SBML Model Report

Model name: "Sarma2012 - Oscillations in MAPK cascade (S2n)"

March 18, 2013

1 General Overview

This is a document in SBML Level 2 Version 4 format. Table 1 shows an overview of the quantities of all components of this model.

Table 1: Number of components in this model, which are described in the following sections.

Element	Quantity	Element	Quantity
compartment types	0	compartments	1
species types	0	species	18
events	0	constraints	0
reactions	22	function definitions	15
global parameters	1	unit definitions	2
rules	0	initial assignments	0

Model Notes

Sarma2012 - Oscillations in MAPK cascade (S2n)

Two plausible designs (S1 and S2) of coupled positive and negative feedback loops of MAPK cascade has been described in this paper. Further these models were extended to S1n and S2n, to incorporate the nuclear-cytoplasmic translocation of the MK layer components of the cascade. This model corresponds to model S2n that comprises negative feedback from MK-PP to MKK-PP layer coupled to positive feedback from MK-PP to MKKK-PP layer, with the inclusion of nuclear-cytoplasmic translocation.

This model is described in the article:Oscillations in MAPK cascade triggered by two distinct designs of coupled positive and negative feedback loops.Sarma U, Ghosh I.BMC Res Notes. 2012 Jun 13;5:287.

Abstract:

BACKGROUND:

Feedback loops, both positive and negative are embedded in the Mitogen Activated Protein Kinase (MAPK) cascade. In the three layer MAPK cascade, both feedback loops originate from the terminal layer and their sites of action are either of the two upstream layers. Recent studies have shown that the cascade uses coupled positive and negative feedback loops in generating oscillations. Two plausible designs of coupled positive and negative feedback loops can be elucidated from the literature; in one design the positive feedback precedes the negative feedback in the direction of signal flow and vice-versa in another. But it remains unexplored how the two designs contribute towards triggering oscillations in MAPK cascade. Thus it is also not known how amplitude, frequency, robustness or nature (analogous/digital) of the oscillations would be shaped by these two designs.

RESULTS:

We built two models of MAPK cascade that exhibited oscillations as function of two underlying designs of coupled positive and negative feedback loops. Frequency, amplitude and nature (digital/analogous) of oscillations were found to be differentially determined by each design. It was observed that the positive feedback emerging from an oscillating MAPK cascade and functional in an external signal processing module can trigger oscillations in the target module, provided that the target module satisfy certain parametric requirements. The augmentation of the two models was done to incorporate the nuclear-cytoplasmic shuttling of cascade components followed by induction of a nuclear phosphatase. It revealed that the fate of oscillations in the MAPK cascade is governed by the feedback designs. Oscillations were unaffected due to nuclear compartmentalization owing to one design but were completely abolished in the other case.

CONCLUSION:

The MAPK cascade can utilize two distinct designs of coupled positive and negative feedback loops to trigger oscillations. The amplitude, frequency and robustness of the oscillations in presence or absence of nuclear compartmentalization were differentially determined by two designs of coupled positive and negative feedback loops. A positive feedback from an oscillating MAPK cascade was shown to induce oscillations in an external signal processing module, uncovering a novel regulatory aspect of MAPK signal processing.

This model is hosted on BioModels Database and identifiedby: MODEL1112190007.

To cite BioModels Database, please use: BioModels Database: An enhanced, curated and annotated resourcefor published quantitative kinetic models.

To the extent possible under law, all copyright and related orneighbouring rights to this encoded model have been dedicated to the publicdomain worldwide. Please refer to CCO Public DomainDedication for more information.

2 Unit Definitions

This is an overview of five unit definitions of which three are predefined by SBML and not mentioned in the model.

2.1 Unit volume

Name volume

Definition ml

2.2 Unit substance

Name substance

Definition nmol

2.3 Unit area

Notes Square metre is the predefined SBML unit for area since SBML Level 2 Version 1.

Definition m^2

2.4 Unit length

Notes Metre is the predefined SBML unit for length since SBML Level 2 Version 1.

Definition m

2.5 Unit time

Notes Second is the predefined SBML unit for time.

Definition s

3 Compartment

This model contains one compartment.

Table 2: Properties of all compartments.

Id	Name	SBO	Spatial Dimensions	Size	Unit	Constant	Outside
compartment_0	compartment		3	1	litre	\checkmark	

$\textbf{3.1 Compartment} \texttt{compartment}_0$

This is a three dimensional compartment with a constant size of one ml.

Name compartment

4 Species

This model contains 18 species. Section 8 provides further details and the derived rates of change of each species.

Table 3: Properties of each species.

Id	Name	Compartment	Derived Unit	Constant	Boundary
					Condi-
					tion
species_0	MKKK	${\tt compartment_0}$	$\mathrm{nmol}\cdot\mathrm{ml}^{-1}$		
species_1	$MKKK_{-}P$	${\tt compartment_0}$	$nmol \cdot ml^{-1}$		
species_2	MKK	${\tt compartment_0}$	$nmol \cdot ml^{-1}$		
species_3	MKK_{-P}	${\tt compartment_0}$	$nmol \cdot ml^{-1}$		
${ t species_4}$	MKK_PP	${\tt compartment_0}$	$nmol \cdot ml^{-1}$		
species_5	M	${\tt compartment_0}$	$nmol \cdot ml^{-1}$		
species_6	$M_{-}P$	${\tt compartment_0}$	$nmol \cdot ml^{-1}$		\Box
species_7	$M_{-}PP$	${\tt compartment_0}$	$nmol \cdot ml^{-1}$		
species_8	P1	${\tt compartment_0}$	$nmol \cdot ml^{-1}$		
species_9	P2	${\tt compartment_0}$	$nmol \cdot ml^{-1}$		
species_10	P3	${\tt compartment_0}$	$nmol \cdot ml^{-1}$		
species_11	M_PP_n	${\tt compartment_0}$	$nmol \cdot ml^{-1}$		
species_12	PreP3_mRNA	${\tt compartment_0}$	$nmol \cdot ml^{-1}$		
species_13	P3mRNA	${\tt compartment_0}$	$nmol \cdot ml^{-1}$		
species_14	P3_c	${\tt compartment_0}$	$nmol \cdot ml^{-1}$		
species_15	P3_n	${\tt compartment_0}$	$\mathrm{nmol}\cdot\mathrm{ml}^{-1}$		
species_16	$\mathbf{M}_{-}\mathbf{n}$	${\tt compartment_0}$	$nmol \cdot ml^{-1}$		
species_17	M_P_n	${\tt compartment_0}$	$nmol \cdot ml^{-1}$		

5 Parameter

This model contains one global parameter.

Table 4: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
parameter_1	k13	0.022	

6 Function definitions

This is an overview of 15 function definitions.

6.1 Function definition function_4_1_1

Name function_4_1_1

Arguments A, K1, Ka, V1, [species_0], [species_7]

Mathematical Expression

$$\frac{\frac{\text{V1}\cdot[\text{species}_0]}{\text{K1}}}{1 + \frac{[\text{species}_0]}{\text{K1}}} \cdot \frac{1 + \frac{\text{A}\cdot[\text{species}_7]}{\text{Ka}}}{1 + \frac{[\text{species}_7]}{\text{Ka}}}$$
(1)

6.2 Function definition function_4_3_1

Name function_4_3_1

Arguments K3, KI, k3, [species_1], [species_2], [species_3], [species_7]

Mathematical Expression

$$\frac{\frac{\text{k3}\cdot[\text{species}_1]\cdot[\text{species}_2]}{\text{K3}}}{\left(1 + \frac{[\text{species}_2]}{\text{K3}} + \frac{[\text{species}_3]}{\text{K3}}\right) \cdot \left(1 + \frac{[\text{species}_7]}{\text{KI}}\right)}$$
(2)

6.3 Function definition function_4_4_1

Name function_4_4_1

Arguments K4, KI, k4, [species_1], [species_2], [species_3], [species_7]

$$\frac{\frac{\text{k4} \cdot [\text{species}_1] \cdot [\text{species}_3]}{\text{K4}}}{\left(1 + \frac{[\text{species}_2]}{\text{K4}} + \frac{[\text{species}_3]}{\text{K4}}\right) \cdot \left(1 + \frac{[\text{species}_7]}{\text{KI}}\right)}$$
(3)

6.4 Function definition function_4_7_1

Name function_4_7_1

Arguments K7, k7, [species_4], [species_5], [species_6]

Mathematical Expression

$$\frac{\frac{\text{k7} \cdot [\text{species_4}] \cdot [\text{species_5}]}{\text{K7}}}{1 + \frac{[\text{species_5}]}{\text{K7}} + \frac{[\text{species_6}]}{\text{K7}}}$$
(4)

6.5 Function definition function_4_8_1

Name function_4_8_1

Arguments K8, k8, [species_4], [species_5], [species_6]

Mathematical Expression

$$\frac{\frac{\text{k8} \cdot [\text{species_4}] \cdot [\text{species_6}]}{\text{K8}}}{1 + \frac{[\text{species_5}]}{\text{K8}} + \frac{[\text{species_6}]}{\text{K8}}}$$
(5)

6.6 Function definition function_4_2_1

Name function $_4_2_1$

Arguments K2, k2, [species_1], [species_8]

Mathematical Expression

$$\frac{\frac{\text{k2}\cdot[\text{species_8}]\cdot[\text{species_1}]}{\text{K2}}}{1 + \frac{[\text{species_1}]}{\text{K2}}}$$
(6)

6.7 Function definition function_4_5_1

Name function_4_5_1

Arguments K5, k5, [species_3], [species_4], [species_9]

$$\frac{\frac{\text{K5} \cdot [\text{species_9}] \cdot [\text{species_4}]}{\text{K5}}}{1 + \frac{[\text{species_4}]}{\text{K5}} + \frac{[\text{species_3}]}{\text{K5}}}$$
(7)

6.8 Function definition function_4_6_1

Name function_4_6_1

Arguments K6, k6, [species_3], [species_4], [species_9]

Mathematical Expression

$$\frac{\frac{\text{k6} \cdot [\text{species.9}] \cdot [\text{species.3}]}{\text{K6}}}{1 + \frac{[\text{species.4}]}{\text{K6}} + \frac{[\text{species.3}]}{\text{K6}}}$$
(8)

6.9 Function definition function_4_9_1

Name function_4_9_1

Arguments K9, k9, [species_10], [species_6], [species_7]

Mathematical Expression

$$\frac{\frac{\text{k9} \cdot [\text{species_10}] \cdot [\text{species_7}]}{\text{K9}}}{1 + \frac{[\text{species_6}]}{\text{K9}} + \frac{[\text{species_6}]}{\text{K9}}}$$
(9)

6.10 Function definition function_4_10_1

Name function_4_10_1

Arguments K10, k10, [species_10], [species_6], [species_7]

Mathematical Expression

$$\frac{\frac{\text{k10} \cdot [\text{species_10}] \cdot [\text{species_6}]}{\text{K10}}}{1 + \frac{[\text{species_7}]}{\text{K10}} + \frac{[\text{species_6}]}{\text{K10}}}$$
(10)

6.11 Function definition function_2

Name 12

Arguments V12, M_PP_n, n12, K12

Mathematical Expression

$$\frac{\text{V12} \cdot \text{M}.\text{PP}.\text{n}^{\text{n12}}}{\text{K12}^{\text{n12}} + \text{M}.\text{PP}.\text{n}^{\text{n12}}}$$
(11)

6.12 Function definition function_3

Name 15

Arguments k15, P3mRNA

$$k15 \cdot P3mRNA$$
 (12)

6.13 Function definition function_1

Name 11

Arguments k11f, ppERK_c, k11b, ppERK_n

Mathematical Expression

$$k11f \cdot ppERK_c - k11b \cdot ppERK_n$$
 (13)

6.14 Function definition function_4

Name 21

Arguments k21, P3_n, M_PP_n, K21, M_P_n, K21i

Mathematical Expression

$$\frac{\frac{k21 \cdot P3 \cdot n \cdot M \cdot PP \cdot n}{K21}}{1 + \frac{M \cdot PP \cdot n}{K21} + \frac{M \cdot P \cdot n}{K21i}}$$
(14)

6.15 Function definition function_5

Name 22

Arguments $k22, P3_n, M_P_n, K22, M_PP_n, K22i$

$$\frac{\frac{\text{k22.P3.n·M.P.n}}{\text{K22}}}{1 + \frac{\text{M.P.n}}{\text{K22}} + \frac{\text{M.PP.n}}{\text{K22i}}}$$
(15)

10

7 Reactions

This model contains 22 reactions. All reactions are listed in the following table and are subsequently described in detail. If a reaction is affected by a modifier, the identifier of this species is written above the reaction arrow.

Table 5: Overview of all reactions

		Tuble 3. 6 ver view 6	31 dil Tedetions	_
N₀	Id	Name	Reaction Equation SBO	_
1	reaction_0	1	species_0 species_0, species_0, species_0, species_0 species_7 species_0	ecies_1
2	reaction_1	3	species_2 species_1, species_3, species_7, species_1, species_2, sp	pecies_3, species_7, sp
3	reaction_2	4	species_3 species_1, species_2, species_7, species_1, species_2, species_2, species_3	pecies_3, species_7, sp
4	reaction_3	7	species_5 species_4, species_6, species_4, species_5, species_6, species_6	pecies_4, species_5, sp
5	reaction_4	8	species_6 species_4, species_5, species_4, species_5, species_6, species_6	pecies_4, species_5, sp
6	reaction_5	2	species_1 species_8, species_1, species_8, species_1, species_8 species_1	
7	reaction_6	5	species_4 species_9, species_3, species_4, species_9, sp	pecies_3, species_4, sp
8	reaction_7	6	species_3 species_9, species_4, species_3, species_4, species_9, sp	pecies_3, species_4, sp
9	reaction_8	9	species_7 species_10, species_6, species_5, species_10, species_6,	species_7, species_10
10	reaction_9	10	species_6 species_10, species_7, species_5, species_10, species_6,	
11	reaction_10	11	species_7, species_11, species_7, species_11 species_11	
12	reaction_11	12	$\emptyset \xrightarrow{\text{species}_11, \text{species}_11, \text{species}_11} \text{species}_12$	
13	reaction_12	13	species_12 species_12, species_12 species_13	
14	reaction_13	14	species_13 $\xrightarrow{\text{species}_13}$ \emptyset	
15	reaction_14	15	$\emptyset \xrightarrow{\text{species}_13, \text{ species}_13, \text{ species}_13} \text{ species}_14$	

$N_{\bar{0}}$	Id	Name	Reaction Equation	SBO
16	reaction_15	16	species_14 species_15, species_14, species_15	es_15 species_15
17	reaction_16	17	species_14 $\xrightarrow{\text{species}_14, \text{species}_14} \emptyset$	
18	reaction_17	18	species_15 $\xrightarrow{\text{species}_15, \text{species}_15} \emptyset$	
19	reaction_18	19	species_5, species_16, species_5, species_1	6 ⇒ species_16
20	reaction_19	20	species_6, species_17, species_6, species_1	
21	reaction_20	21	species_11 species_15, species_17, species_15, species	
22	reaction_21	22	species_17 species_15, species_11, species_15, species_	es_17, species_11, species_15, spec

7.1 Reaction reaction_0

This is an irreversible reaction of one reactant forming one product influenced by five modifiers.

Name 1

Reaction equation

species_0
$$\xrightarrow{\text{species}_7, \text{ species}_0, \text{ species}_7, \text{ species}_0, \text{ species}_0} \xrightarrow{\text{species}_1} \text{species}_1$$
 (16)

Reactant

Table 6: Properties of each reactant.

Id	Name	SBO
species_0	MKKK	

Modifiers

Table 7: Properties of each modifier.

Id	Name	SBO
species_7	M_PP	
species_0	MKKK	
species_7	$M_{-}PP$	
species_0	MKKK	
species_7	M_PP	

Product

Table 8: Properties of each product.

Id	Name	SBO
species_1	MKKK_P	

Kinetic Law

$$\nu_1 = vol\left(compartment_0\right) \cdot function_4_1_1\left(A, K1, Ka, V1, [species_0], [species_7]\right) \quad (17)$$

$$function_4_1_1\left(A,K1,Ka,V1,[species_0],[species_7]\right) = \frac{\frac{V1\cdot[species_0]}{K1}}{1+\frac{[species_0]}{K1}} \cdot \frac{1+\frac{A\cdot[species_7]}{Ka}}{1+\frac{[species_7]}{Ka}} \quad (18)$$

$$function_4_1_1\left(A,K1,Ka,V1,[species_0],[species_7]\right) = \frac{\frac{V1\cdot[species_0]}{K1}}{1+\frac{[species_0]}{K1}} \cdot \frac{1+\frac{A\cdot[species_7]}{Ka}}{1+\frac{[species_7]}{Ka}} \quad (19)$$

Table 9: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
A	A	100.0	\overline{Z}
K1	K1	15.0	$ \mathbf{Z} $
Ka	Ka	500.0	
V1	V1	6.0	\square

7.2 Reaction reaction_1

This is an irreversible reaction of one reactant forming one product influenced by eleven modifiers.

Name 3

Reaction equation

Reactant

Table 10: Properties of each reactant.

Id	Name	SBO
species_2	MKK	

Modifiers

Table 11: Properties of each modifier.

Id	Name	SBO
species_1	MKKK_P	
species_3	$MKK_{-}P$	

Id	Name	SBO
species_7	M_PP	
species_1	MKKK_P	
species_2	MKK	
species_3	$MKK_{-}P$	
${\tt species_7}$	M_PP	
${ t species_1}$	MKKK_P	
species_2	MKK	
species_3	MKK_P	
${\tt species_7}$	$M_{-}PP$	

Product

Table 12: Properties of each product.

Id	Name	SBO
species_3	MKK_P	

Kinetic Law

$$v_2 = \text{vol}(\text{compartment_0}) \\ \cdot \text{function_4_3_1}(\text{K3},\text{KI},\text{k3},[\text{species_1}],[\text{species_2}],[\text{species_3}],[\text{species_7}])$$
 (21)

Table 13: Properties of each parameter.

		1 1	
Id	Name	SBO Value Unit	Constant
КЗ	K3	20.0	\square
KI	KI	9.0	
k3	k3	0.1	

7.3 Reaction reaction_2

This is an irreversible reaction of one reactant forming one product influenced by eleven modifiers.

Name 4

Reaction equation

species_3 species_1, species_2, species_1, species_2, species_3, species_3, species_1, species_2, species_3, species_3, species_4, species_5, species_6, species_7, species_6, species_6, species_6, species_7, species_6, species_6, species_7, species_6, species_7, species_6, species_7, s

Reactant

Table 14: Properties of each reactant.

Id	Name	SBO
species_3	MKK_P	

Modifiers

Table 15: Properties of each modifier.

Id	Name	SBO
species_1	MKKK_P	
species_2	MKK	
${\tt species_7}$	M_PP	
${ t species_1}$	MKKK_P	
species_2	MKK	
species_3	$MKK_{-}P$	
species_7	$M_{-}PP$	
species_1	MKKK_P	
species_2	MKK	
species_3	$MKK_{-}P$	
species_7	M_PP	

Product

Table 16: Properties of each product.

Id	Name	SBO
species_4	MKK_PP	

Kinetic Law

Derived unit contains undeclared units

$$v_3 = \text{vol}(\text{compartment_0})$$

$$\cdot \text{function_4_4_1}(\text{K4}, \text{KI}, \text{k4}, [\text{species_1}], [\text{species_2}], [\text{species_3}], [\text{species_7}])$$
(25)

$$\begin{aligned} & \text{function_4_4_1} \left(\text{K4}, \text{KI}, \text{k4}, [\text{species_1}], [\text{species_2}], [\text{species_3}], [\text{species_7}] \right) \\ &= \frac{\frac{\text{k4} \cdot [\text{species_1}] \cdot [\text{species_3}]}{\text{K4}}}{\left(1 + \frac{[\text{species_2}]}{\text{K4}} + \frac{[\text{species_3}]}{\text{K4}} \right) \cdot \left(1 + \frac{[\text{species_7}]}{\text{KI}} \right)} \end{aligned} \tag{26}$$

Table 17: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
K4	K4	20.0	
KI	KI	9.0	\square
k4	k4	0.1	\checkmark

7.4 Reaction reaction_3

This is an irreversible reaction of one reactant forming one product influenced by eight modifiers.

Name 7

Reaction equation

Reactant

Table 18: Properties of each reactant.

Id	Name	SBO
species_5	M	

Modifiers

Table 19: Properties of each modifier.

Id	Name	SBO
species_4	MKK_PP	
species_6	M_P	
species_4	MKK_PP	
species_5	M	
species_6	$M_{-}P$	
species_4	MKK_PP	
species_5	M	
species_6	M_P	

Product

Table 20: Properties of each product.

Id	Name	SBO
species_6	M_P	

Kinetic Law

$$v_4 = \text{vol} (\text{compartment_0}) \cdot \text{function_4_7_1} (\text{K7}, \text{k7}, [\text{species_4}], [\text{species_5}], [\text{species_6}])$$
 (29)

$$function_4_7_1\left(K7,k7,[species_4],[species_5],[species_6]\right) = \frac{\frac{k7\cdot[species_4]\cdot[species_5]}{K7}}{1+\frac{[species_5]}{K7}+\frac{[species_6]}{K7}} \quad (30)$$

$$function_4_7_1\left(K7,k7,[species_4],[species_5],[species_6]\right) = \frac{\frac{k7\cdot[species_4]\cdot[species_5]}{K7}}{1+\frac{[species_5]}{K7}+\frac{[species_6]}{K7}} \quad (31)$$

Table 21: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
K7	K7	20.0	Ø
k7	k7	0.1	

7.5 Reaction reaction_4

This is an irreversible reaction of one reactant forming one product influenced by eight modifiers.

Name 8

Reaction equation

Reactant

Table 22: Properties of each reactant.

Id	Name	SBO
species_6	M_P	

Modifiers

Table 23: Properties of each modifier.

Id	Name	SBO
species_4	MKK_PP	
species_5	M	
species_4	MKK_PP	
species_5	M	
species_6	M_P	
species_4	MKK_PP	
species_5	M	
species_6	$M_{-}P$	

Product

Table 24: Properties of each product.

Id	Name	SBO
species_7	M_PP	

Kinetic Law

Derived unit contains undeclared units

$$v_5 = \text{vol} (\text{compartment_0}) \cdot \text{function_4_8_1} (\text{K8,k8,[species_4],[species_5],[species_6]})$$
 (33)

$$function_4_8_1 (K8, k8, [species_4], [species_5], [species_6]) = \frac{\frac{k8 \cdot [species_4] \cdot [species_6]}{K8}}{1 + \frac{[species_5]}{K8} + \frac{[species_6]}{K8}}$$
(34)

$$function_4_8_1 (K8, k8, [species_4], [species_5], [species_6]) = \frac{\frac{k8 \cdot [species_4] \cdot [species_6]}{K8}}{1 + \frac{[species_5]}{K8} + \frac{[species_6]}{K8}}$$
(35)

Table 25: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
К8	K8	20.0	
k8	k8	0.1	

7.6 Reaction reaction_5

This is an irreversible reaction of one reactant forming one product influenced by five modifiers.

Name 2

Reaction equation

Reactant

Table 26: Properties of each reactant.

Id	Name	SBO
species_1	MKKK_P	

Modifiers

Table 27: Properties of each modifier.

Id	Name	SBO
species_8	P1	
${ t species_1}$	MKKK_P	
species_8	P1	
${ t species_1}$	$MKKK_P$	
species_8	P1	

Product

Table 28: Properties of each product.

Id	Name	SBO
species_0	MKKK	

Kinetic Law

$$v_6 = \text{vol}\left(\text{compartment_0}\right) \cdot \text{function_4_2_1}\left(\text{K2},\text{k2},\left[\text{species_1}\right],\left[\text{species_8}\right]\right)$$
 (37)

$$function_4_2_1\left(K2,k2,[species_1],[species_8]\right) = \frac{\frac{k2\cdot[species_8]\cdot[species_1]}{K2}}{1+\frac{[species_1]}{K2}} \tag{38}$$

$$function_4_2_1 (K2, k2, [species_1], [species_8]) = \frac{\frac{\underline{k2} \cdot [species_8] \cdot [species_1]}{K2}}{1 + \frac{[species_1]}{K2}}$$
(39)

Table 29: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
K2	K2	100.0	\overline{Z}
k2	k2	0.1	

7.7 Reaction reaction_6

This is an irreversible reaction of one reactant forming one product influenced by eight modifiers.

Name 5

Reaction equation

Reactant

Table 30: Properties of each reactant.

Id	Name	SBO
species_4	MKK_PP	

Modifiers

Table 31: Properties of each modifier.

Id	Name	SBO
species_9	P2	
species_3	MKK_P	
species_3	MKK_P	
species_4	MKK_PP	
species_9	P2	
species_3	$MKK_{-}P$	
species_4	MKK_PP	
species_9	P2	

Product

Table 32: Properties of each product.

Id	Name	SBO
species_3	MKK_P	

Kinetic Law

$$v_7 = \text{vol}(\text{compartment_0}) \cdot \text{function_4_5_1}(\text{K5}, \text{k5}, [\text{species_3}], [\text{species_4}], [\text{species_9}])$$
 (41)

$$function_4_5_1 (K5, k5, [species_3], [species_4], [species_9]) = \frac{\frac{k5 \cdot [species_9] \cdot [species_4]}{K5}}{1 + \frac{[species_4]}{K5} + \frac{[species_3]}{K5}}$$
(42)

$$function_4_5_1 (K5, k5, [species_3], [species_4], [species_9]) = \frac{\frac{k5\cdot [species_9]\cdot [species_4]}{K5}}{1 + \frac{[species_4]}{K5} + \frac{[species_3]}{K5}}$$
(43)

Table 33: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
K5	K5	20.00	
k5	k5	0.02	\square

7.8 Reaction reaction_7

This is an irreversible reaction of one reactant forming one product influenced by eight modifiers.

Name 6

Reaction equation

Reactant

Table 34: Properties of each reactant.

Id	Name	SBO
species_3	MKK_P	

Modifiers

Table 35: Properties of each modifier.

Id	Name	SBO
species_9	P2	
species_4	MKK_PP	

Id	Name	SBO
species_3	MKK_P	
${ t species_4}$	MKK_PP	
species_9	P2	
species_3	$MKK_{-}P$	
${ t species_4}$	MKK_PP	
species_9	P2	

Product

Table 36: Properties of each product.

Id	Name	SBO
species_2	MKK	

Kinetic Law

Derived unit contains undeclared units

$$v_8 = \text{vol}(\text{compartment_0}) \cdot \text{function_4_6_1}(\text{K6}, \text{k6}, [\text{species_3}], [\text{species_4}], [\text{species_9}])$$
 (45)

$$function_4_6_1\left(K6,k6,[species_3],[species_4],[species_9]\right) = \frac{\frac{k6\cdot[species_9]\cdot[species_3]}{K6}}{1 + \frac{[species_4]}{K6} + \frac{[species_3]}{K6}} \quad (46)$$

$$function_4_6_1 (K6, k6, [species_3], [species_4], [species_9]) = \frac{\frac{k6 \cdot [species_9] \cdot [species_3]}{K6}}{1 + \frac{[species_4]}{K6} + \frac{[species_3]}{K6}}$$
(47)

Table 37: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
K6	K6	20.00	
k6	k6	0.02	

7.9 Reaction reaction_8

This is an irreversible reaction of one reactant forming one product influenced by nine modifiers.

Name 9

Reaction equation

Reactant

Table 38: Properties of each reactant.

Id	Name	SBO
species_7	M_PP	

Modifiers

Table 39: Properties of each modifier.

Id	Name	SBO
species_10	Р3	
species_6	M_P	
species_5	M	
species_10	P3	
species_6	$M_{-}P$	
species_7	$M_{-}PP$	
species_10	P3	
species_6	M_P	
species_7	M_PP	

Product

Table 40: Properties of each product.

Id	Name	SBO
species_6	M_P	

Kinetic Law

$$v_9 = \text{vol} (\text{compartment_0}) \cdot \text{function_4_9_1} (\text{K9,k9}, [\text{species_10}], [\text{species_6}], [\text{species_7}])$$
 (49)

$$function_4_9_1 (K9, k9, [species_10], [species_6], [species_7]) = \frac{\frac{k9 \cdot [species_10] \cdot [species_7]}{K9}}{1 + \frac{[species_7]}{K9} + \frac{[species_6]}{K9}}$$
(50)

$$function_4_9_1 (K9, k9, [species_10], [species_6], [species_7]) = \frac{\frac{k9 \cdot [species_10] \cdot [species_7]}{K9}}{1 + \frac{[species_7]}{K9} + \frac{[species_6]}{K9}}$$
(51)

Table 41: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
К9	K9	20.00	\overline{Z}
k9	k9	0.02	

7.10 Reaction reaction_9

This is an irreversible reaction of one reactant forming one product influenced by nine modifiers.

Name 10

Reaction equation

$$species_6 \xrightarrow{species_10, species_7, species_5, species_10, species_6, species_6, species_6, species_7} species_6 \xrightarrow{(52)}$$

Reactant

Table 42: Properties of each reactant.

Id	Name	SBO
species_6	M_P	

Modifiers

Table 43: Properties of each modifier.

Id	Name	SBO
species_10	P3	
species_7	$M_{-}PP$	
species_5	M	
species_10	P3	
species_6	$M_{-}P$	
species_7	$M_{-}PP$	
species_10	P3	
species_6	$M_{-}P$	
species_7	M_PP	

Id	Name	SBO

Product

Table 44: Properties of each product.

Id	Name	SBO
species_5	M	

Kinetic Law

Derived unit contains undeclared units

$$v_{10} = \text{vol} (\text{compartment_0}) \cdot \text{function_4_10_1} (\text{K10}, \text{k10}, [\text{species_10}], [\text{species_6}], [\text{species_7}])$$
(53)

$$function_4_10_1 \, (K10,k10,[species_10],[species_6],[species_7]) = \frac{\frac{k10\cdot[species_10]\cdot[species_6]}{K10}}{1 + \frac{[species_7]}{K10} + \frac{[species_7]}{K10}}$$

$$function_4_10_1 \ (K10,k10,[species_10],[species_6],[species_7]) = \frac{\frac{\underline{k10}\cdot[species_10]\cdot[species_6]}{K10}}{1 + \frac{[species_7]}{K10} + \frac{[species_6]}{K10}}$$
(55)

Table 45: Properties of each parameter.

		200 771 771	
Id	Name	SBO Value Unit	Constant
K10	K10	20.00	$ \overline{\mathbf{Z}} $
k10	k10	0.02	$\overline{\mathbf{Z}}$

7.11 Reaction reaction_10

This is a reversible reaction of one reactant forming one product influenced by four modifiers.

Name 11

Reaction equation

Reactant

Table 46: Properties of each reactant.

Id	Name	SBO
species_7	M_PP	

Modifiers

Table 47: Properties of each modifier.

Id	Name	SBO
species_7	$M_{-}PP$	
species_11	M_PP_n	
${\tt species_7}$	$M_{-}PP$	
${ t species_11}$	M_PP_n	

Product

Table 48: Properties of each product.

Id	Name	SBO
species_11	M_PP_n	

Kinetic Law

$$v_{11} = \text{vol} (\text{compartment_0}) \cdot \text{function_1} (\text{k11f}, [\text{species_7}], \text{k11b}, [\text{species_11}])$$
 (57)

function_1 (k11f, ppERK_c, k11b, ppERK_n) =
$$k11f \cdot ppERK_c - k11b \cdot ppERK_n$$
 (58)

function_1 (k11f,ppERK_c,k11b,ppERK_n) = k11f
$$\cdot$$
 ppERK_c - k11b \cdot ppERK_n (59)

Table 49: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
k11f	k11f	10.34	
k11b	k11b	2.86	$\overline{\mathbf{Z}}$

7.12 Reaction reaction_11

This is an irreversible reaction of no reactant forming one product influenced by three modifiers.

Name 12

Reaction equation

$$\emptyset \xrightarrow{\text{species}_11, \text{ species}_11, \text{ species}_11} \text{ species}_12$$
 (60)

Modifiers

Table 50: Properties of each modifier.

Id	Name	SBO
species_11	M_PP_n	
species_11	M_PP_n	
${\tt species_11}$	M_PP_n	

Product

Table 51: Properties of each product.

Id	Name	SBO
species_12	PreP3_mRNA	

Kinetic Law

$$v_{12} = \text{vol} \left(\text{compartment_0} \right) \cdot \text{function_2} \left(\text{V12}, [\text{species_11}], \text{n12}, \text{K12} \right)$$
 (61)

$$function_2(V12, M_PP_n, n12, K12) = \frac{V12 \cdot M_PP_n^{n12}}{K12^{n12} + M_PP_n^{n12}}$$
(62)

function_2 (V12,M_PP_n,n12,K12) =
$$\frac{V12 \cdot M_{PP_n^{n12}}}{K12^{n12} + M_{PP_n^{n12}}}$$
 (63)

Table 52: Properties of each parameter.

		1 1	
Id	Name	SBO Value Unit	Constant
V12	V12	29.24	
n12	n12	3.97	
K12	K12	169.00	\square

7.13 Reaction reaction_12

This is an irreversible reaction of one reactant forming one product influenced by two modifiers.

Name 13

Reaction equation

species_12
$$\xrightarrow{\text{species}_12, \text{ species}_12}$$
 species_13 (64)

Reactant

Table 53: Properties of each reactant.

Id	Name	SBO
species_12	PreP3_mRNA	

Modifiers

Table 54: Properties of each modifier.

Id	Name	SBO
-	PreP3_mRNA PreP3_mRNA	

Product

Table 55: Properties of each product.

Id	Name	SBO
species_13	P3mRNA	

Kinetic Law

Derived unit contains undeclared units

$$v_{13} = \text{vol}(\text{compartment_0}) \cdot \text{k1} \cdot [\text{species_12}]$$
 (65)

Table 56: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
k1	k1	0.022	

7.14 Reaction reaction_13

This is an irreversible reaction of one reactant forming no product influenced by two modifiers.

Name 14

Reaction equation

species_13
$$\xrightarrow{\text{species}_13, \text{ species}_13} \emptyset$$
 (66)

Reactant

Table 57: Properties of each reactant.

Id	Name	SBO
species_13	P3mRNA	

Modifiers

Table 58: Properties of each modifier.

Id	Name	SBO
species_13 species_13		

Kinetic Law

$$v_{14} = \text{vol} (\text{compartment_0}) \cdot \text{k1} \cdot [\text{species_13}]$$
 (67)

Table 59: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
k1	k1	0.008	

7.15 Reaction reaction_14

This is an irreversible reaction of no reactant forming one product influenced by three modifiers.

Name 15

Reaction equation

$$\emptyset \xrightarrow{\text{species}_13, \text{species}_13, \text{species}_13} \text{species}_14$$
 (68)

Modifiers

Table 60: Properties of each modifier.

Id	Name	SBO
species_13	P3mRNA	
species_13	P3mRNA	
species_13	P3mRNA	

Product

Table 61: Properties of each product.

Id	Name	SBO
species_14	P3_c	

Kinetic Law

$$v_{15} = \text{vol} \left(\text{compartment_0} \right) \cdot \text{function_3} \left(\text{k15}, [\text{species_13}] \right)$$
 (69)

Table 62: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
k15	k15	0.001	

7.16 Reaction reaction_15

This is a reversible reaction of one reactant forming one product influenced by four modifiers.

Name 16

Reaction equation

Reactant

Table 63: Properties of each reactant.

Id	Name	SBO
species_14	P3_c	

Modifiers

Table 64: Properties of each modifier.

Id	Name	SBO
species_14	P3_c	
species_15	P3_n	
species_14	$P3_c$	
${\tt species_15}$	$P3_n$	

Product

Table 65: Properties of each product.

Id	Name	SBO
species_15	P3_n	

Kinetic Law

Derived unit contains undeclared units

$$v_{16} = \text{vol} \left(\text{compartment_0} \right) \cdot \left(\text{k1} \cdot [\text{species_14}] - \text{k2} \cdot [\text{species_15}] \right)$$
 (73)

Table 66: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
k1	k1	22.56	
k2	k2	15.40	

7.17 Reaction reaction_16

This is an irreversible reaction of one reactant forming no product influenced by two modifiers.

Name 17

Reaction equation

species_14
$$\xrightarrow{\text{species}_14, \text{ species}_14} \emptyset$$
 (74)

Reactant

Table 67: Properties of each reactant.

Id	Name	SBO
species_14	P3_c	

Modifiers

Table 68: Properties of each modifier.

Id	Name	SBO
species_14	P3_c	
${\tt species_14}$	P3_c	

Kinetic Law

$$v_{17} = \text{vol}(\text{compartment_0}) \cdot \text{k1} \cdot [\text{species_14}]$$
 (75)

Table 69: Properties of each parameter.

Id	Name	SBO Value	Unit	Constant
k1	k1	$2.5 \cdot 10^{-4}$		

7.18 Reaction reaction_17

This is an irreversible reaction of one reactant forming no product influenced by two modifiers.

Name 18

Reaction equation

species_15
$$\xrightarrow{\text{species}_15, \text{ species}_15} \emptyset$$
 (76)

Reactant

Table 70: Properties of each reactant.

Id	Name	SBO
species_15	P3_n	

Modifiers

Table 71: Properties of each modifier.

Id	Name	SBO
species_15	P3_n	
species_15	P3_n	

Kinetic Law

$$v_{18} = \text{vol}(\text{compartment_0}) \cdot \text{k1} \cdot [\text{species_15}]$$
 (77)

Table 72: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
k1	k1	$2.5 \cdot 10^{-4}$	Ø

7.19 Reaction reaction_18

This is a reversible reaction of one reactant forming one product influenced by four modifiers.

Name 19

Reaction equation

Reactant

Table 73: Properties of each reactant.

Id	Name	SBO
species_5	M	

Modifiers

Table 74: Properties of each modifier.

Id	Name	SBO
species_5	M	
species_16	M_n	
species_5	M	
species_16	M_n	

Product

Table 75: Properties of each product.

Id	Name	SBO
species_16	M_n	

Kinetic Law

$$v_{19} = \text{vol}(\text{compartment_0}) \cdot (\text{k1} \cdot [\text{species_5}] - \text{k2} \cdot [\text{species_16}])$$
 (79)

Table 76: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
k1	k1	10.34	
k2	k2	2.86	

7.20 Reaction reaction_19

This is a reversible reaction of one reactant forming one product influenced by four modifiers.

Name 20

Reaction equation

Reactant

Table 77: Properties of each reactant.

Id	Name	SBO
species_6	M_P	

Modifiers

Table 78: Properties of each modifier.

Id	Name	SBO
species_6	$M_{-}P$	
species_17	M_P_n	
species_6	$M_{-}P$	
species_17	M_P_n	

Product

Table 79: Properties of each product.

Id	Name	SBO
species_17	M_P_n	

Kinetic Law

Derived unit contains undeclared units

$$v_{20} = \text{vol}(\text{compartment_0}) \cdot (\text{k1} \cdot [\text{species_6}] - \text{k2} \cdot [\text{species_17}])$$
 (81)

Table 80: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
k1	k1	10.34	
k2	k2	2.86	\square

7.21 Reaction reaction_20

This is an irreversible reaction of one reactant forming one product influenced by eight modifiers.

Name 21

Reaction equation

Reactant

Table 81: Properties of each reactant.

Id	Name	SBO
species_11	M_PP_n	

Modifiers

Table 82: Properties of each modifier.

Id	Name	SBO
species_15	P3_n	
species_17	M_P_n	
species_15	P3_n	
species_11	M_PP_n	
species_17	M_P_n	
species_15	P3_n	

Id	Name	SBO
species_11 species_17		

Product

Table 83: Properties of each product.

Id	Name	SBO
species_17	M_P_n	

Kinetic Law

Derived unit contains undeclared units

$$v_{21} = \text{vol} (\text{compartment_0}) \cdot \text{function_4} (\text{k21}, [\text{species_15}], [\text{species_11}], \text{K21}, [\text{species_17}], \text{K21i})$$
(83)

$$function_4\left(k21,P3_n,M_PP_n,K21,M_P_n,K21i\right) = \frac{\frac{k21\cdot P3_n\cdot M_PP_n}{K21}}{1+\frac{M_PP_n}{K21}+\frac{M_P_n}{K21i}} \tag{84}$$

$$function_4\left(k21,P3_n,M_PP_n,K21,M_P_n,K21i\right) = \frac{\frac{k21\cdot P3_n\cdot M_PP_n}{K21}}{1+\frac{M_PP_n}{K21}+\frac{M_PP_n}{K21i}} \tag{85}$$

Table 84: Properties of each parameter.

Id	Name	SBO Va	alue Unit	Constant
k21	k21		0.68	\square
K21	K21	1030	00.00	\mathbf{Z}
K21i	K21i	:	87.00	\mathbf{Z}

7.22 Reaction reaction_21

This is an irreversible reaction of one reactant forming one product influenced by eight modifiers.

Name 22

Reaction equation

Reactant

Table 85: Properties of each reactant.

Id	Name	SBO
species_17	M_P_n	

Modifiers

Table 86: Properties of each modifier.

Id	Name	SBO
species_15	P3_n	
species_11	M_PP_n	
species_15	P3_n	
species_17	M_P_n	
species_11	M_PP_n	
species_15	P3_n	
species_17	M_P_n	
${\tt species_11}$	M_PP_n	

Product

Table 87: Properties of each product.

Id	Name	SBO
species_16	M_n	

Kinetic Law

$$v_{22} = \text{vol} (\text{compartment_0}) \cdot \text{function_5} (\text{k22}, [\text{species_15}], [\text{species_17}], \text{K22}, [\text{species_11}], \text{K22i})$$
(87)

$$function_5\left(k22,P3_n,M_P_n,K22,M_PP_n,K22i\right) = \frac{\frac{k22\cdot P3_n\cdot M_P_n}{K22}}{1+\frac{M_P_n}{K22}+\frac{M_PP_n}{K22i}} \tag{88}$$

function_5 (k22, P3_n, M_P_n, K22, M_PP_n, K22i) =
$$\frac{\frac{k22 \cdot P3_n \cdot M_- P_- n}{K22}}{1 + \frac{M_- P_- n}{K22} + \frac{M_- PP_- n}{K22i}}$$
 (89)

Table 88: Properties of each parameter.

Id	Name	SBO Valu	ue Unit	Constant
k22	k22	(0.31	
K22	K22	87	7.00	
K22i	K22i	10300	0.00	\mathbf{Z}

8 Derived Rate Equations

When interpreted as an ordinary differential equation framework, this model implies the following set of equations for the rates of change of each species.

Identifiers for kinetic laws highlighted in gray cannot be verified to evaluate to units of SBML substance per time. As a result, some SBML interpreters may not be able to verify the consistency of the units on quantities in the model. Please check if

- parameters without an unit definition are involved or
- volume correction is necessary because the hasOnlySubstanceUnits flag may be set to false and spacialDimensions > 0 for certain species.

8.1 Species species_0

Name MKKK

Initial concentration $999.999903688753 \text{ nmol} \cdot \text{ml}^{-1}$

This species takes part in four reactions (as a reactant in reaction_0 and as a product in reaction_5 and as a modifier in reaction_0, reaction_0).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{species}_{-}0 = |v_6| - |v_1| \tag{90}$$

8.2 Species species_1

Name MKKK_P

Initial concentration $0 \text{ nmol} \cdot \text{ml}^{-1}$

This species takes part in ten reactions (as a reactant in reaction_5 and as a product in reaction_0 and as a modifier in reaction_1, reaction_1, reaction_1, reaction_2, reaction_2, reaction_5, reaction_5).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{species}_{-1} = |v_1| - |v_6| \tag{91}$$

8.3 Species species_2

Name MKK

Initial concentration 3999.9998073775 nmol·ml⁻¹

This species takes part in seven reactions (as a reactant in reaction_1 and as a product in reaction_7 and as a modifier in reaction_1, reaction_1, reaction_2, reaction_2, reaction_2).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{species.2} = |v_8| - |v_2| \tag{92}$$

8.4 Species species_3

Name MKK_P

Initial concentration $0 \text{ nmol} \cdot \text{ml}^{-1}$

This species takes part in 14 reactions (as a reactant in reaction_2, reaction_7 and as a product in reaction_1, reaction_6 and as a modifier in reaction_1, reaction_1, reaction_1, reaction_2, reaction_6, reaction_6, reaction_6, reaction_7, reaction_7).

$$\frac{d}{dt} \text{species}_{3} = |v_{2}| + |v_{7}| - |v_{3}| - |v_{8}| \tag{93}$$

8.5 Species species_4

Name MKK_PP

Initial concentration $0 \text{ nmol} \cdot \text{ml}^{-1}$

This species takes part in 13 reactions (as a reactant in reaction_6 and as a product in reaction_2 and as a modifier in reaction_3, reaction_3, reaction_3, reaction_4, reaction_4, reaction_6, reaction_6, reaction_7, reaction_7, reaction_7).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{species}_{4} = |v_{3}| - |v_{7}| \tag{94}$$

8.6 Species species_5

Name M

Initial concentration 999.999903688753 nmol·ml⁻¹

This species takes part in twelve reactions (as a reactant in reaction_3, reaction_18 and as a product in reaction_9 and as a modifier in reaction_3, reaction_4, reaction_4, reaction_4, reaction_8, reaction_9, reaction_18, reaction_18).

$$\frac{d}{dt} \text{species}_5 = |v_{10}| - |v_4| - |v_{19}| \tag{95}$$

8.7 Species species_6

Name M_P

Initial concentration $0 \text{ nmol} \cdot \text{ml}^{-1}$

This species takes part in 17 reactions (as a reactant in reaction_4, reaction_9, reaction_19 and as a product in reaction_3, reaction_8 and as a modifier in reaction_3, reaction_3, reaction_4, reaction_8, reaction_8, reaction_8, reaction_9, reaction_19, reaction_19).

$$\frac{d}{dt} \text{species}_{.6} = v_4 + v_9 - v_5 - v_{10} - v_{20}$$
 (96)

8.8 Species species_7

Name M_PP

Initial concentration 0 nmol⋅ml⁻¹

This species takes part in 19 reactions (as a reactant in reaction_8, reaction_10 and as a product in reaction_4 and as a modifier in reaction_0, reaction_0, reaction_0, reaction_1, reaction_1, reaction_1, reaction_2, reaction_2, reaction_2, reaction_8, reaction_8, reaction_9, reaction_9, reaction_9, reaction_10, reaction_10).

$$\frac{d}{dt} \text{species}_{.7} = |v_5| - |v_9| - |v_{11}| \tag{97}$$

8.9 Species species_8

Name P1

Initial concentration 99.9999903688752 nmol·ml⁻¹

This species takes part in three reactions (as a modifier in reaction_5, reaction_5, reaction_5).

$$\frac{d}{dt} \text{species}_{-8} = 0 \tag{98}$$

8.10 Species species_9

Name P2

Initial concentration $499.999951844377 \text{ nmol} \cdot \text{ml}^{-1}$

This species takes part in six reactions (as a modifier in reaction_6, reaction_6, reaction_6, reaction_7, reaction_7, reaction_7).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{species}_{-}9 = 0 \tag{99}$$

8.11 Species species_10

Name P3

Initial concentration 499.999975922188 nmol·ml⁻¹

This species takes part in six reactions (as a modifier in reaction_8, reaction_8, reaction_9, reaction_9, reaction_9).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{species}_{-}10 = 0 \tag{100}$$

8.12 Species species_11

Name M_PP_n

Initial concentration $0 \text{ nmol} \cdot \text{ml}^{-1}$

This species takes part in twelve reactions (as a reactant in reaction_20 and as a product in reaction_10 and as a modifier in reaction_10, reaction_10, reaction_11, reaction_11, reaction_20, reaction_21, reaction_21, reaction_21).

$$\frac{d}{dt} \text{species}_{-}11 = |v_{11}| - |v_{21}| \tag{101}$$

8.13 Species species_12

Name PreP3_mRNA

Initial concentration $0 \text{ nmol} \cdot \text{ml}^{-1}$

This species takes part in four reactions (as a reactant in reaction_12 and as a product in reaction_11 and as a modifier in reaction_12, reaction_12).

$$\frac{d}{dt} \text{species}_{-12} = |v_{12}| - |v_{13}| \tag{102}$$

8.14 Species species_13

Name P3mRNA

Initial concentration $0 \text{ nmol} \cdot \text{ml}^{-1}$

This species takes part in seven reactions (as a reactant in reaction_13 and as a product in reaction_12 and as a modifier in reaction_13, reaction_13, reaction_14, reaction_14, reaction_14).

$$\frac{d}{dt} \text{species}_{-13} = |v_{13}| - |v_{14}| \tag{103}$$

8.15 Species species_14

Name P3_c

Initial concentration $0 \text{ nmol} \cdot \text{ml}^{-1}$

This species takes part in seven reactions (as a reactant in reaction_15, reaction_16 and as a product in reaction_14 and as a modifier in reaction_15, reaction_15, reaction_16, reaction_16).

$$\frac{d}{dt} \text{species}_{-}14 = |v_{15}| - |v_{16}| - |v_{17}| \tag{104}$$

8.16 Species species_15

Name P3_n

Initial concentration 0 nmol⋅ml⁻¹

This species takes part in twelve reactions (as a reactant in reaction_17 and as a product in reaction_15 and as a modifier in reaction_15, reaction_15, reaction_17, reaction_17, reaction_20, reaction_20, reaction_20, reaction_21, reaction_21, reaction_21).

$$\frac{d}{dt} \text{species}_{-15} = |v_{16}| - |v_{18}| \tag{105}$$

8.17 Species species_16

Name M_n

Initial concentration $0 \text{ nmol} \cdot \text{ml}^{-1}$

This species takes part in four reactions (as a product in reaction_18, reaction_21 and as a modifier in reaction_18, reaction_18).

$$\frac{d}{dt} \text{species}_{16} = v_{19} + v_{22} \tag{106}$$

8.18 Species species_17

Name M_P_n

Initial concentration $0 \text{ nmol} \cdot \text{ml}^{-1}$

This species takes part in ten reactions (as a reactant in reaction_21 and as a product in reaction_19, reaction_20 and as a modifier in reaction_19, reaction_19, reaction_20, reaction_20, reaction_21, reaction_21, reaction_21).

$$\frac{d}{dt} \text{species}_{17} = |v_{20}| + |v_{21}| - |v_{22}|$$
 (107)

 $\mathfrak{BML2}^{AT}$ EX was developed by Andreas Dräger^a, Hannes Planatscher^a, Dieudonné M Wouamba^a, Adrian Schröder^a, Michael Hucka^b, Lukas Endler^c, Martin Golebiewski^d and Andreas Zell^a. Please see http://www.ra.cs.uni-tuebingen.de/software/SBML2LaTeX for more information.

^aCenter for Bioinformatics Tübingen (ZBIT), Germany

^bCalifornia Institute of Technology, Beckman Institute BNMC, Pasadena, United States

^cEuropean Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom

^dEML Research gGmbH, Heidelberg, Germany