2. Probability spaces

2.1. What is probability?

The interpretation that conceptualizes probabilities as measurements of degrees of belief is called the *subjective* (or *personal*) *interpretation* of probability.

an example you'll get sick of: rolling a die

"Well, since the die is fair and symmetric, there's an equal chance of rolling any number. And since there are six possible numbers that we could roll, the probability of rolling any one particular number is one in six."

The interpretation of probability whose characteristic qualities are appeals to "symmetry" and decompositions of events into "equally likely outcomes" is called the *classical* interpretation of probability.

The interpretation that conceptualizes probabilities as long-run relative frequencies is called the *frequentist interpretation* of probability.

2.2. A first look at the axiomatic framework

Axiom 2.1 (Probability)

Probabilities are represented by real numbers between 0 and 1, inclusive.

Axiom 2.2 (Probability)

The probability that some outcome occurs is 1.

Axiom 2.3 (Probability)

The probability of one or the other of two *disjoint* events occurring is the sum of the individual probabilities.

2.4. Probability spaces

Q: What *is* probability?

Q: What *is* probability?

A: I don't know. But I **do** know that probabilities, no matter what they are, should follow a simple set of three rules, or axioms:

- 1. Probabilities are represented by real numbers between ${\bf 0}$ and ${\bf 1}$, inclusive.
- 2. The probability that *some* outcome occurs is 1.
- 3. The probability of one or the other of two *disjoint* events occurring is the sum of the individual probabilities.

A probability space consists of three things:

- 1. A set S called the sample space.
 - \circ A sample space S often consists of all possible outcomes of a process or experiment, or it is the population under study (as defined back in <u>Definition 1.1</u>).
 - \circ The elements of S are called *sample points* or *outcomes*.
- 2. A collection of subsets of S, called *events*.
 - So, an event in a sample space is nothing but a subset of the sample space.
 - An event containing just one sample point is called a simple event. All other events are called compound events.
- 3. A probability measure P.
 - Briefly, a probability measure is a function that assigns probabilities to events.
 (The precise definition is given in <u>Definition 2.7</u> below.)

Problem Prompt

Do problem 3 on the worksheet.

Problem Prompt

Do problems 4-6 on the worksheet.

Theorem 2.1 (Properties of Events)

Let S be a sample space.

- 1. If A is an event, then so too is its complement $S \setminus A$.
- 2. The entire sample space itself is always an event, and so is the empty set \emptyset .
- 3. If A and B are events, then so too is the union $A \cup B$ and intersection $A \cap B$.
- 4. In fact, if A_1, A_2, A_3, \ldots is an infinite sequence of events, then the infinite union

$$A_1 \cup A_2 \cup A_3 \cup \cdots$$

and the infinite intersection

$$A_1 \cap A_2 \cap A_3 \cap \cdots$$

are also events.

Let S be a sample space. A probability measure P (also called a probability distribution) is a function that to each event A in S assigns a number P(A), called the probability of A, subject to the following axioms:

- 1. $P(A) \ge 0$ for all events A.
- 2. P(S) = 1.
- 3. If A_1, A_2, A_3, \ldots is a sequence of pairwise disjoint events in S_i , then

$$P(A_1 \cup A_2 \cup A_3 \cup \cdots) = \sum_{i=1}^{\infty} P(A_i).$$

À

Theorem 2.2 (Properties of Probability Measures)

Let P be a probability measure on a sample space S.

- 1. If A is an event, then $P(A) \leq 1$.
- 2. If A and B are events and $A \subset B$, then $P(A) \leq P(B)$.
- 3. If A is an event, then $P(A^c) = 1 P(A)$.
- 4. If A and B are disjoint events, then $P(A \cup B) = P(A) + P(B)$.
- 5. We have $P(\emptyset) = 0$.

P(event) = probability input output

2.6. Discrete and uniform probability measures

Let S be any set and $p:S o\mathbb{R}$ a function.

1. The support of p is the set of all points $s \in S$ where p(s) is nonzero, i.e., it is the set

$$\{s \in S : p(s) \neq 0\}.$$
 (2.1)

2. The function p is said to have *discrete* support if its support (2.1) is either finite or countably infinite.

Definition 2.9 (sort of)

A set A is countably infinite if, given an infinite amount of time, I could count the elements of A one at a time, counting one element per second.

Countably infinite

un countably infinite

Oll Name of Strain of Stra one! but where is "two"?1

Let P be a probability measure on a sample space S. We shall say P is *discrete* if every subset $A\subset S$ is an event and there is a function $p:S\to\mathbb{R}$ with discrete support such that

$$P(A) = \sum_{s \in A} p(s), \tag{2.2}$$

for all events A. In this case, the function p is called the *probability mass function* (PMF) of the probability measure P (or sometimes just the *probability function*), and S is called a discrete probability space (when equipped with P).

Problem Prompt

Do problems 7 and 8 on the worksheet.

Theorem 2.3 (Properties of Probability Mass Functions)

Let p(s) be the probability mass function of a discrete probability measure P. Then:

- 1. $p(s) \geq 0$ for all $s \in S$, and
- 2. $\sum_{s\in S} p(s) = 1$.

Theorem 2.4 (Discrete Probability Construction Lemma)

Let S be a set and $p:S o\mathbb{R}$ a function with discrete support. If

1.
$$p(s) \geq 0$$
 for all $s \in S$, and

2.
$$\sum_{s\in S} p(s) = 1$$
,

then there is a unique discrete probability measure P on S such that

$$P(A) = \sum_{s \in A} p(s)$$

for all $A \subset S$.

discrete probability space

you get probability & you get probability 4 (only 4 sample points) you get probability 4 you get probability 3/8

Let P be a discrete probability measure on a sample space S with probability mass function p(s). Then P is called a *uniform probability measure* if the support of p(s) has finite cardinality n>0, and if

$$p(s)=rac{1}{n}$$

for each s in the support of p.

uniform probability space you get probability 4 you get probability 4 (only 4 sample points) you get probability 4 you get probability 4 4+4+4+4=1

all probabilities equal

Problem Prompt

Do problems 9-11 on the worksheet.