$$\lambda + \alpha = K_s \mathbf{1}_p$$
$$\mu + \beta = K_s \mathbf{1}_q$$
$$\mathbf{1}_p^\top \lambda = \mathbf{1}_q^\top \mu,$$

and

$$\mathbf{1}_p^{\top} \lambda + \mathbf{1}_q^{\top} \mu = K_m + \gamma. \tag{*_{\gamma}}$$

The second and third equations are equivalent to the box constraints

$$0 \le \lambda_i, \mu_i \le K_s, \quad i = 1, \dots, p, \ j = 1, \dots, q,$$

and since $\gamma \geq 0$ equation $(*_{\gamma})$ is equivalent to

$$\mathbf{1}_p^{\top} \lambda + \mathbf{1}_q^{\top} \mu \ge K_m.$$

Plugging back w from $(*_w)$ into the Lagrangian, after simplifications we get

$$\begin{split} G(\lambda,\mu,\alpha,\beta) &= \frac{1}{2} \begin{pmatrix} \lambda^\top & \mu^\top \end{pmatrix} X^\top X \begin{pmatrix} \lambda \\ \mu \end{pmatrix} - \begin{pmatrix} \lambda^\top & \mu^\top \end{pmatrix} X^\top X \begin{pmatrix} \lambda \\ \mu \end{pmatrix} \\ &= -\frac{1}{2} \begin{pmatrix} \lambda^\top & \mu^\top \end{pmatrix} X^\top X \begin{pmatrix} \lambda \\ \mu \end{pmatrix}, \end{split}$$

so the dual function is independent of α, β and is given by

$$G(\lambda, \mu) = -\frac{1}{2} \begin{pmatrix} \lambda^\top & \mu^\top \end{pmatrix} X^\top X \begin{pmatrix} \lambda \\ \mu \end{pmatrix}.$$

The dual program is given by

maximize
$$-\frac{1}{2} \begin{pmatrix} \lambda^{\top} & \mu^{\top} \end{pmatrix} X^{\top} X \begin{pmatrix} \lambda \\ \mu \end{pmatrix}$$
subject to
$$\sum_{i=1}^{p} \lambda_{i} - \sum_{j=1}^{q} \mu_{j} = 0$$
$$\sum_{i=1}^{p} \lambda_{i} + \sum_{j=1}^{q} \mu_{j} \geq K_{m}$$
$$0 \leq \lambda_{i} \leq K_{s}, \quad i = 1, \dots, p$$
$$0 \leq \mu_{j} \leq K_{s}, \quad j = 1, \dots, q.$$

Finally, the dual program is equivalent to the following minimization program: