Additions lagen for gransværden

let f'och g voirei tve funktioner definierade pe (a,b) förutom möjligtvis i C E(a,b).

Om lim fk) = L och lim gk) = M
da gäller lim (fk)+gk) = L+M

Bevis

Antag att 1 imfh = L och 1 im 96)=M.

De for varie E>0 se finns ent. definitionen av gransvarden $\delta,>0$ och $\delta_2>0$.

i) om $0<|X-C|<\delta_1$, $X \in (a,b)$ se $|f(x)-L|<\frac{\epsilon}{2}$ ii) cm $0<|X-C|<\delta_2$, $X \in (a,b)$ se $|g(x)-M|<\frac{\epsilon}{2}$

Välj $\delta = \min\{\delta_1, \delta_2\} > 0$. De har vi att \rightarrow

$$|(fh) + gh)\rangle - (L+M)| = |(fh)-L|+(gh)-M|| \leq |fh|-L|+|gh|-M| \leq \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

$$|(fh) + gh)\rangle - (L+M)| = |(fh)-L|+(gh)-M|| \leq |fh|-L|+|gh|-M|| \leq \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

$$|(fh) + gh)\rangle - (L+M)| = |(fh)-L|+(gh)-M|| \leq |fh|-L|+|gh|-M|| \leq \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

$$|(fh) + gh)\rangle - (L+M)| = |(fh)-L|+(gh)-M|| \leq |fh|-L|+|gh|-M|| \leq \varepsilon$$

$$|(fh) + gh)\rangle - (L+M)| = |(fh)-L|+(gh)-M|| \leq |fh|-L|+|gh|-M|| \leq \varepsilon$$

$$|(fh) + gh)\rangle - (L+M)| = |(fh)-L|+(gh)-M|| \leq |fh|-L|+|gh|-M|| \leq \varepsilon$$

$$|(fh) + gh)\rangle - (L+M)| = |(fh)-L|+(gh)-M|| \leq |fh|-L|+|gh|-M|| \leq \varepsilon$$

$$|(fh) + gh)\rangle - (L+M)| = |(fh)-L|+(gh)-M|| \leq |fh|-L|+|gh|-M|| \leq \varepsilon$$

$$|(fh) + gh)\rangle - (L+M)| = |(fh)-L|+(gh)-M|| \leq |fh|-L|+|gh|-M|| = \varepsilon$$