Міністерство освіти і науки України

Чернівецький національний університет Імені Юрія Федьковича

Інститут фізико-технічних та комп'ютерних наук

Відділ комп'ютерних технологій

Кафедра математичних проблем управління і кібернетики

3BIT

про проходження

літньої обчислювальної практики, що

проходила з _____.2018 по _____

на базі кафедри МПУіК

Виконав студент Бужак А.В.

Kypc II

Група 241

Керівник практики Коцур М.П.

Тема: Файли.

Мета роботи: Розробка програм із використанням файлів.

Завдання до лабораторної роботи:

Задача 1. Робота із двійковими файлами.

4. Дана послідовність із п цілих чисел. Створити файл і записати в нього всі парні числа послідовності. Вивести вміст файлу на екран.

Задача 2. Робота з текстовим (символьним) файлом.

4. Даний текстовий файл. Знайти номер найдовшого рядка.

Задача 3. Для всіх. Текст у кутових дужка замінити відповідним чином.

Програмним шляхом:

- 1. У папці d:\temp створіть папки <прізвище студента>1 і <прізвище студента>2.
- 2. У папці <прізвище_студента>1:
 - 1. створіть файл t1.txt, у який запишіть наступний текст :
 - 2. <Шевченко Андрій Іванович, 1990> року народження, місце проживання <м. Київ>
 - 3. створіть файл t2.txt, у який запишіть наступний текст:
 - 4. <Петренко Сергій Федорович, 1991 > року народження, місце проживання м. Чернівці
- 3. У папці <прізвище_студента>2 створіть файл t3.txt, у який перепишіть спочатку текст із файлу t1.txt, а потім з t2.txt
- 4. Виведіть розгорнуту інформацію про створені файли.
- 5. Файл t2.txt перенесіть у папку < прізвище_студента>2.
- 6. Файл t1.txt скопіюйте в папку < прізвище_студента>2.

- 7. Папку < прізвище_студента>2 перейменуйте в ALL, а папку < прізвище_студента>1 вилучите.
- 8. Вивести повну інформацію про файли папки All.

Хід роботи:

Для розв'язання поставлених задач створюю програму С# Windows Forms.

Вікно програми містить три контейнери *Panel* які можна перемикати в головному меню. Кожен з контейнерів містить набір елементів для роботи відповідної задачі.

Демонстрація роботи програми:

Контрольні питання

- 1) Що розуміється під терміном файл?
- 2) Тип файлів.
- 3) Класи роботи із файловою системою.

Відповідь

1) В інформатиці використовується наступне визначення: файл — це впорядкована сукупність даних, що зберігається на диску і займає іменовану область зовнішньої пам'яті.

Згідно з термінологією, прийнятою в програмуванні, файл — це довільний блок інформації, або пристрій вводу-виводу, асоційований із ним.

- 2) Розширення це набір літер латинського алфавіту, цифр або спеціальних символів до 3 (або більше для ОС типу Windows), що визначає тип файлу. Оскільки розширення визначає тип файла, його ще називають просто типом. Як власне ім'я, так і розширення користувач може задавати довільно. Наприклад: 'letter.txt', 'ЛистПетрову.doc', 'Собівартість.xls', 'ДовідникЦін.dat'.
- 3) У просторі імен *System.IO* передбачено чотири класи, які призначені для роботи з файловою системою комп'ютера: створення, видалення, перенесення і т.д. файлів і каталогів.

Перші два типи - Directory і File реалізують свої можливості за допомогою статичних методів, тому дані класи можна використовувати без створення відповідних об'єктів (екземплярів класів).

Наступні типи - DirectoryInfo і FileInfo мають схожі функціональні можливості с Directory і File, але породжені від класу FileSystemInfo і тому реалізуються шляхом створення відповідних екземплярів класів.

C++/CLR

Tema: Створення Windows Form.

Мета роботи: Ознайомлення з функціями класів: деструктори, індексатори, операції класу, операції перетворення типів.

Завдання до лабораторної роботи:

Написати програму з використання Windows Form виведення малюнка, згідно варіанту. В програмі розробити форму для ведення даних про об'єкти малюнка (тип об'єкта, розміри, колір тощо) та для виведення малюнка в об'єкт Image. Малюнок будується як набір елементів(типи елементів задаються згідно варіанту), координати розташування елемента в об'єкт PictureBox задавати за допомогою датчика випадкових чисел в межах полотна об'єкт PictureBox. Кожний елемент є об'єктом одного з похідних класів. Набір — задається, як масив на абстрактний базовий клас. В базовому класі передбачити віртуальні функцію малювання, функцію переміщення та інші функції. Базовий клас фігура похідні класи :

1.4. Коло, квадрат, правильний трикутник та зірку.

Хід роботи:

Для розв'язання поставленої задачі створюю програму C++/CLR Windows Forms.

Вікно програми містить контейнер *Panel* з елементами керування та елемент *PictureBox* для відображення фігур. *Panel* прикріплений до правого краю вікна, а *PictureBox* заповнює всю вільну область вікна залежно від його поточного розміру.

Демонстрація роботи програми:

Тема: Обробка виключних ситуацій мови C++.

Завдання до лабораторної роботи:

	Таблиця 4		Таблиця 5		Таблиця 6
х	U(x)	х	T(x)	text	х
-5,0000	0,2801	-10,0000	0,7832	aet	1,175
-4,5000	0,2093	-9,0000	1,1063	bet	1,278
-4,0000	0,6190	-8,0000	1,2486	cet	1,381
-3,5000	0,8811	-7,0000	1,1587	set	1,484
-3,0000	1,0422	-6,0000	0,9105	get	1,587
-2,5000	1,1463	-5,0000	0,2801	ret	1,69
-2,0000	1,2176	-4,0000	0,6190	het	1,793
-1,5000	1,2560	-3,0000	1,0422	met	1,896
-1,0000	1,1998	-2,0000	1,2176	net	1,999
-0,5000	1,1209	-1,0000	1,1998	qet	2,102
0,0000	1,0039	0,0000	1,0039	tet	2,205
0,5000	0,8196	1,0000	0,5187	wet	2,308
1,0000	0,5187	2,0000	0,4054	yet	2,411
1,5000	0,0707	3,0000	0,9603	iet	2,514
2,0000	0,4054	4,0000	1,1803	oet	2,617
2,5000	0,7487	5,0000	1,2338	pet	2,72
3,0000	0,9603	6,0000	1,0761	det	2,823
3,5000	1,0926	7,0000	0,7068	fet	2,926
4,0000	1,1803	8,0000	0,1450	let	3,029
4,5000	1,2418	9,0000	0,8533	zet	3,132
5,0000	1,2338	10,0000	1,1347	vet	3,235

Задача 4. Задано текстові файли **dat1.dat, dat2.dat** та **dat3.dat**, які містить інформацію таблиця 4, таблиця 5 та таблиця 6 відповідно, та дійсні змінні **x**, **y** та **z**, текстовий рядок **text** які вводяться із стандартного потоку введення. Обчислити значення функції **Variant(r,k)**, яка знаходиться за алгоритмами у порядку пріоритету.

Алгоритм 1.

- 1. Variant(r,k) = 0.8973*r + 0.1027*k;
- 2. r = func(x, y, z) = Rnk(x, y) + Rnk(y, z) * Rnk(x, y);
- 3. Rnk(x, y) = x * Qnk(x, y) + y * Qnk(y, x);
- 4. Qnk(x, y) = Qqn(x, y, x + y) Qqn(y, x, x y)
- 5. Qqn(x, y, z) = x/U(x) + y *T(y) U(z) *T(z)
- 6. Функції U(x) та T(x) за даними, які вводяться, з файлів відповідно **dat1.dat, dat2.dat**.
 - 6.1. Якщо файл dat1.dat не відкривається, або відсутній, тоді функцію Rnk(x,y) порахувати за Алгоритмом 2;
 - 6.2. Якщо $|x| \le 5$, тоді функцію Rnk(x,y) порахувати за Алгоритмом 2;
 - 6.3. Якщо $x \neq x_i$, $i = \overline{1,n}$, шукаємо x_i та x_{i+1} , такі що $x_i \prec x \prec x_{i+1}$, тоді $U(x) = U(x_i) + (U(x_{i+1}) U(x_{i+1})) * (x x_i) / ((x_{i+1} x_i));$
 - 6.4. Якщо файл **dat2.dat** не відкривається, або відсутній функцію func(x, y, z) порахувати за Алгоритмом 3.
 - 6.5. Якщо $|x| \le 10$, тоді функцію Rnk(x, y) порахувати за Алгоритмом 2;
 - 6.6. Якщо $x \neq x_i$, $i = \overline{1,n}$, шукаємо x_i та x_{i+1} , такі що $x_i \prec x \prec x_{i+1}$, тоді $T(x) = T(x_i) + (T(x_{i+1}) T(x_{i+1})) * (x x_i) / ((x_{i+1} x_i)).$
- 7. k = RText(x, y, z, text) = CText(Max(x, y, x + z, y + z), text)
- 8. Функція Max(x, y, z, u) обчислює максимальне значення серед заданих параметрів.

9.
$$f = CText(x, text) = \begin{cases} Gtext(text) + x, & x > 0; \\ Gtext("set") + Gtext("get") - x, text = "; \\ Gtext("set") + Gtext(text), & x \le 0; \end{cases}$$

Умова text = ", означає що текстовий рядок порожній.

- 10. Для обчислення функції Gtext(text) відкриваємо файл **dat3.dat.**
 - 10.1. Якщо файл *dat3.dat* не відкривається, або відсутній, тоді видати відповідне повідомлення, що неможна відкрити файл та вийти з програми;
 - 10.2. Здійснити пошук відповідного слова.
 - 10.3. Якщо слово знайдено повернути значення яке відповідає заданому слову у файлі;
 - 10.4. Якщо слово відсутнє повернути значення нуль.
- 11. k = Rrr(f,r) = f *Trr(f,r) + r *Trr(f,2*k);
- 12. $Trr(f,r) = \sqrt{4f^2 r} + 0.5 * Yrr(r,f)$
 - 12.1. Якщо $4*f^2 r < 0$, тоді змінні k присвоїти 0;
- 13. Yrr(f,r) = Y(f) * r + 0.5 * Y(r)
- 14. $Y(x) = \ln(x * \sqrt{100 x^2})$
 - 14.1. Якщо $100-x^2<0$, тоді змінні k присвоїти 0;
 - 14.2. Якщо $x * \sqrt{100 x^2} < 1$, тоді змінні k присвоїти 0;

Алгоритм 2.

- 1. Rnk(x, y) = x * Qnk1(x, y) + y * Qnk1(y, x) 0.03 * Qnk1(x, y) * Qnk1(y, x);
- 2. Qnk1(x, y) = 1.1*Qqn1(x, y, x + y) 0.9*Qqn1(y, x, x y)

- 3. Qqn1(x, y, z) = x/U1(x) + y*T1(y) U1(z)*T1(z)
- 4. U1(x) = arctg(arcsin(sin(3x)))
- 5. T1(x) = arctg(arccos(sin(2x)))

Алгоритм 3.

- 1. funk(x, y, z) = 1.75 * x * Qnk2(x, y) + 1.25 * y * Qnk2(y, x) 1.5 * Qnk2(x, y) * Qnk2(y, x);
- 2. Qnk2(x, y) = 1.3*Qqn1(x, y, x) 0.7*Qqn1(y, x, x)
- 3. Qqn2(x, y, z) = x/U1(x) + y*T1(y) 0.9*U1(z)*T1(z)
- 4. U1(x) = arctg(arcsin(sin(3x)))
- 5. T1(x) = arctg(arccos(sin(2x)))

Фрагменти коду розробленої програми:

```
🔁 Срр
                                                                              → (Global Scope)
                                                                                                                                                                + ♥ main()
   328
    329
           int main()
   331
                 SetConsoleCP(1251);
    332
                SetConsoleOutputCP(1251);
system("title C++");
    333
    334
   335
336
                cout << "Задача 4" << endl;
    337
   338
    339
   341
                     double v = -1, r, k;
    342
                     cout « "Введіть текстовий рядок: ";
   343
344
                     getline(cin, text);
   345
346
                     {\displaystyle \operatorname*{cout}} << "Введіть х, у та z розділені пробілом: ";
    347
                     cin >> x >> y >> z;
   348
349
                     v = Algorithm1::Variant(r, k);
cout << "Variant(" << r << "," << k << ") = " << v << endl;</pre>
    350
    351
    352
                 catch (exception ex)
                     cout << ex.what() << endl;</pre>
    354
    355
                 catch (...)
    357
    358
                     cout << "Something wrong." << endl;</pre>
    359
    360
    361
                system("pause");
    362
    364
```

```
🔁 Срр
                                                       (Global Scope)
                                                                                                         - □ □ main()
              return Y(f) * r + 0.5 * Y(r);
   291
   292
           //-----
   293
           double Trr(double f, double r)
   295
              if (4 * pow(f, 2) - r < 0)
   296
   297
              throw 121;
return sqrt(4 * pow(f, 2) - r) + 0.5 * Yrr(r, f);
   298
   300
           double Rrr(double f, double r)
   301
   302
              return f * Trr(f, r) + r * Trr(f, 2 * k());
   303
   305
           //-----
   306
           double k11()
   307
   308
                 return Rrr(f(), r());
   310
   311
   312
               catch (int code)
   313
                  if (code == 121 || code == 141 || code == 142)
   315
                     return 0;
   316
                     throw code;
   317
              }
   318
   320
           //-----
   321
           double Variant(double &r, double &k)
   322
               r = Algorithm1::r();
   323
              k = Algorithm1::k11();
return 0.8973 * r + 0.1027 * k;
   325
   326
   327
   328
🛂 Срр
                                                                                                            +
                                                        (Global Scope)
        #include <iostream>
       #include <fstream>
       #include <string>
        #include <cmath>
        #include <map>
       #include <Windows.h>
        using namespace std;
   10 double x, y, z;
11 string text;
   12
   13
       □namespace Algorithm2
   14
           //-----
   16
           double T1(double x)
   17
           {
   18
              return atan(acos(sin(2 * x)));
   19
   20
           //-----
   21
           double U1(double x)
   22
   23
              return atan(asin(sin(3 * x)));
   24
   25
   26
           double Qqn1(double x, double y, double z)
   27
              return x / U1(x) + y * T1(y) - U1(z) * T1(z);
   28
   29
   30
   31
           double Qnk1(double x, double y)
   32
   33
              return 1.1 * Qqn1(x, y, x + y) - 0.9 * Qqn1(y, x, x - y);
   34
   35
                   double Rnk(double x, double y)
   36
              return x * Qnk1(x, y) + y * Qnk1(y, x) - 0.03 * Qnk1(x, y) * Qnk1(y, x);
   38
   39
```

Демонстрація роботи програми:

Java

Тема: Шаблони проектування.

Мета роботи: Вивчення шаблонів мови програмування Java.

Завдання до лабораторної роботи:

Варіант № 4.
1. Abstract Factory (абстрактна фабрика).
2. Facade (фасад).
3. Memento (зберігач).

Демонстрація виконання програми:

CAL Java	_	×
java -jar Java.jar		^
=======================================	====	
Варіант №4		
=======================================	====	
Abstract Factory		
	-===	
drive Toyota		
drive Audi		
drive T34		
drive T150		
=======================================	====	
=======================================	====	
Facade		
=======================================	====	
some text		
in file 'temp.txt'		
=======================================	===	
=======================================	===	
Memento		
=======================================	===	
one		
=======================================	====	
_		
		h.4
		~

Файл 'Main.java'

```
import java.io.IOException;
public class Main {
   public static void main(String[] args) {
      System.out.println("========="");
      System.out.println("Bapiaнт №4");
      System.out.println("========");
      System.out.println();
      System.out.println("========");
      System.out.println("Abstract Factory");
      System.out.println("========");
      Factory carFactory = new AbstractFactory().createFactory("Car");
      Factory tankFactory = new AbstractFactory().createFactory("Tank");
      Car toyota = carFactory.createCar("Toyota");
      Car audi = carFactory.createCar("Audi");
      toyota.drive();
      audi.drive();
      Tank t34 = tankFactory.createTank("T34");
      Tank t150 = tankFactory.createTank("T150");
      t34.drive();
      t150.drive();
      System.out.println("=========");
      System.out.println();
      System.out.println("=========");
      System.out.println("Facade");
      System.out.println("=========");
      FileReadFacade fileReadFacade = new FileReadFacade();
      try {
         System.out.println(fileReadFacade.readFile("temp.txt"));
      catch (IOException ex) {
         System.out.println(ex.getMessage());
      System.out.println("=======");
      System.out.println();
      System.out.println("==========");
      System.out.println("Memento");
      System.out.println("=========");
      Originator originator = new Originator();
      originator.setState("one");
      CareTaker careTaker = new CareTaker();
      careTaker.setMemento(originator.createMemento());
      originator.setState("two");
      originator.getDataFromMemento(careTaker.getMemento());
      System.out.println(originator.getState());
      System.out.println("========="");
   }
}
```

Файл 'AbstractFactoryPattern.java'

```
interface Car {
    void drive();
}
class Toyota implements Car {
    public void drive() {
        System.out.println("drive Toyota");
}
class Audi implements Car {
    public void drive() {
        System.out.println("drive Audi");
}
class CarFactory implements Factory {
    public Car createCar(String typeOfCar) {
        switch (typeOfCar) {
            case "Toyota" : return new Toyota();
            case "Audi" : return new Audi();
            default : return null;
        }
    }
    public Tank createTank(String typeOfTank) {
        return null;
    }
}
interface Tank {
    void drive();
class T34 implements Tank {
    @Override
    public void drive() {
        System.out.println("drive T34");
}
class T150 implements Tank {
    @Override
    public void drive() {
        System.out.println("drive T150");
    }
}
class TankFactory implements Factory {
    public Tank createTank(String typeOfTank) {
        switch (typeOfTank) {
            case "T34" : return new T34();
            case "T150" : return new T150();
            default : return null;
        }
    }
    public Car createCar(String typeOfCar) {
        return null;
    }
}
```

```
interface Factory {
    Car createCar(String typeOfCar);
    Tank createTank(String typeOfTank);
}
class AbstractFactory {
    Factory createFactory(String typeOfFactory) {
        switch (typeOfFactory) {
            case "Car" : return new CarFactory();
            case "Tank" : return new TankFactory();
            default : return null;
        }
    }
}
Файл 'FacadePattern.java'
import java.io.*;
class FileReadFacade {
    String readFile(String fileName) throws IOException {
        BufferedReader reader = new BufferedReader(new FileReader(fileName));
        StringBuilder stringBuilder = new StringBuilder();
        int j = 0;
        while ((j = reader.read()) != -1) {
            stringBuilder.append((char));
        }
        return stringBuilder.toString();
    }
Файл 'MementoPattern.java'
class CareTaker {
    Memento memento;
    public Memento getMemento() {
        return memento;
    public void setMemento(Memento memento) {
        this.memento = memento;
    }
class Originator {
    String state;
    public String getState() { return state; }
    public void setState(String state) { this.state = state; }
    Memento createMemento() {
        return new Memento(state);
    void getDataFromMemento(Memento memento) {
        this.state = memento.getState();
    }
class Memento {
    String state;
    public Memento(String state) {
        this.state = state;
    public String getState() { return state; }
}
```