Genotype-phenotype map of complex traits

Lecture

Dominance, linkage, pleiotropy

Dominance

Linkage and Pleiotropy

Epistasis

= environment-dependent phenotype expression

(a single genotype can express multiple phenotypes as response to environmental variation)

Phenotype expression can vary with

- → abiotic environment
- → resource availability
- → presence or absence of predators
- \rightarrow ...

Pfennig et al. (2010), TREE, 25: 459-467

= best illustrated by a reaction norm

A reaction norm plots the expressed phenotypes of a single genotype across a range of environments

- = best illustrated by a reaction norm
- \rightarrow an old concept!

Head hight in Daphnia

- = best illustrated by a reaction norm
- \rightarrow an old concept!
- → initially mostly ignored in Europe and N. America
- → an important conceptual tool in Soviet Union
- → "rediscovered" after WW II in the "west"

= best illustrated by a reaction norm

"The ability of a genotype to change its phenotype was once considered rather a nuisance – making it difficult to define a genotype."

(Bradshaw 2006, New Phytologist 170: 644-648)

"How populations and species respond to modified environmental conditions is critical to their persistence"

(Fox et al. 2019, Phil. Trans. R. Soc. B 374: 20180174)

Kinds of plasticity

active response

"active plastic responses require a specific signal perception-transduction system allowing plants to respond by changing their development."

passive response

"Many phenotypic responses to environmental stress, however, may be the consequence of passive reductions in growth due to resource limitation"

Van Kleunen & Fischer (2005) New Phytologist 166: 49-60)

Kinds of plasticity

labile plasticity

"Physiological and behavioural characters typically display reversible development producing labile phenotypes that change continually during an individual lifetime"

developmental plasticity

"During a brief critical stage of early development, the environment experienced by an individual influences its subsequent development. ...

(also called fixed or one-shot plasticity)

Lande (2015) Molecular Ecology 24: 2038-2045

→ adaptive plasticity

→ maladaptive plasticity

often:

- passive (unavoidable) responsein novel environments
- arises from genetic correlations

→ neutral (non-adaptive)

No selection

→ no phenotypic optima

→ most often, they shape phenotype expression in concert

→ most often, they shape phenotype expression in concert

Plasticity feeds back on genetic evolution

Plasticity feeds back on genetic evolution

With (perfectly) adaptive plasticity genetic change is redundant.

- → adaptive plasticity limits genetic adaptations
- → because they are alternative solutions to the same problem

Plasticity feeds back on genetic evolution

→ because they are alternative solutions to the same problem

Plasticity evolution occurs in 2 steps:

Plasticity evolution occurs in 2 steps:

1) evolution of larger plasticity

Plasticity evolution occurs in 2 steps:

- 1) evolution of larger plasticity
- 2) genetic assimilation (return to smaller plasticity)

But ...

plasticity rarely evolves to be perfect because of

- costs of plasticity
- limited cue reliability
- time lag in phenotypic response
- ..

environment, e

→ Plasticity might benefit genetic diversity and speciation

"genes are probably more often followers than leaders in evolutionary change"

(Mary Jane West-Eberhard)

Exercise

Largely following

Schmid & Guillaume (2017), Heredity 119: 214–225

You could also check out a shiny app:

https://maxschmid.shinyapps.io/plasticityandpopulationdifferentiation/

A single species

2 patches

dispersal between patches

Patches differ in environmental factor

Local adaptation (= genetic divergence)

declines with

- dispersal
- selection strength
- ...
- → varies with the balance between gene flow and selection

