ΜΑΣ029 - Στοιχεία Γραμμικής Άλγεβρας Χειμερινό εξάμηνο 2021-2022

Ασκήσεις 4ου Κεφαλαίου - Α μέρος

1. Έστω τα διανύσματα $\mathbf{b} = \begin{bmatrix} 2 \\ -1 \\ 6 \end{bmatrix}$, $\mathbf{a_1} = \begin{bmatrix} 1 \\ -2 \\ 0 \end{bmatrix}$, $\mathbf{a_2} = \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix}$ και $\mathbf{a_3} = \begin{bmatrix} 5 \\ -6 \\ 8 \end{bmatrix}$. Προσδιορίστε αν το διάνυσμα \mathbf{b} είναι γραμμικός συνδυασμός των $\mathbf{a_1}$, $\mathbf{a_2}$ και $\mathbf{a_3}$ κι αν ναι να βρείτε τον γραμμικό συνδυασμό.

Απάντηση: $b \in \text{Span}\{a_1, a_2, a_3\}, b = 2a_1 + 3a_2 + 0a_3$

2. Έστω
$$\mathbf{a_1} = \begin{bmatrix} 1 \\ 4 \\ -2 \end{bmatrix}$$
, $\mathbf{a_2} = \begin{bmatrix} -2 \\ -3 \\ 7 \end{bmatrix}$ και $\mathbf{b} = \begin{bmatrix} 4 \\ 1 \\ h \end{bmatrix}$. Για ποια ή ποιες τιμές του h είναι το \mathbf{b} στο $\mathrm{Span}\{\mathbf{a_1}, \mathbf{a_2}\}$;

Απάντηση: h = -17

3. Aν
$$\mathbf{u} = \begin{bmatrix} 0 \\ 4 \\ 4 \end{bmatrix}$$
 και $A = \begin{bmatrix} 3 & -5 \\ -2 & 6 \\ 1 & 1 \end{bmatrix}$, εξετάσετε αν παράγεται το \mathbf{u} από τις στήλες του A .

Απάντηση: Ναι

4. Αν $A = \begin{bmatrix} 2 & -1 \\ -6 & 3 \end{bmatrix}$ και $\mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$, δείξτε ότι η εξίσωση $A\mathbf{x} = \mathbf{b}$ δεν έχει λύση για όλα τα διανύσματα \mathbf{b} και περιγράψτε τα \mathbf{b} για τα οποία έχει λύση.

Απάντηση: Έχει λύση μόνο αν $3b_1 + b_2 = 0$

5. Δίνεται ότι

$$\begin{bmatrix} 4 & -3 & 1 \\ 5 & -2 & 5 \\ -6 & 2 & -3 \end{bmatrix} \begin{bmatrix} -3 \\ -1 \\ 2 \end{bmatrix} = \begin{bmatrix} -7 \\ -3 \\ 10 \end{bmatrix}.$$

Βρείτε τους αριθμούς c_1 , c_2 και c_3 για τους οποίους ισχύει

$$\begin{bmatrix} -7 \\ -3 \\ 10 \end{bmatrix} = c_1 \begin{bmatrix} 4 \\ 5 \\ -6 \end{bmatrix} + c_2 \begin{bmatrix} -3 \\ -2 \\ 2 \end{bmatrix} + c_3 \begin{bmatrix} 1 \\ 5 \\ -3 \end{bmatrix}.$$

1

Απάντηση: $c_1 = -3, c_2 = -1, c_3 = 2$

6. Έστω $\mathbf{v_1}, \mathbf{v_2}, \mathbf{v_3} \in \mathbb{R}^4$. Μπορεί να ισχύει $\mathrm{Span}\{\mathbf{v_1}, \mathbf{v_2}, \mathbf{v_3}\} = \mathbb{R}^4$; Δικαιολογήστε την απάντησή σας.

Απάντηση: Όχι

7. Breite to Span
$$\left\{\begin{bmatrix}1\\-1\\0\\2\end{bmatrix},\begin{bmatrix}3\\-1\\-4\\0\end{bmatrix},\begin{bmatrix}0\\-1\\2\\3\end{bmatrix},\begin{bmatrix}3\\1\\-8\\-1\end{bmatrix}\right\}$$
.

Απάντηση: $\{b \in \mathbb{R}^n \mid 2b_1 + b_2 + b_3 = 0\}$

8. Προσδιορίστε σε καθεμία από τις περιπτώσεις αν τα διανύσματα είναι γραμμικώς ανεξάρτητα. Δικαιολογήστε την απάντησή σας.

i)
$$\begin{bmatrix} 5 \\ 0 \\ 0 \end{bmatrix}$$
, $\begin{bmatrix} 7 \\ 2 \\ -6 \end{bmatrix}$, $\begin{bmatrix} 9 \\ 4 \\ -8 \end{bmatrix}$

ii)
$$\begin{bmatrix} 1 \\ -3 \end{bmatrix}$$
, $\begin{bmatrix} -3 \\ 9 \end{bmatrix}$

iii)
$$\begin{bmatrix} 5\\1 \end{bmatrix}$$
, $\begin{bmatrix} 2\\8 \end{bmatrix}$, $\begin{bmatrix} 1\\3 \end{bmatrix}$ $\begin{bmatrix} -1\\7 \end{bmatrix}$

iv)
$$\begin{bmatrix} 4 \\ -2 \\ 6 \end{bmatrix}$$
, $\begin{bmatrix} 6 \\ -3 \\ 9 \end{bmatrix}$

v)
$$\begin{bmatrix} 1\\4\\-7 \end{bmatrix}$$
, $\begin{bmatrix} -2\\5\\3 \end{bmatrix}$, $\begin{bmatrix} 0\\0\\0 \end{bmatrix}$

Απάντηση: i) γρ. ανεξάρτητα ii) γρ. εξαρτημένα iii) γρ. εξαρτημένα iv) γρ. εξαρτημένα v) γρ. εξαρτημένα

9. Προσδιορίστε αν οι στήλες του πίνακα

$$A = \begin{bmatrix} 0 & -8 & 5 \\ 3 & -7 & 4 \\ -1 & 5 & -4 \\ 1 & -3 & 2 \end{bmatrix}$$

είναι γραμμικώς ανεξάρτητες και δικαιολογήστε την απάντησή σας.

Απάντηση: Είναι γραμμικά ανεξάρτητες

10. Για ποια ή ποιες τιμές του h είναι τα διανύσματα

$$\begin{bmatrix} 1 \\ -1 \\ 4 \end{bmatrix}, \begin{bmatrix} 3 \\ -5 \\ 7 \end{bmatrix}, \begin{bmatrix} -1 \\ 5 \\ h \end{bmatrix}$$

γραμμικώς εξαρτημένα;

Απάντηση: h = 6

11. Έστω τα διανύσματα

$$\mathbf{v_1} = \begin{bmatrix} 1 \\ -3 \\ 2 \end{bmatrix}, \quad \mathbf{v_2} = \begin{bmatrix} -3 \\ 9 \\ -6 \end{bmatrix}, \quad \mathbf{v_3} = \begin{bmatrix} 5 \\ -7 \\ h \end{bmatrix}.$$

2

Για ποια ή ποιες τιμές του h:

- (i) είναι το v_3 στο $Span\{v_1, v_2\}$?
- (ii) είναι το σύνολο $\{v_1, v_2, v_3\}$ γραμμικώς εξαρτημένο;

Απάντηση: i) $\mathbf{v}_3 \in \mathrm{Span}\{\mathbf{v}_1,\mathbf{v}_2\}$ για κάθε $h \in \mathbb{R}$ ii) γραμμικά εξαρτημένο για κάθε $h \in \mathbb{R}$