27. Úvod do posloupností

Úloha 1. U následujících rekurentních předpisů odhadněte, jaký bude předpis pro n-tý člen, a svůj odhad ověřte:

- (a) $a_1 = 4$, $a_n = a_{n-1} + 3$ pro n > 1
- (b) $a_1 = 1$, $a_n = -a_{n-1}$ pro n > 1
- (c) $a_1 = 2$, $a_n = \sqrt{a_{n-1}}$ pro n > 1
- (d) $a_1 = 3$, $a_n = 2a_{n-1}$ pro n > 1
- (e) $a_1 = 3$, $a_n = 2a_{n-1} 1$ pro n > 1
- (f) $a_1 = 1$, $a_n = 2a_{n-1} 1$ pro n > 1

- (g) $a_1 = -3$, $a_n = 2a_{n-1} + n$ pro n > 1
- \star (h) $a_1 = 3$, $a_n = -2a_{n-1} + 3$ pro n > 1
 - (i) $a_1 = 1$, $a_2 = 4$, $a_n = 2a_{n-1} a_{n-2}$ pro n > 2
- \star (j) $a_1 = 2$, $a_2 = 8$, $a_n = 4a_{n-1} 4a_{n-2}$ pro n > 2

Úloha 2. Dopočtěte první dva členy posloupnosti, jestliže o ní víme

- (a) $a_n = 2a_{n-1} n$ pro n > 1, $a_3 = 33$
- (b) $a_n = a_{n-1} + a_{n-2}$ pro n > 2, $a_5 = 3$, $a_6 = 4$

Úloha 3. Napište rekurentní předpisy pro následující posloupnosti "zadané obrázkem":

 \star Úloha 4. Dokažte, že pro *n*-té Fibonacciho číslo F_n (kde $F_1 = F_2 = 1$) platí

$$F_n = \frac{1}{\sqrt{5}} \left(\left(\frac{\sqrt{5} + 1}{2} \right)^n - \left(\frac{1 - \sqrt{5}}{2} \right)^n \right).$$

** Úloha 5. Kolik podmnožin množiny $\{1; 2; ...; n\}$ má tu vlastnost, že neobsahuje dvě po sobě jdoucí čísla? Např. pro n=3 jde o množiny $\{1\}$, $\{2\}$, $\{3\}$, $\{1;3\}$ a prázdnou množinu (celkem pět podmnožin). Proč se tyto počty shodují s jinou známou posloupností?

1. (a) 3n+1 (b) $(-1)^{n+1}$ (c) $2^{2^{1-n}}$ (d) $3 \cdot 2^{n-1}$ (e) 2^n+1 (f) 1 (g) -n-2 (h) $1-(-2)^n$ (i) 3n-2 (j) $n \cdot 2^n$

2. (a) $a_1 = 10$, $a_2 = 18$ (b) $a_1 = 3$, $a_2 = -1$

3. (a) $a_n = 3 \cdot a_{n-1}$ (b) $a_n = a_{n-1} + n$ (c) $a_n = a_{n-1} + 3n - 2$