(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 2 August 2001 (02.08.2001)

PCT

(10) International Publication Number WO 01/54501 A2

(74) Agent: BASTIAN, Werner; Syngenta Participations AG,

Intellectual Property, P.O. Box, CH-4002 Basel (CH).

(81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ,

DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ,

NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

- (51) International Patent Classification7: A01N 43/40, 43/72, 43/80, 43/90, 43/653, 25/32 // (A01N 43/40, 57:20, 47:36, 47:06, 43:90, 43:824, 43:707, 43:70, 43:54, 43:50, 43:10, 37:40, 37:22, 33:18)
- (21) International Application Number: PCT/EP01/00720
- (22) International Filing Date: 23 January 2001 (23.01.2001)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

139/00 25 January 2000 (25.01.2000) CH 1150/00 9 June 2000 (09.06.2000) CH

- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (ΛΤ, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).
- (71) Applicant (for all designated States except US); SYN-GENTA PARTICIPATIONS AG [CH/CH]; Schwarzwaldallee 215, CH-4058 Basel (CH).
- (72) Inventor; and
- (75) Inventor/Applicant (for US only): RÜEGG, Willy, T. |CH/CH|; Felmetweg 6, CH-5073 Gipf-Oberfrick (CH).

Published:

 without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: HERBICIDAL COMPOSITION

WO 01/54501 A2

(57) Abstract: A herbicidal composition that, in addition to comprising customary inert formulation adjuvants, comprises: a) a compound of formula (I), wherein the substituents are as defined in claim 1; and b) a synergistically effective amount of one or more compounds of formulae (2.1 to 2.51). The compositions according to the invention may also comprise a safener.

Herbicidal composition

The present invention relates to a novel herbicidal composition comprising a herbicidal active ingredient combination that is suitable for the selective control of weeds in crops of useful plants, for example in maize crops. The invention relates also to a method of controlling weeds in crops of useful plants, and to the use of the novel composition for that purpose.

The compounds of formula I

wherein the definitions of the substituents are given hereinbelow have herbicidal activity.

Surprisingly, it has now been shown that a combination of variable amounts of active ingredients, that is, of an active ingredient of formula I with one or more of the active ingredients of formulae 2.1 to 2.51 listed below, which are known and some of which are also commercially available, exhibits a synergistic action that is capable of controlling, both pre-emergence and post-emergence, the majority of weeds occurring especially in crops of useful plants.

There is therefore proposed in accordance with the present invention a novel synergistic composition for selective weed control that, in addition to customary inert formulation adjuvants, comprises as active ingredient a mixture of

a) a herbicidally effective amount of a compound of formula I

-2-

wherein each R is independently hydrogen, C₁-C₆alkyl, C₂-C₆alkenyl, C₂-C₆haloalkenyl, C_2 - C_6 alkynyl, C_2 - C_6 haloalkynyl, C_3 - C_6 cycloalkyl, C_1 - C_6 alkoxy, C_1 - C_6 haloalkoxy, C_1 -Cealkylthio, C1-Cealkylsulfinyl, C1-Cealkylsulfonyl, C1-Cehaloalkyl, C1-Cehaloalkylthio, C1-C₆haloalkylsulfinyl, C₁-C₆haloalkylsulfonyl, C₁-C₆alkoxycarbonyl, C₁-C₆alkylcarbonyl, C₁- C_6 alkylamino, di(C_1 - C_6 alkyl)amino, C_1 - C_6 alkylaminosulfonyl, di(C_1 - C_6 alkyl)aminosulfonyl, - $N(R_1)-S-R_2$, $-N(R_3)-SO-R_4$, $-N(R_5)-SO_2-R_6$, nitro, cyano, halogen, hydroxy, amino, benzylthio, benzylsulfinyl, benzylsulfonyl, phenyl, phenoxy, phenylthio, phenylsulfinyl or phenylsulfonyl; wherein the phenyl group may itself be mono-, di- or tri-substituted by C₁-C₆alkyl, C₁-C₆haloalkyl, C₃-C₆alkenyl, C₃-C₆haloalkenyl, C₃-C₆alkynyl, C₃-C₆haloalkynyl, C₁-C₆alkoxy, C₁-C₆haloalkoxy, C₃-C₆alkenyloxy, C₃-C₆alkynyloxy, mercapto, C₁-C₆alkylthio, C₁-C₆haloalkylthio, C₃-C₆alkenylthio, C₂-C₆haloalkenylthio, C₃-C₆alkynylthio, C₂-C₅alkoxyalkylthio, C₃-C₅acetylalkylthio, C₃-C₆alkoxycarbonylalkylthio, C₂-C₄cyanoalkylthio, C₁-C₆alkylsulfinyl, C₁-C₆haloalkylsulfinyl, C₁-C₆alkylsulfonyl, C₁-C₆haloalkylsulfonyl, aminosulfonyl, C₁-C₂alkylaminosulfonyl, C₂-C₄dialkylaminosulfonyl, C₁-C₃alkylene-R₄₅, NR₄₆R₄₇, halogen, cyano, nitro, phenyl or by benzylthio, wherein the latter phenyl and benzylthio groups may themselves be substituted on the phenyl ring by C₁-C₃alkyl, C₁-C₃haloalkyl, C₁-C₃alkoxy, C₁-C₃haloalkoxy, halogen, cyano or by nitro; or each R is independently a monocyclic or fused bicyclic ring system having from 5 to 10 members, which may be aromatic or partially saturated and may contain from 1 to 4 hetero atoms selected from nitrogen, oxygen and sulfur; wherein the ring system either is bound directly to the pyridine ring or is bound to the pyridine ring via a C1-C4alkylene group, and each ring system may not contain more than two oxygen atoms and may not contain more than two sulfur atoms, and the ring system may itself be mono-, di- or tri-substituted by C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_3 - C_6 alkenyl, C_3 - C_6 haloalkenyl, C_3 - C_6 alkynyl, C_3 - C_6 haloalkynyl, C_1 - C_6 alkoxy, C_1 - C_6 haloalkoxy, C_3 - C_6 alkenyloxy, C_3 - C_6 alkynyloxy, mercapto, C_1 - C_6 alkylthio, C₁-C₆haloalkylthio, C₃-C₆alkenylthio, C₃-C₆haloalkenylthio, C₃-C₆alkynylthio, C₂-C₅alkoxyalkylthio, C₃-C₅acetylalkylthio, C₃-C₆alkoxycarbonylalkylthio, C₂-C₄cyanoalkylthio,

 C_1 - C_6 alkylsulfinyl, C_1 - C_6 haloalkylsulfinyl, C_1 - C_6 alkylsulfonyl, C_1 - C_6 haloalkylsulfonyl, aminosulfonyl, C_1 - C_2 alkylaminosulfonyl, C_2 - C_4 dialkylaminosulfonyl, C_1 - C_3 alkylene- R_7 , NR_8R_9 , halogen, cyano, nitro, phenyl or by benzylthio, wherein phenyl and benzylthio may themselves be substituted on the phenyl ring by C_1 - C_3 alkyl, C_1 - C_3 haloalkyl, C_1 - C_3 alkoxy, C_1 - C_3 haloalkoxy, halogen, cyano or by nitro, and wherein the substituents on the nitrogen in the heterocyclic ring are other than halogen; or

each R is independently C_1 - C_4 alkoxy- C_1 - C_4 alkyl or C_1 - C_4 alkoxy- C_1 - C_4 alkoxy- C_1 - C_4 alkyl; m is 1, 2, 3 or 4;

 R_1 , R_3 and R_5 are each independently of the others hydrogen or C_1 - C_6 alkyl; R_2 is $NR_{10}R_{11}$, C_1 - C_6 alkoxy, C_1 - C_6 haloalkoxy, C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_3 - C_6 alkenyl, C_3 - C_6 haloalkynyl, C_3 - C_6 baloalkynyl, C_3 - C_6 cycloalkyl or phenyl, wherein phenyl may itself be substituted by C_1 - C_3 alkyl, C_1 - C_3 haloalkyl, C_1 - C_3 alkoxy, C_1 - C_3 haloalkoxy, halogen, cyano or by nitro;

 R_4 is $NR_{12}R_{13}$, C_1 - C_6 alkoxy, C_1 - C_6 haloalkoxy, C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_3 - C_6 alkenyl, C_3 - C_6 alkynyl, C_3 - C_6 baloalkynyl, C_3 - C_6 cycloalkyl or phenyl, wherein phenyl may itself be substituted by C_1 - C_3 alkyl, C_1 - C_3 haloalkyl, C_1 - C_3 alkoxy, C_1 - C_3 haloalkoxy, halogen, cyano or by nitro;

 R_6 is $NR_{14}R_{15}$, C_1 - C_6 alkoxy, C_1 - C_6 haloalkoxy, C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_3 - C_6 alkenyl, C_3 - C_6 alkenyl, C_3 - C_6 alkynyl, C_3 - C_6 baloalkynyl, C_3 - C_6 cycloalkyl or phenyl, wherein phenyl may itself be substituted by C_1 - C_3 alkyl, C_1 - C_3 haloalkyl, C_1 - C_3 alkoxy, C_1 - C_3 haloalkoxy, halogen, cyano or by nitro;

 R_7 and R_{45} are each independently of the other C_1 - C_3 alkoxy, C_2 - C_4 alkoxycarbonyl, C_1 - C_3 -alkylthio, C_1 - C_3 alkylsulfinyl, C_1 - C_3 alkylsulfonyl or phenyl, wherein phenyl may itself be substituted by C_1 - C_3 alkyl, C_1 - C_3 haloalkyl, C_1 - C_3 alkoxy, C_1 - C_3 haloalkoxy, halogen, cyano or by nitro;

 R_8 , R_{10} , R_{12} , R_{14} and R_{46} are each independently of the others hydrogen or C_1 - C_6 alkyl; R_9 , R_{11} , R_{13} , R_{15} and R_{47} are each independently of the others C_1 - C_6 alkyl or C_1 - C_6 alkoxy; Q is the group Q_1

wherein R_{16} , R_{17} , R_{18} and R_{19} are each independently of the others hydrogen, hydroxy,

C₁-C₄alkyl, C₂-C₆alkenyl, C₂-C₆alkynyl, C₁-C₄alkoxycarbonyl, C₁-C₆alkylthio, C₁-

 C_6 alkylsulfinyl, C_1 - C_6 alkylsulfonyl, C_1 - C_4 alkyl-NHS(O)₂, C_1 - C_4 haloalkyl, -NH- C_1 - C_4 alkyl, -N(C₁-C₄alkyl)₂, C₁-C₆alkoxy, cyano, nitro, halogen, or phenyl which may itself be substituted by C₁-C₄alkyl, C₁-C₄haloalkyl, C₁-C₄alkoxy, C₁-C₄haloalkoxy, C₁-C₄alkylcarbonyl, C₁-C₄alkoxycarbonyl, amino, C₁-C₄alkylamino, di(C₁-C₄alkyl)amino, C₁-C₆alkylthio, C₁-C₆alkylsulfinyl, C₁-C₆alkylsulfonyl, C₁-C₄alkyl-S(O)₂O, C₁-C₄haloalkylthio, C₁-C₄haloalkylsulfinyl, C₁-C₄haloalkylsulfonyl, C₁-C₄haloalkyl-S(O)₂O, C₁-C₄alkyl-S(O)₂NH, C₁-C4alkyl-S(O)2N(C1-C4alkyl), halogen, nitro, COOH or by cyano; or two adjacent substituents out of R₁₆, R₁₇, R₁₈ and R₁₉ form a C₂-C₆alkylene bridge; R₂₀ is hydroxy, O⁻M⁺, halogen, C₁-C₁₂alkoxy, C₁-C₁₂alkylcarbonyloxy, C₂-C₄alkenylcarbonyloxy, C₃-C₆cycloalkylcarbonyloxy, C₁-C₁₂alkoxycarbonyloxy, C₁-C₁₂alkylcarbonyloxy, $R_{21}R_{22}N-C(O)O$, C_1-C_{12} alkylthio, C_1-C_{12} alkylsulfinyl, C_1-C_{12} alkylsulfonyl, C_1-C_4 haloalkylthio. C₁-C₄haloalkylsulfinyl, C₁-C₄haloalkylsulfonyl, C₂-C₁₂alkenylthio, C₂-C₁₂alkenylsulfinyl, C₂-C₁₂alkenylsulfonyl, C2-C12haloalkenylthio, C2-C12haloalkenylsulfinyl, C2-C12haloalkenylsulfonyl, C₂-C₁₂alkynylthio, C₂-C₁₂alkynylsulfinyl, C₂-C₁₂alkynylsulfonyl, C₁-C₄alkyl-S(O)₂O. phenyl-S(O)₂O, $(C_1-C_4alkoxy)_2P(O)O$, $C_1-C_4alkyl(C_1-C_4alkoxy)P(O)O$, $H(C_1-C_4alkoxy)P(O)O$. C_1-C_{12} -alkyl-S(CO)O, benzyloxy, phenoxy, phenylthio, phenylsulfinyl or phenylsulfonyl, wherein the phenyl group may itself be substituted by C1-C4alkyl, C1-C4haloalkyl, C1-C₄alkoxy, C₁-C₄haloalkoxy, C₁-C₄alkylcarbonyl, C₁-C₄alkoxycarbonyl, C₁-C₄alkylamino, di(C₁-C₄alkyl)amino, C₁-C₄alkylthio, C₁-C₄alkylsulfinyl, C₁-C₄alkylsulfonyl, C₁-C₄alkyl-S(O)₂O, C₁-C₄haloalkylthio, C₁-C₄haloalkylsulfinyl, C₁-C₄haloalkylsulfonyl, C₁-C₄haloalkyl-S(O)₂O, C₁-C₄alkyl-S(O)₂NH, C₁-C₄alkyl-S(O)₂N(C₁-C₄alkyl), halogen, nitro or by cyano; and R₂₁ and R₂₂ are each independently of the other hydrogen or C₁-C₄alkyl; or is the group Q₂

wherein R_{23} is hydroxy, $O^{\cdot}M^{+}$, halogen, C_1 - C_{12} alkoxy, C_1 - C_{12} alkylcarbonyloxy, C_2 - C_4 -alkenylcarbonyloxy, C_3 - C_6 cycloalkylcarbonyloxy, C_1 - C_{12} alkoxycarbonyloxy, C_1 - C_{12} alkylcarbonyloxy, C_1 - C_{12} alkylsulfinyl, C_1 - C_1 -alkylsulfinyl, C_1 - C_1 -alkylsulfinyl, C_1 - C_1 -alkylsulfinyl, C_2 - C_1 -alkenylsulfinyl, C_1 - C_1 -alkenylsulfinyl, C_2 - C_1 -alkenylsulfinyl, C_2 - C_1 -alkenylsulfinyl, C_1 - C_1 -alkenylsulfinyl, C_2 - C_1 -alkenylsulfinyl, C_1 - C_1 -alkenylsulfinyl, C_1 - C_1 -alkenylsulfinyl, C_2 - C_1 -alkenylsulfinyl, C_1 - C_1 -alke

haloalkenylsulfonyl, C_2 - C_{12} alkynylthio, C_2 - C_{12} alkynylsulfinyl, C_2 - C_{12} alkynylsulfonyl, C_1 - C_4 alkyl- $S(O)_2O$, phenyl- $S(O)_2O$, (C_1 - C_4 alkoxy) $_2$ P(O)O, C_1 - C_4 alkyl(C_1 - C_4 alkoxy)P(O)O, C_1 - C_4 alkoxy)P(O)O, C_1 - C_4 alkoxy)P(O)O, C_1 - C_1 2-alkyl-S(CO)O, benzyloxy, phenoxy, phenylthio, phenylsulfinyl or phenylsulfonyl, wherein the phenyl group may itself be substituted by C_1 - C_4 alkyl, C_1 - C_4 alkoxy, C_1 - C_4 alkoxy, C_1 - C_4 alkylcarbonyl, C_1 - C_4 alkoxycarbonyl, C_1 - C_4 alkylamino, di(C_1 - C_4 alkyl)amino, C_1 - C_4 alkylthio, C_1 - C_4 alkylsulfinyl, C_1 - C_4 alkylsulfonyl, C_1 - C_4 alkyl- $S(O)_2O$, C_1 - C_4 haloalkylthio, C_1 - C_4 haloalkylsulfinyl, C_1 - C_4 haloalkylsulfonyl, C_1 - C_4 haloalkyl- $S(O)_2O$, C_1 - C_4 alkyl- $S(O)_2N$, halogen, nitro or by cyano;

 R_{24} and R_{25} are each independently of the other hydrogen or C_1 - C_4 alkyl; and Y is oxygen, sulfur, a chemical bond or a C_1 - C_4 alkylene bridge; or is the group Q_3

wherein R_{44} , R_{37} , R_{38} and R_{39} are each independently of the others hydrogen, C_1 - C_6 alkyl, C_1 - C_6 alkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, C_1 - C_6 alkoxycarbonyl, C_1 - C_6 alkylthio, C_1 - C_6 alkyl-sulfinyl, C_1 - C_6 alkylsulfonyl, C_1 - C_6 alkyl-NHS(O)2, C_1 - C_6 alkylamino, di(C_1 - C_6 alkyl)amino, hydroxy, C_1 - C_6 alkoxy, C_3 - C_6 alkenyloxy, C_3 - C_6 alkynyloxy, hydroxy- C_1 - C_6 alkyl, C_1 - C_4 alkylsulfonyloxy- C_1 - C_6 alkyl, tosyloxy- C_1 - C_6 alkyl, halogen, cyano, nitro, phenyl, or phenyl substituted by C_1 - C_4 alkyl, C_1 - C_4 alkyl, C_1 - C_4 alkoxy, C_1 - C_4 alkoxy, C_1 - C_4 alkylcarbonyl, C_1 - C_4 alkoxycarbonyl, amino, C_1 - C_4 alkylamino, di(C_1 - C_4 alkyl)amino, C_1 - C_6 alkylsulfinyl, C_1 - C_6 alkylsulfonyl, C_1 - C_4 alkyl-S(O)2O, C_1 - C_6 haloalkylthio, C_1 - C_6 haloalkylsulfinyl, C_1 - C_6 haloalkylsulfonyl, C_1 - C_6 alkylsulfonyl, C_1 - C_6 alkylsulfonyl, C_1 - C_6 alkylsulfonyl, C_1 - C_6 alkylsulfonyl-N(C_1 - C_4 alkyl), C_1 - C_6 alkylsulfonyl-N(C_1 - C_4 alkyl), halogen, nitro, COOH or by cyano; or adjacent R_{44} and R_{37} or R_{38} and R_{39} together are C_3 - C_6 alkylene;

W is oxygen, sulfur, sulfinyl, sulfonyl, $-CR_{41}R_{42}$, -C(O)- or $-NR_{43}$ -; R_{41} is hydrogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_4 alkoxy- C_1 - C_4 alkyl, C_1 - C_4 alkyl, C_1 - C_4 alkyl, C_1 - C_4 alkyl, C_1 - C_4 alkyl, tosyloxy- C_1 - C_4 alkyl, di(C_1 - C_3 alkoxyalkyl)methyl, di(C_1 - C_3 alkylthioalkyl)methyl, (C_1 - C_3 alkoxyalkyl)-(C_1 - C_3 alkylthioalkyl)methyl, C_3 - C_5 oxacycloalkyl, C_3 - C_5 thiacycloalkyl, C_3 - C_4 dioxacycloalkyl, C_3 - C_5

 $C_4 \text{dithiacycloalkyl}, \ C_3 - C_4 \text{oxathiacycloalkyl}, \ \text{formyl}, \ C_1 - C_4 \text{alkoxycarbonyl}, \ \text{or phenyl which may itself be substituted by } C_1 - C_4 \text{alkyl}, \ C_1 - C_4 \text{haloalkyl}, \ C_1 - C_4 \text{alkoxy}, \ C_1 - C_4 \text{alkoxy}, \ C_1 - C_4 \text{alkoxycarbonyl}, \ \text{amino}, \ C_1 - C_4 \text{alkylamino}, \ \text{di}(C_1 - C_4 \text{alkyl}) \text{amino}, \ C_1 - C_4 \text{alkylamino}, \ \text{di}(C_1 - C_4 \text{alkyl}) \text{amino}, \ C_1 - C_4 \text{alkylamino}, \ \text{di}(C_1 - C_4 \text{alkyl}) \text{amino}, \ C_1 - C_4 \text{alkylamino}, \ \text{di}(C_1 - C_4 \text{alkyl}) \text{amino}, \ C_1 - C_4 \text{alkylamino}, \ \text{di}(C_1 - C_4 \text{alkylamino}, \ \text{di}(C_1 - C_4 \text{alkylamino}, \ \text{di}(C_1 - C_4 \text{alkylamino}, \ C_1 - C_4 \text{alkyl$

R₄₀ is hydroxy, O'M⁺, halogen, C₁-C₁₂alkoxy, C₁-C₁₂alkylcarbonyloxy, C₂-C₄alkenylcarbonyloxy, C_3 - C_6 cycloalkylcarbonyloxy, C_1 - C_{12} alkoxycarbonyloxy, C_1 - C_{12} alkylcarbonyloxy, $R_{96}R_{97}N-C(O)O$, C_1-C_{12} alkylthio, C_1-C_{12} alkylsulfinyl, C_1-C_{12} alkylsulfonyl, C_1-C_4 haloalkylthio, C_1 - C_4 haloalkylsulfinyl, C_1 - C_4 haloalkylsulfonyl, C_2 - C_{12} alkenylthio, C_2 - C_{12} alkenylsulfinyl, C_2 - C_{12} alkenylsulfonyl, C2-C12haloalkenylthio, C2-C12haloalkenylsulfinyl, C2-C12haloalkenylsulfonyl, C_2 - C_{12} alkynylthio, C_2 - C_{12} alkynylsulfinyl, C_2 - C_{12} alkynylsulfonyl, C_1 - C_4 alkyl- $S(O)_2O$, phenyl-S(O)₂O, $(C_1-C_4alkoxy)_2P(O)O$, $C_1-C_4alkyl(C_1-C_4alkoxy)P(O)O$, $H(C_1-C_4alkoxy)P(O)O$, C₁-C₁₂-alkyl-S(CO)O, benzyloxy, phenoxy, phenylthio, phenylsulfinyl or phenylsulfonyl, wherein the phenyl group may itself be substituted by C₁-C₄alkyl, C₁-C₄haloalkyl, C₁-C₄alkoxy, C₁-C₄alkylcarbonyl, C₁-C₄alkylcarbonyl, C₁-C₄alkylamino, di(C₁- C_4 alkyl)amino, C_1 - C_4 alkylthio, C_1 - C_4 alkylsulfinyl, C_1 - C_4 alkylsulfonyl, C_1 - C_4 alkyl- $S(O)_2O$, C_1 -C4haloalkylthio, C1-C4haloalkylsulfinyl, C1-C4haloalkylsulfonyl, C1-C4haloalkyl-S(O)2O, C1-C₄alkyl-S(O)₂NH, C₁-C₄alkyl-S(O)₂N(C₁-C₄alkyl), halogen, nitro or by cyano; R₉₆ and R₉₇ are each independently of the other hydrogen or C₁-C₄alkyl; R₄₃ is hydrogen, C₁-C₄alkyl, C₁-C₄alkoxycarbonyl, or phenyl which may itself be substituted by C₁-C₄alkyl, C₁-C₄haloalkyl, C₁-C₄alkoxy, C₁-C₄haloalkoxy, C₁-C₄alkylcarbonyl, C₁- C_4 alkoxycarbonyl, C_1 - C_4 alkylamino, di(C_1 - C_4 alkyl)amino, C_1 - C_4 alkylthio, C_1 - C_4 alkylsulfinyl, C₁-C₄alkylsulfonyl, C₁-C₄alkyl-S(O)₂O, C₁-C₄haloalkylthio, C₁-C₄haloalkylsulfinyl, C₁-C4haloalkylsulfonyl, C1-C4haloalkyl-S(O)2O, C1-C4alkyl-S(O)2NH, C1-C4alkyl-S(O)2N(C1-C₄alkyl), halogen, nitro or by cyano; or is the group Q4

wherein R₃₀ hydroxy, O'M⁺, halogen, C₁-C₁₂alkoxy, C₁-C₁₂alkylcarbonyloxy, C₂-C₄alkenylcarbonyloxy, C_3 - C_6 cycloalkylcarbonyloxy, C_1 - C_{12} alkoxycarbonyloxy, C_1 - C_{12} alkylcarbonyloxy, $R_{31}R_{32}N-C(0)O$, C_1-C_{12} alkylthio, C_1-C_{12} alkylsulfinyl, C_1-C_{12} alkylsulfonyl, C_1-C_4 haloalkylthio, C₁-C₄haloalkylsulfinyl, C₁-C₄haloalkylsulfonyl, C₂-C₁₂alkenylthio, C₂-C₁₂alkenylsulfinyl, C₂-C₁₂alkenylsulfonyl, C2-C12haloalkenylthio, C2-C12haloalkenylsulfinyl, C2-C12haloalkenylsulfonyl, C₂-C₁₂alkynylthio, C₂-C₁₂alkynylsulfinyl, C₂-C₁₂alkynylsulfonyl, C₁-C₄alkyl-S(O)₂O, phenyl-S(O)₂O, $(C_1-C_4alkoxy)_2P(O)O$, $C_1-C_4alkyl(C_1-C_4alkoxy)P(O)O$, $H(C_1-C_4alkoxy)P(O)O$, C₁-C₁₂-alkyl-S(CO)O, benzyloxy, phenoxy, phenylthio, phenylsulfinyl or phenylsulfonyl, wherein the phenyl group may itself be substituted by C₁-C₄alkyl, C₁-C₄haloalkyl, C₁-C4alkoxy, C1-C4alkoxy, C1-C4alkylcarbonyl, C1-C4alkoxycarbonyl, C1-C4alkylamino, di(C1-C₄alkyl)amino, C₁-C₄alkylthio, C₁-C₄alkylsulfinyl, C₁-C₄alkylsulfonyl, C₁-C₄alkyl-S(O)₂O, C₁-C₄haloalkylthio, C₁-C₄haloalkylsulfinyl, C₁-C₄haloalkylsulfonyl, C₁-C₄haloalkyl-S(O)₂O, C₁-C₄alkyl-S(O)₂NH, C₁-C₄alkyl-S(O)₂N(C₁-C₄alkyl), halogen, nitro or by cyano; and R₃₁ and R₃₂ are each independently of the other hydrogen or C₁-C₄alkyl; R₃₃ and R₃₄ are each independently of the other hydrogen, hydroxy, C₁-C₄alkyl, C₂-C₆alkenyl, C_2 - C_6 alkynyl, C_1 - C_4 alkoxycarbonyl, C_1 - C_6 alkylthio, C_1 - C_6 alkylsulfonyl, C_1 - C_4 alkyl-NHS(O)₂, C_1 - C_4 haloalkyl, -NH- C_1 - C_4 alkyl, -N(C_1 - C_4 alkyl)₂, C_1 - C_6 alkoxy, cyano, nitro, halogen, or phenyl which may itself be substituted by C₁-C₄alkyl, C₁-C₄haloalkyl, C₁-C₄alkoxy, C₁-C₄haloalkoxy, C₁-C₄alkylcarbonyl, C₁-C₄alkoxycarbonyl, amino, C₁-C₄alkylamino, $di(C_1-C_4alkyl)$ amino, C_1-C_6alkyl thio, C_1-C_6alkyl sulfinyl, C_1-C_6alkyl sulfonyl, $C_1-C_4alkyl-S(O)_2O$, C_1 - C_4 haloalkylthio, C_1 - C_4 haloalkylsulfinyl, C_1 - C_4 haloalkylsulfonyl, C_1 - C_4 haloalkyl- $S(O)_2O$, C₁-C₄alkyl-S(O)₂NH, C₁-C₄alkyl-S(O)₂N(C₁-C₄alkyl), halogen, nitro, COOH or by cyano; or R₃₃ and R₃₄ together form a C₂-C₆alkylene bridge; and R₃₅ is hydrogen, C₁-C₄alkyl, C₁-C₄alkoxycarbonyl, or phenyl which may itself be substituted by C₁-C₄alkyl, C₁-C₄haloalkyl, C₁-C₄alkoxy, C₁-C₄haloalkoxy, C₁-C₄alkylcarbonyl, C₁- C_4 alkoxycarbonyl, amino, C_1 - C_4 alkylamino, di(C_1 - C_4 alkyl)amino, C_1 - C_4 alkylthio, C_1 -C₄alkylsulfinyl, C₁-C₄alkylsulfonyl, C₁-C₄alkyl-S(O)₂O, C₁-C₄haloalkylthio, C₁-C₄haloalkylsulfinyl, C₁-C₄haloalkylsulfonyl, C₁-C₄haloalkyl-S(O)₂O, C₁-C₄alkyl-S(O)₂NH, C₁- C_4 alkyl-S(O)₂N(C_1 - C_4 alkyl), halogen, nitro, COOH or by cyano; or is the group Q₅

$$R_{0}$$
 O N (Q_5)

wherein Z is sulfur, SO or SO₂;

R₀₁ is hydrogen, C₁-C₈alkyl, C₁-C₈alkyl substituted by halogen, C₁-C₄alkoxy, C₁-C₄alkylthio, C₁-C₄alkylsulfonyl, C₁-C₄alkylsulfinyl, hydroxy, cyano, nitro, -CHO, -CO₂R₀₂, -COR₀₃, -COSR₀₄, -NR₀₅R₀₆, CONR₀₃₆R₀₃₇, or by phenyl which may itself be substituted by C₁-C4alkyl, C1-C6haloalkyl, C1-C4alkoxy, C1-C4haloalkoxy, C2-C6alkenyl, C3-C6alkynyl, C3-C₆alkenyloxy, C₃-C₆alkynyloxy, halogen, nitro, cyano, -COOH, COOC₁-C₄alkyl, COOphenyl, C_1 - C_4 alkoxy, phenoxy, (C_1 - C_4 alkoxy)- C_1 - C_4 alkyl, (C_1 - C_4 alkyl, (C_1 - C_4 alkyl, (C_1 - C_4 alkyl), (C4alkylsulfinyl)-C1-C4alkyl, (C1-C4alkylsulfonyl)-C1-C4alkyl, NHSO2-C1-C4alkyl, NHSO2-phenyl, $N(C_1-C_6alkyl)SO_2-C_1-C_4alkyl, N(C_1-C_6alkyl)SO_2-phenyl, N(C_2-C_6alkenyl)SO_2-C_1-C_4alkyl, N(C_2-C_6alkyl)SO_2-C_1-C_4alkyl, N(C_2-C_6alkyl)SO_2-D_1-D_6alkyl)SO_2-D_6alkyl)SO_2-D_6alkyl)SO_2-D_6alkyl)SO_2-D_6alkyl)SO_2-D_6alkyl)SO_2-D_6alkyl)SO_2-D_6alkyl)SO_2-D_6alkyl)SO_2-D_6alkyl)SO_2-D_6alkyl)SO_2-D_6alkyl)SO_2-D_6alkyll$ C_6 alkenyl) SO_2 -phenyl, $N(C_3-C_6$ alkynyl) SO_2 - C_1-C_4 alkyl, $N(C_3-C_6$ alkynyl) SO_2 -phenyl, $N(C_3-C_7-C_8)$ cycloalkyl)SO₂-C₁-C₄alkyl, N(C₃-C₇cycloalkyl)SO₂-phenyl, N(phenyl)SO₂-C₁-C₄alkyl, N(phenyl)SO₂-phenyl, OSO₂-C₁-C₄alkyl, CONR₀₂₅R₀₂₆, OSO₂-C₁-C₄haloalkyl, OSO₂-phenyl, C_1 - C_4 alkylthio, C_1 - C_4 haloalkylthio, phenylthio, C_1 - C_4 alkylsulfonyl, C_1 - C_4 haloalkylsulfonyl, phenylsulfonyl, C₁-C₄alkylsulfinyl, C₁-C₄haloalkylsulfinyl, phenylsulfinyl, C₁-C₄alkylenephenyl or by -NR₀₁₅CO₂R₀₂₇; or R₀₁ is C₂-C₈alkenyl or C₂-C₈alkenyl substituted by halogen, C₁-C₄alkoxy, C₁-C₄alkylthio, C_1 - C_4 alkylsulfonyl, C_1 - C_4 alkylsulfinyl, -CONR₀₃₂R₀₃₃, cyano, nitro, -CHO, -CO₂R₀₃₈, -COR₀₃₉, -COS-C₁-C₄alkyl, -NR₀₃₄R₀₃₅, or by phenyl which may itself be substituted by C₁-C₄alkyl, C_1 - C_6 haloalkyl, C_1 - C_4 alkoxy, C_1 - C_4 haloalkoxy, C_2 - C_6 alkenyl, C_3 - C_6 alkenyloxy, C₃-C₆alkynyloxy, halogen, nitro, cyano, -COOH, COOC₁-C₄alkyl, COOphenyl, C₁-C₄alkoxy, phenoxy, $(C_1-C_4alkoxy)-C_1-C_4alkyl$, $(C_1-C_4alkylthio)-C_1-C_4alkyl$, $(C_1-C_4alkyl, (C_1-C_4alkyl, (C_$ $(C_1-C_4$ alkylsulfonyl)- C_1-C_4 alkyl, NHSO₂- C_1-C_4 alkyl, NHSO₂-phenyl, N(C_1-C_6 alkyl)SO₂- C_1-C_4 alkyl, N(C₁-C₆alkyl)SO₂-phenyl, N(C₂-C₆alkenyl)SO₂-C₁-C₄alkyl, N(C₂-C₆alkenyl)SO₂-phenyl, $N(C_3-C_6alkynyl)SO_2-C_1-C_4alkyl$, $N(C_3-C_6alkynyl)SO_2$ -phenyl, $N(C_3-C_7cycloalkyl)SO_2-C_1-C_4$ alkyl, N(C₃-C₇cycloalkyl)SO₂-phenyl, N(phenyl)SO₂-C₁-C₄alkyl, N(phenyl)SO₂-phenyl, OSO₂-C₁-C₄alkyl, CONR₀₄₀R₀₄₁, OSO₂-C₁-C₄haloalkyl, OSO₂-phenyl, C₁-C₄alkylthio, C₁-C₄haloalkylthio, phenylthio, C₁-C₄alkylsulfonyl, C₁-C₄haloalkylsulfonyl, phenylsulfonyl, C₁-C₄alkylsulfinyl, C₁-C₄haloalkylsulfinyl, phenylsulfinyl, C₁-C₄alkylenephenyl or by -NR₀₄₃CO₂R₀₄₂; or R₀₁ is C₃-C₆alkynyl or C₃-C₆alkynyl substituted by halogen, C₁-C₄haloalkyl, cyano, -CO₂R₀₄₄, or by phenyl which may itself be substituted by C₁-C₄alkyl, C₁-C₆haloalkyl, C₁-C₄alkoxy, C_1 - C_4 haloalkoxy, C_2 - C_6 alkenyl, C_3 - C_6 alkynyl, C_3 - C_6 alkynyloxy, C_3 - C_6 alkynyloxy, halogen, nitro, cyano, -COOH, COOC1-C4alkyl, COOphenyl, C1-C4alkoxy, phenoxy, (C1-C4-

alkoxy)- C_1 - C_4 alkyl, (C_1 - C_4 alkylthio)- C_1 - C_4 alkyl, (C_1 - C_4 alkyl, (C_1 - C_4 alkyl-

sulfonyl)-C₁-C₄alkyl, NHSO₂-C₁-C₄alkyl, NHSO₂-phenyl, N(C₁-C₆alkyl)SO₂-C₁-C₄alkyl,

 $N(C_1-C_6alkyl)SO_2-phenyl,\ N(C_2-C_6alkenyl)SO_2-C_1-C_4alkyl,\ N(C_2-C_6alkenyl)SO_2-phenyl,\ N(C_3-C_6alkynyl)SO_2-phenyl,\ N(C_3-C_6alkynyl)SO_2-C_1-C_4-alkyl,\ N(C_3-C_7cycloalkyl)SO_2-phenyl,\ N(phenyl)SO_2-phenyl,\ N(ph$

R₀₁ is C₁-C₄alkylene-C₃-C₇cycloalkyl, phenyl, or phenyl substituted by C₁-C₄alkyl, C₁-C₆halo-alkynyloxy, halogen, nitro, cyano, -COOH, COOC₁-C₄alkyl, COOphenyl, C₁-C₄alkoxy, phenoxy, $(C_1-C_4alkoxy)-C_1-C_4alkyl$, $(C_1-C_4alkyl+bio)-C_1-C_4alkyl$, $(C_1-C_4alkyl+bio)-C_1-C_4alkyl$, $(C_1-C_4alkyl+bio)-C_1-C_4alkyl$, $(C_1-C_4alkyl+bio)-C_1-C_4alkyl$, $(C_1-C_4alkyl+bio)-C_1-C_4alkyl+bio)$ (C₁-C₄alkylsulfonyl)-C₁-C₄alkyl, NHSO₂-C₁-C₄alkyl, NHSO₂-phenyl, N(C₁-C₆alkyl)SO₂-C₁-C₄alkyl, N(C₁-C₆alkyl)SO₂-phenyl, N(C₂-C₆alkenyl)SO₂-C₁-C₄alkyl, N(C₂-C₆alkenyl)SO₂-phenyl, $N(C_3-C_6alkynyl)SO_2-C_1-C_4alkyl$, $N(C_3-C_6alkynyl)SO_2$ -phenyl, $N(C_3-C_7cycloalkyl)SO_2-C_1-C_4-C_4alkyl$ alkyl, N(C₃-C₇cycloalkyl)SO₂-phenyl, N(phenyl)SO₂-C₁-C₄alkyl, N(phenyl)SO₂-phenyl, OSO₂-C₁-C₄alkyl, CONR₀₄₅R₀₄₆, OSO₂-C₁-C₄haloalkyl, OSO₂-phenyl, C₁-C₄alkylthio, C₁-C₄haloalkylthio, phenylthio, C₁-C₄alkylsulfonyl, C₁-C₄haloalkylsulfonyl, phenylsulfonyl, C₁-C₄alkylsulfinyl, C₁-C₄haloalkylsulfinyl, phenylsulfinyl or by -NR₀₄₈CO₂R₀₄₇; or R₀₁ is C₁-C₄alkylenephenyl, COR₀₇ or from 4- to 6-membered heterocyclyl; R₀₂, R₀₃₈, R₀₄₄ and R₀₆₆ are each independently of the others hydrogen, C₁-C₄alkyl, phenyl, or phenyl substituted by C_1 - C_4 alkyl, C_1 - C_6 haloalkyl, C_1 - C_4 alkoxy, C_1 - C_4 haloalkoxy, C_2 - C_6 alkenyl, C₃-C₆alkynyl, C₃-C₆alkenyloxy, C₃-C₆alkynyloxy, halogen, nitro, cyano, -COOH, COOC₁-C₄alkyl, COOphenyl, C₁-C₄alkoxy, phenoxy, (C₁-C₄alkoxy)-C₁-C₄alkyl, (C₁-C₄alkylthio)-C₁-C₄alkyl, $(C_1-C_4$ alkylsulfinyl)- C_1-C_4 alkyl, $(C_1-C_4$ alkylsulfonyl)- C_1-C_4 alkyl, NHSO₂- C_1-C_4 alkyl, NHSO₂-phenyl, $N(C_1-C_6alkyl)SO_2-C_1-C_4alkyl$, $N(C_1-C_6alkyl)SO_2$ -phenyl, $N(C_2-C_6alkenyl)$ - SO_2 - C_1 - C_4 alkyl, $N(C_2$ - C_6 alkenyl) SO_2 -phenyl, $N(C_3$ - C_6 alkynyl) SO_2 - C_1 - C_4 alkyl, $N(C_3$ - C_6 alkynyl) SO_2 -phenyl, $N(C_3-C_7$ cycloalkyl) $SO_2-C_1-C_4$ alkyl, $N(C_3-C_7$ cycloalkyl) SO_2 -phenyl, $N(phenyl)SO_2-C_1-C_4$ alkyl, $N(phenyl)SO_2-phenyl, OSO_2-C_1-C_4$ alkyl, $CONR_{0.49}R_{0.50}$, OSO₂-C₁-C₄haloalkyl, OSO₂-phenyl, C₁-C₄alkylthio, C₁-C₄haloalkylthio, phenylthio, C₁-C₄alkylsulfonyl, C₁-C₄haloalkylsulfonyl, phenylsulfonyl, C₁-C₄alkylsulfinyl, C₁-C₄haloalkylsulfinyl, phenylsulfinyl, -C₁-C₄-alkylphenyl or by -NR₀₅₂CO₂R₀₅₃;

 $R_{03},\,R_{039}$ and R_{067} are each independently of the others $C_1\text{-}C_4$ alkyl, phenyl, or phenyl substituted by $C_1\text{-}C_4$ alkyl, $C_1\text{-}C_6$ haloalkyl, $C_1\text{-}C_4$ alkoxy, $C_1\text{-}C_4$ haloalkoxy, $C_2\text{-}C_6$ alkenyl, $C_3\text{-}C_6$ alkynyl, $C_3\text{-}C_6$ alkynyl, $C_3\text{-}C_6$ alkynyloxy, halogen, nitro, cyano, -COOH, COOC_1-C_4 alkyl, COOphenyl, $C_1\text{-}C_4$ alkoxy, phenoxy, $(C_1\text{-}C_4$ alkoxy)- $C_1\text{-}C_4$ alkyl, $(C_1\text{-}C_4$ alkylthio)- $C_1\text{-}C_4$ alkyl, $(C_1\text{-}C_4$ alkylsulfinyl)- $C_1\text{-}C_4$ alkyl, $(C_1\text{-}C_4$ alkylsulfonyl)- $C_1\text{-}C_4$ alkyl, $(C_1\text{-}C_4$ alkyl, $(C_1\text{-}C_6$ alkyl)) SO_2\text{-} phenyl, $(C_2\text{-}C_6$ alkenyl)- SO_2\text{-}C_1\text{-}C_4 alkyl, $(C_2\text{-}C_6$ alkenyl)SO_2\text{-} phenyl, $(C_3\text{-}C_6$ alkynyl)SO_2\text{-} phenyl, $(C_3\text{-}C_6$ alkylyl)SO_2\text{-} phenyl, $(C_3\text{-}C_7$ cycloalkyl)SO_2\text{-} phenyl, $(C_3\text{-}C_7$ cycloalkyl)SO_2\text{-} phenyl, $(C_3\text{-}C_7$ cycloalkyl)SO_2\text{-} phenyl, $(C_3\text{-}C_7$ cycloalkyl)SO_2\text{-} phenyl, $(C_3\text{-}C_1\text{-}C_4$ alkyl, $(C_3\text{-}C_1\text{-}C_4$ alkyl,

 R_{04} is C_1 - C_4 alkyl;

WO 01/54501

 $R_{05} \text{ is hydrogen, } C_1\text{-}C_4\text{alkyl, } C_2\text{-}C_6\text{alkenyl, } C_3\text{-}C_6\text{alkynyl, } C_3\text{-}C_7\text{cycloalkyl, phenyl, or phenyl substituted by } C_1\text{-}C_4\text{alkyl, } C_1\text{-}C_6\text{haloalkyl, } C_1\text{-}C_4\text{alkoxy, } C_1\text{-}C_4\text{haloalkoxy, } C_2\text{-}C_6\text{alkenyl, } C_3\text{-}C_6\text{-}\text{alkynyl, } C_3\text{-}C_6\text{alkenyloxy, } C_3\text{-}C_6\text{alkynyloxy, halogen, nitro, cyano, -}COOH, COOC_1\text{-}C_4\text{alkyl, } COOphenyl, } C_1\text{-}C_4\text{alkoxy, phenoxy, } (C_1\text{-}C_4\text{alkoxy})\text{-}C_1\text{-}C_4\text{alkyl, } (C_1\text{-}C_4\text{alkylthio})\text{-}C_1\text{-}C_4\text{alkyl, } (C_1\text{-}C_4\text{alkyl, } NHSO_2\text{-}C_1\text{-}C_4\text{alkyl, } NHSO_2\text{-}C_1\text{-}C_4\text{alkyl, } NHSO_2\text{-}C_1\text{-}C_4\text{alkyl, } N(C_1\text{-}C_6\text{alkyl})\text{-}C_1\text{-}C_4\text{alkyl, } N(C_2\text{-}C_6\text{alkenyl})\text{-}SO_2\text{-}C_1\text{-}C_4\text{alkyl, } N(C_3\text{-}C_6\text{alkenyl})\text{-}SO_2\text{-}Dhenyl, } N(C_3\text{-}C_6\text{alkenyl})\text{-}SO_2\text{-}C_1\text{-}C_4\text{alkyl, } N(C_3\text{-}C_6\text{alkynyl})\text{-}SO_2\text{-}Dhenyl, } N(C_3\text{-}C_7\text{cycloalkyl})\text{-}SO_2\text{-}C_1\text{-}C_4\text{alkyl, } N(C_3\text{-}C_7\text{cycloalkyl})\text{-}SO_2\text{-}Dhenyl, } N(C_3\text{-}C_7\text{cycloalkyl})\text{-}SO_2\text{-}C_1\text{-}C_4\text{alkyl, } N(C_3\text{-}C_7\text{cycloalkyl})\text{-}SO_2\text{-}Dhenyl, } N(C_3\text{-}C_7\text{-}C_4\text{alkyl, } N(C_3\text{-}C_7\text{-}C_4\text{-}C_4\text{-}C_4\text{-}C_4\text{-}C_4\text{-}C_4\text{-}C_4\text{-}C_4\text{-}C_4\text$

 $R_{06} \text{ is hydrogen, } C_1\text{-}C_4\text{alkyl, } C_2\text{-}C_6\text{alkenyl, } C_3\text{-}C_6\text{alkynyl, } C_3\text{-}C_7\text{cycloalkyl, phenyl, or phenyl substituted by } C_1\text{-}C_4\text{alkyl, } C_1\text{-}C_6\text{haloalkyl, } C_1\text{-}C_4\text{alkoxy, } C_1\text{-}C_4\text{haloalkoxy, } C_2\text{-}C_6\text{alkenyl, } C_3\text{-}C_6\text{alkenyloxy, } C_3\text{-}C_6\text{alkynyloxy, halogen, nitro, cyano, -}COOH, COOC_1\text{-}C_4\text{-}alkyl, COOphenyl, } C_1\text{-}C_4\text{alkoxy, phenoxy, } (C_1\text{-}C_4\text{alkoxy})\text{-}C_1\text{-}C_4\text{alkyl, } (C_1\text{-}C_4\text{alkylthio})\text{-}C_1\text{-}C_4\text{-}alkyl, } (C_1\text{-}C_4\text{alkyl, } \text{onlyl})\text{-}C_1\text{-}C_4\text{alkyl, } (C_1\text{-}C_4\text{alkyl, } \text{onlyl})\text{-}C_1\text{-}C_4\text{alkyl, } (C_1\text{-}C_6\text{alkyl})\text{-}C_1\text{-}C_4\text{alkyl, } (C_1\text{-}C_6\text{alkyl})\text{-}C_1\text{-}C_4\text{alkyl, } (C_1\text{-}C_6\text{alkyl})\text{-}C_1\text{-}C_4\text{alkyl, } (C_2\text{-}C_6\text{alkenyl})\text{-}C_1\text{-}C_4\text{alkyl, } (C_3\text{-}C_6\text{alkenyl})\text{-}C_1\text{-}C_4\text{alkyl, } (C_3\text{-}C_6\text{alkenyl})\text{-}C_1\text{-}C_4\text{alkyl, } (C_3\text{-}C_6\text{alkenyl})\text{-}C_1\text{-}C_4\text{alkyl, } (C_3\text{-}C_6\text{alkenyl})\text{-}C_1\text{-}C_4\text{alkyl, } (C_3\text{-}C_6\text{alkenyl})\text{-}C_1\text{-}C_4\text{alkyl, } (C_3\text{-}C_6\text{alkynyl})\text{-}C_1\text{-}C_4\text{alkyl, } (C_3\text{-}C_7\text{cycloalkyl})\text{-}C_1\text{-}C_4\text{alkyl, } (C_3\text{-}C_7\text{cycloalkyl})\text{-}C_1\text{-}C_4\text{-}C_4\text{alkyl, } (C_3\text{-}C_7\text{cycloalkyl})\text{-}C_1\text{-}C_4\text{-$

 $SO_2-C_1-C_4$ alkyl, N(phenyl) SO_2 -phenyl, $OSO_2-C_1-C_4$ alkyl, $CONR_{061}R_{062}$, $OSO_2-C_1-C_4$ haloalkyl, OSO_2 -phenyl, C_1-C_4 alkylthio, C_1-C_4 haloalkylthio, phenylthio, C_1-C_4 alkylsulfonyl, C_1-C_4 haloalkylsulfinyl, C_1-C_4 haloalkylsulfinyl, phenylsulfinyl, C_1-C_4 -alkylsulfinyl, C_1-C_4 -alkylenephenyl or by $-NR_{064}CO_2R_{063}$;

R₀₇ is phenyl, C₁-C₄alkyl, C₁-C₄alkoxy or -NR₀₈R₀₉;

 R_{08} and R_{09} are each independently of the other C_1 - C_4 alkyl, phenyl, or phenyl substituted by halogen, nitro, cyano, C_1 - C_4 alkyl, C_1 - C_4 alkoxy, C_1 - C_4 thioalkyl, - CO_2R_{066} , - COR_{067} , C_1 - C_4 -alkylsulfinyl or by C_1 - C_4 haloalkyl; or R_{08} and R_{09} together form a 5- or 6-membered ring, which may be interrupted by oxygen, NR_{065} or by S;

 R_{015} , R_{031} , R_{043} , R_{048} , R_{052} , R_{056} , R_{060} and R_{064} are each independently of the others hydrogen, C_1 - C_4 alkyl, C_2 - C_6 alkenyl, C_3 - C_6 alkynyl or C_3 - C_7 cycloalkyl;

 R_{025} , R_{026} , R_{027} , R_{028} , R_{029} , R_{030} , R_{032} , R_{033} , R_{034} , R_{035} , R_{036} , R_{037} , R_{040} , R_{041} , R_{042} , R_{045} , R_{046} , R_{047} , R_{049} , R_{050} , R_{053} , R_{054} , R_{055} , R_{057} , R_{058} , R_{059} , R_{061} , R_{062} , R_{063} , R_{065} and R_{068} are each independently of the others hydrogen, C_1 - C_4 alkyl, C_2 - C_6 alkenyl, C_3 - C_6 alkynyl, C_3 - C_7 cycloalkyl, phenyl, or phenyl substituted by halogen, nitro, cyano, C_1 - C_4 alkoxy, C_1 - C_4 haloalkylthio, C_1 - C_4 haloalkylthio, C_1 - C_4 alkyl or by C_1 - C_4 haloalkyl; and

 $R_{36} \text{ is } C_1\text{-}C_4\text{alkyl}, C_1\text{-}C_4\text{haloalkyl}, C_3\text{-}C_6\text{alkenyl}, C_3\text{-}C_6\text{haloalkenyl}, C_3\text{-}C_6\text{alkynyl}, C_3\text{-}C_6\text{alkynyl}, C_3\text{-}C_6\text{alkynyl}, C_3\text{-}C_6\text{cycloalkyl} \text{ substituted by halogen, } C_1\text{-}C_4\text{alkyl}, C_1\text{-}C_4\text{haloalkenyl}, C_3\text{-}C_6\text{alkenyl}, C_3\text{-}C_6\text{alkynyl}, C_3\text{-}C_6\text{haloalkenyl}, C_3\text{-}C_6\text{alkynyl}, C_3\text{-}C_6\text{haloalkynyl}, C_1\text{-}C_4\text{alkylsulfinyl}, C_$

 C_4 haloalkylsulfinyl, C_1 - C_4 haloalkylsulfonyl, C_1 - C_4 alkylcarbonyl, di(C_1 - C_4 alkyl)amino, C_1 - C_4 alkoxy, C_1 - C_4 haloalkoxy, C_1 - C_4 alkyl- $S(O)_2O$, C_1 - C_4 haloalkyl- $S(O)_2O$, or by phenyl which may itself be substituted by halogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_3 - C_6 alkenyl, C_3 - C_6 alkynyl, cyano, nitro or by COOH;

or an agronomically acceptable salt of such a compound, and

b) a synergistically effective amount of one or more compounds selected from a compound of formula 2.1

wherein R₅₁ is CH₂-OMe, ethyl or hydrogen:

R₅₂ is hydrogen or R₅₁ and R₅₂ together are the group -CH=CH-CH=CH-; and a compound of formula 2.2

$$R_{53}$$
 R_{55} R_{55} CH_2CI (2.2),

wherein R_{53} is ethyl, R_{54} is methyl or ethyl and R_{55} is -CH(Me)-CH₂OMe, <S>-CH(Me)-CH₂OMe, CH₂OMe or CH₂O-CH₂CH₃; and a compound of formula 2.3

$$R_{56}$$
 R_{56}
 CH_2CI
 (2.3)

wherein R₅₆ is CH(Me)-CH₂OMe or <S>CH(Me)-CH₂OMe; and a compound of formula 2.4

wherein R_{57} is chlorine, methoxy or methylthio, R_{58} is ethyl and R_{59} is ethyl, isopropyl, $-C(CN)(CH_3)-CH_3$ or tert-butyl; and a compound of formula 2.5

$$R_{60}$$
 (2.5),

wherein R₆₀ is ethyl or n-propyl, R₆₁ is COO 1/2 Ca⁺⁺, -CH₂-CH(Me)S-CH₂CH₃ or the group

and a compound of formula 2.6

$$R_{64}$$
 R_{66}
 R_{66}
 R_{66}
 R_{66}
 R_{66}
 R_{66}
 R_{66}
 R_{66}
 R_{66}
 R_{66}

wherein R_{62} is hydrogen, methoxy or ethoxy, R_{63} is hydrogen, methyl, methoxy or fluorine, R_{64} is COOMe, fluorine or chlorine, R_{65} is hydrogen or methyl, Y is methine, C-F or nitrogen, Z is methine or nitrogen and R_{66} is fluorine or chlorine; and a compound of formula 2.7

wherein R₆₇ is hydrogen or -C(O)-S-n-octyl; and a compound of formula 2.8

wherein R_{68} is either bromine or iodine; and a compound of formula 2.9

wherein R_{69} is chlorine or nitro; and a compound of formula 2.10

wherein R_{70} is fluorine or chlorine and R_{71} is -CH₂-CH(Cl)-COOCH₂CH₃ or -NH-SO₂Me; and a compound of formula 2.11

wherein R_{72} is trifluoromethyl or chlorine; and a compound of formula 2.12

Me
$$\stackrel{\text{P}}{\underset{\text{O}}{\longrightarrow}}$$
 COOH (2.12), $\stackrel{\text{NH}_4^+}{\longrightarrow}$

wherein R_{73} is NH_2 or $<S>NH_2$; and a compound of formula 2.13

wherein Y_1 is nitrogen, methine, NH-CHO or N-Me, Y_2 is nitrogen, methine or C-I, Y_3 is methine, Y_4 is methine or Y_3 and Y_4 together are sulfur or C-Cl, Y_5 is nitrogen or methine, Y_6 is methyl, diffuoromethoxy, trifluoromethyl or methoxy, Y_7 is methoxy or diffuoromethoxy and R_{74} is CONMe₂, COOMe, COOC₂H₅, trifluoromethyl, CH₂-CH₂CF₃ or SO₂CH₂CH₃, or a sodium salt thereof ("Me" being in each case the methyl group); and the compound of formula 2.13.c

and the compound of formula 2.14

and the compound of formula 2.15

- 16 -

and the compound of formula 2.17

and the compound of formula 2.18

Me
$$N^{+}$$
 O Me $(2.18),$ Me O Me

and the compound of formula 2.19

and the compound of formula 2.20

and the compound of formula 2.23

and the compound of formula 2.26

and the compound of formula 2.27

and the compound of formula 2.28

and the compound of formula 2.31

and the compound of formula 2.32

$$CI$$
 N
 N
 Me
 (2.32) ,
 Me

HOOC
$$N$$
 P O Me S Me Me Me

$$H_2N \longrightarrow SO_2NHCO_2CH_3$$
 (2.34), and the compound of formula 2.35

$$CH_3NH \longrightarrow N$$

$$CI \qquad O$$

$$CF_3$$

$$(2.35)$$

and the compound of formula 2.36

and the compound of formula 2.37

$$S$$
 $CH_2CH(CH_3)_2$ CO_2CH_3 CF_2H CF_2H

and the compound of formula 2.38

$$F_3C$$
 N CHF_2 CH_3SOC $CH_2CH(CH_3)_2$ (2.38)

and the compound of formula 2.39

$$CI \longrightarrow NHCON(CH_3)_2$$
 (2.40)

$$CI \longrightarrow OCH_2CO_2H$$
 (2.41),

and the compound of formula 2.42

(2.42),

(2.43),

and the compound of formula 2.43

and the compound of formula 2.44

and the compound of formula 2.45

and the compound of formula 2.47

$$\begin{array}{c|c} & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$$

and the compound of formula 2.48

and the compound of formula 2.49

and the compound of formula 2.50

$$H_3C$$
 CH_3
 N
 CH_3
 $CH_$

PCT/EP01/00720

$$CI \xrightarrow{F} O \xrightarrow{CH_3} F$$

$$O \xrightarrow{N} F$$

$$CI \xrightarrow{N}$$

In the above formulae, "Me" is a methyl group. The alkyl groups appearing in the substituent definitions may be straight-chained or branched and are, for example, methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, isobutyl, tert-butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl and dodecyl and also branched isomers thereof. Alkoxy, alkenyl and alkynyl radicals are derived from the mentioned alkyl radicals. The alkenyl and alkynyl groups may be unsaturated once or more than once.

An alkylene group may be substituted by one or more methyl groups; preferably, such alkylene groups are unsubstituted in each case. The same also applies to all C_3 - C_5 cycloalkyl-, C_3 - C_5 oxacycloalkyl-, C_3 - C_5 thiacycloalkyl-, C_3 - C_4 dioxacycloalkyl-, C_3 - C_4 dithiacycloalkyl-, C_3 - C_4 oxathiacycloalkyl- and $N(CH_2)$ -containing groups.

Halogen is, generally, fluorine, chlorine, bromine or iodine. The same correspondingly applies to halogen in the context of other definitions, such as haloalkyl or halophenyl.

Haloalkyl groups having a chain length of from 1 to 6 carbon atoms are, for example, fluoromethyl, difluoromethyl, trifluoromethyl, chloromethyl, dichloromethyl, trichloromethyl, 2,2,2-trifluoroethyl, 2-fluoroethyl, 2-chloroethyl, pentafluoroethyl, 1,1-difluoro-2,2,2-trichloroethyl, 2,2,3,3-tetrafluoroethyl and 2,2,2-trichloroethyl, pentafluoroethyl, heptafluoro-n-propyl, perfluoro-n-hexyl; haloalkyl groups in the definitions of R_2 , R_3 and especially R_5 are preferably trichloromethyl, dichlorofluoromethyl, difluorochloromethyl, difluoromethyl, trifluoromethyl, pentafluoroethyl or heptafluoro-n-propyl.

Suitable haloalkenyl radicals include alkenyl groups substituted one or more times by halogen, halogen being fluorine, chlorine, bromine or iodine and especially fluorine or chlorine, for example 2,2-difluoro-1-methylvinyl, 3-fluoropropenyl, 3-chloropropenyl, 3-chloropropenyl, 3-bromopropenyl, 2,3,3-trifluoropropenyl, 2,3,3-trichloropropenyl and 4,4,4-trifluorobut-2-en-1-yl. Preferred C₂-C₁₂alkenyl radicals substituted once, twice or three times by halogen are those having a chain length of from 2 to 5 carbon atoms. Suitable haloalkynyl radicals

include, for example, alkynyl groups substituted one or more times by halogen, halogen being bromine or iodine and, especially, fluorine or chlorine, for example 3-fluoropropynyl, 3-chloropropynyl, 3-bromopropynyl, 3,3,3-trifluoropropynyl and 4,4,4-trifluoro-but-2-yn-1-yl. Preferred alkynyl groups substituted one or more times by halogen are those having a chain length of from 2 to 5 carbon atoms.

Alkoxy groups preferably have a chain length of from 1 to 6 carbon atoms. Alkoxy is, for example, methoxy, ethoxy, propoxy, isopropoxy, n-butoxy, isobutoxy, sec-butoxy or tert-butoxy or a pentyloxy or hexyloxy isomer, preferably methoxy and ethoxy. Alkylcarbonyl is preferably acetyl or propionyl. Alkoxycarbonyl is, for example, methoxycarbonyl, ethoxycarbonyl, propoxycarbonyl, isopropoxycarbonyl, n-butoxycarbonyl, isobutoxycarbonyl, sec-butoxycarbonyl or tert-butoxycarbonyl, preferably methoxycarbonyl, ethoxycarbonyl or tert-butoxycarbonyl, preferably have a chain length of from 1 to 8 carbon atoms.

Haloalkoxy is, for example, fluoromethoxy, difluoromethoxy, trifluoromethoxy, 2,2,2-trifluoroethoxy, 1,1,2,2-tetrafluoroethoxy, 2-fluoroethoxy, 2-chloroethoxy, 2,2-difluoroethoxy or 2,2,2-trichloroethoxy, preferably difluoromethoxy, 2-chloroethoxy or trifluoromethoxy.

Alkylthio groups preferably have a chain length of from 1 to 8 carbon atoms.

Alkylthio is, for example, methylthio, ethylthio, propylthio, isopropylthio, n-butylthio, isobutylthio, sec-butylthio or tert-butylthio, preferably methylthio or ethylthio. Alkylsulfinyl is, for example, methylsulfinyl, ethylsulfinyl, propylsulfinyl, isopropylsulfinyl, n-butylsulfinyl, sec-butylsulfinyl or tert-butylsulfinyl, preferably methylsulfinyl or ethylsulfinyl, n-butylsulfonyl, isopropylsulfonyl, n-butylsulfonyl, isopropylsulfonyl, n-butylsulfonyl, isobutylsulfonyl, sec-butylsulfonyl, or tert-butylsulfonyl, preferably methylsulfonyl, preferably methylsulfonyl, sopropylsulfonyl, n-butylsulfonyl, isobutylsulfonyl, sec-butylsulfonyl or tert-butylsulfonyl, preferably methylsulfonyl or ethylsulfonyl.

Alkylamino is, for example, methylamino, ethylamino, n-propylamino, isopropylamino or a butylamine isomer. Dialkylamino is, for example, dimethylamino, methylethylamino, diethylamino, n-propylmethylamino, dibutylamino or diisopropylamino. Preference is given to alkylamino groups having a chain length of from 1 to 4 carbon atoms. Alkoxyalkyl groups preferably have from 1 to 6 carbon atoms. Alkoxyalkyl is, for example, methoxymethyl, methoxyethyl, ethoxymethyl, n-propoxymethyl, n-propoxyethyl, isopropoxymethyl or isopropoxyethyl. Alkylthioalkyl groups preferably have from 1 to 6 carbon atoms. Alkylthioalkyl is, for example, methylthiomethyl, methylthioethyl, ethylthiomethyl, ethy

- 25 -

ethyl, n-propylthiomethyl, n-propylthioethyl, isopropylthiomethyl, isopropylthioethyl, butylthiomethyl, butylthioethyl or butylthiobutyl.

The cycloalkyl groups preferably have from 3 to 6 ring carbon atoms and may be substituted by one or more methyl groups; they are preferably unsubstituted, for example cyclopropyl, cyclobutyl, cyclopentyl or cyclohexyl. Phenyl, including phenyl as part of a substituent such as phenoxy, benzyl, benzyloxy, benzoyl, phenylthio, phenylalkyl, phenoxyalkyl or tosyl, may be in mono- or poly-substituted form, in which case the substituents may, as desired, be in the ortho-, meta- and/or para-position(s).

The invention also includes the salts that the compounds of formula I may form with amines, alkali metal and alkaline earth metal bases or quaternary ammonium bases. Among the alkali metal and alkaline earth metal hydroxides used as salt formers, emphasis is to be given to the hydroxides of lithium, sodium, potassium, magnesium and calcium, but especially those of sodium and potassium.

Examples of suitable amines for ammonium salt formation that come into consideration are ammonia as well as primary, secondary and tertiary C₁-C₁₈alkylamines, C₁-C₄hydroxyalkylamines and C₂-C₄alkoxyalkylamines, for example methylamine, ethylamine, n-propylamine, isopropylamine, the four butylamine isomers, n-amylamine, isoamylamine, hexylamine, heptylamine, octylamine, nonylamine, decylamine, pentadecylamine, hexadecylamine, heptadecylamine, octadecylamine, methyl-ethylamine, methyl-isopropylamine, methylhexylamine, methyl-nonylamine, methyl-pentadecylamine, methyl-octadecylamine, ethylbutylamine, ethyl-heptylamine, ethyl-octylamine, hexyl-heptylamine, hexyl-octylamine, dimethylamine, diethylamine, di-n-propylamine, diisopropylamine, di-n-butylamine, di-namylamine, diisoamylamine, dihexylamine, diheptylamine, dioctylamine, ethanolamine, n-propanolamine, isopropanolamine, N,N-diethanolamine, N-ethylpropanolamine, N-butylethanolamine, allylamine, n-butenyl-2-amine, n-pentenyl-2-amine, 2,3-dimethylbutenyl-2amine, dibutenyl-2-amine, n-hexenyl-2-amine, propylenediamine, trimethylamine, triethylamine, tri-n-propylamine, triisopropylamine, tri-n-butylamine, triisobutylamine, tri-secbutylamine, tri-n-amylamine, methoxyethylamine and ethoxyethylamine; heterocyclic amines, for example pyridine, quinoline, isoquinoline, morpholine, piperidine, pyrrolidine, indoline, quinuclidine and azepine; primary aryl amines for example anilines, methoxyanilines, ethoxyanilines, o-, m- and p-toluidines, phenylenediamines, benzidines, naphthylamines and

PCT/EP01/00720

o-, m- and p-chloroanilines; but especially triethylamine, isopropylamine and diisopropylamine.

It is extremely surprising that the combination of the active ingredient of formula I with one or more active ingredients selected from formulae 2.1 to 2.51 exceeds the additive effect on the weeds to be controlled that is to be expected in principle, and thus broadens the range of action of the individual active ingredients especially in two respects: Firstly, the rates of application of the individual compounds of formulae 1 and 2.1 to 2.51 are reduced while a good level of action is maintained and, secondly, the composition according to the invention achieves a high level of weed control also in those cases where the individual substances, in the range of low rates of application, have become unusable from the agronomic standpoint. The result is a considerable broadening of the spectrum of weeds and an additional increase in selectivity in respect of the crops of useful plants, as is necessary and desirable in the event of an unintentional overdose of active ingredient. The composition according to the invention, while retaining excellent control of weeds in crops of useful plants, also enables greater flexibility in succeeding crops.

The composition according to the invention can be used against a large number of agronomically important weeds, such as Stellaria, Nasturtium, Agrostis, Digitaria, Avena, Setaria, Sinapis, Lolium, Solanum, Phaseolus, Echinochloa, Scirpus, Monochoria, Sagittaria, Bromus, Alopecurus, Sorghum halepense, Rottboellia, Cyperus, Abutilon, Sida, Xanthium, Amaranthus, Chenopodium, Ipomoea, Chrysanthemum, Galium, Viola and Veronica. The composition according to the invention is suitable for all methods of application conventionally used in agriculture, e.g. pre-emergence application, post-emergence application and seed dressing. The composition according to the invention is suitable especially for controlling weeds in crops of useful plants, such as cereals, rape, sugar beet, sugar cane, plantation crops, rice, maize and soybeans, and also for non-selective weed control.

"Crops" are to be understood to mean also those crops which have been made tolerant to herbicides or classes of herbicides as a result of conventional methods of breeding or genetic engineering.

Preferred compositions according to the invention comprise compounds of formula I wherein

PCT/EP01/00720

each R is independently hydrogen, C₁-C₆alkyl, C₂-C₆alkenyl, C₂-C₆haloalkenyl, C₂-C₆alkynyl, C₂-C₆haloalkynyl, C₃-C₆cycloalkyl, C₁-C₆alkoxy, C₁-C₆haloalkoxy, C₁-C₆alkylthio, C₁-C₆alkylsulfinyl, C_1 - C_6 alkylsulfonyl, C_1 - C_6 haloalkyl, C_1 - C_6 haloalkylthio, C_1 - C_6 haloalkylsulfinyl, C_1 - C_6 haloalkylsulfonyl, C₁-C₆alkoxycarbonyl, C₁-C₆alkylcarbonyl, C₁-C₆alkylamino, di(C₁-C₆alkyl)amino, C_1 - C_6 alkylaminosulfonyl, di(C_1 - C_6 alkyl)aminosulfonyl, -N(R_1)-S- R_2 , -N(R_3)-SO- R_4 , -N(R₅)-SO₂-R₆, nitro, cyano, halogen, hydroxy, amino, benzylthio, benzylsulfinyl, benzylsulfonyl, phenyl, phenoxy, phenylthio, phenylsulfinyl or phenylsulfonyl; wherein the phenyl group may itself be mono-, di- or tri-substituted by C1-C6alkyl, C1-C6haloalkyl, C3-C6alkenyl, C_3 - C_6 haloalkenyl, C_3 - C_6 alkynyl, C_3 - C_6 haloalkynyl, C_1 - C_6 alkoxy, C_1 - C_6 haloalkoxy, C_3 - C_6 alkenyloxy, C₃-C₆alkynyloxy, mercapto, C₁-C₆alkylthio, C₁-C₆haloalkylthio, C₃-C₆alkenylthio, C₃-C₆haloalkenylthio, C₃-C₆alkynylthio, C₂-C₅alkoxyalkylthio, C₃-C₅acetylalkylthio, C₃-C₆alkoxycarbonylalkylthio, C_2 - C_4 cyanoalkylthio, C_1 - C_6 alkylsulfinyl, C_1 - C_6 haloalkylsulfinyl, C_1 - C_6 alkylsulfonyl, C_1 - C_6 haloalkylsulfonyl, aminosulfonyl, C_1 - C_2 alkylaminosulfonyl, C₂-C₄dialkylaminosulfonyl, C₁-C₃alkylene-R₄₅, NR₄₆R₄₇, halogen, cyano, nitro, phenyl or by benzylthio, wherein the latter phenyl and benzylthio groups may themselves be substituted on the phenyl ring by C₁-C₃alkyl, C₁-C₃haloalkyl, C₁-C₃alkoxy, C₁-C₃haloalkoxy, halogen, cyano or by nitro;

or each R is independently a monocyclic or fused bicyclic ring system having from 5 to 10 members, which may be aromatic or partially saturated and may contain from 1 to 4 hetero atoms selected from nitrogen, oxygen and sulfur; wherein the ring system either is bound directly to the pyridine ring or is bound to the pyridine ring via a C₁-C₄alkylene group, and each ring system may not contain more than two oxygen atoms and may not contain more than two sulfur atoms, and the ring system may itself be mono-, di- or tri-substituted by C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_3 - C_6 alkenyl, C_3 - C_6 haloalkynyl, C_3 - C_6 haloalkynyl, C₁-C₆alkoxy, C₁-C₆haloalkoxy, C₃-C₆alkenyloxy, C₃-C₆alkynyloxy, mercapto, C₁-C₆alkylthio, C₁-C₆haloalkylthio, C₃-C₆alkenylthio, C₃-C₆haloalkenylthio, C₃-C₆alkynylthio, C₂- C_5 alkoxyalkylthio, C_3 - C_5 acetylalkylthio, C_3 - C_6 alkoxycarbonylalkylthio, C_2 - C_4 cyanoalkylthio, C₁-C₆alkylsulfinyl, C₁-C₆haloalkylsulfinyl, C₁-C₆alkylsulfonyl, C₁-C₆haloalkylsulfonyl, aminosulfonyl, C₁-C₂alkylaminosulfonyl, C₂-C₄dialkylaminosulfonyl, C₁-C₃alkylaminosulfonyl, R₈R₉, halogen, cyano, nitro, phenyl or by benzylthio, wherein phenyl and benzylthio may themselves be substituted on the phenyl ring by C₁-C₃alkyl, C₁-C₃haloalkyl, C₁-C₃alkoxy, C₁-C₃haloalkoxy, halogen, cyano or by nitro, and wherein the substituents on the nitrogen in the heterocyclic ring are other than halogen.

Compositions according to the invention that are also preferred comprise, as compound of formula I, a compound of formula Ia

$$R_{49}$$
 Q Q Q Q Q

wherein

WO 01/54501

R₄₈ is C₁-C₆alkyl, C₂-C₆alkenyl, C₂-C₆haloalkenyl, C₂-C₆alkynyl, C₂-C₆haloalkynyl, C₃-C₆cycloalkyl, C_1 - C_6 haloalkyl, or a monocyclic or fused bicyclic ring system having from 5 to 10 members, which may be aromatic or partially saturated and may contain from 1 to 4 hetero atoms selected from nitrogen, oxygen and sulfur, wherein the ring system either is bound directly to the pyridine ring or is bound to the pyridine ring via a C₁-C₄alkylene group, and each ring system may not contain more than two oxygen atoms and may not contain more than two sulfur atoms, and the ring system may itself be mono-, di- or tri-substituted by C₁-C₆alkyl, C₁-C₆haloalkyl, C₃-C₆alkenyl, C₃-C₆haloalkenyl, C₃-C₆haloalkynyl, C_1 - C_6 alkoxy, C_1 - C_6 haloalkoxy, C_3 - C_6 alkenyloxy, C_3 - C_6 alkynyloxy, mercapto, C_1 - C_6 alkylthjo. C₁-C₆haloalkylthio, C₃-C₆alkenylthio, C₃-C₆haloalkenylthio, C₃-C₆alkynylthio, C₂-C₅alkoxyalkylthio, C_3 - C_5 acetylalkylthio, C_3 - C_6 alkoxycarbonylalkylthio, C_2 - C_4 cyanoalkylthio, C_1 - C_6 alkylsulfinyl, C_1 - C_6 haloalkylsulfinyl, C_1 - C_6 alkylsulfonyl, C_1 - C_6 haloalkylsulfonyl, aminosulfonyl, C_1 - C_2 alkylaminosulfonyl, C_2 - C_4 dialkylaminosulfonyl, C_1 - C_3 alkylene- R_7 , NR_8R_9 , halogen, cyano, nitro, phenyl or by benzylthio, wherein phenyl and benzylthio may themselves be substituted on the phenyl ring by C₁-C₃alkyl, C₁-C₃haloalkyl, C₁-C₃alkoxy, C₁-C₃haloalkoxy, halogen, cyano or by nitro, and wherein the substituents on the nitrogen in the heterocyclic ring are other than halogen;

 R_{49} is hydrogen, C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, halogen, or phenyl which may be substituted by C_1 - C_3 alkyl, C_1 - C_3 haloalkyl, C_1 - C_3 alkoxy, C_1 - C_3 haloalkoxy, halogen, cyano or by nitro, and R_{50} is C_1 - C_6 haloalkyl.

Among that group of compounds preference is given to those wherein R_{48} is C_1 - C_6 alkyl, C_2 - C_6 alkenyl, C_2 - C_6 haloalkenyl, C_2 - C_6 haloalkynyl, C_3 - C_6 cycloalkyl or C_1 - C_6 -haloalkyl.

Preference is given also to compositions wherein, in formula I, Q is the group Q_2 or Q_3 , wherein, especially, in the group Q_2 R₂₃ is hydroxy and in the group Q_3 R₄₀ is hydroxy. Among that group emphasis is to be given to those compounds wherein m is 2 and one substituent R is C₁-C₄alkoxy-C₁-C₄alkyl or C₁-C₄alkoxy-C₁-C₄alkyl.

Further preferred synergistic mixtures according to the invention comprise as active ingredients a compound of formula I and either a compound of formula 2.2.a

$$\begin{array}{c} \text{CH}_3\\ \text{C(O)-CH}_2\text{Cl}\\ \\ \text{N}\\ \text{CH}_2\text{CH}_2\text{CCH}_3 \end{array} \\ \text{(2.2.a, aRS,1'S(-)N-(1'-methyl-2'-methoxyethyl)-N-}\\ \\ \text{C}_2\text{H}_5\text{ CH}_3\\ \end{array}$$

chloroacetyl-2-ethyl-6-methylaniline), or a compound of formula 2.2.b

$$\begin{array}{c} \text{CH}_3\\ \text{C(O)-CH}_2\text{CI}\\ \\ \text{HC---CH}_2\text{OCH}_3\\ \\ \text{C}_2\text{H}_5\text{ CH}_3\\ \end{array} \tag{2.2.b}$$

or a compound of formula 2.2 wherein R_3 is ethyl, R_4 is methyl and R_5 is ethoxymethyl, or a compound of formula 2.2 wherein R_3 is ethyl, R_4 is ethyl and R_5 is methoxymethyl, or a compound 2.3, or a compound of formula 2.30, or a compound of formula 2.4, or a compound of formula 2.13, or a compound of formula 2.14, or a compound of formula 2.6 wherein R_{12} is hydrogen, Z is methine, R_{13} is methyl, Y is nitrogen, R_{14} is fluorine, R_{15} is hydrogen and R_{16} is fluorine, or R_{12} is methoxy, Z is methine, R_{13} is methoxy, Y is methine, R_{14} is chlorine, R_{15} is methyl and R_{16} is chlorine, or a compound of formula 2.7 wherein R_{17} is -C(O)-S-n-octyl, or a compound of formula 2.12, or a compound of formula 2.18, or a compound of formula 2.19, or a compound of formula 2.21, or a compound of formula 2.25, or a compound of formula 2.33, or a compound of formula 2.45, or a compound of formula 2.31.

Especially preferred synergistic mixtures according to the invention comprise as active ingredients a compound of formula I and either a compound of formula 2.2.a

WO 01/54501

$$CH_3$$
 $C(O)$ - CH_2CI
 N
 C_2H_5
 CH_3
 $C(O)$ - CH_2CI
 C_2H_5
 CH_3
 $C(O)$ - CH_2CI
 C

chloroacetyl-2-ethyl-6-methylaniline), or a compound of formula 2.2.b

or a compound of formula 2.2 wherein R_3 is ethyl, R_4 is methyl and R_5 is ethoxymethyl, or a compound of formula 2.2 wherein R_3 is ethyl, R_4 is ethyl and R_5 is methoxymethyl, or a compound of formula 2.3, or a compound of formula 2.30.

Combinations of the compounds of formula I with the compound of formula 2.2a

$$\begin{array}{c} \text{CH}_3\\ \text{C(O)-CH}_2\text{CI}\\ \\ \text{N}\\ \text{HC}^*\\ \text{CH}_2\text{OCH}_3 \end{array} \\ \text{(2.2a, aRS,1'S(-)N-(1'-methyl-2'-methoxyethyl)-N-}\\ \\ \text{C}_2\text{H}_5 \text{ CH}_3 \end{array}$$

chloroacetyl-2-ethyl-6-methylaniline) have been found to be especially effective, the compound 1.001 indicated hereinbelow under Table 1 being especially preferred as the compound of formula I.

The compounds of formula I can be prepared in a manner analogous to the processes described in WO 97/46530, by

a) reacting a compound of formula II

$$X$$
 $(II),$
 $(R)_{m}$

wherein R and m are as defined for formula I and X is a leaving group, e.g. halogen, in an inert, organic solvent in the presence of a base, with compounds of formula III, IV,V or VI

wherein R_{20} , R_{23} , R_{30} and R_{40} are hydroxy and the other substituents are as defined for formula I, to form the compounds of formula VII, VIII, IX or X

$$(R)n$$

$$(VIII),$$

$$(VIII),$$

$$(R)n$$
 $(R)n$
 $(R)n$

and then isomerising those compounds, for example in the presence of a base and a catalytic amount of dimethylaminopyridine (DMAP) or a cyanide source; or b) reacting a compound of formula XI

wherein R and m are as defined for formula I, with compounds of formula III, IV, V or VI in an inert, organic solvent in the presence of a base and a coupling agent, to form the compound of formula VII, VIII, IX or X, and then isomerising that compound, for example in the manner described under route a).

Compounds of formula I wherein Q is a group Q₅

$$Z-R_{01}$$

$$(Q_5),$$

wherein Z is sulfur and R_{36} and R_{01} are as defined for formula I, can be prepared in a manner analogous to known processes (e.g. those described in WO 97/43270), by either a) converting a compound of formula XII

$$R_{36} \xrightarrow{(R)m} (XII),$$

wherein R₃₆, R and m are as defined, in the presence of a base, carbon disulfide and an alkylating reagent of formula XIII

$$R_{01}$$
- X_1 (XIII),

wherein R_{01} is as defined for formula I and X_1 is a leaving group, e.g. halogen or sulfonate, into the compound of formula XIV

$$\begin{array}{c|c} (R)m & O & O \\ \hline & & \\ N & & \\ \hline & & \\ R_{01}Z & ZR_{01} \end{array}$$
 (XIV),

wherein Z is sulfur and R, R_{01} , R_{36} and m are as defined, and then cyclising that compound with hydroxylamine hydrochloride, optionally in a solvent, in the presence of a base, to form the compound of formula le

$$(R)m \xrightarrow{O} XR_{01} N$$

$$R_{26}$$

$$(Ie),$$

wherein Z is sulfur and R, R_{36} , R_{01} and m are as defined, and then oxidising that compound with an oxidising agent, e.g. meta-chloroperbenzoic acid (m-CPBA).

Preparation of the compounds of formula I is illustrated in greater detail in the following Reaction Schemes 1 and 2.

Reaction Scheme 1

route a):

(R)m
$$\times$$
 + III, IV, V or VI $\xrightarrow{\text{base, e.g. } (C_2H_5)_3N, \\ \text{solvent, e.g. } CH_2Cl_2, \\ 0-110^{\circ}C$

isomerisation:

base, e.g.
$$(C_2H_5)_3N$$
,

KCN cat.

(R)m

route b):

$$(R) \text{m} \xrightarrow{\text{OH}} \text{HII, IV, V or VI} \xrightarrow{\text{base, e.g. } (C_2H_5)_3\text{N, coupling}} \text{reagent, e.g.} \qquad \text{VII, VIII, IX, or X}$$

$$\text{Solvent, e.g. } \text{CH}_2\text{Cl}_2,$$

$$\text{solvent, e.g. } \text{CH}_2\text{Cl}_2,$$

$$\text{isomerisation:}$$

$$\text{base, e.g. } (C_2H_5)_3\text{N,}$$

$$(R) \text{m} \xrightarrow{\text{N}} \text{Q}$$

The compounds of formula I containing the groups Q_1 , Q_2 , Q_3 and Q_4 wherein R_{20} , R_{23} , R_{30} and R_{40} are hydroxy can especially be prepared according to the above Reaction Scheme.

- 35 -

Reaction Scheme 2

$$R(m) = \begin{pmatrix} C \\ K_2CO_3/CS_2, R_{01}-X_1, \\ XIII \\ Solvent, e.g. DMF, or \\ \overline{KF/AI/CS_2}, R_{01}-X_1, \\ XIII \\ Solvent, e.g. CH_3CN, or \\ NaH/CS_2, R_{01}-X_1, \\ XIII \\ Solvent, e.g. DMSO \\ R(m) = \begin{pmatrix} C \\ R(m) \\ N \\ SR_{01} \end{pmatrix}$$

$$\frac{NH_2OH \cdot HCI, base, e.g.}{NaOAc/C_2H_5OH}$$

$$\frac{NH_2OH \cdot HCI, base$$

For preparation of the compounds of formula I wherein Q is a group Q_1 to Q_4 and R_{20} , R_{23} , R_{30} and R_{40} are hydroxy, there are used as starting materials, in accordance with Reaction Scheme 1, route a), the carboxylic acid derivatives of formula II wherein X is a leaving group, for example halogen, e.g. iodine, bromine or especially chlorine, N-oxyphthalimide or N,O-

(formed from dicyclohexylcarbodiimide (DCC) and the appropriate carboxylic acid) or $^{C_2H_5N=C-NH(CH_2)_3N(CH_3)_2}_{O-} \quad \text{(formed from N-ethyl-N'-(3-dimethylaminopropyl)carbodiimide }$

(EDC) and the appropriate carboxylic acid). Those compounds are reacted in an inert, organic solvent, for example a halogenated hydrocarbon, e.g. dichloromethane, a nitrile, e.g. acetonitrile, or an aromatic hydrocarbon, e.g. toluene, and in the presence of a base, for example an alkylamine, e.g. triethylamine, an aromatic amine, e.g. pyridine or 4-dimethylaminopyridine (DMAP), with the dione derivatives of formula III, IV, V or VI to form the isomeric enol ethers of formula VII, VIII, IX and X. The esterification occurs at temperatures of from 0°C to 110°C.

The isomerisation of the ester derivatives of formulae VII, VIII, IX and X to form the dione derivatives of formula I (wherein R_{20} , R_{23} , R_{30} and R_{40} are hydroxy) can be carried out, for example, analogously to EP 369 803 in the presence of a base, for example an alkylamine, e.g. triethylamine, a carbonate, e.g. potassium carbonate, and a catalytic amount of DMAP or a cyanide source, for example acetone cyanohydrin or potassium cyanide.

- 36 -

According to Reaction Scheme 1, route b), the desired diones of formula I (wherein R_{20} , R_{23} , R_{30} and R_{40} are hydroxy) can be obtained, for example, analogously to Chem. Lett. 1975, 1045 by means of esterification of the carboxylic acids of formula XI with the dione derivatives of formula III, IV, V or VI in an inert solvent, for example a halogenated hydrocarbon, e.g. dichloromethane, a nitrile, e.g. acetonitrile, or an aromatic hydrocarbon, e.g. toluene, in the presence of a base, for example an alkylamine, e.g. triethylamine, and a coupling agent, for example 2-chloro-1-methyl-pyridinium iodide. The esterification occurs, depending on the solvent used, at temperatures of from 0°C to 110°C and yields first, as described under route a), the isomeric ester of formula I, which can be isomerised, as described under route a), for example in the presence of a base and a catalytic amount of DMAP, or a cyanide source to form the desired dione derivatives of formula I (wherein R_{20} , R_{23} , R_{30} and R_{40} are hydroxy).

Preparation of the compounds of formula I wherein Q is the group Q_5 can be carried out in accordance with Reaction Scheme 2, by reacting the b-diketone derivative of formula XII, for example analogously to Synthesis 1991, 301; ibid. 1988, 793; or Tetrahedron 32, 3055 (1976), with carbon disulfide in the presence of a base, for example a carbonate, e.g. potassium carbonate, a metal hydride, e.g. sodium hydride, or potassium fluoride on aluminium, and an alkylating reagent of formula XIII, wherein X_1 is a leaving group, for example halogen, e.g. iodine, bromine or especially chlorine, $R_{25}OSO_2O$ -, CH_3SO_2O - or

$$\mathrm{CH_3}$$
 $\mathrm{SO_2O_2}$. The reaction is preferably carried out in a solvent, for example an

amide, e.g. N,N-dimethylformamide (DMF), a sulfoxide, e.g. dimethyl sulfoxide (DMSO), or a nitrile, e.g. acetonitrile. The ketene thioacetal of formula XIV formed is cyclised using hydroxylamine hydrochloride in the presence of a base, for example sodium acetate, in a solvent, for example an alcohol, e.g. ethanol, or an ether, e.g. tetrahydrofuran, to form the compound of formula le wherein Z is S-. The cyclisation reaction is carried out at temperatures of from 0°C to 100°C. The compound of formula le (Z=S) may optionally be oxidised in a manner analogous to standard procedures, for example using peracids, e.g. meta-chloroperbenzoic acid (m-CPBA) or peracetic acid, to form the corresponding sulfones and sulfoxides of formula le (Z = SO- or SO_2 -), wherein the degree of oxidation at the sulfur atom (Z = SO- or SO_2 -) can be controlled by the amount of oxidising agent.

Oxidation to the compound of formula le (Z = SO- or SO_2 -) is carried out as described, for example, in H. O. House, "Modern Synthetic Reactions" W. A. Benjamin, Inc., Menlo Park, California, 1972, pages 334-335 and 353-354.

The activated carboxylic acid derivatives of formula II in Reaction Scheme 1 (route a), wherein X is a leaving group, for example halogen, e.g. bromine, iodine or especially chlorine, can be prepared in accordance with known standard procedures, for example as described in C. Ferri "Reaktionen der organischen Synthese", Georg Thieme Verlag, Stuttgart, 1978, page 461 ff and as shown in the following Reaction Scheme 3.

Reaction Scheme 3

(R)m OH
$$W_1$$
-X, DMF $Cat.$, X W_1 -X, DMF II

According to Reaction Scheme 3, preparation of the compounds of formula II (X = leaving group) or II (X = halogen) is carried out, for example, by using a halogenating agent, for example a thionyl halide, e.g. thionyl chloride or bromide; a phosphorus halide or phosphorus oxyhalide, e.g. phosphorus pentachloride or phosphorus oxychloride or phosphorus pentabromide or phosphoryl bromide; or an oxalyl halide, e.g. oxalyl chloride, or by using a reagent for the formation of an activated ester for example N,N'-dicyclohexyl-carbodiimide (DCC) or N-ethyl-N'-(3-dimethylaminopropyl)carbodiimide (EDC) of formula X. In the compound of formula X, as a halogenating agent, X, for example, is a leaving group, for example halogen, e.g. fluorine, bromine or iodine and especially chlorine, and W_1 is, for example, PCl₂, SOCl, SOBr or CICOCO.

The procedure is optionally carried out in an inert, organic solvent, for example in an aliphatic, halogenated aliphatic, aromatic or halogenated aromatic hydrocarbon, e.g. n-hexane, benzene, toluene, xylenes, dichloromethane, 1,2-dichloroethane or chlorobenzene, at reaction temperatures in the range from -20°C to the reflux temperature of the reaction mixture, preferably at from 40 to 150°C, and in the presence of a catalytic amount of N,N-

dimethylformamide. Such reactions are generally known and described in the literature in a number of variants with respect to the leaving group X.

The compounds of formulae III, IV, V and VI are known and can be prepared in an analogous manner to that described, for example, in WO 92/07837, DE 3 818 958, EP 338 992 and DE 3 902 818.

The compounds of formula XII in Reaction Scheme 2 can be obtained by standard procedures, for example from the corresponding compounds of formula II

wherein R and m are as defined for formula I and X is a leaving group, for example halogen, for example *via* Claisen condensation, or from the compounds of formula II by reaction with a ketocarboxylic acid salt of formula XV

$$COO^-M^+$$
 H_2C
 COR_{36}
 $(XV),$

wherein R_{36} is as defined for formula I and M^+ is an alkali metal ion (cf., for example, WO 96/26192).

The compounds of formulae II and XI are known and can be prepared in an analogous manner to that described, for example, in WO 97/46530, Heterocycles, 48, 779 (1998), Heterocycles, 46, 129 (1997) or Tetrahedron Letters, 1749 (1998).

For the preparation of all further compounds of formula I functionalised according to the definition of (R)_m, a large number of known standard procedures, for example alkylation, halogenation, acylation, amidation, oximation, oxidation and reduction, are available, the choice of a suitable preparation procedure being governed by the properties (reactivities) of

the substituents in the respective intermediates. Examples of such reactions are given in WO 97/46353.

All further compounds falling within the scope of formula I can be prepared by simple means, taking into account the chemical properties of the pyridyl and Q moieties.

The end products of formula I can be isolated in customary manner by concentration or evaporation of the solvent and can be purified by recrystallisation or trituration of the solid residue in solvents in which they are not readily soluble, such as ethers, aromatic hydrocarbons or chlorinated hydrocarbons, by distillation or by means of column chromatography and a suitable eluant.

Furthermore, the person skilled in the art will be familiar with the sequence in which certain reactions should advantageously be performed in order to avoid possible subsidiary reactions.

Where synthesis is not directed at the isolation of pure isomers, the product may be in the form of a mixture of two or more isomers. The isomers can be separated according to methods known *per se*.

Preparation Examples:

Example P1: Preparation of 4-hydroxy-3-(2-methyl-6-trifluoromethyl-pyridine-3-carbonyl)-bicyclo[3.2.1]oct-3-en-2-one:

6.68 g (0.0305 mol) of 2-methyl-6-trifluoromethyl-nicotinic acid methyl ester (prepared in the manner described in Heterocycles, 46, 129 (1997)) are dissolved in 250 ml of methanol/water (3:1 mixture) and 1.92 g (0.046 mol) of lithium hydroxide hydrate are added in portions at 22°C. After 4 hours at 22°C, the reaction mixture is added to ethyl acetate and 2N hydrochloric acid; the organic phase is washed three times with water, dried with sodium sulfate and concentrated by evaporation, and the residue is triturated with a small amount of hexane. After filtering, 5.69 g (90 % of theory) of the expected 2-methyl-6-trifluoromethyl-nicotinic acid having a melting point of 147-149°C are obtained.

The 2-methyl-6-trifluoromethyl-nicotinic acid (2.0 g, 0.0098 mol) obtained is dissolved in 20 ml of oxalyl chloride. Three drops of dimethylformamide are added and the mixture is refluxed for 1 hour. The mixture is then concentrated using a rotary evaporator and the residue (2-methyl-6-trifluoromethyl-nicotinoyl chloride) is taken up in 30 ml of methylene

chloride. At 0°C, 2.7 ml (0.0196 mol) of triethylamine and 0.12 g (0.00098 mol) of dimethylaminopyridine are added, and then 1.49 g (0.0108 mol) of bicyclo[3.2.1]oct-2,4-dione, dissolved in 20 ml of methylene chloride, are added dropwise. After 3 hours at 22°C, the reaction mixture is extracted by shaking with 2N hydrochloric acid. The separated methylene chloride phase is washed with water and then extracted by shaking with 10 % aqueous sodium bicarbonate solution, dried over sodium sulfate and concentrated by evaporation. 3.18 g (100 % of theory) of 2-methyl-6-trifluoromethyl-nicotinic acid 4-oxo-bicyclo[3.2.1]oct-2en-2-yl ester are obtained in the form of an oil, which can be used further without purification. 3.02 g (0.0093 mol) of methyl-6-trifluoromethyl-nicotinic acid 4-oxo-bicyclo[3.2.1]oct-2-en-2yl ester and 1.9 ml (0.0136 mol) of triethylamine are dissolved in 45 ml of acetonitrile. At 22°C, 0.01 ml of acetone cyanohydrin is added. After 18 hours at 22°C, the reaction mixture is poured onto a mixture of water and 2N hydrochloric acid and extracted by shaking with ethyl acetate. The ethyl acetate phase is washed with water and then with brine, dried over sodium sulfate and concentrated by evaporation, and the residue is dissolved in a small amount of warm acetone. On being left to stand, the product crystallises out. After filtering, 0.99 g (33 % of theory) of the expected 4-hydroxy-3-(2-methyl-6-trifluoromethyl-pyridine-3carbonyl)-bicyclo[3.2.1]oct-3-en-2-one is obtained in the form of white crystals (m.p. 75-77°C).

Example P2: (5-Cyclopropyl-3-methylsulfanyl-isoxazol-4-yl)-(2-methyl-6-trifluoromethyl-pyridin-3-yl)-methanone:

14.8 g (0.080 mol) of 3-cyclopropyl-3-oxo-propionic acid tert-butyl ester are dissolved in 25 ml of MeOH and 1.93 g (0.080 mol) of magnesium are added. 7 ml of carbon tetrachloride are added dropwise while cooling in an ice bath and the reaction mixture is stirred at 22°C for 1 hour to complete the reaction. After concentrating by evaporation, the residue is suspended in 100 ml of acetonitrile and, at 22°C, 16.31 g (0.073 mol) of 2-methyl-6-trifluoromethyl-nicotinoyl chloride (prepared in the manner described in Example P1), dissolved in 50 ml of acetonitrile, are added dropwise. After 6 hours, the reaction mixture is taken up in ethyl acetate and washed with saturated sodium bicarbonate solution. The separated ethyl acetate phase is washed with water, dried over sodium sulfate and concentrated by evaporation. The residue is dissolved in 160 ml of methylene chloride and 10 ml of trifluoroacetic acid are added dropwise at 22°C. After 18 hours, the reaction mixture is poured into water and extracted with methylene chloride. The methylene chloride phase is washed with water and then with brine, dried over sodium sulfate and concentrated by

evaporation. 17.3 g (88 % of theory) of 1-cyclopropyl-3-(2-methyl-6-trifluoromethyl-pyridin-3-yl)-propane-1,3-dione are obtained in the form of an oil, which can be used further without purification.

The 1-cyclopropyl-3-(2-methyl-6-trifluoromethyl-pyridin-3-yl)-propane-1,3-dione (15.0 g, 0.055 mol) obtained is dissolved in 150 ml of dimethylformamide and 50 g of potassium fluoride on an aluminium oxide support (Alox) (0.0055 mol/g, 0.276 mol) are added in portions at 0°C. After 5 minutes, 6.7 g (0.088 mol) of carbon disulfide are added. After 2 hours, 23.6 g (0.166 mol) of methyl iodide are added dropwise and the reaction mixture is heated at 22°C. After 2 hours the Alox is filtered off, the filtrate is poured into water and extracted by shaking with ethyl acetate. The ethyl acetate phase is washed with water and then with brine, dried over sodium sulfate and concentrated by evaporation. The residue is chromatographed on silica gel (eluant: ethyl acetate/hexane 15/1). 12.0 g (60 % of theory) of 2-(bis-methylsulfanyl-methylene)-1-cyclopropyl-3-(2-methyl-6-trifluoromethyl-pyridin-3-yl)-propane-1,3-dione are obtained in the form of a solid substance.

12.0 g (0.033 mol) of the product obtained are suspended in 120 ml of ethanol together with 5.4 g (0.066 mol) of anhydrous sodium acetate. 4.6 g (0.066 mol) of hydroxylamine hydrochloride are added and the batch is reacted at 22°C for 5 hours. A further 2.7 g of anhydrous sodium acetate and 2.3 g of hydroxylamine hydrochloride are then added. After 18 hours, the reaction mixture is diluted with water and extracted with ethyl acetate. The ethyl acetate phase is washed with water and then with brine, dried over sodium sulfate and concentrated by evaporation. On triturating with a small amount of ethyl acetate, 9.0 g (79.5 %) of the desired product are obtained in the form of white crystals (m.p. 103-104°C).

Example P3: (5-Cyclopropyl-3-methylsulfinyl-isoxazol-4-yl)-(2-methyl-6-trifluoromethyl-pyridin-3-yl)-methanone

1.50 g (0.0043 mol) of (5-cyclopropyl-3-methylsulfanyl-isoxazol-4-yl)-(2-methyl-6-trifluoro-methyl-pyridin-3-yl)-methanone are dissolved in 30 ml of acetone/water (2:1 mixture) and 1.02 g (0.0048 mol) of sodium metaperiodate are added in portions at 22°C. After 5 hours, the reaction mixture is concentrated by evaporation using a rotary evaporator. The residue is taken up in water and ethyl acetate. The ethyl acetate phase is dried over sodium sulfate and concentrated by evaporation. The residue is chromatographed on silica gel (eluant: ethyl acetate/hexane 3/1). 0.8 g (51 %) of the desired product is obtained in the form of white crystals (m.p. 96-97°C).

Example P4: Preparation of 3-hydroxy-4,4-dimethyl-2-(2-methyl-6-trifluoromethyl-pyridine-3-carbonyl)-cyclohex-2-enone (A2-B24):

6.68 g (0.0305 mol) of 2-methyl-6-trifluoromethyl-nicotinic acid methyl ester (prepared in the manner described in Heterocycles, 46, 129 (1997)) are dissolved in 250 ml of methanol/water (3:1 mixture) and 1.92 g (0.046 mol) of lithium hydroxide hydrate are added in portions at a temperature of 22°C. After 4 hours at 22°C, the reaction mixture is added to ethyl acetate and 2N hydrochloric acid; the organic phase is washed three times with water, dried over sodium sulfate and concentrated by evaporation, and the residue is triturated with a small amount of hexane. After filtering, 5.69 g (90 % of theory) of the expected 2-methyl-6-trifluoromethyl-nicotinic acid having a melting point of 147-149°C are obtained.

The 2-methyl-6-trifluoromethyl-nicotinic acid (1.026 g, 0.005 mol) obtained is dissolved in 20 ml of oxalyl chloride. Three drops of dimethylformamide are added and the mixture is refluxed for 1 hour. The mixture is then concentrated by evaporation using a rotary evaporator and the residue (2-methyl-6-trifluoromethyl-nicotinoyl chloride) is taken up in 100 ml of methylene chloride. At a temperature of 0°C, 1.6 ml (0.0115 mol) of triethylamine and 0.7 g (0.005 mol) 4,4-dimethyl-cyclohexane-1,3-dione are added. After 2 hours at a temperature of 22°C, the solvent is removed using a vacuum rotary evaporator, the residue that remains is dissolved in 55 ml of acetonitrile and, for rearrangement of the intermediate, 0.15 ml (0.0016 mol) of acetone cyanohydrin and 0.79 ml (0.0057 mol) of triethylamine are added. After stirring for four hours at room temperature, the reaction solution is concentrated by evaporation. The syrup that remains is chromatographed on silica gel. The light-yellow, viscous oil obtained by eluting with a mixture of toluene, ethyl alcohol, dioxane, triethylamine and water (100:40:20:20:5 parts by volume) (Rf = 0.39 based on the said mixture as mobile phase) is dissolved in dichloromethane and washed with 75 ml of hydrochloric acid 5 % and 75 ml of water in succession. After drying the organic solution with Na₂SO₄, concentration by evaporation yields 1.05 g (63 %) of pure title compound.

¹**H NMR** (d₆-DMSO, δ in ppm): 1.342, s, 6H: 2.088, t, J 9Hz, 2H: 2.685, s, 3H: 2.982, t, J 9Hz, 2H:8.030, d, J 8.1Hz, IH: 8.094, d, J 8.1Hz, 1H.

Example P5: Preparation of 5-methyl-5-trifluoromethyl-cyclohexane-1,3-dione (Example B1066):

0.64 g of sodium is introduced into 40 ml of ethanol, 3.23 ml of acetic acid methyl ester and 4.9 g of 4,4,4-trifluoro-3-methyl-but-2-enoic acid isopropyl ester are incorporated and the

mixture is heated at boiling temperature for 18 hours. After extraction with dilute hydrochloric acid against ethyl acetate, concentration by evaporation is carried out. The non-purified 2-methyl-4,6-dioxo-2-trifluoromethyl-cyclohexanecarboxylic acid methyl ester that remains behind is esterified in the presence of 9.1 g of sodium hydroxide in a mixture of methanol and water at boiling temperature. The mixture is then acidified with hydrochloric acid and extracted with fresh ethyl acetate. After recrystallisation (ethyl acetate), pure 5-methyl-5-trifluoromethyl-cyclohexane-1,3-dione having a melting point of 150-152°C is obtained.

Example P6: Preparation of 2-hydroxy-1-methoxy-5-methyl-4-oxo-cyclohex-2-enecarboxylic acid methyl ester (B1069):

A 30 % solution of 35.8 g of sodium methanolate is made up in 65 ml of dimethyl sulfoxide and, over a period of 20 minutes, is treated at a temperature of from 30 to 35°C with a mixture of 16.7 g of 3-methyl-3-buten-2-one and 32.4 g of methoxymalonic acid dimethyl ester. The mixture is stirred for 1 hour at a temperature of 35°C, acidified with hydrochloric acid and then extracted several times with dichloromethane. The organic phases are washed with water, dried and concentrated. By crystallising from hot ethyl acetate and hexane, pure 2-hydroxy-1-methoxy-5-methyl-4-oxo-cyclohex-2-enecarboxylic acid methyl ester having a melting point of 117-117.5°C is obtained.

Example P7: Preparation of 2-hydroxy-1-methoxy-5-methyl-3-(2-methyl-6-trifluoromethyl-pyridine-3-carbonyl)-4-oxo-cyclohex-2-ene-carboxylic acid methyl ester (A2-B1069):

2.23 g of fresh 2-methyl-6-trifluoromethyl-nicotinoyl chloride are added to a mixture of 2.14 g of 2-hydroxy-1-methoxy-5-methyl-4-oxo-cyclohex-2-ene-carboxylic acid methyl ester and 2.02 g of triethylamine in 30 ml of acetonitrile. After about 30 minutes, 0.065 g of potassium cyanide is added and the batch is stirred for 18 hours. The batch is then extracted at pH 2 with water against ethyl acetate, dried over magnesium sulfate and concentrated by evaporation. By filtering over silica gel (mobile phase: ethyl acetate/methanol/triethylamine 85:10:5), pure 2-hydroxy-1-methoxy-5-methyl-3-(2-methyl-6-trifluoromethyl-pyridine-3-carbonyl)-4-oxo-cyclohex-2-enecarboxylic acid methyl ester is obtained in the form of a viscous oil.

Example P8: Preparation of 3-hydroxy-4-methoxy-6-methyl-2-(2-methyl-6-trifluoromethyl-pyridine-3-carbonyl)-cyclohex-2-enone (A2-B1070):

0.586 g of potassium hydroxide is added to 1.4 g of 2-hydroxy-1-methoxy-5-methyl-3-(2-methyl-6-trifluoromethyl-pyridine-3-carbonyl)-4-oxo-cyclohex-2-enecarboxylic acid methyl ester in dioxane/water (5:3) and the batch is stirred for 3 hours. The batch is then acidified (pH 3) and extracted with fresh ethyl acetate. The crude product is purified by chromatography analogously to Example P7. 3-Hydroxy-4-methoxy-6-methyl-2-(2-methyl-6-trifluoromethyl-pyridine-3-carbonyl)-cyclohex-2-enone is obtained in the form of a viscous oil (as a mixture of 3 tautomeric forms, according to ¹H-NMR).

The compounds listed in the following Tables can also be prepared in an analogous manner and using methods described in the general Reaction Schemes 1 and 2 and in the references mentioned therein. In the following Tables Ph is the phenyl group and CC is an ethyne group.

Table 1: Compounds of formula lb:

75-77	Н	Н	CF₃	CH₃	1.001
	` Н	Н	CF ₃	CH ₃ CH ₂	1.002
111-112	H	Н	CF ₃	(CH ₃) ₂ CH	1.003
	H	Н	CF ₃	$CH_3(CH_2)_3$	1.004
oil	Н	Н	CF ₃	Ph	1.005
	Н	Н	CF ₃	CH₂Br	1.006
124-126	· H	Н	CF ₃	CH₂OCH3	1.007
oil	Н	Н	CF ₃	CH₂SMe	1.008
55-55	Н	Н	CF ₃	CH ₂ SO ₂ Me	1.009
	Н	Н	CF ₃	SCH₃	1.010

Compd.	R ₇₅	R 76	R 77	R ₇₈	m.p. (°C)
no.					
1.011	SOCH ₃	CF ₃	Н	Н	
1.012	SO ₂ CH ₃	CF ₃	Н	Н	
1.013	SPh	CF ₃	Н	Н	
1.014	SOPh	CF ₃	Н	Н	7
1.015	SO ₂ Ph	CF ₃	Н	H	
1.016	СН _з	CF ₃ CF ₂	Н	Н	
1.017	CH ₃ CH ₂	CF ₃ CF ₂	H	Н	
1.018	(CH ₃) ₂ CH	CF ₃ CF ₂	Н	Н	
1.019	$CH_3(CH_2)_3$	CF ₃ CF ₂	Н	Н	
1.020	Ph	CF ₃ CF ₂	Н	Н	
1.021	CH₂Br	CF ₃ CF ₂	Н	Н	
1.022	CH₂OCH₃	CF ₃ CF ₂	Н	Н	
1.023	CH₂SMe	CF ₃ CF ₂	Н	Н	
1.024	CH ₂ SO ₂ Me	CF ₃ CF ₂	Н	Н	
1.025	SCH₃	CF ₃ CF ₂	Н	Н	
1.026	SOCH ₃	CF ₃ CF ₂	Н	Н	
1.027	SO ₂ CH ₃	CF ₃ CF ₂	H	Н	
1.028	SPh	CF ₃ CF ₂	Н	Н	
1.029	SOPh	CF ₃ CF ₂	Н	Н	
1.030	SO₂Ph	CF ₃ CF ₂	Н	Н	
1.031	CH ₃	CHF ₂	Н	Н	
1.032	CH₃CH₂	CHF_2	Н	Н	
1.033	(CH ₃) ₂ CH	CHF ₂	Н	Н	
1.034	$\mathrm{CH_3}(\mathrm{CH_2})_3$	CHF ₂	Н	Н	
1.035	Ph	CHF ₂	Н	Н	
1.036	CH₂Br	CHF ₂	Н	Н	
1.037	CH ₂ OCH ₃	CHF ₂	Н	Н	
1.038	CH₂SMe	CHF ₂	Н	Н	
1.039	CH ₂ SO ₂ Me	CHF ₂	Н	Н	
1.040	SCH₃	CHF ₂	Н	Н	
1.041	SOCH₃	CHF ₂	Н	Н	
1.042	SO ₂ CH ₃	CHF ₂	Н	Н	

Compd.	R ₇₅	R 76	R 77	R ₇₈	m.p. (°C)
no.					
1.043	SPh	CHF ₂	Н	Н	
1.044	SOPh	CHF ₂	Н	Н	
1.045	SO₂Ph	CHF ₂	Н	H	
1.046	CH ₃	CF ₃	CH₃	Н	
1.047	CH ₃ CH ₂	CF ₃	CH ₃	Н	
1.048	(CH ₃) ₂ CH	CF ₃	CH₃	Н	
1.049	$CH_3(CH_2)_3$	CF ₃	CH₃	H	
1.050	Ph	CF ₃	CH ₃	Н	
1.051	CH₂Br	CF ₃	CH ₃	Н	
1.052	CH₂OCH₃	CF ₃	CH ₃	Н	
1.053	CH₂SMe	CF ₃	CH₃	Н	
1.054	CH ₂ SO ₂ Me	CF ₃	CH₃	Н	
1.055	SCH₃	CF ₃	CH ₃	Н	·
1.056	SOCH ₃	CF ₃	СН3	Н	
1.057	SO ₂ CH ₃	CF ₃	CH₃	Н	
1.058	SPh	CF ₃	CH ₃	Н	
1.059	SOPh	CF ₃	CH ₃	Н	
1.060	SO ₂ Ph	CF_3	CH ₃	Н	
1.061	CH₃	CF ₃ CF ₂	CH_3	Н	
1.062	CH ₃ CH ₂	CF ₃ CF ₂	CH_3	Н	
1.063	(CH ₃) ₂ CH	CF ₃ CF ₂	CH ₃	Н	
1.064	$CH_3(CH_2)_3$	CF ₃ CF ₂	CH ₃	Н	
1.065	Ph	CF ₃ CF ₂	CH_3	Н	
1.066	CH₂Br	CF ₃ CF ₂	CH ₃	Н	
1.067	CH ₂ OCH ₃	CF ₃ CF ₂	CH ₃	Н	
1.068	CH₂SMe	CF ₃ CF ₂	CH ₃	Н	
1.069	CH ₂ SO ₂ Me	CF ₃ CF ₂	CH_3	Н	
1.070	SCH₃	CF ₃ CF ₂	CH ₃	Н	-
1.071	SOCH₃	CF ₃ CF ₂	CH ₃	Н	
1.072	SO₂CH₃	CF ₃ CF ₂	CH ₃	Н	
1.073	SPh	CF ₃ CF ₂	CH ₃	Н	
1.074	SOPh	CF ₃ CF ₂	CH ₃	Н	

Compd.	R 75	R 76	R 77	R 78	m.p. (°C)
no.					
1.075	SO₂Ph	CF ₃ CF ₂	CH₃	Н	
1.076	CH ₃	CHF ₂	CH₃	Н	
1.077	CH ₃ CH ₂	CHF ₂	CH₃	Н	
1.078	(CH ₃) ₂ CH	CHF ₂	CH₃	Н	
1.079	$CH_3(CH_2)_3$	CHF ₂	CH ₃	Н	
1.080	Ph	CHF ₂	CH₃	Н	
1.081	CH ₂ Br	CHF ₂	CH₃	Н	
1.082	CH₂OCH₃	CHF ₂	CH_3	Н	
1.083	CH₂SMe	CHF ₂	CH_3	Н	
1.084	CH ₂ SO ₂ Me	CHF ₂	CH₃	Н	
1.085	SCH ₃	CHF ₂	СН₃	Н	
1.086	SOCH ₃	CHF ₂	CH ₃	Н	
1.087	SO ₂ CH ₃	CHF ₂	CH ₃	Н	
1.088	SPh	CHF ₂	CH_3	Н	
1.089	SOPh	CHF ₂	СН₃	H	
1.090	SO₂Ph	CHF ₂	CH₃	Н	
1.091	CH ₃	CF ₃	Н	CH ₃	92-94
1.092	CH_3CH_2	CF ₃	Н	CH_3	
1.093	(CH ₃) ₂ CH	CF ₃	Н	CH ₃	
1.094	$CH_3(CH_2)_3$	CF ₃	Н	CH_3	
1.095	Ph	CF ₃	Н	CH ₃	
1.096	CH₂Br	CF ₃	Н	CH ₃	
1.097	CH₂OCH₃	CF ₃	Н	CH ₃	
1.098	CH₂SMe	CF ₃	H	CH ₃	
1.099	CH₂SO₂Me	CF ₃	Н	CH ₃	
1.100	SCH₃	CF ₃	Н	CH ₃	
1.101	SOCH₃	CF ₃	Н	CH ₃	
1.102	SO ₂ CH ₃	CF ₃	Н	СНз	•
1.103	SPh	CF ₃	Н	СН₃	
1.104	SOPh	CF ₃	Н	CH ₃	
1.105	SO₂Ph	CF ₃	Н	CH ₃	

Table 2: Compounds of formula lc:

Compd.	R 75	R 76	R 77	R 78	m.p.(°C)
no.		-			
2.001	CH₃	CF ₃	Н	Н	107-109
2.002	CH ₃ CH ₂	CF ₃	Н	Н	oil
2.003	(CH ₃) ₂ CH	CF ₃	Н	Н	oil
2.004	$CH_3(CH_2)_3$	CF ₃	Н	Н	
2.005	Ph	CF ₃	Н	Н	oil
2.006	CH₂Br	CF ₃	Н	Н	
2.007	CH₂OCH₃	CF ₃	Н	Н	
2.008	CH₂SMe	CF ₃	Н	Н	
2.009	CH ₂ SO ₂ Me	CF ₃	Н	Н	
2.010	SCH₃	CF ₃	Н	Н	
2.011	SOCH₃	CF ₃	Н	Н	
2.012	SO ₂ CH ₃	CF ₃	Н	Н	
2.013	SPh	CF ₃	Н	Н	
2.014	SOPh	CF ₃	Н	Н	
2.015	SO₂Ph	CF ₃	Н	Н	
2.016	CH ₃	CF ₃ CF ₂	Н	Н	
2.017	CH ₃ CH ₂	CF ₃ CF ₂	Н	Н	
2.018	(CH ₃) ₂ CH	CF ₃ CF ₂	Н	Н	
2.019	$CH_3(CH_2)_3$	CF ₃ CF ₂	Н	Н	
2.020	Ph	CF ₃ CF ₂	Н	Н	•
2.021	CH₂Br	CF ₃ CF ₂	Н	Н	
2.022	CH ₂ OCH ₃	CF ₃ CF ₂	Н	Н	

Compd.	R ₇₅	R 76	R 77	R ₇₈	m.p.(°C)
no.	75	76	•• //	78	impi(o)
	CH SMo	CE CE	ы	บ	
2.023	CH₂SMe	CF ₃ CF ₂	Н	Н	
2.024	CH₂SO₂Me	GF₃CF₂	Н	Н	
2.025	SCH₃	CF ₃ CF ₂	Н	Н	
2.026	SOCH₃	CF ₃ CF ₂	Н	H	
2.027	SO ₂ CH ₃	CF ₃ CF ₂	Н	Н	
2.028	SPh	CF ₃ CF ₂	Н	Н	
2.029	SOPh	CF ₃ CF ₂	Н	Н	
2.030	SO₂Ph	CF ₃ CF ₂	Н	Н	
2.031	CH ₃	CHF ₂	Н	Н	
2.032	CH₃CH₂	CHF ₂	Н	Н	
2.033	(CH ₃) ₂ CH	CHF ₂	Н	Н	
2.034	$CH_3(CH_2)_3$	CHF ₂	Н	Н	
2.035	Ph	CHF ₂	Н	Н	
2.036	CH₂Br	CHF ₂	Н	Н	
2.037	CH ₂ OCH ₃	CHF ₂	Н	Н	
2.038	CH₂SMe	CHF ₂	Н	Н	
2.039	CH₂SO₂Me	CHF ₂	Н	Н	
2.040	SCH₃	CHF ₂	Н	Н	
2.041	SOCH₃	CHF ₂	Н	Н	
2.042	SO₂CH₃	CHF ₂	Н	Н	
2.043	SPh	CHF ₂	Н	Н	
2.044	SOPh	CHF ₂	Н	Н	
2.045	SO₂Ph	CHF ₂	Н	Н	
2.046	СН₃	CF₃	СН₃	Н	
2.047	CH ₃ CH ₂	CF₃	СНз	Н	
2.048	(CH₃)₂CH	CF ₃	СН₃	Н	
2.049		CF ₃	СН₃	Н	
2.050	Ph	`CF₃	СН₃	Н	
2.051	CH₂Br	CF ₃	CH₃	Н	
2.052	CH₂OCH₃	CF₃	CH₃	Н	
2.053	CH ₂ SMe	CF ₃	CH₃	Н	
2.054	cH₂SO₂Me	CF ₃	CH₃	Н	

Compd.	R ₇₅	R 76	R 77	R 78	m.p.(°C)
no.					
2.055	SCH₃	CF ₃	CH ₃	Н	
2.056	SOCH ₃	CF ₃	CH₃	Н	
2.057	SO ₂ CH ₃	CF ₃	CH₃	Н	
2.058	SPh	CF ₃	CH₃	Н	
2.059	SOPh	CF₃	СН₃	Н	•
2.060	SO₂Ph	CF₃	СН₃	Н	
2.061	CH ₃	CF ₃ CF ₂	СН₃	Н	
2.062	CH ₃ CH ₂	CF ₃ CF ₂	СН₃	Н	
2.063	(CH ₃) ₂ CH	CF ₃ CF ₂	СН₃	Н	
2.064	$CH_3(CH_2)_3$	CF ₃ CF ₂	CH_3	Н	
2.065	Ph	CF ₃ CF ₂	CH ₃	Н	
2.066	CH ₂ Br	CF ₃ CF ₂	CH ₃	Н	
2.067	CH₂OCH₃	CF ₃ CF ₂	CH ₃	Н	
2.068	CH₂SMe	CF ₃ CF ₂	CH ₃	Н	
2.069	CH ₂ SO ₂ Me	CF ₃ CF ₂	CH₃	, Н	
2.070	SCH₃	CF ₃ CF ₂	CH ₃	Н	
2.071	SOCH₃	CF ₃ CF ₂	CH ₃	Н	
2.072	SO₂CH₃	CF ₃ CF ₂	CH ₃	Н	•
2.073	SPh	CF ₃ CF ₂	СНз	Н	
2.074	SOPh	CF ₃ CF ₂	CH₃	Н	
2.075	SO₂Ph	CF ₃ CF ₂	CH ₃	Н	
2.076	CH ₃	CHF ₂	CH_3	Н	
2.077	CH₃CH₂	CHF ₂	СН3	Н	
2.078	(CH₃)₂CH	CHF ₂	CH ₃	Н	
2.079	$CH_3(CH_2)_3$	CHF ₂	CH₃	Н	
2.080	Ph	CHF ₂	CH₃	Н	
2.081	CH₂Br	CHF ₂	CH₃	Н	
2.082	CH₂OCH₃	CHF ₂	СН _з	Н	
2.083	CH₂SMe	CHF ₂	CH₃	H	
2.084	CH ₂ SO ₂ Me	CHF ₂	CH ₃	Н	
2.085	SCH₃	CHF ₂	CH ₃	Н	
2.086	SOCH₃	CHF ₂	СН₃	Н	

Compd.	R ₇₅	R 76	R 77	R 78	m.p.(°C)
no.					
2.087	SO₂CH₃	CHF ₂	СНз	Н	
2.088	SPh	CHF ₂	CH ₃	H	
2.089	SOPh	CHF ₂	CH ₃	Н	
2.090	SO₂Ph	CHF ₂	CH ₃	Н	
2.091	CH₃	CF ₃	Н	СН₃	
2.092	CH ₃ CH ₂	CF ₃	Н	СН₃	
2.093	(CH ₃) ₂ CH	CF ₃	Н	CH ₃	
2.094	$CH_3(CH_2)_3$	CF ₃	Н	CH ₃	
2.095	Ph	CF ₃	Н	CH ₃	
2.096	CH₂Br	CF ₃	Н	CH ₃	
2.097	CH₂OCH3	CF ₃	Н	CH₃	
2.098	CH₂SMe	CF ₃	Н	CH ₃	
2.099	CH ₂ SO ₂ Me	CF ₃	Н	CH ₃	
2.100	SCH₃	CF ₃	Н	CH ₃	
2.101	SOCH₃	CF ₃	Н	CH ₃	
2.102	SO₂CH₃	CF ₃	Н	CH ₃	
2.103	SPh	CF ₃	Н	CH ₃	
2.104	SOPh	CF ₃	Н	CH ₃	
2.105	SO₂Ph	CF ₃	Н	CH₃	

Table 3: Compounds of formula Id:

Compd. R $_{75}$ R $_{76}$ R $_{77}$ R $_{78}$ m.p.(°C) no.

Compd.	R ₇₅	R ₇₆	R 77	R ₇₈	m.p.(°C)
3.001	СН₃	CF₃	Н	Н	
3.002	CH ₃ CH ₂	CF₃	Н	Н	
3.003	(CH ₃) ₂ CH	CF ₃	Н	Н	
3.004	$CH_3(CH_2)_3$	CF ₃	Н	H	
3.005	Ph	CF₃	Н	Н	
3.006	CH₂Br	CF₃	Н	Н	
3.007	CH ₂ OCH ₃	CF ₃	Н	Н	
3.008	CH ₂ SMe	CF ₃	Н	Н	
3.009	CH₂SO₂Me	CF₃	Н	Н	
3.010	SCH₃	CF ₃	Н	Н	
3.011	SOCH₃	CF₃	Н	Н	
3.012	SO ₂ CH ₃	CF ₃	Н	Н	
3.013	SPh	CF ₃	Н	Н	
3.014	SOPh	CF ₃	Н	Н	
3.015	SO ₂ Ph	CF ₃	Н	Н	
3.016	CH ₃	CF ₃ CF ₂	Н	Н	
3.017	CH ₃ CH ₂	CF ₃ CF ₂	Н	Н	
3.018	(CH ₃) ₂ CH	CF ₃ CF ₂	Н	Н	
3.019	$CH_3(CH_2)_3$	CF ₃ CF ₂	Н	Н	
3.020	Ph	CF ₃ CF ₂	Н	Н	
3.021	CH ₂ Br	CF ₃ CF ₂	Н	Н	
3.022	CH₂OCH₃	CF ₃ CF ₂	Н	Н	
3.023	CH₂SMe	CF ₃ CF ₂	Н	Н	
3.024	CH ₂ SO ₂ Me	CF3CF2	Н	Н	
3.025	SCH₃	CF ₃ CF ₂	Н	Н	
3.026	SOCH ₃	CF ₃ CF ₂	Н	Н	
3.027	SO ₂ CH ₃	CF ₃ CF ₂	Н	Н	
3.028	SPh	CF ₃ CF ₂	Н	Н	
3.029	SOPh	CF ₃ CF ₂	Н	Н	
3.030	SO₂Ph	CF ₃ CF ₂	Н	Н	
3.031	CH ₃	CHF ₂	Н	Н	

Compd.	R ₇₅	R 76	R 77	R ₇₈	m.p.(°C)
no.					
3.032	CH ₃ CH ₂	CHF ₂	Н	Н	
3.033	(CH ₃) ₂ CH	CHF ₂	Н	Н	
3.034	$CH_3(CH_2)_3$	CHF ₂	Н	Н	
3.035	Ph	CHF ₂	Н	Н	
3.036	CH ₂ Br	CHF ₂	Н	Н	
3.037	CH ₂ OCH ₃	CHF_2	Н	Н	
3.038	CH₂SMe	CHF ₂	Н	Н	
3.039	CH ₂ SO ₂ Me	CHF ₂	Н	Н	
3.040	SCH₃	CHF ₂	Н	Н	
3.041	SOCH₃	CHF ₂	Н	Н	
3.042	SO ₂ CH ₃	CHF ₂	Н	Н	
3.043	SPh	CHF ₂	Н	Н	
3.044	SOPh	CHF ₂	Н	Н	
3.045	SO₂Ph	CHF ₂	Н	Н	
3.046	CH ₃	CF ₃	CH ₃	Н	
3.047	CH₃CH₂	CF ₃	CH_3	Н	
3.048	(CH ₃) ₂ CH	CF ₃	CH₃	Н	
3.049	$CH_3(CH_2)_3$	CF ₃	СН₃	Н	
3.050	Ph	CF₃	СН₃	Н	
3.051	CH ₂ Br	CF ₃	СН₃	Н	
3.052	CH ₂ OCH ₃	CF ₃	СН₃	Н	
3.053	CH ₂ SMe	CF ₃	CH_3	Н	
3.054	CH ₂ SO ₂ Me	CF ₃	СН3	Н	
3.055	SCH₃	CF_3	CH ₃	Н	
3.056	SOCH₃	CF ₃	CH ₃	Н	
3.057	SO₂CH₃	CF ₃	CH ₃	Н	
3.058	SPh	CF₃	CH_3	Н	
3.059	SOPh	CF₃	CH ₃	Н	
3.060	SO₂Ph	CF ₃	CH ₃	Н	
3.061	CH ₃	CF ₃ CF ₂	CH ₃	Н	
3.062	CH₃CH₂	CF ₃ CF ₂	CH ₃	Н	
3.063	$(CH_3)_2CH$	CF ₃ CF ₂	CH₃	Н	

Compd.	R ₇₅	R 76	R 77	R 78	m.p.(°C)
no.					
3.064	$CH_3(CH_2)_3$	CF ₃ CF ₂	CH_3	Н	,
3.065	Ph	CF ₃ CF ₂	СН₃	Н	
3.066	CH ₂ Br	CF ₃ CF ₂	CH₃	Н	
3.067	CH ₂ OCH ₃	CF ₃ CF ₂	СНз	Н	
3.068	CH₂SMe	CF ₃ CF ₂	СН₃	Н	
3.069	CH ₂ SO ₂ Me	CF ₃ CF ₂	СН₃	Н	
3.070	SCH₃	CF ₃ CF ₂	СН₃	Н	
3.071	SOCH ₃	CF ₃ CF ₂	СНз	Н	
3.072	SO ₂ CH ₃	CF ₃ CF ₂	CH₃	Н	
3.073	SPh	CF ₃ CF ₂	СН₃	Н	
3.074	SOPh	CF ₃ CF ₂	СН₃	H	
3.075	SO₂Ph	CF ₃ CF ₂	СН₃	Н	
3.076	CH ₃	CHF ₂	CH ₃	Н	
3.077	CH₃CH₂	CHF ₂	СНз	Н	
3.078	$(CH_3)_2CH$	CHF ₂	CH ₃	Н	
3.079	$CH_3(CH_2)_3$	CHF ₂	СН₃	Н	
3.080	Ph	CHF ₂	СНз	Н	
3.081	CH ₂ Br	CHF ₂	CH_3	Н	
3.082	CH ₂ OCH ₃	CHF ₂	СНз	Н	
3.083	CH₂SMe	CHF ₂	CH₃	Н	
3.084	CH ₂ SO ₂ Me	CHF ₂	CH ₃	Н	
3.085	SCH₃	CHF ₂	CH ₃	H	
3.086	SOCH₃	CHF ₂	СН₃	Н	
3.087	SO ₂ CH ₃	CHF ₂	СНз	Н	
3.088	SPh	CHF ₂	СН3	Н	
3.089	SOPh	CHF ₂	CH_3	Н	
3.090	SO₂Ph	CHF ₂	CH_3	Н	
3.091	СН₃	CF ₃	Н	CH₃	
3.092	CH ₃ CH ₂	CF ₃	Н	CH₃	
3.093	(CH ₃) ₂ CH	CF ₃	Н	CH ₃	
3.094	$CH_3(CH_2)_3$	CF ₃	Н	CH ₃	
3.095	Ph	CF ₃	Н	CH₃	

Compd.	R 75	R 76	R 77	R ₇₈	m.p.(°C)
no.					
3.096	CH₂Br	CF ₃	Н	CH_3	
3.097	CH₂OCH₃	CF ₃	Н	СН₃	
3.098	CH₂SMe	CF ₃	Н	CH_3	
3.099	CH₂SO₂Me	CF ₃	Н	CH₃	
3.100	SCH₃	CF ₃	Н	CH ₃	
3.101	SOCH₃	CF ₃	Н	CH_3	
3.102	SO ₂ CH ₃	CF ₃	Н	CH ₃	
3.103	SPh	CF ₃	Н	CH ₃	
3.104	SOPh	CF ₃	Н	CH_3	
3.105	SO ₂ Ph	CF ₃	Н	CH ₃	

Table 4: Compounds of formula le:

Compd. R $_{75}$ R $_{76}$ R $_{77}$ no.	R ₇₈	Z	m.p.(°C)
4.001 CH ₃ CF ₃ H	Н	S	103-104
4.002 CH ₃ CH ₂ CF ₃ H	Н	S	
4.003 (CH₃)₂CH CF₃ H	H	S	
4.004 CH ₃ (CH ₂) ₃ CF ₃ H	Н	S	
4.005 Ph CF₃ H	Н	S	
4.006 CH₂Br CF₃ H	Н	S	
4.007 CH ₂ OCH ₃ CF ₃ H	Н	S	
4.008 CH₂SMe CF₃ H	Н	S	

Compd.	R ₇₅	R 76	R 77	R ₇₈	Z	m.p.(°C)
no.						
4.009	CH₂SO₂Me	CF ₃	Н	Н	S	
4.010	SCH₃	CF ₃	Н	Н	S	
4.011	SOCH₃	CF ₃	Н	Н	S	
4.012	SO ₂ CH ₃	CF ₃	Н	Н	S	
4.013	SPh	CF ₃	H	Н	S	
4.014	SOPh	CF ₃	Н	Н	S	
4.015	SO₂Ph	CF ₃	Н	Н	S	
4.016	CH ₃	CF ₃ CF ₂	Н	Н	S	
4.017	CH₃CH₂	CF ₃ CF ₂	Н	Н	S	
4.018	(CH ₃) ₂ CH	CF ₃ CF ₂	Н	Н	S	
4.019	$CH_3(CH_2)_3$	CF ₃ CF ₂	Н	Н	S	
4.020	Ph	CF ₃ CF ₂	Н	Н	S	
4.021	CH ₂ Br	CF ₃ CF ₂	Н	Н	S	
4.022	CH ₂ OCH ₃	CF ₃ CF ₂	Н	Н	S	
4.023	CH₂SMe	CF ₃ CF ₂	Н	Н	S	
4.024	CH ₂ SO ₂ Me	CF ₃ CF ₂	Н	Н	S	
4.025	SCH_3	CF ₃ CF ₂	Н	Н	S	
4.026	SOCH₃	CF ₃ CF ₂	Н	Н	S	
4.027	SO₂CH₃	CF ₃ CF ₂	Н	Н	S	
4.028	SPh	CF ₃ CF ₂	Н	Н	S	
4.029	SOPh	CF ₃ CF ₂	Н	Н	S	
4.030	SO₂Ph	CF ₃ CF ₂	Н	H	S	
4.031	CH₃	CHF ₂	Н	Н	S	
4.032	CH₃CH₂	CHF ₂	Н	Н	S	
4.033	(CH ₃) ₂ CH	CHF ₂	Н	Н	S	
4.034	$CH_3(CH_2)_3$	CHF ₂	Н	Н	S	
4.035	Ph	CHF ₂	Н	Н	S	
4.036	CH₂Br	CHF ₂	Н	Н	S	
4.037	CH₂OCH₃	CHF ₂	Н	Н	S	
4.038	CH ₂ SMe	CHF ₂	Н	Н	S	
4.039	CH₂SO₂Me	CHF ₂	Н	Н	S	
4.040	SCH₃	CHF ₂	Н	Н	S	

Compd.	R 75	R 76	R 77	R ₇₈	z	m.p.(°C)
no.						
4.041	SOCH₃	CHF ₂	Н	Н	S	
4.042	SO₂CH₃	CHF ₂	Н	Н	S	
4.043	SPh	CHF ₂	Н	Н	S	
4.044	SOPh	CHF ₂	Н	Н	S	
4.045	SO₂Ph	CHF ₂	Н	Н	S	
4.046	CH₃	CF ₃	CH ₃	Н	S	
4.047	CH₃CH₂	CF ₃	CH₃	Н	S	
4.048	(CH ₃) ₂ CH	CF ₃	CH_3	Н	S	
4.049	$CH_3(CH_2)_3$	CF ₃	CH_3	Н	S	
4.050	Ph	CF ₃	CH_3	Н	S	
4.051	CH₂Br	CF ₃	СН₃	Н	S	
4.052	CH ₂ OCH ₃	CF ₃	CH_3	Н	S	
4.053	CH ₂ SMe	CF ₃	СНз	Н	S	
4.054	CH ₂ SO ₂ Me	CF ₃	CH_3	Н	S	
4.055	SCH₃	CF ₃	СН₃	Н	S	
4.056	SOCH ₃	CF ₃	СН₃	Н	S	
4.057	SO ₂ CH ₃	CF ₃	CH_3	Н	S	
4.058	SPh	CF ₃	СН3	Н	S	
4.059	SOPh	CF ₃	CH_3	Н	S	
4.060	SO₂Ph	CF ₃	СН _з	Н	S	
4.061	CH ₃	CF ₃ CF ₂	CH_3	Н	S	
4.062	CH ₃ CH ₂	CF ₃ CF ₂	CH ₃	Н	S	
4.063	$(CH_3)_2CH$	CF ₃ CF ₂	CH ₃	Н	S	
4.064	$CH_3(CH_2)_3$	CF ₃ CF ₂	CH_3	Н	S	
4.065	Ph	CF ₃ CF ₂	CH_3	Н	S	
4.066	CH ₂ Br	CF ₃ CF ₂	CH_3	Н	S	
4.067	CH ₂ OCH ₃	CF ₃ CF ₂	CH_3	Н	S	
4.068	CH₂SMe	CF ₃ CF ₂	CH₃	Н	S	
4.069	CH ₂ SO ₂ Me	CF ₃ CF ₂	СНз	Н	S	
4.070	SCH ₃	CF ₃ CF ₂	CH_3	Н	S	
4.071	SOCH ₃	CF ₃ CF ₂	CH ₃	Н	S	
4.072	SO₂CH₃	CF ₃ CF ₂	СН3	Н	S	

Compd.	R ₇₅	R 76	R 77	R ₇₈	z	m.p.(°C)
no.						
4.073	SPh	CF ₃ CF ₂	СН₃	Н	S	
4.074	SOPh	CF ₃ CF ₂	СНз	Н	S	
4.075	SO₂Ph	CF ₃ CF ₂	СНз	Н	S	
4.076	CH₃	CHF ₂	СН₃	Н	S	
4.077	CH₃CH₂	CHF ₂	СН₃	Н	S	
4.078	(CH ₃) ₂ CH	CHF ₂	СН₃	Н	S	
4.079	$CH_3(CH_2)_3$	CHF ₂	СНз	Н	S	
4.080	Ph	CHF ₂	СН₃	Н	S	
4.081	CH₂Br	CHF ₂	СНз	Н	S	
4.082	CH ₂ OCH ₃	CHF ₂	СНз	H	S	
4.083	CH ₂ SMe	CHF ₂	СН₃	Н	S	
4.084	CH ₂ SO ₂ Me	CHF ₂	СНз	Н	S	
4.085	SCH ₃	CHF ₂	CH ₃	Н	S	
4.086	SOCH₃	CHF ₂	СН₃	Н	S	
4.087	SO ₂ CH ₃	CHF ₂	СНз	Н	S	
4.088	SPh	CHF ₂	CH ₃	Н	S	
4.089	SOPh	CHF ₂	CH ₃	Н	S .	
4.090	SO₂Ph	CHF ₂	CH ₃	Н	S	
4.091	CH₃	CF₃	Н	CH ₃	S	
4.092	CH₃CH₂	CF ₃	Н	CH ₃	S	
4.093	$(CH_3)_2CH$	CF ₃	H	CH ₃	S	
4.094	$CH_3(CH_2)_3$	CF ₃	Н	CH ₃	S	
4.095	Ph	CF ₃	Н	CH ₃	S	
4.096	CH ₂ Br	CF ₃	Н	CH ₃	S	
4.097	CH₂OCH₃	CF ₃	Н	CH ₃	S	
4.098	CH₂SMe	CF ₃	Н	CH ₃	S	
4.099	CH₂SO₂Me	CF ₃	Н	CH ₃	S	
4.100	SCH₃	CF ₃	Н	СН₃	S	
4.101	SOCH ₃	CF ₃	Н	CH ₃	S	
4.102	SO ₂ CH ₃	CF ₃	Н	CH ₃	S	
4.103	SPh	CF ₃	Н	CH ₃	S	
4.104	SOPh	CF ₃	Н	CH₃	S	

Compd.	R ₇₅	R 76	R 77	R ₇₈	Z	m.p.(°C)
no.						
4.105	SO ₂ Ph	CF ₃	Н	СН₃	S	
4.106	CH₃	CF ₃	Н	Н	so	96-97
4.107	CH ₃ CH ₂	CF ₃	Н	Н	so	
4.108	(CH ₃) ₂ CH	CF ₃	Н	Н	so	
4.109	$CH_3(CH_2)_3$	CF ₃	Н	Н	SO	
4.110	Ph	CF ₃	Н	Н	so	
4.111	CH₂Br	CF ₃	Н	Н	SO	
4.112	CH₂OCH₃	CF ₃	Н	Н	SO	
4.113	CH ₂ SMe	CF ₃	Н	Н	SO	
4.114	CH ₂ SO ₂ Me	CF ₃	Н	Н	SO	
4.115	SCH₃	CF ₃	Н	Н	so	
4.116	SOCH ₃	CF ₃	H	Н	SO	
4.117	SO₂CH₃	CF ₃	Н	Н	SO	•
4.118	SPh	CF_3	Н	Н	SO	
4.119	SOPh	CF ₃	Н	Н	SO	
4.120	SO₂Ph	CF ₃	Н	Н	SO	
4.121	CH₃	CF ₃ CF ₂	Н	Н	SO	
4.122	CH ₃ CH ₂	CF ₃ CF ₂	H	Н	SO	
4.123	(CH ₃) ₂ CH	CF ₃ CF ₂	Н	Н	SO	
4.124	$CH_3(CH_2)_3$	CF ₃ CF ₂	Н	Н	SO	
4.125	Ph	CF ₃ CF ₂	Н	Н	SO	
4.126	CH ₂ Br	CF ₃ CF ₂	Н	H·	SO	
4.127	CH ₂ OCH ₃	CF ₃ CF ₂	Н	Н	SO	
4.128	CH ₂ SMe	CF ₃ CF ₂	Н	Н	SO	
4.129	CH₂SO₂Me	CF ₃ CF ₂	Н	Н	SO	
4.130	SCH₃	CF ₃ CF ₂	Н	Н	SO	
4.131	SOCH₃	CF ₃ CF ₂	Н	Н	SO	
4.132	SO₂CH₃	CF ₃ CF ₂	Н	Н	SO	
4.133	SPh	CF ₃ CF ₂	Н	Н	SO	
4.134	SOPh	CF ₃ CF ₂	Н	Н	so	
4.135	SO₂Ph	CF ₃ CF ₂	Н	Н	so	
4.136	CH₃	CHF ₂	Н	Н	so	

Compd.	R 75	R 76	R 77	R ₇₈	z	m.p.(°C)
no.						
4.137	CH₃CH₂	CHF ₂	Н	Н	SO	
4.138	(CH₃)₂CH	CHF ₂	Н	Н	SO	
4.139	$CH_3(CH_2)_3$	CHF ₂	Н	Н	SO	
4.140	Ph	CHF ₂	Н	Н	SO	
4.141	CH ₂ Br	CHF ₂	Н	Н	SO	
4.142	CH₂OCH₃	CHF ₂	Н	Н	SO	
4.143	CH₂SMe	CHF ₂	Н	Н	SO	
4.144	CH ₂ SO ₂ Me	CHF ₂	Н	Н	SO	
4.145	SCH₃	CHF ₂	Н	Н	SO	
4.146	SOCH ₃	CHF ₂	Н	Н	SO	
4.147	SO ₂ CH ₃	CHF ₂	Н	Н	SO	
4.148	SPh	CHF ₂	Н	Н	SO	
4.149	SOPh	CHF ₂	Н	Н	so	
4.150	SO₂Ph	CHF ₂	Н	Н	SO	
4.151	CH₃	CF ₃	CH ₃	Н	SO	
4.152	CH ₃ CH ₂	CF_3	СН _з	Н	SO	
4.153	(CH ₃) ₂ CH	CF_3	CH ₃	Н	so	
4.154	$CH_3(CH_2)_3$	CF ₃	CH ₃	Н	SO	
4.155	Ph	CF ₃	CH_3	Н	SO	
4.156	CH₂Br	CF ₃	CH ₃	Н	SO	
4.157	CH ₂ OCH ₃	CF ₃	CH ₃	Н	SO	
4.158	CH₂SMe	CF ₃	CH ₃	Н	SO	
4.159	CH ₂ SO ₂ Me	CF ₃	CH_3	Н	so	
4.160	SCH₃	CF ₃	CH₃	Н	SO	
4.161	SOCH ₃	CF ₃	CH ₃	Н	SO	
4.162	SO ₂ CH ₃	CF ₃	CH ₃	Н	SO	
4.163	SPh	CF ₃	CH ₃	Н	SO	
4.164	SOPh	CF ₃	CH ₃	Н	SO	
4.165	SO₂Ph	CF ₃	СН3	Н	SO	
4.166	CH ₃	CF ₃ CF ₂	CH ₃	Н	SO	
4.167	CH ₃ CH ₂	CF ₃ CF ₂	CH ₃	Н	so	
4.168	(CH ₃) ₂ CH	CF ₃ CF ₂	CH₃	Н	so	

Compd.	R ₇₅	R 76	R 77	R ₇₈	z	m.p.(°C)
no.						
4.169	$CH_3(CH_2)_3$	CF ₃ CF ₂	СН₃	Н	so	
4.170	Ph	CF ₃ CF ₂	СН₃	Н	so	
4.171	CH ₂ Br	CF ₃ CF ₂	CH₃	Н	so	
4.172	CH₂OCH₃	CF ₃ CF ₂	СН₃	Н	so	
4.173	CH₂SMe	CF ₃ CF ₂	CH ₃	Н	so	
4.174	CH ₂ SO ₂ Me	CF ₃ CF ₂	СНз	Н	so	
4.175	SCH₃	CF ₃ CF ₂	CH₃	Н	so	
4.176	SOCH ₃	CF ₃ CF ₂	СН₃	Н	so	
4.177	SO ₂ CH ₃	CF ₃ CF ₂	СН₃	Н	so	
4.178	SPh	CF ₃ CF ₂	СН₃	Н	so	
4.179	SOPh	CF ₃ CF ₂	СН₃	Н	so	
4.180	SO₂Ph	CF ₃ CF ₂	CH₃	Н	so	
4.181	CH₃	CHF ₂	CH ₃	Н	so	
4.182	CH ₃ CH ₂	CHF ₂	CH_3	Н	SO	
4.183	(CH ₃) ₂ CH	CHF ₂	СН₃	Н	so	
4.184	$CH_3(CH_2)_3$	CHF ₂	СН₃	Н	SO	
4.185	Ph	CHF ₂	CH ₃	Н	so	
4.186	CH ₂ Br	CHF ₂	CH ₃	Н	so	
4.187	CH ₂ OCH ₃	CHF ₂	CH ₃	Н	SO	
4.188	CH₂SMe	CHF ₂	CH ₃	Н	SO	
4.189	CH ₂ SO ₂ Me	CHF ₂	CH ₃	Н	SO	
4.190	SCH₃	CHF ₂	CH ₃	H	SO	
4.191	SOCH₃	CHF ₂	CH ₃	H	SO	
4.192	SO₂CH₃	CHF ₂	CH ₃	Н	SO	
4.193	SPh	CHF ₂	CH ₃	Н	SO	
4.194	SOPh	CHF ₂	CH ₃	Н	so	
4.195	SO₂Ph	CHF ₂	CH ₃	Н	SO	
4.196	CH ₃	CF ₃	Н	CH ₃	SO	
4.197	CH ₃ CH ₂	CF ₃	Н	CH_3	SO	
4.198	(CH ₃) ₂ CH	CF ₃	Н	CH ₃	SO	
4.199	$CH_3(CH_2)_3$	CF ₃	Н	CH ₃	so	
4.200	Ph	CF₃	Н	CH₃	so	

PCT/EP01/00720

Compd.	R 75	R 76	R 77	R ₇₈	Z	m.p.(°C)
no.						
4.201	CH₂Br	CF ₃	Н	CH ₃	so	
4.202	CH₂OCH₃	CF ₃	Н	СН₃	so	
4.203	CH₂SMe	CF ₃	Н	СНз	so	
4.204	CH ₂ SO ₂ Me	CF ₃	Н	CH₃	so	
4.205	SCH₃	CF ₃	Н	CH₃	so	
4.206	SOCH₃	CF ₃	Н	CH₃	so	
4.207	SO ₂ CH ₃	CF ₃	Н	CH₃	SO	
4.208	SPh	CF ₃	Н	CH ₃	SO	
4.209	SOPh	CF ₃	Н	СН3	so	
4.210	SO₂Ph	CF ₃	Н	CH ₃	SO	
4.211	CH ₃	CF ₃	H	Н	SO ₂	amorph-
		•				ous
4.212	CH ₃ CH ₂	CF ₃ .	Н	Н	SO ₂	
4.213	(CH ₃) ₂ CH	CF ₃	Н	Н	SO_2	
4.214	$CH_3(CH_2)_3$	CF ₃	H	Н	SO ₂	
4.215	Ph	CF ₃	Н	Н	SO_2	
4.216	CH ₂ Br	CF ₃	Н	Н	SO_2	
4.217	CH ₂ OCH ₃	CF ₃	Н	Н	SO_2	
4.218	CH₂SMe	CF ₃	Н	Н	SO_2	
4.219	CH ₂ SO ₂ Me	CF ₃	Н	Н	SO_2	
4.220	SCH₃	CF ₃	Н	Н	SO_2	
4.221	SOCH₃	CF ₃	Н	Н	SO_2	
4.222	SO ₂ CH ₃	CF ₃	Н	Н	SO_2	
4.223	SPh	CF ₃	Н	H	SO ₂	
4.224	SOPh	CF ₃	Н	Н	SO ₂	
4.225	SO₂Ph	CF ₃	Н	Н	SO_2	
4.226	CH₃	CF ₃ CF ₂	Н	Н	SO_2	
4.227	CH₃CH₂	CF ₃ CF ₂	Н	Н	SO_2	
4.228	$(CH_3)_2CH$	CF ₃ CF ₂	Н	Н	SO_2	
4.229	$CH_3(CH_2)_3$	CF ₃ CF ₂	Н	Н	SO ₂	
4.230	Ph	CF ₃ CF ₂	Н	Н	SO_2	
4.231	CH₂Br	CF ₃ CF ₂	Н	Н	SO ₂	

Compd.	R ₇₅	R 76	R 77	R ₇₈	Z	m.p.(°C)
no.						
4.232	CH₂OCH₃	CF ₃ CF ₂	Н	Н	SO ₂	
4.233	CH ₂ SMe	CF ₃ CF ₂	Н	H	SO_2	
4.234	CH ₂ SO ₂ Me	CF ₃ CF ₂	Н	Н	SO ₂	
4.235	SCH₃	CF ₃ CF ₂	Н	Н	SO ₂	
4.236	SOCH₃	CF ₃ CF ₂	Н	Н	SO_2	
4.237	SO ₂ CH ₃	CF ₃ CF ₂	Н	Н	SO ₂	
4.238	SPh	CF ₃ CF ₂	Н	Н	SO ₂	
4.239	SOPh	CF ₃ CF ₂	Н	Н	SO_2	
4.240	SO₂Ph	CF ₃ CF ₂	Н	Н	SO_2	
4.241	CH ₃	CHF ₂	Н	Н	SO_2	
4.242	CH ₃ CH ₂	CHF ₂	Н	Н	SO_2	
4.243	(CH ₃) ₂ CH	CHF ₂	Н	Н	SO_2	
4.244	$CH_3(CH_2)_3$	CHF ₂	Н	Н	SO ₂	
4.245	Ph	CHF ₂	Н	Н	SO_2	
4.246	CH ₂ Br	CHF ₂	Н	Н	SO_2	
4.247	CH ₂ OCH ₃	CHF ₂	Н	Н	SO_2	
4.248	CH ₂ SMe	CHF ₂	Н	Н	SO_2	
4.249	CH ₂ SO ₂ Me	CHF ₂	Н	H	SO_2	
4.250	SCH₃	CHF ₂	Н	Н	SO ₂	
4.251	SOCH₃	CHF ₂	H	Н	SO_2	
4.252	SO₂CH₃	CHF ₂	Н	Н	SO_2	
4.253	SPh	CHF ₂	Н	Н	SO_2	
4.254	SOPh	CHF ₂	Н	Н	SO_2	
4.255	SO₂Ph	CHF ₂	Н	Н	SO_2	
4.256	CH₃	CF ₃	CH_3	Н	SO_2	
4.257	CH_3CH_2	CF ₃	CH ₃	Н	SO_2	
4.258	(CH ₃) ₂ CH	CF ₃	CH₃	Н	SO_2	
4.259	$CH_3(CH_2)_3$	CF ₃	СН₃	Н	SO ₂	
4.260	Ph	CF ₃	CH₃	Н	SO_2	
4.261	CH₂Br	CF ₃	CH ₃	Н	SO_2	
4.262	CH ₂ OCH ₃	CF ₃	СН₃	Н	SO_2	
4.263	CH₂SMe	CF ₃	CH₃	Н	SO_2	

Compd.	R 75	R 76	R 77	R ₇₈	z	m.p.(°C)
no.						
4.264	CH₂SO₂Me	CF ₃	СН₃	Н	SO ₂	
4.265	SCH₃	CF₃	CH ₃	Н	SO_2	
4.266	SOCH₃	CF ₃	CH₃	Н	SO_2	
4.267	SO ₂ CH ₃	CF ₃	CH ₃	Н	SO ₂	
4.268	SPh	CF ₃	СН₃	Н	SO ₂	
4.269	SOPh	CF ₃	СН₃	Н	SO ₂	
4.270	SO ₂ Ph	CF ₃	СНз	H	SO_2	
4.271	CH₃	CF ₃ CF ₂	CH ₃	Н	SO_2	
4.272	CH ₃ CH ₂	CF ₃ CF ₂	СН3	• н	SO_2	
4.273	(CH ₃) ₂ CH	CF ₃ CF ₂	CH_3	Н	SO ₂	
4.274	$CH_3(CH_2)_3$	CF ₃ CF ₂	СН₃	Н	SO_2	
4.275	Ph	CF ₃ CF ₂	CH₃	Н	SO_2	
4.276	CH₂Br	CF ₃ CF ₂	CH ₃	Н	SO_2	
4.277	CH ₂ OCH ₃	CF ₃ CF ₂	CH₃	Н	SO_2	
4.278	CH₂SMe	CF ₃ CF ₂	СН₃	H	SO ₂	
4.279	CH ₂ SO ₂ Me	CF ₃ CF ₂	CH ₃	Н	SO ₂	
4.280	SCH₃	CF ₃ CF ₂	CH ₃	Н	SO_2	
4.281	SOCH₃	CF ₃ CF ₂	CH ₃	Н	SO_2	
4.282	SO₂CH₃	CF ₃ CF ₂	CH₃	Н	SO ₂	
4.283	SPh	CF ₃ CF ₂	CH_3	Н	SO_2	
4.284	SOPh	CF ₃ CF ₂	CH ₃	Н	SO_2	
4.285	SO₂Ph	CF ₃ CF ₂	CH ₃	Η .	SO_2	
4.286	CH₃	CHF ₂	CH ₃	Н	SO ₂	
4.287	CH₃CH₂	CHF ₂	CH ₃	Н	SO_2	
4.288	(CH ₃) ₂ CH	CHF ₂	CH ₃	Н	SO_2	
4.289	$CH_3(CH_2)_3$	CHF ₂	CH_3	Н	SO_2	
4.290	Ph	CHF ₂	CH ₃	Н	SO_2	
4.291	CH ₂ Br	CHF ₂	СНз	Н	SO ₂	
4.292	CH ₂ OCH ₃	CHF ₂	CH_3	Н	SO ₂	
4.293	CH₂SMe	CHF ₂	СН3	Н	SO ₂	
4.294	CH ₂ SO ₂ Me	CHF ₂	СНз	Н	SO ₂	
4.295	SCH₃	CHF ₂	CH ₃	Н	SO_2	

_	65	_

Compd.	R ₇₅	R 76	R 77	R ₇₈	Z	m.p.(°C)
no.						
4.296	SOCH₃	CHF ₂	CH ₃	Н	SO ₂	
4.297	SO ₂ CH ₃	CHF ₂	CH ₃	Н	SO_2	
4.298	SPh	CHF ₂	CH ₃	Н	SO_2	
4.299	SOPh	CHF ₂	CH ₃	Н	SO_2	
4.300	SO ₂ Ph	CHF ₂	CH ₃	Н	SO ₂	
4.301	CH ₃	CF ₃	Н	CH ₃	SO ₂	
4.302	CH ₃ CH ₂	CF₃	Н	CH ₃	SO ₂	
4.303	(CH ₃) ₂ CH	CF ₃	Н	CH ₃	SO_2	
4.304	$CH_3(CH_2)_3$	CF ₃	Н	CH ₃	SO ₂	
4.305	Ph	CF_3	Н	CH_3	SO ₂	
4.306	CH ₂ Br	CF ₃	Н	CH₃	SO_2	
4.307	CH ₂ OCH ₃	CF ₃	Н	CH ₃	SO ₂	
4.308	CH₂SMe	CF ₃	Н	CH ₃	SO_2	
4.309	CH₂SO₂Me	CF ₃	Н	CH ₃	SO_2	
4.310	SCH₃	CF ₃	Н	CH ₃	SO ₂	
4.311	SOCH₃	CF ₃	Н	CH_3	SO_2	
4.312	SO₂CH₃	CF ₃	Н	CH_3	SO_2	
4.313	SPh	CF ₃	H	CH ₃	SO_2	
4.314	SOPh	CF ₃	Н	CH ₃	SO ₂	
4.315	SO₂Ph	CF₃	Н	CH₃	SO ₂	

Table 5: Compounds of formula XVI:

Compd.	R 79	R 80	R ₈₁	R_{82}
no.				
A1	Н	н	н	CF₂

Compd.	R ₇₉	R 80	R ₈₁	R ₈₂	
no.					
A2	CH₃	Н	Н	CF ₃	
АЗ	CH ₃ CH ₂	Н	Н	CF ₃	
A4	(CH ₃) ₂ CH	Н	Н	CF ₃	
A 5	(CH ₃) ₃ C	Н	Н	CF ₃	
A6	cyclopropyl	Н	Н	CF ₃	
A7	$CH_3(CH_2)_2$	Н	Н	CF ₃	
A8	CH ₃ OCH ₂	Н	Н	CF ₃	
A9	$CH_3O(CH_2)_2$	Н	Н	CF ₃	
A10	Ph	Н	Н	CF ₃	
A11	PhO	Н	Н	CF ₃	
A12	PhS	Н	Н	CF ₃	
A13	PhSO	Н	Н	CF ₃	
A14	PhSO ₂	Н	Н	CF ₃	
A15	CH₃S	Н	Н	CF ₃	
A16	CH₃SO	Н	Н	CF ₃	
A17	CF ₃	Н	Н	CF ₃	
A18	F₂CH	н	Н	CF ₃	
A19	HCC	Н	Н	CF ₃	
A20	CH₃CC	Н	Н	CF ₃	
A21	CH ₂ =CH	Н	Н	CF ₃	
A22	CH ₂ =CHCH ₂	Н	Н	CF₃	
A23	$CH_3SO_2N(CH_3)$	Н	Н	CF₃	
A24	$(CH_3)_2N$	Н	Н	CF ₃	
A25	(CH ₃) ₂ NSO ₂	Н	Н	CF ₃	
A26	CICH ₂	Н	Н	CF ₃	
A27	CH₃SCH₂	Н	Н	CF ₃	
A28	CH₃SOCH₂	Н	Н	CF ₃	
A29	CH ₃ SO ₂ CH ₂	Н	Н	CF ₃	
A30	[1,2,4]-triazol-1-yl-methyl	Н	Н	CF₃	
A31	CH₃	CF ₃	Н	CH₃	
A32	CH₃	CH ₃	Н	CF ₃	
A33	Н	Н	Н	CF ₃ CF ₂	

Compd.	R 79	R 80	R ₈₁	R ₈₂
no.				
A34	CH ₃	Н	Н	CF ₃ CF ₂
A35	CH ₃ CH ₂	Н	Н	CF ₃ CF ₂
A36	cyclopropyl	Н	Н	CF ₃ CF ₂
A37	(CH₃)₃C	Н	Н	CF ₃ CF ₂
A38	(CH ₃) ₂ CH	H	Н	CF ₃ CF ₂
A39	CH ₃ (CH ₂) ₂	Н	Н	CF ₃ CF ₂
A40	CH ₃ OCH ₂	Н	Н	CF ₃ CF ₂
A41	$CH_3O(CH_2)_2$	Н	Н	CF ₃ CF ₂
A42	Ph	Н	Н	CF ₃ CF ₂
A43	PhO	Н	Н	CF ₃ CF ₂
A44	PhS	Н	Н	CF ₃ CF ₂
A45	PhSO	Н	Н	CF ₃ CF ₂
A46	PhSO ₂	Н	Н	CF ₃ CF ₂
A47	CH₃S	Н	Н	CF ₃ CF ₂
A48	CH₃SO	Н	Н	CF ₃ CF ₂
A49	CF₃	Н	Н	CF ₃ CF ₂
A50	F₂CH	Н	Н	CF ₃ CF ₂
A51	HCC	Н	Н	CF ₃ CF ₂
A52	CH₃CC	Н	Н	CF ₃ CF ₂
A53	CH ₂ =CH	Н	Н	CF ₃ CF ₂
A54	CH ₂ =CHCH ₂	Н	Н	CF_3CF_2
A55	CH ₃ SO ₂ N(CH ₃)	Н	Н	CF ₃ CF ₂
A56	$(CH_3)_2N$	Н	Н	CF ₃ CF ₂
A57	$(CH_3)_2NSO_2$	Н	Н	CF ₃ CF ₂
A58	CICH ₂	Н	Н	CF ₃ CF ₂
A59	CH₃SCH₂	Н	Н	CF ₃ CF ₂
A60	CH₃SOCH₂	Н	Н	CF ₃ CF ₂
A61	CH₃SO₂CH₂	Н	Н	CF ₃ CF ₂
A62	[1,2,4]-triazol-1-yl-methyl	Н	Н	CF ₃ CF ₂
A63	Н	Н	Н	CF ₃ CF ₂ CF ₂
A64	CH₃	Н	Н	CF ₃ CF ₂ CF ₂
A65	CH₃CH₂	Н	Н	CF ₃ CF ₂ CF ₂

PCT/EP01/00720

Compd.	R ₇₉	R 80	R ₈₁	R_{82}
no.				
A66	cyclopropyl	Н	Н	CF ₃ CF ₂ CF ₂
A67	(CH ₃) ₃ C	H	Н	CF ₃ CF ₂ CF ₂
A68	(CH ₃) ₂ CH	H	Н	CF ₃ CF ₂ CF ₂
A69	$CH_3(CH_2)_2$	Н	Н	CF ₃ CF ₂ CF ₂
A70	CH ₃ OCH ₂	Н	Н	CF ₃ CF ₂ CF ₂
A71	CH ₃ O(CH ₂) ₂	Н	Н	CF ₃ CF ₂ CF ₂
A72	Ph	Н	H	CF ₃ CF ₂ CF ₂
A73	PhO	H	Н	CF ₃ CF ₂ CF ₂
A74	PhS	Н	Н	CF ₃ CF ₂ CF ₂
A7 5	PhSO	Н	Н	CF ₃ CF ₂ CF ₂
A76	PhSO ₂	Н	Н	CF ₃ CF ₂ CF ₂
A77	CH₃S	Н	Н	CF ₃ CF ₂ CF ₂
A78	CH₃SO	H	Н	CF ₃ CF ₂ CF ₂
A79	CF ₃	Н	Н	CF ₃ CF ₂ CF ₂
A80	F ₂ CH	H	Н	CF ₃ CF ₂ CF ₂
A81	HCC	Н	Н	CF ₃ CF ₂ CF ₂
A82	CH₃CC	H	Н	CF ₃ CF ₂ CF ₂
A83	CH₂=CH	Н	Н	CF ₃ CF ₂ CF ₂
A84	CH ₂ =CHCH ₂	Н	Н	CF ₃ CF ₂ CF ₂
A85	CH ₃ SO ₂ N(CH ₃)	Н	Н	CF ₃ CF ₂ CF ₂
A86	$(CH_3)_2N$	Н	H	CF ₃ CF ₂ CF ₂
A87	$(CH_3)_2NSO_2$	H	Н	CF ₃ CF ₂ CF ₂
A88	CICH ₂	Н	Н	CF ₃ CF ₂ CF ₂
A89	CH₃SCH₂	Н	Н	CF ₃ CF ₂ CF ₂
A90	CH₃SOCH₂	Н	Н	CF ₃ CF ₂ CF ₂
A91	CH ₃ SO ₂ CH ₂	Н	Н	CF ₃ CF ₂ CF ₂
A92	[1,2,4]-triazol-1-yl-methyl	Н	Н	CF ₃ CF ₂ CF ₂
A93	Н	Н	Н	CF ₂ CI
A94	CH₃	Н	Н	CF ₂ CI
A95	CH₃CH₂	Н	Н	CF ₂ CI
A96	cyclopropyl	Н	Н	CF₂CI
A97	(CH ₃) ₃ C	Н	Н	CF₂CI

Compd.	. R ₇₉	R 80	R ₈₁	R ₈₂
no.				
A98	(CH ₃) ₂ CH	Н	Н	CF ₂ CI
A99	$CH_3(CH_2)_2$	Н	H	CF ₂ CI
A100	CH ₃ OCH ₂	Н	Н	CF ₂ CI
A101		Н	Н	CF ₂ CI
A102	Ph	Н	Н	CF ₂ Cl
A103	PhO	Н	Н	CF ₂ Cl
A104	PhS	Н	Н	CF ₂ CI
A105	PhSO	Н	Н	CF ₂ CI
A106	PhSO ₂	Н	Н	CF ₂ CI
A107	CH₃S	Н	Н	CF ₂ Cl
A108	CH₃SO	Н	Н	CF ₂ CI
A109	· CF ₃	Н	Н	CF ₂ CI
A110	F ₂ CH	Н	Н	CF ₂ CI
A111	HCC.	Н	Н	CF ₂ CI
A112	CH₃CC	Н	Н	CF ₂ Cl
A113	CH ₂ =CH	Н	Н	CF ₂ Cl
A114	CH ₂ =CHCH ₂	Н	Н	CF ₂ CI
A115	CH ₃ SO ₂ N(CH ₃)	Н	Н	CF ₂ CI
A116	(CH₃)₂N	Н	Н	CF ₂ CI
A117	$(CH_3)_2NSO_2$	Н	Н	CF ₂ CI
A118	CICH₂	Н	Н	CF ₂ CI
A119	CH₃SCH₂	Н	Н	CF ₂ CI
A120	CH₃SOCH₂	Н	Н	CF ₂ CI
A121	CH₃SO₂CH₂	Н	Н	CF ₂ CI
A122	[1,2,4]-triazol-1-yl-methyl	Н	Н	CF ₂ CI
A123	Н	Н	Н	CHF ₂
A124	CH₃	Н	Н	CHF ₂
A125	CH₃CH₂	H	Н	CHF ₂
A126	cyclopropyl	Н	Н	CHF ₂
A127	(CH₃)₃C	Н	Н	CHF ₂
A128	(CH₃)₂CH	Н	Н	CHF ₂
A129	$CH_3(CH_2)_2$	Н	Н	CHF ₂

PCT/EP01/00720

_	70	-
---	----	---

Compd.	R ₇₉	R 80	R ₈₁	R ₈₂
no.				
A130	CH ₃ OCH ₂	Н	Н	CHF ₂
A131	$CH_3O(CH_2)_2$	Н	Н	CHF ₂
A132	Ph	Н	Н	CHF ₂
A133	PhO	Н	Н	CHF ₂
A134	PhS	Н	Н	CHF ₂
A135	PhSO	Н	Н	CHF ₂
A136	PhSO ₂	Н	Н	CHF ₂
A137	CH ₃ S	Н	Н	CHF ₂
A138	CH₃SO	Н	Н	CHF ₂
A139	CF ₃	Н	Н	CHF ₂
A140	F ₂ CH	Н	Н	CHF ₂
A141	HCC	. Н	Н	CHF ₂
A142	CH₃CC	Н	Н	CHF ₂
A143	CH ₂ =CH	Н	Н	CHF ₂
A144	CH ₂ =CHCH ₂	Н	Н	CHF ₂
A145	CH ₃ SO ₂ N(CH ₃)	Н	Н	CHF ₂
A146	$(CH_3)_2N$	Н	Н	CHF ₂
A147	$(CH_3)_2NSO_2$	Н	Н	CHF ₂
A148	CICH ₂	Н	Н	CHF ₂
A149	CH₃SCH₂	Н	Н	CHF ₂
A150	CH₃SOCH₂	Н	Н	CHF ₂
A151	CH ₃ SO ₂ CH ₂	Н	Н	CHF ₂
A152	[1,2,4]-triazol-1-yl-methyl	Н	Н	CHF ₂
A153	Н	, Н	Н	CCl ₃
A154	CH₃	Н	Η.	CCl ₃
A155	CH₃CH₂	Н	. Н	CCl ₃
A156	cyclopropyl	Н	Н	CCl ₃
A157	(CH₃)₃C	Н	Н	CCl ₃
A158	(CH ₃)₂CH	Н	Н	CCl ₃
A159	$CH_3(CH_2)_2$	Н	Н	CCl3
A160	CH₃OCH₂	Н	Н	CCl ₃
A161	$CH_3O(CH_2)_2$	Н	Н	CCl3

Compd.	R ₇₉	R 80	R ₈₁	R ₈₂
no.				
A162	Ph	Н	Н	CCl ₃
A163	PhO	Н	Н	CCl3
A164	PhS	Н	Н	CCl ₃
A165	PhSO	Н	Н	CCl ₃
A166	PhSO ₂	Н	Н	CCl ₃
A167	CH₃S	Н	Н	CCl ³
A168	CH₃SO	Н	Н	CCI ₃
A169	CF ₃	Н	Н	CCl ₃
A170	F ₂ CH	Н	Н	CCl ₃
A171	HCC	Н	Н	CCI ₃
A172	CH₃CC	Н	Н	CCI ₃
A173	CH ₂ =CH	Н	Н	CCI ₃
A174	CH ₂ =CHCH ₂	Н	Н	CCI ₃
A175	CH ₃ SO ₂ N(CH ₃)	Н	Н	CCI ₃
A176	(CH₃)₂N	Н	Н	CCl3
A177	$(CH_3)_2NSO_2$	Н	Н	CCI ₃
A178	CICH ₂	Н	Н	CCI ₃
A179	CH₃SCH₂	Н	Н	CCI ₃
A180	CH₃SOCH₂	Н	Н	CCI ₃
A181	CH₃SO₂CH₂	Н	Н	CCI ₃
A182	[1,2,4]-triazol-1-yl-methyl	Н	Н	CCI ₃
A183	Н	Н	CH₃	CF ₃
A184	CH₃	Н	CH₃	CF ₃
A185	CH₃CH₂	Н	СН₃	CF₃
A186	cyclopropyl	Н	CH₃	CF ₃
A187	$(CH_3)_3C$	Н	CH₃	CF ₃
A188	(CH ₃) ₂ CH	Н	СН₃	CF ₃
A189	$CH_3(CH_2)_2$	Н	СН₃	CF3
A190	CH ₃ OCH ₂	Н	CH₃	CF ₃
A191	CH ₃ O(CH ₂) ₂	Н	CH ₃	CF ₃
A192	Ph	Н	CH ₃	CF ₃
A193	PhO	Н	CH₃	CF ₃

Compd.	R ₇₉	R 80	R ₈₁	R_{82}
no.				
A194	PhS	Н	CH ₃	CF ₃
A195	PhSO	Н	CH₃	CF ₃
A196	PhSO ₂	Н	CH₃	CF ₃
A197	CH₃S	Н	CH ₃	CF ₃
A198	CH₃SO	Н	CH₃	CF ₃
A199	CF ₃	Н	CH₃	CF ₃
A200	F ₂ CH	Н	CH₃	CF_3
A201	HCC	Н	CH₃	CF ₃
A202	CH₃CC	Н	CH₃	CF ₃
A203	CH ₂ =CH	Н	CH ₃	CF ₃
A204	CH ₂ =CHCH ₂	Н	CH ₃	CF ₃
A205	CH ₃ SO ₂ N(CH ₃)	Н	CH ₃	CF ₃
A206	(CH₃)₂N	Н	CH ₃	CF ₃
A207	$(CH_3)_2NSO_2$	Н	CH₃	CF ₃
A208	CICH ₂	Н	CH₃	CF ₃
A209	CH₃SCH₂	Н	CH ₃	CF ₃
A210	CH₃SOCH₂	Н	CH₃	CF ₃
A211	CH ₃ SO ₂ CH ₂	Н	CH ₃	CF ₃
A212	н .	Н	CH ₃	CF ₃ CF ₂
A213	CH₃	Н	СН₃	CF ₃ CF ₂
A214	CH ₃ CH ₂	H	CH₃	CF ₃ CF ₂
A215	cyclopropyl	Н	CH₃	CF ₃ CF ₂
A216	$(CH_3)_3C$	Н	CH ₃	CF ₃ CF ₂
A217	(CH₃)₂CH	Н	CH₃	CF ₃ CF ₂
A218	$CH_3(CH_2)_2$	Н	CH₃	CF ₃ CF ₂
A219	CH₃OCH₂	Н	CH ₃	CF ₃ CF ₂
A220	$CH_3O(CH_2)_2$	Н	CH₃	CF ₃ CF ₂
A221	Ph	Н	CH ₃	CF ₃ CF ₂
A222	PhO	Н	СН₃	CF ₃ CF ₂
A223	PhS	Н	CH ₃	CF ₃ CF ₂
A224	PhSO	Н	CH ₃	CF ₃ CF ₂
A225	PhSO ₂	Н	СН₃	CF ₃ CF ₂

Compd.	R ₇₉	R 80	R ₈₁	R_{82}
no.				
A226	CH₃S	Н	CH₃	CF₃CF₂
A227	CH₃SO	Н	СН₃	CF₃CF₂
A228	CF ₃	Н	СН₃	CF ₃ CF ₂
A229	F ₂ CH	Н	СН₃	CF ₃ CF ₂
A230.	HCC	Н	СН₃	CF ₃ CF ₂
A231	CH₃CC	Н	СН₃	CF ₃ CF ₂
A232	CH ₂ =CH	Н	СН₃	CF ₃ CF ₂
A233	CH ₂ =CHCH ₂	Н	СНз	CF ₃ CF ₂
A234	CH ₃ SO ₂ N(CH ₃)	Н	СН₃	CF₃CF₂
A235	$(CH_3)_2N$	Н	СН₃	CF₃CF₂
A236	$(CH_3)_2NSO_2$	Н	CH ₃	CF ₃ CF ₂
A237	CICH ₂	Н	СНз	CF ₃ CF ₂
A238	CH₃SCH₂	Н	СНз	CF ₃ CF ₂
A239	CH₃SOCH₂	Н	СН₃	CF ₃ CF ₂
A240	CH ₃ SO ₂ CH ₂	Н	CH ₃	CF ₃ CF ₂
A241	Н	H	CH ₃	CF ₃ CF ₂ CF ₂
A242	CH₃	Н	CH_3	CF ₃ CF ₂ CF ₂
A243	CH₃CH₂	Н	CH ₃	CF ₃ CF ₂ CF ₂
A244	cyclopropyl	Н	CH ₃	CF ₃ CF ₂ CF ₂
A245	(CH ₃) ₃ C	Н	CH_3	CF ₃ CF ₂ CF ₂
A246	(CH ₃) ₂ CH	Н	CH ₃	CF ₃ CF ₂ CF ₂
A247	$CH_3(CH_2)_2$	Н	CH₃	CF ₃ CF ₂ CF ₂
A248	CH₃OCH₂	Н	CH_3	CF ₃ CF ₂ CF ₂
A249	$CH_3O(CH_2)_2$	Н	CH ₃	CF ₃ CF ₂ CF ₂
A250	Ph	Н	CH ₃	CF ₃ CF ₂ CF ₂
A251	PhO	Н	CH_3	CF ₃ CF ₂ CF ₂
A252	PhS	Н	CH ₃	CF ₃ CF ₂ CF ₂
A253	PhSO	Н	CH ₃	CF ₃ CF ₂ CF ₂
A254	PhSO ₂	Н	CH ₃	CF ₃ CF ₂ CF ₂
A255	CH₃S	Н	CH ₃	CF ₃ CF ₂ CF ₂
A256	CH₃SO	Н	CH₃	CF ₃ CF ₂ CF ₂
A257	CF_3	Н	CH₃	CF ₃ CF ₂ CF ₂

Compd.	R ₇₉	R 80	R ₈₁	R ₈₂
no.				
A258	F ₂ CH	Н	СН₃	CF ₃ CF ₂ CF ₂
A259	HCC	Н	СНз	CF ₃ CF ₂ CF ₂
A260	CH₃CC	Н	CH ₃	CF ₃ CF ₂ CF ₂
A261	CH ₂ =CH	Н	CH ₃	CF ₃ CF ₂ CF ₂
A262	CH ₂ =CHCH ₂	Н	СН₃	CF ₃ CF ₂ CF ₂
A263	CH ₃ SO ₂ N(CH ₃)	Н	СН₃	CF ₃ CF ₂ CF ₂
A264	(CH ₃) ₂ N	Н	СН₃	CF ₃ CF ₂ CF ₂
A265	$(CH_3)_2NSO_2$	Н	CH₃	CF ₃ CF ₂ CF ₂
A266	CICH ₂	Н	CH ₃	CF ₃ CF ₂ CF ₂
A267	CH₃SCH₂	Н	CH₃	CF ₃ CF ₂ CF ₂
A268	CH ₃ SOCH ₂	Н	CH ₃	CF ₃ CF ₂ CF ₂
A269	CH ₃ SO ₂ CH ₂	Н	CH₃	CF ₃ CF ₂ CF ₂
A270	Н	Н	CH ₃	CF ₂ CI
A271	CH₃	Н	СН₃	CF ₂ CI
A272	CH ₃ CH ₂	Н	CH₃	CF ₂ CI
A273	cyclopropyl	Н	СН₃	CF ₂ CI
A274	(CH₃)₃C	Н	CH ₃	CF ₂ Cl
A275	$(CH_3)_2CH$	Н	CH ₃	CF ₂ CI
A276	CH ₃ (CH ₂) ₂	Н	CH₃	CF ₂ CI
A277	CH ₃ OCH ₂	Н	CH₃	CF ₂ CI
A278	$CH_3O(CH_2)_2$	Н	CH ₃	CF ₂ Cl
A279	Ph	Н	CH ₃	CF ₂ Cl
A280	PhO	Н	CH ₃	CF ₂ CI
A281	PhS	н	CH ₃	CF ₂ Cl
A282	PhSO	Н	CH ₃	CF ₂ CI
A283	PhSO ₂	Н	CH_3	CF ₂ CI
A284	CH ₃ S	Н	CH ₃	CF ₂ CI
A285	CH ₃ SO	Н	CH ₃	CF ₂ CI
A286	CF ₃	Н	CH ₃	CF ₂ CI
A287	F ₂ CH	H	CH ₃	CF ₂ CI
A288	HCC	Н	CH_3	CF ₂ Cl
A289	CH₃CC	Н	CH_3	CF ₂ Cl

Compd.	R ₇₉	R 80	R ₈₁	R_{82}
no.				
A290	CH ₂ =CH	Н	СН₃	CF ₂ CI
A291	CH ₂ =CHCH ₂	Н	CH₃	CF ₂ CI
A292	CH ₃ SO ₂ N(CH ₃)	Н	CH ₃	CF ₂ Cl
A293	$(CH_3)_2N$	Н	CH ₃	CF ₂ Cl
A294	(CH ₃) ₂ NSO ₂	Н	CH₃	CF ₂ CI
A295	CICH ₂	Н	CH₃	CF ₂ CI
A296	CH₃SCH₂	Н	CH ₃	CF ₂ CI
A297	CH₃SOCH₂	Н	CH₃	CF ₂ CI
A298	CH ₃ SO ₂ CH ₂	Н	CH ₃	CF ₂ CI
A299	Н	Н	CH ₃	CHF ₂
A300	CH_3	Н	CH ₃	CHF ₂
A301	CH₃CH₂	Н	CH ₃	CHF ₂
A302	cyclopropyl	н	CH ₃	CHF ₂
A303	$(CH_3)_3C$	Н	CH ₃	CHF ₂
A304	(CH₃)₂CH	Н	CH₃	CHF ₂
A305	$CH_3(CH_2)_2$	Н	CH₃	CHF ₂
A306	CH₃OCH₂	Н	CH₃	CHF ₂
A307	$CH_3O(CH_2)_2$	Н	CH₃	CHF ₂
A308	Ph	Н	CH₃	CHF ₂
A309	PhO	Н	CH₃	CHF ₂
A310	PhS	Н	CH₃	CHF ₂
A311	PhSO	Н	CH₃	CHF ₂
A312	PhSO ₂	Н	CH ₃	CHF ₂
A313	CH₃S	Н	CH_3	CHF ₂
A314	CH₃SO	Н	CH₃	CHF ₂
A315	CF ₃	Н	CH ₃	CHF ₂
A316	F₂CH	Н	CH ₃	CHF ₂
A317	HCC	Н	CH₃	CHF ₂
A318	CH₃CC	Н	CH ₃	CHF ₂
A319	CH ₂ =CH	Н	CH ₃	CHF ₂
A320	CH ₂ =CHCH ₂	н	CH ₃	CHF ₂
A321	CH ₃ SO ₂ N(CH ₃)	Н	CH ₃	CHF ₂

Compd.	R ₇₉	R 80	R ₈₁	R ₈₂
no.				
A322	$(CH_3)_2N$	Н	CH ₃	CHF ₂
A323	$(CH_3)_2NSO_2$	Н	CH ₃	CHF ₂
A324	CICH ₂	Н	CH ₃	CHF ₂
A325	CH ₃ SCH ₂	н	CH ₃	CHF ₂
A326	CH ₃ SOCH ₂	Н	CH₃	CHF ₂
A327	CH ₃ SO ₂ CH ₂	Н	CH₃	CHF ₂
A328	Н	Н	CH ₃	CCI ₃
A329	CH₃	Н	CH₃	CCI ₃
A330	CH ₃ CH ₂	Н	CH₃	CCI ₃
A331	(CH₃)₃C	Н	CH₃	CCI ₃
A332	(CH ₃) ₂ CH	Н	CH_3	CCI ₃
A333	cyclopropyl	Н	СН₃	CCI ₃
A334	$CH_3(CH_2)_2$	Н	CH ₃	CCI ₃
A335	CH ₃ OCH ₂	Н	CH ₃	CCI ₃
A336	$CH_3O(CH_2)_2$	Н	CH₃	CCI ₃
A337	Ph	Н	CH ₃	CCl ₃
A338	PhO	Н	CH₃	CCI ₃
A339	PhS	Н	CH₃	CCl ₃
A340	PhSO	Н	CH₃	CCI ₃
A341	PhSO ₂	Н	CH_3	CCI ₃
A342	CH₃S	Н	CH_3	CCI ₃
A343	CH₃SO	Н	CH ₃	CCI ₃
A344	CF ₃	Н	CH₃	CCl ₃
A345	F ₂ CH	Н	CH_3	CCI ₃
A346	HCC	Н	CH_3	CCI ₃
A347	CH₃CC	H	. CH₃	CCI ₃
A348	CH ₂ =CH	Н	CH ₃	CCI ₃
A349	CH ₂ =CHCH ₂	Н	CH ₃	CCI ₃
A350	CH ₃ SO ₂ N(CH ₃)	Н	CH ₃	CCl ³
A351	$(CH_3)_2N$	Н	CH ₃	CCI ₃
A352	$(CH_3)_2NSO_2$	Н	CH ₃	CCl₃
A353	CICH ₂	Н	СН₃	CCI ₃

C	ompd.	R ₇₉	R 80	R ₈₁	R_{82}
	no.				
	A354	CH₃SCH₂	Н	CH ₃	CCI ₃
	A355	CH ₃ SOCH ₂	Н	CH₃	CCl ₃
	A356	CH ₃ SO ₂ CH ₂	Н	CH ₃	CCl ₃
	A357	Н	Н	Ph	CF ₃
	A358	CH ₃	Н	Ph	CF ₃
	A359	CH₃CH₂	Н	Ph	CF ₃
	A360	cyclopropyl	Н	Ph	CF ₃
	A361	$(CH_3)_3C$	·H	Ph	CF ₃
	A362	(CH ₃) ₂ CH	Н	Ph	CF ₃
	A363	$CH_3(CH_2)_2$	Н	Ph	CF ₃
	A364	CH₃OCH₂	Н	Ph	CF ₃
	A365	$CH_3O(CH_2)_2$	Н	Ph	CF ₃
	A366	Ph	Н	Ph	CF ₃
	A367	PhO	Н	Ph	CF ₃
	A368	PhS	Н	Ph	CF ₃
	A369	PhSO	Н	Ph	CF₃
	A370	PhSO ₂	Н	Ph	CF ₃
	A371	CH₃S	Н	Ph	CF ₃
	A372	CH₃SO	Н	Ph	CF₃
	A373	CF ₃	Н	Ph	CF ₃
	A374	F₂CH	Н	Ph	CF ₃
	A375	HCC	H	Ph	CF ₃
2.0	A376	CH₃CC	Н	Ph	CF ₃
	A377	CH ₂ =CH	Н	Ph	CF₃
	A378	CH ₂ =CHCH ₂	Н	Ph	CF ₃
	A379	CH ₃ SO ₂ N(CH ₃)	Н	Ph	CF ₃
	A380	(CH ₃)₂N	Н	Ph	CF ₃
	A381	$(CH_3)_2NSO_2$	Н	Ph	CF₃
	A382	CICH ₂	Н	Ph	CF ₃
	A383	CH ₃ SCH ₂	Н	Ph	CF ₃
	A384	CH₃SOCH₂	Н	Ph	CF ₃
	A385	CH ₃ SO ₂ CH ₂	Н	Ph	CF ₃

Compd.	R ₇₉	R 80	R ₈₁	R ₈₂
no.				
A386	Н	Н	Ph	CF ₃ CF ₂
A387	CH₃	Н	Ph	CF ₃ CF ₂
A388	CH_3CH_2	Н	Ph	CF ₃ CF ₂
A389	cyclopropyl	Н	Ph	CF ₃ CF ₂
A390	(CH₃)₃C	Н	Ph	CF ₃ CF ₂
A391	(CH ₃) ₂ CH	Н	Ph	CF ₃ CF ₂
A392	$CH_3(CH_2)_2$	Н	Ph	CF ₃ CF ₂
A393	CH ₃ OCH ₂	Н	Ph	CF ₃ CF ₂
A394	CH ₃ O(CH ₂) ₂	Н	Ph	CF ₃ CF ₂
A395	Ph	Н	Ph	CF ₃ CF ₂
A396	PhO	Н	Ph	CF ₃ CF ₂
A397	PhS	Н	Ph	CF ₃ CF ₂
A398	PhSO	Н	Ph	CF ₃ CF ₂
A399	PhSO ₂	Н	Ph	CF ₃ CF ₂
A400	CH₃S	н	Ph	CF ₃ CF ₂
A401	CH₃SO	Н	Ph	CF3CF2
A402	CF ₃	Н	Ph	CF ₃ CF ₂
A403	F₂CH	Н	Ph	CF ₃ CF ₂
A404	HCC	Н	Ph	CF ₃ CF ₂
A405	CH₃CC	Н	Ph	CF ₃ CF ₂
A406	CH ₂ =CH	Н	Ph	CF ₃ CF ₂
A407	CH ₂ =CHCH ₂	Н	Ph	CF ₃ CF ₂
A408	CH ₃ SO ₂ N(CH ₃)	Н	Ph	CF ₃ CF ₂
A409	(CH₃)₂N	Н	Ph	CF ₃ CF ₂
A410	$(CH_3)_2NSO_2$	Н	Ph	CF ₃ CF ₂
A411	CICH ₂	Н	Ph	CF ₃ CF ₂
A412	CH₃SCH₂	Н	Ph	CF ₃ CF ₂
A413	CH₃SOCH₂	Н	Ph	CF ₃ CF ₂
A414	CH ₃ SO ₂ CH ₂	Н	Ph	CF ₃ CF ₂
A415	Н	Н	Ph	CF ₃ CF ₂ CF ₂
A416	CH₃	Н	Ph	CF ₃ CF ₂ CF ₂
A417	CH₃CH₂	Н	Ph	CF ₃ CF ₂ CF ₂

Compd.	R ₇₉	R 80	R ₈₁	R ₈₂
no.				
A418	cyclopropyl	Н	Ph	CF ₃ CF ₂ CF ₂
A419	$(CH_3)_3C$	Н	Ph	CF ₃ CF ₂ CF ₂
A420	(CH ₃) ₂ CH	Н	Ph	CF ₃ CF ₂ CF ₂
A421	$CH_3(CH_2)_2$	Н	Ph	CF ₃ CF ₂ CF ₂
A422	CH ₃ OCH ₂	Н	Ph	CF ₃ CF ₂ CF ₂
A423	$CH_3O(CH_2)_2$	Н	Ph	CF ₃ CF ₂ CF ₂
A424	Ph	Н	Ph	CF ₃ CF ₂ CF ₂
A425	PhO	Н	Ph	CF ₃ CF ₂ CF ₂
A426	PhS	Н	Ph	CF ₃ CF ₂ CF ₂
A427	PhSO	Н	Ph	CF ₃ CF ₂ CF ₂
A428	PhSO ₂	Н	Ph	CF ₃ CF ₂ CF ₂
A429	CH₃S	Н	Ph	CF ₃ CF ₂ CF ₂
A430	CH₃SO	Н	Ph	CF ₃ CF ₂ CF ₂
A431	CF ₃	Н	Ph	CF ₃ CF ₂ CF ₂
A432	F₂CH	Н	Ph	CF ₃ CF ₂ CF ₂
A433	HCC	Н	Ph	CF ₃ CF ₂ CF ₂
A434	CH₃CC	Н	Ph	CF ₃ CF ₂ CF ₂
A435	CH ₂ =CH	Н	Ph	CF ₃ CF ₂ CF ₂
A436	CH ₂ =CHCH ₂	Н	Ph	CF ₃ CF ₂ CF ₂
A437	CH ₃ SO ₂ N(CH ₃)	Н	Ph	CF ₃ CF ₂ CF ₂
A438	(CH₃)₂N	Н	Ph	CF ₃ CF ₂ CF ₂
A439	$(CH_3)_2NSO_2$	Н	Ph	CF ₃ CF ₂ CF ₂
A440	CICH ₂	Н	Ph	CF ₃ CF ₂ CF ₂
A441	CH₃SCH₂	Н	Ph	CF ₃ CF ₂ CF ₂
A442	CH₃SOCH₂	Н	Ph	CF ₃ CF ₂ CF ₂
A443	CH ₃ SO ₂ CH ₂	Н	Ph	CF ₃ CF ₂ CF ₂
A444	Н	H ´	Ph	CF ₂ Cl
A445	CH₃	Н	Ph	CF ₂ Cl
A446	CH₃CH₂	Н	Ph	CF ₂ CI
A447	cyclopropyl	Н	Ph	CF ₂ CI
A448	(CH₃)₃C	Н	Ph	CF ₂ CI
A449	(CH₃)₂CH	н	Ph	CF₂CI

Compd.	R ₇₉	R 80	R ₈₁	R ₈₂
no.				
A450	CH ₃ (CH ₂) ₂	Н	Ph	CF ₂ CI
A451	CH₃OCH₂	Н	Ph	CF ₂ CI
A452	$CH_3O(CH_2)_2$	Н	Ph	CF ₂ CI
A453	Ph	Н	Ph	CF ₂ Cl
A454	PhO	Н	Ph	CF ₂ CI
A455	PhS	Н	Ph	CF ₂ CI
A456	PhSO	Н	Ph	CF ₂ CI
A457	PhSO ₂	Н	Ph	CF ₂ Cl
A458	CH₃S	Н	Ph	CF ₂ Cl
A459	CH₃SO	Н	Ph	CF ₂ Cl
A460	CF ₃	Н	Ph	CF ₂ CI
A461	F₂CH	Н	Ph	CF ₂ CI
A462	HCC	н	Ph	CF ₂ CI
A463	CH₃CC	Н	Ph	CF ₂ Cl
A464	CH ₂ =CH	Н	Ph	CF ₂ Cl
A465	CH ₂ =CHCH ₂	Н	Ph	CF ₂ CI
A466	CH ₃ SO ₂ N(CH ₃)	Н	Ph	CF ₂ CI
A467	$(CH_3)_2N$	Н	Ph	CF ₂ CI
A468	$(CH_3)_2NSO_2$	Н	Ph	CF ₂ CI
A469	CICH ₂	Н	Ph	CF ₂ CI
A470	CH₃SCH₂	Н	Ph	CF ₂ CI
A471	CH₃SOCH₂	Н	Ph	CF ₂ CI
A472	CH ₃ SO ₂ CH ₂	Н	Ph	CF ₂ CI
A473	Н	Н	Ph	CHF ₂
A474	CH ₃	Н	Ph	CHF ₂
A475	CH₃CH₂	Н	Ph	CHF ₂
A476	cyclopropyl	Н	Ph	CHF ₂
A477	$(CH_3)_3C$	Н	Ph	CHF ₂
A478	(CH ₃) ₂ CH	Н	Ph	CHF ₂
A479	$CH_3(CH_2)_2$	Н	Ph	CHF ₂
A480	CH ₃ OCH ₂	Н	Ph	CHF ₂
A481	$CH_3O(CH_2)_2$	н	Ph	CHF ₂

Compd.	R ₇₉	R 80	\mathbf{R}_{81}	R ₈₂
no.				
A482	Ph	Н	Ph	CHF ₂
A483	PhO	Н	Ph	CHF ₂
A484	PhS	Н	Ph	CHF ₂
A485	PhSO	Н	Ph	CHF ₂
A486	PhSO ₂	Н	Ph	CHF ₂
A487	CH₃S	Н	Ph	CHF ₂
A488	CH₃SO	Н	Ph	CHF ₂
A489	CF ₃	Н	Ph	CHF ₂
A490	F ₂ CH	Н	Ph	CHF ₂
A491	HCC	Н	Ph	CHF ₂
A492	CH₃CC	Н	Ph	CHF ₂
A493	CH ₂ =CH	Н	Ph	CHF ₂
A494	CH ₂ =CHCH ₂	Н	Ph	CHF ₂
A495	CH ₃ SO ₂ N(CH ₃)	н	Ph	CHF ₂
A496	(CH ₃) ₂ N	Н	Ph	CHF ₂
A497	$(CH_3)_2NSO_2$	Н	Ph	CHF ₂
A498	CICH ₂	Н	Ph	CHF ₂
A499	CH₃SCH₂	Н	Ph	CHF ₂
A500	CH₃SOCH₂	Н	Ph	CHF ₂
A501	CH₃SO₂CH₂	Н	Ph	CHF ₂
A502	Н	Н	Ph	CCI ₃
A503	CH₃	Н	Ph	CCI ₃
A504	CH₃CH₂	Н	Ph	CCI ₃
A505	cyclopropyl	Н	Ph	
A506	$(CH_3)_3C$	Н	Ph	CCI ₃
A507	(CH₃)₂CH	Н	Ph	CCI ₃
A508	$CH_3(CH_2)_2$	Н	Ph	CCI ₃
A509	CH₃OCH₂	Н	Ph	CCI ₃
A510	$CH_3O(CH_2)_2$	Н	Ph	CCI ₃
A511	Ph	Н	Ph	CCl ₃
A512	PhO	Н	Ph	CCI ₃
A513	PhS	Н	Ph	CCI ₃

Compd.	R ₇₉	R 80	R ₈₁	R ₈₂
no.				
A514	PhSO	Н	Ph	CCI ₃
A515	PhSO ₂	Н	Ph	CCI ₃
A516	CH₃S	Н	Ph	CCI ₃
A517	CH₃SO	Н	Ph	CCl ₃
A518	CF ₃	Н	Ph	CCl ₃
A519	F ₂ CH	Н	Ph	CCI ₃
A520	HCC	Н	Ph	CCl ₃
A521	CH₃CC	Н	Ph	CCl ₃
A522	CH ₂ =CH	Н	Ph	CCI ₃
A523	CH ₂ =CHCH ₂	Н	Ph	CCl ₃
A524	CH₃SO₂N(CH₃)	Н	Ph	CCI ₃
A525	$(CH_3)_2N$	Н	Ph	CCI ₃
A526	$(CH_3)_2NSO_2$	Н	Ph	CCl ₃
A527	CICH ₂	Н	Ph	CCI ₃
A528	CH₃SCH₂	Н	Ph	CCI ₃
A529	CH₃SOCH₂	Н	Ph	CCI ₃
A530	CH ₃ SO ₂ CH ₂	Н	Ph	CCI ₃
A531	Н	CH₃	Н	CF ₃
A532	Н	CH_3CH_2	Н	CF ₃
A533	Н	cyclopropyl	Н	CF ₃
A534	Н	$(CH_3)_3CH$	Н	CF ₃
A535	Н	$(CH_3)_2CH$	Н	CF ₃
A536	Н	$CH_3(CH_2)_2$	Н	CF ₃
A537	Н	CH₃OCH₂	Н	CF ₃
A538	Н	$CH_3O(CH_2)_2$	Н	CF ₃
A539	Н	Ph	Н	CF ₃
A540	Н	PhO	Н	CF ₃
A541	Н	PhS	Н	CF ₃
A542	Н	PhSO	Н	CF ₃
A543	Н	PhSO ₂	Н	CF ₃
A544	Н	CH₃S	Н	CF ₃
A545	Н	CH₃SO	Н	CF₃

Compd.	R ₇₉	R 80	R ₈₁	R ₈₂
no.				
A546	Н	CF ₃	Н	CF ₃
A547	Н	F ₂ CH	Н	CF ₃
A548	Н	HCC	Н	CF ₃
A549	Н	CH₃CC	Н	CF ₃
A550	Н	CH ₂ =CH	Н	CF ₃
A551	Н	CH ₂ =CHCH ₂	Н	CF ₃
A552	Н	CH ₃ SO ₂ N(CH ₃)	Н	CF ₃
A553	Н	$(CH_3)_2N$	Н	CF ₃
A554	Н	$(CH_3)_2NSO_2$	Н	CF ₃
A555	Н	CH ₃ SCH ₂	Н	CF ₃
A556	Н	CH ₃ SOCH ₂	Н	CF ₃
A557	Н	CH ₃ SO ₂ CH ₂	Н	CF ₃
A558	Н	CH ₃	Н	CF ₃ CF ₂
A559	Н	CH ₃ CH ₂	Н	CF ₃ CF ₂
A560	Н	cyclopropyl	Н	CF ₃ CF ₂
A561	Н	(CH₃)₃C	Н	CF ₃ CF ₂
A562	Н	(CH ₃) ₂ CH	Н	CF ₃ CF ₂
A563	Н	$CH_3(CH_2)_2$	Н	CF ₃ CF ₂
A564	Н	CH₃OCH₂	Н	CF ₃ CF ₂
A565	Н	$CH_3O(CH_2)_2$	Н	CF ₃ CF ₂
A566	Н	Ph	Н	CF ₃ CF ₂
A567	Н	PhO	Н	CF ₃ CF ₂
A568	Н	PhS	Н	CF ₃ CF ₂
A569	Н	PhSO	Н	CF ₃ CF ₂
A570	Н	PhSO ₂	Н	CF ₃ CF ₂
A571	Н	CH₃S	H	CF ₃ CF ₂
A572	Н	CH₃SO	Н	CF ₃ CF ₂
A573	Н	CF ₃	Н	CF ₃ CF ₂
A574	Н	F₂CH	Н	CF ₃ CF ₂
A575	Н	HCC	Н	CF ₃ CF ₂
A576	Н	CH₃CC	Н	CF ₃ CF ₂
A577	Н	CH ₂ =CH	Н	CF ₃ CF ₂

Compd.	R 79	R 80	R ₈₁	R_{82}
no.				
A578	Н	CH ₂ =CHCH ₂	Н	CF ₃ CF ₂
A579	Н	CH ₃ SO ₂ N(CH ₃)	Н	CF ₃ CF ₂
A580	Н	$(CH_3)_2N$	Н	CF ₃ CF ₂
A581	Н	(CH ₃) ₂ NSO ₂	Н	CF ₃ CF ₂
A582	Н	CH₃SCH₂	Н	CF ₃ CF ₂
A583	Н	CH₃SOCH₂	H	CF ₃ CF ₂
A584	Н	CH₃SO₂CH₂	Н	CF ₃ CF ₂
A585	H .	CH₃	Н	CF ₃ CF ₂ CF ₂
A586	Н	CH ₃ CH ₂	Н	CF ₃ CF ₂ CF ₂
A587	Н	cyclopropyl	Н	CF ₃ CF ₂ CF ₂
A588	Н	$(CH_3)_3C$	Н	CF ₃ CF ₂ CF ₂
A589	Н	(CH ₃) ₂ CH	Н	CF ₃ CF ₂ CF ₂
A590	н	$CH_3(CH_2)_2$	Н	CF ₃ CF ₂ CF ₂
A591	Н	CH ₃ OCH ₂	Н	CF ₃ CF ₂ CF ₂
A592	н	CH ₃ O(CH ₂) ₂	Н	CF ₃ CF ₂ CF ₂
A593	Н	Ph	Н	CF ₃ CF ₂ CF ₂
A594	Н	PhO	Н	CF ₃ CF ₂ CF ₂
A595	Н	PhS	Н	CF ₃ CF ₂ CF ₂
A596	Н	PhSO	Н	CF ₃ CF ₂ CF ₂
A597	H	PhSO ₂	Н	CF ₃ CF ₂ CF ₂
A598	Н	CH₃S	Н	CF ₃ CF ₂ CF ₂
A599	Н	CH₃SO	Н	CF ₃ CF ₂ CF ₂
A600	Н	CF ₃	Н	CF ₃ CF ₂ CF ₂
A601	Н	F ₂ CH	Н	CF ₃ CF ₂ CF ₂
A602	Н	HCC	Н	CF ₃ CF ₂ CF ₂
A603	Н	CH₃CC	Н	CF ₃ CF ₂ CF ₂
A604	H	CH ₂ =CH	Н	CF ₃ CF ₂ CF ₂
A605	Н	CH ₂ =CHCH ₂	Н	CF ₃ CF ₂ CF ₂
A606	Н	CH ₃ SO ₂ N(CH ₃)	Н	CF ₃ CF ₂ CF ₂
A607	Н	$(CH_3)_2N$	Н	CF ₃ CF ₂ CF ₂
A608	Н	$(CH_3)_2NSO_2$	Н	CF ₃ CF ₂ CF ₂
A609	Н	CH₃SCH₂	Н	CF ₃ CF ₂ CF ₂

Compd.	R 79	R 80	R ₈₁	R ₈₂
no.				
A610	Н	CH ₃ SOCH ₂	Н	CF ₃ CF ₂ CF ₂
A611	Н	CH ₃ SO ₂ CH ₂	Н	CF ₃ CF ₂ CF ₂
A612	Н	CH₃	Н	CF ₂ Cl
A613	Н	CH₃CH₂	Н	CF₂CI
A614	Н	cyclopropyl	Н	CF ₂ CI
A615	Н	(CH₃)₃C	Н	CF₂CI
A616	Н	(CH₃)₂CH	Н	CF ₂ CI
A617	Н	CH ₃ (CH ₂) ₂	Н	CF₂CI
A618	Н	CH₃OCH₂	Н	CF₂CI
A619	Н	$CH_3O(CH_2)_2$	Н	CF ₂ Cl
A620	Н	Ph	Н.	CF ₂ Cl
A621	Н	PhO	Н	CF ₂ CI
A622	Н	PhS	Н	CF ₂ CI
A623	Н	PhSO	Н	CF ₂ CI
A624	Н	PhSO₂	Н	CF₂CI
A625	Н	CH₃S	Н	CF ₂ CI
A626	Н	CH₃SO	Н	CF ₂ CI
A627	Н	CF ₃	Н	CF₂CI
A628	Н	F ₂ CH	Н	CF ₂ Cl
A629	Н	HCC	Н	CF ₂ CI
A630	Н	CH₃CC	Н	CF ₂ CI
A631	Н	CH ₂ =CH	H	CF ₂ CI
A632	Н	CH ₂ =CHCH ₂	Н	CF ₂ CI
A633	Н	CH ₃ SO ₂ N(CH ₃)	Н	CF ₂ Cl
A634	Н	$(CH_3)_2N$	Н	CF ₂ Cl
A635	Н	$(CH_3)_2NSO_2$	Н	CF ₂ CI
A636	Н	CH₃SCH₂	Н	CF ₂ Cl
A637	Н	CH₃SOCH₂	Н	CF ₂ CI
A638	Н	CH ₃ SO ₂ CH ₂	Н	CF ₂ CI
A639	Н	CH ₃	Н	CHF ₂
A640	Н	CH₃CH₂	Н	CHF ₂
A641	Н	cyclopropyl	Н	CHF ₂

Compd.	R ₇₉	R 80	R ₈₁	R ₈₂
no.				
A642	Н	(CH₃)₃C	Н	CHF ₂
A643	Н	(CH ₃) ₂ CH	Н	CHF ₂
A644	Н	$CH_3(CH_2)_2$	Н	CHF ₂
A645	Н	CH₃OCH₂	Н	CHF ₂
A646	Н	CH ₃ O(CH ₂) ₂	Н	CHF ₂
A647	H	Ph	Н	CHF ₂
A648	Н	PhO	Н	CHF ₂
A649	Н	PhS	Н	CHF ₂
A650	Н	PhSO	Н	CHF ₂
A651	Н	PhSO ₂	Н	CHF ₂
A652	H	CH₃S	Н	CHF ₂
A653	Н	CH₃SO	Н	CHF ₂
A654	Н	CF ₃	Н	CHF ₂
A655	Н	F ₂ CH	* Н	CHF ₂
A656	Н	HCC	Н	CHF ₂
A657	Н	CH₃CC	Н	CHF ₂
A658	Н	CH ₂ =CH	Н	CHF ₂
A659	Н	CH ₂ =CHCH ₂	Н	CHF ₂
A660	Н	$CH_3SO_2N(CH_3)$	Н	CHF ₂
A661	Н	(CH₃)₂N	Н	CHF ₂
A662	Н	$(CH_3)_2NSO_2$	Н	CHF ₂
A663	Н	CH ₃ SCH ₂	Н	CHF ₂
A664	Н	CH₃SOCH₂	Н	CHF ₂
A665	Н	CH ₃ SO ₂ CH ₂	H	CHF ₂
A666	Н	CH₃	Н	CCl ₃
A667	Н	CH₃CH₂	Н	CCI ₃
A668	Н	cyclopropyl	Н	CCl ₃
A669	Н	(CH₃)₃C	Н	CCl ₃
A670	Н	(CH ₃) ₂ CH	Н	CCl ₃
A671	Н	$CH_3(CH_2)_2$	Н	CCl ₃
A672	Н	CH ₃ OCH ₂	Н	CCl ₃
A673	Н	$CH_3O(CH_2)_2$	Н	CCI ₃

Compd.	R ₇₉	R 80	R ₈₁	R ₈₂
no.				
A674	Н	Ph	Н	CCl ₃
A675	Н	PhO	Н	CCl ₃
A676	Н	PhS	Н	CCl ₃
A677	Н	PhSO	Н	CCl ₃
A678	Н	PhSO ₂	Н	CCl ₃
A679	Н	CH₃S	Н	CCl ₃
A680	Н	CH₃SO	Н	CCl ₃
A681	Н	CF₃	Н	CCl ₃
A682	Н	F ₂ CH	Н	CCl ₃
A683	Н	HCC	Н	CCl ₃
A684	Н	CH₃CC	Н	CCl ₃
A685	Н	CH ₂ =CH	H	CCl ₃
A686	Н	CH ₂ =CHCH ₂	Н	CCl ₃
A687	Н	CH ₃ SO ₂ N(CH ₃)	Н	CCl ₃
A688	Н	$(CH_3)_2N$	Н	CCl ₃
A689	Н	$(CH_3)_2NSO_2$	Н	CCl ₃
A690	Н	CH₃SCH₂	Н	CCl ₃
A691	Н	CH₃SOCH₂	Н	CCl ₃
A692	Н	CH ₃ SO ₂ CH ₂	Н	CCl ₃
A693	Н	CH ₃	CH ₃	CF ₃
A694	Н	CH₃CH₂	CH_3	CF ₃
A695	Н	cyclopropyl	CH ₃	CF ₃
A696	Н	$(CH_3)_3C$	CH ₃	CF ₃
A697	Н	(CH₃)₂CH	CH ₃	CF ₃
A698	Н	$CH_3(CH_2)_2$	CH ₃	CF ₃
A699	Н	CH₃OCH₂	CH ₃	CF ₃
A700	Н	$CH_3O(CH_2)_2$	CH ₃	CF ₃
A701	Н	Ph	CH ₃	CF ₃
A702	Н	PhO	СНз	CF ₃
A703	Н	PhS	СН₃	CF ₃
A704	Н	PhSO	СН₃	CF ₃
A705	Н	PhSO ₂	CH₃	CF ₃

Compd.	R ₇₉	R 80	R ₈₁	R ₈₂
no.				
A706	Н	CH₃S	CH₃	CF ₃
A707	Н	CH₃SO	CH₃	CF ₃
A708	Н	CF ₃	CH₃	CF ₃
A709	Н	F ₂ CH	CH₃	CF ₃
A710	Н	HCC	CH₃	CF ₃
A711	Н	CH₃CC	СН₃	CF ₃
A712	Н	CH ₂ =CH	CH₃	CF ₃
A713	Н	CH ₂ =CHCH ₂	СН₃	CF ₃
A714	Н	CH₃SO₂N(CH₃)	СН₃	CF ₃
A715	Н	$(CH_3)_2N$	CH₃	CF ₃
A716	Н	$(CH_3)_2NSO_2$	СНз	CF ₃
A717	Н	CH₃SCH₂	СН₃	CF ₃
A718	Н	CH₃SOCH₂	СНз	CF ₃
A719	Н	CH ₃ SO ₂ CH ₂	СНз	CF ₃
A720	Н	CH₃	СНз	CF ₃ CF ₂
A721	Н	CH ₃ CH ₂	СН3	CF ₃ CF ₂
A722	Н	cyclopropyl	CH ₃	CF ₃ CF ₂
A723	Н	$(CH_3)_3C$	CH_3	CF ₃ CF ₂
A724	Н	(CH ₃) ₂ CH	CH ₃	CF ₃ CF ₂
A725	Н	$CH_3(CH_2)_2$	CH ₃	CF ₃ CF ₂
A726	Н	CH₃OCH₂	CH ₃	CF ₃ CF ₂
A727	Н	$CH_3O(CH_2)_2$	CH ₃	CF ₃ CF ₂
A728	Н	Ph	СНз	CF ₃ CF ₂
A729	Н	PhO	CH ₃	CF ₃ CF ₂
A730	Н	PhS	CH ₃	CF ₃ CF ₂
A731	Н	PhSO	CH ₃	CF ₃ CF ₂
A732	Н	PhSO ₂	CH ₃	CF ₃ CF ₂
A733	Н	CH₃S	CH ₃	CF ₃ CF ₂
A734	Н	CH₃SO	CH ₃	CF ₃ CF ₂
A735	Н	CF ₃	СН₃	CF ₃ CF ₂
A736	Н	F ₂ CH	CH ₃	CF ₃ CF ₂
A737	Н	HCC	CH₃	CF ₃ CF ₂

Compd.	R ₇₉	R 80	R ₈₁	R ₈₂
no.				
A738	Н	CH₃CC	CH ₃	CF ₃ CF ₂
A739	Н	CH ₂ =CH	CH ₃	CF ₃ CF ₂
A740	Н	CH ₂ =CHCH ₂	CH ₃	CF ₃ CF ₂
A741	Н	$CH_3SO_2N(CH_3)$	CH ₃	CF ₃ CF ₂
A742	Н	$(CH_3)_2N$	CH ₃	CF ₃ CF ₂
A743	Н	$(CH_3)_2NSO_2$	CH_3	CF ₃ CF ₂
A744	Н	CH ₃ SCH ₂	CH ₃	CF ₃ CF ₂
A745	Н	CH₃SOCH₂	CH₃	CF ₃ CF ₂
A746	Н	CH ₃ SO ₂ CH ₂	CH ₃	CF ₃ CF ₂
A747	Н	CH₃	СН₃	CF ₃ CF ₂ CF ₂
A748	Н	CH₃CH₂	CH₃	CF ₃ CF ₂ CF ₂
A749	Н	cyclopropyl	CH₃	CF ₃ CF ₂ CF ₂
A750	Н	(CH ₃) ₃ C	CH ₃	CF ₃ CF ₂ CF ₂
A751	Н	(CH₃)₂CH	CH_3	CF ₃ CF ₂ CF ₂
A752	Н	$CH_3(CH_2)_2$	CH₃	CF ₃ CF ₂ CF ₂
A753	Н	CH ₃ OCH ₂	CH ₃	CF ₃ CF ₂ CF ₂
A754	Н	$CH_3O(CH_2)_2$	CH₃	CF ₃ CF ₂ CF ₂
A755	Н	Ph	CH_3	CF ₃ CF ₂ CF ₂
A756	Н	PhO	CH ₃	CF ₃ CF ₂ CF ₂
A757	Н	PhS	CH_3	CF ₃ CF ₂ CF ₂
A758	Н	PhSO	CH₃	CF ₃ CF ₂ CF ₂
A759	Н	PhSO ₂	CH₃	CF ₃ CF ₂ CF ₂
A760	Н	CH₃S	CH ₃	CF ₃ CF ₂ CF ₂
A761	Н	CH₃SO	CH_3	CF ₃ CF ₂ CF ₂
A762	Н	CF ₃	CH_3	CF ₃ CF ₂ CF ₂
A763	Н	F ₂ CH	CH_3	CF ₃ CF ₂ CF ₂
A764	Н	HCC	CH_3	CF ₃ CF ₂ CF ₂
A765	Н	CH₃CC	CH ₃	CF ₃ CF ₂ CF ₂
A766	Н	CH ₂ =CH	CH ₃	CF ₃ CF ₂ CF ₂
A767	Н	CH ₂ =CHCH ₂	CH ₃	CF ₃ CF ₂ CF ₂
A768	Н	$CH_3SO_2N(CH_3)$	CH ₃	CF ₃ CF ₂ CF ₂
A769	Н	$(CH_3)_2N$	CH ₃	CF ₃ CF ₂ CF ₂

PCT/EP01/00720

Compd.	R ₇₉	R 80	R ₈₁	R ₈₂
no.				
A770	Н	$(CH_3)_2NSO_2$	CH ₃	CF ₃ CF ₂ CF ₂
A771	Н	CH₃SCH₂	CH₃	CF ₃ CF ₂ CF ₂
A772	Н	CH ₃ SOCH ₂	CH₃	CF ₃ CF ₂ CF ₂
A773	Н	CH ₃ SO ₂ CH ₂	CH ₃	CF ₃ CF ₂ CF ₂
A774	Н	CH₃	CH₃	CF ₂ Cl
A775	Н	CH ₃ CH ₂	CH ₃	CF ₂ CI
A776	Н	cyclopropyl	CH ₃	CF ₂ CI
A777	Н	$(CH_3)_3C$	CH ₃	CF ₂ CI
A778	Н	(CH ₃) ₂ CH	CH₃	CF ₂ Cl
A779	Н	$CH_3(CH_2)_2$	CH₃	CF ₂ Cl
A780	Н	CH ₃ OCH ₂	CH ₃	CF ₂ CI
A781	Н	$CH_3O(CH_2)_2$	CH ₃	CF ₂ CI
A782	н	Ph	CH ₃	CF ₂ CI
A783	Н	PhO	CH ₃	CF ₂ Cl
A784	Н	PhS	CH ₃	CF ₂ Cl
A785	Н	PhSO	CH_3	CF₂CI
A786	Н	PhSO₂	CH₃	CF₂CI
A787	Н	CH₃S	CH ₃	CF₂CI
A788	Н	CH₃SO	CH_3	CF₂CI
A789	Н	CF₃	CH ₃	CF ₂ CI
A790	Н	F ₂ CH	CH_3	CF₂CI
A791	Н	HCC	CH ₃	CF ₂ CI
A792	Н	CH₃CC	CH ₃	CF₂CI
A793	Н	CH ₂ =CH	CH₃	CF₂CI
A794	Н	CH ₂ =CHCH ₂	CH_3	CF₂CI
A795	Н	$CH_3SO_2N(CH_3)$	CH_3	CF₂CI
A796	Н	$(CH_3)_2N$	CH₃	CF₂CI
A797	Н	$(CH_3)_2NSO_2$	CH ₃	CF₂CI
A798	Н	CH₃SCH₂	CH_3	CF₂CI
A799	Н	CH ₃ SOCH ₂	CH ₃	CF ₂ CI
A800	Н	CH₃SO₂CH₂	CH ₃	CF₂CI
A801	Н	CH₃	CH ₃	CHF ₂

Compd.	R ₇₉	R 80	R ₈₁	R ₈₂
no.				
A802	Н	CH ₃ CH ₂	CH ₃	CHF ₂
A803	Н	cyclopropyl	CH ₃	CHF ₂
A804	Н	$(CH_3)_3C$	CH ₃	CHF ₂
A805	Н	$(CH_3)_2CH$	CH ₃	CHF ₂
A806	Н	$CH_3(CH_2)_2$	CH ₃	CHF ₂
A807	Н	CH₃OCH₂	CH ₃	CHF ₂
808A	Н	$CH_3O(CH_2)_2$	CH ₃	CHF ₂
A809	Н	Ph	CH_3	CHF ₂
A810	Н	PhO	CH_3	CHF ₂
A811	· H	PhS	CH₃	CHF ₂
A812	Н	PhSO	CH ₃	CHF ₂
A813	Н	PhSO ₂	CH₃	CHF ₂
A814	Н	CH₃S	CH ₃	CHF ₂
A815	Н	CH₃SO	CH₃	CHF ₂
A816	Н	CF ₃	CH₃	CHF ₂
A817	Н	F ₂ CH	CH₃	CHF ₂
A818	Н	HCC	CH₃	CHF ₂
A819	Н	CH₃CC	CH ₃	CHF ₂
A820	Н	CH ₂ =CH	CH ₃	CHF ₂
A821	Н	CH ₂ =CHCH ₂	CH₃	CHF ₂
A822	Н	$CH_3SO_2N(CH_3)$	CH ₃	CHF ₂
A823	Н	$(CH_3)_2N$	CH₃	CHF ₂
A824	H	$(CH_3)_2NSO_2$	CH ₃	CHF ₂
A825	Н	CH₃SCH₂	CH ₃	CHF ₂
A826	H	CH ₃ SOCH ₂	CH ₃	CHF ₂
A827	Н	CH ₃ SO ₂ CH ₂	СН₃	CHF ₂
A828	Н	CH₃	СН₃	CCI ₃
A829	Н	CH ₃ CH ₂	CH ₃	CCl₃
A830	Н	cyclopropyl	СН₃	CCI ₃
A831	Н	$(CH_3)_3C$	СН3	CCI ₃
A832	Н	(CH ₃) ₂ CH	СНз	CCI ₃
A833	Н	$CH_3(CH_2)_2$	СНз	CCI ₃

Compd.	R ₇₉	R 80	R ₈₁	R ₈₂
no.				
A834	Н	CH ₃ OCH ₂	СН₃	CCI ₃
A835	Н	$CH_3O(CH_2)_2$	СН3	CCl ₃
A836	Н	Ph	СН₃	CCI ₃
A837	Н	PhO	СНз	CCI ₃
A838	Н	PhS	СНз	CCI ₃
A839	Н	PhSO	СН₃	CCI ₃
A840	Н	PhSO ₂	СН₃	CCI ₃
A841	Н	CH₃S	СН₃	CCI ₃
A842	Н	CH₃SO	CH ₃	CCI ₃
A843	Н	CF ₃	CH ₃	CCI ₃
A844	Н	F₂CH	CH ₃	CCI ₃
A845	H ·	HCC	СНз	CCI ₃
A846	Н	CH₃CC	СНз	CCI ₃
A847	Н	CH ₂ =CH	CH ₃	CCI ₃
A848	Н	CH ₂ =CHCH ₂	CH_3	CCl ₃
A849	Н	CH ₃ SO ₂ N(CH ₃)	CH ₃	CCI ₃
A850	Н	$(CH_3)_2N$	СН ₃	CCI ₃
A851	Н	$(CH_3)_2NSO_2$	CH₃	CCI ₃
A852	Н	CH₃SCH₂	СН ₃	CCI ₃
A853	Н	CH₃SOCH₂	СН₃	CCI ₃
A854	Н	CH ₃ SO ₂ CH ₂	CH ₃	CCI ₃
A855	Н	CH₃	Ph	CF ₃
A856	Н	CH₃CH₂	Ph	CF ₃
A857	Н	(CH ₃) ₂ CH	Ph	CF ₃
A858	Н	(CH ₃) ₂ CH	Ph	CF ₃
A859	Н	cyclopropyl	Ph	CF ₃
A860	Н	$CH_3(CH_2)_2$	Ph	CF ₃
A861	Н	CH₃OCH₂	Ph	CF ₃
A862	Н	$CH_3O(CH_2)_2$	Ph	CF ₃
A863	Н	Ph	Ph	CF ₃
A864	Н	PhO	Ph	CF ₃
A865	Н	PhS	Ph	CF ₃

- 93 -

WO 01/54501

PCT/EP01/00720

Compd.	R ₇₉	R 80	R ₈₁	R ₈₂
no.				
A866	Н	PhSO	Ph	CF₃
A867	Н	PhSO ₂	Ph	CF₃
A868	Н	CH₃S	Ph	CF ₃
A869	Н	CH₃SO	Ph	CF ₃
A870	Н	CF ₃	Ph	CF₃
A871	н	F₂CH	Ph	CF ₃
A872	Н	HCC	Ph	CF ₃
A873	Н	CH₃CC	Ph	CF ₃
A874	H	CH ₂ =CH	Ph	CF ₃
A875	Н	CH ₂ =CHCH ₂	Ph	CF ₃
A876	, H	CH ₃ SO ₂ N(CH ₃)	Ph	CF ₃
A877	Н	$(CH_3)_2N$	Ph	CF ₃
A878	Н	$(CH_3)_2NSO_2$	Ph	CF ₃
A879	Н	CH₃SCH₂	Ph	CF ₃
A880	Н	CH₃SOCH₂	Ph	CF₃
A881	Н	CH ₃ SO ₂ CH ₂	Ph	CF ₃
A882	Н	CH ₃	Ph	CF ₃ CF ₂
A883	Н	CH₃CH₂	Ph	CF ₃ CF ₂
A884	Н	cyclopropyl	Ph	CF ₃ CF ₂
A885	Н	$(CH_3)_3C$	Ph	CF ₃ CF ₂
A886	Н	(CH ₃) ₂ CH	Ph	CF ₃ CF ₂
A887	Н	$CH_3(CH_2)_2$	Ph	CF ₃ CF ₂
A888	Н	CH ₃ OCH ₂	Ph	CF ₃ CF ₂
A889	Н	$CH_3O(CH_2)_2$	Ph	CF ₃ CF ₂
A890	Н	Ph	Ph	CF ₃ CF ₂
A891	Н	PhO	Ph	CF ₃ CF ₂
A892	Н	PhS	Ph	CF ₃ CF ₂
A893	Н	PhSO	Ph	CF ₃ CF ₂
A894	Н	PhSO ₂	Ph	CF ₃ CF ₂
A895	Н	CH₃S	Ph	CF ₃ CF ₂
A896	Н	CH₃SO	Ph	CF ₃ CF ₂
A897	Н	CF ₃	Ph	CF ₃ CF ₂

Compd.	R ₇₉	R 80	R ₈₁	R_{82}
no.				
A898	Н	F₂CH	Ph	CF ₃ CF ₂
A899	Н	HCC	Ph	CF ₃ CF ₂
A900	Н	CH₃CC	Ph	CF ₃ CF ₂
A901	Н	CH ₂ =CH	Ph	CF ₃ CF ₂
A902	Н	CH ₂ =CHCH ₂	Ph	CF ₃ CF ₂
A903	Н	CH ₃ SO ₂ N(CH ₃)	Ph	CF ₃ CF ₂
A904	Н	$(CH_3)_2N$	Ph	CF ₃ CF ₂
A905	Н	$(CH_3)_2NSO_2$	Ph	CF ₃ CF ₂
A906	Н	CH ₃ SCH ₂	Ph	CF ₃ CF ₂
A907	Н	CH ₃ SOCH ₂	Ph	CF ₃ CF ₂
A908	Н	CH ₃ SO ₂ CH ₂	Ph	CF ₃ CF ₂
A909	Н	CH ₃	Ph	CF ₃ CF ₂ CF ₂
A910	Н	CH₃CH₂	Ph	CF ₃ CF ₂ CF ₂
A911	н	cyclopropyl	Ph	CF ₃ CF ₂ CF ₂
A912	Н	$(CH_3)_3C$	Ph	CF ₃ CF ₂ CF ₂
A913	H	$(CH_3)_2CH$	Ph	CF ₃ CF ₂ CF ₂
A914	Н	$CH_3(CH_2)_2$	Ph	CF ₃ CF ₂ CF ₂
A915	Н	CH₃OCH₂	Ph	CF ₃ CF ₂ CF ₂
A916	Н	$CH_3O(CH_2)_2$	Ph	CF ₃ CF ₂ CF ₂
A917	Н	Ph	Ph	CF ₃ CF ₂ CF ₂
A918	Н	PhO	Ph	CF ₃ CF ₂ CF ₂
A919	Н	PhS	Ph	CF ₃ CF ₂ CF ₂
A920	Н	PhSO	Ph	CF ₃ CF ₂ CF ₂
A921	Н	PhSO ₂	Ph	CF ₃ CF ₂ CF ₂
A922	Н	CH₃S	Ph	CF ₃ CF ₂ CF ₂
A923	Н	CH₃SO	Ph	CF ₃ CF ₂ CF ₂
A924	H	CF₃	Ph	CF ₃ CF ₂ CF ₂
A925	Н	F ₂ CH	Ph	CF ₃ CF ₂ CF ₂
A926	Н	HCC	Ph	CF ₃ CF ₂ CF ₂
A927	Н	CH₃CC	Ph	CF ₃ CF ₂ CF ₂
A928	Н	CH ₂ =CH	Ph	CF ₃ CF ₂ CF ₂
A929	Н	CH ₂ =CHCH ₂	Ph	CF ₃ CF ₂ CF ₂

Compd.	R 79	R 80	R ₈₁	R ₈₂
no.				
A930	Н	CH ₃ SO ₂ N(CH ₃)	Ph	CF ₃ CF ₂ CF ₂
A931	Н	$(CH_3)_2N$	Ph	CF ₃ CF ₂ CF ₂
A932	Н	(CH ₃) ₂ NSO ₂	Ph	CF ₃ CF ₂ CF ₂
A933	Н	CH₃SCH₂	Ph	CF ₃ CF ₂ CF ₂
A934	Н	CH₃SOCH₂	Ph	CF ₃ CF ₂ CF ₂
A935	Н	CH ₃ SO ₂ CH ₂	Ph	CF ₃ CF ₂ CF ₂
A936	Н	CH₃	Ph	CF ₂ CI
A937	Н	CH₃CH₂	Ph	CF ₂ CI
A938	Н	cyclopropyl	Ph	CF ₂ Cl
A939	Н	(CH ₃) ₃ C	Ph	CF ₂ CI
A940	Н	(CH ₃) ₂ CH	Ph	CF ₂ Cl
A941	Н	CH ₃ (CH ₂) ₂	Ph	CF ₂ CI
A942	Н	CH₃OCH₂	Ph	CF ₂ CI
A943	Н	CH ₃ O(CH ₂) ₂	Ph	CF ₂ CI
A944	Н	Ph	Ph	CF ₂ Cl
A945	Н	PhO	Ph	CF ₂ Cl
A946	Н	PhS	Ph	CF ₂ Cl
A947	Н	PhSO	Ph	CF ₂ CI
A948	Н	PhSO ₂	Ph	CF ₂ CI
A949	Н	CH₃S	Ph	CF ₂ CI
A950	Н	CH₃SO	Ph	CF ₂ CI
A951	Н	CF₃	Ph	CF ₂ CI
A952	Н	F ₂ CH	Ph	CF ₂ Cl
A953	Н	HCC	Ph	CF ₂ Cl
A954	н	CH₃CC	Ph	CF ₂ CI
A955	Н	CH ₂ =CH	Ph	CF ₂ Cl
A956	Н	CH ₂ =CHCH ₂	Ph	CF ₂ Cl
A957	Н	CH₃SO₂N(CH₃)	Ph	CF ₂ Cl
A958	Н	(CH₃)₂N	Ph	CF ₂ Cl
A959	Н	(CH ₃) ₂ NSO ₂	Ph	CF ₂ Cl
A960	Н	CH₃SCH₂	Ph	CF ₂ Cl
A961	Н	CH ₃ SOCH ₂	Ph	CF ₂ Cl

Compd.	R 79	R 80	R ₈₁	R ₈₂
no.				
A962	Н	CH ₃ SO ₂ CH ₂	Ph	CF ₂ Cl
A963	Н	CH₃	Ph	CHF ₂
A964	Н	CH ₃ CH ₂	Ph	CHF ₂
A965	Н	$(CH_3)_3C$	Ph	CHF ₂
A966	Н	(CH ₃) ₂ CH	Ph	CHF ₂
A967	Н	cyclopropyl	Ph	CHF ₂
A968	Н	$CH_3(CH_2)_2$	Ph	CHF ₂
A969	, H	CH₃OCH₂	Ph	CHF ₂
A970	Н	CH ₃ O(CH ₂) ₂	Ph	CHF ₂
A971	Н	Ph	Ph	CHF ₂
A972	Н	PhO	Ph	CHF ₂
A973	Н	PhS	Ph	CHF ₂
A974	Н	PhSO	Ph	CHF ₂
A975	Н	PhSO ₂	Ph	CHF ₂
A976	Н	CH₃S	Ph	CHF ₂
A977	Н	CH₃SO	Ph	CHF ₂
A978	Н	CF ₃	Ph	CHF ₂
A979	Н	F ₂ CH	Ph	CHF ₂
A980	н .	HCC	Ph	CHF ₂
A981	Н	CH₃CC	Ph	CHF ₂
A982	Н	CH ₂ =CH	Ph	CHF ₂
A983	Н	CH ₂ =CHCH ₂	Ph	CHF ₂
A984	Н	$CH_3SO_2N(CH_3)$	Ph	CHF ₂
A985	Н	$(CH_3)_2N$	Ph	CHF ₂
A986	Н	$(CH_3)_2NSO_2$	Ph	CHF ₂
A987	Н	CH₃SCH₂	Ph	CHF ₂
A988	Н	CH₃SOCH₂	Ph	CHF ₂
A989	Н	CH ₃ SO ₂ CH ₂	Ph	CHF ₂
A990	Н	CH₃	Ph	CCl ₃
A991	Н	CH ₃ CH ₂	Ph	CCI ₃
A992	Н	(CH ₃) ₃ C	Ph	CCI ₃
A993	Н	(CH ₃) ₂ CH	Ph	CCI ₃

Compd.	R 79	R 80	R ₈₁	R ₈₂
no.				
A994	Н	cyclopropyl	Ph	CCI ₃
A995	Н	$CH_3(CH_2)_2$	Ph	CCI ₃
A996	Н	CH₃OCH₂	Ph	CCl ₃
A997	Н	$CH_3O(CH_2)_2$	Ph	CCI ₃
A998	Н	Ph	Ph	CCI ₃
A999	Н	PhO	Ph	CCI ₃
A1000	Н	PhS	Ph	CCI ₃
A1001	Н	PhSO	Ph	CCI ₃
A1002	Н	PhSO ₂	Ph	CCI ₃
A1003	Н	CH₃S	Ph	CCI ₃
A1004	Н	CH₃SO	Ph	CCI ₃
A1005	Н	CF₃	Ph	CCI ₃
A1006	Н	F ₂ CH	Ph	CCI ₃
A1007	- H	HCC	Ph	CCl ₃
A1008	Н	CH₃CC	Ph	CCI ₃
A1009	Н	CH ₂ =CH	Ph	CCI ₃
A1010	Н	CH ₂ =CHCH ₂	Ph	CCI ₃
A1011	Н	CH ₃ SO ₂ N(CH ₃)	Ph	CCI ₃
A1012	Н	$(CH_3)_2N$	Ph	CCI ₃
A1013	Н	$(CH_3)_2NSO_2$	Ph	CCI ₃
A1014	Н	CH₃SCH₂	Ph	CCI ₃
A1015	Н	CH ₃ SOCH ₂	Ph	CCl ₃
A1016	` H	CH ₃ SO ₂ CH ₂	Ph	CCI ₃
A1017	F	Н	Н	CF ₃
A1018	CI	Н	Н	CF ₃
A1019	Br	Н	Н	CF ₃
A1020	CN	Н	Н	CF ₃
A1021	CH ₃ SO ₂ O	Н	Н	CF ₃
A1022	CH₃O	Н	Н	CF₃
A1023	CH₂CH₃O	Н	Н	CF ₃
A1024	CH ₂ CH=CH ₂ O	Н	Н	CF ₃
A1025	HCCCH ₂ O	н	Н	CF ₃

Compd.	R ₇₉	R 80	R ₈₁	R ₈₂
no.				
A1026	S-benzyl	H	Н	CF ₃
A1027	SO ₂ -benzyl	Н	Н	CF ₃
A1028	CICH ₂	Н	Н	CF ₃
A1029	BrCH ₂	Н	Н	CF ₃
A1030	FCH ₂	Н	Н	CF ₃
A1031	CHF ₂ CH ₂	Н	Н	CF ₃
A1032	CF ₃ CH ₂	Н	Н	CF ₃
A1033	triazolylmethyl	Н	Н	CF ₃
A1034	CHCl ₂ CH ₂	Н	Н	CF ₃
A1035	CICH=CH	Н	Н	CF ₃
A1036	Cl ₂ C=CH	Н	Н	CF ₃
A1037	CF₃CH=CH	Н	Н	CF ₃
A1038	CICC	H	Н	CF ₃
A1039	Ph	Н	, Н	CF ₃
A1040	CH₃	СН₃	Н	CF ₃
A1041	CH ₃	ОН	Н	CF ₃
A1042	CH₃	F	Н	CF ₃
A1043	CH ₃	Cl	Н	CF ₃
A1044	F	CH₃	Н	CF ₃
A1045	Cl	CH₃	Н	CF_3
A1046	Н	F	Н	CF ₃
A1047	Н	Cl	Н	CF ₃
A1048	Н	Br	Н	CF ₃
A1049	Н	ОН	Н	CF ₃
A1050	Ή	OCH ₃	Н	CF ₃
A1051	Н	OCHF ₂	Н	CF ₃
A1052	Н	OSO ₂ CH ₃	Н	CF ₃
A1053	Н	OSO ₂ CF ₃	Н	CF ₃
A1054	Н	CICH ₂	Н	CF ₃
A1055	Н	BrCH ₂	Н	CF ₃
A1056	Н	FCH ₂	Н	CF ₃
A1057	Н	CHF ₂ CH ₂	Н	CF ₃

Compd.	R ₇₉	R 80	R ₈₁	R_{82}
no.				
A1058	Н	CF ₃ CH ₂	Н	CF ₃
A1059	Н	triazolylmethyl	Н	CF ₃
A1060	Н	CHCl ₂ CH ₂	H	CF ₃
A1061	Н	CICH=CH	Н	CF ₃
A1062	Н	Cl ₂ C=CH	Н	CF ₃
A1063	Н	CF₃CH=CH	H	CF ₃
A1064	Н	CICC	Н	CF ₃
A1065	Н	CH ₃ C(O)	Н	CF ₃
A1066	Н	phenyl	Н	CF ₃
A1067	Н	SO ₂ CH ₃	Н	CF ₃
A1068	Н	SO ₂ CF ₃	Н	CF₃
A1069	Н	CN	Н	CF ₃
A1070	Н	NO_2	Н	CF ₃
A1071	CH ₃	Н	F	CF ₃
A1072	CH₃	Н	CI	CF₃
A1073	CH₃	H	Br	CF ₃
A1074	CH₃	Н	CN	CF ₃
A1075	CH₃	Н	CH ₃ O	CF ₃
A1076	CH₃	Н	CH₃S	CF ₃
A1077	CH₃	Н	CH₃SO	CF ₃
A1078	CH₃	Н	CH ₃ SO ₂	CF₃

In the following Table 6 Q is Q₃

and Q_3 represents the following radicals B:

Table 6: Radicals B:

Radical	R ₄₄	R ₃₇	R ₃₈	R ₃₉	R ₄₀	W
B1	Н	Н	Н	Н	ОН	CH ₂
B2	CH₃	Н	Н	Н	ОН	CH ₂
В3	CH₃CH₂	Н	Н	Н	ОН	CH ₂
B4	CH ₃ CH ₂ CH ₂	Н	Н	Н	ОН	CH ₂
B5	(CH ₃) ₂ CH	Н	Н	Н	ОН	CH_2
B6	(CH ₃) ₃ C	Н	Н	Н	ОН	CH ₂
B7	CH₃S	Н	Н	Н	ОН	CH_2
B8	CH₃SO	Н	Η.	Н	ОН	CH_2
B9	CH₃SO₂	Н	Н	H	ОН	CH ₂
B10	Ph	Н	Н	Н	ОН	CH ₂
B11	CH ₃ O	Н	Н	Н	ОН	CH_2
B12	CH ₃ CO ₂	Н	Н	Н	ОН	CH ₂
B13	CH ₃ CH ₂ CO ₂	Н	Н	Н	ОН	CH ₂
B14	CH ₂ =CHCH ₂	Н	Н	Н	ОН	CH ₂
B15	HCCCH ₂	Н	Н	Н	ОН	CH ₂
B16	CF ₃	Н	Н	Н	ОН	CH ₂
B17	$(CH_3)_2NSO_2$	Н	Н	H	ОН	CH_2
B18	$(CH_3)_2N$	Н	Н	Н	ОН	CH_2
B19	PhO	Н	Н	Н	ОН	CH_2
B20	PhS	Н	Н	Н	ОН	CH ₂
B21	PhSO	MН	Н	Н	ОН	CH_2
B22	PhSO ₂	Н	Н	Н	ОН	CH ₂
B23	CN	Н	Н	Н	ОН	CH_2
B24	CH ₃	CH _{3.}	Н	Н	ОН	CH_2
B25	CH ₃ CH ₂	CH ₃	Н	Н	ОН	CH_2
B26	CH₃CH₂CH₂	CH_3	Н	Н	ОН	CH ₂
B27	(CH₃)₂CH	CH_3	Н	Н	ОН	CH ₂
B28	(CH₃)₃C	CH ₃	Н	Н	ОН	CH_2
B29	CH₃S	CH ₃	Н	H	ОН	CH_2
B30	CH₃SO	CH_3	Н	Н	ОН	CH ₂
B31	CH ₃ SO ₂	CH_3	Н	Н	ОН	CH ₂
B32	Ph	CH₃	Н	Н	ОН	CH ₂

Radical	R ₄₄	R ₃₇	R ₃₈	R ₃₉	R ₄₀	W
B33	CH₃O	СН₃	Н	Н	ОН	CH ₂
B34	CH ₃ CO ₂	CH₃	Н	Н	ОН	CH ₂
B35	CH ₃ CH ₂ CO ₂	CH₃	Н	Н	ОН	CH ₂
B36	CH ₂ =CHCH ₂	CH₃	Н	Н	ОН	CH ₂
B37	HCCCH ₂	CH ₃	Н	Н	ОН	CH ₂
B38	CF₃	СНз	Н	Н	ОН	CH ₂
B39	(CH ₃) ₂ NSO ₂	CH ₃	Н	Н	ОН	CH ₂
B40	(CH ₃) ₂ N	CH ₃	Н	Н	ОН	CH ₂
B41	PhO	CH ₃	Н	Н	ОН	CH ₂
B42	PhS	CH ₃	Н	Н	ОН	CH ₂
B43	PhSO	СНз	Н	Н	ОН	CH ₂
B44	PhSO ₂	CH₃	Н	Н	ОН	CH ₂
B45	CN	СН₃	Н	Н	ОН	CH ₂
B46	CH ₃	Н	СH _з	Н	ОН	CH ₂
B47	CH ₃ CH ₂	Н	СН₃	Н	ОН	CH ₂
B48	CH ₃ CH ₂ CH ₂	Н	СН₃	Н	ОН	CH ₂
B49	(CH ₃) ₂ CH	Н	СНз	H	ОН	CH_2
B50	(CH₃)₃C	Н	СН₃	Н	ОН	CH ₂
B51	CH₃S	Н	CH₃	Н	ОН	CH ₂
B52	CH₃SO	Н	CH ₃	Н	ОН	CH ₂
B53	CH ₃ SO ₂	Н	СН3	Н	ОН	CH_2
B54	Ph	Н	CH₃	Н	ОН	CH ₂
B55	CH₃O	Н	СНз	Н	ОН	CH ₂
B56	CH_3CO_2	Н	CH₃	Ĥ	ОН	CH ₂
B57	CH ₃ CH ₂ CO ₂	Н	CH ₃	Н	ОН	CH ₂
B58	CH ₂ =CHCH ₂	Н	CH_3	Н	ОН	CH ₂
B59	HCCCH ₂	Н	CH₃	Н	ОН	CH ₂
B60	CF ₃	Н	CH ₃	Н	ОН	CH ₂
B61 ·	$(CH_3)_2NSO_2$	Н	CH₃	Н	ОН	CH ₂
B62	· (CH ₃) ₂ N	Н	СН₃	Н	ОН	CH ₂
B63	PhO	Н	СНз	Н	ОН	CH ₂
B64	PhS	Н	СНз	Н	ОН	CH ₂
B65	PhSO	Н	СНз	Н	ОН	CH ₂

Radical	R ₄₄	R ₃₇	R ₃₈	R ₃₉	R ₄₀	W
B66	PhSO ₂	Н	СН₃	Н	ОН	CH ₂
B67	CN	Н	CH ₃	Н	ОН	CH ₂
B68	CH ₃	CH ₃	СНз	Н	ОН	CH ₂
B69	CH ₃ CH ₂	CH ₃	СНз	Н	ОН	CH ₂
B70	CH ₃ CH ₂ CH ₂	CH ₃	СН3	Н	ОН	CH ₂
B71	(CH ₃) ₂ CH	CH ₃	СНз	Н	ОН	CH ₂
B72	(CH ₃) ₃ C	CH₃	СН₃	Н	ОН	CH ₂
B73	CH₃S	CH₃	CH ₃	Н	ОН	CH ₂
B74	CH₃SO	CH₃	СНз	Н	ОН	CH ₂
B75	CH ₃ SO ₂	CH ₃	СНҙ	Н	ОН	CH ₂
B76	Ph	CH₃	CH ₃	Н	ОН	CH ₂
B77	CH ₃ O	CH_3	CH_3	Н	ОН	CH ₂
B78	CH ₃ CO ₂	CH ₃	СНз	Н	ОН	CH ₂
B79	CH ₃ CH ₂ CO ₂	CH ₃	СН₃	Н	ОН	CH ₂
B80	CH ₂ =CHCH ₂	CH ₃	СНз	Н	ОН	CH ₂
B81	HCCCH ₂	CH ₃	СНз	Н	ОН	CH ₂
B82	CF ₃	CH ₃	СНз	Н	ОН	CH ₂
B83	$(CH_3)_2NSO_2$	CH₃	СН₃	Н	ОН	CH ₂
B84	(CH₃)₂N	СНз	СНз	Н	ОН	CH ₂
B85	PhO	CH ₃	CH ₃	Н	ОН	CH ₂
B86	PhS	CH₃	СН3	Н	ОН	CH ₂
B87	PhSO	CH ₃	CH ₃	Н	ОН	CH ₂
B88	PhSO ₂	CH₃	CH ₃	Н	ОН	CH ₂
B89	CN	СНз	CH ₃	Н	ОН	CH ₂
B90	CH ₃	CH₃	СН3	СН3	ОН	CH ₂
B91	CH₃CH₂	СНз	СНз	СН3	ОН	CH ₂
B92	CH ₃ CH ₂ CH ₂	CH ₃	СН₃	СНз	ОН	CH ₂
B93	(CH ₃) ₂ CH	СНз	СНз	СН3	ОН	CH ₂
B94	$(CH_3)_3C$	СН3	CH ₃	CH_3	ОН	CH ₂
B95	CH₃S	СНз	СН₃	CH ₃	ОН	CH ₂
B96	CH₃SO	СН₃	СН₃	СН3	ОН	CH ₂
B97	CH ₃ SO ₂	CH ₃	CH ₃	CH ₃	ОН	CH ₂
B98	Ph	CH ₃	СН₃	СНз	ОН	CH ₂

Radical	R ₄₄	R ₃₇	R ₃₈	R ₃₉	R ₄₀	W
B99	CH ₃ O	CH₃	СН₃	CH ₃	ОН	CH ₂
B100	CH ₃ CO ₂	CH ₃	СН₃	СН3	ОН	CH ₂
B101	CH ₃ CH ₂ CO ₂	CH ₃	СНз	СН3	ОН	CH ₂
B102	CH ₂ =CHCH ₂	CH ₃	СНз	СН3	ОН	CH ₂
B103	HCCCH ₂	CH ₃	СН3	CH_3	ОН	CH ₂
B104	CF ₃	CH ₃	СНз	СН3	ОН	CH ₂
B105	$(CH_3)_2NSO_2$	CH_3	CH ₃	CH ₃	ОН	CH ₂
B106	$(CH_3)_2N$	CH ₃	СНз	СН3	ОН	CH ₂
B107	PhO	СН _з	СНз	СН3	ОН	CH ₂
B108	PhS	CH ₃	СНз	CH ₃	ОН	CH ₂
B109	PhSO	СН₃	СН3	СН3	ОН	CH ₂
B110	PhSO ₂	CH_3	СН3	CH ₃	ОН	CH ₂
B111	CN	CH_3	СН3	СН₃	ОН	CH ₂
B112	CH₃CH₂	CH₃CH₂	Н	Н	ОН	CH ₂
B113	CH₃CH₂CH₂	CH₃CH₂	Н	Н	ОН	CH ₂
B114	(CH₃)₂CH	CH₃CH₂	Н	Н	ОН	CH ₂
B115	$(CH_3)_3C$	CH ₃ CH ₂	H	Н	ОН	CH ₂
B116	CH₃S	CH₃CH₂	Н	Н	ОН	CH ₂
B117	CH₃SO	CH ₃ CH ₂	Н	Н	ОН	CH_2
B118	CH ₃ SO ₂	CH ₃ CH ₂	Н	Н	ОН	CH ₂
B119	Ph	CH ₃ CH ₂	Н	Н	ОН	CH ₂
B120	CH₃O	CH ₃ CH ₂	Н	Н	ОН	CH ₂
B121	CH ₃ CO ₂	CH ₃ CH ₂	Н	Н	ОН	CH_2
B122	CH ₃ CH ₂ CO ₂	CH ₃ CH ₂	Н	Н	ОН	CH ₂
B123	CH ₂ =CHCH ₂	CH ₃ CH ₂	Н	Н	ОН	CH ₂
B124	HCCCH₂	CH ₃ CH ₂	H	Н	ОН	CH ₂
B125	CF ₃	CH ₃ CH ₂	Н	Н	ОН	CH ₂
B126	$(CH_3)_2NSO_2$	ĊH₃CH₂	Н	Н	ОН	CH ₂
B127	$(CH_3)_2N$	CH ₃ CH ₂	Н	Н	ОН	CH ₂
B128	PhO	CH₃CH₂	Н	Н	ОН	CH ₂
B129	PhS	CH ₃ CH ₂	Н	Н	ОН	CH ₂
B130	PhSO	CH₃CH₂	Н	Н	ОН	CH ₂
B131	PhSO ₂	CH ₃ CH ₂	Н	Н	ОН	CH ₂

PCT/EP01/00720

Radical	R ₄₄	R ₃₇	R ₃₈	R ₃₉	R ₄₀	W
B132	CN	CH₃CH₂	Н	Н	ОН	CH ₂
B133	Н	Н	Н	Н	ОН	CHCH₃
B134	CH₃	Н	Н	Н	ОН	CHCH₃
B135	CH ₃ CH ₂	Н	Н	Н	ОН	CHCH₃
B136	CH ₃ CH ₂ CH ₂	Н	Н	Н	ОН	CHCH₃
B137	(CH ₃) ₂ CH	Н	Н	Н	ОН	CHCH₃
B138	$(CH_3)_3C$	Н	Н	Н	ОН	CHCH₃
B139	CH₃S	Н	Н	Н	ОН	CHCH₃
B140	CH₃SO	Н	Н	Н	ОН	CHCH ₃
B141	CH ₃ SO ₂	Н	Н	Н	ОН	CHCH₃
B142	Ph	Н	Н	Н	ОН	CHCH₃
B143	CH₃O	Н	Н	Н	ОН	CHCH₃
B144	CH ₃ CO ₂	Н	Н	Н	ОН	CHCH₃
B145	CH ₃ CH ₂ CO ₂	Н	H	Н	ОН	CHCH₃
B146	CH ₂ =CHCH ₂	Н	H	Н	ОН	CHCH ₃
B147	HCCCH₂	Н	Н	Н	ОН	CHCH₃
B148	CF₃	Н	Н	Н	ОН	CHCH₃
B149	$(CH_3)_2NSO_2$	Н	Н	Н	ОН	CHCH₃
B150	$(CH_3)_2N$	Н	Н	Н	ОН	CHCH₃
B151	PhO	Н	Н	Н	ОН	CHCH₃
B152	PhS	Н	Н	Н	ОН	CHCH₃
B153	PhSO	Н	Н	Н	ОН	CHCH₃
B154	PhSO ₂	Н	Н	Н	ОН	CHCH₃
B155	CN	Н	Н	Н	ОН	CHCH₃
B156	CH₃	CH₃	Н	Н	ОН	CHCH₃
B157	CH₃CH₂	CH₃	Н	Н	ОН	CHCH₃
B158	CH₃CH₂CH₂	CH₃	Н	Н	ОН	CHCH₃
B159	(CH₃)₂CH	CH₃	Н	Н	ОН	CHCH₃
B160	$(CH_3)_3C$	CH₃	Н	Н	ОН	CHCH₃
B161	CH₃S	CH ₃	Н	Н	ОН	CHCH₃
B162	CH₃SO	CH ₃	Н	Н	ОН	CHCH₃
B163	CH ₃ SO ₂	CH ₃	Н	Н	ОН	CHCH ₃
B164	Ph	CH_3	Н	Н	ОН	CHCH ₃

Radical	R ₄₄	R ₃₇	R_{38}	R ₃₉	R ₄₀	W
B165	CH₃O	СН₃	Н	Н	ОН	CHCH₃
B166	CH ₃ CO ₂	СН₃	Н	Н	ОН	CHCH₃
B167	CH ₃ CH ₂ CO ₂	СН₃	Н	Н	ОН	CHCH₃
B168	CH ₂ =CHCH ₂	CH ₃	Н	Н	ОН	CHCH₃
B169	HCCCH ₂	CH ₃	Н	Н	ОН	CHCH₃
B170	CF ₃	CH_3	Н	Н	ОН	CHCH₃
B171	$(CH_3)_2NSO_2$	СНз	Н	Н	ОН	CHCH₃
B172	$(CH_3)_2N$	СНз	Н	Н	ОН	CHCH₃
B173	PhO	СНз	Н	H	ОН	CHCH3
B174	PhS	CH ₃	Н	Н	ОН	CHCH3
B175	PhSO	СНз	Н	Н	ОН	CHCH ₃
B176	PhSO ₂	СНз	Н	Н	ОН	CHCH₃
B177	CN	СН₃	Н	Н	ОН	CHCH₃
B178	CH ₃	Н	CH₃	Н	ОН	CHCH3
B179	CH ₃ CH ₂	Н	CH₃	Н	ОН	CHCH3
B180	CH ₃ CH ₂ CH ₂	Н	CH ₃	Н	ОН	CHCH₃
B181	(CH ₃) ₂ CH	H	СН₃	Н	ОН	CHCH₃
B182	$(CH_3)_3C$	Н	CH ₃	Н	ОН	CHCH ₃
B183	CH₃S	Н	CH ₃	Н	ОН	CHCH ₃
B184	CH₃SO	Н	СН₃	Н	ОН	CHCH₃
B185	CH ₃ SO ₂	Н	СНз	Н	ОН	CHCH ₃
B186	Ph	Н	CH ₃	Н	ОН	CHCH ₃
B187	CH₃O	Н	CH ₃	Н	ОН	CHCH3
B188	CH ₃ CO ₂	Н	CH₃	Н	ОН	CHCH ₃
B189	CH ₃ CH ₂ CO ₂	Н	СНз	Н	ОН	CHCH ₃
B190	CH ₂ =CHCH ₂	Н	CH ₃	Н	ОН	CHCH₃
B191	HCCCH ₂	Н	CH ₃	Н	ОН	CHCH₃
B192	CF ₃	Н	CH ₃	Н	ОН	CHCH₃
B193	$(CH_3)_2NSO_2$	Н	СН₃	Н	ОН	CHCH₃
B194	$(CH_3)_2N$	Н	СН₃	H,	ОН	CHCH₃
B195	PhO	Н	СН₃	Н	ОН	CHCH₃
B196	PhS	Н	СН3	Н	ОН	CHCH ₃
B197	PhSO	H	СН₃	Н	ОН	CHCH ₃

Radical	R ₄₄	R ₃₇	R ₃₈	R ₃₉	R ₄₀	W
B198	PhSO ₂	н	СН₃	Н	ОН	СНСН₃
B199	CN	H	СН₃	Н	ОН	CHCH₃
B200	CH ₃	CH_3	СНз	Н	ОН	CHCH₃
B201	CH ₃ CH ₂	CH₃	CH ₃	Н	ОН	CHCH₃
B202	CH ₃ CH ₂ CH ₂	CH ₃	СН₃	Н	ОН	CHCH₃
B203	(CH ₃) ₂ CH	CH₃	СН ₃	Н	ОН	CHCH₃
B204	(CH ₃) ₃ C	CH₃	СН₃	Н	ОН	CHCH₃
B205	CH₃S	CH_3	CH ₃	H	ОН	CHCH₃
B206	CH₃SO	CH₃	CH ₃	Н	ОН	CHCH₃
B207	CH ₃ SO ₂	CH₃	СН₃	Н	ОН	CHCH₃
B208	Ph	CH₃	СН₃	Н	ОН	CHCH₃
B209	CH₃O	CH ₃	СН₃	Н	ОН	CHCH₃
B210	CH ₃ CO ₂	CH ₃	СН₃	Н	ОН	CHCH ₃
B211	CH ₃ CH ₂ CO ₂	CH ₃	СНз	Н	ОН	CHCH₃
B212	CH ₂ =CHCH ₂	CH ₃	СН₃	Н	ОН	CHCH₃
B213	HCCCH ₂	CH₃	СН₃	Н	ОН	CHCH₃
B214	CF ₃	CH₃	СНз	Н	ОН	CHCH₃
B215	$(CH_3)_2NSO_2$	CH ₃	CH ₃	Н	ОН	CHCH₃
B216	$(CH_3)_2N$	СH _з	СН3	Н	ОН	CHCH₃
B217	PhO	CH ₃	CH₃	Н	ОН	CHCH₃
B218	PhS	CH₃	CH ₃	Н	ОН	CHCH₃
B219	PhSO	CH₃	CH ₃	Н	ОН	CHCH₃
B220	PhSO ₂	CH ₃	CH ₃	Н	ОН	CHCH₃
B221	CN	СН₃	CH_3	Н	ОН	CHCH₃
B222	CH ₃	CH ₃	CH_3	CH_3	ОН	CHCH ₃
B223	CH₃CH₂	CH₃	CH ₃	CH ₃	ОН	CHCH ₃
B224	CH ₃ CH ₂ CH ₂	СНз	CH ₃	CH ₃	ОН	CHCH₃
B225	(CH ₃) ₂ CH	CH₃	СН3	СН3	ОН	CHCH ₃
B226	$(CH_3)_3C$	СНз	СНз	СНз	ОН	CHCH ₃
B227	CH₃S	СНз	СН₃	CH ₃	ОН	CHCH₃
B228	CH₃SO	СНз	СНз	СН3	ОН	CHCH₃
B229	CH ₃ SO ₂	СНз	CH ₃	CH ₃	ОН	CHCH₃
B230	Ph	СНз	СН₃	СН3	ОН	CHCH ₃

Radical	R ₄₄	R ₃₇	R ₃₈	R ₃₉	R ₄₀	W
B231	CH₃O	CH₃	СН₃	CH ₃	ОН	СНСН₃
B232	CH ₃ CO ₂	CH₃	СН₃	СНз	ОН	CHCH ₃
B233	CH ₃ CH ₂ CO ₂	СН₃	СН₃	СН₃	ОН	CHCH ₃
B234	CH ₂ =CHCH ₂	CH ₃	CH ₃	СН₃	ОН	CHCH₃
B235	HCCCH₂	CH₃	СН3	СН₃	ОН	CHCH₃
B236	CF₃	CH₃	СН₃	СНз	ОН	CHCH₃
B237	(CH ₃) ₂ NSO ₂	СН₃	СНз	СН₃	ОН	CHCH₃
B238	(CH₃)₂N	CH₃	СН3	СН₃	ОН	CHCH₃
B239	PhO	CH₃	СН3	СН₃	ОН	CHCH₃
B240	PhS	CH₃	CH ₃	СН3	ОН	CHCH ₃
B241	PhSO	CH₃	СН₃	CH ₃	ОН	CHCH₃
B242	PhSO ₂	CH ₃	СН3	CH ₃	ОН	CHCH ₃
B243	CN ·	CH ₃	CH ₃	СН3	ОН	CHCH ₃
B244	CH ₃ CH ₂	CH ₃ CH ₂	Н	Н	ОН	CHCH ₃
B245	CH ₃ CH ₂ CH ₂	CH₃CH₂	Н	Н	ОН	CHCH ₃
B246	(CH ₃) ₂ CH	CH₃CH₂	Н	Н	ОН	CHCH₃
B247	$(CH_3)_3C$	CH ₃ CH ₂	Н	Н	ОН	CHCH₃
B248	CH₃S	CH ₃ CH ₂	Н	Н	ОН	CHCH₃
B249	CH₃SO	CH ₃ CH ₂	Н	Н	ОН	CHCH₃
B250	CH ₃ SO ₂	CH ₃ CH ₂	Н	Н	ОН	CHCH₃
B251	Ph	CH ₃ CH ₂	Н	Н	ОН	CHCH₃
B252	CH₃O	CH ₃ CH ₂	Н	Н	ОН	CHCH₃
B253	CH ₃ CO ₂	CH ₃ CH ₂	Н	Н	ОН	CHCH₃
B254	CH ₃ CH ₂ CO ₂	CH ₃ CH ₂	Н	Н	ОН	CHCH₃
B255	CH ₂ =CHCH ₂	CH₃CH₂	Н	Н	ОН	CHCH₃
B256	HCCCH ₂	CH ₃ CH ₂	Н	Н	ОН	CHCH₃
B257	CF ₃	CH ₃ CH ₂	Н	Н	ОН	CHCH₃
B258	$(CH_3)_2NSO_2$	CH₃CH₂	Н	Н	ОН	CHCH₃
B259	(CH ₃) ₂ N	CH₃CH₂	H	Н	ОН	CHCH₃
B260	PhO	CH ₃ CH ₂	Н	Н	ОН	CHCH ₃
B261	PhS	CH ₃ CH ₂	Н	Н	ОН	CHCH ₃
B262	PhSO	CH ₃ CH ₂	Н	Н	ОН	CHCH₃
B263	PhSO ₂	CH₃CH₂	Н	Н	ОН	CHCH₃

Radical	R ₄₄	R ₃₇	R ₃₈	R ₃₉	R ₄₀	W
B264	CN	CH ₃ CH ₂	Н	Н	ОН	CHCH₃
B265	Н	Н	Н	Н	ОН	C=O
B266	CH₃	Н	Н	Н	ОН	C=O
B267	CH ₃ CH ₂	Н	Н	Н	ОН	C=O
B268	CH₃CH₂CH₂	Н	Н	Н	ОН	C=O
B269	(CH₃)₂CH	Н	Н	Н	ОН	C=O
B270	(CH ₃) ₃ C	H	Н	Н	ОН	C=O
B271	CH₃S	Н	Н	Н	ОН	C=O
B272	CH₃SO	Н	Н	Н	ОН	C=O
B273	CH ₃ SO ₂	Н	Н	Н	ОН	C=O
B274	Ph	Н	Н	Н	ОН	C=O
B275	CH₃O	H	Н	Н	ОН	C=O
B276	CH ₃ CO ₂	Н	Н	Н	ОН	C=O
B277	CH ₃ CH ₂ CO ₂	Н	Н	Н	ОН	C=O
B278	CH ₂ =CHCH ₂	Н	Н	Н	ОН	C=O
B279	HCCCH ₂	H	Н	H	ОН	C=O
B280	CF ₃	Н	Н	Н	ОН	C=O
B281	$(CH_3)_2NSO_2$	Н	Н	Н	ОН	C=O
B282	$(CH_3)_2N$	Н	Н	Н	ОН	C=O
B283	PhO	Н	Н	Н	ОН	C=O
B284	PhS	Н	H	Н	ОН	C=O
B285	PhSO	Н	Н	Н	ОН	C=O
B286	PhSO ₂	Н	H,	Н	ОН	C=O
B287	CN	Н	Н	Н	ОН	C=O
B288	CH ₃	CH ₃	Н	Н	ОН	C=O
B289	CH ₃ CH ₂	CH ₃	Н	Н	ОН	C=O
B290	CH ₃ CH ₂ CH ₂	CH ₃	Н	Н	ОН	C=O
B291	(CH ₃) ₂ CH	CH ₃	Н	Н	ОН	C=O
B292	$(CH_3)_3C$	CH₃	Н	Н	ОН	C=O
B293	CH₃S	CH ₃	Н	Н	ОН	C=O
B294	CH₃SO	СНз	Н	Н	ОН	C=O
B295	CH₃SO₂	СН₃	Н	Н	ОН	C=O
B296	Ph	СН₃	Н	Н	ОН	C=O

Radical	R ₄₄	R ₃₇	R ₃₈	R ₃₉	R ₄₀	W
B297	CH₃O	CH₃	Н	Н	ОH	C=O
B298	CH ₃ CO ₂	CH₃	Н	Н	ОН	C=O
B299	CH ₃ CH ₂ CO ₂	CH₃	Н	Н	ОН	C=O
B300	CH ₂ =CHCH ₂	CH ₃	Н	Н	ОН	C=O
B301	HCCCH ₂	CH₃	Н	Н	ОН	C=O
B302	CF ₃	CH ₃	Н	Н	ОН	C=O
B303	(CH ₃) ₂ NSO ₂	CH ₃	Н	Н	ОН	C=O
B304	(CH ₃) ₂ N	CH₃	Н	Н	ОН	C=O
B305	PhO	CH₃	Н	Н	ОН	C=O
B306	PhS	CH₃	Н	Н	ОН	C=O
B307	PhSO	CH₃	Н	Н	ОН	C=O
B308	PhSO₂	CH₃	Н	Н	ОН	C=O
B309	CN	CH₃	Н	Н	ОН	C=O
B310	CH ₃	Н	СН₃	Н	ОН	C=O
B311	CH₃CH₂	Н	СН₃	Н	ОН	C=O
B312	CH ₃ CH ₂ CH ₂	Н	СНз	Н	ОН	C=O
B313	(CH ₃) ₂ CH	Н	СН₃	Н	ОН	C=O
B314	(CH ₃) ₃ C	Н	СНз	Н	ОН	C=O
B315	CH₃S	Н	СНз	Н	ОН	C=O
B316	CH₃SO	. Н	СНз	Н	ОН	C=O
B317	CH ₃ SO ₂	Н	CH ₃	Н	ОН	C=O
B318	Ph	Н	CH₃	Н	ОН	C=O
B319	CH₃O	Н	СН ₃	Н	ОН	C=O
B320	CH ₃ CO ₂	Н	СНз	Н	ОН	C=O
B321	CH ₃ CH ₂ CO ₂	Н	СНз	Н	ОН	C=O
B322	CH ₂ =CHCH ₂	Н	CH ₃	Н	ОН	C=O
B323	HCCCH ₂	Н	CH_3	Н	ОН	C=O
B324	CF ₃	Н	CH_3	Н	ОН	C=O
B325	$(CH_3)_2NSO_2$	Н	СНз	Н	ОН	C=O
B326	$(CH_3)_2N$	Н	СНз	Н	ОН	C=O
B327	PhO	Н	СНз	Н	ОН	C=O
B328	PhS	H	СН3	Н	ОН	C=O
B329	PhSO	Н	СНз	Н	ОН	C=O

Radical	R ₄₄	R_{37}	R_{38}	R ₃₉	R ₄₀	W
B330	PhSO₂	Н	CH₃	Н	ОН	C=O
B331	CN	Н	CH₃	Н	ОН	C=O
B332	CH ₃	CH₃	CH₃	Н	ОН	C=O
B333	CH ₃ CH ₂	CH₃	CH ₃	Н	ОН	C=O
B334	CH ₃ CH ₂ CH ₂	CH ₃	CH ₃	Н	ОН	C=O
B335	(CH ₃) ₂ CH	CH ₃	CH_3	Н	ОН	C=O
B336	(CH ₃) ₃ C	CH₃	CH_3	Н	ОН	C=O
B337	CH₃S	CH ₃	CH ₃	Н	ОН	C=O
B338	CH₃SO	CH ₃	CH ₃	Н	ОН	C=O
B339	CH ₃ SO ₂	CH ₃	CH ₃	Н	ОН	C=O
B340	Ph	СН₃	СН₃	Н	ОН	C=O
B341	CH₃O	CH₃	СН₃	Н	ОН	C=O
B342	CH ₃ CO ₂	CH₃	CH ₃	Н	ОН	C=O
B343	CH ₃ CH ₂ CO ₂	CH ₃	СНз	Н	ОН	C=O
B344	CH ₂ =CHCH ₂	CH ₃	СНз	H	ОН	C=O
B345	HCCCH ₂	СНз	СНз	Н	ОН	C=O
B346	CF ₃	CH₃	СНз	H	ОН	C=O
B347	$(CH_3)_2NSO_2$	CH ₃	CH ₃	Н	ОН	C=O
B348	$(CH_3)_2N$	CH ₃	CH_3	Н	ОН	C=O
B349	PhO	СН₃	CH ₃	Н	ОН	C=O
B350	PhS	CH₃	CH_3	Н	ОН	C=O
B351	PhSO	CH ₃	CH ₃	Н	ОН	C=O
B352	PhSO ₂	СН₃	СН₃	Н	ОН	C=O
B353	CN	CH₃	СН₃	Н	ОН	C=O
B354	CH ₃	CH₃	СН₃	СН3	ОН	C=O
B355	CH ₃ CH ₂	CH₃	СНз	СН3	ОН	C=O
B356	CH ₃ CH ₂ CH ₂	СН₃	CH ₃	CH ₃	ОН	C=O
B357	(CH ₃) ₂ CH	СН₃	СН3	СН3	ОН	C=O
B358	$(CH_3)_3C$	СНз	СН₃	СН₃	ОН	C=O
B359	CH₃S	СНз	СН₃	СН₃	ОН	C=O
B360	CH₃SO	CH ₃	СН₃	СНз	ОН	C=O
B361	CH₃SO₂	СН₃	СН₃	CH ₃	ОН	C=O
B362	Ph	СНз	СН₃	CH ₃	ОН	C=O
				-		

Radical	R ₄₄	R ₃₇	R_{38}	R_{39}	R ₄₀	W
B363	CH₃O	CH ₃	СН3	CH ₃	ОН	C=O
B364	CH_3CO_2	CH ₃	СН3	CH ₃	ОН	C=O
B365	CH ₃ CH ₂ CO ₂	CH ₃	CH ₃	CH_3	ОН	C=O
B366	CH ₂ =CHCH ₂	CH ₃	CH ₃	CH ₃	ОН	C=O
B367	HCCCH ₂	CH₃	CH_3	CH ₃	ОН	C=O
B368	CF₃	CH₃	CH ₃	CH ₃	ОН	C=O
B369	$(CH_3)_2NSO_2$	СНз	СН3	CH ₃	ОН	C=O
B370	$(CH_3)_2N$	CH₃	СН3	CH ₃	ОН	C=O
B371	PhO	СНз	CH ₃	CH ₃	ОН	C=O
B372	PhS	CH ₃	СНз	CH ₃	ОН	C=O
B373	PhSO	CH₃	СНз	CH ₃	ОН	C=O
B374	PhSO ₂	CH₃	СН3	CH ₃	ОН	C=O
B375	CN	CH ₃	CH ₃	CH_3	ОН	C≔O
B376	CH ₃ CH ₂	CH_3CH_2	Н	Н	ОН	C=O
B377	CH₃CH₂CH₂	CH ₃ CH ₂	Н	Н	ОН	C=O
B378	$(CH_3)_2CH$	CH ₃ CH ₂	Н	Н	ОН	C=O
B379	$(CH_3)_3C$	CH ₃ CH ₂	H	Н	ОН	C=O
B380	CH₃S	CH ₃ CH ₂	Н	Н	ОН	C=O
B381	CH₃SO	CH_3CH_2	Н	Н	ОН	C=O
B382	CH ₃ SO ₂	CH ₃ CH ₂	Н	Н	ОН	C≔O
B383	Ph	CH ₃ CH ₂	Н	Н	ОН	C≃O
B384	CH₃O	CH ₃ CH ₂	Н	Н	ОН	C≕O
B385	CH ₃ CO ₂	CH ₃ CH ₂	Н	Н	ОН	C=O
B386	CH ₃ CH ₂ CO ₂	CH ₃ CH ₂	Н	Н	ОН	C=O
B387	CH ₂ =CHCH ₂	CH ₃ CH ₂	Н	Н	ОН	C=O
B388	HCCCH₂	CH ₃ CH ₂	Н	Н	ОН	C≂O
B389	CF ₃	CH ₃ CH ₂	Н	Н	ОН	C=O
B390	$(CH_3)_2NSO_2$	CH ₃ CH ₂	Н	Н	ОН	C=O
B391	$(CH_3)_2N$	CH₃CH₂	Н	Н	ОН	C=O
B392	PhO	CH ₃ CH ₂	Н	Н	ОН	C=O
B393	PhS	CH ₃ CH ₂	Н	Н	ОН	C=O
B394	PhSO	CH ₃ CH ₂	Н	Н	ОН	C=O
B395	PhSO ₂	CH₃CH₂	Н	Н	ОН	C=O

Radical	R ₄₄	R ₃₇	R ₃₈	R ₃₉	R ₄₀	W
B396	CN	CH ₃ CH ₂	Н	H	ОН	C=O
B397	Н	Н	Н	Н	ОН	N-CH₃
B398	CH₃	Н	Н	Н	ОН	N-CH ₃
B399	CH ₃ CH ₂	Н	Н	Н	ОН	N-CH ₃
B400	CH ₃ CH ₂ CH ₂	Н	Н	Н	ОН	N-CH ₃
B401	(CH₃)₂CH	Н	Н	Н	ОН	N-CH ₃
B402	$(CH_3)_3C$	Н	Н	Н	ОН	N-CH ₃
B403	CH₃S	Н	Н	Н	ОН	N-CH ₃
B404	CH ₃ SO	H	Н	Н	ОН	N-CH ₃
B405	CH ₃ SO ₂	Н	Н	Н	ОН	N-CH ₃
B406	Ph	Н	Н	Н	ОН	N-CH₃
B407	CH₃O	Н	Н	Н	ОН	N-CH ₃
B408	CH ₃ CO ₂	H	Н	Н	ОН	N-CH ₃
B409	CH ₃ CH ₂ CO ₂	Н	Н	Н	ОН	N-CH ₃
B410	CH ₂ =CHCH ₂	Н	Н	Н	ОН	N-CH ₃
B411	HCCCH ₂	Н	Н	Н	ОН	N-CH ₃
B412	CF ₃	Н	Н	Н	ОН	N-CH ₃
B413	$(CH_3)_2NSO_2$	H	Н	Н	ОН	N-CH ₃
B414	(CH₃)₂N	Н	Н	Н	ОН	N-CH ₃
B415	PhO	Н	Н	Н	ОН	N-CH ₃
B416	PhS	Н	Н	Н	ОН	N-CH ₃
B417	PhSO	Н	Н	Н	ОН	N-CH ₃
B418	PhSO ₂	Н	Н	Н	ОН	N-CH ₃
B419	CN	Н	Н	Н	ОН	N-CH ₃
B420	CH₃	СНз	Н	Н	ОН	N-CH ₃
B421	CH ₃ CH ₂	CH ₃	Н	Н	ОН	N-CH ₃
B422	CH ₃ CH ₂ CH ₂	CH ₃	Н	Н	ОН	N-CH ₃
B423	(CH₃)₂CH	CH ₃	Н	Н	ОН	N-CH ₃
B424	(CH₃)₃C	CH ₃	Н	Н	ОН	N-CH ₃
B425	CH₃S	CH ₃	Н	Н	ОН	N-CH ₃
B426	CH₃SO	CH ₃	Н	Н	ОН	N-CH ₃
B427	CH ₃ SO ₂	CH ₃	Н	Н	ОН	N-CH ₃
B428	Ph	CH₃	Н	Н	ОН	N-CH ₃

Radical	R ₄₄	R ₃₇	R ₃₈	R ₃₉	R ₄₀	W
B429	CH₃O	СН₃	Н	Н	ОН	N-CH₃
B430	CH ₃ CO ₂	CH₃	Н	Н	ОН	N-CH₃
B431	CH ₃ CH ₂ CO ₂	CH₃	Н	Н	ОН	N-CH₃
B432	CH ₂ =CHCH ₂	СН₃	Н	Н	ОН	N-CH ₃
B433	HCCCH ₂	СНз	Н	Н	ОН	N-CH₃
B434	CF ₃	СНз	Н	Н	ОН	N-CH₃
B435	(CH ₃) ₂ NSO ₂	СНз	Н	Н	ОН	N-CH ₃
B436	(CH₃)₂N	СНз	Н	Н	ОН	N-CH ₃
B437	PhO	CH ₃	Н	Н	ОН	N-CH ₃
B438	PhS	СН₃	Н	Н	ОН	N-CH₃
B439	PhSO	СН₃	Н	Н	ОН	N-CH₃
B440	PhSO ₂	CH ₃	Н	Н	ОН	N-CH₃
B441	CN	CH ₃	Н	Н	ОН	N-CH₃
B442	CH ₃	Н	СН₃	Н	ОН	N-CH₃
B443	CH ₃ CH ₂	Н	СНз	Н	ОН	N-CH₃
B444	CH ₃ CH ₂ CH ₂	Н	СН₃	Н	ОН	N-CH₃
B445	(CH ₃) ₂ CH	Н	CH ₃	Н	ОН	N-CH₃
B446	(CH ₃) ₃ C	Н	СН3	Н	ОН	N-CH₃
B447	CH₃S	Н	СНз	Н	ОН	N-CH₃
B448	CH₃SO	Н	CH_3	Н	ОН	N-CH₃
B449	CH ₃ SO ₂	Н	СН3	Н	ОН	N-CH₃
B450	Ph	Н	CH ₃	Н	ОН	N-CH₃
B451	CH₃O	Н	СН3	Н	ОН	N-CH₃
B452	CH ₃ CO ₂	Н	СН _з	Н	ОН	N-CH₃
B453	CH ₃ CH ₂ CO ₂	Н	CH₃	Н	ОН	N-CH₃
B454	CH ₂ =CHCH ₂	Н	CH₃	Н	ОН	N-CH₃
B455	HCCCH₂	Н	CH ₃	Н	ОН	N-CH₃
B456	CF ₃	Н	CH₃	Н	ОН	N-CH₃
B457	$(CH_3)_2NSO_2$	Н	CH ₃	Н	ОН	N-CH₃
B458	$(CH_3)_2N$	Н	CH ₃	Н	ОН	N-CH₃
B459	PhO	Н	CH ₃	Н	ОН	N-CH₃
B460	PhS	Н	CH ₃	Н	ОН	N-CH₃
B461	PhSO	Н	CH₃	Н	ОН	N-CH ₃

Radical	R ₄₄	R ₃₇	R ₃₈	R ₃₉	R ₄₀	W
B462	PhSO₂	Н	СН₃	Н	ОН	N-CH₃
B463	CN	Н	СН₃	Н	ОН	N-CH₃
B464	CH₃	CH ₃	CH ₃	Н	ОН	N-CH₃
B465	CH ₃ CH ₂	CH ₃	CH₃	Н	ОН	N-CH₃
B466	CH ₃ CH ₂ CH ₂	CH ₃	CH ₃	Н	ОН	N-CH₃
B467	(CH ₃) ₂ CH	CH ₃	СН₃	Н	ОН	N-CH₃
B468	(CH ₃) ₃ C	CH₃	СНз	Н	ОН	N-CH₃
B469	CH₃S	CH ₃	CH ₃	Н	ОН	N-CH ₃
B470	CH₃SO	CH ₃	СНз	Н	ОН	N-CH ₃
B471	CH₃SO₂	CH₃	СНз	Н	ОН	N-CH ₃
B472	Ph	CH₃	СНз	Н	ОН	N-CH₃
B473	CH₃O	CH ₃	СНз	Н	ОН	N-CH ₃
B474	CH ₃ CO ₂	CH₃	СНз	Н	ОН	N-CH ₃
B475	CH ₃ CH ₂ CO ₂	CH ₃	CH ₃	Н	ОН	N-CH ₃
B476	CH ₂ =CHCH ₂	CH ₃	СН₃	Н	ОН	N-CH ₃
B477	HCCCH₂	CH ₃	СНз	Н	ОН	N-CH ₃
B478	CF ₃	CH₃	CH ₃	Н	ОН	N-CH ₃
B479	$(CH_3)_2NSO_2$	CH ₃	CH ₃	Н	ОН	N-CH ₃
B480	$(CH_3)_2N$	СН₃	СН₃	Н	ОН	N-CH₃
B481	PhO	CH ₃	СН3	Н	ОН	N-CH₃
B482	PhS	CH₃	CH ₃	Н	ОН	N-CH ₃
B483	PhSO	CH ₃	CH ₃	Н	ОН	N-CH ₃
B484	PhSO ₂	CH ₃	СН3	Н	ОН	N-CH ₃
B485	CN	CH_3	СН3	Н	ОН	N-CH ₃
B486	CH ₃	CH ₃	СНз	CH ₃	ОН	N-CH ₃
B487	CH₃CH₂	CH ₃	СНз	СН3	ОН	N-CH ₃
B488	CH₃CH₂CH₂	CH ₃	СНз	CH ₃	ОН	N-CH ₃
B489	(CH ₃) ₂ CH	СНз	СНз	СН3	ОН	N-CH ₃
B490	$(CH_3)_3C$	СНз	СН₃	СН₃	ОН	N-CH ₃
B491	CH₃S	CH ₃	СН₃	СН₃	ОН	N-CH₃
B492	CH ₃ SO	СН3	CH ₃	СН3	ОН	N-CH₃
B493	CH ₃ SO ₂	СН₃	CH ₃	CH ₃	ОН	N-CH ₃
B494	Ph	СНз	СН₃	СН3	ОН	N-CH ₃

.

R ₄₄	R ₃₇	R ₃₈	R ₃₉	R ₄₀	W
CH₃O	CH ₃	СН₃	CH ₃	ОН	N-CH₃
CH ₃ CO ₂	CH₃	СН3	СНз	ОН	N-CH₃
CH ₃ CH ₂ CO ₂	CH₃	CH_3	CH ₃	ОН	N-CH₃
CH ₂ =CHCH ₂	CH ₃	CH ₃	CH ₃	ОН	N-CH₃
HCCCH ₂	CH ₃	СНз	СНз	ОН	N-CH₃
CF ₃	CH₃	СН3	СН3	ОН	N-CH₃
$(CH_3)_2NSO_2$	CH₃	СН3	СН3	ОН	N-CH₃
(CH ₃) ₂ N	CH ₃	CH ₃	СН3	ОН	N-CH₃
PhO	CH₃	CH ₃	СН3	ОН	N-CH₃
PhS	CH ₃	СН3	СН3	ОН	N-CH₃
PhSO	CH₃	СН₃	СН3	ОН	N-CH₃
PhSO ₂	CH₃	СНз	СН₃	ОН	N-CH₃
CN	CH ₃	CH ₃	CH ₃	ОН	N-CH ₃
CH ₃ CH ₂	CH ₃ CH ₂	Н	Н	ОН	N-CH₃
CH ₃ CH ₂ CH ₂	CH ₃ CH ₂	Н	Н	ОН	N-CH ₃
(CH ₃) ₂ CH	CH₃CH₂	Н	Н	ОН	N-CH₃
$(CH_3)_3C$	CH ₃ CH ₂	Н	Н	ОН	N-CH ₃
CH₃S	CH ₃ CH ₂	Н	Н	ОН	N-CH ₃
CH₃SO	CH ₃ CH ₂	Н	Н	ОН	N-CH ₃
CH ₃ SO ₂	CH ₃ CH ₂	Н	Н	ОН	N-CH ₃
Ph	CH ₃ CH ₂	Н	Н	ОН	N-CH ₃
CH₃O	CH₃CH₂	Н	Н	ОН	N-CH ₃
CH ₃ CO ₂	CH ₃ CH ₂	Н	Н	ОН	N-CH ₃
CH ₃ CH ₂ CO ₂	CH ₃ CH ₂	Н	Н	ОН	N-CH ₃
CH ₂ =CHCH ₂	CH ₃ CH ₂	Н	Н	ОН	N-CH ₃
HCCCH₂	CH ₃ CH ₂	Н	Н	ОН	N-CH ₃
CF ₃	CH ₃ CH ₂	Н	Н	ОН	N-CH₃
$(CH_3)_2NSO_2$	CH ₃ CH ₂	Н	Н	ОН	N-CH ₃
$(CH_3)_2N$	CH ₃ CH ₂	Н	Н	ОН	N-CH ₃
PhO	CH ₃ CH ₂	Н	Н	ОН	N-CH ₃
PhS	CH ₃ CH ₂	Н	Н	ОН	N-CH ₃
PhSO	CH ₃ CH ₂	Н	Н	ОН	N-CH ₃
PhSO ₂	CH₃CH₂	Н	Н	ОН	N-CH₃
	CH ₃ O CH ₃ CO ₂ CH ₃ CH ₂ CO ₂ CH ₂ =CHCH ₂ HCCCH ₂ CF ₃ (CH ₃) ₂ NSO ₂ (CH ₃) ₂ N PhO PhS PhSO PhSO ₂ CN CH ₃ CH ₂ CH ₂ (CH ₃) ₂ CH (CH ₃) ₃ C CH ₃ S CH ₃ SO CH ₃ SO ₂ Ph CH ₃ CO ₂ CH ₃ CH ₂ CO ₂ CH ₂ =CHCH ₂ HCCCH ₂ CF ₃ (CH ₃) ₂ NSO ₂ PhCCH ₂ CH ₃ CN ₂ CO ₂ CH ₂ =CHCH ₂ HCCCH ₂ CF ₃ (CH ₃) ₂ NSO ₂ (CH ₃) ₂ NSO ₂ PhO PhS PhSO	CH₃O CH₃ CH₃CO₂ CH₃ CH₃CO₂ CH₃ CH₃CH₂CO₂ CH₃ CH₂=CHCH₂ CH₃ HCCCH₂ CH₃ (CH₃)₂NSO₂ CH₃ (CH₃)₂N CH₃ PhO CH₃ PhSO CH₃ PhSO₂ CH₃ CH₃CH₂ CH₃CO₂ CH₃CH₂	CH₃O CH₃ CH₃ CH₃CO₂ CH₃ CH₃ CH₃CH₂CO₂ CH₃ CH₃ CH₂=CHCH₂ CH₃ CH₃ HCCCH₂ CH₃ CH₃ CF₃ CH₃ CH₃ (CH₃)₂NSO₂ CH₃ CH₃ (CH₃)₂N CH₃ CH₃ PhO CH₃ CH₃ PhSO CH₃ CH₃ PhSO CH₃ CH₃ PhSO₂ CH₃ CH₃ CN CH₃ CH₃ CH₃CH₂ H CH₃CH₂ H CH₃CH₂ CH₃ CH₃ CH₃ CH₃ CH₃ CH₃ CH₃	CH₃O CH₃ CH₃ CH₃ CH₃CO₂ CH₃ CH₃ CH₃ CH₃CH₂CO₂ CH₃ CH₃ CH₃ CH₂=CHCH₂ CH₃ CH₃ CH₃ HCCCH₂ CH₃ CH₃ CH₃ CF₃ CH₃ CH₃ CH₃ (CH₃)₂NSO₂ CH₃ CH₃ CH₃ (CH₃)₂NSO₂ CH₃ CH₃ CH₃ (CH₃)₂NSO₂ CH₃ CH₃ CH₃ (CH₃)₂NSO₂ CH₃ CH₃ CH₃ PhO CH₃ CH₃ CH₃ PhSO CH₃ CH₃ CH₃ PhSO CH₃ CH₃ CH₃ PhSO CH₃ CH₃ CH₃ CN CH₃ CH₃ CH₃ CN CH₃ CH₃ CH₃ CN CH₃ CH₃ CH₃ CH₃CH₂ CH₃ H H CH₃SCH₂ CH₃ H H CH₃CH₂	CH₃O CH₃ CH₃ CH₃ OH CH₃CO₂ CH₃ CH₃ CH₃ OH CH₃CH₂CO₂ CH₃ CH₃ CH₃ OH CH₂=CHCH₂ CH₃ CH₃ CH₃ OH HCCCH₂ CH₃ CH₃ CH₃ OH CF₃ CH₃ CH₃ CH₃ OH (CH₃)₂NSO₂ CH₃ CH₃ CH₃ OH (CH₃)₂NN CH₃ CH₃ CH₃ OH PhO CH₃ CH₃ CH₃ OH PhSO CH₃ CH₃ CH₃ OH PhSO₂ CH₃ CH₃ CH₃ OH PhSO₂ CH₃ CH₃ CH₃ OH CH₃CH₂ CH₃ CH₃ OH OH CH₃CH₂ CH₃ CH₃ OH OH CH₃CH₂ CH₃ CH₃ OH OH OH OH OH OH OH OH OH OH

Radical	R ₄₄	R ₃₇	R ₃₈	R ₃₉	R ₄₀	W
B528	CN	CH ₃ CH ₂	Н	Н	ОН	N-CH ₃
B529	Н	Н	Н	Н	ОН	, O
B530	CH ₃	H	Н	Н	ОН	0
B531	CH ₃ CH ₂	Н	Н	Н	ОН	0
B532	CH ₃ CH ₂ CH ₂	Н	Н	Н	ОН	0
B533	(CH ₃) ₂ CH	Н	Н	Н	ОН	0
B534	$(CH_3)_3C$	Н	Н	Н	ОН	0
B535	CH₃S	Н	Н	Н	ОН	0
B536	CH ₃ SO	Н	Н	Н	ОН	0
B537	CH ₃ SO ₂	Н	Н	Н	ОН	0
B538	Ph	Н	Н	Н	ОН	0
B539	CH₃O	Н	Н	Н	ОН	0
B540	CH ₃ CO ₂	Н	Н	Н	ОН	0
B541	CH ₃ CH ₂ CO ₂	Н	Н	Н	ОН	0
B542	CH ₂ =CHCH ₂	Н	Н	Н	ОН	0
B543	HCCCH ₂	Н	Н	Н	ОН	0
B544	CF ₃	Н	Н	Н	ОН	0
B545	$(CH_3)_2NSO_2$	H	Н	Н	ОН	0
B546	$(CH_3)_2N$	Н	Н	Н	ОН	0
B547	PhO	Н	Н	Н	ОН	0
B548	PhS	H	Н	Н	ОН	0
B549	PhSO	Н	Н	Н	ОН	0
B550	$PhSO_2$	Н	Н	Н	ОН	0
B551	CN	Н	Н	Н	ОН	0
B552	CH ₃	CH ₃	Н	Н	ОН	0
B553	CH ₃ CH ₂	CH ₃	Н	Н	ОН	O
B554	CH ₃ CH ₂ CH ₂	CH ₃	Н	Н	ОН	0
B555	(CH ₃) ₂ CH	CH ₃	Н	Н	ОН	0
B556	$(CH_3)_3C$	CH ₃	Н	Н	ОН	Ο
B557	CH₃S	CH ₃	Н	Н	ОН	0
B558	CH₃SO	CH ₃	Н	Н	ОН	Ο
B559	CH ₃ SO ₂	CH ₃	Н	Н	ОН	0
B560	Ph	CH₃	Н	Н	ОН	0

Radical R ₄₄ R ₃₇ R ₃₈ R ₃₉ R ₄₀	
B561 CH ₃ O CH ₃ H H OH	
B562 CH₃CO₂ CH₃ H H OH	0
B563 CH ₃ CH ₂ CO ₂ CH ₃ H H OH	0
B564 CH ₂ =CHCH ₂ CH ₃ H H OH	0
B565 HCCCH ₂ CH ₃ H H OH	0
B566 CF ₃ CH ₃ H H OH	0
B567 (CH ₃) ₂ NSO ₂ CH ₃ H H OH	0
B568 (CH ₃) ₂ N CH ₃ H H OH	0
B569 PhO CH ₃ H H OH	0
B570 PhS CH₃ H H OH	0
B571 PhSO CH₃ H H OH	0
B572 PhSO ₂ CH ₃ H H OH	О
B573 CN CH₃ H H OH	0
B574 CH ₃ H CH ₃ H OH	О
B575 CH ₃ CH ₂ H CH ₃ H OH	О
B576 CH ₃ CH ₂ CH ₂ H CH ₃ H OH	О
B577 (CH ₃) ₂ CH H CH ₃ H OH	0
B578 (CH ₃) ₃ C H CH ₃ H OH	0
B579 CH₃S H CH₃ H OH	0
B580 CH ₃ SO H CH ₃ H OH	0
B581 CH ₃ SO ₂ H CH ₃ H OH	0
B582 Ph H CH ₃ H OH	0
B583 CH ₃ O H CH ₃ H OH	0
B584 CH ₃ CO ₂ H CH ₃ H OH	0
B585 CH ₃ CH ₂ CO ₂ H CH ₃ H OH	0
B586 CH ₂ =CHCH ₂ H CH ₃ H OH	0
B587 HCCCH ₂ H CH ₃ H OH	0
B588 CF ₃ H CH ₃ H OH	0
B589 (CH ₃) ₂ NSO ₂ H CH ₃ H OH	0
B590 (CH ₃) ₂ N H CH ₃ H OH	0
B591 PhO H CH ₃ H OH	
B592 PhS H CH ₃ H OH	
B593 PhSO H CH ₃ H OH	

R_{44}	R_{37}	R_{38}	R_{39}	R_{40}	W
PhSO ₂	Н	СНз	Н	ОН	0
CN	Н	СНз	Н	ОН	Ο
CH ₃	CH ₃	CH₃	Н	ОН	0
CH₃CH₂	CH ₃	CH₃	Н	ОН	0
CH ₃ CH ₂ CH ₂	CH_3	CH ₃	Η	ОН	0
(CH ₃) ₂ CH	CH ₃	СНз	Н	ОН	0
(CH ₃) ₃ C	CH_3	СНз	Н	ОН	0
CH₃S	CH₃	СНз	Н	ОН	0
CH₃SO	CH ₃	СНз	Н	ОН	0
CH₃SO₂	CH ₃	СНз	Н	ОН	0
Ph	CH₃	СН3	Н	ОН	0
CH₃O	СН₃	СНз	Н	ОН	0
CH ₃ CO ₂	CH₃	СН3	Н	ОН	0
CH ₃ CH ₂ CO ₂	CH ₃	СНз	Н	ОН	0
CH ₂ =CHCH ₂	CH₃	CH ₃	Н	ОН	0
HCCCH ₂	СН₃	СН3	Н	ОН	Ο
CF ₃	СН₃	СН₃	Н	ОН	0
$(CH_3)_2NSO_2$	СН₃	СН₃	Н	ОН	0
(CH₃)₂N	СН₃	СН₃	Н	ОН	0
PhO	CH ₃	СН₃	Н	ОН	0
PhS	СН₃	СН₃	Н	ОН	О
PhSO	CH ₃	СНз	Н	ОН	0
PhSO ₂	CH₃	СНз	Н	ОН	. 0
CN	CH₃	СН₃	Н	ОН	0
CH ₃	CH₃	СН₃	СН3	ОН	0
CH ₃ CH ₂	CH₃	СН₃	СН3	ОН	0
CH ₃ CH ₂ CH ₂	CH₃	СН₃	CH ₃	ОН	0
(CH₃)₂CH	СН₃	СН₃	СНз	ОН	0
(CH ₃) ₃ C	CH₃	СН₃	СН3	ОН	0
CH₃S	СН₃	СНз	СНз	ОН	0
CH₃SO	СН₃	СН₃	СНз	ОН	0
CH₃SO₂	CH ₃	СН₃	СНз	ОН	Ο
Ph	СН₃	CH ₃	СНз	ОН	0
	PhSO ₂ CN CH ₃ CH ₃ CH ₂ CH ₃ CH ₂ CH ₃ CH ₂ CH ₂ (CH ₃) ₂ CH (CH ₃) ₃ C CH ₃ S CH ₃ SO ₂ Ph CH ₃ O CH ₃ CO ₂ CH ₂ CHCH ₂ HCCCH ₂ HCCCH ₂ CF ₃ (CH ₃) ₂ NSO ₂ (CH ₃) ₂ N PhO PhS PhSO PhSO ₂ CN CH ₃ CH ₂ CO ₂ CH ₃ CH ₂ CH (CH ₃) ₃ C CH ₃ S CH ₃ SO CH ₃ SO ₂	PhSO ₂ H CN H CH ₃ CH ₃ CH ₃ CH ₂ CH ₃ CH ₃ CH ₂ CH ₂ CH ₃ (CH ₃) ₂ CH CH ₃ (CH ₃) ₃ C CH ₃ CH ₃ SO CH ₃ CH ₃ SO ₂ CH ₃ Ph CH ₃ CH ₃ CO ₂ CH ₃ CH ₃ CO ₂ CH ₃ CH ₂ CO ₂ CH ₃ CH ₂ CO ₂ CH ₃ CH ₂ CO ₂ CH ₃ CH ₃ CO ₂ CH ₃ CH ₃ CO ₂ CH ₃ CH ₂ CO ₂ CH ₃ CH ₂ CO ₂ CH ₃ CH ₃ CO ₃ CH ₃ CH ₃ CO ₄ CH ₃ CH ₃ CO ₅ CH ₃ CH ₃ SO CH ₃ CH ₃ SO CH ₃ CH ₃ SO CH ₃	PhSO ₂ H CH ₃ CN H CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₂ CH ₃ CH ₃ CH ₃ CH ₂ CH ₂ CH ₃ CH ₃ (CH ₃) ₂ CH CH ₃ CH ₃ CH ₃ S CH ₃ CH ₃ CH ₃ SO CH ₃ CH ₃ CH ₃ SO ₂ CH ₃ CH ₃ CH ₃ CO ₂ CH ₃ CH ₃ CH ₃ CO ₂ CH ₃ CH ₃ CH ₂ CO ₂ CH ₃ CH ₃ CH ₂ CO ₂ CH ₃ CH ₃ CH ₃ CO ₄ CH ₃ CH ₃ CH ₃ CO ₅ CH ₃ CH ₃ CH ₃ SO CH ₃ CH ₃ CH ₃ SO CH ₃ CH ₃	PhSO ₂ H CH ₃ H CN H CH ₃ H CH ₃ CH ₃ CH ₃ H CH ₃ CH ₂ CH ₃ CH ₃ H CH ₃ CH ₂ CH ₂ CH ₃ CH ₃ H (CH ₃) ₂ CH CH ₃ CH ₃ H CH ₃ SO CH ₃ CH ₃ H CH ₃ SO ₂ CH ₃ CH ₃ H CH ₃ CO ₂ CH ₃ CH ₃ H CH ₃ CO ₂ CH ₃ CH ₃ H CH ₃ CO ₂ CH ₃ CH ₃ H CH ₂ CO ₂ CH ₃ CH ₃ H CH ₂ CO ₂ CH ₃ CH ₃ H CCH ₃ CO ₂ CH ₃ CH ₃ H CCH ₃ CO ₂ CH ₃ CH ₃ H CCH ₂ CO ₂ CH ₃ CH ₃ H CCH ₂ CO ₂ CH ₃ CH ₃ H CCH ₃ CO ₂ CH ₃ CH ₃ H CCH ₃ CO ₂ CH ₃ CH ₃ H CCH ₂ CO ₂ CH ₃ CH ₃ H CCH ₂ CO ₂ CH ₃ CH ₃ H CCH ₃ CO ₂ CH ₃ CH ₃ H CCH ₃ CO ₂ CH ₃ CH ₃ H CCH ₃ CO ₂ CH ₃ CH ₃ H CCH ₃ CO ₂ CH ₃ CH ₃ H CCH ₃ CO ₂ CH ₃ CH ₃ H CCH ₃ CO ₂ CH ₃ CH ₃ H CCH ₃ CO ₂ CH ₃ CH ₃ H CCH ₃ CCH ₃ CH ₃ CH ₃ H CCH ₃ CCH ₂ CH ₃ CH ₃ CH ₃ H CCH ₃ CCH ₂ CH ₃	PhSO₂ H CH₃ H OH CN H CH₃ H OH CH₃ CH₃ CH₃ H OH CH₃CH₂ CH₃ CH₃ H OH CH₃CH₂CH₂ CH₃ CH₃ H OH (CH₃)₂CH CH₃ CH₃ H OH (CH₃)₃C CH₃ CH₃ H OH CH₃S CH₃ CH₃ H OH CH₃SO CH₃ CH₃ H OH CH₃SO₂ CH₃ CH₃ H OH CH₃CO₂ CH₃ CH₃ H OH CH₃CO₂ CH₃ CH₃ H OH CH₂CH₂CO₂ CH₃ CH₃ H OH CH₂CH₂CO₂ CH₃ CH₃ H OH CH₂CH₂CH₂ CH₃ CH₃ CH₃ H OH CH₂SNSO₂ CH₃ CH₃ CH₃ H OH

PCT/EP01/00720

WO 01/54501

- 119 -

Radical	R ₄₄	R ₃₇	R_{38}	R ₃₉	R ₄₀	W
B627	CH₃O	CH ₃	СНз	CH ₃	ОН	0
B628	CH ₃ CO ₂	СН₃	СНз	CH ₃	ОН	0
B629	CH ₃ CH ₂ CO ₂	CH ₃ .	СНз	CH ₃	ОН	0
B630	CH ₂ =CHCH ₂	CH ₃	СНз	CH ₃	ОН	0
B631	HCCCH ₂	CH ₃	СНз	CH ₃	ОН	0
B632	CF ₃	CH ₃	СНз	СН3	ОН	0
B633	$(CH_3)_2NSO_2$	СН₃	СНз	СН3	ОН	0
B634	$(CH_3)_2N$	СН₃	СНз	СН3	ОН	0
B635	PhO	СНз	СН₃	СН3	ОН	0
B636	PhS	СН₃	СН₃	СН3	ОН	0
B637	PhSO	СН₃	СН₃	СНз	ОН	0
B638	PhSO ₂	CH ₃	СНз	СН3	ОН	0
B639 ·	CN	СНз	СНз	СН3	ОН	0
B640	CH ₃ CH ₂	CH ₃ CH ₂	Н	Н	ОН	0
B641	CH ₃ CH ₂ CH ₂	CH ₃ CH ₂	Н	Н	ОН	0
B642	(CH ₃) ₂ CH	CH₃CH₂	Н	Н	ОН	0
B643	$(CH_3)_3C$	CH ₃ CH ₂	Н	Н	ОН	0
B644	CH₃S	CH ₃ CH ₂	Н	Н	ОН	0
B645	CH₃SO	CH ₃ CH ₂	Н	Н	ОН	0
B646	CH ₃ SO ₂	CH₃CH₂	Н	Н	ОН	0
B647	Ph	CH ₃ CH ₂	Н	Н	ОН	0
B648	CH₃O	CH ₃ CH ₂	Н	Н	ОН	0
B649	CH ₃ CO ₂	CH₃CH₂	Н	Н	ОН	0
B650	CH ₃ CH ₂ CO ₂	CH ₃ CH ₂	Н	Н	ОН	0
B651	CH ₂ =CHCH ₂	CH ₃ CH ₂	Н	Н	ОН	0
B652	HCCCH₂	CH ₃ CH ₂	Н	Н	ОН	О
B653	CF ₃	CH ₃ CH ₂	Н	Н	ОН	0
B654	(CH ₃) ₂ NSO ₂	CH ₃ CH ₂	Н	Н	ОН	0
B655	(CH ₃) ₂ N	CH ₃ CH ₂	Н	Н	ОН	0
B656	PhO	CH₃CH₂	Н	Н	ОН	0
B657	PhS	CH₃CH₂	Н	Н	ОН	0
B658	PhSO	CH₃CH₂	Н	Н	ОН	0
B659	PhSO₂	CH₃CH₂	Н	Н	ОН	0
		_				

Radical	R ₄₄	R ₃₇	R_{38}	R_{39}	R_{40}	W
B660	CN	CH ₃ CH ₂	Н	Н	ОН	0
B661	Н	Н	Н	Н	ОН	S
B662	CH ₃	Н	Н	Н	ОН	S
B663	CH ₃ CH ₂	Н	Н	Н	ОН	S
B664	CH ₃ CH ₂ CH ₂	Н	H	Н	ОН	S
B665	(CH ₃) ₂ CH	Н	Н	Н	ОН	S
B666	$(CH_3)_3C$	Н	Н	H	ОН	s
B667	CH₃S	H	Н	Н	ОН	S
B668	CH₃SO	Н	Н	Н	ОН	S
B669	CH ₃ SO ₂	Н	Н	Н	ОН	S
B670	Ph	Н	Н	Н	ОН	S
B671	CH₃O	Н	Н	Н	ОН	S
B672	CH ₃ CO ₂	Н	Н	Н	ОН	S
B673	CH ₃ CH ₂ CO ₂	Н	Н	Н	ОН	s
B674	CH ₂ =CHCH ₂	H	Н	Н	ОН	s
B675	HCCCH₂	Н	Н	Н	ОН	s
B676	CF ₃	Н	Н	Н	ОН	S
B677	$(CH_3)_2NSO_2$	Н	Н	H	ОН	S
B678	$(CH_3)_2N$	Н	Н	Н	ОН	S
B679	PhO	Н	Н	Н	ОН	S
B680	PhS	Н	Н	H	ОН	S
B681	PhSO	Н	Н	Н	ОН	S
B682	PhSO ₂	Н	Н	Н	ОН	S
B683	CN	Н	Н	Н	ОН	S
B684	CH₃	CH ₃	Н	Н	ОН	S
B685	CH ₃ CH ₂	СНз	Н	Н	ОН	S
B686	CH ₃ CH ₂ CH ₂	CH ₃	Н	Н	ОН	S
B687	(CH ₃) ₂ CH	CH ₃	Н	Н	ОН	S
B688	$(CH_3)_3C$	CH₃	Н	Н	ОН	S
B689	CH₃S	СНз	Н	Н	ОН	S
B690	CH₃SO	CH₃	Н	Н	ОН	S
B691	CH ₃ SO ₂	CH₃	Н	н	ОН	S
B692	Ph	CH ₃	Н	Н	ОН	S

WO 01/54501

PCT/EP01/00720

Radical	R ₄₄	R ₃₇	R ₃₈	R ₃₉	R ₄₀	W
B693	CH₃O	CH₃	Н	Н	ОН	S
B694	CH ₃ CO ₂	СН₃	Н	Н	ОН	S
B695	CH ₃ CH ₂ CO ₂	CH₃	Н	Н	ОН	S
B696	CH ₂ =CHCH ₂	CH₃	Н	Н	ОН	S
B697	HCCCH ₂	CH ₃	Н	Н	ОН	S
B698	CF ₃	CH ₃	Н	Н	ОН	S
B699	$(CH_3)_2NSO_2$	CH₃	Н	Н	ОН	S
B700	$(CH_3)_2N$	CH₃	Н	Н	ОН	S
B701	PhO	CH ₃	Н	Н	ОН	S
B702	PhS	CH ₃	Н	Н	ОН	S
B703	PhSO	CH₃	Н	H	ОН	S
B704	PhSO ₂	CH ₃	Н	Н	ОН	S
B705	CN	CH ₃	Н	Н	ОН	S
B706	CH₃	Н	CH ₃	Н	ОН	S
B707	CH₃CH₂	Н	CH ₃	Н	ОН	S
B708	CH ₃ CH ₂ CH ₂	Н	CH₃	Н	ОН	S
B709	(CH ₃) ₂ CH	Н	CH_3	Н	ОН	S
B710	$(CH_3)_3C$	Н	CH ₃	Н	ОН	S
B711	CH₃S	Н	CH ₃	Н	ОН	S
B712	CH₃SO	Н	CH₃	Н	ОН	S
B713	CH ₃ SO ₂	Н	CH ₃	Н	ОН	S
B714	Ph	Н	CH ₃	Н	ОН	S
B715	CH₃O	Н	CH ₃	Н	ОН	S
B716	CH ₃ CO ₂	Н	CH_3	Н	ОН	S
B717	CH ₃ CH ₂ CO ₂	Н	CH ₃	H	ОН	S
B718	CH ₂ =CHCH ₂	Н	CH ₃	Н	ОН	S
B719	HCCCH₂	Н	CH₃	Н	ОН	S
B720	CF ₃	H	CH ₃	Н	ОН	S
B721	$(CH_3)_2NSO_2$	H	CH₃	Н	ОН	S
B722	$(CH_3)_2N$	Н	CH₃	Н	ОН	S
B723	PhO	Н	CH₃	Н	ОН	S
B724	PhS	Н	CH₃	Н	ОН	S
B725	PhSO	Н	СH ₃	Н	ОН	S

Radical	R ₄₄	R ₃₇	R ₃₈	R ₃₉	R ₄₀	W
B726	PhSO ₂	Н	СН₃	Н	ОН	S
B727	CN	Н	СНз	Н	ОН	S
B728	CH ₃	CH ₃	СНз	Н	ОН	S
B729	CH ₃ CH ₂	CH₃	СН₃	Н	ОН	S
B730	CH ₃ CH ₂ CH ₂	CH₃	СНз	Н	ОН	S
B731	(CH₃)₂CH	CH₃	СН₃	Н	ОН	S
B732	(CH ₃) ₃ C	CH₃	СН3	Н	ОН	S
B733	CH₃S	CH₃	СН₃	Н	ОН	S
B734	CH₃SO	CH₃	СН3	Н	ОН	S
B735	CH ₃ SO ₂	CH₃	СНз	Н	ОН	S
B736	Ph	СН₃	СНз	Н	ОН	S
B737	CH₃O	CH₃	CH ₃	Н	ОН	S
B738	CH ₃ CO ₂	CH₃	СНз	Н	ОН	S
B739	CH ₃ CH ₂ CO ₂	CH ₃	СНз	Н	ОН	S
B740	CH ₂ =CHCH ₂	СН₃	СНз	Н	ОН	· 8
B741	HCCCH ₂	CH₃	СНз	H	ОН	S
B742	CF ₃	CH ₃	СНз	Н	ОН	S
B743	$(CH_3)_2NSO_2$	CH_3	СНз	Н	ОН	S
B744	$(CH_3)_2N$	СНз	СНз	Н	ОН	S
B745	PhO	СНз	СНз	Н	ОН	S
B746	PhS	CH ₃	CH ₃	Н	ОН	S
B747	PhSO	CH ₃	CH ₃	Н	ОН	S
B748	PhSO ₂	СНз	СН3	Н	ОН	S
B749	CN	СНз	СН ₃	Н	ОН	S
B750	CH ₃	CH ₃	СНз	СН3	ОН	S
B751	CH ₃ CH ₂	CH ₃	СН₃	СН3	ОН	S
B752	CH ₃ CH ₂ CH ₂	CH ₃	СН3	СН3	ОН	S
B753	(CH ₃) ₂ CH	СНз	СН3	СН₃	ОН	S
B754	$(CH_3)_3C$	СНз	СНз	CH ₃	ОН	S
B755	CH₃S	СН₃	СН₃	CH ₃	ОН	S
B756	CH₃SO	CH ₃	СНз	CH ₃	ОН	S
B757	CH ₃ SO ₂	CH₃	СН₃	СН3	ОН	S
B758	Ph	CH ₃	СН₃	CH ₃	ОН	S

Radical	R ₄₄	R ₃₇	R ₃₈	R ₃₉	R ₄₀	W
B759	CH₃O	CH₃	СНз	CH₃	ОН	S
B760	CH ₃ CO ₂	CH₃	CH₃	CH₃	ОН	S
B761	CH ₃ CH ₂ CO ₂	CH ₃	CH₃	CH ₃	ОН	S
B762	CH ₂ =CHCH ₂	CH₃	СН₃	CH₃	ОН	S
B763	HCCCH ₂	СН₃	СН₃	СН₃	ОН	S
B764	CF₃	СН₃	СН₃	СН₃	ОН	s
B765	(CH ₃) ₂ NSO ₂	СН₃	CH ₃	СН₃	ОН	S
B766	$(CH_3)_2N$	CH₃	СНз	СНз	ОН	s
B767	PhO	CH₃	СН₃	СНз	ОН	s
B768	PhS	CH₃	СН₃	СН₃	ОН	s
B769	PhSO	CH ₃	CH ₃	СНз	ОН	S
B770	PhSO ₂	CH ₃	CH ₃	СН3	ОН	S
B771	CN	CH₃	CH ₃	СНз	ОН	S
B772	CH ₃ CH ₂	CH ₃ CH ₂	Н	Н	ОН	S
B773	CH ₃ CH ₂ CH ₂	CH₃CH₂	Н	Н	ОН	S
B774	(CH ₃) ₂ CH	CH ₃ CH ₂	Н	Н	ОН	S
B775	$(CH_3)_3C$	CH ₃ CH ₂	Н	Н	ОН	S
B776	CH₃S	CH ₃ CH ₂	Н	Н	ОН	S
B777	CH₃SO	CH ₃ CH ₂	Н	Н	ОН	S
B778	CH ₃ SO ₂	CH ₃ CH ₂	Н	Н	ОН	S
B779	Ph	CH ₃ CH ₂	Н	Н	ОН	S
B780	CH₃O	CH ₃ CH ₂	Н	Н	ОН	S
B781	CH ₃ CO ₂	CH ₃ CH ₂	Н	Н	ОН	S
B782	CH ₃ CH ₂ CO ₂	CH ₃ CH ₂	Н	Н	ОН	S
B783	CH ₂ =CHCH ₂	CH ₃ CH ₂	Н	Н	ОН	S
B784	HCCCH ₂	CH ₃ CH ₂	Н	Н	ОН	S
B785	CF ₃	CH ₃ CH ₂	Н	Н	ОН	S
B786	(CH ₃) ₂ NSO ₂	CH ₃ CH ₂	Н	Н	ОН	S
B787	$(CH_3)_2N$	CH ₃ CH ₂	Н	Н	ОН	S
B788	PhO	CH ₃ CH ₂	Н	Н	ОН	S
B789	PhS	CH ₃ CH ₂	Н	Н	ОН	S
B790	PhSO	CH ₃ CH ₂	Н	Н	ОН	S
B791	PhSO ₂	CH ₃ CH ₂	Н	Н	ОН	S

WO 01/54501

PCT/EP01/00720

Radical	R ₄₄	R ₃₇	R ₃₈	R ₃₉	R ₄₀	W
B792	CN	CH ₃ CH ₂	Н	Н	ОН	S
B793	Н	Н	Н	Н	ОН	SO ₂
B794	CH ₃	Н	Н	Н	ОН	SO ₂
B795	CH ₃ CH ₂	Н	Н	Н	ОН	SO ₂
B796	CH ₃ CH ₂ CH ₂	Н	Н	Н	ОН	SO ₂
B797	(CH₃)₂CH	Н	Н	Н	ОН	SO ₂
B798	$(CH_3)_3C$	Н	Н	Н	ОН	SO ₂
B799	CH₃S	Н	Н	Н	ОН	SO ₂
B800	CH₃SO	Н	Н	Н	ОН	SO ₂
B801	CH₃SO₂	Н	Н	Н	ОН	SO ₂
B802	Ph	Н	Н	Н	ОН	SO ₂
B803	CH₃O	Н	Н	Н	ОН	SO ₂
B804	CH ₃ CO ₂	Н	Н	Н	ОН	SO ₂
B805	CH ₃ CH ₂ CO ₂	Н	Н	Н	ОН	SO ₂
B806	CH ₂ =CHCH ₂	Н	Н	H	ОН	SO ₂
B807	HCCCH ₂	Н	Н	Н	ОН	SO ₂
B808	CF ₃	Н	Н	Н	ОН	SO ₂
B809	$(CH_3)_2NSO_2$	Н	Н	Н	ОН	SO ₂
B810	$(CH_3)_2N$	Н	Н	Н	ОН	SO ₂
B811	PhO	Н	Н	Н	ОН	SO_2
B812	PhS	Н	Н	Н	ОН	SO ₂
B813	PhSO	Н	Н	Н	ОН	SO_2
B814	PhSO ₂	Н	Н	Н	ОН	SO ₂
B815	CN	Н	Н	Н	ОН	SO_2
B816	CH₃	CH ₃	Н	Н	ОН	SO ₂
B817	CH ₃ CH ₂	CH ₃	Н	Н	ОН	SO_2
B818	CH ₃ CH ₂ CH ₂	CH ₃	Н	Н	ОН	SO_2
B819	(CH₃)₂CH	CH ₃	Н	Н	ОН	SO ₂
B820	$(CH_3)_3C$	CH ₃	Н	Н	ОН	SO ₂
B821	CH₃S	CH ₃	Н	Н	ОН	SO ₂
B822	CH₃SO	CH₃	Н	Н	ОН	SO ₂
B823	CH ₃ SO ₂	CH ₃	Н	Н	ОН	SO ₂
B824	Ph	СН₃	Н	Н	ОН	SO ₂

Radical	R ₄₄	R ₃₇	R ₃₈	R ₃₉	R ₄₀	W
B825	CH₃O	СН₃	Н	Н	ОН	SO ₂
B826	CH₃CO₂	CH₃	Н	Н	ОН	SO_2
B827	CH ₃ CH ₂ CO ₂	СН₃	Н	Н	ОН	SO ₂
B828	CH ₂ =CHCH ₂	СН₃	Н	Н	ОН	SO_2
B829	HCCCH ₂	СН₃	Н	Н	ОН	SO ₂
B830	CF ₃	СН₃	Н	Н	ОН	SO ₂
B831	(CH ₃) ₂ NSO ₂	CH₃	Н	Н	ОН	SO_2
B832	(CH ₃) ₂ N	СНз	Н	Н	ОН	SO ₂
B833	PhO	CH₃	Н	Н	ОН	SO ₂
B834	PhS	СН₃	Н	Н	ОН	SO ₂
B835	PhSO	СН₃	Н	Н	ОН	SO ₂
B836	PhSO ₂	CH₃	Н	Н	ОН	SO_2
B837	CN	СН₃	Н	Н	ОН	SO ₂
B838	CH ₃	Н	СН3	Н	ОН	SO_2
B839	CH ₃ CH ₂	Н	СН _з	Н	ОН	SO ₂
B840	CH ₃ CH ₂ CH ₂	Н	СН _з	Н	ОН	SO ₂
B841	(CH ₃) ₂ CH	Н	CH₃	Н	ОН	SO ₂
B842	$(CH_3)_3C$	Н	CH ₃	Н	ОН	SO ₂
B843	CH₃S	Н	СНз	Н	ОН	SO ₂
B844	CH₃SO	Н	СНз	Н	ОН	SO ₂
B845	CH ₃ SO ₂	Н	СН₃	Н	ОН	SO ₂
B846	Ph	Н	СН3	Н	ОН	SO ₂
B847	CH₃O	Н	CH₃	Н	ОН	SO ₂
B848	CH ₃ CO ₂	Н	CH₃	Н	ОН	SO ₂
B849	CH ₃ CH ₂ CO ₂	Н	CH₃	Н	ОН	SO ₂
B850	CH ₂ =CHCH ₂	Н	CH ₃	Н	ОН	SO ₂
B851	HCCCH ₂	Н	CH ₃	Н	ОН	SO ₂
B852	CF ₃	Н	СН₃	Н	ОН	SO ₂
B853	(CH ₃) ₂ NSO ₂	Н	СН₃	Н	ОН	SO ₂
B854	$(CH_3)_2N$	Н	СН₃	Н	ОН	SO ₂
B855	PhO	Н	CH₃	Н	ОН	SO ₂
B856	PhS	Н	CH ₃	Н	ОН	SO ₂
B857	PhSO	Н	СН₃	Н	ОН	SO ₂

Radical	R ₄₄	R ₃₇	R ₃₈	R ₃₉	R ₄₀	W
B858	PhSO ₂	Н	CH_3	Н	ОН	SO ₂
B859	CN	Н	СН3	Н	ОН	SO ₂
B860	CH₃	СН₃	CH_3	Н	ОН	SO ₂
B861	CH ₃ CH ₂	CH ₃	СН3	H	ОН	SO ₂
B862	CH ₃ CH ₂ CH ₂	CH ₃	CH_3	Н	ОН	SO ₂
B863	(CH ₃) ₂ CH	CH ₃	СНз	Н	ОН	SO ₂
B864	(CH ₃) ₃ C	СН₃	CH ₃	Н	ОН	SO ₂
B865	CH₃S	СН₃	CH ₃	Н	ОН	SO ₂
B866	CH₃SO	CH ₃	CH ₃	Н	ОН	SO ₂
B867	CH ₃ SO ₂	СНз	CH ₃	Н	ОН	SO ₂
B868	Ph	СН₃	СН3	Н	ОН	SO ₂
B869	CH₃O	CH ₃	CH ₃	Н	ОН	SO ₂
B870	CH ₃ CO ₂	СНз	CH ₃	Н	ОН	SO ₂
B871	CH ₃ CH ₂ CO ₂	СН₃	CH ₃	Н	ОН	SO ₂
B872	CH ₂ =CHCH ₂	СН₃	СН3	Н	ОН	SO ₂
B873	HCCCH₂	СН₃	СН3	Н	ОН	SO ₂
B874	CF ₃	CH₃	CH ₃	Н	ОН	SO ₂
B875	$(CH_3)_2NSO_2$	CH₃	CH ₃	Н	ОН	SO ₂
B876	$(CH_3)_2N$	CH ₃	CH ₃	Н	ОН	SO ₂
B877	PhO	СН₃	СН₃	Н	ОН	SO ₂
B878	PhS	CH ₃	СНз	Н	ОН	SO ₂
B879	PhSO	СН₃	СН₃	Н	ОН	SO ₂
B880	PhSO ₂	СН3	СНз	Н	ОН	SO ₂
B881	CN	СН₃	СН3	Н	ОН	SO ₂
B882	CH ₃	СНз	СНз	CH_3	ОН	SO ₂
B883	CH ₃ CH ₂	CH ₃	СНз	СН3	ОН	SO_2
B884	CH ₃ CH ₂ CH ₂	CH ₃	СН₃	СН3	ОН	SO ₂
B885	(CH ₃) ₂ CH	СНз	СН₃	СН3	ОН	SO ₂
B886	$(CH_3)_3C$	СН₃	СНз	СНз	ОН	SO ₂
B887	CH₃S	CH₃	СН₃	CH ₃	ОН	SO ₂
B888	CH₃SO	CH₃	CH ₃	СН₃	ОН	SO ₂
B889	CH ₃ SO ₂	СН₃	СНз	СН₃	ОН	SO ₂
B890	Ph	CH ₃	СНз	СНз	ОН	SO ₂

Radical	R ₄₄	R ₃₇	R ₃₈	R ₃₉	R ₄₀	W
B891	CH₃O	CH₃	СН3	CH ₃	ОН	SO ₂
B892	CH ₃ CO ₂	СН₃	СНз	СНз	ОН	SO ₂
B893	CH ₃ CH ₂ CO ₂	CH₃	СНз	СН3	ОН	SO ₂
B894	CH ₂ =CHCH ₂	CH ₃	CH ₃	CH ₃	ОН	SO ₂
B895	HCCCH ₂	CH ₃	CH ₃	CH ₃	ОН	SO ₂
B896	CF₃	CH ₃	СН3	CH ₃	ОН	SO ₂
B897	$(CH_3)_2NSO_2$	CH ₃	СНз	СНз	ОН	SO ₂
B898	$(CH_3)_2N$	CH₃	СН3	CH ₃	ОН	SO ₂
B899	PhO	CH ₃	CH_3	CH ₃	ОН	SO ₂
B900	PhS	CH ₃	CH ₃	CH ₃	ОН	SO ₂
B901	PhSO	CH₃	СНз	СН3	ОН	SO ₂
B902	PhSO ₂	CH ₃	СН3	CH ₃	ОН	SO ₂
B903	CN	CH ₃	СН3	CH ₃	ОН	SO ₂
B904	CH₃CH₂	CH ₃ CH ₂	Н	Н	ОН	SO ₂
B905	CH ₃ CH ₂ CH ₂	CH ₃ CH ₂	Н	Н	ОН	SO ₂
B906	(CH₃)₂CH	CH₃CH₂	Н	Н	ОН	SO ₂
B907	$(CH_3)_3C$	CH ₃ CH ₂	Н	Н	ОН	SO ₂
B908	CH₃S	CH ₃ CH ₂	Н	Н	ОН	SO ₂
B909	CH₃SO	CH_3CH_2	Н	Н	ОН	SO_2
B910	CH ₃ SO ₂	CH ₃ CH ₂	Н	Н	ОН	SO ₂
B911	Ph	CH ₃ CH ₂	Н	Н	ОН	SO_2
B912	CH₃O	CH ₃ CH ₂	Н	Н	ОН	SO ₂
B913	CH₃CO₂	CH ₃ CH ₂	Н	Н	ОН	SO ₂
B914	CH ₃ CH ₂ CO ₂	CH₃CH₂	Н	Н	ОН	SO ₂
B915	CH ₂ =CHCH ₂	CH ₃ CH ₂	Н	Н	ОН	SO_2
B916	HCCCH₂	CH ₃ CH ₂	Н	Н	ОН	° SO ₂
B917	CF ₃	CH ₃ CH ₂	Н	Н	ОН	SO_2
B918	$(CH_3)_2NSO_2$	CH ₃ CH ₂	Н	Н	ОН	SO ₂
B919	$(CH_3)_2N$	CH_3CH_2	Н	Н	ОН	SO ₂
B920	PhO	CH ₃ CH ₂	Н	Н	ОН	SO_2
B921	PhS	CH ₃ CH ₂	Н	Н	ОН	SO ₂
B922	PhSO	CH ₃ CH ₂	Н	Н	ОН	SO ₂
B923	PhSO ₂	CH₃CH₂	Н	Н	ОН	SO ₂

Radical	R ₄₄	R ₃₇	R_{38}	R ₃₉	R ₄₀	W
B924	CN	CH ₃ CH ₂	Н	Н	ОН	SO ₂
B925	Н	Н	Н	Н	ОН	CH(CO ₂ CH ₂ CH ₃)
B926	CH₃	Н	Н	Н	ОН	CH(CO ₂ CH ₂ CH ₃)
B927	CH ₃ CH ₂	H	Н	Н	ОН	CH(CO ₂ CH ₂ CH ₃)
B928	CH₃CH₂CH₂	Н	Н	Н	ОН	CH(CO ₂ CH ₂ CH ₃)
B929	(CH ₃) ₂ CH	Н	Н	Н	ОН	CH(CO ₂ CH ₂ CH ₃)
B930	(CH₃)₃C	Н	Н	Н	ОН	CH(CO ₂ CH ₂ CH ₃)
B931	CH₃S	Н	Н	Н	ОН	CH(CO ₂ CH ₂ CH ₃)
B932	CH₃SO	Н	Н	Н	ОН	CH(CO ₂ CH ₂ CH ₃)
B933	CH₃SO₂	Н	Н	Н	ОН	CH(CO ₂ CH ₂ CH ₃)
B934	Ph	Н	Н	Н	ОН	CH(CO ₂ CH ₂ CH ₃)
B935	CH₃O	Н	Н	Н	ОН	CH(CO ₂ CH ₂ CH ₃)
B936	CH ₃ CO ₂	Н	Н	· H	ОН	CH(CO ₂ CH ₂ CH ₃)
B937	CH ₃ CH ₂ CO ₂	Н	Н	Н	ОН	CH(CO ₂ CH ₂ CH ₃)
B938	CH ₂ =CHCH ₂	Н	Н	Н	ОН	CH(CO ₂ CH ₂ CH ₃)
B939	HCCCH₂	Н	Н	Н	ОН	CH(CO ₂ CH ₂ CH ₃)
B940	CF ₃	Н	Н	Н	ОН	CH(CO ₂ CH ₂ CH ₃)
B941	$(CH_3)_2NSO_2$	Н	Н	Н	ОН	CH(CO ₂ CH ₂ CH ₃)
B942	$(CH_3)_2N$	Н	Н	Н	ОН	CH(CO ₂ CH ₂ CH ₃)
B943	PhO	Н	Н	Н	ОН	CH(CO ₂ CH ₂ CH ₃)
B944	PhS	Н	Н	Н	ОН	CH(CO ₂ CH ₂ CH ₃)
B945	PhSO	Н	Н	Н	ОН	CH(CO ₂ CH ₂ CH ₃)
B946	PhSO ₂	Н	Н	Н	ΟΉ	CH(CO ₂ CH ₂ CH ₃)
B947	CN	Н	Н	Н	ОН	CH(CO ₂ CH ₂ CH ₃)
B948	CH₃	CH ₃	Н	Н	ОН	CH(CO ₂ CH ₂ CH ₃)
B949	CH₃CH₂	CH ₃	Н	Н	ОН	CH(CO ₂ CH ₂ CH ₃)
B950	CH₃CH₂CH₂	CH ₃	Н	Н	ОН	CH(CO ₂ CH ₂ CH ₃)
B951	(CH ₃) ₂ CH	CH ₃	Н	Н	ОН	CH(CO ₂ CH ₂ CH ₃)
B952	$(CH_3)_3C$	CH ₃	Н	Н	ОН	CH(CO ₂ CH ₂ CH ₃)
B953	CH₃S	CH₃	Н	Н	ОН	CH(CO ₂ CH ₂ CH ₃)
B954	CH₃SO	CH₃	Н	Н	ОН	CH(CO ₂ CH ₂ CH ₃)
B955	CH ₃ SO ₂	CH₃	Н	Н	ОН	CH(CO ₂ CH ₂ CH ₃)
B956	Ph	СНз	Н	Н	ОН	CH(CO ₂ CH ₂ CH ₃)

Radical	R ₄₄	R ₃₇	R ₃₈	R ₃₉	R ₄₀	W
B957	CH₃O	CH ₃	Н	Н	ОН	CH(CO ₂ CH ₂ CH ₃)
B958	CH ₃ CO ₂	CH_3	Н	Н	ОН	CH(CO ₂ CH ₂ CH ₃)
B959	CH ₃ CH ₂ CO ₂	CH ₃	Н	Н	ОН	CH(CO ₂ CH ₂ CH ₃)
B960	CH ₂ =CHCH ₂	CH₃	Н	Н	ОН	CH(CO ₂ CH ₂ CH ₃)
B961	HCCCH ₂	CH ₃	Н	Н	ОН	CH(CO ₂ CH ₂ CH ₃)
B962	CF ₃	СНз	Н	Н	ОН	CH(CO ₂ CH ₂ CH ₃)
B963	(CH ₃) ₂ NSO ₂	CH ₃	Н	Н	ОН	CH(CO ₂ CH ₂ CH ₃)
B964	$(CH_3)_2N$	CH ₃	Н	Н	ОН	CH(CO ₂ CH ₂ CH ₃)
B965	PhO	CH ₃	Н	Н	ОН	CH(CO ₂ CH ₂ CH ₃)
B966	PhS	CH ₃	Н	Н	ОН	CH(CO ₂ CH ₂ CH ₃)
B967	PhSO	СН₃	Н	Н	ОН	CH(CO ₂ CH ₂ CH ₃)
B968	PhSO ₂	CH ₃	Н	Н	ОН	CH(CO ₂ CH ₂ CH ₃)
B969	CN	CH₃	Н	Н	ОН	CH(CO ₂ CH ₂ CH ₃)
B970	CH ₃	Н	СН3	Н	ОН	CH(CO ₂ CH ₂ CH ₃)
B971	CH₃CH₂	Н	CH_3	Н	ОН	CH(CO ₂ CH ₂ CH ₃)
B972	CH ₃ CH ₂ CH ₂	Н	СНз	Н	ОН	CH(CO ₂ CH ₂ CH ₃)
B973	(CH ₃) ₂ CH	Н	СН3	Н	ОН	CH(CO ₂ CH ₂ CH ₃)
B974	$(CH_3)_3C$	Н	CH ₃	Н	ОН	CH(CO ₂ CH ₂ CH ₃)
B975	CH₃S	Н	СНз	Н	ОН	CH(CO ₂ CH ₂ CH ₃)
B976	CH₃SO	Н	CH ₃	Н	ОН	CH(CO ₂ CH ₂ CH ₃)
B977	CH ₃ SO ₂	Н	CH ₃	Н	ОН	CH(CO ₂ CH ₂ CH ₃)
B978	Ph	Н	СНз	Н	ОН	CH(CO ₂ CH ₂ CH ₃)
B979	CH₃O	Н	СН3	Н	ОН	CH(CO ₂ CH ₂ CH ₃)
B980	CH ₃ CO ₂	Н	CH_3	Н	ОН	CH(CO ₂ CH ₂ CH ₃)
B981	CH ₃ CH ₂ CO ₂	Н	CH ₃	Н	ОН	CH(CO ₂ CH ₂ CH ₃)
B982	CH ₂ =CHCH ₂	Н	CH_3	Н	ОН	CH(CO ₂ CH ₂ CH ₃)
B983	HCCCH₂	Н	CH ₃	Н	ОН	CH(CO ₂ CH ₂ CH ₃)
B984	CF ₃	Н	CH_3	Н	ОН	CH(CO ₂ CH ₂ CH ₃)
B985	$(CH_3)_2NSO_2$	Н	СНз	Н	ОН	CH(CO ₂ CH ₂ CH ₃)
B986	$(CH_3)_2N$	Н	CH_3	Н	ОН	CH(CO ₂ CH ₂ CH ₃)
B987	PhO	Н	CH ₃	H	ОН	CH(CO ₂ CH ₂ CH ₃)
B988	PhS	Н	СНз	Н	ОН	CH(CO ₂ CH ₂ CH ₃)
B989	PhSO	Н	СНз	Н	ОН	CH(CO ₂ CH ₂ CH ₃)

Radical	R ₄₄	R ₃₇	R ₃₈	R ₃₉	R ₄₀	W
B990	PhSO ₂	Н	СН3	Н	ОН	CH(CO ₂ CH ₂ CH ₃)
B991	CN	Н	СНз	Н	ОН	CH(CO ₂ CH ₂ CH ₃)
B992	CH ₃	CH ₃	СНз	Н	ОН	CH(CO ₂ CH ₂ CH ₃)
B993	CH ₃ CH ₂	CH ₃	СН3	Н	ОН	CH(CO ₂ CH ₂ CH ₃)
B994	CH ₃ CH ₂ CH ₂	CH ₃	СНз	Н	ОН	CH(CO ₂ CH ₂ CH ₃)
B995	(CH ₃) ₂ CH	CH ₃	СН3	Н	ОН	CH(CO ₂ CH ₂ CH ₃)
B996	(CH₃)₃C	СН _з	СНз	Н	ОН	CH(CO ₂ CH ₂ CH ₃)
B997	CH₃S	CH ₃	СН3	Н	ОН	CH(CO ₂ CH ₂ CH ₃)
B998	CH₃SO	CH ₃	СН3	Н	ОН	CH(CO ₂ CH ₂ CH ₃)
B999	CH ₃ SO ₂	CH ₃	СНз	Н	ОН	CH(CO ₂ CH ₂ CH ₃)
B1000	Ph	CH ₃	СН₃	Н	ОН	CH(CO ₂ CH ₂ CH ₃)
B1001	CH₃O	CH ₃	СНз	Н	ОН	CH(CO ₂ CH ₂ CH ₃)
B1002	CH ₃ CO ₂	CH ₃	СН₃	Н	ОН	CH(CO ₂ CH ₂ CH ₃)
B1003	CH ₃ CH ₂ CO ₂	CH ₃	CH ₃	Н	ОН	CH(CO ₂ CH ₂ CH ₃)
B1004	CH ₂ =CHCH ₂	CH ₃	СНз	Н	ОН	CH(CO ₂ CH ₂ CH ₃)
B1005	HCCCH ₂	CH ₃	СНз	Н	ОН	CH(CO ₂ CH ₂ CH ₃)
B1006	CF ₃	CH ₃	СН3	Н	ОН	CH(CO ₂ CH ₂ CH ₃)
B1007	$(CH_3)_2NSO_2$	CH ₃	CH ₃	Н	ОН	CH(CO ₂ CH ₂ CH ₃)
B1008	$(CH_3)_2N$	CH ₃	CH₃	Н	ОН	CH(CO ₂ CH ₂ CH ₃)
B1009	PhO	CH₃	СН _з	Н	ОН	CH(CO ₂ CH ₂ CH ₃)
B1010	PhS	CH₃	CH ₃	Н	ОН	CH(CO ₂ CH ₂ CH ₃)
B1011	PhSO	CH ₃	СНз	Н	ОН	CH(CO ₂ CH ₂ CH ₃)
B1012	PhSO ₂	СН₃	CH_3	Н	ОН	CH(CO ₂ CH ₂ CH ₃)
B1013	CN	CH ₃	CH_3	Н	ОН	CH(CO ₂ CH ₂ CH ₃)
B1014	CH ₃	CH ₃	CH ₃	СНз	ОН	CH(CO ₂ CH ₂ CH ₃)
B1015	CH ₃ CH ₂	CH₃	CH ₃	СН3	ОН	CH(CO ₂ CH ₂ CH ₃)
B1016	CH ₃ CH ₂ CH ₂	СНз	СНз	CH ₃	ОН	CH(CO ₂ CH ₂ CH ₃)
B1017	(CH ₃) ₂ CH	CH₃	СНз	СНз	ОН	CH(CO ₂ CH ₂ CH ₃)
B1018	$(CH_3)_3C$	СНз	CH ₃	СН3	ОН	CH(CO ₂ CH ₂ CH ₃)
B1019	CH₃S	CH_3	СНз	CH ₃	ОН	CH(CO ₂ CH ₂ CH ₃)
B1020	CH₃SO	CH ₃	CH ₃	CH ₃	ОН	CH(CO ₂ CH ₂ CH ₃)
B1021	CH ₃ SO ₂	СН3	CH ₃	CH ₃	ОН	CH(CO ₂ CH ₂ CH ₃)
B1022	Ph	СНз	СН3	СНз	ОН	CH(CO ₂ CH ₂ CH ₃)

Radical	R ₄₄	R ₃₇	R ₃₈	R ₃₉	R ₄₀	W
B1023	CH₃O	CH₃	CH₃	СН3	ОН	CH(CO ₂ CH ₂ CH ₃)
B1024	CH ₃ CO ₂	СН₃	CH ₃	СНз	ОН	CH(CO ₂ CH ₂ CH ₃)
B1025	CH ₃ CH ₂ CO ₂	CH₃	СН3	СНз	ОН	CH(CO ₂ CH ₂ CH ₃)
B1026	CH ₂ =CHCH ₂	CH₃	CH ₃	СНз	ОН	CH(CO ₂ CH ₂ CH ₃)
B1027	HCCCH ₂	CH ₃	CH ₃	СНз	ОН	CH(CO ₂ CH ₂ CH ₃)
B1028	CF ₃	СН₃	CH_3	СН3	ОН	CH(CO ₂ CH ₂ CH ₃)
B1029	$(CH_3)_2NSO_2$	СН₃	СН3	СНз	ОН	CH(CO ₂ CH ₂ CH ₃)
B1030	$(CH_3)_2N$	CH₃	CH ₃	CH_3	ОН	CH(CO ₂ CH ₂ CH ₃)
B1031	PhO	CH ₃	CH ₃	СН3	ОН	CH(CO ₂ CH ₂ CH ₃)
B1032	PhS	CH ₃	CH ₃	СНз	ОН	CH(CO ₂ CH ₂ CH ₃)
B1033	PhSO	СН₃	СН₃	СНз	ОН	CH(CO ₂ CH ₂ CH ₃)
B1034	PhSO ₂	CH₃	CH ₃	СНз	ОН	CH(CO ₂ CH ₂ CH ₃)
B1035	CN	CH ₃	CH ₃	СН3	ОН	CH(CO ₂ CH ₂ CH ₃)
B1036	CH ₃ CH ₂	CH ₃ CH ₂	Н	Н	ОН	CH(CO ₂ CH ₂ CH ₃)
B1037	CH ₃ CH ₂ CH ₂	CH ₃ CH ₂	Н	Н	ОН	CH(CO ₂ CH ₂ CH ₃)
B1038	(CH ₃) ₂ CH	CH ₃ CH ₂	Н	Н	ОН	CH(CO ₂ CH ₂ CH ₃)
B1039	$(CH_3)_3C$	CH ₃ CH ₂	Н	Н	ОН	CH(CO ₂ CH ₂ CH ₃)
B1040	CH₃S	CH₃CH₂	Н	Н	ОН	CH(CO ₂ CH ₂ CH ₃)
B1041	CH₃SO	CH_3CH_2	Н	Н	ОН	CH(CO ₂ CH ₂ CH ₃)
B1042	CH ₃ SO ₂	CH ₃ CH ₂	Н	Н	ОН	CH(CO ₂ CH ₂ CH ₃)
B1043	Ph	CH ₃ CH ₂	H	Н	ОН	CH(CO ₂ CH ₂ CH ₃)
B1044	CH₃O	CH ₃ CH ₂	Н	Н	ОН	CH(CO ₂ CH ₂ CH ₃)
B1045	CH ₃ CO ₂	CH ₃ CH ₂	Н	Н	ОН	CH(CO ₂ CH ₂ CH ₃)
B1046	CH ₃ CH ₂ CO ₂	CH ₃ CH ₂	Н	Н	ОН	CH(CO ₂ CH ₂ CH ₃)
B1047	CH ₂ =CHCH ₂	CH ₃ CH ₂	Н	Н	ОН	CH(CO ₂ CH ₂ CH ₃)
B1048	HCCCH ₂	CH ₃ CH ₂	Н	Н	ОН	CH(CO ₂ CH ₂ CH ₃)
B1049	CF ₃	CH ₃ CH ₂	Н	Н	ОН	CH(CO ₂ CH ₂ CH ₃)
B1050	$(CH_3)_2NSO_2$	CH ₃ CH ₂	Н	Н	ОН	CH(CO ₂ CH ₂ CH ₃)
B1051	$(CH_3)_2N$	CH ₃ CH ₂	Н	Н	ОН	CH(CO ₂ CH ₂ CH ₃)
B1052	PhO	CH ₃ CH ₂	Н	Н	ОН	CH(CO ₂ CH ₂ CH ₃)
B1053	PhS	CH ₃ CH ₂	Н	Н	ОН	CH(CO ₂ CH ₂ CH ₃)
B1054	PhSO	CH ₃ CH ₂	Н	Н	ОН	CH(CO ₂ CH ₂ CH ₃)
B1055	PhSO ₂	CH₃CH₂	Н	Н	ОН	CH(CO ₂ CH ₂ CH ₃)

Radical	R ₄₄	R ₃₇	R ₃₈	R ₃₉	R ₄₀	W
B1056	CN	CH ₃ CH ₂	Н	Н	ОН	CH(CO ₂ CH ₂ CH ₃)
B1057	CH₃OCO	Н	Н	Н	ОН	CHPh
B1058	Н	Н	Н	Н	ОН	CHPh
B1059	Н	Н	Н	Н	ОН	CH(CH ₂ CH ₃)
B1060	Н	Н	Н	Н	ОН	CH(CH ₂ CH ₂ CH ₃)
B1061	Н	Н	Н	Н	ОН	CH(CH(CH ₃) ₂)
B1062	Н	Н	Н	Н	ОН	CH(C(CH ₃) ₃)
B1063	Н	Н	Н	Н	ОН	$C(CH_3)_2$
B1064	Н	Н	Н	Н	ОН	CH(CF ₃)
B1065	CH₃OCO	Н	Н	Н	ОН	$C(CH_3)(CF_3)$
B1066	Н	Н	Н	Н	ОН	$C(CH_3)(CF_3)$
B1067	CH₃OCO	CH₃O	Н	Н	ОН	CH ₂
B1068	Н	CH₃O	Н	Н	ОН	CH ₂
B1069	CH₃O	CH ₃ OCO	Н	СН3	ОН	CH ₂
B1070	CH₃O	Н	СНз	Н	ОН	CH ₂
B1071	CI	Н	Н	Н	ОН	CH ₂
B1072	F	Н	Н	Н	ОН	CH ₂
B1073	Н	Н	H	Н	ОН	CH(OCH ₃) ₂
B1074	Н	Н	Н	Н	ОН	CH ₂ OSO ₂ CH ₃
B1075	CH ₃	CH ₃	СН3	СНз	ОН	S(O)
B1076	CICH ₂ CH ₂	Н	Н	Н	ОН	CH ₂
B1077	$HO(CH_2)_2$	Н	Н	Н	ОН	CH ₂
B1078	MsO(CH ₂) ₂	Н	Н	Н	ОН	CH ₂
B1079	HOCH(CH ₃)CH ₂	Н	Н	Н	ОН	CH ₂
B1080	MsOCH(CH ₃)CH ₂	Н	Н	Н	ОН	CH ₂
B1081	$(CH_3)_2CH$	Н	СН3	СН3	ОН	CH ₂
B1082	HCCCH ₂	Н	СН₃	СН₃	ОН	CH ₂
B1083	H ₂ C=CCH ₂	Н	СНз	СН3	ОН	CH ₂

In the following Table 7 Q is Q_6

$$()$$
 R_{85}
 R_{85}
 $(CH_2)p$

and Q_6 represents the following radicals C:

Table 7: Radicals C:

Radical	R ₈₄	R ₈₅	R ₈₆	R ₈₃	р	W
C1	Н	Н	Н	ОН	1	CH ₂
C2	CH₃	Н	Н	ОН	1	CH_2
C 3	CH ₃ CH ₂	H	Н	ОН	1	CH ₂
C4	CH ₃ CH ₂ CH ₂	Н	Н	ОН	1	CH ₂
C5	(CH ₃) ₂ CH	Н	Н	ОН	1	CH ₂
C6	$(CH_3)_3C$	Н	Н	ОН	1	CH ₂
C7	CH₃S	Н	Н	ОН	1	CH ₂
C8	CH₃SO	Н	Н	ОН	1	CH ₂
C9	CH₃SO₂	Н	Н	ОН	1	CH ₂
C10	Ph	Н	Н	ОН	1	CH ₂
C11	CH₃O	Н	H	ОН	1	CH ₂
C12	CH ₃ OCO ₂	Н	Н	ОН	1	CH ₂
C13	CH ₃ CH ₂ OCO ₂	Н	Н	ОН	1	CH ₂
C14	CH ₂ =CHCH ₂	Н	Н	ОН	1	CH ₂
C15	HCCCH ₂	Н	Н	ОН	1	CH ₂
C16	CF ₃	H	Н	ОН	1	CH ₂
C17	$(CH_3)_2NSO_2$	Н	Н	ОН	1	CH ₂
C18	$(CH_3)_2N$	Н	Н	ОН	1	CH ₂
C19	PhO	Н	Н	ОН	1	CH ₂
C20	PhS	H	Н	ОН	1	CH ₂
C21	PhSO	Н	Н	ОН	1	CH ₂
C22	PhSO ₂	Н	Н	ОН	1	CH ₂

Radical	R ₈₄	R ₈₅	R ₈₆	R ₈₃	р	W
C23	CN	Н	Н	ОН	1	CH_2
C24	CH ₃	CH ₃	H	ОН	1	CH ₂
C25	CH ₃ CH ₂	СН _з	Н	ОН	1	CH ₂
C26	CH ₃ CH ₂ CH ₂	СНз	Н	ОН	1	CH ₂
C27	(CH ₃) ₂ CH	CH ₃	Н	ОН	1	CH ₂
C28	$(CH_3)_3C$	CH ₃	Н	ОН	1	CH ₂
C29	CH₃S	CH ₃	H	ОН	1	CH_2
C30	CH₃SO	CH ₃	Н	ОН	1	CH ₂
C31	CH ₃ SO ₂	CH ₃	Н	ОН	1	CH ₂
C32	Ph	CH ₃	Н	ОН	1	CH ₂
C33	CH₃O	CH ₃	Н	ОН	1	CH_2
C34	CH ₃ OCO ₂	CH ₃	Н	ОН	1	CH ₂
C35	CH ₃ CH ₂ OCO ₂	CH_3	Н	ОН	1	CH_2
C36	CH ₂ =CHCH ₂	CH_3	Н	ОН	1	CH ₂
C37	HCCCH ₂	CH ₃	Н	ОН	1	CH_2
C38	CF ₃	CH ₃	Н	ОН	1	CH ₂
C39	(CH ₃) ₂ NSO ₂	CH ₃	Н	ОН	1	CH_2
C40	$(CH_3)_2N$	СНз	Н	ОН	1	CH_2
C41	PhO	CH ₃	Н	ОН	1	CH_2
C42	PhS	CH_3	Н	ОН	1	CH ₂
C43	PhSO	СНз	Н	ОН	1	CH_2
C44	PhSO ₂	CH_3	H	ОН	1	CH ₂
C45	CN	CH_3	Н	ОН	1	CH ₂
C46	Н	Н	Н	ОН	4	CH_2
C47	СН₃	Н	Н	ОН	4	CH ₂
C48	CH₃CH₂	Н	Н	ОН	4	CH ₂
C49	CH ₃ CH ₂ CH ₂	Н	Н	ОН	4	CH_2
C50	(CH ₃) ₂ CH	Н	Н	ОН	4	CH_2
C51	$(CH_3)_3C$	Н	Н	ОН	4	CH ₂
C52	CH₃S	Н	Н	ОН	4	CH ₂
C53	CH₃SO	Н	Н	ОН	4	CH ₂
C54	CH₃SO₂	Н	Н	ОН	4	CH ₂
C55	Ph	Н	Н	ОН	4	CH ₂

Radical	R ₈₄	R ₈₅	R ₈₆	R ₈₃	р	W
C56	CH₃O	Н	Н	ОН	4	CH ₂
C57	CH ₃ OCO ₂	Н	Н	ОН	4	CH ₂
C58	CH ₃ CH ₂ OCO ₂	Н	Н	ОН	4	CH ₂
C59	CH ₂ =CHCH ₂	Н	Н	ОН	4	CH ₂
C60	HCCCH ₂	Н	Н	ОН	4	CH ₂
C61	CF ₃	Н	Н	ОН	4	CH ₂
C62	$(CH_3)_2NSO_2$	Н	Н	ОН	4	CH ₂
C63	$(CH_3)_2N$	Н	Н	ОН	4	CH ₂
C64	PhO	Н	Н	ОН	4	CH_2
C65	PhS	Н	Н	ОН	4	CH_2
C66	PhSO	Н	Н	ОН	4	CH ₂
C67	PhSO ₂	Н	Н	ОН	4	CH ₂
C68	CN	Н	Н	ОН	4	CH ₂
C69	CH₃	CH ₃	Н	ОН	4	CH ₂
C70	CH₃CH₂	CH ₃	Н	ОН	4	CH ₂
C71	CH ₃ CH ₂ CH ₂	CH₃	Н	ОН	4	CH ₂
C72	(CH ₃) ₂ CH	CH ₃	Н	ОН	4	CH ₂
C73	$(CH_3)_3C$	CH_3	Н	ОН	4	CH ₂
C74	CH₃S	CH ₃	Н	ОН	4	CH_2
C75	CH₃SO	CH₃	Н	ОН	4	CH ₂
C76	CH ₃ SO ₂	СН₃	Н	ОН	4	CH ₂
C77	Ph	CH₃	Н	ОН	4	CH ₂
C78	CH₃O	CH ₃	Н	ОН	4	CH ₂
C79	CH ₃ OCO ₂	CH ₃	Н	ОН	4	CH ₂
C80	CH ₃ CH ₂ OCO ₂	CH₃ ઼	Н	ОН	4	CH ₂
C81	CH ₂ =CHCH ₂	CH ₃	Н	ОН	4	CH ₂
C82	HCCCH₂	CH ₃	Н	ОН	4	CH ₂
C83	CF ₃	CH₃	Н	ОН	4	CH ₂
C84	$(CH_3)_2NSO_2$	CH₃	Н	ОН	4	CH ₂
C85	(CH₃)₂N	CH₃	Н	ОН	4	CH ₂
C86	PhO	CH ₃	Н	ОН	4	CH ₂
C87	PhS	CH ₃	Н	ОН	4	CH ₂
C88	PhSO	CH ₃	Н	ОН	4	CH ₂

Radical	R_{84}	R ₈₅	R ₈₆	R ₈₃	р	W
C89	PhSO ₂	СНз	Н	ОН	4	CH ₂
C90	CN	CH_3	Н	ОН	4	CH ₂
C91	Н	Н	Н	ОН	3	CH ₂
C92	CH₃	Н	Н	ОН	3	CH ₂
C93	CH₃CH₂	Н	Н	ОН	3	CH ₂
C94	CH₃CH₂CH₂	Н	Н	ОН	3	CH ₂
C95	(CH ₃) ₂ CH	Н	Н	ОН	3	CH ₂
C96	(CH₃)₃C	Н	Н	ОН	3	CH ₂
C97	CH₃S	Н	Н	ОН	3	CH ₂
C98	CH₃SO	Н	Н	ОН	3	CH ₂
C99	CH₃SO₂	Н	Н	ОН	3	CH ₂
C100	Ph	Н	Н	ОН	3	CH ₂
C101	. CH₃O	Н	Н	ОН	3	CH ₂
C102	CH ₃ OCO ₂	Н	Н	ОН	3	CH ₂
C103	CH ₃ CH ₂ OCO ₂	Н	Н	ОН	3	CH ₂
C104	CH ₂ =CHCH ₂	Н	Н	ОН	3	CH ₂
C105	HCCCH₂	Н	Н	ОН	3	CH ₂
C106	CF ₃	Н	Н	ОН	3	CH ₂
C107	(CH ₃) ₂ NSO ₂	Н	Н	ОН	3	CH ₂
C108	$(CH_3)_2N$	Н	Н	ОН	3	CH ₂
C109	PhO	Н	Н	ОН	3	CH ₂
C110	PhS	Н	Н	ОН	3	CH ₂
C111	PhSO	Н	Н	ОН	3	CH ₂
C112	PhSO ₂	Н	Н	ОН	3	CH ₂
C113	CN	Н	Н	ОН	3	CH ₂
C114	CH ₃	CH ₃	H	ОН	3	CH ₂
C115	CH ₃ CH ₂	CH ₃	H	ОН	3	CH ₂
C116	CH ₃ CH ₂ CH ₂	CH ₃	Н	OH	3	CH ₂
C117	(CH ₃) ₂ CH	CH ₃	H	ОН	3	CH ₂
C118	$(CH_3)_3C$	CH ₃	Н	ОН	3	CH ₂
C119	CH₃S	CH₃	Н	ОН	3	CH ₂
C120	CH₃SO	CH ₃	Н	ОН	3	CH ₂
C121	CH₃SO₂	CH₃	Н	ОН	3	CH ₂

Radical	R ₈₄	R ₈₅	R_{86}	R ₈₃	р	W
C122	Ph	CH ₃	Н	ОН	3	CH ₂
C123	CH₃O	CH ₃	Н	ОН	3	CH ₂
C124	CH ₃ OCO ₂	CH ₃	Н	ОН	3	CH ₂
C125	CH ₃ CH ₂ OCO ₂	CH ₃	Н	ОН	3	CH ₂
C126	CH ₂ =CHCH ₂	CH ₃	H	ОН	3	CH ₂
C127	HCCCH ₂	CH ₃	Н	ОН	3	CH_2
C128	CF ₃	CH ₃	Н	ОН	3	CH ₂
C129	$(CH_3)_2NSO_2$	CH ₃	Н	ОН	3	CH ₂
C130	$(CH_3)_2N$	CH ₃	Н	ОН	3	CH ₂
C131	PhO	CH ₃	Н	ОН	3	CH ₂
C132	PhS	CH ₃	Н	ОН	3	CH ₂
C133	PhSO	CH ₃	Н	ОН	3	CH ₂
C134	PhSO ₂	CH ₃	Н	ОН	3	CH ₂
C135	CN	CH ₃	Н	ОН	3	CH ₂
C136	CH₃CH₂	CH ₃ CH ₂	Н	ОН	1	CH ₂
C137	Н	Н	Н	ОН	1	CH(CH ₃)
C138	CH ₃	Н	Н	ОН	1	CH(CH ₃)
C139	CH ₃	CH₃	Н	ОН	1	CH(CH ₃)
C140	CH₂CH₃	Н	Н	ОН	1	CH(CH ₃)
C141	CH₂CH₃	СН3	Н	ОН	1	CH(CH ₃)
C142	CH₃CH₂	CH ₃ CH ₂	Н	ОН	1	CH(CH ₃)
C143	Н	Н	CH_3	ОН	1	CH ₂
C144	СН₃	СН₃	CH ₃	ОН	1	CH ₂
C145	CH ₃ CH ₂	CH ₃ CH ₂	CH ₃	ОН	1	CH_2
C146	Н	Н	H	ОН	2	CH ₂
C147	CH ₃	CH_3	H	ОН	2	CH_2
C148	CH ₃ CH ₂	CH ₃ CH ₂	Н	ОН	2	CH ₂
C149	Н	Н	Н	ОН	5	CH ₂
C150	CH ₃	CH ₃	Н	ОН	5	CH ₂
C151	CH₃CH₂	CH₃CH₂	Н	ОН	5	CH ₂

In the following Table 8 Q is Q_8

$$()$$
 R_{88}
 R_{89}
 R_{90}
 R_{91}
 R_{90}
 R_{90}
 R_{90}
 R_{90}

and Q_8 represents the following radicals D:

Table 8: Radicals D:

Radical	R_{88}	R ₈₉	R ₉₀	R ₉₁	R ₈₇	O
D1	Н	Н	Н	Н	ОН	2
D2	СН₃	Н	Н	Н	ОН	2
D3	CH ₃ CH ₂	Н	Н	Н	ОН	2
D4	CH ₃ CH ₂ CH ₂	Н	Н	Н	ОН	2
D5	(CH ₃) ₂ CH	Н	Н	Н	ОН	2
D6	$(CH_3)_3C$	Н	Н	Н	ОН	2
D7	CH₃S	Н	Н	Н	ОН	2
D8	CH₃SO	Н	Н	Н	ОН	2
D9	CH ₃ SO ₂	Н	Н	Н	ОН	2
D10	Ph	Н	Н	Н	ОН	2
D11	CH₃O	Н	Н	Н	ОН	2
D12	CH ₂ =CHCH ₂	Н	Н	Н	ОН	2
D13	HCCCH ₂	Н	Н	Н	ОН	2
D14	CF ₃	Н	Н	H	ОН	2
D15	PhO	Н	Н	Н	ОН	2
D16	PhS	Н	Н	Н	ОН	2
D17	PhSO	Н	Н	Н	ОН	2
D18	PhSO ₂	Н	Н	Н	ОН	2
D19	CH₃	СН₃	Н	Н	ОН	2
D20	CH ₃ CH ₂	СН₃	Н	Н	ОН	2
D21	CH ₃ CH ₂ CH ₂	СН₃	Н	Н	ОН	2
D22	(CH ₃) ₂ CH	CH ₃	Н	Н	ОН	2
D23	(CH₃)₃C	СН₃	Н	Н	ОН	2

Radical	R ₈₈	R ₈₉	R_{90}	R ₉₁	R ₈₇	О
D24	CH₃S	СН₃	Н	Н	ОН	2
D25	CH₃SO	CH₃	Н	Н	ОН	2
D26	CH ₃ SO ₂	CH₃	H	Н	ОН	2
D27	Ph	CH ₃	Н	Н	ОН	2
D28	CH ₃ O	CH ₃	Н	Н	ОН	2
D29	CH ₂ =CHCH ₂	CH ₃	Н	Н	ОН	2
D30	HCCCH₂	CH₃	Н	Н	ОН	2
D31	CF₃	CH₃	Н	Н	ОН	2
D32	PhO	CH ₃	Н	Н	ОН	2
D33	PhS	CH₃	Н	Н	ОН	2
D34	PhSO	СН₃	Н	Н	ОН	2
D35	PhSO ₂	CH ₃	Н	Н	ОН	2
D36	н	Н	Н	Н	ОН	3
D37	CH ₃	Н	Н	Н	ОН	3
D38	CH₃CH₂	Н	Н	H	ОН	3
D39	CH ₃ CH ₂ CH ₂	Н	Н	Н	ОН	3
D40	(CH ₃) ₂ CH	Н	Н	Н	ОН	3
D41	$(CH_3)_3C$	Н	Н	Н	ОН	3
D42	CH₃S	Н	Н	Н	ОН	3
D43	CH₃SO	Н	Н	Н	ОН	3
D44	CH₃SO₂	Н	Н	Н	ОН	3
D45	Ph	Н	Н	Н	ОН	3
D46	CH₃O	Н	Н	Н	ОН	3
D47	CH ₂ =CHCH ₂	Н	Н	Н	ОН	3
D48	HCCCH₂	Н	Н	Н	ОН	3
D49	CF ₃	Н	Н	Н	ОН	3
D50	PhO	Н	Н	Н	ОН	3
D51	PhS	Н	Н	Н	ОН	3
D52	PhSO	Н	Н	Н	ОН	3
D53	PhSO ₂	Н	Н	Н	ОН	3
D54	CH ₃	CH ₃	Н	Н	ОН	3
D55	CH ₃ CH ₂	CH ₃	Н	Н	ОН	3
D56	CH₃CH₂CH₂	CH ₃	Н	Н	ОН	3

Radical	R ₈₈	R ₈₉	R ₉₀	R ₉₁	R ₈₇	0
D57	(CH ₃) ₂ CH	СН₃	Н	Н	ОН	3
D58	$(CH_3)_3C$	СН₃	Н	Н	ОН	3
D59	CH₃S	СН₃	Н	Н	ОН	3
D60	CH₃SO	СН₃	Н	Н	ОН	3
D61	CH ₃ SO ₂	CH ₃	Н	Н	ОН	3
D62	Ph	СН₃	Н	Н	ОН	3
D63	CH ₃ O	CH ₃	Н	Н	ОН	3
D64	CH ₂ =CHCH ₂	СH ₃	Н	Н	ОН	3
D65	HCCCH₂	CH_3	Н	Н	ОН	3
D66	CF ₃	CH ₃	Н	Н	ОН	3
D67	PhO	СН₃	Н	Н	ОН	3
D68	PhS	CH ₃	Н	Н	ОН	3
D69	PhSO	СН3	Н	Н	ОН	3
D70	PhSO ₂	CH ₃	Н	Н	ОН	3
D71	Н	Н	Н	Н	ОН	4
D72	CH₃	Н	Н	Н	ОН	4
D73	CH ₃ CH ₂	Н	Н	Н	ОН	4
D74	CH ₃ CH ₂ CH ₂	Н	Н	Н	ОН	4
D75	(CH₃)₂CH	Н	Н	Н	ОН	4
D76	$(CH_3)_3C$	Н	H	Н	ОН	4
D77	CH₃S	Н	Н	Н	ОН	4
D78	CH₃SO	Н	Н	Н	ОН	4
D79	CH ₃ SO ₂	H	Н	Н	ОН	4
D80	Ph	Н	Н	Н	ОН	4
D81	CH₃O	Н	Н	Н	ОН	4
D82	CH ₂ =CHCH ₂	Н	Н	Н	ОН	4
D83	HCCCH ₂	H	Н	Н	ОН	4
D84	CF ₃	Н	Н	Н	ОН	4
D85	PhO	Н	Н	Н	ОН	4
D86	PhS	Н	Н	Н	ОН	4
D87	PhSO	Н	Н	Н	ОН	4
D88	PhSO ₂	Н	Н	Н	ОН	4
D89	CH₃	СН₃	Н	Н	ОН	4

Radical	R ₈₈	R ₈₉	R ₉₀	R ₉₁	R ₈₇	0
D90	CH ₃ CH ₂	CH ₃	Н	Н	ОН	4
D91	CH ₃ CH ₂ CH ₂	СН₃	Н	Н	ОН	4
D92	(CH ₃) ₂ CH	CH ₃	Н	Н	ОН	4
D93	$(CH_3)_3C$	CH ₃	Н	Н	ОН	4
D94	CH ₃ S	CH ₃	Н	Н	ОН	4
D95	CH₃SO	CH ₃	Н	Н	ОН	4
D96	CH ₃ SO ₂	CH ₃	Н	Н	ОН	4
D97	Ph	CH ₃	Н	Н	ОН	4
D98	CH₃O	CH ₃	Н	Н	ОН	4
D99	CH ₂ =CHCH ₂	CH ₃	H	Н	ОН	4
D100	HCCCH ₂	CH ₃	Н	Н	ОН	4
D101	CF ₃	CH₃	Н	Н	ОН	4
D102	PhO	CH ₃	Н	Н	ОН	4
D103	PhS	CH₃	Н	Н	ОН	4
D104	PhSO	CH ₃	Н	Н	ОН	4
D105	PhSO ₂	CH ₃	Н	Н	ОН	4
D106	Н	Н	H	СН3	ОН	4
D107	Н	Н	Н	CH ₃	ОН	3
D108	Н	Н	H	Н	ОН	1
D109	CH₃	Н	Н	Н	ОН	1
D110	CH₃OCO	CH ₃	Н	Н	ОН	1
D111	CH₃CH₂OCO	CH ₃	Н	Н	ОН	1
D112	CH₃O	CH ₃	Н	Н	ОН	1
D113	CH₃S	СН _з	Н	Н	ОН	1
D114	CH₃SO	CH ₃	Н	Н	ОН	1
D115	CH ₃ SO ₂	CH ₃	Н	Н	ОН	1
D116	CH ₃ CH ₂	Н	Н	Н	ОН	1
D117	CH₃OCO	CH ₃ CH ₂	Н	Н	ОН	1
D118	CH₃CH₂OCO	CH ₃ CH ₂	Н	Н	ОН	1
D119	CH₃O	CH ₃ CH ₂	Н	Н	ОН	1
D120	CH₃S	CH ₃ CH ₂	Н	Н	ОН	1
D121	CH₃SO	CH ₃ CH ₂	Н	Н	ОН	1
D122	CH ₃ SO ₂	CH ₃ CH ₂	Н	Н	ОН	1

PCT/EP01/00720

- 142 -

Radical	R_{88}	R ₈₉	R_{90}	R_{91}	R ₈₇	0
D123	CH₃CH₂S	СНз	Н	Н	ОН	1
D124	CH₃CH₂SO	CH ₃	Н	Н	ОН	1
D125	CH ₃ CH ₂ SO ₂	CH ₃	Н	Н	ОН	1
D126	CH ₃ CH ₂ S	CH ₃ CH ₂	Н	Н	ОН	1
D127	CH₃CH₂SO	CH ₃ CH ₂	Н	Н	ОН	1
D128	CH ₃ CH ₂ SO ₂	CH ₃ CH ₂	Н	Н	ОН	1
D129	Н	Н	CH_3	Η.	ОН	1
D130	CH ₃	Н	CH ₃	Н	ОН	1
D131	CH ₃ OCO	CH ₃	CH_3	Н	ОН	1
D132	CH₃CH₂OCO	CH_3	CH ₃	H	ОН	1
D133	CH₃O	CH ₃	CH_3	Н	ОН	1
D134	CH₃S	CH ₃	CH_3	Н	ОН	1
D135	CH₃SO	CH ₃	CH_3	Н	ОН	1
D136	CH ₃ SO ₂	CH ₃	СН3	Н	ОН	1
D137	Н	Н	Н	CH ₃	ОН	1
D138	CH₃	Н	Н	CH ₃	ОН	1
D139	Н	Н	СН3	CH ₃	ОН	1
D140	CH₃CH₂OCO	CH ₃	Н	H	ОН	4

Table 9: Compounds of formula If:

Compd.	R_{92}	R_{93}	R ₉₄	R_{95}	Q_3
no.					
A1	Н	Н	Н	CF ₃	B24
A2	CH₃	Н	Н	CF ₃	B24
АЗ	CH₃CH₂	Н	Н	CF ₃	B24

Compd.	R ₉₂	R_{93}	R ₉₄	R ₉₅	Q_3
no.					
A4	(CH ₃) ₂ CH	Н	Н	CF ₃	B24
A 5	$(CH_3)_3C$	Н	Н	CF ₃	B24
A6	cyclopropyl	Н	Н	CF ₃	B24
A7	CH ₃ (CH ₂) ₂	н	Н	CF ₃	B24
A8	CH ₃ OCH ₂	Н	Н	CF ₃	B24
A 9	$CH_3O(CH_2)_2$	Н	Н	CF ₃	B24
A10	Ph	Н	Н	CF ₃	B24
A11	PhO	Н	Н	CF ₃	B24
A12	PhS	Н	Н	CF ₃	B24
A13	PhSO	Н	Н	CF ₃	B24
A14	PhSO ₂	н	Н	CF ₃	B24
A15	CH₃S	Н	Н	CF_3	B24
A16	CH₃SO	н	Н	CF ₃	B24
A17	CF ₃	Н	Н	CF ₃	B24
A18	F₂CH	Н	Н	CF ₃	B24
A19	HCC	Н	· Н	CF ₃	B24
A20	CH₃CC	Н	Н	CF ₃	B24
A21	CH ₂ =CH	Н	Н	CF ₃	B24
A22	CH ₂ =CHCH ₂	Н	Н	CF ₃	B24
A23 ⁻	CH ₃ SO ₂ N(CH ₃)	Н	Н	CF ₃	B24
A24	$(CH_3)_2N$	Н	Н	CF ₃	B24
A25	$(CH_3)_2NSO_2$	Н	Н	CF_3	B24
A26	CICH ₂	Н	Н	CF_3	B24
A27	CH₃SCH₂	H	Н	CF ₃	B24
A28	CH₃SOCH₂	Н	Н	CF ₃	B24
A29	CH ₃ SO ₂ CH ₂	Н	Н	CF ₃	B24
A30	[1,2,4]-triazol-1-yl-methyl	Н	Н	CF ₃	B24
A31	CH₃	CF ₃	Н	CH ₃	B24
A32	CH₃	CH ₃	Н	CF ₃	B24
A33	Н	Н	Н	CF ₃ CF ₂	B24
A34	CH₃	Н	Н	CF ₃ CF ₂	B24
A35	CH ₃ CH ₂	H	Н	CF ₃ CF ₂	B24

Compd.	R ₉₂	R_{93}	R ₉₄	R_{95}	Q_3
no.					
A36	cyclopropyl	Н	Н	CF ₃ CF ₂	B24
A37	(CH ₃) ₃ C	Н	Н	CF ₃ CF ₂	B24
A38	(CH ₃) ₂ CH	Н	Н	CF ₃ CF ₂	B24
A39	$CH_3(CH_2)_2$	Н	Н	CF ₃ CF ₂	B24
A40	CH₃OCH₂	Н	Н	CF ₃ CF ₂	B24
A41	$CH_3O(CH_2)_2$	Н	Н	CF ₃ CF ₂	B24
A42	Ph	Н	Н	CF₃CF₂	B24
A43	PhO	Н	Н	CF ₃ CF ₂	B24
A44	PhS	Н	Н	CF ₃ CF ₂	B24
A45	PhSO	Н	Н	CF ₃ CF ₂	B24
A46	PhSO ₂	н	Н	CF ₃ CF ₂	B24
A47	CH₃S	Н	Н	CF ₃ CF ₂	B24
A48	CH₃SO	н	Н	CF ₃ CF ₂	B24
A49	CF ₃	H	Н	CF ₃ CF ₂	B24
A50	F ₂ CH	Н	Н	CF ₃ CF ₂	B24
A51	HCC	H	Н	CF ₃ CF ₂	B24
A52	CH₃CC	Н	Н	CF ₃ CF ₂	B24
A53	CH ₂ =CH	Н	Н	CF ₃ CF ₂	B24
A54	CH ₂ =CHCH ₂	Н	Н	CF ₃ CF ₂	B24
A55	CH ₃ SO ₂ N(CH ₃)	Н	Н	CF ₃ CF ₂	B24
A56	$(CH_3)_2N$	Н	Н	CF ₃ CF ₂	B24
A57	$(CH_3)_2NSO_2$	Н	Н	CF ₃ CF ₂	B24
A58	CICH ₂	Н	Н	CF ₃ CF ₂	B24
A59	CH₃SCH₂	Н	Н	CF ₃ CF ₂	B24
A60	CH₃SOCH₂	Н	Н	CF ₃ CF ₂	B24
A61	CH ₃ SO ₂ CH ₂	Н	Н	CF ₃ CF ₂	B24
A62	[1,2,4]-triazol-1-yl-methyl	Н	Н	CF ₃ CF ₂	B24
A63	Н	Н	Н	CF ₃ CF ₂ CF ₂	B24
A64	CH ₃	Н	Н	CF ₃ CF ₂ CF ₂	B24
A65	CH ₃ CH ₂	Н	Н	CF ₃ CF ₂ CF ₂	B24
A66	cyclopropyl	Н	Н	CF ₃ CF ₂ CF ₂	B24
A67	(CH₃)₃C	Н	Н	CF ₃ CF ₂ CF ₂	B24

- 145 -

Compd.	R_{92}	R ₉₃	R_{94}	R_{95}	Q_3
no.					
A68	(CH ₃) ₂ CH	Н	Н	CF ₃ CF ₂ CF ₂	B24
A69	$CH_3(CH_2)_2$	Н	Н	CF ₃ CF ₂ CF ₂	B24
A70	CH ₃ OCH ₂	Н	Н	CF ₃ CF ₂ CF ₂	B24
A71	$CH_3O(CH_2)_2$	Н	Н	CF ₃ CF ₂ CF ₂	B24
A72	Ph	Н	Н	CF ₃ CF ₂ CF ₂	B24
A73	PhO	Н	Н	CF ₃ CF ₂ CF ₂	B24
A74	PhS	Н	Н	CF ₃ CF ₂ CF ₂	B24
A 75	PhSO	Н	Н	CF ₃ CF ₂ CF ₂	B24
A76	PhSO ₂	H	Н	CF ₃ CF ₂ CF ₂	B24
A77	CH₃S	Н	Н	CF ₃ CF ₂ CF ₂	B24
A78-	CH₃SO	Н	Н	CF ₃ CF ₂ CF ₂	B24
A79	CF ₃	Н	Н	CF ₃ CF ₂ CF ₂	B24
A80	F ₂ CH	Н	Н	CF ₃ CF ₂ CF ₂	B24
A81	HCC	Н	Н	CF ₃ CF ₂ CF ₂	B24
A82	CH₃CC	Н	Н	CF ₃ CF ₂ CF ₂	B24
A83	CH ₂ =CH	Н	Н	CF ₃ CF ₂ CF ₂	B24
A84	CH ₂ =CHCH ₂	Н	Н	CF ₃ CF ₂ CF ₂	B24
A85	CH ₃ SO ₂ N(CH ₃)	Н	Н	CF ₃ CF ₂ CF ₂	B24
A86	$(CH_3)_2N$	Н	Н	CF ₃ CF ₂ CF ₂	B24
A87	(CH ₃) ₂ NSO ₂	Н	Н	CF ₃ CF ₂ CF ₂	B24
A88	CICH ₂	Н	Н	CF ₃ CF ₂ CF ₂	B24
A89	CH₃SCH₂	Н	Н	CF ₃ CF ₂ CF ₂	B24
A90	CH₃SOCH₂	Н	Н	CF ₃ CF ₂ CF ₂	B24
A91	CH ₃ SO ₂ CH ₂	Н	Н	CF ₃ CF ₂ CF ₂	B24
A92	[1,2,4]-triazol-1-yl-methyl	Н	Н	CF ₃ CF ₂ CF ₂	B24
A93	Н	Н	Н	CF ₂ CI	B24
A94	CH₃	Н	Н	CF ₂ CI	B24
A95	CH₃CH₂	Н	Н	CF ₂ CI	B24
A96	cyclopropyl	Н	Н	CF ₂ CI	B24
A97	(CH ₃) ₃ C	Н	Н	CF ₂ CI	B24
A98	(CH ₃) ₂ CH	Н	Н	CF ₂ CI	B24
A99	$CH_3(CH_2)_2$	Н	Н	CF₂CI	B24

- 146 **-**

Compd.	R ₉₂	R_{93}	R_{94}	R_{95}	Q_3
no.					
A100	CH₃OCH₂	Н	H	CF ₂ CI	B24
A101	$CH_3O(CH_2)_2$	Н	Н	CF ₂ CI	B24
A102	Ph	Н	Н	CF ₂ CI	B24
A103	PhO	Н	Н	CF ₂ Cl	B24
A104	PhS	Н	Н	CF ₂ CI	B24
A105	PhSO	Н	Н	CF ₂ CI	B24
A106	PhSO ₂	Н	Н	CF ₂ Cl	B24
A107	CH₃S	Н	Н	CF ₂ CI	B24
A108	CH₃SO	Н	Н	CF ₂ CI	B24
A109	CF ₃	Н	Н	CF ₂ Cl	B24
A110	F ₂ CH	Н	Н	CF ₂ CI	B24
A111	HCC	Н	Н	CF ₂ CI	B24
A112	CH₃CC	Н	Н	CF ₂ Cl	B24
A113	CH ₂ =CH	Н	Н	CF ₂ Cl	B24
A114	CH ₂ =CHCH ₂	Н	Н	CF ₂ Cl	B24
A115	CH₃SO₂N(CH₃)	Н	Н	CF ₂ Cl	B24
A116	$(CH_3)_2N$	Н	Н	CF ₂ Cl	B24
A117	$(CH_3)_2NSO_2$	Н	Н	CF ₂ CI	B24
A118	CICH ₂	Н	Н	CF ₂ CI	B24
A119	CH₃SCH₂	Н	Н	CF ₂ CI	B24
A120	CH₃SOCH₂	Н	Н	CF ₂ CI	B24
A121	CH ₃ SO ₂ CH ₂	Н	Н	CF ₂ CI	B24
A122	[1,2,4]-triazol-1-yl-methyl	Н	H	CF ₂ CI	B24
A123	Н	Н	Н	CHF ₂	B24
A124	CH ₃	Н	Н	CHF ₂	B24
A125	CH₃CH₂	Н	Н	CHF ₂	B24
A126	cyclopropyl	Н	Н	CHF ₂	B24
A127	(CH ₃) ₃ C	Н	Н	CHF ₂	B24
A128	(CH ₃) ₂ CH	Н	Н	CHF_2	B24
A129	$CH_3(CH_2)_2$	Н	Н	CHF ₂	B24
A130	CH₃OCH₂	Н	Н	CHF ₂	B24
A131	$CH_3O(CH_2)_2$	Н	Н	CHF ₂	B24

Compd.	R ₉₂	R_{93}	R ₉₄	R_{95}	Q_3
no.					
A132	Ph	Н	Н	CHF ₂	B24
A133	PhO	Н	Н	CHF ₂	B24
A134	PhS	Н	Н	CHF ₂	B24
A135	PhSO	Н	Н	CHF ₂	B24
A136	PhSO ₂	Н	Н	CHF ₂	B24
A137	CH₃S	Н	H	CHF ₂	B24
A138	CH₃SO	Н	Н	CHF ₂	B24
A139	CF ₃	Н	Н	CHF ₂	B24
A140	F ₂ CH	Н	Н	CHF ₂	B24
A141	HCC	Н	Н	CHF ₂	B24
A142	CH₃CC	Н	Н	CHF ₂	B24
A143	CH ₂ =CH	Н	Н	CHF ₂	B24
A144	CH ₂ =CHCH ₂	Н	H	CHF ₂	B24
A145	CH ₃ SO ₂ N(CH ₃)	н	Н	CHF ₂	B24
A146	$(CH_3)_2N$	н	Н	CHF ₂	B24
A147	(CH ₃) ₂ NSO ₂	Н	Н	CHF ₂	B24
A148	CICH ₂	Н	Н	CHF ₂	B24
A149	CH₃SCH₂	Н	Н	CHF ₂	B24
A150	CH₃SOCH₂	Н	Н	CHF ₂	B24
A151	CH ₃ SO ₂ CH ₂	Н	H	CHF ₂	B24
A152	[1,2,4]-triazol-1-yl-methyl	Н	Н	CHF ₂	B24
A153	Н	Н	Н	CCl ₃	B24
A154	CH₃	Н	Н	CCl ₃	B24
A155	CH₃CH₂	· H	Н	CCl3	B24
A156	cyclopropyl	Н	Н	CCI ₃	B24
A157	$(CH_3)_3C$	Н	Н	CCl ₃	B24
A158	(CH ₃) ₂ CH	Н	Н	CCl ₃	B24
A159	$CH_3(CH_2)_2$	Н	Н	CCl ₃	B24
A160	CH ₃ OCH ₂	Н	Н	CCl ₃	B24
A161	$CH_3O(CH_2)_2$	H	Н	CCl3	B24
A162	Ph	Н	Н	CCl ₃	B24
A163	PhO	Н	Н	CCl ₃	B24

Compd.	R_{92}	R_{93}	R ₉₄	R_{95}	Q_3
no.					
A164	PhS	Н	Н	CCI ₃	B24
A165	PhSO	Н	Н	CCI ₃	B24
A166	PhSO ₂	Н	Н	CCl ₃	B24
A167	CH ₃ S	Н	Н	CCl ₃	B24
A168	CH₃SO	Н	Н	CCl ₃	B24
A169	CF ₃	Н	Н	CCl ₃	B24
A170	F ₂ CH	Н	Н	CCI ₃	B24
A171	HCC	Н	Н	CCI ₃	B24
A172	CH₃CC	Н	Н	CCI ₃	B24
A173	CH ₂ =CH	Н	Н	CCI ₃	B24
A174	CH ₂ =CHCH ₂	Н	· H	CCl ₃	B24
A175	CH ₃ SO ₂ N(CH ₃)	Н	Н	CCl ₃	B24
A176	(CH₃)₂N	н	Н	CCl ³	B24
A177	$(CH_3)_2NSO_2$	Н	Н	CCl ³	B24
A178	CICH ₂	Н	Н	CCl3	B24
A179	CH₃SCH₂	Н	Н	CCI ₃	B24
A180	CH₃SOCH₂	Н	Н	CCl ₃	B24
A181	CH ₃ SO ₂ CH ₂	Н	Н	CCl ₃	B24
A182	[1,2,4]-triazol-1-yl-methyl	Н	Н	CCl ₃	B24
A183	Н	Н	CH ₃	CF ₃	B24
A184	CH₃	Н	CH ₃	CF ₃	B24
A185	CH₃CH₂	Н	CH ₃	CF ₃	B24
A186	cyclopropyl	Н	CH₃	CF ₃	B24
A187	$(CH_3)_3C$	н	CH ₃	CF ₃	B24
A188	(CH ₃) ₂ CH	Н	CH ₃	CF ₃	B24
A189	CH ₃ (CH ₂) ₂	Н	CH_3	CF ₃	B24
A190	CH₃OCH₂	Н	CH ₃	CF ₃	B24
A191	$CH_3O(CH_2)_2$	Н	CH ₃	CF ₃	B24
A192	Ph	Н	CH ₃	CF ₃	B24
A193	PhO	Н	CH₃	CF ₃	B24
A194	PhS	Н	CH₃	CF ₃	B24
A195	PhSO	Н	CH ₃	CF ₃	B24

Compd.	R ₉₂	R ₉₃	R_{94}	R_{95}	Q_3
no.					
A196	PhSO ₂	Н	CH₃	CF ₃	B24
A197	CH₃S	Н	CH ₃	CF ₃	B24
A198	CH₃SO	H	CH₃	CF ₃	B24
A199	CF ₃	Н	CH₃	CF ₃	B24
A200	F ₂ CH	Н	CH₃	CF ₃	B24
A201	HCC	Н	CH₃	CF ₃	B24
A202	CH₃CC	Н	CH₃	CF ₃	B24
A203	CH ₂ =CH	Н	CH ₃	CF ₃	B24
A204	CH ₂ =CHCH ₂	Н	CH₃	CF ₃	B24
A205	CH ₃ SO ₂ N(CH ₃)	Н	CH₃	CF ₃	B24
A206	$(CH_3)_2N$	Н	CH₃	CF ₃	B24
A207	$(CH_3)_2NSO_2$	Н	CH₃	CF ₃	B24
A208	CICH ₂	Н	CH ₃	CF ₃	B24
A209	CH₃SCH₂	Н	CH ₃	CF ₃	B24
A210	CH₃SOCH₂	Н	CH ₃	CF ₃	B24
A211	CH ₃ SO ₂ CH ₂	Н	CH ₃	CF ₃	B24
A212	Н	Н	СН₃	CF ₃ CF ₂	B24
A213	CH ₃	Н	СН₃	CF ₃ CF ₂	B24
A214	CH₃CH₂	. Н	CH₃	CF ₃ CF ₂	B24
A215	cyclopropyl	Н	СНз	CF ₃ CF ₂	B24
A216	$(CH_3)_3C$	Н	CH₃	CF ₃ CF ₂	B24
A217	(CH ₃) ₂ CH	Н	CH₃	CF ₃ CF ₂	B24
A218	$CH_3(CH_2)_2$	Н	CH ₃	CF ₃ CF ₂	B24
A219	CH₃OCH₂	Н	СНз	CF ₃ CF ₂	B24
A220	CH ₃ O(CH ₂) ₂	Н	СНз	CF ₃ CF ₂	B24
A221	Ph	Н	CH₃	CF ₃ CF ₂	B24
A222	PhO	Н	CH₃	CF ₃ CF ₂	B24
A223	PhS	Н	CH ₃	CF ₃ CF ₂	B24
A224	PhSO	Н	CH ₃	CF ₃ CF ₂	B24
A225	PhSO ₂	Н	CH ₃	CF ₃ CF ₂	B24
A226	CH₃S	Н	CH ₃	CF ₃ CF ₂	B24
A227	CH₃SO	Н	CH₃	CF ₃ CF ₂	B24

Compd.	R ₉₂	R_{93}	R_{94}	R_{95}	Q_3
no.					
A228	CF ₃	Н	СН₃	CF ₃ CF ₂	B24
A229	F ₂ CH	Н	CH ₃	CF ₃ CF ₂	B24
A230	HCC	Ĥ	CH ₃	CF ₃ CF ₂	B24
A231	CH₃CC	Н	CH ₃	CF ₃ CF ₂	B24
A232	CH ₂ =CH	Н	CH ₃	CF ₃ CF ₂	B24
A233	CH ₂ =CHCH ₂	Н	CH ₃	CF ₃ CF ₂	B24
A234	CH ₃ SO ₂ N(CH ₃)	Н	CH ₃	CF ₃ CF ₂	B24
A235	$(CH_3)_2N$	H	CH ₃	CF ₃ CF ₂	B24
A236	$(CH_3)_2NSO_2$	Н	CH ₃	CF ₃ CF ₂	B24
A237	CICH ₂	Н	CH ₃	CF ₃ CF ₂	B24
A238	CH₃SCH₂	Н	CH_3	CF ₃ CF ₂	B24
A239	CH ₃ SOCH ₂	Н	CH ₃	CF ₃ CF ₂	B24
A240	CH ₃ SO ₂ CH ₂	Н	CH₃	CF ₃ CF ₂	B24
A241	Н	Н	CH ₃	CF ₃ CF ₂ CF ₂	<u>B</u> 24
A242	CH₃	Н	CH ₃	CF ₃ CF ₂ CF ₂	B24
A243	CH₃CH₂	Н	CH ₃	CF ₃ CF ₂ CF ₂	B24
A244	cyclopropyl	Н	CH ₃	CF ₃ CF ₂ CF ₂	B24
A245	(CH₃)₃C	Н	CH ₃	CF ₃ CF ₂ CF ₂	B24
A246	(CH₃)₂CH	Н	CH ₃	CF ₃ CF ₂ CF ₂	B24
A247	$CH_3(CH_2)_2$	Н	CH ₃	CF ₃ CF ₂ CF ₂	B24
A248	CH ₃ OCH ₂	Н	CH ₃	CF ₃ CF ₂ CF ₂	B24
A249	CH ₃ O(CH ₂) ₂	Н	CH₃	CF ₃ CF ₂ CF ₂	B24
A250	Ph	Н	CH₃	CF ₃ CF ₂ CF ₂	B24
A251	PhO	Н	CH₃	CF ₃ CF ₂ CF ₂	B24
A252	PhS	Н	CH₃	CF ₃ CF ₂ CF ₂	B24
A253	PhSO	Н	CH₃	CF ₃ CF ₂ CF ₂	B24
A254	PhSO ₂	Н	CH₃	CF ₃ CF ₂ CF ₂	B24
A255	CH₃S	Н	CH₃	CF ₃ CF ₂ CF ₂	B24
A256	CH₃SO	Н	СН₃	CF ₃ CF ₂ CF ₂	B24
A257	CF ₃	Н	СН₃	CF ₃ CF ₂ CF ₂	B24
A258	F₂CH	Н	СНз	CF ₃ CF ₂ CF ₂	B24
A259	HCC	Н	CH ₃	CF ₃ CF ₂ CF ₂	B24

Compd.	R ₉₂		R ₉₃	R ₉₄	R ₉₅	Q_3
no.						
A260	CH₃CC		Н	CH₃	CF ₃ CF ₂ CF ₂	B24
A261	CH ₂ =CH		Н	CH₃	CF ₃ CF ₂ CF ₂	B24
A262	CH ₂ ≃CHCH ₂		Н	CH ₃	CF ₃ CF ₂ CF ₂	B24
A263	CH ₃ SO ₂ N(CH ₃)	•	Н	CH₃	CF ₃ CF ₂ CF ₂	B24
A264	$(CH_3)_2N$		Н	CH₃	CF ₃ CF ₂ CF ₂	B24
A265	$(CH_3)_2NSO_2$		Н	CH₃	CF ₃ CF ₂ CF ₂	B24
A266	CICH ₂		Н	CH₃	CF ₃ CF ₂ CF ₂	B24
A267	CH₃SCH₂		Н	CH ₃	CF ₃ CF ₂ CF ₂	B24
A268	CH₃SOCH₂		Н	CH₃	CF ₃ CF ₂ CF ₂	B24
A269	CH ₃ SO ₂ CH ₂		Н	CH₃	CF3CF2CF2	B24
A270	Н		Н	CH₃	CF ₂ CI	B24
A271	CH ₃		Н	CH₃	CF ₂ CI	B24
A272	CH ₃ CH ₂		Н	CH₃	CF ₂ CI	B24
A273	cyclopropyl		Н	CH₃	CF ₂ CI	B24
A274	$(CH_3)_3C$		Н	CH₃	CF ₂ CI	B24
A275	(CH ₃) ₂ CH		Н	CH ₃	CF ₂ CI	B24
A276	$CH_3(CH_2)_2$		Н	CH ₃	CF ₂ CI	B24
A277	CH₃OCH₂		Н	CH ₃	CF ₂ CI	B24
A278	CH ₃ O(CH ₂) ₂		Н	CH ₃	CF ₂ CI	B24
A279	Ph		Н	CH ₃	CF ₂ CI	B24
A280	PhO		Н	CH ₃	CF ₂ CI	B24
A281	PhS		Н	CH ₃	CF₂CI	B24
A282	PhSO		Н	CH ₃	CF ₂ CI	B24
A283	PhSO ₂		Н	ĊH3	CF ₂ CI	B24
A284	CH₃S		H	CH₃	CF ₂ Cl	B24
A285	CH₃SO		Н	CH ₃	CF ₂ Cl	B24
A286	CF ₃		Н	CH₃	CF ₂ CI	B24
A287	F₂CH		Н	CH ₃	CF ₂ CI	B24
A288	HCC		Н	CH ₃	CF ₂ CI	B24
A289	CH₃CC		Н	CH ₃	CF ₂ Cl	B24
A290	CH₂=CH		Н	CH ₃	CF ₂ Cl	B24
A291	CH ₂ =CHCH ₂		Н	CH ₃	CF ₂ Cl	B24

PCT/EP01/00720

- 152 -

Compd.	R ₉₂	R ₉₃	R_{94}	R ₉₅	Q_3
no.					
A292	CH ₃ SO ₂ N(CH ₃)	Н	CH ₃	CF ₂ CI	B24
A293	$(CH_3)_2N$	Н	CH ₃	CF ₂ CI	B24
A294	$(CH_3)_2NSO_2$	Н	CH₃	CF ₂ CI	B24
A295	CICH ₂	Н	CH ₃	CF ₂ CI	B24
A296	CH₃SCH₂	Н	CH₃	CF ₂ CI	B24
A297	CH₃SOCH₂	Н	CH ₃	CF ₂ CI	B24
A298	CH ₃ SO ₂ CH ₂	Н	CH ₃	CF ₂ CI	B24
A299	Н	Н	CH ₃	CHF ₂	B24
A300	CH₃	Н	СН₃	CHF ₂	B24
A301	CH₃CH₂	Н	CH₃	CHF ₂	B24
A302	cyclopropyl	Н	CH ₃	CHF ₂	B24
A303	(CH₃)₃C	Н	CH₃	CHF ₂	B24
A304	(CH ₃) ₂ CH	Н	CH ₃	CHF ₂	B24
A305	CH ₃ (CH ₂) ₂	Н	CH₃	CHF ₂	B24
A306	CH ₃ OCH ₂	Н	CH₃	CHF ₂	B24
A307	$CH_3O(CH_2)_2$	Н	CH ₃	CHF ₂	B24
A308	Ph	Н	CH₃	CHF ₂	B24
A309	PhO	Н	CH ₃	CHF ₂	B24
A310	PhS	Н	CH ₃	CHF ₂	B24
A311	PhSO	Н	CH ₃	CHF ₂	B24
A312	PhSO ₂	Н	CH ₃	CHF ₂	B24
A313	CH₃S	Н	CH₃	CHF ₂	B24
A314	CH₃SO	Н	CH ₃	CHF ₂	B24
A315	CF ₃	Н	CH_3	CHF ₂	B24
A316	F ₂ CH	Н	CH ₃	CHF ₂	B24
A317	HCC	Н	CH ₃	CHF ₂	B24
A318	CH₃CC	Н	CH ₃	CHF ₂	B24
A319	CH₂=CH	Н	CH ₃	CHF ₂	B24
A320	CH ₂ =CHCH ₂	H	CH ₃	CHF ₂	B24
A321	CH ₃ SO ₂ N(CH ₃)	Н	CH ₃	CHF ₂	B24
A322	$(CH_3)_2N$	Н	CH ₃	CHF ₂	B24
A323	$(CH_3)_2NSO_2$	Н	CH ₃	CHF ₂	B24

Compd.	R_{92}	R ₉₃	R_{94}	R_{95}	Q_3
no.					
A324	CICH ₂	Н	CH₃	CHF ₂	B24
A325	CH₃SCH₂	Н	CH ₃	CHF ₂	B24
A326	CH₃SOCH₂	Н	CH ₃	CHF ₂	B24
A327	CH ₃ SO ₂ CH ₂	Н	CH ₃	CHF ₂	B24
A328	Н	Н	CH ₃	CCI ₃	B24
A329	CH₃	Н	CH ₃	CCI ₃	B24
A330	CH ₃ CH ₂	Н	CH ₃	CCI ₃	B24
A331	$(CH_3)_3C$	Н	CH ₃	CCI ₃	B24
A332	(CH ₃) ₂ CH	Н	CH ₃	CCI ₃	B24
A333	cyclopropyl	Н	CH ₃	CCI ₃	B24
A334	$CH_3(CH_2)_2$	Н	CH ₃	CCI ₃	B24
A335	CH ₃ OCH ₂	Н	CH ₃	CCI ₃	B24
A336	$CH_3O(CH_2)_2$	H	CH₃	CCl ₃	B24
A337	Ph	Н	CH ₃	CCI ₃	B24
A338	PhO	Н	CH ₃	CCI ₃	B24
A339	PhS	Н	CH ₃	CCI ₃	B24
A340	PhSO	Н	CH ₃	CCI ₃	B24
A341	PhSO ₂	Н	CH_3	CCl ₃	B24
A342	CH₃S	Н	CH ₃	CCI ₃	B24
A343	CH₃SO	Н	CH ₃	CCl ₃	B24
A344	CF ₃	Н	CH_3	CCl ₃	B24
A345	F₂CH	Н	CH ₃	CCl ₃	B24
A346	HCC	Н	CH ₃	CCl ₃	B24
A347	CH₃CC	Н	CH ₃	CCI ₃	B24
A348	CH ₂ =CH	Н	CH ₃	CCI_3	B24
A349	CH ₂ =CHCH ₂	Н	CH ₃	CCl ₃	B24
A350	CH ₃ SO ₂ N(CH ₃)	Н	CH ₃	CCl ₃	B24
A351	$(CH_3)_2N$	Н	CH_3	CCl ₃	B24
A352	$(CH_3)_2NSO_2$	Н	CH ₃	CCI ₃	B24
A353	CICH ₂	Н	CH ₃	CCl3	B24
A354	CH₃SCH₂	Н	CH ₃	CCl ₃	B24
A355	CH₃SOCH₂	Н	CH_3	CCl ₃	B24

Compd.	R_{92}	R ₉₃	R_{94}	R_{95}	Q_3
no.					
A356	CH ₃ SO ₂ CH ₂	Н	CH ₃	CCl3	B24
A357	Н	H	Ph	CF ₃	B24
A358	CH ₃	Н	Ph	CF ₃	B24
A359	CH ₃ CH ₂	Н	Ph	CF ₃	B24
A360	cyclopropyl	Н	Ph	CF ₃	B24
A361	(CH₃)₃C	Н	Ph	CF ₃	B24
A362	(CH ₃)₂CH	Н	Ph	CF ₃	B24
A363	$CH_3(CH_2)_2$	Н	Ph	CF ₃	B24
A364	CH ₃ OCH ₂	Н	Ph	CF ₃	B24
A365	$CH_3O(CH_2)_2$	Н	Ph	CF ₃	B24
A366	Ph	Н	Ph	CF ₃	B24
A367	PhO	Н	Ph	CF ₃	B24
A368	PhS	Н	Ph	CF ₃	B24
A369	PhSO	Н	Ph	CF ₃	B24
A370	PhSO₂	Н	Ph	CF ₃	B24
A371	CH₃S	Н	Ph	CF ₃	B24
A372	CH₃SO	Н	Ph	CF ₃	B24
A373	CF ₃	Н	Ph	CF ₃	B24
A374	F ₂ CH	Н	Ph	CF ₃	B24
A375	HCC	Н	Ph	CF ₃	B24
A376	CH₃CC	Н	Ph	CF ₃	B24
A377	CH ₂ =CH	Н	Ph	CF ₃	B24
A378	CH ₂ =CHCH ₂	Н	Ph	CF ₃	B24
A379	CH ₃ SO ₂ N(CH ₃)	Н	Ph	CF ₃	B24
A380	$(CH_3)_2N$	Н	Ph	CF ₃	B24
A381	(CH3)2NSO2	Н	Ph	CF ₃	B24
A382	CICH ₂	Н	Ph	CF ₃	B24
A383	CH₃SCH₂	Н	Ph	CF ₃	B24
A384	CH₃SOCH₂	Н	Ph	CF ₃	B24
A385	CH ₃ SO ₂ CH ₂	Н	Ph	CF ₃	B24
A386	Н	Н	Ph	CF ₃ CF ₂	B24
A387	CH ₃	Н	Ph	CF ₃ CF ₂	B24

Compd.	R_{92}	R ₉₃	R_{94}	R ₉₅	Q_3
no.					
A388	CH₃CH₂	Н	Ph	CF ₃ CF ₂	B24
A389	cyclopropyl	Н	Ph	CF ₃ CF ₂	B24
A390	(CH ₃) ₃ C	Н	Ph	CF ₃ CF ₂	B24
A391	(CH ₃) ₂ CH	Н	Ph	CF ₃ CF ₂	B24
A392	$CH_3(CH_2)_2$	н .	Ph	CF ₃ CF ₂	B24
A393	CH ₃ OCH ₂	Н	Ph	CF ₃ CF ₂	B24
A394	$CH_3O(CH_2)_2$	Н	Ph	CF ₃ CF ₂	B24
A395	Ph	Н	Ph	CF ₃ CF ₂	B24
A396	PhO	Н	Ph	CF ₃ CF ₂	B24
A397	PhS	Н	Ph	CF ₃ CF ₂	B24
A398	PhSO	Н	Ph	CF ₃ CF ₂	B24
A399	PhSO ₂	Н	Ph	CF ₃ CF ₂	B24
A400	CH ₃ S	Н	Ph	CF ₃ CF ₂	B24
A401	CH₃SO	Н	Ph	CF ₃ CF ₂	B24
A402	CF ₃	Н	Ph	CF ₃ CF ₂	B24
A403	F ₂ CH	Н	Ph	CF ₃ CF ₂	B24
A404	HCC	Н	Ph	CF ₃ CF ₂	B24
A405	CH₃CC	Н	Ph	CF ₃ CF ₂	B24
A406	CH₂=CH	Н	Ph	CF ₃ CF ₂	B24
A407	CH ₂ =CHCH ₂	Н	Ph	CF ₃ CF ₂	B24
A408	$CH_3SO_2N(CH_3)$	Н	Ph	CF ₃ CF ₂	B24
A409	$(CH_3)_2N$	Н	Ph	CF ₃ CF ₂	B24
A410	$(CH_3)_2NSO_2$	Н	Ph	CF ₃ CF ₂	B24
A411	CICH ₂	Н	Ph	CF ₃ CF ₂	B24
A412	CH₃SCH₂	Н	Ph	CF ₃ CF ₂	B24
A413	CH₃SOCH₂	Н	Ph	CF ₃ CF ₂	B24
A414	CH ₃ SO ₂ CH ₂	Н	Ph	CF ₃ CF ₂	B24
A415	Н	Н	Ph	CF ₃ CF ₂ CF ₂	B24
A416	CH ₃	Н	Ph	CF ₃ CF ₂ CF ₂	B24
A417	CH ₃ CH ₂	Н	Ph	CF ₃ CF ₂ CF ₂	B24
A418	cyclopropyl	н	Ph	CF ₃ CF ₂ CF ₂	B24
A419	$(CH_3)_3C$	Н	Ph	CF ₃ CF ₂ CF ₂	B24

- 156 -

Compd.	R ₉₂	R ₉₃	R_{94}	R_{95}	Q_3
no.					
A420	(CH₃)₂CH	Н	Ph	CF ₃ CF ₂ CF ₂	B24
A421	CH ₃ (CH ₂) ₂	Н	Ph	CF ₃ CF ₂ CF ₂	B24
A422	CH₃OCH₂	Н	Ph	CF ₃ CF ₂ CF ₂	B24
A423	$CH_3O(CH_2)_2$	Н	Ph	CF ₃ CF ₂ CF ₂	B24
A424	Ph	Н	Ph	CF ₃ CF ₂ CF ₂	B24
A425	PhO	Н	Ph	CF ₃ CF ₂ CF ₂	B24
A426	PhS	Н	Ph	CF ₃ CF ₂ CF ₂	B24
A427	PhSO	Н	Ph	CF ₃ CF ₂ CF ₂	B24
A428	PhSO ₂	Н	Ph	CF ₃ CF ₂ CF ₂	B24
A429	CH₃S	Н	Ph	CF ₃ CF ₂ CF ₂	B24
A430	CH₃SO	Н	Ph	CF ₃ CF ₂ CF ₂	B24
A431	CF ₃	Н	Ph	CF ₃ CF ₂ CF ₂	B24
A432	F ₂ CH	Н	Ph	CF ₃ CF ₂ CF ₂	B24
A433	HCC	Н	Ph	CF ₃ CF ₂ CF ₂	B24
A434	CH₃CC	Н	Ph	CF ₃ CF ₂ CF ₂	B24
A435	CH ₂ =CH	Н	Ph	CF ₃ CF ₂ CF ₂	B24
A436	CH ₂ =CHCH ₂	Н	Ph	CF ₃ CF ₂ CF ₂	B24
A437	CH ₃ SO ₂ N(CH ₃)	Н	Ph	CF ₃ CF ₂ CF ₂	B24
A438	$(CH_3)_2N$	Н	Ph	CF ₃ CF ₂ CF ₂	B24
A439	$(CH_3)_2NSO_2$	Н	Ph	CF ₃ CF ₂ CF ₂	B24
A440	CICH ₂	Н	Ph	CF ₃ CF ₂ CF ₂	B24
A441	CH₃SCH₂	Н	Ph	CF ₃ CF ₂ CF ₂	B24
A442	CH₃SOCH₂	Н	Ph	CF ₃ CF ₂ CF ₂	B24
A443	CH ₃ SO ₂ CH ₂	Н	Ph	CF ₃ CF ₂ CF ₂	B24
A444	Н	Н	Ph	CF ₂ CI	B24
A445	CH₃	Н	Ph	CF ₂ CI	B24
A446	CH₃CH₂	Н	Ph	CF ₂ CI	B24
A447	cyclopropyl	Н	Ph	CF ₂ Cl	B24
A448	$(CH_3)_3C$	·H	Ph	CF ₂ CI	B24
A449	(CH₃)₂CH	Н	Ph	CF ₂ CI	B24
A450	$CH_3(CH_2)_2$	Н	Ph	CF ₂ CI	B24
A451	CH₃OCH₂	Н	Ph	CF ₂ CI	B24

Compd.	R_{92}	R_{93}	R_{94}	R_{95}	Q_3
no.					
A452	CH ₃ O(CH ₂) ₂	Н	Ph	CF ₂ CI	B24
A453	Ph	Н	Ph	CF ₂ CI	B24
A454	PhO	Н	Ph	CF₂CI	B24
A455	PhS	Н	Ph	CF ₂ CI	B24
A456	PhSO	Н	Ph	CF₂CI	B24
A457	PhSO ₂	Н	Ph	CF ₂ CI	B24
A458	CH₃S	н	Ph	CF ₂ CI	B24
A459	CH₃SO	Н	Ph	CF ₂ Cl	B24
A460	CF ₃	Н	Ph	CF ₂ CI	B24
A461	F₂CH	Н	Ph	CF ₂ Cl	B24
A462	HCC	Н	Ph	CF ₂ Cl	B24
A463	CH₃CC	Н	Ph	CF ₂ Cl	B24
A464	CH ₂ =CH	Н	Ph	CF ₂ CI	B24
A465	CH ₂ =CHCH ₂	Н	Ph	CF ₂ Cl	B24
A466	CH ₃ SO ₂ N(CH ₃)	Н	Ph	CF ₂ CI	B24
A467	$(CH_3)_2N$	Н	Ρh	CF ₂ CI	B24
A468	$(CH_3)_2NSO_2$	Н	Ph	CF ₂ CI	B24
A469	CICH ₂	Н	Ph	CF ₂ CI	B24
A470	CH₃SCH₂	Н	Ph	CF ₂ CI	B24
A471	CH ₃ SOCH ₂	Н	Ph	CF ₂ CI	B24
A472	CH ₃ SO ₂ CH ₂	H	Ph	CF ₂ CI	B24
A473	Н	Н	Ph	CHF ₂	B24
A474	CH ₃	H	Ph	CHF ₂	B24
A475	CH₃CH₂	Н	Ph	CHF ₂	B24
A476	cyclopropyl	Н	Ph	CHF ₂	B24
A477	(CH₃)₃C	Н	Ph	CHF ₂	B24
A478	(CH ₃) ₂ CH	Н	Ph	CHF ₂	B24
A479	$CH_3(CH_2)_2$	Н	Ph	CHF ₂	B24
A480	CH₃OCH₂	Н	Ph	CHF ₂	B24
A481	CH ₃ O(CH ₂) ₂	Н	Ph	CHF ₂	B24
A482	Ph	Н	Ph	CHF ₂	B24
A483	PhO	Н	Ph	CHF ₂	B24

Compd.	R_{92}	R ₉₃	R ₉₄	R_{95}	Q_3
no.					
A484	PhS	Н	Ph	CHF ₂	B24
A485	PhSO	Н	Ph	CHF ₂	B24
A486	PhSO ₂	Н	Ph	CHF ₂	B24
A487	CH₃S	Н	Ph	CHF ₂	B24
A488	CH₃SO	Н	Ph	CHF ₂	B24
A489	CF ₃	Н	Ph	CHF ₂	B24
A490	F ₂ CH	Н	Ph	CHF ₂	B24
A491	HCC	Н	Ph	CHF ₂	B24
A492	CH₃CC	Н	Ph	CHF ₂	B24
A493	CH ₂ =CH	Н	Ph	CHF ₂	B24
A494	CH ₂ =CHCH ₂	Н	Ph	CHF ₂	B24
A495	CH ₃ SO ₂ N(CH ₃)	H	Ph	CHF ₂	B24
A496	$(CH_3)_2N$	Н	Ph	CHF ₂	B24
A497	$(CH_3)_2NSO_2$	Н	Ph	CHF ₂	B24
A498	CICH ₂	Н	Ph	CHF ₂	B24
A499	CH₃SCH₂	Н	Ph	CHF ₂	B24
A500	CH ₃ SOCH ₂	Н	Ph	CHF ₂	B24
A501	CH ₃ SO ₂ CH ₂	Н	Ph	CHF ₂	B24
A502	Н	Н	Ph	CCl ₃	B24
A503	CH₃	H	Ph	CCI ₃	B24
A504	CH₃CH₂	Н	Ph	CCI ₃	B24
A505	cyclopropyl	Н	Ph	CCI ₃	B24
A506	(CH₃)₃C	Н	Ph	CCl₃	B24
A507	(CH ₃) ₂ CH	Н	Ph	CCl ₃	B24
A508	$CH_3(CH_2)_2$	Ĥ	Ph	CCI ₃	B24
A509	CH₃OCH₂	Н	Ph	CCI ₃	B24
A510	$CH_3O(CH_2)_2$	Н	Ph	CCl ₃	B24
A511	Ph	Н	Ph	CCl ₃	B24
A512	PhO	Н	Ph	CCl ₃	B24
A513	PhS	Н	Ph	CCI ₃	B24
A514	PhSO	Н	Ph	CCl ₃	B24
A515	PhSO ₂	Н	Ph	CCI ₃	B24

Compd.	R_{92}	R_{93}	R_{94}	R_{95}	Q_3
no.					
A516	CH₃S	Н	Ph	CCI ₃	B24
A517	CH₃SO	Н	Ph	CCI ₃	B24
A518	CF ₃	Н	Ph	CCl ₃	B24
A519	F₂CH	Н	Ph	CCI ₃	B24
A520	HCC	Н	Ph	CCI ₃	B24
A521	CH₃CC	н	Ph	CCI ₃	B24
A522	CH₂=CH	Н	Ph	CCI ₃	B24
A523	CH ₂ =CHCH ₂	Н	Ph	CCl ₃	B24
A524	CH ₃ SO ₂ N(CH ₃)	Н	Ph	CCI ₃	B24
A525	$(CH_3)_2N$	Н	Ph	CCI ₃	B24
A526	$(CH_3)_2NSO_2$	н	Ph	CCI ₃	B24
A527	CICH ₂	Н	Ph	CCI ₃	B24
A528	CH ₃ SCH ₂	Н	Ph	CCl ₃	B24
A529	CH ₃ SOCH ₂	Н	Ph	CCI ₃	B24
A530	CH ₃ SO ₂ CH ₂	Н	Ph	CCI ₃	B24
A531	Н	CH ₃	Н	CF ₃	B24
A532	Н	CH ₃ CH ₂	Н	CF ₃	B24
A533	Н	cyclopropyl	Н	CF ₃	B24
A534	Н	(CH₃)₃CH	Н	CF ₃	B24
A535	Н	(CH ₃) ₂ CH	Н	CF ₃	B24
A536	Н	$CH_3(CH_2)_2$	Н	CF ₃	B24
A537	Н	CH ₃ OCH ₂	Н	CF ₃	B24
A538	Н	CH ₃ O(CH ₂) ₂	Н	CF ₃	B24
A539	Н	Ph	Н	CF ₃	B24
A540	Н	PhO	Н	ĊF₃	B24
A541	Н	PhS	H	CF ₃	B24
A542	Н	PhSO	Н	CF ₃	B24
A543	Н	PhSO ₂	Н	CF ₃	B24
A544	Н	CH₃S	Н	CF ₃	B24
A545	Н	CH₃SO	Н	CF₃	B24
A546	Н	CF ₃	Н	CF₃	B24
A547	Н	F₂CH	Н	CF₃	B24

Compd.	R ₉₂	R ₉₃	R ₉₄	R_{95}	Q_3
no.					
A548	Н	HCC	Н	CF₃	B24
A549	Н	CH₃CC	Н	CF ₃	B24
A550	Н	CH ₂ =CH	Н	CF ₃	B24
A551	Н	CH ₂ =CHCH ₂	Н	CF ₃	B24
A552	Н	CH ₃ SO ₂ N(CH ₃)	Н	CF ₃	B24
A553	Н	$(CH_3)_2N$	Н	CF ₃	B24
A554	Н	$(CH_3)_2NSO_2$	Н	CF ₃	B24
A555	Н	CH₃SCH₂	Н	CF₃	B24
A556	Н	CH₃SOCH₂	Н	CF ₃	B24
A557	Н	CH ₃ SO ₂ CH ₂	Н	CF₃	B24
A558	Н	CH ₃	Н	CF ₃ CF ₂	B24
A559	Н	CH₃CH₂	Н	CF ₃ CF ₂	B24
A560	Н	cyclopropyl	Н	CF ₃ CF ₂	B24
A561	Н	(CH ₃) ₃ C	Н	CF ₃ CF ₂	B24
A562	Н	(CH ₃) ₂ CH	Н	CF ₃ CF ₂	B24
A563	Н	$CH_3(CH_2)_2$	Н	CF ₃ CF ₂	B24
A564	Н	CH ₃ OCH ₂	Н	CF ₃ CF ₂	B24
A565	Н	$CH_3O(CH_2)_2$	Н	CF ₃ CF ₂	B24
A566	Н	Ph	Н	CF ₃ CF ₂	B24
A567	Н	PhO	Н	CF ₃ CF ₂	B24
A568	Н	PhS	Н	CF ₃ CF ₂	B24
A569	Н	PhSO	Н	CF ₃ CF ₂	B24
A570	Н	PhSO ₂	Н	CF ₃ CF ₂	B24
A571	Н	CH₃S	Н	CF ₃ CF ₂	B24
A572	Н	CH₃SO	Н	CF ₃ CF ₂	B24
A573	Н	CF ₃	Н	CF ₃ CF ₂	B24
A574	Н	F ₂ CH	Н	CF ₃ CF ₂	B24
A575	Н	HCC	Н	CF ₃ CF ₂	B24
A576	Н	CH₃CC	Н	CF ₃ CF ₂	B24
A577	Н	CH ₂ =CH	Н	CF ₃ CF ₂	B24
A578	Н	CH ₂ =CHCH ₂	Н	CF ₃ CF ₂	B24
A579	Н	CH ₃ SO ₂ N(CH ₃)	Н	CF ₃ CF ₂	B24

Compd.	R ₉₂	R ₉₃	R ₉₄	R ₉₅	Q_3
no.					
A580	Н	$(CH_3)_2N$	Н	CF ₃ CF ₂	B24
A581	Н	$(CH_3)_2NSO_2$	Н	CF ₃ CF ₂	B24
A582	Н	CH₃SCH₂	Н	CF ₃ CF ₂	B24
A583	Н	CH ₃ SOCH ₂	Н	CF ₃ CF ₂	B24
A584	Н	CH ₃ SO ₂ CH ₂	Н	CF ₃ CF ₂	B24
A585	Н	CH ₃	Н	CF ₃ CF ₂ CF ₂	B24
A586	Н	CH ₃ CH ₂	Н	CF ₃ CF ₂ CF ₂	B24
A587	Н	cyclopropyl	Н	CF ₃ CF ₂ CF ₂	B24
A588	Н	(CH ₃) ₃ C	Н	CF ₃ CF ₂ CF ₂	B24
A589	Н	(CH ₃) ₂ CH	Н	CF ₃ CF ₂ CF ₂	B24
A590	Н	$CH_3(CH_2)_2$	Н	CF ₃ CF ₂ CF ₂	B24
A591	Н	CH ₃ OCH ₂	Н	CF ₃ CF ₂ CF ₂	B24
A592	Н	$CH_3O(CH_2)_2$	Н	CF ₃ CF ₂ CF ₂	B24
A593	Н	Ph	Н	CF3CF2CF2	B24
A594	Н	PhO	Н	CF ₃ CF ₂ CF ₂	B24
A595	Н	PhS	Н	CF ₃ CF ₂ CF ₂	B24
A596	Н	PhSO	Н	CF ₃ CF ₂ CF ₂	B24
A597	Н	PhSO ₂	Н	CF ₃ CF ₂ CF ₂	B24
A598	Н	CH₃S	Н	CF ₃ CF ₂ CF ₂	B24
A599	Н	CH₃SO	Н	CF ₃ CF ₂ CF ₂	B24
A600	Н	CF ₃	Н	CF ₃ CF ₂ CF ₂	B24
A601	Н	F ₂ CH	Н	CF ₃ CF ₂ CF ₂	B24
A602	Н	HCC	Н	CF ₃ CF ₂ CF ₂	B24
A603	Н	CH₃CC	Н	CF ₃ CF ₂ CF ₂	B24
A604	Н	CH ₂ =CH	Н	CF3CF2CF2	B24
A605	Н	CH ₂ =CHCH ₂	Н	CF ₃ CF ₂ CF ₂	B24
A606	Н	CH ₃ SO ₂ N(CH ₃)	Н	CF3CF2CF2	B24
A607	Н	$(CH_3)_2N$	Н	CF3CF2CF2	B24
A608	Н	$(CH_3)_2NSO_2$	Н	CF ₃ CF ₂ CF ₂	B24
A609	Н	CH ₃ SCH ₂	Н	CF3CF2CF2	B24
A610	Н	CH ₃ SOCH ₂	Н	CF3CF2CF2	B24
A611	Н	CH ₃ SO ₂ CH ₂	Н	CF ₃ CF ₂ CF ₂	B24

Compd.	R_{92}	R ₉₃	R ₉₄	R ₉₅	Q_3
no.					
A612	Н	CH₃	Н	CF ₂ CI	B24
A613	Н	CH ₃ CH ₂	Н	CF ₂ CI	B24
A614	Н	cyclopropyl	Н	CF ₂ CI	B24
A615	Н	$(CH_3)_3C$	Н	CF ₂ Cl	B24
A616	Н	(CH ₃) ₂ CH	Н	CF ₂ Cl	B24
A617	Н	CH ₃ (CH ₂) ₂	Н	CF ₂ Cl	B24
A618	Н	CH ₃ OCH ₂	Н	CF ₂ Cl	B24
A619	Н	CH ₃ O(CH ₂) ₂	Н	CF ₂ Cl	B24
A620	Н	Ph	Н	CF₂CI	B24
A621	Н	PhO	Н	CF ₂ Cl	B24
A622	Н	PhS	Н	CF ₂ CI	B24
A623	Н	PhSO	Н	CF₂CI	B24
A624	Н	PhSO ₂	Н	CF ₂ CI	B24
A625	Н	CH₃S	Н	CF ₂ CI	B24
A626	Н	CH₃SO	Н	CF ₂ Cl	B24
A627	Н	CF ₃	Н	CF ₂ CI	B24
A628	Н	F ₂ CH	Н	CF ₂ CI	B24
A629	Н	HCC	Н	CF ₂ CI	B24
A630	Н.	CH₃CC	Н	CF ₂ Cl	B24
A631	Н	CH ₂ =CH	Н	CF ₂ Cl	B24
A632	Н	CH ₂ =CHCH ₂	Н	CF ₂ Cl	B24
A633	H	$CH_3SO_2N(CH_3)$	Н	CF ₂ CI	B24
A634	Н	$(CH_3)_2N$	Н	CF ₂ CI	B24
A635	Н	$(CH_3)_2NSO_2$	Н	CF ₂ CI	B24
A636	Н	CH₃SCH₂	Н	CF ₂ CI	B24
A637	Н	CH ₃ SOCH ₂	Н	CF ₂ CI	B24
A638	Н	CH ₃ SO ₂ CH ₂	Н	CF ₂ CI	B24
A639	Н	CH₃	Н	CHF ₂	B24
A640	Н	CH ₃ CH ₂	Н	CHF ₂	B24
A641	Н	cyclopropyl	Н	CHF ₂	B24
A642	Н	$(CH_3)_3C$	Н	CHF ₂	B24
A643	Н	(CH ₃) ₂ CH	Н	CHF ₂	B24

no. A644 H CH ₃ (CH ₂) ₂ H CHF ₂ B24 A645 H CH ₃ OCH ₂ H CHF ₂ B24 A646 H CH ₃ O(CH ₂) ₂ H CHF ₂ B24 A647 H Ph H CHF ₂ B24 A648 H PhO H CHF ₂ B24 A649 H PhSO H CHF ₂ B24 A650 H PhSO H CHF ₂ B24 A651 H PhSO ₂ H CHF ₂ B24 A651 H PhSO ₂ H CHF ₂ B24 A652 H CH ₃ SO H CHF ₂ B24 A653 H CH ₃ SO H CHF ₂ B24 A654 H CF ₃ H CHF ₂ B24 A655 H F ₂ CH H CHF ₂ B24 A656 H CH ₃ CC	Compd.	R_{92}	R ₉₃	R ₉₄	R ₉₅	Q_3
A645 H CH ₃ OCH ₂ H CHF ₂ B24 A646 H CH ₃ O(CH ₂) ₂ H CHF ₂ B24 A647 H Ph H CHF ₂ B24 A648 H PhO H CHF ₂ B24 A649 H PhS H CHF ₂ B24 A650 H PhSO H CHF ₂ B24 A650 H PhSO H CHF ₂ B24 A651 H PhSO ₂ H CHF ₂ B24 A652 H CH ₃ SO H CHF ₂ B24 A653 H CH ₃ SO H CHF ₂ B24 A654 H CF ₃ H CHF ₂ B24 A655 H F ₂ CH H CHF ₂ B24 A656 H HCH ₂ CC H CHF ₂ B24 A657 H CH ₂ CCH H CHF ₂ </td <td>no.</td> <td></td> <td></td> <td></td> <td></td> <td></td>	no.					
A646 H CH ₃ O(CH ₂) ₂ H CHF ₂ B24 A647 H Ph H CHF ₂ B24 A648 H PhO H CHF ₂ B24 A649 H PhS H CHF ₂ B24 A650 H PhSO H CHF ₂ B24 A651 H PhSO ₂ H CHF ₂ B24 A651 H PhSO ₂ H CHF ₂ B24 A652 H CH ₃ S H CHF ₂ B24 A653 H CH ₃ SO H CHF ₂ B24 A654 H CF ₃ H CHF ₂ B24 A655 H F ₂ CH H CHF ₂ B24 A656 H HCC H CHF ₂ B24 A657 H CH ₃ CC H CHF ₂ B24 A658 H CH ₂ CHCH ₂ H CHF ₂	A644	Н	$CH_3(CH_2)_2$	Н	CHF ₂	B24
A647 H Ph H CHF2 B24 A648 H PhO H CHF2 B24 A649 H PhS H CHF2 B24 A650 H PhSO H CHF2 B24 A651 H PhSO2 H CHF2 B24 A652 H CH ₉ S H CHF2 B24 A653 H CH ₉ SO H CHF2 B24 A653 H CH ₉ SO H CHF2 B24 A654 H CF3 H CHF2 B24 A655 H F ₂ CH H CHF2 B24 A656 H HCC H CHF2 B24 A657 H CH ₂ CC H CHF2 B24 A658 H CH ₂ CHCH2 H CHF2 B24 A660 H CH ₂ SO ₂ N(CH ₃) H CHF2 B24	A645	н	CH₃OCH₂	Н	CHF_2	B24
A648 H PhO H CHF2 B24 A649 H PhS H CHF2 B24 A650 H PhSO H CHF2 B24 A651 H PhSO2 H CHF2 B24 A652 H CH3S H CHF2 B24 A653 H CH3SO H CHF2 B24 A653 H CH3SO H CHF2 B24 A653 H CH3SO H CHF2 B24 A655 H F2CH H CHF2 B24 A655 H F2CH H CHF2 B24 A656 H HCC H CHF2 B24 A657 H CH3CC H CHF2 B24 A658 H CH2=CHCH2 H CHF2 B24 A660 H CH3SO2N(CH3) H CHF2 B24	A646	Н	$CH_3O(CH_2)_2$	Н	CHF ₂	B24
A649 H PhS H CHF2 B24 A650 H PhSO H CHF2 B24 A651 H PhSO2 H CHF2 B24 A652 H CH3S H CHF2 B24 A653 H CH3SO H CHF2 B24 A653 H CH3SO H CHF2 B24 A653 H CH3SO H CHF2 B24 A655 H F2CH H CHF2 B24 A656 H HCC H CHF2 B24 A657 H CH3CC H CHF2 B24 A658 H CH2CH H CHF2 B24 A659 H CH2CHH H CHF2 B24 A660 H CH3SO2N(CH3) H CHF2 B24 A661 H (CH3)RNO2 H CHF2 B24	A647	Н	Ph	Н	CHF ₂	B24
A650 H PhSO H CHF2 B24 A651 H PhSO2 H CHF2 B24 A652 H CH3S H CHF2 B24 A653 H CH3SO H CHF2 B24 A653 H CF3 H CHF2 B24 A654 H CF3 H CHF2 B24 A655 H F2CH H CHF2 B24 A656 H HCC H CHF2 B24 A657 H CH3CC H CHF2 B24 A658 H CH2=CHCH2 H CHF2 B24 A659 H CH2=CHCH2 H CHF2 B24 A660 H CH3SO2N(CH3) H CHF2 B24 A661 H (CH3)2NSO2 H CHF2 B24 A662 H (CH3SOCH2 H CHF2 B24	A648	н	PhO	Н	CHF ₂	B24
A651 H CH ₂ B24 A652 H CH ₃ S H CHF ₂ B24 A653 H CH ₃ SO H CHF ₂ B24 A654 H CF ₃ H CHF ₂ B24 A655 H F ₂ CH H CHF ₂ B24 A656 H HCC H CHF ₂ B24 A657 H CH ₃ CC H CHF ₂ B24 A658 H CH ₂ =CHCH ₂ H CHF ₂ B24 A659 H CH ₂ =CHCH ₂ H CHF ₂ B24 A660 H CH ₃ SO ₂ N(CH ₃) H CHF ₂ B24 A661 H (CH ₃) ₂ NSO ₂ H CHF ₂ B24 A662 H (CH ₃ SOCH ₂ H CHF ₂ B24 A663 H CH ₃ SOCH ₂ H CHF ₂ B24 A666 H CH ₃ SO ₂ CH ₂ H CHF	A649	Н	PhS	Н	CHF ₂	B24
A652 H CH ₃ SO H CHF ₂ B24 A653 H CH ₃ SO H CHF ₂ B24 A654 H CF ₃ H CHF ₂ B24 A655 H F ₂ CH H CHF ₂ B24 A656 H HCC H CHF ₂ B24 A657 H CH ₃ CC H CHF ₂ B24 A658 H CH ₂ =CH H CHF ₂ B24 A659 H CH ₂ =CHCH ₂ H CHF ₂ B24 A660 H CH ₃ SO ₂ N(CH ₃) H CHF ₂ B24 A661 H CH ₃ SO ₂ N(CH ₃) H CHF ₂ B24 A662 H (CH ₃) ₂ NSO ₂ H CHF ₂ B24 A663 H CH ₃ SCH ₂ H CHF ₂ B24 A664 H CH ₃ SOCH ₂ H CHF ₂ B24 A666 H CH ₃	A650	Н	PhSO	Н	CHF ₂	B24
A653 H CH₂SO H CHF₂ B24 A654 H CF₃ H CHF₂ B24 A655 H F₂CH H CHF₂ B24 A656 H HCC H CHF₂ B24 A657 H CH₂CC H CHF₂ B24 A658 H CH₂CHCH₂ H CHF₂ B24 A659 H CH₂CHCH₂ H CHF₂ B24 A660 H CH₃SO₂N(CH₃) H CHF₂ B24 A661 H (CH₃)₂NSO₂ H CHF₂ B24 A662 H (CH₃SCH₂ H CHF₂ B24 A663 H CH₃SO2CH₂ H CHF₂ B24 A664 H CH₃SO2CH₂ H CHF₂ B24 A665 H CH₃CH₂ H CCI₃ B24 A666 H CH₃CH₂ H CCI₃ B24 <td>A651</td> <td>Н</td> <td>PhSO₂</td> <td>Н</td> <td>CHF₂</td> <td>B24</td>	A651	Н	PhSO ₂	Н	CHF ₂	B24
A654 H CF3 H CHF2 B24 A655 H F2CH H CHF2 B24 A656 H HCC H CHF2 B24 A657 H CH3CC H CHF2 B24 A658 H CH2=CH H CHF2 B24 A659 H CH2=CHCH2 H CHF2 B24 A660 H CH3SO2N(CH3) H CHF2 B24 A660 H CH3SO2N(CH3) H CHF2 B24 A661 H (CH3)2NSO2 H CHF2 B24 A662 H (CH3)2NSO2 H CHF2 B24 A663 H CH3SOCH2 H CHF2 B24 A664 H CH3SOCH2 H CHF2 B24 A665 H CH3SOCH2 H CCI3 B24 A666 H CH3CH2 H CCI3 <td< td=""><td>A652</td><td>Н</td><td>CH₃S</td><td>Н</td><td>CHF₂</td><td>B24</td></td<>	A652	Н	CH₃S	Н	CHF ₂	B24
A655 H F2CH H CHF2 B24 A656 H HCC H CHF2 B24 A657 H CH3CC H CHF2 B24 A658 H CH2=CH H CHF2 B24 A659 H CH2=CHCH2 H CHF2 B24 A660 H CH3SO2N(CH3) H CHF2 B24 A661 H (CH3)2N H CHF2 B24 A662 H (CH3)2NSO2 H CHF2 B24 A663 H CH3SCH2 H CHF2 B24 A664 H CH3SCH2 H CHF2 B24 A665 H CH3SO2CH2 H CHF2 B24 A666 H CH3 H CCI3 B24 A667 H CH3CH2 H CCI3 B24 A669 H (CH3)3CH H CCI3 B24 <td>A653</td> <td>Н</td> <td>CH₃SO</td> <td>Н</td> <td>CHF₂</td> <td>B24</td>	A653	Н	CH₃SO	Н	CHF ₂	B24
A656 H HCC H CHF2 B24 A657 H CH3CC H CHF2 B24 A658 H CH2=CH H CHF2 B24 A659 H CH2=CHCH2 H CHF2 B24 A660 H CH3SO2N(CH3) H CHF2 B24 A661 H (CH3)2NSO2 H CHF2 B24 A662 H (CH3)2NSO2 H CHF2 B24 A663 H CH3SCH2 H CHF2 B24 A664 H CH3SOCH2 H CHF2 B24 A665 H CH3SO2CH2 H CHF2 B24 A666 H CH3 H CCI3 B24 A667 H CH3CH2 H CCI3 B24 A669 H (CH3)3C H CCI3 B24 A670 H CH3CH2 H CCI3 B2	A654	Н	CF ₃	Н	CHF ₂	B24
A657 H CH ₃ CC H CHF ₂ B24 A658 H CH ₂ =CH H CHF ₂ B24 A659 H CH ₂ =CHCH ₂ H CHF ₂ B24 A660 H CH ₃ SO ₂ N(CH ₃) H CHF ₂ B24 A661 H (CH ₃) ₂ NSO ₂ H CHF ₂ B24 A662 H (CH ₃) ₂ NSO ₂ H CHF ₂ B24 A663 H CH ₃ SCH ₂ H CHF ₂ B24 A663 H CH ₃ SOCH ₂ H CHF ₂ B24 A664 H CH ₃ SO ₂ CH ₂ H CHF ₂ B24 A665 H CH ₃ SO ₂ CH ₂ H CHF ₂ B24 A666 H CH ₃ CH ₂ H CCI ₃ B24 A667 H CH ₃ CH ₂ H CCI ₃ B24 A669 H (CH ₃) ₂ CH H CCI ₃ B24 A670	A655	Н	F ₂ CH	Н	CHF ₂	B24
A658 H CH2=CH H CHF2 B24 A659 H CH2=CHCH2 H CHF2 B24 A660 H CH3SO2N(CH3) H CHF2 B24 A661 H (CH3)2NSO2 H CHF2 B24 A662 H (CH3)2NSO2 H CHF2 B24 A663 H CH3SCH2 H CHF2 B24 A664 H CH3SOCH2 H CHF2 B24 A665 H CH3SO2CH2 H CHF2 B24 A666 H CH3CH2 H CCI3 B24 A667 H CH3CH2 H CCI3 B24 A669 H (CH3)3CH H CCI3 B24 A670 H CH3(CH2)2 H CCI3 B24 A671 H CH3CH2 H CCI3 B24 A672 H CH3CH2 H CCI3 B24 A673 H CH3CH2 H CCI3 B24 </td <td>A656</td> <td>Н</td> <td>HCC</td> <td>Н</td> <td>CHF₂</td> <td>B24</td>	A656	Н	HCC	Н	CHF ₂	B24
A659 H CH2=CHCH2 H CHF2 B24 A660 H CH3SO2N(CH3) H CHF2 B24 A661 H (CH3)2N H CHF2 B24 A662 H (CH3)2NSO2 H CHF2 B24 A663 H CH3SCH2 H CHF2 B24 A664 H CH3SOCH2 H CHF2 B24 A665 H CH3SO2CH2 H CHF2 B24 A666 H CH3SO2CH2 H CHF2 B24 A667 H CH3CH2 H CCI3 B24 A668 H CH3CH2 H CCI3 B24 A669 H (CH3)2CH H CCI3 B24 A670 H CH3(CH2)2 H CCI3 B24 A671 H CH3CH2 H CCI3 B24 A672 H CH3CH2 H CCI3 B24 A673 H CH3O(CH2)2 H CCI3 B24	A657	Н	CH₃CC	Н	CHF ₂	B24
A660 H CH ₃ SO ₂ N(CH ₃) H CHF ₂ B24 A661 H (CH ₃) ₂ N H CHF ₂ B24 A662 H (CH ₃) ₂ NSO ₂ H CHF ₂ B24 A663 H CH ₃ SCH ₂ H CHF ₂ B24 A664 H CH ₃ SOCH ₂ H CHF ₂ B24 A665 H CH ₃ SO ₂ CH ₂ H CHF ₂ B24 A666 H CH ₃ SO ₂ CH ₂ H CCI ₃ B24 A667 H CH ₃ CH ₂ H CCI ₃ B24 A668 H cyclopropyl H CCI ₃ B24 A669 H (CH ₃) ₃ C H CCI ₃ B24 A670 H (CH ₃) ₂ CH H CCI ₃ B24 A671 H CH ₃ OCH ₂ H CCI ₃ B24 A672 H CH ₃ OCH ₂ H CCI ₃ B24 A673 H CH ₃ O(CH ₂) ₂ H CCI ₃ B24 A674	A658	Н	CH ₂ =CH	Н	CHF ₂	B24
A661 H (CH ₃) ₂ N H CHF ₂ B24 A662 H (CH ₃) ₂ NSO ₂ H CHF ₂ B24 A663 H CH ₃ SCH ₂ H CHF ₂ B24 A664 H CH ₃ SOCH ₂ H CHF ₂ B24 A665 H CH ₃ SO ₂ CH ₂ H CHF ₂ B24 A666 H CH ₃ CH ₂ H CCI ₃ B24 A667 H CH ₃ CH ₂ H CCI ₃ B24 A668 H cyclopropyl H CCI ₃ B24 A669 H (CH ₃) ₃ C H CCI ₃ B24 A670 H (CH ₃) ₂ CH H CCI ₃ B24 A671 H CH ₃ (CH ₂) ₂ H CCI ₃ B24 A672 H CH ₃ OCH ₂ H CCI ₃ B24 A673 H CH ₃ O(CH ₂) ₂ H CCI ₃ B24 A674 H Ph H CCI ₃ B24	A659	Н	CH ₂ =CHCH ₂	Н	CHF ₂	B24
A662 H (CH ₃) ₂ NSO ₂ H CHF ₂ B24 A663 H CH ₃ SCH ₂ H CHF ₂ B24 A664 H CH ₃ SOCH ₂ H CHF ₂ B24 A665 H CH ₃ SO ₂ CH ₂ H CHF ₂ B24 A666 H CH ₃ CH ₂ H CCI ₃ B24 A667 H CH ₃ CH ₂ H CCI ₃ B24 A668 H cyclopropyl H CCI ₃ B24 A669 H (CH ₃) ₃ C H CCI ₃ B24 A670 H (CH ₃) ₂ CH H CCI ₃ B24 A671 H CH ₃ (CH ₂) ₂ H CCI ₃ B24 A672 H CH ₃ OCH ₂ H CCI ₃ B24 A673 H CH ₃ O(CH ₂) ₂ H CCI ₃ B24 A674 H Ph H CCI ₃ B24	A660	н	CH ₃ SO ₂ N(CH ₃)	Н	CHF ₂	B24
A663 H CH ₃ SCH ₂ H CHF ₂ B24 A664 H CH ₃ SOCH ₂ H CHF ₂ B24 A665 H CH ₃ SO ₂ CH ₂ H CHF ₂ B24 A666 H CH ₃ CH ₂ H CCI ₃ B24 A667 H CH ₃ CH ₂ H CCI ₃ B24 A668 H cyclopropyl H CCI ₃ B24 A669 H (CH ₃) ₃ C H CCI ₃ B24 A670 H (CH ₃) ₂ CH H CCI ₃ B24 A671 H CH ₃ (CH ₂) ₂ H CCI ₃ B24 A672 H CH ₃ OCH ₂ H CCI ₃ B24 A673 H CH ₃ O(CH ₂) ₂ H CCI ₃ B24 A674 H Ph H CCI ₃ B24	A661	Н	$(CH_3)_2N$	Н	CHF ₂	B24
A664 H CH ₃ SOCH ₂ H CHF ₂ B24 A665 H CH ₃ SO ₂ CH ₂ H CHF ₂ B24 A666 H CH ₃ CH ₂ H CCI ₃ B24 A667 H CH ₃ CH ₂ H CCI ₃ B24 A668 H cyclopropyl H CCI ₃ B24 A669 H (CH ₃) ₃ C H CCI ₃ B24 A670 H (CH ₃) ₂ CH H CCI ₃ B24 A671 H CH ₃ (CH ₂) ₂ H CCI ₃ B24 A672 H CH ₃ OCH ₂ H CCI ₃ B24 A673 H CH ₃ O(CH ₂) ₂ H CCI ₃ B24 A674 H Ph H CCI ₃ B24	A662	Н	$(CH_3)_2NSO_2$	Н	CHF ₂	B24
A665 H CH ₃ SO ₂ CH ₂ H CHF ₂ B24 A666 H CH ₃ H CCI ₃ B24 A667 H CH ₃ CH ₂ H CCI ₃ B24 A668 H cyclopropyl H CCI ₃ B24 A669 H (CH ₃) ₃ C H CCI ₃ B24 A670 H (CH ₃) ₂ CH H CCI ₃ B24 A671 H CH ₃ (CH ₂) ₂ H CCI ₃ B24 A672 H CH ₃ OCH ₂ H CCI ₃ B24 A673 H CH ₃ O(CH ₂) ₂ H CCI ₃ B24 A674 H Ph H CCI ₃ B24	A663	н	CH₃SCH₂	Н	CHF ₂	B24
A666 H CH ₃ H CCl ₃ B24 A667 H CH ₃ CH ₂ H CCl ₃ B24 A668 H cyclopropyl H CCl ₃ B24 A669 H (CH ₃) ₃ C H CCl ₃ B24 A670 H (CH ₃) ₂ CH H CCl ₃ B24 A671 H CH ₃ (CH ₂) ₂ H CCl ₃ B24 A672 H CH ₃ OCH ₂ H CCl ₃ B24 A673 H CH ₃ O(CH ₂) ₂ H CCl ₃ B24 A674 H Ph H CCl ₃ B24	A664	Н	CH ₃ SOCH ₂	Н	CHF ₂	B24
A667 H CH ₃ CH ₂ H CCl ₃ B24 A668 H cyclopropyl H CCl ₃ B24 A669 H (CH ₃) ₃ C H CCl ₃ B24 A670 H (CH ₃) ₂ CH H CCl ₃ B24 A671 H CH ₃ (CH ₂) ₂ H CCl ₃ B24 A672 H CH ₃ OCH ₂ H CCl ₃ B24 A673 H CH ₃ O(CH ₂) ₂ H CCl ₃ B24 A674 H Ph H CCl ₃ B24	A665	Н	CH₃SO₂CH₂	Н	CHF ₂	B24
A668 H cyclopropyl H CCl ₃ B24 A669 H (CH ₃) ₃ C H CCl ₃ B24 A670 H (CH ₃) ₂ CH H CCl ₃ B24 A671 H CH ₃ (CH ₂) ₂ H CCl ₃ B24 A672 H CH ₃ OCH ₂ H CCl ₃ B24 A673 H CH ₃ O(CH ₂) ₂ H CCl ₃ B24 A674 H Ph H CCl ₃ B24	A666	H	CH₃	Н	CCl ₃	B24
A669 H (CH ₃) ₃ C H CCl ₃ B24 A670 H (CH ₃) ₂ CH H CCl ₃ B24 A671 H CH ₃ (CH ₂) ₂ H CCl ₃ B24 A672 H CH ₃ OCH ₂ H CCl ₃ B24 A673 H CH ₃ O(CH ₂) ₂ H CCl ₃ B24 A674 H Ph H CCl ₃ B24	A667	Н	CH ₃ CH ₂	Н	CCI ₃	B24
A670 H (CH ₃) ₂ CH H CCl ₃ B24 A671 H CH ₃ (CH ₂) ₂ H CCl ₃ B24 A672 H CH ₃ OCH ₂ H CCl ₃ B24 A673 H CH ₃ O(CH ₂) ₂ H CCl ₃ B24 A674 H Ph H CCl ₃ B24	A668	Н	cyclopropyl	Н	CCI ₃	B24
A671 H $CH_3(CH_2)_2$ H CCI_3 B24 A672 H CH_3OCH_2 H CCI_3 B24 A673 H $CH_3O(CH_2)_2$ H CCI_3 B24 A674 H Ph H CCI_3 B24	A669	Н	$(CH_3)_3C$	Н	CCl ₃	B24
A672 H CH ₃ OCH ₂ H CCl ₃ B24 A673 H CH ₃ O(CH ₂) ₂ H CCl ₃ B24 A674 H Ph H CCl ₃ B24	A670	H	$(CH_3)_2CH$	Н	CCl ₃	B24
A673 H CH ₃ O(CH ₂) ₂ H CCl ₃ B24 A674 H Ph H CCl ₃ B24	A671	Н	$CH_3(CH_2)_2$	Н	CCl ₃	B24
A674 H Ph H CCl ₃ B24	A672	Н	CH₃OCH₂	Н	CCl₃	B24
	A673	Н	$CH_3O(CH_2)_2$	Н	CCl ₃	B24
A675 H PhO H CCl ₃ B24	A674	Н	Ph	Н	CCl ₃	B24
	A675	Н	PhO	Н	CCl ₃	B24

Compd.	R ₉₂	R ₉₃	R_{94}	R_{95}	Q_3
no.					
A676	Н	PhS	Н	CCl₃	B24
A677	Н	PhSO	Н	CCI ₃	B24
A678	Н	PhSO₂	Н	CCl ₃	B24
A679	Н	CH₃S	Н	CCl ₃	B24
A680	Н	CH₃SO	Н	CCI ₃	B24
A681	Н	CF ₃	Н	CCl ₃	B24
A682	Н	F ₂ CH	Н	CCl ₃	B24
A683	Н	HCC	Н	CCl ₃	B24
A684	Н	CH₃CC	Н	CCl ₃	B24
A685	Н	CH ₂ =CH	Н	CCl ₃	B24
A686	Н	CH ₂ =CHCH ₂	Н	CCl ₃	B24
A687	Н	CH ₃ SO ₂ N(CH ₃)	Н	CCI ₃	B24
A688	Н	$(CH_3)_2N$	Н	CCl ₃	B24
A689	Н	$(CH_3)_2NSO_2$	Н	CCl ₃	B24
A690	Н	CH₃SCH₂	Н	CCl ₃	B24
A691	Н	CH ₃ SOCH ₂	Н	CCl ₃	B24
A692	Н	CH ₃ SO ₂ CH ₂	Н	CCI ₃	B24
A693	Н	CH₃	CH_3	CF ₃	B24
A694	Н	CH ₃ CH ₂	CH ₃	CF ₃	B24
A695	Н	cyclopropyl	CH ₃	CF ₃	B24
A696	Н	(CH ₃) ₃ C	CH ₃	CF ₃	B24
A697	Н	(CH ₃) ₂ CH	CH ₃	CF ₃	B24
A698	Н	$CH_3(CH_2)_2$	CH ₃	CF ₃	B24
A699	Н	CH ₃ OCH ₂	CH ₃	CF ₃	B24
A700	Н	$CH_3O(CH_2)_2$	CH ₃	CF ₃	B24
A701	Н	Ph	CH₃	CF₃	B24
A702	Н	PhO	CH₃	CF ₃	B24
A703	Н	PhS	CH₃	CF₃	B24
A704	Н	PhSO	CH₃	CF₃	B24
A705	Н	PhSO ₂	CH ₃	CF ₃	B24
A706	Н	CH₃S	СН₃	CF ₃	B24
A707	Н	CH₃SO	СН₃	CF ₃	B24

Compd.	R_{92}	R ₉₃	R ₉₄	R_{95}	Q_3
no.					
A708	Н	CF ₃	CH_3	CF ₃	B24
A709	Н	F ₂ CH	CH ₃	CF ₃	B24
A710	Н	HCC	CH_3	CF ₃	B24
A711	H	CH₃CC	CH ₃	CF ₃	B24
A712	Н	CH ₂ =CH	CH ₃	CF ₃	B24
A713	Н	CH ₂ =CHCH ₂	CH ₃	CF ₃	B24
A714	Н	CH₃SO₂N(CH₃)	CH ₃	CF ₃	B24
A715	H	$(CH_3)_2N$	CH ₃	CF ₃	B24
A716	Н	$(CH_3)_2NSO_2$	CH ₃	CF ₃	B24
A717	Н	CH₃SCH₂	CH ₃	CF ₃	B24
A718	Н	CH ₃ SOCH ₂	CH ₃	CF ₃	B24
A719	Н	CH ₃ SO ₂ CH ₂	CH ₃	CF ₃	B24
A720	Н	CH₃	CH ₃	CF ₃ CF ₂	B24
A721	Н	CH₃CH₂	CH_3	CF ₃ CF ₂	B24
A722	н	cyclopropyl	CH_3	CF ₃ CF ₂	B24
A723	Н	(CH ₃) ₃ C	CH ₃	CF ₃ CF ₂	B24
A724	Н	$(CH_3)_2CH$	CH ₃	CF ₃ CF ₂	B24
A725	Н	$CH_3(CH_2)_2$	CH ₃	CF ₃ CF ₂	B24
A726	Н	CH₃OCH₂	CH₃	CF ₃ CF ₂	B24
A727	Н	CH ₃ O(CH ₂) ₂	CH₃	CF ₃ CF ₂	B24
A728	Н	Ph	CH₃	CF ₃ CF ₂	B24
A729	Н	PhO	CH₃	CF ₃ CF ₂	B24
A730	Н	PhS	CH₃	CF ₃ CF ₂	B24
A731	Н	PhSO	CH ₃	CF ₃ CF ₂	B24
A732	Н	PhSO ₂	СН3	CF ₃ CF ₂	B24
A733	Н	CH₃S	CH ₃	CF ₃ CF ₂	B24
A734	Н	CH₃SO	CH ₃	CF ₃ CF ₂	B24
A735	Н	CF ₃	CH₃	CF ₃ CF ₂	B24
A736	Н	F₂CH	CH₃	CF ₃ CF ₂	B24
A737	Н	HCC	CH₃	CF ₃ CF ₂	B24
A738	Н	CH₃CC	CH_3	CF ₃ CF ₂	B24
A739	Н	CH₂=CH	СНз	CF ₃ CF ₂	B24

	-1	00	
-	- 1	nn	_

no. A740 H CH ₂ =CHCH ₂ CH ₃ CF ₃ CF ₂ A741 H CH ₃ SO ₂ N(CH ₃) CH ₃ CF ₃ CF ₂ A742 H (CH ₃) ₂ N CH ₃ CF ₃ CF ₂ A743 H (CH ₃) ₂ NSO ₂ CH ₃ CF ₃ CF ₂ A744 H CH ₃ SCH ₂ CH ₃ CF ₃ CF ₂ A745 H CH ₃ SOCH ₂ CH ₃ CF ₃ CF ₂ A746 H CH ₃ SO ₂ CH ₂ CH ₃ CF ₃ CF ₂	B24 B24 B24 B24 B24 B24 B24 B24 B24
A741 H CH ₃ SO ₂ N(CH ₃) CH ₃ CF ₃ CF ₂ A742 H (CH ₃) ₂ N CH ₃ CF ₃ CF ₂ A743 H (CH ₃) ₂ NSO ₂ CH ₃ CF ₃ CF ₂ A744 H CH ₃ SCH ₂ CH ₃ CF ₃ CF ₂ A745 H CH ₃ SOCH ₂ CH ₃ CF ₃ CF ₂	B24 B24 B24 B24 B24 B24 B24 B24
A742 H $(CH_3)_2N$ CH_3 CF_3CF_2 A743 H $(CH_3)_2NSO_2$ CH_3 CF_3CF_2 A744 H CH_3SCH_2 CH_3 CF_3CF_2 A745 H CH_3SOCH_2 CH_3 CF_3CF_2	B24 B24 B24 B24 B24 B24 B24
A743 H $(CH_3)_2NSO_2$ CH_3 CF_3CF_2 A744 H CH_3SCH_2 CH_3 CF_3CF_2 A745 H CH_3SOCH_2 CH_3 CF_3CF_2	B24 B24 B24 B24 B24 B24
A744 H CH ₃ SCH ₂ CH ₃ CF ₃ CF ₂ A745 H CH ₃ SOCH ₂ CH ₃ CF ₃ CF ₂	B24 B24 B24 B24 B24
A745 H CH ₃ SOCH ₂ CH ₃ CF ₃ CF ₂	B24 B24 B24 B24
<u> </u>	B24 B24 B24
A746 H CH ₃ SO ₂ CH ₂ CH ₃ CF ₃ CF ₂	B24 B24
	B24
A747 H CH ₃ CH ₃ CF ₃ CF ₂ CF ₂	
A748 H CH_3CH_2 CH_3 $CF_3CF_2CF_2$	B24
A749 H cyclopropyl CH ₃ CF ₃ CF ₂ CF ₂	
A750 H $(CH_3)_3C$ CH_3 $CF_3CF_2CF_2$	B24
A751 H $(CH_3)_2CH$ CH_3 $CF_3CF_2CF_2$	B24
A752 H $CH_3(CH_2)_2$ CH_3 $CF_3CF_2CF_2$	B24
A753 H CH ₃ OCH ₂ CH ₃ CF ₃ CF ₂ CF ₂	B24
A754 H $CH_3O(CH_2)_2$ CH_3 $CF_3CF_2CF_2$	B24
A755 H Ph CH ₃ CF ₃ CF ₂ CF ₂	B24
A756 H PhO CH ₃ CF ₃ CF ₂ CF ₂	B24
A757 H PhS CH ₃ CF ₃ CF ₂ CF ₂	B24
A758 H PhSO CH ₃ CF ₃ CF ₂ CF ₂	B24
A759 H PhSO ₂ CH ₃ CF ₃ CF ₂ CF ₂	B24
A760 H CH ₃ S CH ₃ CF ₃ CF ₂ CF ₂	B24
A761 H CH ₃ SO CH ₃ CF ₃ CF ₂ CF ₂	B24
A762 H CF_3 CH_3 $CF_3CF_2CF_2$	B24
A763 H F ₂ CH CH ₃ CF ₃ CF ₂ CF ₂	B24
A764 H HCC CH ₃ CF ₃ CF ₂ CF ₂	B24
A765 H CH ₃ CC CH ₃ CF ₃ CF ₂ CF ₂	B24
A766 H $CH_2=CH$ CH_3 $CF_3CF_2CF_2$	B24
A767 H CH_2 = $CHCH_2$ CH_3 $CF_3CF_2CF_2$	B24
A768 H CH ₃ SO ₂ N(CH ₃) CH ₃ CF ₃ CF ₂ CF ₂	B24
A769 H $(CH_3)_2N$ CH_3 $CF_3CF_2CF_2$	B24
A770 H $(CH_3)_2NSO_2$ CH_3 $CF_3CF_2CF_2$	B24
A771 H CH ₃ SCH ₂ CH ₃ CF ₃ CF ₂ CF ₂	B24

- 167 -

Compd.	R_{92}	R_{93}	R ₉₄	R ₉₅	Q_3	
no.						
A772	Н	CH ₃ SOCH ₂	CH ₃	CF3CF2CF2	B24	
A773	Н	CH ₃ SO ₂ CH ₂	CH ₃	CF ₃ CF ₂ CF ₂	B24	
A774	Н	CH ₃ CH ₃ CF ₂ Cl				
A775	Н	CH ₃ CH ₂ CH ₃ CF ₂ Cl				
A776	Н	cyclopropyl CH ₃ CF ₂ Cl				
A777	Н	$(CH_3)_3C$	$(CH_3)_3C$ CH_3 CF_2CI			
A778	Н	(CH ₃) ₂ CH	(CH ₃) ₂ CH CH ₃ CF ₂ CI			
A779	Н	$CH_3(CH_2)_2$	СН₃	CF ₂ CI	B24	
A780	Н	CH₃OCH₂	CH₃	CF ₂ CI	B24	
A781	Н	$CH_3O(CH_2)_2$	СН₃	CF ₂ CI	B24	
A782	Н	Ph	CH₃	CF ₂ CI	B24	
A783	Н	PhO	CH₃	CF ₂ CI	B24	
A784	Н	PhS ·	~			
A785	Н	PhSO	СН₃	CF ₂ CI	B24	
A786	Н	PhSO ₂ CH ₃ CF ₂		CF ₂ CI	B24	
A787	Н	CH ₃ S CH ₃ CF ₂ CI		CF ₂ CI	B24	
A788	Н	CH₃SO	СН₃	CF ₂ CI	B24	
A789	Н	CF ₃	CH₃	CF ₂ CI	B24	
A790	H .	F ₂ CH	CH₃	CF ₂ CI	B24	
A791	Н	HCC	CH ₃	CF ₂ CI	B24	
A792	Н	CH₃CC	СН₃	CF ₂ CI	B24	
A793	Н	CH ₂ =CH	СН₃	CF ₂ CI	B24	
A794	Н	CH ₂ =CHCH ₂	CH ₃	CF ₂ CI	B24	
A795	Н	CH ₃ SO ₂ N(CH ₃)	CH₃	CF ₂ CI	B24	
A796	Н	$(CH_3)_2N$	CH₃	CF ₂ Cl	B24	
A797	Н	$(CH_3)_2NSO_2$	CH ₃	CF ₂ CI	B24	
A798	Н	CH₃SCH₂	СН₃	CF ₂ Cl	B24	
A799	Н	CH ₃ SOCH ₂	CH₃	CF ₂ CI	B24	
A800	Н	CH₃SO₂CH₂	CH_3	CF ₂ CI	B24	
A801	Н	CH ₃	CH_3	CHF ₂	B24	
A802	Н	CH ₃ CH ₂	CH_3	CHF ₂	B24	
A803	Н	cyclopropyl	CH ₃	CHF ₂	B24	

PCT/EP01/00720

Compd.	R ₉₂	R ₉₃	R ₉₄	R_{95}	Q_3
no.					
A804	Н	$(CH_3)_3C$	CH ₃	CHF ₂	B24
A805	Н	(CH₃)₂CH	CH ₃	CHF ₂	B24
A806	н	$CH_3(CH_2)_2$	CH ₃	CHF ₂	B24
A807	н	CH ₃ OCH ₂	CH ₃	CHF ₂	B24
A808	Н	$CH_3O(CH_2)_2$	CH₃	CHF ₂	B24
A809	н	Ph	CH ₃	CHF ₂	B24
A810	Н	PhO	CH₃	CHF ₂	B24
A811	Н	PhS	CH₃	CHF ₂	B24
A812	Н	PhSO	CH ₃	CHF ₂	B24
A813	H	PhSO ₂	CH_3	CHF ₂	B24
A814	Н	CH₃S	CH ₃	CHF ₂	B24
A815	H	CH₃SO	CH_3	CHF ₂	B24
A816	Н	CF ₃	CH ₃	CHF ₂	B24
A817	Н	F ₂ CH	CH ₃	CHF ₂	B24
A818	Н	HCC	CH ₃	CHF ₂	B24
A819	Н	CH₃CC	CH ₃	CHF ₂	B24
A820	Н	CH ₂ =CH	CH₃	CHF ₂	B24
A821	Н	CH ₂ =CHCH ₂	CH ₃	CHF ₂	B24
A822	Н	CH ₃ SO ₂ N(CH ₃)	CH ₃	CHF ₂	B24
A823	Н	$(CH_3)_2N$	CH ₃	CHF ₂	B24
A824	Н	$(CH_3)_2NSO_2$	CH ₃	CHF ₂	B24
A825	Н	CH₃SCH₂	CH ₃	CHF ₂	B24
A826	Н	CH₃SOCH₂	CH ₃	CHF ₂	B24
A827	Н	CH ₃ SO ₂ CH ₂	CH ₃	CHF ₂	B24
A828	Н	CH ₃	CH ₃	CCI ₃	B24
A829	H	CH ₃ CH ₂	CH ₃	CCl ₃	B24
A830	Н	cyclopropyl	СН₃	CCl ₃	B24
A831	Н	$(CH_3)_3C$	CH ₃	CCl3	B24
A832	Н	(CH ₃) ₂ CH	CH₃	CCl₃	B24
A833	Н	$CH_3(CH_2)_2$	CH_3	CCI ₃	B24
A834	Н	CH ₃ OCH ₂	CH_3	CCI ₃	B24
A835	Н	$CH_3O(CH_2)_2$	CH_3	CCI ₃	B24

Compd.	R ₉₂	R ₉₃	R ₉₄	R ₉₅	Q_3
no.					
A836	Н	Ph	CH ₃	CCI ₃	B24
A837	Н	PhO	СН₃	CCI ₃	B24
A838	Н	PhS	CH ₃	CCl ₃	B24
A839	Н	PhSO	CH ₃	CCl ₃	B24
A840	Н	PhSO ₂	CH₃	CCI ₃	B24
A841	Н	CH₃S	СН3	CCl ₃	B24
A842	Н	CH₃SO	CH₃	CCI ₃	B24
A843	Н	CF ₃	СН₃	CCI ₃	B24
A844	Н	F ₂ CH	СН₃	CCI ₃	B24
A845	Н	HCC	CH₃	CCI ₃	B24
A846	H	CH₃CC	CH ₃	CCI ₃	B24
A847	Н	CH₂=CH	CH₃	CCl ₃	B24
A848	Н	CH ₂ =CHCH ₂	СНз	CCl ₃	B24
A849	Н	$CH_3SO_2N(CH_3)$	CH₃	CCI ₃	B24
A850	Н	$(CH_3)_2N$	CH₃	CCI ₃	B24
A851	Н	$(CH_3)_2NSO_2$	CH₃	CCl ₃	B24
A852	Н	CH₃SCH₂	CH₃	CCI ₃	B24
A853	Н	CH₃SOCH₂	СН₃	CCl ₃	B24
A854	Н	CH ₃ SO ₂ CH ₂	СНз	CCl ₃	B24
A855	Н	CH₃	Ph	CF ₃	B24
A856	Н	CH₃CH₂	Ph	CF ₃	B24
A857	Н	(CH₃)₂CH	Ph	CF ₃	B24
A858	Н	(CH₃)₂CH	Ph	CF ₃	B24
A859	Н	cyclopropyl	Ph	CF ₃	B24
A860	Н	$CH_3(CH_2)_2$	Ph	CF ₃	B24
A861	Н	CH₃OCH₂	Ph	CF ₃	B24
A862	Н	$CH_3O(CH_2)_2$	Ph	CF ₃	B24
A863	Н	Ph	Ph	CF ₃	B24
A864	Н	PhO	Ph	CF ₃	B24
A865	Н	PhS	Ph	CF ₃	B24
A866	Н	PhSO	Ph	CF ₃	B24
A867	Н	PhSO ₂	Ph	CF ₃	B24

Compd.	R_{92}	R ₉₃	R_{94}	R_{95}	Q_3
no.					
A868	Н	CH₃S	Ph	CF ₃	B24
A869	Н	CH₃SO	Ph	CF ₃	B24
A870	Н	CF ₃	Ph	CF ₃	B24
A871	Н	F ₂ CH	Ph	CF ₃	B24
A872	Н	HCC	Ph	CF ₃	B24
A873	Н	CH₃CC	Ph	CF ₃	B24
A874	Н	CH₂=CH	Ph	CF ₃	B24
A875	Н	CH ₂ =CHCH ₂	Ph	CF ₃	B24
A876	Н	CH ₃ SO ₂ N(CH ₃)	Ph	CF ₃	B24
A877	H	$(CH_3)_2N$	Ph	CF ₃	B24
A878	Н	$(CH_3)_2NSO_2$	Ph	CF ₃	B24
A879	Н	CH₃SCH₂	Ph	CF ₃	B24
A880	Н	CH₃SOCH₂	Ph	CF₃	B24
A881	Н	CH ₃ SO ₂ CH ₂	Ph	CF ₃	B24
A882	Н	CH₃	Ph	CF ₃ CF ₂	B24
A883	Н	CH ₃ CH ₂	Ph	CF ₃ CF ₂	B24
A884	Н	cyclopropyl	Ph	CF ₃ CF ₂	B24
A885	Н	(CH₃)₃C	Ph	CF ₃ CF ₂	B24
A886	Н	$(CH_3)_2CH$	Ph	CF ₃ CF ₂	B24
A887	Н	$CH_3(CH_2)_2$	Ph	CF ₃ CF ₂	B24
A888	Н	CH₃OCH₂	Ph	CF ₃ CF ₂	B24
A889	Н	$CH_3O(CH_2)_2$	Ph	CF ₃ CF ₂	B24
A890	Н	Ph	Ph	CF₃CF₂	B24
A891	Н	PhO	Ph	CF₃CF₂	B24
A892	H	PhS	Ph	CF ₃ CF ₂	B24
A893	Н	PhSO	Ph	CF ₃ CF ₂	B24
A894	Н	PhSO ₂	Ph	CF ₃ CF ₂	B24
A895	Н	CH₃S	Ph	CF ₃ CF ₂	B24
A896	Н	CH₃SO	Ph	CF ₃ CF ₂	B24
A897	Н	CF ₃	Ph	CF ₃ CF ₂	B24
A898	Н	F₂CH	Ph	CF ₃ CF ₂	B24
A899	Н	HCC	Ph	CF ₃ CF ₂	B24

- 171 -

Compd.	R ₉₂	R_{93}	R ₉₄	R ₉₅	Q_3
no.					
A900	Н	CH₃CC	Ph	CF ₃ CF ₂	B24
A901	Н	CH ₂ =CH Ph CF ₃ CF ₂			B24
A902	Н	CH ₂ =CHCH ₂	Ph	CF ₃ CF ₂	B24
A903	Н	CH ₃ SO ₂ N(CH ₃)	Ph	CF ₃ CF ₂	B24
A904	Н	$(CH_3)_2N$	Ph	CF ₃ CF ₂	B24
A905	Н	$(CH_3)_2NSO_2$	Ph	CF ₃ CF ₂	B24
A906	Н	CH₃SCH₂	Ph	CF ₃ CF ₂	B24
A907	Н	CH₃SOCH₂	Ph	CF ₃ CF ₂	B24
A908	Н	CH ₃ SO ₂ CH ₂	Ph	CF ₃ CF ₂	B24
A909	Н	CH₃	Ph	CF ₃ CF ₂ CF ₂	B24
A910	н	CH ₃ CH ₂	Ph	CF ₃ CF ₂ CF ₂	B24
A911	Н	cyclopropyl	Ph	CF ₃ CF ₂ CF ₂	B24
A912	Н	(CH ₃) ₃ C	Ph	CF ₃ CF ₂ CF ₂	B24
A913	Н	(CH ₃) ₂ CH	Ph	CF ₃ CF ₂ CF ₂	B24
A914	Н	$CH_3(CH_2)_2$	Ph	CF ₃ CF ₂ CF ₂	B24
A915	Н	CH ₃ OCH ₂	Ph	CF ₃ CF ₂ CF ₂	B24
A916	Н	CH ₃ O(CH ₂) ₂	Ph	CF ₃ CF ₂ CF ₂	B24
A917	Н	Ph	Ph	CF ₃ CF ₂ CF ₂	B24
A918	Н	PhO	Ph	CF ₃ CF ₂ CF ₂	B24
A919	Н	PhS	Ph	CF ₃ CF ₂ CF ₂	B24
A920	Н	PhSO	Ph	CF ₃ CF ₂ CF ₂	B24
A921	Н	PhSO ₂	Ph	CF ₃ CF ₂ CF ₂	B24
A922	Н	CH₃S	Ph	CF ₃ CF ₂ CF ₂	B24
A923	Н	CH₃SO	Ph	CF ₃ CF ₂ CF ₂	B24
A924	Н	CF₃	Ph	CF ₃ CF ₂ CF ₂	B24
A925	Н	F₂CH	Ph	CF ₃ CF ₂ CF ₂	B24
A926	Н	HCC	Ph	CF ₃ CF ₂ CF ₂	B24
A927	Н	CH₃CC	Ph	CF ₃ CF ₂ CF ₂	B24
A928	Н	CH ₂ =CH	Ph	CF ₃ CF ₂ CF ₂	B24
A929	Н	CH ₂ =CHCH ₂	Ph	CF ₃ CF ₂ CF ₂	B24
A930	Н	CH ₃ SO ₂ N(CH ₃)	Ph	CF ₃ CF ₂ CF ₂	B24
A931	Н	$(CH_3)_2N$	Ph	CF ₃ CF ₂ CF ₂	B24

Compd.	R_{92}	R_{93}	R ₉₄	R ₉₅	Q_3
no.					
A932	Н	(CH ₃) ₂ NSO ₂	Ph	CF ₃ CF ₂ CF ₂	B24
A933	Н	CH₃SCH₂	Ph	CF ₃ CF ₂ CF ₂	B24
A934	Н	CH ₃ SOCH ₂	Ph	CF ₃ CF ₂ CF ₂	B24
A935	Н	CH ₃ SO ₂ CH ₂	Ph	CF3CF2CF2	B24
A936	Н	CH ₃	Ph	CF ₂ CI	B24
A937	Н	CH ₃ CH ₂	Ph	CF ₂ CI	B24
A938	Н	cyclopropyl	Ph	CF ₂ Cl	B24
A939	Н	$(CH_3)_3C$	Ph	CF ₂ CI	B24
A940	Н	(CH ₃) ₂ CH	Ph	CF ₂ CI	B24
A941	Н	$CH_3(CH_2)_2$	Ph	CF ₂ CI	B24
A942	Н	CH ₃ OCH ₂	Ph	CF ₂ CI	B24
A943	· н	$CH_3O(CH_2)_2$	Ph	CF ₂ CI	B24
A944	Н	Ph	Ph	CF ₂ CI	B24
A945	Н	PhO	Ph	CF ₂ CI	B24
A946	Н	PhS Ph CF ₂ Cl		CF ₂ CI	B24
A947	Н	PhSO Ph CF₂CI		CF ₂ CI	B24
A948	Н	PhSO ₂	Ph	CF ₂ Cl	B24
A949	Н	CH₃S	Ph	CF ₂ CI	B24
A950	Н	CH₃SO	Ph	CF ₂ CI	B24
A951	Н	CF ₃	Ph	CF ₂ CI	B24
A952	Н	F₂CH	Ph	CF ₂ Cl	B24
A953	Н	HCC	Ph	CF ₂ Cl	B24
A954	Н	CH₃CC	Ph	CF₂CI	B24
A955	, H.	CH₂=CH	Ph	CF ₂ CI	B24
A956	Н	CH ₂ =CHCH ₂	Ph	CF ₂ CI	B24
A957	Н	$CH_3SO_2N(CH_3)$	Ph	CF ₂ Cl	B24
A958	Н	$(CH_3)_2N$	Ph	CF ₂ CI	B24
A959	Н	$(CH_3)_2NSO_2$	Ph	CF ₂ CI	B24
A960	Н	CH₃SCH₂	Ph	CF ₂ Cl	B24
A961	Н	CH₃SOCH₂	Ph	CF ₂ CI	B24
A962	Н	CH ₃ SO ₂ CH ₂	Ph	CF ₂ Cl	B24
A963	Н	CH₃	Ph	CHF ₂	B24

- 173 -

Compd.	R ₉₂	R ₉₃	R_{94}	R_{95}	Q_3	
no.						
A964	Н	CH ₃ CH ₂ Ph CHF ₂				
A965	Н	$(CH_3)_3C$ Ph CHF_2				
A966	Н	(CH ₃) ₂ CH	Ph	CHF ₂	B24	
A967	Н	cyclopropyl	Ph	CHF ₂	B24	
A968	Н	$CH_3(CH_2)_2$	Ph	CHF ₂	B24	
A969	Н	CH ₃ OCH ₂	Ph	CHF ₂	B24	
A970	Н	$CH_3O(CH_2)_2$	Ph	CHF ₂	B24	
A971	Н	Ph	Ph	CHF ₂	B24	
A972	Н	PhO	Ph	CHF ₂	B24	
A973	Н	PhS	Ph	CHF ₂	B24	
A974	Н	PhSO	Ph	CHF ₂	B24	
A975	Н	PhSO ₂	Ph	CHF ₂	B24	
A976	Н	CH₃S	Ph	CHF ₂	B24	
A977	Н	CH₃SO	Ph	CHF ₂	B24	
A978	н	CF ₃	Ph	CHF ₂	B24	
A979	Н	F₂CH	Ph	CHF ₂	B24	
A980	Н	HCC	Ph	CHF ₂	B24	
A981	Н	CH₃CC	Ph	CHF ₂	B24	
A982	Н	CH ₂ =CH	Ph	CHF ₂	B24	
A983	Н	CH ₂ =CHCH ₂	Ph	CHF ₂	B24	
A984	Н	CH ₃ SO ₂ N(CH ₃)	Ph	CHF ₂	B24	
A985	Н	(CH ₃) ₂ N	Ph	CHF ₂	B24	
A986	Н	$(CH_3)_2NSO_2$	Ph	CHF ₂	B24	
A987	Н	CH₃SCH₂	Ph	CHF ₂	B24	
A988	Н	CH₃SOCH₂	Ph	CHF ₂	B24	
A989	Н	CH ₃ SO ₂ CH ₂	Ph	CHF ₂	B24	
A990	Н	CH₃	Ph	CCI ₃	B24	
A991	Н	CH₃CH₂	Ph	CCI ₃	B24	
A992	Н	$(CH_3)_3C$	Ph	CCI ₃	B24	
A993	Н	(CH ₃) ₂ CH	Ph	CCI ₃	B24	
A994	Н	cyclopropyl	Ph	CCl ₃	B24	
A995	Н	$CH_3(CH_2)_2$	Ph	CCI ₃	B24	

Compd.	R ₉₂	R ₉₃	R ₉₄	R ₉₅	Q_3
no.					
A996	Н	CH ₃ OCH ₂	Ph	CCI ₃	B24
A997	Н	$CH_3O(CH_2)_2$	Ph	CCl ₃	B24
A998	н `	Ph	Ph	CCI ₃	B24
A999	Н	PhO	Ph	CCl₃	B24
A1000	Н	PhS	Ph	CCI ₃	B24
A1001	Н	PhSO	Ph	CCI ₃	B24
A1002	Н	PhSO ₂	Ph	CCl ₃	B24
A1003	Н	CH₃S	Ph	CCI ₃	B24
A1004	Н	CH₃SO	Ph	CCl₃	B24
A1005	Н	CF ₃	Ph	CCl ₃	B24
A1006	Н	F ₂ CH	Ph	CCl ₃	B24
A1007	Н	HCC	Ph	CCl ₃	B24
A1008	Н	CH₃CC	Ph	CCl ₃	B24
A1009	Н	CH ₂ =CH	Ph	CCl ₃	B24
A1010	Н	CH ₂ =CHCH ₂	Ph	CCl ₃	B24
A1011	Н	$CH_3SO_2N(CH_3)$	Ph	CCl ₃	B24
A1012	Н	$(CH_3)_2N$	Ph	CCl ₃	B24
A1013	Н	$(CH_3)_2NSO_2$	Ph	CCl ₃	B24
A1014	Н	CH₃SCH₂	Ph	CCl ₃	B24
A1015	Н	CH ₃ SOCH ₂	Ph	CCl ₃	B24
A1016	Н	CH ₃ SO ₂ CH ₂	Ph	CCl ₃	B24
A1017	F	Н	Η .	CF ₃	B24
A1018	CI	Н	Н	CF ₃	B24
A1019	Br	Н	Н	CF ₃	B24
A1020	CN	Н	Н	CF ₃	B24
A1021	CH ₃ SO ₂ O	Н	Н	CF ₃	B24
A1022	CH₃O	Н	Н	CF ₃	B24
A1023	CH₂CH₃O	Н	Н	CF ₃	B24
A1024	CH ₂ CH=CH ₂ O	Н	Н	CF ₃	B24
A1025	HCCCH ₂ O	Н	Н	CF ₃	B24
A1026	S-benzyl	Н	Н	CF ₃	B24
A1027	SO ₂ -benzyl	Н	Н	CF ₃	B24

Compd.	R ₉₂	R ₉₃	R_{94}	R_{95}	Q_3
no.					
A1028	CICH ₂	H	Н	CF_3	B24
A1029	BrCH ₂	Н	Н	CF ₃	B24
A1030	FCH ₂	Н	Н	CF ₃	B24
A1031	CHF ₂ CH ₂	Н	Н	CF ₃	B24
A1032	CF ₃ CH ₂	Н	Н	CF ₃	B24
A1033	triazolylmethyl	Н	Н	CF ₃	B24
A1034	CHCl ₂ CH ₂	Н	Н	CF ₃	B24
A1035	CICH=CH	Н	Н	CF ₃	B24
A1036	Cl ₂ C=CH	Н	Н	CF ₃	B24
A1037	CF ₃ CH=CH	Н	Н	CF ₃	B24
A1038	CICC	н	Н	CF ₃	B24
A1039	Ph	Н	Н	CF ₃	B24
A1040	CH ₃	CH₃	Н	CF ₃	B24
A1041	CH ₃	ОН	Н	CF ₃	B24
A1042	CH ₃	F	Н	CF ₃	B24
A1043	CH ₃	Cl	Н	CF ₃	B24
A1044	F	CH ₃	Н	CF ₃	B24
A1045	Cl	CH₃	Н	CF ₃	B24
A1046	Н .	F	Н	CF ₃	B24
A1047	Н	Cl	Н	CF ₃	B24
A1048	Н	Br	Н	CF ₃	B24
A1049	Н	ОН	Н	CF ₃	B24
A1050	Н	OCH₃	Н	CF₃	B24
A1051	Н	OCHF ₂	Н	CF ₃	B24
A1052	Н	OSO ₂ CH ₃	Н	CF ₃	B24
A1053	Н	OSO ₂ CF ₃	Н	CF ₃	B24
A1054	Н	CICH ₂	Н	CF ₃	B24
A1055	Н	BrCH ₂	Н	CF ₃	B24
A1056	Н	FCH ₂	Н	CF ₃	B24
A1057	Н	CHF ₂ CH ₂	Н	CF ₃	B24
A1058	Н	CF ₃ CH ₂	Н	CF ₃	B24
A1059	Н	triazolylmethyl	Н	CF ₃	B24

- 176 -

PCT/EP01/00720

Compd.	R_{92}	R ₉₃	R ₉₄	R_{95}	Q_3
no.					
A1060	Н	CHCl ₂ CH ₂	Н	CF ₃	B24
A1061	Н	CICH=CH	Н	CF ₃	B24
A1062	Н	Cl ₂ C=CH	Н	CF ₃	B24
A1063	Н	CF₃CH=CH	Н	CF ₃	B24
A1064	Н	CICC	Н	CF ₃	B24
A1065	Н	CH ₃ C(O)	Н	CF ₃	B24
A1066	Н	phenyl	Н	CF ₃	B24
A1067	Н	SO₂CH₃	Н	CF ₃	B24
A1068	Н	SO ₂ CF ₃	Н	CF ₃	B24
A1069	H	CN	Н	CF ₃	B24
A1070	Н	NO ₂	Н	CF ₃	B24
A1071	CH₃	Н	F	CF ₃	B24
A1072	CH₃	Н	CI	CF ₃	B24
A1073	CH₃	Н	Br	CF ₃	B24
A1074	CH₃	H	CN	CF ₃	B24
A1075	CH₃	Н	CH ₃ O	CF ₃	B24
A1076	CH₃	Н	CH ₃ S	CF ₃	B24
A1077	CH₃	· H .	CH₃SO	CF ₃	B24
A1078	CH ₃	Н	CH ₃ SO ₂	CF ₃	B24

Table 9a: Compounds of formula Ig:

				C	F ₃		Q_3	(Ig)			
<u>Q</u> 3	<u>Q</u> ₃	\underline{Q}_3	\underline{Q}_3	<u>Q</u> ₃							
B1	B2	B3	B4	B5	B6	B7	B8	B9	B10	B11	B12
B13	B14	B15	B16	B17	B18	B19	B20	B21	B22	B23	B24
B25	B26	B27	B28	B29	B30	B31	B32	B33	B34	B35	B36
B37	B38	B39	B40	B41	B42	B43	B44	B45	B46	B47	B48

- 177 -

$\underline{Q}_{\underline{3}}$	\underline{Q}_3	<u>Q</u> ₃	<u>Q</u> 3	Q_3	\underline{Q}_3	\underline{Q}_3	\underline{Q}_3	\underline{Q}_3	<u>Q</u> 3	\underline{Q}_3	\underline{Q}_3
B49	B50	B51	B52	B53	B54	B55	B56	B57	B58	B59	B60
B61	B62	B63	B64	B65	B66	B67	B68	B69	B70	B71	B72
B73	B74	B75	B76	B77	B78	B79	B80	B81	B82	B83	B84
B85	B86	B87	B88	B89	B90	B91	B92	B93	B94	B95	B96
B97	B98	B99	B100	B101	B102	B103	B104	B105	B106	B107	B108
B109	B110	B111	B112	B113	B114	B115	B116	B117	B118	B119	B120
B121	B122	B123	B124	B125	B126	B127	B128	B129	B130	B131	B132
B133	B134	B135	B136	B137	B138	B139	B140	B141	B142	B143	B144
B145	B146	B147	B148	B149	B150	B151	B152	B153	B154	B155	B156
B157	B158	B159	B160	B161	B162	B163	B164	B165	B166	B167	B168
B169	B170	B171	B172	B173	B174	B175	B176	B177	B178	B179	B180
B181	B182	B183	B184	B185	B186	B187	B188	B189	B190	B191	B192
B193	B194	B195	B196	B197	B198	B199	B200	B201	B202	B203	B204
B205	B206	B207	B208	B209	B210	B211	B212	B213	B214	B215	B216
B217	B218	B219	B220	B221	B222	B223	B224	B225	B226	B227	B228
B229	B230	B231	B232	B233	B234	B235	B236	B237	B238	B239	B240
B241	B242	B243	B244	B245	B246	B247	B248	B249	B250	B251	B252
B253	B254	B255	B256	B257	B258	B259	B260	B261	B262	B263	B264
B265	B266	B267	B268	B269	B270	B271	B272	B273	B274	B275	B276
B277	B278	B279	B280	B281	B282	B283	B284	B285	B286	B287	B288
B289	B290	B291	B292	B293	B294	B295	B296	B297	B298	B299	B300
B301	B302	B303	B304	B305	B306	B307	B308	B309	B310	B311	B312
B313	B314	B315	B316	B317	B318	B319	B320	B321	B322	B323	B324
B325	B326	B327	B328	B329	B330	B331	B332	B333	B334	B335	B336
B337	B338	B339	B340	B341	B342	B343	B344	B345	B346	B347	B348
B349	B350	B351	B352	B353	B354	B355	B356	B357	B358	B359	B360
B361	B362	B363	B364	B365	B366	B367	B368	B369	B370	B371	B372
B373	B374	B375	B376	B377	B378	B379	B380	B381	B382	B383	B384
B385	B386	B387	B388	B389	B390	B391	B392	B393	B394	B395	B396
B397	B398	B399	B400	B401	B402	B403	B404	B405	B406	B407	B408
B409	B410	B411	B412	B413	B414	B4 1 5	B416	B417	B418	B419	B420
B421	B422	B423	B424	B425	B426	B427	B428	B429	B430	B431	B432
B433	B434	B435	B436	B437	B438	B439	B440	B441	B442	B443	B444

<u>Q</u> ₃	<u>Q</u> ₃	\underline{Q}_3	<u>Q</u> ₃	Q_3	\underline{Q}_3	<u>Q</u> ₃	\underline{Q}_3	<u>Q</u> ₃	\underline{Q}_3	<u>Q</u> ₃	<u>Q</u> ₃
B445	B446	B447	B448	B449	B450	B451	B452	B453	B454	B455	B456
B457	B458	B459	B460	B461	B462	B463	B464	B465	B466	B467	B468
B469	B470	B471	B472	B473	B474	B475	B476	B477	B478	B479	B480
B481	B482	B483	B484	B485	B486	B487	B488	B489	B490	B491	B492
B493	B494	B495	B496	B497	B498	B499	B500	B501	B502	B503	B504
B505	B506	B507	B508	B509	B510	B511	B512	B513	B514	B515	B516
B517	B518	B519	B520	B521	B522	B523	B524	B525	B526	B527	B528
B529	B530	B531	B532	B533	B534	B535	B536	B537	B538	B539	B540
B541	B542	B543	B544	B545	B546	B547	B548	B549	B550	B551	B552
B553	B554	B555	B556	B557	B558	B559	B560	B561	B562	B563	B564
B565	B566	B567	B568	B569	B570	B571	B572	B573	B574	B575	B576
B577	B578	B579	B580	B581	B582	B583	B584	B585	B586	B587	B588
B589	B590	B591	B592	B593	B594	B595	B596	B597	B598	B599	B600
B601	B602	B603	B604	B605	B606	B607	B608	B609	B610	B611	B612
B613	B614	B615	B616	B617	B618	B619	B620	B621	B622	B623	B624
B625	B626	B627	B628	B629	B630	B631	B632	B633	B634	B635	B636
B637	B638	B639	B640	B641	B642	B643	B644	B645	B646	B647	B648
B649	B650	B651	B652	B653	B654	B655	B656	B657	B658	B659	B660
B661	B662	B663	B664	B665	B666	B667	B668	B669	B670	B671	B672
B773	B774	B775	B776	B777	B778	B779	B780	B781	B782	B783	B784
B785	B786	B787	B788	B789	B790	B791	B792	B793	B794	B795	B796
B797	B798	B799	B800	B801	B802	B803	B804	B805	B806	B807	B808
B809	B810	B811	B812	B813	B814	B815	B816	B817	B818	B819	B820
B821	B822	B823	B824	B825	B826	B827	B828	B829	B830	B831	B832
B833	B834	B835	B836	B837	B838	B839	B840	B841	B842	B843	B844
B845	B846	B847	B848	B849	B850	B851	B852	B853	B854	B855	B856
B857	B858	B859	B860	B861	B862	B863	B864	B865	B866	B867	B868
B869	B870	B871	B872	B873	B874	B875	B876	B877	B878	B879	B880
B881	B882	B883	B884	B885	B886	B887	B888	B889	B890	B891	B892
B893	B894	B895	B896	B897	B898	B899	B900	B901	B902	B903	B904
B905	B906	B907	B908	B909	B910	B911	B912	B913	B914	B915	B916
B917	B918	B919	B920	B921	B922	B923	B924	B925	B926	B927	B928
B929	B930	B931	B932	B933	B934	B935	B936	B937	B938	B939	B940

- 179 -

 Q_3 Q_3 Q_3 Q_3 Q_3 Q_3 \underline{Q}_3 Q_3 Q_3 Q_3 Q_3 Q_3 B941 B942 B943 B944 B945 B946 B947 B948 B949 B950 B951 B952 B953 B960 B954 B955 B956 B957 B958 B959 B961 B962 B963 B964 B965 B967 B966 B968 B969 B970 B971 B972 B973 B974 B975 B976 B977 B978 B979 B980 B981 B982 B983 B984 B985 B986 B987 B988 B989 B991 B992 B993 B994 B990 B995 B996 B997 B998 B999 B1000 B1001 B1002 B1003 B1004 B1005 B1006 B1007 B1008 B1009 B1010 B1011 B1012 B1013 B1014 B1015 B1016 B1017 B1018 B1019 B1020 B1021 B1022 B1023 B1024 B1025 B1026 B1027 B1028 B1029 B1030 B1031 B1032 B1033 B1034 B1035 B1036 B1037 B1038 B1039 B1040 B1041 B1042 B1043 B1044 B1045 B1046 B1047 B1048 B1049 B1050 B1051 B1052 B1053 B1054 B1055 B1056 B1057 B1058 B1059 B1060 B1061 B1062 B1063 B1064 B1065 B1066 B1067 B1068 B1069 B1070 B1071 B1072 B1073 B1074 B1075 B1076 B1077 B1078 B1079 B1080 B1081 B1082 B1083

Table 10: Compounds of formula Ih:

<u>Q</u> 3	<u>Q</u> ₃	Q_3	\underline{Q}_3	Q_3	Q_3	Q_3	<u>Q</u> ₃	Q_3	Q_3	Q_3	<u>Q</u> 3
B1	B2	В3	B4	B5	B6	B7	B8	B9	B10	B11	B12
B13	B14	B15	B16	B17	B18	B19	B20	B21	B22	B23	B24
B25	B26	B27	B28	B29	B30	B31	B32	B33	B34	B35	B36
B37	B38	B39	B40	B41	B42	B43	B44	B45	B46	B47	B48
B49	B50	B51	B52	B53	B54	B55	B56	B57	B58	B59	B60
B61	B62	B63	B64	B65	B66	B67	B68	B69	B70	B71	B72
B73	B74	B75	B76 [°]	B77	B78	B79	B80	B81	B82	B83	B84
B85	B86	B87	B88	B89	B90	B91	B92	B93	B94	B95	B96
B97	B98	B99	B100	B101	B102	B103	B104	B105	B106	B107	B108
B109	B110	B111	B112	B113	B114	B115	B116	B117	B118	B119	B120
B121	B122	B123	B124	B125	B126	B127	B128	B129	B130	B131	B132
B133	B134	B135	B136	B137	B138	B139	B140	B141	B142	B143	B144

- 180 -

\underline{Q}_3	Q_3	<u>Q</u> ₃	Q_3	Q_3	Q_3	Q_3	\underline{Q}_3	<u>Q</u> 3	<u>Q</u> 3	Q_3	<u>Q</u> ₃
B145	B146	B147	B148	B149	B150	B151	B152	B153	B154	B155	B156
B157	B158	B159	B160	B161	B162	B163	B164	B165	B166	B167	B168
B169	B170	B171	B172	B173	B174	B175	B176	B177	B178	B179	B180
B181	B182	B183	B184	B185	B186	B187	B188	B189	B190	B191	B192
B193	B194	B195	B196	B197	B198	B199	B200	B201	B202	B203	B204
B205	B206	B207	B208	B209	B210	B211	B212	B213	B214	B215	B216
B217	B218	B219	B220	B221	B222	B223	B224	B225	B226	B227	B228
B229	B230	B231	B232	B233	B234	B235	B236	B237	B238	B239	B240
B241	B242	B243	B244	B245	B246	B247	B248	B249	B250	B251	B252
B253	B254	B255	B256	B257	B258	B259	B260	B261	B262	B263	B264
B265	B266	B267	B268	B269	B270	B271	B272	B273	B274	B275	B276
B277	B278	B279	B280	B281	B282	B283	B284	B285	B286	B287	B288
B289	B290	B291	B292	B293	B294	B295	B296	B297	B298	B299	B300
B301	B302	B303	B304	B305	B306	B307	B308	B309	B310	B311	B312
B313	B314	B315	B316	B317	B318	B319	B320	B321	B322	B323	B324
B325	B326	B327	B328	B329	B330	B331	B332	B333	B334	B335	B336
B337	B338	B339	B340	B341	B342	B343	B344	B345	B346	B347	B348
B349	B350	B351	B352	B353	B354	B355	B356	B357	B358	B359	B360
B361	B362	B363	B364	B365	B366	B367	B368	B369	B370	B371	B372
B373	B374	B375	B376	B377	B378	B379	B380	B381	B382	B383	B384
B385	B386	B387	B388	B389	B390	B391	B392	B393	B394	B395	B396
B397	B398	B399	B400	B401	B402	B403	B404	B405	B406	B407	B408
B409	B410	B411	B412	B413	B414	B415	B416	B417	B418	B419	B420
B421	B422	B423	B424	B425	B426	B427	B428	B429	B430	B431	B432
B433	B434	B435	B436	B437	B438	B439	B440	B441	B442	B443	B444
B445	B446	B447	B448	B449	B450	B451	B452	B453	B454	B455	B456
B457	B458	B459	B460	B461	B462	B463	B464	B465	B466	B467	B468
B469	B470	B471	B472	B473	B474	B475	B476	B477	B478	B479	B480
B481	B482	B483	B484	B485	B486	B487	B488	B489	B490	B491	B492
B493	B494	B495	B496	B497	B498	B499	B500	B501	B502	B503	B504
B505	B506	B507	B508	B509	B510	B511	B512	B513	B514	B515	B516
B517	B518	B519	B520	B521	B522	B523	B524	B525	B526	B527	B528
B529	B530	B531	B532	B533	B534	B535	B536	B537	B538	B539	B540

<u>Q</u>3 Q_3 Q_3 B541 B542 B543 B544 B545 B546 B547 B548 B549 B550 B551 B552 B553 B554 B555 B556 B557 B558 B559 B560 B561 B562 B563 B564 B565 B566 B567 B568 B569 B570 B571 B572 B573 B574 B575 B576 B577 B578 B579 B580 B581 B582 B584 B583 B585 B586 B587 B588 B589 B590 B591 B592 B593 B594 B595 B596 B598 B597 B599 B600 B601 B602 B603 B604 B605 B606 B607 B608 B609 B610 B611 B612 B613 B614 B615 B616 B617 B618 B619 B620 B621 B622 B623 B624 B625 B626 B627 B628 B629 B630 B631 B632 B633 B634 B635 B636 B637 B638 B639 B640 B641 B642 B643 B644 B645 B646 B647 B648 B649 B650 B651 B652 B653 B654 B655 B656 B657 B658 B659 B660 B661 B662 B663 B664 B665 B666 B667 B668 B669 B670 B671 B672 B773 B774 B775 B776 B777 **B778** B779 B780 B781 B782 B783 B784 B785 B786 **B787 B788** B789 B790 B791 B792 B794 B793 B795 B796 B797 B798 B799 B800 B801 B802 B804 B803 B805 B806 B807 B808 B809 B810 B811 B812 B813 B814 B815 B816 B817 B818 B819 B820 B821 B822 B823 B824 B825 B826 B827 B828 B829 B830 B831 B832 B833 B834 B835 B836 B837 B838 B839 **B840** B841 B842 B843 B844 B845 B847 B854 B846 B848 B849 B850 B851 B852 B853 B855 B856 B857 B858 B859 **B860** B861 B862 B864 B863 B865 B866 B867 B868 B869 B870 B871 B872 B873 **B874** B875 B876 B878 B877 B879 B880 B881 B882 B883 B884 B885 B886 B887 **B888** B889 B890 B891 B892 B893 B894 B895 B896 B897 B898 B899 B900 B901 B902 B903 B904 B905 B906 B907 B908 B909 B910 B911 B912 B913 B914 B915 B916 B917 B918 B919 B920 B921 B922 B923 B924 B925 B926 B927 B928 B929 B930 B931 B932 B933 B934 B935 B936 B937 B938 B939 B940 B941 B942 B943 B944 B945 B946 B947 B948 B949 B950 B951 B952 B953 B954 B955 B956 B957 B958 B959 B960 B961 B962 B963 B964 B965 B966 B967 B968 B969 B970 B971 B972 B973 B974 B975 B976 B977 B978 B979 B980 B981 B982 B983 B984 B985 B986 B987 B988 B989 B990 B991 B992 B993 B994 B995 B996 B997 B998 B999 B1000 B1001 B1002 B1003 B1004 B1005 B1006 B1007 B1008 B1009 B1010 B1011 B1012 B1013 B1014 B1015 B1016 B1017 B1018 B1019 B1020 B1021 B1022 B1023 B1024 B1025 B1026 B1027 B1028 B1029 B1030 B1031 B1032 B1033 B1034 B1035 B1036

 Q_3 Q_3 B1037 B1038 B1039 B1040 B1041 B1042 B1043 B1044 B1045 B1046 B1047 B1048 B1049 B1050 B1051 B1052 B1053 B1054 B1055 B1056 B1057 B1058 B1059 B1060 B1061 B1062 B1063 B1064 B1065 B1066 B1067 B1068 B1069 B1070 B1071 B1072 B1073 B1074 B1075 B1076 B1077 B1078 B1079 B1080 B1081 B1082 B1083

Table 11: Compounds of formula lk:

WO 01/54501

Q_3	\underline{Q}_3	Q_3	\underline{Q}_3	\underline{Q}_3	\underline{Q}_3	\underline{Q}_3	\underline{Q}_3	\underline{Q}_3	Q_3	Q_3	\underline{Q}_3
B241	B242	B243	B244	B245	B246	B247	B248	B249	B250	B251	B252
B253	B254	B255	B256	B257	B258	B259	B260	B261	B262	B263	B264
B265	B266	B267	B268	B269	B270	B271	B272	B273	B274	B275	B276
B277	B278	B279	B280	B281	B282	B283	B284	B285	B286	B287	B288
B289	B290	B291	B292	B293	B294	B295	B296	B297	B298	B299	B300
B301	B302	B303	B304	B305	B306	B307	B308	B309	B310	B311	B312
B313	B314	B315	B316	B317	B318	B319	B320	B321	B322	B323	B324
B325	B326	B327	B328	B329	B330	B331	B332	B333	B334	B335	B336
B337	B338	B339	B340	B341	B342	B343	B344	B345	B346	B347	B348
B349	B350	B351	B352	B353	B354	B355	B356	B357	B358	B359	B360
B361	B362	B363	B364	B365	B366	B367	B368	B369	B370	B371	B372
B373	B374	B375	B376	B377	B378	B379	B380	B381	B382	B383	B384
B385	B386	B387	B388	B389	B390	B391	B392	B393	B394	B395	B396
B397	B398	B399	B400	B401	B402	B403	B404	B405	B406	B407	B408
B409	B410	B411	B412	B413	B414	B415	B416	B417	B418	B419	B420
B421	B422	B423	B424	B425	B426	B427	B428	B429	B430	B431	B432
B433	B434	B435	B436	B437	B438	B439	B440	B441	B442	B443	B444
B445	B446	B447	B448	B449	B450	B451	B452	B453	B454	B455	B456
B457	B458	B459	B460	B461	B462	B463	B464	B465	B466	B467	B468
B469	B470	B471	B472	B473	B474	B475	B476	B477	B478	B479	B480
B481	B482	B483	B484	B485	B486	B487	B488	B489	B490	B491	B492
B493	B494	B495	B496	B497	B498	B499	B500	B501	B502	B503	B504
B505	B506	B507	B508	B509	B510	B511	B512	B513	B514	B515	B516
B517	B518	B519	B520	B521	B522	B523	B524	B525	B526	B527	B528
B529	B530	B531	B532	B533	B534	B535	B536	B537	B538	B539	B540
B541	B542	B543	B544	B545	B546	B547	B548	B549	B550	B551	B552
B553	B554	B555	B556	B557	B558	B559	B560	B561	B562	B563	B564
B565	B566	B567	B568	B569	B570	B571	B572	B573	B574	B575	B576
B577	B578	B579	B580	B581	B582	B583	B584	B585	B586	B587	B588
B589	B590	B591	B592	B593	B594	B595	B596	B597	B598	B599	B600
B601	B602	B603	B604	B605	B606	B607	B608	B609	B610	B611	B612
B613	B614	B615	B616	B617	B618	B619	B620	B621	B622	B623	B624
B625	B626	B627	B628	B629	B630	B631	B632	B633	B634	B635	B636

- 184 -

<u>Q</u> ₃	Q_3	<u>Q</u> ₃	\underline{Q}_3	\underline{Q}_3	\underline{Q}_3	\underline{Q}_3	<u>Q</u> 3	\underline{Q}_3	<u>Q</u> ₃	\underline{Q}_3	\underline{Q}_3
B637	B638	B639	B640	B641	B642	B643	B644	B645	B646	B647	B648
B649	B650	B651	B652	B653	B654	B655	B656	B657	B658	B659	B660
B661	B662	B663	B664	B665	B666	B667	B668	B669	B670	B671	B672
B773	B774	B775	B776	B777	B778	B779	B780	B781	B782	B783	B784
B785	B786	B787	B788	B789	B790	B791	B792	B793	B794	B795	B796
B797	B798	B799	B800	B801	B802	B803	B804	B805	B806	B807	B808
B809	B810	B811	B812	B813	B814	B815	B816	B817	B818	B819	B820
B821	B822	B823	B824	B825	B826	B827	B828	B829	B830	B831	B832
B833	B834	B835	B836	B837	B838	B839	B840	B841	B842	B843	B844
B845	B846	B847	B848	B849	B850	B851	B852	B853	B854	B855	B856
B857	B858	B859	B860	B861	B862	B863	B864	B865	B866	B867	B868
B869	B870	B871	B872	B873	B874	B875	B876	B877	B878	B879	B880
B881	B882	B883	B884	B885	B886	B887	B888	B889	B890	B891	B892
B893	B894	B895	B896	B897	B898	B899	B900	B901	B902	B903	B904
B905	B906	B907	B908	B909	B910	B911	B912	B913	B914	B915	B916
B917	B918	B919	B920	B921	B922	B923	B924	B925	B926	B927	B928
B929	B930	B931	B932	B933	B934	B935	B936	B937	B938	B939	B940
B941	B942	B943	B944	B945	B946	B947	B948	B949	B950	B951	B952
B953	B954	B955	B956	B957	B958	B959	B960	B961	B962	B963	B964
B965	B966	B967	B968	B969	B970	B971	B972	B973	B974	B975	B976
B977	B978	B979	B980	B981	B982	B983	B984	B985	B986	B987	B988
B989	B990	B991	B992	B993	B994	B995	B996	B997	B998	B999	B1000
B1001	B1002	B1003	B1004	B1005	B1006	B1007	B1008	B1009	B1010	B1011	B1012
B1013	B1014	B1015	B1016	B1017	B1018	B1019	B1020	B1021	B1022	B1023	B1024
B1025	B1026	B1027	B1028	B1029	B1030	B1031	B1032	B1033	B1034	B1035	B1036
B1037	B1038	B1039	B1040	B1041	B1042	B1043	B1044	B1045	B1046	B1047	B1048
B1049	B1050	B1051	B1052	B1053	B1054	B1055	B1056	B1057	B1058	B1059	B1060
B1061	B1062	B1063	B1064	B1065	B1066	B1067	B1068	B1069	B1070	B1071	B1072
B1073	B1074	B1075	B1076	B1077	B1078	B1079	B1080	B1081	B1082	B1083	

Table 12: Compounds of formula Im:

$$CCI_3$$
 N CH_3 (Im)

<u>Q</u> ₃	<u>Q</u> ₃	Q_3	Q_3	\underline{Q}_3	<u>Q</u> ₃	$\underline{Q_3}$	\underline{Q}_3	\underline{Q}_3	<u>Q</u> ₃	<u>Q</u> ₃	<u>Q</u> 3
B1	B2	В3	B4	B5	B6	B 7	B8	В9	B10	B11	B12
B13	B14	B15	B16	B17	B18	B19	B20	B21	B22	B23	B24
B25	B26	B27	B28	B29	B30	B31	B32	B33	B34	B35	B36
B37	B38	B39	B40	B41	B42	B43	B44	B45	B46	B47	B48
B49	B50	B51	B52	B53	B54	B55	B56	B57	B58	. B59	B60
B61	B62	B63	B64	B65	B66	B67	B68	B69	B70	B71	B72
B73	B74	B75	B76	B77	B78	B79	B80	B81	B82	B83	B84
B85	B86	B87	B88	B89	B90	B91	B92	B93	B94	B95	B96
B97	B98	B99	B100	B101	B102	B103	B104	B105	B106	B107	B108
B109	B110	B111	B112	B113	B114	B115	B116	B117	B118	B119	B120
B121	B122	B123	B124	B125	B126	B127	B128	B129	B130	B131	B132
B133	B134	B135	B136	B137	B138	B139	B140	B141	B142	B143	B144
B145	B146	B147	B148	B149	B150	B151	B152	B153	B154	B155	B156
B157	B158	B159	B160	B161	B162	B163	B164	B165	B166	B167	B168
B169	B170	B171	B172	B173	B174	B175	B176	B177	B178	B179	B180
B181	B182	B183	B184	B185	B186	B187	B188	B189	B190	B191	B192
B193	B194	B195	B196	B197	B198	B199	B200	B201	B202	B203	B204
B205	B206	B207	B208	B209	B210	B211	B212	B213	B214	B215	B216
B217	B218	B219	B220	B221	B222	B223	B224	B225	B226	B227	B228
B229	B230	B231	B232	B233	B234	B235	B236	B237	B238	B239	B240
B241	B242	B243	B244	B245	B246	B247	B248	B249	B250	B251	B252
B253	B254	B255	B256	B257	B258	B259	B260	B261	B262	B263	B264
B265	B266	B267	B268	B269	B270	B271	B272	B273	B274	B275	B276
B277	B278	B279	B280	B281	B282	B283	B284	B285	B286	B287	B288
B289	B290	B291	B292	B293	B294	B295	B296	B297	B298	B299	B300
B301	B302	B303	B304	B305	B306	B307	B308	B309	B310	B311	B312
B313	B314	B315	B316	B317	B318	B319	B320	B321	B322	B323	B324

- 186 -

<u>Q</u> 3	Q_3	<u>Q</u> 3	Q_3	$\underline{\mathbf{Q}}_{\underline{3}}$	\underline{Q}_3	\underline{Q}_3	\underline{Q}_3	<u>Q</u> 3	<u>Q</u> 3	\underline{Q}_3	\underline{Q}_3
B325	B326	B327	B328	B329	B330	B331	B332	B333	B334	B335	B336
B337	B338	B339	B340	B341	B342	B343	B344	B345	B346	B347	B348
B349	B350	B351	B352	B353	B354	B355	B356	B357	B358	B359	B360
B361	B362	B363	B364	B365	B366	B367	B368	B369	B370	B371	B372
B373	B374	B375	B376	B377	B378	B379	B380	B381	B382	B383	B384
B385	B386	B387	B388	B389	B390	B391	B392	B393	B394	B395	B396
B397	B398	B399	B400	B401	B402	B403	B404	B405	B406	B407	B408
B409	B410	B411	B412	B413	B414	B415	B416	B417	B418	B419	B420
B421	B422	B423	B424	B425	B426	B427	B428	B429	B430	B431	B432
B433	B434	B435	B436	B437	B438	B439	B440	B441	B442	B443	B444
B445	B446	B447	B448	B449	B450	B451	B452	B453	B454	B455	B456
B457	B458	B459	B460	B461	B462	B463	B464	B465	B466	B467	B468
B469	B470	B471	B472	B473	B474	B475	B476	B477	B478	B479	B480
B481	B482	B483	B484	B485	B486	B487	B488	B489	B490	B491	B492
B493	B494	B495	B496	B497	B498	B499	B500	B501	B502	B503	B504
B505	B506	B507	B508	B509	B510	B511	B512	B513	B514	B515	B516
B517	B518	B519	B520	B521	B522	B523	B524	B525	B526	B527	B528
B529	B530	B531	B532	B533	B534	B535	B536	B537	B538	B539	B540
B541	B542	B543	B544	B545	B546	B547	B548	B549	B550	B551	B552
B553	B554	B555	B556	B557	B558	B559	B560	B561	B562	B563	B564
B565	B566	B567	B568	B569	B570	B571	B572	B573	B574	B575	B576
B577	B578	B579	B580	B581	B582	B583	B584	B585	B586	B587	B588
B589	B590	B591	B592	B593	B594	B595	B596	B597	B598	B599	B600
B601	B602	B603	B604	B605	B606	B607	B608	B609	B610	B611	B612
B613	B614	B615	B616	B617	B618	B619	B620	B621	B622	B623	B624
B625	B626	B627	B628	B629	B630	B631	B632	B633	B634	B635	B636
B637	B638	B639	B640	B641	B642	B643	B644	B645	B646	B647	B648
B649	B650	B651	B652	B653	B654	B655	B656	B657	B658	B659	B660
B661	B662	B663	B664	B665	B666	B667	B668	B669	B670	B671	B672
B773	B774	B775	B776	B777	B778	B779	B780	B781	B782	B783	B784
B785	B786	B787	B788	B789	B790	B791	B792	B793	B794	B795	B796
B797	B798	B799	B800	B801	B802	B803	B804	B805	B806	B807	B808
B809	B810	B811	B812	B813	B814	B815	B816	B817	B818	B819	B820

- 187 -

\underline{Q}_3	\underline{Q}_3	Q_3	<u>Q</u> 3	\underline{Q}_3	<u>Q</u> ₃	<u>Q</u> ₃	\underline{Q}_3	Q_3	<u>Q</u> 3	<u>Q</u> 3	\underline{Q}_3
B821	B822	B823	B824	B825	B826	B827	B828	B829	B830	B831	B832
B833	B834	B835	B836	B837	B838	B839	B840	B841	B842	B843	B844
B845	B846	B847	B848	B849	B850	B851	B852	B853	B854	B855	B856
B857	B858	B859	B860	B861	B862	B863	B864	B865	B866	B867	B868
B869	B870	B871	B872	B873	B874	B875	B876	B877	B878	B879	B880
B881	B882	B883	B884	B885	B886	B887	B888	B889	B890	B891	B892
B893	B894	B895	B896	B897	B898	B899	B900	B901	B902	B903	B904
B905	B906	B907	B908	. B909	B910	B911	B912	B913	B914	B915	B916
B917	B918	B919	B920	B921	B922	B923	B924	B925	B926	B927	B928
B929	B930	B931	B932	B933	B934	B935	B936	B937	B938	B939	B940
B941	B942	B943	B944	B945	B946	B947	B948	B949	B950	B951	B952
B953	B954	B955	B956	B957	B958	B959	B960	B961	B962	B963	B964
B965	B966	B967	B968	B969	B970	B971	B972	B973	B974	B975	B976
B977	B978	B979	B980	B981	B982	B983	B984	B985	B986	B987	B988
B989	B990	B991	B992	B993	B994	B995	B996	B997	B998	B999	B1000
B1001	B1002	B1003	B1004	B1005	B1006	B1007	B1008	B1009	B1010	B1011	B1012
B1013	B1014	B1015	B1016	B1017	B1018	B1019	B1020	B1021	B1022	B1023	B1024
B1025	B1026	B1027	B1028	B1029	B1030	B1031	B1032	B1033	B1034	B1035	B1036
B1037	B1038	B1039	B1040	B1041	B1042	B1043	B1044	B1045	B1046	B1047	B1048
B1049	B1050	B1051	B1052	B1053	B1054	B1055	B1056	B1057	B1058	B1059	B1060
B1061	B1062	B1063	B1064	B1065	B1066	B1067	B1068	B1069	B1070	B1071	B1072
B1073	B1074	B1075	B1076	B1077	B1078	B1079	B1080	B1081	B1082	B1083	

Table 13: Compounds of formula In:

- 188 -

<u>Q</u> 3	Q_3	Q_3	<u>Q</u> 3	Q_3	\underline{Q}_3	\underline{Q}_3	Q_3	<u>Q</u> 3	<u>Q</u> 3	<u>Q</u> ₃	\underline{Q}_3
B25	B26	B27	B28	B29	B30	B31	B32	B33	B34	B35	B36
B37	B38	B39	B40	B41	B42	B43	B44	B45	B46	B47	B48
B49	B50	B51	B52	B53	B54	B55	B56	B57	B58	B59	B60
B61	B62	B63	B64	B65	B66	B67	B68	B69	B70	B71	B72
B73	B74	B75	B76	B77	B78	B79	B80	B81	B82	B83	B84
B85	B86	B87	B88	B89	B90	B91	B92	B93	B94	B95	B96
B97	B98	B99	B100	B101	B102	B103	B104	B105	B106	B107	B108
B109	B110	B111	B112	B113	B114	B115	B116	B117	B118	B119	B120
B121	B122	B123	B124	B125	B126	B127	B128	B129	B130	B131	B132
B133	B134	B135	B136	B137	B138	B139	B140	B141	B142	B143	B144
B145	B146	B147	B148	B149	B150	B151	B152	B153	B154	B155	B156
B157	B158	B159	B160	B161	B162	B163	B164	B165	B166	B167	B168
B169	B170	B171	B172	B173	B174	B175	B176	B177	B178	B179	B180
B181	B182	B183	B184	B185	B186	B187	B188	B189	B190	B191	B192
B193	B194	B195	B196	B197	B198	B199	B200	B201	B202	B203	B204
B205	B206	B207	B208	B209	B210	B211	B212	B213	B214	B215	B216
B217	B218	B219	B220	B221	B222	B223	B224	B225	B226	B227	B228
B229	B230	B231	B232	B233	B234	B235	B236	B237	B238	B239	B240
B241	B242	B243	B244	B245	B246	B247	B248	B249	B250	B251	B252
B253	B254	B255	B256	B257	B258	B259	B260	B261	B262	B263	B264
B265	B266	B267	B268	B269	B270	B271	B272	B273	B274	B275	B276
B277	B278	B279	B280	B281	B282	B283	B284	B285	B286	B287	B288
B289	B290	B291	B292	B293	B294	B295	B296	B297	B298	B299	B300
B301	B302	B303	B304	B305	B306	B307	B308	B309	B310	B311	B312
B313	B314	B315	B316	B317	B318	B319	B320	B321	B322	B323	B324
B325	B326	B327	B328	B329	B330	B331	B332	B333	B334	B335	B336
B337	B338	B339	B340	B341	B342	B343	B344	B345	B346	B347	B348
B349	B350	B351	B352	B353	B354	B355	B356	B357	B358	B359	B360
B361	B362	B363	B364	B365	B366	B367	B368	B369	B370	B371	B372
B373	B374	B375	B376	B377	B378	B379	B380	B381	B382	B383	B384
B385	B386	B387	B388	B389	B390	B391	B392	B393	B394	B395	B396
B397	B398	B399	B400	B401	B402	B403	B404	B405	B406	B407	B408
B409	B410	B411	B412	B413	B414	B415	B416	B417	B418	B419	B420

\underline{Q}_3	\underline{Q}_3	<u>Q</u> 3	\underline{Q}_3	\underline{Q}_3	$\underline{Q}_{\!\scriptscriptstyle \underline{3}}$	$\underline{Q}_{\!3}$	\underline{Q}_3	\underline{Q}_3	Q_3	\underline{Q}_3	\underline{Q}_3
B421	B422	B423	B424	B425	B426	B427	B428	B429	B430	B431	B432
B433	B434	B435	B436	B437	B438	B439	B440	B441	B442	B443	B444
B445	B446	B447	B448	B449	B450	B451	B452	B453	B454	B455	B456
B457	B458	B459	B460	B461	B462	B463	B464	B465	B466	B467	B468
B469	B470	B471	B472	B473	B474	B475	B476	B477	B478	B479	B480
B481	B482	B483	B484	B485	B486	B487	B488	B489	B490	B491	B492
B493	B494	B495	B496	B497	B498	B499	B500	B501	B502	B503	B504
B505	B506	B507	B508	B509	B510	B511	B512	B513	B514	B515	B516
B517	B518	B519	B520	B521	B522	B523	B524	B525	B526	B527	B528
B529	B530	B531	B532	B533	B534	B535	B536	B537	B538	B539	B540
B541	B542	B543	B544	B545	B546	B547	B548	B549	B550	B551	B552
B553	B554	B555	B556	B557	B558	B559	B560	B561	B562	B563	B564
B565	B566	B567	B568	B569	B570	B571	B572	B573	B574	B575	B576
B577	B578	B579	B580	B581	B582	B583	B584	B585	B586	B587	B588
B589	B590	B591	B592	B593	B594	B595	B596	B597	B598	B599	B600
B601	B602	B603	B604	B605	B606	B607	B608	B609	B610	B611	B612
B613	B614	B615	B616	B617	B618	B619	B620	B621	B622	B623	B624
B625	B626	B627	B628	B629	B630	B631	B632	B633	B634	B635	B636
B637	B638	B639	B640	B641	B642	B643	B644	B645	B646	B647	B648
B649	B650	B651	B652	B653	B654	B655	B656	B657	B658	B659	B660
B661	B662	B663	B664	B665	B666	B667	B668	B669	B670	B671	B672
B773	B774	B775	B776	B777	B778	B779	B780	B781	B782	B783	B784
B785	B786	B787	B788	B789	B790	B791	B792	B793	B794	B795	B796
B797	B798	B799	B800	B801	B802	B803	B804	B805	B806	B807	B808
B809	B810	B811	B812	B813	B814	B815	B816	B817	B818	B819	B820
B821	B822	B823	B824	B825	B826	B827	B828	B829	B830	B831	B832
B833	B834	B835	B836	B837	B838	B839	B840	B841	B842	B843	B844
B845	B846	B847	B848	B849	B850	B851	B852	B853	B854	B855	B856
B857	B858	B859	B860	B861	B862	B863	B864	B865	B866	B867	B868
B869	B870	B871	B872	B873	B874	B875	B876	B877	B878	B879	B880
B881	B882	B883	B884	B885	B886	B887	B888	B889	B890	B891	B892
B893	B894	B895	B896	B897	B898	B899	B900	B901	B902	B903	B904
B905	B906	B907	B908	B909	B910	B911	B912	B913	B914	B915	B916

WO 01/54501

- 190 -

Q_3	\underline{Q}_3	Q_3	$\underline{Q}_{\underline{3}}$	Q_3	Q_3	\underline{Q}_3	\underline{Q}_3	\underline{Q}_3	\underline{Q}_3	\underline{Q}_3	\underline{Q}_3
B917	B918	B919	B920	B921	B922	B923	B924	B925	B926	B927	B928
B929	B930	B931	B932	B933	B934	B935	B936	B937	B938	B939	B940
B941	B942	B943	B944	B945	B946	B947	B948	B949	B950	B951	B952
B953	B954	B955	B956	B957	B958	B959	B960	B961	B962	B963	B964
B965	B966	B967	B968	B969	B970	B971	B972	B973	B974	B975	B976
B977	B978	B979	B980	B981	B982	B983	B984	B985	B986	B987	B988
B989	B990	B991	B992	B993	B994	B995	B996	B997	B998	B999	B1000
B1001	B1002	B1003	B1004	B1005	B1006	B1007	B1008	B1009	B1010	B1011	B1012
B1013	B1014	B1015	B1016	B1017	B1018	B1019	B1020	B1021	B1022	B1023	B1024
B1025	B1026	B1027	B1028	B1029	B1030	B1031	B1032	B1033	B1034	B1035	B1036
B1037	B1038	B1039	B1040	B1041	B1042	B1043	B1044	B1045	B1046	B1047	B1048
B1049	B1050	B1051.	B1052	B1053	B1054	B1055	B1056	B1057	B1058	B1059	B1060
B1061	B1062	B1063	B1064	B1065	B1066	B1067	B1068	B1069	B1070	B1071	B1072
B1073	B1074	B1075	B1076	B1077	B1078	B1079	B1080	B1081	B1082	B1083	

Table 14: Compounds of formula lo:

- 191 -

Q_3	<u>Q</u> ₃	\underline{Q}_3	\underline{Q}_3	$\underline{Q}_{\underline{3}}$	\underline{Q}_3	\underline{Q}_3	\underline{Q}_3	Q_3	Q_3	Q_3	Q_3
B121	B122	B123	B124	B125	B126	B127	B128	B129	B130	B131	B132
B133	B134	B135	B136	B137	B138	B139	B140	B141	B142	B143	B144
B145	B146	B147	B148	B149	B150	B151	B152	B153	B154	B155	B156
B157	B158	B159	B160	B161	B162	B163	B164	B165	B166	B167	B168
B169	B170	B171	B172	B173	B174	B175	B176	B177	B178	B179	B180
B181	B182	B183	B184	B185	B186	B187	B188	B189	B190	B191	B192
B193	B194	B195	B196	B197	B198	B199	B200	B201	B202	B203	B204
B205	B206	B207	B208	B209	B210	B211	B212	B213	B214	B215	B216
B217	B218	B219	B220	B221	B222	B223	B224	B225	B226	B227	B228
B229	B230	B231	B232	B233	B234	B235	B236	B237	B238	B239	B240
B241	B242	B243	B244	B245	B246	B247	B248	B249	B250	B251	B252
B253	B254	B255	B256	B257	B258	B259	B260	B261	B262	B263	B264
B265	B266	B267	B268	B269	B270	B271	B272	B273	B274	B275	B276
B277	B278	B279	B280	B281	B282	B283	B284	B285	B286	B287	B288
B289	B290	B291	B292	B293	B294	B295	B296	B297	B298	B299	B300
B301	B302	B303	B304	B305	B306	B307	B308	B309	B310	B311	B312
B313	B314	B315	B316	B317	B318	B319	B320	B321	B322	B323	B324
B325	B326	B327	B328	B329	B330	B331	B332	B333	B334	B335	B336
B337	B338	B339	B340	B341	B342	B343	B344	B345	B346	B347	B348
B349	B350	B351	B352	B353	B354	B355	B356	B357	B358	B359	B360
B361	B362	B363	B364	B365	B366	B367	B368	B369	B370	B371	B372
B373	B374	B375	B376	B377	B378	B379	B380	B381	B382	B383	B384
B385	B386	B387	B388	B389	B390	B391	B392	B393	B394	B395	B396
B397	B398	B399	B400	B401	B402	B403	B404	B405	B406	B407	B408
B409	B410	B411	B412	B413	B414	B415	B416	B417	B418	B419	B420
B421	B422	B423	B424	B425	B426	B427	B428	B429	B430	B431	B432
B433	B434	B435	B436	B437	B438	B439	B440	B441	B442	B443	B444
B445	B446	B447	B448	B449	B450	B451	B452	B453	B454	B455	B456
B457	B458	B459	B460	B461	B462	B463	B464	B465	B466	B467	B468
B469	B470	B471	B472	B473	B474	B475	B476	B477	B478	B479	B480
B481	B482	B483	B484	B485	B486	B487	B488	B489	B490	B491	B492
B493	B494	B495	B496	B497	B498	B499	B500	B501	B502	B503	B504
B505	B506	B507	B508	B509	B510-	B511	B512	B513	B514	B515	B516

									-		
<u>Q</u> 3	Q_3	\underline{Q}_3	\underline{Q}_3	<u>Q</u> 3	<u>Q</u> 3	$\underline{Q}_{\underline{3}}$	\underline{Q}_3	\underline{Q}_3	<u>Q</u> 3	\underline{Q}_3	\underline{Q}_3
B517.	B518	B519	B520	B521	B522	B523	B524	B525	B526	B527	B528
B529	B530	B531	B532	B533	B534	B535	B536	B537	B538	B539	B540
B541	B542	B543	B544	B545	B546	B547	B548	B549	B550	B551	B552
B553	B554	B555	B556	B557	B558	B559	B560	B561	B562	B563	B564
B565	B566	B567	B568	B569	B570	B571	B572	B573	B574	B575	B576
B577	B578	B579	B580	B581	B582	B583	B584	B585	B586	B587	B588
B589	B590	B591	B592	B593	B594	B595	B596	B597	B598	B599	B600
B601	B602	B603	B604	B605	B606	B607	B608	B609	B610	B611	B612
B613	B614	B615	B616	B617	B618	B619	B620	B621	B622	B623	B624
B625	B626	B627	B628	B629	B630	B631	B632	B633	B634	B635	B636
B637	B638	B639	B640	B641	B642	B643	B644	B645	B646	B647	B648
B649	B650	B651	B652	B653	B654	B655	B656	B657	B658	B659	B660
B661	B662	B663	B664	B665	B666	B667	B668	B669	B670	B671	B672
B773	B774	B775	B776	B777	B778	B779	B780	B781	B782	B783	B784
B785	B786	B787	B788	B789	B790	B791	B792	B793	B794	B795	B796
B797	B798	B799	B800	B801	B802	B803	B804	B805	B806	B807	B808
B809	B810	B811	B812	B813	B814	B815	B816	B817	B818	B819	B820
B821	B822	B823	B824	B825	B826	B827	B828	B829	B830	B831	B832
B833	B834	B835	B836	B837	B838	B839	B840	B841	B842	B843	B844
B845	B846	B847	B848	B849	B850	B851	B852	B853	B854	B855	B856
B857	B858	B859	B860	B861	B862	B863	B864	B865	B866	B867	B868
B869	B870	B871	B872	B873	B874	B875	B876	B877	B878	B879	B880
B881	B882	B883	B884	B885	B886	B887	B888	B889	B890	B891	B892
B893	B894	B895	B896	B897	B898	B899	B900	B901	B902	B903	B904
B905	B906	B907	B908	B909	B910	B911	B912	B913	B914	B915	B916
B917	B918	B919	B920	B921	B922	B923	B924	B925	B926	B927	B928
B929	B930	B931	B932	B933	B934	B935	B936	B937	B938	B939	B940
B941	B942	B943	B944	B945	B946	B947	B948	B949	B950	B951	B952
B953	B954	B955	B956	B957	B958	B959	B960	B961	B962	B963	B964
B965	B966	B967	B968	B969	B970	B971	B972	B973	B974	B975	B976
B977	B978	B979	B980	B981	B982	B983	B984	B985	B986	B987	B988
B989	B990	B991	B992	B993	B994	B995	B996	B997	B998	B999	B1000
B1001	B1002	B1003	B1004	B1005	B1006	B1007	B1008	B1009	B1010	B1011	B1012

- 193 -

<u>Q</u>3 Q_3 Q_3 B1013 B1014 B1015 B1016 B1017 B1018 B1019 B1020 B1021 B1022 B1023 B1024 B1025 B1026 B1027 B1028 B1029 B1030 B1031 B1032 B1033 B1034 B1035 B1036 B1037 B1038 B1039 B1040 B1041 B1042 B1043 B1044 B1045 B1046 B1047 B1048 B1049 B1050 B1051 B1052 B1053 B1054 B1055 B1056 B1057 B1058 B1059 B1060 B1061 B1062 B1063 B1064 B1065 B1066 B1067 B1068 B1069 B1070 B1071 B1072 B1073 B1074 B1075 B1076 B1077 B1078 B1079 B1080 B1081 B1082 B1083

Table 15: Compounds of formula lp:

$$\begin{array}{c|c} & O \\ & Q_3 & (lp) \\ & CF_3CF_2CF_2 & N & CH_3 \end{array}$$

<u>Q</u> 3	Q_3	Q_3	<u>Q</u> 3	<u>Q</u> ₃	\underline{Q}_3	Q_3	Q_3	Q_3	\underline{Q}_3	Q_3	<u>Q</u> ₃
B1	B2	В3	B4	B 5	B6	B7	В8	B9	B10	B11	B12
B13	B14	B15	B16	B17	B18	B19	B20	B21	B22	B23	B24
B25	B26	B27	B28	B29	B30	B31	B32	B33	B34	B35	B36
B37	B38	B39	B40	B41	B42	B43	B44	B45	B46	B47	B48
B49	B50	B51	B52	B53	B54	B55	B56	B57	B58	B59	B60
B61	B62	B63 .	B64	B65	B66	B67	B68	B69	B70	B71	B72
B73	B74	B75	B76	B77	B78	B79	B80	B81	B82	B83	B84
B85	B86	B87	B88	B89	B90	B91	B92	B93	B94	B95	B96
B97	B98	B99	B100	B101	B102	B103	B104	B105	B106	B107	B108
B109	B110	B111	B112	B113	B114	B115	B116	B117	B118	B119	B120
B121	B122	B123	B124	B125	B126	B127	B128	B129	B130	B131	B132
B133	B134	B135	B136	B137	B138	B139	B140	B141	B142	B143	B144
B145	B146	B147	B148	B149	B150	B151	B152	B153	B154	B155	B156
B157	B158	B159	B160	B161	B162	B163	B164	B165	B166	B167	B168
B169	B170	B171	B172	B173	B174	B175	B176	B177	B178	B179	B180
B181	B182	B183	B184	B185	B186	B187	B188	B189	B190	B191	B192
B193	B194	B195	B196	B197	B198	B199	B200	B201	B202	B203	B204

$\underline{Q}_{\underline{3}}$	Q_3	$\underline{\mathbf{Q}}_3$	\underline{Q}_3	$\underline{Q_3}$	Q_3	Q_3	\underline{Q}_3	\underline{Q}_3	\underline{Q}_3	Q_3	\underline{Q}_3
B205	B206	B207	B208	B209	B210	B211	B212	B213	B214	B215	B216
B217	B218	B219	B220	B221	B222	B223	B224	B225	B226	B227	B228
B229	B230	B231	B232	B233	B234	B235	B236	B237	B238	B239	B240
B241	B242	B243	B244	B245	B246	B247	B248	B249	B250	B251	B252
B253	B254	B255	B256	B257	B258	B259	B260	B261	B262	B263	B264
B265	B266	B267	B268	B269	B270	B271	B272	B273	B274	B275	B276
B277	B278	B279	B280	B281	B282	B283	B284	B285	B286	B287	B288
B289	B290	B291	B292	B293	B294	B295	B296	B297	B298	B299	B300
B301	B302	B303	B304	B305	B306	B307	B308	B309	B310	B311	B312
B313	B314	B315	B316	B317	B318	B319	B320	B321	B322	B323	B324
B325	B326	B327	B328	B329	B330	B331	B332	B333	B334	B335	B336
B337	B338	B339	B340	B341	B342	B343	B344	B345	B346	B347	B348
B349	B350	B351	B352	B353	B354	B355	B356	B357	B358	B359	B360
B361	B362	B363	B364	B365	B366	B367	B368	B369	B370	B371	B372
B373	B374	B375	B376	B377	B378	B379	B380	B381	B382	B383	B384
B385	B386	B387	B388	B389	B390	B391	B392	B393	B394	B395	B396
B397	B398	B399	B400	B401	B402	B403	B404	B405	B406	B407	B408
B409	B410	B411	B412	B413	B414	B415	B416	B417	B418	B419	B420
B421	B422	B423	B424	B425	B426	B427	B428	B429	B430	B431	B432
B433	B434	B435	B436	B437	B438	B439	B440	B441	B442	B443	B444
B445	B446	B447	B448	B449	B450	B451	B452	B453	B454	B455	B456
B457	B458	B459	B460	B461	B462	B463	B464	B465	B466	B467	B468
B469	B470	B471	B472	B473	B474	B475	B476	B477	B478	B479	B480
B481	B482	B483	B484	B485	B486	B487	B488	B489	B490	B491	B492
B493	B494	B495	B496	B497	B498	B499	B500	B501	B502	B503	B504
B505	B506	B507	B508	B509	B510	B511	B512	B513	B514	B515	B516
B517	B518	B519	B520	B521	B522	B523	B524	B525	B526	B527	B528
B529	B530	B531	B532	B533	B534	B535	B536	B537	B538	B539	B540
B541	B542	B543	B544	B545	B546	B547	B548	B549	B550	B551	B552
B553	B554	B555	B556	B557	B558	B559	B560	B561	B562	B563	B564
B565	B566	B567	B568	B569	B570	B571	B572	B573	B574	B575	B576
B577	B578	B579	B580	B581	B582	B583	B584	B585	B586	B587	B588
B589	B590	B591	B592	B593	B594	B595	B596	B597	B598	B599	B600

WO 01/54501

- 195 -

<u>Q</u> 3	<u>Q</u> 3	<u>Q</u> 3	\underline{Q}_3	Q_3	\underline{Q}_3	Q_3	<u>Q</u> 3	<u>Q</u> ₃	\underline{Q}_3	\underline{Q}_3	\underline{Q}_3
B601	B602	B603	B604	B605	B606	B607	B608	B609	B610	B611	B612
B613	B614	B615	B616	B617	B618	B619	B620	B621	B622	B623	B624
B625	B626	B627	B628	B629	B630	B631	B632	B633	B634	B635	B636
B637	B638	B639	B640	B641	B642	B643	B644	B645	B646	B647	B648
B649	B650	B651	B652	B653	B654	B655	B656	B657	B658	B659	B660
B661	B662	B663	B664	B665	B666	B667	B668	B669	B670	B671	B672
B773	B774	B775	B776	B777	B778	B779	B780	B781	B782	B783	B784
B785	B786	B787	B788	B789	B790	B791	B792	B793	B794	B795	B796
B797	B798	B799	B800	B801	B802	B803	B804	B805	B806	B807	B808
B809	B810	B811	B812	B813	B814	B815	B816	B817	B818	B819	B820
B821	B822	B823	B824	B825	B826	B827	B828	B829	B830	B831	B832
B833	B834	B835	B836	B837	B838	B839	B840	B841	B842	B843	B844
B845	B846	B847	B848	B849	B850	B851	B852	B853	B854	B855	B856
B857	B858	B859	B860	B861	B862	B863	B864	B865	B866	B867	B868
B869	B870	B871	B872	B873	B874	B875	B876	B877	B878	B879	B880
B881	B882	B883	B884	B885	B886	B887	B888	B889	B890	B891	B892
B893	B894	B895	B896	B897	B898	B899	B900	B901	B902	B903	B904
B905	B906	B907	B908	B909	B910	B911	B912	B913	B914	B915	B916
B917	B918	B919	B920	B921	B922	B923	B924	B925	B926	B927	B928
B929	B930	B931	B932	B933	B934	B935	B936	B937	B938	B939	B940
B941	B942	B943	B944	B945	B946	B947	B948	B949	B950	B951	B952
B953	B954	B955	B956	B957	B958	B959	B960	B961	B962	B963	B964
B965	B966	B967	B968	B969	B970	B971	B972	B973	B974	B975	B976
B977	B978	B979	B980	B981	B982	B983	B984	B985	B986	B987	B988
B989	B990	B991	B992	B993	B994	B995	B996	B997	B998	B999	B1000
	B1002										
	B1014										
B1025	B1026	B1027	B1028	B1029	B1030	B1031	B1032	B1033	B1034	B1035	B1036
B1037	B1038	B1039	B1040	B1041	B1042	B1043	B1044	B1045	B1046	B1047	B1048
	B1050										
	B1062										B1072
B1073	B1074	B1075	B1076	B1077	B1078	B1079	B1080	B1081	B1082	B1083	

Table 16: Compounds of formula Iq:

$$Q_3$$
 (Iq)

<u>Q</u> ₃	<u>Q</u> ₃	<u>Q</u> ₃	<u>Q</u> ₃	\underline{Q}_3	<u>Q</u> ₃	\underline{Q}_3	<u>Q</u> ₃	\underline{Q}_3	\underline{Q}_3	\underline{Q}_3	<u>Q</u> 3
B1	B2	В3	B4	B5	B6	B7	B8	В9	B10	B11	B12
B13	B14	B15	B16	B17	B18	B19	B20	B21	B22	B23	B24
B25	B26	B27	B28	B29	B30	B31	B32	B33	B34	B35	B36
B37	B38	B39	B40	B41	B42	B43	B44	B45	B46	B47	B48
B49	B50	B51	B52	B53	B54	B55	B56	B57	B58	B59	B60
B61	B62	B63	B64	B65	B66	B67	B68	B69	B70	B71	B72
B73	B74	B75	B76	B77	B78	B79	B80	B81	B82	B83	B84
B85	B86	B87	B88	B89	B90	B91	B92	B93	B94	B95	B96
B97	B98	B99	B100	B101	B102	B103	B104	B105	B106	B107	B108
B109	B110	B111	B112	B113	B114	B115	B116	B117	B118	B119	B120
B121	B122	B123	B124	B125	B126	B127	B128	B129	B130	B131	B132
B133	B134	B135	B136	B137	B138	B139	B140	B141	B142	B143	B144
B145	B146	B147	B148	B149	B150	B151	B152	B153	B154	B155	B156
B157	B158	B159	B160	B161	B162	B163	B164	B165	B166	B167	B168
B169	B170	B171	B172	B173	B174	B175	B176	B177	B178	B179	B180
B181	B182	B183	B184	B185	B186	B187	B188	B189	B190	B191	B192
B193	B194	B195	B196	B197	B198	B199	B200	B201	B202	B203	B204
B205	B206	B207	B208	B209	B210	B211	B212	B213	B214	B215	B216
B217	B218	B219	B220	B221	B222	B223	B224	B225	B226	B227	B228
B229	B230	B231	B232	B233	B234	B235	B236	B237	B238	B239	B240
B241	B242	B243	B244	B245	B246	B247	B248	B249	B250	B251	B252
B253	B254	B255	B256	B257	B258	B259	B260	B261	B262	B263	B264
B265	B266	B267	B268	B269	B270	B271	B272	B273	B274	B275	B276
B277	B278	B279	B280	B281	B282	B283	B284	B285	B286	B287	B288
B289	B290	B291	B292	B293	B294	B295	B296	B297	B298	B299	B300

$\underline{Q_3}$	<u>Q</u> 3	$\underline{Q_3}$	Q_3	\underline{Q}_3	$\underline{Q_3}$	\underline{Q}_3	$\underline{Q_3}$	Q_3	Q_3	\underline{Q}_3	\underline{Q}_3
B301	B302	B303	B304	B305	B306	B307	B308	B309	B310	B311	B312
B313	B314	B315	B316	B317	B318	B319	B320	B321	B322	B323	B324
B325	B326	B327	B328	B329	B330	B331	B332	B333	B334	B335	B336
B337	B338	B339	B340	B341	B342	B343	B344	B345	B346	B347	B348
B349	B350	B351	B352	B353	B354	B355	B356	B357	B358	B359	B360
B361	B362	B363	B364	B365	B366	B367	B368	B369	B370	B371	B372
B373	B374	B375	B376	B377	B378	B379	B380	B381	B382	B383	B384
B385	B386	B387	B388	B389	B390	B391	B392	B393	B394	B395	B396
B397	B398	B399	B400	B401	B402	B403	B404	B405	B406	B407	B408
B409	B410	B411	B412	B413	B414	B415	B416	B417	B418	B419	B420
B421	B422	B423	B424	B425	B426	B427	B428	B429	B430	B431	B432
B433	B434	B435	B436	B437	B438	B439	B440	B441	B442	B443	B444
B445	B446	B447	B448	B449	B450	B451	B452	B453	B454	B455	B456
B457	B458	B459	B460	B461	B462	B463	B464	B465	B466	B467	B468
B469	B470	B471	B472	B473	B474	B475	B476	B477	B478	B479	B480
B481	B482	B483	B484	B485	B486	B487	B488	B489	B490	B491	B492
B493	B494	B495	B496	B497	B498	B499	B500	B501	B502	B503	B504
B505	B506	B507	B508	B509	B510	B511	B512	B513	B514	B515	B516
B517	B518	B519	B520	B521	B522	B523	B524	B525	B526	B527	B528
B529	B530	B531	B532	B533	B534	B535	B536	B537	B538	B539	B540
B541	B542	B543	B544	B545	B546	B547	B548	B549	B550	B551	B552
B553	B554	B555	B556	B557	B558	B559	B560	B561	B562	B563	B564
B565	B566	B567	B568	B569	B570	B571	B572	B573	B574	B575	B576
B577	B578	B579	B580	B581	B582	B583	B584	B585	B586	B587	B588
B589	B590	B591	B592	B593	B594	B595	B596	B597	B598	B599	B600
B601	B602	B603	B604	B605	B606	B607	B608	B609	B610	B611	B612
B613	B614	B615	B616	B617	B618	B619	B620	B621	B622	B623	B624
B625	B626	B627	B628	B629	B630	B631	B632	B633	B634	B635	B636
B637	B638	B639	B640	B641	B642	B643	B644	B645	B646	B647	B648
B649	B650	B651	B652	B653	B654	B655	B656	B657	B658	B659	B660
B661	B662	B663	B664	B665	B666	B667	B668	B669	B670	B671	B672
B773	B774	B775	B776	B777	B778	B779	B780	B781	B782	B783	B784
B785	B786	B787	B788	B789	B790	B791	B792	B793	B794	B795	B796

 Q_3 Q_3 <u>Q</u>3 B797 B798 B799 B800 B801 B802 B803 B804 B805 B806 B807 B808 B809 B810 B811 B812 B813 B814 B815 B816 B817 B818 B819 B820 B821 B822 B823 B824 B825 B826 B828 B829 B830 B827 B831 B832 B833 B834 B835 B842 B836 B837 B838 B839 B840 B841 B843 B844 B845 B846 B847 B848 B849 B850 B851 B852 B853 B854 B855 B856 B857 B858 B859 B860 B861 B862 B864 **B866** B863 B865 B867 B868 B869 B871 B874 B870 B872 B873 B875 B876 B877 B878 B879 B880 B881 B882 B883 B884 B885 B886 B888 B887 B889 B890 B891 B892 B893 B894 B895 B896 B897 B898 B899 B900 B901 B902 B903 B904 B905 B907 B906 B908 B909 B910 B911 B912 B913 B914 B915 B916 B920 B917 B919 B921 B922 B924 B918 B923 B925 B926 B927 B928 B929 B931 B930 B932 B933 B934 B935 B936 B938 B940 B937 B939 B941 B942 B943 B944 B945 B950 B946 B947 B948 B949 B951 B952 B953 B954 B955 B956 B957 B958 B960 B959 B961 B962 B963 B964 B965 B966 B967 B968 B969 B970 B971 B972 B973 B974 B975 B976 B977 B978 B979 B980 B981 B982 B984 B983 B985 B986 B987 B988 B989 B990 B991 B992 B993 B994 B995 B996 B997 B998 B999 B1000 B1001 B1002 B1003 B1004 B1005 B1006 B1007 B1008 B1009 B1010 B1011 B1012 B1013 B1014 B1015 B1016 B1017 B1018 B1019 B1020 B1021 B1022 B1023 B1024 B1025 B1026 B1027 B1028 B1029 B1030 B1031 B1032 B1033 B1034 B1035 B1036 B1037 B1038 B1039 B1040 B1041 B1042 B1043 B1044 B1045 B1046 B1047 B1048 B1049 B1050 B1051 B1052 B1053 B1054 B1055 B1056 B1057 B1058 B1059 B1060 B1061 B1062 B1063 B1064 B1065 B1066 B1067 B1068 B1069 B1070 B1071 B1072 B1073 B1074 B1075 B1076 B1077 B1078 B1079 B1080 B1081 B1082 B1083

Table 17: Compounds of formula Ir:

<u>Q</u>6

WO 01/54501

 Q_6 $\underline{Q}_{\underline{6}}$ \underline{Q}_6 Q_6 $Q_{\underline{6}}$ Q_6 <u>Q</u>6 Q_6 Q_6 $Q_{\underline{6}}$ Q_6 Q_6 C1 C2 C3 C4 C5 C6 **C7** C8 C9 C10 C11 C12 C13 C14 C20 C15 C16 C17 C18 C19 C21 C22 C23 C24 C25 C26 C27 C28 C29 C30 C31 C32 C33 C34 C35 C36 C37 C38 C39 C40 C41. C42 C43 C44 C45 C46 C47 C48 C49 C50 C51 C52 C53 C54 C55 C56 C57 C58 C59 C60 C61 C62 C63 C64 C65 C66 C67 C68 C69 C70 C71 C72 C73 C74 C75 C76 C77 C78 C79 C80 C81 C82 C83 C84 C85 C90 C92 C94 C86 C87 C88 C89 C91 C93 C95 C96 C97 C98 C99 C100 C101 C102 C103 C104 C105 C106 C107 C108 C109 C110 C111 C112 C113 C114 C115 C116 C117 C118 C119 C120 C121 C122 C123 C124 C125 C126 C127 C128 C129 C130 C131 C132 C133 C134 C135 C136 C137 C138 C139 C140 C141 C142 C143 C144 C145 C146 C147 C148 C149 C150 C151

PCT/EP01/00720

Table 18: Compounds of formula Is:

$$CF_3$$
 N CH_3 (Is)

 Q_{Z} Q_{Z} Q_{Z} Q_{7} Q_{Z} Q_{Z} Q_{Z} Q_{Z} \underline{Q}_{7} Q_{7} Q_z Q_{7} D1 D2 D3 D4 D5 D6 D7 D8 D10 D11 D9 D12 D13 D20 D14 D15 D16 D17 D18 D19 D21 D22 D23 D24 D25 D26 D27 D28 D29 D30 D31 D32 D33 D34 D35 D36 D37 D38 D40 D44 D39 D41 D42 D43 D45 D46 D47 **D48** D49 D50 D51 D52 D53 D54 **D56 D55 D57 D58** D59 D60 D61 D62 D63 D64 D65 D66 D67 D68 D69 D70 D71 D72 D73 D74 D75 D76 D77 D78 D79 D80 D81 D82 D83 D84 D85 D86 D88 D89 D93 D87 D90 D91 D92 D94 D95 D96 D97 **D98** D99 D100 D101 D102 D103 D104 D105 D106 D107 D108 D110 D111 D112 D113 D114 D115 D116 D117 D118 D119 D120

 Q_Z
 <th

Table 19: Compounds of formula lv:

$$\begin{array}{c|c} OH & O & \\ \hline O & \\ \hline O & \\ \hline O & \\ \hline CF_3 & \\ \end{array} (Iv)$$

Compd.	D
no.	R_{75}
E1	CH ₂ OCH ₃
E2	CH ₂ OC ₂ H ₅
E3	CH₂O-n-propyl
E4	CH₂O-isopropyl
E5	CH₂O-n-butyl
E6	CH ₂ O-isobutyl
E7	CH₂O-tert-butyl
E8	(CH2)2OCH3
E9	(CH2)2O-ethyl
E10	(CH2)2O-n-propyl
E11	(CH ₂) ₂ O-isopropyl
E12	$(CH_2)_2O$ -n-butyl
E13	(CH ₂) ₂ O-isobutyl
E14	(CH ₂) ₂ O-tert-butyl
E15	(CH ₂) ₂ O(CH ₂) ₂ OCH ₃
E16	$(CH_2)_2O(CH_2)_2OCH_3$
E17	C_2H_5

Table 20: Physical data for Tables 5 to 19 (figures = m.p. in °C):

- 201 -

Compound	Phys. data	Compound	Phys. data	Compound	Phys. data
A2	150-151	C46	159-161	A2-B1058	88-89
A 3	148-149	C91	141-143	A2-B1066	viscous
A 4	143-144	C146	99-101	A2-B1067	resinous oil
A 5	81-82	C149	148-150	A2-B1069	oil
A6	148-150	A2-B1	90-92	A2-B1069	viscous oil
A7	105-106	A2-B68	120-121	A8-B1	97-98
A8	123-124	A2-B2	resin	A7-B1	oil
A 9	73-74	A2-B90	resin	A3-B1	42-44
A10	165-167	A2-B93	95-96	A94-B1	57-58
A15	164-166	A2-B46	61-62 cis-rac	A66-B24	80-82
A17	99-100	A2-B46	83-84 trans-rac	A64-B1	49-51
A26	143-144	A2-B91	resin	A154-B1	94-95
A27	107-108	A2-B1081	oil	A6-B1	123-124
A29	173-174	A2-B1082	resin	A6-B24	oil
A30	178-181	A2-B1083	resin	A34-B1	53-54
A31	209-210	A2-B29	87-88	A2-B25	oil
A32	145-146	A2-B73	resin	A2-B925	oil
A34	170-171	A2-B95	106-107	E8	55-56
A64	134-135	A2-B31	151-153	E17	99-101
A94	134-135	A2-B75	amorphous		
A154	108-110	A2-B24	oil		
B1057	166-167	A2-B5	resin		•
B1058	crystalline	A2-C91	resin		
B1061	crystalline	A2-C146	oil		
B1063	crystalline	A2-B112	resin		
B1065	oil	A2-D140	oil		
B1066	150-152	A2-B1057	amorphous		
B1067	122-123	A2-B1063	oil		
B1069	117-118	A2-B1061	oil		
B1070	crystalline	A2-B133	oil		

WO 01/54501

- 202 -

PCT/EP01/00720

Compounds of formulae 2.1 and 2.3 to 2.13.c are known by the names imazamox, imazethapyr, imazaquin, imazapyr, dimethenamid, atrazine, terbuthylazine, simazine, terbutyrn, cyanazine, ametryn, terbumeton, prohexadione calcium, sethoxydim, clethodim, tepraloxydim, flumetsulam, metosulam, pyridate, bromoxynil, ioxynil, sulcotrione, carfentrazone, sulfentrazone, isoxaflutole, glufosinate, primisulfuron, prosulfuron, rimsulfuron, halosulfuron, nicosulfuron, ethoxysulfuron, flazasulfuron and thifensulfuron and are described in the Pesticide Manual, eleventh ed., British Crop Protection Council, 1997 under the entry numbers 412, 415, 414, 413, 240, 34, 692, 651, 693, 168, 20, 691, 595, 648. 146, 49, 339, 495, 626, 88, 425, 664, 112, 665, 436, 382, 589, 613, 644, 389, 519, 287, 325 and 704. The compound of formula 2.13 wherein Y₁, Y₃ and Y₄ are methine, Y₂ is C-I, R₇₄ is COOMe, Y_5 is nitrogen, Y_6 is methyl and Y_7 is methoxy is known by the name iodosulfuron (especially the sodium salt) from AGROW No. 296, 16th January 1998, page 22. The compound of formula 2.13 wherein Y_1 , Y_2 , Y_3 and Y_4 are methine, R_{74} is trifluoromethyl, Y_5 is nitrogen, Y₆ is trifluoromethyl and Y₇ is methoxy is known by the name tritosulfuron and described in DE-A-40 38 430. The compound of formula 2.13 wherein Y₁ is NH-CHO, Y₂, Y₃ and Y₄ are methine, R₇₄ is CONMe₂, Y₅ is methine and Y₆ and Y₇ are methoxy is described, for example, in WO 95/29899.

The S enantiomer of the compound of formula 2.12 is registered under the CAS-Reg. No. [35597-44-5]. The compound of the general formula 2.2, aRS,1'S(-)N-(1'-methyl-2'-methoxy-ethyl)-N-chloroacetyl-2-ethyl-6-methylaniline, and a compound of the general formula 2.3, (1S,aRS)-2-chloro-N-(2,4-dimethyl-3-thienyl)-N-(2-methoxy-1-methylethyl)-acetamide, are described, for example, in WO 97/34485. The compound of formula 2.9 wherein R_{69} is NO₂ is known by the name mesotrione and is described, for example, in US-A-5 006 158. The compound of formula 2.6 wherein R_{62} is ethoxy, R_{63} is fluorine, Y is methine, R_{64} is methoxycarbonyl, R_{65} is hydrogen and R_{66} is chlorine is known by the name cloransulam, for example from AGROW No. 261, 2nd August 1996, page 21. The compound of formula 2.6 wherein R_{62} is methoxy, R_{63} is hydrogen, Y is C-F, R_{64} is fluorine, R_{65} is hydrogen and R_{66} is fluorine, is known by the name florasulam and described in US-A-5 163 995.

Furthermore, the following compounds of the composition according to the invention are described in the Pesticide Manual, eleventh ed., British Crop Protection Council, 1997:

Compound of formula (name)

Pesticide Manual eleventh ed., Entry No.:

2.14 (metribuzin)

- 203 -

Compound of formula (name)	Pesticide Manual eleventh ed., Entry No.:
2.15 (aclonifen)	8
2.16 (glyphosate)	383
2.17 (bentazone)	65
2.18 (pendimethalin)	557
2.19 (dicamba)	210
2.20 (butylate)	100
2.22 (clomazone)	150
2.23 (2,4-D)	192
2.24 (flumiclorac)	340
2.25 (fluthiacet-methyl)	359
2.26 (flurtamone)	356
2.27 (flumioxazin)	341
2.28 (paraquat)	550
2.29 (azafenidin)	37
2.30 (fluthiamid)	51
2.33 (sulfosate)	383
2.34 (asulam)	33
2.35 (norflurazon)	526
2.36 (terbacil)	689
2.37 (thiazopyr)	702
2.38 (dithiopyr)	259
2.39 (hexazinone)	400
2.40 (diuron)	260
2.41 (MCPA)	455
2.42 (mecoprop)	459
2.43 (tebuthiuron)	683

The compound of formula 2.7 wherein R_{67} is hydrogen and its preparation are described in US-A-3 790 571; the compound of formula 2.6 wherein R_{62} is ethoxy, Z is nitrogen, R_{63} is fluorine, R_{64} is chlorine, R_{65} is hydrogen and R_{66} is chlorine is described in US-A-5 498 773. The compound of formula 2.21 and its preparation are described in US-A-5 183 492; the compound of formula 2.22 is described by the name isoxachlortole in AGROW No. 296, 16th January 1998, page 22. The compound of formula 2.31 is described under the name

fentrazamide in The 1997 British Crop Protection Conference - Weeds, Conference Proceedings Vol. 1, 2-8, pages 67 to 72; the compound of formula 2.32 is described under the name JV 485 (isoxapropazol) in The 1997 British Crop Protection Conference - Weeds, Conference Proceedings Vol. 1, 3A-2, pages 93 to 98. The compound of formula 2.44 is known by the name pethoxamid and is described, for example in EP-A-0 206 251. The compound of formula 2.45 is known by the name procarbazone and is described, for example, in EP-A-0 507 171; the compound of formula 2.46 is known by the name fluazolate and is described, for example, in US-A-5 530 126. The compound of formula 2.47 is known by the name cinidon-ethyl and is described, for example, in DE-A-4 037 840. The compound of formula 2.48 is known by the name benzfendizone and is described, for example, in WO 97/08953. The compound of formula 2.49 is known as diffurenzopyr and is described, for example, in EP-A-0 646 315. The compound of formula 2.50 (amicarbazone) and its preparation are disclosed in DD 298 393 and in US-A-5 194 085. The compound of formula 2.51 (flufenpyr-ethyl) is described in Abstracts of Papers American Chemical Society, (2000) Vol. 220, No. Part 1, pp. AGRO 174.

It is extremely surprising that the combination of the active ingredient of formula I with one or more active ingredients selected from formulae 2.1 to 2.51 exceeds the additive effect on the weeds to be controlled that is to be expected in principle, and thus broadens the range of action of the individual active ingredients especially in two respects: Firstly, the rates of application of the individual compounds of formulae 1 and 2.1 to 2.51 are reduced while a good level of action is maintained and, secondly, the composition according to the invention achieves a high level of weed control also in those cases where the individual substances, in the range of low rates of application, have become unusable from the agronomic standpoint. The result is a considerable broadening of the spectrum of weeds and an additional increase in selectivity in respect of the crops of useful plants, as is necessary and desirable in the event of an unintentional overdose of active ingredient. The composition according to the invention, while retaining excellent control of weeds in crops of useful plants, also enables greater flexibility in succeeding crops.

The composition according to the invention can be used against a large number of agronomically important weeds, such as Stellaria, Nasturtium, Agrostis, Digitaria, Avena, Setaria, Sinapis, Lolium, Solanum, Phaseolus, Echinochloa, Scirpus, Monochoria, Sagittaria, Bromus, Alopecurus, Sorghum halepense, Rottboellia, Cyperus, Abutilon, Sida, Xanthium,

Amaranthus, Chenopodium, Ipomoea, Chrysanthemum, Galium, Viola and Veronica. The composition according to the invention is suitable for all methods of application conventionally used in agriculture, e.g. pre-emergence application, post-emergence application and seed dressing. The composition according to the invention is suitable especially for controlling weeds in crops of useful plants, such as cereals, rape, sugar beet, sugar cane, plantation crops, rice, maize and soybeans, and also for non-selective weed control.

"Crops" are to be understood to mean also those crops which have been made tolerant to herbicides or classes of herbicides as a result of conventional methods of breeding or genetic engineering.

The composition according to the invention comprises the active ingredient of formula I and the active ingredients of formulae 2.1 to 2.51 in any mixing ratio, but usually has an excess of one component over the others. Generally, the mixing ratios (ratios by weight) of the active ingredient of formula I and the mixing partners of formulae 2.1 to 2.51 are from 1:2000 to 2000:1, especially from 200:1 to 1:200.

The rate of application may vary within wide limits and depends on the nature of the soil, the method of application (pre- or post-emergence; seed dressing; application to the seed furrow; no tillage application etc.), the crop plant, the weed to be controlled, the prevailing climatic conditions, and other factors governed by the method of application, the time of application and the target crop. The active ingredient mixture according to the invention can generally be applied at a rate of from 1 to 5000 g of active ingredient mixture/ha.

The mixtures of the compound of formula I with the compounds of formulae 2.1 to 2.51 may be used in unmodified form, that is to say as obtained in the synthesis. Preferably, however, they are formulated in customary manner, together with the adjuvants conventionally used in formulation technology, such as solvents, solid carriers or surfactants, for example into emulsifiable concentrates, directly sprayable or dilutable solutions, dilute emulsions, wettable powders, soluble powders, dusts, granules or microcapsules. As with the nature of the compositions, the methods of application, such as spraying, atomising, dusting, wetting, scattering or pouring, are chosen in accordance with the intended objectives and the prevailing circumstances.

The formulations, i.e. the compositions, preparations or mixtures comprising the compounds (active ingredients) of formulae I and 2.1 to 2.51 and, where appropriate, one or more solid or liquid formulation adjuvants, are prepared in a manner known *per se*, e.g. by intimately mixing and/or grinding the active ingredients with the formulation adjuvants, e.g. solvents or solid carriers. In addition, surface-active compounds (surfactants) may also be used in the preparation of the formulations.

Examples of solvents and solid carriers are given, for example, in WO 97/34485, page 6.

Depending on the nature of the compound of formula I to be formulated, suitable surfaceactive compounds are non-ionic, cationic and/or anionic surfactants and surfactant mixtures having good emulsifying, dispersing and wetting properties.

Examples of suitable anionic, non-ionic and cationic surfactants are listed, for example, in WO 97/34485, pages 7 and 8.

Also suitable in the preparation of the herbicidal compositions according to the invention are the surfactants conventionally used in formulation technology, which are described, *inter alia*, in "McCutcheon's Detergents and Emulsifiers Annual" MC Publishing Corp., Ridgewood New Jersey, 1981, Stache, H., "Tensid-Taschenbuch", Carl Hanser Verlag, Munich/Vienna, 1981 and M. and J. Ash, "Encyclopedia of Surfactants", Vol I-III, Chemical Publishing Co., New York, 1980-81.

The herbicidal formulations usually contain from 0.1 to 99 % by weight, especially from 0.1 to 95 % by weight, of active ingredient mixture comprising a compound of formula I and the compounds of formulae 2.1 to 2.51, from 1 to 99.9 % by weight of a solid or liquid formulation adjuvant, and from 0 to 25 % by weight, especially from 0.1 to 25 % by weight, of a surfactant.

Whereas commercial products are usually formulated as concentrates, the end user will normally employ dilute formulations. The compositions may also comprise further ingredients, such as stabilisers, e.g. vegetable oils or epoxidised vegetable oils (epoxidised coconut oil, rapeseed oil or soybean oil), antifoams, e.g. silicone oil, preservatives, viscosity

PCT/EP01/00720

regulators, binders, tackifiers, and also fertilisers or other active ingredients. Preferred formulations have especially the following compositions:

(% = percent by weight)

Emulsifiable concentrates:

active ingredient mixture:

1 to 90 %, preferably 5 to 20 %

surfactant:

1 to 30 %, preferably 10 to 20 %

liquid carrier:

5 to 94 %, preferably 70 to 85 %

Dusts:

active ingredient mixture:

0.1 to 10 %, preferably 0.1 to 5 %

solid carrier:

99.9 to 90 %, preferably 99.9 to 99 %

Suspension concentrates:

active ingredient mixture:

5 to 75 %, preferably 10 to 50 %

water:

94 to 24 %, preferably 88 to 30 %

surfactant:

1 to 40 %, preferably 2 to 30 %

Wettable powders:

active ingredient mixture:

0.5 to 90 %, preferably 1 to 80 %

surfactant:

0.5 to 20 %, preferably 1 to 15 %

solid carrier:

5 to 95 %, preferably 15 to 90 %

Granules:

active ingredient mixture:

0.1 to 30 %, preferably 0.1 to 15 %

solid carrier:

99.5 to 70 %, preferably 97 to 85 %

The following Examples illustrate the invention further, but do not limit the invention.

F1. Emulsifiable concentrates	a)	b)	c)	d)
active ingredient mixture	5 %	10 %	25 %	50 %
calcium dodecylbenzenesulfonate	6 %	8 %	6 %	8 %
castor oil polyglycol ether	4 %	-	4 %	4 %
(36 mol of ethylene oxide)				

- 208 -

octylphenol polyglycol ether	-	4 %	-	2 %
(7-8 mol of ethylene oxide)				
cyclohexanone	-	-	10 %	20 %
arom. hydrocarbon mixture	85 %	78 %	55 %	16 %
C ₉ -C ₁₂				

Emulsions of any desired concentration can be obtained from such concentrates by dilution with water.

F2. Solutions	a)	b)	c)	d)
active ingredient mixture	5 %	10 %	50 %	90 %
1-methoxy-3-(3-methoxy-				
propoxy)-propane	-	20 %	20 %	-
polyethylene glycol MW 400	20 %	10 %	-	-
N-methyl-2-pyrrolidone	-	-	30 %	10 %
arom. hydrocarbon mixture	75 %	60 %	-	-
C ₉ -C ₁₂				

The solutions are suitable for use in the form of microdrops.

F3. Wettable powders	a)	b)	c)	d)
active ingredient mixture	5 %	25 %	5 0 %	80 %
sodium lignosulfonate	4 %	-	3 %	-
sodium lauryl sulfate	2 %	3 %	-	4 %
sodium diisobutylnaphthalene-				
sulfonate	-	6 %	5 %	6 %
octylphenol polyglycol ether	-	1 %	2 %	-
(7-8 mol of ethylene oxide)				
highly dispersed silicic acid	1 %	3 %	5 %	10 %
kaolin	88 %	62 %	35 %	-

The active ingredient is mixed thoroughly with the adjuvants and the mixture is thoroughly ground in a suitable mill, affording wettable powders which can be diluted with water to give suspensions of any desired concentration.

F4. Coated granules	a)	b)	c)
active ingredient mixture	0.1 %	5 %	15 %

- 209 **-**

highly dispersed silicic acid	0.9 %	2 %	2 %
inorganic carrier	99.0 %	93 %	83 %
(Æ 0.1 - 1 mm)			

e.g. CaCO₃ or SiO₂

The active ingredient is dissolved in methylene chloride and applied to the carrier by spraying, and the solvent is then evaporated off *in vacuo*.

F5. Coated granules	a)	b)	c)
active ingredient mixture	0.1 %	5 %	15 %
polyethylene glycol MW 200	1.0 %	2 %	3 %
highly dispersed silicic acid	0.9 %	1 %	2 %
inorganic carrier	98.0 %	92 %	80 %
(Æ 0.1 - 1 mm)			

e.g. CaCO₃ or SiO₂

The finely ground active ingredient is uniformly applied, in a mixer, to the carrier moistened with polyethylene glycol. Non-dusty coated granules are obtained in this manner.

F6. Extruder granules	a)	b)	c)	d)
active ingredient mixture	0.1 %	3 %	5 %	15 %
sodium lignosulfonate	1.5 %	2 %	3 %	4 %
carboxymethylcellulose	1.4 %	2 %	2 %	2 %
kaolin	97.0 %	93 %	90 %	79 %

The active ingredient is mixed and ground with the adjuvants, and the mixture is moistened with water. The mixture is extruded and then dried in a stream of air.

F7. Dusts	a)	b)	c)	
active ingredient mixture	0.1 %	1 %	5 %	
talcum	39.9 %	49 %	35 %	
kaolin	60.0 %	50 %	60 %	

Ready-to-use dusts are obtained by mixing the active ingredient with the carriers and grinding the mixture in a suitable mill.

F8. Suspension concentrates	a)	b)	c)	d)
active ingredient mixture	3 %	10 %	25 %	50 %

- 210 -

ethylene glycol	5 %	5 %	5 %	5 %
nonylphenol polyglycol ether	-	1 %	2 %	-
(15 mol of ethylene oxide)				
sodium lignosulfonate	3 %	3 %	4 %	5 %
carboxymethylcellulose	1 %	1 %	1 %	1 %
37 % aqueous formaldehyde	0.2 %	0.2 %	0.2 %	0.2 %
solution				
silicone oil emulsion	0.8 %	0.8 %	0.8 %	0.8 %
water	87 %	79 %	62 %	38 %

The finely ground active ingredient is intimately mixed with the adjuvants, giving a suspension concentrate from which suspensions of any desired concentration can be obtained by dilution with water.

It is often more practical for the compound of formula I and the mixing partner or partners of formulae 2.1 to 2.51 to be formulated separately and to be brought together in the desired mixing ratio in the applicator in the form of a "tank mixture" in water shortly before application.

Biological Examples:

A synergistic effect exists whenever the action of the active ingredient combination of compounds of formula I and 2.1 to 2.51 is greater than the sum of the actions of the active ingredients applied separately.

The herbicidal action to be expected We for a given combination of two herbicides can be calculated as follows (see COLBY, S.R., "Calculating synergistic and antagonistic response of herbicide combinations", Weeds 15, pages 20-22, 1967):

$$We = X + [Y \bullet (100 - X) / 100]$$

wherein:

X = percentage herbicidal action on treatment with the compound of formula I at a rate of application of p kg per hectare, compared with the untreated control (= 0 %).

WO 01/54501

PCT/EP01/00720

Y = percentage herbicidal action on treatment with a compound of formula 2.1 to 2.51 at a rate of application of q kg per hectare, compared with the untreated control.

We = expected herbicidal action (percentage herbicidal action compared with the untreated control) following treatment with the compounds of formulae I and 2.1 to 2.51 at a rate of application of p + q kg of active ingredient per hectare.

When the action actually observed is greater than the value to be expected We, there is a synergistic effect.

The synergistic effect of the combinations of a compound of formula I with the compounds of formulae 2.1 to 2.51 is demonstrated in the following Examples.

Experiment description - pre-emergence test:

Monocotyledonous and dicotyledonous test plants are sown in standard soil in plastics pots. Directly after sowing, the test substances are applied in aqueous suspension by spraying (500 litres of water/ha). The rates of application depend on the optimum doses ascertained under field conditions and greenhouse conditions. The test plants are then grown on in the greenhouse under optimum conditions. The tests are evaluated after 36 days (% action, 100% = plant has died, 0% = no phytotoxic action). Examples of the synergistic action of the compositions according to the invention are given in the following Tables B1 to B6:

Mixture A contains as active ingredients 915 g/litre of the compound of formula 2.2a and 45 g/litre of the compound of formula 3.1.

Table B1:

Test plant:	Compd. 1.001	Mixture A	Compd. 1.001 [25 g/ha]	We accord-
	[25 g/ha]	[900 g/ha]	+ mixture A [900 g/ha]	ing to Colby
Sorghum	30	20	90	44
Chenopodium	0	0	100	0
Sida	0	70	100	70

Table B2:

Test plant:	Compd. 1.001	Mixture A	Compd. 1.001 [12.5 g/ha]	We accord-
	[12.5 g/ha]	[900 g/ha]	+ mixture A [900 g/ha]	ing to Colby
Sorghum	0	20	80	20
Chenopodium	0	0	95	0
Sida	0	70	95	70

Table B3:

Test plant:	Compd. 1.001	Mixture A	Compd. 1.001 [6.25 g/ha]	We accord-
	[6.25 g/ha]	[900 g/ha]	+ mixture A [900 g/ha]	ing to Colby
Sorghum	0	20	70	20
Chenopodium	0	0	95	0
Sida	0	70	95	70

Table B4:

Test plant:	Compd. 1.001	Mixture A	Compd. 1.001 [25 g/ha]	We accord-
	[25 g/ha]	[300 g/ha]	+ mixture A [300 g/ha]	ing to Colby
Chenopodium	0	0	90	0
Ipomoea	30	0	100	30
Sida	0	0	40	0

Table B5:

Test plant:	Compd. 1.001	Mixture A	Compd. 1.001 [12.5 g/ha]	We accord-
	[12.5 g/ha]	[300 g/ha]	+ mixture A [300 g/ha]	ing to Colby
Chenopodium	0	0	80	0
Ipomoea	0	0	60	0
Sida	0	0	40	0

PCT/EP01/00720

Table B6:

WO 01/54501

Test plant:	Compd. 1.001	Mixture A	Compd. 1.001 [6.25 g/ha]	We accord-
	[6.25 g/ha]	[300 g/ha]	+ mixture A [300 g/ha]	ing to Colby
Chenopodium	0	0	80	0
Ipomoea	0	0	60	0
Sida	0	0	40	0

Experiment description - post-emergence test:

The test plants are grown to the 2- to 3-leaf stage in plastics pots under greenhouse conditions. A standard soil is used as cultivation substrate. At the 2- to 3-leaf stage, the herbicide is applied to the test plants on its own and as a mixture. The application is carried out using an aqueous suspension of the test substances in 500 litres of water/ha. The rates of application depend on the optimum doses ascertained under field conditions and greenhouse conditions. The tests are evaluated after 33 days (% action, 100 % = plant has died, 0 % = no phytotoxic action). Examples of the synergistic action of the compositions according to the invention are given in the following Tables B7 to B10:

Mixture A contains as active ingredients 915 g/litre of the compound of formula 2.2a and 45 g/litre of the compound of formula 3.1.

Table B7: Post-emergence test:

Test plant:	Compd. 1.001	Mixture A	Compd. 1.001 [12.5 g/ha]	We accord-
	[12.5 g/ha]	[900 g/ha]	+ mixture A [900 g/ha]	ing to Colby
Ipomoea	0	0	80	0
Polygonum	0	20	100	20
Xanthium	80	0	100	80

Table B8: Post-emergence test:

Test plant:	Compd. 1.001	Mixture A	Compd. 1.001 [12.5 g/ha]	We accord-
	[12.5 g/ha]	[300 g/ha]	+ mixture A [300 g/ha]	ing to Colby
lpomoea	0	0	80	0
Polygonum	0	0	70	0
Xanthium	80	0	98	80

Table B9: Post-emergence test:

WO 01/54501

Test plant:	Compd. 1.001	Mixture A	Compd. 1.001 [6.25 g/ha]	We accord-
	[6.25 g/ha]	[900 g/ha]	+ mixture A [900 g/ha]	ing to Colby
Ipomoea	0 .	0	70	0
Polygonum	0	20	70	20
Xanthium	70	0	80	70

Table B10: Post-emergence test:

Test plant:	Compd. 1.001	Mixture A	Compd. 1.001 [6.25 g/ha]	We accord-
	[6.25 g/ha]	[300 g/ha]	+ mixture A [300 g/ha]	ing to Colby
Ipomoea	0	0	80	0
Polygonum	0	0	70	0
Xanthium	70	0	70	70

In the following Tables, evaluation is carried out after 14 days:

Table B11: Pre-emergence action:

Test plant:	Compd. E8	Compd. 2.18	Compd. E8 [50 g/ha] +	We accord-
	[50 g/ha]	[500 g/ha]	compd. 2.18 [500 g/ha]	ing to Colby
Polygonum	50	80	95	90

Table B12: Pre-emergence action:

Test plant:	Compd. E8	Compd. 2.14	Compd. E8 [100 g/ha] +	We acord-
	[100 g/ha]	[250 g/ha]	compd. 2.14 [250 g/ha]	ing to Colby
Polygonum	50	50	90	75

Table B13: Pre-emergence action:

Test plant:	Compd. E8	Compd. 2.14	Compd. E8 [100 g/ha] +	We accord-
	[100 g/ha]	[125 g/ha]	compd. 2.14 [125 g/ha]	ing to Colby
Polygonum	50	30	90	65

Table B14: Pre-emergence action: Compound no. 2.13a corresponds to formula 2.13 wherein R_{74} is $-CH_2CH_2CF_3$, Y_1 , Y_2 , Y_3 and Y_4 are each methine, Y_5 is nitrogen and Y_6 is methyl.

Test plant:	Compd. E8	Compd. 2.13a	Compd. E8 [100 g/ha] +	We accord-
	[100 g/ha]	[60 g/ha]	compd. 2.13a [60 g/ha]	ing to Colby
Polygonum	50	80	95	90

Table B15: Pre-emergence action:

Test plant:	Compd. E8	Compd. 2.30	Compd. E8 [50 g/ha] +	We accord-
	[50 g/ha]	[60 g/ha]	compd. 2.30 [60 g/ha]	ing to Colby
Polygonum	50	30	90	65

Table B16: Pre-emergence action:

Test plant:	Compd. E8	Compd. 2.21	Compd. E8 [50 g/ha] +	We accord-
	[50 g/ha]	[30 g/ha]	compd. 2.21 [30 g/ha]	ing to Colby
Polygonum	50	50	100	75

Table B17: Pre-emergence action: Compound no. 2.4.a corresponds to formula 2.4 wherein R_{57} is chlorine, R_{58} is ethyl and R_{59} is tert-butyl.

Test plant:	Compd. E8	Compd. 2.4.a	Compd. E8 [50 g/ha] +	We accord-
	[50 g/ha]	[125 g/ha]	compd. 2.4.a [125 g/ha]	ing to Colby
Polygonum	50	30	85	65

Table B18: Pre-emergence action:

Test plant:	Compd. 1.001	Compd. 2.2.b	Compd. 1.001 [25 g/ha] +	We accord-
	[25 g/ha]	[300 g/ha]	compd. 2.2.b [300 g/ha]	ing to Colby
Chenopodium	80	0	95	80
Solanum	80	40	98	88
Cyperus	0	0	50	0

Table B19: Pre-emergence action:

Compound no. 2.3.a corresponds to formula 2.3 wherein R₅₆ is CH(Me)-CH₂OMe.

Test plant:	Compd. 1.001	Compd. 2.3.a	Compd. 1.001 [12.5 g/ha]	We accord-
	[12.5 g/ha]	[100 g/ha]	+ compd. 2.3.a [100 g/ha]	ing to Colby
Chenopodium	80	20	90	84
Solanum	75	60	90	90
Cyperus	0	20	· 60	20

Table B20: Pre-emergence action:

WO 01/54501

Compound no. 2.2.c corresponds to formula 2.2 wherein R_{53} and R_{54} are ethyl and R_{55} is CH_2OMe .

Test plant:	Compd. 1.001	Compd.	Compd. 1.001	We
	[12.5 g/ha]	2.2.c	[12.5 g/ha] + compd.	according
		[100 g/ha]	2.2.c [100 g/ha]	to Colby
Chenopodium	80	20	90	84
Solanum	75	50	95	88
Cyperus	0	0	30	0

Table B21: Pre-emergence action:

Compound no. 2.2.d corresponds to formula 2.2 wherein R_{53} is ethyl, R_{54} is methyl and R_{55} is $CH_2O-CH_2CH_3$.

Test plant:	Compd. 1.001	Compd.	Compd. 1.001	We
	[12.5 g/ha]	2.2.d	[12.5 g/ha] + compd.	according
		[100 g/ha]	2.2.d [100 g/ha]	to Colby
Solanum	75	60	95	90

Table B22: Pre-emergence action:

Test plant:	Compd. 1.001	Compd.	Compd. 1.001	We
	[25 g/ha]	2.30	[25 g/ha] + compd.	according
		[100 g/ha]	2.30 [100 g/ha]	to Colby
Cyperus	10	0	60	10

In the following Tables, evaluation is carried out after 31 days:

Table B23: Pre-emergence action: Compound no. 2.4.a corresponds to the compound of formula 2.4 wherein R_{57} is chlorine, R_{58} is ethyl and R_{59} is isopropyl.

Test plant:	Compd. 1.001	Compd.	Compd. 1.001	We
	[25 g/ha]	2.4.a	[25 g/ha] + compd.	according
		[250 g/ha]	2.4.a [250 g/ha]	to Colby
Polygonum	0	20	80	20

Table B24: Pre-emergence action: Compound no. 2.4.b corresponds to the compound of formula 2.4 wherein R_{57} is chlorine, R_{58} is ethyl and R_{59} is ethyl.

Test plant:	Compd. 1.001	Compd.	Compd. 1.001	We
	[25 g/ha]	2.4.b	[25 g/ha] + compd.	according
		[125 g/ha]	2.4.b [125 g/ha]	to Colby
Polygonum	0	0	40	0

Table B25: Pre-emergence action: Compound no. 2.4.c corresponds to the compound of formula 2.4 wherein R_{57} is chlorine, R_{58} is ethyl and R_{59} is tert-butyl.

Test plant:	Compd. 1.001	Compd.	Compd. 1.001	We
	[25 g/ha]	2.4.c	[25 g/ha] + compd.	according
		[250 g/ha]	2.4.c [250 g/ha]	to Colby
Ipomoea	70	0	90	70
Xanthium	80	0	100	80

Table B26: Pre-emergence action: Compound no. 2.4.d corresponds to the compound of formula 2.4 wherein R_{57} is methylthio, R_{58} is ethyl and R_{59} is tert-butyl.

Test plant:	Compd. 1.001	Compd.	Compd. 1.001	We
·	[25 g/ha]	2.4.d	[25 g/ha] + compd.	according
		[250 g/ha]	2.4.d [250 g/ha]	to Colby
Ipomoea	70	0	80	70
Xanthium	80	10	95	82

Table B27: Pre-emergence action:

Test plant:	Compd. 1.001	Compd.	Compd. 1.001	We
	[25 g/ha]	2.14	[25 g/ha] + compd.	according
		[125 g/ha]	2.14 [125 g/ha]	to Colby
Ipomoea	70	0	85	70
Xanthium	80	20	100	84

Table B28: Pre-emergence action: Compound no. 2.6.a corresponds to the compound of formula 2.6 wherein R_{62} is hydrogen, R_{63} is methyl, R_{64} is fluorine, R_{65} is hydrogen, Y is nitrogen, Z is methine and R_{66} is fluorine.

Test plant:	Compd. 1.001	Compd.	Compd. 1.001	We
	[50 g/ha]	2.6.a	[50 g/ha] + compd.	according
		[30 g/ha]	2.6.a [30 g/ha]	to Colby
Polygonum	0	30	90	30

In the following Tables, evaluation is carried out after 21 days:

Table B29: Post-emergence action: Compound no. 2.7.a corresponds to the compound of formula 2.7 wherein R_{67} is -C(O)-S-n-octyl.

Test plant:	Compd. 1.001	Compd.	Compd. 1.001	We
	[25 g/ha]	2.7.a	[25 g/ha] + compd.	according
		[250 g/ha]	2.7.a [250 g/ha]	to Colby
Ipomoea	30	10	80	30
Polygonum	75	0	95	75
Xanthium	90	10	100	91

Table B30: Post-emergence action:

Test plant:	Compd. 1.001	Compd.	Compd. 1.001	We
	[25 g/ha]	2.19	[25 g/ha] + compd.	according
		[250 g/ha]	2.19 [250 g/ha]	to Colby
Ipomoea	30	60	95	72

Table B31: Post-emergence action:

WO 01/54501

Test plant:	Compd. 1.001	Compd.	Compd. 1.001	We
	[25 g/ha]	2.16	[25 g/ha] + compd.	according
		[360 g/ha]	2.16 [360 g/ha]	to Colby
Ipomoea	30	20	70	46
Polygonum	75	10	90	84

Table B32: Post-emergence action:

Test plant:	Compd. 1.001	Compd.	Compd. 1.001	We
	[12.5 g/ha]	2.33	[12.5 g/ha] + compd.	according
		[360 g/ha]	2.33 [360 g/ha]	to Colby
Polygonum	30	0	90	30

Table B33: Post-emergence action: Compound no. 2.12.a corresponds to the compound of formula 2.12 wherein R_{73} is NH_2 .

Ipomoea	30	20	90	44
		[400 g/ha]	2.33 [400 g/ha]	to Colby
	[25 g/ha]	2.12.a	[25 g/ha] + compd.	according
Test plant:	Compd. 1.001	Compd.	Compd. 1.001	We

Table B34: Post-emergence action:

Test plant:	Compd. 1.001	Compd.	Compd. 1.001	We
	[12.5 g/ha]	2.25	[12.5 g/ha] + compd.	according
		[2 g/ha]	2.25 [2 g/ha]	to Colby
Ipomoea	30	0	50	30
Polygonum	30	0	40	30

Table B35: Post-emergence action: Compound no. 2.1.a corresponds to the compound of formula 2.1 wherein R_{52} is hydrogen and R_{51} is ethyl.

Test plant:	Compd. 1.001	Compd.	Compd. 1.001	We
	[12.5 g/ha]	2.1.a	[12.5 g/ha] + compd.	according
		[30 g/ha]	2.1.a [30 g/ha]	to Colby
Polygonum	30	30	70	51

Table B36: Post-emergence action: Compound no. 2.1.b corresponds to the compound of formula 2.1 wherein R_{51} is CH_2OMe and R_{52} is hydrogen.

Polygonum	75	[30 g/ha]	2.1.b [30 g/ha]	to Colby
	[25 g/ha]	2.1.b	[25 g/ha] + compd.	according
Test plant:	Compd. 1.001	Compd.	Compd. 1.001	We

In the following Tables, evaluation is carried out after 23 days:

Table B37: Pre-emergence action: Compound no. 2.13.b corresponds to formula 2.13 wherein R_{74} is -COOMe, Y_1 , Y_2 , Y_3 and Y_4 are each methine, Y_5 is methine and Y_6 and Y_7 are difluoromethoxy.

Test plant:	Compd. 1.001	Compd.	Compd. 1.001	We
	[6 g/ha]	2.13.b	[6 g/ha] + compd.	according to
		[15 g/ha]	2.13.b [15 g/ha]	Colby
Chenopodium	50	70	95	85

Table B38: Pre-emergence action:

Test plant:	Compd. 1.001	Compd.	Compd. 1.001	We
	[6 g/ha]	2.13.c	[6 g/ha] + compd.	according to
		[60 g/ha]	2.13.c [60 g/ha]	Colby
Chenopodium	50	10	85	55

WO 01/54501

Table B39: Pre-emergence action: Compound no. 2.13.d corresponds to the compound of formula 2.13 wherein Y_1 , Y_2 , Y_3 and Y_4 are methine, R_{74} is trifluoromethyl, Y_5 is nitrogen, Y_6 is trifluoromethyl and Y_7 is methoxy.

Test plant:	Compd. 1.001	Compd.	Compd. 1.001	We
	[6 g/ha]	2.13d	[6 g/ha] + compd.	according to
		[7.5 g/ha]	2.13.d [7.5 g/ha]	Colby
Amaranthus	10	80	95	82

It has surprisingly been shown that special safeners are suitable for mixing with the synergistic composition according to the invention. The present invention accordingly relates also to a herbicidally selective composition for controlling grasses and weeds in crops of useful plants, especially in maize crops, that comprises a compound of formula I, one or more compounds selected from the compounds of formulae 2.1 to 2.51, and a safener (counter agent, antidote), and that protects the useful plants, but not the weeds, against the phytotoxic action of the herbicide, as well as to the use of such a composition in the control of weeds in crops of useful plants.

There is also proposed in accordance with the invention a herbicidally selective composition that, in addition to comprising customary inert formulation adjuvants, such as carriers, solvents and wetting agents, comprises as active ingredient a mixture of a) a herbicidally-synergistically effective amount of a compound of formula I and one or more compounds selected from the compounds of formulae 2.1 to 2.51 and

b) a herbicidally-antagonistically effective amount of a compound selected from the compound of formula 3.1

and the compound of formula 3.3

CI

$$O$$
-CH₂-C(O)-O-CH(CH₃)C₅H₁₁-n

and the compound of formula 3.4

and the compound of formula 3.5

and the compound of formula 3.6

WO 01/54501

PCT/EP01/00720

- 223 -

and the compound of formula 3.8

and of formula 3.9

 $Cl_2CHCON(CH_2CH=CH_2)_2$ (3.9),

and of formula 3.10

and of formula 3.11

and of formula 3.12

and of formula 3.13

and of formula 3.14

and of formula 3.15

and of formula 3.16

PCT/EP01/00720

OH O
$$N - N$$
 $N = N$
 $N = N$

WO 01/54501

The invention relates also to a herbicidally selective herbicidal composition that, in addition to comprising customary inert formulation adjuvants, such as carriers, solvents and wetting agents, comprises as active ingredient a mixture of

- a) a herbicidally effective amount of a compound of formula I and
- b) a herbicidally-antagonistically effective amount of a compound selected from the compounds of formulae 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9, 3.10, 3.11, 3.12, 3.13, 3.14, 3.15 and 3.16.

Preferred compositions according to the invention comprise as safener a compound selected from the compounds of formulae 3.1, 3.3 and 3.8. Those safeners are especially suitable for compositions according to the invention that comprise the above-mentioned preferred compounds of formula I and optionally of formulae 2.1 to 2.51.

Combinations of compounds of formula I with the compound of formula 3.1 have been shown to be especially effective compositions, with special preference being given to compound no. 1.001 as the compound of formula I. That composition is preferably used together with the compound of formula 2.2a

chloroacetyl-2-ethyl-6-methylaniline).

The invention relates also to a method for the selective control of weeds in crops of useful plants, which comprises treating the useful plants, seeds or cuttings thereof, or the area of cultivation thereof, with a herbicidally effective amount of the herbicide of formula I, as

- 226 -

appropriate one or more herbicides selected from the compounds of formulae 2.1 to 2.51, and a herbicidally-antagonistically effective amount of a safener of formulae 3.1 to 3.16.

The compounds of formulae 3.1 to 3.16 are known and are described, for example, in the Pesticide Manual, eleventh ed., British Crop Protection Council, 1997 under the entry numbers 61 (formula 3.1, benoxacor), 304 (formula 3.2, fenclorim), 154 (formula 3.3, cloquintocet), 462 (formula 3.4, mefenpyr-diethyl), 377 (formula 3.5, furilazol), 363 (formula 3.8, fluxofenim), 213 (formula 3.9, dichlormid) and 350 (formula 3.10, flurazole). The compound of formula 3.11 is known by the name MON 4660 (Monsanto) and is described, for example, in EP-A-0 436 483.

The compound of formula 3.6 (AC 304 415) is described, for example, in EP-A-0 613 618, and the compound of formula 3.7 in DE-A-2 948 535. The compounds of formula 3.12 are described in DE-A-4 331 448, and the compound of formula 3.13 in DE-A-3 525 205. The compound of formula 3.14 is known, for example, from US-A-5 215 570 and the compound of formula 3.15 from EP-A-0 929 543. The compound of formula 3.16 is described in WO 99/00020. In addition to the compound of formula 3.16, the other 3-(5-tetrazolyl-carbonyl)-2-quinolones described in WO 99/00020, especially the compounds specifically disclosed in Tables 1 and 2 on pages 21 to 29, are suitable for protecting the crop plants against the phytotoxic action of the compounds of formula I.

As crop plants that can be protected by the safeners of formulae 3.1 to 3.16 against the damaging effect of the above-mentioned herbicides there come into consideration especially cereals, cotton, soybeans, sugar beet, sugar cane, plantation crops, rape, maize and rice, more especially maize. "Crops" are to be understood to mean also those crops which have been made tolerant to herbicides or classes of herbicides as a result of conventional methods of breeding or genetic engineering.

The weeds to be controlled may be both monocotyledonous and dicotyledonous weeds, e.g. Stellaria, Agrostis, Digitaria, Avena, Apera, Brachiaria, Phalaris, Setaria, Sinapis, Lolium, Solanum, Echinochloa, Scirpus, Monochoria, Sagittaria, Panicum, Bromus, Alopecurus, Sorghum halepense, Sorghum bicolor, Rottboellia, Cyperus, Abutilon, Sida, Xanthium, Amaranthus, Chenopodium, Ipomoea, Chrysanthemum, Galium, Viola and Veronica.

- 227 -

Areas of cultivation include the areas of ground on which the crop plants are already growing or which have already been sown with the seeds of those crop plants, as well as ground intended for cultivation with such crop plants.

Depending on the intended use, a safener of formula 3.1 to 3.16 can be used in the pretreatment of the seed of the crop plant (dressing of the seeds or cuttings) or can be introduced into the soil before or after sowing. It can, however, also be applied, either alone or together with the herbicide, after emergence of the plants. The treatment of the plants or seeds with the safener can therefore in principle be carried out independently of the time at which the herbicide is applied. The plants can, however, also be treated by simultaneous application of herbicide and safener (e.g. in the form of a tank mixture). The ratio of the rate of application of safener to the rate of application of herbicide depends largely on the method of application. In the case of field treatment, which is carried out either using a tank mixture comprising a combination of safener and herbicide or by separate application of safener and herbicide, the ratio of herbicides to safener is generally from 100:1 to 1:10, preferably from 20:1 to 1:1. In the case of field treatment it is usual to apply from 0.001 to 1.0 kg of safener/ha, preferably from 0.001 to 0.25 kg of safener/ha.

The rate of application of herbicides is generally from 0.001 to 2 kg/ha, but preferably from 0.005 to 0.5 kg/ha.

The compositions according to the invention are suitable for all methods of application conventionally used in agriculture, e.g. pre-emergence application, post-emergence application and seed dressing.

In the case of seed dressing, generally from 0.001 to 10 g of safener/kg of seed, preferably from 0.05 to 2 g of safener/kg of seed, are applied. When the safener is applied in liquid form shortly before sowing, with soaking of the seeds, then advantageously the safener solutions used contain the active ingredient in a concentration of from 1 to 10 000 ppm, preferably from 100 to 1000 ppm.

For the purpose of application, the safeners of formulae 3.1 to 3.16 or combinations of those safeners with the herbicide of formula I and, as appropriate, one or more herbicides selected from formulae 2.1 to 2.51 are advantageously formulated together with adjuvants customary

in formulation technology, e.g. into emulsifiable concentrates, coatable pastes, directly sprayable or dilutable solutions, dilute emulsions, wettable powders, soluble powders, dusts, granules or microcapsules.

Such formulations are described, for example, in WO 97/34485, pages 9 to 13. The formulations are prepared in known manner, e.g. by intimately mixing and/or grinding the active ingredients with liquid or solid formulation adjuvants, e.g. solvents or solid carriers. In addition, surface-active compounds (surfactants) can also be used in the preparation of the formulations. Solvents and solid carriers suitable for that purpose are mentioned, e.g., in WO 97/34485, page 6.

Depending on the nature of the compounds of formulae I, 2.1 to 2.51 and 3.1 to 3.16 to be formulated, there come into consideration as surface-active compounds non-ionic, cationic and/or anionic surfactants and surfactant mixtures having good emulsifying, dispersing and wetting properties. Examples of suitable anionic, non-ionic and cationic surfactants are listed, for example, on pages 7 and 8 of WO 97/34485. Also suitable for the preparation of the herbicidal compositions according to the invention are the surfactants conventionally employed in formulation technology, which are described, *inter alia*, in "McCutcheon's Detergents and Emulsifiers Annual" MC Publishing Corp., Ridgewood New Jersey, 1981, Stache, H., "Tensid-Taschenbuch", Carl Hanser Verlag, Munich/Vienna, 1981 and M. and J. Ash, "Encyclopedia of Surfactants", Vol. I-III, Chemical Publishing Co., New York, 1980-81.

The herbicidal formulations usually contain from 0.1 to 99 % by weight, especially from 0.1 to 95 % by weight, of active ingredient mixture comprising a compound of formula I, a compound selected from the compounds of formulae 2.1 to 2.51 and the compounds of formulae 3.1 to 3.16, from 1 to 99.9 % by weight of a solid or liquid formulation adjuvant and from 0 to 25 % by weight, especially from 0.1 to 25 % by weight, of a surfactant. Whereas commercial products are usually formulated as concentrates, the end user will normally employ dilute formulations.

The compositions may also comprise further ingredients, such as stabilisers, e.g. vegetable oils or epoxidised vegetable oils (epoxidised coconut oil, rapeseed oil or soybean oil), antifoams, e.g. silicone oil, preservatives, viscosity regulators, binders, tackifiers, and also

- 229 -

PCT/EP01/00720

fertilisers or other active ingredients. For the use of safeners of formulae 3.1 to 3.16, or of compositions comprising them, in the protection of crop plants against the damaging effects of herbicides of formulae I and 2.1 to 2.51, various methods and techniques come into consideration, such as, for example, the following:

i) Seed dressing

WO 01/54501

- a) Dressing of the seeds with a wettable powder formulation of a compound of formulae 3.1 to 3.16 by shaking in a vessel until uniformly distributed over the seed surface (dry dressing). In that procedure approximately from 1 to 500 g of compound of formulae 3.1 to 3.16 (4 g to 2 kg of wettable powder) are used per 100 kg of seed.
- b) Dressing of the seeds with an emulsifiable concentrate of a compound of formulae 3.1 to 3.16 according to method a) (wet dressing).
- c) Dressing by immersing the seeds for from 1 to 72 hours in a liquor comprising from 100 to 1000 ppm of a compound of formulae 3.1 to 3.16 and optionally subsequently drying the seeds (immersion dressing).

Dressing the seed or treating the germinated seedling are naturally the preferred methods of application, because treatment with the active ingredients is directed entirely at the target crop. Generally from 1 to 1000 g of antidote, preferably from 5 to 250 g of antidote, are used per 100 kg of seed, but depending on the methodology, which also enables the addition of other active ingredients or micronutrients, the concentration limits indicated can be varied up or down (repeat dressing).

ii) Application as a tank mixture

A liquid formulation of a mixture of antidote and herbicide is used (ratio by weight of the one to the other from 10:1 to 1:100), the rate of application of herbicide being from 0.005 to 5.0 kg per hectare. Such tank mixtures are applied before or after sowing.

iii) Application to the seed furrow

The compounds of formulae 3.1 to 3.16 are introduced into the open, sown seed furrow in the form of an emulsifiable concentrate, wettable powder or granules. Once the seed furrow has been covered over, the herbicide is applied in the usual manner in the pre-emergence process.

- 230 -

iv) Controlled release of active ingredient

The compounds of formulae 3.1 to 3.16 are applied in solution to mineral granule carriers or polymerised granules (urea/formaldehyde) and dried. If desired, it is also possible to apply a coating that allows the active ingredient to be released in metered amounts over a specific period of time (coated granules).

Preferred formulations have especially the following compositions: (% = percent by weight)

Emulsifiable concentrates:

active ingredient mixture:

1 to 90 %, preferably 5 to 20 %

surfactant:

1 to 30 %, preferably 10 to 20 %

liquid carrier:

5 to 94 %, preferably 70 to 85 %

Dusts:

active ingredient mixture:

0.1 to 10 %, preferably 0.1 to 5 %

solid carrier:

99.9 to 90 %, preferably 99.9 to 99 %

Suspension concentrates:

active ingredient mixture:

5 to 75 %, preferably 10 to 50 %

water:

94 to 24 %, preferably 88 to 30 %

surfactant:

1 to 40 %, preferably 2 to 30 %

Wettable powders:

active ingredient mixture:

0.5 to 90 %, preferably 1 to 80 %

surfactant:

0.5 to 20 %, preferably 1 to 15 %

solid carrier:

5 to 95 %, preferably 15 to 90 %

Granules:

active ingredient mixture:

0.1 to 30 %, preferably 0.1 to 15 %

solid carrier:

99.5 to 70 %, preferably 97 to 85 %

The following Examples illustrate the invention further, but do not limit the invention.

- 231 -

Formulation Examples for mixtures				_
formulae 2.1 to 2.51, and safeners				_
F1. Emulsifiable concentrates	a)	b)	c)	d)
active ingredient mixture	5 %	10 %	25 %	50 %
calcium dodecylbenzenesulfonate	6 %	8 %	6 %	8 %
castor oil polyglycol ether	4 %	-	4 %	4 %
(36 mol of ethylene oxide)				
octylphenol polyglycol ether	-	4 %	-	2 %
(7-8 mol of ethylene oxide)				
cyclohexanone	-	-	10 %	20 %
aromatic hydrocarbon mixture	85 %	78 %	55 %	16 %
C ₉ -C ₁₂				
Emulsions of any desired concentr	ation can be	obtained from s	uch concentrates l	oy dilution
with water.				•
F2. Solutions	a)	b)	c)	d)
active ingredient mixture	5 %	10 %	50 %	90 %
1-methoxy-3-(3-methoxy-				
propoxy)-propane	-	20 %	20 %	-
polyethylene glycol MW 400	20 %	10 %	-	-
N-methyl-2-pyrrolidone	-	-	30 %	10 %
aromatic hydrocarbon mixture	75 %	60 %	-	-
C ₉ -C ₁₂				
The solutions are suitable for use i	in the form of	microdrops.		
F3. Wettable powders	a)	b)	c)	d)
active ingredient mixture	5 %	25 %	50 %	80 %
sodium lignosulfonate	4 %	-	3 %	-
sodium lauryl sulfate	2 %	3 %	<u>-</u>	4 %
sodium diisobutylnaphthalene-	-	6 %	5 %	6 %
sulfonate				
octylphenol polyglycol ether	_	1 %	2 %	_
(7-8 mol of ethylene oxide)				
highly dispersed silicic acid	1 %	3 %	5 %	10 %

- 232 -

kaolin 88 % 62 % 35 %

The active ingredient is mixed thoroughly with the adjuvants and the mixture is thoroughly ground in a suitable mill, affording wettable powders which can be diluted with water to give suspensions of any desired concentration.

F4. Coated granules	a)	b)	c)
active ingredient mixture	0.1 %	5 %	15 %
highly dispersed silicic acid	0.9 %	2 %	2 %
inorganic carrier	99.0 %	93 %	83 %
(Æ 0.1 - 1 mm)			

e.g. CaCO₃ or SiO₂

The active ingredient is dissolved in methylene chloride and applied to the carrier by spraying, and the solvent is then evaporated off *in vacuo*.

F5. Coated granules	a)	b) ·	c)
active ingredient mixture	0.1 %	5 %	15 %
polyethylene glycol MW 200	1.0 %	2 %	3 %
highly dispersed silicic acid	0.9 %	1 %	2 %
inorganic carrier	98.0 %	92 %	80 %

(Æ 0.1 - 1 mm)

e.g. CaCO₃ or SiO₂

The finely ground active ingredient is uniformly applied, in a mixer, to the carrier moistened with polyethylene glycol. Non-dusty coated granules are obtained in this manner.

F6. Extruder granules	a)	b)	c)	d)
active ingredient mixture	0.1 %	3 %	5 %	15 %
sodium lignosulfonate	1.5 %	2 %	3 %	4 %
carboxymethylcellulose	1.4 %	2 %	2 %	2 %
kaolin	97.0 %	93 %	90 %	79 %

The active ingredient is mixed and ground with the adjuvants, and the mixture is moistened with water. The mixture is extruded and then dried in a stream of air.

- 233 -

F7. Dusts	a)	b)	c)
active ingredient mixture	0.1 %	1 %	5 %
talcum	39.9 %	49 %	35 %
kaolin	60.0 %	50 %	60 %

Ready-to-use dusts are obtained by mixing the active ingredient with the carriers and grinding the mixture in a suitable mill.

F8. Suspension concentrates	a)	b)	c)	d)
active ingredient mixture	3 %	10 %	25 %	50 %
ethylene glycol	5 %	5 %	5 %	5 %
nonylphenol polyglycol ether	-	1 %	2 %	-
(15 mol of ethylene oxide)				
sodium lignosulfonate	3 %	3 %	4 %	5 %
carboxymethylcellulose	1 %	1 %	1 %	1 %
37 % aqueous formaldehyde	0.2 %	0.2 %	0.2 %	0.2 %
solution				
silicone oil emulsion	0.8 %	0.8 %	0.8 %	0.8 %
water	87 %	79 %	62 %	38 %

The finely ground active ingredient is intimately mixed with the adjuvants, giving a suspension concentrate from which suspensions of any desired concentration can be obtained by dilution with water.

It is often more practical for the compounds of formulae I, 2.1 to 2.51 and 3.1 to 3.16 to be formulated separately and then to be brought together in the desired mixing ratio in the applicator in the form of a "tank mixture" in water shortly before application.

The ability of the safeners of formulae 3.1 to 3.16 to protect crop plants against the phytotoxic action of herbicides of formula I is illustrated in the following Examples.

Biological Example: safening action

The test plants are grown in plastics pots under greenhouse conditions to the 4-leaf stage. At that stage, the herbicides alone, and the mixtures of the herbicides with the test compounds that are to be tested as safeners, are applied to the test plants. The application is in the form of an aqueous suspension of the test compounds prepared from a 25 %

PCT/EP01/00720

wettable powder (Example F3, b)) with 500 litres of water/ha. 4 weeks after application, the phytotoxic action of the herbicides on the crop plants, e.g. maize and cereals, is evaluated using a percentage scale. 100 % denotes that the test plant has died, 0 % denotes no phytotoxic action.

- 234 -

The results obtained in this test demonstrate that damage to the crop plant caused by the herbicide of formula I in combination with one or more herbicides selected from formulae 2.1 to 2.51 can be significantly reduced by the compounds of formulae 3.1 to 3.16. Examples of the safening action are given in the following Table B40:

Table B40:

Test plant	Compd.	Compd. 1.001	Compd. 1.001	Compd. 1.001
	1.001	[50 g/ha] +	[50 g/ha] +	[50 g/ha] +
	[50 g/ha]	compd. 3.3 [50 g/ha]	compd. 3.1 [50 g/ha]	compd. 3.8 [50 g/ha]
Maize	50	5	5	0
Abutilon	100	100	100	100
Setaria	100	100	100	100

The same results are obtained when the mixtures are formulated in accordance with Examples F1, F2 and F4 to F8.

WO 01/54501

- 235 -

PCT/EP01/00720

What is claimed is:

1. A herbicidally selective composition that, in addition to comprising customary inert formulation adjuvants, comprises as active ingredient a mixture

a) a herbicidally effective amount of a compound of formula I

$$Q \qquad \qquad (I),$$

$$(R)_{m}$$

wherein each R is independently hydrogen, C₁-C₆alkyl, C₂-C₆alkenyl, C₂-C₆haloalkenyl, C2-C6alkynyl, C2-C6haloalkynyl, C3-C6cycloalkyl, C1-C6alkoxy, C1-C6haloalkoxy, C1-C₆alkylthio, C₁-C₆alkylsulfinyl, C₁-C₆alkylsulfonyl, C₁-C₆haloalkyl, C₁-C₆haloalkylthio, C₁-C₆haloalkylsulfinyl, C₁-C₆haloalkylsulfonyl, C₁-C₆alkoxycarbonyl, C₁-C₆alkylcarbonyl, C₁- C_6 alkylamino, di(C_1 - C_6 alkyl)amino, C_1 - C_6 alkylaminosulfonyl, di(C_1 - C_6 alkyl)aminosulfonyl, -N(R₁)-S-R₂, -N(R₃)-SO-R₄, -N(R₅)-SO₂-R₆, nitro, cyano, halogen, hydroxy, amino, benzylthio, benzylsulfinyl, benzylsulfonyl, phenyl, phenoxy, phenylthio, phenylsulfinyl or phenylsulfonyl; wherein the phenyl group may itself be mono-, di- or tri-substituted by C₁-C₆alkyl, C₁-C₆haloalkyl, C₃-C₆alkenyl, C₃-C₆haloalkenyl, C₃-C₆haloalkynyl, C₁-C₆alkoxy, C₁-C₆haloalkoxy, C₃-C₆alkenyloxy, C₃-C₆alkynyloxy, mercapto, C₁-C₆alkylthio, C₁-C₆haloalkylthio, C₃-C₆alkenylthio, C₃-C₆haloalkenylthio, C₃-C₆alkynylthio, C₂-C₅alkoxyalkylthio, C₃-C₅acetylalkylthio, C₃-C₆alkoxycarbonylalkylthio, C₂-C₄cyanoalkylthio, C_1 - C_6 alkylsulfinyl, C_1 - C_6 haloalkylsulfinyl, C_1 - C_6 alkylsulfonyl, C_1 - C_6 haloalkylsulfonyl, aminosulfonyl, C₁-C₂alkylaminosulfonyl, C₂-C₄dialkylaminosulfonyl, C₁-C₃alkylene-R₄₅, NR₄₆R₄₇, halogen, cyano, nitro, phenyl or by benzylthio, wherein the latter phenyl and benzylthio groups may themselves be substituted on the phenyl ring by C₁-C₃alkyl, C₁-C₃haloalkyl, C₁-C₃alkoxy, C₁-C₃haloalkoxy, halogen, cyano or by nitro; or each R is independently a monocyclic or fused bicyclic ring system having from 5 to 10 members, which may be aromatic or partially saturated and may contain from 1 to 4 hetero atoms selected from nitrogen, oxygen and sulfur; wherein the ring system either is bound directly to the pyridine ring or is bound to the pyridine ring via a C₁-C₄alkylene group, and each ring system may not contain more than two oxygen atoms and may not contain more than two sulfur atoms, and the ring system may itself be mono-, di- or tri-substituted by

 $C_1\text{-}C_6\text{alkyl},\ C_1\text{-}C_6\text{haloalkyl},\ C_3\text{-}C_6\text{alkenyl},\ C_3\text{-}C_6\text{haloalkenyl},\ C_3\text{-}C_6\text{alkynyl},\ C_3\text{-}C_6\text{haloalkynyl},\ C_1\text{-}C_6\text{alkoxy},\ C_1\text{-}C_6\text{haloalkoxy},\ C_3\text{-}C_6\text{alkenyloxy},\ C_3\text{-}C_6\text{alkynyloxy},\ mercapto,\ C_1\text{-}C_6\text{alkylthio},\ C_1\text{-}C_6\text{alkylylthio},\ C_3\text{-}C_6\text{alkenylthio},\ C_3\text{-}C_6\text{alkynylthio},\ C_2\text{-}C_5\text{alkoxy-alkylthio},\ C_3\text{-}C_6\text{alkylylthio},\ C_3\text{-}C_6\text{alkoxycarbonylalkylthio},\ C_2\text{-}C_4\text{cyanoalkylthio},\ C_1\text{-}C_6\text{alkylsulfinyl},\ C_1\text{-}C_6\text{alkylsulfonyl},\ C_1\text{-}C_6\text{haloalkylsulfonyl},\ aminosulfonyl,\ C_1\text{-}C_6\text{alkylsulfonyl},\ C_1\text{-}C_6\text{haloalkylsulfonyl},\ aminosulfonyl,\ C_1\text{-}C_2\text{alkylaminosulfonyl},\ C_2\text{-}C_4\text{dialkylaminosulfonyl},\ C_1\text{-}C_3\text{alkylene-R}_7,\ NR_8R_9,\ halogen,\ cyano,\ nitro,\ phenyl\ or\ by\ benzylthio,\ wherein\ phenyl\ and\ benzylthio\ may\ themselves\ be\ substituted\ on\ the\ phenyl\ ring\ by\ C_1\text{-}C_3\text{alkyl},\ C_1\text{-}C_3\text{haloalkyl},\ C_1\text{-}C_3\text{alkoxy},\ C_1\text{-}C_3\text{haloalkoxy},\ halogen,\ cyano\ or\ by\ nitro,\ and\ wherein\ the\ substituents\ on\ the\ nitrogen\ in\ the\ heterocyclic\ ring\ are\ other\ than\ halogen;\ or$

each R is independently C_1 - C_4 alkoxy- C_1 - C_2 - C_3 - C_4 Alkoxy- C_1 - C_2 - C_3 - C_4 Alkoxy- C_1 - C_4 Alkoxy

R₁, R₃ and R₅ are each independently of the others hydrogen or C₁-C₆alkyl;

 R_2 is $NR_{10}R_{11}$, C_1 - C_6 alkoxy, C_1 - C_6 haloalkoxy, C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_3 - C_6 alkenyl, C_3 - C_6 haloalkynyl, C_3 - C_6 cycloalkyl or phenyl, wherein phenyl may itself be substituted by C_1 - C_3 alkyl, C_1 - C_3 haloalkyl, C_1 - C_3 alkoxy, C_1 - C_3 haloalkoxy, halogen, cyano or by nitro;

 R_4 is $NR_{12}R_{13}$, C_1 - C_6 alkoxy, C_1 - C_6 haloalkoxy, C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_3 - C_6 alkenyl, C_3 - C_6 haloalkynyl, C_3 - C_6 cycloalkyl or phenyl, wherein phenyl may itself be substituted by C_1 - C_3 alkyl, C_1 - C_3 haloalkyl, C_1 - C_3 alkoxy, C_1 - C_3 haloalkoxy, halogen, cyano or by nitro;

 R_6 is NR₁₄R₁₅, C₁-C₆alkoxy, C₁-C₆haloalkoxy, C₁-C₆alkyl, C₁-C₆haloalkyl, C₃-C₆alkenyl, C₃-C₆haloalkynyl, C₃-C₆cycloalkyl or phenyl, wherein phenyl may itself be substituted by C₁-C₃alkyl, C₁-C₃haloalkyl, C₁-C₃alkoxy, C₁-C₃haloalkoxy, halogen, cyano or by nitro;

 R_7 and R_{45} are each independently of the other C_1 - C_3 alkoxy, C_2 - C_4 alkoxycarbonyl, C_1 - C_3 -alkylthio, C_1 - C_3 alkylsulfinyl, C_1 - C_3 alkylsulfonyl or phenyl, wherein phenyl may itself be substituted by C_1 - C_3 alkyl, C_1 - C_3 haloalkyl, C_1 - C_3 alkoxy, C_1 - C_3 haloalkoxy, halogen, cyano or by nitro;

 R_8 , R_{10} , R_{12} , R_{14} and R_{46} are each independently of the others hydrogen or C_1 - C_6 alkyl; R_9 , R_{11} , R_{13} , R_{15} and R_{47} are each independently of the others C_1 - C_6 alkyl or C_1 - C_6 alkoxy; Q is the group Q_1

- 237 -

wherein R₁₆, R₁₇, R₁₈ and R₁₉ are each independently of the others hydrogen, hydroxy,

C₁-C₄alkyl, C₂-C₆alkenyl, C₂-C₆alkynyl, C₁-C₄alkoxycarbonyl, C₁-C₆alkylthio, C₁-C₆alkylsulfinyl, C₁-C₆alkylsulfonyl, C₁-C₄alkyl-NHS(O)₂, C₁-C₄haloalkyl, -NH-C₁-C₄alkyl, - $N(C_1-C_4alkyl)_2$, $C_1-C_6alkoxy$, cyano, nitro, halogen, or phenyl which may itself be substituted by C₁-C₄alkyl, C₁-C₄haloalkyl, C₁-C₄alkoxy, C₁-C₄haloalkoxy, C₁-C₄alkylcarbonyl, C₁-C₄alkoxycarbonyl, amino, C₁-C₄alkylamino, di(C₁-C₄alkyl)amino, C₁-C₆alkylthio, C₁-C₆alkylsulfinyl, C₁-C₆alkylsulfonyl, C₁-C₄alkyl-S(O)₂O, C₁-C₄haloalkylthio, C₁-C₄haloalkylsulfinyl, C₁-C₄haloalkylsulfonyl, C₁-C₄haloalkyl-S(O)₂O, C₁-C₄alkyl-S(O)₂NH, C₁-C₄alkyl-S(O)₂N(C₁-C₄alkyl), halogen, nitro, COOH or by cyano; or two adjacent substituents out of R₁₆, R₁₇, R₁₈ and R₁₉ form a C₂-C₆alkylene bridge; R₂₀ is hydroxy, O⁻M⁺, halogen, C₁-C₁₂alkoxy, C₁-C₁₂alkylcarbonyloxy, C₂-C₄alkenylcarbonyloxy, C_3 - C_6 cycloalkylcarbonyloxy, C_1 - C_{12} alkoxycarbonyloxy, C_1 - C_{12} alkylcarbonyloxy, $R_{21}R_{22}N-C(O)O$, C_1-C_{12} alkylthio, C_1-C_{12} alkylsulfinyl, C_1-C_{12} alkylsulfonyl, C_1-C_4 haloalkylthio, C₁-C₄haloalkylsulfinyl, C₁-C₄haloalkylsulfonyl, C₂-C₁₂alkenylthio, C₂-C₁₂alkenylsulfinyl, C₂-C₁₂alkenylsulfonyl, C2-C12haloalkenylthio, C2-C12haloalkenylsulfinyl, C2-C12haloalkenylsulfonyl, C_2 - C_{12} alkynylthio, C_2 - C_{12} alkynylsulfinyl, C_2 - C_{12} alkynylsulfonyl, C_1 - C_4 alkyl- $S(O)_2O$, phenyl-S(O)₂O, $(C_1-C_4alkoxy)_2P(O)O$, $C_1-C_4alkyl(C_1-C_4alkoxy)P(O)O$, $H(C_1-C_4alkoxy)P(O)O$, C₁-C₁₂-alkyl-S(CO)O, benzyloxy, phenoxy, phenylthio, phenylsulfinyl or phenylsulfonyl, wherein the phenyl group may itself be substituted by C₁-C₄alkyl, C₁-C₄haloalkyl, C₁-C₄alkoxy, C₁-C₄haloalkoxy, C₁-C₄alkylcarbonyl, C₁-C₄alkoxycarbonyl, C₁-C₄alkylamino, di(C₁-C₄alkyl)amino, C₁-C₄alkylthio, C₁-C₄alkylsulfinyl, C₁-C₄alkylsulfonyl, C₁-C₄alkyl-S(O)₂O, C₁- C_4 haloalkylthio, C_1 - C_4 haloalkylsulfinyl, C_1 - C_4 haloalkylsulfonyl, C_1 - C_4 haloalkyl- $S(O)_2O$, C_1 -C₄alkyl-S(O)₂NH, C₁-C₄alkyl-S(O)₂N(C₁-C₄alkyl), halogen, nitro or by cyano; and R_{21} and R_{22} are each independently of the other hydrogen or C_1 - C_4 alkyl; or is the group Q2

$$\begin{array}{ccc}
 & R_{23} \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\$$

wherein R_{23} is hydroxy, O^{M^+} , halogen, C_1 - C_{12} alkoxy, C_1 - C_{12} alkylcarbonyloxy, C_2 - C_4 -alkenylcarbonyloxy, C_3 - C_6 cycloalkylcarbonyloxy, C_1 - C_{12} alkylsulfinyl, C_1 - C_{12} alkylsulfonyl, C_1 - C_{12} alkylsulfinyl, C_1 - C_{12} alkylsulfonyl, C_1 - C_4 haloalkylthio, C_1 - C_4 haloalkylsulfinyl, C_1 - C_4 haloalkylsulfinyl, C_2 - C_{12} alkenylsulfinyl, C_2 - C_{12} alkenylsulfinyl, C_2 - C_{12} alkenylsulfinyl, C_2 - C_{12} alkenylsulfinyl, C_2 - C_{12} -alkenylsulfinyl, C_2 - C_{12} -alkenylsulfinyl, C_2 - C_{12} -alkynylsulfinyl, C_2 - C_{12} -alkynylsulfinyl, C_2 - C_{12} -alkylsulfonyl, C_1 - C_4 -alkyl- C_1 - C_4 -alkyl- C_1 - C_4 -alkyl- C_1 - C_4 -alkoxy) C_1 - C_4 -alkoxy, C_1 - C_4 -alkylsulfinyl, C_1 - C_4 -alkylsulfinyl, C_1 - C_4 -alkylsulfonyl, C_1 - C_4 -alkylsulfinyl, C_1 - C_4 -alkylsulfonyl, C_1 - C_4 -alkyl- $C_$

 R_{24} and R_{25} are each independently of the other hydrogen or C_1 - C_4 alkyl; and Y is oxygen, sulfur, a chemical bond or a C_1 - C_4 alkylene bridge; or is the group Q_3

wherein R_{44} , R_{37} , R_{38} and R_{39} are each independently of the others hydrogen, C_1 - C_6 alkyl, C_1 - C_6 alkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, C_1 - C_6 alkoxycarbonyl, C_1 - C_6 alkylthio, C_1 - C_6 alkylsulfonyl, C_1 - C_6 alkyl-NHS(O)₂, C_1 - C_6 alkylamino, di(C_1 - C_6 alkyl)amino, hydroxy, C_1 - C_6 alkoxy, C_3 - C_6 alkenyloxy, C_3 - C_6 alkynyloxy, hydroxy- C_1 - C_6 alkyl, C_1 - C_4 alkylsulfonyloxy- C_1 - C_6 alkyl, tosyloxy- C_1 - C_6 alkyl, halogen, cyano, nitro, phenyl, or phenyl substituted by C_1 - C_4 alkyl, C_1 - C_4 alkoxy, C_1 - C_4 alkoxy, C_1 - C_4 alkoxy, C_1 - C_4 alkylcarbonyl, C_1 - C_4 alkoxycarbonyl, amino, C_1 - C_4 alkylamino, di(C_1 - C_4 alkyl)amino, C_1 - C_6 alkylsulfinyl, C_1 - C_6 alkylsulfonyl, C_1 - C_6 alkylsulfonyl, C_1 - C_6 haloalkylsulfinyl, C_1 - C_6 haloalkylsulfonyl, C_1 - C_6 haloalkylsulfonyl, C_1 - C_6 alkylsulfinyl-N(C_1 - C_4 alkyl), C_1 - C_6 alkylsulfonyl-N(C_1 - C_4 alkyl), halogen, nitro, COOH or by cyano; or adjacent R_{44} and R_{37} or R_{38} and R_{39} together are C_3 - C_6 alkylene;

or is the group Q4

W is oxygen, sulfur, sulfinyl, sulfonyl, -CR₄₁R₄₂-, -C(O)- or -NR₄₃-; R₄₁ is hydrogen, C₁-C₄alkyl, C₁-C₄haloalkyl, C₁-C₄alkoxy-C₁-C₄alkyl, C₁-C₄alkylthio-C₁-C₄alkyl, C₁-C₄alkylcarbonyloxy-C₁-C₄alkyl, C₁-C₄alkylsulfonyloxy-C₁-C₄alkyl, tosyloxy-C₁-C₄alkyl, di(C₁-C₃alkoxyalkyl)methyl, di(C₁-C₃alkylthioalkyl)methyl, (C₁-C₃alkoxyalkyl)-(C₁-C₃alkylthioalkyl)methyl, C₃-C₅oxacycloalkyl, C₃-C₅thiacycloalkyl, C₃-C₄dioxacycloalkyl, C₃-C₄dithiacycloalkyl, C₃-C₄oxathiacycloalkyl, formyl, C₁-C₄alkoxycarbonyl, or phenyl which may itself be substituted by C₁-C₄alkyl, C₁-C₄haloalkyl, C₁-C₄alkoxy, C₁-C₄haloalkoxy, C₁-C₄alkylcarbonyl, C₁-C₄alkoxycarbonyl, amino, C₁-C₄alkylamino, di(C₁-C₄alkyl)amino, C₁- C_4 alkylthio, C_1 - C_4 alkylsulfinyl, C_1 - C_4 alkylsulfonyl, C_1 - C_4 alkyl- $S(O)_2O$, C_1 - C_4 haloalkylthio, C_1 -C₄haloalkylsulfinyl, C₁-C₄haloalkylsulfonyl, C₁-C₄haloalkyl-S(O)₂O, C₁-C₄alkyl-S(O)₂NH, C₁- C_6 alkylthio- $N(C_1-C_4$ alkyl), C_1-C_6 alkylsulfinyl- $N(C_1-C_4$ alkyl), C_1-C_6 alkylsulfonyl- $N(C_1-C_4$ alkyl), halogen, nitro, COOH or by cyano; or R₄₂ together with R₃₉ is C₁-C₆alkylene; R₄₂ is hydrogen, C₁-C₄alkyl or C₁-C₄haloalkyl; R₄₀ is hydroxy, O^{*}M⁺, halogen, C₁-C₁₂alkoxy, C₁-C₁₂alkylcarbonyloxy, C₂-C₄alkenylcarbonyloxy, C_3 - C_6 cycloalkylcarbonyloxy, C_1 - C_{12} alkoxycarbonyloxy, C_1 - C_{12} alkylcarbonyloxy, $R_{96}R_{97}N-C(0)O$, C_1-C_{12} alkylthio, C_1-C_{12} alkylsulfinyl, C_1-C_{12} alkylsulfonyl, C_1-C_{4} haloalkylthio, C₁-C₄haloalkylsulfinyl, C₁-C₄haloalkylsulfonyl, C₂-C₁₂alkenylthio, C₂-C₁₂alkenylsulfinyl, C₂-C₁₂alkenylsulfonyl, C_2 - C_{12} haloalkenylthio, C_2 - C_{12} haloalkenylsulfonyl, C_2 - C_{12} haloalkenylsulfonyl, C₂-C₁₂alkynylthio, C₂-C₁₂alkynylsulfinyl, C₂-C₁₂alkynylsulfonyl, C₁-C₄alkyl-S(O)₂O, phenyl-S(O)₂O, $(C_1-C_4alkoxy)_2P(O)O$, $C_1-C_4alkyl(C_1-C_4alkoxy)P(O)O$, $H(C_1-C_4alkoxy)P(O)O$, C₁-C₁₂-alkyl-S(CO)O, benzyloxy, phenoxy, phenylthio, phenylsulfinyl or phenylsulfonyl. wherein the phenyl group may itself be substituted by C₁-C₄alkyl, C₁-C₄haloalkyl, C₁-C₄alkoxy, C₁-C₄haloalkoxy, C₁-C₄alkylcarbonyl, C₁-C₄alkoxycarbonyl, C₁-C₄alkylamino, di(C₁- C_4 alkyl)amino, C_1 - C_4 alkylthio, C_1 - C_4 alkylsulfinyl, C_1 - C_4 alkylsulfonyl, C_1 - C_4 alkyl- $S(O)_2O$, C_1 -C₄haloalkylthio, C₁-C₄haloalkylsulfinyl, C₁-C₄haloalkylsulfonyl, C₁-C₄ha C₄alkyl-S(O)₂NH, C₁-C₄alkyl-S(O)₂N(C₁-C₄alkyl), halogen, nitro or by cyano; R₉₆ and R₉₇ are each independently of the other hydrogen or C₁-C₄alkyl; R₄₃ is hydrogen, C₁-C₄alkyl, C₁-C₄alkoxycarbonyl, or phenyl which may itself be substituted by C₁-C₄alkyl, C₁-C₄haloalkyl, C₁-C₄alkoxy, C₁-C₄haloalkoxy, C₁-C₄alkylcarbonyl, C₁- C_4 alkoxycarbonyl, C_1 - C_4 alkylamino, di(C_1 - C_4 alkyl)amino, C_1 - C_4 alkylthio, C_1 - C_4 alkylsulfinyl, C₁-C₄alkylsulfonyl, C₁-C₄alkyl-S(O)₂O, C₁-C₄haloalkylthio, C₁-C₄haloalkylsulfinyl, C₁-C₄haloalkylsulfonyl, C₁-C₄haloalkyl-S(O)₂O, C₁-C₄alkyl-S(O)₂NH, C₁-C₄alkyl-S(O)₂N(C₁-C₄alkyl), halogen, nitro or by cyano;

- 240 -

wherein R₃₀ hydroxy, O'M⁺, halogen, C₁-C₁₂alkoxy, C₁-C₁₂alkylcarbonyloxy, C₂-C₄alkenylcarbonyloxy, C_3 - C_6 cycloalkylcarbonyloxy, C_1 - C_{12} alkoxycarbonyloxy, C_1 - C_{12} alkylcarbonyloxy, $R_{31}R_{32}N-C(O)O$, C_1-C_{12} alkylthio, C_1-C_{12} alkylsulfinyl, C_1-C_1 C₁-C₄haloalkylsulfinyl, C₁-C₄haloalkylsulfonyl, C₂-C₁₂alkenylthio, C₂-C₁₂alkenylsulfinyl, C₂-C₁₂alkenylsulfonyl, C₂-C₁₂haloalkenylthio, C₂-C₁₂haloalkenylsulfinyl, C₂-C₁₂haloalkenylsulfonyl, C_2 - C_{12} alkynylthio, C_2 - C_{12} alkynylsulfinyl, C_2 - C_{12} alkynylsulfonyl, C_1 - C_4 alkyl- $S(O)_2O$, phenyl-S(O)₂O, $(C_1-C_4alkoxy)_2P(O)O$, $C_1-C_4alkyl(C_1-C_4alkoxy)P(O)O$, $H(C_1-C_4alkoxy)P(O)O$, C₁-C₁₂-alkyl-S(CO)O, benzyloxy, phenoxy, phenylthio, phenylsulfinyl or phenylsulfonyl, wherein the phenyl group may itself be substituted by C₁-C₄alkyl, C₁-C₄haloalkyl, C₁-C₄alkoxy, C₁-C₄haloalkoxy, C₁-C₄alkylcarbonyl, C₁-C₄alkoxycarbonyl, C₁-C₄alkylamino, di(C₁-C₄alkyl)amino, C₁-C₄alkylthio, C₁-C₄alkylsulfinyl, C₁-C₄alkylsulfonyl, C₁-C₄alkyl-S(O)₂O, C₁-C₄haloalkylthio, C₁-C₄haloalkylsulfinyl, C₁-C₄haloalkylsulfonyl, C₁-C₄haloalkyl-S(O)₂O, C₁-C₄alkyl-S(O)₂NH, C₁-C₄alkyl-S(O)₂N(C₁-C₄alkyl), halogen, nitro or by cyano; and R_{31} and R_{32} are each independently of the other hydrogen or $C_1\text{-}C_4alkyl;$ R₃₃ and R₃₄ are each independently of the other hydrogen, hydroxy, C₁-C₄alkyl, C₂-C₆alkenyl, C_2 - C_6 alkynyl, C_1 - C_4 alkoxycarbonyl, C_1 - C_6 alkylthio, C_1 - C_6 alkylsulfinyl, C_1 - C_6 alkylsulfonyl, C_1 - C_4 alkyl-NHS(O)₂, C_1 - C_4 haloalkyl, -NH- C_1 - C_4 alkyl, -N(C_1 - C_4 alkyl)₂, C_1 - C_6 alkoxy, cyano, nitro, halogen, or phenyl which may itself be substituted by C₁-C₄alkyl, C₁-C₄haloalkyl, C₁-C₄alkoxy, C₁-C₄haloalkoxy, C₁-C₄alkylcarbonyl, C₁-C₄alkoxycarbonyl, amino, C₁-C₄alkylamino, di(C₁-C₄alkyl)amino, C₁-C₆alkylthio, C₁-C₆alkylsulfinyl, C₁-C₆alkylsulfonyl, C₁-C₄alkyl-S(O)₂O, C_1 - C_4 haloalkylthio, C_1 - C_4 haloalkylsulfinyl, C_1 - C_4 haloalkylsulfonyl, C_1 - C_4 haloalkyl- $S(O)_2O$, C₁-C₄alkyl-S(O)₂NH, C₁-C₄alkyl-S(O)₂N(C₁-C₄alkyl), halogen, nitro, COOH or by cyano; or R₃₃ and R₃₄ together form a C₂-C₆alkylene bridge; and R₃₅ is hydrogen, C₁-C₄alkyl, C₁-C₄alkoxycarbonyl, or phenyl which may itself be substituted by C₁-C₄alkyl, C₁-C₄haloalkyl, C₁-C₄alkoxy, C₁-C₄haloalkoxy, C₁-C₄alkylcarbonyl, C₁-C₄alkoxycarbonyl, amino, C₁-C₄alkylamino, di(C₁-C₄alkyl)amino, C₁-C₄alkylthio, C₁-C4alkylsulfinyl, C1-C4alkylsulfonyl, C1-C4alkyl-S(O)2O, C1-C4haloalkylthio, C1-C₄haloalkylsulfinyl, C₁-C₄haloalkylsulfonyl, C₁-C₄haloalkyl-S(O)₂O, C₁-C₄alkyl-S(O)₂NH, C₁-

C₄alkyl-S(O)₂N(C₁-C₄alkyl), halogen, nitro, COOH or by cyano;

PCT/EP01/00720

or is the group Q5

WO 01/54501

$$R_{36}$$
 O . N (Q_5) ,

R₀₁ is hydrogen, C₁-C₈alkyl, C₁-C₈alkyl substituted by halogen, C₁-C₄alkoxy, C₁-C₄alkylthio,

- 241 -

wherein Z is sulfur, SO or SO₂;

C₁-C₄alkylsulfonyl, C₁-C₄alkylsulfinyl, hydroxy, cyano, nitro, -CHO, -CO₂R₀₂, -COR₀₃, -COSR₀₄, -NR₀₅R₀₆, CONR₀₃₆R₀₃₇, or by phenyl which may itself be substituted by C₁-C₄alkyl, C₁-C₆haloalkyl, C₁-C₄alkoxy, C₁-C₄haloalkoxy, C₂-C₆alkenyl, C₃-C₆alkynyl, C₃-C₆alkenyloxy, C₃-C₆alkynyloxy, halogen, nitro, cyano, -COOH, COOC₁-C₄alkyl, COOphenyl, C₁-C₄alkoxy, phenoxy, (C₁-C₄alkoxy)-C₁-C₄alkyl, (C₁-C₄alkyl, (C₁-C₄alkyl), (C₁-C C₄alkylsulfinyl)-C₁-C₄alkyl, (C₁-C₄alkylsulfonyl)-C₁-C₄alkyl, NHSO₂-C₁-C₄alkyl, NHSO₂-phenyl, N(C₁-C₆alkyl)SO₂-C₁-C₄alkyl, N(C₁-C₆alkyl)SO₂-phenyl, N(C₂-C₆alkenyl)SO₂-C₁-C₄alkyl, N(C₂-C₆alkyl)SO₂-C₁-C₄alkyl, N(C₂-C₆alkyl)SO₂-C C₆alkenyl)SO₂-phenyl, N(C₃-C₆alkynyl)SO₂-C₁-C₄alkyl, N(C₃-C₆alkynyl)SO₂-phenyl, N(C₃-C₇cycloalkyl)SO₂-C₁-C₄alkyl, N(C₃-C₇cycloalkyl)SO₂-phenyl, N(phenyl)SO₂-C₁-C₄alkyl, N(phenyl)SO₂-phenyl, OSO₂-C₁-C₄alkyl, CONR₀₂₅R₀₂₆, OSO₂-C₁-C₄haloalkyl, OSO₂-phenyl, C_1 - C_4 alkylthio, C_1 - C_4 haloalkylthio, phenylthio, C_1 - C_4 alkylsulfonyl, C_1 - C_4 haloalkylsulfonyl, phenylsulfonyl, C₁-C₄alkylsulfinyl, C₁-C₄haloalkylsulfinyl, phenylsulfinyl, C₁-C₄alkylenephenyl or by $-NR_{015}CO_2R_{027}$; or R₀₁ is C₂-C₈alkenyl or C₂-C₈alkenyl substituted by halogen, C₁-C₄alkoxy, C₁-C₄alkylthio, C₁-C₄alkylsulfonyl, C₁-C₄alkylsulfinyl, -CONR₀₃₂R₀₃₃, cyano, nitro, -CHO, -CO₂R₀₃₈, -COR₀₃₉, -COS-C₁-C₄alkyl, -NR₀₃₄R₀₃₅, or by phenyl which may itself be substituted by C₁-C₄alkyl, C_1 - C_6 haloalkyl, C_1 - C_4 alkoxy, C_1 - C_4 haloalkoxy, C_2 - C_6 alkenyl, C_3 - C_6 alkynyl, C_3 - C_6 alkenyloxy, C₃-C₆alkynyloxy, halogen, nitro, cyano, -COOH, COOC₁-C₄alkyl, COOphenyl, C₁-C₄alkoxy, phenoxy, $(C_1-C_4alkoxy)-C_1-C_4alkyl$, $(C_1-C_4alkylthio)-C_1-C_4alkyl$, $(C_1-C_4alkylsulfinyl)-C_1-C_4alkyl$, (C₁-C₄alkylsulfonyl)-C₁-C₄alkyl, NHSO₂-C₁-C₄alkyl, NHSO₂-phenyl, N(C₁-C₆alkyl)SO₂-C₁-C₄alkyl, N(C₁-C₆alkyl)SO₂-phenyl, N(C₂-C₆alkenyl)SO₂-C₁-C₄alkyl, N(C₂-C₆alkenyl)SO₂-phenyl, $N(C_3-C_6alkynyl)SO_2-C_1-C_4alkyl$, $N(C_3-C_6alkynyl)SO_2-phenyl$, $N(C_3-C_7cycloalkyl)SO_2-C_1-C_4-c_4alkyl$ alkyl, $N(C_3-C_7cycloalkyl)SO_2$ -phenyl, $N(phenyl)SO_2-C_1-C_4alkyl$, $N(phenyl)SO_2$ -phenyl, OSO₂-C₁-C₄alkyl, CONR₀₄₀R₀₄₁, OSO₂-C₁-C₄haloalkyl, OSO₂-phenyl, C₁-C₄alkylthio, C₁-C₄haloalkylthio, phenylthio, C₁-C₄alkylsulfonyl, C₁-C₄haloalkylsulfonyl, phenylsulfonyl, C₁-C₄-

alkylsulfinyl, C₁-C₄haloalkylsulfinyl, phenylsulfinyl, C₁-C₄alkylenephenyl or by -NR₀₄₃CO₂R₀₄₂;

WO 01/54501

or R₀₁ is C₃-C₆alkynyl or C₃-C₆alkynyl substituted by halogen, C₁-C₄haloalkyl, cyano, -CO₂R₀₄₄, or by phenyl which may itself be substituted by C₁-C₄alkyl, C₁-C₆haloalkyl, C₁-C₄alkoxy, C_1 - C_4 haloalkoxy, C_2 - C_6 alkenyl, C_3 - C_6 alkenyl, C_3 - C_6 alkenyloxy, C_3 - C_6 alkenyloxy, halogen, nitro, cyano, -COOH, COOC₁-C₄alkyl, COOphenyl, C₁-C₄alkoxy, phenoxy, (C₁-C₄alkoxy)-C₁-C₄alkyl, (C₁-C₄alkylthio)-C₁-C₄alkyl, (C₁-C₄alkyl, (C₁-C₄alkylsulfonyl)-C₁-C₄alkyl, NHSO₂-C₁-C₄alkyl, NHSO₂-phenyl, N(C₁-C₆alkyl)SO₂-C₁-C₄alkyl, $N(C_1-C_6alkyl)SO_2$ -phenyl, $N(C_2-C_6alkenyl)SO_2-C_1-C_4alkyl$, $N(C_2-C_6alkenyl)SO_2$ -phenyl, $N(C_3-C_6alkynyl)SO_2-C_1-C_4alkyl$, $N(C_3-C_6alkynyl)SO_2$ -phenyl, $N(C_3-C_7cycloalkyl)SO_2-C_1-C_4$ alkyl, N(C₃-C₇cycloalkyl)SO₂-phenyl, N(phenyl)SO₂-C₁-C₄alkyl, N(phenyl)SO₂-phenyl, OSO₂-C₁-C₄alkyl, CONR₀₂₈R₀₂₉, OSO₂-C₁-C₄haloalkyl, OSO₂-phenyl, C₁-C₄alkylthio, C₁-C₄haloalkylthio, phenylthio, C₁-C₄alkylsulfonyl, C₁-C₄haloalkylsulfonyl, phenylsulfonyl, C₁-C₄alkylsulfinyl, C₁-C₄haloalkylsulfinyl, phenylsulfinyl, C₁-C₄alkylenephenyl or by -NR₀₃₁CO₂R₀₃₀; or R₀₁ is C₃-C₇cycloalkyl or C₃-C₇cycloalkyl substituted by C₁-C₄alkyl, C₁-C₄alkoxy, C₁-C₄alkylthio, C₁-C₄alkylsulfinyl, C₁-C₄alkylsulfonyl, or by phenyl which may itself be substituted by halogen, nitro, cyano, C_1 - C_4 alkoxy, C_1 - C_4 haloalkoxy, C_1 - C_4 alkylthio, C_1 - C_4 haloalkylthio, C_1 - C_4 alkyl or by C_1 - C_4 haloalkyl; or

 $R_{01} \text{ is } C_1\text{-}C_4\text{alkylene-}C_3\text{-}C_7\text{cycloalkyl, phenyl, or phenyl substituted by } C_1\text{-}C_4\text{alkyl, } C_1\text{-}C_6\text{halo-alkyl, } C_1\text{-}C_4\text{alkoxy, } C_1\text{-}C_4\text{haloalkoxy, } C_2\text{-}C_6\text{alkenyl, } C_3\text{-}C_6\text{alkynyl, } C_3\text{-}C_6\text{alkenyloxy, } C_3\text{-}C_6\text{-} \text{alkynyloxy, halogen, nitro, cyano, -}COOH, COOC_1\text{-}C_4\text{alkyl, } COOphenyl, } C_1\text{-}C_4\text{alkoxy, } \text{phenoxy, } (C_1\text{-}C_4\text{alkoxy})\text{-}C_1\text{-}C_4\text{alkyl, } (C_1\text{-}C_4\text{alkyl, } (C_1\text{-}C_6\text{alkyl, } (C_1\text{-}C_4\text{-}C_4\text{-} (C_1\text{-}C_4$

 R_{02} , R_{038} , R_{044} and R_{066} are each independently of the others hydrogen, C_1 - C_4 alkyl, phenyl, or phenyl substituted by C_1 - C_4 alkyl, C_1 - C_6 haloalkyl, C_1 - C_4 alkoxy, C_1 - C_4 haloalkoxy, C_2 - C_6 alkenyl, C_3 - C_6 alkenyloxy, C_3 - C_6 alkenyloxy, halogen, nitro, cyano, -COOH, COOC $_1$ - C_4 -alkyl, COOphenyl, C_1 - C_4 alkoxy, phenoxy, $(C_1$ - C_4 alkoxy)- C_1 - C_4 alkyl, $(C_1$ - C_4 alkylsulfinyl)- C_1 - C_4 alkyl, $(C_1$ - C_4 alkylsulfinyl)- C_1 - C_4 alkyl, $(C_1$ - C_4 alkylsulfinyl)- C_1 - C_4 alkyl, $(C_1$ - C_6 alkyl)SO $_2$ -phenyl, $(C_1$ - C_6 alkyl)SO $_2$ - $(C_1$ - $(C_6$ Alkyl)SO $_2$ -(

 $SO_2-C_1-C_4$ alkyl, $N(C_2-C_6$ alkenyl) SO_2 -phenyl, $N(C_3-C_6$ alkynyl) $SO_2-C_1-C_4$ alkyl, $N(C_3-C_6$ alkynyl)SO₂-phenyl, N(C₃-C₇cycloalkyl)SO₂-C₁-C₄alkyl, N(C₃-C₇cycloalkyl)SO₂-phenyl, N(phenyl)SO₂-C₁-C₄alkyl, N(phenyl)SO₂-phenyl, OSO₂-C₁-C₄alkyl, CONR₀₄₉R₀₅₀, OSO₂-C₁-C₄haloalkyl, OSO₂-phenyl, C₁-C₄alkylthio, C₁-C₄haloalkylthio, phenylthio, C₁-C₄alkylsulfonyl, C₁-C₄haloalkylsulfonyl, phenylsulfonyl, C₁-C₄alkylsulfinyl, C₁-C₄haloalkylsulfinyl, phenylsulfinyl, -C₁-C₄-alkylphenyl or by -NR₀₅₂CO₂R₀₅₃; R₀₃, R₀₃₉ and R₀₆₇ are each independently of the others C₁-C₄alkyl, phenyl, or phenyl substituted by C₁-C₄alkyl, C₁-C₆haloalkyl, C₁-C₄alkoxy, C₁-C₄haloalkoxy, C₂-C₆alkenyl, C₃-C₆alkynyl, C₃-C₆alkenyloxy, C₃-C₆alkynyloxy, halogen, nitro, cyano, -COOH, COOC₁-C₄alkyl, COOphenyl, C₁-C₄alkoxy, phenoxy, (C₁-C₄alkoxy)-C₁-C₄alkyl, (C₁-C₄alkylthio)-C₁-C₄alkyl, $(C_1-C_4$ alkylsulfinyl)- C_1-C_4 alkyl, $(C_1-C_4$ alkylsulfonyl)- C_1-C_4 alkyl, NHSO₂- C_1-C_4 alkyl, NHSO₂-phenyl, N(C₁-C₆alkyl)SO₂-C₁-C₄alkyl, N(C₁-C₆alkyl)SO₂-phenyl, N(C₂-C₆alkenyl)- $SO_2-C_1-C_4$ alkyl, $N(C_2-C_6$ alkenyl) SO_2 -phenyl, $N(C_3-C_6$ alkynyl) $SO_2-C_1-C_4$ alkyl, $N(C_3-C_6$ alkynyl)-SO₂-phenyl, N(C₃-C₇cycloalkyl)SO₂-C₁-C₄alkyl, N(C₃-C₇cycloalkyl)SO₂-phenyl, N(phenyl)-SO₂-C₁-C₄alkyl, N(phenyl)SO₂-phenyl, OSO₂-C₁-C₄alkyl, CONR₀₈₈R₀₅₄, OSO₂-C₁-C₄haloalkyl, OSO₂-phenyl, C_1 - C_2 alkylthio, C_1 - C_2 haloalkylthio, phenylthio, C_1 - C_2 alkylsulfonyl, C_1 - C_2 haloalkylsulfonyl, phenylsulfonyl, C₁-C₄alkylsulfinyl, C₁-C₄haloalkylsulfinyl, phenylsulfinyl, -(CH₂)_t-phenyl or by -NR₀₅₆CO₂R₀₅₅;

R₀₄ is C₁-C₄alkyl;

 $R_{05} \text{ is hydrogen, } C_1\text{-}C_4\text{alkyl, } C_2\text{-}C_6\text{alkenyl, } C_3\text{-}C_6\text{alkynyl, } C_3\text{-}C_7\text{cycloalkyl, phenyl, or phenyl substituted by } C_1\text{-}C_4\text{alkyl, } C_1\text{-}C_6\text{haloalkyl, } C_1\text{-}C_4\text{alkoxy, } C_1\text{-}C_4\text{haloalkoxy, } C_2\text{-}C_6\text{alkenyl, } C_3\text{-}C_6\text{-}\text{alkynyl, } C_3\text{-}C_6\text{alkenyloxy, } C_3\text{-}C_6\text{alkynyloxy, halogen, nitro, cyano, -}COOH, COOC_1\text{-}C_4\text{alkyl, } COOphenyl, } C_1\text{-}C_4\text{alkoxy, phenoxy, } (C_1\text{-}C_4\text{alkoxy})\text{-}C_1\text{-}C_4\text{alkyl, } (C_1\text{-}C_4\text{alkylthio})\text{-}C_1\text{-}C_4\text{alkyl, } (C_1\text{-}C_4\text{alkyl, } NHSO_2\text{-}C_1\text{-}C_4\text{alkyl, } NHSO_2\text{-}C_1\text{-}C_4\text{alkyl, } NHSO_2\text{-}C_1\text{-}C_4\text{alkyl, } NHSO_2\text{-}C_1\text{-}C_4\text{alkyl, } N(C_1\text{-}C_6\text{alkyl})\text{-}SO_2\text{-}C_1\text{-}C_4\text{alkyl, } N(C_2\text{-}C_6\text{alkenyl})\text{-}SO_2\text{-}C_1\text{-}C_4\text{alkyl, } N(C_3\text{-}C_6\text{alkenyl})\text{-}SO_2\text{-}phenyl, } N(C_3\text{-}C_6\text{alkenyl})\text{-}SO_2\text{-}Phenyl, } N(C_3\text{-}C_6\text{alkynyl})\text{-}SO_2\text{-}C_1\text{-}C_4\text{alkyl, } N(C_3\text{-}C_6\text{alkynyl})\text{-}SO_2\text{-}Phenyl, } N(C_3\text{-}C_7\text{cycloalkyl})\text{-}SO_2\text{-}C_1\text{-}C_4\text{alkyl, } N(C_3\text{-}C_7\text{cycloalkyl})\text{-}SO_2\text{-}Phenyl, } N(C_3\text{-}C_7\text{-}C_4\text{alkyl, } N(C_3\text{-}C_7\text{-}C_4\text{-}C_4\text{-}C_4\text{-}C_4\text{-}C_4\text{-}C_4\text{-}C_4\text{-}C_4\text{-}C_4\text{-}C_4\text{-}C_4\text{-}C_4\text{-}C_4\text{-}C_4\text{-}C_4$

 R_{06} is hydrogen, C_1 - C_4 alkyl, C_2 - C_6 alkenyl, C_3 - C_6 alkynyl, C_3 - C_7 cycloalkyl, phenyl, or phenyl substituted by C_1 - C_4 alkyl, C_1 - C_6 haloalkyl, C_1 - C_4 alkoxy, C_1 - C_4 haloalkoxy, C_2 - C_6 alkenyl,

 $C_3-C_6 alkynyl,\ C_3-C_6 alkenyloxy,\ C_3-C_6 alkynyloxy,\ halogen,\ nitro,\ cyano,\ -COOH,\ COOC_1-C_4-alkyl,\ COOphenyl,\ C_1-C_4 alkoxy,\ phenoxy,\ (C_1-C_4 alkoxy)-C_1-C_4 alkyl,\ (C_1-C_4 alkylthio)-C_1-C_4-alkyl,\ (C_1-C_4 alkylsulfinyl)-C_1-C_4 alkyl,\ (C_1-C_4 alkylsulfonyl)-C_1-C_4 alkyl,\ NHSO_2-C_1-C_4 alkyl,\ NHSO_2-C_1-C_4 alkyl,\ N(C_1-C_6 alkyl)SO_2-phenyl,\ N(C_2-C_6 alkenyl)-SO_2-C_1-C_4 alkyl,\ N(C_3-C_6 alkynyl)SO_2-phenyl,\ N(C_3-C_6 alkynyl)SO_2-phenyl,\ N(C_3-C_6 alkynyl)SO_2-phenyl,\ N(C_3-C_7 cycloalkyl)SO_2-phenyl,\ N(C_3-C_7 cycloalkyl)SO_2-phenyl,\ N(phenyl)-SO_2-C_1-C_4 alkyl,\ N(phenyl)SO_2-phenyl,\ OSO_2-C_1-C_4 alkyl,\ CONR_{061}R_{062},\ OSO_2-C_1-C_4 haloalkyl,\ OSO_2-phenyl,\ C_1-C_4 haloalkylthio,\ phenylsulfonyl,\ C_1-C_4 haloalkylsulfinyl,\ phenylsulfonyl,\ C_1-C_4-alkylsulfonyl,\ phenylsulfonyl,\ C_1-C_4-alkylsulfinyl,\ phenylsulfinyl,\ C_1-C_4-alkylsulfinyl,\ phenylsulfinyl,\ C_1-C_4-alkylsulfinyl,\ phenylsulfinyl,\ C_1-C_4-alkylsulfinyl,\ phenylsulfinyl,\ phenylsulfin$

R₀₇ is phenyl, C₁-C₄alkyl, C₁-C₄alkoxy or -NR₀₈R₀₉;

 R_{08} and R_{09} are each independently of the other C_1 - C_4 alkyl, phenyl, or phenyl substituted by halogen, nitro, cyano, C_1 - C_4 alkyl, C_1 - C_4 alkoxy, C_1 - C_4 thioalkyl, - CO_2R_{066} , - COR_{067} , C_1 - C_4 -alkylsulfinyl or by C_1 - C_4 haloalkyl; or R_{08} and R_{09} together form a 5- or 6-membered ring, which may be interrupted by oxygen, NR_{065} or by S;

 R_{015} , R_{031} , R_{043} , R_{048} , R_{052} , R_{056} , R_{060} and R_{064} are each independently of the others hydrogen, C_1 - C_4 alkyl, C_2 - C_6 alkenyl, C_3 - C_6 alkynyl or C_3 - C_7 cycloalkyl;

 $R_{025},\,R_{026},\,R_{027},\,R_{028},\,R_{029},\,R_{030},\,R_{032},\,R_{033},\,R_{034},\,R_{035},\,R_{036},\,R_{037},\,R_{040},\,R_{041},\,R_{042},\,R_{045},\,R_{046},\,R_{047},\,R_{049},\,R_{050},\,R_{053},\,R_{054},\,R_{055},\,R_{057},\,R_{058},\,R_{059},\,R_{061},\,R_{062},\,R_{063},\,R_{065}\,\,\text{and}\,\,R_{068}\,\,\text{are}\,\,\text{each}\,\,\text{independently of the others hydrogen,}\,\,C_1-C_4\text{alkyl,}\,\,C_2-C_6\text{alkenyl,}\,\,C_3-C_6\text{alkynyl,}\,\,C_3-C_7\text{cyclo-alkyl,}\,\,\text{phenyl,}\,\,\text{or}\,\,\text{phenyl}\,\,\text{substituted}\,\,\text{by halogen,}\,\,\text{nitro,}\,\,\text{cyano,}\,\,C_1-C_4\text{alkoxy,}\,\,C_1-C_4\text{haloalkylthio,}\,\,C_1-C_4\text{haloalkylthio,}\,\,C_1-C_4\text{alkyl}\,\,\text{or}\,\,\text{by}\,\,C_1-C_4\text{haloalkyl;}\,\,\text{and}$

 $R_{36} \text{ is } C_1\text{-}C_4\text{alkyl, } C_1\text{-}C_4\text{haloalkyl, } C_3\text{-}C_6\text{alkenyl, } C_3\text{-}C_6\text{haloalkenyl, } C_3\text{-}C_6\text{alkynyl, } C_3\text{-}C_6\text{alkynyl, } C_3\text{-}C_6\text{alkynyl, } C_3\text{-}C_6\text{alkyl, } C_1\text{-}C_4\text{alkyl, } C_1\text{-}C_4\text{alky$

 C_4 haloalkylsulfinyl, C_1 - C_4 haloalkylsulfonyl, C_1 - C_4 alkylcarbonyl, di(C_1 - C_4 alkyl)amino, C_1 - C_4 alkoxy, C_1 - C_4 haloalkoxy, C_1 - C_4 alkyl- $S(O)_2O$, C_1 - C_4 haloalkyl- $S(O)_2O$, or by phenyl which may itself be substituted by halogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_3 - C_6 alkenyl, C_3 - C_6 alkynyl, cyano, nitro or by COOH;

or an agronomically acceptable salt of such a compound, and

b) a synergistically effective amount of one or more compounds selected from a compound of formula 2.1

WO 01/54501

$$R_{51}$$
 N
 N
 Me
 Me
 Me
 Me
 Me
 Me
 Me

wherein R_{51} is $CH_2\text{-}OMe$, ethyl or hydrogen;

 R_{52} is hydrogen or R_{51} and R_{52} together are the group -CH=CH-CH=CH-; and a compound of formula 2.2

$$R_{53}$$
 R_{55}
 R_{56}
 CH_2CI
 R_{54} O

wherein R_{53} is ethyl, R_{54} is methyl or ethyl and R_{55} is -CH(Me)-CH₂OMe, <S>-CH(Me)-CH₂OMe, CH₂OMe or CH₂O-CH₂CH₃; and a compound of formula 2.3

$$R_{56}$$
 CH_2CI
 (2.3)

wherein R_{56} is CH(Me)- CH_2OMe or <S>CH(Me)- CH_2OMe ; and a compound of formula 2.4

wherein R_{57} is chlorine, methoxy or methylthio, R_{58} is ethyl and R_{59} is ethyl, isopropyl, $-C(CN)(CH_3)-CH_3$ or tert-butyl; and a compound of formula 2.5

wherein R_{60} is ethyl or n-propyl, R_{61} is COO^{-} 1/2 Ca^{++} , -CH₂-CH(Me)S-CH₂CH₃ or the group

and a compound of formula 2.6

wherein R_{62} is hydrogen, methoxy or ethoxy, R_{63} is hydrogen, methyl, methoxy or fluorine, R_{64} is COOMe, fluorine or chlorine, R_{65} is hydrogen or methyl, Y is methine, C-F or nitrogen, Z is methine or nitrogen and R_{66} is fluorine or chlorine; and a compound of formula 2.7

wherein R_{67} is hydrogen or -C(O)-S-n-octyl; and a compound of formula 2.8

- 247 -

wherein R_{68} is either bromine or iodine; and a compound of formula 2.9

WO 01/54501

wherein R_{69} is chlorine or nitro; and a compound of formula 2.10

$$CI \longrightarrow R_{70} O CHF_2$$
 $N \longrightarrow Me$
 $R_{71} (2.10),$

wherein R_{70} is fluorine or chlorine and R_{71} is $-CH_2-CH(Cl)-COOCH_2CH_3$ or $-NH-SO_2Me$; and a compound of formula 2.11

wherein R_{72} is trifluoromethyl or chlorine; and a compound of formula 2.12

Me
$$P$$
 COOH (2.12), R_{73}

wherein R_{73} is NH_2 or $<S>NH_2$; and a compound of formula 2.13 WO 01/54501

wherein Y_1 is nitrogen, methine, NH-CHO or N-Me, Y_2 is nitrogen, methine or C-I, Y_3 is methine, Y_4 is methine or Y_3 and Y_4 together are sulfur or C-CI, Y_5 is nitrogen or methine, Y_6 is methyl, difluoromethoxy, trifluoromethyl or methoxy, Y_7 is methoxy or difluoromethoxy and R_{74} is CONMe₂, COOMe, COOC₂H₅, trifluoromethyl, CH₂-CH₂CF₃ or SO₂CH₂CH₃, or a sodium salt thereof;

and the compound of formula 2.13.c

and the compound of formula 2.14

Me
$$N-N$$
 Me $N-N$ Me

and the compound of formula 2.15

$$O_2N$$
 CI
 O_2N
 O_2N

- 249 -

HOOC
$$N$$
 PO(OH)₂ (2.16),

and the compound of formula 2.17

and the compound of formula 2.18

Me
$$N^{+}$$
 O^{-} H $(2.18),$ O^{-} Me

and the compound of formula 2.19

and the compound of formula 2.20

and the compound of formula 2.22

and the compound of formula 2.23

and the compound of formula 2.25

and the compound of formula 2.26

and the compound of formula 2.27

and the compound of formula 2.28

and the compound of formula 2.30

$$F_3C$$
 S
 O
 $N-N$
 N

and the compound of formula 2.31

$$N = N$$
 $N = N$
 $N =$

and the compound of formula 2.32

$$CI$$
 N
 N
 Me
 (2.32) ,
 Me

and the compound of formula 2.33

HOOC
$$N$$
 P O Me S Me Me Me Me

and the compound of formula 2.34
$$H_2N - SO_2NHCO_2CH_3$$
 (2.34),

and the compound of formula 2.35
$$CH_3NH \longrightarrow N$$
 (2.35),

and the compound of formula 2.36
$$CH_3 \downarrow N O C(CH_3)_3$$
 (2.36),

and the compound of formula 2.37
$$N = CH_2CH(CH_3)_2$$
 CO_2CH_3 (2.37), CF_2H

and the compound of formula 2.38
$$CH_3SOC$$
 $CH_2CH(CH_3)_2$ (2.38),

and the compound of formula 2.39
$$(CH_3)_2N + N + O$$
 (2.39),

and the compound of formula 2.40
$$CI \longrightarrow NHCON(CH_3)_2$$
 (2.40),

and the compound of formula 2.41
$$CI \longrightarrow OCH_2CO_2H$$
 (2.41), CH_3

and the compound of formula 2.42

$$CI \longrightarrow CH_3$$
 $OCHCO_2H$
 CH_3
 CH_3

$$(CH_3)_3C \xrightarrow{S} N-N$$
 $N-N$
 $(CH_3)_3C \xrightarrow{S} NCONHCH_3$
 $(2.43),$

and the compound of formula 2.43

and the compound of formula 2.44

and the compound of formula 2.45

and the compound of formula 2.46

and the compound of formula 2.47

$$\begin{array}{c|c} O \\ O \\ O \\ CI \end{array}$$

and the compound of formula 2.48

and the compound of formula 2.49

and the compound of formula 2.50

$$H_3C$$
 CH_3
 CH_3

and the compound of formula 2.51

WO 01/54501 PCT/EP01/00720

$$CI \longrightarrow P$$
 $N \longrightarrow F$
 $N \longrightarrow F$
 $CI \longrightarrow N$
 $N \longrightarrow F$
 N

2. A composition according to claim 1, wherein in formula I

each R is independently hydrogen, C₁-C₆alkyl, C₂-C₆alkenyl, C₂-C₆haloalkenyl, C₂-C₆alkynyl, C₂-C₆haloalkynyl, C₃-C₆cycloalkyl, C₁-C₆alkoxy, C₁-C₆haloalkoxy, C₁-C₆alkylthio, C₁-C₆alkylsulfinyl, C₁-C₆alkylsulfonyl, C₁-C₆haloalkyl, C₁-C₆haloalkylthio, C₁-C₆haloalkylsulfinyl, C₁-C₆haloalkylsulfonyl, C_1 - C_6 alkoxycarbonyl, C_1 - C_6 alkylcarbonyl, C_1 - C_6 alkylamino, di(C_1 - C_6 alkyl)amino, C₁-C₆alkylaminosulfonyl, di(C₁-C₆alkyl)aminosulfonyl, -N(R₁)-S-R₂, -N(R₃)-SO-R₄, -N(R₅)-SO₂-R₆, nitro, cyano, halogen, hydroxy, amino, benzylthio, benzylsulfinyl, benzylsulfonyl, phenyl, phenoxy, phenylthio, phenylsulfinyl or phenylsulfonyl; wherein the phenyl group may itself be mono-, di- or tri-substituted by C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_3 - C_6 alkenyl, C_3 - C_6 haloalkenyl, C_3 - C_6 alkynyl, C_3 - C_6 haloalkynyl, C_1 - C_6 alkoxy, C_1 - C_6 haloalkoxy, C_3 - C_6 alkenyloxy, C₃-C₆alkynyloxy, mercapto, C₁-C₆alkylthio, C₁-C₆haloalkylthio, C₃-C₆alkenylthio, C₃-C₆haloalkenylthio, C₃-C₆alkynylthio, C₂-C₅alkoxyalkylthio, C₃-C₅acetylalkylthio, C₃-C₆alkoxycarbonylalkylthio, C₂-C₄cyanoalkylthio, C₁-C₆alkylsulfinyl, C₁-C₆haloalkylsulfinyl, C_1 - C_6 alkylsulfonyl, C_1 - C_6 haloalkylsulfonyl, aminosulfonyl, C_1 - C_2 alkylaminosulfonyl, C₂-C₄dialkylaminosulfonyl, C₁-C₃alkylene-R₄₅, NR₄₆R₄₇, halogen, cyano, nitro, phenyl or by benzylthio, wherein the latter phenyl and benzylthio groups may themselves be substituted on the phenyl ring by C_1 - C_3 alkyl, C_1 - C_3 haloalkyl, C_1 - C_3 alkoxy, C_1 - C_3 haloalkoxy, halogen, cyano or by nitro;

or each R is independently a monocyclic or fused bicyclic ring system having from 5 to 10 members, which may be aromatic or partially saturated and may contain from 1 to 4 hetero atoms selected from nitrogen, oxygen and sulfur; wherein the ring system either is bound directly to the pyridine ring or is bound to the pyridine ring via a C_1 - C_4 alkylene group, and each ring system may not contain more than two oxygen atoms and may not contain more than two sulfur atoms, and the ring system may itself be mono-, di- or tri-substituted by C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_3 - C_6 alkenyl, C_3 - C_6 haloalkenyl, C_3 - C_6 alkynyl, C_3 - C_6 alkynyl, C_3 - C_6 alkynyloxy, mercapto, C_1 - C_6 alkylthio,

 C_1 - C_6 haloalkylthio, C_3 - C_6 alkenylthio, C_3 - C_6 haloalkenylthio, C_3 - C_6 alkynylthio, C_2 - C_5 alkoxy-alkylthio, C_3 - C_5 acetylalkylthio, C_3 - C_6 alkoxycarbonylalkylthio, C_2 - C_4 cyanoalkylthio, C_1 - C_6 alkylsulfinyl, C_1 - C_6 haloalkylsulfinyl, C_1 - C_6 haloalkylsulfinyl, aminosulfonyl, aminosulfonyl, C_1 - C_6 haloalkylsulfonyl, aminosulfonyl, C_1 - C_3 alkylaminosulfonyl, C_1 - C_3 alkylaminosulfonyl, C_1 - C_3 alkylene- C_3 , C_4 0 halogen, cyano, nitro, phenyl or by benzylthio, wherein phenyl and benzylthio may themselves be substituted on the phenyl ring by C_1 - C_3 alkyl, C_1 - C_3 haloalkyl, C_1 - C_3 alkoxy, C_1 - C_3 haloalkoxy, halogen, cyano or by nitro, and wherein the substituents on the nitrogen in the heterocyclic ring are other than halogen.

3. A composition according to claim 1, that comprises, as compound of formula I, a compound of formula Ia

$$R_{49}$$
 Q (Ia)

wherein

WO 01/54501

R₄₈ is C₁-C₆alkyl, C₂-C₆alkenyl, C₂-C₆haloalkenyl, C₂-C₆haloalkynyl, C₃-C₆cycloalkyl, C₁-C₆haloalkyl, or a monocyclic or fused bicyclic ring system having from 5 to 10 members, which may be aromatic or partially saturated and may contain from 1 to 4 hetero atoms selected from nitrogen, oxygen and sulfur, wherein the ring system either is bound directly to the pyridine ring or is bound to the pyridine ring via a C₁-C₄alkylene group, and each ring system may not contain more than two oxygen atoms and may not contain more than two sulfur atoms, and the ring system may itself be mono-, di- or tri-substituted by C₁-C₆alkyl, C₁-C₆haloalkyl, C₃-C₆alkenyl, C₃-C₆haloalkenyl, C₃-C₆haloalkynyl, C₁-C₆alkoxy, C₁-C₆haloalkoxy, C₃-C₆alkenyloxy, C₃-C₆alkynyloxy, mercapto, C₁-C₆alkylthio, C₁-C₆haloalkylthio, C₃-C₆alkenylthio, C₃-C₆haloalkenylthio, C₃-C₆alkynylthio, C₂-C₅alkoxyalkylthio, C₃-C₅acetylalkylthio, C₃-C₆alkoxycarbonylalkylthio, C₂-C₄cyanoalkylthio, C₁-C₆alkylsulfinyl, C_1 - C_6 haloalkylsulfinyl, C_1 - C_6 alkylsulfonyl, C_1 - C_6 haloalkylsulfonyl, aminosulfonyl, C₁-C₂alkylaminosulfonyl, C₂-C₄dialkylaminosulfonyl, C₁-C₃alkylene-R₇, NR₈R₉, halogen, cyano, nitro, phenyl or by benzylthio, wherein phenyl and benzylthio may themselves be substituted on the phenyl ring by C_1 - C_3 alkyl, C_1 - C_3 haloalkyl, C_1 - C_3 alkoxy, C_1 - C_3 haloalkoxy, halogen, cyano or by nitro, and wherein the substituents on the nitrogen in the heterocyclic ring are other than halogen;

WO 01/54501

 R_{49} is hydrogen, C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, halogen, or phenyl which may be substituted by C_1 - C_3 alkyl, C_1 - C_3 haloalkyl, C_1 - C_3 alkoxy, C_1 - C_3 haloalkoxy, halogen, cyano or by nitro, and R_{50} is C_1 - C_6 haloalkyl.

- 4. A composition according to claim 3, wherein R_{48} is C_1 - C_6 alkyl, C_2 - C_6 alkenyl, C_2 - C_6 haloalkynyl, C_3 - C_6 cycloalkyl or C_1 - C_6 haloalkyl.
- 5. A composition according to claim 1, wherein in formula I Q is the group Q2 or Q3.
- 6. A composition according to claim 5, wherein in the group Q₂ R₂₃ is hydroxy.
- 7. A composition according to claim 5, wherein in the group Q₃ R₄₀ is hydroxy.
- 8. A method of controlling undesired plant growth in crops of useful plants, which comprises allowing a herbicidally effective amount of a composition according to claim 1 to act on the crop plant or the locus thereof.
- 9. A method according to claim 8, wherein the crop plant is maize or sugar cane.
- 10. A method according to claim 8, wherein the crops of useful plants are treated with the mentioned composition at rates of application corresponding to a total amount of active ingredient of from 1 to 5000 g per hectare.
- 11. A herbicidally selective composition that, in addition to comprising customary inert formulation adjuvants, such as carriers, solvents and wetting agents, comprises as active ingredient a mixture of
- a) a herbicidally-synergistically effective amount of a compound of formula I according to claim 1 and one or more compounds selected from the compounds of formulae 2.1 to 2.51 according to claim 1 and
- b) a herbicidally-antagonistically effective amount of a compound selected from the compound of formula 3.1

and the compound of formula 3.2

and the compound of formula 3.3

$$CI$$

$$O-CH_2-C(O)-O-CH(CH_3)C_5H_{11}-n$$
(3.3),

and the compound of formula 3.4

$$CI \longrightarrow \begin{array}{c} CI \text{ Me } COOCH_2CH_3 \\ \\ N \\ COOCH_2CH_3 \end{array} \tag{3.4),}$$

and the compound of formula 3.5

and the compound of formula 3.6

WO 01/54501

- 260 -

PCT/EP01/00720

and the compound of formula 3.7

and the compound of formula 3.8

and of formula 3.9

 $Cl_2CHCON(CH_2CH=CH_2)_2$ (3.9),

and of formula 3.10

and of formula 3.12

and of formula 3.13

and of formula 3.14

OH O
$$N-N$$
 (3.16).

- 12. A method for the selective control of weeds and grasses in crops of useful plants, which comprises treating the useful plants, seeds or cuttings thereof, or the area of cultivation thereof, with a herbicidally-synergistically effective amount of a composition according to claim 10.
- 13. A method according to claim 12, wherein the rate of application of herbicides is from 1 to 5000 g/ha and the rate of application of safener is from 0.001 to 0.5 kg/ha.
- 14. A method according to claim 12, wherein the crops of useful plants are maize or sugar cane.
- 15. A herbicidally selective composition that, in addition to comprising customary inert formulation adjuvants, such as carriers, solvents and wetting agents, comprises as active ingredient a mixture of
- a) a herbicidally effective amount of a compound of formula I according to claim 1 and
 b) a herbicidally-antagonistically effective amount of a compound selected from the compound of formula 3.1

and the compound of formula 3.2

WO 01/54501

and the compound of formula 3.3

CI

$$O$$
-CH₂-C(O)-O-CH(CH₃)C₅H₁₁-n

and the compound of formula 3.4

CI Me
$$COOCH_2CH_3$$
 (3.4), $COOCH_2CH_3$

and the compound of formula 3.5

and the compound of formula 3.6

COOH COOH (3.6),

- 264 -

PCT/EP01/00720

and the compound of formula 3.8

and of formula 3.9

Cl₂CHCON(CH₂CH=CH₂)₂ (3.9),

and of formula 3.10

PCT/EP01/00720

and of formula 3.12

and of formula 3.13

and of formula 3.14

WO 01/54501 PCT/EP01/00720

- 266 -

and of formula 3.16

16. A method for the selective control of weeds and grasses in crops of useful plants, which comprises treating the useful plants, seeds or cuttings thereof, or the area of cultivation thereof, with a herbicidally-synergistically effective amount of a composition according to claim 14.