1 List Of Models

1.1 Infinite Words

- DBA
- NBA
- GBA
- Rabin automaton
- Muller automaton
- Parity automaton
- \bullet E automaton
- A automaton
- coBA
- weak BA
- Staiger-Wagner automaton
- ABA
- \bullet LTL
- S1S
- $\exists S1S$
- $S1S_0$

1.2 Finite Trees

- DTA
- NTA
- \downarrow DTA
- ↓NTA
- DUTA
- NUTA
- DTD
- $\bullet \;$ deterministic EDTD
- single-type EDTD

- EDTD
- Relax NG
- FO
- \bullet MSO
- Regular expressions
- DTWA
- TWA

1.3 Infinite Trees

- BTA
- Muller TA
- Parity TA
- \bullet DMTA
- S2S (MSO / WMSO)
- $S2S_0$ (MSO / WMSO)

2 List Of Games

- Büchi
- $\bullet \;$ Staiger-Wagner
- weak Parity
- \bullet Reachability
- Safety
- Muller
- Parity
- Rabin
- \bullet Streett
- \bullet Gale-Stewart
- \bullet Wadge

3 Infinite Word Models

3.1 Class Inclusions

- E aut. \subseteq Staiger-Wagner **Proof**: SWA with $\mathcal{F} = \{Q' \subseteq Q \mid F \cap Q' \neq \emptyset\}$.
- A. aut. \subseteq Staiger-Wagner **Proof**: SW closed under complement,
- Staiger-Wagner \subseteq DBA / coBA **Proof**: \mathcal{A} SWA $\Rightarrow \mathcal{A}' = (Q \times 2^Q, \Sigma, (q_0, \emptyset), \delta', F')$ Collect all visited states and accept if that set stays in \mathcal{F} .

- DBA \subseteq NBA trivial
- $coBA \subseteq NBA$

Proof: NBA closed under complement.

• LTL ⊆ NBA **Proof**: ??

3.2 Class Exclusions

• E aut. $\not\subseteq$ A aut.

Example: $(a+b)^*a(a+b)^{\omega}$

- A aut. $\not\subseteq$ E aut. **Example**: $\{a^{\omega}\}$
- DBA $\not\subseteq$ coBA **Example**: $(a^*b)^{\omega}$
- coBA \subseteq DBA **Example**: $(a+b)^*a^{\omega}$
- LTL $\not\subseteq$ NBA
- Example: $((a+b)a)^{\omega}$

3.3 Class Equalities

3.3.1 NBA

- NBA $\Rightarrow \omega$ -regular
 - Proof: ??
- ω -regular \Rightarrow NBA **Proof**: ??
- NBA $\Rightarrow \exists S1S$
- Proof: ??
- $S1S \Rightarrow S1S_0$ **Proof**: ??
- $S1S_0 \Rightarrow NBA$ **Proof**: ??
- Det. Muller \Rightarrow NBA

Proof: NBA with $L(A) = \bigcup_{F \in \mathcal{F}} \left(\bigcap_{q \in F} L(A_q) \cap \bigcap_{q \notin F} \overline{L(A_q)} \right)$ where A_q is A starting in q.

Proof: ??

• (det.) Muller \Rightarrow (det.) Parity

Proof: ??

3.3.2 LTL

LTL \Leftrightarrow Non-counting No proof. Remarks in F8.

3.4 Closures

3.4.1 NBA

• Closed under union

Proof: ??

• Closed under intersection

Proof: ??

• Closed under complement

Proof: ??

3.4.2 DBA

• Not closed under complement (inf. many $a \leftrightarrow \text{fin. many } a$)

3.5 Characterizations

- Parity conditions are directly convertible to Rabin chain conditions and vice-versa. **Proof**: Assign priorities in ascending order; $E_k \to 0$, $F_k \setminus E_k \to 1$, $E_{k-1} \setminus F_k \to 2 \dots$
- U is ω -regular iff U is a Boolean combination of DBA-languages **Proof**: NBAs are closed under Boolean operations.
- U is DBA-recog. iff $U = \lim(L)$ for some regular $L \subseteq \Sigma^*$. **Proof:** ??

3.6 Problems / Complexity

3.6.1 NBA

• Emptiness problem decidable in poly. time

Proof: ??

4 Finite Tree Models

4.1 Class Differences

TODO

4.2 Class Equalities

TODO

4.3 Closures

TODO

5 Infinite Tree Models

5.1 Class Differences

TODO

5.2 Class Equalities

TODO

5.3 Closures

TODO