

北京化工大学

液压传动课程设计说明书

题 目: 多足机器人单腿结构液压系统的设计

班 级: 国机2001

学 号: 2020090007

姓 名: 蔺毅灵

指导教师: 金志明、焦志伟

国际教育学院 二O二三 年 七 月 十三 日

E 录

第一章 工况分析

第二章 计算与校核

1. 初起工作压力

2. 确定执行无件主要结构参数

3. 复算工作压力

4. 计算各缸流量

5、计算各缸功率

第三章 系统工作原理图

第四章 液压元件的选择

1. 动力无件的选择

2.控制元件的选择

3. 辅助元件的选择

第五章 设计小得

第六章 参考文献

多足机器人单腿结构液压系统

没计多数

尔统压力 10Mpa 小腿油缸总负载 $F_5 = 12 \, \text{kN}$ 速度 $870 \, \text{mm/mm}$ 大腿油缸总负载 $F_b = 16 \, \text{kN}$ 速度 $522 \, \text{mm/mm}$ 摆动油缸总负载 $T_g = 16 \, \text{N·m}$ 速度 $43.5 \, \text{r/pm}$ 摆动油缸结构尺寸 $B = 0.4 \, \text{d}$, d = 0.40 比例系统,各缸之间单独运作

二 计算与校核 确定执行无件主要多数

7. 初选工作压力PI

取压力损失为0.5 /lpa, p, = Po-0.5 = 9.5 /lpa

1.确定执行元件的主要结构参数

小腿单杆治塞缸 F= CP1-P2) × 型 1cm 由P22,取1cm: 0.90

活塞直径(缸筒内径)
$$D = \sqrt{\frac{4F}{Cp_1-p_2)}} \times \eta_{cm}$$

$$= \sqrt{\frac{4 \times 12 \times 10^3}{9.5 \cdot \pi \cdot 10^6 \cdot 0.9}} = 43.3 \text{ mm}$$

由手册P726, D 圆整为50mm 由表4-2, 活塞杆草径 d = 0.70 = 35mm 由GB/T >348-1993 圆整为3bmm

大腿单杆活塞缸

由 4.1.1
$$F = (p_1 - p_2) \times \frac{\pi p^2}{4} \eta_{cm}$$
 , 由 p_{782} , 我 $\eta_{cm} : 0.90$: 含塞直径 (缸筒内径) $D = \sqrt{\frac{4F}{(p_1 - p_2)\pi \eta_{cm}}}$ = $\sqrt{\frac{4 \times 1b \times 10^3}{9.5 \times \pi \times 10^6 \times 9}} = 48.8 mm$

由手册 P126, GB/T 2348-1993 , D 圆整为50mm 由表 4.2 , 活塞杆查径 d = 0.70 = 35mm 由 GB/T 2348-1993 圆整为36mm

摆动油缸

由
$$4.12$$
 $T = \frac{ZB}{8}(D^3 - d^3)(p_1 - p_2)\eta_{cm}$
由 $B = 0.4d$, $d = 0.40$
 $T = \frac{Z \cdot 0.160}{8}(D^3 - 0.16D^3)(p_1 - p_2)\eta_{cm}$

取叶片数量为1,代入Z=1,T=16N·m 可得紅体内孔直径 D= 48.1mm , 圆整为50mm 叶片轴直径 d= 0.4D= 20mm 叶片宽度 B= 0.4d= 8mm. 圆整为10mm

3.复算工作压力

大腿单杆活塞缸
$$P_{3} = \frac{F.4flow}{\pi D^{3}} = \frac{16 \times |0^{3} \times 4 \times 0.9}{\pi \times (0.05)^{3}} = 7.8 \text{ Mpa}$$
摆动活塞缸 $P_{3} = \frac{8T}{2B(D^{3}-d^{3})flow} = \frac{8 \times |b|}{1 \times 0.01 \times (0.05)^{3} \times 0.99} = b.8 \text{ Mpa}$
个计算各缸 流量 (取 $flow$: 0.95)
小腿活塞缸流量 $q_{1} = \frac{\pi D^{3}}{4flow} \text{ V}_{1} = \frac{\pi \times (0.05)^{3} \times 0.87}{4 \times 0.95 \times b0} = 3.0 \times |0^{-5} \text{ m}^{3}/\text{s}$

$$= 1.8 \text{ L/min}$$
大腿活塞缸流量 $q_{3} = \frac{\pi D^{3}}{4flow} \text{ V}_{3} = \frac{\pi \times 0.05^{3} \times 0.55^{2}}{4 \times 0.95 \times b0} = 1.8 \times |0^{-5} \text{ m}^{3}/\text{s}$

$$= 1.08 \text{ L/min}$$
摆动活塞缸流量 $q_{3} = \frac{2B(D^{2}-d^{3}) \text{ VV}}{8flow} = \frac{1 \times 0.01 \times (0.05^{2} - 0.05^{3}) \times 43.5 \times 37}{8 \times 0.95 \times b0}$

$$= 1.25 \times |0^{-5} \text{ m}^{3}/\text{s}$$

$$= 0.75 \text{ L/min}$$

与计算各红功率

小腿活塞缸功率 $P_1: P_1Q_1 = 5.8 \times 10^6 \cdot 3 \times 10^5 = 174 \text{ W}$ 大腿活塞缸功率 $P_2: P_3Q_3 = 7.8 \times 10^6 \cdot 1.8 \times 10^{-5} = 140 \text{ W}$ 摆动活塞缸功率 $P_3: P_3Q_3 = 6.8 \times 10^6 \cdot 1.25 \times 10^{-5} = 85 \text{ W}$

	最大负载	最大建度	关键结 构多数	工作压力	最大流量	功率
大腿红	16 KN	5) 2 mm m;n	0=50mm d=36mm	7.8MPa	1.98L/min	140 W
小腿红	13 KN	8 10 mm/min	0:50mm d:36mm	5.8mpu	1.84 min	174 W
摆功缸	IDNIM	43.5rpm	0:50mm d= 10mm B= 10mm	6.8 mpa	6.75 L/min	85W

系统工作原理图

1-小腿草杆治室缸; 2-大腿草杆治塞缸; 3-摆的油缸 4.5.6-电磁换句阀;7-比例调速阀;8-比例溢流阀 9一叶片承; 10-直动式溢流阀; 11-过滤器 12 - 油红

电磁铁功作顺序表

	动作顺序		IYA	ZYA	3YA	4YA	5YA	6YA		
-	小腿活塞缸	丁页出	+		_	-	-	_		
		停留	_	_	_	_	_	_ ′		
		退回	_	+			-	_		
	大腿 治塞缸	顶出		-	+	_	-			
		停留	-	_	_	-	_	_		
		退回	-	-	_	+	-	-		
	摆动油红	正转	_	_		- '	+	-		
		停留	_	_	_		_	_		
		反转	_			-	_	+		

四, 液压元件的选择

1. 功力元件的选择

最高工作Pp2p+Sopi > 7.8+0.5 > 8.3 Mpa

最大供油量: 取系统泄漏修正系数为1.1 9p > KEgmax

> 1.1 × 1.8 = 1.98 L/min

电动机功率 $P = \frac{P_P Q_P}{Q_P} = \frac{8.3 \times 1.98 \times 10^6 \times 10^{-3}}{0.9 \times 10^0} = 304 \text{W}$ 取转建1700 r/mm,几何排量5.8 cm/r. 9-1200×5.8×10-3-7.24mh > 90

泵选用 PV2R型单泵 . PV2RI-6-L-RAA-43,公భ排量 bcm3/v 电机送用MI-0.75-40, 功率0.75 kW > 0.304 kW

换向液 选用PSG-005新电磁模匀阀

> 设位数为3,弹簧回中,调芯型式为2,最大流量154/min > 1.84/min 最高工作压为 >5Mpa > 7.8 Mpa

DSG-005-3c2-DJ4-N-40 (手册P)88)

安全阀 是用直动式浸流阀

> 压力调节范围为 3.5~14Mpa, 最大工作流量16 L/mn ロケーロマー C-22 (手冊 P28)

造流阀 选用电一液的创先手式造流阀

压力调节范围为1.0~15.7mpa、油路阻尼孔T13 最大流量工山mín,最小流量0.3山mín,最大工作压力24.511pa EDG-01-(-PNT13-51 C分册 P548)

调速阀 选用的例源速阀

最高工作压力 20.6 MPa, 流量调节范围 0.3~10 L/min 所需最小压差 0.6 MPa

EFG-02-10-31 (4州P566)

3.辅助元件选择

取允许流速bm/s

$$d = 2\sqrt{\frac{q}{\pi [v]}} = 2\sqrt{\frac{3 \times 10^{-5}}{2.5}} : 2.5 mm$$

但总进出油口一般不小于阀块内最大油路直径

管接头

总进出油口选用不锈钢卡套管接头 18mm卡套管外径×辛的 ISO平行外螺纹 SS-18-MTA-1-12RS

AB口选用不锈钢卡瓷管接头 bmm卡套管外径×≠in ISO平行外螺纹 SS-G-MTA-1-4RS

油箱

由 6.5 V= m q p = (5~1) x 1.98 = 10~14 L 选用油箱 AT 10 LM,油箱 满客积 12 L

过滤器

选用粗过滤器 U-16×80-],公称流量 16 4min

五、没计心得

在本次液压课设中,我学到了如何没计并制造一个液压奉统。看完益明确 液压系统的全用与工况,在此基础上进行计算与校核并通出原理图。之后根 据油研予册与计算结果选择液压元件。再根据底板在三维软件中画出油 九并没计过路,最后画出霍件图与器配图进行打孔与器配。

六多考文南北

[门姜继海,宋锦春,高常汉. 液压与气压佳动[M]. 北京:高等教育出版社,2009.

[2] YUKEN 液压机器综合样本 2018 [R]. YUKEN 油研, 2018.