FIZIKA 1 - ZI 2008./2009. - 3. dio

4. TERMODINAMIKA

4.1. PRVI ZAKON TERMODINAMIKE

- kada toplina ulazi u sustav $\Rightarrow \Delta Q > 0$
- kada toplina izlazi iz sustava $\Rightarrow \Delta Q < 0$
- plin može vršiti rad:
 - o plin vrši rad (ekspanzija) $\Rightarrow \Delta W > 0$
 - o na plinu se vrši rad (kompresija) $\Rightarrow \Delta W < 0$
- unutarnja energija: ΔU promjena unutarnje energije: $\Delta U = \Delta Q \Delta W$

Iz toga proizlazi prvi zakon termodinamike:

$$\Delta O = \Delta U + \Delta W$$

Za infinitezimalne procese prvi zakon termodinamike glasi:

$$dQ = dU + dW$$

Posebno, za idealni plin gornja relacija poprima oblik:

$$dQ = mc_v dT + pdV$$

4.2. RAD PRI PROMJENI STANJA PLINA. JEDNADŽBA ADIJABATE

Pri **izohornom** zagrijavanju, odnosno hlađenju, ne vrši se rad jer je dV = 0, te je i dW = 0. Prvi zakon za izohorni proces daje:

$$dQ = dU$$

Ako plin zagrijavamo **izobarno** (p = konst.), tada je izvršeni rad:

$$W = \int_{V_1}^{V_2} p dV = p(V_2 - V_1)$$

Pri **izotermnoj** ekspanziji temperatura je konstantna, plin se ponaša prema Boyle – Mariotteovu zakonu pV = konst., pa je rad:

$$W_i = \int_{1}^{2} p dV = nRT \int_{V}^{V_2} \frac{dV}{V} = nRT \ln \left(\frac{V_2}{V_1} \right)$$

$$W_i = nRT \ln \frac{V_2}{V_1} = nRT \ln \frac{p_2}{p_1}$$

Za **adijabatski** proces, pri kojem sistem ne razmjenjuje toplinu s okolinom, dQ = 0, te je dU = -dW. Kada sistem vrši rad (adijabatska ekspanzija), njegova se unutrašnja energija (te i temperatura) smanjuje, i on se hladi; kada se plin adijabatski komprimira, on se grije. Proces će biti adijabatski ako je sistem dobro toplinski izoliran. Budući da prijenos topline teče sporo, brzi su procesi također adijabatski.

JEDNADŽBA ADLJABATE.

Molarni toplinski kapaciteti definiraju se relacijama:

$$C_V = \frac{1}{n} \frac{dU}{dT} \Leftrightarrow dU = nC_V dT$$
 i

$$C_p = \frac{1}{n} \frac{dQ}{dT} \Leftrightarrow dQ = nC_p dT$$
.

Omjer $\kappa = \frac{C_p}{C_V} = \frac{c_p}{c_V}$ se naziva se adijabatski koeficijent.

Iz prvog zakon termodinamike i plinske jednadžbe dobivamo za idealni plin vezu između C_p i C_V :

$$dQ = dU + dW$$

$$nC_{p}dT = nC_{V}dT + pdV \Leftrightarrow nC_{p}dT - nC_{V}dT = pdV$$

$$n(C_{p} - C_{V})dT = nRdT$$

$$C_{p} - C_{V} = R$$

To je Mayerova relacija za molarne toplinske kapacitete idealnog plina. Ona se može napisati i za specifične toplinske kapacitete:

$$c_p - c_V = \frac{R}{M}$$

Budući da je $\kappa = \frac{C_p}{C_v}$, onda je $\kappa C_V - C_V = R$, odnosno:

$$C_V = \frac{R}{\kappa - 1}$$
 i $C_p = \frac{\kappa R}{\kappa - 1}$

Jednadžbu adijabate možemo izvesti iz prvog zakona termodinamike, koji za adijabatski proces s idealnim plinovima ima oblik dU = -dW = pdV. Tada imamo:

(1)
$$dU = -dW$$

(2)
$$C_V = \frac{R}{\kappa - 1}$$
 i $C_p = \frac{\kappa R}{\kappa - 1}$.

Uvrštavanjem (2) u (1) dobivamo:

$$dU = -dW \Leftrightarrow nC_V dT = -pdV \Leftrightarrow n\frac{R}{\kappa - 1} dT = -nRT\frac{dV}{V}$$

odnosno integriranjem dobijemo:

$$\int_{T_{1}}^{T_{2}} \frac{dT}{T} = -(\kappa - 1) \int_{V_{1}}^{V_{2}} \frac{dV}{V} \iff \ln T_{2} - \ln T_{1} = -(\kappa - 1)(\ln V_{2} - \ln V_{1}) \iff \ln \frac{T_{2}}{T_{1}} = -(\kappa - 1)\ln \frac{V_{2}}{V_{1}} \iff \frac{T_{2}}{T_{1}} = \left(\frac{V_{2}}{V_{1}}\right)^{-(\kappa - 1)}$$

$$\frac{T_2}{T_1} = \left(\frac{V_1}{V_2}\right)^{\kappa-1} \iff T_2 V_2^{\kappa-1} = T_1 V_1^{\kappa-1} \iff TV^{\kappa-1} = konst. (1)$$

Odatle, primjenom plinske jednadžbe, izlazi veza između tlaka i volumena pri adijabatskom procesu:

$$\frac{p_2}{p_1} = \left(\frac{V_1}{V_2}\right)^{\kappa} \iff p_2 V_2^{\kappa} = p_1 V_1^{\kappa} \iff p V^{\kappa} = konst. (2)$$

Iz jednadžbi (1) i (2) dobivamo:

$$\frac{T_2}{T_1} = \left(\frac{p_2}{p_1}\right)^{\frac{\kappa-1}{\kappa}} \iff T_2^{\kappa} p_2^{1-\kappa} = T_1^{\kappa} p_1^{1-\kappa} \iff T^{\kappa} p^{1-\kappa} = konst.$$

Rad koji idealni plin izvrši pri adijabatskoj ekspanziji jest:

$$W_{a} = \int_{1}^{2} p dV = nR \int_{1}^{2} T \frac{dV}{V} = \frac{nR}{1 - \kappa} \int_{T_{1}}^{T_{2}} dT = \frac{nR}{1 - \kappa} (T_{1} - T_{2})$$

4.3. DRUGI ZAKON TERMODINAMIKE

Ne moguće je napraviti toplinski stroj koji bi, ponavljajući kružni proces, svu toplinu uzetu iz jednog spremnika pretvorio u rad. Ako se želi dobiti rad iz topline, uvijek dio te topline mora prijeći u hladniji spremnik (okolinu).

4.4. CARNOTOV KRUŽNI PROCES

Omogućuje dobivanje rada iz toplinskog stroja.

<u>1 – 2</u>

U početku je plin u stanju p_1, V_1, T_1 . Dovođenjem količine topline Q_1 iz grijača stalne temperature T_1 plin se za vrijeme prvog procesa **izotermno** širi do stanja **2**, određenoga koordinatama p_2, V_2, T_1 . Plin pri toj izotermnoj ekspanziji obavi rad:

$$W_{12} = nRT_1 \ln \frac{V_2}{V_1}$$

koji je proporcionalan površini ispod krivulje 1-2 i jednak apsorbiranoj količini topline:

$$Q_1 = nRT_1 \ln \frac{V_2}{V_1}$$

Rad i toplina su **pozitivne** veličine.

2 - 3

Sistem je dobro izoliran od okoline i nema razmjene topline s okolinom (Q = 0). Plin se pri tom **adijabatski** širi od volumena V_2 do volumena V_3 i hladi od temperature T_1 na temperaturu T_2 . Pri tom se obavi rad na račun unutrašnje energije:

$$W_{23} = \frac{nR}{\kappa - 1} (T_1 - T_2)$$

3-4

Zatim se plin pri stalnoj temperaturi T_2 izotermno stisne na volumen V_4 . Za taj proces potreban je vanjski rad:

$$W_{34} = nRT_2 \ln \frac{V_4}{V_3}$$

koji sistem prima od okoline. Pri tom se količina topline:

$$Q_2 = nRT_2 \ln \frac{V_4}{V_3}$$

odvodi iz sistema u hladnjak. Rad i toplina su negativne veličine.

4 - 1

U točki **4** sistem se ponovno termički izolira i počinje **adijabatska** kompresija, koja sistem vraća u početno stanje. Za taj proces potreban je rad:

$$W_{41} = \frac{nR}{\kappa - 1} (T_2 - T_1).$$

Ukupni rad pri tom kružnom procesu je:

$$W = W_{12} + W_{23} + W_{34} + W_{41}$$

Budući da je rad dobiven adijabatskom ekspanzijom jednak radu utrošenom pri adijabatskoj kompresiji, dobiveni rad jednak je:

$$W = W_{12} + W_{34}$$

Sistem je za vrijeme kružnog procesa primio količinu topline $Q_1 + Q_2 = |Q_1| - |Q_2|$. Budući da je sistem kružni, i sistem se vratio u početno stanje, promjena unutrašnje energije je nula, te je, prema prvom zakonu termodinamike:

$$W = Q_1 + Q_2 = |Q_1| - |Q_2|$$

Koeficijent korisnog djelovanja jest omjer izvršenog rada i utrošene topline:

$$\eta = \frac{W}{Q_1} = \frac{|Q_1| - |Q_2|}{|Q_1|} = 1 - \frac{|Q_2|}{|Q_1|}$$
(1)

Pri tome Q_2 nikad ne može biti jednaka nuli, te je koeficijent iskorištenja uvijek manji od 100%.

Uvrštavanjem izraza za \mathcal{Q}_2 i \mathcal{Q}_1 u (1), i uzveši u obzir da je

$$T_1 V_2^{\kappa - 1} = T_2 V_3^{\kappa - 1}$$

$$T_1 V_1^{\kappa - 1} = T_2 V_4^{\kappa - 1}$$

odnosno

$$\frac{T_1 V_2^{\kappa - 1}}{T_1 V_1^{\kappa - 1}} = \frac{T_2 V_3^{\kappa - 1}}{T_2 V_4^{\kappa - 1}}$$

$$\frac{V_2}{V_1} = \frac{V_3}{V_4}$$

dobivamo za koeficijent iskorištenja Carnotova stroja s idealnim plinom:

$$\eta = \frac{T_1 - T_2}{T_1} = 1 - \frac{T_2}{T_1}$$

5. KINETIČKO - MOLEKULARNA TEORIJA TOPLINE

5.1. TLAK IDEALNOG PLINA

Zamislimo da je plin u kutiji oblika kocke, brida A. Uočimo jednu od N molekula koliko ih ima u kocki (i – ta molekula). Njezina je masa m_m , a brzina $\vec{v}_i = \vec{v}_{ix} + \vec{v}_{iy} + \vec{v}_{iz}$. Prilikom sudara sa stijenkom posude (onom okomitom na os x na slici) promijeni se x komponenta količine gibanja molekule za iznos:

$$\Delta p_{ix} = m_m v_{ix} - (-m_m v_{ix}) = 2m_m v_{ix}$$

Promjena količine gibanja jednaka je impulsu sile koji je primila stijenka. Budući da je molekuli potrebno $t = \frac{A}{v_{ix}}$ vremena da stigne od

jednog do drugog kraja posude, odnosno $\frac{2A}{v_{ix}}$ za oba smjera, vrijeme između dva sudara promatrane molekule s istom

stijenkom posude bit će $\frac{2A}{v_{ix}}$. Broj sudara u jedinici vremena promatrane molekule bit će $b = \frac{v_{ix}}{2A}$.

Ukupni impuls sile koji promatrana molekula prenese na stijenku posude u vremenu Δt jest:

$$\Delta p_x = b \Delta p_{ix} \Delta t = \left(\frac{v_{ix}}{2A}\right) (2m_m v_{ix}) \Delta t = \frac{m_m v_{ix}^2}{A} \Delta t$$

Odatle slijedi da je srednja sila kojom molekula djeluje na posudu:

$$F_{ix} = \frac{\Delta p_x}{\Delta t} = \frac{\frac{m_m v_{ix}^2}{\Delta t}}{\Delta t} = \frac{m_m v_{ix}^2}{A}$$

U posudi se nalazi N molekula, te je ukupna sila:

$$F_{x} = \sum_{i=1}^{N} F_{ix} = \sum_{i=1}^{N} \frac{m_{m} v_{ix}^{2}}{A} = \frac{m_{m}}{A} \sum_{i=1}^{N} v_{ix}^{2}$$

Iz definicije tlaka $\left(p = \frac{F}{S}\right)$, slijedi da je tlak p na promatranu stijenku posude:

$$p = \frac{F_x}{S} = \frac{F_x}{A^2} = \frac{1}{A^2} \frac{m_m}{A} \sum_{i=1}^N v_{ix}^2 = \frac{m_m}{A^3} \sum_{i=1}^N v_{ix}^2 = \frac{m_m}{V} \sum_{i=1}^N v_{ix}^2$$

Zbog velikog broja molekula nemoguće je znati brzinu svake molekule. Zato uzimamo prosječne srednje vrijednosti brzine i kvadrata brzine. Srednji kvadrat *x* komponente brzine jest

$$\overline{v}_{x}^{2} = \frac{1}{N} \sum_{i=1}^{N} v_{ix}^{2}$$

Uvrstimo li taj rezultat u izraz za tlak koji smo prethodno izveli, dobivamo:

$$p = \frac{m_m}{V} \sum_{i=1}^{N} v_{ix}^2 = \frac{m_m}{V} N \, \bar{v}_x^2$$

Molekule se gibaju u svim smjerovima, te možemo pretpostaviti da je

$$\overline{v}^2 = \overline{v}_x^2 + \overline{v}_y^2 + \overline{v}_z^2 = 3\overline{v}_x^2$$

odnosno

$$\overline{v}_x^2 = \frac{1}{3}\overline{v}^2$$

Uzevši to u obzir, te da je $\overline{E}_k = \frac{m_m \overline{v}^2}{2}$, dobivamo relaciju između tlaka i volumena za idalni plin:

$$pV = m_m N \, \overline{v}_x^2 = m_m N \cdot \frac{1}{3} \overline{v}^2 = \frac{2m_m \overline{v}^2}{2} \frac{1}{3} N = \frac{2}{3} N \overline{E}_k$$
 (1)

Korisno je uvesti tzv. srednju kvadratičnu (efektivnu) brzinu:

$$v_{ef} = \sqrt{\overline{v}^2}$$

Tada jednadžba (1) poprima oblik:

$$pV = m_m N \frac{1}{3} \bar{v}^2 = \frac{1}{3} N m_m v_{ef}^2$$

odnosno

$$pV = \frac{1}{3}mv_{ef}^2$$

gdje je $m = Nm_m$ masa plina.

Već smo prije izveli (2. dio izvoda) da je $pV = Nk_BT$, gdje je k_B Boltzmannova konstanta, te možemo dobiti važan rezultat koji glasi:

$$\overline{E}_k = \frac{3}{2} k_B T$$

Unutrašnja energija idealnog plina jest zbroj kinetičkih energija svih molekula $U = \sum_i E_{ki} = N\overline{E}_k$, odnosno

$$U = \frac{3}{2}Nk_BT = \frac{3}{2}nRT$$

U toj relaciji uzeli molekulu smo pormatrali kao materijalnu točku koja se giba samo translatorno i čiji položaj određuju 3 stupnja slobode, tri koordinate. Sve su tri koordinate ravnopravne, kinetička energija je ravnopravno raspoređena na sva tri stupnja slobode. To je tzv. **princip ekviparticije** energije na svaki stupanj slobode.

Ako se molekula, osim translatorno, giba i drukčije (npr. rotira ili vibrira), ima i više stupnjeva slobode, te će energija idealnog plina općenito biti:

$$U = \frac{i}{2} nRT$$

gdje je i broj stupnjeva slobode.

5.2. TOPLINSKI KAPACITETI PLINOVA

Iz $C_{p,V} = \frac{1}{n} \left(\frac{\partial U}{\partial T} \right)_{p,V}$, Mayerove relacije $C_p - C_V = R$ te $U = \frac{i}{2} nRT$ (gdje je $nR = Nk_B$), dobivamo da je

$$C_V = \frac{i}{2}R$$
 i $C_p = \left(1 + \frac{i}{2}\right)R$.

Iz toga imamo da je adijabatski koeficijent $\kappa = \frac{C_p}{C_V} = 1 + \frac{2}{i}$, gdje je *i* broj stupnjeva slobode.

Za **jednoatomne** plinove: $i = 3 \Rightarrow C_V = \frac{3}{2}R$ i $C_p = \frac{5}{2}R$

Za **dvoatomne** plinove: $i = 7 \Rightarrow C_V = \frac{7}{2}R$ i $C_p = \frac{9}{2}R$

Za **višeatomne** plinove: $i = 8 \Rightarrow C_V = \frac{8}{2}R$ i $C_p = \frac{10}{2}R$