

Home

About

Content

Others

FIFEEIENTATION

MACHINE LEARNING

Read More

Borcelle

Artificial Intelligence

Page 01

Machine Learning adalah cara komputer mempelajari data untuk membuat prediski atau keputusan yang berguna untuk manusia. ini berguna dalam berbagai aplikasi, penegnalan wajah prediksi harga saham prediksi chum, prediksi harga

Libraries ini untuk mengelola data pada saat code live berlasung

```
[1] # Import libraries and resources
import pandas as pd
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
import seaborn as sns
```

Borcelle - Artificial Intelligence - Page 03

ini adalah code buat membaca data yang telah di upload oleh kita di google colabs dan juga untuk menyimpan variable data

```
# read the dataset using pandas
data = pd.read_excel('student_scores.xlsx', engine='openpyxl') # Use pd.read_excel with the 'openpyxl' engine
```

Borcelle

Artificial Intelligence

Page 04

Home

About

Content

Others

CODE ini berguna untuk magambil data di baris 1 sampai dari colum data yang kita upload horurs yaitu x nya lalu Scoes y nah kita akan memprediksi scores dalam jarak waktu

⊭ This di data.head		o 7 rows of the data
Hours	(x) Scores	(y)
0	2.5	21
1	5.1	47
2	3.2	27
3	8.5	75
4	3.5	30
5	1.5	20
6	9.2	88

code disini untuk menagalisis data explanatory

code ini adalah describe untuk medapat informasi secara statistiknya Home About Content Others

[]	<pre># this describe the basic stat behind the dataset used data.describe()</pre>								
₹		Hours (x)	Scores (y)						
	count	25.000000	25.000000						
	mean	5.012000	51.480000						
	std	2.525094	25.286887						
	min	1.100000	17.000000						
	25%	2.700000	30.000000						
	50%	4.800000	47.000000						
	75%	7.400000	75.000000						
	max	9.200000	95.000000						

Home About Content Others

code bertujuan memvisualisasikan data dengan menggunakan grafik scatter

Read More

```
[ ] # These Plots help explain the values and how they are scattered

plt.figure(figsize=(12,6))
    sns.pairplot(data,x_vars=['Hours (x)'],y_vars=['Scores (y)'],size=7,kind='scatter')
    plt.xlabel('Hours (x)')
    plt.ylabel('Scores (y)')
    plt.title('Scores Prediction')
    plt.show()
```

FEATURE ENGINEERING

Code ini untuk memeriksa data apakah ada duplicate atau tidak karena di machine learniing tidak bisa menolah data yang bersifat ducplicate **Home About Content Others**

```
[ ] df = data.copy()
[ ] #Check Duplicated Data
     print("DataSebelum Pemeriksaan Duplikat:")
     print(df.shape)
    DataSebelum Pemeriksaan Duplikat:
     (25, 2)
    duplicate_rows_before = df[df.duplicated()]
     duplicate_rows_before
       Hours (x) Scores (y)
    df = df.drop_duplicates()
[ ] print("\nData Setelah Pemeriksaan Duplikat;")
     print(df.shape)
    Data Setelah Pemeriksaan Duplikat;
     (25, 2)
```

Home About Content Others

Code disini berfungsi untuk mengecek ada outlier atau tidak dengan menggunakan libraries seabron dan menggunakan boxplot

```
import seaborn as sns
    import matplotlib.pyplot as plt
    # Outlier Analysis
    sns.boxplot(x="Hours(x)", data=df)
    # Menambahkan label sumbu dan judul
    plt.xlabel("Hours (x)")
    plt.ylabel("Frequency") # Anda bisa mengunakan "Hours (x)" atau "Jam"
    plt.title("Boxplot Hours (x)")
    # Menampilkan plot
    plt.show()
₹
                                 Boxplot Hours (x)
```

Home About Content Others

Code split ini berfungsi untuk membagi data

```
# Import machine learning data from scikit learn
from sklearn.model_selection import train_test_split

# Split the data for train and test
# train : test = 75 ; 25 atau 80 : 20 atau 70:30 atau 85:15
x_train,x_test,y_train,y_test = train_test_split(x,y,train_size=0.75, random_state=42)
```

Cde ini berfungsi fittting data train untuk dan juga proses belajar di Linear Regression setelah belajar lalu code dibawah berfungsi untuk memprediksi

```
Home About Content Others
```

Home About Content Others

Cde ini berfungsi mengevaluasi secara kualitatif dan memvisualisasikan dengan grafik

```
[ ] # Plotting the actual and predicted values

c = [i for i in range (1,len(y_test)+1,1)]

plt.plot(c,y_test,color='r',linestyle='-',label='Actual Data')

plt.plot(c,y_pred,color='b',linestyle='dashed',label='Prediction')

plt.xlabel('Scores (x)')

plt.ylabel('index')

plt.title('Prediction with Linear Regression')

plt.legend()

plt.show()
```

Cde ini berfungsi untuk mengambil nilai coefisienya

```
[ ] # Intecept and coeff the line
    print('Intercept of the Linear Regression model:',lr_model.intercept_)
    print('coefficient of the line Linear Regression:', lr_model.coef_)
```

Intercept of the Linear Regression model: 2.4803670915057623 coefficient of the line Linear Regression: [9.71409219]

Then is said to from a line with result in Linear Regression.

$$y = 2.4803 + 9.7140 x$$

Code ini berfungsi sama seperti linear regression untuk proses belajar mahasiswa tapi ini menggunakan decisio tree

```
[ ] from sklearn.tree import DecisionTreeRegressor # mahasiswa
    dt_model = DecisionTreeRegressor()
    dt_model.fit(x_train, y_train)
₹
         DecisionTreeRegressor
     DecisionTreeRegressor()
    # Predicting the Scores (y) for the Test values
    y_pred_dt = dt_model.predict(x_test) # soal uts maupun uas
```

Borcelle

- Artificial Intelligence

Page 09