Homework # 07

MATH 140 PROFESSOR JOHN LOTT

Ву

Cody Vig

 $The \ University \ of \ California \\ Berkeley$

Chapter 04 | Problem 5.6

Prove that if M is a surface of revolution and γ is a geodesic, then $r \cos \beta(s) = \text{constant}$, where $\beta(s)$ is the angle between $\gamma'(s)$ and the circle of latitude (of radius r) through $\gamma(s)$.

Solution

Suppose (r(s), z(s)), $s \in (s_1, s_2)$, is the unit speed curve which generates the surface M. Choose the following coordinate patch from M:

$$x(s, \theta) = (r(s)\cos\theta, r(s)\sin\theta, z(s))$$

for $s \in (s_1, s_2)$ and $\theta \in (0, 2\pi)$. Suppose

$$\boldsymbol{\gamma}(s) = \boldsymbol{x}(\gamma^1, \gamma^2) = (r(\gamma^1)\cos\gamma^2, r(\gamma^1)\sin\gamma^2, z(\gamma^1))$$

is a geodesic on M and suppose

$$\varphi(\theta) = (r_0 \cos \theta, r_0 \sin \theta, z_0)$$

is a circle of latitude of M with radius $r_0 = r(s_0)$ for $s_0 \in (s_1, s_2)$. We can express the quantity $r_0 \cos \beta(s)$ in terms of an inner product as follows:¹

$$r_0 \cos \beta(s) = r_0 \frac{\langle \varphi_{\theta}, \gamma' \rangle}{\|\varphi\| \|\gamma'\|} = \frac{r_0}{\sqrt{r_0^2 + z_0^2}} \langle \varphi_{\theta}, \gamma' \rangle,$$

where $\varphi_{\theta} := \partial \varphi / \partial \theta$ is the tangent to the circle of latitude φ . I claim that this quantity is constant. To prove this, we take the derivative with respect to s:

$$\frac{\mathrm{d}}{\mathrm{d}s} \{ r_0 \cos \beta(s) \} = \frac{r_0}{\sqrt{r_0^2 + z_0^2}} \frac{\mathrm{d}}{\mathrm{d}t} \{ \langle \varphi_\theta, \gamma' \rangle \} = \frac{r_0}{\sqrt{r_0^2 + z_0^2}} \left[\langle \varphi'_\theta, \gamma' \rangle + \langle \varphi_\theta, \gamma'' \rangle \right].$$

But since φ_{θ} does not depend on s, we get $\varphi'_{\theta} = \mathbf{0}$ and hence $\langle \varphi'_{\theta}, \gamma' \rangle = 0$. Further, since γ is a geodesic, we have $\gamma'' = \kappa_n \mathbf{n}$. Hence, we find

$$\frac{\mathrm{d}}{\mathrm{d}s} \{ r_0 \cos \beta(s) \} = \frac{\kappa_n r_0}{\sqrt{r_0^2 + z_0^2}} \langle \boldsymbol{\varphi}_{\theta}, \boldsymbol{n} \rangle.$$

Note that since φ_{θ} is tangent to M at $\gamma(s)$, we have $\varphi_{\theta} \in T_{\gamma(s)}M$. As such, φ_{θ} is necessarily normal to n, and so $\langle \varphi_{\theta}, n \rangle = 0$. Thus

$$\frac{\mathrm{d}}{\mathrm{d}s}\{r_0\cos\beta(s)\}=0,$$

which implies $r_0 \cos \beta(s)$ is constant.

¹Sorry about the sloppy notation. The primes denote differentiation by s and subscript θ 's denote differentiation by θ . I would have fixed this, but I did not have time.

Chapter 04 | Problem 5.11

Let M be the surface given by $x^2 + y^2 - z^2 = 1$ (Example 2.8). Find as many geodesics as you can.

Solution

The surface M is easily seen to be a hyperboloid of one sheet. A sketch of the surface (generated by Geogebra) is included below.

Figure 1: The surface M given by $x^2 + y^2 - z^2 = 1$.

The shaded plane in the figure is the xy plane, and the blue axis perpendicular to the plane is the z axis. We have the following proposition from Millman and Parker:²

Proposition. Let M be a surface of revolution generated by the unit speed curve (r(s), z(s)). Then

- 1. every meridian is a geodesic; and
- 2. a circle of latitude is a geodesic if and only if the tangent x_1 to the meridians is parallel to the axis of revolution at all points on the circle of latitude.

In our case, M can be considered a surface of revolution generated by rotating a unit speed hyperbola in (say) the yz plane about the z axis. As such, the proposition above applies. We see that the meridians are the curves along the surface M with constant azimuthal angle θ in the zy plane and the circles of latitide are the circles while lie on M and are parallel to the xy plane. As such, we find that the following curves are geodesics on M:

- 1. All planar curves which lie on the intersection of M and a plane which contain the z axis (i.e., the meridians).
- 2. The circle of latitude which lies on the xy plane.

We could alternatively use the results of a previous homework to find the same geodesics. In Homework 06, we found that the curve of intersection of a surface M and a plane Π is a geodesic if and only if Π is a plane of symmetry of M. It is clear that every plane which intersects our curve and which contains the axis of revolution is a plane of symmetry because M is a surface of revolution. Additionally, the circle of revolution contained in the xy plane is a geodesic since M is clearly symmetric about the xy plane.³

²Proposition 5.5 of Chapter 4 (page 110).

³These aren't all of the geodesics on M, but they do represent two such classes. If one can prove that there are straight lines embedded on M (which there are, but I don't have time to prove it), then these straight lines are also geodesics.

Chapter 04 | Problem 6.5

Let γ be a curve with $\gamma(0) = P$, $\gamma(1) = Q$. If $\tilde{X} \in T_P M$, let X be the parallel translate of \tilde{X} along γ . Define $\gamma^{\#}: T_P M \to T_Q M$ by $\gamma^{\#}(\tilde{X}) = X(1)$.

- (a) Prove that $\gamma^{\#}$ is a linear transformation.
- (b) Prove that $\gamma^{\#}$ is an isometry. That is, that $\langle \gamma^{\#}(\tilde{X}), \gamma^{\#}(\tilde{Y}) \rangle = \langle \tilde{X}, \tilde{Y} \rangle$.
- (c) Prove that $\gamma^{\#}$ is an isomorphism. $\gamma^{\#}$ is called the *parallelism* defined by γ .

Solution

- (a) Let $a \in \mathbb{R}$ be constant, and suppose \tilde{X} , $\tilde{Y} \in T_P M$. Since $T_P M$ is a vector space, we have $a\tilde{X} + \tilde{Y} \in T_P M$, and $\gamma^{\#}(a\tilde{X} + \tilde{Y})$ is the unique parallel translate of $a\tilde{X} + \tilde{Y}$ to $T_Q M$. That is, $\gamma^{\#}(a\tilde{X} + \tilde{Y}) = (aX + Y)(1)$. Since $T_Q M$ is a vector space, we have (aX + Y)(1) = aX(1) + Y(1), and so $\gamma^{\#}$ is indeed a linear transformation.
- (b) This is an immediate consequence of the following proposition from Millman and Parker.⁴

Proposition. Let X(t) and Y(t) both be parallel along a regular curve γ in M. Then ||X(t)|| is constant and so is the angle between X(t) and Y(t).

This follows from the fact that $\frac{d\mathbf{X}}{dt}$ is everywhere normal to M. In any case, since $\boldsymbol{\gamma}^{\#}(\tilde{\mathbf{X}})$ and $\boldsymbol{\gamma}^{\#}(\tilde{\mathbf{Y}})$ are parallel translates of $\tilde{\mathbf{X}}$ and $\tilde{\mathbf{Y}}$, respectively, the preceding proposition implies that the angle between them is constant, and indeed the cosine of the angle between them is constant. As such, we find

$$\frac{\langle \gamma^{\#}(\tilde{\boldsymbol{X}}), \gamma^{\#}(\tilde{\boldsymbol{Y}}) \rangle}{\|\gamma^{\#}(\tilde{\boldsymbol{X}})\| \, \|\gamma^{\#}(\tilde{\boldsymbol{Y}})\|} = \frac{\langle \tilde{\boldsymbol{X}}, \tilde{\boldsymbol{Y}} \rangle}{\|\tilde{\boldsymbol{X}}\| \, \|\tilde{\boldsymbol{Y}}\|}.$$

The same proposition guarantees that the lengths are invariant under parallel translation, i.e., that $\|\gamma^{\#}(\tilde{X})\| = \|\tilde{X}\|$ and $\|\gamma^{\#}(\tilde{Y})\| = \|\tilde{Y}\|$. The result follows.

(c) Clearly $\dim(T_P M) = \dim(T_Q M) = 2$ since they are both tangent spaces of a three-dimensional surface. And,

$$\gamma^{\#}(\tilde{\boldsymbol{x}}_i) = \boldsymbol{x}_i(1),$$

that is, $\gamma^{\#}$ maps a basis of T_PM to a basis of T_QM , so rank($\gamma^{\#}$) = 2. By the rank-nullity theorem, the nullspace of $\gamma^{\#}$ contains only $\mathbf{0} \in T_PM$ and hence $\gamma^{\#}$ is an isomorphism.

⁴Proposition 6.9 of Chapter 4 (page 119).

Chapter 04 | Problem 7.2

Show that for $M = S^1 \times (0,1)$ (Example 2.3) L can be represented by the matrix

$$\mathsf{L} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}.$$

Solution

My derivation implies $L^1_1 = -1$. A discussion of this discrepancy is included at the end of the problem. In any case, I will show this equality in two ways. First, I will calculate the coefficients of the second fundamental form $L_{\mu\nu}$ and then use the inverse metric $\mathbf{g}^{\mu\nu}$ to raise the first index, i.e., $L^i_j = \mathbf{g}^{i\ell} L_{\ell j}$ (Einstein summation convention assumed). From Example 2.3, we know that one such coordinate patch for the surface is

$$x(\theta, t) = (\cos \theta, \sin \theta, t)$$

for $\theta \in (-3\pi/4, 3\pi/4)$ and $t \in (0, 1)$. The basis vectors for the tangent space are thus

$$x_1 \equiv \frac{\partial x}{\partial \theta} = (-\sin \theta, \cos \theta, 0)$$

 $x_2 \equiv \frac{\partial x}{\partial t} = (0, 0, 1).$

The second derivatives are seen to be

$$x_{11} = \frac{\partial x_1}{\partial \theta} = (-\cos \theta, -\sin \theta, 0)$$

$$x_{12} = x_{21} = x_{22} = 0.$$

Finally, we calculate the normal vector to the tangent plane. We have

$$\boldsymbol{x}_1 \times \boldsymbol{x}_2 = (\cos \theta, \sin \theta, 0) = \boldsymbol{n}$$

since it is already unit length. Thus, the coefficients of the second fundamental form $L_{ij} = \langle x_{ij}, n \rangle$ are seen to be

$$L_{11} = \langle (-\cos\theta, -\sin\theta, 0), (\cos\theta, \sin\theta, 0) \rangle = -1$$

 $L_{12} = L_{21} = L_{22} = 0$

since $x_{ij} = 0$ for all $(i, j) \neq (1, 1)$. Next, we find the metric $g_{ij} = \langle x_1, x_j \rangle$. We get

$$g_{11} = \langle x_1, x_1 \rangle = 1$$
 $g_{21} = g_{12} = 0$
 $g_{22} = 1$.

Hence the metric is the identity, so trivially the inverse metric is the identity and the components L_{ij} are the same as the components L_{ij} . Hence

$$\mathsf{L} = \begin{pmatrix} -1 & 0 \\ 0 & 0 \end{pmatrix}. \tag{1}$$

Alternatively, we can interpret the Weingarten map as derivatives of n. We have

$$\begin{aligned} \mathsf{L}(\boldsymbol{x}_1) &= -\frac{\partial n}{\partial \theta} = (\sin \theta, -\cos \theta, 0) \\ \mathsf{L}(\boldsymbol{x}_2) &= -\frac{\partial n}{\partial t} = (0, 0, 0). \end{aligned}$$

Using Proposition 7.6(b) in Millman and Parker (page 125), we write $L(\mathbf{x}_1) = L^{\ell}_i \mathbf{x}_{\ell}$ and get:

$$L^{1}_{1}\boldsymbol{x}_{1} + L^{2}_{1}\boldsymbol{x}_{2} = (-\sin\theta, \cos\theta, 0)$$

$$L^{1}_{2}\boldsymbol{x}_{1} + L^{2}_{2}\boldsymbol{x}_{2} = (0, 0, 0)$$

Using the expressions for the x_i above, we get:

$$(-L^{1}_{1}\sin\theta, L^{1}_{1}\cos\theta, L^{1}_{2}) = (\sin\theta, -\cos\theta, 0)$$
$$(-L^{2}_{1}\sin\theta, L^{2}_{1}\cos\theta, L^{2}_{2}) = (0, 0, 0).$$

Again, this implies $L^1_1 = -1$ and $L^i_j = 0$ otherwise, and so we arrive at (1) again.

I suspect that this discrepancy is due to my choice of coordinate patch. Perhaps if I had chosen, say, $\mathbf{x}(\theta,t) = (\sin\theta,\cos\theta,t)$, I would have arrived at the answer in the book. In any case, we know from the previous homework that the components of the second fundamental form transform doubly-covariantly up to sign,

$$L_{ij} = \pm \bar{L}_{\alpha\beta} \frac{\partial \bar{x}^{\alpha}}{\partial x^{i}} \frac{\partial \bar{x}^{\beta}}{\partial x^{j}},$$

under a coordinate transformation $(\bar{x}^1, \bar{x}^2) \mapsto (x^1, x^2)$. Since the matrix elements $L^i{}_j$ are determined from the coefficients of the second fundamental form L_{ij} by raising an index, i.e., $L^i{}_j = g^{i\ell}L_{\ell j}$, and since the inverse metric transforms doubly-contravariantly:

$$g^{ij} = \bar{g}^{\mu\nu} \frac{\partial x^i}{\partial \bar{x}^{\mu}} \frac{\partial x^j}{\partial \bar{x}^{\nu}}$$

(with no ambiguity in the sign), we find that the matrix elements transform according to the following transformation law:

$$L^{i}{}_{j} = g^{i\ell} L_{\ell j} = \pm \bar{g}^{\mu\lambda} \bar{L}_{\lambda\nu} \frac{\partial x^{i}}{\partial \bar{x}^{\mu}} \frac{\partial \bar{x}^{\nu}}{\partial x^{j}} = \pm \bar{L}^{\mu}{}_{\nu} \frac{\partial x^{i}}{\partial \bar{x}^{\mu}} \frac{\partial \bar{x}^{\nu}}{\partial x^{j}},$$

and so L is only well-defined up to sign.

Chapter 04 | Problem 7.4

Prove the following lemma.

Lemma. If $P \in M$ and $X, Y \in T_P(M)$, then $\mathbb{I}(X, Y) = \langle L(X), Y \rangle = \langle X, L(Y) \rangle$.

Solution

I will do this by showing that $\langle L(\boldsymbol{X}), \boldsymbol{Y} \rangle = \langle \boldsymbol{X}, L(\boldsymbol{Y}) \rangle$, and using an intermediate step to conclude $\langle L(\boldsymbol{X}), \boldsymbol{Y} \rangle = \mathbb{I}(\boldsymbol{X}, \boldsymbol{Y}) = \langle L(\boldsymbol{X}) \rangle$. Recall that the Weingarten map is linear, hence if $\boldsymbol{u} = a\boldsymbol{x}_1 + b\boldsymbol{x}_2$ for real numbers a, b, then

$$(\mathsf{L}(\boldsymbol{u}))_j = (a\mathsf{L}(\boldsymbol{x}_1) + b\mathsf{L}(\boldsymbol{x}_2))_j = aL^i{}_j\boldsymbol{x}_i + bL^k{}_j\boldsymbol{x}_k$$

(Einstein summation convention assumed). For $\mathbf{X}, \mathbf{Y} \in T_P(M)$, write $\mathbf{X} = X^i \mathbf{x}_i$ and $\mathbf{Y} = y^j \mathbf{x}_j$. Then:

$$\begin{split} \langle \mathsf{L}(\boldsymbol{X}), \boldsymbol{Y} \rangle &= \langle X^i L^j{}_i \boldsymbol{x}_j, Y^k \boldsymbol{x}_k \rangle \\ &= X^i L^j{}_i Y^k \mathsf{g}_{jk} \\ &= L^j{}_i \mathsf{g}_{jk} X^i Y^k \\ &= L_{ki} X^i Y^k. \end{split}$$

But we know that the components of the second fundamental form are symmetric in their two covariant indices. Hence $L_{ki} = L_{ik}$ and $\langle \mathsf{L}(\boldsymbol{X}), \boldsymbol{Y} \rangle = L_{ik} X^i Y^k = \mathbb{I}(\boldsymbol{X}, \boldsymbol{Y})$. If instead we raised the other index:

$$\begin{split} \langle \mathsf{L}(\boldsymbol{X}), \boldsymbol{Y} \rangle &= L_{ki} X^i Y^k \\ &= \mathsf{g}_{i\ell} L^{\ell}_{\ k} X^i Y^k \\ &= X^i L^{\ell}_{\ k} Y^k \mathsf{g}_{i\ell} \\ &= \langle X^i \boldsymbol{x}_i, L^{\ell}_{\ k} Y^k \boldsymbol{x}_{\ell} \rangle \\ &= \langle \boldsymbol{X}, \mathsf{L}(\boldsymbol{Y}) \rangle \,, \end{split}$$

which is what we wanted to prove.