Image Classification pipeline

l 고려대학교 산업경영공학과 l 서덕성

INDEX

- Image classification & Challenges
- K-NN based image classification
- Linear image classification

01

02

03

Image

- Images are represented as 3D arrays of numbers,
 with integers between [0, 255]. (brightness at a point)
- E.g. 300 X 100 X 3(3 for 3 color channels RGB)

01

02

- Image classification
 - Core task in Computer Vision
 - Image is input data

01

02

05

Challenges

- Viewpoint Variation
- Rotate, zoom in/out

01

02

0:

Challenges

Illumination

01

02

0

Challenges

Deformation

01

02

0:

Challenges

Occlusion

01

02

0:

Challenges

Background clutter

01

02

05

Challenges

Intra-class variation

01

02

0:

Data-driven approach

- Collect a dataset of images and labels
- Use Machine Learning to train an image classifier
- 3. Evaluate the classifier on a withheld set of test images


```
def train(train_images, train_labels):
    # build a model for images -> labels...
    return model

def predict(model, test_images):
    # predict test_labels using the model..
    return test_labels
```

01

❖ K-NN

02

- Lazy model
 - Remember all training data
 - Predict the label of the most similar
- Hyperparameter
 - K
 - Voting
 - Distance metric

01

02

Distance metric

- L1 distance (Manhattan)
 - $d_1(I_1, I_2) = \sum_p |I_1^p I_2^p|$
- L2 distance (Euclidean)

•
$$d_2(I_1, I_2) = \sqrt{\sum_p (I_1^p - I_2^p)^2}$$

L1 distance example

test image

56	32	10	18
90	23	128	133
24	26	178	200
2	0	255	220

training image

10	20	24	17
8	10	89	100
12	16	178	170
4	32	233	112

pixel-wise absolute value differences

	46	12	14	1
	82	13	39	33
=	12	10	0	30
	2	32	22	108

01

❖ CIFAR-10

02

- 10 labels
- 50,000 training images (each image is tiny: 32 X 32)
- 10,000 test images

02

Code (data: hand-written digits _ 1797x8x8 images)

```
# 시각화 모듈 import
import matplotlib.pyplot as plt

# Import datasets and performance metrics
from sklearn import datasets, metrics

# The hand-written digits dataset (8x8 image)
digits = datasets.load_digits()

# Target
images_and_labels = list(zip(digits.images, digits.target))

# Visualization of 4 images
for index, (image, label) in enumerate(images_and_labels[:4]):
    plt.subplot(2, 4, index + 1) # 2 x 4의 subplot 위치를 할당하고, 각 image를 할당해서 그림
    plt.axis('off') #축 없음
    plt.imshow(image, cmap=plt.cm.gray_r, interpolation='nearest') #image 파일을
     시각화 하는 함수. 타입을 흑백으로.
    plt.title('Training: %i' % label) #title 설정|
```


Code

02

0=

```
K-NN classification
import numpy as np
import matplotlib.pyplot as plt
import math
class NearestNeighbor:
   def __init__(self):
   def train(self, X, y):
       #the nearest neighbor classifier simply remembers all the training data
       self.Xtr = X
       self.ytr = y
   def predict(self, X):
       num_test = X.shape[0] #행 개수(M)
       Ypred = np.zeros(num_test, dtype=self.ytr.dtype) #먼저 0으로 가득 채워둠
       for i in np.arange(len(X)): #모든 test data에 대해
           print(i, '\n')
           distance = np.zeros(len(self.Xtr))
           for j in np.arange(len(self.Xtr)):
               distances = np.sum(np.abs(self.Xtr.iloc[j] - X.iloc[i]), axis=0) #trining data와 L1-norm을 구함
               distance[j] = distances
           min_index = np.argmin(distance) #가장 가까운 1-NN의 index를 구함
           Ypred[i] = self.ytr.iloc[min_index] #가장 가까운 이웃의 label을 적용
       return(Ypred)
```

❖ Code

02

```
#training / test split
# Randomly shuffle the index of nba.
random_indices = np.random.permutation(data.index)
# Set a cutoff for how many items we want in the test set (in this case 1/3 of \midthe items)
test_cutoff = math.floor(len(data)/3)
# Generate the test set by taking the first 1/3 of the randomly shuffled indices.
ts = data.loc[random_indices[1:test_cutoff]]
# Generate the train set with the rest of the data.
tr = data.loc[random_indices[test_cutoff:]]
#Object
nn = NearestNeighbor()
#training (just save)
nn.train(tr.ix[:, 0], tr.ix[:, 1])
Ypred = nn.predict(ts.ix[:, 0])
```

Output

```
3, 6, 8, 3, 8, 9, 0,
   5, 6,
6, 9,
3,
      9, 6, 9,
3,
  8,
         1, 6, 8, 0, 9,
                                     4, 8], dtype=int64) 18/26
```

01

02

03

❖ Result

- What is the best (distance and) value of k?
 - Use to tune hyperparameters by validation data (Cross validation)

01

02

03

- ❖ 5-fold cross validation Result
 - Each point : single outcome
 - Blue line goes through the mean
 - Bars indicated standard deviation

01

02

0:

Summary

- K_NN on images NEVER USED
 - Terrible performance

✓ All 3 images have same L2 distance to the one on the left

01

02

03

Parametric approach

32 X 32 X 3 (=3072) array of numbers 0...1

 $P(C_1)$

 $P(C_2)$

 $P(C_3)$

 $P(C_4)$

 $P(C_5)$

 $P(C_6)$

 $P(C_7)$

 $P(C_8)$

 $P(C_9)$

 $P(C_{10})$

01

02

03

Parametric approach

Ex. with 4pixels, and 3 classes(cat/dog/ship)

$$f(x,W) = Wx + b$$
3x1 3x4 3x1

Stretch pixels into single column

0,2	-0.5	0.1	2.0
1,5	1,3	2.1	0.0
0.0	0,25	0.2	-0.3

56
231
24
2

	1.1	
+	3.2	─
	-1.2	

-96.8 cat437.9 dog61.95 ship

W

 χ_i

b

f

03

- Interpreting a Linear classifier
 - After training, we can make weight to template form.

- 1. In "Plane" template, R(row), G(row), B(high)
- 2. "Car" looks like red.
 - There are many red cars.(Yellow car may be predicted to frog)
- 3. "Horse" have 2 heads.
 - -> Almost same as average of each category image.

Result of Linear classifier

- Example class scores for 3 images, with a random W
 - -> Bad performance

Define loss

03

Minimize loss

airplane	-3.45
automobile	-8.87
bird	0.09
cat	2.9
deer	4.48
dog	8.02
frog	3.78
horse	1.06
ship	-0.36
truck	-0.72

1
2
3 . 4 .
2.
5
2.
5.
-4
-1
-4
6.

Q & A

01

03

