MAST20005/MAST90058: Assignment 3

Due date: 11am, Thursday 14 October 2021

Instructions: See the LMS for the full instructions, including the submission policy and how to submit your assignment. Remember to submit early and often: multiple submission are allowed, we will only mark your final one. Late submissions will receive **zero** marks.

Problems:

1. (R) We have the following random sample of size 17 on paired variables (X, Y). We wish to test whether X and Y differ in location.

					27.8					
y	27.4	28.1	22.9	31.3	16.3	50.1	20.0	24.6	23.3	19.3
					33.6					
y	24.4	24.4	29.5	27.6	21.7	25.4	39.4			

- (a) Using a significance level of 5%, perform an appropriate version of each of the following tests. In each case, state the null and alternative hypothesis.
 - i. Sign test.
 - ii. Wilcoxon test.
 - iii. T-test.
- (b) How do the conclusions of these tests compare with each other? Explain your answer and what conclusion you would form overall.
- (c) Estimate, via simulation, the power of each of these three tests if the true distributions are defined by $X \sim N(30, 3^2)$ and $Y X \sim N(3, 5^2)$.
- 2. (R) A class of 80 biology students is carrying out a project. Each student is required to run 30 experiments to see how often the seed of a certain plant will germinate. The following table summarises the results from all of the students, with each student contributing a single observation (a number of germinations between 0 and 30):

Germinations	3	4	5	6	7	8	9	10	11	12	13	17	
Count	1	2	2	4	10	16	9	11	13	4	7	1	$(\sum = 80)$

- (a) Assuming that these follow a Bi(30, p) distribution, estimate p.
- (b) Design a set of classes suitable for carrying out a goodness-of-fit test for a binomial distribution. You will need to merge some of the classes in each tail until you have expected counts of at least 5 in each one.
- (c) Using your new version of the table, carry out the test using a 5% significance level and state your conclusion.

3. Let X have a Pareto distribution with pdf,

$$f(x) = \theta x^{-(\theta+1)}, \quad x \geqslant 1, \quad \theta > 0.$$

Suppose we have a random sample of n observations on X.

- (a) Find the cdf of the sample minimum, $X_{(1)}$.
- (b) Find the p quantile, π_p , in terms of p and θ .
- (c) Find the asymptotic variance of the sample median, \hat{M} .
- 4. (R) An experiment was carried out to measure the power output of solar panels mounted at different angles. Four different angles were used for each of 5 different types of panels, with two replicate panels for each combination. The data obtained were:

	Panel									
Angle	1	2	3	4	5					
0°	42.3	42.2	37.6	36.8	45.8					
	41.4	40.3	35.7	34.9	43.7					
10°	42.1	42.1	38.4	38.0	45.2					
	40.2	40.3	36.5	37.1	43.1					
20°	42.6	42.7	38.6	40.2	46.9					
	40.8	40.8	36.7	38.3	44.8					
30°	43.6	43.8	41.9	42.9	45.4					
	41.5	41.9	39.8	40.8	43.5					

- (a) Perform a two-way analysis of variance to examine whether these data suggest that the output is affected by the angle of elevation. State and test appropriate hypotheses at a 5% significance level. You should report the value of the appropriate statistic, the p-value, the assumptions you have made and your conclusions.
- (b) Is it possible to test for interaction? If yes, then perform the test and draw an interaction plot. Otherwise, explain why it is not possible.