ENGR 4421: Robotics II Lidar

Outline

- LiDAR Introduction
- RPLIDAR A1

A Robot Needs 360 degree sense

What is LiDAR

- Is the acronym of "Light Detection And Ranging".
- Is a method to determine the ranges.
- Functions by sending out light beams and measuring the reflected signal.

Approaches of Ranging

- Triangulation.
- Time-of-flight (TOF).
- Phase shift.

Triangulation

Time Of Flight

Phase Shift

LiDAR History

LiDAR 101

Timeline of LiDAR Technology

LiDAR Applications

- Surveying
- Archaeology
- Forestry
- Farming
- Mining
- Autonomous Driving

RPLIDAR A1

RPLIDAR Al's Triangulation

RPLIDAR A1 Specifications

Measuring Range	0.15m - 12m
Sampling Frequency	8K
Rotational Speed	5.5Hz
Angular Resolution	≤]°
System Voltage	5V
System Current	100mA
Output	UART Serial (3.3 voltage level)
Temperature Range	0°C-40°C
Accuracy	1% of the range(≤3 m)
	2% of the range(3-5 m)
	2.5% of the range(5-25m)

RPLIDAR A1 Dimensions

RPLIDAR A1 Pinout

RPLIDAR A1 Versions

New(A1M8-R6)

Old(A1M8-R5)

Adafruit_CircuitPython_RPLIDAR

```
from math import floor
from adafruit_rplidar import RPLidar
# Setup the RPLidar
lidar = RPLidar(None, '/dev/ttyUSB0', timeout=3)
scan_data = [0]*360
# Print ranges
try:
    for scan in lidar.iter_scans():
        for (_, angle, distance) in scan:
            scan_data[min([359, floor(angle)])] = distance
        print(scan_data)
except KeyboardInterrupt:
    print('Stopping.')
lidar.stop()
lidar.disconnect()
```