RNA-Seq Analysis Mini-Project

Nhi To (A18053310)

2025-02-20

Table of contents

Background
Section 1. Differential Expression Analysis
Data Import
Inspect and tidy data
Setup for DESeq
Run DESeq
Volcano plot of results
Gene annotation
Section 2. Pathway Analysis
Section 3. Gene Ontology (GO) Analysis
Section 4. Reactome Analysis
Section 5. GO online (OPTIONAL)

Background

The data for this hands-on session comes from GEO entry: GSE37704, which is associated with the following publication:

Trapnell C, Hendrickson DG, Sauvageau M, Goff L et al. "Differential analysis of gene regulation at transcript resolution with RNA-seq". Nat Biotechnol 2013 Jan;31(1):46-53. PMID: 23222703

The authors report on differential analysis of lung fibroblasts in response to loss of the developmental transcription factor HOXA1. Their results and others indicate that HOXA1 is required for lung fibroblast and HeLa cell cycle progression. In particular their analysis show that "loss of HOXA1 results in significant expression level changes in thousands of individual transcripts, along with isoform switching events in key regulators of the cell cycle". For our session we

have used their Sailfish gene-level estimated counts and hence are restricted to protein-coding genes only.

Section 1. Differential Expression Analysis

Data Import

library(DESeq2)

```
Loading required package: S4Vectors
Loading required package: stats4
Loading required package: BiocGenerics
Attaching package: 'BiocGenerics'
The following objects are masked from 'package:stats':
    IQR, mad, sd, var, xtabs
The following objects are masked from 'package:base':
    anyDuplicated, aperm, append, as.data.frame, basename, cbind,
    colnames, dirname, do.call, duplicated, eval, evalq, Filter, Find,
    get, grep, grepl, intersect, is.unsorted, lapply, Map, mapply,
    match, mget, order, paste, pmax, pmax.int, pmin, pmin.int,
    Position, rank, rbind, Reduce, rownames, sapply, saveRDS, setdiff,
    table, tapply, union, unique, unsplit, which.max, which.min
Attaching package: 'S4Vectors'
The following object is masked from 'package:utils':
    findMatches
```

The following objects are masked from 'package:base':

expand.grid, I, unname

Loading required package: IRanges

Loading required package: GenomicRanges

Loading required package: GenomeInfoDb

Loading required package: SummarizedExperiment

Loading required package: MatrixGenerics

Loading required package: matrixStats

Attaching package: 'MatrixGenerics'

The following objects are masked from 'package:matrixStats':

colAlls, colAnyNAs, colAnys, colAvgsPerRowSet, colCollapse, colCounts, colCummaxs, colCummins, colCumprods, colCumsums, colDiffs, colIQRDiffs, colIQRs, colLogSumExps, colMadDiffs, colMads, colMaxs, colMeans2, colMedians, colMins, colOrderStats, colProds, colQuantiles, colRanges, colRanks, colSdDiffs, colSds, colSums2, colTabulates, colVarDiffs, colVars, colWeightedMads, colWeightedMeans, colWeightedMedians, colWeightedSds, colWeightedVars, rowAlls, rowAnyNAs, rowAnys, rowAvgsPerColSet, rowCollapse, rowCounts, rowCummaxs, rowCummins, rowCumprods, rowCumsums, rowDiffs, rowIQRDiffs, rowIQRs, rowLogSumExps, rowMadDiffs, rowMads, rowMaxs, rowMeans2, rowMedians, rowMins, rowOrderStats, rowProds, rowQuantiles, rowRanges, rowRanks, rowSdDiffs, rowSds, rowSums2, rowTabulates, rowVarDiffs, rowVars, rowWeightedMads, rowWeightedMeans, rowWeightedMedians, rowWeightedMedians, rowWeightedSds, rowWeightedVars

Loading required package: Biobase

Welcome to Bioconductor

Inspect and tidy data

colData <- read.csv("GSE37704_metadata.csv")</pre>

Does the 'counts' columns match the 'colData' rows? > No, it does exactly match because there is an extra column, hence we need to fix that

head(counts)			

	length	SRR493366	SRR493367	SRR493368	SRR493369	SRR493370
ENSG00000186092	918	0	0	0	0	0
ENSG00000279928	718	0	0	0	0	0
ENSG00000279457	1982	23	28	29	29	28
ENSG00000278566	939	0	0	0	0	0
ENSG00000273547	939	0	0	0	0	0
ENSG00000187634	3214	124	123	205	207	212
	SRR4933	371				
ENSG00000186092		0				
ENSG00000279928		0				
ENSG00000279457		46				

```
ENSG00000278566 0
ENSG00000273547 0
ENSG00000187634 258
```

head(colData)

id condition
1 SRR493366 control_sirna
2 SRR493367 control_sirna
3 SRR493368 control_sirna
4 SRR493369 hoxa1_kd
5 SRR493370 hoxa1_kd
6 SRR493371 hoxa1_kd

colData\$id

[1] "SRR493366" "SRR493367" "SRR493368" "SRR493369" "SRR493370" "SRR493371"

colnames(counts)

- [1] "length" "SRR493366" "SRR493367" "SRR493368" "SRR493369" "SRR493370"
- [7] "SRR493371"

Q1. Complete the code below to remove the troublesome first column from count-Data ${\bf P}$

```
# Note we need to remove the odd first $length col
countData <- counts[,-1]
head(countData)</pre>
```

	SRR493366	SRR493367	SRR493368	SRR493369	SRR493370	SRR493371
ENSG00000186092	0	0	0	0	0	0
ENSG00000279928	0	0	0	0	0	0
ENSG00000279457	23	28	29	29	28	46
ENSG00000278566	0	0	0	0	0	0
ENSG00000273547	0	0	0	0	0	0
ENSG00000187634	124	123	205	207	212	258

Check for matching countData and colData

colnames(countData) == colData\$id

[1] TRUE TRUE TRUE TRUE TRUE TRUE

Q. How many genes in total

ANSWER: 19808 genes

nrow(countData)

[1] 19808

Q2. Complete the code below to filter countData to exclude genes (i.e. rows) where we have 0 read count across all samples (i.e. columns). How many genes are left?

ANSWER: 15975 are the amount of genes left after the filtered countData to exclude genes where we have 0 read count across all samples.

Tip: What will rowSums() of countData return and how could you use it in this context?

Answer: rowSums(countData) shows a table of the values for each row and column. We should use this to be able to filter to filter out the values that are zero, and keep the values that are above zero.

head(rowSums(countData))

ENSG00000186092 ENSG00000279928 ENSG00000279457 ENSG00000278566 ENSG00000273547
0 0 183 0 0
ENSG00000187634
1129

```
to.keep.inds <- rowSums(countData) > 0
```

```
new.counts <- countData[to.keep.inds, ]
head(new.counts)</pre>
```

	SRR493366	SRR493367	SRR493368	SRR493369	SRR493370	SRR493371
ENSG00000279457	23	28	29	29	28	46
ENSG00000187634	124	123	205	207	212	258
ENSG00000188976	1637	1831	2383	1226	1326	1504
ENSG00000187961	120	153	180	236	255	357
ENSG00000187583	24	48	65	44	48	64
ENSG00000187642	4	9	16	14	16	16

nrow(new.counts)

[1] 15975

Setup for DESeq

```
#/ message: false
library(DESeq2)
```

Setup input object for DEseq

Warning in DESeqDataSet(se, design = design, ignoreRank): some variables in design formula are characters, converting to factors

Run DESeq

```
dds<- DESeq(dds)
```

estimating size factors

estimating dispersions

gene-wise dispersion estimates

```
mean-dispersion relationship
```

final dispersion estimates

fitting model and testing

res <- results(dds)</pre>

head(dds)

class: DESeqDataSet

dim: 6 6

metadata(1): version

assays(4): counts mu H cooks

rownames(6): ENSG00000279457 ENSG00000187634 ... ENSG00000187583

ENSG00000187642

rowData names(22): baseMean baseVar ... deviance maxCooks colnames(6): SRR493366 SRR493367 ... SRR493370 SRR493371

colData names(3): id condition sizeFactor

head(res)

 $\log 2$ fold change (MLE): condition hoxa1 kd vs control sirna Wald test p-value: condition hoxa1 kd vs control sirna DataFrame with 6 rows and 6 columns

	baseMean	${\tt log2FoldChange}$	lfcSE	stat	pvalue
	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>
ENSG00000279457	29.9136	0.1792571	0.3248216	0.551863	5.81042e-01
ENSG00000187634	183.2296	0.4264571	0.1402658	3.040350	2.36304e-03
ENSG00000188976	1651.1881	-0.6927205	0.0548465	-12.630158	1.43989e-36
ENSG00000187961	209.6379	0.7297556	0.1318599	5.534326	3.12428e-08
ENSG00000187583	47.2551	0.0405765	0.2718928	0.149237	8.81366e-01
ENSG00000187642	11.9798	0.5428105	0.5215599	1.040744	2.97994e-01

padj

<numeric>

ENSG00000279457 6.86555e-01

ENSG00000187634 5.15718e-03

ENSG00000188976 1.76549e-35

ENSG00000187961 1.13413e-07

ENSG00000187583 9.19031e-01

ENSG00000187642 4.03379e-01

Q3. Call the summary() function on your results to get a sense of how many genes are up or down-regulated at the default 0.1 p-value cutoff.

ANSWER: 4349 (27%) genes are up regulated, while 4396 (28%) are down-regulated at the default 0.1 p-value cutoff.

```
summary(res)
```

```
out of 15975 with nonzero total read count
adjusted p-value < 0.1
LFC > 0 (up) : 4349, 27%
LFC < 0 (down) : 4396, 28%
outliers [1] : 0, 0%
low counts [2] : 1237, 7.7%
(mean count < 0)
[1] see 'cooksCutoff' argument of ?results
[2] see 'independentFiltering' argument of ?results</pre>
```

Volcano plot of results

```
library(ggplot2)

ggplot(res) +
  aes(res$log2FoldChange, -log(res$padj)) +
  geom_point(shape=1)
```

Warning: Removed 1237 rows containing missing values or values outside the scale range (`geom_point()`).

Q4. Improve this plot by completing the below code, which adds color and axis labels

ANSWER:

Gene annotation

Q5: Use the mapIDs() function multiple times to add SYMBOL, ENTREZID and GENENAME annotation to our results by completing the code below.

ANSWER:

```
library(AnnotationDbi)
library(org.Hs.eg.db)
```

columns(org.Hs.eg.db)

[1]	"ACCNUM"	"ALIAS"	"ENSEMBL"	"ENSEMBLPROT"	"ENSEMBLTRANS"
[6]	"ENTREZID"	"ENZYME"	"EVIDENCE"	"EVIDENCEALL"	"GENENAME"
[11]	"GENETYPE"	"GO"	"GOALL"	"IPI"	"MAP"
[16]	"OMIM"	"ONTOLOGY"	"ONTOLOGYALL"	"PATH"	"PFAM"
[21]	"PMID"	"PROSITE"	"REFSEQ"	"SYMBOL"	"UCSCKG"
[26]	"UNIPROT"				

'select()' returned 1:many mapping between keys and columns

'select()' returned 1:many mapping between keys and columns

'select()' returned 1:many mapping between keys and columns

```
head(res, 10)
```

log2 fold change (MLE): condition hoxa1 kd vs control sirna Wald test p-value: condition hoxa1 kd vs control sirna DataFrame with 10 rows and 9 columns

	baseMean	log2FoldChange	lfcSE	stat	pvalue
	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>
ENSG00000279457	29.913579	0.1792571	0.3248216	0.551863	5.81042e-01
ENSG00000187634	183.229650	0.4264571	0.1402658	3.040350	2.36304e-03
ENSG00000188976	1651.188076	-0.6927205	0.0548465	-12.630158	1.43989e-36
ENSG00000187961	209.637938	0.7297556	0.1318599	5.534326	3.12428e-08
ENSG00000187583	47.255123	0.0405765	0.2718928	0.149237	8.81366e-01
ENSG00000187642	11.979750	0.5428105	0.5215599	1.040744	2.97994e-01
ENSG00000188290	108.922128	2.0570638	0.1969053	10.446970	1.51282e-25
ENSG00000187608	350.716868	0.2573837	0.1027266	2.505522	1.22271e-02

ENSG00000188157	9128.439422	0.3899088	8 0.0467163	8.346304 7.04321e-17
ENSG00000237330	0.158192	0.785955	2 4.0804729	0.192614 8.47261e-01
	padj	symbol	entrez	name
	<numeric></numeric>	<character> <</character>	character>	<character></character>
ENSG00000279457	6.86555e-01	NA	NA	NA
ENSG00000187634	5.15718e-03	SAMD11	148398	sterile alpha motif
ENSG00000188976	1.76549e-35	NOC2L	26155	NOC2 like nucleolar
ENSG00000187961	1.13413e-07	KLHL17	339451	kelch like family me
ENSG00000187583	9.19031e-01	PLEKHN1	84069	pleckstrin homology
ENSG00000187642	4.03379e-01	PERM1	84808	PPARGC1 and ESRR ind
ENSG00000188290	1.30538e-24	HES4	57801	hes family bHLH tran
ENSG00000187608	2.37452e-02	ISG15	9636	ISG15 ubiquitin like
ENSG00000188157	4.21963e-16	AGRN	375790	agrin
ENSG00000237330	NA	RNF223	401934	ring finger protein

Q6:Finally for this section let's reorder these results by adjusted p-value and save them to a CSV file in your current project directory.

ANSWER:

```
res <- res[order(res$pvalue),]
write.csv(res, file="deseq_results.csv", row.names=TRUE)</pre>
```

Section 2. Pathway Analysis

```
library(gage)
```

```
library(gageData)
library(pathview)
```

Pathview is an open source software package distributed under GNU General Public License version 3 (GPLv3). Details of GPLv3 is available at http://www.gnu.org/licenses/gpl-3.0.html. Particullary, users are required to formally cite the original Pathview paper (not just mention it) in publications or products. For details, do citation("pathview") within R.

The pathview downloads and uses KEGG data. Non-academic uses may require a KEGG license agreement (details at http://www.kegg.jp/kegg/legal.html).

Input vector for 'gage()'

```
foldchanges= res$log2FoldChange
names(foldchanges)= res$entrez
```

```
data(kegg.sets.hs)
data(sigmet.idx.hs)
```

```
# Focus on signaling and metabolic pathways only
kegg.sets.hs = kegg.sets.hs[sigmet.idx.hs]
```

Runpathway analysis in Keggres

```
keggres = gage(foldchanges, gsets=kegg.sets.hs)
```

```
head(keggres$less, 3)
```

```
p.geomean stat.mean p.val q.val
hsa04110 Cell cycle 8.995727e-06 -4.378644 8.995727e-06 0.001448312
hsa03030 DNA replication 9.424076e-05 -3.951803 9.424076e-05 0.007586381
hsa03013 RNA transport 1.375901e-03 -3.028500 1.375901e-03 0.073840037
set.size exp1
hsa04110 Cell cycle 121 8.995727e-06
hsa03030 DNA replication 36 9.424076e-05
hsa03013 RNA transport 144 1.375901e-03
```

Cell cycle figure

```
pathview (foldchanges, pathway.id= "hsa04110")
```

'select()' returned 1:1 mapping between keys and columns

Info: Working in directory /Users/nhito/Desktop/Desktop - Nhi's MacBook Air/School/UCSD/BIMM

Info: Writing image file hsa04110.pathview.png

Caffeine Metabolism figure

```
pathview (foldchanges, pathway.id= "hsa00232")
```

'select()' returned 1:1 mapping between keys and columns

Info: Working in directory /Users/nhito/Desktop/Desktop - Nhi's MacBook Air/School/UCSD/BIMM

Info: Writing image file hsa00232.pathview.png

Drug metabolism - other enzymes Figure

```
pathview (foldchanges, pathway.id= "hsa00983")
```

'select()' returned 1:1 mapping between keys and columns

Info: Working in directory /Users/nhito/Desktop/Desktop - Nhi's MacBook Air/School/UCSD/BIMM

Info: Writing image file hsa00983.pathview.png


```
names(foldchanges) = res$entrez
# Get the results
keggres = gage(foldchanges, gsets=kegg.sets.hs)
attributes(keggres)
```

\$names

[1] "greater" "less" "stats"

```
## Focus on top 5 upregulated pathways here for demo purposes only
keggrespathways <- rownames(keggres$greater)[1:5]

# Extract the 8 character long IDs part of each string
keggresids = substr(keggrespathways, start=1, stop=8)
keggresids</pre>
```

[1] "hsa04640" "hsa04630" "hsa00140" "hsa04142" "hsa04330"

pathview(gene.data=foldchanges, pathway.id=keggresids, species="hsa")

'select()' returned 1:1 mapping between keys and columns Info: Working in directory /Users/nhito/Desktop/Desktop - Nhi's MacBook Air/School/UCSD/BIMM Info: Writing image file hsa04640.pathview.png 'select()' returned 1:1 mapping between keys and columns Info: Working in directory /Users/nhito/Desktop/Desktop - Nhi's MacBook Air/School/UCSD/BIMM Info: Writing image file hsa04630.pathview.png 'select()' returned 1:1 mapping between keys and columns Info: Working in directory /Users/nhito/Desktop/Desktop - Nhi's MacBook Air/School/UCSD/BIMM Info: Writing image file hsa00140.pathview.png 'select()' returned 1:1 mapping between keys and columns Info: Working in directory /Users/nhito/Desktop/Desktop - Nhi's MacBook Air/School/UCSD/BIMM Info: Writing image file hsa04142.pathview.png 'select()' returned 1:1 mapping between keys and columns

Info: Working in directory /Users/nhito/Desktop/Desktop - Nhi's MacBook Air/School/UCSD/BIMM

Info: Writing image file hsa04330.pathview.png

Q7: Can you do the same procedure as above to plot the pathview figures for the

ANSWER:

```
keggrespathways_down <- rownames(keggres$less)[1:5]</pre>
keggresids_down <- substr(keggrespathways_down, start=1, stop=8)</pre>
keggresids_down
[1] "hsa04110" "hsa03030" "hsa03013" "hsa03440" "hsa04114"
pathview(gene.data=foldchanges, pathway.id=keggresids_down, species="hsa")
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory /Users/nhito/Desktop/Desktop - Nhi's MacBook Air/School/UCSD/BIMM
Info: Writing image file hsa04110.pathview.png
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory /Users/nhito/Desktop/Desktop - Nhi's MacBook Air/School/UCSD/BIMM
Info: Writing image file hsa03030.pathview.png
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory /Users/nhito/Desktop/Desktop - Nhi's MacBook Air/School/UCSD/BIMM
Info: Writing image file hsa03013.pathview.png
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory /Users/nhito/Desktop/Desktop - Nhi's MacBook Air/School/UCSD/BIMM
Info: Writing image file hsa03440.pathview.png
```

'select()' returned 1:1 mapping between keys and columns

Info: Working in directory /Users/nhito/Desktop/Desktop - Nhi's MacBook Air/School/UCSD/BIMM

Info: Writing image file hsa04114.pathview.png

Section 3. Gene Ontology (GO) Analysis

Run pathway analysis with GO

```
data(go.sets.hs)
data(go.subs.hs)

# Focus on Biological Process subset of GO
gobpsets = go.sets.hs[go.subs.hs$BP]

gobpres = gage(foldchanges, gsets=gobpsets, same.dir=TRUE)

lapply(gobpres, head)
```

\$greater

		p.geomean	stat.mean	p.val
GO:0007156	homophilic cell adhesion	8.519724e-05	3.824205	8.519724e-05
GD:0002009	morphogenesis of an epithelium	1.396681e-04	3.653886	1.396681e-04
GO:0048729	tissue morphogenesis	1.432451e-04	3.643242	1.432451e-04
GO:0007610	behavior	1.925222e-04	3.565432	1.925222e-04
GO:0060562	epithelial tube morphogenesis	5.932837e-04	3.261376	5.932837e-04
GO:0035295	tube development	5.953254e-04	3.253665	5.953254e-04
		q.val set	.size	exp1
GO:0007156	homophilic cell adhesion	0.1951953	113 8.5	19724e-05
GD:0002009	morphogenesis of an epithelium	0.1951953	339 1.39	96681e-04
GO:0048729	tissue morphogenesis	0.1951953	424 1.43	32451e-04
GD:0007610	behavior	0.1967577	426 1.92	25222e-04
GD:0060562	epithelial tube morphogenesis	0.3565320	257 5.93	32837e-04
GO:0035295	tube development	0.3565320	391 5.98	53254e-04

\$less

```
p.val
                                           p.geomean stat.mean
GO:0048285 organelle fission
                                        1.536227e-15 -8.063910 1.536227e-15
GO:0000280 nuclear division
                                        4.286961e-15 -7.939217 4.286961e-15
GO:0007067 mitosis
                                        4.286961e-15 -7.939217 4.286961e-15
GO:0000087 M phase of mitotic cell cycle 1.169934e-14 -7.797496 1.169934e-14
GO:0007059 chromosome segregation
                                        2.028624e-11 -6.878340 2.028624e-11
GO:0000236 mitotic prometaphase
                                        1.729553e-10 -6.695966 1.729553e-10
                                               q.val set.size
                                                                      exp1
GO:0048285 organelle fission
                                        5.841698e-12
                                                          376 1.536227e-15
GO:0000280 nuclear division
                                                          352 4.286961e-15
                                        5.841698e-12
GO:0007067 mitosis
                                        5.841698e-12
                                                          352 4.286961e-15
```

```
GO:0000087 M phase of mitotic cell cycle 1.195672e-11 362 1.169934e-14 GO:0007059 chromosome segregation 1.658603e-08 142 2.028624e-11 GO:0000236 mitotic prometaphase 1.178402e-07 84 1.729553e-10
```

\$stats

```
      G0:0007156 homophilic cell adhesion
      3.824205
      3.824205

      G0:0002009 morphogenesis of an epithelium
      3.653886
      3.653886

      G0:0048729 tissue morphogenesis
      3.643242
      3.643242

      G0:0007610 behavior
      3.565432
      3.565432

      G0:0060562 epithelial tube morphogenesis
      3.261376
      3.261376

      G0:0035295 tube development
      3.253665
      3.253665
```

head(gobpres\$less)

```
p.geomean stat.mean
                                                                      p.val
GO:0048285 organelle fission
                                        1.536227e-15 -8.063910 1.536227e-15
GO:0000280 nuclear division
                                        4.286961e-15 -7.939217 4.286961e-15
GO:0007067 mitosis
                                        4.286961e-15 -7.939217 4.286961e-15
GO:0000087 M phase of mitotic cell cycle 1.169934e-14 -7.797496 1.169934e-14
GO:0007059 chromosome segregation
                                        2.028624e-11 -6.878340 2.028624e-11
GO:0000236 mitotic prometaphase
                                        1.729553e-10 -6.695966 1.729553e-10
                                                                      exp1
                                               q.val set.size
GO:0048285 organelle fission
                                                          376 1.536227e-15
                                        5.841698e-12
GO:0000280 nuclear division
                                        5.841698e-12
                                                          352 4.286961e-15
GO:0007067 mitosis
                                        5.841698e-12
                                                          352 4.286961e-15
GO:0000087 M phase of mitotic cell cycle 1.195672e-11
                                                          362 1.169934e-14
GO:0007059 chromosome segregation
                                        1.658603e-08
                                                          142 2.028624e-11
GO:0000236 mitotic prometaphase
                                       1.178402e-07
                                                           84 1.729553e-10
```

Section 4. Reactome Analysis

```
sig_genes <- res[res$padj <= 0.05 & !is.na(res$padj), "symbol"]
print(paste("Total number of significant genes:", length(sig_genes)))</pre>
```

[1] "Total number of significant genes: 8147"

```
write.table(sig_genes, file="significant_genes.txt", row.names=FALSE, col.names=FALSE, quotes
```

Q8: What pathway has the most significant "Entities p-value"? Do the most significant pathways listed match your previous KEGG results? What factors could cause differences between the two methods?

ANSWER: Signaling by PDGF has the most significant "entities p-value" in Reactome because it has the smallest value at 8.41 E-5. No, Signaling by PDGF, the most significant pathway does not patch the pervious KEGG results for neither top 5 upregulated nor downregulated KEGG pathways identified earlier. Some factors that could be causing the differences between the two methods is that Reactome details specific singaling, such as PDGF signaling, however, KEGG connects signaling pathways with each other. Therefore, PDGF may not be considered a separate pathway in KEGG.

Section 5. GO online (OPTIONAL)

Q9:What pathway has the most significant "Entities p-value"? Do the most significant pathways listed match your previous KEGG results? What factors could cause differences between the two methods?

ANSWER: