# 臺北市第 57 屆中小學科學展覽會作品說明書

科 別:工程學科(二)

組 別:高級中等學校組

作品名稱:探討 3D 列印填充對於列印物機械性質之影響

關 鍵 詞: 3D 列印填充結構、壓縮試驗、聚乳酸(PLA)

# 摘要

高二時參加機器人比賽時,3D列印結構突然斷裂,這讓我們開始思考為何相同材質在相同受力下會突然斷裂。為了解這個現象,我們設計了實驗,分析不同填充結構的強度差異以及彈性疲勞對3D列印物的影響,並結合實驗數據探討3D列印物受力時的反應。

研究結果顯示,不同填充結構的降伏應力差異最為明顯。我們還發現,在重複受力的情況下,列印物有一個最大變形量,一旦超過這個變形量就會發生降伏。此外,物體的彈性模數在實驗過程中會先上升後下降。最終,我們確定影響實驗結果的主要原因是微觀結構中的交互作用,這些交互作用導致實驗結果與理論預期產生偏差,並且是造成彈性模數變化的關鍵因素。

# 壹、前言

#### 一、研究動機

開學時,我們參加了一場龍舟比賽。比賽規則是每個隊伍製作一艘龍舟,比誰能最快摘到旗子。比賽過程中,我們的學弟突然跑來,原來他們龍舟的划水連桿斷了。

賽後檢討時我們發現,想讓3D列印的連桿更堅固,其實能改進的地方並不多。由 於結構上的限制,我們不能改變連桿的大小和形狀;而出於重量要求,列印密度也無 法增加。最終,我們發現唯一能調整的就是連桿的內部填充結構。

除此之外,另一個影響連桿強度的因素是使用次數。我們注意到,連桿因為多次 使用,似乎出現了彈性疲勞的現象,這可能是導致它斷裂的原因。

然而,當我們上網蒐集資料時,雖然有不少討論,但每個人的說法都不盡相同, 且少有完整的實驗數據。因此,我們決定自行進行實驗,找出一種既堅韌又輕便,且 在使用過程中不易因彈性疲勞而斷裂的內部填充結構。

#### 二、研究目的

- (一)分析不同填充結構的強度與差異
- (二)探討彈性疲勞對於3D列印物的影響
- (三)探討3D列印物受力時的反應

#### 三、文獻探討

#### (一)材料強度

根據《Mechanics of Materials》(Hibbeler, 2018)第一章所述,材料的強度取在不會過度變形或失效的前提下可以承受的最大負荷。相同的材料會有著相同的強度,而具體數值可以透過拉伸或壓縮實驗獲得。

#### (二)拉伸或壓縮實驗

根據《Mechanics of Materials》(Hibbeler, 2018)第三章, 拉伸與壓縮實驗是指透 過機器對材料進行拉伸或是壓縮, 並且記錄實驗進行時物體應力與應變的變化。應力 是指物體在受力的時候單位面積所受之內力,單位是 N/mm²; 應變則是指物體在受力 的時候變形的量,以%表示。將應力與應變對應後將會得到應力應變圖,從中便可以 觀察到該材料的機械性質。理想中,應力應變圖會如同圖1-1(左)。



圖 1-1(左)《Mechanics of Materials》中的拉伸曲線(右)一顆喜糖的應力應變圖

在應力應變圖中,可以簡單的分為三個階段。一開始物體受力後會遵循虎克定律等比例上升,而線段的終點稱之為比例極限。此階段的斜率可以稱之為彈性模數或楊氏係數,表示物體的硬度。過了比例極限之後還會有一小段的距離,這段距離的終點被稱為彈性限度。在這段距離之內應力與應變雖然不再呈現線性關係,但卸載後物體還是可以恢復原狀。過了彈性區間後,物體會產生永久變形並開始被破壞,在應力應變圖裡面呈現的是一個上下抖動區域,應變會快速增加,但應力不會上升。這個現象稱之為屈服或降伏(yield),一般而言進入這個階段便代表材料過度變形與失效。而超越彈性限度進入降伏的位置也被稱為降伏點,透過比較降伏點的位置即可知道物體之間的強度。

#### (三) 高分子聚合物的降伏點

3D列印機使用的材料為PLA,屬於高分子聚合物。林煌隆(2001)指出,高分子聚合物的應力應變圖與一般材質並不相同(如圖1-2),因此不能直接套用一般定義。

高分子材料發生變形時,會隨著各種材料本身性質不同而有很大的差異,我們必須根據其應力應變曲線形式定義其降伏點。(林煌隆,2001)

對此林煌隆(2001)提出了三種定義降伏點的方式,我們使用第一種降伏點定義,即「負載初期的過程中,應力值會隨應變量增加而持續上升,在超過某一應變量後應力值會有下跌情形發生而導致一峰值出現,此峰值最高點可定義為降伏點」。

# 應力應變圖 (Triangles-1)



圖 1-2 PLA 的應力應變圖,其降伏應力為應力的峰值

#### (四)材料疲勞

Hibbeler (2018) 在《Mechanics of Materials》中提到,當物體受到重複的應力或應變循環時,其內部結構會逐漸崩潰,最終導致斷裂,而這通常發生於降伏強度以內。此現象稱為疲勞,通常是引擎的連桿和曲軸等部件故障的主要原因。

這種故障的原因主要來自物體的微觀缺陷,通常在元件表面上。此區域的局部應力遠大於橫截面上的平均應力,隨著這種較高應力的循環,微小的裂縫形成。這些裂缝的出現導致在其端點的應力進一步增加,這反過來又導致裂縫在應力繼續週期的過程中進一步擴展。最終,元件的橫截面積減少到無法再維持載荷的程度,便產生突然斷裂。

#### (三)3D列印與填充結構

3D列印是一項加法製造的技術,其透過疊加材料的方式將物品列印出來。為了節省材料與重量,列印物內部通常並不是實心的,但也不會是完全空心,而是會透過「填充結構」來填補中間的空隙。在軟體CURA(2023)中填充有十四種,其中文與英文名稱如表1-1,結構切面圖如表1-2。

表1-1 CURA 14種填充結構中英對照表

| 中文名稱  | 英文名稱        | 中文名稱  | 英文名稱              |
|-------|-------------|-------|-------------------|
| 網格    | Grid        | 立方體   | Cubic             |
| 直線    | Lines       | 立方體細分 | Cubic Subdivision |
| 三角形   | Triangles   | 四面立方體 | Cross 3D          |
| 三角六角形 | Tri-Hexagon | 立體十字形 | Quarter Cubic     |
| 同心    | Concentric  | 八面體   | Octet             |
| 鋸齒狀   | Zigzag      | 螺旋形   | Gyroid            |
| 十字形   | Cross       | 閃電    | Lightning         |

| :           | 表 1-2 CURA 14種填充結構 5% 101層 切面圖 |           |               |  |  |  |
|-------------|--------------------------------|-----------|---------------|--|--|--|
| Grid        | Lines                          | Triangles | Cubic         |  |  |  |
|             |                                |           |               |  |  |  |
| Tri-Hexagon | Cubic Subdivision              | Cross 3D  | Quarter Cubic |  |  |  |
|             |                                |           |               |  |  |  |
| Concentric  | Zigzag                         | Cross     | Octet         |  |  |  |
|             |                                |           |               |  |  |  |
| Gyroid      | lightning                      |           |               |  |  |  |
|             |                                |           |               |  |  |  |

對於這十四種填充可以進行簡單的分類,若是其樣式會隨高度改變,我們稱之為三維填充,反之則稱為二維填充。

#### ● 二維填充

Grid, Lines, Triangles, Tri-Hexagon, Concentric, Zigzag, Cross

#### ● 三維填充

Cubic, Cubic Subdivision, Quarter Cubic, Cross 3D, Octet, Gyroid, Lightning

除此之外,Benjamin Goldschmidt (2024)的一篇文章〈Cura Guide to the Best Infill P atterns〉也根據不同填充結構的用途將填充結構分為了四種,分別為:

- 模型和雕像 (Models & Figurines ): Lightning, Lines, Zigzag
- 標準 (Standard): Grid, Triangles, Tri-Hexagon
- 功能(Functional): Cubic, Cubic Subdivision, Octet, Quarter Cubic, Gyroid
- 彈性 (Flexible): Concentric, Cross, Cross 3D

填充是多樣的,且有各自的功能。本實驗就是聚焦在這14種填充上,了解之間的 機械性質,並對其結果進行歸納與整理。

# 貳、研究設備及器材

| 表 2-1 研究設備及器材 |          |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|---------------|----------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 萬能測試機         | 壓縮治具(下)  | 壓縮治具(上)                                 | 固定插銷                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| Works         |          |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| PLA 線材(耗材)    | 電腦多台     | Flashforge 列印機                          | 列印底板(耗材)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
|               | A        | AND | THE STATE OF |  |  |
| 底板膠帶 (耗材)     | 紙膠帶 (耗材) | 列印板用刮刀                                  | 斜口鉗                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
|               |          |                                         | The state of the s |  |  |
| 電子秤           | 3D列印機工具包 | 記錄用麥克筆                                  | 掃把                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
|               |          |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |

# 參、研究過程與方法

#### 一、流程圖



#### 二、實驗設定

#### (一)列印物設定

為了方便實驗與計算,我們將實驗物設計為不易滾動且不同高度截面積皆相同的 立方體,具體數值如表3-1。

表 3-1 列印物設定

| 設定項  | 設定內容    |
|------|---------|
| 形狀   | 立方體     |
| 邊長   | 40 mm   |
| 截面積  | 1600 mm |
| 列印顏色 | 黑色      |

8

#### (二)列印機設定

我們基於CURA(2023)的預設參數設定了列印機的參數,具體數值如表3-2。

表 3-2 3D列印機設定

| 設定項                     | 設定內容    |
|-------------------------|---------|
| layer height            | 0.2mm   |
| wall line count         | 2       |
| top/bottom thickness    | 0.8mm   |
| infill density          | 5%      |
| build plate temperature | 40c     |
| retraction              | enable  |
| print cooling           | enable  |
| build plate             | none    |
| wall thickness          | 0.8mm   |
| horizontal expansion    | 0.0mm   |
| top/bottom layers       | 4       |
| printing temperature    | 210c    |
| print speed             | 60mm/s  |
| z hop when retraction   | disable |
| fan speed               | 100%    |

#### 三、實驗一:基本數據測試

在開始後面的實驗之前,我們需要對方塊進行數值的測試,透過數值了解3D列印物本身的性質與不同填充結構之間的差距。

#### (一) 測試一: 列印物測定

在本測試中,我們將每一種填充結構(共14種)以4個一組的形式列印出來(如圖3-2左、3-2中),並記錄三項數值:材料用量、列印時間與列印物重量。

材料用量來自於切片軟體預估值,單位為公尺(m);列印時間則在列印完成後 紀錄,單位為分鐘(min);重量則透過電子秤紀錄,單位為公克(g)。

#### (二)測試二:壓縮實驗

為了測試填充結構的強度,我們使用萬能拉伸測試機對列印出的方塊進行壓縮實驗(如圖 3-2右),萬能測試機的速度設定為 4 mm/min,並在變形大於 5mm 時終止實驗。在壓縮實驗中可以地測得不同時間下對應的應力(N/mm²)與應變(%),藉由這些數據可以繪製出該方塊的應力應變圖,亦可獲得降伏點等數值。







圖 3-2(左)列印時列印完成的方塊(中)列印至一半時的方塊,可以看到其中的網格填充結構(右)為正在進行壓縮實驗的方塊

#### (三)分析一:彈性模數的計算

彈性模數是表示物體硬度的方法,透過求出該物體的彈性模數可以有效的對比物體的性質與強度。求得彈性模數的方法是將在比例極限之前應力除以應變量,也就是該線段的斜率。

#### 1. 彈性模數一:去除雜訊

在數據中,因為測量精度的問題,線段放大後會看到雜訊(如圖 3-3左),對於 斜率的測量會造成影響(如圖 3-3右),解決方法是取附近的斜率並取平均值。取值的 範圍的大小亦會影響結果,我們將取的範圍帶入2至300,並分析取平均值對於消除 雜訊效果,以選擇合適的數值。





圖 3-3(左)三角形填充結構部分區域的放大圖,線段之中有明顯的抖動(右)為消除雜訊前的斜率變化,可以看到數值會進行大範圍的上下浮動。

#### 2. 彈性模數二:求線段斜率

在實驗結果中,線段並非直直的一條線,要取斜率必須對數值進行處理。首先我們會將數據繪製成應力應變圖,並將過了彈性極限後的數值去除掉(如圖 3-4左)。在圖表中我們可以觀察到斜率由低到高再到低(如圖 3-4右)。之中,一開始斜率低是因為機器還沒有完全碰到方塊,後來接觸面越來越大之後數值就呈現等比例上升符合虎

克定律,後續超越比例極限後進入彈性極限的階段斜率再次下降。對此,我們取整段 斜率最高的地方即為該方塊的彈性模數。





圖 3-4(左)三角形填充結構的應力應變曲線去除彈性極限後數值的圖表,表上的橘 線為整個線段斜率最高的地方(右)整個測試的斜率變化,附註:已去除雜訊。

#### (四)分析二:ANOVA變異數分析

透過ANOVA變異數分析可以更直觀的顯示填充結構之間各項數值的差異,因此 我們對於實驗前三項實驗的結果進行ANOVA變異數分析,並在之後進行公正顯著差異 檢定法(Honestly Significant Difference test, 簡稱HSD test),透過兩兩比較的方式,了解 不同填充結構之間的優劣。除了單純填充結構間的對比之外,在文獻探討中有寫到填 充結構可以根據形狀與用途等進行分類。我們好奇的是不同分類下,相似的填充結構 會不會有相似的性質,不同分類下又會不會有差異。因此除了填充結構間的比較之 外,我們也會進行分類間的比較。

#### 1. 基本假設

在進行變異數分析之前,需要滿足兩項基本假設。分別為:

- 數值滿足常態分佈
- 數值具有變異同質性

對於第一項假設,我們使用 Python 中 scipy 提供的 shapiro (2023) 函數進行常態檢定,P值結果高於0.05便表示符合假設。第二項假設也類似,透過 Python 中 scipy 提供的 levene (2023) 函數進行同質性檢定,P值結果高於 0.05 同樣表示符合假設。

#### 2. 變異數分析

前置檢定完成後便可開始進行變異數分析,使用 Python 中 scipy 提供的 f\_oneway (2023)函數對數據進行變異數分析,P值結果低於 0.05 便表示分組間有顯著差異。

#### 3. 公正顯著差異檢定

透過變異數分析,我們可以瞭解到不同數值之間的差異,但若是想要知道強度高低與分佈,則需要透過公正顯著差異檢定法(Honestly Significant Difference test)來進行數據的分析。我們使用 Python 中 scipy 提供的 tukey\_hsd(2023)函數得出每個數值差異值,並透過字母標示差異與否。兩者字母有重複便代表兩者沒有顯著差距,愈靠近 a(第一個字母)數值就越大,藉此就可以比較他們之間的每個值的差異與優劣。

#### 四、實驗二:抗疲勞測試

為了瞭解 3D 列印材料在受到重複壓力時的變化,我們對其進行了疲勞測試。考慮到只有在具備一定承力能力的情況下,重複受力的討論才有意義,我們選擇了最大應力排名前七的填充結構進行測試。

要測試彈性疲勞,我們需要讓材料承受小於其彈性極限的負荷,施加壓力後再釋放,並在材料回彈後重複施加負荷。經過多次重複後,材料的微觀缺陷將導致其最大承受應力逐漸下降,當材料可承受的最大應力低於每次施加的負荷時,便無法支撐,進而進入彈性極限後的降伏階段。

即便是相同的填充結構,其彈性極限仍會略有波動。假設彈性極限呈現常態分佈,若直接施加等於平均彈性極限的力,將會有 50% 的實驗在第一次施加時超過彈性極限,無法觀察到材料在反覆受力下的行為。而若施加的負荷過小,微觀缺陷又不會明顯影響材料的性能。

經過權衡,我們決定施加等於該填充結構平均彈性極限減去一個標準差的力。理論上,這可以使超過彈性極限的實驗概率從 50% 降低到 16%。因此,我們的實驗將對材料反覆施加這一負荷,並觀察其應力與應變的變化。

# 肆、研究結果

# 一、實驗一:基本數據測定

# (一) 列印物測定

表4-1為填充結構的各項數值測定的結果。

表 4-1 列印物測定結果

| 填充結構              | 平均列印時間 (min) | 平均列印物重量 (g) | 平均線材用量 (m) |
|-------------------|--------------|-------------|------------|
| Grid              | 268          | 12.503      | 17.55      |
| Cross             | 265          | 12.635      | 17.58      |
| Tri-Hexagon       | 264          | 12.180      | 17.25      |
| Cubic             | 264          | 12.110      | 17.12      |
| Zig zag           | 279          | 13.765      | 19.14      |
| Triangles         | 257          | 11.485      | 16.23      |
| Cubic Subdivision | 257          | 12.355      | 17.22      |
| Quarter Cubic     | 257          | 11.633      | 16.39      |
| Cross3D           | 265          | 12.350      | 17.36      |
| Octet             | 267          | 12.220      | 17.23      |
| Gyroid            | 279          | 11.980      | 17.29      |
| Concentric        | 246          | 11.113      | 15.51      |
| Line              | 273          | 12.330      | 17.30      |
| Lightning         | 224          | 9.278       | 13.14      |

#### 1. 各填充結構的列印時間

從列印時間來看,印的最快的是 Lightning 的 224 分鐘,最慢的是 Gyroid 和ZigZag 的 279 分鐘。值得注意的是,每次使用機器會需要進行加熱,所以可能會因為加熱時間導致約 1 至 2 分鐘的誤差。

總體的列印時間短到長排序如下:

Lightning < Concentric < Triangles = Quarter Cubic = Cubic Subdivision <

Tri-Hexagon = Cubic < Cross = Cross 3D < Octet < Grid < Line < Zig zag = Gyroid

#### 2. 各填充結構的重量與材料用量

填充結構的重量與材料用量在比較方面是幾乎一樣,兩者的相關係數高達 0.99 2,因此將兩者一起呈現。材料使用量最少的是 Lightning 的 13.14 公尺,重量為 9.278 公克。材料使用量最多的是 Zig zag 的 19.14 公尺,重量為 13.765 公克。

以材料使用量小到大來為填充結構排序,結果如下:

Lightning < Concentric < Triangles < Quarter Cubic < Cubic < Cubic Subdivision < Octet < Tri-Hexagon < Gyroid < Line < Cross 3D < Grid < Cross < Zig zag 以重量來為填充結構排序,結果如下:

Lightning < Concentric < Triangles < Cubic Subdivision < Gyroid < Cubic < Tri-Hexagon < Octet < Line < Cross 3D < Quarter Cubic < Grid < Cross < Zig zag 在中段,雖然兩者的排序不太一樣,但是差距都極小,我們認為這可能是測量與

最後因為這兩項數據十分接近,故之後的比較皆使用重量作為比較數值。

#### 3.列印時間與重量

列印時的誤差造成的些微差異。

在數據中,列印時間與重量的相關係數為 0.889,兩者呈現高度相關。所以如果 選擇重量較低的填充結構,多半也會伴隨著消耗材料少、列印速度快的優點。

#### (二)應力測試

為了瞭解不同的填充結構受力的強度,我們使用萬能測試機對其進行了壓縮試驗,得到各填充結構的應力應變圖,透過計算便可獲得其降伏點應力(簡稱降伏應力)與降伏點應變(簡稱降伏應變),結果如表4-2。

表 4-2 應力測試結果

| 填充結構              | 降伏應力<br>(N/mm²) | 降伏應變<br>(%) | 填充結構    | 降伏應力<br>(N/mm²) | 降伏應變<br>(%) |
|-------------------|-----------------|-------------|---------|-----------------|-------------|
| Quarter Cubic     | 2.257           | 3.804       | Grid    | 3.232           | 3.329       |
| Cubic Subdivision | 2.360           | 3.810       | Cross   | 3.093           | 3.454       |
| Cross3D           | 2.082           | 2.926       | Octet   | 2.164           | 3.402       |
| Tri-Hexagon       | 2.670           | 4.033       | Cubic   | 2.437           | 3.208       |
| Triangles         | 2.300           | 3.615       | Gyroid  | 1.967           | 2.860       |
| Lightning         | 1.310           | 2.701       | Line    | 1.679           | 3.035       |
| Concentric        | 1.804           | 3.003       | Zig zag | 2.437           | 3.687       |

#### 1. 降伏應力

從降伏應力來看,最高的是 Grid 的 3.232 N/mm²,最低的是 Lightning 的 1.310 N/m  $m^2$ 。從大到小排序如下:

Grid > Cross > Tri-Hexagon > Cubic > Zig zag > Triangles > Tri-Hexagon >

Quarter Cubic > Cross 3D > Octet > Gyroid > Concentric > Line > Lightning

此外,降伏應力與列印時間的相關係數為0.4432、與重量的相關係數為0.5976。可以看到數值位於 0.4 至 0.6 之間,雖然並非毫無相關,但也並不明顯。這或許代表說重量高的列印物填充結構強度不一定比較高。

#### 2. 降伏應變

從降伏應變來看,最高的是 Tri-Hex 的  $4.033 \text{ N/mm}^2$ ,最低的是 Lightning 的 2.701 N /mm²。從大到小排序如下:

Tri-Hexagon > Cubic Subdivision > Quarter Cubic > Zigzag > Triangles > Cross > Octet > Grid > Cubic > Line > Concentric > Cross 3D > Gyroid > Lightning

此外,降伏應力與列印時間的相關係數為0.2089、與重量的相關係數為0.3923、與 降伏應力的相關係數為0.4238。降伏應變與這三項數據的相關係數都偏低,多介於 0.4 上下,相關性並不明顯。其中尤其與列印時間的相關性最低,數值為 0.2,兩者幾乎沒 有相關。除此之外降伏應力高低跟降伏應變高低的關係也並不明顯。

#### (三)彈性模數

透過計算與一些處理,我們得到了不同填充結構的彈性模數,並進行了比較。

#### 1. 去除雜訊

彈性模數的計算方式是求得應力應變曲線在比例極限前的斜率,但因機器自身的 測量精度問題,數值會有些許雜訊。透過擴大取值範圍並平均的方式,便可以消除雜 訊。為了瞭解取平均數對於消除雜訊的效果,我們對不同平均的範圍都進行了測試, 結果如圖 4-1。

# 平均對於斜率抖動的幫助



圖 4-1 將平均範圍由最小到最大取出的數值繪製成圖表,可以看到數值小時呈現高低的起伏,其便是因為雜訊造成的極端值。而到了數值變大後,線條則趨於平緩。

可以看到,當取值範圍較小時,數值的浮動非常顯著,直到範圍約200時,數值 才趨於穩定。考慮到在消除雜訊的前提下,取值範圍越小,結果越精確,因此我們選 擇取200作為計算斜率時消除雜訊的範圍。這樣可以在保證數據穩定的同時,盡可能 提高測量精度。

#### 2.彈性模數

根據前一個研究結果研究出的彈性模數結果如表4-3。

| 填充結構              | 彈性模數 (N/mm²) | 填充結構          | 彈性模數 (N/mm²) |
|-------------------|--------------|---------------|--------------|
| Grid              | 1.295        | Quarter Cubic | 1.116        |
| Cross             | 1.163        | Octet         | 0.974        |
| Tri-Hexagon       | 1.357        | Cross3D       | 1.032        |
| Cubic             | 1.022        | Gyroid        | 0.985        |
| Zig zag           | 1.216        | Concentric    | 0.795        |
| Cubic Subdivision | 0.958        | Line          | 0.804        |
| Triangles         | 1.119        | Lightning     | 0.738        |

表 4-3 彈性模數結果

彈性模數最高的為 Tri-Hexagon 的  $1.357 \text{ N/mm}^2$ ,最低的為 Lightning 的  $0.738 \text{ N/mm}^2$ 。將彈性模數由大到小排列如下:

Tri-Hexagon > Grid > Zig zag > Cross > Triangles > Quarter Cubic > Cross3D > Cubic > Gyroid > Octet > Cubic Subdivision > Line > Concentric > Lightning

與列印時間的相關係數為0.4331、與重量的相關係數為0.5659、與降伏應力的相關係數為0.7222、與降伏應變的相關係數為0.6564。從數值可以看到,彈性模數與列印時間和重量的相關性皆低於 0.6 ,呈現中低度相關,而與降伏應力、降伏應變的相關性顯然更高。除此之外,降伏應力的相關性也比降伏應變更高,代表說彈性模數高的物體通常會伴隨著更高的降伏應力。

#### (四) ANOVA 變異數分析

為了更好的了解不同填充結構與不同分類方式之間的差異,我們使用 ANOVA 變異數分析來探討他們之間的差別。分類的方式有三種,分別為:填充結構、填充結構的形式(二維、三維)與 BENJAMIN GOLDSCHMIDT(2024)依用途的分類(之後簡稱用途分類)。

因為相同填充結構的列印時間、材料用量以及重量是幾乎相同的,並不適合ANO VA檢定,因此填充結構的列印時間、材料用量以及重量不計入本次實驗。

### 1. 基本假設:常態檢定

常態檢定結果如表4-4、表4-5、表4-6,其中僅有個別數值常態分佈不顯著(P值<0.05,綠色網底標示),我們認為是因為實驗的數量不夠造成了些許誤差,並不影響結果,所以我們將進行下一項分析。

表 4-4 填充結構 - 常態檢定

|                   | 降伏應力   | 降伏應變   | 彈性模數   |
|-------------------|--------|--------|--------|
| Grid              | 0.3388 | 0.4197 | 0.5719 |
| Cross             | 0.9873 | 0.8358 | 0.2793 |
| Tri-Hexagon       | 0.0690 | 0.7991 | 0.3768 |
| Cubic             | 0.4361 | 0.9743 | 0.0490 |
| Zig zag           | 0.9308 | 0.6180 | 0.3833 |
| Triangles         | 0.1604 | 0.9917 | 0.9462 |
| Quarter Cubic     | 0.7609 | 0.2451 | 0.7722 |
| Cubic Subdivision | 0.2010 | 0.7988 | 0.8409 |
| Cross3D           | 0.4312 | 0.0657 | 0.6601 |
| Octet             | 0.1899 | 0.0231 | 0.8290 |
| Gyroid            | 0.3987 | 0.7745 | 0.7988 |
| Concentric        | 0.8077 | 0.3690 | 0.2602 |
| Line              | 0.9308 | 0.4838 | 0.6730 |
| Lightning         | 0.9915 | 0.0634 | 0.0124 |

表4-5填充結構的形式 - 常態檢定

|    | 列印時間   | 重量     | 降伏應力   | 降伏應變   | 彈性模數   |
|----|--------|--------|--------|--------|--------|
| 2D | 0.9166 | 0.7724 | 0.6774 | 0.7876 | 0.3022 |
| 3D | 0.0995 | 0.0010 | 0.1048 | 0.3756 | 0.0901 |

表4-6用途分類 - 常態檢定

|           | 列印時間     | 重量     | 降伏應力   | 降伏應變   | 彈性模數   |
|-----------|----------|--------|--------|--------|--------|
| Standard  | 0.7017   | 0.6022 | 0.7749 | 0.7897 | 0.2773 |
| Flexible  | 7.77E-16 | 0.3380 | 0.3954 | 0.2517 | 0.9734 |
| Funtional | 0.3215   | 0.7493 | 0.8360 | 0.4893 | 0.2669 |
| Models    | 0.1902   | 0.6081 | 0.6225 | 0.6549 | 0.2473 |

#### 2. 基本假設:同質性檢定

同質性檢定結果如表4-7、表4-8、表4-9。其中也僅有個別數值同質性不顯著(P值 <0.05,綠色網底標示),我們認為這也是因為樣本不夠,並不影響結果,所以我們將 對資料進行變異數分析。

表 4-7 填充結構 - 同質性檢定

| 降伏應力   | 降伏應變   | 彈性模數   |
|--------|--------|--------|
| 0.1674 | 0.3585 | 0.0195 |

#### 表 4-8 填充結構的形式 - 同質性檢定

| 列印時間   | 1時間 重量 |        | 降伏應變   | 彈性模數   |
|--------|--------|--------|--------|--------|
| 0.6373 | 0.9770 | 0.2113 | 0.5029 | 0.1276 |

#### 表 4-9 用途分類 - 同質性檢定

| 列印時間   | 列印時間 重量 |        | 降伏應變   | 彈性模數   |
|--------|---------|--------|--------|--------|
| 0.5600 | 0.1841  | 0.6022 | 0.8466 | 0.6798 |

#### 3. ANOVA 變異數分析

變異數分析結果如表4-10、表4-11、表4-12。透過變異數分析可以看出,相同填充 結構之間有著明顯差異(< 0.05,綠色網底標示),但填充結構的形式與用途分類兩種 分類方式的差異則不顯著。

表 4-10填充結構 - Anova 分析

| 降伏應力     | 降伏應變     | 彈性模數     |
|----------|----------|----------|
| 1.66E-22 | 3.21E-07 | 2.91E-09 |

#### 表 4-11 填充結構的形式 - Anova 分析

| 列印時間   | 重量     | 降伏應力   | 降伏應變   | 彈性模數   |
|--------|--------|--------|--------|--------|
| 0.4799 | 0.2892 | 0.1828 | 0.3617 | 0.4064 |

#### 表 4-12 用途分類 - Anova 分析

| 列印時間   | 重量     | 降伏應力   | 降伏應變   | 彈性模數   |
|--------|--------|--------|--------|--------|
| 0.9292 | 0.9877 | 0.1767 | 0.3445 | 0.2786 |

#### 4. 公正顯著差異檢定

結果中可以看到,不同填充結構的分類下實驗數據有顯著差異。為了瞭解他們之間的差異大小與強弱,我們對兩兩填充結構進行公正顯著差異檢定,結果如表4-13。

| 填充結構              | 降伏應力   | 降伏應變      | 彈性模數      |
|-------------------|--------|-----------|-----------|
| Grid              | a      | bcdefgh   | ab        |
| Cross             | ab     | abcdef    | abcd      |
| Tri-Hexagon       | bc     | a         | a         |
| Cubic             | cd     | efghi     | bcdefgh   |
| Zig zag           | cde    | abcd      | abc       |
| Cubic Subdivision | cdef   | ab        | cdefghijk |
| Triangles         | cdefg  | abcde     | abcde     |
| Quarter Cubic     | cdefgh | abc       | abcdef    |
| Octet             | defghi | abcdefg   | cdefghij  |
| Cross3D           | fghij  | efghijkl  | bcdefg    |
| Gyroid            | ghijk  | efghijklm | cdefghi   |
| Concentric        | ijkl   | efghijk   | ghijklm   |
| Line              | jklm   | efghij    | ghijkl    |
| Lightning         | n      | fghijklmn | hijklmn   |

表 4-13 填充結構 - 公正顯著差異檢定

從表4-13可以看出,降伏應力最高的是 Grid ,而降伏應變與彈性模數最高的則是 Tri-Hexagon。在字母的分佈上,降伏應力的前兩組(a, b 組)與其他組別幾乎沒有交集,這表明這兩個填充結構在降伏應力上明顯領先於其他結構,特別是最後的 n 組 ,其數值顯著低於其他組別。

然而,降伏應變和彈性模數並沒有類似的大幅差距,必須要到 g, h 組才與 a 組有顯著差異,這表明在這兩項測試中,各填充結構之間的性能差距並不明顯。尤其在降伏應變的結果中,從第五名開始,與最後一名之間的差異就不再顯著,顯示這項性能的分佈相對均勻,沒有像降伏應力那樣大的差距,整體上各結構的表現相當接近。

#### 二、實驗二: 抗疲勞測試

#### (一) 應力測試

表 4-14 為抗疲勞測試的結果數據,此數據代表其進行的重複受力實驗次數。由表 4-14 數據發現,3D列印材料的疲勞測試結果差異極大。即使相同填充結構的不同重 複,其耐疲勞也有顯著差異(組內平均標準差高達4.196)。表 4-15 為各填充進行重複 疲勞測試時的首次變形量與降伏變形量,分別以first line與last line表示。

|               | 第一次(次) | 第二次(次) | 第三次(次) | 第四次(次) |
|---------------|--------|--------|--------|--------|
| Grid          | 1      | 2      | 1      | 1      |
| Cross         | 2      | 42     | 1      | 2      |
| Tri-Hexagon   | 61     | 21     | 35     | 231    |
| Cubic         | 21     | 15     | 57     | 104    |
| Zig zag       | 7      | 3      | 4      | 31     |
| Triangles     | 1      | 9      | 35     | 1      |
| Quarter Cubic | 1      | 3      | 1      | 2      |

表 4-14 3D 列印填充重複受力實驗次數

表 4-15 3D 列印材料首次變形量 (first line) 與降伏變形量 (last line)

|               | 第一次(mm)    |           | 第二学        | 第二次(mm)   |            | 第三次(mm)   |            | 第四次(mm)   |  |
|---------------|------------|-----------|------------|-----------|------------|-----------|------------|-----------|--|
|               | first line | last line |  |
| Grid          |            | 1.6608    | 1.4427     | 1.5827    | X          | X         |            | 1.4871    |  |
| Cross         | 1.5117     | 1.7568    | 1.3738     | 1.8223    |            | 1.5585    | 1.5311     | 1.6467    |  |
| Tri-Hexagon   | 1.2897     | 2.2935    | 1.5350     | 2.4183    | 1.3064     | 2.2209    | 1.0447     | 1.9161    |  |
| Cubic         | 1.0765     | 1.7780    | 1.5688     | 2.1453    | 1.2019     | 1.8682    | 1.2909     | 1.9976    |  |
| Zig zag       | 1.4717     | 1.9624    | 1.5204     | 1.8549    | 1.3783     | 1.6783    | 1.2935     | 2.0374    |  |
| Triangles     |            | 1.6729    | 1.2401     | 1.7622    | 1.1880     | 1.7407    | X          | X         |  |
| Quarter Cubic |            | 1.5760    | 1.3312     | 1.5271    |            | 1.5147    | 1.3879     | 1.5360    |  |

<sup>--:</sup> 僅承受一次(不分第一條與第二條) X: 數據丟失

由於數據偏差大,不符合變異數分析的變異同質性基本假設,因此接下來的內容會以對數據進行的觀察與發現為主。

#### (二)發現一:列印物受壓後的形變量

圖 4-2 的左上與右上圖表皆為 Cubic 填充結構,但抗疲勞能力卻呈現兩極。左上圖中的 L1 為第一次施壓的變形量,與右上圖中的 L1'有 0.28 mm 的差距;而左上圖中的 L2 為降伏點的變形量,與右上圖中的 L2'相差僅 0.1 mm。

圖 4-2 左下與右下的圖表也皆為 Triangles 填充結構。左下圖中,列印物僅承受了 1 次壓應力,K2 為降伏點的變形量。而右下圖則施加了35次壓應力,K2' 為降伏點的變形量,相比也差距約 0.07 mm。

這表示可能存在一個最大累積形變量,無論經過的次數多寡,只要達到這個變形量便會使物體進入降伏階段,也就是失效。



圖 4-2 (左上) Cubic 填充結構的第二次實驗 (右上) Cubic 填充結構的第四次實驗 (左下) Triangles 填充結構的第一次實驗 (右下) Triangles 填充結構的第三次實驗

#### (三)發現二:列印物受壓時的彈性模數變化

我們發現在進行抗疲勞測試時,列印物的彈性模數會逐漸改變。而且變化並不是線性的,而是會先上升、後下降。為了方便說明,我們將上升的部分稱為硬化、下降的部分稱為弱化。在說明中,我們以 Cubic 填充的第四次測試與 Triangle 填充的第三次測試為例,其數據如圖 4-3、圖 4-4。



圖 4-3 Triangle 填充的第三次測試

圖 4-4 Cubic 填充的第四次測試

#### 1. 硬化現象分析

圖 4-3 中可觀察到第 1 次測試(紫色)至第 13 次測試(藍色)時彈性模數從 0.82 N/mm² 上升至 0.93 N/mm², 於第 13 次測試(藍色)時達到峰值;而圖 4-4 中則亦可觀察到第 1 次測試(紫色)至第 39 次測試(藍綠色),彈性模數同樣也從 0.81 N/mm²升至 0.92 N/mm², 到第 39 次測試(藍綠色)達到峰值。由兩圖中的斜率切面圖可更明顯看出此趨勢,並且此現象在不同的填充之間也存在。

#### 2.弱化現象分析

圖 4-4 中可觀察到第 14 次測試(綠色)至第 35 次測試(紅色),彈性模數從 0.9 2 N/mm²降至 0.75 N/mm²,到第 35 次測試(紅色)超過降伏點而破壞;而在圖 4-4 中也可以觀察到第 40 次測試(藍綠色)至第 104 次測試(紅色),彈性模數同樣也從 0.91 N/mm²降至 0.74 N/mm²,到第 104 次測試(紅色)超過降伏點而破壞。由兩圖中的斜率切面圖亦可更明顯看出此趨勢,並且此現象在不同的填充之間也存在。

# 伍、討論

#### 一、3D 列印 PLA 的應力應變圖不一樣的原因

在《Mechanics of Materials》(Hibbeler,2018)中有提到,在應力大於彈性極限之前 卸載會使其應變回復到受壓前的大小。但林煌隆(2001)指出,在高分子聚合物中並 不一定如此。而在我們的實驗二中,列印物卸載後並沒有完全反彈回來,由此可知在 永久變形在降伏點之前就已經發生,更貼近林煌隆的說法。我們認為無法完全回彈的 原因是因為在列印物中因為填充結構、線材缺陷等原因讓結構受力並不均勻,在部分 的區域超過了列印物能承受的極限,因此造成了永久變形。

#### 二、抗疲勞實驗中硬化現象的產生

PLA 3D 列印物在重複受力的過程中會由於各種原因而受力不均勻,導致其局部的結構中發生了類似金屬差排理論的機械現象,即列印物中的缺陷之間發生交互作用,使其移動到了更難以移動的位置。這會導致物體變得更難壓,也反映在了彈性模數的上升上。

#### 三、抗疲勞實驗中弱化現象的產生

常見拉伸實驗中物體會有延性破壞的現象,造成原因是微裂紋成長、缺陷互相連接,最後實驗物無法承受力量而破壞。而幾乎空心的 PLA 3D 列印物受壓應力時也會因非實心,導致填充結構之間有微裂紋形成,這些微裂紋在壓力的作用下成長並連接,而裂紋的成長過程會導致列印物截面積下降,使列印物能的強度降低。因此在我們的應力應變圖中會呈現彈性模數越壓越低,直到列印物被破壞。

#### 四、相同填充結構的 3D 列印物在抗疲勞的表現落差

由於 3D 列印的特殊性,列印物在列印的過程中會產生大量的隨機缺陷。而這些 缺陷又會因為其位置等因素對列印物造成弱化或強化,這會對列印物的強度會產生巨 大的影響。且填充結構佔比約5%左右,佔整體結構的比例極低,因此缺陷的影響更會 因此而放大。例如 Cubic-2(耐受15次)和 Cubic-4(耐受104次)在做第一次的循環疲 勞測試時,相同應力下已表現出不同的應變量。Cubic-2 的單次疲勞應變明顯大於 Cubi c-4, 這便是由於隨機缺陷造成的影響。

#### 五、未來展望

在實驗二中,我們觀察到斜率隨著壓縮次數的增加,會先上升後下降。這或許能成為一種方法,透過斜率的變化趨勢來推測列印物的使用時間區段,並進而預測其使用壽命。此外,在文獻探討中也發現,不同的參數會顯著影響3D列印物的性質。例如,包青鵬(2015)在「3D 列印 PLA 材質之顏色與成型方式和拉伸強度關係研究」中指出,線材的顏色也會對強度產生影響。除了顏色,不同的列印速度、印表機,甚至材質等,都是潛在的研究方向。

最後,透過建立不同填充結構的資料庫,紀錄它們能承受的最大應力與抗疲勞能力等,能為3D列印愛好者提供參考標準,促進更多像我們這樣的使用者方便地選擇適合的列印參數,使3D列印成為更加普及且便利的創作工具。

## 陸、結論

#### 一、不同填充結構的強度與差異

在測試中,列印時間、重量與消耗材料表現最好的皆為 Lightning 填充結構、降伏應力最高者為 Grid 填充結構、降伏應變與彈性模數最高者為 Tri-Hexagon 填充結構。此外在 ANOVA 分析中,不同填充結構之間有顯著差異,填充結構又屬降伏應力的差異最明顯,並且有明顯的最高值與最低值,而降伏應變和彈性模數則沒有如此巨大的差異。

#### 二、彈性疲勞對於3D列印物的影響

由實驗結果可以得出兩個結論。一是可能存在一個最大累積形變量,達到此最大量時,無需考慮重複次數,物體都會進入降伏。二是彈性模數在疲勞測試下,有先上升後下降的趨勢,表示其結構有硬化以及弱化的現象。

#### 三、3D列印物受力時的反應

經過討論可以得出三個結論。首先,在 3D 列印物進行壓縮測試時,由於其自身的缺陷或結構問題,即使壓力未超過降伏點,物件也無法完全恢復原本的尺寸。其次,3D 列印過程中可能產生缺陷,這些缺陷導致了實驗二結果的波動較大。最後,在壓縮測試中,3D 列印物因其特性,出現了類似金屬差排的交互作用,局部填充結構出現硬化現象,導致彈性模數上升。然而,由於微裂紋的存在,隨著重複受力,裂紋逐漸成長並連接,使得內部填充結構逐漸無法承受應力,最終導致彈性模數下降。

# 柒、參考文獻

- R.C. Hibbeler (2018) Mechanics of Materials Pearson Education, Inc •
- 二、林煌隆(2001)。高分子聚合物在不同應變速率下之壓縮變形特性與破壞分析。 國立成功大學機械工程學系。
- 三、Benjamin Goldschmidt(2024年1月21日)。Cura Guide to the Best Infill Patterns。htt ps://all3dp.com/2/cura-infill-patterns-all-you-need-to-know/。
- 四、UltiMaker(2023)。UltiMaker CURA(5.4.0)〔電腦軟體〕。UltiMaker。
- 五、Python Software Foundation(2023)。Python(3.11.1)〔電腦軟體〕。Python Software Foundation。
- 六、Travis Oliphant, Pearu Peterson, Eric Jones(2023)。Scipy(1.12.0)〔Python 擴充軟體〕。github.com/scipy/scipy。
- 七、包青鵬(2016)。3D列印PLA材質之顏色與成型方式和拉伸強度關係研究。碩博 士論文網站加值系統。