Ref. No.: 659-919

IN THE CLAIMS:

Please cancel claims 1, 4, 9-14, 22 and 23 and amend claims 2, 6-8 and 21

as follows:

Claim 1 (Cancelled).

2. (Currently Amended) The transfer assembly of claim 4 3, wherein said recessed

portion is located generally centrally in said outer surface.

3. (Previously Presented) A transfer assembly for transporting and applying a discrete

part to a moving web, the discrete part having varying thickness, the carrier

comprising:

a carrier body having a discrete part engaging outer surface, the outer surface

including a generally convex top portion and a generally convex recessed portion

spaced inwardly from said top portion, wherein said recessed portion has a generally

hour-glass shape; said top portion adapted and configured to engage a first portion of

a discrete part having a first thickness, said recessed portion adapted and configured

to engage at least one portion of the discrete part having at least one thickness greater

than said first thickness, and further comprising at least one aperture in said outer

surface and extending through said carrier body for communication with a vacuum

source.

Claim 4 (Cancelled).

Claim 5 (Cancelled).

6. (Currently Amended) The transfer assembly of claim  $\pm 3$  further comprising a

- 2 -

carrier base adapted to support said carrier body.

7. (Currently Amended) The transfer assembly of claim  $\frac{1}{2}$  wherein said outer surface has a surface roughness of at least 3 micrometers.

8. (Currently Amended) The transfer assembly of claim 1 3 wherein said outer surface includes a plasma coating thereon.

Claims 9-14 (Cancelled).

15. (Currently Amended) An apparatus for applying discrete parts onto a substrate web, the apparatus comprising:

- a) at least one transfer assembly configured to rotate about an axis and which includes an outer surface configured to engage the discrete parts, and
- b) a web conveyor having an outer surface adapted to support and advance a substrate web, said web conveyor spaced from said outer surface of said at least one transfer assembly, said outer surface of said web conveyor including at least one recessed portion having a bottom surface for engaging accommodating at least one portion of each of the discrete parts that is relatively thicker than other portions of each of the discrete parts.

16. (Original) The apparatus of claim 15, wherein said web conveyor is spaced from said at least one transfer assembly a distance less than the combined total thickness of the substrate web and the discrete part.

S/N 10/038,766 Ref. No.: 659-919

- 17. (Previously Presented) An apparatus for applying discrete parts traveling at a first speed and having a varying thickness onto a substrate web traveling at a second speed, said apparatus comprising:
  - a) a web conveyor adapted to support and advance said substrate web;
- b) at least one transfer assembly configured to rotate about a first axis, said transfer assembly including an outer surface which is configured to transport said discrete parts and apply said discrete parts to said substrate web; said outer surface including at least one recessed portion having a bottom surface for engaging at least one portion of the discrete parts that is relatively thicker than other portions of the discrete parts;
- c) a drive member which is configured to rotate about a second axis which is offset from said first axis of said transfer assembly;
- d) at least one coupler arm which is pivotally connected to said drive member about a pivot point, said coupler arm including a cam end which is configured to follow a curvilinear path and a crank end which is slidably connected to said transfer assembly; and
- e) a drive mechanism adapted to rotate said drive member about said second axis wherein, as said drive member is rotated, said cam end of said coupler arm is guided along said curvilinear path and said crank end of said coupler arm slidably engages said transfer assembly thereby pivoting said coupler arm about said pivot point to vary an effective drive radius of said transfer assembly and rotate said transfer assembly at a variable speed.
- 18. (Previously Presented) The apparatus of claim 17 wherein said transfer assembly is configured to maintain a substantially constant first surface speed as the discrete parts are received and a substantially constant second surface speed as the discrete parts are applied to said substrate web.

S/N 10/038,766 Ref. No.: 659-919

- 19. (Previously Presented) The apparatus of claim 17 wherein said first surface speed of said transfer assembly is substantially equal to said first speed of said discrete parts and said second surface speed of said transfer assembly is substantially equal to said second speed of said substrate web.
- 20. (Previously Presented) The apparatus of claim 17, further comprising a turning mechanism adapted to rotate said at least one transfer assembly before the discrete parts are applied to said substrate web.
- 21. (Currently Amended) A transfer assembly for transporting and applying a discrete part to a moving web, the discrete part having varying thickness, the carrier comprising:

a carrier body having a discrete part engaging outer surface, the outer surface including a generally convex top portion and a generally convex recessed portion spaced inwardly from said top portion; said top portion adapted and configured to engage a first portion of a discrete part having a first thickness, said recessed portion having a bottom surface adapted and configured to engage at least one portion of the discrete part having at least one thickness greater than said first thickness, and further comprising at least one aperture in said outer surface and extending through said carrier body for communication with a vacuum source, The transfer assembly of elaim 1-wherein said carrier body is rotatable about an axis substantially normal to said convex surface of said recessed portion.

Claims 22 and 23 (Cancelled).