- The Turing test defines the conditions under which a machine can be said to be "intelligent".
- A* is an admissible algorithm.
- F DFS is faster than BFS.
- T DFS has lower asymptotic space complexity than BFS.
- When using the correct temperature decrease schedule, simulated annealing is guaranteed to find the global optimum in finite time.

- Alpha-beta pruning accelerates game playing at the cost of being an approximation to full minimax.
- F Hill-climbing is an entirely deterministic algorithm.
- The exact evaluation function values do not affect minimax decision as long as the ordering of these values is maintained.
- F A perfectly rational backgammon-playing agent never loses
- Mill climbing search is best used for problem domains with densely packed goals

- A suitable representation for states: permutation of all cities in the tour <A, B, C, D, E>
- The initial state of the problem: random permutation of all cities
- A good goal test to use in this problem: minimize the distance travelled
- Good operators to use for search: permute 2 cities
- Which search algorithm would be the most appropriate to use here if we want to minimize the distance of the tour found?

Local Search - GA/SA/hill climbing, etc...

SEARCH STRATEGIES

MINIMAX

The schedules of the customers are:

Company 1: Webflix: 8:00-9:00am

Company 2: Anazon: 8:30-9:30am

Company 3: Pied Piper: 9:00-10:00am

Company 4: Hooli: 9:00-10:00am

Company 5: Gulu: 9:30-10:30am

The profiles of your engineers are:

- I) Albacore can maintain Pied Piper and Hooli.
- 2) Bosam can maintain all companies, but Webflix.
- 3) Coleslaw can maintain all companies.
- Using Company as variable, formulate this problem as a CSP problem with variables, domains, and constraints. Constraints should be specified formally and precisely, but may be implicit rather than explicit.
- Draw the constraint graph associated with your CSP.

Variable	Domain
C1	С
C2	ВС
C3	ABC
C4	ABC
C5	BC

Constraints:

 $C1 \neq C2$, $C2 \neq C3$, $C3 \neq C4$, $C4 \neq C5$, $C2 \neq C4$, $C3 \neq C5$.

Variable	Domain
C1	С
C2	ВС
C3	ABC
C4	ABC
C5	BC

Constraints:

 $C1 \neq C2$, $C2 \neq C3$, $C3 \neq C4$, $C4 \neq C5$, $C2 \neq C4$, $C3 \neq C5$.

- Show the domains of the variables after running arc-consistency on this initial graph (after having already enforced any unary constraints).
- Give one solution to this CSP.

$$C1 = C$$
, $C2 = B$, $C3 = C$, $C4 = A$, $C5 = B$.

Variable	Domain
C1	С
C2	В
C3	AC
C4	AC
C5	ВС

- Which Al application has a discrete, static environment?
 - a. Robocup Soccer robots
 - b. Google Self-driving car
 - c. IBM's Deep Blue
 - d. All of the above
 - e. None of the above
- Using local search is the preferred method to find a solution for the problem of assigning seats during an exam for N students in a room with N rows of N columns of chairs, where no two students can sit in the same row, column or diagonal, because:
 - Local search is always the preferred search method for CSP
 - b. There are no local minima or maxima in this problem domain
 - c. This problem domain has densely packed goals
 - d. All of the above
 - e. None of the above

- ► Though none of these Al applications have passed the Turing test, which is considered rational?
 - Robocup soccer robots
 - b. Google Maps
 - c. IBM's Deep Blue
 - d. All of the above
 - e. None of the above
- An admissible heuristic for route planning in Google Maps could be?
 - a. Straight-line distance
 - **Manhattan** distance
 - c. h(n)=1
 - d. All of the above
 - None of the above