GEOINFORMACIJSKI SUSTAVI Konceptualno modeliranje podataka u GIS-u Baze podataka u GIS-u

jednostavna geometrija

Ex 1. House , Road et Lake

Ex 6. House

Quebec 1:50 000

alternativna geometrija

višestruka geometrija

kompleksna geometrija

izvedena geometrija

Problem modela prostorno-vremenskih objekata

postojanje

Ex 6. House

Problem modela prostorno-vremenskih objekata

□ promjena u prostoru

Ex 8. House

1961 1965

1961 1965

1961 1965

Ex 11. Road network 2 1,N

Zašto trebamo baze podataka?

- kvalitetno održavanje podataka
 - točni i ažurni podaci
 - nesklad u podacima (promjena se dogodila samo na jednom mjestu)
 - redundancija
- pristup podacima
- sigurnost podataka

Što je baza podataka?

- baza podataka je kolekcija podataka organizirana na način da računala mogu efikasno pohranjivati i dohvaćati podatke
 - repozitorij logički povezanih podataka
- baza podataka se kreira i održava pomoću softvera koji se naziva sustav za upravljanje bazama podataka (SUBP)- database management system (DBMS)

Arhitekture baza podataka

- većina današnjih baza podataka može se svrstati u dvije kategorije:
 - Relacijske; ili
 - Objektno-orijentirane (najviše se koriste za upravljanje prostornim podacima)
- najranije baze podataka temeljene su na hierarhijskom modelu
 - efikasna pohrana podataka, ograničena izražajnost, određena redundancija podataka
- mrežni model je uveden da se izbjegne nedostatak izražajnosti u hijerarhijskom modelu
 - doveo do prekompleksnih baza podataka
- deduktivni model je predmet današnjih istraživanja
 - pohranjuje pravila dodatno činjenicama

Hierarhijski DBMS

Mrežni DBMS

Osnovne vrste DBMS-a

- □ Relacijski (RDBMS) SQL-92
- Objektno-relacijski (ORDBMS)-SQL:2003(1999)
- Objekto-orijentirani (OODBMS)

Evolucija baza podataka

Dizajn baze podataka

konceptualni

identificira sadržaj podataka i opisuje podatke na apstraktnoj, koncepcijskoj razini; definira "što" ali ne i "kako" GIS treba riješiti probleme

logički

pretvorba iz konceptualnog (općeg) modela u model prilagođen određenoj bazi podataka

fizički

 realizacija logičkog modela podataka u određenoj bazi podataka

Baze podataka - osnove

- Za postizanje efikasnosti korištenja baze podataka moraju podržavati sljedeće funkcije:
 - pouzdanost
 - integritet
 - sigurnost
 - korisničke želje
 - korisničko sučelje

- neovisnost podataka
- samoopisivajuća
- istovremenost rada
- distribuiranost
- visoke performanse

sve funkcije treba podržavati DBMS

Karakteristične primjene baza podaka

- kućna/uredska
 - jednostavne primjene (npr., baza MP3)
- poslovna
 - poslovne informacije (npr. kupci, zaposlenici)
- inženjerska
 - potpora projektiranju i vođenju projekata (npr. CAD)
- multimedijalna
 - slike, audio i video podaci
- geoprostorna
 - kombinacija prostornih i neprostornih podataka

Elementi SUBP (DBMS)

Upravljanje transakcijama

- transakcija je temeljna jedinica interakcije korisnika i baze podataka
 - upisivanje podataka
 - izmjena podataka
 - brisanje podataka
 - povlačenje podataka
- zahtjeva se podrška upravljanju transakcijama
 - Concurrency istovremenost rada/pristupa (više korisnika pristupa istim podacima u isto vrijeme)
 - Recovery management oporavljanje (vraćanje ispravnog stanja baze podataka nakon kvara)

Relacijski model #1

- relacijska baza podataka je zapravo skup relacija, koje se nazivaju tablicama
- svaka relacija ima skup atributa
- podaci su u relaciji strukturirani kao skup redaka, koji se najčešće zovu slogovi (tuples)
- svaki slog se sastoji od dijela podataka koji opisuju određeni atribut
- svaka ćelija u slogu sadrži jednu vrijednost
- relational database management system (RDBMS ili SUBP) je softver koji se koristi za upravljanje relacijskom bazom

Relacijski model #2

- najpopularniji model podataka za DBMS
- □ slogovi se identificiraju pomoću jedinstvenog ključa
- primarni ključ

Relacijski DBMS

Building I.D.	Property	Owner	Year	Туре
589	44 110	-		
610	44 50			
955	44 99		-	

Property I.D.	Owner	AREA	ADDRESS
44 99			
44 50			
44 110	Nils Nilsen	6,51	9999 Toppen
	44 99 44 50	44 99 44 50	44 99 44 50

Primjer relacija

Relacije

- relacijska shema je skup naziva atributa i domene (tip podatka - data type) za svako ime atributa
- shema baze podataka je skup relacijskih shema
- u svakoj relaciji:
 - svaki slog sadrži onoliko vrijednosti koliko je atributa u relacijskoj shemi
 - svako pojedinom podatku je dodijeljen tip iz domene za odgovarajući atribut
 - stupanj složenosti sloga nije važan
 - svi slogovi u relaciji se međusobno razlikuju
- u većini relacijskih sustava podaci su jednoznačni
 - relacija koja sadrži samo jednoznačne podatke je prve normalne forme (1NF)
- stupani relacije odgovara broju stupaca
- kardinalnost relacije odgovara broju slogova

Relacijske baze podataka i prostorni podaci

- nekoliko značajki sprječava neprilagođenu bazu podataka da se može koristiti za skladištenje prostornih podataka
 - struktura prostornih podataka prirodno se ne može smjestiti u tablice
 - performanse su smanjene zbog potrebe izvođenja većeg broja operacije spajanja (join) kod rada s prostornim podacima
 - indeksi su ne-prostorni u konvencionalnim relacijskim bazama
 - pohranjivanje prostornih podataka kao BLOB (Binary Large Objects)
- extensible RDBMS je moguće rješenje
 - korisnički definirani tipovi podataka (ADT Abstract Data Types)
 - korisnički definirane operacije
 - korisnički definirano indeksiranje i metode
 - aktivne funkcije baze podataka (npr., trigeri/okidači)
 - ISO 19107:Abstract Specifications: Feature Geometry
 - samo 2D; 3D još nije podržan
 - pohranjuje se samo geometrija i informacija o topologiji primitiva nije realizirana topološka struktura podataka

Evolucija arhitekture GIS baza

GIS front-end
spatial middleware
DBMS

Entiteti

- model podataka je formalna definicija podataka koji su potrebni u GIS-u
- najčešće se koristi E-R dijagram (Entity-Relationship)
- entiteti se koriste za reprezentaciju objekata, a atributi su termin koji opisuju entitete karakteristikama ili mjerama
- slojevi, osnovne karte, teme, sl. se također koriste za opis entiteta i atributa

Identifikacija entiteta

Entities:

Parcel (owner_name, owner_address)

Street_segment (name, type, width)

Building (date_built, assessed_value)

Soil-type (soil_code, area)

Landuse_area (land_use, code, area)

Polygon (coordinates, topology)

Line_segment (coordinates, topology)

Footprint (coordinates)

Polygon (coordinates, topology)

Grid_cell (coordinates)

E-R modeliranje podataka

- osnovni koncept E-R modela sadrži
 - entitete
 - veze odnosno relacije između entiteta
 - atribute koji su dodijeljeni entitetima
- koriste se tri osnovna simbola
 - pravokutnik za entitete
 - romb za relacije
 - elipsa za atribute entiteti su značajni "real-world" objekti
- entiteti su organizirani u skupove entiteta
- relacijski odnosi se uspostavljaju između skupova entiteta
- engleski izrazi za opis relacija
 - belonging to
 - contains
 - set of
 - component of
 - parent-child
- relacijski odnosi između skupova
 - one-to-one (1:1)
 - one-to-many (1:m)
 - many-to-many (m:n)
 - other
- isa relacijski odnosi

E-R dijagram

- u postupku konstruiranja E-R dijagrama uklanjaju se sve nekonzistentnosti ili kontradikcije kod definicije entiteta, relacija i atributa
- dobro konstruiran, E-R dijagram se može direktno konvertirati
 u logički i fizički dizajn baze podataka
- specifičnosti primjene u GIS-u
 - standardne relacije
 - prostorne relacije koje se temelje na topologiji
 - prostorne relacije koje slijede iz proračuna koordinata

Jednostavni E-R Dijagram

E-R Dijagram

Relacijski odnosi

 relacijski model prikazuje relacijske odnose pomoću relacija

□ jezik za pretraživanje (SQL)

E E-R simbol za prostorni objekt

Proširenje simbola E E-R dijagrama za definiranje prostornih podataka i relacija

Primjer realizacije E E-R dij.

Object Role Modeling

- Object-role Modeling (ORM)je modeliranje na konceptualnoj razini temeljeno na činjenicama
- za razliku od ER dijagram i klasa u UML-u, modeliranje temeljeno na činjenicama ne sadrži atribute, nego se sve elementarne činjenice predstavljaju relacijskim odnosima

OODBMS

koncept

- klase značajki (feature classes) u kojoj svaka od značajki može imati nekoliko atributa
- aktivni podaci- značajke koje svoje funkcioniranje (metode) čuvaju u bazi, a ne u aplikacijskim programima
- nasljeđivanje između klase podataka (atributi) i njihova funkcioniranja (metode)
- složene značajke i složene klase značajki

OODBMS pristup

- kontrola integriteta
- kontrola verzije uključujući virtualni check-in i checkout dijelova repozitorija
- napredna topologija
- velike mogućnosti prikaza
- višestruki prikazi
- □ superiorne mogućnosti programiranja

Konceptualno modeliranje geoprostornih baza podataka

- CASE alati za izradu modela podataka
- UML kao alat za izradu modela podataka (prema OpenGeospatial specifikacijama)
- MS Visio 2003 + Perceptory CASE alat (piktogramski jezici)
- MS Visio 2007/2010

Dizajn baze podataka

- identifikacija, pregled i evaluacija svih mogućih podataka za primjenu u GIS-u
- ustanoviti izvor podataka za svaki entitet i pripadajući atribut
- postaviti logički/fizički dizajn baze
- definirati procedure za konverziju podataka iz izvornog formata u bazu
- definiranje postupaka za rad i održavanje baze podataka

Fizički dizajn baze podataka

ovisi o odabranoj programskoj podršci

Translacija entiteta u bazu

svaka relacija u E-R dijagramu mora biti uključena u bazu ili pomoću geometrije, atributa ili na oba načina

Pitanja & Diskusija