e.g., (ii) If there are three sets A, B, C and $a \in A$, $b \in B$, $c \in C$, then we form an ordered triplet (a, b, c).

cartesian product of these sets A, B and C. set of all ordered triplets (a, b, c) is called the

i.e.,
$$A \times B \times C = \{(a, b, c) : a \in A, b \in B, c \in C\}$$

(vi) If A and B are non-empty subsets, then
$$A \times B = B \times A \Leftrightarrow A = B.$$

(vii) If A and B are two non-empty sets having n elements in common, then
$$A \times B$$
 and $B \times A$ have n^2 elements in common.

The set of intelligent students in a class is (a) a null set

- (b) a singleton set
- (c) a finite set
- (d) not a well-defined collection
- Which of the following is the empty set?
- (a) $\{x : x \text{ is a real number and } x^2 1 = 0\}$
- $\{x: x \text{ is a real number and } x^2 + 1 = 0\}$
- (d) $\{x : x \text{ is a real number and } x^2 = x + 2\}$ $\{x : x \text{ is a real number and } x^2 - 9 = 0\}$
- ယ The set $A = \{x : x \in R, x^2 = 16 \text{ and } 2x = 6\}$ equals
- (a)

(b) {14, 3, 4}

(c) {3}

- (d) {4}
- 4 subsets of A is If a set A has n elements, then the total number of
- a
- (c) 2"

- (d) 2n

(b) n^2

- 5 The number of proper subsets of the set $\{1, 2, 3\}$ is

- (b) 7
- 6 Given the sets $A = \{1, 2, 3\}, B = \{3, 4\}, C = \{4, 5, 6\},$ then $A \cup (B \cap C)$ is
- (a) {3}
- (c) {1,2,4,5}
 - (b) {1,2,3,4}
- (d) {1, 2, 3, 4, 5, 6}

If the sets A and B are defined as $A = \begin{cases} (x, y) : y = \frac{1}{x}, & 0 \neq x \in R \end{cases}$

Exercise

$$A = \begin{cases} (x, y) : y = -, & 0 \neq x \in R \\ B = \{(x, y) : y = -x, x \in R \} \end{cases}$$

- $A \cap B = A$
- 9 $A \cap B = B$
- (c) $A \cap B = \emptyset$
- (d) None of these
- Let $A = [x : x \in R, |x| < 1]$; $B = [x : x \in R, |x-1| \ge 1]$ and $A \cup B = R - D$, then the set D is
- (a) $[x:1 < x \le 2]$
- (b) $[x:1 \le x < 2]$
- (c) $[x:1 \le x \le 2]$
- (d) None of these
- 9. If the sets A and B are defined as
- $A = \{(x, y) : y = e^x, x \in R\}; B = \{(x, y) : y = x, x \in R\},$
- (a) $B \subseteq A$

- (b) $A \subseteq B$
- (c) $A \cap B = \emptyset$

10.

- (d) $A \cup B = A$
- Let n(U) = 700, n(A) = 200, n(B) = 300 and $n(A \cap B) = 100$, then $n(A^c \cap B^c)$ is equal to
- (a) 400

- (b) 600
- (c) 300
- (d) 200

In a town of 10000 families it was found that 40% family buy newspaper A, 20% buy newspaper B and 10% families buy newspaper C, 5% families buy A and B, 3% buy B and C and 4% buy A and C. If 2% families buy all the three newspapers, then number of families which buy A only is

- (a) 3100
- (b) 3300
- (c) 2900
- (d) 1400
- In a city 20% of the population travels by car, 50% travels by bus and 10% travels by both car and bus. Then, persons travelling by car or bus is
 - (a) 80%
- (b) 40%
- (c) 60%
- (d) 70%
- 13. In a class of 55 students, the number of students studying different subjects are 23 in Mathematics, 24 in Physics, 19 in Chemistry, 12 in Mathematics and Physics, 9 in Mathematics and Chemistry, 7 in Physics and Chemistry and 4 in all the three subjects. The number of students who have taken exactly one subject
 - (a) 6

(b) 9

(c) 7

- (d) All of these
- 14. If A, B and C are any three sets, then $A \times (B \cup C)$ is equal to
 - (a) $(A \times B) \cup (A \times C)$
- (b) $(A \cup B) \times (A \cup C)$
- (c) $(A \times B) \cap (A \times C)$
- (d) None of these
- 15. If A, B and C are any three sets, then $A (B \cup C)$ is equal to
 - (a) $(A-B) \cup (A-C)$
- (b) $(A-B)\cap (A-C)$
- (c) $(A B) \cup C$
- (d) $(A-B)\cap C$
- 16. If A, B and C are non-empty sets, then $(A B) \cup (B A)$ equals
 - (a) $(A \cup B) B$
- (b) $A (A \cap B)$
- $(A \cup B) (A \cap B)$
- $, (d) (A \cap B) \cup (A \cup B)$
- 17. If $A = \{2, 4, 5\}$, $B = \{7, 8, 9\}$, then $n(A \times B)$ is equal to
 - (a) 6

Jb) 9

(c) 3

- (d) 0
- 18. If the set A has p elements, B has q elements, then the number of elements in $A \times B$ is
 - (a) p+q
- (b) p+q+1

- (c) pq
- (d) p^2
- **19.** If $A = \{a,b\}, B = \{c,d\}, C = \{d,e\},$ then
 - $\{(a,c),(a,d),(a,e),(b,c),(b,d),(b,e)\}$ is equal to
 - (b) $A \cup (B \cap C)$
 - (a) $A \cap (B \cup C)$ (C) $A \times (B \cup C)$
- (d) $A \times (B \cap C)$
- **20.** If P, Q and R are subsets of a set A, then $R \times (P^c \cup Q^c)^c$ is equal to
 - $(a)(R \times P) \cap (R \times Q)$
- (b) $(R \times Q) \cap (R \times P)$
- (c) $(R \times P) \cup (R \times Q)$
- (d) None of these
- 21. In rule method the null set is represented by
 - (a) {}

- (b) ¢
- (c) $\{x: x = x\}$
- (d) $\{x: x \neq x\}$

- $A = \{x : x \neq x\}$ represents 22.
 - (a) $\{0\}$
- (b) {}
- (c) {1}
- (d) $\{x\}$
- If $Q = \left\{ x : x = \frac{1}{y}, \text{ where } y \in N \right\}$, then
 - (a) $0 \in Q$
- (b) 1∈ Q
- (c) $2 \in Q$
- Which set is the subset of all given sets?
 - (a) $\{1, 2, 3, 4, \ldots\}$
- (c) $\{0\}$
- 4d) {}
- Let $S = \{0, 1, 5, 4, 7\}$. Then, the total number of subsets **25**.
 - (a) 64

- (c) 40

- (d) 20
- The number of non-empty subsets of the set $\{1, 2, 3, 4\}$ is 26. (b) 14
 - (a) 15
- (d) 17
- (c) 16
- 27. The smallest set A such that $A \cup \{1, 2\} = \{1, 2, 3, 5, 9\}$

 - (b) {3, 5, 9} (a) $\{2, 3, 5\}$ (d) None of these
 - (c) $\{1, 2, 5, 9\}$
- If $A \cap B = B$, then 28. (a) $A \subset B$
- Ab) $B \subset A$ (d) $B = \Phi$
- (c) $A = \emptyset$
- **29.** If A and B are two sets, then $A \cup B = A \cap B$ iff
 - (a) $A \subseteq B$
- (b) $B \subseteq A$ (d) None of these
- (e) A = B30. Let A and B be two sets. Then,

 - (a) $A \cup B \subseteq A \cap B$ (c) $A \cap B = A \cup B$
- $\text{(b)} \ A \cap B \subseteq A \cup B$ (d). None of these
- 31. Let $A = \{(x, y) : y = e^x, x \in R\}$,

$$B = \{(x, y) : y = e^{-x}, x \in R\}.$$
 Then,

- (a) $A \cap B = \emptyset$
- (b) $A \cap B \neq \emptyset$
- (c) $A \cup B = R^2$
- (d) None of these
- **32.** If $A = \{2, 3, 4, 8, 10\}, B = \{3, 4, 5, 10, 12\},$ $C = \{4, 5, 6, 12, 14\}$, then $(A \cap B) \cup (A \cap C)$ is equal to
 - (a) {3, 4, 10}
- (b) {2, 8, 10}
- (c) $\{4, 5, 6\}$
- (d) $\{3, 5, 14\}$
- 33. If A and B are any two sets, then $A \cap (A \cup B)$ is equal to (b) B (a) A
 - (c) A^c

- (d) B^{c}
- **34.** If A, B, C be three sets such that $A \cup B = A \cup C$ and $A \cap B = A \cap C$, then
 - (a) A = B
- A(b) B=C
- (c) A = C
- (d) A = B = C
- 35. Let $A = \{a, b, c\}$, $B = \{b, c, d\}$, $C = \{a, b, d, e\}$, then $A \cap (B \cup C)$ is
 - (a) $\{a, b, c\}$
- (b) $\{b, c, d\}$
- (c) $\{a, b, d, e\}$
- (d) $\{e\}$
- **36.** If A and B are sets, then $A \cap (B-A)$ is (b) A
 - **√**(a) φ (c) B

(d) None of these

8 CHAPTER - Sets and Cartesian Product of Sets

3	37. If <i>A</i> and	i B are two sets, then $A \cap (A \cup B)'$ is equal to	40	If A and D are not disjoint and the
	(a) A		4>	9. If A and B are not disjoint sets, then $n(A \cup B)$ is equal
	(e) p	(b) B		to (a) $n(A) + n(B)$
2		(d) None of these		
3	d. Let U =	$= \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}, A = \{1, 2, 5\}, B = \{6, 7\}$,	(b) $n(A) + n(B) - n(A \cap B)$
	then $A \cap$			(c) $n(A) + n(B) + n(A \cap B)$
	(a) B'	(b) A		(d) $n(A)n(B)$
	(c) A'	(d) <i>B</i>		(e) $n(A) - n(B)$
39		y set, then	50	. In a battle 70% of the combatants lost one eye, 80% an
	(a) $A \cup$	$A' = \emptyset$ $A \cup A' = U$		ear, 75% an arm, 85% a leg, x% lost all the four limbs
	(c) A \cap .	A' = U (d) None of these		The minimum value of x is
40	If N = 0	$an: n \in N$, then $N_5 \cap N_7$ is equal to		(a) 10 (b) 12
			E 1	(c) 15 (d) None of these
	(a) N_7	(b) <i>N</i>	51.	Out of 800 boys in a school, 224 played cricket, 240 played hockey and 336 played basketball. Of the
	(e) N ₃₅	(d) N_5		total, 64 played both basketball and hockey; 80 played
	(e) N_{12}			cricket and basketball and 40 played cricket and
a	×	and we will be a decided and a second		hockey; 24 played all the three games. The number of
41	/	$ax: x \in N$, then the set $3N \cap 7N$ is		boys who did not play any game is
	(a) 21 N	(b) 10 N		(a) 128 (b) 216
	(c) $4N$	(d) None of these		(c) 240 (d) 160
42.	The shade	ed region in the given figure is	52 .	
	(a) $A \cap (A)$			whereas 76% like apples. If $x\%$ of the Americans like
	(b) <i>A</i> ∪ (<i>I</i>	$B \cap C$		both cheese and apples, then (a) $x = 39$ (b) $x = 63$
	(c) $A \cap (B)$	B-C)		(a) $x = 39$ (b) $x = 03$ (c) $39 \le x \le 63$ (d) None of these
	(d)'A - (B	$C \setminus X \setminus B$	53.	20 teachers of a school either teach Mathematics or
43.		B are two sets, then $(A - B) \cup (B - A) \cup$	55.	Physics. 12 of them teach Mathematics while 4 teach
,	$(A \cap B)$ is			both the subjects. Then, the number of teachers teaching
	$(a) A \cup B$	- r		Physics only is
	(c) A	(d) B'		(a) 12 (b) 8
(a)	1			(c) 16 (d) None of these
1		1 B be two sets, then $(A \cup B)' \cup (A' \cap B)$ is	54.	Of the members of three Athletic teams in a school
/	equal to			21 are in the cricket team, 26 are in the hockey team and
	(a) A'	(b) A		29 are in the football team. Among them, 14 play
	(c) B'	(d) None of these		hockey and cricket, 15 play hockey and football and 12 play football and cricket. Eight play all the three
45.		the universal set and $A \cup B \cup C = U$. Then,		games. The total number of members in the three
	$\{(A-B)\cup (A-B)\}$	$(B-C)\cup(C-A)\}'$ is equal to		Athletic teams is
	(a) $A \cup B$	$\cup C$ (b) $A \cup (B \cap C)$		(a) 43 (b) 76
	$(9)'A\cap B\cap$	$\cap C \qquad \qquad (d) A \cap (B \cup C)$		(c) 49 (d) None of these
				In a class of 100 students, 55 students have passed in
40.		$n(B) = 6$ and $A \subseteq B$. Then, the number of		Mathematics and 67 students have passed in Physics.
		$A \cup B$ is equal to		Then, the number of students who have passed in
	(a) 3 . (e) 6	(b) 9		Physics only is
	,	(d) None of these		(a) 22 (b) 33 (c) 10 (d) 45
47.		be two sets such that		If A and B are two sets, then $A \times B = B \times A$ iff
		$0.16, n(B) = 0.14, n(A \cup B) = 0.25$		(a) $A \subseteq B$ (b) $B \subseteq A$
	Then, $n(A \cap$	$\cap B$) is equal to		(c) $A = B$ (d) None of these
	(a) 0.3	(b) 0.5		If A and B be any two sets, then $(A \cap B)'$ is equal to
	(c) 0.05	(d) None of these		(a) $A' \cap B'$ (b) $A' \cup B'$
48.		re disjoint, then $n(A \cup B)$ is equal to		$\begin{array}{cccc} (a) & A \cap B & & & & & \\ (c) & A \cap B & & & & & \\ \end{array} $ (d) $A \cup B$
	(a) $n(A)$	(b) $n(B)$		Let A and B be subsets of a set X . Then,
	(c) $n(A) + n$			a) $A - B = A \cup B$ (b) $A - B = A \cap B$
	(c) "(1)	(a) alm alm)	(c) $A - B = A^c \cap B$ (d) $A - B = A \cap B^c$