.model D D(Ron=0.001 Roff=100MEG Vfwd=0)

Dato il circuito in figura, nel quale i due diodi hanno caratteristiche ideali (tensione di ginocchio $V\gamma$ = 0 V, resistenza serie R_f = 0 Ω):

- (a) identificare le condizioni per le quali sia D1 che D2 sono OFF (in polarizzazione inversa)
- (b) scrivere la relazione tra v_o e v_i quando D1 è ON e D2 è OFF. Verificare le condizioni per le quali questo è possibile
- (c) analizzare le restanti condizioni e verificare quali sono possibili
- (d) disegnare il grafico v_o in funzione di v_i tra -18 V < = v_i <= +18 V

(2do recupero 2do compitino)

Dato il circuito di figura si disegni la transcaratteristica V = f(V) indicando chiaramente i punti di scatto e le pendenze dei vari tratti giustificando la risposta. Dati: R1 = 1 k Ω , R2 = 2 k Ω , R3 = 2 k Ω , V γ = 0.6 V (Rocco Giofré)

Dato il circuito in figura con $V_{B1}=5~V$, $V_{B2}=5~V$, $R=5~k\Omega$, $D_1~\&~D_2$ diodi ideali , -15 $V \le Vi \le 15~V$, determinare l'andamento della tensione di uscita Vo al variare della tensione d'ingresso Vi e tracciarne il grafico.

Dato il circuito in figura determinare l'andamento della tensione di uscita V_{out} al variare della tensione d'ingresso V_{in} e tracciarne il grafico. VCC = -5 V. R1 = R2 = R3 = 500 Ω , D1 & D2 diodi ideali -15 V \leq Vin \leq 15 V.

Si calcoli la transcaratteristica (V_{out} in funzione di V_{in}) del circuito riportato in figura A.

Si considerino i diodi $D_1\ e\ D_2$ ideali ($V_{on}\ =0\ e\ R_D=0$).

Si calcoli la transcaratteristica (V_{out} in funzione di V_{in}) del circuito riportato in figura D. Si considerino i diodi D_1 e D_2 ideali ($V_{on}=0$ e $R_D=0$).

Si calcoli la transcaratteristica (V_{out} in funzione di V_{in}) del circuito riportato in figura C.

-10 V < Vin < 10 V; Va = 5 V; R =
$$1k\Omega$$

Si considerino i diodi D_1 e D_2 con modello a caduta di tensione costante V_{γ} = 0.7 V, R_d = 0 Ω .

Si consideri il circuito riportato in figura dove i diodi D1 e D2 sono con modello a $V_{Don}=1V$ e $R_s=0$ Ω Si calcoli la transcaratteristica lout in funzione di Vin (si riporti la caratteristica nello spazio sottostante)

Esercizio 3/3

Si calcoli la transcaratteristica (V_{out} in funzione di V_{in}) del circuito riportato in figura C.

-12 V < Vin < 12 V; Va = 5 V; R1 = R2 = R3 =
$$1k\Omega$$

Si considerino i diodi D_1 e D_2 ideali

(fig. C)

Esercizio 2

Calcolare la corrente che scorre nei diodi D1 e D2 dei circuiti in figura 2, nell'ipotesi che la caduta di tensione diretta ai capi dei diodi sia $V\gamma$ = +0.5 V.

Esercizio 3

Dato il circuito in figura, considerare i diodi D1 e D2 ideali (tensione di ginocchio V_{γ} = 0 V, resistenza serie nulla). Considerare V_1 = 5 V e far variare V_2 tra -10 V e + 10 V.

- (a) trasformare i generatori secondo Thevenin
- (b) tracciare il grafico della tensione vx in funzione della tensione V2, indicando i punti di spezzatura e la pendenza della curva

.dc V1 -12 12 0.5 .model D D IS=1.0E-15 .model DZ D IS=1.05E-15 RS=0.01 BV=7V

Dato il circuito in figura, graficare Vout, Vx e la corrente che scorre in R4 (quest'ultima in un grafico separato) in funzione di V1, con V1 che varia da -12V a +12V. V2 è un generatore di tensione DC costante pari a 2 V.