



8 pin 2x2 mm DFN Package

### General Description

The TQL9093 is a flat-gain, high-linearity, ultra-low noise amplifier in a small 2 x 2 mm surface-mount package. The LNA provides a gain flatness of 2 dB (peak-to-peak) over a wide bandwidth from 1.5 to 4 GHz. At 2.6 GHz, the amplifier typically provides 20 dB gain, +41.5 dBm OIP3 at a 120 mA bias setting, and 0.6 dB noise figure. The LNA can be biased from a single positive supply ranging from 3.3 to 5 volts. The device is housed in a green/RoHS-compliant industry-standard 2x2 mm package.

The TQL9093 is internally matched using a high performance E-pHEMT process and only requires five external components for operation from a single positive supply: an external RF choke and blocking/bypass capacitors and a bias resistor going to pin 1. This LNA integrates a shut-down biasing capability to allow for operation in TDD applications.

The TQL9093 is optimized for linear performance across the 1.5 to 4 GHz frequency band but can operate down to 600 MHz.

### **Functional Block Diagram**



#### **Product Features**

- 0.6-4.2 GHz Operational Bandwidth
- Ultra low noise figure, 0.67 dB NF @ 2.6 GHz
- >19 dB gain across 1.5 to 4 GHz
- Flat 2 dB gain variation across 1.5 to 4 GHz
- Bias adjustable for linearity optimization
- 41.5 dBm OIP3 at 120mA Ipp
- Shut-down mode pin with 1.8V TTL logic
- · Unconditionally stable
- Integrated shutdown control pin
- · Maintains OFF state with high Pin drive
- +3V to +5V supply; does not require -Vgg

## **Applications**

- Repeaters / DAS
- Mobile Infrastructure
- LTE / WCDMA / CDMA / GSM
- General Purpose Wireless
- TDD or FDD systems

### **Ordering Information**

| Part No.    | Description                    |
|-------------|--------------------------------|
| TQL9093     | Ultra low noise, Flat Gain LNA |
| TQL9093-PCB | 0.6-4.2 GHz Evaluation Board   |

Standard T/R size = 2500 pieces on a 7" reel



## **Absolute Maximum Ratings**

| Parameter                         | Rating       |
|-----------------------------------|--------------|
| Storage Temperature               | −65 to 150°C |
| Supply Voltage (V <sub>DD</sub> ) | +7 V         |
| RF Input Power, CW, 50Ω, T=25°C   | +33 dBm      |
| RF Input Power, WCDMA, 10dB PAR   | +27 dBm      |
| RF Input Power, CW, OFF State     | +33 dBm      |

Operation of this device outside the parameter ranges given above may cause permanent damage.

### **Recommended Operating Conditions**

| Parameter                          | Min | Тур | Max  | Units |
|------------------------------------|-----|-----|------|-------|
| Supply Voltage (VDD)               | 3.3 | 5.0 | 5.25 | V     |
| TCASE                              | -40 |     | +105 | °C    |
| Tj for >10 <sup>6</sup> hours MTTF |     |     | +190 | °C    |

Electrical specifications are measured at specified test conditions. Specifications are not guaranteed over all recommended operating conditions.

## **Electrical Specifications**

Test conditions unless otherwise noted:  $V_{DD} = +5V$ , Temp = +25°C, 50  $\Omega$  system.

| Parameter                             | Conditions                 | Min  | Тур   | Max      | Units |
|---------------------------------------|----------------------------|------|-------|----------|-------|
| Operational Frequency Range           |                            | 600  |       | 4200     | MHz   |
| Test Frequency                        |                            |      | 2600  |          | MHz   |
| Gain                                  |                            | 18.5 | 20    | 21.7     | dB    |
| Gain Flatness                         | 1500-4000MHz               |      | 2.0   |          | dB    |
| Input Return Loss                     |                            |      | 14    |          | dB    |
| Output Return Loss                    |                            |      | 14.5  |          | dB    |
| Noise Figure <sup>(1)</sup>           |                            |      | 0.67  | 1.0      | dB    |
| Output P1dB                           |                            |      | +21.7 |          | dBm   |
| Output IP3                            | Pout=+5 dBm/tone, Δf=1 MHz | +35  | +41.5 |          | dBm   |
| Power Shutdown Control (pin 6)        | On state                   | 0    |       | 0.63     | V     |
| Power Shataown Control (pin 6)        | Off state (Power down)     | 1.17 |       | $V_{DD}$ | V     |
| Current I                             | On state                   | 80   | 120   | 160      | mA    |
| Current, I <sub>DD</sub>              | Off state (Power down)     |      | 4     | 8        | mA    |
| Shutdown pin current, I <sub>SD</sub> | V <sub>PD</sub> ≥ 1.17 V   |      | 140   |          | μΑ    |
| Switching Speed                       | LNA ON to OFF              |      | 315   |          | ns    |
| Switching Speed                       | LNA OFF to ON              |      | 290   |          | ns    |
| Thermal Resistance, θ <sub>jc</sub>   | channel to case            |      | 44    |          | °C/W  |

Note: 1) Noise figure data has input trace loss de-embedded.



### **S-Parameters**

Test Conditions: V<sub>DD</sub>=+5 V, I<sub>DD</sub>=120 mA (typ.), T=+25°C, unmatched 50 ohm system, calibrated to device leads

| Freq (GHz) |        | S11 (ang) |       |         |        |         | S22 (dB) | S22 (ang) |
|------------|--------|-----------|-------|---------|--------|---------|----------|-----------|
| 0.6        | -8.86  | -139.90   | 22.74 | 78.61   | -31.50 | 39.70   | -13.38   | 64.84     |
| 0.7        | -10.03 | -150.92   | 21.91 | 63.87   | -30.56 | 31.41   | -15.86   | 54.42     |
| 8.0        | -11.16 | -160.19   | 21.18 | 50.66   | -29.82 | 23.53   | -18.47   | 45.38     |
| 0.9        | -12.30 | -167.88   | 20.55 | 38.60   | -29.22 | 16.00   | -21.30   | 37.43     |
| 1          | -13.47 | -174.08   | 20.00 | 27.41   | -28.74 | 8.73    | -24.56   | 30.37     |
| 1.1        | -14.68 | -178.79   | 19.54 | 16.90   | -28.34 | 1.70    | -28.65   | 23.93     |
| 1.2        | -15.95 | 178.14    | 19.16 | 6.93    | -28.02 | -5.13   | -34.78   | 17.33     |
| 1.3        | -17.27 | 176.97    | 18.84 | -2.59   | -27.77 | -11.79  | -53.16   | -8.30     |
| 1.4        | -18.61 | 178.14    | 18.59 | -11.76  | -27.57 | -18.31  | -38.00   | -164.49   |
| 1.5        | -19.88 | -177.81   | 18.38 | -20.63  | -27.41 | -24.71  | -31.62   | -170.37   |
| 1.6        | -20.90 | -170.59   | 18.23 | -29.26  | -27.30 | -31.03  | -28.04   | -174.65   |
| 1.7        | -21.40 | -160.85   | 18.12 | -37.70  | -27.22 | -37.28  | -25.46   | -178.62   |
| 1.8        | -21.22 | -150.56   | 18.05 | -45.99  | -27.17 | -43.48  | -23.37   | 177.38    |
| 1.9        | -20.46 | -141.99   | 18.01 | -54.16  | -27.16 | -49.67  | -21.56   | 173.19    |
| 2          | -19.37 | -136.18   | 18.01 | -62.25  | -27.18 | -55.86  | -19.93   | 168.70    |
| 2.1        | -18.17 | -133.02   | 18.04 | -70.28  | -27.22 | -62.08  | -18.42   | 163.85    |
| 2.2        | -16.98 | -131.95   | 18.09 | -78.29  | -27.30 | -68.34  | -17.00   | 158.61    |
| 2.3        | -15.86 | -132.43   | 18.16 | -86.29  | -27.42 | -74.67  | -15.66   | 152.97    |
| 2.4        | -14.82 | -134.07   | 18.26 | -94.33  | -27.56 | -81.10  | -14.38   | 146.93    |
| 2.5        | -13.85 | -136.59   | 18.37 | -102.41 | -27.75 | -87.65  | -13.16   | 140.50    |
| 2.6        | -12.96 | -139.82   | 18.50 | -110.56 | -27.98 | -94.34  | -11.99   | 133.68    |
| 2.7        | -12.14 | -143.64   | 18.64 | -118.81 | -28.27 | -101.20 | -10.88   | 126.50    |
| 2.8        | -11.39 | -147.97   | 18.78 | -127.18 | -28.61 | -108.26 | -9.81    | 118.95    |
| 2.9        | -10.69 | -152.76   | 18.92 | -135.68 | -29.02 | -115.55 | -8.80    | 111.05    |
| 3          | -10.06 | -157.97   | 19.06 | -144.32 | -29.52 | -123.10 | -7.84    | 102.80    |
| 3.1        | -9.48  | -163.59   | 19.20 | -153.12 | -30.12 | -130.93 | -6.93    | 94.23     |
| 3.2        | -8.96  | -169.58   | 19.31 | -162.07 | -30.84 | -139.11 | -6.08    | 85.35     |
| 3.3        | -8.50  | -175.91   | 19.41 | -171.17 | -31.72 | -147.67 | -5.29    | 76.17     |
| 3.4        | -8.11  | 177.42    | 19.47 | 179.59  | -32.77 | -156.70 | -4.57    | 66.73     |
| 3.5        | -7.77  | 170.47    | 19.51 | 170.24  | -34.06 | -166.35 | -3.91    | 57.07     |
| 3.6        | -7.50  | 163.28    | 19.50 | 160.81  | -35.66 | -176.88 | -3.32    | 47.23     |
| 3.7        | -7.29  | 155.88    | 19.46 | 151.35  | -37.66 | 171.13  | -2.81    | 37.25     |
| 3.8        | -7.14  | 148.34    | 19.37 | 141.90  | -40.23 | 156.33  | -2.37    | 27.20     |
| 3.9        | -7.05  | 140.71    | 19.23 | 132.51  | -43.53 | 135.06  | -1.99    | 17.13     |
| 4          | -7.02  | 133.03    | 19.05 | 123.24  | -46.99 | 97.87   | -1.69    | 7.10      |
| 4.1        | -7.03  | 125.37    | 18.83 | 114.11  | -47.01 | 45.50   | -1.45    | -2.86     |
| 4.2        | -7.08  | 117.75    | 18.58 | 105.17  | -43.87 | 10.27   | -1.27    | -12.69    |



## **Noise Parameters**

Test conditions unless otherwise noted: V<sub>DD</sub>=+5 V, I<sub>DD</sub>=120 mA (typ.), Temp=+25°C, 50 Ohm system

| Eron (CU=) |                        |                |                | Dn (O)         |
|------------|------------------------|----------------|----------------|----------------|
| Freq (GHz) | NF <sub>min</sub> (dB) | GammaOpt (mag) | GammaOpt (deg) | <b>Rn (</b> Ω) |
| 1.5        | 0.50                   | 0.07           | 4.37           | 3.50           |
| 1.6        | 0.47                   | 0.06           | 19.31          | 3.18           |
| 1.7        | 0.46                   | 0.07           | 37.40          | 3.22           |
| 1.8        | 0.48                   | 0.05           | 32.41          | 3.47           |
| 1.9        | 0.47                   | 0.06           | 66.76          | 3.15           |
| 2          | 0.47                   | 0.06           | 74.72          | 3.28           |
| 2.1        | 0.50                   | 0.06           | 68.71          | 3.46           |
| 2.2        | 0.53                   | 0.06           | 96.07          | 3.20           |
| 2.3        | 0.55                   | 0.07           | 122.98         | 3.12           |
| 2.4        | 0.59                   | 0.26           | 40.10          | 5.04           |
| 2.5        | 0.58                   | 0.09           | 152.96         | 3.11           |
| 2.6        | 0.59                   | 0.09           | 172.99         | 2.90           |
| 2.7        | 0.61                   | 0.10           | 170.84         | 3.08           |
| 2.8        | 0.62                   | 0.14           | -179.62        | 2.80           |
| 2.9        | 0.63                   | 0.16           | -162.35        | 2.80           |
| 3          | 0.65                   | 0.17           | -160.56        | 3.00           |
| 3.1        | 0.67                   | 0.20           | -168.07        | 2.57           |
| 3.2        | 0.68                   | 0.23           | -159.49        | 2.62           |
| 3.3        | 0.68                   | 0.25           | -145.84        | 2.83           |
| 3.4        | 0.71                   | 0.27           | -144.78        | 2.89           |
| 3.5        | 0.73                   | 0.31           | -134.10        | 3.67           |
| 3.6        | 0.73                   | 0.28           | -134.75        | 3.37           |
| 3.7        | 0.73                   | 0.31           | -122.22        | 4.03           |
| 3.8        | 0.76                   | 0.40           | -106.08        | 7.09           |
| 3.9        | 0.77                   | 0.45           | -123.38        | 3.37           |
| 4          | 0.79                   | 0.42           | -125.62        | 3.60           |

### **TQL9093-PCB Evaluation Board**





#### Notes:

- 1. See Evaluation Board PCB Information section for material and stack-up.
- 2. R3 (0 Ω jumper) is not shown on the schematic and may be replaced with copper trace in the target application layout.
- 3. All components are of 0402 size unless stated on the schematic.
- 4. For TDD Applications: R1 = 20K & R2 =  $0\Omega$
- 5. For FDD Applications: R1 = 20K 'OR' Pin 6 tied to ground. R2 = DNP/Omitted
- 6. A through line is included on the evaluation board to de-embed the board losses.
- 7. R4 sets the current draw. Can be changed for the desired bias point. See table below.

### Bill of Material - TQL9093-PCB

| Reference Des. | Value   | Description                        | Manuf.    | Part Number   |
|----------------|---------|------------------------------------|-----------|---------------|
| N/A            | N/A     | Printed Circuit Board              | Qorvo     |               |
| U1             | n/a     | Ultra Low Noise, Flat Gain LNA     | Qorvo     | TQL9093       |
| R4             | 3K      | Resistor, Chip, 0402, 5%, 1/16W    | various   |               |
| R1             | 20K     | Resistor, chip, 0402, 5%, 1/16W    | various   |               |
| R2, 3          | 0 Ω     | Resistor, Chip, 0402, 5%, 1/16W    | various   |               |
| L1             | 18 nH   | Inductor, coil, 0603, 5%           | Coilcraft | 0603CS-18NXJL |
| C4             | 1.0 uF  | Cap., Chip, 0402, 10%, 10V, X5R    | various   |               |
| C1, C2, C5, C6 | 100 pF  | Cap., Chip, 0402, 5%, 50V, NPO/COG | various   |               |
| C3             | 1000 pF | Cap, chip, 0402                    | various   |               |

## R4 Resistor Values for Various I<sub>DD</sub> settings

| I <sub>DD</sub> (mA) | 80   | 90   | 100  | 110  | 120  | 130  | 140  | 150  |
|----------------------|------|------|------|------|------|------|------|------|
| R4                   | 9.2K | 6.5K | 5.1K | 3.9K | 3.1K | 2.6K | 2.2K | 1.8K |

## **Typical Performance – TQL9093-PCB**

Test conditions unless otherwise noted:  $V_{DD} = +5 \text{ V}$ ,  $I_{DD} = 120 \text{ mA}$  (typ.), Temp = +25°C

| Parameter          | Conditions                    | Typical Values |       |       |       |       | Units |     |
|--------------------|-------------------------------|----------------|-------|-------|-------|-------|-------|-----|
| Frequency          |                               | 600            | 900   | 1950  | 2600  | 3500  | 4200  | MHz |
| Gain               |                               | 23.4           | 21.6  | 19.4  | 19.9  | 20.9  | 19.6  | dB  |
| Input Return Loss  |                               | 8.1            | 10.8  | 16.5  | 14    | 11.5  | 9.7   | dB  |
| Output Return Loss |                               | 13.4           | 20    | 23    | 14.5  | 7.6   | 6.7   | dB  |
| Output P1dB        |                               | +16.1          | +17.6 | +22.2 | +21.7 | +22   | +21.8 | dBm |
| OIP3               | Pout=+5 dBm/tone, ∆f=1<br>MHz | +37.2(2)       | +42.8 | +41.5 | +41.5 | +41.6 | +39.7 | dBm |
| Noise figure (1)   |                               | 0.52           | 0.54  | 0.54  | 0.67  | 0.67  | 0.91  | dB  |

Note: 1) Noise figure data has input trace loss de-embedded.

2) Pout=+3 dBm/tone, Δf=1 MHz

#### Performance Plots - TQL9093-PCB

Test conditions unless otherwise noted:  $V_{DD} = +5 \text{ V}$ ,  $I_{DD} = 120 \text{mA}$ , Temp =  $+25^{\circ}\text{C}$ . Noise figure data has input trace loss deembedded.





### Performance Plots - TQL9093-PCB

Test conditions unless otherwise noted: V<sub>DD</sub> = +5 V, Temp = +25°C. Noise figure data has input trace loss de-embedded.





## **Pin Configuration and Description**



| Pin No.            | Label           | Description                                                                                                                                                            |
|--------------------|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1                  | Vbias           | Sets the Icq bias point for the device.                                                                                                                                |
| 2                  | RF In           | RF Input pin. A DC Block is required.                                                                                                                                  |
| 6                  | Shut Down       | A high voltage(>1.17V) turns off the device. If the pin is pulled to ground or driven with a voltage less than 0.63V, then the device will operate under LNA ON state. |
| 7                  | RF Out / DCBias | RF Output pin. DC bias will also need to be injected through a RF bias choke/inductor for operation.                                                                   |
| 3, 4, 5, 8         | NC              | No electrical connection. Provide grounded land pads for PCB mounting integrity.                                                                                       |
| Backside<br>Paddle | RF/DC GND       | RF/DC ground. Use recommended via pattern to minimize inductance and thermal resistance; see PCB Mounting Pattern for suggested footprint.                             |

#### **Evaluation Board PCB Information**

#### Qorvo PCB 1128449 Material and Stack-up



50 ohm line dimensions: width = 0.020", spacing = 0.032"





#### **Mechanical Information**

### **Package Marking and Dimensions**



#### Notes:

- 1. All dimensions are in millimeters. Angles are in degrees.
- Except where noted, this part outline conforms to JEDEC standard MO-220, Issue E (Variation VCCD) for thermally enhanced plastic very thin fine pitch quad flat no lead package (QFN).
- 3. Dimension and tolerance formats conform to ASME Y14.4M-1994.
- 4. The terminal #1 identifier and terminal numbering conform to JESD 95-1 SPP-012.

## **PCB Mounting Pattern**



#### Notes:

- 1. All dimensions are in millimeters. Angles are in degrees.
- 2. Use 1 oz. copper minimum for top and bottom layer metal.
- 3. Vias are required under the backside paddle of this device for proper RF/DC grounding and thermal dissipation. We recommend a 0.35mm (#80/.0135") diameter bit for drilling via holes and a final plated thru diameter of 0.25 mm (0.10").
- 4. Ensure good package backside paddle solder attach for reliable operation and best electrical performance.



## **Tape and Reel Information – Carrier and Cover Tape Dimensions**



| Feature             | Measure                                  | Symbol | Size (in) | Size (mm) |
|---------------------|------------------------------------------|--------|-----------|-----------|
|                     | Length                                   | A0     | 0.091     | 2.30      |
| Covity              | Width                                    | В0     | 0.091     | 2.30      |
| Cavity              | Depth                                    | K0     | 0.039     | 1.30      |
|                     | Pitch                                    | P1     | 0.157     | 4.00      |
| Cantarlina Diataraa | Cavity to Perforation - Length Direction | P2     | 0.079     | 2.00      |
| Centerline Distance | Cavity to Perforation - Width Direction  | F      | 0.138     | 3.50      |
| Cover Tape          | Width                                    | С      | 0.213     | 5.40      |
| Carrier Tape        | Width                                    | W      | 0.315     | 8.00      |



## **Tape and Reel Information – Reel Dimensions**

Standard T/R size = 2,500 pieces on a 7" reel.



| Feature | Measure              | Symbol | Size (in) | Size (mm) |
|---------|----------------------|--------|-----------|-----------|
|         | Diameter             | Α      | 6.969     | 177.00    |
| Flange  | Thickness            | W2     | 0.559     | 14.20     |
|         | Space Between Flange | W1     | 0.346     | 8.80      |
|         | Outer Diameter       | N      | 2.283     | 58.00     |
| Llub    | Arbor Hole Diameter  | С      | 0.512     | 13.00     |
| Hub     | Key Slit Width       | В      | 0.079     | 2.00      |
|         | Key Slit Diameter    | D      | 0.787     | 20.00     |



## **Handling Precautions**

| Parameter                        | Rating   | Standard                 |
|----------------------------------|----------|--------------------------|
| ESD-Human Body Model (HBM)       | Class 1B | ESDA / JEDEC JS-001-2014 |
| ESD-Charged Device Model (CDM)   | Class C3 | ESDA / JEDEC JS-002-2014 |
| MSL – Moisture Sensitivity Level | Level 1  | IPC/JEDEC J-STD-020      |



### **Solderability**

Compatible with lead-free (260°C max. reflow temp.) soldering process.

Solder profiles available upon request.

Contact plating: NiPdAu

### **RoHS Compliance**

This part is compliant with 2011/65/EU RoHS directive (Restrictions on the Use of Certain Hazardous Substances in Electrical and Electronic Equipment) as amended by Directive 2015/863/EU.

This product also has the following attributes:

- Lead Free
- Halogen Free (Chlorine, Bromine)
- Antimony Free
- TBBP-A (C<sub>15</sub>H<sub>12</sub>Br<sub>4</sub>O<sub>2</sub>) Free
- PFOS Free
- SVHC Free



#### Contact Information

For the latest specifications, additional product information, worldwide sales and distribution locations:

Web: <u>www.qorvo.com</u> Tel: 1-844-890-8163

Email: <u>customer.support@gorvo.com</u>

For technical questions and application information: Email: appsupport@gorvo.com

## **Important Notice**

The information contained herein is believed to be reliable; however, Qorvo makes no warranties regarding the information contained herein and assumes no responsibility or liability whatsoever for the use of the information contained herein. All information contained herein is subject to change without notice. Customers should obtain and verify the latest relevant information before placing orders for Qorvo products. The information contained herein or any use of such information does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other intellectual property rights, whether with regard to such information itself or anything described by such information. THIS INFORMATION DOES NOT CONSTITUTE A WARRANTY WITH RESPECT TO THE PRODUCTS DESCRIBED HEREIN, AND QORVO HEREBY DISCLAIMS ANY AND ALL WARRANTIES WITH RESPECT TO SUCH PRODUCTS WHETHER EXPRESS OR IMPLIED BY LAW, COURSE OF DEALING, COURSE OF PERFORMANCE, USAGE OF TRADE OR OTHERWISE, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Without limiting the generality of the foregoing, Qorvo products are not warranted or authorized for use as critical components in medical, life-saving, or life-sustaining applications, or other applications where a failure would reasonably be expected to cause severe personal injury or death.

Copyright 2018 © Qorvo, Inc. | Qorvo is a registered trademark of Qorvo, Inc.