Distributed Systems Principles and Paradigms

Maarten van Steen

VU Amsterdam, Dept. Computer Science steen@cs.vu.nl

Chapter 02: Architectures

Version: September 3, 2012

Architectures

Architectural styles

Software architectures

Architectures versus middleware

Self-management in distributed systems

Architectures 2.2 System Architectures	Architectures 2.2 System Architectures
Application Layering	
Traditional three-layered view	
User-interface layer contains units for an application's user interface	
 Processing layer contains the functions of an application, i.e. 	
without specific data	
Data layer contains the data that a client wants to manipulate	
through the application components	
Observation	
This layering is found in many distributed information systems, using	
traditional database technology and accompanying applications.	
6/29	6/29

Decentralized Architectures	
Observation	
In the last couple of years we have been seeing a tremendous growth in peer-to-peer systems.	
 Structured P2P: nodes are organized following a specific distributed data structure Unstructured P2P: nodes have randomly selected neighbors Hybrid P2P: some nodes are appointed special functions in a well-organized fashion 	
Note	
In virtually all cases, we are dealing with overlay networks: data is routed over connections setup between the nodes (cf. application-level multicasting)	
9/29	9/2

Architectures 2.2 System Architectures

Structured P2P Systems

Basic idea

Organize the nodes in a structured overlay network such as a logical ring, or a hypercube, and make specific nodes responsible for services based only on their ID.

Note

The system provides an operation *LOOKUP(key)* that will efficiently route the lookup request to the associated node.

29

10/20

Architectures

2.2 System Architectures

Unstructured P2P Systems

Essence

Many unstructured P2P systems are organized as a random overlay: two nodes are linked with probability p.

Observation

We can no longer look up information deterministically, but will have to resort to searching:

- Flooding: node u sends a lookup query to all of its neighbors. A neighbor responds, or forwards (floods) the request. There are many variations:
 - Limited flooding (maximal number of forwarding)
 - Probabilistic flooding (flood only with a certain probability).
- Random walk: Randomly select a neighbor v. If v has the answer, it replies, otherwise v randomly selects one of its neighbors. Variation: parallel random walk. Works well with replicated data.

11/

Superpeers

Observation

Sometimes it helps to select a few nodes to do specific work: superpeer.

2.2 System Architectures

Examples

- Peers maintaining an index (for search)
- Peers monitoring the state of the network
- Peers being able to setup connections

Architectures

2 System Architecture

12/

12/29

Architectures 2.3 Architectures versus Middleware	Architectures 2.3 Architectures versus Middleware
Architectures versus Middleware	
Problem	
In many cases, distributed systems/applications are developed	
according to a specific architectural style. The chosen style may not be optimal in all cases ⇒ need to (dynamically) adapt the behavior of the	
middleware.	
middleware.	
Interceptors	
Intercept the usual flow of control when invoking a remote object.	
15/00	15/00

Example: Globule

Origin server

Enterprise network

Globule origin server collects traces and does what-if analysis by checking what would have happened if page P would have been placed at edge server S.

Many strategies are evaluated, and the best one is chosen.

An experiment	
•	
 We collected traces on requests and updates for all Web pages from two different servers (in Amsterdam and Erlangen) 	
For each request, we checked:	
 From which autonomous system it came What the average delay was to that client What the average bandwidth was to the client's AS (randomly taking 5 clients from that AS) 	
 Pages that were requested less than 10 times were removed from the experiment. 	
 We replayed the trace file for many different system configurations, and many different distribution scenarios. 	
, , , , , , , , , , , , , , , , , , ,	
22/29	

Issue Site 1 Site 2	Architectures	Extra: Strategy eva	luation in Globule	Architectures Extra: Strategy evaluation in Globule
Issue Site 1 Site 2 Start date 13/9/1999 20/3/2000 End date 18/12/1999 11/9/2000 Duration (days) 96 175 Number of documents 33,266 22,637 Number of requests 4,858,369 1,599,777 Number of updates 11,612 3338	n experiment			
Start date 13/9/1999 20/3/2000 End date 18/12/1999 11/9/2000 Duration (days) 96 175 Number of documents 33,266 22,637 Number of requests 4,858,369 1,599,777 Number of updates 11,612 3338	ит окранитоти			
Start date 13/9/1999 20/3/2000 End date 18/12/1999 11/9/2000 Duration (days) 96 175 Number of documents 33,266 22,637 Number of requests 4,858,369 1,599,777 Number of updates 11,612 3338				
Start date 13/9/1999 20/3/2000 End date 18/12/1999 11/9/2000 Duration (days) 96 175 Number of documents 33,266 22,637 Number of requests 4,858,369 1,599,777 Number of updates 11,612 3338				
Start date 13/9/1999 20/3/2000 End date 18/12/1999 11/9/2000 Duration (days) 96 175 Number of documents 33,266 22,637 Number of requests 4,858,369 1,599,777 Number of updates 11,612 3338				
End date 18/12/1999 11/9/2000 Duration (days) 96 175 Number of documents 33,266 22,637 Number of requests 4,858,369 1,599,777 Number of updates 11,612 3338	Issue	Site 1	Site 2	
Duration (days) 96 175 Number of documents 33,266 22,637 Number of requests 4,858,369 1,599,777 Number of updates 11,612 3338	Start date	13/9/1999	20/3/2000	
Number of documents 33,266 22,637 Number of requests 4,858,369 1,599,777 Number of updates 11,612 3338	End date	18/12/1999	11/9/2000	
Number of requests 4,858,369 1,599,777 Number of updates 11,612 3338	Duration (days)	96	175	
Number of updates 11,612 3338	Number of documents	33,266	22,637	
	Number of requests	4,858,369	1,599,777	
Number of ASes 2567 1480	Number of updates	11,612	3338	
	Number of ASes	2567	1480	

23/29

23/29

		Architectures Extra: Strategy evaluation in Globule	Architectures Extra: Strategy evaluation in Globule
Disting	uished strate	gies: Caching	
Abbr.	Name	Description	
NR	No replication	No replication or caching takes place. All clients forward their requests directly to the origin server.	
CV	Verification	Edge servers cache documents. At each subsequent request, the origin server is contacted for revalidation.	
CLV	Limited validity	Edge servers cache documents. A cached document has an associated expire time before it becomes invalid and is removed from the cache.	
CDV	Delayed verification	Edge servers cache documents. A cached document has an associated expire time after which the origin server is contacted for revalidation.	
		24/29	24/29

		Architectures Extra: Strategy evaluation in Globule	Architectures	Extra: Strategy evaluation in Globule
Distingu	uished strate	gies: Replication		
Abbr.	Name	Description		
SI	Server invalidation	Edge servers cache documents, but the origin server invalidates cached copies when the document is updated.		
SUx	Server updates	The origin server maintains copies at the x most relevant edge servers; $x = 10, 25$ or 50		
SU50 + CLV	Hybrid SU50 & CLV	The origin server maintains copies at the 50 most relevant edge servers; the other intermediate servers follow the CLV strategy.		
SU50 + CDV	Hybrid SU50 & CDV	The origin server maintains copies at the 50 most relevant edge servers; the other edge servers follow the CDV strategy.		

Architectures Extra: Strategy evaluation in Globule Architectures Extra: Strategy evaluation in Globule

Trace results: One global strategy

Turnaround time (TaT) and bandwidth (BW) in relative measures; stale documents as fraction of total requested documents.

	Site 1			Site 2			
Strategy	ТаТ	Stale docs	BW	TaT	Stale docs	BW	
NR	203	0	118	183	0	115	
CV	227	0	113	190	0	100	
CLV	182	0.0061	113	142	0.0060	100	
CDV	182	0.0059	113	142	0.0057	100	
SI	182	0	113	141	0	100	
SU10	128	0	100	160	0	114	
SU25	114	0	123	132	0	119	
SU50	102	0	165	114	0	132	
SU50+CLV	100	0.0011	165	100	0.0019	125	
SU50+CDV	100	0.0011	165	100	0.0017	125	

Conclusion: No single global strategy is best

26/29 26/29

Architecture	Extra: Stra	ategy evaluation in	Globule	Architectures	Extra: Strategy evaluation in Globule	
Iseful strategies						
estal suatsgiss						
Fraction of documents to	o which a str	ategy is assig	ned.			
Strategy	Site 1	Site 2				
NR	0.0973	0.0597				Т
CV	0.0001	0.0000				
CLV	0.0131	0.0029				
CDV	0.0000	0.0000				
SI	0.0089	0.0061				
SU10	0.1321	0.6087				
SU25	0.1615	0.1433				
SU50	0.4620	0.1490				
SU50+CLV	0.1232	0.0301				
SU50+CDV	0.0017	0.0002				
Conclusion: It makes se	nse to dif	ferentiate	strategies			
			29/29			2