物理实验报告

学号: 114514 姓名: SUSTech 日期: 2025/04/15 时间: 周二下午

1 实验名称:线性与非线性元件伏安特性的测量

2 实验目的

- 1. 熟练使用电学实验的常用仪器,掌握电流、电压、电阻等电学量的测量方法。
- 2. 理解制流电路和分压电路的工作原理,学习恒压源与恒流源的使用。
- 3. 测量小灯泡的伏安特性曲线,掌握电流表的内接法和外接法。
- 4. 测量发光二极管及稳压二极管的伏安特性曲线。

3 实验原理

1、制流电路、分压电路、电流表内接法、电流表外接法

Figure 1: 电路图

2、恒压源、恒流源

恒压源就是常说的稳压电源,在额定输出电流范围内,能够对负载提供稳定的输出电压。理想的恒压源内阻为零,负载改变时,输出电流发生相应变化,输出电压维持恒定不变;恒流源也叫稳流电源,在额定输出电压范围内,能够对负载提供稳定的输出电流。理想的恒流源内阻为无穷大,负载改变时,输出电压发生相应变化,输出电流维持恒定不变。更高级的电源由恒压和恒流两部分组成,两种工作状态自动切换。电源工作在恒压状态时,恒流部分起限流保护作用;电源工作在恒流状态时,恒压部分起限压保护作用。

4 实验仪器

稳压电源, 稳流电源, 毫安表, 万用表, 小灯泡, 发光二极管, 稳压二极管, 导线若干

5 实验内容

- 5.1 测量钨丝小灯泡和定值电阻的伏安特性曲线
 - 1. 分别采用电流表内接法和电流表外接法测量小灯泡的伏安特性曲线。使用恒压电源输出,逐渐增大电压,记录对应的电流值。要求电压在 $0 \sim 7.000\,\mathrm{V}$ 范围内,每隔 $\sim 0.500\,\mathrm{V}$ 记录一组数据点。
 - 2. 根据(1)中所测数据,在同一坐标系中绘制两条小灯泡的伏安特性曲线(V-I 曲线),比较内接法伏安特性曲线和外接法伏安特性曲线的差异,定性分析差异产生的原因。

5.2 测量发光二极管的伏安特性曲线

Figure 2: 发光二极管伏安特性曲线

- 1 使用恒流源,按照电流表外接法电路图连接电路。
- 2 逐渐增大电流,记录相应的电压值,分别测量红色、绿色、蓝色发光二极管的正向伏安特性曲线。
- 3 根据(2)中所测数据,在同一坐标系中绘制三种发光二极管的正向伏安特性曲线。
- 4 根据发光二极管的正向伏安特性曲线,得到发光二极管的阈值电压 U_D ,并根据下面的公式 $eU_D=h\frac{c}{\lambda}$ 计算三种发光二极管的发光波长 λ 。

5.3 测量稳压二极管的伏安特性曲线

参考发光二极管伏安特性曲线的测量方法,自拟表格,分别测量稳压二极管的正向和反向伏安特性曲线。为了避免二极管烧坏,确保正反向电流均不超过 50mA。根据所测数据,在同一坐标系中绘制稳压二极管的正向和反向伏安特性曲线。

Figure 3: 稳压二极管伏安特性曲线

6 数据记录

进行实验,记录数据,并输入进 excel

小灯泡															
外接	U/V	0.269	0.636	1.067	1.493	1.923	2.363	2.827	3.303	3.739	4.223	4.677	5.126	5.585	6.02
	I/mA	18	25	31	36	42	46	51	56	60	64	67	73	78	81
内接	U/V	0.474	0.963	1.468	1.963	2.46	2.957	3.453	3.949	4.445	4.94	5.438	5.935	6.432	6.925
	I/mA	18	26	32	38	43	48	52	57	61	66	70	74	78	82
发光二极管															
I/mA	1	2	4	6	8	10	15	20	25	30	35	40	45	50	
V蓝	2.695	2.765	2.873	2.942	3.007	3.06	3.146	3.209	3.252	3.301	3.346	3.375	3.406	3.437	
V绿	2.335	2.423	2.579	2.711	2.777	2.886	3.02	3.157	3.221	3.292	3.363	3.412	3.48	3.542	
稳压二极管															
I/mA	0	1	2	4	6	8	10	15	20	25	30	35	40	45	50
正向U/V	0	0.75	0.769	0.787	0.798	0.805	0.812	0.825	0.835	0.842	0.849	0.855	0.861	0.865	0.869
I/mA	0	-1	-2	-4	-6	-8	-10	-15	-20	-25	-30	-35	-40	-45	-50
反向Ug/V	0	-2.648	-2.827	-3.062	-3.216	-3.32	-3.405	-3.551	-3.658	-3.719	-3.775	-3.822	-3.856	-3.885	-3.912

Figure 4: 实验数据

7 数据处理

7.1 钨丝小灯泡和定值电阻的伏安特性曲线

由实验数据作出钨丝小灯泡和定值电阻的伏安特性曲线,并进行分析

Figure 5: 钨丝小灯泡和定值电阻的伏安特性曲线

由曲线可知:

V 相同时
$$I_{\text{內}} < I_{\text{外}}$$

分析: 由于 $I_{\text{內}} = \frac{V}{R_{\text{N}} + R_{A}}$, $I_{\text{প}} = \frac{V}{R_{\text{N}}} + \frac{V}{R_{V}}$ 。又有 $R_{\text{N}}^{2} + R_{\text{N}}R_{A} + R_{A}R_{V} > 0 \implies$
 $(R_{\text{N}} + R_{V})(R_{\text{N}} + R_{A}) > R_{\text{N}}R_{V} \implies \frac{1}{R_{\text{N}} + R_{A}} < \frac{1}{R_{\text{N}}} + \frac{1}{R_{V}} \implies \frac{V}{R_{\text{N}} + R_{A}} < \frac{V}{R_{\text{N}}} + \frac{V}{R_{V}} \implies I_{\text{內}} < I_{\text{N}}$

误差

内接法的伏安特性曲线整体位于外接曲线的左上方。内接法的误差来源:电流表分压, $\Delta V = I \cdot R_A$,误差随电流增大线性增加,导致小灯泡的等效电阻计算值偏大, $R_{\parallel} = R_L + R_A$ 。

外接法的误差来源:电压表分流, $\Delta I=\frac{V}{R_V}$,误差随电压增大线性增加,导致等效电阻计算值偏小, $R_{\rm M}=\frac{R_LR_V}{R_L+R_V}$ 。

7.2 发光二极管的伏安特性曲线

由实验数据作出发光二极管的伏安特性曲线,并进行分析

Figure 6: 发光二极管的伏安特性曲线

对两条曲线最后五组数据进行线性拟合,得到 x 轴截距,即两种发光二极管的阈值电压分别为 $U_G \approx 2.91 \, V$, $U_B \approx 3.11 \, V$ 。由公式 $eU_D = h \frac{c}{\lambda}$,即 $\lambda = \frac{hc}{eU_D}$,得到两种发光二极管的波长分别为:

$$\lambda_G = \frac{6.626 \times 10^{-34} \, J \cdot s \times 2.998 \times 10^8 \, m \cdot s^{-1}}{1.602 \times 10^{-19} \, C \times 2.91 \, V} \approx 426.1 \, nm$$

$$\lambda_B = \frac{6.626 \times 10^{-34} \, J \cdot s \times 2.998 \times 10^8 \, m \cdot s^{-1}}{1.602 \times 10^{-19} \, C \times 3.11 \, V} \approx 398.7 \, nm$$

7.3 稳压二极管的伏安特性曲线

根据实验数据做出稳压二极管的伏安特性曲线:

Figure 7: 稳压二极管的伏安特性曲线

8 误差分析

- 1. 实验仪器精度不足: 2. 导线有电阻: 3. 发光二极管的光不是单色光,有杂光;
- 4. 电流的热效应导致元件升温而电阻发生变化。

9 问题思考

探讨两种颜色发光二极管伏安特性曲线的相似与不同之处,并给出合理的解释。

相似之处:随着电压增大,伏安曲线先缓慢上升,之后迅速爬升,且在较高电压下呈现出近似线性的增长趋势。

解释:当正向电压较小时,二极管处于截止状态,PN结的内建电场尚未被完全中和,载流子扩散受限,故电流随电压变化较小,使曲线呈现平缓上升;当电压超过开启电压后,二极管进入导通状态,载流子大量注入,电流迅速增大,曲线斜率急剧上升,呈指数增长趋势;继续增大电压时,由于电流主要受外部限流电阻控制,曲线整体上趋向于线性增长。

不同之处:导通状态下,两种颜色发光二极管伏安曲线中线性部分延长线与 x 轴的交点(即阈值电压)存在差异。

解释:不同颜色的发光二极管采用的半导体材料不同,导致 PN 结特性存在差异。波长较短的发光二极管(如蓝色)需要更高能量以促使电子与空穴复合释放光子,因此其阈值电压较高;而波长较长的发光二极管(如红色)的阈值电压则相对较低。

10 实验结论

本次实验测量并绘制了钨丝小灯泡、绿色和蓝色发光二极管、稳压二极管正反向的伏安特性曲线。通过计算得到两种发光二极管发出光的波长分别为 $\lambda_G=426.1\,nm,\ \lambda_B=398,7\,nm$ 。