Parallelizing Convolutional Neural Networks

Alex Krizhevsky Google

June 23, 2014

Convolutional neural networks

Motivations

- Training a neural net is the inner loop in research and architecture exploration.
- Faster training broadens the space of things you're willing to try.
- Big datasets take a lot of time to consume.

The basic algorithm

```
for training batch i in \{1 \dots N\}

\mathbf{w} += -\mathbb{E}[\mathbf{dE}/\mathbf{dw}|i]
```

Data parallelism

- Workers train the same model on different data examples
- Share weights or gradients
- Batch size increases with number of workers

Asynchronous data parallelism

- Workers
 asynchronously write
 parameter updates to
 shared memory or
 dedicated server
- Efficient when gradients are very sparse

Citations: Hogwild, DistBelief

Model parallelism

- Workers train different parts of the same model on the same data examples
- Workers share neuron activations

Old ImageNet network did this

Applied to convolutional nets

- Model parallelism with "multi-tower" models
 - Lots of low-level filters
 - Convolutional layers have many neurons, so exchanging them is expensive
- Data parallelism with big batch sizes or async SGD
 - Generally worse convergence
 - Expensive gradient communication

Data parallelism

- Workers exchange messages of size proportional to number of weights
- Efficient when the amount of computation per weight is high

Model parallelism

- Workers exchange messages of size proportional to number of neurons
- Efficient when the amount of computation per neuron is high

Convolutional neural nets

	Convolutional	Fully-connected
Computation	***	\Rightarrow
Neurons	***	\Rightarrow
Weights	\Rightarrow	***

Each worker sends
Conv3 activations to other
worker and they do a
forward pass on the big
batch of activations

Properties

- The one big communication is overlapped with computation
- Can update ~90% of the weights very frequently -- as though you have a small batch size
- Lots of freedom in choosing fully-connected connectivity for efficiency

Performance on 2012 network

GPUs	Batch size	Top-1 error	Time	Speedup
1	(128, 128)	42.33%	98.05h	1x
2	(256, 256)	42.63%	50.24h	1.95x
2	(256, 128)	42.27%	50.90h	1.93x
4	(512, 512)	42.59%	26.20h	3.74x
4	(512, 128)	42.44%	26.78h	3.66x
8	(1024, 1024)	43.28%	15.68h	6.25x
8	(1024, 128)	42.86%	15.91h	6.16x

Code soon

- An update to cuda-convnet
 - It's called cuda-convnet2
- Faster training on modern Nvidia GPUs (GeForce Titan, K20, K40)
- Multi-GPU support implementing the forms of parallelism discussed here.