现在 ASM1117 主要用 2 个型号,ASM1117-5 和 ASM1117-3.3 一个是转 5V,一个是转 3.3V 的,技术手册上,ASM1117 的最大允许输入电压是 15V。因为 ASM1117 价格便宜,封装小巧,所以用的人比较多。但是别忘了,他是一个低压差的稳压 IC。也就是说输入和输出电压的差距不能太大。比如 5V 转 3.3V,8V 转 5V 之类的。

近期百度了点资料,都说 ASM1117 的输入电压最好不要超过 10V,12V 就比较危险了。 烧毁也就算了,如果短路,整个板子上的元件就完蛋了。 我想想看,接 2s 的锂电池没关系,接 3s 的锂电池,100%超过 12V 了啊。

为了大家的幸福, 我决定做一个测试。

手工焊的 3.3v 模块。电容的耐压都是 25V,没问题。

接入3s电池。

发光二极管很亮啊

万用表测量了一下输出, 3.3V, 没问题。

摸摸芯片温度, 微热的样子, 我还没接负载呢。看来 12V 对他来说, 压差有点高。

三、

下面接入负载。一个 12V 的风扇。

运转10秒后,摸了一下芯片的温度,有点烫手了。

四、

再换一个小风扇,我这个玩意好像还真不少。 风扇是 5V 的,0.14A 的,比 ASM1117 号称的 800MA 低了一半的一半。

运行 20 秒后,芯片的温度可以煎鸡蛋了······烫手啊。 不过他很坚强,没烧。

五、

好了,再看看淘宝的使用这个芯片的模块 3.3V 的首先。

说明很明确:

1 输入: 直流 4.5V--7V (输入电压必须比要输出电压高 1V 以上。)

2 输出: 3.3V, 800mA (负载电流不能超过 800ma)

输入 7V 最高, 我们接 12V 是不对滴。

输出 3.3V, 800ma, 如果接 12V, 输出肯定没这么高的电流, 200ma 都发热。

然后是 5V 的模块

看看说明:

1 输入: 直流 6V--12V (输入电压必须比要输出电压高 1V 以上。)

2 输出: 5.0V(+-0.05v 误差), 800mA (负载电流不能超过

800ma)

5V 的模块可以接 12V 的电压,但是 3s 的电池肯定超过 12V 啊,凑合用吧。

那啥, 我好像买过5V的模块, 我找一下看看。

话说,我买的时候都是2.5一块的,现在为啥0.8一块??我勒个去。。。。不测了。。。

我再买几块挽回一下损失。。。。。。。

总结:

ASM1117-3.3

输入电压: 4.5V~7V

ASM1117-5

输入电压: 6V~12V

如果用 3s 的电池,尽量选用 7805 来获取 5V 电压,而不是 ASM1117-5。如果功率很小,电流不大,用用一点关系也没。其实 7805 也不适合接 12V,不过人家电流大啊,所以发热也没啥了。

2s 的电池, 无所谓了。随便接。