# Weekly 5 Summary

## Gaurang Kakade

## Table of contents

| Tuesday, Feb 7                         |
|----------------------------------------|
| Packages we will require this week     |
| Integration of regression coefficients |
| Categorical covariates                 |
| Reordering the factors                 |
| Thursday, Jan 19                       |
| Multiple Regression                    |
| Multiple regression                    |
|                                        |

## Tuesday, Feb 7

## ! TIL

Today, I learnt the following concepts in class:

- 1. Integration of regression coefficients
- 2. Categorical covariates
- 3. Multiple regression
  - $\bullet$  Extension from single regression
  - ullet Other topics

#### Packages we will require this week

```
library(tidyverse)
-- Attaching packages ----- tidyverse 1.3.2 --
              v purrr
v ggplot2 3.4.0
                         1.0.1
v tibble 3.1.8
                 v dplyr
                        1.1.0
v tidyr
        1.3.0 v stringr 1.5.0
v readr
        2.1.3
                 v forcats 1.0.0
-- Conflicts ----- tidyverse conflicts() --
x dplyr::filter() masks stats::filter()
x dplyr::lag()
               masks stats::lag()
  library(ISLR2)
  library(cowplot)
  library(kableExtra)
Attaching package: 'kableExtra'
The following object is masked from 'package:dplyr':
   group_rows
```

## Integration of regression coefficients

What is the interpretation of  $\beta_0$  and  $\beta_1$ ?

The regression model is given as follows:

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i$$

where:

- 1.  $y_i$  is the response
- 2.  $x_1$  is the covariate
- 3.  $\epsilon_i$  is the error (vertical black line in lecture 4 notes)
- 4.  $\beta_0$  and  $\beta_1$  are the regression coefficients
- 5. i = 1, 2, ..., n are the indices for the observations

What is the interpretation for the regression coefficients?

 $\beta_0$  is the intercept and  $\beta_1$  is the slope.

Let's consider the following example using mtcars

```
library(ggplot2)
mtcars %>% head() %>% kable()
```

|                   | mpg  | cyl | disp | hp  | drat | wt    | qsec  | vs | am | gear | carb |
|-------------------|------|-----|------|-----|------|-------|-------|----|----|------|------|
| Mazda RX4         | 21.0 | 6   | 160  | 110 | 3.90 | 2.620 | 16.46 | 0  | 1  | 4    | 4    |
| Mazda RX4 Wag     | 21.0 | 6   | 160  | 110 | 3.90 | 2.875 | 17.02 | 0  | 1  | 4    | 4    |
| Datsun 710        | 22.8 | 4   | 108  | 93  | 3.85 | 2.320 | 18.61 | 1  | 1  | 4    | 1    |
| Hornet 4 Drive    | 21.4 | 6   | 258  | 110 | 3.08 | 3.215 | 19.44 | 1  | 0  | 3    | 1    |
| Hornet Sportabout | 18.7 | 8   | 360  | 175 | 3.15 | 3.440 | 17.02 | 0  | 0  | 3    | 2    |
| Valiant           | 18.1 | 6   | 225  | 105 | 2.76 | 3.460 | 20.22 | 1  | 0  | 3    | 1    |

The above code uses the mtcars dataset that comes pre-installed with R, the code is using the pipe operator %>% to pass the mtcars data to the function head(). This function returns the first 6 rows of the mtcars dataset. The result of head() is then passed to the kable() function from the knitr package. This function formats the data as a nice-looking table and outputs it in the R console.

Consider the following relationship

```
x <- mtcars$hp
y <- mtcars$mpg

plot(x, y, pch = 20, xlab = "HP", ylab = "MPG")</pre>
```



```
model <- lm(y~x) # This line of code creates a linear
# regression model object in R. The response variable "y"
# is modeled as a linear function of the predictor
# variable "x". The syntax of the lm() function stands
# for "linear model". After running this code, the object
# model will contain information about the fit of the
# regression model, such as the coefficients, residuals,
# and other statistical properties.
summary(model)</pre>
```

#### Call:

 $lm(formula = y \sim x)$ 

#### Residuals:

Min 1Q Median 3Q Max -5.7121 -2.1122 -0.8854 1.5819 8.2360

#### Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 30.09886 1.63392 18.421 < 2e-16 \*\*\*

x -0.06823 0.01012 -6.742 1.79e-07 \*\*\*

--
Signif. codes: 0 '\*\*\*' 0.001 '\*\*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 3.863 on 30 degrees of freedom Multiple R-squared: 0.6024, Adjusted R-squared: 0.5892 F-statistic: 45.46 on 1 and 30 DF, p-value: 1.788e-07

For the intercept this means that :

A "hypothetical" car with hp = 0 will have mpg = 30.09 =  $\beta_0$ 

It's more interesting and instructive to consider the interpretation of the slope: Let's say we have some covariate  $x_0$  then the expected value for  $y(x_0)$  is given by:

$$y(x_0) = \beta_0 + \beta_1 x_0$$

What's the expected value for  $x_0 + 1$ ?

$$y(x_0 + 1) = \beta_0 + \beta_1 \times (x_0 + 1)$$

$$= \beta_0 + \beta_1 x_0 + \beta_1$$

$$= y(x_0) + \beta_1$$

$$\implies \beta_1 = y(x_0 + 1) - y(x_0)$$

## **Categorical covariates**

Up until now, we have looked at  $\_$ simple $\_$  linear regression models where both x and y are quantitative.

Let's confirm that cyl is indeed categorical:

## 

Another example is with the iris dataset:

| Sepal.Length | Sepal.Width | Petal.Length | Petal.Width | Species |
|--------------|-------------|--------------|-------------|---------|
| 5.1          | 3.5         | 1.4          | 0.2         | setosa  |
| 4.9          | 3.0         | 1.4          | 0.2         | setosa  |
| 4.7          | 3.2         | 1.3          | 0.2         | setosa  |
| 4.6          | 3.1         | 1.5          | 0.2         | setosa  |
| 5.0          | 3.6         | 1.4          | 0.2         | setosa  |
| 5.4          | 3.9         | 1.7          | 0.4         | setosa  |

Let's consider the following example:

We want to see if there is a relationship between species and sepal length. How would we start the EDA?

```
y <- iris$Sepal.Length
x <- iris$Species</pre>
```

#### boxplot(Sepal.Length ~ Species, iris)



Let's look just run a linear regression model and see what the model output is going to look like:

#### Call:

lm(formula = Sepal.Length ~ Species, data = iris)

#### Coefficients:

Even if x is categorical, we can still write down the regression model as follows:

$$y_i = \beta_0 + \beta_1 x_i$$

where  $x_i \in \{setosa, \ versicolor, \ virginica\}$ . This means that we end up with , (fundamentally) three different models.

$$1.\ y_i=\beta_0+\beta_1x_i=\mathtt{setosa}$$

2. 
$$y_i=\beta_0+\beta_1x_i=$$
 versicolor 3.  $y_i=\beta_0+\beta_1x_i=$  virginica

3. 
$$y_1 = \beta_0 + \beta_1 x_2 = \text{virginica}$$

This implies that:

1. 
$$y_i = \beta_0 + \beta_1(x_i = c_1)$$

2. 
$$y_i = \beta_0 + \beta_1(x_i = c_2)$$
  
3.  $y_i = \beta_0 + \beta_1(x_i = c_3)$ 

3. 
$$y_i = \beta_0 + \beta_1(x_i = c_3)$$

This further implies that:

1. 
$$y_i = \beta_0$$

2. 
$$y_i = \beta_0 + \beta_1(x_i = c_2)$$

3. 
$$y_i = \beta_0 + \beta_1(x_i = c_3)$$

Now, the interpretation for the coefficients are as follows;

#### Intercept

 $\beta_0$  is the expected y value when x belongs to the base category. This is what the intercept is capturing.

#### **Slopes**

 $\beta_1$  with the name Species.versicolor represents the following:

(Intercept) = 
$$y(x = setosa)$$

 ${\tt Species.versicolor} = y(x = {\tt versicolor}) - y(x = {\tt setosa})$ 

Species.virginica = y(x = verginica) - y(x = setosa)

### Reordering the factors

Let's say that we didn't want setosa to be the baseline level, and, instead we wanted virginica to be the baseline level. How would one do this?

First, we're going to reorder/relevel the categorical covariate

iris\$Species

```
[1] setosa
               setosa
                         setosa
                                   setosa
                                             setosa
                                                       setosa
 [7] setosa
               setosa
                         setosa
                                   setosa
                                             setosa
                                                       setosa
 [13] setosa
               setosa
                         setosa
                                   setosa
                                             setosa
                                                       setosa
 [19] setosa
               setosa
                         setosa
                                   setosa
                                             setosa
                                                       setosa
[25] setosa
               setosa
                         setosa
                                   setosa
                                             setosa
                                                       setosa
[31] setosa
               setosa
                         setosa
                                   setosa
                                             setosa
                                                       setosa
[37] setosa
               setosa
                         setosa
                                   setosa
                                             setosa
                                                       setosa
 [43] setosa
               setosa
                         setosa
                                   setosa
                                             setosa
                                                       setosa
                         versicolor versicolor versicolor versicolor
[49] setosa
               setosa
[55] versicolor versicolor versicolor versicolor versicolor
 [61] versicolor versicolor versicolor versicolor versicolor
 [67] versicolor versicolor versicolor versicolor versicolor
 [73] versicolor versicolor versicolor versicolor versicolor
 [79] versicolor versicolor versicolor versicolor versicolor
 [85] versicolor versicolor versicolor versicolor versicolor
 [91] versicolor versicolor versicolor versicolor versicolor
 [97] versicolor versicolor versicolor virginica virginica
[103] virginica virginica virginica virginica virginica
[109] virginica virginica virginica virginica virginica
[115] virginica virginica virginica virginica virginica virginica
[121] virginica virginica virginica virginica virginica virginica
[127] virginica virginica virginica virginica virginica virginica
[133] virginica virginica virginica virginica virginica virginica
[139] virginica virginica virginica virginica virginica virginica
[145] virginica virginica virginica virginica virginica virginica
Levels: setosa versicolor virginica
```

```
iris$Species <- relevel(iris$Species, "virginica")</pre>
```

#### iris\$Species # After

| [1]  | setosa     | setosa     | setosa             | setosa             | setosa             | setosa     |
|------|------------|------------|--------------------|--------------------|--------------------|------------|
| [7]  | setosa     | setosa     | setosa             | setosa             | setosa             | setosa     |
| [13] | setosa     | setosa     | setosa             | setosa             | setosa             | setosa     |
| [19] | setosa     | setosa     | setosa             | setosa             | setosa             | setosa     |
| [25] | setosa     | setosa     | setosa             | setosa             | setosa             | setosa     |
| [31] | setosa     | setosa     | setosa             | setosa             | setosa             | setosa     |
| [37] | setosa     | setosa     | setosa             | setosa             | setosa             | setosa     |
| [43] | setosa     | setosa     | setosa             | setosa             | setosa             | setosa     |
| [49] | setosa     | setosa     | ${\tt versicolor}$ | ${\tt versicolor}$ | ${\tt versicolor}$ | versicolor |
| [55] | versicolor | versicolor | versicolor         | versicolor         | versicolor         | versicolor |

```
[61] versicolor versicolor versicolor versicolor versicolor
 [67] versicolor versicolor versicolor versicolor versicolor
 [73] versicolor versicolor versicolor versicolor versicolor
 [79] versicolor versicolor versicolor versicolor versicolor
 [85] versicolor versicolor versicolor versicolor versicolor
 [91] versicolor versicolor versicolor versicolor versicolor
 [97] versicolor versicolor versicolor versicolor virginica virginica
[103] virginica virginica virginica virginica virginica
[109] virginica virginica virginica virginica virginica virginica
[115] virginica virginica virginica virginica virginica virginica
[121] virginica virginica virginica virginica virginica virginica
[127] virginica virginica virginica virginica virginica virginica
[133] virginica virginica virginica virginica virginica
[139] virginica virginica virginica virginica virginica virginica
[145] virginica virginica virginica virginica virginica
Levels: virginica setosa versicolor
```

Once we do the releveling, we can now run the regression model:

## Thursday, Jan 19

## ! TIL

Today, I learnt the following concepts in class:

- 1. Multiple regression
- 2. Interpretation of coefficients of multiple regression
- 3. Significance of Interpretation of coefficients of multiple regression

Three plotting libraries

```
1. base plot (plot)
```

- 2. ggplot
- 3. plotly

```
library(plotly)
```

Attaching package: 'plotly'

The following object is masked from 'package:ggplot2':

last\_plot

The following object is masked from 'package:stats':

filter

The following object is masked from 'package:graphics':

layout

#### Multiple Regression

This is the extension of simple linear regression to multiple covariates  $X = [x_1 | x_2 | \dots | x_p]$ , i.e.,

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots \beta_p x_p + \epsilon$$

In particular, the data looks like the following:

$$\mid \mathbf{y} \mid \mathbf{x}_1 \mid \mathbf{x}_2 \mid ... \mid \mathbf{x}_p \mid$$

$$|y_1| |x_{1,1}| |x_{2,1}| \dots |x_{p,1}|$$

$$|y_2||x_{1,2}||x_{2,2}||\dots||x_{p,2}||$$

$$|y_3| x_{1,3} |x_{2,3}| \dots |x_{p,3}|$$

|: |: |: |... |... |:

$$|y_n| |x_{1,n}| |x_{2,n}| \dots |x_{p,n}|$$

and, the full description of the model is as follows:

$$y_i = \beta_0 + \beta_1 x_{1,i} + \beta_2 x_{2,i} + \dots + \beta_p x_{p,i} + \epsilon_i,$$

knitr::kable()

In this, knitr is the package and kable() is the function.

plotly::last\_plot()

In this, plotly is the package and last\_plot is the function.

ggplot2::plot()

Similarly, in this ggplot2 is the package and plot() is the function.

Consider the Credit dataset

```
library(ISLR2)
attach(Credit)

df <- Credit %>% tibble()
colnames(df) <- tolower(colnames(df))
df</pre>
```

#### # A tibble: 400 x 11

|    | income      | limit       | rating      | cards       | age         | educat~1    | own         | student     | ${\tt married}$ | region      | balance     |
|----|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-----------------|-------------|-------------|
|    | <dbl></dbl> | <dbl></dbl> | <dbl></dbl> | <dbl></dbl> | <dbl></dbl> | <dbl></dbl> | <fct></fct> | <fct></fct> | <fct></fct>     | <fct></fct> | <dbl></dbl> |
| 1  | 14.9        | 3606        | 283         | 2           | 34          | 11          | No          | No          | Yes             | South       | 333         |
| 2  | 106.        | 6645        | 483         | 3           | 82          | 15          | Yes         | Yes         | Yes             | West        | 903         |
| 3  | 105.        | 7075        | 514         | 4           | 71          | 11          | No          | No          | No              | West        | 580         |
| 4  | 149.        | 9504        | 681         | 3           | 36          | 11          | Yes         | No          | No              | West        | 964         |
| 5  | 55.9        | 4897        | 357         | 2           | 68          | 16          | No          | No          | Yes             | South       | 331         |
| 6  | 80.2        | 8047        | 569         | 4           | 77          | 10          | No          | No          | No              | South       | 1151        |
| 7  | 21.0        | 3388        | 259         | 2           | 37          | 12          | Yes         | No          | No              | East        | 203         |
| 8  | 71.4        | 7114        | 512         | 2           | 87          | 9           | No          | No          | No              | West        | 872         |
| 9  | 15.1        | 3300        | 266         | 5           | 66          | 13          | Yes         | No          | No              | South       | 279         |
| 10 | 71.1        | 6819        | 491         | 3           | 41          | 19          | Yes         | Yes         | Yes             | East        | 1350        |

# ... with 390 more rows, and abbreviated variable name 1: education

and, we'll know at the following three columns: income, rating, limit.

```
df3 <- df %>% select(income, rating, limit)
df3
```

```
# A tibble: 400 x 3
  income rating limit
   <dbl> <dbl> <dbl>
   14.9
            283 3606
1
2 106.
            483 6645
3
  105.
            514 7075
4 149.
            681 9504
5
    55.9
            357 4897
6
    80.2
            569 8047
7
    21.0
            259 3388
8
    71.4
            512 7114
9
    15.1
            266 3300
10
    71.1
            491 6819
# ... with 390 more rows
```

If we want to see how the credit limit is related to income and credit rating, we can visualize the following plot

```
fig <- plot_ly(df3, x=~income, y=~rating, z=~limit)
fig %>% add_markers()
```

The regression mode is as follows:

```
model <- lm(limit ~ income + rating, df3)
model</pre>
```

#### Call:

lm(formula = limit ~ income + rating, data = df3)

#### Coefficients:

```
(Intercept) income rating -532.4711 0.5573 14.7711
```

What does the regression model look like here?

```
ranges <- df3 %>%
    select(income, rating) %>%
    colnames() %>%
    map(\(x) seq(0.1 * min(df3[x]), 1.1 * max(df3[x]),
    length.out = 50))
```

```
# The code is generating a sequence of numbers that
# represent the range of values for two variables income
# and rating in the data frame df3. This sequence of
# numbers is being stored in the ranges object.
# The code uses the select function to select only the
# columns income and rating from the data frame df3. Then
# it uses the colnames function to extract the names of
# these columns. Next, the code uses the map function
# from the purrr package to apply a function to each
# column name. The function generates a sequence of
# numbers that covers the range of values in each column,
\# with a step of 0.1 times the minimum value and 1.1
# times the maximum value. The number of numbers in the
# sequence is specified by the length.out argument, which
# is set to 50.
b <- model$coefficients</pre>
z <- outer(
    ranges[[1]],
    ranges[[2]],
    Vectorize(function(x2, x3) {
        b[1] + b[2] * x2 + b[3] * x3
    })
)
# This code is defining a matrix z that contains the
# predicted values for a multiple linear regression model
# with two predictors (income and rating) based on the
# coefficients b from the model. The outer function
# calculates the Cartesian product of the two ranges
# (ranges[[1]] and ranges[[2]]), i.e., the values of x2
# and x3 for all possible combinations of these two
# variables. For each combination, the linear equation
# represented by the coefficients b is calculated using
\# b[1] + b[2] * x2 + b[3] * x3 and the result is stored
# in the matrix z.
fig %>%
    add\_surface(x = ranges[[1]], y = ranges[[2]], z = t(z),
```

```
alpha = 0.3) %>%
add_markers()
```

#### What is the interpretation for this coefficients?

- 1.  $\beta_0$  is the expected value of y when income = 0 and rating = 0
- 2.  $\beta_1$  is saying that if rating is held constant and income changes by 1 unit, then the corresponding change in the limit is 0.5573.
- 3.  $\beta_2$  is saying that if income is held constant and rating changes by 1 unit, then the corresponding change in limit is 14.771.

What about the significance?

```
summary(model)
```

#### Call:

```
lm(formula = limit ~ income + rating, data = df3)
```

#### Residuals:

```
Min 1Q Median 3Q Max -420.97 -121.77 14.97 126.72 485.48
```

#### Coefficients:

Residual standard error: 182.3 on 397 degrees of freedom Multiple R-squared: 0.9938, Adjusted R-squared: 0.9938 F-statistic: 3.18e+04 on 2 and 397 DF, p-value: < 2.2e-16

## Multiple regression

```
x <- seq(0, 1, length.out = 100)
b0 <- 1.0
b1 <- 2.0
y <- b0 + b1 * x + rnorm(100) * 0.1
plot(x,y, pch = 20)</pre>
```



```
model <- lm(y~x)
summary(model)</pre>
```

#### Call:

 $lm(formula = y \sim x)$ 

#### Residuals:

Min 1Q Median 3Q Max -0.30218 -0.06497 0.00815 0.06555 0.21026

#### Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.99864 0.02001 49.92 <2e-16 \*\*\*

x 1.98907 0.03456 57.55 <2e-16 \*\*\*
--Signif. codes: 0 '\*\*\*' 0.001 '\*\*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.1008 on 98 degrees of freedom

Multiple R-squared: 0.9713, Adjusted R-squared: 0.971 F-statistic: 3312 on 1 and 98 DF, p-value: < 2.2e-16

This code generates a linear model in R. It starts by generating an **x** sequence of 100 equally spaced values between 0 and 1. Then it creates two variables, **b0** and **b1**, with values of 1.0 and 2.0, respectively. It uses these values to generate **y** with a formula **b0 + b1 \* x + rnorm(100) \* 0.7**. **rnorm(100)** generates random normal deviates with a mean of 0 and standard deviation of 0.7. The code then plots **x** against **y** using the **plot()** function and fits a linear regression model to the data using the **lm()** function with the formula **y ~ x**. Finally, it summarizes the results of the linear regression model using the **summary()** function.

The value **0.1** in the code is the standard deviation of the normal distribution used to generate random noise to add to the **y** variable.

As the standard deviation increases, the Adjusted R-squared decreases

```
library(ISLR2)
library(dplyr)
library(ggplot2)
attach(ISLR2::Credit)
```

The following objects are masked from Credit:

Age, Balance, Cards, Education, Income, Limit, Married, Own, Rating, Region, Student

```
df <- Credit %>% tibble() %>% rename_all(tolower)
df
```

# A tibble: 400 x 11

|   | income      | limit       | rating      | cards       | age         | educat~1    | own         | student     | married     | region      | balance     |
|---|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
|   | <dbl></dbl> | <dbl></dbl> | <dbl></dbl> | <dbl></dbl> | <dbl></dbl> | <dbl></dbl> | <fct></fct> | <fct></fct> | <fct></fct> | <fct></fct> | <dbl></dbl> |
| 1 | 14.9        | 3606        | 283         | 2           | 34          | 11          | No          | No          | Yes         | South       | 333         |
| 2 | 106.        | 6645        | 483         | 3           | 82          | 15          | Yes         | Yes         | Yes         | West        | 903         |
| 3 | 105.        | 7075        | 514         | 4           | 71          | 11          | No          | No          | No          | West        | 580         |
| 4 | 149.        | 9504        | 681         | 3           | 36          | 11          | Yes         | No          | No          | West        | 964         |
| 5 | 55.9        | 4897        | 357         | 2           | 68          | 16          | No          | No          | Yes         | South       | 331         |
| 6 | 80.2        | 8047        | 569         | 4           | 77          | 10          | No          | No          | No          | South       | 1151        |
| 7 | 21.0        | 3388        | 259         | 2           | 37          | 12          | Yes         | No          | No          | East        | 203         |
| 8 | 71.4        | 7114        | 512         | 2           | 87          | 9           | No          | No          | No          | West        | 872         |

```
9
     15.1
           3300
                    266
                             5
                                  66
                                            13 Yes
                                                      No
                                                               No
                                                                        South
10
     71.1
           6819
                    491
                             3
                                  41
                                            19 Yes
                                                      Yes
                                                               Yes
                                                                       East
# ... with 390 more rows, and abbreviated variable name 1: education
  model <- lm(limit ~ rating + married, df)</pre>
  model
Call:
lm(formula = limit ~ rating + married, data = df)
Coefficients:
(Intercept)
                             marriedYes
                   rating
    -528.09
                    14.87
                                 -25.97
  ggplot(df) +
         geom_point(aes(x = rating, y = limit, color = married)) +
         geom_point(aes(x = rating, y = limit, fill= married))
        10000 -
                                                                       married
     limit
                                                                           No
                                                                           Yes
         5000 -
                        250
                                     500
                                                   750
                                                                 1000
```

279

1350

This code is loading the ISLR2 and dplyr packages, as well as the ggplot2 library. The Credit data set is loaded from the ISLR2 package and saved as a tibble named df. attach is a function in R that temporarily loads a data set into the search path, so that its objects

rating

can be accessed directly by name, rather than having to reference the data set each time with its full name. In other words, you can use the variables in the data set as if they are in the work space. However, it is generally not recommended to use attach as it can lead to naming conflicts and make the code harder to maintain. The rename\_all function is used to convert the names of all columns in the tibble to lowercase. A linear regression model is then fit to the data using the formula limit ~ rating + married. The response variable limit is modeled as a linear function of the predictor variables rating and married. Finally, a scatterplot is created using ggplot2, with the points colored and filled according to the value of the married variable.