Disease Knowledge Transfer across

Neurodegenerative Diseases

Răzvan Marinescu^{1,2}, Marco Lorenzi³, Stefano Blumberg¹, Alexandra Young¹, Pere Morell¹, Neil Oxtoby¹, Arman Eshaghi^{1,4}, Keir Yong⁵, Sebastian Crutch⁵, Polina Golland², Daniel Alexander¹

²Computer Science and Artificial Intelligence Laboratory, MIT, USA

¹Centre for Medical Image Computing, UCL, UK

⁴Queen Square MS Centre, UCL Institute of Neurology, UK

Aim Infer progression of non-MRI biomarkers in rare neurodegenerative diseases (NDs) by leveraging larger datasets of common NDs.

Why Posterior Cortical Atrophy (PCA): progression of non-MRI biomarkers not known → Identify outcome measures and suitable subjects for PCA clinical trials

Challenges

Typical Neurodeg. Diseases

- Large datasets
- Multimodal imaging
- Longitudinal

Rare Neurodeg. Diseases

- Small datasets X
- MRI only X
- Cross-sectional X

Method

1. Each disease characterised by region-specific dysfunction

trajectories

2. Dysfunction trajectory modelled using region-specific biomarkers

3. Extend to multiple subjects, biomarkers and diseases $p(\mathbf{y}|\theta,\lambda,\beta,\epsilon) = \prod_{(i,j,k)\in\Omega} p(y_{ijk}|\theta_k,\lambda_{d_i}^{\psi(k)},\beta_i)$

Inference: Loopy belief propagation

Initialise $\boldsymbol{\theta}^{(0)}$, $\boldsymbol{\lambda}^{(0)}$, $\boldsymbol{\beta}^{(0)}$

while θ , λ , β not converged do

; // Estimate biomarker trajectories (disease agnostic)
$$\theta_k^{(u)} = \arg\min_{\theta_k} \sum_{(i,j) \in \Omega_k} \left[y_{ijk} - g \left(f(\beta_i^{(u-1)} + m_{ij}; \lambda_{d_i}^{\psi(k),(u-1)}); \theta_k \right) \right]^2$$
; // Estimate dysfunction trajectories (disease specific)
$$\lambda_d^{l,(u)} = \arg\min_{\lambda_d^l} \sum_{(i,j,k) \in \Omega_{d,l}} \left[y_{ijk} - g \left(f(\beta_i^{(u-1)} + m_{ij}; \lambda_d^l); \theta_k^{(u)} \right) \right]^2$$
; // Estimate subject-specific time shifts
$$\beta_i^{(u)} = \arg\min_{\beta_i} \sum_{(j,k) \in \Omega_i} \left[y_{ijk} - g \left(f(\beta_i + m_{ij}; \lambda_{d_i}^{\psi(k),(u)}); \theta_k^{(u)} \right) \right]^2$$

Datasets

- Dementia Research Center cohort: MRI scans from 76 PCA, 67
 tAD, 87 controls for training, 10 PCA with DTI for validation.
- TADPOLE dataset (ADNI) split into three subgroups with different progressions: 21 hippocampal, 35 cortical, 27 subcortical.
- Synthetic dataset mimicking the cohorts above: 50 subjects with "synthetic PCA", 100 subjects with "synthetic AD".

Results

• In synthetic experiment, the estimated parameters are close to the true parameters.

- Inferred multimodal trajectories for PCA in lack of such data.
- Results are plausible, suggesting late-stage posterior damage.

• Our model has favourable performance compared to other models, on two different datasets.

Model	Cingulate	Frontal	Hippocam.	Occipital	Parietal	Temporal
	TADPOLE: Hippocampal subgroup to Cortical subgroup					
DKT (ours)	0.56 ± 0.23	0.35 ± 0.17	0.58 ± 0.14	-0.10 ± 0.29	0.71 ± 0.11	$\textbf{0.34}\pm\textbf{0.26}$
Latent stage	0.44 ± 0.25	0.34 ± 0.21	$0.34 \pm 0.24^*$	-0.07 ± 0.22	0.64 ± 0.16	$0.08 \pm 0.24^*$
Multivariate	$\textbf{0.60}\pm\textbf{0.18}$	$0.11 \pm 0.22^*$	$0.12 \pm 0.29^*$	-0.22 ± 0.22	$-0.44 \pm 0.14^*$	$-0.32 \pm 0.29^*$
Spline	$-0.24 \pm 0.25^*$	$-0.06 \pm 0.27^*$	0.58 ± 0.17	-0.16 ± 0.27	$0.23 \pm 0.25^*$	$0.10 \pm 0.25^*$
Linear	$-0.24 \pm 0.25^*$	$0.20 \pm 0.25^*$	0.58 ± 0.17	-0.16 ± 0.27	$0.23 \pm 0.25^*$	$0.13 \pm 0.23^*$
	typical Alzheimer's to Posterior Cortical Atrophy					
DKT (ours)	0.77 ± 0.11	0.39 ± 0.26	0.75 ± 0.09	0.60 ± 0.14	$\textbf{0.55}\pm\textbf{0.24}$	$\textbf{0.35}\pm\textbf{0.22}$
Latent stage	$\textbf{0.80}\pm\textbf{0.09}$	0.53 ± 0.17	0.80 ± 0.12	0.56 ± 0.18	0.50 ± 0.21	0.32 ± 0.24
Multivariate	0.73 ± 0.09	0.45 ± 0.22	0.71 ± 0.08	$-0.28 \pm 0.21^*$	0.53 ± 0.22	$0.25 \pm 0.23^*$
Spline	$0.52 \pm 0.20^*$	$-0.03 \pm 0.35^*$	$0.66 \pm 0.11^*$	$0.09 \pm 0.25^*$	0.53 ± 0.20	$0.30 \pm 0.21^*$
Linear	$0.52 \pm 0.20^*$	0.34 ± 0.27	$0.66 \pm 0.11^*$	$\textbf{0.64} \pm \textbf{0.17}$	0.54 ± 0.22	$0.30 \pm 0.21^*$

Conclusion

- Developed a novel methodology and model for transfer learning across different diseases
- Inferred multimodal trajectories for Posterior Cortical Atrophy

Funders

Weblinks

- Source code: https://github.com/mrazvan22/dkt
- Website: https://people.csail.mit.edu/razvan/