Homework 5

Samuel Lindskog

September 30, 2024

Problem 1

Suppose suppose $S \subseteq \mathbb{R}$ a nonempty set bounded above, and $x = \sup(S)$. Let $N(x, \epsilon)$, with $\epsilon > 0$ be an arbitrary ϵ -neighborhood of x. If $a \in N(x, \epsilon)$, then

$$x - \epsilon < a < x + \epsilon$$
, i.e. $a \in (x - \epsilon, x + \epsilon)$.

If a < x, it follows from the definition of supremum that there exists $s \in S$ such that a < s < x, and thus $s \in N(x, \epsilon)$. If a > x, then because all elements of S are less than x, a is not is S and thus $a \in \mathbb{R} \setminus S$. Thus for all ϵ , the intersection of $N(x, \epsilon)$ with S as well as its intersection with $\mathbb{R} \setminus S$ are nonempty, so x is a boundary point of S.

Problem 2

Suppose $S \subseteq T \subseteq \mathbb{R}$. If x is an interior point of S, then there exists $\epsilon > 0$ such that $N(x, \epsilon) \subseteq S$. Because $S \subseteq T$, it follows that $N(x, \epsilon) \subseteq T$, so x is an interior point of T, i.e. $\operatorname{int}(S) \subseteq T$.

Problem 3

- (a) S = (1, 4). The interior of S is equal to S because the interval is open.
- (b) S = [0, 1). The interior of S is (0, 1).

Problem 4

- (a) $S = (-\sqrt{2}, -1) \cup (1, \sqrt{2})$. The interior of S is equal to S because the interval is open.
- (b) S = (-1, 1). The interior of S is equal to S similarly to the above.

Problem 5

Assuming $n \in \mathbb{N}$, an open cover for S such that no finite subcover of S is contained in S is

$$\left\{ N_n \left(x, \ \frac{1}{2n} - \frac{1}{2(n+1)} \right) \ \middle| \ n \in \mathbb{N} \right\}$$

The center point of each neighborhood N_n is positioned such that the N_{n-1} neighborhood includes all points closer to it's center than the center of N_n . Therefore, if any element of the open cover N_k with $k \in \mathbb{N}$ is removed, then the k^{th} element of S will not be in the union of the subcover.