

■ Report No.: DDT-R19021308-1E2

■Issued Date: May 10, 2019

FCC AND IC CERTIFICATION TEST REPORT

FOR

Applicant	• •	ION Audio, LLC
Address : 200 Scenic View Drive, Cu U.S.A.		200 Scenic View Drive, Cumberland, RI 02864 U.S.A.
Equipment under Test : Wireless Rechargeable Water-Resistant Sp System		Wireless Rechargeable Water-Resistant Speaker System
Model No. ONG D	Ш.,	SPORT XL5 TING
Project Code	••	iPA103A
Trade Mark	••	
FCC ID	\	2AB3E-IPA103A
IC	• •	10541A-IPA103A
Manufacturer	••	ION Audio, LLC
Address	• •	200 Scenic View Drive, Cumberland, RI 02864 U.S.A.

Issued By: Dongguan Dongdian Testing Service Co., Ltd.

Add: No. 17, Zongbu Road 2, Songshan Lake Sci&Tech, Industry Park, Dongguan City, Guangdong Province, China, 523808

Tel: +86-0769-38826678, E-mail: ddt@dgddt.com, http://www.dgddt.com

TABLE OF CONTENTS

	Test report declares	4
1.	Summary of test results	6
2.	General test information	7
2.1.	Description of EUT	
2.2.	Accessories of EUT	
2.3.	Assistant equipment used for test	8
2.4.	Block diagram of EUT configuration for test	8
2.5.	Deviations of test standard	8
2.6.	Test environment conditions	(
2.7.	Test laboratory	(
2.8.	Measurement uncertainty	9
3.	Equipment used during test	10
4.	Maximum Peak Output Power	
4.1.	Block diagram of test setup	11
4.2.	Limits	
4.3.	Test Procedure	1
4.4.	Test Result	11
4.5.	Original test data	12
5.	20dB Bandwidth and 99% Bandwidth	15
5.1.	Block diagram of test setup	15
5.2.	Limits	15
5.3.	Test Procedure	15
5.4.	Test Result	15
5.5.	Original test data	16
6.	Carrier Frequency Separation	18
6.1.	Block diagram of test setup	18
6.2.	Limits	
6.3.	Test Procedure	
6.4.	Test Result	18
6.5.	Original test data	
7.	Number Of Hopping Channel	20
7.1.	Block diagram of test setup	
7.2.	Limits	20
7.3.	Test Procedure	
7.4.	Test Result	20
7.5.	Original test data	20

8.	Dwell Time	
8.1.	Block diagram of test setup	22
8.2.	Limits	22
8.3.	Test Procedure	22
8.4.	Test Result	22
8.5.	Original test data	23
9.	Band Edge Compliance (conducted method)	27
9.1.	Block diagram of test setup	27
9.2.	Limit	27
9.3.	Test result	
9.4.	Original test data	27
10.	Radiated emission	31
10.1.	Block diagram of test setup	31
10.2.	Limit	32
10.3.	Test Procedure	33
10.4.	Test result	35
11.	RF Conducted Spurious Emissions	39
11.1.	Block diagram of test setup	
11.2.	Limits	39
11.3.	Test Procedure	39
11.4.	Test Result	
11.5.	Original test data	40
12.	Band Edge Compliance (radiated method)	47
12.1.	Block diagram of test setup	47
12.2.	Limit	47
12.3.	Test Procedure	47
12.4.	Test result	47
13.	Power Line Conducted Emission	56
13.1.	Block diagram of test setup	56
13.2.	Power Line Conducted Emission Limits	
13.3.	Test Procedure	56
13.4.	Test Result	57
14.	Antenna Requirements	60
14.1.	Limit	
14.2.	Result	
15.	Test setup photograph	61
16.	Photos of the EUT	63

TEST REPORT DECLARE

Applicant	:	ION Audio, LLC
Address		200 Scenic View Drive, Cumberland, RI 02864 U.S.A.
Equipment under Test	:	Wireless Rechargeable Water-Resistant Speaker System
Model No.	:	SPORT XL
Trade mark	:	
Manufacturer	1	ION Audio, LLC
Address	0	200 Scenic View Drive, Cumberland, RI 02864 U.S.A.

Test Standard Used:

FCC Rules and Regulations Part 15 Subpart C, RSS-247 Issue 2 February 2017.

Test procedure used:

ANSI C63.10:2013, RSS-Gen Issue 5, Apr. 2018.

We Declare:

The equipment described above is tested by Dongguan Dongdian Testing Service Co., Ltd. and in the configuration tested the equipment complied with the standards specified above. The test results are contained in this test report and Dongguan Dongdian Testing Service Co., Ltd. is assumed of full responsibility for the accuracy and completeness of these tests.

After test and evaluation, our opinion is that the equipment provided for test compliance with the requirement of the above FCC&IC standards.

Report No.:	DDT-R19021308-1E2	ESTING	10-	
Date of Receipt:	Apr. 12, 2019	Date of Test:	Apr. 12, 2019 ~ May 08, 2019	

Prepared By:

Sam Li/Engineer

Damon Hu/EMC Manager

Lmon

Approved By

Note: This report applies to above tested sample only. This report shall not be reproduced in parts without written approval of Dongguan Dongdian Testing Service Co., Ltd.

Revision history

Rev.	Revisions		Issue Date	Revised By
	Initial issue		May 10, 2019	
et.	pate and results	MAN TESTING	DONG DIAN TESTING	1

1. Summary of test results

Description of Test Item	Standard	Results
Maximum Peak Output Power	FCC Part 15: 15.247(b)(1) ANSI C63.10:2013 RSS-247 Issue 2	PASS
20dB Bandwidth and 99% Bandwidth	FCC Part 15: 15.215 ANSI C63.10:2013 RSS-247 Issue 2	PASS
Carrier Frequency Separation	FCC Part 15: 15.247(a)(1) ANSI C63.10:2013 RSS-247 Issue 2	PASS
Number Of Hopping Channel	FCC Part 15: 15.247(a)(1)(iii) ANSI C63.10:2013 RSS-247 Issue 2	PASS
Dwell Time	FCC Part 15: 15.247(a)(1)(iii) ANSI C63.10:2013 RSS-247 Issue 2	PASS
Radiated Emission	FCC Part 15: 15.209 FCC Part 15: 15.247(d) ANSI C63.10:2013 RSS-247 Issue 2 RSS-Gen Issue 5	PASS
Band Edge Compliance	FCC Part 15: 15.247(d) ANSI C63.10:2013 RSS-247 Issue 2 RSS-Gen Issue 5	PASS
Power Line Conducted Emissions	FCC Part 15: 15.207 ANSI C63.10:2013 RSS-Gen Issue 5	PASS
Antenna requirement	FCC Part 15: 15.203 RSS-Gen Issue 5	PASS

2. General test information

2.1. Description of EUT

EUT* Name	:	Wireless Rechargeable Water-Resistant Speaker System		
Model Number	:	SPORT XL		
EUT function description	:	Please reference user manual of this device		
Power supply	:	AC 100-240V, 50/60Hz or DC 12V from built-in battery		
Radio Specification	:	Bluetooth V4.2		
Operation frequency	:	2402MHz-2480MHz		
Modulation	:	GFSK, π/4-DQPSK, 8DPSK		
Data rate		1Mbps, 2Mbps, 3Mbps		
Antenna Type	:	Dedicated antenna, maximum PK gain: 2 dBi		
Sample Type	:	Series production		

Report No.: DDT-R19021308-1E2

Note: EUT is the ab. of equipment under test.

Channel inforr	nation				
Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	27	2429MHz	54	2456MHz
dono dina 1	2403MHz	28	2430MHz	55	2457MHz
2	2404MHz	29	2431MHz	56	2458MHz
3	2405MHz	30	2432MHz	57	2459MHz
4	2406MHz	31	2433MHz	58	2460MHz
5	2407MHz	32	2434MHz	59	2461MHz
6	2408MHz	33	2435MHz	60	2462MHz
7	2409MHz	34	2436MHz	61	2463MHz
8	2410MHz	35	2437MHz	62	2464MHz
9	2411MHz	36	2438MHz	63	2465MHz
10	2412MHz	37	2439MHz	64	2466MHz
11	2413MHz	38	2440MHz	65	2467MHz
12	2414MHz	39	2441MHz	66	2468MHz
13	2415MHz	40	2442MHz	67	2469MHz
14	2416MHz	41	2443MHz	68	2470MHz
15	2417MHz	42	2444MHz	69	2471MHz
16	2418MHz	43	2445MHz	70	2472MHz
17	2419MHz	44	2446MHz	71	2473MHz
18	2420MHz	45	2447MHz	72	2474MHz
19	2421MHz	46	2448MHz	73	2475MHz
20	2422MHz	47	2449MHz	74	2476MHz
21	2423MHz	48	2450MHz	75	2477MHz
22	2424MHz	49	2451MHz	76	2478MHz
23	2425MHz	50	2452MHz	77	2479MHz
24	2426MHz	51	2453MHz	78	2480MHz
25	2427MHz	52	2454MHz		
26	2428MHz	53	2455MHz	STING	7

2.2. Accessories of EUT

Description of Accessories	Manufacturer	Model number	Serial No.	Other
N/A	N/A	N/A	N/A	N/A

2.3. Assistant equipment used for test

Assistant equipment	Manufacturer	Model number	EMC Compliance	SN
Notebook	DELL	Latitude D610	FCC DOC	00045-534-136-300

2.4. Block diagram of EUT configuration for test

Test software: BT FCC Tool V1.02

The test software was used to control EUT work in Continuous Tx mode, and select test channel, wireless mode as below table.

Tested mode, channel, information		
Mode	Channel	Frequency (MHz)
GFSK hopping on Tx mode	CH0 to CH78	2402 to 2480
π/4-DQPSK hopping on Tx mode	CH0 to CH78	2402 to 2480
8DPSK hopping on Tx mode	CH0 to CH78	2402 to 2480
	CH0	2402
GFSK hopping off Tx mode	CH39	2441
	CH78	2480
	CH0	2402
π/4-DQPSK hopping off Tx mode	CH39	2441
pana pina	CH78	2480
	CH0	2402
8DPSK hopping off Tx mode	CH39	2441
	CH78	2480

Note: For π /4-DQPSK its same modulation type with 8DPSK, and based exploratory test, there is no significant difference of that two types test result, so except output power, except the RF output power, all other items final test was only performed with the worst case 8DPSK and GFSK.

2.5. Deviations of test standard

No Deviation.

2.6. Test environment conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature range:	21-25 ℃
Humidity range:	40-75%
Pressure range:	86-106kPa

Report No.: DDT-R19021308-1E2

2.7. Test laboratory

Dongguan Dongdian Testing Service Co., Ltd

Add: No. 17, Zongbu Road 2, Songshan Lake Sci&Tech, Industry Park, Dongguan City,

Guangdong Province, China, 523808

Tel: +86-0769-38826678, http://www.dgddt.com, Email: ddt@dgddt.com

CNAS Accreditation No. L6451; A2LA Accreditation No. 3870.01

Designation Number: CN1182; Test Firm Registration Number: 540522

Industry Canada site registration number: 10288A-1

2.8. Measurement uncertainty

Test Item	Uncertainty		
Bandwidth	1.1%		
Dook Output Dower (Conducted) (Construe and (Tox)	0.86dB (10MHz ≤ f < 3.6GHz);		
Peak Output Power (Conducted) (Spectrum analyzer)	1.38dB (3.6GHz ≤ f < 8GHz)		
Peak Output Power (Conducted) (Power Sensor)	0.74dB		
Douter Chartral Danaity	0.74dB (10MHz ≤ f < 3.6GHz);		
Power Spectral Density	1.38dB (3.6GHz ≤ f < 8GHz)		
Fraguanciae Stability	6.7 x 10 ⁻⁸ (Antenna couple method)		
Frequencies Stability	5.5 x 10 ⁻⁸ (Conducted method)		
	0.86dB (10MHz ≤ f < 3.6GHz);		
Conducted spurious emissions	1.40dB (3.6GHz ≤ f < 8GHz)		
TESTINO .	1.66dB (8GHz ≤ f < 22GHz)		
Uncertainty for radio frequency (RBW<20kHz)	3×10 ⁻⁸		
Temperature	0.4℃		
Humidity	2%		
Uncertainty for Radiation Emission test	4.70dB (Antenna Polarize: V)		
(30MHz-1GHz)	4.84dB (Antenna Polarize: H)		
	4.10dB (1-6GHz)		
Uncertainty for Radiation Emission test	4.40dB (6GHz-18GHz)		
(1GHz-40GHz)	3.54dB (18GHz-26GHz)		
	4.30dB (26GHz-40GHz)		
Uncertainty for Power line conduction emission test	3.32dB (150kHz-30MHz)		
Note: This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.			

3. Equipment used during test

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
RF Connected Test (Tonscend RF N	<i>l</i> leasurement	System)		
Spectrum analyzer	R&S	FSU26	200071	Oct. 12, 2018	1 Year
Wideband Radio Communication tester	R&S	CMW500	117491	Jun. 29, 2018	1 Year
Vector Signal Generator	Agilent	E8267D	US49060192	Oct. 12, 2018	1 Year
Vector Signal Generator	Agilent	N5182A	MY48180737	Jun. 29, 2018	1 Year
Power Sensor	Agilent	U2021XA	MY55150010	Oct. 21, 2018	1 Year
Power Sensor	Agilent	U2021XA	MY55150011	Oct. 23, 2018	1 Year
DC Power Source	MATRIS	MPS-3005L- 3	D813058W	Aug. 18, 2018	1 Year
Attenuator	Mini-Circuits	BW-S10W2	101109	Aug. 18, 2018	1 Year
RF Cable	Micable	C10-01-01-1	100309	Oct. 21, 2018	1 Year
Temp&Humi Programmable	ZHIXIANG	ZXGDJS-15 0L	ZX170110-A	Oct. 21, 2018	1 Year
Test Software	JS Tonscend	JS1120-3	Ver.2.7	N/A	N/A
Radiated Emission T	est Chamber 1	#	WONG DIEN TESTING		DONG GIRM
EMI Test Receiver	R&S	ESU8	100316	Oct. 12, 2018	1 Year
Spectrum analyzer	Agilent	E4447A	MY50180031	Jun. 29, 2018	1 Year
Trilog Broadband Antenna	Schwarzbeck	VULB9163	9163-462	Nov. 09, 2018	1 Year
Active Loop antenna	Schwarzbeck	FMZB-1519	1519-038	Oct. 20, 2018	1 Year
Double Ridged Horn Antenna	R&S	HF907	100276	Nov. 16, 2018	1 Year
Broad Band Horn Antenna	Schwarzbeck	BBHA 9170	790	Oct. 25, 2018	1 Year
Pre-amplifier	A.H.	PAM-0118	360	Oct. 12, 2018	1 Year
Pre-amplifier	TERA-MW	TRLA-0040 G35	101303	Oct. 12, 2018	1 Year
RF Cable	HUBSER	CP-X2+ CP-X1	W11.03+ W12.02	Oct. 21, 2018	1 Year
RF Cable	N/A	SMAJ-SMA J-1M+ 11M	17070133+17 070131	Nov. 08, 2018	1 Year
MI Cable	HUBSER	C10-01-01-1 M	1091629	Oct. 21, 2018	1 Year
Test software	Audix	E3	V 6.11111b	N/A	N/A
Power Line Conduct	ed Emissions 1	Test		0.0	
Test Receiver	R&S	ESU8	100316	Oct. 12, 2018	1 Year
LISN 1	R&S	ENV216	101109	Oct. 12, 2018	1 Year
LISN 2	R&S	ESH2-Z5	100309	Oct. 12, 2018	1 Year
Pulse Limiter	R&S	ESH3-Z2	101242	Oct. 12, 2018	1 Year
CE Cable 1	HUBSER	ESU8/RF2	W10.01	Oct. 12, 2018	1 Year
Test software	Audix	E3	V 6.11111b	N/A	N/A

DOME DIMITE THE

Report No.: DDT-R19021308-1E2

4. Maximum Peak Output Power

4.1. Block diagram of test setup

4.2. Limits

For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts, the e.i.r.p shall not exceed 4W.

4.3. Test Procedure

- (1) Connect EUT's antenna output to spectrum analyzer by RF cable.
- (2) Measure the maximum output power of EUT by spectrum analyzer with PK detector and RBW=3MHz (above 20dB bandwidth of measured signal), VBW=10MHz

Note: The attenuator loss was inputted into spectrum analyzer as amplitude offset.

4.4. Test Result

Mode	Antenna	Freq (MHz)	Result (dBm)	Limit (dBm)	Conclusion
	ANT1	2402	1.11	21	PASS
GFSK	ANT1	2441	1.97	21	PASS
	ANT1	2480	2.48	21	PASS
STING	ANT1	2402	3.59	21	PASS
π/4-DQPSK	ANT1	2441	4.66	21	PASS
	ANT1	2480	5.31	21	PASS
	ANT1	2402	4.10	21	PASS
8DPSK	ANT1	2441	5.10	21	PASS
	ANT1	2480	5.96	21	PASS

4.5. Original test data

gr

DOME DAN TESTING

DOWN DIAM TESTING

Page 13 of 74

5. 20dB Bandwidth and 99% Bandwidth

5.1. Block diagram of test setup

Same as section 4.1

5.2. Limits

Intentional radiators operating under the alternative provisions to the general emission limits, as contained in § 15.217 through 15.257 and in Subpart E of this part, must be designed to ensure that the 20dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated.

Report No.: DDT-R19021308-1E2

5.3. Test Procedure

- (1) Connect EUT's antenna output to spectrum analyzer by RF cable.
- (2) The bandwidth of the fundamental frequency was measured by spectrum analyzer with 30 kHz RBW and 100 kHz VBW. The 20dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 20dB.

5.4. Test Result

Mode	Freq. (MHz)	20dB bandwidth Result (MHz)	99% bandwidth Result (MHz)	Conclusion
WIT DIGHT TESTING	2402	0.873	0.936	PASS
GFSK	2441	0.864	0.936	PASS
	2480	0.870	0.936	PASS
	2402	1.191	1.296	PASS
8DPSK	2441	1.185	1.290	PASS
	2480	1.188	1.287	PASS

5.5. Original test data

6. Carrier Frequency Separation

6.1. Block diagram of test setup

Same as section 4.1

6.2. Limits

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

Report No.: DDT-R19021308-1E2

6.3. Test Procedure

- (1) Connect EUT's antenna output to spectrum analyzer by RF cable.
- (2) The carrier frequency was measured by spectrum analyzer with 100 kHz RBW and 300 kHz VBW.

6.4. Test Result

Mode	Channel separation (MHz)	20dB bandwidth (MHz) (worse case)	Limit (MHz) 2/3 of 20dB bandwidth	Conclusion
GFSK	1.000	0.873	≥0.582	PASS
8DPSK	1.000	1.191	≥0.794	PASS

6.5. Original test data

Page 19 of 74

7. Number Of Hopping Channel

7.1. Block diagram of test setup

Same as section 4.1

7.2. Limits

Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.

7.3. Test Procedure

- (1) Connect EUT's antenna output to spectrum analyzer by RF cable.
- (2) The number of hopping channel was measured by spectrum analyzer with 100 kHz RBW and 300 kHz VBW.

Report No.: DDT-R19021308-1E2

7.4. Test Result

Mode	Number of hopping channel	Limit	Conclusion
GFSK	79	>15	PASS
8DPSK	79	>15	PASS

7.5. Original test data

8. Dwell Time

8.1. Block diagram of test setup

Same as section 4.1

8.2. Limits

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

Report No.: DDT-R19021308-1E2

8.3. Test Procedure

- (1) Connect EUT's antenna output to spectrum analyzer by RF cable.
- (2) The test period: T= 0.4 Second/Channel x 79 Channel = 31.6 s
- (3) Measure the hopping number and on time of each pulse with spectrum analyzer in zero span set, and calculate dwell time with formula Dwell time = total hops *pulse's on time.

8.4. Test Result

A STATE OF THE PARTY OF THE PAR	THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAMED IN COLUMN TW		The second secon		and the same of th
Mode	Dwell time (s)	Pulse's on time (ms)	Total hops	Limit	Conclusion
DH1	0.130	0.41	318	<400ms	PASS
DH3	0.265	1.66	159	<400ms	PASS
DH5	0.303	2.91	104	<400ms	PASS
3DH1	0.131	0.42	314	<400ms	PASS
3DH3	0.254	1.67	152	<400ms	PASS
3DH5	0.271	2.92	93	<400ms	PASS
lote: Dwell time = total hone *nulse's on time					

Note: Dwell time = total hops *pulse's on time.

8.5. Original test data

9. Band Edge Compliance (conducted method)

9.1. Block diagram of test setup

Same as section 4.1

9.2. Limit

All restriction band should comply with 15.209, other emission should be at least 20dB below the fundamental.

9.3. Test result

Mode	Freq (MHz)	Conclusion
TINO	Hopping off 2402	PASS
GFSK	Hopping off 2480	PASS
	Hopping on	PASS
	Hopping off 2402	PASS
8DPSK	Hopping off 2480	PASS
	Hopping on	PASS

9.4. Original test data

Page 29 of 74

10. Radiated emission

10.1. Block diagram of test setup

In 3m Anechoic Chamber Test Setup Diagram for 9kHz-30MHz

In 3m Anechoic Chamber Test Setup Diagram for below 1GHz

In 3m Anechoic Chamber Test Setup Diagram for frequency above 1GHz

Note: For harmonic emissions test an appropriate high pass filter was inserted in the input port of AMP.

10.2. Limit

(1) FCC 15.205 Restricted frequency band

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
10.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.1772&4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.2072&4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(2)
13.36-13.41	DONG DIRN TESTING	DOWO	DONG DIAN TESTIM

(2) FCC 15.209 Limit.

FREQUENCY	DISTANCE	FIELD STRENG	STHS LIMIT
MHz	Meters	μV/m	dB(μV)/m
0.009 ~ 0.490	300	2400/F(kHz)	67.6-20log(F)
0.490 ~ 1.705	30	24000/F(kHz)	87.6-20log(F)
1.705 ~ 30.0	30	30	29.54
30 ~ 88	3	100	40.0
88 ~ 216	3	150	43.5
216 ~ 960	3	200	46.0
960 ~ 1000	3	500	54.0
Above 1000	3	74.0 dB(μV)/n 54.0 dB(μV)/m	

Report No.: DDT-R19021308-1E2

Note: (1) The emission limits shown in the above table are based on measurements employing a CISPR QP detector except for the frequency bands 9-90kHz, 110-490kHz and above 1000MHz, radiated emissions limits in these three bands are based on measurements employing an average detector.

(2) At frequencies below 30MHz, measurement may be performed at a distance closer than that specified, and the limit at closer measurement distance can be extrapolated by below formula:

 $Limit_{3m}(dBuV/m) = Limit_{30m}(dBuV/m) + 40Log(30m/3m)$

(3) Limit for this EUT

All the emissions appearing within 15.205 restricted frequency bands shall not exceed the limits shown in 15.209, all the other emissions shall be at least 20dB below the fundamental emissions or comply with 15.209 limits.

10.3. Test Procedure

- (1) EUT was placed on a non-metallic table, 80 cm above the ground plane inside a semi-anechoic chamber for below 1G and 150 cm above the ground plane inside a semi-anechoic chamber for above 1G.
- (2) Test antenna was located 3m from the EUT on an adjustable mast, and the antenna used as below table.

Test frequency range	Test antenna used	Test antenna distance
9kHz-30MHz	Active Loop antenna	3m
30MHz-1GHz	Trilog Broadband Antenna	3m
1GHz-18GHz	Double Ridged Horn	3m
	Antenna(1GHz-18GHz)	
18GHz-40GHz	Horn Antenna(18GHz-40GHz)	1m

According ANSI C63.10:2013 clause 6.4.4.2 and 6,5.3, for measurements below 30 MHz, the loop antenna was positioned with its plane vertical from the EUT and rotated about its vertical axis for maximum response at each azimuth position around the EUT. And the loop antenna also

be positioned with its plane horizontal at the specified distance from the EUT. The center of the loop is 1 m above the ground. for measurement above 30MHz, the Trilog Broadband Antenna or Horn Antenna was located 3m from EUT, Measurements were made with the antenna positioned in both the horizontal and vertical planes of Polarization, and the measurement antenna was varied from 1 m to 4 m. in height above the reference ground plane to obtain the maximum signal strength.

- (3) Below pre-scan procedure was first performed in order to find prominent frequency spectrum radiated emissions from 9kHz to 25GHz:
- (a) Scanning the peak frequency spectrum with the antenna specified in step (3), and the EUT was rotated 360 degree, the antenna height was varied from 1m to 4m (Except loop antenna, it's fixed 1m above ground.)
 - (b) Change work frequency or channel of device if practicable.
 - (c) Change modulation type of device if practicable.
 - (d) Change power supply range from 85% to 115% of the rated supply voltage
- (e) Rotated EUT though three orthogonal axes to determine the attitude of EUT arrangement produces highest emissions.

Spectrum frequency from 9kHz to 25GHz (tenth harmonic of fundamental frequency) was investigated, and no any obvious emission were detected from 18GHz to 25GHz, so below final test was performed with frequency range from 9kHz to 18GHz.

- (4) For final emissions measurements at each frequency of interest, the EUT was rotated and the antenna height was varied between 1m and 4m in order to maximize the emission. Measurements in both horizontal and vertical polarities were made and the data was recorded. In order to find the maximum emission, the relative positions of equipments and all of the interface cables were changed according to ANSI C63.10:2013 on Radiated Emission test.
- (5) The emissions from 9kHz to 1GHz were measured based on CISPR QP detector except for the frequency bands 9-90kHz, 110-490kHz, for emissions from 9kHz-90kHz,110kHz-490kHz and above 1GHz were measured based on average detector, for emissions above 1GHz, peak emissions also be measured and need comply with Peak limit.
- (6) The emissions from 9kHz to 1GHz, QP or average values were measured with EMI receiver with below RBW.

Frequency band	RBW
9kHz-150kHz	200Hz
150kHz-30MHz	9kHz
30MHz-1GHz	120kHz

(7) For emissions above 1GHz, both Peak and Average level were measured with Spectrum Analyzer, and the RBW is set at 1MHz, VBW is set at 3MHz for Peak measure; RBW 1MHz VBW 10Hz for Average measure (according ANSI C63.10:2013 clause 4.1.4.2.2 procedure for average measure).

10.4. Test result

PASS. (See below detailed test result)

All the emissions except fundamental emission from 9 kHz to 25GHz were comply with 15.209 limits.

Note1: According exploratory test no any obvious emission was detected from 9kHz to 30MHz and 18GHz to 25GHz.

Note2: For emissions below 1GHz, according exploratory explorer test, when change Tx mode and channel, have no distinct influence on emissions level, so for emissions below 1GHz, the final test was only performed with EUT working in 8DPSK, Tx 2480MHz mode.

Note3: For emissions above 1GHz. If peak results comply with AV limit, AV Result is deemed to comply with AV limit.

Radiated Emission test (below 1GHz)

TR-4-E-009 Radiated Emission Test Result

Test Site : DDT 3m Chamber 1# D:\2019 RE1# Report Data\Q19021308-1E ipa103A\FCC

BELOW1G.EM6

Test Date : 2019-05-09 Tested By : Talent

EUT : Wireless Rechargeable Water-Resistant Speaker System : Sport XL

Power Supply : Battery Test Mode : Tx mode

Condition : Temp:24.5'C, Humi:55%, Press:100.1kPa Antenna/Distance : 2018 VULB 9163 1#/3m/VERTICAL

Memo :

Data: 1

Item (Mark)	Freq.	Read Level (dBµV)	Antenna Factor (dB/m)	Cable Loss	Result Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Detector	Polarization
1	43.20	3.68	13.81	3.80	21.29	40.00	-18.71	QP	VERTICAL
2	103.44	8.88	11.74	4.22	24.84	43.50	-18.66	QP	VERTICAL
3	287.99	18.05	13.74	5.14	36.93	46.00	-9.07	QP	VERTICAL
4	432.55	9.08	16.13	5.62	30.83	46.00	-15.17	QP	VERTICAL
5	642.86	4.34	19.22	6.22	29.78	46.00	-16.22	QP	VERTICAL
6	916.07	4.93	21.88	6.99	33.80	46.00	-12.20	QP	VERTICAL

Note: 1. Result Level = Read Level + Antenna Factor + Cable loss.

2. If Peak Result complies with QP limit, QP Result is deemed to comply with QP limit.

3. Test setup: RBW: 120 kHz, VBW: 300 kHz, Sweep time: auto.

Test Site : DDT 3m Chamber 1# D:\2019 RE1# Report Data\Q19021308-1E ipa103A\FCC

BELOW1G.EM6

Model Number

: Sport XL

Report No.: DDT-R19021308-1E2

Test Date : 2019-05-09 Tested By : Talent

Wireless Rechargeable Water-Resistant

Power Supply : Battery

Test Mode : Tx mode

Condition : Temp:24.5'C, Humi:55%, Press:100.1kPa Antenna/Distance : 2018 VULB 9163 1#/3m/HORIZONTAL

Memo :

EUT

Data: 2

Item (Mark)	Freq.	Read Level (dBµV)	Antenna Factor (dB/m)	Cable Loss	Result Level	Limit Line (dBµV/m)	Over Limit	Detector	Polarization
((1011 12)	(иБру)	(ub/III)	uБ	(ubµ v/III)	(αΒμν/π)	(ub)		
1	48.84	1.60	14.47	3.86	19.93	40.00	-20.07	QP	HORIZONTAL
2	130.38	11.59	9.47	4.35	25.41	43.50	-18.09	QP	HORIZONTAL
3	287.99	15.13	13.74	5.14	34.01	46.00	-11.99	QP	HORIZONTAL
4	336.04	14.77	14.63	5.31	34.71	46.00	-11.29	QP	HORIZONTAL
5	432.55	12.89	16.13	5.62	34.64	46.00	-11.36	QP	HORIZONTAL
6	818.83	7.48	20.90	6.65	35.03	46.00	-10.97	QP	HORIZONTAL

Note: 1. Result Level = Read Level + Antenna Factor + Cable loss.

2. If Peak Result complies with QP limit, QP Result is deemed to comply with QP limit.

Radiated Emission test (above 1GHz)

Radiated	Emissi	on test	(above	9 1GHz			TESTINO		7
Freq.	Read	Antenna	PRM	Cable	Result	Limit	Margin	Detector	DONG DIAN TE
(MHz)	level	Factor	Factor	Loss	Level	(dBµV	(dB)	type	Polarization
	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	/m)	(*)	31.	
Tx mode 24						1			I
6491.00	42.18	35.29	43.75	11.92	45.64	74.00	-28.36	Peak	HORIZONTAL
8701.00	39.63	36.80	43.48	14.17	47.12	74.00	-26.88	Peak	HORIZONTAL
10622.00	40.77	37.65	43.92	15.76	50.26	74.00	-23.74	Peak	HORIZONTAL
12084.00	38.82	38.02	43.54	17.92	51.22	74.00	-22.78	Peak	HORIZONTAL
13393.00	36.74	38.85	43.24	19.39	51.74	74.00	-22.26	Peak	HORIZONTAL
14787.00	33.81	40.53	42.94	20.09	51.49	74.00	-22.51	Peak	HORIZONTAL
6712.00	40.90	35.43	43.65	12.10	44.78	74.00	-29.22	Peak	VERTICAL
8361.00	41.87	36.66	43.30	13.48	48.71	74.00	-25.29	Peak	VERTICAL
9262.00	39.37	36.96	43.76	14.70	47.27	74.00	-26.73	Peak	VERTICAL
10724.00	41.15	37.61	43.89	15.89	50.76	74.00	-23.24	Peak	VERTICAL
12747.00	36.54	38.20	43.38	18.60	49.96	74.00	-24.04	Peak	VERTICAL
13954.00	34.55	40.09	43.11	20.16	51.69	74.00	-22.31	Peak	VERTICAL
Tx mode 24	41MHz								
7137.00	37.83	35.68	43.46	12.70	42.75	74.00	-31.25	Peak	HORIZONTAL
8004.00	39.21	36.30	43.10	14.06	46.47	74.00	-27.53	Peak	HORIZONTAL
9568.00	40.44	37.15	43.90	14.87	48.56	74.00	-25.44	Peak	HORIZONTAL
11948.00	39.67	38.06	43.57	17.75	51.91	74.00	-22.09	Peak	HORIZONTAL
14362.00	34.22	40.27	43.03	20.16	51.62	74.00	-22.38	Peak	HORIZONTAL
16181.00	30.28	41.49	42.19	22.49	52.07	74.00	-21.93	Peak	HORIZONTAL
6848.00	41.87	35.51	43.59	12.34	46.13	74.00	-27.87	Peak	VERTICAL
7919.00	41.27	36.24	43.13	13.85	48.23	74.00	-25.77	Peak	VERTICAL
9058.00	40.88	36.84	43.66	14.37	48.43	74.00	-25.57	Peak	VERTICAL
10945.00	41.08	37.52	43.83	16.17	50.94	74.00	-23.06	Peak	VERTICAL
13002.00	36.98	38.30	43.32	18.86	50.82	74.00	-23.18	Peak	VERTICAL
14600.00	33.93	40.38	42.98	20.12	51.45	74.00	-22.55	Peak	VERTICAL
Tx mode 24	80MHz				-	1-			
4978.00	42.64	33.89	44.20	9.93	42.26	74.00	-31.74	Peak	HORIZONTAL
7919.00	41.12	36.24	43.13	13.85	48.08	74.00	-25.92	Peak	HORIZONTAL
10231.00	43.42	37.54	44.03	15.27	52.20	74.00	-21.80	Peak	HORIZONTAL
12186.00	38.62	38.04	43.51	18.02	51.17	74.00	-22.83	Peak	HORIZONTAL
13682.00	35.08	39.44	43.17	19.79	51.14	74.00	-22.86	Peak	HORIZONTAL
15093.00	32.72	40.66	42.84	20.27	50.81	74.00	-23.19	Peak	HORIZONTAL
6372.00	41.39	35.15	43.81	11.99	44.72	74.00	-29.28	Peak	VERTICAL
7936.00	41.50	36.25	43.13	13.90	48.52	74.00	-25.48	Peak	VERTICAL
9585.00	40.49	37.16	43.91	14.93	48.67	74.00	-25.33	Peak	VERTICAL
11591.00	39.05	38.49	43.66	17.18	51.06	74.00	-22.94	Peak	VERTICAL
13665.00	35.22	39.40	43.18	19.76	51.20	74.00	-22.80	Peak	VERTICAL
15586.00	33.20	40.62	42.54	21.43	52.71	74.00	-21.29	Peak	VERTICAL
Result: Pa	4000						SESTING .		

Note: 1.30MHz~25GHz: (Scan with GFSK, π/4-DQPSK, 8DPSK, the worst case is 8DPSK Mode)

DOMO DIANI TESTINO

DONE DINN TESTING

^{2.} Result Level = Read Level + Antenna Factor + Cable loss - PRM Factor.

^{3.} For emissions above 1GHz. If peak results comply with AV limit, AV Result is deemed to comply with AV limit.

11. RF Conducted Spurious Emissions

11.1. Block diagram of test setup

Same as section 4.1

11.2. **Limits**

In any 100kHz bandwidth outside the frequency bands in which the spread spectrum intentional radiator in operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power.

Report No.: DDT-R19021308-1E2

11.3. Test Procedure

- (1) Connect EUT's antenna output to spectrum analyzer by RF cable.
- (2) Establish a reference level by using the following procedure:

Center frequency Test frequency

RBW: 100kHz VBW: 300kHz

Wide enough to capture the peak level of the Span

in-band emission

Detector Mode: Peak
Sweep time: auto

Trace mode Max hold

- (3) Allow the trace to stabilize, use the peak marker function to determine the maximum peak power level to establish the reference level.
- (4) Set the spectrum analyzer as follows:

RBW: 100kHz

VBW: 300kHz

Span Encompass frequency range to be measured

Number of measurement

points ≥span/RBW

Detector Mode: Peak
Sweep time: auto

Trace mode Max hold

(5) Allow the trace to stabilize, use the peak marker function to determine the maximum amplitude of all unwanted emissions outside of the authorized frequency band

11.4. Test Result

Mode	Freq. (MHz)	Conclusion
	Hopping off 2402	PASS
GFSK	Hopping off 2441	PASS
	Hopping off 2480	PASS
	Hopping off 2402	PASS
8DPSK	Hopping off 2441	PASS
	Hopping off 2480	PASS

11.5. Original test data

Page 44 of 74

Page 45 of 74

12. Band Edge Compliance (radiated method)

12.1. Block diagram of test setup

12.2. Limit

All restriction band should comply with 15.209, other emission should be at least 20dB below the fundamental.

12.3. Test Procedure

Same with clause 10.3 except change investigated frequency range from 2310MHz to 2410MHz and 2475MHz to 2500MHz.

Remark: All restriction band have been tested, and only the worst case is shown in report.

12.4. Test result

PASS. (See below detailed test result)

Remark: hopping on and hopping off mode all have been test, hopping off mode is worse and reported only.

Report No.: DDT-R19021308-1E2

Test Site : DDT 3m Chamber 1# D:\2019 RE1# Report Data\Q19021308-1E ipa103A\RF.EM6

TR-4-E-009 Radiated Emission Test Result

Test Date : 2019-04-25 : Sunny

EUT Wireless Rechargeable Water-Resistant

Speaker System

10000

: Sport XL

Model Number

Power Supply : Battery Test Mode : Tx mode

Condition : Temp:24.5'C, Humi:55%, Press:101.4kPa Antenna/Distance : 2018 HF 907/3m/HORIZONTAL

Memo : DH5 2402MHz

Data: 1

Item	Freq.	Read Level	Antenna Factor	PRM Factor	Cable Loss	Result Level	Limit Line	Over Limit	Detector	Polarization
(Mark)	(MHz)	(dBµV)	(dB/m)	dB	dB	(dBµV/m)	(dBµV/m)	(dB)		
1	2376.00	57.85	29.07	44.17	4.57	47.32	74.00	-26.68	Peak	HORIZONTAL
2	2390.00	54.28	29.10	44.18	4.56	43.76	74.00	-30.24	Peak	HORIZONTAL

Note: 1. Result Level = Read Level + Antenna Factor + Cable loss - PRM Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

Test Site : DDT 3m Chamber 1# D:\2019 RE1# Report Data\Q19021308-1E ipa103A\RF.EM6

Test Date : 2019-04-25 : Sunny

EUT Wireless Rechargeable Water-Resistant

Speaker System

Model Number : Sport XL

Report No.: DDT-R19021308-1E2

: Battery Test Mode : Tx mode

Condition : Temp:24.5'C, Humi:55%, Press:101.4kPa Antenna/Distance : 2018 HF 907/3m/VERTICAL

Memo : DH5 2402MHz

Data: 2

Power Supply

Item	Freq.	Read Level	Antenna Factor	PRM Factor	Cable Loss	Result Level	Limit Line	Over Limit	Detector	Polarization
(Mark)	(MHz)	(dBµV)	(dB/m)	dB	dB	(dBµV/m)	(dBµV/m)	(dB)		
1	2375.90	58.30	29.07	44.17	4.57	47.77	74.00	-26.23	Peak	VERTICAL
2	2375.90	58.30	29.07	44.17	4.57	47.77	74.00	-26.23	Peak	VERTICAL
3, 75.57	2390.00	52.99	29.10	44.18	4.56	42.47	74.00	-31.53	Peak	VERTICAL
4	2390.00	52.99	29.10	44.18	4.56	42.47	74.00	-31.53	Peak	VERTICAL

Note: 1. Result Level = Read Level + Antenna Factor + Cable loss - PRM Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

Report No.: DDT-R19021308-1E2

: Sport XL

Test Site : DDT 3m Chamber 1# D:\2019 RE1# Report Data\Q19021308-1E ipa103A\RF.EM6

Test Date : 2019-04-25 : Sunny

EUT : Wireless Rechargeable Water-Resistant Model Number

Speaker System

: Battery Test Mode : Tx mode

Condition : Temp:24.5'C, Humi:55%, Press:101.4kPa Antenna/Distance : 2018 HF 907/3m/VERTICAL

Memo : DH5 2480MHz

Data: 3

Power Supply

Item	Freq.	Read Level	Antenna Factor	PRM Factor	Cable Loss	Result Level	Limit Line	Over Limit	Detector	Polarization
(Mark)	(MHz)	(dBµV)	(dB/m)	dB	dB	(dBµV/m)	(dBµV/m)	(dB)		
1	2483.50	53.71	29.27	44.21	4.89	43.66	74.00	-30.34	Peak	VERTICAL
2	2490.98	55.66	29.28	44.22	4.92	45.64	74.00	-28.36	Peak	VERTICAL

Note: 1. Result Level = Read Level + Antenna Factor + Cable loss - PRM Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

Report No.: DDT-R19021308-1E2

: Sport XL

Test Site : DDT 3m Chamber 1# D:\2019 RE1# Report Data\Q19021308-1E ipa103A\RF.EM6

Model Number

Test Date : 2019-04-25 Tested By : Sunny

EUT Wireless Rechargeable Water-Resistant

Speaker System

: Battery Test Mode : Tx mode

Condition : Temp:24.5'C, Humi:55%, Press:101.4kPa Antenna/Distance : 2018 HF 907/3m/HORIZONTAL

Memo : DH5 2480MHz

Data: 4

Power Supply

Item	Freq.	Read Level	Antenna Factor	PRM Factor	Cable Loss	Result Level	Limit Line	Over Limit	Detector	Polarization
(Mark)	(MHz)	(dBµV)	(dB/m)	dB	dB	(dBµV/m)	(dBµV/m)	(dB)		
1	2483.50	52.90	29.27	44.21	4.89	42.85	74.00	-31.15	Peak	HORIZONTAL
2	2491.38	54.72	29.28	44.22	4.93	44.71	74.00	-29.29	Peak	HORIZONTAL

Note: 1. Result Level = Read Level + Antenna Factor + Cable loss - PRM Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

Report No.: DDT-R19021308-1E2

: Sport XL

Test Site : DDT 3m Chamber 1# D:\2019 RE1# Report Data\Q19021308-1E ipa103A\RF.EM6

Test Date : 2019-04-25 : Sunny

EUT : Wireless Rechargeable Water-Resistant Model Number

Speaker System

: Battery Test Mode : Tx mode

Condition : Temp:24.5'C, Humi:55%, Press:101.4kPa Antenna/Distance : 2018 HF 907/3m/HORIZONTAL

Memo : 3DH5 2402MHz

Data: 5

Power Supply

Item	Freq.	Read Level	Antenna Factor	PRM Factor	Cable Loss	Result Level	Limit Line	Over Limit	Detector	Polarization
(Mark)	(MHz)	(dBµV)	(dB/m)	dB	dB	(dBµV/m)	(dBµV/m)	(dB)		
1	2375.80	56.67	29.07	44.17	4.57	46.14	74.00	-27.86	Peak	HORIZONTAL
2	2390.00	53.46	29.10	44.18	4.56	42.94	74.00	-31.06	Peak	HORIZONTAL

Note: 1. Result Level = Read Level + Antenna Factor + Cable loss - PRM Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

Report No.: DDT-R19021308-1E2

: Sport XL

D:\2019 RE1# Report Data\Q19021308-1E ipa103A\RF.EM6 **Test Site** : DDT 3m Chamber 1#

Test Date : 2019-04-25 **Tested By** : Sunny

Wireless Rechargeable Water-Resistant EUT

Model Number Speaker System

Test Mode Power Supply : Battery : Tx mode

Condition : Temp:24.5'C, Humi:55%, Press:101.4kPa Antenna/Distance : 2018 HF 907/3m/VERTICAL

Memo : 3DH5 2402MHz

Data: 6

Item	Freq.	Read Level	Antenna Factor	PRM Factor	Cable Loss	Result Level	Limit Line	Over Limit	Detector	Polarization
(Mark)	(MHz)	(dBµV)	(dB/m)	dB	dB	(dBµV/m)	(dBµV/m)	(dB)		
1	2376.50	56.50	29.07	44.17	4.57	45.97	74.00	-28.03	Peak	VERTICAL
2	2390.00	54.03	29.10	44.18	4.56	43.51	74.00	-30.49	Peak	VERTICAL

Note: 1. Result Level = Read Level + Antenna Factor + Cable loss - PRM Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

Test Site : DDT 3m Chamber 1# D:\2019 RE1# Report Data\Q19021308-1E ipa103A\RF.EM6

Test Date : 2019-04-25 : Sunny

EUT : Wireless Rechargeable Water-Resistant Model Number

Speaker System

: Battery

Test Mode : Tx mode

: Sport XL

Report No.: DDT-R19021308-1E2

Condition : Temp:24.5'C, Humi:55%, Press:101.4kPa Antenna/Distance : 2018 HF 907/3m/HORIZONTAL

Memo : 3DH5 2480MHz

Data: 7

Power Supply

Item	Freq.	Read Level	Antenna Factor	PRM Factor	Cable Loss	Result Level	Limit Line	Over Limit	Detector	Polarization
(Mark)	(MHz)	(dBµV)	(dB/m)	dB	dB	(dBµV/m)	(dBµV/m)	(dB)		
1	2483.50	53.46	29.27	44.21	4.89	43.41	74.00	-30.59	Peak	HORIZONTAL
2	2492.78	54.84	29.29	44.22	4.93	44.84	74.00	-29.16	Peak	HORIZONTAL

Note: 1. Result Level = Read Level + Antenna Factor + Cable loss - PRM Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

Report No.: DDT-R19021308-1E2

: Sport XL

Test Site : DDT 3m Chamber 1# D:\2019 RE1# Report Data\Q19021308-1E ipa103A\RF.EM6

Test Date : 2019-04-25 : Sunny

EUT : Wireless Rechargeable Water-Resistant Model Number

Speaker System

Power Supply : Battery Test Mode : Tx mode

Condition : Temp:24.5'C, Humi:55%, Press:101.4kPa Antenna/Distance : 2018 HF 907/3m/VERTICAL

Memo : 3DH5 2480MHz

Data: 8

Item	Freq.	Read Level	Antenna Factor	PRM Factor	Cable Loss	Result Level	Limit Line	Over Limit	Detector	Polarization
(Mark)	(MHz)	(dBµV)	(dB/m)	dB	dB	(dBµV/m)	(dBµV/m)	(dB)		
1	2483.50	52.93	29.27	44.21	4.89	42.88	74.00	-31.12	Peak	VERTICAL
2	2494.75	56.12	29.29	44.22	4.94	46.13	74.00	-27.87	Peak	VERTICAL

Note: 1. Result Level = Read Level + Antenna Factor + Cable loss - PRM Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

Report No.: DDT-R19021308-1E2

13. Power Line Conducted Emission

13.1. Block diagram of test setup

13.2. Power Line Conducted Emission Limits

Frequency	Quasi-Peak Level dB(μV)	Average Level dB(μV)
150kHz ~ 500kHz	66 ~ 56*	56 ~ 46*
500kHz ~ 5MHz	56	46
5MHz ~ 30MHz	60	50

Note 1: * Decreasing linearly with logarithm of frequency.

Note 2: The lower limit shall apply at the transition frequencies.

13.3. Test Procedure

The EUT and Support equipment, if needed, were put placed on a non-metallic table, 80cm above the ground plane.

Configuration EUT to simulate typical usage as described in clause 2.4 and test equipment as described in clause 10.2 of this report.

All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10.

All support equipment power received from a second LISN.

Emissions were measured on each current carrying line of the EUT using an EMI Test Receiver connected to the LISN powering the EUT.

The Receiver scanned from 150 kHz to 30MHz for emissions in each of the test modes.

During the above scans, the emissions were maximized by cable manipulation.

The test mode(s) described in clause 2.4 were scanned during the preliminary test.

After the preliminary scan, we found the test mode producing the highest emission level.

The EUT configuration and worse cable configuration of the above highest emission levels were recorded for reference of the final test.

EUT and support equipment were set up on the test bench as per the configuration with highest emission level in the preliminary test.

A scan was taken on both power lines, Neutral and Line, recording at least the six highest emissions.

Emission frequency and amplitude were recorded into a computer in which correction factors were used to calculate the emission level and compare reading to the applicable limit.

The test data of the worst-case condition(s) was recorded.

The bandwidth of test receiver is set at 9 kHz.

13.4. Test Result

PASS. (See below detailed test result)

Note1: All emissions not reported below are too low against the prescribed limits.

Note2: "----" means Peak detection; "----" means Average detection.

Note3: Pre-test AC conducted emission at both voltage AC 120V/60Hz and AC 240V/60Hz,

recorded worse case (AC 120V/60Hz).

TR-4-E-010 Conducted Emission Test Result

Test Site : DDT 5# Shield Room D:\2019 report data\Q19021308-1E\IPA103A_CE.EM6

Test Date : 2019-04-12 Tested By : Telamon

Wireless Rechargeable Water-Resistant

EUT : Speaker System : Sport XL

Power Supply : AC 120V/60Hz Test Mode : Tx mode

ConditionTemp:24.5'C, Humi:55.5%,
Press:100.1kPa

: 2018 ENV216 2#/NEUTRAL

Memo :

Data: 2

Item	Freq.	Read Level	LISN Factor	Cable Loss	Pulse Limiter	Result Level	Limit Line	Over Limit	Detector	Phase
					Factor					
(Mark)	(MHz)	(dBµV)	(dB)	(dB)	(dB)	(dBµV)	(dBµV)	(dB)		
1	0.15	31.63	9.66	0.17	9.78	51.24	66.00	-14.76	QP	NEUTRAL
2	0.15	14.16	9.66	0.17	9.78	33.77	56.00	-22.23	Average	NEUTRAL
3	0.19	27.56	9.66	0.18	9.78	47.18	64.11	-16.93	QP	NEUTRAL
4	0.19	17.18	9.66	0.18	9.78	36.80	54.11	-17.31	Average	NEUTRAL
5	0.40	20.35	9.65	0.20	9.78	39.98	57.95	-17.97	QP	NEUTRAL
6	0.40	13.76	9.65	0.20	9.78	33.39	47.95	-14.56	Average	NEUTRAL
7 5 7110	0.53	19.38	9.64	0.20	9.78	39.00	56.00	-17.00	QP	NEUTRAL
8	0.53	13.80	9.64	0.20	9.78	33.42	46.00	-12.58	Average	NEUTRAL
9	4.36	17.40	9.63	0.37	9.41	36.81	56.00	-19.19	QP	NEUTRAL
10	4.36	8.60	9.63	0.37	9.41	28.01	46.00	-17.99	Average	NEUTRAL
11	26.70	30.15	9.78	0.50	9.34	49.77	60.00	-10.23	QP	NEUTRAL
12	26.70	24.37	9.78	0.50	9.34	43.99	50.00	-6.01	Average	NEUTRAL

Note: 1. Result Level = Read Level +LISN Factor + Pulse Limiter Factor + Cable loss.

- 2. If QP Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 200 Hz (9 kHz—150 kHz), 9 kHz (150 kHz—30 MHz).
- 4. Step size: 80Hz (0.009MHz-0.15MHz), 4 kHz (0.15MHz-30MHz), Scan time: auto.

TR-4-E-010 Conducted Emission Test Result

Test Site : DDT 5# Shield Room D:\2019 report data\Q19021308-1E\IPA103A_CE.EM6

Test Date : 2019-04-12 Tested By : Telamon

Wireless Rechargeable Water-Resistant : Sport XL

Speaker System

Power Supply : AC 120V/60Hz Test Mode : Tx mode

Condition : Temp:24.5'C, Humi:55.5%, Press:100.1kPa : 2018 ENV216 2#/LINE

Memo :

Data: 4

Item	Freq.	Read	LISN	Cable	Pulse	Result	Limit	Over	Detector	Phase
		Level	Factor	Loss	Limiter	Level	Line	Limit		
					Factor					
(Mark)	(MHz)	(dBµV)	(dB)	(dB)	(dB)	(dBµV)	(dBµV)	(dB)		
1	0.15	32.53	9.66	0.17	9.78	52.14	66.00	-13.86	QP	LINE
2	0.15	18.51	9.66	0.17	9.78	38.12	56.00	-17.88	Average	LINE
3	0.18	26.57	9.66	0.18	9.78	46.19	64.46	-18.27	QP	LINE
4	0.18	13.87	9.66	0.18	9.78	33.49	54.46	-20.97	Average	LINE
5	0.40	19.96	9.65	0.20	9.78	39.59	57.95	-18.36	QP	LINE
6	0.40	13.32	9.65	0.20	9.78	32.95	47.95	-15.00	Average	LINE
7 ESTING	0.53	18.30	9.64	0.20	9.78	37.92	56.00	-18.08	QP	LINE
8	0.53	12.53	9.64	0.20	9.78	32.15	46.00	-13.85	Average	LINE
9	0.78	18.23	9.64	0.21	9.78	37.86	56.00	-18.14	QP	LINE
10	0.78	13.46	9.64	0.21	9.78	33.09	46.00	-12.91	Average	LINE
11	21.26	22.36	9.74	0.47	9.35	41.92	60.00	-18.08	QP	LINE
12	21.26	16.58	9.74	0.47	9.35	36.14	50.00	-13.86	Average	LINE

Note: 1. Result Level = Read Level +LISN Factor + Pulse Limiter Factor + Cable loss.

- 2. If QP Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 200 Hz (9 kHz—150 kHz), 9 kHz (150 kHz—30 MHz).
- 4. Step size: 80Hz (0.009MHz-0.15MHz), 4 kHz (0.15MHz-30MHz), Scan time: auto.

14. Antenna Requirements

14.1. Limit

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. And according to FCC 47 CFR Section 15.247 (b), if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

14.2. Result

The antennas used for this product are integrated antenna and that no antenna other than that furnished by the responsible party shall be used with the device, the maximum peak gain of the transmit antenna is only 2 dBi.