ResNet

Contents

- 1. Problem
- 2. Solution
- 3. Residual block
- 4. Why resnet work
- 5. Pattern in this architecture
- 6. Comparison with plain CNN

Problem

- 1. It's Difficult to train very deep neural networks.
 - a. Time consuming
 - b. Hurts the performance
- 2. It's because of vanishing and exploding gradient problem.

Source: towardsdatascience

Solution

- 1. Performance can be enhanced by residual block
- 2. Even if we add a residual block it guarantees that it may or maynot improve the performance but it definitely won't hurt the performance
- 3. It's though skip connections:
 - a. Adds output from previous layers to layer ahead.

Source: coursera

Residual block

- 1. Add outputs of previous layers to layers ahead of that layer.
- 2. 2-layer: Adds outputs of layer x to layer x+2.
- 3. 3-layer: Adds outputs of layer x to layer x+3.
- 4. This x is add to outputs of 2nd layer before relu.

Dimension problem for residual block

- 1. Used same padding conv layers.
- 2. When dimensions of a[l] and a[l+2] are not equal(in this architecture dimensions are halved.)
- 3. A[l] is multiplied with matrix W_s . i.e z[l+2] and W_v .A[l] have same dimensions.

$$\mathbf{y} = \mathcal{F}(\mathbf{x}, \{W_i\}) + W_s \mathbf{x}.$$

Why resnet work

- 1. For residual blocks it's very easy to learn identity function.
 - a. Weights are zero and bias is zero.
 - b. With this characteristic it has a strict baseline it can output same feature maps of before or it can be a better one's.

Pattern

- 1. As we go deeper
 - a. height and width of feature maps decreases.
 - b. Number of channels increases.
- 2. When feature maps size is halved then number of channels doubled.
- 3. Skip connections are arranged in 2-layer blocks

Comparison

Source: coursera

Comparison

- 1. For plain CNN 34-layers CNN must have less error than 18-layer CNN but it's not.
- 2. While with residual blocks It's true
 - a. 18-layer Resnet performance is similar to 18-layer plain CNN
 - b. But 34-layer Resnet outperformed 34-layer plain CNN.
 - c. This shows adding more layers may improve but won't hurt the performance.

	plain	ResNet
18 layers	27.94	27.88
34 layers	28.54	25.03

Vanishing gradient:

- This problem occurs when we backprop.
- The gradients w.r.t model parameters would become smaller and smaller when we go from output layers to input layers.

3. Reason:

- a. in chain rule we multiply these derivatives right.
- So every derivative is much smaller than 1 then multiplying all would result a lower number.
- 4. This occurs mainly because of sigmoid activation function using at every layer.

Resnet:

- 1. Special in resnets/ Benefits of using resnet over other learning algorithm:
 - a. We can train large deep neural networks without hurting performance.
 - This avoids vanishing gradient problem.

2. Reason:

- While backprop gradients passes through this identity mapping. (local gradient between input and output layer is 1)
- b. Hence when multiply gradients at input layer
 - . With the help of identity mapping we could preserve the gradients till the output layer in the input layer.
- This identity mapping is used to preserve the gradient.
- During backprop we back right so while multiplying gradients(<<1) would result in much smaller value so if we have a skip connection then with deteriorating the gradient through residual mapping we can add directly to the previous layers.

SqueezeNet

Contents

- 1. Introduction
- 2. Design strategies
- 3. Fire Module
- 4. Squeezenet Architecture
- 5. Evaluation of squeezenet

Introduction

- 1. This architecture was developed by researchers at DeepScale, University of California, Berkeley, and Stanford University
- 2. Designed mainly to have a architecture with small in storage space.

Design strategies

- 1. Replace 3×3 filters with 1×1 filters
- 2. Decrease the number of input channels to 3×3 filters
- 3. Downsample late in the network so that convolution layers have large activation maps

Strategy1

3*3 conv

- **1. Input:** 28*28*192
- **2. Output:** 28*28*32
- 3. If we do with 3*3 same conv
 - a. Number of filters=32
 - **b. Filter size**=3*3*192
 - c. Padding= same
 - d. Number of operations required to produce one bit =192*9
 - e. Total number of bits= 28*28*32
 - f. Total Number of Operations= c*d=2.4M*9

1*1 conv

- **1. Input:** 28*28*192
- **2. Output:** 28*28*32
- 3. If we do with 1*1 conv
 - a. Number of filters=32
 - **b. Filter size**=1*1*192
 - c. Number of operations required to produce one bit =192
 - d. Total number of bits= 28*28*32
 - e. Total Number of Operations= c*d=2.4M

Strategy2

- 1. This strategy is used for decrease the number of computations that takes place.
- 2. This strategy is helpful because if this strategy doesn't follow then
 - a. Filter size=3*3*32
 - b. Number of operations required to produce one bit= 3*3*32
 - c. So if this 3*3 gets lesser input channels then total number operation required would become much lesser.

Using 1×1 convolution "bottlenek lage" CONV CONV 1 x 1, 5×5 \rightarrow 16, 32, $28 \times 28 \times 16$ $\rightarrow 1 \times 1 \times 192$ $5 \times 5 \times 16$ $28 \times 28 \times 32$ $28 \times 28 \times 192$ 28x28x32 x 5x5x16 = 10.0M 58×58×19 × 1d5 = 5.4W

12-4M

Fire module

- 1. Inspired from inception which is developed by google.
- 2. Squeeze Layer with 1*1 conv layers (bottleneck).
- 3. Expand layer with 1*1 and 3*3 conv layers.
- 4. In This fire module Number channels decreases and then increases.
- 5. Terminology:
 - a. s1*1: Number of 1*1 in squeeze layers
 - b. e1*1: Number of 1*1 in expand layers
 - c. e3*3: Number of 3*3 in expand layers

layer name/type	output size	filter size / stride (if not a fire layer)	depth	Slxl (#1x1 squeeze)	e _{lxl} (#1x1 expand)	e _{3x3} (#3x3 expand)	Slx1 sparsity	e _{1x1} sparsity	e _{3x3} sparsity	# bits	#parameter before pruning	#parameter after pruning
input image	224x224x3										-	
conv1	111x111x96	7x7/2 (x96)	1				100% (7x7)		6bit	14,208	14,208	
maxpool1	55x55x96	3x3/2	0									
fire2	55x55x128		2	16	64	64	100%	100%	33%	6bit	11,920	5,746
fire3	55x55x128		2	16	64	64	100%	100%	33%	6bit	12,432	6,258
fire4	55x55x256		2	32	128	128	100%	100%	33%	6bit	45,344	20,646
maxpool4	27x27x256	3x3/2	0									
fire5	27x27x256		2	32	128	128	100%	100%	33%	6bit	49,440	24,742
fire6	27x27x384		2	48	192	192	100%	50%	33%	6bit	104,880	44,700
fire7	27x27x384		2	48	192	192	50%	100%	33%	6bit	111,024	46,236
fire8	27x27x512		2	64	256	256	100%	50%	33%	6bit	188,992	77,581
maxpool8	13x12x512	3x3/2	0									
fire9	13x13x512		2	64	256	256	50%	100%	30%	6bit	197,184	77,581
conv10	13×13×1000	1×1/1 (×1000)	1				20% (3x3)		6bit	513,000	103,400	
avgpool10	1x1x1000	13x13/1	0									
	activations parameters compression info						_	1,248,424 (total)	421,098 (total)			

Squergenet: Importimage: 224×224×3 Output sof hayers: Conv1: 111×111×96 Fire 3: 128 channely (6 FATTALL: 7X7X3 Fire 4: 256 channely (1: +> depth: 10 200 fitt of Filtons: 96 max pool4: 27x27x266 Fires: 256 channely 224 10-7 +1= 111 Fireb: 3rachannely 384 channely Maxpool1: 55 x55 x96 Paret: 572 channels Stride: 343 pm Fre8: 13 X13 XF Max pool 8: 1 900 512 Toughth: 0 Fire 9: 100 CONVID: 111 -3 +1 = 55

Firez: (Fire module) (20x22x158) : - (1x1x128)x16 => 16 Featosumaps. >3(1×1)= 16 P(1x1x(b) x64=) 64 Featuremaps ac(1x1): 64 (3×3×16) × 64=) 64 featoremaps 7 e(3x3): 64

Fire3: 128 channels (64+64) Exed: 256 channel (128+128)

11+1-3+1+2 Fire 3; 128 channely (64+64) Fre4: 256 channely (128+128) max pool4: 27x27x26 down sampled after Pires= 256 channely (128+128) Fireb: 374channely (192+192) 4 Firemodule 384 channely (192+192) 572 channels (2976+2876) Paret: Fire8: 13 ×13 ×112 Max pool 8: 130 512 Channy (256+256) 1000 channels (-1×1 Como) Fireqs CONVID:

Evaluation

CNN architecture	Compression Approach	Data Type	Original → Compressed Model Size	Reduction in Model Size vs. AlexNet	Top-1 ImageNet Accuracy	Top-5 ImageNet Accuracy
AlexNet	None (baseline)	32 bit	240MB	1x	57.2%	80.3%
AlexNet	SVD (Denton et al., 2014)	32 bit	$240\text{MB} \rightarrow 48\text{MB}$	5x	56.0%	79.4%
AlexNet	Network Pruning (Han et al., 2015b)	32 bit	$240MB \rightarrow 27MB$	9x	57.2%	80.3%
AlexNet	Deep Compression (Han et al., 2015a)	5-8 bit	240MB → 6.9MB	35x	57.2%	80.3%
SqueezeNet (ours)	None	32 bit	4.8MB	50x	57.5%	80.3%
SqueezeNet (ours)	Deep Compression	8 bit	$4.8MB \rightarrow 0.66MB$	363x	57.5%	80.3%
SqueezeNet (ours)	Deep Compression	6 bit	$4.8MB \rightarrow 0.47MB$	510x	57.5%	80.3%