Ontology Languages: Description Logics

Oscar Romero
Facultat d'Informàtica de Barcelona
Universitat Politècnica de Catalunya

Examples in this section are based on:

- D. Calvanese and D. Lembo (tutorial on DL @ISCW'07)
- F. Baader et al. The Description Logic Handbook

DESCRIPTION LOGICS

Logic-Based Ontology Languages

FOL

- Suitable for knowledge representation
 - Classes as unary predicates
 - Properties / relationships as binary predicates
 - Constraints as logical formulas using those predicates
- Undecidability
 - In the general case, there is no algorithm that determines if a FOL formula implies another
- Decidable Fragments of FOL
 - Description Logics (binary predicates bounded number of variables)
 - Datalog (Horn-clauses)

Oscar Romero

3

Expressive Ontology Languages

Decidable subsets of FOL

	Datalog	Description Logics
Focus	Instances	Knowledge
Approach	Centralized	Decentralized
Reasoning	Closed-world assumption	Open-world assumption
Unique name	Unique name assumption	Non-unique name assumption

Description Logic KB

Description Logics: TBOX

- A DL TBOX is characterized by a set of constructs for building complex concepts and roles from atomic ones:
 - Concepts correspond to classes
 - Roles correspond to relationships
- It defines the terminology (of the domain)
- Formal semantics are given in terms of interpretations:

An interpretation $\mathcal{I} = (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$ consists of:

- ullet a nonempty set $\Delta^{\mathcal{I}}$, the domain of \mathcal{I}
- an interpretation function .^I, which maps
 - each individual a to an element $a^{\mathcal{I}}$ of $\Delta^{\mathcal{I}}$
 - each atomic concept A to a subset $A^{\mathcal{I}}$ of $\Delta^{\mathcal{I}}$
 - each atomic role P to a subset $P^{\mathcal{I}}$ of $\Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$

Concept Constructs

Construct	Syntax	Example	Semantics	
atomic concept	A	Doctor	$A^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}}$	
atomic role	P	hasChild	$P^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$	
atomic negation	$\neg A$	$\neg Doctor$	$\Delta^{\mathcal{I}} \setminus A^{\mathcal{I}}$	
conjunction	$C\sqcap D$	Hum □ Male	$C^{\mathcal{I}}\cap D^{\mathcal{I}}$	
(unqual.) exist. res.	$\exists R$	∃hasChild	$\{a \mid \exists b. (a,b) \in R^{\mathcal{I}} \}$	
value restriction	$\forall R.C$	∀hasChild.Male	$\{a \mid \forall b. (a,b) \in R^{\mathcal{I}} \to b \in C^{\mathcal{I}}\}$	
bottom			Ø	

(C, D denote arbitrary concepts and R an arbitrary role)

The above constructs form the basic language \mathcal{AL} of the family of \mathcal{AL} languages.

Additional Concept and Role Constructs

Construct	\mathcal{AL}	Syntax	Semantics
disjunction	\mathcal{U}	$C \sqcup D$	$C^{\mathcal{I}} \cup D^{\mathcal{I}}$
top		Т	$\Delta^{\mathcal{I}}$
qual. exist. res.	\mathcal{E}	$\exists R.C$	$\{a \mid \exists b. (a,b) \in R^{\mathcal{I}} \land b \in C^{\mathcal{I}} \}$
(full) negation	C	$\neg C$	$\Delta^{\mathcal{I}} \setminus C^{\mathcal{I}}$
number	\mathcal{N}	$(\geq k R)$	$\{ a \mid \#\{b \mid (a,b) \in R^{\mathcal{I}}\} \ge k \}$
restrictions		$(\leq k R)$	$\{ a \mid \#\{b \mid (a,b) \in R^{\mathcal{I}}\} \le k \}$
qual. number	Q	$(\geq k R. C)$	$\{ a \mid \#\{b \mid (a,b) \in R^{\mathcal{I}} \land b \in C^{\mathcal{I}}\} \ge k \}$
restrictions		$(\leq k R. C)$	$\{ a \mid \#\{b \mid (a,b) \in R^{\mathcal{I}} \land b \in C^{\mathcal{I}}\} \le k \}$
inverse role	\mathcal{I}	R^{-}	$\{ (a,b) \mid (b,a) \in R^{\mathcal{I}} \}$
role closure	reg	\mathcal{R}^*	$(R^{\mathcal{I}})^*$

Further Examples of DL Constructs

What is the meaning of these axioms?

```
\forall \mathsf{hasChild.}(\mathsf{Doctor} \sqcup \mathsf{Lawyer})
\exists \mathsf{hasChild.}\mathsf{Doctor}
\lnot(\mathsf{Doctor} \sqcup \mathsf{Lawyer})
(\geq 2\,\mathsf{hasChild}) \sqcap (\leq 1\,\mathsf{sibling})
(\geq 2\,\mathsf{hasChild.}\,\mathsf{Doctor})
```

∀hasChild[−].Doctor

∃hasChild*.Doctor

A DL TBOX only includes terminological axioms of the following form

■ Inclusion $C_1 \sqsubseteq C_2$ is satisfied by \mathcal{I} if $C_1^{\mathcal{I}} \subseteq C_2^{\mathcal{I}}$ $R_1 \sqsubseteq R_2$ is satisfied by \mathcal{I} if $R_1^{\mathcal{I}} \subseteq R_2^{\mathcal{I}}$

■ Equivalence $C_1 \sqsubseteq C_2, C_2 \sqsubseteq C_1$

Example: $PhDStudent \equiv Student \sqcap Researcher$

Reasoning on Concept Expressions

An interpretation \mathcal{I} is a model of a concept C if $C^{\mathcal{I}} \neq \emptyset$.

Basic reasoning tasks:

- Concept satisfiability: does C admit a model?
- **2** Concept subsumption $C \sqsubseteq D$: does $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$ hold for all interpretations \mathcal{I} ?

Subsumption used to build the concept hierarchy:

TBOX Example

Example of TBOX:

```
Woman \equiv Person \sqcap Female

Man \equiv Person \sqcap ¬Woman

Mother \equiv Woman \sqcap ∃hasChild.Person

Father \equiv Man \sqcap ∃hasChild.Person

Parent \equiv Father \sqcup Mother

Grandmother \equiv Mother \sqcap ∃hasChild.Parent

MotherWithManyChildren \equiv Mother \sqcap \ni 3 hasChild

MotherWithoutDaughter \equiv Mother \sqcap \forall hasChild.\neg Woman

Wife \equiv Woman \sqcap ∃hasHusband.Man
```

Exercise

Represent as concept expressions the following UML diagram

Exercise II

Represent as concept expressions the following UML diagram

Complexity of concept satisfiability: [DLNN97]				
\mathcal{AL} , \mathcal{ALN}	PTIME			
ALU, ALUN	NP-complete			
ALE	coNP-complete			
ALC, ALCN, ALCI, ALCQI	PSPACE-complete			

Observations:

- Two sources of complexity:
 - union (*U*) of type NP,
 - existential quantification (E) of type coNP.

When they are combined, the complexity jumps to PSPACE.

Number restrictions (N) do not add to the complexity.

Description Logics: ABOX

- Defines instances in terms of the terminological axioms defined in the TBOX
 - Concept assertions
 - Student(Pere)
 - Role assertions
 - □ Teaches (Oscar, Pere)

Example of DL Knowledge Base

TBox assertions:

• Inclusion assertions on concepts:

```
Father \equiv Human \sqcap Male \sqcap \existshasChild HappyFather \sqsubseteq Father \sqcap \forallhasChild.(Doctor \sqcup Lawyer \sqcup HappyPerson) HappyAnc \sqsubseteq \foralldescendant.HappyFather \lnot Teacher \sqsubseteq \lnotDoctor \sqcap \lnotLawyer
```

• Inclusion assertions on roles:

ABox membership assertions:

Teacher(mary), hasFather(mary, john), HappyAnc(john)

Models of a DL Ontology

Model of a DL knowledge base

An interpretation \mathcal{I} is a model of $\mathcal{O} = \langle \mathcal{T}, \mathcal{A} \rangle$ if it satisfies all assertions in \mathcal{I} and all assertions in \mathcal{A} .

O is said to be satisfiable if it admits a model.

The fundamental reasoning service from which all other ones can be easily derived is . . .

Logical implication

 \mathcal{O} logically implies and assertion α , written $\mathcal{O} \models \alpha$, if α is satisfied by all models of \mathcal{O} .

- Concept Satisfiability: C is satisfiable wrt \mathcal{T} , if there is a model \mathcal{I} of \mathcal{T} such that $C^{\mathcal{I}}$ is not empty, i.e., $\mathcal{T} \not\models C \equiv \bot$.
- Subsumption: C_1 is subsumed by C_2 wrt \mathcal{T} , if for every model \mathcal{I} of \mathcal{T} we have $C_1^{\mathcal{I}} \subseteq C_2^{\mathcal{I}}$, i.e., $\mathcal{T} \models C_1 \sqsubseteq C_2$.
- Equivalence: C_1 and C_2 are equivalent wrt \mathcal{T} if for every model \mathcal{I} of \mathcal{T} we have $C_1^{\mathcal{I}} = C_2^{\mathcal{I}}$, i.e., $\mathcal{T} \models C_1 \equiv C_2$.
- Disjointness: C_1 and C_2 are disjoint wrt \mathcal{T} if for every model \mathcal{I} of \mathcal{T} we have $C_1^{\mathcal{I}} \cap C_2^{\mathcal{I}} = \emptyset$, i.e., $\mathcal{T} \models C_1 \sqcap C_2 \equiv \bot$.
- Functionality implication: A functionality assertion (funct R) is logically implied by T if for every model T of T, we have that $(o, o_1) \in R^T$ and $(o, o_2) \in R^T$ implies $o_1 = o_2$, i.e., $T \models (funct R)$

Ontology Reasoning

- Ontology Satisfiability: Verify whether an ontology \mathcal{O} is satisfiable, i.e., whether \mathcal{O} admits at least one model.
- Concept Instance Checking: Verify whether an individual c is an instance of a concept C in \mathcal{O} , i.e., whether $\mathcal{O} \models C(c)$.
- Role Instance Checking: Verify whether a pair (c_1, c_2) of individuals is an instance of a role R in \mathcal{O} , i.e., whether $\mathcal{O} \models R(c_1, c_2)$.
- Query Answering:

The certain answers to $q(\vec{x})$ over $\mathcal{O} = \langle \mathcal{T}, \mathcal{A} \rangle$, denoted $\operatorname{cert}(q, \mathcal{O})$, ... are the tuples \vec{c} of constants of \mathcal{A} such that $\vec{c} \in q^{\mathcal{I}}$, for every model \mathcal{I} of \mathcal{O} .

Exercise

TBOX:

```
Researcher ⊑ ¬ Professor
Researcher ⊑ ¬ Lecturer
∃ TeachesTo⁻ ⊑ Student

Student □ ¬ Undergrad ⊑ GraduateStudent
∃ TeachesTo.Undergrad ⊑ Professor ⊔ Lecturer
```

TBOX Inferences:

ABOX:

TeachesTo(dupond, pierre)

- ¬ GraduateStudent(pierre)
- ¬ Professor(dupond)

Ontology Inferences:

Modeling with Description Logics

- It is hard to build good ontologies with DL
 - The names of the classes are irrelevant
 - Classes are overlapping by default
 - Domain and range definitions are axioms, not constraints
 - Open world assumption
 - Anything might be true unless explicit asserted knowledge contradicts it (negation)
 - Non-unique name assumption
 - Although families such as the DL-Lite family assume the unique name assumption

Open-World Assumption

 Something evaluates false only if it contradicts other information in the ontology

hasSon(Iokaste,Oedipus)
hasSon(Iokaste,Polyneikes)
hasSon(Oedipus,Polyneikes)
hasSon(Polyneikes,Thersandros)
patricide(Oedipus)
¬patricide(Thersandros)

Iokaste

Oedipus → Polyneikes

Thersandros

Query≡∃hasSon.(patricide □ ∃hasSon.¬patricide) ABox ⊨ Query(Iokaste)?

- Description Logics
 - TBOX
 - Constructs
 - Formal Semantics
 - ABOX
 - Reasoning
 - Open-World Assumption