Classical and Quantum Probabilistically Checkable Proofs

Jon Rosario and Laker Newhouse —— Mentored by David Cui

Breaking News: Researchers Discover Proofs That Are Faster To Read

Breaking News: Researchers Discover Proofs That Are Faster To Read

Quick Preliminaries: The Class P

Verifier

Quick Preliminaries: The Class P

Quick Preliminaries: The Class P

$$\bullet \ x \in L \implies V(x) = 1$$

•
$$x \notin L \implies V(x) = 0$$

$$\bullet \ x \in L \implies V(x) = 1$$

$$\bullet \ x \notin L \implies V(x) = 0$$

- $x \in L \implies \exists \varphi \text{ such that } V(x, \varphi) = 1$
- $x \notin L \implies \forall \varphi$, we have $V(x, \varphi) = 0$

- $x \in L \implies \exists \varphi \text{ such that } V(x, \varphi) = 1$
- $x \notin L \implies \forall \varphi$, we have $V(x, \varphi) = 0$

(At least one good certificate works)

- $x \in L \implies \exists \varphi \text{ such that } V(x, \varphi) = 1$
- $x \notin L \implies \forall \varphi$, we have $V(x, \varphi) = 0$

(At least one good certificate works)

(All false certificates fail)

Natural Extension #1: Probabilistic Verifier

- $x \in L \implies \exists \varphi \text{ such that } P[V(x,\varphi) = 1] = 1$
- $x \notin L \implies \forall \varphi$, we have $P[V(x,\varphi)=1] \leq 1/2$

(At least one good certificate works)

(All false certificates probably fail)

Natural Extension #2: Bounded Queries

- $x \in L \implies \exists \varphi \text{ such that } P[V(x,\varphi) = 1] = 1$
- $x \notin L \implies \forall \varphi$, we have $P[V(x,\varphi) = 1] \le 1/2$

(At least one good certificate works)

(All false certificates probably fail)

Natural Extension #3: Bounded Randomness

- $x \in L \implies \exists \varphi \text{ such that } P[V(x,\varphi) = 1] = 1$
- $x \notin L \implies \forall \varphi$, we have $P[V(x,\varphi) = 1] \le 1/2$

(At least one good certificate works)

(All false certificates probably fail)

The Theorem That Rocked The '90s

$$\mathsf{NP} = \mathsf{PCP}(O(\log n), O(1))$$
"randomness"
"gueries"

In NP: certificate is a color for each vertex

In NP: certificate is a color for each vertex

Probabilistic verifier: check just one edge

- $x \in L \implies \exists \varphi \text{ such that } P[V(x, \varphi) = 1] = 1$
- $x \notin L \implies \forall \varphi$, we have $P[V(x,\varphi) = 1] \le 1/2$

- $x \in L \implies \exists \varphi \text{ such that } P[V(x,\varphi) = 1] = 1$
- $x \notin L \implies \forall \varphi$, we have $P[V(x,\varphi)=1] \leq 1/2$

In NP: certificate is a color for each vertex

Probabilistic verifier: check just one edge

This edge —

What if just one rogue vertex wrong?

- $x \in L \implies \exists \varphi \text{ such that } P[V(x,\varphi) = 1] = 1$
- $x \notin L \implies \forall \varphi$, we have $P[V(x,\varphi) = 1] \leq 1/2$

CSP:

- One constraint per edge
- Constraints "query" constant number of vertices
- Goal: distinguish between cases in the promise

"constraint satisfaction problem"

CSP:

 One constraint per edge

 Constraints "query" constant number of vertices

 Goal: distinguish between cases in the promise

Promise:

Either all colors correct

Or > 10% incorrect

"constraint satisfaction problem"

CSP:

 One constraint per edge

 Constraints "query" constant number of vertices

 Goal: distinguish between cases in the promise

Promise:

Either all colors correct

Or > 10% incorrect

"constraint satisfaction problem"

CSP Formulation

PCP Formulation

Two-player game:

- Edge player "E"
- Vertex player "V"
- Decision function

Two-player game:

- Edge player "E"
- Vertex player "V"
- Decision function

Goal:

Distinguish 100%
 win probability from
 50%.

Two-player game:

- Edge player "E"
- Vertex player "V"
- **Decision function**

Goal:

Distinguish 100% win probability from < 50%.

Question:

- Select random pair (*e*, *v*)
- Ask "E" for colors of e
- Ask "V" for color of v

Decision function:

- "E" answers two different colors
- "V" matches "F"

Two-player game:

- Edge player "E"
- Vertex player "V"
- **Decision function**

Goal:

Distinguish 100% win probability from < 50%.

Question:

- Select random pair (*e*, *v*)
- Ask "E" for colors of e
- Ask "V" for color of v

Decision function:

- "E" answers two different colors
- "V" matches "F"

Two-player game:

- Edge player "E"
- Vertex player "V"
- Decision function

Goal:

Distinguish 100%
 win probability from
 50%.

Question:

- Select random pair (*e*, *v*)
- Ask "E" for colors of e
 - Ask "V" for color of v

Decision function:

- "E" answers two different colors
- "V" matches "E"

Games Formulation

PCP Formulation

Key Takeaways

Games Formulation

CSP Formulation

Proofs Formulation

(the easy part)

Key Takeaways

Games Formulation

CSP Formulation

Proofs Formulation

(the easy part)

 $\mathsf{NP} = \mathsf{PCP}(O(\log n), O(1))$

(the hard part)

Key Takeaways

Games Formulation

CSP Formulation

Proofs Formulation

(the easy part)

 $\mathsf{NP} = \mathsf{PCP}(O(\log n), O(1))$

(the hard part)

CSP equivalence: it is even hard to approximate NP problems

Into the Quantum Realm...

q-Local Hamiltonian Problem

- Given m Hermitian matrices acting on q < n qubits $H_i \in C^{(2^n)^2}$
 - o the total energy is $H = \Sigma H_i$

q-Local Hamiltonian Problem

- Given m Hermitian matrices acting on q < n qubits $H_i \in C^{(2^n)^2}$
 - the total energy is $H = \Sigma H_i$
- Promise problem:

(YES instance)
$$\lambda_0(H) \leq a$$

(NO instance)
$$\lambda_0(H) \geq b$$

q-Local Hamiltonian Problem

- Given m Hermitian matrices acting on q < n qubits $H_i \in C^{(2^n)^2}$
 - the total energy is $H = \Sigma H_i$
- Promise problem:

(YES instance)
$$\lambda_0(H) \leq a$$
 (NO instance) $\lambda_0(H) \geq b$

- Quantum Cook-Levin Theorem says the above is QMA-hard when
 - \circ b a = 1/poly(n)

Constraints <---> Hamiltonians

Constraints <---> Hamiltonians

Locality means the same thing!

Constraints <---> Hamiltonians

Locality means the same thing!

Satisfy all constraints <---> Smallest eigenvalue less than α

Constraints <---> Hamiltonians

Locality means the same thing!

Satisfy all constraints <---> Smallest eigenvalue less than α

Not all constraints satisfied <---> Smallest eigenvalue greater than b

Local Hamiltonian problem naturally includes CSP as a subcase

- Local Hamiltonian problem naturally includes CSP as a subcase
- Force $H_i \in C^{(2^n)^2}$ to be a diagonal matrix with entries of 0 or 1
 - Forces eigenvalues to be exactly 0 or 1
 - \circ Standard basis $\{e_1, ..., e_{2^{\wedge}n}\}$ are eigenvectors

- Local Hamiltonian problem naturally includes CSP as a subcase
- Force $H_i \in C^{(2^n)^2}$ to be a diagonal matrix with entries of 0 or 1
 - Forces eigenvalues to be exactly 0 or 1
 - Standard basis $\{e_1, ..., e_{2^{\wedge}n}\}$ are eigenvectors
- Interpret each basis vector as encoding a classical n-bit string

- Local Hamiltonian problem naturally includes CSP as a subcase
- Force $H_i \in C^{(2^n)^2}$ to be a diagonal matrix with entries of 0 or 1
 - Forces eigenvalues to be exactly 0 or 1
 - Standard basis $\{e_1, ..., e_{2 \land n}\}$ are eigenvectors
- Interpret each basis vector as encoding a classical n-bit string
- Applying H_i to a basis vector e_i either incurs a cost of 0 or 1
 - We can now interpret the H_i's as constraints on assignments to n bits

- Local Hamiltonian problem naturally includes CSP as a subcase
- Force $H_i \in C^{(2^n)^2}$ to be a diagonal matrix with entries of 0 or 1
 - Forces eigenvalues to be exactly 0 or 1
 - Standard basis $\{e_1, ..., e_{2^{\wedge}n}\}$ are eigenvectors
- Interpret each basis vector as encoding a classical n-bit string
- Applying H_i to a basis vector e_i either incurs a cost of 0 or 1
 - We can now interpret the H_i's as constraints on assignments to n bits
- CSP problem of finding a satisfying assignment
 - ...same to LH problem to find if it's possible to get a cost of 0
 - But this is just a special case of LH!

Quantum PCP Conjecture (qLH Formulation)

• QPCP conjecture says $\exists \gamma > 0$ and q such that it is QMA-hard to distinguish YES and NO instances of q-LH on m Hermitian matrices with **b-a = ym**

(YES instance)
$$\lambda_0(H) \leq a$$

(NO instance)
$$\lambda_0(H) \geq b$$

Quantum PCP Conjecture (qLH Formulation)

• QPCP conjecture says $\exists \gamma > 0$ and q such that it is QMA-hard to distinguish YES and NO instances of q-LH on m Hermitian matrices with **b-a = ym**

(YES instance)
$$\lambda_0(H) \leq a$$
 (NO instance) $\lambda_0(H) \geq b$

- How is this different from Quantum Cook-Levin?
 - QCL says b-a = 1/poly(n)
 - This is a statement the hardness of approximating the eigenvalue, similar to the classical promise problem of CSP

Quantum PCP Conjecture (Proofs & Games)

- Proofs are easily adaptable to a quantum setting
 - Just allow for quantum certificates on a quantum computer
 - Allow our proofs to measure exactly q qubits before making a decision
 - Few more details...
 - Conjectured that there exists a **constant q** s.t. all languages in QMA can be solved in this setting

Quantum PCP Conjecture (Proofs & Games)

- Proofs are easily adaptable to a quantum setting
 - Just allow for quantum certificates on a quantum computer
 - Allow our proofs to measure exactly q qubits before making a decision
 - Few more details...
 - Conjectured that there exists a **constant q** s.t. all languages in QMA can be solved in this setting
- Games also extend nicely to a quantum setting
 - Allow our players to compute their answers to any questions on a quantum computer
 - For anything interesting to happen, our players have to share entanglement
 - Few more details...

Summary of Quantum Knowledge

- The quantum Local Hamiltonian and Proofs Formulations are proven to be equivalent
- Quantum games are complicated but conjectured to also be equivalent
- What is the full picture so far?

Concluding Thoughts

- Beautiful theory, powerful applications
- Hot area, not well understood
- MIP* = RE

Classical PCP

Games Formulation

CSP Formulation

Proofs Formulation

Concluding Thoughts

- Beautiful theory, powerful applications
- Hot area, not well understood
- MIP* = RE

And now **YOU** are equipped to go forth and learn more!

Classical PCP

Games Formulation

CSP Formulation

Proofs Formulation

