

Computer Networking

Basics

Contents

Here's what you'll find in this.

- 1. Components
- 2. OSI Model
- 3. Classification
- 4. Devices
- **5.** Home Network
- **6.** IP Addresses
- **7.** Protocols
- 8. DNS & DHCP
- 9. Network Commands

What is a Computer Network?

Communication between two or more network Interfaces.

Components of Computer Network

- 1. Two or more computers/Devices
- 2. Cables as links between the computers
- **3.** A network interfacing card(NIC) on each
- 4. computer
- 5. Switches
- **6.** Routers
- 7. Software called Network operating system(NOS)

- People around the world uses computer network to communicate with each other.
- For worldwide data communication, systems must be developed which are compatible to communicate with each other.
- There should be standard communication methods & devices.
- ISO (International Organization of Standardization) has developed this standard.

- This communication model is called as Open System Interconnection (OSI).
- ISO-OSI model is a seven layer architecture developed in 1984.

- The basic elements of a layered model are
 - services
 - protocols
 - and interfaces.
- 1. A service is a set of actions that a layer offers to another (higher) layer.
- 2. A Protocol is a set of rules that a layer uses to exchange information.
- 3. A Interface is communication between the layers.

Sending - Receiving Letters

Sending - Receiving Data

OSI Model	DoD Model	protocols		devices/apps
layer 5, 6, 7	application	dns, dhcp, ntp, snmp, https, ftp, ssh, telnet, http, pop3 others		web server, mail server, browser, mail client
layer 4	host-to-host	tcp	udp	gateway
layer 3	internet	ip, icmp, igmp		router, firewall layer 3 switch
layer 2	network	arp (mac), rarp		bridge layer 2 switch
layer 1	access	ethernet, token ring		hub

Summary of Layers

Classification of network By Geography

- → LAN
 - Local area Network
- → WAN
 - Wide Area Network
- → MAN
 - Metropolitan area network
- → CAN
 - Campus Area Network
- → PAN
 - Personal Area Network

Switches

Switches facilitate the sharing of resources by connecting together all the devices, including computers, printers, and servers, in a small business network

ROUTERS

A router receives and sends data on computer networks. Routers are sometimes confused with network hubs, modems, or network switches. However, routers can combine Multiple Networks together.

Home Network

Home Network

Home Network- IP Addresses

Network Diagram: Telecommunications Network Architecture

Corporate Datacenter

IPv4 Address

IPv4 Range

• 0.0.0.0 **–** 255.255.255.255

00000000.00000000.00000000.00000000 (0.0.0.0)

• 11111111.1111111.1111111.1111111 (255.255.255.255)

Public and Private IP Division

- Public IP => Internet
 - E:g 54.86.23.90

- Private IP => For local network design
 - E:g 192.168.1.10

Private IP Ranges

- Class A 10.0.0.0 10.255.255.255
- Class B 172.16.0.0 172.31.255.255
- Class C 192.168.0.0 192.168.255.255

Subnet Masks

- 255.0.0.0
- 255.255.0.0
- 255.255.255.0

Network Diagramme

Protocols

In the networking and communications area, a protocol is the formal specification that defines the procedures that must be followed when transmitting or receiving data. Protocols define the format, timing, sequence, and error checking used on the network.

TCP

UDP

- Reliable Protocol
- Connection Oriented
- Performs three ways handshake
- Provision for error detection and retransmission
- Most applications use TCP for reliable and guaranteed transmission
- FTP,HTTP,HTTPS

- · Unreliable Protocol
- Connectionless
- Much faster than TCP
- No acknowledgement waits
- No proper sequencing of data units
- Suitable for applications where speed matters more than reliability
- DNS,DHCP,TFTP,ARP, RARP

Protocols & Port Numbers

Label on	Service Name	UDP and TCP Port	
Column		Numbers Included	
DNS	Domain Name Service - UDP	UDP 53	
DNS TCP	Domain Name Service - TCP	TCP 53	
HTTP	Web	TCP 80	
HTTPS	Secure Web (SSL)	TCP 443	
SMTP	Simple Mail Transport	TCP 25	
POP	Post Office Protocol	TCP 109, 110	
SNMP	Simple Network Management	TCP 161,162 UDP 161,162	
TELNET	Telnet Terminal	TCP 23	
FTP	File Transfer Protocol	TCP 20,21	
SSH	Secure Shell (terminal)	TCP 22	
AFP IP	Apple File Protocol/IP	TCP 447, 548	

DNS

How DNS Works

DHCP

