Машинное обучение

Лекция 3 Решающее дерево (decision tree, DT)

Власов Кирилл Вячеславович

Логический алгоритм классификации, основанный на поиске конъюнктивных закономерностей.

Пойду ли я на факультатив по МО сегодня?

Дерево решений служит обобщением опыта экспертов, средством передачи знаний будущим сотрудникам или моделью бизнес-процесса компании.

Решение о выдаче кредита заемщику принималось на основе некоторых интуитивно (или по опыту) выведенных правил, которые можно представить в виде дерева решений.

Пример: Кредитный скоринг

sklearn.datasets.load_iris

sklearn.tree.DecisionTreeClassifier

sklearn.tree.export_graphviz

Классы:

Ирис щетинистый (Iris setosa) Ирис виргинский (Iris virginica) Ирис разноцветный (Iris versicolor)

Признаки:

длина чашелистика (см) ширина чашелистика (см) длина лепестка (см) ширина лепестка (см)

sklearn.datasets.load_iris

sklearn.tree.DecisionTreeClassifier

sklearn.tree.export_graphviz

Неопределенность Джини (Gini impurity):

$$G_i = 1 - \sum_{k=1}^{n} (p_{ik})^2$$

$$G_{split} = \frac{L}{N} \times G_L + \frac{R}{N} \times G_R \rightarrow min$$

L - Количество элементов в левой ветке

R -Количество элементов в правой ветке

N - Количество элементов в узле

sklearn.datasets.load_iris

sklearn.tree.DecisionTreeClassifier

sklearn.tree.export_graphviz

sklearn.datasets.load_iris

sklearn.tree.DecisionTreeClassifier

sklearn.tree.export_graphviz

Энтропия Шеннона:

$$S_i = -\sum_{k=1}^n p_{ik} \log p_{ik}$$

рік - Вероятность нахождения в состоянии k

sklearn.datasets.load_iris

sklearn.tree.DecisionTreeClassifier

sklearn.tree.export_graphviz

tree.predict_proba([2,3,3,1])

Классы:

Ирис щетинистый (Iris setosa) - 0 Ирис виргинский (Iris virginica) - 0,907 Ирис разноцветный (Iris versicolor - 0,093

$$p_1 = \frac{0}{54}$$
 $p_2 = \frac{49}{54}$ $p_3 = \frac{5}{54}$

sklearn.tree.DecisionTreeClassifier

(criterion='gini', splitter='best', max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features=None, random_state=None, max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, class_weight=None, presort=False)

Регуляризация деревьев

sklearn.tree.DecisionTreeClassifier

(criterion='gini', splitter='best', max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features=None, random_state=None, max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, class_weight=None, presort=False)

max_depth - глубина дерева

min_samples_split - Минимальное количество объектов, прежде чем можно сделать разделение

min_samples_leaf - Минимальное кол-во объектов в листовом узле

max_leaf_nodes - Максимальное количество листовых узлов

Семинар Евгения Соколова

Регуляризация деревьев

sklearn.tree.DecisionTreeRegressor

(criterion='mse', splitter='best', max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features=None, random_state=None, max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, presort=False)

Регуляризация деревьев

sklearn.tree.DecisionTreeRegressor

(criterion='mse', splitter='best', max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features=None, random_state=None, max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, presort=False)

Какой ответ деревьев в регрессии?

Какая стратегия поведения в листьях регрессионного дерева приводит к меньшему матожиданию ошибки по MSE: отвечать средним значением таргета на объектах обучающей выборки, попавших в лист, или отвечать таргетом для случайного объекта из листа (считая все объекты равновероятными)?

Какой ответ деревьев в регрессии?

Какая стратегия поведения в листьях регрессионного дерева приводит к меньшему матожиданию ошибки по MSE: отвечать средним значением таргета на объектах обучающей выборки, попавших в лист, или отвечать таргетом для случайного объекта из листа (считая все объекты равновероятными)?

•
$$\hat{y} = \frac{1}{n} \sum_{i=1}^{n} c_i$$

$$\mathsf{E}(y - \frac{1}{n} \sum_{i=1}^{n} c_i)^2 = \mathsf{E} y^2 + \left(\frac{1}{n} \sum_{i=1}^{n} c_i\right)^2 - 2\left(\frac{1}{n} \sum_{i=1}^{n} c_i\right) \mathsf{E} y$$
 • $\hat{y} = X$, где $X \sim U(c)$
$$\mathsf{E} \frac{1}{n} \sum_{i=1}^{n} (y - c_i)^2 = \frac{1}{n} \sum_{i=1}^{n} \mathsf{E}(y - c_i)^2 = \mathsf{E} y^2 + \frac{1}{n} \sum_{i=1}^{n} c_i^2 - \frac{2}{n} \mathsf{E} y \sum_{i=1}^{n} c_i$$

Тогда выпишем их разность:

$$\mathsf{E}\frac{1}{n}\sum_{i=1}^n (y-c_i)^2 - \mathsf{E}(y-\bar{c})^2 = \frac{1}{n}\sum_{i=1}^n c_i^2 - \left(\frac{1}{n}\sum_{i=1}^n c_i\right)^2 \ge 0$$
 (По неравенсту Коши-Буняковского)

Получили, что мат. ожидание ошибки для первого поведения меньше, чем для второго.

Сложные случаи для деревьев

Ссылки на использованные материалы

Открытый курс машинного обучения: Тема 3

Семинар Евгения Соколова