Design and Analysis of Algorithms

L26: Multi-Stage Graphs

Dynamic Programming

Dr. Ram P Rustagi Sem IV (2020-Even) Dept of CSE, KSIT rprustagi@ksit.edu.in

Resources

- Text book 2: Horowitz
 - **Sec** 5.2
- http://www.gdeepak.com/course/adslidesold/26ad.pdf
- https://ocw.mit.edu/courses/civil-and-environmentalengineering/I-204-computer-algorithms-in-systemsengineering-spring-2010/lecture-notes/ MITI_204S10_lec13.pdf
- R1: Introduction to Algorithms
 - Cormen et al.

Consider Restaurant Ordering

- Food order and serving
 - Soups
 - Starters
 - Main course (curries)
 - Breads/Rice
 - Sweets
 - Mouth freshners
- Each happens in stages
 - Want meal with minimum cost with 1 item in each stage
 - Have multiple choices in each stage.
 - Constraints on what can be chosen in next stage
 - Draw a multi-stage graph

Multi-Stage Graph: Restaurant

Simple Multi-Stage Graph

Find shortest path from s to t

– Q: Does Greedy approach work?

Multistage Graph: Shortest Path

- Find shortest path from s to t
 - Greedy Approach:
 - $s \rightarrow A \rightarrow D \rightarrow t = 1 + 5 + 20 = 26$
 - Shortest path: $s \rightarrow C \rightarrow F \rightarrow t = 7+3+5=15$

Dynamic Programming: Forward Approach

Dynamic Programming: Backward Approach


```
d(s,t) = \min\{d(s,D) + 20, d(s,E) + 14, d(s,F) + 5\}
d(s,D) = \min\{d(s,A) + 5, d(s,B) + 8\} = \min(1+5,3+8) = 6
d(s,E) = \min(d(s,A) + 10, d(s,B) + 6, d(s,C) + 4)
= \min\{1+10,3+6,7+4\} = 9
d(s,F) = \min\{d(s,B) + 15, d(s,C) + 3\} = \min\{3+15,7+3\} = 10
d(s,t) = \min\{6+20, 9+14, 10+5\} = 15
```

Dynamic Programming: Applications

- Resource allocation problem
- Consider the following scenario:
 - A team of 3 students are asked to play 4 games.
 - Table Tennis, Chess, Badminton, Carrom
 - A student can choose to play none, some or all 4.
 - At a time, only one student can play a game.
 - First P_1 , then P_2 , and then P_3 (in that order)
 - However, no game is to be played by 2 students
 - All the 4 games need to be played.
 - Depending upon games played by a students, different points are awarded as shown next

- Award points for games played
 - e.g. P2 plays 3 games, get a total of 8 points
 - Thus, column values are non-decreasing

Student → Games↓	P1	P2	P3
1 game	2	4	5
2 games	5	7	5
3 games	7	8	6
4 games	8	10	6

 Q: How to allocate games among team members so as to get maximum award points

- Possible allocations...
- P₁: 0Gs:
 - P₂:4Gs, P₃:0G:
 - Points:0+10+0=10
 - P₂:3Gs, P₃:1G,
 - Points: 0+8+5=13
 - P₂:2Gs, P₃:2Gs,
 - Points: 0+7+5=12
 - P₂:1G, P₃:3Gs,
 - Points:0+4+6=10
 - P₂:0G, P₃:4Gs,
 - Points:0+0+6=6

P → G↓	P1	P2	P3
1	2	4	5
2	5	7	5
3	7	8	6
4	8	10	6

- Possible allocations...
- P₁: 1G:
 - P₂:3G, P₃:0G,
 - Points: 2+8+0=10
 - P₂:2G, P₃:1Gs,
 - Points: 2+7+5=14
 - P₂:1G, P₃:2Gs,
 - Points:2+4+5=11
 - P₂:0G, P₃:3Gs,
 - Points:2+0+6=8

P → G↓	P1	P2	P3
1	2	4	5
2	5	7	5
3	7	8	6
4	8	10	6

- Possible allocations...
- P₁: 2Gs.
 - P₂:2G, P₃:0G:
 - Points:5+7+0=12
 - P₂:1G, P₃:1G,
 - Points: 5+4+5=14
 - P₂:0G, P₃:2Gs,
 - Points: 5+0+5=10

P → G↓	P1	P2	P3
1	2	4	5
2	5	7	5
3	7	8	6
4	8	10	6

- Possible allocations
- P₁: 3Gs
 - P₂:1G, P₃:0G:
 - Points=7+4+0=11
 - P₂:0G, P₃:1G:
 - Points=7+0+5=12
- P₁:4Gs:
 - $-P_2:0G, P_3:0G$
 - Points=8

P → G↓	P1	P2	P3
1	2	4	5
2	5	7	5
3	7	8	6
4	8	10	6

- Construction of Multistage graph
- The graph has 4 stages
 - Stage 1: Start
 - Stage 2: P₁ plays some games
 - Stage 3: P₂ plays some of remaining games
 - Stage 4: P₃ all the remaining games
 - The end stage: all games are played
- From each stage to next stage
 - Draw edge with allowed possibilities
- Each stage (except start, end) has 5 vertices
 - V(i,j): Person P_i , j=total num of games played.
 - $1 \le i < 3$; and $0 \le j \le 4$
- Start, and end stage has one vertex each
 - start stage P₁ plays; end stage: all 4 games are played
 - Stage 1: P₂ plays; Stage 2: P₃ plays

$\begin{array}{c} P \to \\ G \downarrow \end{array}$	P1	P2	P3
1	2	4	5
2	5	7	5
3	7	8	6
4	8	10	6

Q: Find max marks using DP Forward approach?

Q: Find max marks using DP Backward approach?

Maximum of

$$0+d(V(1,0),t)$$
, $2+d(V(1,1),t)$, $5+d(V(1,2),t)$, $7+d(V(1,3),t)$, $8+d(V(1,4),t)$
=0+13, 2+12, 5+9, 7+5, 8+0=13, 14, 14, 12, 8

= 14

Maximum of d(s,V(2,0))+6, d(s,V(2,1))+6, d(s,V(2,2)+5), d(s,V(2,3)+5), d(s,V(2,4))+0 = 0+6, 4+6, 7+5, 9+5, 8+0 = 6, 10, 12, 14, 8 = 14

Fig 5.2, T2: Horowitz...

5 stages, 12 vertices, vertices are ordered from s=1 to t=12 p ($\dot{}$, $\dot{}$): Min cost path from vertex $\dot{}$ in stage $V_{\dot{}}$

cost(i,j): Cost of Min cost path p(i,j), or cost(j)

c(j,m): Cost of edge (j,m) provided $(j,m) \in E$

DAA/Dynamic Programming

Fig 5.2, T2: Horowitz...

- DP solⁿ for k-stage problem is obtained by result of k-2 decisions
 - Stage V_2 to V_{k-1}
- ith decision: which vertex in stage V_{i+1} ($1 \le i \le k-2$) is on the path
- Forward approach gives the solution

$$cost(i,j) = min\{c(j,m) + cost(i+1,m\}, m \in V_{i+1}, (j,m) \in E$$

Fig 5.2, T2: Horowitz...

and so on, and finally cost (1, s)

Fig 5.2, T2: Horowitz...


```
cost(3,6) = min\{6 + cost(4,9), 5 + cost(4,10)\} = 7

cost(3,7) = min\{4 + cost(4,9), 3 + cost(4,10)\} = 5

cost(3,8) = min\{5 + cost(4,10), 6 + cost(4,11)\} = 7
```

Fig 5.2, T2: Horowitz...

DP Forward approach: Algo

```
Algo: FGraph (Graph G, int k, int p[])
// i/p k-stage graph n vertices indexed in order of stages.
     edge c(i, j) is cost of edge Vi→Vi
// p[i] is a node on stage i in min cost path
// cost[i] is minimum from node i
// d [ \dot{} ] indicates successor of node \dot{} in min cost path
 float cost[maxsize]; int d[maxsize], r;
 cost[n]=0.0
 <u>for</u> j=n-1 <u>to</u> 1 // compute cost[j]
     Let r be a vertex such that \forall_{i} \rightarrow \forall_{r} is an edge, and
     c(j,r) + cost[r] is minimum
     cost[j] = c[j,r) + cost(r)
     d[j]=r
 p[1]=1; p[k]=n;
 for j=2 to k-1
     p[j] = d[p[j-1]]
```

DP Backward approach: Algo

```
Algo: BGraph (Graph G, int k, int p[])
// i/p k-stage graph n vertices indexed in order of stages.
// edge C(i,j) is cost of edge V_{i} \rightarrow V_{j}
// p[1:k] is a minimum cost path
 float bcost[maxsize]; int d[maxsize], r;
 bcost[n]=0.0
 for j=2 to n // compute bcost[j]
    Let r be a vertex such that v_r \rightarrow v_{\dagger} is an edge, and
    bcost[r]+c(r,j) is minimum
    bcost[j] = bcost(r) + c[r, j)
    d[j]=r
 p[1]=1; p[k]=n;
 for j=k-1 to 2
    p[j] = d[p[j+1]]
```

Ex: Build Multistage graph

src: https://ocw.mit.edu/courses/civil-and-environmental-engineering/1-204-computer-algorithms-in-systems-engineering-spring-2010/lecture-notes/MIT1_204S10_lec13.pdf

Proj	0	1	2
Invest	Ronofit	Ronofit	Benefit
ment	Dellelli	Dellelli	Dellelli
1	6	5	1
2	8	11	4
3	8	16	5
4	10	17	6

Ex 02: Find min cost path

- Using forward approach
- Using backward approach

Summary

- Multi stage graph
- Forward approach
- Backward approach