SparkSQL: A Compiler from Queries to RDDs

Sameer Agarwal

Spark Summit | Boston | February 9th 2017

About Me

- Software Engineer at Databricks (Spark Core/SQL)
- PhD in Databases (AMPLab, UC Berkeley)
- Research on BlinkDB (Approximate Queries in Spark)

Background: What is an RDD?

- Dependencies
- Partitions
- Compute function: Partition => Iterator[T]

Background: What is an RDD?

- Dependencies
- Partitions
- Compute function: Partition => Iterator[T]

Opaque Computation

Background: What is an RDD?

- Dependencies
- Partitions
- Compute function: Partition => Iterator[T]
 Opaque Data

RDD Programming Model

Construct execution DAG using low level RDD operators.

```
pdata.map(lambda x: (x.dept, [x.age, 1])) \
    .reduceByKey(lambda x, y: [x[0] + y[0], x[1] + y[1]]) \
    .map(lambda x: [x[0], x[1][0] / x[1][1]) \
    .collect()
```


RDD Programming Model

Construct execution DAG using low level RDD operators.

```
pdata.map(lambda x: (x.dept, [x.age, 1])) \
    .reduceByKey(lambda x, y: [x[0] + y[0], x[1] + y[1]]) \
    .map(lambda x: [x[0], x[1][0] / x[1][1]) \
    .collect()
```

SELECT dept, AVG(age) FROM pdata GROUP BY dept

RDD Programming Model

Construct execution DAG using low level RDD operators.

```
pdata.map(lambda x: (x.dept, [x.age, 1])) \
    .reduceByKey(lambda x, y: [x[0] + y[0], x[1] + y[1]]) \
    .map(lambda x: [x[0], x[1][0] / x[1][1]) \
    .collect()
```

```
pData.groupBy("dept").agg(avg("age"))
```


SQL/Structured Programming Model

- High-level APIs (SQL, DataFrame/Dataset): Programs describe what data operations are needed without specifying how to execute these operations
- More efficient: An optimizer can automatically find out the most efficient plan to execute a query

Spark SQL Overview

How Catalyst Works: An Overview

Trees: Abstractions of Users' Programs

```
SELECT sum(v)
FROM (
  SELECT
    t1.id,
    1 + 2 + t1.value AS v
  FROM t1 JOIN t2
  WHERE
    t1.id = t2.id AND
    t2.id > 50 * 1000) tmp
```


Trees: Abstractions of Users' Programs

Expression

```
SELECT sum(v)
FROM (
  SELECT
    t1.id,
    1 + 2 + t1.value AS v
  FROM t1 JOIN t2
  WHERE
    t1.id = t2.id AND
    t2.id > 50 * 1000) tmp
```

- An expression represents a new value, computed based on input values
 - e.g. 1 + 2 + t1.value

Trees: Abstractions of Users' Programs

Logical Plan

 A Logical Plan describes computation on datasets without defining how to conduct the computation

Physical Plan

 A Physical Plan describes computation on datasets with specific definitions on how to conduct the computation

How Catalyst Works: An Overview

 A function associated with every tree used to implement a single rule

- A transform is defined as a Partial Function
- Partial Function: A function that is defined for a subset of its possible arguments

```
val expression: Expression = ...
expression.transform {
   case Add(Literal(x, IntegerType), Literal(y, IntegerType)) =>
     Literal(x + y)
}
```

Case statement determine if the partial function is defined for a given input

```
val expression: Expression = ...
expression.transform {
  case Add(Literal(x, IntegerType), Literal(y, IntegerType)) =>
    Literal(x + y)
}
```



```
val expression: Expression = ...
expression.transform {
  case Add(Literal(x, IntegerType), Literal(y, IntegerType)) =>
    Literal(x + y)
}
```

1 + 2 + t1.value


```
val expression: Expression = ...
expression.transform {
  case Add(Literal(x, IntegerType), Literal(y, IntegerType)) =>
    Literal(x + y)
}
```



```
val expression: Expression = ...
expression.transform {
  case Add(Literal(x, IntegerType), Literal(y, IntegerType)) =>
    Literal(x + y)
}
```


Combining Multiple Rules

Combining Multiple Rules

Spark SQL Overview

select count(*) from store_sales
where ss_item_sk = 1000

Volcano—An Extensible and Parallel Query Evaluation System

Goetz Graefe

Abstract—To investigate the interactions of extensibility and parallelism in database query processing, we have developed a new dataflow query execution system called Volcano. The Volcano effort provides a rich environment for research and education in database systems design, heuristics for query optimization, parallel query execution, and resource allocation.

Volcano uses a standard interface between algebra operators, allowing easy addition of new operators and operator implementations. Operations on individual items, e.g., predicates, are imported into the query processing operators using support functions. The semantics of support functions is not prescribed; any data type including complex objects and any operation can be realized. Thus, Volcano is extensible with new operators, algorithms, data types, and type-specific methods.

Volcano includes two novel meta-operators. The chance-plan

tem as it lacks features such as a user-friendly query language, a type system for instances (record definitions), a query optimizer, and catalogs. Because of this focus, Volcano is able to serve as an experimental vehicle for a multitude of purposes, all of them open-ended, which results in a combination of requirements that have not been integrated in a single system before. First, it is modular and extensible to enable future research, e.g., on algorithms, data models, resource allocation, parallel execution, load balancing, and query optimization heuristics. Thus, Volcano provides an infrastructure for experimental research rather than a final research prototype in itself. Second, it

G. Graefe, Volcano— An Extensible and Parallel Query Evaluation System, In IEEE Transactions on Knowledge and Data Engineering 1994

Volcano Iterator Model

• Standard for 30 years: almost all databases do it

 Each operator is an "iterator" that consumes records from its input operator

```
class Filter(
    child: Operator,
    predicate: (Row => Boolean))
    extends Operator {
    def next(): Row = {
     var current = child.next()
     while (current == null ||predicate(current)) {
        current = child.next()
    }
    return current
    }
}
```


Downside of the Volcano Model

- 1. Too many virtual function calls
 - o at least 3 calls for each row in Aggregate
- 2. Extensive memory access
 - o "row" is a small segment in memory (or in L1/L2/L3 cache)
- 3. Can't take advantage of modern CPU features
 - SIMD, pipelining, prefetching, branch prediction, ILP, instruction cache, ...

Whole-stage Codegen: Spark as a "Compiler"

Whole-stage Codegen

- Fusing operators together so the generated code looks like hand optimized code:
- Identify chains of operators ("stages")
- Compile each stage into a single function
- Functionality of a general purpose execution engine; performance as if hand built system just to run your query

Efficiently Compiling Efficient Query Plans for Modern Hardware

Thomas Neumann
Technische Universität München
Munich, Germany
neumann@in.tum.de

ABSTRACT

As main memory grows, query performance is more and more determined by the raw CPU costs of query processing itself. The classical iterator style query processing technique is very simple and flexible, but shows poor performance on modern CPUs due to lack of locality and frequent instruction mispredictions. Several techniques like batch oriented processing or vectorized tuple processing have been proposed in the past to improve this situation, but even these techniques are

T Neumann, Efficiently compiling efficient query plans for modern hardware. In VLDB 2011

Putting it All Together

primitive	Spark 1.6	Spark 2.0
filter	15 ns	1.1 ns
sum w/o group	14 ns	0.9 ns 5-30 x
sum w/ group	79 ns	10.7 ns Speed
hash join	115 ns	4.0 ns
sort (8-bit entropy)	620 ns	5.3 ns
sort (64-bit entropy)	620 ns	40 ns
sort-merge join	750 ns	700 ns
Parquet decoding (single int column)	120 ns	13 ns

primitive	Spark 1.6	Spark 2.0	
filter	15 ns	1.1 ns	
sum w/o group	14 ns	0.9 ns	
sum w/ group	79 ns	10.7 ns	
hash join	115 ns	4.0 ns	Radix Sort
sort (8-bit entropy)	620 ns	5.3 ns	10-100x
sort (64-bit entropy)	620 ns	40 ns	Speedups
sort-merge join	750 ns	700 ns	
Parquet decoding (single int column)	120 ns	13 ns	

primitive	Spark 1.6	Spark 2.0)
filter	15 ns	1.1 ns	
sum w/o group	14 ns	0.9 ns	
sum w/ group	79 ns	10.7 ns	
hash join	115 ns	4.0 ns	
sort (8-bit entropy)	620 ns	5.3 ns	
sort (64-bit entropy)	620 ns	40 ns	Shuffling
sort-merge join	750 ns	700 ns	still the
Parquet decoding (single int column)	120 ns	13 ns	bottleneck

primitive	Spark 1.6	Spark 2.0	
filter	15 ns	1.1 ns	
sum w/o group	14 ns	0.9 ns	
sum w/ group	79 ns	10.7 ns	
hash join	115 ns	4.0 ns	
sort (8-bit entropy)	620 ns	5.3 ns	
sort (64-bit entropy)	620 ns	40 ns	
sort-merge join	750 ns	700 ns	10x
Parquet decoding (single int column)	120 ns	13 ns	Speedup

TPC-DS (Scale Factor 1500, 100 cores)

What's Next?

Spark 2.2 and beyond

- 1. SPARK-16026: Cost Based Optimizer
 - Leverage table/column level statistics to optimize joins and aggregates
 - Statistics Collection Framework (Spark 2.1)
 - Cost Based Optimizer (Spark 2.2)
- 2. Boosting Spark's Performance on Many-Core Machines
 - In-memory/ single node shuffle
- Improving quality of generated code and better integration with the in-memory column format in Spark

Thank you.

