Introduction to Analysis Homework 11

December, 05, 2024

1. Find all (local) extremum values of

$$f(x, y, z, w) = 3x + y + w,$$

subjects to $3x^2 + y + 4z^3 = 1$ and $-x^3 + 3z^4 + w = 0$ (Hint: There is not any extremum in the case.)

- 2. (a) Let $F: \mathbb{R}^2 \to \mathbb{R}$ be defined by $F(x,y) = y^2 x$. Show that there does not exist a function ϕ defined on a neighborhood W of 0 such that $F(x,\phi(x)) = 0$ for all $x \in W$.
 - (b) Can you apply the implicit function theorem here?
- 3. Write Taylor's formula of f(x,y) = cos(x+2y) around $\mathbf{x_0} = (0,0)$ to the second order; that is, for $r \geq 3$, it can be replaced by the residual term.
- 4. (Thm 26.7)Let $S \subset \mathbb{R}^k$ be open and $f: S \to \mathbb{R}^m$ with $f = (f_1, f_2, \dots, f_m)$. Then "the partial derivatives $\partial_j f_i$ all exist and are continuous on S" is equivalent to "f is continuously differentiable on S."
- 5. Let $G: \mathbb{R}^2 \to \mathbb{R}$. Prove or disprove that if G is differentiable at every point of \mathbb{R}^2 , then the partial derivatives $\frac{\partial G}{\partial x_1}$ and $\frac{\partial G}{\partial x_2}$ are bounded near (0,0).
- 6. Let

$$f(x) = \begin{cases} x + 2x^2 \sin \frac{1}{x}, & \text{if } x \neq 0 \\ 0, & \text{if } x = 0. \end{cases}$$

- (a) Find f'(0).
- (b) Is f locally invertible near 0? If not, why can the inverse function theorem not be applied here?