Derived Functors

Derived Functors

In this section, fix an abelian category A.

1 Resolution

Definition 1 (Resolution). Let $A \in \mathcal{A}$. A projective resolution (resp. flat resolution, free resolution) of A is an exact sequence

$$\cdots \to P_n \to P_{n-1} \to \cdots \to P_1 \to P_0 \to A \to 0$$
,

where each P_i is a projective (resp. flat, free) object in \mathcal{A} .

An *injective resolution* of A is an exact sequence

$$0 \to A \to I^0 \to I^1 \to I^2 \to \cdots \to I^n \to \cdots$$

where each I^i is an injective object in \mathcal{A} .

Proposition 2. Let $P_{\bullet}: \cdots \to P_1 \to P_0 \to A \to 0$ and $Q_{\bullet}: \cdots \to Q_1 \to Q_0 \to B \to 0$ be complexes in \mathcal{A} such that P_i is projective and Q_{\bullet} is exact. Given a morphism $f: A \to B$, there exists a morphism of complexes $f_{\bullet}: P_{\bullet} \to Q_{\bullet}$ such that $f_0 = f$. In particular, any two such morphism of complexes are homotopic.

Dually, let $I^{\bullet}: 0 \to A \to I^{0} \to I^{1} \to \cdots$ and $J^{\bullet}: 0 \to B \to J^{0} \to J^{1} \to \cdots$ be complexes in \mathcal{A} such that J^{i} is injective and I^{\bullet} is exact. Given a morphism $f: A \to B$, there exists a morphism of complexes $f^{\bullet}: I^{\bullet} \to J^{\bullet}$ such that $f^{0} = f$. In particular, any two such morphism of complexes are homotopic.

Proof. Yang: To be completed.

Definition 3. For an object $A \in \mathcal{A}$, the *projective dimension* of A, denoted proj. dim A, is the smallest integer n such that there exists a projective resolution

П

$$0 \to P_n \to P_{n-1} \to \cdots \to P_1 \to P_0 \to A \to 0$$

of A of length n. If no such n exists, we set proj. dim $A = \infty$.

Dually, the *injective dimension* of A, denoted inj. dim A, is the smallest integer n such that there exists an injective resolution

$$0 \to A \to I^0 \to I^1 \to \cdots \to I^{n-1} \to I^n \to 0$$

of A of length n. If no such n exists, we set inj. dim $A = \infty$.

Date: June 22, 2025, Author: Tianle Yang, My Website