Университет ИТМО

Факультет Программной Инженерии и Компьютерных Технологий

Вариант №715

Лабораторная работа №5

По дисциплине

Основы профессиональной деятельности

Выполнил:

Студент группы РЗ114

Лавлинский Михаил

Преподаватель:

Афанасьев Д.Б

Санкт-Петербург

2020г

Оглавление

1)	Задание	. 2
2)	Текст Исходной программы	. 3
	1) Текст исходной программы	. 3
	2) Расположение строки в памяти	. 4
3)	Текст программы на языке ассемблера БЭВМ	. 5
4)	Описание программы	. 6
	1) Назначение программы	. 6
	2) Область представления	. 6
	3) Область допустимых значений	. 6
	4) Расположение в памяти ЭВМ программы, исходных данных и результатов	. 6
	5) Адрес первой и последней выполняемой команды	. 6
5)	Заданная строка в кодировках UTF-8, UTF-16, КОИ-8	. 7
6)	Таблица трассировки	. 8
7)	Вывод	. 8

1) Задание

По выданному преподавателем варианту разработать программу асинхронного обмена данными с внешним устройством. При помощи программы осуществить ввод или вывод информации, используя в качестве подтверждения данных сигнал (кнопку) готовности ВУ.

- 1. Программа осуществляет асинхронный ввод данных с ВУ-3
- 2. Программа начинается с адреса 426₁₆. Размещаемая строка находится по адресу 566₁₆.
- 3. Строка должна быть представлена в кодировке КОИ-8.
- 4. Формат представления строки в памяти: АДР1: СИМВ1 СИМВ2 АДР2: СИМВ3 СИМВ4 ... СТОП_СИМВ.
- 5. Ввод или вывод строки должна быть завершен по символу с кодом 0D (CR)

2) Текст Исходной программы

1) Текст исходной программы

Адрес	Код команды	Мнемоника	Комментарии					
426	0200	CLA	Очистка аккумулятора					
427	AE18	LD IP + 24	Загрузка ячейки 440 с адресом начала строки					
428	EE18	ST IP + 24	Сохранение адреса начала строки в ячейке 441					
429	1207	IN 7	Чтение значения из DR #6 (BУ - 3)					
42A	2F40	AND #0x40	Побитовое умножение аккумулятора и 0х40					
42B	F0FD	BEQ IP-3	Если z равен 1 переход к ячейке 429					
42C	1206	IN 6	Чтение младшего символа из DR #6 (ВУ-3)					
42D	7E11	CMP IP + 17	Сравнение старшего символа с символом конца строки, находящимся в ячейке 43F					
42E	42E FOOB BEQ IP		Переход к ячейке 43А если символ равен символу конца строки					
42F	42F 0680 SWA		Перенос символа в старший байт					
430	E810	ST (IP + 16)	Сохранение старшего символа в ячейке адрес которой в ячейке 441					
431	1207	IN 7	Чтение значения из DR #6 (BУ - 3)					
432	2F40	AND 0x40	Побитовое умножение аккумулятора и 0х40					
433	F0FD	BEQ (IP - 3)	Если z равен 1 переход к ячейке 431					
434	1206	IN 6	Чтение младшего символа из DR #6 (ВУ-3)					
435	7E09	CMP IP + 9	Сравнение символа с символом конца строки в ячейке 43F					
436	F005	BEQ IP + 5	Переход к ячейке 43С если символ равен символу конца строки					
437	4809	ADD(IP + 9)	Прибавляем к младшему символу старший, адрес которого находится в ячейке 441					
438	EA08	ST (IP + 8)+	Сохранение 2 символов в ячейке по адресу в ячейке 441. Автоинкрементная адресация. I + 1					
439	CEEF	JUMP IP - 17	Переход к ячейке 429 для ввода дальнейших символов					
43A	0680	SWAB	Перенос символа конца строки в старший байт					
43B	CE01	JUMP IP + 1	Переход к ячейке 43D для завершения программы					
43C	4804	ADD (IP + 4)	Прибавляем к символу конца строки предыдущий символ, адрес которого находится в ячейке 441					
43D	E803	ST (IP + 3)	Сохранение последнего символа строки + символа конца строки в ячейку по адресу в ячейке 441					
43E	0100	HLT	Останов. Конец программы					
43F	000D	ENDS	Символ означающий конец строки					
440	0566	RES	Ячейка с адресом начала строки					
441	l41 0 I		Текущий адрес заполняемой строки					

2) Расположение строки в памяти

Адрес	3начение
566	СИМВ1 СИМВ2
567	СИМВЗ СИМВ4
568	СИМВ5 СИМВ6
569	
56A	
56B	
56C	
56D	
56E	
56F	
570	
572	
572	
573	
574	
575	
576	
577	
578	•••
579	•••
57A	
57B	
57C	•••
57D	
57E	•••
57F	
580	
581	•••
582	
583	
584	
585	
586	•••
587	•••
588	···
589	
58A	
58B	 СИМВ75 СИМВ76
58C	Символ конца строки.

3) Текст программы на языке ассемблера БЭВМ.

```
ORG 0x426
START:
     \mathsf{CLA}
     LD RES
     ST I
S1:
     IN 7
     AND #0x40 ; проверка готовности ВУ
     BEQ S1
     IN 6
     CMP ENDS
     BEQ EXIT1
     SWAB
     ST (I)
S2:
     IN 7
     AND #0x40 ; проверка готовности ВУ
     BEQ S2
     IN 6
     CMP ENDS
     BEQ EXIT2
     ADD (I)
     ST (I)+
     JUMP S1
EXIT1:
     SWAB
    JUMP EXIT
EXIT2:
    ADD (I)
EXIT:
    ST (I)
    HLT
ENDS:
    WORD 0x000D ; символ конца строки
RES:
    WORD 0x566 ; адрес первой ячейки строки
I:
    WORD 0
```

4) Описание программы

1) Назначение программы

Асинхронный ввод данных с ВУ-3. Программа получает строку в кодировке КОИ-8. Полученная строка посимвольно записывается в память БЭВМ. Формат представления строки в памяти: АДР1: СИМВ1 СИМВ2 АДР2: СИМВ3 СИМВ4 ... СТОП СИМВ.

2) Область представления

СИМВі – 8-разрядное целое беззнаковое число.

Строка: массив целых 16 разрядных беззнаковых чисел

Адрес начала строки: RES – 11-разрядное целое беззнаковое число

3) Область допустимых значений

CИМВ $_{i}$ ∈ [0; 2^{8} – 1]

Адрес начала строки: RES $\in [000; 425] \cup [442; 7FF]$

Длина строки:
$$X = \begin{cases} 426 - RES, RES \in [000; 425] \\ C26 - RES, RES \in [442,7FF] \end{cases}$$

4) Расположение в памяти ЭВМ программы, исходных данных и результатов

426-441 – расположение программы в памяти

43F ENDS – Символ конца строки, константа, ENDS = 0x000D

441 - переменная, используемая программой

440 RES – Ячейка с адресом начала строки

Расположение строки в программе \in [RES; RES + X – 1]

5) Адрес первой и последней выполняемой команды

426 – адрес первой выполняемой команды

43Е – адрес последней выполняемой команды

5) Заданная строка в кодировках UTF-8, UTF-16, КОИ-8.

Строка: Ключевая особенность – интернеты наполняют контентом рядовые юзеры-приматы.

KOM-8: EB CC CO DE C5 D7 C1 D1 9A CF D3 CF C2 C5 CE CF D3 D4 D8 9A 80 80 9A C9 CE D4 C5 D2 CE C5 D4 D9 9A CE C1 D0 CF CC CE D1 C0 D4 9A CB CF CE D4 C5 CE D4 CF CD 9A D2 D1 C4 CF D7 D9 C5 9A C0 DA C5 D2 D9 80 D0 D2 C9 CD C1 D4 D9 95

UTF-8: D0 9A D0 BB D1 8E D1 87 D0 B5 D0 B2 D0 B0 D1 8F 20 D0 BE D1 81 D0 BE D0 B1 D0 B5 D0 BD D0 BD D0 BD D0 BE D1 81 D1 82 D1 8C 20 E2 80 93 20 D0 B8 D0 BD D1 82 D0 B5 D1 80 D0 BD D0 B5 D1 82 D1 88 20 D0 BD D0 BD D0 BF D0 BE D0 BB D0 BD D1 8F D1 8E D1 82 20 D0 BA D0 BE D0 BD D1 82 D0 B5 D0 BD D1 82 D0 B5 D0 BD D1 82 D0 B5 D0 B5 D1 80 D1 88 D0 B5 D0 B5 D1 80 D1 88 D0 BF D1 80 D0 B5 D1 80 D1 88 D0 B5 D1 80 D1 88 D0 BF D1 80 D0 B5 D1 80 D1 88 D0 B5 D1 80 D0 B5 D1 80 D1 88 D0 B5 D1 80 D0 B5 D1 80 D0 B5 D1 80 D0 B5 D1 80 D1 88 D0 B5 D1 80 D1 80 D0 B5 D1 80 D0 B5 D1 80 D1 80 D1 80 D0 B5 D1 80 D1 80

UTF-16: 04 1A 04 3B 04 4E 04 47 04 35 04 32 04 30 04 4F 00 20 04 3E 04 41 04 3E 04 31 04 35 04 3D 04 3D 04 3E 04 41 04 42 04 4C 00 20 20 13 00 20 04 3B 04 3D 04 42 04 35 04 40 04 3D 04 35 04 42 04 4B 00 20 04 3D 04 3F 04 3E 04 3B 04 3D 04 4F 04 4E 04 42 00 20 04 3A 04 3E 04 3D 04 42 04 35 04 3D 04 42 04 3D 04 42 04 3F 04 3C 00 20 04 4F 04 3E 04 3C 00 20 04 4E 04 37 04 35 04 40 04 4B 00 2D 04 3F 04 40 04 3B 04 3C 00 61 04 42 04 4B

6) Таблица трассировки

Адрес	Код	IP	CR	AR	DR	SP	BR	AC	PS	NZVC	Адрес	Новый
												код
426	0200	427	0200	426	0200	000	0426	0000	004	0100		
427	AE18	428	AE18	440	0566	000	0018	0566	000	0000		
428	EE18	429	EE18	441	0566	000	0018	0566	000	0000	441	0566
429	1207	42A	1207	429	1207	000	0429	0540	000	0000		
42A	2F40	42B	2F40	42A	0040	000	0040	0040	000	0000		
42B	F0FD	42C	F0FD	42B	F0FD	000	042B	0040	000	0000		
42C	1206	42D	1206	42C	1206	000	042C	00EB	000	0000		
42D	7E11	42E	7E11	42D	000D	000	0011	00EB	001	0001		
42E	F00B	42F	F00B	42E	F00B	000	042E	00EB	001	0001		
42F	0680	430	0680	42F	0680	000	042F	EB00	009	1001		
430	E810	431	E810	443	EB00	000	0010	EB00	009	1001	566	EB00
431	1207	432	1207	431	1207	000	0431	EB40	009	1001		
432	2F40	433	2F40	432	0040	000	0040	0040	001	0001		
433	F0FD	434	F0FD	433	F0FD	000	0433	0040	001	0001		
434	1206	435	1206	434	1206	000	0434	00CC	001	0001		
435	7E09	436	7E09	440	000D	000	0009	00CC	001	0001		
436	F006	437	F006	436	F066	000	0436	00CC	001	0001		
437	4809	438	4809	443	EB00	000	0009	EBCC	800	1000		
438	EA09	439	EA09	566	EBCC	000	0009	EBCC	800	1000	566	EBCC
439	CEFF	429	CEFF	439	0429	000	FFEF	EBCC	800	1000		

7) Вывод

В результате выполнения данной лабораторной работы я изучила работу БЭВМ с ВУ в асинхронном режиме.