Cours 2 Le modèle relationnel

Les objectifs

- Les modèles de bases de données
- Les concepts du modèle relationnel Domaine, Attribut et Relation
- Notions de clé primaire et de clé étrangère

Les objectifs(suite)

- Contraintes d'Intégrité
 - Intégrité de domaine
 - Intégrité de relation
 - Intégrité de référence
- Bases de données relationnelles

- Les modèles de bases de données
 - Le modèle hiérarchique
 - Entités=>segments
 - Association père-fils
 - Primitives pour rechercher un père et naviguer entre ses fils.
 - Utilise les pointeurs
 - modèle navigationnel

- Le modèle réseau
- Entités=>types d'enregistrements
- Association n-n
- Une entité fille peut être liée à plusieurs entités mères
- modèle navigationnel

- Le modèle relationnel

- Proposé par Edgar F. Codd au début des années 70.
- ➤ Implémenté par IBM SEQUEL=>SQL

 System-R de IBM,

 Ingres(INteractive Graphics REtrieval System) de Berkeley
- Puissant : basé sur la théorie des ensembles et le calcul des prédicats(logique)

- Le modèle objet

- Représentation des objets (Données + Méthodes):objets persistants
- ➤ Intégration des concepts OO

- Le modèle relationnel
 Trois aspects:
 - Aspect structure (tables)
 - Aspect contraintes
 - Aspect opérateurs ou opérations

- Les concepts du modèle relationnel (structure)
 - Domaine, attribut, relation

Domaine :

Ensemble de valeurs partageant le même sens. Un domaine est caractérisé par un nom.

Exemples

- Le domaine de matricules des employés qu'on note par exemple par : Dom_mate est constitué des chaînes de caractère de longueur 20.
- Le domaine des salaires est constitué des réels de longueur 8 avec 2 chiffres après la virgule: Dom_salaire.

 Notion de produit cartésien Exemple

Soit D1={1,2,3} et D2={a,b} des domaines.

Le produit cartésien D1xD2 est donné par

 $D1xD2=\{(1,a),(1,b),(2,a),(2,b),(3,a),(3,b)\}$

Exercice

Soit D1={1,2} et D2={a, b, c} des domaines.

Chercher le produit cartésien D1xD2.

Exercice

Soit D1= $\{1,2\}$, D2= $\{a,b\}$ et D3= $\{c\}$ des domaines.

Chercher le produit cartésien D1xD2xD3.

Notion de produit cartésien(définition générale)

```
D1, D2...Di...Dn des domaines. Le produit cartésien des Di qu'on note par ∏Di ou D1xD2...xDn est l'ensemble des éléments de la forme :
```

(u1, u2, ...,ui,...,un) avec ui € Di. on utilise aussi la notation :

Exemple1

```
Dom_code={entier}

Dom_salaire ={réels}

Dom_code x Dom_salaire peut contenir des couples
(1,12000.25),(2,10000.5)...
```

Exemple2

```
Dom_code={entier sur 3 chiffres}

Dom_salaire ={réels sur 10 chiffres}

Dom_nom={chaînes de longueurs 10}

Dom_code x Dom_nom x Dom_salaire
peut contenir des triplets

(1,'ali',12000),(2,'said',10000)...
```

Notion de relation ou table

- Une relation est un sous-ensemble d'un produit cartésien D1xD2...xDn
- Une relation est caractérisée par un nom
- Si R est une relation issue de ∏Di on écrit

Exemple1

Dom salaire

Soit les domaines
Dom_code={entier}
Dom_salaire ={réels}.
Le sous-ensemble R défini par
R={('1',12000.25),('2',10000.5)}
est une relation de Dom_code x

Exemple2

```
R={('1', 'ali', 12000), ('2', 'said', 10000)} est une relation de
```

Dom_code x Dom_nom x Dom_salaire avec

Dom_code={entier sur 3 chiffres}

Dom_salaire ={réels sur 10 chiffres}

Dom_nom={chaînes de longueurs 10}

Les éléments de la relation R sont appelées

- des tuples ou lignes
- Si t € R alors t=(t1, t2, ...,ti,...,tn) avec ti € Di pour i=1 à n.
- n est dit degré de la relation R
- t s'appelle aussi un n-uplets

Degré de la relation

- Représentation tabulaire d'une relation relation =table avec
 - Les tuples sont les lignes
 - Chaque colonne contient les valeurs d'un domaine
 - Exemple

Soit R C dom_code x dom_nom x dom_salaire, on peut représenter R par

 Dans une représentation tabulaire, on donne à chaque colonne de la relation un nom appelé attribut de la relation.

Employé		
Code	nom	salaire
e1\	ali	8000
e2\	med	10000
e3 /	yassine	12000
Représentation tabulaire ou en extension d'une relation		

d'une relation

- Une relation peut avoir plusieurs attributs issus d'un même domaine(voir suivant).
- Les attributs sont différents dans une relation.
- 2 relations peuvent avoir deux attributs identiques :

```
service(...,libellé,...)
dept(...,libellé,...)
```

service.libellé attribut libellé de la relation service

Employé				
code	nom	prénom	salaire	
1	ali	ahmed	10000	
2	falah	med	8000	
3	khalil	rachid	12000	

nom et prénom sont deux attributs issus du même domaine nom_prénom : chaîne de caractères de longueur 20

 On peut aussi parler d'une représentation en compréhension ou schéma de relation :
 Employé(code,nom,prénom,salaire, nserv).

- Notion de contrainte d'intégrité
 Est une condition qui doit être respectée par les données de BD:
- On distingue deux types de contraintes
 - Contraintes structurelles (modèle de BD)
 - Contraintes applicatives (attachée au domaine d'étude)

- Les contraintes structurelles sont :
 Contrainte de domaine, contrainte de relation et contrainte de référence
 - Contrainte de domaine

Valeurs des attributs E leurs domaines

Contrainte de relation

Notion de clé primaire

Un attribut (groupe d'attributs) qui identifie chaque tuple de la relation.

La clé primaire est soulignée dans un schéma de relation

Exemples

- Code_produit
- >CIN
- >CNE

- Contrainte de relation(suite)
 - Une relation a toujours une clé primaire car une relation est un sous ensemble=>tuples différents
 - Une clé primaire doit être minimale=minimum d'attributs identifiant les tuples
 - Contrainte de relation
 - Une relation a une et une seule clé primaire.

- Contrainte de relation(suite)
 - Clé candidate
 Est un attribut qu'on peut substituer à la clé primaire
 - Superclé
 Groupe d'attributs contenant une clé
 Exemples
 (cne, nom, prénom)
 (code_emp, nom)

- Contrainte de référence
 - Notion de clé étrangère

Soit A un attribut d'une relation R

- A est dit clé étrangère dans R si
- A n'est pas primaire dans R
- et il est primaire dans une autre relation

Exemples

```
service(<u>nserv</u>, libellé,...) et emp(<u>nemp</u>,nom...,nserv*)
```

Contrainte de référence(suite)

- Les clé étrangères sont indiquées par * dans un schéma de relation
- Les clé étrangères permettent les liens entre les relations.

Contrainte de référence

Une relation respecte la contrainte de référence si les valeurs de la clé étrangère figurent dans la clé primaire associée ou bien elles sont à null.

null signifie valeur inconnue (ni 0 ni chaîne vide)

- Bases de données relationnelles
 Est une collection de relations respectant les contraintes d'intégrités.
 - Chaque relation possède
 - un nombre fini d'attributs et
 - un nombre qlq de tuples
 - Exemple de BDR

Auteur (code_auteur,nom, prénom)

Livre (code_livre, titre, année_édition)

A_ecrit(code_auteur*, code_livre*)

Auteur			
Code_auteur	Nom	Prénom	
1	Bassil	Ali	
2	Balla	Ahmed	
3	Ada	Reda	

Livre			
Code_livre	Titre	Année_edition	
1	SGBD	1986	
2	BSDR	1994	
3	Le relationnel	1996	
4	Réseau	1998	

A_ecrit		
Code_auteur	Code_livre	
1	2	
2	1	
3	3	
3	4	

Exercices

- domaine(type)
- produit cartésien
- relation(table)
- attribut(colonne, champ)
- clé primaire
- clé étrangère