Grau en Matemàtiques, FME

Programació Matemàtica

Tema 2 : Programació Lineal

Teoria de dualitat

Jordi Castro, F.-Javier Heredia, Josep Homs

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/.

Tema 2: Programació Lineal

- 1. Introducció i propietats geomètriques.
- 2. L'algorisme del símplex primal.
- 3. Teoria de dualitat.
 - Definició i formulació del problema dual ⁽¹⁾.
 - Teoremes de dualitat (1).
 - Algorisme del símplex dual.
 - Aplicacions (fora temari):
 - Teoria de jocs: jocs finits de suma zero.
 - Teoria de grafs: problemes de flux màxim-tall mínim.
 - (1) Bibliografia: Cap. 2 5 "Introduction to Linear Optimization", D. Bertsimas, N. Tsitsiklis

Definició problema dual (D) (1/3)

 Els problema dual (D) està relacionat amb la idea de problema Lagrangià estudiat a extrems condicionats.

Definició Relaxació Lagrangiana:

Sigui el problema de programació matemàtica

$$(P) \quad \min_{x \in \mathbb{R}^n} \{ f(x) | h(x) = 0, x \in \Omega \subset \mathbb{R}^n \}$$

La relaxació Lagrangiana de (P) associada al vector $\lambda \in \mathbb{R}^m$ (multiplicadors de Lagrange) és el problema:

(L)
$$\min_{x \in \mathbb{R}^n} \{ \mathcal{L}(x, \lambda) = f(x) + \lambda' h(x) | x \in \Omega \}$$

Definició $x(\lambda)$: solució òptima del problema (L) associat a λ .

Proposició 10: Relaxació Lagrangiana

- *i.* Tota solució factible (P) és factible (L).
- ii. Per a tot $\lambda \in \mathbb{R}^n$ es satisfà: $\mathcal{L}(x(\lambda), \lambda) \leq f(x^*) + \lambda' \underbrace{h(x^*)}_{=0} = f(x^*)$

Definició problema dual (D) (2/3)

• **Problema dual**: hem vist que per a tot valor de λ la relaxació Lagrangiana (L) proporciona una fita inferior del valor òptim de la funció objectiu de (P). El problema dual busca el **valor dels multiplicadors de Lagrange** λ **que maximitza aquesta la fita inferior** (millor fita inferior).

Definició funció dual
$$\phi(\lambda)$$
: $\phi(\lambda) \stackrel{\text{def}}{=} \mathcal{L}(x(\lambda), \lambda)$.

Definició problema dual (
$$\boldsymbol{D}$$
): (D) $\max_{\lambda \in \mathbb{R}^m} \phi(\lambda)$.

- Dual d'un problema PL en forma estàndard :
 - Considerem ara un problema de PL en forma estàndard:

$$(P)_e \quad \min_{x \in \mathbb{R}^n} \left\{ z_P = c' x \middle| \underbrace{b - Ax = 0}^{h(x) = 0}, \underbrace{x \in \Omega}_{x \ge 0} \right\}.$$

(D)
$$\max_{\lambda \in \mathbb{R}^m} z_D = \phi(\lambda) = \min_{x \in \mathbb{R}^n} \{ \mathcal{L}(x, \lambda) = c'x + \lambda'(b - Ax) | x \ge 0 \} =$$
$$= \min_{x \in \mathbb{R}^n} \{ \mathcal{L}(x, \lambda) = (c' - \lambda'A)x | x \ge 0 \} + \lambda'b$$

Definició problema dual (D) (3/3)

– Sabem que:

$$\min_{x \in \mathbb{R}^n} \{ \mathcal{L}(x, \lambda) = (c' - \lambda' A) x | x \ge 0 \} = \begin{cases} 0 & \text{si } c' - \lambda' A \ge 0 \\ -\infty & \text{altrament} \end{cases}$$

i l'expressió de la funció dual $z_D = \phi(\lambda)$ és doncs:

$$z_D = \phi(\lambda) = \begin{cases} \lambda' b & \text{si } c' - \lambda' A \ge 0 \\ -\infty & \text{altrament} \end{cases}$$
 (1)

Com que volem maximitzar $z_D = \phi(\lambda)$ podem descartar els valors de λ pels quals $z_D = \phi(\lambda) = -\infty$ imposant la condició (1) en la definició de (D):

$$(P)_{e} \begin{cases} \min_{x \in \mathbb{R}^{n}} & z_{P} = c'x \\ \text{s.a.:} & Ax = b \end{cases} \rightarrow \begin{bmatrix} (D) \begin{cases} \max_{\lambda \in \mathbb{R}^{m}} & z_{D} = \lambda'b \\ \text{s.a.:} & \lambda'A \leq c' \end{bmatrix} \end{cases}$$

Així doncs, podem asegurar $z_D^* = b'\lambda^* \le z_P^* = c'x^*$ (veurem aquesta relació com a Ta feble de dualitat).

Formulació problemes duals (D) (1/2)

• De forma anàloga a com s'ha obtingut el problema dual de $(P)_e$, es pot definir el problema dual d'un problema $(P) \min\{c'x|x \in P\}$ qualsevol a través de la següent taula de transformacions:

Problema primal (P)			Problema dual (D)		
Funció objectiu	$\min c'x$	\leftrightarrow	$\max \lambda' b$	Funció objectiu	
Constrictions primals $j = 1, 2,, m$	$a'_j x \geq b_j$	\leftrightarrow	$\lambda_j \geq 0$	Variables	
	$a_j'x \leq b_j$	\longleftrightarrow	$\lambda_j \leq 0$	Duals	
	$a_j'x = b_j$	\leftrightarrow	λ_j Iliure	j=1,2,,m	
Variables primals $i = 1, 2,, n$	$x_i \ge 0$	\leftrightarrow	$\lambda' A_i \le c_i$	_ Constriccions duals	
	$x_i \leq 0$	\leftrightarrow	$\lambda' A_i \ge c_i$		
	x_i lliure	$\longleftrightarrow_{\mathbb{R}^n}$	$\lambda' A = c_i$	$i=1,2,\ldots,n$	

 Usarem aquesta taula per a formular el problema dual de qualsevol problema PL.

Definició del problema dual (D) (2/3)

Exemple formulació problema dual:

Proposició 11: Simetria dual: El dual del dual és el primal.

$$(D) \equiv \begin{pmatrix} \min z_{\tilde{P}} = & -5\lambda_{1} & -6\lambda_{2} & -4\lambda_{3} \\ \text{s.a.:} & & & \\ & & -1\lambda_{1} & +2\lambda_{2} & & \leq 1 \\ & & & +3\lambda_{1} & -1\lambda_{2} & & \geq 2 \\ & & & & +3\lambda_{2} & +1\lambda_{3} & = 3 \\ & & & \lambda_{1} & & & \leq 0 \\ & & & & \lambda_{2} & & \geq 0 \\ & & & & \lambda_{3} & \leq 0 \end{pmatrix} \begin{pmatrix} \max z_{\tilde{D}} = & 1\tilde{x}_{1} & +2\tilde{x}_{2} & +3\tilde{x}_{3} & \\ & & & -1\tilde{x}_{1} & +3\tilde{x}_{2} & & = -5 \\ & & & & +2\tilde{x}_{1} & -1\tilde{x}_{2} & +3\tilde{x}_{3} & \leq -6 \\ & & & & +1\tilde{x}_{3} & \geq -4 \\ & & & \tilde{x}_{1} & & \leq 0 \\ & & & \tilde{x}_{2} & & \geq 0 \\ & & & \tilde{x}_{3} & \leq 0 \end{pmatrix} \tilde{x}_{2}^{\tilde{x}=-x} \begin{pmatrix} \tilde{x} = -x \\ \tilde{x} = -x \\ \tilde{x} = -x \\ \tilde{x} = -x \\ \tilde{x} = 0 \end{pmatrix}$$

Teoremes de dualitat

3. Teoria de dualitat.

- Definició i formulació del problema dual ⁽¹⁾.
- Teoremes de dualitat ⁽¹⁾.
 - * Ta. equivalència duals de la forma estàndard.
 - Ta. feble de dualitat.
 - Ta. fort de dualitat.
 - Ta. de folga complementària
- Algorisme del símplex dual.
- Aplicacions.
- (1) Bibliografia: Cap. 2 5 "Introduction to Linear Optimization", D. Bertsimas, N. Tsitsiklis

Relacions (P) - (D): teoremes de dualitat.

- Teoremes de dualitat: Estudien les relacions entre les propietats dels problemes (P) i (D).
- En ocasions usarem el fet que el dual (D) d'un problema (P) qualsevol i el dual $(D)_e$ de la seva forma estàndard $(P)_e$ son equivalents:

Teorema 8 (Ta. 4.2 B&T) : Equivalència duals forma estàndard.

Suposem que hem transformat un problema (P) a la seva forma estàndard $(P)_e$ de rang complet. Llavors els problemes duals de (P) i $(P)_e$ són equivalents en el sentit que o bé són tots dos infactibles o bé tenen el mateix cost òptim.

Demo: exercici 55.

Exemple: (*P*) min{ $x_1 + 2x_2 | 3x_1 + 4x_2 \le 5, x \ge 0$ }

Teorema feble de dualitat

Teorema 9 (Ta. 4.3 B&T): Ta. feble de dualitat.

Sigui x solució factible del problema (P), i sigui λ solució factible del problema dual (D) associat. Llavors es satisfà que

$$\lambda' b \leq c' x$$
.

Demo: pissarra

Corol·lari 9:

- i. Si (P) és il·limitat llavors (D) infactible. (**Demo:** $\nexists \lambda \in \mathbb{R}^m$: $\lambda' b \leq -\infty$)
- ii. Si (D) és il·limitat llavors (P) infactible. (**Demo:** $\exists x \in \mathbb{R}^n$: $c'x \ge +\infty$)
- iii. Siguin x i λ factibles (P) i (D) resp. tals que $\lambda'b = c'x$. Llavors x i λ òptimes. (**Demo**: trivial)
- Exemples: $\begin{cases} (P) \min\{x_1 + 2x_2 | 3x_1 + 4x_2 \le 5, x \ge 0\} \\ (P) \min\{x_1 + x_2 | x_1 + x_2 \ge 1, x \ge 0\} \end{cases}.$

Teorema fort de dualitat

Teorema 10: Ta. fort de dualitat (Von Neumann 1947, Ta. Minimax).

Si un problema de programació lineal (P) té solució òptima, el seu dual (D) també en té, i els valors respectius de la funció objectiu coincideixen.

Demo: pissarra

Exemple: (*P*) $\min\{x_1 + x_2 | x_1 + x_2 \ge 1, x \ge 0\}$.

Corol·lari 10:

i. Si $(P)_e$ de rang complet té solució llavors la solució de (D) és $\lambda^{*'} = c_B' B^{-1}$.

ii. x i λ factibles (P) i (D) resp. són òptimes sii. $\lambda'b = c'x$. (Demo: C8.iii+Ta9)

Possibles combinación (P) - (D): els Ta. de dualitat fixen la següent relació

de possibles casos:

		(D)			
Things States 1		Òptim	II ·limitat	Infactible	
	Òptim	Possible	Impossible	Impossible	
(P)	II-limitat	Impossible	Impossible	Possible	
	Infactible	Impossible	Possible	Possible	

Teorema fort de dualitat, exemple (1/2)

• Exemple: (P) i (D) amb solució òptima

$$(P) \begin{cases} \min z_P = & x_1 & +x_2 \\ \text{s.a.:} & x_1 & +2x_2 & \ge 2 & (1) \\ & x_1 & & \ge 1 & (2) \\ & x_1, & x_2 & \ge 0 \end{cases}$$

$$(D) \begin{cases} \max z_D = 2\lambda_1 + \lambda_2 \\ \text{s.a.:} & \lambda_1 + \lambda_2 \leq 1 \\ 2\lambda_1 & \leq 1 \end{cases} (2)$$

$$\lambda_1, \quad \lambda_2 \geq 0$$

Teorema fort de dualitat, exemple (2/2)

• **Exemple:** (P) il·limitat i (D) infactible

$$(P) \begin{cases} \min z_{P} = -x_{1} & -x_{2} \\ \text{s.a.:} & x_{1} & +2x_{2} \geq 2 \quad (1) \\ x_{1} & \geq 1 \quad (2) \end{cases} \qquad (D) \begin{cases} \max z_{D} = 2\lambda_{1} & +\lambda_{2} \\ \text{s.a.:} & \lambda_{1} & +\lambda_{2} \leq -1 \quad (1) \\ 2\lambda_{1} & \leq -1 \quad (2) \\ \lambda_{1}, & \lambda_{2} & \geq 0 \end{cases}$$

 Exercici: penseu i representeu gràficament les dues situacions que queden: (D) il·limitat - (P) infactible i (P) infactible - (D) infactible

Ta. de folga complementària

Teorema 11: Ta. de folga complementària (TFC).

Siguin x i λ solucions factibles de (P) i (D) respectivament.

Els vectors x i λ són solucions òptimes si i només si satisfan les condicions de folga complementària (CFC):

$$(CFC)\begin{cases} \lambda_j (a'_j x - b_j) = 0 & j = 1, 2, ..., m \\ (c_i - \lambda' A_i) x_i = 0 & i = 1, 2, ..., n \end{cases}$$

Demo: pissarra

Exemple: Calculem x^* i λ^* per al problema

$$(P)\min\left\{x_1\bigg|\begin{bmatrix}1&1\\1&0\end{bmatrix}x\geq\begin{bmatrix}1\\1/2\end{bmatrix},x\geq0\right\}.$$

Comproveu

- a) Que x^* i λ^* satisfan el TFC.
- b) Que hi ha solucions (infactibles!!) x i λ de les (CFC) que no són solucions òptimes.

TFC: Exemple (1/2)

$$(P) \begin{cases} \min & x_1 \\ \text{s.a.:} \\ (1) & x_1 + x_2 \ge 1 \\ (2) & x_1 & \ge \frac{1}{2} \\ & x_1, & x_2, & \ge 0 \end{cases}$$

$$(D) \begin{cases} \max & \lambda_1 + \frac{1}{2}\lambda_2 \\ \text{s.a.:} \\ (1) & \lambda_1 + \lambda_2 \leq 1 \\ (2) & \lambda_1 \leq 0 \\ & \lambda_1, & \lambda_2, \geq 0 \end{cases}$$

TFC: Exemple (2/2)

• Comprovem que $\mathcal{X}^* = \left\{ x^* = \begin{bmatrix} 1/2 \\ \alpha \end{bmatrix}, \alpha \ge \frac{1}{2} \right\}$ i $\lambda^* = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ són òptimes. Com que són factibles (P) i (D) serán òptimes sii:

es (P) i (D) serán òptimes sii:
$$(CFC) \begin{cases} \lambda_1(x_1 + x_2 - 1) &= 0 & (1) \\ \lambda_2\left(x_1 - \frac{1}{2}\right) &= 0 & (2) \\ (1 - \lambda_1 - \lambda_2)x_1 &= 0 & (3) \\ (-\lambda_1)x_2 &= 0 & (4) \end{cases} \begin{cases} 0 \cdot \left(\frac{1}{2} + \alpha - 1\right) &= 0 & (1) \\ 1 \cdot \left(\frac{1}{2} - \frac{1}{2}\right) &= 0 & (2) \\ (1 - 0 - 1) \cdot \frac{1}{2} &= 0 & (3) \\ 0 \cdot \alpha &= 0 & (4) \end{cases}$$

- Podem veure que, efectivament:
 - a) \mathcal{X}^* i λ^* son factibles i satisfan les CFC \Rightarrow satisfan el TFC \Rightarrow són òptimes.
 - b) Les CFC es satisfan per a tot $\alpha \in \mathbb{R} \Rightarrow$ els vectors $\mathcal{C} = \left\{ x^* = \begin{bmatrix} 1/2 \\ \alpha \end{bmatrix}, \alpha < \frac{1}{2} \right\}$ satisfan, amb $\lambda^* = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, les CFC però no són òptims (són infactibles).

Algorisme del símplex dual.

3. Teoria de dualitat.

- Definició i formulació del problema dual ⁽¹⁾.
- Teoremes de dualitat (1)
- Algorisme del símplex dual.
 - * Solucions bàsiques factibles duals del poliedre primal.
 - * Solucions bàsiques factibles primals del políedre dual.
 - Costos reduïts i DBF duals.
 - Algorisme del símplex dual (ASD).
 - Convergència de l'ASD.
- Aplicacions.
- (1) Bibliografia: Cap. 2 5 "Introduction to Linear Optimization", D. Bertsimas, N. Tsitsiklis

SBFD de P_e : definició

Def. Solució bàsica factible dual (SBFD) de $(P)_e$:

Sigui el problema de programació lineal $(P)_e$ en forma estàndard.

Direm que una solució bàsica \mathcal{B} és factible dual (SBFD) si $r_N \geq 0$.

- Si r ≥ 0 llavors pel T^a fort de dualitat sabem que λ' = c'_BB⁻¹ és una solució factible pel problema dual (D).
- Una solució bàsica factible dual pot no ser factible primal.
- Una solució bàsica factible dual i factible primal és òptima:

- Factibilitat primal:
$$x_B = B^{-1}b \ge 0$$

- Factibilitat dual:
$$r'_N = c'_N - \lambda' A_N \ge 0$$

La factibilitat primal i dual de la SB B són propietats independents:

Solució Bàsica:	Factible (D)		Infactible (D)	
Factible (P)	$x_B \ge 0$	$r_N \ge 0$	$x_B \ge 0$	$r_N \geq 0$
Infactible (P)	$x_B \geq 0$	$r_N \geq 0$	$x_B \geq 0$	$r_N \geq 0$

SBFD de P_e : exemple

Solució bàsica factible dual, exemple:

$$(P) \begin{cases} \min z_{P} = x_{1} + x_{2} \\ \text{s.a.:} & x_{1} + 2x_{2} \ge 2 \quad (1) \\ x_{1} & \ge 1 \quad (2) \end{cases} \qquad (D) \begin{cases} \max z_{D} = 2\lambda_{1} + \lambda_{2} \\ \text{s.a.:} & \lambda_{1} + \lambda_{2} \le 1 \quad (1) \\ 2\lambda_{1} & \le 1 \quad (2) \\ \lambda_{1}, & \lambda_{2} & \ge 0 \end{cases}$$

Solucións bàsiques

factibles primal: © , 臣

Solucións bàsiques

factibles dual: A, B, C, D

© solució bàsica factible

primal i dual ⇒ òptima

Pregunta: poden existir bases infactibles (P) i (D)?

SBFD de P_e i algorisme del símplex dual

- L'algorisme del símplex dual és un algorisme que permet resoldre problemes de PL en forma estàndard a partir de solucions bàsiques factibles dual basant-se en la següent estratègia:
 - a) Es determina si la SBFD actual és factible (P) ⇒ òptima.
 - b) Si la SBFD actual no és factible (P), es troba, si existeix, una SBFD adjacent a l'actual que millori el valor de la f.o. dual, i es pren aquesta com a nova solució bàsica actual.
- Interès del símplex dual:
 - Situacions on es disposa d'una SBFD infactible (P):
 - ❖ Anàlisi de sensibilitat: canvis en A i/o b.
 - Programació lineal entera (per exemple, algorisme del Branch&Bound)

SBFP de D_e : $\overline{(D)}$ en forma estàndard

• **Idea**: aplicarem el mateix desenvolupament del símplex primal a la forma estàndard **modificada** del problema (D)

$$(P)_{e} \begin{cases} \min z_{P} = & c'x \\ s.a. & Ax = b \to (D) \end{cases} \begin{cases} \max z_{D} = & \lambda'b \\ s.a. & A'\lambda \leq c \end{cases}$$

$$\Rightarrow (D) \begin{cases} \min -z_D = -\lambda' b \\ s. a. & A'\lambda + I_n r = c \\ r \ge 0 \\ \lambda \text{ lliure} \end{cases}$$

$$\Rightarrow (D)_e \begin{cases} \min -z_D = & -b'\lambda \\ s. a. & [A' \quad I_n] \begin{bmatrix} \lambda \\ r \end{bmatrix} = c \\ r \ge 0 \end{cases}$$

SBFP de D_e : definició del políedre estàndard D_e

- Considerem ara la base $\mathcal B$ associada a una SBFD de $(P)_e$ (no necessàriament factible primal).
- \mathcal{B} SBFD $\Rightarrow r'_N = c'_N c'_B B^{-1} A_N \ge 0$

Def.: partició de les constriccions duals induïda per la base primal ${\mathcal B}$:

$$\begin{bmatrix} A' & I_n \end{bmatrix} \begin{bmatrix} \lambda \\ r \end{bmatrix} = \begin{matrix} \mathcal{B} \to \begin{bmatrix} B' & 0 & I_m \\ A'_N & I_{n-m} & 0 \end{bmatrix} \begin{bmatrix} \lambda \\ r_N \\ r_B \end{bmatrix} = \overbrace{\begin{bmatrix} B' & 0 \\ A_{N'} & I_{n-m} \end{bmatrix}}^{B_D} \overbrace{\begin{bmatrix} \lambda \\ r_N \end{bmatrix}}^{y_B} + \begin{bmatrix} I_m \\ 0 \end{bmatrix}^{y_N} \widehat{r_B} = \begin{bmatrix} c_B \\ c_N \end{bmatrix}$$
(1)

Def.: solució dual y associada a una SBFD de $(P)_e$:

Solució de (1) amb
$$r_B=[0]$$
: $y_B=\begin{bmatrix}\lambda\\r_N\end{bmatrix}\in\mathbb{R}^n$, $y_N=r_B=[0]\in\mathbb{R}^m$

• Veurem que $y' = [y'_B \ y'_N]$ és una SBF del políedre dual en forma estàndard:

$$D_e = \left\{ y = \begin{bmatrix} \lambda \\ r \end{bmatrix} \in \mathbb{R}^{n+m} \mid [A' \quad I_n] \begin{bmatrix} \lambda \\ r \end{bmatrix} = c , r \ge 0 \right\}$$

Com que D_e està en forma estàndard modificada, necessitem una definició alternativa de SBF.

SBFP de D_e: definició

Definició alternativa de SBF (def. 2.9 B&T):

El vector $x \in P \subset \mathbb{R}^n$ és una solució bàsica factible del políedre $P \Leftrightarrow$ hi ha almenys n constriccions actives linealment independents sobre x.

Una SBF serà degenerada si hi ha més de n constriccions actives sobre x"

Comentari: és fàcil demostrar que si $P \equiv P_e$ aquesta definició coincideix amb la vista al tema 1 (**exercici**).

Proposició 12: SBF del políedre dual.

La solució dual y associada a una SBFD de $(P)_e$ és una SBF del políedre dual D_e amb matriu bàsica $B_D = \begin{bmatrix} B' & 0 \\ A_{N}' & I_{n-m} \end{bmatrix}$.

Demo: pissarra

Símplex dual: costos reduïts duals

- Es tracta ara de reproduir la passa del símplex primal aplicada a la resolució del problema dual **amb** D_e **no degenerat** a partir de la SBF de $(D)_e$ $y' = [\lambda' \quad r'_N \quad 0]$:
- Costos reduïts duals:

$$- y_B' = \begin{bmatrix} \lambda' & r_N' \end{bmatrix}, b_B' = \begin{bmatrix} -b' & 0 \end{bmatrix}, B_D^{-1} = \begin{bmatrix} B^{-T} & 0 \\ -A_N' B^{-T} & I_{n-m} \end{bmatrix}, B^{-T} = \begin{bmatrix} B^{-1} \end{bmatrix}^T$$

- $y_N = r_B$, $b'_N = [0]$
- Costos reduïts duals:

$$\mathbf{r}'_{D} = b'_{N} - b'_{B}B_{D}^{-1} \begin{bmatrix} I_{m} \\ 0 \end{bmatrix} = [0] - [-b' \quad 0] \begin{bmatrix} B^{-T} & 0 \\ -A'_{N}B^{-T} & I_{n-m} \end{bmatrix} \begin{bmatrix} I_{m} \\ 0 \end{bmatrix} = [b'B^{-T} \quad 0] \begin{bmatrix} I_{m} \\ 0 \end{bmatrix} = b'B^{-T} = \mathbf{x}'_{B}$$

Condició d'optimalitat de (D)_e (opt. dual) : $x_B \ge 0$ (≡ fac. primal)

Símplex dual: DBF duals.

- DBF de $(D)_e$, d_{B_D} :
 - Sigui $r_{B(p)}$ VNB dual entrant amb $x_{B(p)} < 0$

$$- d_{B_D} = \begin{bmatrix} d^{\lambda} \\ d_N^r \end{bmatrix} = -B_D^{-1} \begin{bmatrix} e_p \\ 0 \end{bmatrix} = \begin{bmatrix} -B^{-T} & 0 \\ A_N'B^{-T} & -I_{n-m} \end{bmatrix} \begin{bmatrix} e_p \\ 0 \end{bmatrix} = \begin{bmatrix} -B^{-T}e_p \\ A_N'B^{-T}e_p \end{bmatrix}$$

– Si indiquem per β_p la fila p-èssima de B^{-1} , $\beta_p=e_p'B^{-1}$:

$$d_{B_D} = \begin{bmatrix} d^{\lambda} \\ d_N^r \end{bmatrix} = \begin{bmatrix} -B^{-T} e_p \\ A_N' B^{-T} e_p \end{bmatrix} = \begin{bmatrix} -\beta_p' \\ A_N' \beta_p' \end{bmatrix} \Rightarrow \begin{cases} \boxed{d^{\lambda} = -\beta_p' \\ \boxed{d_N' = (\beta_p A_N)'}} \end{cases}$$

- d_{B_D} és direcció de descens: $[-b' \quad 0]d_{B_D} = x_{B(p)} < 0$
- Longitud de pas dual θ_D^* : passa màxima que conserva la factibilitat dual

$$- \begin{bmatrix} \lambda \\ r_N \end{bmatrix} \coloneqq \begin{bmatrix} \lambda \\ r_N \end{bmatrix} + \theta_D^* \begin{bmatrix} d^{\lambda} \\ d^r_N \end{bmatrix} \stackrel{\leq}{>} 0 \\ \geq 0 \Rightarrow \theta_D^* = \min_{\left\{j=1,\dots,n-m \mid d^r_{N_j} < 0\right\}} \left\{ \frac{-r_{N_j}}{d^r_{N_j}} \right\}$$

• Problema $(D)_e$ il·limitat: $d_{r_N} \ge 0 \Rightarrow (D)_e$ il·limitat

Algorisme del símplex dual

- **1.** Sigui la SBFD \mathcal{B} amb valors: B, x_B , r_N , c_B , c_N , A_N , z_N
- 2. Identificació de SBF òptima i selecció de la variable bàsica sortint B(p):
 - 2.1. Si $x_B \ge [0]$: la SBFD actual és factible primal \Rightarrow òptima. **STOP**. Altrament, es selecciona una VB p amb $x_{B(p)} < 0$ (VB sortint).
- 3. Càlcul de la DBF de $(D)_e$:
 - 3.1. Es calcula $d_N^r = (\beta_p A_N)'$ $(\beta_p$: fila p-èssima de B^{-1})
 - 3.2. Si $d_N^r \ge [0]$ llavors problema $(D)_e$ il·limitat $(\Rightarrow (P)_e$ infactible): STOP
- 4. Selecció de la variable no bàsica entrant q:
 - 4.1. Càlcul de $\theta_D^* = \min_{\left\{j=1,...,n-m \mid d_{N_j}^r < 0\right\}} \left\{ \frac{-r_{N_j}}{d_{N_j}^r} \right\} = \frac{-r_{N_l}}{d_{r_{N_l}}}$. Es selecciona q = N(l),

l −èssima VNB, com a VNB entrant.

- 5. Canvi de base i actualitzacions :
 - 5.2. Act. variables duals: $r_N \coloneqq r_N + \theta_D^* d_N^r$, $\lambda \coloneqq \lambda \theta_D^* \beta_p'$, $r_{B(p)} \coloneqq \theta_D^*$; $z \coloneqq z \theta_D^* x_{B(p)}$
 - 5.1. Act. variables primals: $d_B = -B^{-1}A_q$, $\theta^* = -\frac{x_{B(p)}}{d_{B(p)}}$, $x_B \coloneqq x_B + \theta^*d_B$, $x_q \coloneqq \theta^*$
 - 5.2. Act. base: $\mathcal{B} \coloneqq \mathcal{B} \setminus \{B(p)\} \cup \{q\}$, $\mathcal{N} \coloneqq \mathcal{N} \setminus \{q\} \cup \{B(p)\}$.
- 6. Anada a 2.

Algorisme del símplex dual : exemple (1/4)

Exemple: Trobeu la solució òptima del següent problema (P) aplicant l'algorisme del símplex dual com a SB inicial l'associada a x' = [0,0].

$$(P) \begin{cases} \min z = & x_1 & +x_2 \\ \text{s.a:} & x_1 & +2x_2 & \geq 2 \\ & x_1 & & \geq 1 \end{cases} \rightarrow (P)_e \begin{cases} \min z = & x_1 & +x_2 \\ \text{s.a:} & x_1 & +2x_2 & -x_3 & = 2 \\ & x_1 & & -x_4 & = 1 \\ & x_1, & x_2, & x_3, & x_4 & \geq 0 \end{cases}$$

Càlculs previs:

$$x = \begin{bmatrix} 0 \\ 0 \\ -2 \\ -1 \end{bmatrix} \to$$

$$\mathcal{B} = \{3,4\}, B = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}, B^{-1} = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}, x_B = B^{-1}b = \begin{bmatrix} -2 \\ -1 \end{bmatrix}, c_B = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\mathcal{N} = \{1,2\}, A_N = \begin{bmatrix} 1 & 2 \\ 1 & 0 \end{bmatrix}, c_N = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \lambda' = c'_B B^{-1} = [0], r'_N = c'_N - \lambda' A_N = [1 \quad 1] \ge 0$$

Algorisme del símplex dual : exemple (2/4)

- **1**^a iteració: $\mathcal{B} = \{3,4\}, \mathcal{N} = \{1,2\}$
- Identificació de SBF òptima i selecció de la VB sortint B(p):

$$x_B = \begin{bmatrix} -2 & -1 \end{bmatrix}' \ge 0 \Rightarrow p = 1, B(1) = 3 \text{ VB sortint}$$

Identificació de problema (D) il·limitat :

$$\beta_1 = e_1' B^{-1} = \begin{bmatrix} -1 & 0 \end{bmatrix}, d_N^{r'} = \beta_1 A_N = \begin{bmatrix} -1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} -1 & -2 \end{bmatrix} \not \geq 0$$

- Selecció de la VNB entrant $q: \theta_D^* = \min_{\left\{j=1, 2 \mid d_{N_j}^r < 0\right\}} \left\{\frac{-r_{N_j}}{d_{N_j}^r}\right\} = \min\left\{1, \frac{1}{2}\right\} = \frac{1}{2} \Rightarrow q = 2$
- Canvi de base i actualitzacions:

$$cong |r_N| = \begin{bmatrix} r_1 \\ r_2 \end{bmatrix} := r_N + \theta_D^* d_N^r = \begin{bmatrix} 1 \\ 1 \end{bmatrix} + \frac{1}{2} \begin{bmatrix} -1 \\ -2 \end{bmatrix} = \begin{bmatrix} 1/2 \\ 0 \end{bmatrix}, \ r_{B(1)} = r_3 := \theta_D^* = \frac{1}{2},$$

$$\circ d_B = -B^{-1}A_2 = -\begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 2 \\ 0 \end{bmatrix} = \begin{bmatrix} 2 \\ 0 \end{bmatrix}, \theta^* = -\frac{x_{B(1)}}{d_{B(1)}} = 1$$

$$\circ \quad \mathcal{B} \coloneqq \{\mathbf{2}, 4\}, \mathcal{N} \coloneqq \{1, \mathbf{3}\}, \quad B^{-1} = \begin{bmatrix} 1/2 & 0 \\ 0 & -1 \end{bmatrix}, x_B = \begin{bmatrix} 1 \\ -1 \end{bmatrix}, r_N = \begin{bmatrix} 1/2 \\ 1/2 \end{bmatrix}, \lambda = \begin{bmatrix} -1/2 \\ 0 \end{bmatrix}$$

Algorisme del símplex dual : exemple (3/4)

- **2**^a iteració: $\mathcal{B} = \{2,4\}, \mathcal{N} = \{1,3\}$
- Identificació de SBF òptima i selecció de la VB sortint B(p) :

$$x_B = \begin{bmatrix} 1 & -1 \end{bmatrix}' \ngeq 0 \Rightarrow p = 2, B(2) = 4 \text{ VB sortint}$$

Identificació de problema (D) il·limitat :

$$\beta_2 = e_2' B^{-1} = \begin{bmatrix} 0 & -1 \end{bmatrix}, d_N^{r'} = \beta_2 A_N = \begin{bmatrix} 0 & -1 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} -1 & 0 \end{bmatrix} \not \geq 0$$

- Selecció de la VNB entrant $q: \theta_D^* = \min_{\left\{j=1, 2 \mid d_{N_j}^r < 0\right\}} \left\{\frac{-r_{N_j}}{d_{N_j}^r}\right\} = \min\left\{-\frac{1/2}{-1}\right\} = \frac{1}{2} \Rightarrow q = 1$
- Canvi de base i actualitzacions:

$$constant = \begin{bmatrix} r_1 \\ r_3 \end{bmatrix} \coloneqq r_N + \theta_D^* d_N^r = \begin{bmatrix} 1/2 \\ 1/2 \end{bmatrix} + \frac{1}{2} \begin{bmatrix} -1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 1/2 \end{bmatrix}, \ r_{B(2)} = r_4 \coloneqq \theta_D^* = \frac{1}{2}$$

$$0 \quad \lambda = \begin{bmatrix} \lambda_1 \\ \lambda_2 \end{bmatrix} \coloneqq \lambda - \theta_D^* \beta_p' = \begin{bmatrix} -1/2 \\ 0 \end{bmatrix} - \frac{1}{2} \begin{bmatrix} 0 \\ -1 \end{bmatrix} = \begin{bmatrix} -1/2 \\ 1/2 \end{bmatrix}, \ z \coloneqq z - \theta_D^* x_{B(2)} = 1 - \frac{1}{2} (-1) = \frac{3}{2}$$

$$\circ \quad d_B = -B^{-1}A_1 = -\begin{bmatrix} 1/2 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} -1/2 \\ 1 \end{bmatrix}, \theta^* = -\frac{x_{B(2)}}{d_{B(2)}} = -\frac{-1}{1} = 1$$

$$\circ \quad \mathcal{B} \coloneqq \{2, \textcolor{red}{\mathbf{1}}\}, \mathcal{N} \coloneqq \{3, \textcolor{red}{\mathbf{4}}\}, \quad B^{-1} = \begin{bmatrix} 1/2 & -1/2 \\ 0 & 1 \end{bmatrix}, \\ x_B = \begin{bmatrix} 1/2 \\ 1 \end{bmatrix}, \\ x_N = \begin{bmatrix} 1/2 \\ 1/2 \end{bmatrix}, \\ \lambda = \begin{bmatrix} -1/2 \\ 1/2 \end{bmatrix}$$

Algorisme del símplex dual : exemple (4/4)

- **3a iteració:** $\mathcal{B} = \{2,1\}, \mathcal{N} = \{3,4\}$
- Identificació de SBF òptima i selecció de la VB sortint B(p) :

$$x_B = \begin{bmatrix} 1/2 \\ 1 \end{bmatrix} \ge 0 \Rightarrow \text{SBF primal i dual: optim}$$

- **Solució òptima:** $\mathcal{B}^* = \{2,1\}, \mathcal{N}^* = \{3,4\}, x_B^* = [1/2 \quad 1]', z^* = 3/2$
- Interpretació geomètrica:

Iteració 1: A → B

Iteració 2: B → C

Solucions bàsiques B degenerades duals

Def. Solució bàsica degenerada dual (SBDD) de $(P)_e$:

Sigui el problema de programació lineal $(P)_e$ en forma estàndard.

Direm que una solució bàsica \mathcal{B} és degenerada dual si $\exists j$: $r_{N(j)} = 0$.

Proposició 13:

La SB \mathcal{B} de $(P)_e$ és degenerada dual \Leftrightarrow La SB \mathcal{B}_D de $(D)_e$ associada a \mathcal{B} és degenerada primal.

• La propietat de degeneració primal-dual de la SB primal $x = B^{-1}b$ i de la seva SB dual associada $\lambda' = c_B'B^{-1}$ són simètriques:

$x = B^{-1}b$ és SB de (P)	e	$\lambda' = c_B' B^{-1}$ és SB de $(D)_e$		
degenerada dual	\Leftrightarrow	degenerada primal		
degenerada primal	\Leftrightarrow	degenerada dual		

• **Exemple**: Comprove la degeneracio dual i primal de les SB $\mathcal{B} = \{2,4\}$ i $\mathcal{B} = \{1,3\}$ de $(P) \min_{x \in \mathbb{R}^2} \{x_1 | x_1 + x_2 \ge 2; 2x_1 - 2x_2 \ge 0; x \ge 0\}$.

Algorisme del símplex dual : convergència

 Si tenim en compte que l'aplicació del l'ASD al problema (P) és equivalent a l'aplicació de l'ASP al problema (D), podem derivar de forma directe les propietats de convergència de l'ASD de les que vàrem establir per a l'ASP (Teoremes 6 i 7):

Teorema 12: convergència de l'algorisme del símplex dual

Si el problema $(P)_e$ no té cap SB degenerada dual, llavors l'algorisme del símplex dual convergeix en un nombre finit d'iteracions.

Demo: cada iteració augmenta estrictament el valor de la funció dual $\lambda'b \Rightarrow$ no es repeteix cap SBFD de $(P)_e$ i el nombre de SBFD és finit.

• Si $(P)_e$ té SB degenerades duals, tal com passava a l'ASP, la regla de Bland (entre d'altres) assegura la convergència de l'ASD.

Caracterització Completa de SB

- La degeneració dual és l'última propietat de les SB que ens quedava per establir en aquest curs.
- Així doncs, les quatre propietats, mútuament independents, que caracteritzen completament qualsevol solució bàsica són:
 - **1.** Factibilitat primal: $x_B \ge 0$. **3.** Degeneració primal: $\exists i: x_{B(i)} = 0$.
 - **2.** Factibilitat dual: $r_N \ge 0$. **4.** Degeneració dual: $\exists j: r_{N(j)} = 0$.
- **Exemple**: trobeu la caracterització completa de les SB de $(P) \min_{x \in \mathbb{R}^2} \{x_1 | x_1 + x_2 \ge 2; 2x_1 2x_2 \ge 0; x \ge 0\}.$

CCSB	Fact. (P)	Fact. (D)	Deg. (P)	Deg. (<i>D</i>)
$\mathcal{B}^1 = \{1,2\}$	V	V	Х	Х
$\mathcal{B}^2 = \{1,3\}$	Х	V	V	Х
$\mathcal{B}^3 = \{1, 4\}$	V	Х	Х	Х
$\mathcal{B}^4 = \{2,3\}$	Х	V	V	V
$\mathcal{B}^5 = \{2, 4\}$	Х	V	Х	V
$\mathcal{B}^6 = \{3, 4\}$	Х	V	V	V

Teoria de dualitat : aplicacions a teoria de jocs.

3. Teoria de dualitat.

- Definició i formulació del problema dual (1).
- Teoremes de dualitat ⁽¹⁾.
- Algorisme del símplex dual.
- Aplicacions:
 - * Teoria de jocs: jocs finits de suma zero amb dos jugadors.
 - Estratègies pures i mixtes.
 - Jugades òptimes i relació parells primal-dual.
 - Teorema minimax i relació Ta. fort de dualitat.
 - ❖ Teoria de grafs: problemes de flux màxim-tall mínim.
- (1) Bibliografia: Cap. 2 5 "Introduction to Linear Optimization", D. Bertsimas, N. Tsitsiklis

Origens de la dualitat: teoria de jocs (1/8)

- Joc finit de suma zero amb dos jugadors.
 - John von Neumann's work in the theory of games and mathematical economics. H. W. Kuhn and A. W. Tucker Bull. Amer. Math. Soc. Volume 64, Number 3, Part 2 (1958), 100-122. Permanent link: http://projecteuclid.org/euclid.bams/1183522375

- Estratègies pures jugador 1: $J_1 = \{1, 2, ..., m\}$
- Estratègies pures jugador 2: $J_2 = \{1, 2, ..., n\}$

• Matriu de guanys (J_1) / pèrdues (J_2) associades a les estratègies pures:

"payoff matrix":
$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}$$
 estratègies jugador 1

Si es produeix la jugada $(J_1,J_2)=(i,j)\Rightarrow$ el jugador 1 rep a_{ij} i el jugador 2 paga a_{ij} (joc de suma zero).

Origens de la dualitat: teoria de jocs (2/8)

• Estratègia mixta: distribució de probabilitat del conjunt d'estratègies pures (freqüència amb la que es jugarà cada estratègia):

- Jugador 1:
$$Y = \{y \in \mathbb{R}^m : \sum_{i=1}^m y_i = 1, 0 \le y_i \le 1, i = 1, ..., m\}$$

- Jugador 2:
$$X = \{x \in \mathbb{R}^n : \sum_{i=1}^n x_i = 1, 0 \le x_i \le 1, i = 1, ..., n\}$$

Valor esperat dels guanys/pèrdues associada a una estratègia mixta:

$$E[\text{guanys } J_1 = y \mid J_2 = x_i] \rightarrow \sum_{j=1}^m a_{j1} y_j \sum_{j=1}^m a_{j2} y_j \dots \sum_{j=1}^m a_{jn} y_j$$

Origens de la dualitat: teoria de jocs (3/8)

Jugada òptima jugador 1, criteri maximin :

"El jugador 1 maximitza l'esperança matemàtica del seu guany mínim"

$$z_1^* = \max_{y} \left\{ z_1(y) = \min_{i=1,\dots,n} \left\{ \sum_{j=1}^m a_{ji} y_j \right\} \right\}$$

El problema de (PL) associat a la jugada òptima del jugador 1 és:

$$\begin{cases} \max_{y,z_1} & z_1 \\ \text{s.a.:} & \sum_{j=1}^{m} a_{ji}y_j \geq z_1 & i = 1, ..., n \\ & \sum_{j=1}^{m} y_j = 1 \\ & y_j \geq 0 \quad j = 1, ..., m \end{cases}$$

Origens de la dualitat: teoria de jocs (4/8)

Jugada òptima jugador 2, criteri minimax :

"El jugador 2 minimitza l'esperança matemàtica de la seva pèrdua màxima"

$$z_2^* = \min_{x} \left\{ z_2(x) = \max_{j=1,...,m} \left\{ \sum_{i=1}^n a_{ji} x_i \right\} \right\}$$

• El problema de (PL) associat a la jugada òptima del jugador 2 és:

$$\begin{cases} \min_{x,z_2} & z_2 \\ \text{s.a.:} & \sum_{i=1}^n a_{ji} x_i \leq z_2 & j=1,...,m \\ & \sum_{i=1}^n x_i & =1 \\ & x_i & \geq 0 & i=1,...,n \end{cases}$$

Origens de la dualitat: teoria de jocs (5/8)

• Exemple: "pares o nones" amb dos dits

- Si la suma dels dits és senar, el jugador 1 rep del jugador 2 la suma dels dits en euros.
- Si la suma dels dits és parell, el jugador 1 paga al jugador 2 la suma dels dits en euros.

- Matriu de guanys
$$J_1$$
:
$$A = \begin{bmatrix} \overline{1} & \overline{2} \\ \overline{1} & \overline{2} \\ -2 & 3 \\ 3 & -4 \end{bmatrix} \quad \begin{array}{c} 1 \\ 2 \\ \end{array} \} J_1$$

- Problema maximin jugador 1: (P_1) $\begin{cases} -2y_1 + 3y_1 - 3y_1 \end{cases}$

$$\begin{cases} y, z_1 \\ s.a. \end{cases}$$

$$-2y_1 + 3y_2 \ge z_1$$

$$3y_1 - 4y_2 \ge z_1$$

$$y_1 + y_2 = 1$$

$$y_1, y_2 \ge 0$$

max

Origens de la dualitat: teoria de jocs (6/8)

max

 y_1,z_1

s.a.:

Exemple: "pares o nones" amb dos dits

Resolució del problema maximin jugador 1:

$$(P_1) \begin{cases} \max_{y_1, y_2, z_1} & z_1 \\ -2y_1 + 3y_2 & \geq z_1 \xrightarrow{y_2 = 1 - y_1} (P_1) \\ 3y_1 - 4y_2 & \geq z_1 \\ y_1 + y_2 & = 1 \\ y_1, y_2 & \geq 0 \end{cases}$$

$$z_1^* = \frac{1}{12}, y_1^* = \frac{7}{12} (y_2^* = \frac{5}{12}) - \text{La es } \text{de } \text{de$$

$$y_1 \in [0,1]$$
- La **recta** $z_1 = -5y_1 + 3$ representa el valor esperat dels beneficis de J_1 en funció del valor

esperat dels beneficis de J_1 en funció del valor de y_1 a les partides on J_2 juga l'estratègia 1.

 $-5y_1 + 3 \ge z_1 \ (J_2 = 1)$

 $7y_1 - 4 \ge z_1 \quad (J_2 = 2)$

- La **recta** $z_1 = 7y_1 4$ representa el valor esperat dels beneficis de J_1 en funció del valor de y_1 en les partides on J_2 juga l'estratègia 2.
- Per a cada valor de $y_1 \in [0,1]$:

$$\max z_1 = \min \{-5y_1 + 3, 7y_1 - 4\}.$$

 $y_1^* = \frac{7}{12} (y_2^* = \frac{5}{12})$ és el valor de y_1 on el mínim entre les dues rectes és màxim $(z_1^* = \frac{1}{12})$.

Origens de la dualitat: teoria de jocs (7/8)

• PL jugador 1:
$$(P_1)$$

$$\begin{cases} \max_{y,z_1} & z_1 \\ \text{s.a.:} & \sum_{j=1}^m a_{ji}y_j - z_1 \geq 0 \quad i = 1, ..., n \\ & \sum_{j=1}^m y_j & = 1 \\ & y_j & \geq 0 \quad j = 1, ..., m \end{cases}$$

• PL jugador 2:
$$(P_2)$$

$$\begin{cases} \min_{x,z_2} & z_2 \\ \text{s.a.:} & \sum_{i=1}^n a_{ji}x_i - z_2 \leq 0 \quad j = 1, ..., m \\ & \sum_{i=1}^n x_i & = 1 \\ & x_i & \geq 0 \quad i = 1, ..., n \end{cases}$$

• Ta. Minimax (Ta. Principal de Ta. de Jocs, von Neumann 1928⁽¹⁾):

Les estratègies òptimes y^* i x^* pels jugadors 1 i 2 existeixen i satisfan: $z_1^* = z_2^*$.

(1): Von Neumann, J: Zur Theorie der Gesellschaftsspiele Math. Annalen. 100 (1928) 295-320, DOI: 10.1007/BF01448847

Origens de la dualitat: teoria de jocs (8/8)

• Exemple 2: "pares o nones" amb tres dits

- Si la suma dels dits és senar, el jugador 1 rep del jugador 2 la suma dels dits en euros.
- Si la suma dels dits és parell, el jugador 1 paga al jugador 2 la suma dels dits en euros.
- Si ensenyen el mateix nombre de dits, hi ha empat i ningú paga

- Matriu de guanys
$$J_1$$
: $A = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \\ 0 & 3 & -4 \\ 3 & 0 & 5 \\ -4 & 5 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \\ 3 \end{bmatrix} J_1$

Estratègia òptima (AMPL):

⋄
$$J_1: y^* \approx [0.36 \quad 0.57 \quad 0.07]'; J_2: x^* \approx [0.36 \quad 0.57 \quad 0.07]'$$

 $*z_1^* = z_2^* ≈ 1,43 € > 0 ⇒ l'esperança matemàtica dels guanys del jugador 1 és estrictament positiva: el joc beneficia al jugador 1$

Teoria de dualitat : aplicacions a teoria de grafs.

3. Teoria de dualitat.

- Definició i formulació del problema dual ⁽¹⁾.
- Teoremes de dualitat ⁽¹⁾.
- Algorisme del símplex dual.
- Aplicacions:
 - * Teoria de jocs: jocs finits de suma zero.
 - Teoria de grafs: problema de flux màxim-tall mínim.
 - Problema de flux màxim.
 - Problema de tall mínim.
 - Dual del problema de flux màxim.
 - Relacions talls solucions factibles duals.
 - Teorema max flow-min cut.
- (1) Bibliografia: Cap. 2 5 "Introduction to Linear Optimization", D. Bertsimas, N. Tsitsiklis

Dualitat del Problema de flux màxim

Problema de flux màxim: el problema de flux màxim associat al graf $\mathcal{G} = (\mathcal{N}, \mathcal{A})$ amb $|\mathcal{N}| = m$ nodes, $|\mathcal{A}| = n$ arcs, capacitats u i nodes font s i pou t respectivement:

$$(PFM) \begin{cases} \max_{x \in \mathbb{R}^n, f \in \mathbb{R}} & f \\ \text{s.a.:} & \sum_{(i,j) \in \mathcal{A}} x_{ij} - \sum_{(j,i) \in \mathcal{A}} x_{ji} = \begin{cases} f & i = s \\ 0 & i \neq s, t \\ -f & i = t \end{cases} \\ x_{ij} \leq u_{ij}, (i,j) \in \mathcal{A} \\ f, x_{ij} \geq 0, (i,j) \in \mathcal{A} \end{cases}$$

Expressió matricial:

$$(PFM) \begin{cases} \max & \mathbf{f} \\ \text{s.a.:} & Ax + \mathbf{ef} = 0 \\ & x \le u \\ & \mathbf{f}, x \ge 0 \end{cases}$$

amb A matriu d'incidències nodes-arc i

$$e = [0, \dots, 0, \underbrace{-1}_{s}, 0, \dots, 0, \underbrace{+1}_{t}, 0, \dots, 0]' \in \mathbb{R}^{m}.$$

$$\mathcal{A} = \{(1,2), (1,3), (2,4), (2,6), (3,5), (4,5), (5,2), (5,6), (6,4)\}$$

$$A = \begin{bmatrix} 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ -1 & 0 & 1 & 1 & 0 & 0 & -1 & 0 & 0 \\ 0 & -1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 & 1 & 0 & 0 & -1 \\ 0 & 0 & 0 & 0 & -1 & -1 & 1 & 1 & 0 \\ 0 & 0 & 0 & -1 & 0 & 0 & 0 & -1 & 1 \end{bmatrix}$$

Problema de tall mínim

Definicions:

Tall s - t: subconjunt S del conjunt de nodes \mathcal{N} tal que $s \in S$ i $t \in \bar{S} \stackrel{\text{def}}{=} \mathcal{N} \setminus S$.

Capacitat del tall S: suma de les capacitats u_{ij} dels arc que travessen el tall des de S fins $\bar{S}: u(S) = \sum_{\{(i,j) \in \mathcal{A} | i \in S, j \in \bar{S}\}} u_{ij}$

Problema de tall mínim:

$$(PTM) \min_{\mathcal{S}} \{u(\mathcal{S}) | S \text{ tall } s-t \in \}$$

$$S = \{1, 2, 3\}$$
 $u(S) = 1 + 2 + 5 = 8$
 $S^* = \{1, 2, 3, 4, 5\}, u(S^*) = 3$

Teorema 13: relació capacitat tall S – flux S - t.

Per a tot flux factible [x' f] i tall S del (PFM) es satisfà:

a)
$$f = \sum_{\{(i,j) \in \mathcal{A} | i \in \mathcal{S}, j \in \bar{\mathcal{S}}\}} x_{ij} - \sum_{\{(i,j) \in \mathcal{A} | i \in \bar{\mathcal{S}}, j \in \mathcal{S}\}} x_{ij}$$

b) $f \leq u(S)$.

Demo: evident, en base al principi de conservació de flux als nodes.

• El Ta 13-a) sembla el Ta feble de dualitat: són (PFM) - (PTM) parell (P) - (D)?

Dual del problema de flux màxim.

Teorema 14: dual del problema de flux màxim.

El dual del problema de flux màxim associat al graf $G = (\mathcal{N}, \mathcal{A})$ amb $|\mathcal{N}| = m$ nodes, $|\mathcal{A}| = n$ arcs, capacitats u i nodes font s i pou t és:

$$(D_{PFM}) \begin{cases} \min_{\pi \in \mathbb{R}^m, \mu \in \mathbb{R}^n} & \mu' u \\ \text{s.a.:} & \pi_i - \pi_j + \mu_{ij} \ge 0 \quad (i, j) \in \mathcal{A} \\ & \pi_t - \pi_s \ge 1 \\ & \mu_{ij} \ge 0 \qquad (i, j) \in \mathcal{A} \end{cases}$$

Demo: exercici

Relació talls - solucions factibles duals.

Teorema 15: relacions talls – solucions factibles duals

i. Per a tot tall S, els vectors $\pi(S) \in \mathbb{R}^m$, $\mu(S) \in \mathbb{R}^n$ definits per:

$$\boldsymbol{\pi_i(\mathcal{S})} = \begin{cases} \alpha & i \in \mathcal{S} \\ \alpha + 1 & i \in \bar{\mathcal{S}} \end{cases}, \qquad \boldsymbol{\mu_{ij}(\mathcal{S})} = \begin{cases} 1 & i \in \mathcal{S}, j \in \bar{\mathcal{S}} \\ 0 & \text{altrament} \end{cases}, \qquad \alpha \in \mathbb{R}$$

son una solució factible del problema dual amb $\mu(S)'u = u(S)$.

ii.
$$\mathcal{U} = \bigcup_{\mathcal{S}} \left| \frac{\pi(\mathcal{S})}{\mu(\mathcal{S})} \right| \subset P_D$$
 (no tota solució factible dual té associat un tall).

Demo: exercici.

• Sabem que tot tall "és factible dual". Si demostrem que l'òptim dual "és un tall" llavors pel Ta fort de dualitat podrem assegurar que $f^* = u(S^*)$ i

$$(PTM) \equiv (D_{PFM})$$

Teorema max-flow min-cut.

Teorema 16: Max-flow min-cut theorem (Fulkerson & Dantzig 1955)

El valor màxim del flux f és igual al valor mínim de la capacitat de tall u(S).

Demo: pissarra

Interpretació:

