CO250 course note

Chenxuan Wei Sep 2021

Contents

1	For	mulations 3			
	1.1	Overview			
	1.2	LP Models			
	1.3	IP models			
	1.4	Optimization of Graphs			
	1.5	Shortest Paths			
	1.6	Nonlinear Programs			
2	Solving Linear Programs 9				
	2.1	Possible Outcomes			
	2.2	Certificates			
	2.3	Standard Equality Forms			
	2.4	Basis			
	2.5	Canonical Forms			
	2.6	Formalizing the simplex			
	2.7	Find a Feasible Solution			
	2.8	Half-Space and Convexity			
	2.9	Extreme Points			
3	Duality Through Examples 18				
	3.1	Duality Throught Examples			
	3.2	Weak Duality			
	3.3	Shortest Path Algorithm			
	3.4	Correctness			
4	Duality Theory 22				
	4.1	Weak Duality			
	4.2	Strong Duality			
	4.3	Geometric Optimality			
5	Solving Integer Programs 25				
	5.1	Convex Hull			
	5.2	Cutting Planes			
6	Non-linear optimization 27				
	6.1	Convexity			
	6 9	The KKT theorem			

1 Formulations

1.1 Overview

- 1. Important Special Cases
 - Abstract optimization problem (P):
 - Given: a set $A \in \mathbb{R}^n$ and a function $f: A \to \mathbb{R}$
 - Goal: find $x \in A$ that minimizes and maximizes f
 - Linear Programming (LP):
 - A is implicitly given by linear constraints
 - f is a linear function
 - Integer Programming (IP)
 - We focus on integer max/min
 - Non linear Programming (NLP)
 - A is non-linear constraints
 - f is a non-linear function
- 2. Typical Workflow
 - English language description of practical problem
 - Develop a mathematical model for the problem
 - feed the model and data into solver
- 3. Ingredients of a Math Model
 - Decision Variables: Capture unknown information
 - Constraints: Describe which assignments to variables are feasible
 - Objective function: A function of the variables that we would like to maximize/minimize

1.2 LP Models

1. Constrained Optimization

In this course, we consider optimization problems of the following form: $min\{f(x):g_i(x)\leq b_i, (1\leq i\leq m), x\in R^n\}$ where:

- $n, m \in N$
- $b_1, \ldots, b_m \in R$
- f, g_1, \ldots, g_m are functions with $R^n \to R$, and we assume all of them are affine
- 2. Definition: affine

A function $f: \mathbb{R}^n \to \mathbb{R}$ is affine if $f(x) = \sum_{i=1}^m \alpha_i x_i + \beta$ for $\alpha_i \in \mathbb{R}^n$, $\beta \in \mathbb{R}$ it is linear if $\beta = 0$

3. Definnition: Linear program

The optimization problem

 $\min\{f(x): g_i(x) \le b_i, \forall 1 \le i \le m, x \in \mathbb{R}^n\}$

is called a linear program if f is affine and g_1, \ldots, g_m is finite number of linear functions

Note:

- often write LPs more verbosely
- often give non-negativity constraints separately
- constrain maybe max or min
- $x \leq \vec{0}$ shows all x_i are non-negative
- must be \leq or \geq no < and >
- finite number of constrainsts
- 4. Multiperiod Models
 - Time is split into periods
 - We have to make a decision in each period
 - All decisions influence the final outcome.

1.3 IP models

- 1. Definition of Integer programming
 - Added integer constraints to LP
 - $\bullet\,$ Difficult to solve
- 2. Binary variable usefu to modify logical constraints
- 3. Set Create a set for choose from finite values

1.4 Optimization of Graphs

- 1. Basic definition of graphs
 - vertices: V
 - edges: $E = \{uv : u, v \in V\}$
 - u and v are adjacent if $uv \in E$
 - u and v are endpoints of $uv \in E$
 - $e = v_1 v_2$ incident to $u \in V$ if u is an endpoint of e
- 2. Path

```
A s,t-path in G=(V,E) is a sequence of edges v_1v_2,v_2v_3,\ldots,v_{k-1}v_k where v_1=s,v_k=t and v_i\neq v_j if i\neq j
```

- 3. Matching
 - Definition

A set of edges $M\subseteq E$ is matching if $\forall e_1,e_2\in Mwheree_1=v_{11}v_{12},e_2=v_{21}v_{22}$ we must have $v_{11}\neq v_{12}\neq v_{21}\neq v_{22}$

• Perfect matching A matching is perfect if the following happened Let $M = \{e_i = v_{i1}v_{i2}\}, \forall v \in V, v \in \{v_{ij}\}$

- Definition for $\delta(v)$ $\delta(v) = \{e \in E : e = uv, u \in V\}$
- Another def for perfect matching Let $G = (V, E), M \subseteq E$ is a perfect matching $\iff |M \cap \delta(v)| = 1, \forall v \in V$

1.5 Shortest Paths

- 1. Cut $\delta(S) \text{ is an } s,t \text{ cut if } s \in S \text{ and } t \not \in S$
 - . Remark if $S\subseteq E$ contains at least one edge from every s,t cut, then S contains an s,t path.

1.6 Nonlinear Programs

- 1. Definition of NLP is in the from of
 - $\min/\max f(x)$
 - s.t.

$$-g_1(x) \le 0$$

$$-g_2(x) \le 0$$

$$- \dots$$

$$-g_m(x) \le 0$$

 \bullet where

$$-x \in \mathbb{R}^n$$

$$-f: \mathbb{R}^n \to \mathbb{R}$$

$$-g_i: \mathbb{R}^n \to \mathbb{R}$$

2 Solving Linear Programs

2.1 Possible Outcomes

1. Definition of feasible solution
An assignment of values to each of the variables is a feasible solution if all
the constraints are satisfied

2. Definition of feasible if there is at least one feasible solution, infeasible otherwise

3. Defintion of optimal solution

- For maximization problem, an optimal solution is a feasible solution that max the objective function
- For minimization problem, an optimal solution is a feasible solution that min the objective function

4. Definition of bounded

- For maximization problem is unbounded if for every value M, there exists a feasible solution with objective value greater than M
- For minimization problem is unbounded if for every value M, there exists a feasible solution with objective value smaller than M
- 5. Fundamental Theorem of Linear Programming For any linear Program, exactly one of the following holds:
 - It has an optimal solution
 - It is infeasible
 - It is unbounded

2.2 Certificates

1. Farkas's lemma

There is no solution to $Ax=b, x\geq 0\iff \exists y\in R^n, y^\intercal A\geq 0^\intercal$ and $y^\intercal b<0$

2. Proposition 2.2

The linear program, $\max\{c^\intercal x: Ax=b, x\geq 0\}$ is unbounded if we can find $\vec x$ and r such that

- $\vec{x} \ge 0$
- $r \ge 0$
- $A\vec{x} = b$
- Ar = 0
- $c^{\intercal}r>0$

2.3 **Standard Equality Forms**

- 1. Definition of SEF
 - $\bullet\,$ it is a max problem
 - for every variable x_j , we have $x_j \geq 0$
 - all other constraints are equality constraints
- 2. Definition of equivalent LPs

Linear programs (P) and (Q) are equivalent if

- (P) infeasible \iff (Q) infeasible
- (P) unbounded \iff (Q) unbounded
- can create a optimal solution of (P) from optimal solution of (Q)
- can create a optimal solution of (Q) from optimal solution of (P)
- 3. Theorem

Every LP is equivalanet to an LP in SEF

- 4. Convert to SEF
 - max

 $\times -1$ to objective function

• change to equality

add a new variable

ex.
$$x_1 - x_2 \le 7$$
 is equvilent to $x_1 - x_2 + s = 7, s \ge 0$

idea:change the variable to the difference of 2 non-negative variable

ex. $x_3 = a - b, a \ge 0, b \ge 0$

Then rewrite everything in terms of a and b

2.4 Basis

1. Notation

Let B be a subset of column indices, then A_B is a column sub-matrix of A in dexed by set B

 A_j is the j column of A

2. Basis

Let B be a subset of column indices, B is a basis if

- A_B is a square matrix
- A_B is non-singular
- 3. Theorem on week 5 lecture 1 slide 10 Max number of independent columns = max number of independent rows
- 4. Basic Solutions

Let Ax = b be a equation

• Basic variable

Let B be a basis for A

- if $j \in B$, then x_j is a basic variable
- if $j \notin B$, then x_j is a non-basic variable
- solution

x is a basic solution for basis B if

- -Ax = b
- $-x_j=0 \text{ if } j \notin B$
- $\bullet\,$ Uniquess of basic solutions

Let B be a basis for A, then Ax = b has a unique basic solution for B

feasible

A basic solution x of Ax = b is feasible if $x \ge 0$

2.5 Canonical Forms

1. Definition of Canonical form

Let $maxc^{\intercal}x: Ax = b, x \geq 0$ be a LP

Let B be a basis for A

Then this is a canonical form for B if

- $A_B = I$ (P1)
- $c_i = 0 \forall j \in B \text{ (P2)}$
- 2. Proposition

For any basis B, there exists (P') in canonical form for B such that

- (P) and (P') have the same feasible region
- feasible solution have the same objective value for (P) and (P')
- 3. rewriting constrain (P1)

Assume we have the LP: $maxc^{\intercal}x: Ax = b, x \geq 0$

And a Basis B

Then mutiply A_B^{-1} to both side of the constrain, we get $A_B^{-1}Ax = A_B^{-1}b$ Then the new $A' = A_B^{-1}A$ will have $A_B = I$

4. rewrite the objective function (P2)

Do the following steps

- Assume $A \in M_{m \times n}$, then create $Y = (y_1, \dots, y_m)^{\intercal}$, and get $Y^{\intercal}Ax =$
- Choose y_i so that $\forall j \in B, c_i = 0$
- The new objective function is $(c^{\mathsf{T}} Y^{\mathsf{T}}A)x + Y^{\mathsf{T}}b$
- In order to find y_i , solve the equation $Y^\intercal A_B = c_B^\intercal$, means $Y = A_B^{-\intercal} c_B$
- 5. Proposition 2.4

for a LP $max\{c^{\intercal}x, Ax = b, x \geq 0\}$

the canonical form for basis B is

$$\max\{(c^\intercal-y^\intercal A)x+y^\intercal b,A_B^{-1}Ax=A_B^{-1}b,x\geq 0\}$$
 where y = $A_B^{-\intercal}c_B$

2.6 Formalizing the simplex

1. idea

Let $k \notin B$, such $c_k > 0$, then make x_k as large as possible, keep all other $x_i, i \notin B$ at 0

2. Algorithm

Let a LP be $max\{c^{\intercal}x, Ax = b, x \geq 0\}$, and input a feasible basis B

- Write in Basis B's canonical form
- Find a better Basis or get required outcome
- 3. Algorithm Start with $\max\{c^\intercal x, Ax = b, x \geq 0\}$ in canconical form with Basis B
 - Choose $k \notin B$ with $c_k \geq 0$ and this will be entering variable
 - pick $x_B = b tA_k$ and find the possible t that allowed $x \ge 0$ still holds
 - the $x_i = 0$ after choose t will be leaving, and we get a new basis
 - get the canconical from for the new basis
 - if $c^{\mathsf{T}} \leq 0$, stops with optimal solution
 - if $A_{B'} \leq 0$, stops with unbounded
- 4. Bland's rule
 - if we have a choice for entering value, choose small one
 - if we have a choice for leaving value, choose small one

2.7 Find a Feasible Solution

1. Algorithm

- Rearrange the equation such that RHS is non-negative
- Construct an auxiliary problem For a LP $max(c^{\intercal}x, Ax = b, x \ge 0)$

Assume $A \in M^{m \times n}$

Construct x_{n+1}, \ldots, x_{n+m} as variable, and find the optimal solution of the following LP by Simplex

 $\max(z = \sum_{t=1}^{m} x_{n+t}, (A|I_m)x = b, x \ge 0)$ if the optimal solution x has $x_B = 0, B = \{n+1, \ldots, n+m\}$, then the original LP have a feasible solurion, it not, then it is infeasible

2. Proposition

- if z = 0 then it has solution.
- if z > 0, then it has no slution

2.8 Half-Space and Convexity

1. Feasible region

For an optimization problem, it is the set of all feasible solutions

2. Polyhedron

it $\exists A \in M^{m \times n}$ and $b \in R^n$ where $P = \{x : Ax \leq b\}$, then P is a polyhedron

3. Definition of hyper and half

Let $\alpha \neq 0$ be a vector and $\beta \in R$

- $\{x: \alpha^{\mathsf{T}} x = \beta\}$ is a hyper plane
- $\{x: \alpha^{\mathsf{T}} x \leq \beta\}$ is a half space

A polyhedron is the intersection of finite set of halfspaces

4. Norm

Let $a, b \in \mathbb{R}^n$ then

 $a^{\mathsf{T}}b = ||a||||b||cos(\theta)$

where ||...|| is the norem and θ is the angle between a and b

5. Traslate

Let $S, S' \subseteq \mathbb{R}^n$ (hence they are lines)

then S' is a translate of S is $\exists p \in \mathbb{R}^n$ and

$$S' = \{s + p : s \in S\}$$

and it has the following propositions

- if $H := \{x : a^{\mathsf{T}}x = b\}$ $H' := \{x : a^{\mathsf{T}}x = 0\}$. then they are translate
- if $H := \{x : a^{\mathsf{T}}x \leq b\}$ $H' := \{x : a^{\mathsf{T}}x \leq 0\}$. then they are translate
- 6. Dimension

The dimension of a hyperplane in \mathbb{R}^n is n - 1

- 7. A polyHedron has no "dents" and no "holes"
- 8. Line

Let $x_1, x_2 \in \mathbb{R}^n$, the line through x_1 and x_2 is

$$L = \{x = \lambda x_1 + (1 - \lambda)x_2 : \lambda \in R\}$$

The line segment is $S = \{L : 0 \le \lambda \le 1\}$

9. Convex

A set $S\subseteq R^n$ is convex if , $\forall x_1,x_2\in S$ \exists line segment between x_1 and x_2 in S

- 10. Proposition
 - Let H be a halfspace, then H is convex
 - If P is polyhedron, then P is convex
 - The intersection of 2 convex set is convex

2.9 Extreme Points

1. Properly contained

A point $x \in \mathbb{R}^n$ is properly contained in the line segment L if

- $x \in L$
- x is distinct from end points in L
- 2. Extreme Points

Let S be a convex set and $x \in S$ x is not an extreme point if $\exists L \subseteq S$, where L properly contains x

3. Tight

Let $P = \{x : Ax \leq B\}$ be a polyhedron and let $x \in P$

- A constraints is tight got x if it is satisified with equality and
- the set of all tight constraints is denoted as $\overline{A}x \leq \overline{b}$
- 4. Theorem

Let $P = \{x \in \mathbb{R}^n : Ax \leq b\}$ be a polyhedron and let $x \in P$

- if $rank(\overline{A}) = n$, then x is not an extreme points
- if $rank(\overline{A}) < n$, it is not an extreme points

3 Duality Through Examples

3.1 Duality Throught Examples

- 1. Find an Intuitive Lower Bound Let the graph $G=\{V,E\}$ and for $U\subseteq V$ $\lambda(U)=\{uv\in E:u\in U,v\not\in U\}$ is called an s, t if $s\in U,t\not\in U$
- 2. Assignment of width to cuts A feasible width assignment $\{y_U : \lambda(U), s, t - cut\}$ is feasible if $\forall e \in E$, the total width of all cuts containing e is no more than c_e
- 3. Propostion Let y be a feasible width assignment, then any s,t paths must have length at least $\sum (y_U, Us - tcuts)$

3.2 Weak Duality

- 1. Find the lower bound of the LP Assume we have LP $\min\{c^\intercal x, Ax \geq b, x \geq 0\}$ then we want to find y such that $b^\intercal y$ will be the best lower bound by LP $\max\{b^\intercal y, A^\intercal y \leq c, y \geq 0\}$ and that is the dual of primal LP
- 2. Week Duality Theorem if x is feasible for P and y is feasible for D, then $b^\intercal y \leq c^\intercal x$

3.3 Shortest Path Algorithm

1. Arcs - oreded pair

A Arcs from u to v is denote as $u\vec{v}$ and draw it as arrow from u to v A direct path is a sequence of arcs

2. Slack

Let y be a feasible dual solution, the slack of an edges $e \in E$ is defined as $slack_y(e) = c_e - \sum (y_U : \delta(U), s, t - cut, e \in \delta(U))$ This is just the extra part of a c_e

- 3. Shortest Path, Algorithm 3.2
 - Input: Graph G = (V, E), cost $c_e \ge 0, \forall e \in E, s, t \in V, s \ne t$
 - Output : Shortest Path
 - $y_w = 0$ for all cut, set $U = \{s\}$
 - While $t \notin U$:
 - Let $ab \in E$ be an edge in $\delta(U)$ of smallest slack and where $a \in U, b \notin U$
 - $-y_U = slack(ab)$
 - $-\ U = U \cup \{b\}$
 - change ab to \vec{ab}
 - we can easily see path through arcs

3.4 Correctness

1. Proposition

Let y be a feasible dual solution, and P is a s,t -path, P is ta shortest path if

- all edges on P are equality edges, and
- every active cut $\delta(U)$ has exactly one edges of P

4 Duality Theory

4.1 Weak Duality

- 1. General case of dual LP, Primal-Dual Pair Note: P_{max} on the left, P_{min} on the right
 - \leq constraint $\iff \geq 0$ variable
 - ullet = constraint \iff free variable
 - \geq constraint $\iff \leq 0$ variable
 - ≥ 0 variable $\iff \geq \text{constraint}$
 - free variable \iff = constraint
 - ≤ 9 variable $\iff \leq \text{constraint}$

2. Theorem

Let P_{max} and P_{min} represent the above. if \overline{x} and \overline{y} are feasible for two LPs, then

 $c^{\intercal}\overline{x} \leq b^{\intercal}\overline{y}$

if equality holds, \overline{x} is optimal for P_{max} , \overline{y} is optimal for P_{min}

4.2 Strong Duality

- 1. Strong Duality Theorem If P_{max} has an optimal solution \overline{x} , then P_{min} has an optimal solution \overline{y} such that $c^\intercal x = b_\intercal y$
- 2. Feasibility Version Let P,D be primal-dual pair, if both are feasible, then both have optimal solutions

3. Relationship between P and D

DP	Optimal	unbounded	infeasible
Optimal	possible	impossible	impossible
Unbounded	impossible	impossible	possible
infeasible	impossible	possible	possible

4.3 Geometric Optimality

- 1. Complementary Slackness Let \overline{x} , \overline{y} be feasible for P and D, they are optimal \iff
 - $y_i = 0$
 - i th constraint of P is tight for \overline{x}

5 Solving Integer Programs

5.1 Convex Hull

1. Convex hull

Let $C \subseteq \mathbb{R}^n$, the convex hull of C is the smallest convex set that contains C

And $\forall C$ there is a unique convex hull

2. Meyer's theorem

Let $P = \{x : Ax \le b\}$ where A, b are rational then the convex hull of all integer points in P is a polyhedron

3. Theorem

```
Let IP = \max \{c^{\intercal}x : Ax \leq b, x \in Z\},
the convex hull of all feasible solution of IP = \{x : A'x \leq b\}
LP = \max\{c^{\intercal}x : A'x \leq b', xinteger\}
```

- \bullet IP is infeasible \iff LP is infeasible
- \bullet IP is bounded \iff LP is unbounded
- an optimal solution to IP is an optimal solution to LP
- an extreme optimal solution to LP is an optimal solution to IP

5.2 Cutting Planes

- 1. Cutting Planes Algorithms Let IP be $\max\{c^\intercal x, Ax \leq b, x \in Z\}$
 - Let $P = \max\{c^{\intercal}x, Ax \leq b\}$
 - if P infeasible, stop
 - Let \overline{x} be optimal solution to P
 - if \overline{x} is integral, stop, we found a solution
 - Find a cutting plane (new constaint) such all other feasible solution for IP is still in, but \overline{x} is not in
 - Add the new constraint to IP, repeat
- 2. Find cutting plane constrain

Let a constrain be $f(x) \leq b$

floor all non-integer consstrain and b

new $f(x) \leq b'$ will be all integer constrain that satisified requirement above

6 Non-linear optimization

6.1 Convexity

- Non-linear Pgoram min f(x)
 s.t.
- 2. $g_i(x) \leq 0$
- 3. Local optimum

Let $\min\{f(x): x \in S\}$ be a NLP $x \in S$ is a local optimum if $\exists \delta > 0$ such $\forall x' \in S, ||x' - x|| \leq \delta$, and we have $f(x) \leq f(x')$

4. Proposition If S is convex and x is local optimum, then x is optimal

5. Convex function

$$f: \mathbb{R}^n \to \mathbb{R}$$
 is convex if $\forall a, b \in \mathbb{R}^n$
 $f(\lambda a + (1 - \lambda)b) \le \lambda f(a) + (1 - \lambda)f(b)$

6. Proposition

If g is convex function $S = \{x \in R^n, g(x) \leq b\} \text{ is convex set}$

7. epigraph

Let f be a function $epi(f) = \{(y,x)^\intercal: y \geq f(x), x \in R^n\} \subseteq R^{n+1}$

8. Propostion

f is convex \iff epi(f) is convex

6.2 The KKT theorem

1. subgradient

Let f be convex function

 $s \in \mathbb{R}^n$ will be subgradient of f at \overline{x} if

 $h(x) = f(\overline{x}) + s^{\mathsf{T}}(x - \overline{x}) \le f(x) \text{ for all } x \in \mathbb{R}^n$

2. Supproting

Let $C \subseteq \mathbb{R}^n$ be convex set and $\overline{x} \in \mathbb{C}$

The halfspace $F = \{x : s^{\mathsf{T}}x \leq B\}$ is supporting C at \overline{x} if

- \bullet $C \subseteq F$
- $s^{\mathsf{T}}\overline{x} = \beta$, that is, \overline{x} is on the boundary of F
- 3. Proposition

Let

- g be convex $g(\overline{x}) = 0$
- s be subgradient of g at x
- $C = \{x : g(x) \le 0\}$
- $F = \{x : h(x) = g(\overline{x}) + s^{\mathsf{T}}(x \overline{x}) \le 0\}$

Then f is supporting halfspace of C at \overline{x}

4. Proposition

Let $\min\{c^{\intercal}x, g_i(x) \leq 0\}$ be NLP

All g_i are convex

 \overline{x} is feasible

all $g_i(\overline{x}) = 0$

 s_i be subgradient

if $-c \in cone\{s_i : i \in I\}$, then \overline{x} is optimal

- 5. Slater point if all $g_i(\overline{x}) < 0$, then \overline{x} is a slater point
- 6. Karush-Kuhn-Kucker (KKT) theorem

Let $\min\{c^{\mathsf{T}}x, g_i(x) \leq 0\}$ be NLP

Suppose

- g_i are convex
- there is a slater point
- \overline{x} is feasible
- $I = \{i : g_i(\overline{x}) = 0\}$
- $\forall i \in I$, there is a gradient $\Delta g_i(\overline{x})$ of g_i at \overline{x}

Then \overline{x} is optimal \iff $-c \in cone\{\Delta g_i(\overline{x}) : i \in I\}$