

SUBSTITUTE SHEET (RULE 26)

FIG. 2A

(b) Y Type

FIG. 2B

WO 2004/025734

PCT/US2003/028620

FIG. 4A

FIG. 4B

5/72

```
Setup_Y_tree(C)
£
sub-tree1 = Create_leaf(0,1);
sub tree2 = Create_leaf(-1,0);
sub-tree3 = Create_leaf(1,0);
Tree=Compose_tree(sub-tree1,sub-tree2,
  sub-tree3,C(1));
z = 2/3; x = 1, y = 1/3;
for i=2:n
 €
  if (i is even)
   {z=z*3; y=y*3;}
  else
   x = x * 3;
  case C(i)
   "up":
    \{ x1=x; x2=-x; x3=0; 
     y1= y; y2= y; y3= -z; }
   "left":
    \{ x1=z; x2=-x; x3=-x; 
      y1= 0; y2= y; y3= -y; }
   "down":
    \{x1=0; x2=-x; x3=x;
     y_1 = z; y_2 = -y; y_3 = -y; 
   "right":
   \{ x1=x; x2=-z; x3=x; 
     y1= y; y2= 0; y3= -y; }
 Copy(sub-tree1, Tree);
 Copy(sub-tree2, Tree);
 Copy(sub-tree3, Tree);
/* Copy Tree to sub-trees */
 Shift(sub-tree1, x1, y1);
```

FIG. 5A

```
Shift(sub-tree2, x2, y2);
    Shift(sub-tree3, x3, y3);
   /* Shift the coordinates of every leaf in
      Tree by r(k) and y(k) respectively */
    Tree=Compose_tree(sub-tree1, sub-tree2,
      sub-tree3,C(i));
}
Create_leaf(x,y)
 Create_tree_node(leaf);
 leaf \rightarrow x = x;
 leaf \rightarrow y = y;
 return(leaf);
}
Compose_tree(sub-tree1, sub-tree2, sub-tree3,
     orientation)
{
Create_tree_node(new_root);
new_root -> child1 = sub-tree1;
new_root -> child2 = sub-tree2;
new_root -> child3 = sub=tree3;
new_root -> orientation = orientation;
return(new_root);
```

FIG. 5B

FIG. 6C

FIG. 6D
SUBSTITUTE SHEET (RULE 26)

FIG. 7

FIG. 8

WO 2004/025734

PCT/US2003/028620

10/72

```
Merge(A,B)
  /* Complement every bit in sequence B */
  BI = Bit_wise_complement(B);
  Bh = Reverse bit order(BI);
  do
    ł
     /* Find the sub-sequences in A and Bh such
        that the two sub-sequences have the same
        pattern */
     if(Find_next_match(A,Bh,*(&sub) == false);
      break;
     /* Judge if the result satisfies the
       requirements */
    if (Accept (A, Bh, sub == true)
     {
         /* Rewrite sequence A and B */
        Rewrite sequence A = (A1) (sub) (A2);
        Rewrite sequence B = (B1) RevFlip(sub)(B2);
        /* Determine the sequences Al2 and Bl2, which
            are the portions of A and B in the merged
           polygon C, respectively */
        Calculate A12 = ModMerge(A1, A2);
        Calculate B12 = ModMerge(B1, B2);
        /* Merge Al2 and Bl2 and get C */
        C = (A12)(B12);
        Output(C);
   }
}
RevFlip(Sub)
  /* Sub1 is the bit-wise complement of sequence Sub */
  Sub1 = Bit_wise_complement(Sub);
  /* Sub2 is the sequence of reversing the bit order
     of Subl */
  Sub2 = Reverse_bit_order(Sub1);
  Return Sub2;
}
ModMerge($1, $2)
  /* S3 is the sequence of S2 followed by S1 */
 S3 = (S2)(s1);
 S4 = Complement_the_first_bit(S3);
 S5 = Delete_the_last_bit(S4);
 Return S5;
}
```

FIG. 9

FIG. 10

FIG. 11

FIG. 12

SUBSTITUTE SHEET (RULE 26)

15/72

SUBSTITUTE SHEET (RULE 26)

A FRANCISCO

PCT/US2003/028620

17/72

SUBSTITUTE SHEET (RULE 26)

20/72 _>

FIG. 19A

FIG. 19B

FIG. 19C

L _X	D _X
$L_1 = 2\sqrt{2}$ $L_n = 4L_{n-1} + 2^{3n-2}\sqrt{2}$	$D_1 = 6\sqrt{2}$ $D_n = 4D_{n-1} + 6 \cdot 2^{4n-4} \sqrt{2} (2^n-1)$

FIG. 20

22/72

Recursive form solutions for L_y and D_y

L _Y		
$L_1 = \sqrt{3}a$		
$L_n = 3L_{n-1} + 3^{\frac{3n}{2}-1}a$		
D _Y		
$D_1 = 2\sqrt{3}a$		
$D_n = 3D_{n-1} + (3 + \sqrt{3}) (3^{\frac{n}{2}} - 1) 3^{2n-2} a$		

FIG. 21

WO 2004/025734

PCT/US2003/028620

Model	L	. D	М
а	$\frac{3n^2 - 2n}{8}$	<u>n(n+1)(n-1)</u> 6	n ² (3n-2)(n-1)(n+1) 48
b		n(n+1)(n-1) 6	n ³ (n - 1) (n + 1) 24

FIG. 24

FIG. 25D

FIG. 25E

FIG. 25F

Model	L	D	М
a	8	8	64
b	5	8	40
С	4	10	40
d	4 + 2√2	4 + 2√2	24 + 16√2
е	2√2	6√2 ·	24
f	4	10	40

FIG. 26

FIG. 27A

FIG. 27B

WO 2004/025734

PCT/US2003/028620

Model	L	D	М
Y	$\sqrt{3}$	2√3	6
Δ	3	3	9

FIG. 28

FIG. 30A

FIG. 30B

FIG. 31

33/72

possible additional interconnection (level 2)

possible additional interconnection (level 0)

FIG. 32

WO 2004/025734

PCT/US2003/028620

FIG. 33

FIG. 34

m	ΔL	ΔD	I
0	32	-1952	61
1	32	-3840	120
2	128	-14848	116
3	128	28672	224
4	512	-106496	208
5	512	-196608	384
6	2048	-655360	320
7	2048	-1048576	512
8	8192	-2097152	256

FIG. 35

FIG. 36A

FIG. 36B

FIG. 37

level n

FIG. 38B

SUBSTITUTE SHEET (RULE 26)

WO 2004/025734

PCT/US2003/028620

FIG. 40

Туре	L
With dead cells	$L_1 = \sqrt{3}$ $L_n = 3L_{n-1} + 6^{n-1}\sqrt{3}$
Without dead cells	$L_1 = \sqrt{3}$ $L_n = 3L_{n-1} + 3^{n-1} \sqrt{3}^{-n}$

Туре	D
With dead cells	$D_1 = 2\sqrt{3}$ $D_n = 3D_{n-1} + 2\sqrt{3} (2^{n-1} - 1) 9^{n-1}$
Without dead cells	$D_1 = 2\sqrt{3}$ $D_n = 3D_{n-1} + (\sqrt{3} + 3) (\sqrt{3}^n - 1) 9^{n-1}$

FIG. 41

108 104 at level 0

FIG. 43C SUBSTITUTE SHEET (RULE 26)

WO 2004/025734

PCT/US2003/028620

FIG. 50

```
Algorithm
For all e \in E, set d_e = constant
Repeat
For j := l to k do l/k: number of distinct flow demands
Begin
Set d(j) = \sigma
While d(j) \neq 0 do
Begin
Find shortest path P for commodity flow demand j.
Route f = min\{c,d(j)\} units of flow along P, where c is the capacity of the minimum capacity edge on this path.
d(j) = d(j) - f
Update \{d_d\}.
End while
End for
Find \{C_1, C_2, ..., C_m\}, such that
\sum_{e \in R(l)} d_e = \alpha_i
and
\sum_{e \in R(l)} \alpha_i C_i = 1
Update \{d_d\}
Until flow solutions converge
```

FIG. 51

FIG. 52

FIG. 56

Results of uniform edge capacity mesh

n	Number of nodes	Z
2	4	0.3750
3	9	0.3333
4	16	0.2343
5	25	0.2000
6	36	0.1620
7	49	0.1429
8	64	0.1229
9	81	0.1111
10	100	0.0990

FIG. 57

The first of the the

PCT/US2003/028620

FIG. 58A

FIG. 58B

Results of fixed total edge capacities

N	Number of nodes	Z	Improvement on z
2	4	0.375	0.00
3	9	0.333	0.00
4	16	0.281	20.01
5	25	0.240	20.00
6	36	0.208	28.57
7	49	0.185	28.56
8	64	0.169	33.32
9	81	0.148	33.35
10	100	0.134	36.36

FIG. 59

Optimal capacities for vertical edges in 6 by 6 mesh

Row	1	2	3	4	5	6	Sum
1	0.60	0.74	0.79	0.79	0.74	0.61	4.28
2	0.95	1.19	1.27	1.28	1.19	0.96	6.85
3	1.07	1.34	1.44	1.44	1.34	1.07	7.71
4	0.95	1.19	1.27	1.27	1.19	0.96	6.85
5	0.60	0.74	0.79	0.79	0.74	0.60	4.28

FIG. 60

THE SERVICE STREET, NAME OF

Results of 45-degree mesh

N	Number of nodes	Z
2	5	0.250
3	13	0.250
4	25	0.209
5	41	0.174
6	61	0.147
7	85	0.126
8	113	. 0.106
9	145	0.101
10	181	0.0828
11	221	0.0759
12	265	0.0673

FIG. 62

FIG. 63A

FIG. 63B

FIG. 64A

FIG. 64B

FIG. 65A

45-degree routing

FIG. 65B

THE RESERVE OF THE PARTY OF THE

61/72

Results of 90-degree and 45-degree mixed mesh

n	Z	Improvement on z (%)	C ₁	C ₂	$\sqrt{2}\cdot C_2/C_1$
2	0.375	0.00	1.0000	0.0000	0.00
3	0.333	0.00	1.0000	0.0000	0.00
4	0.245	4.85	0.2290	0.5452	3.36
5	0.219	9.53	0.2577	0.5249	2.88
6	0.185	14.04	0.1853	0.5761	4.39
7	0.166	16.01	0.2022	0.5641	3.94
8	0.148	20.11	0.1614	0.5930	5.19
9	0.134	20.40	0.1696	0.5872	4.89
10	0.120	21.31	0.1553	0.5988	5.44
11	0.110	21.48	0.1608	0.5935	5.22
12	0.101	22.05	0.1527	0.5992	5.55
13	0.094	22.14	0.1562	0.5967	5.40
14	0.087	22.68	0.1510	0.6004	5.62
15	0.082	22.71	0.1536	0.5986	5.51
16	0.076	22.95	0.1504	0.6008	5.65
17	0.0723	23.02	0.1524	0.5994	5.56

FIG. 66

WO 2004/025734

PCT/US2003/028620

FIG. 67

WO 2004/025734

PCT/US2003/028620

N	z(I)	z(II)	z(III)	z(IV)
5	0.0173	0.0147	0.0147	0.0171
6	0.0102	0.0083	0.0083	0.0101
7	0.0065	0.0053	0.0051	0.0064
8	0.0041	0.0034	0.0034	0.0041

FIG. 68

FIG. 69

n	#nodes	M-architecture		rchitecture Y-architecture		X-architecture		cture
		thrpt	n.thrpt	nthrpt	impr.(%)	n.thrpt	impr. (%)	$\sqrt{2} \cdot C_2 I C_1$
2	4	2.50E-1	2.00	2.00	0	2.00	0	0.00
3	9	8.33E-2	2.25	2.25	0	2.25	0	0.00
4	16	3.12E-2	2.00	2.36	18.0	2.60	29.8	3.36
5	25	1.67E-2	2.09	2.40	20.1	2.68	28.1	2.88
6	36	9.26E-3	2.00	2.41	20.4	2.65	32.8	4.39
7	49	5.95E-3	2.04	2.41	20.4	2.67	31.1	3.94
8	64	3.90E-3	2.00	2.38	19.1	2.69	34.6	5.19
9	81	2.78E-3	2.03	2.45	22.5	2.69	32.7	4.89
10	100	1.98E-3	2.00	2.43	21.3	2.67	33.3	5.44
11	121	1.51E-3	2.01	2.46	23.1	2.70	34.4	5.12
12	144	1.16E-3	2.00	2.43	21.4	2.69	34.5	5.26
13	169	9.15E-4	2.01	2.43	21.5	2.70	34.4	5.33
14	196	7.29E-4	2.00	2.43	21.5	2.69	34.5	5.62
15	225	5.95E-4	2.01	2.43	21.6	2.70	34.5	5.51
16	256	4.88E-4	2.00	2.44	22.0	2.69	34.6	5.65
17	289	4.08E-4	2.00	2.45	22.5	2.70	34.6	5.56

FIG. 70

Will be the state of the state

PCT/US2003/028620

67/72

FIG. 73A

FIG. 73B

FIG. 73C

FIG. 73D

FIG. 73E

FIG. 73F

SUBSTITUTE SHEET (RULE 26)

Level	#nodes	throughput	Normalized throughput
1	7	1.86E-1	2.02
2	19	1.69E-2	2.32
3	37	1.15E-3	2.48
4	61	5.33E-3	2.58
5	91	2.28E-3	2.61
6	127	4.41E-4	2.61
7	169	1.29E-4	2.62

FIG. 74

Level	#nodes	Throughput	Normalized throughput
2	29	2.31E-2	2.34
3	61	5.45E-3	2.51
4	101	3.01E-3	2.63
5	169	1.36E-3	2.74
6	281	5.75E-4	2.84

FIG. 75

Level	#nodes	Throughput	Normalized throughput
2	5	1.25E-1	1.78
3	13	4.20E-2	1.80
4	25	1.74E-2	2.09
5	41	8.71E-3	2.23
6	61	4.92E-3	2.30
7	85	3.00E-3	2.32
8	113	1.89E-3	2.36
9	145	1.39E-3	2.37
10	181	9.23E-4	2.38
11	221	6.90E-4	2.38
12	265	5.11E-4	2.39

FIG. 76

WO 2004/025734

The state of the state of the state of

PCT/US2003/028620

FIG. 77C