智慧型機器人概論 Introduction to Intelligent Robotics

Week 5 LED控制

長庚大學 資訊管理學系 林維昭 Wei-Chao (Vic) Lin viclin@gap.cgu.edu.tw

BBcar

- BASIC Stamp
- Board of Education (BOE)
- BBcar

- BASIC Stamp
- Board of Education (BOE)
- BBcar

BASIC Stamp

- BASIC Stamp
- Board of Education (BOE)
- BBcar

BOE組裝

■ BOE、BASIC Stamp、電池盒串列電纜的連結

■麵包板

- □標準電路測試區域,可以快速地連接電子零件
- □同一列中的插槽(如圖示)可以互相通電,可以用來連結不同的電子裝置
- ■2側電路插槽
 - □P0-P15: I/O連接到BASIC Stamp 晶片
 - Vdd: + Voltage
 - Vss: Voltage
 - □Vin: 直接收到電池或是 電源供應器提供的電壓值

- ■當兩邊同時連接著相同的電源供應時
 - □沒有電流會流動,所以LED就不會發光

■當電流的路徑從Vdd(+)到 Vss(-)完成時,LED即會發光

■ BASIC Stamp可以由I/O pin腳控制LED線路為 Vdd 或是 Vss,不論裝置是否有符合電流路徑皆能控制

BASIC Stamp 控制 LED

- www.parallax.com
 - Download → BASIC Stamp Software
 - BASIC Stamp Editor Software for Windows

軟體

- ■桌面捷徑
 - □ BASIC Stamp Editor v2.0

測試通訊

- ■確認BASIC Stamp已連結到電腦
- Run → Identify / F6

**電源開1

第一個程式

```
' {$STAMP BS2}
' {$PBASIC 2.5}

DEBUG "hello, this is your first BASIC Stamp program."
```

END

- LED: 發光二極體
 - □是一種很熱門的指示燈選擇
 - □因為它的低電源供應及使用期限長
- 指示燈最簡單的方法,就是利用電源供應來控制 指示燈的明暗

■ 將LED放入一個完整電路,電子會從-流到+(電子流),反向稱之為電流

■ 將LED放入一個完整電路,電子會從-流到+(電子流),反向稱之為電流

LED 測試線路的元件

- ✓ LED -- 紅色
- ▼ 電阻 -- 470 Ω (黃-紫-棕)

■對於電流LED有很極微小的電阻,如果沒有電阻 在電路中,一個5伏特供電源會燒壞掉LED燈。

歐姆定律

- V=IR / I=V/R
- ■歐姆定律說明
 - □在統一個電路裡,電流的總和 | 會
 - ■正比於實際電壓 V
 - 反比於電阻 R
 - □當電阻提高時,電流就會減少
- ■依歐姆定律
 - □如果R(電阻)為 1 Ω(歐姆), 有多少的I(電流)會流過LED?
 - 一個LED大概會降低 1.4V, 所以電壓剩下3.6V
 - \blacksquare I = $(5V-1.4V)/1\Omega = 3.6 A$

電阻

- ■電阻器是一種在電路中用來限制電流量的裝置.
 - □它的體積很小
 - □而且其中的顏色用來辨別它的電阻值

■ 1st 條紋: 1st 數字

■ 2nd 條紋: 2nd 數字

■ 3rd 條紋: 零的個位數

■4th 條紋 (如果有標示):誤差百分比

電阻

表格 2-1 電阻顏色對照表

■電阻器標示

- □第一個條紋是黃色,它對應到的是4
- □第二個條紋是紫色,它對應到的是7
- □第三個條紋是棕色,它對應到的是1
- □它表示加一個零在前兩個數字的右邊
 - 黄-紫-棕 = 4-7-0
 - 470 歐姆 或 470 Ω
- □誤差百分比是指多少百分比內可能會有 的誤差以下為為其標示:

■ 金色: 5%

■銀色: 10%

■ 沒有標示: 20%

歐姆定律

- ■使用 470Ω 的電阻與LED串聯
- \blacksquare I = $(5V-1.4V)/470\Omega = 0.0077 A or 7.7mA$

電阻

■下圖電阻器(標著棕-黑-橙)的電阻值有多大

□答案: 棕色 = 1, 黑色 = 0, 橙色 = 3 1, 0, + 3 個0= 10,000 歐姆 or 10K 歐姆

表格 2-1 電阻顏色對照表	
數字	顏色
0	黑
1	棕
2	紅
3	澄
4	黃
5	綠
6	藍
7	柴
8	灰
9	白

- ■二極體是一個單向的篩選閥
 - □電流只能從一個方向流過
- LED(發光二極體)
 - □當電流流過時發光的二極體
- LED連結標示:
 - □正極: 連接+端
 - ■較長的一端.
 - □負極:連接-端
 - ■較短的一端,而且會較為扁平.

LED 測試線路的元件

- ✓ LED -- 紅色
- ✓ 電阻 -- 470 Ω (黃-紫-棕)

LED每秒閃爍明暗一次

```
' {$STAMP BS2}
' {$PBASIC 2.5}
```

```
DO
HIGH 14
PAUSE 500
LOW 14
PAUSE 500
LOOP
```

LED每秒閃爍明暗一次

■ HIGH 14

□ 使 I/O pin P14 High. 這關聯到 5V 或是 Vdd (數字1). 電流流 到在 P14 和 Vss 之間來提供能量給 LED.

■ LOW 14

□使 I/O pin P14 Low. 這關聯到 0V 或是 Vss (數字0).電流在 P14 和 Vss 之間並沒有流動所以未能提供能量給 LED.

■ PAUSE 500

□ BASIC Stamp 在明確的時間中運作 依毫秒來計算. 500 毫秒 = 0.5 秒

DO / LOOP

□建製一個回圈結構來重複動作.

LED每秒閃爍明暗一次

■程式流程

LED on-off 10 times

菱形 - Decision: 可選擇結果 真或假.

LED on-off 10 times

- DO-LOOP while
 - Conditional Loop
 - □只要條件<= 10,繼續該循環
 - □請注意 變數 counter 的變化

起始

更新(增加)

檢查

- □ 當結束時counter為多少?
 - **1**1

```
Counter VAR Byte
Counter = 1
DO
    HIGH 14
    PAUSE 500
    LOW 14
    PAUSE 500
    Counter = Counter + 1
LOOP WHILE (Counter <= 10)
END
```

變數

- Name VAR Type
- ■變數可以被定義及置放在 RAM 的記憶體
- 變數的使用及其限制如下:
 - □不能使用 PBASIC的字元, 如 END or LOOP.
 - □不能空格.
 - □小於33個字.
 - Examples:
 - MyValue, ValueIn, Left_Drive

變數的定義

■變數空間越大,所佔的BS2 RAM的空間就越大

變數儲存空間 名稱

變數儲存空間 大小

Variable Type	Value Range
Bit	0 to 1
Nib (short for Nibble)	0 to 15
Byte	0 to 255
Word	0 to 65535

LED on-off 10 times

■ FOR-NEXT 迴圈

□在兩個值(開始與結束)間做計次,每次重複執行迴圈中的

內容

```
Counter VAR Byte
FOR Counter = 1 TO 10
  DEBUG ? Counter
  HIGH 14
  PAUSE 500
  LOW 14
  PAUSE 500
NEXT
DEBUG "All Done!"
END
```

Assignment

- LED每4秒閃爍明暗一次
 - □ 亮2秒
 - □暗2秒
- LED on-off 5 times
 - □ DO-LOOP while
 - ☐ FOR-NEXT
- ■加分題
 - □兩個LED交互閃爍

Home work

1. 以下電阻值於電阻器上標註的顏色

□ 2kΩ

□ 470Ω

*期中考將會改變數字

及顏色轉數值

□ 220Ω

□ 33Ω

□ 100Ω

□ 1kΩ

2. 請列出5種LED於日常生活中應用的裝置