[2008]

[2010]

[2011]

21.PROBABILITY

ai24btech11014 - Charitha Sri

I. JEE Main / AIEEE

1) It is given that the events A and B are such that $Pr(A) = \frac{1}{4}$, $Pr(A|B) = \frac{1}{2}$ and $Pr(B|A) = \frac{2}{3}$. Then

c) $\frac{2}{3}$

c) 1

2) A die is thrown. Let A be the event that the number obtained is greater than 3. Let B be the event

3) In a binomial distribution $B(n, p = \frac{1}{4})$, if the probability of at least one success is greater than or

d) $\frac{1}{2}$

d) $\frac{2}{5}$

d) $\frac{1}{3}$

Pr(B) is

b) $\frac{1}{3}$

b) 0

b) $\frac{1}{21}$

least one failure is greater than or equal to $\frac{31}{32}$, then p lies in the interval

that the number obtained is less than 5. Then $Pr(A \cup B)$ is

a) $\frac{1}{6}$

a) $\frac{3}{5}$

colours is

a) $\frac{2}{7}$

[2009]		equal to $\frac{9}{10}$, then n is greater than:				
	$\begin{array}{c} 4\\ \frac{1}{10}4 - \log_{10}3\\ \frac{1}{10}4 - \log_{10}3 \end{array}$	c) ; d)	; i	a) $\frac{1}{\log_{10} 4 + \log_{10} 3}$ b) $\frac{9}{\log_{10} 4 - \log_{10} 3}$		
O. Then the probability of these digits is zero, [2009]					4)	
1/14	d)	c)	b) $\frac{5}{14}$	a) $\frac{1}{7}$		
5) Four numbers are chosen at random (without replacement) from the set $\{1, 2, 3, 20\}$. Statement-1: The probability that the chosen numbers when arranged in some order will form an AP is $\frac{1}{85}$. Statement-2: If the four chosen numbers form an A.P, then the set of all possible values of common difference is $(\pm 1, \pm 2, \pm 3, \pm 4, \pm 5)$. [2010]						
nation for Statement-1	is not a correct expla	-2 is false t-2 is true.	-1 is true, Statement-2 -1 is false, Statement-2	b) Statement-c) Statement-		
green. Three balls are	r are blue and two are	hich three are red, fo	ains nine balls of which) An urn conta	6)	

c) $\frac{2}{23}$

7) Consider 5 independent Bernoulli's trails each with probability of success p. If the probability of at

[*JEEM*2017]

d) $\frac{14}{55}$

	$\begin{bmatrix} 1 \\ 3 \end{bmatrix}$	c) $\left(\frac{11}{12}, 1\right)$ d) $\left(\frac{1}{2}, \frac{3}{4}\right]$		a) $\left(\frac{3}{4}, \frac{11}{12}\right]$ b) $\left[0, \frac{1}{2}\right]$			
statement among the [2011]	\neq 0. then the correct st	at $C \subset D$ and $Pr(D)$ 7	events such the) If C and D are two following is	8)		
	$C D) = \frac{\Pr(D)}{\Pr(C)}$ $C D) = \Pr(c)$	c) Pr (C)d) Pr (C)		a) $Pr(C D) \ge Pr(C)$ b) $Pr(C D) < Pr(C)$			
. The probability that [2012]	ent from $\{1, 2, 3 \dots 8\}$. T	m without replacement maximum is 6, is:			9)		
2 5	d) $\frac{2}{5}$	c) $\frac{1}{4}$	b) $\frac{1}{5}$	a) $\frac{3}{8}$			
	10) A multiple choice examination has 5 questions. Each question has three alternative answers of which exactly one is correct. The probability that a student will get 4 or more correct answers just by guessing is: [JEEM2013]						
~	d) $\frac{10}{3^5}$	c) $\frac{11}{3^5}$	b) $\frac{13}{3^5}$	a) $\frac{17}{3^5}$			
11) Let A and B be two events such that $\Pr(\overline{A \cup B}) = \frac{1}{6}$, $\Pr(\overline{A \cap B}) = \frac{1}{4}$, and $\Pr(\overline{A}) = \frac{1}{4}$, where \overline{A} stands for the complement of the event A . Then the events A and B are $[JEEM2014]$							
-	ually exclusive and indepally likely but not indepe		a) independent but not equally likely.b) independent and equals likely.				
12) If 12 identical balls are to be placed in 3 identical boxes, then the probability that one of the boxes contains exactly 3 balls is: [JEEM2015]							
	$(\frac{2}{3})^{11}$ $(\frac{2}{3})^{10}$	c) $\frac{55}{3} \left(\frac{2}{3}\right)$ d) $55 \left(\frac{2}{3}\right)$		a) $220 \left(\frac{1}{3}\right)^{12}$ b) $22 \left(\frac{1}{3}\right)^{11}$			
13) Let two fair six-faced dice A and B be the thrown simultaneously. If E_1 is the event that die A shows up four, E_2 is the event that die B shows up two and E_3 is the event that the sum of numbers on both dice is odd, then which of the following statement is NOT true? [JEEM2016]							
	and E_2 are independent. and E_3 are independent.		-	a) E_1 and E_3 are inc b) E_1 , E_2 and E_3 are			
14) A box contains 15 green and 10 yellow balls. If 10 balls are randomly drawn, one-by-one, with replacement, then the variance of the number of green balls drawn is: [JEEM2017]							
1	d) 4	c) 6	b) $\frac{12}{5}$	a) $\frac{6}{25}$			

15) If two different numbers are taken from the set from the set (0, 1, 2, 3, ..., 10). Then the probability

c) $\frac{12}{55}$

that their sum as well as absolute difference are both multiple of 4, is:

b) $\frac{6}{55}$

a) $\frac{7}{55}$