CS C341 / IS C361 Data Structures & Algorithms

SORTING — PERFORMANCE AND APPLICATIONS

Comparative Performance of Algorithms

Lower Bound on Comparison-based Sorting

Sorting without Comparisons

- Bucket Sorting
- Radix Sorting

Why Sort?

Online vs. Offline, Preprocessing.

Dictionary Data Structures

SORTING ALGORITHMS — COMPARISON OF APPROACHES

Feature Algo.	Insertion Sort	Merge Sort	QuickSort
Ordering Principle	Insertion preserves Order	Merging preserves Order	Partition <i>induces</i> Order
Ranking Operation	Comparison	Comparison	Comparison
Positioning Operation	Shift	Сору	Exchange

SORTING — PERFORMANCE COMPARISON

Metric Algo.	Insertion Sort	Merge Sort	QuickSort
Worst Case Time	O(N*N)	O(NlogN)	O(N*N) w. low prob.
Average Case Time	O(N*N)	O(NlogN)	O(NlogN) w. high prob.
Performance on	Extremely good	Not good	Not good
small lists		γ Why?	
Space	O(1)	O(N)	O(logN)
Online/Offline	Online	Partly Online	Offline
Memory access	Seq. Read (find) Random Write (insert)	Seq. Read Seq. Write	Random Read Random Write

SORTING - LOWER BOUND

- Is this the best we can do for Sorting?
 - Algorithm Complexity vs. Problem Complexity

Sorting

- Can be solved in polynomial time in particular in O(NlogN) time (worst case)
 - o Witness: Merge Sort
- Is there a lower bound (on time complexity) for sorting?
 - o i.e. is there a (lower) limit for the time taken for sorting a list of N elements using any sorting algorithm?
- If we assume that values must be compared, then yes, there is a bound.
 - o Lower Bound on number of comparisons required in the worst case for sorting: $\Omega(NlogN)$

Decision Tree for Sorting (a list of 3 unique values)

Internal Nodes (Decision Nodes)

External Nodes (Results)

How many decisions are necessary?

N! permutations

SORTING - LOWER BOUND

[3]

- Minimum number of decisions necessary
 - is the same as the minimum depth of a (binary) tree with N! nodes.
- Depth of a tree is the length of the longest path from root to an external node.
 - Number of nodes can grow geometrically in the best case at every level i.e. # nodes at each level is 1, 2, 4, ...
 - Thus if the total number of nodes in the tree is M the longest path would be at least log(M)
- In our case, the depth is log(N!)
 - And hence the minimum number of decisions is log(N!)

SORTING - LOWER BOUND

[4]

- Two ways to simplify log(N!):
 - Stirling's approximation: $n! = (\sqrt{(2\pi n)})(n/e)^n(1+\Theta(1/n))$

```
i.e. n! > (n/e)^n
```

- o Then, log(n!) > nlog(n) nlog(e)
- By definition, $n! = \prod_{j=1 \text{ to } n} j$

```
o \log(n!) = \sum_{j=1 \text{ to } n} \log(j) = \sum_{j=2 \text{ to } n} \log(j)
```

o Because log is a monotonically increasing function

$$\sum_{j=2 \text{ to } n} \log(j) >= \int_{x=1 \text{ to } n} \log(x) dx = n \log(n) - n - 1$$

• Either way, the minimum number of comparisons required for sorting N values is Ω(NlogN)

SORTING - ALTERNATIVES

- Can we sort without comparison?
 - Yes, if keys carry inherent information that is useful for positioning
 - o This is true when the range of keys are known
 - Refer to exercises on Quicksort:
 - QuickSort for sorting lists with a constant number of unique keys.
 - o Radix Exchange Sort

SORTING BY DISTRIBUTION

- Bucket Sorting (or Bin Sorting)
 - If the range of keys is known & finite,
 - then one can distribute the values into different "buckets" for different keys.
- o If keys are unique integers then the distribution results in a $\Theta(N)$ time, $\Theta(K)$ space sorting algorithm
 - o N is the number of elements to be sorted.
 - K is the range size and K is O(N)

```
bucketSort(int A[], int size, int lowKey, int hiKey) {
   allocate array Temp[0 .. (hiKey – lowKey)];
   for j = 0 to size-1 { Temp[A[j].key - lowKey] = A[j]; }
   }
   // copy back if the original array must be used
   // Caveat: Given K>N some buckets would be empty.
```

BUCKET SORTING

• Extensions:

- What if keys are not unique?
 - o Then buckets may not be unit sized
 - Solution: Implement buckets as linked lists
- What if keys are not integers?
 - o Is there a 1-1 mapping between key type and a small range of integers?
 - E.g. Points in 2-d space
 - E.g. Strings of characters such that
 - length < m for some constant m and alphabet is finite.

• Variations:

- Count Sorting or Frequency Sorting
- Interval Sorting

STABILITY OF SORTING

- A sorting algorithm is stable
 - if for any two items in the list before sorting, say Ai and Aj such that i<j and key(Ai) = key(Aj),
 - Ai precedes Aj in the sorted list as well.
- Why is Stability important?
- Which of the algorithms discussed so far is/are stable?
 - OR under what conditions these algorithms can be made stable?
 - o Insertion Sort
 - Merge Sort
 - o Quick Sort
 - o Bucket Sort (or Bin Sort)

ORDERING BY MULTIPLE KEYS

- In our examples, we assumed that sorting is done on the basis of a single key (that is part of the record).
 - This may not affect our comparison-based sorting algorithms:
 - o comparison can be encapsulated (i.e. a multi-key comparison algorithm is used).
- Multi-Key Ordering (i.e. where keys are tuples)
 - e.g. Sorting cards by suit and face
 - e.g. Sorting student records by Group and CGPA
- Multi-key ordering is referred to as lexicographic ordering (i.e. dictionary ordering) - if in particular, the keys are all of the same type
 - E.g. Sort a list of points (say, in 2-D space) by the (x and y) coordinates.

ORDERING BY MULTIPLE KEYS

- Alternative to multi-key comparison-based sorting:
 - Sort first by the first key, then by the second key and so on.
 - o Will this work?
 - Only if a subsequent sorting is restricted to equal key values of the previous sorts.
 - o This results in multiple levels of bucketing in bucket sorting
 - What if the order of sorts is reversed?
 - o i.e. sort by the last key, then by the penultimate key, and so on until the first key.
 - o e.g. if you want to sort in the order (Group, CGPA) first sort by CGPA then sort the whole list by Group
 - o Will this work?
 - Yes, if the algorithm(s) are stable.

RADIX SORTING

- Solution for Multi-key Sorting:
 - Use (stable) Bucket sort repeatedly from last key to first key.
- This is referred to as Radix Sort when the digits (i.e. radix) of a number can be considered keys.
 - E.g. Sorting a list of 5 digit numbers can be achieved by 5
 Bucket Sorts using each digit as a key at a time from last digit to the first.

SORTING VS. SEARCHING - PREPROCESSING

- Why do we Sort?
 - When is it useful?
 - o Efficient Searching, Enumeration in order or groups
- o Online vs. Offline
 - Retrieval has to be done online whereas storage may be done offline
 - o If Sorting can be done offline, online work (search) is reduced.
 - What can be done offline?

PREPROCESSING

- Preprocessing (offline) vs. Querying (online)
 - Time complexity (Preprocessing complexity and Querying Complexity)
 - o E.g. Sorting is Preprocessing; searching (or finding) is querying.
 - o E.g. Considering the problem of *factoring integers*
 - Preprocessing: Computing a (long) sequence of prime numbers
 - Querying: Testing whether the numbers in the sequence are factors of a given number.
 - Assumption:
 - o Cost of pre-processing is amortized over many queries.

ADT DICTIONARY

- A dictionary ADT has the following operations:
 - Element find(Key, Dictionary)
 - Dictionary add(Element, Dictionary)
 - Dictionary delete(Key, Dictionary)
- o find is the most common operation
- A dictionary may be ordered or unordered
 - If a dictionary must be ordered then sorting (as preprocessing) is required.

SORTING AS SOLUTION TO DICTIONARY

- Comparison-Sorting
 - Results in a sorted list
 - o *find* costs O(logN) time
 - o *add* and *delete* can be implemented in O(logN) time but not with arrays (or linked lists).
- Bucketing [w. unique keys]
 - Results in a direct-address table:
 - o find costs O(1) time
 - o add costs O(1) time
 - o delete costs O(1) time
 - Assumption: null element defined
 - Caveats:
 - o Size of table vs. number of elements
 - o Keys may not be unique

SETS

- A special case of an (unordered) dictionary is a set:
 - Element find(Key, Dictionary) boolean member(key, Dictionary)
 - Dictionary add(Element, Dictionary)
 - Dictionary delete(Key, Dictionary)
- Can we simplify the table?
 - [Hint: member returns a boolean]
 - What is the total memory requirement?