ECON2125/4021/8013

Lecture 16

John Stachurski

Semester 1, 2015

Analysis on the Line

Recall that $\mathbb R$ denotes the continuous real line

Can be thought of as $\mathbb{Q} \cup \mathbb{I}$ where

- ullet $\mathbb Q$ is the rational numbers
- It is the irrational numbers

Facts

- Between any two real numbers a < b there exists a rational number
- Between any two real numbers a < b there exists an irrational number

Thus, the rationals and irrationals are "all mixed together"

If $x \in \mathbb{R}$ then $|x| := \max\{x, -x\}$ called its **absolute value**

Fact. For any $x, y \in \mathbb{R}$, the following statements hold

- 1. $|x| \le y$ if and only if $-y \le x \le y$
- 2. |x| < y if and only if -y < x < y
- 3. |x| = 0 if and only if x = 0
- 4. |xy| = |x||y|
- 5. $|x + y| \le |x| + |y|$

Last inequality is called the triangle inequality

Ex. Using these rules, show that if $x, y, z \in \mathbb{R}$, then

- 1. $|x y| \le |x| + |y|$
- 2. $|x-y| \le |x-z| + |z-y|$ (Hint: x-y = x-z+z-y)

Bounded sets

 $A \subset \mathbb{R}$ is called **bounded** if $\exists M \in \mathbb{R}$ s.t. $|x| \leq M$, all $x \in A$

Example. Every finite subset A of $\mathbb R$ is bounded

$$\therefore$$
 Set $M := \max\{|a| : a \in A\}$

Example. \mathbb{N} is unbounded

: For any $M \in \mathbb{R}$ there is an n that exceeds it

Example. (a,b) is bounded for any a,b

 \therefore Each $x \in (a, b)$ satisfies $|x| \le M := \max\{|a|, |b|\}$

Ex. Check it

Fact. If A and B are bounded sets then so is $A \cup B$

Proof: Let A and B be bounded sets and let $C := A \cup B$

By definition, $\exists\, M_A$ and M_B with

$$|a| \le M_A$$
, all $a \in A$, $|b| \le M_B$, all $b \in B$

Let $M_C := \max\{M_A, M_B\}$ and fix any $x \in C$

$$x \in C \implies x \in A \text{ or } x \in B$$

$$|x| \le M_A$$
 or $|x| \le M_B$

$$|x| \leq M_C$$

ϵ -balls

Given $\epsilon > 0$ and $a \in \mathbb{R}$, the ϵ -ball around a is

$$B_{\epsilon}(a) := \{ x \in \mathbb{R} : |a - x| < \epsilon \}$$

Equivalently,

$$B_{\epsilon}(a) = \{ x \in \mathbb{R} : a - \epsilon < x < a + \epsilon \}$$

$$a-\epsilon$$
 a $a+\epsilon$

Ex. Check equivalence

Fact. If x is in every ϵ -ball around a then x = a

Proof:

Suppose to the contrary that

• x is in every ϵ -ball around a and yet $x \neq a$

Since x is not a we must have |x - a| > 0

Set
$$\epsilon := |x - a|$$

Since $\epsilon > 0$, we have $x \in B_{\epsilon}(a)$

This means that $|x - a| < \epsilon$

That is, |x - a| < |x - a| — contradiction

Fact. If $a \neq b$, then $\exists \epsilon > 0$ s.t. $B_{\epsilon}(a)$ and $B_{\epsilon}(b)$ are disjoint

Proof: Let $a, b \in \mathbb{R}$ with $a \neq b$

If we set $\epsilon:=|a-b|/2$, then $B_{\epsilon}(a)$ and $B_{\epsilon}(b)$ are disjoint

To see this, suppose to the contrary that $\exists x \in B_{\epsilon}(a) \cap B_{\epsilon}(B)$

Then
$$|x - a| < |a - b|/2$$
 and $|x - b| < |a - b|/2$

But then

$$|a-b| \le |a-x| + |x-b| < |a-b|/2 + |a-b|/2 = |a-b|$$

Contradiction

Sequences

A **sequence** is a function from $\mathbb N$ to $\mathbb R$

• to each $n \in \mathbb{N}$ we associate one $x_n \in \mathbb{R}$

Typically written as $\{x_n\}_{n=1}^{\infty}$ or $\{x_n\}$ or $\{x_1, x_2, x_3, \ldots\}$

Examples.

- $\{x_n\} = \{2, 4, 6, \ldots\}$
- $\{x_n\} = \{1, 1/2, 1/4, \ldots\}$
- $\{x_n\} = \{1, -1, 1, -1, \ldots\}$
- $\{x_n\} = \{0, 0, 0, \ldots\}$

Sequence $\{x_n\}$ is called

- **bounded** if $\{x_1, x_2, \ldots\}$ is a bounded set
- monotone increasing if $x_{n+1} \ge x_n$ for all n
- monotone decreasing if $x_{n+1} \le x_n$ for all n
- monotone if it is either monotone increasing or monotone decreasing

Examples.

- $x_n = 1/n$ is monotone decreasing, bounded
- $x_n = (-1)^n$ is not monotone but is bounded
- $x_n = 2n$ is monotone increasing but not bounded

Convergence

Let $a \in \mathbb{R}$ and let $\{x_n\}$ be a sequence

Suppose, for any $\epsilon>0$, we can find an $N\in\mathbb{N}$ with

$$x_n \in B_{\epsilon}(a)$$
 for all $n \geq N$

Then $\{x_n\}$ is said to **converge** to a

Convergence to a in symbols,

$$\forall \epsilon > 0, \ \exists N \in \mathbb{N} \ \text{ s.t. } n \geq \mathbb{N} \implies x_n \in B_{\epsilon}(a)$$

" $\{x_n\}$ is eventually in any ϵ -ball around a"

The sequence $\{x_n\}$ is eventually in this ϵ -ball around a

...and this one

...and this one

...and this one

The point *a* is called the **limit** of the sequence, and we write

$$x_n \to a$$
 as $n \to \infty$

or

$$\lim_{n\to\infty}x_n=a$$

We call $\{x_n\}$ **convergent** if it converges to some limit in \mathbb{R}

Example. $\{x_n\}$ defined by $x_n = 1 + 1/n$ converges to 1

To prove this must show that $\forall \epsilon > 0$, there is an $N \in \mathbb{N}$ such that

$$n \ge N \implies |x_n - 1| < \epsilon$$
 (*)

To show this formally we need to come up with an "algorithm"

- 1. You give me any $\epsilon > 0$
- 2. I respond with an N such that (\star) holds

In general, as ϵ shrinks, N will have to grow

Here's how to do this for the case 1 + 1/n converges to 1

First pick an arbitrary $\epsilon>0$

Now we have to come up with an N such that

$$n \ge N \implies |1 + 1/n - 1| < \epsilon \tag{*}$$

Let N be the first integer greater than $1/\epsilon$

Then

$$n \ge N \implies n > 1/\epsilon \implies 1/n < \epsilon \implies |1 + 1/n - 1| < \epsilon$$

Remark: Any N' > N would also work

Example. The sequence $x_n = 2^{-n}$ converges to 0

Proof: Must show that, $\forall \, \epsilon > 0, \, \exists \, N \in \mathbb{N}$ such that

$$n \ge N \implies |2^{-n} - 0| < \epsilon$$
 (*)

So pick any $\epsilon > 0$, and observe that

$$|2^{-n} - 0| < \epsilon \iff 2^{-n} < \epsilon \iff n > -\frac{\ln \epsilon}{\ln 2}$$

Hence we take N to be the first integer greater than $-\ln \epsilon / \ln 2$

Then

$$n \ge N \implies n > -\frac{\ln \epsilon}{\ln 2} \implies (\star)$$

What if we want to show that $x_n \to a$ fails?

To show convergence fails we need to show the negation of

$$\forall \ \epsilon > 0, \ \exists \ N \in \mathbb{N} \ \text{ s.t. } n \geq N \implies x_n \in B_{\epsilon}(a)$$

Negation: there is an $\epsilon>0$ where we can't find any such N

More specifically, $\exists \epsilon > 0$ such that, which ever $N \in \mathbb{N}$ we look at, there's an $n \geq N$ with x_n outside $B_{\epsilon}(a)$

One way to say this: There exists a $B_{\epsilon}(a)$ such that $x_n \notin B_{\epsilon}(a)$ infinitely often

This is the kind of picture we're thinking of

Example. The sequence $x_n = (-1)^n$ does <u>not</u> converge to 1

Proof: This is what we want to show

$$\exists \ \epsilon > 0 \ \text{ s.t. } \ \text{s.t. } x_n \notin B_{\epsilon}(1) \ \text{infinitely often}$$

Since it's a "there exists", we need to come up with such an ϵ Let's try $\epsilon=0.5$, so that

$$B_{\epsilon}(1) = \{x \in \mathbb{R} : |x - 1| < 0.5\} = (0.5, 1.5)$$

If n is odd then $x_n = -1$, which is not in (0.5, 1.5)

Hence $\{x_n\}$ not in $B_{\epsilon}(1)$ infinitely often

An Equivalence

Let $\{x_n\}$ be a sequence in $\mathbb R$ and let $a\in\mathbb R$

Fact. $x_n \to a$ if and only if $|x_n - a| \to 0$

Proof: Compare the definitions:

- $x_n \to a \iff \forall \epsilon > 0, \exists N \in \mathbb{N} \text{ s.t. } |x_n a| < \epsilon$
- $|x_n a| \to 0 \iff \forall \epsilon > 0, \exists N \in \mathbb{N} \text{ s.t. } ||x_n a| 0| < \epsilon$

Clearly these statements are equivalent

Fact. Each sequence in $\mathbb R$ has at most one limit

Proof: Suppose instead that $x_n \to a$ and $x_n \to b$ with $a \neq b$

$$B_{\epsilon}(a)$$
 $B_{\epsilon}(b)$...

Since $x_n \to a$ and $x_n \to b$,

• $\exists N_a \text{ s.t. } n \geq N_a \implies x_n \in B_{\epsilon}(a)$

Take disjoint ϵ -balls around a and b

• $\exists N_b \text{ s.t. } n \geq N_b \implies x_n \in B_{\epsilon}(b)$

But then $n \ge \max\{N_a, N_b\} \implies x_n \in B_{\epsilon}(a)$ and $x_n \in B_{\epsilon}(b)$

Contradiction of disjoint

Fact. Every convergent sequence is bounded

Proof: Let $\{x_n\}$ be convergent with $x_n \to a$

Fix any $\epsilon > 0$ and choose N s.t. $x_n \in B_{\epsilon}(a)$ when $n \geq N$

Regarded as sets,

$$\{x_n\}\subset\{x_1,\ldots,x_{N-1}\}\cup B_{\epsilon}(a)$$

Both of these sets are bounded

- First because finite sets are bounded
- Second because $B_{\epsilon}(a)$ is bounded

Moreover, finite unions of bounded sets are bounded

Limits vs Algebra

Here are some basic tools for working with limits

Facts If $x_n \to x$ and $y_n \to y$, then

- 1. $x_n + y_n \rightarrow x + y$
- 2. $x_n y_n \rightarrow xy$
- 3. $x_n/y_n \rightarrow x/y$ when y_n and y are $\neq 0$
- 4. $x_n \le y_n$ for all $n \implies x \le y$

Let's check that $x_n \to x$ and $y_n \to y$ implies $x_n + y_n \to x + y$

Proof: Fix $\epsilon > 0$

Need to find $N \in \mathbb{N}$ such that

$$n \ge N \implies |(x_n + y_n) - (x + y)| < \epsilon$$
 (*)

Note that

•
$$|(x_n + y_n) - (x + y)| \le |x_n - x| + |y_n - y|$$

•
$$\exists N_x \in \mathbb{N}$$
 such that $n \geq N_x \implies |x_n - x| < \epsilon/2$

•
$$\exists N_y \in \mathbb{N}$$
 such that $n \geq N_y \implies |y_n - y| < \epsilon/2$

Ex. Show $N := \max\{N_x, N_y\}$ satisfies (\star)

Let's also check the claim that $x_n \to x$, $y_n \to y$ and $x_n \le y_n$ for all $n \in \mathbb{N}$ implies $x \le y$

Proof: Suppose instead that x > y

Take disjoint ϵ -balls $B_{\epsilon}(x)$ and $B_{\epsilon}(y)$ around these points

Exists an n such that $x_n \in B_{\epsilon}(x)$ and $y_n \in B_{\epsilon}(y)$

But then $x_n > y_n$, a contradiction

In words: "Weak inequalities are preserved under limits"

Here's another property of limits, called the "squeeze theorem"

Fact. Let $\{x_n\}$ $\{y_n\}$ and $\{z_n\}$ be sequences in \mathbb{R} . If

- 1. $x_n \leq y_n \leq z_n$ for all $n \in \mathbb{N}$
- 2. $x_n \to a$ and $z_n \to a$

then $y_n \to a$ also holds

Proof: Pick any $\epsilon > 0$

We can choose an

- $N_x \in \mathbb{N}$ such that $n \geq N_x \implies x_n \in B_{\epsilon}(a)$
- $N_z \in \mathbb{N}$ such that $n \geq N_z \implies z_n \in B_{\epsilon}(a)$

Ex. Show that $n \ge \max\{N_x, N_z\} \implies y_n \in B_{\epsilon}(a)$

Infinite Sums

Let $\{x_n\}$ be a sequence in \mathbb{R}

Then

$$\sum_{n=1}^{\infty} x_n := \lim_{k \to \infty} \sum_{n=1}^{k} x_n$$

Thus, $\sum_{n=1}^{\infty} x_n$ is defined, if it exists, as the limit of $\{y_k\}$ where

$$y_k := \sum_{n=1}^k x_n$$

Other notation:

$$\sum_{n} x_n$$
, $\sum_{n>1} x_n$, $\sum_{n\in\mathbb{N}} x_n$, etc.

Example. If $x_n = \alpha^n$ for $\alpha \in (0,1)$, then

$$\sum_{n=1}^{\infty} x_n = \lim_{k \to \infty} \sum_{n=1}^{k} \alpha^n = \lim_{k \to \infty} \alpha \frac{1 - \alpha^k}{1 - \alpha} = \frac{\alpha}{1 - \alpha}$$

Example. If $x_n = (-1)^n$ the limit fails to exist because

$$y_k = \sum_{n=1}^k x_n = \begin{cases} 0 & \text{if } k \text{ is even} \\ -1 & \text{otherwise} \end{cases}$$

Fact. If $\{x_n\}$ is nonnegative and $\sum_n x_n < \infty$, then $x_n \to 0$

Proof: Suppose to the contrary that $x_n o 0$ fails

Then

 $\exists \ \epsilon > 0$ such that $x_n \notin B_{\epsilon}(0)$ infinitely often

Since x_n is nonnegative,

 $\exists \ \epsilon > 0$ such that x_n exceeds ϵ infinitely often

But then $\sum_{n} x_n$ cannot be finite — contradiction

Cauchy Sequences

Informal def: Cauchy sequences are those where $|x_n - x_{n+1}|$ gets smaller and smaller

Example. Sequences generated by iterative methods for solving nonlinear equations often have this property

Cauchy sequences "look like" they are converging to something

A key <u>axiom</u> of analysis is that such sequences do converge to something — details follow

A sequence $\{x_n\}$ is called **Cauchy** if $\forall \epsilon > 0$, $\exists N \in \mathbb{N}$ such that

$$n \ge N \text{ and } j \ge 1 \implies |x_n - x_{n+j}| < \epsilon$$
 (*)

Example. $\{x_n\}$ defined by $x_n = \alpha^n$ where $\alpha \in (0,1)$ is Cauchy

Proof: For any n, j we have

$$|x_n - x_{n+j}| = |\alpha^n - \alpha^{n+j}| = \alpha^n |1 - \alpha^j| \le \alpha^n$$

Fix $\epsilon > 0$

Ex. Show that $n > \epsilon / \log(\alpha) \implies \alpha^n < \epsilon$

Hence any integer $N > \epsilon / \log(\alpha)$ makes (\star) hold

Fact. For any sequence, convergent ← Cauchy

Proof of \Longrightarrow :

Let $\{x_n\}$ be a sequence converging to some $a \in \mathbb{R}$

Fix $\epsilon > 0$

We can choose N s.t.

$$n \geq N \implies |x_n - a| < \frac{\epsilon}{2}$$

For this N we have $n \ge N$ and $j \ge 1$ implies

$$|x_n - x_{n+j}| \le |x_n - a| + |x_{n+j} - a| \le \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

Proof of \Leftarrow :

This is basically an $\underline{\mathsf{axiom}}$ in the definition of $\mathbb R$

Either

- 1. We assume it, or
- 2. We assume something else that's essentially equivalent

We'll go for option 1

Implications:

- There are no "gaps" in the real line
- To check $\{x_n\}$ converges to something we just need to check Cauchy property

Fact. Every bounded monotone sequence in $\ensuremath{\mathbb{R}}$ is convergent

Sketch of proof:

Suffices to show that $\{x_n\}$ is Cauchy

Suppose not

Then no matter how far we go down the sequence we can find another jump of size $\varepsilon>0$

Since monotone, all the jumps are in the same direction

But then $\{x_n\}$ not bounded — a contradiction

Full proof: See any text on analysis

Subsequences

A sequence $\{x_{n_k}\}$ is called a **subsequence** of $\{x_n\}$ if

- 1. $\{x_{n_k}\}$ is a subset of $\{x_n\}$
- 2. the indices n_k are strictly increasing

Example.

$${x_n} = {x_1, x_2, x_3, x_4, x_5, \ldots}$$

and

$$\{x_{n_k}\}=\{x_2,x_4,x_6,x_8\ldots\}$$

In this case

$$\{n_k\} = \{n_1, n_2, n_3, \ldots\} = \{2, 4, 6, \ldots\}$$

More Examples.

- 1. $\{\frac{1}{1}, \frac{1}{3}, \frac{1}{5}, \ldots\}$ is a subsequence of $\{\frac{1}{1}, \frac{1}{2}, \frac{1}{3}, \ldots\}$
- 2. $\{\frac{1}{1}, \frac{1}{2}, \frac{1}{3}, \ldots\}$ is a subsequence of $\{\frac{1}{1}, \frac{1}{2}, \frac{1}{3}, \ldots\}$
- 3. $\{\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \dots\}$ is **not** a subsequence of $\{\frac{1}{1}, \frac{1}{2}, \frac{1}{3}, \dots\}$

Fact. Every sequence has a monotone subsequence

Proof: Omitted

Example. The sequence $x_n = (-1)^n$ has monotone subsequence

$$\{x_2, x_4, x_6, \ldots\} = \{1, 1, 1, \ldots\}$$

This leads us to the famous **Bolzano–Weierstrass theorem**, to be used later when we discuss optimization

Fact. Every bounded sequence in $\mathbb R$ has a convergent subsequence

Proof: Let $\{x_n\}$ be a bounded sequence

There exists a monotone subsequence

- which is itself a bounded sequence (why?)
- and hence both monotone and bounded

Every bounded monotone sequence converges

Hence $\{x_n\}$ has a convergent subsequence