2017/18 浙江工业大学高等数学 IIA 考试试卷

学院: 班级:姓名: 学号:_____ 任课老师:

一、填空、选择题(本题满分36分,每小题3分):

1、设二阶非齐次线性方程 y'' + P(x)y' + Q(x)y = f(x) 的三个特解为: x, e^x , e^{3x} ,

则方程满足初始条件 y(0) = 4, y'(0) = 3 的特解是___。 $y = 3e^x + e^{3x} - 3x$

- 2、过点M(3,1,-5)且同时垂直x轴和y轴的直线方程是__。 $\frac{x-3}{0} = \frac{y-1}{0} = \frac{z+5}{1}$
- 3、动点M(x, y, z)到原点的距离与到点(1, -1, 2)的距离相等,则动点M(x, y, z)的轨迹方程是。x-y+2z=3
 - 4、函数 $u = 2xy z^2$ 在点 (1, −1,1) 处方向导数的最大值。 $2\sqrt{3}$
- 5、交换积分次序 $\int_0^1 dy \int_0^{2y} f(x,y) dx = _ \int_0^2 dx \int_{\frac{x}{2}}^1 f(x,y) dy$
- 6、设D: $|x| \le 1$, $0 \le y \le 1$.则 $\iint_D (xe^y + y) dx dy = _____$ 。1
- 7、若幂级数 $\sum_{n=0}^{\infty} a_n (x-b)^n$ (b>0),当 x=0时收敛,当 x=2b 时发散,则该级数的

收敛半径是__。b

- 8、周期为 2 的函数 f(x) ,它在一个周期上的表达式为 f(x) = x $-1 \le x < 1$,设它的傅里叶级数的和函数为 S(x) ,则 $S(\frac{3}{2}) = ____ 。 -\frac{1}{2}$
 - 9、函数 $f(x, y) = \sqrt{x^2 + y^4}$ 在点 (0, 0) 处(C).
- (A) 两个偏导数都不存在; (B) 两个偏导数存在; (C)偏导数一个存在,一个不存在; (D) 可微。
 - 10、若函数 z = f(x, y) 在点 (x_0, y_0) 处可微,则下列结论错误的是(C)
 - (A) f(x,y) 在点 (x_0,y_0) 处连续; (B) $f_x(x_0,y_0), f_y(x_0,y_0)$ 存在;
 - (C) $f_x(x, y), f_y(x, y)$ 在点 (x_0, y_0) 处连续;
 - (D) 曲面 z = f(x, y) 在点 $(x_0, y_0, f(x_0, y_0))$ 处有切平面。

11、已知数项级数
$$\sum_{n=1}^{\infty}a_{n}$$
, $\sum_{n=1}^{\infty}b_{n}$ 都收敛,则(B)

(A)
$$\sum_{n=1}^{\infty} (a_n b_n)^2$$
 收敛; (B) $\sum_{n=1}^{\infty} (a_n + b_n)$ 收敛;

$$(C)\sum_{n=1}^{\infty}(a_{n}b_{n})$$
收敛; $(D)\sum_{n=1}^{\infty}(a_{n}^{2}+b_{n}^{2})$ 收敛。

12、下列级数中发散的是(D)

(A)
$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{\sqrt{2n^2+1}}$$
; (B) $\sum_{n=1}^{\infty} (-1)^{n-1} (\sqrt{n+1} - \sqrt{n})$;

(C)
$$\sum_{n=1}^{\infty} \frac{1}{n} \sin \frac{\pi}{n+1}$$
; (D) $\sum_{n=1}^{\infty} \ln(1+\frac{1}{n})$

二、试解下列各题(本题满分12分,每小题6分):

1、求微分方程xdy+(y-2x)dx=0的通解。

解:
$$\frac{dy}{dx} + \frac{1}{x}y = 2$$
 线性方程,或齐次方程,或凑微分 $d(xy) - dx^2 = 0$ 2 分 通解 $y = \frac{c}{x} + x$ 6 分

2、求函数 f(x,y) = xy(3-x-y) 的极值。

解:
$$\begin{cases} f_x(x,y) = 3y - 2xy - y^2 = 0 \\ f_y(x,y) = 3x - 2xy - x^2 = 0 \end{cases}$$
 驻点 $(0,0)$, $(1,1)$, $(0,3)$, $(3,0)$ 3 分
$$f_{xx} = -2x, f_{xy} = 3 - 2x - 2y, f_{yy} = -2y$$

对
$$(0,0)$$
 , $(0,3)$, $(3,0)$, $AC-B^2=-9<0$, 不是极值点

对
$$(1,1)$$
, $AC-B^2=3>0$, 是极大值点, 极大值为 1 6 分

4分

3、设 z 是方程 $z = x + y \sin z$ 所确定的 x , y 的函数,求 : $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$ 。

解:
$$\frac{\partial z}{\partial x} = \frac{1}{1 - y \cos z}$$
, $3 \% \frac{\partial z}{\partial y} = \frac{\sin z}{1 - y \cos z}$ 6 分

4、求曲线 $\begin{cases} z = x^2 + y^2 - 1 \\ x = 1 \end{cases}$ 上点 M(1,1,1) 处的切线方程。

解: 曲线化为参数方程
$$x=1, y=t, z=t^2$$
,则切向量 $\vec{T}=(0,1,2)$, 3分

切线方程
$$\frac{x-1}{0} = \frac{y-1}{1} = \frac{z-1}{2}$$
 6分

5、求星形线 $x^{\frac{2}{3}} + y^{\frac{2}{3}} = a^{\frac{2}{3}}$ (参数方程 $x = a\cos^3 t$, $y = a\sin^3 t$) 围成图形在第一象限部分的面积。

解:记 L_1 为星形线, L_2 : $x=0,L_3$:y=0为直线。

面积
$$A = \oint_L x dy = \int_{L_1} x dy + \int_{L_2} x dy + \int_{L_3} x dy$$
 3 分

$$=3a^2 \int_0^{\frac{\pi}{2}} \cos^4 x \sin^2 x dx + 0 + 0 = \frac{3}{32} \pi a^2$$
 6 \(\frac{\partial}{3}\)

6、求 $\int_{I} \sqrt{y} ds$, 其中L是抛物线 $y = x^2$ 上点O(0,0)与点B(1,1)之间的一段弧。

解:
$$\int_{L} \sqrt{y} ds = \int_{0}^{1} x \sqrt{1 + 4x^{2}} dx$$
 4 分
$$= \frac{1}{12} (5\sqrt{5} - 1)$$
 6 分

三、试解下列各题(本题满分14分,每小题7分):

1、求 $\bigoplus_{\Sigma} zdS$, 其中 Σ 是由平面x=0, y=0, z=0及x+y+z=1所围成四面体的整个边界。

$$\bigoplus_{\Sigma} zdS = \left(\iint_{\Sigma_{1}} + \iint_{\Sigma_{2}} + \iint_{\Sigma_{3}} + \iint_{\Sigma_{4}} \right) zdS = \sqrt{3} \iint_{D_{xy}} (1 - x - y) dxdy + \iint_{D_{yz}} zdydz + \iint_{D_{xz}} zdxdz + 0$$

其中
$$\Sigma_1$$
: $x+y+z=1$, Σ_2 : $x=0$, Σ_3 : $y=0$, Σ_4 : $z=0$ 3分

$$\iint_{D_{yy}} (1 - x - y) \sqrt{3} dx dy = \sqrt{3} \int_0^1 dx \int_0^{1 - x} (1 - x - y) dy = \frac{\sqrt{3}}{6},$$
 5 \(\frac{1}{2}\)

$$\iint_{D_{wr}} z dy dz = \iint_{D_{wr}} z dy dz = \frac{1}{6}, 所以 \oplus_{\Sigma} z dS = \frac{\sqrt{3} + 2}{6}$$
 7分

2、求 $\underset{\Sigma}{\bigoplus} z(x^2+y^2+z^2)dxdy$,其中 \sum 是上半球面 $x^2+y^2+z^2=1$ 与平面 z=0 所围成立体的边界曲面的外侧。

解一: 直接计算
$$\bigoplus_{\Sigma} z(x^2 + y^2 + z^2) dxdy = \iint_{D} \sqrt{1 - x^2 - y^2} dxdy + 0$$
 4分

$$= \int_0^{2\pi} d\theta \int_0^1 \rho \sqrt{1 - \rho^2} d\rho = \frac{2}{3}\pi \qquad 7 \text{ }\%$$

解二: 先化简被积函数,代入曲面方程再用高斯公式

$$\oint_{\Sigma} z(x^2 + y^2 + z^2) dxdy = \oint_{\Sigma} z dxdy = \iiint_{\Omega} dxdydz = \frac{2}{3}\pi$$

解三:直接用高斯公式

$$\oint_{\Sigma} z(x^2 + y^2 + z^2) dx dy = \iint_{\Omega} (x^2 + y^2 + 3z^2) dx dy dz = \int_{0}^{2\pi} d\theta \int_{0}^{1} \rho d\rho \int_{0}^{\sqrt{1-\rho^2}} (\rho^2 + 3z^2) dz$$

$$= 2\pi \int_{0}^{1} (\rho^3 \sqrt{1-\rho^2} + \rho \sqrt{(1-\rho^2)^3}) d\rho \stackrel{1-\rho^2=t}{===} \pi \int_{0}^{1} \sqrt{t} dt = \frac{2}{3}\pi$$

四、(8分) 设L为xOy 面上右半平面内任意一条简单闭曲线,f(x) 有连续的二阶导数

且满足
$$\oint_L (x-f'(x))\frac{y}{x}dx+f'(x)dy=0$$
, $f(1)=f'(1)=0$, 求 $f(x)$, $x>0$ 。

解: 积分与路径无关,由
$$\frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y}$$
 有 $f''(x) = (x - f'(x))\frac{1}{x}$ 2 分

得微分方程
$$xy'' + y' = x$$
, 通解 $y = \frac{1}{4}x^2 + C_1 \ln x + C_2$ 7分

由初始条件可得
$$f(x) = \frac{1}{4}x^2 - \frac{1}{2}\ln x - \frac{1}{4}$$
 8分

五、 (6分) 求幂级数 $\sum_{n=0}^{\infty} (2^{n+1}-1)x^n$ 的收敛域与和函数。

解: 收敛域
$$\left(-\frac{1}{2}, \frac{1}{2}\right)$$
 3分

$$\sum_{n=0}^{\infty} (2^{n+1} - 1)x^n = \frac{2}{1 - 2x} - \frac{1}{1 - x} = \frac{1}{(1 - 2x)(1 - x)}$$
 6 \(\frac{\frac{1}{2}}{2} \)