PROBLEM 3.81

KNOWN: Energy generation in an aluminum-clad, thorium fuel rod under specified operating conditions.

FIND: (a) Whether prescribed operating conditions are acceptable, (b) Effect of \dot{q} and h on acceptable operating conditions.

SCHEMATIC:

ASSUMPTIONS: (1) One-dimensional conduction in r-direction, (2) Steady-state conditions, (3) Constant properties, (4) Negligible temperature gradients in aluminum and contact resistance between aluminum and thorium.

PROPERTIES: *Table A-1*, Aluminum, pure: M.P. = 933 K; *Table A-1*, Thorium: M.P. = 2023 K, k \approx 60 W/m·K.

ANALYSIS: (a) System failure would occur if the melting point of either the thorium or the aluminum were exceeded. From Eq. 3.58, the maximum thorium temperature, which exists at r = 0, is

$$T(0) = \frac{\dot{q}r_0^2}{4k} + T_s = T_{Th,max}$$

where, from the energy balance equation, Eq. 3.60, the surface temperature, which is also the aluminum temperature, is

$$T_{\rm S} = T_{\infty} + \frac{\dot{q}r_{\rm O}}{2h} = T_{\rm Al}$$

Hence,

$$T_{Al} = T_{s} = 95^{\circ} C + \frac{7 \times 10^{8} \text{ W/m}^{3} \times 0.0125 \text{ m}}{14,000 \text{ W/m}^{2} \cdot \text{K}} = 720^{\circ} C = 993 \text{ K}$$

$$T_{Th,max} = \frac{7 \times 10^{8} \text{ W/m}^{3} (0.0125 \text{m})^{2}}{4 \times 60 \text{ W/m} \cdot \text{K}} + 993 \text{ K} = 1449 \text{ K}$$

Although $T_{Th,max}$ < M.P._{Th} and the thorium would not melt, T_{al} > M.P._{Al} and the cladding would melt under the proposed operating conditions. The problem could be eliminated by *decreasing* \dot{q} or r_o , *increasing* h or using a cladding material with a higher melting point.

(b) Using the one-dimensional, steady-state conduction model (solid cylinder) of the IHT software, the following radial temperature distributions were obtained for parametric variations in \dot{q} and h.

PROBLEM 3.81 (Cont.)

For h = 10,000 W/m²·K, which represents a reasonable upper limit with water cooling, the temperature of the aluminum would be well below its melting point for $\dot{q}=7\times10^8$ W/m³, but would be close to the melting point for $\dot{q}=8\times10^8$ W/m³ and would exceed it for $\dot{q}=9\times10^8$ W/m³. Hence, under the best of conditions, $\dot{q}\approx7\times10^8$ W/m³ corresponds to the maximum allowable energy generation. However, if coolant flow conditions are constrained to provide values of h < 10,000 W/m²·K, volumetric heating would have to be reduced. Even for \dot{q} as low as 2×10^8 W/m³, operation could not be sustained for h = 2000 W/m²·K.

The effects of \dot{q} and h on the centerline and surface temperatures are shown below.

For h = 2000 and 5000 W/m²·K, the melting point of thorium would be approached for $\dot{q} \approx 4.4 \times 10^8$ and 8.5×10^8 W/m³, respectively. For h = 2000, 5000 and 10,000 W/m²·K, the melting point of aluminum would be approached for $\dot{q} \approx 1.6 \times 10^8$, 4.3×10^8 and 8.7×10^8 W/m³. Hence, the envelope of acceptable operating conditions must call for a reduction in \dot{q} with decreasing h, from a maximum of $\dot{q} \approx 7 \times 10^8$ W/m³ for h = 10,000 W/m²·K.

COMMENTS: Note the problem which would arise in the event of a *loss of coolant*, for which case h would *decrease* drastically.