ASSIGNMENT - 2

1) Design a combinational circuit with four input lines that represent a decimal digit in BCD and four output lines that generate 9's complement of the input digit

In terms of decimal of digita, the truth table will be as

Topot	Output
0	9
1	.8
2	7
3	6
4	5
3.456	4
G	3
8	2
9	1
1,00	1 0

Interms of binary:

1	7	inbut			1	Outh	Output		
3	13	I2	I,	I.	10	3 02	0,	0.	
	0	0	0	0	1	0	0	i	
	0	0	0	1	- 1	0	0	0	
3	0	0	1	0	0	1	1	1	
	0	0	1	1	0	1	١	0	
1	0	1	0	0	0	1	0	1	
	0	1	0	1	0	1	0	0	
1	0	١	1	0	0	0	1	1	
	0	1	1	1	0	0	1	0	
1	1	0	0	0	0	0	0	1	
1	1	0	0	1 1	0	0	0	0	

-> all other input as treated as "don't come"

2) Implement the following booken function using three helf.

1 DE A D 80C

ii)
$$E = \overline{ABC + ABC}$$

= $C \cdot [\overline{AB + AB}]$
= $C \cdot [A \oplus B]$

Q3) Implement f(A,B,C,D) = \(\int \cdot (0, T,5,7, 10, 14,15) \) Using appropriate multiplexer. 2 -to - 1 Multipleson 0 -> Drawing Im plementation Table. 2 12 0 by using the implementation table: 8-to-1 MUX BO

4) Which boolean Function is implemented by the following Multiplexer.

drawing reversed implementation table

	(I)	I,	IZ	I3
2	0	0	0	3
_	1	5	6	0
	10	=	7	C

- f (C,A,B) = = = = = (1,2,4,7)

f((A,B) = C'A'B + C'AB' + CA'B' + CA'B = C'(A'B + AB') + C(A'B' + AB) $= C'(A \otimes XORB) + C(A \times NORB)$

5) Which Function is realized by the circuit given below

using the circuit to make Truth Table

I	input	output	
2	4	Z	f
0	0	0	0
0	0	1	Ø1 0
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	I
1	1	1	1

& using K-Mab

f(n,y,z) = n + y y /z

Qo) A combinational circuit is defined by the Collowing three functions:

Design the circuit with decoder and external gates.

- We know that for a 3-8 decoder with my, z as inputs.

solving F1:

The also know for a 2-to-4 decoder with inpit n and n input n input n and n input n input n input n and n input n i

now solving F3:

1) Construct a 5-to -32 decoder with four 3-to-8 decoder or demultiplexors and a 2-to-9 decoder. Use a block diagram construction,

BCD-to-seven-segment decader is a combinational circuit that accepts a decimal digit in BCD and generates the appropriate outputs for the selection of segments in a display indicator used for displaying digit. The seven output of the decoder (a,b,c,d,e,f,g) select the coresponding segment in the display as shown in the figure below. Design the BCD-to-segment decoder circuit

-> from the figure, making Truth Table.

No. 1	Input			Outputs							
	Is	12	I,	Lo	9	P	c			t	9
0	0	0	0	0	1	1	1	, \	١	1	0
1	0	0	0	1	0	1	1	0	0	0	b
2	0	0	1	0	1	ţ	0	1	1	0	١
3	0	0	1	1	1	١	1	1	0	0	1
4	0	1	0	0	0	1	1	0	0	1	1
5	0	1	0	1	1	0	1	1	0	1	1
6	0	1	1	0	1	0	١	1	1	1	1
7	0	1	I	1	1	1	1	0	0	0	0
8	1	0	0	0	1	1	1	1	1	1	1
9	1	0	0	1	1	1	1	1	0	1	1

- all other inputs are "don't care"

d = I3 + I, Io' + I2' I, + T2' Io' + I2 I, Io

