

Comparison of Structural and Metabolic Biomarkers of Neurodegeneration for Brain Age Prediction

The Link Between Brain Age and Alzheimer's Disease Development Using **Different Modalities**

Doering, E., Antonopoulos, G., Hönig, M., van Eimeren, T., Eickhoff, S., Patil, K., Drzezga, A.

Jan 24, 2022 | virtual | Elena Doering, MSc.

International Conference on Alzheimer's and Parkinson's Diseases and related neurological disorders

Nothing to disclose.

A biological definition of brain age

Brain-predicted age & BPAD

Brain-predicted age = machine learning algorithms learn to predict chronological age (CA) from brain scans

BPAD

- Difference between chronological age and brainpredicted age
- deviation from "normal" aging in a single number.

Chronological Age = 63

Brain age Prediction

Brain-Predicted Age Difference = 12 years

Brain age can have various clinical functions

Research aims

 Compare precision of brain-predicted age using MRI and FDG-PET in cognitively normal individuals (CN).

2. Compare association of MRI and FDG-PET-BPAD with **cognitive function, neuropathology** and cognitive decline in CN and individuals with mild cognitive impairment (MCI).

Compare precision of brain-predicted age in CN

- 379 FDG-PET and MRI scans from of CN from

frontal lobe left: 1.03 frontal lobe right: 1.25 ... hippocampus left: 0.95 hippocampus right: 0.98

Model 1: One test prediction for each subject in CN_validation and MCI sample

Participants

Table 1. Overview of samples

	CN	CN_validation	MCI	
	ADNI Adamsin Disca Namasani Israen	- ASIS TO WARRING STORYS	ADNI A.a tearn Diaz Noteswalsis herent	
n total	379	59	621	
Age [avg. years]	74	72 (PET)/70 (MRI)	73	
Sex (F/M)	196/183	35/24	264/355	
MMSE [avg. score]	29	29	28	
Education [avg. years]	16	16	16	

Bias Correction

Predicted age_{corrected with CA} = Predicted age_{uncorrected} - $(\alpha * CA + \beta)$

 $\alpha = \text{slope}$; $\beta = \text{intercept from linear model of CA X BPAD}$

PET

Association between brain-age delta and chronological age svm

Precision in brain age prediction is comparable across FDG and MRI

Table 2. Precision of predicting chronological age from FDG-PET and MRI scans. For CN_validation and MCI, results of the first model and metrics over all five models are shown.

	ADNI Nutritional Page		CN_validation OASIS		MCI ADNI MARKETIONE	
	FDG	MRI	FDG	MRI	FDG	MRI
n total	345+	345 ⁺	59 ⁺	59 ⁺	621	621
MAE	1.99	1.89	1.83	2.42	1.94	2.66
Mean (SD) over 5 models	-	-	2.04 (0.30)	2.45 (0.19)	2.17 (0.44)	2.57 (0.11)
Mean difference	-0.10	-0.05	-0.80	-0.80	0.78	1.15
Mean (SD) over 5 models	-	-	-0.66 (0.41)	-0.92 (0.16)	0.67 (0.21)	1.42 (0.16)

^{*}After outlier exclusion using CN train set (IQR > 6)

Association of BPAD with Cognitive Function, Neuropathology, and Cognitive Decline

- Cognitive Function (CF): ADNI-MEM, ADNI-EF
- Neuropathology (NP):
 CSF Aβ, PET amyloid (global AV45),
 CSF Tau, CSF Ptau, PET tau (AV1451 meta-ROI)

Pearson/Spearman Correlations between BPAD and CF/NP

Partial correlations between BPAD and CF/NP controlling for age and sex

- Cognitive Decline (CD): Diagnosis after 24 months

Logistic Regression to predict CD from BPAD, age and sex

BPAD in CN

Higher MRI-BPAD is associated with worse cognitive performance in CN

* Significant at p < 0.05, ** significant after Bonferroni correction

Higher BPAD (esp. FDG) is associated with lower CSF Aβ levels

n = 266Not significant without correction for age and sex $\rho_{\text{partial}} = 0.126^*$

FDG-BPAD predicts conversion to MCI/Alzheimer's disease in CN

27% increased odds to develop (mild) cognitive impairment within two years **per one year BPAD** (95%CI [7%, 51%])

age: OR = 10% (95%CI [3%, 19%])**, sex not significant in logistic regression

BPAD in MCI

Higher BPAD (esp. MRI) is associated with worse cognitive performance in MCI

Higher BPAD (esp. MRI) is associated with more neuropathology in MCI

Higher BPAD (esp. MRI) predicts conversion to Alzheimer's disease in MCI

^{*} Significant at p < 0.05, ** p < 0.01, *** p < 0.001

And the winner is...

Brain age can be predicted comparably well from FDG-PET or MRI, but...

FDG-PET-predicted age better captures early disease-related neuropathology and risk.

Onset of tau-related neurodegeneration and of objective cognitive decline is more strongly associated with signals of increasing brain age on MRI.

Thank you for your attention!

Prof. Dr. Simon EickhoffDirector of the Institute Brain and Behaviour (INM-7)

Dr. Kaustubh PatilLeader of the research group
"Applied Machine Learning"

