left(1-KH\right)^{2}E\left[\left(x_{1}-x_{e}^{new}\right)^{2}+K^{2}*E\left[v_{1}^{2}\right]\right]=E\left[\left(1-KH\right)^{2}E\left[\left(x_{1}-x_{e}^{new}\right)^{2}+K^{2}*E\left[v_{1}^{2}\right]\right]=E\left[\left(1-KH\right)^{2}E\left[\left(x_{1}-x_{e}^{new}\right)^{2}+K^{2}*E\left[v_{1}^{2}\right]\right]=E\left[\left(1-KH\right)^{2}E\left[\left(x_{1}-x_{e}^{new}\right)^{2}+K^{2}*E\left[v_{1}^{2}\right]\right]=E\left[\left(1-KH\right)^{2}E\left[\left(x_{1}-x_{e}^{new}\right)^{2}+K^{2}*E\left[v_{1}^{2}\right]\right]=E\left[\left(1-KH\right)^{2}E\left[\left(x_{1}-x_{e}^{new}\right)^{2}+K^{2}*E\left[v_{1}^{2}\right]\right]=E\left[\left(1-KH\right)^{2}E\left[\left(x_{1}-x_{e}^{new}\right)^{2}+K^{2}*E\left[v_{1}^{2}\right]\right]=E\left[\left(1-KH\right)^{2}E\left[\left(x_{1}-x_{e}^{new}\right)^{2}+K^{2}*E\left[v_{1}^{2}\right]\right]=E\left[\left(1-KH\right)^{2}E\left[\left(x_{1}-x_{e}^{new}\right)^{2}+K^{2}*E\left[v_{1}^{2}\right]\right]=E\left[\left(1-KH\right)^{2}E\left[\left(x_{1}-x_{e}^{new}\right)^{2}+K^{2}*E\left[v_{1}^{2}\right]\right]$$

- Correction step. We make a noisy measurement y of x according to the linear equation $z_t = Hx_t + v_t$, here v_t is a white noise N(0, R), R = 10000, H = 1, so $z_1 = Hx_1 + v_1$.
- Suppose $z_1 = 1200$, but if we wanted to estimate z_1 before we look at the measured value we would use $z_e = H * x_e^{new} = 1 * 900 = 900$
- The new best estimate of z_1 is given by $x_e^{newer} = Kz_1 + (1 K)z_e$ $x_e^{newer} = Kz_1 + (1 K)Hx_e^{new}$ $x_e^{newer} = x_e^{new} + K(z_1 z_e) \quad (3)$
- K is a number called the Kalman gain.
- Let us compute the variance of the resulting error: $P^{newer} = E[(x_1 x_e^{newer})^2] =$

$$=E\left[\left(x_{1}-x_{e}^{new}-K(z_{1}-z_{e})\right)^{2}\right]=E\left[\left(x_{1}-x_{e}^{new}-K(Hx_{1}+v_{1}-H*x_{e}^{new})\right)^{2}\right]=E\left[\left(1-KH\right)(x_{1}-x_{e}^{new})-Kv_{1}\right)^{2}=(1-KH)^{2}E\left[\left(x_{1}-x_{e}^{new}\right)^{2}\right]+K^{2}*E\left[v_{1}^{2}\right]=(1-KH)^{2}P^{new}+K*R$$

- Correction step. We make a noisy measurement y of x according to the linear equation $z_t = Hx_t + v_t$, here v_t is a white noise N(0, R), R = 10000, H = 1, so $z_1 = Hx_1 + v_1$.
- Suppose $z_1 = 1200$, but if we wanted to estimate z_1 before we look at the measured value we would use $z_e = H * x_e^{new} = 1 * 900 = 900$
- The new best estimate of z_1 is given by $x_e^{newer} = Kz_1 + (1 K)z_e$ $x_e^{newer} = Kz_1 + (1 K)Hx_e^{new}$ $x_e^{newer} = x_e^{new} + K(z_1 z_e) \quad (3)$
- K is a number called the Kalman gain.
- Let us compute the variance of the resulting error: $P^{newer} = (1 KH)^2 P^{new} + K^2 * R$ (5)

- Correction step. We make a noisy measurement y of x according to the linear equation $z_t = Hx_t + v_t$, here v_t is a white noise N(0, R), R = 10000, H = 1, so $z_1 = Hx_1 + v_1$.
- Suppose $z_1 = 1200$, but if we wanted to estimate z_1 before we look at the measured value we would use $z_e = H * x_e^{new} = 1 * 900 = 900$
- The new best estimate of z_1 is given by $x_e^{newer} = Kz_1 + (1 K)z_e$ $x_e^{newer} = Kz_1 + (1 K)Hx_e^{new}$ $x_e^{newer} = x_e^{new} + K(z_1 z_e) \quad (3)$
- K is a number called the Kalman gain.
- Let us compute the variance of the resulting error: $P^{newer} = (1 KH)^2 P^{new} + K^2 * R$ (5)
- Let's find optimal K using optimization technique. We want to minimize the estimation error:

$$P^{newer} = (1 - KH)^2 P^{new} + K^2 * R \to \min_{K}$$

- Correction step. We make a noisy measurement y of x according to the linear equation $z_t = Hx_t + v_t$, here v_t is a white noise N(0, R), R = 10000, H = 1, so $z_1 = Hx_1 + v_1$.
- Suppose $z_1 = 1200$, but if we wanted to estimate z_1 before we look at the measured value we would use $z_e = H * x_e^{new} = 1 * 900 = 900$
- The new best estimate of z_1 is given by $x_e^{newer} = Kz_1 + (1 K)z_e$ $x_e^{newer} = Kz_1 + (1 K)Hx_e^{new}$ $x_e^{newer} = x_e^{new} + K(z_1 z_e) \quad (3)$
- K is a number called the Kalman gain.
- Let us compute the variance of the resulting error: $P^{newer} = (1 KH)^2 P^{new} + K^2 * R$ (5)
- Let's find optimal K using optimization technique. We want to minimize the estimation error:

$$P^{newer} = (1 - KH)^2 P^{new} + K^2 * R \to \min_{K}$$

FOC:
$$\frac{d}{dk}P^{newer} = 0 \Leftrightarrow -2HP^{new}(1 - KH) + 2RK = 0 \Leftrightarrow K = \frac{HP^{new}}{H^2P^{new} + R}$$
 (4)

- Correction step. We make a noisy measurement y of x according to the linear equation $z_t = Hx_t + v_t$, here v_t is a white noise N(0, R), R = 10000, H = 1, so $z_1 = Hx_1 + v_1$.
- Suppose $z_1 = 1200$, but if we wanted to estimate z_1 before we look at the measured value we would use $z_e = H * x_e^{new} = 1 * 900 = 900$
- The new best estimate of z_1 is given by $x_e^{newer} = Kz_1 + (1 K)z_e$ $x_e^{newer} = Kz_1 + (1 K)Hx_e^{new}$ $x_e^{newer} = x_e^{new} + K(z_1 z_e) \quad (3)$
- K is a number called the Kalman gain.
- Let us compute the variance of the resulting error: $P^{newer} = (1 KH)^2 P^{new} + K^2 * R$ (5)
- Let's find optimal K using optimization technique. We want to minimize the estimation error:

$$P^{newer} = (1 - KH)^2 P^{new} + K^2 * R \to \min_{K}$$

■ In our example $K = \frac{HP^{new}}{H^2P^{new} + R} = \frac{1*32500}{1^2*32500 + 10000} = 0.7647$

- Correction step. We make a noisy measurement y of x according to the linear equation $z_t = Hx_t + v_t$, here v_t is a white noise N(0, R), R = 10000, H = 1, so $z_1 = Hx_1 + v_1$.
- Suppose $z_1 = 1200$, but if we wanted to estimate z_1 before we look at the measured value we would use $z_e = H * x_e^{new} = 1 * 900 = 900$
- The new best estimate of z_1 is given by $x_e^{newer} = Kz_1 + (1 K)z_e$ $x_e^{newer} = Kz_1 + (1 K)Hx_e^{new}$ $x_e^{newer} = x_e^{new} + K(z_1 z_e) \quad (3)$
- In our example Kalman gain K = 0.7647
- So $x_e^{newer} = x_e^{new} + K(z_1 z_e) = 1129$ and $P^{newer} = (1 KH)^2 P^{new} + K^2 * R = 7647$

- Correction step. We make a noisy measurement y of x according to the linear equation $z_t = Hx_t + v_t$, here v_t is a white noise N(0, R), R = 10000, H = 1, so $z_1 = Hx_1 + v_1$.
- Suppose $z_1 = 1200$, but if we wanted to estimate z_1 before we look at the measured value we would use $z_e = H * x_e^{new} = 1 * 900 = 900$
- The new best estimate of z_1 is given by $x_e^{newer} = Kz_1 + (1 K)z_e$ $x_e^{newer} = Kz_1 + (1 K)Hx_e^{new}$ $x_e^{newer} = x_e^{new} + K(z_1 z_e) \quad (3)$
- In our example Kalman gain K = 0.7647
- So $x_e^{newer} = x_e^{new} + K(z_1 z_e) = 1129$ and $P^{newer} = (1 KH)^2 P^{new} + K^2 * R = 7647$
- These are the five equations of the Kalman filter.
- At time t=2, we start again using x_e^{newer} as the value of x_e^1 in $x_e^{new,2} = Fx_e^1$ (1) and P^{newer} as the value of P in $P^{new} = F^2P + Q$ (2). Then we calculate K from equation 4 and use that along with the new measurement z_2 in equation 3 to get another estimate of x and we use equation 5 to get the corresponding P. And repeat these steps....

Kalman filter in simplest example

Prediction step:

- Predicted (a priori) state estimate $x_e^{new,k} = Fx_e^{newer,k-1}$ (1)
- Predicted (a priori) estimate covariance $P^{new,k} = F^2 P^{newer,k-1} + Q$ (2)

Correction step:

- Updated (a posteriori) state estimate $x_e^{newer,k} = x_e^{new,k} + K(z_k Hx_e^{new,k})$ (3)
- Optimal Kalman gain $K = \frac{HP^{new,k}}{H^2P^{new,k}+R}$ (4)
- Updated (a posteriori) estimate covariance $P^{newer,k} = (1 KH)^2 P^{new,k} + K^2 * R$ (5)

Kalman filter in simplest example

Prediction step:

- Predicted (a priori) state estimate $x_e^{new,k} = Fx_e^{newer,k-1}$ (1)
- Predicted (a priori) estimate covariance $P^{new,k} = F^2 P^{newer,k-1} + Q(2)$

Correction step:

- Updated (a posteriori) state estimate $x_e^{newer,k} = x_e^{new,k} + K(z_k Hx_e^{new,k})$ (3)
- Optimal Kalman gain $K = \frac{HP^{new,k}}{H^2P^{new,k}+R}$ (4)
- Updated (a posteriori) estimate covariance $P^{newer,k} = (1 KH)^2 P^{new,k} + K^2 * R$ (5)
- In case of optimal Kalman gain P^{newer,k} can be simplified:

$$- P^{newer,k} = (1 - KH)^2 P + K^2 * R = \left(1 - \frac{H^2 P}{H^2 P + R}\right)^2 P + \frac{H^2 P^2}{(H^2 P + R)^2} * R = \frac{1}{2} \left(1 - \frac{H^2 P}{H^2 P + R}\right)^2 P + \frac{H^2 P^2}{(H^2 P + R)^2} = \frac{1}{2} \left(1 - \frac{H^2 P}{H^2 P + R}\right)^2 P + \frac{H^2 P^2}{(H^2 P + R)^2} = \frac{1}{2} \left(1 - \frac{H^2 P}{H^2 P + R}\right)^2 P + \frac{H^2 P^2}{(H^2 P + R)^2} = \frac{1}{2} \left(1 - \frac{H^2 P}{H^2 P + R}\right)^2 P + \frac{H^2 P^2}{(H^2 P + R)^2} = \frac{1}{2} \left(1 - \frac{H^2 P}{H^2 P + R}\right)^2 P + \frac{H^2 P^2}{(H^2 P + R)^2} = \frac{1}{2} \left(1 - \frac{H^2 P}{H^2 P + R}\right)^2 P + \frac{H^2 P^2}{(H^2 P + R)^2} = \frac{1}{2} \left(1 - \frac{H^2 P}{H^2 P + R}\right)^2 P + \frac{H^2 P^2}{(H^2 P + R)^2} = \frac{1}{2} \left(1 - \frac{H^2 P}{H^2 P + R}\right)^2 P + \frac{H^2 P^2}{(H^2 P + R)^2} = \frac{1}{2} \left(1 - \frac{H^2 P}{H^2 P + R}\right)^2 P + \frac{H^2 P^2}{(H^2 P + R)^2} = \frac{1}{2} \left(1 - \frac{H^2 P}{H^2 P + R}\right)^2 P + \frac{H^2 P^2}{(H^2 P + R)^2} = \frac{1}{2} \left(1 - \frac{H^2 P}{H^2 P + R}\right)^2 P + \frac{H^2 P^2}{(H^2 P + R)^2} = \frac{1}{2} \left(1 - \frac{H^2 P}{H^2 P + R}\right)^2 P + \frac{H^2 P^2}{(H^2 P + R)^2} = \frac{1}{2} \left(1 - \frac{H^2 P}{H^2 P + R}\right)^2 P + \frac{H^2 P^2}{(H^2 P + R)^2} = \frac{1}{2} \left(1 - \frac{H^2 P}{H^2 P + R}\right)^2 P + \frac{H^2 P^2}{(H^2 P + R)^2} = \frac{1}{2} \left(1 - \frac{H^2 P}{H^2 P + R}\right)^2 P + \frac{H^2 P}{(H^2 P + R)^2} = \frac{1}{2} \left(1 - \frac{H^2 P}{H^2 P + R}\right)^2 P + \frac{H^2 P}{(H^2 P + R)^2} = \frac{1}{2} \left(1 - \frac{H^2 P}{H^2 P + R}\right)^2 P + \frac{H^2 P}{(H^2 P + R)^2} = \frac{1}{2} \left(1 - \frac{H^2 P}{H^2 P + R}\right)^2 P + \frac{H^2 P}{(H^2 P + R)^2} = \frac{1}{2} \left(1 - \frac{H^2 P}{H^2 P + R}\right)^2 P + \frac{H^2 P}{(H^2 P + R)^2} = \frac{1}{2} \left(1 - \frac{H^2 P}{H^2 P + R}\right)^2 P + \frac{H^2 P}{(H^2 P + R)^2} = \frac{1}{2} \left(1 - \frac{H^2 P}{H^2 P + R}\right)^2 P + \frac{H^2 P}{(H^2 P + R)^2} = \frac{1}{2} \left(1 - \frac{H^2 P}{H^2 P + R}\right)^2 P + \frac{H^2 P}{(H^2 P + R)^2} = \frac{1}{2} \left(1 - \frac{H^2 P}{H^2 P + R}\right)^2 P + \frac{H^2 P}{(H^2 P + R)^2} = \frac{1}{2} \left(1 - \frac{H^2 P}{H^2 P + R}\right)^2 P + \frac{H^2 P}{(H^2 P + R)^2} = \frac{1}{2} \left(1 - \frac{H^2 P}{H^2 P + R}\right)^2 P + \frac{H^2 P}{(H^2 P + R)^2} = \frac{1}{2} \left(1 - \frac{H^2 P}{H^2 P + R}\right)^2 P + \frac{H^2 P}{(H^2 P + R)^2} = \frac{1}{2} \left(1 - \frac{H^2 P}{H^2 P + R}\right)^2 P + \frac{H^2 P}{(H^2 P + R)^2} = \frac{1}{2} \left(1 - \frac{H^2 P}{H^2 P + R}\right)^2 P + \frac{H^2 P}{(H^2 P + R)^2} = \frac{1}{$$

$$- = \frac{R^2}{(H^2P+R)^2}P + \frac{H^2P^2}{(H^2P+R)^2} * R = \frac{PR(R+H^2P)}{(H^2P+R)^2} = \frac{PR}{R+H^2P} = (1-KH)P$$

Kalman filter in general case

Prediction step:

- Predicted (a priori) state estimate $x_e^{new,k} = Fx_e^{newer,k-1}$ (1)
- Predicted (a priori) estimate covariance $P^{new,k} = FP^{newer,k-1}F^T + Q$ (2)

Correction step:

- Updated (a posteriori) state estimate $x_e^{newer,k} = x_e^{new,k} + K(z_k Hx_e^{new,k})$ (3)
- Optimal Kalman gain $K = P^{new,k}H^T(HP^{new,k}H^T + R)^{-1}$ (4)
- Updated (a posteriori) estimate covariance $P^{newer} = (I KH)P^{new}$ (5)

- Simple example: robot, one-dimensional movement
- Model for states of the system $x_t = Fx_{t-1} + w_t$
 - x_t is a current state of the system:
 - The state of the system is complex: the position of the drone, its velocity and acceleration, so $x_t = (s_t, v_t, a_t)^T$;
 - *F* is a state transition matrix:
 - In case of movement with constant acceleration $x_t = x_0 + v_0 t + \frac{at^2}{2}$, so $F = \begin{bmatrix} 1 & \Delta t & \frac{\Delta t^2}{2} \\ 0 & 1 & \Delta t \\ 0 & 0 & 1 \end{bmatrix}$
 - w_t is an error of the model (bumps in the road, wind, noise, etc.), $w_t \sim N(0,Q)$, Q is a covariance matrix
- Observation model: $z_t = Hx_t + v_t$,
 - z_t is measurements made by sensors,
 - v_t is a vector of measurement errors, $v_t \sim N(0, R)$, R is a covariance matrix

- Observation model: $z_t = Hx_t + v_t$,
 - z_t is measurements made by sensors,
 - v_t is a vector of measurement errors, $v_t \sim N(0, R)$, R is a covariance matrix
- In many cases we can assume that the measurements do not correlate with each other.
- Then the matrix $R = \begin{pmatrix} \sigma_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \sigma_m \end{pmatrix}$.
- It is sufficient to set the variance values for each measured parameter. Sometimes this data can be found in the documentation for the sensors used. However, if there is no reference information, you can estimate the variance by measuring a pre-known reference value with the sensor, or use the 3σ —rule.

- Simple example: robot, one-dimensional movement
- Model for states of the system $x_t = Fx_{t-1} + w_t$
- w_t is an error of the model (bumps in the road, wind, noise, etc.), $w_t \sim N(0, Q)$, Q is a covariance matrix
- What about Q? Remember the $P^{new,k} = FP^{newer,k-1}F^T + Q$ (2)
- If you set Q very small, the uncertainty of the estimate $P^{new,k}$ will slightly increase on the prediction stage. This means that we believe that our model accurately describes the process.
- If you set Q large, the uncertainty of the estimate $P^{new,k}$ will greatly increase on the prediction stage. In this way, we show that the model may contain inaccuracies or factors that we didn't describe.
- This matrix indicates which state variables will be primarily affected by model errors or factors that we didn't describe.

- Simple example: robot, one-dimensional movement
- Model for states of the system $x_t = Fx_{t-1} + w_t$
- w_t is an error of the model (bumps in the road, wind, noise, etc.), $w_t \sim N(0, Q)$, Q is a covariance matrix
- This matrix indicates which state variables will be primarily affected by model errors or factors that we didn't describe.
- The state is the position of the robot, its velocity and acceleration $x_t = (s_t, v_t, a_t)^T$;
- When the robot passes a bump, the sensor estimations and model predictions will start to diverge. The matrix structure will determine how the filter should responds to this discrepancy.
- We can make various assumptions about the nature of the noise. For our example, we can assume that undescribed factors (road bumps) primarily affect acceleration. The matrix is chosen so that the highest value corresponds to the highest order of the derivative a_t .

- Simple example: robot, one-dimensional movement
- Model for states of the system $x_t = Fx_{t-1} + w_t$
- w_t is an error of the model (bumps in the road, wind, noise, etc.), $w_t \sim N(0, Q)$, Q is a covariance matrix
- This matrix indicates which state variables will be primarily affected by model errors or factors that we didn't describe.
- The state is the position of the robot, its velocity and acceleration $x_t = (s_t, v_t, a_t)^T$;
- When the robot passes a bump, the sensor estimations and model predictions will start to diverge. The matrix structure will determine how the filter should responds to this discrepancy.
- We can make various assumptions about the nature of the noise. For our example, we can assume that undescribed factors (road bumps) primarily affect acceleration. The matrix is chosen so that the highest value corresponds to the highest order of the derivative a_t .
- For the simplest case we may take even $Q = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & \sigma^2 \end{pmatrix}$

- Simple example: robot, one-dimensional movement
- Model for states of the system $x_t = Fx_{t-1} + w_t$
- w_t is an error of the model (bumps in the road, wind, noise, etc.), $w_t \sim N(0, Q)$, Q is a covariance matrix
- This matrix indicates which state variables will be primarily affected by model errors or factors that we didn't describe.
- The state is the position of the robot, its velocity and acceleration $x_t = (s_t, v_t, a_t)^T$;
- When the robot passes a bump, the sensor estimations and model predictions will start to diverge. The matrix structure will determine how the filter should responds to this discrepancy.
- In Discrete Constant White Noise Model matrix Q should be defined by intensity of noise Γ, that

is the column for the highest derivative: if
$$F = \begin{bmatrix} 1 & \Delta t & \frac{\Delta t^2}{2} \\ 0 & 1 & \Delta t \\ 0 & 0 & 1 \end{bmatrix}$$
, then $\Gamma = \begin{bmatrix} \frac{\Delta t^2}{2} \\ \frac{\Delta t}{1} \end{bmatrix}$ and $Q = \Gamma \sigma_v^2 \Gamma^T$

■ Let the robot stand still for the first 20% of the time, then move with constant speed, and then start moving with constant acceleration.

- First model for states of the system $x_t = Fx_{t-1} + w_t$
 - x_t is a current state of the system, i.e. the position of the car, its velocity and acceleration, so $x_t = s_t$;
 - F is a state transition matrix and F = 1
 - w_t is an error of the model (bumps in the road, wind, noise, etc.), $w_t \sim N(0, Q)$, Q is a covariance matrix
- Observation model: $z_t = Hx_t + v_t$, where $H = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$, we can only measure the position by GPS
- Initial position $x_0 = \begin{bmatrix} 0 & 0 & 0 \end{bmatrix}$ with uncertainty measure P = 10

- Second model for states of the system $x_t = Fx_{t-1} + w_t$
 - x_t is a current state of the system, i.e. the position of the car and its velocity, so $x_t = (s_t, v_t)^T$;
 - F is a state transition matrix and $F = \begin{bmatrix} 1 & \Delta t \\ 0 & 1 \end{bmatrix}$
 - w_t is an error of the model (bumps in the road, wind, noise, etc.), $w_t \sim N(0,Q)$, Q is a covariance matrix, $Q = \Gamma \sigma_v^2 \Gamma^{\rm T} = \begin{bmatrix} \Delta t \\ 1 \end{bmatrix} [\Delta t \quad 1] \sigma_v^2 = \begin{bmatrix} \Delta t^2 & \Delta t \\ \Delta t & 1 \end{bmatrix} \sigma_v^2$
- Observation model: $z_t = Hx_t + v_t$, where $H = \begin{bmatrix} 1 & 0 \end{bmatrix}$, we can only measure the position by GPS
- Initial position $x_0 = \begin{bmatrix} 0 & 0 \end{bmatrix}$ with uncertainty measure $P = \begin{bmatrix} 10 & 0 \\ 0 & 10 \end{bmatrix}$

- Third model for states of the system $x_t = Fx_{t-1} + w_t$
 - x_t is a current state of the system, i.e. the position of the car, its velocity and acceleration, $x_t = (s_t, v_t, a_t)^T$;
 - F is a state transition matrix and $F = \begin{bmatrix} 1 & \Delta t & \frac{\Delta t^2}{2} \\ 0 & 1 & \Delta t \\ 0 & 0 & 1 \end{bmatrix}$
 - w_t is an error of the model (bumps in the road, wind, noise, etc.), $w_t \sim N(0,Q)$, Q is a covariance matrix
- Observation model: $z_t = Hx_t + v_t$, where $H = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$, we can only measure the position by GPS
- Initial position $x_0 = \begin{bmatrix} 0 & 0 & 0 \end{bmatrix}$ with uncertainty measure $P = \begin{bmatrix} 10 & 0 & 0 \\ 0 & 10 & 0 \\ 0 & 0 & 10 \end{bmatrix}$

Extended Kalman filter

- Here the state transition and observation models need not be linear functions of the state but may instead be nonlinear functions of differentiable type:
 - $x_t = Fx_{t-1} + w_t$ converts to $x_t = f(x_{t-1}) + w_t$
 - $z_t = Hx_t + v_t$ converts to $z_t = h(x_t) + v_t$
- \blacksquare The functions f and h cannot be applied to the covariance directly. Instead a matrix of partial derivatives (the Jacobian) is computed.
- At each timestep the Jacobian is evaluated with current predicted states: $F_t = \frac{\partial f}{\partial x}\Big|_{\chi_{\rho}^{new,k}}$, $H_t = \frac{\partial h}{\partial x}\Big|_{\chi_{\rho}^{new,k}}$,

$$F_t = \frac{\partial f}{\partial x}\Big|_{x_e^{new,k}}$$
, $H_t = \frac{\partial h}{\partial x}\Big|_{x_e^{new,k}}$

These matrices can be used in the Kalman filter equations. This process essentially linearizes the nonlinear function around the current estimate.

