2024-2025 秋季学期离散数学-第 9 次作业

主观题 9.1

1. 我们分别计算 $\mathcal{PPP}(\emptyset)$ 、 $\mathcal{PP}(\emptyset)$ 以及 $\mathcal{P}(\emptyset)$, 很容易可以得到

$$\begin{split} \mathcal{P}(\emptyset) &= \{\emptyset\} \\ \mathcal{P}\mathcal{P}(\emptyset) &= \{\emptyset, \{\emptyset\}\} \\ \mathcal{P}\mathcal{P}(\emptyset) &= \{\emptyset, \{\emptyset\}, \{\{\emptyset\}\}, \{\emptyset, \{\emptyset\}\}\} \} \end{split}$$

因此我们可以得到

$$\left\{ \begin{array}{l} \left\{ \mathcal{PPP}(\emptyset), \mathcal{PP}(\emptyset), \mathcal{P}(\emptyset), \emptyset \right\} = \left\{ \emptyset, \left\{ \emptyset \right\}, \left\{ \left\{ \emptyset \right\} \right\}, \left\{ \emptyset, \left\{ \emptyset \right\} \right\} \right\} \end{array} \right\}$$

当然也可以使用 \cup $\{\mathcal{P}(A)\} = A$ 的结论得到该广义并是 $\mathcal{PPP}(\emptyset)$

2. 根据上面的计算结果, 我们可以得到

$$\bigcap \{ \mathcal{PPP}(\emptyset), \mathcal{PP}(\emptyset), \mathcal{P}(\emptyset) \} = \{ \emptyset \}$$

主观题 9.2

- 1. $\mathcal{P}(A) = \{\emptyset, \{\emptyset\}, \{\{\emptyset\}\}, \{\{\emptyset\}\}\}\}$,易知 $\cup \mathcal{P}(A) = A = \{\{\emptyset\}, \{\{\emptyset\}\}\}\}$
- 2. $\cup A = \{\emptyset, \{\emptyset\}\}$,则其幂集 $\mathcal{P}(\cup A) = \{\emptyset, \{\emptyset\}, \{\{\emptyset\}\}, \{\emptyset, \{\emptyset\}\}\}$

主观题 9.3

1. 证明: 我们知道 $A-B=\{x\mid x\in A\land x\notin B\}$,则 $(A-B)-C=\{x\mid x\in A\land x\notin B\land x\notin C\}$,并且我们还有

$$\begin{split} A-C &= \{x \mid x \in A \land x \notin C\} \\ B-C &= \{x \mid x \in B \land x \notin C\} \\ (A-C)-(B-C) &= \{x \mid x \in A \land x \notin C \land \neg (x \in B \land x \notin C)\} \\ &= \{x \mid x \in A \land x \notin B \land x \notin C\} \end{split}$$

因此两个集合是相等的,(A-B)-C=(A-C)-(B-C)

- 2. 证明: $A \oplus B = (A B) \cup (B A) = \{x \mid (x \in A \land x \notin B) \lor (x \in B \land x \notin A)\}$, 注意到 A = B, 因此, $x \in A \land x \notin B = F$, 于是我们证明了 $A \oplus B = \emptyset$
- 3. 证明: 我们知道 $A \cap B = \emptyset$ 等价于 $\forall x \in A, x \notin B$, 而 $A \subseteq -B$ 等价于 $\forall x \in A, x \notin B$, 因此我们证明了

$$A \cap B = \emptyset \Leftrightarrow A \subseteq -B$$

我们知道 $B \subseteq -A$ 等价于 $\forall x \in B, x \notin A$,这也等价于 $\forall x \in A, x \notin B$,综上所述我们证明 了

$$A\cap B \Leftrightarrow A\subseteq -B \Leftrightarrow B\subseteq -A$$

主观题 9.4

- 1. A-B=B, 则说明 $\forall x \in B$ 都有 $x \notin B \land x \in A$, 这只能说明 $A=B=\emptyset$
- 2. A-B=B-A, 则说明 $\forall x \in A \land x \notin B$ 都有 $x \in B \land x \notin A$, 因此 A=B
- 3. $A \cap B = A \cup B$,则说明 A = B
- 4. $A \oplus B = A$, 则说明 $B \subseteq A$

主观题 9.5

- 1. $(A-B) \cup (A-C) = A$, 这说明 $A-B \supseteq A (A-C)$, 于是可以得到 $A-B \supseteq C$, 而这 说明 $B \cap C = \emptyset$
- 2. $(A-B)\oplus (A-C)=\emptyset$, 注意到

$$(A-B) \oplus (A-C) = ((A-B)-(A-C)) \cup ((A-C)-(A-B))$$

$$= (C-B) \cup (B-C)$$

$$= \emptyset$$

这说明 B = C

主观题 9.6

- 1. 若 $A \times B = \emptyset$, 则 $A = \emptyset$ 或者 $B = \emptyset$
- 2. 只有当 $A=\emptyset$ 时才有可能有 $A\times A=A$,否则 $A\times A$ 得到的是集合 $\{< x,y> | x,y\in A\}$,当 $A\neq\emptyset$ 时, $A\times A\neq A$