Electrónica Digital 1 Introducción al Diseño

Ferney Alberto Beltrán Molina

febrero 2020

Contacto

Nombre: Ferney Alberto Beltrán Molina, Ing, MSc, PhD(c)

Email: fabeltranm@unal.edu.co

oficina: Centro de Investigación e Innovación

Contenido

Introducción al Diseño Digital

Proceso de diseño

Resumen

Índice

Introducción al Diseño Digital

Proceso de diseño

Resumen

Dominios descriptivos

Representación funcional o de comportamiento
 Especifica el comportamiento o la función de un diseño sin información de aplicación.
 La función realizada sin información sobre cómo se bace.

 Representación estructural
 Especifica la implementación de un diseño en términos de componentes y sus interconexiones

Los bloques y las interconexiones (netlist o esquemas)

Representación física
 Especifica las características físicas del diseño
 Localización y propiedades físicas reales

Dominios descriptivos

Diagrama Y de Gajsky-Khun

Abstracción

Nivel de abstracción

Circuito

Valores continuos, todo es electrónica, tiempo continuo, tiempo de subida y bajada, consumos área

Lógico

Valores lógicos (T,F), sólo computación, tiempo continuo, tiempo de conmutación, skew, área equivalente

RT (Register Transfer)

Palabras con valores discretos, control y procesamiento, tiempo discreto, Tiempo de ciclo, márgenes, puertas equivalentes

Algorítmico

Estructuras abstractas, dependencias en lugar de tiempo, latencia, cadencia de datos, número de módulos

Sistema

Relaciones entre subsistemas, sincronización y protocolos, Ancho de banda, MIPS.

Dominios descriptivos / Nivel de abstracción

Diagrama Y de Gajsky-Khun

Niveles de abstracción

	Comportamental	Estructural	Físico
Transistor	Ecuaciones Diferenciales Ecuaciones I-V	Transistores Resistencias Condensadores Bobinas	Diagramas geométricos Componentes discretos (R,L,C,T)
Puerta	Ecuaciones Booleanas FSMs	Puertas FlipFlops	Celdas Estandar C.I PI
Registro	Diagramas de Flujo Conjunto de instrucciones	Sumadores, Comparadores, Caminos de datos, Unidad de Control	Macroceldas C.I. MI
Procesador	Programas, ASMs	Procesadores, Controladores de Memoria, Periféricos	Nucleos de hardware (IP-Cores)
Sistema	Especificaciones ejecutables Algoritmos	Sistemas sobre silicio	SoC Tarjetas

Dominios descriptivos / Transiciones

Diagrama Y de Gajsky-Khun

Ejercicio Reloj

Representaciones en el dominio conductual, estructural y físico de un reloj despertador sencillo.

Especificación:

- Visualización LCD muestra horas, minutos y segundos
- 5 conmutadores
 - S1: ajuste de hora.
 - S2: ajuste de alarma
 - S3: avance de los minutos.
 - S4: avance de las horas
 - S5: conexión de la alarma

Modo de operación

- Si S1 está activo se ajusta la hora presionando S3 ó S4 minutos u horas +1 y se muestran en el LCD
- Si S2 está activo se ajusta la alarma del mismo modo Durante el ajuste de la alarma, minutos u horas se muestran en el LCD
- Si S5 está activo la alarma se activa y emite un sonido cuando el reloj coincide con el tiempo ajustado en la alarma

febrero 2020

Ejercicio Reloj

Una posible representación del comportamiento (funcionamiento) del reloj despertador consiste en entenderlo como 3 procesos concurrentes (paralelos)

Reloj (R Funcional)

1 entrada (Pulse)

6 variables internas (Seconds, S display, Minutes, M display, Hours, H display)

Clock Process

Ajuste (R Funcional - diagrama de flujo)

2 variables internas (Mwakeup, Hwakeup)

Alarma (R Funciona -diagrama de flujol)

1 salida (Buzz)

Alarm Process

Ejemplo Reloj (R Estructural)

Ejemplo Reloj (R Estructural)

Las representaciones en el dominio funcional no indican la estructura del sistema. Sin embargo, variables y asignaciones pueden implicar un model, **no siempre óptimo**, de la estructura

Parte Digital

- 3 contadores (S, M y H cnt)
- 2 registros (Mreg, Hreg)
- ▶ 1 LCD (S, M y H display)
- 2 comparadores (Minute, Hour comparator)
- ▶ 1 valor constante (1 lógico)

Parte Análoga

- 1 oscilador / 1 altavoz
- 1 generador de pulsos (ADC)
- 1 generador de sonidos (DAC)

Ejemplo Reloj (R Fisica)

Índice

Introducción al Diseño Digita

Proceso de diseño

Resumer

Proceso de diseño

Los pasos tomados desde la concepción hasta la fabricación de un producto

- No es fijo, ni lineal existen iteraciones
- Depende de la empresa, de los equipos de trabajo, de la tecnología, de las herramientas, del conjunto de aplicaciones, etc

- Especificaciones del diseño
- Bibliotecas de componentes
- Síntesis del diseño
- Análisis del diseño
- Documentación

Especificaciones del diseño

- Definen el funcionamiento y las interfaces del producto
 - Diseño esquemático de la arquitectura
 - Diagrama de bloques de alto nivel descrito mediante lenguaje natural, pseudo-algoritmos o algoritmos
 - Las especificaciones ejecutables permiten verificar, analizar y sintetizar mediante herramientas CAD

Bibliotecas de componentes

- Constituyen los bloques internos de la arquitectura
 - Dependientes de la tecnología
 - ► A distintos niveles de abstracción y distintas prestaciones
 - Diseño cerrado para un uso fiable por parte de otros equipos
- Características de los componentes de la biblioteca
 - Función, interfaz y aplicaciones típicas
 - Encapsulado, dimensiones y localización física de entradas y salidas
 - Requisitos eléctricos, rangos de tensión y corriente de las entradas
 - Disipación de calor, consumo de potencia
 - Retardos, relaciones y sincronización entre las señales
 - Modelos para simulación, síntesis, diseño físico y verificación para las distintas
 - herramientas CAD empleadas

Síntesis del diseño

- Conversión de una especificación/descripción de comportamiento a una estructura con componentes de la biblioteca
 - El comportamiento se redefine y se divide en bloques más detallados
 - Se vuelven a dividir y estructurar, bajando el nivel de abstracción
 - El último escalón son los componentes de la biblioteca
 - Los componentes no existentes se diseñan o se adquieren
- Tipos de síntesis
 - Distintas síntesis dependiendo de los distintos niveles de abstracción
 - Síntesis de sistema: especificación ⇔ procesadores, memorias y ASICs
 - Síntesis de alto nivel: algoritmos, ISAs ⇔ registros, ALUs, multiplexores
 - ► Síntesis lógica: expresiones booleanas ⇔ puertas y biestables
 - Síntesis física: puertas ⇔ esquemas geométricos, configuraciones eléctricas

Análisis del diseño

- Evaluación de la bondad del diseño respecto a los requisitos de la especificación o entre las distintas alternativas de materialización
 - Costes: el aumento de área (ASIC, PCB), del número de entradas y salidas (encapsulados), el consumo de potencia (tamaño y peso) incrementa el precio
 - Prestacione: frecuencia de reloj, tiempo de ejecución de las instrucciones, tiempo de ejecución de algoritmos de prueba (benchmarks)
 - Testabilidad: mide el número de fallos detectables y es función del número de patrones de test, entradas con salidas conocidas, y del tiempo

Documentación del diseño

- Detalla todos los aspectos del proceso de diseño
 - Se debe realizar durante todo el ciclo de vida del diseño
 - Esquemática para los consumidores, y centrada en el comportamiento y en los interfaces físicos y temporales
 - Detallada para el reuso interno en otros productos de la compañía

Índice

Introducción al Diseño Digita

Proceso de diseño

Resumen

Roadmap

Deep Digital Design Experience Fundamentals of Boolean Logic **Synchronous Circuits Finite State Machines Timing & Clocking** Controller Design **Arithmetic Units Bus Design Encoding, Framing** Testing, Debugging Hardware Architecture HDL, Design Flow (CAD)

Roadmap

PREGUNTAS