

## Université Abdelmalek ESSAADI (UAE) Ecole Nationale des Sciences Appliquées Al Hoceima, Maroc



Module: Analyse 3 -Fonctions de Plusieurs Variables-

Professeur A. MOUSSAID

# Devoir Libre A Rendre le 11/01/2021 A.P. 2: 2020-2021

#### EXERCICE 1 (3 pts)

Soient (E;d) un espace métrique, A un sous-ensemble non vide de E et x un élément de E. Montrer que les trois conditions suivantes sont équivalentes :

- a)  $x \in \overline{A}$
- b) d(x, A) = 0
- c) il existe une suite  $(U_n)_{n\in\mathbb{N}}$  d'éléments de A qui converge vers x

#### EXERCICE 2 (3 pts)

Soit E l'espace des fonctions réelles continues définies sur  $I = [0, \pi]$ .

On munit E de la norme ||f|| associée au produit scalaire  $\langle f, g \rangle = \int_0^{\pi} f(t)g(t)dt$ .

Montrer que la suite  $(f_n)$  de E définie par

$$f_n(0) = n$$
,  $f_n(x) = \inf(n, x^{-\frac{1}{3}})$  pour  $x > 0$ 

est une suite de Cauchy de l'espace E. l'espace E est- il complet pour cette norme ?

#### EXERCICE 3 (6 pts)

Soit  $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$  définie par:

$$f(x,y) = \begin{cases} \frac{x^2y + xy^2}{x^2 + y^2}, & \text{si } (x,y) \neq (0,0); \\ 0, & \text{si } (x,y) = (0,0) \end{cases}.$$

- 1°) La fonction f est-elle continue en  $\mathbb{R}^2$ ?
- 2°) Calculer  $\nabla f(x,y)$  pour  $(x,y) \neq (0,0)$ , calculer ensuite  $\nabla f(0,0)$
- $3^{\circ}$ ) La fonction f est-elle de classe  $\mathcal{C}^1(\mathbb{R}^2)$
- $4^{\circ}$ ) La fonction f est-elle différentiable en (0,0)

### EXERCICE 4 (4 pts)

On considère la fonction  $f: \mathbb{R}^3 \to \mathbb{R}^3$  qui est définie par

$$f(x, y, z) = (x + y^2 + z, xy^2z, x^2z + xy)$$

Justifier la différentiabilité de f, préciser sa différentielle et sa matrice jacobienne. Peut-on calculer le Jacobien de f?

#### EXERCICE 5 (4 pts)

On considère la courbe plane d'équation

$$ye^x + e^y \sin(2x) = 0 \tag{1}$$

- 1. Vérifier que l'équation (1) définie une et une seule fonction  $y = \varphi(x)$  au voisinage de (0,0).
- 2. Calculer  $\varphi'(0)$  et écrire l'équation de la droite tangente au graphe de la fonction  $\varphi$  en le point  $(0, \varphi(0))$
- 3. En déduire la limite de  $\frac{y}{x}$  quand (x,y) tend vers (0,0)

**Bon Courage**