Linhas de Transmissão

Antônio Sebastian Fernandes Rabelo 10797781

Engenharia de Computação - EESC/ICMC - USP Paracatu - MG, Brasil

antoniosebastian@usp.br

Gabriell Tavares Luna 10716400

Engenharia de Computação - EESC/ICMC - USP Aurora - CE, Brasil gabrielltavsb@usp.br Vitor Oliveira Caires 10748027

Engenharia de Computação - EESC/ICMC - USP Salvador - BA, Brasil vitorcaires@usp.br

Resumo—Relatório da implementação de um código em Python que permite, com o método FDTD aplicado às Equações do Telegrafista, a visualização de tensão e corrente em transientes em uma linha de transmissão sem perdas.

Palavras-chave: Python, FDTD, Equações do Telégrafista, linha de transmissão.

I. Introdução

Como primeiro projeto da disciplina SEL0612 - Ondas Eletromagnéticas, o objetivo é estudar o método de análise de dados FDTD (finite-difference time-domain), e observar o comportamento das propriedades físicas de uma linha de transmissão, e como as propriedades intrínsecas de uma linha (Resistência, Condutância, Indutância e Capacitância) afetam a forma da onda de transmissão de corrente e tensão, através do comprimento da linha, do gerador à carga, e também em sentido oposto. Implementando um código em Python para visualização de tensão e corrente em transientes em uma linha de transmissão sem perdas.

II. LINHA DE TRANSMISSÃO

De acordo com Sadiku[6], linha de transmissão é uma estrutura de guiamento composta por dois ou mais fios condutores paralelos, utilizados para conectar o gerador à carga. Aplicáveis na distribuição de potência e também na telecomunicação.

III. EQUAÇÕES FUNDAMENTAIS DA LINHA DE TRANSMISSÃO

Nesse trabalho, utilizamos das equações do telegrafista, que descrevem, de modo geral, o comportamento de ondas de tensão e corrente através da linha. Essas equações lineares são resultados da derivação das equações de Maxwell, podemos dividi-las em duas partes: a propagante, e a contra propagante do sinal, que serão explicadas posteriormente.

As equações do telegrafista são as seguintes:

$$-\frac{\partial v(z,t)}{\partial z} = Ri(z,t) + L\frac{\partial i(z,t)}{\partial t}$$
 (1)

$$-\frac{\partial i(z,t)}{\partial z} = Gv(z,t) + C\frac{\partial v(z,t)}{\partial t}$$
 (2)

pp R denota a resistência por metro da linha, com unidade $\frac{\Omega}{m}$, L denota a indutância por metro da linha, unidade $\frac{H}{m}$. Ambas são representadas por elementos em série no circuito. Por outro lado, a capacitância por metro (C), medida em $\frac{F}{m}$, e a condutância por metro (G), de unidade $\frac{S}{m}$, podem ser representados por elementos em paralelo no circuito simplificado na figura 1. Sendo que cada componente elementar representa um segmento infinitamente pequeno (ΔZ) da linha de transmissão.

Figura 1. Representação da linha por componentes elementares. Figura extraída da Ref. [1].

IV. O MÉTODO FDTD

O modelo de discretização das equações de Maxuell foi proposto por Kane Yee[2] em 1996, porém não recebeu o devido destaque científico naquele momento, devido à limitação da capacidade dos computadores da época.

As diferenças finitas no domínio do tempo, aplicadas as equações do telegrafista, tem como propriedade a discretização das derivadas da tensão e da corrente, dividindo o espaço em

uma grade de pequenas diferenças de tempo fixo e mínimo, como mostrado na figura 2. Podemos então computar funções mais complexas e suas derivadas tomando a diferença entre dois pontos vizinhos da grade.

Figura 2. Pontos discretos no tempo. Figura extraída da Ref. [3].

Discretizando o espaço, temos as seguintes consequências nas equações do telegrafista[3]:

$$z_k = k\Delta z \tag{3}$$

$$t_n = n\Delta t \tag{4}$$

Por fim, as derivadas são transformadas em diferenças discretas entre os pontos:

$$-\frac{v_{k+1}^n - v_{k-1}^n}{2\Delta z} = Ri_k^n + L\frac{i_k^{n+1} - i_k^{n-1}}{2\Delta t}$$
 (5)

$$-\frac{i_{k+1}^n - i_{k-1}^n}{2\Delta z} = Gv_k^n + C\frac{v_k^{n+1} - v_k^{n-1}}{2\Delta t}$$
 (6)

A partir dessa fórmula, podemos escrever um programa que toma o valor ponto a ponto da grade, sendo capaz de processar esses dados, e então, calcular novos valores pontuais. Esse processo é repetido para cada ponto discreto na linha de transmissão.

V. PARÂMETROS DA LINHA DE TRANSMISSÃO

A. Linha de transmissão sem perdas

"Uma linha de transmissão é dita sem perdas se os condutores da linha são perfeitos e o meio dielétrico que os separa é sem perdas." [7] Dessa forma, (R) e (G) das equações do telegrafista (1 e 2) são nulos, logo:

$$R = 0, G = 0 \tag{7}$$

Então, como:

$$Z_0 = \sqrt{\left(\frac{L}{C}\right)} \tag{8}$$

$$U_f = \frac{1}{\sqrt{(LC)}}\tag{9}$$

Temos que:

$$L = \frac{Z_0}{U_f} \tag{10}$$

$$C = \frac{1}{\sqrt{(U_f Z_0)}}\tag{11}$$

Condições iniciais na fonte:

$$I_{[0,0]} = \frac{R_s}{R_s + Z_0} \tag{12}$$

$$V_{[0,0]} = Z_0 I_{[0,0]} \tag{13}$$

Algoritmo utilizado para calcular os valores de tensão e corrente, evitando os "meio passos":

$$\tilde{V}_{[k,n]} = \frac{C\Delta Z}{\Delta t} V_{[k,n]} \tag{14}$$

Condições iniciais no comprimento:

$$\tilde{V}_{[k,0]} = 0, para: k = 1, ..., K - 1$$
 (15)

$$I_{[k,0]} = 0, para: k = 1, ..., K - 2$$
 (16)

Para n > 2:

Condição de borda na fonte:

$$\tilde{V}_{[0,n]} = (1 - \beta_1)\tilde{V}_{[0,n-1]} - 2I_{[0,n-1]} + \frac{2}{R_s}V_0(t_{n-1}) \quad (17)$$

Atualização no comprimento:

$$\tilde{V}_{[k,n]} = \tilde{V}_{[k,n-1]} - (I_{[k,n-1]} - I_{[k-1,n-1]}), para: k = 1, ..., K-1$$
(18)

Condição de borda na carga, se não for um curto circuito:

$$\tilde{V}_{[K-1,n]} = (1 - \beta_2)\tilde{V}_{[K,n-1]} + 2I_{[K-1,n-1]}$$
 (19)

Condição de borda em curto circuito ($R_l = 0$):

$$V_{[K-1,n]} = 0 (20)$$

Atualização na corrente

$$I_{[k,n]} = I_{[k,n-1]} - r(\tilde{V}_{[k+1,n]} - \tilde{V}_{[k,n]}), para: k = 0, ..., K-2$$
(21)

Constantes utilizadas no algoritmo:

$$\beta_1 = \frac{2\Delta t}{R_S C \Delta z} \tag{22}$$

$$\beta_2 = \frac{2\Delta t}{R_L C \Delta z} \tag{23}$$

$$r = \frac{(\Delta t)^2}{LC(\Delta z)^2} \tag{24}$$

Condição de estabilidade do algoritmo FDTD[8]:

$$dt \le \frac{dz}{U_f} \tag{25}$$

Corrente e tensão teóricas no tempo infinito: (usadas para comparar com os resultados)

$$I_{\infty} = \frac{Vs}{(R_s + R_l)} \tag{26}$$

$$V_{\infty} = \frac{R_l V_s}{(R_s + R_l)} \tag{27}$$

VI. O PROGRAMA E COMO FOI APLICADO

O programa, escrito em Python, está disponível no link do GitHub¹, no arquivo "FDTD.py", bem como o "Readme", que contêm os requerimentos, descrição do repositório e como executar o código. Todo o funcionamento do código foi descrito através dos comentários presentes no mesmo.

Como o problema proposto estabelece alguns parâmetros, o problema permite que se estabeleça os demais parâmetros da simulação, assim, utilizamos os seguintes parâmetros fixos:

- Tamanho da divisão no comprimento da linha: $dz = 1e^{-3}$
- Razão entre velocidade de propagação e $\frac{dz}{dt}$, r = 0.5

Sendo assim, o programa permite que o usuário escolha seguintes parâmetros:

- Fonte de Tensão (s), que pode ser uma das duas fontes propostas.
- Impedância da carga (R_l)
- Número de divisões no comprimento da linha (K)
- Número de reflexões da simulação (r)

Determinados todos os parâmetros da simulação, o código calcula os valores teóricos e utiliza do algoritmo FDTD para simular a corrente e tensão no comprimento, em função do tempo.

Como saída, o programa informa os valores teóricos e simulados, além do tempo gasto de processamento. Então é utilizada uma interface gráfica que exibe uma animação da corrente e tensão variando no tempo. É possível também alterar a animação para que se exiba as variações no tempo em função de uma posição escolhida.

VII. RESULTADOS E CONCLUSÕES

Após inserir os parâmetros do programa, conseguimos obter os seguintes resultados a partir das simulações feitas no código. O tempo de simulação total foi igual ao proposto como estacionário, isto é, dez (10) vezes o tempo de ida ou de retorno):

$$t_{\infty} = \frac{10l}{U_f} \tag{28}$$

Para calcular a tensão e corrente simuladas, foi calculada a média dos valores na linha de transmissão, no tempo estacionário.

Tabela I RESULTADOS DE Vs(t)=2u(t)

Casos	Tensões		Correntes	
(R_l)	Teórica	Simulada	Teórica	Simulada
100	1.1428	1.1428	0.0114	0.0114
0	0	-5.0321e-6	0.0266	0.0266
∞	2	1.9993	0	-1.6803e-8

Figura 3. Valores na posição z=0, em função do tempo para a fonte $V_{\rm S}(t)=2u(t)$

Figura 4. Valores na posição z=0, em função do tempo para a fonte $V(t)=u(t)-u(t-rac{1}{10U_f})$

Figura 5. Valores em função da distância para a fonte $V_s(t) = 2u(t)$

¹Link do GitHub: https://github.com/gtavaresl/FDTD-tline

Figura 6. Valores em função da distância para a fonte visto que temos $V(t)=u(t)-u(t-\frac{l}{10U_f})$

Para a fonte $V_s(t) = 2u(t)$, com u(t) sendo a função degrau, obtemos a Tabela [1].

Para a fonte $V_s(t)=u(t)-u(t-\frac{l}{10U_f})$, visto que $U_f=0,9c$ é a velocidade dos sinais de tensão e de corrente, obtemos a Tabela [2] de valores experimentas.

Tabela II $\mbox{Resultados com } V(t) = u(t) - u(t - \frac{l}{10U_f})$

Casos	Tensões		Correntes	
(R_l)	Teórica	Simulada	Teórica	Simulada
100	0	1.4543e-7	0	-2.4460e-9
0	0	-5.9695e-5	0	1.1235e-6
∞	0	-5.9695e-5	0	-1.1235e-6

Podemos concluir que os resultados computados se encontram muito fortemente perto do esperado, visto que a aproximação dos valores finais tende a convergir conforme aumentamos os valores de ${\bf K}$ e de reflexões ${\bf r}$, que diretamente afeta o tempo necessário para processamento dos valores.

REFERÊNCIAS

- [1] L. A. Ambrosio, "AULAS 1 A 7 LI-NHAS DE TRANSMISSÃO", SEL USP, http://www.sel.eesc.usp.br/leonardo/SEL0612/transmissionlines.pdf(current May. 19, 2020).
- [2] Kane Yee, "Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media", in IEEE Transactions on Antennas and Propagation, vol. 14, May 1966.
- [3] J. R. Nagel. "The Finite-Difference Time-Domain (FDTD) Algorithm", http://drjamesnagel.com/notes/Nagel%20-%20FDTD_Introduction.pdf.
- [4] R. L. Luz, "O método de diferenças finitas no domínio do tempo em eletromagnetismo", Trabalho de Conclusão de Curso, Licenciatura em Matemática, Universidade Federal de Santa Catarina, 2013.
- [5] M. N. O. Sadiku, Numerical Techniques in Electromagnetics, 2nd.ed. 2001.
- [6] M. N. O. Sadiku, Elementos de Eletromagnetismo, CRC Press LLC, Florida, 3rd.ed. 2012.
- [7] D. B. Davidson, Computational Electromagnetics for RF and Microwave Engineering, United States of America by Cambridge University Press, New York, 2005.(pg 29-67).