

Course name	Numerical Modeling & Simulation in Scilab Xcos	
Lesson name	Numerical Modelling Formula 1 Vehicle Resistive Forces in Scilab-Xcos	
Lesson objective	Practice blocks & acquaint to use GUI of Scilab-Xcos	
Created by	Nikita Punjabi	

Problem statement: Model the Formula 1 Vehicle Resistive Force in Scilab-Xcos to plot the vehicle resistive force. Using Track_2.csv

Track Drive Cycle Graph:

Decibels Lab Private Limited CIN: U80904KA2019PTC126675 +91 7411019255 contact@decibelslab.com

Model Inputs:

Sr No	Parameter	Value	Units
1.	Chassis		
2.	I. Coefficient of rolling resistance	0.015	
3.	II. Gross Vehicle Mass	900	Kg
4.	III. Gravity constant	9.81	m/s
5.	IV. Grade Angle	0	degree
6.	V. Area	1.8585	m^2
7.	VI. Air Density	1.225	Kg/m^3
8.	VII. Drag Coefficient	0.9	
9.	VIII. Radius of wheel	0.2286	m

Program:

A. To Import Track Data:	B. To define all input parameters:
data = csvRead("Track_2.csv")	//Coefficient of rolling resistance
Drive.time = data(3:317,1)	Crf = 0.015
Drive.values = data(3:317,2)	//Gross Vehicle Mass
	GVM = 900 //kgs
	//Gravitational constant
value=csvRead("Grade Data.csv")	g = 9.81
Grade.time=value(3:470,1)	//Gross Vehicle Weight
Grade.values=value(3:470,2)	GVW = GVM*g
	//Frontal Area
	A = 1.8585
	//Air Density
	rho = 1.225
	//Coefficient of Drag
	Cd = 0.9
	//Radius of the wheel
	Rw = 0.2286

Decibels Lab Private Limited CIN: U80904KA2019PTC126675 +91 7411019255 contact@decibelslab.com

Model:

Decibels Lab Private Limited CIN: U80904KA2019PTC126675 +91 7411019255 contact@decibelslab.com

Results:

Decibels Lab Private Limited CIN: U80904KA2019PTC126675 +91 7411019255 contact@decibelslab.com

Decibels Lab Private Limited CIN: U80904KA2019PTC126675 +91 7411019255 contact@decibelslab.com

Conclusion:

Sr No	Parameters	Values	Units
1.	Chassis		
2.	Rolling Force	13.5	N
3.	Gradeability Force	0	N
4.	Maximum Aerodynamic Force	6500	N
5.	Maximum Acceleration Force	68000	N
6.	Maximum Wheel Speed	3400	Rpm
7.	Maximum Wheel Torque	14500	Nm