EASY Question

EASY QUESTION: Let $a, b, d \in \mathbb{Z}$, and suppose that

$$gcd(a, b) = d.$$

Prove that

$$\gcd\left(\frac{a}{d}, \frac{b}{d}\right) = 1.$$

Given, gcd(a, b) = d, where $a, b, d \in \mathbb{Z}$

Let a=kd , b=ld , where $k,l\in\mathbb{Z}$ and $k\neq l$

$$k = \frac{a}{d}$$
 , $l = \frac{b}{d}$

Assuming that $\gcd\left(\frac{a}{d}, \frac{b}{d}\right) > 1$,

$$gcd(k, l) = m > 1$$

Hence, $k=\lambda_1 m$, l= , $\lambda_2 m$, where $\ \lambda_1$, $\lambda_2 \in \ \mathbb{Z}$

$$a = \lambda_1 md$$
 , $b = \lambda_2 md$

$$gcd(a, b) = md > d$$

Contradicting the initial statement, gcd(a, b) = d.

$$\therefore \gcd\left(\frac{a}{d}, \frac{b}{d}\right) = 1,$$