5/25/2020 LCA

```
In [10]: import pandas as pd
In [11]: | #Function that taken in input of tax_ids as a chain, and appends the parent_ta
         x id of the last element to that list
         def parent append(chain):
             if chain[-1] == 1:
                 return chain
             else:
                 temp = nodes.loc[nodes['tax_id'] == chain[-1]]
                 chain.append(temp.iloc[0,1])
                 return chain
         #Nodes and names in same directory as python file
In [12]:
         #https://ftp.ncbi.nih.gov/pub/taxonomy/taxdump.tar.gz
         #Specifying the format nodes.dmp is in
         nodes = pd.read_table('nodes.dmp', sep="\\t\|\\t", header=None,engine='python'
In [14]:
         #Cleaning the nodes table
         ignorecols = [2,3,4,5,6,7,8,9,10,11,12]
         nodes.drop(nodes.columns[ignorecols],axis=1,inplace=True)
         nodes.columns = ['tax_id', 'parent_tax_id'] #placing header and naming columns
         to tax id and parent id
In [16]: |#Specifying the format names.dmp is in
         names = pd.read table('names.dmp', sep="\\t\|\\t", header=None,engine='python'
In [17]:
         #Cleaning the names table
         ignorecols = [2,3]
         names.drop(names.columns[ignorecols],axis=1,inplace=True)
         names.columns = ['tax_id', 'name_txt'] #placing header and naming columns to t
         ax_id and name_txt
In [19]:
         print("This program shows you the least common ancestor of two organisms")
         #Input of organism 1
         while True:
             org1 = str(input("Enter name of the first organism: ")) #Eq. H1N1 swine in
         fluenza virus
             org1row = names[names['name txt'].str.contains(org1, na = False, regex=Fal
         se)] #searches input on the names txt column
             if org1row.empty:
                 print('Organism name not found in NIH database: Please try again')
             else:
                 break
             pass
         This program shows you the least common ancestor of two organisms
```

Enter name of the first organism: blrhh
Organism name not found in NIH database: Please try again
Enter name of the first organism: H1N1 swine influenza virus

5/25/2020 LCA

```
In [22]: #Input of organism 2
while True:
    org2 = str(input("Enter name of the first organism: ")) #Eg. Middle East r
    espiratory syndrome-related coronavirus
    org2row = names[names['name_txt'].str.contains(org2, na = False, regex=False)] #searches input on the names_txt column
    if org2row.empty:
        print('Organism name not found in NIH database: Please try again')
    else:
        break
    pass
```

Enter name of the first organism: Middle East respiratory syndrome-related coronavirus

```
In [28]:
         q = True
         while q:
             org1_chain, org2_chain = [org1_tax_id], [org2_tax_id] #initalizing a chain
         with the tax id of each organism
             if org1_chain[-1] == org2_chain[-1]: #if both organisms have same tax_id
                 print('The Least Common Ancestor is: ', names.iloc[org1 chain[-1],1])
             else:
                 i = 0 #Count of how many levels of the taxonomy tree traveresed
                 while True:
                     org1_chain = parent_append(org1_chain) #calls function to add pare
         nt_tax_id
                     org2_chain = parent_append(org2_chain)
                     common_ancestor = list(set(org1_chain).intersection(org2_chain)) #
         common ancestor is a tax id present in both lists
                     if common ancestor != []:
                         print("Found an ancestor with tax_id:", common_ancestor[-1])
                         ancestor row = names.loc[names['tax id'] == common ancestor[0
         ]] #take common ancestor row from the .dmp file
                         if ancestor row.iloc[0,1] == 'all':
                             print ('It is disjoint. The Least common ancestor is: all/
         root')
                         else:
                             print('The Least common ancestor is: ', ancestor_row.iloc[
         0,1]) #defaults to first result. Can include alternate names if needed
                         print(i+1, " levels of the tree traversed")
                         break
                     else:
                         i += 1
                         continue
             q = False
```

Found an ancestor with tax_id: 2732396
The Least common ancestor is: Orthornavirae
9 levels of the tree traversed

5/25/2020 LCA

```
In [30]:
         #Prints the links to the common ancestor with nicely formatted columns
         print("%30s %s" % (org1_tree[0],names.loc[names.loc[names['tax_id'] == org1_tr
         ee[0]].index[0], 'name txt']))
         for i in range(1,min(len(org1_tree),len(org2_tree))):
             print("%-40s %s" % ((str(org1_tree[i]) + " " + names.loc[names.loc[names[
          'tax_id'] == org1_tree[i]].index[0],'name_txt']),
                                  (str(org2 tree[i]) + " " + names.loc[names.loc[names[
         'tax_id'] == org2_tree[i]].index[0], 'name_txt'])))
         if len(org1 tree) > len(org2 tree):
             for i in range(len(org2_tree),len(org1_tree)):
                 print((str(org1_tree[i]) + " " +
                                      names.loc[names.loc[names['tax id'] == org1 tree[i
         ]].index[0],'name txt']))
         if len(org2_tree) > len(org1_tree):
             for i in range(len(org1 tree),len(org2 tree)):
                 print("%-40s %s" % (" ", (str(org2_tree[i]) + " " +
                                            names.loc[names.loc[names['tax_id'] == org2_
         tree[i]].index[0],'name txt'])))
```

2732396 Orthornavirae

2407FC0 Name and a set a	2722400 Diaminianta
2497569 Negarnaviricota	2732408 Pisuviricota
2497571 Polyploviricotina	2732506 Pisoniviricetes
2497577 Insthoviricetes	76804 Nidovirales
2499411 Articulavirales	2499399 Cornidovirineae
11308 Orthomyxoviridae	11118 Coronaviridae
197911 Alphainfluenzavirus	2501931 Orthocoronavirinae
11320 FLUAV	694002 Betacoronavirus
114727 H1N1	2509494 Merbecovirus
36420 H1N1 swine influenza virus	1335626 MERS