Simple Linear Regression (SLR)

- The SLR Model
- Fitting the SLR Model (Least Squares)
- > Inferences on the Parameters
- ➤ Inferences on the Mean Response
- > Prediction Intervals
- ➤ Analysis of Variance (ANOVA)
- ➤ Residual Analysis

The SLR Model

- A common problem in engineering is to study the relationship between two variables.
 - Let *Y* be the <u>dependent variable</u> (response).
 - Let x be the <u>independent variable</u> (regressor).
- The SLR model for i = 1, ..., n observations

$$Y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$$

- Parameters: β_1 is the slope, β_0 is the y-intercept.
- Random Error: ε_i has mean 0 and variance σ^2 $\Rightarrow Y_i$ is a r.v.

SLR Examples

 \triangleright Goal: Model Y as a function of x.

x (independent var.)	Y (dependent var.)	
H.S. GPA, SAT score	College GPA	
# Cigarettes smoked/day	Blood pressure	
Ad expenditure, Price	Sales	
Temperature, Reaction time	Yield of a chemical	
Height of a person	Weight of a person	

- \triangleright Data is paired: (x_i, y_i)
- > See handout: Widget example.

Features of the SLR Model

- \triangleright Mean and variance of the response Y_i
 - $E[Y_i] = \beta_0 + \beta_1 x_i = \text{true line}$
 - $V(Y_i) = \sigma^2$ = same for all observations

- \triangleright Covariance between responses Y_i and Y_j
 - $Cov(Y_i, Y_j) = Cov(\varepsilon_i, \varepsilon_j) = 0$ for $i \neq j$
 - Uncorrelated ⇒ The outcome of one response does not affect the outcome of another.

Fitting the SLR Model

- The parameters β_0 and β_1 are unknown
 - \Rightarrow The <u>true line</u> $\beta_0 + \beta_1 x$ is unknown.
- ➤ Point estimators
 - b_1 estimates β_1
 - b_0 estimates β_0
- The fitted regression line is:

$$\hat{Y} = b_0 + b_1 x$$

• \hat{y} estimates the true line $\beta_0 + \beta_1 x$

Least Squares (LS) Estimation

- Fitted Values: $\hat{y}_i = b_0 + b_1 x_i$
- \triangleright Residuals: $e_i = y_i \hat{y}_i$
- ➤ Minimize the squared residuals:

$$\min SSE = \sum_{i=1}^{n} e_i^2 = \sum_{i=1}^{n} (y_i - b_0 - b_1 x_i)^2$$

- Take derivatives w.r.t. b_0 and b_1
- Set derivatives equal to 0
- Solve 2 equations for b_0 and b_1

Parameter Point Estimates

$$b_{1} = \frac{n \sum_{i=1}^{n} x_{i} y_{i} - \left(\sum_{i=1}^{n} x_{i}\right) \left(\sum_{i=1}^{n} y_{i}\right)}{n \sum_{i=1}^{n} x_{i}^{2} - \left(\sum_{i=1}^{n} x_{i}\right)^{2}}$$

$$b_{0} = \frac{\sum_{i=1}^{n} y_{i} - b_{1} \sum_{i=1}^{n} x_{i}}{n} = \bar{y} - b_{1} \bar{x}$$

> See handout: widget example.

Error Variance Estimation

► Notation

$$S_{XX} = \sum_{i=1}^{n} (x_i - \overline{x})^2 = \sum_{i=1}^{n} x_i^2 - n\overline{x}^2$$

$$S_{YY} = \sum_{i=1}^{n} (y_i - \overline{y})^2 = \sum_{i=1}^{n} y_i^2 - n\overline{y}^2$$

$$S_{XY} = \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y}) = \sum_{i=1}^{n} x_i y_i - n\bar{x}\bar{y}$$

 \triangleright Rewrite LS estimate for β_1

$$b_1 = S_{XY}/S_{XX}$$

Error Variance Estimation

Rewrite error sum of squares

$$SSE = \sum_{i=1}^{n} e_i^2 = S_{YY} - b_1 S_{XY}$$

➤ Define mean square for error

$$MSE = \frac{SSE}{n-2}$$

- \triangleright Then MSE is an unbiased estimator for σ^2
 - $s^2 = MSE$

Error Variance Estimation

➤ Widget example

$$\sum x_i = 500, \sum y_i = 1100 \Rightarrow \overline{x} = 50, \overline{y} = 110$$

$$\sum x_i^2 = 28,400, \sum y_i^2 = 134,660$$

$$\sum x_i y_i = 61,800$$

ightharpoonup Calculate S_{XX} = 3400, S_{YY} = 13,660, S_{XY} = 6800

$$MSE = \frac{13,660 - (2)(6800)}{10 - 2} = \frac{60}{8} = 7.5$$

Inferences on the Parameters

- ➤ See handout for C.I.'s, H.T.'s, and Prediction.
- \triangleright Widget example: Standard errors for b_1 and b_0

s.e.
$$\{b_1\} = \sqrt{\frac{MSE}{S_{XX}}} = \sqrt{\frac{7.5}{3400}} \cong 0.047$$

$$s.e.\{b_0\} = \sqrt{MSE} \left[\frac{1}{n} + \frac{\bar{x}^2}{S_{XX}} \right] = \sqrt{7.5} \left[\frac{1}{10} + \frac{50^2}{3400} \right]$$
$$\approx 2.503$$

Widget example: Estimate the slope β_1 using a two-sided 95% C.I.

$$t_{\alpha/2, n-2} = t_{.025,8} = 2.306$$

 $b_1 \pm t_{.025,8} \text{ s.e.} \{b_1\} = 2 \pm (2.306)(0.047)$
 $= (1.89, 2.11)$

We are 95% confident that on average personhours increases by between 1.89 and 2.11 for each unit increase in lot size.

➤ Widget example: Test if the slope is significant at the 0.05 level.

$$H_0$$
: $\beta_1 = 0$ vs. H_1 : $\beta_1 \neq 0$ (Form A)

• Using a test statistic:

$$t^* = \frac{b_1 - 0}{s.e.\{b_1\}} = \frac{2}{0.047} \cong 42.6$$

Since $|42.6| > t_{.025, 8} = 2.306$, we reject H_0

• Using the 95% C.I. (1.89, 2.11): Since 0 is <u>not</u> in the C.I., we reject H_0

Widget example: Estimate the slope β_1 using a 95% upperbound C.I.

$$t_{\alpha, n-2} = t_{.05,8} = 1.860$$

$$(-\infty, b_1 + t_{.05,8} \text{ s.e.} \{b_1\}) = (-\infty, 2 + (1.860)(0.047))$$

$$= (-\infty, 2.09)$$

We are 95% confident that on average personhours increases by 2.09 or less for each unit increase in lot size.

➤ Widget example: Test if the slope is less than 2.1 at the 0.05 level.

$$H_0$$
: $\beta_1 = 2.1$ vs. H_1 : $\beta_1 < 2.1$ (Form B)

• Using a test statistic:

$$t^* = \frac{b_1 - 2.1}{s.e.\{b_1\}} = \frac{2 - 2.1}{0.047} \cong -2.129$$

Since $-2.129 < -t_{.05, 8} = -1.860$, we reject H_0

• Using the 95% C.I. $(-\infty, 2.09)$:

Since 2.1 is <u>not</u> in the C.I., we reject H_0

Inferences: Y-intercept

Widget example: Estimate the y-intercept β_0 using a 95% lowerbound C.I.

$$t_{\alpha, n-2} = t_{.05,8} = 1.860$$

$$(b_0 - t_{.05,8} \text{ s.e.} \{b_0\}, \infty) = (10 - (1.860)(2.503), \infty)$$

$$= (7.28, \infty)$$

Note: In this example, β_0 is not meaningful because the range of the independent variable (lot size) does not include x = 0.

Inferences: *Y***-intercept**

➤ Widget example: Test if the y-intercept is greater than 7 at the 0.05 level.

$$H_0: \beta_0 = 7 \text{ vs. } H_1: \beta_0 > 7 \text{ (Form C)}$$

• Using a test statistic:

$$t^* = \frac{b_0 - 7}{s.e.\{b_0\}} = \frac{10 - 7}{2.503} \cong 1.199$$

Since $1.199 < t_{.05, 8} = 1.860$, we fail to reject H_0

• Using the 95% C.I. $(7.28, \infty)$: Since 7 is in the C.I., we fail to reject H_0

Inferences on the Mean Response

- ➤ See handout for C.I.'s, H.T.'s, and Prediction.
- Mean response $E[Y] = \beta_0 + \beta_1 x$ (true line) at specific $x = x_0$
- Widget example: Estimate the mean response when (a) lot size is 55, (b) lot size is 80.
 - Point estimate: $\hat{y} = b_0 + b_1 x_0 = 10 + 2 x_0$

$$\hat{y} \mid_{x=55} = 10 + 2(55) = 120$$

$$\hat{y} \mid_{x=80} = 10 + 2(80) = 170$$

Inferences on the Mean Response

Widget example: Standard errors for \hat{Y} when (a) lot size is 55, (b) lot size is 80.

s.e.
$$\{\hat{Y}|_{x=x_0}\} = \sqrt{MSE\left[\frac{1}{n} + \frac{(x_0 - \bar{x})^2}{S_{XX}}\right]}$$

s.e.
$$\{\hat{Y}|_{x=55}\} = \sqrt{7.5} \left[\frac{1}{10} + \frac{(55-50)^2}{3400} \right] \approx 0.897$$

s.e.
$$\{\hat{Y}|_{x=80}\} = \sqrt{7.5 \left[\frac{1}{10} + \frac{(80-50)^2}{3400} \right]} \approx 1.654$$

Inferences on the Mean Response

➤ Widget example: Use two-sided 95% C.I.'s to estimate the mean response when (a) lot size is 55, (b) lot size is 80

$$\hat{y}|_{x=55} \pm t_{.025,8} \text{ s.e.} \{\hat{Y}|_{x=55}\} = (118.3,121.7) \rightarrow \text{width} = 3.4$$

$$\hat{y}|_{x=80} \pm t_{.025.8} \text{ s.e.} \{\hat{Y}|_{x=80}\} = (166.9, 173.1) \rightarrow \text{width} = 6.2$$

We are 95% confident that the <u>mean</u> personhours required for a lot size of 55 is between 118.3 and 121.7.

Prediction Intervals

- ➤ See handout for C.I.'s, H.T.'s, and Prediction.
- Predict a <u>new</u> observation of Y at $x = x_0$ using a <u>prediction interval</u> (P.I.).
- ➤ Widget example:
 - Prediction of person-hours when lot size is 55 with a single value is still $\hat{y} \mid_{x=55} = 120$.
- Prediction error includes two components
 - Variance of predicted value \hat{Y} .
 - Variance of random error ε .

Prediction Intervals

➤ Widget example: Prediction error for a new observation *Y* when lot size is 55.

$$p.e.\{Y|_{x=x_0}\} = \sqrt{MSE} \left[1 + \frac{1}{n} + \frac{(x_0 - \bar{x})^2}{S_{XX}} \right]$$
$$= \sqrt{MSE + \left(s.e. \{\hat{Y}|_{x=x_0} \} \right)^2}$$

$$p.e.\{Y|_{x=55}\} = \sqrt{7.5 + (0.897)^2} \cong 2.882$$

Prediction Intervals

➤ Widget example: Use two-sided 95% P.I. to predict a new observation of the response when lot size is 55.

$$\hat{y}|_{x=55} \pm t_{.025,8} \ p.e.\{Y|_{x=55}\} = (114.6,125.4)$$

We are 95% confident that a <u>new</u> observation of person-hours for a lot size of 55 will lie between 114.6 and 125.4.

Note: The P.I. for a new response observation is always wider than the C.I. for the mean response.

Analysis of Variance (ANOVA)

➤ Total Sum of Squares

• Variability in the response observations y_i (ignoring the independent variable x_i)

•
$$SST = \sum_{i=1}^{n} (y_i - \overline{y})^2 = S_{yy}$$

➤ Regression Sum of Squares

• Variability explained by the model that includes independent variable x_i

•
$$SSR = \sum_{i=1}^{n} (\hat{y}_i - \overline{y})^2 = b_1 S_{XY} = (b_1)^2 S_{XX}$$

Analysis of Variance (ANOVA)

► Error Sum of Squares

Variability that remains unexplained by the model

•
$$SSE = \sum_{i=1}^{n} e_i^2 = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = S_{YY} - b_1 S_{XY}$$

➤ Decomposition of Total Sum of Squares

• See handout with graphical illustration of ANOVA.

•
$$(y_i - \bar{y}) = (\hat{y}_i - \bar{y}) + (y_i - \hat{y}_i)$$

•
$$SST = SSR + SSE$$

Analysis of Variance (ANOVA)

- \triangleright Degrees of Freedom (*DF*)
 - SST: DF = n 1 (same as sample variance)
 - SSR: DF = 1 (one independent variable)
 - $SSE: DF = DF_{SST} DF_{SSR} = n 2$
- \triangleright Mean Squares: MS = SS/DF
 - MSR = SSR/1 = SSR
 - $MSE = SSE/(n-2) = s^2$
- F-test: H_0 : $\beta_1 = 0$ vs. H_1 : $\beta_1 \neq 0$
 - Reject H_0 if $F^* = \frac{MSR}{MSE} > f_{\alpha,1,n-2}$

ANOVA Table

Source	DF	SS	MS	F
Regression	1	SSR	MSR	F*
Error	n-2	SSE	MSE	
Total	n-1	SST		

Coefficient of Determination:

• Fraction of variability in the response observations that is explained by the model with *x*.

$$R^2 = \frac{SSR}{SST} = 1 - \frac{SSE}{SST}$$

ANOVA Table

➤ Widget example

Source	DF	SS	MS	F
Regression	1	13,600	13,600	1813
Error	8	60	7.5	
Total	9	13,660		

- Since $F^* = 1813 > f_{.01, 1, 8} = 11.26$, we conclude the regression is significant (Reject H_0).
- $R^2 = 0.9956 \Rightarrow 99.56\%$ of the variability in person-hours is explained by the model with independent variable lot size.

Residual Analysis

- ➤ Verify the SLR model assumptions.
- > A linear model is reasonable
 - Check plot of e_i vs. \hat{y}_i for curvature.
- The residuals have the same variance
 - Check plot of e_i vs. \hat{y}_i for funnel shape.
- The residuals follow a normal distribution
 - Check histogram or boxplot of the residuals.
 - Check normal probability plot.
- Example: Muscle Mass handout

Transformations

- > If a linear model is not reasonable
 - Possibly transform x, e.g., x^2 .
- If the residuals do not have constant variance and do <u>not</u> follow a normal distribution
 - Use a variance stabilizing transformation on y.
 - Square root \sqrt{y} , $\log(y)$, inverse $\frac{1}{y}$.
- ➤ If the residuals do not have constant variance and <u>do</u> follow a normal distribution
 - Use weighted least squares.