

HPC³ 2024 المشكلة A، أرابيك

مكتبة العجائب

الحد الأقصى للنقاط: 5

تفتح مكتبة العجائب قسمًا جديدًا، وتحتاج إلى مساعدتكم لتحديد كيفية تنظيمه .تحتوي المكتبة $k~(0 < k \leq 10^6)$ على أنواع مختلفة من الكتب ذات الأبعاد المتساوية، وكتب N_i

النوع i -th. $(0 \le i < k)$

نظرًا لأن المكتبة من المفترض أن تكون مختلفة تمامًا في كل زيارة، فإنهم يريدون معرفة عدد الترتيبات . المميزة التي يمكنهم تشكيلها

ومع ذلك، تميل المكتبة إلى إجراء تحولات دورية ^{11 [}على أقسامها .لذلك، يريدون منك معرفة عدد الترتيبات المختلفة للكتب بحيث لا يمكن إجراء أي ترتيب من أي كتاب آخر بأي عدد أو مجموعة .من التحولات الدورية

.تعتبر جميع الكتب من نفس النوع متكافئة تمامًا

يتم تعريف التحول الدوري على أنه عملية تحريك جميع الكتب مسافة واحدة في نفس الاتجاه، مع التفاف الكتب $^{[1]}$ التحول الدوري إلى الأسفل $m \times m$ التي تترك حدود الترتيب إلى الجانب الآخر .رسميًا، إذا مثلنا ترتيبًا كمصفوفة، فإن واستبدال جميع (i,j) ($i \leq i \leq n, \ 1 \leq j \leq m$) بالعنصر الموجود في (i,j) ($i \leq i \leq n, \ 1 \leq j \leq m$) بالعنصر الموجود في (i,j) ($i \leq i \leq n, \ 1 \leq j \leq m$

المشكلة الفرعية 1

والارتفاع W قررت المكتبة أن تجعلك تقوم بإنشاء ترتيب ثنائي الأبعاد للعرض H ($0 < W \leq 10^6$, $0 < H \leq 10^6$).

ومن المؤكد أن .th- النوعi هو عدد الكتب من A_i حيث k، بطول A لقد أعطوك أيضًا مصفوفة M imes M يساوي A مجموع

تنسيق الإدخال

و، وW، W يحتوي السطر الأول من كل إدخال على 3 أعداد صحيحة W. على أعداد صحيحة :محتوى المصفوفة M يحتوى السطر الثاني من كل إدخال M.

W H k A[0] A[1] A[2] ... A[k]

```
تنسيق الإخراج
```

يحتوي السطر الأول والوحيد لكل إخراج على عدد صحيح واحد C.

С

هو عدد الترتيبات الممكنة التي يمكن إجراؤها؟ C أين

أمثلة على حالات الاختبار

الإدخال 1

1 1 1

المخرج 1

1

على ترتيب ممكن واحد .لذا، يجب أن يعيد البرنامج 1x1تحتوي الشبكة 1.

المدخل 2

6 1 3 1 2 3

المخرج 2

10

، التي تحتوي على 1 و2 و3 كتب من أنواع مختلفة على 10 ترتيبات ممكنة .لذا 6x1تحتوي الشبكة .يجب أن يعيد البرنامج 10

المدخل 3

3 3 2

المخرج 3

12

التي تحتوي على 3 و6 كتب من أنواع مختلفة على 12 ترتيبًا ممكنًا .لذا، يجب 3x3تحتوي الشبكة . أن يعيد البرنامج 12

المشكلة الفرعية 2

بعد ذلك، ستقوم بإنشاء ترتيبات للقسم ثلاثي الأبعاد للمكتبة .سيتم تزويدك بأبعاد القسم :العرض W والطول U والطول U والطول U والعرض U والعرض عند العرض U والعرض عند العرض U والعرض عند العرض U والعرض العرض عند العرض .

ومن المؤكد أن .th. النوع i هو عدد الكتب من A_i حيث k بطول i مرة أخرى، لديك مجموعة $M \times M$ يساوي $M \times M \times M$

تنسيق الإدخال

و L، و W، H و W، و يحتوي السطر الأول من كل إدخال على 4 أعداد صحيحة M و خال على أعداد صحيحة :محتوى المصفوفة M يحتوي السطر الثاني من كل إدخال M.

W H L k A[0] A[1] A[2] ... A[k]

تنسيق الإخراج

يحتوي السطر الأول والوحيد لكل إخراج على عدد صحيح واحد C.

C

هو عدد الترتيبات الممكنة التي يمكن إجراؤها؟ C أين

أمثلة على حالات الاختبار

الإدخال 1

12 1 1 3 2 4 6

المخرج 1

1160

تحتوي الشبكة التي يبلغ حجمها 12×1×1 والتي تحتوي على 2 و4 و6 كتب من أنواع مختلفة على . ترتيبًا ممكنًا لذا، يجب أن يعيد البرنامج 1160 ترتيبًا 1160

المدخل 2

2 3 3 2 6 12

المخرج 2

1044

، التي تحتوي على 6 و12 كتابًا من أنواع مختلفة على 1044 ترتيبًا ممكنًا .لذا 3x3x3تحتوي الشبكة 2 يجب أن يعيد البرنامج 1044

المدخل 3

72 60 96 4 17280 86400 120960 190080

المخرج 3

231490207

التي تحتوي على 17280 و86400 و120960 و190080 كتابًا من أنواع 60x96تحتوي شبكة 72 . . مختلفة على 231490207 ترتيبًا ممكنًا .لذا، يجب أن يعيد البرنامج 231490207

المشكلة الفرعية 3

الآن، سمحت لك المكتبة بالتوسع إلى قسمها متعدد الأبعاد .ستقوم الآن بإنشاء ترتيبات في شكل N من الأطوال N منشور مستطيلي ذي أبعاد - أطوال محاور معطاة بواسطة مجموعة N من الأطوال منشور مستطيلي ذي أبعاد - N منشور مستطيلي ذي أبعاد - أطوال محاور معطاة بواسطة مجموعة N منشور N منشور المحور N منشور المحور المحور المحور المعاون كل عنصر المحور المح

ومن المؤكد أن .th. النوع i هو عدد الكتب من A_i حيث k بطول A مرة أخرى، لديك مصفوفة S. يساوي حاصل ضرب عناصر A مجموع

تنسيق الإدخال

- و يحتوي السطر الأول من كل إدخال على عددين صحيحين l و k.
- على أعداد صحيحة :محتوى المصفوفة l يحتوي السطر الثاني من كل إدخال S.
- على أعداد صحيحة :محتوى المصفوفة k يحتوي السطر الثالث من كل إدخال A.

l k S[0] S[1] S[2] ... S[1] A[0] A[1] A[2] ... A[k]

تنسيق الإخراج

يحتوي السطر الأول والوحيد لكل إخراج على عدد صحيح واحد C.

C

هو عدد الترتيبات الممكنة التي يمكن إجراؤها؟ C أين

أمثلة على حالات الاختبار

الإدخال 1

4 5 4 3 3 5 43 30 75 32

المخرج 1

82946004

التي تحتوي على 43 و30 و75 و32 كتابًا من أنواع مختلفة على 4x3x3x5 تحتوي شبكة . ترتيبًا ممكنًا .لذا، يجب أن يعيد البرنامج 82946004 82946004 .

المدخل 2

7 9 11 9 7 4 9 15 19 13

1000000000 1500000000 800000000 1100000000 900000000 1250000000 950000000 1150000000 1000000000 3240527600

المخرج 2

925581285900

تحتوي الشبكة التي تحتوي على كتب من أنواع مختلفة الموضحة أعلاه على 925581285900 . ترتيبًا ممكنًا لذا، يجب أن يعيد البرنامج 925581285900