Search algorithms

1. Basic search algorithms

- Linear search: $A_{LSearch}(N) \sim \frac{2N}{\log{(N)}}$ $W_{LSearch}(N) = N$ $B_{LSearch}(N) = 1$
- Binary search: $A_{LSearch}(N) \sim \log(N) + O(1)$ $W_{LSearch}(N) = \lceil \log(N) \rceil$ $B_{LSearch}(N) = 1$

In a search decision tree with N internal nodes, the lower bound is:

$$W_A(N) \ge height_{min}(N) \text{ or } W_A(N) \ge \Omega(\log(N))$$

 $A_A(N) \ge \Omega(\log(N))$

For all algorithms A that are based in key comparisons.

We can conclude that given this bounds binary search is optimal.

2. Search on dictionaries

A dictionary is a sorted set of data that supports the following operations:

- Search(key, dict), returns the position of the key in the dictionary.
- Insert(key, dict), inserts the key in the dictionary.
- Remove(key, dict), removes the key in the dictionary.

We have several options for the data structure of the dictionary:

- a. **Sorted array**, the search is optimal but the insertion is costly ($\Theta(N)$ very bad).
- Binary search Tree. In this structure the parent node is bigger than his left child but smaller than his right child.

The cost of the insertion in a binary search tree is O(height(T)) (being T the tree).

The cost of removing in a binary tree is the cost of searching a key and readjusting the tree.

This is an example of removing and readjusting:

So, searching in a binary search tree has the following cost:

$$A_{Search}^{S}(N) = 1 + \frac{1}{N} A_{Create}(N)$$

$$A_{Create}(N) = 2N \cdot log(N) + O(N)$$

$$A_{Search}^{S}(N) = \Theta(\log(N))$$

3. AVL Trees

An AVL tree is a data structure based in a binary search tree which uses **balance factors** in each node. A balance factor in a node is defined as <u>the height in his left subtree</u> – the height in his right subtree, this balance can only be: -1, 0 and 1.

In order to build this tree, we follow 2 steps, first we perform the normal insertion in a binary search tree, and second, if it is needed, we rebalance the node with a rotation.

Unbalance	Rotation
(-2,-1)	Left Rotation (LR) at -1 (Left child of -1 turns into right child of -2)
(2,1)	Right rotation (RR) at 1 (Right child of 1 turns into left child of 2)
(-2,1)	Right-left rotation (RLR) at the left of 1 RR(left(1))+ LR(left(1))
(2,-1)	Left-right rotation (LRR) at the right of -1 LR(right(-1))+ RR(right(-1))

If T is an AVL with N nodes, then height(T)=O(log(N)).

Removing in an AVL tree is different, the common solution is to perform a **lazy deletion**, the node to remove is marked as free.

4. Hashing.

With hashing we can search with a cost which is less than O(log(N)).

We have a dictionary with **data D**, each data has a unique **key k=k(D)**, so we search **by** keys but **not through** keys.

We have several ways of implementing hashing:

- a. We calculate k*=max{k(D): D ∈ D}, we store each D in an array T of size k* (assuming that there are not repeated keys).
 With this the cost is O(1), but if k* is too large then the amount of memory to store the array is excessive.
- b. We fix M > |D| and we define an injective function where if k ≠ k' then k(k) ≠ k(k') so k:{k(D)/D∈ D}→{1,2,3,...,M}.
 Now we place D at the index k(k(D)) in the array T.
 So, searching is done in a constant time with a reasonable memory consumption. The problem is that it is very hard to find such injective and universal function.
- c. We search for a universal **k** universal function (valid for any set of keys), and we allow that **k** is not injective. Now it is possible to have **collisions** because $k \neq k'$ and k(k) = k(k'), so we have to implement a mechanism to deal with collisions and create a hash function.

When we create hash functions, our goal is to have the less possible collisions. So, we have an array T with M data, this means that **p(collision)=1/M**. One way for implementing this function is to use random indexes using rand().

Another way is using divisions, so m > |D| where **m** is prime, then we define **h(k)=k%m**.

Another way is using multiplications, so m > |D| and we have Φ as an irrational number equal to $(1 + \sqrt{5})/2$ or $(\sqrt{5} - 1)/2$, then we define $\mathbf{h}(\mathbf{k}) = [m \cdot (\mathbf{k} \cdot \boldsymbol{\Phi})]$

Let's now define a **uniform hash function**. A hash function is uniform if given k and k' where $k \neq k'$, then p(h(k) = h(k')) = 1/m

In order to solve collisions, we do it in these ways:

• Chaining: If we have a collision, we create a linked list.

The search on average is:

In the **failure** case: $A_{SHC}^f(N,m) = \frac{N}{m} = \lambda$

In the **successful** case: $A_{SHC}^{s}(N,m) = 1 + \frac{\lambda}{2} + O(1)$

• Open addressing: We have several methods in open addressing.

In **linear probing**, if we have a collision, we store the data in the next free space. p=T[h(D)], (p+1)%m if this is occupied then (p+2)%m,... until we find one free. In **quadratic probing**, we do the same as in linear probing but in positions $(p+1^2)\%m$,...

In random probing, we try random positions.

The Average cost in probing methods is:

In the **failure case** $A_P^f(N,m) = f(\lambda)$

In the successful case $A_P^s(N,m) \cong \frac{1}{\lambda} \int_0^{\lambda} f(u) du$