Тема 9.

Линейни преобразувания и техните матрици

Определение 8.1. Нека V и W са реални векторни пространства. Изображението $f:V\to W$ се нарича линейно преобразувание на V в W, ако

$$f(x+y) = f(x) + f(y),$$
 $f(\lambda x) = \lambda f(x),$

за всеки $x, y \in V, \lambda \in \mathbb{R}$.

Двете условия за f да бъде линейно преобразувание могат да бъдат обединени в едно - да запазва линейните комбинации, т. е.

$$f(\lambda x + \mu y) = \lambda f(x) + \mu f(y), \qquad x, y \in V, \quad \lambda, \mu \in \mathbb{R}.$$

За произволно линейно преобразувание f е в сила:

$$f(o) = o, \qquad f(-x) = -f(x).$$

Ако линейното преобразувание $f:V\to W$ е взаимно еднозначно изображение, то се нарича изоморфизъм.

Определение 8.2. Множеството на векторите от W, които са образи на вектори от V чрез f, се нарича област на стойностите на f и се означава с $\operatorname{im} f$, а множеството от векторите на V, които чрез f се преобразуват в нулевия вектор на W, се нарича \mathfrak{sdpo} на f и се означава с $\ker f$, т. е.

$$\lim f = \{ y \in W \mid \exists x \in V, f(x) = y \}, \quad \ker f = \{ x \in V \mid f(x) = o \}.$$

Теорема 8.1. $\inf u \ker f$ са векторни подпространства съответно на W u V.

Определение 8.3. Числата rg(f) = dim(im f) и def(f) = dim(ker f) се наричат съответно ранг и $de\phi e\kappa m$ на линейното преобразувание f.

Теорема 8.2. $A \kappa o \ f : V \to W \ e$ линейно преобразувание, то $\operatorname{rg}(f) + \operatorname{def}(f) = \dim V$.

Нека $f:V\to W$ е линейно преобразувание, $v=\{v_1,v_2,...,v_n\}$ е база на $V,w=\{w_1,w_2,...,w_m\}$ е база на W. Тогава $f(v_1),f(v_2),...,f(v_n)$ са вектори от W и следователно се изразяват линейно чрез базата $\{w_1,w_2,...,w_m\}$ на W, т. е. са определени числата a_{ij} така че

$$f(v_1) = a_{11}w_1 + a_{21}w_2 + \dots + a_{m1}w_m,$$

$$f(v_2) = a_{12}w_1 + a_{22}w_2 + \dots + a_{m2}w_m,$$

$$f(v_n) = a_{1n}w_1 + a_{2n}w_2 + \dots + a_{mn}w_m.$$
(8.1)

Определение 8.4. Матрицата (a_{ij}) от тип $(m \times n)$, определена от (8.1), се нарича матрица на линейното преобразувание $f: V \to W$ в базите $v = \{v_1, v_2, ..., v_n\}$ и $w = \{w_1, w_2, ..., w_m\}$ и се означава с $M_{v,w}(f)$, т. е.

$$M_{v,w}(f) = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}.$$

Стълбовете на $M_{v,w}(f)$ са координатите на образите чрез f на векторите $v_1,v_2,...,v_n$ от V в базата $w_1,w_2,...,w_m$ на W.

Равенството (8.1) се записва по следния начин в матричен вид

$$f(v) = wM_{v,w}(f),$$

$$(f(v_1), f(v_2), \dots, f(v_n)) = (w_1, w_2, \dots, w_m) \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}$$

При фиксирани бази v и w на всяко линейно преобразувание $f:V\to W$ съответства еднозначно определена матрица на f. Обратното също е вярно, всяка матрица е матрица на някое линейно преобразувание относно някакви бази. Следователно можем да отъждествяваме всяко линейно преобразувание с матрицата му в дадени бази.

Ако $x(x_1, x_2, ..., x_n)$ е произволен вектор от V относно базата v, т. е.

 $x = x_1v_1 + x_2v_2 + ... + x_nv_n$, то за образа му чрез линейното преобразувание $f: V \to W$ имаме

$$f(x) = x_1 f(v_1) + x_2 f(v_2) + \dots + x_n f(v_n),$$

т. е. за намирането на образа на произволен вектор от V е достатъчно да са известни образите на базисните вектори на V. След заместване на $f(v_1),...,f(v_n)$ от (8.1) в горното равенство, установяваме, че

$$f(x) = (a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n)w_1 +$$

$$+ (a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n)w_2 + \dots +$$

$$+ (a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n)w_m.$$

Следователно

$$f(x) = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}.$$

Пример 8.1. Примери за линейни преобразувания:

Hулевото линейно преобразувание $o:V\to W,\ o(x)=o$ за всяко $x\in V.$ Относно произволни бази на V и W съответната му матрица е нулевата матрица

$$M_{v,w}(o) = O = \begin{pmatrix} 0 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & 0 \end{pmatrix}.$$

Тъждественото преобразувание (идентитетт) ід на векторното пространство V е изображение, при което ід(x) = x за всяко $x \in V$. Тогава за базисните вектори $\{v_1, ..., v_n\}$ на V е изпълнено $f(v_1) = v_1, ..., f(v_n) = v_n$. Следователно матрицата на f в произволна база на V е единичната матрица

$$M_v(\mathrm{id}) = E = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & 1 \end{pmatrix}.$$

Пример 8.2. Във физиката, геологията и кристалографията се използва т. нар. *накланящо преобразувание*. Относно естествената база $e = \{e_1(1,0), e_2(0,1)\}$ на \mathbb{R}^2 матрицата му се определя от

$$A = M_e(f) = \begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix}, \quad a \neq 0.$$

Образът на произволна точка $(x,y) \in \mathbb{R}^2$ чрез разглежданото преобразувание се получава чрез

$$\begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x + ay \\ y \end{pmatrix}.$$

Тогава при y=0 установяваме, че накланящото преобразувание запазва точките от оста Ox:

$$\begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ 0 \end{pmatrix} = \begin{pmatrix} x \\ 0 \end{pmatrix}.$$

Нека разгледаме накланящото преобразувание при a=1. На фиг. 8.1 е показано как това преобразувание действа върху единичния квадрат с върхове (0,0), (1,0), (1,1) и (0,1).

Върховете (0,0) и (1,0) се изобразяват в себе си (тъй като лежат на оста Ox).

Фиг. 8.1

При a=1 за останалите два върха на единичния квадрат имаме:

$$\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix},$$

$$\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}.$$

При произволно $a \neq 0$ ъгълът φ между Ox и образа на Oy (ъгълът на наклона) е

$$\cos \varphi = \frac{a}{\sqrt{a^2 + 1}}.$$

Пример 8.3. Нека f е линейно преобразувание на \mathbb{R}^3 , определено от

$$f(e_1) = e_1 + e_2 - e_3,$$

$$f(e_2) = -e_1 - e_2 + 2e_3,$$

$$f(e_3) = 3e_3,$$

където $e = \{e_1, e_2, e_3\}$ е база на \mathbb{R}^3 . Да се намери матрицата на f в базата e, $\operatorname{rg}(f)$, $\operatorname{def}(f)$, както и f(a), ако a(1, 0, -1) относно базата e.

Матрицата $M_e(f)$ на f в базата e се определя от

$$M_e(f) = \begin{pmatrix} 1 & -1 & 0 \\ 1 & -1 & 0 \\ -1 & 2 & 3 \end{pmatrix}.$$

Тъй като $\operatorname{rg}(f) = \dim(\operatorname{im} f)$, трябва да намерим размерността на $\operatorname{im} f$, т. е. броя на векторите в произволна база на $\operatorname{im} f$. Една база на $\operatorname{im} f$ се определя от всички линейно независими помежду си вектори от $f(e_i)$, т. е. от векторите $f(e_i)$ трябва да отделим макси-

мално линейно независима подсистема. Тъй като $\det M_e(f) = 0$, следва, че трите вектора $f(e_1), f(e_2), f(e_3)$ са линейно зависими (всъщност $f(e_3) = 3f(e_1) + 3f(e_2)$). Лесно се установява обаче, че всеки два от векторите $f(e_1), f(e_2), f(e_3)$ се линейно независими. Тогава всеки два от тях могат да служат за база на $\inf f$ и следователно $\operatorname{rg}(f) = \dim(\operatorname{im} f) = 2$.

Нека a(x,y,z) е произволен вектор от \mathbb{R}^3 . Тогава $a\in\ker f$, точно когато

$$f(a) = M_e(f)a = o = (0, 0, 0)$$
. Така получаваме

$$f(a) = \begin{pmatrix} 1 & -1 & 0 \\ 1 & -1 & 0 \\ -1 & 2 & 3 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x - y \\ x - y \\ -x + 2y + 3z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.$$

Горното матрично равенство е еквивалентно на системата

$$\begin{vmatrix} x - y = 0 \\ x - y = 0 \\ -x + 2y + 3z = 0, \end{vmatrix}$$

чиито решения са наредените тройки от вида $(x, x, -\frac{x}{3})$. Тогава

$$\ker f = \left\{ (x, x, -\frac{x}{3}) \,|\, x \in \mathbb{R} \right\}.$$

Оттук следва, че $\dim(\ker f) = 1$, т. е. $\deg(f) = 1$ (една база на $\ker f$ получаваме за всяко $x \neq 0$). Изпълнено е $\operatorname{rg}(f) + \operatorname{def}(f) = 2 + 1 = \dim \mathbb{R}^3 = 3$.

Образа на вектора а намираме по следния начин

$$f(a) = \begin{pmatrix} 1 & -1 & 0 \\ 1 & -1 & 0 \\ -1 & 2 & 3 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ -4 \end{pmatrix}.$$

Използвана литература

- 1. Д. Мекеров, Н. Начев, Ст. Миховски, Е. Павлов, Линейна алгебра и аналитична геометрия, Пловдив, 1997.
- 2. L. Hogben, Handbook of linear algebra, CRC, 2007.
- 3. D. C. Lay, *Linear algebra and its applications*, University of Maryland.
- 4. C. D. Meyer, Matrix analysis and applied linear algebra, SIAM.
- 5. G. Strang, Linear algebra and its applications, 3rd ed., MIT, 1988.