Package 'autoBagging'

October 12, 2022

Type Package

Title Learning to Rank Bagging Workflows with Metalearning

Version 0.1.0

Author Fabio Pinto [aut],

Vitor Cerqueira [cre],

Carlos Soares [ctb],

Joao Mendes-Moreira [ctb]

Maintainer Vitor Cerqueira < cerqueira.vitormanuel@gmail.com>

Description A framework for automated machine learning. Concretely, the focus is on the optimisation of bagging workflows. A bagging workflows is composed by three phases: (i) generation: which and how many predictive models to learn; (ii) pruning: after learning a set of models, the worst ones are cut off from the ensemble; and (iii) integration: how the models are combined for predicting a new observation. autoBagging optimises these processes by combining metalearning and a learning to rank approach to learn from metadata. It automatically ranks 63 bagging workflows by exploiting past performance and dataset characterization. A complete description of the method can be found in: Pinto, F., Cerqueira, V., Soares, C., Mendes-Moreira, J. (2017): "autoBagging: Learning to Rank Bagging Workflows with Metalearning" arXiv preprint arXiv:1706.09367.

Depends R (>= 2.10)

Imports cluster, xgboost, methods, e1071, rpart, abind, caret, MASS, entropy, 1sr, CORElearn, infotheo, minerva, party

License GPL (>= 2)

Encoding UTF-8

LazyData no

RoxygenNote 6.0.1

Suggests testthat

NeedsCompilation no

Repository CRAN

Date/Publication 2017-07-02 00:06:44 UTC

26

Index

R topics documented:

abmodel	3
abmodel-class	3
autoBagging	4
baggedtrees	5
bagging	6
bb	7
classmajority.landmarker	7
classmajority.landmarker.correlation	8
classmajority.landmarker.entropy	8
classmajority.landmarker.interinfo	9
classmajority.landmarker.mutual.information	9
ContAttrs	10
dstump.landmarker_d1	10
dstump.landmarker_d1.correlation	11
dstump.landmarker_d1.entropy	11
dstump.landmarker_d1.interinfo	12
dstump.landmarker d1.mutual.information	12
dstump.landmarker_d2	13
dstump.landmarker_d2.correlation	13
dstump.landmarker_d2.entropy	14
dstump.landmarker_d2.interinfo	14
dstump.landmarker_d2.mutual.information	15
dstump.landmarker_d3	15
dstump.landmarker_d3.correlation	16
dstump.landmarker_d3.entropy	16
dstump.landmarker_d3.interinfo	17
dstump.landmarker_d3.mutual.information	17
GetMeasure	18
get_target	18
	19
	19
	20
	20
1	21
	21
	22
1.	22
	23
	23
	24
<u>.</u>	24
	25
•	25
~j~ ~~~~	_5

abmodel 3

abmodel abmodel

Description

abmodel

Usage

```
abmodel(base_models, form, data, dynamic_selection)
```

Arguments

base_models a list of decision tree classifiers

form formula

data dataset used to train base_models

dynamic_selection

the dynamic selection/combination method to use to aggregate predictions. If

none, majority vote is used.

abmodel-class abmodel-class

Description

abmodel is an S4 class that contains the ensemble model. Besides the base learning algorithms—base_models – **abmodel** class contains information about the dynamic selection method to apply in new data.

Slots

base models a list of decision tree classifiers

form formula

data dataset used to train base_models

dynamic_selection the dynamic selection/combination method to use to aggregate predictions. If none, majority vote is used.

See Also

autoBagging function for the method of automatic predicting of the best workflows.

4 autoBagging

autoBagging autoBagging

Description

Learning to Rank Bagging Workflows with Metalearning

Machine Learning (ML) has been successfully applied to a wide range of domains and applications. One of the techniques behind most of these successful applications is Ensemble Learning (EL), the field of ML that gave birth to methods such as Random Forests or Boosting. The complexity of applying these techniques together with the market scarcity on ML experts, has created the need for systems that enable a fast and easy drop-in replacement for ML libraries. Automated machine learning (autoML) is the field of ML that attempts to answers these needs. Typically, these systems rely on optimization techniques such as bayesian optimization to lead the search for the best model. Our approach differs from these systems by making use of the most recent advances on metalearning and a learning to rank approach to learn from metadata. We propose autoBagging, an autoML system that automatically ranks 63 bagging workflows by exploiting past performance and dataset characterization. Results on 140 classification datasets from the OpenML platform show that autoBagging can yield better performance than the Average Rank method and achieve results that are not statistically different from an ideal model that systematically selects the best workflow for each dataset.

Usage

autoBagging(form, data)

Arguments

form formula. Currently supporting only categorical target variables (classification

tasks)

data training dataset with a categorical target variable

Details

The underlying model leverages the performance of the workflows in historical data. It ranks and recommends workflows for a given classification task. A bagging workflow is comprised by the following steps:

generation the number of trees to grow

pruning the pruning of low performing trees in the ensemble

pruning cut-point a parameter of the previous step

dynamic selection the dynamic selection method used to aggregate predictions. If none is recommended, majority voting is used.

Value

an abmodel class object

baggedtrees 5

References

Pinto, F., Cerqueira, V., Soares, C., Mendes-Moreira, J.: "autoBagging: Learning to Rank Bagging Workflows with Metalearning" arXiv preprint arXiv:1706.09367 (2017).

See Also

bagging for the bagging pipeline with a specific workflow; baggedtrees for the bagging implementation; abmodel-class for the returning class object.

Examples

```
## Not run:
# splitting an example dataset into train/test:
train <- iris[1:(.7*nrow(iris)), ]
test <- iris[-c(1:(.7*nrow(iris))), ]
# then apply autoBagging to the train, using the desired formula:
# autoBagging will compute metafeatures on the dataset
# and apply a pre-trained ranking model to recommend a workflow.
model <- autoBagging(Species ~., train)
# predictions are produced with the standard predict method
preds <- predict(model, test)
## End(Not run)</pre>
```

baggedtrees

bagged trees models

Description

The standard resampling with replacement (bootstrap) is used as sampling strategy.

Usage

```
baggedtrees(form, data, ntree = 100)
```

Arguments

```
form formula

data training data

ntree no of trees
```

Examples

```
ensemble <- baggedtrees(Species ~., iris, ntree = 50)</pre>
```

6 bagging

bagging bagging method

Description

bagging method

Usage

```
bagging(form, data, ntrees, pruning, dselection, pruning_cp)
```

Arguments

form	formula		
data	training data		
ntrees	ntrees		
pruning	model pruning method. A character vector. Currently, the following methods are supported:		
mdsq Margin-distance minimisation			
	bb boosting based pruning		
	none no pruning		
dselection	dynamic selection of the available models. Currently, the following methods are supported:		
	ola Overall Local Accuracy		
	knora-e K-nearest-oracles-eliminate		
	none no dynamic selection. Majority voting is used.		
pruning_cp	The pruning cutpoint for the pruning method picked.		

See Also

baggedtrees for the implementation of the bagging model.

Examples

```
# splitting an example dataset into train/test:
train <- iris[1:(.7*nrow(iris)), ]
test <- iris[-c(1:(.7*nrow(iris))), ]
form <- Species ~.
# a user-defined bagging workflow
m <- bagging(form, iris, ntrees = 5, pruning = "bb", pruning_cp = .5, dselection = "ola")
preds <- predict(m, test)
# a standard bagging workflow with 5 trees (5 trees for examplification purposes):
m2 <- bagging(form, iris, ntrees = 5, pruning = "none", dselection = "none")
preds2 <- predict(m2, test)</pre>
```

bb 7

bb

Boosting-based pruning of models

Description

Boosting-based pruning of models

Usage

```
bb(form, preds, data, cutPoint)
```

Arguments

form formula

preds predictions in training data

data training data

cutPoint ratio of the total number of models to cut off

classmajority.landmarker

class majority. land marker

Description

classmajority.landmarker

Usage

```
classmajority.landmarker(dataset, data.char)
```

Arguments

dataset train data for the landmarker

 $class {\it majority}. \ land {\it marker.correlation} \\ {\it class majority.land marker.correlation}$

Description

classmajority.landmarker.correlation

Usage

```
classmajority.landmarker.correlation(dataset, data.char)
```

Arguments

dataset train data for the landmarker

data.char dc

 ${\it class majority. land marker. entropy} \\ {\it class majority. land marker. entropy}$

Description

classmajority.landmarker.entropy

Usage

classmajority.landmarker.entropy(dataset, data.char)

Arguments

dataset train data for the landmarker

Description

classmajority.landmarker.interinfo

Usage

```
classmajority.landmarker.interinfo(dataset, data.char)
```

Arguments

dataset train data for the landmarker

data.char dc

 $class {\it majority}. land {\it marker.mutual.information} \\ {\it class majority}. land {\it marker.mutual.information}$

Description

classmajority.landmarker.mutual.information

Usage

```
classmajority.landmarker.mutual.information(dataset, data.char)
```

Arguments

dataset train data for the landmarker

ContAttrs

Retrieve names of continuous attributes (not including the target)

Description

Retrieve names of continuous attributes (not including the target)

Usage

```
ContAttrs(dataset)
```

Arguments

dataset

structure describing the data set, according to read_data.R

Value

list of strings

See Also

 $read_data.R$

dstump.landmarker_d1

dstump.landmarker_d1

Description

```
dstump.landmarker_d1
```

Usage

```
dstump.landmarker_d1(dataset, data.char)
```

Arguments

dataset

train data for the landmarker

data.char

dc

```
\label{lambda} dstump. landmarker\_d1. correlation \\ \textit{dstump.landmarker\_d1.correlation}
```

```
dstump.landmarker_d1.correlation
```

Usage

```
dstump.landmarker_d1.correlation(dataset, data.char)
```

Arguments

dataset train data for the landmarker

data.char dc

 $\label{lambda} dstump.landmarker_d1.entropy \\ \textit{dstump.landmarker_d1.entropy}$

Description

```
dstump.landmarker_d1.entropy
```

Usage

```
dstump.landmarker_d1.entropy(dataset, data.char)
```

Arguments

dataset train data for the landmarker

```
dstump.landmarker_d1.interinfo
```

Usage

```
dstump.landmarker_d1.interinfo(dataset, data.char)
```

Arguments

dataset train data for the landmarker

data.char dc

 $\label{landmarker_d1.mutual.information} dstump.landmarker_d1.mutual.information$

Description

dstump.landmarker_d1.mutual.information

Usage

```
dstump.landmarker_d1.mutual.information(dataset, data.char)
```

Arguments

dataset train data for the landmarker

 $dstump.landmarker_d2$

13

 ${\tt dstump.landmarker_d2} \quad \textit{dstump.landmarker_d2}$

Description

```
dstump.landmarker_d2
```

Usage

```
dstump.landmarker_d2(dataset, data.char)
```

Arguments

dataset train data for the landmarker

data.char dc

 $\label{lambda} dstump. landmarker_d2. correlation \\ \textit{dstump.landmarker_d2.} correlation$

Description

```
dstump.landmarker_d2.correlation
```

Usage

```
dstump.landmarker_d2.correlation(dataset, data.char)
```

Arguments

dataset train data for the landmarker

```
dstump.landmarker_d2.entropy
```

Usage

```
dstump.landmarker_d2.entropy(dataset, data.char)
```

Arguments

dataset train data for the landmarker

data.char dc

 $\label{lambda} dstump. landmarker_d2. interinfo \\ \textit{dstump. landmarker_d2. interinfo}$

Description

```
dstump.landmarker_d2.interinfo
```

Usage

```
dstump.landmarker_d2.interinfo(dataset, data.char)
```

Arguments

dataset train data for the landmarker

```
\label{landmarker} dstump. landmarker\_d2. mutual. information \\ \textit{dstump.landmarker\_d2. mutual. information}
```

 $dstump.land marker_d2.mutual. information$

Usage

```
dstump.landmarker_d2.mutual.information(dataset, data.char)
```

Arguments

dataset train data for the landmarker

data.char dc

dstump.landmarker_d3 dstump.landmarker_d3

Description

dstump.landmarker_d3

Usage

```
dstump.landmarker_d3(dataset, data.char)
```

Arguments

dataset train data for the landmarker

```
{\it dstump.landmarker\_d3.correlation} \\ {\it dstump.landmarker\_d3.correlation}
```

```
dstump.landmarker_d3.correlation
```

Usage

```
dstump.landmarker_d3.correlation(dataset, data.char)
```

Arguments

dataset train data for the landmarker

data.char dc

Description

```
dstump.landmarker_d3.entropy
```

Usage

```
dstump.landmarker_d3.entropy(dataset, data.char)
```

Arguments

dataset train data for the landmarker

```
dstump.landmarker_d3.interinfo
```

Usage

```
dstump.landmarker_d3.interinfo(dataset, data.char)
```

Arguments

dataset train data for the landmarker

data.char dc

```
\label{landmarker_d3.mutual.information} dstump.landmarker\_d3.mutual.information
```

Description

```
dstump.landmarker_d3.mutual.information
```

Usage

```
dstump.landmarker_d3.mutual.information(dataset, data.char)
```

Arguments

dataset train data for the landmarker

18 get_target

GetMeasure

Retrieve the value of a previously computed measure

Description

Retrieve the value of a previously computed measure

Usage

```
GetMeasure(inDCName, inDCSet, component.name = "value")
```

Arguments

inDCName name of data characteristics

inDCSet set of data characteristics already computed

component.name name of component (e.g. time or value) to retrieve; if NULL retrieve all

Value

simple or structured value

Note

if measure is not available, stop execution with error

 ${\tt get_target}$

get target variable

Description

get the target variable from a formula

Usage

```
get_target(form)
```

Arguments

form formula

KNORA.E

KNORA.E

K-Nearest-ORAcle-Eliminate

Description

A dynamic selection method

Usage

```
KNORA.E(form, mod, v.data, t.data, k = 5)
```

Arguments

_	C 1
form	formula
1 01 111	IOIIIIuia

mod a list comprising the individual models

v.data validation data

t.data test data, with the instances to predict

k the number of nearest neighbors. Defaults to 5.

lda.landmarker.correlation

lda.landmarker.correlation

Description

lda.landmarker.correlation

Usage

```
## S3 method for class 'landmarker.correlation'
lda(dataset, data.char)
```

Arguments

dataset train data for the landmarker

20 mdsq

majority_voting

majority voting

Description

majority voting

Usage

```
majority_voting(x)
```

Arguments

Χ

predictions produced by a set of models

mdsq

Margin Distance Minimization

Description

Margin Distance Minimization

Usage

```
mdsq(form, preds, data, cutPoint)
```

Arguments

form formula

preds predictions in training data

data training data

cutPoint ratio of the total number of models to cut off

nb.landmarker 21

nb.landmarker

nb.landmarker

Description

nb.landmarker

Usage

```
nb.landmarker(dataset, data.char)
```

Arguments

dataset train data for the landmarker

data.char dc

nb.landmarker.correlation

nb.landmarker.correlation

Description

nb.landmarker.correlation

Usage

```
nb.landmarker.correlation(dataset, data.char)
```

Arguments

dataset train data for the landmarker

22 nb.landmarker.interinfo

 $\verb"nb.landmarker.entropy" nb.landmarker.entropy"$

Description

nb.landmarker.entropy

Usage

```
nb.landmarker.entropy(dataset, data.char)
```

Arguments

dataset train data for the landmarker

data.char dc

nb.landmarker.interinfo

nb.landmarker.interinfo

Description

nb.landmarker.interinfo

Usage

```
nb.landmarker.interinfo(dataset, data.char)
```

Arguments

dataset train data for the landmarker

nb.landmarker.mutual.information

nb.landmarker.mutual.information

Description

nb.landmarker.mutual.information

Usage

```
nb.landmarker.mutual.information(dataset, data.char)
```

Arguments

dataset train data for the landmarker

data.char dc

OLA Overall Local Accuracy

Description

A dynamic selection method

Usage

```
OLA(form, mod, v.data, t.data, k = 5)
```

Arguments

form	formula
mod	a list comprising the individual models
v.data	validation data
t.data	test data, with the instances to predict
k	the number of nearest neighbors. Defaults to 5.

24 ReadDF

```
predict,abmodel-method
```

Predicting on new data with a abmodel model

Description

This is a predict method for predicting new data points using a abmodel class object - refering to an ensemble of bagged trees

Usage

```
## S4 method for signature 'abmodel'
predict(object, newdata)
```

Arguments

object A abmodel-class object.

newdata New data to predict using an abmodel object

Value

predictions produced by an abmodel model.

See Also

abmodel-class for details about the bagging model;

ReadDF

FUNCTION TO TRANSFORM DATA FRAME INTO LIST WITH GSI REQUIREMENTS

Description

FUNCTION TO TRANSFORM DATA FRAME INTO LIST WITH GSI REQUIREMENTS

Usage

```
ReadDF(dat)
```

Arguments

data frame

Value

a list containing components that describe the names (see ReadtAttrsInfo) and the data (see Read-Data) files

THIS FUNCTION HAS TO BE BASED IN READATTRSINFO AND READDATA

SymbAttrs 25

SymbAttrs

Retrieve names of symbolic attributes (not including the target)

Description

Retrieve names of symbolic attributes (not including the target)

Usage

```
SymbAttrs(dataset)
```

Arguments

dataset

structure describing the data set, according to read_data.R

Value

list of strings

See Also

read_data.R

sysdata

sysdata

Description

Meta data needed to run the autoBagging method.

Usage

sysdata

Format

a list comprising the following information

avgRankMatrix the average rank data regarding each bagging workflow

workflows metadata on the bagging workflows

MaxMinMetafeatures range data on each metafeature

metafeatures names and values of each metafeatures used to describe the datasets

metamodel the xgboost ranking metamodel

Index

* datasets	GetMeasure, 18
sysdata, 25	MNODA E 10
abmodel, 3	KNORA.E, 19
abmodel-class, 3	lda.landmarker.correlation, 19
autoBagging, 3, 4	
autoBagging-package (autoBagging), 4	majority_voting, 20 mdsq, 20
baggedtrees, $5, 5, 6$	
bagging, 5, 6	nb.landmarker, 21
bb, 7	nb.landmarker.correlation, 21
	nb.landmarker.entropy, 22
classmajority.landmarker,7	nb.landmarker.interinfo, 22
classmajority.landmarker.correlation,	nb.landmarker.mutual.information, 23
classmajority.landmarker.entropy, 8	OLA, 23
classmajority.landmarker.interinfo,9	predict,abmodel-method,24
classmajority.landmarker.mutual.information,	predict, abmodel method, 24
ContAttrs, 10	ReadDF, 24
	SymbAttrs, 25
dstump.landmarker_d1, 10	sysdata, 25
dstump.landmarker_d1.correlation, 11	3y3data, 23
dstump.landmarker_d1.entropy, 11	
dstump.landmarker_d1.interinfo, 12	
dstump.landmarker_d1.mutual.information,	
dstump.landmarker_d2, 13	
dstump.landmarker_d2.correlation, 13	
dstump.landmarker_d2.entropy, 14	
dstump.landmarker_d2.interinfo, 14	
dstump.landmarker_d2.mutual.information,	
15	
dstump.landmarker_d3, 15	
dstump.landmarker_d3.correlation, 16	
dstump.landmarker_d3.entropy, 16	
dstump.landmarker_d3.interinfo, 17	
<pre>dstump.landmarker_d3.mutual.information,</pre>	
17	
get_target, 18	