QUANTUM CRYPTOGRAPHY

Master of Logic, University of Amsterdam, June 2022 TEACHERS: Christian Schaffner, Florian Speelman and Sebastian Zur

Practice problem set 0

You do not have to hand in these exercises, they are for practicing only.

Problem 1: Inner product

For two d-dimensional complex vectors $|a\rangle$ and $|b\rangle$, the inner product $\langle a|b\rangle$ is defined as $\langle a|b\rangle:=\langle a|b\rangle=\sum_{i=1}^d a_i^*b_i$. Show that $|\langle a|b\rangle|^2=\langle a|b\rangle\langle b|a\rangle$.

Problem 2: Valid quantum state

Verify that for all $\theta, \varphi \in \mathbb{R}$, $\cos(\theta)|0\rangle + \sin(\theta)e^{i\varphi}|1\rangle$ is a valid qubit state.

Problem 3: Changing basis

Express $|1\rangle$ in the Hadamard basis. That is, find coefficients α and β such that $|1\rangle = \alpha |+\rangle + \beta |-\rangle$.

Problem 4: Measurement

Consider the state $|\psi\rangle=\frac{1}{\sqrt{3}}|0\rangle+\sqrt{\frac{2}{3}}|1\rangle$. What are the probabilities p_0,p_1 when we measure $|\psi\rangle$ in the standard basis? What are the probabilities p_+,p_- when we measure $|\psi\rangle$ in the Hadamard basis?

Problem 5: Pauli operations

- (a) Write down the Pauli matrices X, Y, and Z.
- (b) Verify that they are unitary.
- (c) What rotations of the Bloch sphere do the Paulis represent?

Problem 6: Density operators

Which of the following matrices can be interpreted as density operators? The definition of a density operator can be found in the lecture notes of Chapter 1.

 $\begin{pmatrix} \frac{1}{4} & \frac{3}{4} \\ \frac{3}{4} & \frac{3}{4} \end{pmatrix}$

(b) $\frac{1}{3}|u\rangle\langle u|+\frac{2}{3}|v\rangle\langle v|+\frac{\sqrt{2}}{3}|u\rangle\langle v|+\frac{\sqrt{2}}{3}|v\rangle\langle u|$, where $|u\rangle$ and $|v\rangle$ form an orthonormal basis.

(c) $\begin{pmatrix} \frac{1}{2} & 0 & \frac{1}{4} \\ 0 & \frac{1}{2} & 0 \\ \frac{1}{4} & 0 & 0 \end{pmatrix}$

(d) $\begin{pmatrix} \frac{1}{2} & 0 & \frac{1}{4} \\ 0 & \frac{1}{2} & 0 \\ \frac{1}{4} & 0 & \frac{1}{4} \end{pmatrix}$