TOPOLOGÍA CONCEPTOS BÁSICOS

DEFINICIÓN: Sea X un conjunto no vacio. Una TOPOLOGÍA sobre X es una familia C de subconjuntos de X, llamados abiertos, tal que verifica las siguientes propieda i) d X E T i) $\emptyset, X \in \mathbb{C}$

ii) ¡Aile Aie T VieI -> UAie T (union arbitraria)

iii) Si $A_1, ..., A_n \in \mathbb{C} \implies \bigcap_{i=1}^n A_i \in \mathbb{C}$ (intersección finita)

Diremos que (X, C) es un ESPACIO TOPOLÓGICO, o bien, si se supone C, se abrevia a X espacio topológico.

Decimos que KCX es un conjunto cerrado (para C) si si omplementario es abierto: CxK = X \ K abierto.

complementario
de K en X

ii C1, C2 son topologias sobre X, diremos que T2 es 15 Fina que C, si C, C Cz. También se dice que C, A MAS GROSERA, MENOS FINA, MÁS DÉBIL ...

Isservacion: puede que no se puedan comparar, e.d., ni CICTZ, ni CZC CI.

Ejemplo: (CC P(x))
partes de x Es la más Fina

1) Si C = S(X) jumple las propiedades? Si Esta topología se llama topología discreta (C_d) Cn:= topología usual Cnc Ed

2) Si $C = \{\emptyset, X\}$ se denomina $C_t = \text{topologia trivial}$ $T_{\ell} \in T \ \forall C \ topologia \ eu \ X \ (es la menos fina)$

3) X = IK, Cu = 7:1 d come se onjoin Tu = {(a,b) / a < b, a, b \in R \bullet U \delta, R \bullet U \delta de abierto \seconds Tu = {Ø, R}∪ {union arbitraria de intervalos abiertos}. Varnos a demostrar 3), de heche, vamos a ver que basta con demostrar que la intersección de dos abiertos ya es suficiente. 3) (u,vec = unvec) 3 => 31 / i3' => 3? Si n=2 => 3'√ Si n>2, supongamos que es cierto para n-4.

Br..., Br-1, ABi ET Sean Aim, Aner => U=Ai, V= nA; => UNVer Ahora demostrames 3' en la topología vsual: $u \in C \iff u = \bigcup_{j \in I} I_j : I_j = (a_j, b_j) \}_{u \cap V = \bigcup_{j \in I} u \in A} (I_j \cap N_e)$ $V \in C \iff V = \bigcup_{l \in A} N_l : N_l = (c_l, d_e) \}_{u \cap V = \bigcup_{l \in A} u \in A} (I_j \cap N_e)$ Falta ver que I; n'Ne es abierto o union de abiertos. De hecho es o el vació o un intervalo abierto. Ejemplo: (X, d) espacio métrico $d: X \times X \longrightarrow \mathbb{R}$ $d(x,y) \ge 0$ y $d(x,y) = 0 \Longrightarrow x = y$ d(x,y) = d(y,x) $B(p_i \epsilon) = \frac{1}{4} \epsilon X / d(p_i 4) < 1$ $d(x, z) \leq d(x, y) + d(y, z)$ Chistoricia:= {0,x}U\uniones arbitrarias de bolas p La intersección de dos bolas abiertas es abierta ya que para c punto en la intersección tomamos la bola centrada en ese punto con distancia d(p, F)/2 frontera min 1 d(p, f): feFf

$$(X, C)$$
 espacio topológico

 $C \equiv vna$ topológia sobre $X \subset P(X)$

(1) $\emptyset, X \in C$

(2) $Ail_{i \in I}$, $A_i \in C \Longrightarrow \bigcup A_i \in C$

(3) $V, V \in C \Longrightarrow \bigcup \cap V \in C$

TEOREMA: $X \neq \emptyset$ conjunto, $f \in \mathcal{P}(x)$ tal que: (1) Ø, Xe 手

*(2)
$$f_{\alpha}|_{\alpha \in \Lambda}$$
, $f_{\alpha} \in \mathcal{F} \implies \bigcap_{\alpha \in \Lambda} f_{\alpha} \in \mathcal{F}$
(3) $f_{\alpha} \in \mathcal{F}$

(3)
$$F_1, F_2 \in \mathcal{F} \implies F_1 \cup F_2 \in \mathcal{F}$$
 $\Rightarrow C := \{G_x F \mid F \in \mathcal{F}\} \text{ es una topología sobre } X \text{ tal que}$
 f es la familia de cerrados de C .

demostración

C satisface (1), (2) y (3) de la definición de topología.

EFINICIÓN: ECX, (X, C) espacio topológico $\overline{E} = \bigcap \{k \mid k \text{ cerrado}\} = c\ell(E) = c\ell(E)$

(E:= la ADHERENCIA/CLAUSURA de E en X para la topología C)

<u>OROLARIO</u>: E es siempre un conjunto cerrado (por (2) *)

EMA: ACB => ACB

demostración

A = MFIF cerrado, ACF); B=MKK cerrado, BCK

Si K cerrado BCR) => K cerrado que contiene a A => ACB

TROPOSICION: E es en minimo cerevano apor controlle oc

demostración

E siempre es un cerrado que contiene a E.

Supongamos que existe F cerrado en X tal que

ECFCE => FEIKIR cerrados, ECK) =>

=> E = n { R | R cerrado, ECR CF => F= E.

Observacion: $P(x) \xrightarrow{cl} P(x)$ $E \longmapsto \overline{E}$

TEOREMA: Si tenemos una función $\phi: P(x) \longrightarrow P(x)$ tal que:

(z)
$$\phi(\phi(E)) = \phi(E)$$

(3)
$$\phi(A \cup B) = \phi(A) \cup \phi(B)$$

$$(4) \quad \varphi(\mathscr{A}) = \mathscr{A}$$

(5) E cerrado para
$$C \iff E = \phi(E)$$

 $=> f:= \frac{1}{2} | \phi(R)|_{F}$ es una familia de cerrados para una topología sobre X.

Proposición: Si (X, C) es un espacio topológico $\Longrightarrow \phi = c \zeta$ verifica (1), (2), (3), (4) y (5) del teorema anterior.

$$(4) = E c \overline{E}$$

$$(2) \equiv \overline{\overline{\epsilon}} = \overline{\overline{\epsilon}}$$

$$(4) \equiv \overline{\phi} = \emptyset$$

demostración (2) ECĒ por (1) => ĒCĒ = (el mínimo cerrado que contiene a = E demostración (3)

ACAUB => ACAUB => AUB CAUB = es el BCAUB => BCAUB núnimo cerrado que contiene Pero AUB es un cerrado que contiene a AUB = Sel minim

⇒AVB = AUB

E = mínimo cerrado que contiene a E = E E = - \/-.

E = MK/K cerrado, ECK/ que es cerrado

Ejemplo: X + Ø, ECX, C = topología cofinita en X. E := n/KCX/ K cerrado, ECK

*) [R cerrado en X def:> K finito o R=X]

(1) Demostrar que la definición (*) da una topología Sobre X ($F = \{RCX \mid R \text{ finito o } R = X\}$

(4) \emptyset , $X \in \mathcal{F}$. (2) $\{K_{\alpha}\}_{\alpha \in \Lambda}$, $K_{\alpha} \in \mathcal{F} \implies \bigcap_{\alpha \in \Lambda} K_{\alpha} \in \mathcal{F}$ | flabria que ver que (x) cumple estas 3 propiedades 3 propiedades (3) K, K2 € F => KURZ € F.

 $C := \{G \mid G_X G \in F\}$ son los abiertos de C.

 $E = \emptyset \implies E = \emptyset$ $\oint Card(E) < \infty \implies \overline{E} = E$ $(Cord(E) = \emptyset \implies \overline{E} = X)$ Ref, ECR

DEFINICIÓN: (X, C) ECX se dice DENSO si ==X

Caso particular: X=1K E cerrado en $\mathbb{R} \iff \mathbb{G}$ es finito ó $\mathbb{E} = \mathbb{R}$ G abierto en $\mathbb{R} \iff \mathbb{G}_{\mathbb{R}}\mathbb{G}$ es finito ó \mathbb{R} ra re G = R | Kra,..., ret es abierto $G_2 = (1, 2)$ no es abierto para topología cofinita; tamporo cerrad GG = \(x \in \mathbb{R} / \frac{1}{11} (x - \frac{1}{2}) = 0\) topología de Zariski de R. , (X, e) espacio topológico CCP(x), C es una topología sobre X Los elementos de T son los abiertos de X., GCX, G abierto de X para la topología T en X; también, por abuso del lenguaje, se dice G abto. de T (para) DEFINICION: (X, C) espacio topológico, ECX, el INTERIOR de E es el conjunto: E = Int(E) = Int(E) = UfGCX/GCE, GECCOROLARIO: VECX, se tiene que Int(E) es abierto (para C). ROPIEDADES BÁSICAS:

(4) $\stackrel{\circ}{E} = Int(E) \subset E$ (decentrado por la defi.

(2) $\stackrel{\circ}{G}_{X}(\stackrel{\circ}{E}) = \stackrel{\circ}{G}_{X}E$ ($X \mid \stackrel{\circ}{E} = X \mid E$) \iff ($\stackrel{\circ}{E} = X \mid (X \mid E)$) (3) $G_{x}(\overline{E}) = Int(G_{x}E)(x \setminus \overline{E}) = Int(x \setminus E)$ (2) XIE = XI (USGIGEE, GCE) = NIXIG | GET, GCEP =

 $=X\setminus\overline{E}$

TEOREMA: Sea (X, C) un espacio topológico. Consideremos la aplicación Int : $P(x) \longrightarrow P(x)$ $E \longrightarrow Int_{x}(E) = E$ Entouces: (4) Int (E) C E (2) Int $(Int_{\mathcal{E}}(E)) = Int_{\mathcal{E}}(E)$ (3) Int (A N B) = Int (A) N Int (B) (4) Int (x) = x (5) Int(6) = G € G € C PROPOSICIÓN: ECX => Int(E) es el mayor abierto de X (para E) contenido en E. demostración (prop. & teorene) (1) . È es abierto · Sea A abierto de X, ACE (ÉcACE => É=A) Como A es abierto contenido en E, ACE => => A E \GET/GCE => A C UNGET/GCE => A= É (2) Int(E) $\subset E \Rightarrow Int(Int(E)) \subset Int(E)$ ACB => ACB Como Int(E) es abierto \Rightarrow Int(E) = Int(Int(E)) 3) $A \cap B \subset A \implies Int(A \cap B) = Int(A)$ A $\cap B \subset B \implies Int(A \cap B) = Int(B)$ A $\cap B \subset B \implies Int(A \cap B) = Int(B)$ A abierto $A \cap B = A \cap B$ B abierto $A \cap B = A \cap B$ B abierto $A \cap B = A \cap B$ B abierto $A \cap B = A \cap B$ B abierto $A \cap B = A \cap B$ 7) Trivial i) ← obvio por def. de topología → prop. 2 de topología (G se puede reescribir como una unión (familion de abiertos)

TEOREMA: $\phi: \mathcal{I}(x) \longrightarrow \mathcal{I}(x)$ tal que:

(4)
$$\phi(E) \subset E$$

(2)
$$\phi(\phi(\epsilon)) = \phi(\epsilon)$$

(3)
$$\phi(A \cap B) = \phi(A) \cap \phi(B)$$

(4)
$$\phi(x) = x$$

$$C := \int ACX/\phi(A) = A_0^{f} \implies (X,C)$$
 es un espacio topológico para el que $Int_{(X,C)}(E) = \phi(E)$

DEFINICIÓN: FRONTERA de un conjunto ECX es: DE=Fr(E)=En(XIE)

Como XIE = XIE => Fr(E) = En(XIE) = EIE

Ejemplo:
$$E = [0,1)$$

 $\mathring{E} = (0,1)$ $C \in C$ $E = [0,1] = \bigcap \{K \text{ cerrado} / K = E\}$
 $U(G|G \text{ abjerto}, GCE)$
 $Fr(E) = E \setminus \mathring{E} = \{0,1\}$

JOROLARIO: XE Fr(E) ⇒ VHET tal que XEH, HNE+Ø 1 1 HN(XIE) + Ø.

demostración

$$X \in F_r(E) \iff (X \in E) \land (X \in X \setminus E)$$

$$G = X \setminus K \iff K = X \setminus G$$

$$(1) = X \in E \implies \forall K \text{ cerrado } E \subset K, X \in K \iff \forall G \text{ abto.}, G \subset X \setminus E, X \notin G$$

(2) =
$$x \in X \setminus E \iff \forall K'$$
 cerrodo $X \setminus E \subset K'$, $x \in K' \iff \forall A \text{ abto.}$, $A \subset E$, $x \notin X \setminus A$

TEOREMA:

demostración

(2)
$$E \setminus F(E) = E \cap G_{X}(F(E)) = E \wedge G_{X}(E \cap X \setminus E) =$$

$$= E \cap GE \cup G(X \setminus E) = E \cap [Int(GE) \cup Int(GGE)] =$$

$$= E \cap Int(GE) \cup E \cap Int(E) = Int(E) = E$$

$$Int(E)$$

$$E \cap GE = \emptyset$$

(*) = E U
$$\overline{GE}$$
 = \overline{E} U $Fr(E)$ U $(X \setminus E)$,
$$\overline{X \setminus E} = \overline{GE} = Fr(X \setminus E) \cup (X \setminus E) = Fr(E) \cup (X \setminus E)$$

Falta ver que [1] = [2]

(4) Fr(AUB) C Fr(A) U Fr(B)

(5) K cerrado (para C) ← Fr(K) CK

demostración

ENTORNOS DE UN PUNTO

≥ EFINICIÓN: (X, T) espacio topológico $x_0 \in X$. Un entorno de x_0 un subconjunto $U \subset X$ tal que U contiene a un abierto ue contiene al punto x_0 . Es decir, U entorno de x_0 \Longrightarrow $\exists G \in T$ con $x_0 \in G$ tal que $G \cap C \cup U$.

Ejemplo: U = [0,1) es un entorno de 1/2 para T = Tn en IR. Sin embargo, no es un entorno del cero.

 l_{x_0} := familia de entornos del punto x_0 = sistema de entornos de x_0 .

TEOREMA (Propiedades básicas de los entornos de un punto):

- 1) ue Ux => xeU
- 2) $U_1V \in U_X \implies U \cap V \in U_X$
- 3) UE Ux => IVE Ux tal que UE lly YyeV
- 4) WE Ux, UCV => VE Ux
- 5) Gr∈ T (⇒) Gr contiene a un entorno de cada uno de sus puntos. demostración
 - 2) $\times \in U$, $\times \in V \implies \times \in U \cap V$ $U \in U_X \implies \exists G_1 \in T$, $\times \in G_1$, $G_1 \subset U$ prop. 3 topologic. $V \in U_X \implies \exists G_2 \in T$, $\times \in G_2$, $G_2 \subset V$ $\implies G := G_1 \cap G_2 \in T$, $\times \in G_1$ $G_1 \cap G_2 \subset G_1 \subset U$ $\implies G_1 \cap G_2 \subset U \cap V$ $G_1 \cap G_2 \subset G_2 \subset V$ $\implies G_1 \cap G_2 \subset U \cap V$
 - 3) Sea $U \in U_X$, $x \in U \implies \exists G \in C$, $x \in G$, $G \subset U$ $\exists V = G$? $\exists V \in U_X$? $\Rightarrow Si$ Sea $y \in V = G$? $\exists U \in U_y$ Si, parque U contiene a un abierto (=G) que contiene a $y \in G = V$)
- 4) Como U∈Ux → JG∈T, X∈G, GCU Como UCV → JG∈T, X∈G, GCUCV → V∈Ux.
- 5) → Sea xeGr, luego, por hipótesis GEC, XEGCG. Lo que da que GEUx.

For a coda $g \in G \Rightarrow \exists A_x \in T$, $x \in A_x$, $A_x \subset G \Rightarrow \bigcup_{x \in G} A_x \subset G$, $\Rightarrow G = \bigcup_{x \in G} A_x$

TEOKEMA: Daolo un conjunto $X \neq \emptyset$. Si para cada punto $x \in X$ tenemos dada una familia U_X que satisface 1), 2), 3) y 4) lel anterior teorema y definimos $T := JGCX: \forall g \in G$, $\exists \forall g \in U_g$, $\forall g \in G$ $\exists f$ intonces, T es una topología sobre X y para esta topología.

Lx, = Ux , Vx e X.

EFINICIÓN: Una BASE de entornos de xo∈X, es una subfamilia 3. de Ux tal que VUEUx, existe B∈Bx tal que BCU.

(=>xeB, VBEB)

demostración teorema $\emptyset, X \in \mathbb{C}$ I) \mathbb{T} es una topología $G_{A}, G_{A} \in \mathbb{C} \longrightarrow G_{A} \cap G_{A} \in \mathbb{C}$ II) $(\mathcal{U}_{X,C} \subset \mathcal{U}_{X}, \mathcal{U}_{X} \subset \mathcal{U}_{X,C}) \forall X \in X$

Entornos de un punto

Ima A - sen (X, T) un espacio topológico. El sistema de entornos Un de un punto x EX satisface:

- 4) UEUx => x EU.
- 2) UNEUR => UNEUR
- 3) UEU2 = FVEUx tal que (HyEV, UEUy)
- 4) UEUz, UCV => VEUz.
- 5) GET (=> Gentière à un entorno de cala uno de sus juntos

Corolanio 1:3) => [NEUx=>] WCU, WEUx y tal que (+yew, UEUy)]

Corolano 2: A, B & Ux => AUB & Ux.

demostración corolano 1

- · W:= UN V ⊂ U (*)
- $W \in \mathcal{U}_X$ por la prop. 2 $\forall y \in \mathcal{V} \Longrightarrow \mathcal{U} \in \mathcal{U}_Y$ por la prop. 3

T:= 16cx: 4geG, JhgeUg, NgcG)

Enton 18:

(I) T es una topología sobre X

(II) Para la topología T dola en (I), la familie de entornos de xXX, pongamos $\mathcal{U}_{x,T}$, satisface

Uz, T= Uz 1

pera coda $x \in X$.

```
demostración (I) del teorema B
 (T:= 1GCX/ Yge G, JWg & Ug, Wg CG())
 1) Xe T 	 YgeX, FWge Ug, WgCX
      Escogemos Wg:= X y Wg = X & Ug por prop. 4
   ØET ( ) YgE Ø, FWgE Ug, WgC Ø
2) G, G, € C => G, ∩ G, € C
    GIET -> YgeGI, FWIGE Ug, Wig CG
    Get => \fe G2, FW2,g & Ug, W2,g C G2
   Sea geGINGz => J=Wing & Ug prop 2 Wing N Wing & Ug

J=Wing & Ug

Adomán W N W
                                         Además Wign Wzige Gin Gz
3) IGN GER, GET ?? WEARET
  Para cada x \in A \Rightarrow \forall g \in G_{\infty}, \exists W_{\alpha,g} \in U_{g}, W_{\alpha,g} \subset G_{\infty}
 Sea ge UGx => ] X. E. A., g E. G. => ] W. g E. Ug., W. g C. G. =>
  => Woog C Go C UGo . En consecuencia, UGo E Z.
    demostración (II) del teorema B
    cux = Ux, c?
                        Recordar: V entorno de X para T si V
                            contiene un abierto para C que contiene al punto x.
```

ciux c $u_{x,e}$? $u \in \mathcal{U}_{x} \stackrel{?}{=} > u \in \mathcal{U}_{x,e}$ $v_{x,e} \stackrel{?}{=} > u \in \mathcal{U}_{x,e}$ $v_{x,e} \stackrel{?}{=} > u \in \mathcal{U}_{x,e}$ $v_{x,e} \stackrel{?}{=} > v_{x,e} \stackrel{?}{=} > v_{x$

Définición. Una base de entorno de un punto re de un espacio topológico (X, c) es una subfamilia $B_{\infty} \neq \rho$ del sistema de entornos de a, Uz, que verifica la propiedad:

YNEUx, FWEBR CONWOU.

A sus elementes se les llama entosmos basico.

Fjercis: Demustra que con VCN} Uz=12CX: JVEBx

Trua A. - Sean (X, Z) un especie topológico, nex, Bre una base de entornos de x. Entonces

- 4) VEBX > REV
- 2) V1, N2 EBX => 3 V3 EBX tal que 3 C V1 N2
- 3) VEBR => I VoEBR talque VyEVo (JNyEBy con WCV) 4) GET => 6 contiène un entorno basico de cuda uno de sus puntos.

Dem (Ejercicio)

Tma B. seu X + De un conjunts Supongamos
que para coda re ex està dada una familia
Bx verificando las propiedades 1), 2) y3) de Tma A
Entones,

z:= 26 cX: YgE6, FRg EBg, Rg C66 es una topología vobre X y la familia Bre es una base de entornos de x en X para la topología T.

Dem (Zjercicio).

TEOREMA: (X, C) espacio topológico. $\forall x \in X, B_x$ es una base de entorn de x.

- 1) GET (G contiene un entorno básico de cada uno de sus pun!
- 2) F cerrado $\iff \forall x \notin F, \exists W_x \in \mathcal{B}_x \text{ tal que } W_x \cap F = \emptyset.$
- 3) $x \in \overline{E} \iff \forall \Omega_x \in \mathcal{B}_x, \ \Omega_x \cap E \neq \emptyset$
- 4) $\times \in \stackrel{\circ}{E} \iff \exists \Omega_{\times} \in \mathcal{B}_{\times}, \ \Omega_{\times} \subset E$
- 5) $x \in F_r(\varepsilon) \iff \forall \Omega_x \in \mathcal{B}_x, \Omega_x \cap \varepsilon \neq \emptyset, y \Omega_x \cap (X \setminus \varepsilon) \neq \emptyset.$

demostración

- 1) Def. de B_X + caracterización de G abto. con la familia U_X
- 2) Formado $\Leftrightarrow G = GF$ abto $\Leftrightarrow \forall x \in G$, $\exists W_x \in B_x$, $\forall x \in G$ $\Leftrightarrow \forall x \notin F$, $\exists W_x \in B_x$, $\forall x \in G$.
- 3) $x \notin \overline{E} \iff x \in G\overline{E} = Int(GE) \stackrel{1)}{\Longleftrightarrow} \exists W_x \in B_x \text{ fol que } W_x \subset G\overline{E} \subseteq GE$ 4) $X \in Int(E) \stackrel{1}{\Longrightarrow} \exists \Omega_x \in B_x , \Omega_x \subset Int(E) \subset E$

 $\begin{array}{l}
\leq \\
\text{Sea } \Omega_{\mathsf{X}} \in \mathbb{B}_{\mathsf{X}}, \ \Omega_{\mathsf{X}} \subset \mathsf{E} \implies \Omega_{\mathsf{X}} \in \mathcal{U}_{\mathsf{X}} \implies \exists G_{\mathsf{X}} \in \mathcal{C}, \ G_{\mathsf{X}} \subset \Omega_{\mathsf{X}} \implies \exists G_{\mathsf{X}} \in \mathcal{C}, \ x \in G_{\mathsf{X}} \subset \Omega_{\mathsf{X}} \subset \mathsf{E} \implies x \in G_{\mathsf{X}} \subset \mathcal{U}_{\mathsf{X}} \setminus G_{\mathsf{X}} \in \mathcal{C} : G_{\mathsf{X}} \subset \mathsf{E} \\
\implies \exists G_{\mathsf{X}} \in \mathcal{C}, \ x \in G_{\mathsf{X}} \subset \Omega_{\mathsf{X}} \subset \mathsf{E} \implies x \in G_{\mathsf{X}} \subset \mathcal{U}_{\mathsf{X}} \setminus G_{\mathsf{X}} \in \mathcal{C} : G_{\mathsf{X}} \subset \mathsf{E} \\
\implies \exists G_{\mathsf{X}} \in \mathcal{C}, \ x \in G_{\mathsf{X}} \subset \Omega_{\mathsf{X}} \subset \mathsf{E} \implies x \in G_{\mathsf{X}} \subset \mathcal{U}_{\mathsf{X}} \setminus G_{\mathsf{X}} \in \mathcal{C} : G_{\mathsf{X}} \subset \mathsf{E} \\
\implies \exists G_{\mathsf{X}} \in \mathcal{C}, \ x \in G_{\mathsf{X}} \subset \mathcal{C}_{\mathsf{X}} \subset \mathcal{C} \subseteq \mathcal{C}_{\mathsf{X}} \subset \mathcal{C} = \mathcal{C}_{\mathsf{X}} \subset \mathcal{C$

5) $\times \in \overline{F_r(E)} = \overline{E} \cap \overline{X} \setminus E \iff \forall \Omega_{\lambda,x} \in \mathcal{B}_x, \Omega_{\lambda,x} \cap E \neq \emptyset,$ $\forall \Omega_{2,x} \in \mathcal{B}_x, \Omega_{2,x} \cap (X \setminus E) \neq \emptyset$

FORMA 2

Sea $\Omega_{x} \in \mathcal{B}_{x} \Longrightarrow \int_{\Omega_{x}}^{\Omega_{x}} \Omega \in \neq \emptyset$ puer $x \in \overline{E}$ $\int_{\Omega_{x}}^{\Omega_{x}} \Omega(X \setminus E) \neq \emptyset$ puer $x \in \overline{X \setminus E}$

See $\Omega_{x} \in \mathcal{B}_{x} \xrightarrow{(a)} \Omega_{x} \cap E \neq \emptyset$ See $\Omega_{x} \in \mathcal{B}_{x} \xrightarrow{(a)} \Omega_{x} \cap (X \setminus E) \neq \emptyset$.

 $1EOREMH: (X, C_1), (X, C_2)$. Yara cada XEX estan dadas B_x^1 , B_x^2 bases de entornos de x para C_1 , C_2 respectivamente. Son equivalentes: ____ notación en algunos libros 1) T1 C T2 (T1 L T2) 2) $\forall x \in X$, $A \in \mathcal{B}_{x}^{1} \Longrightarrow \mathcal{B} \in \mathcal{B}_{x}^{2}$ tal que $\mathcal{B} \subset A$ demostración $|\underline{1} \Rightarrow 2|$ Sec $x \in X$, sec $A \in \mathcal{B}_{x}^{1} \longrightarrow \exists G_{x} \in \mathcal{T}_{x}, x \in G_{x}, G_{x} \in A \Longrightarrow$ => IG=GIETZ, XEG, GCA => AE Ux => IBEBx tal que B_x^2 base de entornos de x para C_2 . BCA. 2) => 1) Sea Gr & Cr. Veamos que Gr & C2. $G_{1} \in \mathcal{F}_{1} \implies G_{1} = \bigcup \Omega_{\times}^{1}, \quad \Omega_{\times}^{1} \in \mathcal{B}_{\times}^{1} \xrightarrow{2\mathcal{V}_{1}} \exists \Omega_{\times}^{2} \in \mathcal{B}_{\times}^{2}, \quad \Omega_{\times}^{2} \subset \Omega_{\times}^{1} \implies \exists \Omega_{\times}^{2} \in \mathcal{B}_{\times}^{2}, \quad \Omega_{\times}^{2} \subset \Omega_{\times}^{1} \implies \exists \Omega_{\times}^{2} \in \mathcal{B}_{\times}^{2}, \quad \Omega_{\times}^{2} \subset \Omega_{\times}^{1} \implies \exists \Omega_{\times}^{2} \in \mathcal{B}_{\times}^{2}, \quad \Omega_{\times}^{2} \subset \Omega_{\times}^{1} \implies \exists \Omega_{\times}^{2} \in \mathcal{B}_{\times}^{2}, \quad \Omega_{\times}^{2} \subset \Omega_{\times}^{1} \implies \exists \Omega_{\times}^{2} \in \mathcal{B}_{\times}^{2}, \quad \Omega_{\times}^{2} \subset \Omega_{\times}^{1} \implies \exists \Omega_{\times}^{2} \in \mathcal{B}_{\times}^{2}, \quad \Omega_{\times}^{2} \subset \Omega_{\times}^{1} \implies \exists \Omega_{\times}^{2} \in \mathcal{B}_{\times}^{2}, \quad \Omega_{\times}^{2} \subset \Omega_{\times}^{1} \implies \exists \Omega_{\times}^{2} \in \mathcal{B}_{\times}^{2}, \quad \Omega_{\times}^{2} \subset \Omega_{\times}^{1} \implies \exists \Omega_{\times}^{2} \in \mathcal{B}_{\times}^{2}, \quad \Omega_{\times}^{2} \subset \Omega_{\times}^{1} \implies \exists \Omega_{\times}^{2} \in \mathcal{B}_{\times}^{2}, \quad \Omega_{\times}^{2} \subset \Omega_{\times}^{2} \implies \exists \Omega_{\times}^{2} \in \mathcal{B}_{\times}^{2}, \quad \Omega_{\times}^{2} \subset \Omega_{\times}^{2} \implies \exists \Omega_{\times}^{2} \in \mathcal{B}_{\times}^{2}, \quad \Omega_{\times}^{2} \subset \Omega_{\times}^{2} \implies \exists \Omega_{\times}^{2} \in \mathcal{B}_{\times}^{2}, \quad \Omega_{\times}^{2} \subset \Omega_{\times}^{2} \implies \exists \Omega_{\times}^{2} \in \mathcal{B}_{\times}^{2}, \quad \Omega_{\times}^{2} \subset \Omega_{\times}^{2} \implies \exists \Omega_{\times}^{2} \in \mathcal{B}_{\times}^{2}, \quad \Omega_{\times}^{2} \subset \Omega_{\times}^{2} \implies \exists \Omega_{\times}^{2} \subset \Omega_{\times}^{2} \implies \exists \Omega_{\times}^{2} \in \mathcal{B}_{\times}^{2}, \quad \Omega_{\times}^{2} \subset \Omega_{\times}^{2} \implies \exists \Omega_{\times}^{2} \in \mathcal{B}_{\times}^{2}, \quad \Omega_{\times}^{2} \subset \Omega_{\times}^{2} \implies \exists \Omega_{\times}^{2} \in \mathcal{B}_{\times}^{2}, \quad \Omega_{\times}^{2} \subset \Omega_{\times}^{2} \implies \exists \Omega_{\times}^{2} \in \mathcal{B}_{\times}^{2}, \quad \Omega_{\times}^{2} \subset \Omega_{\times}^{2} \implies \exists \Omega_{\times}^{2} \subset \Omega_{\times}^{2} \bowtie \exists \Omega_{\times}^{2} \subset \Omega_{\times}^{2} \implies \exists \Omega_{\times}^{2} \subset \Omega_{\times}^{2} \bowtie \exists \Omega_{\times}^{2} \subset \Omega_{\times}^{2} \bowtie$ $\Rightarrow G_1 = \bigcup_{x \in G_1} \Omega_x^2 \in C_2.$ FUNTOS DE ACUMULACIÓN (X, T) espacio topológico, ACX, $A \neq \emptyset$, $x \in X$ X se dice punto de acumulación de a si YUEUx, (UKx) NA + ø 4'= 1xeX/x de acumulación de Af es el conjunto DERIVADO de A. POPOSICION: A = AUA <u>demostraci</u>ón · xeA => Vue ux, (u\1xt)nA + Ø . Sea Ue Ux, => f => AUA'C Ā => Ø = (U\1xt)nA C UnA + Ø => A'CĀ D.ACA $\Box_{x \in \overline{A} \to \forall \Omega \in \overline{B}_{x}}, \Omega \cap A \neq \emptyset \to X \in A^{1}$ $(\Omega \setminus \{x\}) \cap A = \emptyset \to X \in A.$

BASES Y SUB-BASES DE TOPOLOGÍAS

DEFINICIÓN: (X, Z) espacio topológico. Una BASE para Z es una subfamilia B de Z (BCZ) tal que: $Z = \{UB: ECB\}$

TEOREMA: X + Ø, BCP(X), son equivalentes:

- 1) Bes una base parer UNA topología
- 2) Se verifican $\begin{cases} a \\ X = \bigcup B \\ B \in B \end{cases}$ (b) $B_1, B_2 \in B \implies \forall p \in B_1 \cap B_2, \exists B_3 \in B \quad con \quad p \in B_3, B_3 \in B_4 \cap B_3$

3) $\forall x \in X$, la familia $B_x = \{B \in B : x \in B\}$ es una base de entornos para una topología sobre X.

DEFINICIÓN: Dado (X,Z) un espacio topológico, y dada una subfamilia C_i de C_i , diremos que C_i es una sub-BASET para C_i si la familia: $\{\bigcap_{j\in J} B_j: B_j \in C_i, |J| < 3V_o\}$ es una base para C_i .

UNCLONES CONTINUAS ENTRE ESPACIOS TOPOLOGICOS

DEFINICION: (X,T), (Y,T') dos espacios topológicos, $f:X \longrightarrow Y$ función. Sea $x_0 \in X$. Diremos que f es CONTINUA EN x_0 si $\forall V \in \mathcal{U}_{f(x_0),T'}$. $\exists \mathcal{U} \in \mathcal{U}_{x_0,T}$ tal que $f(u) \subset V$. Diremos que f es CONTINUA EN X si es continua en cada $x \in X$.

Diremos que f es ABIERTA si $\forall G \in C$, $f(G) \in C'$. $f: X \longrightarrow Y \iff f \subset X \times Y \text{ tal que } \forall x \in X, \exists ! y \in Y \text{ con } (x_! y_!) \in f$

TEOREMA: Son equivalentes: (Obs: $f(X, C) \longrightarrow (Y, C')$)

- 1) f continua
- 2) \forall H abierto en $Y \Longrightarrow f^{-1}(H)$ es abierto en X.
- 3) \forall F certado en $Y \Rightarrow f^{-1}(F)$ es certado en X.
- 4) ∀ E C X, f(Ē) C f(Ē).

demostración

$$|\exists \Rightarrow \forall | f(E) = \bigcap \{K : K \text{ cerrado en } Y \text{ } f(E) \subset K \}$$

$$|E| = \bigcap \{F : F \text{ cerrado en } X, E \subset F \}$$

$$|K \text{ cerrado en } Y, f(E) \subset K \xrightarrow{(3)} E \subset f^{-1}(K), f(K) \text{ cerrado en } X.$$

$$|F^{-1}(f(E))| = \{x \in X \mid f(x) \in f(E)\}$$

$$|D \text{ Divagaciones (demostración más adelante)}$$

- tregunta: -' \(\theta : A \to B \) $\varphi^{-1}(G_E) = G_A \varphi^{-1}(E)$ demostración: $a \in \mathcal{C}^{-1}(GE) \iff \mathcal{C}(a) \in GE \iff \mathcal{C}(a) \notin E$ a ∈ G(-1(E) => a ¢ (P-1(E) 1=>2 Sea H abierto de Y. Sea $x_0 \in f^{-1}(H) \implies f(x_0) \in H$. Además f es continua en xo. YVE Ufoso, E, JUEUxo, E, f(u) CV lo que sabiamos H puede ser a le que llamamos V: THE Upon, TI FUE Uxo, E, f(u) c Luego $f(u) \subset H \Rightarrow u \subset f^{-1}(H)$ 1- uc f-1. f(u) c f-1(H) 2=>3 Sea K cerrado en Y. Definimos H=YIK es abierto en $\stackrel{2)}{\Longrightarrow} f^{-1}(H)$ abierto en X $\Longrightarrow f^{-1}(R)$ cerrado en X. Pero $f^{-1}(GR) = G(f^{-1}(R))$ £(₹) 3=>4 yo € f(Ē) = f(N(M: M cerrado en X, M)ĒÌ) = N(K: K cerrado, K)f(€) yo=f(x6), xo∈M, VM cerrado en X, M⊃E Sea K cerrado en Y tal que $K \supset f(E)$. Veamos que $y_o \in K$. $A \subset B \implies f(A) \subset f(B)$ $y = f(a), a \in A \xrightarrow{A \subset B} y = f(a), a \in B$ f-1(K) > f-1(f(F)) > E

(1-1-1) JEN XOE A. YEMINUS $\begin{cases}
050: NOTA \\
f:A \to B \\
Z
\end{cases}$ $f(f^{-1}(Z)) = Z \cap f(A)$ Sea $V \in \mathcal{V}_{f(x_0)}$. Se define $E = X \setminus f^{-1}(V)$ · U = X \ E abto. f(u) ⊂ V · cixo ∈ U? Habra que aplicar 4) de alguna manera. Sea $E := X/f^{-1}(V)$, $E \subset X$ cerrado, U = X/E abierto. Veamos que xo∈ U. Si xo∉ U => xo∈ E => YIZE Uxo, IZNE≠Ø $\Omega \cap Gf'(V) \neq \emptyset$ [ae $\Omega \cap Gf'(V) \neq \emptyset$, ae Ω , a $\notin f(V)$] , listo.

[$x_0 \in \Omega \cap Gf'(V) \neq \emptyset$, $x_0 \in \Omega$, $x_0 \notin f(V)$] Por otro lado, si ahora $x_0 \in \Omega$, $x_0 \notin E$, $x_0 \in F_1(E)$, $\Omega \cap f(V) \neq \emptyset$. $f(\overline{\epsilon}) \subset \overline{f(\epsilon)}$. Veamos que $x_0 \in U$. Si $x_0 \notin U = X \setminus \overline{\epsilon} \implies x_0 \in \overline{\epsilon} \implies$ $\Rightarrow f(x) \in f(\bar{\epsilon}) \subset \bar{f}(\bar{\epsilon}) = f(x)f'(y) = f \circ f'(gy) = g \circ f(x) \Rightarrow$ \Rightarrow $f(x_0) \notin V$. \Rightarrow esto es para (ver) que $\exists u \in U_{x_0, c}$, $f(u) \subset V$ FUNCIONES CONTINUAS (REMERDO) (X, T,), (Y, Tz), (Z, T3) espacios topológicos

 $(X, T_1), (Y, T_2), (Z, T_3) \text{ espacios topológicos}$ $X \xrightarrow{\text{f cont.}} Y \xrightarrow{\text{g cont.}} Z \implies g \circ f \text{ continua}$ $G \in T_3 \implies g^{-1}(G) \in T_2 \implies f^{-1}(g^{-1}(G)) \in T_1$

DEF1: $f:(X, C_1) \longrightarrow (Y, C_2)$ es un HOMEOMORFISMO si f es cont. biyectiva y f^{-1} continua.

DEF2: $f:(X, T_1) \longrightarrow (Y, T_2)$ es una inmersión si f es inyectiva y continua.

TEOREMA: Son equivalentes para $f:(X, T_1) \longrightarrow (Y, T_2)$

1) & homeomorfismo

2)
$$GCX \Longrightarrow [f(G) \in T_2 \iff G \in T_n]$$

3)
$$FCX \Longrightarrow [f(F) \text{ certado en } Y \Longleftrightarrow F \text{ certado en } X]$$

4)
$$\in cX \implies f(\bar{\epsilon}) = f(\bar{\epsilon})$$

SUBESPACIOS TOPOLÓGICOS

(X, T) espacio topológico, ACX

 $G:=\{G\cap A\mid G\in C\}$ Topología RELATIVA o de subespacio de A En este caso decimos que A es un subespacio topológico de ;

$$(A, T_A) \xrightarrow{i} (X, T)$$

 $a \longmapsto a = i(a)$

ci inmersión? 5t, i injectiva + i continua observación: $GET \Rightarrow i^{-1}(G) = GNA \in T_A$

Por ejemplo, $A = [0,1) \subset X = \mathbb{R}$, $C = \mathbb{T}_n$ [0,1/2) abto. en A pero no en $X = \mathbb{R}$.

Ejemplo 2:
$$(A = [0,1), T_A) \xrightarrow{i} (R, T_a)$$

 $G = \{1/2\} \in T_a \implies i'(G) = \{1/2\} \notin T_A$

TEOREMA: ACX, A subespacio de X (e.d., la top. de A en la TA)

- 1) HCA es abierto en $A \iff \exists G \in C$, $H = G \cap A$
- 2) FCA es cerrado en A >>> F= KNA, K cerrado en X
- 3) $ECA \implies cl_A(E) = E^A = A \cap E^X$
- 4) a ∈ A => [V ∈ Ua, Za ←> V = UNA, UE Ua, E]
- 5) $\forall a \in A$, $B_{a,\tau}$ base de entornos de a en $X \Longrightarrow \{B \cap A : B \in B_{a,\tau}\}$ base de entornos de a para T_A
- 6) B es base para T => {BNA: BEB} base para TA.

AEFINICIÓN:
$$f:(X,T) \longrightarrow (Y,T')$$
 ACX
'a RESTRICCIÓN de f a A es $f|_{A} = f_{A}:(A,T_{A}) \longrightarrow (Y,T')$
 $f_{A}(a) = f(a)$

 $\frac{20POSiCIÓN}{A}$: f continua, ACX subespacio topológico \Longrightarrow $f_A: A \longrightarrow Y$ es continua f(a)

 $\frac{\text{demostracion}}{G \text{ abserto en } Y \Longrightarrow f^{-1}(G) \in C \Longrightarrow f^{-1}(G) \cap A \text{ es absierto en } A$ $(f_A^{-1})(G) = \{a \in A \mid f_A(a) \in G\} = \{a \in A \mid f(a) \in G\} = f^{-1}(G) \cap A.$

Proposición: $(X, T_1) \stackrel{f}{\longrightarrow} (Y, T_2)$, $Y \stackrel{i}{\longleftrightarrow} Z_i$, $Y \stackrel{b}{\longleftrightarrow} top. de (Z_1, T_3)$ $Y T_2 = (T_3)_Y$. f es continua \iff i o f continua

demostración

He
$$T_2 \Rightarrow f'(H) = f'(G \cap Y) = \underbrace{(i \circ f)'(G)}_{\parallel}$$

H = $G \cap Y$, $G \in T_3$

$$\begin{cases} x \in X \mid (i \circ f)(x) \in G \end{cases} = \begin{cases} x \in X \mid i(f(x)) \in G \end{cases} = \begin{cases} x \in X \mid f(x) \in G \cap Y \end{cases}$$

TOPOLOGÍA ASOCIADA A UN ORDEN

DEFINICIÓN: Una RELACIÓN R en un conjunto X se dice de ORDEN sobre X (o un orden lineal sobre X) si :

- (4) $\forall x, y \in X, x \neq y \implies xRy \circ yRx$ (prop. comparabilidad)
- (2) $\forall x, y \in X$, $si \times Ry \Rightarrow x \neq y$ (prop. irreflexiva)
- (3) $\forall x, y, z \in X$, $\times Ry$, $yRZ \implies \times RZ$ (prop. transitiva) Abreviamos (X,R) = (X, L)

Intervalos para el orden: $a,b \in X$ $(a,b) = \{x \in X \mid a < x < b\}$ $(a,b] = \{x \in X \mid a < x < b, o = b\}$ $[a,b] = \{x \in X \mid a < x < b, o = a\}$ $[a,b] = \{x \in X \mid a < x < b, o = a\}$ $[a,b] = \{x \in X \mid a < x < b, o = a\}$

Obs: X = Q, $\sqrt{13}(x_1, 2)$ $= \sqrt{13}(x_1, 2)$

```
BASE PARA UNA TOPOLOGIA ASOCIADA A <
   B:= { · los intervalos (a,b), a,b ∈ X, a < b,
          · todos los intervalos [ao,b) si ao=minX si existiera,
          · todos los intervalos (a, b) si b= maxX oi existiera }
CB base para una topología? IXI≥2 (dos elem. para ordenar algo)
                                           el otro elemento
 1) X = UB
    Sea x_0 \in X. Si x_0 = \max X usamos (a, x_0] \ni x_0
    Si Xo=minX lo podemes encajar en [Xo, a) > Xo
    Si xo + min X y xo + maxX ->> fa & X, a < xo pues xo
 no puede ser el mínimo; y Fbet, xo<b pues xo no
 puede ser el máximo \Rightarrow x \in (a,b) (en este caso |x| > 3).
2) B1, B2 & B => Kx & B1 NB2, JB3 & B tal que x & B3, B3 CB1 NB2
  caso 2.1: B_1 = (a_1, b_1), B_2 = (a_2, b_2) (suponemos que se cortan)
     B_1 \cap B_2 : \frac{( )}{a_1 \quad a_2 \quad b_1 \quad b_2} \qquad \frac{( )}{a_2 \quad a_1 \quad b_2 \quad b_1}
     B_1 \cap B_2 = (u,v) = (\max\{a_1,a_2\}, \min\{b_1,b_2\})
(Aso 2.2: B_1 = (a_1, b_1), B_2 = [a_0, b)
       B_1 \cap B_2 = (u,v) = (a_1, min\{b_1,b\})
```

CASO 2.3: $B_n = (a_1,b_n)$, $B_2 = (a_1,b_0)$ I Iquales

CASO 2.4: $B_n = [a_0,b)$, $B_2 = (a_1,b_0)$

Ejemplos:

1)
$$X = R$$
, $T_{<} = T_{u}$

$$D \leq_{lex} : (a,b) \leq_{lex} (c,d) \iff \begin{cases} a < c \\ a = c, b < d \end{cases}$$

$$X = \mathbb{R}^2$$
, $(P_1, P_2) = \{Q \in \mathbb{R}^2 \mid P_1 <_{lex} P_2\}$

$$P_1 = (0,0)$$
 , $P_2 = (1,0)$

$$(P_{1}, P_{2}) = \frac{1}{2}(x_{1}y) \mid (0,0) <_{lex}(x_{1}y) <_{lex}(1,0) \mid (0,0) <_{lex}(x_{1}y) <_{lex}($$

Si ahora
$$P_1 = (0,0)$$
, $P_2 = (0,2)$

$$(P_1, P_2) = \frac{1}{2}(X_1Y_1) | (0,0) <_{lex}(X_1Y_1) <_{lex}(0,2)$$

$$\frac{1}{2}$$

TOPOLOGÍA PRODUCTO

$$\frac{1}{1}(X_{x}, T_{x})_{x \in \Lambda} \quad \text{familia} \quad \text{de espacios topológicos} \quad \text{fuera fuera fuera }$$

$$\frac{1}{1}X_{x} \Rightarrow X \quad X : \Lambda \longrightarrow \underset{\alpha \in \Lambda}{\longrightarrow} X_{\alpha} = \underset{\alpha \in \Lambda}{\bigcup} X_{\alpha} = \underset{\alpha \in \Lambda}{\bigcup} X_{\alpha} \times X_{\alpha} \quad \text{(ador }$$

$$\frac{1}{1}X_{\alpha} \Rightarrow X \quad X : \Lambda \longrightarrow \underset{\alpha \in \Lambda}{\longrightarrow} X_{\alpha} = \underset{\alpha \in \Lambda}{\bigcup} X_{\alpha} \times X_{\alpha} \quad \text{(ador }$$

$$\frac{1}{1}X_{\alpha} \Rightarrow X \quad X : \Lambda \longrightarrow \underset{\alpha \in \Lambda}{\longrightarrow} X_{\alpha} = \underset{\alpha \in \Lambda}{\bigcup} X_{\alpha} \times X_{\alpha} \quad \text{(ador }$$

$$\frac{1}{1}X_{\alpha} \Rightarrow X \quad X : \Lambda \longrightarrow \underset{\alpha \in \Lambda}{\longrightarrow} X_{\alpha} = \underset{\alpha \in \Lambda}{\bigcup} X_{\alpha} \times X_{\alpha} \quad \text{(ador }$$

$$\frac{1}{1}X_{\alpha} \Rightarrow X \quad X : \Lambda \longrightarrow \underset{\alpha \in \Lambda}{\longrightarrow} X_{\alpha} = \underset{\alpha \in \Lambda}{\bigcup} X_{\alpha} \times X_{\alpha} \quad \text{(ador }$$

$$\frac{1}{1}X_{\alpha} \Rightarrow X \quad X : \Lambda \longrightarrow \underset{\alpha \in \Lambda}{\longrightarrow} X_{\alpha} = \underset{\alpha \in \Lambda}{\bigcup} X_{\alpha} \times X_{\alpha} \quad \text{(ador }$$

$$\frac{1}{1}X_{\alpha} \Rightarrow X \quad X : \Lambda \longrightarrow \underset{\alpha \in \Lambda}{\longrightarrow} X_{\alpha} = \underset{\alpha \in \Lambda}{\bigcup} X_{\alpha} = \underset{\alpha \in \Lambda}{\bigcup} X_{\alpha} \quad \text{(ador }$$

$$\frac{1}{1}X_{\alpha} \Rightarrow X \quad X : \Lambda \longrightarrow \underset{\alpha \in \Lambda}{\bigcup} X_{\alpha} = \underset$$

DEFINICIÓN: $\Omega \in \beta \iff \Omega = TTU_{x}$, $U_{x} \in T_{x}$ $\forall x \in \Lambda$ Esta definición da una base para una topología en el espació producto TTX_{x} , $T_{\Omega} := topología caja$.

Itra possibilidad es: $J := \{T_i^{-1}(u_i) : u_i \in T_i \mid_{i \in \Lambda}$

con $T_i: T_i X_{\alpha} \longrightarrow X_i$ $(X_{\alpha})_{\alpha \in \Lambda} \longmapsto X_i$

 $T_{i} := la$ i-ésima proyección $T_{i}(a) = T_{i} \Omega_{x} \text{ double}$ $x \in \Lambda \Omega_{x} \text{ double}$ $\Omega_{x} = \begin{cases} 1 & \text{for } x = i \\ X_{x} & \text{si } x \neq i \end{cases}$

I es una sub-base para una topología, llamada la topología producto en TTX_{∞} .

 $T_i^{-1}(u_i) = \prod_{\alpha \in \Lambda} W_{\alpha} \quad \text{con} \quad W_{\alpha} = \begin{cases} u_i & \text{si } \alpha = i \\ X_{\alpha} & \text{si } \alpha \neq i \end{cases}$

 $T_{prod} = T_{\chi} = la$ topologia engendrada por J.

- REWERDO:
$$X = \prod_{\alpha \in \Lambda} X_{\alpha}$$
, $X = (x_{\alpha})_{\alpha \in \Lambda}$, $X \xrightarrow{\Pi_{i} = Y_{i}} X_{i}$
 $(x_{\alpha})_{\alpha \in \Lambda} \longrightarrow x_{i}$
 $T_{\alpha} \leftarrow J_{\alpha} = \{\prod_{i} I(u_{i}): u_{i} \in T_{i}, i \in \Lambda\}$
 $I_{\alpha} = \{\prod_{\alpha \in \Lambda} u_{\alpha}: u_{\alpha} \in T_{\alpha}, \forall \alpha \in \Lambda\}$
 $I_{\alpha} = \prod_{i} I(u_{i}) = \prod_{\alpha \in \Lambda} u_{\alpha} \quad \text{con} \quad \Omega_{\alpha} = \{u_{i} \text{ si } \alpha = i\}$
 $I_{\alpha} = \prod_{\alpha \in \Lambda} u_{\alpha} \quad \text{con} \quad \Omega_{\alpha} = \{u_{i} \text{ si } \alpha \neq i\}$

Contraejemplo:
$$IR^{\omega} = \prod_{n=0}^{\infty} x_n$$
, $x_n = IR$, $x_n = Tu$

$$f_n:A\longrightarrow X_n$$

$$\begin{array}{ccc}
A & \xrightarrow{f} & (\mathbb{R}^{\omega}, \mathcal{T}_{\alpha}) \\
\times & & \xrightarrow{} & f(x) := (f_{n}(x))_{n=0}^{\infty}
\end{array}$$

$$\underline{0} = (0)_{n=0}^{\infty} \in B := \prod_{n=0}^{\infty} \left(\frac{-1}{n+1}, \frac{1}{n+1} \right) \in \mathcal{T}_{\square}$$

Veamos que 0 no es un punto interior de f (B) Caso contrario $\exists S > 0$ tal que $(-S,S) \subset f^{-1}(B) \Longrightarrow$

TEOREMA: $\{(X_{\alpha}, T_{\alpha})\}_{\alpha \in \Lambda}$ familia de espacios topológicos. Sec A conjunto. Si $\forall \alpha \in \Lambda$, tenemos dada una aplicación $f_{\alpha}: A \longrightarrow X_{\alpha}$ y definimos $f: A \ni a \longrightarrow (f_{\alpha}(a))_{\alpha \in \Lambda} \in \Pi X_{\alpha}$ Si $\prod X_{\alpha}$ tiene la topología T_{α} , entonces f continua \iff $\forall \alpha \in \Lambda$, f_{α} continua.

demostración

A
$$\Rightarrow TTX_{\alpha} \xrightarrow{T_{\alpha} = p_{\alpha}} X_{i}$$
 $a \mapsto (f_{\alpha}(a)) \mapsto f_{i}(a)$
 $f_{i} := TT_{i} \circ f \quad es \quad cont. \quad por \quad ser \quad composición \quad de \quad cont.$
 $f_{\alpha} := TT_{i} \circ f \quad es \quad cont. \quad por \quad ser \quad composición \quad de \quad cont.$
 $f_{\alpha} := TT_{i} \circ f \quad es \quad cont. \quad por \quad ser \quad composición \quad de \quad cont.$
 $f_{\alpha} := TT_{i} \circ f \quad es \quad cont. \quad por \quad ser \quad composición \quad de \quad cont.$
 $f_{\alpha} := TT_{i} \circ f \quad es \quad cont. \quad por \quad ser \quad composición \quad de \quad cont.$

Veamos que la contraimagen de los elementos de la sub-base es abierto en A. $f^{-1}(T_i^{-1}(u_i)) = \{a \in A \mid f(a) \in T_i^{-1}(u_i)\} = \{a \in A \mid (f_{\alpha}(a))\} \in T_i^{-1}(u_i)\} = \{a \in A \mid (f_{\alpha}(a)) \in T_i^{-1}(u_i)\} = \{a \in A \mid f(a) \in U_i\} = \{a \in A \mid f(a) \in$

Pregunta: c' Son iquales
$$C_{x}$$
 y C_{\Box} si $|A| < \infty$?
 $(X_{1}, C_{1}), (X_{2}, C_{2}) \Rightarrow (X_{1} \times X_{2}, C_{\Box}) \stackrel{?}{=} (X_{1} \times X_{2}, C_{X})$

$$M_1 \times M_2 = \underbrace{\left(M_1 \times M_2 \right) \cap \left(X_1 \times X_2 \right)}_{C_X} \cap \underbrace{\left(X_1 \times X_2 \right)}_{C_X}$$

La respuesta es sí (aunque desconozco si esto es una demostración)

TOPOLOGÍA DE SUBESPACIO

 $A \subset (X, T)$ $T_A := \{G \cap A : G \in T\}$ top. de subespacio de A $PROPOSICIÓN: A \subset (X, T)$, A abierto en $X \Longrightarrow$ $\Rightarrow (H \text{ abierto en } A \Longleftrightarrow H \text{ abierto en } X).$ $Ejemplo: A = [0,1), G = (-\frac{1}{2}, \frac{1}{2}), A \cap G = [0, \frac{1}{2})$

TEOREMA 1: (X, <) conjunto ordenado, C = T < . Sea Y un intervalo de la forma (a,b), $(-\omega,b)$, $(a,\omega) \Longrightarrow T_Y$ es la top. asociada al orden $<_Y$, orden en < considerado para elems. de $T \in OR \in MA = 2$: $A \subset B$, $B \subset Y \Longrightarrow la$ top. producto $A \times B$ es la misma que la top. de subespacio de $X \times Y$.

Observación: $A = (-\infty, 0] \cup (2, \infty) \subset \mathbb{R}$

1) Topologia de subespacio de R. TA, T=Tu

HHHHHHHHHHHHH

0 2

(-E,0] son entornos abiertos en A para TA.

2) Ordenamos A, < y definimos en A la top. $T < a \in A$, (a-E, a+E), $(u,v) \ni a$

 $0 \in A$, $0 \in (u,v) = \{a \in A \mid u < a < v\}$

por ejemplo, $(-1,3) = \{a \in A \mid -1 < a < 3\}$ $(-\varepsilon, 2+\varepsilon) = \{a \in A \mid -\varepsilon < a < 2+\varepsilon\} = (-\varepsilon, 0] \cup (2, 2+\varepsilon)$

TEOREMA:
$$(X, Z)$$
, $Y = (a,b)$ of $(-\infty,b)$, (a,∞)

$$\Rightarrow T_Y = T_{Z_Y}$$

demostración

Topología de subespacio $G \in T_Y \iff G = H \cap Y$, con $H \in T$ Topología asociada al orden $Y : a,b \in Y$, $a <_Y b \iff a <_Y b$ $= \int_{A}^{Y} = \int_{A}^{Y} (a,b) |a,b \in X, a <_Y b \mid V \mid (a,b,0) \mid b_0 = \max_{X}^{Y} V$ Sub-base para $T_X = V \mid T_X \mid T$

TEOPEMA: $A \subset X$, $B \subset Y$ con (X, T_1) , (Y, T_2) esp. topológicas $\Rightarrow (A \times B, T_{A \times B}) \equiv (A \times B, T_{X})$ $\Rightarrow (A \times B, T_{A \times B}) \equiv (A \times B, T_{X})$ $\Rightarrow (A \times B, T$

Propiedades de separación topológica (Hausdorff)

(X, T) \longrightarrow separación "por abiertos" de los puntos distintos $X_4 \neq X_2$ ci Podemos buscar entornos (abtos.) Ω_1 de X_1 y Ω_2 de X_2 tales que $\Omega_1 \cap \Omega_2 = \emptyset$?

No siempre et posible: por ejemplo (IR, Toofinita) $\Gamma_1 = 1$, $\Gamma_2 = 2$, $\Gamma_4 \neq \Gamma_2$ $\Omega_1 = ||R| \setminus \{X_{41}, ..., X_{4n}\} \Rightarrow 1$ $\Omega_2 = |R| \setminus \{X_{21}, ..., X_{2m}\} \Rightarrow 2$ $||\Omega_1 \cap \Omega_2 \neq \emptyset|$

DEFINICIÓN: (X, Z) se dice $\overline{I_2}$ ó Hausdorff si $\forall x_1, x_2 \in X$, $x_1 \neq x_2$, existen entornos $\Omega_1 \in \mathcal{U}_{X_1}$ y $\Omega_2 \in \mathcal{U}_{X_2}$ tales que $\Omega_1 \cap \Omega_2 = \emptyset$.

TEOREMA: (X, T) es Tz => todo subconjunto finito es cerrado.

demostración

Sea $A \subset X$, $n = |A| < \infty$. Por inducción en n, basta demostrarlo para n = 1. Pues si $A = \{a_1, ..., a_n\} = \bigcup_{j=1}^n \{a_j\}$ entonces si $\{a_j\}$ en cerrado A es cerrado por ser unión finita de cerrados.

Veamos que A=1pt es un conjunto cerrado en X. Veamos que $A=\overline{A}$. Si existe $x\in\overline{A}\setminus A \Longrightarrow x\in\overline{A}$, $x\neq p$. Como X es $T_2\Longrightarrow \exists \Omega_1\in \mathcal{U}_X$, $\exists \Omega_2\in \mathcal{U}_p$ tal que $\Omega_1\cap\Omega_2=\emptyset$. Pero $\Omega_1\in \mathcal{U}_s$ $\Omega_1\cap A\neq\emptyset$ por $x\in\overline{A}\Longrightarrow p\in\Omega_1$, que es una contradicción.

IEOREHA: (X,T) es Tz, |X|=∞, M-1 $r \in A' \iff \forall U \text{ entorno } de \times, \text{ se tiene } |U \cap A| = \infty$ demostración | Por def. de x ∈ A'. [] Sea U entorno abto de x, lunal < 00 => ⇒ Un (Alixt) = 1x1,...,xnb con xj ≠x. V:= U/{x1,..., xn} + Ø \Rightarrow $V \cap (A \mid \forall x \nmid) = \emptyset \Rightarrow x \notin A'.$ V∈ Ux abierto por ser X Tz V es el complementario de un corrado. EOREMA: (X, T) Son equivalentes: 1) X es T2 2) La diagonal $\Delta = \{(x,x) \mid x \in X\} \subset X \times X$ es cerrada en $(X \times X, T_x)$ demostración $(1) \Rightarrow (2) \quad K = \Delta^{c} = \langle (x_1, x_2) | x_1 \neq x_2, x_1, x_2 \in X \rangle$ Sea (x1, x2) & G1, veamos que (x1, x2) & Int(G). Como (x1, x2) ∈ G ⇒ X1 ≠ X2 (4) Js2, abto. ∈ Ux, FS22 abto. ∈ Ux2 tal que $\Omega_1 \cap \Omega_2 = \emptyset$. Veamos que D1×D2 CG, e.d., (D1×D2) NA = Ø. Si esto no se cumpliese, existira $(a,a) \in \Omega_1 \times \Omega_2 \implies a \in \Omega_1, a \in \Omega_2 \implies$ ⇒ a ∈ Q1 ∩ Q2 + Ø (contradicción con Tz). (2) \Rightarrow (1) Sean $x_1, x_2 \in X$, $x_1 \neq x_2$. Consideremos el punto $p = (x_1, x_2) \notin \Delta$ $\Rightarrow P = (x_1, x_2) \in G\Delta \stackrel{(2)}{=} Int(G\Delta) \Rightarrow \exists A_{x_1} \in U_{x_1} \text{ abto.}, A_{x_2} \in U_{x_2} \text{ abto.} tal$ que $A_{x_1} \times A_{x_2} \subset G\Delta$. En consecuencia $A_{x_1} \cap A_{x_2} = \emptyset$, puer en caso contrario existe $a \in A_{x_1} \cap A_{x_2} \implies (a_1 a_2) \in (A_{x_n} \times A_{x_2}) \cap A$, contradicción

TEOREMA:

- (4) Todo conjunto ordenado es Tz con la top. asociada al orden.
- (2) El producto finito de Tz es Tz.
- (3) (X, τ) ex T_2 , $Y \subset X \Rightarrow (Y, \tau_Y)$ ex T_2 .

demostración

(4)
$$X_1 \neq X_2 \implies X_1 < X_2 \text{ ó } X_2 < X_1$$

caso 1: X. no tiene max ni min:
$$\frac{1}{a} \times \frac{c}{x_1} \times \frac{c}{x_2} = \frac{1}{b}$$

Si $\exists c \mid x_1 \in (a,c)$
 $x_2 \in (c,b)$ $\forall (a,c) \cap (c,b) = \emptyset$

Si
$$\exists c \begin{cases} x_1 \in (a_1, x_2) \\ x_2 \in (x_1, b) \end{cases}$$
 $\forall (a_1, x_2) \cap (x_1, b) = \emptyset$ (parque no hay nada entre x_1, x_2)

(2) Sean $(a_1,a_2) \in X_4 \times X_2$ y $(b_1,b_2) \in X_4 \times X_2$ tales que $(a_1,a_2) \neq (b_1,a_2)$ Si $a_1 \neq b_1 \Longrightarrow \exists A_a$, entorno de a_1 , $\exists B_b$ entorno de en X_1 tales que $A_{a_1} \cap B_{b_1} = \emptyset$

$$G_{1} := A_{1} \times X_{2} \in \mathcal{U}_{A}$$

$$G_{2} := B_{0} \times X_{2} \in \mathcal{U}_{B}$$

$$G_{3} := B_{0} \times X_{2} \in \mathcal{U}_{B}$$

$$G_{4} \cap G_{2} = \emptyset$$

$$A = B_{1} \times A_{2} \in \mathcal{U}_{B}$$

Si $a_1 = b_1 \implies a_2 \neq b_2 \implies$ nuisma jugada pero trabajando primero en X_2 .

=STACIUS MEIKICOS (acouce un ponto de visio espera-julo)

DEFINICIÓN: (X,d) se dice ESPACIO MÉTRICO SI $d:X\times X\longrightarrow IR$ venificando:

i) $\forall x,y \in X$, d(x,y) > 0 $\wedge d(x,y) = 0 \iff x = y$

ii) $\forall x, y \in X, d(x, y) = d(y, x)$

iii) $\forall x_1 y_1 z \in X$, $d(x_1 z) \leq d(x_1 y_1) + d(y_1 z_1)$

EFINICIÓN: $B_{\epsilon}(x_{i}\epsilon) = \{y \in X \mid d(x_{i}y) < \epsilon\}$ $\forall \xi > 0$ $\{x_{o}\epsilon X, B_{x_{o}} := \{B_{\epsilon}(x_{o};\epsilon) \mid \epsilon > 0\} \text{ base de entornos de } x_{o}.$

EFINICIÓN: UE & def. de TI:= topología asociada a d en X.

EFINICIÓN: (X, T) espacio topológico. Se dice que (X, T) es letrizable si existe d' tal que T = Td.

Roposición: (X, d) espacio métrico $\Longrightarrow (X, T_d)$ es Hausdorff. bservación: $(R, T_{cofinita})$ no es $T_2 \Longrightarrow Ad$ tal que $T_{cof.} = T_d$ $= .d. (R, T_{cofinita})$ no es metrizable).

 $\frac{\text{EFINICION}: (X,d) \text{ espacio métrico } f \text{ ACX.}}{\text{diam}(A) := \sup \{d(a_1,a_2) \mid a_1,a_2 \in A\} \geq 0}$

=FINICION: ACX es ACOTADO ⇒ diam(A) < ∞.

TEOREMA: (X, d) espacio métrico. Definimos: $\overline{d}(x,y) = \min\{d(x,y), 1\}$ Entonces (X, \overline{d}) espacio métrico.

Ejemplo: $X = \mathbb{R}$, $\overline{d}(1,100) = \min \left\{ d(1,100), 1 \right\} = \min \left\{ 99, 1 \right\} = 1$ (\mathbb{R} , \overline{d}) modelo acotado de los reales.

DEFINICIÓN: Sea Jun conjunto de indices y consideramos en IRJ la siguiente métrica:

Sean $x, y \in \mathbb{R}^J$, $x = (x_j)_{j \in J}$ $y = (y_j)_{j \in J}$ $P(x_i y) := \sup_{x \in \mathbb{R}^J} \overline{d}(x_j, y_j) | j \in J$

 (R^J, ρ) es un espacio métrico y la topología de IR^J inducida por ρ se llama la Topología uniforme en IR^J .

Observación: La topología uniforme es más fina que la topología producto para $|\mathcal{I}| = \infty$.

FUNCIONES CONTINUAS EN ESPACIOS MÉTRICOS

TEOREMA: $f:(X,d_X) \longrightarrow (Y,d_Y)$. Son equivalentes:

- 1) f continua
- 2) $\forall x \in X \left[\forall \xi > 0, \exists S > 0 \text{ fall que } B_{d_X}(x;S) \Longrightarrow f\left(B_{d_X}(x;S) \right) \subset B_{d_Y}(f(x), f(y)) < \mathcal{E} \right]$

 $\frac{\text{Defivición}: (X_n)_{n=0}^{\infty} = (X_n)_{n\in\mathbb{N}} \cdot \text{Diremos que } (X_n)_{n\in\mathbb{N}} \text{ converge a } X, \text{ y}}{\text{lo escribiremos } X_n \longrightarrow x \text{ cuando } n \longrightarrow \infty \text{ si } \forall u \in \mathcal{U}_X, \text{ existe } n_o \in \mathbb{N}}$ tal que $\forall n \ge n_o, X_n \in \mathcal{U}$.

 $\frac{E_n \text{ particular}}{x_n}$: Si $T = T_{distancia}$, d = distancia $X_n \xrightarrow[n \to \infty]{} x \iff \forall E > 0$, $\exists n_0 \in \mathbb{N}$ tal que $\forall n \ge n_0$, $x_n \in B_d(x_i E)$

EMA de la sucesión:

- (4) (X, T) espacio topológico, $A \subset X$. Si existe $(a_n)_{n \in \mathbb{N}}$, $a_n \in A$ tal que $a_n \xrightarrow[n \to \infty]{} x \Longrightarrow x \in \overline{A}$.
- (2) (X,d) espacio métrico, $X \in \overline{A} \Longrightarrow \exists (a_n)_{n \in \mathbb{N}}, a_n \in A, a_n \xrightarrow[n \to \infty]{} \times$

EOREMA: Sea f: (X, dx) -> (Y, dx). Son equivalentes:

- 1) f confinua en Xo.
- 2) $\forall x_n \xrightarrow[n\to\infty]{} x_o$ en $X \Longrightarrow f(x_n) \xrightarrow[n\to\infty]{} f(x_o)$ en Y.

IMITE UNIFORME DE FUNCIONES

EFINICIÓN: $f_n: (X,T) \longrightarrow (Y,d)$, n=1,2,... succesión de funciones. Decimos que ff_n converce uniformemente a f, $f: X \longrightarrow (Y,d)$, si $Y \not > 0$, fN tal que $d(f_n(x), f(x)) < \mathcal E$ $\forall n \geqslant N$, $\forall x \in X$.

TEOREMA: $(X,C) \xrightarrow{f_n} (Y,d)$, $f_n \xrightarrow{unif.} f \Longrightarrow f$ continua.

TOPOLOGÍA COCIENTE

APLICACIÓN COCIENTE

X, Y dos espacios topológicos, p: X \rightarrow Y (sobreyectiva) P se dice una Apricación cociente si $\forall U \subset Y$ ["U es abierto en $Y \iff p^{-1}(u)$ abierto en X"] \Longrightarrow En particular, p es continva

Proposición: p:X -> Y continua y sobreyectiva. Si p abierta => ⇒ p cociente.

demostración

E Sea $G = p^{-1}(u) \subset X$ tal que G es abierto en X. Como p es abierta entonces p(G) abierto en Y, $p(G) = p(p^{-1}(u)) = U$ abierto en Yabierto en Y.

Observación: \ p:X -> Y

$$p(x) = \begin{cases} x, & 0 \le x \le 1 \\ x-1, & 2 \le x \le 3 \end{cases}$$

$$p\left(\left(\frac{1}{2},1\right)\right) = \left(\frac{1}{2},1\right] \subset \mathbb{C}$$

$$\text{no abto.}$$

$$\text{en } \left[0,2\right]$$

$$P\left(\left(\frac{1}{2},1\right)\right) = \left(\frac{1}{2},1\right) \subset C$$

we abto.

on 10.27

$$P^{-1}(1-\varepsilon, 1+\varepsilon) = (1-\varepsilon, 1) \cup [2, 2+\varepsilon)$$
 abto. en

 \underline{D} EFINICIÓN: $C \subset X$, C es SATURADO respecto de una aplicación p: X -> Y sobrejectiva si C contiene cada fibra que lo corte

<u>leoreна</u> : p: X → Y sobreyectiva. Son equivalentes:
a) p es aplicación cociente.
b) p es continua y lleva abiertos saturados de X en abiertos de Y.
RECUERDO:
Aphicación cociente 1 Def p: $(X, \tau) \longrightarrow (Y, \tau')$ sobreyectiva
$\forall u \in Y \left[u \in Z^1 \iff p^{-1}(u) \in Z \right]$
1 Paplicación cociente
lobs: p cociente => p continua
1 Tma p: X -> Y sobre. Son equivalentes:
a) p cociente. b) p continua y lleva abtos saturados de X en abtos de Y
C es saturado con respecto de p si cada fibra que lo corta está totalmente contenido en $C(Cnp'(y_0) \neq \emptyset \Rightarrow 1$
L
demostración
[a=>b] p cociente => p continua Sea C abto. saturado de X, pongamas U=p(C). Pero, por a),
$u \in T' \iff p^{-1}(u) \text{ abto. en } X$ $x \in G = \bigcup_{j \in J} p^{-1}(y_j) \implies p(x) = y_j, \ \exists j \in J \implies y_j \in J$
$p^{-1}(p(c)) = C \implies \times \epsilon p^{-1}(p(x)) = p^{-1}(y_{i_0}) \implies \times \epsilon p^{-1}(p(c))$
• $a \in p^{-1}(p(G)) \implies p(a) \in p(G) \implies p(a) = p(a), \exists c \in G$
$p^{-1}(z) \cap C' \neq \emptyset$ pues $c \in p^{-1}(z) \cap C' \Longrightarrow c$ sat.
$\Rightarrow a \in n^{-1}(2) \subset C^{1}$

 $b \Rightarrow a$ p continua ⇒ $\forall u \in Y [u \in T'] \Rightarrow p^{-1}(u) \in T$ Sea $U \in Y$, $p^{-1}(u) \in T$. Veamos que $U \in T'$.

Sea $G = p^{-1}(u) \in T$. Basta demostrar que G es saturado para P: pues $p(G) = pp^{-1}(u) = U \in T'$.

c' G saturado para p? $G \cap p^{-1}(y_0) \neq \emptyset \iff \exists x_0 \in X$, $x_0 \in G = p^{-1}(u)$, $p(x_0) = y_0$.

Sea $a \in p^{-1}(y_0) \implies p(a) = y_0$ $a \in G = p^{-1}(u)$ $a \in G = p^{-1}(u)$

TOPOLOGÍA COCIENTE INDUCIDA POR P

(X, T) espacio topológico, A conjunto, $A \neq \emptyset$, $P: X \longrightarrow A$ sobre T EOREMA: $\exists !$ topología T_c sobre A tal que p es aplicación cociente. Observación: $\Omega \subset A$, $\Omega \in T_c \stackrel{def}{\Longrightarrow} p^{-1}(\Omega) \in T$. (A, T_c) esp. top. $f: (X, T) \longrightarrow (A, T_c)$ apl. cociente $X \longmapsto f(X) := p(X)$

Ejemplo/Ejercicio: (X, T) esp. top., ACX, $p: X \longrightarrow A$ sobre Entonces: $\exists T_c$ en A tal que $p: X \longrightarrow A$ es una aplicación cociente. $[\Omega \in T_c \stackrel{def.}{\Longrightarrow} p'(\Omega) \in T]$.

Unicidad: Sea T^* otra topología sobre A tal que $p: (X, T) \longrightarrow (A, T^*)$ es una apl. cociente.

Vuc $A[U \in T^* \iff p'(U) \in T]$ $A[U \in T_c]$ Unicidad: $A[U \in T^* \iff p'(U) \in T]$ $A[U \in T_c]$ $A[U \in T_c]$

P = P . P.

Ejemplo 1:
$$\mathbb{R}^{2}$$
 $\longrightarrow \mathbb{R} \cup 1 \otimes \xi = \overline{\mathbb{R}}$

$$(a,b) \longmapsto \frac{b}{a} \text{ si } a \neq 0$$

$$(0,b) \longmapsto \infty$$

$$\infty > r, \forall r \in \mathbb{R}$$

$$(\overline{R}, \overline{C}_{ext})$$
 porque hemos añadido el infinito (∞) .

P sobre $\Longrightarrow \exists ! \overline{C}_e$ tal que p cociente $(\overline{R}, \overline{C}_e)$

EL ESPACIO COCIENTE

$$(X, T)$$
 esp. topológico
 X^* es una partición de X (= conjuntos disjuntos cuya)
 $p: (X, T) \longrightarrow X^*$
 $p: (X, T) \longrightarrow X^*$ en

 $[x] = \overline{x} := el$ elemento de X^* en el que está el punto x.

c' p aplicación cociente para una cierta T^* en X^* ?

p continua y lleva abiertos saturados de X en abiertos de X^* .

A la topología cociente inducida por p en X^* la llamamos T^* y a (X^*, T^*) le llamamos ESPACIÓ TOPOLÓGICO COCIENTE.

$$\Omega \in \mathbb{T}^* \iff p^{-1}(\Omega) \text{ abierto en } (X, T)$$

$$\Omega \in \mathbb{T}^* \iff \bigcup [X] \in \mathbb{T}.$$
[X] $\in \Omega$

Example 2:
$$X = [0,1] \times [0,1]$$
; $X^* = \langle (\overline{x_1y_1}) | (x_1y_1) \in [0,1] \times [0,1] \rangle$

$$(0,y_1) = \langle (x_0,y_0) | =$$

TEOREMA: X, Y, Z, espacios topológicos. p:X->>> aplicación cocien g: X -> Z aplicación continua que es constante en cada fib de p (i.e. es constante en p⁻¹(y), YyeY). Enfonces q induce una aplicación continua f:Y-> Z tal que el siguiente triángulo

 $\Leftrightarrow P^{-1}(f^{-1}(V))$ ahierto de $X \Leftrightarrow f^{-1}(V)$ ahierto en Ycf-1(V) abto. en Y?Si Yu(u abto. en Y) = Vu(u abto. en Y) en X

<u>Ejemplo</u> (Toro topológico) $= [0,1] \times [0,1] \xrightarrow{q} 5^{1} \times 5^{1} \subset \{(x,y,z,t) \mid x^{2}+y^{2}+z^{2}+t^{2}=2\} \simeq 5^{3}$ $(t,s) \mapsto q \mapsto (e^{2\pi i t}, e^{2\pi i s}) = (\cos(2\pi t), \sin(2\pi t), \cos(2\pi s), \sin(2\pi s))$ (cost, sent, cost, sent) P If continua (por el teorema) 01 = 211t $\theta_2 = 2\pi S$ (la partición de X del día anterior) i g constante en cada fibra de p?

Sea $y_0 \in X^*$, $p^{-1}(y_0) = \begin{cases} g(t_0, s_0) &, si & (t_0, s_0) \in (0, 1) \times (0, 1) \\ g(s_0) = g(1, s_0) &, si & y_0 = f(s_0, s_0) , (1, s_0) \end{cases}$ $\begin{cases} g(t_0, s_0) = g(t_0, s_0) &, si & y_0 = f(s_0, s_0) , (1, s_0) \end{cases}$ $\begin{cases} g(t_0, s_0) = g(t_0, s_0) &, si & y_0 = f(s_0, s_0) , (1, s_0) \end{cases}$ $\begin{cases} g(t_0, s_0) = g(t_0, s_0) &, si & y_0 = f(s_0, s_0) , (1, s_0) \end{cases}$ $\begin{cases} g(t_0, s_0) = g(t_0, s_0) &, si & y_0 = f(s_0, s_0) , (1, s_0) \end{cases}$ $\begin{cases} g(t_0, s_0) = g(t_0, s_0) &, si & y_0 = f(s_0, s_0) , (1, s_0) \end{cases}$ $\begin{cases} g(t_0, s_0) = g(t_0, s_0) &, si & y_0 = f(s_0, s_0) , (1, s_0) \end{cases}$ $\begin{cases} g(t_0, s_0) = g(t_0, s_0) &, si & y_0 = f(s_0, s_0) , (1, s_0) \end{cases}$ $\begin{cases} g(t_0, s_0) = g(t_0, s_0) &, si & y_0 = f(s_0, s_0) , (1, s_0) \end{cases}$ $\begin{cases} g(t_0, s_0) = g(t_0, s_0) &, si & y_0 = f(s_0, s_0) , (1, s_0) \end{cases}$ $\begin{cases} g(t_0, s_0) = g(t_0, s_0) &, si & y_0 = f(s_0, s_0) , (1, s_0) \end{cases}$ $\begin{cases} g(t_0, s_0) = g(t_0, s_0) &, si & y_0 = f(s_0, s_0) , (1, s_0) \end{cases}$ $\begin{cases} g(t_0, s_0) = g(t_0, s_0) &, si & y_0 = f(s_0, s_0) , (1, s_0) \end{cases}$ $\begin{cases} g(t_0, s_0) = g(t_0, s_0) &, si & y_0 = f(s_0, s_0) , (1, s_0) \end{cases}$ $\begin{cases} g(t_0, s_0) = g(t_0, s_0) &, si & y_0 = f(s_0, s_0) , (1, s_0) \end{cases}$ $\begin{cases} g(t_0, s_0) = g(t_0, s_0) &, si & y_0 = f(s_0, s_0) , (1, s_0) \end{cases}$ $\begin{cases} g(t_0, s_0) = g(t_0, s_0) &, si & y_0 = f(s_0, s_0) , (1, s_0) \end{cases}$ $\begin{cases} g(t_0, s_0) = g(t_0, s_0) &, si & y_0 = f(s_0, s_0) , (1, s_0) \end{cases}$ ci f abierta? Dy = (to-Ento+En) × (So-E2, So+E2) f(Qy0) = f(e2mit, e2mis) | (t,s) & Qy0) $\{(z_1, z_2) \mid \underset{\text{arg}(z_1) \in 2\pi(s_0 - \epsilon_1, t_0 + \epsilon_1)}{\text{arg}(z_2) \in 2\pi(s_0 - \epsilon_2, s_0 + \epsilon_2)} \}$

ahierto en 51 x 51

ESPACIO COCIENTE TOPOLOGÍA COCIENTE APLICACIONES COCIENTE $(X, T) \longrightarrow X^*$ una part de X $q: X \ni x \mapsto X \in X^*$ q= "paso cocien" (X, τ) , (Y, τ) dos esp. top. (X, T) esp. top. $P:X \longrightarrow Y$ apl. rociente $(X, \tau) \xrightarrow{g} (A, \tau_c)$ X= [0,1] × [0,1] $(X, z) \xrightarrow{P=g} (Y, z') = (X, z')$ $A = X^*$ $(X, \tau) \xrightarrow{g} (X^*, \tau_c)$ If continua tal que ([0,1]×[0,1], T) = +(X,* T $\sqrt{(z,\hat{z})}$ for $= \psi$. Yount. + const. en las fibras de p: ∀x, x2 € p (40), Y(x1) = Y(x2) PROPOSICIÓN: $p:(X,Z) \longrightarrow (Y,Z')$ cociente, $A \subset X$ saturado para f $9: (A, T_A) \longrightarrow (p(A), T_{p(A)})$ q(a) = p(a), A abierto $\implies 9$ cocienti $\forall u \subset p(A)$, [u abto. en $p(A) \iff q^{-1}(u)$ abto. en A] U=121 p(A), 12 abto. en Y = p-1(12) abto. en X. 9-1(u) = 9-1(20 p(A)) = p-1(2) n A abto. en A a ∈ q (Ω ∩ p (A)) no es que en la prop. haya un si y solo si, sino que para demostrar que q en cociente hay que dem. un si y solo si.

Supongamos que $q^{-1}(u)$ abto. en H. $UCP(H) \Rightarrow P'(u)CP(P(A))$ $P^{-1}(u)\cap A \quad abto. eu X \Rightarrow q^{-1}(u) \text{ ahierto en } X$ saturado $II \quad P \text{ coviente}$ $U \cap P(A)$

TEMA 2 PROPIEDADES ESPACIOS TOPOLÓGICOS CONEXIÓN

 $\frac{\text{Efinición}}{\text{(X, T)}}$ espacio topológico; decimos que X es conexo; no es posible expresarlo como unión de dos abiertos no vacios y disjuntos.

Fromexo $\iff \overline{A}A_1B \in \mathcal{T}, \ A \neq \emptyset, \ X = AUB \ \text{con } A \cap B = \emptyset \iff Si \ X = G_1UG_2, \ G_1 \in \mathcal{T}, \ G_1\cap G_2 = \emptyset \implies G_1 = \emptyset \circ G_2 = \emptyset.$ Se dice conexo si (A, \mathcal{T}_A) es un esp. topologico conexo.

$$\frac{2\text{servación}: }{4} X = \mathbb{R}, \quad Z = \mathcal{T}_{u}, \quad \left(A = \begin{bmatrix} 0.1 \end{bmatrix} \cup \begin{bmatrix} 2.3 \end{bmatrix}, \quad \mathcal{T}_{A} \right)$$

$$\frac{G_{1}}{\left(\begin{bmatrix} G_{2} \\ 0 \end{bmatrix} \right) \left(\begin{pmatrix} G_{2} \\ 1 \end{pmatrix} \right)}{4} \quad A = G_{1} + G_{2} \quad \text{no conexo}$$

2)
$$X = A = [0,1) \cup (2,3]$$
, $Z = Z$ i A conexo?
 $A = G_1 \cup G_2$, G_1 abto. g G_2 abto. $G_1 = [0,1] = \bigcup_{n=2}^{\infty} [0,1-\frac{1}{n}]$
 \Rightarrow A no conexo
$$G_2 = (2,3] = \bigcup_{n=2}^{\infty} (2+\frac{1}{n},3]$$

 $G_2 = (2,3] = 0$ $(2+\frac{1}{n},3]$ 1 y 2 no estan pero así sí. en A, por lo que Unión arhitrana así no podomos def. de abtos. es entornal de la T_2 abto.

abto. en Y.

PROPOSICIÓN: (X, T) esp. topológico

- 1) X conexo > X no es union de dos cerrados no vaciós y disjuntos.
- 2) X conexo (los únicos subconjuntos que son a la vez cerrados y abiertos son el vacco y el total.
- 3) ACX. A conexo >> YU, V < X abiertos tales que A < UUV UNVAA= = ACU ANV= O CANU= O
- A conexo >> VF, KCX cerrados tales que ACFUK 4) ACX FORNA = Ø => JACF

 ANF = Ø

 ANF = Ø F=AC K=F

- 4) X no conexo \iff $\exists A, B \in \mathbb{Z}$, $A \cap B = \emptyset$, $X = A \cup B \iff$ ⇒ JF, K cerrados FN R = Ø, X = FU K
- 2) \implies Sea ACX, $A \neq \emptyset$, $A \neq X$, A es abto. y cerrado \implies => X = A & Ac (=> X no conexo.

able able porque A es cerrado Si X en no conexo \Rightarrow $\exists A, B \in C$, $A \neq \emptyset$, $A \neq X$ $X = A \oplus B \implies A \text{ es abto. } y \text{ cerrado a la ve7.}$

3) Si A no conexo
$$\Rightarrow A = G_1 \uplus G_2$$
, G_1, G_2 abtos. en A, $G_1 \neq \emptyset$ 1 $G_1 \neq X$. $G_1 = U \cap A$, $U \in C$ \Rightarrow $G_2 = V \cap A$, $V \in C$

$$\Rightarrow A = (unA) U(VnA) \subset UUV$$

$$\exists UnV \cap A = (unA) \cap (V \cap A) = G_1 \cap G_2 = \emptyset ? Si$$

$$\text{Lip:} \int_{A \cap V} A \subset U \qquad \qquad \int_{A \cap V} A \subset V \qquad \text{contradiction} G_1 \cap V = \emptyset = G_2 \qquad \text{for } A \cap U = \emptyset = G_1$$

=> A conexo.

Sean
$$U, V$$
 abtos. de X tal que $A \subset U \cup V$, $A \cap U \cap V = \emptyset$

$$A = A \cap (U \cup V) = A \cap (U \setminus U \cap V) \cup (A \cap V \setminus U \cap V) \cup (A \cap U \cap V) = [A \cap (U \setminus U \cap V)] + [A \cap (V \setminus U \cap V)] = [A \cap U] + [A \cap V] \Rightarrow$$

$$A \cap U = \emptyset \Rightarrow A = A \cap V \text{ [1]}$$

$$G_1 \text{ abto.}$$

$$G_2 \text{ abto.}$$

$$[1] \Rightarrow ACV, AAU = \emptyset$$

$$[2] \Rightarrow ACU, AAV = \emptyset$$

4) Parecido al 3.

Proposición: (X, T) espacio topológico. TAXTXEN una familia de subconjuntos conexos $\bigcap_{\alpha \in \Lambda} A_{\alpha} \neq \emptyset \implies \bigcup_{\alpha \in \Lambda} A_{\alpha}$ conexo.

demostración

Sea A = UAx. Sean U, V abtos de X tal que ACUUV.

ANUNV= Ø. Sea PEUA = PEU Ó PEV, PAUN

Veamos que si pell, entonces ACU, y también ANV= Ø.

Basta demostrar que VaeA, Axc U. Sec do E A =>

⇒ PEAxo CUUV, Ax NUNV = Ø → Axo conexo

=> {Axo C U Axo NV = \$\phi \ Axo C U Axo NV = \$\phi \ Axo NU = \$\phi \ Axo C U Axo NV = \$\phi \ Axo NV = \$\p

PROPOSICIÓN: (X, Z) esp. topológico. Si ACX, A conexo $\Longrightarrow \overline{A}$ conexo

DEFINICIÓN: (X, T) espació topológico. YCX. Una SEPARACIÓN de Y es un par A,BCY, tal que ANB=Ø, Y=AUB, ANB=Ø, ANB=Ø.

LEMA 1: Y es couexo (=> No existe una separación de Y.

LEMA 2: (X, T) espacio topológico, $Y \subset X$ conexo. Si G,D es una separación de $X \Longrightarrow JY \subset G$

INVESTIGATION CENTRE

 \Rightarrow Y no conexo \Rightarrow Y=UUV, U, V abtos en Y, $U \cap V = \emptyset$ $U \cap V = U \cap V = \emptyset$, $V \cap U = V \cap U = \emptyset$ V = VV = V

EY=A &B, A+Ø, B+Ø, ANB=Ø, ANB=Ø, BNĀ=Ø.

 $G_Y A = B$ $B^Y = \overline{B}^X \cap Y = \overline{B} \cap (A \uplus B) = (\overline{B} \cap A) \uplus (\overline{B} \cap B) = \emptyset \uplus B = E$ $\overline{B}^Y = B$ $\Longrightarrow A \text{ abto. ien } Y$

Analogamente, B es abto -> Y no es conexo.

demostración lema Z

 $X = G \cup D$, $G \neq \emptyset$, $D \neq \emptyset$, $C \cap \overline{D} = \emptyset$, $\overline{C} \cap D = \emptyset$

Y conexo, YCX $Y = Y \cap X = Y \cap (G \uplus D) = (Y \cap G) \uplus (Y \cap D)$

 \dot{c} A, B es una separación de Y? Si es que \dot{n} \Rightarrow contradicción con que Y es conexo. Luego no es una separación \Rightarrow $A = \phi$ o $B = \phi \Leftrightarrow$ YCD o YCC.

TEOREMA: (X, T) espacio topológico YCX Y conexo, Y = Z = Y -> Z conexo.

demostración

Supongamos que Z no conexo \Longrightarrow existe una separación de Z, Z=CUD, C≠Ø, D≠Ø, CND=Ø, CND=9 YCZ=G+D lewaz /YCG \Rightarrow YCG=>ZCC \Rightarrow ZND=Ø=> \Rightarrow ZCG \Rightarrow D=Ø (contradicción) \Rightarrow ZCG \Rightarrow D=Ø (contradicción) \Rightarrow Z no puede tener una separación lewa 1 Z conexo.

TEOREMA: $f: X \longrightarrow Y$ continua, X conexo $\Longrightarrow f(X)$ conexo demostración

 $f(x) = U \uplus V$, U,V abiertes de f(x), no vacios, $U \cap V = \emptyset$ $\Rightarrow \begin{cases} -\Omega_1 := f^{-1}(U) \text{ abto: en } X, \\ \Omega_2 := f^{-1}(V) \text{ abto: en } X \end{cases}, \text{ y advention } \Omega_1 \Omega_2 = \emptyset$

 $x_0 \in \Omega_1 \cap \Omega_2 \implies f(x_0) \in U \cap V = \emptyset$

 $\Omega_1 \cup \Omega_2 \subset X$. Sea $x_1 \in X \Longrightarrow y_1 = f(x_1) \in f(x) = U \uplus V \Longrightarrow$ $\Rightarrow \begin{cases} y_1 \in V \Rightarrow x_1 \in f^{-1}(y_1) \subset f^{-1}(V) = -\Omega_1 \\ y_1 \in V \Rightarrow x_1 \in f^{-1}(y_1) \subset f^{-1}(V) = \Omega_2 \end{cases}$

Luego X = IZ, VIZ.

COROLARIO: $(X_1, T_1), \dots, (X_n, T_n)$ esp. topológicos conexos \Longrightarrow $(X_1 \times \dots \times X_n, T_{prod})$ es conexo.

 $Cx = (1 \times 1 \times 1) \cup (X \times 1 \times 1) \text{ conexo}$

 $\underline{Impliacion}: (X_{\alpha}, T_{\alpha}), X_{\alpha} conexo \Rightarrow \left(\overline{\prod_{\alpha \in \Lambda}} X_{\alpha}, T_{prod} \right) conexo.$

ONPONENTES Y CONEXIÓN LOCAL

DEFINICIÓN: (X, T) esp. topológico, $X_1, X_2 \in X$ $(1 \sim X_2) \iff \exists A \subset X$, A conexo tal que $X_1, X_2 \in A$.

as clases de equivalencia de X por N se llaman las imponentes ó componentes conexas de X.

hora habria que demostrar que v es una rel. de equivalencia

 $\forall : [0,1] \longrightarrow X$ continua, con $\forall (0) = X_1$ $\forall (1) = X_2$

viria que demostrar que v* es una rel. de equivalencia (reflexiva transitiva

Las clases de equivalencia de ~* se denominan las componentes conexas por arcos o arcocomponentes de X.

TEOREMA 1: (X, T) espacio topológico. Las componentes conexas de X son subespacios disjuntos conexos cuya unión es X, de forma que cada subespacio conexe de X no trivial interseca solo a una de ellas.

TEOREMAZ: Las componentes conexas por caminos son subespacios disjuntas conexas por caminos cuya unión es X, de forma que cada subespacio conexo por caminos de X no trivial interseca solo a una de ellas.

DEFINICIÓN:

- a) Un espació X se dice LOCALMENTE CONEXO en Xo y para cada entorno U de Xo, existe Vo entorno conexo de Xo, VoCl Un espació se dice localmente conexo si es localmente conexo en cada uno de sus puntos.
- b) Un espacio se dice LOCALMENTE CONEXO POR CAMINOS

 (ó LOCALMENTE ARCOCONEXO) en xo si para cada entorno U de X
 existe Vo entorno arcoconexo de xo, Vo C Uo.

 Un espacio es localmente arcoconexo si lo es en cada uno de
 sus puntos.

TEOREMA:

- A) X localmente conexo \iff $\forall G: CX, G abto., cada componente conexa de <math>G: es abta. en X.$
- B) X localmente arcoconexo $\iff \forall G:CX, G:abto., cada arcocomponente de G:es abta. en X.

 demostración <math>; obs: S: D:en courpon. conexa \implies D=D$ teo. A $\implies S: X:local. conexa \implies D=D$
- A) \implies Sea $G \subset X$ un abto., $G \neq \emptyset$; sea $G \subseteq G$ una componente conexa de $G \subseteq G$. Veamos que $G \subseteq G$. Sea $X \in G \Longrightarrow G$ is applicades $\exists V_0$ entorno conexo de $X \in G$ que $V_0 \subset G$, $X \in G \cap V_0 \Longrightarrow G \not X$ $V_0 \subset G$. Luego $X \in G$.

comp. conexa

Sea $X_0 \in X$. Sea U entorno de X_0 . Sea G abto. tal que $X_0 \in G_1 \subset U$. Por hip, cada compenente conexa de G_0 en abta. en X. Luego si $G_0 = U G_0 \times U$. Sea $X_0 \in A$ tal que $X_0 \in G_0 \times U$ conexo y abto. en X_0 , luego entorno conexo de X_0 , $V_0 = G_0 \times U$ $G_0 \times U$

TEORENA: (X, T) esp. topológico.

- (1) Cada accocomponente de X está contenida en una componente conexa.
- (2) Si X es localmente conexo por caminos, entonces las componentes conexas y las componentes arconexas coinciden.

demostración

(2) Si X et localmente arcoconexo \Longrightarrow $G_{\infty}^* = D_j$. $D_j = D_j \cap X = D_j \cap \left(\bigcup_{\alpha \in A} G_{\alpha}^* \right) = D_j \cap \left(\bigcup_{\alpha \in A} G_{\alpha}^* \right) = D_j \cap \left(\bigcup_{\alpha \in A} G_{\alpha}^* \right) \oplus \left($

LENA: A arcoconexo \Longrightarrow A conexo.

068: 4) D componente conexa $\implies D = \overline{D}.$

2) Si X tiene un n° finito de comp. conexas \Rightarrow D=D.

 $X=D_AU\cdots UD_A \Rightarrow X=D_AU\overline{D_2}U\cdots U\overline{Q}$

ESPACIOS COMPACTOS

<u>DEFINICIÓN</u>: Una familia F de subconjuntos de un espacio topológico X se dice un recubrimiento abierto de X si la union de los elementos de F es X y los elementos de F son abiertos de X.

Un subrecubritiento J de F es un subconjunto J de F tal que J es un recubrinciento (JCF).

ΣΕΤΙΝΙCIÓN: (X, T) espacio topológico. X se dice compacto (cuasi-compacto para los franceses) si cada recubrimiento abierto. Le de X admite un subrecubrimiento q finito. (para los franceses: compacto $\equiv T_z + cuasi-compacto$).

= jemplo 1: (X, T), $|X| < \infty \implies X$ compacto.

jeuplo 2: Xn noor a en (R, T), X:= /Xn/neIN U Ja/, (X, Tx) d(X, Tx) compacto? YE>O Fro: |Xn-a|< E Yn>no. Sea F = {Ualaes un recubirmiento abierto de X (no necesar numerable) X=ULLa. Para cada n, Idne 1 tal que xne Ux. Como a e X => $\exists \beta \in \Lambda$, $\alpha \in U_{\beta}$. Entonces $\mathcal{F} = \{U_{\alpha}\}_{n \in \mathbb{N}} \cup \{U_{\beta}\}_{n \in \mathbb{N}} \text{ es un recubinmiento de } X$. Souro Up es abto. en el que esta α , entonces $\exists v_{b}: X_{n} \in U_{\beta} \cup V_{n} \in V$

Ejemplo 3: (R, Tu) no es compacto, i.e., Frecubrimiento abierto.
que no admite subrecubrimiento finito.

LEMA: (X,T), YCX, (Y,TY). Son equivalentes:

a) Y compacto Y C Ulla, lla obierto de X

b) Cada cubrimiento de Y por abiertos de X admite un subaubrimiento finito. Si fluctare a es un cubrimiento, un subcubrimiento es una subfamilia del cubrimiento.

Ejemplo
$$(\mathbb{R}^2, \mathbb{T}_{< lex})$$
, $Y = [0,1] \times [0,1]$

$$(a,1) \longrightarrow \mathbb{R}^2 - \mathbb{I} \times \mathbb{R}^2 - \mathbb{I} \times \mathbb{R}^2 = \mathbb{I}$$

demostración lema

[a=>b] YC UUx, Ux abto. de X $F = \{Y \cap U_{\alpha} : \alpha \in \Lambda\} = \underbrace{recubnimiento}_{\text{cubnimiento}} de Y \text{ por ables. de } Y \stackrel{(a)}{\Longrightarrow}$ $\Rightarrow \exists g = \{Y \cap U_{\alpha_j}\} = \underbrace{subreaubnimiento}_{\text{jet}}, \exists C \Lambda, \exists I < \infty \Rightarrow Y \subset \bigcup U_{\alpha_j}, \underbrace{j \in I}_{\text{jet}}, \exists C \Lambda, \exists I < \infty \Rightarrow Y \subset \bigcup U_{\alpha_j}, \underbrace{j \in I}_{\text{jet}}, \underbrace{j$

[b=) a) Sea F= 1Ax xeA, recubrimiento abto. de Y. Como para cada $\alpha \in \Lambda$, A_{α} es abto. en $Y \Longrightarrow \exists U_{\alpha} \subset X$ abierto en tal que Ax = YNUx C Ux. Luego {Ux}xeA es un cubrimiento de Y.

(X, T) espacio topológico compacto. (X, T), (Y, T_Y) compacto

TEOREMA 1:(X, T) compacto, Y cerrado \implies Y compacto.

Sea $flat_{\alpha \in \Lambda}$ un recubrimiento abierto de Y. Entonces $\mathcal{F} = \{X \mid Y\} \cup \{U_{\alpha} : \alpha \in \Lambda\}$ es un recubrimiento abierto de X. Como X es compacto entonces existe $\mathbb{T} \subset \Lambda$, $|\mathbb{T}| < \infty$ tal que $X = \{X \mid Y\} \cup \{\bigcup_{j \in \mathcal{T}} \mathcal{Y}_j\}$. Luego $Y \subset \bigcup_{j \in \mathcal{T}} \mathcal{Y}_j$ es compacto entonces existe $\mathbb{T} \subset \Lambda$, $|\mathbb{T}| < \infty$ tal que $X = \{X \mid Y\} \cup \{\bigcup_{j \in \mathcal{T}} \mathcal{Y}_j\}$. Luego $Y \subset \bigcup_{j \in \mathcal{T}} \mathcal{Y}_j$ es existe $\mathbb{T} \subset \Lambda$, $\mathbb{T} \subset \Lambda$

EOREMA 2 (X,T) es T_2 , K compacto \Longrightarrow K cerrado.

demostración

Veamos que $G_1 = X \setminus K$ es abto. Sea y $\in G_1$. Para eada $x \in K$ existen Ω_{xy} eutorno abierto de y, U_x entorno abierto de x, tales que $U_x \cap U_{xy} = \emptyset$ (por ser $X \setminus T_2$). Entonces $[U_x: x \in K]$ es un cubrimiento abierto de K. Luego, existen $X_1, ..., X_n \in K$ tal que $K \subset U_x \cup \cdots \cup U_x$.

Sea $A = \bigcap_{j=1}^{N} U_{j}$ es un abto, $y \in A$, $A \subset G_1$. \Longrightarrow G abierto \Longrightarrow K cerrado.

PROLARio: X es T_2 , $K \subset X$ compacto, $y \notin K \implies \exists \Omega$, U ablos.

Y y disjuntos tales que $y \in \Omega$, $K \subset U$.

TEOREMA 3: La imagen de un espacio compacto por una aplicación continua es un compacto. $x \xrightarrow{f} Y \Rightarrow f(x)$ compacto.

Sea $\{u_{\alpha}\}_{\alpha \in \Lambda}$ un cubrimiento abierto de f(x), i.e. $f(x) \subset \bigcup_{\alpha \in \Lambda} U_{\alpha}$ Entonces $F = \{f^{-1}(U_{\alpha}) : \alpha \in \Lambda\}$ es un recubrimiento abto. de X, por ser f continua. Por ser X compacto, $X = \bigcup_{j=1}^{n} f^{-1}(u_j)$. Veamos que $f(X) \subset \bigcup_{j=1}^{n} U_j$; basta observar que $f(X) = \bigcup_{j=1}^{n} f(X)$ $= f(\bigcup_{j=1}^{n} f^{-1}(u_j)) \subset \bigcup_{j=1}^{n} f^{-1}(u_j) \subset \bigcup_{j=1}^{n} u_j.$

TEOREMA 4: $X \xrightarrow{f} Y$ cont. y bijectiva $\Longrightarrow f$ homeomorfismo.

Vearues que f es cerrada (+f-1 cont.). Sea K cerrado de $X \implies K$ compacto. $\xrightarrow{\text{teur. 3}} f(K)$ compacto en Y Y el T_2 : $\stackrel{\text{teor.} \times}{=} f(K)$ cernado en Y.

TEOREMA: (X, T), (Y, T') esp. top. compactos $\Longrightarrow (X \times Y, T_X)$ compact

TEOREMA DE TYCHONOFF: {(Xa, Ta) Leen esp. top. compactos => $\Longrightarrow \left(TTX_{\alpha}, T_{prod.} \right)$ espacio compacto.

LEMA del tubo: Sean X, Y dos espacios topológicas.

Supongamos que Y es compacto, entonces si N es un subconjunto abierto de X×Y que contiene a 1xof×Y =>

=> IWo entorno de xo en X tal que Wo×YC N.

demostración del teorema

Sea $\mathcal{R} = \{G_{x}\}_{x \in \Lambda}$ recubrimiento abierto de $X \times Y$. Sea $x_0 \in X$. Consideramas la familia de abiertos de $X \times Y$. $\mathcal{R} = \{G_{x} \mid G_{x} \mid G_{x} \cap \{x_0 \mid x_0 \mid$

demostración del lema

Para cada $y \in Y$, se tiene que $(x_0, y) \in N$, pues $f(x_0) \times Y \subset N$. Entonces existen abiertos $U_{x_0} \in \mathcal{G}_{x_0}$ abto, $\Omega y \in \mathcal{G}_{y_0}$ abto tal que $U_{x_0} \times \Omega y \subset N$. insideremos $\mathcal{F} = \mathcal{G}_{1} \Omega y$ $y \in Y$. \mathcal{F}_{1} es un recubrimiento abto. de $Y \Longrightarrow Y = \mathcal{G}_{1} \Omega y$.

Sea $W_0 := \bigcap_{j=1}^{j=1} U_{X_0, y_j} \in \mathcal{O}_{X_0}$ abto. $W_0 \times Y \subset N$ (x, y) $U_{X_0, y_j} \times \Omega_{y_j} \subset N.$

Proposición: X compacto \Longrightarrow VC colección de conjuntos cerrados de X con la propiedad de la intersección no vacía \Longrightarrow \cap C \in \in
demostración
=> C= Cx Carrado Vx E 1.
AZCV 'IZICO => Corporation UCIX + Q
Gi = X / Ca, XEA
$\mathcal{F} = \{G_{\alpha}\}_{\alpha \in \Lambda}, G_{\alpha} \in \mathcal{T}.$ X compacto
Si NG = = > F recubrimiento abierto de X => I un
subrecubrimiento finito Gy, Gz,, Gan & / tal que
$X = G_{\alpha_1} \cup G_{\alpha_2} \cup \cdots \cup G_{\alpha_n} \implies \emptyset = G_{\alpha_n} \cap \cdots \cap G_{\alpha_n} $ contradiction
Entonces $\bigcap C_{i\alpha} \neq \emptyset$
127 a la combiniento abierto de 1.
Sea $\mathcal{F} = \{U_{\alpha}\}_{\alpha \in \Lambda}$ recommendo \mathcal{F} amilia de cerrados. $\mathcal{F} = \{C_{1\alpha} := X \mid U_{\alpha}\}_{\alpha \in \Lambda}$ es una familia de cerrados.
Entonces $\bigcap_{\alpha \in \Lambda} G_{\alpha} = \emptyset$. Figure un subrecubrimiento finito, e.d

Entonces (1 $C_{\alpha} = \beta$).

Supongamos que β no tiene un subrecubrimiento finito, e.d., $ZT \subset \Lambda$, $|T| < \infty$, $X = \bigcup_{j \in T} U_{\alpha_j}$

COMPACIDAD LOCAL

Objetivo: (X, C) es Tz.

X localmente compacto $\iff \forall x \in X$ y U un entorno de X, existe V entorno de x tal que V compacto y VCU. ' ⇒ ∀xeX, I un sistema fundamental de entornos de x de adherencia compacta).

ZEFINICION:

a) (X, T) espacio topológico, $x \in X$

X es localmente compacto en x = 3CcX, x ∈ C, C compacto.

b) (X, T) LOCALMENTE COMPACTO $\iff \forall x, X$ localmente compacto en x.

TEOREMA: (X, T) espacio topológico. Son equivalentes:

a) X localmente compacto. b) \exists un espacio topológico Y tal que $\{2\}$ |Y|X| = 1 (diferencia de) $\{3\}$ Y compacto $\{4\}$ $\{$

DEFINICION:

1) Y compacto y Tz, X+Y es denso en Y, entonces decimos que Y es una compactificación de X. Ejemplo: $X = R \cap [0,1]$, Y = [0,1], $X \subset Y$

2 |Y|X|=1, entonces decimos que Y es la compactificación A UN PUNTO de X ó COMPACTIFICACIÓN DE ALEXANDROFF de X.

Obs: R=RUT=Y c'Y compact. de Alexandroff de R? No es compacto

c'y la proy estereografica? (SI) pactificación de Alexandroff de R.

demostración del objetivo E trivial 1-> 1 Suponemos X localmente compacto en xo. Sea U entorno de Xo en X. Por el teorema anterior, IY con XCY, Y compactificación de Alexandroff de X, C:=Y\U (cerrado en Y) \Rightarrow C compacto en Y X & C, Y es Tz => IV entorno de xo y se entorno de C' tales que VNI = 8. Además V es compacto Vnc=0 => Vcu. SUBESPACIOS COMPACTOS EN ESPACIOS MÉTRICOS [EOREMA1 (pag 196 Hunkres) Si X es un conjunto simplemente ordenado y verificando la propiedad de la mínima cota superior, entonces cada intervalo cerrado es compacto para la topología del orden. LEOREMAZ: Sea ACIR" Entonces son equivalentes: a) A es compacto con la topología usual b) A es cerrado y acotado. COROLARIO: In=[an,bn] CR => TIII CIRN compacto

demostración teorema Z

[a) \Rightarrow b) A compacto, \mathbb{R}^2 es $T_2 \Rightarrow$ A cerrado

Sea $f(\vec{x}, \vec{y}) = \max\{|x_1 - y_1|, \dots, |x_n - y_n|\}$, $\vec{y} = (x_1, \dots, x_n)$ $\mathcal{F} = \{B_{\xi}(\vec{v}, n) : n \in \mathbb{N}^*\}$, \mathcal{F} es un recubrimiento de $A \Rightarrow$ \Rightarrow $\exists n_0 : A \subset B(\vec{v}, n_0) \Rightarrow A$ acotado

 $\begin{array}{l} (b) \Rightarrow \alpha) \\ (\dot{A} \text{ e) cerrado dentro de un compacto? Si si } \rightarrow A \text{ compacto.} \\ A \text{ acotado} \Rightarrow d(\vec{x}, \vec{y}) \leq N \quad \forall \vec{x}, \vec{y} \in A \\ \text{Sec. } \vec{a_o} \in A, \quad c := f(\vec{a_o}, \vec{o}) \quad \forall \vec{x} \in A, \quad f(\vec{x}, \vec{o}) \leq f(\vec{x}, \vec{a_o}) + f(\vec{a_o}, \vec{o}) \leq N + r \\ \vec{x} \in [-\lambda, \lambda] \times \cdots \times [-\lambda, \lambda] \subset \mathbb{R}^n \end{array}$

TEOREMA: $f: X \longrightarrow Y$ aplicación continua. Y conjunto con la topológia asociada al orden. Entonces, X compacto \Longrightarrow $\exists c$, $d \in X$ tal que $m = f(c) \in f(x) \in f(d) = M$ $\forall x \in M$.

idea demostración f(X) compacto \Longrightarrow $\exists M = \max f(x) \times eX$

LEMA (Nº de Lebesgue de un recubrimiento): Sea (X,d) un espacio métrico. Sea A un recubrimiento abierto de X. Si X es compacto, entonces existe S>0 tal que para cada subconjunto de X con diámetro S, existe un elemento de A que lo contiene. S:= un nº de Lebesgue del recubrimiento de A. diam (A) = $\sup\{d(as,az): as,az\in A\}$

 $\frac{-EMA: X \longrightarrow |R| \text{ continua.}}{x \longmapsto d(x,A)}$

demostración

YaEA, XodA

 $d(x,A) \leq d(x,a) \leq d(x,y) + d(y,a) \leq d(x,y) + d(y,A)$ $d(x_0,A) - d(y,A) \leq d(x_0,y)$

Y ≥ > 0, ∃ 8 > 0, d(x,y) < 8 => |f(y) - f(x)| < €.

TEOREMA DE CONTINUIDAD UNIFORME: f:X->Y continua entre espacios métricos. Si X compacto => f uniformemente continua. DEFINICIÓN: f uniformemente continua: $f:(X,d_X)\longrightarrow (Y,d_Y)$ for uniformemente continua \iff $\forall \varepsilon > 0$ $\exists \delta > 0$ tal que $0 d_{\varepsilon}(x_0, x_1) < \delta = 0$ $\Rightarrow d_{\varepsilon}(f(x_0), f(x_1)) < \varepsilon$, $\forall x_0, x_1 \in X$.

Sea E>O. Consideramos Bdy (y; \(\frac{\xi}{2}\)), y \(\frac{\xi}{2}\). $A = \{f^{-1}(B_{d_Y}(y; \leq 1)) : f \in Y\}$ recubrimiento abto. de X. Sea 8 un número de Lebesgue de 16.

Sean $x_0, x_1, u_{X'}(x_0, x_1) \in \mathbb{R}^{-1}(Bd_{Y'}(\hat{y}; \underline{\xi})) \implies \exists \hat{y} \in Y \text{ tal que } E \subset f^{-1}(Bd_{Y'}(\hat{y}; \underline{\xi})) \implies \Rightarrow f(x_0), f(x_1) \in \mathbb{B}_{d_{Y'}}(\hat{y}; \underline{\xi}) \implies d_{Y'}(f(x_0), f(x_1)) \leq d_{Y'}(f(x_1), f(x_1))$

TEOREMA: X compacto, T_2 , X sin puntos aislados \Longrightarrow X es no numerable.

demostración Veamos que no existe f: IN -> X que sea sobreyectiva.

 $f: \mathbb{N} \longrightarrow X$ (inacabade \longrightarrow como ejercicio) $n := f(x_0), n \in \mathbb{N}$

TEMA 3 HOMOTOPÍA

CONCEPTOS BÁSICOS

 $Y \xrightarrow{\frac{1}{9}} X$ dos funciones continuas, $A \subset Y$.

Decimos que f es Homótopa a g relativo a A si existe

 $F: Y \times [0,1] \longrightarrow X$ continua tal que $F(\cdot,0) = f$, $(y,t) \longmapsto F(y,t)$

 $\forall a \in A$, F(a,t) = f(a) = g(a). Se denota por $f \sim_A g$

La aplicación F se llama HOMOTOPÍA entre f y q rel. a A

Un camino de extremos Xo, XI en X es una aplicación continua

 $\sigma: [0,1] \longrightarrow X \quad \sigma(0) = x_0, \quad \sigma(1) = x_1.$

Dos caminos son homótopos, [0,1] = X si on tout

 $\iff \exists F: I \times [0,1] \longrightarrow X \quad \text{continua tal que: } F(s,0) = \overline{U}(s)$ $(s,t) \longmapsto F(s,t) \quad F(s,t)$ F(s,1) = T(s)

F(0,t)=0(0)=(0)=) F(4, t) = t(4) = T(4) = ?

PROPOSICION: f ~ g es una relación de equivalencia.

demostración

- Reflexiva: f ~ f

- Simetrica: frag => 9~Af

- Transitiva: frag 1 grah => frah

F: YxI -> X continua Reflexiva: +~ + f (4,t) ----> f(4)

3G: Yx [61] --->X JF: Yx [61] ->X (y,t) ----> $(y,t) \longrightarrow F(y,t)$ G(·10) = 9 $F(\cdot,0)=1$ G(·,1) = f F(:,1) = 9 G(a,t) = g(a) = f(a) $\forall t \in [0,1]$, F(a,t) = f(a) = g(a)YaeA, Yte[01] ¥a e A =>|G(y,t):= F(y,1-t) continua Transitiva: frag 1 grah JG: Y×[0,1] → X continuas (·,0)1-->9 (,0) + + (11) -> h (·11) ---> q Buscamos frah, e.d., JH: Yx [0,1] -> X (1,0) - + (·11) ----> h $H(y,t) = \begin{cases} F(y,2t), & 0 \le t \le 1/2 \\ G(y,2t-1), & 1/2 \le t \le 1 \end{cases} = \begin{cases} f(a) = g(a), & 0 \le t \le 1/2 \\ g(a) = h(a), & 1/2 \le t \le 1 \end{cases}$ continua COROLARIO PARTICULAR (Caminos): Tront , Tront => Tront LAZOS: $\sigma: [0,1] \longrightarrow X$ camino. Decimos que σ es un LAZO en un punto si $\sigma(0) = \sigma(1) = x_0$. El punto x_0 se llama BASE del lazo.

dinethia.

$$\mathcal{L}_{x_0} := \left\{ \sigma : [0,1] \longrightarrow X \mid \sigma(0) = \sigma(1) = x_0 \right\}$$

DEFINICIÓN: Sean O, TELXO, si O ~ Tout T se dice que son HOMOTOPICAMENTE EQUIVALENTES.

 $[\sigma] = \sigma_N = la$ clase de equivalencia de σ .

$$\underline{\text{Definición}}: T_1(X, x_0) := \mathcal{L}_{x_0} / \mathcal{L}_{x_0}$$

TEOREMA: YxoeX, TTa(X,Xo) es un gropo.

$$[\sigma_1] \times [\sigma_2] = [\sigma_1 \sigma_2]$$

DEFINICIÓN: YUXTAPOSICIÓN DE CAMINOS

$$\sigma(0) = \times_0$$
, $\sigma(1) = \sigma(0) = \times_1$, $\sigma(1) = \times_2$

PROPOSICION:
$$\sigma_1 \sim \sigma_2$$
, $\sigma_1(1) = \tau_1(0)$ $\Longrightarrow \sigma_1 \tau_1 \sim \sigma_2 \tau_2$
 $\tau_1 \sim \tau_2$, $\sigma_2(1) = \tau_2(0)$

$$\mathcal{L}_{xo} = \{lazos en X con base xo\}$$

$$\sigma: I \xrightarrow{\text{cont.}} X$$
 lato en X
 $0 \longmapsto X_0$ con base X_0

También conocide como GRUPO DE Poincaré de X eu Xo.

$$T_{\Lambda}(X,\kappa) \times T_{\Lambda}(X,\kappa) \xrightarrow{*} T_{\Lambda}(X,\kappa)$$

$$([\sigma], [\tau]) \xrightarrow{*} [\sigma] * [\tau] \stackrel{\text{def.}}{=} [\sigma \tau]$$

Observaciones:

- * es una operación <u>no</u> conmutativa
- · El elemento neutro de TT1(X, xo) es [Cxo] doude

El elemento neutro de
$$TT_1(X, x_0)$$
 es $[c_{x_0}]$ doude

 $C_{x_0}: I \longrightarrow X$
 $[c_{x_0}] * [\sigma] = [c_{x_0}\sigma] = [\sigma]$
 $c_{x_0}(t) = [c_{x_0}] * [\sigma] = [c_{x_0}\sigma] = [\sigma]$
 $c_{x_0}(t) = [c_{x_0}] * [c_{x_0}(t)] = [c_{x_0}\sigma] = [\sigma]$
 $c_{x_0}(t) = [c_{x_0}\sigma] = [\sigma]$

DE LA HOMOTOPÍA:

1)
$$X \xrightarrow{f} Z \Longrightarrow TT_1(X, x_0) \xrightarrow{f_*} TT_1(Z, f(x_0))$$

[σ] \longrightarrow [$f \circ \sigma$]

homomorfismo de grupos: $f([\sigma_1] * [\sigma_2]) = f([\sigma_1]) * f([\sigma_2])$
 $I = [o_1]$

2)
$$x_0$$
, x_1 en la misma arcocomponente $\Longrightarrow TT_1(X_1x_0) \cong TT_1(X_1x_1)$
L'isomorfismo de grup

3)
$$X \cong Z$$
 homeomorfos $\Longrightarrow TT_1(X, x_0) \cong TT_1(Z, \mathcal{Q}(x_0))$ isomorfos

DEFINICIÓN: X, Y arcoconexos. X e Y son HOHOTÓPICAMENTE EQUIVALENT si tienen el mismo grupo fundamental.

Ejemplas:

$$\frac{2}{(4,0)} \times_{1=3}^{2} \xrightarrow{4}$$

$$\frac{1}{(4,0)} \times_{1=3}^{2} \xrightarrow{4}$$

$$\frac{1}{(4,0)} \times_{1=3}^{2} \xrightarrow{4}$$

$$\frac{1}{(4,0)} \times_{1=3}^{2} \xrightarrow{4}$$

$$\frac{1}{(4,0)} \times_{1=3}^{2} \times_{1=3}^{4} \xrightarrow{4}$$

DEFINICIÓN: X es contractible si id, ~ Cxo. Es decir,

$$\exists F: X \times [0,1] \longrightarrow X$$

$$(\cdot,0) \longmapsto id_{X} \qquad (\forall x \in X, F(x,0) = id_{X}(x) = x)$$

$$(\cdot,1) \longmapsto C_{X_{0}} \qquad (\forall x \in X, F(x,1) = x_{0})$$

Ejemplo:
$$X = [2,4]$$
, $F: [2,4] \times [0,1] \longrightarrow [2,4]$, $F(x,t) = (1-t)x + 3t$
 $(x,0) \longmapsto x$
 $(x,1) \longmapsto 3$

Ubservaciones:

- 1) Todo R-e.v. topológico es contractible
- 2) Todo convexo de un R-e.v. topológico es contractible (en cada arcocomponente).

i)
$$F: V \times [0,1] \longrightarrow V$$

$$(\vec{\nabla}, t) \longmapsto (1-t)\vec{\nabla} + t\vec{o}$$

$$\Rightarrow V \text{ es contractible}$$

ii)
$$F: E \times [0,1] \longrightarrow E$$
 $\Rightarrow E$ en contractible en \overrightarrow{e} . $(\overrightarrow{e}, t) \longmapsto (1-t)\overrightarrow{e} + t\overrightarrow{e}$.

TEOREMA: Son equivalentes:

- 1) X contractible
- 2) VY esp. topológico Vf.g:Y -> X continuas => f~\$ g

Proposición: X contractible
$$\implies$$
 X conexo por caminos $(\not\leftarrow$ p.ej. $X = S^1)$

DEFINICIÓN: DECIMOS QUE X OS SIMPLEMENTE CONEXO (EU XO) SI $TT_1(X,x_0) = 11 = 1[C_{x_0}]_{f}$

TEOREMA: X contractible a un punto $\implies X$ es simplemente conexo.

$$(X \xrightarrow{id_X} X)$$
 Si $id_X \sim_{\mathcal{S}} C_{x_0}$ decimos que X es contractible en x_0

$$\exists F: X \times I \longrightarrow X$$
 continua
 $(x, t) \longmapsto F(x, t)$

$$F(\cdot, 0) = id_{X}$$

$$F(\cdot, \lambda) = C_{X_0}$$

b)
$$\forall Y \text{ esp. top. } Y \xrightarrow{g} X \Rightarrow f \sim_{g} g$$

$$(Y \xrightarrow{f} X, \exists H: Y \times I \to X)$$

$$(y,t) \longmapsto H(y,t)$$

$$(y,t) \longmapsto f$$

$$(y,t) \longmapsto g$$

$$F(s,t) = (1-t)s + 4t$$

$$F(s, o) = id_{[2,4]}(s) = S$$

$$F(s,1) = 4 = C_4$$

