INSTALLATION RESTORATION PROGRAM PHASE 2
CONFIRMATION/QUANTIFICATION STAG (U) RADIAN CORP
AUSTIN TX DEC 87 F33615-83-D-4801 MD-A198 445 1/6 F/G 24/7 UNCLASSIFIED

MICROCOPY RESOLUTION TEST CHAR-

•

DCN 87-212-027-27-01

INSTALLATION RESTORATION PROGRAM

PHASE II - CONFIRMATION/QUANTIFICATION

STAGE 1

FINAL REPORT
FOR
AIR FORCE PLANT 4
FORT WORTH, TEXAS

VOLUME 5. APPENDIX A-2

HEADQUARTERS AERONAUTICAL SYSTEMS DIVISION
FACILITIES MANAGEMENT DIVISION (ASD/PMDA)
WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433-6503

AND

HEADQUARTERS, AIR FORCE SYSTEMS COMMAND COMMAND BIOENVIRONMENTAL ENGINEER (AFSC/SGPB) ANDREWS AIR FORCE BASE, DC 20334-5000

DECEMBER 1987

PREPARED BY
RADIAN CORPORATION
8501 MO-PAC BOULEVARD
POST OFFICE BOX 201088
AUSTIN, TEXAS 78720-1088

USAF CONTRACT NO. F33615-83-D-4001 DELIVERY ORDER 27 RADIAN CONTRACT NO. 212-027-27

APPROVED FOR PUBLIC RELEASE DISTRIBUTION UNLIMITED

USAFOEHL TECHNICAL PROGRAM MANAGERS
MAJOR GEORGE R. NEW
CAPTAIN ARTHUR S. KAMINSKI

UNITED STATES AIR FORCE

OCCUPATIONAL & ENVIRONMENTAL HEALTH LABORATORY (USAFOEHL)

BROOKS AIR FORCE BASE, TEXAS 78235-5501

AD-A190 445

radian

NOTICE

This report has been prepared for the United States Air Force by Radian Corporation, for the purpose of aiding in the implementation of the Air Force Installation Restoration Program. It is not an endorsement of any product. The views expressed herein are those of the contractor and do not necessarily reflect the official views of the publishing agency, the United States Air Force, nor the Department of Defense.

Copies of this report may be purchased from:

National Technical Information Service 5285 Port Royal Road Springfield, Virginia 22161

Federal Government agencies and their contractors registered with Defense Technical Information Center should direct requests for copies of this report to:

> Defense Technical Information Center Cameron Station Alexandria, Virginia 22314

A to Sion For	
DAIC TAB []	
Justification	7
Availability Codes	
A-/	

This regard contains information and contains environmental protection and well

APPENDIX A-2

Water Quality Assurance/Quality Control Data

Volume 5 and Volume 6 contain all QM/QC reports for water analyses (organized by work order number). Also included are summary tables (Tables A.2-1 through A.2-9) of the QC reports.

Pages in Appendix A are numbered by the volume number followed by the page number of that volume. For example, Page 5 001 is Page 1 of Volume 5.

RADIAN

[This page intentionally left blank.]

TABLE A. 2-1A EPA METHOD 601: MATRIX SPIKE RECOVERY RESULTS FOR WATER SAMPLES

CONTRACTOR STREET STREET WELLS OF STREET STREET STREET STREET STREET STREET STREET

Sample I.D. Date Extracted	8601239-09A 2/03/86	8602001-06A 2/04/86	8602031-03D 2/10/86	8602047-05A 2/13/86	8602060-02E 2/13/86	8602075-07A 2/15/86
Parameter	% Recovery	X Recovery	X Recovery	Z Recovery	X Recovery	I Recovery
Marky lane chloride	121	104	113	82	8	86
1-1-Dichloroethene	; &	68	8	8	72	73
trans.1 2-Dichlorosthens	107	105	112	11	68	6
Chloroform	141	9	991	117	169	153
1.2-Dichloroethane	102	68	92	72	8	88
1.1.1-Trichloroethane	125	113	113	92	101	107
Carbon Terrachloride	125	112	114	6	109	105
Bromochloromethane	125	113	117	66	123	113
1.2-Dichloropropane	114	103	108	76	102	901
Trichlorosthens	180	081	116	88	100	108
Dibromochloromethene	79	89	*8	¥	29	92
Bronoform	133	66	104	8	112	108
Chlorobenzene	125	124	119	111	119	126
1 1 2 2-Tetrachlorosthana		•	•	4	•	•
	• g	9	8	7.8	8	95
letrachloroetnylene	\$	2	3	?	!	
Standard Deviation (n-1)	18.3	18.9	26.4	16.0	34.1	27.2
Mean	114	107	112	88	103	103
Coefficient of Variation	0.9	17.7	23.5	18.2	33.0	26.5

NR = Not Reported

v

1

\$1,1,2,2. etrachloroethane and tetrachloroethylene co-elute and were both contained in the spike solution. The analyst quantitated the combined peak area as tetrachloroethylene.

TABLE A.2-1B

EPA METHOD 601: MATRIX SPIKE RECOVERY RESULTS FOR WATER SAMPLES

Sample I.D. Date Extracted	8602087-06A 2/15/86	8602113-02C 2/20/86	8602120-03A 2/21/86	8602138-09A 2/25/86	8602176-04A 2/27/86	8602197-02A 2/28/86
Parameter	Z Recovery	% Recovery	Z Recovery	% Recovery	Z Recovery	% Recovery
Merhylene chloride	86	101	75		88	102
1.1-Dichlorosthan	; ;		: 3	. 4	7 4	9
trans-1,2-Dichloroethene	102	26	8	6	86	3 62
Chloroform	152	149	117	119	125	114
1.2-Dichloroethane	92	88	73	11	9/	149
1.1.1-Trichloroethane	109	103	92	106	6	123
Carbon Tetrachloride	110	103	79	101	92	118
Bromochloromethane	120	115	101	104	66	127
1,2-Dichloropropane	117	102	93	96	96	127
Trichloroethene	119	106	16	130	97	128
Dibromochloromethane	104	8	82	19	87	118
Bromoform	111	114	86	106	95	126
Chlorobenzene	135	106	87	95	100	126
1,1,2,2-Tetrachloroethane		•	⋖	•	•	ď
Tetrachloroethylene	97	8	49	7.4	70	93
Standard Deviation (n-1)	25.4	26.6	19.4	20.5	21.1	23.5
Yean	105	101	84	8	91	111
Coefficient of Variation	24.2	26.4	23.1	22.8	23.3	21.1

NR = Not Reported

^{\$1.1,2,2-}tetrachloroethane and tetrachloroethylene co-elute and were both contained in the spike solution. The analyst quantitated the combined peak area as tetrachloroethylene.

TABLE A.2-1C

en en foregoes, poposodo escosos en processa en processa en processa escopar escoparse escoparse en processa e

RPA METHOD 601: MATRIX SPIKE RECOVERY RESULTS FOR WATER SAMPLES

					1
Sample I.D. Date Extracted	8603002-04B 3/05/86	8603003-04A 3/05/86	STANDARD DEVIATION	HEAN	COEFFICIENT OF VARIATION
Parameter	Z Recovery	I Recovery	(n-1)	Х Кесочету	CV - X
Methylene chloride	8	82	13.5	\$6	14.3
1,1-Dichloroethane	73	62	6.6	75	13.3
trans-1,2-Dichloroethene	97	:	9.6	%	10.2
Chloroform	143	131	17.7	138	12.8
1,2-Dichloroethane	₹ 6	*	19.0	8	21.0
1,1,1-Trichloroethane	114	107	6.6	108	9.5
Carbon Tetrachloride	115	103	11.6	106	11.0
Bromoch loromethane	122	114	9.6	114	8.5
1.2-Dichloropropene	107	011	9.5	105	0.6
Trichloroethene	156	109	30.1	122	24.7
Dibromochloromethane	71	*	26.6	78	34.2
Bromoform	113	109	12.1	108	11.1
Chlorobenzene	110	114	13.5	114	11.8
1,1,2,2-Tetrachloroethane		•	l	ı	l
Tetrachloroethylene	16	79	11.0	82	12.9
Charles Manifeston	6				
Standard Deviation (N-1) Mean	102	16			
Coefficient of Variation	23.5	26.5			

NR = Not Reported

^{#1,1,2,2-}tetrachloroethane and tetrachloroethylene co-minte and were both contained in the apike solution. The analyst quantitated the combined peak area as tetrachloroethylene.

TABLE A.2-2

PROPERTY AND ADDRESS OF THE PROPERTY OF THE PR

COCCESSE PROCESSES WESSESSES PROCESSES PROCESSES

EPA METHOD 601: SURROGATE SPIKE RECOVERY RESULTS FOR WATER SAMPLES

	,	3	Z Recovery	Z Recovery
400		You	ć	•
M60-6571000		00007	96) "
9001239-08A		13180	103	5
8601239-07A		13186	120	106
B601239-06A		13186	102	%
8601239-05A	<u>.</u>	13186	98	86
B601239-05A	D2	13186	115	113
8601239-04A		13186	102	100
8601239-03A		13186	95	92
8601239-02A		13186	101	66
8601239-01A		13186	97	46
8602001-01A		20386	104	112
8602001-02A	10	20386	101	100
8602001-02A	D2	20386	46	46
8602001-03A	1	20386	108	86
M602001-04A		20486	114	151
2602001 04E		20486	7.0	130
8602001		90107	3	111
W00-10070		99.10	601	777
M10-C102008		71180	95	/11
8602015-02A		21186	30 ·	911
8602015-03A		21186	100	128
8602019-03C		20686	56	103
8602019-04C		20686	66	129
8602019-05C		20686	101	86
8602031-02C		20686	109	100
8602031-03C		20686	06	81
8602031-04B		20686	117	102
8602031-05B		20686	120	121
B602031-07A	8	20686	105	110
8602031-08A	Ę	20686	125	117
8602041-01A	10	21186	102	108
8602041-01A	D2	21186	93	89
8602041-02A		21186	6	118
8602041-03A		21286	114	123
8602041-04A		21286	96	120
8602041-05A		21286	105	411
8602041-05A		21286	108	124
8602041-07A	90	21286	108	86
8602041-08F	E	21286	118	102
8602047-01A	!	21286	16	106
8602047-02A		21286	111	138
000000		20010	70	301

TABLE A.2-2 (Continued)

Cooperation of the Cooperation o

		•	DAIR	DRUMONICH LUNCHES THANK	
21386 123 TB 21386 119 21286 119 21386 119 21386 1103 21386 1104 21486 92 21486 107 21586 96 114 21586 107 22186 101 22186 101 22186 101 22186 101 22286 95 22486 95 22486 96 22486 96 22486 100	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1	Z Recovery	% Recovery
FB 21366 98 TB 21386 119 21386 119 21386 119 21386 1103 21386 1104 21386 1105 21486 92 21486 100 21586 96 2168 100 22186 100 22186 100 22186 100 22186 100 22186 100 22486 95 22486 98	407047-054		71.206		9
TB 21386 119 21386 119 21386 1134 21386 1103 21386 1104 21486 102 21486 102 21486 107 21486 100 21486 100 21486 100 21486 100 21486 100 21486 100 21486 100 21486 100 21486 100 21486 100 21486 100 21486 100 21486 100 21486 100 21486 100 21486 100 21486 100 21486 100 21486 100 21586 96 21486 100 21586 97 2186 100 21986 100 22186 100 22186 100 22186 100 22186 100 22186 100 22186 100 22186 100 22186 100 22186 100 22186 100 22286 99	40047	84	7007	671	011
118 21286 119 21286 1124 21386 103 21386 103 21386 103 21486 92 21486 92 21486 102 21486 102 21486 102 21486 106 21486 106 21486 100 21486 100 21486 100 21486 100 21486 100 21486 100 21486 100 21486 100 21486 100 21486 100 21486 100 21486 100 21486 100 21486 100 21486 100 21486 100 21586 93 2186 100 2186 100 2186 100 2186 100 2186 100 2186 100 2186 100 2186 100 2186 100 2186 100 2186 100 2186 100 2186 100 2186 100 2186 100 2186 100 2186 100 2188 88	WOO- /- 0700	2 (00017	06	777
21286 1124 21386 103 21386 103 21386 104 D2 21386 105 21486 92 21486 107 D1 21386 111 21486 107 D2 21386 111 D2 21386 111 D2 21486 96 D1 21586 98 D2 21486 100 D2 21486 100 D2 21486 100 D2 21486 98 D2 21486 100 D3 21486 100 D4 21486 100 D5 21586 93 D6 D7 D7 D8 D9 D9 D7 D8 D9 D9 D8 D9 D	W/0-/607096	9.	21780	611	119
21386 103 21386 103 21386 116 D1 21386 105 21486 92 21486 102 21486 105 21486 106 D1 21586 96 D1 21586 96 D1 21586 96 D1 21586 96 D2 21486 100 D2 21586 96 D3 21486 100 D4 21586 96 D5 21486 100 D6 21486 100 D7 21486 100 D8 21486 100 D8 21486 100 D8 21486 100 D8 21486 100 D9 21486 100 D9 21486 100 D1 22486 100 D2 22486 100 D3 22486 100	3602060-01E		21286	124	119
21386 116 D1 21386 113 21486 92 21486 92 21486 102 21486 102 21486 106 D1 21586 96 D1 21586 96 D1 21486 100 21486 100 21486 100 21486 100 21486 100 21486 100 21486 100 21486 100 21486 100 21486 100 21486 100 21486 100 21486 100 21586 93 TB 21586 94 21986 100 22186 100 22186 100 22186 100 22186 100 22186 100 22186 100 22186 100 22186 100 22186 100 22186 100 22186 100 22186 100 22186 100 22186 100 22186 100 22186 100 22186 88	3602060-02E		21386	103	110
D1 21386 123 21486 92 21486 92 21486 93 21486 102 21486 127 78 21386 111 21386 1127 21486 96 D1 21586 96 D1 21586 96 D1 21586 100 21486 100 21486 100 21486 100 21486 100 21486 100 21486 100 21486 100 21486 100 21486 100 21486 100 21486 100 21486 100 21486 100 21486 100 21486 100 21586 94 22186 101 22086 94 22186 100 D2 22486 95 22486 100 D2 22486 99	1602060-03E		21386	116	127
D2 21386 104 21486 92 21486 93 21486 102 21486 1127 TB 21386 1127 21486 106 21486 96 D1 21486 96 D1 21486 107 21486 107 21486 107 21486 106 TB 21586 96 TB 21586 96 TB 21586 96 TB 21586 106 TB 21586 97 TB 21586 106 TB 21586 97 TB 21586 106 TB 22586 97 TB 21586 106 TB 22586 97 TB 21586 106 TB 22586 97 TB 22586 106 TB 22586 97 TB 22586 106 TB 22586 99 TB 22586 100 TB 22586 99 TB 22586 100 TB 22586 100 TB 22586 100 TB 22586 100	1602060-05B	10	21386	123	138
21486 92 21486 102 21486 102 21486 102 21486 102 21486 106 21486 106 21486 101 21486 100 21486 100 21486 100 21486 100 21486 100 21486 100 21486 100 21486 100 21486 100 21586 94 21586 96 21686 100 21586 99 22186 100	MO2060-05B	00	21386	401	8
21386 102 21486 83 21486 127 21486 121 21386 111 21386 111 21486 106 21486 96 01 21586 96 01 21586 96 02 21486 100 21486 100 21486 100 21486 100 21486 100 21486 100 21586 97 TB 21586 96 TB 21586 100 22186 101 22186 100 01 22486 100 02 22486 100 02 22486 100 02 22486 100 02 22486 100 02 22486 100	400-1900-09	1	214.06	6	301
TB 21386 102 21486 127 21486 127 21486 127 21486 106 21486 101 21586 96 D1 21586 96 D2 21586 96 D2 21486 107 21486 100 21486 100 21486 100 21486 100 21586 97 TB 21586 96 TB 21586 106 TB 22586 96 TB 22586 106 TB 22586 96 21486 106 TB 22586 96 21586 106 22586 97 22586 100 D2 22486 100 D2 22486 100 D2 22486 100 D2 22486 106 Z2586 95 Z2586 95 Z2586 100 D2 22486 100 D2 22486 100	100 COTOS		20017	400	
21486 83 21486 127 21486 127 21386 121 21386 111 21486 96 21486 96 21486 96 21486 96 21486 100 21486 100 21486 100 21486 100 21486 106 21586 96 7B 21586 96 7TB 21586 96 7TB 21586 106 22188 106 22188 106 22188 101 22188 100 22188 100 22486 100 22586 99 22586 100 22586 99 22586 100 22586 99	WCD-/90709		92617	701	411
21486 127 21386 121 21386 121 21486 106 21486 96 21486 96 21486 114 21586 96 21486 100 21486 100 21486 100 21486 100 21486 100 21486 100 21586 97 FB 21586 97 TB 21586 97 TB 22186 100 22186 101 22186 101 22186 100 D1 22486 100 D2 22486 100	602067-04A		21486	83	98
TB 21386 121 21386 111 21486 96 21486 96 21486 91 22 21586 98 21486 100 22 21486 100 22 21486 100 22 21486 100 22 21486 106 22 2186 106 TB 22 586 93 TB 22 586 96 TB 22 586 96 21 96 TB 22 586 96 22 93 TB 22 586 96 22 98 22 186 101 22 286 100 D2 22 486 95 22 586 95 22 586 100 D2 22 486 95 22 586 95 22 586 100 D2 22 586 95 22 586 100 D2 22 586 100 D2 22 586 95 22 586 100 D2 22 586 100 D2 22 586 100 D2 22 586 100 D2 22 586 100 D3 22 586 95 D4 22 586 100	602067-05A		21486	127	158
21386 111 21486 106 21486 106 21486 106 21586 96 D1 21586 98 D2 21586 98 D2 21486 100 21486 100 21486 100 21486 106 21586 96 TB 21586 96 TB 21586 96 TB 21586 97 TB 21486 1106 TB 22586 93 22486 100 D2 22486 100 D2 22486 100 D2 22486 99 22586 106 22586 99 22586 100 D2 22486 99	602067-06A	E	21386	121	109
21486 106 21486 96 21486 91 D2 21586 96 D1 21486 96 D2 21486 96 D2 21486 100 21486 100 21486 100 21486 106 21586 96 TB 21586 96 TB 21586 96 TB 21586 97 TB 21986 106 22186 101 22186 101 22186 101 22186 101 22186 101 22186 100 D2 22486 100 22486 99 22586 99 22586 100 D2 22486 100	602067-01A		21386	111	130
21486 96 21486 91 21586 91 21586 96 21486 114 21486 107 21486 100 21486 100 21486 100 21486 106 21586 97 FB 21586 97 TB 21586 97 22186 101 22486 100 D2 22486 100 D2 22486 106 22586 95 22586 100 D2 22486 100 D2 22486 100 D2 22486 100 D2 22486 100	2000000000		214.06	901	901
21486 114 D1 21586 91 D2 21586 98 D1 21586 98 D2 21486 107 21486 100 21486 100 21486 106 TB 21586 96 TB 21586 106 TB 22186 106 22186 101 22186 100 D1 22486 100 D2 22486 100	20-70-70		0017	3	901
21486 114 D1 21586 91 D2 21586 98 D1 21486 96 D2 21486 107 21486 100 21486 106 21586 96 TB 21586 96 TB 21586 96 TB 21586 106 21986 106 22186 101 22186 101 22186 101 22186 101 22186 101 22186 101 22186 100 D2 22486 99 22486 99 22486 99	210-/80209		21480	8	107
D1 21586 91 D2 21586 88 D1 21486 96 D1 21486 98 D2 21486 100 21486 100 21486 100 21486 106 21586 97 FB 21586 97 TB 21586 97 TB 21586 106 TB 22186 101 22186 101 22186 101 22186 101 22186 101 22186 100 D2 22486 99 22586 106 22586 99	602087-04B		21486	114	110
D2 21586 88 21486 96 D1 21486 96 D2 21486 100 21486 100 21486 100 21486 106 21586 97 TB 21586 97 TB 21586 106 TB 22186 101 22186 101 22186 101 22186 101 22186 101 22186 100 D2 22486 95 22486 106 22586 106 22586 100 D2 22486 100 D2 22486 100 D2 22486 100	602087-05B	1 <u>0</u>	21586	16	122
21486 96 D1 21486 107 21486 107 21486 100 21486 100 21586 97 TB 21586 96 TB 21586 96 TB 21586 106 TB 22186 106 21986 101 22186 101 22186 101 22186 100 D2 22486 95 22586 95 22486 100 D2 22486 100 D2 22486 100 D2 22486 100	602087-05B	D2	21586	88	108
D1 21486 98 D2 21486 107 21486 100 21486 100 21486 106 21586 97 TB 21586 96 TB 21586 96 TB 22186 106 22186 101 22186 101 22186 101 22186 101 22186 101 22186 100 D2 22486 95 22486 95 22486 99 22486 106 22586 106 22586 100 D2 22486 99	602075-01A	!	21486	8	50
D2 21486 107 21486 100 21486 100 21486 100 21486 106 21586 97 TB 21586 96 TB 22186 106 221986 106 221986 101 22486 100 D2 22486 95 22586 106 22586 100 D2 22486 95 22486 106 22586 100 D2 22486 95 22486 95	40.076.02A	2	71700	9 0	
D2 21486 100 21486 100 21486 106 21486 106 21586 97 TB 21586 96 TB 21586 96 TB 21586 106 21986 106 22186 101 22186 101 22186 101 22186 100 D2 22486 95 22586 106 22586 100	W70-C10700	10	00+17	96	OII.
21486 100 21486 100 21486 108 21586 106 TB 21586 97 TB 22586 93 21986 106 221986 101 22086 94 22186 119 22186 110 22486 99 22586 106 22486 99 22486 99	WZ0-5/070	70	21490	10/	123
21486 108 21486 106 21486 1106 21586 97 TB 21586 96 TB 22186 106 21986 106 221986 101 22086 94 22186 119 22186 110 D1 22486 99 22486 99 22486 99 22486 106 22486 99	602075-03A		21486	100	108
21486 106 21486 114 21586 97 FB 21586 96 TB 21586 106 TB 22186 106 21986 101 22086 94 22186 119 22186 119 D1 22486 100 D2 22486 95 22586 106 22586 100 D2 22486 95 22486 99	602075-04A		21486	108	137
21486 114 21586 97 TB 21586 96 TB 21586 96 TB 22:186 106 21986 106 21986 101 22086 94 22186 119 22186 119 22486 100 D2 22486 95 22486 95 22486 106 22586 106 22586 106	602075-05A		21486	106	121
21586 97 TB 21586 96 TB 21586 96 TB 22186 106 21986 108 22086 94 22186 101 22486 100 D2 22486 95 22586 106 22486 95 22486 106 22486 95 22486 106 22486 88	602075-06A		21486	114	811
FB 21586 96 TB 21486 106 TB 22586 93 22186 108 221986 101 221986 101 22186 1119 11 D1 22486 106 22586 95 D2 22486 95 22486 99 22486 99	602075-07A		215.06	97	901
TB 2.1386 90 TB 2.586 93 22.186 106 2.1986 106 2.2086 94 2.2186 101 2.2186 101 2.2186 100 D1 2.2486 95 2.2586 106 2.2486 99	400 35000	a	215.06	: 1	3
TB 21586 106 TB 22586 93 22186 108 21986 106 22086 94 22186 101 22186 101 22486 100 D2 22486 100 D2 22486 95 22586 106 22486 88	WON-C /0700	e	00017	96	S
TB 2:586 93 22186 108 221986 106 21986 101 22086 94 22186 119 D1 22486 100 D2 22486 95 22586 106 22486 98	602075-08A	11	21486	106	100
22186 108 21986 106 21986 101 22086 94 22186 1119 22186 110 D1 22486 95 22586 106 22486 99 22586 106 22486 88	602087-06A	TB	2:586	93	66
21986 106 21986 101 22086 94 22186 1119 D1 22486 100 D2 22486 99 22586 106 22486 88	602120-01A		22186	108	46
21986 101 22086 94 22186 119 22186 112 D1 22486 100 D2 22486 95 22486 99 22586 106	602113-01C		21986	106	104
22086 94 22186 119 22186 112 D1 22486 100 D2 22486 95 22586 106 22586 106	MO2113-02C		21986	101	401
22186 119 22186 119 22186 112 D1 22486 100 D2 22486 95 22586 106 22586 88	MO2113-03C		22086	40	60
22186 119 22186 112 D1 22486 100 D2 22486 99 22586 106 22486 88	200113-030		00077		6
22186 112 D1 22486 100 D2 22486 95 22586 99 22586 106	002113-04D		22186	119	106
D1 22486 100 D2 22486 95 22486 99 22586 106 22486 88	602120-03A		22186	112	112
D2 22486 95 22486 99 22586 106 22486 88	602120-04A	D1	22486	100	117
22486 99 22586 106 22486 88	602120-04A	D2	22486	95	118
22586 106 22486 88	602120-05A		22486	66	711
22486 88	602138-09A		225.86	901	
90 9777	400 001300		3070		611
	W10-851700		02 677	0	55

		TABLE	LE A.2-2 (Continued		
LAB ID	သွ	DATE	BROMOCHLOROMETHANE 7 Recovery	2-BROMO-1-CHLOROPROPANE 7 Recovery	
	1				
8602138-03A		22486	100	110	
8602138-04A		22486	102	108	
8602138-05A	10	22486	. 92	105	
8602138-05A	D2	22486	86	111	
8602138-06A		22486	86	76	
8602138-07A		22486	121	122	
8602138-08A	#	22586	106	133	Int
8602159-01A		22686	119	110	
8602159-02A		22686	121	133	
8602159-03A		22686	105	109	
8602159-04A		22686	101	122	
8602159-05A	D1	22686	111	116	
8602159-05A	D 2	22686	66	105	
8602159-06A	E)	22686	112	118	
8602159-07A	E	22686	111	114	
8602176-01A		22786	97	115	
8602176-02A		22786	106	117	
8602176-03A		22786	110	135	
8602176-04B		22786	101	105	
8602176-05A		22786	115	135	
8602197-01A		22886	119	122	
8602197-02A		22886	113	101	
8602197-03A		22886	100	93	
8602197-04A		22886	135	121	
8602197-05A		22886	122	111	
8602197-06A		22886	101	107	
8603002-08A		30486	66	79	
8603002-07A		30486	105	96	
8603002-06A		30486	116	80	
8603002-05A		30486	120	82	
8603002-04A		30486	112	129	
8603002-03A		30486	107	104	
8603002-02A	10	30486	103	75	
8603002-02A	D2	30486	98	83	
8603002-01A		30486	66	68	
8603003-08A	TB	30586	06	80	
8603003-07A		30586	66	118	
8603003-06A	FB	30586	110	122	
8603003-05A	10	30586	118	117	
8603003-05A	D2	30586	127	112	
8603003-04A		30586	86	96	
8603003-03A		30486	109	103	

Preservation Management

THE STATE OF THE S

TABLE A.2-2 (Continued)

THE PARTY OF THE PROPERTY OF T

	DATE	BROMOCHLOROMETHANE Z Recovery	2-BROMO-1-CHLOROPROPANE % Recovery
3603003-02A	30486	100	93
8603003-01A	30586	76	114
3602100-02B	21786	109	103
8602100-03B	21786	109	110
	21786	101	118
8602100-04D D2	21786	601	137
8602100-05B	21786	66	113
8602100-07A	21786	113	109
Standard Deviation (n-1) Mean Coefficient of Variation	(n-1)	10.4 105 9.9	14.7 110 13.4

Duplicate analysisFB = Field blankTB = Trip blank

TABLE A.2-3A

	LES	8602031-06D	2/06/86	Z Recovery			110	69	6	98	103	105	X.	S	NS	S A	2		15.2	1.0	16.0		æ
RESULTS ROB HASTE	SCOOL SAME SAME	2,05,2015 2,05,20	99 /50 /2	Recovery		103	201	5	3	701	(01	NO.	2 2	S. C.	2 4	NS		•	7.5	105	4.0		M
IX SPIKE RECOVERY A	8602001-04C	2/04/86	A Recovery			127	182	141	133	142	150	NS.	NS	NS	NS			19.4	146	13.3			N.
EPA METHOD 602: MATRIX SPIKE RECOVERY RESULTS FOR CLASSICAL	8601239-09C 2/03/86		# Recovery		134	150	126	120	131	128	N.	NS	MS	SN	}		10.2	132	- C	•		Ē	i i
Sample 1.D.	Date Extracted	Parameter		Benzene	Toluene	Ethyl benzene	o-Kylene	m-Xylene	p-Kylene	Chlorobenzene	1,4-Dichlorohan	1,3-Dichloroberran	1.2-Dichloroberge	auaznaco		Standard Dans	Mean	Coefficient	Variation Variation			8.8.8-Trifluorotoluene	NS = Not Spike Compound NR = Not Reported

TABLE A.2-3B

BPA METHOD 602: MATRIX SPIKE RECOVERY RESULTS FOR WATER SAMPLES

Sample I.D. Date Extracted	8602041-01C 2/10/86	8602047-03C 2/11/86	8602067-04C 2/13/86	8602075-01 2/13/86
Parameter	Z Recovery	Z Recovery	Z Recovery	# Recovery
Benzene	103	105	126	136
Toluene	122	138	132	140
Ethyl benzene	8	113	112	8
o-Iylene	88	112	06	118
m-Iylene	66	120	138	104
p-Iylene	86	118	119	104
Chlorobenzene	NS	NS	NS	N.
1.4-Dichlorobenzene	SN	SN	SX	82
1,3-Dichlorobenzene	SN	NS	SN.	SE
1,2-Dichlorobenzene	NS	NS	NS	S
Standard Deviation (n-1)	12.2	11.3	17.1	18.3
Kean	100	118	120	116
Coefficient of Variation	12.2	9.6	14.3	15.7
a.a.a-Trifluorotoluene	Œ	Ä	X.	X
NS = Not Spike Compound NR = Not Reported				

TABLE A.2-3C

COCCUPATION OF THE PROPERTY OF

EPA METHOD 602: MATRIX SPIKE RECOVERY RESULTS FOR WATER SAMPLES

Sample 1.D. Bate Extracted	8602138-04C 2/26/86	8603002-06C 3/05/86	8603003-04C 3/05/86	STANDARD DEVIATION	HEAN	CORPLICIENT
Parameter	Z Recovery	% Recovery	Z Recovery	SD (n-1)	% Recovery	CV - X
Benzene	124	116	120	11.6	119	9.7
Toluene	901	92	100	31.2	122	25.7
Ethyl benzene	112	112	116	14.6	110	13.2
o-Iylene	87	8	88	17.0	101	16.8
s-Iylene	184	182	127	29.7	131	22.7
p-Xylene	118	116	120	14.0	117	12.0
Chlorobenzene	SN.	SX	NS	ł	ì	1
1.4-Dichlorobenzene	SN	NS	NS	I	i	1
1,3-Dichlorobenzene	NS	NS	NS	1	,,,,,	ì
1,2-Dichlorobenzene	NS	NS	NS	l	1	ì
Standard Deviation (n-1)		34.2	14.4			
Mean		117	112			
Coefficient of Varation	n 27.1	29.1	12.9			
a.a.a-Trifluorotoluene	Ĕ	N.	æ			

NS = Not Spike Compound NR = Not Reported

(Continued)

TABLE A.2-4

RPA METHOD 602: SURROGATE SPIKE RECOVERY RESULTS FOR WATER SAMPLES

a, a, a-Trifluorotoluene	% Recovery	128	122	109	117	114	105	100	26	100	86	85	91	98	101	96	76	122	86	85	95	103	97	96	96	76	100	106	109	109	114	112	112	95	91	76	91	104	101	100	101	102	86
DATE		20386	20386	20386	20386	20386	20386	20386	20386	20386	20386	20486	20486	20486	20486	20486	20386	20386	20586	20586	20586	20586	20586	20586	20686	20686	20686	20686	20686	20686	20686	20686	21086	21086	21086	21086	21086	21186	21186	22086	21186	21386	21286
Š						10	D2								D1	D2									E	FB			DI	D2								10	D2		TB, D1	TB,D2	E
SAMPLE I.D.		8601239-09C	8601239-08C	8601239-07C	8601239-06C	8601239-05C	8601239-05C	8601239-04C	8601239-03C	8601239-02C	8601239-01C	8602001-06C	8602001-05C	8602001-04C	8602001-03C	8602001-03C	8602001-01C	8602001-02C	8602015-010	8602015-02C	8602015-030	8602019-03E	8602019-04E	8602019-05E	8602031-08A	8602031-07B	8602031-06D	8602031-2E	8602031-3E	8602031-3E	8602031-4E	8602031-5D	8602041-01C	8602041~02C	8602041-030	8602041-04C	8602041-05C	8602041~06C	8602041-06C	8602113-01E	8602041-07B	8602041-07B	8602041-08A

TABLE A.2-4 (Continued)

AND SECOND DESCRIPTION OF THE PROPERTY OF THE

SAMPLE I.D.	oc	DATE	a.a.a-Trifluorotoluene
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Z Recovery
8602047-01C		21186	86
8602047-02C		21186	106
8602047-03C		21186	106
8602047-04C		21186	86
8602047-05C		21186	114
8602047-06B	FB	21186	103
8602047-07A	TB	21286	104
8602060-01G		21186	101
8602060-02G		21286	102
8602060-036		21286	115
8602060-05D		21286	116
8602067-06A	13.01	21386	86
8602067-06A	TB,D2	21386	103
8602067-05C		21386	&
8602067-04C		21286	105
8602067-03C		21286	113
8602067-02C	*	21286	298
8602067-010		21286	68
8602075-01C		21786	- 86
8602075-02C		21486	104
8602075-03C		21386	107
8602075-04C		21486	108
8602075-05C		21786	105
8602075-06C		21386	104
8602075-07C		21786	107
8602075-08B	FB	21486	103
8602075-09A	TB	21486	86
8602087-01E	D1	21486	116
8602087-01E	D2	21486	101
8602087-02E		21486	110
8602087-04D		21486	97
8602087-05D		21486	107
8602087-06B	FB	21486	105
8602100-02D		21786	111
8602100-03D		21786	115
8602100-04F		21786	114
860210005D	01	21786	119
8602100-05D	D2	21786	111
8602100-06B		21786	108
8602100-07A	E	21786	107
8602113-02E	D1	22186	106
8602113-02E	D2	22186	107

TABLE A.2-4 (Continued)

<u>a.</u>	૪	DATE	a.a.a.Trifluorotoluene % Recovery
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	•	 	
R602113-03E		22186	101
8602113-04E		22186	102
8602113-05B		.22186	103
8602120-01C	D1	22186	103
8602120-01C	D2	22186	102
8602120-02C		22586	131
8602120-03C		22586	123
8602120-04C		22586	111
8602120-05C	D1	22586	106
8602120-05C	D2	22586	102
8602138-02C	D1	22586	104
8602138-02C	D2	22586	109
8602138-03C		22686	103
8602138-04C		22686	112
8602138-05C		22686	101
8602138-06A		22686	104
8602138-07C		22686	111
8602138-08C		22786	86
8602138-09C		22786	26
8602138-01C		22586	114
8602159-02C		22786	93
8602159-03C	D1	22786	120
8602159-03C	D2	22786	86
8602159-04C		22786	107
8602159-050		22786	112
8602159-06B	P.B	22786	111
8602159-07A	TB	30586	92
8602159-01C		22786	102
8602176-06A		22886	97
8602176-05C		22786	110
8602176-04C		22786	103
8602176-03C		22786	104
8602176-02C		22786	114
8602176-01C	DJ	22786	108
8602176-010	02	22786	110
8602176-06C		22186	104
8602197-05C		22886	104
8602197-04C		22886	115
8602197-03C		22886	104
8602197-02C		22886	119
8602197		22886	103
8603002-08B	13	30586	76

TABLE A.2-4 (Continued)

AND ENTERED PROPERTY OF THE SECOND SECONDS SECONDS SECONDS SECONDS

SAMPLE I.D.	ၓၟ	DATE	a.a.a-Trifluorotoluene X Recovery	¥
1 1 5 5 1 1 5 1 1 5		1		
8603002-07C		30586	97	
8603002-06C		30586	93	
8603002-05C		30586	101	
8603002-04C		30486	95	
8603002-03C		30486	76	
8603002-02C		30486	11	
8603003-08B	TB	30586	26	
8603003-07C		30586	16	
8603003-06C	88	30586	106	
8603003-050		30586	107	
8603003-04C		30586	104	
8603003-030		30586	107	
8603003-02C	FB	30586	101	
8603003-010		30586	95	
Crandard Deviation (n-1)	ion (n-1)		18.6	
Mean			105	
Coefficient of Variation	Variation		17.6	

Duplicate analysisField blankTB = Trip blank

TABLE A.2-5A

actives somme access toward

ASSESSED PROPERTY OF THE PROPE

EPA METHOD 625 : MATRIX SPIKE RECOVERY RESULTS FOR WATER SAMPLES

Sample 1.U. Date Extracted Date Injected	8602016-06A 2/03/86 2/18/86	8602058-05A 2/12/86 2/26/86	8602078-05A 2/13/86 2/28/86	8602116-05A 2/20/86 3/07/86	2/25/86 3/11/86
Parameter	Z Recovery	Z Recovery	% Recovery	% Recovery	Z Recovery
ACID FRACTION					
. 4.6-Trichlorophenol	41	87	9	57	m
4-Chloro-3-methylphenol	78	82	79	09	79
2-Chlorophenol	57	78	\$9	7.	25
2.4-Dichlorophenol	62	82	55	54	70
2.4-Dimethylphenol	95	25	98	53	64
2-Nitrophenol	3	20	35	78	11
4-Nit rophenol	38	57	61	130	10
2.4-Dinitrophenol	52	2	2	54	2
2-Methyl-4,6-dinitrophenol	*	140	32	110	2
Pentachlorophenol	85	260	2	37	2
Phenol	94	65	09	29	14
	4	37	;	9	ç
Acenaphthene	?	65		110	83
Benzidine	-	10	1	2	≨
1,2,4-Trichlorobenzene	102	92	55	66	74
Hexachlorohenzene	111	%	7.	130	117
Mexa chloroethane	98	69	63	110	02
Bis (2-chloroethyl)ether	23	55	9	110	02
2-Chloronaphthalene	3	75	89	120	87
1,2-Dichlorobenzene	99	99	49	110	72
1,3-Dichlorobenzene	67	<i>1</i> 9	62	901	73
1.4-Dichlorobenzene	89	3	19	8	61
3.3-Dichlorobenzidine	20	117	91	220	415
2,4-Dinitrotoluene	7	81	8	130	103
2,6-Dinitrotoluene	64	11	79	140	106
Fluoranthene	110	78	11	100	76
4-Chlorophenyl phenyl ether	44	29	82	120	104
N-Nitrosodisethylamine	2	23	e	7 6	11
N-Nit rosodiphenylamine	85	77	96	160	267
N-Nitrosodi-n-propylamine	34	61	63	100	7.4
Bis (2-ethylhexyl)phthalate	89	67	86	110	101
Butyl benzyl phthalate	32	27	20	8	4 9
Di-butyl phthalate	93	09	81	110	100
Di-n-octyl phthalate	41	53	88	100	87

(Continued)

TABLE A.2-5A (Continued)

Paradococa III persona a III persona III p

Sample I.D. Date Extracted Date Injected	8602016-06A 2/03/86 2/18/86	8602058-05A 2/12/86 2/26/86	8602078-05 A 2/13/86 2/28/86	8602116-05 A 2/20/86 3/07/86	8602152-06A 2/25/86 3/11/86	
Parameter	Z Recovery	# Recovery	# Recovery	% Recovery	Z Recovery	1
Disseth	ç	89	11	09	41	
Renzo(a) anthracene	86		87	110	66	
Benzo (4) Dyrene	88	79	81	95	88	
Benzo (b) fluoranthene	47	75	83	110	79	
Benzo (k.) fluoranthene	53	7.4	70	100	92	
Chrysene	87	7.5	81	110	111	
Acenaphthylene	62	65	69	110	8	
Anthracene	106	79	84	110	103	
4-Bromophenyl phenyl ether	91	74	81	120	114	
Bis (2-chloroisopropyl)ether	94	61	89	130	7.1	
Bis (2-chloroethoxy) methane	7.1	61	62	100	99	
Hexachlorobutadiene	76	78	26	g	78	
Hexachlorocyclopentadiene		욧	7	4	30	
Isosphorone	8	62	62	100	7.2	
Naphthalene	16	61	61	100	63	
Nitrobenzene	75	61	57	110	49	
Benzo(ghi)perylene	31	88	83	120	91	
Fluorene	51	75	79	110	93	
Phenanthrene	100	75	81	100	76	
Dibenzo (a, h) anthracene	79	86	82	100	68	
Indeno(1,2,3-cd)pyrene	76	85	88	110	84	
Pyrene	83	49	88	110	108	
1,2-Diphenylhydrazine	9	¥	9	2	¥	
Standard Deviation (n-1)	27.8	34.0	24.5	37.3	62.6	
Mean	60.3	71.7	67.3	97.0	78.7	
Coefficient of Variation	46.1	47.5	36.4	38.5	80.1	

(Continued)

TABLE A.2-5A (Continued)

Sample 1.D.	8602016-06A	8602058-05A	8602078-05A	8602116-05A	8602152-06A
Date Extracted	2/03/86	2/12/86	2/13/86	2/20/86	2/25/86
Date Injected	2/18/86	2/26/86	2/28/86	3/07/86	3/11/86
Parameter	% Recovery	% Recovery	% Recovery	Z Recovery	% Recovery
SURROGATE SPIKE COMPOUNDS		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
ACID FRACTION					
d5-Phenol	26	7.1	83	70	97
2-Fluorophenol	226	44	99	2 2	?
2,4,6-Tribromophenol	.4	87	2 6 5	. 60	=
d3-Phenol	Ä	X.	X.	N N	X.
BASE FRACTION					
d5-Nitrobenzene	39	06	93	138	16
2-Fluorophenyl	22	7.2	87	134	100
d14-Terpheny1	34	09	81	110	34
d10-Biphenyl	NR	N.	N.	ž	XX.

NR = Nr eported ND = Not Detected

TABLE A.2-5B

ASSOCIA PARACESA ANTINIA ANTINIA MANTANIA MANTANIA NA PARACENA MANTANIA MANTANIA MANTANIA MANTANIA MANTANIA MA

EPA METHOD 625 : MATRIX SPIKE RECOVERY RESULTS FOR WATER SAMPLES

ACID FRACTION ACID F	Date Injected	2/28/86 3/12/86	3/06/86 3/24/86	4/14/86	DEVIATION		OF VARIATION
## 179 115 33.9 66 96 110 105 22.6 70 77 68 105 22.6 70 77 68 105 22.6 70 77 68 105 22.6 70 78 52 30 61 12.7 46 64 27 130 24.8 65 64 27 130 24.8 67 65 93 147 50.8 87 69 81 80 11.8 65 81 82 82.0 90 81 82 83.0 81 82 83.0 81 82 83.0 81 82 83.0 81 84 86 13.4 82 84 86 13.4 83 84 86 13.4 84 86 13.4 85 87 10.7 86 87 111 27.5 87 88 77 88 77 89 89 89 89 79 80 77 80 81 79 86 85.9 81 79 86 10.7 82 70 70 83 71 70 84 85 71.6 85 71 71.6 86 71 71.6 87 88 77 88 78 71 89 89 79 80 71 71.9 80 81 81 81 79 80 81 81 81 81 79 80 81 81 81 81 79 81 82 84 81 84 85 71 86 87 87 88 88 88 88 88 88 88 88 88 88 88 88 88 88 88 89 89 80	srameter	% Recovery	% Recovery	# Recovery	SD (n-1)	% Recovery	- 1
## 79 115 33.9 66 96 110 105 27.0 78 97 22.6 70 77 68 105 24.8 65 95 105 24.8 65 95 105 24.8 65 96 12 12 145 49.7 65 106 90 147 50.8 87 107 90 86 21.6 83 NA ND 38 48.8 24 112 82 94 15.2 86 113 102 95 20.8 106 114 87 111 27 94 115 82 94 15.2 84 116 82 84 86 112.4 77 117 95 103 25.9 92 118 110 82 94 15.2 84 119 82 12.4 77 110 82 84 86 12.4 97 111 82 94 15.2 89 111 77 95 103 25.9 92 111 82 105 93 113 669.7 374 114 87 111 27.5 93 115 110 89 44 111 27.5 93 116 89 84 86 12.4 97 117 95 103 25.9 92 118 110 87 111 669.7 374 119 89 77 88 111 669.7 374 110 89 84 77 11.9 95 110 88 97 106 88 110 89 84 77 11.9 94 110 88 87 11.8 77 110 88 87 11.8 77 110 88 87 11.8 77 110 88 87 11.8 77 110 88 87 11.9 88 110 88 87 11.9 88 110 88 87 11.9 88 110 88 87 11.9 88 110 88 87 11.9 88 110 88 87 11.9 88 110 88 87 11.9 88 110 88 87 11.9 88 110 88 87 11.9 88 110 88 88 11.9 88 110 88 88 11.9 88 110 88 88 11.9 88 110 88 88 11.9 88 110 88 88 11.9 88 110 88 88 11.9 88 110 88 88 11.9 88 110 88 88 88 110 88 88 88 110 88 88 88 110 88 88 88 110 88 88 88 110 88 88 88 110 88 88 88 110 88 88 110 88 88 110 88 88 110 88 88 110 88 88 110 88 88 110 88 88 110 88 88 110 88 88 110 88 88 110 88 88 110 88 88 110 88 88 110 88 88 110 88 88 110 88 110 88 110 88 88 1	ACID FRACTION						
96 110 105 27.0 78 77 68 105 27.0 78 52 30 61 105 24.8 65 52 30 61 12.7 46 62 95 105 28.5 67 64 27 130 43.5 42 69 12 145 49.7 65 69 13 139 85.0 90 69 81 80 11.8 65 1132 102 95 20.8 106 1132 102 95 20.8 106 114 80 91 18.4 86 115 80 91 18.4 86 115 80 91 18.4 86 117 80 91 18.6 77 80 77 86 115.2 84 81 77 82 10.7 77 80 77 85 103 25.9 92 114 87 111 27.5 93 115 105 89 79 13.5 92 116 87 100 25.9 345 117 95 100 25.9 47 11 44 32 47 17.9 88 11 16.0 88 11 10 87 100 87 11 10 87 100 87 11 10 87 111 27.5 93 110 88 77 111 27.5 93 110 89 89 79 13.5 92 110 89 89 79 13.5 92 110 88 89 79 13.6 89 110 88 89 79 13.6 89 110 88 89 79 13.6 89 110 88 89 79 13.6 89 110 88 89 79 13.6 89 110 88 89 79 13.6 89 110 88 89 109 88 110 88 89 109 88 110 88 89 109 88	.4.6-Trichlorophenol	84	79	115	33.9	99	51.6
67 91 99 22.6 70 52 30 61 105 24.8 65 52 30 61 12.7 46 69 12 145 49.7 65 69 12 145 49.7 65 69 12 147 50.8 87 106 90 147 50.8 87 110 90 86 21.6 83 111 80 91 18.4 86 1132 102 95 20.8 106 110 82 94 15.2 82 110 82 94 15.2 82 110 82 94 15.2 82 110 82 94 15.2 82 110 82 94 15.2 82 110 82 94 15.2 82 110 82 94 15.2 82 110 82 94 15.2 82 110 82 94 15.2 82 110 82 94 15.2 82 110 82 94 15.2 82 110 82 94 15.2 82 110 82 94 15.2 82 110 82 94 15.2 82 110 82 94 15.2 82 110 82 94 15.2 82 110 82 94 15.2 93 111 49 11 11 27.5 93 112 100 89 17 111 27.5 93 113 100 89 77 111 27.5 93 114 87 111 27.5 93 115 110 87 111 10 106 116 88 69 160 88 11 160 88 69 160 88 11 160 88 69 160 88 11 160 88 69 160 88	-Chloro-3-methylphenol	96	110	105	27.0	78	34.7
77 68 105 24.8 65 52 93 105 24.8 65 69 12 130 43.5 67 64 27 130 43.5 67 64 27 130 43.5 67 65 67 68 105 28.5 67 66 90 147 50.8 87 105 99 139 85.0 90 112 80 86 21.6 83 113 102 95 20.8 106 114 80 177 82 10.7 73 2000 ND 131 669.7 374 114 87 110 27.5 93 115 89 89 79 13.5 93 116 89 89 79 13.5 93 117 95 103 25.9 94 118 100 21.6 93 119 80 131 669.7 374 114 87 111 27.5 93 115 88 69 146 117 95 1103 25.9 92 118 110 27.5 93 119 95 1103 25.9 92 1100 88 69 16.9 88 144 32 47 17.9 88 15 44 132 47.1 96 16 16 16 16 16 16 16 16 16 17 6 17 6 1	-Chlorophenol	29	91	66	22.6	70	32.6
52 30 61 12.7 46 69 12 145 49.7 67 64 27 130 43.5 67 106 90 147 50.8 87 106 90 147 50.8 87 106 90 147 50.8 87 105 93 139 85.0 90 81 81 80 11.8 65 81 80 11.8 65 124 82 94 15.2 82 16 83 84 86 15.2 84 86 81 79 86 15.4 77 80 81 79 86 15.4 77 80 81 79 86 15.4 77 80 81 79 86 15.4 77 73 80 87 111 27.5 93 105 89 79 103 25.9 92 107 <td>.4-Dichlorophenol</td> <td>11</td> <td>89</td> <td>105</td> <td>24.8</td> <td>65</td> <td>37.9</td>	.4-Dichlorophenol	11	89	105	24.8	65	37.9
62 95 105 28.5 67 64 27 145 49.7 65 64 27 130 43.5 67 106 90 147 50.8 87 105 93 139 85.0 90 69 11.8 65 69 86 21.6 83 112 80 91 18.4 86 1132 102 95 20.8 106 110 82 94 15.2 84 110 82 94 15.2 84 110 82 94 15.2 84 110 82 94 15.2 84 110 82 94 15.2 84 110 82 94 15.2 84 110 82 94 15.2 84 110 82 94 15.2 84 111 87 97 86 10.7 77 111 95 110 27.5 93 110 95 110 27.5 93 110 95 110 27.5 93 111 111 27.5 93 112 112 47.1 40 113 669.7 374 114 87 111 27.5 93 115 117 95 113.5 93 116 88 69 16.9 88 117 95 110 27.6 89 118 110 27.5 89 119 65 110 88 119 65 110 88 110 88 69 16.9 88	.4-Dimethylphenol	52	30	61	12.7	94	27.5
69 12 145 49.7 65 64 27 130 43.5 42 106 90 147 50.8 87 105 93 139 85.0 90 69 81 80 11.8 65 69 81 80 86 51.6 83 MA ND 38 48.8 24 112 80 91 18.4 86 132 102 95 20.8 106 82 82 20.8 106 83 84 86 115.2 84 89 84 86 112.4 77 80 77 88 10.7 77 80 77 88 10.7 77 114 87 111 27.5 93 105 89 79 13.5 92 106 89 79 13.5 93 116 89 79 13.5 93 117 95 65 100 21.8 88 14 47.1 40 15 86 81 16.0 88 16 69 77 179 47.1 16 88 89 79 13.5 93 17 80 81 10.0 27.6 89 18 100 88 79 13.5 93 18 100 88 69 79 13.5 93 18 100 88 69 16.0 88 18 69 16.0 88 19 79 80 81 16.0 88 10 78 78 78 78 10 88 69 16.9 88	-Nitrophenol	62	95	105	28.5	67	42.3
64 27 130 43.5 42 106 90 147 50.8 87 105 93 139 85.0 90 69 81 80 87 90 109 90 86 21.6 83 109 90 86 21.6 83 112 80 91 18.4 86 112 80 91 18.4 86 110 82 94 15.2 82 82 76 88 18.6 17.4 77 80 82 84 86 15.8 80 81 77 82 10.7 73 80 84 86 15.8 17 81 77 82 10.7 7 80 87 111 27.5 93 105 89 103 25.9 92 106 11 10.0 11.3 11.3 107 109 100 10.0 <t< td=""><td>-Nit rophenol</td><td>69</td><td>12</td><td>145</td><td>49.7</td><td>65</td><td>76.2</td></t<>	-Nit rophenol	69	12	145	49.7	65	76.2
106 90 147 50.8 87 105 93 139 85.0 90 107 90 18 65.0 90 108 11.8 65 109 90 86 21.6 83 112 80 91 18.4 86 113 102 95 20.8 106 110 82 94 15.2 82 110 82 94 15.2 84 110 82 94 15.2 84 110 82 94 15.2 84 110 82 94 15.2 84 110 82 94 15.2 84 110 82 94 15.2 84 110 82 94 15.2 84 110 82 94 15.2 84 110 82 94 15.2 84 110 82 94 15.2 84 110 82 94 15.2 84 110 82 94 15.2 84 110 82 94 15.2 84 110 82 94 15.2 84 110 82 94 15.2 84 110 82 94 15.2 84 110 82 94 15.2 84 111 12 84 111 27.5 93 112 47.1 40 113 100 106 552.9 345 114 88 69 116.9 88 115 97 86 88 69 116.9 88	.4-Dinitrophenol	79	27	130	43.5	42	103.3
105 93 139 85.0 90 69 81 80 11.8 65 1109 90 86 21.6 83 112 80 91 18.4 86 113 102 95 20.8 106 110 82 94 15.2 82 110 82 94 15.2 84 110 82 94 15.2 84 110 82 94 15.2 84 110 82 94 15.2 84 110 82 94 15.2 84 110 82 94 15.2 84 110 82 94 15.2 84 110 82 94 15.2 82 110 82 94 15.2 84 110 82 94 15.2 84 110 82 94 15.2 84 110 82 94 15.2 84 111 79 86 12.4 77 114 87 111 27.5 93 115 89 79 13.5 93 116 89 79 13.5 93 117 95 1106 552.9 345 118 66 11.8 77 119 88 69 116.9 88 110 88 69 116.9 88	-Methyl-4,6-dinitrophenol	106	06	147	50.8	87	58.1
CTION CTION 109 90 86 21.6 83 orobenzene 112 80 91 18.4 86 naene 113 102 95 20.8 106 naene 131 102 95 20.8 106 naene 131 102 95 20.8 106 benzene 89 84 86 15.2 84 benzene 89 84 86 15.8 80 benzene 89 84 86 15.8 80 benzene 89 84 86 15.8 80 oluene 110 82 10.7 77 oluene 110 82 10.7 77 oluene 114 87 111 27.5 93 oluene 105 89 79 13.5 93 yl phenyl ether 117 95 110 25.9 92 yl phenyl ether 117 95 100 25.9 92 cxyl)phthalate 79 65 100 21.8 72 sxyl)phthalate 79 65 100 81 16.0 88 bhylante 67 86 81 16.0 88 cxyl)phthalate 70 65 100 65 16.9 88 bhylante 67 67 86 81 16.0 88 bhylante 67 67 67 16.9 88	entachlorophenol	105	93	139	85.0	8	9.46
CTION 109 90 86 21.6 83 NA ND 38 48.8 24 NA ND 38 48.8 24 NA ND 38 48.8 24 nzene 112 80 94 15.2 80 ethyl bane 81 82 94 15.2 82 thalene 81 82 94 15.2 82 benzene 89 84 86 15.8 80 benzene 81 77 82 10.7 73 benzene 89 84 86 15.8 80 benzene 80 84 86 12.4 77 benzene 80 77 82 10.7 73 benzene 80 84 86 11.4 87 oluene 100 17.9 40 17.9 40 oluene 100 17.0 </td <td>henol</td> <td>69</td> <td>81</td> <td>80</td> <td>11.8</td> <td>65</td> <td>18.0</td>	henol	69	81	80	11.8	65	18.0
orobenzene 112 NA ND 38 48.8 24 and are 112 80 91 18.4 86 106 banzene 112 82 94 15.2 82 42 106 banzene 81 82 94 15.2 82 110 82 23.2 84 110 82 23.2 84 110 82 82 23.2 84 110 82 82 82 12.4 77 82 10.7 73 82 10.7 73 60 100 131 669.7 374 oluene 105 89 110 27.5 93 oluene 105 89 110 27.5 93 110 89 79 13.5 92 110 89 79 13.5 92 110 89 79 13.5 92 110 89 79 13.5 92 110 89 79 13.5 92 110 89 110 88 89 110 88 89 110 88 89 110 88 89 110 88 89 110 88 89 110 81 110 87.5 89 110 88 89 110 88 89 110 88 89 110 88 88 89 110 88 88 89 110 88 88 89 110 88 88 89 110 88 88 88 89 110 88 88 88 88 88 88 88 88 88 88 88 88 88	44	100	0	40	31.6	ď	0 90
NA ND 38 48.8 24 112 80 91 18.4 86 132 102 95 20.8 106 81 82 94 15.2 82 110 82 82 18.6 75 89 84 86 12.4 77 80 77 86 12.4 77 80 77 82 10.7 73 2000 ND 131 669.7 374 114 87 111 27.5 93 105 89 79 13.5 92 109 89 79 13.5 92 107 95 103 25.9 92 117 95 103 25.9 92 109 89 79 47.1 40 272 1700 106 552.9 345 79 65 100 21.8 72 44 32 47 17.9 47 86 65 16.9 16.9 88 60 16.9 16.9 16.9 76 70 86 16.9 16.9 <td>cenaphthene</td> <td>601</td> <td>? !</td> <td>8</td> <td>0.12</td> <td>2 6</td> <td>0.02</td>	cenaphthene	601	? !	8	0.12	2 6	0.02
112 80 91 18.4 86 132 102 95 20.8 106 81 82 94 15.2 82 82 76 88 18.6 75 89 84 86 15.8 80 80 77 82 10.7 73 80 77 82 10.7 73 80 77 82 10.7 73 114 87 111 27.5 93 119 89 79 13.5 92 109 89 79 13.5 92 107 95 103 25.9 92 117 95 103 25.9 92 117 95 106 552.9 345 79 65 100 21.8 72 44 32 47 17.9 47 44 32 47 17.9 47 44 32 47 17.9 88 45 16.6 16.9 16.9 76 46 16.9 16.9 16.9 76 47 17.9 17.9 76	enzidine	≨ ;	⊋ ;	æ ;	£ .	47	700.0
132 102 95 20.8 106 81 82 94 115.2 82 82 86 115.2 84 89 84 86 115.8 80 81 79 86 12.4 77 80 77 82 10.7 73 80 77 82 10.7 73 114 87 111 27.5 93 105 89 79 13.5 93 117 95 103 25.9 92 109 89 79 47.1 40 272 1700 106 552.9 345 79 65 100 21.8 72 80 81 16.0 88 97 80 81 16.0 88 44 86 65 16.9 88 60 16.9 16.9 88 67 106 552.9 345 74 86 67 16.9 88 86 69 16.9 88 87 10.6 10.6 552.9 345 88 69 16.9	, 2, 4-Trichlorobenzene	112	&	16	18.4	& ;	21.4
81 82 94 15.2 82 82 76 88 18.6 75 110 82 82 23.2 84 89 84 86 15.8 80 81 79 86 12.4 77 80 131 669.7 77 114 87 111 27.5 93 117 95 103 25.9 92 117 95 100 25.9 92 272 1700 106 552.9 345 79 65 100 21.8 72 144 32 47 17.9 47 16.9 88 16.9 88 17.0 88 18.0 67 19.0 88 10.0 67 10.0 88 10.0 67 10.0 88	exachlorobenzene	132	102	95	20.8	106	19.7
82 76 88 18.6 75 110 82 84 86 15.8 84 89 84 86 15.8 80 81 79 86 12.4 77 80 77 82 10.7 73 2000 ND 131 669.7 374 114 87 111 27.5 93 105 89 79 13.5 92 117 95 103 25.9 92 60 1 123 47.1 40 272 1700 106 552.9 345 79 65 100 21.8 72 74 32 47 17.9 47 100 88 69 16.9 88	exachloroethane	81	82	76	15.2	82	18.6
110 82 83.2 84 89 84 86 15.8 80 81 79 86 15.8 80 80 77 82 10.7 73 2000 MD 131 669.7 374 114 87 111 27.5 93 105 89 79 13.5 92 117 95 103 25.9 92 60 1 123 47.1 40 272 1700 106 552.9 345 79 65 100 21.8 72 144 32 47 17.9 48 100 88 69 16.9 88	is (2-chloroethyl)ether	82	92	88	18.6	75	24.9
89 84 86 15.8 80 81 79 86 12.4 77 80 10.7 77 82 10.7 77 82 10.7 77 114 87 111 27.5 93 105 89 79 13.5 92 117 95 103 25.9 92 60 1700 106 552.9 345 79 65 100 21.8 72 79 65 100 21.8 72 74 88 69 16.9 88	-Chloronaphthalene	110	82	82	23.2	84	27.7
81 79 86 12.4 77 80 77 82 10.7 73 2000 ND 131 669.7 374 114 87 111 27.5 93 105 89 79 13.5 92 117 95 103 25.9 92 60 1700 106 552.9 345 79 65 100 21.8 72 97 80 81 16.0 88 100 88 69 16.9 88	,2-Dichlorobenzene	83	84	98	15.8	80	19.8
80 77 82 10.7 73 2000 MD 131 669.7 374 114 87 111 27.5 93 105 89 79 13.5 92 117 95 103 25.9 92 60 1 1 123 47.1 40 272 1700 106 552.9 345 79 65 100 21.8 72 97 80 81 16.0 88 100 88 69 16.9 88	,3-Dichlorobenzene	81	79	98	12.4	11	16.1
2000 ND 131 669.7 374 114 87 111 27.5 93 105 81 110 27.6 93 109 89 79 13.5 92 117 95 103 25.9 92 60 1 123 47.1 40 272 1700 106 552.9 345 79 65 100 21.8 72 97 80 81 16.0 88 44 32 47 17.9 47 44 32 47 17.9 47 44 32 47 17.9 88 44 32 47 17.9 47 44 32 47 17.9 47 44 32 47 16.9 88 45 46 16.9 16.9 88	.4-Dichlorobenzene	80	11	82	10.7	73	14.6
114 87 111 27.5 93 105 81 110 27.6 93 109 89 79 13.5 92 107 95 103 25.9 92 60 1 123 47.1 40 272 1700 106 552.9 345 79 65 100 21.8 72 97 80 81 16.0 88 44 32 47 17.9 47 67 86 16.9 88 69 16.9 88 67 10.5 74	.3-Dichlorobenzidine	2000	2	131	669.7	374	178.9
105 81 110 27.6 93 109 89 79 13.5 92 107 95 103 25.9 92 60 1 123 47.1 40 272 1700 106 552.9 345 79 65 100 21.8 72 97 80 81 16.0 88 100 88 69 16.9 88 67 78 19.5 74	.4-Dinitrotoluene	114	87	111	27.5	93	29.4
109 89 79 13.5 92 117 95 103 25.9 92 60 1 123 47.1 40 272 1700 106 552.9 345 79 65 100 21.8 72 97 80 81 16.0 88 44 32 47 17.9 47 67 86 16.9 88 67 16.9 88 67 16.9 88	.6-Dinitrotoluene	105	81	110	27.6	93	29.6
117 95 103 25.9 92 60 1 123 47.1 40 272 1700 106 552.9 345 79 65 100 21.8 72 97 80 81 16.0 88 44 32 47 17.9 47 67 86 16.9 88 69 16.9 88 69 16.9 74	luoranthene	109	89	79	13.5	92	14.7
60 1 123 47.1 40 272 1700 106 552.9 345 79 65 100 21.8 72 97 80 81 16.0 88 44 32 47 17.9 47 67 64 78 16.9 88 67 16.9 88	-Chlorophenyl phenyl ether	117	95	103	25.9	92	28.3
272 1700 106 552.9 345 79 65 100 21.8 72 97 80 81 16.0 88 44 32 47 17.9 47 67 16.9 88 69 16.9 88 67 16.9 88	-Nitrosodimethylamine	09		123	47.1	04	117.3
79 65 100 21.8 72 97 80 81 16.0 88 44 32 47 17.9 47 100 88 69 16.9 88 67 78 19.5 74	1-Nit rosodiphenylamine	272	1700	106	552.9	345	160.1
97 80 81 16.0 88 44 32 47 17.9 47 100 88 69 16.9 88 67 78 19.5 74	I-Nitrosodi-n-propylamine	79	65	100	21.8	72	30.2
44 32 47 17.9 47 100 88 69 16.9 88 74 78 10.5 74	is (2-ethylhexyl)phthalate	97	80	81	16.0	88	18.2
100 88 69 16.9 88 67 86 78 10 5 74	butyl benzyl phthalate	44	32	47	17.9	47	38.1
67 96 78 10 5 74	i-butyl phthalate	100	88	69	16.9	88	19.2
*/ C.C.T 0/ 00							

(Continued)

TABLE A.2-5B (Continued)

	→	TABLE A.L-Ju (Continued)	mrauo.)) a	red)			
Sample I.D. Date Extracted Date Injected	8602179-05A 2/28/86 3/12/86	8603018-05A 3/06/86 3/24/86	8604085-04A 4/14/86 4/24/86	STANDARD DEVIATION	HEAN	COEFFICIENT OF VARIATION	
Parameter	% Recovery	I Recovery	# Recovery	SD (n-1)	Z Recovery	CV - X	- 1
Dimethyl phthalate	31	\$	59	18.0	59	30.6	
Benzo(a)anthracene	76	74	87	11.9	6	13.2	
Benzo (a) pyrene	80	83	86	7.1	87	8.2	
Benzo(b)fluoranthene	80	198	06	45.0	95	47.3	
Benzo (k) fluoranthene	85	158	06	31.1	96	34.5	
Chrysene	105	83	83	14.4	92	15.7	
Acenaphthylene	102	16	73	17.8	87	21.8	
Anthracene	116	97	06	13.0	96	13.2	
4-Bromophenyl phenyl ether	144	108	108	22.6	105	21.5	
Bis (2-chloroisopropyl)ether	74	26	101	27.1	9/	35.8	
Bis (2-chloroethoxy)methane	88	76	98	14.0	9/	18.3	
Hexachlorobutadiene	124	46	06	36.5	7.7	9.74	
Hexachlorocyclopentadiene	-	10	m	6.6	7	141.2	
Isosphorone	96	83	78	14.0	79	17.7	
Naphthalene	88	81	71	15.1	7.1	19.7	
Nitrobenzene	8	63	98	17.6	75	23.6	
Benzo(ghi)perylene	46	62	106	27.4	82	32.4	
Fluorene	107	88	80	18.9	82	22.1	
Phenanthrene	105	88	7.7	11.5	8	12.7	
Dibenzo(a,h)anthracene	96	43	108	29.5	8	36.8	
Indeno(1,2,3-cd)pyrene	100	17	107	35.8	7.1	4.94	
Pyrene	100	83	74	16.2	88	18.3	
1,2-Diphenylhydrazine	ž	9	¥	0.0	0	ERR	
Standard Deviation (n-1)	257.8	219.9	24.7		,		
Mean	124.1	104.4	91.5		•		
Coefficient of Variation	207.7	210.6	27.0				

	TAB	LE A.2-5B	TABLE A.2-5B (Continued)	~		
Sample I.D. Date Extracted Date Injected	8602179-05 A 2/28/86 3/12/86	8603018-05A 3/06/86 3/24/86	8602179-05A 8603018-05A 8604085-04A STANDARD 2/28/86 3/06/86 4/14/86 DEVIATION 3/12/86 3/24/86 4/24/86	STANDARD DEVIATION	MEAN	COEFFICIENT OF VARIATION
Parameter	# Recovery	Z Recovery	Z Recovery Z Recovery Z Recovery		SD (n-1) K Recovery	CV - #
SURROGATE SPIKE COMPOUNDS		! 		 		
ACID FRACTION						
dS-Phenol	65	70	83	12.6	89	18.5
2-Fluorophenol	52	99	83	64.5	11	84.1
2.4.6-Tribromophenol	110	98	95	32.1	69	8.94
d3-Phenol	NR	X.	N.		1	!
BASE FRACTION						
d5-Nitrobenzene	106	70	117	29.8	93	32.1
2-Fluorophenyl	118	89	103	34.6	88	39.4
d14-Terpheny1	126	09	\$4	31.2	72	43.1
d10-Bipheny1	N	XX	XX XX	} !	1	!

TABLE A.2-6A

POSSESSAME CONTRACT CONTRACTOR CONTRACTOR SERVICE SERV

EPA METHOD 625: SURROGATE SPIKE RECOVERY RESULTS FOR WATER SAMPLES

ACID FRACTION

LAB I.D.	ပွ	INTECTION	d>-Phenol	2-Fluorophenol	7,4,0-Iribromophenol	d 3-Phenol
		DATE	# Recovery	Z Recovery	Z Recovery	# Recovery
		Ì	;	:	;	!
8601242-01A		20/80	5	87	141	¥
8601242-02A		20786	32	62	32	æ
8601242-03A		20786	33	30	31	ž
8601242-04A		20786	54	82	118	N.
8601242-05A		20786	135	236	115	N.
8601242-06A		20786	38	7.1	33	NR
8601242-07A		21186	14	45	43	X.
R601242-08A		21186		109	00.7	æ
R601242-09B	[21186	146	147	123	×
8601242-094	: 2	21186	150	62	28	2
8601242-02A	i	21186	054	45	2 7	2
8602004-01A		21186	Ç Ç	73	; ;	ž
8602004~02A		21186	17	0.90	19	X
8602004-03A		21186	62	56	36	¥
8602004-04A		21286	9	17	12	ž
8602004-05A		21286	97	76	59	X.
8602004-06A		21286	85	81	43	NR
8602016-01A		21486	54	9	39	NR
8602016-02A	D1	21486	61	79	65	N.
8602016-03A		21486	70	11	48	XX
8602016-04A		21486	70	9/	09	NR
8602016-05A		21486	99	73	04	N.
8602016-06B	D2	21686	9/	115	103	N.
8602030-01A		21686	116	147	139	N.
8602030-02A		21686	143	126	142	N.
8602030-03A		21686	81	97	73	N.
8602030-04A		22186	7.4	87	52	N.
8602030-05A		21686	99	81	55	NR.
3602038-01A	D1	22486	76	38	37	æ
8602038-02A		22486	29	32	31	NR R
8602038-03A		22586	31	33	32	Ä
8602038-04A		22586	33	70	18	N.
8602038-05A		22586	56	35	35	N.
8602038-06B	D2	22486	33	72	20	N.
8602044-01A		22586	54	36	37	N.
8602044-02A		22586	59	58	63	N.
8602044-03A		22586	72	24	73	NR
8602044-04A		22586	\$	7	NR	NR NR
8602044-05A		22586	86	26	07	XX
		,0,00		•	1	

(Continued)

TABLE A.2-6A (Continued)
ACID FRACTION

COMPANY DESCRIPTION OF THE PROPERTY OF THE PRO

QC INJECTION d5-Phenol 2-Fluorophenol 2,4,6-Tribromophenol d3-Phenol 22686 65 68 43 59 22686 65 74 59 **** 22686 65 74 59 **** 22686 65 74 59 **** 22686 65 74 59 **** 22786 68 190 79 **** 22786 68 130 79 **** 22786 68 130 79 **** 22786 68 130 79 ***** 22786 68 130 79 ***** 22786 66 77 77 77 111 22786 67 77 111 **** 48 86 86 86 86 86 86 86 86 86 86 86 86 86 86 86 86 <td< th=""><th></th><th>1NJECT10N DATE 22686 22686</th><th>d5-Phenol Recovery</th><th>2-Fluorophenol</th><th>2,4,6-Tribromophenol</th><th>d3-Phenol</th></td<>		1NJECT10N DATE 22686 22686	d5-Phenol Recovery	2-Fluorophenol	2,4,6-Tribromophenol	d3-Phenol
22686 65 68 43 44 46 22786 68 73 79 70 70 22686 69 74 85 91 46 59 22786 68 88 130 79 70 70 22786 68 88 130 79 70 70 22786 68 88 130 70 70 70 70 70 70 70 70 70 70 70 70 70		22686	A necovery	T Decorption		
22666 65 68 43 22666 69 74 59 22666 69 74 59 22666 69 74 59 22766 68 190 79 22766 68 190 79 22766 68 190 79 22766 68 190 79 22766 66 70 70 22766 53 72 77 22766 53 72 77 22766 53 72 77 22766 53 72 77 22766 53 72 77 22766 53 77 77 30566 66 67 91 30566 56 64 91 30566 54 48 82 30566 55 54 48 30566 55 49 44		22686		A Recovery	A necovery	
22666 69 74 59 74 59 22666 69 74 79 70 70 22666 69 73 199 70 70 22666 69 73 199 70 70 22666 69 73 199 70 70 70 22766 68 88 130 70 70 70 22766 68 88 130 70 70 70 70 22766 65 70 70 70 70 70 70 70 70 70 70 70 70 70		22686	45	9	69	ă
22686 62 91 46 22786 73 79 70 22786 68 190 79 22786 68 190 79 22786 62 76 60 22786 63 72 77 22786 63 72 77 22786 63 72 77 22886 65 66 77 22886 75 58 81 22886 75 58 81 22886 75 72 72 22886 75 72 72 30586 77 77 111 30586 66 64 96 30586 54 48 82 30686 52 49 44 30586 52 49 44 30586 53 56 80 30686 73 70 1114		3	6 %	92	o c	ž
22686 73 79 70 22786 68 190 79 *** 22786 68 190 79 *** 22786 68 190 79 *** 22786 62 76 60 77 *** 22786 63 66 77 72 *** *		226R6	62	: 5	97	ž
22786 68 190 79 22786 75 86 79 22786 62 76 60 22786 62 77 77 22786 63 70 77 22786 63 77 77 22886 67 53 33 22886 77 78 81 30586 77 67 111 30586 66 67 91 30586 66 67 96 30586 66 67 104 30586 66 67 104 30586 66 67 64 96 30586 50 54 48 82 30586 50 54 48 82 30586 52 49 44 30586 53 56 93 30586 57 79 113 30586 <		22686	73	5 62	70	X.
22786 75 86 79 *** 22786 62 76 60 *** 22786 65 66 77 60 *** 22786 65 66 77 72 60 *** 22886 65 67 72 67 111 77 77 111 77 77 111 77 77 111 77 77 111 77 77 111 77 77 111 77 77 111 77 77 111 77 77 111 77 77 111 77 77 114 96 97 96		22786	89	190	79	¥**
22786 88 130 79 22786 62 76 60 77 22786 65 70 70 77 22886 65 77 72 72 22886 65 67 77 77 30586 77 67 111 77 30586 66 67 91 64 91 30586 66 67 104 96 94 96 96 91 30586 66 67 104 96 64 96		22786	75	98	79	**N*
D1 22786 62 77 *** 22786 65 77 72 74 <		22786	88	130	61	**N*
D1 22786 65 66 77 22786 53 72 72 22786 67 72 72 22886 67 73 59 22886 75 78 81 30586 72 67 121 30586 66 64 91 30586 66 67 91 30586 56 67 104 30586 56 67 96 30586 56 67 96 30686 53 79 162 30786 52 49 44 30786 53 56 80 30786 53 56 80 30686 73 65 93 30686 72 65 93 30686 72 65 111 30686 73 74 133 31086 78 74 133 31086 78 74 10 31286		22786	62	9/	. 09	¥N**
22786 53 72 22886 67 53 59 22886 67 78 81 22886 72 78 81 30586 72 77 111 30586 66 64 91 30586 66 64 91 30586 66 67 104 30586 50 54 96 30586 50 54 96 30686 52 49 44 30786 52 49 44 30786 52 49 44 30786 52 49 44 30786 52 49 44 30786 52 49 44 30786 52 49 44 30786 52 49 44 30686 52 49 44 30686 53 10 10 30686 73 113 113 30686 75 74 133 30686 75 70 114 31086 75 75 127 31186 75 75 127		22786	65	99	7.7	N.
22886 67 53 59 22886 75 58 33 30586 72 67 121 30586 66 67 104 30586 66 67 104 30586 50 54 96 30586 50 54 96 30586 50 54 96 30686 85 80 135 30786 52 49 44 30786 53 56 80 30786 53 56 80 30686 53 56 80 30686 73 111 30686 73 107 30686 73 114 30686 73 114 30686 73 114 30686 73 114 30686 73 127 31086 73 127 31086 73 127 31286 64 58 127 31286 64 58 127 31286 64 58 127 31186 73 78 127 31286 64 <td></td> <td>22786</td> <td>53</td> <td>72</td> <td>72</td> <td>X.</td>		22786	53	72	72	X.
D2 22886 85 78 81 30586 72 58 33 30586 77 77 111 30586 66 64 91 30586 66 67 104 30586 66 67 104 30586 50 54 96 30686 85 80 135 30686 79 79 162 30686 72 63 107 30686 72 63 107 30686 72 63 107 30686 72 63 107 30686 72 63 107 30686 72 63 107 30686 72 63 107 30686 72 63 107 30686 72 70 133 31086 73 74 133 31086 73 74		22886	29	53	59	NR
D2 22886 75 58 33 30586 72 67 121 30586 66 64 91 30586 66 64 91 30586 66 64 91 30586 66 67 104 30586 50 54 96 30686 85 80 162 30686 79 79 144 30786 130 120 156 30686 67 63 107 30686 72 63 107 30686 72 63 114 30686 75 70 118 30686 75 70 114 30686 75 70 114 30686 75 70 114 30686 75 70 148 31086 130 45 40 31186 75 75 <td></td> <td>22886</td> <td>85</td> <td>78</td> <td>81</td> <td>NR</td>		22886	85	78	81	NR
30586 72 67 121 30586 66 64 91 30586 66 67 104 30586 50 54 96 30586 50 54 96 30586 54 48 82 30686 54 48 82 30686 79 79 162 30786 130 120 156 30786 53 44 44 30786 53 49 44 30786 53 56 80 30686 72 65 93 30686 73 113 118 30686 73 74 113 30686 75 70 131 30686 75 74 133 31086 17 80 148 31186 101 106 143 31286 64 58 127 31286 62 63 127 31186 62 63 127 31186 75 73 127 31186 64 58 124 31186 62 63 <td></td> <td>22886</td> <td>7.5</td> <td>28</td> <td>33</td> <td>N.</td>		22886	7.5	28	33	N.
30586 77 77 111 30586 66 64 91 30586 66 67 104 30586 50 54 96 30686 54 48 82 30686 85 80 135 30686 79 79 162 30786 130 120 156 30786 53 56 80 30686 72 63 113 30686 72 63 114 30686 78 79 118 30686 78 74 133 31086 75 70 131 31086 75 74 133 31086 130 45 40 51 31186 79 75 16 51 31286 75 73 127 31286 64 58 127 31286 62 127 127 31286 62 127 3128	1602091-01A	30586	7.2	67	121	2
30586 66 64 91 30586 66 67 104 30586 50 54 96 30686 85 48 82 30686 85 80 135 30786 130 120 162 30786 130 120 156 30786 53 56 80 30686 72 65 93 30686 72 63 114 30686 72 63 114 30686 78 79 114 30686 75 70 131 30686 75 74 133 31086 75 74 133 31086 75 74 133 31086 75 75 163 31286 75 75 163 31286 75 73 127 31286 62 112 31286 62 112 31286 62 112 31286 62 127 31286 62 127 31286 62 127 31286 62 127	1602091-02A	30586	11	11	111	N.
30586 66 67 104 30586 50 54 96 30686 85 48 82 30686 85 80 135 30686 79 79 162 30786 130 120 156 30586 53 56 80 30686 67 65 93 30686 72 63 113 30686 78 79 118 30686 78 74 133 31086 78 74 133 31086 87 80 148 31186 101 106 143 31286 75 75 153 31286 75 75 153 31286 75 75 153 31286 75 75 127 31286 75 73 127 31286 64 58 127 31286 75 78 127 31286 75 78 127 31286 75 78 127 31286 75 78 127 31286 75 78	1602109-01A	30586	99	79	91	æ
30586 50 54 96 30686 54 48 82 30686 85 80 135 30686 79 79 162 30786 130 120 162 30786 53 56 80 30586 67 65 93 30686 72 63 107 30686 72 63 107 30686 78 79 118 30686 78 70 131 30686 75 70 131 30686 75 70 131 30686 75 70 148 31088 87 80 148 31086 130 45 40 31186 101 106 143 31286 75 73 127 31386 64 58 127 31386 62 62 112 31386 62 62 112 31386 64 58 127 31386 62 62 112 31386 62 127 31386 73 78 12	3602109-02A	30586	99	19	104	N.
30686 54 48 82 30686 85 80 135 30686 79 162 30786 52 49 44 30786 130 120 156 30686 67 65 93 30686 67 65 93 30686 72 63 107 30686 72 66 114 30686 78 74 131 30686 78 74 131 31088 130 45 40 51 131 148 31 130 45 40 51 131 127 31 136 153 127 51 131 127 127 31 136 58 124 31 136 62 112 31 136 58 127 31 136 62 127 31 136 58 127 31 136 58 127 31 136 58 127 31 136 58 127 31 136	1602109-03A	30586	20	54	96	X.
30686 85 80 135 30686 79 79 162 30686 72 49 44 30786 130 120 156 30686 67 65 93 30686 72 63 107 30686 78 79 118 30686 78 79 114 30686 78 74 131 30686 78 74 133 31086 130 45 40 51 130 45 40 101 101 106 143 127 131 127 31286 64 58 124 31286 62 62 112 31386 64 58 124 31386 64 58 127 31386 62 62 112 31386 62 62 112 31386 64 58 124 31386 62 62 112 31386 62 62 112 31386 73 73 127 31386 73 73 127 <td>1602116-01A</td> <td>30686</td> <td>54</td> <td>84</td> <td>82</td> <td>N.</td>	1602116-01A	30686	54	84	82	N.
30686 79 79 162 30786 52 49 44 30786 130 120 156 30586 67 65 93 30686 9 32 113 30686 72 63 107 30686 78 79 118 30686 78 79 114 30686 75 70 131 30686 78 74 133 31086 17 80 148 31086 130 45 40 5 131 106 143 13 130 45 127 31286 64 58 127 31286 64 58 124 31386 62 62 112 31386 64 58 124 31386 62 62 112 31386 64 58 124 31386 62 62 112 31386 62 62 112 31386 64 58 124 31386 73 78 127 31386 73 78	1602116-02A	30686	85	80	135	Z.
30786 52 49 44 30786 130 120 156 30586 53 56 80 30686 67 65 93 30686 72 63 107 30686 78 79 118 30686 75 70 131 30686 75 70 131 31086 130 45 40 b1 31086 130 45 40 b2 31186 101 106 143 b2 31186 75 153 b2 31286 64 58 127 31286 64 58 127 31186 75 73 127 31286 64 58 124 31186 64 58 127 31186 62 62 112 31186 75 78 127 31186 64 58 127 31186 75 78 127 31186 75 78 127 31186 75 78 127 31186 75 78 127 <	3602116-03A	30686	79	19	162	æ æ
30786 130 120 156 30586 53 56 80 30686 67 65 93 30686 72 63 107 30686 72 63 107 30686 71 66 114 30686 75 70 131 30686 75 70 131 31086 87 80 148 31086 130 45 40 5 31186 101 106 143 5 31186 101 106 143 13286 64 58 127 31286 64 58 124 31186 87 80 143 31286 64 58 127 31186 64 58 127 31186 64 58 127 31186 62 62 112 31186 64 58 127 31186 64 58 127 31186 73 127 31186 73 127 31186 73 127 31186 73 127	1602116-04A	30786	52	67	74	NR NR
30586 53 56 80 30686 67 65 93 30686 72 63 107 30686 71 66 114 30686 75 70 131 30686 75 70 131 30686 78 74 133 31086 87 80 148 51 31086 130 45 40 51 31186 101 106 143 52 31186 101 106 143 53 31286 64 58 127 31286 64 58 127 31186 64 58 124 31286 64 58 127 31186 87 78 127 31286 64 58 127 31186 127 127 31186 58 127 31186 73 127 31186 73 127 31186 73 127 31186 73 127 31186 73 127 31186 73 127 31186	3602116-05B	30786	130	120	156	N.
30686 67 65 93 30686 9 32 113 30686 72 63 107 30686 78 79 118 30686 71 66 114 30686 75 70 131 30686 78 74 133 31086 87 80 148 51 31086 130 45 40 51 31186 79 75 153 52 31286 75 127 31286 64 58 127 31186 64 58 124 31286 64 58 124 31186 87 78 127 31186 64 58 127 31186 64 58 124 31186 64 58 127 31186 64 58 127 31186 73 73 127 31186 73 73 127 31186 73 73 127 31186 73 73 127 31186 73 73 127 31186 </td <td>1602122-011</td> <td>30586</td> <td>53</td> <td>56</td> <td>80</td> <td>X.</td>	1602122-011	30586	53	56	80	X.
30686 9 32 113 30686 72 63 107 30686 71 66 114 30686 75 70 131 30686 78 74 133 31086 87 80 148 31086 130 45 40 51 31186 79 75 153 52 31286 75 127 31286 64 58 124 31386 64 58 124 31386 64 58 124 31386 64 58 127 31386 64 58 127 31386 64 58 124 31386 64 58 124 31386 64 58 127 31386 64 58 127 31386 73 73 127 31386 73 73 127 31386 73 73 127 31386 73 73 127 31386 73 73 127 31386 73 73 73 31386 73 </td <td>3602122-02A</td> <td>30686</td> <td>67</td> <td>65</td> <td>93</td> <td>ž</td>	3602122-02A	30686	67	65	93	ž
30686 72 63 107 30686 78 79 118 30686 71 66 114 30686 75 70 131 30686 78 74 133 31086 87 80 148 31086 130 45 40 51 31186 79 75 153 52 31186 75 143 53 127 127 31286 64 58 124 31386 64 58 124 31486 87 78 127 31486 87 78 127	3602122-03A	30686	6	32	113	æ
30686 78 79 118 30686 71 66 114 30686 75 70 131 30686 78 74 133 31086 87 80 148 51 31086 130 45 40 51 31186 101 106 143 52 31186 101 106 143 31286 64 58 127 31286 64 58 124 31186 87 78 127	3602132-01A	30686	7.2	63	107	ž
30686 71 66 114 30686 75 70 131 30686 78 74 133 31086 87 80 148 31086 130 45 40 b1 31186 79 75 153 b2 31186 101 106 143 b2 31286 64 58 124 31286 64 58 127 31186 87 78 127 31186 87 78 127	3602132-02A	30686	7.8	79	118	æ
30686 75 70 131 30686 78 74 133 31086 87 80 148 31086 130 45 40 D1 31186 79 75 153 D2 31186 101 106 143 D3 31286 64 58 124 B3 31286 64 58 124 B3 31186 87 78 127	3602132-03A	30686	7.1	99	114	ž
30686 78 74 133 31086 87 80 148 31086 130 45 40 D1 31186 79 75 153 D2 31186 101 106 143 31286 64 58 124 31186 87 78 127 31186 87 78 127	3602132-04A	30686	75	70	131	X.
31086 87 80 148 31086 130 45 40 b1 31186 79 75 153 b2 31186 101 106 143 31286 75 73 127 31286 64 58 124 31186 87 78 127 31186 87 78 127	3602132-05A	30686	78	7.4	133	×
31086 130 45 40 D1 31186 79 75 153 D2 31186 101 106 143 31286 75 73 127 31286 64 58 124 31386 62 62 112 31186 87 78 127	3602152-03A	31086	87	80	148	N.
D1 31186 79 75 153 D2 31186 101 106 143 31286 75 73 127 31286 64 58 124 31286 62 62 112 31186 87 78 127	3602152-04A	31086	130	45	07	X.
D2 31186 101 106 143 31286 75 73 127 31286 64 58 124 31286 62 62 112 31186 87 78 127		31186	6/	75	153	A.
31286 75 73 127 31286 64 58 124 31286 62 62 112 31186 87 78 127		31186	101	106	143	N.
31286 64 58 124 31286 62 62 112 31186 87 78 127	3602169-01A	31286	7.5	7.3	127	X.
31286 62 62 112 31186 87 78 127	3602169-02A	31286	79	58	124	NR
31186 87 78 127	3602169-03A	31286	62	62	112	X.
	8602169-04A	31186	87	7.8	127	æ

(Continued)

xxvi

TABLE A.2-6A (Continued)

z
2
H
Ų.
≨
Ξ
_
=
ن

LAB I.D.	ос	INJECTION DATE	d5-Phenol % Recovery	2-Fluorophenol % Recovery	2,4,6-Tribromophenol X Recovery	d3-Phenol Recovery
1	1	 				
8602179-02A		31286	78	7.4	140	NR
8602179-03A		31286	89	89	132	N.
8602179-04A		31286	99	99	122	NR
8602179-05B		31386	7.1	7.2	84	NR
8602198-01A		31386	62	89	105	X.
8602198-02A		31386	9/	85	130	N.
8602198-03A		31386	69	7.5	125	N.
8602198-04A		31386	61	7.1	107	N.
8602198-05A		31386	63	9/	112	X.
8602198-06A		31386	55	62	102	NR
8603018-01A		32486	59	99	69	æ
8603018-02A		32486	9	57	70	N.
8603018-03A	D1	32486	70	7.5	77	X.
8603018-04A		32486	62	7.2	7.1	Ä
8603018-05B	02	32486	54	99	61	NA
8603021-01A		32486	65	70	70	N.
8603021-02A		32486	63	69	83	æ
8603021-03A		32486	34	52	67	N.
8603021-04A		32486	77	53	53	æ
8604070-01A		42386	7.5	99	88	N.
8604070-02A		42286	84	19	69	ž
8604085-01A	10	42286	92	32 ,	59	ž
8604085-02A		42486	82	78	65	N.
8604085-03A	D2	42486	80	81	7.8	N.
8604135-01A		42886	98	82	35	X.
8604135-02A		42886	63	79	78	A.
Standard Deviation (n-1)	ation	(n-1)	25.4	30.9	37.7	1
Mean			59	88	7.8	-
Coefficient of Variation	f Varie	stion	42.9	35.0	48.2	1
			!) 	!	

NR = Not Reported NA = Not Ar lyzed for this compound

TABLE A.2-6B

ACCOUNT STREET, SERVICIOS DE CONTROL SECURIOS MINISTRAN, ESCURIOS PARCETES PROCESSOS DESCRIPTOS DE PROCESSOS D

EPA METHOD 625: SURROGATE SPIKE RECOVERY RESULTS FOR WATER SAMPLES

z
₹
ASE

LAB 1.D.	&	INJECTION	d5-Nitrobenzene % Recovery	2-Fluorobiphenyl	d14-Terphenyl Z Recovery	d10-Biphenyl
8601242-01 4		207.86	£ 7	77	\$	2
***********		70.00	2 7			
W70-7471000		00/07	16	F	661	Y :
8601242-03A		20786	88	2/	13/	ž
8601242-04A		20786	14	47	64	¥
8601242-05A		20786	103	79	156	N.
8601242-06A		20786	110	98	11	N.
8601242-07A		21186	85	49	37	N.
8601242-08A		21186	125	99	38	ž
8601242-09B	DI	21186	, sc	45	115	Z.
8601242-094		21186	75	76	٤7	æ
8601242-104		21186	6 or	7.8	07	a z
A10-7000098		21186	44	700	77	2
6002004-01A		21100	133	5 6	2 3	<u> </u>
0002004-028		21100	133	3 5	F 5	4 2
002004-03A		00117	551	8	6	¥ ;
8602004-04A		71780	011		20 1	¥ :
8602004-05A		21286	106	68	09	ž
8602004-06A		21286	120	76	32	NR
8602016-01A		21486	38	41	31	×
8602016-02A	D1	21486	75	77	8	æ
8602016-03A		21486	80	91	84	NR.
8602016-04A		21486	80	89	09	×
8602016-05A		21486	288	832	62	X.
8602016-06B	D2	21686	76	75	901	ž
8602030-014	,	21686	77) es	3.	ž
8602030-028		21686	7.3) v	90.0	2
860.2020-02A		21686	n a	0 4	07	2
Pro-00000		20017		T d	70	£ !
86U2U3U-U4A		21080	74	30	80 r	ž i
8602030-05A		21080	£0.	41	3/	¥
8602038-01A	10	22486	72	41	32	ž
8602038-02A		22486	20	39	27	æ
8602038-03A		22586	65	97	36	æ
8602038-04A		22586	56	47	77	ž
8602038-05A		22586	61	07	39	N.
8602038-06B	D2	22486	51	300	31	¥
8602044-01A	1	22486	76	62	99	ž
B602044-024		225.86	116	3 %	5 6	2
450 77000		20077	7	0 6	7 *	
8007044-038		98577	110	2	3 :	ž :
8602044-04A		22586	116	88	99	N.
8602044-05A		22586	66	84	56	¥
410 03000		,0,00				

(Continued)

xxviii

TABLE A.2-6B (Continued)
BASE FRACTION

CONTRACTOR CONTRACTOR ASSESSMENT OF THE CONTRACT CONTRACTOR AND CO

recented to testing the coord thingships the property the

2 112 170 6 96 153 8 86 144 2 86 118 8 9 36 153 9 66 8 38 6 6 38 8 9 56 50 10 10 120 110 120 120 110 120 13 94 61 14 94 16 94 61 17 88 18 94 44 18 94 61 18 94 61 19 94 61 10 10 120 10 10 120 11 0 120 12 0 120 13 10 120 14 10 120 14 10 120 15 10 120 16 10 120 17 10 120 18 10 120 18 10 120 19 10 120 10 120 11 10 120 11 10 120 12 10 120 13 12 120 14 10 120 15 10 120 16 10 120 17 10 120 18 10 120 19 10 10 120 10	LAB 1.D.	၁	INJECTION	d5-Nitrobenzene	2-Fluorobiphenyl Z Recovery	d14-Terphenyl	d10-Bipheny1
179-02A 31286 92 112 170 179-03A 31286 86 96 96 153 179-03A 31286 86 96 96 153 179-03A 31386 82 86 118 189-01A 31386 44 49 49 189-02A 31386 62 66 138 189-05A 31386 62 66 38 189-05A 31386 62 66 38 189-05A 31386 64 55 50 189-05A 31386 62 66 38 189-05A 31386 43 54 67 189-05A 32486 43 54 67 189-05A 32486 43 54 67 189-05A 32486 34 32 70 189-05A 32486 14 32 56 199-05A 32486 14 32 56 199-05A 32486 10 110 120 199-05A 4286 10 110 120 199-05A 4286 10 10 10 199-05A 4286 86 86 82 199-05A 4286 86 86 87 199-05A 4286 86 87 87 199-05A 4286 86 87 199-05A 4286 87 199-0							
179-03A 31286 86 96 153 179-04A 31286 86 94 144 179-04A 31286 80 94 144 179-04A 31286 82 86 118 189-01A 31386 34 44 49 21 188-01A 31386 62 93 32 198-03A 31386 62 96 93 198-03A 31386 62 96 93 198-05A 31386 62 96 96 98 198-05A 31386 62 96 96 98 198-05A 31386 48 56 50 198-05A 31386 48 55 56 198-05A 32486 43 37 74 189-05A 32486 34 37 74 189-05A 32486 34 37 78 189-04A 32486 14 53 56 171-02A 32486 18 53 64 170-02A 42286 100 110 120 185-01A 42286 107 94 61 185-01A 42286 107 94 61 185-01A 42886 86 86 86 185-01A 42886 86 86 87 87 185-02A 42886 86 86 86 185-01A 42886 86 86 86 185-01A 42886 86 86 87 87 185-02A 42886 86 86 87 87 185-02A 42886 86 86 86 185-01A 42886 86 86 86 185-01A 42886 86 86 86 185-02A 42886 86 86 185-02A 42886 86 86 185-02A 42886 86 86 185-02A 42886 86 185-0	8602179-02A		31286	92	112	170	ž
179-04A 31286 80 94 144 179-05B 31386 82 86 118 186-02A 31386 36 36 15 198-03A 31386 44 49 21 198-03A 31386 62 66 38 198-05A 31386 43 56 50 198-01A 32486 43 57 75 18-03A 32486 45 52 70 18-05B 32486 45 52 70 18-05B 32486 57 56 57 18-05A 32486 57 56 57 18-05A 32486 57 56 57 18-05B 32486 57 56 57 18-05A 32486 14 52 56 17-05A 32486 10 110 120 18-05B 24286 10 110 120 18-05B 24286 10 10 10 18-05B 24886 63 77 78 58 18-05A 42886 86 86 87 87 18-05A 42886 87 18-05A 44	8602179-03A		31286	86	96	153	N.
178 178 188	8602179-04A		31286	980	7 6	144	X.
198-01A 31386 38 36 15 19 198-02A 31386 34 44 49 21 198-02A 31386 29 35 20 20 20 20 20 20 20 2	8602179-05B		31386	82	98	118	æ
198-02A 31386 34 49 51 51 51 51 51 52 52 52	8602198-01A		31386	38	36	15	X.
198-03A 31386 44 49 21 198-03A 31386 29 35 20 198-05A 31386 62 66 38 198-05A 31386 62 66 38 198-05A 31386 48 56 50 198-05A 32486 43 57 75 198-01A 32486 34 37 74 198-01A 32486 39 37 74 199-05B D2 32486 39 37 74 199-05B D2 32486 39 36 71 199-05B D2 32486 39 36 71 199-05B D3 32486 39 36 71 199-05B D3 32486 39 30 199-05B D3 42486 10 10 10 199-05B D3 42486 10 10 10 199-05B D3 42486 10 10 10 199-05B D3 42486 61 199-05B D3 42486 61 199-05B D3 42486 61 199-05B D3 42486 61 199-05B D3 25.5 41.0 199-05B D3 25.5 41.0 199-05B D3 25.5 25.5 199-05B D3 25.5 25.5 199-05B D3 D3 199-05B D3	8602198-02A		31386	36	36	19	NR.
198-044 31386 29 35 20 198-054 31386 62 66 38 38 198-054 31386 62 66 38 38 198-054 31386 62 66 38 31386 62 66 38 31386 63 64 67 67 67 67 67 67 67	8602198-03A		31386	44	64	21	NR.
198-05A 31386 62 66 38 38 98-06A 31386 70 78 78 318 3186 70 78 318 3186 70 78 318 3186 70 78 318 3186 70 78 318 3186 70 75 75 75 75 75 75 75	8602198-04A		31386	29	35	20	N.
198-06A 31386 70 78 38 38 51 52 52 52 52 52 52 52	8602198-05A		31386	62	99	38	W.
118-01A 32486 48 56 50 118-02A 32486 43 57 75 118-03A 13486 43 54 67 118-03A 13486 45 52 70 118-05A 32486 45 52 70 118-05B D2 32486 34 37 74 121-02A 32486 57 56 71 121-02A 32486 14 32 78 121-02A 32486 18 53 64 121-02A 42286 110 110 110 121-04A 42286 110 110 120 121-04A 42286 107 94 64 135-01A 42286 107 94 61 135-01A 4286 107 94 61 135-01A 4286 86 86 82 35 135-02A 4286 63 79 37 89 135-02A 4286 63 105 39.1 135-02A 4286 63 105 37.8 39.1 135-04 37.8 37.8 39.1 39.1 <td>8602198-06A</td> <td></td> <td>31386</td> <td>70</td> <td>78</td> <td>38</td> <td>æ</td>	8602198-06A		31386	70	78	38	æ
118-02A 32486 43 57 75 118-03A D1 32486 43 54 67 118-04A 32486 45 52 70 118-05B D2 32486 34 37 74 118-05B D2 32486 57 56 121-02A 32486 14 32 121-03A 32486 18 53 64 171-03A 32486 18 53 64 170-01A 42286 110 110 110 110 120 185-01A D1 42286 107 78 185-01A D2 42486 107 94 61 135-01A 42886 86 86 82 135-01A 42886 86 86 87 135-01A 35-48 107 37 185-01A 37-88 39-11	8603018-01A		32486	48	56	20	XX
118-03A D1 32486 43 54 67 118-03A D1 32486 45 52 70 118-05B D2 32486 34 37 70 118-05B D2 32486 39 36 53 121-01A 32486 57 56 71 121-02A 32486 14 53 78 121-04A 42286 110 110 120 120-02A 42286 97 84 44 125-02A 42486 77 78 58 135-01A D1 42286 107 94 61 135-01A D2 44486 107 94 61 135-01A D2 42886 86 86 82 35 135-01A D3 42886 86 86 87 135-01A D4 42886 86 86 87 135-01A D4 42886 86 88 87 135-01A A2886 88 88 88 88 88 88 88 88 88 88 88 88	8603018-02A		32486	43	57	7.5	XX
118-04A 32486 45 52 70 118-05B D2 32486 34 37 74 121-01A 32486 39 36 53 121-02A 32486 57 56 71 121-02A 32486 14 32 121-02A 42286 110 110 120 120-02A 42286 97 84 44 120-02A 42286 17 78 135-02A 42486 107 94 61 135-01A 42286 107 94 61 135-01A 42286 63 77 78 135-02A 42486 107 94 61 135-01A 42286 63 79 37 135-01A 42286 63 79 34 135-02A 42886 86 88 82 35 135-02A 42886 86 83 82 35 135-02A 42886 88 88 88 88 88 88 88 88 88 88 88 88	8603018-03A	DI	32486	43	54	29	X.
118-05B D2 32486 34 37 74 121-01A 32486 39 36 53 121-02A 32486 57 56 71 121-03A 32486 14 32 121-03A 32486 18 53 64 121-04A 42286 110 110 120 170-01A 42286 97 84 44 185-01A D1 42286 97 84 185-01A D2 42486 107 94 61 185-01A 42886 86 86 82 35 185-02A 42886 86 86 87 185-01A 42886 86 87 185-01A 42886 86 87 185-01A 42886 86 88 185-02A 42886 86 88 185-01A 42886 86 88 185-02A 42886 86 88 185-01A 42886 88 185-01A 4486 88 185-01	8603018-04A		32486	45	52	70	æ
121-01A 32486 39 36 53 121-02A 32486 57 56 71 121-03A 32486 14 32 78 121-03A 32486 18 53 64 121-04A 32486 18 53 64 121-04A 42386 89 89 110 170-01A 42286 97 84 44 185-01A 107 94 61 185-01A 4286 107 94 61 185-01A 4286 86 82 35 135-01A 4286 63 79 37 185-02A 4286 63 79 37 18rd Deviation (n-1) 81 68 105 18rd Deviation 35.4 37.8 39.1	8603018-05B	D2	32486	34	37	7.4	X.
221-02A 32486 57 56 71 221-03A 32486 14 32 78 221-04A 32486 18 53 64 221-04A 32486 18 53 64 221-04A 42386 110 110 110 270-01A 42286 110 120 270-02A 42286 97 84 44 85-02A 42486 107 94 61 135-01A 42886 86 82 35 135-01A 42886 63 79 37 135-02A 42886 63 79 37 1srd Deviation (n-1) 28.8 25.5 41.0 81 68 105 81 68 105 81 68 105 81 68 105 81 68 105 81 68 105 81 68 105 81 81 39.1	8603021-01A		32486	38	36	53	æ
121-03A 32486 14 32 78 121-04A 32486 18 53 64 121-04A 32486 18 53 64 121-04A 42386 19 110 110 130-01A 42286 10 120 120 185-01A 10 42486 107 94 61 185-01A 10 42886 86 82 35 135-01A 42886 63 79 37 185-02A 42886 63 79 37 18rd Deviation (n-1) 28.8 25.5 41.0 18cient of Variation 35.4 37.8 39.1	8603021-02A		32486	57	56	71	æ
121–04A 32486 18 53 64 170–01A 42286 19 89 110 170–02A 42286 110 110 120 185–01A D1 42286 107 84 44 185–01A D2 42486 107 94 61 135–01A 42886 86 82 135–02A 42886 86 87 135–01A 42886 86 87 135–02A 42886 88 89 89 81 135–01A 42886 88 89 89 89 89 89 89 89 89 89 89 89 89	8603021-03A		32486	14	32	78	N.
370-01A 42386 89 89 110 370-02A 42286 110 110 120 385-01A D1 42286 97 84 44 385-02A 42486 77 78 58 385-03A D2 42486 107 94 61 135-01A 42886 86 82 35 135-02A 42886 63 79 37 lard Deviation (n-1) 28.8 25.5 41.0 81 68 105 135-01A 37.8 39.1	8603021-04A		32486	18	53	79	X.
370-02A 42286 110 110 120 385-01A D1 42286 97 84 44 385-02A 42486 77 78 58 385-02A 42486 107 94 61 135-01A 42886 86 82 35 135-02A 42886 63 79 37 lard Deviation (n-1) 28.8 25.5 41.0 sicient of Variation 35.4 37.8 39.1	8604070-01A		42386	68	89	110	X.
97 84 44 985-01A D1 42286 97 84 44 985-02A 42486 77 78 58 985-03A D2 42486 107 94 61 135-01A 42286 86 82 35 135-02A 42286 63 79 37 lard Deviation (n-1) 28.8 25.5 41.0 81 68 105	8604070-02A		42286	110	110	120	X.
085-02A 42486 77 78 58 085-03A D2 42486 107 94 61 135-01A 42886 86 82 35 135-02A 42886 63 79 37 lard Deviation (n-1) 28.8 25.5 41.0 ficient of Variation 35.4 37.8 39.1	8604085-01A	DI	42286	6	84	44	N.
135-01A D2 42486 107 94 61 135-01A 42886 86 82 35 135-02A 42886 63 79 37 1ard Deviation (n-1) 28.8 25.5 41.0 11 28.8 105 11 68 105	8604085-02A		42486	7.1	78	58	ž
135-01A 42886 86 82 35 135-02A 42886 63 79 37 lard Deviation (n-1) 28.8 25.5 41.0 81 68 105 15cient of Variation 35.4 37.8 39.1	8604085-03A	D2	42486	107	76	61	X.
(35-02A 42886 63 79 37 (ard Deviation (n-1) 28.8 25.5 41.0 (i.c.ent of Variation 35.4 37.8 39.1	8604135-01A		42886	98	82	35	N.
lard Deviation (n-1) 28.8 25.5 41.0 81 68 105 iicient of Variation 35.4 37.8 39.1	8604135-02A		42886	63	79	37	NR
dard Deviation (n-1) 28.8 25.5 41.0 81 68 105 i.c.ent of Variation 35.4 37.8 39.1							
81 68 105 dicient of Variation 35.4 37.8 39.1	Standard Dev	iation	(n-1)	28.8	25.5	41.0	!
35.4 37.8 39.1	Mean			81	89	105	
	Coefficient	of Vari	ation	35.4	37.8	39.1	1

NR = Not Reported NA = Not Analyzed for this compound

a Co-eluting compound interfered with qualitative identification. No value reported.

TABLE A.2-6B (Continued)

FION	
FRAC	
BASE	

LAB 1.0.	သွ	INJECTION	d5-Nitrobenzene	2-Fluorobiphenyl	d14-Terphenyl	d10-Biphenyl
				* vecorety	* vecorety	A necovery
8602058-02A		22686	7.4	799	74	ž
8602058-03A		22686	76	80	51	i X
8602058-04A		22786	09	26	79	ž
8602058-05B		22686	86	80	94	X
8602070-01A		22786	82	89	120	¥**
8602070-02A		22786	110	93	120	ž
8602070-03A		22786	120	88	190	ž
8602070-04A		22786	99	49	150	×
8602078-01A	D1	22786	99	65	11	ž
8602078-02A		22786	74	65	94	×
8602078-03A		22886	140	120	102	X.
8602078-04A		22886	95	81	168	X.
8602078-05B	D2	22886	91	84	184	×
8602091-01A		30586	100	98	07	XX.
8602091-02A		30586	100	88	51	ž
8602109-01A		30586	11	47	92	a a
8602109-02A		30586	86	06	72	×
8602109-03A		30586	78	75	99	2 X
8602116-01A		30686	114	131	104	2
8602116-02A		30686	115	132	140	X.
8602116-03A		30686	55	63	69	×
8602116-04A		30786	110	122	132	×
8602116-05B		30786	148	143	162	N.
8602122-01A		30586	50	52	78	NR
8602122-02A		30686	72	70	98	N.
8602122-03A		30686	116	06	09	X.
8602132-01A		30686	116	126	54	æ
8602132-02A		30686	86	92	20	NR
8602132-03A		30686	86	108	76	NR
8602132-04A		30686	92	106	52	X X
8602132-05A		30686	102	128	108	N.
8602152-03A		31086	7.5	88	55	X.
8602152-04A		31086	6 5	130	100	W.
8602152-05A	D1	31186	120	126	84	X.
8602152-06B	D2	31186	68	81	62	N.
8602169-01A		31286	94	100	106	N.
8602169-02A		31286	72	78	102	NR
8602169-03A		31286	82	06	110	NR
8602169-04A		31286	106	116	122	N.

(Continued)

xxx

TABLE A.2-7 qc sample results for metals analyses in aqueous samples

AND RESERVED BUTTON BUTTON CHARACTER CHARACTER BUTTON BUTTON BUTTON CHARACTER CHARACTE

2					ָלָהָיּאָלָהָ על פֿייָלָהָ	44 to 0	Duplicate	Reagent
Date Workorder Fraction X Recovery X Recovery 04-Mar fin-5 QC 102 04-Mar fin-5 QC 100 04-Mar fin-1 QC 100 31-Mar fin-1 QC 98 31-Mar fin-3 QC 99 31-Mar fin-3 QC 99 31-Mar fin-3 QC 99 31-Mar fin-1 QC 100 23-Apr 8602113 QC 77 23-Apr 8602109 -04G 77 24-Mar 8602013 -04G 77 24-Mar 8602067 -02E 77 24-Mar 8602067 -02E 77 31-Mar 8602120 -03E 73 31-Mar 8602120 -03E 73 31-Mar 8602120 -03E 73 31-Mar 8602120 -05A 73 31-Mar 8602139 </th <th></th> <th>Analysis</th> <th>SAM</th> <th>WYS</th> <th>do cirect</th> <th>THE SPINE</th> <th>Alle Ly ses</th> <th>P T T T T T T T T T T T T T T T T T T T</th>		Analysis	SAM	WYS	do cirect	THE SPINE	Alle Ly ses	P T T T T T T T T T T T T T T T T T T T
04-Mar fn-5 QC 102 04-Mar fn-5 QC 100 04-Mar fn-5 QC 100 04-Mar fn-1 QC 100 31-Mar fn-1 QC 98 31-Mar fn-1 QC 99 31-Mar fn-3 QC 99 31-Mar fn-1 QC 101 22-Apr 6602113 QC 77 23-Apr 8602113 QC 77 27-Feb 8602104 -0.4G 77 04-Mar 8602067 -0.2E 77 04-Mar 8602087 -0.4G 77 11-Mar 8602109 -0.4G 77 31-Mar 8602109 -0.5E 73 31-Mar 8602109 -0.5E 73 31-Mar 8602120 -0.5E 73 31-Mar 8602129 -0.6 73 31-Mar 8602197 -0.6 <t< th=""><th>arameter</th><th>Date</th><th>Workorder</th><th>Fraction</th><th>X Recovery</th><th>X Recovery</th><th>X RPD</th><th>(ng/m])</th></t<>	arameter	Date	Workorder	Fraction	X Recovery	X Recovery	X RPD	(ng/m])
04-Mar fn-5 QC 100 04-Mar fn-5 QC 100 04-Mar fn-1 QC 100 31-Mar fn-1 QC 100 31-Mar fn-3 QC 99 31-Mar fn-3 QC 99 31-Mar fn-3 QC 99 31-Mar fn-1 QC 99 22-Apr 8602113 QC 77 04-Mar 8602113 QC 77 04-Mar 8602103 -0.4G 77 04-Mar 8602009 -0.2E 77 04-Mar 8602007 -0.2E 77 13-Mar 8602150 -0.2E 77 31-Mar 8602150 -0.3E 76 31-Mar 8602197 -0.66 77 31-Mar 8602197 -0.66 71 31-Mar 8602197 -0.66 71 31-Mar 8602197 -0.66 <	βγ	04-Mar	fn-5	8	102			
04-Mar fn-5 QC 100 04-Mar fn-5 QC 100 31-Mar fn-1 QC 98 31-Mar fn-3 QC 99 23-Apr 8602113 QC 77 23-Apr 8602113 QC 77 04-Mar 8602113 QC 77 04-Mar 8602019 -0.2E 77 04-Mar 8602047 -0.2E 77 13-Mar 8602159 -0.5E 77 31-Mar 8602159 -0.6 76 31-Mar 8602197 -0.6 76 31-Mar 8602197 -0.6 70 31-Mar 8602197 -0.6 70 31-Mar 8602197 -0.6 70 <	A&	04-Mar	fa-5	8	100			
04-Mar fn-5 QC 102 31-Mar fn-1 QC 98 31-Mar fn-3 QC 100 31-Mar fn-3 QC 99 31-Mar fn-3 QC 99 31-Mar fn-3 QC 99 31-Mar fn-3 QC 99 23-Apr 8602113 QC 77 23-Apr 8602113 QC 77 04-Mar 8602109 -0.4C 77 04-Mar 8602067 -0.2E 77 04-Mar 8602067 -0.2E 77 04-Mar 8602067 -0.2E 77 13-Mar 8602109 -0.6 77 31-Mar 8602109 -0.6 76 31-Mar 8602109 -0.6 76 31-Mar 8602109 -0.6 70 31-Mar 8602109 -0.6 70 31-Mar 8602109 -0.6 <tr< td=""><td>Ą</td><td>04-Mar</td><td>fn-5</td><td>ၓၟ</td><td>100</td><td></td><td></td><td></td></tr<>	Ą	04-Mar	fn-5	ၓၟ	100			
31-Mar fn-1 QC 98 31-Mar fn-3 QC 100 31-Mar fn-3 QC 99 23-Apr 8602113 QC 77 23-Apr 8602113 QC 77 04-Mar 8602019 -0.4C 77 04-Mar 8602067 -0.2E 77 04-Mar 8602067 -0.2E 77 04-Mar 8602041 -0.2E 77 31-Mar 8602109 -0.6 73 31-Mar 8602109 -0.6 76 31-Mar 8602109 -0.6 76 31-Mar 8602109 -0.6 70 31-Mar 8602109 -0.6 70 31-Mar 8602109 -0.6	γ	04-Mar	fn-5	Ş	102			
31-Mar fn-1 QC 100 31-Mar fn-3 QC 99 31-Mar fn-3 QC 99 31-Mar fn-3 QC 99 31-Mar fn-3 QC 99 31-Mar fn-1 QC 99 23-Apr 8602113 QC 77 23-Apr 8602113 QC 77 04-Mar 8602019 -0.4G 77 04-Mar 8602019 -0.2E 77 04-Mar 8602041 -0.2E 77 13-Mar 8602047 -0.3 76 31-Mar 8602150 -0.6 77 31-Mar 8602197 -0.6 77 31-Mar 8602197 -0.6 70 31-Mar 8602197 -0.6 70 31-Mar 8602197 -0.6 70 31-Mar 8602197 -0.6 70 31-Mar 8602197 -0.6	A	31-Mar	fn-1	8	86			
31-Mar fn-3 QC 99 31-Mar fn-3 QC 101 31-Mar fn-3 QC 99 31-Mar fn-3 QC 99 31-Mar fn-3 QC 99 23-Apr 8602113 QC 77 23-Apr 860213 QC 77 04-Mar 8602019 -04G 77 04-Mar 8602019 -04G 77 04-Mar 8602019 -05A 77 31-Mar 8602041 -02E 77 31-Mar 8602120 -03E 78 31-Mar 8602197 -06 73 31-Mar 8602197 -06 70 31-Mar 8602197 -06 31-Mar 8602197 -06 31-Mar 8602197 -06 31-Mar 8602197 -06 23-Apr 8602197 -06 31-Mar 8602197 -06 23-Apr 8602197 -06 23-Apr 8602197	9	31-Mar	fn-1	8	100			
31-Mar fn-1 QC 101 31-Mar fn-3 QC 99 31-Mar fn-1 QC 99 31-Mar fn-1 QC 99 31-Mar fn-3 QC 99 23-Apr 8602113 QC 77 23-Apr 860213 QC 77 27-Feb 8602019 -0.6C 77 04-Mar 8602067 -0.2E 77 04-Mar 8602067 -0.2E 77 13-Mar 8602109 -0.5E 77 31-Mar 8602159 -0.66 73 31-Mar 8602197 -0.6 70 23-Apr 8602197 -0.6 70 31-Mar 8602197 -0.6 70 23-Apr 8602079 -0.3 70 <td< td=""><td>Ą</td><td>31-Mar</td><td>fn-3</td><td>8</td><td>66</td><td></td><td></td><td></td></td<>	Ą	31-Mar	fn-3	8	66			
31-Mar fn-3 QC 99 31-Mar fn-3 QC 99 31-Mar fn-1 QC 100 31-Mar fn-3 QC 77 23-Apr 8602113 QC 77 23-Apr 8602113 QC 77 04-Mar 8602109 -02A 77 04-Mar 8602087 -05A 77 04-Mar 8602087 -02E 77 31-Mar 8602147 -02E 73 31-Mar 8602159 -05E 76 31-Mar 8602197 -06 31-Mar 8602197 -06 31-Mar 8602197 -06 31-Mar 8602197 -06 31-Mar 8602109 -06 31-	8	31-Mar	fn-1	૪	101			
31-Mar fn-3 QC 99 31-Mar fn-1 QC 100 31-Mar fn-3 QC 99 23-Apr 8602113 QC 77 23-Apr 8602113 QC 77 24-Mar 8602019 -0.2A 77 04-Mar 8602087 -0.2E 77 04-Mar 8602067 -0.2E 77 31-Mar 8602047 -0.2E 73 31-Mar 8602159 -0.6 76 31-Mar 8602197 -0.6 70 31-Mar 8602139 -0.8A 71 31-Mar 8602139 -0.6 71 31-Mar 8602139 -0.6 71 31-Mar 8602139 -0.6 71 31-Mar 8602139 -0.6 71 23-Apr 8602139 -0.6 71 23-Apr 8602139 -0.3 70 23-Apr 8602139 -0.3 70 23-Apr 8602079 -0.3 70 <td>9V</td> <td>31-Mar</td> <td>fn-3</td> <td>8</td> <td>66</td> <td></td> <td></td> <td></td>	9 V	31-Mar	fn-3	8	66			
31-Mar fn-1 QC 100 31-Mar fn-3 QC 99 23-Apr 8602113 QC 77 23-Apr 8602113 QC 77 04-Mar 8602140 -02A 77 27-Feb 8602019 -04G 77 04-Mar 8602087 -05E 77 04-Mar 8602067 -02E 72 31-Mar 8602047 -02E 73 31-Mar 8602159 -05E 76 31-Mar 8602197 -06 73 31-Mar 8602197 -06 73 31-Mar 8602197 -06 71 31-Mar 8602197 -06 71 23-Apr 8602197 -06 23-Apr 8602197 -03 60-Mar 8602197 -03	A	31-Mar	fn-3	ጵ	66			
31-Mar fn-3 QC 99 23-Apr 8602113 QC 77 23-Apr 8602113 QC 77 04-Mar 8602119 -02A 77 27-Feb 8602019 -04G 77 04-Mar 8602087 -05E 76 04-Mar 8602067 -02E 72 31-Mar 8602041 -02E 72 31-Mar 8602159 -05E 76 31-Mar 8602197 -06 73 31-Mar 8602139 -08A 70 31-Mar 8602139 -06 71 31-Mar 8602139 -06 71 31-Mar 8602139 -06 71 23-Apr 8602137 -06 70 23-Apr 8602139 -03 -03 24-Mar 8602107 -03 -03	9	31-Mar	fn-1	8	100			
23-Apr 8602113 QC 77 23-Apr 8602113 QC 77 04-Mar 8601240 -02A 77 27-Feb 8602019 -04G 77 04-Mar 8602087 -05E 74 04-Mar 8602047 -02E 74 31-Mar 8602047 -03 74 31-Mar 8602150 -05E 74 31-Mar 8602197 -05 74 31-Mar 8602197 -05 74 31-Mar 8602197 -06 74 31-Mar 8602197 -06 74 31-Mar 8602197 -06 74 31-Mar 8602197 -06 74 23-Apr 8602197 -06 74 23-Apr 8602197 -03 76 23-Apr 8602197 -03 74 23-Apr 8602197 -03 73	A&	31-Mar	fu-3	S,	66			
23-Apr 8602113 QC 77 04-Mar 8601240 -02A 77 27-Feb 8602019 -04G -07A 04-Mar 8602087 -05A -05A 04-Mar 8602067 -02E -02E 31-Mar 8602047 -03 -03 31-Mar 8602159 -05E -05E 31-Mar 8602197 -06 -05 31-Mar 8602197 -06 -05 31-Mar 8602197 -06 -10 31-Mar 8602197 -06 -06 31-Mar 8602197 -06 -06 31-Mar 8602197 -06 -06 23-Apr 8602197 -06 -06 23-Apr 8602197 -03 -03	Ag	23-Apr	8602113	8	11			
04-Mar 8601240 -02A 27-Feb 8602019 -04G 04-Mar 8602087 -05A 04-Mar 8602067 -02E 31-Mar 8602047 -03 31-Mar 8602159 -05E 31-Mar 8602197 -06 31-Mar 8602197 -05 31-Mar 8602197 -05 31-Mar 8602197 -06 31-Mar 8602197 -06	8	23-Apr	8602113	ጽ	11			
27-Feb 8602019 -04G 04-Mar 8602087 -05A 04-Mar 8602067 -02E 04-Mar 8602047 -02E 31-Mar 8602047 -03 31-Mar 8602159 -05E 31-Mar 8602197 -06 31-Mar 8602139 -08A 31-Mar 8602139 -08A 31-Mar 8602139 -06 23-Apr 8602137 -06 23-Apr 8602139 -06 23-Apr 8602139 -06 23-Apr 8602139 -06	Ag	04-Mar	8601240	-02A		7 66	ď	
04-Mar 8602087 -05A 04-Mar 8602067 -02E 04-Mar 8602041 -02E 31-Mar 8602047 -03 31-Mar 8602159 -05E 31-Mar 8602197 -06 31-Mar 8602139 -08A 31-Mar 8603139 -08A 31-Mar 8603107 -06 23-Apr 8602137 -06 23-Apr 8602137 -06 23-Apr 8602137 -06	A8	27-Feb	8602019	940-		7 86	ď	
04-Mar 8602067 -02E 04-Mar 8602041 -02E 31-Mar 8602047 -03E 31-Mar 8602120 -03E 31-Mar 8602197 -06 31-Mar 8602197 -05 31-Mar 8602197 -05 31-Mar 8602197 -05 31-Mar 8602197 -08A 31-Mar 8602197 -06 31-Mar 8602197 -06 31-Mar 8602197 -06	A8	04-Mar	8602087	-05A		7 86	ď	
04-Mar 8602041 - C2E 31-Mar 8602159 - O5E 31-Mar 8602120 - O3E 31-Mar 8602197 - O6 31-Mar 8602197 - O6 31-Mar 8602139 - O8A 31-Mar 8602197 - O6 31-Mar 8602197 - O6 31-Mar 8602197 - O6 31-Mar 8602197 - O6 04-Mar 8602079 - O3	Ag	04-Mar	8602067	-02E		7 86	ď	
31-Mar 8602047 -03 31-Mar 8602159 -05E 31-Mar 8602120 -03E 31-Mar 8602197 -06 31-Mar 8602139 -08A 31-Mar 8602139 -08A 31-Mar 8602137 -06 23-Apr 8602107 -06	ν	04-Mar	8602041	-C2E		7 86	ď	
31-Mar 8602159 -05E 31-Mar 8602120 -03E 31-Mar 8602197 -06 31-Mar 8602139 -08A 31-Mar 8602197 -06 31-Mar 8602197 -06 23-Apr 8602113 -03 04-Mar 8602079 -03	γ	31-Mar	8602047	-03		7 96	a	
31-Mar 8602120 -03E 31-Mar 8602197 -06 31-Mar 8602197 -05 31-Mar 8602197 -05 31-Mar 8602197 -06 23-Apr 8602197 -06 23-Apr 860213 -03 04-Mar 8602079 -03	Ag	31-Mar	8602159	-05E		9 96	a	
31-Mar 8602197 -06 31-Mar 8602139 -08A 31-Mar 8603139 -08A 31-Mar 8603004 -10 31-Mar 8602197 -06 23-Apr 8602113 -03 04-Mar 8602079 -03	8 4	31-Mar	8602120	-03E		95		
31-Mar 8602197 -05 31-Mar 8602139 -08A 31-Mar 8603004 -10 31-Mar 8602197 -06 23-Apr 8602113 -03 04-Mar 8602079 -03	Ag	31-Mar	8602197	90-		, 26	æ	
31-Mar 8602139 -08A 31-Mar 8603104 -10 31-Mar 8602197 -06 23-Apr 8602113 -03 04-Mar 8602079 -03	AB	31-Mar	8602197	-05		9 56	ď	
31-Mar 8602197 -10 31-Mar 8602197 -06 23-Apr 8602113 -03 04-Mar 8602079 -03	A ₈	31-Mar	8602139	-08 V		, 36	ď	
31-Mar 8602197 -06 23-Apr 8602113 -03 04-Mar 8602079 -03	8	31-Mar	8603004	-10		, 26	æ	
23-Apr 8602113 -03 04-Mar 8602079 -03	ν	31-Mar	8602197	90-		91 6	•	
04-Mar 8602079 -03	8	23-Apr	8602113	-03		1 78	•	
	٧	04-Mar	8602079	-03		1 08		

TABLE A.2-7 (Continued)

KARA BEROKUTAN PROBESER EROKOKAN BEROKAN BEROKAN BEROKAN BEROKAN BEROKAN BEROKAN BEROKAN BEROKAN BEROKAN BEROKAN

QC SAMPLE RESULTS FOR METALS ANALYSES IN AQUEOUS SAMPLES

	•	į		QC Check	Matrix Spike	Analyses	Blanks
Parameter	Analysis Date	SAM Workorder	SAM Fraction	X Recovery	X Recovery	X RPD	(ug/ml)
9 v	31-Mar	8602047	-02		080		
A&	04-Mar	8601240	-02A		79	a.	
8₹	04-Mar	8602031	-036		. 11	Δ.	
8∨	27-Feb	8602001	P90-		76	a	
<	23-Apr	8602113	-04		92	đ	
A8	31-Mar	8602100	-03A		73		
₽ V	31-Mar	8602159	-02E		70	a.	
ν	27-Feb	8602001	-05D			0.0	<u> </u>
٧g	27-Feb	8602001	-01D			NC .	
γ8	27-Feb	8602019	-03G			NC	
ν	04-Mar	8602087	¥*0-			NC .	_
γg	04-Mar	8602087	V*0-			NC F	α.
νg	04-Mar	8602041	-01E			NC	
A ₈	31-Mar	8602197	-05			18.2 p	_
V8	31-Mar	8602047	-01			NC F	α.
γg	31-Mar	8602120	-01E			NC P	_
ν8	31-Mar	8602159	-01E			NC	
γg	31-Mar	8602120	-04E			0.0	
νg	31-Mar	8603004	-03			NC	
V8	31-Mar	8602100	-02 A			NC .	
Ag	31-Mar	8602047	70-			0.0	
A ₈	31-Mar	8602159	-01E			NC F	
A	31-Mar	8602100	-02 A			NC P	
γg	23-Apr	8602113	-08			*75	
٧8	04-Mar	£u-2	Blank				<.002
Ag	04-Mar	€n-6	Blank				< .002
A 8	04-Mar	8601240	Blank				<.002
9	31-Mar	fn-2	Blank				<.002
>	31-Mar	fu-4	Blank				<.002

TABLE A.2-7 (Continued) qc sample results for hetals analyses in aqueous samples

	Analysis	YV S	X V	QC Check	Matrix Spike	Duplicate Analyses	Resgent
Parameter	Date	Workorder	Fraction	Z Recovery	X Recovery	X RPD	(ng/ml)
¥	31-Mar	8602047	Blank			1	
AB	31-Mar	8602100	Blank				100:
₹	31-Mar	8602159	Blank				200.
8	31-Mar	8603004	Blank				10.0
¥ V	23-Apr	8602113	Blank				<.002
Mean		; ; ; ; ; ;	•	69	a a		-
RSD (X)				8.7	11.3		
Ą	08-Feb	8601240	8	100			
¥	08-Feb	8601240	Ş	103			
٧	08-Feb	8601240	8	103			
٧	15-Feb	8602067	ጽ	105			
A 3	15-Feb	8602067	8	107			
¥3	19-Feb	8602041	૪	88			
٧	19-Feb	8602019	8	93			
٧	19-Feb	8602041	8	93			
¥ s	19-Feb	8602047	૪	06			
¥ s	19-Feb	8602019	8	86			
Y3	19-Feb	8602047	S	83			
A s	19-Feb	8602047	ઠ્ઠ	86			
٧	19-Feb	8602041	8	86			
¥ s	19. Feb	8602019	8	100			
٧	21 Feb	8602079	Š	105			
¥	21 - Feb	8602079	૪	105			
٧	21-Feb	8602079	8	105			
ş	24 Feb	8602100	8	93			
¥8	24 · Feb	8602113	8	93			
•							

TABLE A.2-7 (Continued) qc sample results for netals analyses in aqueous samples

See State Control Cont

				Check	Matrix Spike	Analyses	Rlanke
	Analysis	SAM	SAM				
Parameter	Date	Workorder	Fraction	X Recovery	X Recovery	X RPD	(ug/m])
¥\$	24-Feb	8602113	&	56	; t t t t t t t t t t t t t t t t t t t	1	
As	24-Feb	8602100	ጵ	06			
As	24-Feb	8602100	8	06			
٧	24-Feb	8602113	ጵ	06			
As	10-Mar	8602139	8	100			
As	10-Mar	8602139	8	115			
As	10-Mar	8602120	8	110			
¥3	10-Mar	8602139	8	110			
As	10-Mar	8602120	8	95			
¥	10-Mar	8602139	S	95			
¥8	12-Mar	8602176	8	110			
Y S	12-Mar	8602176	8	100			
As	12-Mar	8602176	8	93			
V V	13-Mar	8603004	૪	93			
٧	13-Mar	8603004	8	103			
As	17-Mar	8602159	8	105			
٧	17-Mar	8602159	8	104			
٩	17-Mar	8602159	8	105			
٧	21-Feb	8602079	-01A		113		
Y S	19-Feb	8602001	-01D		108		
Αs	12-Mar	8602176	-036		108		
٧	10-Mar	8602139	-01 A		104 8		
٧	10-Mar	8602120	-01E		104 #		
٧	08-Feb	8601240	-01▲		100		
٧s	15-Feb	8602060	-050		100		
٧	24-Feb	8602087	-05A		100		
V 8	24-Feb	8602113	-016		100		
٧	13-Mar	8603004	70-		100 p		
٧	19-Feb	8602019	-036		e 96		

TABLE A.2-7 (Continued)

QC SAMPLE RESULTS FOR METALS ANALYSES IN AQUEOUS SAMPLES

				QC Check	Matrix Spike	Duplicate Analyses	•	Keagent Blanks
	Analysis	SAM	SAM	1	1 1 1 1		:	
Parameter	Date	Workorder	Fraction	X Recovery	X Recovery	X RPD		(ng/BJ)
8 V	19-Feb	8602031	-020	1 1 1 1 1 1 1 1 1 1	96	4	! ! !	1 1 1 1 1
As	21-Feb	8602100	V *0-		96	•		
Y Y	17-Mar	8602197	-02		96	4		
Ą	19-Feb	8602019	940-		95	۵.		
Υ	21-Feb	8602079	-02 A		95	a .		
Ą	19-Feb	8602041	-01E		92	•		
٧	19-Feb	8602047	-01E		92	4		
A3	24-Feb	8602113	-02G		06	۵.		
٧	15-Feb	8602067	-03E		88	•		
٧	13-Mar	8603004	90-		88	p,4		
As	15-Feb	8602060	-02C		885	c.		
As	19-Feb	8602001	09 0-		885	α.		
¥3	20-Feb	8602100	V\$0-		85	Δ.		
Υ	10-Mar	8602139	-01A		88	_		
γ	17-Mar	8602197	-03		88	۵.		
Y3	13-Mar	8603004	-06		83	q,		
¥3	19-Feb	8602047	-05E		0.0	•		
A3	15-Feb	8602060	-01C			NC	<u>م</u> د	
Y?	19-Feb	8602047	370-			9.0	<u>م</u>	
As	19-Feb	8602047	-01E			SK.	•	
٧	21-Feb	8602079	-01A			0.0		
٧	21-Feb	8602079	-01A			9.5	~	
٧	24 - Feb	8602100	-02A			NC	D	
A3	24-Feb	8602113	-016			NC	•	
As	24-Feb	8602087	V*0-			0.0	•	
As	24-Feb	8602113	-016			S	a	
A S	24-Feb	8602100	-03A			15	5	
As	10-Mar	8602139	-02A			NC	<u>م</u> ن	

TABLE A.2-7 (Continued)

SSSS CONTROL VINCINA SESSES DIVINA FRANCIN RECEINED DESCRIPE SESSES SESSES SESSES DESCRIPE ESPECIAL

QC SAMPLE RESULTS FOR METALS ANALYSES IN AQUEOUS SAMPLES

•					Matrix Spike	Analyses	Blanks
	212	SAM	SAM	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
	•	Workorder	Fraction	X Recovery	X Recovery	X RPD	(ng/m)
	10-Mar	8602120	-01E	f f 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	NC PS	1
	17-Mar	8602197	-01				
	08-Feb	8601240	Blank			•	<.005
	24-Feb	8602100	Blank				<.002
	10-Mar	8602139	Blank				<.003
	24-Feb	8602113	Blank				<.002
	12-Mar	8602176	Bl ank				<.003
	15-Feb	8602067	Blank				<.002
	10-Mar	8602120	Blank				<.003
	19-Feb	8602047	Blank				<.005
	17-Mar	8602197	Blank				<.002
	17-Mar	8602159	Blank				<.002
	17-Mar	8602159	Blank				<.002
	17-Mar	8602159	Blank				<.002
f 1 1 5	19-Feb	8602041	Blank				<.005
		1	1	66	76	:	
				7.1	6.6		
	Mar	fn-5	8	101			
	Har	fn-5	૪	101			
	04-Mag	fn-5	8	101			
Ba 04-Mar	Aar	fu-5	8	101			
Ba 31-Mar	4a r	fn-3	သွ	66			
Ba 31-Mar	4ar	fu-3	8	86			
Ba 31-Mar	4a r	fn-1	ጵ	66			
Ba 31-Mar	fa r	fn-1	ጵ	66			
Ba 31-Mar	1a c	fn-1	႘	86			
Ba 31-Mar	fa r	fu-1	Ş	66			

TABLE A.2-7 (Continued) qc sample results for metals analyses in aqueous samples

THE THE PERSONS AND THE PERSON OF THE PERSON

				QC Check	Matrix Spike	Duplicate Analyses	Reagent Blanks
	Analysis	SAM	SAM				1
Parameter	Date	Workorder	Fraction	X Recovery	X Recovery	X RPD	(ng/m))
æ a	31-Mar	fn-3	8	66	f 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1
Ва	31-Mar	fu-3	8	66			
E E	23-Apr	8602113	ၓၟ	104			
Ва	23-Apr	8602113	8	106			
Ba	04-Mar	8602067	-02E		66	ď	
e g	04-Mar	8601240	-02 A		86	ď	
Ba	04-Mar	8602041	-02E		86	a	
8	04-Mar	8602087	-05A		97	•	
eg.	23-Apr	8602113	-04		97	4	
B	31-Mar	8602197	90-		95	•	
Ba	31-Mar	8602197	-05		76	4	
B	31-Mar	8602139	-08A		76	•	
Ba	31-Mar	8603004	-10		76	•	
E G	31-Mar	8602120	-03E		93		
Ba	31-Mar	8602047	-03		93	•	
B	31-Mar	8602159	-05E		93	4	
Ba	23-Apr	8602113	-03		92	a.	
g	04-Mar	8602079	-03		68	a	
e g	04-Mar	8602031	-036		87	a	
Ba	27-Feb	8602019	9 7 0-		986	4	
Ba	04-Mar	8601240	-02 A		98	۵.	
Ba	31-Mar	8602197	90-		98	a	
Ba	27-Feb	8602001	P90-		78	a	
Ba	31-Mar	8602047	-02		78		
Ba	31-Mar	8602159	-02E		83	c.	
Ba	31-Mar	8602100	-03A		79		
Ba	27-Feb	8602019	-03G			0.0	
Ba	27-Feb	8602001	-01D			9.5	
B	27-Feb	8602001	-05D			0.0	a

TABLE A.2-7 (Continued)

QC SAMPLE RESULTS FOR METALS ANALYSES IN AQUEOUS SAMPLES

					Matrix Spike	Analyses	2 4114 7 0
Ba Ba	Analysis	SAM	SAM	1 1 1 1 1	1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1
	Date	Workorder	Fraction	X Recovery	Z Recovery	X RPD	(ng/ml)
e e	04-Mar	8602087	₩70-			0.0 P	_
æ	04-Mar	8602041	-01E			1.3	
	04-Mar	8602087	V 70-			0.0	
Ba	31-Mar	8602047	* 0-			0.0	
Ba	31-Mar	8602047	-01			1.0 p	
B	31-Mar	8602197	-05			12 p	
Ва	31-Mar	8603004	-03			0.91	
Ва	31-Mar	8602100	-02A			2.9	
Ba	31-Mar	8602120	-01E			53 p	
e R	31-Mar	8602100	-02A			0.0 p	
e g	31-Mar	8602120	-04E			0.0	
Ba	31-Mar	8602159	-01E			2.7 p	
Ba	31-Mar	8602159	-01E			1.4	
đ	23-Apr	8602113	-08			3.0	
e g	31-Mar	8602100	Blank				+ 003
Ba	31-Mar	8602159	Blank				* · 00 *
Ba	31-Mar	4-uj	Blank				* · 004
Ва	31-Mar	8603004	Blank				*.002
e EQ	04-Mar	8601240	Blank				<.001
Ba	04-Mar	9-u j	Blank				*.005
Ba	04-Mar	fn-5	Blank				*.005
B	31-Mar	8602047	Blank				<.001
B	23-Apr	8602113	Blank				.002
8	31-Mar	fn-2	Blank				*.002
Mean	1 1 1 1 1 1 1	: 1	, 1 1 1 1 1 1 1 1 1 1	100	91	1 1 1 1 1 1 1 1	
RSD (X)				2.3	6.3		
Cd	1 - Mar	fn-5	Ö	103			

TABLE A.2-7 (Continued)

QC SAMPLE RESULTS FOR METALS ANALYSES IN AQUEOUS SAMPLES

	QC Check Matrix Spike Analyses	Duplicate Reagent Analyses Blanks
Workorder Fraction	X Recovery X Recovery X	X RPD (ug/ml)
fn-5	104	
fn-5	104	
fn-5	105	
fn-1	102	
fn-3	101	
fn-3	100	
fn-1	86	
fn-1	100	
fn-3	86	
fn-1	66	
fn-3	103	
8602113	104	
8602113	104	
8601240	■ 86	
8602041	# 7 6	
8602087	4 16	
8602067	a 46	
8602139	92 a	
860201	et 06	
8602113	a 68	
8602120	89	
8602197	et 89 80	
8602159	at 880	
8602047	87 .	
8602197	a 78	
8603004	B7 a	
8602001	74 p	
8601240	74 p	
8602079		
	72 P	

TABLE A.2-7 (Continued)

STREET, STREET

QC SAMPLE RESULTS FOR HETALS ANALYSES IN AQUEOUS SAMPLES

				QC Check	Matrix Spike	Duplicate Analyses	ate	Reagent Blanks
	Analysis	SAM	SAM	t 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1		
Parameter	Date	Workorder	Fraction	X Recovery	X Recovery	X RPD	PD	(ug/ml)
ষ্ট	04-Mar	8602031	-03G		12	a.		
3	31-Mar	8602159	-02E		. 72	Q.		
23	31-Mar	8602197	90-		0.0	۵		
PS	31-Mar	8602047	-02		99			
РЭ	23-Apr	8602113	-03		09	Δ.		
PS	31-Mar	8602100	-03 A		95			
3	27-Feb	8602019	-03G				NC NC	
3	27-Feb	8602001	-010				MC a	
23	27-Feb	8602001	-050				NC P	
Р	04-Mar	8602087	V+0-				NC P	
Cq	16M-40	8602087	V40-				NC P	
P	04-Mar	8602041	-01E				NC	
Cq	31-Mar	8602159	-01E				NC 40	
Cq	31-Mar	8603004	-03				NC	
23	31-Mar	8602197	-05				NC p	
3	31-Mar	8602120	-01E				NC P	
PS	31-Mar	8602120	-04E				NC .	
Cq	31-Mar	8602047	-01				NC P	
Cd	31-Mar	8602100	-02 V				NC P	
PS	31-Mar	8602047	70-				NC a	
Cq	31 - Mar	8602159	-01E				NC P	
23	31-Mar	8602100	-02 A				NC to	
3	23-Apr	8602113	-08				NC	
23	31 - Mar	8602047	Blank					<.002
PS	31-Mar	8602159	Blank					<.002
P	23-Apr	8602113	Blank					<.002
P _O	31-Mar	8602100	Blank					<.002
PS	31-Mar	fn-4	Blank					<.002
РЭ	04-Mar	fn-5	Blank					< .002

TABLE A.2-7 (Continued)

QC SAMPLE RESULTS FOR METALS ANALYSES IN AQUEOUS SAMPLES

				QC Check	Matrix Spike	Analyses	Blanks
	Analysis	SAM	SAM		!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!		
Parameter	Date	Workorder	Fraction	X Recovery	X Recovery	X RPD	(ug/ml)
3	31-Mar	fn-2	Blank	• • • • • • • • • • • • • • • • • • •			<.002
ಶ	04-Mar	8601240	Blank				<.002
PC	04-Mar	9-uj	Blank				<.002
PO	31-Mar	8603004	Blank				<.002
Mean	1		1	102	81	; ; ; ; ; ; ; ; ; ;	i i i i i
RSD (X)				2.4	14.8		
Cr	04-Mar	£n-5	Ş	102			
Ç	04-Mar	fn-5	&	101			
Ç	04-Mar	fn-5	&	102			
Cr	04-Mar	fu-5	8	101			
Çr	31-Mar	fn-1	&	86			
Ç	31-Mar	fn-3	8	66			
Ç	31-Mar	fn-1	૪	66			
Ç	31-Mar	fn-3	8	102			
Ċ,	31-Mar	fn-1	8	66			
Ç	31-Mar	fn-1	ၓွ	101			
Ç	31-Mar	fu-3	ၓၟ	101			
Ç	31-Mar	fn-3	သွ	86			
Ç	23-Apr	8602113	သွ	105			
Cr	23-Apr	8602113	သွ	105			
Ç	04-Mar	8601240	-02 A		96	a	
Ç	04-Mar	8602041	-02E		96	4	
Ç	04-Mar	8602087	-05A		96	đ	
Ç	04-Mar	866. 967	-02E		76	a	
Cr	31-Mar	8602139	-08A		76	a	
Cr	27-Feb	8602019	-046		93	đ	
Cr	31-Mar	8602120	-03E		92		

TABLE A.2-7 (Continued)

Principle of the Company of the Comp

QC SAMPLE RESULTS FOR METALS ANALYSES IN AQUEOUS SAMPLES

				QC Check	Matrix Spike		Duplicate Analyses	Reagent Blanks
	Analysis	SAM	SAM					
arameter	Date	Workorder	Fraction	X Recovery	X Recovery		X RPD	(ng/m)
Cr	31-Mar	8602047	-03	• • • • • • • • • • • • • • • • • • •	92	•	 	
Ç	31-Mar	8603004	-10		92	æ		
Cr	31-Mar	8602197	90-		91	•		
Cr	31-Mar	8602197	-05		91	4		
Cr	31-Mar	8602159	-05E		06	4		
Cr	23-Apr	8602113	-04		68	đ		
Ç	04-Mar	8602031	-036		85	۵.		
Cr	04-Mar	8602079	-03		82	۵,		
Ç	04-Mar	8601240	-02A		81	۵.		
Ç	31-Mar	8602047	-02		81			
Ç	27-Feb	8602001	P90-		08	۵.		
C	31-Mar	8602197	90-		62	۵.		
Çr	31-Mar	8602159	-02E		78	۵		
Ç	31-Mar	8602100	-03A		16			
Ç	23-Apr	8602113	-03		70	Δ,		
Ç	27-Feb	8602019	-036				NC	
Ç	27-Feb	8602001	-01D				0.0	
Ç	27-Feb	8602001	-05D				0.0	
C.	04-Mar	8602041	-01E				NC	
Cr	04-Mar	8602087	V*0-				0.0	
C.	04-Mar	8602087	V70-				0.0	
Ç	31-Mar	8602120	340-				2.7	
Cr	31-Mar	8602100	-02A				MC MC	
Ç	31-Mar	8602159	-01E				NC	
Cr	31-Mar	8602047	-01				NC D	
C.	31-Mar	8602159	-01E				NC P	
Cr	31-Mar	8602047	* 0-				0.0	
C.r.	31-Mar	8602120	-01E				25 p	
ď	31-Mar	8602100	-02A				NC	

TABLE A.2-7 (Continued)

QC SAMPLE RESULTS FOR METALS ANALYSES IN AQUEOUS SAMPLES

				OC Check	Matrix Spike	Analyses	Blanks
	Analysis	SAM	SAM				
Parameter	Date	Workorder	Fraction	X Recovery	X Recovery	X RPD	(n g/m)
Cr	31-Mar	8602197	-05	/ 		15.9 p	! ! ! ! ! !
Ç	31-Mar	8603004	-03			N.C	
Cr	23-Apr	8602113	80-			NC NC	
Cr	31-Mar	8602100	Blank				<.005
Cr	31-Mar	8602047	Blank				<.005
Ç	31-Mar	8602159	Blank				* .009
Ç	31-Mar	8603004	Blank				<.005
S.	04-Mar	9-uj	Blank				*.012
Ç	31-Mar	f n− 4	Blank				<.005
Ç	31-Mar	fn-2	Blank				<.005
Cr	23-Apr	8602113	Blank				0.042
ក្ន	04-Mar	8601240	Blank				<.005
č	04-Mar	fn-5	Blank				<.005
Mean				101			
RSD (X)	•			2.2	8.7		
H	03-Feb	8601240	ጵ	108			
HB	03-Feb	8601240	8	108			
Hg	03-Feb	8601240	8	100			
H.	03-Feb	8601240	ၓွ	100			
Hg	06-Feb	8602019	ጵ	06			
Hg	06-Feb	8602019	οc	107			
Hg	06-Feb	8602019	8	95			
H	10-Feb	8602047	ጵ	100			
HB	10-Feb	8602047	8	100			
H	10-Feb	8602047	Ş	108			
8 9	12-Feb	8602019	ၓၟ	100			
2							

TABLE A.2-7 (Continued)

QC SAMPLE RESULTS FOR METALS ANALYSES IN AQUEOUS SAMPLES

						Duplicate	Reagent
				QC Check	Matrix Spike	Analyses	Blanks
	Analysis	SAM	SAM	1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 1 1 1
Parameter	Date	Workorder	Fraction	% Recovery	% Recovery	X RPD	(ug/ml)
36	12-Feb	8602019	8	100			
H	20-Feb	8602100	ጵ	96			
H	20-Feb	8602067	ၓၟ	110			
H	20-Feb	8602100	8	105			
H	20-Feb	8602067	S,	110			
H	20-Feb	8602067	8	96			
H	24-Feb	8602120	8	96			
H	24-Feb	8602120	Ş	100			
H	24-Feb	8602113	Ş	96			
Hg	24-Feb	8602067	သွ	96			
H	24-Feb	8602113	8	100			
H	06-Mar	8602139	8	100			
Hg	06-Mar	8602139	8	105			
He	06-Mar	8602139	\$	100			
H	07-Mar	8602176	သွ	78			
Hg	07-Mar	8602176	ၓၟ	92			
Hg	07-Mar	8602159	S,	92			
H	07-Mar	8602159	8	92			
H	07-Mar	8602159	8	80			
Hg	09-Mar	8602197	ጵ	100			
H	09-Mar	8603004	\$	100			
Hg	09-Mar	8603004	\$	88			
H	09-Mar	8602197	\$	100			
H.	09-Mar	8602197	\$	88			
H	03-Feb	8601240	V 60-		140	a.	
H	08-Feb	8601240	V70-		120	Q.	
HB	06-Feb	8602001	-01D		110	4	
H	10-Feb	8602047	-01E		110	a.	
H	12-Feb	8602019	-03G		110	ra .	

TABLE A.2-7 (Continued)

ATTE RESERVOIS PROPOSIC RESERVOIS PROPOSIC PROPOSIC PROPOSICO PROPISA PARA PROPINA PARA PROPINA

QC SAMPLE RESULTS FOR HETALS ANALYSES IN AQUEOUS SAMPLES

				Aced Check		A = 4 1	Blanks
				40000	Matrix Spike	ANALYSES	
	Analysis	SAM	SAM	!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!		1	
Parameter	Date	Workorder	Fraction	X Recovery	% Recovery	X RPD	(ug/m])
#E	20-Feb	8602041	-05E		110	c.	
H	09-Mar	8603004	-10		110	•	
HB	09-Mar	8602197	90-		110	a .	
H	20-Feb	8602079	V+0-		105	Q.	
H. 88	20-Feb	8602060	-050		100	p , 4	
H	24-Feb	8602113	940-		100	Δ.	
H	24-Feb	8602067	-04E		100	Δ.	
H	20-Feb	8602031	-036		95	۵۰	
H	20-Feb	8602087	-05A		95	α,	
H	24-Feb	8602120	-05E		95	a	
H	06-Mar	8602139	-08A		06	c.	
Hg	20-Feb	8602100	V †0-		85	a .	
H.	07-Mar	8602176	-056		80	۵	
H	06-Feb	8602019	-046		54	۵	
Hg	10-Feb	8602047	-02E			NC	Ω,
Hg	20-Feb	8602060	-030			NC	•
H	20-Feb	8602079	-01A			NC	
H	24-Feb	8602120	-05E			NC	<u>م</u>
H	06-Mar	8602139	-08A			NC	۵.
HB	07-Mar	8602159	-01			7.5	•
Hg	07-Mar	8602176	Blank				< .0002
3E	08-Feb	8601240	Blank				<.0002
Hg	06-Mar	8602139	Blank				<.0002
Hg	10-Feb	8602047	Blank				*.0002
H.	24-Feb	8602067	Blank				<.0002
H	24-Feb	8602113	Blank				<.0002
H	24-Feb	8602120	Blank				<.0002
H ₈	03-Feb	8601240	Blank				♦ . 000 ♦
Hg	09-Mar	8602197	Blank				<.0002

TABLE A.2-7 (Continued)

ACONT. CONCORT. TO CONCORT. CONCORT. TO CONTRACTOR CONCORT. CONTRACTOR CONCORT. CONTRACT. CONTRACT. CONTRACT.

QC SAMPLE RESULTS FOR METALS ANALYSES IN AQUEOUS SAMPLES

Hamily s					QC Check	Matrix Spike	Duplicate Analyses	Reagent
20-Feb 8602100 Blank X Recovery X Recovery		Analysis	SAM	SAM			1	
20-Feb 8602100 Blank 11-Feb 8601240 QC 93 11-Feb 8601240 QC 107 17-Feb 8602047 QC 107 17-Feb 8602047 QC 107 17-Feb 8602047 QC 101 17-Feb 8602019 QC 101 17-Feb 8602019 QC 101 17-Feb 8602019 QC 100 17-Feb 8602013 QC 100 21-Feb 8602113 QC 100 21-Feb 8602113 QC 100 21-Feb 8602113 QC 100 07-Mar 8602139 QC 100 07-Mar 8602139 QC 100 07-Mar 8602139 QC 100 09-Mar 8602139 QC 100 09-Mar 8602139 QC 100 09-Mar 8602139 QC 100 11-Mar 8602136 QC 100 11-Mar 8602139 QC 100 11-Mar 8602139 QC 100 11-Mar 8602139 QC 100 <	Parameter	Date	Workorder		X Recovery	X Recovery	X RPD	(ug/m)
11-Feb 8601240 QC 93 11-Feb 8602047 QC 102 17-Feb 8602047 QC 107 17-Feb 8602047 QC 107 17-Feb 8602047 QC 107 17-Feb 8602019 QC 1111 17-Feb 8602019 QC 1105 17-Feb 8602019 QC 1106 17-Feb 8602019 QC 100 17-Feb 8602113 QC 100 21-Feb 8602113 QC 100 21-Feb 8602113 QC 100 07-Mar 8602113 QC 100 07-Mar 8602120 QC 100 07-Mar 8602120 QC 100 07-Mar 8602139 QC 95 07-Mar 8602139 QC 95 11-Mar 8602139 QC 100 09-Mar 8602139 QC 100 11-Mar 8602136 QC 100 11-Mar 8602136 QC 100 11-Mar 8602136 QC 100 11-Mar 8602136 QC 100	. 35 	20-Feb	8602100	Blank				<.0002
11-Feb 8601240 QC 93 11-Feb 8601240 QC 102 17-Feb 8602047 QC 107 17-Feb 8602047 QC 104 17-Feb 8602019 QC 104 17-Feb 8602019 QC 104 17-Feb 8602019 QC 105 17-Feb 8602019 QC 100 21-Feb 8602113 QC 100 21-Feb 8602113 QC 100 21-Feb 8602113 QC 100 21-Feb 8602113 QC 100 07-Mar 8602139 QC 100 07-Mar 8602139 QC 100 07-Mar 8602130 QC 93 07-Mar 8602130 QC 93 09-Mar 8602139 QC 93 11-Mar 8602136 QC 100 09-Mar 8602136 QC	Mean				66	101		
11-Feb 8601240 QC 11-Feb 8602047 QC 17-Feb 8602047 QC 17-Feb 8602047 QC 17-Feb 8602019 QC 21-Feb 8602113 QC 07-Mar 8602139 QC 09-Mar 8602139 QC 11-Mar 8602130 QC 11-Mar 8602130 QC 11-Mar 8602130 QC 11-Mar 8602130 QC	RSD (X)				7.2	17.3		
11-Feb 8601240 QC 17-Feb 8602047 QC 17-Feb 8602047 QC 17-Feb 8602047 QC 17-Feb 8602019 QC 21-Feb 8602113 QC 21-Feb 8602113 QC 21-Feb 8602113 QC 21-Feb 8602113 QC 07-Mar 8602139 QC 11-Mar 8602139 QC	P.	11-Feb	8601240	8	66			
17-Feb 8602047 QC 17-Feb 8602047 QC 17-Feb 8602047 QC 17-Feb 8602019 QC 21-Feb 8602113 QC 21-Feb 8602113 QC 21-Feb 8602100 QC 07-Mar 8602139 QC 07-Mar 8602120 QC 07-Mar 8602120 QC 09-Mar 8602139 QC 09-Mar 8602139 QC 11-Mar 8602136 QC 11-Mar 8602139 QC 11-Mar 8602136 QC 11-Mar 8602139 QC 11-Mar 8602106 QC 11-Mar 8602139 QC 11-Mar 8602106 QC <td< td=""><td>P.</td><td>11-Feb</td><td>8601240</td><td>8</td><td>102</td><td></td><td></td><td></td></td<>	P.	11-Feb	8601240	8	102			
17-Feb 8602047 QC 17-Feb 8602047 QC 17-Feb 8602019 QC 21-Feb 8602113 QC 21-Feb 8602113 QC 21-Feb 8602100 QC 21-Feb 8602100 QC 07-Mar 8602139 QC 07-Mar 8602120 QC 09-Mar 8602139 QC 09-Mar 8602139 QC 11-Mar 8602136 QC 11-Mar 8602136 QC 11-Mar 8602106 QC 11-Mar 8602139 QC 11-Mar 8602106 QC 11-Mar 8602106 QC 11-Mar 8602106 QC 11-Mar 8602106 QC <td< td=""><td>Pb</td><td>17-Feb</td><td>8602047</td><td>8</td><td>101</td><td></td><td></td><td></td></td<>	Pb	17-Feb	8602047	8	101			
17-Feb 8602047 QC 17-Feb 8602019 QC 21-Feb 8602113 QC 21-Feb 8602100 QC 21-Feb 8602100 QC 07-Mar 8602139 QC 07-Mar 8602139 QC 07-Mar 8602139 QC 09-Mar 8602139 QC 11-Mar 8602136 QC 11-Mar 8602136 QC 11-Mar 8602136 QC 11-Mar 8602136 QC 11-Mar 8602106 QC	Pb	17-Feb	8602047	8	86			
17-Feb 8602019 QC 17-Feb 8602067 QC 17-Feb 8602019 QC 17-Feb 8602019 QC 17-Feb 8602013 QC 21-Feb 8602113 QC 21-Feb 8602113 QC 21-Feb 8602100 QC 21-Feb 8602113 QC 07-Mar 8602139 QC 07-Mar 8602139 QC 09-Mar 8602139 QC 11-Mar 8602139 QC 11-Mar 8602176 QC	Pb	17-Feb	8602047	ጵ	104			
17-Feb 8602067 QC 17-Feb 8602019 QC 17-Feb 8602019 QC 17-Feb 8602019 QC 21-Feb 8602113 QC 21-Feb 8602113 QC 21-Feb 8602100 QC 21-Feb 8602100 QC 07-Mar 8602139 QC 07-Mar 8602139 QC 09-Mar 8602139 QC 09-Mar 8602139 QC 11-Mar 8602139 QC 11-Mar 8602176 QC	Pb	17-Feb	8602019	8	111			
17-Feb 8602019 QC 17-Feb 8602019 QC 17-Feb 8602113 QC 21-Feb 8602113 QC 07-Mar 8602139 QC 07-Mar 8602139 QC 07-Mar 8602139 QC 07-Mar 8602139 QC 11-Mar 8602130 QC	Pb	17-Feb	8602067	8	105			
17-Feb 8602019 QC 17-Feb 8602067 QC 21-Feb 8602113 QC 21-Feb 8602113 QC 21-Feb 8602100 QC 21-Feb 8602100 QC 07-Mar 8602139 QC 07-Mar 8602120 QC 07-Mar 8602139 QC 09-Mar 8602139 QC 09-Mar 8602139 QC 11-Mar 8602176 QC 11-Mar 8602176 QC 11-Mar 8602176 QC 11-Mar 8603104 QC	Pb	17-Feb	8602019	ጵ	86			
17-Feb 8602067 QC 21-Feb 8602113 QC 21-Feb 8602113 QC 21-Feb 8602100 QC 21-Feb 8602100 QC 21-Feb 8602103 QC 07-Mar 8602139 QC 07-Mar 8602139 QC 07-Mar 8602130 QC 07-Mar 8602130 QC 11-Mar 8602130 QC 11-Mar 8602130 QC 11-Mar 8602130 QC 11-Mar 8602136 QC 11-Mar 8602176 QC	Pb	17-Feb	8602019	ၓၟ	100			
21-Feb 8602113 QC 21-Feb 8602103 QC 21-Feb 8602100 QC 21-Feb 8602100 QC 21-Feb 8602103 QC 07-Mar 8602139 QC 07-Mar 8602139 QC 07-Mar 8602120 QC 09-Mar 8602139 QC 11-Mar 8602139 QC 11-Mar 8602139 QC 11-Mar 8602136 QC 11-Mar 8602176 QC	P.	17-Feb	8602067	8	114			
21-Feb 8602113 QC 21-Feb 8602100 QC 21-Feb 8602100 QC 21-Feb 8602113 QC 07-Mar 8602139 QC 07-Mar 8602120 QC 07-Mar 8602120 QC 09-Mar 8602139 QC 11-Mar 8602139 QC 11-Mar 8602176 QC 11-Mar 8602176 QC 11-Mar 8603104 QC	Pb	21-Feb	8602113	8	86			
21-Feb 8602100 QC 21-Feb 8602100 QC 21-Feb 8602113 QC 07-Mar 8602139 QC 07-Mar 8602120 QC 07-Mar 8602120 QC 09-Mar 8602139 QC 11-Mar 8602139 QC 11-Mar 8602176 QC 11-Mar 8602176 QC 11-Mar 8602176 QC 11-Mar 8603104 QC	Pb	21-Feb	8602113	ጵ	100			
21-Feb 8602100 QC 21-Feb 8602113 QC 07-Mar 8602139 QC 07-Mar 8602130 QC 07-Mar 8602120 QC 09-Mar 8602139 QC 11-Mar 8602139 QC 11-Mar 8602136 QC 11-Mar 8602176 QC 11-Mar 8602176 QC	Pb	21-Feb	8602100	8	100			
21-Feb 8602113 QC 07-Mar 8602139 QC 07-Mar 8602139 QC 07-Mar 8602120 QC 09-Mar 8602139 QC 09-Mar 8602139 QC 11-Mar 8602176 QC 11-Mar 8602176 QC 11-Mar 8603104 QC	Pb	21-Feb	8602100	8	86			
07-Mar 8602139 QC 07-Mar 8602139 QC 07-Mar 8602120 QC 09-Mar 8602120 QC 09-Mar 8602139 QC 11-Mar 8602176 QC 11-Mar 8602176 QC 11-Mar 8603004 QC	Pb	21-Feb	8602113	8	100			
07-Mar 8602139 QC 07-Mar 8602120 QC 09-Mar 8602139 QC 09-Mar 8602139 QC 11-Mar 8602176 QC 11-Mar 8602176 QC 11-Mar 8602176 QC	P.	07-Mar	8602139	8	100			
07-Mar 8602120 QC 07-Mar 8602120 QC 09-Mar 8602139 QC 11-Mar 8602176 QC 11-Mar 8602176 QC 11-Mar 8603004 QC	Pb	07-Mar	8602139	90	56			
07-Mar 8602120 QC 09-Mar 8602139 QC 11-Mar 8602176 QC 11-Mar 8602176 QC 11-Mar 8603004 QC	Pb	07-Mar	8602120	ၓၟ	100			
09-Mar 8602139 QC 09-Mar 8602139 QC 11-Mar 8602176 QC 11-Mar 8603004 QC 11-Mar 8603004 QC	Pb	07-Mar		ઝ	100			
09-Mar 8602139 QC 11-Mar 8602176 QC 1 11-Mar 8602176 QC 1 11-Mar 8603004 QC 1	P.	09-Mar	8602139	9	93			
11-Mar 8602176 QC 11-Mar 8602176 QC 11-Mar 8603004 QC	Pb	09-Mar	8602139	8	95			
11-Mar 8602176 QC 11-Mar 8603004 QC	Pb	11-Mar	8602176	8	101			
11-Mar 8603004 QC	Pb	11-Mar	8602176	8	105			
	Pb	11-Mar	8603004	8	107			

TABLE A.2-7 (Continued)

MASSIC SOCCOOL VIVIOLOS RESCOCIÓ POVICIOS RACASON APPOINTAMISOSONA RECOVAR ASSONA DIVINA DE CONTINUE D

QC SAMPLE RESULTS FOR METALS ANALYSES IN AQUEOUS SAMPLES

				QC Check	Matrix Spike	Duplicate Analyses	Reagent Blanks
	Analysis	SAM	SAM	1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1	1 1 1 1 1 1 1
Parameter	Date	Workorde	Fraction	X Recovery	X Recovery	X RPD	(ug/ml)
Pb	11-Mar	8603004	8	80			
a	11-Mar	8602176	8	86			
a.	12-Mar	8602197	8	104			
2	12-Mar	8602159	ጵ	111			
P.	12-Mar	8602159	8	104			
a.	12-Mar	8602159	8	107			
a	12-Mar	8602197	S	100			
a.	12-Mar	8602159	8	101			
P	12-Mar	8602159	8	111			
2	12-Mar	8602159	8	104			
a.	12-Mar	8602197	ጵ	100			
2	17-Feb	8602047	-05E		167 p	p,c	
Pb	21-Feb	8602079	V \$0-		113	p ′•	
a.	21-Feb	8602113	-046		108	p ′•	
₽.	17-Feb	8602060	-02C		100	•	
4	21-Feb	8602087	-0 5A		100 8	p,4	
P.	07-Mar	8602120	-01E		100	•	
€.	17-Feb	8602047	-01E		85 1		
P.	21-Feb	8602100	-02 A		92 •	p , d	
a	17-Feb	8602041	-01E		88		
Pb	07-Mar	8602139	-08A		88	•	
Pb	11-Mar	8602176	-056		888	۵, ۵	
P.	17-Feb	8602019	940-		88 1	۵	
2	17-Feb	8602001	-02D		83 8	₽, 4	
Pb	17-Feb	8602031	-026		83	•	
4	11-Feb	8601240	V60 -		79		
P.	11-Mar	8603004	-08		79		
a Q	12-Mar	8602197	-01		. ₩ 61	p , d	
Pb	12-Mar	8602197	-01		P' ■ 61	P	

TABLE A. 2-7 (Continued) qc sample results for metals analyses in aqueous samples

ROOM ROOMS ASSESS SISSESS AND FOR SISSESS AND FOR SISSESSES SISSESSES AND SISSESSES AN

				č	:	**********	
				QC Check	Matrix Spike	Analyses	Blanks
	Analysis	SAM	SAM	1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	!
Parameter	Date	Workorder	Fraction	Z Recovery	Z Recovery	X RPD	(ng/ml)
4. P.	17-Feb	8602019	-036		25	! ! ! ! ! ! ! ! !	
a.	17-Feb	8602001	-02D		71 •	۵.	
Pb	21-Feb	8602087	-05A		71 •	a, e	
Pb	17-Feb	8602001	Q90-		65	۵.	
P.	07-Mar	8602139	-01 A		65	a	
P	17-Feb	8602067	-03€		63		
P.	21-Feb	8602100	-02A		63 .	۵.	
Pb	21-Feb	8602113	-020		0.9	۵.	
P	11-Mar	8602176	-056		54 A	4 .b	
æ	12-Mar	8602197	-02		51	Q.	
P.	20-Feb	8602100	V+0-		50 p	p,b	
P.	21-Feb	8602113	-046		₹ 05	e , b	
Pb	21-Feb	8602079	V40-		* 9*	4 , b	
Pb	21-Feb	8602079	-02A		45	a.	
Pb	17-Feb	8602047	-04E			NC P	
P.	17-Feb	8602047	-01E			0.0	
₽	17-Feb	8602067	-04E			2.7	
P	17-Feb	8602060	-01C			9.1 p	
Pb	19-Feb	8602031	-026			4.6	
Pb	21-Feb	8602113	-016			NC P	
Pb	21-Feb	8602100	-03A			22	
Pb	21-Feb	8602079	-01₽			2.1	
Pb	07-Mar	8602139	-02 A			3.3 p	
Pb	07-Mar	8602139	-08A			NC P	
Pb	11-Mar	8603004	-03			1.5	
Pb	11-Mar	8603004	-10			13	
P.	12-Mar	8602197	-01			20 p	
Pb	12-Mar	8602197	-01			0.0	
Pb	07-Mar	8602120	Blank				<.0011

TABLE A.2-7 (Continued)

PROCESS PROPERTY OF THE PROCESS BESSEL

TO THE TAXABLE BY SALES OF THE PARTY OF THE

QC SAMPLE RESULTS FOR HETALS ANALYSES IN AQUEOUS SAMPLES

				QC Check	Matrix Spike	Analyses	Blanks
	Analysis	SAM	SAM	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
Parameter	Date	Workorder	Fraction	X Recovery	% Recovery	X RPD	(ug/m)
4. 4.	11-Mar	8602176	Blank	, 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1	 	*, 004
Pb	17-Feb	8602047	Blank				<.002
Pb	12-Mar	8602159	Blank				<.002
Pb	12-Mar	8602159	Blank				<.002
Pb	11-Feb	8601240	Blank				<.002
Pb	12-Mar	8602197	Blank				<.002
Pb	07-Mar	8602139	Blank				<.001
Pb	21-Feb	8602100	Blank				*.002
Pb	17-Feb	8602067	Blank				*.004
a.	21-Feb	8602113	Blank				*.003
Mean	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	• • • • • • • • • • • • • • • • • • •		102	61		
RSD (X)				5.1	30.8		
Š	09-Feb	8601240	8	88			
Se	09-Feb	8601240	8	88			
Se	17-Feb	8602067	8	66			
Se	17-Feb	8602019	8	86			
Se	17-Feb	8602019	8	100			
Se	17-Feb	8602019	ጵ	105			
Se	17-Feb	8602067	8	105			
Se	21-Feb	8602113	8	103			
Se	21-Feb	8602100	8	108			
S.	21-Feb	8602113	8	103			
Se	21-Feb	8602113	\$	103			
Se	21-Feb	8602100	8	103			
Se	25-Feb	8602047	8	06			
Se	25-Feb	8602047	S	88			
Se	25-Feb	8602047	8	103			

TABLE A.2-7 (Continued)

QC SAMPLE RESULTS FOR METALS ANALYSES IN AQUEOUS SAMPLES

				QC Check	Matrix Spike	Duplicate Analyses	Blanks
	Analysis	SAM	SAM				
Parameter	Date	Workorder	Fraction	X Recovery	K Recovery	X RPD	(n g / m)
Š	25-Feb	8602047	8	108		 	
S.	07-Mar	8602120	ጵ	85			
Se	07-Mar	8602120	ጽ	06			
Š	1eM-60	8602139	ጵ	86			
Š	09-Mar	8602139	8	100			
S.	11-Mar	8602176	8	86			
S	11-Mar	8603004	8	86			
S.	11-Mar	8602176	8	92			
S.	12-Mar	8602197	ጽ	16			
Se	12-Mar	8602159	8	46			
S.	12-Mar	8602159	૪	06			
Š	12-Mar	8602197	S,	98			
S.	12-Mar	8602159	8	98			
Se	21-Feb	8602100	-02A		104 .	p, 4	
S	21-Feb	8602079	-04A		100 ₽,	p , 4	
Š	11-Mar	8603004	-03		100 .	₽ , d	
Se	11-Mar	8602176	-036		100 .	₽,4	
Se	17-Feb	8602060	-050		'▼ 96	₽'•	
S	21-Feb	8602087	V70-		, 4 96	₽,4	
Se	09-Feb	8601240	-05A		92 .	₽,4	
Š	09-Mar	8602139	-03A		92 .	p , d	
Se	17-Feb	8602067	-045		88 .	p , •	
Se	17-Feb	8602019	940-		. 88	₽,4	
Se	21-Feb	8602113	970-		88	a , b	
Se	25-Feb	8602047	-01E		1 88	<u>a</u>	
Se	17-Feb	8602001	· 01D		83 m	p, a	
S.	11-Mar	8603004	-03		83 .	a, a	
S.	17-Feb	8602001	-06D		7.8 1	a.	

TABLE A.2-7 (Continued)

QC SAMPLE RESULTS FOR HETALS ANALYSES IN AQUEOUS SAMPLES

				;	:	Duplicate	Reagent
				QC Check	Matrix Spike	Analyses	Blanks
	Analysis	WVS	SAM	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	!	
Parameter	Date	Workorder	Fraction	X Recovery	I Recovery	X RPD	(ng/ml)
Se	09-Feb	8601240	V 90−		75 a.	d, e	
Se	17-Feb	8602031	-02C		75	•	
S	17-Feb	8602041	-03E		75	a	
Š	11-Mar	8602176	-036		75 &,	p ′ e	
Se	12-Mar	8602197	-02		71 a,d	P	
Se	17-Feb	8602019	-046		67 a.	a,b	
Se	21-Feb	8602079	V+0-		67 A,c	Ų	
Š	21-Feb	8602100	-02A		67 a,b	بم	
Se	17-Feb	8602001	-01D		63 a,b	<u>م</u>	
S.	21-Feb	8602087	V+0-		63 a,b	<u>م</u>	
Se	09-Mar	8602139	~03A		54 8,0	v	
Se	07-Mar	8602120	-01E		52 a,b	<u>م</u>	
Se	17-Feb	8602060	-02C		50 p	•	
Se	21-Feb	8602113	940-		50 a,b	مِ	
Se	12-Mar	8602197	-02		29 a,	a , b	
Se	21-Feb	8602079	-02 A		0	<u>a</u>	
Se	21-Feb	8602100	V*0-		0	Q.	
Se	21-Feb	8602113	-026		0	a	
Se	25-Feb	8602047	-05E		0	Q.	
Se	09-Mar	8602139	-01 A		0		
Se	12-Mar	8602197	-02		0	Q.	
Se	17-Feb	8602067	-01E			NC P	
Se	17-Feb	8602060	-01C			NC P	
Se	21-Feb	8602113	-010			NC P	
Se	21-Feb	8602079	-01A			NC	
Se	21-Feb	8602100	-03 A			NC	
Se	25-Feb	8602047	-04E			NC P	
Se	25-Feb	8602047	-01E			NC B	
Ċ	:						

TABLE A.2-7 (Continued)

CASSE CELLICIES SOLVES

The Contract of the Contract o

THE PROPERTY OF THE PROPERTY O

QC SAMPLE RESULTS FOR METALS ANALYSES IN AQUEOUS SAMPLES

	-	2	2	QC Check	Matrix Spike	Duplicate Analyses	Reagent
Parameter	Analysis Date	SAM Workorder	SAM Fraction	X Recovery	X Recovery	X RPD	(ng/ml)
Š	12-Mar	8602197		; ; ; ; ; ; ; ; ;		NC P	
Se	25-Feb	8602047	Blank				< .003
Se	12-Mar	8602159	Blank				<.003
Se	21-Feb	8602100	Blank				<.002
S	17-Feb	8602067	Blank				<.002
Se	07-Mar	8602120	Blank				< .003
Se	09-Mar	8602139	Blank				< .002
Se	12-Mar	8602197	Blank				<.003
Se	11-Mar	8602176	Blank				< .003
Se	21 -Feb	8602113	Blank				<.002
Se	09-Feb	8601240	Blank				<.003
Mean		1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	96	79		
RSD (X)				7.6	51.4		

a - analytical spike or duplicate

b - recovery in undiluted sample

c - spike added less than 0.2 times endogenous level

d - recovery in diluted (1:10 usually) sample

p - predigestion spike or duplicate

* - measured value less than limit of quantitation

fn-1 = for workorders: 8602047, 8602176, 8602197, 8603004

fn-2 = for workorders: 8602176 & 8602219 fn-3 = for workorders: 8602100, 8602120, 8602139, 8602159

fn-4 = for workorders: 8602120 & 8602139

fn-5 = for workorders: 8601240, 8602031, 8602041, 8602060, 8602067, 8602079, 8602087

TABLE A.2-7 (Continued)

CONTRACTOR CONTRACTOR

QC SAMPLE RESULTS FOR METALS ANALYSES IN AQUEOUS SAMPLES

(ng/mJ)	X RPD	X Recovery	X Recovery	Fraction	Date Workorder Fraction	Date	Parameter
1 1 1 1 1 1 1 1 1	1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	SAM	SAM	Analysis	
Blanks	Analyses	QC Check Matrix Spike Analyses	QC Check				
Reagent	Duplicate						

fn-6 - for workorders: 8602060 & 8602067

 ${\rm TABLE} \ \, A_{\bullet}2-8$ $_{\rm QC}$ sample results for hydrocarbon and oil 6 crease analyses in water samples

		3	3	QC Check	Duplicate Reagent QC Check Matrix Spike Analyses Blanks	Duplicate Analyses	Reagent Blanks
Parameter	Date	Workorder Fraction	Fraction	% Recovery	X Recovery	X RPD	(ug/ml)
Hydrocarbons	26-Feb	8602123	ጵ	104			
Hydrocarbons	26-Feb	8602123	ጵ	118			
Mean		1 1 1 1 1 1 1 1 1	t 1 1 1 1 1 1 1 1 1	111	1 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		
RSD (X)				6.8			
Oll & Greas	14-Mar	8602120	Ş	96			
Oil & Grease	14-Feb	8602067	သွ	66			
Oil & Grease	14-Feb	8602067	ပွ	66			
Mean		t 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1	86	· · · · · · · · · · · · · · · · · · ·		
RSD (1)				1.8			

TABLE A.2-9

Gross α/β QA/QC

12-18-85

		Net Act	ivities	
		α	β	
I.	Duplicate Samples			
	1) 860048 SB-11-C	6.5 <u>+</u> 6.2 7.6 <u>+</u> 5.8	16.8 <u>+</u> 4.1 10.0 <u>+</u> 3.9	pCi/g pCi/g
	2) 860260 - 03A	3.3 ± 2.4 3.5 ± 2.3	7.2 ± 2.2 5.6 ± 2.1	pCi/L pCi/L
II.	Duplicate Counts	<1.6	<4.2	pCi/L
	860259 - 02A	3.6 <u>+</u> 4.0	<4.2	pCi/L
III.	Samples Spiked with 10uL 241Am	+ 0.5 mL ⁹⁰ Sr	Standard Solut	ions
	<pre>1) 860259 - 02A + Mixed Spike (corrected for sample volume = 65 mL)</pre>	21.0 <u>+</u> 5.2	131.1 <u>+</u> 7.7	pCi/L
	Mixed spike alone	2.4 <u>+</u> 0.3	9.6 <u>+</u> 0.5	pCi/spike
	860259 - 02A alone	<1.6	<4.2	pCi/L
	<pre>2) 860038 SB-6-D + Mixed Spike (corrected for sample mass = 0.10158g)</pre>	87.9 <u>+</u> 10.5	113.6 <u>+</u> 7.0	pCi/g
	Mixed spike alone	1.7 <u>+</u> 0.3	7.2 <u>+</u> 0.5	pCi/spike
	860038, SB-6-D alone	12.4 <u>+</u> 7.9	19.5 <u>+</u> 4.3	pCi/g
IV.	DIW Blanks, Duplicate Samples			
	0.5 L 0.5 L	<0.4 <0.4	<0.7 <0.7	pCi/L pCi/L

TABLE A.2-9 (Continued)

V. Stock Standard Solutions

		<u> </u>	β	Date Counted
Am	1)	2.18 +0.3	0.55 <u>+</u> 0.3	8/18
	2)	2.34 ± 0.3	0.76 ± 0.3	9/9
Sr-90	1)	<0.4	6.52 <u>+</u> 0.4 7.53 +0.5	8/19
	2)	<0.4	7.53 ± 0.5	9/6
Mixed		1.69 +0.3	7.22 <u>+</u> 0.5	8/18
	2)	2.40 ± 0.3	7.22 ± 0.5 9.56 ± 0.5	9/6

VI. Standard Instrument Check Sources (1 minute counts)

		α	<u> </u>
C14	1986 Avg.	-	59019 <u>+</u> 1025 (1.7%)
	1 Jul	_	58878 58540
			59038
	13 Aug	-	58636
Pb-210	1986	1189 <u>+</u> 73 (6.1%) 1144	2266 <u>+</u> 223 (9.8%) 2203
	1 Jul	1106	2055
		1133	2098
	13 Aug	1226	1995

TABLE A.2-9 (Continued)

AIR FORCE GAMMA CS-137 QA/QC

I.	EPA-LV Interlab Unknown CS-137 Meas. EPA Reported Actual	11.2 <u>+</u> 2.0 10 <u>+</u> 5		(6/30)
II.	Duplicate Counts			Detector
	1) 860038 SB-6-D (97.0 g (in teflon jar))	<46 <41		Lo-Pro Lo-Pro
	2) 860258-01A	<10.7 <9.9		Lo-Pro Lo-Pro
	3) 860259-02A	<12.6 <12.9		Hi-Pro Hi-Pro
III.	CS-137 Std in Teflon Jar			
	8-13 8-22 8-13 8-22 Activity based in known std. concen.	238169 239918 235603 240559 237498	pCi pCi	Hi-Pro Lo-Pro
IV.	1) DIW Blank in Teflon Jar 0.093 kg in Teflon Jar	<71 pCi/k; <100 pCi/l	_	Lo-Pro Hi-Pro
	2) DIW Blank in Marinelli Beaker (1.00 ug)	<3.4 pCi/	kg	Lo-Pro

CS-137 Standard in Marinelli Beaker

Lo-Pro	Net cps Hi-Pro	Date
_	8.41	3/10
-	8.17	6/9
11.63	-	6/10
-	8.03	8/28
11.16	-	8/29
-	7.98	10/24
11.40	-	10/25
11.57	7.87	10/27
11.38	-	12/3
11.43 +0.18	8.09 +0.21	Avg.

RADIAN

[This page intentionally left blank.]

APPEARS - MANAGES - MANAGE

METALS · C-1, C-2, C-3, C-4, C-5, P-4, P-7m, P-7L, CREEK EPA GC1: C-1, C-2, C-3, C-4, C-5, P-4, P-7m, P-7L, CREEK EPA GC2: C-1, C-2, C-3, C-4, C-5, P-4, P-7m, P-7L, CREEK CHAIN OF CUSTODY RECORD

CREEK SEER

		Field Sample No
Company Sampled Address GENES Sample Point Description GTGV	EAL DYNAMICS - FORT L	NURTH PLANT 4
Sample Point Description	ed histor & Surface Wal	× , , , , , , , , , , , , , , , , , , ,
Stream Characteristics:	•	
Temperature	Flow	pH
Visual Observations/Comments		
Collector's Name NEIL ROBINSON Amount of Sample Collected Number Sample Description Surface With	Date/Time Sam	pled 1-29-86 1-30-86
Amount of Sample Collected	500 ml PLASTIC THIRT	YSIX 40 MI GZASS
Sample Description SURFACE WA	ATER GROUND WATER	·
Store at: ☐ Ambient ☐ 5°C ☐ -	10°C ⊠Other <u>4°</u> ⊂	
	•	
Caution - No more sample available		pie 🗆 Discard unused portions
Other Instructions · Special Handling	Hazards	
1		
Hazardous sample (see below)	□ Non-ha	zardous sample
D ≪Toxic	☐ Skin irritant	☐ Flammable (FP< 40°C)
☐ Pyrophoric	☐ Lachrymator	□ Shock sensitive
□ Acidic	☐ Biological	Ż Carcinogenic ⋅ suspect
☐ Caustic	☐ Peroxide	☐ Radioactive
□ Other		
Sample Allocation/Chain of Possession	n:	_
Organization Name RADIAN CO	RP.	md.
Received By NET ROBINSON	Date Receive	Time 18007
Transported By NEW ROBINSON	Lab Sample No	
Comments // Co	unger	
Inclusive Dates of Possession 1-2	9-86, 1-30-86	
Organization Name		
Received By 4. To		
Transported By		
Comments		
Inclusive Dates of Possession		
Organization Name		
•		ed Time
-		
Comments	•	
Inclusive Dates of Possession		

Volatile Organics

DETECTION LIMITS

METHOD (CC)		METHOD DETECTION LIMIT LIG/L
COMPOUND	-C1>-C9	
Chloromethane	-C1>-C9 CE	
Gromomethane	11.8	
7inyl Chloride	1.8	
Chloroethane	5.2	
Methylene Chloride	2.5	
Trichlorofluoromethane	1.0	
,1-Dichloroethene	1.3	
,1-Dichloroethane	0.7	
Trans-1,2-Dichloroethene	1.0	
Chloroform -	0.5	
1,2-Dichloroethane	0.3	
l,l,l-Trichloroethane	0.3	
Carbon Tetrachloride	1,2	
Bromodichloromethane	1.0	
1,2-Dichloropropane	0.4	
Trichloroethene	1,2	
Dibromochloromethane	0.9	
2-Chloroethylvinyl Ether	1.3	
Bromoform	130	
Tetrachloroethene	2.0 C.3	
Chlorobenzene	2.5	
,3-Dichlorobenzene	3.2	
,2-Dichlorobenzene	1.5	
1,4-Dichlorobenzene	2.4	

Detection Limits

Volatile Organics

Method (CCA)

Compound	10-410-	Detection Limit UG/L	
Benzene	6,2		
Toluene	C.3		
Ethylbenzene	6,2		
l,4-Diclorobenzene	6.3		
l,3-Dichlorobenzene	C.4		
1,2-Dichlorobenzene	6.4		
(ihlorobenzene	C, Q		

LAB # 545	B- BLANK		
CLIENT NAME			
SAMPLE ID			
		=======================================	******
EPA METROD 601	DATE: ANALYST: INSTRUMENT:	EPA METHOD 602	DATE: 2 3 7 AL ANALYST: JSC INSTRUMENT QU
COMPOUND	CONCENTRATION (ug/L)	COMPOUND	CONCENTRATION (ug/L)
Chloromethane	200	Benzene	N0
Bromomethane		Toluene	
Vinyl Chloride		Ethyl benzene	
Chloroethane		Chlorobenzene	
Methylene chloride		1.4-Dichlorobenzene	
Trichlorofluromethane		1.3-Dichlorobenzene	
1.1-Dichlorethene		1.2-Dichlorobenzene	
1.1-Dichlorethane		P-Xylene	
Trans-1.2-Dichloroether	1e	M-Xylene	
Chloroform		0-Xylene	¥
1.2-Dichlorethane	<u>.</u>	! -	
1.1.1-Trichlorethane		-	
Carbon tetrachloride	·· <u>···</u>	4	
Bromodichlormethane			
1.2-Dichloropropane		SURROGATE RECOVERI	ES:
Trans-1.3-Dichloroprope	ene	601	
Trichloroethene		Bromochloromethane	
Dibromochloromethane		2-Bromo-1-Chloropr	
1.1.2-Trichlorethane		1,4-Dichlorobutane	
cis-1.3-Dichloropropens		602	_
2-Chloroethylvinyl ethe	<u> </u>	a,a,a,-Trifluoroto	luene
Bromoform		4	
1.1.2.2-Tetrachlorethan		-	
Tetrachlorethylene		4	
Chlorobenzene		4	
1.3-Dichlorobenzene		4	
1.2-Dichlorobenzene		· -	
1,4-Dichlorobenzene		-	
			,

LAB #N &	ABENT DUNK		
CLIENT NAME			
SAMPLE ID			
#855322555555555555555555555555555555555		=======================================	
EPA METHOD	DATE:	EPA METHOD	DATE: 2 (366
601	ANALYST:	602	ANALYST: 🗸
	INSTRUMENT:		INSTRUMENT:
COMPOUND	CONCENTRATION	COMPOUND	CONCENTRATION
COMPOUND		COMPOUND	(ug/L)
	(ug/L)		(ug/L)
Chloromethane		Benzene	A 10
Bromomethane		Toluene	
Vinyl Chloride		Ethyl benzene	
Chloroethane Methylene chloride		Chlorobenzene 1.4-Dichlorobenzene	
Trichlorofluromethane		1.3-Dichlorobenzene	
1.1-Dichlorethene		1.2-Dichlorobenzene	
1.1-Dichlorethane		P-Xylene	
Trans-1.2-Dichloroethene	`	M-Xylene	1/
Chloroform	<u> </u>	0-Xylene	
1.2-Dichlorethane		U-AVIERE	
1.1.1-Trichlorethane		†	
Carbon tetrachloride			
Bromodichlormethane		1	
1.2-Dichloropropane		SURROGATE RECOVERIE	·c.
Trans-1.3-Dichloroproper		601	
Trichloroethene		Bromochloromethane	
Dibromochloromethane		2-Bromo-1-Chloropro	
1.1.2-Trichlorethane		1,4-Dichlorobutane	
cis-1.3-Dichloropropene		602	
2-Chloroethylvinyl ether		a,a,a,-Trifluorotol	Hene
Bromoform			
1.1.2.2-Tetrachlorethane	<u> </u>		
Tetrachlorethylene			
Chlorobenzene			
1.3-Dichlorobenzene			
1.2-Dichlorobenzene		7	
1.4-Dichlorobenzene		-	
THE PART OF THE STATE OF THE ST		-	
1			

LAB # SYSTEM	- BUNK			
CLIENT NAME				
SAMPLE ID				

EPA METHOD	DATE:213	rL	EPA METHOD	DATE:
601	ANALYST:	536	602	ANALYST:
	INSTRUMEN	T: 2	-	INSTRUMENT:
COMPOUND	CONCENTRA		COMPOUND	CONCENTRATION
	(ug/L)	\		(ug/L)
Chloromethane		NI	Benzene	-
Bromomethane			Toluene	
Vinyl Chloride			Ethyl benzene	
Chloroethane		 	Chlorobenzene	
Methylene chloride		 	1.4-Dichlorobenzene	
Trichlorofluromethane	 	<u> </u>	1.3-Dichlorobenzene	
1.1-Dichlorethene		ļ	1.2-Dichlorobenzene	
1.1-Dichlorethane			P-Xylene	
Trans-1.2-Dichloroethene			M-Xylene_	~
Chloroform			0-Xylene	
1.2-Dichlorethane				
1.1.1-Trichlorethane				
Carbon tetrachloride				
Bromodichlormethane				
1.2-Dichloropropane		 -	SURROGATE RECOVER	IES:
Trans-1.3-Dichloropropen	<u> </u>		601	
Trichloroethene			Bromochloromethan	
Dibromochloromethane				ropane
1.1.2-Trichlorethane			1,4-Dichlorobutan	e
cis-1.3-Dichloropropene			602	_
2-Chloroethylvinyl ether			a,a,a,-Trifluorot	oluene
Bromoform			4	
1.1.2.2-Tetrachlorethane			4	
Tetrachlorethylene			-	
Chlorobenzene			4	
1.3-Dichlorobenzene			4	
1.2-Dichlorobenzene			-[
1.4-Dichlorobenzene	-		-[
			1	
			· f	

THE TOTAL STATES OF THE SECOND OF THE SECOND

LAB # A MARGANT	BUML	1		
CLIENT NAME		1		
SAMPLE ID				
***************	********	=====	****	
EPA METHOD 601	DATE: 2/ ANALYST: INSTRUME	C= 119	EPA METHOD 602	DATE: ANALYST: INSTRUMENT:
COMPOUND	CONCENTR (ug/I		COMPOUND	CONCENTRATION (ug/L)
Chloromethane		10	Benzene	
Bromomethane			Toluene	
Vinyl Chloride			Ethyl benzene	
Chloroethane		<u> </u>	Chlorobenzene	
Methylene chloride			1.4-Dichlorobenzene	
Trichlorofluromethane		<u> </u>	1.3-Dichlorobenzene	
1.1-Dichlorethene			1.2-Dichlorobenzene	L.,
1.1-Dichlorethane			P-Xylene	
Trans-1.2-Dichloroethene	<u> </u>		M-Xylene	
Chloroform			0-Xylene	
1.2-Dichlorethane				
1.1.1-Trichlorethane				
Carbon tetrachloride				
Bromodichlormethane				
1.2-Dichloropropane			SURROGATE RECOVER	RIES:
Trans-1.3-Dichloroproper	ne		601	
Trichloroethene			Bromochloromethar	
Dibromochloromethane	<u></u>			ropane
1.1.2-Trichlorethane			l,4-Dichlorobutar	ie
cis-1.3-Dichloropropene			602	
2-Chloroethylvinyl ether			a,a,a,-Trifluorot	oluene
Bromoform			<u> </u>	
1.1.2.2-Tetrachlorethan	e		4	
Tetrachlorethylene			4	
Chlorobenzene				
1.3-Dichlorobenzene	<i></i>		4	
1.2-Dichlorobenzene	<u>V_</u>		-	
1.4-Dichlorobenzene			-	

LAB # SYSTE BLA	. 494			
CLIENT NAME	~ <i>r</i>			
SAMPLE ID				
THE TO				
EPA METHOD 601	DATE: //~ ANALYST: INSTRUMENT	br Isc	EPA METHOD 602	DATE: ANALYST: INSTRUMENT:
COMPOUND	CONCENTRAT	ION	COMPOUND	CONCENTRATION (ug/L)
Chloromethane	رم	2	Benzene	
Bromomethane			Toluene	
Vinyl Chloride			Ethyl benzene	
Chloroethane			Chlorobenzene	
Methylene chloride			1.4-Dichlorobenzene	
Trichlorofluromethane			1.3-Dichlorobenzene	
1.1-Dichlorethene			1.2-Dichlorobenzene	
1.1-Dichlorethane			P-Xylene	
Trans-1.2-Dichloroethene	· · · · · · · · · · · · · · · · · · ·	<u> </u>	M-Xylene	
Chloroform			O-Xylene	
1.2-Dichlorethane		L		
1.1.1-Trichlorethane				
Carbon tetrachloride				
Bromodichlormethane				
1.2-Dichloropropane			SURROGATE RECOVERI	ES:
Trans-1.3-Dichloropropens	2		601	
Trichloroethene			Bromochloromethane	
Dibromochloromethane			2-Brome-1-Chloropr	
1.1.2-Trichlorethane			1,4-Dichlorobutane	
cis-1.3-Dichloropropene			602	
2-Chloroethylvinyl ether			a,a,a,-Trifluoroto	luene
Bromoform				
1.1.2.2-Tetrachlorethane				
Tetrachlorethylene				
Chlorobenzene	············ · · · ·			
1.3-Dichlorobenzene				
1.2-Dichlorobenzene	, ,			
1.4-Dichlorobenzene	<u> </u>			

Reconstructural escretes accretes reconstruction escention escention reconstruction proportion escention escention escention escention escention escention.

LAB # IISTEERT	Bun	IC			
CLIENT NAME					
SAMPLE ID					
	*=====				
EPA METHOD	DATE:		EPA METHOD		
601				ANALYST:	
332	ANALYST: CO INSTRUMENT June			INSTRUMENT:	
COMPOUND	CONCE	TRATION	COMPOUND	CONCENTRATION	
	(ug/L)			(ug/L)	
Chloromethane	No)	Benzene	-	
Bromomethane			Toluene		
Vinyl Chloride			Ethyl benzene	<u>-</u> · · · · · · · · · · · · · · · · · · ·	
Chloroethane			Chlorobenzene		
Methylene chloride			1,4-Dichlorobenzene		
Trichlorofluromethane			1.3-Dichlorobenzene		
1.1-Dichlorethene			1.2-Dichlorobenzene		
1.1-Dichlorethane			P-Xylene		
Trans-1.2-Dichloroethene			M-Xylene		
Chloroform		<u> </u>	0-Xylene		
1.2-Dichlorethane					
1.1.1-Trichlorethane		1]		
Carbon tetrachloride		<u> </u>			
Bromodichlormethane		J			
1.2-Dichloropropane		SURROGATE RECOVERIES:			
Trans-1.3-Dichloropropen	e	 	601		
Trichloroethene		Browochloromethane			
Dibromochloromethane		2-Bromo-1-Chloropropane			
1.1.2-Trichlorethane			1,4-Dichlorobutane		
cis-1.3-Dichloropropene		 	602		
2-Chloroethylvinyl ether		 	a,a,a,-Trifluoroto	luene	
Bromoform		 	4		
1.1.2.2-Tetrachlorethane		 	-		
Tetrachlorethylene		 	-		
Chlorobenzene			-		
1.3-Dichlorobenzene			-		
1.2-Dichlorobenzeae		/	-		
1.4-Dichlorobenzene		7	1		

DAILY QUALITY CONTAIL

EPA DC WP 483 cmc 2 + EPA DC WP 781 cmc 7

1/31/6		G	C
	CENTIFIED VALUE (MS/L)	ANALYZED VALUE	8 nec
Chloromethane			
Bromomethane			
Vinvl chloride			
Chloroethane			
Methylene chloride	5.2	8.7	94
Trichlorofluoromethane			
l,l-Dichloroethene	10.0	7.9	79
1,1-Dichloroethane			
trans-1,2-Dichloroethene	5,4		
Chloroform	43.0	\$7.3	136
1,2-Dichloroethane	27.6	23.6	86
1,1,1-Trichloroethane	14.3	14.5	101
Carbon tetrachloride	200	18. c	90
Bromodichloromethane	7.9	8. Y	106
1,2-Dichloropropane	8.0	8.2	103
Trichloroethene	22.2	93.4	101
Dibromochloromethane	16.7	14.4	36
1,1,2-Trichloroethane cis-1,3-Dichloropropene	 		
2-Chloroethylvinyl ether Bromoform	9.9	10.4	105
1.1.2.2-Tetrachloroethane	10.0		
Tetrachloroethylene	6.2		
Chlorobenzene	8.2	9,6	1117
1,3-Dichlorobenzene			
1,2-Dichlorobenzene			

1,4-Dichlorobenzene

DAILY QUALITY CONTROL

EPA DE WP 483 cmc 2 + EPA DE WP 781 cmc }

3 3 3 6

> >		G	1 G
	CENTIFIED VALUE (MS/L)	ANALYZED VALUE	3 nec
Chloromethane			
Bromomethane			
Vinvl chloride			
Chloroethane			
Methylene chloride	9.2	10.5	114
Trichlorofluoromethane		Ì	
l,1-Dichloroethene	10.0	8.0	20
l,1-Dichloroethane			
trans-1.2-Dichloroethene	5.4		
Chloroform	43.0	55.0	193
1,2-Dichloroethane	2٦. ه	25.0	81
1,1,1-Trichloroethane	14.3	14.9	104
Carbon tetrachloride	20.0	17.2	96
Bromodichloromethane	7.9	9.7	193
1,2-Dichloropropane	8.0	9.4	117
Trichloroethene	22.2	24.9	112
Dibromochloromethane-	16.7	16.2	97
1,1,2-Trichloroethane			
cis-1,3-Dichloropropene			
2-Chloroethylvinyl ether	5.5	9.2	93
Bromoform	10.0	\	1/3
1.1.2.2-Tetrachloroethane Tetrachloroethylene	6.2		
Chlorobenzene	8.2	8.9	109
1,3-Dichlorobenzene			
1,2-Dichlorobenzene			
1,4-Dichlorobenzene		<u> </u>	

DAILY QUALITY CONTROL RAS GC LAB

CONTRACTOR OF THE CONTRACTOR O

DATE:	2/3/20		SPIKED VALUE ANALYZED VA (ug/L) (ug/L)			LUE % RECOVERY			Y
		INSTRUMENT		0			D		
		ANALYST		a			4		
TEST METHOD	COMPOUND								
EPA 601	Chloromethane		16.2						
	Chloroethane		28.1			7.5			
	Methylene Chloride		_26.3			٠.			
			45.0						
	Trans-1,2-Dichloroethylene		12.5						
	Carbon Tetrachloride		60.0						
	Dichlorobromomethane		40.0						
EPA 602	1,1,2-Trichloroethane		33.8						
	Benzene	-	30.7	34. O			111		
	Toluene		4.1	4,6			113		
	Ethylbenzene		11.5	11.6	ļ		100		
	P-Xylene		19.1	21.2			111		
	M-Xylene		42.6	469	<u> </u>		110		
	0-Xylene		10.6	10.4	ļ		100		
EPA 608			(ug/g)		(ug/g)				
	Aroclor 1242		58.7						
	Aroclor 1260		56.8						

mand applicat services received reseasementations apparate process basississalesses described assesses

LAB #: 8601239-CIA
SAMPLE ID: <u>C'-1</u>
DATE: 1-31-84
INSTRUMENT:
601/8010
BROMOCHLOROMETHANE: 97%
2-BROMO-1-CHLOROPROPANE: (140/o
602/802
a.a.a-TRIFLIOROTOLUENE:

LAB #: EUCIDBY-CDA
SAMPLE ID: ()
DATE: 1-31-84
INSTRUMENT: C
601/8010
BROMOCHLOROMETHANE: 1010/6
2-BROMO-1-CHLOROPROPANE: 90%
602/802
a.a.a-TRIFLUOROTOLUENE:

SCOOL PARTICIPATE PARTICIPATE SOURCES TOUGHS AND TOUGHS TO THE SOURCE TOUGHS TOUGHS TOUGHS TOUGHS TOUGHS TOUGHS

LAB #: 8601239-03A
SAMPLE ID: C-3
DATE: 1-31-86
INSTRUMENT:
601/8010
BROMOCHLOROMETHANE: 05%
2-BROMO-1-CHLOROPROPANE: 99%
602/802
a a =TRIFIUOROTOLUENE:

LAB #: EUC 1234-C4A
SAMPLE ID: C-4
DATE: 1-31-86
INSTRUMENT:
601/8010
BROMOCHLOROMETHANE: 100%
2-BROMO-1-CHLOROPROPANE: 100%
602/802
a,a,a-TRIFLUOROTOLUENE:

LAB #: 8661434-65A
SAMPLE ID: <u>C-5</u>
DATE: 1-31-84
INSTRUMENT:
601/8010
BROMOCHLOROMETHANE: 86% 115%
2-BROMO-1-CHLOROPROPANE: 98%,113%
,
602/802
a a TRIFI COROTOL CENE

LAB #: ELC 1239-CLOA
SAMPLE ID: P 4
DATE: 1-31-8(c
INSTRUMENT:
601/8010
BROMOCHLOROMETHANE: 105%
2-BROMO-1-CELOROPROPANE:
602/802
a.a.a-TRIFLUOROTOLUENE:

LAB #: 8001939-07A
SAMPLE ID: P-7M
DATE: 1-31-80
INSTRUMENT:
601/8010
BROMOCHLOROMETHANE: 120%
2-BROMO-1-CHLOROPROPANE: 100
602/802
a.a.a-TRIFLUOROTOLUENE:

LAB #: ECCLASGI-CEA
SAMPLE ID: P-70
DATE: 1-31-84
INSTRUMENT: G
601/8010
BROMOCHLOROMETHANE: 103%
2-BROMO-1-CHLOROPROPANE: 83%
602/802
a,a,a-TRIFLUOROTOLUENE:

LAB #: EGC 1339-C9A
SAMPLE ID: Creek Seep
DATE: 2-3-84
INSTRUMENT:
(0) (00)
601/8010
BROMOCHLOROMETHANE: 18.00
2-BROMO-1-CHLOROPROPANE: 107%
602/802
a,a,a-TRIFLUOROTOLUENE:

PARTON AND PARTON OF THE PARTO

LAB #: EUC1289-C1C
SAMPLE ID: C-1
DATE: 2-3-86
INSTRUMENT: D
601/8010
BROMOCHLOROMETHANE:
2-BROMO-1-CHLOROPROPANE:
602/802
2 2 2-TRIFILIOPOTOLUENE. 96%

LAB #: <u>EUC 1239-CSC</u>
SAMPLE ID: U-B
DATE: 2-3-84
INSTRUMENT: D
601/8010
BROMOCHLOROMETHANE:
2-BROMO-1-CHLOROPROPANE:
602/802
a,a,a-TRIFLUOROTOLUENE: CC.

RADIAN

Reservations, principle assertes restricted with the servation reservation restricted reservation reservation

LAB #: <u>EUU1239-C3C</u>
SAMPLE ID: C-3
DATE: 2-3-86
INSTRUMENT:
601/8010
BROMOCHLOROMETHANE:
2-BROMO-1-CHLOROPROPANE:
602/802
a,a,a-TRIFLUOROTOLUENE: 97%

LAB #: ECC1239-C4C
SAMPLE ID: C-4
DATE: 2-3-8-4
INSTRUMENT:
601/8010
BROMOCHLOROMETHANE:
2-BROMO-1-CHLOROPROPANE:
602/802
a.a.a-TRIFLUOROTOLUENE: 1000/

LAB #: ELC 1239-C5C
SAMPLE ID: C-5
DATE: 2-3-84
INSTRUMENT:
601/8010
BROMOCHLOROMETHANE:
2-BROMO-1-CHLOROPROPANE:
602/802
a,a,a-TRIFLUOROTOLUENE: 1140/c. 16546

RADIAN

LAB #: EUCI239-CUC
SAMPLE ID: P-4
DATE: 2-3-84
INSTRUMENT:
601/8010
BROMOCHLOROMETHANE:
2-BROMO-1-CHLOROPROPANE:
602/802
a.a.a-TRIFLUOROTOLUENE: 170/

STATES OF THE PROPERTY OF THE

LAB #: 8601239-070
SAMPLE ID: P-7A)
DATE: 2-3-84
INSTRUMENT:
(01/0010
601/8010
BROMOCHLOROMETHANE:
2-BROMO-1-CHLOROPROPANE:
602/802
a,a,a-TRIFLUOROTOLUENE: (CGO)

LAB #: ECC1339-CFC
SAMPLE ID: P-74
DATE: 3-3-84
INSTRUMENT:
(01/0010
601/8010
BROMOCHLOROMETHANE:
2-BROMO-1-CHLOROPROPANE:
602/802
a,a,a-TRIFLUOROTOLUENE: 1990/

LAB #: SUC 1239-CGC
SAMPLE ID: Creck Secp
DATE: 2-3-86
INSTRUMENT: D
601/8010
BROMOCHLOROMETHANE:
2-BROMO-1-CHLOROPROPANE:
602/802
a,a,a-TRIFLUOROTOLUENE: 126%

RADIAN

SPIKE RECOVERY

EPA Method 602 Volatile Organics SAMPLE # 86 0(339 - 09C) UNITS	3 br 18 D 4			
Caek Sod	SSR	SR	SA	ZR
Benzene	41.0		317	134
Toluene	6.2		41	120
Ethyl benzene	14.5		11.5	DC.
l,4-Dichlorobenzene	<u> </u>			
1,3-Dichlorobenzene				
1,2-Dichlorobenzene				
O-Xylene	12.8		10.6	190
M-Xylene	55.9		42.6	(3)
P-Xylene	24.4	<u> </u>	19.1	198
Chlorobenzene			-	

SSR = Sniked Sample Result

ISR = Cample Result

SA = Spike Added

RADIAN

SPIKE RECOVERY

86018	39-0	15/					
1 cm	و د لاً ۶۰	car					
2/3/86	RP	<u></u>					
SSR	SR	SA	ZR	SSR	SR	SA	ZR
}				1 1			
		1					
11.1		9.2	121				
	1	1					
9.0		10.0	90				
		1					
8.8	3.7	5.4	107				
		 	141		-		
			1				
		 					
25.0							
9.9	1		135				
9.1		1	114				
63.0	20.0		110		1		
13.2			79		1		
					1		
					i		
					1		
(3.0		50	133		<u>-</u>		
ie	2] .					
	30.00				·i		
10. >			125		 		
	1	-			1		
	1						
					i		
	11.1 9.0 8.8 13.1 17.9 25.0 9.9 9.1 63.0 (3.1	2 (3/32 11) SSR SR 11.1 9.0 8.8 3.7 23.1 17.9 25.0 9.9 9.1 63.0 13.2	SSR SR SA	2/3/3c 1/9 & SSR SA ZR 11.1	2/3/3	1/3/12 1/9 6- SSR SR SA ZR SSR SR 11.1 9.2 124 9.0 10.0 90 8.7 3.7 5.4 107 10.7 43.0 14 28.1 27.6 105 17.1 14.3 125 25.0 20.0 125 9.1 3.0 14 63.0 23.7 160 13.2 16.7 79 13.0 16.1 13.0 16.1 13.0 16.1 13.0 16.1 13.0 16.1 13.0 16.1 13.0 16.1 13.0 16.1 13.0 16.1 13.0 16.1 13.0 16.1 13.0 16.1 14.1 16.1 15.0 16.1 15.0 16.1 15.0 16.1 16.1 16.1 16.1 16.1 17.1 16.1 18.1 16.1	1/3 1/4 5 5 5 5 5 5 5 5 5

SSR - Spiked Sample Result

SR - Sample Result

AND THE PROPERTY OF THE PROPER

DUPLICATE ANALYSIS

EPA METHOD 602 VOLATILE ORGANICS SAMPLE # ECCLOSI-CS UNITS	Sample:I	S: (-5	
COMPOUND	RUN#1	RUN#2	RPD
Benzene	CO	VD	٨(.
Toluene	i	ì	ı
Ethyl benzene			
1,4-Dichlorobenzene			
1,3-Dichlorobenzene			
1,2-Dichlorobenzene			
O-Xylene			
M-Xylene			
P-Xylene			
Chlorobenzene	1	Į.	· · ·

$$RPD = \frac{|R_1 - R_2|}{(R_1 + R_2)/2} \times 100$$

RPD= Relative Percent Difference

SEES TO SEE THE SEES OF THE SE

DUPLICATE ANALYSIS

							 	1	1
EPA Method 601				i				ļ	
Volatile Organics				İ				ļ	
	_						_		
COMPOUND	RUN#1		RU	N#2	R.	PD	RUN#1	RUN#2	RPD
Chloromethane	NI	2	1	D :	\ \	JČ			
Bromomethane						l			
Vinyl chloride									
Chloroethane									
Methylene chloride		_							
Trichlorofluoromethane									
1,1-Dichloroethene									
1,1-Dichloroethane		_				 			
trans-1,2-Dichloroethene				 					
Chloroform				··········					
1,2-Dichloroethane		_							
1,1,1-Trichloroethane									
Carbon Tetrachloride						·			
Bromodichloroemethane									
1,2-Dichloropropane			1						
Trichloroethene		-				<u>-</u>	 		
Dibromochloromethane				<u> </u>					
1,1,2-Trichloroethane									
cis-1,2-Dichloropropene		_			 				
2-Chloroethylvinyl ether		-							
Bromoform		-	·	\					
1,1,2,2-Tetrachloreothane		\neg		<u> </u>	 	 			
Tetrachlorethylene				1	 	 			
Chlorobenzene			·	1					
1,3-Dichlorobenzene				1					
1,2-Dichlorobenzene				1		 			
1,4-Dichlorobenzene	*	,		-		>			
					-	EEETET		-	

 $RPD = \frac{{{{1 \choose 1 - R_2}}^{\dagger}}}{{{{(R_1 + R_2)}/2}}} X100$

RPD= Relative Percent Difference

METALS: C-1, C-2, C-3, C-4, C-5, P-4, P-7m, P-7L CREE EPA 601: C-1, C-2, C-3, C-4, C-5, P-4, P-7m, P-7L, SEE EPA 602: C-1, C-2, C-3, C-4, C-5, P-4, P-7m, P-7L, SEE CHAIN OF CUSTODY RECORD

CREE SEE

		Field Sample No
Company Sampled / Address <u>GENE</u> Sample Point Description <u>Cristy</u>	RAL DYNAMICS - FORT WOODS	ORTH PLANT 4
Sample Point Description	to the fact was	
Stream Characteristics:		
Temperature		pH
Visual Observations/Comments		
Collector's Name NEIL ROBINSON	Date/Time Sample	ad 1-2.9-8/ 1-30-86
Amount of Sample Collected Nuclei	500 ml PLASTIC THIRTY	SIX 40 MI GZASS
Amount of Sample Collected Nine Sample Description Surface with	ATER GROUND WATER	278 +=
Store at: ☐ Ambient ☐ 5°C ☐ —	10°C XOther 4°C	
•		
Caution - No more sample available	☐ Return unused portion of sample	e 🛘 Discard unused portions
Other Instructions - Special Handling		
\mathcal{L}		
Hazardous sample (see below)	☐ Non-haza	rdous sample
D/Toxic	☐ Skin irritant	☐ Flammable (FP< 40°C)
☐ Pyrophoric	☐ Lachrymator	□ Shock sensitive
☐ Acidic	☐ Biological	Carcinogenic ⋅ suspect
☐ Caustic	☐ Peroxide	☐ Radioactive
□ Other		
Committee the continue to the		
Sample Allocation/Chain of Possession Organization Name RADIAN Co	in: o R P	
Received By NETT ROBIALSON	Date Received	1305 Time. 1806 Fr. 2
Transported By NEW ROBINSON		
Comments // Comments	Lab Sample No. 8	
	9-86 1-30-86	
Dag	, , , , , , ,	
Organization Name		1-31-86 Time 1000
Received By All Much	1	1-31-86 Time 1000 4601339 240
Transported By 712 9x	Lab Sample No.	7601331,340
Comments	J	
Inclusive Dates of Possession		
Organization Name		
Received By	Date Received	Time
Transported By	Lab Sample No	
Comments		
Inclusive Dates of Possession		

Form V

Q. C. Report No. 2

SPIKE SAMPLE RECOVERY

ATE	3-4-86		Lab Sar Units	nple No. 2	100124
		Matrix wat	<u>ec</u>		pre
Compound	Control Limit	Spiked Sample Result (SSR)			 %R!
letals:					Ī
. Aluminum	75-125			<u>.</u>	!
. Antimony				<u> </u>	!
. Arsenic	<u> </u>		1	<u></u>	<u>!</u>
. Barium		1.78	.059	2.00	186
Beryllium	-		<u> </u>	L	!
. Cadmium	<u>.</u>	.040	.003*	.050	174
7. Calcium	<u> </u>				<u>!</u>
Chromium	<u> </u>	.18	.019*	.20	181
. Cobalt			<u> </u>	<u></u>	<u> </u>
lO. Copper	<u> </u>		<u> </u>	<u></u>	<u> </u>
l. Iron	<u> </u>	<u> </u>	<u> </u>		<u>!</u>
l2. Lead	<u>"</u>	<u> </u>	<u> </u>		1
3. Magnesium	<u> </u>	<u> </u>	L	<u> </u>	!
4. Manganese		<u> </u>		<u> </u>	1
15. Mercury				1	1
l6. <u>Nickel</u>			1	Ĺ	1
17. Potassium			<u> </u>	<u> </u>	<u> </u>
18. Selenium			<u> </u>	<u></u>	1
l9. <u>Silver</u>		.21	.013	1.25	179
20. Sodium					1
21. Thallium	•		<u> </u>	1	1
22. Tin				1	
23. Vanadium				<u> </u>	1
24. Zinc			1	1	
Other:	1			1	
	ľ				ı
Cyanide			1		
	- SR) SA, x 100				
"R"= out of c					
		d to san	when he i	Luna	المراجعة

5x 11/

Form V

Q. C. Report No. 2

SPIKE SAMPLE RECOVERY

ATE	-4-86		Lab Sat	mple No. 86	0124
		Hatrix wat		/ / / /	
omboring.	Control Limit	Spiked Sample Result (SSR)	Sample Result (SR)	Spiked Added (SA)	 73.
ecals:					
. Aluminum	75-125			<u> </u>	<u> </u>
Antimony	•				
Arsenic	•				!
Barium	_	1,04	.059	1.00	198
Beryllium	•			1	1
Cadmium	1 .	0.98	0.003 *	1.00	1 98
Calcium	• <u> </u>			1	
Chromium	•	0.98	0.019*	1.00	1 96
Cobalt	•				
. Copper	•			<u> </u>	1
. Iron	•				<u>!</u>
. Lead	•		İ	1	1
. Magnesium	•			<u> </u>	!
. Manganese	•				!
. Mercury	•		1	1	<u> </u>
. Nickel	•				1
. Potassium	-				1
. Selenium	•				1
. Silver	-	1.00	0.013	1.00	199
. Sodium	•				
. Thallium	•		<u> </u>	1	1
l. Tia	•			<u> </u>	1
. Vanadium	•		<u> </u>		i
Ziac	•			!	1
her:		<u> </u>		•	
	1	1	1	1	
vanide			1	1	

Form III

Q. C. Report No. 3

BLANKS

2-10-86

LAB NAME	Radian			(CASE NO.	PLAN	T4
	-86	•		τ	NITS	ig/nl.	
		Mat	rix <u>w</u>	ater	-		
	Initial	Cont	inuing Ca	librati	on	11	
Preparation	Calibration		Blank V	7alue		Preparati	ion Blani
Compound	Blank Value	_1	2	3	4	1	2
Metals:							
1. Aluminum							
2. Antimony							
3. Arsenic							
4. Barium						1.001	
5. Beryllium					<u> </u>		
6. Cadmium						16.002	
7. Calcium							
8. Chromium						12.005	
9. Cobalt							
10. Copper							
11. Iron							
12. Lead							
13. Magnesium							
14. Manganese							
15. Mercury							
16. Nickel							
17. Potassium							
18. Selenium							
19. Silver					_	1 4.000	
20. Sodium					1	11	
21. Thallium					1		
22. Tin			1		1		
23. Vanadium					1		
24. Zine			†	1		- 4	
Other:		1	1				-
		i			<u> </u>		
Cyanide			_ .				

3 - 5 005

INSTALLATION RESTORATION PROGRAM PMASE 2
CONFIRMATION/QUANTIFICATION STAG (U) RADIAN CORP
AUSTIN TX DEC 87 F33615-83-D-4001 MD-R190 445 2/6 F/G 24/7 UNCLASSIFIED NL.

222 S2888 S38888

MITROCCEPY RESOLUTION TEST CHART

	BLANKS	SR.	500 > 001	(2005		14000° 071		19 bud 66 1900-	19 100 S		15 < 003	92 <,003		10 pro 01				24:
uglml	RECOVERY	SA &	07/ 10			71 0200.		 1 720	-		1024	9 420.		050 050				5x instrument
UNITS		SSR	024			.0028		6/0			8/0	022		1100				
-	SPIKE	SR	300,			, 2002		 200°			-003	< 003		K,000				less than
86-03-031	16-02-060		an sp 01 A			09 A		09 A			on sp 05 A	an st 05 1.10	Waznib	A 50		بة سيديس		5
	, 4	RPD	NC			NC		NC			Ne			NC				
roe w.o.	ANALYSIS	DUPL	5005			*000		 ×003			5.003			£0005				* Indicates
60	DUPLICATE A	SAMP	4,005			20003		 ×.003			< 003			<0000×				•
-10	 	SAMP,"	andup 01A			094 dup		 an dup			andup 05A			dig dig 03.4				1 spice
melly		% R	103	103	00/	801	100	 53	201		88	3.8		801	100			analytical
4		TRUE VALUE	040'	040	040	.0050	,0040	,045	.045		050	050'		0500'	,0040			o = ds wo
86-01-240	QC DATA	FOUND VALUE	140'	140'	,040	.0054	.0040	,043	970'		1044	770		. 0054	0700'			duplicate
PLANT 4 86-01-240	ANALYSIS DATE	<u> </u>	2/8/86	200'=1PI	1	2/3/86	A 000 = 1b1	9-11/86	100 - 1pi		2/9/86	, d/=,003		98/8/8	£000.=/pi			dup = analytical
	ELEMENT		18			На		90	5		39			Ha				00

BLANKS 4000° ca/6/ <.008 c.005 19 dad <.002 19 dad <.005 <.00a 10 120 19100 95 75 96 UNITS usplan 83 8 SPIKE RECOVERY ,024 420 0000 024 SA ,053 8100. ,023 SSR 021 £0002 033 1005 003 SR DA, 03 -METHES 036 936 de pip 026 Q8.40 SAMP# ds 10 9n. SP. 02 1 9.4 200 RPD DUPLICATE ANALYSIS 12 mples (01 -, 0.3, 03,06)-011 "Grease <.005 030 DUPL SAMP! SAMP 02 9 4.005 033 qub no 03 6 an dup l 105 001 98 007 66 98 % R 96 98 FOUND VALUE TRUE VALUE 040 .0040 0050 040 0400 245 245 040 040 200 040 QC DATA 040 4400 86-03-031 0043 980. 440 197 540 043 039 8400 040 ANALYSIS DATE 200 · = /PI 200' = 1pi d1=.0002 2-17-86 2-19-86 Al= , 103 PLANT 4 2-14-86 3-30-86

ELEMENT

AS

1d1 = instrument detection limit dig sp = gradigat or mathet apake on sp = prehyticel spike

andup = analyaced duplicate

401

415

430

A-26-86

HC

66

200

197

=/p.1

puo 1:0 Grease

0 50

Pb

5

811

345

208

1=1pi

+ Indicates value is detection limit

less than 5x instrument

NC = not calculable

PLANT 44 86-03-04/ 2004LU 01-06

70	- 018 11 86-	E 140-80-98	samples of	90-10	,	,					16/01	180	72	
ELEMENT	LYSIS DA	8			ana	DUPLICATE ANALYSIS	ANALYSI	S		SPI	SPIKE RECOVERY	OVERY		BLANKS
	·	FOUND VALUE	TRUE VALUE	%R	SAMP /	SAMP	DUPL	RPD	SAMP#	SR	SSR	SA	% R	
15	98-61-6	980.	040'	98	an dup 01 E	<000>	<.005	NC	910 01E	5005	.022	pzo.	62	500.>
	141= ,005	780,	oko.	93										cal 61 <.005
		580'	0 + 0'	88										
Ha	2-20-86	8 #00	0.500,	96	dup dup	<0003	*0000.	MC	019 SP	0000	. 0022	0200'	, 0//	60005 50002
,	\$000' = /p'	4400		0//									4	
]	0//										
														i
5	2-17-86	440	5#0.	98	on dup 01 E	< 002 < 000	5002	NC	en sp 01 E	£003	,021	420	88	1000 S
l	100 = 101	540,	540'	001					Cell Wille 01:1					
1		870	540'	107										
36	8-11-86	sho	040'	105	١				on sp 03 E	*600	120	420.	75	1000 ×
	600° =101	980'	040'	86										cal bl <.003
						·								
oil and erease	2-14-36	197	200	66										
	1=101	197	200	66										
HC - 101=1	a-14-86				030	1>	10	NC	* 100	ticate	* indicates value is less than 5x	15 16	s che	2 5 X

101 A-14-86 ON SP= arougued spike dg SP " duction spike or

andup= anolytical duplicati oug dup= asystion duplicati

idle instrument dot limit

instrument detection limit

NC= not calculable

***************************************	<u> </u>	W OCCOSON PROCESS TECCOSON PROCESSON FI	ecocc convers	
SKSK	4 TIMA14	86.03-040	20-10 NUM 01-05	UNITS -ug/all

	PLANT 4 80	090-80-08	O PROMOLO	1	25						ONITS	al fall	اعال	
ELEMENT	ATE	ن ا	DATA		ĺ	DUPLICATE ANALYSIS	ANALYSI	S		SPIKE		RECOVERY		BLANKS
		FOUND VALUE	TRUE VALUE	% R	SAMP ;	SAMP	DUPL	RPD	SAMP#	SR	SSR	SA	2 R	
As	3.15-86	980.	.027	101	dig dup 010	*800"	*E00'	40	03 C	400.	.023	.020	85	19 dad
	600 = 1bi	640,	040	501	an.dup 03 C	*900		67	on 59 05 A	<00°	.024	420	00/	2007
	ſ								1:10 9:11					
707	78-00-0	87/00	0500.	96	,				054	<0002	0020	0000	00/	4.000g
Sur Sur Sur Sur Sur Sur Sur Sur Sur Sur	20 20 20 20 20 20 20 20 20 20 20 20 20 2	2 = 7 7												
	1912 ,000%	2700	0400	702										
		1	,		dup bip	//60	100	0		2.7	20	3	 	19 day
Pb	3-17-86	540'	043	105	270	.034	.031	7.7	07.0	, ,	.27	020	700/	10/00
	id1 = , 003	640.	,043	חות							1			4.003
5_														
04	10 5	27.0	2/,6	34,	dup bip	* 000	*000	77	de sp	2002	500	97.5	5	19 day
2	90-11-8	614	010			Ŝ	2		an sp	7	4		 	19100
	E00: =/p1	040	040	00/					1.10 dillian	2002	:023	170:	4	1000
									וייני מיומעים					
Oil and Grease	98-71-6	197	200	99	l				١					
	1 = 1p'	661	300	66										
														i
0	sp = analyacul apube	apike	an	an dup	= oneth	onelytical duplic	duplicate	2	thin *	* Indicates	indicates value		135 th	15 1655 than
7.7		The state of the s	0/10	ממני	1000	38 28	とことな	•	7	1221	こりゅつ		1010	211011

dig sp = digistion or nature apple idl=instrument detection limit

dig dup = digistion duplicate

5x instrument detection limit

NC= not calculable

UNITS Malal

Topico de escribiro de escriba de escriba de escriba de escriba de escriba de escriba de escriba de escriba de

	H TUANY		190-80-98								21180	Relan	70	
ELEMENT	ANALYSIS DATE		QC DATA		ano	LICATE	DUPLICATE ANALYSIS	S		SP	SPIKE REC	RECOVERY		BLANKS
		FOUND VALUE	TRUE VALUE	%R	SAMP/	SAMP	DUPL	RPO	SAMP#	SR	SSR	SA	% R	
10	2-15-86	029	.027	107]				ansp 03E	2002	100	420.	88	600's
	1200			3					1:10dilution		-		•	19 100
	101 = .003	1042	040	105										₹00%
									ds bip	V				papal
Hq	2-34-86	. 00 48	,0050	96	1				046	2000.	.0020	.0020	100	<0000>
														to dad
	2.30-86	87.00	,0050	96										€000>
	6000' = 1P!	##00	0400'	0//		1								
				3										
		7400	10040	0//										
··														
		-	,	,	an dup	2	000	0	de no		720	1,00	0 /	19020
9/	2-17-86	,045	1043	102	046	.03/	0.20	4.7		070	500	777	62	1004
	600:101	640'	,043	1114										600's
5														
0					gub no	4	1		ds up	L.				10 dad
254	2-17-86	,043	040'	105	016	1000	.007	0	240	eoo;	.021	+20.	88	×.007
3	600. = /hi	070	040						1:10 dilution				_	19 100
Oil and Grease	2-14-86	197	200	66										
	1 = 1P.1	461	300	66										
	90 80	= now. Sind allke	ette		d.	2 446	of come	digistion du alle		indie	* indicates	value is less	100	3

id=instument detection limit

an sp = averytheed spire. dig sp = digition or metivit spike

aig = ayestem ourpurace on dup = anolytical auxucate

+ indicates value is thes than 5% instrument diaction finit NC= not calculable

78	-98 H INUT	660.80-	samples	2	7-10	40	25,06	25,06,07-046,HC	6,40		UNITS	14	119/10	
ELEMENT	DAT		ATA		and	DUPLICATE	ANALYSIS	2		SPI	SPIKE REC	RECOVERY		BLANKS
		FOUND VALUE	TRUE VALUE	%R	SAMP!"	SAMP	DUPL	RPD	SAMP#	SR	SSR	SA	% &	
45	18-10-6	ENO	070	201	90.00 01 A	110	010.	9.5	01.3P.	. 110.	880.	420.	//3	Koos >
	19/2/20	KHO.	040	501	dib pip	//0	110.	0	24 dup	.007	,026	020'	95	10000
		640'	040	105										<.003 <.002
14	3-20-86	8400	0500	96	dy dwp 01 A	50002	<.000	NC	44 5P 04A	5000	1800'	0200	501	4.0002
	2000,=161	6400	0400	501										
		4400	otroo'	110										
94	9-21-86	2770	\$#0	98	qup bip	870	C#0.	2.4	ds 610	E0003	600'	080	*	600.5
	- 1 - 1 pi	0.43	27.3	00/			_		95 40	2000>	,	420	3	10100
5 (0.01	2141							an sp	2000	027	024	/3	Ca/ 6/
44									l'iodilution					
3	2-31-86	140	070	102	dup bip	5003	<000>	7,0	4 80p	6003	E00 > E003	010	0	6003
	E00 = / F'	043	040	801		_			an sp	2003	910.	,024	69	10/12
									of A 1:10 5003	6002	420.	420.	00/	
									פוןמעי	u				
oil 4 Grease	3-14-86	/6/	200	96										
	1=1pi													
an dup	up = analytical duplicate	plicate dig	dup =	-0100	pre-digest duplicate	ļ	1 = instr	1111-111 d	idl= instrument detection limit	Simil in	NC:		NOT CALEULABLE	MBLE

dig sp = pre-digest spike an sp = analytical spike

* - value is less than 5 x id!

ELEMENT		00-00-00	han	200	27 03 (111/10/10)	Mese			1		330 37103	2000		37114
	ANALYSIS DATE	QC DATA	ATA		DUP	LICATE	DUPLICATE ANALYSIS	2		7	SPIKE KELUVEKT	UVERT		BLANKS
		FOUND VALUE	TRUE VALUE	3.R	SAMP!"	SAMP	DUPL	RPO	SAMP#	SR	SSR	SA	8.A	
45	2.24-86	980.	040	%	andup Qub A	038	,038	0	an sp 05A	cno;	,024	HZO.	001	200%
2	600,214,	0.310	040	90										(0) (D)
		1.037	040.	93)									2000
На	2-20-86	8 # 00'	0500'	96	١				dig 50	-000z	6100'	26 0200.	95	1000°
	F 000 = /F.	00H3	0700	201										
	1	++00.	0400'	0//										
70	20 : 1	6770	0.173	90	,				an sp	82	110	420.	1	19 day
-1	20-18-8	6/1	2/.2	2					an sp	2002	7750	1720	001	19/00 >
5_(000:=101	5641	7617											
045	10:10	1770	040.	102					0400	7,002	510	420.	63	1000 x
	2001=171	£ 40'	040	901					ous sp		.033	pro.	96	C0161
oil and brease	3-14-86	161	200	26										
	1=/pi													

For work 8601246 orders 8602031 8602041

8602060 8602067 8602079

860208

Form VII

Q.C. Report No. 2

INSTRUMENT DETECTION LIMITS AND LABORATORY CONTROL SAMPLE

LAB NAME Radian

CASE NO. PLANT 4

DATE 3-4-86

LCS UNITS ug/L mg/kg

PAPML (Circle One)

	Required Detection	Instrument	Detection	[
Compound	Limits (CRDL)-ug/l	Limits (I	DL)-ug/l	Lab Con	strol Sam	ole
		ICP/AA	Furnace*	True	Found	ZR
ietals:						
l. Aluminum	200	ļļ!		<u> </u>	<u> </u>	
2. Antimony	60			<u> </u>		
3. Arsenic	10			!	<u> </u>	
4. Barium	200	2.001		<u> </u>	<u> </u>	
5. Beryllium	5			<u> </u>	! !	
6. Cadmium	5	1.000		<u> </u>		
7. Calcium	5000			<u> </u>	1	
8. Chromium	10	1.005	`	<u> </u>	1	
9. Cobalt	50				<u> </u>	
10. Copper	25			<u> </u>	<u> </u>	
ll. <u>Iron</u>	100			<u> </u>	<u> </u>	
12. Lead	5					
13. Magnesium	5000					
14. Manganese	15	<u> </u>				<u>'</u>
15. Mercury	0.2			<u> </u>		
l6. Nickel	40			<u> </u>	<u> </u>	
17. Potassium	5000			1		
18. Selenium	5			<u> </u>		
19. Silver	10	1 < .002		<u> </u>		
20. Sodium	5000					
21. Thallium	10		<u> </u>		<u> </u>	
22. <u>Tin</u>	40			!		
23. Vanadium	50			1		
24. Zinc	20		i	į		
Other:						
					1]
Cyanije	10	11		1		

ICP galage DATA

For work 8602031 orders 8602041 8602060 8602067 8602079 8602087

Form II

Q. C. Report No. 3

INITIAL AND CONTINUING CALIBRATION VERIFICATION3

Lab	NAME	Radian			CASE	NO.	PLANT	T4		
		4 ./ 6.				10. <u> </u>				
DAT	E	3-4-86				ug/				
Com	bauad	Initia	al Calib	.1	Cont	inuing	Calibr	ation2		
Met	als [*] :	True Value	Found	ZR.	True Value	Found	<u>==</u>	Found	显	Method 4
1.	Aluminum								<u> </u>	
2.	Ancimony								1 1	
	Arsenic								1	
4.	Barium	100	1.01	101	1.00	1.01	101	1.01	1/0/1	<u> </u>
5.	Beryllium				1		1			<u> </u>
6.	Cadmium	1.00	1.04	1 104	1.00	1.05	1/05	1.04	1/04	}
7.	Calcium			_						1
8.	Chromium	1.00	1.01	101	1,00	1.02	1/02	1.02	1/021	1
	Cobalt									1
10.	Copper								Ī	1
11.	Iron									1
12.	Lead	1							Ī	1
13.	Magnesium								İ	1
14.	Manganese			}		`				
15.	Mercury									
16.	Nickel									
17.	Potassium			}						
18.	Selenium									1
19.	Silver	11.00	1,00	100	1.00	1.02	102	1.00	11001	i
20.	Sodium						1			i
21.	Thallium									
22.	Tia									ĺ
23.	Vanadium									
	Ziac									
	r:						1		1	ì
							Ì			
Cyan	ide			<u> </u>					1 1	
			'	<u></u>		<u> </u>		<u> </u>		

A STATE SECRETARION OF SECURITIES AND A SECURITIES OF SECU

Initial Calibration Source

² Continuing Calibration Source

³ Control Limits: Mercury and Tin. 80-120; All Other Compounds 90-110

⁴ Indicate Analytical Method Used: P - ICP/Flame AA; F - Furnace

Form II

Q. C. Report No. _ 3_

INITIAL AND CONTINUING CALIBRATION VERIFICATION³

LAB NAME	Radian		•		NO	PLANT4			
	ريد ار و			SOW N	10.				
DATE	3-4-86				s				
Compound	Initia			Cont	louing	Calibr	acion ²		
Metals:	True Value	Found I	r II	rue Value	Found	<u> </u>	Found	<u>==</u>	Method 4
1. Aluminu	128					1 1			1
2. Antimon	1 V					1		1 1	}
3. Arsenic	:							<u> 1 i</u>	
4. Barium				1.00	1.01	1011	1.01	1011	
5. Berylli	un]			
6. Cadmium	2		11	1.00	1.04	1/04	1.03	1/03	
7. Calcium	2								
8. Chromiu	100			1.00	1.00	1100	1.01	1/0/1	1
9. Cobalt			. []						1
U. Copper								l i	l
1. Iron			11					1	
2. Lead									1
J. Magnesi	ua								1
4. Mangane								1	i
5. Mercury	1		_ 11					1	1
6. Nickel								1 1	l
7. Potassi			_ []					1 1	
8. Selemiu	1	1							
9. Silver		1	11	1.00	1.01	101	1.02	1/001	İ
O. Sodium		<u> </u>	11						i
1. Thalliu	18							1	1
2. Tin			11				· · · · · · · · · · · · · · · · · · ·	$\overline{1}$	1
3. Vanadiu	1							 	
4. Zine			11			 		 	
ther:			1			 			<u>.</u> I.
						 		 	
yanide						+	•		
Aggrae	1 1		!_					1 1	1

¹ Initial Calibration Source 2 Continuing Calibration Source

³ Control Limits: Mercury and Tin. 80-120; All Other Compounds '90-110

⁴ Indicate Analytical Method Used: P - ICP/Flame AA; F - Furnace

FORM III
Q. C. Report No. 3
BLANKS

LAB NAME <u>Radian</u>	CASE NO. PLANT 4
DATE	UNITS uglal

Matrix water

Preparation	Cont	inuing Calibration Preparate				ation Blani		
Compound	Blank Value	1 1	2	3	4	1	1 2	
Metals:				1			İ	
I. Aluminum								
2. Antimony		11						
3. Arsenic		<u> </u>						
4. Barium	2.001	1.001	1.001	4.001	2.001			
5. Beryllium								
6. Cadmium	1.002	1.002	1.002	.002*	.002*			
7. Calcium								
8. Chromium	2.005	1.605	2.005	1.005	1.005			
9. Cobalt								
10. Copper						1		
II. Iron								
12. Lead)		
13. Magnesium								
14. Manganese								
15. Mercury								
16. Nickel								
17. Potassium			1					
18. Selenium								
19. Silver	.006+	11.018	.010	.0094	.014	ì		
20. Sodium								
21. Thallium		11						
22. Tin							1	
23. Vanadium		11	İ			Ī		
24. Zine		11	i		1	1		
Other:	·							
• =		11	,		1			
Cyanide	 	11	<u> </u>		1	i	}	

Form V1

Q. C. Report No. 2

			•	
•	DUP	LICA	TES	
			_	

DATE 3-4-86		DUFFICATES REDIGESTION VALICATE	CASE NO. PLAN. EPA Sample No. Lab Sample ID No. Units ug/m/		10 -01A 11.005+10
Compound Contr	ol Limit	× water. Sample(S)	Duplicate(D)	RPD-	digestio duf
Metals: 1. Aluminum			·		
2. Antimony					!
3. Arsenic		·]
4. Barium		.053	051	3.8	}
5. Bervllium			·		[
6. Cadmium)	2.002	,002*	NC]
7. Calcium !				 	!
8. Chromium		.0074	,007*	0	1
9. Cobalt.	<u>_</u>	 		! 	1
10. Copper	<u> </u>		<u> </u>]
ll. Iron					1
12. Lead					1
13. Magnesium		**************************************		<u> </u>	,
14. Manzanese			<u> </u>	<u> </u>	1
15. Mercury				<u> </u>	.)
16. Nickel				<u> </u>	.}
17. Potassium		 		<u> </u>	.1
18. Selenium	<u> </u>			<u> </u>	
19. Silver	<u> </u>	,011	.010*	1 9.5	
20. Sodium				<u> </u>	.!
21. Thallium				<u></u>	
22. <u>Tin</u>				<u> </u>	
23. Vanadium				<u> </u>	
24. Zinc				<u> </u>	
Otner:				<u></u>	
<u> </u>			1		

Cvanide

1

1

^{*} Our of Control

To be added at a later date.

 $^{^{2}}$ RPD = [(S - D')((S + D)(2)) x 100

^{1 -} Non calculable RPD due to value(s) less than CRDL

^{*} value is less than 5 x 1d1

Form VI

Q. C. Report No. 2

		ANALYTICAL				
LAB NAME Ray	dian	, , -	CASE NO. PLANT 4 EPA Sample No.			
DATE 3-4-86			Lab Sample ID to. 86C/240			
		ex water	Unics light		alyti	
Compound	Control Limit	Sample(S)	Duplicate(D)	RPD-	ary,	
					;	
Metals: 1. Aluminum			<u> </u>			
2. Antibony	 			<u> </u>	.!	
3. Arsenic		<u> </u>	<u> </u>		.	
4. Barium		1 .053	1 .053	1 C	.)	
5. Servilium				1	.1	
6. Cadmium		1 2.002	.003*	I NC		
7. Calcium				1	t t	
8. Chromium		1.007*	1 <.005	1 NC	.1	
9. Cotalt.	· 	<u>i</u>	<u> </u>	1	1	
10. Copper	 	<u> </u>	<u> </u>	<u> </u>	!	
11. Iron	<u> </u>	<u> </u>		1	1	
12. Lead				<u> </u>	1	
13. Magnesium		1		1	_	
14. Manzanese	.			<u> </u>	_	
15. Mercury				<u> </u>	_}	
16. Nickel				<u> </u>	.1	
17. Potassium		1		 	_!	
18. Selenium	<u> </u>	<u> </u>		<u> </u>	_	
19. Silver	 	1.011	1.012	18.7	_	
20. Sodium		!	<u> </u>	<u> </u>	_	
21. Thallium		<u> </u>		<u> </u>	-	
22. <u>Tin</u>					_	
23. Vanadium		<u> </u>		 	-	
24. Zinc		<u> </u>				
Other:				<u> </u>	_]	
		<u> </u>		<u> </u>	J	
_	(1	1			

SECRECASION SOCIALIST SECRETARIAS SOCIALISTS

[·] out of Control

To be added at a later date.

 $^{^{2}}$ RPD = [[S - D]/((S + D) 2)] x 100

^{1 -} Non calculable RPD due to value(s) less than CRDL

^{*} value is less than 5xid/

Est 625: 8-4; C-4; C-3; P711

CHAIN OF CUSTODY RECORD

		ld Sample No
Company Sampled/Address	face and ground un	xth Texas Plant4
Sample Point Description	face find ground was	A CONTRACTOR OF THE PARTY OF TH
Stream Characteristics:		
	Flow	pH
	OSCO Date/Time Sampled	
Amount of Sample Collected	Pace & Ground Water	
Sample Description	face of C-sound Make	
Store at: ☐ Ambient ☐ 5°C ☐ —	10°C Other 9°C	
S/Caution · No more sample available	☐ Return unused portion of sample ☐	Discard unused portions
Stret Instructions - Special Handling -	Hazards	
		· · · · · · · · · · · · · · · · · · ·
Hazardous sample (see below)	☐ Non-hazardou	s sample
, ▼ Toxic	☐ Skin irritant	☐ Flammable (FP< 40°C)
Pyrophoric	☐ Lachrymator	☐ Shock sensitive
□ Acidic	☐ Biological	Carcinogenic - suspect
□ Caustic	☐ Peroxide	☐ Radioactive
□ Other		
Sample Allocation/Chain of Possessio	n.	
Organization Name RADAN		
Received By	Date Received /-	30 86 Time
Transported By	Lab Sample No.	
Comments	•	
nclusive Dates of Possession	29-86 to 1-30-86	
	Analytical Services	
Received By (Rahm/W11	Date Received _/-	31-86 Time 9:45
ransported By Follows	Lab Sample No	11110
Organization Name		
	Date Received	Time
	Lab Sample No.	

EPA 6258 C-2 C-1; Creck Seep 17m CHAIN OF CUSTODY RECORD

		Field Sample No
Company Sampled Address (Ten	eral Dynamics - A	Ext Worth PLANT 4
Company Sampled / Address	face water ("c")a	nd Well Water (P-7m)
Stream Characteristics:	C	
Temperature	Flow	pH
Visual Observations/Comments	Flow_ 2) /000m/ Dk	6/uss Bottles (MR)
Collector's Name HELL ROBIN	Date/Time Sa	mpled 1-29-86; 1-30-86
	1,000ml Dx 6/4	
Sample Description		
Store at: □ Ambient □ 5°C □ -		
Caution - No more sample available	•	mple Discard unused portions
Other Instructions · Special Handling ·		
Other instructions - Special Handling -	mazaros	
V		
Hazardous sample (see below)	□ Non-h	nazardous sample
Toxic	☐ Skin irritant	☐ Flammable (FP< 40°C)
[/] □ Pyrophoric	☐ Lachrymator	☐ Shock sensitive
□ Acidic	☐ Biological	∠ Carcinogenic ⋅ suspect
□ Caustic	☐ Peroxide	[*] □ Radioactive
☐ Other		
Sample Allocation/Chain of Possession	n:	
Organization Name RADIAN	CORP	•
Received By	Date Recei	ived 1-30-86 Time 68M
Transported By NEIL POBIN	Lab Sample No	
Comments	•	
Inclusive Dates of Possession		
Organization Name Pulan	Analytical Seri	dices
		ived 1-31-86 Time 9:45
		11110
3		
Inclusive Dates of Possession		
Organization Name		
•		ved Time
•		
Comments	•	
Inclusive Dates of Possession		

RADIAN

EPA 625: P-7m ° C-5

CHAIN OF CUSTODY RECORD

_	_	Field Sample No
Company Sampled Address Sample Point Description	EACE GAD WELL	Worth Texas Plant 4
Stream Characteristics:	Flow	рН
Collector's Name WEL: ROYA	3/NSON Date/Time Sai 1,000 m. 1 Dix Glax e & Ground Water	mpled 1-29-86; 1-30-86 1 Bottles
Caution · No more sample available Other Instructions · Special Handling ·		
Hazardous sample (see below)	□ Non-h	nazardous sample
Toxic	☐ Skin irritant	☐ Flammable (FP< 40°C)
□ Pyrophoric	☐ Lachrymator	☐ Shock sensitive
□ Acidic	☐ Biological	Carcinogenic · suspect
☐ Caustic ☐ Other	□ Peroxide	Radioactive
Sample Allocation/Chain of Possession Organization Name 12/14 Received By 1/14 Transported By 1/14 Comments Inclusive Dates of Possession	What to Date Recei	6pm ived 1-30-86_ Time 58562
Organization Name Radian	Lab Sample No	ived <u>1-31-86</u> Time <u>09.45</u>
Inclusive Dates of Possession		
	Date Rece	

RADIAN AUSTIN	HYDRICARBINS - YEUI METALS - YEUI 3 YEUI TEXAS EPA 601 - SEUI 09, FEE EPA 601 - SEUI 09, FEE CHAIN OF CUSTODY RECORD CHROMIUM - SEOTH, YEO CHROMIUM - SEOTH, YEO	
	OIL & GZEASE -86011, SLOTIO FIE	Id Sample No.
Company Sampled Address Sample Point Description Sample Point Description	al Dinames-Fort Worth	Plant4
Stream Characteristics:	Flow	
Collector's Name	Date/Time Sampled 1 (MASON SPI MP Plastic FOUR Eller glass O°C (XOther 4°C.	-31-86 25) Wenty Four 40 mlgluss
Caution - No more sample available	☐ Return unused portion of sample ☐	Discard unused portions
Other Instructions - Special Handling - I	fazards	
Hazardous sample (see below)	☐ Non-hazardou	s sample
Hoxic	☐ Skin irritant	☐ Flammable (FP< 40°C)
☐ Pyrophoric	☐ Lachrymator	☐ Shock sensitive
☐ Acidic	☐ Biological	☑ Carcinogenic · suspect
☐ Caustic ☐ Other	□ Peroxide	☐ Radioactive
Sample Allocation/Chain of Possession Organization Name Color Co	Date Referred	Time
Inclusive Dates of Possession	31-86	
Organization Name		
Organization Name	Date Received	Time
Transported By		
Comments		
Inclusive Dates of Possession		
Organization Name		
Received By		
Transported By		
Comments		
Inclusive Dates of Possession		

DETECTION LIMITS

PA METHOD 601	week e	oknzk *· Èul	2 0 01	METHOD DETECTION LIMIT ug/L
COMPOUND FLACTIONS:	01206	02 63	e 5	<u> </u>
hloromethane	2.0	0 08	0.80	40
romomethane	29.	1.18	1.2	58
inyl Chloride	¥.5	0.18	1.8	9.0
hloroethane	13	0.52	5.2	26
lethylene Chloride	12.2	0.25	25	12.6
[richlorofluoromethane	2.5	0.10	10	50
,1-Dichloroethene	<i>3.3</i>	0.13	1.3	66
1,1-Dichloroethane	18	0.07	0.70	3.6
Frans-1,2-Dichloroetnene	2.5	0.10	1.0	5.0
Chloroform	13	0.05	0.50	2.6
,2-Dichloroethane	0.75	0.03	0.30	1.5
l,l,l-Trichloroethane	0.75	0.03	0,30	15
Carbon Tetrachloride	3.0	0.12	1.2	1.0
Bromodichloromethane	2.5	0.10	1.0	5.0
l,2-Dichloropropane	1.0	0.04	4.0	2.0
Trichloroethene	4.5	0.18	1.8	9.0
Dibromochloromethane	2.3	0.09	9.0	46
2-Chloroethylvinyl Ether	3.3	0.13	1.3	6 W
Bremoform	5.0	0.20	2.0	100
Tetrachloroethene	0.15	0.03	0.3.	1.5
Chlorobenzene	6.3	0.25	2.5	12.6
l,3-Dichlorobenzene	8.0	0.32	3.2	140
l,2-Dichlorobenzeue	3.4	0.13	1.5	68
1,4-Dichlorobenzene	6.0	0.24	2.4	12.0

EM method 602
Volatile Organics

LICAK OZDER # BLOWCO!

	FRACTIONS: OI	0.5 -OLD
2	Octection Limits	
Compound	Method Detec	Metrod Detection Limit 24/1
Renzene	6,2	07
Tolliene	6,2	0.7
Ethylhenzene	0.2	7.0
14- Dichlomhenzene	0,3	1.5
13- Dichlorobenzene	4.0	2.0
17-Dichloropenzene	7.0	10
Chlorobenzene	7.0	Ü.)

RADIAN

AND RODAR STUTIETE BERROOM STRIKKE FOUND BELLETER STRIKE S

DUPLICATE ANALYSIS

EPA Method 601	WORK	020ER - 80	00200j			
Volatile Organics	6.	order - 80 Raction -	ca A			
	, ,	THE I BE			<u> </u>	
COMPOUND	RUN#1	RUN#2	RPD	RUN#1	RUN#2	RPD
Chloromethane						
Bromomethane						
Vinyl chloride	1.58	1.46	79			
Chloroethane						
Methylene chloride						
Trichlorofluoromethane						
1,1-Dichloroethene						
l,l-Dichloroethane						
trans-1,2-Dichloroethene	10.9	10.4	2.8			
Chloroform	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	101_4	~.0			
1,2-Dichloroethane		· · · · · · · · · · · · · · · · · · ·				
1,1,1-Trichloroethane		-				
Carbon Tetrachloride						
Bromodichloroemethane						
1,2-Dichloropropane						
Trichloroethene p.O HOFIRM	0.24	0.14	40			
Dibromochloromethane			70			
1,1,2-Trichloroethane						
cis-1,2-Dichloropropene						
2-Chloroethylvinyl ether						
Bromoform						
1,1,2,2-Tetrachloreothane		· 				
Tetrachlorethylene						
Chlorobenzene		 				
1,3-Dichlorobenzene						
1,2-Dichlorobenzene						
1,4-Dichlorobenzene						

 $RPD = \frac{|R_1 - R_2|}{(R_1 + R_2)/2} \times 100$

RPD= Relative Percent Difference

DUPLICATE ANALYSIS

EPA METHOD 602			
VOLATILE ORGANICS			
sample # <u>8602001</u> -03 units <u>Mg/L</u>	3C		
COMPOUND	RUN#1	RUN#2	RPD
Benzene	NO	ND	
Toluene	ND	NO	
Ethyl benzene	ND	NO	
1,4-Dichlorobenzene	ND	ND	
1,3-Dichlorobenzene	ND	ND	
1,2-Dichlorobenzene	NO	ND	
0-Xylene			
M-Xylene			
P-Xylene			

$$RPD = \frac{|R_1 - R_2|}{(R_1 + R_2)/2} \times 100$$

Chlorobenzene

RPD= Relative Percent Difference

RADIAN

SPIKE RECOVERY

EPA Method 602 Volatile Organics	Ub STAST			
UNITS 8602001-04 C				
СОМРОИНД	SSR	SR	SA	ZR
Benzene	39.1	•	30.7	127
Toluene	7.5		4.1	185
Ethyl benzene	16.2		11.5	141
1,4-Dichlorobenzene			<u> </u>	
1,3-Dichlorobenzene				
1,2-Dichlorobenzene			ļ	_
O-Xylene	14.0		10.6	133
M-Xylene	60.3		43.6	INS
P-Xylene	28.7		1921	120
Chlorobenzene				

SSR = Spiked Sample Result

SR = Sample Result

SA = Spike Added

PRODUCE TO STORY OF THE STORY OF THE PRODUCE OF THE STORY

RADIAN

THE SECOND PROPERTY OF THE PRO

SPIKE RECOVERY

760200 PUN YU TAN	01-061 MTY 10114	r z	d Ab Apr				
SSR	SR	SA	ZR	SSR	SR	SA	ZR
			}		İ		
	8.57						
9.5		9.2	104				
8.9		10.0	81	7			
5,1	160	5.4	1050				
60.3	1	43.0					
24.4		1					
16.1							
22.4		20.0			Ì		
8.9		7.5					
8.3		8.5			1		
40.0	402	T I	180				
11.4		14.7					
					ĺ		
9.3	 	5.5	59				
					i		
6.0			161				
							
	9.5 8.9 5.1 60.3 24.4 16.1 22.4 8.9	\$.50 \$.50 \$.9 \$.160 60.3 24.4 16.1 22.4 \$.3 40.0 40.0 40.2 11.4	SSR SR SA 1.05 SSR SR SA	SSR SR SA ZR 9.5 9.2 104 10.0 81 5.1 160 5.4 105 60.3 43.0 140 27.4 27.6 89 16.1 14.3 13 22.4 20.0 12 3.3 8.5 103 40.0 402 20.2 130 11.4 14.7 68 9.3 9.5 99 10.6 10	SSR SR SA ZR SSR 8.57 9.5 4.2 104 8.9 6.0 65 60.3 43.0 40 21.0 89 16.1 14.3 13 22.4 20.0 12 3.9 7.9 7.9 13 40.0 402 20.2 13 40.0 402 20.2 13 14.7 68 10.6 69 10.6 60.2 69 10.6 60.2 69 10.6 60.2 69	SSR SR SA ZR SSR SR	SSR SR SA ZR SSR SR SA 8.57 9.5

1) AMER COUNT OF SPANUE MINERY SUSTANTED OUT.

SSR = Spiked Sample Result

SR = Sample Result

5 061

SA = Spike Added

DAILY QUALITY CANTAUL

EPA DC WP 483 cmc 2 + EPA DC WP 781 cmc }

9 /4/86		G	6
	CENTIFIED VALUE (MG/L)	ANALYZED WALUE	Bre
Chloromethane			
Bromomethane			
Vinvl_chloride		 	
Chloroethane			
Methylene chloride	9.2	9.7	165
Trichlorofluoromethane			
l,l-Dichloroethene	10.0	9.9	(00
l,l-Dichloroethane			
trans-1,2-Dichloroethene	5,4	· -	
Chloroform	43.0	65.7	153
1,2-Dichloroethane	27.6	26.0	94
l,l,l-Trichloroethane	14.3	17.3	192
Carbon tetrachloride	200	23.5	113
Bromodichloromethane	7.9	9.4	118
1,2-Dichloropropane	8.0	811	101
Trichloroethene	22.2	24.5	110
Dibromochloromethane -	16.7	15.7	94
1,1,2-Trichloroethane cis-1,3-Dichloropropene			
2-Chloroethylvinyl ether Bromoform	5.9	11.8	1119
1.1.2.2-Tetrachloroethane	10.0		
Tetrachloroethylene	6.2		
Chlorobenzene	8.7	9.5	116
1,3-Dichlorobenzene			
1,2-Dichlorobenzene			
l,4-Dichlorobenzene			

POCESTRUCTURES ACCOUNTS OF SECONDS OF SECONDS AND SECONDS OF SECONDS OF SECONDS OF SECONDS OF SECONDS OF SECONDS

DAILY QUALITY CONTAIL

EPA DE WP 483 cmc 2 + EPA DE WP 781 cm 7

2/3/36

3 3 9		G	ıG
	CENTIFIED VALUE (MJ/L)	Andiased Natur	8 rec
Chloromethane			
Bromomethane			
Vinvl chloride			
Chloroethane			
Methylene chloride	9.2	10.5	114
Trichlorofluoromethane			
1,1-Dichloroethene	10.0	3.0	20
l,l-Dichloroethane			
trans-1,2-Dichloroethene	5,4		
Chloroform	43.0	55.0	193
1,2-Dichloroethane	27.6	25.0	81
l, l, l-Trichloroethane	14.3	14.9	104
Carbon tetrachloride	200	17.2	96
Bromodichloromethane	7.9	9.7	193
1,2-Dichloropropane	8.0	9.4	117
Trichloroethene	22.2	24.9	1112
Dibromochloromethane -	16.7	16.2	97
1,1,2-Trichloroethane			
cis-1,3-Dichloropropene			
2-Chloroethvlvinvl ether Bromoform	5.9	9,2	93
1.1.2.2-Tetrachloroethane	10.0		
Tetrachloroethylene	6.7		
Chlorobenzene	8.2	8.9	109
1,3-Dichlorobenzene			
l,2-Dichlorobenzene		· · · · · · · · · · · · · · · · · · ·	
1,4-Dichlorobenzene			

DAILY QUALITY CONTROL RAS GC LAB

DATE:	2/3/20		SPIKED VALUE (ug/L)	ANAI	LYZED VA (ug/L)	LUE	F	% RECOVERY	,
		INSTRUMENT		O			D		
		ANALYST		Cl			4		
TEST METHOD	COMPOU	מא							
EPA 601	Chloromethane		16.2						
	Chloroethane	_	28.1			-			
	Methylene Chlori	de	26.3						
	1,1-Dichloroethy	lene	45.0						
	Trans-1,2-Dichlo	roethvlene	12.5						
	Carbon Tetrachlo	ride	60.0						
	Dichlorobromomet	hane	40.0						
	1,1,2-Trichloroe	thane	33.8						
EPA 602	Benzene		30.7	34. o			111		
	Toluene		4.1	4.6			113		
	Ethylbenzene		11.5	11.6			100		
	P-Xylene		19.1	21.2	ļ		111		
	M-Xylene		42.6	46.9			110		
	O-Xylene		10.6	10.4	ļ		100		
EPA 608			(ug/g)		(ug/g)				
	Aroclor 1242		58.7				ļ		
	Aroclor 1260		56.8	<u></u>					

LAB # SYSTO-	BLAME		
CLIENT NAME			
SAMPLE ID			
	============		
EPA METHOD	DATE:	EPA METHOD	DATE: 2/3/4
601	ANALYST:	602	ANALYST: JSL
	INSTRUMENT:		INSTRUMENT; O. O.
			
COMPOUND	CONCENTRATION	COMPOUND	CONCENTRATION
	(ug/L)		(ug/L)
Chloromethane		Benzene	NA
Bromomethane		Toluene	
Vinyl Chloride		Ethyl benzene	
Chloroethane		Chlorobenzene	
Methylene chloride		1,4-Dichlorobenzene	
Trichlorofluromethane		1.3-Dichlorobenzene	
1.1-Dichlorethene		1,2-Dichlorobenzene	
1.1-Dichlorethane		P-Xylene	
Trans-1.2-Dichloroethene		M-Xylene	
Chloroform -		0-Xylene	V
1.2-Dichlorethane			
1.1.1-Trichlorethane			
Carbon tetrachloride			
Bromodichlormethane			
1.2-Dichloropropane		SURROGATE RECOVERIE	ES:
Trans-1.3-Dichloropropen	ė	601	
Trichloroethene		Browochloromethane	
Dibromochloromethane		2-Brome-1-Chloropro	pane
1.1.2-Trichlorethane		1,4-Jichlorobutane	
cis-1.3-Dichloropropene		602	
2-Chloroethylvinyl ether		a,a,a,-Trifluorotol	uene
Bromoform		· -	1
1.1.2.2-Tetrachlorethane		<u> </u>	!
<u>Tetrachlorethylene</u>			
Chlorobenzene		4	
1.3-Dichlorobenzene		નું	
1.2-Dichlorobenzene		<u> </u>	
1.4-Dichlorobenzene		Ĺ	!
)
		l i	
		f.	
		T.	,

LAB #	ent Chark		
CLIENT NAME			
SAMPLE ID			

EPA METHOD 601	DATE: ANALYST: INSTRUMENT:	EPA METHOD 602	DATE: 2/5/C ANALYST: CO INSTRUMENT: QU
COMPOUND	CONCENTRATION (ug/L)	СОМРОИНД	CONCENTRATION (ug/L)
Chloromethane		Benzene	No
Bromomethane		Toluene	
Vinyl Chloride		Ethyl benzene	
Chloroethane	····	Chlorobenzene	
Methylene chloride	·	1.4-Dichlorobenzene	
Trichlorofluromethane		1.3-Dichlorobenzene	
1.1-Dichlorethene	· - · · · · · · · · · · · · · · · · · ·	1.2-Dichlorobenzene	
1.1-Dichlorethane		P-Xylene	
Trans-1.2-Dichloroethe	ne	M-Xylene	
Chloroform		0-Xylene	
1.2-Dichlorethane			
1.1.1-Trichlorethane			
Carbon tetrachloride			
Bromodichlormethane -			
1.2-Dichloropropane		SURROGATE RECOVERI	ES:
Trans-1.3-Dichloroprop	ene	601	
Trichloroethene		Bromochloromethane	·
Dibromochloromethane		2-Brome-1-Chloropr	opane
1.1.2-Trichlorethane		1,4-)ichlorobutane	·
cis-1.3-Dichloropropen	e	602	
2-Chloroethylvinyl eth	er	a,a,a,-Trifluoroto	luene
Bromoform			
1.1.2.2-Tetrachloretha	ne	1	
<u>Tetrachlorethylene</u>			
Chlorobenzene		1	
1.3-Dichlorobenzene			
1.2-Dichlorobenzene			
1.4-Dichlorobenzene		1	
		!	

LAB # Sys	BUPUL			
CLIENT NAME				
SAMPLE ID				
	•			
EPA METHOD	DATE: 7 (>	136	EPA METHOD	DATE:
601	ANALYST:	15C.	602	ANALYST:
	ANALYST:	IT: 1/4	lenia.	INSTRUMENT:
		- / 0-		
COMPOUND	CONCENTRA	TION	COMPOUND	CONCENTRATION
	(ug/L)	[(ug/L)
Chloromethane		50	Benzene	
Bromomethane		$\Box \bot$	Toluene	
Vinvl Chloride		\perp	Ethyl benzene	
Chloroethane			Chlorobenzene	
Methylene chloride			1,4-Dichlorobenzene	
Trichlorofluromethane			1.3-Dichlorobenzene	
1.1-Dichlorethene			1.2-Dichlorobenzene	
1.1-Dichlorethane			P-Xylene	
Trans-1.2-Dichloroethene			M-Xylene	
Chloroform			0-Xylene	
1.2-Dichlorethane				
1.1.1-Trichlorethane				
Carbon tetrachloride				
Bromodichlormethane			_	
1.2-Dichloropropane			SURROGATE RECOVERI	ES:
Trans-1.3-Dichloropropen	e		601	
Trichloroethene			Bromochloromethane	
Dibromochloromethane			2-Brome-1-Chloropr	
1.1.2-Trichlorethane			l,4-Dichlorobutane	
cis-1.3-Dichloropropene			602	
2-Chloroethylvinyl ether			a,a,a,-Trifluoroto	luene
Bromoform			1	
1.1.2.2-Tetrachlorethane			-	
<u>Tetrachlorethylene</u>			4	
Chlorobenzene			4	
1.3-Dichlorobenzene			4	
1.2-Dichlorobenzene	 		<u> </u>	
1.4-Dichlorobenzene			-	
			1	

LAB # ASAG	ENT CLINIL		·	
CLIENT NAME				
SAMPLE ID				
SAMPLE ID				=======================================
EPA METHOD	DATE: 2/3/		EPA METHOD	DATE:
601	ANALYST: A		602	ANALYST:
	INSTRUMENT			INSTRUMENT:
COMPOUND	CONCENTRAT	rion	COMPOUND	CONCENTRATION
	(ug/L)			(ug/L)
Chloromethane	<u> </u>	Ρ	Benzene	-
Bromomethane			Toluene	
Vinyl Chloride			Ethyl benzene	
Chloroethane		<u> </u>	Chlorobenzene	
Methylene chloride			1.4-Dichlorobenzene	
Trichlorofluromethane		<u> </u>	1,3-Dichlorobenzene	
1.1-Dichlorethene		ļ	1.2-Dichlorobenzene	
1.1-Dichlorethane		}	P-Xylene	
Trans-1.2-Dichloroethene	<u> </u>	 	M-Xylene	
Chloroform		 	0-Xylene	
1.2-Dichlorethane		ļ		
1.1.1-Trichlorethane		<u> </u>	4	
Carbon tetrachloride		<u> </u>		
Bromodichlormethane				
1.2-Dichloropropane			SURROGATE RECOVER	IES:
Trans-1.3-Dichloroproper	<u>le</u>		601	
Trichloroethene			Bromochloromethar	
Dibromochloromethane			2-Brome-1-Chlorop	
1.1.2-Trichlorethane			1,4-Dichlorobutar	ie
cis-1.3-Dichloropropene			602	
2-Chloroethylvinyl ether			a,a,a,-Trifluorot	oluene
Bromoform			4	
1.1.2.2-Tetrachlorethane				
Tetrachlorethylene			-	
Chlorobenzene				
1.3-Dichlorobenzene			1	
1.2-Dichlorobenzene			- -	
1.4-Dichlorobenzene	V_		-	
1			!	

LAB # SYSTON CLANK			
CLIENT NAME			
SAMPLE ID			
******			**********
EPA METHOD	DATE:	EPA METHOD	DATE: 4/3L
601	ANALYST:	602	ANALYST:
	INSTRUMENT:		INSTRUMENT: O.
COMPOUND	CONCENTRATION	COMPOUND	CONCENTRATION
	(ug/L)		(ug/L)
Chloromethane		Benzene	No
Bromomethane		Toluene	
Vinyl Chloride		Ethyl benzene	
Chloroethane		Chlorobenzene	
Methylene chloride		1.4-Dichlorobenzene	
Trichlorofluromethane		1.3-Dichlorobenzene	
1.1-Dichlorethene		1.2-Dichlorobenzene	
1.1-Dichlorethane		P-Xylene	
Trans-1.2-Dichloroethen	e	M-Xylene	
Chloroform		0-Xylene	
1.2-Dichlorethane			
1.1.1-Trichlorethane			
Carbon tetrachloride		į	
Bromodichlormethane			
1.2-Dichloropropane		SURROGATE RECOVERI	ES:
Trans-1.3-Dichloropropene		601	
Trichloroethene		Bromochloromethane	
Dibromochloromethane		2-Bromo-1-Chloropropane	
1.1.2-Trichlorethane		1,4-Dichlorobutane	
cis-1.3-Dichloropropene		602	
2-Chloroethylvinyl ethe	r	a,a,a,-Trifluoroto	luene
Bromoform		-	
1.1.2.2-Tetrachlorethan		-	i
<u>Tetrachlorethylene</u>		+	}
Chlorobenzene			•
1.3-Dichlorobenzene		-	1
1.2-Dichlorobenzene		-	
1.4-Dichlorobenzene		•	<u> </u>
			1
			!
1		[
İ]	

LAB # MENGENT BLANK			
CLIENT NAME			
SAMPLE ID			
******		医咖啡性胃管胃炎性胃炎性炎性	
EPA METHOD	DATE:	EPA METHOD	DATE: 2/486
601	ANALYST:	602	ANALYST:
	INSTRUMENT:		INSTRUMENT # Out
COMPOUND	CONCENTRATION	COMPOUND	CONCENTRATION
	(ug/L)		(ug/L)
Chloromethane	'	Benzene	- No
Bromomethane		Toluene	
Vinyl Chloride		Ethyl benzene	
Chloroethane		Chlorobenzene	
Methylene chloride		1,4-Dichlorobenzene	
		1.3-Dichlorobenzene	,
Trichlorofluromethane 1.1-Dichlorethene		1.2-Dichlorobenzen	
1.1-Dichlorethane		P-Xvlene	,
Trans-1.2-Dichloroeth		M-Xylene	
Chloroform	ene	0-Xylene	,
1.2-Dichlorethane		U-AYIERE	~
1.1.1-Trichlorethane		†	
Carbon tetrachloride			ĺ
Bromodichlormethane		1	
1.2-Dichloropropane		SURROGATE RECOVE	RIES:
Trans-1.3-Dichloropro		601	1
Trichloroethene		Browochloromethane	
Dibromochloromethane		2-Brome-1-Chloropropane	
1.1.2-Trichlorethane		1,4-Dichlorobutane	
cis-1.3-Dichloroprope		602	
2-Chloroethylvinyl ether		a,a,a,-Trifluoro	toluene
Bromoform			
1.1.2.2-Tetrachloreth	ane	2	+
Tetrachlorethylene			:
Chlorobenzene			·
1.3-Dichlorobenzene			i
1.2-Dichlorobenzena			
1.4-Dichlorobenzene		_i	1
			į.
			1

TO SEE SECRETARY OF THE SECRETARY SE

LAB # SYSTOM BLANK			
CLIENT NAME			
SAMPLE ID			
***********		*======================================	=======================================
EPA METHOD	DATE: 2/YBC	EPA METHOD	DATE:
601	ANALYST: JSC	602	ANALYST:
	INSTRUMENT:	vacin	INSTRUMENT:
COMPOUND	CONCENTRATION		CONCENTRATION
COMPOUND	(ug/L)		(ug/L)
	NO		
<u>Chloromethane</u>		Benzene	
Bromomethane		Toluene	
Vinyl Chloride		Ethyl benzene	
Chloroethane		Chlorobenzene	
Methylene chloride		1.4-Dichlorobenzene	
Trichlorofluromethane_		1.3-Dichlorobenzene	
1.1-Dichlorethene		1.2-Dichlorobenzene	
1.1-Dichlorethane		P-Xylene	
Trans-1.2-Dichloroethen	<u>e</u>	M-Xylene	
Chloroform		0-Xylene	
1.2-Dichlorethane		4	
1.1.1-Trichlorethane		4	
Carbon tetrachloride			
Bromodichlormethane			
1.2-Dichloropropane		SURROGATE RECOVERIES:	
Trans-1.3-Dichloropropene		601	
Trichloroethene		Bromochloromethane	
Dibromochloromethane		2-Brome-1-Chloropropane	
1.1.2-Trichlorethane		1,4-Dichlorobutane	
cis-1.3-Dichloropropene		602	
2-Chloroethylvinyl ether		a,a,-Trifluorot	oluene
Bromoform	·	≟	
1.1.2.2-Tetrachlorethan	<u>e</u>	i 	
<u>Tetrachlorethylene</u>		-	
Chlorobenzene		<u>-</u>	
1.3-Dichlorobenzene		-	
1.2-Dichlorobenzene			
1,4-Dichlorobenzene		- ,	
		:	

ACCCC II NOUDUDD - TOURSONDE - NAIMANNA - MARKARAM MONDONDON - MASSAGO - MARKARAM - MARK

LAB # CLIENT RUME CLIENT NAME SAMPLE ID EPA METHOD DATE: 2/4/2 601 ANALYST: 1 INSTRUMENT: Her		
EPA METHOD DATE: 2/4/2. 601 ANALYST: LO INSTRUMENT: Lo	EPA METHOD DATE: 602 ANALYST: INSTRUMENT: COMPOUND CONCENTRATION (ug/L) Benzene	
EPA METHOD DATE: 2/4/2. 601 ANALYST: Lo INSTRUMENT: Lo	EPA METHOD DATE: 602 ANALYST: INSTRUMENT: COMPOUND CONCENTRATION (ug/L) Benzene	
601 ANALYST:	602 ANALYST: INSTRUMENT: COMPOUND CONCENTRATION (ug/L) Benzene	
601 ANALYST:	602 ANALYST: INSTRUMENT: COMPOUND CONCENTRATION (ug/L) Benzene	
INSTRUMENT: Her	COMPOUND CONCENTRATION (ug/L) Benzene	
	COMPOUND CONCENTRATION (ug/L) Benzene	
	(ug/L) Benzene	
COMPOUND CONCENTRATION	(ug/L) Benzene	
(ug/L)	Benzene	
Chloromethane N?		
Bromomethane		
Vinyl Chloride	Ethyl benzene	
Chloroethane	Chlorobenzene	
Methylene chloride	1.4-Dichlorobenzene	
Trichlorofluromethane	1.3-Dichlorobenzene	
1.1-Dichlorethene	1.2-Dichlorobenzene	
1.1-Dichlorethane	P-Xvlene	
Trans-1.2-Dichloroethene	M-Xvlene	
Chloroform	0-Xvlene	
1.2-Dichlorethane	U-AYTERE	
1.1.1-Trichlorethane	1	
Carbon tetrachloride	1	
Bromodichlormethane	7	
1.2-Dichloropropane	SURROGATE RECOVERIES:	
Trans-1.3-Dichloropropene	601	
Trichloroethene	Bromochloromethane	
Dibromochloromethane	2-Brome-1-Chloropropane	
1.1.2-Trichlorethane	1,4-Dichlorobutane	
cis-1,3-Dichloropropene	602	
2-Chloroethylyinyl ether	a,a,a,-Trifluorotoluene	
Bromoform		
1.1.2.2-Tetrachlorethane	- -	
Tetrachlorethylene		
Chlorobenzene	-	
1.3-Dichlorobenzene	-	
1.2-Dichlorobenzene N/	-	
1.4-Dichlorobenzene	-	
	-	

Lab#! 8602001 -CIA

Sample ID: 860109

Date: 2/3/86

Instrument: G

601/8010
Bromochloromethane: 104%.
2-Bromo-1-Chloropropane: 112%

402/502 a,a,a-Trifluorotoluene:

Lab#! 8602001-02A Sample ID: 860110

Date: 2/3/86

Instrument: G

601/8010
Bromochloromethane: 101/97%
2-Bromo-1-Chloropropane: 100/94%

602/302 a,a,a-Trifluorotoluene:

Lab#! 8662001-03A Sample ID: 866111 Date: 2/3/86 Instrument: G

601/8010
Bromochloromethane: 108%
2-Bromo-1-Chloropropane: 98%

602/502 a,a,a-Trifluorotoluene:

Lab#! 86-02-001-04A Sample ID: 860112 Date: 2/4/86 Instrument: 4

601/8010
Bromochloromethane: 114%
2-Bromoc-1-Chloropropane: 157%

602/302 a,a,a-Trifluorotoluene:

Lab#: 8602001-C5A
Sample ID: 86013
Date: 2/4/86
Instrument: 9

601/8010
Bromochloromethane: 100%
2-Bromo-1-Chloropropane: 130%

602/502 a,a,a-Trifluorotoluene:

Lab#: 8602001-06A

Sample ID: 860114

Date: 2/4/86

Instrument: 9

601/8010
Bromochloromethane: 103%
2-Bromo-1-Chloropropane: 117%

602/302 a,a,a-Trifluorotoluene:

Lab#! 8602001 -010 Sample ID: 860109 Date: 2/3/86 Instrument: D

601/8010 Bromochloromethane: 2-Brcmc-1-Chloropropane:

602/302 a,a,a-Trifluorotoluene: 94%

Lab#: 8602001-02C Sample ID: 860110 Date: 2/3/86 Instrument: D

601/8010
Bromochloromethane:
2-Bromo-1-Chloropropane:

602/302 a,a,a-Trifluorotoluene: 122°2.

Surragate	Recoveries

Lab#! 8602001-036
Sample ID: 860111
Date: 2/4/86
Instrument: D

601/8010
Bromochloromethane:
2-Bromo-1-Chloropropane:

402/302 a,a,a-Trifluorotoluene: 101/962

Lab#! 8602001-040 Sample ID: 860112 Date: 2/4/6 Instrument: D

601/8010
Bromochloromethane:
2-Brcmc-1-Chloropropane: ==

602/502 a,a,a-Trifluorotoluene: EL?

Lab#: 8602001-050 Sample ID: 860113 Date: 2/4/86 Instrument: 0

601/8010
Bromochloromethane:
2-Bromo-1-Chloropropane:

Lab#: 8602-001-066
Sample ID: 860114
Date: 2/4/86
Instrument: D

601/8010
Bromochloromethane:
2-Brcmc-1-Chloropropane: ==

602/SC2 a,a,a-Trifluorotoluene: 85% Form VI

LAB NAME BASIANO DATE 2-27-80	C. C. Report No. 1 DUFLICATES Analytical Matrix H20	CASE NO. // EPA Sample No. Lab Sample ID : Unitsug/m	<u>ar +4</u> 6. 8602001-011
Compound (Contr	ol Limit' Sample(S)	Dublicate(D)	RPD-
Metals:			
2. Antimony			,
3. Arsenic			
4. Barius	0.10	0.18	9.5
5. Servilium	ļ)

0.003+ 1 4.002 NC 6. Cadmium 7. Calcium 1 8. Chromium 0.14 0.14 0 9. Cosait 10. Copper 11. Iron 12. Lead 13. Magnesium 14. Manzanese ! 15. Mercury 16. Nickel 17. Potassium | 18. Selenium 19. Silver 0.005 + 0.005 × nc 20. Sodium 21. Thallium 22. <u>Tin</u>

23. Vanadium

24. Zinc Other:

<u>Cyanide</u>

To be added at a later date.

^{*} Out of Control

 $^{^{2}}$ RPD = [\S - D]/((S + D) D)) x 100

^{1 -} Non calculable RPD due to value(s) less than CRDL

^{*} value (5x IDL

Form VI

Ç.	С.	Report	No.	1-
----	----	--------	-----	----

LAB NAME Ha	olian 27-86	Matrix	CASE NO. 120 EPA Sample No. Lab Sample ID No. Units 110 frac	- X002001 -
		H20	119 / 11	
Compound !	Control Limit'	Sample(S)	Dublicate D	RPD-
Metals: 1. Aluminum				ļ :
2. Antimony				:
3. Arsenic				1
4. Barium		0.12	0.12	10
5. Bervllium	- 	1		1
6. Cactium 1		0.003*	0.003+	0
7. Calcium /				}
8. Chromium	· ·	0.13	0.13	10
9. Cotalt.		<u> </u>		1
10. Copper		<u> </u>		: !
II. Iron		<u>i</u>		1
12. Lead				1
13. Magnesium				
14. Manzanese 1				1
15. Mercury				
16. Nickel				j
17. Potassium				
18. Selenium		1		1
19. Silver		0.02	0.02	0
20. Sodium				
21. Thallium				
22. Tin				
23. Vanadium				
24. Zinc				
Other:				1
				-
Cvanide		1	ı	

* Value <5 × IDL

Form V

Q	•	٠.	Kep	ort	NO.	·

	ρ .	SPIKE SAMPLE	RECOVERY	00	•
LAB NAME	adian	Matrix	CASE N	o. Plast	4
DATE	2-27-86		EPA Sa Lab Sa	mple No.	8/202001 0
			Unics	ug/nl	
	سيوريم وب موسودات	Hatrix <u>HaO</u>			
Compound	Control Limit	Spiked Sample Result (SSR)	Sample Result (SR)	Spiked (SA)	72.
Mecals:		1	1	1	
l. Aluminum	75-125			!	
2. Antimony	•		İ	1	 '
3. Arsenic	•			l	
4. Barium	•	1.73	0.05	2.00	84
5. Beryllium	•				
6. Cadmium	-	0.04	0.003 *	0.05	174
7. Calcium	•				
8. Chromium	•	0.18	0.02 *	0.20	1 80
9. Cobalt	•			1	
10. Copper	•			Į	
11. Iron	-			1	
12. Lead	•		į	1	
13. Magnesium	•				
14. Manganese	•				
15. Mercury	•			1	
l6. Nickel	•			1	1
17. Potassium	•			l	
18. Selenium	•				
19. Silver	•	0.21	0.02	0.25	16
20. Sodium	•			1	
21. Thallium	•			1	
22. <u>Tin</u>	•				
23. Vanadium	•				
24. Zine	•				
Other:				•	
	İ			1	1
Cyanide	-	<u> </u>	<u></u>	!	1
1 23 = [(SSR	- SR)/SA] x 100	-			

"R"- out of control

* value (5× IDL

To sample 86 02 001-010 -060

	BLANKS		(prep) (.005	5.005	1.005	(pup)	<. w2	<.00>	(prup)	ζω3	4.003	<,003	_	4.0002				q	p
		% R	801	85		 <u>7</u>	83	(6S	 (13 @)		18			911					reery
5	RECOVERY	SA	400,	020'		<i>heo'</i>	P60.	060,	7.69,	780°	.25			0200			_		d nes
	SPIKE RE(SSR	.020	110.		 610.	,020	5/0.	5/0.	oeq,	118,			,0022				!	ple (Crease mes.
	SPI	SR	<.005	5,005		(,002	200.7	4.00.>	۲,003	(. @3	010			7,000					san he m
		SAMP#	*a10-	700-		4 ×0-	1:10 -02D	** - 000	* 70-	010-	** -000-			010-			:		pause of low recovery, sample was deluted 1:10 and re-spiked. The Incrassed recovery inducates matrix interferences.
	S	RP0	NE	NC		K			ž					NC					100 h
	ANALYSIS	DUPL	⟨.005	1.005		1000		:	f.003					(2002					use of ducat
	DUPLICATE A	SAMP	<,005	(,005		600'			 ۲.003					(,0003					(A) Excuse of 1:10 and conditions
	DUP	SAMP;'	# 010-	** -050		4.*			** -050					-03D					2
		% R	103	103	001	93	101	001	88	88	22	88		201	95	90			ata
•	ATA	TRUE VALUE	0.040	0,040	0.040	0.040	0.045	0.045	0.044	050'9	050'0	0.50		0.00100	0,0040	0.0040			pite or du
	QC DATA	FOUND VALUE	0.041	0.0%	0.040	0.042	0,047	0.045	0.050	0.044	0,046	pho'0		D.0004	0.0038	0.0036			st-deporter) s
	ANALYSIS DATE													08.07.0					* Unalytical (or post-dayshor) spile or duplicate + Matrix (pre-dayshor) spile or duplicate
	ELEMENT		HS			Pb			5	80	8_			На	0				

BODION CALAUS	NTO GA LOCA JONNO	12
RADIAN SACAME		(1 received by colors) 2/9/8
	CHAIN OF CUSTODY RECORD	11 Char
		Field Sample No.
Company Sampled / Address	eal Dunamics-to. +	Worth Plant 4
Stream Characteristics:		
Temperature	Flow	рΗ
Visual Observations/Comments		-
Collector's Name KOBS Amount of Sample Collected Collected Sample Description Collected	Date/Time Sampler Solver Date/Time Sampler A O°C Other Date/Time Sampler A O°C Other	KOOSS BOKES
Caution - No more sample available	☐ Return unused portion of sample	☐ Discard unused portions
Other Instructions - Special Handling - H		
· · · · · · · · · · · · · · · · · · ·	1020100	
y 9601/2 received ort		
A Hazardous sample (see below)	□ Non-hazaro	lous sample
Toxic	☐ Skin irritant	☐ Flammable (FP< 40°C)
☑\Toxic □ Pyrophoric	□ Lachrymator	☐ Flammable (FP< 40°C) ☐ Shock sensitive
☑ Toxic □ Pyrophoric □ Acidic	☐ Lachrymator☐ Biological	☐ Flammable (FP< 40°C) ☐ Shock sensitive ☐ Carcinogenic - suspect
□ Toxic □ Pyrophoric □ Acidic □ Caustic	□ Lachrymator	☐ Flammable (FP< 40°C) ☐ Shock sensitive
☑ Toxic □ Pyrophoric □ Acidic	☐ Lachrymator☐ Biological	☐ Flammable (FP< 40°C) ☐ Shock sensitive ☐ Carcinogenic - suspect
✓ Toxic ☐ Pyrophoric ☐ Acidic ☐ Caustic ☐ Other Sample Allocation/Chain of Possession	☐ Lachrymator ☐ Biological ☐ Peroxide	☐ Flammable (FP< 40°C) ☐ Shock sensitive ☐ Carcinogenic - suspect
☐ Toxic ☐ Pyrophoric ☐ Acidic ☐ Caustic ☐ Other ☐ Other ☐ Organization Name	□ Lachrymator □ Biological □ Peroxide	☐ Flammable (FP< 40°C) ☐ Shock sensitive ☐ Carcinogenic - suspect ☐ Radioactive
☐ Toxic ☐ Pyrophoric ☐ Acidic ☐ Caustic ☐ Other ☐ Other ☐ Organization Name ☐ ☐ Organization Name ☐ ☐ Organization Name	□ Lachrymator □ Biological □ Peroxide	☐ Flammable (FP< 40°C) ☐ Shock sensitive ☐ Carcinogenic - suspect ☐ Radioactive
☐ Toxic ☐ Pyrophoric ☐ Acidic ☐ Caustic ☐ Other ☐ Other ☐ Organization Name ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐	□ Lachrymator □ Biological □ Peroxide	☐ Flammable (FP< 40°C) ☐ Shock sensitive ☐ Carcinogenic - suspect ☐ Radioactive
☐ Toxic ☐ Pyrophoric ☐ Acidic ☐ Caustic ☐ Other ☐ Sample Allocation/Chain of Possession Organization Name Received By Transported By Comments	□ Lachrymator □ Biological □ Peroxide □ Date Received □ Lab Sample No. 86	☐ Flammable (FP< 40°C) ☐ Shock sensitive ☐ Carcinogenic - suspect ☐ Radioactive Time
☐ Toxic ☐ Pyrophoric ☐ Acidic ☐ Caustic ☐ Other ☐ Other ☐ Organization Name ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐	Lachrymator Biological Peroxide Date Received Lab Sample No. 86	☐ Flammable (FP< 40°C) ☐ Shock sensitive ☐ Carcinogenic - suspect ☐ Radioactive Time
☐ Toxic ☐ Pyrophoric ☐ Acidic ☐ Caustic ☐ Other ☐ Other ☐ Sample Allocation/Chain of Possession Organization Name ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐	Lachrymator Biological Peroxide Date Received Lab Sample No. 86	☐ Flammable (FP< 40°C) ☐ Shock sensitive ☐ Carcinogenic - suspect ☐ Radioactive Time
□ Toxic □ Pyrophoric □ Acidic □ Caustic □ Other □ Sample Allocation / Chain of Possession Organization Name □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	Lachrymator Biological Peroxide Date Received Lab Sample No. 86	Flammable (FP< 40°C) Shock sensitive Carcinogenic - suspect Radioactive
□ Toxic □ Pyrophoric □ Acidic □ Caustic □ Other □ Sample Allocation/Chain of Possession Organization Name Received By Transported By □ Comments □ Inclusive Dates of Possession □ Organization Name Received By □ Comments □ Inclusive Dates of Possession □ Comments □ Inclusive Dates of Possession □ Comments □ Inclusive Dates of Possession □ Comments □ Inclusive Dates of Possession □ Comments □ Inclusive Dates of Possession □ Comments □ Inclusive Dates of Possession □ Comments □ Inclusive Dates of Possession □ Comments □ Inclusive Dates of Possession □ Comments □ Inclusive Dates of Possession □ Comments □ Inclusive Dates of Possession □ Comments □ Inclusive Dates of Possession □ Comments □ Inclusive Dates of Possession □ Comments □ Inclusive Dates of Possession □ Comments □ Inclusive Dates of Possession □ Comments □ Inclusive Dates of Possession □ Comments □ Inclusive Dates of Possession □ Inclusive Dates of Possession □ Inclusive Dates of Possession □ Inclusive Dates of Possession □ Inclusive Dates of Possession □ Inclusive Dates of Possession □ Inclusive Dates of Possession □ Inclusive Dates of Possession □ Inclusive Dates of Possession □ Inclusive Dates of Possession □ Inclusive Dates of Possession □ Inclusive Dates of Possession □ Inclusive Dates of Possession □ Inclusive Dates of Possession □ Inclusive Dates of Possession □ Inclusive Dates of Possession □ Inclusive Dates of Possession □ Inclusive Dates of Possession	Lachrymator Biological Peroxide Date Received Lab Sample No	☐ Flammable (FP< 40°C) ☐ Shock sensitive ☐ Carcinogenic - suspect ☐ Radioactive Time ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐
□ Toxic □ Pyrophoric □ Acidic □ Caustic □ Other □ Sample Allocation / Chain of Possession Organization Name Received By □ Transported By □ Comments □ Inclusive Dates of Possession Organization Name □ Acidic □ Other □ Other □ Organization Name □ Acidic □ Other □ Organization Name □ Acidic □ Other □ Organization Name □ Acidic □ Other □ Organization Name □ Acidic □ Other □ Organization Name □ Acidic □ Other □ Organization Name □ Acidic □ Other □ Other □ Organization Name □ Acidic □ Other □ Other □ Other □ Organization Name □ Acidic □ Other □ Othe	Lachrymator Biological Peroxide Date Received Lab Sample No. 86 Date Received Lab Sample No. Lab Sample N	Flammable (FP< 40°C) Shock sensitive Carcinogenic - suspect Radioactive Time
□ Pyrophoric □ Acidic □ Caustic □ Other □ Sample Allocation/Chain of Possession Organization Name Received By □ Transported By □ Comments □ Inclusive Dates of Possession Received By □ Transported By □ Transpor	Lachrymator Biological Peroxide Date Received Lab Sample No	Flammable (FP< 40°C) Shock sensitive Carcinogenic - suspect Radioactive Time
□ Pyrophoric □ Acidic □ Caustic □ Other Sample Allocation/Chain of Possession Organization Name Received By Transported By Comments Inclusive Dates of Possession Organization Name Received By Transported By Comments Inclusive Dates of Possession Organization Name Received By Comments Inclusive Dates of Possession Organization Name Organization Name	Lachrymator Biological Peroxide Date Received Lab Sample No. 86 Date Received Lab Sample No. L	Flammable (FP< 40°C) Shock sensitive Carcinogenic - suspect Radioactive Time
□ Pyrophoric □ Acidic □ Caustic □ Other □ Sample Allocation/Chain of Possession Organization Name Received By □ Transported By □ Comments □ Inclusive Dates of Possession □ Organization Name Received By □ Transported By □ Trans	Lachrymator Biological Peroxide Date Received Lab Sample No Date Received Lab Sample No Date Received Lab Sample No	☐ Flammable (FP< 40°C) ☐ Shock sensitive ☐ Carcinogenic - suspect ☐ Radioactive Time ☐ Time ☐ Time ☐ Time
□ Pyrophoric □ Acidic □ Caustic □ Other □ Sample Allocation / Chain of Possession Organization Name □ Received By □ Transported By □ Comments □ Inclusive Dates of Possession ○ Organization Name □ Received By □ Transported By □ Transported By □ Transported By □ Transported By □ Transported By □ Transported By □ Transported By □ Transported By □ Transported By □ Transported By □ Transported By □ Transported By □ Transported By □ Transported By □ Transported By □ Transported By	Lachrymator Biological Peroxide Date Received Lab Sample No. Date Received Lab Sample No. Date Received Lab Sample No. Lab Sample No.	Flammable (FP< 40°C) Shock sensitive Carcinogenic - suspect Radioactive Time
□ Pyrophoric □ Acidic □ Caustic □ Other □ Sample Allocation/Chain of Possession Organization Name Received By □ Transported By □ Comments □ Inclusive Dates of Possession □ Organization Name Received By □ Transported By □ Trans	Lachrymator Biological Peroxide Date Received Lab Sample No. Date Received Lab Sample No. Date Received Lab Sample No. Date Received Lab Sample No.	Flammable (FP< 40°C) Shock sensitive Carcinogenic - suspect Radioactive Time

OIL & GREASE: 360 116, 860117, \$60115 Hydrocarbons 860117, 860116, 860115 CHROMIUM: X60117 860116, 860115 EPAGDI: 860117 Field Sample No. Company Sampled / Address Sample Point Description _ () Nound Stream Characteristics: Temperature ____ Visual Observations/Comments Collector's Name Neil Robinson, Art Mignell Date Time Sampled Amount of Sample Collected Six Mason Jurs, Six 500 ml Pluste, Twelve 40 ml glass Sample Description _____ Store at: ☐ Ambient ☐ 5°C ☐ -10°C ☐ Other 4°C ☐ Caution - No more sample available ☐ Return unused portion of sample ☐ Discard unused portions Other Instructions · Special Handling · Hazards _______ 🛱 Hazardous sample (see below) □ Non-hazardous sample M Toxic ☐ Skin irritant ☐ Flammable (FP< 40°C) Dvrophoric ☐ Lachrymator ☐ Shock sensitive ☐ Acidic ▲ Carcinogenic - suspect ☐ Biological ☐ Peroxide ☐ Caustic ☐ Radioactive □ Other Sample Allocation/Chain of Possession: Organization Name Kacum Corp. _____ Date Received _____ Transported By Apt Movill Received By ____ _ Time _____ Lab Sample No. Sunday Comments ___ Inclusive Dates of Possession _____ 2-3-86

5 090

Received By ______ Date Received _____ Time _____
Transported By _____ Lab Sample No. _____

______ Date Received _

Transported By _____ Lab Sample No.

Organization Name ____ Received By _____//

Inclusive Dates of Possession _____

Inclusive Dates of Possession _____

Organization Name _____

Comments

Comments

DETECTION LIMITS

PA METHOD 601 Foe سنه	cer croer # 860201	ָּבֿ	METHOD DETECTION LIMIT ug/L
COMPOUND	FRACTION CI	c 2	3 ت
hloromethane	0.08	8.0	0,08
romomethane	1.18	118	118
Vinyl Chloride	0.18	18	0.16
Chloroethane	0.52	52	0.52
lethylene Chloride	0 25	25	0.25
Trichlorofluoromethane	0.10	10	0.10
,l-Dichloroethene	0.13	13	0.13
,1-Dichloroethane	0.07	70	<i>VC1</i>
Trans-1,2-Dichloroetnene	010	10	0.10
Chloroform	0.05	50	<i>U 05</i>
,2-Dichioroethane	0.03	3.0	0 03
,l,l-Trichloroetnane	0.03	3.0	<i>U</i> c 3
Carbon Tetrachloride	Ú:12	12	6.,2
Bromodichloromethane	0.10	10	010
1,2-Dichloropropane	0.04	4.0	0.04
Trichloroethene	0.12	12	6,2
Dibromochloromethane	0 09	9.0	0.09
2-Chloroethylvinyl Ether	0.13	13	0.13
Brcmoform	0.20	20	0,20
Tetrachloroethene	0 03	3.0	003
Chlorobenzene	0.25	25	0.25
1,3-Dichlorobe.zene	<i>i</i> 32	32	U 32
1,2-Dichlorobenzene	0.15	15	0.15
,4-Dichlorobenzene	U.24	24	0.24

EPA Method 602
Volatile Organics EPA method 602 Volatile Organics

FOR SAMPLES BLUZOIF.

	01,02,03
Octection Limits	Limits
Compound	Method Detection Limit 24/1
Benzene	0.2
Toluene	0.2
Ethylbenzene	0.2
1.4-Dichlorobenzene	0.3.
1.3- Dichlorobenzene	+0
1.2-Dichlorobenzene	0.4
Chlorobenzene	0.2

DAILY QUALITY CONTROL RAS GC LAB

DATE: 2	5/36		SPIKED VALUE (ug/L)	ANA	LYZED VA	ALUE	1	% RECOVER	Y.
]		INSTRUMENT		D			0		
		ANALYST		U			4		
TEST METHOD	сомрои	ND							
EPA 601	Chloromethane		16.2						
	Chloroethane	· · · · · · · · · · · · · · · · · · ·	28.1				 		
	Methylene Chlori	de	26.3						
	l,l-Dichloroethy		45.0						
	Trans-1,2-Dichlo	roethylene	12.5						
	Carbon Tetrachlo	ride	60.0						
	Dichlorobromomet	hane	40.0		<u> </u>				<u></u>
	1,1,2-Trichloroe	thane	33.8						
EPA 602	Benzene	···	30.7	31.2			102		
	Toluene		4.1	4.1			100		
	Ethvlbenzene		11.5	10.3			20		
	P-Xylene		19.1	19.2			101		
	M-Xylene		42.6	43.0			101		
	O-Xylene		10.6	9.6			91		
EPA 608			(ug/g)		(ug/g)				
	Aroclor 1242		58.7		ļ				
	Aroclor 1260		56.8						

DAILY QUALITY CONTAIL

EPA DC WP 483 cmc 2 + EPA DC WP 731 cmc ?

2/11/26		GB	G/B Bre
	CERTIFIED VALUE (MJ/L)	ANALYZED	2 nec
Chloromethane			
Bromomethane	·		
Vinvl chloride			
Chloroethane	<u> </u>		
Methylene chloride	9.2	10,2/9,6	112/105
Trichlorofluoromethane		<u> </u>	
l.l-Dichloroethene	10.0	10,9 17.9	109/79
1.1-Dichloroethane			·
trans-1,2-Dichloroethene	5.4	1.7	
Chloroform	43.0	47.1 45.8	110/107
1.2-Dichloroethane	27.6	42.9 /22.3	156/81
1,1,1-Trichloroethane	14.3	15.0 13.9	105/97
Carbon tetrachloride	200	21.2/17.1	106/85
Bromodichloromethane	7.9	9.2 17,9	116 100
1,2-Dichloropropane	8.0	9.8 18.6	153 108
Trichloroethene	22.2	26.7 20.7	120/94 -
Dibromochloromethane	16.7	18.7 116.4	112/98
1.1.2-Trichloroethane	 		
cis-1.3-Dichloropropene		 	
2-Chloroethylvinyl ether	9.9	10.8 8.9	109 90
Bromoform	10.0	Ι	
1.1.2.2-Tetrachloroethane Tetrachloroethylene	6.7		
Chlorobenzene	8.7	10.19.7	123/118
1,3-Dichlorobenzene	·		
1,2-Dichlorobenzene			. 144 AP C
1,4-Dichlorobenzene			

LAB # AFRZE	of BANK	<u></u>		
CLIENT NAME				
SAMPLE ID				
************	***********		ESEESSF	
EPA METHOD	DATE:	EPA METHOD	DATE: 3	21 60</td
601	ANALYST:	602	ANALYS	•
	INSTRUMENT:	}		MENT O
				Acto
COMPOUND	CONCENTRATION	COMPOUND	CONCEN	NTRATION
	(ug/L)	3333 334.2		ig/L)
		 		
Chloromethane		P	4	10
Bromomethane		Benzene Toluene		
Vinyl Chloride				
Chloroethane		Ethyl benzene		
Methylene chloride		Chlorobenzene		
,		1.4-Dichlorobenzene		
Trichlorofluromethane		1.3-Dichlorobenzene		
1.1-Dichlorethene		1.2-Dichlorobenzene		·
Trans-1.2-Dichloroethe		P-Xylene	+	
Chloroform		M-Xylene O-Xylene		
1.2-Dichlorethane		U-AVIERE		
1.1.1-Trichlorethane		1		
Carbon tetrachloride		1		
Bromodichlormethane		1		
1.2-Dichloropropage		SURROGATE RECOVERIE	.s:	
Trans-1.3-Dichloropror		601		
Trichloroethene		Bromachloropectane		• • •
Dibromochloromethane		2-Brome-1-Chleret	• •	
1.1.2-Trichlorethane		1.4-lichlereberre		
cis-1.3-Dichloroproper		602	. 	
2-Chloroethylvinyl eth		• . • .		
Bromoform		•		
1.1.2.2-Tetrachloretha	ne			
Tetrachlorethylene	THE RESERVE AND DESCRIPTION OF THE PERSON OF			
0.1				
le a nichlarobeniene				
1 1-nichiosops				
1.4-Dichlescheness	 :-			
}				

LAB # Sygran	BURNIL		
CLIENT NAME			
SAMPLE ID			
*************		********	
EPA METHOD	DATE:	EPA METHOD	
601	ANALYST:	602	analyst: JSC
	INSTRUMENT:		INSTRUMENT: Q
COMPOUND	CONCENTRATION (ug/L)	COMPOUND	CONCENTRATION (ug/L)
	6, -,		
Chloromethane		Benzene	$\sim \sim 10^{-2}$
Bromomethane		Toluene	·
Vinyl Chloride		Ethyl benzene	
Chloroethane		Chlorobenzene	
Methylene chloride		1.4-Dichlorobenzene	
Trichlorofluromethane		1.3-Dichlorobenzene	
1.1-Dichlorethene		1.2-Dichlorobenzene	
1.1-Dichlorethane		P-Xylene	
Trans-1.2-Dichloroethen	e	M-Xylene	-
Chloroform		0-Xylene	
1.2-Dichlorethane			
1.1.1-Trichlorethane		1	
Carbon tetrachloride		1	
Bromodichlormethane		4	
1.2-Dichloropropane		SURROGATE RECOVER	IES:
Trans-1.3-Dichloroprope	ne	601	
Trichloroethene		Browochloromethan	
Dibromochloromethane		2-Bromo-1-Chlorop	-
1.1.2-Trichlorethane		1,4-Dichlorobutan	e
cis-1.3-Dichloropropene		602	
2-Chloroethylvinyl ethe	r	a,a,a,-Trifluorot	oluene
Bromoform		4	
1.1.2.2-Tetrachlorethan	<u>e</u>	- - 	
<u>Tetrachlorethylene</u>			
Chlorobenzene		4	
1.3-Dichlorobenzene		4	
1.2-Dichlorobenzene		<u>-</u> ;	
1.4-Dichlorobenzene		-	
1			

LAB # // Gre	SEM BLANK		
CLIENT NAME			
SAMPLE ID			

EPA METHOD 601	DATE: 2/11/2. ANALYST: CO INSTRUMENT: A	EPA METHOD	DATE: ANALYST: INSTRUMENT:
COMPOUND	CONCENTRATION (ug/L)	COMPOUND	CONCENTRATION (ug/L)
Chloromethane	$N_{\mathcal{O}}$	Benzene	
Bromomethane		Toluene	
Vinyl Chloride		Ethyl benzene	
Chloroethane		Chlorobenzene	
Methylene chloride		1.4-Dichlorobenzene	
Trichlorofluromethane		1.3-Dichlorobenzene	
1.1-Dichlorethene		1.2-Dichlorobenzene	
1.1-Dichlorethane	}	P-Xylene	
Trans-1.2-Dichloroethene		M-Xylene	
Chloroform		O-Xylene	
1.1.1-Trichlorethane Carbon tetrachloride			
Bromodichlormethane		į	
1.2-Dichloropropane	<u></u>	SURROGATE RECOVER	IES:
Trans-1.3-Dichloroproper	1e	601	
Trichloroethene	<u> </u>	Bromochloromethan	
Dibromochloromethane		2-Bromo-1-Chlorop	
1.1.2-Trichlorethane		l,4-Dichlorobutan	e
cis-1.3-Dichloropropene		602	
2-Chloroethylvinyl ether	<u> </u>	a,a,a,-Trifluorot	oluene
Bromoform		1	
1.1,2.2-Tetrachlorethane	·		
<u>Tetrachlorethylene</u>		1	
Chlorobenzene			
1.3-Dichlorobenzene		1	
1.2-Dichlorobenzene		<u> </u>	
1.4-Dichlorobenzene	<u> </u>	.i	

LAB #	System BUNK		
CLIENT NAME			
SAMPLE ID			
******		****	**********
EPA METHOD	DATE: ZILISL	EPA METHOD	DATE:
601	ANALYST: 734	602	ANALYST:
	INSTRUMENT:	مستوا	INSTRUMENT:
			
COMPOUND	CONCENTRATION	COMPOUND	CONCENTRATION
	(ug/L)		(ug/L)
			
Chloromethane	NP	Benzene	· -
Bromomethane		Toluene	
Vinyl Chloride		Ethyl benzene	
Chloroethane		Chlorobenzene	
Methylene chloride		1.4-Dichlorobenzene	
Trichlorofluromethane		1.3-Dichlorobenzene	-
1.1-Dichlorethene		1.2-Dichlorchenzene	
1.1-Dichlorethane	1	P-Xylene	
Trans-1.2-Dichloroethene	1	M-Xylene	
Chloroform		0-Xylene	
1.2-Dichlorethane	1		
1.1.1-Trichlorethane	i	1	
Carbon tetrachloride			
Bromodichlormethane		-	
1.2-Dichloropropane		SURROGATE RECOVER	IES:
Trans-1.3-Dichloropropens	<u>e</u>	601	
Trichloroethene		Bromochloromethan	
Dibromochloromethane		2-Brome-1-Chlorop	•
1.1.2-Trichlorethane		1,4-Dichlorobutan	e
cis-1.3-Dichloropropene		602	
2-Chloroethylvinyl ether		a,a,a,-Trifluorot	oluene
Bromoform			
1.1.2.2-Tetrachlorethane		i	
Tetrachlorethylene		4	
Chlorobenzene		-	
1.3-Dichlorobenzene		-	
1.2-Dickiorobenzene	\	: 	
1.4-Dichlorobenzene		-	
1		:	
•		1	

SPIKE RECOVERY

EPA Method 602	2/5/24			
Volatile Organics	8			
SAMPLE # 8603015-036				
UNITS PARY 8634	ו			
5~~				
COMPOUND	SSR	SR	SA	ZR
Benzene	33,0		33.7	107
Toluene	5.81	1.44	4.1	107
Ethyl benzene	11.5		11.5	100
1,4-Dichlorobenzene				
1,3-Dichlorobenzene				
1,2-Dichlorobenzene		·		<u> </u>
O-Xylene	10.5		10.6	99
M-Xylene	45.7		43.6	107
P-Xylene	20.9		19.1	109
Chlorobenzene				

SSR = Spiked Sample Result

SR = Sample Result

SA = Spike Added

Lab#! 8602015-01A Sample ID: 840115 Date: 2/11/86 Instrument: G

601/8010
Bromochloromethane: 96%
2-Bromochloromethane: 117%

Lab#! 8602015-62A
Sample ID: 860116
Date: 2/11/86
Instrument: 6

601/8010
Bromochloromethane: 88%
2-Brcmc-1-Chloropropane: 718%

Lab#! 8602015-03A

Sample ID: 860117

Date: 2/11/86

Instrument: G

601/8010
Bromochloromethane: 100%
2-Bromo-1-Chloropropane: = 128%

Lab#! 8602015-016
Sample ID: 860115
Date: 2/5/86
Instrument: D

601/8010 Bromochloromethane: 2-Brcmc-1-Chloropropane:

602/502 a,a,a-Trifluorotoluene: 98%

Lab#: 8602015-020 Sample ID: 860116 Date: 215186 Instrument: D

601/8010 Bromochloromethane: 2-Brcmc-1-Chloropropane:

402/502 a,a,a-Trifluorotoluene: 85%

Lab#: 8602015-03c
Sample ID: 860117
Date: 215/86
Instrument: D

601/8010 Bromochloromethane: 2-Bromo-1-Chloropropane:

602/SC2 a,a,a-Trifluorotoivene: 95% SOSSI-UNUNUN DOLUNG BULLUNG KSSOSSSI KOLLUNG BOSSZEGO KOLLUNG STOLEN BOSSZEGO BOSSZEGO BOSSZEGO BOSSZEGO BOSSZ

analyzed with samples

8601305-14,15 8602001-04,686 8602015-016-039 8602019-016-1089

UNITS UR

-					 	$\overline{}$	$\overline{}$						 	$\overline{}$	$\overline{}$	 	
	BLANKS																
	Ì	%R															
	OVERY	SA												ļ			
	SPIKE RECOVERY	SSR															
	SPIK	SR															
		SAMP#															
	S	RPD															
	NALYSI	DUPL															
	DUPLICATE ANALYSIS	SAMP				_											
	DUP	SAMP/		:													
		%R	98.5	38.5				ļ —	<u> </u>	ļ							
	ATA	TRUE VALUE	300														
80 00	QC DATA	FOUND VALUE	191	197													
	ANALYSIS DATE		08-11-8														
	ELEMENT		0+0				C. C. C			5	10	6					222

Form VI Q. C. Report No.

		•	•	DUPLICATES
AB NAME	Hadia	n_		analytic

2-27-86

CASE NO. Mant 4

EPA Sample No. —

Lab Sample ID No. 8603015-01E

Units ug/nl

	Matri	x H20	<u> </u>	
0200000	Control Limit	Sample(S)	Dublicate(D)	N. 2.2-
etals:				
. Antimony				<u> </u>
. Arsenic				
. Barium		0.098	0.097	0.5
. Servilium			<u> </u>	
. Cadmium		<.002	1.002	NC
. Calcium !	<u> </u>		<u> </u>	l
. Chromium		0.028	0.030	1 9.8
. Cobalt	<u> </u>			<u></u>
U. Copper				<u>i </u>
1. <u>Iron</u>				<u></u>
2. Lead				<u> </u>
13. Maznesium	<u></u>			
4. Manzanese				<u> </u>
S. Mercury	<u> </u>			<u> </u>
l6. Nickel			<u> </u>	<u> </u>
17. Polassium				<u> </u>
18. Selenium		i		
19. <u>Silver</u>		0.011	0.012	6.3
20. Sodium	<u> </u>			
21. Thallium				
22. <u>Tin</u>			<u> </u>	
23. Vanadium				
24. Zinc				<u> </u>
Otner:				
		<u> </u>	<u> </u>	<u>,</u>
Cvamide			1	1

^{*} Out of Control

To be added at a later date.

 $^{^{2}}$ RPD = {(S - D), ((S + D) 2.) x 100

^{1 -} Non calculable RPD due to value(s) less than CRDL

Form V

ATE	1121UX 1-27-86	_ Analytic _	EPA San Lab San	aple No up ID No					
Control Limit Spiked Sample Sample Spiked									
mepound	ZR	Result (SSR)	Result (SR)	Added (SA)					
Aluminum_	75-125			!	i 1				
Ancimony	, , , , , , ,			<u>'</u>					
Arsenic	l •		 	<u>'</u>	<u> </u>				
Barium	•	1.04	0.08	1.00	1 96				
Beryllium	-			 					
Cadmium		0.90	<.002	1.00	190				
Calcium	•				1				
Chromium	•	0.95	0.0.*	1.00	93				
Cobalt	•								
. Copper	•				1				
. Iron.	<u>.</u>			<u> </u>	1				
. Lead	•		<u> </u>	<u> </u>	1				
. Magnesium	<u> </u>	<u></u>		1	1				
. Manganese	•			<u> </u>	1				
. Mercury	•			<u> </u>]				
. Mickel	-			<u> </u>	1				
. Potassium	-	<u> </u>		<u> </u>	1				
3. <u>Selenium</u>	•		<u> </u>	<u> </u>	1				
. Silver	<u> </u>	0.96	.008 *	1.00	195				
. Sodium	1)	<u></u>	1				
. Thallium	•		1		1				
. Tia	-		<u> </u>	<u> </u>	 				
Vanadium	1		<u></u>	<u> </u>	 				
. Zinc	-	<u> </u>	<u> </u>		<u> </u>				
ther:	1	<u> </u>	1	<u> </u>	!				
	!	<u> </u>	<u> </u>		1				
yanide	- SR)/SA] x 100	<u> </u>		1					

8 02 015.01E-03E For samples:

(.0002 BLANKS < 02 > 1.005 (prep) 8 8. 4.80 × c.003 (Ind) ~ 000 × ς 6,03 6.003 **@** 801 96 24 108 88 75 **₩** SPIKE RECOVERY 400. 0500' 750 heo' 400 seo. *₹*8. SA 0360, 5100' 0360. .013 .023 160. SSR 8107 <.005 C.002 <.003 (000) 1.005 4.0002 6.003 -03E * -01E* 9:10 -03E -03 E -036 -03E -03E SAMP# Ŋ RPD ş DUPLICATE ANALYSIS 5.0002 5.0002 <.005 DUPL 1 SAMP 1.005 1 -03E * -01E SAMP?" 03 100 B 707 00/ \$ 92 45 63 9 80 8 % **R** 8 TRUE VALUE 0.045 0.045 0.0000 0.045 0.0040 0.0040 0.040 0.040 0.050 0:050 0.044 0.050 0,040 QC DATA FOUND VALUE 0.042 1.0004 5,000 0.050 0.0038 040'0 0.044 0.046 0.044 0.0036 0.047 0,040 0.041 ANALYSIS DATE 03.6.86 ELEMENT 2/4 5 Ph 49 As 09

duplicate a spile pre-digestion) displicate a spile Represents analytical (post-digestion) Represents matrix (pre-digestion) due

(A) Because of low recovery, sample was diluted 1:00 and Perspited Infrasca recovery indicated sample mathix introllerence.

(B) See rerun on 2-12.86

	Sandan A	-	C-18-5-	94646	-	-	 		****	A BAN	, Land	ر د سروب ساک	4 27 4 3	4340	
BLANKS		< 0002													
	&R	100													
LIGINAL SOVERY	SA	02.00.					 								
TS RE(SSR	.0020													
UNI	SR	1.0002												_	
	SAMP#	210													
S	RPD														
OUC ANALYSI	DUPL			-						* =					
8602015 OIE - DUPLICATE ANALYSIS	SAMP														
for samples: 8602015 OIE - USE DUPLICATE ANALYSIS	SAMP."														
aga -	%R	00/	WS.	08/											
for San	TRUE VALUE	0.050	0.0000	0.0000											-
0 D	FOUND VALUE	0.60	o.outa	0.0040											
ANALYSIS DATE		08-12-86													
ELEMENT	_	149	P					5	11						

RADIAN

ASSAM TO SESSON TO SOURCE TO SOURCE TO SOURCE TO SESSON TO SOURCE TO SOURCE TO SOURCE TO SOURCE TO SOURCE TO S

EPACES: 860112, 860113, 86075, 860116, 860117

CHAIN OF CUSTODY RECORD

		ld Sample No		
Company Sampled/Address <u>Genu</u> Sample Point Description	eal Dynamies, Fort Wort	h, Plant 4		
	Flow			
Amount of Sample Collected SIX	10°C XOther 4°C			
Caution - No more sample available	\square Return unused portion of sample \square	Discard unused portions		
	Hazards			
Hazardous sample (see below)	☐ Non-hazardou	s sample		
X Toxic	☐ Skin irritant	☐ Flammable (FP< 40°C)		
☐ Pyrophoric	☐ Lachrymator	☐ Shock sensitive		
□ Acidic	☐ Biological	Carcinogenic · suspect		
☐ Caustic ☐ Other	☐ Peroxide	☐ Radioactive		
Sample Allocation/Chain of Possessic Organization Name RADIAN CO	orp.	. Time		
Received By	Date Received Lab Sample No	IIme		
	Lab Sample No.			
Comments	30-86, 2-3-86			
•	•			
Organization Name PAS - Sac		Jules = GIN		
Received By Could Family	Date Received _ S 15260 Lab Sample No	14 56 Time 7.13		
Comments				
Inclusive Dates of Possession				
Organization Name				
	Date Received			
	Lab Sample No			
Inclusive Dates of Possession				

CHAIN OF CUSTODY RECORD

CHROMIUM - 860120,

	, 00c/ac,	ield Sample No
Men	and Danier - Forthon	the Plant 4
Company Sampled/Address Sample Point Description Grown	el Water	7 7 7 7 7 7
Stream Characteristics:		
Temperature	Flow	pH
Visual Observations/Comments		
Collector's Name <u>New Pokinson</u> Amount of Sample Collected <u>EIGH</u>	Arct Morrill Date/Time Sampled	2-4-86
Amount of Sample Collected EIGH	T MASON JARS THREE S	500 Ml Plastic
Sample Description		
Store at: Ambient 5°C -	10°C Other 4°C	
Caution - No more sample available	☐ Return unused portion of sample ☐	☐ Discard unused portions
Hazardous sample (see below)	□ Non-hazardo	us sample
Z Toxic	☐ Skin irritant	☐ Flammable (FP< 40°C)
□`Pyrophoric	☐ Lachrymator	☐ Shock sensitive
□ Acidic	☐ Biological	Z Carcinogenic ⋅ suspect
□ Caustic	☐ Peroxide	☐ Radioactive
□ Other		
Sample Allocation/Chain of Rossessio	n:	
Organization Name Kadlan	· Corp.	
Received By Arkhun Morr	Date Received	Time
Transported By Alexandrian	Lab Sample No \$ 6	610 -60.
Comments	01-	
Inclusive Dates of Possession $2-4$	-84	
Organization Name		
Received By	Date Received	Time
Transported By	Lab Sample No.	•
Comments		
Inclusive Dates of Possession		
Organization Name		
Received By	Date Received	Time
Transported By	Lab Sample No	
Comments		
Inclusive Dates of Possession		

restant accorder propropor reservice

DETECTION LIMITS

EPA METHOD 601	For worn or	iner 86.02	0-019	METHOD DETECTION LIMIT ug/L
COMBONID	FRACTIONS:	03	04	05
Chloromethane		0 08	80	<u>υ ύξ</u>
Bromomethane		1.18	1180	, , , <u>c</u> .
Vinyl Chloride		0.18	180	0.18
Chloroethane		0.52	720	<i>i</i> 52
Methylene Chloride		0.25	250	0.25
Trichlorofluoromethane		0.10	100	0,0
1,1-Dichloroethene		0.13	130	0.13
l,l-Dichloroetname		0.01	70	0.07
Trans-1,2-Dichloroetnene		0.10	100	C-10
Chloroform		0 05	50	0 05
1,2-Dichloroethane		003	30	0.03
l,l,l-Trichloroetnane		003	30	003
Carbon Tetrachloride		012	120	012
Bromodichloromethane		040	100	0.10
1,2-Dichloropropane		0.04	40	0.04
Trichloroethene		0.18	180	U.18
Dibromochloromethane		0.09	90	0 09
2-Chloroethylvinyl Ether		0:13	130	0./3
Brcmoform	·	0.20	20	020
Tetrachloroethene		0.03	30	0.03
Chlorobenzene		0.25	250	0.25
1,3-Dichlorobenzene		Q. 32	320	0.32
1,2-Dichlorobenzene		0.15	150	015
1,4-Dichlorobenzene		0 24	240	0.24

Epa method 602
Volatile Organics

FOR WORK ORDER BU 02-019

	Octection Limits	Limits	
compound		Method Detection Limit 1491L	mit uglt
Benzene		0,2	00/
Thinene		7.0	001
Ethylhonzone		0,2	100
1 U- Nichlom honzene		03	150
13- Nichlorn benzene		6.4	200
12-Dichlorohenzene		0.4	200
Chlom hon zone.		0.2	100

DAILY QUALITY CONTAIL

EPA DE WP 483 cmc 2 + EPA DE WP 731 cmc 3

2(4(76		G	5
	CENTIFIED VALUE (MJ/L)	anaiyzed Urue	Sie
Chloromethane			
Bromomethane			
Vinyl chloride			
Chloroethane	·		
Methylene chloride	9.2	10.1	110
Trichlorofluoromethane			
1,1-Dichloroethene	10.0	800	₹3
l,l-Dichloroethane			
trans-1,2-Dichloroethene	5.4	٠.	
Chloroform	43.0	67.1	1156
1,2-Dichloroethane	27.6	25.1	91
1,1,1-Trichloroethane	14.3	13.5	95
Carbon tetrachloride	200	18.2	91
Bromodichloromethane	7.9	3.3	111
1,2-Dichloropropane	8.0	3,0	No
Trichloroethene	22.2	23.5	106
Dibromochloromethane	16.7	13.5	31
1,1,2-Trichloroethane			
cis-1,3-Dichloropropene			
2-Chloroethylvinyl ether	9.9	9.3	79
Bromoform	10.0		
1.1.2.2-Tetrachloroethane Tetrachloroethylene	6.2		
Chlorobenzene	8.7	4.7	11.5
1,3-Dichlorobenzene	, v	 	
1,2-Dichlorobenzene			
1,4-Dichlorobenzene			

DAILY QUALITY CONTROL RAS GC LAB

DATE: 2	15/86	SPIKED VALUE	ANAL	YZED VA	LUE	JE Z RECOVERY		
	INSTRUMENT	(ug/L)	D	(ug/L)		D	RECOVERY	
	ANALYST		U			G		
TEST METHOD	COMPOUND							
EPA 601	Chloromethane	16.2						i
	Chloroethane	28.1			72			
	Methylene Chloride	26.3						
	1,1-Dichloroethylene	45.0						
	Trans-1,2-Dichloroethylene	12.5						·
	Carbon Tetrachloride	60.0						
	Dichlorobromomethane	40.0						
	1,1,2-Trichloroethane	33.8						
EPA 602	Benzene	30.7	31.2			102		
	Toluene	4.1	4.1			100		
	Ethylbenzene	11.5	10.3			90		
	P-Xylene	19.1	19.2			101		
	M-Xylene	42.6	43.0	 		101		
	O-Xylene	10.6	9,6			91		
EPA 608		(ug/g)		(ug/g)	}			
	Aroclor 1242	58.7	<u> </u>		ļ			
	Aroclor 1260	56.8	<u></u>	L	<u> </u>	<u> </u>	<u> </u>	L

EPA METHOD DATE: 4/11 EPA METHOD DATE: 601 ANALYST: 5/11 EPA METHOD DATE: 1NSTRUMENT: 1NSTRUMENT: 1NSTRUMENT: 1NSTRUMENT: COMPOUND CONCENTRATION COMPOUND CONCENTRATION (ug/L) Chloromethane Benzene Bromomethane Toluene Vinyl Chloride Ethyl benzene Chloroethane Chlorobenzene Methylene chloride 1.4-Dichlorobenzene Nethylene chloride 1.3-Dichlorobenzene 1.1-Dichlorethane 1.2-Dichlorobenzene 1.1-Dichlorethane P-Xylene Chloroform O-Xylene Chloroform O-Xylene 1.2-Dichlorethane	LAB # SYST	on BLANK		
EPA METHOD 601 ANALYST: 354 INSTRUMENT: COMPOUND CONCENTRATION (ug/L) Chloromethane Bromomethane Vinyl Chloride Chlorothane Ethyl benzene Chlorothane I.1-Dichlorothane I.1-Dichlorothane I.1-Dichlorothane I.1-Dichlorothane I.1-Dichlorothane I.1-Dichlorothane I.1-Dichlorothane I.1-Dichlorothane I.1-Trichlorothane I.1-Trichlorothane I.1-Trichlorothane I.1-Trichlorothane I.1-Dichlorothane I.1-Dichlorothane I.1-Trichlorothane I.1-Trichlorothane I.1-Trichlorothane I.1-Dichlorothane I.1-Dichlorothane I.1-Trichlorothane I.1-Dichlorothane I.1-Trichlorothane I.1-Trichlorothane I.1-Dichlorothane I.1-Dichlorothane I.1-Dichlorothane I.1-Dichlorothane I.1-Trichlorothane I.1-Dichlorothane I.1-Dichlorothane I.1-Dichlorothane I.1-Dichlorothane I.1-Trichlorothane I.1-Dichlorothane III-Dichlorothane		· · · · · · · · · · · · · · · · · · ·		
EFA METHOD ANALYST: 1				
ANALYST: TSC INSTRUMENT:	*****	*********	285252825255552555	
ANALYST: TSC INSTRUMENT:	EPA METHOD	DATE: 2/486	EPA METHOD	DATE:
INSTRUMENT: INSTRUMENT: COMPOUND CONCENTRATION (ug/L) Chloromethane Benzene Bromomethane Toluene Vinyl Chloride Chlorobenzene Chlorobenzene Chlorobenzene 1.4-Dichlorobenzene 1.1-Dichlorofluromethane 1.1-Dichlorothane 1.1-Dichlorethane Chloroform 1.2-Dichlorothane 1.1-Trichlorethane 1.1-Trichlorethane 1.1-Trichloropropane Trans-1.3-Dichloropropene Trichlorothene 1.1.2-Trichloropropene Trichlorothane 1.1.2-Trichloropropene Cis-1.3-Dichloropropene 01	ANALYST	602	ANALYST:	
COMPOUND CONCENTRATION (ug/L) Chloromethane Bromomethane Toluene Vinyl Chloride Chlorobenzene Methylene chloride Trichlorofluromethane 1.4-Dichlorobenzene 1.1-Dichlorethane 1.1-Dichlorethane 1.1-Dichlorethane 1.2-Dichlorobenzene 1.1-Dichlorethane 1.1-Trichlorethane 1.1-Trichlorethane 1.1-Trichlorethane Trans-1.3-Dichloropropane Trans-1.3-Dichloropropane Trichloromethane 1.1-Trichloromethane 1.1-Trichloromethane 1.2-Dichloropropane Trichloromethane 1.1-Trichloropropane Trichloropropane Trichloropropane Trichloropropane Trichloromethane 1.1-Trichloromethane 2-Bromo-1-Chloropropane 1.1-Trichloromethane 1.1-Trichloromethane 1.1-Trichloromethane 1.1-Trichloromethane 1.1-Trichloromethane 2-Bromo-1-Chloropropane 1.1-Trichloromethane 1.1-Trichloromethane 1.1-Trichloromethane 2-Bromo-1-Chloromethane 1.1-Trichloromethane 1.1-Trichloromethane 2-Bromo-1-Chloropropane 1.1-Trichloromethane 1.1-Trichloromethane 2-Bromo-1-Chloromethane 1.1-Trichloromethane 1.1-Trichloromethane 1.1-Trichloromethane 1.1-Trichloromethane 1.1-Trichloromethane 1.1-Tri		INSTRUMENT:	mein	INSTRUMENT:
Chloromethane Bromomethane Bromomethane Chlorotele Chlorotele Chlorotele Methylene chloride Trichlorofluromethane L1-Dichlorethane L1-Dichlorethane Chloroform L2-Dichlorotele Chlorotorm Chloroform Chlorotelene L2-Dichlorotelene L2-Dichlorotelene Chloroform Carbon tetrachloride Bromodichlormethane L2-Dichloropropane Trans-1.3-Dichloropropene Trichlorotelene Chlorotelene				
Chloromethane Bromomethane Vinyl Chloride Chloroethane Methylene chloride I.4-Dichlorobenzene I.1-Dichlorethane I.1-Dichlorethane I.1-Dichlorethane I.2-Dichlorobenzene I.1-Dichlorethane I.2-Dichloropene I.1-Dichlorethane I.1-Trichlorethane I.1-Trichlorethane Garbon tetrachloride Bromodichlormethane I.2-Dichloropropane I.1-Dichloropropane I.1-Dichloropropane I.1-Dichloropropane I.1-Irrichloropropane I.1-Dichloropropane I.1-Dichloropropane I.1-Irrichloropropane I.1-Irrichloropropane I.1-Irrichloropropane I.1-Irrichloropropane Indicate a surrough in the s	COMPOUND	CONCENTRATION	COMPOUND	CONCENTRATION
Bromomethane Vinyl Chloride Chloroethane Chloroethane Methylene chloride Trichlorofluromethane L.1-Dichlorobenzene L.1-Dichlorobenzene L.1-Dichlorothane L.1-Dichlorothane L.1-Dichlorothane Trans-1.2-Dichloroethane Trans-1.2-Dichloroethane Chloroform Carbon tetrachloride Bromodichlormethane L.2-Dichloropropane Trichloroethene Trichloroethene Chloroform L.2-Dichloropropane Trichloroethane L.2-Dichloropropane Trichloroethane L.2-Trichlorothane L.3-Dichloropropane Trichloroethane L.3-Dichloropropane Trichloroethane L.3-Dichloropropane Trichloroethane L.3-Dichloropropane L.3-Dichloropropane Trichlorothane L.3-Dichloropropane L.3-Dichloropropane L.3-Dichloropropane L.3-Dichloropropane L.3-Dichloropropane L.3-Dichloropropane L.3-Dichloropropane L.3-Dichloropropane L.3-Dichloropropane Chloroethylvinyl ether Chlorobenzene Chlorobenzene		(ug/L)		(ug/L)
Bromomethane Vinyl Chloride Chloroethane Chloroethane Methylene chloride Trichlorofluromethane L.1-Dichlorobenzene L.1-Dichlorobenzene L.1-Dichlorobenzene L.1-Dichlorothane L.1-Dichlorothane Trans-1.2-Dichloroethane Chloroform Carbon tetrachloride Bromodichlormethane L.2-Dichloropropane Trichloroethene Trichloroethene Chloroform Carbon tetrachloride Bromodichlormethane L.2-Dichloropropane Trichloroethene Chloroethane L.2-Dichloropropane Trichloroethene Chloroethane L.2-Trichlorothane L.3-Dichloropropene L.3-Dichloropropene Chloroethane Chloroethane L.4-Dichlorobutane Chloroethane L.4-Dichlorobutane Chloroethylvinyl ether Chlorobenzene Chloroethylene Chlorobenzene Toluene Ethyl benzene Chlorobenzene Toluchlorobenzene Toluc		 		
Bromomethane Vinyl Chloride Chloroethane Chloroethane Methylene chloride Trichlorofluromethane L.1-Dichlorobenzene L.1-Dichlorobenzene L.1-Dichlorobenzene L.1-Dichlorobenzene L.1-Dichlorobenzene L.1-Dichlorobenzene L.1-Dichlorobenzene L.1-Dichlorobenzene M-Xylene Trans-1.2-Dichloroethene Chloroform Carbon tetrachloride Bromodichlormethane L.2-Dichloropropane Trichloroethene Dibromochloromethane L.1.2-Trichlorethane L.1.2-Trichlorethane L.1.2-Trichloropropene L.1.2-Trichloropropene L.1.2-Trichloropropene L.1.2-Trichloropropene L.1.2-Trichloropropene L.1.2-Trichloropropene L.1.2-Trichloropropene Cis-1.3-Dichloropropene L.1.2-Trichloropropene Cis-1.3-Dichloropropene Cis-1.3-Dichloropropene Cis-1.3-Dichloropropene Cis-1.3-Dichloropropene Cis-1.3-Dichloropropene Cis-1.3-Dichloropropene Cis-1.3-Dichloropropene Cis-1.3-Dichloropropene Chlorobenzene Chlorobenzene Toluene Chlorobenzene Toluene Chlorobenzene Toluchlorobenzene Toluchlorobenzene Toluchlorobenzene Toluchlorobenzene SURROGATE RECOVERIES: 601 Bromoch!oromethane 2-Bromo-1-Chloropropane 1,4-Dichlorobutane 602 a,a,a,-Trifluorotoluene Bromoform 1,1.2-Trichlorethane Chlorobenzene Chlorobenzene Chlorobenzene Chlorobenzene Chlorobenzene Chlorobenzene Chlorobenzene Chlorobenzene Chlorobenzene Tetrachlorethane Chlorobenzene Chlorobenzene A-Vylene N-Xylene N-Xylene N-Xylene SURROGATE RECOVERIES: 601 Bromoch!oromethane 2-Bromo-1-Chloropropane 1,4-Dichlorobenzene 1,4-Dichlorobenzene A-Vylene SURROGATE RECOVERIES: 602 a,a,a,-Trifluorotoluene	Chloromethane	,	Benzene	
Vinyl Chloride Chloroethane Chlorobenzene Methylene chloride Trichlorofluromethane 1.3-Dichlorobenzene 1.1-Dichlorethene 1.1-Dichlorethane Trans-1.2-Dichloroethene Chloroform 1.2-Dichlorethane Carbon tetrachloride Bromodichlormethane 1.2-Dichloropropene Trichloroethene Chlorochloromethane 1.1-Trichlorethane 1.2-Dichloropropene Trans-1.3-Dichloropropene Trichloroethene Chloroethene	Bromomethane			
Merhylene chloride Trichlorofluromethane 1.3-Dichlorobenzene 1.1-Dichlorethene 1.2-Dichlorobenzene 1.1-Dichlorethane Trans-1.2-Dichloroethene Chloroform 1.2-Dichlorethane 1.2-Dichlorethane 1.1-Trichlorethane Carbon tetrachloride Bromodichlormethane 1.2-Dichloropropane Trans-1.3-Dichloropropene Trichloroethene Dibromochloromethane 1.1-Trichlorethane 2-Bromo-1-Chloropropane 1.1-Trichlorethane 3-Bromo-1-Chloropropane 1.1-Trichloropropene 1.1-Trichloropropene 2-Bromo-1-Trichlorobutane 3-Bromoform 1.1-Z-Trichloropropene 3-A-Dichloropropene 3-A-Dichloropropene 3-A-Dichloropropene 3-A-Dichloropropene 3-A-Dichloropropene 3-A-Dichloropropene 3-A-Dichloropropene 3-A-Dichloropropene 3-A-Dichloropropene 3-A-Dichlorobutane 3-A-Dichlorobut	Vinvl Chloride			
Trichlorofluromethane 1.1-Dichlorethene 1.2-Dichlorobenzene 1.1-Dichlorethane Trans-1.2-Dichloroethene Chloroform 1.2-Dichloroethane Carbon tetrachloride Bromodichlormethane 1.2-Dichloropropane Trans-1.3-Dichloropropene Trichloroethene Dibromochloromethane 1.1-Trichlorethane 2-Bromo-1-Chloropropane 1.1-Trichloropropene 601 Bromoch!oromethane 2-Bromo-1-Chloropropane 1.4-Dichlorobutane 602 2-Chloroethylvinyl ether Bromoform 1.1.2.2-Tetrachlorethane Chlorobenzene Chlorobenzene	Chloroethane		Chlorobenzene	
1.1-Dichlorethene 1.2-Dichlorobenzene 1.1-Dichlorethane P-Xylene	Methylene chloride	·	1.4-Dichlorobenzene	
1.1-Dichlorethane	Trichlorofluromethane		1.3-Dichlorobenzene	
Trans-1.2-Dichloroethene Chloroform 1.2-Dichlorethane 1.1.1-Trichlorethane Carbon tetrachloride Bromodichlormethane 1.2-Dichloropropane Trans-1.3-Dichloropropene Trichloroethene Dibromochloromethane 1.1.2-Trichlorethane cis-1.3-Dichloropropene 2-Bromo-1-Chloropropane 1.4-Dichlorobutane 602 2-Chloroethylvinyl ether Bromoform 1.1.2.2-Tetrachlorethane Tetrachlorethylene Chlorobenzene	1.1-Dichlorethene		1.2-Dichlorobenzene	
Chloroform 1.2-Dichlorethane 1.1.1-Trichlorethane Carbon tetrachloride Bromodichlormethane 1.2-Dichloropropane Trans-1.3-Dichloropropene Trichloroethene Dibromochloromethane 1.1.2-Trichlorethane cis-1.3-Dichloropropene 2-Chloroethylvinyl ether Bromoform 1.1.2.2-Tetrachlorethane Chlorobenzene D-Xylene O-Xylene O-Xylene O-Xylene O-Xylene SURROGATE RECOVERIES: 601 Bromoch!oromethane 2-Bromo-1-Chloropropane 1,4-Dichlorobutane 602 a,a,a,-Trifluorotoluene Chlorobenzene	1.1-Dichlorethane		P-Xylene	
1.2-Dichlorethane 1.1.1-Trichlorethane Carbon tetrachloride Bromodichlormethane 1.2-Dichloropropane Trans-1.3-Dichloropropene Trichloroethene Dibromochloromethane 1.1.2-Trichlorethane cis-1.3-Dichloropropene 2-Chloroethylvinyl ether Bromoform 1.1.2.2-Tetrachlorethane Tetrachlorethylene Chlorobenzene	Trans-1.2-Dichloroethen	e		
1.1.1-Trichlorethane Carbon tetrachloride Bromodichlormethane 1.2-Dichloropropane SURROGATE RECOVERIES: 601 Bromochloromethane 2-Bromo-1-Chloropropane 1.1.2-Trichlorethane 1.4-Dichlorobutane 602 2-Chloroethylvinyl ether Bromoform 1.1.2.2-Tetrachlorethane Tetrachlorethylene Chlorobenzen	Chloroform		0-Xylene	
Garbon tetrachloride Bromodichlormethane 1.2-Dichloropropane Trans-1.3-Dichloropropene Trichloroethene Dibromochloromethane 1.1.2-Trichlorethane cis-1.3-Dichloropropene Bromoform 1.1.2.2-Tetrachlorethane Tetrachlorethylene Chlorobenzene SURROGATE RECOVERIES: 601 Bromoch!oromethane 2-Bromo-1-Chloropropane 1,4-Dichlorobutane 602 a,a,a,-Trifluorotoluene Chlorobenzene	1.2-Dichlorethane			
Bromodichlormethane 1.2-Dichloropropane Trans-1.3-Dichloropropene Trichloroethene Dibromochloromethane 1.1.2-Trichlorethane cis-1.3-Dichloropropene 2-Chloroethylvinyl ether Bromoform 1.1.2.2-Tetrachlorethane Tetrachlorethylene Chlorobenzene SURROGATE RECOVERIES: 601 Bromoch!oromethane 2-Bromo-1-Chloropropane 1,4-Dichlorobutane 602 a,a,a,-Trifluorotoluene Chlorobenzene	1.1.1-Trichlorethane		1	
SURROGATE RECOVERIES: Surrogate Surrogate Recoveries:	Carbon tetrachloride			
Trans-1.3-Dichloropropene Trichloroethene Dibromochloromethane 1.1.2-Trichlorethane cis-1.3-Dichloropropene 2-Chloroethylvinyl ether Bromoform 1.1.2.2-Tetrachlorethane Tetrachlorethylene Chlorobenzene		- 		
Trichloroethene O.IS Dibromochloromethane 2-Bromo-1-Chloropropane 1,4-Dichlorobutane 602 2-Chloroethylvinyl ether 8romoform 1,1,2,2-Tetrachlorethane Tetrachlorethylene Chlorobenzene			• • • • • • • • • • • • • • • • • • • •	ES:
Dibromochloromethane 1.1.2-Trichlorethane cis-1.3-Dichloropropene 2-Bromo-1-Chloropropane 1,4-Dichlorobutane 602 a,a,a,-Trifluorotoluene 1.1.2.2-Tetrachlorethane Tetrachlorethylene Chlorobenzene		ne	4 0 0 2	
1.1.2-Trichlorethane cis-1.3-Dichloropropene 2-Chloroethylvinyl ether Bromoform 1.1.2.2-Tetrachlorethane Tetrachlorethylene Chlorobenzene				
cis-1.3-Dichloropropene 602 2-Chloroethylvinyl ether a,a,a,-Trifluorotoluene Bromoform 1.1.2.2-Tetrachlorethane Tetrachlorethylene Chlorobenzene	,		-	•
2-Chloroethylvinyl ether a,a,a,-Trifluorotoluene Bromoform 1.1.2.2-Tetrachlorethane Tetrachlorethylene Chlorobenzene			1 ·	
Bromoform 1.1.2.2-Tetrachlorethane Tetrachlorethylene Chlorobenzene			4	•
l.l.2.2-Tetrachlorethane Tetrachlorethylene Chlorobenzene		<u> </u>	a,a,a,-Trifluoroto	luene
Tetrachlorethylene Chlorobenzene			+	
Chlorobenzene			 	
			-	
1,3-D1CD10r0Denzene			-	
	1		· -	
	1.2-Dichlorobenzene		-	
1.4-Ulchloropenzene	1.4-Dichlorobenzene			

COMPOUND CONCENTRATION (ug/L) Chloromethane Benzene Bromomethane Toluene Vinyl Chloride Chloroethane Methylene chloride Trichlorofluromethane 1.1-Dichlorobenzene 1.1-Dichlorobenzene 1.1-Dichlorothane Trans-1.2-Dichloroethane 1.1-Trichlorethane 1.2-Dichloropropane Trans-1.3-Dichloropropene Trans-1.3-Dichloropropene Trichloroethane 1.1.2-Trichlorethane 1.1.2-Trichloromethane 1.1.2-Trichloropropene Trichloromethane 1.1.2-Trichloropropene Cis-1.3-Dichloropropene 2-Chloroethylvinyl ether Bromoform 1.1.2.2-Tetrachlorethane 1.1.2.2-Tetrachlorethane Chlorobenzene 1.3-Dichlorobenzene 1.3-Dichlorobenzene 1.3-Dichlorobenzene 1.3-Dichlorobenzene	ETHOD DATE: 1/61 ANALYST: 2/ 1NSTRUMENT: UND CONCENTRATION (ug/L) DEBUTE TO LUENE To LUENE	SAMPLE ID	DATE: 2/c/8L		
EPA METHOD DATE: - - -	ETHOD DATE: 1/181 ANALYST: 4 INSTRUMENT 1 CONCENTRATION (ug/L) COMPOUND CONCENTRATION (ug/L) EENZENE Toluene Toluene Toluene Chlorobenzene Chlorobenzene Chlorobenzene Iluromethane Il	SAMPLE ID	DATE: 2/c/8L		
EPA METHOD 601 ANALYST:Q/ INSTRUMENT COMPOUND CONCENTRATION (ug/L) Chloromethane Bromomethane Vinyl Chloride Chlorofluromethane Al-Dichlorofluromethane L1-Dichlorethane L1-Dichlorethane L1-Dichlorethane L1-Dichlorethane L1-Dichlorethane L1-Trichlorethane L1-Trichlorethane L1-Trichlorethane L1-Trichloropropene Chloropropene Carbon tetrachloride Bromodichloromethane L1-Trichloropropene L1-Trichlorethane Carbon tetrachloride Bromodichloromethane L1-Trichloropropene Carbon tetrachloride Bromodichloromethane L1-Trichloropropene Carbon tetrachloride Bromodichloromethane L1-Trichloropropene Carbon tetrachloride Bromodichloromethane L1-Trichloropropene Carbon tetrachloride Bromodichloromethane L1-Trichloropropene Carbon tetrachloride Bromochloromethane L1-Trichloropropene Carbon tetrachloropropene TE: 1/61 ANALYST: Q		DATE: 2/6/8L			
601 ANALYST: QINSTRUMENT COMPOUND CONCENTRATION (ug/L) COMPOUND CONCENTRATION COMPOUND CONCENTRATION (ug/L) Chloromethane Toluene Vinyl Chloride Ethyl benzene Chloropethane Chlorobenzene Methylene chloride 1.4-Dichlorobenzene Li-Dichlorofluromethane 1.3-Dichlorobenzene Li-Dichlorethane P-Xylene Trans-1.2-Dichloroethene M-Xylene Chloroform O-Xylene Li-Trichlorethane Carbon tetrachloride Bromodichlormethane SURROGATE RECOVERIES: Trans-1.3-Dichloropropene Cis-1.3-Dichloropropene 1.4-Dichlorobenzene 1.4-Dichlorobenzene 1.4-Dichlorobenzene 1.4-Dichloropropene Cis-1.3-Dichloropropene Cis-1.3-	ANALYST: INSTRUMENT: OUND CONCENTRATION (ug/L) Anne Benzene Toluene Toluene Toluene Chlorobenzene Chlorobenzene Chlorobenzene Iluromethane Iluromethane Tethene Tethene Tethene Tropropane Chloropropene Chloropropene Chloropropene Chloropropene Chloropropene Tethene Tet	EPA METHOD			
INSTRUMENT COMPOUND CONCENTRATION (ug/L) Concentration (ug/L) Co	INSTRUMENT CONCENTRATION (ug/L) CONCENTRATION (ug/L) COMPOUND CONCENTRATION (ug/L) COMPOUN			EPA METHOD	DATE:
COMPOUND CONCENTRATION (ug/L) Chloromethane Bromomethane Bromomethane Toluene Yinyl Chloride Chloroethane Chlorobenzene Methylene chloride Trichlorofluromethane 1.1-Dichlorobenzene 1.1-Dichlorobenzene 1.1-Dichlorethane Trans-1.2-Dichloroethane Trans-1.2-Dichloroethane Carbon tetrachloride Bromodichloromethane 1.1-Trichloroethane Trans-1.3-Dichloropropene Trans-1.3-Dichloropropene Trichloroethane 1.1.2-Trichloromethane 1.1.2-Trichloromethane 1.1.2-Trichloromethane 1.1.2-Trichloromethane 1.1.2-Trichloropropene Cis-1.3-Dichloropropene Cis-1.3-Dichloropropene Concentration (ug/L) Compound Concentration (ug/L) Compound Concentration (ug/L) Compound Concentration (ug/L) Compound Concentration (ug/L) Compound Concentration (ug/L) Compound Concentration (ug/L) Compound Concentration (ug/L) Compound Concentration (ug/L) Compound Concentration (ug/L) Compound Concentration Chlorobenzene Benzene Benzene Benzene Benzene Benzene Benzene Chlorobenzene Surpiclorobenzene Surrogate Recoveries: 601 Bromochloromethane 1,4-Dichloropropane 1,4-Dichloropropane 1,4-Dichloropropane 1,4-Dichlorobenzene 4,3-Dichlorobenzene 1,4-Dichlorobenzene	CONCENTRATION (ug/L) Benzene Toluene Toluene Chlorobenzene Chloropene Chloropropene Chlorobenzene Chlorobenzene Chlorobenzene Chlorobenzene Chlorobenzene Chlorobenzene Chlorobenzene Chlorobenzene Chlorobenzene Chlorobenzene Chlorobenzene Chlorobenzene Chlorobenzene Chlorobenzene Chlorobenzene Chlorobenzene Chlorobenzene Chloropropene Chlorobenzene C	601	ANALYST:0/	602	ANALYST:
Chloromethane Bromomethane Bromomethane Vinyl Chloride Chlorodethane Methylene chloride Trichlorofluromethane 1.1-Dichlorotethane 1.1-Dichlorotethane 1.1-Dichlorotethane Trans-1.2-Dichlorotethane 1.1-Dichlorotethane 1.1-Trichlorethane Carbon tetrachloride Bromodichlormethane 1.2-Dichloropropane Trans-1.3-Dichloropropene Trichlorotethane 1.1-Trichlorotethane 1.1-Trichlorotethane Carbon tetrachloride Bromodichlormethane 1.1-Dichloropropane Trichlorotethane 1.1-Trichloropropane Trichlorotethane 1.1-Trichlorotethane 1.1-Trichloropropane Trichlorotethane 1.1-Trichloropropane Trichlorotethane 1.1-Trichloropropane Trichlorotethane 1.1-Trichloropropane Trichlorotethane 1.1-Trichloropropane Trichlorotethane 1.1-Trichloropropane Trichlorotethane 1.1-Trichloropropane 1.1-Trichloropropane Trichlorotethane 1.1-Trichloropropane 1.	(ug/L) anne Benzene Toluene Ethyl benzene Chlorobenzene Chlorobenzene Iluromethane Dichloroethene Dichloroethene Dichloroethene Dichloroethane Trachloride SURROGATE RECOVERIES: 601 Bromochloromethane Chloropropene Chloroprop		instrument bur	wine	INSTRUMENT:
Bromomethane Vinyl Chloride Chloroethane Methylene chloride Trichlorofluromethane 1.1-Dichlorobenzene 1.1-Dichlorobenzene 1.1-Dichlorotene Trans-1.2-Dichloroethene Chloroform Trans-1.2-Dichloroethene Chloroform Trans-1.3-Dichloropropene Trans-1.3-Dichloropropene Trans-1.3-Dichloropropene Trans-1.3-Dichloropropene Trans-1.3-Dichloropropene Trans-1.3-Dichloropropene Trichloroethene Dibromochloromethane 1.1.2-Trichlorethane Cis-1.3-Dichloropropene 2-Chloroethylvinyl ether Bromoform Trichlorethane Cis-1.3-Dichloropropene Trans-1.3-Dichloropropene Cis-1.3-Dichloropropene Trans-1.3-Dichloropropene Chlorobenzene Chlorobenzene Chlorobenzene Chlorobenzene Chlorobenzene Chlorobenzene	Toluene Ethyl benzene Chlorobenzene Chlorobenzene 1.4-Dichlorobenzene 1.2-Dichlorobenzene 1.2-Dichlorobenzene 1.2-Dichlorobenzene P-Xylene Dichloroethene M-Xylene O-Xylene O-Xylene SURROGATE RECOVERIES: 601 Bromochloromethane cromethane cromethane cromethane cromethane cromethane cromethane cromethane cromethane chlorethane chloropropene	COMPOUND		COMPOUND	•
Bromomethane Vinyl Chloride Chloroethane Methylene chloride Trichlorofluromethane 1.1-Dichlorobenzene 1.1-Dichlorobenzene 1.1-Dichlorotene Trans-1.2-Dichloroethene Chloroform Trans-1.2-Dichloroethene Chloroform Trans-1.3-Dichloropropene Trans-1.3-Dichloropropene Trans-1.3-Dichloropropene Trans-1.3-Dichloropropene Trans-1.3-Dichloropropene Trans-1.3-Dichloropropene Trichloroethene Dibromochloromethane 1.1.2-Trichlorethane Cis-1.3-Dichloropropene 2-Chloroethylvinyl ether Bromoform Trichlorethane Cis-1.3-Dichloropropene Trans-1.3-Dichloropropene Cis-1.3-Dichloropropene Trans-1.3-Dichloropropene Chlorobenzene Chlorobenzene Chlorobenzene Chlorobenzene Chlorobenzene Chlorobenzene	Toluene Ethyl benzene Chlorobenzene Chlorobenzene 1.4-Dichlorobenzene 1.2-Dichlorobenzene 1.2-Dichlorobenzene 1.2-Dichlorobenzene P-Xylene Dichloroethene M-Xylene O-Xylene O-Xylene SURROGATE RECOVERIES: 601 Bromochloromethane cromethane cromethane cromethane cromethane cromethane cromethane cromethane cromethane chlorethane chloropropene				
Vinyl Chloride Chloroethane Methylene chloride Trichlorofluromethane 1.3-Dichlorobenzene 1.1-Dichlorethene 1.1-Dichlorethane Trans-1.2-Dichloroethene 1.2-Dichloroethene 1.1-Trichlorethane Carbon tetrachloride Bromodichlormethane 1.2-Dichloropropene Trans-1.3-Dichloropropene Trichloroethene 1.1.2-Trichlorethane 1.1.2-Trichlorethane 1.1.2-Trichloromethane 1.1.2-Trichloropropene Trichloroethene 2/8 Dibromochloromethane 1.1.2-Trichloropropene 2-Chloroethylvinyl ether Bromoform 1.1.2-Tetrachlorethane Carbon tetrachloride Bromochloromethane 1.4-Dichlorobutane Chlorobenzene 1.4-Dichlorobenzene Chlorobenzene 1.3-Dichlorobenzene Chlorobenzene 1.3-Dichlorobenzene	Ethyl benzene Chlorode Chlorode Chlorodenzene Chlorode Chlorodenzene Chl				
Chloroethane Methylene chloride Trichlorofluromethane 1.1-Dichlorethene 1.1-Dichlorethane Trans=1.2-Dichloroethene 1.2-Dichloroethane Carbon tetrachloride Bromodichloromethane Trans=1.3-Dichloropropene Trichloroethene Chlorofom 1.2-Dichloropropene Trans=1.3-Dichloropropene Trichloroethane 1.1.2-Trichloropropene Trichloroethane 1.1.2-Trichloropropene Trichloroethane 1.1.2-Trichloropropene Trichloroethane 1.1.2-Trichloropropene 1.1.2-Trichloropropene Trichloropropene 1.1.2-Trichloropropene Trichloropropene 1.1.2-Trichloropropene Trichloropropene 1.1.2-Trichloropropene Carbon tetrachloropropene Trichloroethane Tetrachloropropene Chlorobenzene Chlorobenzene 1.3-Dichlorobenzene	chloride chloride chloride chloride chloride chloride chlorobenzene chlorobenzene chlorobenzene chlorobenzene chlorobenzene chlorobenzene chlorobenzene chlorobenzene chlorobenzene chlorobenzene chlorobenzene chlorobenzene chloropropene chlo				
Methylene chloride Trichlorofluromethane 1.1-Dichlorothene 1.1-Dichlorethene 1.1-Dichlorothene 1.1-Dichlorothane Trans-1.2-Dichloroethene Chloroform 1.2-Dichlorothane 1.1-Trichlorethane Carbon tetrachloride Bromodichlormethane 1.2-Dichloropropane Trans-1.3-Dichloropropene Trichloroethene Dibromochloromethane 1.1.2-Trichlorethane 1.1.2-Trichlorethane Cis-1.3-Dichloropropene Trichloroethene Cis-1.3-Dichloropropene Trichlorothane 1.1.2-Trichlorethane Cis-1.3-Dichloropropene Trichlorothane Cis-1.3-Dichloropropene Trichlorothane Cis-1.3-Dichloropropene Chloroethylvinyl ether Chlorobenzene Chlorobenzene 1.3-Dichlorobenzene Chlorobenzene Chlorobenzene Chlorobenzene Chlorobenzene	chloride luromethane lurometha				
Trichlorofluromethane 1.1-Dichlorethene 1.1-Dichlorethane Trans-1.2-Dichloroethene Chloroform 1.2-Dichloroethane Carbon tetrachloride Bromodichlormethane 1.2-Dichloropropene Trichloroethene 2/8 Dibromochloromethane 1.1-Trichlorethane 2-Bromo-1-Chloropropane 1.1-Trichloropropene 2-Bromo-1-Chloropropane 3-Bromoform 1.1.2-Trichlorothane 2-Bromo-1-Chloropropane 3-Bromoform 1.1.2.2-Tetrachlorethane Carbon tetrachlorethane 2-Bromo-1-Chloropropane 3-Bromochloromethane 3-Bromochloromethane 3-Bromochlorobutane 3-Bromochlorobutane 3-Bromoform 1.1.2.2-Tetrachlorethane Tetrachlorethylene Chlorobenzene 1.3-Dichlorobenzene	luromethane rethene rethane Dichloroethene Dichloroethene Dichloroethene Dichloroethene Dichloroethene Dichloroethene Dichloroethene Dichloropethane Trachloride Dichloropropene Thene Dichloropropene Thene Dichloropropene Thorough and Dichloropropene Thorough a			1	
1.1-Dichlorethene1.2-Dichlorobenzene1.1-DichlorethaneP-XyleneTrans-1.2-DichloroetheneM-XyleneChloroform0-Xylene1.2-DichlorethaneO-Xylene1.1-TrichlorethaneSURROGATE RECOVERIES:Carbon tetrachlorideSURROGATE RECOVERIES:Bromodichlormethane601Trans-1.3-DichloropropeneBromochloromethane1.1.2-Trichlorethane2-Bromo-1-Chloropropanecis-1.3-Dichloropropene1,4-Dichlorobutane2-Chloroethylvinyl ether602Bromoform1,1.2.2-TetrachlorethaneTetrachlorethylene4,a,a,-TrifluorotolueneChlorobenzeneChlorobenzene1.3-Dichlorobenzene1,3-Dichlorobenzene	rethene rethane P-Xylene Dichloroethene M-Xylene O-Xylene rethane hlorethane rachloride comethane ropropane Dichloropropene thene Coromethane Thorethane			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
1.1-Dichlorethane	P-Xylene Dichloroethene Dichloroethene Do-Xylene Do-D-Xylene Do-D-Xylene Do-D-Xylene Do-D-Xylene Do-D-Xylene Do-D-Xylene Do-D-Xylene Do-D-Xylene Do-D-Xylene Do-D-Xylene Do-D-Xylene Do-D-Xylene Do-	Trichlorofluromethane			
Trans-1.2-Dichloroethene Chloroform 1.2-Dichlorethane 1.1.1-Trichlorethane Carbon tetrachloride Bromodichlormethane 1.2-Dichloropropane Trans-1.3-Dichloropropene Trichloroethene Dibromochloromethane 1.1.2-Trichlorethane cis-1.3-Dichloropropene 2-Chloroethylvinyl ether Bromoform 1.1.2.2-Tetrachlorethane Tetrachlorethylene Chlorobenzene 1.3-Dichlorobenzene 1.3-Dichlorobenzene	## Dichloroethene				
Chloroform 1.2-Dichlorethane 1.1.1-Trichlorethane Carbon tetrachloride Bromodichlormethane 1.2-Dichloropropane Trans-1.3-Dichloropropene Dibromochloromethane 1.1.2-Trichlorethane cis-1.3-Dichloropropene 2-Chloroethylvinyl ether Bromoform 1.1.2.2-Tetrachlorethane Chlorobenzene Chlorobenzene 1.3-Dichlorobenzene Chlorobenzene Carbon O-Xylene O-Action O-Xylene O-Action O-Xylene O-Action O-Xylene O-Action O-Xylene O-Action O-Xylene O-Action O-Xylene O-Action O-Actio	O-Xylene Orethane Crachloride Cormethane Cropropane Cropropane Cropropane Cropropene Cr				
1.1.1-Trichlorethane Carbon tetrachloride Bromodichlormethane 1.2-Dichloropropane Trans-1.3-Dichloropropene Trichlorethene Dibromochloromethane 1.1.2-Trichlorethane cis-1.3-Dichloropropene Bromoform 1.1.2.2-Tetrachlorethane Tetrachlorethylene Chlorobenzene 1.3-Dichlorobenzene	crethane chlorethane crachloride cormethane cropropane cropropane cropropane cropropene chlorethane chlorethane chlorethane chloropropene chlo			T	
Carbon tetrachloride Bromodichlormethane Carbon tetrachloride Bromodichlormethane Carbon tetrachloropropane Carbon tetrachloropropane Carbon tetrachloropropane Carbon tetrachloride Carbon	chlorethane crachloride cormethane cropropane -Dichloropropene chlorethane coromethane chlorethane chlorethane chloropropene chl			0-Xylene	
Carbon tetrachloride Bromodichlormethane 1.2-Dichloropropane Trans-1.3-Dichloropropene Trichloroethene Dibromochloromethane 1.1.2-Trichlorethane cis-1.3-Dichloropropene 2-Chloroethylvinyl ether Bromoform 1.1.2.2-Tetrachlorethane Tetrachlorethylene Chlorobenzene 1.3-Dichlorobenzene 1.3-Dichlorobenzene	SURROGATE RECOVERIES: Ormethane Dichloropropene Sthene Oromethane Chlorethane Chloropropen			4	
Bromodichlormethane 1.2-Dichloropropane Trans-1.3-Dichloropropene Trichloroethene Dibromochloromethane 1.1.2-Trichlorethane cis-1.3-Dichloropropene 2-Chloroethylvinyl ether Bromoform 1.1.2.2-Tetrachlorethane Chlorobenzene 1.3-Dichlorobenzene 1.3-Dichlorobenzene	SURROGATE RECOVERIES: Dichloropropene			1	
SURROGATE RECOVERIES: Trans-1.3-Dichloropropene	SURROGATE RECOVERIES: -Dichloropropene -thene -coromethane -chlorethane -chloropropene -chloropropene -chloropropene -chlorothane -chloropropene -chloropro			4	
Trans-1.3-Dichloropropene Trichloroethene Dibromochloromethane 1.1.2-Trichlorethane cis-1.3-Dichloropropene 2-Ghloroethylvinyl ether Bromoform 1.1.2.2-Tetrachlorethane Tetrachlorethylene Chlorobenzene 1.3-Dichlorobenzene	Dichloropropene thene Coromethane Chlorethane Chloroprope			4	
Trichloroethene Q18 Dibromochloromethane 2-Bromo-1-Chloropropane 1,4-Dichlorobutane 602 2-Chloroethylvinyl ether 8-a,a,a,-Trifluorotoluene 1,2.2-Tetrachlorethane 7-trachlorethylene 602 Chlorobenzene 1,3-Dichlorobenzene 8-2-Bromochloromethane 7-2-Bromo-1-Chloropropane 7-2-Bromo-1-Chloropropane 7-3-Dichlorobenzene 8-3-Dichlorobenzene 8-3-Dichl	Bromochloromethane 2-Bromo-1-Chloropropane 1,4-Dichlorobutane 602 2-bylvinyl ether 2-chloropropene 2-chloropropene 3-chlorothane			1	IES:
Dibromochloromethane 1.1.2-Trichlorethane cis-1.3-Dichloropropene 2-Bromo-1-Chloropropane 1,4-Dichlorobutane 602 a,a,a,-Trifluorotoluene 1.1.2.2-Tetrachlorethane Tetrachlorethylene Chlorobenzene 1.3-Dichlorobenzene	2-Brome-1-Chloropropane 1,4-Dichlorobutane 602 a,a,a,-Trifluorotoluene ethylen	Trans-1.3-Dichloroprop	ene	4 *	
1.1.2-Trichlorethane	thlorethane 1,4-Dichlorobutane 602 thylvinyl ether a,a,a,-Trifluorotoluene ethylene ene probenzene	Trichloroethene	918		
cis-1.3-Dichloropropene 602 2-Chloroethylvinyl ether a,a,a,-Trifluorotoluene Bromoform 1.1.2.2-Tetrachlorethane Tetrachlorethylene Chlorobenzene 1.3-Dichlorobenzene	chloropropene 602 chylvinyl ether a,a,a,-Trifluorotoluene cetrachlorethane cethylene cene crobenzene crobenzene	Dibromochloromethane		2-Brome-1-Chlorop	ropane
2-Chloroethylvinyl ether a,a,a,-Trifluorotoluene Bromoform 1.1.2.2-Tetrachlorethane Tetrachlorethylene Chlorobenzene 1.3-Dichlorobenzene	a,a,a,-Trifluorotoluene etrachlorethane ethylene dene erobenzene erobenzene			l,4-Dichlorobutan	e
Bromoform 1.1.2.2-Tetrachlorethane Tetrachlorethylene Chlorobenzene 1.3-Dichlorobenzene	etrachlorethane cethylene dene crobenzene crobenzene	cis-1.3-Dichloropropen	ıe	4 **-	
1.1.2.2-Tetrachlorethane Tetrachlorethylene Chlorobenzene 1.3-Dichlorobenzene	etrachlorethane rethylene kene probenzene probenzene	2-Chloroethylvinyl eth	ner	a,a,a,-Trifluorot	oluene
Tetrachlorethylene Chlorobenzene 1.3-Dichlorobenzene	rethylene Rene Probenzene Probenzene			4	
Chlorobenzene 1.3-Dichlorobenzene	robenzene probenzene	1.1.2.2-Tetrachloretha	ine	4	
1.3-Dichlorobenzene	probenzene probenzene	Tetrachlorethylene	·		
	robenzene	Chlorobenzene		1	
1. 2-Dishlamahangana		1.3-Dichlorobenzene		1	
1.2-bichtofobenzene	robenzene	1.2-Dichlorobenzene		_	
1.4-Dichlorobenzene		1.4-Dichlorobenzene		_	

LAB # 1 575	for BLANK		
CLIENT NAME			
SAMPLE ID			
	=======================================		********
EPA METHOD	DATE:	EPA METHOD	DATE: 2/5/86
601	ANALYST: INSTRUMENT:	602	ANALYST: JS 6 INSTRUMENT Del
COMPOUND	CONCENTRATION (ug/L)	COMPOUND	CONCENTRATION (ug/L)
Chloromethane		Benzene	- No
Bromomethane		Toluene	
Vinyl Chloride		Ethyl benzene	
Chloroethane		Chlorobenzene	
Methylene chloride	·	1.4-Dichlorobenzene	
Trichlorofluromethane		1.3-Dichlorobenzene	
1.1-Dichlorethene		1.2-Dichlorobenzene	
1.1-Dichlorethane		P-Xylene	/
Trans-1.2-Dichloroethe	ne	M-Xylene	
Chloroform		0-Yylene	4/
1.2-Dichlorethane			
1.1.1-Trichlorethane			
Carbon tetrachloride			
Bromodichlormethane			
1.2-Dichloropropane		SURROGATE RECOVER	IES:
Trans-1.3-Dichloroprop	ene	601	į
Trichloroethene		Bromochloromethan	e
Dibromochloromethane		2-Bromo-1-Chlorop	ropane
1.1.2-Trichlorethane		1,4-Dichlorobutan	e
cis-1.3-Dichloropropen	e	602	1
2-Chloroethylvinyl eth		a,a,a,-Trifluorot	oluene
Bromoform			-
1.1.2.2-Tetrachloretha	ne		
Tetrachlorethylene			
Chlorobenzene		1	
1.3-Dichlorobenzene			
1.2-Dichlorobenzene			
1.4-Dichlorobenzene			
		·· 	
		1	

TOTAL PRODUCTURE CONTROL CONTROL TO SERVICE

LAB #	ENGENT BLANK		
CLIENT NAME			
SAMPLE ID			
*****	=======================================		
EPA METHOD	DATE:	EPA METHOD	DATE: 2/5/26
601	ANALYST:	602	ANALYST: 4
-	INSTRUMENT:	302	INSTRUMENT:
	THO TROTILITY		INSTRUMENT.
COMPOUND	CONCENTRATION	COMPOUND	CONCENTRATION
	(ug/L)		(ug/L)
			(46/2/
Chloromethane		Benzene	~~
Bromomethane		Toluene	
Vinyl Chloride		Ethyl benzene	
Chloroethane		Chlorobenzene	
Methylene chloride		1.4-Dichlorobenzene	· · · · · · · · · · · · · · · · · · ·
Trichlorofluromethane		1.3-Dichlorobenzene	
1.1-Dichlorethene		1.2-Dichlorobenzene	
1.1-Dichlorethane		P-Xylene	
Trans-1.2-Dichloroethe	ne	M-Xylene	
Chloroform		0-Xylene	
1.2-Dichlorethane			
1.1.1-Trichlorethane		1	
Carbon tetrachloride			
Bromodichlormethane			
1.2-Dichloropropane		SURROGATE RECOVER	IES:
Trans-1.3-Dichloroprop	ene	601	
Trichloroethene		Bromochloromethane	<u> </u>
Dibromochloromethane		2-Bromo-1-Chloropr	copane
1.1.2-Trichlorethane		l,4-Dichlorobutane	
cis-1.3-Dichloropropen		602	
2-Chloroethylvinyl eth		a,a,a,-Trifluoroto	luene
Bromoform			
1.1.2.2-Tetrachloretha	ne		
Tetrachlorethylene			
Chlorobenzene			
1.3-Dichlorobenzene			
1.2-Dichlorobenzene		: •	
1.4-Dichlorobenzene			
		i	!
		; !	
<u> </u>	•	:	
			,

Este Production Commentes Commentes Commentes Commentes Commentes Commentes Commentes Commentes Commentes Comme

Lab#: 8602019-03C Sample ID: 840120 Date: 2/6/86 Instrument: G

601/8010
Bromochloromethane: 95%
2-Bromo-1-Chloropropane: 153%

602/SC2 a,a,a-Trifluorotoluene:

Lab#: 8602019-040 Sample ID: 86021 Date: 2/6/86 Instrument: 6

601/8010
Bromochloromethane: 99%
2-Bromo-1-Chloropropane: 734%

402/302 a,a,a-Trifluorotoluene:

Lab#! 8402019-65C Sample ID: 840123 Date: 2/6/86 Instrument: G

601/8010
Bromochloromethane: 101%
2-Brcmc-1-Chloropropane: =98%

402/302 a,a,a-Trifluorotoluene:

Lab#: 8602019-03E Sample ID: 86020 Date: 215/86 Instrument: D

601/8010
Bromochloromethane:
2-Brcmc-1-Chloropropane:

402/302 a,a,a-Trifluorotoluene: 103%

Lab#! 8602019-04E

Sample ID: 860121

Date: 2/5/86

Instrument: D

601/8010 Bromochloromethane: 2-Brcmc-1-Chloropropane:

602/302 a,a,a-Trifluorotoluene: 97%

Lab#! 8602019-05E

Sample ID: 860123

Date: 2/5/86 Instrument: D

601/8010 Bromochloromethane: 2-Bromo-1-Chloropropane:

602/502 a,a,a-Trifluorotoluene: 962

DATE	2-27-86	_ ′	Lab Sai	mple No.	10020
		Hacrix Hol	Units .	1.19 ml	
Compound	Control Limit	Spiked Sample Result (SSR)	Sample Result (SR)	Spiked Added (SA)	 %%!
lecals:					1
. Aluminum	75-125				!
2. Ancimony	•				1
. Arsenic	•				
4. Barium	•	0.99	0.13 x	1.00	186
. Beryllium	•				1
. Cadmium	• .	0.90	1.002	1.00	1 90
. Calcium	· •				
. Chromium	•	1.26	0.33	1.00	1 93
. Cobalt	•				
10. Copper	•			1	1
ll. Iron	-			<u> </u>	1
2. Lead	•				
3. Magnesium	•				1
4. Manganese	•				1
15. Mercury	•				
l6. Nickel	•				1
l7. Potassium	•			<u>i</u>	
l8. Selenium	•				
l9. <u>Silver</u>	•	6.99	0.012	1.80	198
20. Sodium	•				
21. Thallium	-				•
22. Tin	•				
23. Vanadium	•				
24. Zinc	•				1
Other:	1				
					1
Cyanide	1				1
23 = [(SSR	- SR)/SA] x 100				
Comments:					
		B - 1	1		

Form VI

Q.	c.	Report	No.	

LAB	NAME RAL		DUPLICATES Matrix	— CASE NO	nt4_
DAT		17-86	ix <u>#20</u>	EPA Sample No. Lab Sample ID No. Units	· 8602019 · 036,
Con	poune	Control Limit	Sample(S)	Duplicate(D)	RPD-
===	als: Aluminum				
2.	Antimony				
3.	Arsenic				1
4.	Sarium		0.08	0.08	1 0
5.	Servllium				
ó.	Cacmium		1.002	1.002	NC
7.	Calcium				1
8.	Chromium		0.006 *	0.006 +	10
Э.	Cosalt.				
10.	Copper 1				
11.	Iron		i		
12.	Lead				
13.	Magnesium				1
14.	Manganese				Ì
15.	Mercury				
16.	Nickel				
17.	Potassium				
18.	Selenium				
19.	Silver		1 0,007 *	0.007*	0
20.	Sodium				
21.	Thallium				
22.	Tin				
	Vanadium				
	Zinc				
	er:				
					4
<u> </u>	-140				1

 $2 \text{ RPD} = [[5 - D]/((5 + D)/2)] \times 100$ To be added at a later date.

* Value L5 x IDL

^{*} Out of Control

 $^{^{1}}$ - Non calculable RPD due to value(s) less than CRDL

for samples: 86 02017-036

UNITS

				-								2		
ELEMENT	ANALYSIS DATE	QC DATA	ATA		DOP	OUPLICATE	ANALYSIS	S		SPIKE		RECOVERY		BLANKS
		FOUND VALUE	TRUE VALUE	%R	SAMP."	SAMP	DUPL	RPO	SAMP#	SR	SSR	SA	% R	(A.)
69	2-17-86	0.045	0.044	36	036*	7.007	(1007	K	039*	700>	8/0	200	75	4.002
		0.045	0.050	///	** 036	4.002	<.003	NC	* 570	,000	.021	000	85	
		0.045	0.045	00/										
As	2-19-86	0.039	0,040	98	4 03.6	<.005	<.00s	NC	036	4.005	.0a3	¢α.	96	<.00s
		0.040	0,040	901	\$\$0 **	<,005	<.005	AK.	040	<000x	610.	020.	95	
		0.037	0,040	93										
5														
3 1	2-17-86	0.042	0.040	105	036×4	4,003	1.003	Ş	*5*	C.003	010.	1,034	67	<.003
29		0,000	0,040	001					1. 040 ×1	¢.00:>	189,	400	88	
		0.039	0,040	86					950 **	<.003	¥500°	010.	54	
							,							,
149	03.6-86	400000	0.00eD	707					36	K.0002	י) במס'	0500.	c .	5.000°
D		0.0038	0.0040	95										
		0.00310	0.0040	90										
مرا مرا -														
									•					
*	Represents an	analytical o	p. tood w	200	digeston displication or spilling	plica	Dan o	2 spill		2. See	w unau :		03.61-8	
	** Represents max	NX N	or - digestor	12 C	duplication or specing	apm	r S	30						
	7	' ' ' ' ' ' ' ' ' '		7001										

** Hopeoento marva n /u-ugueros. 1 Sample was deleuted 1:10 and n-spilled

for Samples: 84,02.019,036.046

BLANKS		(,0002											
BL/													
RY	% R	01/ 02											
RECOVERY	SA	2 .0020	-										
SPIKE R	SSR	2 .0022	_				 			_			
SF	SR	(,0002											
	SAMP#	-036			,								
S	RPD												
DUPLICATE ANALYSIS	DUPL												
PLICATE	SAMP												
na —	SAMP.			; 								. !	
	8R	00/	105	90/									
4TA	TRUE VALUE	0.050	0.0040	0.00.0									-
QC DATA	FOUND VALUE	0.050	0,0042	0,0000									
ANALYSIS DATE		2-12-86											
ENT		A	0	-				5 1	30				

RADIAN SACRAMENTO

EGG 625 860125; 860124; 860120; 860121

CHAIN OF CUSTODY RECORD

•		Field Sample No.
Λ_{α}	C. Di la C.	
Company Sampled / Address	se flant & factivo	vith Fexap
Sample Point Description	fund Wale	
Stream Characteristics:		
	Flow	pH
Visual Observations/Comments		
Collector's Name NEIL ROL	2i NCAA) Data/Tima Sa	mpleds 25-86 AND 24-8
Amount of Sample Collected	1.000 ml DK 6/as	S Hottles
Sample Description 979177	7/	7 3 1 1 8 2 1
Store at: □ Ambient □ 5°C □ −	10°C Mother 4°C	
Store at. Ambient 5 C -	To C A Other	
Caution · No more sample available	☐ Return unused portion of sa	imple Discard unused portions
Other Instructions - Special Handling -		
omer instructions - Special framewing -	11828103	
Hazardous sample (see below)	□ Non I	hozardous comple
f_{\bullet}	□ NOR-I	hazardous sample
XToxic	☐ Skin irritant	☐ Flammable (FP< 40°C)
☐ Pyrophoric	☐ Lachrymator	☐ Shock sensitive
☐ Acidic	□ Biological	Carcinogenic · suspect
□ Caustic	☐ Peroxide	☐ Radioactive
□ Other		
Sample Allocation/Chain of Possessio	n:	
Organization NameKADIATV		
Received By	Date Rece	ived Time
Transported By	///SON_Lab Sample No	<u>86-07 030</u>
Comments		
Inclusive Dates of Possession2	-4-86 → 2-586	
Organization Name Radian H	nal utical Services	
Received By Chau Karney	Date Bece	ived 2-12-86 Time (0:00)
Transported By Facral	Lab Sample No. 🖓	602030
0	3	
Inclusive Dates of Possession		
Organization Name		
_		ived Time
		71110
Comments	·	
Inclusive Dates of Possession		

wo Field Blanks (HM74)	METALS 800125; 860124	CHROMIUM SCOIZET, S
DADIAN E	19 601 860128 8601	27:860124:860125
CORPORATION		7 800124 800125
AUSTIN V	CHAIN OF CUSTODY RECORD	- 64
Bin in 100100		THIX ETHYLKETONE 86012
DAIN	- 03	Field Sample No.
Company Sampled / Address	Force Munt 4 Facturer:	4 TEXAS
Sample Point Description	A =	
Stream Characteristics:		
	Flow	_1,1
· · · · · · · · · · · · · · · · · · ·	Flow	pn
Visual Observations/Comments		
Callegania Nama A'Gan POR	Date/Time Sampled	. 2-5-86
Collector's Name 19132 120131	WAR DATE ON DESIGNATION OF THE SAMPLE	-2 1 Cos 2 0 CS
Amount of Sample Collected TWENT Sample Description	THE VOITS MAY POURS	10 FIELD BLANKS WAS TP. D.
Sample Description	100	C, ICE TAPE
Sample Description Store at: □ Ambient □ 5°C □ −	- 10°C Other	
Caution . No more sample available	Return unused nortion of comple	□ Discard unused notificate
Caution - No more sample available		
Other Instructions - Special Handling	· Hazards	
Hazardous sample (see below)	□ Non-hazard	dous sample
Hazardous sample (see below) Toxic	□ Non-hazard	•
		•
Toxic	☐ Skin irritant	☐ Flammable (FP< 40°C ☐ Shock sensitive
Toxic Pyrophoric	☐ Skin irritant☐ Lachrymator	☐ Flammable (FP< 40°C ☐ Shock sensitive
Toxic Pyrophoric Acidic	☐ Skin irritant☐ Lachrymator☐ Biological	☐ Flammable (FP< 40°C) ☐ Shock sensitive ☐ Carcinogenic · suspect
	☐ Skin irritant☐ Lachrymator☐ Biological	☐ Flammable (FP< 40°C) ☐ Shock sensitive ☐ Carcinogenic · suspect
Toxic □ Pyrophoric □ Acidic □ Caustic □ Other □ Sample Allocation/Chain of Possessie	☐ Skin irritant ☐ Lachrymator ☐ Biological ☐ Peroxide	☐ Flammable (FP< 40°C ☐ Shock sensitive ☐ Carcinogenic · suspect
Toxic □ Pyrophoric □ Acidic □ Caustic □ Other □ Sample Allocation/Chain of Possessie	☐ Skin irritant ☐ Lachrymator ☐ Biological ☐ Peroxide ————————————————————————————————————	☐ Flammable (FP< 40°C ☐ Shock sensitive ☐ Carcinogenic · suspect
☐ Pyrophoric ☐ Acidic ☐ Caustic ☐ Other	☐ Skin irritant ☐ Lachrymator ☐ Biological ☐ Peroxide on:	☐ Flammable (FP< 40°C ☐ Shock sensitive ☐ Carcinogenic · suspect ☐ Radioactive
Toxic Pyrophoric Acidic Caustic Other Sample Allocation/Chain of Possessic Organization Name Received By	□ Skin irritant □ Lachrymator □ Biological □ Peroxide on: Date Received	☐ Flammable (FP< 40°C☐ Shock sensitive☐ Carcinogenic · suspect☐ Radioactive☐ Time
Toxic Pyrophoric Acidic Caustic Other Sample Allocation/Chain of Possessic Organization Name Received By	□ Skin irritant □ Lachrymator □ Biological □ Peroxide on: □ Date Received □	☐ Flammable (FP< 40°C ☐ Shock sensitive ☐ Carcinogenic · suspect ☐ Radioactive ☐ Time ☐ Time ☐ ☐
Toxic □ Pyrophoric □ Acidic □ Caustic □ Other Sample Allocation/Chain of Possessic Organization Name Received By Transported By	□ Skin irritant □ Lachrymator □ Biological □ Peroxide on: □ Date Received □	☐ Flammable (FP< 40°C ☐ Shock sensitive ☐ Carcinogenic · suspect ☐ Radioactive ☐ Time
☐ Pyrophoric ☐ Acidic ☐ Caustic ☐ Other ☐ Sample Allocation/Chain of Possessic Organization Name	Skin irritant Lachrymator Biological Peroxide on: Date Received Sample No.	☐ Flammable (FP< 40°C ☐ Shock sensitive ☐ Carcinogenic · suspect ☐ Radioactive ☐ Time ☐ ☐
☐ Pyrophoric ☐ Acidic ☐ Caustic ☐ Other ☐ Sample Allocation/Chain of Possessic Organization Name	□ Skin irritant □ Lachrymator □ Biological □ Peroxide on: □ Date Received □ □ Sample No. □ S□	☐ Flammable (FP< 40°C ☐ Shock sensitive ☐ Carcinogenic · suspect ☐ Radioactive ☐ Time
Toxic Pyrophoric Acidic Caustic Other Sample Allocation/Chain of Possessic Organization Name Received By Transported By Comments Inclusive Dates of Possession Organization Name Received By	□ Skin irritant □ Lachrymator □ Biological □ Peroxide on: □ Date Received □ Sample No. 5	☐ Flammable (FP< 40°C ☐ Shock sensitive ☐ Carcinogenic · suspect ☐ Radioactive ☐ Time
Toxic Pyrophoric Acidic Caustic Other Sample Allocation/Chain of Possessic Organization Name Received By Transported By Comments Inclusive Dates of Possession Organization Name Received By	□ Skin irritant □ Lachrymator □ Biological □ Peroxide on: □ Date Received □ Sample No. 5	☐ Flammable (FP< 40°C ☐ Shock sensitive ☐ Carcinogenic · suspect ☐ Radioactive ☐ Time
Toxic Pyrophoric Acidic Caustic Other Sample Allocation/Chain of Possessic Organization Name Received By Transported By Comments Inclusive Dates of Possession Organization Name Received By Transported By Comments Comments Comments Comments	Skin irritant Lachrymator Biological Peroxide Date Received Lab Sample No. Date Received Lab Sample No.	☐ Flammable (FP< 40°C ☐ Shock sensitive ☐ Carcinogenic · suspect ☐ Radioactive ☐ Time
Toxic Pyrophoric Acidic Caustic Other Sample Allocation/Chain of Possessic Organization Name Received By Transported By Comments Inclusive Dates of Possession Organization Name Received By	Skin irritant Lachrymator Biological Peroxide Date Received Lab Sample No. Date Received Lab Sample No.	☐ Flammable (FP< 40°C ☐ Shock sensitive ☐ Carcinogenic · suspect ☐ Radioactive ☐ Time
Toxic Pyrophoric Acidic Caustic Other Sample Allocation/Chain of Possessic Organization Name Received By Transported By Comments Inclusive Dates of Possession Organization Name Received By Transported By Comments Comments Comments Comments Comments Comments Comments	Skin irritant Lachrymator Biological Peroxide Date Received Lab Sample No. Date Received Lab Sample No.	☐ Flammable (FP< 40°C ☐ Shock sensitive ☐ Carcinogenic · suspect ☐ Radioactive ☐ Time
Toxic Pyrophoric Acidic Caustic Other Sample Allocation/Chain of Possessic Organization Name Received By Transported By Comments Inclusive Dates of Possession Organization Name Received By Transported By Transported By Inclusive Dates of Possession Organization Name Received By Transported By Inclusive Dates of Possession	Skin irritant Lachrymator Biological Peroxide Date Received Lab Sample No. Date Received Lab Sample No.	☐ Flammable (FP< 40°C ☐ Shock sensitive ☐ Carcinogenic · suspect ☐ Radioactive TimeTime
Toxic Pyrophoric Caustic Caustic Cother Sample Allocation/Chain of Possessin Organization Name Received By Transported By Comments Inclusive Dates of Possession Organization Name Received By Transported By Comments Comm	Skin irritant Lachrymator Biological Peroxide Date Received Lab Sample No. Date Received Lab Sample No.	☐ Flammable (FP< 40°C ☐ Shock sensitive ☐ Carcinogenic · suspect ☐ Radioactive TimeTimeTime

	द्रम्भाति स्टाट्टरराज्यः स्टाटरराज्यः	1		פובח	ونكور	でした	FOR W.	ું ં	046-10-98	0-98	96-02-087			
	PLANT 4	86-01-240		month	-101	60		`	86-03 -04/		CILINO	67	49/11	
ELEMENT	ANALYSIS DATF	QC DATA	`			DUPLICATE	ANALYSIS		600-80-98	SP	SPIKE RE(RECOVERY	>	BLANKS
		FOUND VALUE	TRUE VALUE	% R	SAMP "	SAMP	DUPL	RPD	SAMP#	SR	SSR	SA	% R	
As	2/8/86	140'	040'	103	andup 01 A	4005	5005	NC	an sp 01 A	200,	,024	420.	001	6005 005
	id1=,005	1401	,040	103										19/9)
		,040	040	00/										
				-										
На	2/3/86	4500.	0050	801	419 dup	50003	* 2000.	7/6	de 80 09 A	2002	.0028	0200	140	,0004*
	141= .0002	.0040	,0040	100										
Pb	3-11/86	.043	,045	93	an dup 09 A	<.003	<003	1/0	ansp 09 A	£00>	610.	,024	29	1900'
2.4	600, = /bi	940'	.045	102										19 100
5 1														
33	28/6/8	7770	050'	80	andup 05 A	< 003	< 003	100	ansp 05 A	-003	810'	,024	75	<.003
	500'=161	7.70	050'	38					01.150	<.003	.022	,024		19 100
									dilutu	2			<u> </u>	
Ha	98/8/8	4500	0500'	801	dig dyp 03A	£000%	£0005	200	ds 50	S000	4500.	0000	120	10 ops
	£000 = 1/p1	0700'	0400'	00/										
	an dup = analytical duplice	duplicate	on sp = an	nalytical	1 3p/kc		* Indicates	l .	15	less than	•	nasu	5x instrument	
)				XX	macrix		; ;							

NC= not calculable

1. d.l. = instrument detection limit

<.005 00161 6000. 600 ca/6/ BLANKS <.005 €.00% 19 dard 10 sad 95 75 96 UNITS usplat **%**R 024 83 SPIKE RECOVERY 0000 420 420 SA 053 6100 1023 SSR 120 2000 033 2005 603 SR 02.03-METHS 039 986 02.4 0,2 6 ds 61p an. 5P SAMP# 9n.5P. ds 10 ĺ 9.4 2 RPD DUPLICATE ANALYSIS -,03,03,06)-0114Grease 4.005 .030 DUPL SAMP 033 500% gub no SAMP," 02 6 03 6 an dup 991 501 501 99 98 98 100 98 99 **%**R 96 TRUE VALUE 1040 0050 0400 0400 040. Lampled 115 245 200 070 040 200 040 QC DATA FOUND VALUE thoo. 040 3 0043 033 86-03-031 440 043 8400 1039 040 ANALYSIS DATE A1=.0002 200' = /bi 103 2-19-86 3 30 86 ELEMENT

5

ののは、大人人人の大学

RECORD PARTIES

25

NC= not ealeulable

detection limit

+ indicates value is

ander - analytical duplicati ., a.p. - supélion duplicate

8//

575

less than Sk instrument

INSTALLATION RESTORATION PROGRAM PHASE 2 CONFIRMATION/QUANTIFICATION STAG (U) RADIAN CORP AUSTIN TX DEC 87 F33615-83-D-4881 AD-R198 445 376 UNCLASSIFIED F/G 24/7

MICROCOPY RESOLUTION TEST CHART

BLANKS 10 days <.0002 19 dad 200.× 5.002 19 100 <,005 4.00 A ca16/ <003 19dand * indicates value is less than 5x 110 75 63 88 **₩** UNITS _ WG/ml SPIKE RECOVERY 420 ,0020 1024 024 SA 0022 022 ,021 021 SSR --0002. .00a *600 5005 SR 1:10 dil # (10) 05 E 03E 01E SAMP# ds bip ds up 90 00 ds no NC Z 3 RPD DUPLICATE ANALYSIS *0000 <,005 5002 DUPL 7 <.002 50003 SAMP 2005 310 210 gub pib 06 € SAMP," of dup an dup 66 98 107 66 98 100 93 88 105 96 86 100 **%** TRUE VALUE 540. 0040 245 240 .0050 ,0040 040 samples 040 040 200 200 040 040 QC DATA FOUND VALUE 8 400 540 4400 042. ,0044 048 039 197 197 .039 86-03-04 1837 035 ANALYSIS DATE 2-20-86 2-17-86 8-11-86 1 dl= .00 A 2-14-86 2-14-86 19/ = 1000g 100 = 100 B 2-19-86 200' = 1p 1=10 HC -10121 oil and or case ELEMENT 50 P 6 AS 勒 3 5

instrument defection limit

NC= not calculable

idl-instrument dot limit

andup = analytical duplicati

obý dup = digislov duplicati

on sp= arangical spake dig sp= division opipe or maturi spake

UNITS Upplan

	PLANT 4 8	86.03-060	10 Manales 01	A	05							B		
ELEMENT	ANALYSIS DATE	1 20	QC DATA		DUP	DUPLICATE ANALYSIS	NALYSI	S		SPI	SPIKE REC	RECOVERY	•	BLANKS
		FOUND VALUE	TRUE VALUE	%R	SAMP,"	SAMP	DUPL	RPD	SAMP#	SR	SSR	SA	&R	
AS	2.15-86	960.	1020	101	dig dup	*800	.003	40	dig sp 03 C	*000.	.023	,020	85	19 day
	600 = 1bi	640,	040	501	an dup	*900	,003	}	an sp 05 A	£003	420	720		60/0/ <.002
					1				1:10 9:11					
На	98-08-8	8700	0500'	96	į				054	<0002	.0200	0200'	991	4.000°
	2000' = /pi	E#00.	0400'	105										
		-												
40	78 -01-6	570	270	105	JIO dap bip	450	.03/	9.1	dig 5P	.27	.29	020	001	19 daud
	191 - 002	670	270'	111		1								10101
5												 		
136	18-11-8	840	040	105	dig dup 010	.003	,00°	40	03 C	, 00a	200.	010.	50	prep 61
3		040	040'	001					an sp 05 A	×002	.023	420.	96	19100
									1:10 dilutio	2				
oil and Grease	98-41-6	192	200	49					i					
	1 = 161	197	200	99										
						-			-					
an	sp = analytical apube	apike	an	an dup	= anele	onelytical duplicate	uplic	2	* indicates	cates	Value 15	,	less than	90

an sp = analytacel apike dig sp = digistion or naturi apike idl=instrument deteotion limit

an dup = analytical duplicate dig dup = augustion duplicate

indicates value is less than 5x instrument defection limit

NC= not ealewable

60000> BLANKS <0000> C.002 <.00A <.007 10 dad 19 100 19 dad peppl 4,000 <,002 19/00 19 days 19 100 88 88 100 63 **%** UNITS MALAL 420 SPIKE RECOVERY 024 .024 .0020 SA .0000 035 021 100 SSR 2000' eno' 2003 020 SR 1:10 dilution 1:10 dilution 036 03 € 046 an sp SAMP# ansp ds bip ds up 2.7 RPD DUPLICATE ANALYSIS 038 600 DUPL 1,000 032 SAMP SAMP/" GUD NO an dup 016 1 107 501 501 96 105 96 110 66 8 100 **%**R TRUE VALUE 00000 0400 0000 ,0050 1027 040 ,043 190-80-98 540 040 040 200 200 QC DATA FOUND VALUE 4400 8700 0048 0044 043 045 049 043 029 040 461 461 H LNANA ANALYSIS DATE 2-17-86 2-15-86 2-17-86 A-30-86 2-24-86 2-14-86 6000' = 1PI E00 : = 1P! 1000-100 100 = 1PI =1/0. DIL OND ELEMENT Grease 2 4 90 137

idl=instument detection

dig sp - digition or mature spike an sp = arougaind apute

= dystion duplicate an dup = d b

anolytical dyplicate

than 5 x instrument diaction + inducative value is less Junt NC= not paleulable

74	PLANT 4 86	2-03-079	samples	B	0-10	40	25,04	25,06,07-09	-046,HC			, 0 /		
ELEMENT	ANALYSIS DATE))ù			DUP	DUPLICATE	ANALYSIS	, s		SPIKE	KE RECOVERY	VERY	BLA	BLANKS
		FOUND VALUE	TRUE VALUE	%R	SAMP!"	SAMP	DUPL	RPD	SAMP#	SR	SSR	SA &R		
1,1	ì		9//6	70,	an.dvp	110	070	9.5	on.sp.		020	7760	12 × 603	100
45	2-011-810	640	040	50/	dig dup	110	214:		dig dup	,,,,	_	4_	+-	19100
	161 = 1003	1042	040	501	614	110	110.	0	021	200	,026	020	95 <,002	60 3
		640	040	501								_	× 000 ×	8 4
								ļ						
4	3-20-86	8400	0500'	96	dy dup 01 A	20003	<,0002	NC	45 61P	5000	1500	201 0200	<u> </u>	4.0007 6.0007
	, ,	8700	07100	507										
		4400	0400'	0//										
40	9-21-86	6770	270	80	dup pip	8770	CHO.	7.7	92 plb	-2003	601	020	10dad 10dad 8	100
38	40-100 O	2//2	2772	3 5					92 00	7		1	1	3 %
3		1073	(279)	24)					ds up	7,000	T	' 	1	10
									1:10 dilution	3	7.00	520	6//	22
2	7.21.61	77/0	67, 4	64	dapbip	2007	2007	NC	ds 610	8003	2002	0,0	6002	100
9	9	043	040	801	71.0	2			an sp	2003	0//4	 -	19/20 /	10/2
									an sp	6002		└ `	 	
									diluman	00	1	←		
0:14 Grease	3-14-86	161	200	96										
	1=1/1								_			_	_	

ELEMENT	ANALYSIS DATE	QC DAT	Ą		DUP	DUPLICATE AN	DUPLICATE ANALYSIS	SI		SPI	SPIKE RECOVERY	OVERY		BLANKS
		FOUND VALUE	TRUE VALUE	2R	SAMP,"	SAMP	DUPL	RPD	SAMP#	SR	SSR	SA	% R.	
42	13.41-81	0.2%	1000	0	andup	350	850	0	ansp	5007	400	W20	001	Foor
	7 2 7 2 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		7,7	0,0		7	<u> </u>			:	1			(9/10)
	141=100	.0360	040	70						,				10100
		1037	,040,	93						` \		- †		200.>
						_								
На	2-20-86	8700	0500	%					dig 5p	,000z	6100'	0200'	95	£000;
	- 17:	, 0//00	6//00	301					-					
	\	##00·	0400'	011										
70	70:10	6770	0.773	90	,				an sp	2002	210	1024	1	10 day
5	\$00°=\b'	043	.043	00/					1: poi: 1 450	7	776		001	19/00 >
13														
9	18-10-6	1770	040	103					940	2003	510	420	63	1000 ×
3	2001=11/1	640'	0770	109					ansp 11000		.023			2016/
													-	
oil and	3-14-86	161	200	2										
	/=/pi													
										\int				
						_				_			_	

For work 8601240 orders 8602031 8602041 8602060 8602060

8602079

8602087

Form VII

Q.C. Report No. 2

INSTRUMENT DETECTION LIMITS AND

LABORATORY CONTROL SAMPLE

LAB NAME	Racion	 CASE NO.	PLANT 4	
DATE	3-4-86	 LCS UNITS	ug/L	mg/kg
4		14	i/ml (Circle	one)

			_				ircle One	= / =
		Required Detection		Instrument	Detection			
Сопро	und	Limits (CRDL)-ug/1		Limits (I	DL)-ug/1	Lab Co	ntrol San	ple
				ICP/AA	Furnace*	True	Found	ZR
Metal	s:				;			
1. A	luminum	200	Ц					
2. <u>A</u>	ntimony	60						
3. <u>A</u>	rsenic	10	Ц				1	
4. <u>B</u>	arium	200	Ц	<.001	1		11	
5. <u>B</u>	eryllium	5	Ц			<u></u>	1	
6. <u>c</u>	admium	5		2.002		<u></u>	1	
7. <u>c</u>	alcium	5000	Ľ					
8. <u>c</u>	hromium	10		2.005	1	<u> </u>	!	
9. <u>c</u>	obalt	50					1	
10. <u>c</u>	opper	25			<u> </u>		<u> </u>	
11. <u>I</u>	ron	100					į	
12. <u>L</u>	ead	5					\	
13. <u>x</u>	lagnesium	5000 -						
14. <u>H</u>	anganese	15						
15. <u>x</u>	lercury	0.2						
16. <u>N</u>	lickel	40 "						
17. <u>P</u>	ocassium	5000		-		İ		
18. <u>s</u>	elenium	5						
19. <u>s</u>	ilver	10		<.002				
20. <u>s</u>	odium	5000						
21. ፲	hallium	10						
_	ia	49			- 11			
	anadium	50				1		
24. <u>2</u>	inc	20			1	İ		
- Other					l I	<u> </u>		
						 	1	
Cyani	.ie	10		5	140	\	1	

* dection limits are given on Furnace / Hg/040 PA/AC SUMMARY SHEETS

ICF 9+/90 DATA

For work 8601240 8602031 8602041 8602060 8602067 8602079 8602087

Form II

Q. C. Report No. 3

INITIAL AND CONTINUING CALIBRATION VERIFICATION3

Lab	NAME	Radian				NO	PLAN.	T 4		
	_	11 00			sow N					
	3			•	UNIT	s ugl	nl.			
Como	ound _	Initia			Cont	tinuing (Calibr			
Meta	als:	True Value	Found	IR	True Value	Found	==	Found	翠	Method
1.	Aluminum		ـــــــــــــــــــــــــــــــــــــ					1		
2.	Antimony		\							
3.	Arsenic								1	<u> </u>
4.	Barium	100	1.01	1011	1.00	1.01	1011	1.01		
	Beryllium				1		1		1	1
6.	Cadmium	1.00	1.04	1041	1.00	1.05	105	1.04	104	
	Calcium			1			1		1 11	1
	Chromium	1.00	1.01	1011	1.00	1.02	102	1.02	1021	
	Cobalt									
	Copper								1 11	
	Iron								.	
	Lead		1						1 11	
	Magnesium								İ	
	Manganese								1 11	
	Mercury								1	
	Nickel							1		
	Potassium]]	
	Selenium									
		11.00	1,00	100	1.00	1.02	102	1.00	1001	i
	Sodium							1		i
	Thallium		1					1	<u> </u>	
	Tia		1					1		
	Vanadium		1 1		L			1		
	Ziac		1					1	1 1	
	:		1	 	1		1		 	
	_	1	1	+			1			
Cyanı	de	1	,	+)	1	1	<u> </u>	 	
<u> 4443</u>		<u>1</u>			<u> </u>	1	1	·		<u> </u>

¹ Initial Calibration Source 2 Continuing Calibration Source

³ Control Limits: Mercury and Tin. 80-120; All Other Compounds 90-110

⁴ Indicate Analytical Method Used: P - ICP/Flame AA; F - Furnace

Form II

Q.	c.	Report	No.	

LAB	NAME _	•	- wan cot	WTTNUIN	IG CALIBRATI CASE	ION VERIF				
سب					sow					
DATE	Σ	3-4-86	, 			rs	19/m	/		
Com	pound	Initia	al Calib.	,1		rtinuing (Calibr	ration ²		
		True Value			True Value				222	Method 4
	Aluminum									
	Antimony					<u>i</u>				
	Arsenic									
	Barium				11.00	1-1.01	101	1.01-	101-	
	Beryllium	1		1	11	ì	1	ì	1	
			1		1-1.00	11.04	104	1.03	103]-
	Calcium				11		1 1	<u> </u>	1 1	1
•	Chromium				1.00	11.00	100	1.01	101	
	Cobalt									
10.	Copper					j				11
11.	Iron	i								
12.	Lead				1					11
13.	Magnesium				1	I				
14.	Manganese	1								
15.	Mercury	1	1		1					l
	Nickel					1	1			li
	Potassium	1			1				1	[i
	Selenium	1	1	Ī. I	1		1			11
	Silver	Ī	1		1.00	11.01	1/0/	1.02	1/02	11
	Sodium			T		<u></u>	<u> </u>			l i
	Thallium			1			1		1	11
	Tin	T	1	1			1		 ,	11
	Vanadium			1	1		1			11
	Zinc		 					1		11
	2186	 	†	 			 		<u> </u>	<u> </u>
ع تنه د		1	†	+						<u> </u>
	ide	 	†	 	1	+				<u></u>
Cyan	.445		1	1	Ш				<u> </u>	

I Initial Calibration Source 2 Continuing Calibration Source 3 Control Limits: Mercury and Tin 80-120; All Other Compounds 90-110

⁴ Indicate Analytical Method Used: P - ICP/Flame AA; F - Furnace

Q. C. Report No. 2 BLANKS

LAB NAME	Radian	CASE NO. PLANT 4
DATE	2-4-86	UNITS ugine

Matrix water

			ua ua	10			
	Initial	Cont	inuing Ca	librati	00		
Preparation	Calibration		Blank V	Value		Preparat	ion Blank
Compound	Blank Value	1	2	3	4	1	2
Metals:		11	<u></u> +				
1. Aluminum							
2. Antimony							
3. Arsenic							
4. Barium	2.001	1.001	1.001	1.001	2.001		
5. Beryllium							
6. Cadmium	1.002	1.002	1.002	.002*	.002*		
7. Calcium							
8. Chromium	4.005	1.605	2.005	4.005	14.005		
9. Cobalt							
10. Copper							
ll. Iron							
12. Lead							
13. Magnesium	1						
14. Manganese	1						
15. Mercury							
16. Nickel							
17. Potassium	2						
18. Selenium							
19. Silver	1,006*	11.018	.010	,0094	.014		
20. Sodium							
21. Thallium							
22. Tin					1		
23. Vanadium							
24. Zinc						•	
Other:	·						
					1		
Cyanide					!		

Form III

Q.	c.	Report	No.	2_
----	----	--------	-----	----

2-11-86

		BLANKS		2-11 04	
LAB NAME	Radian		CASE NO.	PLANT 4	
DATE	3-4-86		UNITS	ualmo	
		Macrix water			
	Initial	Continuing Calibrat	ion	<u> </u>	

	Initial	Conti	nuing Ca	librati	.on	11	
Preparation	Calibration		Blank V	alue		Preparat	ion Blank
Compound	Blank Value	1	2	3	4	1	2
ietals:							
l. Aluminum							
2. Antimony							
3. Arsenic					<u> </u>		
4. Barium						11.004*	
5. Beryllium							
6. Cadmium				•		1.002	
7. Calcium							
3. Chromium						1.005	
Cobalt							
lO. Copper							
ll. Iron				_			
12. Lead							
13. Magnesium							
14. Manganese							
15. Mercury							
l6. Nickel							
17. Potassium							
18. Selenium							
19. Silver						112.002	
20. Sodium							
21. Thallium							
22. Tin							
23. Vanadium							
24. Zine						•	
Other:	·						
					1		
Cyanide		1			!	11	+

⁺ value we loss than 5x ial

Form VI

Q. C. Report No. 2

DUPLICATES

THE REPORT OF THE PROPERTY OF

LAB NAME <u>Radian</u> DATE <u>3-4-86</u>	PRE-DIGESTION DUPLICATE MALTIX WATER	CASE NO. PLANT 4 EPA Sample No. Lab Sample ID to. Successible Units ug m		
Compound Control Limit		Duplicate(D)	RPD-	
Metals: 1. <u>Aluminum</u>				
2. Antimony		<u> </u>		
3. Arsenic		<u> </u>	1	
4. Barium	.076	1.076	10.0	
5. Servilium !			<u> </u>	
6. Cadzium	12.002	1.00Z	1 NC	
7. Calcius				
3. Chromium	1.009*	.005*	157	
O. Copalt.	<u> </u>		1	
O. Copper	<u> </u>		<u>i </u>	
i. Iron	<u> </u>		1	
12. Lead		<u> </u>	<u>i</u>	
l3. Maznesium				
4. Manganese		<u> </u>	1	
15. Mercury		<u> </u>		
l6. Nickel		<u> </u>	<u> </u>	
17. Potassium				
8. Selenium	<u> </u>		1	
19. Silver	1.005*	1 .010*	67	
20. Sodium				
21. Thallium				
22. Tin				
23. Vanadium				
24. Zinc				
Otner:				
Cyanide			1	

 1 - Non calculable RPD due to value(s) less than CRDL

RPCs are high.

* value is less than 5 x id!

A. sample value we less than 5x the detection limit, therefore

^{5 145}

Form V

Q. C. Report No. 2

SPIKE SAMPLE RECOVERY

LAB NAME	Radian	PRE-016EST 	CASE NO	. PLANT 4	<u> </u>
DATE	3-4-86		EPA Sa: Lab Sa	mple No.	81-07031-03
			. Units	light -	
		Matrix <u>Wo</u> t	<u>rer</u>		pre-dugo
Compound	Control Limit	Spiked Sample Result (SSR)	Result (SR)	Spiked	$\mathcal{Q}_{\mathcal{C}}$
Metals:		Result (33K)	Result (SK)	Added (SA)	1 • • • • • • • • • • • • • • • • • • •
l. Aluminu	m 75-125			l }	1 1
2. Antimon		<u> </u>	<u> </u>	<u>!</u>	1 !
3. Arsenic		<u> </u>	<u> </u>		<u>'</u>
4. Barium	· · ·	1.81	.072	2.00	187
5. Bervlli	um l	1	1012	1	
6. Cadmium		0.36	2.002	.050	172
7. Calcium	:			1	1
8. Chromiu		17	2.005	.20	185
9. Cobalt			1		1 1
10. Copper	"		1		1
11. Iron	"		1	1	1
12. Lead			i		1 !
13. Magnesi	uml "	i	1	1	1
14. Mangane	sel "		1	1	
15. Mercury	. "		1	1	1 1
16. Nickel			1		1
17. Potassi	.um "			ĺ]
18. <u>Seleniu</u>	ım.				
19. Silver	•	,20	.007*	1,25	177
20. Sodium					
21. Thalliu	ım				1
22. <u>Tin</u>	1 "		L		1
23. <u>Vanadiu</u>	· · · · · · · · · · · · · · · · · · ·				!
24. Zinc					11
Other:	1			ł	!
	1				<u> </u>
Cyanide					! !
1 42 = [(55	SR - SR)/SA] x 100				-
"R"= out of				volume	change
Comments:	spike ada	ud 40 sar	uple-no	dutur	
	* value is less to	han B-1		-	
	5 x idl		5 146		

Volatile Organics

DETECTION LIMITS

8602031-0	Q ~ -08	
METHOD (OO)		METHOD
		DETECTION
		LIMIT
•		ug/e
COMPOUND	- 0 - 0	
	-02 > 08	
Chloromethane	0.08	
Bromomethane	1.18	
Vinyl Chloride	0.18	
Chloroethane	0.52	72
Methylene Chloride	0.95	
Trichlorofluoromethane	1 0.10	
1,1-Dichloroethene	0.13	
l,1-Dichloroethane	1 0.07	
Trans-1,2-Dichloroethene	0.10	
Chloroform	0.05	
1,2-Dichloroethane	0.03	
l,l,l-Trichloroethane	0.03	
Carbon Tetrachloride	10.12	
Bromodichloromethane	10,10	
1,2-Dichloropropane	0.04	
Trichloroethene	0.18	
Dibromochloromethane	0.09	
2-Chloroethylvinyl Ether	0.13	
Brcmoform	0.30	
Tetrachloroethene	0.03	
Chlorobenzene	0.25	
1,3-Dichlorobenzene	0.32	
1,2-Dichlorobenzene	0.15	
1,4-Dichlorobenzene	0,24	
*************************		=======================================

DETECTION LIMITS

SOON SECURIOR SECURIOR SECURIOR CONTRACTOR DESCRIBE PERSONAL FINISE DESCRIBE DESCRIBE DESCRIBE DE CONTRACTOR DE CO

VOLATILE ORGANICS METHOD (60)

COMPOUND	-03,-03,	7	DETE	DETECTION LIMIT LUG//	
BENZENE		2000			
TOLUENE	0.8	9cc			
ETHYLBENZENE	0.8	900	į		
CHLOROBENZENE	0. ය	300	_		
1,4-DICHLOROBENZENE	6,3	3c0			
1,3-DICHLOROBENZENE	D.4	700	Ì		
1,2-DICHLOROBENZENE	6.4	0015	-		
P- Xylene			0,3		
m-Xylene		ļ	ر ر		
0-xylene			6.3		

PROCESSOR STANDARD STANDERS SOCIETA SO

LAB # SYSTO	BUNK		
CLIENT NAME			
SAMPLE ID			
	*********	************	*******
EPA METHOD 601	DATE: 2/c//C ANALYST: JSC INSTRUMENT: Yu	EPA METHOD 602	DATE: ANALYST: INSTRUMENT:
COMPOUND	CONCENTRATION (ug/L)	COMPOUND	CONCENTRATION (ug/L)
Chloromethane		Benzene	
Bromomethane		Toluene	
Vinvl Chloride		Ethyl benzene	
Chloroethane		Chlorobenzene	
Methylene chloride		1.4-Dichlorobenzene	
Trichlorofluromethane		1.3-Dichlorobenzene	
1.1-Dichlorethene		1.2-Dichlorobenzene	
1.1-Dichlorethane		P-Xylene	
Trans-1.2-Dichloroethene	<u> </u>	M-Xylene	
Chloroform		O-Xylene	
1.2-Dichlorethane	 		
1.1.1-Trichlorethane			
Carbon tetrachloride			
Bromodichlormethane			
1.2-Dichloropropage		SURROGATE RECOVERI	ES:
Trans-1.3-Dichloroproper	<u> </u>	601	
Trichloroethene	0.15	Bromochloromethane	
Dibromochloromethane		2-Brome-1-Chloropr	
1.1.2-Trichlorethane		1,4-Dichlorobutane	
cis-1.3-Dichloropropene		602	
2-Chloroethylvinyl ether		a,a,a,-Trifluorotoluene	
Bromoform			
1.1.2.2-Tetrachlorethane		-	
Tetrachlorethylene			
Chlorobenzene	· · · · · · · · · · · · · · · · · · ·		
1.3-Dichlorobenzene		4	
1.2-Dichlorobenzene		4	
1.4-Dichlorobenzene		-	

LAB # (l ea	HENT BUNK		
CLIENT NAME			
SAMPLE ID			
*****	######################################	*********	E
EPA METHOD	DATE: 2/6/3L	EPA METHOD	DATE:
601	ANALYST CO	602	ANALYST:
	INSTRUMENT	سنر	INSTRUMENT:
COMPOUND	CONCENTRATION (ug/L)	COMPOUND	CONCENTRATION (ug/L)
	(48/ =/		
Chloromethane		Benzene	
Bromomethane		Toluene	
Vinyl Chloride		Ethyl benzene	
Chloroethane		Chlorobenzene	
Methylene chloride		1.4-Dichlorobenzene	
Trichlorofluromethane		1.3-Dichlorobenzene	
1.1-Dichlorethene		1.2-Dichlorobenzene	
1.1-Dichlorethane		P-Xvlene	
Trans-1.2-Dichloroethe		M-Xylene	
Chloroform		0-Xylene	
1.2-Dichlorethane 1.1.1-Trichlorethane		1	
Carbon tetrachloride		† ·	
Bromodichlormethane		1	
1.2-Dichloropropage		SURROGATE RECOVER	TFS.
Trans-1.3-Dichloroprop		601	.155.
Trichloroethene		Bromochloromethan	
Dibromochloromethane		2-Bromo-1-Chlorop	
1.1.2-Trichlorethane		1,4-Dichlorobutan	-
cis-1.3-Dichloroproper		602	·
2-Chloroethylvinyl eth		a,a,a,-Trifluorot	oluene
Bromoform	<u> </u>		
1.1.2.2-Tetrachloretha	ine		
Tetrachlorethylene			
Chlorobenzene			
1.3-Dichlorobenzene			
1.2-Dichlorobenzene			
1.4-Dichlorobenzene			
		7	
1			

LAB # SYSTA BUA	JK		
CLIENT NAME			
SAMPLE ID			
****************	****	****	****
	Holze St:352 UMENT: Bu	EPA METHOD 602	DATE: ANALYST: INSTRUMENT:
	NTRATION g/L)	COMPOUND	CONCENTRATION (ug/L)
Chloromethane	NO	Benzene	
Bromomethane		Toluene	
Vinvl Chloride		Ethyl benzene	
Chloroethane		Chlorobenzene	
Methylene chloride		1,4-Dichlorobenzene	
Trichlorofluromethane		1.3-Dichlorobenzene	
1.1-Dichlorethene		1.2-Dichlorobenzene	
1.1-Dichlorethane		P-Xylene	
Trans-1.2-Dichloroethene		M-Xylene	
Chloroform		0-Xylene	
1.2-Dichlorethane			
1.1.1-Trichlorethane			
Carbon tetrachloride			
Bromodichlormethane			
1.2-Dichloropropane		SURROGATE RECOVER	IES:
Trans-1.3-Dichloropropene		601	
Trichloroethene	 	Bromochloromethan	
Dibromochloromethane	ļ	2-Bromo-1-Chlorop	ropane
1.1.2-Trichlorethane	ļ	1,4-Dichlorobutan	e
cis-1.3-Dichloropropene		602	
2-Chloroethylvinyl ether		a,a,a,-Trifluorot	oluene
Bromoform		1	
1.1.2.2-Tetrachlorethane		4	
Tetrachlorethylene		1	
Chlorobenzene			
1.3-Dichlorobenzene	<i></i>	4	
1.2-Dichlorobenzene			
1.4-Dichlorobenzene		_	

LAB # (1.29	PREM BUNK		
CLIENT NAME			
SAMPLE ID			
SAMPLE ID			
EPA METHOD 601	DATE:] - 0. ANALYST: C. INSTRUMENT: Ju	EPA METHOD 602	DATE: ANALYST: INSTRUMENT:
COMPOUND	CONCENTRATION (ug/L)	COMPOUND	CONCENTRATION (ug/L)
Chloromethane		Benzene	
Bromomethane		Toluene	
Vinyl Chloride		Ethyl benzene	
Chloroethane		Chlorobenzene	
Methylene chloride	0.44	1.4-Dichlorobenzene	
Trichlorofluromethane		1.3-Dichlorobenzene	
1.1-Dichlorethene		1.2-Dichlorobenzene	
1.1-Dichlorethane		P-Xylene	
Trans-1.2-Dichloroethe	ne	M-Xylene	
Chloroform		O-Xylene	
1.2-Dichlorethane			
1.1.1-Trichlorethane		1	
Carbon tetrachloride			
Bromodichlormethane		1	
1.2-Dichloropropane		SURROGATE RECOVER	IES:
Trans-1.3-Dichloroprop	ene	601	
Trichloroethene		Bromochloromethan	
Dibromochloromethane		2-Brome-1-Chlorop	
1.1.2-Trichlorethane		l,4-Dichlorobutan	e
cis-1.3-Dichloropropen	<u>e</u>	602	
2-Chloroethylvinyl eth	er	a,a,a,-Trifluorot	oluene
Bromoform		4	
1.1.2.2-Tetrachloretha	ne	4	
<u>Tetrachlorethylene</u>			
Chlorobenzene		4	
1.3-Dichlorobenzene			
1.2-Dichlorobenzene		<u> </u>	
1.4-Dichlorobenzene		-	

VOA RESULTS

RECESSES PROJECTED PROPERTY ANDREAD STATES SECTION

LAB # SYS-A-	- BLANK		
CLIENT NAME			
SAMPLE ID			
**************************************			*********
EPA METHOD 601	DATE: ANALYST: INSTRUMENT:	EPA METHOD 602	DATE: 46/6(ANALYST: 55 < INSTRUMENT: 00
COMPOUND	CONCENTRATION (ug/L)	COMPOUND	CONCENTRATION (ug/L)
Chloromethane		Benzene	No
Bromomethane		Toluene	
Vinyl Chloride		Ethyl benzene	
Chloroethane		Chlorobenzene	
Merhylene chloride		1.4-Dichlorobenzene	
Trichlorofluromethane		1.3-Dichlorobenzene	
1.1-Dichlorethene		1.2-Dichlorobenzene	
1.1-Dichlorethane		P-Xylene	
Trans-1.2-Dichloroethen	e	M-Xylene	
Chloroform		0-Xylene	<u> </u>
1.2-Dichlorethane		_	
1.1.1-Trichlorethane]	
Carbon tetrachloride		1	
Bromodichlormethane		4	
1.2-Dichloropropane		SURROGATE RECOVER	ES:
Trans-1.3-Dichloroprope	ne	601	
Trichloroethene		Bromochloromethane	
Dibromochloromethane		2-Brome-1-Chloropi	•
1.1.2-Trichlorethane		l,4-Dichlorobutane	·
cis-1.3-Dichloropropene		602	
2-Chloroethylvinyl ethe	<u>r</u>	a,a,a,-Trifluoroto	oluene
Bromoform		4	
1.1.2.2-Tetrachlorethan	e	4	
Tetrachlorethylene		4	
Chlorobenzene		-	
1.3-Dichlorobenzene		4	
1.2-Dichlorobenzene		4	
1.4-Dichlorobenzene		-	

VOA RESULTS

LAB # Norton B	MIL		
CLIENT NAME			
SAMPLE ID			
**************	*********	*********	
EPA METHOD 601	DATE: ANALYST: INSTRUMENT:	EPA METHOD 602	DATE: 2/6/4 ANALYST: CY INSTRUMENT: OL
COMPOUND	CONCENTRATION (ug/L)	COMPOUND	CONCENTRATION (ug/L)
Culoromethane		Benzene	No
Bromomethane		Toluene	
Vinyl Chloride		Ethyl benzene	
Chloroethane		Chlorobenzene	
Methylene chloride		1.4-Dichlorobenzene	
Trichlorofluromethane		1.3-Dichlorobenzene	
1.1-Dichlorethene		1.2-Dichlorobenzene	-
1.1-Dichlorethane		P-Xylene	
Trans-1.2-Dichloroethen	e	M-Xylene	
Chloroform		O-Xylene	
1.2-Dichlorethane		1	-
1.1.1-Trichlorethane			
Carbon tetrachloride		1	
Bromodichlormethane			
1.2-Dichloropropane		SURROGATE RECOVERI	ES:
Trans-1.3-Dichloroprope	ne	601	
Trichloroethene		Browochloromethane	
Dibromochloromethane		2-Bromo-1-Chloropr	•
1.1.2-Trichlorethane		1,4-Dichlorobutane	
cis-1.3-Dichloropropene		602	
2-Chloroethylvinyl ethe	τ	a,a,a,-Trifluoroto	luene
Bromoform		4	
1.1.2.2-Tetrachlorethan	e	4	
Tetrachlorethylene		4	
Chlorobenzene		4	
1.3-Dichlorobenzene		4	
1.2-Dichlorobenzene			
1.4-Dichlorobenzene			

THE TRANSPORT OF THE PROPERTY

DAILY QUALITY CONTROL RAS GC LAB

DATE:	2/1/36		SPIKED VALUE (ug/L)	ANAI	YZED VA	LUE	R	Z ECOVERY	
		INSTRUMENT		5		_	D		
a tangé résekt		ANALYST		U			9		
TEST TETHOD	COMPOU	VD ~ ~	· -						
EPA 601	Chloromethane		16.2						
	Chloroethane		28.1						
	Methylene Chloric	ie	26.3						
	1,1-Dichloroethy	lene	45.0						
	Trans-1,2-Dichlo	roethvlene	12.5						
	Carbon Tetrachlo	ride	60.0						
	Dichlorobromomet	nane	40.0			· 			
	1,1,2-Trichloroe	thane	33.8	 					
EPA 602	Benzene	_	30.7	36.1			118		
	Toluene		4.1	4.7			114		
	Ethylbenzene		11.5	11.8			102		
!	P-Xylene		19.1	31.6		<u> </u>	113		
,	M-Xylene		42.6	47.5			112		
	O-Xylene		10.6	10.9			103		
EPA 608			(ug/g)	}	(ug/g)				
	Aroclor 1242		58.7						
	Aroclor 1260		56.8				<u> </u>	1	

DAILY QUALITY CANTAUL

: ;;

EPA OC WP 483 cmc 2 + EPA OC WP 781 cmc ?

26/16

The second secon

0(0(76		G	5
	CENTIFIED VALUE (MJ/L)	ANALUZED VALUE	8 nec
Chloromethane			
Bromomethane			
Vinyl chloride			
Chloroethane	,		
Methylene chloride	9.2	10.1	110
Trichlorofluoromethane			
l,l-Dichloroethene	10.0	8,0	९ ०
l,l-Dichloroethane			
trans-1,2-Dichloroethene	5,4		
Chloroform	43.0	67.1	15%
1,2-Dichloroethane	27.6	25.1	91
1,1,1-Trichloroethane	14.3	13.5	95
Carbon tetrachloride	200	16.2	91
Bromodichloromethane	7.9	8.8	111
1,2-Dichloropropane	8.0	8,0	100
Trichloroethene	22.2	23.5	106
Dibromochloromethane	16.7	13.5	31
1,1,2-Trichloroethane cis-1,3-Dichloropropene			
2-Chloroethylvinyl ether			
Bromoform	5.5	9.8	59
1.1.2.2-Tetrachloroethane	10.0		
Tetrachloroethylene	6.2		
Chlorobenzene	8.7	9.7	119
1,3-Dichlorobenzene	•		
1,2-Dichlorobenzene			
1,4-Dichlorobenzene			

DAILY QUALITY CANTAGE

EPA OC WP 483 cmc 2 + EPA OC WP 781 cmc 3

THE PROPERTY OF THE PROPERTY O

5/60/36		B /G	B /G
	CENTIFIED VALUE (MJ/L)	ANALYZED	8 nec
Chloromethane			
Bromomethane			
Viny1 chloride			
Chloroethane			
Methylene chloride	9.2	9.6/10.9	104/119
Trichlorofluoromethane			
1,1-Dichloroethene	10.0	8,9 7,2	89 /72
1,1-Dichloroethane			
trans-1,2-Dichloroethene	5.4		
Chloroform	43.0	55,2/66.5	129/15
1,2-Dichloroethane	27.6	24.7/22.9	
1,1,1-Trichloroethane	14.3	16.3/14.5	114/101
Carbon tetrachloride	200	19.9 /17.3	99 137
Bromodichloromethane	7.9	3.9 /2.4	112/107
1,2-Dichloropropane	8.0	8.0 /23	00/91
Trichloroethene	22.2	23.7 /22.7	107 /12
Dibromochloromethane	16.7	16.9 /13.4	101/80
1,1,2-Trichloroethane			
cis-1,3-Dichloropropene 2-Chloroethylvinvl ether			
Bromoform -	. 9.9	8.6 19.5	87 /96
1.1.2.2-Tetrachloroethane	10.0	11.3	01/0
Tetrachloroethylene	6.2		
Chlorobenzene	8.2	8,4 /7,5	102/92
1,3-Dichlorobenzene			
1,2-Dichlorobenzene			
1,4-Dichlorobenzene			

RADIAN

SPIKE RECOVERY

EPA METHOD 601	86000	31-0	30				ارتنوس وسنوسم	
Volatile Organics	860	125		ls6 Hem				_
COMPOUNDS	SSR	SR	SA	ZR	SSR	SR	SA	ZR
Chloromethane								
Bromomethane			1	1		l		_ [
Vinyl chloride								
Chloroethane		-			1			
Methylene chloride	10.4		9.2	113		_		
Trichlorofluoromethane								
l,1-Dichloroethene	8.40		10.0	84				
l,1-Dichloroethane								
trans-1,2-Dichloroethene	63		5,4	117				
Chloroform	62.6		43.0	160		1		
1,2-Dichloroethane	25.5		27.6	92		i		
l,l,l-Trichloroethane	16.1		14.3	113				
Carbon Tetrachloride	22.1		23.0	(IY				
Bromodichloroemethane	9.3		7.5	117				
1,2-Dichloropropane	8.6		8.0	108				
Trichloroethene	25.7		22.2	116				
Dibromochloromethane	14.3		16.7	86				
1,1,2-Trichloroethane								
cis-1,2-Dichloropropene								
2-Chlorethylvinyl ether								
Bromoform	10.3	_	9.9	104				
l,1,2,2-Tetrachloreothan			10.0		T	<u> </u>	!	
Tetrachlorethylene			6.2	1	1		· _	
Chlorobenzene	9.3		8.7	115				
1,3-Dichlorobenzene					1			
1,2-Dichlorobenzene					1			
1,4-Dichlorobenzene					T		1	
					1	1		l

SSR = Spiked Sample Result

SR = Sample Result

5 158

SA = Spike Added

ASSAIL TEITHER SECONDEL SECONDE SECONDES POSTOTO POSTOTO ELECTROSE ESPECIAL POSTOTO ELECTRON DE SECONDE DESECUNDO DE SECONDE DESECUNDO DE SECON

RADIAN

SPIKE RECOVERY

EPA Method 602	2/1/06			
Volatile Organics	ylloc pr			
SAMPLE # 86 0 731 - 86 D	1)			
SAMPLE # <u>86 0 × 31 - 1</u> 86 D UNITS <u>Pumy</u> 860135				
сомроили	SSR	SR	SA	Z R
Benzene	336		347	110
Toluene	5,09	2.28	4.1	69
Ethyl benzene	11.1		11.5	87
1,4-Dichlorobenzene				
1,3-Dichlorobenzene				
1,2-Dichlorobenzene				
O-Xylene	9.1		10.6	86
M-Xylene	44.1		42.6	10B
P-Xylene	30.0		19.1	105
Chlorobenzene				

SSR = Spiked Sample Result

SR = Sample Result

SA = Spike Added

DUPLICATE ANALYSIS

				_
EPA METHOD 602				
VOLATILE ORGANICS				
SAMPLE # 8660031-03	3E			
UNITS 11010.				
COMPOUND	RUN#1	RUN#2	RPD	
Benzene	ND	NB_	NC	
Toluene	1		1	
Ethyl benzene				
1,4-Dichlorobenzene				
1,3-Dichlorobenzene				
1,2-Dichlorobenzene				
0-Xylene				
M-Xylene				
P-Xylene				
Chlorobenzene	1	-	7	
i	1	•		

$$RPD = \frac{|R_1 - R_2|}{(R_1 + R_2)/2} \times 100$$

RPD= Relative Percent Difference

LAB #:800QC31-CQC
SAMPLE ID: 800184
DATE: 3-0-84-
INSTRUMENT: C
601/8010
BROMOCHLOROMETHANE: 1090/6
2-BROMO-1-CHLOROPROPANE: 1000
602/8020
a,a,a-TRIFLUOROTOLUENE:

LAB #: <u>86002031-C3C</u>
SAMPLE ID: 800125
DATE: 2-6-86
INSTRUMENT:
601/8010
BROMOCHLOROMETHANE: 90%
2-BROMO-1-CHLOROPROPANE: 81%
602/8020
a.a.a-TRIFLUOROTOLUENE:

LAB #: 8006031-04B
SAMPLE ID: SCOI27
DATE: 2-(0-86)
INSTRUMENT:
601/8010
BROMOCHLOROMETHANE: 1770/6
2-BROMO-1-CHLOROPROPANE: 1020/0
602/8020
a.a.a-TRIFLUOROTOLUFNF:

RADIAN

LAB #: 8602031-05B
SAMPLE ID: 80018
DATE: 2-40-86
INSTRUMENT:
601/8010
BROMOCHLOROMETHANE: 1000
2-BROMO-1-CHLOROPROPANE: 1210/6
602/8020
a,a,a-TRIFLUOROTOLUENE:

LAB #: 86000031-07A
SAMPLE ID: FIELD PLANK
DATE: 2-60-86
INSTRUMENT:
601/8010
BROMOCHLOROMETHANE: 1050/0
2-BROMO-1-CHLOROPROPANE:
602/802 0
a,a,a-TRIFLUOROTOLUENE:

LAB #: 860031-08A
SAMPLE ID: TRIP BLANK
DATE: 2-10-80
INSTRUMENT:
(01/0010
601/8010
BROMOCHLOROMETHANE: 125%
2-BROMO-1-CHLOROPROPANE: 170/
602/8020
a,a,a-TRIFLUOROTOLUENE:

RADIAN

LAB #: 8000031-02E
SAMPLE ID: 800194
DATE: 2-6-86
INSTRUMENT:
601/8010
BROMOCHLOROMETHANE:
2-BROMO-1-CHLOROPROPANE:
602/8020
a,a,a-TRIFLUOROTOLUENE: 100%

LAB #: 8000031-03E
SAMPLE ID: 800125
DATE: 2-10-86-
INSTRUMENT:
601/8010
BROMOCHLOROMETHANE:
2-BROMO-1-CHLOROPROPANE:
602/8020
a,a,a-TRIFLUOROTOLUENE: 1090/0 1090/

_
LAB #:8008031-CLE
SAMPLE ID: 800177
DATE: 2-10-86
INSTRUMENT:
601/8010
BROMOCHLOROMETHANE:
2-BROMO-1-CHLOROPROPANE:
602/8020
a,a,a-TRIFLUOROTOLUENE: 140%

LAB #: 8006031-05D
SAMPLE ID: 800138
DATE: 2-6-86-
INSTRUMENT: D
601/8010
BROMOCHLOROMETHANE:
2-BROMO-1-CHLOROPROPANE:
602/802 0
a,a,a-TRIFLUOROTOLUENE: 1124

Charles of the property of the control of the contr

LAB #: 8009031-CLCD
SAMPLE ID: 800189
DATE: 2-6-86-
INSTRUMENT:
(01/0010
601/8010
BROMOCHLOROMETHANE:
2-BROMO-1-CHLOROPROPANE:
602/802 0
a,a,a-TRIFLUOROTOLUENE: ICC 46

RADIAN

LAB #:8000031-07B
SAMPLE ID: FIELD PLANK
DATE: 2-6-86
INSTRUMENT: D
601/8010
BROMOCHLOROMETHANE:
2-BROMO-1-CHLOROPROPANE:
602/802 0
a,a,a-TRIFLUOROTOLUENE: OLO

LAB #: 8000031-08A
SAMPLE ID: TRIPBLANK
DATE: 2-6-86
INSTRUMENT:
601/8010
BROMOCHLOROMETHANE:
2-BROMO-1-CHLOROPROPANE:
602/8020
a.a.a-TRIFLUOROTOLUENE

RADIAN

PA 625 860126; 860133; 860132; 860134

SACRAHENTO

CHAIN OF CUSTODY RECORD

		Field Sample No.
Company Sampled / Address Sample Point Description		
Stream Characteristics: Temperature Visual Observations/Comments		•
Amount of Sample Collected	10°C Other 4°C	Clars Pootties
Caution - No more sample available Other Instructions - Special Handling -		
Hazardous sample (see below)	☐ Non-hazar	dous sample
M Toxic	☐ Skin irritant	☐ Flammable (FP< 40°C)
☐ Pyrophoric	☐ Lachrymator	☐ Shock sensitive
☐ Acidic	☐ Biological	Carcinogenic suspect
□ Caustic □ Other	☐ Peroxide	Radioactive
Sample Allocation/Chain of Possessio Organization Name		
Received By	Date Received	Time
Transported By / / / / / / / / / / / Comments	Lab Sample No Sur_	C 4 C 5%
Inclusive Dates of Possession	2-6-86	
\sim \sim \sim \sim \sim		
	Inalytical Services	2-7 4 0620
Received By Clark Muller		2-7-86 Time 0925
Transported By <u>Federal</u>		
Comments Inclusive Dates of Possession		
Organization Name		
Received By		
Transported By		
Comments		
Inclusive Dates of Possession		

CHAIN OF CUSTODY PEODES

	Fie	ld Sample No
Company Sampled / AddressSample Point Description		, Plant4
Stream Characteristics:		
Temperature	Flow	pH
Visual Observations/Comments		
Collector's Name NELL R	BINS ON Date/Time Sampled	2-6-86
Amount of Sample Collected 3	Three 1,000ml Dk Glo	in bottles
Sample Description (2779070	l Water	
Store at: ☐ Ambient ☐ 5°C ☐ —	10°C Cother <u>+°C</u>	·
Caution - No more sample available	☐ Return unused portion of sample ☐	Discard unused portions
7	Hazards	
Hazardous sample (see below)	☐ Non-hazardou	s sample
Toxic	☐ Skin irritant	☐ Flammable (FP< 40°C)
☐ Pyrophoric	☐ Lachrymator	☐ Shock sensitive
□ Acidic	☐ Biological	` ♥ Carcinogenic · suspect
□ Caustic	☐ Peroxide	☐ Radioactive
□ Other		
Sample Allocation/Chain of Possessio	n:	
Organization Name		
Received By	Date Received	
Transported By Hell Op 11	Lab Sample No 8 C	<u> </u>
Comments	4.0/	
Inclusive Dates of Possession	-0-86	
	Inalytical Services	
Received By Camualog	Date Received 2	7-86 Time 09:25
	Lab Sample No	
Comments		
Inclusive Dates of Possession		
Organization Name		
Received By	Date Received	Time
Transported By	Lab Sample No	
Comments		
Inclusive Dates of Possession		

METALS 800134:	860126; 800135,800131	1860132 : 800130
HYDROCARRON PU	54 500131 800130	OLA GREASE X60130 560131
		860130 , X60135 , FIELD AUPE
CORPORATION FAT 602	800132 860126; 860131;	860150 Sto 15 FIELD DUPE
AUSTIN EPAGOI 8601	CHAIN OF CUSTODY RECORD	ONE TRIPBLANK
	<u> </u>	Field Sample No.
EM 602 8/00 1		•
Company Sampled / Address	eal Vynamies - fort	with flan 4
Sample Point Description	. //.]	
Stream Characteristics:		
Temperature	Flow	pH
Visual Observations/Comments		
Collector's Name NEIL RE	ParalTime Same	led 2-6-561
Amount of County College of Colle	Date Time Samp	Chadi San I de la latina
Amount of Sample Collected (27) tw	Wale	TALL SCHOOL SCHOOL SET TOWN TOWN
Sample Description		
Store at: ☐ Ambient ☐ 5°C ☐ -	10°C Other 40C	
ho		
Caution - No more sample available	□ Heturn unused portion of samp	ie 🗇 Discard unused portions
Other Instructions - Special Handling -	Hazards	
V		
Hazardous sample (see below)	□ Non-haza	ardous sample
A Toxic	☐ Skin irritant	☐ Flammable (FP< 40°C)
☐ Pyrophoric	☐ Lachrymator	□ Shock sensitive
□ Acidic	☐ Biological	ズ Carcinogenic - suspect
□ Caustic	☐ Peroxide	☐ Radioactive
□ Other		
Sample Allocation/Chain of Possession		
Organization Name		
Received By	Date Received	d Time
Transported By	Lab Sample No.	
Comments		
Inclusive Dates of Possession	-6-86	
Organization Name		
Received By	Date Received	d Time
Transported By	Lab Sample No	<u> </u>
Comments		
Inclusive Dates of Possession		
Organization Name		
Received By		
•		
Transported By		
Comments		
Inclusive Dates of Possession		

COCCEOUS AND TOTAL MACCOCCES FOR EQUA

THE PROPERTY OF THE PROPERTY O

33(4)24 • [64	DY WHOWAY FRANCES - BESSESS - BEBSSESS - BESSESS - BESSESS - BESSESS - BESSESS - BESSESS - BESSESS - BESSESS -	A beause	Shane	orc:	34 11 1 3 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1	\$556°	A. 1.11.		34.77.88 36-10-240	80.20-96	180-20-78		1	and Samain
	FLANT 4	86-01-240		sameles	101-09	60	ע אט א	10.00 86	86-02-031		UNITS	1	molon	
ELEMENT	ANALYSIS DATE	QC DATA				DUPLICATE	ANALYSIS		16-02-060 16-08-067 18-08-079	SP	SPIKE REC	RECOVERY		BLANKS
		FOUND VALUE	TRUE VALUE	8 R	SAMP,"	SAMP	DUPL	RPD	SAMP#	SR	SSR	SA	88 R	
45	2/8/86	140'	040'	103	andup 01 A	4005	5005	NC	an sp 01 A	200,	420,	420.	190	19020 >
	200,=1bi	1401	040	103										(2) 6/ 6/
		040	040'	001										
Н	2/3/86	.0054	.0050	s a/	dig dup 09A	£0003	* .0003	7/6	dig 5P	2005.	,0028	0200.	140	1952d
	1d1= ,000 R	.0040	,0040	001										
bb	3-11/86	.043	540'	53	an dup	5003	<.003	116	ansp 091	<00°	610.	420'	66	19 200.
E	600, = /bi	940'	.045	201										19 100%
<u>. 1</u>														
77	2/9/86	pho.	050'	88	andup 05 A	< 003	5003	Ne	onsp 05 A	-003	810'	420'	75	c. 003
	100 = 101	7700	050'	38					0	£003	.022	420.	92	00/ 6/
									חווף					
419	48/8/8	. 0054	0500'	801	dig dyp 03.4	£000%	50002	NC	dig sp 04 A	,000a	peoo.	0500	120	6000.>
	F000 = 1/pi	0700'	,0040	00/		·								
						·								
2 d 9.	an dup = analytical duplicate dig dup = digestion duplicate i.d.l. = instrument detection limit	duplicate plicate detection limit	on sp = and and sp = and and and and and and and and and and	gestion	= analytical spike - digestion spike of macrix		* indicates detection NC= not		value is les limit calculable	less than		5x instrument	nent	

UNITS MG/ON

SSSSER CODECUME CONTINUE CONTI

				0	(10 80	78/10	9	03.02	03 03 METHE		SILVO	" slal	72	
ELEMENT	ANALYSIS DATE	00 DATA	DATA DATA DATA DATA DATA DATA	60	dono con	DUPLICATE ANALYSIS	ANALYSI	1		1	SPIKE RECOVERY	OVERY		BLANKS
		FOUND VALUE	TRUE VALUE	%R	SAMP!	SAMP	DUPL	RPD	SAMP#	SR	SSR	SA	% R	
					dup vo							 		19 dad
45	2-19-86	.039	040	98	03 9	<.005	<.005	NC	0,2 6	2005	1023	1024	96	200.2
	500' = /b1	. o+ 0'	040'	001										200.>
	,0 ,0 ,0	0):00	0 > 00	70	1				dig 3p	20002	6/00	0200	95	10000°
- fur	90 00.0	8177	27.55	,							•			
	1010-101	6400	0400	443									-	
		p+00'	0400.	077									1	
70	,	HTTO	8774	98	an dup	820	. 030	9.4	98.00 93.63	033	550	420.	83	prep 61
7	11 103	770	5770	· ·				•	-					
5														
7									on. 5P.				1	10 120
28	2-17-86	e40.	.040	501	,				02 G	.003	120	420.	75	<.003
	£10: = /P1	040'	040'	001					•					ca/6/ <.003
		660'	040.	98										
Oil and	3-14-86	197	200	66		·			í					
	/ =/P./	661	200	49										
нС	2.26-86	430	415	104		·								
	1=1pi	308	345	118										
	co = property cal spike	ke	andup = a	nely	= analytical duplicati	chiale	W + :	+ indicates	value is	less t	less than 5x instrument	Asur >	nment	

andup = analytical duplicati

detection limit

NC = not calculable

UNITS UG/ML

FOUND VALUE TRUE VALUE 28 SAMP! SAMP DUPL RPD SAMP# SR SS SA SR SA SA SA SA	PLANT	LYSIS DA	36-03-04/ 2014	777	90-10	DUP	DUPLICATE ANALYSIS	ANALYSI	S		SPIKE		RECOVERY		BLANKS
10.56			FOUND VALUE	TRUE VALUE	%R	SAMP#	SAMP	DUPL	RPD	SAMP#	SR	SSR	SA	% R	
105 . 037 . 040 93 . 040 93 . 040 93 . 005 6. 002. 002. 002. 002. 002. 002. 002. 0	1 2	98-61-	960.	040'	98	an dup	<,005	<.005	NC	onsp 01 E	5005	.022			ecobl
20-56 0048 0050 96 06E 50003 0003 NC 05 6 0002 0002 1000 100 20-56 0044 0040 100 00E 50003 0003 NC 05 6 0002 0002 1000 100 -17-56 044 045 100 05 - 0045 100 -17-56 045 040 05 - 040 08 - 040 09 09 01 024 75 -17-56 045 040 05 - 040 08 - 040 08 00 00 00 00 00 00 00 00 00 00 00 00	=//p/	500'='	780.	040	93						,				101 b1 <.005
10-56 0048 0050 96 06 5002 0002 003 002 002 002 002 002 003 003			980'	040'	88										
10-86	1														
7-86 044 0040 100 0094 000 0044 0040 100 0046 005 005 005 005 005 005 005 005 005 00		2-20-86	8 700.	,0050	96	dup dup		*e000	NC	9 50 05 E	- .0002.	. 0022	,0020		50003
7-86 044 0046 110 016 < 002 < 002 110 011 024 88 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6)	8000' = JF			110					·					
7-86 044 .045 98 016 < 002 < 002 002 024 88 5. 003 046 045 107 046 108 0 0 0 0 0 0 0 0 0			thoo	0400	110			_	_						
7-86 0444 .045 98 016 < 002 5002 10 01 6 5002 10 024 88 5 0 0 0 003 .045 10 024 88 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	·														
7-86 045 107 005 003 021 024 75 75 108 108 109 105 - 040 105 - 020 036 003 021 024 75 75 75 108 108 108 108 108 108 108 108 108 108		98-11-6	7770	5#0'	98	on dup	× 003	<000	NC	on sp 0/ E		.021	420		1000 S
7-86 048 ,045 107	-	600. = lb	540'	540'	100					1:10 dil etien					
7-86 042 040 105 - 03			840	540'	107										
7-86 , 042 , 040 , 105 - 036 , 021 , 024 75 , 1036 , 021 , 024 75 , 1039 , 020 , 024 75 , 1039 , 020 , 024 75 , 1039 , 020 , 024 75 , 1039 , 020 , 024 75 , 1039 , 020 , 024 75 , 1039 , 025 , 024 75 , 1039 , 025 , 024 75 , 1039 , 025 , 024 75 , 1039 , 025 , 024 75 , 1039 , 025 , 024 75 , 1039 , 025 , 024 75 , 1039 ,	[
102. 197 200 99		98-11-8	042.	040'	105	\				on sp 03E	*003		420.		1000 ;
1-36 197 200 99 99 99 99 99 99 99 99 99 99 99 99 9	`	11= ,008	680'	0#0'	86										eal 6/ <.003
1-36 197 200 99 197 200 9938 -1 -1 NC	1						,								
-86 197 200 99 1 21 NC	1	2-14-86	197	200	99										
03 21 21 NC	27	1=10	197	200	66										
03 -1 -1 NC										1					
		2-14-86				0360		/>	NC	w *	dicare	njex s	c 15 10	ss cha	0 5x
		•													

UNITS upplat

THE TRANSPORT OF THE PROPERTY

	PLANT 4 80	86.03-060	samoles 01-	7-10	05						'	10		
ELEMENT	ATE	1 00	QC DATA		DUP	DUPLICATE /	ANALYSIS	S		SPIKE	KE RECO	RECOVERY		BLANKS
	<u> </u>	FOUND VALUE	TRUE VALUE	8R	SAMP!	SAMP	DUPL	RPD	SAMP#	SR	SSR	SA	&R	
2,5	9.15-86	980	180.	101	dig dup	*600,	*600'	4.0	0.3 C	.006	.023	.020	85	19 day
	C 44 - 14.	6/10	070	, ,	an dup	* 700	1	•	[40101
		020		2	2	2	<u> 1 </u>	İ	{					
HO	18-02-0	8700	0500'	96					A50	50002	0020	001 0200'		19 day
611	2000 =/P.	2700	0700	105										
64	2.17-86	.045	643	105	210	450.	180"	4.7	d19 SP 02 C	.27	.29	020	1001	19 day
	100° = 10'	670	,043	114			-				1			00/01 000%
5														
18	2-17-86	840	0700	105	010 C	.003	,003	40	d19 5P 0 & C	, 00a	200	010.	50	600.>
0		070	040'	00/						×002	.023	420.	96	10100 5.003
	101								1:10 dilutio					
Grease	38-71-6	797	200	99	-				į					
	1 = 10'	261	200	66										
									;		_			ļ
					·									
an	sp = analytical apple	apike	an	an dup	= onewaled dyplicate	gacel .	duplic	25	ipui *	cates	* indicates value 1s		less than	90

an sp = analytical apure dig sp = digistion or maturi apure idi =instrument deteotion limit

an dup = onelytical aufiliari dig dup = digistion duplicate

indicates value is less than 5x instrument detection limit

NC= not calculable

UNITS Walnut

	PLANT 4		190-80-98								20	al da	4	
ELEMENT	ANALYSIS DATE	QC DATA	DATA		DUP	LICATE	DUPLICATE ANALYSIS	S		SPI	SPIKE RECOVERY	OVERY		BLANKS
		FOUND VALUE	TRUE VALUE	8R	SAMP "	SAMP	DUPL	RPD	SAMP#	SR	SSR	SA	&R	
45	2-15-86	, 029	780.	101					ansp 03E	2003	100'	420.	88	-000'>
	600. = /b/	640,	040.	501					1:10dilution					cal bl
OH	18-48-8	8700	0000	96	1				94 sp	2000.	.0020	0200	001	10000 >
,	98.08.8	87.00	,0050	96										4000 ×
	£000' = 1P'	4400		0//										
		p+00'		011										
											,			
90 1	98-11-6	570'	,043	201	andup 04e	.032	. 038	2.7	on sp 03 E	.020	. 035	420	63	400°
81	600. 1/2/	640'	540'	<i>ħ//</i>										10 /a/ <,000
7	2.17-86	640	040'	501	ON dup	.000	1000	0	340	5003	.021	420°	88	4.00.2
	600. = 181	040.	040						1:10 dilution					cal bl 4,002
Oil and Grease	2-14-86	197	200	66										
	1=1101	197	200	66										
	3	10000	10/16		410			1. 16.0	4	01000	L'AN.	value	1 13 1140	CA

le instrument detection

an sp = anoughed speke

ang = aujation duplicad on dup = anolytical applicate

* moucalle value is less
than 5% instrument diaction
limit
NC= not calculable

line	BLANKS		10 daid	16100	<.003 <.002		4.0007				10030		 	 	1.000	†	 				NOT CALEULABLE
118/	RY		4 113	56 0			20 105		_	 ,	45	1	ļ.		0	 					10416
5	RECOVERY	SA	420. 8				200' 10				9.020				0,0.			} —-			No: 46
UNITS	SPIKE	SSR	.038			-	1600, 8				901 E	110	027		600 > 600>	0/10		ļ			
	S	SR	. 110'				Socas				, e0003	2000>	2000>		90%		6002 0	0000			111111
16,4C		SAMP#	01.3P.	24 des			b ho de top				9290	92.00	an sp	Incantance.	8 1/2 B	on sp	95 00	alluna			ument detection limic
25.06,07-046,HC	S	RPD	9.5	0			N				2. 4				NC						ument c
25,00	ANALYSIS	DUPL	210.	110.			<.0002				C#0.				<00>						idl = instrument
40	DUPLICATE	SAMP	110	//0			5,0002				8770				4000						
- 70	da -	SAMP.	900.00 01 A	4.4 dup			dub pub	_			dub pib				dap bip					0:10:10	ore -digest duplicate
9		%R	501	501	501		96	105	110		86	00/			201	801			96		-0.00
samples	ATA	TRUE VALUE	070	040	040		,0050	0400	0400'		270	243			070	040'			200		dig dup = pre
660.80		FOUND VALUE	6770	CHO.	240.		. 0048	6400	,0044		0770	0.43	5/3/		1770	043			161		
PLANT 4 86-	SIS DAT		2-21-86	200'= 181			3-20-86	10000			18-10-6	20 10 5 lb.	044:-101		0-31-86	E00 = 17,	1		3-14-86		p = analytical duplicate
47d	ELEMENT		45				14				5 5	1	82		5				oil & Grease		an dup

an dup = analytical duplicate an sp = analytical spike = analytical spike

dig sp = pre-digest spike

idl: instrument detection limit * - value is less than 5 x idl

		700 000		2	dempelos v7 00 milely	45.7		(max) pala	- 1			٥		
ELEMENT	ANALYSIS DATE	QC DATA	٧		DUP	LICATE	DUPLICATE ANALYSIS	S		SPI	SPIKE RECOVERY	OVERY		BLANKS
		FOUND VALUE	TRUE VALUE	3.R	SAMP,"	SAMP	DUPL	RPD	SAMP#	SR	SSR	SA	&R	
45	2.24-86	950.	040.	26	andup OHA	038	1038	0	950	cno;	624	420	100	1900.
	141=,003	0360	040	30						•				600.>
		,037	.040	93						,				600.
На	2-30-86	8 700'	0500'	36					dig 5p	-, 000Z	6100'	.0020	95	£000;
	E 000 = /K.	2700	07700	501										
		++00·	0400'	011										
Ph	2-71-86	8770	043	86	1				an sp 05A	283	210.	420.	12	19 day
5	000 7/10	0.12	277	70,					00 S libor 1. 1820	6003	450	120	001	19100>
1	6 3 3 · - 18)	243	7177											
83	2.21-86	1770	040'	103					an op 044	2003	210.	720'	63	1000 x
	2001=171	,043	040	801					out divinor	6100 COUNTY	.033	400.	96	C0161
oil and brease	3-14-86	141	200	2										
	/=/þi													
••					-									
										_				

for work crders

8602031 8602041 8602066 860206

860124

Form VII

Q.C. Report No. _ a ____

860207

INSTRUMENT DETECTION LIMITS AND

LABORATORY CONTROL SAMPLE

LAB NAME <u>Ra</u>	diam		CASE 30.	PLANT 7	
DATE	-4-86		LCS UNITS	<u> </u>	mg/kg
£			ME	g/ml (Circl	e One)
	Required Detection	Instrument	Detection	سابعت بيه موجد مجيد	
Compound	Limits (CRDL)-ug/l	Limits (I	DL)-ug/1	Lab Contro	1 Sample
		ICP/AA	Furnace*	True Fo	und ZR
Metals:					
l. Aluminum	200	1			1
2. Antimony	60				<u> </u>
3. Arsenic	10				1
4. Barium	200	1.001			1 1
5. Beryllium	5	11 1			
6. Cadmium	5	1.000	11		
7. Calcium	5000	1	11		
8. Chromium	10	12.005			1
9. Cobalt	50				i
10. Copper	25			İ	i
ll. Iron	100		11	i	1
12. Lead	5		il		
13. Magnesium	5000		11		1
14. Manganese	15		11		1
15. Mercury	0.2		- 11		
16. Nickel	40			i	
17. Potassium	5000		11		i 1
18. Selenium	5		11		
19. Silver	10	1 < . 002	11		1
20. Sodium	5000		- 11		1
21. Thallium	10				l
22. Tin	49	1	11		1 1
23. Vanadium	50				
24. Zinc	20		i		1 1
Other:			11		1
			11	1	1 1
Cyanije	10	5 18	34 11		l

* dection limits are given on Furnace / Hg/040 PA/OC SUMMARY SHEETS

ICF 9+ 190 DATH

For work | \$60,031 orders | \$60,2041 \$60,2060 \$60,2067 \$60,2079 \$60,2087

Form II

Q. C. Report No. 3

INITIAL AND CONTINUING CALIBRATION VERIFICATION3

LAB	NAME	Radian			CASE	NO	PLANT	T4		
		• ./			sow !					
DAI	<u> </u>			_		s <u>ugl</u>	nl.			
		Initia			Cont	inuing	Calibr	ration ²		
Met	els [*] :	True Value	Found	<u> </u>	True Value	Found	<u> </u>	Found	<u> </u>	Method 4
1.	Aluminum								1	<u> </u>
2.	Antimony	!				<u> </u>			1	1
3.	Arsenic	1	····				1		1	
4.	Barium	100	1.01	101	1.00	1.01	101	1.01	1/0/1	
5.	Beryllium	<u> </u>		1	1					1 -
6.	Cadmium	1.00	1.04	1041	1.00	1.05	1105	1.04	104	1 .
7.	Calcium	1							1 1	1 :
8.	Chromium	1.00	1.01	101	1.00	1.02	1/02	1.02	1/021	
9.	Cobalt	1		,	_					
10.	Copper								j	
11.	Iron]					1	į
12.	Lead								1	i
13.	Magnesium								İ	
14.	Manganese	l							1	1
15.	Mercury									1
16.	Nickel								1	1
17.	Potassium			1	1				1 1	l
18.	Selenium	1		1			1		1	1
19.	Silver	11.60	1.00	1001	1.00	1.02	102	1.00	1/001	Ì
	Sodium	1								i
21.	Thallium			1						i
22.	Tin	1		i						1
23.	Vanadium	1		,				<u> </u>	1 1	
	Zinc								1	<u>-</u>
	· :					 -			1 1	<u> </u>
								<u></u>	 -	Ī
Cyan:	ıde			 	1	} .				<u> </u>
				`			<u></u>	<u> </u>		<u>'</u>

I Initial Calibration Source 2 Continuing Calibration Source

³ Control Limits: Mercury and Tin. 80-120; All Other Compounds 90-110

⁴ Indicate Analytical Method Used: P - ICP/Flame AA; F - Furnace

Form II

Q. C. Report No. 3

INITIAL	AND	CONTINUING	CALIBRATION	VERIFICATION ³

AND THE PROPERTY OF THE PROPER

DATE 3-4-86 UNITS Mg /m /	od 4
Metals: True Value Found IR True Value Found IR Found IR Heth 1. Aluminum 2. Antimony 3. Arsenic 3. Arsenic 3. Arsenic 3. Arsenic 3. Arsenic 3. Arsenic 3. Arsenic 3. Arsenic 3. Arsenic 3. Arsenic 3. Arsenic 3. Arsenic 3. Arsenic 3. Arsenic 3. Arsenic 3. Arsenic 3. Arsenic 4. Barium	od 4
1. Aluminum 2. Ancimony 3. Arsenic 4. Barium 1.00 1.01 101 1.01 1011	od 4
2. Antimony	
3. Arsenic 1 1 1 4. Barium 1.00 1.01 101 1.01 101 1	
4. Barium	
5. Bervilium	
6. Cadmium 1 1 1.00 1.04 1.04 1.03 1.03	
7. Calcium	
8. Chromium 1.00 1.00 100 1.01	
9. Cobalt	
10. Capper	
11. Iron	
12. Lead	
13. Magnesium	
14. Manganese	
15. Mercury	
16. Nickel	
17. Potassium	
18. Selenium	
19. Silver	
20. Sodium	
21. Thallium	
22. <u>Tin</u>	
23. Vanadium	
24. Zinc	
Other:	
Cyanide	

Initial Calibration Source 2 Continuing Calibration Source

³ Control Limits: Mercury and Tin. 80-120; All Other Compounds 90-110

⁴ Indicate Analytical Method Used: P - ICP/Flame AA; F - Furnace

86C1240 86C2C21 86C2C41 86C2C60 86C2C67 8602079 86C2C87

Form III

LAB NAME	Radian	CASE NO. PLANT 4
DATE	3-4-86	UNITS ugine

Matrix water

	Initial	Cont	inuing C.	alibratio	<u>n</u>		
Preparation	Calibration	Blank Value				Preparation Blank	
Compound	Blank Value	1	2	3	4	1	22
Metals:				1			
l. Aluminum							
2. Antimony						<u> </u>	
3. Arsenic		<u> </u>					
4. Barium	1.001	1.001	1.001	1.001	2.001		
5. Beryllium							
6. Cadmium	1.002	1.002	1.002		.002*		
7. Calcium							
8. Chromium	2.005	1.605	2.005	1.005	12.005		
9. Cobalt							
10. Copper							
ll. Iron						!	
12. Lead						Ì	
13. Magnesium							
14. Manganese		11			İ	1	
15. Mercury		11					
16. Nickel		11					
17. Pocassium			1				
18. Selenium							
19. Silver	, cc6+	11.018	,010	.0094	.014	j	
20. Sodium					1		
21. Thallium		11					
22. Tin	1				1		1
23. Vanadium		11					
24. Zinc		11)	1	1
Other:	·						i
					1		1
Cvanide	1	11			! !	1	

PROCESS STATEMENT OF THE PROCESS OF

Form III

Q.	c.	Report	No.	2
----	----	--------	-----	---

BLANKS

2-11-86

DATE 3-4-86		- -	CASE NO. PLANT 4 UNITS ug/m Maerix water					
Preparation Calibration Compound Blank Value		Continuing Calibration Blank Value 1 2 3 4			Preparation Blank			
Meta		DIAMA VALUE		1		11 1		
2. 3. 4.	Aluminum Antimony Arsenic Barium Beryllium							
6. 7.	Cadmium Calcium					1.002		
9.	Chromium Cobalt Copper					4.005		
11.	Iron Lead							
14.	Magnesium Manganese Mercury							
16.	Nickel Potassium							
19.	Selenium Silver					12.002		
21.	Sodium Thallium Tin							
23.	Vanadium Zine							
	er:							

⁺ value we less than 5x ial

Form VI

Q. C. Report No.

							 -
n:	٥,	÷	^	. –	-	c	

compound Cont detals: Alum num Continum Co	Matri rol Limit ⁱ	Sample(5)	Units uglml Duplicate(D)	RPD-
Arsenic Barium Servilium	rol Limit'		Duplicate(D)	R.PD-
Alus num citimony Arsenic Barium Servilium		.076		
Arsenic Barium Bervilium		.076		1
. Arsenic . Barium . Servllium .		.076	<u> </u>	!
Barium Servllium		.076	· ·	1
. Bervllium		1019	577	2
			1 .077	1.3
		1.002	1 2,002	1
		1 4.002	1 <1000	I NC
. Calcium 1		.007*	1 .009*	1 36
Chronium		1 100/1	1 .007"	125
. Cosals.		<u> </u>	1	
U. Copper		1	1	<u></u>
1. Iron		<u> </u>	}	<u></u> -
2. <u>Lead</u> 1		<u> </u>	}	<u></u>
3. Magnesium		1	1	
4. Manganese		<u> </u>	<u> </u>	<u></u>
5. Mercury		1	 	' -
6. Nickel	 	<u> </u>	<u> </u>	<u>'</u>
7. Potassium i			1	<u></u>
8. Selenium		1 (007	1 C.COZ	1 NC
9. Silver		1 <.002	1	1
O. Sodium		<u>'</u>		
1. Thallium		1		'
2. <u>Tin</u>		1		
3. Vanadium]		
4. Zinc				
tner:		!		
		<u> </u>	<u> </u>	

^{1 -} Non calculable RPD due to value(s) less than CRDL

^{*} value is less than 5x (d)

Form V

Q. C. Report No.

	•	SPIKE SAMPLE			
LAB NAME Ra		ANULYTI.	EPA Sai	ple No.	
DATE	7-4-86		Lab Sai	mple ID No. 84	03 041
		Hatrix wate		19/m/	
	Control Limit	Spiked Sample	Sample	Soiked	
Compound	732	Result (SSR)	Result (SR)	Added (SA)	XR!
Metals:	!			l	1 1
l. Aluminum	75-125		<u> </u>	<u> </u>	
2. Ancimony	-		<u> </u>	<u> </u>	<u> </u>
3. Arsenic	<u> </u>			<u> </u>	<u>!</u> !
4. Barium	-	1.50	0.52	1.00	1 98
5. Beryllium	<u> </u>			<u> </u>	!!
6. Cadmium	-	0.94	<.002	1.00	94
7. Calcium	-			<u> </u>	<u>. </u>
8. Chromium	•	0,98	0.019 *	1.00	196
9. Cobalt	•			<u> </u>	<u> </u>
10. Capper	•		\	1	<u> </u>
II. Iron	•		1	1	!
12. Lead	•		<u> </u>	<u>!</u>	<u> </u>
13. Magnesium	•		l	<u> </u>	!
14. Manganese	•			1	<u> </u>
15. Mercury	•			<u> </u>	1
16. Nickel	•		1	1	<u> </u>
17. Potassium	-			1	!
18. Selenium	•		1	1	}
19. Silver	•	0.98	C, CC3 *	1.00	198
20. Sodium	-				1
21. Thallium	•				1
22. Tin	•				
23. Vanadium	•				
24. Zinc	•				
Other:				1	
	!	1	1	1	1

Commence: + include is list them 5 x 10/

 $^{1 = [(}SSR - SR)/SA] \times 100$

[&]quot;R"- out of control

organics 9A19C 86-02-041

Volatile Organics

DETECTION LIMITS

8602041	-01 - 08		
hethod@OI	_	H	ETHOD
		r	ETECTION
		I	IMIT .
·		C	ug/e
COMPOUND	-01 -00-08	-02-03	-04
Chloromethane	0.08	80_	4.0
Bromomethane	1,18	1180	59.0
Vinyl Chloride	0.18	180	9.0
Chloroethane	0.53	FAO	200
Hethylene Chloride	0.25	250	12.5
Trichlorofluoromethane	10.10	100	5.0
1,1-Dichloroethene	0.13	130	(c.5
1,1-Dichloroethane	F0.0	70	3.5
Trans-1,2-Dichloroethene	0.10	100	5.0
Chloroform -	0.05	50	2.5
1,2-Dichloroethane	10.03	30	1.5
l,l,l-Trichloroethane	0.03	2/	1.5
Carbon Tetrachloride	0.13	120	6.0
Bromodichloromethane	0.10	100	5.0
1,2-Dichloropropane	0.00	40	2.0
Trichloroethene	0.12	120	6.0
Dibromochloromethane	0.09	90	4.5
2-Chloroethylvinyl Ether	0.13	130	6.5
Brcmoform	0.20	200	10.0
Tetrachloroethene	0.03	30	1.5
Chloroben: ene	0.25	250	18.5
1,3-Dichlorobenzene	0.32	320	1(0.0)
l,2-Dichlorobenzene	0.15	150	7.5
1,4-Dichlorobenzene	6,34	240	12.0

Volatile Organics

DETECTION LIMITS

	8602041-01>-08	
METHOD ∞		METHOD
		DETECTION
		LIMIT
		ug/e
COMPOUND	-05	0
Chloromethane	2.0	
Bronomethane	1 29.5	
Vinyl Chloride	30	
Chloroethane		=
Methylene Chloride	0.25	
Trichlorofluoromethane	2.5	
l,1-Dichloroethene	3.25	
l,1-Dichloroethane	1.75	
Trans-1,2-Dichloroethene	2.5	
Chloroform	1.25	
1,2-Dichloroethane	0.75	
l,l,l-Trichloroethane	0.75	
Carbon Tetrachloride	3.0	
Bromodichloromethane	2.5	
1,2-Dichloropropane	1.0	
Trichloroethene	13.0	
Dibromochloromethane	2.35	
2-Chloroethylvinyl Ether	325	
Brcmoform	5.0	
Tetrachloroethene	0.75	
Chlorobenzene	(0,25)	
,3-Dichlorobenzene	8.0	
1,2-Dichlorobenzene	3.75	
1,4-Dichlorobenzene		
	6,0	

DETECTION LIMITS

80-4-10-1100098

VOLATILE ORGANICS
METHOD (OC)

POUND DETECTION LIMIT JOY/Q	-01 -0008 -02.03 -04.05	0,8 300	0.3 200	0.3 300	0.3	6.3	0.4 400	0.4 400		
COMPOUND		BENZENE	TOLUENE	ETHYLBENZENE	CHLOROBENZENE	1,4-DICHLOROBENZENE	1,3-DICHLOROBENZENE	1,2-DICHLOROBENZENE		

LAB # SYYXE	- BUML		
CLIENT NAME			
SAMPLE ID			
EPA METHOD	DATE: 4/2/54	EPA METHOD	DATE:
601	ANALYST: 156	602	ANALYST:
301	INSTRUMENT:	r :	INSTRUMENT:
		com	
COMPOUND	CONCENTRATION	COMPOUND	CONCENTRATION
	(ug/L)		(ug/L)
	A .		
Chloromethane	No	Benzene	
Bromomethane		Toluene	
Vinvl Chloride		Ethyl benzene	
Chloroethane		Chlorobenzene	
Methylene chloride	T	1,4-Dichlorobenzene	
Trichlorofluromethane		1.3-Dichlorobenzene	
1.1-Dichlorethene		1.2-Dichlorobenzene	, , , , , , , , , , , , , , , , , , ,
1.1-Dichlorethane		P-Xylene	
Trans-1.2-Dichloroether	ne	M-Xylene	
Chloroform		0-Xylene	
1.2-Dichlorethane			
1.1.1-Trichlorethane		4	
Carbon tetrachloride		_	
Bromodichlormethane		4	
1.2-Dichloropropane		SURROGATE RECOVER	IES:
Trans-1.3-Dichloroprop	ene	_ 601	
Trichloroethene		Bromochloromethan	
Dibromochloromethane		2-Bromo-1-Chlorop	•
1.1.2-Trichlorethane		1,4-Dichlorobutan	e
cis-1.3-Dichloropropen		602	
2-Chloroethylvinyl eth	27	e,a,a,-Trifluorot	oluene
Bromoform		4	
1.1.2.2-Tetrachloretha	ne	4	
Tetrachlorethylene		4	
Chlorobenzene		_	
1.3-Dichlorobenzene		-	
1.2-Dichlorobenzene		4	
1.4-Dichlorobenzene		_	
1			

LAB # Negree	BUNK		
CLIENT NAME			
SAMPLE ID			
	**********	************	*======================================
EPA METHOD 601	DATE: 2/2/2L ANALYST: CI INSTRUMENT: CIM	EPA METHOD 602	DATE: ANALYST: INSTRUMENT:
COMPOUND	CONCENTRATION (ug/L)	COMPOUND	CONCENTRATION (ug/L)
Chloromethane	<i>λ</i> η	Benzene	
Bromomethane		Toluene	
Vinyl Chloride		Ethyl benzene	
Chloroethane		Chlorobenzene	
Methylene chloride		1,4-Dichlorobenzene	
Trichlorofluromethane		1.3-Dichlorobenzene	
1.1-Dichlorethene		1.2-Dichlorobenzene	
1.1-Dichlorethane		P-Xylene	
Trans-1.2-Dichloroethene	<u> </u>	M-Xylene	
Chloroform		0-Xylene	
1.2-Dichlorethane	<u> </u>	1	
1.1.1-Trichlorethane	<u> </u>	<u> </u>	
Carbon tetrachloride		1	
Bromodichlormethane		1	
1.2-Dichloropropane		SURROGATE RECOVER	IES:
Trans-1.3-Dichloropropen		601	
Trichloroethene		Bromochloromethan	
Dibromochloromethane	1	2-Bromo-1-Chlorop	
1.1.2-Trichlorethane		1,4-Dichlorobutan	e
cis-1.3-Dichloropropene	1	602	
2-Chloroethylvinyl ether		a,a,a,-Trifluorot	oluene
Bromoform		4	
1.1.2.2-Tetrachlorethane		_	
Tetrachlorethylene		4	
Chlorobenzene		4	
1.3-Dichlorobenzene		-	
1.2-Dichlorobenzene			
1.4-Dichlorobenzene	<u> </u>	-	

A STAND DE PROFESSOR DE L'ANDRE DE PROPERTIE AN VINCENTE L'AN SERVICE DE PROFESSOR DE L'ANDRE MASSET. L'AN SERVICE DE L'ANDRE L'AN DE L'ANDRE L'AN DE L'AN DE L'AN DE L'AN DE L'AN DE L'AN DE L'AN DE L'AN DE L'AN DE L'AN DE L'AN DE L'AN DE L'AN DE L'AN DE L'AN DE L'AN DE L'AN DE L'AN DE L'ANDRE L'ANDRE L'ANDRE L'ANDRE L'ANDRE L'ANDRE L'ANDRE L'ANDRE L'ANDRE L'ANDRE L'ANDRE L'AN DE L'ANDRE L'AN DE L'AN DE

LAB # SYSTE BU			
CLIENT NAME			
SAMPLE ID		<u> </u>	

EPA METHOD 601	DATE: >/136 ANALYST: JSC INSTRUMENT: Y	EPA METHOD 602	DATE: ANALYST: INSTRUMENT:
COMPOUND	CONCENTRATION (ug/L)	COMPOUND	CONCENTRATION (ug/L)
Chloromethane	Ng	Benzene	
Bromomethane		Toluene	
Vinyl Chloride		Ethyl benzene	
Chloroethane		Chlorobenzene	
Methylene chloride		1.4-Dichlorobenzene	
Trichlorofluromethane		1.3-Dichlorobenzene	
1.1-Dichlorethene	(1.2-Dichlorobenzene	
l.l-Dichlorethane		P-Xylene	
Trans-1.2-Dichloroethen	ie	M-Xylene	
Chloroform		0-Xylene	
1.2-Dichlorethane	!		
1.1.1-Trichlorethane			
Carbon tetrachloride			
Bromodichlormethane	!		
1.2-Dichloropropane		SURROGATE RECOVER	IES:
Trans-1.3-Dichloroprope	ene '	601	
Trichloroethene		Browochloromethan	e
Dibromochloromethane		2-Bromo-1-Chlorop	ropane
1.1.2-Trichlorethane		l,4-Dichlorobutan	e
cis-1.3-Dichloropropene		602	
2-Chloroethylvinyl ethe	r	a,a,a,-Trifluorot	oluene
Bromoform		_	
1.1.2.2-Tetrachlorethan	le	_	
Tetrachlorethylene			
Chlorobenzene			
1.3-Dichlorobenzene		_	
1.2-Dichlorobenzene		_	
	70		

LAB # (CARCENT BUNK			
CLIENT NAME			 _
SAMPLE ID			
SAMPLE ID			
EPA METHOD DATE 2/ 601 ANALYST INSTRUM	:00.1	EPA METHOD 602	DATE: ANALYST: INSTRUMENT:
COMPOUND CONCENT (ug/	-	COMPOUND	CONCENTRATION (ug/L)
Chloromethane	$\sim_{\mathcal{I}_{\mathcal{I}}}$	Benzene	
Bromomethane		Toluene	
Vinyl Chloride		Ethyl benzene	
Chloroethane		Chlorobenzene	
Methylene chloride		1.4-Dichlorobenzene	
Trichlorofluromethane		1.3-Dichlorobenzene	
1.1-Dichlorethene		1.2-Dichlorobenzene	
1.1-Dichlorethane	-}	P-Xylene	·
Trans-1.2-Dichlorvethene	<u> </u>	M-Xylene	
Chloroform	 	0-Xylene	
1.2-Dichlorethane	<u> </u>		
1.1.1-Trichlorethane	 	-	
Carbon tetrachloride			
Bromodichlormethane			
1.2-Dichloropropane		SURROGATE RECOVERI	ES:
Trans-1.3-Dichloropropene		601	
Trichloroethene		Browochloromethane	
Dibromochloromethane		2-Brome-1-Chloropr	
1.1.2-Trichlorethane		l,4-Dichlorobutane	
cis-1.3-Dichloropropene		602	
2-Chloroethylvinyl ether		a,a,a,-Trifluoroto	luene
Bromoform		1	
1.1.2.2-Tetrachlorethane		1	
Tetrachlorethylene			
Chlorobenzene		4	
1.3-Dichlorobenzene		4	
1.2-Dichlorobenzene V		! -	
1.4-Dichlorobenzene		_	

LAB # SY	STA BUNK				
CLIENT NAME					
SAMPLE ID					
EPA METHOD 601	DATE: ANALYST: INSTRUMENT:	EPA METHOD 602	DATE: 2/14/16 ANALYST: 55 6 INSTRUMENT: 0		
COMPOUND	CONCENTRATION (ug/L)	COMPOUND	CONCENTRATION (ug/L)		
Chloromethane		Benzene	NO		
Bromomethane		Toluene			
Vinyl Chloride		Ethyl benzene			
Chloroethane		Chlorobenzene			
Methylene chloride		1.4-Dichlorobenzene			
Trichlorofluromethane		1.3-Dichlorobenzene			
1.1-Dichlorethene		1.2-Dichlorobenzene			
1.1-Dichlorethane		P-Xylene			
Trans-1.2-Dichloroether	ne	M-Xylene	/		
Chloroform		0-Xylene			
1.2-Dichlorethane		<u>]</u>			
1.1.1-Trichlorethane					
Carbon tetrachloride		1			
Bromodichlormethane		1			
1.2-Dichloropropane		SURROGATE RECOVERIES:			
Trans-1.3-Dichloroprop	ene	J 601			
Trichloroethene		Browochloromethane			
Dibromochloromethane		2-Bromo-1-Chloropa			
1.1.2-Trichlorethane		1,4-Dichlorobutane	e		
cis-1.3-Dichloropropen		4 602			
2-Chloroethylvinyl eth	er	a,a,a,-Trifluoroto	oluene		
Bromoform		_{			
1.1.2.2-Tetrachloretha	ne	_			
Tetrachlorethylene		4			
Chlorobenzene		_			
1.3-Dichlorobenzene		4			
1.2 Dichlorobenzene		-			
1.4-Dichlorobenzene		-			

LAB # NOWGEM	BUNK					
CLIENT NAME						
SAMPLE ID						
EPA METHOD 601	DATE: ANALYST: INSTRUMENT:	EPA METHOD 602	DATE: ZIZA ANALYST: CO INSTRUMENT QL			
COMPOUND	CONCENTRATION (ug/L)	COMPOUND	CONCENTRATION (ug/L)			
Chloromethane		Benzene	Np			
Bromomethane		Toluene				
Vinyl Chloride		Ethyl benzene				
Chloroethane		Chlorobenzene				
Methylene chloride		1.4-Dichlorobenzene				
Trichlorofluromethane		1.3-Dichlorobenzene				
1.1-Dichlorethene		1.2-Dichlorobenzene				
1.1-Dichlorethane		P-Xylene				
Trans-1.2-Dichloroethe	ne	M-Xylene	V/			
Chloroform		O-Xylene				
1.2-Dichlorethane						
1.1.1-Trichlorethane						
Carbon tetrachloride		<u>]</u>				
Bromodichlormethane		<u>.</u>				
1.2-Dichloropropane		SURROGATE RECOVERIES:				
Trans-1.3-Dichloroprop	ene	601				
Trichloroethene		Bromochloromethane				
Dibromochloromethane		2-Bromo-1-Chloropropane				
1.1.2-Trichlorethane		I,4-Dichlorobutane				
cis-1.3-Dichloropropen	e	602				
2-Chloroethylvinyl eth	er	a,a,a,-Trifluorotoluene				
Bromoform		_				
1.1.2.2-Tetrachloretha	ne	4				
Tetrachlorethylene		4				
Chlorobenzene		4				
1.3-Dichlorobenzene		_				
1.2-Dichlorobenzene		_				
1.4-Dichlorobenzene		_				

LAB #	SYSTEM BLAW!	,	
CLIENT NAME			
SAMPLE ID			
	C 计算性性	*******	
EPA METHOD 601	DATE: ANALYST: INSTRUMENT:	EPA METHOD 602	DATE: 2/13/81 ANALYST: 556 INSTRUMENT 20.0
	INSTRUMENT:		INSTRUMENTACIO
COMPOUND	CONCENTRATION (ug/L)	COMPOUND	CONCENTRATION (ug/L)
Chloromethane		Benzene	M
Bromomethane		Toluene	
Vinyl Chloride		Ethyl benzene	
Chloroethane		Chlorobenzene	
Methylene chloride		1.4-Dichlorobenzene	
Trichlorofluromethane		1.3-Dichlorobenzene	
1.1-Dichlorethene		1.2-Dichlorobenzene	
1.1-Dichlorethane		P-Xylene	
Trans-1.2-Dichloroethe	ene	M-Xylene	
Chloroform		0-Xylene	
1.2-Dichlorethane		4	
1.1.1-Trichlorethane			
Carbon tetrachloride			
Bromodichlormethane		-	
1.2-Dichloropropane		SURROGATE RECOVERI	ES:
Trans-1.3-Dichloropros	pene	601	
Trichloroethene		Bromochloromethane	
<u>Dibromochloromethane</u>		2-Bromo-1-Chloropr	
1.1.2-Trichlorethane		1,4-Dichlorobutane	
cis-1.3-Dichloroproper		602	
2-Chloroethylvinyl eth	her	a,a,a,-Trifluoroto	luene
Bromoform			
1.1.2.2-Tetrachloretha		-	
<u>Tetrachlorethylene</u>		-	
Chlorobenzene		-	
1.3-Dichlorobenzene		-	
1.2-Dichlorobenzene		-	
1.4-Dichlorobenzene		-	
			•
	•	1	
•		1	

LAB #	PLANZENT BUM	IL.	
CLIENT NAME			
SAMPLE ID			

EPA METHOD	DATE:	EPA METHOD	DATE: 2/13/24
601	ANALYST:	602	ANALYST: C
	INSTRUMENT:		INSTRUMENT: Lel

COMPOUND	CONCENTRATION	COMPOUND	CONCENTRATION
	(ug/L)		(ug/L)
Chloromethane		Benzene	
Bromomethane		Toluene	
Vinyl Chloride		Ethyl benzene	
Chloroethane		Chlorobenzene	
Methylene chloride		1.4-Dichlorobenzene	
Trichlorofluromethane		1.3-Dichlorobenzene	
1.1-Dichlorethene		1.2-Dichlorobenzene	
1.1-Dichlorethane		P-Xylene	
Trans-1.2-Dichloroethene		M-Xylene	
Chloroform		0-Xylene	
1.2-Dichlorethane			1
1.1.1-Trichlorethane]	
Carbon tetrachloride		-	
Bromodichlormethane			
1.2-Dichloropropane		SURROGATE RECOVERING	ES:
Trans-1.3-Dichloropropen	e	601	
Trichloroethene		Bromochloromethane	
Dibromochloromethane		2-Bromo-1-Chloropro	
1.1.2-Trichlorethane		1,4-Dichlorobutane	
cis-1.3-Dichloropropene		602	
2-Chloroethylvinyl ether		a,a,a,-Trifluoroto	uene
Bromoform		4	
1.1.2.2-Tetrachlorethane		4	
Tetrachlorethylene		4	İ
Chlorobenzene		4	
1.3-Dichlorobenzene			
1.2-Dichlorobenzene		-	
1.4-Dichlorobenzene		-	į
1			Ì
T .		į	

LAB # SYST	rom BUNIL		
CLIENT NAME			
SAMPLE ID			
	ZBEICE\$28##28#ZZX		
EPA METHOD 601	DATE: ANALYST: INSTRUMENT:	EPA METHOD 602	DATE: Z/1/26 ANALYST:JS = INSTRUMENT:bQL
COMPOUND	CONCENTRATION (ug/L)	COMPOUND	CONCENTRATION (ug/L)
Chloromethane		Benzene	No
Bromomethane		Toluene	
Vinyl Chloride		Ethyl benzene	
Chloroethane		Chlorobenzene	
Methylene chloride		1,4-Dichlorobenzene	
Trichlorofluromethane		1.3-Dichlorobenzene	
1.1-Dichlorethene		1,2-Dichlorobenzene	
1.1-Dichlorethane		P-Xylene	
Trans-1.2-Dichloroethe	ne	M-Xylene	
Chloroform		0-Xylene	
1.2-Dichlorethane]	
1.1.1-Trichlorethane			
Carbon tetrachloride]	
Bromodichlormethane			
1.2-Dichloropropane		SURROGATE RECOVER	IES:
Trans-1.3-Dichloroprop	ene	601	
Trichloroethene		Browochloromethan	
Dibromochloromethane	 	2-Bromo-1-Chlorop	ropane
1.1.2-Trichlorethane		l,4-Dichlorobutan	e
cis-1.3-Dichloropropen	e	602	
2-Chloroethylvinyl eth	er	a,a,a,-Trifluorot	oluene
Bromoform		1	
1.1.2.2-Tetrachloretha		1	
Tetrachlorethylene		4	
Chlorobenzene			
1.3-Dichlorobenzene		_	
1.2-Dichlorobenzene			
1.4-Dichlorobenzene		-1	

LAB # Nortent	Bunic		
CLIENT NAME			
SAMPLE ID			
*************		25257252222222222	
EPA METHOD 601	DATE: ANALYST: INSTRUMENT:	EPA METHOD 602	DATE: Z/1./z(ANALYST: C) INSTRUMENTOLL
COMPOUND	CONCENTRATION (ug/L)	COMPOUND	CONCENTRATION (ug/L)
Chloromethane		Benzene	112
Bromomethane		Toluene	
Vinvl Chloride		Ethyl benzene	
Chloroethane		Chlorobenzene	
Methylene chloride		1.4-Dichlorobenzene	
Trichlorofluromethane		1.3-Dichlorobenzene	
1.1-Dichlorethene		1.2-Dichlorobenzene	
1.1-Dichlorethane		P-Xylene	
Trans-1.2-Dichloroeth	ene	M-Xylene	
Chloroform		0-Xylene	V
1.2-Dichlorethane		1	
1.1.1-Trichlorethane		-	
Carbon tetrachloride			
Bromodichlormethane		4	
1.2-Dichloropropane		SURROGATE RECOVERI	ES:
Trans-1.3-Dichloropro	pene	601	
Trichloroethene		Bromochloromethane	
Dibromochloromethane		2-Bromo-1-Chloropr	
1.1.2-Trichlorethane		l,4-Dichlorobutane	
cis-1.3-Dichloroprope		602	
2-Chloroethylvinyl et	her	a,a,a,-Trifluoroto	luene
Bromoform		4	
1.1.2.2-Tetrachloreth		4	
<u>Tetrachlorethylene</u>		4	
Chlorobenzene		4	
1.3-Dichlorobenzene		4	
1.2-Dichlorobenzene		-	
1.4-Dichlorobenzene		-1	

LAB #	SYSTON BUNK		·	
CLIENT NAME				
SAMPLE ID				
EPA METHOD 601	DATE: ANALYST: INSTRUMENT:	EPA METHOD 602	DATE: 3/ ANALYST: INSTRUME	西沙
COMPOUND	CONCENTRATION (ug/L)	COMPOUND	CONCENTR	
Chloromethane		Benzene	N	2
Bromomethane		Toluene		
Vinyl Chloride		Ethyl benzene		
Chloroethane		Chlorobenzene		
Methylene chloride		1.4-Dichlorobenzene		
Trichlorofluromethane		1.3-Dichlorobenzene		
1.1-Dichlorethene		1.2-Dichlorobenzene		
1.1-Dichlorethane		P-Xylene		
Trans-1.2-Dichloroethen	e	M-Xylene		
Chloroform		O-Xylene	$\underline{}$	
1.2-Dichlorethane 1.1.1-Trichlorethane Carbon tetrachloride Bromodichlormethane 1.2-Dichloropropane Trans-1.3-Dichloroprope Trichloroethene Dibromochloromethane 1.1.2-Trichlorethane cis-1.3-Dichloropropene 2-Chloroethylvinyl ethe Bromoform 1.1.2.2-Tetrachlorethan Tetrachlorethylene Chlorobenzene 1.3-Dichlorobenzene 1.2-Dichlorobenzene 1.4-Dichlorobenzene	r e	SURROGATE RECOVERI 601 Bromochloromethane 2-Bromo-1-Chloropr 1,4-Dichlorobutane 602 a,a,a,-Trifluoroto	opane	

LAB # /lu	Arzam Blank	· · · · · · · · · · · · · · · · · · ·	
CLIENT NAME			-
SAMPLE ID			*************************************
		200022555555555555555555555555555555555	
EPA METHOD 601	DATE: ANALYST: INSTRUMENT:	EPA METHOD 602	DATE: 2/1./7(ANALYST: AP INSTRUMENT QUA
COMPOUND	CONCENTRATION (ug/L)	COMPOUND	CONCENTRATION (ug/L)
Chloromethane		Benzene	NO
Bromomethane		Toluene	1
Vinyl Chloride		Ethyl benzene	
Chloroethane		Chlorobenzene	
Methylene chloride		1.4-Dichlorobenzene	
Trichlorofluromethane		1.3-Dichlorobenzene	
1.1-Dichlorethene	····	1.2-Dichlorobenzene	
1.1-Dichlorethane		P-Xylene	
Trans-1.2-Dichloroethe	ne	M-Xylene	
Chloroform		0-Xylene	
1.2-Dichlorethane			_
1.1.1-Trichlorethane			
Carbon tetrachloride			
Bromodichlormethane			
1.2-Dichloropropane		SURROGATE RECOVER	IES:
Trans-1.3-Dichloroprop	еле	601	
Trichloroethene		Browochloromethan	
Dibromochloromethane		2-Bromo-1-Chlorop	ropane
1.1.2-Trichlorethane		1,4-Dichlorobutan	e
cis-1.3-Dichloropropen		602	
2-Chloroethylvinyl eth	er	a,a,a,-Trifluorot	oluene
Bromoform			
1.1.2.2-Tetrachloretha		<u></u>	
<u>Tetrachlorethylene</u>			
Chlorobenzene			
1.3-Dichlorobenzene		1	
1.2-Dichlorobenzene			
1.4-Dichlorobenzene			

2	1. 181.		SPIKED						
DATE:	TE: 2/11/86		VALUE ANALYZED VALUE		RECOVERY				
	1	INSTRUMENT	(ug/L)		(ug/L)		 	KECOVERY	
		LIISTRUMENT			1	1	10		
}		ANALYST		a			0		
TEST		<u></u> _				<u> </u>	1 4		
METHOD	сомрои	1D		'	Ì	ļ	Ì		
			1		l		Į.		
EPA 601				ļ	l		1	ļ	
1	Chloromethane		16.2		 		 	ļ	
ļ	Chloroethane		_ 28.1	{	1				
1									
!	Methylene Chloric	le	26.3	 	 		 		
1	1,1-Dichloroethy	lene	45.0]]	1			Į
							,		
1	Trans-1,2-Dichlor	oethvlene	12.5			ļ	ļ	ļ	ļ
	Carbon Tetrachlo	ide	60.0			,		}	}
	Garbon Teerdenion	Tue	1 -00.0		 	 	<u> </u>		
	Dichlorobromometh	nane	40.0				ļ <u>.</u>		
	1,1,2-Trichloroet	hana	33.8	1		}			Ì
1	1,1,2-11101000	mane	33.0		 		 	 	}
EPA 602				3		1	ĺ		ļ
. '	Benzene		30.7	32.3			105		
	Toluene		4.1	3.9		•	96	1	}
1			1		 	 	 		
!	Ethylbenzene		11.5	10,3		 	39		ļ
	P-Xylene		19.1	14.0			مدا	1	
					 	 			
1	M-Xylene		42.6	43,2			102		
	0-7-10-0		10.6	9.7	1	1	131		
]	0-Xylene	_	10.0		 	 	 		
EPA 608			(ug/g)	((ug/g)	}			1
ļ .			ll .	[Į.	}		1	}
	Aroclor 1242		58.7				 		
	Aroclor 1260		56.8		1	1		}]

		RAS GC				
DATE:	3/12/20	SPIKED VALUE (ug/L)	ANAI	LYZED VALU (ug/L)	E	RECO
	INSTRUMENT ANALYST		D		<u>D</u>	-
TEST METHOD	COMPOUND	-	-		7	
EPA 601	Chloromethane	16.2				
	Chloroethane	28.1				\perp
	Methylene Chloride	26.3				
	1,1-Dichloroethylene	45.0				\perp
	Trans-1,2-Dichloroethylene	12.5				1
	Carbon Tetrachloride	60.0				\downarrow
	Dichlorobromomethane	40.0				\downarrow
	1,1,2-Trichloroethane	33.8				+
EPA 602	Benzene	30.7	34.8		113	
	Toluene	4.1	4.5		110	\perp
	Ethylbenzene	11.5	11.2		97	\perp
	P-Xylene	19.1	20.8		109	\perp
	M-Xylene	42.6	46.6		109	\downarrow
	0-Xylene	10.6	10.5		99	\downarrow
EPA 608		(ug/g)		(ug/g)		
	Aroclor 1242	58.7				+
	Aroclor 1260	56.8				
	Benzene Toluene Ethylbenzene P-Xylene M-Xylene O-Xylene Aroclor 1242 Aroclor 1260	5	207			

			SPIKED	<u> </u>					
DATE:	2/10/36	İ	VALUE (ug/L)	ANA	LYZED V (ug/L)	ALUE)	Z RECOVERY	7
		INSTRUMENT		D	0		D	C	
مقوصها كالم		ANALYST		G	19		4	RP	
TEST METHOD	COMPOUN	1D							
EPA 601	Chloromethane		16.2						
	Chloroethane		28.1						
	Methylene Chlorid	le	26.3						
	1,1-Dichloroethyl	ene	45.0						
	Trans-1,2-Dichlor	oethylene	12.5		ļ <u>-</u>				
	Carbon Tetrachlor	ide	60.0	ļ			ļ		<u> </u>
	Dichlorobromometh	ane	40.0						
	1,1,2-Trichloroet	hane	33.8					-	
EPA 602	Benzene		30.7	34.2			112		
	Toluene		4.1	4.4			105		
	Ethylbenzene		11.5	11.0			96		
	P-Xvlene		19.1	20.3			107		
	M-Xylene		42.6	4518			108		
	O-Xylene		10.6	10.3			47		
EPA 608			(ug/g)		(ug/g)			0.4	
	Aroclor 1242		58.7		55.4			94	
	Aroclor 1260	·	56.8	<u> </u>	54.5			96	

DAILY BUALITY CONTAIL

EPA OC WP 483 cmc 2 + EPA OC WP 781 cmc ?

2/11/26		G/B	6/B
	CENTIFIED VALUE (MS/L)	ANDIVZED WALUE	G B ARC
Chloromethane			
Bromomethane			
Vinvl chloride			
Chloroethane			
Methvlene chloride	9.2	10,2/9,6	112/105
Trichlorofluoromethane			
1.1-Dichloroethene	10.0	10,9 17.9	109 /79
1.1-Dichloroethane			
trans-1,2-Dichloroethene	5.4		
Chloroform	43.0	471 45.8	10/107
1,2-Dichloroethane	27.6	42.9 /22.3	156/81
1,1,1-Trichloroethane	14.3	15,0 13,9	105 197
Carbon tetrachloride	200	21.2/17.1	106/85
Bromodichloromethane	7.9	9.2 17.9	116 /100
1,2-Dichloropropane	8.0	9.8 18.60	123/108
Trichloroethene	22.2	26.7 60.7	120 /94 -
Dibromochloromethane	16.7	18.7 16.4	112/98
1,1,2-Trichloroethane			
cis-1,3-Dichloropropene			
2-Chloroethylvinyl ether	9.9	10.8 8.9	10.9 10.
Bromoform	10.0	10.0 10.7	109/90
1.1.2.2-Tetrachloroethane Tetrachloroethylene	6.2		· .
Chlorobenzene	8.7	10.1 9.7	123/118
1.3-Dichlorobenzene	1		7.45
1,2-Dichlorobenzene			1646 645 44
1,4-Dichlorobenzene			and the second

BANKA CHARACA AND SERVICE CONSIDER TO SERVICE CONTROL OF THE SERVICE

DATE: 8	13/26		SPIKED VALUE (ug/L)	ANAI	LYZED VA (ug/L)	ALUE	·	- % RECOVERY	
		INSTRUMENT		D			D		
	•	ANALYST		G			9		
TEST METHOD	COMPOU	ND							
EPA 601	Chloromethane		16.2						
	Chloroethane		28.1						
	Methylene Chlori	de	26.3						
	1,1-Dichloroethy	lene	45.0						
	Trans-1,2-Dichlo	roethylene	12.5						
	Carbon Tetrachlo	ride	60.0						
	Dichlorobromomet	hane	40.0						
	1,1,2-Trichloroe	thane	33.8						
EPA 602	Benzene		30.7	34.4			112		
	Toluene		4.1	4.9			119		
	Ethylbenzene		11.5	11.8			105		
	P-Xvlene		19.1	20.5			103		
	M-Xylene	·····	42.6	44-3			104		
	O-Xylene		10.6	10.6			100		
EPA 608			(ug/g)		(ug/g)				
	Aroclor 1242		58.7						
	Aroclor 1260		56.8						

DAILY QUALITY CONTAIL

EPA BE WP 483 cmc 2 + EPA DE WP 781 cmc 7

15 B6	CENTIFIED VALUE	B G ANALYZED VALUE	B/C BAR
	(m,/L)		
Chloromethane			
Bromomethane			
Vinyl chloride			
Chloroethane			
Methylene chloride	9.2	8.5 110.0	192/109
Trichlorofluoromethane		,	
l,l-Dichloroethene	10.0	8.6 8.1	86 /81
l,l-Dichloroethane			
trans-1,2-Dichloroethene	5,4		
Chloroform	43.0	45,2 58,0	105/135
1,2-Dichloroethane	27.6	20.0/23.5	72/85
l,l,l-Trichloroethane	14.3	13.8 [15.3	96 107
Carbon tetrachloride	200	18.8 /165	94 183
Bromodichloromethane	7.9	7.4 17.3	94 /92
1,2-Dichloropropane	8.0	6.6 814	82/105
Trichloroethene	22.2	19.7 122.7	89 No2
Dibromochloromethane	16.7	14.3 /14.9	36/29
1,1,2-Trichloroethane			
cis-1,3-Dichloropropene		1	<u> </u>
2-Chloroethylvinyl ether	- 9.9 -	7.2 /8.9	72/90
Bromoform	10.0	10.10.1	7.0
1.1.2.2-Tetrachloroethane Tetrachloroethylene	6.2		<u> </u>
Chlorobenzene	8.7	7.9 17.6	96/93
1,3-Dichlorobenzene			-
1,2-Dichlorobenzene			
1,4-Dichlorobenzene			

SPIKE RECOVERY

1	2/10/26 1P 0 5Piller C			
COMPOUND	SSR	SR	SA	ZR
Benzene	31.7		30.7	103
Toluene	5,0	·	4.1	.122
Ethyl benzene	[0,3		11.5	50
1,4-Dichlorobenzene				
1,3-Dichlorobenzene				
1,2-Dichlorobenzene				
0-Xylene	9.3		10.6	88
M-Xylene	42.3		42.6	59
P-Xylene	13.3		18.1	58
Chlorobenzene				

SSR = Spiked Sample Result

SR = Sample Result

SA = Spike Added

8602041-01A 860126

DUPLICATE ANALYSIS

EDA Machad 601									
EPA Method 601	!			i					
Volatile Organics									
COMPOUND UGIL	RUN∄	1	RU	IN#2	R	LPD	RUN#1	RUN#2	RPD
Chloromethane	NI		٧.	D		SC.			
Bromomethane						1			
Vinyl chloride									
Chloroethane									
Methylene chloride								1	
Trichlorofluoromethane									
1,1-Dichloroethene						 			
1,1-Dichloroethane						 			
trans-1,2-Dichloroethene						 		 	
Chloroform		-							
1,2-Dichloroethane		 						 	
1,1,1-Trichloroethane									
Carbon Tetrachloride									
Bromodichloroemethane				· .	 	<u> </u>			
1,2-Dichloropropane				 .	 				
Trichloroethene					 -			 	
Dibromochloromethane									
1,1,2-Trichloroethane									
cis-1,2-Dichloropropene									
2-Chloroethylvinyl ether					 	 			
Bromoform									
1,1,2,2-Tetrachloreothane		+							
Tetrachlorethylene									
Chlorobenzene		+-1							
1,3-Dichlorobenzene						<u> </u>			
1,2-Dichlorobenzene		\top							
1,4-Dichlorobenzene		V	•	-	•	-			
						-	!		

 $RPD = \frac{|R_1 - R_2|}{(R_1 + R_2)/2} \times 100$

RPD= Relative Percent Difference

CONTRACTOR CONTRACTOR

DUPLICATE ANALYSIS

EPA METHOD 602			
VOLATILE ORGANICS			
SAMPLE # 8600041-060	<u>2</u>		
UNITS UQ/O.			
860135			
COMPOUND	RUN#1	RUN#2	RPD
	r		
Benzene		435	1 110
1		\sim 15	1 \(\Lambda\)('.
Toluene	NP	ND	NC
	A.B.	N13	NC
Toluene	A D	\(\lambda\)	NC.
Toluene Ethyl benzene	AID	\(\lambda\)	NC.
Toluene Ethyl benzene 1,4-Dichlorobenzene	A D	\(\lambda\)	NC
Toluene Ethyl benzene 1,4-Dichlorobenzene 1,3-Dichlorobenzene	A.D.	\(\cdot\)	
Toluene Ethyl benzene 1,4-Dichlorobenzene 1,3-Dichlorobenzene 1,2-Dichlorobenzene	AIP	\(\cdot\)	
Toluene Ethyl benzene 1,4-Dichlorobenzene 1,3-Dichlorobenzene 1,2-Dichlorobenzene 0-Xylene	AIP	\(\cdot\)	

$$RPD = \frac{|R_1 - R_2|}{(R_1 + R_2)/2} \times 100$$

RPD= Relative Percent Difference

DUPLICATE ANALYSIS

EPA METHOD 602				
VOLATILE ORGANICS				1
sample #8002041-071 unitsUOJL FIELD BLANK	3			
СОМРОИИД	RUN#1	RUN#2	RPD	
				_
Benzene				
Toluene	2.19	2.14	23	
Ethyl benzene				
1,4-Dichlorobenzene				
1,3-Dichlorobenzene				
1,2-Dichlorobenzene				
O-Xylene				
M-Xylene				
P-Xylene				
Chlorobenzene				

$$RPD = \frac{|R_1 - R_2|}{(R_1 + R_2)/2} \times 100$$

RPD= Relative Percent Difference

LAB #8600041-01A
SAMPLE ID: 800120
DATE: 2-11-86
INSTRUMENT:
601/8010
BROMOCHLOROMETHANE: 102% 93%
2-BROMO-1-CHLOROPROPANE: 108% 89%
,
602/802 0
a,a,a-TRIFLUOROTOLUENE:

LAB #: OCCOOCUI-COA
sample id: <u>800/30</u>
DATE: 2-11-86
INSTRUMENT:
601/8010
BROMOCHLOROMETHANE: 97%
2-BROMO-1-CHLOROPROPANE: 18%
602/8020
a,a,a-TRIFLUOROTOLUENE:

LAB #: 80080411-03A
SAMPLE ID: 860131
DATE: 2-12-86
INSTRUMENT:
601/8010
BROMOCHLOROMETHANE: 1140/0
2-BROMO-1-CHLOROPROPANE: 133%
602/802 0
a,a,a-TRIFLUOROTOLUENE:

LAB #: 8608041-04A
sample id:860132
DATE: 2-12-86
INSTRUMENT:
601/8010
BROMOCHLOROMETHANE: QUI
2-BROMO-1-CHLOROPROPANE: 160%
602/8020
a,a,a-TRIFLUOROTOLUENE:

LAB #: 8000001-05A
SAMPLE ID: 800134
DATE: 2-12-86
INSTRUMENT: 4
601/8010
BROMOCHLOROMETHANE: 105%
2-BROMO-1-CHLOROPROPANE: 1146
602/802 0
a.a.a-TRIFILIOROTOLUENE•

LAB #: 8002041-CCA
SAMPLE ID: 860135
DATE: 2-12-86
INSTRUMENT:
601/8010
BROMOCHLOROMETHANE: 1000
2-BROMO-1-CHLOROPROPANE: 1249
602/8020
a,a,a-TRIFLUOROTOLUENE:

LAB #: 8(020411-07A
SAMPLE ID: FIELD BLANK
DATE: 2-12-80
INSTRUMENT:
601/8010
BROMOCHLOROMETHANE: 108%
2-BROMO-1-CHLOROPROPANE: 98%
602/8020
a,a,a-TRIFLUOROTOLUENE:

LAB #: XCCOC41-08F
SAMPLE ID: TRIPBLANK
DATE: 2-12-86
INSTRUMENT:
601/8010
BROMOCHLOROMETHANE: 1180/6
2-BROMO-1-CHLOROPROPANE: 1026
602/802 0
a,a,a-TRIFLUOROTOLUENE:

LAB #: 8609041-01C
sample id: 800180
DATE: 2-10-86
INSTRUMENT:
601/8010
BROMOCHLOROMETHANE:
2-BROMO-1-CHLOROPROPANE:
602/802 0
a,a,a-TRIFLUOROTOLUENE: 1129

LAB #:8608C41-08C
SAMPLE ID: 800130
DATE: 2-10-860
INSTRUMENT:
601/8010
BROMOCHLOROMETHANE:
2-BROMO-1-CHLOROPROPANE:
•
602/8020
a,a,a-TRIFLUOROTOLUENE: 45%

LAB #:86008041-03C
SAMPLE ID: 800131
DATE: 2-10-86
INSTRUMENT: D
601/8010
BROMOCHLOROMETHANE:
2-BROMO-1-CHLOROPROPANE:
602/802 0
a,a,a-TRIFLUOROTOLUENE: 910/0

LAB #: 8003041-040
SAMPLE ID: <u>860132</u>
DATE: 2-10-86
INSTRUMENT:
601/8010
BROMOCHLOROMETHANE:
2-BROMO-1-CHLOROPROPANE:
602/8020
a,a,a-TRIFLUOROTOLUENE: QL/C/C

LAB #: 86002041-05C
sample id: <u>860134</u>
DATE: 2-10-86-
INSTRUMENT:
601/8010
BROMOCHLOROMETHANE:
2-BROMO-1-CHLOROPROPANE:
602/8020
a,a,a-TRIFLUOROTOLUENE: 919

LAB #: 8002041-00C
SAMPLE ID: 800135
DATE: 21186-
INSTRUMENT:
601/8010
BROMOCHLOROMETHANE:
2-BROMO-1-CHLOROPROPANE:
602/802 0
a,a,a-TRIFLUOROTOLUENE: COM 1010/

LAB #: 800001-07-B
SAMPLE ID: FIELD BLANK
DATE: 2-11-86/2-13-86
INSTRUMENT: D/D
(0.1/0.1.)
601/8010
BROMOCHLOROMETHANE:
2-BROMO-1-CHLOROPROPANE:
602/802 0
a,a,a-TRIFLUOROTOLUENE: 101% 1020

M GROCORY RESOLUTION TEST CHART NATIONAL ALBERT OF CHANGERS - 1961

٠

CONTRACTOR COURSE PRODUCT OF STATE OF S

LAB #: 86000041-18A
SAMPLE ID: TRIP BLANK
DATE: 2-12-86
INSTRUMENT:
601/8010
BROMOCHLOROMETHANE:
2-BROMO-1-CHLOROPROPANE:
602/802 0
a.a.a-TRIFLUOROTOLUFNE:

EPA625 (860136, 860137, 860138 860139, 860140

CHAIN OF CUSTODY RECORD

		Field Sample No.
Company Sampled Address General Sample Point Description Grow	of Dynamics - Fort Worth	Plant4
Stream Characteristics:		
Temperature	Flow	pH
Visual Observations/Comments		
Collector's Name ART MORPHL	NEL ROBINS DATE Time Sample	0 2-7-86
Amount of Sample Collected N/A	E. 1000 ML. AMBER	Z GLASS
	1 12	
Sample Description (→ TUNC) Store at: □ Ambient □ 5°C □ -	10°C Other 4°C	
Caution · No more sample available Other Instructions · Special Handling ·	☐ Return unused portion of sample	☐ Discard unused portions
Hazardous sample (see below)	□ Non-hazare	dous sample
Toxic	☐ Skin irritant	☐ Flammable (FP< 40°C)
Pyrophoric	☐ Lachrymator	⊠Shock sensitive
□ Acidic	□ Biological	☐ Carcinogenic - suspect
□ Caustic	☐ Peroxide	☐ Radioactive
Other		
Sample Allocation/Chain of Possessio Organization Name	CORP	
Received By	Date Received	Time
Transported By APThur MOV	Lab Sample No 🖔 :	= 0.3 (2.1.1
Commonto		
Inclusive Dates of Possession	+86	
Organization Name Kudius An	alutical Services	
Received By (Kalmus)	Date Received	2-8-% Time [1:00
Transported By Federal	Lab Sample No.	
Comments		
Inclusive Dates of Possession		
Organization Name		
Received By	Date Received	Time
Transported By	Lab Sample No	
Comments		
Inclusive Dates of Possession		

RADIAN EPAGOZ- OROMIUM-860131, 86040	860136, 860137, 860138, 8	60139 860140
EPA 607	-860136 860137, 860138, 86	0139,860140
RADIAN ETABLE	W==415-860136 860137	860138 860139 860H
ORDINIUM-860136, 86040	CHAIN OF CUSTODY RECORD	300.23,300,3,000
OIL +6PE	486-860136 86040	
FIELD BLANKS EPAGOI;	EPA602 + ONE TRIPISANTIO	ld Sample No
Company Sampled (Address GEN	ERAL DYNAMICS-FORT WOLUND WATER	ETH DIANT FOUR
Sample Point Description S ROU	VAINWATER	, 1411.
·		
Stream Characteristics:	_	
	Flow	pH
Visual Observations/Comments		
Calleganda N A MARRILIO A	/ PARIALSA - IT	7-7-00
Collector's Name <u>A. Productor</u>	Date/Time Sampled OT MASON TARS (Fiscure) So	10/40/50 (33) to well to
Amount of Sample Collected 77 to 12	() 141 MAGIOSIAS SOCIONIS	em plant plant
Sample Description	100 Xau 100	4 Con 1 V CAD
Sample Description Store at: □ Ambient □ 5°C □ -	10°C A Other 4	
_	☐ Return unused portion of sample ☐	Discard unused portions
Other Instructions - Special Handling -	Hazards	
Hazardous sample (see below)	☐ Non-hazardou	s sample
∑ Toxic	☐ Skin irritant	☐ Flammable (FP< 40°C)
☐ Pyrophoric	☐ Lachrymator	☐ Shock sensitive
☐ Acidic	☐ Biological	Carcinogenic - suspect
□ Caustic	☐ Peroxide	☐ Radioactive
□ Other		
Sample Allocation/Chain of Possessio		
Organization Name	COEP.	
Received By	Date Received	Time
Transported By Anthur IVI M	Date Received Lab Sample No.	<u> </u>
Comments	2-7-86	
Inclusive Dates of Possession	L- F-86	
Organization Name		
Received By	Date Received	Time
	Lab Sample No.	
•		
	Onto Pagained	
	Date Received	
	Lab Sample No	
Inclusive Dates of Possession		

GC PA/QC

DETECTION LIMITS

Volatile Organics	GC PA/QC DETECTION LIMIT	S
	002047-013-07	
HETHOD (60)	000047-012-07	1
		ı
1		
•		-
COMPOUND	~0a	
	-05 - 07	-01-04
Chloromethane	0.08	-200
Bromomethane	1.18	295
Vinyl Chloride	0.18	30
Chloroethane	0.58	130
Methylene Chloride	0.25	62.5
Trichlorofluoromethane	0.10	25.0
1,1-Dichloroethene	0.13	32.5
l,1-Dichloroethane	C,O=	17.5
Trans-1,2-Dichloroethene	0.10	25.0
Chloroform	0.05	12.5
1,2-Dichloroethane	0.03	7.5
1,1,1-Trichloroethane -	0.03	7.5
Carbon Tetrachloride	0.12	30,0
Bromodichloromethane	0.10	25,0
1,2-Dichloropropane	904	10.0
Trichloroethene	0.12	30.0
Dibromochloromethane	0.09	28,5
2-Chloroethylvinyl Ether Brcmoform	0.13	33.5
Fetrachloroethene	0.80	50.0
Chlorobenzene	0.03	7.5
3-Dichlorobenzene	0.25	62.5
1,2-Dichlorobenzene	032	80.0
1,4-Dichlorobenzene	0.15	37,5
######################################	0.24	60.0

DETECTION LIMITS

AND AND TO SERVICE AND THE PROPERTY OF THE SERVICE AND THE SER

VOLATILE ORGANICS
METHOD GOOL

ugle										
DETECTION LIMIT WG/R							- :			
DETI	-03	10.0	1	10.0	10.0	5.0				
	-01-04 -03		5.0	5.0	5.0	4.5	10.0	10.0		
G 2	-055-07	0.3	0,3	0,3	O.2	6.3	0.4	0,4		
COMPOUND		BENZENE	TOLUENE	ETHYLBENZENE	CHLOROBENZENE	1,4-DICHLOROBENZENE	1,3-DICHLOROBENZENE	1,2-DICHLOROBENZENE		

LAB # SYST	- BUNIL	- 1		
CLIENT NAME				
SAMPLE ID				
***************************************				*******
EPA METHOD	DATE: 2/	12/16	EPA METHOD	DATE:
601	DATE: 2/ ANALYST: INSTRUM	36	602	ANALYST:
•••	INSTRUM	ENT:	n. l. H.	INSTRUMENT:
		- 100	may	
COMPOUND	CONCENT	RATION	COMPOUND	CONCENTRATION
	(ug/I	2)		(ug/L)
Chlorenshaue		0	Benzene	
Chloromethane		7	Toluene	
Bromomethane		 -	Ethyl benzene	
Vinyl Chloride			Chlorobenzene	
Chloroethane			1.4-Dichlorobenzene	
Methylene chloride			1.3-Dichlorobenzene	
Trichlorofluromethane			1.2-Dichlorobenzene	
1.1-Dichlorethene				
1.1-Dichlorethane			P-Xylene	
Trans-1.2-Dichloroethene			M-Xylene	
Chloroform			0-Xylene	
1.2-Dichlorethane				
1.1.1-Trichlorethane	 +		1	
Carbon tetrachloride -			4	
Bromodichlormethane	+		CURROCAME RECOVER	rec.
1.2-Dichloropropane			SURROGATE RECOVER	165:
Trans-1.3-Dichloropropen	e		601	
Trichloroethene			Bromochloromethane	
Dibromochloromethane			2-Brome-1-Chloropi	
1.1.2-Trichlorethane			l,4-Dichlorobutane	·
cis-1.3-Dichloropropene			602	. 1
2-Chloroethylvinyl ether	<u> </u>		a,a,a,-Trifluoroto	oluene
Bromoform			-{	
1.1.2.2-Tetrachlorethane			4	
Tetrachlorethylene			-	
Chlorobenzene			-	
1.3-Dichlorobenzene			-	
1.2-Dichlorobenzene	\		٦	
1.4-Dichlorobenzene			-	
}				
i e			1	

LAB # NONGEM	MANK	!	
CLIENT NAME	3017010		
SAMPLE ID		 	

EPA METHOD	DATE: 2/13 /74	EPA METHOD	DATE:
	ANALYST:	602	ANALYST:
•	INSTRUMENTA		INSTRUMENT:
	July		
COMPOUND	CONCENTRATION	COMPOUND	CONCENTRATION
	(ug/L)		(ug/L)
			
Chloromethane	NP	Benzene	
Bromomethane		Toluene	
Vinvl Chloride		Ethyl benzene	
Chloroethane		Chlorobenzene	
Merhylene chloride		1.4-Dichlorobenzene	
Trichlorofluromethane		1.3-Dichlorobenzene	·
1.1-Dichlorethene		1.2-Dichlorobenzene	
1.1-Dichlorethane		P-Xylene	
Trans-1.2-Dichloroethene		M-Xylene	
Chloroform		0-Xylene	<u></u>
1.2-Dichlorethane		1	
1.1.1-Trichlorethane		1	
Carbon tetrachloride -			
Bromodichlormethane			
1.2-Dichloropropane		SURROGATE RECOVERI	ES:
Trans-1.3-Dichloropropens	<u> </u>	601	
Trichloroethene		Bromochloromethane	
Dibromochloromethane		2-Bromo-1-Chloropr	
1.1.2-Trichlorethane		l,4-Dichlorobutane	
cis-1.3-Dichloropropene		602	
2-Chloroethylvinyl ether		a,a,a,-Trifluoroto	luene
Bromoform		4	
1.1.2.2-Tetrachlorethane		4	
<u>Tetrachlorethylene</u>		4	
Chlorobenzene		-	
1.3-Dichlorobenzene		-{	
1.2-Dichlorobenzene		4	
1.4-Dichlorobenzene		-	
· ·			
		1	

S. . Seed a cercental Sectional Description and Control Control Control Notes and Control Control Control Control Con

LAB # 545	ron BUNIL		
CLIENT NAME	150.00		
SAMPLE ID			
EPA METHOD	DATE: 2/12 6L ANALYST:55 Z INSTRUMENT:()	EPA METHOD 602 em.lité	DATE: ANALYST: INSTRUMENT:
COMPOUND	CONCENTRATION (ug/L)	COMPOUND	CONCENTRATION (ug/L)
Chloromethane	ND	Benzene	
Bromomethane		Toluene	
Vinyl Chloride		Ethyl benzene	
Chloroethane			
Methylene chloride		Chlorobenzene	
		1.4-Dichlorobenzene	
Trichlorofluromethane 1.1-Dichlorethene		1.3-Dichlorobenzene	
1.1-Dichlorethane			
Trans-1.2-Dichloroethene		P-Xylene M-Xylene	
Chloroform		0-Xylene	
1.2-Dichlorethane		U-AVIERE	
1.1.1-Trichlorethane		┥	
Carbon tetrachloride		┥	
Bromodichlormethane		┥	
1.2-Dichloropropane		SURROGATE RECOVER	TEC.
Trans-1.3-Dichloropropen	 	601	123:
Trichloroethene		Bromochloromethan	_
Dibromochloromethane		2-Bromo-1-Chlorop	
		1,4-Dichlorobutan	
1.1.2-Trichlorethane		602	e
cis-1.3-Dichloropropene		a.a.aTrifluorot	-1
2-Chloroethylvinyl ether		a,a,a,-IIIIIuorot	ordene
Bromoform 1.1.2.2-Tetrachlorethane		┥	
		 	
Tetrachlorethylene		- 1	
Chlorobenzene		7	
1.3-Dichlorobenzene			
1.2-Dichlorobenzene			
1.4-Dichlorobenzene		-	

TO SECURITY OF THE PROPERTY OF

LAB # N. SMEENT	BUNI	<u> </u>		
CLIENT NAME				
SAMPLE ID				
		*======	*************	######################################
EPA METHOD	DATE: 2	1/2/01	EPA METHOD	DATE:
601	ANALYS	T://4///	602	ANALYST:
	INSTRU	MENT	litte	INSTRUMENT:
COMPOUND		TRATION	COMPOUND	CONCENTRATION
	(ug	/L)		(ug/L)
Chloromethane	ν,	2	Benzene	
Bromomethane			Toluene	
Vinyl Chloride			Ethyl benzene	
Chloroethane			Chlorobenzene	
Methylene chloride			1.4-Dichlorobenzene	
Trichlorofluromethane			1.3-Dichlorobenzene	
1.1-Dichlorethene			1.2-Dichlorobenzene	
1.1-Dichlorethane		<u> </u>	P-Xylene	
Trans-1.2-Dichloroethene			M-Xylene	
Chloroform		<u> </u>	O-Xylene	
1.2-Dichlorethane				
1.1.1-Trichlorethane	·		1	
Carbon tetrachloride				
Bromodichlormethane			4	
1.2-Dichloropropane			SURROGATE RECOVERI	ES:
Trans-1.3-Dichloroproper	e		601	
Trichloroethene			Browochloromethane	
Dibromochloromethane		ļ	2-Bromo-1-Chloropr	
1.1.2-Trichlorethane		. 	l,4-Dichlorobutane	
cis-1.3-Dichloropropene		 	602	_
2-Chloroethylvinyl ether		 	a,a,a,-Trifluoroto	luene
Bromoform		ļ	4	
1.1.2.2-Tetrachlorethane		 	4	
<u>Tetrachlorethylene</u>			-{	
Chlorobenzene			-	
1.3-Dichlorobenzene			4	
1.2-Dichlorobenzene	\		┪	
1.4-Dichlorobenzene			-	
]				

LAB #5	YITO BLOWLE		
CLIENT NAME			
SAMPLE ID			
************		******	
EPA METHOD	DATE:	EPA METHOD	DATE: 2/12/1
601	ANALYST:	602	ANALYST: JJC
-	INSTRUMENT:		INSTRUMENT O
			
COMPOUND	CONCENTRATION	COMPOUND	CONCENTRATION
	(ug/L)		(ug/L)
Chloromethane		Benzene	\sim
Bromomethane		Toluene	
Vinyl Chloride		Ethyl benzene	
Chloroethane		Chlorobenzene	
Methylene chloride		1.4-Dichlorobenzene	
Trichlorofluromethane		1.3-Dichlorobenzene	
1.1-Dichlorethene		1.2-Dichlorobenzene	
1.1-Dichlorethane		P-Xylene	
Trans-1.2-Dichloroeth		M-Xylene	
Chloroform		0-Xylene	
1.2-Dichlorethane		4	
1.1.1-Trichlorethane			
Carbon tetrachloride		{	
Bromodichlormethane			
1.2-Dichloropropane		SURROGATE RECOVERI	ES:
Trans-1.3-Dichloropro	- · · · · - · · - · · · - · · · - ·	601	
Trichloroethene		Bromochloromethane	
Dibromochloromethane		2-Bromo-1-Chloropr	
1.1.2-Trichlorethane		1,4-Dichlorobutane	
cis-1.3-Dichloroprope		602	•
2-Chloroethylvinyl et	her	a,a,a,-Trifluoroto	luene
Bromoform		1	
1.1.2.2-Tetrachloreth		4	
Tetrachlorethylene		-	
Chlorobenzene		-	
1.3-Dichlorobenzene		-	·
1.2-Dichlorobenzene		-	
1.4-Dichlorobenzene		-	
}		}	

LAB # // Sp	BUML BUML		
CLIENT NAME			
SAMPLE ID			
	************		***********************
EPA METHOD	DATE:	EPA METHOD	DATE: 4/12/22
601	ANALYST:	602	ANALYST
	INSTRUMENT:		INSTRUMENT:
			- Cel
COMPOUND	CONCENTRATION	COMPOUND	CONCENTRATION
	(ug/L)		(ug/L)
			
Chloromethane		Benzene_	\sim 0
Bromomethane		Toluene	
Vinyl Chloride		Ethyl benzene	
Chloroethane		Chlorobenzene	
Methylene chloride		1.4-Dichlorobenzene	
Trichlorofluromethane		1.3-Dichlorobenzene	
1.1-Dichlorethene		1.2-Dichlorobenzene	
1.1-Dichlorethane		P-Xylene	V
Trans-1.2-Dichloroether	1e	M-Xylene	
Chloroform		0-Xylene	
1.2-Dichlorethane			
1.1.1-Trichlorethane			
Carbon tetrachloride	- 		
Bromodichlormethane			
1.2-Dichloropropane		SURROGATE RECOVERI	ES:
Trans-1.3-Dichloroprope		601	
Trichloroethene		Bromochloromethane	
<u>Dibromochloromethane</u>		2-Bromo-1-Chloropr	opane
1.1.2-Trichlorethane		1,4-Dichlorobutane	
cis-1.3-Dichloropropene		602	
2-Chloroethylvinyl ethe	<u> </u>	a,a,a,-Trifluoroto	luene
Bromoform			
1.1.2.2-Tetrachlorethan			
<u>Tetrachlorethylene</u>			
Chlorobenzene			
1.3-Dichlorobenzene			
1.2 Dichlorobenzene			
1.4-Dichlorobenzene	·		
	÷		

TO CONTRACT TO SERVICE TO SERVICE TO THE SERVICE OF THE SERVICE TO SERVICE TO SERVICE TO SERVICE TO SERVICE TO

LAB # SYSTEM BLANK	
CLIENT NAME	
SAMPLE ID	

EPA METHOD DATE: 4/12/36. 601 ANALYST: J3 C INSTRUMENT: Her	EPA METHOD DATE: 602 ANALYST: INSTRUMENT:
COMPOUND CONCENTRATION (ug/L)	COMPOUND CONCENTRATION (ug/L)
Chloromethane NP	Benzene
Bromomethane	Toluene
Vinyl Chloride	Ethyl benzene
Chloroethane	Chlorobenzene
Methylene chloride	1.4-Dichlorobenzene
Trichlorofluromethane	1.3-Dichlorobenzene
1.1-Dichlorethene	1.2-Dichlorobenzene
1.1-Dichlorethane	P-Xylene
Trans-1.2-Dichloroethene	M-Xylene
Chloroform	0-Xylene
1.2-Dichlorethane	
1.1.1-Trichlorethane	
Carbon tetrachloride	
Bromodichlormethane	
1.2-Dichloropropane	SURROGATE RECOVERIES:
Trans-1.3-Dichloropropene	601
Trichloroethene	Browochloromethane
Dibromochloromethane	2-Brome-1-Chloropropane
1.1.2-Trichlorethane	1,4-Dichlorobutane
cis-1.3-Dichloropropene	602
2-Chloroethylvinyl ether	a,a,a,-Trifluorotoluene
Bromoform	
1.1.2.2-Tetrachlorethane	
Tetrachlorethylene	
Chlorobenzene	
1.3-Dichlorobenzene	
1.2-Dichlorobenzene	
1.4-Dichlorobenzene	

LAB #(L.	AKEM BUNK		
CLIENT NAME			
SAMPLE ID			
	*******	********	*******
EPA METHOD	DATE: 71-66	EPA METHOD	DATE:
601	ANALYST:	_ 602	ANALYST:
	INSTRUMENT:	mari	INSTRUMENT:
- COMPONIES			CONCENTRATION
COMPOUND	CONCENTRATION	COMPOUND	CONCENTRATION
	(ug/L)		(ug/L)
Chloromethane	\sim 0	Benzene	
Bromomethane		Toluene	
Vinvl Chloride		Ethyl benzene	
Chloroethane		Chlorobenzene	
Methylene chloride		1.4-Dichlorobenzene	
Trichlorofluromethane		1.3-Dichlorobenzene	
1.1-Dichlorethene		1,2-Dichlorobenzene	
1.1-Dichlorethane		P-Xylene	
Trans-1.2-Dichloroethene		M-Xylene	
Chloroform		0-Xylene	
1.2-Dichlorethane			
1.1.1-Trichlorethane		[
Carbon tetrachloride			
Bromodichlormethane			
1.2-Dichloropropane		SURROGATE RECOVER	IES:
Trans-1.3-Dichloropropen	e	601	
Trichloroethene	<u> </u>	Bromochloromethane	
Dibromochloromethane		2-Bromo-1-Chlorops	
1.1.2-Trichlorethane		1,4-Dichlorobutane	·
cis-1.3-Dichloropropene		602	
2-Chloroethylvinyl ether	·	a,a,a,-Trifluoroto	oluene
Bromoform		-	
1.1.2.2-Tetrachlorethane	·	-	
Tetrachlorethylene		4	
Chlorobenzene		4	
1.3-Dichlorobenzene		4	
1.2-Dichlorobenzene		-	
1.4-Dichlorobenzene		-	
		1	
1			
}	ř		
1		1	

LAB #	510 BLUIL		
CLIENT NAME			
SAMPLE ID			

EPA METHOD	DATE:	EPA METHOD	DATE: 2/11/7C
601	ANALYST:	602	ANALYST: JSC
	INSTRUMENT:		INSTRUMENT:
			
COMPOUND	CONCENTRATION	COMPOUND	CONCENTRATION
	(ug/L)	•	(ug/L)
			
Chloromethane		Benzene	<u></u>
Bromomethane		Toluene	
Vinyl Chloride		Ethyl benzene	
Chloroethane		Chlorobenzene	
Methylene chloride		1.4-Dichlorobenzene	
Trichlorofluromethane		1.3-Dichlorobenzene	
1.1-Dichlorethene		1.2-Dichlorobenzene	
1.1-Dichlorethane		P-Xylene	
Trans-1.2-Dichloroethen	<u>e</u>	M-Xylene	
Chloroform		0-Xylene	
1.2-Dichlorethane			
1.1.1-Trichlorethane			
Carbon tetrachloride			•
Bromodichlormethane		1	
1.2-Dichloropropane		SURROGATE RECOVERI	ES:
Trans-1.3-Dichloroprope	ne	601	
Trichloroethene		Browochloromethane	
Dibromochloromethane		2-Brome-1-Chloropr	
1.1.2-Trichlorethane		l,4-Dichlorobutane	
cis-1.3-Dichloropropene		602	
2-Chloroethylvinyl ethe	<u> </u>	a,a,a,-Trifluoroto	luene
Bromoform		4	
1.1.2.2-Tetrachlorethan		4	
Tetrachlorethylene		4	
Chlorobenzene		4	
1.3-Dichlorobenzene		4	
1.2-Dichlorobenzene		4	
1.4-Dichlorobenzene		-	

LAB # (IVEN	rem Bunk		
CLIENT NAME			
SAMPLE ID			
######################################	**********	*************	********
EPA METHOD	DATE:	EPA METHOD	DATE: 2/11/36
601	ANALYST:	602	ANALYST: E
	INSTRUMENT:		INSTRUMENT: Olla
COMPOUND	CONCENTRATION	COMPOUND	CONCENTRATION
	(ug/L)		(ug/L)
Chlassahhaa		Ranna	200
Chloromethane Bromomethane		Benzene Toluene	
Vinyl Chloride		Ethyl benzene	
Chloroethane		Chlorobenzene	
Methylene chloride		1.4-Dichlorobenzene	
Trichlorofluromethane		1.3-Dichlorobenzene	
1.1-Dichlorethene		1.2-Dichlorobenzene	· /
1.1-Dichlorethane		P-Xylene	
Trans-1.2-Dichloroeth	пеле	M-Xylene	
Chloroform		0-Xylene	
1.2-Dichlorethane		4	
1.1.1-Trichlorethane		4	
Carbon tetrachloride		4	
<u>Bromodichlormethane</u>		4	
1.2-Dichloropropane		SURROGATE RECOVER	RIES:
Trans-1.3-Dichloropro		601	
Trichloroethene		Bromochloromethan	
Dibromochloromethane		2-Bromo-1-Chlorop	
1.1.2-Trichlorethane		l,4-Dichlorobutar	ne
cis-1.3-Dichloroprope	ene	602	
2-Chloroethylvinyl es		a,a,a,-Trifluorot	toluene
Bromoform			
1.1.2.2-Tetrachloreth	nane	<u>_i</u>	
Tetrachlorethylene		_	
Chlorobenzene		_	
1.3-Dichlorobenzene		_	
1.2-Dichlorobenzene		_	
1.4-Dichlorobenzene			
4		<u> </u>	

DAILY QUALITY CANTAGE

EPA DE WP 483 cmc 2 + 6PA DE WP 781 cmc }

TOUGHT TO THE SESSESSES BOULDED WAS AND TO THE SESSESSES BOUNDED WAS ASSESSED.

12 B6	CENTIFIED VALUE (MJ/L)	B G ANALYZED VALUE	BR
Chloromethane	(13/07		
Bromomethane			
Vinyl chloride			
Chloroethane			
Methylene chloride	9.2	8.5 110.0	92/109
Trichlorofluoromethane			
l,l-Dichloroethene	10.0	8.6 8.1	86 /81
1,1-Dichloroethane			
trans-1,2-Dichloroethene	5,4		
Chloroform	43.0	45,2 58,0	105/135
1,2-Dichloroethane	27.6	20.0/23.5	72/85
1,1,1-Trichloroethane	14.3	13.8 [15.3	96 107
Carbon tetrachloride	200	18.8 /165	94 183
Bromodichloromethane	7.9	7.4 /7.3	94 /92
1,2-Dichloropropane	8.0	6.6 814	82/105
Trichloroethene	22.2	19.7 122.7	89 102
Dibromochloromethane	16.7	14.3 14.9	36 [39
1,1,2-Trichloroethane cis-1,3-Dichloropropene			
	•		
Bromoform	- 9.9	7.2 8.9	72/90
1.1.2.2-Tetrachloroethane	10.0		
Tetrachloroethylene	6.7		0.1.
Chlorobenzene	8.7	7.9 7.6	96/93
1,3-Dichlorobenzene			
l,2-Dichlorobenzene			
1,4-Dichlorobenzene			- -

DAILY BUALITY CANTAGE

EPA DE WP 483 cmc 2 + 6PA OC WP 781 cmc 7

2/13/84		BG	BC
	CENTIFIED VALUE (MJ/L)	AMALUZED	Bre
Chloromethane			
Bromomethane			
Vinvl chloride			
Chloroethane			
Methylene chloride	9.2	9.0/10.4	98/113
Trichlorofluoromethane			
1.1-Dichloroethene	10.0	9.8 10.1	ig 101
1.1-Dichloroethane			
trans-1,2-Dichloroethene	5.4		
Chloroform	43.0	50.8 52.2	118 /101
1,2-Dichloroethane	27.6	22.7 25.2	T
1,1,1-Trichloroethane	14.3	14.4 15.1	100 106
Carbon tetrachloride	200	20.5/20.9	
Bromodichloromethane	7.9	8.4 18.0	107/102
1,2-Dichloropropane	8.0	8.28.5	103/106
Trichloroethene	22.2	21.2 by.6	95 110
Dibromochloromethane	16.7	15.8 13.5	94/81
1,1,2-Trichloroethane			
cis-1,3-Dichloropropene			
2-Chloroethylvinyl ether	6.6	2710-	24/01-
Bromoform '-	9.9	8.3 9.5	84/96
1.1.2.2-Tetrachloroethane Tetrachloroethvlene	ام.0	<u>-</u>	
Chlorobenzene	8.2	8.7 86	107/105
1,3-Dichlorobenzene	<u> </u>	1 100	18/11/23
1,2-Dichlorobenzene			L
1,4-Dichlorobenzene		`	

Produced Resembled Copyrights With

DAILY QUALITY CONTROL

EPA DE WP 483 cmc 2 + EPA DE WP 781 cmc 7

12/86	CENTIFIED VALUE (MJ/L)	B G ANALYZED VALUE	BR
Chloromethane			
Bromomethane			
Vinyl chloride			
Chloroethane		<u> </u>	
Methylene chloride	9.2	8.5 110.0	92/109
Trichlorofluoromethane			
1,1-Dichloroethene	10.0	8.6 8.1	86 /81
1,1-Dichloroethane			
trans-1,2-Dichloroethene	5,4		
Chloroform	43.0	45,2 58,0	105/135
1,2-Dichloroethane	27.6	20.0/23.5	72/85
l, l, l-Trichloroethane	14.3	13.8 [15.3	96/107
Carbon tetrachloride	200	18.8 /165	194 183
Bromodichloromethane	7.9	7.4 17.3	94 /92
1,2-Dichloropropane	8.0	6.6 814	82/105
Trichloroethene	22.2	19.7 122.7	89 No2
Dibromochloromethane	16.7	14.3 /14.9	36/89
1,1,2-Trichloroethane			
cis-1,3-Dichloropropene			
2-Chloroethylvinvl ether		7.2 8.9	72/90
Bromoform	7,9	100 18.1	7 - 70
1.1.2.2-Tetrachloroethane Tetrachloroethylene	6.2		
Chlorobenzene	8.7	7.9 7.6	96/97
1,3-Dichlorobenzene		, , , , , , ,	
1,2-Dichlorobenzene			
1,4-Dichlorobenzene			

DAILY QUALITY CONTROL RAS GC LAB

		Langue						
DATE:	1,2/26	SPIKED VALUE	ANAI	YZFD W	AT TIF		7.	}
J	E: 3/18/30		ANALYZED VALUE (ug/L)			RECOVERY		
	INSTRUMENT	(ug/L)	D			A		
l	ANALYST			 -	 			
		<u></u>	Q			<u>Q</u>		
TEST METHOD	COMPOUND	-	-					
EPA 601]] -			
LIA OUI	Chloromethane	16.2					[
	Chloroethane	28.1		ļ				
	Methylene Chloride	26.3						
	l,l-Dichloroethylene	45.0						
	Trans-1,2-Dichloroethylene	12.5						
	Carbon Tetrachloride	60.0						
	Dichlorobromomethane	40.0						
	1,1,2-Trichloroethane	33.8						
EPA 602			- 10		i I			
ł	Benzene	30.7	34.8			113		
	Toluene	4.1	4.5		ļ 	110		
	Ethylbenzene	11.5	11.2			97		
	P-Xylene	19.1	20.8			109		
	M-Xylene	42.6	46.6	<u></u>		109		
	O-Xylene	10.6	10.5			99		
EPA 608		(ug/g)		(ug/g)				
	Aroclor 1242	58.7						
	Aroclor 1260	56.8						

DAILY QUALITY CONTROL RAS GC LAB

			CDTUSS						
DATE.	1 186		SPIKED VALUE	ANIAT	VZED UA	THE		z	1
DATE:	711100		(ug/L)	ANALYZED VALUE(ug/L)		TOE	RECOVERY		
	`	INSTRUMENT	(36/2/	0	(08/5/		D		
		ANALYST		u			C		
TEST METHOD	COMPOUN	1D · - ·							
EPA 601					-				
!	Chloromethane		16.2						
	Chloroethane		28.1						
	Methylene Chloric	le	26.3						
	l.l-Dichloroethy	lene	45.0						
	Trans-1,2-Dichlo	roethvlene	12.5						
	Carbon Tetrachlo	ride	60.0						
	Dichlorobromometh	nane	40.0						
	1,1,2-Trichloroe	thane	33.8						
EPA 602	Benzene		30.7	32.3			105		
	Toluene		4.1	3.9			96		
	Ethylbenzene		11.5	10.3			89		
	P-Xylene		19.1	19.0			100		
	M-Xylene		42.6	43,2	ļ		102		
	O-Xylene		10.6	9.7			91_		
EPA 608			(ug/g)		(ug/g)				
	Aroclor 1242		58.7						
	Aroclor 1260	· · · · · · · · · · · · · · · · · · ·	56.8	<u></u>	<u> </u>				L

SPIKE RECOVERY

Pu	AT Y	יזכ					
2/13	pr bl	· 3					
SSR	SR	SA	ZR	SSR	SR	SA	ZR
	· · · · · · · · · · · · · · · · · · ·						
		<u> </u>				l	
	-						
7.5		9.2	82				
8.6		10.0	86				
4.2		5,4	77				
50.2			117				
20.0		27.6			i		
		JY. 3	92				
			97				
		7.9	99				
		8.0	97				
19.1		22.0	89				
	,		 -				
				1			
8.5		9.9	36	1			
ie		10.0		1			-
		6.2		1			
7.4			TII				
		· · · · ·					
				1		<u> </u>	
							·
	7.5 8.6 4.2 50.2 30.0 13.2 19.4 7.8 7.8 19.1 9.24	1.36 M SSR SR 7.5 8.6 4.2 50.2 30.0 13.2 19.4 7.8 7.8 19.1 9.2 19.1 9.2 19.1	7.5 9.2 8.6 10.0 4.2 5.4 50.2 43.0 20.0 27.6 13.2 14.3 19.4 20.0 7.8 7.9 7.9 3.0 19.1 22.0 19.1 22.0 19.1 22.0 10.7	SSR SR SA ZR 7.5 SR SA ZR 7.5 S.4 82 8.6 10.0 86 4.2 S.4 77 50.2 43.0 117 20.0 27.6 72 13.2 14.3 52 19.4 20.0 97 7.8 7.9 99 7.9 89 7.9 89 7.9 89 7.9 89 7.9 89 7.9 89 7.9 89 16.7	1/13bl 11 13 15 15 15 15 15 15	SSR SR SA ZR SSR SR	1/13/16 1/17 1/18

SSR = Spiked Sample Result

5 251

SR - Sample Result

SA - Spike Added

SPIKE RECOVERY

EPA Method 602 Volatile Organics	lular RP D			
SAMPLE #				-
сомроило	SSR	SR	SA	ZR
Benzene	32.3		<i>3</i> v. 7	105
Toluene	5.7		4.1	137
Ethyl benzene	130		11.5	113
1,4-Dichlorobenzene				
1,3-Dichlorobenzene				
1,2-Dichlorobenzene				
0-Xylene	11.8		10.6	112
M-Xylene	51.2		4).6	120
P-Xylene	73.3		19.1	118
Chlorobenzene				

SSR = Spiked Sample Result

SR = Sample Result

SA = Spike Added

LAB #: 8(COBOH7-OIA
SAMPLE ID: 800130
DATE: 2-12-80
INSTRUMENT: B
601/8010
BROMOCHLOROMETHANE: 91%
2-BROMO-1-CHLOROPROPANE: 100%
602/802 0
a,a,a-TRIFLUOROTOLUENE:

LAB #: 8002047-102A
sample id: 860137
DATE: 2-12-86
INSTRUMENT:
(01/0010
601/8010
BROMOCHLOROMETHANE: 1110/0
2-BROMO-1-CHLOROPROPANE: 138%
602/8020
a,a,a-TRIFLUOROTOLUENE:

LAB #:8000017-03A
SAMPLE ID: 8/01/38
DATE: 2-12-86
INSTRUMENT: B
601/8010
BROMOCHLOROMETHANE: SCO10
2-BROMO-1-CHLOROPROPANE: 1050/
602/8020
a,a,a-TRIFLUOROTOLUENE:

LAB #: SCCOCH7-CHA
SAMPLE ID: 860139
DATE: 2-13-86
INSTRUMENT: B
601/8010
BROMOCHLOROMETHANE: 95%
2-BROMO-1-CHLOROPROPANE: 1000
602/8029
a,a,a-TRIFLUOROTOLUENE:

LAB #: 8008047-05A
SAMPLE ID: 800140
DATE: 2-13-86
INSTRUMENT: B
601/8010
BROMOCHLOROMETHANE: 123%
2-BROMO-1-CHLOROPROPANE: 118%
602/802 0
a,a,a-TRIFLUOROTOLUENE:

LAB #: 8003047-00A
SAMPLE ID: FIELD PLANK
DATE: 2-13-80 -
INSTRUMENT: B
601/8010
BROMOCHLOROMETHANE: 98%
2-BROMO-1-CHLOROPROPANE: 111%
602/8020
a,a,a-TRIFLUOROTOLUENE:

RADIAN

LAB #: 8000047-07A
SAMPLE ID: TRIP BLANK
DATE: 2-12-86
INSTRUMENT: B
601/8010
BROMOCHLOROMETHANE: 119 %
2-BROMO-1-CHLOROPROPANE: 119%
602/8020
a,a,a-TRIFLUOROTOLUENE:

LAB #: 8(COOCLIT-CIC
SAMPLE ID: 800136
DATE: 2-11-80
INSTRUMENT:
601/8010
BROMOCHLOROMETHANE:
2-BROMO-1-CHLOROPROPANE:
602/8020
a,a,a-TRIFLUOROTOLUENE: 98%

RADIAN

LAB #:8002017-02C
SAMPLE ID:800137
DATE: 2-11-86
INSTRUMENT: D
601/8010
BROMOCHLOROMETHANE:
2-BROMO-1-CHLOROPROPANE:
•
602/8020
a,a,a-TRIFLUOROTOLUENE: 100%

RADIAN

LAB #:8000047-030
sample id: <u>800138</u>
DATE: 2-11-86
INSTRUMENT:
601/8010
BROMOCHLOROMETHANE:
2-BROMO-1-CHLOROPROPANE:
602/802 0
a,a,a-TRIFLUOROTOLUENE: 100%

Radian

LAB #: 8000017-04C
sample id: <u>800139</u>
DATE: 2-11-86
INSTRUMENT:
601/8010
BROMOCHLOROMETHANE:
2-BROMO-1-CHLOROPROPANE:
602/8020
a,a,a-TRIFLUOROTOLUENE: 48%

STORY CONTROL SYSTEMS CONTROL OF THE STORY O

LAB #: 8000017-05C
SAMPLE ID: 860140
DATE: 2-11-86
INSTRUMENT:
601/8010
BROMOCHLOROMETHANE:
2-BROMO-1-CHLOROPROPANE:
602/802 0
a,a,a-TRIFLUOROTOLUENE: 1147

LAB #: 8400047-040B
SAMPLE ID: FIELD BLANK
DATE: 2-11-86
INSTRUMENT:
601/8010
BROMOCHLOROMETHANE:
2-BROMO-1-CHLOROPROPANE:
602/8020
a,a,a-TRIFLUOROTOLUENE: 130%

RADIAN

A COLOR DESCRIPTION TO DESCRIPTION TO THE PLANTAGE TO THE PERSON THE PERSON TO THE PERSON THE PERSON TO THE PERSON TO THE PERSON TO THE PERSON TO THE PERSON

LAB #: 8000047-07A
SAMPLE ID: TRIPBLANK
DATE: 2-12-80
INSTRUMENT:
601/8010
BROMOCHLOROMETHANE:
2-BROMO-1-CHLOROPROPANE:
602/8020
a,a,a-TRIFLUOROTOLUENE: 1045/

Deant 3	PLANT H	L+0-80-98		ple	denplie (mitale)	22,05	10,05 oil	oil y greate,	HC		UNITS	Ma (m)	47	
ELEMENT		1 JØ			ana	LICATE	DUPLICATE ANALYSIS	S		SPI	SPIKE RECOVERY	OVERY		BLANKS
		FOUND VALUE	TRUE VALUE	2R	SAMP!"	SAMP	DUPL	RPD	SAMP#	SR	SSR	SA	84 87	
1	10 01	020	0/10	9.0	andup 01 E	2.005	<.005	8/6	an sp	2005	0.33	400	69	19 davd
42	02-11-0	172	27.6	, 0	dup pip	2	200	8	ds bip	3 0		000		2016/
	101 = ,005	032	040:	2 2	04 E	87.0	6/9	9:0	200	7.80:	100	770	1	19/00
		0360	040	90										5,003
Ha	28-01-8	4500.	0000	801	dig dup 02 E	< 0003	50002	NC	dg sp 01E	7,0003	.0033	0200"	0/	19 tad
	£000' = /P.	0400	0700.	00/										
		0700	0770	00,										
		2123		2										
10	0.0.0	7770	2776	98	and up	22.0	0.25	0	an 5p	,035	Ltho.	140.	88	19 day
2	400 = /h.	A WA	570		dup dup	* 800	200		dig sp 05 E	.20			12	
5	ò	140,	5#0'	401										
2 6'														
Se	2-35-86	140.	040.	103	ON dup 01E	<,003	د, 003	NC	an sp 01E	<.003	1201	700	88	index
	£00'= p!	960'	040	90	dig dup out E	<003	<,003	NC	dig sp 05 E	2003	5003	010'	0	cal DI <.003
		450	040	85										
		.043	.040	108										
oil and Grease	2-14-86	(97	200	66										
	/=/p/	197	200	66										

spike added *=value is less then five times the instrument detection limit idl = instrument detection limit

Opemple result is greater than 5% speke adoled concentration, in this situation, the speke is sometimes out of the recovery range

S DATE FOUND VALU	4 2	Report 3 86-02-176	96-02-176	ploguese (p	ramp	(pample 01-06) 000174 -	0 (90	000474	7	011 SGREASE	Ų.	UNITS	don	lal	
45 3:13.56 0.035 0.037 93 5.44P 18PD 5AMP 5R 5AMP 18PD 18PL 18PD 5AMP 5R 5R 5R 5R 5R 5R 5R 5R 5R 5R 5R 5R 5R	ELEMENT	S DATE	0 00	ATA		DUP	LICATE	ANALYSI			1		COVERY		BLANKS
45 3-13-56 0.035 0.027 93			FOUND VALUE	TRUE VALUE	8R	SAMP /	SAMP	DUPL	RPD	SAMP#	SR	SSR	SA	8R	
19 3-7-86 0.040 0.040 1.00 19 3-7-86 0.042 0.0025 97 116 04 1.002 11C 114-05 1202 0.002 0.002 11C 114-05 1202 0.0	4 8	3-13-84	0.035	0.027	93					an sp 176-03G			420.	801	dig 61 <.003
49 3-7-86 0.0044 0.040 110 0052 110 176-05 food over 20 00 for 20 for 20		id1=.003	0.040	0700	001										cal 61 <.003
49 3-7-86 0.0023 0.0025 94 16-04 1002			0.044	0.040	0//										
49 3-7-86 0.0033 0.0043 94 166 04 1003 1.00 176-65 tens 0.000 600 60 60 10 10 10 10 10 10 10 10 10 10 10 10 10															
3-11-86 0.043 0.0035 84 000 0.050 0.003 0.	Ha	3-7-86	0.0033	0.0035	92	dig dup 196-04	£0003'	<.000Z	NC	dig sp 176-05	Caod.	0.0008		0.5	6 000's
36. 3-11-86 0.043 98 0.043 54 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.0		2000 : 18	0.0031	0.0035	48										_
3-11-36 0.042 0.043 98 176-05G 6-01 0-03 6-04 54 idl=.001 0.046 0.043 107 176-05G 6-01 0-034 38 Se 3-11-36 0.046 0.050 98 003 0-034 1004 75 idl=.003 0.046 0.050 96 176-03G 6-003 0-034 1004 1004 1004 1004 1004 1004 1004 1															
Se 3-11-86 0.046 0.050 98 107 107-059 -001 0.024 38 1.01-001 0.046 0.050 98 105 003 0.016 0.018 0.04 100 1.01-003 0.046 0.050 96 1050 0.	ă		0,042	2700	96					on sp 176-056	_	0.0/3	450.0	54	1960
Se 3-11-86 0.045 0.050 98 0050-039 0.018 124 75 00 0045 0.050 98 0050-039 0.018 124 75 00 0046 0.050 92 0.050 92 0.050 0.050 924 100 0.050 0.050 92 0.050 0.	21	95-11-5	0 5 6 6	6,76	601					176 - 100 A		1000	7.034	88	19/02
Se 3-11-86 0.050 98 00.47 00.850 92 00.8 00.8 00.4 75 00.8 0.046 0.050 92 0.050 0.05	5	100 - 101	0.045	0.043	105										
Se 3-11-86 0.049 0.050 98 194-039 196-039 0.018 1024 75 100 001 50 1018 1024 75 100 1011 1011 1011 1011 1011 1011 10	26														
3-14-86 191 300 96 30 0036 003 0.034 100 100 100 100 100 100 100 100 100 10	Se	3-11-86	0.049	0.050	98					an sp 176-039	<.003	0.018	1120.		4.003
3-14-86		800°=1P1	0.046	0.050	82					on sp 176-03G	<003	450.0		700	<.005
3.14-86 191 200										1:10 dilutto					Col DI
	OI 46rasc	3-14-86	161	000	96										

NC=not calculable *=value is less then five times the instrument detection limit idl = instrument detection limit Report 3

Name of Name Plant of Produce

B	Radian Morkader	ender 86002	22 197	- 5	QC DATA	+ -111	+))		
ELEMENT	ANALYSIS DATE)ATA		DUP	DUPLICATE ANALYSIS	ANALYSI	S		SPIKE	KE RECOVERY	VERY		BLANKS
		FOUND VALUE	TRUE VALUE	% R	SAMP#	SAMP	DUPL	RPD	SAMP#	SR	SSR	SA S	% R	
Ha	3-9-80	, 20 ug	25 49	88	-00°	£005	4.0002	NC	- 00	///	<.000.	010.	0//	* * X X X X X X X X X X X X X X X X X X
6	£0W : 701	of OC'	90 0G.	001								_		
		`	0 0000	001										
			0											
Pb	3.18.86	150	<i>5₩</i> ,	701	*10-	, 22	SB.	0	-0/(1:16)	140.	.023	Ex	29	* * \ <.00.>
	184: . 842	540'	540'	001	·* 10-	122	137	30	-01(1.20)	050.	,01,0	he0.	79	Ĭ
		540	5,0%	001					-03**	0.00	.0099	,040	5/	
5		·												
21	3-13-86	740.	050.	76	**	4.003	<.003	NC	** & -	ć. æ3	<. d03	010.	0	* * * <
9	100::003	,043	050'	%					-02*	, w7	<.ω3 .	460.	99	
							- :		. * . (9:1)£0-	1.017	4.003	<i>\$</i> 0.	1/	
8	3.17-80	,008	1027	<i>701</i>	-01 **	91'	.092	15	, 4x	E60,	.005	8	85	X (. 000.)
	-cm : 70/	.042	040	105	·				-02*	8 €0.	,005	360	96	× 600.>
		c+0'	040.	501										× 3
			·			,								
2 X 2 X 2 X 2 X 2 X 2 X 2 X 2 X 2 X 2 X							;							
	RPD=[(/S-D/)/((S+D)/ RPD=relative percent	(S+D)/2)]x100 ercent difference	SPIKE	. I	%R=[(SSR-SR)/SA]×100	/SA]x10	0	* anal	analytical digistion	4 16	Sur to armple up Red	low McOney was deluted his matrix intoleron	low recovery as deluted of	opu

* analytical **-cupeltion Form VI Q. C. Report No. 3

DUP".	ICA	7=5

LAB NAME <u>Radian</u>

DATE <u>3-31-86</u>

Plant 4

CASE NO. 8602047-01

EPA Sample No. —

EPA Sample No. —
Lab Sample ID No. Arctionstion
Units MAME

	Macr	ix water	The state of the s		
Josephane	Control Limit	Sample(S)	Duplicate(D)	RPD-	
letals: Aluminum					
Antimony		<u> </u>	<u> </u>		
3. Arsenic				1	
4. Barium		0.099	0.098	1.0	
. Servllium					
. Cadmium		1 <0.002	10.002	I NC	
. Calcium)		!	
. Chromium		X0.018	X0.018	10	
. Cotalt.				1	
U. Copper				<u>i</u>	
.l. Iron	·	İ		<u> </u>	
12. Lead		<u> </u>		<u> </u>	
l3. Magnesium		1		1	
4. Manzanese				<u> </u>	
15. Mercury	,-,			<u> </u>	
16. Nickel					
17. Potassium				<u> </u>	
18. Selenium					
19. Silver		×0,006	X0.006	10	
20. Sodium			<u> </u>	<u> </u>	
21. Thallium			<u> </u>	1	
22. <u>Tin</u>		<u> </u>		!	
23. Vanadium			<u> </u>	<u> </u>	
24. Zinc		<u> </u>		1	
Other:			<u> </u>		
		<u> </u>	<u> </u>	-	
Cyanide		<u> </u>			

[✓] Out of Control

To be added at a later date.

 $^{2 \}text{ RPD} = [(S - D_1)/((S + D)/2)] \times 100$

^{1 -} Non calculable RPD due to value(s) less than CRDL

^{*} indicates value is less than 5 x idl

Form VI Q. C. Report No. 3

DUPLICATES

Blant 4

LAB NAME	Radian
DATE	3-31-86

CASE NO. 8602047-04
EPA Sample No.
Lab Sample 10 No. Amolyt
Units Malmil

	Hacti	× water		
lozpoune	Control Limit	Sample(5)	Duplicate(D)	R.P.D-
etals:				
. Aluminum				<u> </u>
Antimony				<u>}</u>
. Arsenic				<u> </u>
. Barium		0.519	0.519	1 0
. Servilium				
. Cadzium		< 0.002	<0.002	· NC
. Calcium		1		1
. Chromium		0.031	0.031	10
. Cosals				1
U. Copper 1				ĺ
l. Iron				1
2. Lead				į
13. Magnesium				1
4. Manzanese				1
5. Mercury				
6. Nickel)		
7. Potassium				
8. Selenium				}
9. Silver		0.015	0.015	0
O. Sodium				
1. Thallium				1
22. Tin		1		
23. Vanadium				
24. Zinc		}		
Otner:)		
				-
Cyanide		j l		

^{*} Out of Control

To be added at a later date. $\frac{2}{2}$ RPD = $\{(S - D_1/((S + D)/2))\} \times 100$

 $[\]frac{1}{2}$ - Non calculable RPD due to value(s) less than CRDL

		Q. C. Report No	. <u>3</u>	0.0	,
	•	SPIKE SAMPLE	RECOVERY	Plant	
ab name <u>Ra</u>	dean		CASE NO	. <u>8602043</u>	<u>2-03</u>
ATE <u>3-3</u>	1-86		Lab San Units _	sple No. sple ID No. (maly
	معيدة وما المستحددة	Matrix		0'	
compound	Control Limit ZR	Spiked Sample Result (SSR)	Sample Result (SR)	Spiked Added (SA)	
ecals:					1
. Aluminum	75-125				!
. Antimony	•		İ		1
. Arsenic	•				1
. Barium	•	1.034	0.101	1.0	193
. Beryllium					
. Cadmium	•	0.868	10.002	1.0	187
. Calcium	10				1
. Chromium	•	0.930	X0.007	1.0	192
. Cobalt					
O. Copper	•			1	1
1. Iron	•				
2. Lead	•				1
3. Magnesium	•				
4. Manganese					
5. Mercury	•				
6. Nickel	•				1
7. Potassium	•				
18. Selenium	•		·		
9. Silver	•	0.964	1 × 0.004	1.0	196
O. Sodium	•				
l. Thallium	•				Ì
22. Tin	•				
3. Vanadium	••				
4. Ziac	•				1
Cher:				•	
					1
Cyanide	*			1	

Form V

Q. C. Report No. 3 Plant 4 SPIKE SAMPLE RECOVERY LAB NAME Radian CASE NO. 8608047-08 DATE 3-31-86 Lab Sample ID No. Who to the Unics MA/MI Hatrix water Spiked Sample Control Limit Sample Spiked ZR! Result (SR) Added (SA) Compound XR. Result (SSR) Mecals: Aluminum 75-125 Antimony 3. Arsenic 4. Barium 5. Beryllium 6. Cadmium 7. Calcium 8. Chromium 9. Cobalt 10. Copper 11. Iron 12. Lead 13. Magnesium 14. Manganese 15. Mercury 16. Nickel ١ 17. Potassium 18. Selenium 0,207 19. Silver 20. Sodium 21. Thallium 22. Tin 23. Vanadium 24. Zinc Other:

Cyanide

Commencs: + indicates that value is less than 5 x idl

 $[\]frac{1}{2} = [(SSR - SR)/SA] \times 100$

[&]quot;R"- out of control

for workerdus 86-02-047 86-02-176 86-02-197 86-03-004

Form II pg a
Q. C. Report No. 3

INITIAL AND CONTINUING CALIBRATION VERIFICATION³

LAB	NAME Ra	•	 	CASE	NO/				
				sow N					
DATE	<u> </u>	31-86		UNITS		Inl			
Comp	ound	Initia		Cont		Calibr	ation ²		
		True Value		True Value		1 1		ZR	Method 4
	Aluminum							1	<u> </u>
2.	Antimony								
3.	Arsenic								
4.	Barium			1.00	0.99	1991	0.99	1991	P
5.	Beryllium								
	Cadmium			1.00	1.00	100	1.00	100	I P
7.	Calcium								
	Chromium			1,00	0.99	99	0.99	1991	IP
	Cobalt							1	
	Copper							1	
	Iron								1
	Lead							11	<u> </u>
	Magnesium						·	11	1
	Manganese	1							
	Mercury								
	Nickel						1		i
	Potassium								
	Selenium								1
	Silver			1.00	0.99	99	1.00	100	P
	Sodium								ì
21.	Thallium								1
22.					\		· ·	Ti	1
	Vanadium						· · · · · · · · · · · · · · · · · · ·		
	Zinc						. :		
	:						1	T	1
							1		1
Cyanı	.de					1 1			
,		i	 						

THE STATE OF THE PROPERTY OF T

¹ Initial Calibration Source 2 Continuing Calibration Source

³ Control Limits: Mercury and Tin. 80-120; All Other Compounds 90-110

⁴ Indicate Analytical Method Used: P - ICP/Flame AA; F - Furnace

For work orders: 86-02-049 86-02-196 86-02-199

86-03-004

ICP 9CDATA-PLANT 4

COCHE PROSESSE DESTRUCTOR PROSESSES COLORS

Form II gq /

Q. C. Report No. <u>3</u>

INITIAL AND CONTINUING CALIBRATION VERIFICATION³

LAB	NAME Re	dian			CASE	NO	Pla	nt 4		
					sow h	10				
DATE	<u> 3-3</u>	31-86			UNITS	119/	ml			
Com	pound	Initia	1 Calib	.1	Cont	inuing	Calib	ration ²		
Meta	als:	True Value	Found	ZR	True Value	Found	=R	Found	ZR	Method 4
1.	Aluminum						<u> </u>			
2.	Antimony									
3.	Arsenic						<u> </u>			!
4.	Barium	1.00	0.99	199	1.00	0.98	198	0.99	199	P
5.	Beryllium			<u></u>					<u> </u>	
6.	Cadmium	1.00	0.98	98	1.00	0.99	199	1.02	102	10
7.	Calcium									
8.	Chromium	1.00	0.98	98	1.00	0.99	199	1.01	101	P
9.	Cobalt									
10.	Copper						<u> </u>			
11.	Iron			1			<u> </u>			
12.	Lead									
13.	Magnesium									
14.	Manganese									
15.	Mercury			<u> </u>			<u> </u>	<u></u>		
16.	Nickel								<u> </u>	
17.	Potassium			<u> </u>				<u> </u>	1	
18.	Selenium			1				1		1
19.	Silver	1.00	0.98	198	1.00	1.01	101	1.00	100	P
20.	Sodium			<u> </u>					<u> </u>	
21.	Thallium			1			1	<u> </u>		
22.	Tin									
23.	Vanadium									
24.	Zinc		-							
Other	r:									
Cyan:	ide									

¹ Initial Calibration Source 2 Continuing Calibration Source

³ Control Limits: Mercury and Tin. 80-120; All Other Compounds 90-110

⁴ Indicate Analytical Method Used: P - ICP/Flame AA; F - Furnace

for workorders: 8602047,860217 8602197:8603004

Form III

Q. C. Report No. 3

BLANKS

LAB NAME RR				c	ASE NO.	Plant 4	
DATE 3-31-86				t	NITS	uplme]
		Mac	rix <u>///</u>	ter			
	Initial	Cont	inuing Ca	libraci	on	11	
Preparation	Calibration		Blank V			Preparati	on Blank
Compound	Blank Value	ı	2		4		2
Metals:				<u> </u>	1	8603004	
l. Aluminum				_		8603004	
2. Ancimony							
3. Arsenic						11	
4. Barium						11X0,002 1	
5. Beryllium							
6. Cadmium				•		11<0,002	
7. Calcium							
8. Chromium					į	11<0.005	
9. Cobalt							
10. Copper							
ll. Iron					1	1	
12. Lead							
13. Magnesium							
14. Manganese					1		
15. Mercury							
16. Nickel							
17 Potassium							
18. Selenium							
19. Silver						KO.CO2	
20. Sodium							
21. Thailium							
22. <u>Tin</u>					1	1	
23. Vanadium							
24. Zine						11	
Other:	·						
					1	11	
Cyanide					1	11	

Jor workerders: 8602047,8602176, 8602197:8603004

Form III

Q. C. Report No. 3

BLANKS

DATE 3-31-86			_				Plant	
			_		Ū	NITS	up/ml	
			Mat	-ix///	iter			
		Initial	Cont	inuing C	alibrați	<u>00</u>		
Pres	paration	Calibration	}}	Blank '	Value		Preparat	ion Blank
Cos	pound	Blank Value	1 1	2	3	4	1	
Meta	uls:			1			bor	103 8602120 860219
1.	Aluminum						8602047	860219
2.	Antimony		11	<u> </u>		1	1	
3.	Arsenic							
4.	Barium	20.001	11X0.002	40,001	<0.001	K0.001	120,001	1X0.002
5.	Beryllium					1		
6.	Cadmium	20.002	10002	10.002	K0.002	K0.002	1<0.002	10,00
7.	Calcium							
8.	Chromium	<0.005	110.010	(0.005	(0.005	K0.005	<0.005	120.005
9.	Cobalt							<u> </u>
10.	Copper							<u> </u>
11.	Iron		11		1	1		<u> </u>
12.	Lead		11		<u></u>			
13.	Magnesium				<u> </u>			
14.	Manganese			<u> </u>	<u> </u>	1		
15.	Mercury		11		<u> </u>			<u> </u>
16.	Nickel		11	<u> </u>				
17.	Potassium	<u> </u>	1	<u> </u>	<u> </u>	<u> </u>		
18.	Selenium	<u> </u>	11	<u> </u>		<u> </u>	<u> </u>	<u> </u>
19.	Silver	<0.002	110.025	10.013	1x0.005	1X0.010	10.002	40,002
20.	Sodium							
21.	Thallium		11			<u> </u>	<u> </u>	
22.	Tia							1
23.	Vanadium_		11	<u> </u>				
24.	Zinc						11 .	
Oth	es:	·		<u> </u>		1	<u> </u>	
					1	1		
Cya	nide		11	<u> </u>		!	11	<u> </u>

RADIAN CORPORATION

EPA 25 860141, 860143, 860,4, 860146

SALTÜ.

CHAIN OF CUSTODY RECORD

	Field S	ample No
Company Sampled / Address Gener	at Dynamics-Fortworth, P	Lm+4
Sample Point Description	nd Water	
Stream Characteristics:		
Temperature	Flow	pH
•		•
Collector's Name Nikabison A. I	Morrill Date/Time Sampled 2-	-10-86
Amount of Sample Collected	ht 1000 ml. Amber Class	<u> </u>
Sample Description Cround wa	Lec	
Store at: ☐ Ambient ☐ 5°C ☐ —	10°C XOther 4°C	
Caution - No more sample available	☐ Return unused portion of sample ☐ Disc	card unused portions
Other Instructions - Special Handling -	Hazards	
Hazardous sample (see below)	☐ Non-hazardous sa	imple
Toxic	☐ Skin irritant	☐ Flammable (FP< 40°C)
Pyrophoric	☐ Lachrymator	☐ Shock sensitive
☐ Acidic	☐ Biological	Carcinogenic · suspect
□ Caustic	□ Peroxide	☐ Radioactive
□ Other		
Sample Allegation / Chair of Bassacia		
Sample Allocation/Chain of Possessio	7: 70 El.	
· ·		
Received By Costhin Mom	Lab Sample No. 3	
Comments	Lab Sample No.	<u> </u>
Inclusive Dates of Possession	10-86	
	Analytical Services	
Organization Name Ladian Received By Ramulla		76 Time 10:45
	Lab Sample No.	
•	Date Received	
	Lab Sample No.	
Inclusive Dates of Possession		

1+45TIN

Comments _____

Inclusive Dates of Possession _____

EPA 601	- 860141	860142	860143	01.0.141
8PA WUI	- 860141	86014Z]	160143	3860110
Metals	- 860141 - 860141 } 860141,86	,0140, 86	0142, 8kc	,143

RADIAN STILL	> 860141, 860146, 860142, 86014	56146
MWM - 860142	CHAIN OF CUSTODY RECORD	4.5
160141 860143 Hydraca	CHAIN OF CUSTODY RECORD Whens 860141,860143,860145,86 CREASE 860143,860141,860142 Fie	W142
VIL 8	CREASE 810143, 860141, 860142 Fie	ld Sample No
Company Sampled / Address	merel Dynamier - Fort Wirth -	Plunt 4
Sample Point Description	round Water	
Stream Characteristics:		
	Flow	nН
Collector's Name N Robinson	A. Morrill Date / Time Sampled 40 ml glass @ 500 ml plantic, @	2-10-86
Amount of Sample Collected	40 mi glass @ 500 ml plantic. (DMASON JARS
Sample Description	el Water	
Store at: ☐ Ambient ☐ 5°C	\Box - 10°C \bigcirc Other \bigcirc 4°C \bigcirc	
•		
Caution - No more sample avail	lable Return unused portion of sample	Discard unused portions
Other Instructions - Special Handl	ling - Hazards	
Hazardous sample (see below)	☐ Non-hazardou	s sample
∑ Toxic	☐ Skin irritant	☐ Flammable (FP< 40°C)
☐ Pyrophoric	☐ Lachrymator	□ Shock sensitive
☐ Acidic	☐ Biological	Carcinogenic · suspect
☐ Caustic	☐ Peroxide	☐ Radioactive
□ Other		
Sample Allocation/Chain of Poss, Organization Name		
Received By Transported By	Lab Sample No	Time
Comments		
Inclusive Dates of Possession	<u>.</u>	
•		
Organization Name	Date Received	
Received By	Date Received	
		<u> </u>
Inclusive Dates of Possession		
Organization Name		
Received By	Date Received	Time

Transported By ______ Lab Sample No. _____

SE I LE LO LO LO LO LO LO LO LO LO LO LO LO LO		FLANT 4	046-10-98		someter	101-09	60	FOR W.O.	. 1	86-03-03/ 86-02-03/ 86-02-04/		UNITS	melm	1 4	
1	ELEMENT	ANALYSIS DATE	0 00			!	LICATE	ANALYSI		7-060 8-067	SPI		OVERY		BLANKS
45			FOUND VALUE	TRUE VALUE	% R	SAMP,"	SAMP	DUPL	RPD	SAMP#	SR	SSR	SA	% R	
# 1 1 2 5 5 5 6 1 1 1 1 1 1 1 1 1	As		140'	040'	103	andup 01 A	4005	5005	NC		\$00'	420'	420.	001	500 >
94		0,	140'	040	103										1919
19		ł	040'	040,	00/										
Hg									·						
26 2-1/86	На	3	.0054	.0050	8 01	419 dup 09A	20003	*000.	7/6	98 pp	-,002	,0028	0200	071	19000'
49 2-11/26	þ	8000 = 1p1	0400.	0400'	100										
26 3-11/86															
id = 100%	40	3-11/86	BHO.	.045	93	an dup 09 A	<.003	<.003	NE	12	£002	6/0.	,024		,002
35		600, - 1bi	940'	540'	201										19 100
5c	9													,	
d =.003		2/9/86	7770	050'	88	andup 05 A	< 003	5.003	Ne	ansp 05 A	-:003	8/0'	,024	75	pepb1
		500°=/p	7170	050'	90		,		ļ	01:150	< 003	.022	420.		col 61 <.003
and dup = analytical duplicate and 50 - analytical spite of detection limit										dilut	100				
and up = analytical duplicate and sp = analytical spile * indicates value is less than dia detection limit	1/9	48/8/8	. 0054	0500'	801	dig dyp 03.4	£000>	20002	NC		5000	HEOO.	0000		10 das
0 = analytical duplicate and sp = analytical spite # indicates value is less than a detection limit		£000 = 1/bi	0,000	, 0040	001										
o = analytical duplicate on sp = analytical spite											_				
o = analytical duplicate on sp = analytical spite * indicates value is less than a defection limit															
o = analytical duplicate on sp = analytical spite * indicates value is less than = digestion spite or detection limit															
	9	10	duplicate	2 0	nalyti		١	* India	1	.7	ss tha	}	in Asu	nent	

UNITS KG/ML

	PIANT 4 8	86-03-031	(0) Momen		-,03,03,06)-0114Grease	9×110-	rease	02,03	02,03-METHS		DINIS USING	180	70	
ELEMENT	DATE	8	ATA		DUP	LICATE	DUPLICATE ANALYSIS	1 1		SPI	SPIKE RECOVERY	OVERY		BLANKS
		FOUND VALUE	TRUE VALUE	8R	SAMP ;"	SAMP	DUPL	RPD	SAMP#	SR	SSR	SA	% R	
45	2-19-81	0.29	040	98	03 G	<,005	4.005	NC	01. 3P	3002	,023	420	96	200's
	200' = /bi	. 040	070'	100					1					19/00/
140	3.30.86	8,000	0500'	96	1				dig 5p	× 0002	6100	02.00	95	6000.
	£000 = 1P1	6400'	0400'	201										
		ptoo'	.0040	0//										
70	10 07.0	##0	5770	98	an dup 03 G	680	.030	9.4	on. 5P	033	,053	.024	83	prep 61
5	E01.=14.	5#0	540'	00/					11					
28														
32	18.01-0	0.43	070	501	,				on. 5P.	500	120.	tro	75	500 S
)	£00 : = /P'	070	040,	901					,					Ca161
		980,	040	98										
oil and	3-14-86	197	200	99					J					
	1 =/p.1	261	200	44										
HC	3.26-86	430	415	501										
	id1 = 1	208	245	118										
8		ne.	a = dub na	naly	= analytical duplicate	ol cate	+ E <u>Q</u>	+ indicates value detection limit	7	1655 6	less than 5x instrument	Asu)	ument	A .
(5 p)p	= gredigate de	Marine aparte	do his				₹	IC = not	NC = not calculable	d				

1dl = instrument detection limit

NC= not calculable

UNITS MOLIME

TO CONTRACT TO SERVICE

	BLANKS		200°	cal b1 <.005		50003				19 dad				1900 x	cal 61 4.003			* indicates value is less than 5x
M		8R	62			 0//				88			<u> </u>	75				 less U
ng ng	OVERY	SA	420.			0200'				420				420.				 ie is i
18/10	SPIKE RECOVERY	SSR	.022			. 0022				170				120				s valu
	SPI	SR	5005			.0002.				×003				.003				di Care
		SAMP#	910 01E			09 sP					1:10 dilation		;	on sp 03 E				* 100
	S	RPD	NC			NC				NC								NC
	NALYSI	DUPL	<.005			*e000.				<000								12
	DUPLICATE ANALYSIS	SAMP	<005			. E0003				< 003								 12
	DUP	SAMP,"	an dup			dy dup Ob E				on dup 01 E				1				0320
90-10		%R	98	93	88	96	011	0//		86	001	107		105	98	99	66	
jangles of		TRUE VALUE	040	040	0+0'	0500'	0400'	0400		540'	5770	540'		040'	040'	200	200	
86-08-041	ည	FOUND VALUE	980	780,	,035	8 #00	4400	th00.		470	777	840		,042.	980'	161	197	
0-98 TT HWO'G	LYSIS DA		9-10.86	300 = JP		2-20-86	19/2,0003			48-61-6	800. 216			98-11-8	100 = 100	3-14-86	1=110	2-14-86
818	ELEMENT		45			На				5	28	33_		25		oil and brease		HC -101-1

an sp = arsugued spike dg sp * dyslion opipe or natus spike

andup= anotylical duplications of duplicati

idl-instrument dot limit

instrument defection limit

NC = not calculable

UNITS - US LAR

	PLANT 4 84	86.03-060	samoles "	7-10	05							B		
ELEMENT	ATE	QC DATA			DUP	DUPLICATE A	ANALYSIS	S		SPI	SPIKE REC	RECOVERY		BLANKS
 -		FOUND VALUE	TRUE VALUE	%R	SAMP,"	SAMP	DUPL	RPD	SAMP#	SR	SSR	SA	% R	
07	2.15-86	080	100	101	dub gib	.000	***	40	9 80 03 C	\$000	.023	.020	58	19 dad
2	200 - 1K.	7/0	970	70,	an dup	* 700	\$000	6.7	an sp	2002		024		4.002
	۱ ا	07.2					,				1			
Mo	0.20.84	87700	0500.	96					05A	<,0002	0000	0200	100	14 doing
611	1/2 0002	CHOO	0400	105										
Ph	3-17-84	540.	043	105	dig dup	.034	.031	9.1	dig sp 0 % C	.27	.29	020.	001	14 prep 101.
<u> </u>	600'= 1p1	670'	,043	114										10/0/ 4.003
5														
28	98-11-8	840'	040'	105	010 010	.003	£00°	40	0 & C	, eoa	200	010.	50	4.003
ı	E00' = 10'	040	040'	001					an sp 05 A	-00x	.023	420.	96	19/00
	i								1:10 dilution	2				
6rease	98. h1. E	197	200	66	÷				1					
	1 = 10'	261	200	99										
								}						
00	so = another cel, aprile	aarke	34	dup	= oneh	onelytical dypticate	well	3	* Indicates	cates	value 15	1	less than	nan

an sp = analytical apuke dig sp = digistion or matrus apuke idl=instrument deteotion limit

an dup = analytical duplicale dig dup = augustion augusticale

* indicates value is less than 5* Instrument defection limit

NC= not calculable

UNITS Malal

AMALYSIS DATE FOUND VALUE TRUE VALUE & SAMP! SAMP! SAMP! SAMP SAMP! SAMP SAMP! SAMP SAMP! SAMP SAMP! SAMP SAMP! SAMP SAMP! SAMP! SAMP SAMP! SAMP SAMP! SAMP SAMP! SAMP SAMP! SAMP SAMP! SAMP SAMP SAMP! SAMP SAMP! SAMP SAMP! SAMP SAMP! SAMP SAMP SAMP SAMP SAMP SAMP SAMP SAMP	LOWING	#	1.00-80-98									7,6	
FOUND VALUE TRUE VALUE 28 SAMP! SAMP DUPL RPD SAMPH SR SSR SA 28 TOP 102 0.03 0.03 0.03 0.03 0.04 0.02 0.01 0.04 0.02 0.01 0.04 0.02 0.02 0.02 0.02 0.04 0.02 0.02	DATE	0 OC D	ATA		DUP	LICATE	ANALYSI	! !		SPI	KE REC	VERY	BLAN
16 . 039 . 027 107 — 038 . 602 031 034 88 600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		FOUND VALUE	TRUE VALUE	% R	SAMP/	SAMP	DUPL	RPD	SAMP#	SR	SSR	-	
16	5-86	980	1027	107					ansp 03 E	£003	100		
86 .0048 .0050 96 6045 .0046 .100 .0046 .0050 96 6044 .0050 96 6046 .0050 96 6046 .007 .0046 .100 6046	, ;	67.0	277.0						1:10 dilution				
30.86 .0048 .0050 96 6046 .007 .0040 .0050 96 6046 .0050 96 6046 .0050 96 .0046 .0050 96 .0046 .0050 90 .0046 .0050 .0040 .0040 .0050 .0046 .0050 .0046 .0050 .0046 .0050 .0046 .0050 .0046 .0050 .0046 .0050 .0046 .0050 .0046 .0050 .0046 .0050 .0046 .0050 .0046 .0050 .0046 .0050 .0046 .0050 .0046 .0050 .0046 .0050 .0046 .0050 .0046 .0050 .0046 .0050 .0046 .0050 .	600.	o Lat	242	2									_
34.86 .0048 .0050 96 646 .007 .0046 .0060 .0046 .0040 .0040 .0040 .0040 .0040 .0040 .0040 .0040 .0040 .0040 .0040 .0040 .0043 .0040 .0046 .007 .007 .0038 .2.1 038									dia 50			-	prepe
20.86 .0048 .0040 110 and 00 30 .038 a. 1 08 5 .000. -17-86 .045 .043 105 046 .037 .038 a. 1 0.35 .000. -17-86 .049 .043 105 016 .007 .007 0 .046 .003 .016 .007 0 .046 .046 .000 .007 0 .046 .046 .000 .007 0 .046 .046 .046 .046 .046 .000 .007 0 .046 .046 .046 .046 .046 .000 .007 0 .046 .046 .046 .046 .046 .000 .007 0 .046 .046 .046 .046 .046 .046 .046 .0	34-86	. 0048	,0050	96	l				046	2000.	.0020		
17-86 .045 .0040 110 ander .037 .038 1 0.3 on 35 1 0.3 on 45 1.0040 110 on 460043 1.046	30-86	87700	0500'	96									000
17-86 .045 .043 105 046 .037 .038 c. 1 03 en 5p ocos .045 .043 114 .037 .038 c. 1 03 en 5p ocos .049 .043 114 .037 .038 c. 1 03 en 5p ocos .040 .040 .040 .000 .000 .000 .040 .04	5000,	##00		0//						·			
-17-86 .045 .043 105 046 .037 038 2.1 03 5 00017-86 .049 .043 114 anspector of the condition of the condi		4400'		011									
16 .045 .043 105 and bp .032 .038 2.1 03 & 03 & 046 .032 .038 2.1 03 & 03 & 03 & 03 & 03 & 03 & 03 & 03						-							
17-86 043 114 005 017 0 07 6 00 046 003 040 0 040 0 000 000 000 0	10.0	570	8770	105	andup	037	038	7	12 W	020	.035	├	1-
17-86 ,043 ,040 105 01 € ,007 ,007 0 04 €	00 11-7	640	.043	7//									
17-86 ,043 ,040 ,05													
14-86 197 200 99 14-86 197 200 99 an sp = anoughed apthe and p = anoughed applicate anoughed applicate anoughed applicate anoughed anoughed anoughed anoughed anoughed anoughed anoughed anoughed anoughed anoug	2-17-86	043	040'	501	ON dup	.000.	`	0	an sp 04 E	5,003	.021		
14-86 197 200 99 1 an sp = aneighted asite and and = anolytical augusta	600	070	070		t				1:10 dilutior				cal 6,
14-86 197 200 99 an sp = avorgative destriction of any = asystem duplicate of any any = anotherest deplicate of any any = anotherest deplicate													
an sp = anough col agive and a = ayotion duplicate of an app = anolytical deflicate	98-11-86	661	300	66									
an sp = anough col apthe and ap = agestion duplicate *	1 =	661	300	66									
anough end applies and any = augustion duplicate of augustion or motive spike on aug = anoligies deplicate													
anough celapthe and and adjustern duplicate of duplicate and electron or matrix spake on dup = anolytical deplicate													
	an sp:	1 11	erke natur sp	\$.	ang ang	ii Ii	uction o	euplica L'aypli	*	then time	the v	alue c	s less utdubed

							440	alea			UNITS	119	In	
77	PLANT 4 86	600.00.	samples	7	, _ //0	40	as, 01,	25,06,07-09	-046,HC			0/		
ELEMENT	ANALYSIS DATE	0 00	DATA		DUP	DUPLICATE	ANALYSIS	51		SPIKE		RECOVERY		BLANKS
		FOUND VALUE	TRUE VALUE	%R	SAMP."	SAMP	DUPL	RPD	SAMP#	SR	SSR	SA	%R	,
				Ţ	dr. or	;		10	on.sp.	·	8		\ 	la dand
A5	2-21-86	640	070	105	614	110	010.	4.5	110	110:	.038	7.20	//3	10/00
	600, = 1b1	640	oto,	105	dig dup	110	.011	0	da dup 021	.007	,026	020	95	2,003
		270	040	501									•	<.000x
													<u> </u>	
				,	dap bp		1 5		ds bp	V	t .		 `-	19 021
14	2-20-86	8400	10050	96	410	2000	×0000.	NC	V 40	2000	1000'	0000	50/	2.0007
	1000 = 101	6400	0400.	501										
		4400	otroo'	011									-	
5			6//-	0	dup bip	0/:-	3	,	ds 610	5000	601	1	7	iodad
10	2-51-86	1043	cho'	97	210	040	740	7,70	95.00	5	4	000	1	19/00
28	id1=,003	,043	,043	100					PHO	2000	110.	7577	77	6000
6									92 00	2000	027	024	<u> </u>	ca/ 6/
									lindilumen					
					dippip				ds hip			 		piep ht
Se	2-31-86	140'	.040	103	014	2009	2002	770	034	6003	× 003	010	0	10/2
	14/=,003	,043	040	108					044	5003	910.	420	69	C.00.>
									90 ns p	600	.024		09/	
									allun	0				
oil a Grease	2-14-810	/6/	300	96										
	17/- 1						-							

UN OUF = UNBITATION OUPLICATE an sp = analytical spike

dig sp = pre-digest spike

101= 11strument detection 11mic * - value 1s less than 5 x id1

	ANALYSIS DATE	QC DAT	DATA	1	DUPLICATE ANA	LICATE	DUPLICATE ANALYSIS	S		SP	SPIKE RECOVERY	OVERY		BLANKS
		FOUND VALUE	TRUE VALUE	8.R	SAMP,"	SAMP	DUPL	RPU	SAMP#	SR	SSR	SA	% R	
, ,	10/10	720	9//	6	andrp	0 8 7	288	0	ansp.	500	024	420	001	1000.
113	00-1-0-10	ac 3'	020	;	ì	16.10	3 5 5 7		-	-				19/00
	141=,002	036	040	90						_				60000
		160'	,040	93	ı					`				600.
Но	7-20.86	87100	0500	%	i				de 90	2000.	6100'	.0020	95	40003
	70 00			, ,									<u> </u>	
	10000 = 101	4400	0040	10011						-				
										_				
ò	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2// 5	677.0	90	1				os sp	×8.	1014	420	1	10 day
-1	D8-18-1	070	. 6.73	0,					ds up	_	<u> </u>			19100
<u>5</u> _	1900 = 1PI	,043	. 043	700					E00; 1:00:1 450	1 5003	450.	100	100	<.002
28														
97									dsuo				,	19001
56	2-21-86	041	040'	103					97.00	2003	2/2	\$20	00	\$ 200 v
	141= 1002	eto.	040	801	,				044 dillon 5002	2003	.033	40.	96	K.002
oil and	3-14-86	161	200	9,6										
	/=/pi													
					·									

*=value 1s less then 11ve id] = instrument detection limit

For work 8601246 orders 8602031 8602041 8602060

8602079

860208

Form VII

Q.C. Report No.

INSTRUMENT DETECTION LIMITS AND

LABORATORY CONTROL SAMPLE

LAB NAME	Radian	CASE NO.	PLANT 4	
DATE	3-4-86	LCS UNITS	ug/1-	mg/kg
		المحام	I/ml (Circl	e One)

	Decodered Decoded	1 7		g/me (cir	
	Required Detection		Detection	Inh Come	1 61-
Compound	Limits (CRDL)-ug/1	Limits (I	•		rol Sample
	and the state of t	ICP/AA	Furnace*	True	Found ZR
Metals:			٠		
l. Aluminum	200				
2. Antimony	60		!	ļļ	<u></u>
3. Arsenic	10				!
4. Barium	200	2.001	!		
5. Beryllium	5			<u> </u>	<u> </u>
6. Cadmium	5	2.003			
7. Calcium	5000				
8. Chromium	10	2.005			
9. Cobalt	50			<u> </u>	
10. Copper	25			<u> </u>	
ll. Iron	100			<u>i</u>)
12. Lead	5				<u> </u>
13. Magnesium	5000				<u> </u>
14. Manganese	15				j
15. Mercury	0.2				
l6. Nickel	40				i
17. Pocassium	5000				<u> </u>
18. Selenium	5				
19. Silver	10	1 < .002			İ
20. Sodium	5000			1	l.
21. Thallium	10)
22. Tin	40		i	1	
23. Vanadium	50				
24. Zinc	20				
Other:			İ	1	
		5 2	00	1	
Cyanide	10	0 2	00		i i

* dection limits are given on furnace / Hg/040 PA/OC SUMMHRY SHEETS

ICP 9H/9C DATA

Service of the servic

For work 8602031 8602041 8602060 8602067 8602079 8602087

Form II

Q. C. Report No. 3

INITIAL AND CONTINUING CALIBRATION VERIFICATION3

LAB	NAME	Radian			CASE	NO	PLANT	-4		
					sow !					
DAT	<u> </u>	-4-86			UNII	s <u>ugli</u>	nl.			
		Initia	1 Calib	.1	Cont	inuing	Calibr	acion ²		
Met.	als [†] :	True Value	Found	黑	True Value	Found	===	Found	翠	Method 4
1.	Aluminum									
2.	Antimony				<u> </u>			·		
3.	Arsenic								1	<u>' </u>
4.	Barium	100	1.01	1011	1.00	1.01	101	1.01	1/0/1	
5.	Beryllium			1						
6.	Cadmium	1.00	1.04	1041	1.00	1.05	105	1.04	104	
7.	Calcium									
8.	Chromium	1.00	1.01	1011	1.00	1.02	102	1.02	1/021	
9.	Cobalt								1	
10.	Copper			<u> </u>					<u> </u>	
11.	Iron									
12.	Lead									
13.	Magnesium								<u> </u>	·
14.	Manganese			1			<u> </u>			<u> </u>
15.	Mercury								!	1
16.	Nickel									1
17.	Potassium								1	1
٠8.	Selenium			1						1
.9.	Silver	1.00	1,00	1001	1.00	1.02	102	1.00	1001	İ
20.	Sodium								1	İ
21.	Thallium								1	İ
22.	Tin								1	
23.	Vanadium			 					1	1
24.	Ziac									
Othe	r:								İ	ļ
									1	
Cyan	ide								l	

I Initial Calibration Source 2 Continuing Calibration Source

³ Control Limits: Mercury and Tin 80-120; All Other Compounds 90-110

⁴ Indicate Analytical Method Used: P - ICP/Flame AA; F - Furnace

Form II

Q. C. Report No. _____

INITIAL AND CONTINUING CALIBRATION VERIFICATION3

LAB	NAME	Radian				CASE	NO	PLAR	174		
		1 / 4/				SOW !	۱o				
DAI	Ε	3-4-86				UNIT	s	19/m			·
Con	pound	Initia	l Calib	.1		Cont	inuing	Calibr	ation ²		
Met.	als:	True Value	Found	I XR	True	Value	Found	<u>==</u>	Found	显	Method 4
1.	Aluminum	<u> </u>									
2.	Antimony	<u> </u>					<u> </u>			1 1	
3.	Arsenic	1									
4.	Barium				11.0	0	1.01	1011	1.01	1/0/1	
5.	Beryllium										
6.	Cadmium				1.8	0	1.04	1/041	1.03	1/03	!
7.	Calcium]									1
8.	Chromium				1.6	10	1.00	1/20	1.01	1/0/1	1
9.	Cobalt	İ									
10.	Copper									l i	1
11.	Iron	<u>i</u>									1
12.	Lead										
13.	Magnesium								_	İ	
14.	Manganese				.						!
15.	Mercury										
16.	Nickel										!
17.	Potassium									1	
18.	Selenium										1
19.	Silver		_		1.0	20	1.01	101	1.02	1/02	İ
20.	Sodium										į
21.	Thallium										
	Tis										
23.	Vanadium									1	
24.	Zinc										
	r: _		-								1
_										T	
Cvan:	ıde										
											

¹ Initial Calibration Source 2 Continuing Calibration Source

³ Control Limits: Mercury and Tin. 80-120; All Other Compounds 90-110

⁴ Indicate Analytical Method Used: P - ICP/Flame AA; F - Furnace

Form III

Q. C. Report No. 3

BLANKS

LAB NAME	2 dian	CASE NO. PLANT	- 4
DATE	-4-86	UNITS uglar	

Macrix water

						<u></u>	
	Initial Continuing Calibration						
Preparation	Calibration	Blank Value			ļ	Preparation Blank	
Compound	Blank Value	1 1	2	3	4	11	2
Metals:				{		}	
1. Aluminum							<u> </u>
2. Antimony		<u> </u>					<u> </u>
3. Arsenic							
4. Barium	1.001	1.001	1.001	4.001	2.001		
5. Beryllium							1
6. Cadmium	2.002	1.002	1.002	.002*	1.002*		
7. Calcium			<u> </u>				
8. Chromium	4.005	1.605	2.005	1.005	1.005	<u> </u>	
9. Cobalt							<u> </u>
10. Copper		11					
ll. Iron	<u> </u>			<u> </u>			
12. Lead							
13. Magnesium			<u> </u>			<u> </u>	
14. Manganese							
15. Mercury		11					
16. Nickel							
17. Potassium							
18. Selenium				<u> </u>			1
19. Silver	.006+	11.018	.010	.009#	1.014		1
20. Sodium					1		
21. Thall tum		11			1		
22. Tia							
23. Vanadium							\
24. Zinc						•	
Other:	·						
					1		1
Cvanide				!	!	İ	

HARAN MARKACAKA BIRTITI PARKASASA KARKASA KARKASA BIRTITA KARKASA BIRTITA BIRTITA BIRTITA KARKASA PARKASA PARKASA P

Form III

Q. C. Report No. 🔗

Macrix water

8602060 8602067

BLANKS

CASE NO. (2-14-86)

LAB NAME Radian CA
DATE 3-4-86 UN

ONITS ugino.

Initial Continuing Calibration Preparation Blank Value Calibration Preparation Blank Blank Value 2 Compound 1 2 3 4 Metals: 1. Aluminum 2. Antimony 3. Arsenic .005* 4. Barium 5. Beryllium 4.00Z 6. Cadmium 7. Calcium ,012* 8. Chromium 9. Cobalt 10. Copper ll. Irou 12. Lead 13. Magnesium 14. Manganese 15. Mercury 16. Nickel 17. Potassium 18. Selenium <.00Z 19. Silver 20. Sodium 21. Thallium 22. Tia 23. Vanadium 24. Zinc HOther:___ 11 11 Cvanide

^{*} value is less than 5x id!

Form Vi

Q. C. Report No. 🗷

DUPLICATES

PRE-DIGEST

LAB NAME <u>Rad</u> DATE 3	1-4-86	,	EPA Sample No. Lab Sample ID No.		
**************************************		==x water	Lab Sample ID No. <u>860706</u> 0 Units <u>And U.g.Incl</u> de		
Josepauna	Control Limit	Samble(S)	Duplicate(D)	RPD-	
letals:					
2. Antimony				<u> </u>	
3. Arsenic			1		
4. Barium		.068	.066	3.0	
5. Servilium			<u></u>	11	
6. <u>Cadmium </u>		12.002	12.002	NC	
7. Calcium		1		1	
8. Chromum		1.005*	1 2.005	NC	
Gobalt.		i		<u> </u>	
U. Copper				1	
ll. Iron				11	
12. Lead		j		1	
13. Magnesium				1	
14. Manganese		1		1	
15. Mercury					
16. Nickel		Į			
17. Potassium		1			
18. Selenium		Ī,			
19. Silver		1 2.007	.003*	NC	
20. Sodium					
21. Thallium					
22. Tin		1			
23. Vanadium					
24. Zinc					
Other:					
Cyanide		- 	<u> </u>		

^{*} Gas of Constal

To be added at a later date.

 $^{^{2}}$ RPD = [{S - D}/((S + D)/2)] x 100

^{1 -} Non calculable RPD due to value(s) less than CRDL

^{*} Value is less than 5 x 1d/

Form V

Q. C. Report No. 2

SPIKE SAMPLE RECOVERY

ROCKA PROKOKA

LAB NAME	0	PLE - DIGE	57	D. PLANTY	/			
			EPA Sa	mple No.				
DATE	-4-86		Lab Sample ID No. 8602 Units ual ml,					
		Matrix Wate	25	ugimu	pre-d			
	Control Limit	Spiked Sample	Sample	Spiked	1			
Compound	%R	Result (SSR)	Result (SR)	Added (SA)	7R!			
Metals:				1	1			
1. Aluminum	75-125		<u> </u>	<u> </u>	!!			
2. Antimony	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>			
3. Arsenic]	<u> </u>	1 1			
4. Barium	"	1.81	,12	2.00	185			
5. Beryllius	<u> </u>				! -			
6. Cadmium	<u> </u>	, 035	,003*	1.050	164			
7. Calcium	<u> </u>		1	1	1 !			
8. Chromium	1	.19	.034	1,20	1781			
9. Cobalt								
10. Copper				[
II. Iron	•		<u> </u>					
12. Lead			İ	1	1 1			
13. Magnesiu	m !	İ			!			
14. Manganes	e "			İ				
15. Mercury				i	1			
16. Nickel								
17. Potassium	. ·							
18. Selenium								
19. Silver	1 "	.20	.004*	1,25	1781			
20. Sodium					1			
21. Thallium				1	1 1			
22. Tin	-							
23. Vanadium					1			
24. Zinc				1				
Other:	1				(
	j		1		1			
Cyanide	!			1	1			
1 22 = [(332	- 5R)/SA x 100							
"R"- out of								
	* Value is le	es than 5x1	d/					

B - 11

5 294

Volatile Organics

A SECRETARIA DE COCOCOCOL PIPER A LIBERCOCOCOCA A COCOCOCA A LOCOCOCOCA A LIBERCOCOCOCA A LIBERCA DE COCOC

DETECTION LIMITS

METHOD (OC) 1003 DOMINH	-01×-03,	C5	METHOD DETECTION LIMIT
COMPOUND	<u>-01⇒-03</u>	-05	ug/l
Chloromethane	0.08	0.40	
Bromomethane	1.18	59	
Vinyl Chloride	0.18	0,90	
Chloroethane	0.52	3.6	
Methylene Chloride	10,25	1.25	
Trichlorofluoromethane	0.10	0.50	
l,1-Dichloroethene	0.13	0.65	
l,1-Dichloroethane	0.07	0.35	
Trans-1,2-Dichloroethene	0.10	0.5	
Chloroform -	0.05	0.25	
1,2-Dichloroethane	0.03	0.15	
l,l,l-Trichloroethane	0.03	0.15	
Carbon Tetrachloride	1012	0,60	
Bromodichloromethane	0.10	0.50	
1,2-Dichloropropane	0.04	0.20	
Trichloroethene	0.12	Calco	
Dibromochloromethane	0.09	0.45	
2-Chloroethylvinyl Ether	0.13	0.65	
Brcmoform	0.90	1,0	
Tetrachloroethene	0.03	0.15	
Chlorobenzene	0,25	1.25	
1,3-Dichlorobenzene	0.32	1.60	
l,2-Dichlorobenzene	0.15	0.75	
1,4-Dichlorobenzene	0.24	1.20	

DETECTION LIMITS

VOLATILE ORGANICS

METHOD 603

5662040-01-03,-05

2/6m									
DETECTION LINIT JOHN									
DET									
-05 -05 -03	0.2	0.3	O.3	0.3	0.3	h'0	C: 4)		
СОМРОЦИВ	BENZENE	TOLUENE	ETHYLBENZENE	CHLOROBENZENE	1,4-DICHLOROBENZENE	1,3-DICHLOROBENZENE	1,2-DICHLOROBENZENE		

LAB # SYSTA CLIENT NAME		1		
SAMPLE ID				
EPA METHOD 601	DATE: 415 ANALYST: 3 INSTRUMEN	z 34 T: 4	EPA METHOD 602	DATE: ANALYST: INSTRUMENT:
COMPOUND	CONCENTRA (ug/L)		COMPOUND	CONCENTRATION (ug/L)
Chloromethane		פנ	Benzene	
Bromomethane			Toluene	
Vinvl Chloride			Ethyl benzene	
Chloroethane			Chlorobenzene	
Methylene chloride			1.4-Dichlorobenzene	
Trichlorofluromethane			1.3-Dichlorobenzene	
1.1-Dichlorethene			1,2-Dichlorobenzene	
1.1-Dichlorethane			P-Xylene	<u></u>
Trans-1.2-Dichloroethene	·		M-Xylene	
Chloroform			0-Xylene	
1.2-Dichlorethane		1		
1.1.1-Trichlorethane]	
Carbon tetrachloride		 -		
Bromodichlormethane			1	
1.2-Dichloropropane			SURROGATE RECOVER	IES:
Trans-1.3-Dichloroproper	1e		601	
Trichloroethene		- 	Browochloromethan	
Dibromochloromethane			2-Brome-1-Chlorop	
1.1.2-Trichlorethane			l,4-Dichlorobutan	e
cis-1.3-Dichloropropene		+	602	
2-Chloroethylvinyl ether		+	a,a,a,-Trifluorot	oluene
Bromoform		{	4	
1.1.2.2-Tetrachlorethan		 	4	
Tetrachlorethylene		 	-	
Chlorobenzene		}	4	
1.3-Dichlorobenzene		 		
1.2-Dichlorobenzene			-	
			-	

LAB # RENEWY BLANK			
CLIENT NAME			
SAMPLE ID			
	===	************	
EPA METHOD DATE: 4(3)/ 601 ANALYST: 4 INSTRUMENT	Les	EPA METHOD 602	DATE: ANALYST: INSTRUMENT:
COMPOUND CONCENTRATI	ON	COMPOUND	CONCENTRATION (ug/L)
<u>Chloromethane</u>	2	Benzene	
Bromomethane		Toluene	
Vinyl Chloride		Ethyl benzene	
Chloroethane		Chlorobenzene	
Methylene chloride		1.4-Dichlorobenzene	
Trichlorofluromethane		1.3-Dichlorobenzene	
1.1-Dichlorethene		1.2-Dichlorobenzene	
1.1-Dichlorethane		P-Xylene	,
Trans-1.2-Dichloroethene		M-Xylene	
Chloroform		O-Xylene	
1.2-Dichlorethane			
1.1.1-Trichlorethane			
Carbon tetrachloride			
Bromodichlormethane			
1.2-Dichloropropane		SURROGATE RECOVERIE	ES:
Trans-1.3-Dichloropropene /		601	
Trichloroethene		Bromochloromethane	
Dibromochloromethane /		2-Bromo-1-Chloropro	
1.1.2-Trichlorethane		l,4-Dichlorobutane	
cis-1.3-Dichloropropene		602	
2-Chloroethylvinyl ether		a,a,a,-Trifluorotol	uene
Bromoform		Į	
1.1.2.2-Tetrachlorethane			
Tetrachlorethylene		1	
Chlorobenzene		1	
1.3-Dichlorobenzene			
1.2 Dichlorobenzene		4	
1.4-Dichlorobenzene			

LAB #	SYSTA DUANL		
CLIENT NAME			
SAMPLE ID			
		******	*********
EPA METHOD 601	DATE: ANALYST: INSTRUMENT:	EPA METHOD 602	DATE: LIDE ANALYST: ISS INSTRUMENT COL
COMPOUND	CONCENTRATION (ug/L)	COMPOUND	CONCENTRATION (ug/L)
Chloromethane		Benzene	NP
Bromomethane		Toluene	
Vinyl Chloride		Ethyl benzene	
Chloroethane		Chlorobenzene	
Methylene chloride		1.4-Dichlorobenzene	
Trichlorofluromethane		1.3-Dichlorobenzene	
1.1-Dichlorethene		1.2-Dichlorobenzene	
1.1-Dichlorethane		P-Xylene	
Trans-1.2-Dichloroether	n <u>e</u>	M-Xylene	
Chloroform		0-Xylene	
1.2-Dichlorethane			
1.1.1-Trichlorethane		4	Į
Carbon tetrachloride		4	1
Bromodichlormethane		4	
1.2-Dichloropropane		SURROGATE RECOVER	IES:
Trans-1.3-Dichloroprop		601	
Trichloroethene		Bromochloromethan	
<u>Dibromochloromethane</u>		2-Bromo-1-Chlorop	
1.1.2-Trichlorethane		1,4-Dichlorobutane	e
cis-1.3-Dichloropropen		602	•
2-Chloroethylvinyl eth	er	a,a,a,-Trifluorote	ornese
Bromoform 1.1.2.2-Tetrachloretha		4	
Tetrachlorethylene		1	
Chlorobenzene		+	
1.3-Dichlorobenzene		†	
1.2-Dichlorobenzene		4	
1.4-Dichlorobenzene		1	
14-picuto cobenzene			

LAB # 1 PRES	or sump		
CLIENT NAME			
SAMPLE ID			
	**********		*******
EPA METHOD 601	DATE: ANALYST: INSTRUMENT:	EPA METHOD 602	DATE: 2/11/74 ANALYST: CY INSTRUMENTALLA
COMPOUND	CONCENTRATION (ug/L)	COMPOUND	CONCENTRATION (ug/L)
Chloromethane		Benzene	NP
Bromomethane	 	Toluene	
Vinyl Chloride		Ethyl benzene	
Chloroethane		Chlorobenzene	
Methylene chloride		1.4-Dichlorobenzene	
Trichlorofluromethane		1.3-Dichlorobenzene	
1.1-Dichlorethene	····	1.2-Dichlorobenzene	
1.1-Dichlorethane	·	P-Xylene	
Trans-1.2-Dichloroethene		M-Xylene	•
Chloroform		0-Xylene	
1.2-Dichlorethane			'
1.1.1-Trichlorethane			
Carbon tetrachloride			
Bromodichlormethane			
1.2-Dichloropropane		SURROGATE RECOVERI	ES:
Trans-1.3-Dichloropropen	e	601	
Trichloroethene		Bromochloromethane	
Dibromochloromethane		2-Bromo-1-Chloropr	
1.1.2-Trichlorethane		1,4-Dichlorobutane	
cis-1.3-Dichloropropene		602	
2-Chloroethylvinyl ether	·	a,a,a,-Trifluoroto	luene
Bromoform			
1.1.2.2-Tetrachlorethane			
Tetrachlorethylene		-	
Chlorobenzene		4	
1.3-Dichlorobenzene		4	
1.2-Dichlorobenzene		-	
1.4-Dichlorobenzene		-	
	·		

LAB # SYX	70- BUN	11-		
CLIENT NAME	,,,			
SAMPLE ID				
EPA METHOD 601	DATE: 2//1 ANALYST: S INSTRUMEN	136	EPA METHOD 602	DATE: ANALYST: INSTRUMENT:
COMPOUND	CONCENTRA (ug/L)		COMPOUND	CONCENTRATION (ug/L)
Chloromethane		Un	Benzene	
Bromomethane			Toluene	
Vinvl Chloride			Ethyl benzene	
Chloroethane			Chlorobenzene	
Methylene chloride			1.4-Dichlorobenzene	
Trichlorofluromethane			1.3-Dichlorobenzene	
1.1-Dichlorethene			1.2-Dichlorobenzene	
1.1-Dichlorethane			P-Xylene	
Trans-1.2-Dichloroethene			M-Xylene	
Chloroform			0-Xylene	
1.2-Dichlorethane		<u> </u>		
1.1.1-Trichlorethane				
Carbon tetrachloride		!		
Bromodichlormethane				
1.2-Dichloropropane			SURROGATE RECOVERI	ES:
Trans-1.3-Dichloropropen	e		601	
Trichloroethene			Bromochloromethane	
Dibromochloromethane			2-Bromo-1-Chloropr	
1.1.2-Trichlorethane			l,4-Dichlorobutane	
cis-1.3-Dichloropropene			602	
2-Chloroethylvinyl ether			a,a,a,-Trifluoroto	luene
Bromoform			1	
1.1.2.2-Tetrachlorethane			-	
Tetrachlorethylene			1	
Chlorobenzene			1	
1.3-Dichlorobenzene				
1.2-Dichlorobenzene			-	
1.4-Dichlorobenzene				

CLIENT NAME SAMPLE ID EPA METHOD ANALYST: C 602 ANALYST: 1NSTRUMENT: INSTRUMENT: COMPOUND CONCENTRATION (ug/L) Chloromethane Bromomethane Yinyl Chloride Chloroethane Methylene chloride Chlorofluromethane Toluene Styl benzene Chlorobenzene 1.4-Dichlorobenzene 1.1-Dichlorethane 1.1-Dichlorethane 1.1-Dichlorethane 1.1-Dichlorethane 1.1-Dichlorethane 1.1-Dichlorethane 1.1-Dichlorethane 1.1-Dichlorethane 1.1-Dichlorethane 1.1-Dichlorethane 1.1-Dichlorethane 1.1-Dichlorethane 1.2-Dichlorobenzene 1.1-Dichlorethane 1.2-Dichlorobenzene 1.1-Dichlorethane 1.2-Dichlorobenzene 1.1-Dichlorethane 1.2-Dichlorothane 1.2-Dichlorobenzene 1.1-Dichlorethane 1.2-Dichlorobenzene 1.1-Dichlorethane 1.2-Dichlorobenzene 1.1-Dichlorethane 1.2-Dichlorobenzene 1.2-Dichlorobenzene 1.3-Vylene Chloroform 0-Xylene	LAB # NAME	of BUNN	K.		
EPA METHOD DATE: 2/1/1/2 EPA METHOD DATE: 601 ANALYST: C/ 602 ANALYST: INSTRUMENT: Junio INSTRUMENT: COMPOUND CONCENTRATION COMPOUND CONCENTRATION (ug/L) Chloromethane Toluene Fromomethane Ethyl benzene Chloroethane Chlorodenzene Methylene chloride 1.4-Dichlorobenzene Trichlorofluromethane 1.3-Dichlorobenzene 1.1-Dichlorethane 1.2-Dichlorobenzene 1.1-Dichlorethane P-Xylene Trans-1.2-Dichloroethene M-Xylene					
EPA METHOD 601 ANALYST: C/ INSTRUMENT: Junion COMPOUND CONCENTRATION (ug/L) Chloromethane Bromomethane Yinyl Chloride Chlorothane Methylene chloride Trichlorofluromethane 1.1-Dichlorethane 1.1-Dichlorethane 1.1-Dichlorethane Trans-1.2-Dichloroethene M-Xylene M-Xylene 1.4-MALYST: 602 ANALYST: INSTRUMENT: INSTR					
ANALYST: ONTRUMENT: INSTRUMENT: COMPOUND CONCENTRATION (ug/L) Chloromethane Benzene Bromomethane Toluene Vinyl Chloride Chloroethane Methylene chloride Trichlorofluromethane 1.4-Dichlorobenzene 1.1-Dichlorethane 1.2-Dichlorobenzene 1.1-Dichlorethane Trans-1.2-Dichloroethene M-Xylene M-Xylene	************			*****	*******
ANALYST: ONTRUMENT: INSTRUMENT: COMPOUND CONCENTRATION (ug/L) Chloromethane Benzene Bromomethane Toluene Vinyl Chloride Chloroethane Methylene chloride Trichlorofluromethane 1.4-Dichlorobenzene 1.1-Dichlorethane 1.2-Dichlorobenzene 1.1-Dichlorethane Trans-1.2-Dichloroethene M-Xylene M-Xylene	EPA METHOD DAT	E: Zhzla	اما	EPA METHOD	DATE:
INSTRUMENT: COMPOUND CONCENTRATION (ug/L) Chloromethane Bromomethane Vinyl Chloride Chloroethane Chloroethane Methylene chloride Trichlorofluromethane 1.4-Dichlorobenzene 1.1-Dichlorethane 1.2-Dichlorobenzene 1.1-Dichlorethane Trans-1.2-Dichloroethene Trans-1.2-Dichloroethene INSTRUMENT:				602	ANALYST:
COMPOUND CONCENTRATION (ug/L) Chloromethane Bromomethane Vinyl Chloride Chlorobenzene Chlorobenzene Methylene chloride Trichlorofluromethane 1.3-Dichlorobenzene 1.1-Dichlorethane 1.2-Dichlorobenzene 1.1-Dichlorethane Trans-1.2-Dichloroethene Trans-1.2-Dichloroethene M-Xylene	INS	TRUMENT	ارار:	- 	INSTRUMENT:
Chloromethane Bromomethane Vinyl Chloride Chloroethane Chloroethane Methylene chloride Trichlorofluromethane 1.3-Dichlorobenzene 1.1-Dichlorethane 1.1-Dichlorethane Trans-1.2-Dichloroethene Trans-1.2-Dichloroethene M-Xylene M-Xylene			Su		
Chloromethane Bromomethane Vinyl Chloride Chlorodene Chlorobenzene Methylene chloride Trichlorofluromethane 1.3-Dichlorobenzene 1.1-Dichlorethane 1.1-Dichlorethane 1.1-Dichlorethane Trans-1.2-Dichloroethene Trans-1.2-Dichloroethene M-Xylene	COMPOUND CON	CENTRAT	ION	COMPOUND	CONCENTRATION
Bromomethane ' Toluene Vinyl Chloride Ethyl benzene Chloroethane Chlorobenzene Methylene chloride 1.4-Dichlorobenzene Trichlorofluromethane 1.3-Dichlorobenzene 1.1-Dichlorethane 1.2-Dichlorobenzene 1.1-Dichlorethane P-Xylene Trans-1.2-Dichloroethene M-Xylene		(ug/L)	-		(ug/L)
Bromomethane ' Toluene Vinyl Chloride Ethyl benzene Chloroethane Chlorobenzene Methylene chloride 1.4-Dichlorobenzene Trichlorofluromethane 1.3-Dichlorobenzene 1.1-Dichlorethane 1.2-Dichlorobenzene 1.1-Dichlorethane P-Xylene Trans-1.2-Dichloroethene M-Xylene					
Bromomethane ' Toluene Vinyl Chloride Ethyl benzene Chloroethane Chlorobenzene Methylene chloride 1.4-Dichlorobenzene Trichlorofluromethane 1.3-Dichlorobenzene 1.1-Dichlorethane 1.2-Dichlorobenzene 1.1-Dichlorethane P-Xylene Trans-1.2-Dichloroethene M-Xylene	Chloromethane		2	Benzene	
ChloroethaneChlorobenzeneMethylene chloride1.4-DichlorobenzeneTrichlorofluromethane1.3-Dichlorobenzene1.1-Dichlorethene1.2-Dichlorobenzene1.1-DichlorethaneP-XyleneTrans-1.2-DichloroetheneM-Xylene				Toluene	
ChloroethaneChlorobenzeneMethylene chloride1.4-DichlorobenzeneTrichlorofluromethane1.3-Dichlorobenzene1.1-Dichlorethene1.2-Dichlorobenzene1.1-DichlorethaneP-XyleneTrans-1.2-DichloroetheneM-Xylene					
Trichlorofluromethane 1.3-Dichlorobenzene 1.1-Dichlorethane 1.2-Dichlorobenzene 1.1-Dichlorethane P-Xylene Trans-1.2-Dichloroethene M-Xylene				Chlorobenzene	
Trichlorofluromethane 1.3-Dichlorobenzene 1.1-Dichlorethane 1.2-Dichlorobenzene 1.1-Dichlorethane P-Xylene Trans-1.2-Dichloroethene M-Xylene				1.4-Dichlorobenzene	
1.1-Dichlorethane P-Xylene Trans-1.2-Dichloroethene M-Xylene	Trichlorofluromethane			1.3-Dichlorobenzene	
Trans-1.2-Dichloroethene M-Xylene	1.1-Dichlorethene			1.2-Dichlorobenzene	
	1.1-Dichlorethane			P-Xylene	
Chloroform O-Xvlene	Trans-1.2-Dichloroethene			M-Xylene	
- 	Chloroform			0-Xylene	
1.2-Dichlorethane	1.2-Dichlorethane				
1.1.1-Trichlorethane	l.l.l-Trichlorethane				
Carbon tetrachloride	Carbon tetrachloride				
Bromodichlormethane	Bromodichlormethane				
1.2-Dichloropropane SURROGATE RECOVERIES:					ES:
Trans-1.3-Dichloropropene 601					
Trichloroethene Browochloromethane					
Dibromochloromethane 2-Bromo-1-Chloropropane					
1,4-Dichlorobutane				7 7	
cis-1.3-Dichloropropene 602				4 **-	
2-Chloroethylvinyl ether a,a,a,-Trifluorotoluene	\ <u></u>			a,a,a,-Trifluoroto	luene
Bromoform				4	
1.1.2.2-Tetrachlorethane	\ 	 -		4 .	
Tetrachlorethylene		+		4	
Chlorobenzene				-	
1.3-Dichlorobenzene				-{	
1.2-Dichlorobenzene		- \/		-	
1.4-Dichlorobenzene	1.4-Dichlorobenzene			-	

. ¶

LAB #Syst	- BUNK		=
CLIENT NAME			
SAMPLE ID			

EPA METHOD	DATE:	EPA METHOD	DATE: 2/11/2
	ANALYST:	602	ANALYST: JJC
	INSTRUMENT:	F	INSTRUMENT: OL
			
COMPOUND	CONCENTRATION	COMPOUND	CONCENTRATION
	(ug/L)		(ug/L)
Chloromethane		Benzene	No
Bromomethane		Toluene	
Vinvl Chloride		Ethyl benzene	
Chloroethane		Chlorobenzene	
Methylene chloride		1.4-Dichlorobenzene	
Trichlorofluromethane		1.3-Dichlorobenzene	- 1
1.1-Dichlorethene		1.2-Dichlorobenzene	
1.1-Dichlorethane		P-Xvlene	
Trans-1.2-Dichloroethe	ne	M-Xylene	<u> </u>
Chloroform		0-Xylene	
1.2-Dichlorethane			
1.1.1-Trichlorethane			
Carbon tetrachloride]	
Bromodichlormethane]	
1.2-Dichloropropane		SURROGATE RECOVER	IES:
Trans-1.3-Dichloroprop	ene	601	
Trichloroethene		Bromochloromethane	
Dibromochloromethane	<u> </u>	2-Brome-1-Chloropi	ropane
1.1.2-Trichlorethane		l,4-Dichlorobutane	·
cis-1.3-Dichloropropen	e	602	
2-Chloroethylvinyl eth	<u>er</u>	a,a,a,-Trifluoroto	oluene
Bromoform		4	
1.1.2.2-Tetrachloretha	ne	_	
Tetrachlorethylene		4	
Chlorobenzene		4	
1.3-Dichlorobenzene		_	
1.2-Dichlorobenzene		_	
1.4-Dichlorobenzene			
1			
	•		
·			

LAB # 1 Prae.	17 BUNIC		
CLIENT NAME			
SAMPLE ID			
	**********		**********
EPA METHOD	DATE:	EPA METHOD	DATE: 2/14/26
601	ANALYST:	602	ANALYST: C
	INSTRUMENT:		INSTRUMENT O
			
COMPOUND	CONCENTRATION	COMPOUND	CONCENTRATION
	(ug/L)		(ug/L)
Chloromethane		Benzene	NO
Bromomethane		Toluene	
Vinyl Chloride		Ethyl benzene	
Chloroethane		Chlorobenzene	
Methylene chloride		1.4-Dichlorobenzene	
Trichlorofluromethane		1.3-Dichlorobenzene	
1.1-Dichlorethene		1.2-Dichlorobenzene	
1.1-Dichlorethane		P-Xylene	
Trans-1.2-Dichloroethe	ene	M-Xylene	$\overline{\psi}$
Chloroform		0-Xylene	
1.2-Dichlorethane			
1.1.1-Trichlorethane]	
Carbon tetrachloride]	
Bromodichlormethane			
1.2-Dichloropropage		SURROGATE RECOVER	RIES:
Trans-1.3-Dichloropror	ene	601	
Trichloroethene		Bromochloromethan	ie
Dibromochloromethane		2-Bromo-1-Chlorop	ropane
1.1.2-Trichlorethane		l,4-Dichlorobutan	ie
cis-1.3-Dichloroproper	re	602	
2-Chloroethylvinyl eth	er	a,a,a,-Trifluorot	oluene
Bromoform		1	
1.1.2.2-Tetrachloretha		4	
Tetrachlorethylene		<u>.</u>	
Chlorobenzene		4	
1.3-Dichlorobenzene		4	
1.2-Dichlorobenzene		4	
1.4-Dichlorobenzene		-	

DAILY QUALITY CONTROL

EPA DE WP 483 cmc 2 + 6ph ac wp 781 cm. 7

1.

3(13/84		B /G	BC
	CENTIFIED VALUE (MJ/L)	ANALYZED	Sie
Chloromethane			
Bromomethane			
Vinvl chloride			
Chloroethane			
Methylene chloride	9.2	9.0/10.4	98 113
Trichlorofluoromethane			
l,l-Dichloroethene	10.0	9.8 10.1	18 101
1,1-Dichloroethane			
trans-1,2-Dichloroethene	5.4		
Chloroform	43.0	50.8 52.2	118 1131
1,2-Dichloroethane	27.6	22.7 125,2	82 /91
1,1,1-Trichloroethane	14.3	14.4 1/2.1	100 106
Carbon tetrachloride	200	20.5/20.9	102/105
Bromodichloromethane	7.9	8.4 18.0	107/102
1,2-Dichloropropane	8.0	8.28.5	103/106
Trichloroethene	22.2	21.2 Dy.6	95/110
Dibromochloromethane	16.7	15.8 13.5	94 /31
1,1,2-Trichloroethane cis-1,3-Dichloropropene		· · · · · · · · · · · · · · · · · · ·	
2-Chloroethylvinyl ether Bromoform	9.9	8.3 9.5	84/96
1.1.2.2-Tetrachloroethane	10.0	<u> </u>	
Tetrachloroethylene	6.2		
Chlorobenzene	8.7	8.7 &6	107/105
1,3-Dichlorobenzene			
1,2-Dichlorobenzene			
1,4-Dichlorobenzene			

DAILY QUALITY CONTAIL

EPA DE WP 483 cmc 2 + EPA DE WP 781 cmc 7

2/86	Centified	B G ANALYZED UNLUE	BR
	VALUE (MJ/L)	VALUE	
Chloromethane			
Bromomethane			
Vinyl chloride			
Chloroethane			
Methylene chloride	9.2	8.5 110.0	192/109
Trichlorofluoromethane			
l,1-Dichloroethene	10.0	8.6 8.1	86 /81
l,1-Dichloroethane			
trans-1,2-Dichloroethene	5.4		
Chloroform	43.0	45,2 58,0	105/135
l,2-Dichloroethane	27.6	20.0 /23.5	72/85
l,l,l-Trichloroethane	14.3	13.8 [15.3	96/107
Carbon tetrachloride	20.0	18.8 /165	94 183
Bromodichloromethane	7.9	7.4 17.3	94 /92
1,2-Dichloropropane	8.0	6.6 8.4	32/105
Trichloroethene	22.2	19.7 122.7	89 hoz
Dibromochloromethane	16.7	14.3 14.9	36 179
1,1,2-Trichloroethane			
cis-1,3-Dichloropropene			
2-Chloroethylvinyl ether		= 1/2 :	
Bromoform	<u> </u>	7.2 18.9	7490
1.1.2.2-Tetrachloroethane	10.0		
Tetrachloroethylene	6.2		0, 10
Chlorobenzene	8.2	7.9 7.6	96/93
1,3-Dichlorobenzene			
1,2-Dichlorobenzene			
l,4-Dichlorobenzene			

		RAS GC	LAB				
DATE:	DATE: 3/18/36		SPIKED VALUE ANALYZE (ug/L) (ug		RI	% RECOVERY	
	INSTRUMENT ANALYST		D		S		
TEST METHOD	COMPOUND						
EPA 601	Chloromethane	16.2					
	Chloroethane	28.1					
	Methylene Chloride	26.3					
	1,1-Dichloroethylene	45.0					
	Trans-1,2-Dichloroethylene	12.5	ļ <u>-</u> -				
	Carbon Tetrachloride	60.0					
	Dichlorobromomethane	40.0					
	1,1,2-Trichloroethane	33.8					
EPA 602	Benzene Toluene Ethylbenzene P-Xvlene M-Xylene O-Xylene Aroclor 1242 Aroclor 1260	30.7	34.8		113		
	Toluene	4.1	4.5		110		
	Ethylbenzene	11.5	11.2		97		
	P-Xvlene	19.1	20.8		109		
	M-Xylene	42.6	46.6		109		
	0-Xylene	10.6	10.5		99		
EPA 608		(ug/g)		(ug/g)			
1	Aroclor 1242	58.7					
Ì	[Aroclor 1260	56.8					

DAILY QUALITY CONTROL RAS GC LAB

DATE:	2/11/86		SPIKED VALUE (ug/L)	ANALYZED VALUE			Z ŘÉCOVERY		
	•	INSTRUMENT		D			D		
		ANALYST		a			0		
TEST METHOD	COMPOUN	₹D							
EPA 601	Chloromethane		16.2						
	Chloroethane	1	28.1						
	Methylene Chlorid	le	26.3						
	l,l-Dichloroethyl	Lene	45.0						
	Trans-1,2-Dichlor	oethvlene	12.5						
	Carbon Tetrachlor	ide	60.0						
	Dichlorobromometh	nane	40.0	ļ					
	1,1,2-Trichloroet	hane	33.8						
EPA 602	Benzene		30.7	323			105		
	Toluene		4.1	3.9			96		
	Ethylbenzene		11.5	10.7			89		
	P-Xylene		19.1	14.0			100		· · · · · · · · · · · · · · · · · · ·
	M-Xylene	<u>.</u>	42.6	43,2			102		
	O-Xylene		10.6	9.7			91		
EPA 608			(ug/g)		(ug/g)	<u> </u>			
	Aroclor 1242		58.7		ļ		· · · · · · · · · · · · · · · · · · ·		
	Aroclor 1260		56.8						

RADIAN

SPIKE RECOVERY

EPA METHOD 601	x607x	10- 00 1474	€					
Volatile Organics	86	JY W						
	7/13	111	R42	kum				
COMPOUNDS	SSR	SR	SA	ZR	SSR	SR	SA	ZR
Chloromethane								
Bromomethane						1	{	
Vinyl chloride								
Chloroethane								
Methylene chloride	9.3	U.74	9.2	93		}		
Trichlorofluoromethane								
1,1-Dichloroethene	7.>		10.0	72				
1,1-Dichloroethane								
trans-1,2-Dichloroethene	4.8		5,4	89				
Chloroform	76.2	3.79	43.0	169				
1,2-Dichloroethane	25,0		27,6	90				
l,1,1-Trichloroethane	15,3		14.3	107				
Carbon Tetrachloride	21.8		20.0	109				
Bromodichloroemethane	11.5	1.81	7.9	123				
1,2-Dichloropropane	8.2		8.0	102				
Trichloroethene	23.2	0.95	22.2	100				
Dibromochloromethane	11.9	0.72	16.7	67				
1,1,2-Trichloroethane								
cis-1,2-Dichloropropene								
2-Chlorethylvinyl ether								
Bromoform	11.1		9.9	112				
1,1,2,2-Tetrachloreothan			10.0					
Tetrachlorethylene		0.08	6.2					
Chlorobenzene	9.8		8.2	119				
1,3-Dichlorobenzene							1	
1,2-Dichlorobenzene								
1,4-Dichlorobenzene							1	

SSR = Spiked Sample Result

SR = Sample Result

SA = Spike Added

5 309

DUPLICATE ANALYSIS

EPA Method 601			i			
Volatile Organics						
COMPOUND	RUN#1	RUN#2	RPD	RUN#1	RUN#2	RP
Chloromethane						
Bromomethane						
Vinyl chloride						
Chloroethane						
Methylene chloride						
Trichlorofluoromethane						
l,1-Dichloroethene						
l,l-Dichloroethane						
trans-1,2-Dichloroethene	8.48	7.81	8,2	· · · · · · · · · · · · · · · · · · ·		
Chloroform	0.10	1,31	0.3	_		
1,2-Dichloroethane						
1,1,1-Trichloroethane						
Carbon Tetrachloride	<u> </u>					
Bromodichloroemethane						
1,2-Dichloropropane						
Trichloroethene	20.4	22,3	16.8			
Dibromochloromethane	CAU!-1	O(X)	10.0			
1,1,2-Trichloroethane						
cis-1,2-Dichloropropene						
2-Chloroethylvinyl ether						
Bromoform						
1,1,2,2-Tetrachloreothane						
Tetrachlorethylene	131	0.74	55.6			
Chlorobenzene	11.01	0.11	J.J.U.			
1,3-Dichlorobenzene						
1,2-Dichlorobenzene						
1,4-Dichlorobenzene	·					

 $RPD = \frac{|R_1 - R_2|}{(R_1 + R_2)/2} \times 100$

RPD= Relative Percent Difference *- and not confirm

RADIAN

LAB #: 8000000-01E
sample id: 800141
DATE: <u>2-12-86</u>
INSTRUMENT:
(01/00)
601/8010
BROMOCHLOROMETHANE: 124%
2-BROMO-1-CHLOROPROPANE: 190/0
602/8020
a,a,a-TRIFLUOROTOLUENE:

LAB #:800000-00E
sample id: 860/42
DATE: 2-13-80
INSTRUMENT:
601/8010
BROMOCHLOROMETHANE: 10396
2-BROMO-1-CHLOROPROPANE: 110%
602/8020
a,a,a-TRIFLUOROTOLUENE:

RADIAN

LAB #: 8002000-C3E
SAMPLE ID: 800143
DATE: 2-13-80
INSTRUMENT:
601/8010
BROMOCHLOROMETHANE: 116%
2-BROMO-1-CHLOROPROPANE: 1270/6
602/8020
a,a,a-TRIFLUOROTOLUENE:

LAB #: 000000-05B
SAMPLE ID: 8601410
DATE: 2-13-80
INSTRUMENT:
601/8010
BROMOCHLOROMETHANE: 123% 104%
2-BROMO-1-CHLOROPROPANE: 138% 109%
,
602/8020
TO THE WORLD WITH

LAB #:86090100-01G
SAMPLE ID: 860141
DATE: 2-11-86
INSTRUMENT:
601/8010
BROMOCHLOROMETHANE:
2-BROMO-1-CHLOROPROPANE:
602/8020
a,a,a-TRIFLUOROTOLUENE: 101%

LAB #: 2002000-029
sample 10:860142
DATE: 2-12-86
INSTRUMENT:
601/0010
601/8010
BROMOCHLOROMETHANE:
2-BROMO-1-CHLOROPROPANE:
602/802 0
a,a,a-TRIFLUOROTOLUENE: 102%

100 100 M 100 M

LAB #:80020100-036
SAMPLE ID: 860143
DATE: 0-12-86
INSTRUMENT:
601/8010
0017 8010
BROMOCHLOROMETHANE:
2-BROMO-1-CHLOROPROPANE:
602/8020
a,a,a-TRIFLUOROTOLUENE: 15%

RADIAN

LAB #: 8(006000-05D
SAMPLE ID: 8/00/40
DATE: 2-12-80
INSTRUMENT:
601/8010
BROMOCHLOROMETHANE:
2-BROMO-1-CHLOROPROPANE:
602/802 0
a,a,a-TRIFLUOROTOLUENE: 1160/0

(一(つ())) じゅくい 1 1 コー・ダムコノカル		
4602 200 147 860148	, 360 144, 200150, 800 151	DILECTORE 860151 HXDRXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
CORPORATION METAL	5 360147,800148;800149;	ROUSU : 6 TRIP BURNE
AKTINT	CHAIN OF CUSTODY RECORD	•
7 103(110		
		Field Sample No
Company Sampled (Address / 2	road Dynamics Plant 4	Cachard To
Sample Baint Description	and Water	Transaction 1x
Sample Point Description	10000 W W	
Stream Characteristics:		
	Flow	
Visual Observations/Comments _		
Collector's Name NEIL RO	BINCON Date/Jime Sam	pled 2-11-86 ALLDAY
Amount of Sample Collected 201	trody) 49ml VOAS (25tw) 10	+ Mason: Altow) 500, ml plu
Sample Description	nd Water	(ilone) TRIPBIANIX
Store at: Ambient 5°C	- 10°C XOther Toc	
Caution · No more sample availa	able 🛘 Return unused portion of sam	ple Discard unused portions
Other Instructions - Special Handli	ng · Hazards	
Hazardous sample (see below)	□ Non-har	
4aa	□ 1101111g.	zardous sample
,	☐ Skin irritant	•
Toxic	☐ Skin irritant	☐ Flammable (FP< 40°C
Toxic □ Pyrophoric		☐ Flammable (FP< 40°0☐ Shock sensitive
▼ Toxic □ Pyrophoric □ Acidic	☐ Skin irritant☐ Lachrymator	☐ Flammable (FP< 40°(☐ Shock sensitive☐ Carcinogenic - suspec
☑ Toxic ☑ Pyrophoric ☑ Acidic ☑ Caustic	☐ Skin irritant☐ Lachrymator☐ Biological,	□ Flammable (FP< 40°C □ Shock sensitive
▼ Toxic □ Pyrophoric □ Acidic □ Caustic □ Other	☐ Skin irritant ☐ Lachrymator ☐ Biological. ☐ Peroxide	☐ Flammable (FP< 40°C☐ Shock sensitive☐ Carcinogenic - suspec
Toxic ☐ Pyrophoric ☐ Acidic ☐ Caustic ☐ Other	☐ Skin irritant ☐ Lachrymator ☐ Biological, ☐ Peroxide S\$ion:	☐ Flammable (FP< 40°C☐ Shock sensitive☐ Carcinogenic - suspec
Toxic ☐ Pyrophoric ☐ Acidic ☐ Caustic ☐ Other ☐ Other ☐ Organization Name	☐ Skin irritant ☐ Lachrymator ☐ Biological. ☐ Peroxide	☐ Flammable (FP< 40°C ☐ Shock sensitive ☐ Carcinogenic · suspec ☐ Radioactive
Toxic ☐ Pyrophoric ☐ Acidic ☐ Caustic ☐ Other Sample Allocation/Chain of Posses Organization Name	□ Skin irritant □ Lachrymator □ Biological. □ Peroxide stion: □ Date Receive	☐ Flammable (FP< 40°C ☐ Shock sensitive ☐ Carcinogenic - suspec ☐ Radioactive
Toxic ☐ Pyrophoric ☐ Acidic ☐ Caustic ☐ Other ☐ Other ☐ Organization Name ☐ Received By ☐ Transported By	☐ Skin irritant ☐ Lachrymator ☐ Biological. ☐ Peroxide	☐ Flammable (FP< 40°C ☐ Shock sensitive ☐ Carcinogenic - suspec ☐ Radioactive
Toxic Pyrophoric Acidic Caustic Other Sample Allocation/Chain of Posses Organization Name Received By Transported By	□ Skin irritant □ Lachrymator □ Biological. □ Peroxide stion: □ Date Receive	☐ Flammable (FP< 40°C ☐ Shock sensitive ☐ Carcinogenic · suspec ☐ Radioactive ☐ Radioactive ☐ Time
Toxic Pyrophoric Acidic Caustic Other Comple Allocation/Chain of Posses Organization Name Received By Fransported By Comments Inclusive Dates of Possession	□ Skin irritant □ Lachrymator □ Biological. □ Peroxide stion: □ Date Receive	☐ Flammable (FP< 40°C ☐ Shock sensitive ☐ Carcinogenic · suspec ☐ Radioactive ☐ Radioactive ☐ Time
Toxic Pyrophoric Acidic Caustic Other Corganization Name Pransported By Comments Inclusive Dates of Possession Organization Name	□ Skin irritant □ Lachrymator □ Biological. □ Peroxide stion: □ Date Receive □ Sample No. □ 2-1+80	☐ Flammable (FP< 40°C) ☐ Shock sensitive ☐ Carcinogenic - suspect ☐ Radioactive EdTime
Toxic Pyrophoric Acidic Caustic Other Crganization Name Pransported By Comments Inclusive Dates of Possession Organization Name	Skin irritant Lachrymator Biological Peroxide Stion: Date Receive Sample No. Date Receive	☐ Flammable (FP< 40°C ☐ Shock sensitive ☐ Carcinogenic - suspec ☐ Radioactive
Toxic Pyrophoric Acidic Caustic Other Cample Allocation/Chain of Posses Organization Name Fransported By Comments Inclusive Dates of Possession Organization Name	Skin irritant Lachrymator Biological Peroxide Stion: Date Receive Sample No. Date Receive	☐ Flammable (FP< 40°C ☐ Shock sensitive ☐ Carcinogenic - suspec ☐ Radioactive Ed Time
Toxic Pyrophoric Acidic Caustic Other Sample Allocation/Chain of Posses Organization Name Fransported By Comments Inclusive Dates of Possession Organization Name Organization Name Organization Name Organization Name Organization Name	Skin irritant Lachrymator Biological. Peroxide stion: Date Receive Sample No. Date Receive	☐ Flammable (FP< 40°C ☐ Shock sensitive ☐ Carcinogenic - suspec ☐ Radioactive
Toxic Pyrophoric Acidic Caustic Other Sample Allocation/Chain of Posses Organization Name Fransported By Comments Inclusive Dates of Possession Organization Name Received By Cransported By Comments Comments Comments Comments Comments Comments Comments Comments Comments Comments Comments	Skin irritant Lachrymator Biological Peroxide Stion: Date Receive Sample No. Date Receive	☐ Flammable (FP< 40°C ☐ Shock sensitive ☐ Carcinogenic - suspece ☐ Radioactive Time ☐ Start ☐ Time ☐ Start ☐ Time ☐ Start ☐ Time ☐ Start ☐ Time ☐ Start ☐ Time ☐ Start ☐ Time ☐ Start ☐ Time ☐ Start ☐ Time ☐ Start ☐ Start ☐ Time ☐ Start ☐
Toxic Pyrophoric Acidic Caustic Other Sample Allocation/Chain of Posses Organization Name Fransported By Fransported By Organization Name Organization Name President Second	Skin irritant Lachrymator Biological. Peroxide stion: Date Receive Sample No. Date Receive Lab Sample No. Lab Sample No.	☐ Flammable (FP< 40°C ☐ Shock sensitive ☐ Carcinogenic - suspece ☐ Radioactive Time ☐ S ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ←
Toxic Pyrophoric Acidic Caustic Other Sample Allocation/Chain of Posses Organization Name Received By Transported By Organization Name Organization Name Received By Transported By Organization Name Organization Name Organization Name Organization Name Organization Name Organization Name Organization Name	Skin irritant Lachrymator Biological Peroxide Saion: Date Receive Lab Sample No. Lab Sample No. Lab Sample No.	☐ Flammable (FP< 40°C) ☐ Shock sensitive ※ Carcinogenic · suspec ☐ Radioactive Time SC → CC → CC ☐
Toxic Pyrophoric Acidic Caustic Other Sample Allocation/Chain of Posses Organization Name Received By Transported By Comments Inclusive Dates of Possession Received By Transported By	Skin irritant Lachrymator Biological. Peroxide Saion: Date Receive Lab Sample No. Lab Sample No. Date Receive Lab Sample No. Date Receive	☐ Flammable (FP< 40°C ☐ Shock sensitive ☐ Shock sensitive ☐ Carcinogenic · suspec ☐ Radioactive ☐ Radioactive ☐ Time ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐
Toxic Pyrophoric Acidic Caustic Other Sample Allocation/Chain of Posses Organization Name Pransported By Fransported By Organization Name Pransported By Fransported By Fransported By Fransported By Fransported By Fransported By Fransported By Fransported By Fransported By Fransported By Fransported By Fransported By Fransported By Fransported By Fransported By Fransported By Fransported By	Skin irritant Lachrymator Biological Peroxide Saion: Date Receive Lab Sample No. Lab Sample No. Lab Sample No.	☐ Flammable (FP< 40°C ☐ Shock sensitive ☐ Carcinogenic - suspec ☐ Radioactive ☐ Time ☐ Standard ☐ Time ☐ T

PARTICIO CONTRACACIONE, INCLUMINA DE PARTICIONAL TROCARRAMENTO LA LA LA COMPANIONE DE PARTICIONES DE PARTICIONE

	ment	s x instrument		less than	value is les. limit galeulable	ates value is ction limit not colculable	* indicates detection NC= not C	, ,	ial spike or	= analytical - digestion maerix	on sp = at	= analytical duplicate = digestion duplicate instrument detection limit	an dup = analytical duplies dig dup = digestion duplicate 1. d.l. = instrument detecti	0 2 0
								_						N. W.
										9/	, 0040	0,000	F000 = 1/DI	
60003 prop 61	120	0200	pe00.	E000	A 50	NC	€0005	-c000>	dig dig	801	0500'	4500.	48/8/8	#
				,	dilutun									
2,003	92	420.	.022	<.003	0					88	050'	7.70	500:=191) (18718
100ad	75	420'	810	:003	05 A	Ne	5003	< 003	V50 Japone	88	050'	pho.	2/9/86	320 320
												,		
400 % 6.00 %										102	.045	970'		
19 000	29	1024	6/0.	<00°	99 A	NE	<.003	×003	460 dap wo	63	540'	640'	3-11/86	90
						į								
										001	,0040	0400.	1d/= ,000 %	
"tooo"	041	0200	,0028	2000	09 A	7/6	.0003	<0003	094 dup	801	0200	4500.	2/3/86	На
										00/	040	040		
500°>										103	040	140'	200,=1bi	
<.005	700	1720.	420	500,	on sp 01 A	NC	5005	5005	andup 01 A	103	040'	140'	2/8:/86	As
	8R	SA	SSR	SR	SAMP#	RPD	DUPL	SAMP	SAMP,"	% R	TRUE VALUE	FOUND VALUE		
BLANKS		RECOVERY		SPIKE	16-08-067	l	ANALYSIS	DUPLICATE	DO			QC DATA	ANALYSIS DATE	ELEMENT
					02 -04/			60	-10	relet	240 som	86-01-240	PLANT 4	
			750-50-08 780-50-08	•	09-01-046		FOR W.O	**************************************	1	m2/0	. # 0 \ 13	W. W. W.		\$\$\$\\ \\ \\$\$\$
PACCA TRACACACA	* * * * * * * * * * * * * * * * * * * *	ì	D222		2333562									

C0002 Ca161 BLANKS <. 002 c.005 <.005 19 020 19 dad 19 dad <. 00a 19100 10 taus 56 75 96 83 **%** UNITS usplan SPIKE RECOVERY 224 0000 024 420 SA 6100 .023 053 SSR 021 £0002 033 1005 003 SR 02,03-METHS 039 980 a4. SP dig 5P 02 3 02 6 SAMP# an 5p on. 5P. 9.4 200 RPD DUPLICATE ANALYSIS -,03,03,06)-011+Grease <.005 030 DUPL SAMP 200.7 033 SAMP/" 926 03 6 gub no an dup 105 001 110 98 66 86 100 96 98 **%** TRUE VALUE 0040 0050 040 040 0400 Lamples 245 070 1040 200 040 QC DATA FOUND VALUE 040 4400 0043 197 86-02-031 440 043 980. 045 8700 039 040 ANALYSIS DATE 200 - = /PI 41= .0002 2-17-86 200' = /pi Al=, 103 2-19-86 2-14-86 PLANT 4 3-20-86

ELEMENT

A5

1d1 = instrument detection limit dig sp = grediget or matrix aprile on. sp = analytical speikl

andup = analytical duplicate dy dup = dugation: duplicate

401

415

430

A-26-86

40

1=1pi

49

200

197

=/p.

puo 1:0 Grease

20

9

118

545

208

+ indicates value is

derection limit

less than 5x instrument

NC= not ealeulable

UNITS uglad

A TO THE PROJECT OF THE PROPERTY OF THE PROPER

KARANA TRAKSIKA TOROKATA TUASIKA TUASIKA TOROKA

77	PLANT 4 86-	86-03-041	Jamples 01-	90-10							nd/m/	100		
ELEMENT	ANALYSIS DATE	QC DATA	АТА		DUP	DUPLICATE ANALYSIS	ANALYSI	S		SPIKE	KE REC	RECOVERY		BLANKS
		FOUND VALUE	TRUE VALUE	&R	SAMP,"	SAMP	DUPL	RPD	SAMP#	SR	SSR	SA	2R	
15	2-19-86	980.	040'	98	an dup	<,005	<.005	NC	01 SP	5005	.022	pzo	92	pepbl <.005
	300 = 161	1837	040	93						,				cal 61 <.005
		,035	040'	88										
Ha	2-20-86	8 700.	,0050	96	2 90 E	<0003	*e000.	NC	9 50 2 5 E	- .0002.	.0022	0200'	077	2000's
	2000' =)pi	4400	,0040	700					·					
		thoo	0400	110										
	·													
70	78-61-6	TITO	570	90	and no	200> 200>	2003	202	an sp 01 E	200.	.02/	420.	88	19 dad
1	7/ 200		7,7	50					1:10 dil vian				 	
32	1912 :00 0	540'	(443)	001										
2		048	540'	101									1	
56	98-11-8	,042.	040	501	١				on sp 03E	,003	,021	420.	75	1000 ×
	600° = 101	680'	040'	98										ca/6/ <.002
202														
oil and brease	2-14-36	197	200	99										
٠,٠٠٠	1=1P1	197	200	66										
• * • • • •														
HC -101-1	3-14-86				2.00 0.350	12	- 12-	NC	*	dicare	* indicates value is less than 5x	21 5/2	ss cha	x5 0'
0	on sp= answered 4	- \	andup = analytical duplicati	dup	lieate.	idleine	trument	idl-instrument dot limit		To a mo	ine det	601.01.	<i>``</i>	n
elb B	sp august spire or	a	e department	3	}				5	JAU -	On anical control	ž Ž		

	98 H INWIN	0.00-80-9	samales 6	7-10	25						SILNO	700	lali	
ELEMENT	S DATE)Ò	į		DUP	LICATE	DUPLICATE ANALYSIS	S		SPI	SPIKE RECOVERY	VERY		BLANKS
		FOUND VALUE	TRUE VALUE	%R	SAMP,"	SAMP	DUPL	RPD	SAMP#	SR	SSR	SA 8	%R	
As	3.15-86	980.	.027	101	dig dup 010	,000	,003	40	dig sp 03 C	200.	.023	020	85	19 dad
	= .00	870'	040	501	an dup	*900	1	67	on sp 05 A	2007	,024	1 750	00/	200%
									1:10 001					1404
На	8-30-86	87.00	0500'	96					054	2000>	0200	0000	00/	£,0000
	2000: -121	E#00	0400,	105										
	Į.	1												
		7	67.	,	dup bip	7760	121	9 /	ds bip	27	29	0.0	ā 00,	19 days
126	2-17-86	,045	.042	50/	2/0	.637	15%	7:7	1		1	+	+	10/00
	id1 = ,003	640.	,043	7777							+	+	+	4.003
-														
35	10 4.	01,0	0//0	705	dig dup	*000	*000.	077	0 8 b	600.	.005	010	50	Prep 61
	77-80	0/10	77.0	, ,					an sp	2007		-		19/00
	1915 - 190	21.2							1:10 dilutio	2		<u> </u>	 	
bit and	18-111-6	(6)	200	66	1									
	1 -	661	200	66										
	1													

NC= not calculable

dig sp = digition or nature spake id = instrument detection limit

Walal	
UNITS	

AND PROCESSO SESSONS EXPERSES DANGERS DANGERS DE L'ANGERT DE L'ANGERT DE L'ANGE DE L'A

TE QC DATA	DATA			and	DUPLICATE ANALYSIS	ANALYSI	S		SPI	SPIKE REC	RECOVERY		BLANKS
	FOIIND VAI	TRUE VALUE	90	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	CAMP	212010	,	303	ا ا		OVERT	3	BLANKS
	LOOND VALUE	INDE VALUE	-	SAMP	SAMP	DUPL	KP.D	SAMP#	XX	SSR	SA	% R	
2-15-86	60, 039	1037	107	1				ansp 03e	2007	100	420.	88	200'>
100 = 1PI	eto,	oho.	105					1:10 dilution			-	$\overline{}$	(a) b)
													Jan 1
38-48-8	8#00.	0500.	96					ds bip	2000.	0000		1 5	prepol
98-08-8	`	0500'	96					1			7	7	prepal
6000' = 1P!) '	0400'	0//										
	4400'	0400'	011										
2-17-86	.045	840'	105	andup 04e	.037	.038	2.7	an sp 03 E	.020	.035	420	63	1902
600'=1PI	640'	,043	///										19/00
	-												
2-17-86	. 64a	040'	501	ON dup	.000.	*C00.	0	ansp 046	eno,	.021	420.	1 88	10 day
600. = 161	040.	040						1:10 dilution			└	 	cal bl
													6
3-14-86	197	200	66										
1=1/0!	(97)	200	66										
												-	

detection limit

4.9 s. " dystron or nature spake

an dup = anolytical dyplicati

than 5% instrument dipolon Limit NC= not paleulable

77	PLANT 4 86-	-03-079	samolist	9	0/-10	40	25,06	25 06,07-046,HC	6,4C		UNITS	1	ug Inl	
ELEMENT	ANALYSIS DATE		ATA		DUP	DUPLICATE	ANALYSIS	S		SPIKE		RECOVERY		BLANKS
		FOUND VALUE	TRUE VALUE	%R	SAMP!"	SAMP	DUPL	RPD	SAMP#	SR	SSR	SA	%R	
45	2-21-86	ETO	040	105	90.00 01 A	//0	010'	9.5	01.A	.10"	880'	420'	113	1000 >
	200'= 191	Cto.	040	105	dig dup	//0"	110.	0	da dup	.007	,026	020	95	00161 <,003
		240'	040'	501										<.003 <.002
149	3-20-86	8400	0500'	96	dy dup 01 A	<.000x	2000'>	NC	de bip	5000	1800'	0200'	105	4.0007
	191:,0002	0049	0400	105										
		4400	0400'	0//										
5	2-21-86	2770	643	86	dup bip	870	Cho'	2.1	de 50	£000°.	600'	020	\$	600.
3	: Jb:	043	043	00/					as vo	5,0002		420.	7	10/00
25									on 59 04/A	2000>	027	024	//3	ca/6/
									1:10 dilumor					
20	3-31-86	140	040.	801	dup bip	5003	<000>	MC	dr 460	6003	E00 > E00>	010.	0	6007
	E00 = / Pi	043	040'	80/					an sp	2003	910	720'	69	19/12/
	1								an sp 04 A 1:10 <003	600	,024	420.	760	
									פוןמעי	<i>u</i> p				
oil & Grease	3-14-86	/6/	200	96	-									
	1 = 1 p.i													
200	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Diane di	dio duo pro	-0,000	pre-dioest duplicate		141-10-1	4 4 9 9 9 7	to to a tion	1.4.1	707	- 4, 4		20.1

andup = analytical duplicate
an sp = analytical spike

dig dup = pre-digest duplicate dig sp = pre-digest spike

id = instrument detection limit No: Not oxieumble * - value is less than 5 x id!

ELEMENT	ANALYSIS DATE	QC DATA)ATA		DUPLICATE ANA	LICATE	DUPLICATE ANALYSIS	<u>s</u>		SPI	SPIKE RECOVERY	OVERY		BLANKS
		FOUND VALUE	TRUE VALUE	3.R	SAMP!"	SAMP	DUPL	RPD	SAMP#	SR	SSR	SA	88 R	
A3	2.24-86	980.	040.	90	andro Of A	.038	,038	0	an 5P 05A	c00:	420	420	001	1000 ×
	18/2,002	0360	040'	90						:				600.
		1037	040'	93	1					`				10000
На	2-20-86	8700	0500'	36	,				dig sp	Z000.	6100'	0200	95	£000;
	- 17	. 67700	07700	501					· 					'
	6 222 (B)		0400'	0//										
j				0					an sp	682	7/4	720	i	19 day
120	2-21-86	640	073	7					an sp		1	120	1	19/00
	1d=,002	,043	.043	001					E003 1: FOI : 1 450	5003	460	120	100	<.002
-5														
3									dsuo				,	19 Assid
2	2.21-86	- 04/	040'	103					044	2003	210.	\$20'	63	100 V
	141: ,002	840	040	801					off dinnon	£00%	.033	40.	96	C0101
														ļ
P	2 4 86	161	200	26										
, ,	19/2													
	•													
														,

*=value is less then five times the instrument detection limit NC=not calculable

MICROCORY RESOLUTION TEST CHAR?

•

The second of the second

THE PROPERTY OF THE PROPERTY O

for work orders

8602031 8602041 8602060 8602060

8601246

Form VII

Q.C. Report No. 2

8602079

INSTRUMENT DETECTION LIMITS AND

LABORATORY CONTROL SAMPLE

	adiam		CASE NO.	TEMU!		
DATE	3-4-86		LCS UNITS	ug/L	mg/kg	
6			M	g/ml (Circ	ele One)	
	Required Detection	Instrument	Detection	الهبياة فتهدر وتنها البدائية البناءات		
Compound	Limits (CRDL)-ug/l	Limits ()	IDL)-ug/l	Lab Contr	ol Sample	Ì
		ICP/AA-	Furnace*	True I	Found ZR	
Metals:			:			
1. Aluminum	200					
2. Antimony	60					
3. Arsenic	10			<u> </u>	<u> </u>	-
4. Barium	200	1.001			İ	Ì
5. Berylliu	5					İ
6. Cadmium	5	1.002		j		
7. Calcium	5000				i	١
8. Chromium	10	1.005				j
9. Cobalt	50					
10. Copper	25					j
ll. Iron	100			i		
12. Lead	5					İ
13. Magnesius	5000			}		\neg
14. Manganes	e 15			1		
15. Mercury	0.2					\neg
16. Nickel	40			İ		
17. Potassiu	5000					
18. Selenium	5					
19. Silver	10	1 < .002				
20. Sodium	5000					
21. Thallium	10					-
22. Tin	40			•		
23. Vanadium	50					1
24. Zinc	20		<u> </u>		1	
Other:					1	\neg
		5	327	1	ı	
Cyanide	10			1	1	

* dection limits are given on furnace / Hg/040 PA/OC SUMMARY SHEETS

ICP GAJQC DATA

For work 8602031 8602041 8602060 8602060 8602067 8602079 8602079

Form II

Q. C. Report No. 3

INITIAL AND CONTINUING CALIBRATION VERIFICATION3

LAB NA	ME	adian			CASE	NO	PLANT	74		
	_ 	- // ^-			SOW N					
DATE	3					s uglo	nl.			
Compou	und	Initia	1 Calib.	.1		inuing (ecion ²		
Metals	s: 1	True Value	Found	ZR	True Value	Found	<u> </u>	Found	显	Method
1. <u>Al</u>	luminum									
2. <u>Ar</u>	ncimony									
3. <u>Aı</u>	rsenic								i	
4. Ba	arium	100	1.01	101	1.00	1.01	101	1.01	1011	
	eryllium								1 _ 1	1
6. <u>C</u>	admium	1.00	1.04	1041	1.00	1.05	1051	1.04	104	
	alcium			1	1		1 1		1	1
	bromium	1.00	1.01	101	1.00	1.02	1/02	1.02	1021	
_	obalt									
10. <u>C</u>									l it	
11. <u>I</u> z	ron									
12. <u>L</u>	ead								1 1	ĺ
13. <u>M</u> a	agnesium									
14. <u>H</u> a	anganese									
15. <u>H</u> e	ercury									
16. N										i
	otassium									<u> </u>
18. 5	elenium									1
		1,00	1,00	100	1.00	1.02	102	1.00	1001	<u> </u>
20. <u>s</u>										i
_	hallium									
22. 11								1		1
_	anadium					! 				
24. <u>Z1</u>						_		1	 	1
 Cher:				 			1		 	1
<u> </u>								1	 	ì
yanide			·——		1		1	1		
<u> </u>							<u></u>			

I Initial Calibration Source 2 Continuing Calibration Source

3 Control Limits: Mercury and Tin. 80-120; All Other Compounds 90-110

⁴ Indicate Analytical Method Used: P - ICP/Flame AA; F - Furnace

Form II

Q.	c.	Report	No.	
----	----	--------	-----	--

	INITIAL	AND CO	NTINUI	NG CALIBRATIO	ON VERIF	CATIO	ENC		
B NAME	Kadian			CASE	NO	PLAN	174		
	a ./ a.			sow !	NO				
ATE3-4-86			UNIT	s	ug/m				
	Initia	l Calib	.1	Cont	inuing	Calib	estion ²		
tals:	True Value	Found	XR.	True Value	Found	<u> 322</u>	Found	222	Metho
Aluminum			<u> </u>						<u> </u>
Antimony				11					1
Arsenic									
Barium				111.00	1.01	101	1.01	1/0/1	
Beryllium]]				1	İ
Cadmium				11 1.00	1.04	1/04	1.03	1/03	1
Calcium				11					
Chromium				11.00	1.00	1100	1.01	1/0/1	1
Cobalt								1	
Capper			1	11		1		1	1
Iron	İ		Ī	11					1
Lead			1						ł
Magnesium				11					1
Manganese	1								1
Mercury									1
Nickel								İ	1
Potassium			1	11		1			i
Selenium			i	11					!
Silver			 	1,00	101	151	1.02		
Sodium				11	1,,0,7	1	,,,,,,		<u></u>
Thallium			 			 			
Tin			 						1
Vanadium			-	 		1		1	<u> </u>
			1			+		 	'
Zinc				+		1		1 1	<u>!</u>
er:	<u></u>		 			<u> </u>		 	<u>. </u>
aide						 	•-	1 1	1

Initial Calibration Source 2 Continuing Calibration Source

Control Limits: Mercury and Tin. 80-120; All Other Compounds 90-110

⁴ Indicate Analytical Method Used: P - ICP/Flame AA; F - Furnace

Form III
Q. C. Report No. 3

BLANKS

LAB NAME Radian	CASE NO. PLANT 4	
DATE 2-4-86	UNITS ugine	
	Manda Matter	_

	Initial	Cont	lnuing Ca	libratio	on		
Preparation	Calibration		Blank V		Preparation Blank		
Compound	Blank Value	e 1 2 3 4 1					2
Metals:							į
1. Aluminum							
2. Antimony							
3. Arsenic							<u> </u>
4. Barium	2.001	1.001	1.001	4.001	2.001		
5. Beryllium							1
6. Cadmium	2.002	1.002	1.002	.002*	.002*		
7. Calcium							
8. Chromium	2.005	1.605	2.005	4.005	4.005		
9. Cobalt							
10. Copper							
ll. Iron						<u> </u>	
12. Lead							
13. Magnesium							1
14. Manganese							
15. Mercury							
16. Nickel							
17. Potassium							
18. Selenium							
19. Silver	.006*	11.018	,010	.004	.014		
20. Sodium							
21. Thallium		11					
22. Tin							
23. Vanadium							
24. Zine						•	
Other:							
					1		
Cyanide					!	1	

Form III

Q. C. Report No. _ &

860Z060 860Z067

BLANKS

DATE 3-4-86

CASE NO. (2-14-86)
PLANT 4

ONITS ualmo.

Macrix water

	Initial	Cont	inuing Ca	librati	on		
Preparation	Calibration	l I	Blank V	Preparati	Preparation Blank		
Compound	Blank Value	1	2	3	4	1	2
Metals:							
1. Aluminum							
2. Ancimony							
3. Arsenic							
4. Barium						.005*	
5. Beryllium							
6. Cadmium				•		1.002	
7. Calcium							
8. Chromium					İ	1012*	
9. Cobalt							
10. Copper							
ll. Iron						11	
12. Lead							
13. Magnesium				·	1		
14. Manganese					1		
15. Mercury						11	
16. Nickel			1		1	11 1	
17. Potassium					1		
18. Selenium					1		
19. Silver						11 <.002	
20. Sodium							
21. Thallium				İ			
22. Tin							
23. Vanadium						11	
24. Zinc						•	<u> </u>
Other:					i		
				ĺ	1		
Cyanide					!	ii l	

^{*} value is less than 5x cal

Form VI

Q. C. Report No. 2

DUPLICATES ANALYTICAL

LAB NAME Ra	dian	7,0,0	CASE NO. PLA EPA Sample No.		
AII	4-86		Lab Sample ID bo	· 8602067-01	
	Macs	··· water.	unies light	anali	ıti
ו פתייטכבים	Control Limit	Sample(S)	Dublicate(D)	RPD-	<i>)</i> • •
etals: Aluminum					
. Antimony					
. Arsenic			*		
. Barium		1.12	1,12	10	
. Servillium				<u> </u>	
. Cadmium		1.002	1 4.002	1 NC	
. Calcium				!	
. Chromium		1.21	,21	10	
. Cobalt.]	
). Copper				i	
l. Iron		Í			
2. Lead					
. Magnesium		1		1	
4. Manzanese					
5. Mercury					
6. Nickel					
7. Potassium					
3. Selenium					
9. Silver		1 <.002	<.002	1 NK	
O. Sodium					
I. Thallium					
2. Tin					
3. Vanadium					
4. Zinc					
iner:				Ī	
				 	
yanide				1	

^{*} Gut of Control

To be added at a later date.

 $^{2 \}text{ RPD} = \{ \{S - D_1/((S + D)/2) \} \times 100 \}$

^{1 -} Non calculable RPD due to value(s) less than CRDL

Form V

Q. C. Report No. 2

CRIVE CAMPLE OF COVERY

ab name <u>Ra</u> ate <u>3-4-</u>			EPA Sam Lab Sam Units _	nple No. 8/1 May Im/	
-	-	Hatrix <u>Wate</u>			
capound	Control Limit	Spiked Sample Result (SSR)	Sample Result (SR)	Spiked Added (SA)	22 !
etals:	1		1		
. Aluminum	75-125			<u> </u>	
. Ancimony				\	
. Arsenic	•				
. Barium	•	1.46	0.47	1.00	199
. Beryllium	-				
Cadmium	•	0.94	2,003	1.00	194
Calcium	•				
. Chromium	•	0.94	2,005	1.00	94
Cobalt	-		1		
. Copper	•		1		
I. Iron	•				
Lead	•		1		
. Magnesium	•				
4. Manganese					
. Mercury	-				
S. Nickel	•				
7. Pocassium	•				
8. Selenium	-				
9. Silver	-	0.98	<.008	1.00	98
O. Sodium	•				
l. Thallium	•				
. Tin	•		1	1	
. Vanadium	•		1		
. Ziac	•		1		
ther:		1	1	•	
	1		1	1	
ranide	1	i	1 ,	1	1

"R"- out of control

B - 11

organics QA/QC 86-02-067

Volatile Organics

DETECTION LIMITS

HETHOD (OO)	D-F206028)12-06		ETHOD ETECTION
Compound			1 .	imit 1912
		- 04,-06	-01	<u>-02</u>
Chloromethane		0.08	20.0	<u>a.o</u>
Bromomethane		1.18	845	34.5
Vinyl Chloride		0.18	<u> 30.0</u>	3.0
Chloroethane		0.52	138	13.0
Metnylene Chloride	····	0.25	(A.5)	6.25
Trichlorofluoromethane		0.10	25.0	2.5
l,1-Dichloroethene		0.13	32.5	3,25
l,1-Dichloroethane		0.07	17.5	1.75
Trans-1,2-Dichloroethene		0.10	25.0	2.5
Chloroform		0.05	12.5	1.25
1,2-Dichloroethane		0.03	7.5	0.75
l,l,l-Trichloroethane		0.03	7.5	0.75
Carbon Tetrachloride		0.13	30.0	3.0
Bromodichloromethane		0.10	25.0	2.5
1,2-Dichloropropane		0.04	10.0	1,0
Trichloroethene		0.13	30.0	3.0
Dibromochloromethane		0.09	ටුබ.5	2.25
2-Chloroethylvinyl Ether		0.13	39.5	3.25
Brcmoform		0,20	50.0	5.0
Tetrachloroethene		0.03	7.5	0.75
Chlorobenzene		0,25	69.5	6.25
1,3-Dichlorobenzene		0,32	80,0	50
1,2-Dichlorobenzene		0.15	37,5	3.75
1,4-Dichlorobenzene		0.24	60.0	6.0

DETECTION LIMITS

HETHOD 6001	01-06		METHOD DETECTION LIMIT LIG/Q
COMPOUND	-03	-05	
Chloromethane	40.0	800	
Bromomethane	590	11800	
Vinyl Chloride	90.0	1800	
Chloroethane	800	5200	
Methylene Chloride	125	2500	
Trichlorofluoromethane	50.0	1000	
l,1-Dichloroethene	(05.0	1300	
1,1-Dichloroethane	35.0	W.F	
frans-1,2-Dichloroethene	50.0	1000	
Chloroform	25,0	500	
1,2-Dichloroethane	15.0	300	
l,l,l-Trichloroethane	15.0	300	
Carbon Tetrachloride	1 (00.0	1200	
Bromodichloromethane	50.0	1000	
1,2-Dichloropropane	30.0	400	
Trichloroethene	(0.00)	1200	
Dibromochloromethane	45.0	900	
2-Chloroethylvinyl Ether	65.0	1300	
Bromoform	100	2000	
Tetrachloroethene	150	300	
Chlorobenzene	1125	2500	
l,3-Dichlorobenzene	160	3200	
1,2-Dichlorobenzene	750	1500	
1,4-Dichlorobenzene	120	2400	

DETECTION LIMITS

THE PROPERTY OF THE PROPERTY O

8602067-01 ≥-CC

VOLATILE ORGANICS

METHOD GOS

6										
Jago)									
DETECTION LIMIT	-05	900	300	WE	300	300	400	400		
DETE	-03	50	05	99	99	St	301	001		
	A-10- 2	5.0	5.0	6.0	6.0	5't	0'01	10.0		
	-C41-C/c	0.3	0.3	6.3	80	0,3	O.y	0.4		
COMPOUND		BENZENE	TOLUENE	ETHYLBENZENE	CHLOROBENZENE	1,4-DICHLOROBENZENE	1,3-DICHLOROBENZENE	1,2-DICHLOROBENZENE		

LAB # SYMON	BUNNE			
CLIENT NAME				
SAMPLE ID				

DD I WESTAD	DATE: 2/13 ANALYST: 3 INSTRUMENT	36	EPA METHOD 602	DATE: ANALYST: INSTRUMENT:
COMPOUND	CONCENTRAT	CION	COMPOUND	CONCENTRATION (ug/L)
Chloromethane	1	/D	Benzene	
Bromomethane			Toluene	
Vinyl Chloride		1	Ethyl benzene	
Chloroethane			Chlorobenzene	
Methylene chloride		 	1.4-Dichlorobenzene	
Trichlorofluromethane		†	1.3-Dichlorobenzene	
1.1-Dichlorethene			1.2-Dichlorobenzene	
1.1-Dichlorethane			P-Xylene	
Trans-1.2-Dichloroethene			M-Xylene	
Chloroform			0-Xylene	
1.2-Dichlorethane				
1.1.1-Trichlorethane			1	
Carbon tetrachloride	Ī		1	
Bromodichlormethane]	
1.2-Dichloropropane	7		SURROGATE RECOVERI	ES:
Trans-1.3-Dichloropropen	9		601	
Trichloroethene			Bromochloromethane	·
Dibromochloromethane			2-Bromo-1-Chloropr	
1.1.2-Trichlorethane			l,4-Dichlorobutane	
cis-1.3-Dichloropropene			602	
2-Chloroethylvinyl ether			a,a,a,-Trifluoroto	luene
Bromoform			1	
1.1.2.2-Tetrachlorethane]	
Tetrachlorethylene			1	
Chlorobenzene				
1.3-Dichlorobenzene			_	
1.2-Dichlorobenzene				
1.4-Dichlorobenzene	$\overline{}$			

LAB # A SWEEM BUNK	
CLIENT NAME	
SAMPLE ID	
epa method Date: 7/3/7 601 Analyst: Co Instrument	EPA METHOD DATE: 602 ANALYST: INSTRUMENT:
COMPOUND CONCENTRATIO	ON COMPOUND CONCENTRATION (ug/L)
Chloromethane	Benzene
Bromomethane	Toluene
Vinyl Chloride	Ethyl benzene
Chloroethane	Chlorobenzene
Methylene chloride	1.4-Dichlorobenzene
Trichlorofluromethane	1.3-Dichlorobenzene
1.1-Dichlorethene	1.2-Dichlorobenzene
1.1-Dichlorethane	P-Xylene
Trans-1.2-Dichloroethene	M-Xylene
Chloroform	0-Xylene
1.2-Dichlorethane	
1.1.1-Trichlorethane	
Carbon tetrachloride	
Bromodichlormethane	
1.2-Dichloropropane	SURROGATE RECOVERIES:
Trans-1.3-Dichloropropene	601
Trichloroethene	Bromochloromethane
Dibromochloromethane	2-Bromo-1-Chloropropane
1.1.2-Trichlorethane	1,4-Dichlorobutane
cis-1.3-Dichloropropene	602
2-Chloroethylvinyl ether	a,a,a,-Trifluorotoluene
Bromoform	
1.1.2.2-Tetrachlorethane	
Tetrachlorethylene	
Chlorobenzene	
1.3-Dichlorobenzene	
1.2-Dichlorobenzene V	
1.4-Dichlorobenzene	

LAB #SYYM	a Bunk		
CLIENT NAME			
SAMPLE ID			
		************	******
EPA METHOD 601	DATE: 1/1/16 ANALYST: 056 INSTRUMENT: Bu	EPA METHOD 602	DATE: ANALYST: INSTRUMENT:
COMPOUND	CONCENTRATION (ug/L)	COMPOUND	CONCENTRATION (ug/L)
Chloromethane	No	Benzene	
Bromomethane		Toluene	
Vinyl Chloride		Ethyl benzene	
Chloroethane		Chlorobenzene	
Methylene chloride		1.4-Dichlorobenzene	
Trichlorofluromethane		1.3-Dichlorobenzene	
1.1-Dichlorethene		1,2-Dichlorobenzene	
1.1-Dichlorethane		P-Xylene	
Trans-1.2-Dichloroethene		M-Xylene	
Chloroform		0-Xylene	
1.2-Dichlorethane			
1.1.1-Trichlorethane			
Carbon tetrachloride		」	
Bromodichlormethane			
1.2-Dichloropropage		SURROGATE RECOVER	IES:
Trans-1.3-Dichloropropen	e	」 601	
Trichloroethene		Browochloromethan	
Dibromochloromethane		2-Bromo-1-Chlorop	
1.1.2-Trichlorethane		1,4-Dichlorobutan	e
cis-1.3-Dichloropropene		602	
2-Chloroethylvinyl ether		a,a,a,-Trifluorot	oluene
Bromoform		4	
1.1.2.2-Tetrachlorethane		4	
Tetrachlorethylene		·	
Chlorobenzene			
1.3-Dichlorobenzene		_	
1.2-Dichlorobenzene		_	
1.4-Dichlorobenzene	N/	_	

LAB # NATION	OT BLANK			
CLIENT NAME				
SAMPLE ID				
**************		====	**************	
EPA METHOD 601	DATE: 4/4/ ANALYST: INSTRUMEN	r. Their	EPA METHOD 602	DATE: ANALYST: INSTRUMENT:
COMPOUND	CONCENTRA (ug/L)	TION	COMPOUND	CONCENTRATION (ug/L)
Chloromethane		0	Benzene	
Bromomethane		L	Toluene	
Vinyl Chloride			Ethyl benzene	
Chloroethane			Chlorobenzene	
Methylene chloride			1.4-Dichlorobenzene	
Trichlorofluromethane			1.3-Dichlorobenzene	
1.1-Dichlorethene			1.2-Dichlorobenzene	
1.1-Dichlorethane			P-Xylene	
Trans-1.2-Dichloroethene			M-Xylene	
Chloroform			0-Xylene	
1.2-Dichlorethane		<u> </u>		
1.1.1-Trichlorethane				
Carbon tetrachloride				
Bromodichlormethane				
1.2-Dichloropropane			SURROGATE RECOVERI	ES:
Trans-1.3-Dichloropropens	2		601	
Trichloroethene			Browochloromethane	
Dibromochloromethane			2-Bromo-1-Chloropre	opane
1.1.2-Trichlorethane			1,4-Dichlorobutane	
cis-1.3-Dichloropropene			602	
2-Chloroethylvinyl ether			a,a,a,-Trifluoroto	luene
Bromoform				
1.1.2.2-Tetrachlorethane				
<u>Tetrachlorethylene</u>			·	
Chlorobenzene				
1.3-Dichlorobenzene	V/			
1.2-Dichlorobenzene	<u> </u>			
1.4-Dichlorobenzene				

LAB # 5157	- BUNK			
CLIENT NAME				
SAMPLE ID				
	*******			****
EPA METHOD 601	DATE: 2/17 ANALYST: INSTRUME	182 NILLERA	EPA METHOD 602	DATE: ANALYST: INSTRUMENT:
COMPOUND	CONCENTR.		COMPOUND	CONCENTRATION (ug/L)
Chloromethane	Λ	וח	Benzene	
Bromomethane		-	Toluene	· · · · · · · · · · · · · · · · · · ·
Vinyl Chloride		-	Ethyl benzene	
Chloroethane		 	Chlorobenzene	,
Methylene chloride			1.4-Dichlorobenzene	
Trichlorofluromethane			1.3-Dichlorobenzene	
1.1-Dichlorethene			1.2-Dichlorobenzene	
1.1-Dichlorethane			P-Xylene	
Trans-1.2-Dichloroethene			M-Xylene	
Chloroform			0-Xylene	
1.2-Dichlorethane			1	
1.1.1-Trichlorethane				
Carbon tetrachloride			1	
Bromodichlormethane			1	
1.2-Dichloropropane			SURROGATE RECOVER:	IES:
Trans-1.3-Dichloropropen	e		601	
Trichloroethene			Bromochloromethan	
Dibromochloromethane			2-Browo-1-Chlorop	_
1.1.2-Trichlorethane			1,4-Dichlorobutan	e
cis-1.3-Dichloropropene			602	
2-Chloroethylvinyl ether			a,a,a,-Trifluorote	oluene
Bromoform		· · ·	4	
1.1.2.2-Tetrachlorethane			4	
Tetrachlorethylene			·	
Chlorobenzene			4	
1.3-Dichlorobenzene			4	
1.2 Dichlorobenzene	V		4	
1.4-Dichlorobenzene	·		-	

LAB # Newbert Bu	MIL.		
CLIENT NAME			
SAMPLE ID			
	-7		*********
EPA METHOD DATE: ひ/!	14/24	EPA METHOD	DATE:
601 ANALYST:	O .	602	ANALYST:
601 ANALYST: INSTRUME	NTYU	سن	INSTRUMENT:
COMPOUND CONCENTR		COMPOUND	CONCENTRATION
(ug/L		CONT OUND	(ug/L)
Chloromethane ^	Jo	Bonzono	
Bromomethane	1-	Benzene Toluene	
Vinyl Chloride	 	Ethyl benzene	
Chloroethane	1	Chlorobenzene	
Methylene chloride	 	1.4-Dichlorobenzene	
Trichlorofluromethane	1	1.3-Dichlorobenzene	
1.1-Dichlorethene	1	1,2-Dichlorobenzene	
1.1-Dichlorethane		P-Xvlene	
Trans-1,2-Dichloroethene		M-Xvlene	
Chloroform		0-Xylene	
1.2-Dichlorethane			
1.1.1-Trichlorethane			
Carbon tetrachloride		1	
Bromodichlormethane			
1.2-Dichloropropane		SURROGATE RECOVER	ES:
Trans-1.3-Dichloropropene		601	
Trichloroethene		Browochloromethane	
Dibromochloromethane		2-Brome-1-Chloropi	
1.1.2-Trichlorethane		1,4-Dichlorobutane	·
cis-1.3-Dichloropropene		602	
2-Chloroethylvinyl ether		a,a,a,-Trifluoroto	oluene
Bromoform	• • • • •	4	
1.1.2.2-Tetrachlorethane		4	
Tetrachlorethylene		4	
Chlorobenzene		4	
1.3-Dichlorobenzene		4	
1.2-Dichlorobenzene		-{	
1.4-Dichlorobenzene		-	
·			

LAB #	SYSTEM BLANK		
CLIENT NAME			
SAMPLE ID			
	*****	****	*********
EPA METHOD 601	DATE: ANALYST: INSTRUMENT:	EPA METHOD 602	DATE: 2/13/2L ANALYST: J= 6 INSTRUMENT OL
COMPOUND	CONCENTRATION (ug/L)	COMPOUND	CONCENTRATION (ug/L)
Chloromethane		Benzene	No
Bromomethane		Toluene	
Vinyl Chloride		Ethyl benzene	
Chloroethane		Chlorobenzene	
Methylene chloride		1.4-Dichlorobenzene	
Trichlorofluromethane		1.3-Dichlorobenzene	
1.1-Dichlorethene		1.2-Dichlorobenzene	
1.1-Dichlorethane		P-Xylene	
Trans-1.2-Dichloroeth	ene	M-Xylene	
Chloroform		0-Xylene	
1.2-Dichlorethane]	
1.1.1-Trichlorethane			!
Carbon tetrachloride			
Bromodichlormethane		1	
1.2-Dichloropropane		SURROGATE RECOVER	IES:
Trans-1.3-Dichloropro		601	
Trichloroethene		Browochloromethan	
Dibromochloromethane		2-Bromo-1-Chlorop	
1.1.2-Trichlorethane		1,4-Dichlorobutan	e
cis-1.3-Dichloroprope		602	
2-Chloroethylvinyl et	her	a,a,a,-Trifluorot	oluene
Bromoform	<u> </u>	4	
1.1.2.2-Tetrachloreth		4	
<u>Tetrachlorethylene</u>		4	
Chlorobenzene		4	
1.3-Dichlorobenzene			
1.2-Dichlorobenzene		-{	
1.4-Dichlorobenzene		_{	

LAB # Marce	M BUNK		
CLIENT NAME			
SAMPLE ID			
	***********	· · · · · · · · · · · · · · · · · · ·	*****
EPA METHOD 601	DATE: ANALYST: INSTRUMENT:	EPA METROD 602	DATE: 2/13/26 ANALYST: CO INSTRUMENT: D
COMPOUND	CONCENTRATION (ug/L)	COMPOUND	CONCENTRATION (ug/L)
Chloromethane		Benzene	Np
Bromomethane		Toluene	
Vinvl Chloride		Ethyl benzene	
Chloroethane		Chlorobenzene	
Methylene chloride		1.4-Dichlorobenzene	
Trichlorofluromethane		1.3-Dichlorobenzene	
1.1-Dichlorethene		1.2-Dichlorobenzene	
1.1-Dichlorethane		P-Xylene	
Trans-1.2-Dichloroethene		M-Xylene	
Chloroform		0-Xylene	
1.2-Dichlorethane			
1.1.1-Trichlorethane			
Carbon tetrachloride			
Bromodichlormethane			
1.2-Dichloropropane		SURROGATE RECOVERI	ES:
Trans-1.3-Dichloroproper	<u>.e</u>	601	
Trichloroethene		Browochloromethane	
Dibromochloromethane		2-Brome-1-Chloropr	
1.1.2-Trichlorethane		l,4-Dichlorobutane	
cis-1.3-Dichloropropene		602	
2-Chloroethylvinyl ether		a,a,a,-Trifluoroto	luene
Bromoform	·	4	
1.1.2.2-Tetrachlorethane		4	
<u>Tetrachlorethylene</u>			
Chlorobenzene		4	
1.3-Dichlorobenzene		4	
1.2-Dichlorobenzene		-	
1.4-Dichlorobenzene		-	

LAB # System !	BLANC		
CLIENT NAME			
SAMPLE ID			
*************	******	*******	********
601	NALYST: JSC NSTRUMENT: Au	602	DATE: ANALYST: INSTRUMENT:
COMPOUND	ONCENTRATION (ug/L)	COMPOUND	CONCENTRATION (ug/L)
Chloromethane	No	Benzene	
Bromomethane		Toluene	
Vinyl Chloride		Ethyl benzene	
Chloroethane		Chlorobenzene	
Methylene chloride		1.4-Dichlorobenzene	
Trichlorofluromethane		1.3-Dichlorobenzene	
1.1-Dichlorethene		1.2-Dichlorobenzene	
1.1-Dichlorethane		P-Xylene	
Trans-1.2-Dichloroethene		M-Xylene	
Chloroform		O-Xylene	
1.2-Dichlorethane			
1.1.1-Trichlorethane			
Carbon tetrachloride		1	
Bromodichlormethane		-	
1.2-Dichloropropane		SURROGATE RECOVERI	ES:
Trans-1.3-Dichloropropene		601	
Trichloroethene		Browochloromethane	
Dibromochloromethane		2-Bromo-1-Chloropr	
1.1.2-Trichlorethane		1,4-Dichlorobutane	·
cis-1.3-Dichloropropene		602	
2-Chloroethylvinyl ether		a,a,a,-Trifluoroto	luene
Bromoform		4	
1.1.2.2-Tetrachlorethane			
Tetrachlorethylene			
Chlorobenzene		4	
1.3-Dichlorobenzene		4	
1.2-Dichlorobenzene		4	
1.4-Dichlorobenzene		-	

LAB # 1 CHCENT BUNN	اد		
CLIENT NAME			
SAMPLE ID			
********************			**********
EPA METHOD DATE: 2/13	186	EPA METHOD	DATE:
601 ANALYST:	6	602	ANALYST:
EPA METHOD DATE: 2/13 601 ANALYST: INSTRUMEN	II Da	min	INSTRUMENT:
COMPOUND CONCENTRA		COMPOUND	CONCENTRATION
(ug/L)			(ug/L)
Chloromethane M		Benzene	
Bromomethane		Toluene	
Vinyl Chloride		Ethyl benzene	
Chloroethane	 -	Chlorobenzene	
Methylene chloride	 -	1.4-Dichlorobenzene	
Trichlorofluromethane	_	1.3-Dichlorobenzene	
1.1-Dichlorethene	_	1.2-Dichlorobenzene	
1.1-Dichlorethane		P-Xylene	
Trans-1.2-Dichloroethene		M-Xylene	
Chloroform	↓	O-Xylene	
1.2-Dichlorethane	<u> </u>	1	
1.1.1-Trichlorethane]	
Carbon tetrachloride			
Bromodichlormethane			
1.2-Dichloropropane		SURROGATE RECOVERI	ES:
Trans-1.3-Dichloropropene		601	
Trichloroethene		Browochloromethane	·
Dibromochloromethane		2-Brome-1-Chloropr	opane
1.1.2-Trichlorethane		1,4-Dichlorobutane	·
cis-1.3-Dichloropropene] 602	
2-Chloroethylvinyl ether		a,a,a,-Trifluoroto	luene
Bromoform			
1.1.2.2-Tetrachlorethane		_	
Tetrachlorethylene		1	
Chlorobenzene			
1.3-Dichlorobenzene]	
1.2-Dichlorobenzene]	
1.4-Dichlorobenzene		_	

LAB # SY	STOM BLANK		
CLIENT NAME			
SAMPLE ID			
	*********	*****	****
EPA METHOD 601	DATE: ANALYST: INSTRUMENT:	EPA METHOD 602	DATE: 2/12/34 ANALYST: JSZ INSTRUMENT: OLL
COMPOUND	CONCENTRATION (ug/L)	COMPOUND	CONCENTRATION (ug/L)
Chloromethane		Benzene	NO
Bromomethane		Toluene	
Vinyl Chloride		Ethyl benzene	
Chloroethane		Chlorobenzene	
Methylene chloride		1.4-Dichlorobenzene	
Trichlorofluromethane		1.3-Dichlorobenzene	
1.1-Dichlorethene		1.2-Dichlorobenzene	
1.1-Dichlorethane		P-Xylene	
Trans-1.2-Dichloroethe	ne	M-Xylene	
Chloroform		O-Xylene	
1.2-Dichlorethane		1	
1.1.1-Trichlorethane		1	
Carbon tetrachloride	 		
Bromodichlormethane			
1.2-Dichloropropane		SURROGATE RECOVER	IES:
Trans-1.3-Dichloropror	ene	601	
Trichloroethene		Bromochloromethan	
Dibromochloromethane		2-Brome-1-Chlorop	
1.1.2-Trichlorethane	-	l,4-Dichlorobutan	e
cis-1.3-Dichloroproper		602	
2-Chloroethylvinyl eth	ner	a,a,a,-Trifluorot	oluene
Bromoform		4	
1.1.2.2-Tetrachloretha		4	
<u>Tetrachlorethylene</u>		4	
Chlorobenzene		4	
1.3-Dichlorobenzene			
1.2-Dichlorobenzene		-[
1.4-Dichlorobenzane			
Ţ.			

LAB #	PLANEAU BUNIL		
CLIENT NAME			
SAMPLE ID			
	**********	********	**********
EPA METHOD 601	DATE: ANALYST: INSTRUMENT:	EPA METHOD 602	DATE: 2/12/26 ANALYST: CO INSTRUMENT DO
COMPOUND	CONCENTRATION (ug/L)	COMPOUND	CONCENTRATION (ug/L)
Chloromethane		Benzene	No
Bromomethane		Toluene	
Vinyl Chloride		Ethyl benzene	
Chloroethane		Chlorobenzene	
Methylene chloride		1.4-Dichlorobenzene	
Trichlorofluromethane	<u>,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_</u>	1.3-Dichlorobenzene	
1.1-Dichlorethene		1.2-Dichlorobenzene	\overline{V}
1.1-Dichlorethane		P-Xylene	
Trans-1.2-Dichlorvethe	ne	M-Xylene	
Chloroform		0-Xylene	
1.2-Dichlorethane			,
1.1.1-Trichlorethane		1	
Carbon tetrachloride			
Bromodichlormethane		1	
1.2-Dichloropropane		SURROGATE RECOVERI	ES:
Trans-1.3-Dichloroprog	pene	601	
Trichloroethene		Bromochloromethane	
Dibromochloromethane	<u></u>	2-Bromo-1-Chloropr	
1.1.2-Trichlorethane		l,4-Dichlorobutane	
cis-1.3-Dichloroproper		602	
2-Chloroethylvinyl eth	her	a,a,a,-Trifluoroto	luene
Bromoform	· · · · · · · · · · · · · · · · · · ·	-	
1.1.2.2-Tetrachloretha		4	
Tetrachlorethylene			
Chlorobenzene		4	
1.3-Dichlorobenzene		4	
1.2-Dichlorobenzene		-	
1.4-Dichlorobenzene		-	
	·		

DAILY QUALITY CONTROL

\$24\$9**=**\$244444\$**=**\$355555**3**=\$277556

EPA DE WP 483 care 2 EPA OC WP 781 cm 3 CENTIFIED VALUE (MJ/L) Chloromethane Bromomethane Vinvl chloride Chloroethane 9.2 Methylene chloride 103 Trichlorofluoromethane 1.1-Dichloroethene 10.0 1.1-Dichloroethane trans-1.2-Dichloroethene 5.4 54.2 18.21126 112 43.0 Chloroform 23,0 B7,5 13 27.6 1136 1,2-Dichloroethane 105 121 14.3 15.0 1,1,1-Trichloroethane 200 97 lost Carbon tetrachloride 7.9 19.2 106 1116 Bromodichloromethane 8.0 98 7.8 1,2-Dichloropropane 20.2/24.8 112 22.2 Trichloroethene 16.7 Dibromochloromethane 1.1.2-Trichloroethane cis-1,3-Dichloropropene 2-Chloroethvlvinvl ether 9.9 Bromoform 10.0 1.1.2.2-Tetrachloroethane 6.2 Tetrachloroethylene 8.2 100 Chlorobenzene 1,3-Dichlorobenzene

1,2-Dichlorobenzene 1,4-Dichlorobenzene

DAILY QUALITY CONTROL RAS GC LAB

DATE: 2	7/13/26		SPIKED VALUE (ug/L)	ANA	LYZED VA	ALUE		Z RECOVERY	
		INSTRUMENT		D			D		
	•	ANALYST		4			9		
TEST METHOD	COMPOU	ND	-						
EPA 601	Chloromethane		16.2						
	Chloroethane		28.1						
	Methylene Chlori	ie	26.3				ļ		
	1.1-Dichloroethy	Lene	45.0					İ .	
	Trans-1,2-Dichlo	roethylene	12.5	<u> </u>			-		
	Carbon Tetrachlo	ride	60.0						
	Dichlorobromomet	nane	40.0				ļ		
	1,1,2-Trichlorge	hane	33.8_					 	
EPA 602	Benzene		30.7	34.4			112		
	Toluene		4.1	4.9	ļ		119	<u> </u>	
	Ethylbenzene	· 	11.5	11.8	<u></u>		105		
	P-Xylene		19.1	20.5			103	<u> </u>	
•	M-Xylene		42.6	44-3		ļ	104		
	O-Xylene		10.6	10.6			100		
EPA 608			(ug/g)		(ug/g)				
	Aroclor 1242		58.7				 		
	Aroclor 1260		56.8	<u></u>					

DAILY QUALITY CONTROL

EPA OC WP 483 cmc 2 + 6PA OC WP 781 cm 7

2/18/16

THE PARTY OF THE P

6

6

& (ı
	CENTIFIED VALUE (MJ/L)	PHALASED	Sie
Chloromethane			
Bromomethane			
Vinvl chloride			
Chloroethane			
Methylene chloride	9.2	10.2	110
Trichlorofluoromethane			
1,1-Dichloroethene	10.0	9.4	94
1.1-Dichloroethane			
trans-1,2-Dichloroethene	5.4		
Chloroform	43.0	64.8	151
1,2-Dichloroethane	27.6	25,9	94
1,1,1-Trichloroethane	14.3	14.7	103
Carbon terrachloride	200	20.1	00
Bromodichloromethane	7.9	9.2	116
1,2-Dichloropropane	8.0	8.1	102
Trichloroethene	22.2	24.0	103 -
Dibromochloromethane	16.7	14.8	39
1,1,2-Trichloroethane			
cis-1,3-Dichloropropene			
2-Chloroethylvinvl ether	5.5	10.7	108
Bromoform	10.0	10. 7	104
1.1.2.2-Tetrachloroethane Tetrachloroethylene	6.2	ļ	
Chlorobenzene	8.7	8.9	109
1,3-Dichlorobenzene			
1,2-Dichlorobenzene			
l,4-Dichlorobenzene			

DAILY QUALITY CONTROL RAS GC LAB

DATE:	118/26	SPIKED VALUE	ANAI	LYZED VA	LUE		7.	
} '	·	(ug/L)		(ug/L)		<u> </u>	RECOVER	
}	INSTRUMENT		D			A		
} }	ANALYST		CP			Q		
TEST METHOD	COMPOUND							
EPA 601								
}	Chloromethane	16.2				 	 	
	Chloroethane	28.1						
	Methvlene Chloride	26.3						
{	1,1-Dichloroethylene	45.0						
	Trans-1,2-Dichloroethylene	12.5						
	Carbon Tetrachloride	60.0						
	Dichlorobromomerhane	40.0						
	1,1,2-Trichloroethane	33.8						
EPA 602		30.7	34.8			113		
	Benzene	30.7					 	
	Toluene	4.1	4.5			110	ļ	
	Ethylbenzene	11.5-	11.2			97	ļ	
	P-Xylene	19.1	20.8			109		
	M-Xylene	42.6	46.6			109		
	O-Xylene	10.6	10.5			99		
EPA 608		(ug/g)	}	(ug/g)				
	Aroclor 1242	58.7						
	Aroclor 1260	56.8					<u> </u>	

DAILY QUALITY CONTAIL

EPA DE WP 483 cmc 2 + EPA DE WP 781 cmc 3

3(13/86		BJG	BC
	CENTIFIED VALUE (MJ/L)	ANALYZED UNLUE	3 nec
Chloromethane			
Bromomethane			
Vinvl chloride			
Chloroethane			
Methylene chloride	9.2	9.0/10.4	98/113
Trichlorofluoromethane			7.
I.I-Dichloroethene	10.0	9.8 10.1	18/101
1.1-Dichloroethane			
trans-1.2-Dichloroethene	5.4		
Chloroform	43.0	50.8 52.2	118 1131
1,2-Dichloroethane	27.6		82 /91
1,1,1-Trichloroethane	14.3	14.4 15.1	100 106
Carbon tetrachloride	200	20.5/20.9	102/105
Bromodichloromethane	7.9	8.4 18.0	107/102
1.2-Dichloropropane	8.0	8.2 8.5	103/106
Trichloroethene	22.2	01.2 py.6	95 110 -
Dibromochloromethane	16.7	15.8 13.5	94/31
1,1,2-Trichloroethane			
cis-1,3-Dichloropropene			
2-Chloroethylvinvl ether		22101	24/01
Bromoform	·- · <u>9.9</u> · - ·	8.3 9.5	84/96
1.1.2.2-Tetrachloroethane Tetrachloroethvlene	10.0		
Chlorobenzene	8.7	8.7/86	107/105
1.3-Dichlorobenzene	0.0-	3. / La w	10/1103
1,2-Dichlorobenzene			
1,4-Dichlorobenzene			

 Ω

SPIKE RECOVERY

1	ويستسيد والمستوار المراز المراز المراز		ند سينين بنات	
EPA Method 602 Volatile Organics SAMPLE #	4/15/ 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/	J, L		
860120				
СОМРОИНО	SSR	SR	SA	ZR
Benzene	38.8		30.7	3618
Toluene	6.00	0.51	4.1	132
Ethyl benzene	12.9		11.5	112
1,4-Dichlorobenzene				
1,3-Dichlorobenzene				
1,2-Dichlorobenzene				
O-Xylene	9.5		10.6	90
M-Xylene	\$8.7		47.6	138
P-Xylene	22.7		19.1	119
Chlorobenzene				

SSR = Spiked Sample Result

SR = Sample Result

SA = Spike Added

DUPLICATE ANALYSIS

	<u></u>		
EPA METHOD 602			
VOLATILE ORGANICS			
SAMPLE #8000007-000 UNITS LUGIL TRIP BLANK	\		
1.			
COMPOUND	RUN#1	RUN#2	RPD
Benzene			
Toluene	2.50	1.17	72.5
Ethyl benzene			
1,4-Dichlorobenzene			
1,3-Dichlorobenzene	,		
1,2-Dichlorobenzene			
0-Xylene			
M-Xylene			
P-Xylene			
Chlorobenzene			
		<u> </u>	<u></u>

$$RPD = \frac{|R_1 - R_2|}{(R_1 + R_2)/2} \times 100$$

RPD= Relative Percent Difference

LAB #: 8000007-01A
SAMPLE ID: 800147
DATE: 2-13-86
INSTRUMENT: B
601/8010
BROMOCHLOROMETHANE: 111%
2-BROMO-1-CHLOROPROPANE: 130%
602/8020
a,a,a-TRIFLUOROTOLUENE:

LAB #:8000007-00A
SAMPLE ID: 860K/8
DATE: 2-14-86
INSTRUMENT: B
601/8010
BROMOCHLOROMETHANE: 92%
2-BROMO-1-CHLOROPROPANE: 105%
602/8020
a,a,a-TRIFLUOROTOLUENE:

LAB #:8002007-03A
SAMPLE ID: 860120
DATE: 2-13-86
INSTRUMENT: B
601/8010
BROMOCHLOROMETHANE: 102%
2-BROMO-1-CHLOROPROPANE: 140%
602/8020
a.a.a-TRIFLUOROTOLUFNE:

LAB #:8600007-05A
SAMPLE ID: 8/00/51
DATE: 2-14-80
INSTRUMENT:
601/8010
BROMOCHLOROMETHANE: 127%
2-BROMO-1-CHLOROPROPANE: 158%
602/8020
a,a,a-TRIFLUOROTOLUENE:

LAB #:8602067-C6A
SAMPLE ID: TRIP BLACK
DATE: 2-13-86
INSTRUMENT: G
601/8010
BROMOCHLOROMETHANE: 121%
2-BROMO-1-CHLOROPROPANE: 109%
602/8020
a,a,a-TRIFLUOROTOLUENE:

LAB #: 26020107-01C,
SAMPLE ID: 800147
DATE: 2-12-86
INSTRUMENT:
601/8010
BROMOCHLOROMETHANE:
2-BROMO-1-CHLOROPROPANE:
602/8020
a,a,a-TRIFLUOROTOLUENE:

LAB #: 8002007-02C
sample id: 800148
DATE: 2-12-86
INSTRUMENT: D
601/8010
BROMOCHLOROMETHANE:
2-BROMO-1-CHLOROPROPANE:
602/8020
a,a,a-TRIFLUOROTOLUENE: 2980/0 **
* poor baseline (layer of solvent on top with oil unterspensed in the water)

LAB #:8000007-03C
SAMPLE ID: 860149
DATE: 2-12-86
INSTRUMENT:
601/8010
BROMOCHLOROMETHANE:
2-BROMO-1-CHLOROPROPANE:
602/8020
a,a,a-TRIFLUOROTOLUENE: 13%

RADIAN

LAB #: 800007-040
SAMPLE ID: 800150
DATE: 2-12-86
INSTRUMENT:
601/8010
BROMOCHLOROMETHANE:
2-BROMO-1-CHLOROPROPANE:
602/802 0
a,a,a-TRIFLUOROTOLUENE: 105%

Radian

LAB #:8600007-05C
SAMPLE ID: 800151
DATE: 2-13-80
INSTRUMENT:
601/8010
BROMOCHLOROMETHANE:
2-BROMO-1-CHLOROPROPANE:
602/8020
a,a,a-TRIFLUOROTOLUENE: 90%

RADIAN

LAB #: 860020107-CICA
SAMPLE ID: TRIP BLANK
DATE: 2-13-86
INSTRUMENT:
601/8010
BROMOCHLOROMETHANE:
2-BROMO-1-CHLOROPROPANE:
602/802 0
2 2 TRIEI HOPOTOL HENE 98% 1030/

radian

10395 OLD PLACERVILLE ROAD SACRAMENTO, CALIFORNIA 95827

						. <u> </u>
		CHAIN OF CUS	STODY RECO	RD		
IELD SECTIO			_1		- 1	4
CLIENT NAME _	Conoal Yynan	PROJECT AD	DRESS_FORTE	vorth to	xas flo	mt 4 AFB
	NEW BORK	1000	Number	Street	City	Zip
SAMPLED BYN	NEIL ROBE	Organization	CONTAINERS OF	STAINED FF	NOM	fun
PRESERVATIVE	USED NONE	STORAGE T	EMPERATURE 0	Ambient 🎉	4° C □ -10 °	C Other
	□ NON-HAZARDOUS					
TELD REMARKS	Total	Eight lit	00 m/	DK-6/1	255 150	the
SOLLECTOR'S #	GRAB GRAB GRAB	ATA STATION LOCATE	ומל כו אוסו	S REQUIRED		REMARKS
SAMPLE NO.	CO CO	(grid, depth, etc	TAIN			
60.47	XBo		EPA	623	two car	chV
36c 148	X Ho		E9A	125	()	11
800 49	XKO		EPA	625	1 \	11
860150	XES		E/A	025		
		+		+-+-		
						
				+		
20.01	DATA	41 7-11-0L	Wanda	4.1	now	2/12/56 9
eleased by	Organization '	Date/Time	Received by	_	ization	Date/Time
leleased by	Organization	Date/Time	Received by	Organ	ization	Date/Time
leleased by	Organization	Date/Time	Received by	Organ	ization	Date/Time
ABORATORY	SECTION		401175701			
EMPERATURE	RECEIVED 7 C	FEDX AIRBILL≠-	3 Little 1	HAND DEL	IVERED	
		ANALYS	IS RECORD			
TYPE OF	PERFORMED E	BY DATE OF	RECORDED		COM	MENTS
ANALYSIS	(Signed)	ANALYSIS	(LAB BOOK N	0.)		
						
			· 			
	•					
Original (Pag	e 1) — Laborat	tory (Page 2)	Samples (Pa	age 3)	F 000	
mymai (rag		, (i ugo z)		- 30 0,	5 368	•

EPABOZ-860158, 860157, 860156, 860152, 860153, 860154 560159 EPABOZ-860158, 860157, 860156, 860152, 860153, 860154, 860159 86 02-075

Austin

CHAIN OF CUSTODY RECORD TRIP BLANK

- ·	FIELD BLANK	Field Sample No.
		4. Worth Plant 4
Sample Point Description	, ,, , , , <u> </u>	Mouth, Frant
•	THE TOTAL STATE OF THE STATE OF	
Stream Characteristics:		
Temperature Visual Observations/Comments	NISTE TOU LAS	RII RRIF
visual Observations/Comments	10-10 1017 1010	DW 9055
Collector's Name A. Milkul	Date/Time Sa	ampled 2-12-86
Amount of Sample Collected (28).	40 ml glass ; OT	RIP BLANK Q FED BLAMS
Sample Description (S) //// WM //	1/1 / (6.2) 1/1	
Store at: ☐ Ambient ☐ 5°C ☐ —	10°C	
Caution - No more sample available	•	
Other Instructions - Special Handling -	mazards	
Hazardous sample (see below)	□ Non-	hazardous sample
Toxic	☐ Skin irritant	☐ Flammable (FP< 40°C)
☐ Pyrophoric	☐ Lachrymator	☐ Shock sensitive
□ Acidic	☐ Biological	S Carcinogenic - suspect
□ Caustic	☐ Peroxide	Radioactive
□ Other		
Sample Allocation/Chain of Possessio	m∕>	
Organization Name Rudian		
		eived Time
Received By	Lab Sample No	
Comments		
	12-86	
Organization Name		
Received By Till Thirtie	Date Rece	nived Time/
Transported By	Lab Sample No.	and the state of t
Comments	.)	
Inclusive Dates of Possession		
Organization Name		
_		pived Time
Transported By	Lab Sample No	
Comments		
Inclusive Dates of Possession		

CHAIN OF CUSTODY RECORD

P-23 HM-101

		Field Sample No.
Company Sampled / Address bene Sample Point Description P-23,	ral Dunamics Plant L	<i></i>
Some Point Possible P-23	Im- 101	
Sample Point Description	101	
Stream Characteristics:		/ 3
Temperature	Flow	pH <u> </u>
Visual Observations/Comments		
Collector's Name TKW	Date/Time Samp	led 4-18-86
Amount of Comple Colleges	·	
Sample Description 4 50 1 Lite	Amberglass 4 1 Liter plas	stic, 2 40 ml ba-vial
Store at: ☐ Ambient ☑ 5°C ☐ -	10°C □ Other	
Other Instructions · Special Handling · Analyze for Metals, EP. Analyze trip blanks (2)	Hazards Potentially http://	ple Discard unused portions
Analyze tria blanks (2)	0 601 £ 602	45
The position of the second	0. 80. p 300	
☐ Hazardous sample (see below)	□ Non-haz	ardous sample
□ Toxic	☐ Skin irritant	☐ Flammable (FP< 40°€)
☐ Pyrophoric	☐ Lachrymator	☐ Shock sensitive
□ Acidic	☐ Biological	☐ Carcinogenic - suspect
□ Caustic	☐ Peroxide	☐ Radioactive
Other		
Sample Allocation/Chain of Possessie	on:	
Organization Name Received By		14 15 01 600
Received By	Date Receive	d 1 12 86 Time 1900
Transported By	Lab Sample No.	10 10 10 70
Comments	a litty to S	AC 201625
Inclusive Dates of Possession		
Organization Name		
Received By	Date Receive	d Time
Comments		
Inclusive Dates of Possession		
Organization Name		
Received By		
Transported By		
Comments		
Inclusive Dates of Possession	•	

Volatile Organics

DETECTION LIMITS

METHOD (CC)		1	METHOD DETECTION
СОМРОИИД	-07.5-C	9 -01-03	.G/L -C4
Chloromethane	0.08	80.C	80
Bromomethane	1.18	1180	118
Vinyl Chloride	0.18	18C	18
Chloroethane	0,52	530	52
Methylene Chloride	0.25	250	Q5
Trichlorofluoromethane	0.10	100	10
l,1-Dichloroethene	0.13	130	13
l,1-Dichloroethane	0.07	70_	70
Trans-1,2-Dichloroethene	0.10	100	10
Chloroform -	0.05	50	50
l,2-Dichloroethane	0.03	30	30
l,l,l-Trichloroethane	0.03	30	3.0
Carbon Tetrachloride	1012	130	130
Bromodichloromethane	0.10	100	10.0
1,2-Dichloropropane	0.04	40	4.0
Trichloroethene	1012	130	13.0
Dibromochloromethane	0.09	90_	9.0
2-Chloroethylvinyl Ether	0.13	130	13.C
Bromoform	C.30	200_	30.C
Tetrachloroethene	0.03	30	3.0
Chlorobenzene	0.35	250	25.0
1,3-Dichlorobenzene	0.32	320	330
1,2-Dichlorobenzene	0.15	150	15.0
l,4-Dichlorobenzene	0,74	240) ac.c

LCORK CIDET: ELCOLTES

Volatile Organics

DETECTION LIMITS

METHOD &CI		METHOD DETECTION LIMIT LIGHT
COMPOUND	-Clo	
Chloromethane	40	
Bromomethane	4730	
Vinyl Chloride	90	
Chloroethane	360	
Merhylene Chloride	195	
Trichlorofluoromethane	5C	
l,l-Dichloroethene	65	
1,1-Dichloroethane	35	
Trans-1,2-Dichloroethene	50	
Chloroform -	25	
1,2-Dichloroethane	15	
1,1,1-Trichloroethane	15	
Carbon Tetrachloride	60	
Bromodichloromethane	50	
1,2-Dichloropropane	30	
Trichloroethene	60	
Dibromochloromethane	45	
2-Chloroethylvinyl Ether	65	
Brcmoform	100	
Tetrachloroethene	15	
Chlorobenzene	125	
1,3-Dichlorobenzene	166	
1,2-Dichlorobenzene	75	
1,4-Dichlorobenzene	1.90	

Detection Limits

Volatile Organics Method \bigcirc

Compound	-01-05 -01-05	Detection Limit	imit -O4	-C6	7/bm
Benzene	8.0	300	· <u>C</u>	30	
Toluene	6.3	Sec	2	30	
Ethylbenzene	6.0	900	0) () ()	
l,4-Dichlorobenzene	0,3	200	<u>v</u>	30	
l,3-Dichlorobenzene	D'O	227	C)	Qb	
1,2-Dichlorobenzene	0.4	7007	2	40	
Chlorab×n≥c	හ.ට 	AUC	10	30	

LAB # SYSTE	BUNK			
CLIENT NAME				
SAMPLE ID				
****************	********		*******	**********
EPA METHOD 601	DATE: 2/1 ANALYST: INSTRUMEN	C.	EPA METHOD 602	DATE: ANALYST: INSTRUMENT:
COMPOUND	CONCENTRA (ug/L	1	COMPOUND	CONCENTRATION (ug/L)
Chloromethane	Ν	2	Benzene	
Bromomethane		L_{-}	Toluene	
Vinyl Chloride			Ethyl benzene	
Chloroethane			Chlorobenzene	
Methylene chloride			1.4-Dichlorobenzene	
Trichlorofluromethane			1.3-Dichlorobenzene	
1.1-Dichlorethene			1.2-Dichlorobenzene	
1.1-Dichlorethane			P-Xvlene	
Trans-1.2-Dichloroethene			M-Xylene	
Chloroform		1	0-Xylene	
1.2-Dichlorethane		<u> </u>		
1.1.1-Trichlorethane				
Carbon tetrachloride				
Bromodichlormethane]	
1.2-Dichloropropane			SURROGATE RECOVER	IES:
Trans-1.3-Dichloroproper	e		601	
Trichloroethene			Bromochloromethan	
Dibromochloromethane			2-Brome-1-Chlorop	ropane
1.1.2-Trichlorethane			1,4-Dichlorobutan	e
cis-1.3-Dichloropropene			602	
2-Chloroethylvinyl ether			a,a,a,-Trifluorot	oluene
Bromoform				
1.1.2.2-Tetrachlorethane				
Tetrachlorethylene			-	
Chlorobenzene				
1.3-Dichlorobenzene			1	
1.2-Dichlorobenzene	V		-	
1.4-Dichlorobenzene				

LAB # AMEEM BY	ANIC			
CLIENT NAME				
SAMPLE ID				

EPA METROD	DATE: 715		EPA METHOD	DATE:
601	ANALYST:		602	ANALYST:
!	INSTRUMEN	T:1/1	·	INSTRUMENT:
		27501		
COMPOUND	CONCENTRA		COMPOUND	CONCENTRATION
	(ug/L)	•		(ug/L)
Chloromethane	N	2	Benzene	
Bromomethane			Toluene	
Vinvl Chloride			Ethyl benzene	
Chloroethane			Chlorobenzene	
Methylene chloride			1.4-Dichlorobenzene	
Trichlorofluromethane			1.3-Dichlorobenzene	
1.1-Dichlorethene			1.2-Dichlorobenzene	
1.1-Dichlorethane			P-Xylene	
Trans-1.2-Dichloroethene			M-Xylene	
Chloroform			O-Xylene	
1.2-Dichlorethane				
1.1.1-Trichlorethane	I			
Carbon tetrachloride				
Bromodichlormethane				
1.2-Dichloropropane			SURROGATE RECOVERI	ES:
Trans-1.3-Dichloropropen	e		601	
Trichloroethene			Bromochloromethane	
Dibromochloromethane			2-Bromo-1-Chloropr	opane
1.1.2-Trichlorethane			l,4-Dichlorobutane	!
cis-1.3-Dichloropropene			602	
2-Chloroethylvinyl ether			a,a,a,-Trifluoroto	luene
Bromoform			-	
1.1.2.2-Tetrachlorethane			4	
Tetrachlorethylene			4	
Chlorobenzene			4	
1.3-Dichlorobenzene			4	
1.2-Dichlorobenzene			-	
1.4-Dichlorobenzene	Y		4	
1			1	
!				
	-			
T .	•		1	

TO SEE SEED OF THE PROPERTY OF

LAB # SYS	70- BLANK		
CLIENT NAME			
SAMPLE ID			
*************	***********	38322222322222222222	
EPA METHOD 601	DATE: ANALYST: INSTRUMENT:	EPA METHOD 602	DATE: 2/17/21 ANALYST: CO INSTRUMENT OLA
COMPOUND	CONCENTRATION (ug/L)	COMPOUND	CONCENTRATION (ug/L)
Chloromethane		Benzene	Je
Bromomethane		Toluene	
Vinyl Chloride		Ethyl benzene	
Chloroethane		Chlorobenzene	
Methylene chloride	·	1.4-Dichlorobenzene	
Trichlorofluromethane		1.3-Dichlorobenzene	
1.1-Dichlorethene		1.2-Dichlorobenzene	
1.1-Dichlorethane		P-Xylene	
Trans-1.2-Dichloroethe	ene	M-Xylene	
Chloroform		O-Xylene	<u>v</u>
1.2-Dichlorethane			
1.1.1-Trichlorethane			
Carbon tetrachloride			
Bromodichlormethane			
1.2-Dichloropropane		SURROGATE RECOVER	IES:
Trans-1.3-Dichloropror		601	
Trichloroethene		Bromochloromethan	
Dibromochloromethane		2-Brome-1-Chlorop	
1.1.2-Trichlorethane		l,4-Dichlorobutan	e
cis-1.3-Dichloroproper		602	
2-Chloroethylvinyl eth	ner	a,a,a,-Trifluorot	oluene
Bromoform			
1.1.2.2-Tetrachloretha		4	
Tetrachlorethylene		-	
Chlorobenzene		4	
1.3-Dichlorobenzene		4	
1.2-Dichlorobenzene		<u> </u> 	
1.4-Dichlorobenzene		4	

LAB # 1 AFTER	of BLANK		
CLIENT NAME			
SAMPLE ID			
********	**********	**********	
EPA METHOD	DATE:	EPA METHOD	DATE: 2/17/16
601	ANALYST:	602	ANALYST: C
	INSTRUMENT:		INSTRUMENT:
COMPOUND	CONCENTRATION	COMPOUND	CONCENTRATION
	(ug/L)		(ug/L)
Chlomomathana		Benzene	NO
Chloromethane		Toluene	
Bromomethane		Ethyl benzene	
Vinyl Chloride Chloroethane		Chlorobenzene	
Methylene chloride		1.4-Dichlorobenzene	
Trichlorofluromethane		1.3-Dichlorobenzene	
1.1-Dichlorethene		P-Xylene	
Trans-1.2-Dichloroethene		M-Xylene	
	<u> </u>	0-Xylene	
Chloroform		U-XYIERE	
1.2-Dichlorethane		4	
Carbon tetrachloride			
\ 		1	
Bromodichlormethane		SURROGATE RECOVER	TEC.
1.2-Dichloropropane Trans-1.3-Dichloroproper		601	ies:
Trichloroethene		Browochloromethane	
Dibromochloromethane		2-Bromo-1-Chlorops	
1.1.2-Trichlorethane		1,4-Dichlorobutane	
cis-1.3-Dichloropropene		602	
2-Chloroethylvinyl ether		a,a,a,-Trifluoroto	oluene
Bromoform		a,a,a, 11111401010	Jidelle
1.1.2.2-Tetrachlorethane	<u> </u>	4	
Tetrachlorethylene			
Chlorobenzene		1	Ì
1.3-Dichlorobenzene		1	
1.2-Dich orobenzene		-{	}
1.4-Dichlorobenzene		-	ļ.
1.4-Dichtoropenzene		-	
			1
			ļ
			; ì
1		}	<u>.</u>

LAB # SYSTEM BLA	1/L		
CLIENT NAME			
SAMPLE ID			
***********		28855355353535	******
EPA METHOD 601	DATE: 2/14/16 ANALYST: JSC INSTRUMENT: A	EPA METHOD 602	DATE: ANALYST: INSTRUMENT:
COMPOUND	CONCENTRATION (ug/L)	COMPOUND	CONCENTRATION (ug/L)
Chloromethane	NO	Benzene	
Bromomethane		Toluene	·
Vinyl Chloride		Ethyl benzene	
Chloroethane		Chlorobenzene	
Methylene chloride		1.4-Dichlorobenzene	
Trichlorofluromethane		1.3-Dichlorobenzene	
L.l-Dichlorethene		1.2-Dichlorobenzene	L
1.1-Dichlorethane		P-Xylene	
Trans-1.2-Dichloroethene	·	M-Xylene	
Chloroform		0-Xylene	
1.2-Dichlorethane		4	
1.1.1-Trichlorethane		4	
Carbon tetrachloride		4	
Bromodichlormethane		4	
1.2-Dichloropropane		SURROGATE RECOVER	IES:
Trans-1.3-Dichloroproper	1e	601	
Trichloroethene		Bromochloromethan	
Dibromochloromethane			ropane
1.1.2-Trichlorethane		l,4-Dichlorobutan	e
cis-1.3-Dichloropropene		602	
2-Chloroethylvinyl ether		a,a,a,-Trifluorot	oluene
Bromoform		4	
1.1.2.2-Tetrachlorethane	<u> </u>	4	
Tetrachlorethylene		_	
Chlorobenzene		_	
1.3-Dichlorobenzene		4	
1.2-Dichlorobenzene	V/	-	
1.4-Dichlorobenzene		_{	

LAB # Reserve	BLANK			
CLIENT NAME				
SAMPLE ID				
**********	*=======	====	385552882222222222	
EPA METHOD 601	DATE: 2/14 ANALYST: (INSTRUMEN	20.	EPA METHOD 602	DATE: ANALYST: INSTRUMENT:
COMPOUND	CONCENTRA (ug/L)		COMPOUND	CONCENTRATION (ug/L)
Chloromethane		5	Benzene	
Bromomethane			Toluene	
Vinvl Chloride			Ethyl benzene	
Chloroethane			Chlorobenzene	
Methylene chloride			1.4-Dichlorobenzene	
Trichlorofluromethane			1.3-Dichlorobenzene	
1.1-Dichlorethene			1.2-Dichlorobenzene	
1.1-Dichlorethane			P-Xylene	
Trans-i.2-Dichloroethene			M-Xylene	
Chloroform			0-Xylene	
1.2-Dichlorethane				
1.1.1-Trichlorethane			[
Carbon tetrachloride				
Bromodichlormethane				
1.2-Dichloropropane			SURROGATE RECOVER	IES:
Trans-1.3-Dichloropropen	e		601	
Trichloroethene			Bromochloromethan	
Dibromochloromethane			2-Bromo-1-Chlorop	
1.1.2-Trichlorethane			l,4-Dichlorobutan	e
cis-1.3-Dichloropropene			602	
2-Chloroethylvinyl ether			a,a,a,-Trifluorot	oluene
Bromoform			4	
1.1.2.2-Tetrachlorethane			4	
Tetrachlorethylene			4	
Chlorobenzene			4	
1.3-Dichlorobenzene			4	
1.2-Dichlorobenzene	√ /		!	
1.4-Dichlorobenzene			-	

SANDER SERVICIONE SOSSONSE PROPERTO POPONIA DE CONTRA DE

LAB # 5/5/9	n BUNK		
CLIENT NAME			
SAMPLE ID			

EPA METHOD	DATE: 4/14/86	EPA METHOD	DATE:
601	ANTAT VOTE 1	602	ANALYST:
	INSTRUMENT Su	n. A. H. a	INSTRUMENT:
		- Lang	
COMPOUND	CONCENTRATION	COMPOUND	CONCENTRATION
	(ug/L)		(ug/L)
			
Chloromethane	NO	Benzene	<u>-</u>
Bromomethane	7	Toluene	•
Vinvl Chloride	7	Ethyl benzene	
Chloroethane		Chlorobenzene	
Methylene chloride		1,4-Dichlorobenzene	
Trichlorofluromethane		1.3-Dichlorobenzene	
1.1-Dichlorethene		1.2-Dichlorobenzene	<u> </u>
1.1-Dichlorethane		P-Xylene	
Trans-1.2-Dichloroethene		M-Xylene	
Chloroform		0-Xylene	
1.2-Dichlorethane			
1.1.1-Trichlorethane			
Carbon tetrachloride			
Bromodichlormethane			
1.2-Dichloropropane	-	SURROGATE RECOVER	RIES:
Trans-1.3-Dichloropropen-	<u>e</u>	601	
Trichloroethene		Browochloromethan	
Dibromochloromethane			ropane
1.1.2-Trichlorethane		1,4-Dichlorobutan	ie
cis-1.3-Dichloropropene		602	
2-Chloroethylvinyl ether		a,a,a,-Trifluorot	oluene
Bromoform			
1.1.2.2-Tetrachlorethane		- i	
<u>Tetrachlorethylene</u>		-	
Chlorobenzene		4	
1.3-Dichlorobenzene	N	4	
1.2-Dichlorobenzene		-i -i	
1.4-Dichlorobenzene		-	
		}	
!			
ļ		i	

LAB # NOAGENT DANK	
CLIENT NAME	
SAMPLE ID	
EPA METHOD DATE: 2/14/6	EPA METHOD DATE:
601 ANALYST:Co	602 ANALYST:
601 ANALYST: CO INSTRUMENT &	INSTRUMENT:
THO I ROTHOLDE I	uelly
CL'MPOUND CONCENTRATION	COMPOUND CONCENTRATION
(ug/L)	(ug/L)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	(58, -)
Chloromethane No	Benzene
Bromomethane	Toluene
Vinyl Chloride	Ethyl benzene
Chloroethane	Chlorobenzene
Methylene chloride	1.4-Dichlorobenzene
Trichlorofluromethane	1.3-Dichlorobenzene
1.1-Dichlorethene	1.2-Dichlorobenzene
1.1-Dichlorethane	P-Xvlene
Trans-1.2-Dichloroethene	M-Xylene
Chloroform	0-Xylene
1.2-Dichlorethane	
1.1.1-Trichlorethane	
Carbon tetrachloride	
Bromodichlormethane	
1.2-Dichloropropane	SURROGATE RECOVERIES:
Trans-1.3-Dichloropropene	601
Trichloroethene	Bromochloromethane
Dibromochloromethane	2-Bromo-1-Chloropropane
1.1.2-Trichlorethane	1,4-Dichlorobutane
cis-1.3-Dichloropropere	602
2-Chloroethylvinyl ether	a,a,a,-Trifluorotoluene
Bromoform	
1.1.2.2-Tetrachlorethane	
Tetrachlorethylene	
Chlorobenzene	
1.3-Dichlorobenzene	_
1.2-Dichlorobenzene	
1.4-Lichlorobenzene	_

LAB #5	YSTON BLANT		
CLIENT NAME			
SAMPLE ID			
******		*******	*******
EPA METHOD 601	DATE: ANALYST: INSTRUMENT:	EPA METHOD 602	DATE 1/1/12 ANALYST: TX INSTRUMENT DOLL
COMPOUND	CONCENTRATION (ug/L)	COMPOUND	CONCENTRATION (ug/L)
Chloromethane		Benzene	N2
Bromomethane		Toluene	
Vinyl Chloride		Ethyl benzene	
Chloroethane		Chlorobenzene	
Methylene chloride		1.4-Dichlorobenzene	
Trichlorofluromethane		1.3-Dichlorobenzene	
1.1-Dichlorethene		1.2-Dichlorobenzene	
1.1-Dichlorethane		P-Xylene	
Trans-1.2-Dichloroeth	ene	M-Xylene	
Chloroform		0-Xylene	<u> </u>
1.2-Dichlorethane			
1.1.1-Trichlorethane			
Carbon tetrachloride	····		
Bromodichlormethane			
1.2-Dichloropropane		SURROGATE RECOVER	IES:
Trans-1.3-Dichloropro	репе	601	
Trichloroethene		Bromochloromethan	
Dibromochloromethane		2-Bromo-1-Chlorop	
1.1.2-Trichlorethane		l,4-Dichlorobutan	e
cis-1.3-Dichloroprope		602	
2-Chloroethylvinyl et	her	a,a,a,-Trifluorot	oluene
Bromoform			
1.1.2.2-Tetrachloretha		 	
Tetrachlorethylene		•	
Chlorobenzene		: 1	
1.3-Dichlorobenzene		! •	
1.2-Dichlorobenzene		<u> </u> 	
1.4-Dichlorobenzene			

LAB # / AFFORT	BUNK		
CLIENT NAME			
SAMPLE ID			
######################################		*********	
EPA METHOD	DATE:	EPA METHOD	DATE: 2/14/81
601	ANALYST:	602	analyst: 🗘
	INSTRUMENT:		INSTRUMENT 30.0
COMPOUND	CONCENTRATION (ug/L)	COMPOUND	CONCENTRATION (ug/L)
Chloromethane		Benzene	No
Bromomethane		Toluene	
Vinyl Chloride		Ethyl benzene	
Chloroethane		Chlorobenzene	
Methylene chloride		1.4-Dichlorobenzene	
Trichlorofluromethane		1.3-Dichlorobenzene	
1.1-Dichlorethene		1,2-Dichlorobenzene	
1.1-Dichlorethane		P-Xylene	
Trans-1.2-Dichloroethen	e	M-Xylene	
Chloroform		0-Xylene	P
1.2-Dichlorethane		1	
1.1.1-Trichlorethane		1	
Carbon tetrachloride			
Bromodichlormethane		4	
1.2-Dichloropropane		SURROGATE RECOVER	IES:
Trans-1.3-Dichloroprope	ne	<u> </u> 601	
Trichloroethene		Bromochloromethan	
Dibromochloromethane		2-Bromo-1-Chlorop	•
1.1.2-Trichlorethane		l,4-Dichlorobutan	e
cis-1.3-Dichloropropene		602	
2-Chloroethylvinyl ethe	r	a,a,a,-Trifluorot	oluene
Bromoform		4	
1.1.2.2-Tetrachlorethan		4	
<u>Tetrachlorethylene</u>		┪	
Chlorobenzene	<del></del>	-{	
1.3-Dichlorobenzene		-	
1.2-Dichlorobenzene			
1.4-Dichlorobenzene		-	
1			

LAB # 57°	STEM BUNK		
CLIENT NAME			
SAMPLE ID			
*******	**********	=======================================	
EPA METROD 601	DATE: ANALYST: INSTRUMENT:	EPA METHOD 602	DATE: 2/13/26 ANALYST: JS 6 INSTRUMENT: QQ
COMPOUND	CONCENTRATION (ug/L)	COMPOUND	CONCENTRATION (ug/L)
Chloromethane	,	Benzene	$\sim$
Bromomethane		Toluene	
Vinyl Chloride		Ethyl benzene	
Chloroethane		Chlorobenzene	
Methylene chloride		1.4-Dichlorobenzene	
Trichlorofluromethane		1.3-Dichlorobenzene	
1.1-Dichlorethene		1,2-Dichlorobenzene	
1.1-Dichlorethane		P-Xylene	
Trans-1,2-Dichloroether	1e	M-Xylene	V .
Chloroform		0-Xylene	
1.2-Dichlorethane			
1.1.1-Trichlorethane			1
Carbon tetrachloride			ì
Bromodichlormethane			
1.2-Dichloropropane		SURROGATE RECOVER	IES:
Trans-1.3-Dichloroprope	ene	601	1
Trichloroethene		Bromochloromethan	e
Dibromochloromethane		2-Brome-1-Chlorop	ropane
1.1.2-Trichlorethane		1,4-Dichlorobutan	e
cis-1.3-Dichloropropens	<u> </u>	602	
2-Chloroethylvinyl ethe	er	a,a,a,-Trifluorote	oluene
Bromoform			ì
1.1.2.2-Tetrachlorethar	1e		1
Tetrachlorethylene			
Chlorobenzene			
1.3-Dichlorobenzene		4	
1.2-D.chlorobenzene		-	
1.4-Dichlorobenzene		_	

LAB # NEME	M BUNK		
CLIENT NAME			
SAMPLE ID			
*****	*******	**********	
EPA METHOD	DATE:	EPA METHOD	DATE: 2 3/2%
601	ANALYST:	602	ANALYST:
	INSTRUMENT:		INSTRUMENT O
COMPOUND	CONCENTRATION	COMPOUND	CONCENTRATION
	(ug/L)	JOHN JOHN	(ug/L)
Chloromethane	_	Benzene	NP
Bromomethane		Toluene	
Vinvl Chloride		Ethyl benzene	
Chloroethane		Chlorobenzene	
Methylene chloride		1.4-Dichlorobenzene	
Trichlorofluromethane		1.3-Dichlorobenzene	
1.1-Dichlorethene		1.2-Dichlorobenzene	
1.1-Dichlorethane		P-Xvlene	
Trans-1.2-Dichloroethene		M-Xylene	
Chloroform		0-Xylene	<u> </u>
1.2-Dichlorethane			
1.1.1-Trichlorethane			
Carbon tetrachloride			
Bromodichlormethane		1	
1.2-Dichloropropane		SURROGATE RECOVERI	ES:
Trans-1.3-Dichloropropen	<u>e                                      </u>	601	
Trichloroethene		Bromochloromethane	
Dibromochloromethane		2-Bromo-1-Chloropre	opane
1.1.2-Trichlorethane		1,4-Dichlorobutane	
cis-1.3-Dichloropropene		602	
2-Chloroethylvinyl ether	·	a,a,a,-Trifluoroto	luene
Bromoform		4	
1.1.2.2-Tetrachlorethane		4	
<u>Tetrachlorethylene</u>		4	
Chlorobenzene		4	
1.3-Dichlorobenzene		4	
1.2-Dichlorobenzene		-[ -	
1.4-Dichlorobenzene		-	
1		<u> </u>	

TO THE STATE OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY O

# DAILY QUALITY CONTROL RAS GC LAB

DATE:	2/17/26	SPIKED VALUE (ug/L)	ANAI	YZED VA	LUE	F	Z RECOVERY	,
	INSTRUMENT		D			D		
	ANALYST		e			CI		
TEST METHOD	COMPOUND							
EPA 601	Chloromethane	16.2						
	Chloroethane	28.1						
	Methylene Chloride	26.3						
	1,1-Dichloroethylene	45.0						
	Trans-1,2-Dichloroethylene	12.5						
	Carbon Tetrachloride	60.0						
	Dichlorobromomethane	40.0						
	1,1,2-Trichloroethane	33.8						
EPA 602	Benzene	30.7	35.2			115		
	Toluene	4.1	4.9			119		
	Ethylbenzene	11.5	11.9			103		
	P-Xylene	19.1	20.7			109		
	M-Xylene		43.6			114		
	O-Xylene	10.6	8.8			83		
EPA 608		(ug/g)		(ug/g)				
	Aroclor 1242	58.7						
	Aroclor 1260	56.8	<u> </u>					

# DAILY QUALITY CONTROL

5/15/36

THE SECRECK SEPARATION OF SECRECK DESCRIPTION OF SECRECK SEPARATION OF SECRECK SEPARATION OF SECRECK SERVICES.

		G	G
	CENTIFIED VALUE (MJ/L)	ANALUZED WALUE	3 nec
Chloromethane		·	
Bromomethane			-
Vinyl chloride			
Chloroethane			
Methylene chloride	9.2	10.1	110
Trichlorofluoromethane			
l.l-Dichloroethene	10.0	7.9	79
1.1-Dichloroethane			
trans-1,2-Dichloroethene	5.4		
Chloroform	43.0	62.1	144
1.2-Dichloroethane	27.6	23.7	36
l.l,l-Trichloroethane	14.3	13.4	94
Carbon tetrachloride	200	16.4	82
Bromodichloromethane	7.9	8.5	107
1,2-Dichloropropane	8.0	7.8	98
Trichloroethene	22.2	22.6	102
Dibromochloromethane	16.7	13.8	83
1,1,2-Trichloroethane cis-1,3-Dichloropropene			
2-Chloroethylvinvl ether			
Bromoform	9.9	9.8	39
1.1.2.2-Tetrachloroethane	10.0		
Tetrachloroethylene	6.9		
Chlorobenzene	8.2	8.8	107
1,3-Dichlorobenzene	,		
1,2-Dichlorobenzene			
1,4-Dichlorobenzene			

# DAILY QUALITY CONTROL

EM DE WP 483 cmc 2 + 614 ac wp 781 cmc 3					
gridge		B /G	B/G		
	CENTIFIED VALUE (MJ/L)	ANALYZED	B/G Bræ		
Chloromethane					
Bromomethane					
Vinyl chloride					
Chloroethane					
Methylene chloride	9.2	8.7 19.5	94 /103		
Trichlorofluoromethane					
1,1-Dichloroethene	10.0	8.6 19.3	86 /93		
1,1-Dichloroethane			,		
trans-1,2-Dichloroethene	5.4	1			
Chloroform	43.0	54.2 18.2	126/112		
1,2-Dichloroethane	27.6	23.0/37.5	13 /136		
1,1,1-Trichloroethane	14.3	15.0/23	105/121		
Carbon tetrachloride	200	19.5 60.7	97 104		
Bromodichloromethane	7.9	8.3/9.2	106/116		
1,2-Dichloropropane	8.0	7.8 17.9	98 199		
Trichloroethene	22.2	20.2/24.8	91 1112		
DibromochlorometHane	16.7	15.5/16.0	93 96		
1,1,2-Trichloroethane cis-1,3-Dichloropropene	<del> </del>				
2-Chloroethylvinyl ether					
Bromoform	5.9	9.8/10,3	99/104		
1.1.2.2-Tetrachloroethane	10.0	1.01-			
Tetrachloroethylene	6.2				
Chlorobenzene	8.7	8.2 7.8	100/95		
1,3-Dichlorobenzene					
1,2-Dichlorobenzene					
1,4-Dichlorobenzene					

# DAILY QUALITY CONTROL RAS GC LAB

DATE: 2 3 2 6		SPIKED VALUE (ug/L)	ANALYZED VALUE (ug/L)			% RECOVERY		
	INSTRUMENT		D			D		
	ANALYST		Ce			9		
TEST METHOD	COMPOUND	=	<del> </del>					
EPA 601	Chlaman	16.2						;
	Chloromethane	16.2			_			
	Chloroethane	28.1	<b></b>					
	Methylene Chloride	26.3	<u> </u>	<u> </u>				
-[	l,l-Dichloroethylene	45.0	 	<del> </del>		ļ		
	Trans-1,2-Dichloroethylene	12.5						
}	Carbon Tetrachloride	60.0	ļ 			<b></b>		
	Dichlorobromomethane	40.0						
	1,1,2-Trichloroethane	33.8						
EPA 602	Benzene	30.7	34.4			112		-
	Toluene	4.1	4.9			119		
	Ethylbenzene	11.5	11.8			102		
	P-Xylene	19.1	20.5			108		
	M-Xylene	42.6	44-3			104		
	O-Xylene	10.6	10.6			100		
EPA 608		(ug/g)		(ug/g)	·			1
	Aroclor 1242	58.7				ļ		
	Aroclor 1260	56.8						

# DAILY QUALITY CONTROL RAS GC LAB

		<del></del>	SPIKED	<u> </u>	<del></del>	· · · · · · · · · · · · · · · · · · ·			
DATE:	E: Slybu		VALUE	ANALYZED VALUE			7.		
j		TNOTTO	(ug/L)		(ug/L)	<del></del>	† <u>.                                     </u>	RECOVER	Y
1		INSTRUMENT	<u> </u>	D	1		D	}	
		ANALYST		CP			CO		
TEST METHOD	COMPOUN	ID					/		
EPA 601								}	
	Chloromethane		16.2				<u> </u>	<u> </u>	
	Chloroethane	<del></del>	28.1		ļ	-			
	Methylene Chlorid	le	26.3		ļ				
	1,1-Dichloroethyl	.ene	45.0				ļ		
	Trans-1,2-Dichlor	oethylene	12.5						
	Carbon Tetrachlor	ide	60.0	ļ 			ļ		
	Dichlorobromometh	ane	40.0						
	1,1,2-Trichloroet	hane	33.8						
EPA 602	Benzene		30.7	35,6			116		
	Toluene		4.1	4,6			111		
	Ethylbenzene		11.5	11.4			99		
	P-Xylene		19.1	20.6			108		
	M-Xylenc		42.6	22.2			130		
	O-Xylene		10.6	8.8			83		
EPA 608			(ug/g)		(ug/g)				
	Aroclor 1242		58.7						
	Aroclor 1260		56.8						

SPIKE RECOVERY 2/11/64

					$\alpha_{\mathcal{G}}$			
EPA METHOD 601 Volatile Organics		75-0 74 0158	7A-					
COMPOUNDS	ssr	SR	SA	ZR	SSR	SR	SA	ZR
Chloromethane								
Bromomethane			}					
Vinyl chloride			<del> </del>		1			
Chloroethane								
Methylene chloride	9,0		9.2	98				
Trichlorofluoromethane	77.0		1					
l,1-Dichloroethene	7.3		10.0	73	1			
1,1-Dichloroethane	<u> </u>							
trans-1,2-Dichloroethene	5.2		5.4	97				
Chloroform	65.6		43.0	153		-		
1,2-Dichloroethane	24.3		276	88		i		
1,1,1-Trichloroethane	15.3	3.31		107		i		
Carbon Tetrachloride	21.0		20.0	105				
Bromodichloroemethane	9.0		7.9	113				
1,2-Dichloropropane	8.5		8.0	106				
Trichloroethene	24.0		22.2	108		1		
Dibromochloromethane	1513		16.7	92				
1,1,2-Trichloroethane								
cis-1,2-Dichloropropene						i		
2-Chlorethylvinyl ether								
Bromoform	10.7		9.9	108				
1,1,2,2-Tetrachloreothan	e		10.0	<del></del>				
Tetrachlorethylene			6.2					
Chlorobenzene	10.3		8.2	126				
1,3-Dichlorobenzene								
1,2-Dichlorobenzene								
1,4-Dichlorobenzene								
أحب أشبع والمشاهدة المستحدث والمستحدين والمستحدين والمستحدين والمستحدين والمستحدين والمستحدين والمستحدين والمستحدين والمستحدين والمستحدين والمستحدين والمستحدين والمستحدين والمستحدين والمستحد والمستحدد والمستحدد والمستحدد والمستحدد والمستحدد والمستحدد والمستحدد والمستحدد والمستحدد والمستحدد والمستحدد والمستحدد والمستحدد والمستحدد والمستحدد والمستحدد والمستحدد والمستحدد والمستحدد والمستحدد والمستحدد والمستحدد والمستحدد والمستحدد والمستحدد والمستحدد والمستحدد والمستحدد والمستحدد والمستحدد والمستحدد والمستحدد والمستحدد والمستحدد والمستحدد والمستحدد والمستحدد والمستحدد والمستحدد والمستحدد والمستحدد والمستحدد والمستحدد والمستحدد والمستحدد والمستحدد والمستحدد والمستحدد والمستحدد والمستحدد والمستحدد والمستحدد والمستحدد والمستحدد والمستحدد والمستحدد والمستحدد والمستحدد والمستحدد والمستحدد والمستحدد والمستحدد والمستحدد والمستحدد والمستحدد والمستحدد والمستحدد والمستحدد والمستحدد والمستحدد والمستحدد والمستحدد والمستحدد والمستحدد والمستحدد والمستحدد والمستحدد والمستحدد والمستحدد والمستحدد والمستحدد والمستحدد والمستحدد والمستحدد والمستحدد والمستحدد والمستحدد والمستحدد والمستحدد والمستحدد والمستحدد والمستحدد والمستحدد والمستحدد والمستحدد والمستحدد والمستحدد والمستحدد والمستحدد والمستحدد والمستحدد والمستحدد والمستحدد والمستحدد والمستحدد والمستحدد والمستحدد والمستحدد والمستحدد والمستحدد والمستحدد والمستحدد والمستحدد والمستحدد والمستحدد والمستحدد والمستحدد والمستحدد والمستحدد والمستحدد والمستحدد والمستحدد والمستحدد والمستحدد والمستحدد والمستحدد والمستحدد والمستحدد والمستحدد والمستحدد والمستحدد والمستحدد والمستحدد والمستحدد والمستحدد والمستحدد والمستحدد والمستحدد والمستحدد والمستحدد والمستحد والمستحدد والمستحدد والمستحدد والمستحدد والمستحدد والمستحدد والمستحدد والمستحدد والمستحدد والمستحدد والمستحدد والمستحدد والمستحدد والمستحدد والمستحدد والمستحدد والمستحدد والمستحدد والمستحدد والمستحدد والمستحدد والمستحدد والمستحدد والمستحدد والمستحدد والمستحدد والمستحدد والمستحدد والمستحدد والمستحدد والمستحدد والمستحد والمستحدد والمستحدد والمستحدد والمستحدد والمستحد والمستحدد والمستحد والمستحدد والمستحدد والمستحدد والمستحدد والمستحدد والمستحدد	بوي ما يه يا كري توريد	بالمرجوب والأ						

SSR = Spiked Sample Result

THE TELEVISION OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY

SA = Spike Added

SR = Sample Result



#### SPIKE RECOVERY

				<u>,                                    </u>
EPA Method 602				İ
Volatile Organics	-/13/	e (		
SAMPLE #				
COMPOUND	SSR	SR	SA	ZR
Benzene	41.9		30,7	136
Toluene	5.74		- 4.1	140
Ethyl benzene	[1.1]		11.5	86
1,4-Dichlorobenzene				
1,3-Dichlorobenzene				
1,2-Dichlorobenzene				
0-Xylene	13.5		10.6	118
M-Xylene	44.2		42.6	104
P-Xylene	20.0		19.1	104
Chlorobenzene				

SSR = Spiked Sample Result

SR = Sample Result

SA = Spike Added

LAB #: ECCXC75-CIA
SAMPLE ID: ECC 152
DATE: 3-14-66
INSTRUMENT: 4
(01/0010
601/8010
BROMOCHLOROMETHANE: 9640
2-BROMO-1-CHLOROPROPANE: 95%
602/802
a,a,a-TRIFLUOROTOLUENE:

LAB #: ECCRC75-CRA
SAMPLE ID: EUL 153
DATE: 2-14-EU
INSTRUMENT: G
601/8010
601/8010
BROMOCHLOROMETHANE: 98%, 107%
2-BROMO-1-CHLOROPROPANE: 110% 123%
602/802
a.a.a-TRIFLUOROTOLUENE:

### RADIAN

LAB #: EUCOCA5-CBA
SAMPLE ID: ECC 154
DATE: 2-14-86
INSTRUMENT: B
601/8010
BROMOCHLOROMETHANE: ICCO
2-BROMO-1-CHLOROPROPANE: 1089
602/802
a,a,a-TRIFLUOROTOLUENE:

LAB #: <u>EUC-DC75-C4A</u>
SAMPLE ID: ECC 155
DATE: 2-14-56
INSTRUMENT: G
601/8010
BROMOCHLOROMETHANE: 108%
2-BROMO-1-CHLOROPROPANE: 1370/
602/802
a,a,a-TRIFLUOROTOLUENE:

# RADIAN

LAB #: 8600075-05A
SAMPLE ID: EGG 156
DATE: 2-14-86
INSTRUMENT: 4
601/8010
BROMOCHLOROMETHANE: 100
2-BROMO-1-CHLOROPROPANE: 1916
602/802
TRIFILIOPOTOLUENE

### RADIAN

LAB #: 8602075-CLA
SAMPLE ID: ECCIST
DATE: 2-14-56
INSTRUMENT: G
601/8010
BROMOCHLOROMETHANE: 144C
2-BROMO-1-CHLOROPROPANE: 1180/6
•
602/802
a,a,a-TRIFLUOROTOLUENE:



LAB #: 8(CC)2075-C7-A
SAMPLE ID: SCC 158
DATE: 2-15-86
INSTRUMENT: G
601/8010
BROMOCHLOROMETHANE: 9790
2-BROMO-1-CHLOROPROPANE: 1744
602/802
a.a.a-TRIFLUOROTOLUFNE:

LAB #:8002075-C8A
SAMPLE ID: FIRID Blank
DATE: 2-15-86
INSTRUMENT:
601/8010
BROMOCHLOROMETHANE: 96%
2-BROMO-1-CHLOROPROPANE:
602/802
2 2 2-TRIFILIOPOTOLUENE.



LAB #: ECC 2075-CSA
SAMPLE ID: TIP DICUK
DATE: 2-141-8(C
INSTRUMENT: G
601/8010
BROMOCHLOROMETHANE: (CC)/6
2-BROMO-1-CHLOROPROPANE: 100/6
602/802
a a TRIFITOROTOLUENE.

LAB #: EGC3075-CIC
SAMPLE ID: ÉGC 152
DATE: 2-17-EU
INSTRUMENT:
(0) (00)
601/8010
BROMOCHLOROMETHANE:
2-BROMO-1-CHLOROPROPANE:
602/802
a,a,a-TRIFLUOROTOLUENE: 98%



LAB #: ECCXX75-C2C
SAMPLE ID: ECC 153
DATE: 2-14-EU
INSTRUMENT: D
601/8010
BROMOCHLOROMETHANE:
2-BROMO-1-CHLOROPROPANE:
602/802
a a a-TRIFILIOROTOLUENE. ICHO/o

LAB #: 86002075-030
SAMPLE ID: EUC 154
DATE: 2-13-66
INSTRUMENT:
601/8010
BROMOCHLOROMETHANE:
2-BROMO-1-CHLOROPROPANE:
602/802
a,a,a-TRIFLUOROTOLUENE: 1576

# RADIAN

and brokes freezes and the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the pro

LAB #: 8003075-040
SAMPLE ID: EUC 155
DATE: 2-14-86
INSTRUMENT:
601/8010
BROMOCHLOROMETHANE:
2-BROMO-1-CHLOROPROPANE:
602/802
a.a.a-TRIFLUOROTOLUENE: 1000

# RADIAN

LAB #: ECORO75-C5C
SAMPLE ID: SCC 156
DATE: 2-17-56
INSTRUMENT:
(0) (0)
601/8010
BROMOCHLOROMETHANE:
2-BROMO-1-CHLOROPROPANE:
602/802
a,a,a-TRIFLUOROTOLUENE: 145% 106%



C . 2
LAB #: <u>EUGRU75-CGC</u>
SAMPLE ID: ECC157
DATE: 2-13-56
INSTRUMENT:
601/8010
BROMOCHLOROMETHANE:
2-BROMO-1-CHLOROPROPANE:
602/802
a,a,a-TRIFLUOROTOLUENE: 154%

# RADIAN

÷orma bordorma scoloria sessossa processa processa processa processa se soloria multiplessa S

LAB #: 8403075-070
SAMPLE ID: EU158
DATE: 2-17-80
INSTRUMENT:
(01/0010
601/8010
BROMOCHLOROMETHANE:
2-BROMO-1-CHLOROPROPANE:
602/802
a,a,a-TRIFLUOROTOLUENE: 167%



LAB #: EGCDC75-CGB
SAMPLE ID: field blank
DATE: 2-14-86
INSTRUMENT:
601/8010
BROMOCHLOROMETHANE:
2-BROMO-1-CHLOROPROPANE:
602/802
a,a,a-TRIFLUOROTOLUENE: 103%



LAB #: EUCOC75-CGA
SAMPLE ID: Trip blank
DATE: -14-86
INSTRUMENT: D
601/8010
BROMOCHLOROMETHANE:
2-BROMO-1-CHLOROPROPANE:
602/802
a.a.a-TRIFLUOROTOLUENE:

RADIAN

Work order: 8600075-00A

Sample ID: 860153

### DUPLICATE ANALYSIS

		\	l			
EPA Method 601						
Volatile Organics		<u> </u>				
<u></u>						!
COMPOUND walk	RUN#1	RUN#2	RPD	RUN#1	RUN#2	RPD
Chloromethane						
Bromomethane					ļ	
Vinyl chloride	968	1114	14		ı	
Chloroethane						
Methylene chloride						
Trichlorofluoromethane						
1,1-Dichloroethene						
trans-1,2-Dichloro have	35					
trans-1,2-Dichlore have	26206	29709	13			
Chloroform						
1,2-Dichloroethane						
1,1,1-Trichloroethane						
Carbon Tetrachloride						
Bromodichloroemethane						
1,2-Dichloropropane						
Trichloroethene	2274	3351	39			
Dibromochloromethane	W-1					
1,1,2-Trichloroethane						
cis-1,2-Dichloropropene						
2-Chloroethylvinyl ether						
Bromoform						
1,1,2,2-Tetrachloreothane						
Tetrachlorethylene	150	237	45			
Chlorobenzene		<del></del>				
1,3-Dichlorobenzene						
1,2-Dichlorobenzene						
1,4-Dichlorobenzene		<del> </del>				
		7 <u>, ,                                  </u>	***************************************			

 $RPD = \frac{|R_1 - R_2|}{(R_1 + R_2)/2} \times 100$ 

RPD= Relative Percent Difference



THE PERSON NAMED OF PARTY OF THE PERSON NAMED IN THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PART

### DUPLICATE ANALYSIS

Sample ID: 860156						
EPA METHOD 602						
VOLATILE ORGANICS						
sample # <u>8602075-</u> 05C units <u>us</u> /L						
COMPOUND	RUN#1	RUN#2	RPD			
Benzene						
Toluene	1.43	1.07	29			
Ethyl benzene						
1,4-Dichlorobenzene						
1,3-Dichlorobenzene						
1,2-Dichlorobenzene						
O-Xylene						
M-Xylene						
P-Xylene						
Chlorobenzene						

$$RPD = \frac{|R_{1}-R_{2}|}{(R_{1}+R_{2})/2} \times 100$$

RPD= Relative Percent Difference

10395 OLD PLACERVILLE ROAD SACRAMENTO, CALIFORNIA 95827

T. WORTH Zip
Zip 1
Other
3
<del></del> -
·····
86 9:53
e/Time
e/Time
e/Time
3

Original (Page 1)

Laboratory (Page 2) 5

Samples (Page 3) 413

# RADIAN GORPORATION Austin

TO SECOND THE CONTRACT OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE

Hydrocurbons - 860156, 860158, 860157 Olland Greuse - 860156, 860158, 860157

Metals - 860152 860154 860155 -

	- 760132, 360137, 6-6,37,	Field Sample No.
Company Sampled / Address	rel Dynamuca Fort Win	Hi Plant
Sample Point Description 610ur	if Water	
Stream Characteristics:		
Temperature	Flow	pH
Visual Observations/Comments	· · · · · · · · · · · · · · · · · · ·	
Collector's Name Arthur Mountle Amount of Sample Collected 6 MA	Date/Time Sample	717-86
Amount of Sample Collected (6) MA	SON JAPS (4) 500 ml of	notic
Sample Description	July Sterry	
Sample Description Store at: □ Ambient □ 5°C □ -	10°C X Other 4°C	
Caution · No more sample available	☐ Return unused portion of sample	e ☐ Discard unused portions
Other Instructions · Special Handling ·	Hazards	
Hazardous sample (see below)	□ Non-haza	rdous sample
Ď <b>X</b> Toxic	☐ Skin irritant	☐ Flammable (FP< 40°C)
Pyrophoric	☐ Lachrymator	□ Shock sensitive
☐ Acidic	□ Biological	∠Carcinogenic - suspect
☐ Caustic	☐ Peroxide	☐ Radioactive
□ Other		
Sample Allocation/Chain,ef Possession	n;	
Organization Name Kackan	Cop	
Received By Curthur Mond	Date Received	Time
Transported By Custius Mond	Lab Sample No	30-02-079
Comments		
Inclusive Dates of Possession	2-12-86	
Organization Name		
Received By Thick Tolking	Date Received	3-13 / Time // //
Transported By	Lab Sample No.	20 No 64
Comments		
Inclusive Dates of Possession		
Organization Name		
Received By	Date Received	Time
Transported By		
Comments	•	
Inclusive Dates of Possession		

31 <u>~</u> 55555	AA, oil and	HH.	oil and	660	200	40.1	A 1 OC.	C 517	Grease, HC 44/9C 6A7A  Grease, HC 44/9C 60-01-040  10115	0-76		, ,		//-/
	PLANT 4	86-01-240	]	asmelle	-10	60			66-02-04/			Twin for		
ELEMENT	ANALYSIS DATE	QC DATA	`			DUPLICATE	ANALYSIS	•	16-08-067	SPIKE		RECOVERY		BLANKS
		FOUND VALUE	TRUE VALUE	% R	SAMP,"	SAMP	DUPL	RPD	SAMP#	SR	SSR	SA	&R	
As	2/8/86	140'	040'	103	andup 01 A	4,005	5005	NC	an sp 01 A	500,	,024	420.	001	500.>
	200,=1bi	1401	040	103										(b) b/
		,040	040'	00)										
На	2/3/86	4500.	0200	801	419 dup	50003	,000. <del>*</del>	2/16	98 pm	2007;	8200	0200	071/	19000's
) 	8000 = 1p1	.0040	,0040	001										
														!
90	3-11/86	.043	,045	53	andup no	×003	<.003	1/0	ansp 09 A	£002	610.	420'	79	19 bis 61
5	E00, - 161	970'	.045	201										19 100
41														
5	2/9/86	,044	,050	88	andup 05 A	<003	5.003	NE	ansp 05 A	003	8/0'	420'	75	> 003 (903)
	500.=161	1044		38					an sp 05 7:10	<.003	.022	420.	92	col 01 <,003
									diluti	97				
149	48/8/8	0054	0500	801	dig dip 031	20005	2000>	מנכ	B to	S0002	pe00.	0000	120	60003 pro 61
	£000 = 1/bi	0000	0,000,	00/										
9	an dup = analytical duplicate	duplicate plicate	0 = 9 = 9 = 9 = 9 = 9 = 9 = 9 = 9 = 9 =	= analytical - digestion	al spike or		* Indicates detection	ates value ction limit	value is les limit	less than	}	5x instrument	nent	
	i.d.1. = instrument detection limit	defection limit	:				NC=	Ne= not calculable	en lable					

UNITS MG/al

	PIANT LL 8	86-02-031	(0) 1110000	1	03.03.06)-011*Grease	9*110-	rease	02,03	02,03-METHS		UNITS AS ONL	46/	n n	
ELEMENT	ATE	20			DUP	DUPLICATE ANALYSIS	ANALYSI			SP1	SPIKE RECOVERY	OVERY		BLANKS
		FOUND VALUE	TRUE VALUE	%R	SAMP!"	SAMP	DUPL	RPO	SAMP#	SR	SSR	SA	84 R	
					di				98. NO					19 dad
As	2-19-86	.039	040.	98	029	<.005	<.005	NC	0,2 6	2005	.023	420	96	2.005
	200' = /pi	. 040'	040'	00/										00/6/ <.005
7	2.30.81	8700	0500	46					dig 5p	4000	6100	0200	95	4000's
\$	2000 - /K.	2700	OFFOR	74/					-				_	
		77700	0700	0//										
90	2-17-16	440	.045	98	an dup	.033	. 030	9.4	01. SP 03.G	033	.053	+20	83	prep 61 <.002
5	E01 = 161	540'	,045	700										
4.1														
6	8-11-86	EHO.	040	501					on. 5P.	.003	.021	100.	75	× 000
	£00 : = /PI	040'	,040	707									-	19/00>
		950'	040	98										
	,													
Oil and Grease	3-14.86	197	200	66	1				1					
	1 =/pi	197	200	49										
НС	2.26-86	430	415	401										
	id1=1	208	245	8//					l					
8	on. sp = presyncel spike	ke	andup = a	nely	= analytical duplicate	hian	*	+ indicates .	value is	less t	less than 5x instrument	instr	rment	

on. sp = consugaced spikle dig sp = predigset or mathux spikle 1dl = instrument detection limit

andup = analytical duplicate
dig dup = digallion duplicate

duplicate detection limit

NC = not calculable

74	PLANT 4 86	86-03-041	samples 01-	06								age and	344	
TN	ANALYSIS DATE		QC DATA		DUP	DUPLICATE	ANALYSIS	s,		SPI	SPIKE RECOVERY	OVERY:		BLANK
	·	FOUND VALUE	TRUE VALUE	%R	SAMP#	SAMP	DUPL	RPD	SAMP#	SR	SSR	SA	8. R.	
	2-19-86	,039	,040	98	an dwp 01E	<,005	<,005	NC	01 E	5005	.022	420	92	pep bl
	500'=17	750.	040	93										col 61 <.005
		,035	040	88										
		,												
	2-20-86	8400	,0050	96	and dup	E000;	* 6000.	NC	ds sp 05 E	> .0002.	. 0022	,0020	0//	Sooo?
	14/= 10002	4400	0400'	7110										
		thoo	0400	011									-	
	2-17-86	7770	540'	98	01 dup	£003	\$00°	NO	en sp 01 E	2003	.02/	420	88	a dad
	1dl= .00 A	540'	,045	00/					3					
		840	540'	601										
<u> </u>														
	98-11-8	042	040	501	1				on sp 03 E	*003	120'	420.	75	19day
	600, =/p1	680'	040'	86										cal 61 4.003
29	2-14-86	197	200	99										
	1=101	197	200	66	·									
1-101	a-14-86				0350	12	1	NC	* ///	di Cafe	* indicates value is less than 5x	01510	55 170	n 5x
and	on sp= anaugus of sple dg sp = dustion opipe or		andup: analytical displicati ong dup: angalion displicati	dupl	ieati	101-105	trument	idle instrument det limit	~	- not	instrument detection limit NC= not calculable	tection 1able	110011	<i>u</i>

Pb

5

49

5,002

4.00 A

HC -101=1

oil and brease

S

217

BLANKS

ELEMENT

45

2000 × 19 100 <.005 prep 61 <.0002

<0002 -00a 5002 €002 .27 SR 1:10 dilutio 280 280 020 05A an sp SAMP# ds 61P dig sp ds 61P 05, an sp 1:10 di! 40 RPD 6 200 \$000 ,002 DUPL .031 *B00. \$ 900 034 003 SAMP SAMP," dig dup dup pip dig dup an dup 03 C 010 010 105 105 到 105 001 101 501 66 96 66 **%R** TRUE VALUE 0000 .027 040 0000 040 043 040 043 200 200

<.003

20

010

005

19/00

19 dand

400.

100

020

. 29

(00 m)

19 days

4.00Z

96

,024

.023

19 day

001 0200

0020

6400

10002

#4

045

2-17-86

Pb

640.

100 - 101

043

040

G00: = 101

65

461

 $l = l\rho$ 

brease.

oil and

60/09

85

.020

.023

4.00Z

100

429

19 days

% R

SA

SSR

**BLANKS** 

SPIKE RECOVERY

DUPLICATE ANALYSIS

20-10 01-05

86.03-060

QC DATA

ANALYSIS DATE

EL.MENT

FOUND VALUE

680

3.15-86

AS

043

E 00 =

las

UNITS

an sp = analytical apièle dig sp = digeoloon or natrus apièle idi = instrument detection limit

an dup = onelytical duplicate dig dup = digistion duplicate

* indicates value is less than

5x instrument defection limit

NC=not calculable

UNITS

Λιν <b>α</b>	PLANT	7	190-80-48								UNITS MAJOR	The same	a	
ELEMENT	ANALYSIS DATE		ATA		DUP	DUPLICATE ANALYSIS	ANALYSI	S		SPI	SPIKE RECOVERY	OVERY		BLANKS
		FOUND VALUE	TRUE VALUE	%R	SAMP/	SAMP	DUPL	RPD	SAMP#	SR	SSR	SA	2R	
7	2-15-86	980	750	107	1				ansp 03E	£002	160.	420.	88	-200's
	600. = /bi	240	040.	201					1:10 dilution					cal bl
.>.>														
Ho	2.34-86	8#00	0500	96					04 sp	,000Z	.0020	.020	001	prep 61 <.0002
	3.30.86	87.00	,0050	96										pep 64 < 0002
٠٠٠٠	£000' = 1P!	4400	0400'	0//					-					
مرحمو حد		p+00'	0400'	011										
٠														
5	2-17-86	.0 45	£#0'	105	an dup o 4 e	.037	. 038	2.7	an sp 03E	020'	.035	420	63	1900
	G00'=1P1	640'	.043	<i>ħ//</i>										10 /00 ×
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	2-17-86	640	040'	50/	ON dup	.000	+ 600.	0	an sp 04 E	eno;	.021	420.	88	10 dand
	600. = /bi	040.	040'						1:10 dilution					cal bl <.003
12.00 A	}													
Grease	2-14-86	261	300	66										
	1 = 1/2!	(4)	300	86										
er to high														
	03 00	a harte Sind a	alte		dià	2 416	et ever	diest was du alle al		* inducation		value is less	Bal	3

id=instument detection limit

dig so a digition or nature spike an sp = anoughed splike

an dup = anolytical dyolicate arb

= dysetion dupliced

* indicates value is tess
than 5% instrument ditiction
limit
NC=not saleulable

Ins	BLANKS		la gard	19100	95 <,003	A.000. A			pepol 5 <.0007			10020	+-		19 001 5/1	<del> </del>		$\top$	10/2/19						NOT CALBUMBLE
Jul Bit	/ERY	SA &R		1, 224	020			-	200 000			 7,	7	024 46	1024	<b>├</b>		0 000	024 6	├─	00/ 470	-			Vet adu
UNITS	E RECOVERY	SSR !	000	_	926		-		1500'			 001		,011	760			-+-	9/0	-	777				V = 0/V
5	SPIKE	SR	-	-1	, 200.				5000			2000	4	50002	2000>			5003 5003	<003	<b></b> -	╬-				imic
16,HC		SAMP#	98.00	T	02.4				dig 5p				00 50		an sp	I'iodilumon	As bup	034	an sp	ds up	04 4 1.10 000 0114 1160				idl = instrument detection limic
25,06,07-046,HC		RPD	90		0				NC			,	7.78					VIC							Iment d
25,06	ANALYSIS	DUPL	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	2/2,	110.				2000'			2	1,40					<000							1= instru
40	DUPLICATE A	SAMP	, ,	////	110		-		×0000.			0)	07.0				_	6003							
0 - 10	DUP	SAMP!"	an.dup	210	919 dup				dy dup 01 A			dup bip	110	,			dapbip	614							pre-digest duplicate
8		%R	,	20/	105	20,			96	501	0//	00	20	00/				103	801				96		-0.95
samples	ATA	TRUE VALUE	-//-	070	040	2//2	1040		,0200	0400	otroo'	6//-	cho,	,043			,	040	040				200		dig dup = pre
660-60-98	QC DATA	FOUND VALUE		1040	640,	Ţ	1040		8400	6400	##00		1043	.043				140	043				161		
PLANT 4 86-	YSIS DAT		7	2-14-610	600'= 161				3-70-86	1915.000 Z			2-41-86	19/ = .00 A				2-31-86	800 = /P!				3-14-86	1 =1p!	an dup = analytical duplicate
<b>47</b> d	ELEMENT		,	45					44			ò	10	į	4	20		Se					oil o Grease		an dup

an sp = analytical spike

dig sp = pre-digest spike

* - wlue is less than 5 x id!

	VERY BLANKS	SA &R	1900- 001 HZO	(\$\docs\)	(4/00)	 1000 36 0200.			10 4 7 1202*	19/00	24	19 gend 63 45002	96				
2)	KE RECOVERY	SSR	420			6100			1. 2/0.			\$/0	<del></del>				
0,00,03(40)	SPIKE	SR	coo;			. 000z			2007	6007	6	5.002	£00%				
4		SAMP#	an 5P 05A			dig sp 051			on sp os A	on sp		an sp	of the on sood		; ; ;		
0,02(040)	S	RPD	0														
(1)	DUPLICATE ANALYSIS	DUPL	,038				i										
05 (metaly)	LICATE	SAMP	038														
04 05 (		SAMP,"	andup OH A		ì	,			1							,	
E		8.R	%	90	93	%	201	011	86	3	3	201	801	96			
7 sema	\ •	TRUE VALUE	040	040	,040	0500'	0700	0400'	0.43	6/	640	0770	0.70	200			
86-02-087	QC DATA	FOUND VALUE	.036	036	160'	8700.	E1700	++00	870		10#3	9.161	240'	161			
PLANT 4 8	ANALYSIS DATE		2.24-86	600,=1b1		2-20-86	E000' = /P!		7.21.86	"	1900:=101	10-11-0	14/= 1002	3-14-86	1=1p:		
	ELEMENT		A5			Ha	,		64		5 4	121		oil and brease			

For work 8601240 orders 8602031

orders 8602031 8602041 8602060 8602067

### Form VII

Q.C. Report No. 2

8602079

# INSTRUMENT DETECTION LIMITS AND

### LABORATORY CONTROL SAMPLE

LAD NAM					CASE NO.	PLANGT	<del></del>	
DATE	3.	-4-86					mg/k	g
					P.	g/ml (C1:	rcle One)	
		Required Detection		Instrument	Detection			
Compound	<u> </u>	Limits (CRDL)-ug/l	П	Limits (	IDL)-ug/1	Lab Cont	trol Sample	<u>e</u>
				ICP/AA	Furnace*	True	Found Z	R
Metals:					•			
1. Alur	ainum	200	Ц		11			
2. Ant:	ілопу	60						i
3. Arse	enic	10	Ц		! !	-	!	
4. Bar:	Lum	200		<.001				
5. Ber	711ium	5			į į			Ĺ
6. Cad	ni um	5		2.002				
7. Cal	cium	5000					i	
8. Chr	omium	10	$\bar{\parallel}$	2.005				
9. <u>Cob</u>	alt	50				1		
10. Cop	oer	25				į		
11. Iron	1	100				i		
12. Lead	1	5						j
13. Magn	nesium	5000					1	
14. Mans	ganese	15			11			
15. Mer	cury	0.2						
16. Nic	cel	40				į		
17. Pot:	assium	5000				1		1
18. Sel	enium	5				İ		j
19. S11	/er	10	İ	<.002				İ
20. Sod:	Lum	5000				ļ		1
21. Tha.		10				1		1
22. Tin		40				• [	1	
23. Van:	adium	50	П		 !	ĺ	1	
24. Zine		20			!!		ı	
Other:			Н		'	!		
				5 42	IS I	<del></del>		
Cyanise		10	1	0 2		· · · · · · · · · · · · · · · · · · ·		

* dection limits are given on furnace / Hg/OHG FA/OC SUMMARY 340

AD-R190 445 INSTALLATION RESTORATION PROGRAM PHASE 2 6/6 CONFIRMATION/QUANTIFICATION STAG (U) RADIAN CORP AUSTIN TX DEC 87 F33615-83-D-4981 F/G 24/7 ML



MICROCOPY RESOLUTION TEST CHART

•

# ICP 9A/9C DATA

For work 8601240 orders 8602031 8602060 8602067 8602079 8602087

Form II

Q. C. Report No. 3

### INITIAL AND CONTINUING CALIBRATION VERIFICATION3

B NAME	Radian			CASE	NO	PLAN:	T4	
NIE	3-4-86			SOW : UNIT:	10. 5 ug/	nl.		
	Inicia	l Calib	.1		inuing		ation ²	
	True Value			True Value	Found	H	Found	ZR   Method 4
Aluminum				1				
Antimony								1
Arsenic								<u> </u>
Barium	100	1.01	1011	1.00	1.01	101	1.01	1/0/11
Beryllium	i							1 11
Cadmium	1.00	1.04	104	1.00	1.05	1/05	1.04	1/041
Calcium								1 11
Chromium	1.00	1.01	101	1.00	1.02	1/02	1.02	1/0211
Cobalt			· ·					1 11
Copper						]		l i1
Iron								1 11
Lead			<u> </u>	1				1 11
Magnesium								l iI
Manganese			[ ]	·				1 11
Mercury								1 11
Nickel								1 11
Potassium								1 11
Selenium								1 11
Silver	1,00	1,00	100	1.00	1.02	102	1.00	1/0011
Sodium								1 11
Thallium						1		1 11
Tin								
Vanadium								
Zinc								1 11
er:								
						1	_	1 11
nide							·	

¹ Initial Calibration Source 2 Continuing Calibration Source

³ Control Limits: Mercury and Tin. 80-120; All Other Compounds 90-110

⁴ Indicate Analytical Method Used: P - ICP/Flame AA; F - Furnace

### Form II

Q. C. Report No. _ 3

### INITIAL AND CONTINUING CALIBRATION VERIFICATION³

LAB	NAME	Radian			CASE	NO.	PLAN	174		
			<del></del>		SOW !	NO				
DAI	E	3-4-86			UNIT	s	19/m	/		
Com	pound	Initia	1 Calib		Cont	cinuing (	alibr	ecion ²		
Meta	als:	True Value	Found	XR	True Value	Found	<u> </u>	Found	<u> </u>	Method 4
1.	Aluminum	<u> </u>								<u> </u>
2.	Ancimony									
	Arsenic		<del></del>		<u> </u>		0.1	<del></del>		
	Barium	<u> </u>			11.00	1.01	101	1.01	1/0/1	
	Beryllium				<u> </u>					<u> </u>
	Cadmium				1.00	1.04	104	1.03	103	<u> </u>
•	Calcium									
8.	Chromium				1.00	1.00	100	1.01	1011	
9.	Cobalt		<del></del> -							
10.	Copper	<u> </u>			1				1	<u> </u>
11.	Iron									
12.	Lead									<u> </u>
13.	Magnesium									<u> </u>
14.	Manganese				<u> </u>					
15.	Mercury								1	
16.	Nickel	j			<u> </u>	<u></u> _				
17.	Potassium								1	
18.	Selenium									1
19.	Silver				1.00	1.01	101	1.02	102	
20.	Sodium				<u> </u>					
21.	Thallium									
22.	Tin		· ·							
23.	<b>Vanadium</b>									
24.	Zinc									
Other	r:									j.
										1
Cyan	ide									
1 -										

¹ Initial Calibration Source 2 Continuing Calibration Source

³ Control Limits: Mercury and Tin. 80-120; All Other Compounds 90-110

⁴ Indicate Analytical Method Used: P - ICP/Flame AA; F - Furnace

# Form III

Q. C. Report No. 3
BLANKS

DATE 2-4-86

CASE NO. PLANT 4

UNITS UG | MC

Matrix water

Preparation	Initial Calibration	Cont	inuing Ca Blank	alibratio Value	on	Prepara	ation Blank
Compound	Blank Value	1	2	3	4	1	2
Metals:				[			į
l. Aluminum							_
2. Antimony							
3. Arsenic							
4. Barium	1.001	1.001	1.001	1.001	2.001		
5. Beryllium							
6. Cadmium	1.002	1.002	1.002	.002*	.002*		
7. Calcium							
8. Chromium	2.005	1.605	2.005	1.005	4.005		
9. Cobalt							
10. Copper							
11. Iron							
12. Lead							
13. Magnesium							
14. Manganese							
15. Mercury							
16. Nickel							
17. Potassium							
18. Selenium							
19. Silver	.006*	11.018	,010	.0094	.014	j	
20. Sodium							
21. Thallium							
22. Tin						!	
23. Vanadium							
24. Zine						•	
Other:							
Cyanide		11		1		1	

8602079 8602087

### Form III

Q.	c.	Report	No.	2
----	----	--------	-----	---

		BLANKS		CASE NO. (2-18-86)
LAB NAME	Radian			CASE NO. PLANT4
DATE	3-4-86			UNITS
		Matrix	11/0100	70.

	Initial	Conti	nuing Cal	ibratio	on		-
Preparation	Calibration		Blank Va	lue		Preparat	ion Blank
Compound	Blank Value	1	2	3	4	1	2
Metals:		1				1	
1. Aluminum							
2. Antimony							
3. Arsenic							
4. Barium						.005*	
5. Beryllium							
6. Cadmium						1.002	
7. Calcium							
8. Chromium						1.005	
9. Cobalt							
10. Copper							
ll. Iron							
12. Lead							
13. Magnesium							
14. Manganese							
15. Mercury							
16. Nickel							
17. Potassium							
18. Selenium							
19. Silver						12.002	
20. Sodium				<del></del>			
21. Thallium					<u></u>		
22. <u>Tin</u>					<u> </u>		
23. Vanadium					<u> </u>		
24. Zinc					]	•	
Other:	·				1		
Cyanide					!	11	

## Form V

Q. C. Report No. a

### SPIKE SAMPLE RECOVERY

LAB NAME	Rodini	predigest	CASE NO	). <i>Didat</i>	<i>u</i> /
		<del></del>	EPA Sat	ple No.	7
DATE3	-4-86		Lab San	mple ID No. 5	3602079-0
		Matrix water	2 <i>1</i> /	ug/mo	-
	Control Limit	Spiked Sample		redigest  Spiked	
Compound	7.R	Result (SSR)	Result (SR)		TR!
Metals:					1
1. Aluminum	75-125			<u>.</u> .	1
2. Antimony					1
3. Arsenic			1		1
4. Barium	-	1.84	.068	2.00	189
5. Berylliu	<b>a</b>				
6. Cadmium		.036	1.002	.050	172
7. Calcium		İ			
8. Chromium	.	.17	.006*	.20	1821
9. Cobalt	1 "				
10. Copper					<del>                                     </del>
11. Iron	-		ĺ		· · · · · · · · · · · · · · · · · · ·
12. Lead	-			1	· · · · · · · · · · · · · · · · · · ·
13. Magnesiu	m! "				· · · · · · · · · · · · · · · · · · ·
14. Manganes					<del></del> '
15. Mercury	•				<del></del>
16. Nickel	"				1
17. Potassius	m .				1
18. Selenium	<del></del>		Ì	!	1
19. Silver		.20	1.002	,25	180
20. Sodium	· •		i		<u> </u>
21. Thallium		<u> </u>			<del></del>
22. Tin	<u> </u>				<del></del> /
23. Vanadium			<del> </del>		<u> </u>
24. Zinc			1		<u> </u>
Other:	1	<u> </u>		<u>                                     </u>	<u></u> !
	<u>'</u>	<u> </u>	<u>.                                    </u>		; 1 1
Cyanide					<u></u> 1
		!	J	<u> </u>	
-x - ((55x	- SR)/SA x 100				

-Jemenes: * value is less than 5x id/

[&]quot;R"- out of control

AUSTIN

EPAGO 1 860159 860160 860162 860163 EPAGO 2 860159 860160, 860162, 860163 OIL E'GREMSE 860159, 860160 CHAIN OF CUSTODY RECORD

METALS 860162, 860163

HYDROCARBON FUET 860161 860160.860159

FIRD BLANKS-EPA 601 EPA 602

	F	ield Sample No
Company Sampled / Address	eral Dunamus - Fort W)	orth Plant 4
Sample Point Description	round Water	<del></del>
Stream Characteristics:		
Temperature	Flow	На
Visual Observations/Comments		•
Collector's Name N. Collected Amount of Sample Collected Five	MAKRUL Date/Time Sampled	2-13-86
Amount of Sample Collected FIVE	TASON JARS TWO 500 Ml of	STIC EIGHTEEN 40 ml gla
Sample Description Orlound Wat	tar,	<del>,</del>
Sample Description <u>Gramd War</u> Store at: □ Ambient □ 5°C □ -	10°C Other 4°C	
,		
Caution · No more sample available	☐ Return unused portion of sample	☐ Discard unused portions
Other Instructions - Special Handling -		
Hazardous sample (see below)	□ Non-hazardo	ous sample
Toxic	☐ Skin irritant	☐ Flammable (FP< 40°C
△ Pyrophoric	☐ Lachrymator	□ Shock sensitive
□ Acidic	☐ Biological	Carcinogenic - suspec
☐ Caustic	☐ Peroxide	☐ Radioactive
□ Other		
Sample Allocation/Chain of Possession	n: 🖍	
Organization Name <u>Radian</u>	losp	
Received By	Date Received	Time
Received By Arthur The	Lab Sample No.	
Comments		
Inclusive Dates of Possession	2-13-86	
Organization Name RAS -	-	
Received By AM XMM	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	714 10 Time
Transported By	Lab Sample No	
Comments		
Inclusive Dates of Possession		
Organization Name		
Received By		Time
Transported By		
Comments	•	
Inclusive Dates of Possession		

RPD SAMPH SR SSR  ALC 01 A 505 024  ALC 09 A 5002 .009  ALC 09 A 5002 .019  ALC 09 A 5003 .018  ALC 04 A 5000 .0024	TE ANALYS IS  P DUPL  95 - 0003  9 - 0003  9 - 0003  9 - 0003		3 SAMP 3 SAMP 01/2 00/2 00/2 00/2 00/2 00/2 00/2 00/2	103 ON NALUE & R SAMP  100 00 00 00 00 00 00 00 00 00 00 00 00	VALUE & SAMP  VALUE & SAMP  103 01 01  104 0100  105 09  108 09  108 03  109 03  109 03  109 03  109 03	DATA  TRUE VALUE & SAMP  OHO  OHO  OHO  OHO  OHO  OHO  OHO  O
---------------------------------------------------------------------------------------------------------------------	---------------------------------------------------------------	--	-------------------------------------------------------	----------------------------------------------------------------	---------------------------------------------------------------------------------------------------------	---------------------------------------------------------------

UNITS

	PLANT 4 8	86-02-031	ungles (0)	- 03	-,03,03,06)-011 "Grease	00110-	rease	02,03	02,03-METHS		2	UNIIS uglar		
	ANALYSIS DATE	QC DATA	)ATA		DUP	DUPLICATE ANALYSIS	ANALYSI	S		SPI	SPIKE RECOVERY	OVERY		BLANKS
		FOUND VALUE	TRUE VALUE	<b>%</b> R	SAMP!	SAMP	DUPL	RPD	SAMP#	SR	SSR	SA	%R	
					dap vo									19 dad
T	2-19-86	.039	040.	98	029	<,005	<.005	NC	0,3 6	2005	.023	420	96	200.2
	500' = /p/	. 040	040'	100						•				500:>
	0.00.0	07700	0 8 0 0	70	}				dig 5p	20002	6/00	0200	95	2000; 19 dad
1	90000	0 + 11											T	
T	1015.0002	6400'	0400	507										
		4400	0400.	710										
	3.07.6	<i>t</i> #0.	570'	98	an dup 03 G	033	.030	4.6	00. SP.	.033	.053	.024	83	prep 61
	E01,=16,	540	540'	700										
]														
	2-17-84	EHO	070	201	,				on.5P. 02.(7	.003	.02/	420.	75	ere 01
	£00 := /P'	040'	040'	001					,					600:
		680'	040.	98										
1							-							
0:1 and Grease	2-14.86	197	200	66	ł				1					
	1 =/Pi	197	200	44										
Ì	2-26-86	430	415	401										
	id1=1	208	245	9//										
8	on. sp = pashyucel spike	ke	a = dub na	nely	= analytical duplicate	hint.	W + :	indicates value is	ratue is	less t	han s	less than 5x instrument	nment	

1dl = instrument detection limit dig sp = predigate or mathet aparte

dy dy = sugistion duplicate

detection limit

NC = not ealculable

UNITS - MG/ml

	BLANKS		500">	<.005		50005 50002				200's			19dad	cal bl <.003				10 5x	
al		<b>8</b> R	92			7/0				88			75					* indicates value is less than 5x instrument defection limit	i
30	RECOVERY	SA	750			 0200'				420'			 420.					cis la fection	000
18/19/	KE RE(	SSR	.022		ļ	.0022				120	}		120					s valu nt de	המוה ה
	SPiKE	SR	5005	`		2000				×003			 *600					trafe trume	NOT RAIGHIAN
		SAMP#	01 sp			dig sp 05 E				91 SP	1:10 dijetien		on sp 03E						5
	S	RPD	NC			NC				NC								el el NC ideinstrument dot limit	
	INALYSI	DUPL	<.005			*000°				<000>								el bumen	
	DUPLICATE ANALYSIS	SAMP	500%			, E000;				< 003					·			 <    de insb	
	dna	SAMP!	an dwp 01E			3 90 dap bip				01 dup			1					ite of	}
90-10		% R	98	93	88	96	7110	011		98	001	107	105	98		66	66	dup	
samples of		TRUE VALUE	040'	040	040'	0500'	0400'	0400		570'	540'	1045	040'	070'		000	200	andys analytical duplicati	و مرهستم
	2	FOUND VALUE	,039	.037	580,	8400.	+400	,0044		440	540'	048	0.42	,039		197	197		
40-60-98	DATE	<u> </u>				 86				98	ue		86			9		 6 real spike	appe o
PLANT 4	15		2-19-86	500'=171		2-20-86	id[=,0008			2-17-86	600. =1b1		98-11-8	600. =/pi		2-14-86	1=101	29 - 41 - 8 b	dig sp " succession on pe or Mature apene
474	ELEMENT		45			На			5	43	31		200			oil and brease		HC -101=1	dig

UNITS - US /all

TRUE VALUE & SAMP! SAMP   SAMP   STAR RELOVERS   SAMP   STAR RELOVERS   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP   SAMP	PLANT 4 86.03-060
105 01C 003 005 40 059 600 002 002 002 002 00 00 00 00 00 00 00	QC DATA
7 107 dig dip 016, 008, 1083, 40, 009, 023, 020, 020, 023, 020, 020, 020, 020	FOUND VALUE
0 96 03C .00% 603 CT .004 .002 .024 .024 100  0 96 054 .031 9. 031 9. 054 .000 .020 .020 .020 100  3 105 01C .034 .031 9. 032 .022 .023 .024 96  0 105 01C .003 .003 40 03C .003 .023 .024 96  0 100 01C .003 .003 .003 .003 .003 .023 .024 96  0 100 01C .003 .003 .003 .003 .003 .003 .003 .00	920.
90 96 - 054 5000 6020 100 100 100 100 100 100 100 100 100	640,
90 96 - 054 6002 0020 1000 100 100 100 100 100 100 10	
40 105  3 105 01C .034 .031 9.1 020 .27 .29 .010 100 100 105  3 114  4 19 40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8700
3 105 01C .034 .031 9.1 03C .27 .29 .020 100 \\ 3 114 \\ 6 105 01C .003 .003 40 03C .003 .005 .010 50 \\ 0 100 01C .003 .003 40 03C .003 .024 96 \\ 1:10 diuthor \\ 99 \\ 99 \\ 99 \\ 99 \\ 99 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \	27700
3 105 diquip digit 031 9.1 diqsp 37 .29 .020 100 100 104 50 105 016 50 005 .003 .003 .003 40 03.0 .003 .004 96 05 0.00 05 05 0.003 .004 96 05 0.00 05 05 0.003 .004 96 05 0.00 05 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0.00 05 0	-
3 114 6 649 600 600 600 600 600 600 600 600 600 60	,045
0 105 01C .003 40 02C .003.005 .010 50 0 100 01C .003 .003 40 020 .012 .024 96 0 054 .002 .023 .024 96 1:10 dilution	670.
0 (05 01C, 003, 003, 40 03.C, 003, 005, 010 50 0 (00 00, 003, 003, 003, 003, 003, 003,	
99	640,
- bb	040
	(97
	197

an sp = analytacel apubl dig sp = digestion or maltiet apubl idl=instrument detection limit

an dup = anolytical duplicate dig dup = digistion duplicate

indicates value is less than 5x instrument detection limit

NC= not ealewlable

UNITS Walm

	FLANT 4		190-80-98									Relai	77	
ELEMENT	ANALYSIS DATE		QC DATA		DUP	DUPLICATE ANALYSIS	ANALYSI	S		SPI	SPIKE RECOVERY	OVERY		BLANKS
		FOUND VALUE	TRUE VALUE	% R	SAMP/	SAMP	DUPL	RPD	SAMP#	SR	SSR	SA	<b>%</b>	
,	18-86	020	750	101	1				ansp 03 g	2002	100.	420.	88	600's
4.5	20 01-0			7,3					1:10 dilution				_	(a) p
	100 = /pi	1042	040.	105										2005
977	2 24.81	07.00	0,460	96					ds ph	2000.	.0020	.0020	00/	4.0003
12	9-01-0	. 20.10	77.47	1									_	19 dad
	3.30.86	8700	,0050	96									1	€0000>
	6000' = IP'	##00	0400'	0//										
		4400	0400'	0//										
<b>5</b>	0-0-	0.45	270	105	an dup	080	038	2.7	an sp	020	350.	420	63	19 dad
	90-11-00	670	540,	7//										19 /as
33														'   
1	70-11-1	6770	070'	50/	ON dup	,000	*C00.	0	95.00	600,	.021	4Z0.	88	4.00.2
	600. = 12.	070	040						1:10 dilution				<u> </u>	cal 61 <.002
Grease	2-14-86	197	200	99										
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1 = 1P.	197	300	86										
`														
	05 00	= notes out abile	elke		dip	= d16	extern o	= dicistion duale call		* indicates		value is less	when	3

idl=instument detection limit

dig sp a digition or native spike an sp = anoughed applie

and aup = augusticist cupulcate

than 5 x instrument ditition limit NC= not paleulable * indicates value is kess

PLANT 4 86-	-03.074	sampled	6		42	20,00	m'060-10000	10/11					
ANALYSIS DATE	QC DATA	IATA		OUP	DUPLICATE	ANALYSIS	s		SPI	SPIKE REC	RECOVERY		BLANKS
	FOUND VALUE	TRUE VALUE	%R	SAMP!"	SAMP	DUPL	RPD	SAMP#	SR	SSR	SA	% R	
2.21-81	ENO	040	105	90.00 01 A	110	010.	9.5	an.s.o.		.038	420.	113	19 dars
200'= 16	Kto.	opo.	105	dig dup	110	110.	0	AND AND	100.	,026	020'	95	19100
	270.	040	501								-		<.003 <.002
3-30-86	8400	.0050	96	dydyd 014	5000x	£000'>	NC	92 84 04A	£000.	1500'	0200'	105	6000.
2000,=10	6400	. 0040	105										
	4400	0400'	0//		-								
2-21-86	2770	. o43	86	dup 410	840.	140'	2.1	de 5P 03A	-600a	600'	080	3	eoo.>
19/2 003	. 043	,043	00/					otto	<,0002	.011	420'	46	1000%
								ds vo	2000>	150	420.	//3	ca161 <.002
								l'iodilumon					
2-31-86	1770	0770	801	Jub gib	2003	<00%	אכ	dr 410	6003	E00 > E003	010.	0	600 ×
7/= 003	043	040'	801					an sp o44	2002	910	420'	69	19101>
								an sp 04 4 1:10 <003	600>	420	420.	180	
								Unlib	09				
3-14-86	/6/	300	96										
1=1p!									_				

an sp = analytical spike

dig sp = pre-digest spike

* - value is less than 5 x id!

				1										
ELEMENT	ANALYSIS DATE	QC DATA			OUP	LICATE	DUPLICATE ANALYSIS	S		SP	SPIKE RECOVERY	OVERY		BLANKS
		FOUND VALUE	TRUE VALUE	3R	SAMP!	SAMP	DUPL	RPD	SAMP#	SR	SSR	SA	<b>2</b> R	
7	2.24-86	980,	040.	96	andup OH A	038	,038	0	an sp 05A	c00;	420	HZO.	001	1900.
	1	0.360	040	90						-				60000
		037	040'	93	,					•				6000
На	2-20-86	. 0048	,0050	%	\				de 90	2000.	6100	0200'	95	£0000;
	E 000 = /P	EHOO	0400	105										
		thoo.	0400'	011						·				
94	2-21-86	8770	0.43	86	1				an sp 05.A	5003	710.	420.	77	19 day
1	10 = W.	240	.043	201					an sp 1:60:160:1	6003	450.	120'	100	19/00 S
35 35	3.21-86	140	040'	103					94.0	200'>	510.	p20'	63	5003
1	101=100	. 043	0.770	801					ansp 11000 044 dilution	E003 0	.033	pro.	36	5002
oil and brease	3-14-86	161	200	%										
	1=/pi									_				

For work 860124 orders 8602031 8602041

### Form VII

Q.C. Report No. 2

860207

860206

# INSTRUMENT DETECTION LIMITS AND

LABORATORY CONTROL SAMPLE

LAB NAME	Radian	CASE NO.	PLANT 4	
DATE	3-4-86	LCS UNITS	ug/L-	mg/kg
		p	g/ml (Circl	e One)

1	Required Detection	Instrument	Detection	ļ		
Compound	Limits (CRDL)-ug/l	Limits ()	IDL)-ug/1	Lab Co	ntrol Sam	ple
		ICP/AA	Furnace*	True	Found	ZR
Metals:			:			
l. Aluminum	200	<del> </del>		<u> </u>	<u> </u>	
2. Ancimony	60			<u> </u>	<u> </u>	<u> </u>
3. Arsenic	10	<del> </del>	<u> </u>	<u> </u>	<u> </u>	
4. Barium	200	<.001		<u> </u>	<u>                                     </u>	
5. Beryllium	5			<u> </u>	!!	
6. Cadmium	5	2.002			<u> </u>	
7. Calcium	5000			<u> </u>	<u> </u>	
8. Chromium	10	12.005	1	<u> </u>	1	
9. Cobalt	50				<u>i</u>	
10. Copper	25				<u> </u>	
ll. Iron	100				į l	
12. Lead	5				1	
13. Magnesium	5000					
14. Manganese	15				<u>l</u>	
15. Mercury	0.2					
16. Nickel	40				Ì	
17. Potassium	5000					
18. Selenium	5			l		
19. Silver	10	<.002				
20. Sodium	5000					
21. Thallium	10		1		į	
22. <u>Tin</u>	40			<u> </u>		
23. Vanadium	50			1		
24. Zinc	20		i			
Other:		-	400	<u> </u>		
····	<del></del>	5	436	<u></u>	1	
Cyanije	10	11	1	1	l	

* dection limits are given on furnace / Mg/040 PA/OC SUMMARY SHEET.

ICF 9+/PC DATA

For work 8602031 orders 8602041 8602060 8602067 8602079 8602087

### Form II

Q. C. Report No. 3

### INITIAL AND CONTINUING CALIBRATION VERIFICATION3

LAB	NAME	Radian			CASE	NO	PLAN	14		
		/				10.				
	ك ع					s <u>ugl</u>				
		Initia				inuing				
Meta	els:	True Value	Found	XR	True Value	Found	===	Found	22	Method 4
1.	Aluminum			<u> </u>	<u> </u>				<u>                                     </u>	<u> </u>
2.	Ancimony		<del></del>							
3.	Arsenic						<u> </u>		1	
4.	Barium	100	101	11011	1.00	1.01	101	1.01	110/1	1
	Beryllium			<u> </u>			}		1	·
6.	Cadmium	1.00	1.04	1 1041	1.00	1.05	1105	1.04	1104	
7.	Calcium									1
8.	Chromium	1.00	1.01	1011	1.00	1.02	1/02	1.02	11021	
9.	Cobalt			,			1		1	
10.	Capper									1
11.	Iron									
12.	Lead								1	1
13.	Magnesium						1		1	1
14.	Manganese									1
15.	Mercury									
16.	Nickel									İ
17.	Potassium						1			1
18.	Selenium									1
19.	Silver	1100	1,00	1001	1.00	1.02	102	1.00	1001	i
20.	Sadium									i
21.	Thallium									1
	Tin								1	1
23.	Vanadium						1		1	1
24.	Zisc									1
	r:								1	1.
						ĺ	Ī			1
Cyan:	ıde					1	<del>                                     </del>		1	T
1		<del></del>		نــــــــن		<del></del>	<del></del>		<del></del>	

¹ Initial Calibration Source 2 Continuing Calibration Source

³ Control Limits: Mercury and Tin. 80-120; All Other Compounds 90-110

⁴ Indicate Analytical Method Used: P - ICP/Flame AA; F - Furnace

**(2)** 

### Form II

Q. C. Report No. 3

#### INITIAL AND CONTINUING CALIBRATION VERIFICATION3

LAB	NAME	Radian			CASE	NO.	PLAN	154		
	_	3-4-86				io				
				1		·				
Con	<u>pound</u>	Initia				inuing		,	l \	
		True Value	Found	XR	True Value	Found	<u> </u>	Found		Method
	Aluminum	1					1		<u>;                                    </u>	!
	Ancimony				1		1	<u> </u>		1
	Arsenic	<u>                                     </u>				101	1.07	1 01	1	
	Barium	<u> </u>	<del>-</del> -		1.00	1.01	101	1.01		
	Beryllium		<u> </u>	1		1 51/	1 011	1.63	1 1	
	Cadmium	<u> </u>			1.00	1.04	1104	1.00		
•	Calcium	<u> </u>				1 ::		1	1 1011	
	Chromium				1.00	1.00	1700	1.01		
9.	Cobalt	<u> </u>					!		!	
10.	Copper	<u> </u>	<u> </u>	<del></del>			<u>}                                    </u>		1	
11.	Iron		<u> </u>						1	
12.	Lead		<u> </u>						1	
13.	Magnesium	1	_ <del></del>						<u> </u>	
	Manganese	1 1								İ
15.	Mercury		1							<u> </u>
16.	Nickel						!		<u> </u>	<u>i                                      </u>
17.	Potassium									1
18.	Selenium									1
19.	Silver				1.00	1.01	101	1.02	1/02	
20.	Sodium									
21.	Thallium									
22.	Tin								1	
23.	Vanadium									
24.	Zinc									
Othe	r:			}						1
	-									
Cvan	ide									i
<u> </u>					2					

Initial Calibration Source 2 Continuing Calibration Source
Control Limits: Mercury and Tin. 80-120; All Other Compounds 90-110

⁴ Indicate Analytical Method Used: P - ICP/Flame AA; F - Furnace

Form III Q. C. Report No. 3

BLANKS

CASE	NO.	PLANT	4	

LAB NAME <u>Rodian</u> UNITS ugine DATE 7-4-86 Matrix water

	Initial	Cont	Lnuing Ca	alibrati	<u> </u>		
Preparation	Calibration		Blank V	Value	_	Preparat	ion Blan
Compound	Blank Value	1	2	3	4	1	2
Metals:						<u> </u>	i
l. Aluminum							
2. Antimony							
3. Arsenic							
4. Barium	1.001	1.001	1.001	1.001	2.001		1
5. Beryllium							
6. Cadmium	1.002	1.002	1.002	.002*	.002*		
7. Calcium							
8. Caromium	2.005	1.005	2.005	1.005	1.005		
9. Cobalt							
10. Copper							Ì
li. Iron							
12. Lead							
13. Magnesium							
14. Manganese							1
15. Mercury							1
l6. Nickel							
17. Potassium							
18. Selenium						1	1
19. Silver	.006*	11.018	,010	.0094	.014	1	
20. Sodium						1	Í
21. Thallium							
22. <u>Tin</u>					1		1
23. Vanadium		11					
24. Zine						•	
Other:	•					1.	
		11			)		1

### Form III

Q. C. Report No.

		BLANKS	CASE NO. (2-18-86) PLANT 4
LAB NAME	Radian		CASE NO. PLANT 4
DATE	3-4-86	_	UNITS us Ind
		Magnin	

	Initial	Cont	inuing Ca	librati	<u>on</u>	11	
Preparation	Calibration		Blank V	alue		Preparat	ion Blank
Compound	Blank Value	11	2	3	4	1	2
Metals:				_			
1. Aluminum							
2. Antimony							
3. Arsenic							
4. Barium						.005#	
5. Beryllium							
6. Cadmium				•		1/2,002	
7. Calcium							
8. Chromium						114.005	
9. Cobalt							
10. Copper							
ll. Iron							
12. Lead							
13. Magnesium							
14. Manganese							
15. Mercury							
16. Nickel				_			
17. Potassium							
18. Selenium							
19. Silver						112.002	
20. Sodium							
21. Thallium							
22. <u>Tin</u>							
23. Vanadium							
24. Zinc						•	
Other:	·						
					1	11	
Cyanide		1			!	11	

### Form VI

Q. C. Report No. 2

DUPLICATES

LAB NAME RA	edian	PRE-DIGEST	CASE NO. PLA	NT4
DATE			EPA Sample No. Lab Sample ID No. Units	· 865,208
		-ix water	- Marke	
Compound	Control Limit	Sample(S)	Duplicate(D)	I P.P.D.
Metals: 1. Aluminum				
-		<del></del>	<u> </u>	<u></u>
3. Arsenic				<u></u>
4. Barium		1 .//	.//	10
5. Servilium			<u>.                                    </u>	<u></u>
6. Cadmium		1 4.002	1 <.002	1 15
7. Calcium	· · · · · · · · · · · · · · · · · · ·			!
8. Chromium		1.016x	1 .016*	10
9. Cobalt		İ		1
10. Copper		İ		i
II. Iron		İ		
12. Lead		)		1
13. Magnesium /			<u> </u>	1
14. Manganese				<u> </u>
15. Mercury				<u> </u>
16. Nickel		1		<u> </u>
17. Potassium		<u> </u>	<u> </u>	
18. Selenium		<u> </u>	<u> </u>	<del> </del>
19. Silver		.604*	.005*	122
20. Sodium		<del></del>	<del> </del>	<u> </u>
21. Thallium		<del></del>		<del> </del>
22. <u>Tin</u>		<del></del>		<del> </del>
23. Vanadium				1
24. Zinc		<del></del>		<u> </u>
Otner:			1	!
			<u> </u>	<del>1</del>
Cvanide				

^{*}_Out of Control

To be added at a later date.

 $^{2 \}text{ RPD} = [(S - D_1)/((S + D)/2)] \times 100$ 

^{1 -} Non calculable RPD due to value(s) less than CRDL

^{*} value is less than 5 x id!

## Form "I

Q. C. Report No. ____

LAB NAME <u>ladion</u>	DUPLICATES ANUALYTICAL	CASE NO. PLAN EPA Sample No.	174	-
DATE	~10 <i>C</i>	Lab Sample ID ho Units uglowf	86020	87-04A.
	erix water.			a nalytica
Compound   Control Limit	Sample(S)	Duplicate(D)	NPD2	=!
Metals: 1. Aluminum				
2. Antimony		1		
3. Arsenic				
4. Barium	.11	1.11	0	
5. <u>Bervllium</u>				
6. Cadmium	1 <.00 Z	1 <.002	NC	
7. Calcium				_
8. Chromium	1.016*	1 .016*	$\mathcal{O}$	_
9. Cotalt.	i		\	
10. Copper	İ			_
11. <u>Iron</u>	İ			_[
12. Lead				
13. Magnesium	<u> </u>		l	
14. Manganese			<u> </u>	_
15. Mercury	<u> </u>			_
16. Nickel				_}
17. Potassium			<u> </u>	_(
18. Selenium		<u> </u>	<u> </u>	_
19. Silver	1.004*	1.002	NC	_
20. Sodium			<u> </u>	_
21. Thallium				_}
22. <u>Tin</u>				_}
23. Vanadium			<u> </u>	_}
24. Zinc				_)
Otner:				_}
				_
Cyanide	<u> </u>	1	1	_1
* Oue-of-Control				

TO SECRETARIO POR SOCIO DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTROL DE CONTRO

^{1 -} Non calculable RPD due to value(s) less than CRDL

^{*} value is less than 5 x id!

### Form V

# Q. C. Report No. 2 SPIKE SAMPLE RECOVERY

LAB NAME	Rackan	_	CASE NO EPA SA	plant -	4
DATE 3-4	+86		Lab Sa	aple ID No. 8	6-03-08
		Hatrix wat	Units.	ug /m/	
Compound	Control Limit	Spiked Sample Result (SSR)	Sample Result (SR)	Spiked Added (SA)	72!
Mecals:					<del></del>
l. Aluminum	75-125				<u> </u>
2. Ancimony				<u> </u>	1
3. Arsenic	•				!
4. Barium		1.06	0.087	1.00	197
5. Beryllium	<u> </u>			!	!
6. Cadmium	1	0.94	<,002	1.00	194
7. Calcium	-	<u> </u>	<u> </u>	<u> </u>	1
8. Chromium	•	0.96	2.005	1.00	1 96
9. Cobalt	•			1	
10. Copper	<u> </u>			<u> </u>	1
11. Iron	•			<u> </u>	<u> </u>
12. Lead	<u> </u>				<u> </u>
13. Magnesium	-				!
14. Manganese	<u> </u>		L		<u> </u>
15. Mercury	<u> </u>				!
16. Nickel	<u> </u>				<u> </u>
17. Potassium	•				<u> </u>
18. Selenium	•		·		<u> </u>
19. Silver	•	0.98	<.002	1.00	98
20. Sodium	•				<u> </u>
21. Thallium	•				<u>i</u>
22. <u>fin</u>					!
23. Vanadium	•				<u> </u>
24. Ziac	-				<u> </u>
Other:				!	<u> </u>
	1			1	!
Cyanide	•				<u> </u>
1 22 = [(SSR	- SR)/SA] x 100				
TR - out of c	oncrol				

_______

# organics 41/90 86.02-087

# 8602087-01,-02,-04>-06

### Volatile Organics

#### DETECTION LIMITS

HETHOD (OO)			METHOD  DETECTION  LIMIT  LUG/L
СОМРОИИД	-01-02 -04-06	-05	
Chloromethane	0.08	0.8	
Bromomethane	1.18	11.8	
Vinyl Chloride	0.18	1.8	
Chloroethane	0.52	5.2	
Herbylene Chloride	0.25	25	
Trichlorofluoromethane	0.10	1.0	
1,1-Dichloroethene	0.13	1.3	
1,1-Dichloroethane	0.07	0.7	
Trans-1,2-Dichloroethene	0.10	1.0	
Chloroform	0.05	0.5	
1,2-Dichloroethane	1.03	0.3	
l,l,l-Trichloroethane	0.03	0.3	
Carbon Tetrachloride	0.12	1.2	
Bromodichloromethane	0.10	1.0	
1,2-Dichloropropane	0.04	0.4	
Trichloroethene	0.13	1.2	
Dibromochloromethane	0.09	0,9	
2-Chloroethylvinyl Ether	0.13	1.3	
Bremoform	0.20	2.0	
Tetrachloroethene	0.03	0.3	
Chlorobenzene	0.25	2.5	
l,3-Dichlorobenzene	0.32	3,2	
1,2-Dichlorobenzene	0.15	1.5	
1,4-Dichloropenzene	0.24	2.4	

8603087-01,00,00,00

EXCEL TOTAL STREET SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTION SEC

DETECTION LIMITS

VOLATILE ORGANICS
METHOD (LC)

2/6r										
DETECTION LIMIT LIGIL								<del>.</del>		
DETE										
			•							
-01,00	0.5	0.0	ري. م	とつ	6,3	DiO	504			
COMPOUND	BENZENE	TOLUENE	ETHYLBENZENE	CHLOROBENZENE	1,4-DICHLOROBENZENE	1,3-DICHLOROBENZENE	1,2-DICHLOROBENZENE			

LAB # Sys	on DWK		
CLIENT NAME			
SAMPLE ID			
******		******	
EPA METHOD 601	DATE: ANALYST: INSTRUMENT:	EPA METHOD 602	DATE: 2/14/12 ANALYST: JS 6 INSTRUMENT Of
COMPOUND	CONCENTRATION (ug/L)	COMPOUND	CONCENTRATION (ug/L)
Chloromethane		Benzene	ولد
Bromomethane		Toluene	
Vinyl Chloride		Ethyl benzene	
Chloroethane		Chlorobenzene	
Methylene chloride		1,4-Dichlorobenzene	
Trichlorofluromethane		1.3-Dichlorobenzene	
1.1-Dichlorethene		1.2-Dichlorobenzene	
1.1-Dichlorethane		P-Xylene	
Trans-1.2-Dichloroether	1e	M-Xylene	
Chloroform		0-Xylene	<u> </u>
1.2-Dichlorethane			
1.1.1-Trichlorethane			
Carbon tetrachloride			
Bromodichlormethane		1	
1.2-Dichloropropane		SURROGATE RECOVERI	ES:
Trans-1.3-Dichloroprope		601	
Trichloroethene		Browochloromethane	
Dibromochloromethane		2-Bromo-1-Chloropr	
1.1.2-Trichlorethane		l,4-Dichlorobutane	
cis-1.3-Dichloropropene		602	
2-Chloroethylvinyl ethe	er	a,a,a,-Trifluoroto	luene
Bromoform		4	
1.1.2.2-Tetrachlorethan		4	
Tetrachlorethylene		4	
Chlorobenzene		4	
1.3-Dichlorobenzene		4	
1.2-Dichlorobenzene		-	
1.4-Dichlorobenzene		-	
		-	

LAB # //	ersont Bunk		
CLIENT NAME			
SAMPLE ID			
******		****	**********
EPA METHOD	DATE:	EPA METHOD	DATE: 2/14/86
601	ANALYST:	602	ANALYST: C
	INSTRUMENT:		INSTRUMENT: O.O.
COMPOUND	CONCENTRATION	COMPOUND	CONCENTRATION
	(ug/L)		(ug/L)
Chloromethane	· · · · · · · · · · · · · · · · · · ·	Benzene	<u></u>
Bromomethane		Toluene	
Vinyl Chloride		Ethyl benzene	
Chloroethane		Chlorobenzene	
Methylene chloride		1.4-Dichlorobenzene	
Trichlorofluromethane		1.3-Dichlorobenzene	
1.1-Dichlorethene		1.2-Dichlorobenzene	
1.1-Dichlorethane		P-Xylene	
Trans-1.2-Dichloroethe		M-Xylene	——————————————————————————————————————
Chloroform		0-Xylene	
1.2-Dichlorethane			
1.1.1-Trichlorethane		1	
Carbon tetrachloride		Į	
Bromodichlormethane			
1.2-Dichloropropane		SURROGATE RECOVERI	ES:
Trans-1.3-Dichloroprop		601	
Trichloroethene		Bromochloromethane	
Dibromochloromethane		2-Bromo-1-Chloropr	
1.1.2-Trichlorethane		1,4-Dichlorobutane	
cis-1.3-Dichloroproper		602	,
2-Chloroethylvinyl eth	ler	a,a,a,-Trifluoroto	luene
Bromoform		1	
1.1.2.2-Tetrachloretha		†	
Tetrachlorethylene Chlorethylene		†	
Chlorobenzene		∜	
1.3-Dichlorobenzene		†	
1.2-Dichlorobenzene		1	
1.4-Dichlorobenzene		•	
1		1	
			•
1			

LAB # SYGGO / CLIENT NAME SAMPLE ID				
	******			
EPA METHOD	DATE: 2	115/16	EPA METHOD	DATE:
601	ANALYST	: Ø.	602	ANALYST:
	INSTRUM	ENT: Lu	منا	INSTRUMENT:
COMPOUND	CONCENT		COMPOUND	CONCENTRATION (ug/L)
Chloromethane	^	JP	Benzene	
Bromomethane			Toluene	
Vinvl Chloride			Ethyl benzene	
Chloroethane			Chlorobenzene	
Methylene chloride			1,4-Dichlorobenzene	
Trichlorofluromethane			1.3-Dichlorobenzene	
1.1-Dichlorethene			1,2-Dichlorobenzene	
1.1-Dichlorethane			P-Xylene	
Trans-1.2-Dichloroethen	e		M-Xylene	
Chloroform			O-Xylene	
1.2-Dichlorethane				
1.1.1-Trichlorethane				
Carbon tetrachloride			]	
Bromodichlormethane			<u> </u>	
1.2-Dichloropropane		<del> </del>	SURROGATE RECOVER	IES:
Trans-1.3-Dichloroprope	ne	<u> </u>	601	
Trichloroethene			Bromochloromethan	e
Dibromochloromethane			2-Bromo-1-Chlorop	ropane
1.1.2-Trichlorethane			1,4-Dichlorobutan	e
cis-1.3-Dichloropropene			602	
2-Chloroethylvinyl ethe			a,a,a,-Trifluorot	oluene
Bromoform				
1.1.2.2-Tetrachlorethan	е		1	
Tetrachlorethylene			_	
Chlorobenzene				
1.3-Dichlorobenzene				
.2-Dichlorobenzene				
	N/	/ - : <del></del>		

kanag padadada, badadaaa, aaaaaaa, saaaaaa, saaaaaaa, badadaaa, badadaa, passasaa, padadada padadada.

LAB # MARKENT BOANIL	1		
CLIENT NAME			
SAMPLE ID			
######################################			
EPA METHOD DATE: 2/15/ 601 ANALYST: 6 INSTRUMEN	4	EPA METHOD 602	DATE: ANALYST: INSTRUMENT:
COMPOUND CONCENTRA (ug/L)		COMPOUND	CONCENTRATION (ug/L)
Chloromethane ^	קנ	Benzene	
Bromomethane		Toluene	
Vinyl Chloride		Ethyl benzene	
Chloroethane	1	Chlorobenzene	
Methylene chloride	4	1.4-Dichlorobenzene	
Trichlorofluromethane	4	1.3-Dichlorobenzene	
1.1-Dichlorethene	<del></del>	1.2-Dichlorobenzene	
1.1-Dichlorethane	┼	P-Xylene	<del></del>
Trans-1.2-Dichloroethene	<del>  `</del>	M-Xylene	
Chloroform	<del> </del>	O-Xylene	
1.2-Dichlorethane	<del> </del>	₹	
1.1.1-Trichlorethane	<u></u>	-	
Carbon tetrachloride		4	
Bromodichlormethane			
1.2-Dichloropropane		SURROGATE RECOVERI	ES:
Trans-1.3-Dichloropropene		601	
Trichloroethene		Bromochloromethane	
Dibromochloromethane		2-Bromo-1-Chloropr	
1.1.2-Trichlorethane		1,4-Dichlorobutane	
cis-1.3-Dichloropropene		602	
2-Chloroethylvinyl ether		a,a,a,-Trifluoroto	luene
Bromoform	····	4	
1.1.2.2-Tetrachlorethane		4	
Tetrachlorethylene		4	
Chlorobenzene		4	
1.3-Dichlorobenzene		4	
1.2-Dichlorobenz.ne		_	
1.4-Dichlorobenzene		-	

LAB # SYSTEM BLANK		<del></del>	
CLIENT NAME			
SAMPLE ID			
		*****	
601 ANA	te: 2/14/26 ALYST: IS C STRUMENT: Ba	EPA METHOD 602	DATE: ANALYST: INSTRUMENT:
COMPOUND COM	CENTRATION (ug/L)	COMPOUND	CONCENTRATION (ug/L)
Chloromethane	No	Benzene	
Bromomethane		Toluene	
Vinyl Chloride		Ethyl benzene	
Chloroethane		Chlorobenzene	
Methylene chloride		1.4-Dichlorobenzene	
Trichlorofluromethane		1.3-Dichlorobenzene	. <u></u>
1.1-Dichlorethene		1.2-Dichlorobenzene	
1.1-Dichlorethane		P-Xylene	
Trans-1.2-Dichloroethene		M-Xylene	
Chloroform		0-Xylene	
1.2-Dichlorethane		1	
1.1.1-Trichlorethane		1	
Carbon tetrachloride			
Bromodichlormethane			
1.2-Dichloropropane		SURROGATE RECOVERI	ES:
Trans-1.3-Dichloropropene		601	
Trichloroethene		Browochlorowethane	
Dibromochloromethane		2-Brome-1-Chloropr	
1.1.2-Trichlorethane		l,4-Dichlorobutane	·
cis-1.3-Dichloropropene		602	
2-Chloroethylvinyl ether		a,a,a,-Trifluoroto	luene
Bromoform		1	
1.1.2.2-Tetrachlorethane			
Tetrachlorethylene		1	
Chlorobenzene		_	
1.3-Dichlorobenzene	<u> </u>	1	
1.2-Dichlorobenzene			
1.4-Dichlorobenzene		_	
	_		

LAB # 1 SHEEN	7 Benk			
CLIENT NAME				
SAMPLE ID				
*****				**********
EPA METHOD 601	DATE: >   (4/2) ANALYST: C INSTRUMENTS	unde	EPA METHOD 602	DATE: ANALYST: INSTRUMENT:
COMPOUND	CONCENTRATIO	ИС	COMPOUND	CONCENTRATION (ug/L)
Chloromethane	No	Ве	nzene	
Bromomethane			luene	
Vinyl Chloride		Et	hyl benzene	
Chloroethane		Cì	lorobenzene	
Methylene chloride		1_	<u>4-Dichlorobenzen</u>	<u>e</u>
Trichlorofluromethane			3-Dichlorobenzen	
1.1-Dichlorethene		$\overline{}$	2-Dichlorobenzen	e
1.1-Dichlorethane		P.	Xylene	
Trans-1.2-Dichloroethene			Xylene	
Chloroform		0-	Xylene	
1.2-Dichlorethane	!			
1.1.1-Trichlorethane		<b></b>		
Carbon tetrachloride	<del></del>			
Bromodichlormethane				
1.2-Dichloropropane			SURROGATE RECOVE	RIES:
Trans-1.3-Dichloropropene		60	<del>-</del>	
Trichloroethene			Bromochlorometha	
Dibromochloromethane		_		propane
1.1.2-Trichlorethane			1,4-Dichlorobuta	ne
cis-1.3-Dichloropropene		<b></b> -	_	_
2-Chloroethylvinyl ether	<del></del>	<del></del> -	a,a,a,-Trifluoro	toluene
Bromoform				
1.1.2.2-Tetrachlorethane	<del></del>			
Tetrachlorethylene	<del></del> -			
Chlorobenzene				
1.3-Dichlorobenzene	<del></del>			
1.2-Dichlorobenzene	<del></del>			
1.4-Dichlorobenzene		<del> </del>		

# DAILY QUALITY CONTROL RAS GC LAB

DATE:	2/14/86		SPIKED VALUE (ug/L)	ANA	LYZED V (ug/L)	ALUE	,	Z RECOVER	γ
		INSTRUMENT		D			0		
		ANALYST		Q			Co		
TEST METHOD	сомрои	ND OT					/		
EPA 601						]   			
	Chloromethane	<del></del>	16.2		<del> </del>				
	Chloroethane	<del></del>	28.1		ļ			ļ	
	Methylene Chloric	de	26.3						
	1.1-Dichloroethy	lene	45.0		<u></u>				
	Trans-1,2-Dichlo	roethylene	12.5			<u> </u>			
	Carbon Tetrachlo	ride	60.0						
	Dichlorobromomet	hane	40.0						
	1,1,2-Trichloroe	thane	33.8						
EPA 602	Benzene		30.7	35,6			116		
	Toluene		4.1	4,6			111		
	Ethylbenzene		11.5	11.4			99		
	P-Xylene		19.1	20.6			108		
! 	M-Xylene		42.6	55,5			130		
	O-Xylene		10.6	8.8			83		
EPA 608			(ug/g)		(ug/g)				
	Aroclor 1242		58.7						
	Aroclor 1260		56.8						

# DAILY QUALITY CONTROL

6/15/36 CMC 2 + 6/4 GC WP 781 CM 3

THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PROCESS OF THE PR

23:

Centified Value			G	,G
Chloromethane   Bromomethane   Winv1 chloride   Chlorotethane   Chlorotethane   Chlorotethane   Chlorotethane   Chlorotethane   Chlorotethane   Chlorotethane   Chlorotethane   Chlorotethane   Chlorotethane   Chlorotethane   Chlorotethane   Chlorotethane   Chlorotethane   Chlorotethane   Chlorotethane   Chlorotethane   Chlorotethane   Chlorotethane   Chlorotethane   Chlorotethane   Chlorotethane   Chlorotethane   Chlorotethane   Chlorotethane   Chlorotethane   Chlorotethane   Chlorotethane   Chlorotethane   Chlorotethane   Chlorotethane   Chlorotethane   Chlorotethane   Chlorotethane   Chlorotethane   Chlorotethane   Chlorotethane   Chlorotethane   Chlorotethane   Chlorotethane   Chlorotethane   Chlorotethane   Chlorotethane   Chlorotethane   Chlorotethane   Chlorotethane   Chlorotethane   Chlorotethane   Chlorotethane   Chlorotethane   Chlorotethane   Chlorotethane   Chlorotethane   Chlorotethane   Chlorotethane   Chlorotethane   Chlorotethane   Chlorotethane   Chlorotethane   Chlorotethane   Chlorotethane   Chlorotethane   Chlorotethane   Chlorotethane   Chlorotethane   Chlorotethane   Chlorotethane   Chlorotethane   Chlorotethane   Chlorotethane   Chlorotethane   Chlorotethane   Chlorotethane   Chlorotethane   Chlorotethane   Chlorotethane   Chlorotethane   Chlorotethane   Chlorotethane   Chlorotethane   Chlorotethane   Chlorotethane   Chlorotethane   Chlorotethane   Chlorotethane   Chlorotethane   Chlorotethane   Chlorotethane   Chlorotethane   Chlorotethane   Chlorotethane   Chlorotethane   Chlorotethane   Chlorotethane   Chlorotethane   Chlorotethane   Chlorotethane   Chlorotethane   Chlorotethane   Chlorotethane   Chlorotethane   Chlorotethane   Chlorotethane   Chlorotethane   Chlorotethane   Chlorotethane   Chlorotethane   Chlorotethane   Chlorotethane   Chlorotethane   Chlorotethane   Chlorotethane   Chlorotethane   Chlorotethane   Chlorotethane   Chlorotethane   Chlorotethane   Chlorotethane   Chlorotethane   Chlorotethane   Chlorotethane   Chlorotethane   Chlorotethane   Chlorotethane   Chlorotethan	·	CENTIFIED VALUE (MG/L)	-	3 nac
Vinvl chloride         Chloroethane         Ito. I         Ito.         Ito.         Ito.         Ito.         Ito.         Ito.         Ito.         Ito.         Ito.         Ito.         Ito.         Ito.         Ito.         Ito.         Ito.         Ito.         Ito.         Ito.         Ito.         Ito.         Ito.         Ito.         Ito.         Ito.         Ito.         Ito.         Ito.         Ito.         Ito.         Ito.         Ito.         Ito.         Ito.         Ito.         Ito.         Ito.         Ito.         Ito.         Ito.         Ito.         Ito.         Ito.         Ito.         Ito.         Ito.         Ito.         Ito.         Ito.         Ito.         Ito.         Ito.         Ito.         Ito.         Ito.         Ito.         Ito.         Ito.         Ito.         Ito.         Ito.         Ito.         Ito.         Ito.         Ito.         Ito.         Ito.         Ito.         Ito.         Ito.         Ito.         Ito.         Ito.         Ito.         Ito.         Ito.         Ito.         Ito.         Ito.         Ito.         Ito.         Ito.         Ito.         Ito.         Ito.         Ito.         Ito.         Ito.         Ito.         I	Chloromethane			
Chloroethane         Methylene chloride         9.2         13.1         No           Trichlorofluoromethane         1.1-Dichloroethane         10.0         7.9         79           1.1-Dichloroethane         1.1-Dichloroethane         1.1-Dichloroethane         1.1-Dichloroethane         1.1-Dichloroethane         1.2-Dichloroethane         1.2-Dichloroethane         1.2-Dichloroethane         1.2-Dichloroethane         1.2-Dichloroethane         1.2-Dichloroethane         1.2-Dichloroethane         1.2-Dichloroethane         1.2-Dichloroethane         1.2-Dichloroethane         1.2-Dichloroethane         1.2-Dichloroethane         1.2-Dichloroethane         1.2-Dichloroethane         1.2-Dichloroethane         1.2-Dichloroethane         1.2-Dichloroethane         1.2-Dichloroethane         1.2-Dichloroethane         1.2-Dichloroethane         1.2-Dichloroethane         1.2-Dichloroethane         1.2-Dichloroethane         1.2-Dichloroethane         1.2-Dichloroethane         1.2-Dichloroethane         1.2-Dichloroethane         1.2-Dichloroethane         1.2-Dichloroethane         1.2-Dichloroethane         1.2-Dichloroethane         1.2-Dichloroethane         1.2-Dichloroethane         1.2-Dichloroethane         1.2-Dichloroethane         1.2-Dichloroethane         1.2-Dichloroethane         1.2-Dichloroethane         1.2-Dichloroethane         1.2-Dichloroethane         1.2-Dichloroethane         1.2-Dichloroethane         1.2-Dichloroethane	Bromomethane			
Methylene chloride         9.2         10.1         110           Trichlorofluoromethane         1.1-Dichloroethane         10.0         7.9         79           1.1-Dichloroethane         10.0         7.9         79           1.1-Dichloroethane         5.4         147         12           Chloroform         43.0         62.1         147         147           1,2-Dichloroethane         14.3         13.7         94         13.7         147           1,1-Trichloroethane         14.3         13.7         94         16.2         16.7         17.8         18.7         16.7         17.8         18.7         16.7         17.8         18.7         16.7         17.8         18.7         16.7         17.8         16.7         17.8         16.7         17.8         16.7         17.8         16.7         17.8         16.7         17.8         16.7         17.8         17.7         17.8         17.7         17.2         17.3         17.3         17.3         17.3         17.3         17.3         17.3         17.3         17.3         17.3         17.3         17.3         17.3         17.3         17.3         17.3         17.3         17.3         17.3         17.3	Vinyl chloride			
Trichloroethane	Chloroethane			
1.1-Dichloroethene	Methylene chloride	9.2	10.1	110
1.1-Dichloroethane	Trichlorofluoromethane			
trans-1.2-Dichloroethene         5.4         ==           Chloroform         43.0         69.1         144           1.2-Dichloroethane         27.6         23.7         86           1,1,1-Trichloroethane         14.3         13.4         94           Carbon tetrachloride         20.0         16.4         82           Bromodichloromethane         7.9         8.5         107           1.2-Dichloropropane         8.0         7.8         78           Trichloroethene         22.2         22.6         10.2           Dibromochloromethane         16.7         13.8         83           1.1,2-Trichloroethane         16.7         13.8         83           1.1,2-Trichloropenene         2.5         9.8         99           1.1,2-Tetrachloroethane         10.0         10.0           Tetrachloroethylene         6.2         8.3         10.7           1.3-Dichlorobenzene         8.2         8.3         10.7           1.3-Dichlorobenzene         1.2-Dichlorobenzene         1.2-Dichlorobenzene	1.1-Dichloroethene	10.0	7.9	79
Chloroform	1.1-Dichloroethane			
1,2-Dichloroethane	trans-1,2-Dichloroethene	5,4		==
1,1,1-Trichloroethane	Chloroform	43.0	62.1	144
Carbon tetrachloride         20.0         16.4         82           Bromodichloromethane         7.9         8.5         10.7           1.2-Dichloropropane         8.0         7.8         58           Trichloroethene         22.2         20.6         10.2           Dibromochloromethane         16.7         13.8         83           1.1,2-Trichloroethane         10.7         13.8         83           1.1,2-Trichloroethane         2.5         9.8         83           2-Chloroethylvinyl ether         3.9         3.9           1.1,2,2-Tetrachloroethane         10.0         10.0           1.1,2,2-Tetrachloroethane         10.0         10.0           Chlorobenzene         8.2         8.3         10.7           1.3-Dichlorobenzene         1.3-Dichlorobenzene         1.2-Dichlorobenzene	1,2-Dichloroethane	27.6	23.7	36
Bromodichloromethane	l,l,l-Trichloroethane	14.3	13.4	94
1.2-Dichloropropane       8.0       7.8       98         Trichloroethene       22.2       20.6       10.2         Dibromochloromethane       16.7       13.8       83         1.1,2-Trichloroethane       15.9       83         2-Chloroethylvinyl ether       9.8       99         1.1,2,2-Tetrachloroethane       10.0       99         1.1,2,2-Tetrachloroethane       10.0       10.0         Tetrachloroethylene       10.0       10.0         Chlorobenzene       8.2       8.3       10.7         1.3-Dichlorobenzene       1.3-Dichlorobenzene       1.3-Dichlorobenzene       1.3-Dichlorobenzene	Carbon tetrachloride	200	16.4	182
Trichloroethene         22.2         22.6         10.2           Dibromochloromethane         16.7         13.8         83           1.1,2-Trichloroethane         2.5         83           2-Chloroethvloropropene         2.5         9.8         99           1.1,2-Tetrachloroethane         10.0         10.0         10.0           1.1,2-Tetrachloroethane         10.0         10.0         10.0           Chlorobenzene         8.2         8.3         10.7           1.3-Dichlorobenzene         1.2-Dichlorobenzene         1.2-Dichlorobenzene	Bromodichloromethane	7.9	8.5	107
Dibromochloromethane 11.7 13.8 83  1.1,2-Trichloroethane cis-1,3-Dichloropropene  2-Chloroethylvinyl ether  Bromoform - 5.5 9.8 99  1.1.2,2-Tetrachloroethane Tetrachloroethylene Chlorobenzene 1,3-Dichlorobenzene 1,2-Dichlorobenzene	1,2-Dichloropropane	8.0	7.8	98
1.1.2-Trichloroethane cis-1,3-Dichloropropene  2-Chloroethylvinyl ether  Bromoform - 5.5 - 9.8 99  1.1.2.2-Tetrachloroethane Tetrachloroethylene	Trichloroethene	22.2	22.6	102
cis-1,3-Dichloropropene  2-Chloroethylvinyl ether  Bromoform		16.7	13.8	83
2-Chloroethylvinyl ether  Bromoform				
Bromoform         -         9.8         99           1.1.2.2-Tetrachloroethane         10.0         10.0           Tetrachloroethvlene         6.2         10.7           Chlorobenzene         8.2         8.3           1.3-Dichlorobenzene         1.2-Dichlorobenzene				
1.1.2.2-Tetrachloroethane       10.0         Tetrachloroethvlene       6.2         Chlorobenzene       8.2       3.3         1.3-Dichlorobenzene       1,2-Dichlorobenzene		5.5	9.8	39
Tetrachloroethvlene Chlorobenzene  1,3-Dichlorobenzene  1,2-Dichlorobenzene		10.0		
1.3-Dichlorobenzene	Tetrachloroethylene	6.2		
l,2-Dichlorobenzene	Chlorobenzene	8.7	8.3	1107
	1,3-Dichlorobenzene			
I / Dieblamahanaana	1,2-Dichlorobenzene			
1,4-Dichiorobenzene	1,4-Dichlorobenzene			

# DAILY QUALITY CONTAIL

EPA DE WP 483 cmc 2 + 6PA DE WP 781 cmc 3

Tidge		B/6	B/G
	CENTIFIED VALUE (MS/L)	ANALYZED	8 rec
Chloromethane			
Bromomethane			
Vinvl chloride			
Chloroethane	·		
Methylene chloride	9.2	8.7 19.5	94 /103
Trichlorofluoromethane			
l.1-Dichloroethene	10.0	8.6 19.3	86 /93
l.l-Dichloroethane		,	
trans-1,2-Dichloroethene	5.4	,	
Chloroform	43.0	54.2 18.2	106/112
1,2-Dichloroethane	27.6	23.0/37.5	13 /136
l, l, l-Trichloroethane	14.3	15.0 123	105/121
Carbon tetrachloride	200	19.5/20.7	97 /104
Bromodichloromethane	7.9	8.3/9.2	106/116
1,2-Dichloropropane	8.0	7.8 17.9	98 149
Trichloroethene	22.2-	20.2/24.8	91/112
Dibromochloromethane	16.7	15.5/16.0	93/96
1,1,2-Trichloroethane			
cis-1,3-Dichloropropene			
2-Chloroethylvinyl ether	CC	92107	99 /104
Bromoform '-	9.9	9.8/10,3	99/104
1.1.2.2-Tetrachloroethane Tetrachloroethvlene	6.2		
	8.7	8.2 7.8	100/95
Chlorobenzene		OLA LAO	140//
1,3-Dichlorobenzene			
1,2-Dichlorobenzene			
1,4-Dichlorobenzene			

#### SPIKE RECOVERY

EPA METHOD 601 Volatile Organics	86 030 Pur FIE				प्राजीत हार G			
COMPOUNDS	SSR	SR	SA	ZR	SSR	SR	SA	ZE
Chloromethane			<u> </u>					
Bromomethane					1			
Vinyl chloride			1					
Chloroethane					1			
Methylene chloride	9.0		9.8	98		<u> </u>		
Trichlorofluoromethane								
1,1-Dichloroethene	7.7		10,0	77				
1,1-Dichloroethane		<u> </u>	1					
trans-1,2-Dichloroethene	5.5		5.4	102				
Chloroform	65.5		43.0	152				
1,2-Dichloroethane	25.5		27.6	92				
l,l,l-Trichloroethane	15.6		14.3	109				
Carbon Tetrachloride	22.1		20.0	110				
Bromodichloroemethane	9.5		7.9	120				
1,2-Dichloropropane	9.3		8.0	117				
Trichloroethene	26.3		22.2	119				
Dibromochloromethane	17,4		14.7	loy				
1,1,2-Trichloroethane								
cis-1,2-Dichloropropene								
2-Chlorethylvinyl ether								
Bromoform	11.0	<del>,</del>	9,9	111				
1,1,2,2-Tetrachloreothan	e		120					
Tetrachlorethylene		· · · · ·	6,2			1		
Chlorobenzene	(1.1		71	135				
1,3-Dichlorobenzene								
1,2-Dichlorobenzene								
1,4-Dichlorobenzene								

SSR = Spiked Sample Result

SR = Sample Result

5 455

SA - Spike Added

#### DUPLICATE ANALYSIS

	8601	59		
EPA METHOD 602				
VOLATILE ORGANICS				
sample # <u>8602687-</u> 01E units <u>ug 10</u>				
COMPOUND	RUN#1	RUN#2	RPD	
Benzene				
Toluene	179	1.76	1.7	
Ethyl benzene				
1,4-Dichlorobenzene				
1,3-Dichlorobenzene				
1,2-Dichlorobenzene				
O-Xylene				
M-Xylene				
P-Xylene				
Chlorobenzene				

$$RPD = \frac{|R| - |R|}{(R|1 + R|2|)/2} \times 100$$

RPD= Relative Percent Difference

# 8602087-05B 860163

#### **DUPLICATE ANALYSIS**

		1				
EPA Method 601						
Volatile Organics						
COMPOUND ug/l	RUN#1	RUN#2	RPD	RUN#1	RUN#2	RPD
Chloromethane						
Bromomethane						
Vinyl chloride						
Chloroethane						
Methylene chloride						
Trichlorofluoromethane					-	
l,1-Dichloroethene						
1,1-Dichloroethane						
trans-1,2-Dichloroethene						
Chloroform						
1,2-Dichloroethane	<del></del>					
1,1,1-Trichloroethane						
Carbon Tetrachloride						
Bromodichloroemethane						
1,2-Dichloropropane						
Trichloroethene	177	176	0,56			
Dibromochloromethane	<u> </u>	1.10	C/(2)-4			
1,1,2-Trichloroethane		<del></del>				
cis-1,2-Dichloropropene						
2-Chlcroethylvinyl ether						
Bromoform						
1,1,2,2-Tetrachloreothane						
Tetrachlorethylene		·				
Chlorobenzene						
1,3-Dichlorobenzene						
1,2-Dichlorobenzene			<del> </del>			
1,4-Dichlorobenzene						

 $RPD = \frac{|R_1 - R_2|}{(R_1 + R_2)/2} \times 100$ 

RPD= Relative Percent Difference

5 457



LAB #: 8002087-010.
SAMPLE ID: 800159
DATE: 2-14-80
INSTRUMENT: B
601/8010
BROMOCHLOROMETHANE: 960
2-BROMO-1-CHLOROPROPANE: 10796
602/802 <b>0</b>
a,a,a-TRIFLUOROTOLUENE:



BOSSON A PROCESSOR - EXCESSOR - EXCESSOR - EXCESSOR - EXCESSOR - EXCESSOR - EXCESSOR - EXCESSOR - EXCESSOR - EXCESSOR - EXCESSOR - EXCESSOR - EXCESSOR - EXCESSOR - EXCESSOR - EXCESSOR - EXCESSOR - EXCESSOR - EXCESSOR - EXCESSOR - EXCESSOR - EXCESSOR - EXCESSOR - EXCESSOR - EXCESSOR - EXCESSOR - EXCESSOR - EXCESSOR - EXCESSOR - EXCESSOR - EXCESSOR - EXCESSOR - EXCESSOR - EXCESSOR - EXCESSOR - EXCESSOR - EXCESSOR - EXCESSOR - EXCESSOR - EXCESSOR - EXCESSOR - EXCESSOR - EXCESSOR - EXCESSOR - EXCESSOR - EXCESSOR - EXCESSOR - EXCESSOR - EXCESSOR - EXCESSOR - EXCESSOR - EXCESSOR - EXCESSOR - EXCESSOR - EXCESSOR - EXCESSOR - EXCESSOR - EXCESSOR - EXCESSOR - EXCESSOR - EXCESSOR - EXCESSOR - EXCESSOR - EXCESSOR - EXCESSOR - EXCESSOR - EXCESSOR - EXCESSOR - EXCESSOR - EXCESSOR - EXCESSOR - EXCESSOR - EXCESSOR - EXCESSOR - EXCESSOR - EXCESSOR - EXCESSOR - EXCESSOR - EXCESSOR - EXCESSOR - EXCESSOR - EXCESSOR - EXCESSOR - EXCESSOR - EXCESSOR - EXCESSOR - EXCESSOR - EXCESSOR - EXCESSOR - EXCESSOR - EXCESSOR - EXCESSOR - EXCESSOR - EXCESSOR - EXCESSOR - EXCESSOR - EXCESSOR - EXCESSOR - EXCESSOR - EXCESSOR - EXCESSOR - EXCESSOR - EXCESSOR - EXCESSOR - EXCESSOR - EXCESSOR - EXCESSOR - EXCESSOR - EXCESSOR - EXCESSOR - EXCESSOR - EXCESSOR - EXCESSOR - EXCESSOR - EXCESSOR - EXCESSOR - EXCESSOR - EXCESSOR - EXCESSOR - EXCESSOR - EXCESSOR - EXCESSOR - EXCESSOR - EXCESSOR - EXCESSOR - EXCESSOR - EXCESSOR - EXCESSOR - EXCESSOR - EXCESSOR - EXCESSOR - EXCESSOR - EXCESSOR - EXCESSOR - EXCESSOR - EXCESSOR - EXCESSOR - EXCESSOR - EXCESSOR - EXCESSOR - EXCESSOR - EXCESSOR - EXCESSOR - EXCESSOR - EXCESSOR - EXCESSOR - EXCESSOR - EXCESSOR - EXCESSOR - EXCESSOR - EXCESSOR - EXCESSOR - EXCESSOR - EXCESSOR - EXCESSOR - EXCESSOR - EXCESSOR - EXCESSOR - EXCESSOR - EXCESSOR - EXCESSOR - EXCESSOR - EXCESSOR - EXCESSOR - EXCESSOR - EXCESSOR - EXCESSOR - EXCESSOR - EXCESSOR - EXCESSOR - EXCESSOR - EXCESSOR - EXCESSOR - EXCESSOR - EXCESSOR - EXCESSOR - EXCESSOR - EXCESSOR - EXCESSOR - EXCESSOR - EXCESSOR - EXCESSOR - EXCESSOR - EXCESSOR - EXCESSOR - E

LAB #: 84002087-02C
SAMPLE ID: 860160
DATE: 2-14-8(0
INSTRUMENT: B
601/8010
BROMOCHLOROMETHANE: 106%
2-BROMO-1-CHLOROPROPANE: 1000
602/802 <b>0</b>
a,a,a-TRIFLUOROTOLUENE:

LAB #:8002087-C4B
SAMPLE ID: 8(10162
DATE: 2-14-860
INSTRUMENT:
601/8010
BROMOCHLOROMETHANE: 114%
2-BROMO-1-CHLOROPROPANE:
602/802 <b>0</b>
a,a,a-TRIFLUOROTOLUENE:

LAB #: 3003087-058
SAMPLE ID: 8001103
DATE: 2-15-86
INSTRUMENT:
601/8010
BROMOCHLOROMETHANE: 910, 80%
2-BROMO-1-CHLOROPROPANE: 122%, 108%
,
602/802 <b>0</b>
a,a,a-TRIFLUOROTOLUENE:

LAB #: 80087-00A
SAMPLE ID: TRIP BLANK
DATE: 2-15-80
INSTRUMENT:
•
601/8010
BROMOCHLOROMETHANE: 93%
2-BROMO-1-CHLOROPROPANE:
602/8020
a,a,a-TRIFLUOROTOLUENE:

LAB #: 3002087-01E
SAMPLE ID: 800159
DATE: 2-4-86
INSTRUMENT:
601/8010
BROMOCHLOROMETHANE:
2-BROMO-1-CHLOROPROPANE:
602/8020
a,a,a-TRIFLUOROTOLUENE: \ \ \( \( \( \( \) \) \) \ \ \ \ \ \ \

LAB #: 8008087-08E
SAMPLE ID: 800100
DATE: 2-14-80
INSTRUMENT:
401/8010
601/8010
BROMOCHLOROMETHANE:
2-BROMO-1-CHLOROPROPANE:
602/802 <b>0</b>
a,a,a-TRIFLUOROTOLUENE: 10%

LAB #: 8600087-04D
SAMPLE ID: 800102
DATE: 2-14-86
INSTRUMENT: D
601/8010
BROMOCHLOROMETHANE:
2-BROMO-1-CHLOROPROPANE:
602/8020
a,a,a-TRIFLUOROTOLUENE: 97%



LAB #: 8002087-05D
SAMPLE ID: 860163
DATE: 2-14-86
INSTRUMENT:
601/8010
BROMOCHLOROMETHANE:
2-BROMO-1-CHLOROPROPANE:
602/8020
a,a,a-TRIFLUOROTOLUENE: 107-90

LAB #: 8000087-COB
SAMPLE ID: FIELD BLACK
DATE: 2-14-86
INSTRUMENT: D
601/8010
BROMOCHLOROMETHANE:
2-BROMO-1-CHLOROPROPANE:
602/8020
a,a,a-TRIFLUOROTOLUENE: 105%



EPA 625 860/63,860/62 CHAIN OF CUSTODY RECORD

		Field Sample No
Company Sampled Address Cawal	L Dinamile T-t. Wals	th, P16n+4
Sample Point Description Court	elivata	
Stream Characteristics:	<b>~1</b>	<b>-11</b>
•		pH
Visual Observations/Comments		
Collector's Name Weischel Luky	Date/Time Sai	mpled 2 /3 - 86
Amount of Sample Collected	Duml glass	
Sample Description Francis	ntin	
Store at: ☐ Ambient ☐ 5°C ☐ —	10°C 风Other 4° 仁	
Ha at a second to the		male C Bissand unused postings
Caution · No more sample available		
Other Instructions - Special Handling -		
☑ Hazardous sample (see below)	☐ Non-hazardous sample	
<b>☑</b> Toxic	☐ Skin irritant	☐ Flammable (FP< 40°C
☐ Pyrophoric	☐ Lachrymator	☐ Shock sensitive
□ Acidic	☐ Biological	Carcinogenic · suspect
☐ Caustic	☐ Peroxide	☐ Radioactive
□ Other		
Sample Allocation/Chain of Possession	n:	
Organization Name Budium		
		ived Time
Transported By Durdes John	Lab Sample No.	ived Time
Comments		
Inclusive Dates of Possession	13-86	
Organization Names Radium	Andytical Service	<
Received By ( Colmuste)	Date Rece	ived <u>Z-14-8C</u> Time 10:20
()		11110
, , , ,	•	
Inclusive Dates of Possession		
Organization Name		
		ived Time
<u> </u>	Lab Sample No.	
Comments		
Inclusive Dates of Possession		

F ND DATE FILMED DTIC