6.2 线性空间的基、维数与坐标

线性空间向量的数量化

为了表示三维空间中的向量,需要建立空间坐标系, 于是空间中的向量可以用有序三元数组(x,y,z)来表示

为了表示各种抽象线性空间中的向量,也需建立某种坐标系, x_1 x_2 在此坐标系下,各种向量可以用有序的多元数组 $(x_1, x_2, ..., x_n)$ 来表示.

分析三维空间利用坐标系来将向量如 β 与三元数组如 (x_1, y_1, z_1) 对应的特点, x_1, y_1, z_1 本质是向量在三个坐标轴上的分量,

即x轴方向的 x_1 倍大小,y轴方向的 y_1 倍大小,z轴方向的 z_1 倍大小,

换种说法,若x,y,z轴方向的单位向量为 $\alpha_1,\alpha_2,\alpha_3$,

 α_2 则 β 向量为 α_1 的 α_2 的 α_2 的 α_3 的 α_3 的 α_3 的总和,

$$\beta = x_1\alpha_1 + y_1\alpha_2 + z_1\alpha_3$$

我们也可以不用直角坐标系,改为建立仿射坐标系,于是向量的表示仍然利用坐标向量 α_1 ', α_2 ', α_3 ',即 $\beta = x_1$ ' α_1 '+ y_1 ' α_2 '+ z_1 ' α_3 ',然后用(x_1 ', y_1 ', z_1 ')表示向量 β

建立坐标系,本质上是在向量集合中(线性空间)寻找一组极大无关的向量组

基与坐标的定义

定义6.2.1 (线性相关与线性无关) 已知V(K)是线性空间, $\alpha_1, \alpha_2, \ldots, \alpha_m$ 是 V(K)的一组向量,如果存在一组不全为零的数 k_1, k_2, \ldots, k_m 使得 $\sum k_i \alpha_i = 0$,则称该向量组线性相关,否则称为线性无关.

易知:参见Ch2 (P_{59} ~ P_{60} 基本结论(1)~(4), P_{61} 定理2.7.1)

- (1) 由一个非零向量组成的向量组是线性无关的;
- (2) 若一个向量组中含有零元,则此向量组必线性相关;
- (3) 当*m*≥2时,向量组线性相关的充要条件是,其中至少有一个向量可以由该向量组中其余的向量线性表出;
- (4) 若某向量组线性无关,则它的任意一部分组成的向量组(叫子向量组) 也线性无关;若某向量组中有一个子向量组线性相关,则该向量组 也线性相关.

定义6.2.2 (维数) 设V是数域K上的线性空间,

- (1)如果在V中可以找到任意多个线性无关的向量,则称V是无限维线性空间;
- (2)如果存在有限多个向量 $\alpha_1, \alpha_2, \ldots, \alpha_n \in V, n \geq 1$ 满足:
 - 1) $\alpha_1, \alpha_2, \ldots, \alpha_n$ 线性无关
 - 2)V中任一向量都可由 $\alpha_1, \alpha_2, \ldots, \alpha_n$ 线性表出.

则称V是有限维线性空间,称 $\alpha_1,\alpha_2,\ldots,\alpha_n$ 是V的一组基(或基底), α_i 叫第i个基向量,基向量的个数n称为线性空间V的维数,记为 $\dim(V)=n$,并称V是n维线性空间.

* 线性空间V中的不同基所含的向量个数相同.

说明 V中两组基:

$$\{\alpha_1, \alpha_2, \ldots, \alpha_n\}$$
 $\exists \{\beta_1, \beta_2, \ldots, \beta_m\}$

设 $A=(\alpha_1,\alpha_2,\ldots,\alpha_n)$, $B=(\beta_1,\beta_2,\ldots,\beta_m)$,显然两组基可以相互表示,即存在矩阵 $P \in \mathbb{R}^{n \times m}$, $Q \in \mathbb{R}^{m \times n}$ 使得

$$B=AP$$
 , $A=BQ$.

故 A=BQ=APQ, B=AP=BQP, 即 $PQ=E_n$, $QP=E_m$. 由矩阵乘积的秩关系有:

$$n=r(E_n)=r(PQ)\leq r(P)\leq m$$
, $m=r(E_m)=r(QP)\leq r(Q)\leq n$.

即 m=n.

例6.2.1 设 $K^{m \times n}$ 是例6.1.1给出的线性空间,由于 $K^{m \times n}$ 中任一矩阵 $A = (a_{ij})_{m \times n}$ 都可表示为 $A = (a_{ij})_{m \times n} = \sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij} E_{ij},$

其中 E_{ij} 表示在第 i 行,第 j 列交叉处的元素为1,其余元素均为 0的 $m \times n$ 的矩阵(称矩阵单位),容易证得 { $E_{ij}: i=1,2,\ldots,m; j=1,2,\ldots,n$ } 是线性无关的,所以 $K^{m \times n}$ 是 m n 维的 .

- 例6.2.2 设有例6.1.2中的线性空间 $P_n[x]$,注意到向量组1,x, x^2 ,..., x^n 是线性无关的(易证),且 $P_n[x]$ 中任一向量都可以表示为 $p(x)=a_0\cdot 1+a_1\cdot x+a_2\cdot x^2+\ldots+a_n\cdot x^n .$ 因此, $P_n[x]$ 是 n+1 维的 .
- 例6.2.3 易见: 齐次线性方程组 $Ax=\theta$ 的基础解系是其解空间的一组基.
- 例6.2.4 设C是复数域,若将其看做复线性空间,那么它是1维的;若将其看做实线性空间,则它是2维的,因为{1,i}是一组基.
- 例6.2.5 用 $C_{[a,b]}$ 表示闭区间[a,b]上所有连续函数的集合,因无法找到有限个连续函数作为它的基,所以它是无限维的线性空间.

定理**6.2.1** 设 $\alpha_1, \alpha_2, \ldots, \alpha_n$ 是n维线性空间V的一组基,对任意的 $\alpha \in V$, α 可以唯一地由这一组基线性表出.

证明:设
$$\alpha=x_1\alpha_1+x_2\alpha_2+\ldots+x_n\alpha_n$$
, $\alpha=y_1\alpha_1+y_2\alpha_2+\ldots+y_n\alpha_n$. 两式相减

 $(x_1-y_1)\alpha_1+(x_2-y_2)\alpha_2+\dots+(x_n-y_n)\alpha_n=0$. 由 $\alpha_1,\alpha_2,\dots,\alpha_n$ 的线性无关性可知系数为0,即得 $x_1=y_1,x_2=y_2,\dots,x_n=y_n$,即系数唯一.

通过式子: $\alpha = x_1\alpha_1 + x_2\alpha_2 + \dots + x_n\alpha_n$,向量 α 与有序数组 (x_1, x_2, \dots, x_n) 一一对应,于是向量可用数组表示.

定义6.2.3 (坐标) 设 $\alpha_1, \alpha_2, \dots, \alpha_n$ 是n维线性空间V的一组基,对任意的 $\alpha \in V$,若有一组有序数 x_1, x_2, \dots, x_n 使得 α 可表示为 $\alpha = x_1\alpha_1 + x_2\alpha_2 + \dots + x_n\alpha_n$, 这组有序数就称为向量 α 在基 $\alpha_1, \alpha_2, \dots, \alpha_n$ 下的坐标,记为 $x = (x_1, x_2, \dots, x_n)$ 或 $x = (x_1, x_2, \dots, x_n)^T$.

基与坐标的关系可以简洁地用矩阵形式化表示:

$$\alpha = x_1 \alpha_1 + x_2 \alpha_2 + \dots + x_n \alpha_n = (\alpha_1, \alpha_2, \dots, \alpha_n) \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$

两组基 $\alpha_1, \alpha_2, \ldots, \alpha_n$ 与 $\beta_1, \beta_2, \ldots, \beta_n$ 的关系也常用矩阵表示:

$$(\beta_1, \beta_2, \dots, \beta_n) = (\alpha_1, \alpha_2, \dots, \alpha_n) \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \dots & a_{nn} \end{pmatrix}$$

例6.2.6 若 α_1 , α_2 , ..., α_n 是 n 维线性空间 V 的一组基,则每个基向量可表示为 $\alpha_i = 0$ $\alpha_1 + \dots + 0$ $\alpha_{i-1} + 1$ $\alpha_i + 0$ $\alpha_{i+1} + \dots + 0$ α_n ,即 α_i 的坐标为 $(0,\dots,0,1,0,\dots,0)$.由此我们可知,线性空间定义 (定义6.1.3) 中最后一条性质的必要性.

例6.2.7 设 $\alpha_1, \alpha_2, \ldots, \alpha_n$ 是n维线性空间V的一组基,则n个向量 $\beta_1 = a_{11}\alpha_1 + a_{21}\alpha_2 + ... + a_{n1}\alpha_n$ $\beta_2 = a_{12}\alpha_1 + a_{22}\alpha_2 + ... + a_{n2}\alpha_n$ (6.1) $\beta_n = a_{1n}\alpha_1 + a_{2n}\alpha_2 + \dots + a_{nn}\alpha_n$ 是V的一组基的充要条件是,由它们的系数组成的行列式 $D=|a_{ii}|_{n\times n}\neq 0$. 由题意可知,只需证 $\beta_1,\beta_2,\ldots,\beta_n$ 线性无关即可. 设有一组常数 k_1 , k_2, \ldots, k_n 使得 $k_1\beta_1 + k_2\beta_2 + ... + k_n\beta_n = 0$. 将式 (6.1) 代入 (6.2) 得 $(k_1a_{11}+k_2a_{12}+...+k_na_{1n})\alpha_1+(k_1a_{21}+k_2a_{22}+...+k_na_{2n})\alpha_2$ $+...+(k_1a_{n1}+k_2a_{n2}+...+k_na_{nn})\alpha_n=0$. $\mathbf{d}\alpha_1,\alpha_2,\ldots,\alpha_n$ 的线性无关性,上式中 $\alpha_1,\alpha_2,\ldots,\alpha_n$ 的系数都为 $k_1 a_{21} + k_2 a_{22} + \dots + k_n a_{2n} = 0,$

而该方程组有唯一零解的充要条件是系数行列式 $D=|a_{ij}|_{n\times n}\neq 0$.

 $k_1 a_{n1} + k_2 a_{n2} + \dots + k_n a_{nn} = 0.$

证法二: 等价 \Leftrightarrow ($\beta_1,...,\beta_n$)=($\alpha_1,...,\alpha_n$)D,($\beta_1,...,\beta_n$)B=($\alpha_1,...,\alpha_n$) \Leftrightarrow DB= $E \Leftrightarrow |D| \neq 0$

上面的例子实际上给出了从一个已知基构造另外基的方法: 新的基

$$(\beta_1,...,\beta_n)=(\alpha_1,...,\alpha_n)$$
 P, (P可逆)

P为从基 $\alpha_1, \alpha_2, \ldots, \alpha_n$ 到 基 $\beta_1, \beta_2, \ldots, \beta_n$ 的过渡矩阵

例6.2.8 在线性空间 $P_n[x]$ 中,多项式

$$p(x)=a_0+a_1x+a_2x^2+...+a_nx^n$$

在基 $1, x, x^2, \ldots, x^n$ 下的坐标是 (a_0, a_1, \ldots, a_n) , 若取另一组基 $1, (x-a), (x-a)^2, \ldots, (x-a)^n$,

则多项式 $p(x)=a_0+a_1x+a_2x^2+...+a_nx^n$ 按泰勒公式展开为

$$p(x) = p(a) + p'(a)(x-a) + \frac{p''(a)}{2!}(x-a)^2 + \dots + \frac{p^{(n)}(a)}{n!}(x-a)^n.$$

因此, p(x) 在新的一组基 $1, (x-a), (x-a)^2, \dots, (x-a)^n$ 下的坐标是

$$(p(a), p'(a), \frac{p''(a)}{2!}, \dots, \frac{p^{(n)}(a)}{n!}).$$

基变换与坐标变换

若有两组基 $\alpha_1,\alpha_2,\ldots,\alpha_n$ 与 $\beta_1,\beta_2,\ldots,\beta_n$,有关系: $(\beta_1,...,\beta_n)=(\alpha_1,...,\alpha_n)P$, $\beta_1,\beta_2,...,\beta_n$ 的过渡矩阵

称P为从基底 $\alpha_1, \alpha_2, \ldots, \alpha_n$ 到基底

向量 α 用两组基表示为:

$$\alpha = x_1 \alpha_1 + x_2 \alpha_2 + \dots + x_n \alpha_n$$
, $\alpha = y_1 \beta_1 + y_2 \beta_2 + \dots + y_n \beta_n$,

则有关系:

$$\begin{array}{c} \boldsymbol{\beta} : \\ \boldsymbol{\alpha} = (\beta_1, \dots, \beta_n) \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} = (\alpha_1, \alpha_2, \dots, \alpha_n) P \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} = (\alpha_1, \alpha_2, \dots, \alpha_n) \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$

于是不同基下的坐标的关系为:

$$P\begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}, 或者 \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} = P^{-1} \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$

重要式子:
$$(\alpha_1, \alpha_2, \cdots, \alpha_n) P \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}$$

定理6.2.2 设 $\alpha_1, \alpha_2, \ldots, \alpha_n$ 与 $\beta_1, \beta_2, \ldots, \beta_n$ 是n 维线性空间V的两组基,并且

$$(\beta_1,\ldots,\beta_n)=(\alpha_1,\ldots,\alpha_n)P$$

若V中任意元素α在这两组基下的坐标分别是 $(x_1, x_2, ..., x_n)$ 和 $(y_1, y_2, ..., y_n)$,则

$$\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = P \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}, 或者 \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} = P^{-1} \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}.$$

证明思路:由

$$\alpha = (\beta_1, \dots, \beta_n) \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} = (\alpha_1, \alpha_2, \dots, \alpha_n) P \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} = (\alpha_1, \alpha_2, \dots, \alpha_n) \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$

利用坐标的唯一性可得

$$P\begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}, 或者 \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} = P^{-1} \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$

基底变换公式: $(\beta_1,...,\beta_n)=(\alpha_1,...,\alpha_n) P$, $(\alpha_1,...,\alpha_n)=(\beta_1,...,\beta_n)P^{-1}$ 从基底 $\alpha_1,...,\alpha_n$ 到基底 $\beta_1,...,\beta_n$ 的过渡矩阵: P 坐标变换公式: $y=P^{-1}x$, x=Py

数域上的线性空间V(K)与 K^n 的对应关系

线性空间
$$V$$
 \Leftrightarrow K^n $\varepsilon_1, \varepsilon_2, \dots, \varepsilon_n$ \Leftrightarrow $\varepsilon_1, \varepsilon_2, \dots, \varepsilon_n$ \Leftrightarrow

空间
$$\mathbf{R}^n$$
上的自然基:
$$e_1 = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, e_2 = \begin{pmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{pmatrix}, \dots, e_n = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix}$$

例6.2.9 设R⁴中的向量α在基底 α_1 =(1,2,-1,0)^T, α_2 =(1,-1,1,1)^T, α_3 =(-1,2,1,1)^T, $\alpha_4 = (-1, -1, 0, 1)^T$ 下的坐标是 $(x_1, x_2, x_3, x_4)^T$,求 α 在另一组基 β_1 =(2,1,0,1)^T, β_2 =(0,1,2,2)^T, β_3 =(-2,1,1,2)^T, β_4 =(1,3,1,2)^T下的坐标.

解:

$$(\alpha_{1},\alpha_{2},\alpha_{3},\alpha_{4}) = (e_{1},e_{2},e_{3},e_{4}) \begin{pmatrix} 1 & 1 & -1 & -1 \\ 2 & -1 & 2 & -1 \\ -1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix} = (e_{1},e_{2},e_{3},e_{4})A,$$

$$(\beta_1, \beta_2, \beta_3, \beta_4) = (e_1, e_2, e_3, e_4) \begin{pmatrix} 2 & 0 & -2 & 1 \\ 1 & 1 & 1 & 3 \\ 0 & 2 & 1 & 1 \\ 1 & 2 & 2 & 2 \end{pmatrix} = (e_1, e_2, e_3, e_4)B.$$

于是 $(\beta_1, \beta_2, \beta_3, \beta_4) = (\alpha_1, \alpha_2, \alpha_3, \alpha_4) = \lambda_1$ 其中 $P = A^{-1}B$ 为 $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ 到 $\beta_1, \beta_2, \beta_3, \beta_4$ 的过渡矩阵. 由坐标变换公式, $\alpha = \beta_1, \beta_2, \beta_3, \beta_4$ 下的新坐标是 $\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = P^{-1} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}$.

$$P^{-1} = B^{-1}A = \begin{pmatrix} 0 & 1 & -1 & 1 \\ -1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & -1 \end{pmatrix}$$

$$x_1'=x_2-x_3+x_4,$$
 $x_2'=-x_1+x_2,$ $x_3'=x_4,$ $x_4'=x_1+x_3-x_4.$

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = P^{-1} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix}.$$

例6.2.9 设R⁴中的向量α在基底 α_1 =(1,2,-1,0)^T, α_2 =(1,-1,1,1)^T, α_3 =(-1,2,1,1)^T, α_4 =(-1,-1,0,1)^T 下的坐标是 (x_1,x_2,x_3,x_4)^T,求α在另一组基 β_1 =(2,1,0,1)^T, β_2 =(0,1,2,2)^T, β_3 =(-2,1,1,2)^T, β_4 =(1,3,1,2)^T下的坐标.

解二:

$$\alpha = (\alpha_1, \alpha_2, \alpha_3, \alpha_4) \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 1 & 1 & -1 & -1 \\ 2 & -1 & 2 & -1 \\ -1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = Ax,$$

$$\alpha = (\beta_1, \beta_2, \beta_3, \beta_4) \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 2 & 0 & -2 & 1 \\ 1 & 1 & 1 & 3 \\ 0 & 2 & 1 & 1 \\ 1 & 2 & 2 & 2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = Bx'.$$

可得Ax=Bx′,于是

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = B^{-1}A \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 0 & 1 & -1 & 1 \\ -1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & -1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix}.$$