ELSEVIER

Contents lists available at ScienceDirect

Applied Catalysis B: Environmental

journal homepage: www.elsevier.com/locate/apcatb

NO_x reduction in the Di-Air system over noble metal promoted ceria

Check for updates

Yixiao Wang, Freek Kapteijn, Michiel Makkee*

Catalysis Engineering, Chemical Engineering Department, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands

ARTICLE INFO

Keywords: Selective NO reduction Ceria Noble metal Raman TAP FT-IR

ABSTRACT

In this study, the role of the noble metals Pt and Rh (0.5 wt.%) for the selective reduction of NO into N_2 is evaluated by the transient TAP technique and in-situ spectroscopy using a commercial stable ceria support (denoted as CZ) and applying isotopically labelled ¹⁵NO and ¹⁸O₂. The transient operation was mimicked by multi-pulse oxidation (using O_2 or NO) and reduction cycles (using CO, H_2 , C_3H_6 and C_3H_8), while following quantitatively the catalyst and reactants response. Pt and Rh significantly lowered the temperature of CZ reduction. CO and H2 only reduce the surface of CZ, while a 2.5 times deeper reduction was achieved by the hydrocarbons C₃H₆ and C₃H₈, removing also lattice oxygen. Pt and Rh also promoted carbon deposition after surface reduction. Rh was a more active promoter than Pt, while propene was more reactive than propane over both metals. During the NO reduction the pre-reduced CZ support became gradually re-oxidised and after filling 70-80% of the oxygen vacancies the NO started to appear in the product mixture. In the presence of carbon deposits the lattice oxygen of the CZ reacted with the carbon keeping the CZ in a reduced state, extending the NO decomposition process as long as the carbon was present. The reduction of NO over pre-reduced noble metal/CZ showed a selective formation N2, while N2O and NO2 were never observed. During the NO reduction process some unidentified N-species remained on the catalyst, the amount depending on the type of catalyst, but finally all nitrogen was released as N2. The presence of the noble metal led less unidentified N-species on the CZ surface and to a faster N2 formation rate than that over the bare CZ.

1. Introduction

Nitrogen oxides (NO_x) are harmful gasses, causing every year millions of premature deaths of people [1,2]. Around 40% of the total NO_x released into the atmosphere originated from road transport [1,3]. The actual average NOx emission from cars on the road is six to eight times higher than the actual emission limit [4]. Therefore, as of September 2017, the European Commission will proclaim that the real driving emission (RDE) test will partially replace the current laboratory test upon the introduction of new car models into the market [5]. However, up to 2.1 times higher NO_x emission (0.168 g/km), relatively to the current Euro 6 NO_x emission standard (0.08 g/km), is allowed under this RDE test by September 2017 [5]. The fact that a higher NO_x emission by the new legislation in 2017 is allowed indicates that currently available technologies: Urea- Selective Catalytic Reduction (SCR) [6-8], NO_x Storage and Reduction (NSR) [9-11], and combinations thereof still need to be significantly improved. In future, it can be anticipated that the NO_x emission limit will become even more stringent. Therefore, more efficient or alternative, more advanced exhaust emissions after-treatment technologies for lean-burn engines will be required. The Di-Air system [12], under development by Toyota Motor Company, shows promise to meet the future NO_x emission standards under real driving test conditions. The Di-Air system retains high NO_x conversion levels (above 80%) even up to 800 °C and high gas hourly space velocities (GHSV) up to 120.000 L/L/h, where other systems are less active. Short fuel rich and lean periods are created by direct injection of hydrocarbons (HC's) at a high frequency downstream of the engine in the exhaust system upstream of a complex NSR catalyst (Pt/Rh/Ba/K/Ce/Al $_2O_3$) [12]. Investigation on the role of each catalyst component is essential for understanding how the system works and its further improvement.

Ceria is an essential catalyst ingredient in the Di-Air system due to its redox properties, since it can act as an oxygen buffer [13]. Under rich (fuel injection) conditions its lattice oxygen can react with hydrocarbons, CO, and H_2 [14,15]. HC's injection is essential to create a deep reduction degree of ceria and deposition of carbon onto ceria [12,16]. The created oxygen vacancies (reduced ceria) were found to selectively convert NO into (di)nitrogen (N_2) [13], even in the presence of an excess of oxygen [17] and CO_2 [18]. The deposited carbon was oxidised by oxygen species from the lattice oxygen of ceria under oxidative conditions, recreating new oxygen anion vacancies, thereby increasing substantially the NO reduction capacity.

E-mail address: m.makkee@tudelft.nl (M. Makkee).

^{*} Corresponding author.

The temperature required for the reduction of the commercially bare Ceria composite by hydrocarbons (HCs), however, needed to exceed 500 °C for C_3H_6 and 540 °C for C_3H_8 used as reductant. The reactivity of oxygen in the ceria lattice is too low to activate the C₃H₆ and C₃H₈ at temperatures below 500 °C [15]. Considering automotive conditions, especially during the cold start, the reduction of ceria may be difficult. For practical application of ceria-based catalysts it may be beneficial to add promoters, e.g. noble metals that could assist ceria reduction at lower temperatures. After hydrocarbon treatment of ceria at 300 °C Yao and Yao [14] found no oxygen storage capacity (OSC) and a limited capacity at 400 °C, meaning that HCs cannot reduce surface oxygen of ceria at temperatures below 300–350 °C. After addition of Pt. Pd. or Rh to ceria, however, a substantial OSC even at 300 °C was evidenced. Much research have been performed on ¹⁸O/¹⁶O isotope exchange, a common method used to study the adsorption/desorption properties of oxygen and the participation of lattice oxygen from ceria in oxidation reactions, by using either ¹⁸O₂ or C¹⁸O₂ over the ceria and noble metal loaded ceria [19,20]. The presence of noble metals was found to accelerate the exchange rate of oxygen from either ¹⁸O₂ or C¹⁸O₂ in the lower temperature range as compared to bare ceria. Although improved oxygen exchange phenomena are no direct evidence for affecting reduction, it is an indication that the presence of noble metals may affect the reactivity of oxygen from the ceria lattice with HCs or carbonaceous deposits in the absence of gas-phase O2.

The aim of this study is to investigate the role of the noble metals Pt and Rh on ceria for its reduction by HCs and performance in subsequent NO reduction. For this purpose, C_3H_6 and C_3H_8 were used as a fuel model reductant. Temporal Analysis of Products (TAP) was mainly used for the quantification of the degree of reduction of the ceria support and the NO reduction mechanism. Additionally, in-situ Raman spectroscopy performed in a fixed bed reactor was applied to support the TAP results.

A commercial Zr- and La-doped ceria is used as a model ceria system mainly for its high hydrothermal stability and enhanced oxygen lattice diffusion [13,21,22].

2. Experimental

2.1. Materials preparation

Pt/CZ and Rh/CZ, aimed at 0.5 wt.% noble metal loading were prepared via an incipient wetness impregnation method on vacuum dried Zr-La doped ceria (a gift of Engelhard, now BASF, further denoted as CZ). The bulk atomic ratio of Ce, La and Zr is 0.64:0.15:0.21. Tetra-ammine platinum (II) nitrate and rhodium(III) nitrate hydrate purchased from Sigma-Aldrich, were used as precursors, dissolved in purified demi water. Subsequently, the samples (thin layer in a crucible) were dried at 110 °C overnight and calcined at 550 °C for 5 h in a static air furnace.

2.2. Characterisation

2.2.1. N_2 adsorption

 N_2 adsorption at $-196\,^\circ\text{C}$ (Tristar II 3020) Micromeritics was used to determine the textural properties like BET area and pore volume. The catalyst samples were pre-treated by degassing at 200 $^\circ\text{C}$ for 16 h in vacuum (0.05 mbar).

2.2.2. Inductively coupled plasma optical emission spectroscopy (ICP-OES) Approximately 50 mg of samples were digested in 4.5 mL 30% $\rm HCl+1.5~mL~65\%~HNO_3$ using microwave irradiation for 120 min with a power of 900 W. After the destruction, the samples were diluted to 50 mL with Millipore-Q (purified demi) water. The samples were analysed with ICP-OES (PerkinElmer Optima 5300).

2.2.3. X-Ray photoelectron spectroscopy (XPS)

XPS measurements were recorded on a K-alpha Thermo Fisher

Scientific spectrometer using mono-chromated Al $K\alpha$ radiation. A flood gun was applied for charge compensation. Fixed Lorentz function was used to analyse the peak intensities. Binding energies were calibrated with C(1s) at 285 eV as reference.

2.2.4. X-ray diffraction (XRD)

The powder X-Ray diffraction (XRD) was recorded by a Bruker-AXS D5005 with a Co $K\alpha$ source. The data was collected three times by varying the 20 angle from 5° to 90° with a step size of 0.02.

2.2.5. Transmission electron microscope (TEM)

Transmission Electron Microscopy (TEM) images were recorded on a JEM-2100P electron microscope operating at 200 kV. Prior to transfer the samples into the TEM analysis chamber, the samples were dispersed in ethanol and deposited onto a carbon-coated copper grid, shortly dried in air and, subsequently, inserted into the vacuum system of the microscope.

2.2.6. Raman microscopy

Raman spectra of samples were collected by a Renishaw in Via Reflex confocal Spectrometer. The excitation wavelength was 325 nm. The power of each laser line was kept at about 2.5 mW to prevent local heating. The resolution of the spectrometer was 1 cm^{-1} .

2.2.7. Temperature programmed reaction (TPR)

TPR (H_2) of all the samples were carried out in a fixed bed reactor system connected to a thermal conductivity detector (TCD) to monitor the consumption of hydrogen by the catalyst. Catalyst samples (200 mg) were packed between SiC layers (300–425 µm). The sample was then reduced in a 10% H_2 /Ar flow of 30 ml $_{STP}$ /min by increasing temperature from room temperature to 1000 °C with a heating rate of 5 °C/min. TCD was calibrated by using CuO as a reference. A permapure tubular drier was used to remove the water produced during the reduction step upstream of the TCD detector.

2.3. TAP pulse experiments between 450 °C and 500 °C

The pulse experiments were performed in an in-house developed and constructed TAP (Temporal Analysis of Products) reactor. Series of small gas pulses, typically in the order of 1.10¹⁵ molecules, were introduced in a small volume upstream of the catalyst packed bed reactor. The produced pressure gradient over the catalyst packed bed thereby causes the molecules to be transported through the packed bed to the ultra-low vacuum at the opposite side of the packed bed. Depending on the actual number of molecules pulsed, the transport will be in the pure Knudsen diffusion regime. In other words, the molecules interact only with the "walls" (catalyst surface and reactor walls) of the system and not with each other. Upon interaction with the catalyst, molecules can be converted into different products. The evolution of the reactant and product molecules is tracked (one mass m/e unit per pulse) with a high time resolution of 10 kHz using a quadrupole mass spectrometer. A careful calibration of the MS ensured a quantitative analysis, and overall mass balances could be closed within 5-15% accuracy. Details about TAP can be found elsewhere [13].

2.3.1. Multi-pulse TAP experiment

10 mg Rh/CZ and Pt/CZ were used in the TAP reactor at 450 °C. In all experiments a starting pulse size of approximately $2\cdot 10^{15}$ molecules was used (including reactants and inert gas used as internal standard), the pulse size gradually decreases during an experiment as the reactant was pulsed from a closed and calibrated volume of the pulse-valve line. Prior to a reduction, the catalyst was firstly (re-)oxidised at the same temperature at which the reduction was performed, using pulses of 80 vol. % O_2 in Ar until a stable O_2 /Ar signal ratio downstream of the reactor was obtained. The reduction was carried out by injecting reductant pulses of either 80 vol. % C_3H_6 in Ne, 80 vol. % C_3H_8 in Ne,

80 vol. % CO in Ar, or 66.7 vol. % $\rm H_2$ in Ar until a stable reactant and product to an internal standard signal ratio was obtained, indicating that the catalyst was "equilibrated". ¹⁵NO and ¹⁸O₂ pulse experiments were performed using 80 vol. % ¹⁵NO in Kr, and 5 vol. % ¹⁸O₂ in He, respectively.

The pulse size of reactant at each pulse number was determined by fitting the pulse valve pressure using the exponential equation:

$P(n) = Ae^{Bn}$ (nisthepulsenumber)

All relevant MS signal were calibrated and quantified at room temperature by using 200 mg quartz beads (particle size $150-212 \,\mu m$ fully filled stainless steel SS3 316 reactor. Detailed TAP quantification method can be found elsewhere [13].

The consumption of the oxygen species from the catalyst and the carbon species deposited during C_3H_8 and C_3H_6 multi-pulse experiments were calculated using the following atomic balances:

$$n_{O,consumed} = n_{H_2O,obs} + n_{CO,obs} + 2n_{CO_2,obs}$$
 (1)

$$n_{C,deposited} = 3n_{C_3H_6,in} (c_3H_8,in) - 3n_{C_3H_6,obs} (c_3H_6,obs) - n_{CO,obs} - n_{CO_2,obs}$$
(2)

where n is the number of molecules or atoms of the specified species observed (obs), consumed or introduced (in) over the whole series of pulses.

The number of oxygens consumed during the C_3H_8 and C_3H_6 multipulse experiments are equal to the number of oxygen vacancies created in the ceria lattice.

Similarly, the amount of oxygen accumulation and carbon consumption during the ¹⁵NO multi-pulse experiments were calculated using the following atomic balance:

$$n_{O,accumulated} = n_{NO,in} - n_{CO,obs} - 2n_{CO_2,obs} - n_{N_2O,obs} - 2n_{NO_2,obs} - n_{NO,obs}$$

$$n_{c,consumed} = -n_{CO,obs} - n_{CO_2,obs}$$
 (4)

$$n_{N,accumulated} = n_{NO,in} - n_{No,obs} - 2n_{N_2,obs} - 2n_{N_2O,obs} - n_{NO_{2,obs}}$$
(5)

2.3.2. Pump-probe TAP experiments

Pump-probe TAP experiments were performed using two pulse valves to consecutively inject 15 NO and 14 NO, respectively. Rh/CZ and CZ were used at 450 and 500 °C, respectively. Before the pump-probe experiment, multi-pulse experiments were conducted to reduce the catalysts by H₂, then 15 NO/Kr and 14 NO/Ar mixtures were subsequently injected in an alternating sequence, and the m/e intensity of 15 N₂, 15 N 14 N₂, 14 NO, and 15 NO were measured during each pulse for a time interval of 5 s. The injection time was t=0 for 15 NO/Kr and t=5 s later for 14 NO/Ar.

2.3.3. Single pulse TAP experiments

Single pulse TAP experiments were performed to investigate the

interaction of N_2 with a pre-oxidised or pre-reduced catalyst bed using one single pulse of N_2 at 450 °C. To reduce the catalyst, 10000 pulses of H_2 were required.

2.4. In-situ Raman spectroscopy

The Raman spectroscopy measurements were performed under reaction conditions by using an AvaRaman-PRB-FC Raman probe. The catalyst sample (200 mg) was placed a 6 mm inner diameter quartz reactor tube and downstream equipped with a mass spectrometer (MS, Hiden Analytical, HPR-20 QIC) and infrared (IR) spectroscopy (Perkin-Elmer, Spectrum One), both for gas-phase analysis. For the IR analysis a gas cell with KBr windows with a path length of ~5 cm was used. The spectra were recorded in a continuous mode using the Perkin-Elmer "Time-Base" software between 4000-700 cm⁻¹ wavenumbers with a spectral resolution of 8 cm⁻¹ and an acquisition of 8 scans per spectrum, resulting in a time interval of 23 s between each displayed spectrum. Raman data were collected using a Kaiser Optical Systems RXN spectrometer with a diode laser operating at 532 nm and output power of 10 mW. AvaRaman-PRB-FC Raman probe was used to focus the laser beam to a spot and to collect the scattered radiation behaviour. A CCD camera was used to record the data using the Thermo Galactic Grams AI v. 7.0 software. Spectra were acquired using 2 scans at a resolution of 0.3 cm⁻¹ in the range between 100 (detector cutoff) and 4350 cm⁻¹.

A feed composition of 0.2% NO (He balance) was used with a GHSV of 67.000 L/L/h. Prior to feeding NO, the catalyst was pre-treated by 1.25% $\rm C_3H_6$ in He for 2 h and flushed with He (200 mL/min) for 30 min afterwards, both at 500 °C.

3. Results

(3)

3.1. Characterisation

3.1.1. Structure and chemical composition

Characterisation details of the CZ support were reported elsewhere [13,23]. In brief, the typical fluorite structure of ceria was confirmed by Raman and XRD. The BET area was 65 $\pm~2~\text{m}^2/\text{g}$. The crystal size of CZ determined by the Scherrer's equation and TEM measurements were on average 5.0 $\pm~0.6~\text{nm}$.

The BET areas of Pt/CZ and Rh/CZ were similar to that of the support (65 \pm 2 m²/g). Measured by ICP-OES, the mass loadings of Pt and Rh were determined to be the targeted 0.5 wt %. Fig. 1A shows the XPS spectrum of Pt(4f)). $4f_{7/2,5/2}$ peaks of PtO were observed at 71.5 and 74.9 eV with the spin-orbit splitting around 3.5 eV. $4f_{7/2,5/2}$ peaks of PtO₂ were found at 74 and 77.2 eV (Fig. 1A). Survey XPS spectra are shown in Figs. S1, SI. These binding energies for Pt are in good accordance with the literature values [24]. Fig. 1B shows the XPS

Fig. 1. XPS of Pt(4f) and Rh(3d) core level region of (A) Pt/CZ and (B) Rh/CZ, respectively.

Fig. 2. XRD patterns (A) and Raman spectra (B) of oxidised Pt/CZ, Rh/CZ, and CZ.

spectrum of Rh/CZ, corresponding to the electronic transitions Rh $3d_{3/2}$ and Rh $3d_{5/2}$, with binding energies at 313 eV and 306–310 eV [25], respectively. 307 eV and 309 eV were assigned to the presence of Rh° and Rh³⁺ of Rh $3d_{5/2}$, respectively [25,26].

Fig. 2A shows the XRD patterns of Pt/CZ, Rh/CZ, and the CZ support. The patterns of noble metal loaded samples showed the fluorite cubic structure of CeO_2 . Diffraction lines due to Rh and Pt metals or to any platinum oxides or rhodium oxides were not observed (below the detection of the XRD apparatus due to the low noble metal loading and high dispersion). The presence of a peak at around $460 \, \mathrm{cm}^{-1}$ in the Raman spectra (Fig. 2B) was due to the characteristic ceria fluorite peak, assigned to the F_{2g} mode. This peak presented a shoulder between 500 and $700 \, \mathrm{cm}^{-1}$ including contributions of vacant sites of the CZ support and MO_x (PtO_x or RhO_x) species [25,27,28].

Fig. 3 shows the TEM micrographs of Pt/CZ and Rh/CZ (TEM (Fig. 3A and C) micrographs and STEM (Fig. 3B and D) micrographs). Pt and Rh nanoparticles were circled in red in Fig. 3A and C, respectively. The red arrows pointed the presence of Pt and Rh on CZ support in Fig. 3B and D, respectively. However, the molar masses of the noble metals and cerium, however, were very close yielding a low contrast in the STEM micrograph (Fig. 3B and D). In combination with the low mass loadings of Pt and Rh (0.5 wt.%), the noble metal particle size distributions could not be adequately determined. The interplanar spacing of 0.32 nm in inset of Fig. 3C and D corresponded to the (111) plane of ceria support [29]. Lattice fringes of 0.23 nm (inset of Fig. 3A) and 0.26 nm (inset of Fig. 3C) can be ascribed to (1 1 1) planes of Pt [30] and Rh₂Ce(220) [31].

3.1.2. TPR (H₂)

The reduction properties of Pt/CZ, Rh/CZ, and CZ were conducted by TPR ($\rm H_2$), and the results are presented in Fig. 4. ceria showed two peaks centred at 430 and 550 °C. The low temperature (430 °C) process was attributed to the surface reduction and the high temperature (550 °C) accounted for the bulk reduction [14]. As compared to the ceria support, the surface and bulk reduction of noble metal loaded ceria significantly shifted to a lower temperature. The maximum reduction peak temperatures are given in Table 1. As shown in Table 1, the total $\rm H_2$ consumption for ceria support, Pt/CZ, and Rh/CZ are 0.31, 0.36, and 0.43 mol $\rm H_2/mol$ Ce.

3.2. Multi-pulse TAP experiments

3.2.1. Reduction of noble metal loaded CZ

The reduction of noble metal loaded CZ catalysts was investigated by using CO, H_2 , C_3H_6 , and C_3H_8 as reductant in TAP. As an example for a noble metal, Fig. 5A and B shows the result of C_3H_6 (propene) pulses

over the pre-oxidised Pt/CZ at 450 °C. Two types of C_3H_6 reactions were observed: C_3H_6 oxidation to CO_2 and H_2O and C_3H_6 oxidative cracking/dehydrogenation, as described by Eqs. (6) and (7), respectively. C_3H_6 experienced a full conversion till pulse number 500.

$$C_3H_6(\xrightarrow{Zr-La\ doped\ Ceria})CO_2 + H_2O + C_{deposited}$$
 (6)

$$C_3H_6(\xrightarrow{Zr-La\ doped\ ceria})H_2 + CO + C_{deposited}$$
 (7)

During the complete C₃H₆ oxidation period (pulse number 0-50), the main oxidation products were CO2 and H2O and only a small amount of CO was observed. The H2 formation considerably increased after pulse number 50, accompanied by a significant decline of the H₂O formation. CO formation increased after pulse number 90, where CO2 formation significantly dropped with pulse number. During the pulse number from 50 to 1000 oxidative hydrocarbon cracking was the main reaction with the formation of CO and H2. The oxygen and carbon balances at each C₃H₆ pulse are displayed in Fig. 5B. The formation of CO₂, H₂O, and CO caused partial reduction of CZ from Ce⁴⁺ to Ce³⁺. Carbon deposition was calculated during both the complete oxidation and cracking reactions. The pulses of (propane) C₃H₈ over Pt/CZ showed a similar product evolution as that for the (propene) C₃H₆ pulses, although the C₃H₈ showed full conversion till pulse number 150 (Figs. S2, SI). Rh/ceria showed the same trends as Pt/CZ during the both C₃H₆ and C₃H₈ pulses at 450 °C (Fig. 5C and D and S3, SI), but the carbon deposits for the Rh/CZ were significantly higher than those on Pt/CZ upon C₃H₆ multi-pulse exposure (Table 2).

Additionally, pulsing CO over both noble metal loaded CZ led to ${\rm CO}_2$ formation. Hardly any carbon was deposited on the catalyst over during the CO pulses (Figs. S4 and S5, SI). ${\rm H}_2$ pulsing over the noble metal loaded CZ resulted in the quantitative formation of ${\rm H}_2{\rm O}$ (Figs. S6 and S7, SI). The total number of oxygen extracted during CO and ${\rm H}_2$ exposures are given in Table 2.

3.2.2. NO reduction

3.2.2.1. ¹⁵NO Pulses after H₂ reduction. The reduction of NO over H₂ reduced noble metals loaded CZ support was investigated in TAP by using ¹⁵NO. Fig. 6 shows the products and reactant evolution during the ¹⁵NO pulses over H₂ reduced Pt/CZ and Rh/CZ at 450 °C. For the Pt/CZ (Fig. 6A), the full ¹⁵NO conversion was observed with ¹⁵N₂ as the exclusive product from pulse number 0 to 700. Moreover, around 70% of oxygen vacancies were refilled by ¹⁵NO before the breakthrough of ¹⁵NO. There was no N₂O and NO₂ formation in that time frame. Similarly to Pt/CZ, Rh showed full ¹⁵NO conversion till pulse number 900, where 80% of oxygen vacancies were refilled by ¹⁵NO (Fig. 6B). ¹⁵N₂ was the exclusive product and no N₂O and NO₂ formation were observed. It should be noted that some nitrogen species temporarily

Fig. 3. HR-TEM and STEM micrographs of oxidised Pt/CZ (A and B) and Rh/CZ (C and D). Red circles and arrows point to a metal particle. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article).

Fig. 4. TPR (H₂) profiles of CZ, Pt/CZ, and Rh/CZ.

accumulated on the samples.

3.2.2.2. ¹⁵NO Pulses after hydrocarbon reduction. The NO reduction into nitrogen over the hydrocarbons reduced noble metals loaded CZ support was investigated in TAP by using ¹⁵NO to distinguish its products from CO and N₂ (m/e=28) and CO₂ from N₂O (m/e=44). Fig. 7 shows the products and reactant evolution and the carbon and oxygen balance during the ¹⁵NO pulses over the C₃H₆ reduced Pt/CZ at

Table 1 Summary of TPR (H_2), H_2 consumption unit: mol H_2 /mol Ce.

	Low temperature peak		High temperature peak		Total H ₂	
	T/°C	H ₂ consumption	T/°C	H ₂ consumption	consumption	
CZ	430	_	550	_	0.31	
Pt/CZ	215	0.08	360	0.28	0.36	
Rh/CZ	100	0.07	265	0.36	0.43	

450 °C. As illustrated in Fig. 7, stage I and II were used to distinguish the full ¹⁵NO conversion time interval and the time intervals where NO started to breakthrough. Stage I was subdivided into stages Ia and Ib for the CO2 formation during stage I. During stage Ia (from pulse number 0 to 1000, Fig. 7A), full ¹⁵NO conversion was observed with ¹⁵N₂ as the main product (negligible amount of CO formed). The evolution of ${\rm CO_2}$ was observed from pulse number 1000 (stage Ib, Fig. 7A). ¹⁵NO showed full conversion until pulse number 4000 (stage I, Fig. 7A), where ¹⁵N₂ and CO2 were the only products. From pulse number 4000 onwards (stage II, Fig. 7A), a progressive decline to zero for the ¹⁵NO conversion was observed. The $^{15}\mathrm{N}_2$ and CO_2 production followed the same trend as that of the NO conversion. Neither ¹⁵N₂O nor ¹⁵NO₂ were formed and no traces of cyanide or cyanate containing species were detected. The oxygen, carbon and nitrogen balances were plotted as shown in Fig. 7B. During stage Ia (pulse number 0-1000, Fig. 7B), oxygen incorporation into catalyst was observed with a negligible amount of carbon consumption. The majority of the carbon conversion was found from

Fig. 5. C₃H₆ pulses over a pre-oxidised 0.5 wt.% Pt/CZ and Rh/CZ (10 mg) at 450 °C, (A)and (C) product and reactant evolution, and (B) and (D) carbon and oxygen balance versus pulse number.

pulse number 1000 onwards (stage Ib), accompanied by an oxygen accumulation decline. Both oxygen accumulation and carbon consumption vanished after pulse number 6000. During stage I NO was fully converted, 80% of oxygen vacancies were refilled and 50% of the deposited carbon was oxidised. 17% of 15 N- species accumulated during the first 2000 15 NO pulses, followed by the accumulated 15 N-species release as dinitrogen (N₂) during pulse number between 2000 and 6000. The N-balance closed to 90%.

The result of 15 NO pulsing over a C_3H_6 reduced Rh/CZ (Fig. 8) showed a similar trend as that over Pt/CZ. 15 NO started to breakthrough from pulse number 12,000 onwards, which was 3 times larger than that over Pt/CZ. However, a small amount of CO evolution was observed during stage Ia for the NO conversion on Rh/CZ. During stage I (the full NO conversion period), 80% of oxygen vacancies were refilled and 90% of carbon deposits were oxidised. Neither $^{15}N_2O$ nor $^{15}NO_2$ were formed and no traces of cyanide or cyanate containing species were detected during stages I and II. There was hardly any ^{15}N -species accumulation before pulse number 5000. After that ^{15}N species started to accumulate up to an N/O accumulation ratio of 1. Still a persistent $^{15}N_2$ formation was observed after ^{15}NO started to breakthrough until

the carbon deposit had been consumed. The overall $^{15}{\rm N}$ balance closed to 90%.

3.2.3. ¹⁸O₂ pulses over C₃H₈ reduced Rh/CZ

Fig. 9 shows the product evolution for the $^{18}O_2$ multi-pulse experiment over C_3H_8 reduced Rh/CZ at 450 °C. All introduced $^{18}O_2$ was completely converted until a steep oxygen breakthrough profile was observed from pulse number 30,000 onwards. $C^{16}O$ evolved as the main product till pulse number 10,000, where $C^{16}O_2$ started to evolve and gradually became the main product. After 13,000 pulses $C^{18}O^{16}O$ was observed and a small amount of $C^{18}O_2$ was detected after pulse number 15,000. After 28,000 pulses $C^{16}O_3$, $C^{16}O_3$, $C^{18}O^{16}O_3$, $C^{18}O_3$, and $C^{18}O_3$ decreased to zero, where $C^{18}O_3$, $C^{18}O_3$, and $C^{18}O_3$ started to breakthrough. With $C^{18}O_3$ as the main product after the oxygen breakthrough, a rapid exchange of oxygen with the CZ took place. The observed $C^{18}O_3$ ($C^{18}O_3$) during pulse number 13,000 to end of the pulse sequence was due to the fragmentation from $C^{18}O_3$ and $C^{18}O^{16}O_3$. A small amount of $C^{18}O_3$ was also observed prior to pulse number 13,000, where the major product was $C^{16}O_3$.

 Table 2

 Summary of oxygen extraction and carbon deposition using different reductants (O $_{extracted}$ and C $_{deposited}$ unit: 10^{17} atoms / mg_{cat}) at 450 °C.

	Pt/CZ	Pt/CZ			Rh/CZ		
	O _{extracted}	O _{extracted} O _{removable from surface}	C deposited	O _{extracted}	O _{extracted} O _{removable from surface}	C deposited	
H ₂	2.1	0.8	Not applicable	2.2	0.9	Not applicable	
CO	2.5	1	Not applicable	2.5	1	Not applicable	
C_3H_6	6.3	2.5	2.8	8.2	3.2	8.0	
C_3H_8	5.8	2.3	1.3	6.0	2.3	2.9	

Fig. 6. ¹⁵NO multi-pulse experiment over H₂ reduced (A, B) Pt/CZ (10 mg) and (C, D) Rh/CZ (10 mg) at 450 °C. Reactant and product profiles (A, C), and oxygen and nitrogen balances (B, D).

3.3. Pump-probe TAP experiments

In order to investigate the rate of $\rm N_2$ formation from NO over $\rm H_2$ reduced CZ and Rh/CZ, pump-probe TAP experiments were performed using alternating 15 NO and 14 NO pulses at 450 °C. The pulse size of 15 NO and 14 NO were both 1.5·10¹⁵ molecules/pulse. Fig. 10A and B shows the flux of 14 N₂, 14 N¹⁵N, and 15 N₂ during the 15 NO and 14 NO injections for the H₂ pre-reduced CZ at 500 °C. The pulse of 15 NO at t=0 s during first injection cycle led to the exclusive 15 N₂ formation. The total number of 15 N₂ molecules formed during the time interval of 5 s was calculated to be 3.3·10¹⁴ molecules. The maximum peak position of 15 N₂ was at t=0.063 s with peak height of 1.3·10¹⁵ molecules / s. The pulse of 14 NO at t=5 s during the 1st injection cycle led to the formation of both 14 N₂ and 14 N¹⁵N. During the time from t=5 to 10 s, the number of 14 N₂ and 14 N¹⁵N was calculated to be 3.7·10¹⁴ and 2·10¹⁴ molecules, respectively. 14 N¹⁵N was also observed during the 15 NO pulses after the first injection cycle. Moreover, an increase in the

intensity of $^{14}N_2$, $^{14}N^{15}N$, and $^{15}N_2$ were observed during the 40th injection as compared to 1st injection cycle. During the 70th injection cycle, $8.8\cdot10^{14}$ molecules of $^{15}N_2$ and $8\cdot10^{14}$ molecules of $^{14}N^{15}N$ were observed during ^{15}NO injection, and $8.3\cdot10^{14}$ molecules of $^{14}N_2$ and $8\cdot10^{14}$ molecules of $^{14}N^{15}N$ were observed during ^{14}NO injection.

Fig. 10C and D shows the flux of $^{14}\mathrm{N}_2$, $^{14}\mathrm{N}^{15}\mathrm{N}$, and $^{15}\mathrm{N}_2$ at the exit of the reactor over a H₂ pre-reduced Rh/CZ. The pulse of $^{15}\mathrm{N}_2$ on at t=0 s in the first injection cycle led to the exclusive $^{15}\mathrm{N}_2$ formation with a peak position at t=0.056 s and peak height at $5.5\cdot10^{15}$ molecules/s. The total number of $^{15}\mathrm{N}_2$ molecules formed during the time interval of 5 s was calculated to be $7\cdot10^{14}$ molecules. The pulse of $^{14}\mathrm{N}_2$ of $^{14}\mathrm{N}_2$ with peak position at t=5+0.056 s and $7\cdot10^{14}$ $^{14}\mathrm{N}_2$ molecules formation during the time interval of 5 s. The peak height of $^{14}\mathrm{N}_2$ was identical to the $^{15}\mathrm{N}_2$ during the time period of 0-5 s. A small fraction of $^{14}\mathrm{N}^{15}\mathrm{N}$ molecules, around 2–3% of $^{14}\mathrm{N}_2$, were observed from t=5 to 10 s. After the first injection cycle, also a small fraction of $^{14}\mathrm{N}^{15}\mathrm{N}$

Fig. 7. 15NO multi-pulse experiment over C₃H₆ reduced Pt/CZ at 450 °C, (A) products and reactant evolution and (B) carbon, oxygen and nitrogen balance versus pulse number.

Fig. 8. 15NO multi-pulse experiment over C₃H₆ reduced Rh/CZ at 450 °C, (A) products and reactant evolution, and (B) carbon, oxygen, and nitrogen balance versus pulse number.

Fig. 9. Product and reactant evolution versus pulse number during $^{18}O_2$ multi-pulse experiment over C_3H_8 reduced Rh/CZ at 450 °C.

 $(2-3\% \text{ of } ^{15}\text{N}_2)$ was observed during the ^{15}NO pulses, as indicated for the 70th injection cycle (Fig. 10B).

3.4. N₂ pulses over Rh/CZ and CZ

In order to explore the interaction of dinitrogen with CZ and Rh/CZ, $^{14}\rm N_2$ pulse experiments were performed over oxidised and reduced CZ and Rh/CZ. The Ar response was used as a standard reference response curve. Fig. 11A shows the $\rm N_2$ and Ar response shape over the CZ at 500 °C. The $\rm N_2$ response showed peaks at $t=0.0672\,\rm s$ both over the oxidised and $\rm H_2$ reduced CZ. Moreover, the Ar peak located at the time of $t=0.0803\,\rm s$. Both Ar and $\rm N_2$ showed the same response shape but with a shift of the peak position due to the difference in molar mass affecting the Knudsen diffusion coefficient [32]. Fig. 11B shows the $\rm N_2$ and Ar response shape over the Rh/CZ at 450 °C. The $\rm N_2$ response showed a peak at $t=0.0674\,\rm s$ both over the oxidised and $\rm H_2$ reduced CZ, while the Ar peak position was at $t=0.0805\,\rm s$.

3.5. In-situ Raman study of C₃H₆ oxidation and NO reduction over Rh/CZ

Fig. S8 shows the in-situ Raman spectra during a continuous 1.25% C_3H_6/He flow at 500 °C over Rh/CZ. The broad band from 100 to 500 cm⁻¹ was attributed to silica in the quartz tube. The sharp intensity centered at 460 cm⁻¹ was attributed to the symmetric stretch mode of the Ce–O₈ crystal unit, characteristic for the fluorite ceria structure [33]. Its intensity started to drop after the first minute of C_3H_6 exposure and disappeared two minutes after C_3H_6 exposure, as shown in Fig. 12. Subsequently, two bands at 1575 and 1350 cm⁻¹ started to appear and grew during the prolonged C_3H_6 exposure. The bands at 1575 and 1350 cm⁻¹ were assigned to the G band and D band of carbon [34]. The

G band was usually assigned to zone center phonons of E_{2g} symmetry of the perfect graphite structure and the D peak was assigned to a breathing mode of A_{1g} symmetry, which is forbidden in a perfect graphite structure and only became active in the presence of structural defects and disorders.

Fig. S9 shows in-situ Raman spectra for the NO reduction over C_3H_6 reduced Rh/CZ at 500 °C. As shown in the Fig. 13A, the sharp feacture centered at $460\,\mathrm{cm}^{-1}$ was initially hardly visible and its intensity slightly increased during the first 20 min upon 0.2% NO exposure. Moreover, it increased significantly after 60 min of NO flow exposure. Subsequently, the intensities at 1575 and 1350 cm⁻¹ strongly disappeared only after 90 min of NO exposure, as illustrated in Fig. 13B.

During the in-situ Raman experiment, the gas evolution downstream of the reactor was monitored with an MS and FT-IR spectrometer (Fig. 13C and D, respectively). Full NO conversion was observed till 60 min. Only m/e=28 was monitored, attributed from both N_2 and CO. The FT-IR data showed that CO was only formed in the initial stage of NO exposure, declining after 20 min. After 20 min, m/e=44 appeared which was assigned to CO₂, since N_2 O (detection limit < 1 ppm) was not observed by FT-IR (Fig. 13D). Since the CO almost vanished around 30 min, the observed m/e=28 response from 20 to 60 min was mainly attributed to N_2 .

4. Discussion

4.1. Reduction of noble metal loaded CZ

CZ is the essential catalyst ingredient in the Di-Air system, since it is capable of fuel (HCs) oxidation and NO reduction. The oxygen from the ceria lattice can react with hydrocarbon, CO, and H_2 , thus creating oxygen vacancies and reducing $Ce^{4\,^+}$ to $Ce^{3\,^+}$. Oxygen vacancies in reduced ceria are the catalytic sites for selectively converting NO into (di)nitrogen (N2), even in the presence of an excess O_2 and CO_2 [13]. However, the reduction of CZ with C_3H_6 and C_3H_8 required a temperature above 500 °C and 540 °C, respectively. Lowering the temperatures of CZ reduction by fuel is essential for an industrial application of this Di-Air DeNO_x system.

The TPR(H₂) (Fig. 4 and Table 1) showed that both noble metals lowered the reduction temperature of the CZ support as compared to the CZ support itself. This shift in reduction temperature might be associated with the H₂ splitting on the noble metal and the existence of a strong metal-support interaction, increasing the reactivity of lattice oxygen [35]. The low temperature H₂ reduction of both Pt/CZ and Rh/CZ led to H₂ consumption of 0.08 and 0.07 mol H₂/mol Ce, which was larger than the amount needed for the reduction of metal oxide to metal. In addition, incorporation of hydrogen into ceria lattice in the form of hydroxyl group or hydride species were reported [36]. Therefore, the hydrogen consumption was a combination reduction of metal oxide to metal, a partial reduction of CeO₂ into Ce₂O₃, and H₂ storage.

Fig. 10. The flux of 14 N₂, 14 N 15 N, and 15 N₂ during the alternate pulsing of 15 NO and 14 NO over a H₂ pre-reduced (A and B) CZ at 500 °C and (C and D) Rh/CZ at 450 °C, measured at the exit of the reactor. The blue arrow indicated the pulse start of 15 NO (t = 0) and the black arrow for 14 NO (t = 5 s). Pulse size 1.5·10¹⁵ molecules. (It should be noted that the N-balance was calculated over the whole time interval of 5 s). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article).

The high intensity in the range of 500 and $700\,\mathrm{cm}^{-1}$ on Rh/CZ and Pt/CZ from Raman spectroscopy (Fig. 2B) indicated a strong interaction between noble metal and CZ.

 C_3H_6 and C_3H_8 were fully converted over Pt/CZ for a pulse number of 100 and 50, respectively, to CO_2 and H_2O , followed by a cracking reaction to CO, H_2 , and carbon deposition (Fig. 5A and B). The total amount of oxygen extracted from Pt/CZ by C_3H_6 and C_3H_8 was around

 $6.3\cdot10^{17}$ and $5.8\cdot10^{17}$ oxygen atoms/mg_{cat} (Table 2), respectively. Additionally, $2.8\cdot10^{17}$ and $1.3\cdot10^{17}$ carbon atoms/mg_{cat} were deposited after using C_3H_6 and C_3H_8 as reductant, respectively. So C_3H_6 pulsing led to around 2 times higher carbon deposition than that for C_3H_8 pulsing. Apparently, the reduction by C_3H_6 or C_3H_8 of an oxidised noble metal loaded CZ followed a similar process, but resulted in different carbon deposits. Dehydrogenation and cracking of C_3H_6 was easier than

Fig. 11. Normalised MS responses of Ar (blue) and N_2 pulses over oxidised (red) and reduced (black) CZ (A) and Rh/CZ (B). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article).

Fig. 12. Raman spectra of the band at (A) 460 cm $^{-1}$ and (B) 1575 and 1350 cm $^{-1}$ during C_3H_6 exposure Rh/CZ at 500 °C.

that of C_3H_8 due to the strong electron-rich π -orbital interactions on Lewis acid sites [24], resulting in more carbonaceous deposits. Moreover, the results of oxygen balance, over either C_3H_6 or C_3H_8 pre-reduced Rh/CZ and Pt/CZ, indicated that the formation of CO_2 and H_2O diminished at the point where the CZ surface was reduced. Therefore, CO_2 and H_2O were formed over the oxidised CZ, which was in line with the results of CO and CO and CO and CO led only to a surface reduction of CC.

Pulsing C_3H_6 and C_3H_8 over Rh/CZ showed similar trends as for Pt/CZ. The total amounts of oxygen extracted from Rh/CZ by C_3H_6 and C_3H_8 were similar to that for Pt/CZ. However, the amount of deposited carbon over Rh/CZ was around 3 times larger than that on Pt/CZ when using C_3H_6 as a reductant. Furthermore, the in-situ Raman experiment of passing 1.25% C_3H_6 /He gas stream over Rh/CZ at 500 °C (Fig. 13) showed that the reduction of the CZ support occurred firstly, followed by the subsequent deposition of carbon, in line with the results from TAP.

The CZ support was not reactive for C_3H_8 and only slightly active for C_3H_6 at 450 °C. The addition of noble metals to the CZ support significantly enhanced the reactivities to C_3H_6 and C_3H_8 , i.e., the degree of CZ support reduction and the amounts of carbon deposition (Table 2). This agreed with the finding that noble metals were able to promote the oxygen mobility, surface migration, and reactivity, especially at the interface of noble metals and support [19].

4.2. NO reduction

4.2.1. Selectivity to N2

 NO_2 and N_2O are common side products in the NO reduction technologies especially when using noble metal as an active ingredient in the catalyst composition [37–40]. Therefore, the study on NO reaction processes over noble metal/CZ is essential.

 $^{15}\rm N_2$ was the exclusive product of $^{15}\rm NO$ reduction over the $\rm H_2$ reduced Pt/CZ and Rh/CZ (Fig. 6). After around 70–80% of oxygen vacancies was refilled by oxygen from $^{15}\rm NO$, $^{15}\rm NO$ started to breakthrough, while no $\rm N_2O$ and $\rm NO_2$ was formed. This was also observed for the bare CZ support [13]. The presence of Pt or Rh did not affect the NO reaction selectivity, i.e., NO was selectively reduced into $\rm N_2$.

Fig. 13. Exposure of a $\rm C_3H_6$ reduced Rh/CZ to 0.2% NO at 500 °C. Operando Raman spectra of the band at (A) 460 cm $^{-1}$ and (B) 1575 and 1350 cm $^{-1}$, (C) MS analysis and (D) in-situ FT-IR analysis.

Moreover, when NO reduction was carried out over hydrocarbon reduced Pt/CZ then in the initial stage of ¹⁵NO pulsing no oxygenate gas products were observed at 450 °C (Fig. 7 for Pt/CZ). The absence of CO and CO2 indicated that the carbonaceous residues, left on the surface after C₃H₆ pre-reduction, did not directly participate in the reduction of ¹⁵NO into ¹⁵N₂. The formation ¹⁵N₂ indicated that ¹⁵N-O was dissociated on either the reduced Pt or reduced CZ sites with O filling the oxygen vacancies and 15N species associated to form 15N2. The absence of ¹⁵N₂O indicated that ¹⁵NO was selectively reduced into ¹⁵N₂ on the reduced Pt/CZ over the whole range of oxidation states of the catalyst. The ^{15}NO started to breakthrough when $\sim 80\%$ of the oxygen vacancies were refilled and 50% of deposited carbon was consumed (Fig. 7B). The direct reaction between ¹⁵NO and deposited carbon could be ruled out since there was no CO2 formation before pulse number 1000. Approximately, the ratio between N2 and CO2 was around 2 during pulse number from 1000 to 4000, clearly demonstrated that for the formation of one CO₂ two NO were reduced into one N₂. Therefore, the deposited carbon acted as a reductant buffer. Lattice oxygen of CZ was used for the oxidation of deposited carbon to CO and CO2. 15N2O and ¹⁵NO₂ were never detectable (detection limit of 1 ppm). The direct reaction of ¹⁵NO molecules to ¹⁵NO₂ over reduced Pt/CZ could be eliminated as well since carbon was an excellent reductant of 15NO2 to ¹⁵NO [41].

The overall performance of Rh/CZ (Fig. 8) was similar. 15 NO started to break through much later than that over Pt/CZ. The longer duration of the full 15 NO conversion was attributed to 3 times larger carbon deposition on Rh/CZ using C_3H_6 as a reductant. This clearly demonstrated that deposited carbon acted as reductant buffer for NO reduction. NO reduction to N_2 ended when there was no carbon left and the catalyst was (re-)oxidised. A small amount of CO was observed before the evolution of CO_2 started during 15 NO over the C_3H_6 reduced Rh/CZ (phase I1, Fig. 8A) in comparison with the case of Pt/CZ (Fig. 7A). However, the major initial 15 NO reduction activity resulted in filling the oxygen vacancies, as evidenced by the oxygen balance and carbon balance (Fig. 8B).

An experiment of $^{18}O_2$ pulses over the C_3H_8 reduced Rh/CZ at 450 °C (Fig. 9) was performed to confirm that lattice oxygen was responsible for the oxidation of deposited carbon during stage Ib (Fig. 7 and 8). The results showed hardly any $C^{18}O$ and $C^{18}O_2$ formation prior to pulse number 13,000. $C^{18}O^{16}O$ started to evolve after pulse number 13,000. The initial exclusive formation of unlabelled $C^{16}O$ and $C^{16}O_2$ indicated that gas-phase oxygen was not directly involved in the oxidation of the carbon deposits. Lattice oxygen was the main source for the oxidation of deposited carbon. After removal of the carbon deposit the $^{18}O_2$ exchanged rapidly with the Rh/CZ resulting in predominantly $^{16}O_2$.

Operando Raman (at ambient pressure flow reactor) was applied to confirm further the results obtained from TAP (ultra-vacuum system, 10^{-9} – 10^{-10} mbar) using Rh/CZ at 500 °C in flow reactor coupled with Raman probe, as shown in Fig. 13. The band at 460 cm⁻¹ (Fig. 13A), attributed to the symmetric stretch mode of Ce-O₈ crystal unit in the oxidised catalyst [33], disappeared during the C₃H₆ reduction pretreatment (Fig. 12), while it re-appeared and its intensity increased during the exposure to 0.2% NO/He. The changes of intensity at 460 cm⁻¹ indicated that the reduced CZ was re-oxidised during 0.2% NO/He flow. The intensities at 1575 and 1350 cm⁻¹, assigned to Gband and D band of carbon, remained almost constant during the first 20 min of 0.2% NO/He flows (Fig. 13B), and afterwards, these two bands completely vanished. The in-situ Raman results confirmed the TAP's finding: NO mainly re-oxidised the reduced CZ, and after a sufficient degree of re-oxidation the deposited carbon started to react with the oxygen from the CZ lattice. Upon NO exposure of the C₃H₆ pretreated catalysts (CZ and Rh/CZ) initially the reduced catalyst was oxidised and thereafter the carbon deposits were oxidised. This reduction-oxidation process could be completely repeated several times.

CO formation was observed during the first 20 min, followed by the

formation of CO₂ till 60 min (Fig. 13C and D). N_2O and NO_2 formations were not observed (detection limit < 1 ppm). Even NO_2 and N_2O will be completely converted into N_2 when the catalyst was reduced [42]. All results of this in-situ study (Fig. 13) pointed out that NO was still selectively reduced into N_2 at these ambient pressure conditions. NO was dissociated on the active sites, being reduced CZ or reduced Rh sites, thereby filling the oxygen vacancies of CZ. In case of reaction on the noble metal the oxygen had to be transferred to the CZ since this was eventually completely re-oxidised.

The investigation of NO reduction under both ultra-high vacuum TAP system and at ambient pressure in a flow reactor pointed out that the presence of noble metal/CZ system can selectively reduce NO into N_2 [13,17].

4.2.2. The effect of noble metal on N_2 formation rate

During NO reduction over the $\rm H_2$ or $\rm C_3H_6$ pre-reduced un-promoted CZ, up to 25% and 40% of N-species accumulation was observed, respectively. The Pt promoted CZ showed only 17% of N-species accumulation and Rh promoted CZ showed hardly N-species accumulation before the oxidation of the carbon deposit. The N/O atomic accumulation ratio in that time interval suggested the some kind of NO chemisorption took place (Fig. 8B). The lower N-species accumulation on Rh- and Pt/CZ indicated that these metals accelerated the N2 release. In the formation of N2 the following steps can be distinguished: (1) NO adsorption, (2) NO dissociation, (3) N diffusion and association, and (4) N2 desorption. Pump-probe TAP experiments with alternating 14 NO and 15 NO pulse were performed to explore this N2 formation rate over CZ and Rh/CZ.

Over H₂ reduced CZ only ¹⁵N₂ formation was observed during the first ¹⁵NO pulse (Fig. 10A). However, the ¹⁵N₂ response was much broader and lower in intensity than that for the H2 reduced Rh/CZ (Fig. 10C). The same holds for the ¹⁴N₂ response during the ¹⁴NO injection. Both the 15N2 and 14N2 responses over the H2 reduced CZ indicated a slow process of dinitrogen formation upon the NO pulses. This process of N2 formation was that slow that some N-species were still sticking on the surface after the pulse detection time range (5 s). The observation of the mixed isotope $^{14}\mathrm{N}^{15}\mathrm{N}$ during the subsequent $^{14}\mathrm{NO}$ injection suggested that stored ¹⁵N-species, during the ¹⁵NO injection, met ¹⁴N-species created after the following ¹⁴NO injection (Fig. 10B), and recombined to ¹⁴N¹⁵N, and vice versa for the reversed sequence. The formation of 14 N 15 N further proved the accumulation of N (14 N and ¹⁵N) species on the CZ surface that continued to the slow associate formation of dinitrogen. The mixed isotope response was much broader and its maximum appeared also later than the dinitrogen stemming directly from the pulsed NO isotope, both evidencing a slower recombination process for these "dwelling" nitrogen species.

Over the $\rm H_2$ reduced Rh/CZ a smaller fraction of $^{14}\rm N^{15}N$ was observed (Fig. 10C and D). This suggested that more N-species accumulated on the $\rm H_2$ reduced CZ than $\rm H_2$ reduced Rh/CZ. The N-balance in Fig. 6 also suggested that less N-species accumulated during the NO reduction to $\rm N_2$. Almost all NO was converted and directly formed $\rm N_2$ during the MS detection time range (5 s) over the $\rm H_2$ reduced Rh/CZ before pulse number 200.

The N_2 formation will include NO adsorption, NO dissociation, N diffusion and association, and N_2 desorption. Regarding the NO adsorption, there was no ^{15}NO or ^{14}NO observed by the MS in the first ^{15}NO or ^{14}NO injection, i.e., all the ^{15}NO or ^{14}NO molecules were completely and irreversibly adsorbed over both H_2 pre-reduced Rh/CZ and CZ. Therefore, the adsorption of ^{15}NO or ^{14}NO could not be the cause for the slow process of $^{15}N_2$ or $^{14}N_2$ formation over H_2 reduced CZ. The possibility of $^{15}N_2$ or $^{14}N_2$ desorption as a limiting step could be ruled out by the experiments of pulsing N_2 over CZ and Rh/CZ in fully reduced or oxidised state (Fig. 11), where N_2 peak had at the same time position as the internal standard Ar response [43]. So once formed, the desorption of $^{15}N_2$, $^{14}N_2$ or $^{14}N^{15}N$ was not a limiting step. Then, either the NO dissociation or N diffusion and recombination, or a combination

of these steps determined the slower $\rm ^{15}N_2$ formation process over the reduced CZ.

The dissociation of NO on Rh single crystals was coverage dependent, which has been widely studied by temperature programmed desorption (TPD) [44]. NO dissociated completely at temperature between 0 and 70 °C, when the NO coverage was less than one fourth of the saturation coverage on Rh (1 1 1). Only 60% of the NO dissociated at saturation coverage, which was ascribed to site blocking. The accumulation of N and O atoms on the highly covered surface led to desorption of N2 at low temperature. Furthermore, Mullins and Overbury found that NO dissociated without N2 desorption at 175 °C over Rh/ CeO₂, which suggested that the desorption of N₂ may be limited by the recombination of N-species on the surface [45]. The support had a strong influence on the NO dissociation. NO dissociation at 25 °C on highly dispersed Pt, Rh, and Pt + Rh supported on Al₂O₃ and ceria showed that the ceria support limited the inhibition by the product oxygen, probably due to oxygen spill-over from the noble metal to reduced ceria [46], or an enhanced NO adsorption at the interface between ceria and Rh [47]. However, the changes in the ceria 4d photoemission showed that oxygen migration throughout the ceria only occurred above 25 °C [48]. 25 °C was too low for the substantial oxygen transport over the Rh substrate. The observed enhanced NO dissociation over a reduced ceria support at 25 °C could also not be attributed to oxygen spill-over from Rh to ceria support. Regarding N spill-over, soft X-ray photoelectron spectroscopy (SXPS) indicated that most N-species, resulting from NO dissociation remained on the Rh until they desorbed as N₂, rather than spilling over onto ceria. In addition, N spill-over did not occur at the temperature window from -80 to 80 °C [49]. Mullins and Overbury found the significant formation of N3- over reduced ceria around 140 °C [50], but hardly over the reduced Rh/ceria [51]. The formation of N3- was thermally activated, which did not form at temperature lower than 140 °C, although dissociation of NO and formation of N₂ could occur below 140 °C. The recombination of N³⁻ into N2 occurred near 230 and 430 °C, which was higher than the N2 evolution via NO dissociation. The formation of N³⁻ required five Ce³⁺ cations to dissociate one NO molecule. The slower 15N2 formation process over the reduced ceria at 500 °C in our study might be due to the formation of ¹⁵N³⁻. Association of ¹⁵N³⁻ into ¹⁵N₂ will be a slower process. By loading Rh over the ceria, the formation of ¹⁵N³⁻ species will be limited and ¹⁵NO⁻ species and ¹⁵N-species on Rh could be the dominant products, supported by SXPS spectra reported by Mullins and Overbury [50]. The faster ¹⁵N₂ formation over reduced Rh/ceria than those over reduced ceria could be explained by these different NO dissociation products, i.e., NO- species or N-species over Rh/ceria and N³⁻ species over reduced ceria. The rate limiting step of NO reduction to N_2 process over reduced ceria could be the step of N^{3-} species diffusion and its association into N2.

In our study, the loading of Rh was 0.5 wt.% which corresponded to approximately 40 times more collisions of NO with CZ than those with Rh metal (calculation area ratio is shown in SI). NO absorbed over polycrystalline Rh with an initial sticking probability near unity [52]. Over the oxygen vacancies of reduced CZ surface, the sticking probability of NO adsorbing over the oxygen vacancies should be also really high, due to that no NO was observed both in TAP reactor [13] and flow reactor with space velocity up to 170.000 L/L/h [17] over an bare CZ catalyst. Therefore, it will be very unlikely that NO reduction into $\rm N_2$ process only occurred over the Rh metal. The enhanced $\rm N_2$ formation rate will be not due to the dissociation of NO over the Rh metal and the oxygen spill-over from Rh to metal. The faster $\rm N_2$ formation over Rh/CZ than that over CZ could be explained by that the noble metal largely limited the formation of $\rm N^3-$ species and accelerated the N species (NO $^-$, N) association process.

5. Conclusions

The addition of noble metals to CZ is essential for the selective NO

reduction. The noble metals Pt and Rh promote the CZ reduction by hydrocarbons C_3H_6 and C_3H_8 , at lower temperatures than that without these metals. Rh is a more active promoter in CZ Z reduction and carbon deposition than Pt. C_3H_6 or C_3H_8 leads to 2–2.5 times deeper reduction as compared to the CO and H_2 .

The reduction of NO over pre-reduced noble metal/CZ shows an extremely selective formation N_2 , while neither N_2O nor NO_2 formations are observed. More importantly, the presence of noble metal leads to a faster N_2 formation rate than that over the CZ.

During the NO reduction the pre-reduced CZ support becomes gradually oxidised and after filling 70–80% of the oxygen vacancies the NO starts to appear in the product mixture. In the presence of carbon deposits the lattice oxygen of the CZ reacts with the carbon deposits keeping the CZ in a reduced state, extending the NO decomposition process as long as the carbon is present. Gas-phase oxygen does not directly react with the carbon. During the NO reduction process some unidentified N-species remain on the catalyst, the amount depending on the applied catalyst, but finally all nitrogen is released as N₂.

Acknowledgement

The authors acknowledge the China Scholarship Council (CSC) for their financial support.

Appendix A. Supplementary data

Supplementary material related to this article can be found, in the online version, at doi:https://doi.org/10.1016/j.apcatb.2018.02.004.

References

- https://www.eea.europa.eu/publications/air-quality-in-europe-2015, (Accessed 31 January 2018).
- [2] http://www.who.int/mediacentre/news/releases/2014/air-pollution/en/, (Accessed 31 January 2018).
- [3] https://www.eea.europe.eu/data-and-maos/indicators/main-anthropogenic-airpllutant-emissions/assessment-5, (Accessed 31 January 2018).
- [4] D.C. Carslaw, S.D. Beevers, J.E. Tate, E.J. Westmoreland, M.L. Williams, Recent evidence concerning higher NOx emissions from passenger cars and light duty vehicles, Atmos. Environ. 45 (2011) 7053–7063.
- [5] http://europa.eu/rapid/press-release_MEMO-17-2821_en.htm, (Accessed 31 January 2018).
- [6] M. Koebel, M. Elsener, T. Marti, NOx-reduction in diesel exhaust gas with urea and selective catalytic reduction, Combust. Sci. Technol. 121 (1996) 85–102.
- [7] W.R. Miller, J.T. Klein, R. Mueller, W. Doelling, J. Zuerbig, The development of urea-SCR technology for US heavy duty trucks, SAE Tech. Pap. (2000) 2000-01-0190.
- [8] H. Hug, A. Mayer, A. Hartenstein, Off-highway exhaust gas after-treatment: combining urea-SCR, oxidation catalysis and traps, SAE Tech. Pap. (1993) 1993-03-01.
- [9] S. Matsumoto, Recent advances in automobile exhaust catalysts, Catal. Today 90 (2004) 183–190.
- [10] Y. Ikeda, K. Sobue, S. Tsuji, Si. Matsumoto, Development of NOx storage-reduction three-way catalyst for D-4 engines, SAE Tech. Pap. (1999) 1999-01-1279.
- [11] M. Misono, T. Inui, New catalytic technologies in Japan, Catal. Today 51 (1999)
- [12] Y. Bisaiji, K. Yoshida, M. Inoue, K. Umemoto, T. Fukuma, Development of Di-Air-a new diesel deNOx system by adsorbed intermediate reductants, SAE Int. J. Fuels Lubr. 5 (2012) 380–388.
- [13] Y. Wang, J. Posthuma de Boer, F. Kapteijn, M. Makkee, Next generation automotive $DeNO_X$ catalysts: ceria what else? ChemCatChem 8 (2016) 102–105.
- [14] H.C. Yao, Y.F.Y. Yao, Ceria in automotive exhaust catalysts: I. Oxygen storage, J. Catal. 86 (1984) 254–265.
- [15] Y. Wang, M. Makkee, Fundamental understanding of the Di-Air system (an alternative NOx abatement technology). I: the difference in reductant pre-treatment of ceria, Appl. Catal. B Environ. 223 (2018) 125–133, http://dx.doi.org/10.1016/apcatb.2017.04.054.
- [16] M. Inoue, Y. Bisaiji, K. Yoshida, N. Takagi, T. Fukuma, deNOx performance and reaction mechanism of the Di-Air system, Top. Catal. (2013) 1–4.
- [17] Y. Wang, R. Oord, D. van der Berg, B.M. Weckhuysen, M. Makkeee, Oxygen vacancies in reduced Rh-and Pt-ceria for highly selective and reactive reduction of NO into N_2 in excess of O_2 , ChemCatChem 9 (2017) 2935–2939.
- [18] Y. Wang, M. Makkee, The influence of CO_2 om NO reduction into N_2 over reduced ceria-based catalysts, Appl. Catal. B Environ. 221 (2018) 196–205.
- [19] A. Holmgren, D. Duprez, B. Andersson, A model of oxygen transport in Pt/ceria catalysts from isotope exchange, J. Catal. 182 (1999) 441–448.
- [20] A. Bueno-López, K. Krishna, M. Makkee, Oxygen exchange mechanism between

- isotopic CO₂ and Pt/CeO₂, Appl. Catal. A 342 (2008) 144-149.
- [21] L. Katta, P. Sudarsanam, G. Thrimurthulu, B.M. Reddy, Doped nanosized ceria solid solutions for low temperature soot oxidation: zirconium versus lanthanum promoters, Appl. Catal. B: Environ. 101 (2010) 101–108.
- [22] V. Perrichon, A. Laachir, S. Abouarnadasse, O. Touret, G. Blanchard, Thermal stability of a high surface area ceria under reducing atmosphere, Appl. Catal. A 129 (1995) 69–82.
- [23] Y. Wang, J.P. Boer, F. Kapteijn, M. Makkee, Fundamental understanding of the Di-Air system: the role of ceria in NO_x abatement, Top. Catal. 59 (2016) 1–7.
- [24] X. Wu, J. Fan, R. Ran, D. Weng, Effect of preparation methods on the structure and redox behavior of platinum-ceria-zirconia catalysts, Chem. Eng. J. 109 (2005) 133-139
- [25] S. Parres-Esclapez, I. Such-Basañez, M.J. Illán-Gómez, C. Salinas-Martínez de Lecea, A. Bueno-López, Study by isotopic gases and in situ spectroscopies (DRIFTS, XPS and Raman) of the N₂O decomposition mechanism on Rh/CeO₂ and Rh/γ-Al2O3 catalysts, J. Catal. 276 (2010) 390-401.
- [26] A.A. Hakeem, J. Rajendran, F. Kapteijn, M. Makkee, Effect of rhodium on the water-gas shift performance of Fe₂O₃/ZrO₂ and CeO₂/ZrO₂: influence of rhodium precursor, Catal. Today 242 (Part A) (2015) 168–177.
- [27] L.L. Murrell, S.J. Tauster, D.R. Anderson, Laser Raman characterization of surface phase precious metal oxides formed on CeO₂, in: A. Crucq (Ed.), Studies in Surface Science and Catalysis, Elsevier, 1991, pp. 275–289.
- [28] W. Lin, A.A. Herzing, C.J. Kiely, I.E. Wachs, Probing metal support interactions under oxidizing and reducing conditions: in situ Raman and infrared spectroscopic and scanning transmission electron microscopic – x-ray energy-dispersive spectroscopic investigation of supported platinum catalysts, J. Phys. Chem. C 112 (2008) 5942–5951.
- [29] A. Chen, Y. Zhou, N. Ta, Y. Li, W. Shen, Redox properties and catalytic performance of ceria–zirconia nanorods, Catal. Sci. Technol. 5 (2015) 4184–4192.
- [30] N. Barrabés, K. Föttinger, A. Dafinov, F. Medina, G. Rupprechter, J. Llorca, J. Sueiras, Study of Pt-GeO₂ interaction and the effect in the selective hydrodechlorination of trichloroethylene, Appl. Catal. B: Environ. 87 (2009) 84–91.
- [31] S. Penner, D. Wang, R. Podloucky, R. Schlögl, K. Hayek, Rh and Pt nanoparticles supported by CeO₂: metal–support interaction upon high-temperature reduction observed by electron microscopy, Phys. Chem. Chem. Phys. 6 (2004) 5244–5249.
- [32] G.S. Yablonsky, M. Olea, G.B. Marin, Temporal analysis of products: basic principles, applications, and theory. J. Catal. 216 (2003) 120–134.
- [33] W. Weber, K. Hass, J. McBride, Raman study of CeO₂: second-order scattering, lattice dynamics, and particle-size effects. Phys. Rev. B 48 (1993) 178.
- [34] A. Ferrari, J. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. Novoselov, S. Roth, Raman spectrum of graphene and graphene layers, Phys. Rev. Lett. 97 (2006) 187401.
- [35] J. Fan, X. Wu, R. Ran, D. Weng, Influence of the oxidative/reductive treatments on

- the activity of $Pt/Ce0.67Zr_{0.33}O_2$ catalyst, Appl. Surf. Sci. 245 (2005) 162–171. [36] J. Fierro, J. Soria, J. Sanz, J. Rojo, Induced changes in ceria by thermal treatments
- under vacuum or hydrogen, J. Solid State Chem. 66 (1987) 154–162.
 [37] I. Atribak, B. Azambre, A.B. López, A. García-García, Effect of NO_x adsorption/
- desorption over ceria-zirconia catalysts on the catalytic combustion of model soot, Appl. Catal. B Environ. 92 (2009) 126–137. [38] Z. Wu, R. Jin, Y. Liu, H. Wang, Ceria modified MnOx/TiO₂ as a superior catalyst for
- NO reduction with NH₃ at low-temperature, Catal. Commun. 9 (2008) 2217–2220.

 [39] G.R. Rao, P. Fornasiero, R. Di Monte, J. Kašpar, G. Vlaic, G. Balducci, S. Meriani,
- [39] G.R. Rao, P. Fornasiero, R. Di Monte, J. Kašpar, G. Vlaic, G. Balducci, S. Meriani, G. Gubitosa, A. Cremona, M. Graziani, Reduction of NO over partially reduced metal-loaded CeO₂–ZrO₂ solid solutions, J. Catal. 162 (1996) 1–9.
- [40] K. Krishna, A. Bueno-Lopez, M. Makkee, J.A. Moulijn, Potential rare-earth modified CeO₂ catalysts for soot oxidation part II: characterisation and catalytic activity with NO+O₂, Appl. Catal. B Environ. 75 (2007) 201–209.
- [41] G. Mul, W. Zhu, F. Kapteijn, J.A. Moulijn, The effect of NO_x and CO on the rate of transition metal oxide catalyzed carbon black oxidation: an exploratory study, Appl. Catal. B Environ. 17 (1998) 205–220.
- [42] M. Nolan, S.C. Parker, G.W. Watson, Reduction of NO₂ on ceria surfaces, J. Phys. Chem. B 110 (2006) 2256–2262.
- [43] J.T. Gleaves, G. Yablonsky, X. Zheng, R. Fushimi, P.L. Mills, Temporal analysis of products (TAP)—recent advances in technology for kinetic analysis of multi-component catalysts, J. Mol. Catal. A Chem. 315 (2010) 108–134.
- [44] H. Borg, J.J. Reijerse, R. Van Santen, J. Niemantsverdriet, The dissociation kinetics of NO on Rh (111) as studied by temperature programmed static secondary ion mass spectrometry and desorption, J. Chem. Phys. 101 (1994) 10052–10063.
- [45] D. Mullins, S. Overbury, Coverage dependent dissociation of NO on Rh supported on cerium oxide thin films, Surf. Sci. 511 (2002) L293–L297.
- [46] P. Lööf, B. Kasemo, S. Andersson, A. Frestad, Influence of ceria on the interaction of CO and NO with highly dispersed Pt and Rh, J. Catal. 130 (1991) 181–191.
- [47] S.H. Oh, Effects of cerium addition on the CO-NO reaction kinetics over aluminasupported rhodium catalysts, J. Catal. 124 (1990) 477–487.
- [48] D. Mullins, S. Overbury, D. Huntley, Electron spectroscopy of single crystal and polycrystalline cerium oxide surfaces, Surf. Sci. 409 (1998) 307–319.
- [49] S. Overbury, D. Mullins, L. Kundakovic, Enhancement of dissociation by metalsupport interaction: reaction of NO on Rh supported by ceria films of controlled oxidation state, Surf. Sci. 470 (2001) 243–254.
- [50] S. Overbury, D. Mullins, D. Huntley, L. Kundakovic, Chemisorption and reaction of NO and N₂O on oxidized and reduced ceria surfaces studied by soft x-ray photoemission spectroscopy and desorption spectroscopy. J. Catal. 186 (1999) 296–309.
- [51] D. Mullins, L. Kundakovic, S. Overbury, The interaction between NO and CO on Rh-loaded CeO_x (111), J. Catal. 195 (2000) 169–179.
- [52] C.T. Campbell, J. White, Chemisorption and reactions of nitric oxide on rhodium, Appl. Surf. Sci. 1 (1978) 347–359.