Unsupervised Learning

DS 8015

OUTLINE

- Introduction
- 4 Hierarchical Clustering
- K-means Clustering
- Python Implementations

Introduction

Introduction

Unsupervised learning paradigms

- Unsupervised learning: No teacher providing supervision as to how individual instances should be handled.
 - ⇒ There are no class labels

Common tasks:

- Clustering: Separate instances into groups
- Novelty detection: Find instances that are very different from the rest.

CLUSTERING

- □ Also called data segmentation
- Two major methods
 - 1. Hierarchical clustering
 - a. Agglomerative methods proceed as a series of fusions
 - b. Divisive methods successively separate data into finer groups
 - 2. k-means clustering

Partitions data into *k* clusters so that each element belongs to the cluster with the closest mean

Hierarchical Clustering

Hierarchical Clustering

- □ Input:
 - A dataset x_1, \ldots, x_n , each point is a numerical feature vector
 - Does NOT need the number of vectors.
- Overall logic:
 - o Initially every point is in its own cluster.
 - Find the pair of clusters that are the closest.
 - o Merge the two into a single cluster.
 - o Repeat until the whole dataset is one giant cluster.
 - ⇒ You get a binary tree in the end.

□ Set of data points:

□ Initial set of clusters:

- ☐ How do you measure the closeness between two clusters?
- □ Three ways:
 - **Single-linkage**: the shortest distance from any member of one cluster to any member of the other cluster. Formula?
 - Complete-linkage: the greatest distance from any member of one cluster to any member of the other cluster
 - o Average-linkage: you guess it!
- ☐ The binary tree you get is often called a dendrogram, or taxonomy, or a hierarchy of data points
- \Box The tree can be cut at various levels to produce different numbers of clusters: if you want k clusters, just cut the (k-1) longest links
- □ Sometimes the hierarchy itself is more interesting than the clusters
- ☐ However there is not much theoretical justification to it...

Hierarchical Agglomerative Clustering

Input: a training sample $\{x_i\}_{i=1}^n$; a distance function d()

- 1. Initially, place each instance in its own cluster (called a singleton cluster)
- 2. while (number of clusters > 1) do:
- 3. Find the closest cluster pair A, B, i.e., they minimize d(A, B)
- 4. Merge *A*, *B* to form a new cluster.

Output: a binary tree showing how clusters are gradually merged from singletons to a root cluster, which contains the whole training sample.

- □ Euclidean distance: $d(x_i, x_j) = ||x_i x_j|| = \sqrt{\sum_{s=1}^{D} (x_{is} x_{js})^2}$
- □ Manhattan distance: $d(x_i, x_j) = |x_i x_j| = \sum_{s=1}^{D} |x_{is} x_{js}|$
- □ What about the distance between two clusters?
 - Single linkage: $d(A, B) = \min_{x \in A, x' \in B} d(x, x')$.
 - o Complete linkage: replace min with max.

HIERARCHICAL CLUSTERING - EXAMPLE 1A

For the one dimensional data set 7,10,20,28,35, perform hierarchical clustering using single linkage and plot the dendogram to visualize it.

HIERARCHICAL CLUSTERING - EXAMPLE 1B

□ For the one dimensional data set 7,10,20,28,35, perform hierarchical clustering using **complete linkage** and plot the dendogram to visualize it.

HIERARCHICAL CLUSTERING - EXAMPLE 2A

□ Given the dataset with five points (0,0),(2,0),(5,0),(0,4),(4,4), run **complete-linkage** hierarchical clustering by hand (you can use a calculator). Use L1 distance (Manhattan distance). For each iteration, show the cluster membership of each point.

R Kucukates

HIERARCHICAL CLUSTERING - EXAMPLE 2B

□ Given the dataset with five points (0,0),(2,0),(5,0),(0,4),(4,4), run **single-linkage** hierarchical clustering by hand (you can use a calculator). Use L1 distance (Manhattan distance). For each iteration, show the cluster membership of each point.

K-means Clustering

K-means Clustering

- Very popular clustering method
- □ Don't confuse it with the k-NN classifier
- □ Input:
 - A dataset x_1, \ldots, x_n each point is a numerical feature vector
 - Assume the number of clusters, k, is given.
- Overall logic:
 - Randomly picking k positions as initial cluster centers (not necessarily a data point)
 - Each point finds which cluster center it is closest to (very much like 1-NN). The point belongs to that cluster.
 - Each cluster computes its new centroid, based on which points belong to it
 - And repeat until convergence (cluster centers no longer moversion properties)

 \Box The dataset. Input k = 5

 \Box The dataset. Input k = 5

 \Box The dataset. Input k = 5

R Kucukates

 \Box The dataset. Input k = 5

 \Box The dataset. Input k = 5. K-means stops!

R Kucuka<u>tes</u>

K-means Clustering Algorithm

Input: x_1, \ldots, x_n, k

Step 1: Select k cluster centers c_1, \ldots, c_k

Step 2: for each point x, determine its cluster: find the closest center in Euclidean space

Step 3: update all cluster centers as the centroids

$$c_i = \frac{\sum_{\{x \in cluster \ i\}} x}{SizeOf(cluster \ i)}$$

Repeat step 2, 3 until cluster centers no longer change

- □ What is k-means trying to optimize? ⇒ total <u>distortion</u> over each data point
- \Box Will k-means stop (converge)? \Rightarrow yes. finite # of pts, finite cluster assignments
- □ Will it find a global or local optimum? ⇒ not guaranteed to find global optimal
- □ How to pick starting cluster centers? ⇒ various algorithms exists
- ☐ How many clusters should we use? ⇒ domain knowledge?

DISTORTION

- \Box Suppose for a point x, you replace its coordinates by the cluster center $c_{(x)}$ it belongs to (lossy compression)
- □ How far are you off? Measure it with squared Euclidean distance: x(d) is the d-th feature dimension, y(x) is the cluster ID that x is in.

$$\sum_{d=1,\dots,D} \left[x(d) - c_{y(x)}(d) \right]^2$$

 \Rightarrow This is the distortion of a single point x. For the whole dataset, distortion is

$$\sum_{x} \sum_{d=1}^{\infty} \left[x(d) - c_{y(x)}(d) \right]^{2}$$

The minimization problem:

$$\min_{y(x_1)...y(x_n),c_1(1)...c_1(D),...,c_k(1)...c_k(D)} \sum_{x} \sum_{d=1,\dots,D} \left[x(d) - c_{y(x)}(d) \right]^2$$

Python Implementations

Python Implementations

EXAMPLE: CLUSTERING COLLEGES & UNIVERSITIES

- □ Cluster the Colleges and Universities data using the five numeric columns in the data set.
- Use the hierarchical method

4	Α	В	С	D	E		F	G
1	Colleges and Universities							
2								
3	School	Type	Median SAT	Acceptance Rate	Expenditures/	Student	Top 10% HS	Graduation %
4	Amherst	Lib Arts	1315	22%	\$	26,636	85	93
5	Barnard	Lib Arts	1220	53%	\$	17,653	69	80
6	Bates	Lib Arts	1240	36%	\$	17,554	58	88
7	Berkeley	University	1176	37%	\$	23,665	95	68
8	Bowdoin	Lib Arts	1300	24%	\$	25,703	78	90
9	Brown	University	1281	24%	\$	24,201	80	90
10	Bryn Mawr	Lib Arts	1255	56%	\$	18,847	70	84
11	Cal Tech	University	1400	31%	\$	102,262	98	75

EXAMPLE: CLUSTERING COLLEGES & UNIVERSITIES

Hierarchical clustering results for clusters 3 and 4

Cluster	School	Type	Median SAT	Acceptance Rate	Expenditures/ Student	Top 10% HS	Graduation %
3	Berkeley	University	1176	37%	\$23,665	95	68
3	UCLA	University	1142	43%	\$26,859	96	61
3	UNC	University	1109	32%	\$19,684	82	73
4	Cal Tech	University	1400	31%	\$102,262	98	75

□ Schools in cluster 3 appear similar.

Cluster 4 has considerably higher Median SAT and Expenditures/Student.


```
# sklearn clustering libraries
from sklearn.cluster import AgglomerativeClustering
from sklearn.cluster import KMeans
# numpy
import numpy as np
# plotting library
import matplotlib.pyplot as plt
# random data generation library
from sklearn.datasets.samples_generator import make_blobs
X, y_true = make_blobs(n_samples=300, centers=4,
   cluster std=0.60, random state=0)
plt.scatter(X[:, 0], X[:, 1], s=50) # plot pts
```

R Kucukates

```
# hieararchical clustering via scikit-learn
hc = AgglomerativeClustering(n_clusters=4)
hc.fit(X)
y_hc = hc.fit_predict(X) # hierarchical.labels_
plt.scatter(X[:, 0], X[:, 1], c=y_hc, s=50, cmap='viridis')
# scipy implementation for hierarchical clustering
from scipy.cluster.hierarchy import linkage, fcluster, dendrogram
link_c = linkage(X, method='ward')
plt.figure()
dendrogram(link_c) # plot dendogram (binary clustering tree)
plt.show()
# plot clusters
max_d = 10 # max_distance btw clusters
lclusters = fcluster(link_c, max_d, criterion='distance')
plt.scatter(X[:, 0], X[:, 1], c=lclusters, s=50, cmap='viridis')
print(np.unique(lclusters)) # print cluster ids
```

```
# normalizing the data
from sklearn.metrics.pairwise import euclidean_distances
# for scaling numpy array
from sklearn.preprocessing import StandardScaler
X = np.array([[1,2,100],[4,3,50],[1,1,75]])
# array([[ 1, 2, 100],
# [ 4, 3, 50],
       [ 1, 1, 75]])
np.around(euclidean_distances(X), 2)
# array([[ 0. , 50.1 , 25.02],
       [50.1 , 0. , 25.26],
       [25.02, 25.26, 0. ]])
euclidean distances(StandardScaler().fit transform(X))
# array([[0. , 3.46, 1.73],
# [3.46, 0. , 3.46],
       [1.73, 3.46, 0. ]])
```



```
# clustering over pandas dataframe
my_data = pd.read_csv('universities.csv')
my_data.set_index('School', inplace=True) # set column as index
my_data["Type"] = my_data["Type"].astype("category").cat.codes
mat = my_data.values # convert dataframe to matrix
dist mat = euclidean distances (mat)
norm_mat = StandardScaler().fit_transform(mat)
dist_mat_norm = euclidean_distances(norm_mat)
km = sklearn.cluster.KMeans(n_clusters=4, init='random',
   n init=1, verbose=0)
km.fit(norm mat)
# Get cluster assignment labels
labels = km.labels
# Format results as a DataFrame
results = pd.DataFrame([my_data.index,labels]).T
print(results)
```