

Assignment # 01

Course Name	Discrete Structures (SE103T)		
Course Instructor	Mr. Abdul Basit		
Semester	Spring 2024		
Teaching Assistant	Harmain Asghar		

Student Name	
Student Roll No	

CLOs	Descriptions
1	Analyze mathematical arguments using propositional logic and rules of inference.
2	Apply set operations build sequences and compute summations.
3	Solve various computing problem using combinatorics, graphs and trees.

Marks Distribution						
Q1/15 CLO-1	Q2/18 CLO-1	Q3/10 CLO-1	Q4/22 CLO-1	Q5/10 CLO-1	Q6/25 CLO-1	Total/100

Instructions:

- 1. This assignment will access your CLO-1 as per OBE.
- 2. Assignment will be accepted in both form hand written and soft form (both are mandatory).
- 3. All questions are required to be solved to get full marks.
- 4. You need to print the first page of the assignment and attach it on the front of your submission.
- 5. Solution of questions should be neat and precise otherwise will be marked direct zero.
- 6. In case of plagiarism, both parties will get zero marks in two assignments.
- 7. Consult the textbook for reference and help. Do not copy any content from the book without referring to it.

Question: 01 [5+5+5]

- a. Prove that the statements \neg (P \rightarrow Q) and P \land \neg Q are logically equivalent without using truth tables.
- b. Prove $(p \land q) \rightarrow (p \lor q) \equiv T$.
- c. According to propositional logic is the following a tautology, a contradiction or a contingent? Proof by using table $\neg(A \land (\neg B)) \leftrightarrow (A \rightarrow B)$.

Question: 02 [6+6+6]

- a. Show that $\neg (p \leftrightarrow q)$ and $p \leftrightarrow \neg q$ are logically equivalent.
- b. Show that each conditional statement is a tautology without using truth table.

$$(p \land q) \rightarrow (p \rightarrow q).$$

c. According to propositional logic is the following a tautology, a contradiction or a contingent? Proof by using truth table.

$$\neg (A \land (\neg B)) \leftrightarrow (A \rightarrow B)$$

Question: 03 [5+5]

Show that the following are tautologies:

- a. (a) P V (~P).
- b. (b) $(P \ V \ q) \ V \ [(\sim p) \land (\sim q)]$.

Question: 04 [12+10]

- 1. Make a truth table for the statement
 - a. $(PVQ) \rightarrow (P \land Q)$.
 - b. $\sim (p \land q) \land (\sim r)$.

- 2. Determine whether these bio-conditional are true or false (T stands for a tautology & F stands for a contradiction)?
 - a. p V T
 - b. F \wedge p
 - c. $\bar{T} \vee F$
 - d. 2+2=4 if and only if 1+1=2
 - e. 1+1=3 if and only moneys can fly.

Question: 05 [2+2+2+2+2]

What is negation of each of these propositions?

- a. One Plus smartphone has at least 32GB of memory."
- b. Every student in your class has taken a course in calculus.
- c. There is a student in this class who has taken a course in calculus.
- d. The summer is Maine is hot and summer.
- e. There are 13 items in a baker's dozen.

Question: 06 [8+12+5]

- 1. Evaluate each of these expressions.
 - a. 1 1000 ∧ (0 1011 ∨ 1 1011).
 - b. (0 1111 \(\Lambda \) 10101) \(\V \) 0 1000.
 - c. $(0\ 1010 \oplus 1\ 1011) \oplus 0\ 1000$.
 - d. (1 1011 V 0 1010) A (1 0001 V 1 1011).
- 2. Construct a combinational circuit using inverters, OR gates, and AND gates that produces the output ($p \land \neg r$) V ($\neg q \land r$) from input bits p, q, and r.
- 3. How can this English sentence be translated into a logical expression?
 - "You can't ride the roller coaster if you are under four feet tall unless you are older than 16 years old."