Gaussian Process Latent Variable Models in Finance

Rajbir-Singh Nirwan

November 22, 2019

				AAPL
RETURNS	24.10.19	25.10.19	28.10.19	29.10.19
AAPL	0.16	1.23	1.00	-2.31
G00GL	0.11	0.41	1.95	-2.19
AMZN	1.05	-1.09	0.89	-0.80
MSFT 05	1.96	0.56	2.45	-0.94
F00D 10 -				
BANK	2017-09	7018.05	019.01	12 ⁰⁹

Generative Model

	Day1	Day2	
Bank1	-0.70	0.08	
Bank2	-0.44	0.16	
Bank3	-0.36	0.01	
Food1	0.75	-0.14	
Food2	0.77	-0.27	
Food3	0.86	-0.19	
Tech1	0.19	0.03	
Tech2	0.08	0.04	
Tech3	-0.19	0.02	
Tech4	-0.55	0.10	

Outline

- Gaussian Processes
- Latent Variable Models
- Applications
 - Portfolio Allocation
 - Predicting missing Values
 - Structure Identification

Weight space view

$$\Phi: x \to (\phi_1(x), \phi_2(x), ..., \phi_D(x))$$
$$f(x) = \mathbf{w}^T \Phi(x)$$

Simple and easy to interpret but limited flexibility

$$f(x) = \mathbf{W}_2 \sigma \left(\mathbf{W}_1 \mathbf{\Phi}_1(x) \right)$$

Highly flexible but not interpretable

$$\phi(x) = x$$

$$k(x, x') = xx'$$

$$\Phi(x) = (x, x^2)$$

$$k(x, x') = xx' + x^2x'^2$$

Function space view

$$k: x, x' \to k(x, x')$$

Flexibility increases with number of data points

Mercers Theorem:

$$k(x, x') = \sum_{d} \lambda_{d} \phi_{d}(x) \phi_{d}(x')$$

$$k(x, x') = (xx' + c)^d$$

 $\Phi(x) = polynomials \ up \ to \ order \ d$

$$k(x, x') = \exp(-0.5 (x - x')^2 / \ell^2)$$

 $\Phi(x) = infinitly many basis functions$

Any finite collection of function values at $x_1, x_2, ..., x_N$ is jointly Gaussian distributed

$$p\left(f(x_1), f(x_2), ..., f(x_N)\right) = \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{K}) = \mathcal{N}\left(\begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \begin{bmatrix} k_{11} & k_{12} & \cdots & k_{1N} \\ k_{21} & k_{22} & \cdots & k_{2N} \\ \vdots & \vdots & \ddots & \vdots \\ k_{N1} & k_{N2} & \cdots & k_{NN} \end{bmatrix}\right) \qquad k_{ij} = k(x_i, x_j)$$

Any finite collection of function values at $x_1, x_2, ..., x_N$ is jointly Gaussian distributed

$$p\left(f(x_1), f(x_2), ..., f(x_N)\right) = \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{K}) = \mathcal{N}\left(\begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \begin{bmatrix} k_{11} & k_{12} & \cdots & k_{1N} \\ k_{21} & k_{22} & \cdots & k_{2N} \\ \vdots & \vdots & \ddots & \vdots \\ k_{N1} & k_{N2} & \cdots & k_{NN} \end{bmatrix}\right) \qquad k_{ij} = k(x_i, x_j)$$

$$k_{linear}(x, x') = xx'$$

$$k_{rbf}(x, x') = \exp\left(-\frac{1}{2\ell^2}(x - x')^2\right)$$

$$k_{ou}(x, x') = \exp\left(-\frac{1}{\ell}|x - x'|\right)$$

$$k_{mat32}(x, x') = \left(1 + \frac{\sqrt{3}|x - x'|}{\ell}\right) \exp\left(-\frac{\sqrt{3}|x - x'|}{\ell}\right)$$

$$k_{periodic}(x, x') = \exp\left(-\frac{2}{\ell^2}\sin^2(|x - x'|)\right)$$

Any finite collection of function values at $x_1, x_2, ..., x_N$ is jointly Gaussian distributed

$$p\left(f(x_1), f(x_2), ..., f(x_N)\right) = \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{K}) = \mathcal{N}\left(\begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \begin{bmatrix} k_{11} & k_{12} & \cdots & k_{1N} \\ k_{21} & k_{22} & \cdots & k_{2N} \\ \vdots & \vdots & \ddots & \vdots \\ k_{N1} & k_{N2} & \cdots & k_{NN} \end{bmatrix}\right) \qquad k_{ij} = k(x_i, x_j)$$

$$k_{linear}(x, x') = xx'$$

$$k_{rbf}(x, x') = \exp\left(-\frac{1}{2\ell^2}(x - x')^2\right)$$

$$k_{ou}(x, x') = \exp\left(-\frac{1}{\ell}|x - x'|\right)$$

$$k_{mat32}(x, x') = \left(1 + \frac{\sqrt{3}|x - x'|}{\ell}\right) \exp\left(-\frac{\sqrt{3}|x - x'|}{\ell}\right)$$

$$k_{periodic}(x, x') = \exp\left(-\frac{2}{\ell^2}\sin^2(|x - x'|)\right)$$

Any finite collection of function values at $x_1, x_2, ..., x_N$ is jointly Gaussian distributed

$$p\left(f(x_1), f(x_2), ..., f(x_N)\right) = \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{K}) = \mathcal{N}\left(\begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \begin{bmatrix} k_{11} & k_{12} & \cdots & k_{1N} \\ k_{21} & k_{22} & \cdots & k_{2N} \\ \vdots & \vdots & \ddots & \vdots \\ k_{N1} & k_{N2} & \cdots & k_{NN} \end{bmatrix}\right) \qquad k_{ij} = k(x_i, x_j)$$

$$k_{linear}(x, x') = xx'$$

$$k_{rbf}(x, x') = \exp\left(-\frac{1}{2\ell^2}(x - x')^2\right)$$

$$k_{ou}(x, x') = \exp\left(-\frac{1}{\ell'}|x - x'|\right)$$

$$k_{mat32}(x, x') = \left(1 + \frac{\sqrt{3}|x - x'|}{\ell}\right) \exp\left(-\frac{\sqrt{3}|x - x'|}{\ell}\right)$$

$$k_{periodic}(x, x') = \exp\left(-\frac{2}{\ell^2}\sin^2(|x - x'|)\right)$$

Any finite collection of function values at $x_1, x_2, ..., x_N$ is jointly Gaussian distributed

$$p\left(f(x_1), f(x_2), ..., f(x_N)\right) = \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{K}) = \mathcal{N}\left(\begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \begin{bmatrix} k_{11} & k_{12} & \cdots & k_{1N} \\ k_{21} & k_{22} & \cdots & k_{2N} \\ \vdots & \vdots & \ddots & \vdots \\ k_{N1} & k_{N2} & \cdots & k_{NN} \end{bmatrix}\right) \qquad k_{ij} = k(x_i, x_j)$$

$$k_{linear}(x, x') = xx'$$

$$k_{rbf}(x, x') = \exp\left(-\frac{1}{2\ell^2}(x - x')^2\right)$$

$$k_{ou}(x, x') = \exp\left(-\frac{1}{\ell}|x - x'|\right)$$

$$k_{mat32}(x, x') = \left(1 + \frac{\sqrt{3}|x - x'|}{\ell}\right) \exp\left(-\frac{\sqrt{3}|x - x'|}{\ell}\right)$$

$$k_{periodic}(x, x') = \exp\left(-\frac{2}{\ell^2}\sin^2(|x - x'|)\right)$$

Any finite collection of function values at $x_1, x_2, ..., x_N$ is jointly Gaussian distributed

$$p\left(f(x_1), f(x_2), ..., f(x_N)\right) = \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{K}) = \mathcal{N}\left(\begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \begin{bmatrix} k_{11} & k_{12} & \cdots & k_{1N} \\ k_{21} & k_{22} & \cdots & k_{2N} \\ \vdots & \vdots & \ddots & \vdots \\ k_{N1} & k_{N2} & \cdots & k_{NN} \end{bmatrix}\right) \qquad k_{ij} = k(x_i, x_j)$$

$$k_{linear}(x, x') = xx'$$

$$k_{rbf}(x, x') = \exp\left(-\frac{1}{2\ell^2}(x - x')^2\right)$$

$$k_{ou}(x, x') = \exp\left(-\frac{1}{\ell'}|x - x'|\right)$$

$$k_{mat32}(x, x') = \left(1 + \frac{\sqrt{3}|x - x'|}{\ell}\right) \exp\left(-\frac{\sqrt{3}|x - x'|}{\ell}\right)$$

$$k_{periodic}(x, x') = \exp\left(-\frac{2}{\ell^2}\sin^2(|x - x'|)\right)$$

Bayes Theorem

$$p(f|\mathcal{D}) = \frac{p(\mathcal{D}|f)p(f)}{p(\mathcal{D})}$$

Prior

Posterior

Bayes Theorem

$$p(f|\mathcal{D}) = \frac{p(\mathcal{D}|f)p(f)}{p(\mathcal{D})}$$

Prior

Posterior

Latent Variable Models

$$\boldsymbol{X} \in \mathbb{R}^{N \times Q} \quad \stackrel{f}{\to} \quad \boldsymbol{Y} \in \mathbb{R}^{N \times D}$$

$$\begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix} \xrightarrow{f_i} \begin{pmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \\ d_1 & d_2 & d_3 \end{pmatrix}$$

- Can we infer the hidden state X only by looking at Y? Yes
- Inference using GPs also gives us the covariance K between different points

Experiments

Use Variational Bayes for the inference - data $Y \in \mathbb{R}^{N \times D}$ Approximate the true posterior with a simple distribution

 R^2 - Variance of the data captured by the model

ELBO - Lower Bound to the marginal likelihood

Portfolio Allocation

Given N stocks, how should I weight them to get an optimal portfolio?

Markowitz Portfolio Theory

$$\mathbf{w}_{opt} = \min_{\mathbf{w}} \left(\mathbf{w}^T \mathbf{K} \mathbf{w} - q \mathbf{w}^T \boldsymbol{\mu} \right)$$

Backtesting on S&P500 from 2002 to 2018

Model	Linear	SE	EXP	M32	Sample Cov	Ledoit Wolf	Eq. Weighted
Mean	0.142	0.151	0.155	0.158	0.149	0.148	0.182
Std	0.158	0.156	0.154	0.153	0.159	0.159	0.232
Sharpe ratio	0.901	0.969	1.008	1.029	0.934	0.931	0.786

Predict Missing Values

$$\begin{pmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & NaN \\ c_1 & c_2 & c_3 \\ d_1 & d_2 & d_3 \end{pmatrix}$$

Prediction of missing values for held out dataset

Visualization of Latent Space

Summary

- Use of Gaussian Processes in Finance
- Build Portfolio based on the Covariance between Stocks
- Better Predictor for Missing values
- Latent Space Structure Identification

Applications of Gaussian Process Latent Variable Models in Finance RS Nirwan, N Bertschinger - Proceedings of SAI Intelligent Systems Conference, 2019