Tutorial 2 part 2

- 1. Prove the Following using direct proof.
 - i. If a and b are odd integer, then a+b is an even integer.
 - ii. If a is number such that a^2 -7a+12=0, then show that a=3,a=4.
 - iii. Prove that if |x| > |y| then $x^2 > y^2$
- 2. Prove the following using method of Contraposition.
 - i. If $x^2 4 < 0$, then -2 < x < 2.
- 3. Prove the following using method of contradiction.
 - i. Prove that $\sqrt{5}$ is not a rational number.
 - ii. Prove that if $x^2 4 = 0$, then $n \neq 0$.
- 4. Find the counter example for if a > b then $a^2 > b^2$.
- 5. Prove using mathematical induction that for all $n \ge 1$,

$$1 + 4 + 7 + \cdots + (3n - 2) = n(3n - 1) / 2$$
.

6. Consider the famous Fibonacci sequence $\{x_n\}^{\infty}$ n=1, defined by the relations x_1 = 1, $x_2 = 1$, and $x_n = x_{n-1} + x_{n-2}$ for $n \ge 3$.