y tenemos que

$$x + y = x' + y',$$

$$x - y = x' - y'.$$

Sumando, tenemos

$$2x = 2x'$$
.

Por tanto, x = x', y, de forma similar, restando tenemos que y = y', lo que demuestra que T es inyectiva (en todo el dominio de \mathbb{R}^2). Realmente, puesto que T es lineal y $T(\mathbf{x}) = A\mathbf{x}$, donde A es una matriz 2×2 , habría sido suficiente ver que det $A \neq 0$ (véase el Ejercicio 12).

Aplicaciones sobreyectivas

En los Ejemplos 1 y 2, hemos determinado la imagen $D=T(D^*)$ de una región D^* según una aplicación T. Lo que nos interesa en la siguiente sección es, en parte, el problema inverso: a saber, dada D y una aplicación inyectiva T de \mathbb{R}^2 en \mathbb{R}^2 , hallar D^* tal que $T(D^*)=D$.

Antes de examinar esta cuestión más detalladamente, vamos a presentar el concepto de aplicación "sobreyectiva".

Definición La aplicación T es **sobreyectiva** sobre D si para todo punto $(x,y) \in D$ existe al menos un punto (u,v) en el dominio de T tal que T(u,v)=(x,y).

Por tanto, si T es sobreyectiva, podemos resolver la ecuación T(u,v) = (x,y) para (u,v), dado $(x,y) \in D$. Además, si T es inyectiva, esta solución es única.

Para aplicaciones lineales T de \mathbb{R}^2 en \mathbb{R}^2 (o de \mathbb{R}^n en \mathbb{R}^n) resulta que inyectivo y sobreyectivo son conceptos equivalentes (véanse los Ejercicios 12 y 13).

Si disponemos de una región D y una aplicación T, la determinación de una región D^* tal que $T(D^*) = D$ solo será posible cuando para cada $(x,y) \in D$ existe un (u,v) en el dominio de T tal que T(u,v) = (x,y) (es decir, T debe ser sobreyectiva sobre D). El siguiente ejemplo muestra que esto no siempre puede hacerse.

Ejemplo 5

Sea $T \colon \mathbb{R}^2 \to \mathbb{R}^2$ una aplicación dada por T(u,v) = (u,0). Sea D el cuadrado, $D = [0,1] \times [0,1]$. Dado que T aplica todo \mathbb{R}^2 en un eje, es imposible hallar un D^* tal que $T(D^*) = D$.

Veamos de nuevo el Ejemplo 2 utilizando estos métodos.

Ejemplo 6

Sea T la aplicación definida como en el Ejemplo 2 y sea D el cuadrado cuyos vértices son (1,0),(0,1),(-1,0),(0,-1). Hallar D^* tal que $T(D^*)=D$.