Лекция 4

Алгоритмы безусловной нелинейной оптимизации. Стохастические и метаэвристические алгоритмы

Анализ и разработка алгоритмов

Содержание

- 1 Задача оптимизации
- 2 Стохастические (Монте-Карло) и метаэвристические методы
- 3 Задача Бюффона о бросании иглы
- 4 Имитация отжига
- 5 Эволюционные алгоритмы
- Дифференциальная эволюция
- Метод роя частиц

Задача оптимизации

Задача

 $f:\mathbb{R}^n \to \mathbb{R}; \ f=f(\mathbf{x}),$ где $\mathbf{x}=(x_1,\ldots,x_n)$

Решить задачу оптимизации $f(\mathbf{x}) \to \min_{\mathbf{x} \in Q}$ означает найти точку $\mathbf{x}^* \in Q$, где Q — область допутимых значений, такую, что f достигает минимального значения в точке \mathbf{x}^* .

Обозначение: $\mathbf{x}^* = \arg\min_{\mathbf{x} \in Q} f(\mathbf{x})$.

Рассмотренные методы:

- прямые
- первого и второго порядка

(Вспомните определения и методы)

Все параметры были четко определены ightarrow детерминированный подход

А если использовать случайность и стохастичность?

Стохастические (Монте-Карло) и метаэвристические методы

Стохастические (Монте-Карло) методы – это широкий класс алгоритмов, которые основаны на повторяющейся *случайной выборке* для решения задачи оптимизации. Эти методы наиболее полезны, когда невозможно или сложно применять другие (напр., нет информации о дифференцируемости оптимизируемой функции или задача дискретная).

Вероятностная интерпретация: по закону больших чисел среднее значение конечной выборки из фиксированного распределения близко к математическому ожиданию этого распределения.

Демонстрация: интегрирование

Метаэвристические методы — это *вдохновленные природными явлениями* алгоритмы, которые решают задачу оптимизации *методом проб и ошибок*. Метаэвристики не гарантируют, что будет найдено решение задачи оптимизации. Многие метаэвристики используют стохастические методы.

Задача Бюффона о бросании иглы

Будем бросать иглу длиной ℓ на поверхность с начерченными параллельными прямыми, находящимися другот друга на расстоянии t.

Какова вероятность P того, что брошенная игла пересечет одну из прямых? Предполагаем, что $\ell < t$ (случай "короткой иглы").

Решение:

$$P = \frac{2\ell}{\pi t}.$$

Пусть при бросании n игл m из них пересекли прямые. Тогда P приближается дробью m/n. Отсюда получаем экспериментальную оценку для числа π :

$$\pi pprox rac{n}{m} \cdot rac{2\ell}{t}.$$

Демонстрация: Реальный эксперимент, Симуляция

Имитация отжига (алгоритм Метрополиса)

Имитация отжига — это метаэвристический алгоритм, который решает задачу оптимизации подобно процессу отжига в металлургии.

Название и идея: нагрев и контролируемое охлаждение материала для увеличения размера его кристаллов и уменьшения дефектов в металлургии.

Пусть $f:\mathbb{R}^n \to \mathbb{R}$ — энергия. Пусть $T=\{T_k\}$ — убывающая неотрицательная последовательность такая, что $T_k=0$ при k>N. Последовательность T называют *графиком охлаждения* или *температурой*.

Алгоритм

Пусть a_0 — начальное приближение.

Пока $T_k \neq 0$ для $k \in \mathbb{N}_0$:

- ullet случайным образом выбираем $a^*
 eq a_k$;
- ullet если $f(a^*)\leqslant f(a_k)$, то $a_{k+1}=a^*$; если $f(a^*)>f(a_k)$, то $a_{k+1}=a^*$ с вероятностью

$$\exp\left(-\frac{f(a^*)-f(a_k)}{T_k}\right).$$

Демонстрация: 2D, 3D, Раскраска, Задача коммивояжера

Алгоритмы Lecture 4 6 / 11

Эволюционные алгоритмы

Эволюционные алгоритмы — это метаэвристические алгоритмы на основе эволюции популяции. Они используют механизмы, вдохновленные биологической эволюцией: отбор, мутация и воспроизводство. Возможные решения задачи оптимизации играют роль отдельных особей в популяции, а целевая функция (определяется средой, в которой находятся популяция) в процессе оптимизации (эволюции) определяет качество решений. Эволюция популяции происходит в результате многократного применения вышеупомянутых механизмов.

Примеры:

- Генетические алгоритмы (в рамках проектов)
- Дифференциальная эволюция
- Метод роя частиц

Демонстрация: Эволюция синтетического животного

Дифференциальная эволюция

Дифференциальная эволюция — это метаэвристический алгоритм, который решает задачу оптимизации через эволюцию популяции *агентов*, то есть возможных решений, создавая новые поколения агентов путем объединения существующих и дальнейшего отбора лучших.

Выберите вероятность перехода $CR \in [0,1]$, дифференциальный вес $F \in [0,2]$ и размер популяции $NP \geq 4$. Пусть $\mathbf{x} \in \mathbb{R}^n$ — агент в популяции.

Алгоритм

Пока критерий остановки не выполнен (напр., макс. число итераций):

- Случайно выберите *NP* агентов **x** (т.е. популяцию).
- ullet Выберите из популяции три различных агента ${f a},\,{f b}$ и ${f c},\,$ отличных от ${f x}.$
- Вычислите *пробный* вектор $\mathbf{y} = (y_1, \dots, y_n)$: при $i = 1, \dots, n$ выберите $r_i \in U(0,1)$ и если $r_i < CR$, то $y_i = a_i + F(b_i c_i)$, иначе $y_i = x_i$.
- ullet Если $f(\mathbf{y}) \leqslant f(\mathbf{x})$, то замените \mathbf{x} на пробный вектор \mathbf{y} , иначе сохраните \mathbf{x} .

Выберите лучшего агента в популяции в качестве решения задачи оптимизации.

Демонстрация: 2D, 3D, Геометрия крыла, Генеративный дизайн 📳 🗦

Алгоритмы Lecture 4 8 /

Метод роя частиц

Метод роя частиц — метаэвристический алгоритм, который решает задачу оптимизации путем итерационного изменения положения возможных решений (частиц) с определенной скоростью. На изменение положения каждой частицы влияют ее лучшее известное положение и лучшие известные положения других частиц (демо).

Пусть s — число частиц в рое, с положениями x_i и скоростями v_i . Пусть p_i — лучшее известное положение частицы (ЛИПЧ) i и g — лучшее известное положения всего роя (ЛИПР).

Значения b_l и b_u отвечают за границы пространства поиска. Положительные параметры ω , ϕ_p и ϕ_g выбираются вручную.

Выбор параметров может оказать большое влияние на качество оптимизации и является предметом многочисленных исследований. Как правило, параметры для конкретной задачи подбираются в серии экспериментов.

Задайте **ЛИПР** g как случайное число

Алгоритм

```
Для каждой частицы i = 1, ..., s:
  Задайте начальное положение частицы x_i \sim U(b_l, b_u) (равн.распр.с.в.)
  Задайте ЛИПЧ через ее начальное положение: p_i \leftarrow x_i
  Если f(p_i) < f(g), то обновите ЛИПР: g \leftarrow p_i
  Задайте скорости частицы v_i \sim U(-|b_{ii} - b_{i}|, |b_{ii} - b_{i}|)
Пока критерий остановки не выполнен (напр., макс. число итераций):
  Для каждой частицы i = 1, ..., s:
     Для каждого d=1,\ldots,n:
       Задайте r_p, r_g \sim U(0,1)
       Обновите скорости: v_{i,d} \leftarrow \omega v_{i,d} + \phi_p r_p (p_{i,d} - x_{i,d}) + \phi_g r_g (g_d - x_{i,d})
     Обновите позиции: x_i \leftarrow x_i + v_i
     Если f(x_i) < f(p_i), то обновите ЛИПЧ: p_i \leftarrow x_i
        Если f(p_i) < f(g), то обновите ЛИПР: g \leftarrow p_i
```

10 / 11 Lecture 4

Демонтрация: Пример 1, Пример 2

Спасибо за внимание!

11 / 11