Lab 2

Kevin Liang: kgl392 Matthew Tan: mmt2338 Nicholas Sehy: nws326

7,	yi= viß + ei min! to E. (xiß-yi)2
	E (xiB-yi) = = E, x: B - Zxiyi R + yi = 0
	A=xi2 B=-Zyixi C=yi2
	A is positive (xi is some scalor so viz is always >0)
	ABT 1BB + C = G => BT XTX B - ZBT XTY + YTY \[\begin{align*} \be
	$A^TA_X - A^Tb$ $B = A^T$
	\$ (x = y = 7 x x x - 2 x y + 0 = 0
	Jy: = xi B +ei, 3=B+Ze/
	e= invise/error vector z= metrix
	B=[(x Tx) x T] [x: B+ei]] E= (x x x x T(x; B) + (x x) x Te!
.24	[z-tx]x)

In [113]: import numpy as np
 import pandas as pd
 import sklearn as sk
 import matplotlib.pyplot as plt
 import seaborn as sns
 import math

```
In [114]: # Question 1 - Part 1
    a = pd.read_csv("D:\Kevin Liang\Downloads\Lab2_Data\DF1", header = 0, index_co
    l = 0)

#pandas
print a.corr()

b = pd.plotting.scatter_matrix(a)

#seaborn
sns.pairplot(a,kind='scatter')
sns.plt.show()

# Column's 0 and 2 are pairwise correlated with a correlation value of 0.99006
6.
# Column's 1 and 3 are pairwise correlated with a negative correlation value of -.990235.
```

 0
 1
 2
 3

 0
 1.000000
 -0.003998
 0.990066
 0.004111

 1
 -0.003998
 1.000000
 -0.004085
 -0.990235

 2
 0.990066
 -0.004085
 1.000000
 0.004067

 3
 0.004111
 -0.990235
 0.004067
 1.000000

	3
--	---

0	1.001558	-0.004012	0.991624	0.004125
1	-0.004012	1.005378	-0.004099	-0.995457
2	0.991624	-0.004099	1.001589	0.004081
3	0.004125	-0.995457	0.004081	1.005168

In [115]: # Question 1 - Part 2
a.cov()

Covariance Equation : (1/n)*SUM((x-mean(x))(y-mean(y)))
The positive elements of the covariance matrix are also positive
in the correlation matrix and in the plots, while the negative elements
are also negative in the correlation matrix and in the correlation plots.

Out[115]:


```
In [117]: #Problem 2
          data = pd.read_csv("D:\Kevin Liang\Downloads\Lab2_Data\DF2")
          # displaying current data showing two outliers
          plt.scatter(data['0'], data['1'])
          plt.show()
          # determing covariance matrix of data set
          a = np.cov(data['0'], data['1'])
          # taking inverse of data
          a = np.linalg.inv(a)
          xyData = data.loc[:,'0':'1']
          # multiplying inverse covariance matrix times every data point to get a gaussi
          an distribution of data,
          # and to get the covariance matrix of the data to be the identity matrix
          k = np.dot(xyData, a)
          print k
          #displaying data with one huge outlier point (1,1) transformed
          plt.scatter(k[:,0], k[:,1])
          plt.show()
```



```
In [118]: # Problem 3
          # Part 1
          # Declare constants
          def part_two(n):
              beta naught = -3
              beta = 0
              samples = 2000
              distances = []
              for x in range(samples):
                  x = np.random.normal(0, 1, n)
                   e = np.random.normal(0, 1, n)
                  # Generate y_i = beta_naught + e_i
                  y = beta naught + x * beta + e
                   # Calculate beta_hat for the dataset
                   beta hat = np.dot(x, y) / np.dot(x, x)
                  #beta_hat = (x.transpose() * y) * (x.transpose() * x)
                   sd = beta_hat - beta
                   distances.append(sd)
              sum = 0
              for num in distances:
                   sum += math.pow(num, 2)
              std_dev = math.sqrt(sum / samples)
              return std_dev
          print part_two(150)
          # For n = 150, the empirical standard deviation is 0.263219887789.
          # This means that the Beta Hat which we find (-0.15) is not at all significant
           as this is less than the deviation.
          # Part 2
          n = [125, 250, 500, 1000, 1500, 2000, 4000, 8500]
          plot_n = []
          for number in n:
              plot_n.append(part_two(number))
          plot_sqrt = []
          for number in n:
              temp = np.sqrt(number)
              temp = 1/temp
              plot_sqrt.append(temp)
          print(plot_sqrt)
          plt.plot(n, plot_n, 'r')
          #plt.plot(plot n)
          plt.plot(n, plot_sqrt, 'g')
          plt.show()
          # the fit for both of the graphs are similar in form. They both decrease at an
```

Lab2

0.263219887789
[0.089442719099991588, 0.063245553203367583, 0.044721359549995794, 0.03162277
6601683791, 0.025819888974716113, 0.022360679774997897, 0.015811388300841896, 0.010846522890932807]


```
In [119]: # Problem 4
          # Part 1
          def most popular(k, XXXX):
              df = pd.read_csv('D:\Kevin Liang\Downloads\Names\yob' + str(XXXX) +
          ".txt", header=None, names=["Name", "Gender", "Frq"], delimiter=',', usecols=
          [0,2]
              df = df.groupby(by=["Name"]).sum()
              #names.sort_values(3, ascending=False)
              print df.nlargest(int(k), "Frq")
              #print names
          # Part 2
          def name frequency(Name):
              men_frq = 0
              women_frq = 0
              num_adds = 0
              for year in range(1880, 2016):
                  df = pd.read_csv('D:\Kevin Liang\Downloads\Names\yob' +
          str(year) + ".txt", header=None, names=["Name", "Gender", "Frq"],
          delimiter=',')
                  select_indices = list(np.where(df["Name"] == str(Name))[0])
                  if Name in df["Name"].values:
                      for _ in select_indices:
                          if df["Gender"].iloc[_] == 'M':
                              men_frq += df["Frq"].iloc[_]
                              num_adds += 1
                          else:
                              women_frq += df["Frq"].iloc[_]
                              num adds += 1
                  else:
```

0

```
print Name + " wasn't found in year " + str(year)
    print str(men_frq) + " instances of men named " + str(Name)
    print str(women_frq) + " instances of women named " + str(Name)
# Part 3
def relative_frequency(Name, year):
    men_frq = 0.0
    women_frq = 0.0
    num_adds = 0
    #for year in range(1880, 2016):
    df = pd.read_csv('D:\Kevin Liang\Downloads\Names\Names\yob' + str(year) +
".txt", header=None, names=["Name", "Gender", "Frq"], delimiter=',')
    select_indices = list(np.where(df["Name"] == Name)[0])
    total_freq = 0.0
    for val in df["Frq"]:
        total_freq += int(val)
    if Name in df["Name"].values:
        for _ in select_indices:
            if df["Gender"].iloc[_] == 'M':
                men_frq += df["Frq"].iloc[_]/total_freq
            else:
                women_frq += df["Frq"].iloc[_]/total_freq
    else:
        print Name + " wasn't found in year " + str(year)
    print "Normalized frequency of " + Name + " in men:" + str(men_frq)
    print "Normalized frequency of " + Name + " in women:" + str(women_frq)
# Part 4
def gendered_popularity():
    D = \{ \}
    a = []
    men_frq = { } #largest value only
    women_frq = { } #largest value only
    num_adds = 0
    winner = ' '
    for year in range(1880, 2016):
        df = pd.read_csv('D:\Kevin Liang\Downloads\Names\Names\yob' +
str(year) + ".txt", header=None, names=["Name", "Gender", "Frq"],
delimiter=',')
        size = len(df)
        name = ""
        for index in range (0, size):
            name = str(df["Name"][index])
            if not(men_frq.has_key(name)):
                men_frq[name] = 0
            if not(women_frq.has_key(name)):
                women_frq[name] = 0;
            if df["Gender"][index] == 'M' and men_frq[name] < df["Frq"]</pre>
[index]:
                men_frq[name] = df["Frq"][index]
                if D.has_key(name) and D[name] != 'M':
                    if women_frq.has_key(name) and women_frq[name] < men_frq[n</pre>
ame] and women_frq > 0:
                        D[name] = 'M'
```

```
else:
                    D[name] = ' '
            else:
                women_frq[name] = df["Frq"][index]
                if D.has_key(name) and D[name] != 'F':
                    if women_frq.has_key(name) and women_frq[name] > men_frq[n
ame] and men_frq > 0:
                        D[name] = 'F'
                         a.append(name)
                    else:
                        D[name] = 'F'
                else:
                    D[name] = ' '
    my_set = set(a)
    print len(my_set)
# TEST
most_popular(10,1880)
name_frequency("Matt")
relative_frequency("John", 1880)
gendered_popularity()
          Fra
Name
John
         9701
William 9561
         7092
Mary
James
         5949
Charles 5359
George
         5152
Frank
         3255
Joseph
         2642
Anna
         2616
Thomas
         2542
23460 instances of men named Matt
5 instances of women named Matt
Normalized frequency of John in men:0.0479199134414
Normalized frequency of John in women:0.000228308235971
69479
```

Lab2 9/18/2017

In [120]: # Problem 5

- # Method 1 Displayed
- # My method consists of checking all user_location cells and determine whether or not
- # the name of the state exists somewhere in the user_locations cell.
- # This is done by cheking if the substring (the state name) exists in the user location cell.
- # It will then mark a tweet with its associated state.
- # The total number of tweets from a state is then calculated and displayed in a list.
- # Method 2 Not Displayed
- # Regular expressions could be used to account for state acronyms as well.

tweets = pd.read_csv("D:/Kevin Liang/Downloads/tweets.csv")

```
# dictionary of all states in the US
                 states = {
                          'AK': 'Alaska',
                          'AL': 'Alabama',
                          'AR': 'Arkansas',
                          'AS': 'American Samoa',
                          'AZ': 'Arizona',
                          'CA': 'California',
                          'CO': 'Colorado',
                          'CT': 'Connecticut',
                          'DC': 'District of Columbia',
                          'DE': 'Delaware',
                          'FL': 'Florida',
                          'GA': 'Georgia',
                          'GU': 'Guam',
                          'HI': 'Hawaii',
                          'IA': 'Iowa',
                          'ID': 'Idaho',
                          'IL': 'Illinois',
                          'IN': 'Indiana',
                          'KS': 'Kansas',
                          'KY': 'Kentucky',
                          'LA': 'Louisiana',
                          'MA': 'Massachusetts',
                          'MD': 'Maryland',
                          'ME': 'Maine',
                          'MI': 'Michigan',
                          'MN': 'Minnesota',
                          'MO': 'Missouri',
                          'MP': 'Northern Mariana Islands',
                          'MS': 'Mississippi',
                          'MT': 'Montana',
                          'NA': 'National',
                          'NC': 'North Carolina',
                          'ND': 'North Dakota',
                          'NE': 'Nebraska',
                          'NH': 'New Hampshire',
                          'NJ': 'New Jersey',
                          'NM': 'New Mexico',
                          'NV': 'Nevada',
                          'NY': 'New York',
                          'OH': 'Ohio',
                          'OK': 'Oklahoma',
                          'OR': 'Oregon',
                          'PA': 'Pennsylvania',
                          'PR': 'Puerto Rico',
                          'RI': 'Rhode Island',
                          'SC': 'South Carolina',
                          'SD': 'South Dakota',
                          'TN': 'Tennessee',
                          'TX': 'Texas',
                          'UT': 'Utah',
                          'VA': 'Virginia',
http://localhost:8888/nbconvert/html/Lab2.ipynb?download=false 'VI': 'Vermont',
```

```
'WI': 'Wisconsin',
        'WV': 'West Virginia',
        'WY': 'Wyoming'
}
# area equation to determine check which state of a tweet
def area(location):
    for x in states.keys():
        if states[x].lower() in str(location).lower():
            return states[x]
# create new column categorizing each tweet with a associated state
tweets["place"] = tweets["user_location"].apply(area)
# counting the total number of tweets from a state
t1 = \{\}
tl = tweets["place"].value_counts()
# display count of tweets from a state
print tl
```

The print result isn't showing.

Texas	4795
New York	4520
Florida	4042
California	4007
Washington	3335
Ohio	1326
New Jersey	1207
North Carolina	1138
Michigan	1138
Colorado	1070
Georgia	1031
Virginia	1008
Tennessee	990
Arizona	986
Indiana	910
Pennsylvania	890
Oregon	822
Kansas	734
Illinois	713
Maryland	579
Alabama	572
South Carolina	559

Massachusetts	521		
Wisconsin	514		
Minnesota	509		
Oklahoma	504		
Louisiana	486		
Missouri	462		
Iowa	447		
Kentucky	397		
Connecticut	367		
Nevada	312		
Maine	258		
West Virginia	249		
Hawaii	247		
Vermont	242		
New Hampshire	238		
Utah	211		
Delaware	199		
Montana	176		
Alaska	173		
National	172		
Idaho	158		
Mississippi	153		
New Mexico	151		
Nebraska	145		
Rhode Island	120		
Puerto Rico	113		
Wyoming	55		
Virgin Islands	36		
North Dakota	26		
District of Columbia	25		
South Dakota	24		
Guam	7		
American Samoa	1		
Name: place, dtype: int64			