Министерство науки и высшего образования Российской Федерации Муромский институт (филиал) Федерального государственного бюджетного образовательного учреждения высшего образования «Владимирский государственный университет имени Александра Григорьевича и Николая Григорьевича Столетовых»

Факультет	ИТР	
Кафедра	ПИн	

ЛАБОРАТОРНАЯ РАБОТА №2

По	Цифровая обработка в	информаці	ии			
Тема ПОВЫШЕНИЕ КОНТРАСТА И ВИДОИЗМЕНЕН						
	ГИСТОГРАММ ИЗОБ	РАЖЕНИ	Й			
		Руководит	гель			
			кова А.С.			
		(подпись)	(дата)			
		Студент_	ПИН - 121 (группа)			
			илов М.В. пия, инициалы)			
		(подпись)	(дата)			

Лабораторная работа №2

Тема: ПОВЫШЕНИЕ КОНТРАСТА И ВИДОИЗМЕНЕНИЯ ГИСТОГРАММ ИЗОБРАЖЕНИЙ

Цель: изучить и практически оценить алгоритмы повышения контраста и изменения гистограмм для улучшения визуального восприятия изображений.

Ход работы:

```
1. Исходный код Python:
```

import cv2 import numpy as np import matplotlib.pyplot as plt

Функция для отображения изображения def show_image(title, image):
 cv2.imshow(title, image)
 cv2.waitKey(o)
 cv2.destroyAllWindows()

Функция для вычисления гистограммы def plot_histogram(image, title, color):
 hist = cv2.calcHist([image], [o], None, [256], [o, 256])
 plt.plot(hist, color=color)
 plt.xlim([o, 256])
 plt.title(title)
 plt.show()

Загрузка изображения image = cv2.imread(r'F:\IDRiD_10.jpg', cv2.IMREAD_COLOR)

if image is None: print("Не удалось загрузить изображение") exit()

- # Преобразование изображения в оттенки серого gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
- # Отображение исходного изображения show_image('Original Image', image)
- # Вычисление яркости
 min_brightness = np.min(gray_image)
 max_brightness = np.max(gray_image)
 mean_brightness = np.mean(gray_image)

print(f"Минимальная яркость: {min_brightness}") print(f"Максимальная яркость: {max_brightness}") print(f"Средняя яркость: {mean_brightness}")

					МИВУ 09.03.04 - 10.002				
Изм.	Лист	№ докум.	Подпись	Дата					
Разра	1б.	Ермилов М.В.				Лι	ım.	Лист	Листов
Пров	ер.	Белякова А.С.			ПОВЫШЕНИЕ КОНТРАСТА И			2	10
Рецен	13.				видоизменения				
Н. Ка	нтр.				ГИСТОГРАММ ИЗОБРАЖЕНИЙ	МИ ВлГУ ПИН-121			
Утве	рд.								

```
# Построение гистограммы исходного изображения
plot_histogram(gray_image, 'Гистограмма исходного изображения', 'gray')
# Равномерное распределение с учётом заданных параметров
f_min, f_max = 50, 230
g_min, g_max = 10, 200
# Нормализация на основе границ яркости
uniform_image = np.clip((gray_image - f_min) / (f_max - f_min) * (g_max - g_min) + g_min, o, 255)
uniform_image = uniform_image.astype(np.uint8)
show_image('Uniform Distribution Image', uniform_image)
plot_histogram(uniform_image, 'Гистограмма равномерного распределения', 'gray')
# Экспоненциальное распределение
c = 255 / np.log(1 + np.max(gray_image)) # Коэффициент для нормализации
exp_image = c * np.log(1 + gray_image.astype(np.float32)) # Применение экспоненциального распределения
exp_image = np.array(exp_image, dtype=np.uint8) # Приведение к типу uint8
show_image('Exponential Distribution Image', exp_image)
plot_histogram(exp_image, 'Гистограмма экспоненциального распределения', 'gray')
# Распределение Рэлея
sigma = 30 # Параметр распределения Рэлея, можно варьировать для эффекта
rayleigh_image = sigma * np.sqrt(-2 * np.log(1 - gray_image.astype(np.float32) / 255))
rayleigh_image = np.clip(rayleigh_image, o, 255).astype(np.uint8) # Обрезка значений и приведение к uint8
show_image('Rayleigh Distribution Image', rayleigh_image)
plot_histogram(rayleigh_image, 'Гистограмма распределения Рэлея', 'gray')
# Степенное распределение (гамма-коррекция)
gamma = 2.5 # Параметр гамма для распределения степени
power_law_image = np.array(255 * (gray_image / 255) ** gamma, dtype='uint8')
show_image('Power Law Distribution Image', power_law_image)
plot_histogram(power_law_image, 'Гистограмма степенного распределения', 'gray')
# Гиперболическое распределение
hyperbolic_image = 255 * np.tanh(gray_image.astype(np.float32) / 255)
hyperbolic_image = np.array(hyperbolic_image, dtype=np.uint8)
show_image('Hyperbolic Distribution Image', hyperbolic_image)
plot_histogram(hyperbolic_image, 'Гистограмма гиперболического распределения', 'gray')
# Сохранение изображений
cv2.imwrite(r'F:\processed_images\ooriginal_image.jpg', image)
cv2.imwrite(r'F:\processed_images\1uniform_image.jpg', uniform_image)
cv2.imwrite(r'F:\processed_images\2exp_image.jpg', exp_image)
cv2.imwrite(r'F:\processed_images\3rayleigh_image.jpg', rayleigh_image)
cv2.imwrite(r'F:\processed_images\4power_law_image.jpg', power_law_image)
cv2.imwrite(r'F:\processed_images\5hyperbolic_image.jpg', hyperbolic_image)
```

Изм.	Лист	№ докум.	Подпись	Дата

Рисунок 1 – исходное изображение

They now 2 The for pawma (They nat 1)

Изм.	Лист	№ докум.	Подпись	Дата

Рисунок 3 – Равномерное распределение

Изм.	Лист	№ докум.	Подпись	Дата

Рисунок 5 – Экспоненциальное распределение

Рисунок 7 - Распределение Рэлея

Изм.	Лист	№ докум.	Подпись	Дата

Рисунок 9 – Степенное распределение (гамма-коррекция)

Рисунок 11 – Гиперболическое распределение

Вывод: изучены и практически реализованы алгоритмы повышения контраста и видоизменения гистограмм для улучшения визуального восприятия

						Лист
					МИВУ 09.03.04 – 10.002	0
Изм.	Лист	№ докум.	Подпись	Дата		9

Лис