Parcial 3: Señales y Sistemas 2023-II

Profesor: Andrés Marino Álvarez Meza, Ph.D.

Departamento de Ingeniería Eléctrica, Electrónica, y Computación
Universidad Nacional de Colombia - sede Manizales

1. Instrucciones

- Para recibir crédito total por sus respuestas, estas deben estar claramente justificadas e ilustrar sus procedimientos y razonamientos (paso a paso) de forma concreta, clara y completa. El parcial es individual y tendrá sustentación oral el próximo 23 y 30 de noviembre de 2023.
- Las componentes teórica y práctica (programación), deben ser enviadas al correo electrónico amalvarezme@unal.edu.co vía link de GitHub.
- Los códigos deben estar debidamente comentados, y discutidos/explicados en celdas de texto (markdown). Códigos no comentados ni discutidos, no serán contabilizados en la nota.
- El parcial puede ser enviado hasta las 23:59 horas del miércoles 29 de noviembre de 2023.

2. Preguntas

1. (Valor 2.5 puntos). Encuentre la función de transferencia que caracteriza el sistema masa, resorte, amortiguador, presentado en la siguiente Figura (asuma condiciones iniciales cero):

Posteriormente, encuentre el sistema equivalente del modelo masa, resorte, amortiguador, a partir del siguiente circuito eléctrico:

Finalmente, proponga unos valores de $m, k \ y \ c$ y sus equivalentes $R, L \ y \ C$, para simular un sistema subamortiguado, sobreamortiguado, y de amortiguamiento crítico (determine el factor de amortiguamiento, la frecuencia natural amortiguada, la frecuencia natural no amortiguada, el tiempo pico, tiempo de levantamiento y el tiempo de establecimiento en cada caso). Para cada caso, grafique el diagrama de polos y ceros, el diagrama de Bode, la respuesta impulso, respuesta escalón y respuesta rampa. Repita el proceso para modo lazo cerrado.

2. (Valor 2.5 puntos) Sea el demodulador en amplitud presentado en la siguiente Figura:

Asumiendo $\theta_0=0$, determine el espectro en cada una de las etapas del sistema. Luego, con base a la simulación de la modulación en amplitud del parcial 2 (utilizando una canción de Youtube), grafique cada una de las etapas principales del proceso de modulación y demodulación en el tiempo y la frecuencia (reproduzca el segmento de la canción en cada etapa). Nota: para la etapa de filtrado pasa bajas, presente el diseño del filtro y su implementación a partir de la transformada Z utilizando un modelo Butterworth, Bessel y Chebyshev.