

Computational Approach to School Mathematics

1

G V V Sharma*

CONTENTS

1	Triangle			
	1.1	Construction Examples	1	
	1.2	Construction Exercises	4	
	1.3	Triangle Examples	5	
	1.4	Triangle Exercises	5	
2	Quadrilateral			
	2.1	Construction Examples	6	
	2.2	Construction Exercises	7	
	2.3	Quadrilateral Examples	8	
	2.4	Quadrilateral Geometry	8	
3	line		8	
	3.1	Examples	8	
	3.2	Points and Vectors	13	
	3.3	Points on a Line	15	
	3.4	Lines and Planes	16	
	3.5	Miscellaneous	22	
4	Circle		24	
	4.1	Construction Examples	24	
	4.2	Construction Exercises	24	
	4.3	Circle Geometry	25	

Abstract—This book provides a computational approach to school mathematics based on the NCERT textbooks from Class 6-12. Links to sample Python codes are available in the text.

Download python codes using

svn co https://github.com/gadepall/school/trunk/ncert/codes

*The author is with the Department of Electrical Engineering, Indian Institute of Technology, Hyderabad 502285 India e-mail: gadepall@iith.ac.in. All content in this manual is released under GNU GPL. Free and open source.

1 Triangle

- 1.1 Construction Examples
 - 1. Draw $\triangle ABC$ where $\angle B = 90^{\circ}$, a = 4 and b = 3. **Solution:** The vertices of $\triangle ABC$ are

$$\mathbf{A} = \begin{pmatrix} 0 \\ 3 \end{pmatrix}, \mathbf{B} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \mathbf{C} = \begin{pmatrix} 4 \\ 0 \end{pmatrix} \tag{1.1.1.1}$$

The following code plots Fig. 1.1.1

codes/triangle/rt triangle.py

Fig. 1.1.1

2. Construct a triangle of sides a = 4, b = 5 and c = 6.

Solution: Let the vertices of $\triangle ABC$ be

$$\mathbf{A} = \begin{pmatrix} p \\ q \end{pmatrix}, \mathbf{B} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \mathbf{C} = \begin{pmatrix} a \\ 0 \end{pmatrix}$$
 (1.1.2.1)

$$\mathbf{A}^T \stackrel{\triangle}{=} \begin{pmatrix} p & q \end{pmatrix} \tag{1.1.2.2}$$

$$\|\mathbf{A}\|^2 = \mathbf{A}^T \mathbf{A} = \begin{pmatrix} p & q \end{pmatrix} \begin{pmatrix} p \\ q \end{pmatrix}$$
 (1.1.2.3)

$$= p \times p + q \times q = p^2 + q^2$$
 (1.1.2.4)

Then

$$AB \stackrel{\triangle}{=} ||\mathbf{A} - \mathbf{B}||^2 = ||\mathbf{A}||^2 = c^2 \quad \therefore \mathbf{B} = \mathbf{0}$$
(1.1.2.5)

$$BC = \|\mathbf{C} - \mathbf{B}\|^2 = \|\mathbf{C}\|^2 = a^2$$
 (1.1.2.6)

$$AC = ||\mathbf{A} - \mathbf{C}||^2 = b^2 \tag{1.1.2.7}$$

From (1.1.2.7),

$$b^{2} = \|\mathbf{A} - \mathbf{C}\|^{2} = \|\mathbf{A} - \mathbf{C}\|^{T} \|\mathbf{A} - \mathbf{C}\| \quad (1.1.2.8)$$

$$= \mathbf{A}^{T} \mathbf{A} + \mathbf{C}^{T} \mathbf{C} - \mathbf{A}^{T} \mathbf{C} - \mathbf{C}^{T} \mathbf{A} \quad (1.1.2.9)$$

$$= \|\mathbf{A}\|^{2} + \|\mathbf{C}\|^{2} - 2\mathbf{A}^{T} \mathbf{C} \quad \left(:: \mathbf{A}^{T} \mathbf{C} = \mathbf{C}^{T} \mathbf{A} \right)$$

$$(1.1.2.10)$$

$$= a^2 + c^2 - 2ap (1.1.2.11)$$

yielding

$$p = \frac{a^2 + c^2 - b^2}{2a} \tag{1.1.2.12}$$

From (1.1.2.5),

$$\|\mathbf{A}\|^2 = c^2 = p^2 + q^2$$
 (1.1.2.13)

$$\implies q = \pm \sqrt{c^2 - p^2}$$
 (1.1.2.14)

The following code plots Fig. 1.1.2

codes/triangle/draw triangle.py

Fig. 1.1.2

3. Construct a triangle of sides a = 5, b = 6 and c = 7. Construct a similar triangle whose sides are $\frac{7}{5}$ times the corresponding sides of the first triangle.

Solution: The sides of the similar triangle are $\frac{7}{5}a, \frac{7}{5}b$ and $\frac{7}{5}c$.

4. Construct an isosceles triangle whose base is a = 8 cm and altitude AD = h = 4 cm

Solution: Using Baudhayana's theorem,

$$b = c = \sqrt{h^2 + \left(\frac{a}{2}\right)^2}$$
 (1.1.4.1)

5. In $\triangle ABC$, given that a+b+c=11, $\angle B=45^{\circ}$ and $\angle C=45^{\circ}$, find a,b,c and sketch the triangle. **Solution:** From the given information,

$$a + b + c = 11$$
 (1.1.5.1)

$$b = c$$
 (: $B = C = 45^{\circ}$) (1.1.5.2)

$$a^2 = b^2 + c^2$$
 (:: $A = 90^\circ$) (1.1.5.3)

From (1.1.5.1) and (1.1.5.2),

$$a + 2b = 11 \tag{1.1.5.4}$$

From (1.1.5.2) and (1.1.5.3),

$$a^2 = 2b^2 \implies a - b\sqrt{2} = 0$$
 (1.1.5.5)

(1.1.5.4) and (1.1.5.5) can be summarized as the matrix equation

$$\begin{pmatrix} 1 & 2 \\ 1 & -\sqrt{2} \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} 11 \\ 0 \end{pmatrix}$$
 (1.1.5.6)

which can be solved using Cramer's rule as

$$a = \frac{\begin{vmatrix} 11 & 2 \\ 0 & -\sqrt{2} \end{vmatrix}}{\begin{vmatrix} 1 & 2 \\ 1 & -\sqrt{2} \end{vmatrix}} = \frac{11 \times (-\sqrt{2}) - 2 \times 0}{1 \times (-\sqrt{2}) - 2 \times 1}$$
(1.1.5.7)

$$=\frac{11\sqrt{2}}{2+\sqrt{2}}\tag{1.1.5.8}$$

$$b = \frac{\begin{vmatrix} 1 & 11 \\ 1 & 0 \end{vmatrix}}{\begin{vmatrix} 1 & 2 \\ 1 & -\sqrt{2} \end{vmatrix}} = \frac{11}{2 + \sqrt{2}}$$
 (1.1.5.9)

by expanding the determinants. The following code may be used to compute a, b and c.

codes/triangle/triangle det.py

6. Repeat Problem 1.1.5 using a single matrix equation.

Solution: The equations

$$a + 2b = 11 \tag{1.1.6.1}$$

$$a - b\sqrt{2} = 0 \tag{1.1.6.2}$$

$$b - c = 0 \tag{1.1.6.3}$$

can be expressed as a single matrix equation

$$\begin{pmatrix} 1 & 2 & 0 \\ 1 & -\sqrt{2} & 0 \\ 0 & 1 & -1 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} 11 \\ 0 \\ 0 \end{pmatrix}$$
 (1.1.6.4)

and can be solved using Cramer's rule as

$$a = \frac{\begin{vmatrix} 11 & 2 & 0 \\ 1 & -\sqrt{2} & 0 \\ 0 & 1 & -1 \end{vmatrix}}{\begin{vmatrix} 0 & 2 & 0 \\ 1 & -\sqrt{2} & 0 \\ 0 & 1 & -1 \end{vmatrix}}$$
(1.1.6.5)

$$b = \frac{\begin{vmatrix} 0 & 11 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & -1 \end{vmatrix}}{\begin{vmatrix} 0 & 2 & 0 \\ 1 & -\sqrt{2} & 0 \\ 0 & 1 & -1 \end{vmatrix}}$$
(1.1.6.6)

$$c = \frac{\begin{vmatrix} 0 & 2 & 11 \\ 1 & -\sqrt{2} & 0 \\ 0 & 1 & 0 \end{vmatrix}}{\begin{vmatrix} 0 & 2 & 0 \\ 1 & -\sqrt{2} & 0 \\ 0 & 1 & -1 \end{vmatrix}}$$
(1.1.6.7)

The determinant

$$\begin{vmatrix} 0 & 2 & 0 \\ 1 & -\sqrt{2} & 0 \\ 0 & 1 & -1 \end{vmatrix} = 0 \times \begin{vmatrix} -\sqrt{2} & 0 \\ 1 & -1 \end{vmatrix}$$
$$-2 \times \begin{vmatrix} 1 & 0 \\ 0 & -1 \end{vmatrix} + 0 \times \begin{vmatrix} 1 & -\sqrt{2} \\ 0 & 1 \end{vmatrix} \quad (1.1.6.8)$$

The determinant can also be expressed as

$$\begin{vmatrix} 0 & 2 & 0 \\ 1 & -\sqrt{2} & 0 \\ 0 & 1 & -1 \end{vmatrix} = 0 \times \begin{vmatrix} -\sqrt{2} & 0 \\ 1 & -1 \end{vmatrix}$$
$$-1 \times \begin{vmatrix} 2 & 0 \\ 1 & -1 \end{vmatrix} + 0 \times \begin{vmatrix} 2 & 0 \\ -\sqrt{2} & 0 \end{vmatrix} \quad (1.1.6.9)$$

The determinants of larger matrices can be

expressed similarly.

7. Draw $\triangle ABC$ with a=6, c=5 and $\angle B=60^{\circ}$. **Solution:** In Fig. (1.1.7), $AD \perp BC$.

$$\cos C = \frac{y}{b},\tag{1.1.7.1}$$

$$\cos B = \frac{x}{b},\tag{1.1.7.2}$$

Thus,

$$a = x + y = b \cos C + c \cos B,$$
 (1.1.7.3)

$$b = c\cos A + a\cos C \qquad (1.1.7.4)$$

$$c = b\cos A + a\cos B \qquad (1.1.7.5)$$

The above equations can be expressed in matrix form as

$$\begin{pmatrix} 0 & c & b \\ c & 0 & a \\ b & a & 0 \end{pmatrix} \begin{pmatrix} \cos A \\ \cos B \\ \cos C \end{pmatrix} = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$$
 (1.1.7.6)

Using Cramer's rule and determinants,

$$\cos A = \frac{\begin{vmatrix} a & c & b \\ b & 0 & a \\ c & a & 0 \end{vmatrix}}{\begin{vmatrix} 0 & c & b \\ c & 0 & a \\ b & a & 0 \end{vmatrix}} = \frac{ab^2 + ac^2 - a^3}{abc + abc} \quad (1.1.7.7)$$
$$= \frac{b^2 + c^2 - a^2}{2b} \quad (1.1.7.8)$$

From (1.1.7.8)

$$b^2 = c^2 + a^2 - 2ca\cos B \tag{1.1.7.9}$$

which is computed by the following code

Fig. 1.1.7: The cosine formula

8. Draw $\triangle ABC$ with a = 7, $\angle B = 45^{\circ}$ and $\angle A = 105^{\circ}$.

Solution: In Fig. (1.1.7),

$$\sin B = \frac{h}{c} \tag{1.1.8.1}$$

$$\sin C = \frac{h}{b} \tag{1.1.8.2}$$

which can be used to show that

$$\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c} \tag{1.1.8.3}$$

Thus,

$$c = \frac{a \sin C}{\sin A} \tag{1.1.8.4}$$

where

$$C = 180 - A - B \tag{1.1.8.5}$$

9. Draw $\triangle ABC$ if AB = 3, AC = 5 and $\angle C = 30^{\circ}$. **Solution:** From (1.1.7.9),

$$\cos C = \frac{a^2 + b^2 - c^2}{2ab} \tag{1.1.9.1}$$

which can be expressed as

$$a^2 - 2ab\cos C + b^2 - c^2 = 0.$$
 (1.1.9.2)

$$(a - b\cos C)^2 = a^2 + b^2\cos^2 C - 2ab\cos C,$$
(1.1.9.3)

(1.1.9.2) can be expressed as

$$(a - b\cos C)^2 - b^2\cos^2 C + b^2 - c^2 = 0$$
(1.1.9.4)

$$\implies (a - b\cos C)^2 = b^2 (1 - \cos^2 C) - c^2$$
(1.1.9.5)

or,
$$a = b \cos C \pm \sqrt{b^2 (1 - \cos^2 C) - c^2}$$
(1.1.9.6)

Choose the value(s) for which a > 0.

10. The solution of a quadratic equation

$$\alpha x^2 + \beta x + \gamma = 0 \tag{1.1.10.1}$$

is given by

$$x = \frac{-\beta \pm \sqrt{\beta^2 - 4\alpha\gamma}}{2\alpha}.$$
 (1.1.10.2)

Verify (1.1.9.6) using (1.1.10.2).

11. $\triangle ABC$ is right angled at **B**. If a = 12 and b+c = 18, find b, c and draw the triangle.

Solution: From Baudhayana's theorem,

$$b^2 = a^2 + c^2 (1.1.11.1)$$

$$\implies (18 - c)^2 = 12^2 + c^2$$
 (1.1.11.2)

which can be simplified to obtain

$$36c - 180 = 0 \tag{1.1.11.3}$$

$$\implies c = 5 \tag{1.1.11.4}$$

and b = 13

- 12. Find a simpler solution for Problem 1.1.5 **Solution:** Use cosine formula.
- 13. In $\triangle ABC$, $a = 7, \angle B = 75^{\circ}$ and b + c = 13. Alternatively,

$$a = b\cos C + c\cos B \tag{1.1.13.1}$$

$$b\sin C = c\sin B \tag{1.1.13.2}$$

$$a + b + c = 11$$
 (1.1.13.3)

resulting in the matrix equation

$$\begin{pmatrix} 1 & -\cos C & -\cos B \\ 0 & \sin C & -\sin B \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 11 \end{pmatrix} \quad (1.1.13.4)$$

Solving the equivalent matrix equation gives the desired answer.

- 1.2 Construction Exercises
 - 1. In $\triangle ABC$, a = 8, $\angle B = 45^{\circ}$ and c b = 3.5. Sketch $\triangle ABC$.
 - 2. In $\triangle ABC$, a = 6, $\angle B = 60^{\circ}$ and b-c = 2. Sketch $\triangle ABC$.
 - 3. Draw $\triangle ABC$, given that a+b+c=11, $\angle B=30^{\circ}$ and $\angle C=90^{\circ}$.
 - 4. Construct $\triangle xyz$ where xy = 4.5, yz = 5 and zx = 6.
 - 5. Draw an equilateral triangle of side 5.5.
 - 6. Draw $\triangle PQR$ with PQ = 4, QR = 3.5 and PR = 4. What type of triangle is this?
 - 7. Construct $\triangle ABC$ such that AB = 2.5, BC = 6 and AC = 6.5. Find $\angle B$.
 - 8. Construct $\triangle PQR$, given that PQ = 3, QR = 5.5 and $\angle PQR = 60^{\circ}$.
 - 9. Construct $\triangle DEF$ such that DE = 5, DF = 3 and $\angle D = 90^{\circ}$.
- 10. Construct an isosceles triangle in which the lengths of the equal sides is 6.5 and the angle between them is 110°.
- 11. Construct $\triangle ABC$ with BC = 7.5, AC = 5 and $\angle C = 60^{\circ}$.

- 12. Construct $\triangle XYZ$ if XY = 6, $\angle X = 30^{\circ}$ and $\angle Y = 100^{\circ}$.
- 13. If AC = 7, $\angle A = 60^{\circ}$ and $\angle B = 50^{\circ}$, can you draw the triangle?
- 14. Construct $\triangle ABC$ given that $\angle A = 60^{\circ}$, $\angle B = 30^{\circ}$ and AB = 5.8.
- 15. Construct $\triangle PQR$ if $PQ = 5, \angle Q = 105^{\circ}$ and $\angle R = 40^{\circ}$.
- 16. Can you construct $\triangle DEF$ such that EF = 7.2, $\angle E = 110^{\circ}$ and $\angle F = 180^{\circ}$?
- 17. Construct $\triangle LMN$ right angled at M such that LN = 5 and MN = 3.
- 18. Construct $\triangle PQR$ right angled at Q such that QR = 8 and PR = 10.
- 19. Construct right angled \triangle whose hypotenuse is 6 and one of the legs is 4.
- 20. Construct an isosceles right angled $\triangle ABC$ right angled at C such AC = 6.
- 21. Construct the triangles in Table 1.2.21.

S.NoTriangle		Given Measurements		
1	∆ABC	$\angle A = 85^{\circ}$	$\angle B = 115$	$^{\circ}$ AB = 5
2	△PQR	$\angle Q = 30^{\circ}$	$\angle R = 60^{\circ}$	QR = 4.7
3	∆ABC	$\angle A = 70^{\circ}$	$\angle B = 50^{\circ}$	AC = 3
4	△LMN	$\angle L = 60^{\circ}$	$\angle N = 120^{\circ}$	LM = 5
5	∆ABC	BC = 2	AB = 4	AC = 2
6	△PQR	PQ = 2.5	QR = 4	PR = 3.5
7	$\triangle XYZ$	XY = 3	YZ = 4	XZ = 5
8	△DEF	DE = 4.5	EF = 5.5	DF = 4

TABLE 1.2.21

1.3 Triangle Examples

- 1. Do the points $\binom{3}{2}$, $\binom{-2}{-3}$, $\binom{2}{3}$ form a triangle? If so, name the type of triangle formed.
- 2. Find the area of a triangle whose vertices are \$\begin{pmatrix} 1 \\ -1 \end{pmatrix}, \begin{pmatrix} -4 \\ 6 \end{pmatrix} and \begin{pmatrix} -3 \\ -5 \end{pmatrix}.
 3. Find the area of a triangle formed by the
- 3. Find the area of a triangle formed by the vertices A = (5), B = (4), C = (7).
 4. Find the area of a triangle formed by the points
- 1. Find the area of a triangle formed by the points $\mathbf{P} = \begin{pmatrix} -1.5 \\ 3 \end{pmatrix}$, $\mathbf{Q} = \begin{pmatrix} 6 \\ -2 \end{pmatrix}$, $\mathbf{R} = \begin{pmatrix} -3 \\ 4 \end{pmatrix}$.

5. Are the points

$$\mathbf{A} = \begin{pmatrix} 3 \\ 6 \\ 9 \end{pmatrix}, \mathbf{B} = \begin{pmatrix} 10 \\ 20 \\ 30 \end{pmatrix}, \mathbf{C} = \begin{pmatrix} 25 \\ -41 \\ 5 \end{pmatrix}, \quad (1.3.5.1)$$

the vertices of a right angled triangle?

6. In $\triangle ABC$, Show that the centroid

$$\mathbf{O} = \frac{\mathbf{A} + \mathbf{B} + \mathbf{C}}{3} \tag{1.3.6.1}$$

- 7. The centroid of a $\triangle ABC$ is at the point $\begin{pmatrix} 1\\1\\1 \end{pmatrix}$. If the coordinates of **A** and **B** are $\begin{pmatrix} 3\\-5\\7 \end{pmatrix}$ and $\begin{pmatrix} -1\\7\\-6 \end{pmatrix}$, respectively, find the coordinates of the point **C**.
- 8. Show that the points

$$\mathbf{A} = \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix}, \mathbf{B} = \begin{pmatrix} 1 \\ -3 \\ -5 \end{pmatrix}, \mathbf{C} = \begin{pmatrix} 3 \\ -4 \\ -4 \end{pmatrix} \quad (1.3.8.1)$$

are the vertices of a right angled triangle.

9. (Cauchy-Schwarz Inequality:) Show that

$$\left|\mathbf{a}^{T}\mathbf{b}\right| \leq \left\|\mathbf{a}\right\| \left\|\mathbf{b}\right\| \tag{1.3.9.1}$$

10. (Triangle Inequality:) Show that

$$\|\mathbf{a} + \mathbf{b}\| \le \|\mathbf{a}\| + \|\mathbf{b}\|$$
 (1.3.10.1)

11. Find the area of a triangle having the points

$$\mathbf{A} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \mathbf{B} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \mathbf{C} = \begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix}$$
 (1.3.11.1)

as its vertices.

1.4 Triangle Exercises

- 1. The vertices of $\triangle PQR$ are $\mathbf{P} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$, $\mathbf{Q} = \begin{pmatrix} -2 \\ 3 \end{pmatrix}$, $\mathbf{R} = \begin{pmatrix} 4 \\ 5 \end{pmatrix}$. Find the equation of the median through the vertex \mathbf{R} .
- 2. In the $\triangle ABC$ with vertices $\mathbf{A} = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$, $\mathbf{B} = \begin{pmatrix} 4 \\ -1 \end{pmatrix}$, $\mathbf{C} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$, find the equation and length of the altitude from the vertex \mathbf{A} .
- 3. Find the area of the triangle whose vertices are a) $\binom{2}{3}$, $\binom{-1}{0}$, $\binom{2}{-4}$

b)
$$\begin{pmatrix} -5 \\ -1 \end{pmatrix}$$
, $\begin{pmatrix} 3 \\ -5 \end{pmatrix}$, $\begin{pmatrix} 5 \\ 2 \end{pmatrix}$

- 4. Find the area of the triangle formed by joining the mid points o the sides of a triangle whose vertices are $\begin{pmatrix} 0 \\ -1 \end{pmatrix}$, $\begin{pmatrix} 2 \\ 1 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 3 \end{pmatrix}$.
- 5. Verify that the median of $\triangle ABC$ with vertices $\mathbf{A} = \begin{pmatrix} 4 \\ -6 \end{pmatrix}, \mathbf{B} = \begin{pmatrix} 3 \\ -2 \end{pmatrix}$ and $\mathbf{C} = \begin{pmatrix} 5 \\ 2 \end{pmatrix}$ divides it into two triangles of equal areas.
- 6. The vertices of $\triangle ABC$ are $\mathbf{A} = \begin{pmatrix} 4 \\ 6 \end{pmatrix}$, $\mathbf{B} = \begin{pmatrix} 1 \\ 5 \end{pmatrix}$ and $\mathbf{C} = \begin{pmatrix} 7 \\ 2 \end{pmatrix}$. A line is drawn to intersect sides AB and AC at D and E respectively, such that

$$\frac{AD}{AB} = \frac{AE}{AC} = \frac{1}{4} \tag{1.4.6.1}$$

Find

$$\frac{\text{area of }\triangle ADE}{\text{area of }\triangle ABC}.$$
 (1.4.6.2)

- 7. Let $\mathbf{A} = \begin{pmatrix} 4 \\ 2 \end{pmatrix}$, $\mathbf{B} = \begin{pmatrix} 6 \\ 5 \end{pmatrix}$ and $\mathbf{C} = \begin{pmatrix} 1 \\ 4 \end{pmatrix}$ be the vertices of $\triangle ABC$.
 - a) The median from **A** meets *BC* at **D**. Find the coordinates of the point **D**.
 - b) Find the coordinates of the point **P** on AD such that AP : PD = 2 : 1.
 - c) Find the coordinates of the points **Q** and **R** on medians BE and CF respectively such that BQ: QE = 2:1 and CR: RF = 2:1.
- 8. In $\triangle ABC$, Show that the centroid

$$\mathbf{O} = \frac{\mathbf{A} + \mathbf{B} + \mathbf{C}}{3} \tag{1.4.8.1}$$

9. Show that the points

$$\mathbf{A} = \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix}, \mathbf{B} = \begin{pmatrix} 1 \\ -3 \\ -5 \end{pmatrix}, \mathbf{C} = \begin{pmatrix} 3 \\ -4 \\ -4 \end{pmatrix} \quad (1.4.9.1)$$

are the vertices of a right angled triangle.

- 10. In $\triangle ABC$, $\mathbf{A} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$, $\mathbf{B} = \begin{pmatrix} -1 \\ 0 \\ 0 \end{pmatrix}$, $\mathbf{C} = \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix}$. Find
- 11. Show that the vectors $\begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix}$, $\begin{pmatrix} 1 \\ -3 \\ -5 \end{pmatrix}$, $\begin{pmatrix} 3 \\ -4 \\ -4 \end{pmatrix}$ form the vertices of a right angled triangle.
- 12. Find the area of a triangle having the points

$$\mathbf{A} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \mathbf{B} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \text{ and } \mathbf{C} = \begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix} \text{ as its vertices.}$$

13. Find the area of a triangle with vertices $\mathbf{A} = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}$, $\mathbf{B} = \begin{pmatrix} 2 \\ 3 \\ 5 \end{pmatrix}$, and $\mathbf{C} = \begin{pmatrix} 1 \\ 5 \\ 5 \end{pmatrix}$

- 14. A girl walks 4km west, then she walks 3km in a direction 30° east of north and stops. Determine the girl's displacement from her initial point of departure.
- 15. Find the direction vectors of the sides of a triangle with vertices $\mathbf{A} = \begin{pmatrix} 3 \\ 5 \\ -4 \end{pmatrix}$, $\mathbf{B} = \begin{pmatrix} 3 \\ 5 \\ -4 \end{pmatrix}$

$$\begin{pmatrix} -1\\1\\2 \end{pmatrix}, \text{ and } \mathbf{C} = \begin{pmatrix} -5\\-5\\-2 \end{pmatrix}$$

- 16. Without using the Pythagoras theorem, show that the points $\begin{pmatrix} 4 \\ 4 \end{pmatrix}$, $\begin{pmatrix} 3 \\ 5 \end{pmatrix}$ and $\begin{pmatrix} -1 \\ -1 \end{pmatrix}$ are the vertices of a right angled triangle.
- 17. Check whether

$$\begin{pmatrix} 5 \\ -2 \end{pmatrix}, \begin{pmatrix} 6 \\ 4 \end{pmatrix}, \begin{pmatrix} 7 \\ -2 \end{pmatrix}$$
 (1.4.17.1)

are the vertices of an isosceles triangle.

2 Quadrilateral

- 2.1 Construction Examples
- 1. Draw ABCD with AB = a = 4.5, BC = b = 5.5, CD = c = 4, AD = d = 6 and AC = e = 7. **Solution:** Fig. 2.1.1 shows a rough sketch of ABCD. Letting

$$\mathbf{C} = \begin{pmatrix} p \\ q \end{pmatrix}, \mathbf{A} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \mathbf{B} = \begin{pmatrix} a \\ 0 \end{pmatrix} \tag{2.1.1.1}$$

it is trivial to sketch $\triangle ABC$ from Problem 1.1.2. $\triangle ACD$ is can be obtained by rotating an equivalent triangle with AC on the x-axis by an angle θ with

$$\mathbf{D} = \begin{pmatrix} h \\ k \end{pmatrix}, \mathbf{A} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \mathbf{C} = \begin{pmatrix} e \\ 0 \end{pmatrix}$$
 (2.1.1.2)

and

$$\cos \theta = \frac{a^2 + e^2 - b^2}{2ae}$$
 (2.1.1.3)

$$\sin \theta = \sqrt{1 - \cos^2 \theta} \tag{2.1.1.4}$$

The coordinates of the rotated triangle ACD are

$$\mathbf{D} = \mathbf{P} \begin{pmatrix} h \\ k \end{pmatrix} \tag{2.1.1.5}$$

$$\mathbf{A} = \mathbf{P} \begin{pmatrix} 0 \\ 0 \end{pmatrix} \tag{2.1.1.6}$$

$$\mathbf{C} = \mathbf{P} \begin{pmatrix} e \\ 0 \end{pmatrix} \tag{2.1.1.7}$$

where

$$\mathbf{P} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \tag{2.1.1.8}$$

The following code plots quadrilateral ABCD

Fig. 2.1.1

in Fig. 2.1.1

codes/quad/draw quad.py

Fig. 2.1.1

2. Draw the parallelogram MORE with OR = 6, RE = 4.5 and EO = 7.5.

Solution: Diagonals of a parallelogram bisect each other. Opposite sides of a parallelogram are equal and parallel .

3. Construct a kite EASY if AY = 8, EY = 4 and SY = 6.

Solution: The diagonals of a kite are perpendicular to each other.

4. Draw the rhombus BEST with BE = 4.5 and ET = 6.

Solution: Diagonals of a rhombus bisect each other at right angles.

2.2 Construction Exercises

- 1. Construct a quadrilateral *ABCD* such that AB = 5, $\angle A = 50^{\circ}$, AC = 4, BD = 5 and AD = 6.
- 2. Construct PQRS where PQ = 4, QR = 6, RS = 5, PS = 5.5 and PR = 7.
- 3. Draw JUMP with JU = 3.5, UM = 4, MP = 5, PJ = 4.5 and PU = 6.5
- 4. Construct a quadrilateral ABCD such that BC = 4.5, AC = 5.5, CD = 5, BD = 7 and AD = 5.5.
- 5. Can you construct a quadrilateral PQRS with PQ = 3, RS = 3, PS = 7.5, PR = 8 and SQ = 4?
- 6. Construct LIFT such that LI = 4, IF = 3, TL = 2.5, LF = 4.5, IT = 4.
- 7. Draw GOLD such that OL = 7.5, GL = 6, GD = 6, LD = 5, OD = 10.
- 8. DRAW rhombus BEND such that BN = 5.6, DE = 6.5.
- 9. construct a quadrilateral MIST where MI = 3.5, IS = 6.5, $\angle M = 75^{\circ}$, $\angle I = 105^{\circ}$ and $\angle S = 120^{\circ}$.
- 10. Can you construct the above quadrilateral MIST if $\angle M = 100^{\circ}$ instead of 75°.
- 11. Can you construct the quadrilateral PLAN if PL = 6, LA = 9.5, $\angle P = 75^{\circ}$, $\angle L = 150^{\circ}$ and $\angle A = 140^{\circ}$?
- 12. Construct *MORE* where $MO = 6, OR = 4.5, \angle M = 60^{\circ}, \angle O = 105^{\circ}, \angle R = 105^{\circ}.$
- 13. Construct *PLAN* where *PL* = 4, *LA* = 6.5, $\angle P = 90^{\circ}$, $\angle A = 110^{\circ}$ and $\angle N = 85^{\circ}$.
- 14. Construct parallelogram HEAR where HE = 5, EA = 6, $\angle R = 85^{\circ}$.
- 15. Draw rectangle OKAY with OK = 7 and KA = 5
- 16. Construct ABCd, where AB = 4, BC = 5, Cd = 6.5, $\angle B = 105^{\circ}$ and $\angle C = 80^{\circ}$.

- 17. Construct *DEAR* with DE = 4, EA = 5, AR = 4.5, $\angle E = 60^{\circ}$ and $\angle A = 90^{\circ}$.
- 18. Construct TRUE with $TR = 3.5, RU = 3, UE = 4 \angle R = 75^{\circ}$ and $\angle U = 120^{\circ}$.
- 19. Draw a square of side 4.5.
- 20. Can you construct a rhombus ABCD with AC = 6 and BD = 7?
- 21. Draw a square READ with RE = 5.1.
- 22. Draw a rhombus who diagonals are 5.2 and 6.4.
- 23. Draw a rectangle with adjacent sides 5 and 4.
- 24. Draw a parallelogram OKAY with OK = 5.5 and KA = 4.2.

2.3 Quadrilateral Examples

- 1. Show that the points $\binom{1}{7}$, $\binom{4}{2}$, $\binom{-1}{-1}$, $\binom{-4}{4}$ are the vertices of a square.
- 2. If the points $\mathbf{A} = \begin{pmatrix} 6 \\ 1 \end{pmatrix}$, $\mathbf{B} = \begin{pmatrix} 8 \\ 2 \end{pmatrix}$, $\mathbf{C} = \begin{pmatrix} 9 \\ 4 \end{pmatrix}$, $\mathbf{D} = \begin{pmatrix} p \\ 3 \end{pmatrix}$ are the vertices of a parallelogram, taken in order, find the value of p.
- 3. If $\mathbf{A} = \begin{pmatrix} -5 \\ 7 \end{pmatrix}$, $\mathbf{B} = \begin{pmatrix} -4 \\ -5 \end{pmatrix}$, $\mathbf{C} = \begin{pmatrix} -1 \\ -6 \end{pmatrix}$, $\mathbf{D} = \begin{pmatrix} 4 \\ 5 \end{pmatrix}$, find the area of the quadrilateral *ABCD*.
- 4. Show that the points $\mathbf{A} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$, $\mathbf{B} = \begin{pmatrix} -1 \\ -2 \\ -1 \end{pmatrix}$, $\mathbf{C} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$

 $\begin{bmatrix} 2 \\ 3 \\ 2 \end{bmatrix}$, $\mathbf{D} = \begin{bmatrix} 7 \\ 6 \end{bmatrix}$ are the vertices of a parallelo-

gram ABCD but it is not a rectangle.

5. Find the area of a parallelogram whose adjacent sides are given by the vectors $\begin{pmatrix} 3 \\ 1 \\ 4 \end{pmatrix}$ and $\begin{pmatrix} 1 \\ -1 \end{pmatrix}$.

2.4 Quadrilateral Geometry

- 1. Draw a quadrilateral in the Cartesian plane, whose vertices are $\begin{pmatrix} -4 \\ 5 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 7 \end{pmatrix}$, $\begin{pmatrix} 5 \\ -5 \end{pmatrix}$ and $\begin{pmatrix} -4 \\ -2 \end{pmatrix}$. Also, find its area.
- 2. Find the area of a rhombus if its vertices are $\binom{3}{0}$, $\binom{4}{5}$, $\binom{-1}{4}$ and $\binom{-2}{-1}$ taken in order.

- 3. Without using distance formula, show that points $\begin{pmatrix} -2 \\ -1 \end{pmatrix}$, $\begin{pmatrix} 4 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 3 \\ 3 \end{pmatrix}$ and $\begin{pmatrix} -3 \\ 2 \end{pmatrix}$ are the vertices of a parallelogram.
- 4. Find the area of the quadrilateral whose vertices, taken in order, are $\begin{pmatrix} -4 \\ 2 \end{pmatrix}$, $\begin{pmatrix} -3 \\ -5 \end{pmatrix}$, $\begin{pmatrix} 3 \\ -2 \end{pmatrix}$, $\begin{pmatrix} 2 \\ 3 \end{pmatrix}$.
- 5. The two opposite vertices of a square are $\binom{-1}{2}$, $\binom{3}{2}$. Find the coordinates of the other two vertices.
- 6. ABCD is a rectangle formed by the points $\mathbf{A} = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$, $\mathbf{B} = \begin{pmatrix} -1 \\ 4 \end{pmatrix}$, $\mathbf{C} = \begin{pmatrix} 5 \\ 4 \end{pmatrix}$, $\mathbf{D} = \begin{pmatrix} 5 \\ -1 \end{pmatrix}$. \mathbf{P} , \mathbf{Q} , \mathbf{R} , \mathbf{S} are the mid points of AB, BC, CD, DA respectively. Is the quadrilateral PQRS a
 - a) square?
 - b) rectangle?
 - c) rhombus?
- 7. Find the area of a parallelogram whose adjacent sides are given by the vectors $\begin{pmatrix} 3\\1\\4 \end{pmatrix}$ and

$$\begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$$
.

- 8. Find the area of a parallelogram whose adjacent sides are determined by the vectors $\mathbf{a} = \begin{pmatrix} 1 \\ -1 \\ 3 \end{pmatrix} \text{ and } \mathbf{b} = \begin{pmatrix} 2 \\ -7 \\ 1 \end{pmatrix}.$
- 9. Find the area of a rectangle ABCD with vertices $\mathbf{A} = \begin{pmatrix} -1 \\ \frac{1}{2} \\ 4 \end{pmatrix}$, $\mathbf{B} = \begin{pmatrix} 1 \\ \frac{1}{2} \\ 4 \end{pmatrix}$, $\mathbf{C} = \begin{pmatrix} 1 \\ -\frac{1}{2} \\ 4 \end{pmatrix}$, $\mathbf{D} = \begin{pmatrix} -1 \\ -\frac{1}{2} \\ 4 \end{pmatrix}$.
- 10. The two adjacent sides of a parallelogram are $\begin{pmatrix} 2 \\ -4 \\ -5 \end{pmatrix}$ and $\begin{pmatrix} 1 \\ -2 \\ -3 \end{pmatrix}$. Find the unit vector parallel to its diagonal. Also, find its area.

3 LINE

3.1 Examples

1. Verify if $\mathbf{A} = \begin{pmatrix} 3 \\ 1 \end{pmatrix}$, $\mathbf{B} = \begin{pmatrix} 6 \\ 4 \end{pmatrix}$, $\mathbf{C} = \begin{pmatrix} 8 \\ 6 \end{pmatrix}$ are points on a line.

- 2. Find the condition for $\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$ to be equidistant from the points $\begin{pmatrix} 7 \\ 1 \end{pmatrix}, \begin{pmatrix} 3 \\ 5 \end{pmatrix}$.
- 3. Find a point on the y-axis which is equidistant from the points $\mathbf{A} = \begin{pmatrix} 6 \\ 5 \end{pmatrix}$, $\mathbf{B} = \begin{pmatrix} -4 \\ 3 \end{pmatrix}$.
- 4. Draw a line segement of length 7.6 cm and divide it in the ratio 5:8.

Solution: Let the end points of the line be

$$\mathbf{A} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \mathbf{B} = \begin{pmatrix} 7.6 \\ 0 \end{pmatrix} \tag{3.1.4.1}$$

Then the point C

$$\mathbf{C} = \frac{k\mathbf{A} + \mathbf{B}}{k+1} \tag{3.1.4.2}$$

divides AB in the ration k: 1. For the given problem, $k = \frac{5}{8}$. The following code plots Fig. 3.1.4

codes/line/draw_section.py

Fig. 3.1.4

- 5. Find the coordinates of the point which divides the line segment joining the points $\begin{pmatrix} 4 \\ -3 \end{pmatrix}$ and $\begin{pmatrix} 8 \\ 5 \end{pmatrix}$ in the ratio 3:1 internally.
- 6. In what ratio does the point $\begin{pmatrix} -4 \\ 6 \end{pmatrix}$ divide the line segment joining the points

$$\mathbf{A} = \begin{pmatrix} -6\\10 \end{pmatrix}, \mathbf{B} = \begin{pmatrix} 3\\-8 \end{pmatrix} \tag{3.1.6.1}$$

7. Find the coordinates of the points of trisection of the line segement joining the points

$$\mathbf{A} = \begin{pmatrix} 2 \\ -2 \end{pmatrix}, \mathbf{B} = \begin{pmatrix} -7 \\ 4 \end{pmatrix} \tag{3.1.7.1}$$

- 8. Find the ratio in which the y-axis divides the line segment joining the points $\begin{pmatrix} 5 \\ -6 \end{pmatrix}$ and $\begin{pmatrix} -1 \\ -4 \end{pmatrix}$.
- 9. Find the value of k if the points $\mathbf{A} = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$, $\mathbf{B} = \begin{pmatrix} 4 \\ k \end{pmatrix}$ and $\mathbf{C} = \begin{pmatrix} 6 \\ -3 \end{pmatrix}$ are collinear.

10. Find the direction vectors and slopes of the lines passing through the points

a)
$$\begin{pmatrix} 3 \\ -2 \end{pmatrix}$$
 and $\begin{pmatrix} -1 \\ 4 \end{pmatrix}$.

- b) $\begin{pmatrix} 3 \\ -2 \end{pmatrix}$ and $\begin{pmatrix} 7 \\ -2 \end{pmatrix}$.
- c) $\begin{pmatrix} 3 \\ -2 \end{pmatrix}$ and $\begin{pmatrix} 3 \\ 4 \end{pmatrix}$.
- d) Making an inclination of 60° with the positive direction of the x-axis.
- 11. If the angle between two lines is $\frac{\pi}{4}$ and the slope of one of the lines is $\frac{1}{4}$ find the slope of the other line.
- 12. The line through the points $\binom{-2}{6}$ and $\binom{4}{8}$ is perpendicular to the line through the points $\binom{8}{12}$ and $\binom{x}{24}$. Find the value of x.
- 13. Two positions of time and distance are recorded as, when T = 0, D = 2 and when T = 3, D = 8. Using the concept of slope, find law of motion, i.e., how distance depends upon time.
- 14. Find the equations of the lines parallel to the axes and passing through $\begin{pmatrix} -2\\3 \end{pmatrix}$.
- 15. Find the equation of the line through $\binom{-2}{3}$ with slope -4.
- 16. Find the equations of the lines parallel to axes and passing through (-2, 3).
- 17. Write the equation of the line through the points $\begin{pmatrix} 1 \\ -1 \end{pmatrix}$ and $\begin{pmatrix} 3 \\ 5 \end{pmatrix}$.
- 18. Wrire the equation of the lines for which $\tan \theta = \frac{1}{2}$, where θ is the inclination of the line and
 - a) y-intercept is $-\frac{3}{2}$

- b) x-intercept is 4.
- 19. Find the equation of the line, which makes intercepts -3 and 2 on the x and y axes respectively.
- 20. Find the equation of the line whose perpendicular distance from the origin is 4 units and the angle which the normal makes with the positive direction of x-axis is 15°.
- 21. The Farenheit temperature F and absolute temperature K satisfy a linear equation. Given K = 273 when F = 32 and that K = 373 when F = 212, express K in terms of F and find the value of F, when K = 0.
- 22. Equation of a line is

$$(3 -4) + 10 = 0.$$
 (3.1.22.1)

Find its

- a) slope,
- b) x and y-intercepts.
- 23. Find the angle between the lines

$$(1 - \sqrt{3})\mathbf{x} = 5 \tag{3.1.23.1}$$

$$(\sqrt{3} -1)\mathbf{x} = -6.$$
 (3.1.23.2)

24. Find the equation of a line perpendicular to the line

$$(1 -2)\mathbf{x} = 3 \tag{3.1.24.1}$$

and passes through the point $\begin{pmatrix} 1 \\ -2 \end{pmatrix}$.

25. Find the distance of the point $\begin{pmatrix} 3 \\ -5 \end{pmatrix}$ from the line

$$(3 -4)\mathbf{x} = 26 \qquad (3.1.25.1)$$

26. If the lines

$$(2 1) \mathbf{x} = 3$$
 (3.1.26.1)
 $(5 k) \mathbf{x} = 3$ (3.1.26.2)

$$(5 \ k) \mathbf{x} = 3$$
 (3.1.26.2)

$$(3 1)\mathbf{x} = 2 (3.1.26.3)$$

are concurrent, find the value of k.

27. Find the distance of the line

$$(4 1) \mathbf{x} = 0 (3.1.27.1)$$

from the point $\begin{pmatrix} 4 \\ 1 \end{pmatrix}$ measured along the line making an angle of 135° with the positive xaxis.

28. Assuming that straight lines work as a plane mirror for a point, find the image of the point $\binom{1}{2}$ in the line

$$(1 -3)\mathbf{x} = -4.$$
 (3.1.28.1)

29. A line is such that its segment between the lines

$$(5 -1)\mathbf{x} = -4$$
 (3.1.29.1)
 $(3 \ 4)\mathbf{x} = 4$ (3.1.29.2)

$$(3 \quad 4) \mathbf{x} = 4$$
 (3.1.29.2)

is bisected at the point $\binom{1}{5}$. Obtain its equation.

30. Show that the path of a moving point such that its distances from two lines

$$(3 -2)\mathbf{x} = 5 \tag{3.1.30.1}$$

$$(3 2) \mathbf{x} = 5 (3.1.30.2)$$

are equal is a straight line.

31. Find the distance between the points

$$\mathbf{P} = \begin{pmatrix} 1 \\ -3 \\ 4 \end{pmatrix}, \mathbf{Q} = \begin{pmatrix} -4 \\ 1 \\ 2 \end{pmatrix} \tag{3.1.31.1}$$

32. Show that the points $\mathbf{A} = \begin{pmatrix} -2 \\ 3 \\ 5 \end{pmatrix}$, $\mathbf{B} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$ and

$$\mathbf{C} = \begin{pmatrix} 7 \\ 0 \\ -1 \end{pmatrix}$$
 are collinear.

33. Find the equation of set of points **P** such that

$$PA^2 + PB^2 = 2k^2,$$
 (3.1.33.1)

$$\mathbf{A} = \begin{pmatrix} 3 \\ 4 \\ 5 \end{pmatrix}, \mathbf{B} = \begin{pmatrix} -1 \\ 3 \\ -7 \end{pmatrix}, \tag{3.1.33.2}$$

respectively.

34. Find the coordinates of a point which divides the line segment joining the points $\begin{pmatrix} 1 \\ -2 \\ 3 \end{pmatrix}$ and

$$\begin{pmatrix} 3 \\ 4 \\ -5 \end{pmatrix}$$
 in the ratio 2:3

- a) internally, and
- b) externally.

35. Using section formular, prove that the three points $\begin{pmatrix} -4 \\ 6 \\ 10 \end{pmatrix}$, $\begin{pmatrix} 2 \\ 4 \\ 10 \end{pmatrix}$ and $\begin{pmatrix} 14 \\ 0 \\ 2 \end{pmatrix}$ are collinear.

36. Find the ratio in which the line segment joining the points $\begin{pmatrix} 4 \\ 8 \\ 10 \end{pmatrix}$ and $\begin{pmatrix} 6 \\ 10 \\ -8 \end{pmatrix}$ is divided by the YZ-plane.

37. Find the equation of the set of points **P** such that its distances from the points **A** = $\begin{pmatrix} 3 \\ 4 \\ 5 \end{pmatrix}$, **B** = $\begin{pmatrix} -2 \\ 1 \\ 4 \end{pmatrix}$

38. Find the values of x, y, z such that

$$\begin{pmatrix} x \\ 2 \\ z \end{pmatrix} = \begin{pmatrix} 2 \\ y \\ 1 \end{pmatrix}$$
 (3.1.38.1)

39. If

$$\mathbf{a} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \mathbf{b} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}, \tag{3.1.39.1}$$

verify if

- a) ||a|| = ||b||
- b) $\mathbf{a} = \mathbf{b}$
- 40. Find a unit vector in the direction of $\begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix}$.
- 41. Find a vector \mathbf{x} in the direction of $\begin{pmatrix} 1 \\ -2 \end{pmatrix}$ such that $||\mathbf{x}|| = 7$.
- 42. Find a unit vector in the direction of $\mathbf{a} + \mathbf{b}$, where

$$\mathbf{a} = \begin{pmatrix} 2\\2\\-5 \end{pmatrix}, \mathbf{b} = \begin{pmatrix} 2\\1\\3 \end{pmatrix}. \tag{3.1.42.1}$$

43. Find a unit vector in the direction of

$$\begin{pmatrix} 1 \\ 1 \\ -2 \end{pmatrix}. \tag{3.1.43.1}$$

44. Find the direction vector of PQ, where

$$\mathbf{P} = \begin{pmatrix} 2 \\ 3 \\ 0 \end{pmatrix}, \mathbf{Q} = \begin{pmatrix} -1 \\ -2 \\ -4 \end{pmatrix} \tag{3.1.44.1}$$

45. If

$$\mathbf{P} = 3\mathbf{a} - 2\mathbf{b} \tag{3.1.45.1}$$

$$\mathbf{Q} = \mathbf{a} + \mathbf{b} \tag{3.1.45.2}$$

find \mathbf{R} , which divides PQ

- a) internally,
- b) externally.
- 46. Find the angle between two vectors **a** and **b** where

$$\|\mathbf{a}\| = 1, \|\mathbf{b}\| = 2, \mathbf{a}^T \mathbf{b} = 1.$$
 (3.1.46.1)

47. Find the angle between the vectors $\mathbf{a} = \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}$

and
$$\mathbf{b} = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$$
.

48. If $\mathbf{a} = \begin{pmatrix} 5 \\ -1 \\ -3 \end{pmatrix}$ and $\mathbf{b} = \begin{pmatrix} 1 \\ 3 \\ -5 \end{pmatrix}$, then show that the

vectors $\mathbf{a} + \mathbf{b}$ and $\mathbf{a} - \mathbf{b}$ are perpendicular.

49. Find the projection of the vector

$$\mathbf{a} = \begin{pmatrix} 2\\3\\2 \end{pmatrix} \tag{3.1.49.1}$$

on the vector

$$\begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$$
. (3.1.49.2)

50. Find $\|{\bf a} - {\bf b}\|$, if

$$\|\mathbf{a}\| = 2, \|\mathbf{b}\| = 3, \mathbf{a}^T \mathbf{b} = 4.$$
 (3.1.50.1)

51. If a is a unit vector and

$$(\mathbf{x} - \mathbf{a})(\mathbf{x} + \mathbf{a}) = 8,$$
 (3.1.51.1)

then find x.

52. Given

$$\mathbf{a} = \begin{pmatrix} 2\\1\\3 \end{pmatrix}, \mathbf{b} = \begin{pmatrix} 3\\5\\-2 \end{pmatrix}, \tag{3.1.52.1}$$

find $\|\mathbf{a} \times \mathbf{b}\|$.

53. Find a unit vector perpendicular to each of the

vectors $\mathbf{a} + \mathbf{b}$ and $\mathbf{a} - \mathbf{b}$, where

$$\mathbf{a} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \mathbf{b} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}. \tag{3.1.53.1}$$

54. Show that
$$\mathbf{A} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \mathbf{B} = \begin{pmatrix} 2 \\ 5 \\ 0 \end{pmatrix}, \mathbf{C} = \begin{pmatrix} 3 \\ 2 \\ -3 \end{pmatrix}$$
 and

$$\mathbf{D} = \begin{pmatrix} 1 \\ -6 \\ -1 \end{pmatrix}, \text{ are collinear.}$$

- 55. Let $\|\mathbf{a}\| = 3$, $\|\mathbf{b}\| = 4$, $\|\mathbf{c}\| = 5$ such that each vector is perpendicular to the other two. Find $\|\mathbf{a} + \mathbf{b} + \mathbf{c}\|$.
- 56. Given

$$\mathbf{a} + \mathbf{b} + \mathbf{c} = \mathbf{0},$$
 (3.1.56.1)

evaluate

$$\mathbf{a}^T \mathbf{b} + \mathbf{b}^T \mathbf{c} + \mathbf{c}^T \mathbf{a}, \tag{3.1.56.2}$$

given that $||\mathbf{a}|| = 3$, $||\mathbf{b}|| = 4$ and $||\mathbf{c}|| = 2$.

57. Let
$$\alpha = \begin{pmatrix} 3 \\ -1 \\ 0 \end{pmatrix}$$
, $\beta = \begin{pmatrix} 2 \\ 1 \\ -3 \end{pmatrix}$. Find β_1, β_2 such that $\beta = \beta_1 + \beta_2, \beta_1 \parallel \alpha$ and $\beta_2 \perp \alpha$.

- 58. Find a unit vector that makes an angle of 90°, 60° and 30° with the positive x, y and z axis respectively.
- 59. Find a unit vector in the direction of $\begin{pmatrix} 2 \\ -1 \\ -2 \end{pmatrix}$.
- 60. Find a unit vector in the direction of the line passing through $\begin{pmatrix} -2\\4\\-5 \end{pmatrix}$ and $\begin{pmatrix} 1\\2\\3 \end{pmatrix}$.
- 61. Show that $\mathbf{A} = \begin{pmatrix} 2 \\ 3 \\ -4 \end{pmatrix}$, $\mathbf{B} = \begin{pmatrix} 1 \\ -2 \\ 3 \end{pmatrix}$ and $\mathbf{C} = \begin{pmatrix} 3 \\ 8 \\ -11 \end{pmatrix}$ are collinear.
- 62. Find the equation of a line through the point $\begin{pmatrix} 5 \\ 2 \\ -4 \end{pmatrix}$ and parallel to the vector $\begin{pmatrix} 3 \\ 2 \\ -8 \end{pmatrix}$.
- 63. Find the equation of a line passing through the points $\begin{pmatrix} -1\\0\\2 \end{pmatrix}$ and $\begin{pmatrix} 3\\4\\6 \end{pmatrix}$.

64. If

$$\frac{x+3}{2} = \frac{y-5}{4} = \frac{z+6}{2},$$
 (3.1.64.1)

find the equation of the line.

65. Find the angle between the pair of lines given by

$$\mathbf{x} = \begin{pmatrix} 3 \\ 2 \\ -4 \end{pmatrix} + \lambda_1 \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix} \tag{3.1.65.1}$$

$$\mathbf{x} = \begin{pmatrix} 5 \\ -2 \\ 0 \end{pmatrix} + \lambda_2 \begin{pmatrix} 3 \\ 2 \\ 6 \end{pmatrix} \tag{3.1.65.2}$$

66. Find the angle between the pair of lines

$$\frac{x+3}{3} = \frac{y-1}{5} = \frac{z+3}{4},$$
 (3.1.66.1)

$$\frac{x+1}{1} = \frac{y-4}{1} = \frac{z-5}{2} \tag{3.1.66.2}$$

67. Find the shortest distance between the lines

$$L_1: \quad \mathbf{x} = \begin{pmatrix} 1\\1\\0 \end{pmatrix} + \lambda_1 \begin{pmatrix} 2\\-1\\1 \end{pmatrix}$$
 (3.1.67.1)

$$L_2: \quad \mathbf{x} = \begin{pmatrix} 2\\1\\-1 \end{pmatrix} + \lambda_2 \begin{pmatrix} 3\\-5\\2 \end{pmatrix}$$
 (3.1.67.2)

68. Find the distance between the lines

$$L_1: \quad \mathbf{x} = \begin{pmatrix} 1\\2\\-4 \end{pmatrix} + \lambda_1 \begin{pmatrix} 2\\3\\6 \end{pmatrix}$$
 (3.1.68.1)

$$L_2: \quad \mathbf{x} = \begin{pmatrix} 3\\3\\-5 \end{pmatrix} + \lambda_2 \begin{pmatrix} 2\\3\\6 \end{pmatrix}$$
 (3.1.68.2)

69. Find the equation of a plane which is at a distance of $\frac{6}{\sqrt{29}}$ from the origin and has normal

vector
$$\begin{pmatrix} 2 \\ -3 \\ 4 \end{pmatrix}$$
.

70. Find the unit normal vector of the plane

$$(6 -3 -2)x = 1.$$
 (3.1.70.1)

71. Find the distance of the plane

$$(2 -3 4)x - 6 = 0$$
 (3.1.71.1)

from the origin.

72. Find the coordinates of the foot of the perpen-

dicular drawn from the origin to the plane

$$(2 -3 4)x - 6 = 0$$
 (3.1.72.1)

73. Find the equation of the plane which passes through the point $\begin{pmatrix} 5\\2\\-4 \end{pmatrix}$ and perpendicular to

the line with direction vector $\begin{pmatrix} 2 \\ 3 \\ -1 \end{pmatrix}$.

74. Find the equation of the plane passing through $\mathbf{R} = \begin{pmatrix} 2 \\ 5 \\ -3 \end{pmatrix}, \mathbf{S} = \begin{pmatrix} -2 \\ -3 \\ 5 \end{pmatrix} \text{ and } \mathbf{T} = \begin{pmatrix} 5 \\ 3 \\ -3 \end{pmatrix}.$

- 75. Find the equation of the plane with intercepts 2, 3 and 4 on the x, y and z axis respectively.
- 76. Find the equation of the plane passing through the intersection of the planes

$$(1 \quad 1 \quad 1)x = 6 \tag{3.1.76.1}$$

$$(1 \ 1 \ 1)x = 6$$
 (3.1.76.1)
 $(2 \ 3 \ 4)x = -5$ (3.1.76.2)

and the point $\begin{pmatrix} 1\\1\\1 \end{pmatrix}$.

77. Show that the lines

$$\frac{x+3}{-3} = \frac{y-1}{1} = \frac{z-5}{5},$$
 (3.1.77.1)

$$\frac{x+1}{-1} = \frac{y-2}{2} = \frac{z-5}{5} \tag{3.1.77.2}$$

are coplanar.

78. Find the angle between the two planes

$$(2 \quad 1 \quad -2)x = 5 \tag{3.1.78.1}$$

$$(3 -6 -2)x = 7. (3.1.78.2)$$

79. Find the angle between the two planes

$$(2 \ 2 \ -2)x = 5$$
 (3.1.79.1)
 $(3 \ -6 \ 2)x = 7$. (3.1.79.2)

$$(3 -6 2)x = 7. (3.1.79.2)$$

Find the distance of a point $\begin{pmatrix} 2 \\ 5 \\ -3 \end{pmatrix}$ from the plane

$$(6 -3 2)x = 4 (3.1.79.3)$$

Find the angle between the line

$$\frac{x+1}{2} = \frac{y}{3} = \frac{z-3}{6} \tag{3.1.79.4}$$

and the plane

$$(10 \ 2 \ -11)x = 3 \tag{3.1.79.5}$$

80. Find the equation of the plane that contains the point $\begin{bmatrix} -1\\2 \end{bmatrix}$ and is perpedicular to each of the

$$(2 \ 3 \ -2)x = 5$$
 (3.1.80.1)
 $(1 \ 2 \ -3)x = 8$ (3.1.80.2)

$$(1 \quad 2 \quad -3)x = 8$$
 (3.1.80.2)

- 81. Find the distance between the point $P = \begin{bmatrix} 0 \\ 5 \end{bmatrix}$ and the plane determined by the points A = $\begin{pmatrix} 3 \\ -1 \\ 2 \end{pmatrix}, \mathbf{B} = \begin{pmatrix} 5 \\ 2 \\ 4 \end{pmatrix} \text{ and } \mathbf{C} = \begin{pmatrix} -1 \\ -1 \\ 6 \end{pmatrix}.$
- 82. Find the coordinates of the point where the lines through the points $\mathbf{A} = \begin{pmatrix} 3 \\ 4 \\ 1 \end{pmatrix}, \mathbf{B} = \begin{pmatrix} 5 \\ 1 \\ 6 \end{pmatrix}$ crosses the XY plane.
- 3.2 Points and Vectors
 - 1. Find the distance between the following pairs of points

$$\binom{2}{3}, \binom{4}{1} \tag{3.2.1.1}$$

b)

$$\begin{pmatrix} -5\\7 \end{pmatrix}, \begin{pmatrix} -1\\3 \end{pmatrix} \tag{3.2.1.2}$$

c)

$$\binom{a}{b}, \binom{-1}{b} \tag{3.2.1.3}$$

2. Find the distance between the points

$$\begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 36 \\ 15 \end{pmatrix} \tag{3.2.2.1}$$

3. A town B is located 36km east and 15 km north of the town A. How would you find

the distance from town A to town B without actually measuring it?

4. Name the type of quadrilateral formed, if any, by the following points, and give reasons for your answer.

a)

$$\begin{pmatrix} -1 \\ -2 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} -1 \\ 2 \end{pmatrix}, \begin{pmatrix} -3 \\ 0 \end{pmatrix}$$
 (3.2.4.1)

b)

$$\begin{pmatrix} -3\\5 \end{pmatrix}, \begin{pmatrix} 3\\1 \end{pmatrix}, \begin{pmatrix} 0\\3 \end{pmatrix}, \begin{pmatrix} -1\\-4 \end{pmatrix}$$
 (3.2.4.2)

c)

$$\binom{4}{5}, \binom{7}{6},$$
 (3.2.4.3)

$$\begin{pmatrix} 4 \\ 3 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \end{pmatrix} \tag{3.2.4.4}$$

- 5. Find the angle between the x-axis and the line joining the points $\begin{pmatrix} 3 \\ -1 \end{pmatrix}$ and $\begin{pmatrix} 4 \\ -2 \end{pmatrix}$.
- 6. Find the point on the x-axis which is equidistant from

$$\begin{pmatrix} 2 \\ -5 \end{pmatrix}, \begin{pmatrix} -2 \\ 9 \end{pmatrix}, \tag{3.2.6.1}$$

7. Find the values of *y* for which the distance between the points

$$\mathbf{P} = \begin{pmatrix} 2 \\ -3 \end{pmatrix}, \mathbf{Q} = \begin{pmatrix} 10 \\ y \end{pmatrix} \tag{3.2.7.1}$$

is 10 units.

8. Show that each of the given three vectors is a unit vector

$$\frac{1}{7} \begin{pmatrix} 2\\3\\6 \end{pmatrix}, \frac{1}{7} \begin{pmatrix} 3\\-6\\2 \end{pmatrix}, \frac{1}{7} \begin{pmatrix} 6\\2\\-3 \end{pmatrix}. \tag{3.2.8.1}$$

Also, show that they are mutually perpendicular to each other.

9. For

$$\mathbf{a} = \begin{pmatrix} 2\\2\\3 \end{pmatrix}, \mathbf{b} = \begin{pmatrix} -1\\2\\1 \end{pmatrix}, \mathbf{c} = \begin{pmatrix} 3\\1\\0 \end{pmatrix}, \tag{3.2.9.1}$$

 $(\mathbf{a} + \lambda \mathbf{b}) \perp \mathbf{c}$. Find λ .

10. Find $\mathbf{a} \times \mathbf{b}$ if

$$\mathbf{a} = \begin{pmatrix} 1 \\ -7 \\ 7 \end{pmatrix}, \mathbf{b} = \begin{pmatrix} 3 \\ -2 \\ 2 \end{pmatrix}. \tag{3.2.10.1}$$

11. Find a unit vector perpendicular to each of the vectors $\mathbf{a} + \mathbf{b}$ and $\mathbf{a} - \mathbf{b}$, where

$$\mathbf{a} = \begin{pmatrix} 3 \\ 2 \\ 2 \end{pmatrix}, \mathbf{b} = \begin{pmatrix} 1 \\ 2 \\ -2 \end{pmatrix}. \tag{3.2.11.1}$$

12. If $\mathbf{a} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$, $\mathbf{b} = \begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix}$, $\mathbf{c} = \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}$, find a unit vector parallel to the vector $2\mathbf{a} - \mathbf{b} + 3\mathbf{c}$.

13. Find a vector of magnitude 5 units, and parallel to the resultant of the vectors $\mathbf{a} = \begin{pmatrix} 2 \\ 3 \\ -1 \end{pmatrix}$, $\mathbf{b} = \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}$,

- 14. Show that the unit direction vector inclined equally to the coordinate axes is $\begin{pmatrix} \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{2}} \end{pmatrix}$.
- 15. Let $\mathbf{a} = \begin{pmatrix} 1 \\ 4 \\ 2 \end{pmatrix}$, $\mathbf{b} = \begin{pmatrix} 3 \\ -2 \\ 7 \end{pmatrix}$ and $\mathbf{c} = \begin{pmatrix} 2 \\ -1 \\ 4 \end{pmatrix}$. Find a vector \mathbf{d} such that $\mathbf{d} \perp \mathbf{a}$, $\mathbf{d} \perp \mathbf{b}$ and $\mathbf{d}^T \mathbf{c} = 15$.
- 16. The scalar product of $\begin{pmatrix} 1\\1\\1 \end{pmatrix}$ with a unit vector along the sum of the vectors $\begin{pmatrix} 2\\4\\-5 \end{pmatrix}$ and $\begin{pmatrix} \lambda\\2\\3 \end{pmatrix}$ is unity. Find the value of λ .
- 17. The value of

$$\begin{pmatrix}
1 \\ 0 \\ 0
\end{pmatrix}^{T} \begin{pmatrix}
0 \\ 1 \\ 0
\end{pmatrix} \times \begin{pmatrix}
0 \\ 0 \\ 1
\end{pmatrix} + \begin{pmatrix}
0 \\ 1 \\ 0
\end{pmatrix}^{T} \begin{pmatrix}
1 \\ 0 \\ 0
\end{pmatrix} \times \begin{pmatrix}
0 \\ 0 \\ 1
\end{pmatrix} \\
+ \begin{pmatrix}
0 \\ 0 \\ 1
\end{pmatrix}^{T} \begin{pmatrix}
1 \\ 0 \\ 0
\end{pmatrix} \times \begin{pmatrix}
0 \\ 0 \\ 1
\end{pmatrix} \\
+ \begin{pmatrix}
0 \\ 0 \\ 1
\end{pmatrix}^{T} \begin{pmatrix}
1 \\ 0 \\ 0
\end{pmatrix} \times \begin{pmatrix}
0 \\ 1 \\ 0
\end{pmatrix}$$
(3.2.17.1)

is

- 18. Find a unit vector that makes an angle of 90°, 135° and 45° with the positive x, y and z axis respectively.
- 19. Show that the lines with direction vectors $\begin{pmatrix} 12 \\ -3 \\ -4 \end{pmatrix}$
 - $\begin{pmatrix} 4 \\ 12 \\ 3 \end{pmatrix}$ and $\begin{pmatrix} 3 \\ -4 \\ 12 \end{pmatrix}$ are mutually perpendicular.
- 20. Show that the line through the points $\begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}$,
 - $\begin{pmatrix} 3 \\ 4 \\ -2 \end{pmatrix}$ is parallel to the line through the points $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$
 - $\begin{pmatrix} 0 \\ 3 \\ 2 \end{pmatrix}, \begin{pmatrix} 3 \\ 5 \\ 6 \end{pmatrix}$
- 21. Show that the line through the points $\begin{pmatrix} 4 \\ 7 \\ 8 \end{pmatrix}$, $\begin{pmatrix} 2 \\ 3 \\ 4 \end{pmatrix}$ is parallel to the line through the points $\begin{pmatrix} -1 \\ -2 \\ 1 \end{pmatrix}$,

 $\begin{pmatrix} 1 \\ 2 \\ 5 \end{pmatrix}$.

- 22. Find a point on the x-axis, which is equidistant from the points $\binom{7}{6}$ and $\binom{3}{4}$.
- 23. Find the angle between the vectors

$$\begin{pmatrix} 1 \\ -2 \\ 3 \end{pmatrix}, \begin{pmatrix} 3 \\ -2 \\ 1 \end{pmatrix} \tag{3.2.23.1}$$

24. Find the projection of the vector

$$\begin{pmatrix} 1\\3\\7 \end{pmatrix} \tag{3.2.24.1}$$

on the vector

$$\begin{pmatrix} 7 \\ -1 \\ 8 \end{pmatrix} \tag{3.2.24.2}$$

- 25. Write down a unit vector in the xy-plane, makeing an angle of 30° with the positive direction of the x-axis.
- 26. Find the value of x for which $x \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ is a unit

vector.

3.3 Points on a Line

1. Find the coordinates of the point which divides the join of

$$\begin{pmatrix} -1\\7 \end{pmatrix}, = \begin{pmatrix} 4\\-3 \end{pmatrix} \tag{3.3.1.1}$$

in the ratio 2:3.

- 2. Find the coordinates of the points of trisection of the line segment joining $\begin{pmatrix} 4 \\ -1 \end{pmatrix}$ and $\begin{pmatrix} -2 \\ -3 \end{pmatrix}$.
- 3. Find the ratio in which the line segment joining the points $\begin{pmatrix} -3 \\ 10 \end{pmatrix}$ and $\begin{pmatrix} 6 \\ -8 \end{pmatrix}$ is divided by $\begin{pmatrix} -1 \\ 6 \end{pmatrix}$.
- 4. Find the ratio in which the line segment joining $\mathbf{A} = \begin{pmatrix} 1 \\ -5 \end{pmatrix}$, $\mathbf{B} = \begin{pmatrix} -4 \\ 5 \end{pmatrix}$ is divided by the x-axis. Also find the coordinates of the point of division,
- 5. If $\begin{pmatrix} 1 \\ 2 \end{pmatrix}$, $\begin{pmatrix} 4 \\ y \end{pmatrix}$, $\begin{pmatrix} x \\ 6 \end{pmatrix}$ and $\begin{pmatrix} 3 \\ 5 \end{pmatrix}$ are the vertices of a parallelogram taken in order, find x and y.
- 6. If $\mathbf{A} = \begin{pmatrix} -2 \\ -2 \end{pmatrix}$, $\mathbf{B} = \begin{pmatrix} 2 \\ -4 \end{pmatrix}$ respectively, find the coordinates of \mathbf{P} such that $AP = \frac{3}{7}AB$ and \mathbf{P} lies on the line segment AB.
- 7. Find the coordinates of the points which divide the line segment joining $\mathbf{A} = \begin{pmatrix} -2 \\ 2 \end{pmatrix}, \mathbf{B} = \begin{pmatrix} 2 \\ 8 \end{pmatrix}$ into four equal parts.
- 8. Determine if the points

$$\binom{1}{5}, \binom{2}{3}, \binom{-2}{-11}$$
 (3.3.8.1)

are collinear.

- 9. By using the concept of equation of a line, prove that the three points $\begin{pmatrix} 3 \\ 0 \end{pmatrix}$, $\begin{pmatrix} -2 \\ -2 \end{pmatrix}$ and $\begin{pmatrix} 8 \\ 2 \end{pmatrix}$ are collinear.
- 10. Find the value of x for which the points $\begin{pmatrix} x \\ -1 \end{pmatrix}$, $\begin{pmatrix} 2 \\ 1 \end{pmatrix}$ and $\begin{pmatrix} 4 \\ 5 \end{pmatrix}$ are collinear.
- 11. In each of the following, find the value of *k* for which the points are collinear
 - a) $\binom{7}{-2}$, $\binom{5}{1}$, $\binom{3}{k}$ b) $\binom{8}{1}$, $\binom{k}{-4}$, $\binom{2}{-5}$

- 12. Find a condition on x such that the points \mathbf{x} , $\begin{pmatrix} 1 \\ 2 \end{pmatrix} \begin{pmatrix} 7 \\ 0 \end{pmatrix}$ are collinear.
- 13. Show that the points $\mathbf{A} = \begin{pmatrix} 1 \\ 2 \\ 7 \end{pmatrix}, \mathbf{B} = \begin{pmatrix} 2 \\ 6 \\ 3 \end{pmatrix}$ and $\mathbf{C} = \begin{pmatrix} 3 \\ 10 \\ -1 \end{pmatrix}$ are collinear.
- 14. Show that the points $\mathbf{A} = \begin{pmatrix} 1 \\ -2 \\ 8 \end{pmatrix}$, $\mathbf{B} = \begin{pmatrix} 5 \\ 0 \\ -2 \end{pmatrix}$ and

 $\mathbf{C} = \begin{pmatrix} 11\\3\\7 \end{pmatrix}$ are collinear, and find the ratio in

which \mathbf{B} divides AC. 15. Show that $\mathbf{A} = \begin{pmatrix} 2 \\ 3 \\ 4 \end{pmatrix}$, $\mathbf{B} = \begin{pmatrix} -1 \\ -2 \\ 1 \end{pmatrix}$ and $\mathbf{C} = \begin{pmatrix} 5 \\ 8 \\ 7 \end{pmatrix}$ are collinear.

3.4 Lines and Planes

- 1. Find the slope of a line, which passes through the origin, and the mid-point of the line segment joining the points $\mathbf{P} = \begin{pmatrix} 0 \\ -4 \end{pmatrix}$ and $\mathbf{B} = \begin{pmatrix} 8 \\ 0 \end{pmatrix}$.
- 2. The slope of a line is double of the slope of another line. If the tangent of the angle between them is $\frac{1}{3}$, find the slopes of the lines.
- 3. Find the slope of the line, which makes an angle of 30° of y-axis measured anticlockwise.
- 4. Write the equations for the x and y axes.
- 5. Find the equation of the line satisfying the following conditions
 - a) passing through the point $\binom{-4}{3}$ with slope $\frac{1}{2}$.
 - b) passing through the point $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$ with slope m.
 - c) passing through the point $\binom{2}{2\sqrt{3}}$ and inclined with the x-axis at an angle of 75°.
 - d) Intersecting the x-axis at a distance of 3 units to the let of the origin with slope -2.
 - e) intersecting the y-axis at a distance of 2 units above the origin and making an angle of 30° with the positive direction of the x-axis.
 - f) passing through the points
 - g) perpendicular distance from the origin is 5 and the angle made by the perpendicular

with the positive x-axis is 30°.

- 6. Find the equation of the line passing through $\binom{-3}{5}$ and perpendicular to the line through the points $\binom{2}{5}$ and $\binom{-3}{6}$.
- 7. Find the direction vectors and and y-intercepts of the following lines
 - a) $(1 \ 7) \mathbf{x} = 0$.
- 8. Find the intercepts of the following lines on the axes.
 - a) $(3 \ 2) \mathbf{x} = 12$.
 - b) $(4 -3)\mathbf{x} = 6$ c) $(3 \ 2)\mathbf{x} = 0$.
- 9. Find the perpendicular distances of the following lines from the origin and angle between the perpendicular and the positive x-axis.
 - a) $(1 \sqrt{3})x = -8$.
 - b) $(0 \ 1) \mathbf{x} = 2$.
 - c) (1 -1)x = 4.
- 10. Find the distance of the point $\begin{pmatrix} 1 \\ -1 \end{pmatrix}$ from the line (12 -5)x = -82.
- 11. Find the points on the x-axis, whose distances from the line

$$(4 \ 3)\mathbf{x} = 12 \tag{3.4.11.1}$$

are 4 units.

12. Find the distance between the parallel lines

$$(15 \ 8)\mathbf{x} = 34 \tag{3.4.12.1}$$

$$(15 \quad 8) \mathbf{x} = -31$$
 (3.4.12.2)

13. Find the equation of the line parallel to the line

$$(3 -4)\mathbf{x} = -2 \tag{3.4.13.1}$$

and passing through the point $\binom{-2}{3}$.

14. Find the equation of a line perpendicular to the line

$$(1 -7)\mathbf{x} = -5$$
 (3.4.14.1)

and having x intercept 3.

15. Find angles between the lines

$$(\sqrt{3} \ 1)\mathbf{x} = 1$$
 (3.4.15.1)
 $(1 \ \sqrt{3})\mathbf{x} = 1$ (3.4.15.2)

$$(1 \quad \sqrt{3}) \mathbf{x} = 1 \tag{3.4.15.2}$$

16. The line through the points $\binom{h}{3}$ and $\binom{4}{1}$ intersects the line

$$(7 -9)\mathbf{x} = 19$$
 (3.4.16.1)

at right angle. Find the value of h.

- 17. Two lines passing through the point $\binom{2}{3}$ intersect each other at angle of 60°. If the slope of one line is 2, find the equation of the other line.
- 18. Find the equation of the right bisector of the line segment joining the points $\binom{3}{4}$ and $\binom{-1}{2}$.
- 19. Find the coordinates of the foot of the perpendicular from the point $\binom{-1}{3}$ to the line

$$(3 -4)\mathbf{x} = 16. (3.4.19.1)$$

20. The perpendicular from the origin to the line

$$\begin{pmatrix} -m & 1 \end{pmatrix} \mathbf{x} = c \tag{3.4.20.1}$$

meets it at the point $\binom{-1}{2}$. Find the values of m and c.

21. Find θ and p if

$$(\sqrt{3} \ 1)\mathbf{x} = -2 \tag{3.4.21.1}$$

is equivalent to

$$(\cos \theta \quad \sin \theta) \mathbf{x} = p \tag{3.4.21.2}$$

- 22. Find the equations of the lines, which cut-off intercepts on the axes whose sum and product are 1 and -6 respectively.
- 23. Find the equation of the line parallel to the yaxis whose distance from the line

$$(4 3) \mathbf{x} = 12 (3.4.23.1)$$

4 units.

24. Find the equation of the line parallel to the yaxis drawn through the point of intersection of the lines

$$(1 -7)\mathbf{x} = -5 \tag{3.4.24.1}$$

$$(3 1)\mathbf{x} = 0 (3.4.24.2)$$

25. Find the alue of p so that the three lines

$$(3 1) \mathbf{x} = 2 (3.4.25.1)$$

$$(p \quad 2)\mathbf{x} = 3 \tag{3.4.25.2}$$

$$(2 -1)\mathbf{x} = 3 \tag{3.4.25.3}$$

may intersect at one point.

26. Find the equation of the lines through the point $\binom{3}{2}$ which make an angle of 45° with the line

$$(1 -2)\mathbf{x} = 3. (3.4.26.1)$$

27. Find the equation of the line passing through the point of intersection of the lines

$$(4 7)\mathbf{x} = 3$$
 (3.4.27.1)
 $(2 -3)\mathbf{x} = -1$ (3.4.27.2)

$$(2 -3)\mathbf{x} = -1$$
 (3.4.27.2)

that has equal intercepts on the axes.

28. In what ratio is the line joining $\begin{pmatrix} -1\\1 \end{pmatrix}$ and $\begin{pmatrix} 5\\7 \end{pmatrix}$ divided by the line

$$(1 \quad 1)\mathbf{x} = 4 \tag{3.4.28.1}$$

29. Find the distance of the line

$$(4 7)\mathbf{x} = -5 (3.4.29.1)$$

from the point $\binom{1}{2}$ along the line

$$(2 -1)\mathbf{x} = 0. (3.4.29.2)$$

30. Find the direction in which a straight line must be drawn through the point $\binom{-1}{2}$ so that its point of intersection with the line

$$(1 \quad 1)\mathbf{x} = 4 \tag{3.4.30.1}$$

may be at a distance of 3 units from this point.

- 31. The hypotenuse of a right angled triangle has its ends at the points $\begin{pmatrix} 1 \\ 3 \end{pmatrix}$ and $\begin{pmatrix} -4 \\ 1 \end{pmatrix}$. Find an equation of the legs of the triangle.
- 32. Find the image of the point $\binom{3}{8}$ with respect to

the line

$$\begin{pmatrix} 1 & 3 \end{pmatrix} \mathbf{x} = 7 \tag{3.4.32.1}$$

assuming the line to be a plane mirror.

33. If the lines

$$(-3 \quad 1)\mathbf{x} = 1$$
 (3.4.33.1)

$$(-1 \quad 2)\mathbf{x} = 3$$
 (3.4.33.2)

are equally inclined to the line

$$\begin{pmatrix} -m & 1 \end{pmatrix} \mathbf{x} = 4, \tag{3.4.33.3}$$

find the value of m.

34. The sum of the perpendicular distances of a variable point **P** from the lines

$$(1 \quad 1)\mathbf{x} = 0 \tag{3.4.34.1}$$

$$(1 1)\mathbf{x} = 0$$
 (3.4.34.1)
 $(3 -2)\mathbf{x} = -7$ (3.4.34.2)

is always 10. Show that **P** must move on a line.

35. Find the equation of the line which is equidistant from parallel lines

$$(9 \ 7) \mathbf{x} = 7 \tag{3.4.35.1}$$

$$(9 7)\mathbf{x} = 7$$
 (3.4.35.1)
 $(3 2)\mathbf{x} = -6.$ (3.4.35.2)

- 36. A ray of light passing through the point $\begin{pmatrix} 1 \\ 2 \end{pmatrix}$ reflects on the x-axis at point A and the reflected ray passes through the point $\binom{5}{3}$. Find the coordinates of **A**.
- 37. A person standing at the junction of two straight paths represented by the equations

$$(2 -3)\mathbf{x} = 4$$
 (3.4.37.1)

$$(2 -3)\mathbf{x} = 4$$
 (3.4.37.1)
 $(3 \ 4)\mathbf{x} = 5$ (3.4.37.2)

wants to reach the path whose equation is

$$(6 -7)\mathbf{x} = -8 \qquad (3.4.37.3)$$

in the least time. Find the equation of the path that he should follow.

38. Determine the ratio in which the line

$$(2 \quad 1)\mathbf{x} - 4 = 0 \qquad (3.4.38.1)$$

divides the line segment joining the points A =

39. À line perpendicular to the line segment joining

- the points $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ and $\begin{pmatrix} 2 \\ 3 \end{pmatrix}$ divides it in the ratio 1 : n. Find the equation of the line.
- 40. Find the equation of a line that cuts off equal intercepts on the coordinate axes and passes through the point $\binom{2}{3}$
- 41. Find the equation of the line passing through the point $\binom{2}{2}$ and cutting off intercepts on the axes whose sum is 9.
- 42. Find the equation of the line through the point $\binom{0}{2}$ making an angle $\frac{2\pi}{3}$ with the positive x-axis. Also, find the equation of the line parallel to it and crossing the y-axis at a distance of 2 units below the origin.
- 43. The perpendicular from the origin to a line meets it at a point $\binom{-2}{9}$, find the equation of the line.
- 44. The length L (in cm) of a copper rod is a linear function of its Celsius temperature C. In an experiment, if L = 124.942 when C = 20 and L = 125.134 when C = 110, express L in terms
- 45. The owner of a milk store finds that, he can sell 980 litres of milk each week at Rs 14/litre and 1220 litres of milk each week at Rs 16/litre. Assuming a linear relationship between selling price and demand, how many litres could he sell weekly at Rs 17/litre?
- 46. Find the equation of a line which passes through the point $\begin{pmatrix} 1\\2\\3 \end{pmatrix}$ and is parallel to the

vector
$$\begin{pmatrix} 3 \\ 2 \\ -2 \end{pmatrix}$$

- 47. Find the equaion off the line that passes through $\begin{pmatrix} 2 \\ -1 \\ 4 \end{pmatrix}$ and is in the direction $\begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}$.
- 48. Find the equation of the line which passes through the point $\begin{pmatrix} -2\\4\\-5 \end{pmatrix}$ and parallel to the line given by

$$\frac{x+3}{3} = \frac{y-4}{5} = \frac{z+8}{6}.$$
 (3.4.48.1)

49. Find the equation of the line given by

$$\frac{x-5}{3} = \frac{y+4}{7} = \frac{z-6}{2}.$$
 (3.4.49.1)

- 50. Find the equation of the line passing through the origin and the point $\begin{pmatrix} 5 \\ -2 \\ 3 \end{pmatrix}$.
- 51. Find the equation of the line passing through the points $\begin{pmatrix} 3 \\ -2 \\ -5 \end{pmatrix}$, $\begin{pmatrix} 3 \\ -2 \\ 6 \end{pmatrix}$.
- 52. Find the angle between the following pair of lines:

a)

$$L_1: \quad \mathbf{x} = \begin{pmatrix} 2 \\ -5 \\ 1 \end{pmatrix} + \lambda_1 \begin{pmatrix} 3 \\ 2 \\ 6 \end{pmatrix}$$
 (3.4.52.1)

$$L_2: \quad \mathbf{x} = \begin{pmatrix} 7 \\ -6 \\ 0 \end{pmatrix} + \lambda_2 \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}$$
 (3.4.52.2)

b)

$$L_1: \quad \mathbf{x} = \begin{pmatrix} 3 \\ 1 \\ -2 \end{pmatrix} + \lambda_1 \begin{pmatrix} 1 \\ -1 \\ -2 \end{pmatrix}$$
 (3.4.52.3)

$$L_2: \quad \mathbf{x} = \begin{pmatrix} 2 \\ -1 \\ -56 \end{pmatrix} + \lambda_2 \begin{pmatrix} 3 \\ -5 \\ -4 \end{pmatrix} \quad (3.4.52.4)$$

53. Find the angle between the following pair of lines

a)

$$\frac{x-2}{2} = \frac{y-1}{5} = \frac{z+3}{-3},$$
 (3.4.53.1)

$$\frac{x+2}{-1} = \frac{y-4}{8} = \frac{z-5}{4}$$
 (3.4.53.2)

b)

$$\frac{x}{2} = \frac{y}{2} = \frac{z}{1},\tag{3.4.53.3}$$

$$\frac{x-5}{4} = \frac{y-2}{1} = \frac{z-3}{8}$$
 (3.4.53.4)

54. Find the values of p so that the lines

$$\frac{1-x}{3} = \frac{7y-14}{2n} = \frac{z-3}{2},$$
 (3.4.54.1)

$$\frac{7-7x}{3p} = \frac{y-5}{1} = \frac{6-z}{5}$$
 (3.4.54.2)

are at right angles.

55. Show that the lines

$$\frac{x-5}{7} = \frac{y+2}{-5} = \frac{z}{1},$$

$$\frac{x}{1} = \frac{y}{2} = \frac{z}{3}$$
(3.4.55.1)

are perpendicular to each other.

56. Find the shortest distance between the lines

$$L_1: \quad \mathbf{x} = \begin{pmatrix} 1\\2\\1 \end{pmatrix} + \lambda_1 \begin{pmatrix} 1\\-1\\1 \end{pmatrix}$$
 (3.4.56.1)

$$L_2: \quad \mathbf{x} = \begin{pmatrix} 2 \\ -1 \\ -1 \end{pmatrix} + \lambda_2 \begin{pmatrix} 2 \\ 1 \\ 2 \end{pmatrix}$$
 (3.4.56.2)

57. Find the shortest distance between the lines

$$\frac{x+1}{7} = \frac{y+1}{-6} = \frac{z+1}{1},$$
 (3.4.57.1)

$$\frac{x-3}{1} = \frac{y-5}{-2} = \frac{z-7}{1} \tag{3.4.57.2}$$

58. Find the shortest distance between the lines

$$L_1: \quad \boldsymbol{x} = \begin{pmatrix} 1\\2\\3 \end{pmatrix} + \lambda_1 \begin{pmatrix} 1\\-3\\2 \end{pmatrix} \tag{3.4.58.1}$$

$$L_2: \quad \mathbf{x} = \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix} + \lambda_2 \begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix}$$
 (3.4.58.2)

59. Find the shortest distance between the lines

$$L_1: \quad \mathbf{x} = \begin{pmatrix} 1-t \\ t-2 \\ 3-2t \end{pmatrix} \tag{3.4.59.1}$$

$$L_2: \quad \mathbf{x} = \begin{pmatrix} s+1\\2s-1\\-2s-1 \end{pmatrix} \tag{3.4.59.2}$$

60. In each of the following cases, determine the normal to the plane and the distance from the origin.

a)
$$(0 \ 0 \ 1) x = 2$$
 c) $(0 \ 5 \ 0) x = -8$
b) $(1 \ 1) x = 1$ d) $(2 \ 3 \ -1) x = 5$

61. Find the equation of a plane which is at a distance of 7 units from the origin and normal

to
$$\begin{pmatrix} 3 \\ 5 \\ -6 \end{pmatrix}$$

62. For the following planes, find the coordinates

of the foot of the perpendicular drawn from the origin

a)
$$(2 \ 3 \ 4) x = 12$$
 c) $(1 \ 1 \ 1) x = 1$
b) $(3 \ 4 \ -6) x = 0$ d) $(0 \ 5 \ 0) x = -8$

- 63. Find the equation of the planes
 - a) that passes through the point $\begin{bmatrix} 0 \\ -2 \end{bmatrix}$ and the normal to the plane is $\begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}$.
 - b) that passes through the point $\begin{bmatrix} 4 \\ 6 \end{bmatrix}$ and the normal vetor the plane is $\begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}$.
- 64. Find the equation of the planes that passes through three points

a)
$$\begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}$$
, $\begin{pmatrix} 6 \\ 4 \\ -5 \end{pmatrix}$, $\begin{pmatrix} -4 \\ -2 \\ 3 \end{pmatrix}$

b)
$$\begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$$
, $\begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$, $\begin{pmatrix} -2 \\ 2 \\ -1 \end{pmatrix}$.

- 65. Find the intercepts cut off by the plane $(2 \ 1 \ 1)x = 5.$
- 66. Find the equaion of the plane with intercept 3 on the y-axis and parallel to ZOX plane.
- 67. Find the equation of the plane through the intersection of the planes (3 -1 2)x = 4 and $\begin{pmatrix} 1 & 1 & 1 \end{pmatrix} x = -2$ and the point $\begin{pmatrix} 2 \\ 2 \\ 1 \end{pmatrix}$.
- 68. Find the equation of the plane passing through the intersection of the planes $(2 \ 2 \ -3)x = 7$ and $\begin{pmatrix} 2 & 5 & 3 \end{pmatrix} x = 9$ and the point $\begin{pmatrix} 2 \\ 1 \\ 2 \end{pmatrix}$.
- 69. Find the equation of the plane through the intersection of the planes $(1 \ 1 \ 1)x = 1$ and $(2 \ 3 \ 4)x = 5$ which is perpendicular to the plane (1 -1 1)x = 0.
- 70. Find the angle between the planes whose equations are $(2 \ 2 \ -3)x = 5$ and $(3 \ -3 \ 5)x =$ 3

71. In the following cases, determine whether the given planes are parallel or perpendicular, and in case they are neither, find the angles between

a)
$$\begin{pmatrix} 7 & 5 & 6 \end{pmatrix} x = -30$$
 and $\begin{pmatrix} 3 & -1 & -10 \end{pmatrix} x =$

b)
$$(2 \ 1 \ 3)x = 2$$
 and $(1 \ -2 \ 5)x = 0$

c)
$$(2 -2 \ 4)x = -5$$
 and $(3 -3 \ 6)x = 1$

c)
$$(2 -2 \ 4)x = -5$$
 and $(3 -3 \ 6)x = 1$
d) $(2 -1 \ 3)x = 1$ and $(2 -1 \ 3)x = -3$
e) $(4 \ 8 \ 1)x = 8$ and $(0 \ 1 \ 1)x = 4$

e)
$$(4 \ 8 \ 1)x = 8$$
 and $(0 \ 1 \ 1)x = 4$

72. In the following cases, find the distance of each of the given points from the corresponding plane.

Item	Point	Plane
a)	$\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$	(3 -4 12)x = 3
b)	$\begin{pmatrix} 3 \\ -2 \\ 1 \end{pmatrix}$	(2 -1 2)x = -3
c)	$\begin{pmatrix} 2 \\ 3 \\ -5 \end{pmatrix}$	
d)	$ \begin{pmatrix} -6 \\ 0 \\ 0 \end{pmatrix} $	(2 -3 6)x = 2

TABLE 3.4.72

73. Show that the line joining the origin to the point $\begin{bmatrix} 1\\1 \end{bmatrix}$ is perpendicular to the line deter-

mined by the points
$$\begin{pmatrix} 3 \\ 5 \\ -1 \end{pmatrix}$$
, $\begin{pmatrix} 4 \\ 3 \\ -1 \end{pmatrix}$.

- 74. If the coordinates of the points A, B, C, D be , 9, then find the angle between the lines AB and CD.
- 75. If the lines

$$\frac{x-1}{-3} = \frac{y-2}{2k} = \frac{z-3}{2},$$
 (3.4.75.1)

$$\frac{x-3}{3k} = \frac{y-1}{1} = \frac{z-6}{-5},$$
 (3.4.75.2)

find the value of k.

76. Find the equation of the line passing through and perpendicular to the plane

$$(1 \quad 2 \quad -5)x = -9 \tag{3.4.76.1}$$

77. Find the shortest distance between the lines

$$\mathbf{x} = \begin{pmatrix} 6 \\ 2 \\ 2 \end{pmatrix} + \lambda_1 \begin{pmatrix} 1 \\ -2 \\ 2 \end{pmatrix} \text{ and } (3.4.77.1)$$

$$\mathbf{x} = \begin{pmatrix} -4\\0\\-1 \end{pmatrix} + \lambda_2 \begin{pmatrix} 3\\-2\\-2 \end{pmatrix}$$
 (3.4.77.2)

- 78. Find the coordinates of the point where the line through $\begin{pmatrix} 5 \\ 1 \\ 6 \end{pmatrix}$ and $\begin{pmatrix} 3 \\ 4 \\ 1 \end{pmatrix}$ crosses the YZ-plane.
- 79. Find the coordinates of the point where the line through $\begin{pmatrix} 5\\1\\6 \end{pmatrix}$ and $\begin{pmatrix} 3\\4\\1 \end{pmatrix}$ crosses the ZX-plane.
- 80. Find the coordinates of the point where the line through $\begin{pmatrix} 3 \\ -4 \\ -5 \end{pmatrix}$ and $\begin{pmatrix} -3 \\ 1 \end{pmatrix}$ crosses the plane

$$(2 \ 1 \ 1)x = 7 \tag{3.4.80.1}$$

81. Find the equation of the plane passing through the point $\begin{pmatrix} -1\\3\\2 \end{pmatrix}$ and perpendicular to each of the planes

$$(1 \ 2 \ 3)x = 5 \tag{3.4.81.1}$$

$$(3 \ 3 \ 1)x = 0 \tag{3.4.81.2}$$

82. If the points $\begin{pmatrix} 1\\1\\p \end{pmatrix}$ and $\begin{pmatrix} -3\\0\\1 \end{pmatrix}$ be equidistant from the plane

$$(3 \ 4 \ -12)x = -13,$$
 (3.4.82.1)

then find the value of p.

83. Find the equation of the plane passing through the line of intersection of the planes

$$(1 \ 1 \ 1)x = 1 \text{ and } (3.4.83.1)$$

$$(1 \ 1 \ 1)x = 1 \text{ and}$$
 (3.4.83.1)
 $(2 \ 3 \ -1)x = -4$ (3.4.83.2)

and parallel to the x-axis.

- 84. If **O** be the origin and the coordinates of **P** be $\begin{bmatrix} 2 \\ 3 \end{bmatrix}$, then find the equation of the plane passing through \mathbf{P} and perpendicular to OP.
- 85. Find the equation of the plane which contains the line of intersection of the planes

$$(1 \ 2 \ 3)x = 4 \tag{3.4.85.1}$$

$$(1 \ 2 \ 3)x = 4$$
 (3.4.85.1)
 $(2 \ 1 \ -1)x = -5$ (3.4.85.2)

and which is perpendicular to the plane

$$(5 \quad 3 \quad -6) x = -8 \tag{3.4.85.3}$$

86. Find the distance of the point $\begin{pmatrix} -1 \\ -5 \\ -10 \end{pmatrix}$ from the point of intersection of the line

$$\mathbf{x} = \begin{pmatrix} 2 \\ -1 \\ 2 \end{pmatrix} + \lambda \begin{pmatrix} 3 \\ 4 \\ 2 \end{pmatrix} \tag{3.4.86.1}$$

and the plane

$$(1 -1 1)x = 5$$
 (3.4.86.2)

87. Find the vector equation of the line passing through $\begin{pmatrix} 1\\2\\3 \end{pmatrix}$ and parallel to the planes

$$(1 -1 2)x = 5$$
 (3.4.87.1)
 $(3 1 1)x = 6$ (3.4.87.2)

$$(3 \quad 1 \quad 1) x = 6$$
 (3.4.87.2)

88. Find the vector equation of the line passing through the point $\begin{pmatrix} 1\\2\\-4 \end{pmatrix}$ and perpendicular to the two lines

$$\frac{x-8}{3} = \frac{y+19}{-16} = \frac{z-10}{7},$$
 (3.4.88.1)

$$\frac{x-15}{3} = \frac{y-29}{8} = \frac{z-5}{-5}$$
 (3.4.88.2)

89. Distance between the two planes

$$(2 \ 3 \ 4) x = 4$$
 (3.4.89.1)
 $(4 \ 6 \ 8) x = 12$ (3.4.89.2)

a) 2

d)
$$\frac{2}{\sqrt{29}}$$

90. The planes

$$(2 -1 4)x = 5 (3.4.90.1)$$

$$\left(5 - \frac{5}{2} \quad 10\right) x = 6 \tag{3.4.90.2}$$

are

- a) Perpendicular b) Parallel
- d) passes through $\begin{bmatrix} 0 \\ 0 \\ \frac{5}{2} \end{bmatrix}$
- c) intersect y-axis

3.5 Miscellaneous

- 1. The base of an equilateral triangle with side 2a lies along the y-axis such that the mid-point of the base is at the origin. Find vertices of the triangle.
- 2. Find the distance between $\mathbf{P} = \begin{pmatrix} x_1 \\ y_1 \end{pmatrix}$ and $\mathbf{Q} = \mathbf{Q}$ $\begin{pmatrix} x_2 \\ y_2 \end{pmatrix}$ when
 - a) PQ is parallel to the y-axis.
 - b) PQ is parallel to the x-axis.
- 3. If three points $\begin{pmatrix} h \\ 0 \end{pmatrix}$, $\begin{pmatrix} a \\ b \end{pmatrix}$ and $\begin{pmatrix} 0 \\ k \end{pmatrix}$ lie on a line,
- 4. $\mathbf{P} = \begin{pmatrix} a \\ b \end{pmatrix}$ is the mid-point of a line segment between axes. Show that equation of the line is

$$\left(\frac{1}{a} \quad \frac{1}{b}\right)\mathbf{x} = 2 \tag{3.5.4.1}$$

- 5. Point $\mathbf{R} = \begin{pmatrix} h \\ k \end{pmatrix}$ divides a line segment between the axes in the ratio 1: 2. Find equation of the line.
- 6. Show that two lines

$$(a_1 \ b_1)\mathbf{x} + c_1 = 0$$
 (3.5.6.1)

$$(a_2 \ b_2)\mathbf{x} + c_2 = 0$$
 (3.5.6.2)

- a) parallel if $\frac{a_1}{b_1} = \frac{a_2}{b_2}$ and b) perpendicular if $a_1a_2 b_1b_2 = 0$.

7. Find the distance between the parallel lines

$$l(1 \quad 1)\mathbf{x} = -p \tag{3.5.7.1}$$

$$l(1 \quad 1)\mathbf{x} = r \tag{3.5.7.2}$$

8. Find th equation of the line through the point \mathbf{x}_1 and parallel to the line

$$(A \quad B)\mathbf{x} = -C \tag{3.5.8.1}$$

9. If p and q are the lengths of perpendiculars from the origin to the lines

$$(\cos \theta \sin \theta) \mathbf{x} = k \cos 2\theta$$
 (3.5.9.1)

$$(\sec \theta \quad \csc \theta) \mathbf{x} = k \tag{3.5.9.2}$$

respectively, prove that $p^2 + 4q^2 = k^2$.

10. If p is the length of the perpendicular from the origin to the line whose intercepts on the axes are a and b, then show that

$$\frac{1}{p^2} = \frac{1}{a^2} + \frac{1}{b^2}. (3.5.10.1)$$

11. Show that the area of the triangle formed by the lines

$$(-m_1 1)\mathbf{x} = c_1 (3.5.11.1)$$

 $(-m_2 1)\mathbf{x} = c_2 (3.5.11.2)$

$$(-m_2 \quad 1)\mathbf{x} = c_2 \tag{3.5.11.2}$$

$$\begin{pmatrix} 1 & 0 \end{pmatrix} \mathbf{x} = 0 \tag{3.5.11.3}$$

is $\frac{(c_1-c_2)^2}{2|m_1-m_2|}$. 12. Find the values of k for which the line

$$(k-3 - (4-k^2))\mathbf{x} + k^2 - 7k + 6 = 0$$
(3.5.12.1)

is

- a) parallel to the x-axis
- b) parallel to the y-axis
- c) passing through the origin.
- 13. Find the perpendicular distance from the origin to the line joining the points $\begin{pmatrix} \cos \theta \\ \sin \theta \end{pmatrix}$ and $(\cos \phi)$
- 14. Find the area of the triangle formed by the lines

$$(1 -1)\mathbf{x} = 0 (3.5.14.1)$$

$$(1 -1)\mathbf{x} = 0$$
 (3.5.14.1)

$$(1 1)\mathbf{x} = 0$$
 (3.5.14.2)

$$(1 0)\mathbf{x} = k$$
 (3.5.14.3)

$$\begin{pmatrix} 1 & 0 \end{pmatrix} \mathbf{x} = k \tag{3.5.14.3}$$

15. If three lines whose equations are

$$(-m_1 1)\mathbf{x} = c_1$$
 (3.5.15.1)
 $(-m_2 1)\mathbf{x} = c_2$ (3.5.15.2)

$$(-m_2 \quad 1)\mathbf{x} = c_2 \tag{3.5.15.2}$$

$$(-m_3 \quad 1)\mathbf{x} = c_3$$
 (3.5.15.3)

are concurrent, show that

$$m_1(c_2 - c_3) + m_2(c_3 - c_1) + m_3(c_1 - c_2) = 0$$
(3.5.15.4)

16. Find the equation of the line passing through the origin and making an angle θ with the line

$$\begin{pmatrix} -m & 1 \end{pmatrix} \mathbf{x} = c \tag{3.5.16.1}$$

17. Prove that the product of the lengths of the perpendiculars drawn from the points $\begin{pmatrix} \sqrt{a^2 - b^2} \\ 0 \end{pmatrix}$

and
$$\begin{pmatrix} \sqrt{a^2 - b^2} \\ 0 \end{pmatrix}$$
 to the line

$$\left(\frac{\cos\theta}{a} \quad \frac{\sin\theta}{b}\right)\mathbf{x} = 1 \tag{3.5.17.1}$$

is b^2 .

18. If $\binom{l_1}{m_1}$ and $\binom{l_2}{m_2}$ are the unit direction vectors $\binom{l_2}{n_1}$ are the shown

of two mutually perpendicular lines, the shown that the unit direction vector of the line perpen-

dicular to both of these is
$$\binom{m_1n_2 - m_2n_1}{n_1l_2 - n_2l_1}$$
.

19. A line makes angles $\alpha, \beta, \gamma, \delta$ with the diagonals of a cube, prove that

$$\cos^{2} \alpha + \cos^{2} \beta + \cos^{2} \gamma + \cos^{2} \delta = \frac{4}{3}.$$
(3.5.19.1)

20. Show that the lines

$$\frac{x-a+d}{\alpha-\delta} = \frac{y-a}{\alpha} = \frac{z-a-d}{\alpha+\delta}, \quad (3.5.20.1)$$

$$\frac{x-b+c}{\beta-\gamma} = \frac{y-b}{\beta} = \frac{z-b-c}{\beta+\gamma}$$
 (3.5.20.2)

are coplanar.

21. Find **R** which divides the line joining the points

$$\mathbf{P} = 2\mathbf{a} + \mathbf{b} \tag{3.5.21.1}$$

$$\mathbf{Q} = \mathbf{a} - \mathbf{b} \tag{3.5.21.2}$$

externally in the ratio 1:2.

22. Find $\|\mathbf{a}\|$ and $\|\mathbf{b}\|$ if

$$(\mathbf{a} + \mathbf{b})^T (\mathbf{a} - \mathbf{b}) = 8 \tag{3.5.22.1}$$

$$\|\mathbf{a}\| = 8 \|\mathbf{b}\|$$
 (3.5.22.2)

23. Evaluate the product

$$(3\mathbf{a} - 5\mathbf{b})^T (2\mathbf{a} + 7\mathbf{b})$$
 (3.5.23.1)

24. Find ||a|| and ||b||, if

$$\|\mathbf{a}\| = \|\mathbf{b}\|,$$
 (3.5.24.1)

$$\mathbf{a}^T \mathbf{b} = \frac{1}{2} \tag{3.5.24.2}$$

and the angle between **a** and **b** is 60°.

25. Show that

$$(\|\mathbf{a}\| \mathbf{b} + \|\mathbf{b}\| \mathbf{a}) \perp (\|\mathbf{a}\| \mathbf{b} - \|\mathbf{b}\| \mathbf{a})$$
 (3.5.25.1)

- 26. If $\mathbf{a}^T \mathbf{a} = 0$ and $\mathbf{ab} = 0$, what can be concluded about the vector **b**?
- 27. If **a**, **b**, **c** are unit vectors such that

$$\mathbf{a} + \mathbf{b} + \mathbf{c} = 0,$$
 (3.5.27.1)

find the value of

$$\mathbf{a}^T \mathbf{b} + \mathbf{b}^T \mathbf{c} + \mathbf{c}^T \mathbf{a}. \tag{3.5.27.2}$$

- 28. If $\mathbf{a} \neq \mathbf{0}$, $\lambda \neq 0$, then $\|\lambda \mathbf{a}\| = 1$ if
 - a) $\lambda = 1$
 - b) $\lambda = -1$
 - c) $\|\mathbf{a}\| = |\lambda|$
 - d) $||\mathbf{a}|| = \frac{1}{|\lambda|}$
- 29. If a unit vector **a** makes angles $\frac{\pi}{3}$ with the xaxis and $\frac{\pi}{4}$ with the y-axis and an acute angle θ with the z-axis, find θ and **a**.
- 30. Show that

$$(\mathbf{a} - \mathbf{b}) \times (\mathbf{a} + \mathbf{b}) = 2 (\mathbf{a} \times \mathbf{b}) \qquad (3.5.30.1)$$

- 31. If $\mathbf{a}^T \mathbf{b} = 0$ and $\mathbf{a} \times \mathbf{b} = 0$, what can you conclude about **a** and **b**?
- 32. Find x if a is a unit vector such that

$$(\mathbf{x} - \mathbf{a})^T (\mathbf{x} + \mathbf{a}) = 12.$$
 (3.5.32.1)

33. If $\|\mathbf{a}\| = 3$, $\|\mathbf{b}\| = \frac{\sqrt{2}}{3}$, then $\mathbf{a} \times \mathbf{b}$ is a unit vector if the angle between **a** and **b** is

$$\frac{\pi}{6}$$

c)
$$\frac{\pi}{3}$$

d)
$$\frac{\pi}{2}$$

34. Prove that

$$(\mathbf{a} + \mathbf{b})^T (\mathbf{a} + \mathbf{b}) = ||\mathbf{a}||^2 + ||\mathbf{b}||^2 \qquad (3.5.34.1)$$

$$\iff \mathbf{a} \perp \mathbf{b}. \qquad (3.5.34.2)$$

- 35. If θ is the angle between two vectors **a** and **b**, then $\mathbf{a}^T \mathbf{b} \ge \text{only when}$

- 36. Let **a** and **b** be two unit vectors and θ be the angle between them. Then $\mathbf{a} + \mathbf{b}$ is a unit vector if

- a) $\theta = \frac{\pi}{4}$ c) $\theta = \frac{\pi}{2}$ b) $\theta = \frac{\pi}{3}$ d) $\theta = \frac{2\pi}{3}$
- 37. If θ is the angle between any two vectors **a** and **b**, then $\|\mathbf{a}^T\mathbf{b}\| = \|\mathbf{a} \times \mathbf{b}\|$ when θ is equal to
 - a) 0

b) $\frac{\pi}{4}$

- d) π .
- 38. Find the angle between the lines whose direction vectors are $\begin{pmatrix} a \\ b \\ c \end{pmatrix}$ and $\begin{pmatrix} b-c \\ c-a \\ a-b \end{pmatrix}$.
- 39. Find the equation of a line parallel to the x-axis and passing through the origin.
- 40. Find the equation of a plane passing through $\begin{bmatrix} b \\ c \end{bmatrix}$ and parallel to the plane

$$(1 \quad 1 \quad 1)x = 2 \tag{3.5.40.1}$$

41. Prove that if a plane has the intercepts a, b, cand is at a distance of p units from the origin, then,

$$\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2} = \frac{1}{p^2}$$
 (3.5.41.1)

4 Circle

- 4.1 Construction Examples
 - 1. Draw a circle with centre **B** and radius 6. If C be a point 10 units away from its centre, construct the pair of tangents AC and CD to the circle.

Solution: The tangent is perpendicular to

the radius. From the given information, in $\triangle ABC$, $AC \perp AB$, a = 10 and c = 6.

$$b = \sqrt{a^2 - c^2} \tag{4.1.1.1}$$

The following code plots Fig. 4.1.1

codes/circle/draw circle eg.py

Fig. 4.1.1

2. Draw a circle of radius 3. Mark any point A on the circle, point **B** inside the circle and point C outside the circle.

Solution: For any angle θ , a point on the circle with radius 3 has coordinates

$$3 \begin{pmatrix} \cos \theta \\ \sin \theta \end{pmatrix} \tag{4.1.2.1}$$

- 4.2 Construction Exercises
- 1. Draw a circle of diameter 6.1
- 2. With the same centre **O**, draw two circles of radii 4 and 2.5
- 3. Draw a circle of radius 3 and any two of its diameters. draw the ends of these diameters. What figure do you get?
- 4. Let **A** and **B** be two circles of equal radii 3 such that each one of them passes through the centre of the other. Let them intersect at **C** and **D**. Is $AB \perp CD$?
- 5. Construct a tangent to a circle of radius 4 units from a point on the concentric circle of radius 6 units.

Solution: Take the centre of both circles to be at the origin.

6. Draw a circle of radius 3 units. Take two points P and O on one of its extended diameter each at a distance of 7 units from its centre. Draw tangents to the circle from these two points **P** and **Q**.

Solution: Take the diameter to be on the *x*axis.

7. Draw a pair of tangents to a circle of radius 5 units which are inclined to each other at an angle of 60°.

Solution: The tangent is perpendicular to the radius.

8. Draw a line segment AB of length 8 units. Taking A as centre, draw a circle of radius 4 units and taking **B** as centre, draw another circle of radius 3 units. Construct tangents to each circle from the centre of the other circle.

Solution: Let

$$\mathbf{A} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \mathbf{B} = \begin{pmatrix} 8 \\ 0 \end{pmatrix}. \tag{4.2.2.1}$$

- 9. Let ABC be a right triangle in which a =8, c = 6 and $\angle B = 90^{\circ}$. BD is the perpendicular from **B** on AC (altitude). The circle through **B**, **C**, **D** (circumcircle of $\triangle BCD$) is drawn. Construct the tangents from A to this circle.
- 10. Draw a circle with centre C and radius 3.4. Draw any chord. Construct the perpendicular bisector of the chord and examine if it passes through C

4.3 Circle Geometry

- 1. Find the coordinates of a point A, where AB is the diameter of a circle whose centre is (2, -3)and $\mathbf{B} = \begin{pmatrix} 1 \\ 4 \end{pmatrix}$.
- Find the centre of a circle passing through the points \$\begin{pmatrix} 6 \\ -6 \end{pmatrix}, \$\begin{pmatrix} 3 \\ -7 \end{pmatrix}\$ and \$\begin{pmatrix} 3 \\ 3 \end{pmatrix}.
 Find the locus of all the unit vectors in the
- xy-plane.