

SEQUENCE LISTING

<110> Samuelsson, Goran
Villarejo, Arsenio
Buren, Stefan
Dejardin, Annabelle
Karlsson, Jan

<120> Expression of Plastid-Targeted Polypeptides in Plants

<130> 13743/46001

<140> US 10/578,501
<141> 2006-05-05

<150> PCT/IB2004/003726
<151> 2004-11-04

<150> GB 0406296.4
<151> 2004-03-19

<150> US 60/517,584
<151> 2003-11-05

<160> 8

<170> PatentIn version 3.1

<210> 1
<211> 24
<212> PRT
<213> Arabidopsis thaliana

<400> 1
Met Lys Ile Met Met Met Ile Lys Leu Cys Phe Phe Ser Met Ser Leu
1 5 10 15

Ile Cys Ile Ala Pro Ala Asp Ala
20

<210> 2
<211> 24
<212> PRT
<213> Unknown
<220>

<223> ER signal sequence

<400> 2
Met Ala Ala Ser His Gly Asn Ala Ile Phe Val Leu Leu Leu Cys Thr
1 5 10 15
Leu Phe Leu Pro Ser Leu Ala Cys
20

<210> 3
<211> 24
<212> PRT
<213> Unknown
<220>
<223> ER signal sequence

<400> 3
Met Ala Ala Arg Ile Gly Ile Phe Ser Val Phe Val Ala Val Leu Leu
1 5 10 15

Ser Ile Ser Ala Phe Ser Ser Ala
20

<210> 4
<211> 12
<212> PRT
<213> Unknown
<220>
<223> ER-plastid targeting sequence

<400> 4
Lys Lys Glu Thr Gly Asn Lys Lys Lys Lys Pro Asn
1 5 10

<210> 5
<211> 12
<212> PRT
<213> Unknown
<220>
<223> ER-plastid targeting sequence

<400> 5
Arg Phe Trp Gly Lys Lys Lys Arg Arg Ser Ser Pro
1 5 10

<210> 6
<211> 11
<212> PRT
<213> Unknown
<220>
<223> ER-plastid targeting sequence

<400> 6
Thr Gly Lys Lys Lys Lys Lys Thr Tyr Leu Pro
1 5 10

<210> 7
<211> 284
<212> PRT
<213> Arabidopsis thaliana

<400> 7
 Met Lys Ile Met Met Met Ile Lys Leu Cys Phe Phe Ser Met Ser Leu
 1 5 10 15
 Ile Cys Ile Ala Pro Ala Asp Ala Gln Thr Glu Gly Val Val Phe Gly
 20 25 30
 Tyr Lys Gly Lys Asn Gly Pro Asn Gln Trp Gly His Leu Asn Pro His
 35 40 45
 Phe Thr Thr Cys Ala Val Gly Lys Leu Gln Ser Pro Ile Asp Ile Gln
 50 55 60
 Arg Arg Gln Ile Phe Tyr Asn His Lys Leu Asn Ser Ile His Arg Glu
 65 70 75 80
 Tyr Tyr Phe Thr Asn Ala Thr Leu Val Asn His Val Cys Asn Val Ala
 85 90 95
 Met Phe Phe Gly Glu Gly Ala Gly Asp Val Ile Ile Glu Asn Lys Asn
 100 105 110
 Tyr Thr Leu Leu Gln Met His Trp His Thr Pro Ser Glu His His Leu
 115 120 125
 His Gly Val Gln Tyr Ala Ala Glu Leu His Met Val His Gln Ala Lys
 130 135 140
 Asp Gly Ser Phe Ala Val Val Ala Ser Leu Phe Lys Ile Gly Thr Glu
 145 150 155 160
 Glu Pro Phe Leu Ser Gln Met Lys Glu Lys Leu Val Lys Leu Lys Glu
 165 170 175
 Glu Arg Leu Lys Gly Asn His Thr Ala Gln Val Glu Val Gly Arg Ile
 180 185 190
 Asp Thr Arg His Ile Glu Arg Lys Thr Arg Lys Tyr Tyr Arg Tyr Ile
 195 200 205
 Gly Ser Leu Thr Thr Pro Pro Cys Ser Glu Asn Val Ser Trp Thr Ile
 210 215 220
 Leu Gly Lys Val Arg Ser Met Ser Lys Glu Gln Val Glu Leu Leu Arg
 225 230 235 240
 Ser Pro Leu Asp Thr Ser Phe Lys Asn Asn Ser Arg Pro Cys Gln Pro
 245 250 255
 Leu Asn Gly Arg Arg Val Glu Met Phe His Asp His Glu Arg Val Asp
 260 265 270
 Lys Lys Glu Thr Gly Asn Lys Lys Lys Lys Pro Asn
 275 280

<210> 8
<211> 1046
<212> DNA
<213> Arabidopsis thaliana

<400> 8
atgcagtaat ctgataaaaac cctccacaga gatttccaac aaaacaggaa ctaaaacaca
60
agatgaagat tatgatgatg attaagctct gcttcttc tc catgtccctc atctgcattg
120
cacctgcaga tgctcagaca gaaggagtag tgtttggata taaaggcaaa aatggaccaa
180
accaatgggg acacttaaac cctcacttca ccacatgcgc ggtcggtaaa ttgcaatctc
240
caattgatat tcaaaggagg caaatatttt acaaccacaa attgaattca atacaccgtg
300
aatactactt cacaaacgc acaactgtga accacgtctg taatgttgcc atgttcttcg
360
gggagggagc aggagatgtg ataatagaaa acaagaacta taccttactg caaatgcatt
420
ggcacactcc ttctgaacat cacctccatg gagtccaata tgca gctgatcg ctgcacatgg
480
tacaccaagc aaaagatgga agcttgctg tggtggcaag tctttcaaa atcggcactg
540
aagagcctt cctctctc ag atgaaggaga aattggtaa gctaaaggaa gagagactca
600
aagggaacca cacagcacaa gtggaagtag gaagaatcga cacaagacac attgaacgta
660
agactcgaaa gtactacaga tacattggtt cactcactac tcctccttgc tccgagaacg
720
tttcttggac catccttggc aagggtgaggta caatgtcaaa ggaacaagta gaactactca
780
gatctccatt ggacacttct ttcaagaaca attcaagacc gtgtcaaccc ctcaacggcc
840
ggagagttga gatgttccac gaccacgagc gtgtcgataa aaaagaaacc ggttaacaaaa
900
agaaaaaaacc caataaaaat agttttacat tgtctattgg tttgtttaga accctaatta
960
gctttgtaaa actaataatc tcttatgttag tactgtgttg ttgtttacga cttgatatac
1020
gatttccaaa aaaaaaaaaa aaaaaaa
1046