

Program Code: J620-002-4:2020

Program Name: FRONT-END SOFTWARE

DEVELOPMENT

Title: P09 Sample Data Analysis and Exploration

Name: Justin Chong

IC Number: 960327-07-5097

Date: 28/6/2023

Introduction: Exploring more on data analysis and plotting different graph variants.

Conclusion: This exercise helped me to understand the data analysed and get better at plotting graphs with the data.

4

Module P9 - Sample Data Analysis and Exploration

In this module, you will try your hand at performing some data analysis on some data. Before that, you should also try to prepare the data as well as you can by doing some data cleaning and preparation. And finally, your analysis can be better captured in the form of some data visualizations.

First, let's import all the necessary packages.

```
In [1]:  import numpy as np
  import pandas as pd
  import matplotlib
  import matplotlib.pyplot as plt

# This line configures matplotlib to show figures embedded in the Jupyter r
  # instead of opening a new window for each figure.
  %matplotlib inline
```

The data that we are going to use contains some sample sales data, and it is taken from <u>Kaggle (https://www.kaggle.com/kyanyoga/sample-sales-data)</u>. It's not a very big dataset, having only ~2,800 rows of data.

In [41]:		<pre>df = pd.read_csv("/./data_samples/sales_data_sample.csv", encoding='wind df.head(10)</pre>						ndo
		3	10145	45	83.26	6	3746.70	•
		4	10159	49	100.00	14	5205.27	
		5	10168	36	96.66	1	3479.76	
		6	10180	29	86.13	9	2497.77	
		7	10188	48	100.00	1	5512.32	
		8	10201	22	98.57	2	2168.54	
		9	10211	41	100.00	14	4708.44	
	,	10 rows	× 25 columns				•	*

In [3]: ► df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 2823 entries, 0 to 2822
Data columns (total 25 columns):

#	Column	Non-Null Count	Dtype	
0	ORDERNUMBER	2823 non-null	int64	
1	QUANTITYORDERED	2823 non-null	int64	
2	PRICEEACH	2823 non-null	float64	
3	ORDERLINENUMBER	2823 non-null	int64	
4	SALES	2823 non-null	float64	
5	ORDERDATE	2823 non-null	object	
6	STATUS	2823 non-null	object	
7	QTR_ID	2823 non-null	int64	
8	MONTH_ID	2823 non-null	int64	
9	YEAR_ID	2823 non-null	int64	
10	PRODUCTLINE	2823 non-null	object	
11	MSRP	2823 non-null	int64	
12	PRODUCTCODE	2823 non-null	object	
13	CUSTOMERNAME	2823 non-null	object	
14	PHONE	2823 non-null	object	
15	ADDRESSLINE1	2823 non-null	object	
16	ADDRESSLINE2	302 non-null	object	
17	CITY	2823 non-null	object	
18	STATE	1337 non-null	object	
19	POSTALCODE	2747 non-null	object	
20	COUNTRY	2823 non-null	object	
21	TERRITORY	1749 non-null	object	
22	CONTACTLASTNAME	2823 non-null	object	
23	CONTACTFIRSTNAME	2823 non-null	object	
24	DEALSIZE	2823 non-null	object	
dtypes: float64(2), int64(7), object(16)				
memory usage: 551.5+ KB				

localhost:8888/notebooks/Lectures/P09 - Sample Data Analysis and Exploration.ipynb

Here are some questions that you would be interested to uncover when you perform an exploratory data analysis (or 'EDA' in short) on some sample data.

- 1. Identify **where** customers are coming from.
- 2. Find out their **yearly retail performance** (in terms of total revenue).
- 3. What **product categories** are the most and least popular?
- 4. Who are their **most valuable customers** (basically we define this as those who purchased the most from them)?

Feel free to refine these questions in more detailed (if you wish), or define other interesting questions that you want to find out from this data.

There are some interesting "catches" to consider as well. For example, the 'Status' for most entries are mostly "Shipped", but there are other statuses, i.e. "In Process", "Disputed", "Cancelled", etc. It is up to you to define which of these entries (based on their statuses) that should be considered in your analysis and which should be left out.

Note: You can do your prototyping here (and transfer relevant lines of code to your source file later), or directly work on the source file using Spyder.

COUNTRY		
USA	1004	
Spain	342	
France	314	
Australia	185	
UK	144	
Italy	113	
Finland	92	
Norway	85	
Singapore	79	
Canada	7 <i>9</i>	
Denmark	63	
Germany	62	
Sweden	57	
Austria	55	
Japan	52	
Belgium	33	
Switzerland	31	
Philippines	26	
Ireland	16	
Name: count,		int64
COUNTRY	7	
USA	35	
France	12	
UK	5	
Spain	5	
Australia	5	
Finland	3	
Germany	3	
Norway	3 3 3 2	
Canada	3	
Italy	3	
Denmark	2	
Austria	2	
Japan	2	
Singapore	2	
Sweden	2	
Belgium	2	
Ireland	1	
Philippines	1	
Switzerland	1	
Name: count,	dtype:	int64


```
In [135]:
              yearly_revenue = df.groupby(['YEAR_ID', 'MONTH_ID'])['SALES'].sum()
              print(yearly_revenue)
              yearly_in_months_revenue = df.groupby(['MONTH_ID', 'YEAR_ID'])['SALES'].sur
              annual_revenue = df.groupby(['YEAR_ID'])['SALES'].sum()
              print(annual_revenue)
              yearly_in_months_revenue.plot.bar()
              plt.title("Yearly Retail Performance in terms of Months and Years")
              plt.ticklabel_format(useOffset = False, style = 'plain', axis = 'y')
              plt.xlabel('Months, Years')
              plt.ylabel('Total Revenue')
              plt.show()
              annual_revenue.plot.bar()
              plt.title("Yearly Retail Performance in terms of Years")
              plt.ticklabel_format(useOffset = False, style = 'plain', axis = 'y')
              plt.xlabel('Years')
              plt.ylabel('Total Revenue')
              plt.show()
```

YEAR_ID	MONTH_ID	
2003	1	129753.60
	2	140836.19
	3	174504.90
	4	201609.55
	5	192673.11
	6	168082.56
	7	187731.88
	8	197809.30
	9	263973.36
	10	568290.97
	11	1029837.66
	12	261876.46
2004	1	316577.42
	2	311419.53
	3	205733.73
	4	206148.12
	5	273438.39
	6	286674.22
	7	327144.09
	8	461501.27
	9	320750.91
	10	552924.25
	11	1089048.01
	12	372802.66
2005	1	339543.42
	2	358186.18
	3	374262.76
	4	261633.29
	5	457861.06

Name: SALES, dtype: float64

YEAR_ID

2003 3516979.54 2004 4724162.60 2005 1791486.71

Name: SALES, dtype: float64

Most popular product category
PRODUCTLINE
Classic Cars 967
Name: count, dtype: int64

Least popular product category
PRODUCTLINE
Trains 77
Name: count, dtype: int64

CUSTOMERNAME

La Rochelle Gifts 180124.90
Muscle Machine Inc 197736.94
Australian Collectors, Co. 200995.41
Mini Gifts Distributors Ltd. 654858.06
Euro Shopping Channel 912294.11

Name: SALES, dtype: float64

