262 Convergences d'une suite de variables aléatoires. Théorèmes limite. Exemples et applications.

Soient $(\Omega, \mathcal{A}, \mathbb{P})$ un espace probabilisé et (X_n) une suite de vecteurs aléatoires à valeurs dans $(\mathbb{R}^d, \mathcal{B}(\mathbb{R}^d))$.

I - Premiers modes de convergence

1. Convergence presque sûre

Définition 1. On dit que (X_n) converge presque sûrement vers $X:\Omega\to\mathbb{R}^d$ si

p. 265

$$\mathbb{P}(\{\omega \in \Omega \mid X_n(\omega) \longrightarrow_{n \to +\infty} X(\omega)\}) = 1$$

On note cela $X_n \stackrel{(ps.)}{\longrightarrow} X$.

Remarque 2. La convergence presque sûre d'une suite de vecteurs aléatoires équivaut à la convergence presque sûre de chacune des composantes. Pour cette raison, on peut se limiter à l'étude du cas d = 1.

Exemple 3. Si (X_n) est telle que $\forall n \ge 1$, $\mathbb{P}(X_n = \pm \sqrt{n}) = \frac{1}{2}$, alors $\frac{1}{n^2} \sum_{k=1}^n X_k^2 \stackrel{(ps.)}{\longrightarrow} 0$.

p. 285

p. 265

Proposition 4. Si $X_n \xrightarrow{(ps.)} X$ et $Y_n \xrightarrow{(ps.)} Y$, alors :

- (i) $\forall a \in \mathbb{R}, aX_n \xrightarrow{(ps.)} aX$.
- (ii) $X_n + Y_n \xrightarrow{(ps.)} X + Y$.
- (iii) $X_n Y_n \xrightarrow{(ps.)} XY$.

Plus généralement, si $\forall n \in \mathbb{N}, X_n$ et X sont à valeurs dans E, alors $f(X_n) \xrightarrow{(ps.)} f(X)$ pour toute f fonction définie et continue sur E.

p. 272

Théorème 5 (1^{er} lemme de Borel-Cantelli). Soit (A_n) une suite d'événements. Si $\sum \mathbb{P}(A_n)$ converge, alors

$$\mathbb{P}\left(\limsup_{n\to+\infty}A_n\right)=0$$

Remarque 6. Cela signifie que presque sûrement, seul un nombre fini d'événements A_n se réalisent.

Corollaire 7. Si $\sum \mathbb{P}(|X_n - X| > \epsilon)$ converge pour tout $\epsilon > 0$, alors $X_n \xrightarrow{(ps.)} X$.

Exemple 8. Si (X_n) est telle que $\forall n \ge 1$, $\mathbb{P}(X_n = n) = \mathbb{P}(X_n = \pm n) = \frac{1}{2n^2}$ et $\mathbb{P}(X_n = 0) = 1 - \frac{1}{2n^2}$, alors la suite (S_n) définie pour tout $n \ge 1$ par $S_n = \sum_{k=1}^n X_k$ est constante à partir d'un certain rang.

p. 285

Théorème 9 (2^e lemme de Borel-Cantelli). Soit (A_n) une suite d'événements indépendants. Si $\sum \mathbb{P}(A_n)$ diverge, alors

p. 273

$$\mathbb{P}\left(\limsup_{n\to+\infty}A_n\right)=1$$

Remarque 10. Cela signifie que presque sûrement, un nombre infini d'événements A_n se réalisent.

p. 286

Exemple 11. On fait une infinité de lancers d'une pièce de monnaie équilibrée. Alors, la probabilité de l'événement "on obtient une infinité de fois deux "Face" consécutifs" est 1.

Corollaire 12 (Loi du 0-1 de Borel). Soit (A_n) une suite d'événements indépendants, alors

$$\mathbb{P}\left(\limsup_{n\to+\infty} A_n\right) = 0 \text{ ou } 1$$

et elle vaut 1 si et seulement si $\sum \mathbb{P}(A_n)$ diverge.

2. Convergence en probabilité

Définition 13. On dit que (X_n) converge en probabilité vers $X:\Omega\to\mathbb{R}^d$ si

$$\forall \epsilon, \mathbb{P}(|X_n - X| \ge \epsilon) = 0$$

On note cela $X_n \xrightarrow{(p)} X$.

p. 268

Exemple 14. On suppose que (X_n) est une suite de variables aléatoires indépendantes identiquement distribuées telle que $\mathbb{P}(X_1 = 1) = p$ et $\mathbb{P}(X_1 = 0) = 1 - p$. On définit la suite (Y_n) par

$$\forall n \ge 1, Y_n = \begin{cases} 0 \text{ si } X_k = X_{k+1} \\ 1 \text{ sinon} \end{cases}$$

et la suite (S_n) par $\forall n \ge 1$, $M_n = \frac{Y_1 + \dots + Y_n}{n}$. On a $M_n - 2p(1-p) \xrightarrow{(p)} 0$.

p. 285

Proposition 15. Si $X_n \xrightarrow{(p)} X$ et $Y_n \xrightarrow{(p)} Y$, alors:

- (i) $(X_n, Y_n) \xrightarrow{(p)} (X, Y)$.
- (ii) $X_n + Y_n \xrightarrow{(p)} X + Y$.

Théorème 16. La convergence presque sûre implique la convergence en probabilité.

Contre-exemple 17. La suite $(M_n - 2p(1-p))$ de l'Exemple 14 ne converge pas vers 0 presque sûrement.

Théorème 18. Si $X_n \xrightarrow{(p)} X$, alors il existe une sous-suite (X_{n_k}) de (X_n) telle que $X_{n_k} \xrightarrow{(ps.)} X$.

Corollaire 19. On suppose $X_n \xrightarrow{(p)} X$. Si $\forall n \in \mathbb{N}, X_n$ et X sont à valeurs dans E, alors $f(X_n) \xrightarrow{(p)} f(X)$ pour toute f fonction définie et continue sur E.

3. Lois des grands nombres

Théorème 20 (Loi faible des grands nombres). Soit (X_n) une suite de variables aléatoires deux à deux indépendantes de même loi et \mathcal{L}_1 . On pose $M_n = \frac{X_1 + \dots + X_n}{n}$. Alors,

$$M_n \xrightarrow{(p)} \mathbb{E}(X_1)$$

Théorème 21 (Loi forte des grands nombres). Soit (X_n) une suite de variables aléatoires mutuellement indépendantes de même loi. On pose $M_n = \frac{X_1 + \dots + X_n}{n}$. Alors,

$$X_1 \in \mathcal{L}_1 \iff M_n \stackrel{(ps.)}{\longrightarrow} \ell \in \mathbb{R}$$

Dans ce cas, on a $\ell = \mathbb{E}(X_1)$.

Application 22 (Théorème de Bernstein). Soit $f:[0,1] \to \mathbb{R}$ continue. On note

$$\forall n \in \mathbb{N}^*, B_n(f) : x \mapsto \sum_{k=0}^n \binom{n}{k} f\left(\frac{k}{n}\right) x^k (1-x)^{n-k}$$

le n-ième polynôme de Bernstein associé à f. Alors le suite de fonctions $(B_n(f))$ converge uniformément vers f.

p. 268

p. 285

p. 274

p. 270

[Z-Q] p. 532

p. 195

Corollaire 23 (Théorème de Weierstrass). Toute fonction continue $f : [a, b] \to \mathbb{R}$ (avec $a, b \in \mathbb{R}$ tels que $a \le b$) est limite uniforme de fonctions polynômiales sur [a, b].

II - Convergence L_p

Définition 24. On dit que (X_n) converge dans L_p vers $X: \Omega \to \mathbb{R}^d$ si

p. 268

$$\forall n \in \mathbb{N}, X_n \in L_n, X \in L_n \text{ et } \mathbb{E}(|X_n - X|^p)$$

On note cela $X_n \xrightarrow{(L_p)} X$.

[**D-L**] p. 510

Proposition 25. Comme les espaces sont de mesure finie,

$$p \geq q \implies L_p(\Omega, \mathcal{A}, \mathbb{P}) \subseteq L_q(\Omega, \mathcal{A}, \mathbb{P})$$

Corollaire 26. Pour $1 \le p \le q$, la convergence dans L_q implique la convergence dans L_p qui implique elle-même la convergence dans L_1 .

Contre-exemple 27. Si,

[**HAU**] p. 365

$$\forall n \in \mathbb{N}, \forall \omega \in \Omega, X_n(\omega) = \sqrt{n} \mathbb{1}_{\left[0, \frac{1}{n}\right]}$$

alors, (X_n) converge dans L_1 mais pas dans L_2 .

[**G-K**] p. 65

Théorème 28 (Convergence dominée). Si $X_n \xrightarrow{(ps.)} X$ et $\exists g \in L_1$ telle que $||X_n||_1 \leq g$, alors $X_n \xrightarrow{(L_1)} X$.

[**HAU**] p. 365

Contre-exemple 29. On se place dans le cas où $(\Omega, \mathcal{A}, \mathbb{P}) = ([0, 1[, \mathcal{B}([0, 1[), \lambda_{[0,1[}). \text{ Si } \forall n \ge 1, X_n = n\mathbb{1}_{]0,\frac{1}{n}[}, \text{ alors } (X_n) \text{ converge vers 0 presque sûrement, mais pas dans } L_1.$

[**G-K**] p. 265

Proposition 30. Si $X_n \xrightarrow{(L_p)} X$, alors il existe une sous-suite (X_{n_k}) de (X_n) telle que $X_{n_k} \xrightarrow{(ps.)} X$.

Théorème 31. La convergence dans L_p (pour $p \ge 1$) implique la convergence en probabilité.

Exemple 32. La convergence en probabilité de l'Exemple 14 est en fait une convergence dans L_2 .

Contre-exemple 33. Soit X une variable aléatoire de densité $f: x \mapsto e^{-x} \mathbb{I}_{\mathbb{R}^+}$. On pose $\forall n \geq 1$, $Y_n = X \mathbb{I}_{[0,n[}(X) + e^{2n} \mathbb{I}_{[n,+\infty[}(X).$ Alors (Y_n) converge vers X en probabilité, mais pas dans L_1 .

p. 281

III - Convergence en loi

1. Définition et premières propriétés

Définition 34. On dit que (X_n) converge en loi vers $X:\Omega\to\mathbb{R}^d$ si

$$\forall f \in \mathscr{C}_b(\mathbb{R}^d, \mathbb{R}), \, \mathbb{E}(f(X_n)) \longrightarrow_{n \to +\infty} \mathbb{E}(f(X))$$

On note cela $X_n \xrightarrow{(d)} X$.

p. 313

p. 295

Exemple 35. Si $\forall n \ge 1, X_n$ suit une loi uniforme sur [1, n-1], alors $\frac{X_n}{n}$ converge en loi vers la loi uniforme sur [0, 1].

p. 295

Proposition 36. Si $X_n \xrightarrow{(d)} X$ et $Y_n \xrightarrow{(d)} Y$, alors :

- (i) La limite *X* est unique.
- (ii) $\langle X_n, Y_n \rangle \xrightarrow{(d)} \langle X, Y \rangle$.

Plus généralement, si $\forall n \in \mathbb{N}$, X_n et X sont à valeurs dans E, alors $f(X_n) \xrightarrow{(d)} f(X)$ pour toute f fonction définie et continue sur E.

Théorème 37 (Lemme de Scheffé). On suppose :

- $-X_n \xrightarrow{(ps.)} X.$
- $--\lim_{n\to+\infty}\int_{\Omega}X_n\,\mathrm{d}\mathbb{P}=\int_{\Omega}X\,\mathrm{d}\mathbb{P}.$

Alors, $X_n \xrightarrow{(L_1)} X$.

Corollaire 38. On suppose:

- $\forall n \in \mathbb{N}, X_n$ admet une densité f_n .
- (f_n) converge presque partout vers une fonction f.
- Il existe une variable aléatoire *X* admettant *f* pour densité.

Alors, $X_n \xrightarrow{(d)} X$.

Corollaire 39. Si X et X_n sont des variables aléatoires à valeurs dans un ensemble dénombrable D pour tout $n \in \mathbb{N}$, en supposant

$$\forall k \in D$$
, $\mathbb{P}(X_n = k) = \mathbb{P}(X = k)$

alors $X_n \xrightarrow{(d)} X$.

Application 40. Soit, pour $n \ge 1$, une variable aléatoire X_n suivant la loi binomiale de paramètres n et p_n . On suppose que $\lim_{n\to+\infty} np_n = \lambda > 0$. Alors,

$$X_n \xrightarrow{(d)} X$$

où X suit une loi de Poisson de paramètre λ .

Théorème 41. En notant F_X la fonction de répartition d'une variable aléatoire X, on a,

$$X_n \xrightarrow{(d)} X \iff F_{X_n}(x) \longrightarrow_{n \to +\infty} F_X(x)$$

en tout point x où F_X est continue.

Théorème 42. Soit $X : \Omega \to \mathbb{R}^d$ une variable aléatoire.

- (i) Si (X_n) converge en probabilité vers X, alors (X_n) converge en loi vers X.
- (ii) Si (X_n) converge en loi vers une constante a (ou de manière équivalente, vers une masse de Dirac δ_a), alors (X_n) converge en probabilité vers a.

Contre-exemple 43. Si (X_n) est une suite de variables aléatoires indépendantes identiquement distribuées de loi $\mathcal{B}(p)$, alors (X_n) converge en loi vers $\mathcal{B}(2p(1-p))$, mais pas en probabilité.

[HAU] p. 362

p. 302

2. Théorème central limite et applications

Théorème 44 (Slutsky). Si $X_n \xrightarrow{(d)} X$ et $Y_n \xrightarrow{(d)} c$ où c est un vecteur constant, alors :

- $$\begin{split} \text{(i)} \ \ X_n + Y_n &\xrightarrow{(d)} X + c. \\ \text{(ii)} \ \ \langle X_n, Y_n \rangle &\xrightarrow{(d)} \langle X, c \rangle. \end{split}$$

[G-K] p. 305 **Notation 45.** Si X est une variable aléatoire réelle, on note ϕ_X sa fonction caractéristique.

Théorème 46 (Lévy). On suppose que (X_n) est une suite de variables aléatoires réelles et X une variable aléatoire réelle. Alors :

[**Z-Q**] p. 544

[G-K]

p. 307

$$X_n \xrightarrow{(d)} X \iff \phi_{X_n}$$
 converge simplement vers ϕ_X

[DEV]

Théorème 47 (Central limite). On suppose que (X_n) est une suite de variables aléatoires réelles indépendantes de même loi admettant un moment d'ordre 2. On note m l'espérance et σ^2 la variance commune à ces variables. On pose $S_n = X_1 + \cdots + X_n - nm$. Alors,

$$\left(\frac{S_n}{\sqrt{n}}\right) \xrightarrow{(d)} \mathcal{N}(0, \sigma^2)$$

Application 48 (Théorème de Moivre-Laplace). On suppose que (X_n) est une suite de variables aléatoires indépendantes de même loi $\mathcal{B}(p)$. Alors,

$$\frac{\sum_{k=1}^{n} X_k - np}{\sqrt{n}} \xrightarrow{(d)} \mathcal{N}(0, p(1-p))$$

Lemme 49. Soient X et Y deux variables aléatoires indépendantes telles que $X \sim \Gamma(a, \gamma)$ et $Y \sim \Gamma(b, \gamma)$. Alors $Z = X + Y \sim \Gamma(a + b, \gamma)$.

p. 180

Application 50 (Formule de Stirling).

p. 556

p. 390

$$n! \sim \sqrt{2n\pi} \left(\frac{n}{e}\right)^n$$

[DEV]

Application 51 (Théorème des événements rares de Poisson). Soit $(N_n)_{n\geq 1}$ une suite d'entiers tendant vers l'infini. On suppose que pour tout $n,A_{n,N_1},\ldots,A_{n,N_n}$ sont des événements indépendants avec $\mathbb{P}(A_{n,N_k})=p_{n,k}$. On suppose également que :

- (i) $\lim_{n\to+\infty} s_n = \lambda > 0$ où $\forall n \in \mathbb{N}$, $s_n = \sum_{k=1}^{N_n} p_{n,k}$.
- (ii) $\lim_{n\to+\infty} \sup_{k\in[1,N_n]} p_{n,k} = 0$.

Alors, la suite de variables aléatoires (S_n) définie par

$$\forall n \in \mathbb{N}^*, S_n = \sum_{k=1}^n \mathbb{1}_{A_{n,k}}$$

converge en loi vers la loi de Poisson de paramètre λ .

Annexes

FIGURE 1 – Liens entre les différents modes de convergence.

Bibliographie

Leçons pour l'agrégation de mathématiques

[**D**-L]

Maximilien Dreveton et Joachim Lhabouz. *Leçons pour l'agrégation de mathématiques. Préparation à l'oral.* Ellipses, 28 mai 2019.

https://www.editions-ellipses.fr/accueil/3543-13866-lecons-pour-lagregation-de-mathematiques-preparation-a-loral-9782340030183.html.

De l'intégration aux probabilités

[G-K]

Olivier Garet et Aline Kurtzmann. *De l'intégration aux probabilités*. 2^e éd. Ellipses, 28 mai 2019. https://www.editions-ellipses.fr/accueil/4593-14919-de-l-integration-aux-probabilites-2e-edition-augmentee-9782340030206.html.

Les Contre-Exemples en Mathématiques

[HAU]

Bertrand Hauchecorne. *Les Contre-Exemples en Mathématiques*. 2^e éd. Ellipses, 13 juin 2007. https://www.editions-ellipses.fr/accueil/5328-les-contre-exemples-en-mathematiques-9782729834180.html.

Analyse pour l'agrégation

[Z-Q]

Claude Zuily et Hervé Queffélec. *Analyse pour l'agrégation. Agrégation/Master Mathématiques.* 5° éd. Dunod, 26 août 2020.

https://www.dunod.com/prepas-concours/analyse-pour-agregation-agregationmaster-mathematiques.