Istituzioni di A & G — ALGEBRA, lezioni 14

25/10/22

1

Ricordiamo

• (G,\cdot) gruppo, H < G induce una relazione di equivalenza sugli elementi di G: $\forall \ a,b \in G, \ a \sim_H b \quad \Leftrightarrow \quad ba^{-1} \in H \quad \Leftrightarrow \quad \exists \ h \in H \text{ tale che } b = ha.$

• Le classi di equivalenza sono dette classi laterali destre di H:

$$Ha = [a]_{\sim_H} = \{ha \mid h \in H\}.$$

• In modo analogo si definisce la relazione di equivalenza $\forall \ a,b \in G, \ a_H {\sim} \ b \quad \Leftrightarrow \quad a^{-1}b \in H \quad \Leftrightarrow \quad \exists \ h \in H \ \text{tale che } b = ah.$

 \bullet Le classi di equivalenza sono dette classi laterali sinistre di $H\colon$

$$aH = [a]_{H^{\sim}} = \{ah \mid h \in H\}.$$

• # classi laterali sinistre = # classi laterali destre = [G:H] indice di H in G.

• Teorema di Lagrange. (G, \cdot) un gruppo finito, H < G. Allora

$$|G| = [G:H]|H|.$$

In particolare, l'ordine di H divide l'ordine di G.

- ullet Il periodo di ogni elemento di un gruppo finito G divide |G|.
- Se G è un gruppo finito, allora $x^{|G|} = 1_G$ per ogni $x \in G$.
- ullet Se G è un gruppo di ordine p primo, allora G è ciclico. In particolare, $G\simeq \mathbb{Z}_p$
- (G,\cdot) gruppo, N < G è detto sottogruppo normale se per ogni $a \in G$:

$$aN = Na$$
.

Scriviamo $N \triangleleft G$, e indichiamo $G/_N \sim = G/\sim_N \text{ con } G/N$.

- Un gruppo è detto semplice se non ha sottogruppi normali propri.
- Criterio di normalità. (G, \cdot) gruppo, N < G. N è normale se e solo se:

$$\forall a \in G, \ \forall \ h \in N: \ aha^{-1} \in N$$

Teorema 1. Siano (G, \cdot) un gruppo e $N \triangleleft G$: è possibile definire una operazione su G/N rispetto alla quale G/N è un gruppo e la proiezione $\pi: G \rightarrow G/N$ è un omomorfismo avente come nucleo N. G/N è detto gruppo quoziente modulo N.

Quindi un sottogruppo normale è il nucleo di un omomorfismo. Viceversa:

Proposizione 2. Se $\varphi: G \to G'$ est un omomorfismo di gruppi, $\operatorname{Ker}(\varphi) \lhd G$.

In altre parole, un sottoinsieme di un gruppo è un sottogruppo normale se e solo se è il nucleo di qualche omomorfismo del gruppo.

dim prop 2: usismo enteño di normalità:

Sia ae ke(p), ge G, gag-'e ker(p)? $\varphi(q-a-g^{-1}) = \varphi(g).\varphi(a).\varphi(g)^{-1} = \varphi(q).A'.\varphi(g)^{-1} = \varphi(g).\varphi(g)^{-1}A'.\varphi(g)^{-1} = \varphi(g).\varphi(g)^{-1}A'.\varphi(g$

Escripio: sgn: In - gilly è omonorpa C - s sp6(0) Ke (cpn) = An è sottograppo normale in the state of the state of the state of

I teorema di isomorfismo, o teorema fondamentale degli omo di gruppi $Sia\ \varphi: G \to G'$ un omomorfismo, $K = \mathrm{Ker}(\varphi),\ e\ \pi: G \to G/K$ la proiezione canonica sul gruppo quoziente. Allora esiste un omomorfismo iniettivo

$$\bar{\varphi}: G/K \to G'$$

tale che $\bar{\varphi} \circ \pi = \varphi$, ovvero tale da rendere commutativo il seguente diagramma:

$$G \xrightarrow{\varphi} G'$$

$$\pi \bigvee_{\bar{\varphi}} G/K$$

In particolare, esiste un isomorfismo $G/K \simeq \operatorname{Im}(\varphi)$

Corollario 3. Se $\varphi: G \to G'$ un omomorfismo suriettivo, allora $G/\operatorname{Ker}(\varphi) \simeq G'$

din (I teoreme di usomorfosmo)

Definiamo: \(\varphi\). \(G/\varphi\). \(G/\varphi\). \(\varphi\). \(\varphi'\). \

• φ ben definite: se a/k = b/k = 1 bea. k = 3 $\exists k \in K$ tote the $b = a \cdot k$. Difference $\varphi(b) = \varphi(a \cdot k) = \varphi(a) \cdot \varphi(k) = \varphi(a)$ $\xi \in \ker(\varphi)$

$$\dot{\varphi} = in\cdot e^{\frac{1}{2}} e^{\frac{1}{2}} = i \cdot e^{\frac{1}{2}} e^{\frac{1}{2}$$

· Abbieno diepremne:

Esercizio. Dimostrare che $\mathrm{SL}_n(\mathbb{R})$ è sottogruppo normale di $\mathrm{GL}_n(\mathbb{R})$.

ric: $SC_n(IR) = \frac{1}{2}A \in GC_n(IR) / \operatorname{det}(A) = 1 \frac{1}{2} < GC_n(IR)$ criterio di normalità:

Sia $A \in SC_n(IR)$, $B \in GC_n(IR)$, $B \cdot A \cdot B^{-1} \in SC_n(IR)$ det $(B \cdot A \cdot B^{-1}) = \operatorname{det}(B) \cdot \operatorname{det}(A) \cdot \operatorname{det}(B^{-1}) = \operatorname{det}(B) \cdot \operatorname{det}(B)^{-1} = 1$

Esercizio. Siano G e H gruppi finiti aventi ordini primi fra loro. Dimostrare che Hom(G, H) contiene solo un elemento, descrivendolo.

Sie
$$|G|=m$$
, $|H|=n$
dim: Sie $\varphi \in Hon(G,H)$. Allore $Im(\varphi) \in H$
=1 $|Im(\varphi)| / |H|$
Anche: $G_{|G|} = Im(\varphi) = Im(\varphi) = |G_{|G|} =$

Esercizio. Sia (G, \cdot) un gruppo. Dimostrare che l'applicazione

$$\varphi: G \to G$$

$$g \mapsto g^2$$

è un omomorfismo se e solo se G è abeliano. Nel caso G sia abeliano, stabilire se φ è o meno un automorfismo.

din:

$$(gh)^2 = \varphi(gh) = \varphi(g) \varphi(h) = g^2h^2$$

c=1
$$\forall q$$
, $h:(qh)(qh)^2 = g^2h^2 = 1$ $\forall q, h \in G$: $hq = gh$

legge concelleron

Level June 1 July and 1

Nel easo & abeliano, y non è sempre automorfismo

$$\mathbb{Z}_5 \to \mathbb{Z}_{5^-}$$

as tomorpomo

 $a \longrightarrow 2a$

0 -- 0

T - 2

5 - 4

3 - 6 - 1

 \overline{q} $\sqrt{5} = \overline{3}$

(IR*,)
$$\rightarrow$$
 (IR*,) non è automo-filmo

 $\times - \times^2$

Part Mina

Esercizio. Sia (G, \cdot) un gruppo abeliano di ordine n, e sia m un intero coprimo con n. Dimostrare che l'applicazione

$$\varphi: G \to G$$
$$g \mapsto g^m$$

è un automorfismo.

den: φ ommerfisms perché (G_1, \cdot) abeliens vections φ estonor fumo studiando il $\ker(\varphi)$. $g \in \ker(\varphi) = i$ $g^m = 1 = i$ $\operatorname{ord}(g) / m$ $\operatorname{Ma} \operatorname{ord}(g) / n$ (Lagrange) = i $\operatorname{ord}(g) / n, m = i$ $\operatorname{ord}(g) = 1 = i$ g = 1 $\operatorname{HD}(n, m) = 1$

Cioè, Kely) = 3164