Well Geometry

Robert Atkinson 04 Oct 2019

We explore the geometry of various labware.

Basics

Cone

Inverted Cone

Cylinder

Right Conical Frustum

Inverted Right Conical Frustum

Sphere

Inverted Spherical Cap

Unknown Shape

Accessing

```
assumptions[u: unknownShape[h_, vol_]] := h ≥ 0 && vol ≥ 0
test @ assumptions[unknownShape[h, vol]];

assumptions[unknownShape[h_, vol]] → h ≥ 0 && vol ≥ 0

height[u: unknownShape[h_, vol_]] := h
toCartesian[u: unknownShape[h_, vol_]] := u

volume[u: unknownShape[h_, vol_]] := Module[{},
    (*printCell[{volume, "h" → h, "vol" → vol}];*)
vol]

depthFromVolume[u: unknownShape[h_, vol_], v_] := Module[{},
    (*printCell[{depthFromVolume, "h" → h, "vol" → vol, "v" → v}];*)
If[v ≤ 0 || h ≤ 0 || vol ≤ 0,
    0,
    Indeterminate]]
```

Conical Test Tube

Examples

Bio-rad Deep Well Plates

Eppendorf Tubes

```
eppendorfData = ArrayReshape[{50, 5, 70, 5.74, 75, 5.94, 80, 6.36, 90, 6.61, 100, 7.19, 125, 8.39, 150, 9.26, 200, 10.72, 300,
                13.25, 400, 15.39, 500, 17.54, 600, 19.26, 750, 21.59, 875, 23.56, 1000, 25.73, 1200, 29.12, 1500, 33.27}, {18, 2}]
\label{listPlot} ListPlot[eppendorfData, ImageSize \rightarrow Large, AxesLabel \rightarrow \{"vol", "depth"\}, PlotRange \rightarrow All]
\{\{50,5\},\{70,5.74\},\{75,5.94\},\{80,6.36\},\{90,6.61\},\{100,7.19\},\{125,8.39\},\{150,9.26\},\{200,10.72\},\{300,13.25\},\{100,10.72\},\{100,10.72\},\{100,10.72\},\{100,10.72\},\{100,10.72\},\{100,10.72\},\{100,10.72\},\{100,10.72\},\{100,10.72\},\{100,10.72\},\{100,10.72\},\{100,10.72\},\{100,10.72\},\{100,10.72\},\{100,10.72\},\{100,10.72\},\{100,10.72\},\{100,10.72\},\{100,10.72\},\{100,10.72\},\{100,10.72\},\{100,10.72\},\{100,10.72\},\{100,10.72\},\{100,10.72\},\{100,10.72\},\{100,10.72\},\{100,10.72\},\{100,10.72\},\{100,10.72\},\{100,10.72\},\{100,10.72\},\{100,10.72\},\{100,10.72\},\{100,10.72\},\{100,10.72\},\{100,10.72\},\{100,10.72\},\{100,10.72\},\{100,10.72\},\{100,10.72\},\{100,10.72\},\{100,10.72\},\{100,10.72\},\{100,10.72\},\{100,10.72\},\{100,10.72\},\{100,10.72\},\{100,10.72\},\{100,10.72\},\{100,10.72\},\{100,10.72\},\{100,10.72\},\{100,10.72\},\{100,10.72\},\{100,10.72\},\{100,10.72\},\{100,10.72\},\{100,10.72\},\{100,10.72\},\{100,10.72\},\{100,10.72\},\{100,10.72\},\{100,10.72\},\{100,10.72\},\{100,10.72\},\{100,10.72\},\{100,10.72\},\{100,10.72\},\{100,10.72\},\{100,10.72\},\{100,10.72\},\{100,10.72\},\{100,10.72\},\{100,10.72\},\{100,10.72\},\{100,10.72\},\{100,10.72\},\{100,10.72\},\{100,10.72\},\{100,10.72\},\{100,10.72\},\{100,10.72\},\{100,10.72\},\{100,10.72\},\{100,10.72\},\{100,10.72\},\{100,10.72\},\{100,10.72\},\{100,10.72\},\{100,10.72\},\{100,10.72\},\{100,10.72\},\{100,10.72\},\{100,10.72\},\{100,10.72\},\{100,10.72\},\{100,10.72\},\{100,10.72\},\{100,10.72\},\{100,10.72\},\{100,10.72\},\{100,10.72\},\{100,10.72\},\{100,10.72\},\{100,10.72\},\{100,10.72\},\{100,10.72\},\{100,10.72\},\{100,10.72\},\{100,10.72\},\{100,10.72\},\{100,10.72\},\{100,10.72\},\{100,10.72\},\{100,10.72\},\{100,10.72\},\{100,10.72\},\{100,10.72\},\{100,10.72\},\{100,10.72\},\{100,10.72\},\{100,10.72\},\{100,10.72\},\{100,10.72\},\{100,10.72\},\{100,10.72\},\{100,10.72\},\{100,10.72\},\{100,10.72\},\{100,10.72\},\{100,10.72\},\{100,10.72\},\{100,10.72\},\{100,10.72\},\{100,10.72\},\{100,10.72\},\{100,10.72\},\{100,10.72\},\{100,10.72\},\{100,10.72\},\{100,10.72\},\{100,10.72\},\{100,10.72\},\{100,10.72\},\{100,10.72\},\{100,10.72\},\{100,10.72\},\{100,10.72\},\{100,10.72\},\{100,10.72\},\{100,10.72\},\{100,10.72\},\{100,10.72\},\{100,10.72\},\{100,10.72\},\{100,10.72\},\{100,10.72\},\{100,10.72\},\{100,10.72\},\{100,10.72\},\{100,10
   \{400, 15.39\}, \{500, 17.54\}, \{600, 19.26\}, \{750, 21.59\}, \{875, 23.56\}, \{1000, 25.73\}, \{1200, 29.12\}, \{1500, 33.27\}\}
```



```
fitEppendorfData[eppendorfData] := Module[
  {depthFunc, fit, showFit, zeroify, conicalData, conePart, coneRules, angledCone, cylinderData, offsetConicalData,
   offsetCylinderData, cylinderPart, cylinderRules, hCone, hCyl, rtop, rmid, rbottom, angledCylinder, specRules, hTot,
   tube, \alpha, tubeRules, rconeBig, rconeSmall, wallBottom, rules, \alphaCylinder, \alphaCone, hCap, rCap, volCap, fittedTube},
  depthFunc[part_] := Module[{expr, v},
    expr = depthFromVolume[part, v];
    depthFunc[part] = Function[\{vol\}, expr /. \{v \rightarrow vol\}]];
  fit[part_, assump_, vars_, data_] := Module[{errors, err, min, fitRules, asses},
    errors = Function[{vol, depth},
          (depthFunc[part][vol] - depth) ^2
         ] @@ # & /@ data;
    err = Total[errors] // N;
    asses = assumptions[part] && (And @@ assump);
    (*test @ asses;*)
    {min, fitRules} = NMinimize[{err, asses}, vars];
    fitRules];
  showFit[part_, data_] := Module[{v},
     Show[ListPlot[\{data\},\ ImageSize \rightarrow Large,\ AxesLabel \rightarrow \{"vol",\ "depth"\},\ PlotRange \rightarrow All,\ AxesOrigin \rightarrow \{\emptyset,\ \emptyset\}],
     Plot[depthFromVolume[part, v], {v, 0, volume[part]}]]];
  zeroify[data_] := Module[{xMin, yMin},
     {xMin, yMin} = Map[Min, Transpose @ data, {1}];
    Transpose[Transpose[data] - \{xMin, yMin\}]];\\
  conicalData = Select[eppendorfData, #[[1]] ≤ 500 &];
  cylinderData = Select[eppendorfData, #[[1]] >= 500 &]; (* hard to tell for in between data, so we're conservative *)
  offsetConicalData = zeroify[conicalData];
  offsetCylinderData = zeroify[cylinderData];
  (*printCell @ ListPlot[{conicalData, cylinderData}, ImageSize→Large, AxesLabel→{"vol", "depth"}, PlotRange→All];*)
  (*printCell @ ListPlot[{offsetCylinderData}, ImageSize \rightarrow Large, AxesLabel \rightarrow {"vol", "depth"}, PlotRange \rightarrow All]; *)
```

```
specRules = { hTot \rightarrow 37.8, rmid \rightarrow 8.7 / 2, wallBottom \rightarrow 38.9 - 37.8};
  printCell[specificationSays[specRules]];
  (* fit the cylinder. this gives us the apex angle of the cylinder. we don't yet know its actual height *)
  (* we dont' know rmid because the bottom of cylinderData might not be right at the mid location *)
  cylinderPart = invertedFrustum[hCyl, rtop, rmid](* /. coneRules*);
  cylinderRules = fit[cylinderPart, {hCyl > 12}, {hCyl, rtop, rmid}, offsetCylinderData];
  angledCylinder = toApexAngled[cylinderPart /. cylinderRules];
  (*test @ cylinderRules;
  test @ (cylinderPart /. cylinderRules);
  test @ angledCylinder;
  test @ toDeg @ apexangle[angledCylinder];*)
  (*printCell @ showFit[cylinderPart /. cylinderRules, offsetCylinderData];*)
  (* fit the cone. this gives us the apex angle of the cone \star)
  conePart = invertedFrustum[hCone, rconeBig, rconeSmall];
  coneRules = fit[conePart, {hCone > 10}, {hCone, rconeBig, rconeSmall}, offsetConicalData];
  angledCone = toApexAngled[conePart /. coneRules];
  (*test @ coneRules;
  test @ (conePart /. coneRules);
  test @ angledCone;
  test @ toDeg @ apexangle[angledCone];*)
  (*printCell @ showFit[conePart /. coneRules, offsetConicalData]; *)\\
  (* summarize what we know *)
  rules = {\alphaCylinder \rightarrow apexangle[angledCylinder], \alphaCone \rightarrow apexangle[angledCone]};
  (*test @ rules;*)
  (* put these together. *)
  (★ Cap is just a shape that can fix a volume; we have no data in that range, and can't measure volumes therein. ★)
  tube = conicalTestTube[
    (invertedFrustum[hCyl, rbig[hCyl, rmid, αCylinder, apexangle], αCylinder, apexangle] /. rules),
    (invertedFrustum[hCone, rmid, αCone, apexangle] /. rules),
    (unknownShape[hCap, volCap])
   1;
  tube = tube /. { hCone → (hTot /. specRules) - hCyl - hCap};
  (*test @ tube;*)
  tubeRules =
   fit[tube, \{hCap < 5, hCyl > 10, rmid > 4, rmid < 6(*, rCap \ge hCap*)\}, \{hCyl, rmid, hCap, volCap\}, eppendorfData];
 fittedTube = toCartesian[tube /. tubeRules];
  (*test @ tubeRules;
 test @ fittedTube;*)
 printCell @ showFit[fittedTube, eppendorfData];
 fittedTube
fittedEppendorf = fitEppendorfData[eppendorfData]
test @ height @ fittedEppendorf;
test @ depthFromVolume[fittedEppendorf, volume[fittedEppendorf]];
test @ volume @ fittedEppendorf;
specificationSays \ [\ \{hTot\$116829 \rightarrow 37.8,\ rmid\$116829 \rightarrow 4.35,\ wallBottom\$116829 \rightarrow 1.1\}\ ]
```


It's regrettable that we don't bottom out at 0 mm (we bottom out at about 2 mm), but the data does really fit quite nicely otherwise.

It should be noted that the specification indicates that the upper 'cylindrical' inverted frustum isn't actually an inverted frustum but has a bit of a flare at the top.

IDT tubes

Falcon

Known Tubes

With that, we define the tubes

```
(tubes = {
      (* we ignore the slight widening at the throat. and the bottom cap isn't a complete hemi-sphere,
      though we treat it as such *)
      eppendorf5\$0mL \rightarrow Block[\{side = 56.7 - 55.4, hTop = 34.12 + 2.2\},
         toCanonical@conicalTestTube[{14.8, 13.3, 3.3}, {hTop, 55.4 - hTop}]],
      eppendorf1$5ml \rightarrow Block[{wall = (*measured@1000*) 10.34 - 8.81, hTop = 20},
         toCanonical @ conicalTestTube[{9.0 (*measured*), 8.7, 3.6}, {hTop, 37.8 - hTop}]],
      \texttt{fittedEppendorf1\$5ml} \ \rightarrow \ \texttt{fittedEppendorf},
      fittedFalcon15ml → fittedFalcon,
      falcon15ml → Module[
         (* mixure of measurements and values from spec drawing *)
         (* FWIW, Opentrons uses idTop=14.9, depth=117.5. The latter is pretty good,
         given 'a' and 'wall' defined here, so our depth calc's should be good \star)
         {id14, od14, wall14, wallMeasured, wall, a, b, a14, b14, c, cMeasured, d,
         bottomOd, wallCap, htopMeasured, hBottomAndCap},
         id14 = 15.0;
         od14 = 16.3;
         wall14 = od14 - id14;
         wallMeasured = 1.27;
        wall = wallMeasured;
        wallCap = 1.75;
        a = 118.8;
        b = 17.37:
        a14 = 106.3:
         b14 = 16.6;
         c = 15.75;
         cMeasured = 15.1;
         d = 22.48:
         bottomOd = 3.18;
         htopMeasured = 84.07;
         hBottomAndCap = d - wallCap;
         (★ note: as defined here, we only have 14mL capacity, not 15mL. Will affect volume calc but not depth calc. ★)
         toCanonical @ conicalTestTube[\{b14 - (\star 2 - logically needed, but better fit w/o (?!)\star) wall,
            cMeasured - 2 wall, bottomOd - 2 wall}, {htopMeasured, hBottomAndCap}]
       1,
      generic → toCanonical @ conicalTestTube[{idTop, idHip, idBottom}, {hTop, hBottom}],
       (* this hacks in the slightly shallower taper at the top, which isn't sized on the spec drawing *)
      bioradPlateWell → Module[{hCyl = 0.15, rbig = 5.46/2, rsmall = 2.64/2, cyl, con, cap},
         cyl = cylinder[hCyl, rbig];
        con = invertedFrustum[14.81 - hCyl, rbig, rsmall];
        cap = emptyCylinder[];
        conicalTestTube[cyl, con, cap]],
      bioradPlateWell2 \rightarrow conicalTestTube[cylinder[8.835453539401207`, 2.239570651942052`], \\
         invertedFrustum[5.974546460598792`, 2.239570651942052`, 0.15271630954950383`, apexangle], cylinder[0, 0]],
      idtTube → conicalTestTube[
         cylinder[40.73, 8.31/2],
        invertedCone[3.2, 8.31 / 2],
        emptyCylinder[]
       1,
      fittedIdtTube \rightarrow fittedIdt
     } // Association) // Normal // ColumnForm
```

```
eppendorf5\$0mL \rightarrow conicalTestTube[invertedFrustum[36.32, 7.4, 6.65], invertedFrustum[15.78, 6.65, 1.65], invertedSphericalCap[1.65, 1.66] eppendorf1\$5ml \rightarrow conicalTestTube[invertedFrustum[20, 4.5, 4.35], invertedFrustum[14.2, 4.35, 1.8], invertedSphericalCap[1.8, 1.8]] fittedEppendorf1\$5ml \rightarrow conicalTestTube[invertedFrustum[18.9894, 4.70751, 4.35636], invertedFrustum[16.8419, 4.35636, 2.1099], unknown
 fitted Falcon 15 ml \rightarrow conical Test Tube [inverted Frustum [95.9755, 7.42952, 6.65602], inverted Frustum [22.0945, 6.65602, 1.14806], cylinder [0.66602], conical Test Tube [1.06602], cylinder [0.06602], cy
falcon15ml \rightarrow conical Test Tube [inverted Frustum [84.07, 7.665, 6.28], inverted Frustum [20.09, 6.28, 0.32], inverted Spherical Cap [0.32, 0.32], and the substitute of the 
 \text{generic} \rightarrow \text{conicalTestTube} \Big[ \text{invertedFrustum} \Big[ \text{hTop, } \frac{\text{idTop}}{2}, \, \frac{\text{idHip}}{2} \Big], \, \text{invertedFrustum} \Big[ \text{hBottom-idBottom, } \frac{\text{idHip}}{2}, \, \frac{\text{idBottom}}{2} \Big], \, \text{invertedSphericalCap} \Big[ \text{hTop, } \frac{\text{idTop}}{2}, \, \frac{\text{idHip}}{2}, \, \frac{\text{idBottom}}{2} \Big], \, \text{invertedSphericalCap} \Big[ \text{hTop, } \frac{\text{idTop}}{2}, \, \frac{\text{idHip}}{2}, \, \frac{\text{idH
bioradPlateWell \rightarrow conicalTestTube[cylinder[0.15, 2.73], invertedFrustum[14.66, 2.73, 1.32], cylinder[0, 0]]
bioradPlateWell2 \rightarrow conicalTestTube [cylinder [8.83545, 2.23957], invertedFrustum [5.97455, 2.23957, 0.152716, apexangle], cylinder [0, 0] \\
idtTube \rightarrow conicalTestTube [cylinder [40.73, 4.155], invertedCone [3.2, 4.155], cylinder [\emptyset, \emptyset]] \\
fittedIdtTube \rightarrow conicalTestTube [cylinder [38.3037, 4.16389], invertedCone [3.69629, 4.16389], cylinder [0, 0]] \\
```

Calibrating against known tubes

```
test @ depthFromVolume[tubes[eppendorf1$5ml], 500];
test @ depthFromVolume[tubes[eppendorf1$5ml], 1500];
test @ (depthFromVolume[tubes[eppendorf1$5ml], 1500] - depthFromVolume[tubes[eppendorf1$5ml], 1000]);
depthFromVolume[tubes[eppendorf1$5ml], 500] \rightarrow 16.7021
depthFromVolume[tubes[eppendorf1$5ml], 1500] → 33.0204
\tt depthFromVolume[tubes[eppendorf1\$5m1], 1500] - depthFromVolume[tubes[eppendorf1\$5m1], 1000] \rightarrow 8.0461
test @ depthFromVolume[tubes[fittedEppendorf1$5ml], 500];
test @ depthFromVolume[tubes[fittedEppendorf1$5ml], 1500];
test @ (depthFromVolume[tubes[fittedEppendorf1$5ml], 1500] - depthFromVolume[tubes[eppendorf1$5ml], 1000]);
depthFromVolume[tubes[fittedEppendorf1\$5ml], 500] \rightarrow 17.4848
depthFromVolume[tubes[fittedEppendorf1$5ml], 1500] → 33.3897
\texttt{depthFromVolume[tubes[fittedEppendorf1\$5m1], 1500]} - \texttt{depthFromVolume[tubes[eppendorf1\$5m1], 1000]} \rightarrow \textbf{8.41539}
test @ depthFromVolume[tubes[eppendorf5$0mL], 5000];
depthFromVolume[tubes[eppendorf5\$0mL], 5000] \rightarrow 44.1795
test @ tubes[falcon15ml]:
test @ depthFromVolume[tubes[falcon15ml], 3000];
test @ depthFromVolume[tubes[falcon15ml], 14000];
test@ (depthFromVolume[tubes[falcon15ml], 14000] - depthFromVolume[tubes[falcon15ml], 2000](* measured at 76.5*));
tubes[falcon15ml] →
conical Test Tube [inverted Frustum [84.07, 7.665, 6.28], inverted Frustum [20.09, 6.28, 0.32], inverted Spherical Cap [0.32, 0.32]] \\
depthFromVolume[tubes[falcon15ml], 3000] \rightarrow 36.8483
depthFromVolume[tubes[falcon15ml], 14000] \rightarrow 105.795
\tt depthFromVolume\,[tubes\,[falcon15ml]\,,\,14\,000\,]\,-\,depthFromVolume\,[tubes\,[falcon15ml]\,,\,2000\,]\,\rightarrow\,76.5075\,
```

```
test @ tubes[fittedFalcon15ml];
test @ depthFromVolume[tubes[fittedFalcon15ml], 3000];
test @ depthFromVolume[tubes[fittedFalcon15ml], 14000];
test @
  (depthFromVolume[tubes[fittedFalcon15ml], 14000] - depthFromVolume[tubes[fittedFalcon15ml], 2000](* measured at 76.5*));
tubes[fittedFalcon15ml] →
conicalTestTube[invertedFrustum[95.9755, 7.42952, 6.65602], invertedFrustum[22.0945, 6.65602, 1.14806], cylinder[0, 0]]
depthFromVolume\,[\,tubes\,[\,fittedFalcon15ml\,]\,\,,\,\,3000\,]\,\,\rightarrow\,34.6045
\texttt{depthFromVolume} \, [\, \texttt{tubes} \, [\, \texttt{fittedFalcon15ml} \, ] \, , \, \texttt{14\,000} \, ] \, \rightarrow \, \texttt{105.188}
\tt depthFromVolume[tubes[fittedFalcon15ml], 14000] - depthFromVolume[tubes[fittedFalcon15ml], 2000] \rightarrow 77.6146
test @ tubes[bioradPlateWell];
test @ depthFromVolume[tubes[bioradPlateWell], 84];
test @ depthFromVolume[tubes[bioradPlateWell], 84 - 50];
test @ toDeg @ apexangle @ parts[tubes[bioradPlateWell]]["conical"];
tubes [bioradPlateWell] \rightarrow conicalTestTube [cylinder[0.15, 2.73], invertedFrustum[14.66, 2.73, 1.32], cylinder[0, 0]] \\
depthFromVolume[tubes[bioradPlateWell], 84] \rightarrow 8.68692
depthFromVolume[tubes[bioradPlateWell], 84-50] \rightarrow 4.54217
toDeg[apexangle[parts[tubes[bioradPlateWell]][conical]]] → 5.49381
test @ tubes[bioradPlateWell2];
test @ depthFromVolume[tubes[bioradPlateWell2], 84];
test @ depthFromVolume[tubes[bioradPlateWell2], 84 - 50];
test @ toDeg @ apexangle @ parts[tubes[bioradPlateWell2]]["conical"];
tubes[bioradPlateWell2] →
conicalTestTube[cylinder[8.83545, 2.23957], invertedFrustum[5.97455, 2.23957, 0.152716, apexangle], cylinder[0, 0]]
\tt depthFromVolume[tubes[bioradPlateWell2], 84] \rightarrow 7.44829
depthFromVolume[tubes[bioradPlateWell2], 84 – 50] \rightarrow 4.0258
toDeg[apexangle[parts[tubes[bioradPlateWell2]][conical]]] \rightarrow \textbf{8.75}
test @ depthFromVolume[tubes[idtTube], 250];
test @ (depthFromVolume[tubes[idtTube], 1250] - depthFromVolume[tubes[idtTube], 250]);
depthFromVolume[tubes[idtTube], 250] \rightarrow 6.74277
depthFromVolume[tubes[idtTube], 1250] - depthFromVolume[tubes[idtTube], 250] \rightarrow 18.4378
```

For volume as parameter

```
printAndPlot[name_] := Module[{expr},
  CellPrint[TextCell[name, "Text"]];
  If[ToString[name] == "generic",
   test @ depthFromVolume[tubes[name], vol];
   test @ N @ depthFromVolume[tubes[name], vol];
   test @ N @ volume[tubes[name]];
   test @ N @ depthFromVolume[tubes[name], volume[tubes[name]]];
   expr = N @ depthFromVolume[tubes[name], vol];
   printCell@
    Plot[expr, \{vol, \emptyset, volume[tubes[name]]\}, AxesLabel \rightarrow \{"volume", "depth"\}, PlotLabel \rightarrow name, AxesOrigin \rightarrow \{\emptyset, \emptyset\}]
  11
printAndPlot /@ Keys[tubes];
```

eppendorf5\$0mL

```
N[depthFromVolume[tubes[eppendorf5$0mL], vol]] \rightarrow
                               2.51187-4.35069 i
    1.65 - -
                                                                                                                                                                                                              vol \le 9.40828
               \left[28.2249-3.\text{ vol}+1.73205\sqrt{-56.4497\text{ vol}+3.\text{ vol}^2}\right]^{\frac{1}{3}}
     (\textbf{0.270963} + \textbf{0.469322} \text{ i}) \ \left( \textbf{28.2249} - \textbf{3.} \text{ vol} + \textbf{1.73205} \ \sqrt{-56.4497} \text{ vol} + \textbf{3.} \text{ vol}^2 \ \right)^{1/3}
     -3.5574 + 1.25825 (25.9645 + 4.77465 \text{ vol})^{1/3}
                                                                                                                                                                                                              vol \le 957.074
   -304.607 + 14.623 (9988.78 + 0.716197 vol) 1/3
                                                                                                                                                                                                              True
```

 $N[volume[tubes[eppendorf5$0mL]]] \rightarrow 6602.87$

N[depthFromVolume[tubes[eppendorf5\$0mL], volume[tubes[eppendorf5\$0mL]]]] → 53.75

eppendorf1\$5ml

```
N[depthFromVolume[tubes[eppendorf1$5ml], vol]] \rightarrow
                                  2.98934-5.17768 i
                                                                                                                                                                                                                          vol ≤ 12.2145
     1.8 -
               \left[36.6435 - 3. \text{ vol} + 1.73205 \sqrt{-73.2871 \text{ vol} + 3. \text{ vol}^2}\right]^{1/3}
       (\textbf{0.270963} + \textbf{0.469322} \; \text{i}) \; \left( \textbf{36.6435} - \textbf{3.} \; \text{vol} + \textbf{1.73205} \; \sqrt{-73.2871} \; \text{vol} + \textbf{3.} \; \text{vol}^2 \; \right)^{1/3}
   -8.22353 + 2.2996 (53.0712 + 2.43507 \text{ vol})^{1/3}
                                                                                                                                                                                                                          vol \leq 445.995
      -564. + 49.1204 (1580.62 + 0.143239 \text{ vol})^{1/3}
                                                                                                                                                                                                                          True
```

N[volume[tubes[eppendorf1\$5ml]]] → 1688.61

 $\label{eq:normalized} N[depthFromVolume[tubes[eppendorf1\$5ml]], volume[tubes[eppendorf1\$5ml]]]] \rightarrow 36.$

fittedEppendorf1\$5ml

```
 \begin{array}{ll} \mbox{If} \left[\mbox{vol} \le \mbox{0., 0., Indeterminate}\right] & \mbox{vol} \le \mbox{0.55021} \\ -13.8495 + 2.9248 & (157.009 + 2.14521 \mbox{vol})^{1/3} & \mbox{vol} \le 575.33 \end{array} 
                                                                                                                                                                                                                                vol ≤ 0.550217
N\,[\,depthFromVolume\,[\,tubes\,[\,fittedEppendorf1\$5ml\,]\,\,,\,\,vol\,]\,\,]\,\,\rightarrow\,
                                                                                                                               -216.767 + 20.2694 (1376.83 + 0.33533 \text{ vol})^{1/3} True
```

 $N[volume[tubes[fittedEppendorf1$5ml]]] \rightarrow 1801.76$

 $N[depthFromVolume[tubes[fittedEppendorf1\$5ml]], volume[tubes[fittedEppendorf1\$5ml]]]] \rightarrow 37.8$

fittedFalcon15ml

```
-4.60531 + 1.42955 (33.4335 + 5.25971 vol)^{1/3}
N\,[\,depthFromVolume\,[\,tubes\,[\,fittedFalcon15ml\,]\,\,,\,\,vol\,]\,\,]\,\,\rightarrow\,\,
                                                                                                                                     vol \leq 1232.34
                                                                         -803.774 + 27.1004 (27390.9 + 0.738644 vol)^{1/3} True
```

 $N[volume[tubes[fittedFalcon15ml]]] \rightarrow 16202.8$

 $N \texttt{[depthFromVolume[tubes[fittedFalcon15ml]], volume[tubes[fittedFalcon15ml]]]]} \rightarrow \texttt{118.07}$

falcon15ml

```
N[depthFromVolume[tubes[falcon15ml], vol]] →
    0.32 - 0.0944778-0.16364 i
                                                                                                                                                                                                         vol ≤ 0.0686291
               \frac{}{\left(0.205887 - 3. \text{ vol} + 1.73205 \sqrt{-0.411775 \text{ vol} + 3. \text{ vol}^2}\right)^{1/3}}
      (\textbf{0.270963} + \textbf{0.469322} \; \text{i} \,) \; \left[ \textbf{0.205887} - \textbf{3.} \; \text{vol} + \textbf{1.73205} \; \sqrt{-\textbf{0.411775} \; \text{vol} + \textbf{3.} \; \text{vol}^2} \; \right]^{1/3}
     -0.758658 + 1.23996 (0.267715 + 5.69138 vol) 1/3
                                                                                                                                                                                                         vol ≤ 874.146
    -360.788 + 13.8562 (19665.7 + 1.32258 vol)^{1/3}
                                                                                                                                                                                                         True
```

 $N[volume[tubes[falcon15ml]]] \rightarrow 13756.5$

N[depthFromVolume[tubes[falcon15ml], volume[tubes[falcon15ml]]]] → 104.48

generic

```
depthFromVolume[tubes[generic], vol] →
                                                                                                                                           vol \leq \frac{idBottom^3 \pi}{12}
        \left(1+i\sqrt{3}\right)\left[\begin{array}{c}\frac{id8otton^3\pi}{4}-3\,vo1+\sqrt{3}\,\sqrt{-\frac{1}{2}}\,idBottom^3\,\pi\,vo1+3\,vo1^2\end{array}\right]
     idBottom _ idBottom-idHip
                                                                                                                                              vol \le \frac{1}{12} (hBottom - idBottom) (idBottom^2 + idBottom idHip + idHip^2) \pi
        -hBottom idBottom + idBottom<sup>2</sup> + (hBottom - idBottom) <sup>2/3</sup>
               \left(\texttt{idBottom}^{\texttt{3}} \; \left(\texttt{hBottom} - \texttt{idHip}\right) \; + \; \frac{\texttt{12} \; \left(-\texttt{idBottom} + \texttt{idHip}\right) \; \texttt{vol}}{} \right)^{\; 1/3} \right)
     hBottom - \frac{idBottom}{2} + \frac{1}{idHip-idTop}
                                                                                                                                              Trs
        (hTop idHip - hTop<sup>2/3</sup> (hBottom (idBottom<sup>2</sup> + idBottom idHip + idHip<sup>2</sup>)
                         (idHip - idTop) + idHip (idHip
                               (hTop idHip - idBottom (idBottom + idHip) ) + idBottom
                                (\texttt{idBottom} + \texttt{idHip}) \ \ \texttt{idTop}) \ + \ \frac{12 \left( -\texttt{idHip} + \texttt{idTop} \right) \ \texttt{vol}}{1/3} \Big)^{1/3} \Big)
```

bioradPlateWell

```
vol \le 0.
N[depthFromVolume[tubes[bioradPlateWell], vol]] \rightarrow
                                                                 -13.7243 + 4.24819 (33.7175 + 1.34645 \text{ vol})^{1/3} \text{ vol} \le 196.488
                                                                14.66 - 0.0427095 (196.488 - 1. vol)
                                                                                                                       True
```

N[volume[tubes[bioradPlateWell]]] \rightarrow 200.

 $\texttt{N[depthFromVolume[tubes[bioradPlateWell]], volume[tubes[bioradPlateWell]]]]} \rightarrow \texttt{14.81}$

bioradPlateWell2

```
vol \leq 0.
                                                                    -8.57618 + 6.4971 (2.29997 + 0.146978 \text{ vol})^{1/3} \text{ vol} \le 60.7779
N[depthFromVolume[tubes[bioradPlateWell2], vol]] \rightarrow
                                                                   5.97455 - 0.063463 (60.7779 - 1. vol)
```

N[volume[tubes[bioradPlateWell2]]] \rightarrow 200.

 $\texttt{N[depthFromVolume[tubes[bioradPlateWell2]], volume[tubes[bioradPlateWell2]]]]} \rightarrow \textbf{14.81}$

idtTube

```
vol \leq 0.
                                                                    0.827389 vol<sup>1/3</sup>
N\,[\,depthFromVolume\,[\,tubes\,[\,idtTube\,]\,\,\hbox{, vol}\,]\,\,]\,\,\rightarrow\,\,
                                                                                                                        vol \le 57.8523
                                                                   3.2 - 0.0184378 (57.8523 - 1. vol) True
```

 $N[volume[tubes[idtTube]]] \rightarrow 2266.91$

N[depthFromVolume[tubes[idtTube], volume[tubes[idtTube]]]] \rightarrow 43.93

fittedIdtTube

```
vol \leq 0.
                                                                             0.909568 vol<sup>1/3</sup>
N\,[\,depthFromVolume\,[\,tubes\,[\,fittedIdtTube\,]\,\,\hbox{, vol}\,]\,]\,\,\rightarrow\,\,
                                                                                                                                     vol \leq 67.1109
                                                                            3.69629 - 0.0183591 (67.1109 - 1. vol) True
```


Comparing 1.5 mL Eppendorf Tube Models

1000

1500

2000

The fitted Eppendorf model clearly is better.

500

```
example1 = tubes[eppendorf1$5ml];
example2 = tubes[fittedEppendorf1$5ml];
test @ example1;
test @ example2;
expr1 = depthFromVolume[example1, v]
expr2 = depthFromVolume[example2, v]
Plot[{expr1, expr2}, {v, 0, volume[example1]}, AxesLabel \rightarrow {"volume", "depth"}]
Plot[expr1 - expr2, {v, 0, volume[example1]}, AxesLabel \rightarrow {"volume", "\triangledepth"}]
Show[ListPlot[\{eppendorfData\},\ AxesLabel \rightarrow \{"vol",\ "depth"\},\ PlotRange \rightarrow All,\ AxesOrigin \rightarrow \{\emptyset,\ \emptyset\},\ ImageSize \rightarrow Large],
Plot[{depthFromVolume[example1, v], depthFromVolume[example2, v]}, {v, 0, volume[example1]}]]
example1 \rightarrow conical Test Tube [inverted Frustum [20, 4.5, 4.35], inverted Frustum [14.2, 4.35, 1.8], inverted Spherical Cap [1.8, 1.8]] \\
example 2 \rightarrow conical Test Tube [inverted Frustum [18.9894, 4.70751, 4.35636], 
  invertedFrustum[16.8419, 4.35636, 2.1099], unknownShape[1.96866, 0.550217]]
                                               \left(1+i\sqrt{3}\right)\left(36.6435-3v+\sqrt{3}\sqrt{-73.2871v+3v^2}\right)^{1/3}
                  2.98934-5.17768 i
 1.8 -
                                                                                              v ≤ 12.2145
                                                                 2 (2π)<sup>1/3</sup>
        \left[36.6435 - 3 \text{ v} + \sqrt{3} \sqrt{-73.2871 \text{ v} + 3 \text{ v}^2}\right]^{1/3}
  -8.22353 + 2.2996 (53.0712 + 2.43507 \text{ v})^{1/3}
                                                                                              v ≤ 445.995
 -564. + 49.1204 (1580.62 + 0.143239 \text{ v})^{1/3}
                                                                                              True
\lceil If[v \le 0, 0, Indeterminate] \rceil
  -13.8495 + 2.9248 (157.009 + 2.14521 \text{ v})^{1/3} \text{ v} \le 575.33
-216.767 + 20.2694 (1376.83 + 0.33533 v)^{1/3} True
```


Comparing IDT Tube Models

The fitted IDT tube model is marginally better, but still better.

```
example1 = tubes[idtTube];
example2 = tubes[fittedIdtTube];
test @ example1;
test @ example2;
expr1 = depthFromVolume[example1, v]
expr2 = depthFromVolume[example2, v]
\label{eq:plot} Plot[\{expr1,\ expr2\},\ \{v,\ \emptyset,\ volume[example1]\},\ AxesLabel \rightarrow \{"volume",\ "depth"\}]
\label{eq:plot_expr1} {\tt Plot[expr1 - expr2, \{v, 0, volume[example1]\}, AxesLabel} \rightarrow \{"volume", "$\Delta depth"}]
 Show[ListPlot[\{idtData\}, AxesLabel \rightarrow \{"vol", "depth"\}, PlotRange \rightarrow All, AxesOrigin \rightarrow \{\emptyset, \emptyset\}, ImageSize \rightarrow Large], AxesLabel \rightarrow \{"vol", "depth"\}, PlotRange \rightarrow All, AxesOrigin \rightarrow \{\emptyset, \emptyset\}, ImageSize \rightarrow Large], AxesLabel \rightarrow \{"vol", "depth"\}, PlotRange \rightarrow All, AxesOrigin \rightarrow \{\emptyset, \emptyset\}, ImageSize \rightarrow Large], AxesLabel \rightarrow \{"vol", "depth"\}, PlotRange \rightarrow All, AxesOrigin \rightarrow \{\emptyset, \emptyset\}, ImageSize \rightarrow Large], AxesLabel \rightarrow \{"vol", "depth"\}, PlotRange \rightarrow All, AxesOrigin \rightarrow \{\emptyset, \emptyset\}, ImageSize \rightarrow Large], AxesLabel \rightarrow \{"vol", "depth"\}, PlotRange \rightarrow All, AxesOrigin \rightarrow \{\emptyset, \emptyset\}, ImageSize \rightarrow Large], AxesLabel \rightarrow \{"vol", "depth"\}, PlotRange \rightarrow All, AxesOrigin \rightarrow \{\emptyset, \emptyset\}, ImageSize \rightarrow Large], AxesLabel \rightarrow \{"vol", "depth"\}, PlotRange \rightarrow All, AxesOrigin \rightarrow \{\emptyset, \emptyset\}, ImageSize \rightarrow Large], AxesLabel \rightarrow \{"vol", "depth"\}, PlotRange \rightarrow All, AxesOrigin \rightarrow \{\emptyset, \emptyset\}, ImageSize \rightarrow Large], AxesLabel \rightarrow \{"vol", "depth"\}, PlotRange \rightarrow All, AxesOrigin \rightarrow \{"vol", "depth"\}, PlotRange \rightarrow All, AxesOrigin \rightarrow \{"vol", "depth"}, PlotRange \rightarrow All, AxesOrigin \rightarrow AxesOr
   Plot[{depthFromVolume[example1, v], depthFromVolume[example2, v]}, {v, 0, volume[example1]}]]
 example1 → conicalTestTube[cylinder[40.73, 4.155], invertedCone[3.2, 4.155], cylinder[0, 0]]
 example2 \rightarrow conicalTestTube [cylinder [38.3037, 4.16389], invertedCone [3.69629, 4.16389], cylinder [\emptyset, \emptyset]] \\
       0.827389 v<sup>1/3</sup>
                                                                                                                                                   v \le 57.8523
     3.2 - 0.0184378 (57.8523 - v) True
       0.909568 v<sup>1/3</sup>
                                                                                                                                                                        v \le 67.1109
      3.69629 - 0.0183591 (67.1109 - v) True
```


Comparing Bio-rad Plate models

Which should we use? At the moment it's unclear.

```
example1 = tubes[bioradPlateWell];
example2 = tubes[bioradPlateWell2];
test @ example1;
test @ example2;
expr1 = depthFromVolume[example1, v]
expr2 = depthFromVolume[example2, v]
Plot[\{expr1, expr2\}, \{v, 0, volume[example1]\}, AxesLabel \rightarrow \{"volume", "depth"\}]
Plot[expr1 - expr2, {v, 0, volume[example1]}, AxesLabel \rightarrow {"volume", "\triangledepth"}]
example1 \rightarrow conicalTestTube [\ cylinder [\ 0.15,\ 2.73]\ ,\ invertedFrustum [\ 14.66,\ 2.73,\ 1.32]\ ,\ cylinder [\ 0,\ 0]\ ]
example2 \rightarrow conicalTestTube [cylinder[8.83545, 2.23957], invertedFrustum[5.97455, 2.23957, 0.152716, apexangle], cylinder[0, 0]] \\ = (2.23957, 0.152716, apexangle), cylinder[0, 0]] \\ = (2.23957, apexangle), cyli
       -13.7243 + 4.24819 (33.7175 + 1.34645 \text{ v})^{1/3} \text{ v} \le 196.488
   14.66 - 0.0427095 (196.488 - v)
       -8.57618 + 6.4971 (2.29997 + 0.146978 \text{ v})^{1/3} \text{ v} \le 60.7779
   5.97455 - 0.063463 (60.7779 - v)
                                                                                                                                                                True
15 F
10
∆depth
1.2
1.0
8.0
0.6
0.4
0.2
                                             50
                                                                                    100
                                                                                                                            150
                                                                                                                                                                   200
```

Comparing 15mL Falcon Tube models

We should use the fitted one, as we experimentally observed the other model predicting depths that were too large.

```
example1 = tubes[falcon15ml];
example2 = tubes[fittedFalcon15ml];
test @ example1;
test @ example2;
expr1 = depthFromVolume[example1, v]
expr2 = depthFromVolume[example2, v]
 Plot[\{expr1, \ expr2\}, \ \{v, \ \theta, \ volume[example1]\}, \ AxesLabel \rightarrow \{"volume", \ "depth"\}, \ ImageSize \rightarrow Large] 
Plot[expr1-expr2, \{v, 0, volume[example1]\}, AxesLabel \rightarrow \{"volume", "\Delta depth"\}, ImageSize \rightarrow Large]
Show[ListPlot[{falconData}, AxesLabel → {"vol", "depth"}, PlotRange → All, AxesOrigin → {0, 0}, ImageSize → Large],
Plot[{depthFromVolume[example1, v], depthFromVolume[example2, v]}, {v, 0, volume[example1]}]]
example1 \rightarrow
 conicalTestTube[invertedFrustum[84.07, 7.665, 6.28], invertedFrustum[20.09, 6.28, 0.32], invertedSphericalCap[0.32, 0.32]]
```

 $example2 \rightarrow conical Test Tube [inverted Frustum [95.9755, 7.42952, 6.65602], inverted Frustum [22.0945, 6.65602, 1.14806], cylinder [0, 0]] \\$

```
\left(1 + i \sqrt{3} \right) \left(0.205887 - 3 v + \sqrt{3} \sqrt{-0.411775 v + 3 v^2}\right)^{1/3}
                       0.0944778-0.16364 i
0.32 -
                                                                                                                                     v \le 0.0686291
          \left[0.205887 - 3 \, v_{+} \sqrt{3} \, \sqrt{-0.411775 \, v_{+} 3 \, v^{2}} \, \right]^{1/3}
-0.758658 + 1.23996 (0.267715 + 5.69138 v)^{1/3}
                                                                                                                                     v\,\leq\,874.146
-360.788 + 13.8562 (19665.7 + 1.32258 v)^{1/3}
                                                                                                                                    True
```


