In the case that e > n+r+1, we have confirmed that there exists an iso $\varphi_{2n+r}^r: W \to V'$ for appropriate subrepresentation V' and quotient W of M. Define the following coefficients:

$$\Phi_3(q^{1/2}) := q^{3/2} + 1$$
$$[3]_{q^{1/2}} := q^{3/2} + q + q^{1/2} + 1$$
$$q^{1/2} [2]_{q^{1/2}} := q + q^{1/2}$$

Then, we may empirically compute the following:

e may empirically compute the following:
$$\varphi_6^0 = \varphi_5^1 = \begin{bmatrix} 0 & 0 & -\Phi_3(q^{1/2}) & 0 & 0 \\ 0 & -\Phi_3(q^{1/2}) & [3]_{q^{1/2}} & 0 & 0 \\ 0 & 0 & [3]_{q^{1/2}} & 0 & -\Phi_3(q^{1/2}) \\ -[3]_{q^{1/2}} & [3]_{q^{1/2}} & q^{1/2} [2]_{q^{1/2}} & 0 & [3]_{q^{1/2}} \\ [3]_{q^{1/2}} & 0 & [3]_{q^{1/2}} & -[3]_{q^{1/2}} & 0 \end{bmatrix}$$

$$\varphi_5^3 = \begin{bmatrix} -q^{1/2} [2]_{q^{1/2}} & [3]_{q^{1/2}} & q^{1/2} \\ q^{1/2} & q^{3/2} & 0 \end{bmatrix}$$

$$\varphi_4^0 = \begin{bmatrix} 0 & -[3]_{q^{1/2}} \\ -1 & 1 \end{bmatrix}$$

$$\varphi_4^2 = \begin{bmatrix} 0 & [3]_{q^{1/2}} & 0 \\ 1 & -1 & 0 \\ -1 & 0 & 1 \end{bmatrix}$$

$$\varphi_3^1 = \begin{bmatrix} 0 & -[3]_{q^{1/2}} \\ q^{1/2} [2]_{q^{1/2}} & -q^{1/2} [2]_{q^{1/2}} \end{bmatrix}$$

The following illustrates triviality of the kernel at various e:

7	8												
n	7	8	9										
	6	7	8	9	10								
n	5	6	7	8	9	10	11						
	4	5	6	7	8	9	10	11	12				
	3	4	5	6	7	8	9	10	11	12	13		
1	2	3	4	5	6	7	8	9	10	11	12	13	14
	0						r						12
7	8												
7	8 7	8	9										
7	8 7 6	8	9	9	10								
n^{7}	8 7 6 5			9	10 9	10	11						
n^{7}	7 6 5	7	8			10 9	11 10	11	12				
	8 7 6 5 4 3	7 6	8	8	9			11 10	12 11	12	13		
n	7 6 5	7 6 5	8 7 6	8 7	9 8	9	10			12 11	13 12	13	14

7	8													
	7	8	9											
	6	7	8	9	10									
n	5	6	7	8	9	10	11							
	4	5	6	7	8	9	10	11	12					
	3	4	5	6	7	8	9	10	11	12	13			
1	2	3	4	5	6	7	8	9	10	11	12	13	14	
	r													
7	8													
	7	8	9											
	6	7	8	9	10									
n	5	6	7	8	9	10	11							
	4	5	6	7	8	9	10	11	12					
	3	4	5	6	7	8	9	10	11	12	13			
1	2	3	4	5	6	7	8	9	10	11	12	13	14	
	0						\overline{r}						12	
7	8													
	7	8	9											
\sim	6	7	8	9	10									
n	5	6	7	8	9	10	11							
	4	5	6	7	8	9	10	11	12					
1	3	4	5	6	7	8	9	10	11	12	13 12	10	1.4	
1	0	3	4	5	6	7	8	9	10	11	12	13	14 12	
							r						12	
7	8													
	7	8	9											
	6	7	8	9	10		· · · · · ·							
n	5	6	7	8	9	10	11		,					
	4	5	6	7	8	9	10	11	12					
	3	4	5	6	7	8	9	10	11	12	13			
	1					7			10		10	10	14	
1	0	3	4	5	6	′	8	9	10	11	12	13	14	

7	8												
	7	8	9										
	6	7	8	9	10								
n	5	6	7	8	9	10							
	4	5	6	7	8	9	10	11	12				
	3	4	5	6	7	8	9	10	11	12	13		
1	2	3	4	5	6	7	8	9	10	11	12	13	14
	0						r						12
							'						