Домашнее задание 1

Deadline - 20.09.2024 в 23:59

Следующие обозначения:

 \mathbb{R}_{++} - положительные вещественные числа

 I_n - матрица с единицами на диагонали (вне диагонали 0)

$$A \in \mathbb{S}^n \iff A = A^{\top}$$

$$A \in \mathbb{S}^n_+ \iff A \in \mathbb{S}^n; \quad \forall x: \quad x^\top A x \ge 0$$

$$\begin{array}{lll} A \in \mathbb{S}^n_+ & \Longleftrightarrow & A \in \mathbb{S}^n; & \forall x: & x^\top A x \geq 0 \\ A \in \mathbb{S}^n_{++} & \Longleftrightarrow & A \in \mathbb{S}^n; & \forall x \neq 0: & x^\top A x > 0 \end{array}$$

Норма Фробениуса для матрицы $A \in \mathbb{R}^{n \times n}$ определяется как $||A||_F =$ $\sqrt{\sum_{i=1}^{n} \sum_{j=1}^{n} A_{ij}^2}$

Для матриц скалярное произведение определено как $\langle X,Y \rangle := \operatorname{Tr}(X^{\top}Y)$

Основная часть

Задача 1. Пусть f – одна из следующих функций:

- 1) (1 балл) $f: E \to \mathbb{R}$ функция $f(t) := \det(A tI_n)$, где $A \in \mathbb{R}^{n \times n}, E := \{t \in \mathbb{R} : \det(A - tI_n) \neq 0\}.$
- 2) (1.5 балла) $f: \mathbb{R}_{++} \to \mathbb{R}$ функция $f(t) := \|(A + tI_n)^{-1}b\|^2$, где $A \in \mathbb{S}^n_{++}$, $b \in \mathbb{R}^n$.

Для каждого из указанных вариантов вычислите первую и вторую производные f'(t) и f''(t).

Задача 2. Пусть f – одна из следующих функций:

- 1) (2 балла) $f: \mathbb{R}^n \to \mathbb{R}$ функция $f(x) := \frac{1}{2} \|xx^T A\|_F^2$, где $A \in \mathbb{S}^n$.
 - 2) (2.5 балла) $f:\mathbb{R}^n\setminus\{0\}\to\mathbb{R}$ функция $f(x):=\langle x,x\rangle^{\langle x,x\rangle}$.

Для каждого из указанных вариантов вычислите градиент ∇f и гессиан $\nabla^2 f$ (относительно стандартного скалярного произведения в пространстве \mathbb{R}^n).

Задача 3. Для каждой из следующих функций f покажите, что вторая производная d^2f является знакополуопределенной (как квадратичная форма) и установите ее знак:

1) (3 балла)
$$f:\mathbb{S}^n_{++}\to\mathbb{R}$$
 — функция $f(X):=\langle X^{-1},A\rangle$, где $A\in\mathbb{S}^n_+.$

Дополнительная часть

Задача 1. Пусть f – одна из следующих функций:

1)
$$(1.5 \text{ балл}) \ f: \mathbb{R}^n \to \mathbb{R}$$
 – функция $f(x) := \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n x_i x_j$

- $(1.5 \text{ балла})f: \mathbb{R}^n\setminus\{0\} \to \mathbb{R}$ функция $f(x):=\frac{\langle Ax,x
 angle}{\|x\|^2},$ где $A\in\mathbb{S}^n.$
- 3) (2 балла) $f: \mathbb{R}^n \to \mathbb{R}$ функция $f(x) := \ln(\sum_{i=1}^m e^{\langle a_i, x \rangle})$, где $a_1, \ldots, a_m \in \mathbb{R}^n$. Эта функция называется LogSumExp, и она используется для гладкого приближения $\max(Ax)$. Подумайте, почему так. Также см. функцию softmax с семинара.

Для каждого из указанных вариантов вычислите градиент ∇f и гессиан $\nabla^2 f$ (относительно стандартного скалярного произведения в пространстве \mathbb{R}^n).

Задача 2. Для каждой из следующих функций f покажите, что вторая производная d^2f является знакоопределенной (как квадратичная форма) и установите ее знак:

- 1) (2 балла) $f: \mathbb{R}^n_{++} \to \mathbb{R}$ функция $f(x):=\prod_{i=1}^n x_i^{\alpha_i}$, где $\alpha_1,\dots,\alpha_n\geq 0,\, \sum_{i=1}^n \alpha_i=1.$ (*Hint*: log derivative trick)
- 2) (2 балл) $f:\mathbb{R}^n_{++}\to\mathbb{R}$ функция $f(x):=(\sum_{i=1}^n x_i^p)^{1/p}$, где $p<1,\,p\neq0.$
 - 3) (1 балла) $f: \mathbb{S}_{++}^n \to \mathbb{R}$ функция $f(X) := (\det(X))^{1/n}$.

(*Hint*: В некоторых пунктах могут оказаться полезными неравенства Коши–Буняковского и Йенсена.)