CLAIMS

-11-

What is claimed is:

1.	An authentication method comprising:
gener	rating an initialization vector at a first electronic device;
deter	mining at the first electronic device whether the initialization vector falls
within a first	group of initialization vectors, the first group includes a plurality of
initialization	vectors solely used in connection with an authentication sequence; and
encry	pting information using in part the initialization vector for return to a
second electi	ronic device if the initialization vector falls within the first group.
2.	The authentication method of claim 1, wherein the first electronic device
is a wireless	unit.
3.	The authentication method of claim 1, wherein the second electronic
device is an	access point.
4.	The authentication method of claim 1, wherein prior to generating the
initialization	vector, the method comprises receiving the information from the second
electronic de	evice by the first electronic device.
5.	The authentication method of claim 4, wherein the information is a
challenge tex	ct.
6.	The authentication method of claim 5, wherein the challenge text is a
first sequenc	e of bits and the initialization vector is a second sequence of bits produced
by a number	generator.
7.	The authentication method of claim 4, wherein the number generator is a
pseudo-rando	om number generator.

8. The authentication method of claim 1 further comprising regenerating an initialization vector if the initialization vector fails to fall within the first group.

l	9.	The authentication method of claim 1, wherein the determining whether		
2		the initialization vector falls within the first group includes determining whether a		
3		selected series of bits of the initialization vector has been set.		
I	10.	The authentication method of claim 9, wherein the selected series of bits		
1	is continuous.			
2	is continuous.			
l	11.	The authentication method of claim 5, wherein prior to receiving the		
2	challenge text	t, the method further comprises negotiating a shared secret key between		
3	the first electr	onic device and the second electronic device.		
	12	The authentication method of claim 11, wherein the encrypting of the		
	12.			
2	information in			
3		combining the initialization vector with the shared secret key; and		
4	-	repeatedly performing bitwise Exclusive-OR (XOR) operations on the challenge		
5	text using a co	ombination of the initialization vector with the shared secret key.		
l	13.	The authentication method of claim 5 further comprising:		
2	transm	nitting both the encrypted challenge text and the initialization vector to the		
3	second electro	onic device;		
4	decryp	oting the encrypted challenge text using both the initialization vector and a		
5	prestored cop	y of the shared secret key to recover a challenge text; and		
5	compa	aring the recovered challenge text with the challenge text.		
1	14.	A method for authenticating a wireless unit in communications with an		
2	access point,	_		
3	-	nitting a challenge text from the access point to the wireless unit;		
4		ing an encrypted challenge text and an initialization vector from the		
5	wireless unit;			
5		oting the encrypted challenge text using both the initialization vector and a		
7	•	by of a shared secret key to recover a challenge text; and		
8	•	aring the recovered challenge text with the challenge text previously		

transmitted to the wireless unit.

1	15.	The method of claim 14, wherein the challenge text is a first sequence of
2	bits.	
1	16.	The method of claim 15, wherein the initialization vector is a second
2	sequence of b	oits produced by a number generator.
1	17.	The method of claim 16, wherein the number generator is a pseudo-
2	random numb	per generator.
1	18.	The method of claim 14, wherein prior to transmitting the challenge text,
2	the method fi	orther comprises negotiating the shared secret key between the access
3	point and the	wireless unit.
1	19.	The method of claim 14, wherein the decrypting of the encrypted
2	challenge text includes	
3	comb	ining the initialization vector with the shared secret key; and
4	using	a combination of the initialization vector and the shared secret key as a
5	key material	loaded to decrypt the encrypted challenge text.
1	20.	A method comprising:
2	select	ing a bit size (N) of an initialization vector;
3	partiti	oning all 2 ^N initialization vectors into a first group and a second group;
4	using	an initialization vector from the first group exclusively for authentication;
5	and	
6	using	an initialization vector from the second group exclusively for data
7	communicati	ons.
1	21.	The method of claim 20, wherein the authentication is Wired Equivalent
2	Privacy (WE	P) authentication in accordance with Institute of Electrical and Electronics
3	Engineers (II	EEE) 802.11.
1	22.	The method of claim 20, wherein a first predetermined number of
2	initialization	vectors associated with the first group is substantially less than a second

predetermined number of initialization vectors associated with the second group.

second group;

1	23. The method of claim 20, wherein the data communications include		
2	wired equivalent privacy (WEP) encryption and WEP decryption operations.		
1	24 An electronic device comprising:		
1	24. An electronic device comprising:		
2	a memory to contain a plurality of keys including a shared secret key;		
3	a number generator;		
4	a device management logic in communication with the memory and the number		
5	generator, the device management logic including		
6	logic configured to analyze an initialization vector generated from the		
7	number generator to determine whether the initialization vector is used for either wired		
8	authentication or data communications; and		
9	a wireless transceiver to transmit and receive information for configured to		
10	support the authentication.		
1	25. The electronic device of claim 24, wherein the authentication is Wired		
2	Equivalent Privacy (WEP) authentication.		
1	26. The electronic device of claim 24 is an access point.		
1	27. An electronic device comprising:		
2	means for generating an initialization vector;		
3	means for determining whether the initialization vector falls within a first group		
4	of initialization vectors, the first group includes a plurality of initialization vectors		
5	solely used in connection with an authentication sequence; and		
6	means for encrypting information using the initialization vector for return to a		
7	source for the information using in part the initialization vector if the initialization		
8	vector falls within the first group.		
1	28. A software module implemented for execution by an electronic device,		
2	the software module comprising:		
3	a first module to select a bit size (N) of an initialization vector;		
	a second module to partition all 2 ^N initialization vectors into a first group and a		
4	a second module to partition an 2 militarization vectors into a first group and a		

a third module to use an initialization vector from the first group exclusively for		
authentication; and		
a fourth module to use an initialization vector from the second group		
exclusively for data communications.		

7 8 9