7.4. EXERCISES 123

Exercises 7.4

Divide by long division.

a)
$$\frac{x^3-4x^2+2x+1}{x-2}$$

b)
$$\frac{x^3+6x^2+7x-2}{x+3}$$

c)
$$\frac{x^2+7x-4}{x+1}$$

a)
$$\frac{x^3-4x^2+2x+1}{x-2}$$
 b) $\frac{x^3+6x^2+7x-2}{x+3}$ c) $\frac{x^2+7x-4}{x+1}$ d) $\frac{x^3+3x^2+2x+5}{x+2}$ e) $\frac{2x^3+x^2+3x+5}{x-1}$ f) $\frac{2x^4+7x^3+x+3}{x+5}$

e)
$$\frac{2x^3+x^2+3x+5}{x-1}$$

f)
$$\frac{2x^4+7x^3+x+3}{x+5}$$

g)
$$\frac{2x^4-31x^2-13}{x-4}$$

h)
$$\frac{x^3+27}{x+3}$$

g)
$$\frac{2x^4 - 31x^2 - 13}{x - 4}$$
 h) $\frac{x^3 + 27}{x + 3}$ i) $\frac{3x^4 + 7x^3 + 5x^2 + 7x + 4}{3x + 1}$ j) $\frac{8x^3 + 18x^2 + 21x + 18}{2x + 3}$ k) $\frac{x^3 + 3x^2 - 4x - 5}{x^2 + 2x + 1}$ l) $\frac{x^5 + 3x^4 - 20}{x^2 + 3}$

$$j) \frac{8x^3 + 18x^2 + 21x + 18}{2x + 3}$$

k)
$$\frac{x^3+3x^2-4x-4}{x^2+2x+1}$$

$$1) \frac{x^5 + 3x^4 - 20}{x^2 + 3}$$

Exercise 7.2

Find the remainder when dividing f(x) by g(x).

a)
$$f(x) = x^3 + 2x^2 + x - 3$$
,

$$g(x) = x - 2$$

b)
$$f(x) = x^3 - 5x + 8$$

$$g(x) = x - 3$$

c)
$$f(x) = x^5 - 1$$

$$q(x) = x + 1$$

a)
$$f(x) = x^3 + 2x^2 + x - 3$$
, $g(x) = x - 2$
b) $f(x) = x^3 - 5x + 8$, $g(x) = x - 3$
c) $f(x) = x^5 - 1$, $g(x) = x + 1$
d) $f(x) = x^5 + 5x^2 - 7x + 10$, $g(x) = x + 2$

$$q(x) = x + 2$$

Exercise 7.3

Determine whether the given g(x) is a factor of f(x). If so, name the corresponding root of f(x).

a)
$$f(x) = x^2 + 5x + 6$$
,

$$g(x) = x + 3$$

b)
$$f(x) = x^3 - x^2 - 3x + 8$$

$$a(x) = x - 4$$

a)
$$f(x) = x^2 + 5x + 6$$
, $g(x) = x + 3$
b) $f(x) = x^3 - x^2 - 3x + 8$, $g(x) = x - 4$
c) $f(x) = x^4 + 7x^3 + 3x^2 + 29x + 56$, $g(x) = x + 7$

$$g(x) = x + 7$$

d)
$$f(x) = x^{999} + 1$$
,

$$g(x) = x + 1$$

Check that the given numbers for x are roots of f(x) (see Observation 7.10). If the numbers x are indeed roots, then use this information to factor f(x) as much as possible.

a)
$$f(x) = x^3 - 2x^2 - x + 2$$
,

$$x = 1$$

b)
$$f(x) = x^3 - 6x^2 + 11x - 6$$

$$x = 1, x = 2, x = 3$$

c)
$$f(x) = x^3 - 3x^2 + x - 3$$
,

$$x = 3$$

d)
$$f(x) = x^3 + 6x^2 + 12x + 8$$
,

$$x = -2$$

 $x = -2, x = -4$
 $x = 2, x = -4$

e)
$$f(x) = x^3 + 13x^2 + 50x + 56$$
,

$$w = 2, w = 4$$

f)
$$f(x) = x^3 + 3x^2 - 16x - 48$$
,

$$x = 2, x = -4$$

g)
$$f(x) = x^5 + 5x^4 - 5x^3 - 25x^2 + 4x + 20$$
, $x = 1, x = -1$,

$$x = 1, x = 1,$$

 $x = 2, x = -2$

Divide by using synthetic division.

a)
$$\frac{2x^3+3x^2-5x+7}{x-2}$$

a)
$$\frac{2x^3+3x^2-5x+7}{x-2}$$
 b) $\frac{4x^3+3x^2-15x+18}{x+3}$ c) $\frac{x^3+4x^2-3x+1}{x+2}$

c)
$$\frac{x^3+4x^2-3x+3}{x+2}$$

d)
$$\frac{x^4 + x^3 + x^3}{x - 1}$$

e)
$$\frac{x^5+32}{x+2}$$

f)
$$\frac{x^3+5x^2-3x-10}{x+5}$$