ECOI22 - Inteligência Artificial - Resolução do problema de Voos Aéreos através de GA

J. P. V. Moreira¹, W. G. L. Rabelo²

^{1,2}Institute of Technological Sciences, Universidade Federal de Itajubá, Itabira, Minas Gerais, Brazil *joaopym_21@unifei.edu.br*, *wesleygrabelo@unifei.edu.br*

Abstract—Este artigo apresenta a aplicação de um algoritmo genético para otimizar reservas de voos, focando na minimização tanto do custo total quanto dos tempos de espera para uma viagem de ida e volta envolvendo múltiplos destinos. O problema é formulado para selecionar a melhor combinação de voos, considerando diversos fatores como horários de partida, horários de chegada e preços. O algoritmo emprega operadores genéticos, incluindo seleção por torneio, crossover de ponto único e mutação, para evoluir uma população de soluções potenciais ao longo de gerações sucessivas.

Keywords—Algoritmo Genético, Otimização de Voos, Otimização Combinatória, Ajuste de Parâmetros, Computação Evolucionária, Python.

I. INTRODUCTION

Algoritmos genéticos (GAs) são uma classe de métodos heurísticos de busca e otimização inspirados nos princípios da seleção natural e da evolução biológica, conforme proposto por Charles Darwin. Eles foram inicialmente introduzidos por John Holland na década de 1970 e têm sido amplamente utilizados para resolver problemas complexos de otimização em diversas áreas, incluindo engenharia, economia, bioinformática e inteligência artificial .

O funcionamento básico de um algoritmo genético envolve a manutenção de uma população de soluções candidatas, chamadas indivíduos, que evoluem ao longo de várias gerações. Cada indivíduo na população é representado por um cromossomo, que pode ser codificado como uma string de bits, números ou outros formatos, dependendo do problema específico. O processo evolutivo nos AGs é guiado por três principais operadores genéticos: seleção, crossover e mutação.

Os algoritmos genéticos têm várias vantagens, incluindo a capacidade de lidar com espaços de busca grandes e complexos, e a flexibilidade para serem aplicados a uma ampla gama de problemas. No entanto, a escolha dos parâmetros do AG, como tamanho da população, taxas de crossover e mutação, e o método de seleção, é crucial para o seu desempenho e pode exigir um ajuste fino baseado na natureza específica do problema .

A popularidade dos AGs se deve, em parte, à sua simplicidade e à capacidade de encontrar boas soluções em um tempo computacional razoável. Eles têm sido aplicados com sucesso em problemas de otimização combinatória, planejamento, aprendizado de máquina, e até na arte generativa, demonstrando sua versatilidade e eficácia .

Neste trabalho, exploramos a aplicação de algoritmos genéticos para a otimização de reservas de voos, um problema

combinatório clássico que envolve a minimização dos custos e dos tempos de espera. Apresentamos um estudo detalhado dos parâmetros do AG e suas influências no desempenho, fornecendo uma análise compreensiva baseada em experimentos rigorosos.

II. MATERIALS AND METHODS

Esta seção descreve a metodologia proposta, incluindo uma breve descrição do GA, os parâmetros usados para validar o algoritmo, fornece uma visão geral do conjunto de dados e os detalhes sobre como foi feito a otimização dos voos.

A. Dataset

Para esse algoritmos, utilizamos um conjunto de dados de vários voos com seus respectivos preços como espaço de busca que pode ser encontrada em https://drive.google.com/file/d/14d5gwHdxN6LZjlkXRM-pd29vLgON7aI2/view.

B. Functions

Começando com a função para ler o conjunto de dados de voos de ida e volta, ela recebe um parâmetro que é o caminho para o arquivo a ser lido. Em seguida, ela abre o arquivo em modo de leitura e itera sobre cada linha do arquivo. Se a linha contiver exatamente 5 partes (ou seja, se for no formato esperado), ela extrai os valores correspondentes para origem, destino, partida, chegada e preco, e cria um dicionário com esses valores. Em seguida, adiciona esse dicionário à lista voos e retorna a lista completa de voos lidos do arquivo.

Fig. 1. Função para ler o conjunto de dados de voos de ida e volta.

Agora a função fitness se baseia Esta função calcula o fitness (aptidão) de um indivíduo, que é uma combinação do custo total dos voos e o tempo total de espera calculado pela função de calcular tempo de espera. O fitness é usado para comparar indivíduos e selecionar os mais adequados para reprodução na busca pela solução ótima do problema. Quanto menor o valor retornado, melhor é o indivíduo em termos de custo e tempo de espera. Dentro da função fitness foi feita uma "subfunção" para obter o valor do tempo de espera e, esta função calcula o tempo total de espera entre os voos de ida e volta de um indivíduo (uma possível solução). Ela itera sobre os índices pares do indivíduo, que representam os voos de ida, e para cada voo de ida, calcula o tempo de espera em Roma antes do voo de volta. Se o voo de volta partir no mesmo dia, o tempo de espera é a diferença entre a chegada em Roma e a partida; caso contrário, é a diferença entre a chegada e a meia-noite, somada à hora de partida do voo de volta.

```
def hora_para_minutos(hora):
    horas, minutos = map(int, hora.split(":"))
    return horas * 60 + minutos

def calcular_tempo_espera(individuo):
    tempo_espera_total = 0

for i in range(0, len(individuo), 2):
    voo_ida = individuo[i]
    voo_volta = individuo[i + 1]

chegada_roma + hora_para_minutos(voo_ida['chegada'])
    partida_volta = hora_para_minutos(voo_volta('partida'))

### Tempo de espera em Roma anterior voo voo de volta
    if partida_volta > chegada_roma:
        tempo_espera_total += partida_volta - chegada_roma
    else:
    # Se o voo de volta parte no dia seguinte
    tempo_espera_total += (24 * 60 - chegada_roma) + partida_volta

return tempo_espera_total += (24 * 60 - chegada_roma) + partida_volta

def calcular_fitness(individuo):
    custo_total = sum(voo('preco') for voo in individuo)
    tempo_espera_total = calcular_tempo_espera(individuo)
    return custo_total + tempo_espera_total # Quanto menor, melhor
```

Fig. 2. Função fitness para cálculo do melhor indivíduo.

A função torneio implementa um torneio de seleção para escolher indivíduos da população para reprodução em um algoritmo genético. A função seleciona aleatoriamente k indivíduos da população usando random.sample(populacao, k). Em seguida, ela retorna o melhor indivíduo dos selecionados com base em seu fitness, que é calculado pela função calcular fitness. O parâmetro key=lambda ind: calcular fitness(ind) é uma função lambda(uma função anônima como () =; em js, por exemplo) que define a chave de ordenação para a função min. Isso garante que o indivíduo retornado seja o que tem o menor valor de fitness, ou seja, o mais adequado em termos de custo e tempo de espera.

A função de crossover começa escolhendo aleatoriamente um ponto de corte entre 1 e o comprimento de um dos pais menos 1 (para garantir que haja material genético para trocar). O ponto de corte define onde a troca de material genético ocorrerá.

Em seguida, a função cria dois filhos combinando partes dos pais. O filho 1 é formado pela primeira parte de pai 1 (do início

```
def torneio(populacao, k):
    selecionados = random.sample(populacao, k)
    return min(selecionados, key=lambda ind: calcular_fitness(ind))
4
```

Fig. 3. Função de torneio.

até o ponto de corte) concatenada com a segunda parte de pai 2 (do ponto de corte até o final). O filho 2 é formado de forma análoga, mas com as partes dos pais invertidas e por fim, a função retorna os dois filhos gerados.

```
def crossover_um_ponto(pai1, pai2):
    ponto_corte = random.randint(1, len(pai1) - 1)
    filho1 = pai1[:ponto_corte] + pai2[ponto_corte:]
    filho2 = pai2[:ponto_corte] + pai1[ponto_corte:]
    return filho1, filho2
```

Fig. 4. Função de Crossover.

A função de mutação começa escolhendo aleatoriamente um índice de mutação entre 0 e o comprimento do indivíduo menos 1. Isso determina qual voo será mutado.

Em seguida, ela extrai a cidade de origem do voo que será mutado. Isso é usado para garantir que o novo voo escolhido tenha a mesma cidade de origem.

Então, a função seleciona aleatoriamente um novo voo válido com a mesma cidade de origem do voo que será mutado. Isso é feito usando uma list comprehension para criar uma lista de voos válidos com a mesma cidade de origem e, em seguida, escolhendo aleatoriamente um voo dessa lista.

Por fim, a função substitui o voo no índice de mutação do indivíduo pelo novo voo selecionado. Essa mutação introduz variação na população de indivíduos, ajudando a explorar diferentes soluções no espaço de busca do algoritmo genético.

```
1 def mutacao_troca_voo(individuo, voos_validos):
2    indice_mutacao = random.randint(0, len(individuo) - 1)
3    c.idade = inda(viduo[indice_mutacao]['origem']
4    novo_voo = random.choice([voo fon voo in voos_validos if voo['origem'] == cidade])
5    individuo[indice_mutacao] = novo_voo
```

Fig. 5. Função de Mutação.

O algoritmo genético começa inicializando uma população de indivíduos usando a função inicializar população com os voos válidos e o tamanho da população. Em seguida, cria uma lista historico custos para armazenar o melhor custo encontrado em cada geração. Em cada geração, a função seleciona os melhores indivíduos (elites) para preservar na próxima geração

com base na taxa de elitismo. Em seguida, ela continua a preencher a nova população até atingir o tamanho da população desejada, usando o operador de seleção por torneio, crossover de um ponto, e mutação de troca de voo. Após todas as gerações, a função retorna o melhor indivíduo encontrado e o histórico dos melhores custos encontrados em cada geração.

III. RESULTS

Como parâmetros iniciais, foram escolhidos os seguintes valores, que são considerados valores bem comuns em um algoritmo genético.

```
1  # Definindo os parâmetros
2  tamanho_populacao = 80
3  numero_geracoes = 120
4  tamanho_torneio = 2
5  prob_crossover = 0.5
6  prob_mutacao = 0.05
7  taxa_elitismo = 0.05
```

Fig. 6. Parâmetros iniciais.

A partir desses parâmetros, foi obtido valores proximos de custo total das passagens de 2050 a 2300 reais, sendo o valor obtido na figura 7 2248 reais.

Fig. 7. Resultados iniciais.

Com o modelagem dos parâmetros e operadores genéticos, foram encontrados os seguintes parâmetros:

```
1 # Definindo os parâmetros
2 tamanho_populacao = 400
3 numero_geracoes = 100
4 tamanho_torneio = 10
5 prob_crossover = 0.8
6 prob_mutacao = 0.05
7 taxa_elitismo = 0.05
```

Fig. 8. Parâmetros finais.

A partir desses parâmetros, foi obtido valores proximos de custo total das passagens de 1600 a 1800 reais, sendo o valor obtido na figura 9 1628 reais.

Fig. 9. Resultados finais.

Depois de executar o algoritmo genético trinta vezes, foram obtidos os seguintes valores da função fitness de custo médio, pior custo e melhor custo, assim como a média e desvio padrão dos mesmos.

Fig. 10. Resultados das 30 Execuções do Algoritmo Genético.

TABLE I ESTATÍSTICAS DOS CUSTOS

	Média	Desvio Padrão
Melhores Custos	1764.63	104.28
Custos Médios	1805.78	108.19
Piores Custos	3284.63	156.26

IV. CONCLUSION

Este estudo demonstrou a aplicação de algoritmos genéticos (AGs) para otimizar reservas de voos, com foco na minimização do custo total e do tempo de espera para viagens de ida e volta envolvendo múltiplos destinos. Os experimentos iniciais, usando parâmetros comuns do GA, resultaram em custos totais de ingressos variando de 2.050 a 2.300 reais. Após o ajuste fino dos parâmetros, os custos foram reduzidos ainda mais para uma faixa de 1.600 a 1.800 reais. O melhor custo alcançado nos experimentos foi de 1.628 reais.

Ao longo de 30 execuções do AG, o algoritmo encontrou

consistentemente boas soluções, com os custos médio, melhor e pior sendo 1.764,63, 1.805,78 e 3.284,63 reais, respectivamente. Os resultados sublinham o potencial dos AGs na resolução de problemas de otimização combinatória, como a reserva de voos, onde tanto a eficiência de custos como a redução dos tempos de espera são cruciais.

Trabalhos futuros poderiam explorar a integração de restrições e variáveis adicionais, como preferências dos passageiros e preços dinâmicos, para melhorar ainda mais o processo de otimização. Além disso, comparar o desempenho dos AGs com outras abordagens heurísticas ou meta-heurísticas poderia fornecer insights mais profundos sobre os métodos mais eficazes para este domínio do problema.

REFERENCES

- [1] Sandro Carvalho Izidoro. Introdução à meta-heurística genetic algorithms. Universidade Federal de Itajubá - UNIFEI Campus Itabira, 2022.
- [2] J.H. Holland. Adaptation in natural and artificial systems. University of Michigan Press, 1975.
- [3] M Mitchell. An introduction to genetic algorithms. MIT Press, 1998).

[1] [2] [3]