Produit scalaire géométrique

Définition. L'angle géométrique entre deux <u>vecteurs non nuls</u> \overrightarrow{u} et \overrightarrow{v} noté $(\overrightarrow{u}; \overrightarrow{v})$ est défini comme la longueur, le long du cercle $\mathcal C$ de centre O=(0;0) de rayon 1, de l'arc le plus court possible entre A et B, les points de $\mathcal C$ définis par $\frac{\overrightarrow{u}}{\|\overrightarrow{u}\|} = \overrightarrow{OA}$ et $\frac{\overrightarrow{v}}{\|v\|} = \overrightarrow{OB}$.

Idée. $(\widehat{\vec{u};\vec{v}})$ correspond à l'angle saillant que l'on mesure directement au rapporteur entre \vec{u} et \vec{v} si on les fait partir d'un même point.

Remarque. $(\overrightarrow{u}; \overrightarrow{v})$ est un nombre qui appartient toujours à l'intervalle $[0; \pi]$

Définition. Deux vecteurs \vec{u} ; \vec{v} non nuls sont **orthogonaux**, s'ils forment un angle droit. $(\vec{u}; \vec{v}) = \frac{\pi}{2}$ **Définition**. Deux vecteurs non nuls sont **colinéaires**, s'ils forment un angle valant 0 ou π . $(\vec{u}; \vec{v}) \in \{0; \pi\}$

Propriété. Deux vecteurs non nuls \vec{u} et \vec{v} sont colinéaires ssi il existe un réel k tel que $\vec{u} = k\vec{v}$. **Propriété.** Deux vecteurs non nuls \vec{u} et \vec{v} sont colinéaires ssi $\det(\vec{u}; \vec{v}) = 0$

Définition. Un **repère** $R = (0; \vec{\imath}; \vec{\jmath})$ désigne la donnée d'un point 0 et de vecteurs $\vec{\imath}$ et $\vec{\jmath}$ <u>non colinéaires</u>. **Déf**. $\mathbf{R_0} = \left((0; 0); \binom{1}{0}; \binom{0}{1}\right)$ est **le repère canonique**. Il sert de référence pour les repères orthonormés.

Définition. Un **repère** $R = (0; \vec{\imath}; \vec{\jmath})$ est **orthonormé** si $\vec{\imath}$ et $\vec{\jmath}$ sont orthogonaux et de longueur 1 (dans R_0).

Exemples. Ici R_0 est le repère de référence. Ci-contre, les repères R_0 , R_1 et R_2 sont orthonormés. Les longueurs ont donc la même mesure dans R_0 , R_1 , R_2 . R_3 n'est pas orthonormé car ses vecteurs sont de longueur 2 (en les mesurant dans R_0). R_4 n'est pas orthonormé car ses vecteurs ne sont pas orthogonaux (au sens de R_0).

Propriété. Soit $R = (0; \vec{\imath}; \vec{\jmath})$. Soit un vecteur \vec{u} . Il existe d'uniques $x, y \in \mathbb{R}$ tels que $\vec{u} = x\vec{\imath} + y\vec{\jmath}$. **Définition.** x et y sont **les coordonnées du <u>vecteur</u>** \vec{u} <u>dans le repère</u> R. On note souvent $\vec{u} = \begin{pmatrix} x \\ y \end{pmatrix}_R$ **Propriété**. Soit $R = (0; \vec{\imath}; \vec{\jmath})$. Soit un point M. Il existe d'uniques $x, y \in \mathbb{R}$ tels que $\overrightarrow{OM} = x\vec{\imath} + y\vec{\jmath}$. **Définition.** x et y sont **les coordonnées du <u>point</u>** M <u>dans le repère</u> R. On note souvent $M = (x; y)_R$

Remarque. Quand on change de repère R, les coordonnées d'un vecteur ou d'un point changent. Cependant, la plupart des formules vectorielles restent valables, si on les écrit dans un <u>même</u> repère R.

Propriété. Les longueurs et angles géométriques ne changent pas si on change de repère orthonormé

Théorème. Loi des cosinus, ou formule d'Al-Kashi

Dans un triangle ABC quelconque, on a, par exemple :

$$BC^2 = AB^2 + AC^2 - 2 \times AB \times AC \times \cos(\widehat{BAC})$$

En posant a = BC, b = AC, c = AB, $\alpha = \widehat{BAC}$, on peut écrire :

$$a^2 = b^2 + c^2 - 2bc\cos(\alpha)$$

Exemple. Soit un triangle ABC tel que AB = 8, AC = 4 et $\widehat{BAC} = 50^{\circ}$.

Calculer la longueur BC.

$$BC^2 = AB^2 + AC^2 - 2 \times AB \times AC \times \cos(\widehat{BAC}) = 64 + 16 - 2 \times 8 \times 4 \times \cos(50^\circ) \approx 38,86$$
 et donc $BC \approx 6,23$

Hypothèse. On se place dans un repère <u>orthonormé</u> R fixé. Soit $\vec{u} = \begin{pmatrix} x \\ y \end{pmatrix}$, $\vec{v} = \begin{pmatrix} x' \\ y' \end{pmatrix}$ deux vecteurs <u>non nuls</u>

Rappel. Produit scalaire (algébrique). $\vec{u} \cdot \vec{v} = xx' + yy'$ Pannel (2ème identité remarquable). $||\vec{u} - \vec{v}||^2 = ||\vec{u}||^2 + ||\vec{v}||^2 - 2\vec{u} \cdot \vec{v}$

$$\|\vec{u} - \vec{v}\|^2 = \|\vec{u}\|^2 + \|\vec{v}\|^2 - 2\vec{u} \cdot \vec{v}$$

Propriété. Reformulation vectorielle d'Al-Kashi.

$$\|\vec{u} - \vec{v}\|^2 = \|\vec{u}\|^2 + \|\vec{v}\|^2 - 2\|\vec{u}\| \|\vec{v}\| \cos(\widehat{\vec{u}}; \widehat{\vec{v}})$$

Propriété. Produit scalaire (géométrique). $\vec{u} \cdot \vec{v} = ||\vec{u}|| ||\vec{v}|| \cos(\vec{u}; \vec{v})$

 $\overrightarrow{AB} \cdot \overrightarrow{AC} = AB \times AC \times \cos(\widehat{BAC})$ Si $\vec{u} = \overrightarrow{AB}$ et $\vec{v} = \overrightarrow{AC}$, alors:

Exemple. Soit deux vecteurs \overrightarrow{AB} et \overrightarrow{AC} tels que AB = 2 et AC = 3 et $\widehat{BAC} = 30^{\circ}$.

Leur produit scalaire vaut $\overrightarrow{AB} \cdot \overrightarrow{AC} = AB \times AC \times \cos(\overrightarrow{BAC}) = 2 \times 3 \times \frac{\sqrt{3}}{2} = 3\sqrt{3}$

Corollaire. Le produit scalaire $\vec{u} \cdot \vec{v}$ est un nombre qui ne dépend pas du repère orthonormé R choisi.

Quand on utilise $\vec{u} \cdot \vec{v} = \begin{pmatrix} x \\ y \end{pmatrix}_{p} \cdot \begin{pmatrix} x' \\ y' \end{pmatrix}_{p} = xx' + yy'$, on peut choisir un repère <u>orthonormé</u> R qui nous arrange.

Corollaire. \vec{u} et \vec{v} sont orthogonaux $\Leftrightarrow \vec{u} \cdot \vec{v} = 0$

$$(\operatorname{Car}(\widehat{\vec{u}}; \vec{v}) = \frac{\pi}{2} \Leftrightarrow \cos(\widehat{\vec{u}}; \vec{v}) = 0 \Leftrightarrow \vec{u} \cdot \vec{v} = 0)$$

Corollaire. \vec{u} et \vec{v} colinéaires de même sens $\Leftrightarrow \vec{u} \cdot \vec{v} = ||\vec{u}|| ||\vec{v}||$

$$(\operatorname{Car}(\widehat{\vec{u}\,;\vec{v}}) = 0 \Leftrightarrow \cos(\widehat{\vec{u}\,;\vec{v}}) = 1)$$

Corollaire. \vec{u} et \vec{v} colinéaires de sens opposés $\Leftrightarrow \vec{u} \cdot \vec{v} = -\|\vec{u}\| \|\vec{v}\|$ (Car $(\vec{u}; \vec{v}) = \pi \Leftrightarrow \cos(\vec{u}; \vec{v}) = -1$)

$$(\operatorname{Car}(\widehat{\vec{u}}:\vec{v}) = \pi \Leftrightarrow \cos(\widehat{\vec{u}}:\vec{v}) = -1$$

Propriété (Interprétation géométrique). Soit trois points A, B, C (ou deux vecteurs \vec{u}, \vec{v} qu'on fait partir d'un même point A). Alors $\overrightarrow{AB} \cdot \overrightarrow{AC} = \pm AB \times AH$ où H est le projeté orthogonal de C sur (AB).

Le signe est + si \overrightarrow{AH} est de même sens que \overrightarrow{AB} , et - sinon.

Exemple.

Ici $\vec{u} = \vec{A}\vec{B}$ et $\vec{A}\vec{H}$ sont dans le même sens, donc

$$\vec{u} \cdot \vec{v} = +4 \times 6 = +24$$

Exemple.

Ici $\vec{u} = \overrightarrow{AB}$ et \overrightarrow{AH} sont dans des sens opposés, donc

$$\vec{u} \cdot \vec{v} = -4 \times 5 = -20$$

Méthode. Pour déterminer la composante d'un vecteur \vec{v} dans une direction donnée, on « projette » sur un vecteur directeur u<u>nitaire</u> \vec{u} dans la direction souhaitée. (On calcule $\vec{v} \cdot \vec{u}$)

Exemple. Une piste de ski est représentée par une droite qui descend avec une pente de 45°.

La piste est donc dirigée par le vecteur unitaire $\vec{u} = \begin{pmatrix} \cos(-45^\circ) \\ \sin(-45^\circ) \end{pmatrix}$. Un skieur de 70 kg, subit son poids comme une force \vec{F} d'environ 700 N vers le bas, donc $\vec{F} = \begin{pmatrix} 0 \\ -700 \end{pmatrix}$. La composante du poids du skieur le long de la piste est donc $\vec{F} \cdot \vec{u} = (-700)(\sin(-45^{\circ})) = 700\sin(45^{\circ}) \approx 500 \text{ N}.$

Pour aller plus loin...

Changements de repère.

Propriété. Dans tout repère orthonormé $R = (0; \vec{\imath}; \vec{\jmath})$,

Les coordonnées d'un vecteur \vec{v} dans R peuvent s'obtenir en calculant $x^R_{\vec{v}} = \vec{v} \cdot \vec{\iota}$ et $y^R_{\vec{v}} = \vec{v} \cdot \vec{\jmath}$.

Les coordonnées d'un point M dans R peuvent s'obtenir en calculant $x_M^R = \overrightarrow{OM} \cdot \vec{\iota}$ et $y_M^R = \overrightarrow{OM} \cdot \vec{\jmath}$.

Exemple. On note $R = (0; \vec{\imath}; \vec{\jmath})$ et $R' = (0'; \vec{\imath'}; \vec{\jmath'})$.

On a $A = (2; 0)_R$.

Calculer les coordonnées de A dans R'.

$$x_{\vec{l'}} = \vec{l'} \cdot \vec{l} = \|\vec{l'}\| \|\vec{l}\| \cos(\vec{l'}; \vec{l}) = \cos(\vec{l'}; \vec{l}) = \cos(\frac{\pi}{4}) = \frac{\sqrt{2}}{2}$$

$$y_{\vec{l'}} = \vec{l'} \cdot \vec{j} = \cos(\vec{l'}; \vec{j}) = \cos\left(\frac{\pi}{2} - \frac{\pi}{4}\right) = \sin\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2}$$

$$\text{Ainsi dans } R', \ \ x_A = \overrightarrow{O'A} \cdot \overrightarrow{\iota'} = \begin{pmatrix} 2-3 \\ 0-1 \end{pmatrix}_R \cdot \begin{pmatrix} \frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} \\ \end{pmatrix}_R = -\sqrt{2} \ \ \text{et} \ \ y_A = \overrightarrow{O'A} \cdot \overrightarrow{J'} = \begin{pmatrix} 2-3 \\ 0-1 \end{pmatrix}_R \cdot \begin{pmatrix} -\frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} \\ \end{pmatrix}_R = 0$$

Donc
$$A = \left(-\sqrt{2}; 0\right)_{R'}$$