LLW-1/LGG-1 Schematics

Sandy Bridge

Cougar Point

2011-01-18

REV: -1

DY: None Installed

UMA: UMA platform installed only

PX:Discrete(both Robson and Whistler) SKU installed

RBS:Robson SKU installed only

WTL:Whistler SKU installed only

SAMSUNG: Use SAMSUNG VRAM

Hynix: Use Hynix VRAM

VRAM 1G:Use 1G VRAM

VRAM_2G:Use 2G VRAM

LLW-1 / LGG-1 Block Diagram L1: TOP L5: VCC L2: GND L6: Signal ##OnMainBoard L3: Signal L7: GND L4: Signal L8: BOTTOM Battery Charger/Selector BO24745 **Project Code: 91.4MH01.001 VRAM** XDP 2GB/1GB_{88~91} INPUTS OUTPUTS Conn. PCB(Raw Card):10282 RT+DCBATOUT System DC/DC BD95280 DDR3 PWR 3D3V DCBATOUT | 3D3V S5 ThermalSensor 800MHz Channel A **UNBUFFERED** PWR_5V_DCBATOUT EMC2103 DDR3 1333 DDR3 SODIMM 28 CPU DC/DC SM Bus Intel CPU 14 NCP6131 42~44 Sandy Bridge RFID AMD GPU 204-PIN DDR3 SODIMM DCBATOUT VCC GFXCORECC GFXCOR 12C/SM Bus Switch PEG x16 DDR3 1333MHz 80 Whistler-LP 1G/2G 1D05V VTT **UNBUFFERED** DDR3 1333 TPS51218 45 Seymour-XT 1G DDR3 SODIMM 4~10 PWR 1D05V DCBATOUT 1D05V VTT 83~87 15 1D5V S3 TPS51218 46 DMI x4 FDI USB 2.0 CH11 Mini PCI-E PWR 1D5V DCBATOUT ID5V S3 14" HD WLAN Card PCI Express 4 $0D7\overline{5V}$ 1366*768 SATA Port 0 LVDS SATA CONN RT9026 46 Intel DDR_VREF_S3 **PCH** ID5V S3 LOM VGA Port ODD CONN SATA Port 4 PCI Express 2 PCI Express 2 **RJ45** 0D75V S0 VGA connector RTL8111E USB 2.0 (14 ports) 50 1D8V S0 RT8015 47 AC97 2.3/Azalia Interface SIM Mini PCI-E 3D3V S5 ID8V S0 Media Card Reader WWAN Card 66 PCI Express 3 USB 2.0 CH4 R5U220 **VCCSA** 32 Serial ATA 150MB/s RT8208B 48 ACPI 2.0 **AUDIO** HD AUDIO CODEC PWR_VCCSA_DCBATOUT | 0D85V_S0 USB 2.0 CH13 Azalia bus LPC I/F USB 2.0 CH13 COMBO Jack CX20671 29 PCI Rev 2.3 NEW CARD GFX CORE PCI Express PCI Express 8 PCI Express 8 RT8208B 92 eSATA Combo CN SATA Port5 INT. RTC PWR_DCBATOUT_VGA_COREVGA_CORE USB 2.0 CH10 USB 2.0 CH10 USB 2.0 PORT4 eSATA 1V_VGA USB 2.0 PORT3 57 RT9025 93 LPC Bus / 33MHz 17~25 ID5V S3 IV_VGA_S0 USB 2.0 PORT2 USB 2.0 1D8V VGA RT9025 **KBC** LPC Debug **Board Conn** 3D3V_S5 1D8V_VGA_S0 Nuvoton NPCE795 **FingerPrint** CH2 71 USB 2.0 PORT1 CH9 69 <Core Design: **HDMI** Wistron Corporation Bluetooth connector 51 21F, 88, Sec.1, Hsin Tai Wu Rd., Hsic Taipei Hsien 221, Taiwan, R.O.C. CH3 63 SPI FLASH Int.KB/Track point Camera G-Sensor Block Diagram Touch Pad 79 60 69 LLW-1 / LGG-1 -1

PCB Layer Stackup

	rapping Huron River Schematic Cl	reckiibe hev.e_;					
Name	Schematics Notes						
SPKR	Reboot option at power-up Default Mode: Internal weak Pull-down. No Reboot Mode with TCO Disabled: Connect to Vcc3_3 with 8.2-kΩ - 10-kΩ weak pull-up resistor.						
INIT3_3V#	Weak internal pull-up. Leave as "No Connect".						
GNT3#/GPI055 GNT2#/GPI053 GNT1#/GPI051							
SPI_MOSI	Enable Danbury: Connect to Vcc3_3 with 8.2-k?	weak pull-up resistor.					
SPI_MOSI	Disable DanburyLeft floating, no pull-down r	equired.					
NV_ALE	Enable Danbury: Connect to +NVRAM_VCCQ with 8.2-kohm weak pull-up resistor [CRB has it pulled up with 1-kohm no-stuff resistor]						
	Disable Danbury Leave floating (internal pull	-down)					
NC_CLE	DMI termination voltage. Weak internal pull-	up. Do not pull low.					
HAD_DOCK_EN# /GPIO[33]	Low (0) - Flash Descriptor Security will be overridden. Also, when this signals is sampled on the rising edge of PWROK then it will also disable Intel ME and its features. High (1) - Security measure defined in the Flash Descriptor will be enabled. Platform design should provide appropriate pull-up or pull-down depending on the desired settings. If a jumper option is used to tie this signal to GND as required by the functional strap, the signal should be pulled low through a weak pull-down in order to avoid asserting HDA_DOCK_EN# inadvertently. Note: CRB recommends 1-kohm pull-down for FD Override. There is an internal pull-up of 20 kohm for DA_DOCK_EN# which is only enabled at boot/reset for strapping functions.						
HDA_SDO	Weak internal pull-down. Do not pull high. S	ampled at rising edge of RSMRST#.					
HDA_SYNC	Weak internal pull-down. Do not pull high. S	ampled at rising edge of RSMRST#.					
GPI015	Low (1) - Intel ME Crypto Transport Layer Security (TLS) cipher suite with no confidentiality High (1) - Intel ME Crypto Transport Layer Security (TLS) cipher suite with confidentiality Note: This is an un-muxed signal. This signal has a weak internal pull-down of 20 kohm which is enabled when PWROK is low. Sampled at rising edge of RSMRST#. CRB has a 1-kohm pull-up on this signal to +3.3VA rail.						
GPIO8	GPIO8 on PCH is the Integrated Clock Enable strap and is required to be pulled-down using a lk +/- 5% resistor. When this signal is sampled high at the rising edge of RSMRST#, Integrated Clocking is enabled, When sampled low, Buffer Through Mode is enabled.						
GPIO27	Default = Do not connect (floating) High(1) = Enables the internal VccVRM to he analog rails. No need to use on-board filte Low (0) = Disables the VccVRM. Need to use circuits for analog rails.	r circuit.					
	•	USB Table					
ים דים ב	outing	Pair Device					
CIE R	outing	0 X 1 USB2					
		2 FINGERPRINT					

Pin Name	essor Strapping Huron River Schematic Checklist Strap Description Configuration (Default value for each bit is 1 unless specified otherwise)				
CFG[2]	PCI-Express Static Lane Reversal	1: Normal Operation. 0: Lane Numbers Reversed 15 -> 0, 14 -> 1,	1		
CFG[4]		Disabled - No Physical Display Port attached to 1: Embedded DisplayPort. Enabled - An external Display Port device is 0: connectd to the EMBEDDED display Port	0		
CFG[6:5]	PCI-Express Port Bifurcation Straps	11: x16 - Device 1 functions 1 and 2 disabled 10: x8, x8 - Device 1 function 1 enabled; function 2 disabled 01: Reserved - (Device 1 function 1 disabled; function 2 enabled) 00: x8, x4, x4 - Device 1 functions 1 and 2 enabled	11		
CFG[7]	PEG DEFER TRAINING	1: PEG Train immediately following xxRESETB de asser 0: PEG Wait for BIOS for training	tion		

		Voltage Rails			
POWER PLANE	VOLTAGE	ACTIVE IN	DESCRIPTION		
5V_S0 303V_S0 108V_S0 105V_S0 105V_S0 1055V_S0 0075V_S0 VCC_CORE VCC_GFXCORE 108V_VGA_S0 303V_VGA_S0 1V_VGA_S0	5V 3.3V 1.8V 1.5V 0.95 - 0.85V 0.75V 0.35V to 1.5V 0.4 to 1.25V 1.8V 3.3V	SO SO	CPU Core Rail Graphics Core Rail		
5V_USBX_S3 1D5V_S3 DDR_VREF_S3	5V 1.5V 0.75V	S3			
BT+ DCBATOUT 5V_S5 5V_AUX_S5 3D3V_S5 3D3V_AUX_S5	6V-14.1V 6V-14.1V 5V 5V 3.3V 3.3V	All S states	AC Brick Mode only		
3D3V_LAN_S5	3.3V	WOL_EN	Legacy WOL		
3D3V_AUX_KBC	3.3V	DSW, Sx	ON for supporting Deep Sleep states		
3D3V_AUX_S5	3.3V	G3, Sx	Powered by Li Coin Cell in G3 and +V3ALW in Sx		

LANE1	RESERVED
LANE2	LAN
LANE3	CARD READER
LANE4	MiniCard WLAN
LANE5	RESERVED
LANE6	RESERVED
LANE7	RESERVED
LANE8	NEW CARD
	LANE2 LANE3 LANE4 LANE5 LANE6 LANE7

SATA Table

SATA Table				
	SATA			
Pair	Device			
0	HDD			
1	mSATA			
2	N/A			
3	N/A			
4	ODD			
5	ESATA			

Pair	Device				
0	х				
1	USB2				
2	FINGERPRINT				
3	BLUETOOTH				
4	Mini Card2 (WWAN)				
5	х				
6	х				
7	х				
8	ESATA1				
9	USB1				
10	USB Ext. port 4				
11	Mini Card1 (WLAN)				
12	CAMERA				
13	New Card				

CMD...a ADDDECCEC

I ² C / SMBus Addresses Device	Ref Des	HURON RIVER ORB Address Hex Bus
EC SMBus 1 Battery Capacity Board EC SMBus 2 PCH MDM LAD		KBC_SDA1/KBC_SCL1 KBC_SDA1/KBC_SCL1 KBC_SDA2/KBC_SCL2 KBC_SDA2/KBC_SCL2 KBC_SDA2/KBC_SCL2 KBC_SDA2/KBC_SCL2 KBC_SDA2/KBC_SCL2
PCH SMBus CX505 Clock Generator SO-DIMMA (SPD) SO-DIMMB (SPD) Digital Pot		PCH_SMBDATA/PCH_SMBCLK PCH_SMBDATA/PCH_SMBCLK PCH_SMBDATA/PCH_SMBCLK PCH_SMBDATA/PCH_SMBCLK

DEBUG Interface for Processor.

CPU XDP SFF 26pin IF

Pin 1 OBSFN A0 (PREQ#, I/O)

Pin 2 OBSFN_A1 (PRDY#, I/O)

Pin 3 GND

Pin 4 OBSDATA_A0 (Open, I/O)

Pin 5 OBSDATA_A1 (Open, I/O)

Pin 6 GND

Pin 7 OBSDATA_A2 (Open, I/O)

Pin 8 OBSDATA_A3 (Open, I/O)

Pin 9 GND

Pin 10 HOOK0 (PWRGD, In)

Pin 11 HOOK1 (BP_PWRGD_RST#, Out)

Pin 12 HOOK2 (CFG0, Out) Pin 13 HOOK3 (vr_READYSYS_PWROK,Out)

Pin 14 HOOK4 (BCLK, In)

Pin 15 HOOK5 (BCLK#, In)

Pin 16 VCCOBS_AB (VCCP Voltage of CPU, In)

Pin 17 HOOK6 (RESET#, Out) Pin 18 HOOK7 (DBR#, Out)

Pin 19 GND

Pin 20 TDO. In

Pin 21 TRST#, Out

Pin 22 TDI, Out

Pin 23 TMS, Out

Pin 24 TCK1 (Open)

Pin 25 GND

Pin 26 TCK0, Out

TABLE

РСН	REF	PCH ES1 JTAG		PCH ES2 JTAG		PRODUCTION	
PIN	DES	Enable	Disable	Enable	Disable	Enable	Disable
	R1110	DY	DY	200 Ohms	DY	DY	DY
TDO	R1116	DY	DY	100 Ohms	DY	DY	DY
100	R2	DY	DY	DY	DY	51 Ohms	DY
	R1112	200 Ohms	DY	200 Ohms	DY	DY	DY
TMS	R1118	100 Ohms	DY	100 Ohms	DY	DY	DY
	R91	DY	DY	DY	DY	51 Ohms	DY
	R1111	200 Ohms	20K Ohms	200 Ohms	DY	DY	DY
TDI	R1117	100 Ohms	10K Ohms	100 Ohms	DY	DY	DY
	R90	DY	DY	DY	DY	51 Ohms	DY
TCK	R541	51 Ohms	51 Ohms	51 Ohms	51 Ohms	51 Ohms	51 Ohms
	R953	20K Ohms	DY	DY	DY	DY	DY
TRST#	R535	10K Ohms	DY	DY	DY	DY	DY
	R103	DY	DY	DY	DY	DY	DY

3D3V_S5

DY R1110

@

DY

©

R1116 100R2J-2-GP

PCH_TCK <<

200R2J-L1-GP

DY

R1111

DY

©

R1117 100R2J-2-GP

@

200R2J-L1-GP

DEBUG Interface for PCH.

MLX-CON26-8-GP DY

PCH XDP SFF 26pin IF

3D3V_S5

(19)

DY

R1112

DY

©

R1118 100R2J-2-GP

⊘@⊅

200R2J-L1-GP

Pin 1 OBSFN_A0 (Open), I/O)

Pin 2 OBSFN_A1 (Open, I/O)

Pin 3 GND

Pin 4 OBSDATA_A0 (Open, I/O)

Pin 5 OBSDATA_A1 (Open, I/O)

Pin 6 GND

Pin 7 OBSDATA_A2 (Open, I/O)

Pin 8 OBSDATA_A3 (Open, I/O)

Pin 9 GND

Pin 10 HOOK0 (RSMRST#, In) Pin 11 HOOK1 (BP_PWRGD_RST#, Out)

Pin 12 HOOK2 (Open)

Pin 13 HOOK3 (Open)

Pin 14 HOOK4 (Open)

Pin 15 HOOK5 (Open)

Pin 16 VCCOBS_AB (3.3VSUS, In)

Pin 17 HOOK6 (RSMRST#, Out) Pin 18 HOOK7 (DBR#, Out)

Pin 19 GND

Pin 20 TDO (JTAG, In)

Pin 21 TRST# (Open)

Pin 22 TDI (JTAG, Out)

Pin 23 TMS (JTAG, Out)

Pin 24 TCK1 (Open)

Pin 25 GND

Pin 26 TCK0 (JTAG, Out)

Wistron Corporation 21F, 88, Sec. 1, Hsin Tai Wu Rd., Hsichih, Taipei Hsien 221, Taiwan, R.O.C.

XDP CONN Size A3

Rev -1 LLW-1 / LGG-1

PCH (LVDS/CRT/DDI)

LLW-1 / LGG-1

-1

Wistron Corporation 21F, 88, Sec. 1, Hsin Tai Wu Rd., Hsichih, Taipei Hsien 221, Taiwan, R.O.C.

Title

LAN PWR SW

Size A4 Document Number Date: Tuesday, January 18, 2011 | Sheet

-1

Rev

Table 39.1- Surface Mount Zener ESD multi-source

Supplier	Description	Lenovo P/N	Wistron P/N
СНЕММКО	MMPZ5232BGP	N/A	83.5R603.R3F
DIODES	MMSZ5232BS-7-F	N/A	83.5R603.K3F
PANJIT	MMSZ5232BS	N/A	83.5R603.Q3F

<Core Design

Size Document Number LLW-1 / LGG-1 Rev -1
Date: Tuesday, January 18, 2011 Sheet 39 of 94

19,27,82 PM_SLP_S4# >> PR4610 1 2 0R2J-2-GP PG4622 VLDOIN VTT PGND GND 37 0D75V_EN >> PR4611 1 VTTREF VTTSNS 13 GAP-CLOSE-PWR-3-GP PC4611 SCD1U10V2KX-5GP PC4613 SC1U10V2KX-1GP RT9026PFP-GP PC4616 PC4617 SC10U6D3V3MX-GP SC10U6D3V3MX-GP <Core Design> ~ **©**⊅ ~ **©** ~ ©® **⊘** Wistron Corporation 21F, 88, Sec. 1, Hsin Tai Wu Rd., Hsichih, Taipei Hsien 221, Taiwan, R.O.C. TPS51128_1D5V & RT9026_0D75V **LLW-1 / LGG-1** Date: Tuesday, January 18, 2011

LCD / Inverter Connector

缝创资涌 Wis

<Core Design>

Wistron Corporation 21F, 88, Sec. 1, Hsin Tai Wu Rd., Hsichih, Taipei Hsien 221, Taiwan, R.O.C.

-1

LCD CONNECTOR
Size A3 Document Number
LLW-1 / LGG-1

HDMI Connector

HDMI DDC Passive Level Shifter

<Core Design>

Date: Tuesday, January 18, 2011

Wistron Corporation 21F, 88, Sec.1, Hsin Tai Wu Rd., Hsichih, Taipei Hsien 221, Taiwan, R.O.C.

-1

LLW-1 / LGG-1

Sheet 53

)		BLANK
,	Document Number	

<Core Design>

Wistron Corporation 21F, 88, Sec.1, Hsin Tai Wu Rd., Hsichih, Taipei Hsien 221, Taiwan, R.O.C.

-1

9	
	BLANK

Document Number **LLW-1 / LGG-1** Sheet 54 Date: Tuesday, January 18, 2011

Table 60.1- SPI Serial Flash Memory multi-source

Supplier	Description	Lenovo P/N	Wistron P/N
MXIC	MX25L3206EM2I-12G	N/A	72.25320.C01
WINBOND	W25Q32BVSSIG	N/A	72.25Q32.A01
NUMONYX	M25PX32-VMW6F	N/A	72.25P32.C01

Table 60.2 - Schottky Barrier Diode multi-source

Supplier	Description	Lenovo P/N	Wistron P/N
CHENMKO	CH715FGP	N/A	83.R0304.D81
CHENMKO	BAS40CWGP	N/A	83.00040.R81
PANJIT	BAS40CW	N/A	83.00040.E81

<Core Design>

USB Connector

Table 61.1- USB2.0 PWR SW multi-source

Supplier	Description	Lenovo P/N	Wistron P/N
ті	TPS2066DGN	41R0511AA	74.02066.A71
ті	TPS2066DGN-1	N/A	74.02066.B71

Table 61.2- 150U 6.3V POSCAP multi-source

Supplier	Description	Lenovo P/N	Wistron P/N
NEC-TOKIN	TEPSLB20J157M	N/A	77.C1571.09L
SANYO	6TPE150MAZB	N/A	77.21571.111
HPC	TNCB0J157MTRZTF	N/A	80.15715.12L

<Core Design>
体をは来:3 Wistron Corner

緯創資通 Wistron Corporation 21F, 88, Sec. 1, Hsin Tei Wu Rd., Hsichih, Taipei Hsien 221, Taiwan, R.O.C.

 USB Connector

 Size A3
 Document Number
 Rev -1

 Date: Tuesday, January 18, 2011
 Sheet 61 of 94

<Core Design>

Date: Tuesday, January 18, 2011

Wistron Corporation 21F, 88, Sec.1, Hsin Tai Wu Rd., Hsichih, Taipei Hsien 221, Taiwan, R.O.C.

le	
	BLANK

Document Number **LLW-1 / LGG-1**

Sheet 62

-1

<Core Design>

Wistron Corporation 21F, 88, Sec.1, Hsin Tai Wu Rd., Hsichih, Taipei Hsien 221, Taiwan, R.O.C.

-1

Sheet 64

Date: Tuesday, January 18, 2011

FingerPrint

Document Number LLW-1 / LGG-1

<Core Design>

Date: Tuesday, January 18, 2011

Wistron Corporation 21F, 88, Sec.1, Hsin Tai Wu Rd., Hsichih, Taipei Hsien 221, Taiwan, R.O.C.

e	
	BLANK

Document Number **LLW-1 / LGG-1**

Sheet 67

-1

<Core Design>

Wistron Corporation 21F, 88, Sec.1, Hsin Tai Wu Rd., Hsichih, Taipei Hsien 221, Taiwan, R.O.C.

-1

e	
	BLANK

Document Number **LLW-1 / LGG-1** Sheet 68 Date: Tuesday, January 18, 2011

Touch Pad Connector TP6917 AFTE14P-GR TP6915 AFTE14P-GR TP6916 AFTE14P-GR TP6920 AFTE14P-GR TP6919 AFTE14P-GR TP6918 AFTE14P-GR TP6918 AFTE14P-GR/ TP6914 AFTE14P-GR/ TP6913 AFTE14P-GR/ TP6912 AFTE14P-GR/ TP6910 AFTE14P-GR/ TP6900 AFTE14P-GR/ TP6908 AFTE14P-GP F6902 \neg RN6901 SRN0J-6-GP 2 3 4 4 5 5 5 5 6 6 7 8 8 9 10 11 12 13 × 14 4 × 15 16 16 17 17 18 19 × 20 22 RN6902 SRN0J-6-GP >> PAD_DETECT# 27 3D3V_S0 F6901 GP PTWO-CON20-2-GP-U FUSE-D5A32V-14-GP **® ©** 20.K0392.020 C6902 DY SC2D2U10V3KX-1GP SC4P50V2CN-GP 27 PALM_LED LTC043ZUB-FS8-GP Table 69.1- Transistor multi-source Wistron P/N Supplier Description Lenovo P/N NXP PDTC143ZU N/A 84.00143.E1K **ROHM** LTC043ZUB N/A 84.00043.011 DRC5143Z0L **Panasonic** N/A 84.05143.011

Track Point Connector

KeyBoard Connector

<Core Design>

Date: Tuesday, January 18, 2011

Wistron Corporation 21F, 88, Sec.1, Hsin Tai Wu Rd., Hsichih, Taipei Hsien 221, Taiwan, R.O.C.

-1

Sheet 70

e	BLANK
	DLANN

Document Number **LLW-1 / LGG-1**

Golden Finger for Debug Board

**Core Design>

**Core Design>

Wistron Corporation
21F, 88, Sec. 1, Hsin Tai Wu Rd., Hsichih, Taipei Hsien 221, Taiwan, R.O.C.

Title

DEBUG CONN

Size A4**

Document Number LLW-1 / LGG-1

Pate: Tuesday, January 18, 2011

Sheet 71 of 94

<Core Design>

Wistron Corporation 21F, 88, Sec.1, Hsin Tai Wu Rd., Hsichih, Taipei Hsien 221, Taiwan, R.O.C.

-1

•	
	BLANK

Document Number **LLW-1 / LGG-1**

Date: Tuesday, January 18, 2011 Sheet 72

<Core Design>

Date: Tuesday, January 18, 2011

Wistron Corporation 21F, 88, Sec.1, Hsin Tai Wu Rd., Hsichih, Taipei Hsien 221, Taiwan, R.O.C.

-1

Sheet 73

)	BLANK

Document Number **LLW-1 / LGG-1** Please apply Shield GND for SD_CLK signal between R5U220 and SD Card Slot to decrease external noise.

Card Reader Connector

+3.3V_RUN_CARD trace = 40mil C7402 lose CDR1

<Core Design>

Wistron Corporation 21F, 88, Sec.1, Hsin Tai Wu Rd., Hsichih,

Taipei Hsien 221, Taiwan, R.O.C.

Title

CARD Reader CONN

Document Number **LLW-1 / LGG-1** Date: Tuesday, January 18, 2011

Rev

-1

SSID = ExpressCard +1.5V_CARD Max. 650mA, Average 500mA. +3.3V_CARD Max. 1300mA, Average 1000mA +3.3V_CARDAUX Max. 275mA Wistron Corporation 21F, 88, Sec.1, Hsin Tai Wu Rd., Hsichih, Taipei Hsien 221, Taiwan, R.O.C. New Card Rev -1 LLW-1 / LGG-1
Date: Tuesday, January 18, 2011 Sheet 7:

<Core Design>

Date: Tuesday, January 18, 2011

Wistron Corporation 21F, 88, Sec.1, Hsin Tai Wu Rd., Hsichih, Taipei Hsien 221, Taiwan, R.O.C.

BLANK

Document Number LLW-1 / LGG-1

Sheet 76

-1

<Core Design>

Date: Tuesday, January 18, 2011

Wistron Corporation 21F, 88, Sec.1, Hsin Tai Wu Rd., Hsichih, Taipei Hsien 221, Taiwan, R.O.C.

BLANK

Document Number LLW-1 / LGG-1

Sheet 78

-1

G-Sensor

	LIS34AL	No Accel
	KXTC8-2850	
R7902	NO_ASM	ASM
R7903	ASM	ASM
All other	ASM	NO_ASM

Layout Comment:

- (1) Place C7904, C7905, Q7901, R7901, R7902, C7901, C7902, R7903, R508 close to U7901.
- (2) Avoid routing under DCDC switching area.

Table 79.1- Transistor multi-source

Supplier	Description	Lenovo P/N	Wistron P/N
NXP	PDTA114EE	N/A	84.00114.H1K
ON	DTA114EET1G	N/A	84.DT114.B11
ROHM	LTA014EEB	N/A	84.00014.01H
Panasonic	DRA9114E0L	N/A	84.09114.A11
	NXP ON ROHM	NXP PDTA114EE ON DTA114EET1G ROHM LTA014EEB	NXP PDTA114EE N/A ON DTA114EET1G N/A ROHM LTA014EEB N/A

Table 79.2- Accelerometer multi-source

Supplier	Description	Lenovo P/N	Wistron P/N
ST	LIS34ALTR-GP	41R0828AA	74.00034.0BZ
ROHM-KIONIX	KXTC8-2850-GP	N/A	74.KXTC8.0BZ

Core Designs

韓創資通 Wistron Corporation 21F, 88, Sec. 1, Hsin Tai Wu Rd., Hsichih, Taipei Hsien 221, Taiwan, R.O.C.

G-Sensor

RFID

Table 80.1- Transistor multi-source

Supplier	Description	Lenovo P/N	Wistron P/N
NXP	PDTC115TE	N/A	84.00115.E1K
ROHM	LTC015EEB	N/A	84.00015.01H
Panasonic	DRC9115T0L	N/A	84.09115.A11

Table 80.2- EEPROM multi-source

Supplier	Description	Lenovo P/N	Wistron P/N
ROHM	BUL08-1FVJ-WGE2	N/A	72.BUL08.A0Q
NXP	PCA24S08ADP	N/A	72.24S08.A0Q
SANYO	LE26CAP08TT-TLM-H	N/A	72.26C08.00R

<Core Design>

TO EXP BOARD CONN

DC BOARD CONN

**Core Design>

Wistron Corporation
21f, 88, Sec.1, Hain Tail Wu Rd., Hsichilh,
Taipei Hsien 221, Teiwan, R.O.C.

Title

IO Board Connector

Size Document Number Rev. -1
Date: Tuesday, January 18, 2011 Sheet 82 of 94

