	Name (Last, First):	lD	: Qui	iz section or t	ime:
THE RES	Stat/Math 390 CLOSED everything. Check FIRST PAGE: give answers on T: SHOW answer & WORK on thes	these pages. DO NOT EX	Y a half-size "cheat XPLAIN. There is w	arzban sheet" is allowrong-answer p	enalty.
Points 1	Which of the following situation as The hist of x is linear when the by The frequency hist of $log(x)$ is contact that $log(x)$ is linear when the following situation $log(x)$ is linear when log	ions suggests that x has he frequency is on a log-s linear. Len the frequency is on log-	a truly exponential scale. $\rightarrow l_0 f =$ og-scale.	ll distribution	f=ex+Ax = expon.
1.5	2. For which of the following randal Letter grades (A,B,) in a classification of the following randal Letter grades (H/T) of a fair coin	Political	l party affiliation of	people (Dem	o/Repub/Indep)
1	vacancy it encounters. Suppose $\lambda = 0.01386$. Then $\mu_x = 1/\lambda$ and	that for rates, & has an	from its birth sit exponential distri	e to the first ibution with	territorial parameter
a	a) the average number of rats who the average number of rats where	no move distance x . ho move.	c) the average of	d) None of	the above.
1.5 (rlas)		Poisson	(c) Binomial		d)Normal
1		$n+1$ $\chi = 0, 1,, 1$	c) π		d) $n\pi$
1	The proportion of times that a 85%, for any distribution b) 85%, only if x is normally dis	tributed \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	(c) 85%, only if x is d) 95	s uniformly di $\%$, for any dis	stributed. stribution.
1 (We observe the number of vis 1, 3, 2, 2. Suppose x follows the is proportion of minutes during x a) $1/4$ b) $2/4$	Poisson distribution wit	h parameter $\lambda = 3$ the average numbe	. In the long	run, what minute?
1 how 7, 7,	8.) The proportion of times when when the nonzero") (a) Binomial (n, π) zero/nonzero	_	Howing distribution $Vormal(\mu = 10, \sigma = 0)$		"zero" or nonzero
1	b) Poisson(λ) zero/nonzer 9 For the histogram shown here		d) Exponential	(λ) zer	onzero
	a) The mean (i.e., "location") are can be computed. b) Only the mean (i.e., location) c) Only the standard deviation (d) Neither can be computed. Sust because a hist. has a	and the std. dev. (i.e., "w can be computed. i.e., width) can be comp	uted.	cannot comp	uti mean
~ 2 (14	10 Treating the horizontal line taken by a continuous random the following boxplot. Make sur everything you know.	under each boxplot as t variable, draw the shap e your drawings are as	the x-axis represent e of two possible accurate as possible	ting the rand /likely distrib ble, taking int	om values utions for o account
my L had	intended The answers to	e, and by to be	tel at to t	ccause pro	$\frac{\partial V(\lambda = \chi)}{\partial x}$

~/2 2.5

11. Physicists often talk about the 2-sigma rule, wherein any x within 2σ of μ of a normal distribution is considered to happen by chance. If they want an even more certain result, they follow the 3-sigma rule, etc. up to 5-sigma. What kind of a sigma rule is required so that the chance of x happening by chance is 98%?

(2.33 or rule

12. For simplicity, assume that there is a large number of cities on Earth (say 10⁶) and that each city has a large number of buildings (say 10³). Also, suppose that the proportion of defective buildings on Earth is very small, and that the average number of defective buildings per city is 10. Provide TWO ways of computing the proportion of cities that have 4 defective buildings per city. Show work, but the answer may be an expression with numbers; don't waste time on arithmetic.

 ~ 2

Since $n=10^3$ is "large", and prop. of defective is very small we can use Poisson with $\lambda = 10$ (avy # of defective building) then $P(x) = \frac{e^{-\lambda} \lambda^x}{x!} \Rightarrow P(x=4) = \frac{e^{-10} 10^4}{4!}$

 ~ 2

Way 2)

In This case we are given n and $\lambda = n \pi$, so $\pi = \frac{\lambda}{n} = \frac{10}{10^3} = 0.01$ Then Binomial tells us $P(x) = \binom{n}{x} \pi^{x} (1-\pi)^{n-x} = \binom{10^3}{4} (.99)^{100-14}$

~2

13. If we are interested in a Poisson variable with $\lambda = 4$ being within 4.8 of the mean, what values of the variable are we interested in?

For Poisson $M_x = \lambda = 4$ within 4.8 of The mean" = $M_x - 4.8 < x < M_x + 4.8$ For Poisson x = integer x = 0,1,2,...,8

$$\sim 2 \qquad \text{Sample tests}$$

$$\sim 2 \qquad \text{Sample tests}$$

$$\uparrow \text{Ind the } n^{th} \text{ percentile}$$

$$\downarrow \text{fix) } \text{dx} = \underset{100}{\text{M}} \implies 2 \underset{100}{\text{M}} \text{percentile}$$

$$\Rightarrow 2 \underset{100}{\text{M}} \text{percentile}$$

$$\Rightarrow 2 \underset{100}{\text{M}} \text{percentile}$$

The percentile =
$$\frac{\sqrt{n}}{10}$$
 $= \frac{\sqrt{n}}{100}$

15. Find the mean of the Bernoulli distribution $p(x) = \pi^x (1-\pi)^{1-x}, \ x=0,1$

$$\mu_{\star} = \sum_{\chi} \chi \gamma^{(\star)} = \sum_{\chi=0,1} \chi \gamma^{\chi} (1-\eta)^{1-\chi} = 0 \gamma^{0} (1-\eta)^{1} + 1 \gamma^{1} (1-\eta)^{0}$$

$$\mu_{\star} = \sum_{\chi} \chi \gamma^{(\star)} = \sum_{\chi=0,1} \chi \gamma^{\chi} (1-\eta)^{1-\chi} = 0 \gamma^{0} (1-\eta)^{1} + 1 \gamma^{1} (1-\eta)^{0}$$

16. Starting from the computational formula for the sample variance (and NOT rewriting it in terms of the defining formula), show how it changes if all data are shifted by a positive constant c.

$$S^{2} = \frac{N}{N-1} \left(\overline{X^{2}} - \overline{X}^{2} \right) = \frac{N}{N-1} \left[\frac{1}{N} \underbrace{X_{i}^{2}}_{i} - \left(\frac{1}{N} \underbrace{X_{i}^{2}}_{i} X_{i}^{2} \right)^{2} \right]$$

$$X_{i} \rightarrow X_{i} + C$$

$$S^{2} \rightarrow \frac{N}{N-1} \left[\frac{1}{N} \underbrace{X_{i}^{2}}_{i} + 2C \underbrace{X_{i}^{2}}_{i} + \frac{C^{2}}{N} \underbrace{X_{i}^$$

This document was created with Win2PDF available at http://www.win2pdf.com. The unregistered version of Win2PDF is for evaluation or non-commercial use only. This page will not be added after purchasing Win2PDF.