CS1001.py HW1

Question 1:

שלוש פונקציות הקיימות במחלקה str שאינן קיימות במחלקה

```
>>> 'abcd'.replace('b', 'p')
'apcd'
>>> str.replace('abcd','b', 'p')
'apcd'
>>> 'abcd'.split()
['abcd']
>>> str.split('abcd')
['abcd']
>>> 'abcd'.capitalize()
'Abcd'
>>> str.capitalize('abcd')
'Abcd'
```

שלוש פונקציות הקיימות במחלקה list שאינן קיימות במחלקה

```
>>> ['a', 'b', 'c', 'd'].pop(2)
'c'
>>> list.pop(['a', 'b', 'c', 'd'], 2)
>>> lst = ['a', 'b', 'c', 'd']
>>> lst.append('e')
>>> lst
['a', 'b', 'c', 'd', 'e']
>>> lst = ['a', 'b', 'c', 'd']
>>> list.append(lst, 'e')
>>> lst
['a', 'b', 'c', 'd', 'e']
>>> lst = ['a', 'b', 'c', 'd']
>>> lst.remove('b')
>>> 1st
['a', 'c', 'd']
>>> lst = ['a', 'b', 'c', 'd']
>>> list.remove(lst, 'b')
>>> lst
['a', 'c', 'd']
```

Question 2:

1. "12345678":

Iteration	i	ID[i]	val	total
1	0	'1'	1	1
2	1	'2'	2	5
3	2	'3'	3	8
4	3	'4'	4	16
5	4	'5'	5	21
6	5	'6'	6	24
7	6	'7'	7	31
8	7	'8'	8	38

2. "31857489":

Iteration	i	ID[i]	val	total
1	0	'3'	3	3
2	1	'1'	1	5
3	2	'8'	8	13
4	3	'5'	5	14
5	4	'7'	7	21
6	5	'4'	4	29
7	6	'8'	8	37
8	7	'9'	9	46

Question 3:

<u>הערה</u>: כל הזמנים המופיעים בטבלאות מהווים ממוצע של 1000 ריצות על כל קלט, ליציבות המנים ולהפחתת התלות בגורמים אקראיים שיכולים להשפיע בריצה מסוימת.

.'א

solution	2**200	2**400	2**800	2**1600
1	0.9800000	2.3042400	6.5895799	20.479410
	00001979	00001556	99998563	00001003
	3e-05 sec	3e-05 sec	e-05 sec	5e-05 sec
2	0.3492500	0.7375900	1.7891400	3.2842199
	00001255	00003685	00004252	99997439
	5e-05 sec	e-05 sec	4e-05 sec	5e-05 sec

ניתן לראות בפתרון הראשון כי עם הגדלת ערכו של הקלט, זמן הריצה גדל גם הוא, ואף בקצב הולך וגדל. בפתרון השני לעומת זאת, זמן הריצה גדל בקצב איטי יותר עבור הגדלת הקלט. ניתן לשער כי זמן הריצה, שתלוי בעיקר במספר האיטרציות שבלולאה, הולך וגדל באופן משמעותי יותר בפתרון הראשון יחסית לפתרון השני, כי מלבד מספר הספרות (מהן מורכב הקלט) שקובע את מספר האיטרציות, בפתרון זה ישנן שתי פעולות מתמטיות שנעשות על הקלט, חלוקה שלמה (רצפה) ושארית. פעולות אלה ככל הנראה תלויות בגודל הקלט. בפתרון השני עוברים על הספרות כמחרוזת, ובכל איטרציה בודקים תו בודד – הבדיקה בכל איטרציה אינה תלויה בגודל הקלט, ולכן זמן הריצה לא גדל באופן משמעותי.

solution	2**200	2**400	2**800	2**1600
3	0.1778299 99999801 2e-05 sec	0.1390599 99998281 12e-05 sec	0.2814999 99999823 58e-05 sec	0.8010300 00000668 7e-05 sec

כפי שניתן לראות, הפתרון השלישי אכן יעיל יותר מבחינת זמן ריצה בהשוואה לשני הפתרונות הראשונים – זמני הריצה לקלטים השונים הם הנמוכים ביותר בפתרון זה. כמו בפתרון השני, גם כאן זמני הריצה לא משתנים הרבה יחסית לשינוי בפתרון הראשון עם הגדלת הקלט.

ג'. נבדוק מקרים עבור 1000 ספרות כדוגמה:

sol	int('7' *1000)	int('7077' *250)	int('70' *500)	int('7000' *250)	int('7'+'0' *999)
1	69.762 64000 00331 2e-05 sec	71.27108 0000030 9e-05 sec	73.233 24999 99444 e-05 sec	73.03978 0000004 84e-05 sec	73.45075 99999773 2e-05 sec
2	7.9183 09999 95397 7e-05 sec	7.871600 0000497 39e-05 sec	8.3290 60000 01116 8e-05 sec	10.64189 0000027 843e-05 sec	12.02157 99999783 72e-05 sec
3	2.6875 59999 97551 95e-05 sec	2.714050 0000029 987e-05 sec	2.7234 99999 97914 e-05 sec	2.797449 9999800 173e-05 sec	2.779040 00003275 08e-05 sec

ניתן לראות כי עבור כל שיטת פתרון שונה, זמן הריצה לא משתנה באופן משמעותי יחסית לכמות האפסים, ולא באופן מגמתי מובהק כתלות במספר האפסים (לא מונוטוני עולה ולא מונוטוני יורד על גבי התחום הכולל, כי בכל אחת משיטות הפתרון יש קלט ש"שובר" את העלייה בזמן הריצה כתלות במספר האפסים, למשל בפתרון הראשון בקלט הרביעי משמאל יש יותר אפסים מאשר בקלט השלישי, ואילו בקלט השלישי זמן הריצה מעט ארוך יותר, וזאת בשונה לשאר הקלטים בהם הזמן גדל במקצת ככל שמספר האפסים גדל. נסיק (אף על פי שנבדקו קלטים באורך מסוים) כי למספר האפסים בקלט בעל מספר ספרות קבוע, אין השפעה מוחלטת על זמן הריצה של כל אחד מהפתרונות.

.'т

```
num = 2**100
cnt = 0
for i in range(num):
    cnt = cnt + 1
```

עבור קטע קוד זה, נצפה לזמן ריצה ארוך באופן משמעותי מאשר זמן הריצה שלקח לכל הפתרונות בסעיפים הקודמים על גבי הקלטים שעסקנו בהם. זאת משום ששלושת הפתרונות הקודמים עסקו בחישובים בהם מספר האיטרציות הוא באורך של כמות הספרות שיש במספר, אך הפעם אנחנו מספר האיטרציות הוא 2¹⁰⁰, שזה משמעותית יותר פעמים מאשר 482 (כמות הספרות שיש ב-2¹⁶⁰⁰, הקלט הגדול ביותר לו נדרשנו בסעיף א').

לפתרון 2, שהוא הכי דומה לקוד שלעיל מבחינת מבנה, לקח כ $^{\dot{5}}$ - $^{\dot{5}}$ שניות לבצע 482 איטרציות. ננסה להעריך את זמן הריצה של הקוד שלעיל, כאשר ההערכה תתבסס על ההשערה לפיה זמן הריצה פרופורציוני לכמות האיטרציות. נקבל:

$$\frac{2^{100}}{482} * 3.2842199999974395 \times 10^{-5} \ sec \approx 8.637434552444627 \times 10^{22} \ sec$$

כלומר זמן ריצה מסדר גודל של כמעט 10^{23} (כמספר החלקיקים הנמצאים במול אחד של חומר נתון) שניות, או 10^{16} שנים.