智型 红 (3种)

- 1. 金冠 阿宝: 岩의 构型外 理证证 划头 对到到 地毯 站
- 2. 신천 목적.
 - 가, 웨 법과 카리트 법칙.
 - 1) 회린 상에서 전독, 전약, 저能 과의 관계를 실험적은 증명해 본다.
 - 2) 직·병절 회로에서의 귀고기본프의 방을 살랑을 통해 화면하다.
 - H. 对空星日 电阻直至
 - 1) 음식 법칙은 이름하여 직접하는다 법질화로에서 전투다 제감을 구한다.
 - 2) 귀르기호드의 법적은 지역회로다 병역회로에 작용한다.

3. 但 理计.

才 过至

241 岩 버柳 범 班王.

그님수 ! 병생 화로 신청 화로도

나. 신청자가 및 장비 센틴 (용어 발자 (1))

- 1) 그림 1의 회문들은 같이 보다는 보드다 기도선, 저항, 피워서 판매를 이용하기 회문은 구성한다.
- 2) 지상은 220 A, ZKA, lokA 37세는 하게 씩 위상이 신청을 진행한다.
- 3) 피워서플라이의 송력 전압을 2.5V로 설립한 후 DMM를 이용하여 각각이 됐다. 전압을 측사하여 기름한다.
- 4) 회원에서 자생은 제가 수 당記호 DMA은 액湖 자랑 改造 측정한다.
- 引品物品等的人对于网络大车 奇起 对条生和一块是工机产 我们

다. 실검적차 및 장비셋팅 (등의 법칙(21)

+ 2822 第1 班子 78 年 전言 25v,5v,6v2 버전에 전孔 전言 言的证

고수 실험질차 및 장비센팅 (직접 한도)

- 1) 28 34 201 建定至 市场收付。
- 2) 지역 2.50, 50, 160至 번划3175円 V,, V2, V3, VT, IT를 흑잡한다.
- 引 < 71 / V2 1 R2 (2ksh)에 가게지는 전략은 말하여 나는 전체 전략는 , IT는 전체 전투는 의미한다.

마, 실험정차 및 장비센팅 (백절회군)

- 1) 羽 41十 20 新经 子始十.
- 2) たらしき 2.50,50,60로 灯石的かり [,, [,, 1,, 1], 八音 奇るなけ.

H. M. 7斤 段 答:

1) Flat 35: 220 A. 2KA, loKA

2) 파워서플라이 및 DMM

3) 421545

사. 당한 역학 부담 버역

1) 786至: 到至74, 346.

2) 元传生: 排码所到101, DMM, 查明

4. 실험 결과

가. 실험 결과표

	저항체	실제 저항값	계산된 전류	측정된 전류	백분율 오차	저항	소비전력
	(R, Ω)	(Ω)	(mA)	(mA)	(%)	양단전압 (V)	(W)
1	220	220.7	II. 4	11,08	-2.81	2.52	0.027
2	2k	1.986K	1.2	1,27	5. 83	2.53	0.003
3	10k	9.85K	0.26	0.26	0	2.533	0.0007

그림4. 옴의 법칙 실험 (1) 결과

	전압 (V)	전류 (/)	저항 (<i>R</i>)
1	30 V	250mA	/2° J
2	15KV	1 A	15kΩ
3	24 V	24m A	1 MΩ
4	IHV	10 μA (micro)	100 kΩ
5	12 V	2.5mA	4.8KJ
6	720mV	6mA	120 Ω

그림5. 옴의 법칙 계산 예제 [표 1.1(b)]

입력전압 (V)	저항 (Ω)	측정저항 (Ω)	전류 측정 (mA)	전력 계산 (W)	전압 (V)
2.5	2k	1.986	1.27	0.003	2.53
5	. 2k	1.986	2.52	(0,012	4.95
10	2k	1.986	5. 07	0.051	10.12

그림6. 옴의 법칙 실험 (2) 결과

1) 위의들에서 전류와 저항, 전압과 전력의 상관 관계

くそれれから

그림식은 실퍼보면, 자항이 220 요에서 2ka, loka으로 증가할때 아다 전략한 11.08, 1.29, 0.26으로 중대한 기는 적인 다 수 있었다. 따라서 전투의 지방은 반비에 관계이며, 이는 등이 병생에서도 확인할수 있다.

〈전함기 전역〉

그램나는 산퍼보면, 전략이 2.50에서 50,160로 증가함 때마다 전역 또한 0.003 W, 0.012 W, 0.051 W로 증가하는 것은 작건한 수 있었다. 따라서 전략이 전혀은 바레 관계 기며, 이는 전혀 관계식에서도 확인할수있다. (P=/IV)

	공급	$R1(\Omega)$		$R2$ (Ω)		<i>R3</i> (Ω)		V1	V2	V3	V_T	I_T
	전원 (V)	저항값	측정값	저항값	측정값	저항값	측정값	. 1		(V)	(V)	(mA)
1	2.5	220	218.7	2k	1.984	10k	9.85	46mV	416mV	2.071	2.532V	0.21
2	5	220	218.7	2k	1.984	10k	9.85	92mV	832mV	4.15V	5.09V	0.42
3	10	220	218.7	2k	1.984	10k	9.85	183.4mV	1.658V	8.26V	10.111	0.83

그림 7. 직렬 회로 실험 결과 [표 1.2]

2) $\sum v_{rise} = \sum v_{drop}$ 의 성립을 설명

- 기생 3의 직접 보고에서 R1, R2, R3에 거기는 전함의 함을 ΣV_{drop} 으로 , $V_{T} = V_{rise}$ 카고 나에, 그렇게에서 용답적된이 2.5V 일때 $V_{T} = 2.532V$ 있고 $V|+V_{2}+V_{3}$ 또한 2.532V로 같음한 약수 있다. 지원서, $\Sigma V_{rise} = \Sigma V_{drop}$ 이 생강한다.

	공급	111 (36)		R2	(Ω)	I1	12	I_T	V_T
	전원 (V)	저항값	측정값	저항값	측정값	(mA)	(mA)	(mA)	(V)
1	2.5	220	218.7	2k	1.984	1,25	11.67	12.41	2.455
2	5	220	218.7	2k	1.984	2.53	22.17	25.13	4.98
3	10	220	218.7	2k	1.984	5.06	45	50.22	9.98

그림 8. 병렬 회로 실험 결과 [표 1.3(a) & 1.3(b)]

3)
$$\sum_{i_{in}} = \sum_{i_{out}} 2i_{out} 2i_{out}$$

그림 이 수저 많은 확인하면데, 용급 기타이 2.5 V 이 데 된 보기는 보기는 보기는 보기는 보기는 보기는 사이가 있는다. 등 전체이 5 V, 10 V 이 에 도 비슷한 관계를 보기는 있다. = 12.32 m A 로 실험에서 이건 모인들은 유치가 반세한다는 것은 감안하게, 해당 관계식이 생각하다는 해석보다고하다.

그림 9. 옴의 법칙, 실험 회로 사진

그림 10. 옴의 법칙, 전압 측정 [2.532V]

그림 11. 옴의 법칙, 전류 측정 [1.27mA]

그림 12. 직렬 회로, 5V일 때 V3 측정 [4.15V]

그림 13. 직렬 회로, 10V일 때 V_T 측정 [10.11V]

그림 14. 직렬 회로, 2.5V일 때 I_T 측정 [0.21mA]

그림 15. 병렬 회로, 2.5V일 때 // 측정 [1.25mA]

그림 16. 병렬 회로, 2.5V일 때 V_T 측정 [2.455V]

다 고찰

- 1) 등이 법칙(당당 (1)에서는 저당되 전국 , 저당과 소비전역은 반비에 관계가는 것은 확인했다.
 다마, 이라게에서 금비법칙은 통해 계산된 전국와 실제 극적된 전국 간의 모시가 박생성군이
 이의 기자는 큰 원인은 파워서득가이의 일정하지 않는 전상 공급이라는 생각한다. 이번 설팅에서 속독
 피유서들자이는 지상이 소수 첫번째 자기에서 보고고 구간체도는 모았지겠다라는 상황이 많이 방생했다.
- 2) 원 병실 설심 (21에서는 전·호라 전액이 비대관계를 확인각수 있었다. 그리고 직역되는 설립에서는 $\sum v_{risc} = \sum v_{drop} = 1$ kVL 행복을 , 병택되는 실험에서는 $\sum i_{in} = \sum i_{out} = 1$ kCL 행복을 확인함수 있었다.
- 기 이번 수업에서. 그가 박생의 주요 원인을 샀으기보면, 일다는 DHH으로 음양한 나장이 피레서 돌아이에서 표시된 전상장인 말았다. DHM 21 보내트 발표이 자체 저항라 비전한 관계가 있는 것으로 해져된다. 또한, DHM 기 되는 음양도 '피를내돌아이의 전압 공급이 안전되지 못한 당인이 가변하는 음습이 보였다.
- 에 병명 되면 사람에서는 지나다. 이 사는 다는 두 제상이 범명로 연결되었는데 제상값이 흔적는 전투가 적게 달고 자연 작업을 많이 크고 미 , 나는 이 두 전투이 하면 전체 전투의 많은 비슷하다는 것은 할인되 수 있었다.