Assignment -2

Dat a Visualization and Pre-processing

Load the dataset

import pandas as pd
df=pd.read_csv("/content/Churn_Modelling (2).csv") # import dataset
print(df)

0 1 2 3 4	RowNumbe	1 15634 2 15647 3 15619 4 15701 5 15737	602 F 311 304 354	Surname Hargrave Hill Onio Boni Mitchell	6 5 6 8	ne Ge 19 08 02 99 50	ography France Spain France France Spain	Female Female Female Female	Age 42 41 42 39 43	\
9995 9996 9997 9998 9999	999 999 999 1000	97 15569 98 15584 99 15682	892 Jo 532 355 Sa	Obijiaku Ohnstone Liu Abbatini Walker	5 7 7	71 16 09 72 92	France France France Germany France	Male Male Female Male Female	39 35 36 42 28	
0 1 2 3 4	Tenure 2 1 8 1 2	Balance 0.00 83807.86 159660.80 0.00 125510.82	NumOfF	Products 1 1 3 2	HasCrCard 1 0 1 0 1)	ctiveMem	nber \ 1 1 0 0 1		
9995 9996 9997 9998 9999	5 10 7 3 4	0.00 57369.61 0.00 75075.31 130142.79		 2 1 1 2	 1 1 0 1 1	1		0 1 1 0 0		
0 1 2 3 4 9995 9996 9997 9998 9999	11 11 9 7 9 10 4	edSalary E 01348.88 12542.58 13931.57 93826.63 79084.10 96270.64 01699.77 12085.58 92888.52 88190.78	xited							

[10000 rows x 14 columns]

1.Univarient Analysis

There are three ways to perform univarient analysis

i) Summary statistics

```
# Summary statistics
import pandas as pd
df=pd.read_csv("/content/Churn_Modelling (2).csv")
#mean of CreditScore
M=df['CreditScore'].mean()
#median of CreditScore
Me=df['CreditScore'].median()
# standard deviation of CreditScore
std = df['CreditScore'].std()
print("mean value of CreditScore is {}".format(M))
print("median value of CreditScore is {}".format(Me))
print("Standard deviation of CreditScore is {}".format(std))
     mean value of CreditScore is 650.5288
     median value of CreditScore is 652.0
     Standard deviation of CreditScore is 96.65329873613035
 ii) Frequency table
#Frequency table
import pandas as pd
df=pd.read_csv("/content/Churn_Modelling (2).csv")
#frequency table for age
ft=df['Age'].value_counts()
print("Frequency table for Age is given below")
print("{}".format(ft))
     Frequency table for Age is given below
     37
           478
           477
     38
     35
           474
           456
     36
     34
           447
     92
             2
             1
     82
     88
              1
     85
             1
     83
```

Name: Age, Length: 70, dtype: int64

iii) Chart s

#Chart

import matplotlib.pyplot as plt
dfs = df.head() # print first five table from top
print(dfs)

#box plot for Balance column

dfs.boxplot(column="Balance",grid=False,color="orange")
plt.title('Box plot')

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender
0	1	15634602	Hargrave	619	France	Femal ϵ
1	2	15647311	Hill	608	Spain	Femal ϵ
2	3	15619304	Onio	502	France	Femal ϵ
3	4	15701354	Boni	699	France	Femal ϵ
4	5	15737888	Mitchell	850	Spain	Female

	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	
0	2	0.00	1	1	1	
1	1	83807.86	1	0	1	
2	8	159660.80	3	1	0	
3	1	0.00	2	0	0	
4	2	125510.82	1	1	1	

Estima [.]	tedSal	ary	Exited
0	101348	.88	1
1	112542	.58	0
2	113931	.57	1
3	93826	.63	0
4	79084	.10	0
Text(0.5,	1.0.	'Box	plot')


```
# Histogram for Credit Score
```

df.hist(column="CreditScore" ,grid=True, edgecolor ='black', color ='green')
plt.title('Histogram')

Text(0.5, 1.0, 'Histogram')

Density curve

import seaborn as sns #statistical data visualization

sns.kdeplot(df['CreditScore'])
plt.title('Density Curve')

Text(0.5, 1.0, 'Density Curve')

2. Bi - Variat e Analysis

There are three common ways to perform bivariate analysis

i. Scatterplots

```
import matplotlib.pyplot as plt # library for charts

dfs1 = df.head(20)
plt.scatter(dfs1.CreditScore,dfs1.Balance)
plt.title('Scatterplots-- Banking')
```

plt.xlabel("CreditScore")
plt.ylabel("Balance")

Text(0, 0.5, 'Balance')

ii.Correlation Coefficient

df.corr()

	RowNumber	CustomerId	CreditScore	Age	Tenure	Balance	Nι
RowNumber	1.000000	0.004202	0.005840	0.000783	-0.006495	-0.009067	
CustomerId	0.004202	1.000000	0.005308	0.009497	-0.014883	-0.012419	
CreditScore	0.005840	0.005308	1.000000	-0.003965	0.000842	0.006268	
Age	0.000783	0.009497	-0.003965	1.000000	-0.009997	0.028308	
Tenure	-0.006495	-0.014883	0.000842	-0.009997	1.000000	-0.012254	
Balance	-0.009067	-0.012419	0.006268	0.028308	-0.012254	1.000000	
NumOfProducts	0.007246	0.016972	0.012238	-0.030680	0.013444	-0.304180	
HasCrCard	0.000599	-0.014025	-0.005458	-0.011721	0.022583	-0.014858	
IsActiveMember	0.012044	0.001665	0.025651	0.085472	-0.028362	-0.010084	
EstimatedSalary	-0.005988	0.015271	-0.001384	-0.007201	0.007784	0.012797	
Exited	-0.016571	-0.006248	-0.027094	0.285323	-0.014001	0.118533	

iii. Simple Linear Regression

```
import statsmodels.api as sm
# response variable
y = df['CreditScore']

# explanatory variable
x = df[['Balance']]

#add constant to predictor variables
x = sm.add_constant(x)

#fit linear regression model
model = sm.OLS(y, x).fit()

#view model summary
print(model.summary())
```

OLS Regression Results

Dep. Variable Model: Method: Date: Time: No. Observati Df Residuals: Df Model: Covariance Ty	ions:		OLS pares 2022 08:20 0000 9998 1	F-sta Prob	======================================	======= c):	0.000 -0.000 0.3929 0.531 -59900. 1.198e+05 1.198e+05
========	coef	std err				[0.025	0.975]
		1.529	424	.948	0.000		652.783 4.01e-05
Omnibus: Prob(Omnibus) Skew: Kurtosis:) -(2.594).000).072 2.574	Jarqu Prob(Cond.	No.		2.014 84.114 5.43e-19 1.56e+05

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly sp [2] The condition number is large, 1.56e+05. This might indicate that there are strong multicollinearity or other numerical problems.
- /usr/local/lib/python3.7/dist-packages/statsmodels/tsa/tsatools.py:142: FutureWarni x = pd.concat(x[::order], 1)

3. Multi - Variate Analysis

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
```

df=sns.catplot(x="Geography",y="EstimatedSalary",hue="Gender",kind="swarm",data=df)
print(df)

/usr/local/lib/python3.7/dist-packages/seaborn/categorical.py:129
warnings.warn(msg, UserWarning)

/usr/local/lib/python3.7/dist-packages/seaborn/categorical.py:129
warnings.warn(msg, UserWarning)

/usr/local/lib/python3.7/dist-packages/seaborn/categorical.py:129
warnings.warn(msg, UserWarning)

<seaborn.axisgrid.FacetGrid object at 0x7f7e9e206dd0>

4. Perform descriptive statistics on the dataset

```
#load data set into ld
ld= pd.read_csv("/content/Churn_Modelling (2).csv")
five = ld.head() #for print first five rows
```

information about used data set
ld.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10000 entries, 0 to 9999
Data columns (total 14 columns):

#	Column	Non-Null Count	Dtype
0	RowNumber	10000 non-null	int64
1	CustomerId	10000 non-null	int64
2	Surname	10000 non-null	object
3	CreditScore	10000 non-null	int64
4	Geography	10000 non-null	object
5	Gender	10000 non-null	object
6	Age	10000 non-null	int64
7	Tenure	10000 non-null	int64

8	Balance	10000	non-null	float64
9	NumOfProducts	10000	non-null	int64
10	HasCrCard	10000	non-null	int64
11	IsActiveMember	10000	non-null	int64
12	EstimatedSalary	10000	non-null	float64
13	Exited	10000	non-null	int64
1.4	67 (64(0)			• •

dtypes: float64(2), int64(9), object(3)

memory usage: 1.1+ MB

ld.describe() #description of the data in the Dataset

	RowNumber	CustomerId	CreditScore	Age	Tenure	Balanc
count	10000.00000	1.000000e+04	10000.000000	10000.000000	10000.000000	10000.00000
mean	5000.50000	1.569094e+07	650.528800	38.921800	5.012800	76485.88928
std	2886.89568	7.193619e+04	96.653299	10.487806	2.892174	62397.40520
min	1.00000	1.556570e+07	350.000000	18.000000	0.000000	0.00000
25%	2500.75000	1.562853e+07	584.000000	32.000000	3.000000	0.00000
50%	5000.50000	1.569074e+07	652.000000	37.000000	5.000000	97198.54000
75%	7500.25000	1.575323e+07	718.000000	44.000000	7.000000	127644.24000
max	10000.00000	1.581569e+07	850.000000	92.000000	10.000000	250898.09000

5. Handle the Missing values

ld.isnull().any()

RowNumber	False
CustomerId	False
Surname	False
CreditScore	False
Geography	False
Gender	False
Age	False
Tenure	False
Balance	False
NumOfProducts	False
HasCrCard	False
IsActiveMember	False
EstimatedSalary	False
Exited	False
dtype: bool	

ld.isnull().sum()

0
0
0
0
0
0
0
0
0
0
0
0
0
0

6. Find the outliers and replace the outliers

```
#occurence of outliers
ld1= pd.read_csv("/content/Churn_Modelling (2).csv")
sns.boxplot(ld1.CreditScore)
```

```
/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43:
   FutureWarning
<matplotlib.axes._subplots.AxesSubplot at 0x7f7e8fe10610>
```

```
#Use Mean Detection and Nearest Fill Methods - Outliers
```

```
Q1= ld1.CreditScore.quantile(0.25)
Q3=ld1.CreditScore.quantile(0.75)
IQR=Q3-Q1
upper_limit =Q3 + 1.5*IQR
lower_limit =Q1 - 1.5*IQR
ld1['CreditScore'] = np.where(ld1['CreditScore']>upper_limit,30,ld1['CreditScore'])
sns.boxplot(ld1.CreditScore)
```

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning
FutureWarning

<matplotlib.axes._subplots.AxesSubplot at 0x7f7e8fd40550>

7. Check for Categorical columns and perform encoding

ld1.head(5)

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	
0	1	15634602	Hargrave	619	France	Female	42	2	
1	2	15647311	Hill	608	Spain	Female	41	1	

#label encoder
from sklearn.preprocessing import LabelEncoder
le=LabelEncoder()
ld1.Gender= le.fit_transform(ld1.Gender)
ld1.head(5)

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	
0	1	15634602	Hargrave	619	France	0	42	2	
1	2	15647311	Hill	608	Spain	0	41	1	
2	3	15619304	Onio	502	France	0	42	8	1
3	4	15701354	Boni	699	France	0	39	1	
4	5	15737888	Mitchell	850	Spain	0	43	2	1

#one hot encoding
ld1_main=pd.get_dummies(ld1,columns=['Geography'])
ld1_main.head()

	RowNumber	CustomerId	Surname	CreditScore	Gender	Age	Tenure	Balance	Nι
0	1	15634602	Hargrave	619	0	42	2	0.00	
1	2	15647311	Hill	608	0	41	1	83807.86	
2	3	15619304	Onio	502	0	42	8	159660.80	
3	4	15701354	Boni	699	0	39	1	0.00	
4	5	15737888	Mitchell	850	0	43	2	125510.82	

8. Split the data into dependent and independent variables

```
df=pd.read_csv("/content/Churn_Modelling (2).csv")
X = df.iloc[:, :-1].values
print(X)

    [[1 15634602 'Hargrave' ... 1 1 101348.88]
        [2 15647311 'Hill' ... 0 1 112542.58]
        [3 15619304 'Onio' ... 1 0 113931.57]
        ...
        [9998 15584532 'Liu' ... 0 1 42085.58]
        [9999 15682355 'Sabbatini' ... 1 0 92888.52]
        [10000 15628319 'Walker' ... 1 0 38190.78]]

#Extracting the Dataset to Get the Dependent Vector
Y = df.iloc[:, -1].values
print(Y)

        [1 0 1 ... 1 1 0]
```

9. Scale the independent variables

```
w = df.head()
q = w[['Age','Balance','EstimatedSalary']] #spliting the dataset into measureable values
```

	Age	Balance	EstimatedSalary
0	42	0.00	101348.88
1	41	83807.86	112542.58
2	42	159660.80	113931.57
3	39	0.00	93826.63
4	43	125510.82	79084.10

```
from sklearn.preprocessing import scale # library for scallling
from sklearn.preprocessing import MinMaxScaler
mm = MinMaxScaler()
x_scaled = mm.fit_transform(q)
x_scaled
                     , 0. , 0.63892099],
     array([[0.75
                     , 0.52491194, 0.96014087],
           [0.5
           [0.75
                     , 1. , 1.
                     , 0. , 0.42305883],
           ΓΟ.
                     , 0.78610918, 0.
           [1.
                                           ]])
```

from sklearn.preprocessing import StandardScaler
sc = StandardScaler()

	Age	Balance	EstimatedSalary
0	0.442326	-1.137636	0.093376
1	-0.294884	0.154344	0.962856
2	0.442326	1.323692	1.070747
3	-1.769303	-1.137636	-0.490921
4	1.179536	0.797236	-1.636059

10. Split the data into training and testing

```
x= df[['Age','Balance','EstimatedSalary']]
x
```

```
y = df['Balance']
              0
                                                0.00
              1
                                     83807.86
              2
                                   159660.80
              3
                                                0.00
              4
                                   125510.82
              9995
                                                0.00
              9996
                                     57369.61
              9997
                                                0.00
              9998
                                     75075.31
              9999
                                   130142.79
              Name: Balance, Length: 10000, dtype: float64
#scaling
from sklearn.preprocessing import StandardScaler, MinMaxScaler
sc = StandardScaler()
x_scaled1 = sc.fit_transform(x)
x_scaled1
              array([[ 0.29351742, -1.22584767, 0.02188649],
                                [ 0.19816383, 0.11735002, 0.21653375],
                                [ 0.29351742, 1.33305335, 0.2406869 ],
                                 [-0.27860412, -1.22584767, -1.00864308],
                                 [ 0.29351742, -0.02260751, -0.12523071],
                                 [-1.04143285, 0.85996499, -1.07636976]])
#train and test data
from sklearn.model_selection import train_test_split
x_{train}, x_{test}, y_{train}, y_{test} = train_{test}, train_{te
x_train
              array([[-0.56466489, 1.11721307, -0.77021814],
                                [ 0.00745665, -1.22584767, -1.39576675],
                                 [ 3.53553951, 1.35419118, -1.49965629],
                                 [-0.37395771, 1.35890908, 1.41441489],
                                 [-0.08789694, -1.22584767, 0.84614739],
                                 [0.86563897, 0.50630343, 0.32630495]])
x_train.shape
               (7000, 3)
x_test
              array([[-0.37395771, 0.87532296, 1.61304597],
                                 [ 0.10281024, 0.42442221, 0.49753166],
```

```
[ 0.29351742, 0.30292727, -0.4235611 ],
             . . . ,
             [ 0.10281024,
                            1.46672809, 1.17045451],
                            1.25761599, -0.50846777],
             [ 2.86806437,
                            0.19777742, -1.15342685]])
             [ 0.96099256,
x_test.shape
     (3000, 3)
y_train
     7681
              146193.60
     9031
                   0.00
     3691
              160979.68
     202
                   0.00
     5625
              143262.04
                . . .
     9225
              120074.97
     4859
              114440.24
     3264
              161274.05
     9845
                   0.00
     2732
              108076.33
     Name: Balance, Length: 7000, dtype: float64
y_test
     9394
              131101.04
     898
              102967.41
     2398
               95386.82
     5906
              112079.58
     2343
              163034.82
     4004
                   0.00
     7375
               80926.02
     9307
              168001.34
     8394
              154953.94
     5233
               88826.07
     Name: Balance, Length: 3000, dtype: float64
```

