CS & IT ENGINEERING

COMPUTER ORGANIZATION AND ARCHITECTURE

Instruction & Addressing Modes

Lecture No.- 02

Recap of Previous Lecture

Topics to be Covered

Topic Instruction

Topic

Multiple Instruction Support

#Q. Consider a digital computer which supports 64 2-address instructions. If address length is 9-bits then the length of the instruction is _____ bits?

#Q. Consider a digital computer which supports (64) 2-address instructions. If address length is 9-bits then the length of the instruction is _____ bits?

In above question: Each instruction must be stored in memory in a bytealigned fashion. If a program has 200 instructions, then amount of memory required to store the program text is ____ bytes?

I inst^{ns} must be stoned in byte aligned fashion & Instⁿ size = 12 bits

		, つ		7 1	1	1
SO 0	8-6°ts	7 2 bytes	5 pace	needed	to	sla
	4-6°ts		1	instn		
502	Next inst ⁿ					
	รุงงเ					

#Q. Consider a digital computer which supports 32 2-address instructions. Consider the address length is 8-bits. Each instruction must be stored in memory in a byte-aligned fashion. If a program has 300 instructions, then amount of memory required to store the program text is ____ bytes?

#Q. A processor has 50 distinct instructions and 16 general purpose registers. Each instruction in system has one opcode field, 2 register operand field and a 10 bits memory address field. The length of the instruction is ____ bits?

No. of
$$GPR^S = 16$$

Numbers $\Rightarrow 00000 \text{ to IIII}$

Reg. operand bits $= \left[\log_2 16 \right]$
 $= 4 \text{ bits}$

#Q. A processor has 20 distinct instructions and 32 general purpose registers. A 24- bit instruction word has an opcode, two register operands and an immediate operand. The number of bits available for the immediate operand field is ___?

24-616

#Q. A processor has 20 distinct instructions and 32 general purpose registers. A 24- bit instruction word has an opcode, two register operands and an immediate operand. The number of bits available for the immediate operand field is ____?

In above question: Assume that immediate operand field is an unsigned number, What is its maximum and minimum value possible?

	Min Value	Max Value
for unsigned numbers of n-bits	0	2^n-1
g bits	0	$2^9 - 1 = 511$

sign-magnetude $-(2^n-1) + (2^n-1) + (2^n-1) + (2^n-1) + (2^n-1)$ 15 Complement $-(2^n-1) + (2^n-1)$	Signed number (n-bits)	Min	Max
15 complement $-(2^{n-1})$ $+(2-1)$		$-(2^{n-1}-1)$	$+(2^{n-1})$
-2^{n-1} $+(2^{n-1}1)$			$+\left(2^{n-1}1\right)$
2	25 complement	-2^{n-1}	$+\left(2^{n-1}1\right)$

.

#Q. Consider a system which support only 3 address instructions only, and supports 256B memory. If the instruction size is 40-bits then maximum & minimum number of instruction supported by the system are?

Memory Size = 256B

No. of Cells in memory =
$$\frac{256B}{1B}$$
= 256 = 28

Memory add. = 8 bits

#Q. Consider a computer which supports only 2-address and 1-address instructions. Each instruction is of 6-bits and each address is of 2-bits. If there are 3 2-address instructions supported by the system then maximum number of 1-address instructions supported by system is?

An inst " comes to CPU for execution 101011 Interpretation for CPU as 1-add. insth as 2-add. inst 1010 10 10 add 1 opcode opcode add. 1 add. 2

Inst ^h	type
000101	2-add. insth
001111	2 add. insth
011010	2 add. inst ⁿ
10 1110	2 add. inst n
110001	1-900

How to solve auest":

$$2-add$$
. instⁿ

$$6 \longrightarrow 6$$

$$0pcode \qquad q.1 \qquad q.2$$

$$2 \qquad 2 \qquad 2$$

max opcodes =
$$2^2 = 4$$

used opcodes = 3
unused opcode = 1

used 2-add instrs	unused opcode	Max 1-add. insthe
4	4-4 =0	0 * 22 = 0 only 2-add.
3	4-3 = 1	1 * 2 = 4 insters
2	4-2=2	2 * 2 = 8
1	4-1=3	$3*2^2 = 12$
0	4-0 = 4	$4*2^2 = 16$
		Sonly 1-add.
		inst ^{ns} supported

#Q. Consider a computer which supports only 2-address and 1-address instructions. Each instruction is of 6-bits and each address is of 2-bits. If there are 3 2-address instructions supported by the system then maximum number of 1-address instructions supported by system is?

In above instruction what is the range of number of 1-address instructions

#Q. Consider a system with 24-bit instructions and 9-bit addresses. If there are 57 2-address instructions then maximum how many 1-address instructions can be formulated in the system?

#Q. Consider a system with 32-bit instructions and 12-bit addresses. If there are 254 2-address instructions then maximum how many 1-address instructions can be formulated in the system?

#Q. Consider a system with 32-bit instructions and 12-bit addresses. If there are 254 2-address instructions and 8000 1-address instructions then maximum how many 0-address instructions can be formulated?

#Q. Consider a system which supports 3-address and 2-address instructions both. It has 30-bit instructions with 8-bit addresses. If there are 'x' 3address instructions then maximum how many 2-address instructions can be formulated?

#Q. Consider a system which supports 2-address and 1-address instructions both. It has 24-bit instructions with 10-bit addresses. If there are 4096 1address instructions then maximum how many 2-address instructions can be formulated?

#Q. Consider a system with 16-bits instructions and 64 CPU registers. The System supported 2 types of instructions: Type-A and Type-B.

Type-A instructions have an opcode, one register operand and one immediate operand of 3-bits

Type-B instructions have an opcode, and 2 register operands.

If there are 10 Type-B instructions supported by the system then maximum how many Type-A Instructions supported by the system?

- #Q. Consider there are 3 types of instructions in system:
 - 1. Register Operand instructions: One opcode and 2 registers
 - 2. Memory Operand instructions: One opcode, 1 register and 1 memory address
 - Immediate Operand Instructions: One opcode, 1 register and 1 immediate operand

Number of registers = 64

Number of bits in immediate operand = 10-bits

Memory size = 512Mbytes (byte addressable)

Total Instructions:

- 1. Reg Operand type: 10
- 2. Memory Operand type: 12
- 3. immediate Operand type: 4

Maximum and Minimum instruction length are?

2 mins Summary

Topic

Instructions

Topic

Multiple Instruction Support

Happy Learning

THANK - YOU