#### Report of Network Science Assignment

MADE BY

Ziyuan Ye

11610203@mail.sustc.edu.cn

UNDER THE GUIDANCE OF

Shan He
AND

Chengbin Hou



Department of Computer Science and Engineering

Southern University of Science and Technology

Shenzhen, China, July 2018

#### Abstract

This assignment focus on analyzing the data set with the technique such as **Page Rank**, **Find Eigenvector Centrality** and **Find In and Out degree**. I try to combine the above methods to work out the top 10 rank of a data set which is called **Top Four Cities**.)) This data set seems very confusing initially. However, by using the above techniques, we gradually can find the top 10 nodes which has the highest rank in all the data set.

#### Data Set Source:

/Dataset/topfourcites.txt

## Introduce the PageRank Algorithm

#### 1.1 Flowchart



Figure: Flowchart

The flowchart cover each page rank step. It also cover the parameters and how I use select them.

Network Science

1.2. Pseudo-code

#### 1.2 Pseudo-code

return  $\pi$ 

```
Algorithm 1 Calculate pagerank
Require: v = (1/n, 1/n...1/n), e = (1, 1, 1, 1....1), W = (1/n, 1/n...1/n)
  d[i] is the out degree of node i
  y \Leftarrow 1
  if out degree of node = 0 then
     d[i] \Leftarrow 1
  else
     d[i] \Leftarrow 0
  end if
  D' is the diagonal matrix of out – degree of nodes
  P' \Leftarrow D' \times A
  P \Leftarrow P' + W^T \times d
  G \Leftarrow \alpha \times P + 1 - \alpha \times ev
  \pi(0) = (1/n, 1/n....1/n)
  while True do
     p(i+1) \Leftarrow p(i) \times G
     if abs(\pi(i+1) - \pi(i)) < error then
        break
     end if
  end while
```

## Visualization

In this chapter, I visualize a tables combine with a graphs of the top ten node in each algorithm

| Top ten in degree of node |                    |  |
|---------------------------|--------------------|--|
| Node                      | value              |  |
| Meyer DS 2004             | 8.03124821796318   |  |
| Earl J 2004               | 6.382854503328885  |  |
| Kalev A 2006              | 5.146559217353166  |  |
| Cress DM 2000             | 3.498165502718872  |  |
| Sampson RJ 2005           | 3.498165502718872  |  |
| Charles CZ 2003           | 3.0860670740602987 |  |
| King BG 2007              | 3.0860670740602987 |  |
| Mcadam D 2001             | 2.880017859731012  |  |
| Benford RD 2000           | 2.6739686454017257 |  |
| Logan JR 2004             | 2.467919431072439  |  |

Table: Top ten in degree of node



Figure In degree of top ten node

As the above graph shown, Meyer DS 2004 has the highest in-degree which is the same as the table shown 8.03124821796318. The in-degree rank of other nodes is also show on the graph order by the size of nodes.

| Top ten out degree of node |                    |  |
|----------------------------|--------------------|--|
| Node                       | value              |  |
| Mccarthy JD 1977           | 8.012879874411901  |  |
| Mcadam Douglas 1982        | 6.008786197075345  |  |
| Tilly C 1978               | 5.700464092869721  |  |
| Wilson W J 1987            | 5.083819884458474  |  |
| Denton Nancy A 1993        | 4.7754977802528495 |  |
| Dimaggio PJ 1983           | 4.158853571841602  |  |
| Meyer JW 1977              | 4.00469251973879   |  |
| Granovetms 1973            | 3.850531467635978  |  |
| Mccarthy JD 1996           | 3.2338872592247303 |  |
| Gamson W 1990              | 3.0797262071219182 |  |

Table: Top ten out degree of node



Figure Out degree of top ten node

As the above graph shown, Mccarthy JD 1977 has the highest out-degree which is the same as the table shown 8.012879874411901. The out-degree rank of other nodes is also show on the graph order by the size of nodes.

| Top ten Eigenvector centrality of node |            |  |
|----------------------------------------|------------|--|
| Node                                   | value      |  |
| Meyer DS 2004                          | 0.2714494  |  |
| Mccarthy JD 1977                       | 0.27114936 |  |
| Cress DM 2000                          | 0.24436234 |  |
| Earl J 2004                            | 0.23883461 |  |
| Tilly C 1978                           | 0.23256826 |  |
| Mccarthy JD 1996                       | 0.222541   |  |
| Mcadam Douglas 1982                    | 0.2130869  |  |
| Gamson W 1990                          | 0.20264384 |  |
| Tarrow S 1998                          | 0.1793854  |  |
| Mcadam D 2001                          | 0.15747336 |  |

Table: Top ten Eigenvector centrality of node



Figure Eigenvector centrality of top ten node

I try the iteration equals 100 and 200 and find the same result, which means that in at most 100 iterations the eigenvector centrality will come to converge. Similarly, we can also find the rank value of the node is shown as the graph rank by size. **e.g**, **Meyer DS** 2004 is the largest Node with the value equals 0.2714494 rank first

| Top ten Page Rank of node |            |
|---------------------------|------------|
| Node                      | value      |
| Meyer DS 2004             | 0.78125451 |
| Earl J 2004               | 0.31142786 |
| Andrews KT 2004           | 0.17355846 |
| King BG 2007              | 0.1697048  |
| Mcadam D 2001             | 0.16243874 |
| Cress DM 2000             | 0.15626345 |
| Davis GF 2005             | 0.14311321 |
| Mccammon HJ 2001          | 0.12880348 |
| King BG 2005              | 0.11845306 |
| Sampson RJ 2002           | 0.11700992 |

Table: Top ten Page Rank of node



Figure Page Rank of top ten node

I try the iteration equals 100 and 200 and find the same result, which means that in at most 100 iterations the eigenvector centrality will come to converge. Similarly, we can also find the rank value of the node is shown as the graph rank by size. The result exists difference compare with the figure, it might cause by different page rank algorithm. Like Node: King BG rank forrth in the table but with the largest size in the figure

#### Conclusion

# 3.1 Abstract of In Degree, Out Degree and Eigenvector Centrality

As we learn, in degree means how many a node be pointed by other nodes. Out degree means how many a node pointing to other nodes. Eigenvector centrality means the importance of a node depends on the importance of its neighbors.

# 3.2 Comparison of In Degree, Out Degree and Eigenvector Centrality

As the table show above, we can find that top ten out degree node have numeral same nodes compare with eigenvector centrality. Thus, we can make an assumption that the higher out degree of a node is, the higher eigenvector centrality it might be. In the same way we can find that top ten out degree of nodes also similar with top ten eigenvector centrality. However the in degree and out degree rank result has few same nodes.

Finally, we can make a conclusion that the importance of a node is judge by both in degree and out degree rather than just one of them.

## **Epilogue**

Due to the limitation of the time, my result may not the same as the result called by library.

However, I cover all the requirements! Also, I try my best to approximate my result to the standard result. Fortunately, I found my result is similar to the standard one.

If it is possible, I am looking forward to be your students in the future.

Finally, I sincerely express my appreciation here to Chengbin and Shan He.

#### Code & Related Files:

https://github.com/Voldet/NS\_project