MA2115 Clase 10: La Ecuación de Bernoulli. Método de separación de variables

Elaborado por los profesores Edgar Cabello y Marcos González

1 La ecuación de Bernoulli

La ecuación de Bernoulli es una EDO de la forma

$$\frac{dy}{dx} + P(x)y = f(x)y^n, \quad n \neq 0, \ n \neq 1.$$
 (1)

La substitución $w = y^{1-n}$ conduce a una ecuación diferencial lineal

$$\frac{dw}{dx} = (1 - n)y^{-n}\frac{dy}{dx}$$

$$\frac{dy}{dx} = \frac{1}{1 - n}y^{n}\frac{dw}{dx}$$
(2)

Substituyendo (2) en (1),

$$\frac{y^n}{1-n}\frac{dw}{dx} + P(x)y = f(x)y^n.$$

Dividiendo por y^n obtenemos

$$\frac{1}{1-n}\frac{dw}{dx} + P(x)y^{1-n} = f(x).$$

Multiplicando por (1-n) y sustituyendo $y^{1-n} = w$ obtenemos

$$\frac{dw}{dx} + (1-n)wP(x) = (1-n)f(x).$$

Es decir, mediante la substitución $w = y^{1-n}$, hemos reducido la ecuación de Bernoulli (1), a una ecuación diferencial ordinaria de primer orden, a saber,

$$\frac{dw}{dx} + (1 - n)P(x)w = (1 - n)f(x). \tag{3}$$

Ejemplo 1 Resolver $2xyy' = 4x^2 + 3y^2$.

Solución: Dividiendo por 2xy la ecuación $2xyy' = 4x^2 + 3y^2$, obtenemos

$$y' = 2\frac{x}{y} + \frac{3}{2}\frac{y}{x} \Rightarrow \frac{dy}{dx} - \frac{3}{2x}y = \frac{2x}{y},$$

la cual es una ecuación de Bernoulli. Sea $w = y^2$, de donde $y = w^{1/2}$. Entonces

$$\frac{dy}{dx} = \frac{dy}{dw}\frac{dw}{dx} = \frac{1}{2}w^{-1/2}\frac{dw}{dx}.$$

Substituyendo $\frac{dy}{dx} = \frac{1}{2}w^{-1/2}\frac{dw}{dx}$ en la ecuación diferencial, obtenemos

$$\frac{1}{2}w^{-1/2}\frac{dw}{dx} - \frac{3}{2x}w^{1/2} = 2xw^{-1/2}.$$

Multiplicando por $2w^{1/2}$, obtenemos la ecuación lineal

$$\frac{dw}{dx} - \frac{3}{x}w = 4x.$$

Ahora aplicamos el método del factor integrante: multiplicando por $\mu(x) = e^{\int -\frac{3}{x} dx} = x^{-3}$, obtenemos

$$x^{-3}w' - 3x^{-4}w = 4x^{-2}$$

de donde

$$\frac{d}{dx}(x^{-3}w) = \frac{4}{x^2} \implies x^{-3}w = -\frac{4}{x} + C$$

$$\Rightarrow x^{-3}y^2 = -\frac{4}{x} + C \Rightarrow y^2 = -4x^2 + Cx^3.$$

Ejemplo 2 *Hallar la solución de* $6x^2dy - y(2y^3 + x) dx = 0$, $y(1) = \frac{1}{2}$.

Solución: Para $x \neq 0$, $\frac{dy}{dx} - \frac{y}{6x^2}(2y^3 + x) = 0$, de donde

$$\frac{dy}{dx} - \frac{2y^4}{6x^2} - \frac{xy}{6x^2} = 0,$$

y así, obtenemos la ecuación de Bernoulli

$$\frac{dy}{dx} - \frac{1}{6x}y = \frac{1}{3x^2}y^4.$$

Haciendo el cambio $w=y^{-3}$, la ecuación viene a ser $\frac{dw}{dx}+\frac{w}{2x}=-\frac{1}{x^2}$. Mulitiplicando por el factor integrante $\mu(x)=e^{\int \frac{1}{2x}dx}=\sqrt{x}=x^{1/2}$, obtenemos

$$x^{1/2}\frac{dw}{dx} + \frac{1}{2}x^{-1/2}w = -x^{-3/2} \Leftrightarrow \frac{d}{dx}\left(x^{1/2}w\right) = -x^{-3/2},$$

de donde

$$x^{1/2}w = \int -x^{-3/2}dx = 2x^{-1/2} + C.$$

Así, $w = \frac{2}{x} + \frac{C}{\sqrt{x}} = \frac{2 + C\sqrt{x}}{x}$, y por lo tanto la solución general es $y^3 = \frac{x}{2 + C\sqrt{x}}$. Usando la condición inicial $y(1) = \frac{1}{2}, \frac{1}{8} = \frac{1}{2 + C}$, de donde C = 6 y, finalmente, $y^3 = \frac{x}{2 + 6\sqrt{x}}$.

Ejemplo 3 Halle la solución general de $y(6y^2 - x - 1) dx + 2x dy = 0$.

Solución: $y(6y^2 - x - 1) dx + 2x dy = 0$ agrupando términos $2x dy - y(x+1) dx + 6y^3 dx = 0$ vemos que lo que tenemos es una ecuación de Bernoulli. Dividiendo por y^3 , obtenemos

$$2xy^{-3}dy - y^{-2}(x+1)dx = -6dx.$$

Sea $w = y^{-2}$. Entonces, $dw = -2y^{-3}dy \Rightarrow dy = -\frac{y^3dw}{2}$. Substituyendo en la ecuación, obtenemos

$$-\frac{2xy^{-3}y^3dw}{2} - y^{-2}(x+1)dx = -6dx.$$

Es decir, xdw + w(x+1)dw = 6dx. Dividiendo por x esta ecuación se convierte en la ecuación lineal $dw + w(1+x^{-1})dx = 6x^{-1}dx$. Mulitiplicando por el factor integrante $\mu(x) = e^{\int (1+x^{-1})dx} = xe^x$, obtenemos

$$xe^x dw + we^x (x+1) dx = 6e^x dx \Rightarrow xwe^x = 6e^x + C.$$

Como $w = y^{-2}$, $y^2(6 + Ce^{-x}) = x$.

Ejemplo 4 Halle la solución general $x^2 \frac{dy}{dx} + y^2 = xy$.

Solución:

$$\frac{dy}{dx} + \frac{y^2}{x^2} = \frac{y}{x} \Rightarrow \frac{dy}{dx} - \frac{1}{x}y = -\frac{1}{x^2}y^2$$
. Sea $w = y^{1-2} = y^{-1}$. Entonces

$$\frac{dw}{dx} = -y^{-2}\frac{dy}{dx} \Rightarrow \frac{dy}{dx} = -y^{2}\frac{dw}{dx}$$

de donde nos queda la ecuación

$$-y^{2}\frac{dw}{dx} - \frac{1}{x}y = -\frac{1}{x^{2}}y^{2}$$
$$\frac{dw}{dx} + \frac{1}{x}\frac{1}{y} = \frac{1}{x^{2}}$$
$$\frac{dw}{dx} + \frac{1}{x}w = \frac{1}{x^{2}}$$
 lineal

factor integrante, $\mu(x) = e^{\int \frac{dx}{x}} = x$ por lo cual,

$$xdw + wdx = \frac{1}{x}dx$$

$$d(xw) = \frac{1}{x}dx \Rightarrow xw = \ln x + C$$

$$\frac{1}{y} = \frac{\ln x + C}{x}.$$

$$y = \frac{x}{\ln x + C}.$$

Ejemplo 5 Resolver $x \frac{dy}{dx} + 6y = 3xy^{4/3}$.

Solución: $\frac{dy}{dx} + \frac{6}{x}y = 3y^{4/3}$. Bernoulli con $n = \frac{4}{3}$. Sea $w = y^{1-\frac{4}{3}} = y^{-1/3}$ luego $y = w^{-3}$ derivando obtenemos, $\frac{dy}{dx} = -3w^{-4}\frac{dw}{dx}$ substituyendo en $\frac{dy}{dx} + \frac{6}{x}y = 3y^{4/3}$ obtenemos, $-3w^{-4}\frac{dw}{dx} + \frac{6}{x}w^{-3} = 3w^{-4} \Rightarrow -3\frac{dw}{dx} + \frac{6}{x}w = 3 \Rightarrow \frac{dw}{dx} - \frac{2}{x}w = -1$. Ecuación lineal de 1er orden cuya solución es $w = x + Cx^2 \Rightarrow y^{-1/3} = x + Cx^2$

$$y = \frac{1}{(x + Cx^2)^3}.$$

Ejemplo 6 *Resolver* $\sqrt{y}y' + y^{3/2} = 1$; y(0) = 4.

Solución: $\sqrt{y}y' + y^{3/2} = 1 \Rightarrow y' + y = y^{-1/2}$ Bernoulli.

Sea $w = y^{1-(-1/2)} = y^{3/2}$; $\frac{dw}{dx} = \frac{3}{2}y^{1/2}\frac{dy}{dx}$ entonces $\sqrt{y}y' = \frac{2}{3}\frac{dw}{dx}$. Así, substituyendo en la ecuación original obtenemos la ecuación lineal de primer orden

$$\frac{2}{3}\frac{dw}{dx} + w = 1 \Rightarrow \frac{dw}{dx} + \frac{3}{2}w = \frac{3}{2}.$$

Factor integrante $\mu(x) = e^{\int \frac{3}{2} dx} = e^{\frac{3}{2}x}$

$$e^{\frac{3}{2}x}\frac{dw}{dx} + \frac{3}{2}we^{\frac{3}{2}x} = \frac{3}{2}e^{\frac{3}{2}x}$$
$$\left(e^{\frac{3}{2}x}w\right)' = \frac{3}{2}e^{\frac{3}{2}x} \Rightarrow e^{\frac{3}{2}x}w = \int \frac{3}{2}e^{\frac{3}{2}x}dx$$
$$e^{\frac{3}{2}x}w = e^{\frac{3}{2}x} + C, C \in \mathbb{R}$$
$$w = 1 + Ce^{-\frac{3}{2}x}.$$

Como $w = y^{3/2}$ se tiene

$$y = \left(1 + Ce^{-\frac{3}{2}x}\right)^{2/3}.$$

Usando la condición inicial y(0) = 4, $4 = \left(1 + Ce^{-\frac{3}{2}(0)}\right)^{2/3} \Rightarrow 4 = (1 + C)^{2/3} \Rightarrow C = 7$. Solución:

$$y = \left(1 + 7e^{-\frac{3}{2}x}\right)^{2/3}$$

Ejemplo 7 Sea F la familia de curvas C, en el plano XY, tales que la ordenada de la intersección de la recta tangente a C en un punto cualquiera P de C con el eje Y es proporcional al cuadrado de la ordenada de P.

a) Demuestre que la familia ${\mathscr F}$ se puede modelar a través de la ecuación diferencial

$$\frac{dy}{dx}x - y = -Ky^2, \quad K \in \mathbb{R}.$$

b) Halle la solución general de la ecuación diferencial de la parte **a)**.

Solución: a) Sea $P(x_0, y_0)$ un punto cualquiera en C. La ecuación de la recta tangente a C en el punto $P(x_0, y_0)$ es

$$y - y_0 = \frac{dy}{dx}(x - x_0),$$

esta recta corta al eje Y en el punto (0,b) donde $b=y_0-\frac{dy}{dx}x_0$ es proporcional a y_0^2 de modo que $b=Ky_0^2$, para algún $K\in\mathbb{R}$. Entonces tenemos que

$$\frac{dy}{dx}x_0 = y_0 - b = y_0 - Ky_0^2 \Rightarrow y'x_0 - y_0 = -Ky_0^2,$$

y como $y_0 = y(x_0)$,

$$\frac{dy}{dx}x_0 = y(x_0) - Ky(x_0)^2 \text{ para todo } x_0.$$

b) La ecuación diferencial es

$$\frac{dy}{dx}x - y = -Ky^2$$

$$\frac{dy}{dx} - \frac{y}{x} = -\frac{K}{x}y^2$$

Ecuación de Bernoulli (n = 2). Sea $z = y^{1-2} = y^{-1} \Rightarrow \frac{dz}{dx} = -\frac{1}{y^2} \frac{dy}{dx}$ de donde

$$-\frac{1}{y^2}\frac{dy}{dx} + \frac{1}{x}\frac{1}{y} = \frac{K}{x}$$
$$\frac{dz}{dx} + \frac{z}{x} = \frac{K}{x}$$

factor integrante $\mu(x) = e^{\int \frac{1}{x}} = x$.

$$\frac{d}{dx}(xz) = K$$

$$xz = Kx + A$$

$$\frac{x}{y} = Kx + A$$

$$y = \frac{x}{Kx + A}$$

Ejemplo 8 Sean a y b constantes positivas y sea u una solución de $y' = ay - by^2$, con $y(0) = y_0$. Demuestre que si $y_0 < 0$ entonces u no está acotada.

Solución:
$$y' = ay - by^2 \Rightarrow y' - ay = -by^2$$
 Bernoulli $n = 2$.
Sea $w = y^{-1}$; $w' = -y^{-2}y'$. Luego $-y^{-2}y' + ay^{-1} = b \Rightarrow w' + aw = b$ Lineal Sea $\mu(x) = e^{\int adx} = e^{ax}$. Así, $(e^{ax}w)' = be^{ax}$ $e^{ax}w = \int be^{ax}dx = \frac{b}{a}e^{ax} + C$ entonces $w = \frac{b}{a} + \frac{C}{e^{ax}}$ luego $y = \frac{ae^{ax}}{be^{ax} + aC}$; $y_0 = y(0) = \frac{a}{b + aC} \Rightarrow C = \frac{1}{y_0} - \frac{b}{a}$.
Luego $y = \frac{e^{ax}}{\frac{b}{a}e^{ax} + \frac{1}{y_0} - \frac{b}{a}} = 0$.
Si $y_0 < 0$ entonces $\frac{1}{y_0} - \frac{b}{a} < 0$ y como $e^{ax} \frac{b}{a} > 0$.

Puede suceder que el denominador se anule, por lo tanto, y no estaría acotado. Más preciso, si $x_0 = \frac{1}{a} \ln \left(1 - \frac{a}{b y_0} \right)$ entonces

$$\lim_{x \to x_0} y = \infty$$

2 Método de Variables Separables

La ecuación diferencial

$$\frac{dy}{dx} = \frac{g(x)}{h(y)},\tag{4}$$

es separable. De (4) se tiene

$$h(y)dy = g(x)dx. (5)$$

Si y = f(x) es solución de (5), entonces

$$h(f(x))\frac{dy}{dx} = g(x)$$

$$\Leftrightarrow h(f(x))f'(x) = g(x)$$

$$\Leftrightarrow \int h(f(x))f'(x)dx = \int g(x)dx + C,$$

pero dy = f'(x)dx. Así,

$$\int h(y)dy = \int g(x)dx + C.$$

Ejemplo 9 Resuelva la ecuación diferencial $2 \operatorname{sen} y \cos x dx + \cos y \operatorname{sen} x dy = 0$.

Solución: Tenemos que

$$2 \operatorname{sen} y \operatorname{cos} x dx + \operatorname{cos} y \operatorname{sen} x dy = 0$$

$$\Leftrightarrow 2 \operatorname{sen} y \operatorname{cos} x dx = -\operatorname{cos} y \operatorname{sen} x dy$$

$$\Leftrightarrow 2 \frac{\operatorname{cos} x}{\operatorname{sen} x} dx = -\frac{\operatorname{cos} y}{\operatorname{sen} y} dy$$

$$\Leftrightarrow 2 \int \frac{\operatorname{cos} x}{\operatorname{sen} x} dx = -\int \frac{\operatorname{cos} y}{\operatorname{sen} y} dy$$

$$\Leftrightarrow 2 \ln|\operatorname{sen} x| = -\ln|\operatorname{sen} y| + \ln C$$

$$\Leftrightarrow \ln|\operatorname{sen} x|^2 + \ln|\operatorname{sen} y| = \ln C$$

$$\Leftrightarrow \operatorname{sen}^2 x \cdot \operatorname{sen} y = C,$$

de donde sen $y = \frac{C}{\sin^2 x}$, con lo cual

$$y = \operatorname{arcsen}\left(\frac{C}{\operatorname{sen}^2 x}\right), \quad x \neq \pi k, \ k = 1, 2, 3 \dots$$

Ejemplo 10 Resuelva la ecuación diferencial $x^3 dx + (y+1)^2 dy = 0$.

Solución: Tenemos que

$$x^{3}dx + (y+1)^{2}dy = 0$$

$$\Leftrightarrow x^{3}dx = -(y+1)^{2}dy$$

$$\Leftrightarrow \int x^{3}dx = -\int (y+1)^{2}dy + C$$

$$\Leftrightarrow \frac{x^{4}}{4} = -\frac{(y+1)^{3}}{3} + C.$$

Ejemplo 11 Resuelva el problema de valores iniciales $\frac{dy}{dx} = xy + x - 2y - 2$, con y(0) = 2.

Solución: A la ecuación $\frac{dy}{dx} = xy + x - 2y - 2$ la podemos escribir como $\frac{dy}{dx} = (y - 2)(y + 1)$. Separando variables tenemos que $\frac{dy}{y+1} = (x-2)dx$, de donde

$$\int \frac{dy}{y+1} = \int (x-2)dx \Rightarrow \ln|y+1| = \frac{1}{2}x^2 - 2x + C.$$

o equivalentemente $y+1=\exp\left(\frac{1}{2}x^2-2x+C\right)$. Substituyendo el valor inicial y(0)=2 en la última ecuación, obtenemos $3=e^C$, de donde $C=\ln 3$ y, finalmente,

$$y = \exp\left(\frac{1}{2}x^2 - 2x + \ln 3\right).$$

Ejemplo 12 Resuelva el problema de valores iniciales $x^2 \frac{dy}{dx} = \frac{x^2 + 1}{3y^2 + 1}$, con y(1) = 2.

Solución: Multiplicando por $3y^2 + 1$ a la ecuación $x^2 \frac{dy}{dx} = \frac{x^2 + 1}{3y^2 + 1}$, obtenemos $x^2(3y^2 + 1)\frac{dy}{dx} = x^2 + 1$, y ahora dividiendo entre x^2 , tenemos que $(3y^2 + 1)\frac{dy}{dx} = \frac{x^2 + 1}{x^2}$. Esta última ecuación es equivalente a $(3y^2 + 1)dy = \left(1 + \frac{1}{x^2}\right)dx$, e integrando, obtenemos

$$y^3 + y = x - \frac{1}{x} + C.$$

Usando la condición y(1) = 2, tenemos que C = 10 y, finalmente,

$$y^3 + y = x - \frac{1}{x} + 10.$$

Ejemplo 13 Resuelva el problema de valores iniciales 2x(y+1)dx - ydy = 0, con y(0) = -2.

Solución: Podemos expresar la ecuación 2x(y+1)dx - ydy = 0 como $2xdx = \left(1 - \frac{1}{y+1}\right)dy$, siempre que $y \neq -1$. Integrando obtenemos $x^2 = y - \ln|y+1| + C$, con $y \neq -1$. Usando la condición inicial tenemos que $0 = -2 - \ln|-1| + C$, de donde C = 2 y, finalmente, la solución del problema es $x^2 = y - \ln|y+1| + 2$.

Ejemplo 14 Determinar las trayectorias ortogonales a la familia de elipses centradas en el origen $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, cuyo diámetro mayor es tres veces el diámetro menor.

Solución: Tenemos dos casos: a > b ó a < b. Resolvemos sólo el primero ya que el segundo es completamente análogo. Recordemos que los diametros de las elipses estan dados por 2a y 2b, respectivamente.

Gráfica de la elipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.

Si a > b entonces la condición del enunciado nos dice que a = 3b. Substituyendo esta última relación en la ecuación de la elipse, obtenemos

$$\frac{x^2}{9b^2} + \frac{y^2}{b^2} = 1,$$

de donde

$$x^2 + 9y^2 = 9b^2 = C.$$

Derivando implicitamente se tiene que 2x + 18yy' = 0, de donde x + 9yy' = 0 y así $y' = -\frac{x}{9y}$. Las trayectorias ortogonales provienen de $\frac{dy}{dx} = \frac{9y}{x}$, es decir, xy' - 9y = 0. Pero

$$xy' = 9y \Leftrightarrow \frac{dy}{y} = 9\frac{dx}{x}$$

$$\Leftrightarrow \ln|y| = 9\ln|x| + \ln|C|$$

$$\Leftrightarrow \ln|y| = \ln C|x|^9 \Leftrightarrow y(x) = Cx^9.$$

Ejemplo 15 Una curva de ecuación cartesiana y = f(x) pasa por el origen; por un punto arbitrario de la curva, en el primer cuadrante, se trazan rectas paralelas a los ejes coordenados que forman un rectángulo con ellos. La curva divide al rectángulo en dos regiones A y B, siendo A la región superior y B la inferior. Si el área de A es n veces el área de B, y f(x) es una función creciente en el primer cuadrante, hallar f(x).

Solución: La condición que el área de A sea igual a n veces el área de B, puede ser expresada en términos de integrales mediante

Derivando se tiene que f(x) + xf'(x) - f(x) = nf(x) y así xf'(x) = nf(x). Como y = f(x), obtenemos la ecuación diferencial xy' = ny, es decir, $\frac{dy}{dx} = n\frac{y}{x}$. Por lo tanto,

$$\frac{dy}{dx} = n\frac{y}{x} \iff \frac{dy}{y} = n\frac{dx}{x}$$
$$\Leftrightarrow \ln|y| = n\ln|x| + \ln|C|$$
$$\Leftrightarrow y = C_1x^n.$$

Como f(x) es creciente, tenemos que $C_1 > 0$, de donde $f(x) = C_1 x^n$.

Ejemplo 16 Hallar las ecuaciones de las curvas tales que los segmentos de cada tangente comprendidos entre los ejes de coordenadas queden divididos en dos partes iguales por el punto de tangencia.

Solución: Sea P(x,y) un punto sobre la curva y MN la tangente en ese punto. Por semejanza de triángulos

$$OM = 2x$$

$$ON = 2y$$

 $\frac{dy}{dx}$ es la pendiente de la tangente en (x,y). Luego,

$$\frac{dy}{dx} = -\frac{ON}{OM} = -\frac{y}{x}.$$

Se usa el signo negativo porque el dibujo muestra la pendiente negativa:

$$\frac{dy}{x} = -\frac{dx}{x} \Rightarrow \ln y + \ln x = \ln C \Rightarrow \ln(xy) = \ln C \Rightarrow xy = C.$$

Correcciones y gráficos: Boris Iskra