

Universidad Ricardo Palma

RECTORADO

Formamos seres humanos para una cultura de pay

Primer Programa de Especialización INTRODUCCIÓN AL DATA SCIENCE

REGRESIÓN LINEAL CON PYTHON

Contenido

- ✓ Regresión Lineal Ideas Generales
- ✓ Principales librerías de Regresión Lineal

Regresión Lineal

- ✓ Uno de los aspectos más relevante de la Estadística es el análisis de la relación o dependencia entre variables.
- ✓ Resulta de interés conocer el efecto que una variable o varias variables pueden causar sobre otra e incluso predecir en mayor o menor grado valores en una variable a partir de otra.

Regresión lineal simple Y = f(x)

Regresión lineal múltiple Y = f(x, w, z).

$$Y = \beta_0 + \beta_1 X + \varepsilon$$

DataSet (salario.csv)

```
In [44]: import pandas as pd
  import matplotlib.pyplot as plt
  %matplotlib inline
  from pandas.tools.plotting import scatter_matrix
  from scipy import stats
  import statsmodels.api as sm
  from sklearn.linear_model import LinearRegression
```

In [2]: df=pd.read_csv("C:/Users/Mario/Downloads/salario.csv")

	rank	discipline	yrs.since.phd	yrs.service	sex	salary
0	Prof	В	19	18	Male	139750
1	Prof	В	20	16	Male	173200
2	AsstProf	В	4	3	Male	79750
3	Prof	В	45	39	Male	115000
4	Prof	В	40	41	Male	141500
5	AssocProf	В	6	6	Male	97000
6	Prof	В	30	23	Male	175000
7	Prof	В	45	45	Male	147765
8	Prof	В	21	20	Male	119250
9	Prof	В	18	18	Female	129000

Análisis descriptivo

In [4]: df[['salary','yrs.since.phd','yrs.service']].describe()

Out[4]:

	salary	yrs.since.phd	yrs.service
count	397.000000	397.000000	397.000000
mean	113706.458438	22.314861	17.614610
std	30289.038695	12.887003	13.006024
min	57800.000000	1.000000	0.000000
25%	91000.000000	12.000000	7.000000
50%	107300.000000	21.000000	16.000000
75%	134185.000000	32.000000	27.000000
max	231545.000000	56.000000	60.000000

Función Correlación

```
In [7]: df[['salary','yrs.since.phd','yrs.service']].corr()
```

Out[7]:

	salary	yrs.since.phd	yrs.service
salary	1.000000	0.419231	0.334745
yrs.since.phd	0.419231	1.000000	0.909649
yrs.service	0.334745	0.909649	1.000000

Gráficos de Correlación

```
In [8]: scatter_matrix(df[['salary','yrs.since.phd','yrs.service']], alpha=0.5,diagonal='kde')
    plt.suptitle('scatter-matrix')
    plt.show()
```

scatter-matrix

Librería scipy.stats.linregress

Es seguro https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.linregress.html

Librería scipy.stats.linregress

```
In [57]: slope, intercept, r_value, p_value, std_err = stats.linregress(df['yrs.since.phd'],df['salary'])
In [34]: print(intercept,slope,std_err,r_value,p_value)
91718.6854469 985.342124121 107.365125554 0.419231106803 2.49504231391e-18
```


Librería statsmodels

Table Of Contents

Linear Regression

- Examples
- Technical
 Documentation
 - References
 - Attributes
- Module Reference
 - Model Classes
 - Results Classes

Previous topic

tatsmodels.stats.contrast.Contrast !esults.summary_frame

Next topic

Indinary Least Squares

This Page

Show Source

Linear Regression

Linear models with independently and identically distributed errors, and for errors with heteroscedasticity or autocorrelation. This module allows estimation by ordinary least squares (OLS), weighted least squares (WLS), generalized least squares (GLS), and feasible generalized least squares with autocorrelated AR(p) errors.

See Module Reference for commands and arguments.

Examples

```
# Load modules and data
import numpy as np
import statsmodels.api as sm
spector_data = sm.datasets.spector.load()
spector_data.exog = sm.add_constant(spector_data.exog, prepend=False)

# Fit and summarize OLS model
mod = sm.OLS(spector_data.endog, spector_data.exog)
res = mod.fit()
print res.summary()
```


Librería statsmodels

```
In [54]: print(results.summary())
                                    OLS Regression Results
         Dep. Variable:
                                       salary
                                                R-squared:
                                                                                0.188
         Model:
                                               Adj. R-squared:
                                                                                0.184
         Method:
                                Least Squares F-statistic:
                                                                                45.71
                             Fri, 14 Apr 2017
                                               Prob (F-statistic):
         Date:
                                                                             1.40e-18
                                               Log-Likelihood:
         Time:
                                     22:10:39
                                                                              -4617.9
         No. Observations:
                                          397
                                                                                9242.
                                                AIC:
         Df Residuals:
                                          394
                                               BTC:
                                                                                9254.
         Df Model:
         Covariance Type:
                                    nonrobust
         _____
                                    std err
                                                                      [95.0% Conf. Int.]
                        8.991e+04
                                   2843.560
                                                31.620
                                                           0.000
                                                                      8.43e+04 9.55e+04
                                                                      1057.981 2067.797
         yrs.since.phd 1562.8889
                                    256.820
                                               6.086
                                                           0.000
         vrs.service
                                    254.469
                                               -2.472
                                                           0.014
                                                                     -1129.389 -128.814
         Omnibus:
                                       14.927
                                               Durbin-Watson:
                                                                                1.867
         Prob(Omnibus):
                                                                              15.947
                                        0.001
                                               Jarque-Bera (JB):
         Skew:
                                        0.429
                                               Prob(JB):
                                                                             0.000344
         Kurtosis:
                                        3.478
                                               Cond. No.
                                                                                 69.6
```

In [52]: results = sm.OLS(df['salary'], sm.add_constant(df[['yrs.since.phd', 'yrs.service']])).fit()

Librería sklearn

Classification

Identifying to which category an object belongs to.

Applications: Spam detection, Image recognition.

Algorithms: SVM, nearest neighbors,

random forest, ... — Examples

Regression

Predicting a continuous-valued attribute associated with an object.

Applications: Drug response, Stock prices.
Algorithms: SVR, ridge regression, Lasso, ...

- Examples

Clustering

Automatic grouping of similar objects into sets.

Applications: Customer segmentation, Grouping experiment outcomes Algorithms: k-Means, spectral clustering,

mean-shift, ... — Examples

Librería sklearn

```
In [58]: lr = LinearRegression()
    lr.fit(df[['yrs.since.phd','yrs.service']], df['salary'])
Out[58]: LinearRegression(copy_X=True, fit_intercept=True, n_jobs=1, normalize=False)
In [59]: print(lr.intercept_,lr.coef_)
    89912.1844638 [ 1562.88890188 -629.10138909]
```


Comunidad Data Science Perú

@comunidaddatascience

