Отчёт о выполненной лабораторной работе 3.4.2 Закон Кюри-Вейсса

Выполнил:

Хмельницкий А.А,

Цель работы: изучение температурной зависимости магнитной воприимчивости ферромагнетика выше точки Кюри.

В работе используются: катушка самоиндукции с образцом из гадолиния, термостат, частотометр, цифровой вольтметр, LC-автогенератор, термопара медь-константан.

1 Теоретическая часть

Вещества с отличными от нуля атомными магнитными моментами обладают парамагнитными свойствами. Внешнее магнитное поле оринетирует магнитные моменты, которые в отсуствие поля располагались в пространстве хаотическим образом. Однако при $T \to 0$ тепловое движение всё меньше препятствует магнитным моментам атомов оринетироваться в одном направлении при сколь угодно слабом внешнем поле. В ферромагнетиках – под влиянием обменных сил – это происходит при понижении температуры не до абсолютного нуля, а до температуры Кюри Θ . Оказывается, что у ферромагнетиков магнитная восприимчивость должна удовлетворять закону Кюри-Вейсса:

$$\chi \propto \frac{1}{T - \Theta_p},\tag{1}$$

где Θ_p – температура, близкая к температуре Кюри, так как при $T \approx \Theta$ формула (1) недостаточна точна.

2 Экспериментальная установка

Схема установки для проверки закона Кюри-Вейсса показана на рис. ??. Исследуемый ферромагнитный образец (гадолиний) расположен внутри пустотелой катушки самоиндукции, которая служит инудктивностью колебательного конутра, входящего в состав LC-автогенератора. Автогенератор собран на полевом транзисторе КП-103 и смонитрован в виде отдельного блока.

Магнитная воосприимчивость образца χ определяется по изменению самоиндукции катушки. Обозначив через L самоиндукцию катушки с образцом и через L_0 – её самоиндукцию в отсутствие образца, получим

$$(L-L_0) \propto \chi$$
.

При изменении самоиндукции образца меняется период колебаний автогенератора:

$$\tau = 2\pi\sqrt{LC},$$

где C — ёмкость конутра автогенератора. Период колебаний в отсуствие образца опредлеяется самоиндукцией пустой катушки:

$$\tau_0 = 2\pi \sqrt{L_0 C}.$$

Итак, закон Кюри-Вейсса справедлив, если выполнено соотношение:

$$\frac{1}{\chi} \propto (T - \Theta_p) \propto \frac{1}{\tau^2 - \tau_0^2} \tag{2}$$

3 Результаты

Отметим, что чувствительность термопары составляет $k=24~^{\circ}\mathrm{C/mB}$ и период колбеаний пустой катушки есть $\tau_0=9,045~\mathrm{mkc}$.

Таблица 1: Некоторые измеряемые величины и их погрешность.

	T, °C	τ , MKC
Величина	25,00	10,000
Погрешность	0,01	0,001
ε , %	0,04	0,01

Таблица 2: Измеренные величины.

$T,^{\circ} C$	ΔU , мкВ	τ , MKC	$\frac{1}{\tau^2 - \tau_0^2}$, MKC ⁻ 2
16	5	10,68	0,031
18	9	10,55	0,034
20	1	10,15	0,047
22	9	9,945	0,058
24	10	9,6	0,096
26	9	9,43	0,14
28	7	9,34	0,184
30	1	9,29	0,222
32	9	9,27	0,242
34	10	9,24	0,28
36	10	9,22	0,312
38	9	9,2	0,353
40	9	9,19	0,378

4 Обработка результатов

Построим график зависимости $f=1/(\tau^2-\tau_0^2)$ от T и МНК проведем прямую по точкам, расположенным в интервале от 20 до 40 °C.

По графику определим температуру Кюри:

$$\Theta_p = (17, 4 \pm 0, 3)^{\circ} \text{C}.$$

5 Выводы

Определили температуру Кюри $\Theta_p=(17,4\pm0,3)^{\circ}\mathrm{C},$ которая отличается от табличного значения 20,2 °C на 14 %.

Рисунок 1: Зависимость $1/(\tau^2-\tau_0^2)$ от T.