Vinhos

Matheus, Murilo

pacotes

```
source("func.R")
# packages
packages <- c("Rcpp",
             "tidyverse",
             "magrittr",
             "tidyverse",
             "broom",
             "corrplot",
             "ca",
             "RColorBrewer",
             "gridExtra",
             "forcats",
             "rpart",
             "rpart.plot",
             "pROC",
             "randomForest",
             "caret",
             "xtable")
ipak(packages)
## Loading required package: Rcpp
## Loading required package: tidyverse
## Loading tidyverse: ggplot2
## Loading tidyverse: tibble
## Loading tidyverse: tidyr
## Loading tidyverse: readr
## Loading tidyverse: purrr
## Loading tidyverse: dplyr
## Conflicts with tidy packages ------
## filter(): dplyr, stats
## lag():
            dplyr, stats
## Loading required package: magrittr
##
## Attaching package: 'magrittr'
## The following object is masked from 'package:purrr':
##
##
      set_names
## The following object is masked from 'package:tidyr':
##
      extract
## Loading required package: broom
```

```
## Loading required package: corrplot
## Loading required package: ca
## Loading required package: RColorBrewer
## Loading required package: gridExtra
## Attaching package: 'gridExtra'
## The following object is masked from 'package:dplyr':
##
##
       combine
## Loading required package: forcats
## Loading required package: rpart
## Loading required package: rpart.plot
## Loading required package: pROC
## Type 'citation("pROC")' for a citation.
## Attaching package: 'pROC'
## The following objects are masked from 'package:stats':
##
       cov, smooth, var
## Loading required package: randomForest
## randomForest 4.6-12
## Type rfNews() to see new features/changes/bug fixes.
## Attaching package: 'randomForest'
## The following object is masked from 'package:gridExtra':
##
##
       combine
## The following object is masked from 'package:dplyr':
##
##
       combine
## The following object is masked from 'package:ggplot2':
##
##
       margin
## Loading required package: caret
## Loading required package: lattice
## Attaching package: 'caret'
## The following object is masked from 'package:purrr':
##
##
       lift
## Loading required package: xtable
```

```
tidyverse
                                            tidyverse
##
           Rcpp
                                magrittr
                                                             broom
                       TRUE
                                                 TRUE
                                                              TRUE
##
           TRUE
                                    TRUE
                         ca RColorBrewer
                                            gridExtra
##
       corrplot
                                                           forcats
##
           TRUE
                       TRUE
                                    TRUE
                                                 TRUE
                                                              TRUE
                                    pROC randomForest
##
          rpart
                 rpart.plot
                                                             caret
##
           TRUE
                       TRUE
                                    TRUE
                                                 TRUE
                                                              TRUE
##
         xtable
           TRUE
##
#library(devtools)
#install_github("vqv/ggbiplot")
```

Carregando os dados

```
##leitura dos dados
red <- read.csv("winequality/winequality-red.csv",header = T,sep = ";") %>%
    mutate(vinho = as.factor("red"))

white <- read.csv("winequality/winequality-white.csv",header = T,sep = ";") %>% mutate(vinho =as.factor dados <- rbind(white,red)</pre>
```

Descritivas


```
cbind(
cor(x=red[,1:11], y=red$quality),
cor(x=white[,1:11], y=white$quality))
```

[,1] [,2]

fixed.acidity 0.12405165 -0.113662831 volatile.acidity -0.39055778 -0.194722969 citric.acid 0.22637251 -0.009209091 residual.sugar 0.01373164 -0.097576829 chlorides -0.12890656 -0.209934411 free.sulfur.dioxide $-0.05065606\ 0.008158067\ total. sulfur. dioxide\ -0.18510029\ -0.174737218\ density\ -0.17491923\ -0.307123313\ pH$ $-0.05773139\ 0.099427246\ \mathrm{sulphates}\ 0.25139708\ 0.053677877\ \mathrm{alcohol}\ 0.47616632\ 0.435574715$

```
indep <- c("vinho", "volatile.acidity", "sulphates", "alcohol",</pre>
           "density", "chlorides")
data <- dados %>% select(indep,quality,qualidade)
corrplot::corrplot(cor(data[2:5]),method="ellipse",order = "hclust", addrect=NULL)
```



```
set.seed(1)
sample_rows <- sample(1:nrow(data), nrow(data)*.75)
train <- data[sample_rows,]
test <- data[-sample_rows,]
glimpse(dados)</pre>
```

Observations: 6,497 Variables: 14 \$ fixed.acidity 7.0, 6.3, 8.1, 7.2, 7.2, 8.1, 6.2, 7.0, 6... \$ volatile.acidity 0.27, 0.30, 0.28, 0.23, 0.23, 0.28, 0.32,... \$ citric.acid 0.36, 0.34, 0.40, 0.32, 0.32, 0.40, 0.16,... \$ residual.sugar 20.70, 1.60, 6.90, 8.50, 8.50, 6.90, 7.00... \$ chlorides 0.045, 0.049, 0.050, 0.058, 0.058, 0.050,... \$ free.sulfur.dioxide 45, 14, 30, 47, 47, 30, 30, 45, 14, 28, 1... \$ total.sulfur.dioxide 170, 132, 97, 186, 186, 97, 136, 170, 132... \$ density 1.0010, 0.9940, 0.9951, 0.9956, 0.9956, 0... \$ pH 3.00, 3.30, 3.26, 3.19, 3.19, 3.26, 3.18,... \$ sulphates 0.45, 0.49, 0.44, 0.40, 0.40, 0.44, 0.47,... \$ alcohol 8.8, 9.5, 10.1, 9.9, 9.9, 10.1, 9.6, 8.8,... \$ quality 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 7,... \$ vinho white, white, white, white, white, white, white, white, white, when the content of the property of the content of

	Coluna	Media	DP	Var.	Minimo	CV	Mediana	Maximo
1	alcohol	10.492	1.193	1.423	8.000	11.368	10.300	14.900
2	chlorides	0.056	0.035	0.001	0.009	62.522	0.047	0.611
3	citric.acid	0.319	0.145	0.021	0.000	45.607	0.310	1.660
4	density	0.995	0.003	0.000	0.987	0.301	0.995	1.039
5	fixed.acidity	7.215	1.296	1.681	3.800	17.968	7.000	15.900
6	free.sulfur.dioxide	30.525	17.749	315.041	1.000	58.146	29.000	289.000
7	рН	3.219	0.161	0.026	2.720	4.996	3.210	4.010
8	quality	5.818	0.873	0.763	3.000	15.009	6.000	9.000
9	residual.sugar	5.443	4.758	22.637	0.600	87.408	3.000	65.800
10	sulphates	0.531	0.149	0.022	0.220	28.010	0.510	2.000
11	total. sulfur. dioxide	115.745	56.522	3194.720	6.000	48.833	118.000	440.000
12	volatile.acidity	0.340	0.165	0.027	0.080	48.470	0.290	1.580

Table 1: Medidas Descritivas

variavel resposta

```
ggplot(dados,aes(quality),fill = "blue") + stat_count(fill = "blue",aes(y = (..count..)/sum(..count..))
    theme_bw() +
    labs(x = "Qualidade",y="Proporção")
```



```
##
## 3  4  5  6  7  8  9
## 30  216 2138 2836 1079 193  5

prop.table(table(dados$quality))

##
## 3  4  5  6  7  8
## 0.004617516 0.033246114 0.329074958 0.436509158 0.166076651 0.029706018
## 9
## 0.000769586
ggplot(dados,aes(qualidade),fill = "blue") + stat_count(fill = "blue",aes(y = (..count..)/sum(..count..theme_bw() +
labs(x = "Qualidade",y = "Proporção")
```



```
#ANALISANDO POSSIVEIS VARIAVEIS INFLUENTES NA ANALISE NA QUALIDADE DO VINHO
#Começarei analisando o alcool, açucar, ph
myCol <- brewer.pal(8, "Dark2")</pre>
dados %<>% mutate(quality = factor(quality))
p1 <- dados %>% ggplot(aes(quality,alcohol,fill = quality,group = quality)) +
  geom_boxplot(show.legend = F) +
  theme_bw() +
  labs(y="Porcentagem (%)", title = "Porcentagem de Alcool por\n Qualidade",x=NULL) +
  theme(plot.title = element_text(size = 12,lineheight=.8,
  face="bold",hjust = 0.5),text=element_text(size=12, family="sans")) +
  scale_fill_manual(values = myCol)
p2 <- dados %>% ggplot(aes(quality,pH,fill = quality,group = quality)) +
  geom_boxplot(show.legend = F) +
  theme_bw() +
  labs(y="Valores do pH (0-14)", title = "pH do vinho por\n Qualidade",x=NULL) +
  theme(plot.title = element_text(size = 12,lineheight=.8,
  face="bold",hjust = 0.5),text=element_text(size=12, family="sans")) +
  scale_fill_manual(values = myCol)
p3 <- dados %>% ggplot(aes(quality,residual.sugar,fill = quality,group = quality)) +
  geom_boxplot(show.legend = F) +
  theme bw() +
  labs(y="Açucar residual (gramas)", title = "Açucar residual por\n Qualidade",x=NULL) +
```

```
theme(plot.title = element_text(size = 12,lineheight=.8,
  face="bold",hjust = 0.5),text=element_text(size=12, family="sans")) +
  scale_fill_manual(values = myCol)

p4 <- dados %>% ggplot(aes(quality,density,fill = quality,group = quality)) +
  geom_boxplot(show.legend = F) +
  theme_bw() +
  labs(y="Valores da densidade do vinho", title = "Densidade do vinho por\n Qualidade",x=NULL) +
  theme(plot.title = element_text(size = 12,lineheight=.8,
  face="bold",hjust = 0.5),text=element_text(size=12, family="sans")) +
  scale_fill_manual(values = myCol)

grid.arrange(p1,p2,p3,p4)
```


Florestas

```
dados %<>% mutate(quality = as.numeric(quality))
##floresta Regressao
rf_model <- randomForest(quality ~. - qualidade,data = dados, importance=TRUE ,ntree = 100)
predito <- round(predict(rf_model))</pre>
```

```
table(predicao=predito, observado=dados$quality)
##
           observado
                                               7
## predicao
                          3
                                          6
               1
                          3
                                         0
##
          2
               1
                    10
                   149 1556 385
##
              19
                                   14
##
                    57
                        561 2268
                                  442
                                         50
               1
                                  623
##
                         18
                             183
                                       102
##
                          0
                               0
                                    0
                                         39
mean(predito == dados$quality)
## [1] 0.6920117
varImpPlot(rf_model,main = "Importância das Variáveis",type = 2)
```

Importância das Variáveis

IncNodePurity

alcohol volatile.acidity density free.sulfur.dioxide chlorides total.sulfur.dioxide residual.sugar sulphates citric.acid рΗ fixed.acidity vinho 200 0 400 600 800

```
##floresta 2.0 Classificação

rf_model <- randomForest(qualidade ~. - quality,data = dados, importance = TRUE ,ntree = 100)

predito <- predict(rf_model)
    confusionMatrix(predito,dados$qualidade)

## Confusion Matrix and Statistics
##

    Reference
## Prediction Baixo Medio Alto</pre>
```

```
Baixo 1854
##
                     466
                            37
##
        Medio
               505 2139 416
                      231 824
##
        Alto
                 25
##
## Overall Statistics
##
##
                  Accuracy: 0.7414
                    95% CI: (0.7306, 0.752)
##
##
       No Information Rate: 0.4365
##
       P-Value [Acc > NIR] : < 2.2e-16
##
##
                     Kappa: 0.5887
##
   Mcnemar's Test P-Value : 2.854e-12
##
## Statistics by Class:
##
##
                        Class: Baixo Class: Medio Class: Alto
## Sensitivity
                                           0.7542
                                                       0.6453
                              0.7777
## Specificity
                              0.8777
                                           0.7484
                                                        0.9510
## Pos Pred Value
                                           0.6990
                                                        0.7630
                              0.7866
## Neg Pred Value
                              0.8720
                                           0.7972
                                                        0.9164
## Prevalence
                              0.3669
                                           0.4365
                                                        0.1966
## Detection Rate
                                           0.3292
                                                        0.1268
                              0.2854
## Detection Prevalence
                              0.3628
                                           0.4710
                                                        0.1662
## Balanced Accuracy
                              0.8277
                                           0.7513
                                                        0.7981
varImpPlot(rf_model,main = "Importância das Variáveis",type = 2)
```

Importância das Variáveis


```
impToPlot <- importance(rf_model, scale=FALSE)
dotchart(sort(impToPlot[,5]), xlim=c(0,600), xlab="Gini",main ="Importancia das Variáveis" )</pre>
```

Importância das Variáveis


```
##Arvore Classificação
set.seed(1)
tree <- rpart(qualidade ~. - quality,data = dados, control = rpart.control(cp = 0,maxdepth = 4))
predito <- predict(tree,type = "class")</pre>
confusionMatrix(predito,dados$qualidade)
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction Baixo Medio Alto
##
        Baixo 1562
                      714
        Medio
##
                763
                      1697
                            682
##
        Alto
                       425
                            539
##
## Overall Statistics
##
##
                  Accuracy : 0.5846
                    95% CI: (0.5725, 0.5966)
##
##
       No Information Rate: 0.4365
       P-Value [Acc > NIR] : < 2.2e-16
##
##
                      Kappa: 0.3366
##
##
    Mcnemar's Test P-Value : 2.998e-13
##
## Statistics by Class:
```

```
##
##
                         Class: Baixo Class: Medio Class: Alto
                                            0.5984
## Sensitivity
                               0.6552
                                                        0.42208
                               0.8128
                                            0.6053
                                                        0.90728
## Specificity
## Pos Pred Value
                               0.6698
                                            0.5401
                                                        0.52688
## Neg Pred Value
                               0.8026
                                            0.6605
                                                        0.86518
## Prevalence
                                            0.4365
                                                        0.19655
                               0.3669
                                                        0.08296
## Detection Rate
                               0.2404
                                            0.2612
## Detection Prevalence
                               0.3589
                                            0.4836
                                                        0.15746
                                            0.6018
                                                        0.66468
## Balanced Accuracy
                               0.7340
```

prp(tree,type = 4,box.col=c("#C745C9","#6D85DE", "palegreen3")[tree\$frame\$yval],tweak = 1.5,fallen.leav

Árvore de Decisão Qualidade do Vinho


```
#USADO PCA
wine <- dados[,1:11]
# wine.pca <- prcomp(wine, scale. = TRUE)
# ggbiplot(wine.pca, obs.scale = 1, var.scale = 1,
# groups = dados[,13], ellipse = TRUE, circle = TRUE) +
# scale_color_discrete(name = '') +
# theme(legend.direction = 'horizontal', legend.position = 'top') + theme_bw()
#A PARTIR DAQUI, DEVIDO A SEPARACAO DOS GRUPOS, RESOLVI ANALISAR SEPARADAMENTE</pre>
```

FLORESTA ALEATORIA VINHO BRANCO E VERMELHO

```
##
## Call:
## randomForest(formula = rating ~ . - vinho - quality, data = dados)
                 Type of random forest: classification
##
                       Number of trees: 500
## No. of variables tried at each split: 3
          OOB estimate of error rate: 1.91%
## Confusion matrix:
       Ruim Bom Medio class.error
## Ruim 6291 0 8 0.001270043
## Bom
       5
             0
                    0 1.000000000
## Medio 111 0 82 0.575129534
                      MeanDecreaseGini
## fixed.acidity
                              26.71902
## volatile.acidity
                              30.57655
## citric.acid
                             26.47440
## residual.sugar
                             32.67645
## chlorides
                             29.77715
## free.sulfur.dioxide
                            33.96036
## total.sulfur.dioxide
                            30.80699
## density
                             34.16127
                             29.35041
## pH
## sulphates
                             32.61749
## alcohol
                             35.61938
## qualidade
                              41.25627
         pred_RF
##
         Ruim Bom Medio
    Ruim 6291
##
                0
           5
    Bom
                  0
                       0
    Medio 111
                       82
##
##
## randomForest(formula = rating ~ . - vinho - quality, data = dados)
                 Type of random forest: classification
                      Number of trees: 500
## No. of variables tried at each split: 3
##
          OOB estimate of error rate: 1.91%
## Confusion matrix:
       Ruim Bom Medio class.error
## Ruim 6291 0 8 0.001270043
## Bom
        5 0
                    0 1.000000000
## Medio 111 0 82 0.575129534
##
                      MeanDecreaseGini
## fixed.acidity
                              69.89057
## volatile.acidity
                             103.60913
## citric.acid
                             70.30478
## residual.sugar
                            64.87859
## chlorides
                             77.81598
```

```
## free.sulfur.dioxide
                               63.24579
## total.sulfur.dioxide
                              97.24974
## density
                              89.67449
                               69.42025
## pH
## sulphates
                              115.33664
## alcohol
                              146.56616
##
## Call:
## randomForest(formula = rating ~ . - vinho - quality, data = white)
                  Type of random forest: classification
##
##
                        Number of trees: 500
## No. of variables tried at each split: 3
##
##
          OOB estimate of error rate: 25.17%
## Confusion matrix:
        Ruim Bom Medio class.error
## Ruim 1227 16 397 0.2518293
         20 703
                   337
                         0.3367925
## Medio 294 169 1735
                        0.2106460
                       MeanDecreaseGini
##
## fixed.acidity
                               225.6520
                               314.6381
## volatile.acidity
## citric.acid
                               248.0415
                              275.1482
## residual.sugar
## chlorides
                               268.2315
## free.sulfur.dioxide
                               295.3304
## total.sulfur.dioxide
                               278.8297
## density
                               340.2162
                               259.9758
## pH
## sulphates
                               235.5267
## alcohol
                               390.1216
#ALCOOL VS DENSIDADE
dados$quality <- as.factor(dados$quality)</pre>
dados %>% ggplot(aes(x = density, y = alcohol, color = quality)) +
   facet_wrap(~vinho) +
   geom_point(size = 3, alpha = 1/4) +
   scale_color_identity(guide = 'legend') +
   ylim(min(dados$alcohol), quantile(dados$alcohol, 0.95)) +
   xlim(min(dados$density), quantile(dados$density, 0.95)) +
   theme bw() +
   labs(y = "Alcool",x = "Densidade",color = "Qualidade")
```

Warning: Removed 614 rows containing missing values (geom_point).


```
#ALCOOL VS ACIDEZ
dados$quality <- as.factor(dados$quality)

dados %>% ggplot(aes(x = volatile.acidity, y = alcohol, color = quality)) +
    facet_wrap(~vinho) +
    geom_point(size = 3, alpha = 1/4) +
    scale_color_identity(guide = 'legend') +
    ylim(min(dados$alcohol), quantile(dados$alcohol, 0.95)) +
    xlim(min(dados$volatile.acidity), quantile(dados$volatile.acidity, 0.95)) +
    theme_bw() +
    labs(y = "Alcool",x = "acidez volátil",color = "Qualidade")
```

Warning: Removed 599 rows containing missing values (geom_point).


```
#volatile.acidity VS density
dados$quality <- as.factor(dados$quality)

dados %>% ggplot(aes(x = volatile.acidity, y = density, color = quality)) +
    facet_wrap(~vinho) +
    geom_point(size = 3, alpha = 1/4) +
    scale_color_identity(guide = 'legend') +
    ylim(min(dados$density), quantile(dados$density, 0.95)) +
    xlim(min(dados$volatile.acidity), quantile(dados$volatile.acidity, 0.95)) + theme_bw() +
    labs(y = "Densidade",x = "acidez volatil",color = "Qualidade")
```

Warning: Removed 620 rows containing missing values (geom_point).


```
#SULFATO VS ALCOOL
dados$quality <- as.factor(dados$quality)

dados %>% ggplot(aes(x = sulphates, y = alcohol, color = quality)) +
    facet_wrap(~vinho) +
    geom_point(size = 3, alpha = 1/4) +
    scale_color_identity(guide = 'legend') +
    ylim(min(dados$alcohol), quantile(dados$alcohol, 0.95)) +
    xlim(min(dados$sulphates), quantile(dados$sulphates, 0.95)) +theme_bw() +
    labs(y = "Sulfato",x = "Alcool",color = "Qualidade")
```

Warning: Removed 589 rows containing missing values (geom_point).

