Use Explain the general concept of PCA and how it can be computed Using SVD. Covariance Matrix $C = \frac{1}{N} \chi^{(c)} (\chi^{(c)})^T$ PCA: Dimension Reduction and find chirection that captures most variance. -Constrained problem max uTCu s.t uTu=1 = Unit vector -Use Lagrangian CCU, 21 = UTCU-2(UTU-1). Take deviative $\frac{\partial L}{\partial u} = Cu- \lambda u$ -Stationary point: Cu = Iu. This means that u is an eigenvector of C with eigen-- Second eigenvector you add second constraint: $U_2^TU_2 = 1$, $U_2^TU_1 = 0$ max $U_2^TCU_2$ S.t Pick to a the nex largest eigenvalue - How choose K: Individual Explained Var; $\frac{\lambda_{i}}{\sum_{i=1}^{n} \lambda_{i}}$, Cumulative explained Var; $\frac{\sum_{i=1}^{n} \lambda_{i}}{\sum_{i=1}^{n} \lambda_{i}}$ -SVD: Directly on $\chi(c)$ Avoids forming C and is more numerically stable cause C is expensive.

- $\chi=U \equiv V^{T}$ Decomposition of $\chi=0$ Data Marrix $\mathbb{R}^{d \times N}$ Decomposition of $\chi=0$ Data Marrix $\mathbb{R}^{d \times N}$ Robert Student Student XX -> Singular left vectors Rolxd Z = Singular Values 5, RdXN V= XIX; Singular right Vectors, IRNan Rank, r= rank (X) < min (d, N) Kows and coloumns with zero Spare E E Ser 5262 -If d > N then Dimension Error IT ola N Dimension ADDFR KSV=Right singular Vectors, LSV= Left singular Vectors == EVT