

Comparison with DK1.1\_RF\_mmW model(s)

Focus on analog/RF performance

Please use the bookmark to navigate





#### General information on SG models

- Maximum supply voltage is V.
- Validity domain is defined as follows:
  - ✓ Drawn gate length varies from 30nm to 10um.
  - ✓ Drawn transistor width varies from 80nm to 10um.
  - ✓ Device temperature varies from -40 °C to 125 °C.







#### **Output parameters definitions**

- Model(s): lvtnfet\_rf, lvtnfet\_rfseg, lvtpfet\_rf, lvtpfet\_rfseg, nfet\_rf, nfet\_rfseg, pfet\_rf, pfet\_rfseg
  - ✓ Vt\_lin: Threshold voltage defined as Vgs value for which drain current is ivt\*M\*1\*W/(1\*L+0+1\*p\_la) at Vds = 0.05V.
  - ✓ Gm\_ana: Drain transconductance at Ids = iana\*M\*W/L, Vds = Vdd/4V, f = 100kHz.
  - ✓ Ft\_max: Maximum transition frequency at Vds = VddV, f = 100kHz.
  - ✓ Gds\_ana: Drain conductance at Ids = iana\*M\*W/L, Vds = Vdd/4, f = 100k
  - ✓ Vgs\_ana: Vgs value for which drain current is iana\*M\*1\*W/(1\*L+0+0\*p\_la) at Vds=Vdd/4V.
  - ✓ Ilin : Drain current at Vgs = 1V, Vds = 0.05V.
  - ✓ Fmaxmax : Maximum oscillation frequency at Vds = VddV, f = 10GHz
  - ✓ Rg: Total gate resistance at Vgs = 1V, Vds = 0V, f = 10GHz
  - ✓ Vt\_sat: Threshold voltage defined as Vgs value for which drain current is ivt\*M\*1\*W/(1\*L+0+1\*p\_la) at Vds = vds\_satV.
  - ✓ Cgg\_inv: Total gate capacitance at Vgs = 1V, Vds = 0V, f = 100kHz.
  - ✓ Ft\_ana: Transition frequency at Ids = iana\*M\*W/L, Vds = Vdd/4V
  - ✓ Gdc\_ana: Voltage gain at Ids = iana\*M\*W/L, Vds = Vdd/4V, f = 100kHz
  - ✓ Isat : Drain current at Vgs = 1V, Vds = VddV.
  - ✓ Cgd\_0v : Gate-to-Drain capacitance at Vgs = 0V, Vds = 0V, f = 100kHz.
  - ✓ Vtgmmax : Threshold voltage at Vds = 0.05 derived from Gm max method.







# lvtnfet\_rf Electrical characteristics scaling







# Scaling versus width L=30nm - DC







#### lvtnfet\_rf, vt\_lin [mV] vs Wfing [m]











# lvtnfet\_rf, vt\_sat [mV] vs Wfing [m]











# lvtnfet\_rf, VtGmmax [mV] vs Wfing [m]











# lvtnfet\_rf, ilin/W vs Wfing [m]











#### lvtnfet\_rf, isat/W vs Wfing [m]

(Study=="WScaling\_L30n" or Study=="LScaling\_W1u") and l==30e-9









dormieub



# lvtnfet\_rf, Isat normalized by TT [%] vs Wfing [m]











# lvtnfet\_rf, Gm\_max/w vs Wfing [m]











# Scaling versus width L=30nm - RF







# lvtnfet\_rf, Cgd\_0V/W vs Wfing [m]

 $(Study == "WScaling\_L30n" \ or \ Study == "LScaling\_W1u") \ and \ l == 30e-9$ 











# lvtnfet\_rf, cgg\_inv/W vs Wfing [m]











# lvtnfet\_rf, Rg\*NF vs Wfing [m]











# lvtnfet\_rf, Rg normalized by TT [%] vs Wfing [m]

 $(Study == "WScaling\_L30n" \ or \ Study == "LScaling\_W1u") \ and \ l == 30e-9$ 











# lvtnfet\_rf, Ft\_max [GHz] vs Wfing [m]











### lvtnfet\_rf, Fmaxmax [GHz] vs Wfing [m]

 $(Study == "WScaling\_L30n" \ or \ Study == "LScaling\_W1u") \ and \ l == 30e-9$ 









dormieub



#### lvtnfet\_rf, Fmaxmax normalized by TT [GHz] vs Wfing [m]

(Study=="WScaling\_L30n" or Study=="LScaling\_W1u") and l==30e-9









dormieub



# Scaling versus width L=30nm - Analog







#### lvtnfet\_rf, Vgs\_ana [mV] vs Wfing [m]











#### lvtnfet\_rf, Gm\_ana/W [] vs Wfing [m]











# lvtnfet\_rf, Gds\_ana/W [] vs Wfing [m]











# lvtnfet\_rf, GDC\_ana [] vs Wfing [m]

 $(Study == "WScaling\_L30n" \ or \ Study == "LScaling\_W1u") \ and \ l == 30e-9$ 











# lvtnfet\_rf, GBW\_QS [GHz] vs Wfing [m]

 $(Study == "WScaling\_L30n" \ or \ Study == "LScaling\_W1u") \ and \ l == 30e-9$ 











# lvtnfet\_rf, Ft\_ana [GHz] vs Wfing [m]











# Scaling versus length Wfing=1um - DC







#### lvtnfet\_rf, vt\_lin [mV] vs l [m]











#### lvtnfet\_rf, vt\_sat [mV] vs l [m]











#### lvtnfet\_rf, VtGmmax [mV] vs l [m]











#### lvtnfet\_rf, ilin/W vs l [m]











#### lvtnfet\_rf, isat/W vs l [m]











# lvtnfet\_rf, Isat normalized by TT [%] vs l [m]

(Study=="WScaling\_L30n" or Study=="LScaling\_W1u") and wfing==1e-6









dormieub



### lvtnfet\_rf, Gm\_max/w vs l [m]











# Scaling versus length Wfing=1um - RF







# lvtnfet\_rf, Cgd\_0V/W vs l [m]











# lvtnfet\_rf, cgg\_inv/W vs l [m]











# lvtnfet\_rf, Rg\*NF vs l [m]











# lvtnfet\_rf, Rg normalized by TT [%] vs l [m]











# lvtnfet\_rf, Ft\_max [GHz] vs l [m]











#### lvtnfet\_rf, Fmaxmax [GHz] vs l [m]











#### lvtnfet\_rf, Fmaxmax normalized by TT [GHz] vs l [m]











# Scaling versus length Wfing=1um - Analog







# lvtnfet\_rf, Vgs\_ana [mV] vs l [m]











#### lvtnfet\_rf, Gm\_ana/W [] vs l [m]











#### lvtnfet\_rf, Gds\_ana/W [] vs l [m]











#### lvtnfet\_rf, GDC\_ana [] vs l [m]











# lvtnfet\_rf, GBW\_QS [GHz] vs l [m]











#### lvtnfet\_rf, Ft\_ana [GHz] vs l [m]











# lvtnfet\_rfseg Electrical characteristics scaling







# Scaling versus width L=30nm - DC







# lvtnfet\_rfseg, vt\_lin [mV] vs Wfing [m]











# lvtnfet\_rfseg, vt\_sat [mV] vs Wfing [m]











# lvtnfet\_rfseg, VtGmmax [mV] vs Wfing [m]











# lvtnfet\_rfseg, ilin/W vs Wfing [m]











# lvtnfet\_rfseg, isat/W vs Wfing [m]











# lvtnfet\_rfseg, Isat normalized by TT [%] vs Wfing [m]











# lvtnfet\_rfseg, Gm\_max/w vs Wfing [m]











# Scaling versus width L=30nm - RF





dormieub



#### lvtnfet\_rfseg, Cgd\_0V/W vs Wfing [m]

 $(Study == "WScaling\_L30n" \ or \ Study == "LScaling\_W1u") \ and \ l == 30e-9$ 











#### lvtnfet\_rfseg, cgg\_inv/W vs Wfing [m]











# lvtnfet\_rfseg, Rg\*NF vs Wfing [m]











# lvtnfet\_rfseg, Rg normalized by TT [%] vs Wfing [m]

 $(Study == "WScaling\_L30n" \ or \ Study == "LScaling\_W1u") \ and \ l == 30e-9$ 











#### lvtnfet\_rfseg, Ft\_max [GHz] vs Wfing [m]

 $(Study == "WScaling\_L30n" \ or \ Study == "LScaling\_W1u") \ and \ l == 30e-9$ 











# lvtnfet\_rfseg, Fmaxmax [GHz] vs Wfing [m]











#### lvtnfet\_rfseg, Fmaxmax normalized by TT [GHz] vs Wfing [m]











# Scaling versus width L=30nm - Analog





dormieub



# lvtnfet\_rfseg, Vgs\_ana [mV] vs Wfing [m]











#### lvtnfet\_rfseg, Gm\_ana/W [] vs Wfing [m]











# lvtnfet\_rfseg, Gds\_ana/W [] vs Wfing [m]











## lvtnfet\_rfseg, GDC\_ana [] vs Wfing [m]











### lvtnfet\_rfseg, GBW\_QS [GHz] vs Wfing [m]











## lvtnfet\_rfseg, Ft\_ana [GHz] vs Wfing [m]











## Scaling versus length Wfing=1um - DC





dormieub



## lvtnfet\_rfseg, vt\_lin [mV] vs l [m]











## lvtnfet\_rfseg, vt\_sat [mV] vs l [m]











## lvtnfet\_rfseg, VtGmmax [mV] vs l [m]











## lvtnfet\_rfseg, ilin/W vs l [m]











## lvtnfet\_rfseg, isat/W vs l [m]











## lvtnfet\_rfseg, Isat normalized by TT [%] vs l [m]











## lvtnfet\_rfseg, Gm\_max/w vs l [m]

(Study=="WScaling\_L30n" or Study=="LScaling\_W1u") and wfing==1e-6









dormieub



## Scaling versus length Wfing=1um - RF





dormieub



## lvtnfet\_rfseg, Cgd\_0V/W vs l [m]











## lvtnfet\_rfseg, cgg\_inv/W vs l [m]











## lvtnfet\_rfseg, Rg\*NF vs l [m]











## lvtnfet\_rfseg, Rg normalized by TT [%] vs l [m]











## lvtnfet\_rfseg, Ft\_max [GHz] vs l [m]











### lvtnfet\_rfseg, Fmaxmax [GHz] vs l [m]











### lvtnfet\_rfseg, Fmaxmax normalized by TT [GHz] vs l [m]

(Study=="WScaling\_L30n" or Study=="LScaling\_W1u") and wfing==1e-6









dormieub



## Scaling versus length Wfing=1um - Analog







### lvtnfet\_rfseg, Vgs\_ana [mV] vs l [m]











## lvtnfet\_rfseg, Gm\_ana/W [] vs l [m]











## lvtnfet\_rfseg, Gds\_ana/W [] vs l [m]

(Study=="WScaling\_L30n" or Study=="LScaling\_W1u") and wfing==1e-6









dormieub



## lvtnfet\_rfseg, GDC\_ana [] vs l [m]











## lvtnfet\_rfseg, GBW\_QS [GHz] vs l [m]











## lvtnfet\_rfseg, Ft\_ana [GHz] vs l [m]











# lvtpfet\_rf Electrical characteristics scaling







## Scaling versus width L=30nm - DC







### lvtpfet\_rf, vt\_lin [mV] vs Wfing [m]











## lvtpfet\_rf, vt\_sat [mV] vs Wfing [m]











## lvtpfet\_rf, VtGmmax [mV] vs Wfing [m]











## lvtpfet\_rf, ilin/W vs Wfing [m]











## lvtpfet\_rf, isat/W vs Wfing [m]











## lvtpfet\_rf, Isat normalized by TT [%] vs Wfing [m]











## lvtpfet\_rf, Gm\_max/w vs Wfing [m]











## Scaling versus width L=30nm - RF







## lvtpfet\_rf, Cgd\_0V/W vs Wfing [m]











#### lvtpfet\_rf, cgg\_inv/W vs Wfing [m]











#### lvtpfet\_rf, Rg\*NF vs Wfing [m]











#### lvtpfet\_rf, Rg normalized by TT [%] vs Wfing [m]











#### lvtpfet\_rf, Ft\_max [GHz] vs Wfing [m]











#### lvtpfet\_rf, Fmaxmax [GHz] vs Wfing [m]

 $(Study == "WScaling\_L30n" \ or \ Study == "LScaling\_W1u") \ and \ l == 30e-9$ 











#### lvtpfet\_rf, Fmaxmax normalized by TT [GHz] vs Wfing [m]











# Scaling versus width L=30nm - Analog





#### lvtpfet\_rf, Vgs\_ana [mV] vs Wfing [m]











#### lvtpfet\_rf, Gm\_ana/W [] vs Wfing [m]

 $(Study == "WScaling\_L30n" \ or \ Study == "LScaling\_W1u") \ and \ l == 30e-9$ 











#### lvtpfet\_rf, Gds\_ana/W [] vs Wfing [m]











#### lvtpfet\_rf, GDC\_ana [] vs Wfing [m]











## lvtpfet\_rf, GBW\_QS [GHz] vs Wfing [m]











#### lvtpfet\_rf, Ft\_ana [GHz] vs Wfing [m]











# Scaling versus length Wfing=1um - DC







#### lvtpfet\_rf, vt\_lin [mV] vs l [m]











#### lvtpfet\_rf, vt\_sat [mV] vs l [m]











#### lvtpfet\_rf, VtGmmax [mV] vs l [m]











#### lvtpfet\_rf, ilin/W vs l [m]











#### lvtpfet\_rf, isat/W vs l [m]











#### lvtpfet\_rf, Isat normalized by TT [%] vs l [m]











## lvtpfet\_rf, Gm\_max/w vs l [m]











# Scaling versus length Wfing=1um - RF





dormieub



#### lvtpfet\_rf, Cgd\_0V/W vs l [m]











#### lvtpfet\_rf, cgg\_inv/W vs l [m]









#### lvtpfet\_rf, Rg\*NF vs l [m]











#### lvtpfet\_rf, Rg normalized by TT [%] vs l [m]











#### lvtpfet\_rf, Ft\_max [GHz] vs l [m]











#### lvtpfet\_rf, Fmaxmax [GHz] vs l [m]











#### lvtpfet\_rf, Fmaxmax normalized by TT [GHz] vs l [m]











# Scaling versus length Wfing=1um - Analog







#### lvtpfet\_rf, Vgs\_ana [mV] vs l [m]











#### lvtpfet\_rf, Gm\_ana/W [] vs l [m]











#### lvtpfet\_rf, Gds\_ana/W [] vs l [m]











#### lvtpfet\_rf, GDC\_ana [] vs l [m]











#### lvtpfet\_rf, GBW\_QS [GHz] vs l [m]











#### lvtpfet\_rf, Ft\_ana [GHz] vs l [m]











# lvtpfet\_rfseg Electrical characteristics scaling







## Scaling versus width L=30nm - DC







#### lvtpfet\_rfseg, vt\_lin [mV] vs Wfing [m]











#### lvtpfet\_rfseg, vt\_sat [mV] vs Wfing [m]

 $(Study == "WScaling\_L30n" \ or \ Study == "LScaling\_W1u") \ and \ l == 30e-9$ 











#### lvtpfet\_rfseg, VtGmmax [mV] vs Wfing [m]











#### lvtpfet\_rfseg, ilin/W vs Wfing [m]

(Study=="WScaling\_L30n" or Study=="LScaling\_W1u") and l==30e-9









dormieub



#### lvtpfet\_rfseg, isat/W vs Wfing [m]











#### lvtpfet\_rfseg, Isat normalized by TT [%] vs Wfing [m]











#### lvtpfet\_rfseg, Gm\_max/w vs Wfing [m]











## Scaling versus width L=30nm - RF





dormieub



#### lvtpfet\_rfseg, Cgd\_0V/W vs Wfing [m]











#### lvtpfet\_rfseg, cgg\_inv/W vs Wfing [m]











#### lvtpfet\_rfseg, Rg\*NF vs Wfing [m]











#### lvtpfet\_rfseg, Rg normalized by TT [%] vs Wfing [m]











#### lvtpfet\_rfseg, Ft\_max [GHz] vs Wfing [m]











#### lvtpfet\_rfseg, Fmaxmax [GHz] vs Wfing [m]











#### lvtpfet\_rfseg, Fmaxmax normalized by TT [GHz] vs Wfing [m]











## Scaling versus width L=30nm - Analog





#### lvtpfet\_rfseg, Vgs\_ana [mV] vs Wfing [m]











#### lvtpfet\_rfseg, Gm\_ana/W [] vs Wfing [m]











#### lvtpfet\_rfseg, Gds\_ana/W [] vs Wfing [m]











#### lvtpfet\_rfseg, GDC\_ana [] vs Wfing [m]











#### lvtpfet\_rfseg, GBW\_QS [GHz] vs Wfing [m]

 $(Study == "WScaling\_L30n" \ or \ Study == "LScaling\_W1u") \ and \ l == 30e-9$ 











#### lvtpfet\_rfseg, Ft\_ana [GHz] vs Wfing [m]











## Scaling versus length Wfing=1um - DC







#### lvtpfet\_rfseg, vt\_lin [mV] vs l [m]











#### lvtpfet\_rfseg, vt\_sat [mV] vs l [m]











#### lvtpfet\_rfseg, VtGmmax [mV] vs l [m]











#### lvtpfet\_rfseg, ilin/W vs l [m]











#### lvtpfet\_rfseg, isat/W vs l [m]











#### lvtpfet\_rfseg, Isat normalized by TT [%] vs l [m]











#### lvtpfet\_rfseg, Gm\_max/w vs l [m]











## Scaling versus length Wfing=1um - RF





dormieub



#### lvtpfet\_rfseg, Cgd\_0V/W vs l [m]











#### lvtpfet\_rfseg, cgg\_inv/W vs l [m]











# lvtpfet\_rfseg, Rg\*NF vs l [m]











# lvtpfet\_rfseg, Rg normalized by TT [%] vs l [m]











# lvtpfet\_rfseg, Ft\_max [GHz] vs l [m]











# lvtpfet\_rfseg, Fmaxmax [GHz] vs l [m]











# lvtpfet\_rfseg, Fmaxmax normalized by TT [GHz] vs l [m]

(Study=="WScaling\_L30n" or Study=="LScaling\_W1u") and wfing==1e-6









dormieub



# Scaling versus length Wfing=1um - Analog







# lvtpfet\_rfseg, Vgs\_ana [mV] vs l [m]











# lvtpfet\_rfseg, Gm\_ana/W [] vs l [m]











# lvtpfet\_rfseg, Gds\_ana/W [] vs l [m]











# lvtpfet\_rfseg, GDC\_ana [] vs l [m]











# lvtpfet\_rfseg, GBW\_QS [GHz] vs l [m]











# lvtpfet\_rfseg, Ft\_ana [GHz] vs l [m]











# nfet\_rf Electrical characteristics scaling







# Scaling versus width L=30nm - DC







# nfet\_rf, vt\_lin [mV] vs Wfing [m]











# nfet\_rf, vt\_sat [mV] vs Wfing [m]











# nfet\_rf, VtGmmax [mV] vs Wfing [m]











# nfet\_rf, ilin/W vs Wfing [m]











# nfet\_rf, isat/W vs Wfing [m]











# nfet\_rf, Isat normalized by TT [%] vs Wfing [m]











#### nfet\_rf, Gm\_max/w vs Wfing [m]











# Scaling versus width L=30nm - RF







# nfet\_rf, Cgd\_0V/W vs Wfing [m]











# nfet\_rf, cgg\_inv/W vs Wfing [m]











# nfet\_rf, Rg\*NF vs Wfing [m]











# nfet\_rf, Rg normalized by TT [%] vs Wfing [m]











# nfet\_rf, Ft\_max [GHz] vs Wfing [m]











# nfet\_rf, Fmaxmax [GHz] vs Wfing [m]











# **nfet\_rf**, Fmaxmax normalized by TT [GHz] vs Wfing [m]











# Scaling versus width L=30nm - Analog



dormieub



# nfet\_rf, Vgs\_ana [mV] vs Wfing [m]











# nfet\_rf, Gm\_ana/W [] vs Wfing [m]











# nfet\_rf, Gds\_ana/W [] vs Wfing [m]











# nfet\_rf, GDC\_ana [] vs Wfing [m]

 $(Study == "WScaling\_L30n" \ or \ Study == "LScaling\_W1u") \ and \ l == 30e-9$ 











# nfet\_rf, GBW\_QS [GHz] vs Wfing [m]











# nfet\_rf, Ft\_ana [GHz] vs Wfing [m]











# Scaling versus length Wfing=1um - DC





## nfet\_rf, vt\_lin [mV] vs l [m]











## nfet\_rf, vt\_sat [mV] vs l [m]











## nfet\_rf, VtGmmax [mV] vs l [m]

(Study=="WScaling\_L30n" or Study=="LScaling\_W1u") and wfing==1e-6









dormieub



## nfet\_rf, ilin/W vs l [m]











#### nfet\_rf, isat/W vs l [m]











# nfet\_rf, Isat normalized by TT [%] vs l [m]











## nfet\_rf, Gm\_max/w vs l [m]











# Scaling versus length Wfing=1um - RF







# nfet\_rf, Cgd\_0V/W vs l [m]











# nfet\_rf, cgg\_inv/W vs l [m]











# nfet\_rf, Rg\*NF vs l [m]











# nfet\_rf, Rg normalized by TT [%] vs l [m]

(Study=="WScaling\_L30n" or Study=="LScaling\_W1u") and wfing==1e-6









dormieub



## nfet\_rf, Ft\_max [GHz] vs l [m]











## nfet\_rf, Fmaxmax [GHz] vs l [m]











## nfet\_rf, Fmaxmax normalized by TT [GHz] vs l [m]











# Scaling versus length Wfing=1um - Analog





# nfet\_rf, Vgs\_ana [mV] vs l [m]











#### nfet\_rf, Gm\_ana/W [] vs l [m]











#### nfet\_rf, Gds\_ana/W [] vs l [m]











## nfet\_rf, GDC\_ana [] vs l [m]











# nfet\_rf, GBW\_QS [GHz] vs l [m]











## nfet\_rf, Ft\_ana [GHz] vs l [m]











# nfet\_rfseg **Electrical characteristics scaling**





dormieub



# Scaling versus width L=30nm - DC







## nfet\_rfseg, vt\_lin [mV] vs Wfing [m]











## nfet\_rfseg, vt\_sat [mV] vs Wfing [m]











# nfet\_rfseg, VtGmmax [mV] vs Wfing [m]

 $(Study == "WScaling\_L30n" \ or \ Study == "LScaling\_W1u") \ and \ l == 30e-9$ 











# nfet\_rfseg, ilin/W vs Wfing [m]











## nfet\_rfseg, isat/W vs Wfing [m]











# nfet\_rfseg, Isat normalized by TT [%] vs Wfing [m]











# nfet\_rfseg, Gm\_max/w vs Wfing [m]











# Scaling versus width L=30nm - RF







## nfet\_rfseg, Cgd\_0V/W vs Wfing [m]











## nfet\_rfseg, cgg\_inv/W vs Wfing [m]











## nfet\_rfseg, Rg\*NF vs Wfing [m]











### nfet\_rfseg, Rg normalized by TT [%] vs Wfing [m]











### nfet\_rfseg, Ft\_max [GHz] vs Wfing [m]











### nfet\_rfseg, Fmaxmax [GHz] vs Wfing [m]











### nfet\_rfseg, Fmaxmax normalized by TT [GHz] vs Wfing [m]











# Scaling versus width L=30nm - Analog





### nfet\_rfseg, Vgs\_ana [mV] vs Wfing [m]











### nfet\_rfseg, Gm\_ana/W [] vs Wfing [m]











### nfet\_rfseg, Gds\_ana/W [] vs Wfing [m]

 $(Study == "WScaling\_L30n" \ or \ Study == "LScaling\_W1u") \ and \ l == 30e-9$ 











### nfet\_rfseg, GDC\_ana [] vs Wfing [m]

 $(Study == "WScaling\_L30n" \ or \ Study == "LScaling\_W1u") \ and \ l == 30e-9$ 











### nfet\_rfseg, GBW\_QS [GHz] vs Wfing [m]











### nfet\_rfseg, Ft\_ana [GHz] vs Wfing [m]











# Scaling versus length Wfing=1um - DC





dormieub



### nfet\_rfseg, vt\_lin [mV] vs l [m]











### nfet\_rfseg, vt\_sat [mV] vs l [m]











### nfet\_rfseg, VtGmmax [mV] vs l [m]

(Study=="WScaling\_L30n" or Study=="LScaling\_W1u") and wfing==1e-6









dormieub



### nfet\_rfseg, ilin/W vs l [m]











### nfet\_rfseg, isat/W vs l [m]











### nfet\_rfseg, Isat normalized by TT [%] vs l [m]











### nfet\_rfseg, Gm\_max/w vs l [m]











# Scaling versus length Wfing=1um - RF







### nfet\_rfseg, Cgd\_0V/W vs l [m]











### nfet\_rfseg, cgg\_inv/W vs l [m]











### nfet\_rfseg, Rg\*NF vs l [m]











### nfet\_rfseg, Rg normalized by TT [%] vs l [m]











### nfet\_rfseg, Ft\_max [GHz] vs l [m]











### nfet\_rfseg, Fmaxmax [GHz] vs l [m]











### nfet\_rfseg, Fmaxmax normalized by TT [GHz] vs l [m]











# Scaling versus length Wfing=1um - Analog



dormieub



### nfet\_rfseg, Vgs\_ana [mV] vs l [m]











### nfet\_rfseg, Gm\_ana/W [] vs l [m]











### nfet\_rfseg, Gds\_ana/W [] vs l [m]











### nfet\_rfseg, GDC\_ana [] vs l [m]











### nfet\_rfseg, GBW\_QS [GHz] vs l [m]











### nfet\_rfseg, Ft\_ana [GHz] vs l [m]











# pfet\_rf Electrical characteristics scaling





# Scaling versus width L=30nm - DC







#### pfet\_rf, vt\_lin [mV] vs Wfing [m]

 $(Study == "WScaling\_L30n" \ or \ Study == "LScaling\_W1u") \ and \ l == 30e-9$ 











#### pfet\_rf, vt\_sat [mV] vs Wfing [m]











#### pfet\_rf, VtGmmax [mV] vs Wfing [m]











#### pfet\_rf, ilin/W vs Wfing [m]











#### pfet\_rf, isat/W vs Wfing [m]











### pfet\_rf, Isat normalized by TT [%] vs Wfing [m]











#### pfet\_rf, Gm\_max/w vs Wfing [m]











# Scaling versus width L=30nm - RF







### pfet\_rf, Cgd\_0V/W vs Wfing [m]











#### pfet\_rf, cgg\_inv/W vs Wfing [m]











#### pfet\_rf, Rg\*NF vs Wfing [m]











#### pfet\_rf, Rg normalized by TT [%] vs Wfing [m]











#### pfet\_rf, Ft\_max [GHz] vs Wfing [m]











#### pfet\_rf, Fmaxmax [GHz] vs Wfing [m]











#### pfet\_rf, Fmaxmax normalized by TT [GHz] vs Wfing [m]

 $(Study == "WScaling\_L30n" \ or \ Study == "LScaling\_W1u") \ and \ l == 30e-9$ 











# Scaling versus width L=30nm - Analog





#### pfet\_rf, Vgs\_ana [mV] vs Wfing [m]









#### pfet\_rf, Gm\_ana/W [] vs Wfing [m]











#### pfet\_rf, Gds\_ana/W [] vs Wfing [m]











#### pfet\_rf, GDC\_ana [] vs Wfing [m]

 $(Study == "WScaling\_L30n" \ or \ Study == "LScaling\_W1u") \ and \ l == 30e-9$ 











#### pfet\_rf, GBW\_QS [GHz] vs Wfing [m]











#### pfet\_rf, Ft\_ana [GHz] vs Wfing [m]











# Scaling versus length Wfing=1um - DC





dormieub



#### pfet\_rf, vt\_lin [mV] vs l [m]











#### pfet\_rf, vt\_sat [mV] vs l [m]











#### pfet\_rf, VtGmmax [mV] vs l [m]











#### pfet\_rf, ilin/W vs l [m]











#### pfet\_rf, isat/W vs l [m]









### pfet\_rf, Isat normalized by TT [%] vs l [m]











#### pfet\_rf, Gm\_max/w vs l [m]











# Scaling versus length Wfing=1um - RF





#### pfet\_rf, Cgd\_0V/W vs l [m]











#### pfet\_rf, cgg\_inv/W vs l [m]











#### pfet\_rf, Rg\*NF vs l [m]











#### pfet\_rf, Rg normalized by TT [%] vs l [m]











#### pfet\_rf, Ft\_max [GHz] vs l [m]











## pfet\_rf, Fmaxmax [GHz] vs l [m]











## pfet\_rf, Fmaxmax normalized by TT [GHz] vs l [m]











## Scaling versus length Wfing=1um - Analog







## pfet\_rf, Vgs\_ana [mV] vs l [m]











## pfet\_rf, Gm\_ana/W [] vs l [m]











## pfet\_rf, Gds\_ana/W [] vs l [m]

(Study=="WScaling\_L30n" or Study=="LScaling\_W1u") and wfing==1e-6









dormieub



## pfet\_rf, GDC\_ana [] vs l [m]











## pfet\_rf, GBW\_QS [GHz] vs l [m]











## pfet\_rf, Ft\_ana [GHz] vs l [m]











# pfet\_rfseg Electrical characteristics scaling







## Scaling versus width L=30nm - DC



dormieub



#### pfet\_rfseg, vt\_lin [mV] vs Wfing [m]











#### pfet\_rfseg, vt\_sat [mV] vs Wfing [m]

 $(Study == "WScaling\_L30n" \ or \ Study == "LScaling\_W1u") \ and \ l == 30e-9$ 











#### pfet\_rfseg, VtGmmax [mV] vs Wfing [m]

 $(Study == "WScaling\_L30n" \ or \ Study == "LScaling\_W1u") \ and \ l == 30e-9$ 









dormieub



## pfet\_rfseg, ilin/W vs Wfing [m]











#### pfet\_rfseg, isat/W vs Wfing [m]











## pfet\_rfseg, Isat normalized by TT [%] vs Wfing [m]











## pfet\_rfseg, Gm\_max/w vs Wfing [m]

 $(Study == "WScaling\_L30n" \ or \ Study == "LScaling\_W1u") \ and \ l == 30e-9$ 











## Scaling versus width L=30nm - RF





dormieub



#### pfet\_rfseg, Cgd\_0V/W vs Wfing [m]











## pfet\_rfseg, cgg\_inv/W vs Wfing [m]











## pfet\_rfseg, Rg\*NF vs Wfing [m]











## pfet\_rfseg, Rg normalized by TT [%] vs Wfing [m]

 $(Study == "WScaling\_L30n" \ or \ Study == "LScaling\_W1u") \ and \ l == 30e-9$ 











## pfet\_rfseg, Ft\_max [GHz] vs Wfing [m]

 $(Study == "WScaling\_L30n" \ or \ Study == "LScaling\_W1u") \ and \ l == 30e-9$ 











## pfet\_rfseg, Fmaxmax [GHz] vs Wfing [m]











#### pfet\_rfseg, Fmaxmax normalized by TT [GHz] vs Wfing [m]











## Scaling versus width L=30nm - Analog





## pfet\_rfseg, Vgs\_ana [mV] vs Wfing [m]











## pfet\_rfseg, Gm\_ana/W [] vs Wfing [m]











#### pfet\_rfseg, Gds\_ana/W [] vs Wfing [m]











## pfet\_rfseg, GDC\_ana [] vs Wfing [m]











#### pfet\_rfseg, GBW\_QS [GHz] vs Wfing [m]











#### pfet\_rfseg, Ft\_ana [GHz] vs Wfing [m]











## Scaling versus length Wfing=1um - DC



dormieub



#### pfet\_rfseg, vt\_lin [mV] vs l [m]











#### pfet\_rfseg, vt\_sat [mV] vs l [m]











#### pfet\_rfseg, VtGmmax [mV] vs l [m]











#### pfet\_rfseg, ilin/W vs l [m]











#### pfet\_rfseg, isat/W vs l [m]











#### pfet\_rfseg, Isat normalized by TT [%] vs l [m]











#### pfet\_rfseg, Gm\_max/w vs l [m]











# Scaling versus length Wfing=1um - RF





#### pfet\_rfseg, Cgd\_0V/W vs l [m]











#### pfet\_rfseg, cgg\_inv/W vs l [m]











#### pfet\_rfseg, Rg\*NF vs l [m]











#### pfet\_rfseg, Rg normalized by TT [%] vs l [m]











#### pfet\_rfseg, Ft\_max [GHz] vs l [m]











#### pfet\_rfseg, Fmaxmax [GHz] vs l [m]











#### pfet\_rfseg, Fmaxmax normalized by TT [GHz] vs l [m]











## Scaling versus length Wfing=1um - Analog





dormieub



#### pfet\_rfseg, Vgs\_ana [mV] vs l [m]











#### pfet\_rfseg, Gm\_ana/W [] vs l [m]











#### pfet\_rfseg, Gds\_ana/W [] vs l [m]











#### pfet\_rfseg, GDC\_ana [] vs l [m]











#### pfet\_rfseg, GBW\_QS [GHz] vs l [m]











#### pfet\_rfseg, Ft\_ana [GHz] vs l [m]











### **Annex**







#### **Conditions of simulations**

The simulations were done with SBenchLSF Alpha using Eldo simulator 2018.3.

- Model lvtnfet\_rf (DK1.2\_RF\_mmW)
  - ✓ Input Parameters
    - $\mathsf{x}$  vds\_ft = Vdd V
    - $\mathbf{X}$  iana = 5e-6 A
    - $\times$  vds\_cgg = 0 V
    - $\times$  f\_ext\_rg = 10G Hz
    - $\mathbf{x}$  mc\_sens = 0
    - $\times$  vds\_lin = 0.05 V
    - $\times$  ivt = 300e-9 A
    - **x** model\_version = 1.0.e
    - **x** vds\_off = vds\_sat V
    - $\times$  vds\_cgd = 0 V
    - $\times$  ams\_release = 2018.3
    - **✗** plashrink\_iana = 0
    - $\mathsf{x}$  vgs\_stop = vdd V
    - **✗** dlshrink\_ivt = 0



Sep 21, 2018

- **✗** sbenchlsf\_release = Alpha
- $\times$  vds sat = Vdd V
- **x** shrink iana = 1
- **x** mc\_nsigma = 3
- **x** shrink\_ivt = 1
- **✗** dlshrink\_tinv = 0
- $\times$  vstep\_iana = 0.01 V
- $\mathbf{x}$  vgs\_start = 0 V
- **x** plashrink\_ivt = 1
- $\mathsf{X}$  dlshrink iana = 0
- $\star$  ithslwi = 10e-9 A
- $\mathbf{X}$  vds ana = Vdd/4 V
- $\times$  vds\_cbd = 0 V
- $\times$  vddmax = vdd
- $\times$  mc runs = 500
- $\mathbf{X}$  vstep\_ivt = 0.005 V
- $\mathbf{x}$  vgs\_off = 0 V
- $\times$  temp = 25 °C
- x f ext = 100k Hz
- $\mathbf{x}$  vbs = 0 V
- $\times$  vdd = 1 V
- **x** shrink\_tinv = 1
- ✓ Sweep Parameters
- ✓ Extra parameters
  - $\mathsf{X}$  lvt\_dev = 0





$$\mathbf{x}$$
 rvt\_dev = 0

- Model lvtnfet\_rfseg (DK1.2\_RF\_mmW)
  - ✓ Input Parameters
    - $\times$  vds\_ft = Vdd V
    - $\mathbf{X}$  iana = 5e-6 A
    - $\times$  vds\_cgg = 0 V
    - $\star$  f\_ext\_rg = 10G Hz
    - $\mathbf{x}$  mc\_sens = 0
    - $\times$  vds\_lin = 0.05 V
    - $\times$  ivt = 300e-9 A
    - $\times$  model\_version = 1.0.e
    - **x** vds\_off = vds\_sat V
    - $\times$  vds\_cgd = 0 V
    - $\mathbf{x}$  ams\_release = 2018.3
    - **✗** plashrink\_iana = 0
    - $\times$  vgs\_stop = vdd V
    - **✗** dlshrink\_ivt = 0
    - **✗** sbenchlsf\_release = Alpha
    - **x** vds\_sat = Vdd V
    - **x** shrink\_iana = 1
    - **x** mc\_nsigma = 3
    - **x** shrink\_ivt = 1
    - $\mathsf{X}$  dlshrink tinv = 0
    - $\times$  vstep\_iana = 0.01 V
    - $\mathbf{x}$  vgs\_start = 0 V



Sep 21, 2018

- **x** plashrink\_ivt = 1
- $\mathsf{X}$  dlshrink iana = 0
- $\star$  ithslwi = 10e-9 A
- $\mathsf{x}$  vds\_ana = Vdd/4 V
- $\times$  vds\_cbd = 0 V
- $\mathbf{x}$  vddmax = vdd
- $\times$  mc\_runs = 500
- $\times$  vstep\_ivt = 0.005 V
- $\mathbf{x}$  vgs\_off = 0 V
- $\times$  temp = 25 °C
- $\star$  f\_ext = 100k Hz
- $\mathbf{x}$  vbs = 0 V
- $\times$  vdd = 1 V
- **x** shrink\_tinv = 1
- ✓ Sweep Parameters
- ✓ Extra parameters
  - $\mathsf{X}$  lvt\_dev = 0
  - $\mathbf{x}$  rvt\_dev = 0
- Model lvtpfet\_rf (DK1.2\_RF\_mmW)
  - ✓ Input Parameters
    - $\times$  vds\_ft = Vdd V
    - $\mathbf{X}$  iana = 2e-6 A
    - $\times$  vds\_cgg = 0 V
    - $x f_{ext_rg} = 10G Hz$
    - $\times$  mc\_sens = 0



- $\times$  vds\_lin = 0.05 V
- **X** ivt = 70e-9 A
- **x** model\_version = 1.0.e
- **x** vds\_off = vds\_sat V
- $\times$  vds\_cgd = 0 V
- $\mathbf{x}$  ams\_release = 2018.3
- **✗** plashrink\_iana = 0
- $\mathbf{x}$  vgs\_stop = vdd V
- **✗** dlshrink\_ivt = 0
- **x** sbenchlsf\_release = Alpha
- $\times$  vds sat = Vdd V
- **x** shrink\_iana = 1
- **x** mc\_nsigma = 3
- **x** shrink\_ivt = 1
- **✗** dlshrink\_tinv = 0
- **x** vstep\_iana = 0.01 V
- $\mathbf{x}$  vgs\_start = 0 V
- **x** plashrink\_ivt = 1
- **✗** dlshrink\_iana = 0
- $\star$  ithslwi = 10e-9 A
- $\mathsf{x}$  vds\_ana = Vdd/4 V
- $\times$  vds\_cbd = 0 V
- $\mathbf{x}$  vddmax = vdd
- $\times$  mc\_runs = 500
- $\times$  vstep\_ivt = 0.005 V



- $\times$  vsub1 = 0
- $\mathbf{x}$  vgs\_off = 0 V
- **x** temp =  $25 \, ^{\circ}$ C
- $\star$  f\_ext = 100k Hz
- $\mathbf{x}$  vbs = 1 V
- $\times$  vdd = 1 V
- **x** shrink\_tinv = 1
- ✓ Sweep Parameters
- ✓ Extra parameters
  - $\mathsf{X}$  lvt\_dev = 0
  - $\mathbf{x}$  rvt\_dev = 0
- Model lvtpfet\_rfseg (DK1.2\_RF\_mmW)
  - ✓ Input Parameters
    - $\mathbf{x}$  vds\_ft = Vdd V
    - $\mathbf{X}$  iana = 2e-6 A
    - $\times$  vds\_cgg = 0 V
    - $\star$  f\_ext\_rg = 10G Hz
    - $\mathbf{x}$  mc\_sens = 0
    - $\times$  vds lin = 0.05 V
    - **x** ivt = 70e-9 A
    - $\times$  model\_version = 1.0.e
    - **x** vds\_off = vds\_sat V
    - $\times$  vds\_cgd = 0 V
    - $\times$  ams\_release = 2018.3
    - **✗** plashrink\_iana = 0



Sep 21, 2018

- $\times$  vgs\_stop = vdd V
- $\mathsf{X}$  dlshrink ivt = 0
- **x** sbenchlsf\_release = Alpha
- $\times$  vds\_sat = Vdd V
- **x** shrink\_iana = 1
- **x** mc\_nsigma = 3
- **x** shrink\_ivt = 1
- **✗** dlshrink\_tinv = 0
- **x** vstep\_iana = 0.01 V
- $\times$  vgs\_start = 0 V
- **✗** plashrink\_ivt = 1
- **✗** dlshrink\_iana = 0
- $\star$  ithslwi = 10e-9 A
- $\mathsf{X}$  vds\_ana = Vdd/4 V
- $\times$  vds\_cbd = 0 V
- $\mathbf{x}$  vddmax = vdd
- $\times$  mc\_runs = 500
- $\mathbf{X}$  vstep\_ivt = 0.005 V
- $\times$  vsub1 = 0
- $\mathbf{x}$  vgs\_off = 0 V
- $\times$  temp = 25 °C
- $\star$  f\_ext = 100k Hz
- $\mathbf{x}$  vbs = 1 V
- $\times$  vdd = 1 V
- **x** shrink\_tinv = 1



- ✓ Sweep Parameters
- ✓ Extra parameters
  - $\mathbf{X}$  lvt dev = 0
  - $\mathbf{x}$  rvt\_dev = 0
- Model nfet\_rf (DK1.2\_RF\_mmW)
  - ✓ Input Parameters
    - $\times$  vds\_ft = Vdd V
    - **x** iana = 5e-6 A
    - $\times$  vds\_cgg = 0 V
    - $\times$  f\_ext\_rg = 10G Hz
    - $\mathbf{x}$  mc\_sens = 0
    - $\times$  vds lin = 0.05 V
    - $\times$  ivt = 300e-9 A
    - **✗** model\_version = 1.0.c
    - **x** vds\_off = vds\_sat V
    - $\times$  vds\_cgd = 0 V
    - $\times$  ams\_release = 2018.3
    - **✗** plashrink\_iana = 0
    - $\mathsf{x}$  vgs\_stop = vdd V
    - **✗** dlshrink\_ivt = 0
    - **x** sbenchlsf\_release = Alpha
    - $\times$  vds\_sat = Vdd V
    - $\mathbf{x}$  shrink iana = 1
    - **x** mc\_nsigma = 3
    - **x** shrink\_ivt = 1



- **✗** dlshrink\_tinv = 0
- **x** vstep\_iana = 0.01 V
- $\mathbf{x}$  vgs\_start = 0 V
- **✗** plashrink\_ivt = 1
- **✗** dlshrink\_iana = 0
- $\star$  ithslwi = 10e-9 A
- $\mathsf{x}$  vds\_ana = Vdd/4 V
- $\times$  vds\_cbd = 0 V
- $\times$  vddmax = vdd
- $\times$  mc runs = 500
- $\times$  vstep\_ivt = 0.005 V
- $\mathbf{x}$  vsub1 = 0
- $\times$  vgs\_off = 0 V
- $\times$  temp = 25 °C
- $\star$  f\_ext = 100k Hz
- $\mathbf{x}$  vbs = 0 V
- $\times$  vdd = 1 V
- **x** shrink\_tinv = 1
- ✓ Sweep Parameters
- ✓ Extra parameters
  - $\mathsf{X}$  lvt\_dev = 0
  - $\mathbf{x}$  rvt\_dev = 0
- Model nfet\_rfseg (DK1.2\_RF\_mmW)
  - ✓ Input Parameters
    - $\mathsf{x}$  vds\_ft = Vdd V



- $\mathbf{X}$  iana = 5e-6 A
- $\times$  vds\_cgg = 0 V
- $\times$  f\_ext\_rg = 10G Hz
- $\mathbf{x}$  mc\_sens = 0
- $\times$  vds\_lin = 0.05 V
- $\times$  ivt = 300e-9 A
- **✗** model\_version = 1.0.c
- **x** vds\_off = vds\_sat V
- $\times$  vds\_cgd = 0 V
- $\mathbf{x}$  ams\_release = 2018.3
- **✗** plashrink\_iana = 0
- $\times$  vgs\_stop = vdd V
- **✗** dlshrink\_ivt = 0
- **x** sbenchlsf\_release = Alpha
- $\times$  vds\_sat = Vdd V
- **x** shrink\_iana = 1
- **x** mc\_nsigma = 3
- **x** shrink\_ivt = 1
- **✗** dlshrink\_tinv = 0
- $\mathbf{X}$  vstep\_iana = 0.01 V
- $\mathbf{x}$  vgs\_start = 0 V
- **x** plashrink\_ivt = 1
- **✗** dlshrink\_iana = 0
- $\star$  ithslwi = 10e-9 A
- $\mathsf{x}$  vds\_ana = Vdd/4 V



- $\times$  vds\_cbd = 0 V
- $\mathbf{X}$  vddmax = vdd
- $\times$  mc runs = 500
- $\times$  vstep\_ivt = 0.005 V
- $\times$  vsub1 = 0
- $\mathbf{x}$  vgs\_off = 0 V
- **x** temp =  $25 \, ^{\circ}$ C
- $\star$  f\_ext = 100k Hz
- $\mathbf{x}$  vbs = 0 V
- $\times$  vdd = 1 V
- **x** shrink\_tinv = 1
- ✓ Sweep Parameters
- ✓ Extra parameters
  - $\mathsf{X}$  lvt\_dev = 0
  - $\mathbf{x}$  rvt dev = 0
- Model pfet\_rf (DK1.2\_RF\_mmW)
  - ✓ Input Parameters
    - $\times$  vds\_ft = Vdd V
    - **x** iana = 2e-6 A
    - $\times$  vds\_cgg = 0 V
    - $\star$  f\_ext\_rg = 10G Hz
    - $\mathbf{x}$  mc\_sens = 0
    - $\times$  vds\_lin = 0.05 V
    - **x** ivt = 70e-9 A
    - **✗** model\_version = 1.0.c



- **x** vds\_off = vds\_sat V
- $\times$  vds\_cgd = 0 V
- $\mathbf{x}$  ams\_release = 2018.3
- **x** plashrink\_iana = 0
- $\mathbf{x}$  vgs\_stop = vdd V
- **✗** dlshrink\_ivt = 0
- **x** sbenchlsf\_release = Alpha
- $\times$  vds\_sat = Vdd V
- **x** shrink\_iana = 1
- **x** mc\_nsigma = 3
- **✗** shrink\_ivt = 1
- **✗** dlshrink\_tinv = 0
- $\times$  vstep\_iana = 0.01 V
- $\mathbf{x}$  vgs\_start = 0 V
- **✗** plashrink\_ivt = 1
- $\mathsf{X}$  dlshrink iana = 0
- $\star$  ithslwi = 10e-9 A
- $\mathsf{X}$  vds\_ana = Vdd/4 V
- $\times$  vds\_cbd = 0 V
- $\mathbf{x}$  vddmax = vdd
- $\times$  mc\_runs = 500
- $\times$  vstep\_ivt = 0.005 V
- $\mathbf{x}$  vgs\_off = 0 V
- $\times$  temp = 25 °C
- $\star$  f\_ext = 100k Hz





- $\mathbf{x}$  vbs = 0 V
- $\times$  vdd = 1 V
- $\mathbf{x}$  shrink tinv = 1
- ✓ Sweep Parameters
- ✓ Extra parameters
  - $\mathsf{X}$  lvt\_dev = 0
  - $\mathbf{x}$  rvt\_dev = 0
- Model pfet\_rfseg (DK1.2\_RF\_mmW)
  - ✓ Input Parameters
    - $\mathbf{x}$  vds ft = Vdd V
    - $\mathbf{X}$  iana = 2e-6 A
    - $\times$  vds\_cgg = 0 V
    - $x f_{ext_rg} = 10G Hz$
    - $\times$  mc\_sens = 0
    - $\times$  vds lin = 0.05 V
    - $\times$  ivt = 70e-9 A
    - **✗** model\_version = 1.0.c
    - **x** vds\_off = vds\_sat V
    - $\times$  vds\_cgd = 0 V
    - $\times$  ams\_release = 2018.3
    - **✗** plashrink\_iana = 0
    - $\times$  vgs\_stop = vdd V
    - $\mathsf{X}$  dlshrink ivt = 0
    - **✗** sbenchlsf\_release = Alpha
    - $\times$  vds\_sat = Vdd V



- **x** shrink\_iana = 1
- **x** mc\_nsigma = 3
- **x** shrink\_ivt = 1
- **✗** dlshrink\_tinv = 0
- **x** vstep\_iana = 0.01 V
- $\mathbf{x}$  vgs\_start = 0 V
- **✗** plashrink\_ivt = 1
- **✗** dlshrink iana = 0
- $\star$  ithslwi = 10e-9 A
- $\mathsf{x}$  vds\_ana = Vdd/4 V
- $\times$  vds cbd = 0 V
- $\mathbf{x}$  vddmax = vdd
- $\times$  mc runs = 500
- $\times$  vstep\_ivt = 0.005 V
- $\mathbf{x}$  vgs\_off = 0 V
- $\times$  temp = 25 °C
- $\star$  f\_ext = 100k Hz
- $\mathbf{x}$  vbs = 0 V
- $\times$  vdd = 1 V
- **x** shrink\_tinv = 1
- ✓ Sweep Parameters
- ✓ Extra parameters
  - $\mathbf{X}$  lvt dev = 0
  - $\mathbf{x}$  rvt\_dev = 0
- Model lvtnfet\_rf (DK1.1\_RF\_mmW)



- ✓ Input Parameters
  - $\mathbf{x}$  vds ft = Vdd V
  - $\mathbf{X}$  iana = 5e-6 A
  - $\times$  vds\_cgg = 0 V
  - $\star$  f\_ext\_rg = 10G Hz
  - $\mathbf{x}$  mc\_sens = 0
  - $\times$  vds\_lin = 0.05 V
  - $\times$  ivt = 300e-9 A
  - **✗** model\_version = 1.0.d
  - **x** vds\_off = vds\_sat V
  - $\times$  vds\_cgd = 0 V
  - $\mathbf{x}$  ams\_release = 2018.3
  - **✗** plashrink\_iana = 0
  - $\times$  vgs\_stop = vdd V
  - **✗** dlshrink\_ivt = 0
  - **x** sbenchlsf\_release = Alpha
  - $\times$  vds\_sat = Vdd V
  - **x** shrink\_iana = 1
  - **x** mc\_nsigma = 3
  - **x** shrink\_ivt = 1
  - **✗** dlshrink\_tinv = 0
  - **x** vstep\_iana = 0.01 V
  - $\times$  vgs\_start = 0 V
  - **x** plashrink\_ivt = 1
  - **✗** dlshrink\_iana = 0



- $\star$  ithslwi = 10e-9 A
- $\mathbf{X}$  vds ana = Vdd/4 V
- $\times$  vds\_cbd = 0 V
- $\mathbf{X}$  vddmax = vdd
- $\times$  mc\_runs = 500
- $\times$  vstep\_ivt = 0.005 V
- $\times$  vgs\_off = 0 V
- $\times$  temp = 25 °C
- $\star$  f\_ext = 100k Hz
- $\mathbf{x}$  vbs = 0 V
- $\times$  vdd = 1 V
- **x** shrink\_tinv = 1
- ✓ Sweep Parameters
- ✓ Extra parameters
  - $\mathbf{X}$  lvt dev = 0
  - $\mathbf{x}$  rvt\_dev = 0
- Model lvtnfet\_rfseg (DK1.1\_RF\_mmW)
  - ✓ Input Parameters
    - $\mathbf{x}$  vds ft = Vdd V
    - **x** iana = 5e-6 A
    - $\times$  vds\_cgg = 0 V
    - $\star$  f\_ext\_rg = 10G Hz
    - $\mathbf{x}$  mc\_sens = 0
    - $\times$  vds\_lin = 0.05 V
    - **x** ivt = 300e-9 A



- **✗** model\_version = 1.0.d
- $\mathbf{X}$  vds off = vds sat V
- $\times$  vds\_cgd = 0 V
- **x** ams\_release = 2018.3
- **✗** plashrink\_iana = 0
- $\times$  vgs\_stop = vdd V
- **✗** dlshrink\_ivt = 0
- **x** sbenchlsf\_release = Alpha
- $\times$  vds\_sat = Vdd V
- **x** shrink\_iana = 1
- **x** mc\_nsigma = 3
- $\times$  shrink ivt = 1
- $\mathsf{X}$  dlshrink tinv = 0
- $\times$  vstep\_iana = 0.01 V
- $\mathbf{x}$  vgs\_start = 0 V
- **x** plashrink\_ivt = 1
- $\mathsf{X}$  dlshrink iana = 0
- $\star$  ithslwi = 10e-9 A
- $\mathsf{x}$  vds\_ana = Vdd/4 V
- $\times$  vds\_cbd = 0 V
- $\mathbf{X}$  vddmax = vdd
- $\times$  mc runs = 500
- $\mathbf{X}$  vstep\_ivt = 0.005 V
- $\mathbf{x}$  vgs\_off = 0 V
- $\times$  temp = 25 °C



- $\star$  f\_ext = 100k Hz
- $\mathbf{x}$  vbs = 0 V
- $\times$  vdd = 1 V
- **x** shrink\_tinv = 1
- ✓ Sweep Parameters
- ✓ Extra parameters
  - $\mathsf{X}$  lvt\_dev = 0
  - $\mathbf{x}$  rvt\_dev = 0
- Model lvtpfet\_rf (DK1.1\_RF\_mmW)
  - ✓ Input Parameters
    - $\times$  vds\_ft = Vdd V
    - **x** iana = 2e-6 A
    - $\times$  vds\_cgg = 0 V
    - $\times$  f\_ext\_rg = 10G Hz
    - $\mathbf{x}$  mc\_sens = 0
    - $\times$  vds lin = 0.05 V
    - **x** ivt = 70e-9 A
    - **✗** model\_version = 1.0.d
    - **x** vds\_off = vds\_sat V
    - $\times$  vds\_cgd = 0 V
    - $\times$  ams\_release = 2018.3
    - **✗** plashrink\_iana = 0
    - $\mathsf{x}$  vgs\_stop = vdd V
    - $\mathsf{X}$  dlshrink ivt = 0
    - **x** sbenchlsf\_release = Alpha





- $\times$  vds\_sat = Vdd V
- **x** shrink iana = 1
- **x** mc\_nsigma = 3
- **✗** shrink\_ivt = 1
- **✗** dlshrink\_tinv = 0
- **x** vstep\_iana = 0.01 V
- $\times$  vgs\_start = 0 V
- **x** plashrink\_ivt = 1
- **✗** dlshrink\_iana = 0
- $\star$  ithslwi = 10e-9 A
- $\mathsf{x}$  vds\_ana = Vdd/4 V
- $\times$  vds\_cbd = 0 V
- $\mathbf{x}$  vddmax = vdd
- $\times$  mc\_runs = 500
- $\mathbf{X}$  vstep\_ivt = 0.005 V
- $\times$  vsub1 = 0
- $\times$  vgs\_off = 0 V
- $\times$  temp = 25 °C
- x f ext = 100k Hz
- $\mathbf{x}$  vbs = 1 V
- $\times$  vdd = 1 V
- **x** shrink\_tinv = 1
- ✓ Sweep Parameters
- ✓ Extra parameters
  - $\mathsf{X}$  lvt\_dev = 0



$$\mathbf{x}$$
 rvt\_dev = 0

- Model lvtpfet\_rfseg (DK1.1\_RF\_mmW)
  - ✓ Input Parameters
    - $\times$  vds\_ft = Vdd V
    - $\mathbf{X}$  iana = 2e-6 A
    - $\times$  vds\_cgg = 0 V
    - $\star$  f\_ext\_rg = 10G Hz
    - $\mathbf{x}$  mc\_sens = 0
    - $\times$  vds\_lin = 0.05 V
    - **x** ivt = 70e-9 A
    - **x** model\_version = 1.0.d
    - **x** vds\_off = vds\_sat V
    - $\times$  vds\_cgd = 0 V
    - $\mathbf{x}$  ams\_release = 2018.3
    - **✗** plashrink\_iana = 0
    - $\mathbf{X}$  vgs\_stop = vdd V
    - **✗** dlshrink\_ivt = 0
    - **x** sbenchlsf\_release = Alpha
    - **x** vds\_sat = Vdd V
    - **x** shrink\_iana = 1
    - **x** mc\_nsigma = 3
    - **x** shrink\_ivt = 1
    - $\mathsf{X}$  dlshrink tinv = 0
    - $\times$  vstep\_iana = 0.01 V
    - $\mathbf{x}$  vgs\_start = 0 V



- **x** plashrink\_ivt = 1
- $\mathsf{X}$  dlshrink iana = 0
- $\star$  ithslwi = 10e-9 A
- $\mathsf{x}$  vds\_ana = Vdd/4 V
- $\times$  vds\_cbd = 0 V
- $\mathbf{x}$  vddmax = vdd
- $\times$  mc\_runs = 500
- $\mathbf{X}$  vstep\_ivt = 0.005 V
- $\mathbf{x}$  vsub1 = 0
- $\times$  vgs\_off = 0 V
- $\times$  temp = 25 °C
- x f ext = 100k Hz
- $\mathbf{x}$  vbs = 1 V
- $\mathbf{x}$  vdd = 1 V
- **x** shrink\_tinv = 1
- ✓ Sweep Parameters
- ✓ Extra parameters
  - $\mathsf{X}$  lvt\_dev = 0
  - $\mathbf{x}$  rvt dev = 0
- Model nfet\_rf (DK1.1\_RF\_mmW)
  - ✓ Input Parameters
    - $\times$  vds\_ft = Vdd V
    - $\mathbf{X}$  iana = 5e-6 A
    - $\times$  vds\_cgg = 0 V
    - $\times$  f\_ext\_rg = 10G Hz



- $\mathbf{x}$  mc\_sens = 0
- $\times$  vds lin = 0.05 V
- $\times$  ivt = 300e-9 A
- **x** model\_version = 1.0.b
- **x** vds\_off = vds\_sat V
- $\times$  vds\_cgd = 0 V
- $\mathbf{x}$  ams\_release = 2018.3
- **✗** plashrink\_iana = 0
- $\times$  vgs\_stop = vdd V
- **✗** dlshrink\_ivt = 0
- **✗** sbenchlsf\_release = Alpha
- $\times$  vds\_sat = Vdd V
- **x** shrink\_iana = 1
- **x** mc\_nsigma = 3
- $\times$  shrink ivt = 1
- **✗** dlshrink\_tinv = 0
- $\mathbf{X}$  vstep\_iana = 0.01 V
- $\mathbf{x}$  vgs\_start = 0 V
- **✗** plashrink\_ivt = 1
- **✗** dlshrink\_iana = 0
- $\star$  ithslwi = 10e-9 A
- $\times$  vds\_ana = Vdd/4 V
- $\times$  vds\_cbd = 0 V
- **✗** vddmax = vdd
- $\times$  mc\_runs = 500



- $\times$  vstep\_ivt = 0.005 V
- $\times$  vsub1 = 0
- $\mathbf{x}$  vgs\_off = 0 V
- $\times$  temp = 25 °C
- $\star$  f\_ext = 100k Hz
- $\mathbf{x}$  vbs = 0 V
- $\times$  vdd = 1 V
- **x** shrink\_tinv = 1
- ✓ Sweep Parameters
- ✓ Extra parameters
  - $\mathsf{X}$  lvt\_dev = 0
  - $\mathbf{x}$  rvt dev = 0
- Model nfet\_rfseg (DK1.1\_RF\_mmW)
  - ✓ Input Parameters
    - $\mathbf{x}$  vds ft = Vdd V
    - $\mathbf{X}$  iana = 5e-6 A
    - $\times$  vds\_cgg = 0 V
    - $\star$  f\_ext\_rg = 10G Hz
    - $\mathbf{x}$  mc\_sens = 0
    - $\times$  vds\_lin = 0.05 V
    - $\times$  ivt = 300e-9 A
    - **✗** model\_version = 1.0.b
    - **x** vds\_off = vds\_sat V
    - $\times$  vds\_cgd = 0 V
    - $\times$  ams\_release = 2018.3



- **✗** plashrink\_iana = 0
- $\times$  vgs\_stop = vdd V
- **✗** dlshrink\_ivt = 0
- **x** sbenchlsf\_release = Alpha
- $\times$  vds\_sat = Vdd V
- **x** shrink\_iana = 1
- **x** mc\_nsigma = 3
- **x** shrink\_ivt = 1
- **✗** dlshrink\_tinv = 0
- **x** vstep\_iana = 0.01 V
- $\times$  vgs\_start = 0 V
- **x** plashrink\_ivt = 1
- **✗** dlshrink\_iana = 0
- $\star$  ithslwi = 10e-9 A
- $\mathsf{X}$  vds\_ana = Vdd/4 V
- $\times$  vds\_cbd = 0 V
- $\mathbf{x}$  vddmax = vdd
- $\times$  mc\_runs = 500
- $\mathbf{X}$  vstep\_ivt = 0.005 V
- $\mathbf{x}$  vsub1 = 0
- $\times$  vgs\_off = 0 V
- $\times$  temp = 25 °C
- $\star$  f\_ext = 100k Hz
- $\mathbf{x}$  vbs = 0 V
- $\times$  vdd = 1 V



- **x** shrink\_tinv = 1
- ✓ Sweep Parameters
- ✓ Extra parameters
  - $\mathsf{X}$  lvt\_dev = 0
  - $\mathbf{x}$  rvt\_dev = 0
- Model pfet\_rf (DK1.1\_RF\_mmW)
  - ✓ Input Parameters
    - $\mathsf{x}$  vds\_ft = Vdd V
    - $\mathbf{X}$  iana = 2e-6 A
    - $\times$  vds\_cgg = 0 V
    - $\times$  f\_ext\_rg = 10G Hz
    - $\mathbf{x}$  mc\_sens = 0
    - $\times$  vds\_lin = 0.05 V
    - $\times$  ivt = 70e-9 A
    - **x** model\_version = 1.0.b
    - **x** vds\_off = vds\_sat V
    - $\times$  vds\_cgd = 0 V
    - $\mathbf{x}$  ams\_release = 2018.3
    - **✗** plashrink\_iana = 0
    - $\mathbf{X}$  vgs\_stop = vdd V
    - **✗** dlshrink\_ivt = 0
    - **✗** sbenchlsf\_release = Alpha
    - $\times$  vds\_sat = Vdd V
    - **x** shrink\_iana = 1
    - **x** mc\_nsigma = 3



- **x** shrink\_ivt = 1
- $\mathsf{X}$  dlshrink tinv = 0
- **x** vstep\_iana = 0.01 V
- $\mathbf{x}$  vgs\_start = 0 V
- **x** plashrink\_ivt = 1
- **✗** dlshrink\_iana = 0
- $\star$  ithslwi = 10e-9 A
- $\mathbf{X}$  vds\_ana = Vdd/4 V
- $\times$  vds\_cbd = 0 V
- $\mathbf{X}$  vddmax = vdd
- $\times$  mc runs = 500
- $\mathbf{X}$  vstep\_ivt = 0.005 V
- $\mathbf{x}$  vgs\_off = 0 V
- $\times$  temp = 25 °C
- x f ext = 100k Hz
- $\mathbf{x}$  vbs = 0 V
- $\times$  vdd = 1 V
- **x** shrink\_tinv = 1
- ✓ Sweep Parameters
- ✓ Extra parameters
  - $\mathsf{X}$  lvt\_dev = 0
  - $\mathbf{x}$  rvt dev = 0
- Model pfet\_rfseg (DK1.1\_RF\_mmW)
  - ✓ Input Parameters
    - $\times$  vds\_ft = Vdd V



- $\mathbf{X}$  iana = 2e-6 A
- $\times$  vds\_cgg = 0 V
- $\star$  f\_ext\_rg = 10G Hz
- $\mathbf{x}$  mc\_sens = 0
- $\times$  vds\_lin = 0.05 V
- **x** ivt = 70e-9 A
- **✗** model\_version = 1.0.b
- **x** vds\_off = vds\_sat V
- $\times$  vds\_cgd = 0 V
- $\mathbf{x}$  ams\_release = 2018.3
- **✗** plashrink\_iana = 0
- $\mathsf{x}$  vgs\_stop = vdd V
- **✗** dlshrink\_ivt = 0
- **x** sbenchlsf\_release = Alpha
- $\times$  vds\_sat = Vdd V
- **x** shrink\_iana = 1
- **x** mc\_nsigma = 3
- **x** shrink\_ivt = 1
- **✗** dlshrink\_tinv = 0
- $\mathbf{X}$  vstep\_iana = 0.01 V
- $\mathbf{x}$  vgs\_start = 0 V
- **✗** plashrink\_ivt = 1
- $\mathsf{X}$  dlshrink iana = 0
- $\star$  ithslwi = 10e-9 A
- $\mathsf{x}$  vds\_ana = Vdd/4 V





- $\times$  vds\_cbd = 0 V
- $\mathbf{x}$  vddmax = vdd
- **x** mc\_runs = 500
- $\mathbf{X}$  vstep\_ivt = 0.005 V
- $\mathbf{x}$  vgs\_off = 0 V
- $\times$  temp = 25 °C
- $\star$  f\_ext = 100k Hz
- $\mathbf{x}$  vbs = 0 V
- $\times$  vdd = 1 V
- **x** shrink\_tinv = 1
- ✓ Sweep Parameters
- ✓ Extra parameters
  - $\mathsf{X}$  lvt\_dev = 0
  - $\mathbf{x}$  rvt\_dev = 0