离散 (2) hw7

王子轩 2023011307

wang-zx23@mails.tsinghua.edu.cn

P56 T45

工序	耗时	前驱工序	
1	5	-	
2	8	1,3	
3	3	1	
4	6	3	
5	10	2,3	
6	4	2,3	
7	8	3	
8	2	6,7	
9	4	5,8	
10	5	6,7	

PT图求解

代码在如下仓库中

https://github.com/wannabeyourfriend/THU-CST-DM2-2025spring/blob/main/Labs/critical_path

绘制pT图并进行拓扑排序

$$1 \rightarrow 3 \rightarrow 2 \rightarrow 4 \rightarrow 7 \rightarrow 5 \rightarrow 6 \rightarrow 8 \rightarrow 10 \rightarrow 9$$

$$egin{aligned} \operatorname{From} 2 &
ightarrow n: \ \pi(v_j) = \max_{v_i \in \operatorname{prev}(v_j)} [\pi(v_i) + w(v_i, v_j)] \ \operatorname{From} \ (n-1) &
ightarrow 1: \ au(v_j) = \min_{v_i \in \operatorname{next}(v_j)} (au(v_i) - w(v_j, v_i)) \end{aligned}$$

工序	最早启动时间()	\pi)	最晚启动时间(\tau)	允许延误时间(t=\pi -\tau)
1	0	0	0	
2	8	8	0	
3	5	5	0	
4	8	24	16	
5	16	16	0	
6	16	20	4	
7	8	16	8	
8	20	24	4	
9	26	26	0	
10	20	25	5	

关键路径为

$$1
ightarrow 3
ightarrow 2
ightarrow 5
ightarrow 9$$

工序3, 5, 10的允许延误时间分别为0, 0, 5

PERT图求解

代码绘制出来有点问题,因此如下手绘PERT图,计算各关系节点的 π ,au,在此基础上计算每个工序边的允许延误t

可以看到根据PERT图计算得到的结果与PT图是一致的。

P57 T47

解:

```
def topology_sort(graph):
    in_degree = {u: 0 for u in graph}
    for u in graph:
        for v in graph[u]:
            in\_degree[v] = in\_degree.get(v, 0) + 1
    queue = [u for u in graph if in_degree[u] == 0]
    sorted_vertices = []
    while queue:
        u = queue.pop(0)
        sorted_vertices.append(u)
        for v in graph[u]:
            in_degree[v] -= 1
            if in_degree[v] == 0:
                queue.append(v)
    if len(sorted_vertices) != len(graph):
        return None
    return sorted_vertices
```

拓扑序答案不唯一, 这里给出由代码产生的一种合法拓扑序

- (1) $v_0 o v_3 o v_7 o v_2 o v_4 o v_5 o v_6 o v_8 o v_1 o v_9 o v_{10}$
- (2) $v_8 \rightarrow v_2 \rightarrow v_{12} \rightarrow v_6 \rightarrow v_1 \rightarrow v_{13} \rightarrow v_7 \rightarrow v_{10} \rightarrow v_3 \rightarrow v_{11} \rightarrow v_4 \rightarrow v_9 \rightarrow v_5$