Travaux Pratiques : Programmation Linéaire

Master

Plan du cours

Problème du Sac à Dos

Problème d'affectation

Problème du Voyageur de commerce (TSP)

Cas pratique : sac à dos

Une entreprise dispose d'un sac de capacité 10 kg.

Objet	Valeur	Poids
1	20	5
2	15	3
3	10	2

Quels objets choisir pour maximiser la valeur sans dépasser le poids?

Modèle PLNE : sac à dos

Variables : $x_i \in \{0,1\}$ si l'objet i est sélectionné.

$$\max 20x_1 + 15x_2 + 10x_3$$
 s.c. $5x_1 + 3x_2 + 2x_3 \le 10$

Exemple résolu

- ► Solution optimale : $x_1 = 1$, $x_2 = 1$, $x_3 = 0$
- ► Valeur maximale transportée = 35

TP 1 - À faire (sac à dos)

► Capacité du sac : 10 kg

Objet	Valeur	Poids
Α	40	6
В	30	4
C	20	3
D	10	2

Modéliser et résoudre ce PLNE.

Cas pratique : affectation de tâches

- ► Trois ouvriers doivent être affectés à trois tâches
- Coûts (en heures) :

	Tâche 1	Tâche 2	Tâche 3
Ouvrier 1	2	4	3
Ouvrier 2	3	2	5
Ouvrier 3	4	3	2

Attribuer chaque ouvrier à une seule tâche pour minimiser le temps total.Quelle est la meilleure affectation et quel est le coût minimum?

Détail PL : Problème d'affectation

Variables : $x_{ij} = 1$ si l'ouvrier i est affecté à la tâche j, 0 sinon. **Objectif** :

$$\min \sum_{i=1}^n \sum_{j=1}^n c_{ij} x_{ij}$$

 $(c_{ij} = \text{coût associé à l'ouvrier } i \text{ pour faire la tâche } j)$

Contraintes:

- ▶ Chaque ouvrier fait exactement une tâche : $\sum_{j=1}^{n} x_{ij} = 1$ $\forall i$
- Problem Chaque tâche est attribuée à un seul ouvrier : $\sum_{i=1}^n x_{ij} = 1$ $\forall j$
- ▶ Variables binaires : $x_{ij} \in \{0, 1\}$

Interprétation du PL : Affectation

- Optimise une matrice carrée de coûts entre agents et tâches.
- ► Chaque ligne représente un agent, chaque colonne une tâche.
- On cherche une permutation optimale minimisant la somme des coûts choisis.
- Peut être résolu par méthode hongroise ou solveur de PLNE.

Exemple résolu : affectation

- ightharpoonup Ouvrier $1 \rightarrow \mathsf{Tache}\ 1$
- ► Ouvrier 2 → Tâche 2
- ▶ Ouvrier 3 → Tâche 3

Coût total :
$$2 + 2 + 2 = 6$$

TP 2 - À faire (affectation)

Nouvelle matrice de coût :

	T1	T2	T3
01	6	4	3
02	2	6	5
O3	4	3	7

Modéliser le PL et résoudre.

Cas pratique : TSP

- Un représentant doit visiter 4 villes et revenir au point de départ (A).
- Distances entre villes :

	Α	В	C	D
Α	_	10	15	20
В	10	_	35	25
C	15	35	_	30
D	20	25	30	_

Trouver le plus court circuit qui part de A, passe par toutes les villes une fois, et revient à A. Donner la distance totale du circuit proposé.

Détail PLNE : Voyageur de commerce (TSP)

Variables : $x_{ij} = 1$ si on va de la ville i à j, 0 sinon. **Objectif** :

$$\min \sum_{i \neq j} d_{ij} x_{ij}$$

 $(d_{ij} = \text{distance entre } i \text{ et } j)$

Contraintes:

- ► Chaque ville a une sortie : $\sum_{i \neq i} x_{ij} = 1 \quad \forall i$
- ▶ Chaque ville a une entrée : $\sum_{i \neq j} x_{ij} = 1 \quad \forall j$
- ▶ Élimination des sous-tours : $u_i u_j + nx_{ij} \le n 1$ $\forall i \ne j$, $2 \le i, j \le n$
- ▶ Variables : $x_{ij} \in \{0,1\}$; u_i réels pour l'élimination des cycles

Interprétation du PLNE : TSP

- ▶ Le TSP cherche le plus court circuit passant une seule fois par chaque ville.
- Contraintes d'entrée/sortie = chemin fermé.
- Contraintes MTZ (Miller-Tucker-Zemlin) pour éviter les cycles partiels.
- ▶ Très difficile : problème NP-difficile \rightarrow solveurs, heuristiques ou relaxations.

Exemple résolu : TSP

Chemin optimal : $A \rightarrow B \rightarrow D \rightarrow C \rightarrow A$

▶ Distance : 10 + 25 + 30 + 15 = 80

TP 3 - À faire (TSP)

5 villes avec matrice de distances :

	Α	В	С	D	Е
Α	_	12	10	19	8
В	12	-	3	7	6
C	10	3	_	2	4
D	19	7	2	_	3
Ε	8	6	4	3	-

Modéliser et estimer une tournée optimale.