Exploring the Potential of Machine Learning in Insurance Claims

- Dataset: UK Traffic Accidents

Contents

- 1. Introduction
- 2. Data Cleaning
- 3. Data Visualization
- 4. Model Construction
- 5. Implication & Improvement

INTRODUCTION

Data Set: UK Traffic Accident 2005

- Goal: Help Insurance Company To
 - Evaluate insurance claims payment
 - Evaluate underwriting of insurance plan
 - Insurance claim fraud prediction/investigation
- Three Target Accident Severity
 - Slight
 - Serious
 - Fatal
- Multi-Classification Problem

DATA CLEANING

First...

- Replace Errant/Misspelled Values
- Drop Blank Rows with Blank Values
- Format Date in Dateline format and add Column for Month and Hour

Overview of UK Accidents Dataset

Overview

Dataset info

Number of variables 25 Number of observations 126288 Total Missing (%) 0.0% Total size in memory 24.1 MiB Average record size in memory 200.0 B

Variables types

Numeric	13
Categorical	10
Boolean	0
Date	1
Text (Unique)	0
Rejected	1
Unsupported	0

- ▶ 88% of the data belongs to slight and 11% to serious and 1% to fatal
- > 71.6% of accident occur in Urban while 28.4 % occur in Rural
- A lot of the data are skewed to one variable

Metadata Information

- Accident Index: index identifier of accidents
- Longitude: longitude coordinates of accident
- Latitude: latitude coordinates of accident
- Accident Severity: the severity of accident
- Carriageway Hazard: none/ other object on road/ any animal in carriageway/ pedestrian in carriage/ previous accident/ vehicle load on road
- Date: the date that accident that occurred in the format DD/MM/YYYY
- Did Police officer attend scene of accident? (1-No, 2-Yes, 3-Yes with Ambulance)
- Junction Control: Was there junction control at the location of accident

- Light Conditions: the light condition of accident
- Number of Casualties
- Number of Vehicles
- Pedestrian crossing-human control
- Pedestrian crossing physical facilities
- Road Surface Conditions
- Road Type
- Special Conditions at site
- Speed limit
- Urban or Rural Area
- Weather Conditions

DATA VISUALIZATION

Мар

Correlation matrix

Strong Negative Correlation:

 Pedestrian crossing physical facilities

Strong Positive Correlation:

- Speed limit
- Pedestrian crossing human control

Month

Day of Week

Rural Vs Urban

Number of Vech

Average Severity vs. Average Number of Vechiles

Highly Cardinality Categorical Variable

Model Building

Data Preparation

- Remove no contextual variables
 - Longitude, Latitude, Date
- Sklearn data formatting
 - Converting categorical variable to dummy variable
- Holdout Validation (90% training to 10% testing)
 - Confusion Matrix
- Highly Skewed Dataset
 - SMOTE (Synthetic Minority Over Sampling Technique)

Initial building

Decision Tree 1

Score: 0.88

Decision Tree 2 (Standardized)

Score: 0.87

Random Forest Model

Score: 0.90

Permutation Variable Importance

Importance
0.6

As the standard SKLearn variable importance has the tendency to inflate the importance of continuous feature and highly cardinal categorical variable which our dataset suffer.

- Permutation Variable Importance
- Measure of the property of the

not useful to conduct dimension reduction

Machine Learning Algorithm tested

Algorithm	Scores (2.s.f)	Keep
OvA(Perceptron)	0.82	✓
OvA(Logistic Regression)	0.87	✓
Neural Net	0.88	✓
Nearest Neighbor	0.86	✓
Naive Bayes	0.10	×
Linear SVM	N/A	×
RBF SVM	N/A	×

Hyperparameter tuning using GridSearch

```
Algo: Perceptron and 10 fold score: 0.8216
Algo: LogisticRegression and 10 fold score: 0.8795
Algo: Decision Tree and 10 fold score: 0.8796
Algo: Random Forest and 10 fold score: 0.8656
Algo: Neural Net and 10 fold score: 0.8796
Algo: Nearest Neighbors and 10 fold score: 0.8796
```

Evaluation + Ensemble Model

ROC Curve - Micro Averaging

Learning Curve

Overfitting Model

- Nearest Neighbors
 Underfitting Model
- PerceptronJust Right
 - Logistic Regression
 - Decision Tree
 - Random Forest
 - Neural Net

Ensemble Model

- Majority Voting Model
 - Results 88% accuracy

Model recommendation

- Ensemble model for Slight and Decision Tree for Serious/fatal prediction
- Will talk more about this in the improvement section

IMPLICATION & IMPROVEMENT

Implication

Compensation Decision

 Insurance claim — Model: Predict accident severity — Help decide the amount/rate of the compensation

Fraud Claim

 Insurance claim — Model: check whether exaggerated in filing— Fraud investigation

Improvement

- To build a model with weighting of information (+ class weights to help with the skewed data problem)
- The model may have difficulty classifying serious accidents due to highly skewed dataset
- The model requires all completed data, while in reality this is often not the case
- Choose our datasets over a longer time span
- Accident prone zone and cause of fatal accidents may change over time