Theory of Algorithms

- Theory of Algorithms
- Algorithm Efficiency
 - Typical Algorithm Efficiency Classes
- Big O Intuitively
- Definition Big O
- Omega Ω (Not important)
- Theta ⊖ (Important)
- Formal Definitions Summary
- O vs Θ
- Test Your Understanding
- Asymptotic Complexity classes
- Calculating Algorithm Efficiency
- Maths
- Set Example
 - Brute Force Solution
 - Decrease & Conquer
 - Transform & Conquer
- Analysing Recursive Factorial
 - Backwards Substitution:
- Recurrence Relations

Algorithm Efficiency

- We need measures of:
 - Input size (call this n)
 - Unit of measuring time
 - The basic operation of the algorithm
- We're usually interested in growth order:
 - \circ O(n²) vs O(n³) is more important than 1412n² vs 5n³
- We're interested in growth order
 - So $O(n^2)$ vs $O(n^3)$ is more important than $1412n^2$ vs 5^3
- We are measuring the operational complexity
- Interested in the
 - Worst case
 - Average case
 - Best case

Example: Linear Search

What are the cases?

- Worst = n
 - Looks at all n elements in the array
- Average = n/2

- o On average it will look at n/2 elements before finding the element being searched
- Therefore n/2. but the 1/2 is a constant, so it is simply left as n
- Best = constant time, or O(1) as it nly looks at one element

Generally most interested in worst case. If the best case is good enough, we are interested in that

Typical Algorithm Efficiency Classes

n	log ₂ n	n	n log₂n	n²	n³	2 ⁿ	n!
10	3.3	10	33.2	1E+02	1E+03	1E+03	4E+06
100	6.6	100	664.4	1E+04	1E+06	1E+30	9E+157
1,000	10.0	1,000	9,965.8	1E+06	1E+09	1E+301	
10,000	13.3	10,000	132,877.1	1E+08	1E+12		
100,000	16.6	100,000	1,660,964.0	1E+10	1E+15		
1,000,000	19.9	1,000,000	19,931,568.6	1E+12	1E+18		

Big O - Intuitively

- Algorithm Executes
 - o 2n+10 operations
 - We are not interested in the 2 or the 10.
 - This is simply O(n)
- Algorithm Executes:
 - \circ 3n² + 9n + 5
 - Not interested in the 3, 9n or 5.
 - This is $O(n^2)$

Example

- Laptop sorts array of 100 million items in 30 seconds using:
 - o n*logn = 2 657 542 476 -> 30 seconds
 - \circ n = 10 000 000 000 000 000 = 10¹⁶
 - \circ 10¹⁶ / 2 657 542 476 = 3762875
 - o 3762875 x 30 seconds = 112 886 248s
 - o 3.5 years
- Insertion sort and Bubblesort are impractical for large data sets

Definition Big O

A function $t(n) \in of O(g(n))$

If there is a c and an n_0 such that $t(n) \le cg(n)$ for all $n > n_0$.

- Example 1: 100n+5 ∈ of O(n)
 - Set c to 101 and n_0 to 6. Then prove that 100n+5 <= 101n for all n >= 6 Simple to prove with induction
- Example 2: $100n+5 \in O(n^2)$
 - Set c = 21 and n_0 = 5. So prove that $100n+5 < =21n^2$

Example

100n+5 element O(n) set say c to 101 and n_0 to 6 Prove 100n+5 <= 100n for all n>=6 by induction

Omega Ω (Not important)

- A function $t(n) \in \Omega(g(n))$ if there is a c and an n_0 such that t(n) > = cg(n) for all $n > = n_0$
- Same as Big O, except bigger than instead of smaller than sign

Theta Θ (Important)

- · Consider sequentially summing an array
 - If the efficiency class is O(n)
 - But it is also by our definition O(n²) and O(2ⁿ) and O(nlogn)
 - It is NOT O(logn)
- Big O(n²) means the algorithm's basic operations executes in proportion to n² or better
- How do we say that summing array's basic operation executes **exactly** proportional to n?
 - Theta Θ
- Efficiency class for summing an array is $\Theta(n)$. It is not:
 - \circ $\Theta(n^2)$ or $\Theta(n\log n)$.
 - o It is precisely Θ(n)
- A function $t(n) \in \Omega(g(n))$ if there is a c_1 , c_2 and n_0 such that $c_2g(n) <= t(n) <= c_1g(n)$ for all $n >= n_0$
- Same as big O except functions in this class cannot be in a more efficient class
 - We use this a lot:
 - $100n+5 \in \Theta(n)$
 - $100n+5 \in O(n^2)$
 - But 100n + 5 is $NOT \in \Theta(n^2)$
- If an algorithm is in Θ(g(n)):

- It means that the running time of the algorithm as n (input size) gets larger is proportional to g(n)
- If an algorithm is in O(g(n))
 - It means that the running time of the algorithm as n gets larger is at most proportional to g(n)
- Big Oh is NO worse
- Big Omega is oh my god

Check this out

Formal Definitions - Summary

- Definition: $f(n) \in O(g(n))$ iff there exists positive constant c and non-negative integer n_0 such that ** f(n) <= c g(n)* for every $n >= n_0$
- Definition: $f(n) \in \Omega(g(n))$ iff there exist positive constant c and non-negative integer n_0 such that
 - \circ f(n) >= c g(n) for every $n >= n_0$
- Definition: $f(n) \in \Theta(g(n))$ iff there exist positive constants c_1 and c_2 and non-negative integer n_0 and non-negative integer n_0 such that

- \circ $c_1 g(n) <= f(n) <= c_2 g(n)$ for every $n >= n_0$
- O(g(n)): functions that grow no faster than g(n)
- $\Omega(g(n))$: functions that grow at least as fast as g(n)
- $\Theta(g(n))$: functions that grow at same rate as g(n)
- O(g(n)): functions no worse than g(n)
- $\Omega(g(n))$: functions at least as bad as g(n)
- $\Theta(g(n))$: functions as efficient as g(n)

O vs O

- O is an upper bound on performance
- Θ is a tight bound
 - o It is the upper and lower bound

- Average of $O(n^2)$ -> algorithms grows at most as fast as n^2 with average case input
 - o E.g.: Bubble sort
- Worst case of $O(n^3)$ -> algorithm grows at most as fast as n^3 with its worst case
 - E.g.: brute force matrix multiplication, which is also $\Theta(n^3)$
- Best case of $\Theta(n)$ -> algorithm grows linearly in the best case
 - E.g.: sum an array
- Worst case of $\Omega(2^n)$ -> algorithm grows at best exponentially in worst case
 - E.g.: Create the power set
- With practice it often becomes easy for many algorithms

Test Your Understanding

In this section there are 8 question answer s.

- 1. True or false: Θ (n + log n) = Θ (n)?
- ▶ View answer
- 2. True or false: O(n + log n) = O(n)
- ▶ View answer
- 3. True or false: Θ (n log₂ n) = Θ (n log₁₀n)
- ▶ View answer

True or false: $\Theta(\log^2 n) = \Theta(\log n)$

View answer

True or false: $O(n \log n) = O(n)$

▶ View answer

True or false: if $x \in O$ (n log n) then $x \in O$ (n²)

▶ View answer

True or false: if $x \in \Theta$ (n log n) then $x \in \Theta$ (n²)

▶ View answer

True or false: if $x \in O$ (n log n) then $x \in O$ (n)

▶ View answer

How would you prove that Θ (n + log n) = Θ (n)

▶ View answer

Asymptotic Complexity classes

Class	Name	Description		
1	constant	Best case		
log n	logarithmic	Divide then ignore part		
n	linear	Examine each		
n log n	<i>n</i> -log- <i>n</i> or linearithmic	Divide then use all parts		
n ²	quadratic	Doubly nested loop		
n ³	cubic	Triply nested loop		
2 ⁿ	exponential	All subsets		
n!	factorial	All permutations		

Calculating Algorithm Efficiency

- Identify its basic operations
 - o Operations that are executed repeatedly at the core of the algorithm
 - E.g.: comparisons and swapping in sorting
 - o Multiplications and additions in matrix multiplication
- Set up an equation which counts the number of basic operations for a given input of size n

Example

What does this algorithm do?

▶ View Answer

This example's basic operation is to check the value at a position in the array vs the current maximum value (MysteryVal) and return the maximum value in the array. Or: A[i] > MaxVal

Let c(n) = number of times it has executed

$$C(n) = \sum_{i=1}^{n-1} 1 = n - 1 \in \theta(n)$$

Maths

Some maths to know

$$\sum_{i=1}^{u} a_i \pm b_i = \sum_{i=1}^{u} a_i \pm \sum_{i=1}^{u} b_i$$

$$\sum_{i=1}^{u} ca_i = c \sum_{i=1}^{u} a_i$$

$$\sum_{i=j}^{n} 1 = n - j + 1$$

:point_up_2: This means that if you add 1 n times, you will simply get n

$$\sum_{i=0}^{n} i = \sum_{i=1}^{n} i = n (n+1)/2 \approx n^2 \in \theta(n^2)$$

Set Example

Think up algorithms to determine if there are duplicate values in array A. Find out if it is a set, the time complexities of the solution and the most efficient solution.

Brute Force Solution

```
boolean isSet(A){
    for (i = 0; i < A.length - 1;i++){
        for(j = i+1; j < A.length;j++){
            if(A[i]==A[j]){
                return false;
            }
        }
    }
    return true;
}</pre>
```

The above solution can be broken down into the following format (n-1 + n-2 + n-3 + ... + 1) = n(n-1)/2. This is because the inner loop is executed n-1 times, and the outer loop is executed n times.

Therefore, the worst case is $\Theta(n^2)$, and the average case is that too.

$$C_{worst}(n) = \sum_{i=0}^{n-2} \sum_{j=i+1}^{n-1} 1$$

Using S1 on the second summation and simplifying:

$$\sum_{i=0}^{n-2} (n-1-i)$$

Using R2, this simplifies to:

$$\sum_{i=0}^{n-2} (n-1) - \sum_{i=0}^{n-2} i$$

Using R1 on the first summation and S2 on the second, this simplifies to:

$$(n-1)\sum_{i=0}^{n-2}1-\frac{(n-2)(n-1)}{2}$$

Using S1 on the first summation and simplifying:

$$(n-1)^2 - \frac{(n-2)(n-1)}{2} = (n-1)n/2 \approx \frac{1}{2}n^2 \in \theta(n^2)$$

Decrease & Conquer

```
boolean isSet(Array A, int index = 0){
   if(index >= A.length-1){
      return true;
   }

   for(i = index+1; i < A.length;i++){
      if(A[index]==A[i]){
        return false;
      }
   }
   return isSet(A,index+1);
}</pre>
```

This algorithm is identical to the brute force one. Same complexities as above.

Transform & Conquer

```
return raise,
}
return true;
}
```

The most efficient sorting algorithms have a complexity of $\Theta(nlogn)$. The for loop is linear for the worst case: $\Theta(n)$

It runs the sort, then the for loop so this is $\Theta(nlogn+n)$, the worst case order of an algorithm is the efficiency of its worst part. So the algorithm is $\Theta(nlogn)$ which is faster than the brute force solution of $\Theta(n^2)$.

The transform and conquer method of sorting then searching to test for a set is faster than the brute force method.

I have added the python code for this here

Analysing Recursive Factorial

```
int F(n){
    if n == 0:
        return 1;
    return F(n-1)*n;
}
```

- We want to count the multiplication
- Multiplies once for every recursive call
- Code can be found here

```
M(0)=0
And M(n)=M(n-1)+1
M(n) = M(n-1) + 1 = [M(n-2) + 1]+1
= [M(n-3 + 1) + 2] = M(n-3)+3
Thus, in general:
M(n) = M(n-k)+k
M(n) = M(n-n) + n = M(0) + n = n
```

Backwards Substitution:

```
1. Express x(n-1) successively as a function of x(n-2), x(n-3)
```

- 2. Derive x(n-j) as a function of j
- 3. Substitute n-j = base condition

The above equation can be solved by backward substitution:

```
M(n) = M(n-1)+1
```

```
Substitute M(n-1) = M(n-2) + 1

-> M(n) = [M(n-2) + 1] + 1 = M(n-2) + 2

Substitute M(n-2) = M(n-3) + 1

M(n) = [M(n-3) + 1] + 2 = M(n-3) + 3

-> Pattern: M(n) = M(n-j) + j

Ultimately: M(n) = M(n-n) + n = M(0) + n = n
```

Recurrence Relations

• Recurrence relation is a recursive mathematical function e.g.:

$$M(n) = M(n-1)+1$$

• We will consider these recurrence relations

$$T(n) = aT(n-k) + f(n)$$
OR
$$T(n) = aT(n/b) + f(n)$$