PRDC 2015 - Panel Nov.18 - 20, 2015, Zhangjiajie, China

Economics of Dependability

- an open issue in the information society -

Takashi Nanya

Structure of Information Society

Dependability Efforts

Many methodologies/technologies have been implemented!

Frequently asked questions (1)

- Customers: "Dependability is my first priority. How can I tell the high dependability from the low in advance? How much more should I pay for it?"
- We don't know. No convincing way exists to tell the high from the low in advance, and therefore, no way for pricing.
- CTO/CIOs: "I know we need dependability. How much should we invest in it? and how much return can we get?"
- We don't know. Economics of dependability has not been developed at all, and needs extensive studies.

Frequently asked questions (2)

- Project Managers: "We definitely need dependability. What should we do to achieve high dependability within a given budget and delivery time?"
- Hard to answer. Dependability engineering is not matured at all, and needs to develop furthermore.
- Engineers: "I know existing dependability methodologies and technologies. What I don't know is how much higher dependability is achieved by their deployment"
- Unfortunately, the quantitative effect of dependability efforts on system dependability is not well known or developed.

What we need

Quantifying relations between:

Where we are

- A long history of research on dependability efforts
- Little work on how much effect each effort has on system dependability.
- A long history of research on dependability evaluation
- Little work on mapping of dependability measures to economic value.
- Thus, lack of dependability economics

Value of dependability (1)

- V: Value of service users are willing to pay for
- C_s: Cost of service for providers to deliver
- C_F: Cost of failures that may arise from failures during lifetime

$$C_F = \sum_{f} \{ P(f) \times L(f) \}$$

- P(f): Probability of failure f
 L(f): Loss from failure f
- D: Profit on service

$$D = V - (C_S + C_F)$$

Providing service makes sense economically as long as $D \ge 0$

Value of dependability (2)

- Dependability efforts decrease C_F by ΔC_F , but increase C_S by ΔC_S
- Dependability efforts make sense economically as long as

$$-\Delta C_F \ge \Delta C_S$$

- Dependability efforts most likely increase V by ΔV , thanks to a good reputation
- ΔD: Economic value of dependability (increment in profit D through dependability efforts)

$$\Delta D = \Delta V - (\Delta C_S + \Delta C_F)$$

Return on Investment

- Return on Investment (ROI) is the actual measure of financial performance
- ROI = (ER CI) / CI
 - Expected Returns (ER) = Value of Services (V) Cost of Failures (C_F)
 - Cost of Investment (CI) = Cost of Services (C_S)
- ROI = $\{(V-C_F) C_S\}/C_S = D/C_S$
- ROI for dependability = $\Delta D / \Delta C_S$

Goal of dependability efforts

- Dependability efforts
 - Fault Prevention, Fault Tolerance, Fault Removal, Failure response
- Maximizing $\Delta D = \Delta V \{\Delta C_S + \Delta C_F\}$
 - ΔD : Increment in profit D on service
 - ΔV: Increment in value V of service
 - $-\Delta C_s$: Increment in cost C_s of service
 - ΔC_F : Decrement in cost C_F of failures $C_F = \sum \{P(f) \times L(f)\}$
 - P(f): Probability of failure f L(f): Loss from failure f
- Establish relations among dependability efforts, dependability measures, and economic value for dependability!

Estimating ΔV , ΔC_S , ΔC_F

- ΔV (Increment in value of service):
 - Open to the public
 - Easy to estimate from past data
- ΔC_s : Increment in cost of service
 - Hardly disclosed
 - Possible to estimate based on existing implementation
- ΔC_F : Decrement in the cost of failures
 - Hardly disclosed
 - Difficult to estimate

What do we begin with?

- Revisiting dependability efforts
- Revisiting dependability measures and evaluation
- Cost analysis for life-time failures
- Modeling for design/operation/interaction faults
- Modeling dependability process

An inconvenient truth

- Most users cannot tell high dependability from low
- Providers are not rewarded for dependability efforts
- > Even the providers don't know how dependable
- > Users have no reason to pay more for dependability
- > Thus, providers are disinclined to invest in it

Market for "lemons"?

George A. Akerlof, "The Market for "Lemons": Quality Uncertainty and the Market Mechanism", The Quarterly Journal of Economics (Aug. 1970)

- Lemons: a euphemism for a low-quality car
- Plums: a euphemism for a high-quality car
- When dependability is indistinguishable by buyers, sellers will lower dependability.
- Buyers will suspect sellers to make light of dependability, and they lower their willingness to pay.
- Then, prices will go down.

Market for "lemons"?

- In turn, sellers will be compelled to lower dependability even further to make profits at the lower prices.
- Thus, dependability will decline until nothing but the lowest dependability (lemons) are left in the market.
- The market fails.
- Sellers cannot sell high dependability (plums) at high prices even though buyers would be willing to pay the high prices for plums

Summary

We need quantitative mappings between:

Economic Dependability Dependability **Efforts Measures** value Reliability fault prevention **Availability** fault tolerance ¥, \$ Integrity Fault removal Safety €, £ Maintainability failure response Confidentiality