Chapitre 3

Probabilité et espérance conditionnelles

3.1 Probabilité conditionnelle

Rappelons que nous comprenons la probabilité d'un évenement $A \subseteq \Omega$ comme une mesure de l'espérance que nous avons que c'est l'évènement A qui se réalisera et non son contraire A^c , c'est-à-dire une mesure de l'espérance que nous avons que l'état du monde ω^* où l'on se trouve est tel que $\omega^* \in A$. Imaginons à présent que nous souhaitons déterminer comment réévaluer cette espérance si nous considérons comme acquis que $\omega^* \in B$ (soit qu'on a une information qui nous assure de cela, soit qu'on souhaite simplement traiter séparément les deux cas $\omega^* \in B$ et $\omega^* \notin B$). On appelle cette nouvelle probabilité la probabilité de A sachant B, et on la note $\mathbb{P}_B(A)$ (ou $\mathbb{P}(A|B)$). Soulignons que \mathbb{P}_B est bien une probabilité sur (tout) Ω , simplement veut-on au-moins que $\mathbb{P}_B(A) = 0$ si $A \subseteq B^c$ (puisque si $\omega^* \in B$), on est certain que $\omega^* \notin A$); on veut aussi que $\mathbb{P}_B(B) = 1$ (puisqu'on envisage ici que le cas où $\omega^* \in B$). L'idée est alors de poser $\mathbb{P}_B(A) = c\mathbb{P}(A \cap B)$ ce qui assurera facilement que \mathbb{P}_B est une probabilité, et comme $\mathbb{P}_B(B) = 1$, nous voyons que $c = 1/\mathbb{P}(B)$; bien-entendu ceci impose que $\mathbb{P}(B) \neq 0$. Le fait qu'un évènement B soit de probabilité nulle ou non étant souvent capitale, on dit qu'un évènement est négligeable si et seulement si $\mathbb{P}(B) = 0$.

D'où finalement la définition

Définition : Soit B un évenement non-négligeable de (Ω, \mathcal{B}) . On appelle probabilité conditionnelle sachant B la fonction $\mathbb{P}_B : \mathcal{B} \longrightarrow [0, 1]$ définie, pour tout évènement $A \in \mathcal{B}$, par $\boxed{\mathbb{P}_B(A) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}}$.

Proposition 3.1 Si \mathbb{P} est une probabilité sur (Ω, \mathcal{B}) , et si $B \in \mathcal{B}$ n'est pas négligeable, alors \mathbb{P}_B est également une probabilité sur (Ω, \mathcal{B}) .

Exercice: Montrer la proposition 3.1 et vérifier que $\mathbb{P}_B(A) = \mathbb{E}(\mathbb{I}_A \mathbb{I}_B)/\mathbb{E}(\mathbb{I}_B)$.

On dit qu'une famille d'évènements $(A_i)_{i=1..n}$ forme une système complet d'évènements (s.c.é) si et seulement si $\Omega = \bigcup_{i=1..n} A_i$, c'est-à-dire que chaque $\omega \in \Omega$ appartient à un A_i et un seul. Dans ce cas, pour tout évènement $B \in \mathcal{B}$ on a $B = \bigcup_{i=1..n} (B \cap A_i)$ et donc $\mathbb{P}(B) = \sum_{i=1}^n \mathbb{P}(B \cap A_i) = \sum_{i=1}^n \frac{\mathbb{P}(B \cap A_i)}{\mathbb{P}(A_i)} \mathbb{P}(A_i)$, d'où la formule de la probabilité totale

$$\mathbb{P}(B) = \sum_{i=1}^{n} \mathbb{P}(B|A_i)\mathbb{P}(A_i). \tag{3.1}$$

Imaginons connues les probabilité $\mathbb{P}(B|A_i)$ et $\mathbb{P}(A_i)$ pour tout i=1..n. La formule de Bayes² suivante permet d'en déduire les $\mathbb{P}(A_i|B)$.

¹Certains auteurs se contentent de demander que les A_i soient deux-à-deux disjoints et $\mathbb{P}\left(\bigcup_{i=1...n}A_i\right)=1$; voyez-vous la différence? Que peut-on dire de $N:=\left(\bigcup_{i=1...n}A_i\right)^c$?

²Thomas Bayes (1702-1761), publication (postume) de An Essay Toward Solving a Problem of Chances, en 1754.

Théorème 3.2 (formule de Bayes) Soit $(A_i)_{i=1..n}$ un s.c.é. de (Ω, \mathcal{B}) . Alors, pour tout évènement B non-négligeable, et tout j = 1..n, on a

$$\mathbb{P}(A_j|B) = \frac{\mathbb{P}(B|A_j)\mathbb{P}(A_j)}{\mathbb{P}(B)} \left(= \frac{\mathbb{P}(B|A_j)\mathbb{P}(A_j)}{\sum_{i=1}^n \mathbb{P}(B|A_i)\mathbb{P}(A_i)} \right).$$

Preuve : Elle se réduit à l'application de la définition de $\mathbb{P}(A_i|B)$ et de $\mathbb{P}(B|A_i)$:

$$\mathbb{P}(A_j|B) = \frac{\mathbb{P}(A_j \cap B)}{\mathbb{P}(B)} = \frac{\mathbb{P}(B \cap A_j)}{\mathbb{P}(B)} = \frac{\mathbb{P}(B|A_j)\mathbb{P}(A_j)}{\mathbb{P}(B)},$$

et on termine par la formule (3.1).

Exercice: Deux usines se partagent la production mondiale de vistemboirs³. Un vistemboir choisi au hasard⁴ a la probabilité 0.5 de provenir de l'une comme de l'autre usine. Les vistemboirs de la première usine sont défectueux avec une probabilité de 2% et ceux de la seconde usine sont défectueux avec une probabilité de 6%. On choisit un vistemboir au hasard: qu'elle est la probabilité qu'il provienne de la première usine (Indication: poser A_i :="le vistemboir est produit dans l'usine i", et B:="le vistemboir est défectueux". Cet exemple explique pourquoi cette formule est parfois appelée "formule des probabilités des causes".)

3.2 Indépendance

Cette définition assez anodine de probabilité conditionnelle nous conduit à une notion capitale en probabilité : celle d'indépendance. Au chapitre 1 nous avons vu ce qu'est une v.a. Y qui est X-mesurable : c'est une simplement fonction déterministe de X dans le sens où Y = g(X) pour une fonction déterministe $x \mapsto g(x)$; donc $Y(\omega)$ est entièrement connu dès que $X(\omega)$ est connu. A l'inverse, nous souhaitons une notion d'indépendance telle la connaissance de $X(\omega)$ ne nous apprenne rien sur $Y(\omega)$. En fait nous allons définir ce que sont deux évènements A et B indépendants et demanderons que les évènements $\{X \le x\}$ et $\{Y \le y\}$ soient (tous) indépendants. L'idée que deux évènements A et B sont indépendants est que le fait de supposer, par exemple, que B a lieu ne change pas la probabilité de A, c'est-à-dire que $\mathbb{P}_B(A) = \mathbb{P}(A)$, ce qu'il n'a de sens que si $\mathbb{P}(B) \ne 0$. On veux aussi s'affranchir de l'apparente disymétrie et que $\mathbb{P}_A(B) = \mathbb{P}(B)$ (sous reserve cette fois que $\mathbb{P}(A) \ne 0$). Explicitons ces deux identités ; nous obtenons

$$\frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)} = \mathbb{P}(A) \text{ et } \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(A)} = \mathbb{P}(B).$$

En "chassant les dénominateurs", nous voyons que les deux relations se réduisent à l'unique relation $\mathbb{P}(A \cap B) = \mathbb{P}(A) \cdot \mathbb{P}(B)$ qui a en outre l'avantage d'être définie même si $\mathbb{P}(A) = 0$ ou $\mathbb{P}(B) = 0$. Ceci nous conduit donc tout naturellement à la définition

Définition : Soit \mathbb{P} une probabilité sur (Ω, \mathcal{B}) , et soient $A \in \mathcal{B}$ et $B \in \mathcal{B}$ deux évènements. On dit que les évènement A et B sont indépendants pour la probabilité \mathbb{P} si et seulement si $\mathbb{P}(A \cap B) = \mathbb{P}(A) \cdot \mathbb{P}(B)$.

Soient X et Y deux v.a. sur (Ω, \mathcal{B}) . On dit que les v.a. X et Y sont $indépendantes pour la probabilité <math>\mathbb{P}$ si et seulement si pour tous x et y les évènements $\{X \leq x\}$ et $\{Y \leq y\}$ sont indépendants.

Notations : Il est commode d'écrire $A \perp\!\!\!\perp B$ pour noter que les évènements A et B sont indépendants, et d'écrire $X \perp\!\!\!\perp Y$ pour noter que les v.a. X et Y sont indépendantes.

Exemple : Pièces de monnaie indépendantes : Considérons l'ensemble des états du monde Ω suivant :

$$\Omega = \{0, 1\}^2 = \{0, 1\} \times \{0, 1\} = \{\omega = (\omega_1, \omega_2), \omega_i = 0..1, i = 1..2\}.$$

Posons $X_1(\omega_1, \omega_2) = \omega_1$ et $X_2(\omega_1, \omega_2) = \omega_2$. Considérons deux pièces de monnaie, et modélisons le fait que la première tombe sur Pile par l'évènement $\{X_1 = 1\}$, l'évènement $\{X_2 = 1\}$ modélisant quant à lui que la seconde pièce tombe sur Pile. Soient $p := \mathbb{P}(\{X_1 = 1\})$ et $q := \mathbb{P}(\{X_2 = 1\})$. Supposons les deux pièces indépendantes. Notons $A := \{X_1 = 1\}$ et $B := \{X_2 = 1\}$; l'indépendance des deux pièces implique celle de A et B, donc $\mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B) = pq$, et donc $\mathbb{P}(\{(X_1, X_2) = (1, 1)\}) = pq$. En procédant de même pour les autres combinaisons de valeurs de X_1 et X_2 , nous voyons que les deux pièces sont indépendantes si et seulement si on a le tableau des probabilités suivant :

³ "Vistemboir": nouvelle de Jacques Perret, La Machin, NRF, Gallimard, 1953.

⁴de "azzahr", le jeu de dés, en arabe; ne me demandez pas comment on fait pour "choisir au hasard"...

$\downarrow X_1 = *, X_2 = * \longrightarrow$	1	0	$\mathbb{P}(\{X_1=*\})\downarrow$
1	pq	p(1-q)	p
0	(1-p)q	(1-p)(1-q)	1-p
$\mathbb{P}(\{X_2 = *\} \longrightarrow$	q	1-q	

Exercice : Pièces indiscernables : On reprend les notation de l'exemple précèdent. Montrer que $X_1 \perp \!\!\! \perp X_2 \Rightarrow \mathbb{P}(X_1 \neq X_2) = p + q - 2pq$. On dit que les deux pièces sont *indiscernables* si $\mathbb{P}(X_1 \neq X_2) = \mathbb{P}(X_1 = X_2 = 1) = \mathbb{P}(X_1 = X_2 = 0) = \frac{1}{3}$; montrer que deux pièces indiscernables ne peuvent être indépendantes.

Définition : Soit $(A_i)_{i\in I}$ une famille d'évènements (l'ensemble I peut être infini). On dit que ces évènements sont indépendants si et seulement si $I_0\mathbb{P}(\bigcap_{i\in I_0}A_i)=\prod_{i\in I_0}\mathbb{P}(A_i)$ pour tout sous-ensemble fini. Il est commode de dénoter par $\coprod_{i\in I}A_i$ la propriété que ces évènements sont indépendants.

On dit que les v.a. d'une famille $(X_i)_{i\in I}$ sont indépendantes si et seulement si pour tous $x_i \in \mathcal{X}_i := X_i(\Omega)$ les évènements $(\{X_i \leq x_i\})_{i\in I}$ sont indépendants. Il est commode de dénoter par $\coprod_{i\in I} X_i$ la propriété que ces v.a. sont indépendantes.

Exercice: Evènements (mutuellement) indépendants: On reprend les v.a. indépendantes de l'exemple, et on choisit $p=\frac{1}{2}=q$; on pose $X=X_1,\,Y=X_2,$ et Z=|X-Y|. Quelles sont les valeurs possibles pour la v.a. Z? Les v.a. X et Y sont indépendantes par construction; montrer que les v.a. X et Z sont indépendantes, et que les v.a. Y et Z sont indépendantes. On pose $A:=\{X\leq 0\},\,B:=\{Y\leq 0\},$ et $C:=\{Z\leq 0\}$. Calculer $\mathbb{P}(A),\,\mathbb{P}(B),\,\mathbb{P}(C),$ et $\mathbb{P}(A\cap B\cap C)$. Montrer que les v.a. $X,\,Y,$ et Z ne sont pas indépendantes. Cet exemple montre que trois v.a. peuvent être indépendantes deux-à-deux sans être indépendantes. C'est pourquoi, pour des v.a. qui sont indépendantes au sens de la définition que nous avons données, on dit parfois qu'elles sont mutuellement indépendantes.

Proposition 3.3 Si les v.a. $(X_i)_{i\in I}$ ne prennent chacune qu'un ensemble fini ou dénombrable de valeurs $\mathcal{X}_i := X_i(\Omega) = \{x_j^i, j = 1, 2, \ldots\}$, les v.a. $(X_i)_{i\in I}$ sont indépendantes si et seulement si pour tous $x^i \in \mathcal{X}_i$ les évènements $(\{X_i = x^i\})_{i\in I}$ sont indépendants.

Soient $(X_i)_{i\in I}$ une famille de v.a. et $(g_i)_{i\in I}$ une famille de fonctions $g_i: X_i(\Omega) \longrightarrow \mathbb{R}$. Posons $Y_i:=g_i(X_i)$. Si les v.a. $(X_i)_{i\in I}$ sont indépendantes, alors les v.a $(Y_i)_{i\in I}$ sont également indépendantes.

Théorème 3.4 Si les v.a. X et Y sont indépendantes, on a $\mathbb{E}(XY) = \mathbb{E}(X)\mathbb{E}(Y)$.

Preuve: Voir cours; c'est facile.

Remarque : nous avions déjà vu que \mathbb{E} est linéaire, et qu'on a donc $\mathbb{E}(aX+bY)=a\mathbb{E}(X)+b\mathbb{E}(Y)$. Nous voyons ici que si les v.a. X et Y sont indépendantes, on a de plus $\mathbb{E}(XY)=\mathbb{E}(X)\mathbb{E}(X)$. Ceci est évidemment très commode pour les calculs d'espérance, mais soulignons bien que si la linéarité est toujours assurée, la relation $\mathbb{E}(XY)=\mathbb{E}(X)\mathbb{E}(X)$ est généralement fausse lorsque l'hypothèse d'indépendance n'est pas assurée.

A noter que la réciproque " $\mathbb{E}(XY) = \mathbb{E}(X)\mathbb{E}(X) \Rightarrow X \perp \!\!\!\perp Y$ " est fausse également : soit X une v.a. (élémentaire) symétrique, c'est-à-dire $\mathbb{P}(\{X \geq +x\} = \mathbb{P}(\{X \leq -x\}))$ pour tout x, alors $Z := X^3$ est également symétrique, et donc $\mathbb{E}(X) = 0 = \mathbb{E}(Z)$. Posons à présent $Y := X^2$; Y n'est bien-entendu pas indépendant de X (sauf si X = 0), et pourtant $\mathbb{E}(XY) = \mathbb{E}(X \cdot X^2) = \mathbb{E}(Z) = 0 = 0 \cdot \mathbb{E}(X^2) = \mathbb{E}(X) \cdot \mathbb{E}(X^2) = \mathbb{E}(Y)$.

Exercice : Démontrer ce qui vient d'être affirmé ci-dessus : donner un exemple de v.a. élémentaire symétrique X (choisir $X(\Omega) = \{-1, +1\}$. Montrer que $\mathbb{P}(X = +1) = \mathbb{P}(X = -1) = \frac{1}{2}$; en déduire que $\mathbb{E}(X) = 0 = \mathbb{E}(X^3)$. Montrer que X et $Y := X^2$ ne sont pas indépendantes.

3.3 Espérance conditionnelle

Soit tout d'abord Y une v.a. sur (Ω, \mathcal{B}) , et $A \in \mathcal{B}$ un évènement non-négligeable. Nous pouvons donc considérer la probabilité conditionnelle \mathbb{P}_A sur (Ω, \mathcal{B}) . L'espérance de Y sachant A, notée $\mathbb{E}(Y|A)$, est l'espérance de Y pour cette probabilité \mathbb{P}_A , c'est-à-dire le nombre

$$\mathbb{E}(Y|A) := \mathbb{E}^{\mathbb{P}_A}(Y) := \frac{1}{\mathbb{P}(A)} \sum_{y \in Y(\Omega)} y \mathbb{P}(\{Y = y\} \cap A\}.$$

C'est donc la moyenne des valeurs de Y pondérée par la probabilité qu'ont ces valeurs lorsque l'évènement A est supposé assuré.

Si l'on considère le cas où l'évènement A est la survenue d'une valeur (non négligeable) d'une v.a. X, l'espérance conditionnelle permet d'associer à la v.a. Y une nouvelle v.a. \overline{Y}_X ne dépendant que des valeurs de X. Voici comment :

Nous supposons que la v.a. X est élémentaire et notons $\mathcal{X} := X(\Omega) = \{x_1, \dots, x_n\}$ l'ensemble de ses valeurs prises (avec probabilité non nulle, par définition d'une v.a. élémentaire). Ce qui suit n'est pas restreint à ce cas particulier mais l'exposition du cas général implique des constructions masquant trop facilement le but poursuivi.

Soit $x \in \mathcal{X}$; l'évènement $B_x := \{X = x\}$ est de probabilité non nulle et on peut considérer la probabilité \mathbb{P}_{B_x} conditionnellement à cet évènement. Soit à présent Y une v.a.; notons $\mathbb{E}_x(Y)$ l'espérance de Y pour la probabilité \mathbb{P}_{B_x} . Ce nombre ne prend donc en compte que les valeurs $Y(\omega)$ que prend Y lorsque $X(\omega) = x$; en effet

$$\mathbb{E}_x(Y) = \sum_{y \in Y(\Omega)} y \mathbb{P}_{B_x}(\{Y = y\}) = \frac{1}{\mathbb{P}(\{X = x\})} \sum_{y \in Y(\Omega)} y \mathbb{P}(\{Y = y\} \cap \{X = x\}),$$

et $\mathbb{P}(\{Y=y\}\cap\{X=x\})=0$ si $y\notin Y(\{X=x\})$, puisque $\{Y=y\}\cap\{X=x\}=\emptyset$ dans ce cas. Cette formule montre que le nombre $\mathbb{E}_x(Y)$ est la moyenne des valeurs de Y pondérée par la probabilité de $\{Y=y\}\cap\{X=x\}$. Si l'on effectue cette opération pour chaque $x\in X(\Omega)$ on définit une fonction $x\mapsto g(x):=\mathbb{E}_x(Y)$; nous pouvons alors considérer la nouvelle v.a. $\overline{Y}_X:=g(X)$; par construction elle est constante sur les parties de la partition de Ω en les $\{X=x\}, x\in \mathcal{X},$ et cette valeur constante est une moyenne de Y sur $\{X=x\}$; nous pouvons donc comprendre \overline{Y}_X comme la v.a. X-mesurable "ressemblant le plus à Y"; en particulier, si Y est (déjà) X-mesurable, on a $\overline{Y}_X=Y$. En revanche, si Y et X sont indépendantes, ce traitement dégrade complétement la v.a. Y en une constante (la constante qui ressemble le plus à Y, à savoir $\mathbb{E}(X)$). Encore un mot : \overline{Y}_X se note $\mathbb{E}(Y|X)$, notation commode dans les calculs, mais peut-être pas très évocatrice.

A noter que la v.a. X n'a été utilisée dans cette construction que pour définir la partition de Ω en les atomes de $\alpha(X)$ que sont les évènement $\{X = x\}$, pour $x \in \mathcal{X}$. Soit \mathcal{A} est une algèbre quelconque et supposons que ses atomes A_i soient de probabilité non nulle. La même construction conduit à la v.a. $\mathbb{E}(Y|\mathcal{A})$, appelée "espérance conditionnelle de Y relativement à l'algèbre \mathcal{A} ", qui est constante sur les atomes A_i de \mathcal{A} , définie par

$$\mathbb{E}(Y|\mathcal{A})(\omega) = \mathbb{E}(Y|A_i)$$
 pour tout $\omega \in A_i$.

Exercice : Soit X une v.a. élémentaire. Montrer que $\mathbb{E}(Y|X) = \mathbb{E}(Y|\alpha(X))$; en déduire que $\mathbb{E}(Y|X) = \mathbb{E}(Y|g(X))$ pour toute application injective g. Ceci montre le rôle réduit des valeurs de la v.a. X dans $\mathbb{E}(Y|X)$: seule l'information révélée par X (c'est-à-dire $\alpha(X)$) est essentielle.

Théorème 3.5 Soient $\mathcal{A}^+\supseteq\mathcal{A}^-$ deux algèbres, alors $\mathbb{E}(\mathbb{E}(X|\mathcal{A}^+)|\mathcal{A}^-)=\mathbb{E}(X|\mathcal{A}^-)$.

Si Z est A-mesurable, alors $\mathbb{E}(ZX|A) = Z\mathbb{E}(X|A)$.

Soit Y une v.a. A-mesurable. Alors $Y = \mathbb{E}(X|A)$ si et seulement si $\mathbb{E}(Y\mathbb{I}_A) = \mathbb{E}(X\mathbb{I}_A)$ pour tout $A \in \mathcal{A}$

Exercice : Montrer ce théorème 3.5 dans le cas où les atomes de \mathcal{A} et \mathcal{A}^+ (et donc ceux de \mathcal{A}^-) ne sont pas négligeables et Z est une v.a. élémentaire.

Thomas Bayes (1702-1761):