Entity Relationship Model

The ERD represents the conceptual database as viewed by the end user. ERDs depict the database's main components: entities, attributes, and relationships. Because an entity represents a real-world object, the words *entity* and *object* are often used interchangeably.

1. Entity

Recall that an entity is an object of interest to the end user. The word *entity* in the ERM corresponds to a table—not to a row—in the relational environment. The ERM refers to a table row as an *entity instance* or *entity occurrence*. In both the Chen and Crow's Foot notations, an entity is represented by a rectangle containing the entity's name. The entity name, a noun, is usually written in all capital letters.

2. Attributes

Attributes are characteristics of entities. For example, the STUDENT entity includes, among many others, the attributes STU_LNAME, STU_FNAME, and STU_INITIAL. In the original Chen notation, attributes are represented by ovals and are connected to the entity rectangle with a line. Each oval contains the name of the attribute it represents. In the Crow's Foot notation, the attributes are written in the attribute box below the entity rectangle.

Required and Optional Attributes

A **required attribute** is an attribute that must have a value; in other words, it cannot be left empty. This indicates that a data entry will be required. In this example, STU_LNAME and STU_FNAME require data entries because of the assumption that all students have a last name and a first name. But students might not have a middle name, and perhaps they do not (yet) have a phone number and an e-mail address. Therefore, those attributes are not presented in boldface in the entitybox. An **optional attribute** is an attribute that does not require a value; therefore, it can be left empty.

Domains

Attributes have a domain. A *domain* is the set of possible values for a given attribute. For example, the domain for the gradea attribute is written (A,E) because the lowest possible grade value is A and the highest possible value is E. The domain for the gender attribute consists of only two possibilities: M or F (or some other equivalent code). The domain for a Registration date attribute consists of all dates that fit in a range (for example, registration startup date to current date).

Identifiers (Primary Keys)

The ERM uses **identifiers**, that is, one or more attributes that uniquely identify each entity instance. In the relational model, such identifiers are mapped to primary keys (PKs) in tables. Identifiers are underlined in the ERD. Key attributes are also underlined in a frequently used table structure shorthand notation using the format:

TABLE NAME (**KEY_ATTRIBUTE 1**, ATTRIBUTE 2, ATTRIBUTE 3, . . . ATTRIBUTE K)

For example, a CAR entity may be represented by:

CAR (CAR_VIN, MOD_CODE, CAR_YEAR, CAR_COLOR)

(Each car is identified by a unique vehicle identification number, or CAR_VIN.)

Composite Identifiers

Ideally, an entity identifier is composed of only a single attribute. Composite identifier is a primary key composed of more than one attribute.

Composite and Simple Attributes

Attributes are classified as simple or composite. A **composite attribute**, not to be confused with a composite key,

is an attribute that can be further subdivided to yield additional attributes. For example, the attribute ADDRESS can be subdivided into street, city, state, and zip code. Similarly, the attribute PHONE_NUMBER can be subdivided into area code and exchange number. A **simple attribute** is an attribute that cannot be subdivided. For example, age, sex, and marital status would be classified as simple attributes. To facilitate detailed queries, it is wise to change composite attributes into a series of simple attributes.

Single-Valued Attributes

A **single-valued attribute** is an attribute that can have only a single value. For example, a person can have only one Social Security number, and a manufactured part can have only one serial number. *Keep in mind that a single-valued attribute is not necessarily a simple attribute*. For instance, a part's serial number, such as SE-08-02-189935, issin gle-valued, but it is a composite attribute because it can be subdivided into the region in which the part was produced (SE), the plant within that region (08), the shift within the plant (02), and the part number (189935).

Multivalued Attributes

Multivalued attributes are attributes that can have many values. For instance, a person may have several college degrees, and a household may have several different phones, each with its own number. Similarly, a car's color may be subdivided into many colors (that is, colors for the roof, body, and trim). In the Chen ERM, the multivalued attributes are shown by a double line connecting the attribute to the entity. The Crow's Foot notation does not identify multivalued attributes.

Derived Attributes

An attribute may be classified as a derived attribute. A **derived attribute** is an attribute whose value is calculated (derived) from other attributes. The derived attribute need not be physically stored within the database; instead, it can be derived by using an algorithm. For example, an employee's age, EMP_AGE, may be found by computing the integer value of the difference between the current date and the EMP_DOB.

3. Relationship

A relationship is an association between entities. The entities that participate in a relationship are also known as **participants**, and each relationship is identified by a name that describes the relationship. The relationship name is an active or passive verb; for example, a STUDENT *takes* a CLASS, a PROFESSOR *teaches* a CLASS, a DEPARTMENT *employs* a PROFESSOR, a DIVISION *is managed by* an EMPLOYEE, and an AIRCRAFT *is flown by* a CREW.

Cardininalities and Connectivities

Cardinality expresses the minimum and maximum number of entity occurrences associated with one occurrence of the related entity. In the ERD, cardinality is indicated by placing the appropriate numbers beside the entities, using the format (x,y). The first value represents the minimum number of associated entities, while the second value represents the maximum number of associated entities. Cardinalities represent the number of occurrences in the *related* entity. For example, the cardinality (1,4) written next to the CLASS entity in the "PROFESSOR teaches CLASS" relationship indicates that each professor teaches up to four classes, which means that the PROFESSOR table's primary key value occurs at least once and no more than four times as foreign key values in the CLASS table. If the cardinality had been written as (1,N), there would be no upper limit to the number of classes a professor might teach. Similarly, the cardinality (1,1) written next to the PROFESSOR entity indicates that each class is taught by one and only one professor. That is, each CLASS entity occurrence is associated with one and only one entity occurrence in PROFESSOR.

Existence Dependence

An entity is said to be **existence-dependent** if it can exist in the database only when it is associated with another related entity occurrence. In implementation terms, an entity is existence-dependent if it has a mandatory foreign key—that is, a foreign key attribute that cannot be null. For example, if an employee wants to claim one or more dependents for tax-withholding purposes, the relationship "EMPLOYEE claims DEPENDENT" would be appropriate. In that case, the DEPENDENT entity is clearly existence-dependent on the EMPLOYEE entity because it is impossible for the dependent to exist apart from the EMPLOYEE in the database.

Relationship Strength

The concept of relationship strength is based on how the primary key of a related entity is defined. To implement a relationship, the primary key of one entity appears as a foreign key in the related entity. For example, the 1:M

relationship between VENDOR and PRODUCT implemented by using the VEND_CODE primary key in VENDOR as a foreign key in PRODUCT. There are times when the foreign key also is a primary key component in the related entity. For example, the CAR entity primary key (CAR_VIN) can appear as both a primary key component and a foreign key in the CAR_COLOR entity.

Weak (Non-identifying) Relationships

A **weak relationship**, also known as a **non-identifying relationship**, exists if the PK of the related entity does not contain a PK component of the parent entity. By default, relationships are established by having the PK of the parent entity appear as an FK on the related entity.

Strong (Identifying) Relationships

A **strong relationship**, also known as an **identifying relationship**, exists when the PK of the related entity contains a PK component of the parent entity.

Weak Entities

A **weak entity** is one that meets two conditions:

- 1. The entity is existence-dependent; that is, it cannot exist without the entity with which it has a relationship.
- 2. The entity has a primary key that is partially or totally derived from the parent entity in the relationship.

Relationship Participation

Optional participation means that one entity occurrence does not *require* a corresponding entity occurrence in a particular relationship. For example, in the "COURSE generates CLASS" relationship, you noted that at least some courses do not generate a class. In other words, an entity occurrence (row) in the COURSE table does not necessarily require the existence of a corresponding entity occurrence in the CLASS table. (Remember that each entity is implemented as a table.) Therefore, the CLASS entity is considered to be *optional* to the COURSE entity. In Crow's Foot notation, an optional relationship between entities is shown by drawing a small circle (O) on the side of the optional entity. The existence of an *optional entity* indicates that the minimum cardinality is 0 for the optional entity. (The term *optionality* is used to label any condition in which one or more optional relationships exist.)

Mandatory participation means that one entity occurrence *requires* a corresponding entity occurrence in a particular relationship. If no optionality symbol is depicted with the entity, the entity is assumed to exist in a mandatory relationship with the related entity. If the mandatory participation is depicted graphically, it is typically shown as a small hash mark across the relationship line, similar to the Crow's Foot depiction of a connectivity of 1. The existence of a mandatory relationship indicates that the minimum cardinality is at least 1 for the mandatory entity.

DEVELOPING AN ER DIAGRAM

The process of database design is an iterative rather than a linear or sequential process. The verb *iterate* means "to do again or repeatedly." An **iterative process** is, thus, one based on repetition of processes and procedures. Building an ERD usually involves the following activities:

- Create a detailed narrative of the organization's description of operations.
- Identify the business rules based on the description of operations.

- Identify the main entities and relationships from the business rules.
- Develop the initial ERD.
- Identify the attributes and primary keys that adequately describe the entities.
- Revise and review the ERD.

During the review process, it is likely that additional objects, attributes, and relationships will be uncovered. Therefore, the basic ERM will be modified to incorporate the newly discovered ER components. Subsequently, another round of reviews might yield additional components or clarification of the existing diagram. The process is repeated until the end users and designers agree that the ERD is a fair representation of the organization's activities and functions.

During the design process, the database designer does not depend simply on interviews to help define entities,

attributes, and relationships. A surprising amount of information can be gathered by examining the business forms and reports that an organization uses in its daily operations.