Magnet Precalculus C Semester Exam Review

Devin D. Droddy

Contents

Chapter 1		Page 2
1.1	Solving polynomials	2
1.2	Domain and range of functions	2
1.3	Increasing, decreasing, and constant intervals	3

Chapter 1

1.1 Solving polynomials

Question 1

Solve for x where $2x^3 = -3x^2 + 2x$

Solution: Subtract $-3x^2 + 2x$ from both sides to find that $2x^3 + 3x^2 - 2x = 0$. Factor x from that identity to find that $x(2x^2 + 3x - 2) = 0$. Multiplying 2 by -2 tells us that we need to find two numbers which sum to 3 and produce -4. These numbers are -1 and 4. 2x + 4 can be simplified to x + 2. We now know that the factors of $2x^2 + 3x - 2$ are x + 2 and 2x - 1. Therefore, $x(2x^2 + 3x - 2) = x(x + 2)(2x - 1)$. The values of x are 0, -2, and $\frac{1}{2}$.

Question 2

Solve for x where $x^2 = 3x - 1$

Solution: Subtract 3x - 1 from both sides to find that $x^2 - 3x + 1 = 0$. There are no two numbers which sum to -3 and produce 1, so we must use the quadratic formula. $x = \frac{3 \pm \sqrt{9 - 4(1 + 1)}}{2} = \boxed{\frac{3 \pm \sqrt{5}}{2}}$.

1.2 Domain and range of functions

Question 3

Find the domain and range of the function $f(x) = x^2 + sqrtx - 3$

Solution: The more restrictive function is the square root function, so we must look there to find our domain restriction. We can see that the square root is translated 3 units to the right, so the domain is $[3, \infty)$. At x = 3, $y = 3^2 + sqrt3 - 3 = 3^2 = 9$, so the point at which the curve ends is (3, 9). The range is $[9, \infty)$

Question 4

Find the domain and range of the function $f(x) = \frac{x-5}{x^2-x-20}$

Solution: $x^2 - x - 20$ can be factored into (x + 4)(x - 5), and since x - 5 is in the numerator and denominator, it can be removed. We are left with $f(x) = \frac{1}{x+4}$. This is a reciprocal function, translated 4 units left. This means that its domain is \mathbb{R} ; $x \neq -4$, and its range is \mathbb{R} ; $y \neq 0$, since its asymptotes are at y = 0 and x = -4.

1.3 Increasing, decreasing, and constant intervals

Question 5

Determine the intervals over which the function $f(x) = (x^2 - 4)^2$ is increasing, decreasing, or constant