CSE 250A. Principles of Al

Probabilistic Reasoning and Decision-Making

Lecture 17 – Markov decision processes

Lawrence Saul Department of Computer Science and Engineering University of California, San Diego

Fall 2021

Outline

- Review and example
- Value functions
- Algorithms

Reinforcement learning (RL)

Learning from experience in the world

Formalization as Markov decision process

$$\mathcal{S}$$
 state space \mathcal{A} action space $P(s'|s,a)$ transition probabilities $R(s)$ reward function $\mathcal{S}, \mathcal{A}, P(s'|s,a), R(s)$

Policies and their expected returns

Decision-making in MDPs

A **policy** $\pi: \mathcal{S} \to \mathcal{A}$ is a mapping of states to actions. There are combinatorially many policies:

$$\#$$
 policies $= |\mathcal{A}|^{|\mathcal{S}|}$

• Experience under policy π

state
$$s_0 \xrightarrow{\pi(s_0)} s_1 \xrightarrow{\pi(s_1)} s_2 \cdots$$
 reward $r_0 r_1 r_2 \cdots$

Expected returns

$$\mathrm{E}^{\pi} \left[\sum_{t=0}^{\infty} \gamma^{t} R(s_{t}) \, \middle| \, s_{0} = s \right] =$$

the expected value of the $E^{\pi} \left| \sum_{t=0}^{\infty} \gamma^{t} R(s_{t}) \right| s_{0} = s \right| = \begin{array}{c} \text{discounted infinite-horizon retur} \\ \text{starting in state s at time } t = 0, \end{array}$ discounted infinite-horizon return. and following policy π .

Example

How to exit the maze with high probability?

 $\begin{array}{ccc} \mathcal{S} & \text{location in maze} \\ \mathcal{A} & \{\uparrow, \leftarrow, \downarrow, \rightarrow\} \\ P(s'|s,a) & \text{move with some probability in direction of arrow} \\ R(s) & +1 \text{ (exit), -1 (dragon), 0 (otherwise)} \\ \gamma & 0.99 \text{ (close to one)} \end{array}$

Example — no uncertainty

```
\begin{array}{ccc} \mathcal{S} & \text{location in maze} \\ \mathcal{A} & \{\uparrow, \leftarrow, \downarrow, \rightarrow\} \\ P(s'|s,a) & \text{move } \frac{\text{deterministically}}{\text{deterministically}} \text{ in direction of action} \\ R(s) & +1 \text{ (exit), -1 (dragon), 0 (otherwise)} \\ \gamma & 0.99 \end{array}
```


random policy

optimal policy

Example — low uncertainty

```
\begin{array}{ccc} \mathcal{S} & \text{location in maze} \\ \mathcal{A} & \{\uparrow, \leftarrow, \downarrow, \rightarrow\} \\ P(s'|s,a) & \text{move } \textbf{80\%} \text{ in direction of action} \\ R(s) & +1 \text{ (exit), -1 (dragon), 0 (otherwise)} \\ \gamma & 0.99 \end{array}
```


random policy

optimal policy

Example — high uncertainty

```
\begin{array}{ccc} \mathcal{S} & \text{location in maze} \\ \mathcal{A} & \{\uparrow, \leftarrow, \downarrow, \rightarrow\} \\ P(s'|s,a) & \text{move } \textbf{20\%} \text{ in direction of action} \\ R(s) & +1 \text{ (exit), -1 (dragon), 0 (otherwise)} \\ \gamma & 0.99 \end{array}
```


random policy

optimal policy

Outline

- Review and example
- **Value functions**
- Algorithms

State value function

$$V^{\pi}(s) = \mathrm{E}^{\pi} \left[\sum_{t=0}^{\infty} \gamma^{t} R(s_{t}) \middle| s_{0} = s \right]$$
 expected return, starting in state s , following policy π

expected return, following policy π

Values versus rewards:

The reward R(s) give **immediate** feedback to the agent. The value $V^{\pi}(s)$ computes the expected **long-term** return.

Types of behaviors:

Sacrifice now for long-term gain: R(s) < 0, $V^{\pi}(s) > 0$. Win now at the expense of later: R(s) > 0, $V^{\pi}(s) < 0$.

Properties of the state value function

• Experience under policy π

state
$$s_0 \xrightarrow{\pi(s_0)} s_1 \xrightarrow{\pi(s_1)} s_2 \cdots$$
reward $r_0 r_1 r_2 \cdots$

Adjacent states

States (s, s') can be visited in succession if $P(s'|s, \pi(s)) > 0$. The values $V^{\pi}(s)$ and $V^{\pi}(s')$ should be related, but how?

The **Bellman equation** tells us how.

Bellman equation

$$V^{\pi}(s) = E^{\pi} \left[R(s_0) + \gamma R(s_1) + \gamma^2 R(s_2) + \cdots \middle| s_0 = s \right]$$

$$= R(s) + \gamma E^{\pi} \left[R(s_1) + \gamma R(s_2) + \cdots \middle| s_0 = s \right]$$

$$= R(s) + \gamma \sum_{s'} P(s'|s, \pi(s)) E^{\pi} \left[R(s_1) + \gamma R(s_2) + \cdots \middle| s_1 = s' \right]$$

$$= R(s) + \gamma \sum_{s'} P(s'|s, \pi(s)) V^{\pi}(s')$$

The Bellman equation is the basis for much that will follow:

$$V^{\pi}(s) = R(s) + \gamma \sum_{s'} P(s'|s, \pi(s)) V^{\pi}(s')$$

Action value function

$$Q^{\pi}(s, \mathbf{a}) = \mathbb{E}^{\pi} \left[\sum_{t=0}^{\infty} \gamma^{t} R(s_{t}) \middle| s_{0} = s, \mathbf{a}_{0} = \mathbf{a} \right]$$

expected return, starting from state s, taking action a, then following policy π

Motivation

Useful to imagine how small changes affect expected outcomes. What if (just once) the agent acted differently in state *s*?

• Analogous to the Bellman equation:

$$Q^{\pi}(s, \mathbf{a}) = R(s) + \gamma \sum_{s'} P(s'|s, \mathbf{a}) V^{\pi}(s')$$

$$V^{\pi}(s) = R(s) + \gamma \sum_{s'} P(s'|s, \pi(s)) V^{\pi}(s')$$

Optimality

Theorem

There exists at least one policy π^* (and perhaps many) such that $V^{\pi^*}(s) \geq V^{\pi}(s)$ for all policies π and states s of the MDP.

Proof

Later — by construction.

Notation

$$V^*(s) = V^{\pi^*}(s)$$

 $Q^*(s,a) = Q^{\pi^*}(s,a)$

These optimal value functions are **unique**. (All optimal policies share the same value functions.)

Relations at optimality

From the optimal action value function:

$$V^*(s) = \max_{a} [Q^*(s, a)]$$

 $\pi^*(s) = \underset{a}{\operatorname{argmax}} [Q^*(s, a)]$

• From the optimal state value function:

$$Q^*(s, \mathbf{a}) = R(s) + \gamma \sum_{s'} P(s'|s, \mathbf{a}) V^*(s')$$

$$\pi^*(s) = \underset{\mathbf{a}}{\operatorname{argmax}} \left[R(s) + \gamma \sum_{s'} P(s'|s, \mathbf{a}) V^*(s') \right]$$

• Why are these relations useful?

Sometimes it can be easier to estimate $Q^*(s, a)$ or $V^*(s)$ (which are continuous) than to learn $\pi^*(s)$ (which is discrete).

Outline

- Review
- Value functions
- Algorithms

Planning in MDPs

Given a complete model of the agent and its environment as a Markov decision process, namely

$$\mathsf{MDP} \ = \ \{\mathcal{S}, \mathcal{A}, P(s'|s, a), R(s), \gamma\},\$$

how can we *efficiently* compute (i.e., in time *polynomial in the number of states*) any of the following:

- **1** an optimal policy $\pi^*(s)$?
- 2 the optimal state value function $V^*(s)$?
- 3 the optimal action value function $Q^*(s, a)$?

This is the problem of **planning** in MDPs.

Three algorithms

Today we'll describe three basic algorithms. Each of them solves a core problem in MDPs.

- Policy evaluation
 - How to compute $V^{\pi}(s)$ for some fixed policy π ?
- Policy improvement

How to compute a policy π' such that $V^{\pi'}(s) \geq V^{\pi}(s)$?

Policy iteration

How to compute an optimal policy $\pi^*(s)$?

Policy evaluation

For a fixed policy π , how to compute the state value function

$$V^{\pi}(s) = \mathrm{E}^{\pi} \left[\sum_{t=0}^{\infty} \gamma^{t} R(s_{t}) \, \middle| \, s_{0} = s \right] ?$$

From the Bellman equation:

$$V^{\pi}(s) = R(s) + \gamma \sum_{s'} P(s'|s, \pi(s)) V^{\pi}(s').$$

This is a system of n linear equations for n unknowns; the unknowns are $V^{\pi}(s)$ for $s \in \{1, 2, ..., n\}$ where n = |S|.

Solving the linear system

• From the Bellman equation:

$$V^{\pi}(s) = R(s) + \gamma \sum_{s'} P(s'|s,\pi(s)) V^{\pi}(s').$$

Rearranging terms:

$$R(s) = V^{\pi}(s) - \gamma \sum_{s'} P(s'|s, \pi(s)) V^{\pi}(s')$$

$$= \sum_{s'} \left[\underbrace{I(s, s')}_{\text{identity matrix}} - \gamma P(s'|s, \pi(s)) \right] V^{\pi}(s')$$

In matrix-vector form:

$$R = \begin{bmatrix} I - \gamma P^{\pi} \end{bmatrix} V^{\pi}$$

$$\begin{bmatrix} \text{column vector of } \\ n \text{ known rewards} \end{bmatrix} = \begin{bmatrix} n \times n \text{ matrix} \\ (\text{known}) \end{bmatrix} \begin{bmatrix} \text{column vector of } \\ n \text{ unknown values} \end{bmatrix}$$

Solving the linear system (con't)

Solution

$$R = \left[I - \gamma P^{\pi}\right] V^{\pi} \implies V^{\pi} = \underbrace{(I - \gamma P^{\pi})^{-1}}_{\text{matrix inverse}} R$$

Complexity

It takes $O(n^2)$ operations to solve this system of equations. (For very large n, HW 9.5 develops an iterative solution.)

Example

Let
$$S = \{1, 2\}$$
 and $P(s'|s, \pi(s)) = 0.5$ for all (s, s') .

$$\begin{bmatrix} V^{\pi}(1) \\ V^{\pi}(2) \end{bmatrix} = \left(\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} - \gamma \begin{bmatrix} 0.5 & 0.5 \\ 0.5 & 0.5 \end{bmatrix} \right)^{-1} \begin{bmatrix} R(1) \\ R(2) \end{bmatrix}.$$

Policy improvement

Problem statement

Given a policy π and its state value function $V^{\pi}(s)$, how to compute a policy π' such that

$$V^{\pi'}(s) \geq V^{\pi}(s)$$
 for all states s?

Definition

Given the action value function $Q^{\pi}(s, a)$ for policy π , we define the **greedy policy** π' by

$$\pi'(s) = \underset{a}{\operatorname{argmax}} \left[Q^{\pi}(s, a) \right].$$

Why *greedy*? Because we change the action in state *s* to whatever appears to improve the expected return.

Greedy policies

• In terms of the state value function:

$$\pi'(s) = \operatorname{argmax}_{a} \left[Q^{\pi}(s, a) \right]$$

$$= \operatorname{argmax}_{a} \left[R(s) + \gamma \sum_{s'} P(s'|s, a) V^{\pi}(s') \right]$$

$$= \operatorname{argmax}_{a} \left[\sum_{s'} P(s'|s, a) V^{\pi}(s') \right]$$

Test your understanding:

$$\pi'(s) = \pi(s)$$
 for some $s \in \mathcal{S}$? not necessarily $\pi'(s) \neq \pi(s)$ for some $s \in \mathcal{S}$? not necessarily

$$Q^{\pi}(s, \pi'(s)) \geq Q^{\pi}(s, \pi(s))$$
 for all $s \in \mathcal{S}$?

Policy improvement

Theorem

The greedy policy π' everywhere dominates the policy π from whose value functions it was derived:

$$V^{\pi'}(s) \geq V^{\pi}(s)$$
 for all states $s \in \mathcal{S}$.

- Proof: next lecture.
- Is this surprising?

Yes — greedy methods (in general) often have shortcomings.

No — the MDP lends itself to this approach.

Policy iteration

How to compute π^* ?

- **1** Choose an initial policy $\pi: \mathcal{S} \to \mathcal{A}$.
- 2 Repeat until convergence:

Compute the action value function $Q^{\pi}(s, a)$. Compute the greedy policy $\pi'(s) = \operatorname{argmax}_a Q^{\pi}(s, a)$. Replace π by π' .

$$\pi_0 \stackrel{\text{evaluate}}{\longrightarrow} V^{\pi_0}(s) \stackrel{\text{improve}}{\longrightarrow} \pi_1 \stackrel{\text{evaluate}}{\longrightarrow} V^{\pi_1}(s) \stackrel{\text{improve}}{\longrightarrow} \cdots$$

Convergence of policy iteration

$$\pi_0 \xrightarrow{\text{evaluate}} V^{\pi_0}(s) \xrightarrow{\text{improve}} \pi_1 \xrightarrow{\text{evaluate}} \cdots$$

• Why must this converge?

Recall that $V^{\pi'}(s) \geq V^{\pi}(s)$ for all $s \in \mathcal{S}$. Thus we cannot cycle back to old policies.

Also the number of policies is finite: $|\mathcal{A}|^{|\mathcal{S}|} < \infty$. Thus we cannot improve indefinitely.

• Why does this converge to an optimal policy?

We will prove this in the next lecture.

Convergence of policy iteration

$$\pi_0 \xrightarrow{\text{evaluate}} V^{\pi_0}(s) \xrightarrow{\text{improve}} \pi_1 \xrightarrow{\text{evaluate}} \cdots$$

• Why must this converge?

Recall that $V^{\pi'}(s) \geq V^{\pi}(s)$ for all $s \in \mathcal{S}$. Thus we cannot cycle back to old policies.

Also the number of policies is finite: $|\mathcal{A}|^{|\mathcal{S}|} < \infty$. Thus we cannot improve indefinitely.

• Why does this converge to an optimal policy?

We will prove this in the next lecture. Also there will be **DEMOS** ...