Package 'growthfd'

January 27, 2022

```
Title Fitting FPCA-based growth curve model
Version 0.0.0.9000
Author Ondrej Klima [aut, cre],
     Miroslav Kralik [aut]
Maintainer Ondřej Klíma <iklima@fit.vutbr.cz>
Description
      This package provides a method for fiting an FPCA-based growth curve model described in the pa-
      per stated bellow. This research was funded by Technology Agency of the Czech Repub-
     lic (Technologická agentura České republiky), grant number TL01000394.
Citation Kralik M., Klima O., Cuta M., Malina R., Koziel S., Polcerova L., Skultety-
     ova A., Spanel M., Kukla L., Zemcik P. Estimating Growth in Height from Limited Longitudi-
      nal Growth Data Using Full-Curves Training Dataset: A Comparison of Two Proce-
     dures of Curve Optimization-Functional Principal Component Analysis and SITAR. Chil-
     dren, 2021, vol. 8, n. 10., pages 934-955.
URL https://ondrej-klima.github.io/growthfd/, https:
      //github.com/ondrej-klima/growthfd/
License LGPL (>= 3)
Encoding UTF-8
RoxygenNote 7.1.2
Imports minpack.lm,
     sitar (>= 1.2.0),
     fda,
     ggplot2,
     parallel,
     doParallel,
     foreach,
     flock.
     MASS
Depends R (>= 2.10)
LazyData true
Suggests rmarkdown,
     knitr
VignetteBuilder knitr
```

2 growthfd

R topics documented:

	growthfd
	growthfd.apv
	growthfd.ApvRegVelocity
	growthfd.evaluate
	growthfd.fit
	growthfd.modelPars
	growthfd.plot
	growthfd.plot.ApvRegVelocity
	growthfd.plot.RegVelocities
	growthfd.RegVelocities
	growthfd.residuals
	growthfd.std
	growthfd.warpfd
	growthfd.warpfdInv
	model.bgs.f
	model.bgs.m
Index	1

 ${\tt growthfd}$

Fit a FPCA Growth Curve Model to a population

Description

This function fits a model to the given measured data of a population.

Usage

```
growthfd(
  data,
  x,
  y,
  id,
  model,
  verbose = 1,
  bounds = "negative",
  filename = "",
  startFromId = NULL,
  parallel = F,
  scores.filename = "parallel.txt"
)
```

Arguments

data	Data frame containing age, height and id of individuals
Х	Age at measured data points
у	Height at measured data points
id	Corresponding individual's id at measured data points
model	FPCA growth model to be fitted

growthfd.apv 3

verbose Verbosity

bounds Limitation of the interval for milestones estimation, 'negative' or 'inverse'

filename File name for saving results after each individual

startFromId Start the evaluation from this id

parallel (Experimental) Parallel evaluation of the model fitting

scores.filename

File name for continuous saving of the scores

Value

List containing individuals id and model

Examples

```
filename <- system.file("extdata", "data.csv", package="growthfd", mustWork=TRUE)
csv <- read.csv(filename)
d <- data.frame('id'=as.factor(csv[,'id']), 'x'=csv[,'age'], 'y'=csv[,'height'])
fit<-growthfd(data=d, x=x, y=y, id=id, model=model.bgs.m)</pre>
```

growthfd.apv

Compute apv of model instance

Description

This function computes apv related to the certain instance of the model described by the given parameters.

Usage

```
growthfd.apv(model, par)
```

Arguments

model FPCA growth model

par Params of the model, corresponding to some individual

Value

Age of maximum growth velocity

4 growthfd.evaluate

```
growthfd.ApvRegVelocity
```

Register a velocity curve at population apv

Description

This function registers a curve corresponding to the supplied parameters onto the population apv.

Usage

```
growthfd.ApvRegVelocity(model, par, verbose = F)
```

Arguments

model FPCA growth model

par Params of the model, corresponding to the individual

Value

Velocity at apv data frame

Examples

```
filename <- system.file("extdata", "data.csv", package="growthfd", mustWork=TRUE)
csv <- read.csv(filename)
d <- data.frame('id'=as.factor(csv[,'id']), 'x'=csv[,'age'], 'y'=csv[,'height'])
m <- d$id == 'John'
fit <- growthfd.fit(model.bgs.m, age=d$x[m], height=d$y[m])
data<-growthfd.ApvRegVelocity(model.bgs.m, fit$par)</pre>
```

growthfd.evaluate

Generate a Discrete Growth Curve

Description

This function evaluates a curve function for given ages. Depending on a degree of derivation, the function produces stature, velocity or acceleration curve.

Usage

```
growthfd.evaluate(x, par, model, deriv = 0)
```

Arguments

X	Ages to be evaluated
par	Parameters of the model
model	FPCA growth model
deriv	Path to the input file

Value

Y-values of the evaluated curve

growthfd.fit 5

growthfd.fit	Fit a FPCA Growth Curve Model to measurements of a single individual
--------------	--

Description

This function fits a model to the given measured data of a single individual.

Usage

```
growthfd.fit(model, age, height, nprint = 1)
```

Arguments

model FPCA growth model to be fitted age Age at measured data points height Height at at measured data points nprint Verbosity

Value

An optimization result object

Examples

```
age <- c(6.9, 8.2, 10, 12.1)
height <- c(114, 122, 130, 141)
fit <- growthfd.fit(model.bgs.m, age=c(6.9, 8.2, 10, 12.1), height=c(114, 122, 130, 141))
x11()
growthfd.plot(model.bgs.m, fit$par)
points(age, height)
x11()
growthfd.plot(model.bgs.m, fit$par, from=0.5, deriv = 1)
x11()
growthfd.plot(model.bgs.m, fit$par, from=0.5, deriv = 2)</pre>
```

 ${\tt growthfd.modelPars}$

Standardized model scores

Description

This function returns model parameters for the individuals used for training the model.

Usage

```
growthfd.modelPars(model)
```

Arguments

model

FPCA-based growth model

Value

Matrix containing the scores

growthfd.plot

Plot a Growth Curve

Description

This function plots a stature, velocity or acceleration curve.

Usage

```
growthfd.plot(model, par, deriv = 0, from = 0, to = 18)
```

Arguments

model	FPCA growth model
par	Parameters of the model
deriv	Path to the input file
from	The lower age limit
to	The upper age limit

```
growthfd.plot.ApvRegVelocity
```

Plot a velocity curve registered at apv

Description

This function plots a velocity curve, registered at population (model) apv in comparison with the mean curve.

Usage

```
growthfd.plot.ApvRegVelocity(data)
```

Arguments

model

Data obtained using growthfd.ApvRegVelocity

Value

Velocity at apv plot

Examples

```
filename <- system.file("extdata", "data.csv", package="growthfd", mustWork=TRUE)
csv <- read.csv(filename)
d <- data.frame('id'=as.factor(csv[,'id']), 'x'=csv[,'age'], 'y'=csv[,'height'])
m <- d$id == 'John'
fit <- growthfd.fit(model.bgs.m, age=d$x[m], height=d$y[m])
data<-growthfd.ApvRegVelocity(model.bgs.m, fit$par)
p<-growthfd.plot.ApvRegVelocity(data)
x11()
p</pre>
```

```
growthfd.plot.RegVelocities
```

Plot velocity boxplots registered on apv

Description

This function plots boxplots in time of measurements, after registration of the individual on population apv.

Usage

```
growthfd.plot.RegVelocities(populationData, individualData)
```

Arguments

```
populationData Data frame for population box plots individualData Data frame for the individual
```

Value

GGPlot2 plot

Examples

```
filename <- system.file("extdata", "data.csv", package="growthfd", mustWork=TRUE)
csv <- read.csv(filename)
d <- data.frame('id'=as.factor(csv[,'id']), 'x'=csv[,'age'], 'y'=csv[,'height'])
m <- d$id == 'John'
fit <- growthfd.fit(model.bgs.m, age=d$x[m], height=d$y[m])
b <- growthfd.RegVelocities(model.bgs.m, fit$par, d$x[m])
p<- growthfd.plot.RegVelocities(b$population, b$individual)
x11()
p</pre>
```

8 growthfd.residuals

```
growthfd.RegVelocities
```

Prepare data for velocity boxplots registered on apv

Description

This function prepares data for boxplots in time of measurements, after registration of the individual on population apv.

Usage

```
growthfd.RegVelocities(model, par, ages, rndn = 0, verbose = F)
```

Arguments

model Model

par Parameters of the model fitted to the measurements

ages Ages of measurements points

rndn Count of random curves to be evaluated

Value

Data frames for population and the individual

growthfd.residuals Compute residuals

Description

This function computes residuals between measured stature data and data generated from the growth model.

Usage

```
growthfd.residuals(x, y, par, model)
```

Arguments

x Vector with input ages

y Vector with target height measurements

par Parameters of the model model FPCA growth model

Value

A vector of residuals

growthfd.std 9

growthfd.std	Generate a Curve Function
gi oweiii a. sea	Generale a Curve I unchon

Description

This function generates a growth curve function based on given model and parameters, describing the growth phase and amplitude.

Usage

```
growthfd.std(par, model)
```

Arguments

par Phase and amplitude parameters

model FPCA growth model

Value

FDA function object

growthfd.warpfd	Time warping function	

Description

This function returns the time warping function corresponding to supplied model and particular parameters.

Usage

```
growthfd.warpfd(par, model)
```

Arguments

par Parameters of the model model FPCA growth model

10 model.bgs.m

growthfd.warpfdInv

Inverse time warping function

Description

This function returns the *inverse* time warping function corresponding to supplied model and particular parameters.

Usage

```
growthfd.warpfdInv(par, model)
```

Arguments

par Parameters of the model model FPCA growth model

model.bgs.f

FPCA model for girls

Description

Model trained using 167 female individuals from Brno Growth Study (BGS).

Usage

```
model.bgs.f
```

Format

An object of class list of length 3.

model.bgs.m

FPCA model for boys

Description

Model trained using 167 male individuals from Brno Growth Study (BGS).

Usage

```
model.bgs.m
```

Format

An object of class list of length 3.

Index

```
* datasets
    model.bgs.f, 10
    model.bgs.m, 10
growthfd, 2
growthfd.apv, 3
growthfd.ApvRegVelocity, 4
growthfd.evaluate, 4
{\tt growthfd.fit,5}
growthfd.modelPars, 5
growthfd.plot, 6
{\tt growthfd.plot.ApvRegVelocity}, {\tt 6}
growthfd.plot.RegVelocities,7
growthfd.RegVelocities, 8
growthfd.residuals, 8
growthfd.std,9
{\sf growthfd.warpfd}, 9
growthfd.warpfdInv, 10
model.bgs.f, 10
model.bgs.m, 10
```