ISOMERIA

1. ISOMERIA CONSTITUCIONAL (Isomeria plana)

1.1 Conceito de Isomeria

São dois ou mais compostos diferentes que apresentam a mesma fórmula molecular. A existência de isômeros é denominada ISOMERIA ou ISOMERISMO.

Número teoricamente possível de
isômeros para alguns
hidrocarbonetos do tipo ALCANO

Fórmula Molecular	Número de isômeros possíveis
C_4H_{10}	2
C ₅ H ₁₂	3
C_6H_{14}	5
C ₇ H ₁₆	9
C ₈ H ₁₈	18
C_9H_{20}	35
$C_{10}H_{22}$	75
C ₁₅ H ₃₂	4.347
$C_{40}H_{82}$	62.491.178.805.831

Quando dá para perceber a diferença entre dois isômeros observando a fórmula estrutural plana, dizemos que é um caso de ISOMERIA CONSTITUCIONAL OU ISOMERIA PLANA.

Quando é necessário analisar a estrutura espacial das moléculas para perceber a diferença entre os isômeros chamamos de ESTREOISOMEROS OU ISOMERIA ESPACIAL.

1.1 Classificação dos Isômeros Constitucionais

Possíveis diferenças entre isômeros Constitucionais.

Classificar isômeros é dizer qual principal diferença entre eles. São divididos em cinco grupos:

- 1. Isômeros de Função ou funcionas
- 2. Tautômeros
- Isômeros de cadeia
- 4. Isômeros de posição
- 5. Isomeros de Compensação ou Metâmeros

2. ISOMERIA GEOMÉTRICA (Isomeria CIS-TRANS)

2.1 Isomeria geométrica em compostos com dupla ligação

Representam a mesma substância?

Representam a mesma substância?

Podemos dizer que são isômeros, pois são compostos diferentes e apresentam a mesma fórmula molecular: C₂H₂Cl₂

A isso chamamos ISOMERIA GEOMÉTRICA, e esses isômeros são diferenciados pos meio dos prefixos CIS e TRANS.

A ligação dupla divide o espaço em dois planos: um acima e outro abaixo da ligação pi (π) .

Isômeros CIS e TRANS possuem propriedades físicas diferentes:

2.2 - Isomeria geométrica em compostos cíclicos

O ciclo assim como na dupla ligação, não permite livre rotação ao redor da ligação.

Exemplos:

- Feromônio da abelha rainha com efeito regulador sobre a colônia é o isômero TRANS.

$$CH_3 - C - (CH_2)_5 - CH = CH - COOH$$

-Aroma das rosas

2. ISOMERIA ÓPTICA

Substâncias que possuem mesma fórmula molecular e diferentes arranjos espaciais. Esses arranjos diferenciados, tornam os compostos diferentes, produzindo diferentes efeitos fisiológicos.

Esfera:

Mãos e pés:

Possuem plano de simetria

Não possuem plano de simetria

Condição para ocorrência de Isomeria Óptica:

- Presença de carbono quiral ou assimétrico, que torna a substância opticamente ativa.

Cálculo do número de isômeros opticamente ativos

- Isômeros opticamente ativos: 2ⁿ
- Isômeros opticamente inativos: 2ⁿ⁻¹
- Onde n é o número de C* assimétricos diferentes.

EX.:

Isômeros Ativos

23 = 8

Ex.:

2.2 – Atividade Óptica

Atividade Óptica está ligada a assimetria molecular. Moléculas que apresentam carbono quiral ou assimétrico, consequetemente, são assimétricas: desviam o plano da luz polarizada.

Moléculas que deviam o plano da luz polarizada – são opticamente ativa

Moléculas que não deviam o plano da luz polarizada – são opticamente inativa

- Substâncias Ópticamente ativas:

Dextrógiro, (d) ou (+) - desvia o plano de luz para a direita.

Levógiro, (l) ou (-): desvia o plano de luz para a esquerda.

1. TALIDOMIDA

No início da década de , a Alemanha apresentou diversos casos de crianças que nasciam deformadas.

Pesquisa mostrou que a má formação era devido a L-Talidomida

Talidomida

O Isômero destrógiro do LSD causa alucinações enquanto que o isômero levógiro não produz nenhum efeito.

$$LSD = \begin{array}{c} C_{2}H_{5} \\ C_{2}H_{5} \end{array} > N - \begin{array}{c} O \\ I \\ CH_{5} \end{array}$$

O LSD é extraído de uma flor conhecida como Mornig Glory

3. LIMONEMO

Nobel - KNOWLES, NOYORI E SHARPLESS, em 2001. Criaram métodos de obter um produto puro específico, eliminando a versão quiral indesejada — Síntese com catálise assimétrica.

Ex.: Limonemo

4. L-DOPA

L-DOPA remédio para o tratamento de Mal de Parkinson

5. NAXOPRENO

 O Naproxeno possui um carbono quiral, logo apresenta dois isômeros ópticos. Um deles tem ação antiflamatória e o outro causa danos ao fígado.

6. ADRENALINA

 A adrenalina ou epinefrina posui um centro quiral, logo são possíveis dois isômeros ópticos, mas apenas um deles possui efeito fisiológico no nosso organismo (acelera os batimentos cardíacos numa situação de stress).

Nobel - KNOWLES, NOYORI E SHARPLESS, em 2001.

Criaram métodos de obter um produto puro específico, eliminando a versão quiral indesejada – Síntese com catálise assimétrica.