VIII. Nemzetközi Magyar Matematika Verseny

Debrecen, 1999. márc. 25-29.

10. osztály

1. feladat: Bizonyítsuk be, hogy 1997¹⁹⁹⁹ + 1999¹⁹⁹⁷ osztható 3996-tal.

Benedek Ilona (Vác)

2. feladat: Az ABCD trapéz csúcsai egy körre illeszkednek. A trapéz AD és BC szárainak meghosszabbításai az M pontban metszik egymást. A körhöz a B, illetve D pontokban húzott érintők metszéspontja N. Bizonyítsuk be, hogy MN párhuzamos AB-vel.

Neubauer Ferenc (Munkács)

3. feladat: Határozzuk meg az m valós paraméternek azokat az értékeit, amelyekre a 9mx(3x-1)(3x-2)(x-1)=1 egyenletnek négy (nem feltétlenül különböző) valós gyöke van.

Péter András (Arad)

4. feladat: Adott az ABC egyenlő oldalú háromszög belsejében a P pont úgy, hogy PA=6, PB=8, PC=12. Határozzuk meg az ABC háromszög területét.

Kántor Sándorné (Debrecen)

5. feladat: Legyenek x > 0, y > 0, z > 0 valós számok. Határozzuk meg az x, $y + \frac{1}{z}$, $z + \frac{1}{x}$ és $\frac{1}{y}$ számok legkisebbikének lehető legnagyobb értékét!

András Szilárd (Kolozsvár)

6. feladat: Hány részre osztják fel a síkot egy 1999 oldalú szabályos sokszög oldalegyenesei? $Ol\acute{a}h~Gy\ddot{o}rgy~(R\acute{e}vkom\acute{a}rom)$