ECONOMETRIE

CURS 2

- note de curs -

IAŞI - 2023-

C2. REGRESIA LINIARĂ SIMPLĂ (1)

TEMATICA CURS 02

Prezentarea modelului - regresia empirică și cea teoretică

Estimarea punctuală și prin interval de încredere a parametrilor - MCMMP

Testarea parametrilor

Probleme specifice utilizând SPSS si Excel

1.Scurt istoric al regresiei

1886 - Francis Galton,. "Family Likeness in Stature", Proceedings of Royal Society, London, vol. 40, 1886, pp. 42-72

1897 - *G. U. Yule*, "On the Theory of Correlation", Journal of the Royal Statistical Society , pp. 812-54.

1903 - Karl Pearson, G. U. Yule, Norman Blanchard, and Alice Lee, "The Law of Ancestral Heredity", Biometrika

1925 - R.A. Fisher, Statistical Methods for Research Workers

2. Noțiuni (1)

Regresia este o *legătură statistică* între două sau mai multe variabile statistice.

În descrierea *legăturilor statistice pentru variabilele* dependente utilizăm variabile aleatoare (stohastice), ceea ce înseamnă că acestora le corespund distribuţii de probabilitate (fig. 1).

$$\mathbf{x_i} \rightarrow \mathbf{Y}: \begin{pmatrix} y_1 \dots y_j \dots y_m \\ n_i \dots n_j \dots n_m \end{pmatrix} \Longrightarrow \mathbf{M}(\mathbf{Y} \mid \mathbf{x_i}) = \mathbf{f}(\mathbf{x_i}) \Longrightarrow \mathbf{y_i} = \mathbf{f}(\mathbf{x_i}) + \mathbf{\epsilon_i}$$

X – variabilă independentă - variabilă nestohastică

Y – *variabilă dependentă* – variabilă stohastică (prezintă distribuţii pentru fiecare valoare a lui X)

2. Noțiuni (2) - Fig.1

În *legăturile de tip funcțional* unei valori *i* se asociază o altă valoare și nu o distribuție de probabilitate.

$$x_i \rightarrow y_i \Rightarrow f(x_i) = y_i$$

Analiza de regresie studiază forma legăturii dintre una sau mai multe variabile => Model de regresie

Analiza de corelație studiază intensitatea legăturii dintre una sau mai multe variabile puse în relație printr-un model de regresie.

Modele de regresie

Modele de regresie	Simple	Multiple
Liniare	$C = \beta_0 + \beta_1 X + \varepsilon$	$C = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \varepsilon$
Neliniare	$C=e^{\beta_0+\beta_1X+\epsilon}$	$C = e^{\beta_0 + \beta_1 X_1 + \beta_2 X_2 + \epsilon}$

3. Modelul de regresie liniară simplă

$$\varepsilon_i = y_i - M(Y \mid X = x_i) \Leftrightarrow y_i = M(Y \mid X = x_i) + \varepsilon_i = \beta_0 + \beta_1 x_i + \varepsilon_i$$

- > $M(Y | X=x_i)=\beta_0+\beta_1x_i$ media condiționată de $X=x_i$, a variabilei stohastice Y,
- > β_0 = f(0) parametrul "intersecţia dreptei de regresie liniară cu axa OY" (engl. intercept)
- > β_1 parametrul "panta a dreptei" care reprezintă variația absolută *in medie* a variabilei Y atunci când variabila X creşte cu o unitate ($\beta_1 = \Delta Y / \Delta X$):
 - <mark>β₁>0</mark>: *legătură directă* între variabile, Y variază în acelaşi sens cu X
 - β₁<0: *legătură inversă* între variabile, Y nu variază în același sens cu X

3. Modalități de scriere ale modelului liniar simplu

Dacă este scris pentru valorile variabilelor

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i$$

Dacă este scris pentru variabile în general

$$Y = \beta_0 + \beta_1 X + \epsilon$$

4. Componentele modelului de regresie

A.Componenta deterministă ($\beta_0 + \beta_1 x_i$)

B. Componenta aleatoare (ε_i) .

Factorii care influențează componenta aleatoare:

- natura fenomenului studiat;
- specificarea modelului ;
- erorile de măsurare s.a.

5. Ipoteze clasice ale modelului de regresie

Ipotezele modelului de regresie vizează *variabila reziduală* şi *variabila independentă*.

Cele mai importante **ipoteze cu privire la variabila reziduală** sunt:

- normalitatea erorilor : $\mathcal{E}_i \sim N(\mu_i, \sigma_i^2)$, adică variabila reziduală urmează o lege de repartiție normală de medie μ_i și varianță σ_i^2 ;
- media erorilor de modelare este nulă: $M(\varepsilon_i)=0=> \varepsilon_i \sim N(0,\sigma_i^2)$
- -homoscedasticitate: $V(\varepsilon_i) = M(\varepsilon_i^2) = \sigma^2$, adică varianța erorii este constantă la nivelul distribuțiilor condiționate de tipul $Y_i | X = x_i$ -> $\varepsilon_i \sim N(0, \sigma^2)$
- necorelarea erorilor: $cov(\varepsilon_i, \varepsilon_j) = 0, i \neq j; i, j = \overline{1, n}$, adică erorile nu se influențează reciproc;
- lipsa corelației dintre variabila independentă și variabila eroare: $cov(\varepsilon_i, x_i) = 0$.

6. Exemple de modele liniare simple

Funcția de consum

- cererea sau consumul populației în funcție de venit:

$$C_i = \beta_0 + \beta_1 V_i + \varepsilon_i$$

unde parametrul β_1 arată cu cât creşte <u>in medie consumul</u> unui anumit produs (C_i) la o creştere cu o unitate a venitului şi este de regulă pozitiv.

Legea cererii

- cererea populației pentru o gamă de produse în funcție de prețul acestora:

 $C_i = \beta_0 + \beta_1 P_i + \varepsilon_i$, unde parametrul β_1 este de regulă negativ și arată cu cât scade **in medie cererea** la o creștere a prețului cu o unitate.

STOP

7. Estimarea punctuală parametrilor modelului de regresie prin MCMMP

MCMMP (engl. Method of Ordinary Least Sqares - OLS)

Fie: $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$ - valorile estimate (teoretice ale lui Y)

și
$$y_i = \hat{\beta}_0 + \hat{\beta}_1 x_i + \hat{\varepsilon}_i$$
 - valorile reale, înregistrate

Erorile estimate pot fi obtinute ca diferenta intre **valorile reale** si valorile **teoretice**:

$$\hat{\varepsilon}_i = y_i - \hat{y}_i = y_i - (\hat{\beta}_0 + \hat{\beta}_1 x_i) = y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i$$

Pentru a ușura notațiile în procesul de estimare vom utiliza direct **notațiile pentru estimații**. Astfel relația de mai sus se va scrie:

$$\sum_{i=1}^{n} e_i^2 = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \sum_{i=1}^{n} (y_i - (b_0 + b_1 x_i))^2 = \sum_{i=1}^{n} (y_i - b_0 - b_1 x_i)^2 - \min.$$

Notăm
$$S = \sum_{i=1}^{n} e_i^2 = \sum_{i=1}^{n} (y_i - b_0 - b_1 x_i)^2$$

Rezolvarea acestei probleme de minim presupune îndeplinirea a *două condiţii*:

1. Anularea derivatelor parţiale de ordinul I ale lui S în raport $\mathbf{b_0}$ şi $\mathbf{b_1}$:

$$\begin{cases} \frac{\partial S}{\partial b_0} = 2\sum_{i=1}^n (y_i - b_0 - b_1 x_i)(-1) = 0 & \Longrightarrow \\ \frac{\partial S}{\partial b_1} = 2\sum_{i=1}^n (y_i - b_0 - b_1 x_i)(-x_i) = 0 & \Longrightarrow \end{cases} \begin{cases} nb_0 + b_1 \sum_{i=1}^n x_i = \sum_{i=1}^n y_i \\ b_0 \sum_{i=1}^n x_i + b_1 \sum_{i=1}^n x_i^2 = \sum_{i=1}^n y_i x_i \end{cases}$$

$$b_{0} = \frac{\Delta b_{0}}{\Delta} = \frac{\sum y_{i} \sum x_{i}^{2} - \sum x_{i} \sum x_{i} y_{i}}{n \sum x_{i}^{2} - \left(\sum x_{i}\right)^{2}}$$

$$sau b_0 = \overline{y} - b_1 \overline{x}$$

$$b_{1} = \frac{\Delta b_{1}}{\Delta} = \frac{n \sum x_{i} y_{i} - \sum x_{i} \sum y_{i}}{n \sum x_{i}^{2} - (\sum x_{i})^{2}}$$

2. Matricea derivatelor parţiale de ordinul doi să fie pozitiv definită:

$$\det \begin{pmatrix} \frac{\partial^2 S}{\partial^2 b_0} = 2n & \frac{\partial^2 S}{\partial b_0 \partial b_1} = 2\sum x_i \\ \frac{\partial^2 S}{\partial b_0 \partial b_1} = 2\sum x_i & \frac{\partial^2 S}{\partial^2 b_1} = 2\sum x_i^2 \end{pmatrix} > 0 \iff \det \begin{pmatrix} 2n & 2\sum x_i \\ 2\sum x_i & 2\sum x_i^2 \end{pmatrix} > 0$$

Matricea derivatelor partiale de ordin doi este pozitiv definită deoarece $n\sum x_i^2 - \left(\sum x_i\right)^2 = n^2\sigma^2 > 0$

7. Proprietățile estimatorilor parametrilor modelului de regresie

Estimatorii parametrilor modelului de regresie sunt variabile de selecţie care:

- urmează o *distribuţie normal*ă: $\hat{eta}_0 \sim N(eta_0, \sigma_{\hat{eta}_0}^2)$, $\hat{eta}_1 \sim N(eta_1, \sigma_{\hat{eta}_1}^2)$
- sunt *nedeplasaţi*: $M(\hat{\beta}_0) = \beta_0$, $M(\hat{\beta}_1) = \beta_1$
- convergenţi (in probabilitate): $(\hat{\beta}_0)_{n\in\mathbb{N}} \xrightarrow{p} \beta_0$, $(\hat{\beta}_1)_{n\in\mathbb{N}} \xrightarrow{p} \beta_1$
- <code>eficienti</code>: dintre toţi estimatorii posibili pentru $m{eta}_{\!\!1}$, $\hat{m{eta}}_{\!\!1}$ are varianţa cea mai mică

8. Estimarea prin interval de încredere a parametrilor modelului de regresie liniară

Atât pentru β_0 , cât și pentru β_1 , *intervalele de încredere pentru* se vor construi astfel:

$$\beta_0 \in \left[b_0 - t_{\alpha/2, n-k} s_{\hat{\beta}_0}, b_0 + t_{\alpha/2, n-k} s_{\hat{\beta}_0} \right]$$

$$\beta_1 \in \left[b_1 - t_{\alpha/2, n-k} s_{\hat{\beta}_1}, b_1 + t_{\alpha/2, n-k} s_{\hat{\beta}_1}\right]$$

unde **k** = *numărul parametrilor estimați din model* (pentru modelul liniar k=2)

Vezi exemplu excel (n=19 iar α =5%): Y-> greutatea (kg) si X-> inaltimea (cm) Y= β 0+ β 1X+ ϵ -> K=2

	Coefficients		t Stat	P-value	Lower 95%	Upper 95%
	(b _i)	$(s_{\hat{\beta}}, i = 0,1)$	(t calc)	(sig.)	(L_i)	(Ls)
Intercept (\(\beta 0 \))	-151.816 (b ₀)	$61.808(^{S}_{\hat{\beta}_{0}})$	-2.456	0.025	-282.219	-21.412
Inaltimea (X) (\beta1)	1.266 (b ₁)	$0.364(^{S}_{\hat{\beta}_{i}})$	3.483	0.003	0.499	2.034

 $t_{lpha/2,n-k}$ -> aceasta este o valoare teoretica si se ia din tabelul valorilor statisticii Student si nu din tabelul de mai sus!!!!

$$\beta_0 \in \left[b_0 - t_{\alpha/2,n-k} s_{\hat{\beta}_0} \right., b_0 + t_{\alpha/2,n-k} s_{\hat{\beta}_0} \right] = -151.816 \pm 2,11*61,808 \rightarrow \text{vezi L}_{\text{i}} \text{ si L}_{\text{s}} \text{ din tabelul de mai sus}$$

$$\beta_1 \in \left[b_1 - t_{\alpha/2, n-k} s_{\hat{\beta}_1} \right., b_1 + t_{\alpha/2, n-k} s_{\hat{\beta}_1} \right] = 1,266 \pm 2,11^*0,364 \text{ -> vezi L}_{\text{i}} \text{ si L}_{\text{s}} \text{ din tabelul de mai sus}$$

$$t_{\alpha/2,n-k} = t_{0,025;(19-2)} = t_{0,025;17} = 2,11$$

Student t Distribution Table (thoughtco.com)

5. Testarea parametrilor modelului liniar

1. Formularea ipotezelor

 $\frac{\mathbf{pentru} \ \mathbf{\beta_0}}{\mathbf{H_0}} : \ \beta_0 = 0$

H₀: β_0 =0 **H₁**: β_0 #0

pentru β₁ H.: β.=0

H₁: β₁#0

- 2. Fixarea pragului de semnificație α =0,05
- 3. Alegerea si calcul statisticii test

$$t_{\beta_0} = \frac{b_0}{s_{\hat{\beta}_0}}?t_{teoretic} = t_{\alpha/2, n-2} \qquad t_{\beta_1} = \frac{b_1}{s_{\hat{\beta}_1}}?t_{teoretic} = t_{\alpha/2, n-2}$$
4. Criterii de decizie:

 $|\mathbf{t}_{calc}| \le \mathbf{t}_{teoretic} = \mathbf{t}_{\alpha/2, n-2}$ sau **sig.**≥α=> AH₀ cu o probabab. de 1-α.

 $|\mathbf{t}_{\mathsf{calc}}|$ > $\mathbf{t}_{\mathsf{teoretic}}$ = $\mathbf{t}_{\alpha/2,\,\mathsf{n-2}}$ sau $\mathsf{sig.}$ < α => RH_0 cu un risc asumat α .

	Coefficients	Standard <u>Err</u> or	t Stat P-value		Lower 95%	Upper 95%
	(b_i)	$(s_{\hat{g}}, i = 0,1)$	(t calc)	(sig.)	(L_i)	(Ls)
Intercept (\(\beta 0 \))	-151.816	61.808	-2.456	0.025	-282.219	-21.412
Inaltimea (X) (β1)	1.266	0.364	3.483	0.003	0.499	2.034
	1. Formularea ipotezelor					
pentru $β_0$ H_0 : $β_0$ =0 H_4 : $β_0$ #0			pentru <mark>β</mark>₁ H₀: β₁=0 H ₄: β₁#0			
n ₁ . ρ ₀ #0 n ₁ . ρ ₁ #0 2. Fixarea pragului de semnificaţie						
α=0,05 3. Alegerea si calcul statisticii test						
$t_{calc b_0} = \frac{b_0}{S_{\hat{\beta}_0}} \sim t_{\alpha/2, n-2}$ $t_{calc b_1} = \frac{b_1}{S_{\hat{\beta}_1}} \sim t_{\alpha/2, n-2}$					72, n 2	
4. Criterii de decizie:						
$ \mathbf{t}_{\text{calc }\beta 0} = -2,456 > \mathbf{t}_{\text{teoretic}} = \mathbf{t}_{0,025;\ 17} = 2,11$ $ \mathbf{t}_{\text{calc }\beta 1} = -2,456 \le \mathbf{t}_{\text{teoretic}} = \mathbf{t}_{0,025;\ 17} = 2,1$						
sig.=0.025<α=0,05		sig.=0.003<α=0,05				
=> RH ₀ cu un risc asumat α		=	> RH _a cı	ı un risc asuı	mat ri	

5. Probleme specifice analizei de corelație și regresie

Analiza de regresie si corelație în SPSS

Se consideră datele cu privire la *Valoarea vânzărilor* și *Cheltuielile cu publicitatea* pentru un eșantion de 4 firme. Datele sunt prezentate în tabelul alăturat.

x _i	\mathbf{y}_{i}		
10	2500		
20	4100		
50	5000		
100	7500		
180	19100		

