University of Bergen Department of Informatics

Solving Maximum Weighted Matching problem using Graph Neural Networks

Author: Nikita Zaicev

Supervisor: Fredrik Manne

UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet

December, 2023

Abstract In this work we tried to train a Graph Neural Network (GNN) to solve a popular problem
In this work we tried to train a Graph Neural Network (GNN) to solve a popular problem
In this work we tried to train a Graph Neural Network (GNN) to solve a popular problem
In this work we tried to train a Graph Neural Network (GNN) to solve a popular problem
In this work we tried to train a Graph Neural Network (GNN) to solve a popular problem
In this work we tried to train a Graph Neural Network (GNN) to solve a popular problem
of Maximum Weighted Matching.

Contents

1	Intr	oduction	1
	1.1	Background	1
		1.1.1 Listings	1
		1.1.2 Figures	2
		1.1.3 Tables	2
		1.1.4 Git	2
2	App	oroach	3
	2.1	Result Validation	3
3	Gra	ph Neural Network	4
	3.1	Difference from normal neural network	4
4	Tra	ning	5
	4.1	Data	5
5	Intr	oduction	6
	5.1	Background	6
		5.1.1 Listings	6
		5.1.2 Figures	7
		5.1.3 Tables	7
		5.1.4 Git	7
6	Cor	clusion	8
	6.1	Future work	8
\mathbf{G}	lossa	cy .	9
Li	${ m st}$ of	Acronyms and Abbreviations	10
${f A}$	Ger	erated code from Protocol buffers	11

Bibliography 11

List of Figures

1.1	Caption for flowchart	2
5.1	Caption for flowchart	7

List of Tables

1.1	Caption of table	2
5.1	Caption of table	7

Listings

1.1	Short caption	1
1.2	Hello world in Golang	1
5.1	Short caption	6
5.2	Hello world in Golang	6
A.1	Source code of something	11

Introduction

Machine Learning (ML) has become a powerfull tool for solving a wide variety of problems. One such field that has been particularly challenging is Combinatorial Optimization (CO).

1.1 Background

This chapter is dedicated to all the knowledge and background research that was required for this project.

1.1.1 Listings

You can do listings, like in Listing 5.1

```
Listing 1.1: Look at this cool listing. Find the rest in Appendix A.1
```

```
1 $ java -jar myAwesomeCode.jar
```

You can also do language highlighting for instance with Golang: And in line 6 of Listing 5.2 you can see that we can ref to lines in listings.

Listing 1.2: Hello world in Golang

```
package main
import "fmt"
func main() {
   fmt.Println("hello world")
}
```

1.1.2 Figures

Example of a centred figure

Figure 1.1: Caption for flowchart

Credit: Acme company makes everything https://acme.com/

1.1.3 Tables

We can also do tables. Protip: use https://www.tablesgenerator.com/ for generating tables.

Table 1.1: Caption of table

Title1	Title2	Title3
data1	data2	data3

1.1.4 Git

Git is fun, use it!

Approach

ML has become a powerfull tool for solving a wide variety of problems. One such field that has been particulary challenging is CO.

2.1 Result Validation

How the performance was measured

Graph Neural Network

ML has become a powerfull tool for solving a wide variety of problems. One such field that has been particulary challenging is CO.

3.1 Difference from normal neural network

Why it works better for graphs

Training

ML has become a powerfull tool for solving a wide variety of problems. One such field that has been particulary challenging is CO.

4.1 Data

What data was used for training

Results

ML has become a powerfull tool for solving a wide variety of problems. One such field that has been particulary challenging is CO.

5.1 Performance on unseen data

How well the final model solves the matching problem

Conclusion

ML has become a powerfull tool for solving a wide variety of problems. One such field that has been particulary challenging is CO.

6.1 Future work

Results show that this approach

Glossary

Git is a Version Control System (VCS) for tracking changes in computer files and coordinating work on those files among multiple people.

List of Acronyms and Abbreviations

 ${\bf CO}\,$ Combinatorial Optimization.

 ${\bf GNN}$ Graph Neural Network.

ML Machine Learning.

 \mathbf{VCS} Version Control System.

Appendix A

Generated code from Protocol buffers

Listing A.1: Source code of something

System.out.println("Hello Mars");