

Национальный исследовательский университет ИТМО (Университет ИТМО)

Факультет систем управления и робототехники

Дисциплина: Теория оптимального управления **Отчет по лабораторной работе №4.**<u>Вариант 11</u>

> Студенты: Евстигнеев Д.М. Группа: R34423 Преподаватель: Парамонов А.В.

Цель работы: для возмущенного объекта управления построить H_{∞} - оптимальный регулятор вида u=Kx.

Исходные данные:

Bap.	A	В	B_f	Q
11	$\begin{bmatrix} 5 & 3 \\ -2 & 0 \end{bmatrix}$	$\begin{bmatrix} 4 \\ 1 \end{bmatrix}$	$\begin{bmatrix} 0 \\ 3 \end{bmatrix}$	$\begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$

Ход работы:

1. Дан возмущенный линейный объект управления:

$$\dot{x} = Ax + Bu + B_f f$$

Расчет H_{∞} -оптимального регулятора u=Kx производится на основе уравнения Риккати:

$$A^{T}P + PA + Q - PBB^{T}P + \gamma^{-2}PB_{f}B_{f}^{T}P = 0$$

$$K = -B^{T}P$$

2. Экспериментально определим минимальное значение коэффициента γ , при котором существует положительно определенная матрица P в качестве решения уравнения Риккати:

$$\gamma_{min} = 1.783$$

3. Построим схему моделирования системы с начальными условиями $x(0) = [1 \quad 0]^T$ и возмущающим воздействием $f = 10\sin 6t + 5\cos 2t + 4\cos 3t + 3\cos 8t$

Рисунок 1 Схема моделирования

Рисунок 2 График вектора состояния x

Рисунок 3 График входного сигнала и

4. Определим H_{∞} -нормы для следующих передаточных функций:

а.
$$C_1(Is - (A + BK))^{-1}B_f$$
, где $C_1 = \begin{bmatrix} 1 & 0 \end{bmatrix}$

Рисунок 4 График сингулярных значений

Значений нормы для первой передаточной функции:

b.
$$C_2(Is - (A + BK))^{-1}B_f$$
, где $C_1 = [0 \quad 1]$

Рисунок 5 График сингулярных значений

Значений нормы для второй передаточной функции:

```
ninf2 =
0.5367

fpeak2 =
0
```

c.
$$(Is - (A + BK))^{-1}B_f$$

Рисунок 6 График сингулярных значений

Значений нормы для третьей передаточной функции:

ninf3 =

0.9627

fpeak3 =

0

```
P = are(A, B*B'-gamma^(-2)*Bf*Bf',Q);
K = -B'*P;
eig(A+B*K);

sys1 = ss(A+B*K,Bf,C1,0);
sys2 = ss(A+B*K,Bf,C2,0);
sys3 = ss(A+B*K,Bf,eye(2),0);

figure(1);
sigma(sys1);

figure(2);
sigma(sys2);

figure(3);
sigma(sys3);

[ninf1,fpeak1] = hinfnorm(sys1);
[ninf2,fpeak2] = hinfnorm(sys3);
```

Вывод:

В результате выполнения данной лабораторной работы был построен H_{∞} оптимальный регулятор вида u=Kx, рассчитанный на основе уравнений Риккати. Далее была построена схема в среде Simulink и произведено симулирование системы. Также были найдены H_{∞} -нормы для различных передаточных функций.