

ROB 311 – Lecture 7

- Today:
 - Thermal review
 - Begin 'making' section of the coarse
 - Introduce manufacturing
 - Focus on additive manufacturing

Design Analysis Framework

- Now lets discuss the final step in the analysis framework prediction of temp
- Where does thermal input come from? Joule heating from motor windings
- Rules of thumb / metrics exist to shortcut this analysis (e.g. motor continuous current rating, etc.)
- We are learning this because
 - It is relevant to system designs where mass is an important factor
 - They are important concepts for robot designers to be familiar with

- Crash course in heat transfer modeling
- Heat flows from the motor windings to the housing to the atmosphere
- This includes two types of heat transfer
 - Conduction heat energy exchange between two objects
 - Convection transfer of heat energy between an object and the environment
- Convection and conduction have the same underlying governing equations
- If we understand the equations, we can predict the motor winding temperature
- Lets start with conduction

• Conduction - heat flux q(t) in Watts – comes from i_w^2R from motor windings

• Thermal resistivity, units K/W is below, using thermal conductivity κ (W/mK)

$$R_{\sigma} = \frac{L}{A\kappa}$$

Thus,

$$q(t) = \frac{\sigma_1(t) - \sigma_2(t)}{R_{\sigma}}$$

$$q(t) = \frac{\sigma_1(t) - \sigma_2(t)}{R_{\sigma}}$$
This looks familiar - Thermal version of Ohm's Law
$$q(t)$$

$$\sigma_1(t)$$

$$R$$

$$\sigma_2(t)$$

Convection

- Convection has identical governing equations
- Consider an object in the atmosphere with surface area A and convective heat transfer coefficient h (W/m²C)

$$R_{\sigma} = \frac{1}{hA}$$

$$q(t)$$

$$q(t) = \frac{\sigma_1(t) - \sigma_2(t)}{R_{\sigma}}$$

$$\sigma_1(t)$$

$$\sigma_2(t)$$

• R_{σ} can be changed with heat sinks, etc.

- Thermal capacitance (also called thermal mass)
- Describes an objects ability to store heat energy

$$C_{\sigma} = mc_{p}$$

• m is the objects mass and c_p is the specific heat (J/kgK)

- Thermal systems have the same relationships as electrical systems
 - Voltage is analogous to temperature (effort)
 - Current is analogous to heat flux (flow)
 - Resistances and capacitances

Thermal Modeling Example

- These analyses can be completed using Simulink
- I will show a transfer function based modeling solution feel free to use
- Steady state temperatures can be found using Ohm's Law
- First, lets look at a Simulink example

These are of the form: $\frac{R_{\sigma}}{R_{\sigma}C_{\sigma}s+1}$ or

 $\frac{R_{\sigma}}{\tau_{\sigma}s+1}$ where

 τ_{σ} is the thermal time constant

- Datasheets often provide the maximum continuous torque / current
- If you use these, your design will always work
- If you want to push the limits, the thermal analysis can be used to design systems that take advantage of the delay / dynamics of the system

5 Nominal torque (max. continuous torque)	mNm	94.6	94.2	92.9	
6 Nominal current (max. continuous current)	Α	7.58	5.03	3.68	

- This is based on the forced response (steady state) solution to the thermal ODE
- In steady state, the system behaves like two resistors in series

- Review of parameters needed for design framework
 - Transmission efficiency (η)
 - Motor resistance (R), inductance (L), torque constant (k_t) , inertia (J), damping (b)
 - Thermal thermal properties $(R_{\sigma}^{total} \text{ or, } R_{\sigma}^{wh} \text{ and } R_{\sigma}^{ha})$ or continuous current / torque for steady state analysis
 - You choose application requirements, motor, transmission ratio (N), maximum voltage

 So far, we have spec'd the components – we've chosen the architecture and now we need to make it a reality

 This includes choosing the physical layout, solid modeling, creating design files, and manufacturing

course

We will go over manufacturing first for the sake of lab

- There are three types of manufacturing
 - Formative
 - Subtractive Some What we will focus on in this
 - Additive

Manufacturing Types

- Choice for subtractive vs. additive comes from feature sizing and available material properties, among other factors (more next slide)
- For rapid prototyping—the focus of this class—features should be on the scale ~0.1 mms to 100s of mms
 - Generally low loads (10s of Mpa or N/m²)
 - Common materials: plastics, woods, ceramics, some metals
 - Fast iteration
- Subtractive
 - Milling
 - Turning / lathing
 - Laser / water cutting
- Additive
 - 3D printing
 - Types / techniques depend heavily on scale

People study ways to improve the waste of traditional mfg.

Chen et al. 2020

Manufacturing Types

- Advantages and disadvantages of 3D printing
- Active area of research
- In 2020, there was over 10k publications each year w/ 'additive mfg'
- 300% increase from 2015
- What accelerated 3D printer development
 - Improved components
 - Open-source, patent expirations, etc.
 - Better CAD software (like Solidworks)
- In this class, we'll learn a few different techniques used to make quick, nice looking, and capable robots

AM = additive mfg. = 3D printing

Milling

- Completed by a spinning bit (end mill bit)
- Parts with more complex geometries require milling from many directions
- 3-axis vs. 5-axis mills

Factors into design

Factors in less for 5-axis milling but parts cost more \$\$\$

Hole depths, undercuts, etc.

'Quick' / economical machine shops in China

Milling and lathing are considered 'traditional

manufacturing' methods

Turning / Lathing

- Lathing cutting or shaping with a lathe
 - Completed rotating a part and cutting at a radius
 - Other uses woodworking / prototyping
- Design decisions can be made to take advantage of rapid prototyping tools
 - We are using laser-cut acrylic for this reason
- Another design consideration is fit or tolerance
 - CNC machining tolerance chart provided below
 - We'll refer back as we learn more about 3D printers
 - Extra space needed for holes / pins, sliding fits, etc.

Permissible deviations in mm for ranges in nominal lengths	f (fine)	Toleranc designation (
		m (medium)	c (coarse)	v (very coarse)
0.5 up to 3	±0.05	±0.1	±0.2	-
over 3 up to 6	±0.05	±0.1	±0.3	±0.5
over 6 up to 30	±0.1	±0.2	±0.5	±1.0
over 30 up to 120	±0.15	±0.3	±0.8	±1.5

Additive Manufacturing / 3D Printing

- To use a 3D printer, first a part file is needed that's exported as a .STL file
- The .STL file contains polygons that 'digitize' the shape
- More polygon elements mean a larger .STL file (usually kB to MB)
- This .STL needs to be transformed into printing instructions (G-code)
- Slicing operations will likely be performed by Alyssa / Makerspace
- Layering is separate from polygon size in STL

Example showing STL resolution polygon size differences

Slicing Software

- A .gcode file is series of commands that tells the 3D printer what actions to perform—where to move, how fast, what temperature to set, etc.
- Each 3D printer expects the .gcode file to be formatted in a specific way based on the printers firmware.
- Two of the most common printer firmwares are RepRap and Marlin.

```
9M107
10M104 S30; set temperature
11G28; home all axes
12G1 Z5 F5000; lift nozzle
13
14; Filament gcode
15
16M109 S30; set temperature and wait for it to be reached
17G21; set units to millimeters
18G90; use absolute coordinates
19M82; use absolute distances for extrusion
20G92 E0
```

Example G-code snippet

G-code is read in a defined way that executes printing each layer

Slicing Software

- Key functions of the slicing software is the infill pattern and layer height
- Infill pattern of interior / structural plastic inserted
- Thicker infill for parts with greater loads
- Different types of infill based on part geometry
- Infill automatically created and with required tool paths
- Print speed is affected by layer height
- Print speed can be optimized based on are of the part (infill or outward facing)
- Most common (open-source) slicing software is Cura

Example infill patterns

Fused Deposition Modeling (FDM)

- One of the most common types 3D printers
- Heated plastic filament is extruded through a nozzle
- Common plastics: ABS, PLA, nylon
- Uses support material alongside build material to support parts they print
- Costs \$100s to \$10,000s

Characteristics:

- Layer thickness: 0.1mm ~ 0.5 mm
- Build volume: $10 \times 10 \text{ cm}^2 \sim 50 \times 50 \text{ cm}^2 +$
- Materials: next slide
- Composite available
 - Continuous
 - Chopped

Fused Deposition Modeling (FDM)

- PLA Thermoplastic monomer that is strong and easy to print, nice finish, good UV resistance
- ABS Better temp resistance than PLA with higher toughness, can be processed with acetone for gloss finish
- PET Heavier than PLA and ABS, with high chemical resistance
- Nylon Strong material with some anisotropy.
 Mixed with glass or carbon fiber in Markforged

3D Hubs

\$800 Prusa (ABS)

\$50k Markforged (Onyx) - with continuous fiber composite reinforcement

Fused Deposition Modeling (FDM)

- Markforged / reinforced printing completed through a browser
- Continuous fiber!
- No slicing software needed
- Why? Markforged uses their own to add filament
- Carbon, fiberglass, Kevlar,
- We have one in FRB but not part of the makerspace

Browser-based printer interaction

Example parts with different types of reinforcement

Add

here

Stereolithography (SLA)

Formlabs Form 3

- SLA uses a liquid photoactive resin
- Laser cures / solidifies a thin layer of material at the focused depth
- The part descends (rather than the part building up)
- Support structure is built like a lattice and broken off
- No additional support material needed
- Cost: \$100+
- Layer thickness: $50 \mu m$
- Build volume: can be very large
- Materials: photopolymers (clear, opaque, range of material properties)
- Variants on SLA printers (DLP) faster by using an image not a laser

Polyjet Printers

- Polyjet printers print like an inkjet printer
- They spray material and cure with a UV light
- Invented by Stratasys
- Benefit: multiple colors and hardness / durometers
- Rubbery parts
- Support material often removed with ultrasonic water bath
- Cons: Parts are UV sensitive and get brittle
- Cost: \$100+
- Layer thickness: 10s of μ m
- Build volume: up to ~100 x 100 cm
- Materials: photopolymers (clear, opaque, range of material properties)

Stratasys Connex 500

Best Practices – Additive Manufacturing

- Design considerations
 - Minimize volume of support structure
 - Check that support structures can be easily separated
 - Add tolerancing to the parts before slicing
 - Minimize overall print time
 - Maximize stiffness and minimize volume
- Slicing considerations
 - 3D printers create parts that are inherently anisotropic
 - Stronger in X-Y direction due to layer separation
 - Orient the part such that printing maximizes strength in desired directions
- Infill considerations
 - Always use an infill percentage < 60%

Best Practices – Additive Manufacturing

We use mostly these in the ball-bot

Threaded inserts can be heated and installed in a part. They come in both metric and English sizes. A soldering iron can be used to heat the insert.

Hex nuts can be designed to be captured in the part, so additional tools are not needed.

Self-tapping screws can be used to provide a secure fit. Inserts and hex nuts will be more robust and easier to assemble / disassemble

Machine screws will provide the lightest hold and should be avoided. Notice how much shallower the threads are compared to the self-tapping screw