CLAIMS

What is claimed is:

and;

1	1.	An adaptive differential pulse code modulation system comprising:
2		an encoder including:
3		a subtractor configured for deriving a difference signal E_{j} , the difference
4		signal E_j being the difference between an input signal Y_j and a predicted
5		signal S_j , j representing a sample period;
6		a quantizer configured for quantizing the difference signal $\mathbf{E}_{\!j}$ to obtain a
7		numerical representation $N_{j}% = 10^{-2}\mathrm{M}_{\odot}$ for transmission to an encoder inverse quantizer
8		for deriving a regenerated difference signal D_{j} , and to a decoder inverse
9		quantizer coupled to the quantizer through a network for deriving the
10		regenerated difference signal D _j ,
11		an encoder adder configured for deriving a reconstructed input signal X_{j} ,
12		the reconstructed input signal X_j being the sum of the regenerated difference
13		signal D_j and the predicted signal S_j ;
14		an encoder whitening filter Fe configured for receiving the reconstructed
15		input signal X_j and for generating a filtered reconstructed signal X_j^t , the
		$X_{i}^{f} = X_{i} - a_{1}^{f} X_{i-1} - a_{2}^{f} X_{i-2} - \dots a_{n}^{f} X_{i-n}$
16		filtered reconstructed signal X_j^f being generated according to the equation:
17		X_{j-n} being a value of reconstructed input signal X_j at sample period $j-n$,

n being a number of filter tap coefficients af_n corresponding to the
 whitening filter F_e;
 an encoder predictor P_{ep} configured for receiving the reconstructe

an encoder predictor P_{ep} configured for receiving the reconstructed input signal X_j and for generating a predicted signal S_{jp} , the predicted signal S_{jp} being at least constituent to predicted signal S_j and being generated according to the equation:

$$S_{jp} = a_1^j S_{j-1} + a_2^j S_{j-2} \dots a_{jnp}^j S_{j-np}$$

 S_{j-np} being a value of the predicted signal S_j at sample period $j-n_p$, and n_p being a number of predictor coefficients a_{np} corresponding to the predictor P_{ep} ; and

an encoder feedback loop configured for applying the predicted signal S_j to the adder;

transmission means configured for transmitting the numerical representation N_j from the encoder to a decoder; and the decoder including:

the decoder inverse quantizer coupled to the quantizer through a network and configured for receiving the numerical representation N_j and for deriving the regenerated difference signal D_j therefrom,

a decoder adder configured for deriving the reconstructed input signal X_j , the reconstructed input signal X_j being the sum of the regenerated difference signal D_i and the predicted signal S_j ;

a decoder whitening filter F_d configured for receiving the reconstructed input signal X_j and for generating the filtered reconstructed signal X_j^f , the filtered reconstructed signal X_j^f being generated according to the equation:

$$X^{f_i} = X_i - a^{f_1} X_{i-1} - a^{f_2} X_{i-2} - \dots a^{f_n} X_{i-n}$$

 X_{j-n} being a value of reconstructed signal X_j at sample period j-n, and n being the number of filter tap coefficients a^f_n corresponding to the whitening filter F_d ;

a decoder predictor P_{dp} configured for receiving the reconstructed input signal X_j and for generating a predicted signal S_{jp} , the predicted signal S_{jp} being at least constituent to predicted signal S_j and being generated according to the equation:

$$S_{jp} = a_1^{J} S_{j-1} + a_2^{j} S_{j-2} \dots a_{j}^{J} p_{j-np}$$

 S_{j-np} being a value of the predicted signal S_j at sample period $j-n_p$, and n_p being the number of predictor coefficients a_{np}^j corresponding to the predictor P_{dp} ; and

a decoder feedback loop configured for applying the predicted signal S_{j} to the decoder adder.

- 1 2. The system of claim 1, further comprising:
- 2 a second encoder predictor Pez configured for receiving the regenerated
- 3 difference signal D_j and for generating a predicted signal S_{jz};

- 4 a second encoder adder configured for deriving the predicted signal S_i at
- 5 the encoder, the predicted signal S_j being the sum of the predicted signal S_{jp} and
- 6 the predicted signal S_{jz};
- 7 a second decoder predictor P_{dz} configured for receiving the regenerated
- 8 difference signal D_j and for generating a predicted signal S_{jz}; and
- 9 a second decoder adder configured for deriving the predicted signal S_j at
- 10 the decoder, the predicted signal S_j being the sum of the predicted signal S_{jp} and
- . 11 the predicted signal S_{jz} .
 - 1
 - 1 3. The system of claim 1 wherein:
 - 2 n_p is 2;
 - 3 the predictor coefficient a_1^1 is updated according to the equation:
 - $a_1^{j+1} = a_1^{j}(1-\delta_1) + g_1 \cdot F_1(X_j^f, X_{j-1}^f, X_{j-2}^f)$
 - δ1 and β3 being proper positive constants, and
 - F_1 being a nonlinear function; and
 - 7 the predictor coefficient a_2^J is updated according to the equation:
 - 8 $a_2^{j+1} = a_2^{j}(1-\delta_2) + g_2 \cdot F_2(X_j^f, X_{j-1}^f, X_{j-2}^f, a_1^j);$
 - δ_2 and δ_2 being proper positive constants, and
 - F_2 being a nonlinear function.
 - 1
 - 1 4. The system of claim 1 wherein:

 $n ext{ is } 2;$

3 the filter tap coefficient a_1^f is updated at each sample period j according to

4 the generalized equation:

5
$$a_1^{f_{j+1}} = a_1^{f_j} (1 - \delta_1) + g_1 \cdot F_1(X_j^f, X_{j-1}^f, X_{j-2}^f)$$

 δ_1 and g_1 being proper positive constants, and

7 F₁ being a nonlinear function; and

8 the filter tap coefficients a_2^f is updated at each sample period j according to

9 the generalized equation:

10
$$a_2^{fj+1} = a_2^{fj}(1-\delta_2) + g_2 \cdot F_2(X_j^f, X_{j-1}^f, X_{j-2}^f, a_1^{fj})$$

 δ_2 and δ_2 being proper positive constants, and

 F_2 being a nonlinear function.

1 5. The system of claim 4 wherein:

2 the filter tap coefficient a_1^{fj} is updated according to the equation:

3
$$a_1^{f^{j+1}} = a_1^{f^j} \left(1 - \left(\frac{128}{32768} \right) \right) + 192 * \text{sgn} \left[X_j^f \right] \text{sgn} \left[X_{j-1}^f \right]; \text{ and}$$

4 the filter tap coefficient $a_2^{f'}$ is updated according to the equation:

$$5 a_2^{f^{j+1}} = a_2^{f^j} \left(1 - \left(\frac{256}{32768} \right) \right) - \left(\frac{1}{32} \right) a_1^{f^j} \operatorname{sgn} \left[X_j^f \right] \operatorname{sgn} \left[X_{j-1}^f \right] + 128 * \operatorname{sgn} \left[X_j^f \right] \operatorname{sgn} \left[X_{j-2}^f \right];$$

6 sgn[] being a sign function that returns a value of 1 for a nonnegative

7 argument and a value of -1 for a negative argument.

6. The system of claim 5 wherein at every other sample period *j*, 1 the filter tap coefficient a^{fj+1} ₂ is maintained in a range $-12288 \le a^{fj+1}$ ₂ \le 2 12288; and 3 the filter tap coefficient a^{fj+1} ₁ is maintained in a range $-(15360 - a^{fj+1}) \le$ 4 $a^{fj+1}_1 \le (15360 - a^{fj+1}_2);$ 5 whereby a^{fj+1}_1 is set equal to $(15360 - a^{fj+1}_2)$ when $a^{fj+1}_1 > 15360 - a^{fj+1}_2$; and 6 whereby a^{f_1+1} is set equal to $-(15360 - a^{f_1+1})$ when $a^{f_1+1} < -(15360 - a^{f_1+1})$. 7 1 7. The system of claim 5, further comprising: 1 a second encoder predictor Pez configured for receiving the regenerated 2 difference signal D_j and for generating a predicted signal S_{jz}; 3 a second encoder adder configured for deriving the predicted signal S_{j} at 4 the encoder, the predicted signal S₁ being the sum of the predicted signal S₁ and 5 6 the predicted signal S_{iz} ; a second decoder predictor P_{dz} configured for receiving the regenerated 7 difference signal D_i and for generating a predicted signal S_{jz}; and 8 a second decoder adder configured for deriving the predicted signal S_j at 9 the decoder, the predicted signal S_j being the sum of the predicted signal S_{jp} and 10 11 the predicted signal S_{jz}.

- 1 8. The system of claim 1 wherein at every other sample period j, the predictor
- 2 coefficient ainp corresponding to the predictors Pep and Pdp is maintained
- 3 unchanged.

1 9. The system of claim 8, such that if for even j:

$$a_1^{j+1} = a_1^{j}$$
, and

$$a_2^{j+1} = a_2^j,$$

4 then for odd j:

$$a_1^{j+1} = a_1^{j-1} \left(1 - \left(\frac{127.5}{32768} \right) \right) + 191.25 * sgn \left[X_{j-1}^f \right] sgn \left[X_{j-2}^f \right] + 192 * sgn \left[X_j^f \right] sgn \left[X_{j-1}^f \right], \text{ and }$$

$$a_{2}^{j+1} = a_{2}^{j-1} \left(1 - \left(\frac{510}{32768}\right)\right) - \left(\frac{1016}{32768}\right) lim\left[a_{1}^{j-1}\right] sgn\left[X_{j-1}^{f}\right] sgn\left[X_{j-2}^{f}\right] + 127*sgn\left[X_{j-1}^{f}\right] sgn\left[X_{j-3}^{f}\right] \\ - \left(\frac{1}{32}\right) lim\left[a_{1}^{j-1}\right] sgn\left[X_{j}^{f}\right] sgn\left[X_{j-1}^{f}\right] + 128*sgn\left[X_{j}^{f}\right] sgn\left[X_{j-2}^{f}\right],$$

- 7 sgn[] being a sign function that returns a value of 1 for a nonnegative
- 8 argument and a value of -1 for a negative argument, and

9
$$\lim \left[a_1^{j-1}\right] = a_1^{j-1} \text{ for } -8192 \le a_1^{j-1} \le 8191,$$

10
$$\lim \left[a_1^{j-1}\right] = -8192 \text{ for } a_1^{j-1} < -8191, \text{ and}$$

11
$$\lim \left[a_1^{j-1}\right] = 8192 \text{ for } a_1^{j-1} > 8191.$$

1

11

12

13

14

15

21

1	10.	An encoder for encoding digital audio signals, comprising:

- a subtractor configured for deriving a difference signal E_j, the difference signal E_j being the difference between an input signal Y_j and a predicted signal S_j, j representing a sample period;
- a quantizer configured for quantizing the difference signal E_j to obtain a

 numerical representation N_j for transmission to an encoder inverse quantizer

 for deriving a regenerated difference signal D_j, and to a decoder inverse

 quantizer coupled to the quantizer for deriving the regenerated difference

 signal D_j;
 - an adder configured for deriving a reconstructed input signal X_j , the reconstructed input signal X_j being the sum of the regenerated difference signal D_i and the predicted signal S_j ;
 - a whitening filter configured for receiving the reconstructed input signal X_j and for generating a filtered reconstructed signal X_j^t , the filtered reconstructed signal X_j^t being generated according to the equation:

16
$$X_{j}^{f} = X_{j} - a_{1}^{f} X_{j-1} - a_{2}^{f} X_{j-2} - \dots a_{n}^{f} X_{j-n}^{f}$$

- 17 X_{j-n}^f being a value of filtered reconstructed signal X_j^f at sample period j-n, 18 and
- n being a number of filter tap coefficients afn corresponding to the
 whitening filter;
 - a predictor configured for receiving the reconstructed input signal X_j and for generating a predicted signal S_{jp} , the predicted signal S_{jp} being at least

constituent to predicted signal S_j and being generated according to the equation:

25 $S_{jp} = aj_1 S_{j-1} - aj_2 S_{j-2} - \dots aj_{np} S_{j-np}$

S_{j-np} being a value of the predicted signal S_j at sample period j- n_p , and n_p being a number of predictor coefficients a_{np} corresponding to the predictor; and

a feedback loop configured for applying the predicted signal S_j to the adder.

1

29

30

- 1 11. The system of claim 10, the encoder further comprising:
- 2 a second predictor configured for receiving the regenerated difference
- 3 signal D_j and for generating a predicted signal S_{jz}, the predicted signal S_{jz} being
- 4 at least constituent to predicted signal S_j; and
- 5 a second adder configured for deriving the predicted signal S_j, the
- 6 predicted signal S_j being the sum of the predicted signal S_{jp} and the predicted
- 7 signal S_{jz}.

- 1 12. The system of claim 10 wherein:
- 2 $n ext{ is } 2;$
- 3 the filter tap coefficient a_1^f is updated at each sample period j according to
- 4 the generalized equation:

5
$$a_1^{f_{j+1}} = a_1^{f_j} (1 - \delta_1) + g_1 \cdot F_1(X_j^f, X_{j-1}^f, X_{j-2}^f)$$

- δ₁ and g₁ being proper positive constants, and
- 7 F₁ being a nonlinear function;
- 8 the filter tap coefficients a_2^f is updated at each sample period j according
- 9 to the generalized equation:

10
$$a_2^{fj+1} = a_2^{fj}(1-\delta_2) + g_2 \cdot F_2(X_j^f, X_{j-1}^f, X_{j-2}^f, a_1^{fj})$$

- δ_2 and δ_2 being proper positive constants, and
- F_2 being a nonlinear function.
- 1 13. The system of claim 12 wherein:
- 2 the filter tap coefficient a_1^f is updated according to the equation:

$$a_1^{f^{j+1}} = a_1^{f^j} \left(1 - \left(\frac{128}{32768} \right) \right) + 192 * \operatorname{sgn} \left[X_j^f \right] \operatorname{sgn} \left[X_{j-1}^f \right] \text{ and}$$

4 the filter tap coefficient a_2^f is updated according to the equation:

$$5 a_2^{f^{j+1}} = a_2^{f^j} \left(1 - \left(\frac{256}{32768} \right) \right) - \left(\frac{1}{32} \right) a_1^{f^j} \operatorname{sgn} \left[X_j^f \right] \operatorname{sgn} \left[X_{j-1}^f \right] + 128 * \operatorname{sgn} \left[X_j^f \right] \operatorname{sgn} \left[X_{j-2}^f \right],$$

- 6 sgn[] being a sign function that returns a value of 1 for a nonnegative
- 7 argument and a value of -1 for a negative argument.
- 1 14. The system of claim 13 wherein at every other sample period j,
- 2 the filter tap coefficient a^{fj+1}_2 is maintained in a range $-12288 \le a^{fj+1}_2 \le$
- 3 12288; and

the filter tap coefficient a^{fj+1}_1 is maintained in a range $-(15360 - a^{fj+1}_2) \le$ $a^{fj+1}_1 \le (15360 - a^{fj+1}_2);$ whereby a^{fj+1}_1 is set equal to $(15360 - a^{fj+1}_2)$ when $a^{fj+1}_1 > 15360 - a^{fj+1}_2$; and whereby a^{f_1+1} is set equal to $-(15360 - a^{f_1+1})$ when $a^{f_1+1} < -(15360 - a^{f_1+1})$. 15. The system of claim 10 wherein at every other sample period j, the predictor coefficient ainp corresponding to the predictor is maintained unchanged. 16. The system of claim 10, wherein the encoder is constituent to or coupled to a videoconferencing device or application.

1	17. A decoder for decoding digital audio signals encoded by a properly
2	associated encoder, comprising:
3	an inverse quantizer coupled to the encoder and configured for receiving
4	a numerical representation N_{j} and for deriving a regenerated difference signa
5	D_{j} therefrom, the numerical representation N_{j} being a quantized
6	representation of a difference signal E_{j} , the difference signal E_{j} being the
7	difference between an input signal Y_j and a predicted signal S_j , j representing
8	a sample period;
9	an adder configured for deriving a reconstructed input signal X_j , the
10	reconstructed input signal X_j being the sum of the regenerated difference
11	signal D_j and the predicted signal S_j ;
12	a whitening filter configured for receiving the reconstructed input signal
13	X_{j} and for generating a filtered reconstructed signal X_{j}^{t} , the filtered
14	reconstructed signal X^{f_j} being generated according to the equation:
15	$X^{f_j} = X_j - a^{f_1} X_{j-1} - a^{f_2} X_{j-2} - \dots a^{f_n} X^{f_{j-n}}$
16	X_{j-n}^f being a value of filtered reconstructed signal X_j^f at sample period $j-n$,
17	and
18	n being a number of filter tap coefficients a^{f}_{n} corresponding to the
19	whitening filter;
20	a predictor configured for receiving the reconstructed input signal \boldsymbol{X}_{j} and
21	for generating a predicted signal S _{jp} , the predicted signal S _{jp} being at least

22	constituent to predicted signal S_j and being generated according to the
23	equation:
24	$S_{jp} = a i_1 S_{j-1} - a i_2 S_{j-2} - \dots a i_{np} S_{j-np}$
25	S_{j-np} being a value of the predicted signal S_j at sample period $j-n_p$, and
26	n_p being a number of predictor coefficients ai_{np} corresponding to the
27	predictor; and
28	a feedback loop configured for applying the predicted signal $S_{\boldsymbol{j}}$ to the
29	adder.
1	
1	18. The system of claim 17, the decoder further comprising:
2	a second predictor configured for receiving the regenerated difference
3	signal D_j and for generating a predicted signal S_{jz} , the predicted signal S_{jz} being
4	at least constituent to predicted signal S_j ; and
5	a second adder configured for deriving the predicted signal S _j , the
6	predicted signal S_{j} being the sum of the predicted signal S_{jp} and the predicted
7	signal S _{jz} .
1	
1	19. The system of claim 17 wherein:
2	n is 2;

the generalized equation:

the filter tap coefficient $\mathfrak{a}_1^{\mathrm{f}}$ is updated at each sample period j according to

5
$$a_1^{f_{j+1}} = a_1^{f_j} (1 - \delta_1) + g_1 \cdot F_1(X_j^f, X_{j-1}^f, X_{j-2}^f)$$

- δ_1 and g_1 being proper positive constants, and
- 7 F₁ being a nonlinear function;
- 8 the filter tap coefficients a_2^f is updated at each sample period j according
- 9 to the generalized equation:

10
$$a_2^{\mathfrak{f}_{j+1}} = a_2^{\mathfrak{f}_{j}} (1 - \delta_2) + g_2 \cdot F_2(X_j^f, X_{j-1}^f, X_{j-2}^f, a_1^{\mathfrak{f}_{j}})$$

- 11 δ_2 and g_2 being proper positive constants, and;
- F_2 being a nonlinear function.
- 1 20. The system of claim 19 wherein:
- 2 the filter tap coefficient a_1^f is updated according to the equation:

$$a_1^{f^{j+1}} = a_1^{f^j} \left(1 - \left(\frac{128}{32768} \right) \right) + 192 * \operatorname{sgn} \left[X_j^f \right] \operatorname{sgn} \left[X_{j-1}^f \right] \text{ and}$$

4 the filter tap coefficient a_2^f is updated according to the equation:

$$5 a_2^{f^{j+1}} = a_2^{f^j} \left(1 - \left(\frac{256}{32768} \right) \right) - \left(\frac{1}{32} \right) a_1^{f^j} \operatorname{sgn} \left[X_j^f \right] \operatorname{sgn} \left[X_{j-1}^f \right] + 128 * \operatorname{sgn} \left[X_j^f \right] \operatorname{sgn} \left[X_{j-2}^f \right]$$

- 6 sgn[] being a sign function that returns a value of 1 for a nonnegative
- 7 argument and a value of -1 for a negative argument.
- 1 21. The system of claim 20 wherein at every other sample period j,
- 2 the filter tap coefficient a^{fj+1}_2 is maintained in a range $-12288 \le a^{fj+1}_2 \le$
- 3 12288; and

the filter tap coefficient a^{fj+1}_1 is maintained in a range $-(15360 - a^{fj+1}_2) \le$ $a^{fj+1}_1 \le (15360 - a^{fj+1}_2);$ whereby a^{fj+1}_1 is set equal to $(15360 - a^{fj+1}_2)$ when $a^{fj+1}_1 > 15360 - a^{fj+1}_2$; and whereby a^{f_1+1} is set equal to $-(15360 - a^{f_1+1})$ when $a^{f_1+1} < -(15360 - a^{f_1+1})$. 22. The system of claim 17 wherein at every other sample period *j*, the predictor coefficient ainp corresponding to the predictor is maintained unchanged. 23. The system of claim 17, wherein the decoder is constituent to or coupled to a videoconferencing device or application.

1	24. A method for encoding and decoding digital audio signals, comprising the
2	steps of:
3	deriving a difference signal E_{j} at an encoder, the difference signal E_{j} being
4	the difference between an input signal Y_j and a predicted signal S_j , j
5	representing a sample period;
6	quantizing the difference signal E_{j} to obtain a numerical representation N_{j}
7	for transmitting to an encoder inverse quantizer for deriving a regenerated
8	difference signal D _j , and to a decoder inverse quantizer coupled to the
9	quantizer through a network for deriving the regenerated difference signal
10	D_{j} ;
11	deriving a reconstructed input signal \boldsymbol{X}_{j} at a first adder, the reconstructed
12	input signal \boldsymbol{X}_j being the sum of the regenerated difference signal \boldsymbol{D}_j and the
13	predicted signal S _j ;
14	receiving the reconstructed input signal X_j at a whitening filter F_e ;
15	generating a filtered reconstructed signal $X^{f_{j}}$ by the whitening filter F_{e} , the
16	filtered reconstructed signal X_j^t being generated according to the equation:
17	$X_{j}^{f} = X_{j} - a^{f_{1}} X_{j-1} - a^{f_{2}} X_{j-2} - \dots a^{f_{n}} X_{j-n}^{f}$
18	X_{j-n}^f being a value of filtered reconstructed signal X_j^f at sample period $j-n$,
19	and
20	n being a number of filter tap coefficients a_n^f corresponding to the
21	whitening filter F _e ;
22	receiving the reconstructed input signal X_j at a predictor P_{ep} ;

representation N_j,

generating a predicted signal S_{jp} by the predictor P_{ep} , the predicted signal S_{jp} being at least constituent to predicted signal S_{j} and being generated according to the equation:

$$S_{ip} = ai_1 S_{i-1} - ai_2 S_{i-2} - ... ai_{np} S_{i-np}$$

 S_{j-np} being a value of the predicted signal S_j at sample period $j-n_p$, and n_p being a number of predictor coefficients a^{j}_{np} corresponding to the predictor P_{ep} ;

applying the predicted signal S_j to the first adder to provide feedback; receiving the numerical representation N_j at a decoder; deriving the regenerated difference signal D_j from the numerical

deriving the reconstructed input signal X_j at a second adder, the reconstructed input signal X_j being the sum of the regenerated difference signal D_i and the predicted signal S_i ;

receiving the reconstructed input signal X_j at a whitening filter F_d ; generating a filtered reconstructed signal X_j^t by the whitening filter F_d , the filtered reconstructed signal X_j^t being generated according to the equation:

$$X_{i_1}^f = X_{i_1} - a_{i_1}^f X_{i-1} - a_{i_2}^f X_{i-2} - \dots a_{i_n}^f X_{i-n}^f$$

 X_{j-n}^f being a value of filtered reconstructed signal X_j^f at sample period j-n; n being a number of filter tap coefficients a_n^f corresponding to the whitening filter F_d ;

receiving the reconstructed input signal X_j at a predictor P_{dp} ;

45	generating a predicted signal S_{jp} by the predictor P_{dp} , the predicted signal
46	S_{jp} being at least constituent to predicted signal S_{j} and being generated
47	according to the equation:
48	$S_{jp} = aj_1 S_{j-1} - aj_2 S_{j-2} - \dots aj_{np} S_{j-np}$
49	S_{j-np} being a value of the predicted signal S_j at sample period $j-n_p$, and
50	n_p being a number of predictor coefficients a_{np} corresponding to the
51	predictor P _{dp} ; and
52	applying the predicted signal S_j to the second adder to provide feedback.
1	
1	25. The method of claim 24, further comprising the steps of:
2	receiving the regenerated difference signal D_{j} at a predictor $P_{\text{\rm ez}}$ at the
3	encoder;
4	generating a predicted signal S_{jz} by the predictor P_{ez} ;
5	deriving the predicted signal S_j at the encoder, the predicted signal S_j
6	being the sum of the predicted signal S_{jp} and the predicted signal S_{jz} ;
7	receiving the regenerated difference signal D_{j} at a predictor $P_{\text{d}z}$ at the
8	decoder;
9	generating the predicted signal S_{jz} by the predictor P_{dz} ; and
10	deriving the predicted signal S_{j} at the decoder, the predicted signal S_{j}
11	being the sum of the predicted signal S_{jp} and the predicted signal S_{jz} .
1	

26. The method of claim 24 wherein n_p is 2, further comprising the steps of:

2 updating the predictor coefficient a_1^j according to the equation:

3
$$a_1^{j+1} = a_1^{j}(1-\delta_1) + g_1 \cdot F_1(X_j^f, X_{j-1}^f, X_{j-2}^f)$$

- $δ_1$ and g_1 being proper positive constants, and
- F_1 being a nonlinear function; and
- 6 updating the predictor coefficient a_2^j according to the equation:

7
$$a_2^{j+1} = a_2^{j} (1 - \delta_2) + g_2 \cdot F_2(X_j^f, X_{j-1}^f, X_{j-2}^f, a_1^j)$$

- δ2 and β2 being proper positive constants, and;
- F_2 being a nonlinear function.
- 1 27. The method of claim 24 wherein n is 2, further comprising the steps of:
- 2 updating the filter tap coefficient a₁ at each sample period j according to
- 3 the generalized equation:

$$a_1^{ij+1} = a_1^{ij}(1-\delta_1) + g_1 \cdot F_1(X_j^f, X_{j-1}^f, X_{j-2}^f)$$

- δ_1 and g_1 being proper positive constants, and
- 6 F₁ being a nonlinear function; and
- 7 updating the filter tap coefficients a_2^f at each sample period j according to
- 8 the generalized equation:

9
$$a_2^{ij+1} = a_2^{ij} (1 - \delta_2) + g_2 \cdot F_2(X_i^f, X_{i-1}^f, X_{i-2}^f, a_1^{ij})$$

- δ_2 and δ_2 being proper positive constants, and
- F_2 being a nonlinear function.

- 1 28. The method of claim 27 wherein:
- 2 the filter tap coefficient a_1^f is updated according to the equation:

3
$$a_1^{f^{f+1}} = a_1^{f^f} \left(1 - \left(\frac{128}{32768} \right) \right) + 192 * \text{sgn} \left[X_j^f \right] \text{sgn} \left[X_{j-1}^f \right], \text{ and}$$

4 the filter tap coefficient a_2^f is updated according to the equation:

$$5 a_2^{f^{j+1}} = a_2^{f^j} \left(1 - \left(\frac{256}{32768} \right) \right) - \left(\frac{1}{32} \right) a_1^{f^j} \operatorname{sgn} \left[X_j^f \right] \operatorname{sgn} \left[X_{j-1}^f \right] + 128 * \operatorname{sgn} \left[X_j^f \right] \operatorname{sgn} \left[X_{j-2}^f \right]$$

- 6 sgn[] being a sign function that returns a value of 1 for a nonnegative
- 7 argument and a value of -1 for a negative argument.
- 1 29. The method of claim 28 wherein at every other sample period j,
- 2 the filter tap coefficient a^{fj+1}_2 is maintained in a range $-12288 \le a^{fj+1}_2 \le$
- 3 12288; and

1

- 4 the filter tap coefficient $a^{f_1+1}_1$ is maintained in a range $-(15360 a^{f_1+1}_2) \le$
- 5 $a^{f_1+1} \le (15360 a^{f_1+1}2);$
- 6 whereby a^{fj+1}_1 is set equal to (15360 a^{fj+1}_2) when $a^{fj+1}_1 > 15360$ a^{fj+1}_2 ; and
- 7 whereby a^{f_1+1} is set equal to $-(15360 a^{f_1+1})$ when $a^{f_1+1} < -(15360 a^{f_1+1})$.
- 1 30. The method of claim 28, further comprising the steps of:
- 2 receiving the regenerated difference signal D_i at a predictor P_{ez} at the
- 3 encoder;
- 4 generating a predicted signal S_{iz} by the predictor P_{dz};

1

deriving the predicted signal S_i at the encoder, the predicted signal S_i 5 being the sum of the predicted signal Sip and the predicted signal Siz; 6 receiving the regenerated difference signal D_{j} at a predictor $P_{\text{d}z}$ at the 7 decoder; 8 generating the predicted signal Siz by the predictor Pdz; and 9 deriving the predicted signal S_i at the decoder, the predicted signal S_i 10 being the sum of the predicted signal S_{jp} and the predicted signal S_{jz} . 11 1 31. The method of claim 28 wherein n_p is 2, further comprising the steps of: 1 updating the predictor coefficient a_1^j according to the equation: 2 $a_1^{j+1} = a_1^{j}(1-\delta_1) + g_1 \cdot F_1(X_j^f, X_{j-1}^f, X_{j-2}^f)$ 3 δ_1 and g_1 being proper positive constants, and 4 5 F_1 being a nonlinear function; and updating the predictor coefficient a_2^j according to the equation: 6 $a_2^{j+1} = a_2^{j}(1-\delta_2) + g_2 \cdot F_2(X_1^f, X_{j-1}^f, X_{j-2}^f, a_1^j)$ 7 δ_2 and g_2 being proper positive constants, and; 8 9 F₂ being a nonlinear function.

- 1 32. A method for adapting coefficients in a two pole predictor in an adaptive
- 2 differential pulse code modulation system, comprising the steps of:
- 3 generating a filtered reconstructed signal X_j^f by a whitening filter F_e , the
- 4 filtered reconstructed signal X^f_j being generated according to the equation:

5
$$X_{j}^{f} = X_{j} - a_{1}^{f} X_{j-1} - a_{2}^{f} X_{j-2} - \dots a_{n}^{f} X_{j-n}^{f}$$

- 6 X_{j-n}^f being a value of filtered reconstructed signal X_j^f at sample period j-n,
- 7 and
- 8 n being a number of filter tap coefficients a^{f}_{n} corresponding to the
- 9 whitening filter F_e;
- updating a predictor coefficient a_1^j according to the equation:

11
$$a_1^{j+1} = a_1^{j}(1-\delta_1) + g_1 \cdot F_1(X_j^f, X_{j-1}^f, X_{j-2}^f)$$

- 12 δ_1 and g_1 being proper positive constants, and
- F_1 being a nonlinear function; and
- updating a predictor coefficient a_2^j according to the equation:

15
$$a_2^{j+1} = a_2^{j}(1-\delta_2) + g_2 \cdot F_2(X_i^f, X_{j-1}^f, X_{j-2}^f, a_1^j)$$

- δ_2 and δ_2 being proper positive constants, and
- F_2 being a nonlinear function.
- 1 33. The method of claim 32, further comprising the steps of:
- 2 updating the filter tap coefficient a_1^f at each sample period j according to
- 3 the generalized equation:

4
$$a_1^{f_{j+1}} = a_1^{f_j} (1 - \delta_1) + g_1 \cdot F_1(X_j^f, X_{j-1}^f, X_{j-2}^f)$$

- δ_1 and g_1 being proper positive constants, and
- 6 F₁ being a nonlinear function; and
- 7 updating the filter tap coefficients a_2^f at each sample period j according to
- 8 the generalized equation:

9
$$a_2^{fj+1} = a_2^{fj}(1-\delta_2) + g_2 \cdot F_2(X_j^f, X_{j-1}^f, X_{j-2}^f, a_1^{fj})$$

- δ_2 and δ_2 being proper positive constants, and
- 11 F_2 being a nonlinear function.
- 1 34. The method of claim 32 wherein:
- 2 the filter tap coefficient a_1^f is updated according to the equation:

3
$$a_1^{f^{j+1}} = a_1^{f^j} \left(1 - \left(\frac{128}{32768} \right) \right) + 192 * sgn[X_j^f] sgn[X_{j-1}^f]$$
 and

4 the filter tap coefficient a_2^f is updated according to the equation:

$$5 a_2^{f^{j+1}} = a_2^{f^j} \left(1 - \left(\frac{256}{32768} \right) \right) - \left(\frac{1}{32} \right) a_1^{f^j} \operatorname{sgn} \left[X_j^f \right] \operatorname{sgn} \left[X_{j-1}^f \right] + 128 * \operatorname{sgn} \left[X_j^f \right] \operatorname{sgn} \left[X_{j-2}^f \right]$$

- 6 sgn[] being a sign function that returns a value of 1 for a nonnegative
- 7 argument and a value of -1 for a negative argument.
- 1 35. The method of claim 34 wherein at every other sample period j,
- 2 the filter tap coefficient a^{fj+1}_2 is maintained in a range $-12288 \le a^{fj+1}_2 \le$
- 3 12288; and

```
the filter tap coefficient a^{fj+1}_1 is maintained in a range -(15360 - a^{fj+1}_2) \le
a^{fj+1}_1 \le (15360 - a^{fj+1}_2);
whereby a^{fj+1}_1 is set equal to (15360 - a^{fj+1}_2) when a^{fj+1}_1 > 15360 - a^{fj+1}_2; and whereby a^{fj+1}_1 is set equal to -(15360 - a^{fj+1}_2) when a^{fj+1}_1 < -(15360 - a^{fj+1}_2).
```

- 1 36. A machine readable medium embodying instructions executable by a
- 2 machine to perform a method for adapting coefficients in a two pole predictor in
- 3 an adaptive differential pulse code modulation system, the method steps
- 4 comprising:
- 5 generating a filtered reconstructed signal X_j^f by a whitening filter, the
- 6 filtered reconstructed signal X^f_j being generated according to the equation:

7
$$X_{j}^{f} = X_{j} - a_{1}^{f} X_{j-1} - a_{2}^{f} X_{j-2} - \dots a_{n}^{f} X_{j-n}^{f}$$

- 8 X_{j-n}^f being a value of filtered reconstructed signal X_j^f at sample period j-n,
- 9 and
- 10 n being a number of filter tap coefficients a_n^f corresponding to the
- 11 whitening filter;
- updating a predictor coefficient a_1^j according to the equation:

13
$$a_1^{j+1} = a_1^{j}(1-\delta_1) + g_1 \cdot F_1(X_j^f, X_{j-1}^f, X_{j-2}^f)$$

- 14 δ_1 and g_1 being proper positive constants, and
- F_1 being a nonlinear function; and
- updating a predictor coefficient a^j according to the equation:

$$a_2^{j+1} = a_2^{j}(1-\delta_2) + g_2 \cdot F_2(X_j^f, X_{j-1}^f, X_{j-2}^f, a_1^j)$$

- δ_2 and δ_2 being proper positive constants, and
- F₂ being a nonlinear function.

1

37. A digital circuit embodying instructions to perform a method for adapting 1 2 coefficients in a two pole predictor in an adaptive differential pulse code 3 modulation system, the method steps comprising: generating a filtered reconstructed signal $X^{f_{j}}$ by a whitening filter, the 4 filtered reconstructed signal X_i^f being generated according to the equation: 5 $X_{i}^{f} = X_{i} - a_{1}^{f} X_{i-1} - a_{2}^{f} X_{i-2} - \dots a_{n}^{f} X_{i-n}^{f}$ 6 X_{j-n}^f being a value of filtered reconstructed signal X_j^f at sample period j-n, 7 8 and 9 n being a number of filter tap coefficients a^{f}_{n} corresponding to the 10 whitening filter; updating a predictor coefficient a according to the equation: 11 $a_1^{j+1} = a_1^j (1 - \delta_1) + g_1 \cdot F_1(X_i^f, X_{i-1}^f, X_{i-2}^f)$ 12 13 δ_1 and g_1 being proper positive constants, and 14 F₁ being a nonlinear function; and updating a predictor coefficient a_2^j according to the equation: 15 $a_2^{j+1} = a_2^{j}(1-\delta_2) + g_2 \cdot F_2(X_i^f, X_{i-1}^f, X_{i-2}^f, a_1^j)$ 16 17 δ_2 and g_2 being proper positive constants, and F₂ being a nonlinear function. 18

1	38. An adaptive differential pulse code modulation system comprising:
2	at a first instance:
3	means for deriving a difference signal E_{j} , the difference signal E_{j} being the
4	difference between an input signal Y_j and a predicted signal S_j , j representing a
5	sample period;
6	means for quantizing the difference signal E_{j} to obtain a numerical
7	representation N _j ;
8	means for deriving a regenerated difference signal D _j based on the
9	numerical representation N _j ,
10	means for transmitting the numerical representation N_{j} to an inverse
11	quantizing means coupled to the quantizing means through a network;
12	means for deriving a reconstructed input signal X _j , the reconstructed inpu
13	signal X_j being the sum of the regenerated difference signal D_j and the
14	predicted signal S_j ;
15	means for generating a filtered reconstructed signal X_{j}^{f} , the filtered
16	reconstructed signal X_j^t being generated according to the equation:
17	$X^{f_j} = X_j - a^{f_1} X_{j-1} - a^{f_2} X_{j-2} - \dots a^{f_n} X^{f_{j-n}}$
18	$X^{f_{j-n}}$ being a value of filtered reconstructed signal $X^{f_{j}}$ at sample period j - n ,
19	and
20	n being a number of coefficients a^{f}_{n} corresponding to the means for
21	generating a filtered reconstructed signal:

means for generating a predicted signal S_{jp} , the predicted signal S_{jp} being at least constituent to predicted signal S_{j} and being generated according to the equation:

$$S_{jp} = aj_1 S_{j-1} - aj_2 S_{j-2} - \dots aj_{np} S_{j-np}$$

 S_{j-np} being a value of the predicted signal S_j at sample period $j-n_p$, and n_p being a number of predictor coefficients a_{np} corresponding to the means for generating a predicted signal; and

feedback means for applying the predicted signal S_j to the means for deriving a reconstructed input signal X_j ;

at a second instance:

the inverse quantizing means for deriving the regenerated difference signal D_j from the numerical representation N_j ;

second means for deriving a reconstructed input signal X_j , the reconstructed input signal X_j being the sum of the regenerated difference signal D_j and the predicted signal S_j ;

second means for generating a filtered reconstructed signal X_j^t , the filtered reconstructed signal X_j^t being generated according to the equation:

$$X_{i}^{f} = X_{i} - a_{1}^{f} X_{i-1} - a_{2}^{f} X_{i-2} - \dots a_{n}^{f} X_{i-n}^{f}$$

 X_{j-n}^f being a value of filtered reconstructed signal X_j^f at sample period j-n, and n being a number of coefficients a_n^f corresponding to the second means

for generating a filtered reconstructed signal;

44 second means for generating a predicted signal S_{jp}, the predicted signal S_{jp} being at least constituent to predicted signal S_j and being generated according 45 to the equation: 46 $S_{ip} = aj_1 S_{i-1} - aj_2 S_{i-2} - ... aj_{np} S_{i-np}$ 47 48 S_{j-np} being a value of the predicted signal S_j at sample period $j-n_p$, and 49 n_p being a number of coefficients a_{np} corresponding to the means for 50 generating a predicted signal; and feedback means for applying the predicted signal S_j to the means for 51 52 deriving a reconstructed input signal X_i.