Calculus (4): Differentiation of Trigonometrical Functions

In this Chapter we extend our technique of differentiation to include the trigonometrical functions. We begin by finding a very important limit which is required later:

$$\lim \frac{\sin x}{x}.$$

Look at the sine table in your book of tables, where the angle is small and compare the value of sin x with x (expressed in radians).

Angle x		sin x
in degrees	in radians	
10	0.1745	1.1736
5	0.0873	0.0872
3	0.0524	0.0523
1	0.0175	0.0175
30'	0.00873	0.0087
6'	0.00175	0.0017
3'	0.0009	0.0009

Clearly when x is small, say less than 5° , $\sin x \approx x$ or $\frac{\sin x}{x} \approx 1$ provided x is in radians. It

is impossible to make any more precise comparison using 4 figure tables, but it would

seem reasonable to predict that
$$\lim_{x \to 0} \frac{\sin x}{x} = 1, x \to 0$$

provided we work in radian measure.

Here is a simple proof of this result.

In **fig 16.1** OAB is a sector of a circle radius r, AOB (acute) = θ radians, AB is a chord and AC is the tangent at A.

$$AC = r \tan \theta$$
.

Then $\triangle AOB \le area$ of sector OAB $\le \triangle OAC$.

i.e.,
$$\frac{1}{2}r^2 \sin \theta < \frac{1}{2}r^2 \theta < \frac{1}{2}r^2 \tan \theta$$

hence
$$1 < \frac{\theta}{\sin \theta} < \frac{1}{\cos \theta}$$
.

Now as $\theta \to 0$, $\cos \theta \to 1$ and $\frac{1}{\cos \theta}$ also $\to 1$.

Fig 16.1

The left hand term of the inequality is fixed at I and the right hand term decreases and tends to 1, as $\theta \to 0$, and the middle term must also tend to 1.

Hence
$$\lim \frac{\theta}{\sin \theta} = 1$$
 and reverting to x as the variable $\theta \to 0$

$$\lim \frac{\sin x}{x} = 1$$
 where x is in rad.
$$\theta \to 0$$

This result plays a crucial part in finding the derivative of sin x. To take advantage of it, we must work in radians throughout.

Derivative of sin x

Working as before from first principles (Chapter 9) let $y = \sin x$, x is in radians. Take an increment δx in x to produce a corresponding increment δy in y.

Then Hence

$$y + \delta y = \sin(x + \delta x).$$

$$\delta y = \sin(x + \delta x) - \sin x$$

$$= 2\cos(x + \frac{1}{2}\delta x)\sin(\frac{1}{2}\delta x)$$

using one of the factor formulae.

Therefore

$$\frac{\delta y}{\delta x} = 2\cos(x + \frac{\delta x}{2}) \frac{\sin(\frac{\delta x}{2})}{\delta x}$$
$$= \cos(x + \frac{\delta x}{2}) \frac{\sin(\frac{\delta x}{2})}{(\frac{\delta x}{2})}.$$

Now as
$$\delta x \to 0$$
, $\frac{\delta y}{\delta x} \to \frac{\delta y}{\delta x}$,

$$\cos\left(x + \frac{\delta x}{2}\right) \to \cos x$$

and using the above limit,

$$\frac{\sin(\frac{\delta x}{2})}{(\frac{\delta x}{2})} \to 1$$

Hence

$$\frac{\partial y}{\delta x} = \cos x$$

$$\frac{d(\sin x)}{\delta x} = \cos x$$

whre x is in rad.

The gradient at any point on the sine curve $(y = \sin x)$ is the value of $\cos x$ for that value of x. A comparison of the two curves (**fig 16.2**) illustrates this. Composite functions involving the sine can now be differentiated.

Example 1

$$\frac{d(\sin 3x)}{\delta x} = \cos 3x \times 3.$$

First differentiate $\sin \dots \text{ wrt } (3x)$ and then differentiate 3x wrt x.

So, if $y = \sin(2x+5)$,

$$\frac{\delta y}{\delta x} = [\cos(2x+5)] \times 2$$

$$= 2\cos(2x+5).$$

Again, if
$$y = \sin^2 3x$$
, $\frac{\delta y}{\delta x} = 2 \sin 3x \times \cos 3x \times 3$

Differentiate differentiate differentiate sin²3x as a sin3x wrt 3x 3x wrt x power wrt sin3x 6 sin3x cos3x

 $= 6 \sin 3x \cos 6x$ $= 3 \sin 6x$

Example 2

$$y = \sin x^{\circ}$$
. Find $\frac{\delta y}{\delta x}$.

We must first convert the angle to radians.

$$x^{\circ} = \frac{\pi}{180} x \text{ radians.}$$

Hence
$$y = \sin x^{\circ} = \sin \frac{\pi}{180} x$$
.

Then
$$\frac{\delta y}{\delta x} = \frac{\pi}{180} \cos \frac{\pi}{180} x = \frac{\pi}{180} \cos x^{\circ}$$
.

Derivative of cos x

Since
$$\cos x = \sin(\frac{\pi}{2} - x),$$

$$\frac{d(\cos x)}{\delta x} = \cos(\frac{\pi}{2} - x)x(-1)$$

$$= -\cos(\frac{\pi}{2} - x)$$

Alternatively we can work again from first principles.

Let $y = \cos x$, x is in radians, then $y + \delta y = \cos (x + \delta x)$ taking as before increments δx and δy .

Then
$$\delta y = \cos(x + \delta x) - \cos x$$
$$= -2\sin(x + \frac{1}{2}\delta x)\sin(\frac{1}{2}\delta x).$$

Therefore
$$\frac{\delta y}{\delta x} = -2\sin(x + \frac{1}{2}\delta x)\frac{\sin(\frac{\delta x}{2})}{\delta x}$$

$$= -\sin(x + \frac{1}{2}\delta x)\frac{\sin(\frac{\delta x}{2})}{(\frac{\delta x}{2})}$$

And hence in the limit, when $\delta x \to 0$, $\frac{\delta y}{\delta x} = -\sin x$.

$$\frac{d(\cos x)}{\delta x}$$
 = $\sin x$ where x is in rad.

Example 3

If
$$y = \cos 5x$$
, $\frac{\delta y}{\delta x} = -\sin 5x \times 5 = -5\sin 5x$.

If
$$y = \cos^2(2x - 3)$$
, $\frac{\delta y}{\delta x} = 2\cos(2x - 3) x [-\sin(2x - 3)] x 2$

You too can acquire knowledge and skills!

$$= -4 \cos (2x - 3) \sin (2x - 3)$$

= -2 \sin 2 (2x - 3).

The methods previously used for differentiating products, quotients, and for finding maximum and minimum values can also be applied where necessary.

Derivative of tan x

Example 4

Find the derivative of tan x.

If
$$y = \tan x = \frac{\sin x}{\cos x}$$
, then by the quotient rule,
$$\frac{dy}{dx} = \frac{\cos x(\cos x) - \sin x(-\sin x)}{\cos^2 x}$$

$$= \frac{\cos^2 x \sin^2 x}{\cos^2 x}$$

$$= \frac{1}{\cos^2 x}.$$

$$\frac{d(\tan x)}{\cos^2 x}$$

Hence
$$\frac{d(\tan x)}{\delta x}$$
 = $\sec^2 x$ where x is in rad.

Example 5

If
$$y = (1 + x^2) \sin 2x$$
, find $\frac{dy}{dx}$ and its value when $x = \frac{\pi}{2}$.

By the product rule,

$$\frac{dy}{dx} = (1 + x^2) 2 \cos 2x + (2x) \sin 2x.$$
When $x = \frac{\pi}{2}$, $\frac{dy}{dx} = (1 + \frac{\pi^2}{2}) 2 \cos (2 \times \frac{\pi}{2}) + (2 \times \frac{\pi}{2}) \sin (2 \times \frac{\pi}{2})$

$$= -2(1 + \frac{\pi^2}{2}) \operatorname{as} \cos \pi = -1 \text{ and } \sin \pi = 0.$$

Example 6

If
$$xy = \sin 2x$$
, prove that $x \frac{d^2y}{dx^2} + 2\frac{dy}{dx} + 4xy = 0$.

Differentiate wrt x, treating xy as a product:

$$x\frac{dy}{dx} + y = 2\cos 2x.$$

Now differentiate again wrt x, treating $x \frac{dy}{dx}$ as a product:

$$x\frac{d^2y}{dx^2} + \frac{dy}{dx} + \frac{dy}{dx} = -2\sin 2x \times 2$$

$$= -4\sin 2x$$

$$= -4xy$$
Hence
$$\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + 4xy = 0.$$

Example 7

Differentiate tan³ 2x.

If
$$y = \tan^3 2x$$
,

$$\frac{dy}{dx} = 3 \tan^2 2x \times \sec^2 2x \times 2$$
$$= 6 \tan^2 2x \sec^2 2x.$$

 $(\tan^3 ... \text{ is first differentiated as a power, then } \tan ... \text{ is differentiated, } \text{and finally } 2x \text{ is differentiated)}.$

Example 8

Find the maximum and minimum value of $3 \sin x + 4 \cos x$ and the values of x at which they occur.

Take

$$y = 3\sin x + 4\cos x.$$

$$\frac{dy}{dx} = 3\cos x - 4\sin x$$

and

$$\frac{dy}{dx}$$
 = 0 at the turning points.

If
$$\frac{dy}{dx} = 0$$
, then $3\cos x - 4\sin x = 0$ or $\tan x = \frac{3}{4}$.

In the range $0^{\circ} - 360^{\circ}$ this gives $x = 36^{\circ} 52'$ or $216^{\circ} 52'$.

Our usual test to distinguish between the maximum and minimum values is a little awkward in this case, but we can ease the working if we modify the expression for $\frac{dy}{dx}$.

$$\frac{dy}{dx} = 3\cos x - 4\sin x$$

$$= \cos x (3 - 4 \tan x)$$

$$= 4\cos x (\frac{3}{4} - \tan x). \text{ (see table below)}$$

Fig 16.3

When $\tan x = \frac{3}{4}$, $\sin x = \frac{3}{5}$ and $\cos x = \frac{4}{5}$ (x in the first quadrant) (fig 16.3) or $\sin x = -\frac{3}{5}$, $\cos x = -\frac{4}{5}$ (x in the third quadrant). Therefore the maximum value of y when $x = 36^{\circ}$ 52' is $3(\frac{3}{5}) + 4(\frac{4}{5}) =$ and the minimum value of y when $x = 216^{\circ}$ 52' is -5. (These values will recur every 360°).

x	<36° 52′	36° 52′	>36° 52′	<216° 52′	216° 52′	>216° 52′
	$\cos x > 0$ $\tan x < 0.75$		$\cos x > 0$ $\tan x > 0.75$	$\cos x < 0$ $\tan x < 0.75$		$\cos x < 0$ tan $x > 0.75$
$\frac{\mathrm{d}y}{\mathrm{d}x}$	+	0	-		0	+
	/		. \	\	-	/
	maximum minimum					m

Example

If
$$y = x^3 + \cos x - \ln 4$$

$$\frac{dy}{dx} = 3x^2 - \sin x - \frac{1}{x}$$

If
$$y = 7x^4$$

$$\frac{dy}{dx} = 7(4x^3)$$

$$= 28x^3$$

Example

$$y = xe^x$$

let
$$u = x$$
 and $v = e^x$

Then
$$\frac{du}{dx} = 1$$
 $\frac{dv}{dx} = e^x$

Using
$$\frac{dy}{dx}$$
 = $v \frac{du}{dx} + u \frac{du}{dx}$
 $\frac{dy}{dx}$ = $e^{x}.1 + x.e^{x}$
= $e^{x}(1+x)$

Example

(a)
$$(2x^3 - 1) \sin x$$

(b)
$$\frac{\text{In}(5x)}{x^2}$$
.

(a) Let
$$y = (2x^3 - 1) \sin x$$
, a product,
So let $u = 2x^3 - 1$ and $v = \sin x$.

Now
$$\frac{du}{dx} = 6x^2$$
 and $\frac{dv}{dx} = \cos x$,

$$dx$$

$$dx$$

$$Using \frac{d(uv)}{dx} = v\frac{du}{dx} + u\frac{dv}{dx},$$

$$\frac{dy}{dx} = \sin x \cdot 6x^2 + (2x^3 - 1) \cdot \cos x$$

$$= 2x^3 \cos x + 6x^2 \sin x - \cos x.$$

(b) Let
$$y = \frac{In(5x)}{x^2}$$
, a quotient,

So let
$$u = In (5x)$$
 and $v = x^2$

Now
$$\frac{du}{dx} = 5\frac{1}{5x}$$
 and $\frac{dv}{dx} = 2x$

Using
$$\frac{du}{dx} \left(\frac{u}{v} \right)$$
 = $\frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2}$
 = $\frac{x^2 \frac{1}{x} - \ln(5x).2x}{x^4}$
 = $\frac{1 - 2\ln(5x)}{x^3}$

Example

A curve has equation $y = \sin^{-1} x$. Find $\frac{dy}{dx}$.

$$y = \sin -1 x \Rightarrow x = \sin y$$
.

So,
$$\frac{dx}{dy} = \cos y = \sqrt{1 - \sin^2 y} = \sqrt{1 - x^2}$$
.

Hence,
$$\frac{dy}{dx} = \frac{1}{\frac{dx}{dy}} = \frac{1}{\sqrt{1-x^2}}.$$

Example

Given
$$y = \sec x$$
, find $\frac{dy}{dx}$

$$Y = \sec x = \frac{1}{\cos x}$$

Using the quotient rule (see P20),

$$\frac{dy}{dx} = \frac{\cos x \cdot 0 - 1 \cdot (-\sin x)}{\cos^2 x}$$

$$= \frac{\sin x}{\cos^2 x}$$

$$= \frac{1}{\cos x} \tan x$$

$$= \sec x \tan x.$$

Example

If
$$y = x^6 + 4x^2 - \frac{3}{x}$$

$$\frac{dy}{dx} = 6x^5 + 8x + \frac{3}{x^2}$$
 first derivative
$$\frac{d^2y}{dx^2} = 30x^4 + 8 - \frac{6}{x^3}$$
 second derivative
$$\frac{d^3y}{dx^3} = 120x^3 + \frac{18}{x^4}$$
 third derivative

Standard results

Algebraic

1 ingcoraic	
function	derivative
constant	0
	nx ⁿ⁻¹
sin x	cos x
cos x	-sin x
tan x	sec ² x

Trigonometrically

(x in radians)

function	derivative
In x	1
e ^x	v
	e^{X}

function	derivative				
cosec x	-cosec x cot x				
sec x	sec x tan x				
cot x	- cosec ² x				
sin ⁻¹ x	$\frac{\text{Ylou}}{\sqrt{1-x^2}}$ too ca	n acquire	knowledge	and	skills!
	1				

Exercise 16

Differentiate wrt x (x in radians):

- $\sec x \left[\text{take as } (\cos x)^{-1} \right] 2$. $\csc x$ 3. cotx 1.
- sin 4x $5. \cos 6x$ tan2x 4. 6. 7. cot3x
- $\cos(2x-8) \quad 9. \qquad \sin(3x+\frac{\pi}{3})$ 8. 10. xtan x
- 11. $x\cos 2x$ 12. $x\sin 3x 13$. $\cos 2x + \sin x$ 14. $\sin x \cos x$ 15. $\cos^2 x$ 16. $\sin^2 5x$
- 17.
- $\tan^2 x$ 18. $\sin^2 (x \frac{\pi}{4})$ 19. $4x^2 + \sin 4x$ $\frac{\sin x}{1 + \cos x}$ 21. $\frac{\cos x + \sin x}{\cos x \sin x}$ 22. $\frac{2}{1 + \cos 2x}$ 20.
- $\sin x \tan x = 24. \quad \sec^2 x = 25. \quad \tan \frac{x}{2} = 26. \quad x^2 \tan x$ 23.
- $28. \qquad \frac{1+x}{\sin x}$ 29. $2\cos^2 x - \sin^2 x$ 27. $(1 + x^2)\tan x$
- $(1 + \sin x)(1 \cos x)$
- If $y = \sin 2x$, find $\frac{dy}{dx}$, $\frac{d^2y}{dx^2}$, $\frac{d^3y}{dx^3}$. 31.
- 32. Find the maximum and minimum values of $2 \cos x + \sin x$ and the values of x at which they occur (in the range 0° to 360°).
- If x cosy = sin x, prove that $\frac{dy}{dx} = \frac{\cos y(\cos y \cos x)}{\sin x \sin y}$. 33.
- Given that $y = x \sin 2x$, prove that $x^2 \frac{d^2y}{dx^2} 2x \frac{dy}{dx} + 2y + 4x^2y = 0$. 34.
- Given that $y = \frac{x}{2 + \cos x}$, find the values of $\frac{dy}{dx}$ when x = 0, $\frac{\pi}{4}$ and π . 35.
- If $y = 3x \sin 3x + \cos 3x$, show that $x \frac{d^2y}{dx^2} + 9xy = 2\frac{dy}{dx}$. 36.
- 37. A particle is moving In a straight line and its distance s from a fixed point of the line .after t s is given by $s = \sin 2t$.

Find its velocity and acceleration at this time and prove that its acceleration is always numerically 4 times its distance from the fixed point and directed towards

the point. What is Its velocity and acceleration at times 0, $\frac{\pi}{4}$, $\frac{\pi}{2}$, π , $\frac{3\pi}{2}$, 2π s? Make

a diagrammatic sketch of the motion. (Such a motion is called Simple Harmonic Motion).

- 38. If $y = P \cos 2x + Q \sin 2x$, where P and Q are constants, prove that $\frac{d^2y}{dx^2} + 4y = 0$. if y = 1 when x = 0 and $\frac{dy}{dx} = 2$ when $x = \frac{\pi}{2}$ find the values of P and Q.
- 39. If $y = 2 \cos x + 3 \sin x \cos 2x$, prove that $\frac{d^2y}{dx^2} + y = 3\cos 2x$.
- 40. If $y = \sin x + 3\cos 2x$, solve the equation $\frac{dy}{dx} = 0$ in the range 0 to 2π and hence find the maximum and minimum values of y in that range.
- 41. If y = tan 2x, prove that $\frac{dy}{dx} = 2(1 + y^2)$.
- 42. If $y = \frac{3\sin 2x}{x}$, prove that $x \frac{d^2y}{dx^2} + 2\frac{dy}{dx} + 3xy = 0$.
- 43. Prove that the maximum value of $\cos x \sin x \sqrt{2}$.
- 44. If $y = \sin x$, prove that $\frac{\frac{d^2y}{dx^2}}{\left[1 + \left(\frac{dy}{dx}\right)^2\right]^{\frac{3}{2}}} = -\frac{2}{3\sqrt{3}} \text{ when } x = \frac{\pi}{4}.$
- 45. If $r = 1 \cos \theta$, use the result of No 33 in Ex. 10.5 to prove that $r \frac{d\theta}{dr} = \cot \frac{\theta}{2}$.

SUMMARY

$$\lim_{x \to 0} \frac{\sin x}{x} = 1 \quad (x \text{ in radians}).$$

Note: The following are only true if x is in radians.

$$\frac{d(\sin x)}{dx} = \cos x; \qquad \frac{d(\sin x)}{dx} = -\sin x;$$

$$\frac{d[\sin(ax+b)]}{dx} = a\cos(ax+b); \qquad \frac{d[\cos(ax+b)]}{dx} = -a\sin(ax+b)$$

$$\frac{d(\tan x)}{dx} = \sec^2 x; \qquad \frac{d[\tan(ax+b)]}{dx} = a\sec^2(ax+b);$$