Math 325K - Lecture 15 Section 6.1 Set Theory

Bo Lin

October 23rd, 2018

Outline

- Subsets and the element method of proof.
- Venn diagrams.
- Operations on sets.

Subsets and proper subsets

Recall we introduced the notions of "sets", which cannot be defined.

Definition

Let A and B be two sets. A is called a **subset** of B if every element of A is also an element of B, and denoted by $A \subseteq B$. Formally,

$$A \subseteq B \Leftrightarrow \forall x, (x \in A) \to (x \in B)$$
.

In addition, A is called a **proper subset** of B, denoted by $A \subsetneq B$, if A is a subset of B and $A \neq B$. In other words, other than $A \subseteq B$, $\exists y \in B$ such that $y \notin A$.

Example: follow the definition

Example

Let $A = \{1\}$ and $B = \{1, \{1\}\}$. (a) Is $A \subseteq B$? (b) If yes, then is A a proper subset of B?

Example: follow the definition

Example

Let $A = \{1\}$ and $B = \{1, \{1\}\}$. (a) Is $A \subseteq B$? (b) If yes, then is A a proper subset of B?

Solution

(a) Since A has only one element 1, we just need to check whether it belongs to B. Actually it is, so the universal statement $A \subseteq B$ is true.

Example: follow the definition

Example

Let $A = \{1\}$ and $B = \{1, \{1\}\}$. (a) Is $A \subseteq B$? (b) If yes, then is A a proper subset of B?

- (a) Since A has only one element 1, we just need to check whether it belongs to B. Actually it is, so the universal statement $A \subseteq B$ is true.
- (b) Note that $\{1\}$ is an element in B, but it is not in A, so A is a proper subset of B.

Example: justify subsets

Example

Let
$$A=\{6k+5\mid k\in\mathbb{Z}\}$$
 and $B=\{3r+2\mid r\in\mathbb{Z}\}.$ Show that $A\subseteq B.$

Example: justify subsets

Example

Let $A = \{6k + 5 \mid k \in \mathbb{Z}\}$ and $B = \{3r + 2 \mid r \in \mathbb{Z}\}$. Show that $A \subseteq B$.

Proof.

It suffices to show that for every element $x \in A$, we also have $x \in B$. Suppose x is an arbitrary element of A. Then there exists an integer k such that x = 6k + 5.

Example: justify subsets

Example

Let $A = \{6k + 5 \mid k \in \mathbb{Z}\}$ and $B = \{3r + 2 \mid r \in \mathbb{Z}\}$. Show that $A \subseteq B$.

Proof.

It suffices to show that for every element $x \in A$, we also have $x \in B$. Suppose x is an arbitrary element of A. Then there exists an integer k such that x = 6k + 5. Now we need to show that $x \in B$, so we need to find an integer r such that x is also equal to 3r + 2. Note that $6k + 5 = (6k + 3) + 2 = 3 \cdot (2k + 1) + 2$, so we can choose r = 2k + 1. Since k is an integer, so is 2k + 1. By definition, $x \in B$ and we are done.

Equality of sets

Two sets are equal if and only if they have exactly the same elements. In other words,

Definition

Let A and B be two sets. They are called **equal** if and only if every element of A belongs to B and every element of B belongs to A. Formally,

$$A = B \Leftrightarrow A \subseteq B \land B \subseteq A$$
.

Definition

Let A and B be two subsets of a universal set U.

• The union of A and B, denoted $A \cup B$, is the set of all elements that belong to at least one of A and B.

Definition

Let A and B be two subsets of a universal set U.

- The union of A and B, denoted $A \cup B$, is the set of all elements that belong to at least one of A and B.
- The intersection of A and B, denoted $A \cap B$, is the set of all elements that belong to both A and B.

Definition

Let A and B be two subsets of a universal set U.

- The union of A and B, denoted $A \cup B$, is the set of all elements that belong to at least one of A and B.
- The intersection of A and B, denoted $A \cap B$, is the set of all elements that belong to both A and B.
- The **difference** of B minus A, denoted B A, is the set of all elements that are in B and not in A.

Definition

Let A and B be two subsets of a universal set U.

- The union of A and B, denoted $A \cup B$, is the set of all elements that belong to at least one of A and B.
- The intersection of A and B, denoted $A \cap B$, is the set of all elements that belong to both A and B.
- The **difference** of B minus A, denoted B A, is the set of all elements that are in B and not in A.
- The **complement** of A, denoted A^c , is the set of all elements in U that are not in A.

Formal definition

Remark

In symbols, we have

$$A \cup B = \{x \in U \mid x \in A \text{ or } x \in B\}.$$

$$A \cap B = \{x \in U \mid x \in A, x \in B\}.$$

$$B - A = \{x \in B \mid x \notin A\}.$$

 $A^c = \{x \in U \mid x \notin A\} = U - A.$

Formal definition

Remark

In symbols, we have

$$A \cup B = \{x \in U \mid x \in A \text{ or } x \in B\}.$$

$$A \cap B = \{x \in U \mid x \in A, x \in B\}.$$

$$B - A = \{x \in B \mid x \notin A\}.$$

$$A^c = \{x \in U \mid x \notin A\} = U - A.$$

Remark

The complement is a little special that we need to fix a universal set before talking about it.

Example

Let
$$U = \{1, 2, 3, 4, 5\}, A = \{2, 4\}$$
 and $B = \{2, 3, 5\}.$

- lacktriangle Find $A \cup B$.
- \bigcirc Find B-A.
- \bigcirc Find B^c .
- \bigcirc Find $(A \cap B)^c$.

Example

Let
$$U = \{1, 2, 3, 4, 5\}, A = \{2, 4\}$$
 and $B = \{2, 3, 5\}.$

- \bigcirc Find $A \cup B$.
- \bullet Find B-A.
- \bigcirc Find B^c .
- \bigcirc Find $(A \cap B)^c$.

(a)
$$A \cup B = \{2, 3, 4, 5\}.$$

Example

Let
$$U = \{1, 2, 3, 4, 5\}, A = \{2, 4\}$$
 and $B = \{2, 3, 5\}.$

- \bigcirc Find $A \cup B$.
- \bullet Find B-A.
- \bigcirc Find B^c .
- Find $(A \cap B)^c$.

(a)
$$A \cup B = \{2, 3, 4, 5\}$$
. (b) $B - A = \{3, 5\}$.

Example

Let $U = \{1, 2, 3, 4, 5\}, A = \{2, 4\}$ and $B = \{2, 3, 5\}.$

- \bigcirc Find $A \cup B$.
- \bullet Find B-A.
- \bigcirc Find B^c .
- \bigcirc Find $(A \cap B)^c$.

(a)
$$A \cup B = \{2, 3, 4, 5\}$$
. (b) $B - A = \{3, 5\}$. (c) $B^c = \{1, 4\}$.

Example

Let $U = \{1, 2, 3, 4, 5\}, A = \{2, 4\}$ and $B = \{2, 3, 5\}.$

- \bigcirc Find $A \cup B$.
- \bullet Find B-A.
- \bigcirc Find B^c .
- \bigcirc Find $(A \cap B)^c$.

(a)
$$A \cup B = \{2, 3, 4, 5\}$$
. (b) $B - A = \{3, 5\}$. (c) $B^c = \{1, 4\}$. (d) $A \cap B = \{2\}$, so $(A \cap B)^c = \{1, 3, 4, 5\}$.

Empty set

Definition

The **empty set**, denoted \emptyset , is a special set that has no element.

Empty set

Definition

The **empty set**, denoted \emptyset , is a special set that has no element.

Remark

For all set A, $\emptyset \subseteq A$. \emptyset is very special that it could make a lot of statements false. For example the well-ordering principle for the integers. So when checking the truth value of statements, do not forget this set!

Disjoint sets

Definition

Let A and B be two sets. They are called **disjoint** if and only if they do not have any element in common. Formally, A and B are disjoint if and only if $A \cap B = \emptyset$.

Disjoint sets

Definition

Let A and B be two sets. They are called **disjoint** if and only if they do not have any element in common. Formally, A and B are disjoint if and only if $A \cap B = \emptyset$.

We can generalize this definition.

Definition

Sets A_1, A_2, A_3, \ldots are called mutually disjoint (or pairwise disjoint) if and only if for all $1 \le i < j$, $A_i \cap A_j = \emptyset$.

Partitions of sets

Definition

A finite or infinite collection of nonempty sets $\{A_1, A_2, A_3, \ldots\}$ is a **partition** of a set A if and only if

- \bullet A is the union of all the A_i .
- ② The sets A_1, A_2, A_3, \ldots are mutually disjoint.

Partitions of sets

Definition

A finite or infinite collection of nonempty sets $\{A_1, A_2, A_3, \ldots\}$ is a **partition** of a set A if and only if

- \bullet A is the union of all the A_i .
- $exttt{ exttt{ extt{ exttt{ extt{ exttt{ extt{ exttt{ ex$

Example

The set of even integers and the set of odd integers form a partition of \mathbb{Z} .

Partitions of sets

Definition

A finite or infinite collection of nonempty sets $\{A_1, A_2, A_3, \ldots\}$ is a **partition** of a set A if and only if

- \bullet A is the union of all the A_i .
- \bigcirc The sets A_1, A_2, A_3, \dots are mutually disjoint.

Example

The set of even integers and the set of odd integers form a partition of \mathbb{Z} .

 \mathbb{Q} and the set of all irrational numbers form a partition of \mathbb{R} .

Definition

Given a set A, the **power set** of A, denoted $\mathcal{P}(A)$, is the set of all subsets of A.

Definition

Given a set A, the **power set** of A, denoted $\mathcal{P}(A)$, is the set of all subsets of A.

Remark

The **power set axiom** guarantees that $\mathcal{P}(A)$ is always a set.

Definition

Given a set A, the **power set** of A, denoted $\mathcal{P}(A)$, is the set of all subsets of A.

Remark

The **power set axiom** guarantees that $\mathscr{P}(A)$ is always a set. \emptyset belongs to the power set of any set.

Definition

Given a set A, the **power set** of A, denoted $\mathcal{P}(A)$, is the set of all subsets of A.

Remark

The **power set axiom** guarantees that $\mathscr{P}(A)$ is always a set. \emptyset belongs to the power set of any set. When A is infinite, $\mathscr{P}(A)$ is infinite too.

Example: find the power set

Example

Let $A = \{0, \{0\}\}$. How many elements are there in A? What is $\mathscr{P}(A)$?

Example: find the power set

Example

Let $A = \{0, \{0\}\}$. How many elements are there in A? What is $\mathscr{P}(A)$?

Solution

There are 2 elements in A: 0 and $\{0\}$.

Example: find the power set

Example

Let $A = \{0, \{0\}\}$. How many elements are there in A? What is $\mathscr{P}(A)$?

Solution

There are 2 elements in A: 0 and $\{0\}$.

$$\mathcal{P}(A) = \{\emptyset, \{0\}, \{\{0\}\}, \{0, \{0\}\}\}.$$

Motivation

Recall that we used diagrams to test for validity of arguments. This methods applies to sets too, and it becomes more rigorous.

Motivation

Recall that we used diagrams to test for validity of arguments. This methods applies to sets too, and it becomes more rigorous. If sets A and B are represented as regions in the plane, relationships between A and B can be represented by pictures, called **Venn diagrams**, that were introduced by the British mathematician John Venn in 1881.

Diagram of subsets

Suppose $A \subseteq B$, then there are two cases: $A \subseteq B$ or A = B. They correspond to the following pictures:

Diagram of subsets

Suppose $A \subseteq B$, then there are two cases: $A \subseteq B$ or A = B. They correspond to the following pictures:

Figure: Venn diagrams for $A \subseteq B$

Figure: The set $A \cup B$.

Figure: The set B - A.

Figure: The set $A \cap B$.

Figure: The set A^c .

Example: diagram for disjoint subsets

Example

Let U be the universal set and A,B be subsets of U. If A and B are disjoint, draw a Venn diagram including A,B,U to illustrate this relationship.

Example: diagram for disjoint subsets

Solution

Figure: The disjoint subsets A and B of U.

HW #8 of this section

Section 6.1 Exercise 1(b)(d), 7, 10(f)(g)(h), 14(b), 20, 30.