Influence Lines

Influence lines plot the effect of a single moving load at a specified point in a structure. In contrast, shear force and bending moment diagrams plot the effect of a static set of loads on all points of the structure.

For example, construct the influence lines for moment & for shear at pt c in the following structure. In other worlds plot how these two effects vary as a unit force moves from one end (a) to the other (d).

i) place unit load to the left of pt. c. 0<256m

$$\frac{8}{1(12-x)} - \sqrt{8} = 0$$

$$\sqrt{5} = \frac{15-x}{1}$$

Mc + 1 (6-x) - (12-x) x2=0

$$-1 + \frac{12-x}{8} - \sqrt{c} = 0$$

$$\sqrt{c} = 0.5 - \frac{x}{8}$$

$$0 < x \le 6$$

M2+6-22-3+24 50

 $M_c = \frac{3x}{4} - 3$

@ 200 Mc = 1.5

	Use of	Influence	Lines			
1)		re the e- force the				
		s placed				
		Vcmax =				
		Mcmax =	-3 ×30	= -90 k	cN-m.	
2	Determ 10 tch	nine max 1/m live (effects (a c due	2 to	
	- pl I - +	ace load. L. that he resultured of I	s over the ing effect	all regions	ns of Egn.	
	10 KN/		0 KN/m	V _C =	10×0.5×4 +10×0.75	- x <u> </u> z
	, 4	-0.25	6		32.5KN.	
	4	10 KM	6/m	M _c -= /	10×3×1.	- x = 1 - m
	10KN/n	/•5		Mc+-	10×8×1.	5 x 1/2 5 N - m
	-3			Mcma	w = - (60 KN-m

