Thermodynamische Potentiale (Umwandlung mit Legendre-Trafo)

Name	Funktion	differentielle Form
innere Energie	U(S,V) = U	dU = TdS - pdV
freie Energie	F(T, V) = U - TS	dF = -SdT - pdV
Entalpie	H(S, p) = U + PV	dH = TdS + VdP
freie Entalpie	G(T, p) = U - TS + pV	dG = -SdT + Vdp

Maxwellrelationen unter Berücksichtigung: $\frac{\partial}{\partial y} \frac{\partial f}{\partial x} = \frac{\partial}{\partial x} \frac{\partial f}{\partial y}$

$$-\left(\frac{\partial T}{\partial V}\right)_{S} = \left(\frac{\partial p}{\partial S}\right)_{V} \text{ aus } dU \qquad \left(\frac{\partial S}{\partial V}\right)_{T} = \left(\frac{\partial p}{\partial T}\right)_{V} \text{ aus } dF$$

$$\left(\frac{\partial T}{\partial p}\right)_{S} = \left(\frac{\partial V}{\partial S}\right)_{p} \text{ aus } dH \qquad -\left(\frac{\partial S}{\partial p}\right)_{T} = \left(\frac{\partial V}{\partial T}\right)_{p} \text{ aus } dG$$