Numeerinen integrointi: kvadratuureista kubatuureihin

Ville Väänänen

Elektroniikan, tietoliikenteen ja automaation tiedekunta

28. huhtikuuta 2010

Kubatuuri 0000

Interpolatoriset kvadratuurit

Integrointisääntö

$$\int_{a}^{b} f(x)w(x) dx \approx \sum_{i=1}^{N} w_{i}f(x_{i})$$

Puolisuunnikasmenetelmä

$$\int_{a}^{b} f(x) dx \approx \frac{b-a}{2} (f(b) + f(a))$$

Kuva: Puolisuunnikasmenetelmä

Polynomiapproksimaatio

- Approksimoidaan polynomeilla
 - tunnettuus
 - Weierstrassin teoreema
 - helppo integroida

Tarkkuusaste

Integrointisäännön tarkkuusaste on d, jos se integroi tarkasti kaikki polynomit, joiden asteluku on korkeintaan d

Gaussin kvadratuuri

- Pisteet: ortogonaalipolynomien 0-kohdat
- tarkkuusaste 2N − 1
- Newton-Cotes menetelmillä N+1

Tulosäännöt

Tulosääntö

$$\iint_{\Omega_r \times \Omega_s} w(\boldsymbol{x}_r, \boldsymbol{x}_s) f(\boldsymbol{x}_r, \boldsymbol{x}_s) d\boldsymbol{x}_r d\boldsymbol{x}_s$$

$$\approx \sum_{\substack{i=1\\i=1}}^{N_r} w_{s,i} w_{r,i} f(\boldsymbol{x}_{r,i}, \boldsymbol{x}_{s,i})$$

Kuva: Erään tulosäännön 100 pistettä

Interpolatoriset kubatuurit

- Epälineaarinen yhtälöryhmä
- N(n+1) muuttujaa

Kuva: 68-pisteinen minimisääntö

Testi-integrandit

Kuva: F_1 ja F_2

Tulokset

Kubatuuri	$Q[F_1]$	$E[F_1]$	$Q[F_2]$	$E[F_2]$
Q_{3^2}	2.40428	0.3%	0.95629	46.2%
Q_7	2.46015	2.6%	1.48609	16.4%
Q_{68}	2.39773	0.0%	1.83156	3.0%
Q_{10^2}	2.39773	0.0%	1.74004	2.1%

Yhteenveto

- n = 1
 - helppoa
- $n \ge 1$
 - vaikeaa