$$PV = nRT$$

$$R = 0.08206 \frac{L \ atm}{mol \ K}$$

$$1 \ atm = 760 torr = 760 mmHg$$

$$q = m\Delta H$$

$$\pi V = nRT$$

$$\Delta T_F = \kappa_F C_{molal}$$

$$K_w = [OH^-][H_3O^+] = 1.0 \times 10^{-14}$$

$$pH = -log[H_3O^+]$$

$$pH = pK_a + log(\frac{Base}{Acid})$$

$$\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2}$$

$$q = mC\Delta T$$

$$q = m\Delta H$$

$$C_1V_1 = C_2V_2$$

$$\Delta T_B = \kappa_B C_{molal}$$

$$K_A = \frac{[H^+][A^-]}{[HA]}$$

$$[H_3O^+] = 10^{-pH}$$

$$N_{acid}V_{acid} = N_{base}V_{base}$$

Table 8.5 Melting Points, Boiling Points, Heats of Fusion, and Heats of Vaporization of Some Common Substances

Substance	Melting Point (°C)	Boiling Point (°C)	Heat of Fusion cal/g (J/g)	Heat of Vaporization cal/g (J/g)
	r onit (c)	r unit (c)		
Ammonia	−77.7	-33.4	84.0 (351)	327 (1370)
Butane	-138.4	-0.5	19.2 (80.3)	92.5 (387)
Ether	-116	34.6	23.5 (98.3)	85.6 (358)
Ethyl alcohol	-117.3	78.5	26.1 (109)	200 (837)
Isopropyl alcohol	-89.5	82.4	21.4 (89.5)	159 (665)
Sodium	97.8	883	14.3 (59.8)	492 (2060)
Water	0.0	100.0	79.7 (333)	540 (2260)

© 2017 Pearson Education, Inc.

 Table 10.2
 Relative Strengths of Acids and Conjugate Bases

		Acid		Conjugate ba	se		
ncreasing acid strength	Strong acids: 100% dissociated	acids: 100% Hydriodic acid		CIO ₄ - H ₂ SO ₄ - I - Br - CI - NO ₃ -	Perchlorate ion Hydrogen sulfate ion Iodide ion Bromide ion Chloride ion Nitrate ion	Little or no reaction as bases	Increasing base strength
		Hydronium ion	H ₃ O ⁺	H ₂ O	Water		
	Weak acids	Hydrogen sulfate ion Phosphoric acid Nitrous acid Hydrofluoric acid Acetic acid	HSO ₄ ⁻ H ₃ PO ₄ HNO ₂ HF CH ₃ COOH	$S0_4^{2-}$ $H_2P0_4^{-}$ $N0_2^{-}$ F^{-} CH_3C00^{-}	Sulfate ion Dihydrogen phosphate ion Nitrite ion Fluoride ion Acetate ion	Very weak bases	
	Very weak acids	Carbonic acid Dihydrogen phosphate ion Ammonium ion Hydrocyanic acid Bicarbonate ion Hydrogen phosphate ion	${ m H_2CO_3} \\ { m H_2PO_4}^- \\ { m NH_4}^+ \\ { m HCN} \\ { m HCO_3}^- \\ { m HPO_4}^{2-} \\ }$	HCO ₃ ⁻ HPO ₄ ²⁻ NH ₃ CN ⁻ CO ₃ ²⁻ PO ₄ ³⁻	Bicarbonate ion Hydrogen phosphate ion Ammonia Cyanide ion Carbonate ion Phosphate ion	Weak bases	
		Water	H ₂ O	OH-	Hydroxide ion	Strong base	

© 2017 Pearson Education, Inc.

Table 10.3 Some Acid Dissociation Constants, K_a , at 25 °C

Acid	K _a	Acid	K _a
Hydrofluoric acid (HF)	3.5×10^{-4}	Polyprotic acids	
Hydrocyanic acid (HCN)	4.9×10^{-10}	Sulfuric acid	
Ammonium ion $(\operatorname{NH_4}^+)$	5.6×10^{-10}	H_2SO_4	Large
		HSO_4^-	1.2×10^{-2}
Organic acids		Phosphoric acid	
Formic acid (HCOOH)	1.8×10^{-4}	H_3PO_4	7.5×10^{-3}
${\sf Aceticacid}\;({\sf CH_3COOH})$	1.8×10^{-5}	${\rm H_2PO_4}^-$	6.2×10^{-8}
Propanoic acid	1.3×10^{-5}	HP0 ₄ ²⁻	2.2×10^{-13}
(CH ₃ CH ₂ COOH)	- - -	Carbonic acid	
Ascorbic acid (vitamin C)	7.9×10^{-5}	H_2CO_3	4.3×10^{-7}
		HC0 ₃ ⁻	5.6×10^{-11}

© 2017 Pearson Education, Inc.

28 8 8 A Helium Helium 4.003	Neon 20.180	AL Argon	36	Krypton 83.798	²²	Xenon 131.294	98	Radon 222.018	118	Oganesson [294]			
17 VIIA 7A	4)			Br Bromine 79.904	53	Lodine 126.904		At Astatine 209.987	Ť	TS Tennessine [294]	71	Lutetium 174.967	LL Lawrencium [262]
16 VIA 6A	0.			Se Selenium 78.971		Tellurium 127.6		Polonium 1208,9821	116	Livermorium	ک ک	Ytterbium 173.055	Nobelium 259.101
15 VA SA	Nitrogen 14.007	Phosphorus	_	AS Arsenic 74.922	7	Antimony 121.760	83	Bismuth 208.980	Ť	Moscovium [289]	g F	Thulium 168.934	Mendelevium 258.1
44 A A A	Carbon 12.011		117	Germanium 72.631	20	Tin 118.711	П	P5 Lead 207.2	114	Flerovium (289)	8	Erbium 167.259	100 Fm Fermium 257.095
13 IIIA 3A	8 Boron 10.811	13 Aluminum	1	Gallium 69.723		Indium 114.818	81	Thallium 204.383		Nihonium (286)	67 19	Holmium 164.930	0
ents	-	12 IIB		Zinc 65.38		Cadmium 112.414		Mercury 200.592	112	Copernicium [285]	98	Dysprosium 162.500	98 Californium 251.080
Periodic Table of the Elements		1 8 8		Copper 63.546	⁷⁴	Silver 107.868		Au Gold 196.967	11	Roentgenium	\$ F	F -	Berkelium 247.070
of the		5		Nickel 58.693	9	Palladium 106.42	78	Platinum		DS Darmstadtium [281]	2 ()	Gadolinium 157.25	96 Curium 247.070
able c		6 		Cobalt 58.933	45 D L	Rhodium 102.906	11	Iridium 192.217	109	Meitnerium	63 E		Am Americium 243.061
odic Ta			56	Fe Iron 55.845	4 :	Ruthenium 101.07	92	Osmium 190.23	108	Hassium	80		0
Peric		7 VIIB	78 25	Manganese 54.938	43 1,	Technetium 98.907		Rhenium 186.207	Т	Bh Bohrium [264]	-6 -2 -2 -3		P3 Neptunium 237.048
		6 VIB	24	Chromium 51.996		Molybdenum 95.95	74	Tungsten 183.84		Seaborgium [266]	7	n Neodymium 144.243	92 Uranium 238.029
		5 VB		Vanadium 50.942		Niobium 92.906	73	Tantalum		Db Dubnium [262]	59 2	Praseodymium 140.908	Pa Protactinium 231.036
		4 IVB		Titanium 47.867		Zirconium 91.224	72	Hafnium 178.49	104	Rutherfordium [261]	88	Cerium 140.116	90 Thorium 232.038
		3 III8	38 21	Scandium 44.956	39	Yttrium 88.906	57	Lanthanum	89	ACtinium 227.028	Lanthanide	Series	Actinide Series
2 11A 2A	Beryllium 9.012	Magnesium		Calcium 40.078		Strontium 87.62		Barium 137,328		Rad ium 226.025	_		
1 A 1 Hydrogen 1.008	3 Lithium 6.941	Sodium Sodium	19	Potassium 39.098	37 DL	Rubidium 85.468	25	CS Cesium 132,905	87	Francium 223.020			