Communication Protocols

Lecture 12: Distributed Training and

CSE599G1: Spring 2017

Where are we

User API

High level Packages

Programming API

Gradient Calculation (Differentiation API)

System Components

Computational Graph Optimization and Execution

Runtime Parallel Scheduling

Architecture

GPU Kernels, Optimizing Device Code

Accelerators and Hardwares

Where are we

Programming API

Gradient Calculation (Differentiation API)

Computational Graph Optimization and Execution

GPU Kernels, Optimizing Device Code

Accelerators and Hardwares

Recap: Parallel Scheduling Engine

Recap: Example Scheduling

Data Parallelism

- Train replicated version of model in each machine
- Synchronize the gradient

How to do Synchronization over Network

This Lecture

Distributed Gradient Aggregation, Local Update

Many replicas of the same graph run in parallel

Allreduce: Collective Reduction

Interface result = allreduce(float buffer[size])

Running Example

```
Machine 1

Machine 2

comm = communicator.create()

a = [1, 2, 3]

b = comm.allreduce(a, op=sum)

assert b == [2, 2, 4]

Machine 2

comm = communicator.create()

a = [1, 0, 1]

b = comm.allreduce(a, op=sum)

assert b == [2, 2, 4]
```


Use Allreduce for Data Parallel Training

```
grad = gradient(net, w)

for epoch, data in enumerate(dataset):
    g = net.run(grad, in=data)
    gsum = comm.allreduce(g, op=sum)

w -= lr * gsum / num workers
```


Common Connection Topologies

Ring (NVLink) All-to-all: Tree-Shape (plugged to same switch)

Discussion: 3min

- How to Implement Allreduce over Network
- What is impact of network topology on this

- Logically form a reduction tree between nodes
- Aggregate to root then broadcast

Question: What is Time Complexity of Tree Shape Reduction

- Form a logical ring between nodes
- Streaming aggregation

Each node have correctly reduced result of one segment! This is called *reduce_scatter*

Question: What is Time Complexity of Ring based Reduction

Allreduce Libraries

MPI offers efficient CPU allreduce

dmlc/rabit: fault tolerant variant

- facebookincubator/gloo
- NCCL: Nvidia' efficient multiGPU collective

GPUDirect and RMDA

NCCL: Nvidia's Efficient Multi-GPU Collective

- Uses unified GPU direct memory accessing
- Each GPU launch a working kernel, cooperate with each other to do ring based reduction
- A single C++ kernel implements intra GPU synchronization and Reduction

Discussion: 4min

- What are advantages and limitations of Allreduce
- How to integrate allreduce with dependency scheduler?

Schedule Allreduce Asynchronously

Make use of mutation semantics!

```
engine.push(
A = 2
                                 lambda: A.data=2,
                                 read=[], mutate= [A.var])
                               engine.push(
B = comm.allreduce(A)
                                  lambda: B.data=A.data+1,
                                  read=[A.var], mutate=[B.var, comm.var])
                               engine.push(
                                  lambda: D.data=A.data * B.data,
D = A * B
                                  read=[A.var, B.var], mutate=[D.var])
```


Distributed Gradient Aggregation, Remote Update

Parameter Server Abstraction

Interface

ps.push(index, gradient)

ps.pull(index)

PS Interface for Data Parallel Training

```
grad = gradient(net, w)
for epoch, data in enumerate(dataset):
   g = net.run(grad, in=data)
```


PS Data Consistency: BSP

- "Synchronized"
 - Gradient aggregated over all works
 - All workers receives the same parameters
 - Give same result as single batch update
 - Brings challenges to synchronization

PS Consistency: Asynchronous

The Cost of PS Model: All to All Pattern

- Each worker talks to all servers
- Shard the parameters over different servers
- What is the time complexity of communication?

Integrate Schedule with Networking using Events

Asynchronous function that takes a callback from engine


```
def event.on_data_received():
    #notify engine receive complete
    cb();
```

Use the callback to notify engine that data receive is finished

Model Parallel Training

- Map parts of workload to different devices
- Require special dependency patterns (wave style)
 - o e.g. LSTM

Question: How to Write Model Parallel Program?

```
for i in range(num_layers):
   for t in range(num_time_stamp):
     out, state = layer[i].forward(data[i][t], state)
     data[i+1][t] = out.copyto(device[i])
```

Scheduler tracks these dependencies

Discussion: What's Special about Communication

Requirements

- Track dependency correctly
- Resolve resource contention and allocation
- Some special requirement on channel
 - Allreduce: ordered call

Most of them are simplified by a scheduler

