

Algorithms and Data Structures (CSci 115)

California State University Fresno
College of Science and Mathematics
Department of Computer Science
H. Cecotti

Learning outcomes

- Vectors, Matrices, and Tensors
- Class Matrix

Introduction

- Most of the data structures that we saw
 - ➤ Mainly relevant for single-thread applications
 - Doesn't mean you have to throw everything away!!
 - > State of the art algorithms
 - Some defined in the 70s and adapted to the hardware of the 70s
 - B-tree on disk storage
- Data structures
 - > A use for a particular type of function
 - > Need to transfer data between data structures
 - Fill a data structure from another data structure
 - Array to List
 - Graph
 - Example: Ajacency list ← → Ajacency matrix
 - o Possible need of **several** data structures to represent a **unique** dataset
 - > Why
 - o Pseudo code suggests one data structure but
 - o Real-world/the implementation can lead you to a different choice
 - Because you may want to take advantage of parallel processing

Rationale

• Question 1

➤ How to represent:

$$y = \sum_{i=0}^{n-1} w(i)^2$$

where w is a vector

• Question 2

- > We consider 2 vectors: A and B
 - O What is the pseudo-code to obtain the cross product of A and B?
- ➤ Use loops
- ➤ Consider A and B as "vectors"

■ → Difference between

- vectors (linear algebra) (meaning of the representation vertical/horizontal)
- arrays (sequence of elements of a fixed size)

Rationale

- Representation of data along multiple dimensions
 - ➤ X, Y (2D) : image
 - > X, Y, Time (3D): frames in a video
 - > X, Y, N (3D) : stack of images
 - > X, Y, Z, Time (4D)
- Extraction of statistical information along dimension(s)
 - ➤ Projection in 1 dimension
 - > Example: mean, standard deviation, ... across a particular dimension
- Change the way you will observe data
 - ➤ Linear algebra
 - Example: Principal Component Analysis

 $\mathbf{v}(x_0, y_0, z_0) \quad \mathcal{Z}$

Tensors

Definition

- ➤ An nth-rank tensor in m-dimensional space is a mathematical object that has n indices and mⁿ components
- ➤ Geometric objects that describe linear relations between geometric vectors, scalars, and other tensors
 - Each index of a tensor ranges over the number of dimensions of space
- Example 3-rank tensor
 - A_{ijk} = access the cell at position (i,j,k) in A
- Big topic in Linear Algebra
 - ➤ We keep it only for simple functions

Tensors

- Example
 - ➤ Vector= 1 column = 1 matrix of size n x 1
 - > From 1D to 3D

Matrix: order-2 tensor

Order-3 tensor

Reshape function

- To reshape
 - ➤ To change the dimensions
 - o Example:
 - From a Matrix (n x m) to a vector (n*m x 1)

The idea: Parallel processing

Towards a **single** loop: for each block b, do f(b)

→ Cut the vector of blocks into p blocks (p threads/processors)

Reshape function

Example

➤Order-3 tensor → Matrix

Repmat

Repmat

- \triangleright B = repmat(A,n)
 - It returns an array containing n copies of A in the row and column dimensions
 - The size of B is size(A)*n when A is a matrix.
- ➤ Need to extend/replicate existing data
- Example

$$>y = \sum_{i=0}^{n-1} w(i) - x$$

- >x is a constant in this example:
 - Need to create a new vector of size n that contains x everywhere to y=w-x

Tensor product and direct sum

- Matrix product A $(p \times q) * B (q \times r) = C (p \times r)$
- Tensor sum (Kronecker sum) $\dim(V \otimes W) = \dim V \times \dim W$. the Kronecker sum of two 2×2 matrices (a)_{i,j} and (b)_{i,j} is given by

$$\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \oplus \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix}$$

$$= \begin{bmatrix} a_{11} + b_{11} & b_{12} & a_{12} & 0 \\ b_{21} & a_{11} + b_{22} & 0 & a_{12} \\ a_{21} & 0 & a_{22} + b_{11} & b_{12} \\ 0 & a_{21} & b_{21} & a_{22} + b_{22} \end{bmatrix}.$$

■ Tensor direct product $\dim(V \otimes W) = \dim V \times \dim W$.

the matrix direct product of the 2 x 2 matrix A and the 3 x 2 matrix B is given by the following 6 x 4 matrix.

$$A \otimes B = \begin{bmatrix} a_{11} & B & a_{12} & B \\ a_{21} & B & a_{22} & B \end{bmatrix}$$

$$= \begin{bmatrix} a_{11} & b_{11} & a_{11} & b_{12} & a_{12} & b_{11} & a_{12} & b_{12} \\ a_{11} & b_{21} & a_{11} & b_{22} & a_{12} & b_{21} & a_{12} & b_{22} \\ a_{11} & b_{31} & a_{11} & b_{32} & a_{12} & b_{31} & a_{12} & b_{32} \\ a_{21} & b_{11} & a_{21} & b_{12} & a_{22} & b_{11} & a_{22} & b_{12} \\ a_{21} & b_{21} & a_{21} & b_{22} & a_{22} & b_{21} & a_{22} & b_{22} \\ a_{21} & b_{31} & a_{21} & b_{32} & a_{22} & b_{31} & a_{22} & b_{32} \end{bmatrix}$$

$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}_{V}, \qquad B = \begin{pmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33} \end{pmatrix}_{W}.$$

$$A \oplus B = \begin{pmatrix} a_{11} & a_{12} & 0 & 0 & 0\\ a_{21} & a_{22} & 0 & 0 & 0\\ \hline 0 & 0 & b_{11} & b_{12} & b_{13}\\ 0 & 0 & b_{21} & b_{22} & b_{23}\\ 0 & 0 & b_{31} & b_{32} & b_{33} \end{pmatrix}$$

$$A\otimes B = \begin{pmatrix} a_{11}b_{11} & a_{11}b_{12} & a_{11}b_{13} & a_{12}b_{11} & a_{12}b_{12} & a_{12}b_{13} \\ a_{11}b_{21} & a_{11}b_{22} & a_{11}b_{23} & a_{12}b_{21} & a_{12}b_{22} & a_{12}b_{23} \\ a_{11}b_{31} & a_{11}b_{32} & a_{11}b_{33} & a_{12}b_{31} & a_{12}b_{32} & a_{12}b_{33} \\ \hline a_{21}b_{11} & a_{21}b_{12} & a_{21}b_{13} & a_{22}b_{11} & a_{22}b_{12} & a_{22}b_{13} \\ a_{21}b_{21} & a_{21}b_{22} & a_{21}b_{23} & a_{22}b_{21} & a_{22}b_{22} & a_{22}b_{23} \\ a_{21}b_{31} & a_{21}b_{32} & a_{21}b_{33} & a_{22}b_{31} & a_{22}b_{32} & a_{22}b_{33} \end{pmatrix}$$

C++ STL

- You don't need to reinvent the wheel
 - **▶ But** you need to know how it works
- You can use libraries
 - ➤ Standard Template Library (STL) (Architecture: Alexander Stepanov)
 - Toward generic programming
 - 4 key components
 - Algorithms
 - Containers
 - Functions
 - Iterators
 - Some issues before C++ v11.
 - ➤ Libraries from other developers
 - Warning
 - Interoperability between other different components of your application
 - \rightarrow to port an application from one type of machine to another, with hardware dependent libraries

C++ STL

- Sequence Containers (ordered collections):
 - vector
 - Dynamic array: **double** the size when you need space $\frac{nO(1)+O(n)}{n+1}=O(1)$
 - o list
 - deque (double-ended queue)
 - o arrays
 - forward_list
- Container Adaptors: They provide a different interface for sequential containers.
 - queue (FIFO queue)
 - priority_queue
 - stack (LIFO stack)
- Associative Containers (unordered collections):
 - > They implement sorted data structures that can be quickly searched (O(log n) complexity).
 - o set
 - multiset
 - o map
 - multimap

Class Matrix

- No matrix or tensor in STL
 - ➤ You have to use other libraries
- See example on blackboard
 - ➤ Matrix.h
 - ➤ Matrix.cpp

Conclusion

Think Tensors because

- ➤ Some programming languages are primarily based on vectors/matrices
 - Matlab
- > Used for image processing, machine learning, big data, engineering
 - Problems in Physics (elasticity, fluid mechanics, and general relativity)
- > Important for multithreaded applications
 - Decomposition of the data structure into multiple blocks
 - That can be processed in parallel

Use well established Libraries

- **>** uBLAD
 - o https://www.boost.org/doc/libs/1 67 0/libs/numeric/ublas/doc/index.html
- **>** arma
 - o http://arma.sourceforge.net/
- ➤ Vector c++ stl libraries

CSci 115 15

Questions?

- Reading
 - ➤ See link on Canvas

