Mengen

Zahlenmengen

 $\mathbb{Z}:-1,-2,-3$ $\mathbb{N}: 0, 1, 2$ $\mathbb{C}:\sqrt{-7},i$ $\mathbb{R}: \sqrt[3]{8}, e, \pi$

Operationen

Teilmenge Schnittmenge $\mathbb{A} \cap \mathbb{B} = \{c; d\}$ $\{c;d\}\subset\mathbb{A}$ Vereinigungsmenge Produktmenge $\mathbb{A} \cup \mathbb{B} = \{a; b; c; d; e\}$ $\mathbb{A} \times \mathbb{B} = \{(c, a); (c, b); (d, a);$ (d,b);(e,a);(e,b)Potenzmenge $\mathcal{P}(X) := \{A \mid A \subseteq X\} = \{\{\emptyset\}; \{c\}; \{d\}; \{e\}; \{c; d\}; \{c\}\}\}$ $\{c;e\};\{d;e\};\{c;d;e\}\}$

Potenzgesetze

$$\begin{bmatrix}
a^0 = 1 \\
a^{-r} = \frac{1}{a^r}
\end{bmatrix}
\begin{bmatrix}
a^{r+s} = a^r \cdot a^s
\end{bmatrix}
\begin{bmatrix}
a^{r-s} = \frac{a^r}{a^s}
\end{bmatrix}$$

$$\begin{bmatrix}
a^{\frac{m}{n}} = \sqrt[n]{a^m} = \left(\sqrt[n]{a}\right)^m
\end{bmatrix}
\begin{bmatrix}
(a \cdot b)^r = a^r \cdot b^r
\end{bmatrix}$$

$$\begin{bmatrix}
\left(\frac{a}{b}\right)^r = \frac{a^r}{b^r}
\end{bmatrix}
\begin{bmatrix}
(a^r)^s = a^{r \cdot s}
\end{bmatrix}$$

Bool'sche Algebra

Operationen

0

Negation $A \mid \overline{A}$ 1

1	' '				
Konj	unkt	ion	Disju	ınkti	on
A	B	$A \wedge B$	A	B	$\mid A$
0	0	0	0	0	
0	1	0	0	1	
1	0	0	1	0	
1	1	1	1	1	
Äqui	valer	nz	$_{ m Impl}$	ikati	on
A	B	$A \Leftrightarrow B$	A	B	$\mid A$
0	0	1	0	0	
0	1	0	Λ	1	

0

	1	1	1			
	Implikation					
3	A	B	$A \rightarrow B$			
	0	0	1			
	0	1	0			
	1	0	1			
	1	1	1			
·	'					

 $A \vee B$

0

1

Normalformen

A	B	C	Y	Konjunktive Normalform (Minterme)
0	0	0	0	$(\overline{A} \wedge B \wedge \overline{C}) \vee (\overline{A} \wedge B \wedge C) \vee$
0	0	1	0	, , ,
0	1	0	1	$(A \wedge \overline{B} \wedge C) \vee (A \wedge B \wedge C)$
0	1	1	1	
1	0	0	0	Disjunktive Normalform (Maxterme)
1	0	1	1	$(A \lor B \lor C) \land (A \lor B \lor \overline{C}) \land$
1	1	0	0	
1	1	1	1	$(\overline{A} \lor B \lor C) \land (\overline{A} \lor \overline{B} \lor C)$

Tautologie/Kontradiktion

T aut	ologi	ie	Impl	ikati	on
A	\overline{A}	$A \vee \overline{A}$	A	\overline{A}	$A \wedge \overline{A}$
0	1	1	0	1	0
1	0	1	1	0	0

Eine Tautologie ist eine immer wahre Aussage Eine Kontradiktion ist eine immer falsche Aussage

Funktionen

Werte- und Definitionsbereich

Definitionsbereich:

Zahlenbereich für x, den die Funktion annehmen darf Wertebereich:

Zahlenbereich für y, den die Funktion annehmen kann

Monotonie

Symmetrie

Punktsymmetrie
$$f(-x) = -f(x)$$
 Achsensymmetrie $f(-x) = -f(x)$ Beispiel: $f(x) = x^4 + 2x^2 + 1$ $f(-x) = -f(x)$ $(-x)^4 + 2(-x)^2 + 1 = -(x^4 + 2x^2 + 1)$ $x^4 + 2x^2 + 1 = -x^4 - 2x^2 + 1$ $\Rightarrow f(-x) \neq -f(x)$, keine PS
$$f(x) = f(-x)$$
 $x^4 + 2x^2 + 1 = (-x)^4 + 2(-x)^2 + 1$ $x^4 + 2x^2 + 1 = x^4 + 2x^2 - 1$ $\Rightarrow f(x) = f(-x)$, AS

Nullstellen

Funktion gleich 0 setzen (f(x) = 0) und nach x auflösen pq-Formel (quad. NF nötig)

$$x_{1/2} = -\frac{p}{2} \pm \sqrt{\left(\frac{p}{2}\right)^2 - q}$$

abc-Formel
$$x_{1/2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Umkehrfunktion

$$f(x): y = \frac{1}{2}x + 2$$

$$y = \frac{1}{2}x + 2 \quad |-2| \cdot 2$$

$$x = 2y - 4$$

Vertauschen von x und y:

$$f^{-1}(x) = 2x - 4$$

Funktionen sind umkehrbar, wenn

- im Definitionsbereich streng monoton fallen oder stei-
- jede Parallele nur einmal die x-Achse schneidet

$$- \mathbb{D}^{-1} = \mathbb{W} \qquad \mathbb{W}^{-1} = \mathbb{D}$$

Koeffizienteneinfluss für quad. Funktion

$$f(x) = ax^2 + bx + c$$

a - Richtung der Öffnung, Streckung/Stauchung

b - Verschiebung in des Scheitelpunkts (in x und y)

		(0)
	Δx	Δy
b+1	$-\frac{1}{2}a$	$\frac{2b+1}{4a}$
b-1	$\frac{1}{2}a$	$\frac{2b-1}{4a}$
0.1 *** 1.4	•, 1 A 1	

c - Schnittpunkt mit der y-Achse

Beweise

direkt

Möglich wenn ein Zwischenschritt zur Lösung führt. $a^2 < b^2 \Rightarrow a < b$

$$a < o \Rightarrow a < o$$

$$a^2 < b^2 \underset{:b}{\Longleftrightarrow} a < \frac{b^2}{\cancel{a}} < \frac{a^2}{\cancel{b}} < b$$

 $\Leftrightarrow a < b < a < b \Leftrightarrow a < b$

indirekt (Kontraposition)

Umdrehen der 'Vergleichszeichen'; linke Seite so umstellen, sodass rechte Seite entsteht

$$a^2 < b^2 \Rightarrow a < b$$

$$a \geqslant b \Rightarrow a^2 \geqslant b^2$$

$$a \geqslant b$$
 $|-b|$

$$a - b \geqslant 0$$
 $|\cdot (a + b)|$

$$(a-b) \cdot (a+b) \ge 0$$
 | 3. BF

$$a^2 - b^2 \geqslant 0 \qquad | + b^2$$

$$a^2 \geqslant b^2$$

Widerspruch

Umdrehen der 'Vergleichszeichen' einer Seite, linke Seite so umstellen, sodass rechte Seite entsteht

$$a^2 < b^2 \Rightarrow a < b$$

$$a^2 < b^2 \Rightarrow a \geqslant b$$

$$a^2 < b^2 \qquad |-b^2|$$

$$a^2 - b^2 < 0$$
 | 3. BF

$$(a+b)(a-b) < 0 \qquad |: (a+b)$$

$$a-b < 0 \qquad |+b|$$

$$a < b \neq a \geqslant b$$

Induktion

- 1. Basisschritt n = 1 berechnen (wenn unwahr, endet der Beweis)
- 2. Induktionsannahme n = k
- 3. Induktionsschritt n = k + 1

Binome

Binomische Formeln

$$n=2$$

1.
$$(a+b)^2 = a^2 + 2ab + b^2$$

2.
$$(a-b)^2 = a^2 - 2ab + b^2$$

3.
$$(a+b)^2 = a^2 - b^2$$

$$n = 3$$
$$(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$$

$$n = 4$$

$$(a+b)^4 = a^4 + 4a^b + 6a^2b^2 + 4ab^3 + b^4$$

Binomialkoeffizient

$$\binom{n}{k} = \frac{n!}{k! \cdot (n-k)!}$$
$$= \binom{n}{n-k}$$

Symmetrie und Regeln

$$\binom{n}{0} = 1 = \binom{n}{n}$$

$$\binom{n+1}{k+1} = \binom{n}{k} + \binom{n}{n+k}, \forall n > 0 \land 0 \leqslant k < n$$

Binomischer Lehrsatz

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^{n-k} y^k$$

Komplexe Zahlen

Arithmetik

Addition/Subtraktion

$$\underline{z}_1 \pm \underline{z}_2 = (a+bi) \pm (c+di)$$
$$= (a \pm c) \pm (b \pm d) i$$

Multiplikation

$$z_1 \cdot z_2 = (a+bi) \cdot (c+di)$$

$$= ac + adi + bci + bdi^2$$

$$= ac + adi + bci - bd$$

$$= ac - bd + (ad + bc)i$$

Division
$$\frac{z_1}{z_2} = \frac{a+bi}{c+di}$$

$$= \frac{a+bi}{c+di} \cdot \frac{c-di}{c-di}$$

$$= \frac{ac+bd+(bc-ad)i}{c^2+d^2}$$

$$= \frac{ac+bd}{c^2+d^2} + \frac{bc-ad}{c^2+d^2}i$$

Formen

Allgemeine Form

$$z = a + b \cdot i$$

Trigonometrische Form

$$\underline{z} = r\left(\cos\varphi + i\sin\varphi\right)$$

Euler (Polar) Form $\underline{z} = r \cdot e^{i \cdot \varphi}$

Betrag

$$r = \sqrt{a^2 + b^2}$$

Argument

$$\varphi = \begin{cases} \arctan\left(\frac{b}{a}\right), a > 0 \\ \arctan\left(\frac{b}{a}\right) + \pi, a < 0 \land b \geqslant 0 \\ \arctan\left(\frac{b}{a}\right) - \pi, a < 0 \land b < 0 \end{cases}$$

$$\frac{\pi}{2}, a = 0 \land b > 0$$

$$-\frac{\pi}{2}, a = 0 \land b < 0$$

Einheitskreis

Schwingungen

Äquivalente Behandlung zu komplexen Zahlen $r\equiv A$

Überlagerung (komplexe Amplitude)

$$\begin{split} \underline{A} &= \underline{A}_1 + \underline{A}_2 \\ &= r_1(\cos(\varphi_1) + i\sin(\varphi_1)) + r_2(\cos(\varphi_2) + i\sin(\varphi_2)) \\ \text{Ergebnis ist in allg. Form} \end{split}$$

Überlagerung (Amplitude / Phasenwinkel)

komplexe Amplitude in Euler Form überführen.

- Betrag entspricht der Amplitude A
- Phasenwinkel entspricht Wert auf Einheitskreis

Vektorenrechnung

Arithmetik

Addition
$$\vec{a} + \vec{b} = \begin{pmatrix} a_x + b_x \\ a_y + b_y \\ a_z + b_z \end{pmatrix}$$

Subtraktion
$$\vec{a} - \vec{b} = \begin{pmatrix} a_x - b_x \\ a_y - b_y \\ a_z - b_z \end{pmatrix}$$

Multiplikation

$$\vec{a} \cdot \vec{b} = \begin{pmatrix} a_x \cdot b_x \\ a_y \cdot b_y \\ a_z \cdot b_z \end{pmatrix}$$

Skalarprodukt

$$\vec{a} \circ \vec{b} = a_x \cdot b_x + a_y \cdot b_y + a_z \cdot b_z$$

Senkrechte (orthogonale) Vektoren $\vec{a} \circ \vec{b} = 0 \Rightarrow \vec{a} \perp \vec{b}$

Kreuzprodukt

$$\vec{c} = \vec{a} \times \vec{b} = \begin{pmatrix} a_y \cdot b_z - a_z \cdot b_y \\ a_z \cdot b_x - a_x \cdot b_z \\ a_x \cdot b_y - a_y \cdot b_x \end{pmatrix}$$

Fläche des Parallelogramms

$$A = |\vec{c}| = \sqrt{c_x^2 + c_y^2 + c_z^2}$$

Spatprodukt (Koplanarität)

$$V = \left(\vec{a} \times \vec{b}\right) \cdot \vec{c}$$

Wenn $(\vec{a} \times \vec{b}) \cdot \vec{c} = 0$, dann

- sind die Vektoren linear abhängig
- liegen die Vektoren auf einer Ebene (komplanar)
- sind sie keine Basisvektoren

Berechnung für eine fehlende Koordinate über Determi-

$$\det V = a_x \cdot (b_y \cdot c_z - b_z \cdot c_y) - a_y (b_x \cdot c_z - b_z \cdot c_x)$$
$$+ a_z (b_x \cdot c_y - b_y \cdot c_z) = 0$$

- Umstellen nach gesuchter Koordinate
- Wert ausrechnen

Spatprodukt (Volumina)

Volumen von Prisma bzw. Spat

$$V = \left(\vec{a} \times \vec{b}\right) \cdot \vec{c}$$

Volumen einer Pyramide (Quadrat, Rechteck, Parallelogramm als Grundfläche)

$$V = \frac{1}{3} \left(\vec{a} \times \vec{b} \right) \cdot \vec{c}$$

Volumen dreiseitige Pyramide
$$V = \frac{1}{6} \left(\vec{a} \times \vec{b} \right) \cdot \vec{c}$$

Orthogonalprojektion

$$\vec{u}_{\vec{v}} = \frac{\vec{u} \cdot \vec{v}}{\|\vec{v}\|^2} \vec{v}$$
 (Vektor \vec{u} abgebildet auf \vec{v})

Richtungswinkel

$$\cos \alpha_x = \frac{\vec{a}_x}{|\vec{a}|} = \frac{\vec{a}_x}{\sqrt{a_x^2 + a_y^2 + a_z^2}}$$
$$\cos \alpha_y = \frac{\vec{a}_y}{|\vec{a}|} = \frac{\vec{a}_y}{\sqrt{a_x^2 + a_y^2 + a_z^2}}$$
$$\cos \alpha_z = \frac{\vec{a}_z}{|\vec{a}|} = \frac{\vec{a}_z}{\sqrt{a_x^2 + a_y^2 + a_z^2}}$$

Winkel zwischen Vektoren

$$\cos \alpha = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}| \cdot |\vec{b}|} = \frac{a_x b_x + a_y b_y + a_z b_z}{\sqrt{a_x^2 + a_y^2 + a_z^2} \cdot \sqrt{b_x^2 + b_y^2 + b_z^2}}$$

Betragsgleichungen

1. Fallunterscheidung für jeden Betrag der Gleichung füh-

$$|f(x)| = \begin{cases} f(x) \geqslant 0 \\ -(f(x)) < 0 \end{cases}$$

- 3. Schnittmenge der Ergebnisse bilden (prüfen der Wahrheitswerte)

Beispiel