

교과서 변형문제 기본

내 교과서 속 문제를 실제 기출과 유사 변형하여 구성한 단원별 족보

◇「콘텐츠산업 진흥법 시행령」제33조에 의한 표시

- 1) 제작연월일: 2020-07-25
- 2) 제작자 : 교육지대㈜
- 3) 이 콘텐츠는 「콘텐츠산업 진흥법」에 따라 최초 제작일부터 5년간 보호됩니다.

◇「콘텐츠산업 진흥법」외에도「저작권법」에 의하여 보호 되는 콘텐츠의 경우, 그 콘텐츠의 전부 또는 일부를 무 단으로 복제하거나 전송하는 것은 콘텐츠산업 진흥법 외에도 저작권법에 의한 법적 책임을 질 수 있습니다.

개념check

[삼각형의 중선]

삼각형의 한 꼭짓점과 그 대변의 중점을 연결한 선분

[삼각형의 무게중심]

- (1) 삼각형의 무게중심
- ⇨ 삼각형의 세 중선의 교점
- (2) 삼각형의 무게중심의 성질
- ⇨ 삼각형의 무게중심은 세 중선의 길이를 각 꼭짓점으로부터 2:1로 나눈다.

즉, 점 G가 △ABC의 무게중심일 때 $\overline{AG}: \overline{GD} = \overline{BG}: \overline{GE} = \overline{CG}: \overline{GF} = 2:1$

[삼각형의 무게중심과 넓이]

삼각형의 세 중선에 의해 나누어지는 6개의 삼각형의 넓이는 모두 같다.

△ABC의 무게중심을 점 G라 하면

(1) $\triangle GAB = \triangle GBC$

$$= \Delta GCA$$
$$= \frac{1}{3} \Delta ABC$$

(2) $\triangle GAF = \triangle GBF = \triangle GBD$

$$= \Delta GCD = \Delta GCE$$

$$= \Delta GAE = \frac{1}{6} \Delta ABC$$

기본문제

 $oldsymbol{1}$. 다음 그림에서 점 G가 \triangle ABC의 무게중심이고, $\overline{BG} = 8$, $\overline{AM} = 3$ 일 때, x + y의 값을 구하면?

① 6

2 7

3 8

- **4** 9
- ⑤ 10

[예제]

다음 그림에서 △ABC의 무게중심이 G이고, $\triangle AGC$ 의 넓이가 $12cm^2$ 일 때, $\triangle GBD$ 의 넓이는 얼 마인가?

- \bigcirc 5cm²
- ② 6cm²
- 3 7cm²
- 4 8cm²
- ⑤ 9cm²

[문제]

다음 그림에서 점 G, G'가 각각 $\triangle ABC$, $\triangle GBC$ 의 무게중심이고, $\triangle G'BC$ 의 넓이가 $3cm^2$ 일 때, △ABC의 넓이를 구하면?

- ① 21cm²
- ② 23cm²
- 325cm^2
- 4 27cm²
- ⑤ 29cm²

평가문제

[중단원 학습 점검]

4. 다음 그림에서 점 G가 \triangle ABC의 무게중심이고, $\overline{BG} = 10$, $\overline{BC} = 18$ 일 때, x+y의 값을 구하면?

- ① 11
- ② 12
- ③ 13
- (4) 14
- (5) 15

[중단원 학습 점검]

5. 다음 그림에서 점 G, G'는 각각 $\triangle ABC$ 와 $\triangle GBC$ 의 무게중심이다. $\overline{G'D} = 3cm$ 일 때, \overline{AD} 의 길이를 구하면?

- ① 25cm
- ② 26cm
- ③ 27cm
- 4) 28cm
- ⑤ 29cm

[중단원 학습 점검]

6. 다음 그림에서 점 G, G'는 각각 $\triangle ABM$, $\triangle ACM$ 의 무게중심이고, 점 M은 \overline{BC} 의 중점이다. 이때 $\triangle AGG'$ 의 넓이가 $4cm^2$ 이면 $\triangle ABC$ 의 넓이는 얼마인가?

- ① 15cm²
- ② 16cm²
- 317cm^2
- $4 18 cm^{2}$
- ⑤ 19cm²

[단원 마무리]

7. 다음 그림에서 점 G는 $\triangle ABC$ 의 무게중심이고, $\overline{BF} = \overline{DF}$, $\overline{EF} = 3cm$ 일 때, \overline{AG} 의 길이를 구하면?

- ① 3.5cm
- ② 4cm
- ③ 4.5cm
- 4 5cm
- ⑤ 5.5cm

[단원 마무리]

8. 다음 그림에서 점 G는 △ABC의 무게중심이다. HG=5cm일 때, AD의 길이를 구하면?

- ① 20cm
- ② 25cm
- ③ 30cm
- ④ 35cm
- ⑤ 40cm
- 유사문제

9. $\triangle ABC$ 의 무게중심을 점 G라고 할 때, x+y의 값은?

① 7

- 2 11
- 3 14
- **4** 19
- **⑤** 28

10. 점 G는 \triangle ABC의 무게중심이고 $\overline{EF}//\overline{BC}$, $\overline{BC} = 6$ cm일 때, \overline{EG} 의 길이는?

- ① 1.5cm
- ② 2cm
- ③ 2.5cm
- (4) 3cm
- ⑤ 3.5cm
- **11.** 점 G가 \triangle ABC의 무게중심일 때, 2b-a의 값을 구하면?

- 1 -1
- $2 \frac{1}{2}$

- $\Im 0$
- **4** 1

- ⑤ 2
- **12.** 점 G는 $\triangle ABC$ 의 무게중심이다. $\overline{AG} = 8$ 일 때, \overline{GM} 의 길이는?

1 2

2.5

3 3

(4) 3.5

⑤ 4

13. $\overline{BC} = 24 \text{ cm}$ 인 이등변삼각형 ABC에서 밑변 BC의 중점을 D, $\triangle ABD$, $\triangle ADC$ 의 무게중심을 각각 G, G'이라 할 때, $\overline{GG'}$ 의 길이는?

- ① 6 cm
- ② 8 cm
- ③ 9 cm
- 4 10 cm
- ⑤ 12 cm
- **14.** 그림에서 점 G는 $\triangle ABC$ 의 무게중심, 점 G은 $\triangle GBC$ 의 무게중심이다. $\triangle GBG$ 의 넓이가 $5cm^2$ 일 때, $\triangle ABC$ 의 넓이는?

- ① $45cm^2$
- ② $48cm^2$
- $3 50cm^2$
- $(4) 54cm^2$
- ⑤ $55cm^2$
- **15.** 점 G는 \triangle ABC의 무게중심이고, 점 H는 \triangle BCG 의 무게중심이다. $\overline{AG} = 15$ 일 때, \overline{HD} 의 길이는?

- ① $\frac{9}{4}$
- ② $\frac{5}{2}$

3 3

- $4 \frac{10}{3}$
- $\bigcirc \frac{11}{3}$

16. 다음 그림에서 점 G는 $\triangle ABC$ 의 무게중심이다. 점 G를 지나고 \overline{BC} 에 평행한 직선과 \overline{AB} , \overline{AC} 와의 교점을 각각 E, F라고 하자. $\triangle EDF = 12 cm^2$ 일 때, △ABC**의 넓이는?**

- ① 40cm^2
- 248cm^2
- ③ 52cm²
- (4) 54cm²
- ⑤ 60cm²
- 17. 다음 그림에서 점 G는 $\triangle ABC$ 의 무게중심이고 $\overline{BC}//\overline{EF}$ 이다. $\triangle EGF = 4cm^2$ 일 때, $\triangle ABC$ 의 넓이 는?

- ① 24cm²
- $26cm^2$
- 3 48cm²
- 4 72cm²
- ⑤ 96cm²
- **18.** 점 G는 \triangle ABC의 무게중심이고 $\overline{AB}//\overline{EF}$ 이다. $\overline{FG} = 2 \text{ cm}$ 일 때, \overline{CD} 의 길이는?

- ① 8 cm
- ② 9 cm
- ③ 10 cm
- 4 11 cm
- ⑤ 12 cm

19. 평행사변형 ABCD에서 변 BC, CD의 중점을 각 각 E, F라 할 때, $\triangle ECF = 5 \text{ cm}^2$ 일 때, $\triangle AEF$ 의 넓이는?

- $\bigcirc 10\,\mathrm{cm}^2$
- ② $15 \, \text{cm}^2$
- 30 cm^2
- $40.25\,\mathrm{cm}^2$
- $30 \, \text{cm}^2$
- **20.** 그림에서 점 G가 $\triangle ABC$ 의 무게중심이고 \triangle GDC = 4 cm²**9 III**, \triangle ABC**9 iio**!**-?**

- $\bigcirc 16\,\mathrm{cm}^2$
- ② $20 \, \text{cm}^2$
- $3 22 \, \text{cm}^2$
- $(4) 24 \text{ cm}^2$
- $5 28 \, \text{cm}^2$

정답 및 해설

1) [정답] ⑤

[해설] $\overline{BG}:\overline{GM}=8:\overline{GM}=2:1$ 이므로

$$\overline{\text{GM}} = 4$$
, $\Rightarrow x = 4$

$$\overline{AC} = 2\overline{AM} = 6$$
이므로 $y = 6$

 $\therefore x + y = 10$

2) [정답] ②

[해설] \triangle ABC = $3\triangle$ AGC = 36cm²

$$\therefore \triangle GBD = \frac{1}{6} \triangle ABC = 6cm^2$$

3) [정답] ④

[해설] \triangle GBC = $3\triangle$ G'BC = 9cm²

$$\therefore \triangle ABC = 3\triangle GBC = 27cm^2$$

4) [정답] ④

[해설] BG: BE=2:1이므로

$$10: x = 2:1, \subseteq x = 5$$

$$\overline{\mathrm{BD}} = \frac{1}{2}\overline{\mathrm{BC}} = 9$$
이므로 $y = 9$

$$\therefore x + y = 14$$

5) [정답] ③

[해설] $\overline{GG'}$: $\overline{G'D}$ =2:1이므로

$$\overline{GG'}: 3=2:1, \subseteq \overline{GG'}=6cm$$

따라서
$$\overline{GD} = \overline{GG'} + \overline{G'D} = 9cm$$

AG: GD=2:1이므로

 \overline{AG} : 9 = 2:1, \overline{AG} = 18cm

$$\therefore \overline{AD} = \overline{AG} + \overline{GD} = 27 \text{cm}$$

6) [정답] ④

[해설] \overline{AG} : $\overline{AD} = \overline{AG'}$: $\overline{AE} = 2:3$, $\angle GAG' = \angle DAE$

그러므로 △AGG'∽△ADE (SAS 닮음)

이때 두 삼각형의 닮음비가 2:3이므로

두 삼각형의 넓이의 비는 4:9

따라서 $4:9=4: \triangle ADE$ 이므로 $\triangle ADE = 9$ (cm²)

- $\therefore \triangle ABC = \triangle ABM + \triangle ACM$
- $= 2(\Delta ADM + \Delta AEM)$
- $=2\Delta ADE = 18 \text{ cm}^2$

7) [정답] ②

[해설] $\triangle ABD에서 BE = \overline{AE}$, $\overline{BF} = \overline{DF}$ 이므로

 $\overline{\rm EF}$ // $\overline{\rm AD}$

따라서 $\overline{AD} = 2\overline{EF} = 6 \text{ cm}$

이때 \overline{AG} : \overline{AD} =2:3이므로

 $\overline{AG}: 6 = 2:3$

 $\therefore \overline{AG} = 4cm$

8) [정답] ③

[해설] 두 점 F, E는 각각 \overline{AB} , \overline{AC} 의 중점이므로

FE // BC

△HGE와 △DGB에서

EG: BG= HG: DG이므로

 $1:2=5:\overline{DG}$, $\overline{\ominus}$ $\overline{DG}=10$ cm

이때 $\overline{AD}:\overline{DG}=3:1$ 이므로

 \overline{AD} : 10 = 3:1

 $\therefore \overline{AD} = 30 \text{cm}$

9) [정답] ④

[해설] \overline{AG} : \overline{GD} = 2:1이므로 x=3이고,

 $\overline{BD} = \overline{CD}$ 이므로 y = 16이다.

따라서 x+y=19이다.

10) [정답] ②

[해설] \overline{AD} 가 중선이므로 점 D는 \overline{BC} 의 중점이다.

따라서 $\overline{BD} = \overline{CD} = 3cm$

 $\triangle AEG$, $\triangle ABD$ 가 AA닮음이고

 \overline{AG} : \overline{AD} = \overline{EG} : \overline{BD} = 2:3이므로 \overline{EG} : 3cm = 2:3

 $\therefore \overline{EG} = 2cm$

11) [정답] ⑤

[해설] 점 F가 \overline{AB} 의 중점이므로 $a=5\times 2=10$

 $\overline{AG}:\overline{GD}=2:1$ 이므로 $b=3\times 2=6$

 $\therefore 2b - a = 12 - 10 = 2$

12) [정답] ⑤

[해설] $\overline{AG}:\overline{GM}=2:1$ 이므로 $8:\overline{GM}=2:1$

 $\therefore GM = 4$

13) [정답] ②

[해설] $\triangle AGG'$, $\triangle AEF$ 에서

 \overline{AG} : $\overline{AE} = \overline{AG}$: $\overline{AF} = 2:3 \circ]$ $\supseteq \angle GAG = \angle EAF$ 이므로 두 삼각형은 SAS닮음이다.

또한 두 점 E, F가 각각 \overline{BD} , \overline{CD} 의 중점이므

로 $\overline{EF} = \frac{1}{2}\overline{BC} = 12$

이제 $2:3 = \overline{GG}: \overline{EF}$ 이므로 $::\overline{GG}' = 8$

14) [정답] ①

[해설] \overline{AG} : \overline{GD} = 2:1, \overline{GG} : \overline{GD} = 2:1이다.

 $\triangle GBG' = 5cm^2$ 일 때, $\triangle BDG = \frac{5}{2}cm^2$ 이고,

 $\triangle BCG = 2\triangle BDG = 2 \times \frac{15}{2} = 15cm^2$ 이다.

따라서 $\triangle ABC = 3\triangle BCG = 3 \times 15 = 45cm^2$ 이다.

15) [정답] ②

[해설] $\overline{AG}: \overline{GD} = 2:1$ 이므로 $\overline{GD} = \frac{1}{2}\overline{AG} = \frac{15}{2}$

또한 $\overline{GH}:\overline{HD}=2:1$ 이므로

$$\therefore \overline{HD} = \frac{1}{3} \overline{GD} = \frac{1}{3} \times \frac{15}{2} = \frac{5}{2}$$

16) [정답] ④

[해설] $\triangle AEG$ 와 $\triangle ABD$ 가 2:3닮음이므로

$$\overline{EG} = \frac{2}{3}\overline{BD}$$

 $\triangle AGF$ 와 $\triangle ADC$ 가 2:3닮음이므로

$$\overline{GF} = \frac{2}{3}\overline{DC}$$

그런데 \overline{BD} = \overline{CD} 이므로 \overline{EG} = \overline{GF}

즉 점 G가 \overline{EF} 의 중점이므로

 $\triangle DGE = \triangle DGF = 6cm^2$

이때 $\triangle DGE$: $\triangle AGE = \overline{DG}$: $\overline{GA} = 1:2$ 이므로

 $\triangle AGE = 12cm^2$, $\triangle ADE = 18cm^2$

 $\triangle ADE$: $\triangle BDE = \overline{AE}$: $\overline{BE} = 2:1$ 이므로

 $\triangle BDE = 9cm^2$, $\triangle ABD = 9 + 18 = 27cm^2$

 $\therefore \triangle ABC = 2\triangle ABD = 54cm^2$

17) [정답] ⑤

[해설] $\overline{EF}//\overline{DC}$ 이므로

 $\triangle EFG$ 와 $\triangle CDG$ 는 AA닮음이다.

이때 닮음비가 $\overline{\mathit{EG}}:\overline{\mathit{GC}}{=}1:2$ 이므로

 $\triangle EGF : \triangle CGD = 1 : 4$

그러므로 $\triangle CGD = 4 \times 4 = 16cm^2$

 $\therefore \triangle ABC = 6\triangle CGD = 96cm^2$

18) [정답] ⑤

[해설] $\overline{AB}//\overline{EF}$ 이므로 $\triangle DBG \sim \triangle FEG(AA$ 닮음)

닮음비에서 $\overline{BG}:\overline{EG}=2:1=\overline{DG}:\overline{FG}$

 $2:1 = \overline{DG}:2cm \rightarrow \overline{DG}=4cm$

이제 $\overline{CG}:\overline{DG}=2:1$ 이므로 $\overline{CG}=8cm$

 $\therefore \overline{CD} = 12cm$

19) [정답] ②

[해설] $\triangle BCD$ 에서 두 점 E, F가 \overline{CB} , \overline{CD} 의 중점

이므로 $\overline{EF}//\overline{BD}$ 이고 이때 $\triangle CEF$ 와 $\triangle CBD$ 는 $\overline{CE}:\overline{CB}=1:2$ 닮음이다. 따라서 넓이의 비는

1:4이므로 $\triangle ECF = 5cm^2$ 일 때

 $\Delta BCD = 5 \times 4 = 20cm^2$

 $\therefore \Box ABCD = 2\Delta BCD = 40cm^2$

 $\triangle ABE$, $\triangle AFD$ 는 $\frac{1}{4}\square ABCD$ 이므로

 $\triangle AEF = \Box ABCD - (\triangle ABE + \triangle AFD + \triangle ECF)$ $=\frac{1}{2}\Box ABCD-\triangle ECF$ $=20-5=15cm^{2}$

20) [정답] ④

[해설] $\triangle ABC = 6\triangle GDC = 24cm^2$