Ozyegin University CS 321 Programming Languages Sample Problems on Interpretation

1. (From PLC, Exercise 1.1) Given the definition of the simple ArithLang below, extend this language with conditional expressions (i.e. "if") corresponding to Java's expression e_1 ? e_2 : e_3 , or OCaml's if e_1 then e_2 else e_3 . Evaluation of a conditional expression should evaluate e_1 first. If it yields a non-zero value, evaluate e_2 , otherwise evaluate e_3 .

```
type exp = CstI of int
         | Var of string
         | Add of exp * exp
         | Mult of exp * exp
         | Subt of exp * exp
         | Div of exp * exp
         | LetIn of string * exp * exp
(* lookup: string -> (string * int) list -> int *)
let rec lookup x env =
 match env with
  | [] -> failwith ("Unbound name " ^ x)
  | (y,i)::rest \rightarrow if x = y then i
                   else lookup x rest
(* eval: exp -> (string * int) list -> int *)
let rec eval e env =
 match e with
  | CstI i -> i
  | Var x -> lookup x env
  | Add(e1, e2) -> eval e1 env + eval e2 env
  | Mult(e1, e2) -> eval e1 env * eval e2 env
  | Subt(e1, e2) -> eval e1 env - eval e2 env
  | Div(e1, e2) -> eval e1 env / eval e2 env
  | LetIn(x, e1, e2) \rightarrow let v = eval e1 env
                        in let env' = (x, v)::env
                            in eval e2 env'
```

Sample Problems

Page 2 of 5

 $\mathrm{CS}\ 321$

2.	(From PLC, Exercise 1.1) Extend ArithLang to handle three additional operators: "max", "min", and
	"=". Like the existing binary operators, they take two argument expressions. The equals operator
	should return 1 when true and 0 when false.

3. Write the representation of the following ArithLang expressions using the exp data type.

(a)
$$v * 5 - k + 6$$

(b) x + y + z + p

(c) 5 - (y - 3) * (g + 1)

```
(d) let x =
    let a = 5
    in let b = 8
        in a + b
    in x * (let y = x + 2 in y)
```

4. Write an OCaml function named simplify that takes an exp and returns its simplified form based on the rules below:

```
\begin{array}{l} 0+e\rightarrow e\\ e+0\rightarrow e\\ e-0\rightarrow e\\ 1\times e\rightarrow e\\ e\times 1\rightarrow e\\ 0\times e\rightarrow 0\\ e\times 0\rightarrow 0\\ e-e\rightarrow 0 \end{array}
```

Remark: This problem is harder than it seems, because simplification of expressions may enable other simplifications, and I want to you to handle those cases, too. See the test cases.

```
# simplify (Mult(CstI 1,
                 Mult(Add(Add(CstI 1,
                              Subt(Var "x", Var "x")),
                          Add(CstI 4, CstI 6)),
                      CstI 1)));;
- : exp = Add(CstI 1, Add(CstI 4, CstI 6))
# simplify (Subt(CstI 0, Mult(Add(Var "x", CstI 0), CstI 0)));;
- : exp = CstI 0
# simplify (LetIn("a", CstI 4,
                  Subt(CstI 0,
                       Mult(Add(Var "x", CstI 0),
                            CstI 0))));;
- : exp = LetIn("a", CstI 4, CstI 0)
# simplify (Subt(Add(CstI 7, CstI 0),
                 Mult(Add(Var "x", CstI 0), CstI 0)));;
-: exp = CstI 7
# simplify (Div(Subt(CstI 0,
                     Mult(Add(Var "x", CstI 0), CstI 0)),
```

```
CstI 7));;
- : exp = Div(CstI 0, CstI 7)
```