211 C: Solid State Physics Instructor: Prof. Taren Grover Lecture 9 Topic: Overview of Kondo Problem and heavy fermions, Kondo variational (continued), renormalization group analysis Why this topic? @ 211 B:- Couple a C.B. to a spin lattice like (Kondo lattice problem) $\frac{CB}{\langle l | l | l | l} = \sum_{q} c_q t_q c_q$ size of fermi sweface = nest nesins (using Oshikawa's Jelux threading orgument) a supposedly striking result Introduce fonton construction: f=[fs] fj] $\mathcal{J} = f + \frac{\pi}{2} f$ Is are called partons (like fortons formed of quarks) Les such a const. helps explains kondo lattice problem easily. f-> fe ill') does not changes i.e. farton constr. calls for a gauge field

Heavy fermions = Higg	s phase of the gauge field
A When there's a gauge field	
	as Gold
Phases of a Go	inge freior
de confined	Contimed
evouthing is freely	Superconductor phase
propage: 9	Condense an object Hat coursies
(e.g. Griffithe E&M) = e.g. GSL = deenfined	gauge charge
phase	<c+c+> is</c+c+>
	condensed
	gapping out gauge field, acquires mass,
	meissner effect
	= "Henry fermions"
	a higgs phase
	(c++) -> condenses
A dynamical vs non-dynami	cal gauge field
Variational varefunction	n too Anderson model
Anderson model:	
	d + h.c.) + Ed dot do + Unda ndy
[Yk ck+do	_+ h.c.]

Kondo impurity: E GR Chot Gro + 3°. C+FOC for large 21 > Kondo Empurity And model --- Ed+U Ulange 1st process spin flip longe U, expensive prints 71 E = 261+21 .: DE = 26d+U -Cfd+ff) = Edt 21-ex 2nd process = 21+21 spin flip E = 26_F DE= 26= - (6=+6d) int. state Mesq = 11/2 [1 + 1] ~ 30. ctonc J 3º.C+ 6ºc La AFM (: we form singlet

J~ 1V12 Antiferromagnetic in Int. states) Variational est 7: Cfor Andorson Model) 1+2 = [do 7 & ago cko do 1] 10)
Lo Ifilled FS> @ lempty impunity) - spin-singlet -No double-occupany Per dot /0> $\xi_{\mathcal{K}} \rightarrow f. \tau. \not= \left(\frac{\alpha_{\mathcal{K}}}{\alpha_{\mathcal{K}}}\right)$ doesn't for allow double occuponey Define 1/K as 1/K = Evor - El Cassume filled FS has zero energy) AK < D - entarglement is preferred 1 = - E e 2NIO) Y2/2 V2 - kondo en scale |Ea| shows shows up up in here too 2nd order pert. theory TR ~ AR I not a phase tronsition (0-0 ssB) yet a relevant energy scale]

$$H = \begin{cases} \xi & \xi_{k} & \xi_{k} + \zeta_{k\sigma} + J_{k} & \xi_{k} (c_{k} + \sigma^{2} c_{k}) \\ & \xi_{k} & \xi_{k} & \xi_{k} + \zeta_{k} \end{cases}$$

$$C^{\dagger}(r-c) & \delta^{2} c_{k} c_{k} \\ & \xi_{k} & \xi_{k} & \xi_{k} \end{cases}$$

$$Separate & k, k' & into bornels & 2 surgente out light energy made energy made
$$\begin{cases} \xi & J_{k} & \xi_{k} \\ \xi_{k} & J_{k} & \xi_{k} \\ \xi_{k} & \xi_{k} \end{cases}$$

$$k_{1}, k_{2} & \xi_{k} & \xi_{k} \\ & \xi_{k} & \xi_{k} \end{cases}$$

$$k_{1}, k_{2} & \xi_{k} & \xi_{k} \\ & \xi_{k} & \xi_{k} \end{cases}$$

$$k_{1}, k_{2} & \xi_{k} & \xi_{k} \\ & \xi_{k} & \xi_{k} \end{cases}$$

$$k_{1}, k_{2} & \xi_{k} & \xi_{k} \\ & \xi_{k} & \xi_{k} \end{cases}$$

$$k_{1}, k_{2} & \xi_{k} & \xi_{k} \\ & \xi_{k} & \xi_{k} \end{cases}$$

$$k_{1}, k_{2} & \xi_{k} & \xi_{k} \\ & \xi_{k} & \xi_{k} \end{cases}$$

$$k_{2} & \xi_{k} & \xi_{k} \\ & \xi_{k} & \xi_{k} \end{cases}$$

$$k_{1}, k_{2} & \xi_{k} & \xi_{k} \\ & \xi_{k} & \xi_{k} \end{cases}$$

$$k_{2} & \xi_{k} & \xi_{k} \\ & \xi_{k} & \xi_{k} \end{cases}$$

$$k_{1}, k_{2} & \xi_{k} & \xi_{k} \\ & \xi_{k} & \xi_{k} \end{cases}$$

$$k_{2} & \xi_{k} & \xi_{k} \\ & \xi_{k} & \xi_{k} \end{cases}$$

$$k_{1}, k_{2} & \xi_{k} & \xi_{k} \\ & \xi_{k} & \xi_{k} \end{cases}$$

$$k_{2} & \xi_{k} & \xi_{k} \\ & \xi_{k} & \xi_{k} \end{pmatrix}$$

$$k_{3} & \xi_{k} & \xi_{k} \\ & \xi_{k} & \xi_{k} \end{pmatrix}$$

$$k_{4} & \xi_{k} & \xi_{k} \\ & \xi_{k} & \xi_{k} \end{pmatrix}$$

$$k_{4} & \xi_{k} & \xi_{k} \\ & \xi_{k} & \xi_{k} \end{pmatrix}$$

$$k_{5} & \xi_{k} & \xi_{k} & \xi_{k} & \xi_{k} \end{pmatrix}$$

$$k_{5} & \xi_{k} & \xi_{k} & \xi_{k} & \xi_{k} & \xi_{k} \end{pmatrix}$$

$$k_{5} & \xi_{k} \end{pmatrix}$$

$$k_{5} & \xi_{k} &$$$$