Obyčejné grafy

(stupně uzlů, cesty a kružnice, souvislost grafu, stromy, kostry, Kruskalův a Primův algoritmus pro hledání minimální kostry ohodnoceného grafu)

Obsah

- 1 Grafy
- 2 Sledy v grafu
- 3 Podgrafy
- 4 Stromy
- 5 Kostra grafu
 - 5.1 Minimální kostra

Grafy

Obyčejný graf

je dvojice
$$G=(U,H)$$
, kde

U je konečná množina uzlů (vrcholů)

$$H = \{\{u,v\} \mid u,v \in U \land u \neq v\}$$
 je konečná množina hran.

Hrana $\{u,v\}$ je *incidentní* s uzly u a v.

Obecný graf (multigraf)

může mít více hran mezi stejnými uzly

je trojice
$$G=(U,H,\epsilon)$$
, kde

U je konečná množina uzlů (vrcholů)

 ${\cal H}$ je konečná množina hran

$$\epsilon: H o \{\{u,v\} \mid u,v \in U \land u
eq v\}$$
 je zobrazení přiřazující každé hraně dvojici uzlů

Ohodnocený graf

graf ve kterém je každé hraně přiřazena její cena (číslo)

Stupeň vrcholu

počet hran incidentních s uzlem (značíme |H|)

suma stupňů všech vrcholů v grafu je 2*počet hran (každá hrana má dva konce)

Sledy v grafu

Sled

sled mezi uzly u, v o délce n je posloupnost

$$(u = w_0, h_1, w_1, h_2, \dots, h_n, w_n = v)$$
kde $w_i \in U, h_i \in H, h_i = (w_{i-1}, w_i), 1 \le i \le n$

- střídají se uzly a hrany, začíná a končí uzlem, obsahuje n hran
- mohou se opakovat uzly i hrany

Tah

je sled takový, že $i \neq j \Rightarrow h_i \neq h_j$

neopakují se hrany, uzly se opakovat mohou

Cesta

je sled takový, že $i \neq j \Rightarrow h_i \neq h_j \land w_i \neq w_j$

neopakují se uzly ani hrany

Kružnice

1 z 3 29.5.2011 17:20

cesta, ve které jsou první a poslední uzel totožné

ze dvou kružnic se společnou hranou lze udělat velkou kružnici bez této společné hrany

Podgrafy

Souvislý graf

mezi každými dvěma uzly existuje cesta (sled)

Podgraf

podgraf grafu
$$G=(U,H)$$
 je graf $G'=(U',H'),U'\subset U,H'\subset H$

Faktor grafu

je podgraf, ve kterém nechybí žádná hrana spojující uzly, které patří do podgrafu

Komponenta grafu

souvislý faktor grafu, ke kterému nelze přidat žádný další uzel aniž by se ztratila souvislost - maximální souvislý faktor grafu

(tj. nějaká část grafu, která je izolovaná od zbytku)

Most

takové hrana, jejíž odstranění zvýší počet komponent

(tj. jediná spojnice mezi potenciálními komponentami)

Stromy

Les

obyčejný graf jehož žádný podgraf není kružnicí

pokud existuje alespoň jedna hrana vždy existují min. dva uzly stupně 1

Strom

souvislý graf jehož žádný podgraf není kružnicí (souvislý les)

Nechť G=(U,H) je graf a $|\mathsf{U}|$ = n, $|\mathsf{H}|$ = m pak jsou následující tvrzení ekvivalentní:

- G je strom
- G je souvislá a m = n 1
- G neobsahuje kružnici a m = n 1
- G je souvislý a každá hrana je mostem
- existuje jediná cesta mezi každými dvěma uzly
- G neobsahuje kružnici a přidáním další hrany kružnice vznikne
- G je souvislý a neobsahuje kružnici, přidání další hrany vznikne právě jedna kružnice

Kostra grafu

Kostra

kostra grafu je strom, který obsahuje všechny uzly z grafu

graf je souvislý právě tehdy pokud má kostru

Tětiva

hrana grafu, která není součástí kostry

Rozpojující množina

množina hran jejichž současným odebráním by vznikl nesouvislý graf

Řez

minimální rozpojující množina (tj. pokud by nějaká hrana chyběla už by to nebyla rozpojující množina)

Základní řez kostry K tvořený hranou h

2 z 3 29.5.2011 17:20

řez vzniklý rozpojením kostry odebráním hrany h (h je součást kostry) a následným zrušením všech tětiv mezi vzniklými komponentami

Minimální kostra

hledáme v ohodnoceném grafu

Minimální kostra

kostra ohodnoceného grafu s min. cenou všech hran

pokud mají všechny hrany různé hodnoty existuje právě jedna minimální kostra

Kruskalův algoritmus

- 1) seřadíme hrany podle ceny od nejmenší po největší
- 2) postupně zkoušíme přidávat hrany do kostry v tomto pořadí
 - pokud by vznikla kružnice hranu přeskočíme
 - pokud přidáním hrany kružnice nevzniká přidáme ji do kostry
- 3) přidané hrany pak tvoří min. kostru grafu

Primův algoritmus

- 1) vyjdeme z libovolného uzlu
- 2) dokud nemáme v kostře všechny uzly:
 - najdeme všechny hrany vycházející z uzlů, které jsou již součástí kostry
 - vybereme z nich hranu s nejmenší cenou, která po přidání nevytvoří kružnici
 - tuto hranu přidáme do kostry
- 3) přidané hrany pak tvoří min. kostru grafu

Kategorie: Státnice MAT | Grafy | Státnice 2011 | Matematické struktury v informatice

Stránka byla naposledy editována 26. 5. 2011 v 06:31.

3 z 3 29.5.2011 17:20