USSR

. 595.2

IL YICHEV, V. D., GOLUBEVA, T. B., ANISIMOV, Ye. Ye.

"Electrophysiological Characteristics of the Acoustic Analysor of sirds. II. Medulary Acoustic Auclei and the Cochlea"

Moscow, Biologicheskiye Hauki, Vol 13, No 7, 1970, pp 31-45

Abstract: A review is presented of studies conducted by many authors on the various potentials and characteristics of the accustic apparatus. It is suggested that, in order to develop adequate research methods, the work of histologists and electrophysiologists should be unified.

Entered 27/XII 1950

Chair of Vertebrate Zoology, Moscow State University im. M. V. Lomonosov

1/1

USSR

UDC 621.791.053:620.172.24:620.172.25

BAKSH, O. A., MONOSHKOV, A. N., and ANISIMOV, Yu. I., Chelyabinsk, Chelyabinsk Polytechnical Institute

"Low-Temperature Effect on the Efficiency of Welded Joints Under Static Tension"

Kiev, Problemy Prochnosti, No 8, Aug 70, pp 74-79

Abstract: An outline is given for a procedure for the theoretical evaluation of the ductility and brittleness of welded joints of compact cross section with a smooth interlayer, which are subjected to static tension. Mechanical inhomogeneity and temperature (up to 78° K) are taken into account. The plastic properties and type of failure, in relation to service temperature, were investigated under certain assumptions. Tests samples were made of 45Kh and St10 steels, welded by friction. Tests were conducted on an UMM-5 test machine at temperatures of -20, -78, -100, -150, -170, and -196°C, with a deformation rate of 1.1 x 10^{-3} sec. The results show that with decreasing T and with a reduction in the relative thickness of the interlayer x, the yield point and short-time strength increase.

1/2

- 41 -

USSR

BAKSH, O. A., et al, Problemy Prochnosti, No 8, Aug 70, pp 74-79

A transfer of fracture from the soft interlayer toward the hard metal was observed in the entire temperature range and at sufficiently small values of χ . The range of interlayers with brittle fracture widened with decreasing temperature, attaining χ = 0.9 at 78° K. The test procedure is described briefly.

1/1

USSR UDC 541.123.2:[546.621-31+546.45-31]:[532.6+542.3]

YELYUTIN, V. P., MITIN, V. S., and ANISIMOV, YU. S., Moscow Institute of Steel and Alloys

"Surface Tension and Density of Al₂O₃-BeO Melts"

Moscow, Izvestiya Akademii Nauk SSSR, Neorganicheskiye Materialy, No 9, Sep 73, pp 1585-1587

Abstract: Researchers today are paying considerable attention to the study of the properties of liquid oxides of aluminum and beryllium because of the expanding use of powders from these metals and their alloys in solid rocket fuels. One of the main factors in this research is the determination of density and surface tension of oxides in the liquid state. The authors of this article established the concentration dependence of surface tension and density of liquid ${\rm Al_20_3-be0}$ melts. They measured the surface tension and density of pure aluminum oxide and nelts of ${\rm Al}_2{\rm O}_3$ as a function of temperature. The values of surface tension of pure Al203 were found to be lower than that found previously. The value of the density of liquid aluminum oxide, equal to 3.03 g/cm3, at the melting point is found to be in good agreement with previous data, but the temperature coefficient of the density is somewhat higher. The article contains 2 figures, 1 table, and 4 bibliographic references. 1/1

Acc. Nr: 0100578 Abstracting Service: CHEMICAL ABST. 5-70

Ref. Code: UR 0065

Sea petroleum by adsorption and hydrogenation methods. Kuliev, R. Sh.; Kevorkova, I. S.; Anisimova, A. M. (USSR). Khim. Tekhnol. Topl. Masel 1970, 15(2), 20-2 (Russ). By adsorption purification on the optimum amt. (25%) of an aluminosilicate catalyst at 35° and by hydrogenation on WS2 catalyst at a vol. input rate of 0.5 hr 1 at 300°/300 atm with 1000 l. H l. distillate, viscosity at 50°, acid no., and f.p. of a dewaxed distillate transformer oil were changed from 7.08 cSt, 0.36 mg KOH g and -47° to 7.09 and 7.27 cSt, 0.01 and 0.02 mg KOH g and -45°, resp., color and transparency were improved, and stability toward oxidn. was raised to the level specified by GOST 981-55 and 11257-65. The resp. stabilized oils had flash points of 150° and tan angles of dielec. loss at 70° of 0.17 and 0.31. Process variable ranges explored were 25-150° adsorbent and hydrogenation temps., pressures, and H conens. of 300-425°, 50-300 atm, and 300-1000 l. l.

Lucile S. Davison 🤳

aanseerregiskusteerragisest aansateranne parannoaajanisinniapaania hallistaalisteerragistaania kalkistaanis ka

pic.

1/,

REEL/FRAME 19842013

A HANNE BADE DE REPORTE DE LA CAUSE PROPERTY DE LA CONTRACTOR DE LA CAUSE DE L

UDC 669.245'26'295'71:620.186;669.018.2;621.785.78

PAISON, A. I., DMITRIYEV, L. I., ANISIMOVA, G. V., and KORNEYEVA, N. N.

"Study of the Effect of Aging Temperature on the Structure and Properties of KhN77TYuR Alloy"

Tekhnol. legkikh splavov. Kauchno-tekhn. byul. VILSa (Technology of Light Alloys. Scientific and Technical Bulletin of All-Union Institute of Light Alloys), 1970, No 5, pp 97-102 (from RZh-Ketallurgiya, No 3, Mar 71, Abstract No 31751 by E. Volin)

Translation: The interrelationship is found between C_{100} and $C_{0.2}$ at 700 and 800° (from reference data), characterized by the correlation factor 0.9 and 0.86 respectively, as well as between C_{1000} : 0.2 and testing temperature, correlation factor 0.71. Khiyyyyun allow was tested after heating to 1000° , 8 hr, with subsequent aging at 700-350°, 16 hr. An aging temperature increase in the 700-800° range increases heat resistance and stability of structure. Aging at 850° sharply reduces rupture strength as a result of a decrease in the quantity of the strengthening phase. Air cooling from 1000° assures a higher rupture strength as a result of further aging in tests than with subsequent 1/2

· _ 42 =

ussa

PAISOV, A. I., et al., Tekhnol. legkikh splavov. Nauchno-tekhn. byul. VIISa, 1970, No 5, pp 97-102

aging at 700 and 800° (3750 150 hr as against 95 and 120 hr respectively).

0,2 changes analogously. Four illustrations. Bibliography with seven titles.

USSR

ANISIMOVA, L. F.

"The Use of Linear Correlation Relations for Restoration of Information Concerning a Transient Process Which Has Been Lost"

Tr. Mosk. Aviats. In-ta [Works of Moscow Aviation Institute], 1972, No 258, pp 10-16 (Translated from Referativnyy Zhurnal Kibernetika, No 9, 1973, Abstract No 9V143)

Translation: Suppose \mathbf{X}_1 , \mathbf{X}_2 , ..., \mathbf{X}_n are statistically related random parameters, and the results of measurements of parameter \mathbf{X}_1 may be lost

during recording of the values of the parameters.

An algorithm is suggested for restoration of the lost values of parameter \mathbf{X}_1 on the basis of values of parameters \mathbf{X}_2 ..., \mathbf{X}_n , based on a set linear regression equation. The ordinary method and the method of Chevyshev are used to compose the regression equation.

YU. Shinakov

1/1

er parador principali para properti peres. Herapete di la regio del la fina e en estador de entroprio de estad Peresente en entroprio de entroprio de entroprio de la region de la fina en entroprio de entroprio de entropri

UDC 547.241

NIKOLAYEVA, V. G., ANISIMOVA, L. V., MUKHACHEVA, O. A., and RAZUMOV, A. I., Kazan' Chemical-Technological Institute Imeni S. M. Kirov

"Studies in the Series of Phosphinic and Phosphinous Acid Derivatives LXXXIX. Structures and Properties of Phosphorylated Hydroxamic Acids and Their Salts"

Leningrad, Zhurnal Obshchey Khimii, Vol 43 (105), No 5, May 73, pp 1013-1019

Abstract: A series of phosphorylated hydroxamic acids and salts was synthesized by a previously described method. Physical constants, IR, UV, and PMR data are reported for the new compounds. On the basis of spectral analysis it was shown that the solid phosphorylated hydroxamic acids and their salts are in the amide form $R_2P(=0)(CHX)_nC(=0)NHOH$.

1/1

- 16 -

USSR

UDC 669.15'28.26.25.241621.78

SHAKHNAZAROV, YU. V., ANISIMOVA, M. S., BARAKHTIN, B. K., and SHUL'LAN, V. M., Leningrad

"The Stabilization of Austenite with Inverse Conversion in Cr-Co-No and Cr-Ni-Co-No Steels"

Moscow, Izvestiya Akademii Nauk SSSR, Metally, No 2, Mar-Apr 73, pp 160-163

Abstract: The stabilization of austenite was investigated with inverse conversion in Khi5K19W3 steel not containing Ni, and in Wi-containing Kh14K14E4H3 steel, both shelted in one-ton vacuum are furnaces. The offers of the aging temperature on characteristic factors as the quantity of residual austenite, electric resistance, period of & -phase lattice, innact ductility, and hardness, is discussed by reference to disgrams. The lowered stability of austenite, developing on initial stages of of -> / conversion according to the chifting mechanism, indicate a low contribution of phasal peening to the stabilization effect. The maximum stability results with the development of (- of conversion, which becomes possible by a significant redistribution of elements. Considering the increased solubility of Ho in martensite at decreasing Co content, it can be assumed that the stabilization of austenite in steel not containing Mi is in presence of Cr, determined by F-phase concentration with Co. Three figures, eight bibliographic references. 1/1

APPROVED FOR RELEASE: 08/09/2001 CIA-RDP86-00513R002200210005-9"

USSR

Mic 579.7:621.71

AMISI JOVA, H. I., SEITHOV, YU. I.

"Experimental Study of the Stresses of the Grankshaft of a SEU-real stresses of the Grankshaft of the Grankshaf

Tr. Gor'kev. In-to inch. voda. transp. (Morks of the Cor'kir In titute of Which Transportation Engineers), 1971, vyp. 112, pp 22-31 (from PDE-Top on the Nov 71, Abstract do 110964)

Translation: A description is presented of tensometric a more and a tax flanges and fillets of the condicinate of the 525 lilewast mexic. Geography. The a cantilevered electric motor perforaged by the Gor'hiy Scientiff, descarch Materials Testing habountery in Cooperation with the Le. Ithanire a familie of Scientific descarch and membra institute of Chemical Hardinery. The carry very defined for the flighting alternable magnitudes of the divergence of the fill of the shall and the effect of the forces of membrale attraction of the science of the state of the scatter of

USSR

ARISPHOVA, N. I., et al., Tr. Cor'hov. in-ta inzh. veda. tranno., 1071, vez.

of the shaft exceed the allowable values. The allowable spread or the first offset of the shaft from the electric motor with the rotor seated is 0.10 to (the minimum margin of safety is 2). Use of one-way magnetic effective, especially for worn bearings. An initial eccentrists in the rotor from 0.25 to 0.45 is recommended.

2/2

USSR - LDC 574.6

ANISIMOVA T. B., Compiler, Bionika. Bibliograficheskiy Ukazatel' Otachest tvennoy i Inostrannoy Literatury 1958-1968 (Bionics. Bibliographic Index of Soviet and Foreign Literature 1958-1968), Moscow, "Nauka," 1971, 168 pp

Translation: Annotation: This bibliography contains literature on biomics and certain related fields of biology, automation, and cybernatics for 1958-1968. The literature is classified with due regard for the basic areas of interest in biomics, such as biomechanics and bioenergetics, the problem of modeling receptors and analysors, biological aspects of the problem of image recognition, the problem of animal orientation and navigation, modeling nerve networks and the brain, and so on. The index is intended for scientific workers, engineers, teachers, and students working in biomics and related fields.

Foreword:

Since 1963, the Library of Technical Literature of the Sector of the Network of Special Libraries of the Academy of Sciences USSR, together with the bionics sections of the Scientific Council on the Complex Problem of Cybernetics and the Scientific Council on Problems of Navigation and Automatic Control of the Academy of Sciences USSR, has been compiling a card index of literature on bionics. On the basis of this card index, bibliographic 1/11

。这种种类型。 1999年发展,这种种人,是一个人,是一个人,是一个人,是一个人,是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们 我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我

USSR

ANISIMOVA, T. N., Compiler, Bionika. Bibliograficheskiv Ukazatel' Otechestvennoy i Inostrannoy Literatury 1958-1968 (Bionics. Bibliographic Index of Soviet and Foreign Literature 1958-1968), Moscow, "Mauka," 1971, 168 pp

indexes on particular problems of bionics have been published and operational bibliographic bulletins have been compiled regularly.

Because the literature gathered may be of interest to a broad range of workers at scientific research institutes, higher educational institutions, and industrial organizations doing research in the area of bionics or using the achievements of bionics, the Sector of the Network of Special Libraries of the Academy of Sciences USSR decided to publish a bibliographic index of domestic and froeign literature on bionics for 1958-1968. In the process of preparing the index, the card file was significantly supplemented by reviewing sets of journals, bibliographic publications, library catalogues, Russian and foreign reference journals, and other sources. The index includes literature for 1958-1968 and, partially, for 1969.

This is the first time in the Soviet Union that a bibliography has been pullished which encompasses literature on the most varied areas of bionica, 2/11

- 63 -

Follows:

And Service of the control of the control

USSR ·

ANISIMOVA, T. N., Compiler, Bionika. Bibliograficheskiy Ukazatel' Oteches-tvennoy i Inostrannoy Literatury 1958-1968 (Bionics. Bibliographic Index of Soviet and Foreign Literature 1958-1968), Moscow, "Nauka," 1971, 168 pp

which has appeared during the existence of bionics as an independent scientific area. Due to the multidisciplinary nature of bionic research, the index includes literature directly related to bionics as well as literature pertaining to certain related fields of biology, medicine, automation, cybernetics, and other areas, because research in these fields is closely linked with bionics and may exert a substantial influence on its development.

As the first attempt to publish a broad blonics bibliography, the index will certainly make some omissions. Because the basic purpose was to compile a bibliographic aid for scientific workers, some articles of a popular nature have not been included in the index.

The literature was classified in accord with the basic areas which have trien shape in bionics and have been outlined, in particular, at the All Union (onferences of 1963, 1965, and 1968. Among these basic areas are the problems of biomechanics and bioenergetics, modeling receptors, and analysers, the bionic aspects of the problem of image recognition, orientation and navigation by biological objects, and the problem of control in biological systems. 3/11

USSR

ANISIMOVA, T. M., Compiler, Bionika. Bibliograficheskiy Ukazatel' Otechestvennoy i Inostrannoy Literatury 1958-1968 (Bionics. Bibliographic Index of Soviet and Foreign Literature 1958-1968), Moscow, "Nauka," 1971, 168 pp

In view of the specific nature of some sections, the literature in each of them has been grouped by separate areas and problems in the manner that seemed most expedient for that section. Subsections are introduced considering the biological, ecological, and physical-technical aspects of the corresponding problem and the specifics of scientific research work on the problem.

Annotations are given for certain Russian and foreign sources in order to further reveal content. Translations of titles are given for foreign works. For convenience in use, the bibliography has appendices — an author index and an index of abbreviations of literature sources.

Table of Contents:	n
Foreword	Page
1. General Questions of Bionics, Technical Modeling of Biological Systems	5
2. Bionic Aspects of Biomechanics, Bioenergetics, and Biochemistry 4/11	7 12

- 64 --

USSR ANISIMOVA, T. N., Compiler, Bionika. Bibliograficheskiy Ukazatel' Otechestvennoy i Inostrannoy Literatury 1958-1968 (Bionics. Bibliographic Index of Soviet and Foreign Literature 1958-1968), Moscow, "Nauka," 1971, 168 pp Page 1. General Questions 12 2. Biomechanics, Bioenergetics, and Biochemistry of Marine Organisms 15 3. Biomechanics and Bioenergetics of Land Organisms 17 4. Biomechanics and Bioenergetics of Flight 18 3. Receptor Mechanisms 22 1. General Questions 22 2. Mechanoreceptors 24 General Ouestions 24 Tactile Receptors 26 The Vestibular Apparatus and Lateral Line Organs 27 Hearing 29 3. Photoreceptors 30 General Questions 30 The Retina and Its Models 33 Insect Photoreceptors 36 5/11

USSR

ANISIMOVA, T. N., Compiler, Bionika. Bibliograficheskiy Ukazatel' Oteches-tvennoy i Inostrannoy Literatury 1958-1968 (Bionics. Bibliographic Index of Soviet and Foreign Literature 1958-1968), Moscow, "Nauka," 1971, 168 pp

			Pag
	4.	Hemoreceptors	38
		General Questions	38
		Olfaction	39
		Taste	41
	5.	Thermal Receptors	42
	6.	Interoreceptors	43
4.	Orientation, Navigation, and Location in Animals		44
	1.	General Questions	44
	2.	Biological Clocks	45
	3.	Orientation, Mavigation, and Location in Marine Animals	40
		General Questions	46,
		Hydroacoustic Orientation and Location	-48
		Optical Mechanisms of Orientation	49
		Chemical Mechanisms of Orientation •	51
	4.	Orientation, Navigation, and Location in Land Activals	51
		Orientation and Navigation in Birds	51
		Orientation and Navigation of Other Vertebrates	
6/11		offentation and Mayigation of Other Vertebrates	55

- 65 -

USSR

7/11

ANISIMOVA, T. N., Compiler, Bionika. Bibliograficheskiy Ukazatel' Otechestvennoy i Inostrannoy Literatury 1958-1968 (Bionics. Bibliographic Index of Soviet and Foreign Literature 1958-1968), Moscow, "Nauka," 1971, 168 pp

	Orientation and Naminus	Page
	Orientation and Navigation of Insects	57
	Acoustical Mechanisms of Orientation and Location	58
5.	Optical Mechanisms of Orientation and Navigation	60
٦.	The Effect of Physical Fields and Radiation on	
	Biological Objects	63
	1. The Effect of Different Fields.	0.3
	Multifaceted Influences.	63
	2. Biological Effect of an Electric Field.	0,1
	Electroreceptors	65
	3. Effect of Magnetic Fields on Biological Objects	67
	4. Biological Effects of Electromagnetic Fields	70
6.	Behavior, Communication, and Problems of Controlling	217
	Animal Behavior	
	1. General Questions	71
		71
	A STATE SHIELD AND THE STATE OF	72
	3. Land Animals	74

THE CONTROL OF THE PROPERTY OF THE CONTROL OF THE C

USSR

ANISIMOVA, T. N., Compiler, Bionika. Bibliograficheskly Ukazatel Otechestvennoy i Inostrannoy Literatury 1958-1968 (Bionics. Bibliographic Index of Soviet and Foreign Literature 1958-1968), Moscow, "Nauka," 1971, 168 pp

			Edge
7.	Bioni	c Problems of Control and Regulation	77
	1.	General Questions	77
	2.	Regulation of Temperature, Chemical Composition,	
		and Other Parameters	79
	3.	Control Over Mechanical Movements	80
	4.	Control in Moving Objects	83
	5.	Bionic Slave Devices. Robots, Models of Whole	
		Mechanisms	84
8.	Probl	ems of Constructing Comprehensive Biological-	
	Techn	ical Systems	87
	1.	Biological Aspects of the Man and Machine Problem	87
		General Questions	87
		Monitoring and Forecasting the State of the Human	•
		Operator	519
		New Channels of Interaction Between the Homan	
		Operator and the Machine	89
			-

8/11

- 1if. -

USSR

9/11

ANISIMOVA, T. N., Compiler, Bionika. Bibliograficheskiy Ukazatel' Otechestvennoy i Inostrannoy Literatury 1958-1968 (Bionics. Bibliographic Index of Soviet and Foreign Literature 1958-1968), Moscow, "Nauka," 1971, 168 pp

	2.	Ricolastria Control C	Page
		and I log lines as	90
	3.	Biological Objects in the Composition of Technical	
		Devices and Systems	94
	4.	and a strangerou on the prace of protogreat	2.4
		Systems	94
		Biomedical Equipment	94
		Telemetric Equipment	98
		Computer Technology in Biology and Medicine	99
	5.	Stimulators. Active Influence on Biological	-1 -1
		Processes	200
9.	Bioni	c Problems of Image Recognition	100
	7	Company Or image Recognition	101
	-L +	General Questions. Analysors and Image Recognition	101
	2.	Recognition of Aural Images	103
	Э.	Recognition of Visual Images	107
10.	Neuro	bionics	112
	1.	the Flooring of Those factors	112
		and Physical Modeling of the Nervous System	112

USSR

ANISIMOVA, T. N., Compiler, Bionika. Bibliograficheskiy Ukazatel Otechestvennoy i Inostrannoy Literatury 1958-1968 (Bionics. Bibliographic Index of Soviet and Foreign Literature 1958-1968), Moscow, "Nauka," 1971, 168 pp

			1,4374
	2.	Primary Functioning Mechanisms of Elements	
		of the Nervous System and Bioelectric Phenomena	115
	3.	Neurons and Neuron Models	116
	4.	Nerve Fibers and Neuristors	121
	5.	Nerve Networks and Centers and Models of Them	122
	6.	Information Encoding and Transmission in	
		Biological Structure	126
	7.	Mechanisms of Adaptation and Learning	127
	8.	Memory	129
	9.	Problems of the Reliability of Biological Systems	130
11.	Bioni	c Aspects of Cybernetics and Mathematical Biology	132
	1.	General Questions	132
	2.	Modeling Behavior	135
	3.	Modeling Thought and the Psyche	130
	4.	The Brain and Computers	1.4.1

10/11

- 1.7 --

144

161

USSR	
treating i incattanni	ompiler, Bionika. Bibliograficheskiy Ukazatel' Oteches- by Literatury 1958-1968 (Bionics. Bibliographic Index of diterature 1958-1968), Moscow, "Nauka," 1971, 168 pp
5. Math	ematical Models of Biological Systems
	Processes 142 ic Aspects of the Theory of Large Systems 143

List of the Abbreviations of Names of Russian and Foreign Journals

11/11

1/2 033 UNCLASSIFIED PROCESSING DATE--300CT70
DIENES -U-

AUTHOR-(05)-ANISIMOVA, V.V., GORSHKUVA, I.A., DUKUKINA, A.F., PETERKIN, B.D., SMIRNOVA, Z.A.

COUNTRY OF INFO-USSR

SOURCE-IZV. VYSSH. UCHEB. ZAVED., KHIM. KHIM. TEKHNOL. 1970, 13(2), 256-8

DATE PUBLISHED ------ 70

SUBJECT AREAS-CHEMISTRY, MATERIALS

TOPIC TAGS-POLYMERIZATION, FLUORINATED ORGANIC COMPOSHD, STYRENE, DIENE, ISOPRENE, COPOLYMER, ELASTICITY

CENTROL MARKING-NO RESTRICTIONS

DOCUMENT CLASS—UNCLASSIFIED PROXY REEL/FRAME—2000/0780

STEP NO--UR/0153/70/013/002/0256/0258

CIRC ACCESSION NU-APO124449

UNCLASSIFIED

UNCLASSIFIED PRUCESSING DATE-- 300CT70 CIRC ACCESSION NO-APO124449 ABSTRACT/EXTRACT-(U) GP-0- ABSTRACT. THE INFLUENCE OF COMONOMER MIXT. COMPN. ON THE COMPN. AND PROPERTIES OF THE TITLE TERPOLYMERS WAS STUDIED. EMULSION OR BULK POLYMN. OF STYRENE (1), BUTADIENE (11) OR ISUPRENE (III), AND P PHC SUB6 H SUB4 CF:CF SUB2, PHCF:CFSUB2 (IV), C SUB6 F SUB5 CME: CHSUB2, PHCF: CFCL, OR RPHC SUB6 H SUB4 CF: GAVE 12 HIGH MOL. WT. TERPOLYMERS, IN 17.9-72.4PERCENT YIELDS, WHOSE FLUOROSTYRENE CONTENTS (05.-24PERCENT) WERE SIGNIFICANTLY LOWER THAN THOSE IN THE ORIGINAL MONGMER MIXT. (3.66-49-82 MOLE PERCENT). EMULSION POLYMN. OF A I-II-III MIXT. AND BULK POLYMN. OF I, III, AND C SUB6 F SUB5 CH:CH SUB2 DID NOT GIVE TERPOLYMERS. REACTIONS WITH ISOPRENE REQUIRED SIMILAR TO 4 TIMES LONGER. THE HIGHER THE II CONTENT OF A TERPOLYMER, THE HIGHER ITS MOL. WT. TERPOLYMER CONTG. GREATER THAN ZOPERCENT II WERE RUBBERS; FILMS CAST FROM BENZENE SCLN. WERE MORE ELASTIC THAN THOSE OF COPULYMERS NOT CUNTG. II. FACILITY: LENINGRAD. POLITEKH. INST. IM. KALININA, LENINGRAD, USSR.

UNCLASSIFIED

USSR

A

UDC 576.8

RYBAKOV, N. I., GUBERNIYEV, M. A., CHIMIROV, O. B., DROZHENNIKOV, V. A., KOLOBOV, A. V., ANISKIN, Ye. D., and KOZLOV, V. A., Institute of Experimental Biology, Academy of Medical Sciences USSR

"The Effect of Some Radioprotectors on Processes Associated With Lysogenization of Bacteria and Induction of Intracellular λ -Exonuclease"

Moscow, Izvestiya Akademii Nauk SSSR, Seriya Biologicheskaya, No 1, 1970, pp 38-42

Abstract: The radioprotector finam (an aminothiol inhibited the frequency of lysogenization of E. coli SF-14 ($\mbox{$\Lambda$}$ -try-Sr) by $\mbox{$\lambda$}$ -phage and inhibited the synthesis of induced $\mbox{$\lambda$}$ -exonuclease at different times after infection. The effect was most pronounced in early stages of infection. After thirty minutes the inhibiting effect of the radioprotector on $\mbox{$\lambda$}$ -exonuclease activity decreased sharply. Results of determination of the activity of $\mbox{$\lambda$}$ -exonuclease are consistent with data on the effect of finam on lysogenization of the same bacterial strain. This suggests that enzyme systems play a part in the development of lysogenicity in bacterial cells. These enzymes may be DNAses of the endonuclease type.

1/1

- 52 -

"APPROVED FOR RELEASE: 08/09/2001

CIA-RDP86-00513R002200210005-9

Acc. Nr:

MO046553

Ref. Code: VR 0216

PRIMARY SOURCE: Izvestiya Akademii Nauk SSSR, Scriya

Biologicheskaya, 1970, Nr 1, pp 日常一年二

ANIGNE

Rybakov, N. I.; Guberniyav, M. A.; Chimirov, O. 3.; Drozhenníkov, V. A.; Aniskin, Ye. D.; Kolobov, A. V.: Kozlov, V. A.

INFLUENCE OF SOME RADIOPROTECTORS ON THE PROCESSES CONNECTED WITH LYSOGENIZATION OF THE BACTERIA AND INDUCTION OF INTERCELLULAR 1/2-EXONUCLEASE

The influence of the radioprotector finam on the processes of lysthe about the conbacteria with the \$\lambda\$ phage and induction of \$\lambda\$-exonuclease was studied in the \$\lambda \pi r \cdots \cdots\$ experiments with H. col. SF-14 (A- try-S*).

It was shown that this preparation tongonly suppresses the trotained the collection of lysogenization and oppressesses synthesis of the induced k-exemplease.

The results concerning activity of this enzyme definitely correlate with the statu related to the influence of linam in the lyangenization process of the same pasterial Mrain. 44

REEL/FRAME 19781816

APPROVED FOR RELEASE: 08/09/2001 CIA-RDP86-00513R002200210005-9"

USSR UDC: 631.333:53

ANISKOV, V. V., LIBEROV, A. B.

"Specialized Analog Computer 'Segraf-1' and Experience in Operating It"

Analogo-vychisl. tekhnika v organizatsii proiz-va i issled. bol'shikh sistem (Analog Computers in the Organization of Production and Investigation of Large Systems), Moscow, 1970, pp 137-145 (from RZh-Avtomatika, Telemekhanika i Vychislitel'naya Tekhnika, No 6, Jun 70, Abstract No 6B91)

Translation: The "Segraf-1" specialized analog computer is described. It is designed for operative calculation, analysis, and optimization of PERT charts of small and medium volume containing up to 500-600 operations of which <300 are active (that is, operations the length of which is nonzero). Experimental operation of the computer showed that when solving optimization problems, the "Segraf-1" analog computer has greater advantages than the all-purpose digital computer (for example, the Ural-11 type), since it permits rapid "playback" of the various versions, significantly improving the dynamics and quality of control. There are two illustrations, one table, and a three-entry bibliography.

1/1

USSR

UDC 621.397.332.2:621.317.799:531.71

ANISKOVICH, A. G., RUSAKOV, V. I.

"Selecting the Type of Scanning for Television Measuring and Control Devices"

Nekotoryye vopr. teorii i provektir. televizionno-vvchisl. sistem -- V sb. (Some Problems of Theory and Design of Television Computing Systems -- collection of works), Tula, 1970, pp 21-30 (from RZh-Radiotekhnika, No 4, Apr 71, Abstract No 4G187)

Translation: It is demonstrated that the accuracy of TV-instruments for controlling the dimensions of parts can be increased by replacing the ordinarily used line scanning by driven sweep exponential or continuous sinusoidal scanning. There are 6 illustrations and a 4-entry bibliography.

1/1

- 132 -

1/2 016 UNCLASSIFIED PROCESSING DATE--233617
TITLE--EXPERIMENTAL STUDY OF SOME MANIFESTATIONS CONSEQUENT TO BIOLOGICAL ACTION OF THE VITAMIN A -UAUTHOR-(03)-VEORDVA, I.N., ANISOVA, A.A., OSETROVA, S.YA.

COUNTRY OF INFO--USSR

SOURCE--VOPROSY PITANIYA. 1970. NR 3. PP 37-40

DATE PUBLISHED----70

SUBJECT AREAS-BIOLOGICAL AND MEDICAL SCIENCES

TOPIC TAGS--VITAMIN DEFICIENCY, SKIN PHYSIOLOGY, HISTOLOGY, DIET

CONTROL MARKING--NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--1997/2052

STEP NO--UR/0244/70/000/003/003/7/3040

CIRC ACCESSION NU--APO120695

1884 LASSIF (E)

是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就 第一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就 UNCLASSIFIED

PROCESSING UNITED TO THE A-PACT VI. THE STARPLDMYSTOE SIZEYOTH, STEP TO THE A-PACT VI. THE STARPLDMYSTOE SIZEYOTH, STEP TO THE STARPLDMYSTOE SIZEYOTH, STEP TO THE STARPLDMYSTOE SIZEYOTH, STEP TO THE STARPLDMYSTOE STARPLDMYSTOE STARPLDMYSTOE STARPLDMYSTOE STARPLDMYSTOE STARPLDMYSTOE STARPLDMYSTOE AND MEDICAL SCIENCES

UBJECT AARAS—SIZEPTOMYSTOE, BIOSYNTHESIS, ACTINOMYSTOES, MASTERIA MUTATION, TRAMSAMINASE

PROCESSING DATE--230CT7 UNCLASSIFIED 2/2 CIRC ACCESSION NO--AP0120695 ABSTRACT/EXTRACT--(U) GP-O- ABSTRACT. THE EFFECT OF DIFFERENT VITAMIN A DOSES ON THE STRUCTURE OF THE EPITHELIAL TISSUE ELEMENTS BY COMPARISON WITH THE DYNAMICS OF THE VITAMIN I CONTENT IN THE LIVER AND BLOOD WAS STUDIED IN TESTS SET UP ON YOUNG RATS DIVIDED INTO 4 GROUPS KEPT ON A VITAMIN A DEFICIENT DIET WITH DAILY ADDITION OF VITAMIN A IN AMOUNTS OF 20, 40 AND 80 MUG TO DIFFERENT GROUPS OF ANIMALS. IN THE AUTHORS! INVESTIGATIONS 20 MUG OF VITAM A PROVED TO BE THEMINIMAL DIURNAL DOSAGE ENSURING NORMAL HISTOLOGICAL STRUCTURE OF THE SKIN AND OF THE ORGANS UNDER STUDY. THE DOSE OF 80 MUG WAS FOUND TO PRODUCE CHANGES IN THE ST:ARPROVED FOR RELEASE: :08/109/12001HEI+CEA-RDP86-00513R002200210005-9" HORNIFICATION PROCESSES, WITHOUT BEING ATTENDED BY ANY EXTERNAL SIGNS FACILITY: KLINIKA KOZHNYKH I TYPICAL OF A HYPERVITAMINOSIS. VENERICHESKIKH BOLEZNEY II MOSKOVSKOGO MEDITSINSKOGO INSTITUTA IM. N. I PIROGOVA AND LABORATORIYA PROFILAKTICHESKOGO DEYSTVIYA VITAMINOV N-I INSTITUTA VITAMINOLOGII MINISTERSTVA ZDRAVOOKHRANENIYA SSSR.

019 UNCLASSIFIED PRUCESSING SATE--13MOV70 IRC ACCESSION N 1-- APRIZE 244 BSTRACT/ SATRACT-- (1) GP-0-ASSIRACI. DATA AND DISCUSSED CONCERNING THE A-FACTUR CONTENTS IN VARIOUS ACTIMONYCES STREPTORICIAL STRAIRS. PRESENCE OF THE A-FACTOR IN ACTIVE STREPTOMYCTAE PRODUCESS (STUATES 3213 AND G-51 WAS SHOWN AS WELL AS I'V SOME RUTANT STRAINS WITH DISTURBED DIOSYHTHESIS. ALL THE BUT WITS WHICH HAVE FAILED IN SYNTHESIZE FOR A-PACTUR DO THAT PRODUCE ANY STREPTOMYCHIE, WHILE ADDITION OF THE A-FACTOR RESTITUTES THEIR ABILITY TO PRODUCE THE ANTIBIDITIE. AND CAMARYCINE PRODUCENTS DE NOT FORM ANY A-FACTOR IN THE COURSE OF WELLS ALL THE FERMENTATION AND CONSEQUENTLY THIS SUBSTANCE COES NOT PARTICIPATE IT THE BIOSYNTHESIS OF THE SAID ANTIBIOTICS. IN THE ABSENCE OF THE A-FACTOR THE I DICTIVE OFFICE 1439 DIES BUT PRODUCE ANY STREETING MOD DISPLAYS A LCW TRANSAMIDINAGE ACTIVITY. WHEN SROWN IN THE PRESENCE HE THE APPROXIME THIS STRAIN HAS A HIGH THANSAMIDINAGE ACTIVITY AND SYNTHESIZES CONSTREAMENTS OF STREPTIOTHE AND STREPTIONS. THESE DBSERVATIONS SUUGEST THAT THE A-FACIOR PARTICIPATES II. THE EDICLATION OF THE STREPTIONNE PART OF THE STREPTOMYCINE MOLICULE. INSTITUTE OF CHUTISTAY OF MATURAL PRODUCTS, ACADEMY OF MATERICES, USBR.

UNITED STEED

USSR

ANISOVICH, V. V., and SHEKHTER, V. M., Physicotechnical Institute imeni A. F. Ioffe, Academy of Sciences USSR

"The Possibility of Meson- eson Scattering Phase Determination in Processes With Regge Pole Exchange"

Moscow, Yadernaya Fizika, Vol 13, No 3, Mar 71, pp 651-658

Abstract: The article considers unstable particle scattering in transitions of two particles to three, determined by the exchange of one or more hegge poles in the t-channel. The authors begin with a consideration of the kinematics of three-particle reactions and then consider the process $K + f \Rightarrow K + \mathcal{H} + p$ (exchange of vacuum states only) for the case in which there is only the exchange of one Pomeranchuk pole and for the case in which there is also the contribution of cuts. This is followed by consideration of the reaction $\mathcal{H} + p \to \mathcal{H} + \mathcal{H} + N$ (exchange of

1/2

USSR

ANISOVICH, V. V., and SHEKHTER, V. M., Yadernaya Fizika, Vol 13, No 3, Mar 71, pp 651-658

nonvacuum Regge poles) with allowance for the contribution from Regge poles ω , R, and $\mathcal H$, where R denotes the trajectory on which is found the resonance $\mathbf A_2$. The article concludes with a discussion of changes which appear in the study of cuts due to the exchange of an arbitrary number of vacuum Pomeranchuk trajectories in conjunction with Reggeons ω , R, and $\mathcal H$.

The authors thank A. A. ANSELIM, B. A. VELIKSON, V. N. GRIBOV, I. T. DYATLOV, A. B. KAYDALOV, V. A. KULRYAVTSEV, and YE. M. LEVIN for useful discussions.

2/2

- 80 -

APPROVED FOR RELEASE: 08/09/2001 CIA-RDP86-00513R002200210005-9"

STATE OF THE CONTROL OF STATE OF THE CONTROL OF THE

Polymers and Polymerization

USSR

UDC 678.664-408.8701.53

KRYUCHKOV, F. A., ANISTROVA, A. N., and NOVOKRASHCHENOVA, L. N.

"New Semirigid Foam Polyurethane"

Moscow, Plasticheskiye Massy, No 4, 1972, pp 24-26

engen musse men diske opgevisje de de de sterre de skille i dit eksteller i flinskille finiste i kliste skill De tromper finisk med sterre finisk med de skiller skille i de skiller i de skiller i de skiller i kliste fini

Abstract: A new semirigid foam polyurethane is described which is based on activated ordinary polyester, triethanolamine and polyisocyanate. A study was made of the rigidity of the foam polyurethane as a function of the water content in the compound, the foam factor, the amount of cross-linking agent and the time from obtaining a specimen of foam polyurethane to testing it.

The rigidity of the specimens of semirigid foam polyurethan increases during the first month, and by the end of the second month the rigidity is 1.5-2.5 times greater than that of the initial specimen. Thereafter the rigidity remains constant. With an increase in the foam factor, the rigidity increases noticeably. An increase in the amount of cross-linking agent leads to an increase in rigidity. With an increase in the amount of cross-linking agent the system becomes more active since the triethanolamine is simultaneously a catalyst of the chemical reactions with the participation of the isocyanate groups.

1/1

1/2 025 UNCLASSIFIED PROCESSING DATE--13NOV70
TITLE--FERROELECTRIC TRANSITION IN AMMONIUM SULFATE. DIELECTRIC, OPTICAL,
AND ELECTROOPTICAL PROPERTIES NEAR THE CURIE POINT -UAUTHOR-(02)-ANISTRATOV, A.T., MARTYNOV, V.G.

TO ALL PLANTS AND ARTER TO THE CONTROL OF THE CONTR

CCUNTRY OF INFO-USSR

SOURCE--KRITALLOGRAFIYA 1970, 15(2), 308-12

DATE PUBLISHED ---- 70

SUBJECT AREAS--PHYSICS

TOPIC TAGS--FERROELECTRIC EFFECT, PHASE TRANSITION, ELECTROOPTIC EFFECT, DIELECTRIC CONSTANT, CURIE POINT, CRYSTAL DEFORMATION, AMMONIUM SULFAIE

CCNTROL MARKING--NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--1996/1477

STEP NO--UR/0076/70/015/002/0308/0312

CIRC ACCESSION NO--APOII8466

UNCLASSIFIED

AND THE PROPERTY OF THE PROPER

2/2 025
CIRC ACCESSION NO--APOII8466
ABSTRACT/EXTRACT--(U) GP-O- ABSTRACT. THE ELECTACOPTICAL PROPERTIES WERE STUDIED FOR (NH SUB4) SUB2 SO SUB4. THE DIELEC. CONST. AND BIREFRINGENCE WERE DETO. SIMULTANEOUSLY FOR SAMPLES CUT FARM THE SAME CRYSTALS. THE BEHAVIOR OF THE DIELEC., OPTICAL, AND ELECTROOPTICAL PROPERTIES NEAR THE POINT OF THE PHASE TRANSITIONS ARE LYTERPRETED ON THE BASIS OF THE MODEL OF O. O'REILLY AND T. TSANG (1967). THE ANDMALIES IN THE BIREFRINGENCE AT THE CURIE POINT ARE ATTRIBUTED TO THE SPONTANEOUS DEFORMATION OF THE CRYSTAL. FACILITY: INST. FIZ., KRASNOVARSK, USSR.

APPROVED FOR RELEASE: 08/09/2001 CIA-RDP86-00513R002200210005-9"

UNCLASSIFIED

Radiobiology

tDC 616.72-018.3-001.29-091

one copies successive de la companya de la copies del la copies de la copies de la copies de la copies de la copies del la copies de la copies del la copies de la copies del la copies del la copies de la copies del la copies de la copies de la copies del la copies del la copies

USSR

ZEDGENIDZE, G. A., HODYAYEV, V. P., GULYAYEV, V. A., and ARKIRA, M. A., Institute of Medical Radiology, Academy of Sciences USSR

"Structural Changes in Articular Cartilage After Irradiation"

Moscow, Meditsinskaya Radiologiya, No 3, 1972, pp 3-10

rough and a property of the control of the control

Abstract: Electron-microscopic and histochemical study of articular cartilage in rabbits revealed a greater heterogenoity of structure than expected. Of the seven structural zones distinguished (acellular, surface, transitional, isogenous groups, columns, hypertrophic cells, and primary calcification), those of the transitional and isogenous groups proved to be the nost sensitive to a single dose (900 red) of local games radiation. Within a day of exposure, cells of different sixes and shapes and empty lacunar appeared in these two zones. Vacuolication or wrinkling of the cytoplasm, irregular distribution of chromatin in the nuclei, and various stages of karyopyknosis and karyolysis were characteristic. These changes became increasingly pronounced until day 14 when all the wones were affected. Most of the changes were reversible and signs of restoration(proliferation of cells) began to appear about day 17 in the upper part of the cartilage. The regenerative process was completed by day 30 and the articular cartilage remained unchanged thereafter, but it looked "older" than the tissue of the control animals. 1/1

APPROVED FOR RELEASE: 08/09/2001 CIA-RDP86-00513R002200210005-9"

USSE

UDC 621.318.435.3

ANKHIMYUK, V. L., YAKOVITSKIY, E. F.

"Reversing Magnetic Semiconductor Amplifier"

USSR Author's Certificate No 291311, Filed 2/06/69, Published 22/04/71, (Translated from Referativnyy Zhurnal Avtomatika, Telemekhanika i Vychislitel'naya Tekhnika, No 11, 1971, Abstract No 11 Al28 P).

Translation: Two-c/cle magnetic semiconductor amplifiers [Mi]with de output are known. Their efficiency is significantly less than that of nonreversing magnetic amplifiers. The purpose of the invention is to increase the efficiency of a reversing magnetic semiconductor amplifier and decrease the power consumed by the controlled transistor. This is achieved by connecting the base-emitter junctions of the controlled transistors to the output windings of a magnetic oscillator and by connecting the bases through stabilitrons to output voltage dividers of the corresponding memory units. The reamplifier with self-saturation, connected through a transistor to the load. The amplifier is controlled by a dc voltage fed to the counter-series connected control windings through a resistor, used to provide a forced magnetization mode. The transistors are controlled by the magnetic oscillator, the output windings of which are connected to the inputs of the transistors.

APPROVED FOR RELEASE: 08/09/2001 CIA-RDP86-00513R002200210005-9"

USSR

UDC 621.318.435.3

ANKHIMTUK, V. L., YAKOVITSKIY, E. F., USSR Author's Certificate No 291311, Filed 2/06/69, Published 22/04/71.

At the output of the magnetic amplifier are high-impedence voltage dividers, the variable resistors of which are connected through stabilitrons to the bases of the transistors. The condensors and diodes are used to remove overvoltages arising across the transistors at the moment of switching due to the inductance of the load and the amplifier. Low-capacitance condensors are used to smooth the voltage across the stabilitrons. The bias windings are used to set a voltage near the minimum voltage across the outputs of both MA when the control voltage $\theta_{\rm v}=0$. The variable resistors of the voltage

dividers are set in a position such that the breakdown voltage of the stabilitrons is reached at the boundary of the linear sector of the MA control characteristic. The generator commutates the transistor such that the voltage pulses of the two MA reach the load one after the other. When $\mathbf{U}_{\mathbf{v}}=\mathbf{0}_{+}$ these

voltages are equal, as the resulting voltage across the load is equal to zero. When U is increased, the output voltage of one MA increases and the appairing

operates in the area of positive internal feedback. During this time, the other MA enters the area of negative feedback and the minimum voltage appears at its output. The resulting mean voltage across the load increases in 2/3

USSR

UDC 621.318.435.3

ANKHIMYUK, V. L., YAKOVITSKIY, E. F., USSR Author's Certificate No 291311, Filed 2/06/69, Published 22/04/71.

porportion to Uy (the nonlinearities in the lower zone of the control characteristics are mutually compensated). At a certain U, the output voltage of the MA reaches the voltage at which the stabilitron breaks down and, with a further increase in U, holds the transistor in the open state. Generation is interrupted. The first MA operates with the load, and the second MA is disconnected from the load and operates at the idle with negative feedback. The circuit allows reversing of operation with an efficiency practically equal to the efficiency of a nonreversing MA. The control characteristic passes ing mode at low voltage and create practically no power losses. The operation in the upper portion of the characteristic (high powers) occurs as in a nonreversing circuit through the saturated transistor, which in this case can transmit many times more power. 4 Figures.

3/3

1/2 023 UNCLASSIFIED PROCESSING DATE--230C170
TITLE--INDUCED ENZYMES AND IUNIZING RADIATION. I. CHANGE IN THE ACTIVITY
OF TRYPTOPHAN PYRROLASE IN RATS AFTER IRRADIATION -UAUTHOR-(02)-POPOV, P.G., ANKOV, V.K.

COUNTRY OF INFO--USSR

SOURCE-RADIOBIOLOGIYA 1970, 10(1), 32-6

-DATE PUBLISHED-----70

SUBJECT AREAS--BIOLOGICAL AND MEDICAL SCIENCES

TOPIC TAGS--X RAY RADIATION BIOLOGIC EFFECT, LIVER, ENZYME ACTIVITY, RADIATION DOSAGE

CONTROL MARKING -- NO RESTRICTIONS:

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--1998/0449

STEP NO--UR/0205/70/010/001/0032/0036

CIRC ACCESSION NO--APO121123

UNCLASSIFIED

2/2 023 UNCLASSIFIED PROCESSING DATE--230CT70 CIRC ACCESSION NO--APO121123 ABSTRACT/EXTRACT--(U) GP-0-ABSTRACT. TRYPTOPHAN PYRRULASE ACTIVITY HAS BEEN DETD. IN THE LIVER OF 87 RATS 4, 27, 48, AND 72 HR AFTER WHOLE BODY X IRRADN. WITH DOSES OF 0.9, 1.8, AND 5 KR (180 KV, 15 MA, FILTER 3 MM AL, FOCUS DISTRANCE 50 CM, DOSE RATE 72 R-MIN). PEAKS OF TRYPTOPHAN PYRROLASE ACTIVITY WERE OBSD. 4 AND 72 HR AFTER THE IRRADN. THE ACTIVITY INCREASE OBSD. WAS MAINLY DUE TO AN INCREASE IN THE AMT. OF APDENZYME. THE SYNTHESIS OF NEW APDENZYME 4 HR AFTER IRRADN. WAS NOT DISTURBED BY UP TO 1.8 KR IRRADN.; IT WAS INHIBITED BY APPROX. 10-25PERCENT AT 5 KR IN COMPARISON WITH VALUES OBSD. AT 1.8 KR. NO SUBSTANTIAL CHANGES IN THE ACTIVATING PROPERTIES OF MICROSOMES WERE NOTED. FACILITY: VYSSH. VOENNO-MED. INST., SOFIA, BULG.

UNCLASSIFIED

APPROVED FOR RELEASE: 08/09/2001 CIA-RDP86-00513R002200210005-9"

USSR

ANKUNDINOV, A. L.

"Calculation of a Viscous Hypersonic Shock Layer with Mass Input at Moderately Low Reynolds Numbers"

Moscow, Mekhanika Zhidkosti i Gaza, No 3, 1970, pp 40-45

Abstract: The two-dimensional steady-state problem of a viscous hypersonic stream in the vicinity of nonslender smooth bodies is investigated within the framework of Cheng's two-layer model of a thin smock layer for a region that is not restricted to the vicinity of the stagnation point. Attention is given to the conditions of a given wall temperature, a heat-insulated surface, and to conditions of the injection, from the surface, of a gas of the nine kind as the gas in the main frow. A form of conversion of the regions of the viscous check layer in terms of generalized Mises variables is proposed, which send to the problem in the send wone to be considered in the same manner for blunted and sharp two-dimensional and axially symmetrical bodies without expansion into a series along the longintudinal coordinate in the vicinity of the critical point, and which discuss the special feature of the solution in a pointed tip. In difference methods, which do not require calculation of the region derivative, the proposed

1/2

USSR

ARKUNDINOV, A. L., Mekhanika Zhidkosti i Gaza, No 3, 1970, pp 40-45

conversion makes it possible to avoid disclosure of the uniqueness on the wall which is characteristic of the problem in terms of the variables under consideration. Some results of calculation of the shock layer on a sphere and on a sharp cone are presented.

2/2

of the control of the

USSR UDC 8.74

ANKUDINOV, G. I.

"An approach to the Problem of Synthesizing the Structure of an Information System"

V sb. <u>Probl. sistemotekhniki. Vyp. 1</u> (Problems of Systems Engineering. Vyp. 1 --collection of works), Sudostroyeniya, 1972, pp 23-26 (from <u>RZh-Ribernetika</u>, No 12, Dec 72, Abstract No 12V446)

Translation: A study was made of one of the possible approaches to the problem of synthesizing information system structures permitting the discovery of a set of structures and the order of preference in this set with respect to the global quality criterion. By the structure of a system we mean the graph the vertices of which correspond to the structural elements taken from a set and the lines which correspond to the relations between the structural elements. By the structural element of an information system we mean a set of physical elements realizing a class accurately or the approximately equivalent algorithm such that each representative of the set of elements corresponds one-to-one to a representative of the class of elements of the equivalent algorithms. In addition, the elements of the set are distinguished with respect to speed, cost, reliability and other parameters.

estero en la completa de la complet La completa de la com

APPROVED FOR RELEASE: 08/09/2001 CIA-RDP86-00513R002200210005-9"

same to a second and same and which in the same in the same in the first of the left in the first of the residence of the second

1/2 033

UNCLASSIFIED

TITLE--EXCITATION OF THE L SUBALPHA LINE DURING STRIPPING OF FAST NEGATIVE

HYDROGEN IONS IN INERT GASES -U-

AUTHOR-(04)-ORBELI, A.L., ANDREYEV, YE.P., ANKUDINOV, V.A., DUKELSKIY,

COUNTRY OF INFO--USSR

SOURCE--ZHURNAL EKSPERIMENTAL NOY I TEORETICHESKOY FIZIKI, 1970, VOL 58,

DATE PUBLISHED----70

SUBJECT AREAS--PHYSICS

TOPIC TAGS--HYDROGEN, ION, PARTICLE COLLISION, HELIUM, NEON, ARGON, KRYPTON, XENON, EXCITATION CROSS SECTION, ELECTRON ENERGY LEVEL

CONTROL MARKING--NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--2000/2245

STEP NO--UR/0056/70/058/005/1938/1942

CIRC ACCESSION NO--AP0125823

UNCLASSIFIED

APPROVED FOR RELEASE: 08/09/2001 CIA-RDP86-00513R002200210005-9" 2/2 033 UNCLASSIFIED CIRC ACCESSION NO--AP0125823 PROCESSING DATE--27MOV70 ABSTRACT/EXTRACT--(U) GP-0-ABSTRACT. THE INTENSITY OF THE LYMAN ALPHA LINE EMITTED IN COLLISIONS BETWEEN FAST HYDROGEN NEGATIVE IONS (5-40 KEVI AND HE, NE, AR, KR AND XE ATOMS IS MEASURED. THE CROSS SECTIONS FOR FORMATION OF HYCROGEN ATOMS IN THE 25 AND SP STATES AND ALSO THE TOTAL CROSS SECTIONS FOR EXCITATION OF THE N EQUALS 2 LEVEL ARE IN THE ENERGY RANGE INVESTIGATED THE CROSS SECTIONS SIGMA(2P), SIGMA(2S) AND SIGMA(N EQUALS2) ARE OF THE ORDER OF 10 PRIME NEGATIVE16 CM PRIME2 AND SIGMA(2P) LARGER THAN SIGMA(2S). IN ALL GASES INVESTIGATED (WITH THE EXCEPTION OF HE) THE CROSS SECTIONS SIGMA(25), SIGMA(2P) AND SIGMA(N EUQALS 2) WEAKLY DEPEND ON THE H NEGATIVE ION ENERGY. FOR XE MINIMA ARE OBSERVED ON THE CROSS SECTION CURVES SIGMA(28), SIGMA(2P) AND SIGMA(N EQUALS 2) AT ENERGIES BETWEEN 12 AND 30 KEV. A POSSSBLE MECHANISM OF PRODUCTION OF EXCITED HYDROGEN ATOMS IN STRIPPING OF NEGATIVE HYDROGEN IONS AS A RESULT OF REMOVAL OF THE INNER ELECTRON FROM THE H NEGATIVE ION IS DISCUSSED. FIZIKO-TEKHNICHESKIY INSTITUT IM. A. F. LOFFE AN SSSR. FACILITY:

UNCLASSIFIED

USSR

UDC 669.017 : 620.17

SEVERDENKO, V. P., KALACHEV, M. I., and ANKUT, P. P., Physicotechnical Institute, Academy of Sciences Belorussian SSR

"Titanium Flow Curves in Octahedral Coordinates Under Various Strain Conditions"

Minsk, Izvestiya Akademii Nauk BSSR, Seriya Fiziko-Tekhnicheskikh Nauk, No 1, 1973, pp 5-8

Abstract: Flow curves in octahedral coordinates were plotted for commercially pure titanium VTI-1 according to the results of tests described in a previous article by the authors. The straining followed three different stressed state schemes (tension, compression, torsion) in the -196 - 800° C range. An analysis of the curves for variations in octahedral shear stress indicates that the process of titanium plastic flow is largely influenced by such factors as the plastic strain mechanism and structural transformations taking place during strain. The extent to which these factors are manifested depends on the straining conditions and the stressed state scheme. Finely dispersed phases isolated in the slip zones signify that the critical

1/2

- 100 -

USSR

SEVERDENKO, V. P., et al., Izvestiya Akademii Nauk BSSR, Seriya Piziko-Tekhnicheskikh Nauk, No 1, 1973, pp 5-8

shear stress begins to be affected by normal stresses acting along the shear planes. The shape of the strain hardening curves to a certain extent may be influenced by the twinning process.

2/2

UNCLASSIFIED PROCESSING DATE--1150070

TITLE--EFFECT OF MAGNETOSTRICTION DEFORMATIONS ON THE EPITAXIAL GROWTH 11

FERROMAGNETIC FILMS -UAUTHOR--PYNKO, V.G., TEMCHENKO, N.SH., ANNATAGANOV, N.

COUNTRY OF INFO--USSR

SOURCE--FIZ. TVERD. TELA 1970, 12(3), 960

DATE PUBLISHED-----70

SUBJECT AREAS--MATERIALS

TOPIC TAGS--EPITAXIAL GROWTH, FERROMAGNETIC FILM, NICKEL ALL DY, PALLADIAN ALLOY, SINGLE CRYSTAL FILM, MAGNETOSTRICTION, IRON ALL DY, CREALT ALLOY,

CONTROL MARKING--NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME-+1988/0654

MAGNETIC FIELD

STEP NO--UR/0181/70/012/013/09/0/ 160

CIRC ACCESSION NO--APOTOS633

PAUL MEDITING

2/2 039 UNCLASSIFIED PROCESSIVE DATE--11:0000 CIRC ACCESSION NO--APO105633 ABSTRACT/EXTRACT--(U) GP+0- ARSTRACT. A SEPIES OF FILMS WAS PREDD. 3F BINARY ALLOYS OF THE SYSTEM FE-NI-CO. A MAGNETIC FIELD HAS ALMOST TO EFFECT ON THE GROWTH OF FILMS WHICH HAVE SMALL MAGNETOSTRICTION, F.S. BONI-20FE. ON NACL SUBSTRATES WITHOUT APPLICATION OF A MANETIC FIELD. NO GOOD SINGLE CRYSTAL FILM OF NI-PD CAN BE GROWN COMID. 30-60PERCENT PO, I.E. ALLOYS HAVING ESP. HIGH MAGNETOSTRICTION. ON II! (SIC) AND HE SUBSTRATES THESE ALLOYS GROW AS SINGLE CRYSTALS. THE MECHANISM OF GROWTH OF THESE FILMS IS DISCUSSED. UNCLASSIFIED

USSR

UDC 612.017.2

MEYERSON, F. Z. and ANNANUROVA, L. A., Institute of Normal and Pathological Physiology, Academy of Medical Sciences USSR

"Effect of Inhibitors and Stimulants of the Synthesis of Mucleic Acids and Proteins on Adaptation to High-Altitude Hypoxia"

Ashkhabad, Izvestiya Akad. Nauk Turkenskoy SSR, No 5, 1972, pp 3-15

Abstract: Experiments on rats confirmed the established fact that at 7000 m above sea level, oxygen consumption decreases markedly (by 30%) in unadapted animals. Injection of adapted animals with actinomycin 270%, an inhibitor of RMA synthesis, produced a decrease in oxygen consumption of the same magnitude as in unadapted animals. This decrease is ascribed to impaired biosynthesis in the mitochondria and lessened capacity of these organelles to utilize oxygen. Injection of rats adapted to high-altitude hypoxia with an anabolic hormonal preparation (nerobole) or with a combination of cofactors of nucleic acid synthesis (orbtic acid, folic acid, and vitamin B₁₂) markedly reduced the amount of weight normally lost in hypoxia. In addition, the combination of agents increased the hemoglobin concentration and number of red blood cells while reducing the degree of reticulocytosis. Thus, the use of inhibitors and stimulants of nucleic acid synthesis can promote adaptation to high-altitude hypoxia.

GERHERMER BERGEREN BEGERREN BERTELLEMER BERGERE BERGER BERGER BERGERE BERGERE BERGER BERGER BERGERE BERGERE BE

USSR

TD0 577.4

MEYERSON, F. Z., MALKIN, V. B., ANNANUROVA, L. A., LOGINOVA, YD. V., and MAYZELIS, M. YA., Institute of Normal and Fathological Physiology, Academy of Medical Sciences USSR

"Effect of RNA Synthesis Inhibitor on the Development of Adaptation to High-Altitude Hypoxia"

Moscow, Izvestiya Ahalemii Nauk SSSSR, Seriya Biologicheekeya, do 3. Eay/Jun 72, pp 405-412

Abstract: The importance of increased nucleic acid and protein production in adaptation to high-altitude hypoxia was evaluated by administration, actinomycin 2703 — an RoA synthesis inhibitor — to rats raised in 500 meter increments to 7,000 meters over a 25-day period in an altitude changer (6 hrs/day exposure). Experiment variations included rats anadapted to hypoxia (control) (1), adapted over 25 days (2), unadapted and given actinomycin for 5 days (3), and adapted over 25 days and given actinomycin irom the 20-25th days (4), Weight gain rate decreased in group 2 as congared to controls, weight decreased 70 in group 3, while weight decreased 165 in group 4 and 63% of the animals died during acute hypoxia generated by raising them to 11,000 meters at 80-100 meters/sec. Protein synthesis in the

APPROVED FOR RELEASE: 08/09/2001 CIA-RDP86-00513R002200210005-9"

USSR

NEYERSON, F. Z., et al., Isvestiya Akdemii Nauk SSSR, Seriya biologicheskaya, No 3, Eay/Jun 72, pp 405-412

heart and cerebral cortex increased in group 2, remained normal in group 3, but decreased in group 4, indicating that actinomycin is inhibitory only during adaptation to hypoxia. While 0 consumption decreased 30% in group 1 at 7,000 neters, by the 25th day of adaptation the decrease distributed to 10% in group 2. Actinomycin produced no significant changes in group 3 as compared to controls. In group 4 however, actinomycin causes 0_2 consumption to decrease 20 25%. Moreover the consumption decreased 22,5 at Eur level for this group, indicating that something other than the θ_{α} transport system had been affected, since 0, is readily available and there is no stress on the transport system. This idea is further supported by the fact that while the breathing rate decreased over the adaptation period, actinonyois caused it to rise again. Nor did the drug cause abnormal changes in crythrocyte and hemoglobin counts. Finally, animals given actinonycin and empared to acute hypoxia died not during exposure but on the forlowing day in an abundance of 02. Thus it is suggested that actinoxycle attrupis o, williestion -- 1.e., Mitochondrial function, rather that 0, transport. It incremes protein and nucleic acid production detected is a necessary part of composition to hypexia, and it is inhibited by suppression of Litechor and the livity. 2/2

. 10 .

USSR

UDC: 537.5:621.315.592

ANNAYEV, R. G., MEL'NIKOVA, L. L., Turkmen State University imeni A. M. Gor'kiy

"On Conversion of n-GaSb Under Electron Bombardment"

Ashkhabad, Izvestiya Akademii Nauk Turkmenskoy SSR: Seriya Fiziko-Tekhnicheskikh, Khimicheskikh i Geologicheskikh Nauk, No 2, 1972, pp 103-104

Abstract: The authors investigate the electrophysical proper ties of m-gallium antimonide irradiated with fast electrons. The specimens were doped with tellurium to an electron concentration of (1-8)·10¹⁷ per cc. The Hall coefficient was measured at 77-300°K with increasing doses of fast electrons with an energy of about 3.75 MeV. The Hall mobility was determined as the product of the Hall coefficient and conductivity. The results are tabulated for electron doses up to 1.4·16·7 electrons per sq. cm. It was found that the Hall coefficient increases and the mobility decreases with exposure to fast electron. Exposure to the highest dose results in an anomalously reached.

1/2

2009 - 2019 - 2019 - 2019 - 2019 - 2019 - 2019 - 2019 - 2019 - 2019 - 2019 - 2019 - 2019 - 2019 - 2019 - 2019 -2019 - 2019 - 2019 - 2019 - 2019 - 2019 - 2019 - 2019 - 2019 - 2019 - 2019 - 2019 - 2019 - 2019 - 2019 - 2019 2019 - 2019 - 2019 - 2019 - 2019 - 2019 - 2019 - 2019 - 2019 - 2019 - 2019 - 2019 - 2019 - 2019 - 2019 - 2019

USSR

ANNAYEV, R. G., MEL'NIKOVA, L. L., IAN TurkmSSR: Ser. Fiz.-TePh., Khim. i Geol. Nauk, No 2, 1972, pp 103-104

coefficient, low Hall mobility, and a reversal in the sign of the Hall emf. This conversion of conductivity from p-type to p-type is possibly due to the fact that many more acceptors than donors are formed under electron bombardment. The reduction in mobility may be due to an increase in the concentration of defects and to the lower phonon mobility because of the larger effective mass of holes as compared with electrons. The authors thank E. P. Gofman for furnishing the specimens. One table, bibliography of two titles.

2/2

APPROVED FOR RELEASE: 08/09/2001 CIA-RDP86-00513R002200210005-9"

THE CONTROL OF THE CO

USSR

UDC 539.292

ANNAYEV, R. G., KORSHIK, Yu. G., LAKGUYEV, D. Kh.

"Variation With Temperature of the Electrical Resistance of Cobalt-Vanadium Alloys in a Longitudinal Magnetic Field"

Izvestiya Akademii Nauk Turkmenskoy SSR, Seriya Fiziko-Tekhnicheskaya, Khimicheskaya i Geologicheskaya, No 1, 1970, pp 105-109

Abstract: The article deals with an investigation of the variation with temperature of the longitudinal galvanometric effect in ferromagnetic binary alloys of cobalt with vanadium, on the basis of polycrystalline specimens.

1/1

eter megistetak janggebiengkan di Harringhanhetonan album di kulatukan tiduk turu redi tiduk da i kan kan di m Birsinggebiyaran redikingkan konsungkan kan sunggun mengan mengan panggungkan kan kan di kulatukan kan kan di

1/2 022 UNCLASSIFIED PROCESSING DATE--18SEP70
TITLE--MAGNETO RESISTANCE IN THIN FILMS OF NICKEL PALLADIUM ALLOY SYSTEMS
-U-

AUTHOR-(04)-ANNAYEY, R.G., BOZYEY, M.A., MYALIKGULYEY, G., YAZLIYEY, S.

COUNTRY OF INFO--USSR

SOURCE--IZV. AKAD. NAUK TURKM. SSR. SER. FIZ. TEKH., KHIM. GEUL. NAUK 1970, (1), 101-5
DATE PUBLISHED-----70

SUBJECT AREAS--MATERIALS, PHYSICS

TOPIC TAGS--NICKEL ALLOY, PALLADIUM ALLOY, METAL FILM, MAGNETORESISTANCE, MAGNETIZATION

CONTROL MARKING--NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--1984/0184

STEP NO--UR/0202/70/000/001/0101/0105

CIRC ACCESSION NO--AP0054980

UNCLASSIFIED

2/2 022 UNCLASSIFIED PROCESSING DATE-18SEP70 CIPC ACCESSION NO--APOO54980
ABSTRACT/EXTRACT--(U) GP-0- ABSTRACT. THE LONGITANCE WAS MEASURED IN THIN NI-PD FILMS OVER A WIDE RANGE OF THICKNESS AND COMPN. TO COMPIRE THE 1 PHASE NATURE OF THE FILMS. FILMS 600-1200 ANGSIZOMS THICK CONTO. 0-80 AT. PERCENT PD WERE PREPD. BY THE METHODS DESCRIBED BARLIFE (1965). A STRONG EFFECT OF THE TRUE MAGNETIZATION WAS OBSD. FOR ALL OF THE FILMS EVEN AT ROOM TEMP. THE FILMS CONTG. SMALLER THAN OR EQUAL TO 40 AT. PERCENT PD ARE SINGLE PHASE.

UNCLASSIFIED

જ્યા મામાં આવેલા જ મામાં જીવન જામ સામે કાર મામાં કે આવેલા મામાં મામ

AA 0039846

1

UR 0482

Soviet Inventions Illustrated, Section I Chemical, Derwent,

3/70

237302 COPYING ELECTRO-EROSION MACHINE can copy the profile of template 10 on a reduced scale on workpiece 21. The copying slide is linked through a cylindrical guide to ball 18 at the end of bar 17 with a similar guide ball 20 in the top plate at its other end. Sall 19 near the upper end of the bar is guided in the working slide which carries erosion head 15.

8.1.68. as 1209577/25-28. E.A.ANNENBERG.
S.V.ZRITOMIRSKII Cutting-Machine Tools Res. Inst. (24.6.69.) Bul.8/12.2.69. Class 21h. Int.Cl.823k.

AUTHORS:

Annenberg, E. A.; and Zhitomirskiy, S. V.

8

1

<u>Eksperimental'nyy Nauchno - Issledovatel'skiy Institut</u> <u>Metallorezhushchikh Stankov</u>

19741231

APPROVED FOR RELEASE: 08/09/2001 CIA-RDP86-00513R002200210005-9"

APPROVED FOR RELEASE: 08/09/2001 CIA-RDP86-00513R002200210005-9"

USBR

UBC [537.0161537.322.33]:[937-596]

reachd dead share and seas and shared and in the seas of the seas of the seas of the contraction of the seas of th

ARVENKOV, YU. M., and GRISHREWOV, V. A.

"Electrical Properties of Crystals of Solid Solutions of Alkali-Halile Co. - pounds of RCN-KBr System"

Tav. Tousk. politekhn. in-ta (News of Tousk Polytechnic Institute), 19/1, 160, pp 164-100 (From 186-Finika, No 1, Jan 72, Abstract No 1981306 by F. V. METKLYAR)

Translation: Electrical conductivity O' and dielectric loss (v_{i} S) were determined using ECL-her simple crystals with a varying ratio of contours. Of declines with an increase of Kar concentration. The introduction of helphares a sharp drop in O', especially in ECL even with a low EMP concentration. For OHT-doped crystals, an increase of Kar concentration in ECL even crosses an increase in O'. The dependence of O' on the calt of confidence in ECL even crosses and the presence of an admixture of bivalent cations, the dependence of this is greater in ECL than in EMP. The OHT ions bout the bivalent californity of also caused a decline in O_{i} , which is not narrow in ECL. The of the crosses are declined in O_{i} , which is not narrow in ECL. The original of variation of O_{i} .

1/3

1/2 016 UNCLASSIFIED PROCESSING DATE--11SEP70
TITLE--DETERMINATION OF THE CONSTANTS OF A BROMOACROLEIN COPOLIMERIZATION
WITH VINYLBUTYL ETHER AND ACROLEIN -UAUTHOR--SHOSTAKOVSKIY, M.F., ANNENKOVA, V.A., UGRYUMOVA, G.S.

COUNTRY OF INFO--USSR

SOURCE--IZVESTIYA SIBIRSKOGO OTDELENIYA AKADEMII NAUK SSSR, NO 2, SERIYA KHIMICHESKIKH NAUK, 1970, NR 1, PP 166-168
DATE PUBLISHED-----70

SUBJECT AREAS--CHEMISTRY

TOPIC TAGS--COPOLYMERIZATION, BROMINATED ORGANIC COMPOUND, ALDERYDE, ETHER, REDOX REACTION

CONTROL MARKING--NO RESTRICTIONS

ere den de la companya de la company Companya de la companya

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--1984/1764

STEP NO--UR/0289/70/000/0007/01/6/01/68

CIRC ACCESSION NO-+APOI00344

UNICLASSIFIED

2/2 016 UNCLASSIFIED PROCESSING DATE--115EP70 CIRC ACCESSION NO--APO100344 ABSTRACT/EXTRACT--(U) GP-O- ABSTRACT. COPOLYMERIZATION OF A BROMOACROLEIN IN THE REDUCTION OXIDATION SYSTEM AG NO SUB3 ..K SUB2 S SUB2 O SUB8 WITH VINYLBUTYL ETHER AND ACROLEIN WAS INVESTIGATED AND THE CONSTANTS OF COPOLYMERIZATION DETERMINED. UNCLASSIFIED TO THE PROPERTY OF THE PROPERT

> APPROVED FOR RELEASE: 08/09/2001 CIA-RDP86-00513R002200210005-9"

USSR

UDC 541.64:542,954

ANNENKOVA, V. Z., ANTONIK, L. M., and ANNENKOVA, V. M., Irkutsk Inztitute of Organic Chemistry, Siberian Affiliate of the Academy of Sciences USSR, Irkutsk

"Phosphorylation of Polyacroleins"

Moscow, Vysokomolekulyarnyye Soyedineniya, Vol 15, (A), No 9, Sep 73, pp 2104-2105

Abstract: Samples of two polyacroleins (one with up to 25% of -C-C-groups and 75% of aldehyde groups and another with up to 60% of aldehyde groups and 26% of -C-C-groups) were reacted with PCl₂ on being suspended in glacial acetic acid, whereupon the intermediate compound was hydrolyzed with a minimum amount of H₂O. With an increasing reaction time in the 3-10 hrs range, the content of P in the products increased. Potentiometric titration showed that the phosphorylated polymers were rather strong monefunctional acids with acid numbers of 2,4-3,8 mg-equiv/g that corresponded to the P content of the polymers if the calculation was carried out for a monofunctional acid. Evidently cross-linking over P-OH groups with the formation of P-O-P groups took place. With an increasing length of the reaction time, the number of -C(-O)H groups decreased and cross-linking over the double bonds of -C-C- groups took place to an increasing extent.

1/1

AGE TERM OF THE CONTROL OF THE CONTROL OF THE PROPERTY OF THE

UNCLASSIFIED 1/2 TITLE--1,2,DIHALOACROLEINS -U-

PROCESSING DATE--04DEC70

AUTHOR-(02)-ANNENKOVA, V.Z., UGRYUMOVA, G.S.

COUNTRY OF INFO--USSR

SOURCE--U.S.S.R. 264,391 REFERENCE--OTKRYTIYA, IZOBRET., PROM. OBRAZTSY, TOVARNYE ZNAKI, 1970 DATE PUBLISHED--03MAR70

SUBJECT AREAS--CHEMISTRY

TOPIC TAGS--ACROLEIN, HALOGENATED ORGANIC COMPOUND, CHEMICAL PATENT

CONTROL MARKING--NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--3007/0857

STEP NO--UR/0482/70/000/000/0000/0000

CIRC ACCESSION NO--AA0136291

UNILLASSIF IFD

APPROVED FOR RELEASE: 08/09/2001 CIA-RDP86-00513R002200210005-9"

2/2 007 UNCLASSIFIED PROCESSING DATE--04DEC70 CIRC ACCESSION NO--AA0136291
ABSTRACT/EXTRACT--(U) GP-O- ABSTRACT. 1,2,DIHALDACROLEINS PREPD. BY HALDGENATING 2,HALDACROLEIN AND TREATING THE PRODUCT WITH ET SUB2 NH AT MINUS 20 TO PLUS 5DEGREES. FACILITY: IRKUTSKIY INSTITUT ORGANICHESKOY KHIMII SIBIRSKOGO OTDELENIYA AN SSSR.

SEES COLUMN TO SEE SEE AT A MORAL TO SEE TO THE THEORY SEED PROPERTY WIS RECORDED TO BE A SEED FOR THE TAXABLE PROPERTY OF THE PROPERTY OF THE

UNCLASSIFIED

USSR

UDC 541.64:542.954

ANNENKOVA, V. Z., ANTONIK, L. M., and ANNENKOVA, V. M., Irkutsk Inztitute of Organic Chemistry, Siberian Affiliate of the Academy of Sciences USSR, Irkutsk

"Phosphorylation of Polyacroleins"

Moscow, Vysokomolekulyarnyye Soyedineniya, Vol 15, (A), No 9, Sep 73, pp 2104-2105

Abstract: Samples of two polyacroleins (one with up to 25% of -C=C-groups and 75% of aldehyde groups and another with up to 60% of aldehyde groups and 28% of -C=C-groups) were reacted with PCl₃ on being suspended in glacial acetic acid, whereupon the intermediate compound was hydrolyzed with a minimum amount of H₂O. With an increasing reaction time in the 3-10 hrs range, the content of P in the products increased. Potentiometric titration showed that the phosphorylated polymers were rather strong monofunctional acids with acid numbers of 2,4-3,8 mg-equiv/g that corresponded to the P content of the polymers if the calculation was carried out for a monofunctional acid. Evidently cross-linking over P-OH groups with the formation of P-O-P groups took place. With an increasing length of the reaction time, the number of -C(=O)H groups decreased and cross-linking over the double bonds of -C=C- groups took place to an increasing extent.

1/1

USSR

UKC 632.55

KOMBRIKOV, B. H., ALMIKOV, V. E., KOZAK, G. D. and LUSHKIN, V. F.

"Several Ways of Reducing the Flammability of Ammonium Mittrate Department

V sb. Nauchno-tekim. honferentsiya. Mosk. khim.-tekhnol. in-t im. D. T. Mendeleyeva. Tecisy dokl. (Scientific-Technical Conference, Loscow Institute of Chemical Technology imeni D. T. Mendeleyev, Abstracts of Reports -- collection of works), Moscow, 1969, pp 113-114 (from RZh-Khirdya, No 1(II), 10 Jan 70, Abstract No 1 R351)

Translation: It is shown that in the presence of earl particles, well as of whiching flattability by means of Li and Ha fluorides, cyanucic acid, and advantage as additives in emplosives prove to be less effective; only emalates and discussion phosphates withstand the catalytic effect of coal. A mixture of LiF and Call or LiF and MagAlF6 is the best safety explosive additive. The rhumability of emplosives rises with greater additive particle size. It is also possible to considerably reduce the flattability of explosives containing hoxogen and nitroglycerin by the addition of diagnonium phosphate and LiF.

A. M. Shkolimikov

1/1

ar and the control of the control of

1/2 046 UNCLASSIFIED PROCESSING DATE--13NOV70
TITLE--SEVERAL WAYS OF REDUCING THE FLAMMABILITY OF AMMONIUM NITRATE
EXPLOSIVES -UAUTHOR-(04)-KONDRIKOV, B.N., ANNIKOV, V.E., KOZAK, G.D., LUSHKIN, V.P.

CCUNTRY OF INFO--USSR

SCURCE--V SB. NAUCHNO-TERHIN. KUNFERENTSIYA. MOSK. KHIM.-TEKHNOL. IN-T IM. REFERENCE--RZH-KHIMIYA, NO 1(11), 10 JAN 70, ABSTRACT NO 1 NB51NCE, MOSCOW DATE PUBLISHED-----70

SUBJECT AREAS--ORDNANCE, PROPULSION AND FUELS, CHEMISTRY

TOPIC TAGS--AMMONIUM NITRATE, EXPLOSIVE, CGAL, LITHIUM, SODIUM COMPOUND, AMINE DERIVATIVE, HEXOGEN, PHOSPHATE, CALCIUM FLUORIDE, LITHIUM FLUORIDE, ALUMINUM FLUORIDE, NITROGLYCERIN, FLAMMABILITY

CONTROL MARKING--NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--3003/0019

STEP NO--UK/0000/69/000/000/0113/0114

CIRC ACCESSION NU--AR0129319

DackASSIE Lib

5年,19年,中国大学的企业,1946年,1946年,1946年,1946年,1946年,1946年,1946年,1946年,1946年,1946年,1946年,1946年,1946年,1946年,1946年,1946年 1957年,1957年,1957年,1957年,1957年,1957年,1957年,1957年,1957年,1957年,1957年,1957年,1957年,1957年,1957年,1957年,1957年,1957年,19 1957年,1957年,1957年,1957年,1957年,1957年,1957年,1957年,1957年,1957年,1957年,1957年,1957年,1957年,1957年,1957年,1957年,1957年,1 PROCESSING DATE--13NOV70 UNCLASSIFIED 2/2 CIRC ACCESSION NO--AR0129319 ABSTRACT/EXTRACT--(U) GP-O- ABSTRACT. IT IS SHOWN THAT IN THE PRESENCE OF COAL PARTICLES, METHODS OF REDUCING FLAMMABILITY BY MEANS OF LI AND NA FLUORIDES, CYANURIC ACID, AND MELAMINE AS ADDITIVES IN EXPLOSIVES PROVE TO BE LESS EFFECTIVE; ONLY OXALATES AND DIAMMONIUM PHOSPHATES WITHSTAND THE CATALYTIC EFFECT OF COAL. A MIXTURE OF LIF AND CAF SUB2 OR LIF AND NA SUB3 ALF SUB6 IS THE BEST SAFETY EXPLOSIVE ADULTIVE. THE FLAMMABILITY OF EXPLOSIVES RISES WITH GREATER ADDITIVE PARTICLE SIZE. IT IS ALSO POSSIBLE TO CONSIDERABLY REDUCE THE FLAMMABILITY OF EXPLOSIVES CONTAINING HEXOGEN AND NITROGLYCERIN BY THE AGOITION OF DIAMMONIUM PHOSPHATE AND LIF. **THISTASSIFIED**

USSR

UDC 615.616.24-003.656.6

ANNUS, KH. I.

"Experimental Study of the Combined Effect of Shale Dust and Certain Accompanying Production Factors in the Development of Morphologic Alterations in the Regional Lymph Nodes of the Lungs of Rats"

Sb. dokl. 2-to Resp. sbezda epidemiologov, mikrobiologov, infektsionistov i gigiyenistov (Collection of Reports from the Second Republic Congress of Epidemiologists, Microbiologists, Specialists in Infectious Diseases and Hygienists), Tallin, 1972, pp 339-341 (from RZh--Farmakologiya, Khimioterapevticheskiye Sredstva, Toksikologiya, No 3, Mar 73, Abstract No 3.54.891)

Translation: A rat was subjected to the inhalation effect of the dust from hot shale in a concentration of 20.3-29.75 mg/m³; along with the dust treatment, part of the animals were subject to cooling and the effect of CO in a concentration of 6.25-12.5 mg/m³ and MO₂ (1-5 mg/m³). The tracheobronchial lymph nodes were investigated after 6 and 12 months of inhalation. The histologic study and planimetric measurements demonstrated that part of the inhaled 1/2

USSR

ANNUS, KH. I., Sb. dokl. 2-go Resp. sbezda epidemiologov, midro-biologov, infektsionistov i gigiyenistov, 1972, pp 339-341

shale dust moves out of the lungs into the tracheobronchial lymph nodes and even in small doses causes proliferative alterations in the form of dust granules. The gases and cooling had no effect on the development of the alterations in the tracheobronchial lymph nodes. USSR, Tallin, Institute of Experimental and Chemical Medicine of the Estonian SSR Ministry of Public Health.

2/2

Professional Commence of the C

1/2 022 UNCLASSIFIED PROCESSING DATE--2300170
TITLE--ON REPRESENTATION OF PHASE INFORMATION IN PROBLEMS OF VISUAL
ANALYSIS AND ON RECOGNITION OF COMPLEX ACOUSTIC SIGNALS BY OPERATOR -U-

AUTHUR-(02)-ANOKHIN, A.M., GRISHIN, V.G.

COUNTRY OF INFO--USSR

SOURCE--AVTOMATIKA I TELEMEKHANIKA, 1970, NR 3, PP 177-182

DATE PUBLISHED ---- 70

SUBJECT AREAS -- PHYSICS, BIOLOGICAL AND MEDICAL SCIENCES

TOPIC TAGS--ACOUSTIC SIGNAL, SIGNAL ANALYSIS, SPEECH SIGNAL, SPECTRUM ANALYZER, PHASE ANALYSIS

CONTROL MARKING--NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--1988/1456

STEP NO+-UR/0103/70/000/003/01///0142

CIRC ACCESSION NO- APOIGGZIZ

JAMES SOUTH BEEF

2/2 022
CIRC ACCESSION NO--APOLOGIZ
ABSTRACT/EXTRACT-- (U) GP-O- ABSTRACT. THEPE IS DESCRIBED A DEVICE FOR A
THREE DIMENSIONAL (BRIGHT) REPRESENTATION OF THE RELIFF OF THE
DERIVATIVE OF THE PHASE INSTANTANEOUS SIGNAL SPECTRUM. THE
PERSPECTIVENESS OF THE APPLICATION OF SUCH DEVICES IC THE PAUBLEMS OF
THE ANALYSIS AND THE CLASSIFICATION OF COMPLEX ACQUISTIC SIGNALS (SPEECH,
PHONOCARDIOGRAMS, ETC.) IS SHOWN.

USSR UDC: 621.373:530.145.6

ANOKHIN, A. V., MARKOVA, S. V., PETRASH, G. G.

"Pulse Emission on Vibrational Transitions of CO During Cooling of the Gas"

Kratk, soobshch, po fiz. (Brief Reports on Physics), 1970, No 8, pp 15-21 (from RZh-Radiotekhnika, No 12, Dec 70, Abstract No 12D215)

Translation: To study emission on vibrational transitions in CO in the pulse mode, the mas was cooled by using cold nitrogen. Pulse emission was studied in a CO discharge and CO-He, CO-N₂ and CO-N₂-He mixtures. Emission on a Co-He mixture was studied in greatest detail. Emission in the CO discharge had considerably less power and a completely specific nature as compared with emission in the mixtures. It is shown that the presence of He considerably improves emission on CO transitions. The most characteristic feature of emission on CO-He is the abrupt increase in emission power in the afterglow. It is assumed that the formation of an inversion on CO transitions can be explained by a relaxation mechanism with respect to the vibrational levels of an anharmonic oscillator. A. K.

1/1

UDC 621.762

USSR

OGNEY, R. K., TER-POUCCYAN, F. D., KOLOMOYETS, G. G. PUREVYAZMO, A. I., ESTRAKH, L. M., and ANORMEN, V. M.

"Powder Metallurgy Hiltors Male of Titanium Seraps"

Moscow, Matallurgiya i Mininiya Titana (Institut Titana), Matallurgiya Publishing Noure, Vol 6, 1970, pp 97-99

Translation: The effect of the technological parameters of minufacture and properties of the initial titualism pender on filter productivity are studied. It is discovered that it is embeddent to connect filters at pressures up to two tons/cm² and to conter them at temperatures not exceeding 1,170°C. Filter productivity is determined during 1/1 traction of lightles, and the dependence of productivity on a look in pressure to one atmosphere and on the size and shape of grains of the initial powder is established. It is the size and shape of grains of the initial powder is established. It is determined that the water correctly canacity of filters manufactured from hydride powder is 3-5 times are not the biblingraphic catrion.

powder. Two illustrations and two biblingraphic catrion.

1/1

USSR UDC 621.762

OCNEY, R. K., KOLOMOYETS, G. G., TER-POGOSYAN, E. D., ESTRAWH, L. M., ANORHIN, V. M., and PEREVYANNO, A. I.

"The Effect of Technological Parameters on the Qualities of Construction Articles Obtained by the Method of Compacting Titanium Powders'

Moscow, Metallurgiya i Khimiya Titana (Institut Titana), Metallurgiya Publishing House, Vol 6, 1970, pp 94-97

Translation: The effect of the features of initial powders and the technological parameters in manufacturing construction articles on their mechanical properties is considered. When identical compacting pressures, the density of articles made of electrolytic powder is greater by 4-7% than for similar articles made of hydride powder, and this gap decreases during the process of heat treatment. Increasing the sintering temperature of the powder metallurgy titanium leads to an increase in tensile strongth and elongation per unit lemin. Where heat treatment is at a temperature of 1,300°C, the tensile attention to some lemination per unit lemith reach 11. The signal to 55-65 giancalories/mm² and the elongation per unit lemith reach 11. The signal to 11 and 11 lustrations, one table, and three Libility graphic entries.

63

APPROVED FOR RELEASE: 08/09/2001 CIA-RDP86-00513R002200210005-9"

USSR UDC 621.762

FEDORCHENKO, I. M., OCNEV, R. K., KOLOMOYETS, G. G., ANOKHIN, V. M., REYTSES, V. B., KAZANTSEVA, N. A., and RUTBERG, V. P.

"The Effect of Aluminum and Molybdenum on the Properties of Sintered Titanium at Room and Elevated Temperatures"

Moscow, Metallurgiya i Khimiya Titana (Institut Titana), Metallurgiya Publishing House, Vol 6, 1970, pp 111-116

Translation: Results are given from research on the machanical properties of the alloys titanium-aluminum, titanium-molybdenum, and triple alloys titanium-aluminum-molybdenum at room temperature and at temperatures raised to 300°C. The alloys were obtained by mechanical blending of powders. After compacting and sintering one time, the alloys studied had a tensile strength up to 80 gigacalories/mm² and elongation per unit length of 5-16%. Alloying aluminum and molybdenum increases the heat resistance of sintered titanium alloys; the short-term strength at 300°C increases by more than two times. The stress-rupture strength increases significantly during alloying. Four illustrations, one table, and four bibliographic entries.

1/1

65 -

USSR

UDC 621.762.01:669.295

OGNEV, R. K., KOLOMOYETS, G. G., TER-POGOSYAN, E. D., ESTRAEH, L. M., ANOKHIN, V. M., and PEREVYAZKO, A. I.

"Influence of Technological Parameters on Properties of Structural Products Produced by Pressing Titanium Powders"

Sb. tr. Vses. n.-i. i proyektn. in-t titana [Collected Works of All-Union Scientific-Research and Planning Institute for Titanium], 6, 1970, pp. 94-97 (Translated from Referativnyy Zhurnal-Metallurgiya, No. 1, 1971, Abstract No.1 G:53 by the authors).

Translation: The authors studied the influence of the properties of the initial powders and technological parameters in the manufacture of structural products on their mechanical properties. With identical pressing pressures, the density of products of electrolytic powders is higher than that of similar products of hydride powders by 4-7%, although this difference is reduced during heat treatment. Increasing the sintering temperature of metal ceramic Ti causes an increase in $\sigma_{\rm b}$ and δ . With a heat treatment temperature of 1300°, $\sigma_{\rm b}$ is 55-65 kg/nm², δ reaches

11%. 2 figures; 1 table.

1/1

USSR

UDC 621.762:669-496.295

ा पुरस्कारी । स्थान स्थान के स्थान स्थान

OGNEV, R. K., TER-POGOSYAN, E. D., KOLOMOYETS, G. G., PEREVYAZKO, A. J., ESTRAKH, L. M. and ANOKHIN, V. M.

"Metal Ceramic Filters of Titanium Wastes"

Sb. tr. Vses. n.-i. i proyektn. in-t titana [Collected works of All-Union Scientific-Research and Planning Institute for Titanium], 6, 1970, pp. 97-99, (Translated from Referativnyy Zhurnal-Metallurgiya, No. 1, 1971, Abstract No.1 6475 by the authors).

Translation: The influence of technological parameters of the manufacture and properties of initial Ti powder on productivity of filters is studied. Pressing of filters should be performed at pressures up to 2 t/cm², sintering at temperatures of less than 1100°. The productivity of filters is determined for filtration of fluids. The dependence of productivity on pressure drop of up to 1 atmosphere and on size and shape of initial powder particles is determined. The throughput capacity for water of filters made of hydride powder is three times higher than the throughput capacity for filters made of electrolytic powder. 2 figures.

1/1

- 50 ·

USSR

UDC 546.814-31:548.55

UGAY, YA. A., LAVROV, V. V., ANOKHIN, V. Z., and AVERBAKH, YE. M., Voronezh State University, Voronezh, Ministry of Higher and Separation, PEFSR "Growth of SnO₂ Single Grystals"

Moscow, Izvestiya akademii Nauk SSSR -- Neorganicneskiye Materialy, Vol 6, No 4, Apr 70, pp 750-752

Abstract: A method is suggested for the growth of SnO_0 crystals which is more convenient than known methods for the growth of SnO_2 crystals from the gas phase. The transporting agent is water in the vapor state, continuously fed to the "evaporation" zone. A cylindrical specimen of pressed and annealed stannic oxide (diameter 22 mm) is placed in a high-temperature zone (t = 1570°C) created by cartorundum heaters inside a high-alumina ceramic tube (diameter 22 mm). A stream of water vapor from a quartz boiler is continuously fed into the furnace. The rate of water vapor feed into the SnO_2 evaporation zone does not exceed 4 mol/hr. Intensive growth of SnO_2 crystals is ob-

1/2

USSR

UGAY, YA. A., et al., Isvestiya Akademii Nauk SSSR -- Necreanicheskiye Materialy, Vol o, No 4, Apr 70, pp 750-752

served in the furnace zone with a temperature $\sim 1450\text{--}1520^{\circ}$ C. The color and faceting of the freely growing crystals vary greatly according to the temperature of the crystallization zone. The article considers the growth mechanism and the attendant chemical interactions.

2/2

ATTORIC CONTROL OF THE CONTROL OF TH

USSR

UDC 669.141.241.2:621.746.5

BURDONOV, B. A., ANOKHINA, A. I., RYZHKOV, V. P., VAL*TER, V. A., and BRONFENMAKHER, A. M., Kazakh Metallurgical Plant

"The Quality of Small Ingots of Killed Steel"

Moscow, Metallurg, No 12, Dec 70, pp 17-19

Abstract: The optimum consumption of aluminum (300-400 g/ton) for the deoxidation of St.3 and St.6 steels poured to small ingots was determined. With an aluminum consumption of 300-400 g/ton and a pouring rate of 0.4 m/min or less, cracks do not generate and hairline cracks are not observed on the final rolled metal. An increase in the number of deoxidizers in the foundry ladle results in a greater concentration of oxide impurities. A linear dependence was established between the depth of the shrink hole and the bailing period. The possibility of using calcium carbide for desulfurization of steel in the ladle is demonstrated.

1/1

Conferences

11557

LAZIVISTW, D. W., and ANOFELMA, G. S.

"IV Plenum of VECO /All-Union Chemical Association/ isolate, 1. Mondeleyev"

Moscow, Zhurnal Msesoyuznogo Khimienesko o Obshelesiva Ja 22 2. 1. Mendeleyev, Vol 18, No 3, 1970, pp 337-342

Abstract: The TV Plenum of the All-Union Chradeal costs in in (AUCA) was held on the 29 Jam 70 in Moscow. The anomals covered the subjects of "Direction of the scientific-technical cocloneate of chemical, petrochemical, and structural meterials in into length 1971-1975", "Fulfillment of the commitments in the 27 All length of the 160 Anniversary of the birth of V. I. Lell", and the approval of the workplan and budget for 1970. The producet, C. I. VOL' TYOVICH opened the session, noting the progress of the Dast years. Assistant Minister for Chemical Inflastry in the USS, T. V. UVAROV, talked about the future 5 year plan and in all actions for scientific and technical progress, stressian the linear acts and intensification of technological processes. In discussion the chemicals, stressed the impostance of polymers, and production in the 27 kg.

USSP

LAZINTSEV, D. N., and ANDRHELL, D. S., Zhurnal Vsesepurted of Khimicheskono Obshchestva imeni D. T. Mendeleyev, Vel 15, do 3, 1970, pp 337-342

a short disuession of low tonnate production -- new recomments, their purity, analytical methods surface active agents, the

A. P. SAVELLYTV discussed the directions for scientifies technical progress in petroleum processing and the petroleum is all industry. The USSE is second worldwide as far as the processing of petroleum is concerned and its rate of development is preason than that of the USA. New plants have been construct. I had many new processes developed. Considerable success has been achieved in synthetic rubber; the tire industry, however, needs pasic modifications.

Construction materials were covered by the director of technical administration of the Ministry of Industrial Structural Materials USSN, V. I. DOBUZHINSKIY. Presently about 500 types of construction materials are being produced. He discussed the cement, glass, wall materials and ceramics industry, noting current trends in them.

menerales en orden el colon de la major de la la sudición de la la la coma de la colon de la colon de la colon La colon de la

11SSR

LAMINTSTW, D. N., and AMOMNINA, G. S., Zhammal Vseltynunc & Whimicheskogo Obshchestva imeni D. I. Mendeleyev, Vol 15, No 3, 1970. pp 337-342

S. I. VOL'FKOVICH and D. P. NOVIKOV pointed out the need for correct labor organization in the plants. B. 1. SPEPANOV noted that preparation of engineers lags behind the needs foreseen for the near future. G. M. STRONGIN, S. V. ZUBAREV, A. F. LOZIKIN and YU. M. BUTT discussed improvement in economic effectiveness as related to scientific organizations, transportation, rapid application of new inventions, etc.

In regard to the second portion -- the fulfills out of commitments -- the representatives of the Moscow, Ekrainian, Georgian, Ryazan', Kalinin, Bashkir, and Altai AUCA noted that progress is satisifactory; the technology of direct production of phosphoric acid was developed on schedule, new compositions were developed for various lubricants, and individual goals set by various groups were achieved. Nevertheless it was noted that in some cases serious defficiencies exist. V. P. ROMAROV talked about future plans and the budget. The budget for 1970 was set at 882.1 thousands rubles. D. N. LAZINTSEV was elected as the president of the Central Bureau of AUCA.

Acc. Nr: Appoo34219 Abstracting Service: Ref. Code: UR, OON 8

Tom inorganic acid solutions by tertiary amines. Anothing L. Schim. Neocherkassk. Politekin. Inst., Novocherkassk. 15 Nr. 24.

Novog. Ahim. 1970, 1512. 135-60. Rep. Mov.11 and Rev.11 amine (II) from HCI, HNO, or H₂SO, solns. The degree of extr. decreased with acids in the order: H₂SO₂ > HCI > HCO₃.

For I the max. extractability was obtained: 88-90°, at pH 21-2.6 in HNO₃ and 97-8% at pH 2.0-3.0 in H₂SO₃ solns. It is a better extg. agent than 1.

REEL/FRAME

19710872

1/2 012 UNCLASSIFIED PROCESSING DATE--160CT70
TITLE--BACTERICIDAL ACTION OF ACRICHINE ON E. COLI AND THE PROCESS OF
TRANSFER OF R FACTORS -UAUTHOR-(03)-RYBKINA, L.G., ASTAPOV, A.A., ANOKHINA, R.V.

COUNTRY OF INFO--USSR

SOURCE-ZHURNAL MIKROBIOLOGII, EPIDEMIOLOGII I IMMUNOBIOLOGII, 1970, NR 5, PP 122-126

DATE PUBLISHED----70

SUBJECT AREAS--BIOLOGICAL AND MEDICAL SCIENCES

TOPIC TAGS--ESCHERICHIA COLI, BACTERIAL DEUXYRIBONUCLEIC 4010, SHIGELLA, BACTERICIDE

CONTROL MARKING--NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--1994/0161

STEP NU--UR/0016/70/000/00=/0122/0126

CIRC ACCESSION NO--APO114557

UNCLASSIFIED

012 UNCLASSIFIED PROCESSING DATE--1600TTO CIRC ACCESSION NO--APOLIA557 ABSTRACT/EXTRACT--(U) GP-0- ABSTRACT. AN ATTEMPT WAS MADE TO ASCERTAIN THE MECHANISM OF BACTERICIDAL ACTION OF ACRICHINE ON E. COLI AND SH. NEWCASTLEI RITIXTI; A STUDY WAS MADE OF ITS EFFECT UN THE TRANSFER BY CUNJUGATION OF RESISTANCE EPISOMES. INVESTIGATIONS CARRIED OUT DEMONSTRATED A MARKED BACTERICIDAL ACTION OF ACRICHINE ON E. COLI AND SH. NEWCASTLEI RILLIXT) AT THE BASIS OF WHICH LAY THE CAPACITY OF ACRICHINE TO FORM COMPLEXES WITH BACTERIAL DNA. THE TRANSFER OF MULTIPLE MEDICINAL RESISTANCE EPISOMAS IN CROSSING THE BACTERIA IS DEPRESSED ON ACCOUNT OF THE SAME CAPACITY OF ACRICHINE. FACILITY: KUBANSKIY MEDITSINSKIY INSTITUT, KRASNODAR. UNCLASSIFIED

APPROVED FOR RELEASE: 08/09/2001 CIA-RDP86-00513R002200210005-9"

1/2 037 UNCLASSIFIED PROCESSING JATE--300CT70 TITLE--COEFFICIENTS OF FRICTION OF AGRICULTURAL CHEMICAL POLSONS WITH RESPECT TO STEEL, CAST IRON, AND CERMET MATERIALS -U-AUTHOR-(02)-ANOPA, V.D., SAGACH, M.F.

CCUNTRY OF INFO-USSR

SCURLE-KIEV, TEKHACLOGIYA I ORGANIZATSIYA PRÖIZVUDSTVA, NO 1, 1970, PP 109-110 DATE PUBLISHED----70

SUBJECT AREAS -- MATERIALS, CHEMISTRY

TGPIC TAGS--FRICTION CUEFFICIENT, CAST IRON, STEEL, POISON, AGRICULTURAL CHEMICAL, CERMET

CENTREL MARKING--NG RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PRUXY RELE/FRAME--1999/1337

STEP NO--UR/0413/70/006/001/0169/0110

CIRC ACCESSION NO--APOLE3295

· UNICLASSIFIED

2/2 037
CIRC ACCESSION NO--APDIZ2295
AGSTRACT.—CUI GP-0- AGSTRACT.—CUEFFICIENTS OF FRICTION ARE GIVEN
FUR AGRICULTURAL CHEMICAL PLISONS WITH RESPECT TO STEEL, CAST IRON, AND
CERMET MATERIALS.

UNCLASSIFIED

USSR

ANORINA, L. A.

"A Local Theorem Considering Large Deviations and Its Applications"

Sluchayn. Proteessy i Stat. Vyvody [Random Processes and Statistical Conclusions -- Collection of Works], Tashkent, Fan Press, 1971, pp 5-10 (Translated from Referativnyy Zhurnal, Kibernetika, No 1, 1973, Abstract No 1 V37 by V. Petrov).

Translation: Suppose $\{\xi_j\}$ is a sequence of independent, two-dimensional vectors with a common reticular distribution, concentrated at points X with integer coordinates. Suppose random vector ξ_1 satisfies the second moments, $\mathbb{E}\xi_1=0$,

 $P\left(\{z\in X\} = \{X\}^{-\alpha}\left(1 + \varepsilon\left(X\right)\right)\right),$

where $\alpha_{\mathbb{P}^4}$, $m(\mathbb{V})_{\mathbb{P}^2} \otimes (\mathbb{A})$, a them $P(\xi_1 + \ldots + \xi_n + \mathbb{A}) \otimes \mathbb{P}(\xi_1 + \ldots + \xi_n + \mathbb{A}) \otimes \mathbb{P}(\xi_1 + \ldots + \xi_n + \mathbb{A})$. Under these same condition, the asymptotic behavior of one conditional distribution is modified, explained to the variational series for the sample ξ_1 , ..., ξ_n .

1/1