TRENDS IN INTERNATIONAL MATHEMATICS AND SCIENCE STUDY

User Guide

for the International Database

Released Items

Advanced Mathematics

Copyright © 2009 International Association for the Evaluation of Educational Achievement (IEA)

TIMSS Advanced 2008 User Guide for the International Database

Edited by Pierre Foy and Alka Arora

Publisher: TIMSS & PIRLS International Study Center, Lynch School of Education, Boston College

Library of Congress Catalog Card Number: 2009902654

ISBN: 1-889938-57-2

For more information about TIMSS contact: TIMSS & PIRLS International Study Center Lynch School of Education

Boston College

Chestnut Hill, MA 02467

United States

tel: +1-617-552-1600

fax: +1-617-552-1203

e-mail: timss@bc.edu

http://timssandpirls.bc.edu

Boston College is an equal opportunity, affirmative action employer.

TIMSS and PIRLS are copyrighted and are registered trademarks of IEA. Released items from TIMSS and PIRLS assessments are for non-commercial, educational, and research purposes only. Translated versions of items remain the intellectual property of IEA. Although the items are in the public domain, please print an acknowledgement of the source, including the year and name of the assessment you are using.

			Block		Cognitive	Maximum	
Item ID	Subject	Block	Seq	Content Domain		Points	Key
MA13001	Advanced Mathematics	M1	01	Algebra	Knowing	1	D
MA13002	Advanced Mathematics	M1	02	Algebra	Reasoning	1	Α
MA13003	Advanced Mathematics	M1	03	Algebra	Reasoning	1	E
MA13004	Advanced Mathematics	M1	04	Calculus	Knowing	1	В
MA13006	Advanced Mathematics	M1	06	Calculus	Knowing	1	D
MA13007	Advanced Mathematics	M1	07	Geometry	Applying	1	Α
MA13008	Advanced Mathematics	M1	08	Geometry	Reasoning	1	D
MA13009	Advanced Mathematics	M1	09	Algebra	Applying	1	С
MA13021	Advanced Mathematics	M3	01	Geometry	Knowing	1	Α
MA13024	Advanced Mathematics	M3	04	Calculus	Knowing	1	В
MA13025A	Advanced Mathematics	M3	05	Calculus	Knowing	1	See scoring guide
MA13025B	Advanced Mathematics	M3	05	Calculus	Knowing	1	See scoring guide
MA13026A	Advanced Mathematics	M3	06	Geometry	Applying	1	See scoring guide
MA13026B	Advanced Mathematics	M3	06	Geometry	Applying	1	See scoring guide
MA13027	Advanced Mathematics	M3	07	Algebra	Reasoning	2	See scoring guide
MA13028	Advanced Mathematics	M3	08	Algebra	Knowing	1	See scoring guide
MA13029	Advanced Mathematics	M3	09	Geometry	Reasoning	2	See scoring guide
MA23069	Advanced Mathematics	M6	01	Algebra	Applying	1	D
MA23135	Advanced Mathematics	M6	02	Algebra	Applying	1	See scoring guide
MA23208	Advanced Mathematics	M6	03	Algebra	Reasoning	1	A
MA23165	Advanced Mathematics	M6	04	Calculus	Applying	1	See scoring guide
MA23039	Advanced Mathematics	M6	05	Calculus	Knowing	1	D
MA23159	Advanced Mathematics	M6	06	Calculus	Knowing	1	See scoring guide
MA23198	Advanced Mathematics	M6	07	Calculus	Reasoning	1	See scoring guide
MA23042	Advanced Mathematics	M6	08	Calculus	Knowing	1	В
MA23055	Advanced Mathematics	M6	09	Geometry	Knowing	1	D

Item ID	Subject	Block	Block Seq	Content Domain	Cognitive Domain	Maximum Points	Key
MA23080	Advanced Mathematics	M6	10	Geometry	Reasoning	1	A
MA23021	Advanced Mathematics	M6	11	Geometry	Applying	1	В
MA23004	Advanced Mathematics	M7	01	Algebra	Reasoning	1	В
MA23063	Advanced Mathematics	M7	02	Algebra	Applying	1	В
MA23141	Advanced Mathematics	M7	03	Algebra	Knowing	1	See scoring guide
MA23133	Advanced Mathematics	M7	04	Algebra	Knowing	1	D
MA23158	Advanced Mathematics	M7	05	Calculus	Applying	1	D
MA23151	Advanced Mathematics	M7	06	Calculus	Reasoning	1	С
MA23035A	Advanced Mathematics	M7	07	Calculus	Applying	1	See scoring guide
MA23035B	Advanced Mathematics	M7	07	Calculus	Applying	1	See scoring guide
MA23050	Advanced Mathematics	M7	08	Calculus	Knowing	1	В
MA23041	Advanced Mathematics	M7	09	Calculus	Knowing	1	A
MA23182	Advanced Mathematics	M7	10	Geometry	Applying	1	D
MA23170	Advanced Mathematics	M7	11	Geometry	Applying	1	See scoring guide

Advanced Mathematics

Block_Sequence **M1_01**

The functions f and g are defined by f(x)=x-1 and $g(x)=(x+3)^2$.

g(f(x)) is equal to

TIMSSAdvanced

2008

Content Domain

Algebra

Cognitive Domain

Knowing

Maximum Points

Advanced Mathematics

Block_Sequence M1_02

A function *f* is defined by:

$$f(x) = -x - 1$$
 if $-2 < x \le -1$

$$f(x) = x + 1 \quad \text{if} \quad -1 < x \le 0$$

$$f(x) = -x+1$$
 if $0 < x \le 1$

$$f(x) = x - 1 \quad \text{if} \quad 1 < x \le 2$$

Which is the graph of f?

(C)

E

Content Domain

TIMSSAdvanced

Algebra

2008

Cognitive Domain

Reasoning

Maximum Points

Key

Advanced Mathematics

this item mercin

Block_Sequence M1_03

Two mathematical models are proposed to predict the return y, in dollars, from the sale of x thousand units of an article (where 0 < x < 5). Each of these models, P and Q, is based on different marketing methods.

model P:
$$y=6x-x^2$$

model Q: $y=2x$

For what values of x does model Q predict a greater return than model P?

- \bigcirc 0<x<4
- (B) 0 < x < 5
- (c) 3 < x < 5
- (D) 3 < x < 4
- (E) 4 < x < 5

MA1300

Content Domain

Algebra

Cognitive Domain

Reasoning

Maximum Points

1

(ev

2

is equal to

Item ID MA13004

Advanced Mathematics

Misiter Commercial Principles of Mitholitics of Mit

Block_Sequence **M1_04**

TIMSSAdvanced

2008

Content Domain

Calculus

Cognitive Domain

Knowing

Maximum Points

1

Key

В

Advanced Mathematics

This item mercin

Block_Sequence **M1_06**

The derivative with respect to x of $\frac{4}{\sqrt{3x-4}}$ is

- (A) $12\sqrt{3x-4}$
- $\mathbb{B} \quad \frac{4}{\sqrt{3}}$
- \bigcirc $\frac{-2}{(3x-4)^{\frac{3}{2}}}$
- (E) $6\sqrt{3x-4}$

Copyright ©2009 International Association for the Evaluation of Educational Achievement (IEA). All rights reserved.

TIMSSAdvanced

2008

Content Domain

Calculus

Cognitive Domain

Knowing

Maximum Points

1

(ev

 Γ

the three sides is

Advanced Mathematics

One side of an equilateral triangle lies along the *x*-axis. The sum of the slopes of

Block_Sequence M1_07

TIMSSAdvanced

2008

Content Domain

Geometry

Cognitive Domain

Applying

Maximum Points

Inisite Commercial Pick A Key

Advanced Mathematics

Block_Sequence M1_08

Triangle *PQR* is an isosceles right triangle with a right angle at *P*. If *PT* is a median of the triangle, then PT has the same length as this itemmercial property of the contract of t

TIMSSAdvanced

2008

Content Domain

Geometry

Cognitive Domain

Reasoning

Maximum Points

Advanced Mathematics

Block_Sequence **M1_09**

How many points with integer coordinates are there on the graph of the

- infinitely many

TIMSSAdvanced

2008

Content Domain

Algebra

Cognitive Domain

Applying

Maximum Points

This item mercial photos in the committee of the committe

Key

Advanced Mathematics

Block_Sequence M3_01

dx is equal to

Advanced Mathematics

This itemmercial in the continue of the contin

Block_Sequence M3_04

TIMSSAdvanced

2008

Content Domain

Calculus

Cognitive Domain

Knowing

Maximum Points

1

Key

B

Item ID MA13025A

Advanced Mathematics

Block_Sequence **M3_05**

The function y = f(x), $-3 \le x \le 3$, is defined in the following graph

A. For what value(s) of x in the interval -3 < x < 3 is the function NOT continuous?

B. For what value(s) of x in the interval -3 < x < 3 is the function f NOT differentiable?

Copyright ©2009 International Association for the Evaluation of Educational Achievement (IEA). All rights reserved.

TIMSSAdvanced

2008

Content Domain

Calculus

Cognitive Domain

Knowing

Maximum Points

1

Key

See scoring guide

Item ID MA13025A

Advanced Mathematics

Block_Sequence **M3_05**

Code	Day MA 12025 A				
	Response Item: MA13025A				
10	Correct Response				
10	Correct answer: Only for $x = 0$. Accept answers such as "in points $(0, 0)$ and $(0, 2)$ " as correct.				
	Incorrect Response				
79	Incorrect (including crossed out, erased, stray marks, illegible, or off task)				
	Examples:				
	1. Any of the following answers:				
	For $x = -1$ OR For $x = 2$ OR For $x = -1$ and $x = 2$				
	2. For all values of x in the interval $0 \le x \le 2$				
	Note: Use this code for all answers "interval with endpoints 0 and 2" no matter whether the interval is open or closed.				
	3. For <u>no</u> values of x , that is, the function is continuous for all x in the interval $-3 < x < 3$ ("Continuous" may be confused with "defined.")				
	4. $x \text{ in } (-3, -1) \cup (0, 2) \text{ OR } x \text{ in } (-1, 0) \cup (2, 3)$				
	Nonresponse				
99	Blank				
Code	Response Item: MA13025B				
	Correct Response				
10	Correct answer: for $x = -1$ and for $x = 0$ and for $x = 2$				
	Note: Accept answers that also include $x = -3$ and/or $x = 3$. Accept answers shown as points in the plane instead of values of x (e.g., language such as "point $(-1, 0)$ " instead of $x = -1$).				
	Incorrect Response				
70	For $x = 0$				
71	Any of the following answers:				
	For $x = -1$ OR For $x = 2$ OR For $x = -1$ and for $x = 2$				
72	For all values of x in the interval $-1 \le x \le 0$ and $2 \le x \le 3$ (Misconception: "where f is flat,				
	it has no derivative.")				
79	Other incorrect (including crossed out, erased, stray marks, illegible, or off task)				
	Examples:				
	1. For \underline{NO} values of x (i.e., the function is differentiable for all x in the interval $-3 < x < 3$)				
	2. For ALL values of x in the interval $-3 < x < 3$ (i.e., the function is nondifferentiable for every value of x).				
	3. For ALL values of x in the interval $-1 \le x \le 0$ or in the interval $2 \le x \le 3$				
	4. The question cannot be answered because we do not know the function f' or any similar expression.				
	Nonresponse				
99	Blank				

Item ID MA13025B

Advanced Mathematics

Block_Sequence **M3_05**

The function y = f(x), $-3 \le x \le 3$, is defined in the following graph

A. For what value(s) of x in the interval -3 < x < 3 is the function NOT continuous?

B. For what value(s) of x in the interval -3 < x < 3 is the function f NOT differentiable?

Copyright ©2009 International Association for the Evaluation of Educational Achievement (IEA). All rights reserved.

TIMSSAdvanced

2008

Content Domain

Calculus

Cognitive Domain

Knowing

Maximum Points

1

Key

See scoring guide

Item ID MA13025B

Advanced Mathematics

Block_Sequence **M3_05**

Code	Response	Item: MA13025A		
	Correct Response			
10	Correct answer: Only for $x = 0$. Accept answers such as "in points $(0, 0)$ and $(0, 2)$ " as correct.			
	Incorrect Response			
79	Incorrect (including crossed out, erased, stray marks, illegible, or off task)			
	Examples:			
	1. Any of the following answers:			
	For $x = -1$ OR For $x = 2$ OR For $x = -1$ and x	= 2		
	2. For all values of x in the interval $0 \le x \le 2$			
	Note: Use this code for all answers "interval wit interval is open or closed.	h endpoints 0 and 2" no matter whether the		
	3. For no values of x , that is, the function is cont ("Continuous" may be confused with "defined.")	=		
	4. x in $(-3, -1) \cup (0, 2)$ OR x in $(-1, 0) \cup (2, 3)$)		
	Nonresponse			
99	Blank			
Code	Response	Item: MA13025B		
	Correct Response			
10	Correct answer: for $x = -1$ and for $x = 0$ and for	or $x = 2$		
	Note: Accept answers that also include $x = -3$ and/or $x = 3$. Accept answers shown as points in the plane instead of values of x (e.g., language such as "point $(-1, 0)$ " instead of $x = -1$.			
	Incorrect Response			
70	For $x = 0$			
71	Any of the following answers:			
	For $x = -1$ OR For $x = 2$ OR For $x = -1$ and for	x = 2		
72	For all values of x in the interval $-1 \le x \le 0$ and $2 \le x \le 3$ (Misconception: "where f is flat, it has no derivative.")			
79	Other incorrect (including crossed out, erased, stray marks, illegible, or off task)			
	Examples:			
	1. For NO values of x (i.e., the function is differentiable for all x in the interval $-3 < x < 3$)			
	2. For ALL values of x in the interval $-3 < x < 3$ (i.e., the function is nondifferentiable for every value of x).			
	3. For ALL values of x in the interval $-1 \le x \le 0$	or in the interval $2 \le x \le 3$		
	4. The question cannot be answered because we expression.	do not know the function f' or any similar		
	Nonresponse			
99	Blank			

Item ID MA13026A

Advanced Mathematics

Block_Sequence **M3_06**

- A. Triangle *ABC* is reflected in the *y*-axis. On the diagram, draw and label triangle *A'B'C'*, the image of triangle *ABC* under this reflection.
- B. Triangle *ABC* is rotated through 90° anti-clockwise, centre *O*. On the diagram, draw and label triangle *A"B"C"*, the image of triangle *ABC* under this rotation.

TIMSSAdvanced

2008

Content Domain

Geometry

Cognitive Domain

Applying

Maximum Points

1

Key

See scoring guide

Copyright ©2009 International Association for the Evaluation of Educational Achievement (IEA). All rights reserved.

A13026

Item ID MA13026A

Advanced Mathematics

Block_Sequence **M3_06**

Code	Response	Item: MA13026A		
	Correct Response			
10	Correct answer: $(x, y) \rightarrow (-x, y) \frac{1}{2} A'(4, -1) B'(1, -4) C'(3, -4)$			
	Incorrect Response			
70	A'B'C' is the image of triangle ABC under reflection in the x-axis. $A'(-4,1)$ $B'(-1,4)$ $C'(-3,4)$			
71	Image $A'B'C'$ has correct shape and position l	out is incorrectly labeled		
79	Other incorrect (including sides of a triangle not drawn or vertices not labeled, crossed out, erased, stray marks, illegible, or off task) Example: $A'B'C'$ is the image of triangle ABC under the central symmetry with center O, the origin. $A'(4,1) \ B'(1,4) \ C'(3,4)$			
	Nonresponse			
99	Blank			
Code	Response Item: MA13026B			
	Correct Response			
10	Correct answer: $(x, y) \rightarrow (-y, x)$ $A''(1, -4)$ $B''(4, -1)$ $C''(4, -3)$			
	Incorrect Response			
70	$A''B'''C''$ is the correct image of triangle $A'B'C'$ (NOT ABC), as shown in response to Part A, under the rotation 90° counterclockwise with center O.			
71	$A''B''C''$ is the image of triangle ABC under a clockwise 90° rotation with center O . A'' $(-1,4)$ B'' $(-4,1)$ C'' $(-4,3)$			
72	Image $A''B'''C''$ has correct shape and position but is incorrectly labeled			
79	Other incorrect (including sides of a triangle not drawn or vertices not labeled, crossed out, erased, stray marks, illegible, or off task) Examples: 1. A"B"C" is the image of triangle ABC under reflection in the x-axis. A" (-4,1) B" (-1,4) C" (-3,4) 2. A"B"C" is the image of triangle ABC under the central symmetry with center O; OR, equivalently, under the rotation of 180° around O.			
	A''(4,1) $B''(1,4)$ $C''(3,4)$			
	Nonresponse			
99	Blank			
	·			

Item ID MA13026B

Advanced Mathematics

Block_Sequence **M3_06**

- A. Triangle *ABC* is reflected in the *y*-axis. On the diagram, draw and label triangle *A'B'C'*, the image of triangle *ABC* under this reflection.
- B. Triangle ABC is rotated through 90° anti-clockwise, centre O. On the diagram, draw and label triangle A"B"C", the image of triangle ABC under this rotation.

TIMSSAdvanced

2008

Content Domain

Geometry

Cognitive Domain

Applying

Maximum Points

1

Key

See scoring guide

Copyright ©2009 International Association for the Evaluation of Educational Achievement (IEA). All rights reserved.

13026

Item ID MA13026B

Advanced Mathematics

Block_Sequence **M3_06**

Code	Response	Item: MA13026A	
	Correct Response		
10	Correct answer: $(x, y) \rightarrow (-x, y) \frac{1}{2} A'(4, -1) B'(1, -4) C'(3, -4)$		
	Incorrect Response		
70	A'B'C' is the image of triangle ABC under reflection in the x-axis. $A'(-4,1)$ $B'(-1,4)$ $C'(-3,4)$		
71	Image $A'B'C'$ has correct shape and position l	out is incorrectly labeled	
79	Other incorrect (including sides of a triangle neerased, stray marks, illegible, or off task) Example: A'B'C' is the image of triangle ABC under the A' (4,1) B' (1,4) C' (3,4)		
	Nonresponse		
99	Blank		
Code	Response Item: MA13026B		
	Correct Response		
10	Correct answer: $(x, y) \rightarrow (-y, x)$ $A''(1, -4)$ $B''(4, -1)$ $C''(4, -3)$		
	Incorrect Response		
70	$A''B''C''$ is the correct image of triangle $A'B'C'$ (NOT ABC), as shown in response to Part A, under the rotation 90° counterclockwise with center O.		
71	$A''B''C''$ is the image of triangle ABC under a clockwise 90° rotation with center O . A'' $(-1,4)$ B'' $(-4,1)$ C'' $(-4,3)$		
72	Image A"B"C" has correct shape and position but is incorrectly labeled		
79	2. $A''B''C''$ is the image of triangle ABC under the central symmetry with center O ; OR, equivalently, under the rotation of 180° around O . $A''(4,1) B''(1,4) C''(3,4)$		
	Nonresponse		
99	Blank		

Advanced Mathematics

this item mercin

Block_Sequence M3_07

A regular polygon of n sides is inscribed in a circle of radius 1.

What is the value of the limit of the perimeter of the polygon as the number of sides *n* increases to infinity?

TIMSSAdvanced

2008

Content Domain

Algebra

Cognitive Domain

Reasoning

Maximum Points

2

Kev

See scoring guide

Advanced Mathematics

Block_Sequence M3_07

Code	Response	Item: MA13027			
	Correct Response				
20	Any of 2 pi, 2π , 6.28, 6.3, or $2\pi = 6.28$				
	Partially Correct Response				
10	$\lim_{n \to \infty} 2n \sin \frac{\pi}{n}$				
	Note: Accept also $\lim_{n\to\infty} 2n\sin\frac{100}{n}$				
11	2 pi r or $2\pi r$ or makes a statement such as "The circumference of the circle."	e value of the limit is equal to the			
	Incorrect Response				
70	π or pi or 3.14				
71	∞ or "infinity" or "the limit does not exist" or	equivalent statement			
79	Other incorrect (including crossed out, erased, stray marks, illegible, or off task) Examples:				
	1. $\lim_{n\to\infty} 2n\sin\frac{2\pi}{n}$ or $\lim_{n\to\infty} 2n\cos\frac{\pi}{n}$ or similar formula containing error				
	2. 1				
	3. "Almost a circle" or similar answers in words, not numerical values, stating that the shape of the polygon will become very close to that of a circle.				
	Nonresponse				
99	Blank				

Advanced Mathematics

Block_Sequence M3_08

For every natural number n, $1^2 + 3^2 + ... + (2n-1)^2 = \frac{n(4n^2 - 1)}{3}$

To prove this by MATHEMATICAL INDUCTION, what are the essential steps that will need to be carried out? (Do not do the actual proof.)

TIMSS Advanced

2008

Content Domain

Algebra

Cognitive Domain

Knowing

Maximum Points

1

Kev

See scoring guide

Advanced Mathematics

Block_Sequence M3_08

Code	Response	Item: MA13028			
	Correct Response				
	Correct description of the two steps involved in the proof (i.e., verbal or symbolic statements) equivalent to:				
10	Step 1: Prove that the statement is true for $n =$	1.			
	Step 2: Prove if the statement is true for any natural number $n = k$, then it also is true for $n = k + 1$.				
	Incorrect Response				
70	Describes Step 2 correctly but omits Step 1 or describes it incorrectly (e.g., "prove for $n = 0$ ", or "we must prove it for some small number")				
71	Gives correct proof of statement by induction with or without general statement of the induction method, or <u>performs</u> Step 2 correctly but omits Step 1, or describes Step 1 incorrectly				
72	<u>Describes</u> Step 2: Prove that if the statement is true for any natural number $n = k$, where k is greater than 1, then it also is true for $n = k - 1$ with an appropriate Step 1.				
79	Other incorrect (including crossed out, erased, stray marks, illegible, or off task)				
	Nonresponse				
99	Blank				

Advanced Mathematics

Block_Sequence M3_09

In the quadrilateral *ABCD* below, diagonals *AC* and *BD* intersect at point *E*. PROVE that *E* is the midpoint of *AC* and *BD*. Show all your work.

his itelling.

TIMSSAdvanced

2008

Content Domain

Geometry

Cognitive Domain

Reasoning

Maximum Points

2

Key

See scoring guide

C06100

Item ID MA13029		Advanced Mathematics		Block_Sequence M3_09	
Code	Response		Item: MA1	3029	
	Correct Response				
20	Any completely correct proof (e.g., showing diagonals have the same midpoint; proving that <i>ABCD</i> is a parallelogram and hence diagonals have the same midpoint; proving that <i>ABCD</i> is a parallelogram and hence diagonals bisect each other).				
	Partially Correct Respons	se			
10	Method that is partially completed (e.g., shows that point E (6, 3) is midpoint of only AC or BD ; or correct proof with step missing or one or two reasons incorrect or missing)				
	Incorrect Response				
79	Incorrect (including crossed out, erased, stray marks, illegible, or off task) Example:				
	States that "From the diagram, it is obvious that ABCD is a parallelogram, and hence its diagonals must bisect each other" or an equivalent statement				
	Nonresponse				
99	Blank				

Advanced Mathematics

Block_Sequence **M6_01**

An infinite geometric series has the first term 3 and the third term $\frac{1}{3}$. All the terms of the series are positive. What is the sum of the series?

- A 27
- $\mathbb{B} \frac{10}{2}$
- © 4

TIMSS Advanced

2008

Content Domain

Algebra

Cognitive Domain

Applying

Maximum Points

1

(ev

of Educational Achievement (IEA). All rights reserved.

Item ID MA23135

Advanced Mathematics

Block_Sequence **M6_02**

Item ID MA23135		Advanced Mathematics		Block_Sequence M6_02
Code	de Response Item: MA23135			3135
	Correct Response			
10	x > 2			
Incorrect Response				
79	Incorrect (including crossed out, erased, stray marks, illegible, or off task)			
Nonresponse				
99	Blank			

Advanced Mathematics

Block_Sequence **M6_03**

TIMSSAdvanced A spherical balloon is blown up. Which graph shows the volume *V* as a function 2008 of the diameter d? **Content Domain** Algebra (B) Cognitive Domain Reasoning **Maximum Points** (C) Key Α

Advanced Mathematics

Block_Sequence **M6_04**

Show your work.

TIMSSAdvanced

2008

Content Domain

Calculus

Cognitive Domain

Applying

Maximum Points

1

Kev

See scoring guide

MAZ3 165

This itemmercial commercial permission of the commercial permission of the

Advanced Mathematics

Block_Sequence **M6_04**

Code	Response	Item: MA23165			
	Correct Response				
10	$\frac{3}{2}$ or equivalent; by algebraic manipulations				
	Examples:				
	1) $\lim_{x \to 1} \frac{x^2 + x - 2}{x^2 - 1} = \lim_{x \to 1} \frac{(x+2)(x-1)}{(x+1)(x-1)} = \lim_{x \to 1}$	$\frac{x+2}{x+1} = \frac{3}{2}$			
	2) Let $x = h + 1$, then $\lim_{h \to 0} \frac{(h+3)}{(h+2)} = \frac{3}{2}$				
11	$\frac{3}{2}$ or equivalent; numerical approximation; sub	estitution of value of <i>x</i> close to 1			
	Example:				
	Let $x = 1.001$				
	$\frac{x^2 + x - 2}{x^2 - 1} = \frac{1.00201 + 1.001 - 2}{1.00201 - 1} = \frac{0.003}{0.002}$				
	Limit is 3/2				
12	1.5 using a graphing or symbolic calculator				
	Incorrect Response				
70	Calculator used—answer incorrect or explanation inadequate				
71	$\frac{3}{2}$ or equivalent; no method or wrong method given				
79	Other incorrect (including crossed out, erased, stray marks, illegible, or off task)				
	Nonresponse				
99	Blank				

Advanced Mathematics

Block_Sequence **M6_05**

 $f(x) = e^{\cos x}$

What is f'(x)?

TIMSSAdvanced

2008

Content Domain

Calculus

Cognitive Domain

Knowing

Inisite Connictionis (Nitholis) **Maximum Points**

Find f'(x), when $f(x) = \frac{3x+2}{x}$

Advanced Mathematics

Block_Sequence **M6_06**

TIMSSAdvanced

2008

Content Domain

Calculus

Cognitive Domain

Knowing

Maximum Points

This item may cial plant of the service of the serv Key

See scoring guide

Advanced Mathematics

Block_Sequence **M6_06**

Code	Response Item: MA23159				
	Correct Response				
10	Using quotient rule $\left(\frac{u}{v}\right)' = \frac{(u'v - uv')}{v^2}$ or, product rule $(uv)' = u'v + uv'$, obtains				
	$f'(x) = \frac{-5}{(x-1)^2}$				
11	Correct expression using calculator				
	Incorrect Response				
70	Calculator used—answer incorrect or explanat	ion inadequate			
71	Correct answer but no method shown				
72	Using quotient rule but not completing with correct answer				
73	Using product rule but not completing with correct answer				
79	Other incorrect (including crossed out, erased, stray marks, illegible, or off task)				
	Nonresponse				
99	Blank				

Advanced Mathematics

Block_Sequence M6_07

Sophia is studying the graph of the function $y \neq x + \cos x$ shown above. She says that the slope at point A is the same as the slope at point B. Explain why she is correct.

TIMSS Advanced

2008

Content Domain

Calculus

Cognitive Domain

Reasoning

Maximum Points

1

Key

See scoring guide

Advanced Mathematics

Block_Sequence **M6_07**

Code	Response	Item: MA23198		
	Correct Response			
10	Explanation involving differentiating and showing the gradient is the same at $x = \pi$ and $x = 2\pi$; or using the nature of the cosine function to establish that the gradient is the same at $x = \pi$ and $x = 2\pi$			
11	Correct answer using calculator with adequate explanation			
	Incorrect Response			
70	Calculator used—answer incorrect or explanation inadequate			
71	Differentiates correctly but does not give adequate explanation of why slopes are equal			
79	Other incorrect (including crossed out, erased, stray marks, illegible, or off task)			
	Nonresponse			
99	Blank			

Advanced Mathematics

Block_Sequence **M6_08**

TIMSSAdvanced

Content Domain

Calculus

2008

Cognitive Domain

Knowing

Misiter Marcial Physics of Bernard Consistency of the Consistency of t **Maximum Points**

Key

Advanced Mathematics

Block_Sequence M6_09

What is the equation of the circle shown above? Inisite Continuition is a continuity of the cont

(A)
$$x^2 + y^2 - 6x + 4y - 9 = 0$$

(B)
$$x^2 + y^2 + 6x - 4y + 9 = 0$$

(c)
$$x^2 + y^2 + 6x - 4y - 3 = 0$$

$$(D) x^2 + y^2 - 6x + 4y - 3 = 0$$

TIMSS Advanced

2008

Content Domain

Geometry

Cognitive Domain

Knowing

Maximum Points

of Educational Achievement (IEA). All rights reserved.

Advanced Mathematics

Block_Sequence **M6_10**

TIMSSAdvanced 2008 How many solutions does the equation $\sin x + \cos x = 2$ have in the interval 0 to 8π? **Content Domain** Geometry Cognitive Domain Reasoning this itemmercial e **Maximum Points** Key Copyright ©2009 International Association for the Evaluation TIMSS & PIRLS International Study Center

Advanced Mathematics

Block_Sequence **M6_11**

The figure shows a semicircular room seen from above. An architect is placing 10 flat windows in the room as shown. If the radius of the circle is r, which of the following equations would allow the architect to determine the width of each window?

This item ine

- (A) $w = r \sin 9^{\circ}$
- (B) $w = 2r \sin 9^{\circ}$
- \bigcirc $w = r \cos 18^{\circ}$
- $(D) \quad w = 2r \sin 18^{\circ}$

TIMSS Advanced

2008

Content Domain

Geometry

Cognitive Domain

Applying

Maximum Points

1

Key

В

Advanced Mathematics

Block_Sequence M7_01

TIMSSAdvanced

2008

Content Domain

Algebra

Cognitive Domain

Reasoning

Maximum Points

1

Key

В

A sheet of paper 0.01 cm thick is cut in two, and one piece is placed on top of the other. The two sheets of paper are then cut in two and made into a pile of 4 sheets. If this process could be repeated 8 more times, how thick would the pile of papers be?

- 0.2 cm
- (B) 10.24 cm
- © 20.48 cm
- D 32.0 cm

This itemmercial

Advanced Mathematics

Block_Sequence M7_02

If $x = -1 + \frac{1}{2}i$, which of the following is equal to $\frac{5}{x}$?

TIMSSAdvanced

2008

Content Domain

Algebra

Cognitive Domain

Applying

Maximum Points

Advanced Mathematics

Block_Sequence M7_03

The graph of the function f is shown above. The equation of the function f is given by $f(x) = ax^2 + bx + c$. Find the values of a, b, and c.

Show your work.

Copyright ©2009 International Association for the Evaluation of Educational Achievement (IEA). All rights reserved.

TIMSSAdvanced

2008

Content Domain

Algebra

Cognitive Domain

Knowing

Maximum Points

1

Key

See scoring guide

Advanced Mathematics

Block_Sequence M7_03

Code	Response	Item: MA23141			
	Correct Response				
10	All values correct: $a = 2$, $b = -2$, $c = -4$, or equiv	valently giving the full function			
	Method used: factorization				
11	All values correct: $a = 2$, $b = -2$, $c = -4$, or equiv	valently giving the full function			
	Method used: solving three simultaneous equations				
12	All values correct: $a = 2$, $b = -2$, $c = -4$, or equiv	valently giving the full function			
	Method used: solving three simultaneous equations by calculator				
13	All values correct: $a = 2$, $b = -2$, $c = -4$, or equiv	valently giving the full function			
	Method used: quadratic regression by calculator				
19	All values correct: $a = 2$, $b = -2$, $c = -4$, or equivalently giving the full function				
	Other correct method used				
	Incorrect Response				
70	Calculator used—answer incorrect or explanati	on inadequate (e.g., trial or error method)			
71	All values correct: $a = 2$, $b = -2$, $c = -4$, or equivalently giving the full function. No correct method shown.				
72	c = -4 with values of a and b either missing or incorrect.				
79	Other incorrect (including crossed out, erased, stray marks, illegible, or off task)				
	Nonresponse				
99	Blank				

Advanced Mathematics

this item mercial e

Block_Sequence M7_04

The function f is given by $f(x) = x^2 + 4$. Another function g is given by $g(u) = \sqrt{2u - 1}$. Determine the minimum value of g(f(x)).

- A) 0
- \bigcirc $\sqrt{3}$
- \bigcirc $\sqrt{\frac{7}{2}}$
- \bigcirc $\sqrt{7}$

AA2313

TIMSSAdvanced

2008

Content Domain

Algebra

Cognitive Domain

Knowing

Maximum Points

1

Key

D

Advanced Mathematics

Block_Sequence M7_05

A car starts braking as it approaches a road junction. After braking for t seconds, the car has traveled a distance of s(t) meters, where $s(t) = -t^2 + 20t$. How far does the car travel from the time the brakes are applied until it stops?

- (A) -20 m
- (B) 10 m
- (C) 50 m
- (D) 100 m

TIMSS Advanced

2008

Content Domain

Calculus

Cognitive Domain

Applying

Maximum Points

1

Key

 Γ

Advanced Mathematics

Block_Sequence M7_06

Which one of the graphs below has all of the following properties?

$$f(-1) > 0, f(3) < 0, f'(5) = 0, f''(5) < 0$$

(

TIMSSAdvanced

2008

Content Domain

Calculus

Cognitive Domain

Reasoning

Maximum Points

Key

С

Item ID MA23035A

Advanced Mathematics

This item mercial

Block_Sequence M7_07

$f(x) = x^4 - 2x^2$

A. What are the values of x at the points of intersection of the graph of f(x) with the x-axis?

B. What are the maximum and minimum points of the graph of f(x)?

Maximum point(s):

Minimum point(s):

AA2303

TIMSS Advanced

2008

Content Domain

Calculus

Cognitive Domain

Applying

Maximum Points

1

Kev

See scoring guide

Itam ID	MA23035A
	MAZJUJJA

Advanced Mathematics

Block_Sequence M7_07

Code	Response	Item: MA23035A			
	Correct Response				
10	All three of $-\sqrt{2}$, 0, and $\sqrt{2}$. Accept $\left(-\sqrt{2},0\right)$, $\left(0,0\right)$, $\left(\sqrt{2},0\right)$. $\sqrt{2}$ may be given as				
	1.41, 1.42, or a value between these.				
	Incorrect Response				
70	Any two of $-\sqrt{2}$, 0, and $\sqrt{2}$, or $\left(-\sqrt{2},0\right)$, $\left(0,0\right)$, $\left(\sqrt{2},0\right)$. $\sqrt{2}$ may be given as 1.41,				
	1.42, or a value between these.				
79	Incorrect (including crossed out, erased, stray marks, illegible, or off task)				
	Nonresponse				
99	Blank				

Code	Response	Item: MA23035B			
	Correct Response				
10	Maximum $(0,0)$, Minimum $(-1,-1)$ and $(1,-1)$				
	Incorrect Response				
70	Any two of the above correctly identified as maximum or minimum				
71	x values only given (i.e., maximum 1, minimum −1 and 1)				
79	Incorrect (including crossed out, erased, stray marks, illegible, or off task)				
Nonresponse					
99	Blank				

Item ID MA23035B

Advanced Mathematics

this item mercia

Block_Sequence M7_07

 $f(x) = x^4 - 2x^2$

A. What are the values of x at the points of intersection of the graph of f(x) with the x-axis?

x =

B. What are the maximum and minimum points of the graph of f(x)?

Maximum point(s):

Minimum point(s):

AA2303

TIMSS Advanced

2008

Content Domain

Calculus

Cognitive Domain

Applying

Maximum Points

1

Key

See scoring guide

Item ID MA23035B

Advanced Mathematics

Block_Sequence M7_07

Code	Response Item: MA23035A			
	Correct Response			
10	All three of $-\sqrt{2}$, 0, and $\sqrt{2}$. Accept $\left(-\sqrt{2},0\right)$, $\left(0,0\right)$, $\left(\sqrt{2},0\right)$. $\sqrt{2}$ may be given as			
	1.41, 1.42, or a value between these.			
	Incorrect Response			
70	Any two of $-\sqrt{2}$, 0, and $\sqrt{2}$, or $\left(-\sqrt{2},0\right)$,	$(0,0), (\sqrt{2},0). \sqrt{2}$ may be given as 1.41,		
	1.42, or a value between these.			
79	Incorrect (including crossed out, erased, stray marks, illegible, or off task)			
	Nonresponse			
99	Blank			

Code	Response	Item: MA23035B			
	Correct Response				
10	Maximum $(0,0)$, Minimum $(-1,-1)$ and $(1,-1)$				
	Incorrect Response				
70	Any two of the above correctly identified as maximum or minimum				
71	<i>x</i> values only given (i.e., maximum 1, minimum −1 and 1)				
79	Incorrect (including crossed out, erased, stray marks, illegible, or off task)				
Nonresponse					
99	Blank				

Advanced Mathematics

Block_Sequence M7_08

For the areas between the graph of f(x) and the x-axis shown above, area A = 4.8 units, area B = 0.8 units, and area C = 2 units.

What is the value of the definite integral $\int_{-2}^{4} f(x)dx$?

- A 5.6
- (B) 6.0
- (c) 6.8
- (D) 7.6

TIMSSAdvanced

2008

Content Domain

Calculus

Cognitive Domain

Knowing

Maximum Points

Key B. Key B. Key

Advanced Mathematics

Block_Sequence M7_09

2008

Content Domain

Calculus

Cognitive Domain

Knowing

Maximum Points

This item mercial expansion a

Key

Advanced Mathematics

Block_Sequence M7_10

 $\sin 2x = \frac{1}{2}$

What are the possible values for x between 0° and 360°?

- (A) 30°, 150°
- (B) 195°, 345°
- (c) 30°, 150°, 210°, 330°
- (D) 15°, 75°, 195°, 255°

Content Domain

Geometry

Cognitive Domain

Applying

Key Distriction of the Control of th **Maximum Points**

Advanced Mathematics

Block_Sequence **M7_11**

A straight line l passes through the points A (1,-2) and B (3, 4). Is the line l parallel with PQ?

Give a reason to support your answer.

Copyright ©2009 International Association for the Evaluation of Educational Achievement (IEA). All rights reserved.

TIMSSAdvanced

2008

Content Domain

Geometry

Cognitive Domain

Applying

Maximum Points

1

Key

See scoring guide

Advanced Mathematics

Block_Sequence **M7_11**

Code	Response	Item: MA23170			
	Correct Response				
10	No, with correct work showing gradients are different, and leading to conclusion that l and PQ are not parallel.				
11	No, with correct work leading to conclusion that l and PQ are not parallel using method other than showing gradients are different. For example, shows angle between the lines is not 0°				
	Incorrect Response				
70	No, with no correct reason				
71	Yes, with or without reason				
79	Other incorrect (including crossed out, erased, stray marks, illegible, or off task)				
	Nonresponse				
99	Blank				

