Assignment 4

Sainivedhitha Arunajatesan

Exercise 1

1. Shapiro-Wilk:

The value of α is assumed to be 0.05 and the value of this test is greater than α . Therefore, x1 is normally distributed.

Tests of Normality

		Kolm	ogorov-Smir	nov ^a	Shapiro-Wilk			
		Statistic df		Sig.	Statistic	Sig.		
Ī	x1	.110	50	.177	.970	50	.241	

a. Lilliefors Significance Correction

Histogram:

The histogram looks more or less like a bell shaped curve which proves it is normally distributed.

Skewness and Kurtosis:

The skewness of 0.052 is closer to zero which indicates that it is normally distributed. Generally, a negative kurtosis defines flat peaks. But, here the kurtosis is a very small negative value of -0.454 which indicates a normal distribution with slightly thin tails.

Statistics

X1				
N	Valid	50		
	Missing	0		
Skewne	ss	.052		
Std. Erro	or of Skewness	.337		
Kurtosis	Kurtosis			
Std. Erro	or of Kurtosis	.662		

Box Plot:

The median is in the middle of the box and hence it is normally distributed.

QQ Plot:

The points in the QQ-normal plot lie almost near the straight diagonal line. Thus, the data is normally distributed.

2. The data set x1 was used from Biostatistics 4 simulation.sav file. The data set x2 was calculated using the RV.NORMAL by randomly choosing the mean to be 10 and variance of 4. For the data set containing 50, 40, 25 and 10 values, the plots were as follows:

Case Processing Summary

	Cases								
	Va	lid	Miss	sing	Total				
	N	Percent	N Percent		N Percent				
x2	50	100.0%	0 0.0%		50 100.0%				

Case Processing Summary

	Cases								
	Va	lid	Miss	sing	To	tal			
	N	Percent	N	Percent	N	Percent			
x2	40	100.0%	0	0.0%	40	100.0%			

Case Processing Summary

	Cases						
	Va	lid	Miss	sing	Total		
	N	Percent	N	Percent	N	Percent	
x2	25	100.0%	0	0.0%	25	100.0%	

Case Processing Summary

			Cas	ses			
	Va	lid	Miss	sing	To	tal	
	N	Percent	N	Percent	N	Percent	
x2	10	100.0%	0	0.0%	10	100.0%	

CONCLUSION:

From these graphs obtained through SPSS software, the data sets with higher value of n have dots closer towards the line indicating normal distribution while reduced value of n show deviations of the values from the line more clearly. The outliers are visible accurately with lesser n values.

Exercise 2

1. The 2-samples-t-test is known to robust against violations of the assumption of normal distributions in case of large samples. This means that the 2-samples-t-test holds true for all the assumptions of normal distributions for large samples.

My last name contains 12 letters and hence the variable x2 of both the data sets is taken into consideration. For easy identification, x2 of type A skulls is denoted as $\mathbf{V2}$ and x2 of type B skulls is denoted as $\mathbf{V8}$.

Shapiro-Wilk:

Tests of Normality

	Kolmogorov-Smirnov ^a			Shapiro-Wilk			
Statistic df			Sig.	Statistic	Sig.		
V2	.121	.121 17		.961	17	.647	

^{*.} This is a lower bound of the true significance.

a. Lilliefors Significance Correction

Tests of Normality

	Kolm	Kolmogorov-Smirnov ^a			Shapiro-Wilk			
	Statistic	df	Sig.	Statistic	df	Sig.		
V8	.128	15	.200*	.946	15	.467		

^{*.} This is a lower bound of the true significance.

QQ-Plot:

a. Lilliefors Significance Correction

Box-Plot:

Histogram:

Skewness and Kurtosis:

Statistics

V2		
N	Valid	17
	Missing	0
Skewne	.175	
Std. Erro	or of Skewness	.550
Kurtosis	733	
Std. Erro	r of Kurtosis	1.063

Statistics V8 Valid 15 Missing 2 Skewness .580 Std. Error of Skewness .580 Kurtosis .628 Std. Error of Kurtosis 1.121

CONCLUSION: As the data sets contain very less number of samples, it is considered to satisfy the assumptions of two sample-t-test, if most of the conditions of normal distribution is satisfied. In this case, the Shapiro-Wilk test, QQ-Plot and box plot are satisfied which clearly denotes that x2 of both the types of skulls satisfy the assumptions of two sample-t-test.

2. Two Sample-t-test:

Assuming the value of α to be 5%, the following conclusions has been made. Considering the Levene's test for the equality of variances, the p-value (sig.) is higher than 0.05 meaning that the null hypothesis should not be rejected. This means that for the t-statistic, the value of equal variances assumed is taken for calculation. The value of c, with degree of freedom as 30, is found to be 1.697. From the figure below, the value of t=0.293 is less than c. This means that the null hypothesis is not rejected. Therefore, it is concluded that there is **no difference** between the groups i.e., **Type A skulls do not differ from Type B skulls**.

Group Statistics

	V8	N	Mean	Std. Deviation	Std. Error Mean
V2	1.00	17	139.3529	7.60297	1.84399
	2.00	15	138.6333	6.06650	1.56636

Independent Samples Test

		Levene's Test Varia		t-test for Equality of Means						
							Mean	Std. Error	95% Confidence Interval of the Difference	
		F	Sig.	t	df	Sig. (2-tailed)	Difference	Difference	Lower	Upper
V2	Equal variances assumed	.565	.458	.293	30	.771	.71961	2.45439	-4.29292	5.73213
	Equal variances not assumed			.297	29.730	.768	.71961	2.41946	-4.22347	5.66269

[Note: In these figures, V2 denotes the greatest horizontal breadth of both the types of skull. The values '1' and '2' of V8 denotes 'type A' and 'type B' respectively.]