

GA optimization wit cuda

Problem description

The goal it to find the target string (HELLO WOLRD) from possible character combinations.

• GA specification

Representation:

Combination of capital English alphabet:

```
chromosome = EQNDM UDGGD
```

Fitness

String compare of chromosome string with target string.

Xover

Uniform xOver: by 50% probability each gene choose from either first or second parent.

```
if (rand()%10 < 5){
  child_chor1[i] = p1->chromosome[i];
  child_chor2[i] = p2->chromosome[i];
}
else{
  child_chor2[i] = p1->chromosome[i];
  child_chor1[i] = p2->chromosome[i];
}
```

Mutation

Switch mutation: one randomly chromosome position value replace with random alphabet.

Parent selection

Tournament selection with size 5: best of randomly 5 chosen individual selected.

Survivor selection

Elitism mode with 10%: 10% of current generation goes directly to next generation to improve GA memory history.

• Running and profiling command:

Running

Parameters: population size, parallel mode Like for serial mode with size 1000:

Profiling

```
nvprof ./ga out 10000 1
```

• GA results:

MUTATION_RATE = 0.1

MAX_GENERATION = 300

TOURNAMENT_SIZE = 5

XOVER_METHOD = UNIFORM

■ Population = 100

```
iteration 309 best: chromosome = HELLO WORLC fitness = 1
iteration 310 best: chromosome = HELLO WORLC fitness = 1
iteration 311 best: chromosome = HELLO WORLC fitness = 1
iteration 312 best: chromosome = HELLO WORLC fitness = 1
iteration 313 best: chromosome = HELLO WORLC fitness = 1
iteration 314 best: chromosome = HELLO WORLC fitness = 1
iteration 315 best: chromosome = HELLO WORLC fitness = 1
iteration 316 best: chromosome = HELLO WORLC fitness = 1
iteration 317 best: chromosome = HELLO WORLC fitness = 1
iteration 317 best: chromosome = HELLO WORLD fitness = 0
solution founded:
chromosome = HELLO WORLD fitness = 0
```

■ Population = 500

```
fitness = 1
   iteration 29 best: chromosome = IELLO WORLD
   iteration 30 best: chromosome = IELLO WORLD
                                                  fitness = 1
iteration 31 best: chromosome = IELLO WORLD
                                                 fitness = 1
   iteration 32 best: chromosome = IELLO WORLD
                                                 fitness = 1
   iteration 33 best: chromosome = IELLO WORLD
                                                 fitness = 1
   iteration 34 best: chromosome = IELLO WORLD
                                                 fitness = 1
                                                 fitness = 1
   iteration 35 best: chromosome = IELLO WORLD
                                                 fitness = 1
   iteration 36 best: chromosome = IELLO WORLD
                                                 fitness = 1
   iteration 37 best: chromosome = IELLO WORLD
    iteration 38 best: chromosome = HELLO WORLD
                                                  fitness = 0
   solution founded:
   chromosome = HELLO WORLD fitness = 0
```


■ Population = 1000

```
iteration 20 best: chromosome = JEJLO XOSLD fitness = 6
iteration 21 best: chromosome = HDLJO WORLD fitness = 3
    iteration 22 best: chromosome = HDLJO WORLD fitness = 3
    iteration 23 best: chromosome = HDLJO WORLD fitness = 3
    iteration 24 best: chromosome = HELLO WORLF
                                                    fitness = 2
    iteration 25 best: chromosome = HELMO WORLD
                                                     fitness = 1
    iteration 26 best: chromosome = HELMO WORLD
                                                     fitness = 1
    iteration 27 best: chromosome = HELMO WORLD
                                                     fitness = 1
    iteration 28 best: chromosome = HELLO WORLD fitness = 0
    solution founded:
    chromosome = HELLO WORLD
                                    fitness = 0
    ====== Warning: No profile data collected.
```

■ Population = 10000

```
iteration 21 best: chromosome = HDLMO WNRKD
                                                  fitness = 4
    iteration 22 best: chromosome = HDLMO WNRKD
                                                  fitness = 4

    iteration 23 best: chromosome = HDLMO WNRKD

                                                  fitness = 4
                                                  fitness = 4
    iteration 24 best: chromosome = HDLMO WNRKD
    iteration 25 best: chromosome = HELLO WOQKD
                                                  fitness = 2
    iteration 26 best: chromosome = HELLO WOQKD
                                                  fitness = 2
    iteration 27 best: chromosome = HELLO WOQKD
                                                  fitness = 2
    iteration 28 best: chromosome = HDLLO WORLD
                                                  fitness = 1
    iteration 29 best: chromosome = HDLLO WORLD
                                                  fitness = 1
    iteration 30 best: chromosome = HELLO WORLD
                                                  fitness = 0
    solution founded:
    chromosome = HELLO WORLD
                                 fitness = 0
```

• GA parallelism:

For parent and survivor selection we need all population so it could not be parallel. But fitness evaluation is a good choice of parallelism so we do as below:

```
if(parallel){
    cudaMemcpy( dev_pop, next_pop, pop_size * sizeof(Individual*),
    cudaMemcpyHostToDevice );

    parallel_eval<<< pop_size/numThread , numThread >>>(dev_pop,pop_size,
    target);

    cudaDeviceSynchronize();

    cudaMemcpy( next_pop, dev_pop, pop_size * sizeof(Individual*),
    cudaMemcpyDeviceToHost );
}
```

• Profiling data:

Saleh Afzoon

	_	- 1 (0/)						
0	Туре	Time(%)	Time	Calls	Avg	Min	Max	Name
	API calls:	77.31%	602.96ms	300	2.0099ms	687ns	602.66ms	cudaDeviceSynchronize
C→		22.27%	173.66ms	1	173.66ms	173.66ms	173.66ms	cudaMalloc
		0.18%	1.3933ms	300	4.6440us	1.0820us	898.65us	cudaLaunchKernel
		0.13%	1.0498ms	600	1.7490us	448ns	35.235us	cudaMemcpy
		0.07%	513.42us	1	513.42us	513.42us	513.42us	cuDeviceTotalMem
		0.04%	328.00us	97	3.3810us	160ns	149.73us	cuDeviceGetAttribute
		0.00%	27.562us	1	27.562us	27.562us	27.562us	cuDeviceGetName
		0.00%	4.0470us	1	4.0470us	4.0470us	4.0470us	cuDeviceGetPCIBusId
		0.00%	2.7560us	1	2.7560us	2.7560us	2.7560us	cudaFree
		0.00%	2.7130us	3	904ns	186ns	1.3070us	cuDeviceGetCount
		0.00%	2.0260us	2	1.0130us	500ns	1.5260us	cuDeviceGet
		0.00%	376ns	1	376ns	376ns	376ns	cuDeviceGetUuid

As the profiling data shows most of algorithm time spent for threads process synchronization (like before parent and survivor selection and population fitness sorting).