PROBLEMAS RESUELTOS

Problema 1

a) Simplificar por el método de Karnaugh la siguiente expresión:

$$S = \overline{c} \cdot d + a \cdot \overline{b} \cdot c \cdot \overline{d} + a \cdot \overline{b} \cdot \overline{c} \cdot \overline{d} + a \cdot b \cdot \overline{c} \cdot \overline{d} + b \cdot c \cdot d$$

b) Dibujar un circuito que realice dicha función con puertas lógicas

(Selectividad andaluza)

 Obtenemos la expresión canónica y realizamos el mapa de Karnaugh para cuatro variables

$$S = \overline{c} \cdot d + a \cdot \overline{b} \cdot c \cdot \overline{d} + a \cdot \overline{b} \cdot \overline{c} \cdot \overline{d} + a \cdot b \cdot \overline{c} \cdot \overline{d} + b \cdot c \cdot d$$

$$S = \overline{c} \cdot d \cdot (a + \overline{a}) \cdot (b + \overline{b}) + a \cdot \overline{b} \cdot c \cdot \overline{d} + a \cdot \overline{b} \cdot \overline{c} \cdot \overline{d} + a \cdot b \cdot \overline{c} \cdot \overline{d} + b \cdot c \cdot d \cdot (a + \overline{a})$$

$$S = a \cdot b \cdot \overline{c} \cdot d + \overline{a} \cdot b \cdot \overline{c} \cdot d + a \cdot \overline{b} \cdot \overline{c} \cdot d + \overline{a} \cdot \overline{b} \cdot \overline{c} \cdot d + a \cdot \overline{b} \cdot \overline{c} \cdot \overline{d} + a \cdot \overline{b} \cdot \overline{c} \cdot \overline{d$$

b. La función simplificada es

$$S = \overline{c} \cdot d + a \cdot \overline{c} + b \cdot d + a \cdot \overline{b} \cdot \overline{d}$$

y su circuito

Problema 2

Simplificar la siguiente función y obtener su circuito electrónico con el menor número de puertas:

$$F = \overline{a} \cdot \overline{b} \cdot c + (a+b) \cdot c$$

(Selectividad andaluza)

Obtenemos la expresión canónica y la simplificamos por el método de Karnaugh

$$F = \overline{a} \cdot \overline{b} \cdot c + a \cdot c + b \cdot c$$

$$F = \overline{a} \cdot \overline{b} \cdot c + a \cdot c \left(b + \overline{b} \right) + b \cdot c \left(a + \overline{a} \right)$$

$$F = \overline{a} \cdot \overline{b} \cdot c + a \cdot b \cdot c + a \cdot \overline{b} \cdot c + a \cdot b \cdot c + \overline{a} \cdot b \cdot c$$

Como
$$a \cdot b \cdot c + a \cdot b \cdot c = a \cdot b \cdot c$$

la función canónica queda $F = \overline{a} \cdot \overline{b} \cdot c + a \cdot b \cdot c + a \cdot \overline{b} \cdot c + \overline{a} \cdot b \cdot c$

bc a	00	01	11	10
0		1	1	
1		1	1	

La función obtenida es

$$F = c$$

y el circuito

Problema 3

Dada la siguiente función:

$$S = \overline{a} \cdot \overline{b} + \overline{a} \cdot \overline{c} + a \cdot \overline{b} \cdot \overline{c} + \overline{a} \cdot b$$

- a) Obtenga su forma canónica como suma de productos lógicos.
- b) Obtenga su expresión más significativa.
- c) Realice la función empleando sólo puertas NAND.

(Propuesto Andalucía 96/97)

a. Obtenemos su función canónica como suma de productos

$$S = \overline{a} \cdot \overline{b} + \overline{a} \cdot \overline{c} + a \cdot \overline{b} \cdot \overline{c} + \overline{a} \cdot b$$

$$S = \overline{a} \cdot \overline{b} \cdot (c + \overline{c}) + \overline{a} \cdot \overline{c} \cdot (b + \overline{b}) + a \cdot \overline{b} \cdot \overline{c} + \overline{a} \cdot b \cdot (c + \overline{c})$$

$$S = \overline{a} \cdot \overline{b} \cdot c + \overline{a} \cdot \overline{b} \cdot \overline{c} + \overline{a} \cdot b \cdot \overline{c} + \overline{a} \cdot \overline{b} \cdot \overline{c} + \overline{a} \cdot b \cdot \overline{c} + \overline{a} \cdot b \cdot \overline{c} + \overline{a} \cdot b \cdot \overline{c}$$

$$S = \overline{a} \cdot \overline{b} \cdot c + \overline{a} \cdot \overline{b} \cdot \overline{c} + \overline{a} \cdot b \cdot \overline{c} + a \cdot \overline{b} \cdot \overline{c} + \overline{a} \cdot b \cdot \overline{c}$$

b. Situamos los términos de la función sobre la cuadrícula para tres variables y simplificamos la función por Karnaugh

bc a	00	01	11	10
0	1	1	1	1
1	1			

La función obtenida es

$$S = \overline{a} + \overline{b} \cdot \overline{c}$$

C. Transformamos la función para ser realizada con puertas NAND

$$S = \overline{a} + \overline{b} \cdot \overline{c} = \overline{\overline{a} + \overline{b} \cdot \overline{c}} = \overline{\overline{a} \cdot \overline{b} \cdot \overline{c}} = a \cdot \overline{\overline{b} \cdot \overline{c}}$$

y el circuito que obtenemos

Problema 4

Diseñar un circuito electrónico que cumpla la siguiente tabla de verdad para la función F(a, b, c) con el menor número de puertas lógicas.

а	b	с	F
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

(Selectividad andaluza)

Situamos los términos que hacen verdadera la función sobre la cuadrícula de tres variables para simplificar por el método de Karnaugh

bc a	00	01	11	10
0		1		1
1		1	1	

La función obtenida es

$$F = \overline{a} \cdot b \cdot \overline{c} + \overline{b} \cdot c + a \cdot c$$

y su circuito

Sobre el circuito vamos obteniendo las operaciones efectuadas a través de las puertas, hasta llegar a la salida

Obtenida la función la simplificamos algebraicamente

$$S = \overline{\overline{A} + \overline{\overline{A} + B} + C} = \overline{\overline{A}} \cdot \overline{\overline{A} + B} + \overline{C} = A \cdot (\overline{A} + B + C) =$$
$$= A \cdot (\overline{A} \cdot \overline{B} + C) = A \cdot \overline{A} \cdot \overline{B} + A \cdot C = A \cdot C$$

Un motor eléctrico puede girar en ambos sentidos por medio de dos contactores: "D" para el giro a derecha y "I" para el giro a izquierda. Estos dos contactores son comandados por dos pulsadores de giro "d" (derecha) e "i" (izquierda) y un interruptor de selección "L" de acuerdo con las siguientes condiciones:

- Si sólo se pulsa uno de los dos botones de giro, el motor gira en el sentido correspondiente.
- Si se pulsan los dos botones de giro simultáneamente, el sentido de giro depende del estado del interruptor "L" de forma que,
 - Si "L" está activado, el motor gira a la derecha.
 - Si "L" está en reposo, el motor gira a la izquierda.

Establecer:

- a) La tabla de verdad.
- b) Las funciones lógicas D e I y simplificarlas.
- c) Su circuito lógico mediante puertas.

(Selectividad andaluza)

1

a. Realizamos la tabla de verdad contemplando las dos salidas

d	i	L	D	1
0	0	0	0	0
0	0	1	0	0
0	1	0	0	1
0	1	1	0	1
1	0	0	1	0
1	0	1	1	0
1	1	0	0	1
1	1	1	1	0

b. De las funciones deducidas de la tabla, situamos sus términos sobre las cuadrículas correspondientes de tres variables y las simplificamos por Karnaugh

C. El circuito será

Problema 7

Diseñe un circuito combinacional que realice la suma aritmética de dos números binarios, uno de un bit y otro de dos bits, y cuyo resultado también esté dado en binario. Represente el circuito mediante puertas lógicas.

(Propuesto Andalucía 97/98)

La suma de los dos números sería $S=a_0+b_1b_0$

Tendríamos que sumar órdenes iguales, por lo que haríamos $S_0=a_0+b_0$ que podría dar un acarreo C_0

a ₀	b ₀	So	Co
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

$$\begin{aligned} \boldsymbol{S}_{\boldsymbol{\theta}} &= \overline{a}_0 \cdot \boldsymbol{b}_0 + \boldsymbol{a}_0 \cdot \overline{\boldsymbol{b}}_0 = \boldsymbol{a}_0 \oplus \boldsymbol{b}_0 \\ & \boldsymbol{C}_{\boldsymbol{\theta}} = \boldsymbol{a}_0 \cdot \boldsymbol{b}_0 \end{aligned}$$

60 Problemas y Cuestiones de Tecnologia Industrial

El acarreo $\,C_0\,$ se tendrá que sumar con el orden superior del número de dos bits, de la forma $\,S_1=b_1+C_0\,$, y podría dar un acarreo $\,C_1\,$

b ₁	Co	S ₁	C ₁
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

$$S_{I} = \overline{b}_{1} \cdot C_{0} + b_{1} \cdot \overline{C}_{0} = b_{1} \oplus C_{0}$$
$$C_{I} = b_{1} \cdot C_{0}$$

El circuito que resulta acoplando los dos módulos anteriores

La suma vendría expresada por el número $\,C_1\,S_1\,S_0\,$, siendo $\,S_0\,$ el bit de menor peso.

Un motor es controlado mediante tres pulsadores A, B y C.

Diseñe su circuito de control mediante puertas lógicas que cumpla las siquientes condiciones de funcionamiento:

- Si se pulsan los tres pulsadores el motor se activa.
- Si se pulsan dos pulsadores cualesquiera, el motor se activa pero se enciende una lámpara adicional como señal de emergencia.
- Si sólo se pulsa un pulsador, el motor no se excita, pero se enciende la lámpara indicadora de emergencia.
- Si no se pulsa ningún interruptor, ni el motor ni la lámpara se activan.

(Selectividad andaluza septiembre-97)

Obtenemos la tabla de verdad para las dos salidas, según las especificaciones, y expresamos sus funciones canónicas

Α	В	С	М	L
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	1
1	0	0	0	1
1	0	1	1	1
1	1	0	1	1
1	1	1	1	0

$$M = \overline{A} \cdot B \cdot C + A \cdot \overline{B} \cdot C + A \cdot B \cdot \overline{C} + A \cdot B \cdot C$$

$$L = \overline{A} \cdot \overline{B} \cdot C + \overline{A} \cdot B \cdot \overline{C} + \overline{A} \cdot B \cdot C + A \cdot \overline{B} \cdot \overline{C} + A \cdot \overline{B} \cdot C + A \cdot B \cdot \overline{C}$$

Por el método tabular obtenemos sus funciones simplificadas

$$M = B \cdot C + A \cdot C + A \cdot B$$

$$L = \overline{A} \cdot C + A \cdot \overline{B} + B \cdot \overline{C}$$

Dibujamos su circuito

Problema 9

En un sistema determinado, para realizar una función específica, se debe actuar sobre uno u otro de los dos pulsadores disponibles. Se pide:

- a) Tabla de verdad del proceso.
- b) Realizar el esquema de tres circuitos, uno eléctrico, otro neumático y otro electrónico que realicen la función indicada.
- c) Comparar los tres circuitos indicando ventajas, inconvenientes y aplicaciones de estos.

(Selectividad andaluza)

a. La tabla de verdad y la función que se deduce de ella son:

P_1	P_2	S
0	0	0
0	1	1
1	1	1
1	1	0

$$S = \overline{P_1} \cdot P_2 + P_1 \cdot \overline{P_2} = P_1 \oplus P_2$$

b. Los tres circuitos podrían ser

C. Comparamos los tres tipos de circuitos de dos formas diferentes; una basándonos en su características generales y otra en función de los procesos a realizar.

Circuitos	Ventajas	Inconvenientes	Aplicaciones
Eléctricos	Pueden controlar gran- des potencias por sí solos	Desgastes mecánicos y producción de chispas	Circuitos de control simples
Neumáticos	No necesitan circuito de retorno de fluido	Ruidosos y caros	Aplicaciones industriales
Electrónicos	Muy fiables Pueden realizar funciones lógicas No existen desgastes mecánicos No necesitan instalaciones pesadas	No pueden controlar grandes potencias directamente con salidas lógicas	Controles realimentados

Sobre el circuito vamos obteniendo las operaciones efectuadas a través de las puertas, hasta llegar a la salida

Observando el circuito realizamos su tabla de verdad

Α	В	S_0	S ₁	S ₂	S ₃
0	0	0	0	0	0
0	1	0	1	0	0
1	0	1	0	1	0
1	1	0	0	0	1

Basándonos en el circuito o en la tabla podemos escribir las funciones de las salidas

$$S0 = A \cdot \overline{B}$$
 $S1 = \overline{A} \cdot B$ $S2 = A \cdot \overline{B}$ $S3 = A \cdot B$

En relación con el esquema adjunto:

- a) Obtenga la función lógica F (x, y, z, v).
- b) Obtenga su tabla de verdad.
- c) Realícela de nuevo con el menor número de puertas lógicas.

(Propuesto Andalucía 97/98)

a. La función que se obtiene del circuito es

La función resultante según se indica en la figura anterior

$$F = \left(\overline{(x+y)} + (x+z) \right) \cdot (x+z) \cdot (v \cdot y)$$

si la simplificamos algebraicamente por la propiedad de absorción

$$F = (x+z) \cdot (v \cdot y)$$

que desarrollándola

$$F = x \cdot y \cdot v + y \cdot v \cdot z$$

b. Obtenemos su expresión canónica para poder realizar su tabla de verdad

$$F = x \cdot y \cdot v + y \cdot v \cdot z = x \cdot y \cdot v \cdot (z + \overline{z}) + y \cdot v \cdot z \cdot (x + \overline{x}) =$$

$$= x \cdot y \cdot v \cdot z + x \cdot y \cdot v \cdot \overline{z} + x \cdot y \cdot v \cdot z + \overline{x} \cdot y \cdot v \cdot z =$$

$$= x \cdot y \cdot v \cdot z + x \cdot y \cdot v \cdot \overline{z} + \overline{x} \cdot y \cdot v \cdot z$$

La tabla será

X	У	V	Z	S
0 0 0 0 0 0 0 0 1 1 1 1 1 1	0 0 0 0 1 1 1 1 0 0 0 1 1 1 1 1		0 1 0 1 0 1 0 1 0 1 0 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0
0	1	1	1	1
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	0
1	1	0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0	0	0
1	1	0	1	0
1	1	1	0	1
1	1	1	1	1

c. Situamos los tres términos sobre la cuadrícula para simplificarlos por Karnaugh

$$F = x \cdot y \cdot v \cdot z + x \cdot y \cdot v \cdot \overline{z} + \overline{x} \cdot y \cdot v \cdot z$$

VZ	00	01	11	10
xy 00				
01			1	
11			1	1
10				

y obtenemos la función, que no es otra que la que se obtuvo por simplificación algebraica

$$F = x \cdot y \cdot v + y \cdot v \cdot z$$

El circuito resultante será

Problema 12

Un circuito digital posee una entrada de señal, E, otra entrada de selección, S, y dos salidas de señal Y_1 e Y_2 , siendo su funcionamiento el siguiente:

• Si
$$S = 1$$
, $Y_1 = E$ y $Y_2 = 0$

• Si
$$S = 0$$
, $Y_2 = E$ y $Y_1 = 0$

Obtenga un circuito lógico que realice dicha función.

(Propuesto Andalucía 98/99)

Realizamos primeramente su tabla de verdad

Е	S	Y ₁	Y ₂
0	0	0	0
0	1	0	0
1	0	0	1
1	1	1	0

Las funciones obtenidas son

$$Y_1 = E \cdot S$$

$$Y_2 = E \cdot \overline{S}$$

El circuito resultante será

Un sistema electrónico de alarma está constituido por cuatro detectores a, b, c y d. La alarma debe dispararse cuando se activen tres o cuatro detectores. Si se activan sólo dos detectores su disparo es indiferente. La alarma nunca debe dispararse si se activa un solo detector o ninguno. Por último y por razones de seguridad, se deberá activar si a=0, b=0, c=0 y d=1. Diseñe un circuito de control para esta alarma con el menor número posible de puertas lógicas.

(Propuesto Andalucía 96/97)

Realizamos la tabla de verdad basándonos en las condiciones iniciales

а	b	С	d	S
0 0 0 0 0 0 0 0 1 1 1 1 1	0	0	0	0 1 0 X 0 X X 1 0 X X 1 1 1
0	0	0	1	1
0	0	1	0	0
0	0	1	1	Χ
0	1	0	0	0
0	1	0	1	Χ
0	1	1	0	Χ
0	1	1	1	1
1	0	0	0	0
1	0	0	1	Χ
1	0	1	0	Χ
1	0	1	1	1
1	1	0	0	Χ
1	0 0 0 1 1 1 0 0 0 1 1 1 1	0 0 1 1 0 0 1 1 0 0 1 1 0 0	0 1 0 1 0 1 0 1 0 1 0 1 0	1
1	1	1	0	1
1	1	1	1	1

cd ab	00	01	11	10
ар 00		1	X	
01		X	1	Х
11	X	1	1	1
10		X	1	Х

Sólo utilizaremos los términos indiferentes necesarios para la simplificación.

De los agrupamientos deducimos la función simplificada

$$S = d + a \cdot b$$

El circuito resultante será

Realizamos la tabla de verdad y expresamos las funciones canónicas para las tres salidas y las simplificamos por Karnaugh.

2 ¹	2 ⁰	2 ¹	2 ⁰	A>B	A <b< th=""><th>A=B</th></b<>	A=B
A ₁	A_0	B ₁	B ₀	S ₀	S ₁	S ₂
0	0	0	0	0	0	1
0	0	0	1	0	1	0
0	0	1	0	0	1	0
0	0	1	1	0	1	0
0	1	0	0	1	0	0
0	1	0	1	0	0	1
0	1	1	0	0	1	0
0	1	1	1	0	1	0
1	0	0	0	1	0	0
1	0	0	1	1	0	0
1	0	1	0	0	0	1
1	0	1	1	0	1	0
1	1	0	0	1	0	0
1	1	0	1	1	0	0
1	1	1	0	1	0	0
1	1	1	1	0	0	1

Las funciones resultantes

$$\begin{split} S_{\theta} &= \overline{A}_{\!\! 1} \cdot A_{0^{+}} \cdot \overline{B}_{\!\! 1} \cdot \overline{B}_{\!\! 0} + A_{\!\! 1} \cdot \overline{A}_{\!\! 0} \cdot \overline{B}_{\!\! 1} \cdot \overline{B}_{\!\! 0} + A_{\!\! 1} \cdot \overline{A}_{\!\! 0} \cdot \overline{B}_{\!\! 1} \cdot B_{\!\! 0} + \\ &\quad + A_{\!\! 1} \cdot A_{\!\! 0} \cdot \overline{B}_{\!\! 1} \cdot \overline{B}_{\!\! 0} + A_{\!\! 1} \cdot A_{\!\! 0} \cdot \overline{B}_{\!\! 1} \cdot B_{\!\! 0} + A_{\!\! 1} \cdot A_{\!\! 0} \cdot B_{\!\! 1} \cdot \overline{B}_{\!\! 0} \end{split}$$

$$\begin{split} \boldsymbol{S}_{I} &= \overline{A}_{\!\!1} \cdot \overline{A}_{\!\!0} \cdot \overline{B}_{\!\!1} \cdot \boldsymbol{B}_{\!\!0} + \overline{A}_{\!\!1} \cdot \overline{A}_{\!\!0} \cdot \boldsymbol{B}_{\!\!1} \cdot \overline{B}_{\!\!0} + \overline{A}_{\!\!1} \cdot \overline{A}_{\!\!0} \cdot \boldsymbol{B}_{\!\!1} \cdot \boldsymbol{B}_{\!\!0} + \\ &\quad + \overline{A}_{\!\!1} \cdot \boldsymbol{A}_{\!\!0} \cdot \boldsymbol{B}_{\!\!1} \cdot \overline{B}_{\!\!0} + \overline{A}_{\!\!1} \cdot \boldsymbol{A}_{\!\!0} \cdot \boldsymbol{B}_{\!\!1} \cdot \boldsymbol{B}_{\!\!0} + \boldsymbol{A}_{\!\!1} \cdot \overline{A}_{\!\!0} \cdot \boldsymbol{B}_{\!\!1} \cdot \boldsymbol{B}_{\!\!0} \\ \boldsymbol{S}_{2} &= \overline{A}_{\!\!1} \cdot \overline{A}_{\!\!0} \cdot \overline{B}_{\!\!1} \cdot \overline{B}_{\!\!0} + \overline{A}_{\!\!1} \cdot \boldsymbol{A}_{\!\!0} \cdot \overline{B}_{\!\!1} \cdot \boldsymbol{B}_{\!\!0} + \boldsymbol{A}_{\!\!1} \cdot \overline{A}_{\!\!0} \cdot \boldsymbol{B}_{\!\!1} \cdot \overline{B}_{\!\!0} + \\ &\quad + \boldsymbol{A}_{\!\!1} \cdot \boldsymbol{A}_{\!\!0} \cdot \boldsymbol{B}_{\!\!1} \cdot \boldsymbol{B}_{\!\!0} \end{split}$$

B_1B_0	00	01	11	10
$ \begin{array}{c} B_1B_0\\ A_1A_0\\ 00 \end{array} $		1	1	1
01			1	1
11				
10			1	

$$\begin{split} \boldsymbol{S}_{\theta} &= \boldsymbol{A}_{\!\! 1} \cdot \overline{\boldsymbol{B}}_{\!\! 1} + \boldsymbol{A}_{\!\! 0} \cdot \overline{\boldsymbol{B}}_{\!\! 1} \cdot \overline{\boldsymbol{B}}_{\!\! 0} + \\ &\quad + \boldsymbol{A}_{\!\! 1} \cdot \boldsymbol{A}_{\!\! 0} \cdot \overline{\boldsymbol{B}}_{\!\! 0} \end{split}$$

$$S_I = \overline{A}_1 \cdot B_1 + \overline{A}_0 \cdot B_1 \cdot B_0 +$$

 $+ \overline{A}_1 \cdot \overline{A}_0 \cdot B_0$

$$\boldsymbol{S_2} = \overline{A_1} \cdot \overline{A_0} \cdot \overline{B_1} \cdot \overline{B_0} + \overline{A_1} \cdot A_0 \cdot \overline{B_1} \cdot B_0 + A_1 \cdot \overline{A_0} \cdot B_1 \cdot \overline{B_0} + A_1 \cdot A_0 \cdot B_1 \cdot B_0$$

Una función lógica depende de cuatro variables "a", "b", "c" y "d" y toma el valor lógico "1" si el número de variables con el mismo valor es par. Enunciar dicha función y simplificarla por procedimientos algebraicos y por el método de Karnaugh.

(Selectividad andaluza)

Realizamos la tabla de verdad en función de las especificaciones

а	b	С	d	S
0 0 0 0 0 0 0 0 1 1 1 1 1 1	0	0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1	0 1 0 1 0 1 0 1 0 1 0 1	1 0 0 1 0 1 1 0 0 1
0	0	0	1	0
0	0	1	0	0
0	0	1	1	1
0	1	0	0	0
0	1	0	1	1
0	1	1	0	1
0	1	1	1	0
1	0	0	0	0
1	0	0	1	1
1	0	1	0	1
1	0	1	1	0
1	1	0	0	1
1	1	0	1	0
1	0 0 0 1 1 1 1 0 0 0 1 1 1 1 1 1	1	0	0
1	1	1	1	1

La función resultante será

$$S = \overline{a} \cdot \overline{b} \cdot \overline{c} \cdot \overline{d} + \overline{a} \cdot \overline{b} \cdot c \cdot d + \overline{a} \cdot b \cdot \overline{c} \cdot d + \overline{a} \cdot b \cdot c \cdot \overline{d} + a \cdot \overline{b} \cdot \overline{c} \cdot d + a \cdot \overline{b} \cdot \overline{c} \cdot \overline{d} + a \cdot b \cdot \overline{c} \cdot \overline{d} + a \cdot b \cdot \overline{c} \cdot \overline{d} + a \cdot b \cdot c \cdot d$$

La simplificamos por el método algebraico

$$S = \overline{a} \cdot \overline{b} \cdot (\overline{c} \cdot \overline{d} + c \cdot d) + \overline{a} \cdot b \cdot (\overline{c} \cdot d + c \cdot \overline{d}) +$$

$$+ a \cdot \overline{b} \cdot (\overline{c} \cdot d + c \cdot \overline{d}) + a \cdot b \cdot (\overline{c} \cdot \overline{d} + c \cdot d)$$

$$S = (\overline{c} \cdot \overline{d} + c \cdot d) \cdot (\overline{a} \cdot \overline{b} + a \cdot b) + (\overline{c} \cdot d + c \cdot \overline{d}) \cdot (\overline{a} \cdot b + a \cdot \overline{b})$$

$$S = (\overline{c} \oplus \overline{d}) \cdot (\overline{a} \oplus \overline{b}) + (c \oplus d) \cdot (a \oplus b)$$

$$S = \overline{a} \oplus \overline{b} \oplus \overline{c} \oplus \overline{d}$$

$$S = a \ominus b \ominus c \ominus d$$

72 Problemas y Cuestiones de Tecnologia Industrial

Si situamos los términos sobre la tabla, para aplicar el método de Karnaugh, observamos en la cuadrícula que no existen términos adyacentes; sin embargo la disposición nos indica la existencia de funciones OR y NOR Exclusivas.

La expresión resultante partiendo de la disposición de estos términos

$$S = (\overline{c \oplus d}) \cdot (\overline{a \oplus b}) + (c \oplus d) \cdot (a \oplus b)$$

$$S = \overline{a \oplus b \oplus c \oplus d}$$

$$S = a \ominus b \ominus c \ominus d$$

Problema 16

El control de una luz de escalera se realiza mediante dos interruptores "a" y "b", colocados en los extremos de la misma. Se pide:

- a) Establezca la tabla de verdad.
- b) Obtenga la función lógica.
- c) Represéntela mediante un esquema utilizando puertas lógicas.

(Selectividad andaluza septiembre-98)

a. Realizamos la tabla de verdad

а	b	S
0	0	0
0	1	1
1	0	1
1	1	0

b. Obtenemos la función

$$S = \overline{a}b + a\overline{b} = a \oplus b$$

C. Dibujamos el circuito

Problema 17

Un proceso de fabricación es controlado por cuatro sensores A, B, C y D, de forma que sus salidas son "0" o "1", según estén desactivados o activados respectivamente. El proceso deberá detenerse cuando está activado el sensor A o cuando lo estén dos sensores cualesquiera. Se pide:

- a) Realice la tabla de verdad.
- b) Simplifique la función por el método de Karnaugh.
- c) Represente el esquema del circuito con puertas lógicas.

(Selectividad andaluza septiembre-99)

a. Realizamos primeramente su tabla de verdad

а	b	С	d	S
0	0	0	0	1
0		0		1
0	0	1	1 0	1
0	0	1	1	0
0	1	0	0	1
0	1	0	1	0
0	1	1	0	0
0	1	1	1	0
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	0
1	1	0	0	0
0 0 0 0 0 0 0 1 1 1 1 1	0 0 1 1 1 1 0 0 0 1 1 1	0 1 1 0 0 1 1 0 0 1 1 0 0 1 1	1 0 1 0 1 0 1 0 1 0 1	1 1 0 1 0 0 0 0 0 0 0 0
1	1	1	0	0
1	1	1	1	0

b. Si situamos los términos sobre la cuadrícula para simplificarla por Karnaugh

CD AB-	00	01	11	10
00 -	1	1		1
01	1			
11				
10				

74 Problemas y Cuestiones de Tecnologia Industrial

c. Obtenemos la función

$$S = \overline{A} \cdot \overline{B} \cdot \overline{D} + \overline{A} \cdot \overline{C} \cdot \overline{D} + \overline{A} \cdot \overline{B} \cdot \overline{C}$$

El circuito resultante será

Problema 18

Un circuito digital posee dos entradas de señal I_0 e I_1 , una entrada de selección, S, y una salida, W, siendo su funcionamiento el siguiente:

Obtenga un circuito lógico que realice dicha función.

(Propuesto Andalucía 98/99)

Realizamos primeramente su tabla de verdad

I_0	I_1	S	\boldsymbol{W}
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

La función obtenida

$$W = \overline{I}_0 \cdot I_1 \cdot S + I_0 \cdot \overline{I}_1 \cdot \overline{S} + I_0 \cdot I_1 \cdot \overline{S} + I_0 \cdot I_1 \cdot S$$

Si la simplificamos por el método de Karnaugh

J ₁ S	00	01	11	10	
0			1		
_					
1	1		1	1	
_			$\overline{}$		H

Resulta $W = I_0 \cdot \overline{S} + I_1 \cdot S$

El circuito será

Realizamos primeramente su tabla de verdad

а	b	С	F
0	0	0	0
0 0 0 0 1	0	1	0
0	1	0 1	1
0	1	1	1
1	0	0 1	1
1	0 0 1	1	1
1	1	0	1
1	1	1	1

76 Problemas y Cuestiones de Tecnologia Industrial

Si situamos los términos sobre la cuadrícula para simplificarla por Karnaugh

bc a	00	01	11	10
а 0			1	1
			'	_ '
1	1	1	1	1

Resulta

$$F = a + b$$

El circuito será

Problema 20

Un circuito digital acepta en su entrada un número binario, N, de cuatro bits y da, a su salida, dos señales, S1 y S2. S1 se activa si $9 < N \le 15$. S2 permanece desactivada si N es cero o múltiplo de 2. Obtenga las tablas de verdad y las funciones lógicas para cada una de sus salidas.

(Selectividad andaluza junio - 99)

Obtenemos la tabla de verdad de las dos salidas y sus funciones canónicas a partir de las condiciones dadas

а	b	С	d	S1	S2
0 0 0 0 0 0 0 0 1 1 1 1 1	0		0	\$1 0 0 0 0 0 0 0 0 0 1 1 1 1	S2 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0	0	0	1	0	1
0	0	1	0	0	0
0	0	1	1	0	1
0	1	0	0	0	0
0	1	0	1	0	1
0	1	1	0	0	0
0	1	1	1	0	1
1	0	0	0	0	0
1	0	0	1	0	1
1	0	1	0	1	0
1	0	1	1	1	1
1	1	0	0	1	0
1	0 0 0 1 1 1 0 0 0 1 1 1 1	0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1	0 1 0 1 0 1 0 1 0 1 0 1	1	1
1	1	1	0	1	0
1	1	1	1	1	1

$$S1 = a \cdot \overline{b} \cdot c \cdot \overline{d} + a \cdot \overline{b} \cdot c \cdot d + a \cdot b \cdot \overline{c} \cdot \overline{d} + a \cdot b \cdot \overline{c} \cdot d + a \cdot b \cdot \overline{c} \cdot d + a \cdot b \cdot c \cdot d$$

$$S2 = \overline{a} \cdot \overline{b} \cdot \overline{c} \cdot d + \overline{a} \cdot \overline{b} \cdot c \cdot d + \overline{a} \cdot b \cdot \overline{c} \cdot d +$$

$$+ \overline{a} \cdot b \cdot c \cdot d + a \cdot \overline{b} \cdot \overline{c} \cdot d + a \cdot \overline{b} \cdot c \cdot d +$$

$$+ a \cdot b \cdot \overline{c} \cdot d + a \cdot b \cdot c \cdot d$$

Simplificamos las funciones por Karnaugh y realizamos el circuito

$$S1 = a \cdot b + a \cdot c = a(b+c)$$

$$S2 = d$$

Problema 21

En un sistema determinado, para realizar una función específica se debe actuar simultáneamente sobre los dos pulsadores disponibles.

Se pide:

- a) Tabla de verdad del proceso.
- b) Realizar el esquema de TRES circuitos, uno eléctrico, otro neumático y otro electrónico que realicen la función indicada.
- c) Comparar los tres circuitos indicando algunas ventajas, inconvenientes o aplicaciones de éstos.

(Selectividad Andaluza)

a. La tabla de verdad según la condición exigida

P_1	P_0	S
0	0	0
0	1	0
1	0	0
1	1	1

78 Problemas y Cuestiones de Tecnologia Industrial

b. Los tres circuitos

C. Comparamos los tres tipos de circuitos de dos formas diferentes; una basándonos en su características generales y otra en función de los procesos a realizar.

Circuitos	Ventajas	Inconvenientes	Aplicaciones
Eléctricos	Pueden controlar gran- des potencias por sí solos	Desgastes mecánicos y producción de chispas	Circuitos de control simples
Neumáticos	No necesitan circuito de retorno de fluido	Ruidosos y caros	Aplicaciones industriales
Electrónicos	Muy fiables Pueden realizar funciones lógicas No existen desgastes mecánicos No necesitan instalaciones pesadas	No pueden controlar grandes potencias directamente con sali- das lógicas	Controles realimentados

Se desea controlar una lámpara empleando tres interruptores, de forma que sólo se encienda cuando esté activado un solo interruptor o los tres simultáneamente. Se pide:

- a) La tabla de verdad.
- b) La función lógica.
- c) Realizar un circuito con puertas lógicas que lo ejecute.

(Propuesto Andalucía 97/98)

a. La tabla de verdad según las condiciones iniciales

а	b	C	L
0	0	0	0
0 0 0 0 1	0	1	1
0	1	0 1	1
0	1	1	0
1	0	0	1
1	0 1	1	0
1	1	0	0
1	1	1	1

b. La función lógica que se deduce de la tabla.

$$L = \overline{a} \cdot \overline{b} \cdot c + \overline{a} \cdot b \cdot \overline{c} + a \cdot \overline{b} \cdot \overline{c} + a \cdot b \cdot c$$

Si la simplificamos algebraicamente, resulta

$$L = \overline{a} \cdot (\overline{b} \cdot c + b \cdot \overline{c}) + a \cdot (\overline{b} \cdot \overline{c} + b \cdot c)$$

$$L = \overline{a} \cdot (b \oplus c) + a \cdot (\overline{b \oplus c})$$

$$L = a \oplus b \oplus c$$

Si la simplificamos por el método de Karnaugh, observamos, del mismo modo que

$$L = \overline{a} \cdot (b \oplus c) + a \cdot (\overline{b \oplus c})$$

$$L = a \oplus b \oplus c$$

C. El circuito resultante será

Problema 23 Partiendo del circuito de la figura, obtener la ecuación de la función implementada, simplificarla y realizarla de nuevo con el menor número de puertas lógicas.

Sobre el circuito vamos obteniendo las operaciones efectuadas a través de las puertas, hasta llegar a la salida

Obtenida la función la simplificamos algebraicamente

$$F = \overline{\overline{a \cdot b} \cdot \overline{\overline{a} \cdot c} \cdot \overline{b}} = \overline{\overline{a \cdot b}} + \overline{\overline{\overline{a} \cdot c}} + \overline{\overline{b}} = a \cdot b + \overline{a} \cdot c + b = b \cdot (a+1) + \overline{a} \cdot c$$

$$F = b + \overline{a} \cdot c$$

Si simplificamos por Karnaugh, obteniendo primeramente la función canónica, resultará

$$F = a \cdot b + \overline{a} \cdot c + b = a \cdot b \cdot (c + \overline{c}) + \overline{a} \cdot c \cdot (b + \overline{b}) + b \cdot (a + \overline{a}) \cdot (c + \overline{c})$$

Operando

$$F = a \cdot b \cdot c + \overline{a} \cdot b \cdot c + \overline{a} \cdot b \cdot \overline{c} + a \cdot b \cdot \overline{c} + \overline{a} \cdot \overline{b} \cdot c$$

bc a	00	01	11	10
а 0		1	1	1
1			1	1

También por este método el resultado es el mismo, obteniendo

$$F = b + \overline{a} \cdot c$$

El circuito será el indicado

Un circuito digital consta de cuatro entradas y dos salidas. Una de las salidas toma el valor lógico " uno " sólo cuando existe mayoría de entradas a "uno". La otra salida se activa sólo si hay igual número de entradas a "uno" que a "cero".

- a) Confeccione la tabla de verdad.
- b) Simplifique la función resultante por Karnaugh.
- c) Represente la función con puertas lógicas.

(Selectividad andaluza junio-00)

a. La tabla de verdad correspondiente al enunciado del problema

а	b	С	d	S ₁	S ₂
0	0	0	0		0
0	0	0	1	0	0
0	0	1	0	0	0
0	0	1	1	0	1
0	1	0	0	0	0
0	1	0	1	0	1
0	1	1	0	0	1
0	1	1	1	1	0
1	0	0	0	0	0
1	0	0	1	0	1
1	0	1	0	0	1
1	0	1	1	1	0
1	1	0	0	0	1
0 0 0 0 0 0 0 1 1 1 1 1 1	0 0 1 1 1 1 0 0 0 0	0 1 1 0 0 1 1 0 0 1 1 0 0	0 1 0 1 0 1 0 1 0 1 0 1	0 0 0 0 0 0 1 0 0 1 0	0 0 1 0 1 1 0 0 1 1 0 0
1	1	1	0	1	0
1	1	1	1	1	0

b. El mapa de Karnaugh correspondiente a S_1 y a S_2 y las funciones simplificadas:

$$S_1 = a \cdot b \cdot d + a \cdot b \cdot c + b \cdot c \cdot d + a \cdot c \cdot d$$

$$S_2 = a \cdot b \cdot \overline{c} \cdot \overline{d} + \overline{a} \cdot b \cdot \overline{c} \cdot d + a \cdot \overline{b} \cdot \overline{c} \cdot d + \overline{a} \cdot \overline{b} \cdot c \cdot d + \overline{a} \cdot b \cdot c \cdot \overline{d} + a \cdot \overline{b} \cdot c \cdot \overline{d}$$

c. Las representaciones de las funciones obtenidas

Esta página está intencionadamente en blanco