Question – WAP to simulate the pre-emptive priority-based scheduling.

Code -

```
> Users > aryan > OneDrive - st.niituniversity.in > OS Assignment > Assignment -6 > 🌵 priority.py > 💽 selected_process
    processes.sort(key=lambda x: x[1])
   n = len(processes)
    # initialize the completion times, turnaround times, and waiting times
   tat = [0] * n
wt = [0] * n
rt = [0] * n
    remaining_bt = [processes[i][2] for i in range(n)]
    current_time = 0
    # initialize a list to keep track of the processes that have been completed
    completed = []
     while len(completed) < n:
         highest_priority = -1
         lowest_bt = float('inf')
         selected_process = -1
         for i in range(n):
             if processes[i] not in completed and processes[i][1] <= current_time:
    if processes[i][3] > highest_priority or (processes[i][3] == highest_priority and remaining_bt[i] < lowest_bt):</pre>
                      highest_priority = processes[i][3]
                       lowest_bt = remaining_bt[i]
                      selected_process = i
         if selected process == -1:
             current_time += 1
```

```
if selected_process == -1:
                                     current_time += 1
                                  # execute the selected process for one time slice
remaining_bt[selected_process] -= 1
                                    current_time += 1
                                     # if the process has completed execution, update the completion time and add it to the completed list
                                      if remaining_bt[selected_process] == 0:
                                                    ct[selected_process] = current_time
                                                        completed.append(processes[selected_process])
 for i in range(n):
                  tat[i] = ct[i] - processes[i][1]
wt[i] = tat[i] - processes[i][2]
rt[i] = ct[i] - processes[i][1] - processes[i][2]
print("Process\tAT\tBT\tPriority\tCT\tTAT\tWT\tRT")
 total_tat = 0
 total_wt = 0
 total_rt = 0
 for i in range(n):
                   print(f"\{processes[i][0]\} \land \{processes[i][1]\} \land \{processes[i][2]\} \land \{processes[i][3]\} \land \{tt[i]\} \land \{tt[i]
                   total tat += tat[i]
                   total_wt += wt[i]
total_rt += rt[i]
avg_tat = total_tat / n
 avg_wt = total_wt / n
 avg_rt = total_rt / n
 print(f"\nAverage turn around time: \{avg\_tat:.2f\}")
 print(f"Average waiting time: {avg_wt:.2f}")
 print(f"Average response time: {avg_rt:.2f}")
```

Output-

									
PS C:\Users\aryan> & C:/Users/aryan/AppData/Local/Microsoft/WindowsApps/python3.10.exe "c:/									
Proce	ess AT	BT	Priority	CT	TAT	WT	RT		
p1	0	4	2	15	15	11	11		
p2	1	3	3	12	11	8	8		
р3	2	1	4	3	1	0	0		
p4	3	5	5	10	7	2	2		
p5	4	2	5	6	2	0	0		

Average turnaround time: 7.20 Average waiting time: 4.20
Average response time: 4.20
PS C:\Users\aryan>