FORMAL LANGUAGES AND AUTOMATA, 2024 FALL SEMESTER

Lec 19. Reduction and undecidable languages III

Eunjung Kim

Post Correspondence Problem (PCP)

$$\left\{ \left[\frac{b}{ca}\right], \ \left[\frac{a}{ab}\right], \ \left[\frac{ca}{a}\right], \ \left[\frac{abc}{c}\right] \right\}_{\text{Chapter 5.2, Sipser 2012.}}$$

EMIL POST'S CORRESPONDENCE PROBLEM

INPUT: a (finite) set $P = \{(\alpha_1, \beta_1), (\alpha_2, \beta_2), \dots (\alpha_k, \beta_k)\}$ of ordered pairs (called dominoes) of strings over Σ .

QUESTION: Is there a match, i.e. a sequence $i_1, \ldots, i_m \in [k]$ such that

$$\alpha_{i_1}\cdots\alpha_{i_m}=\beta_{i_1}\cdots\beta_{i_m}$$
?

$$\left[\frac{a}{ab}\right] \left[\frac{b}{ca}\right] \left[\frac{ca}{a}\right] \left[\frac{a}{ab}\right] \left[\frac{abc}{c}\right]$$

Key idea: many-one reduction (mapping-reduction).

- Many-one reduce from $A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM accepting } w \}$ to PCP.
- As an intermediary problem we introduce a decision problem Modified PCP (MPCP), in which an instance of PCP is a YES-instance iff there is a match which begins with the first domino (α_1, β_1) .
- Combine two (many-one) reductions: from A_{TM} to MPCP, and one from MPCP to PCP.

Set-up

- **I** We assume that the TM M of instance $\langle M, w \rangle$ satisfies:
 - it is deterministic, with left/right move only.
 - M never attempts to move the header to the left when it is in the left-most cell of the tape.
 - if $w = \epsilon$, the string w is encoded as B, where B is a symbol in the alphabet.
- Reduction from MPCP to PCP is simple:

$$\left\{ \left[\frac{t_1}{b_1}\right], \ \left[\frac{t_2}{b_2}\right], \ \left[\frac{t_3}{b_3}\right], \ \dots \ , \left[\frac{t_k}{b_k}\right] \right\}$$

$$\left\{\left[\frac{\star t_1}{\star b_1 \star}\right],\; \left[\frac{\star t_1}{b_1 \star}\right],\; \left[\frac{\star t_2}{b_2 \star}\right],\; \left[\frac{\star t_3}{b_3 \star}\right],\; \ldots\;, \left[\frac{\star t_k}{b_k \star}\right],\; \left[\frac{\star \diamondsuit}{\diamondsuit}\right]\right\}$$

Chapter 5.2, Sipser 2012.

Key idea for many-one reduction from A_{TM} to MPCP:

From an instance $\langle M, w \rangle$ to A_{TM} , create an instance (i.e. the set of dominoes) to MPCP so that there is a match if and only if there is an accepting computation history of M on w.

Implementing the idea:

In a match, the string is an accepting computation history of the form

$$\#C_1\#C_2\#\cdots\#C_\ell\#$$

• The first domino is $(\#, \#q_0 \ w\#)$, so the match begins in a form

Implementing the idea: In a match, the dominoes are grouped into blocks (contiguous dominoes), where each group is one of the following forms:

■ Stage 1: expresses a starting configuration. The first domino forms a single group and falls into this stage.

2 Stage 2: expresses a transition from the config C_i to C_{i+1} .

Stage 3: once the bottom string reaches an accept state, the dominoes let the upper string to catch up with the bottom string. (Details later.)

Implementing details using "gadgets": given the instance $\langle M, w \rangle$ to A_{TM} , we progressively construct the instance P to MPCP by adding the following dominoes.

Gadget for Stage 1: we (the algorithm / TM) adds the domino of the form $(\#, \#q_0 \ w\#)$

- Gadgets for Stage 2: add dominoes for expressing the transitions as well as the tape content.
 - Right move: For each $a, b \in \Gamma$ and each $q, r \in Q$ where $q \neq q_{reject}$, add the domino (qa, br) if $\delta(q, a) = (r, b, R)$
 - **2** Left move: For each $a, b, c \in \Gamma$ and each $q, r \in Q$ where $q \neq q_{reject}$, add the domino (cqa, rcb) if $\delta(q, a) = (r, b, L)$
 - Symbol domino: for each $a \in \Gamma$, add the domino (a, a)
 - 4 Expressing the end of the tape content / the unused cell on the right: add the dominoes (#, #) and (#, B#).

Example:
$$\delta(q_5, 0) = (q_9, 2, L)$$

$$\left[\frac{0q_50}{q_902}\right], \left[\frac{1q_50}{q_912}\right], \left[\frac{2q_50}{q_922}\right], \text{ and } \left[\frac{\sqcup q_50}{q_9\sqcup 2}\right]$$
Chapter 5.2, Sipser 2012.

- Gadgets for Stage 3: add dominoes so that the upper string catches up with the bottom string once (the bottom) reaches the accept state.
 - **I** "Eat-up" the leftover tape content: for each $a \in \Gamma$, add the domino

$$\left[rac{a\ q_{
m accept}}{q_{
m accept}}
ight]$$
 and $\left[rac{q_{
m accept}\ a}{q_{
m accept}}
ight]$

2 Finish the match: add the domino

$$\left[\frac{q_{\text{accept}}##}{#}\right]$$

Finishing the reduction: to show that there is a (many-one) reduction from A_{TM} to PCP consists of two parts.

- Construct a reduction. That is, we show an algorithm which maps an arbitrary instance $\langle M, w \rangle$ to A_{TM} to a suitable instance P to MPCP.
- **Establish the equivalence.** we need to show that $\langle M, w \rangle \in A_{TM}$ if and only if $P \in MPCP$. That is, $\langle M, w \rangle$ is a YES-instance to A_{TM} if and only if the constructed instance P is a YES-instance to MPCP.
- So far, we constructed a reduction (= designed an algorithm outputting an equivalent instance of MPCP from an instance of A_{TM}).

Finishing the reduction: Establishing the equivalence consists of two directions.

- From A_{TM} to MPCP. One shows that if $\langle M, w \rangle \in A_{TM}$ (equivalently, it is a YES-instance / M accepts w), then the constructed instance P is a YES-instance to MPCP, i.e. there is a match in P beginning with the first domino.
- **2** From MPCP to A_{TM} One shows that if the constructed instance P allows a match starting with the first domino, then $\langle M, w \rangle$ is a YES-instance to A_{TM} .

If $\langle M, w \rangle \in A_{TM}$, then *P* allows a match starting with the first domino.

Let $C_1, C_2, \dots C_\ell$ be the computation history of M on w. We construct a solution of the instance P as follows.

- $\blacksquare \text{ Place the first domino; } s_1 = \#, s_2 = \#C_1\#.$
- Use a sequence of 'symbol domino', 'transition domino', 'end-of-string/move-off-to-right domino' as needed to get

$$s_1 = \#C_1\#$$
 and $s_2 = \#C_1\#C_2\#$.

Continue the above 2 until you get

$$s_1 = \#C_1\#C_2\#\cdots\#C_{\ell-1}\#$$
 and $s_2 = \#C_1\#C_2\#\cdots\#C_{\ell-1}\#C_{\ell}\#$,

where C_{ℓ} is the accepting configuration.

If $\langle M, w \rangle \in A_{TM}$, then *P* allows a match starting with the first domino.

We finish the partial match forming $s_1 = ... \#$ and $s_2 = ... \# C_{\ell} \#$ as follows.

Use the symbol dominoes and 'eat-up' dominoes for Stage 3 of the form

$$\left[rac{a\ q_{
m accept}}{q_{
m accept}}
ight]$$
 and $\left[rac{q_{
m accept}\ a}{q_{
m accept}}
ight]$

so that

$$s_1 = ... \# C_{\ell} \#$$
 and $s_2 = ... \# C_{\ell} \# C_{\ell}^1$.

where C_ℓ^1 is a string having precisely one less symbol than C_ℓ around $q_{accept}.$

Repeat the above 4 to extend s_1 and s_2 into the forms

$$s_1 = ... \# \textit{C}_{\ell} \# \textit{C}_{\ell}^1 \# \cdots \# \textit{C}_{\ell}^{j-1} \# \qquad \text{and } s_2 = ... \# \textit{C}_{\ell} \# \textit{C}_{\ell}^1 \# \cdots \# \textit{C}_{\ell}^j \#$$

until $C_\ell^j = q_{accept}$.

6 Use the 'finish-the-match' domino and finish the match.

$$\left[\frac{q_{\text{accept}}##}{#}\right]$$

If P allows a match starting with the first domino, then $\langle M, w \rangle \in A_{TM}$ holds. Suppose that $s_1 = s_2$ is the string formed by a match i_1, \ldots, i_m .

The match must begin with the block of the form

- 2 One should replicate C_1 in the upper string. The only dominoes containing some state are the transition , 'eat-up' dmino, or the finish-the-match domino. Assuming $w \neq \epsilon$. there is a prefix of the form $s_1 = \#C_1\#C_2\#\cdots\#C_{\ell-1}\#$ and $s_2 = \#C_1\#\cdots\#C_2\#\cdots\#C_{\ell-1}\#C_{\ell}\#$, where C_i is a legal move of M from C_{i-1} .
- Similarly, you can argue that the string from a match should be of the form $s = \#C_1 \# \cdots \# C_\ell \# C_\ell^1 \# \cdots \# C_\ell^j \# \#$, where C_ℓ^i omits one symbol around q_{accept} from C_ℓ^{i-1} for all $i \leq j$, and $C_\ell^j = q_{accept}$.
- We conclude that there is a sequence of legal moves (i.e. computation history) of *M* on *w*.

REVISITING MANY-ONE REDUCTION

Many-one reducibility: Definition

Let $A \subseteq \Sigma^*$ and $B \subseteq \Sigma^*$ be two languages.

We say that A is mapping-reducible (or many-one reducible) to B, written as $A \leq_m B$, if there is a <u>computable</u> function $f: \Sigma^* \to \Sigma^*$ such that for every input $w \in \Sigma^*$,

 $w \in A$ if and only if $f(w) \in B$.

REVISITING MANY-ONE REDUCTION

MANY-ONE REDUCIBILITY: REPHRASE

Let $A \subseteq \Sigma^*$ and $B \subseteq \Sigma^*$ be two languages. A (many-one / mapping) reduction from A to B is an algorithm which

INPUT given an instance x to A as input

OUTPUT computes an equivalent instance y to B. That is, x is a YES-instance to A if and only if y is a YES-instance to B (i.e. $x \in A$ if and only if $y \in B$).

• When $A = A_{TM}$ and B = MPCP, we designed an algorithm which gets $x = \langle M, w \rangle$ as input and output an instance P to MPCP.

REVISITING MANY-ONE REDUCTION

- When $A = A_{TM}$ and B = MPCP, we designed an algorithm which gets $x = \langle M, w \rangle$ as input and output an instance P to MPCP.
- What if the input x is not of the form $\langle M, w \rangle$?
- The reduction (algorithm) can always check if x conforms the format of an instance to A, and output a trivial No-instance to B if it is not the case.
- So we can assume that x is in the form $\langle M, w \rangle$.
- This step of reduction for checking if the input is "well-formed" is often skipped (as this can be easily done).

REVISIT: TURING-REDUCTION FROM

ATM TO REGIM

 $REG_{TM} = \{M : M \text{ is TM and } L(M) \text{ is a regular language}\}.$

- D, upon an input $\langle M, w \rangle$ to A_{TM} , does the following:
 - **I** Compute & write an encoding $\langle M_o^{M,w} \rangle$ of TM $M_o^{M,w}$ such that

$$L(M_o^{M,w}) = \begin{cases} \{0^n 1^n \mid n \ge 0\} & \text{if } M \text{ does not accept } w \\ \Sigma^* & \text{if } M \text{ accepts } w \end{cases}$$

- 2 Run R on $\langle M_0^{M,w} \rangle$.
- 3 D outputs

• Can we turn the above Turing-reduction into a many-one reduction?

REVISIT: TURING-REDUCTION FROM

A_{TM} **TO** E_{TM}

Emptiness problem: $E_{TM} = \{M : M \text{ is TM and } L(M) = \emptyset\}.$

- D, upon an input $\langle M, w \rangle$ to A_{TM} , does the following:
 - **I** Compute an encoding of a TM M_o^w such that

$$L(M_o^w) = \begin{cases} \{w\} & \text{if } M \text{ accepts } w \\ \emptyset & \text{if } M \text{ does not accept } w \end{cases}$$

- 2 Run R on $\langle M_o^w \rangle$.
- B D outputs

$$\begin{cases} \text{No} & \text{if } E(\langle M_o^w \rangle) = \text{YES} \\ \text{YES} & \text{if } E(\langle M_o^w \rangle) = \text{No} \end{cases}$$

• Can we turn the above Turing-reduction into a many-one reduction?

TURING-REDUCTION VS MAPPING-REDUCTION

Emptiness problem: $E_{TM} = \{M \text{ is TM and } L(M) = \emptyset\}.$ Non-emptiness problem: $SOME_{TM} = \{M : M \text{ is TM and } L(M) \neq \emptyset\}.$

 A_{TM} is Turing-reducible to E_{TM} (last week).

 A_{TM} is not many-one reducible to E_{TM} .

- Complement of E_{TM} , i.e. $SOME_{TM}$ is Turing-recognizable (how so?).
- We know $\neg A_{TM}$ is not Turing-recognizable (why?)
- If $A_{TM} \leq_m E_{TM}$, then $\neg A_{TM} \leq_m SOME_{TM}$, contradiction.