Plan

Chapitre 1 Représentation des nombres – Numération

I Système de numération

- I.1 Introduction
- 1.2 nombres décimaux
- I.3 nombres binaires
- 1.4 nombres hexadécimaux

II Conversions

- II.1 Conversion d'un nombre en base b à un nombre en base 10
- II.2 Conversion d'un nombre en base 10 à un nombre en base b
- II.3 Conversion d'un nombre entre les bases 2 et 16

III Opérations

I.1 Introduction

Tout entier naturel N peut se décomposer dans la base b tel que

$$N_{(b)} = \alpha_p \alpha_{p-1} \dots \alpha_1 \alpha_0 \rightarrow \text{Représentation de N dans la base b}$$

les symboles $\alpha_i \rightarrow 0 \le \alpha_i \le b-1$ avec

$$N_{(10)} = \sum_{i=0}^{p} \alpha_i b^i = \alpha_0 b^0 + \alpha_1 b^1 + \dots + \alpha_p b^p$$
 b^i (b>1): le poids associé au symbole α_i

- ✓ La signification du symbole dépend de son poids donc de sa place dans la suite des symboles représentant le nombre
- ✓ Même chose pour la parti fractionnaire avec $b^i \rightarrow i < 0$

I.2 Nombres décimaux – base 10

Développement en base 10 (ou écriture décimale) → le plus utilisé (10 doigts de la main)

Nombre entier ($i \ge 0$)

$$N_{(10)} = \sum_{i=0}^{p} \alpha_i 10^i = \alpha_0 10^0 + \alpha_1 10^1 + \dots + \alpha_p 10^p$$

avec 0

$$0 \le \alpha_i \le 9$$
 et "alphabet de α " = $\{0, 1, 2, 3, ..., 9\}$

symboles → chiffres de 0 à 9

poids → puissances positives de 10

Exemple \rightarrow Décomposer 1987 sur la base de 10 sous la forme $\sum_{i=0}^p \alpha_i 10^i$

$$1987_{(10)} = 7 * 10^{0} + 8 * 10^{1} + 9 * 10^{2} + 1 * 10^{3}$$

I.2 Nombres décimaux

Partie fractionnaire(i < 0)

$$n_{(10)} = \sum_{p}^{i=-1} \alpha_i 10^i$$

avec

 $0 \le \alpha_i \le 9$ et "alphabet de α " = $\{0, 1, 2, 3, ..., 9\}$

les symboles → chiffres de 0 à 9

les poids → puissances négatives de 10

Exemple \rightarrow Décomposer 25,308₍₁₀₎ sur la base de 10 sous la forme $\sum_i \alpha_i 10^i$

$$25,308_{(10)} = 8 * 10^{-3} + 0 * 10^{-2} + 3 * 10^{-1} + 5 * 10^{0} + 2 * 10^{1}$$

1.3 Nombres binaires – base 2

Développement en base 2 → le plus utilisé en informatique

- → Plus petite quantité d'information qui ne peut prendre que 2 valeurs : 0 ou 1 (vrai/faux; true/false)
- → Base minimale (2 éléments)

→Bit = Binary Digit

→ Octet = 8 bits / Word = 2 octets

→ Stockage des informations en octets

Nombre entier (i \geq 0)

$$N_{(10)} = \sum_{i=0}^{p} \alpha_i 2^i$$

$$= \alpha_0 2^0 + \alpha_1 2^1 + \dots + \alpha_p 2^p$$

LSB: Least Significant Bit

MSB: Most Significant Bit

avec $0 \le \alpha_i \le 1$ et "alphabet de α " = $\{0, 1\}$

symboles
$$\rightarrow$$
 "alphabet de α " = {0, 1} ($\alpha_i = 0 \ ou \ \alpha_i = 1$)
poids \rightarrow puissances positives de 2

I.3 Nombres binaires

Exemple \rightarrow Décomposer $101_{(2)}$ sur la base de 2 sous la forme $\sum_{i=0}^p \alpha_i 2^i$

$$101_{(2)} = 1 * 2^{0} + 0 * 2^{1} + 1 * 2^{2} MSB$$

Comme en décimal \rightarrow partie fractionnaire avec des bits à droite de la virgule binaire.

Exemple \rightarrow Décomposer 11,101₍₂₎ sur la base de 2 sous la forme $\sum_{i=0}^{p} \alpha_i 2^i$

$$11,101_{(2)} = 1 * 2^{-3} + 0 * 2^{-2} + 1 * 2^{-1} + 1 * 2^{0} + 1 * 2^{1}$$

Tableau des puissances de 2

2 ¹⁰	2 ⁹	2 ⁸	2 ⁷	2 ⁶	2 ⁵	2 4	2 ³	2 ²	2 ¹	2 ⁰	2 -1	2 -2	2 -3
1024	512	256	128	64	32	16	8	4	2	1	0,5	0,25	0,125

I.4 Nombres hexadécimaux – base 16

Développement en base 16 → très utilisée en informatique pour l'affichage

→ Représentation compacte des nombres binaires (4 bits = 1 hexadécimal)

Nombre entier ($i \ge 0$)

$$N_{(10)} = \sum_{i=0}^{p} \alpha_i 16^i$$
 avec $0 \le \alpha_i \le 15$

symboles \rightarrow "alphabet de α " = {0, 1, ... 9, A, B, C, D, E, F} **poids** \rightarrow puissances positives de 16

Tableau de correspondance

А	В	С	D	Е	F
10	11	12	13	14	15

Exemple \rightarrow Décomposer AF,D8₍₁₆₎ sur la base de 16 sous la forme $\sum_{i=0}^{p} \alpha_i 16^i$

AF,
$$D8_{(16)} = 8 * 16^{-2} + D * 16^{-1} + F * 16^{0} + A * 16^{1}$$

Plan

Chapitre 1 Représentation des nombres – Numération

I Système de numération

- I.1 Introduction
- 1.2 nombres décimaux
- 1.3 nombres binaires
- I.4 nombres hexadécimaux

II Conversions

- II.1 Conversion d'un nombre en base b à un nombre en base 10
- II.2 Conversion d'un nombre en base 10 à un nombre en base b
- II.3 Conversion d'un nombre entre les bases 2 et 16

III Opérations

II. Conversions (transcodage)

- → Opération pour changer de base
- → Plus la base est petite, plus le nombre de symboles est grand

II.1 Conversion d'un nombre en base b à un nombre en base 10

Toujours la même méthode → écriture polynomiale

$$N_{(b)} = \sum_{i=0}^{p} \alpha_i b^i = N_{(10)}$$

Exemple \rightarrow Convertir 10011₍₂₎ en base 10

- \rightarrow Convertir 1,101₍₂₎ en base 10
- \rightarrow Convertir 5EA₍₁₆₎ en base 10

II. Conversions (transcodage)

II.1 Conversion d'un nombre en base b à un nombre en base 10

Exemples \rightarrow Convertir 10011₍₂₎ en base 10

$$110011_{(2)} = 1 * 2^{0} + 1 * 2^{1} + 0 * 2^{2} + 0 * 2^{3} + 1 * 2^{4} + 1 * 2^{5} = 1 + 2 + 16 + 32 = 51_{(10)}$$

 \rightarrow Convertir 1,101₍₂₎ en base 10

$$1,101_{(2)} = 1 * 2^{-3} + 0 * 2^{-2} + 1 * 2^{-1} + 1 * 2^{0} = 0,125 + 0,5 + 1 = 1,625_{(10)}$$

 \rightarrow Convertir 5EA₍₁₆₎ en base 10

$$5EA_{(16)} = A * 16^{0} + E * 16^{1} + 5 * 16^{2} = 10 + 14 * 16 + 5 * 256 = 1514_{(10)}$$

2 méthodes

- → a Méthode par soustraction
- → b Méthode par divisions (partie entière) / multiplications successives (partie fractionnaire)

a - Méthode par soustraction

- 1 Recherche du poids le plus proche inférieur de $N_{(10)} \rightarrow b^{k-1}$
- 2 Soustraction de $N_{(10)}$ du nombre $\alpha_{k-1}b^{k-1} \rightarrow N_{(10)}$ - $\alpha_{k-1}b^{k-1}$
- 3 Retour à l'étape 2- avec le nombre obtenu
- 4 Fin quand on arrive à b⁰ pour la partie entière

NB: même méthode pour la partie fractionnaire, poids fort à droite de la virgule Attention: procédé peut devenir infini (voir TD)

Nombre de bits nécessaires

$$k = \lfloor log_2(N_{(10)}) \rfloor + 1$$
ou
$$2^{k-1} < N_{(10)} < 2^k$$

a - Méthode par soustraction

Exemple \rightarrow 95₍₁₀₎ en base 2, 16

base 2

base 16

$$95 - 1*64(2^6) = 31$$

$$31 - 0*32(2^5) = 31$$

$$15 - 15*16^0 = 0$$

$$31 - 1*16(2^4) = 15$$

$$15 - 1*8(2^3) = 7$$

$$7 - 1*4(2^2) = 3$$

$$3 - 1*2(2^1) = 1$$

$$1 - 1*1(2^0) = 0$$

Sens de lecture

$$95_{(10)} = 5F_{(16)}$$

b – Méthode par division euclidiennes successives par b – Partie entière

Lecture de bas en haut (symbole de poids faible d'abord)

Exemple \rightarrow 95₍₁₀₎ en base 2

$$95 = 2*47 + 1$$

 $47 = 2*23 + 1$

$$11 = 2*5 + 1$$

$$5 = 2*2 + 1$$

$$2 = 2*1 + 0$$

$$1 = 2*0 + 1$$

Sens de lecture

OU même méthode écriture différente

b – Méthode par division euclidiennes successives par b – Partie entière

Lecture de bas en haut (symbole de poids faible d'abord)

Exemple \rightarrow 95₍₁₀₎ en base 16

OU même méthode écriture différente

$$95_{(10)} = 5F_{(16)}$$

b – Méthode par division euclidiennes successives par b – Partie entière

Pour les nombres entiers ou partie entière

Divisions successives par b

NB: Les multiples de b se termine par 0 \Rightarrow 2^{1*}7 = 14₍₁₀₎ = 1110₍₂₎ Les multiples de b² se termine par 00 \Rightarrow 2^{2*}3 = 12₍₁₀₎ = 1100₍₂₎

Les multiples de b³ se termine par 000 \rightarrow 2³*3 = 24₍₁₀₎ = 11000₍₂₎

NB: Approache intuitive, pour la conversion en base binaire avec n bits $\rightarrow 2^n$ (valeurs de 0 à 2^n-1)

Nombre de bits	4	8	16	32
Plage de valeurs	0 à 15	0 à 255	0 à 65 535	0 à 4 294 672 296

b – Méthode par multiplications successives – Partie fractionnaire

Pour la partie fractionnaire → Multiplications successives par b

NB: Arrêt des calculs au format défini (calcul infini)...

Une suite de symbole peut se répéter

Exemple \rightarrow 0,375₍₁₀₎ en base 2, 16

b – Méthode par divisions/multiplications successives

Exemple \rightarrow 0,5625₍₁₀₎ en base 2, 16

Exemple \rightarrow 18,5625₍₁₀₎ en base 2, 16

II.3 Conversion d'un nombre entre les bases 2 et 16

- → Toutes ces bases sont des puissances de 2 : 2¹, 2³, 2⁴
 - → Conversions rapides

Passage base hexa (16)

Hexa vers binaire -> chaque symbole est remplacée par 4 bits

binaire vers hexa → paquet de 4 bits = 1 symbole

→ partie entière : de la droite vers la gauche

→ partie fractionnaire : de la gauche vers la droite

→ Rajouter des 0 si besoin

Exemple \rightarrow FA,8₍₁₆₎ en base 2 et 10111,01₍₂₎ en base 16

II.3 Conversion d'un nombre entre les bases 2 et 16

Exemple \rightarrow FA,8₍₁₆₎ en base 2

 \rightarrow 10111,01₍₂₎ en base 16

Rajout de 0 pour avoir des paquets de 4 bits

Plan

Chapitre 1 Représentation des nombres – Numération

I Système de numération

- I.1 Introduction
- 1.2 nombres décimaux
- 1.3 nombres binaires
- I.4 nombres hexadécimaux

II Conversions

- II.1 Conversion d'un nombre en base b à un nombre en base 10
- II.2 Conversion d'un nombre en base 10 à un nombre en base b
- II.3 Conversion d'un nombre entre les bases 2 et 16

III Opérations

III. Opérations

a - Additions

Comme en décimal → Indiquer les retenues

Exemple
$$\rightarrow$$
 111₍₂₎+ 011₍₂₎

$$68_{(16)} + 3A_{(16)}$$

Base 2

$$1_{(2)} + 1_{(2)} = 10_{(2)}$$

$$1_{(2)} + 0_{(2)} = 1_{(2)}$$

$$1_{(2)} + 1_{(2)} + 1_{(2)} = 11_{(2)}$$

$$\begin{array}{c} + \\ 0 \ 1 \ 1_{(2)} \\ 1 \ 0 \ 1 \ 0_{(2)} \end{array}$$

exemple
$$C_{(16)} + 8_{(16)} = C_{(16)} + 4_{(16)} + 4_{(16)} = 14_{(16)}$$

$$10_{(16)}$$

III. Opérations

b - Soustractions

Comme en décimal → Indiquer les retenues

Exemple
$$\rightarrow$$
 111₍₂₎-011₍₂₎ et 100₍₂₎-011₍₂₎

$$68_{(16)}$$
 $-3A_{(16)}$

10(16)

Base 2
$$1_{(2)}-1_{(2)} = 0_{(2)}$$

$$10_{(2)}-1_{(2)} = 1_{(2)}$$

$$011_{(2)}$$

$$100_{(2)}$$

Base 16

Je complète la base 16

exemple
$$15_{(16)}-8_{(16)}=15_{(16)}-5_{(16)}-3_{(16)}=D_{(16)}$$