2kSPS、24bit Σ-Δ ADC

主要特点

- 可编程转换速率:最高 2kSPS
- 集成输入多路选择器
- PGA 噪声: 70nV(RMS)@PGA=128
- 集成双路匹配可编程电流源
- 集成低温漂 2.048V 电压基准
- 集成内部温度传感器
- 集成电源检测电路和 VREF 检测电路
- 集成自校准和系统校准
- 兼容 SPI 接口
- 集成 50Hz/60Hz 限波滤波器 (转换率为 20SPS)
- 模拟电源电压: 单电源: 2.7V 到 5.25V 双电源: ±2.5V
- 工作温度范围: -40°C 到 125°C

应用

- 衡器应力检测
- 温度检测
- 气体分析和血液分析
- 工业过程控制和仪器仪表

产品简述

MS5146T/MS5147T/MS5148T 是适合高精度、低成本测量应用的 24bit 模数转换器。其内部集成低噪声可编程增益放大器、高精度 Δ-Σ 模数转换器和内部振荡器。 MS5147T 和 MS5148T 内部还集成低温漂基准和两路匹配的可编程电流源。MS5148T 支持四路差分输入,MS5147T 支持两路差分输入,MS5146T 支持单路差分输入。此外,MS514XT 系列芯片还集成传感器检测 Burnout电流源和偏置电压产生器。

MS5146T采用TSSOP16 封装,MS5147T采用TSSOP20 封装,MS5148T采用TSSOP28 封装。

产品规格分类

产品	封装形式	丝印名称
MS5146T	TSSOP16	MS5146T
MS5147T	TSSOP20	MS5147T
MS5148T	TSSOP28	MS5148T

内部框图

MS5146T 内部框图

MS5147T、MS5148T 内部框图

目录

1. 主要特点 1	15.12 电源电压检测	17
2. 产品简述1	15.13 外部参考电压检测	17
3. 应用1	15.14 环境温度检测	17
4. 产品规格分类1	15.15 上电	18
5. 内部框图1	15.16 复位	18
6. 目录3	15.17 掉电	18
7. 管脚图4	15.18 转换控制	18
8. 管脚说明6	15.19 单周期建立	18
9. 极限参数9	15.20 数字滤波器复位操作	18
10. 推荐工作条件9	15.21 校准	18
11. 电气参数10	15.21.1 校准指令	19
12. 时序参数12	15.21.1.1 系统失调和失调自校准	19
13. 开关参数12	15.21.1.2 系统增益校准	19
14. 输出噪声和分辨率(外部参考电压) 14	15.21.2 校准时间	19
15. 功能描述15	15.22 数字接口	19
15.1 概述15	15.23 数据格式	20
15.2 模拟输入通道15	15.24 指令	21
15.3 低噪声 PGA15	15.25 寄存器地址图	23
15.4 时钟源15	15.25.1 MS5146T 寄存器地址图	23
15.5 调制器16	15.25.2 MS5147T 和 MS5148T 寄存器	器地址图
15.6 数字滤波器16		26
15.7 内部参考电压16	16. 典型应用图	35
15.8 激励电流输出17	17. 封装外形图	36
15.9 传感器检测17	18. 印章与包装规范	39
15.10 偏置电压产生器17	19. 声明	40
15.11 数字通用 IO17	20. MOS 电路操作注意事项	41

管脚图

管脚说明

编号	名称	属性	管脚描述
			MS5146T
1	DVDD	-	数字电源
2	DGND	1	数字地
3	CLK	1	外部时钟输入,接地时激活内部时钟
4	RESET	1	复位,低电平有效
5	REFP	1	外部基准正端
6	REFN	I	外部基准负端
7	AINP	I	模拟输入正端
8	AINN	- 1	模拟输入负端
9	AVSS	-	负模拟电源
10	AVDD	-	正模拟电源
11	START	I	转换开始信号
12	CS	I	片选,低电平有效
13	DRDY	0	数据有效标识,低电平有效
14	DOUT/ DRDY	0	串行数据输出或带有效标识的数据输出
15	DIN	1	串行数据输入
16	SCLK	1	串行时钟输入
			MS5147T
1	DVDD	-	数字电源
2	DGND	-	数字地
3	CLK	I	外部时钟输入,接地时激活内部时钟
4	RESET	I	复位,低电平有效
5	REFPO/GPIO0	I/O	外部正参考电压通道 0 输入端,或者可配置成数字输入输出端口 0
6	REFNO/GPIO1	I/O	外部负参考电压通道 0 输入端,或者可配置成数字输入输出端口 1
7	VREFOUT	0	内部参考电压正输出端
8	VREFCOM	0	内部参考电压负输出端。当采用单电源时,VREFCOM 接 AVSS;当
ŏ	VNEFCOIVI	U	采用双电源时,接两个电源的中间电压
9	AINO/IEXC	I/O	模拟输入0,或者可选激励电流输出
10	AIN1/IEXC	I/O	模拟输入1,或者可选激励电流输出

编号	名称	属性	管脚描述
11	AIN2/IEXC/ GPIO2	I/O	模拟输入 2,或可选激励电流输出,或可配置数字输入输出端口 2
12	AIN3/IEXC/ GPIO3	I/O	模拟输入 3,或可选激励电流输出,或可配置数字输入输出端口 3
13	AVSS	-	负模拟电源
14	AVDD	-	正模拟电源
15	START	ı	转换开始信号
16	CS	I	片选,低电平有效
17	DRDY	0	数据有效标识,低电平有效
18	DOUT/ DRDY	0	串行数据输出或带有效标识的数据输出
19	DIN	I	串行数据输入
20	SCLK	1	串行时钟输入
	,		MS5148T
1	DVDD	-	数字电源
2	DGND	-	数字地
3	CLK	ı	外部时钟输入,接地时激活内部时钟
4	RESET	I	复位,低电平有效
5	REFPO/GPIO0	I/O	外部正参考电压通道 0 输入端,或者可配置成数字输入输出端口 0
6	REFNO/GPIO1	I/O	外部负参考电压通道 0 输入端,或者可配置成数字输入输出端口 1
7	REFP1	ı	外部正参考电压通道 1 输入端
8	REFN1	I	外部负参考电压通道 1 输入端
9	VREFOUT	0	内部参考电压正输出端
10	VREFCOM	0	内部参考电压负输出端。当采用单电源时,VREFCOM 接 AVSS; 当采用双电源时,接两个电源的中间电压
11	AINO/IEXC	I/O	模拟输入 0,或者可选激励电流输出
12	AIN1/IEXC	I/O	模拟输入1,或者可选激励电流输出
	AIN4/IEXC/		
13	GPIO4	I/O	模拟输入 4,或可选激励电流输出,或可配置数字输入输出端口 4
14	AIN5/IEXC/ GPIO5	I/O	模拟输入 5,或可选激励电流输出,或可配置数字输入输出端口 5

编号	名称	属性	管脚描述				
対サフ		内山	日州州田大臣				
15	AIN6/IEXC/	I/O	 模拟输入 6,或可选激励电流输出,或可配置数字输入输出端口 6				
13	GPIO6	1,0	医奶咖啡 人名英西班西西班西西 经分配直从 1 棚八棚田利日 0				
	AIN7/IEXC/						
16		I/O	模拟输入 7,或可选激励电流输出,或可配置数字输入输出端口 7				
	GPIO7						
17	AIN2/IEXC/	I/O	 模拟输入 2, 或可选激励电流输出, 或可配置数字输入输出端口 2				
1/	GPIO2	1/0	1539/103/124,2472 2508//// 电加州山,2573 电直效于栅八栅山端口 2				
	AIN3/IEXC/						
18		I/O	模拟输入3,或可选激励电流输出,或可配置数字输入输出端口3				
	GPIO3						
19	IEXC2	0	激励电流输出 2				
20	IEXC1	0	激励电流输出 1				
21	AVSS	-	负模拟电源				
22	AVDD	-	正模拟电源				
23	START	I	转换开始信号				
24	CS	I	<mark>片选,低电平有效</mark>				
25	DRDY	0	数据有效标识,低电平有效				
26	DOUT/ DRDY	0	串行数据输出或带有效标识的数据输出				
27	DIN	I	串行数据输入				
28	SCLK	Ι	串行时钟输入				

极限参数

芯片使用中,任何超过极限参数的应用方式会对器件造成永久的损坏,芯片长时间处于极限工作 状态可能会影响器件的可靠性。极限参数只是由一系列极端测试得出,并不代表芯片可以正常工作在 此极限条件下。

参数	符号	额定值	单位
模拟电源电压范围	AVDD 到 AVSS	-0.3 ~ + 7.0	V
数字电源电压范围	V _{DVDD}	-0.3 ~ + 7.0	V
模拟输入电压范围	VAINX, VIEXC1, VIEXC2	V _{AVSS} -0.3 ~ V _{AVDD} +0.3	V
参考电压范围	V _{REFPX} , V _{REFNX} , V _{REFOUT} , V _{REFCOM}	-0.3 ~ V _{AVDD} +0.3	V
数字输入电压范围		-0.3 ~ V _{DVDD} +0.3	V
数字输出电压范围	V _(LE)	-0.3 ~ V _{DVDD} +0.3	V
输入端口电流		10	mA
存储温度范围	T _{STG}	-65 ∼ 1 50	°C
焊接温度(10s)		260	°C
ESD (HBM)	V _{ESD}	±2000	٧

推荐工作条件

参数	符号	最小值	典型值	最大值	单位
	AVDD 到 AVSS	2.7		5.25	
模拟电源电压范围	AVSS 到 DGND	-2.65		0.1	V
	AVDD 到 DGND	2.25		5.25	
数字电源电压范围	DVDD 到 DGND	2.7		5.25	V
模拟差分输入范围	V(ainp-ainn)	-V _{REF} /GAIN		+V _{REF} /GAIN	V
参考电压差分输入	V _{REFP} - V _{REFN}	0.5		(Vavdd-Vavss)-1	V
参考电压正输入		V _{REFN} + 0.5		V _{AVDD} + 0.1	V
参考电压负输入		V _{AVSS} - 0.1		V _{REFP} - 0.5	V
外部时钟输入		1		4.5	MHz
外部时钟输入占空比		25		75	%
GPIO 输入电压		V _{AVSS}		V_{AVDD}	V
数字接口输入电压		V _{DVSS}		$V_{ extsf{DVDD}}$	V
工作温度范围	T _A	-40		125	°C

电气参数

 V_{AVDD} =5V; V_{DVDD} =3.3V; V_{AVSS} =0V; 外部 V_{REF} =2.048V; f_{CLK} =4.096MHz。

除非另外标注,参数为全温度范围。

除非另外标注,参数为: 参数	五個反視問。 测试条件	最小值	典型值	最大值	单位	
2 27	模拟输入	. 104 4 12.00	713	1949	, ,=	
差分输入电流			100		pА	
	DR=5SPS, 10SPS, 20SPS		5000			
46 > 8H L).	DR=40SPS, 80SPS, 160SPS		1200			
输入阻抗	DR=320SPS, 640SPS, 1kSPS		600		ΜΩ	
	DR=2kSPS		300			
	系统参数		1	T	T	
精度			24		Bits	
转换速率		5		2k	SPS	
积分非线性(INL)	差分输入,GAIN=1,V _{CM} =2.5V		10		ppm	
零点失调(Vio)	校准后	-15		15	μV	
增益误差	DR=40SPS, 80SPS, 160SPS	-0.02	±0.01	0.02	%	
++	GAIN=1		90		- 40	
共模抑制比	GAIN=32		125		dB	
电源抑制比	GAIN=32, DR=80SPS		100		dB	
	电压基准输入		T			
电压基准输入电流			30		nA	
	内部基准电压					
内部基准电压输出		2.038	2.048	2.058	V	
内部基准温漂	T _A =-40°C到125°C		10		ppm/°C	
输出电流			10		mA	
负载调整			50		μV/mA	
建立时间		见"内	部参考电压	"部分		
	内部振荡器			1		
内部时钟频率		3.9	4.096	4.25	MHz	
	激励电流源				T	
输出电流		50,100,25	0,500,750,1	000,1500	μА	
输出电流误差		-6	±1	+6	%	

参数	测试条件	最	小值	典型值	最大值	单位		
输出电流匹配				±0.15		%		
输出电流温漂				100		ppm/°C		
输出电流匹配温漂				10		ppm/°C		
	输入端口偏置电	压						
偏置电压			0.5	×(V _{AVDD} +V _A	vss)	V		
偏置电压输出阻抗				400		Ω		
温度传感器								
输出电压	T _A =25°C			110		mV		
输出电压温漂				375		μV/°C		
	通用输入输出端口(6	GPIO)				T		
低电平输入电压(V _I L)		١	/ _{AVSS}		0.3×V _{AVDD}	V		
高电平输入电压(V _{IH})		0.7	×V _{AVDD}		V_{AVDD}	V		
低电平输出电压(Vol)	I _{OL} =1mA				0.2×V _{AVDD}	V		
高电平输出电压(V _{OH})	I _{OH} =1mA	0.8	×V _{AVDD}			V		
	数字输入输出端口(非	GPIC))			T		
低电平输入电压(V _L)		D	GND		0.3×V _{DVDD}	V		
高电平输入电压(V _{IH})		0.7	×V _{DVDD}		V_{DVDD}	V		
低电平输出电压(Vol)	I _{OL} =1mA	D	GND		0.2×V _{DVDD}	V		
高电平输出电压(Voн)	I _{ОН} =1mA	0.8	×V _{DVDD}			V		
输入漏电流	DGND <v<sub>IN<v<sub>DVDD</v<sub></v<sub>			±10		μΑ		
	电源参数			ı				
	掉电模式			0.1				
模拟电源电流(IAVDD)	V _{AVDD} =3.3V,DR=20SPS,外部基准	Ē		221		μΑ		
	采用内部基准后的额外电流			180				
粉 字 由 酒 由 淬 4	掉电模式			0.2				
数字电源电流(I _{DVDD}) V _{AVDD} =3.3V, DR=20SPS, 外部基准		Ī		210		μΑ		
功耗(P _D)	V _{AVDD} =V _{DVDD} =3.3V, DR=20SPS, 内部振荡器,外部基准			1.4		mW		

时序参数

V_{DVDD}=2.7V 到 5.25V,DGND=0V,输入逻辑 1=DVDD,输入逻辑 0=GND。

除非另外标注,参数为全温度范围。

参数	符号	最小值	典型值	最大值	单位
延时(CS 下降沿到SCLK第一个上升沿)	tcssc	10			ns
延时(SCLK最后一个下降沿到 CS 上升沿)	t _{sccs}	7			t _{CLK} ¹
脉冲宽度 (CS 高电平)	t cspw	5			t clk
SCLK周期	t sclk	488			ns
脉冲宽度(SCLK高电平)	t _{spwh}	0.25		0.75	t _{SCLK}
脉冲宽度(SCLK低电平)	tspwl	0.25		0.75	tsclk
建立时间(DIN有效到SCLK下降沿)	t _{DIST}	5			ns
保持时间(SCLK下降沿到DIN有效)	t _{DIHD}	5			ns
建立时间(SCLK低电平到 DRDY下降沿)	t _{STD}	5			tclk
保持时间(DRDY下降沿到SCLK上升沿)	t _{DTS}	1			t _{CLK}
脉冲宽度(START高电平)	t _{START}	3			t _{CLK}
脉冲宽度(RESET 低电平)	t _{RESET}	4			t clk
延时(RESET 上升沿到SCLK上升沿)	t _{RHSC}	2 ²			ms

注: 1. t_{CLK} = 1 / f_{CLK}。默认时钟频率 f_{CLK} = 4.096MHz。

2. 由 fclk 决定,该值在 fclk = 4.096MHz 时有效。

开关参数

V_{DVDD}=2.7V 到 5.25V,DGND=0V,输入逻辑 1=DVDD,输入逻辑 0=GND。

除非另外标注,参数为全温度范围。

参数	符号	测试条件	最小值	典型值	最大值	单位
		V _{DVDD} ≤3.6V			50	
传输延时(SCLK上升沿到DOUT有效)	t _{DOPD}	V _{DVDD} >3.6V			180	ns
DOUT保持时间	t _{DOHD}		0			ns
传输延时(CS 上升沿到DOUT高阻态)	t _{CSPD}				10	ns
 DRDY高电平脉冲宽度	tрwн		3			t clk

读写接口时序,DRDY MODE 位 = 0

START 最小脉冲宽度

输出噪声和分辨率 (外部参考电压)

下表给出一些增益和转换速率设置下的 MS5148T 的输出均方根噪声。所提供的数据是针对双极性输入范围以及采用 2.5V 外部基准电压源而言。这些数值是差分输入电压为 0V 时的典型值。注意 , 有效分辨率是利用均方根噪声计算得出的。这些数值为典型值,四舍五入到最接近的 LSB。

表1. 输出噪声有效值(μV)相对于增益和转换速率的关系(V_{AVDD}=5.0V, V_{AVSS}=0V, 采用外部2.5V参考电压)

转换速率	增益1	增益2	增益4	增益8	增益16	增益32	增益64	增益128
5	2.286	1.170	0.568	0.312	0.159	0.085	0.079	0.073
10	2.808	1.434	0.662	0.386	0.196	0.106	0.104	0.099
20	3.633	1.864	0.896	0.482	0.251	0.139	0.133	0.132
40	6.151	3.023	1.532	0.789	0.392	0.215	0.204	0.134
80	8.210	4.085	2.013	1.038	0.539	0.300	0.277	0.188
160	11.248	5.880	2.745	1.458	0.738	0.416	0.389	0.260
320	21.851	11.834	5.917	2.933	1.519	0.791	0.481	0.358
640	28.616	16.101	8.344	4.186	2.188	1.143	0.686	0.513
1000	34.540	21.334	10.847	5.531	2.783	1.487	0.883	0.645
2000	47.735	23.419	12.045	5.908	3.053	1.711	1.102	0.884

表2. 有效精度相对于增益和转换速率的关系(V_{AVDD}=5.0V,V_{AVSS}=0V,采用外部2.5V参考电压)

转换速率	增益1	增益2	增益4	增益8	增益16	增益32	增益64	增益128
5	20.8	20.7	20.8	20.6	20.6	20.5	19.6	18.7
10	20.5	20.4	20.6	20.3	20.3	20.2	19.2	18.3
20	20.1	20.1	20.1	20.0	20.0	19.8	18.9	17.9
40	19.3	19.4	19.4	19.3	19.3	19.2	18.3	17.9
80	18.9	18.9	19.0	18.9	18.9	18.7	17.8	17.4
160	18.5	18.4	18.5	18.4	18.4	18.2	17.3	16.9
320	17.5	17.4	17.4	17.4	17.4	17.3	17.0	16.4
640	17.1	17.0	16.9	16.9	16.8	16.8	16.5	15.9
1000	16.9	16.6	16.5	16.5	16.5	16.4	16.1	15.6
2000	16.4	16.4	16.4	16.4	16.4	16.2	15.8	15.1

功能描述

概述

MS5146T/MS5147T/MS5148T 是高集成度的 24bit 模数转换器,集成了低噪声、高输入阻抗可编程增益放大器、输入多路选择器、低温漂基准、 Σ - Δ ADC、内部振荡器和 SPI 接口。

模拟输入通道

模数转换器的输入通过片上多路选择器和 PGA 输入到内部调制器。MS5146T 有一对差分输入端口; MS5147T 可通过寄存器 MUX0,配置成两路差分输入; MS5148T 可通过寄存器 MUX0 配置成 4 路差分输入。此外,输入端口可以配置连接到内部激励电路产生器或偏置电压产生器。通过输入多路选择器也可检测温度、AVDD、DVDD 和外部基准信号。输入端口也可配置成通用 GPIO 端口。

低噪声 PGA

MS5146T/MS5147T/MS5148T 内部集成一个低漂移、低噪声、高输入阻抗的可编程放大器。通过寄存器 SYSO,增益设置成1、2、4、8、16、32、64、128。PGA由两个斩波稳定放大器和电阻反馈组成。PGA的输入通过一个防电磁干扰滤波器,示意图如下:

增益设置和满幅输入范围关系如下:

FSR=±V_{REF}/GAIN

共模输入范围如下:

 V_{AVSS} +0.1V+0.5×GAIN× V_{IN} (Max) \leq V_{CM} \leq V_{AVDD} -0.1V-0.5×GAIN× V_{IN} (Max)

时钟源

MS5146T/MS5147T/MS5148T 可使用外部时钟或内部时钟。在上电或复位前,把 CLK 脚接 GND,可激活内部时钟。在任何时候,CLK 脚接外部时钟源,都会关闭内部时钟。此时,器件会一直工作在外部时钟模式。只有重新上电或复位,器件才会更改时钟工作模式。

调制器

芯片内部集成了 3 阶调制器,输出 PCM 码流到数字滤波器,调制器的时钟速率设置如下:

转换速率(SPS)	调制器采样速率(kHz)	fclk/fmod
5、10、20	32	128
40、80、160	128	32
320、640、1000	256	16
2000	512	8

数字滤波器

芯片内部集成一个可编程的 FIR 数字滤波器,下表显示在 4.096MHz 外部时钟下的滤波特性。

心行內即未成 「可编程的 FIX 数于滤波循,下次业小位 4.09000112 开部时下下的滤波符压。							
设置的	实际	-3dB	50Hz 和 60Hz 陷波特性				
转换速率	转换速率	带宽	50Hz±0.3Hz	60Hz±0.3Hz	50Hz±1Hz	60Hz±1Hz	
5SPS	5.018SPS	2.26Hz	-106dB	-74dB	-81dB	-69dB	
10SPS	10.037SPS	4.76Hz	-106dB	-74dB	-80dB	-69dB	
20SPS	20.075SPS	14.8Hz	-71dB	-74dB	-66dB	-68dB	
40SPS	40.15SPS	9.03Hz	-	-	-	-	
80SPS	80.301SPS	19.8Hz	-	-	-	-	
160SPS	160.6SPS	118Hz	-	-	-	-	
320SPS	321.608SPS	154Hz	-	-	-	-	
640SPS	643.21SPS	495Hz	-	-	-	-	
1000SPS	1000SPS	732Hz	-	-	-	-	
2000SPS	2000SPS	1465Hz	-	-	-	-	

内部参考电压

芯片内部集成了一个 2.048V 低温漂电压基准,电压基准输出 VREFOUT 和 VREFCOM 端需接 2.2μF~47μF 电容。较大电容有较好的噪声滤波效果,但是基准启动时间也较大。出于稳定性考虑, VREFCOM 需要有小于 10Ω 的 AC 通路到 AVSS。下表列出基准启动时间和外围电容关系。

VREFOUT 电容	建立误差	建立时间
	±0.5%	150μs
2.2μF	±0.1%	240μs
4.7μF	±0.5%	295μs
	±0.1%	376µs
47μF	±0.5%	2.3ms
	±0.1%	2.5ms

激励电流输出

对于 RTD 应用,MS5147T 和 MS5148T 内部集成了两路匹配的激励电流源(IDACs)。对于三线 RTD 应用,匹配电流源可以消除线电阻误差影响。输出电流源可以配置为 50μA、100μA、250μA、500μA、750μA、1000μA、1500μA。

传感器检测

通过内部寄存器可以配置 Burnout 电流(0.5μA、2μA、10μA)来检测外接传感器的失效。当传感器处于断路状态,内部 Burnout 电流源把正输入端拉到 AVDD,负输入端拉到 AVSS,导致满幅转换输出,这样会指示传感器过载或没有参考电压,而接近 0V 的转换输出指示可能是传感器短路。

偏置电压产生器

对于无偏置的热电偶应用,芯片内部集成了偏置电压产生器,电压为模拟电源电压的中间电平。 如下表所示,对于不同电容的传感器,偏置电压建立时间不同。当偏置电压应用于多个通道时,可导致应用的通道内部短路,所以必须限制流过器件的电流。

传感器电容	建立时间
0.1μF	220µs
1μF	2.2ms
10μF	22ms
200μF	450ms

数字通用 IO

通过寄存器,可以控制模拟输入复用端口的属性,可配置成模拟输入或 GPIO,寄存器 IOCFG 控制是否作为数字 IO,寄存器 IODIR 控制数字端口的输入输出特性,IODAT 控制数字输入输出的具体数据类型。

电源电压检测

芯片内部集成数字和模拟电源电压检测功能,检测结果是 1/4 的电源电压。

外部参考电压检测

芯片内部集成外部参考电压检测功能,检测结果是 **1/4** 的实际外部参考电压。检测外部参考电压时,必须使能内部集成基准电压。

环境温度检测

芯片内部集成环境温度检测功能。当打开温度检测功能时,两个二极管的阳极连到模拟输入。在室温下,二极管输入压差为 110mV,温漂为 375μV/°C。

上电

芯片上电过程中,内部上电复位电路产生一个复位脉冲,可复位全部数字电路,复位时间为 2¹⁶ 个系统时钟周期。复位过程中,SPI 接口不能操作。**建议上电后执行一次复位操作。**

复位

当RESET 脚变低时,触发芯片内部复位,所有寄存器复位到默认值。当系统时钟为 4.096MHz,RESET 脚上升沿到来后,芯片会在 2ms 后退出复位状态。芯片复位也可通过设置 RESET 指令执行。

掉电

芯片使用 SLEEP 指令或把 START 置低,进入掉电模式。

转换控制

通过 START 的上升沿,芯片可精确控制转换周期的开始。转换完成后,芯片内部 DRDY 置低。当寄存器 IDACO 中 DRDY MODE 位值为 1 时,输出 DOUT/ DRDY在转换完成后置低。转换完成后且 START 为低电平时,芯片自动进入掉电模式,当下一个 START 上升沿到来后,内部模拟电路需要 32 个 fmod 时钟周期的建立时间。

当 START 为高电平时,芯片会连续转换。

芯片转换也可通过 SPI 指令来执行,使用 WAKEUP 指令可唤醒一次转换过程,当使用指令控制时,START 必须置高。另外,发送 SYNC 指令,可立刻开始一个新的转换过程。对寄存器 MUX0、VBIAS、MUX1 和 SYS0 任意一个寄存器进行写操作,都会复位数字滤波器,相应也会重新启动一次转换。

单周期建立

对于所有的增益和转换率设置,MS5146T/MS5147T/MS5148T 可以完成单周期建立。在转换率为 2kSPS 时,改变配置寄存器需要使用 WREG 指令,SCLK 时钟周期不能超过 520ns,相邻两个寄存器字节 不能超过 4.2μs。另外,当开始对四个地址寄存器进行多个写操作后,需等待至少 64 个系统时钟周期,才能执行其他写指令。

数字滤波器复位操作

当芯片执行下列操作时,会复位数字滤波器:发送 RESET 指令、对 MUX0、VBIAS、MUX1、SYS0 四个寄存器进行写操作、发送 SYNC 指令和 START 脚出现上升沿。

校准

在转换结果输出前,要进行失调校准和增益校准。ADC 转换结果首先减去零点校准值(存在 OFC 寄存器),后乘以增益校准系数。

校准指令

芯片提供三种校准指令:系统增益校准、系统失调校准和失调自校准。

系统失调和失调自校准

系统失调校准可以校准芯片内部和外部的失调误差。系统失调校准可以通过发送 SYSOCAL 指令来触发,失调自校准可以通过发送 SELFOCAL 指令来触发。在失调自校准期间,配置的输入通道和外部电路断开,在芯片内部短接到电源电压的中间值,转换完成后更新 OFC 寄存器。

系统增益校准

系统增益校准信号通路上的增益误差,可通过发送 SYSGCAL 指令来激活。

校准时间

校准激活后,芯片会进行 16 次相应的转换,并把转换结果求平均后计算校准值,这可以提高校准精度。校准所需时间如下:

校准时间=50/fclk + 30/fmod + 16/fdata

数字接口

芯片提供兼容 SPI 的串行通信接口和数据就绪信号。

CS

CS 引脚用于激活 SPI 通信。CS 必须在数据传输之前和 SPI 通信期间置低。当CS 为高时,DOUT/DRDY引脚进入高阻态。因此,串行接口将被重置,并忽略此时的读取和写入。DRDY引脚独立于CS工作。即使CS 为高时,DRDY仍可指示新的转换已完成,并在 SCLK 响应后被强制置高。

将 CS 置高仅停用 SPI 通信,数据转换及数据就绪功能仍能继续工作。

SCLK

SCLK 用作串行通信的时钟。数据在 SCLK 下降沿由 DIN 输入,在 SCLK 上升沿由 DOUT 输出。

DIN

数据在 SCLK 下降沿由 DIN 输入,即使在数据被读出时,芯片也会识别写入的指令。因此,在<mark>读取数据过程中,若不想同时向芯片发送其他指令,请在 DIN 上发送 NOP 指令。</mark>

DRDY

DRDY引脚变低电平表示一次新的转换完成,同时转换结果存储在缓冲器中。在DRDY转换为低电平后,SCLK 必须在 tors 内保持低电平,以便将转换结果同时载入缓冲器和输出移位寄存器中。DRDY引脚变低电平后,在 SCLK 的第一个下降沿被强制置高。DRDY 引脚在变低电平后,如果未通过 SCLK 上的时钟信号置高,那么新的数据就绪时,将产生一个时间为 tpwh 的高脉冲。

DOUT/ DRDY

DOUT/ DRDY 引脚有两种模式: 仅数据输出(DOUT)模式和含数据就绪(DRDY)功能的 DOUT 模式。 DRDY MODE 位决定该引脚的功能。当 CS 置高时,DOUT/ DRDY 引脚变为高阻态。

当 DRDY MODE 位置 0,该引脚仅作为 DOUT 使用。数据从 MSB 开始,在 SCLK 上升沿读出。

当 DRDY MODE 位置 1,该引脚包含 DOUT 和 DRDY功能。当芯片处于停止连续读取数据模式时,该模式无效。

DRDY MODE 仅作用于 DOUT/ DRDY 引脚,而对 DRDY 引脚无影响。

当 DRDY MODE 位置 1 且新的转换完成时,若 DOUT/ DRDY为高,则将变低:若 DOUT/ DRDY为低,则将先变为高然后变低。类似于 DRDY引脚,DRDY/ DRDY引脚上的下降沿信号代表新的转换结果已就绪。当读出数据时,只能发送 NOP 或其他不会重新加载数据输出寄存器的指令。DOUT/ DRDY将在读取数据中的第一个 SCLK 下降沿后变高。

SPI 复位

可通过将 CS 引脚拉高,仅复位串行接口而不复位寄存器和数字滤波器。将 RESET 引脚置低,可复位串行接口以及所有数字功能模块,并开启一次新的转换。

当 CS 一直保持低电平时,必须以完整的 8 位作为一个字节写入寄存器,否则会导致 SPI 通信异常,芯片将无法识别指令。若 SPI 空闲时间超过 64 个转换周期,将会重置接口。

掉电模式下的 SPI 通信

当 START 引脚为低或者芯片处于掉电模式,只能发送 RDATA、RDATAC、SDTAC、WAKEUP 和 NOP 指令。RDATA 指令可用于重复读取上一次转换结果。

数据格式

芯片输出数据格式为 24 位二进制补码。LSB 计算公式为:

1 LSB = $(2 \times V_{REF} / Gain) / 2^{24} = +FS / 2^{23}$

正满幅输入(FS)[V_{IN}≥ (+FS - 1 LSB) = (V_{REF} /Gain - 1 LSB)]的输出码为 7FFFFFh,负满幅输入(V_{IN}≤ -FS = - V_{REF} /Gain)的输出码为 800000h。下表为不同输入信号的理想输出码。

输入信号 V _{IN} (AIN _P - AIN _N)	理想输出码
≥FS(2 ²³ - 1) / 2 ²³	7FFFFFh
FS / 2 ²³	000001h
0	000000h
-FS / 2 ²³	FFFFFFh
≤ -FS	800000h

指令

可通过 13 个指令来控制芯片。其中对于芯片寄存器数据的读写指令(RREG 和 WREG),需要额外的字节作为指令的一部分。NOP 指令可用于仅读出芯片数据,同时不发送其他指令。

- 1. n = 读写寄存器数 1;
- 2. r = 寄存器地址;
- 3. x = 任意值。

指令	描述	第一指令字节	第二指令字节
WAKEUP	退出掉电模式	0000 000x(00h,01h)	
SLEEP	进入掉电模式	0000 001x(02h,03h)	
SYNC	同步 ADC 转换	0000 010x(04h,05h)	0000 010x(04,05h)
RESET	复位	0000 011x(06h,07h)	
NOP	无操作	1111 1111(FFh)	
READ_DATA	单次读取数据	0001 001x(12h,13h)	
READ_DATAC	连续读取数据	0001 010x(14h,15h)	
STOP_DATAC	停止连续读取数据	0001 011x(16h,17h)	
READ_REG	读取寄存器 rrrr	0010 rrrr(2xh)	0000 nnnn
WRITE_REG	写入寄存器 rrrr	0100 rrrr(4xh)	0000 nnnn
SYS_OFFSETCAL	系统失调校准	0110 0000(60h)	
SYS_GAINCAL	系统增益校准	0110 0001(61h)	
SELF_OFFSETCAL	内部失调校准	0110 0010(62h)	
RESTRICTED	禁止发送该指令	1111 0001(F1h)	

WAKEUP(0000 000x)

在执行 SLEEP 指令后,可通过 WAKEUP 指令使芯片上电。执行 WAKEUP 指令后,芯片将在 SCLK 的第 8 个下降沿开始上电。

SLEEP(0000 001x)

发送 SLEEP 指令后,芯片完成当前转换后,进入掉电模式。注意该指令不会关断内部参考电压。在 SLEEP 指令后,发送 WAKEUP 指令,芯片会执行单次转换。

WAKEUP 和 SLEEP 指令等效于芯片的 START 引脚的控制效果。

如果 START 引脚为低电平,WAKEUP 指令无效。当 SLEEP 指令生效时, \overline{CS} 必须保持低电平。

SYNC(0000 010x)

SYNC 指令会复位 ADC 数字滤波器。通过发送 SYNC 指令,可以同步连接到同一 SPI 总线的多个设备。

RESET(0000 011x)

复位指令可复位所有寄存器和数字滤波器。该指令等效于RESET 引脚。但是 RESET 指令无法复位 串行接口。可以先用 CS 引脚复位串行接口,然后发送 RESET 指令来复位芯片。RESET 指令与硬件复位 类似,当系统时钟频率为 4.096MHz 时,需要 2ms 来完成复位。因此,在发送 RESET 指令后,必须等待 2ms 后,才能再次开始 SPI 通信。

READ_DATA(0001 001x)

READ_DATA 指令可载入<mark>最近一次转换结果</mark>至输出寄存器。在 READ_DATAC 模式下,该指令也能生效。

当多次读取转换结果时,可以在读取上一次转换结果时,在最后8个时钟发送该指令。

READ_DATAC(0001 010x)

READ_DATAC 指令使能连续读取数据模式。该模式为上电复位后的默认模式。在连续读取数据模式下,新的转换结果将自动加载到 DOUT 上。当 DRDY变低后,可通过发送 24 个 SCLK,从芯片读取转换结果。READ DATAC 指令必须在 DRDY变低后发送,并在下一次 DRDY变低时生效。

确保在DRDY回到低电平前,完成数据读取(转换结果或者寄存器回读),否则数据将会丢失。

STOP_DATAC(0001 011x)

STOP_DATAC 指令停止连续读取数据模式。在停止连续读取数据模式下,当 DRDY变低时,转换结果将不会自动加载到 DOUT 上。在此模式下,新的 ADC 转换完成不会中断芯片的读取,可使用 READ_DATA 指令来获取转换结果。STOP_DATAC 指令在下一次 DRDY变低时生效。

READ_REG(0010 rrrr, 0000 nnnn)

通过 READ_REG 指令,可读取 15 组寄存器的数据。读取的寄存器的数量等于第二指令字节数+1。如果待读取数超过剩余寄存器数,地址将会回到初始位置。READ REG 指令的两字节结构如下:

- 1. 第一指令字节: 0010 rrrr, 其中 rrrr 是第一个读取的寄存器地址;
- 2. 第二指令字节: 0000 nnnn, 其中 nnnn = 待读取寄存器数-1。

WRITE REG(0100 rrrr, 0000 nnnn)

通过 WRITE_REG 指令,可对 15 组寄存器写入数据。写入的寄存器的数量等于第二指令字节数+1。 WRITE_REG 指令两字节结构如下:

- 1.第一指令字节: 0100 rrrr, 其中 rrrr 是第一个写入的寄存器地址;
- 2.第二指令字节: 0000 nnnn, 其中 nnnn = 待写入寄存器数-1。

SYS OFFSETCAL(0110 0000)

SYS_OFFSETCAL 指令启动系统失调校准。当系统失调校准时,模拟输入必须外部短接至输入共模范围内的电压。模拟输入应该接近(Vavod + Vavss) / 2。当该指令完成后,OFC 寄存器会自动更新。

SYS_GAINCAL(0110 0001)

SYS_GAINCAL 指令启动系统增益校准。当系统增益校准时,模拟输入必须设置为满幅。当该指令完成后,FSC 寄存器会自动更新。

SELF_OFFSETCAL(0110 0010)

SELF_OFFSETCAL 指令启动系统失调校准。当系统失调校准时,芯片内部将模拟输入短接至中间电源并执行校准。当该指令完成后,OFC 寄存器会自动更新。

NOP(1111 1111)

空操作指令。

RESTRICTED

禁止发送该指令至芯片。

寄存器地址图

MS5146T 寄存器地址图

	41 11 JH NOVI	ur 121							
地址	名称	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
00h	BCS	BCS[1:0]	0	0	0	0	0	1
01h	VBIAS	0	0	0	0	0	0	VBIAS	[1:0]
02h	MUX1	CLKSATA	0	0	0	0	M	UXCAL[2:0]	
03h	SYS0	0		PGA[2:0]			DR[3	3:0]	
04h	OFC0	OFC[7:0]							
05h	OFC1		OFC[15:8]						
06h	OFC2	OFC[23:16]							
07h	FSC0		FSC[7:0]						
08h	FSC1	FSC[15:8]							
09h	FSC2	FSC[23:16]							
0Ah	ID	ID[3:0]				DRDY MODE	0	0	0

BCS: Burnout 电流源寄存器

地址=00h; 复位值=01h

位	名称	类型	复位值	描述
				Burnout 电流源检测,控制电流源:
				00: Burnout 电流源关闭(默认);
7:6	BCS[1:0]	R/W	0h	01: Burnout 电流源开启,0.5μA;
				10: Burnout 电流源开启,2μA;
				11 : Burnout 电流源开启, 10μA 。
5:0	保留	R	01h	000001。

VBIAS: 偏置电压寄存器

地址=01h; 复位值=01h

位	名称	类型	复位值	描述		
7:2	保留	R	00h	000000。		
1	VBIAS[1]	R/W	0h	AINN 偏置电压控制,向 AINN 施加(AVDD+AVSS) / 2 的 偏置电压: 0: 偏置电压禁用(默认); 1: 偏置电压使能。		
0	VBIAS[0]	R/W	0h	AINP 偏置电压控制,向 AINP 施加(AVDD +AVSS) / 2 的 偏置电压: 0: 偏置电压禁用(默认); 1: 偏置电压使能。		

MUX: 多功能控制寄存器

地址=02h; 复位值=x0h

位	名称	类型	复位值	描述
7	CLKSTAT	R	xh	时钟状态: 0: 内部时钟使用中; 1: 外部时钟使用中。
6:3	保留	R	0h	0000。
0	MUXCAL	R/W	0h	系统监视器控制选择: 000: 正常模式(默认); 001: 失调校准; 010: 增益校准; 011: 温度传感器。

下表列出了每种 MUXCAL 设置下的 ADC 内部连接关系和 PGA 设置。

MUXCAL[2:0]	PGA 增益设置	ADC 模拟输入
000	由 SYSO 寄存器设置	正常模式。
001	由 SYSO 寄存器设置	失调校准: 输入短接至(AVDD +AVSS) / 2。
010	强制置 1	增益校准: V _(REFP) - V _(REFN) (满幅)。
011	强制置 1	温度传感器

SYS0: 系统控制寄存器 0

地址=03h; 复位值=00h

	<u> ДДД 00::</u>			
位	名称	类型	复位值	描述
7	保留	R	0h	0.
6:4	PGA[2:0]	R/W	0h	PGA 增益设置: 000: PGA = 1 (默认); 001: PGA = 2; 010: PGA = 4;

			I	
				011: PGA = 8;
				100: PGA = 16;
				101: PGA = 32;
				110: PGA = 64;
				111: PGA = 128 _°
				数据输出速率设置:
				0000: DR = 5 SPS (默认);
				0001: DR = 10 SPS;
				0010: DR = 20 SPS;
				0011: DR = 40 SPS;
0	DR[3:0]	R/W	0h	0100: DR = 80 SPS;
				0101: DR = 160 SPS;
				0110: DR = 320 SPS;
				0111: DR = 640 SPS;
				1000: DR = 1000 SPS;
				1001 至 1111: DR = 2000 SPS。

OFC: 失调校准寄存器

地址=04h,05h,06h;复位值=000000h

位	名称	类型	复位值	描述
22.0	050[33.0]	D // //		失调校准系数寄存器。在增益校准前, ADC 将转换结
23:0	OFC[23:0]	R/W	000000h	果减去该寄存器值。

失调校准值为补码格式,最大正值为 7FFFFh,最大负值为 800000h。请注意,虽然失调校准寄存器校准范围为-FS 到+FS (如下表所示),但仍应避免模拟输入超量程。

失调校准寄存器值	V _{IN} =0时的最终输出码
7FFFFFh	800000h
000001h	FFFFFFh
000000h	000000h
FFFFFFh	000001h
800000h	7FFFFFh

FSC: 增益校准寄存器

地址=07h, 08h, 09h; 复位值=xxxxxxh

对于每一个 PGA 设置,FSC 的复位值为出厂校准的系数。当 PGA 设置改变时,FSC 会自动载入对应复位值。

位	名称	类型	复位值	描述
23:0	FSC[23:0]	R/W	xxxxxxh	增益校准系数寄存器。ADC 将 FSC 寄存器值除以 400000h 作为比例系数,在失调校准后,ADC 将转换 结果乘以比例系数。

增益校准值为无符号二进制格式。当值为 400000h 时,系数为 1.0。请注意,虽然增益校准寄存器可以校准大于 1 的增益误差(如下表所示),但仍应避免模拟输入超量程。

增益校准寄存器值	增益系数
800000h	2.0
400000h	1.0
200000h	0.5
000000h	0

ID: ID 寄存器

地址=0Ah; 复位值=x0h

	<i></i>			
位	名称	类型	复位值	描述
7:4	ID[3:0]	R	xh	ID位。
3	DRDY MODE	R/W	Oh	数据就绪模式设置: 0: DOUT/DRDY引脚仅用作数据输出(默认); 1: DOUT/DRDY引脚同时用作数据输出和数据就绪,低电平有效。
2:0	保留	R	0h	000。

MS5147T 和 MS5148T 寄存器地址图

1013317717	H 141331401	可任用地区							
地址	名称	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
00h	MUX0	BCS[1:0]	N	ИUX_SP[2:0)]	MUX_SN[2:0]		
01h	VBIAS				VBIAS	[7:0]			
02h	MUX1	CLKSTAT	VREFC	DN[1:0]	REFSE	LT[1:0]	N	IUXCAL[2:0]
03h	SYS0	0		PGA[2:0]			DR[3	3:0]	
04h	OFC0				OFC[7	7:0]			
05h	OFC1				OFC[1	5:8]			
06h	OFC2		OFC[23:16]						
07h	FSC0		FSC[7:0]						
08h	FSC1		FSC[15:8]						
09h	FSC2				FSC[23	3:16]			
						DRDY			
0Ah	IDAC0	ID[3:0] IMAG[2:0] MODE							
0Bh	IDAC1	I1DIR[3:0] I2DIR[3:0]							
0Ch	GPIOCFG	IOCFG[7:0]							
0Dh	GPIODIR				IODIR	[7:0]			
0Eh	GPIODAT				IODAT	[7:0]			

MUX0: 多功能控制寄存器 0

地址=00h; 复位值=01h

位	名称	类型	复位值	描述
				Burnout 电流源检测,控制电流源:
				00: Burnout 电流源关闭(默认);
7:6	BCS[1:0]	R/W	0h	01: Burnout 电流源开启,0.5μA;
				10: Burnout 电流源开启,2μA;
				11: Burnout 电流源开启,10μA。
				ADC 正输入通道选择:
				000: AINO (默认);
				001: AIN1;
				010: AIN2;
5:3	MUX_SP[2:0]	R/W	0h	011: AIN3;
				100: AIN4(仅 MS5148T);
				101: AIN5(仅 MS5148T);
				110: AIN6(仅 MS5148T);
				111: AIN7(仅 MS5148T)。
				ADC 负输入通道选择:
				000: AINO;
				001: AIN1 (默认);
				010: AIN2;
2:0	MUX_SN[2:0]	R/W	1h	011: AIN3;
				100: AIN4(仅 MS5148T);
				101: AIN5(仅 MS5148T);
				110: AIN6(仅 MS5148T);
				111: AIN7(仅 MS5148T)。

VBIAS: 偏置电压寄存器

地址=01h; 复位值=00h

	交压器 ***					
位	名称	类型	复位值	描述		
				AIN7 偏置电压控制,向 AIN7 施加(AVDD +AVSS) / 2 的 偏置电压(仅 MS5148T):		
7	VBIAS[7]	R/W	0h	0: 偏置电压禁用; 1: 偏置电压使能。		
6	VBIAS[6]	R/W	Oh	AIN6 偏置电压控制,向 AIN6 施加(AVDD +AVSS) / 2 的 偏置电压(仅 MS5148T): 0: 偏置电压禁用; 1: 偏置电压使能。		

位	名称	类型	复位值	描述
5	VBIAS[5]	R/W	Oh	AIN5 偏置电压控制,向 AIN5 施加(AVDD +AVSS) / 2 的 偏置电压(仅 MS5148T): 0: 偏置电压禁用; 1: 偏置电压使能。
4	VBIAS[4]	R/W	0h	AIN4 偏置电压控制,向 AIN4 施加(AVDD +AVSS) / 2 的 偏置电压(仅 MS5148T): 0: 偏置电压禁用; 1: 偏置电压使能。
3	VBIAS[3]	R/W	Oh	AIN3 偏置电压控制,向 AIN3 施加(AVDD +AVSS) / 2 的 偏置电压(仅 MS5147T/MS5148T): 0: 偏置电压禁用; 1: 偏置电压使能。
2	VBIAS[2]	R/W	0h	AIN2 偏置电压控制,向 AIN2 施加(AVDD +AVSS) / 2 的 偏置电压(仅 MS5147T/MS5148T): 0: 偏置电压禁用; 1: 偏置电压使能。
1	VBIAS[1]	R/W	Oh	AIN1 偏置电压控制,向 AIN1 施加(AVDD +AVSS) / 2 的偏置电压: 0: 偏置电压禁用; 1: 偏置电压使能。
0	VBIAS[0]	R/W	Oh	AINO 偏置电压控制,向 AINO 施加(AVDD +AVSS) / 2 的偏置电压: 0: 偏置电压禁用; 1: 偏置电压使能。

MUX1: 多功能控制寄存器 1 地址=02h: 复位值=x0h

>C.F.II. 0 =;	发压阻-70 11			
位	名称	类型	复位值	描述
7	CLKSTAT	R	xh	时钟状态: 0: 内部时钟使用中; 1: 外部时钟使用中。
6:5	VREFCON[1:0]	R/W	Oh	内部基准控制位: 00:内部基准始终关闭(默认); 01:内部基准始终开启; 10或11:内部基准正常工作模式下开启,掉电模式下关闭。

4:3	REFSELT[1:0]	R/W	Oh	基准选择: 00: 选择外部基准,从 REFPO 和 REFNO 引脚输入 (默认); 01: 选择外部基准,从 REFP1 和 REFN1 引脚输入 (仅 MS5148T); 10: 选择内部基准; 11: 选择内部基准并输出至 REFPO 和 REFNO 引脚。
2:0	MUXCAL[2:0]	R/W	Oh	系统监测控制选择: 000: 正常模式(默认); 001: 失调校准; 010: 增益校准; 011: 温度传感器; 100: 监测 REF1(仅 MS5148T); 101: 监测 REF0; 110: 监测模拟电源; 111: 监测数字电源。

下表列出了每种 MUXCAL 设置下的 ADC 内部连接关系和 PGA 设置。

MUXCAL[2:0]	PGA 增益设置	ADC 模拟输入
000	由 SYSO 寄存器设置	正常模式
001	由 SYSO 寄存器设置	输入短接至(AVDD +AVSS) / 2
010	强制置1	V _(REFP) - V _(REFN) (满幅)
011	强制置1	温度传感器
100	强制置 1	V _(REFP1) - V _(REFN1) / 4
101	强制置1	V _(REFPO) - V _(REFNO) / 4
110	强制置 1	(AVDD - AVSS) / 4
111	强制置1	(DVDD - DGND) / 2

SYSO: 系统控制寄存器 0

地址=03h; 复位值=00h

位	名称	类型	复位值	描述
7	保留	R	0h	0。
6:4	PGA[2:0]	R/W	Oh	PGA 增益设置: 000: PGA = 1 (默认); 001: PGA = 2; 010: PGA = 4; 011: PGA = 8; 100: PGA = 16;

				101: PGA = 32;
				110: PGA = 64;
				111: PGA = 128。
				数据输出速率设置:
				0000: DR = 5 SPS (默认);
				0001: DR = 10 SPS;
				0010: DR = 20 SPS;
				0011: DR = 40 SPS;
0	DR[3:0]	R/W	0h	0100: DR = 80 SPS;
				0101: DR = 160 SPS;
				0110: DR = 320 SPS;
				0111: DR = 640 SPS;
				1000: DR = 1000 SPS;
				1001 至 1111: DR = 2000 SPS。

OFC: 失调校准寄存器

地址=04h,05h,06h;复位值=000000h

位	名称	类型	复位值	描述
23:0	OFC[23:0]	R/W	000000h	失调校准系数寄存器。在增益校准前,ADC 将转换结果减去该寄存器值。

失调校准值为补码格式,最大正值为 7FFFFh,最大负值为 800000h。请注意,虽然失调校准寄存器校准范围为-FS 到+FS(如下表所示),但仍应避免模拟输入超量程。

PROPERTY OF CONTRACTOR OF THE					
失调校准寄存器值	V _{IN} =0时的最终输出码				
7FFFFFh	800000h				
000001h	FFFFFFh				
000000h	000000h				
FFFFFFh	000001h				
800000h	7FFFFFh				

FSC: 增益校准寄存器

地址=07h, 08h, 09h; 复位值=xxxxxxh

对于每一个 PGA 设置,FSC 的复位值为出厂校准的系数。当 PGA 设置改变时,FSC 会自动载入对应复位值。

位	名称	类型	复位值	描述
				增益校准系数寄存器。ADC 将 FSC 寄存器值除以
23:0	FSC[23:0]	R/W	xxxxxxh	400000h 作为比例系数,在失调校准后,ADC 将转换
				结果乘以比例系数。

增益校准值为无符号二进制格式,当值为 400000h 时系数为 1.0。请注意,虽然增益校准寄存器可以校准大于 1 的增益误差(如下表所示),但仍应避免模拟输入超量程。

增益校准寄存器值	增益系数
800000h	2.0
400000h	1.0
200000h	0.5
000000h	0

IDAC0: IDAC 控制寄存器 0 地址=0Ah; 复位值=x0h

MEMIL-UAII,	炎压值-7011			
位	名称	类型	复位值	描述
7:4	ID[3:0]	R	xh	ID 位。
3	DRDY MODE	R/W	0h	数据就绪模式设置: 0: DOUT/ DRDY 引脚仅用作数据输出(默认); 1: DOUT/ DRDY 引脚同时用作数据输出和数据就绪,低电平有效;
2:0	IMAG[2:0]	R/W	Oh	IDAC 激励电流: 000: 关闭(默认); 001: 50 μA; 010: 100 μA; 011: 250 μA; 100: 500 μA; 101: 750 μA; 110: 1000 μA;

IDAC1: IDAC 控制寄存器 1 地址=0Bh; 复位值=FFh

位	名称	类型	复位值	描述
位 7:4	名称 I1DIR[3:0]	类型 R/W	复位值 Fh	描述 IDAC 激励电流输出通道 1: 0000: AIN0; 0001: AIN1; 0010: AIN2; 0011: AIN3; 0100: AIN4 (仅 MS5148T); 0101: AIN5 (仅 MS5148T); 0110: AIN6 (仅 MS5148T); 111: AIN7 (仅 MS5148T); 10x0: IEXC1 (仅 MS5148T); 10x1: IEXC2 (仅 MS5148T);
				10x1: IEXC2(仅 MS5148T); 11xx: 无连接(默认);

3:0	I2DIR[3:0]	R/W	R/W Fh	IDAC 激励电流输出通道 2: 0000: AINO; 0001: AIN1; 0010: AIN2; 0011: AIN3; 0100: AIN4 (仅 MS5148T); 0101: AIN5 (仅 MS5148T);
3.0	10.01012.01			0100: AIN4(仅 MS5148T);
3:0	12DIK[3:0]			0101: AIN5 (仅 MS5148T);
				0110: AIN6(仅 MS5148T);
				0111: AIN7(仅 MS5148T);
				10x0: IEXC1(仅 MS5148T);
				10x1: IEXC2(仅 MS5148T);
				11xx : 无连接(默认);

GPIOCFG: GPIO 配置寄存器 地址=0Ch; 复位值=00h

地址=UCn;	及似徂=∪∪n			
位	名称	类型	复位值	描述
				GPIO7 (AIN7)引脚配置(仅 MS5148T):
7	IOCFG[7]	R/W	0h	0: GPIO[7]禁用(默认);
				1: GPIO[7]应用于 AIN7。
				GPIO[6] (AIN6)引脚配置(仅 MS5148T):
6	IOCFG[6]	R/W	0h	0: GPIO[6]禁用(默认);
				1: GPIO[6]应用于 AIN6。
				GPIO[5] (AIN5)引脚配置(仅 MS5148T):
5	IOCFG[5]	R/W	0h	0: GPIO[5]禁用(默认);
				1: GPIO[5]应用于 AIN5。
				GPIO[4] (AIN4)引脚配置(仅 MS5148T):
4	IOCFG[4]	R/W	0h	0: GPIO[4]禁用(默认);
				1: GPIO[4]应用于 AIN4。
				GPIO[3] (AIN3)引脚配置:
3	IOCFG[3]	R/W	0h	0: GPIO[3]禁用(默认);
				1: GPIO[3]应用于 AIN3。
				GPIO[2] (AIN2)引脚配置:
2	IOCFG[2]	R/W	0h	0: GPIO[2]禁用(默认);
				1: GPIO[2]应用于 AIN2。
				GPIO[1] (REFNO) 引脚配置:
1	IOCFG[1]	R/W	0h	0: GPIO[1]禁用(默认);
				1: GPIO[1]应用于 REFNO。
				GPIO[0] (REFPO)引脚配置:
0	IOCFG[0]	R/W	0h	0: GPIO[0]禁用(默认);
				1: GPIO[0]应用于 REFPO。

GPIODIR: GPIO 方向寄存器 地址=0Dh; 复位值=00h

地址-UDII;	n;					
位	名称	类型	复位值	描述		
				GPIO[7] (AIN7)引脚方向(仅 MS5148T):		
7	IODIR[7]	R/W	0h 0: GPIO[7]作为输出引脚(默认);			
				1: GPIO[7]作为输入引脚。		
				GPIO[6] (AIN6)引脚方向(仅 MS5148T):		
6	IODIR[6]	R/W	0h	0: GPIO[6]作为输出引脚(默认);		
				1: GPIO[6]作为输入引脚。		
				GPIO[5] (AIN5)引脚方向(仅 MS5148T):		
5	IODIR[5]	R/W	0h	0: GPIO[5]作为输出引脚(默认);		
				1: GPIO[5]作为输入引脚。		
				GPIO[4] (AIN4)引脚方向(仅 MS5148T):		
4	IODIR[4]	R/W	0h	0: GPIO[4]作为输出引脚(默认);		
				1: GPIO[4]作为输入引脚。		
				GPIO[3] (AIN3)引脚方向:		
3	IODIR[3]	R/W	0h	0: GPIO[3]作为输出引脚(默认);		
				1: GPIO[3]作为输入引脚。		
				GPIO[2] (AIN2)引脚方向:		
2	IODIR[2]	R/W	0h	0: GPIO[2]作为输出引脚(默认);		
				1: GPIO[2]作为输入引脚。		
				GPIO[1] (REFN0)引脚方向:		
1	IODIR[1]	R/W	0h	0: GPIO[1]作为输出引脚(默认);		
				1: GPIO[1]作为输入引脚。		
				GPIO[0] (REFPO)引脚方向:		
0	IODIR[0]	R/W	0h	0: GPIO[0]作为输出引脚(默认);		
				1: GPIO[0]作为输入引脚。		

GPIODAT: GPIO 数据寄存器 地址=0Eh; 复位值=00h

当对应引脚配置为输出时,可以回读寄存器中的值;当对应引脚配置为输入时,写入寄存器只能 改变该寄存器中的值,而不会输出至对应引脚。

位	名称	类型	复位值	描述
			0h	GPIO[7] (AIN7)引脚数据(仅 MS5148T):
7	IODAT[7]	R/W		0: GPIO[7]为低(默认);
				1: GPIO[7]为高。
				GPIO[6] (AIN6)引脚数据(仅 MS5148T):
6	IODAT[6]	R/W	0h	0: GPIO[6]为低(默认);
				1: GPIO[6]为高。
				GPIO[5] (AIN5)引脚数据(仅 MS5148T):
5	IODAT[5]	R/W	0h	0: GPIO[5]为低(默认);
				1: GPIO[5]为高。
				GPIO[4] (AIN4)引脚数据(仅 MS5148T):
4	IODAT[4]	4] R/W	0h	0: GPIO[4]为低(默认);
				1: GPIO[4]为高。
				GPIO[3] (AIN3)引脚数据:
3 IODAT[3] R/W		0h	0: GPIO[3]为低(默认);	
				1: GPIO[3]为高。
				GPIO[2] (AIN2)引脚数据:
2 IODAT[2] R/W		0h	0: GPIO[2]为低(默认);	
				1: GPIO[2]为高。
				GPIO[1] (REFN0)引脚数据:
1	IODAT[1]	R/W	0h	0: GPIO[1]为低(默认);
				1: GPIO[1]为高。
				GPIO[0] (REFPO)引脚数据:
0	IODAT[0]	R/W	0h	0: GPIO[0]为低(默认);
				1: GPIO[0]为高。

典型应用图

下图是 MS5148T 用作热电偶测量应用的示意图。

封装外形图

TSSOP16

/s/s 🖂	尺寸 (毫米)					
符号	最小值	典型值	最大值			
А	-	-	1.20			
A1	0.05	-	0.15			
A2	0.90	1.00	1.05			
A3	0.39	0.44	0.49			
b	0.20	-	0.28			
b1	0.19	0.22	0.25			
С	0.13	-	0.17			
c1	0.12	0.13	0.14			
D	4.90	5.00	5.10			
E	6.20	6.40	6.60			
E1	4.30	4.40	4.50			
e	0.65BSC					
L	0.45	0.60	0.75			
L1	1.00BSC					
θ	0°	-	8°			

注: 在封装尺寸外,允许 a、b 同时有最大 0.15mm 的废胶尺寸。

示意图如下: 以 SOP8 封装为例

TSSOP20

符号	尺寸 (毫米)					
	最小值	典型值	最大值			
А	-	-	1.20			
A1	0.05	-	0.15			
A2	0.80	1.00	1.05			
A3	0.39	0.44	0.49			
b	0.20	-	0.28			
b1	0.19	0.22	0.25			
С	0.13	-	0.17			
c1	0.12	0.13	0.14			
D	6.40	6.50	6.60			
E1	4.30	4.40	4.50			
E	6.20	6.40	6.60			
e	0.65BSC					
L	0.45	0.60	0.75			
L1	1.00REF					
θ	0°	-	8°			

注: 在封装尺寸外,允许 a、b 同时有最大 0.15mm 的废胶尺寸。

示意图如下: 以 SOP8 封装为例

TSSOP28

符号	尺寸 (毫米)				
	最小值	典型值	最大值		
А	<u>-</u>	-	1.20		
A1	0.05	-	0.15		
A2	0.80	-	1.00		
А3	0.39	0.44	0.49		
b	0.20	-	0.29		
b1	0.19	0.22	0.25		
С	0.14	-	0.18		
c1	0.12	0.13	0.14		
D	9.60	9.70	9.80		
E	6.20	6.40	6.60		
E1	4.30	4.40	4.50		
e	0.65BSC				
L	0.45	0.60	0.75		
L1	1.00BSC				
θ	0°	-	8°		

注: 在封装尺寸外,允许 a、b 同时有最大 0.15mm 的废胶尺寸。

示意图如下:以 SOP8 封装为例

印章与包装规范

1. 印章内容介绍

产品型号: MS5146T、MS5147T、MS5148T

生产批号: XXXXXXX

2. 印章规范要求

采用激光打印,整体居中且采用 Arial 字体。

3. 包装规范说明

型号	封装形式	只/卷	卷/盒	只/盒	盒/箱	只/箱
MS5146T	TSSOP16	3000	1	3000	8	24000
MS5147T	TSSOP20	3000	1	3000	8	24000
MS5148T	TSSOP28	3000	1	3000	8	24000

声明

- 瑞盟保留说明书的更改权,恕不另行通知!客户在下单前应获取最新版本资料,并验证相关信息 是否完整。
- 在使用瑞盟产品进行系统设计和整机制造时,买方有责任遵守安全标准并采取相应的安全措施, 以避免潜在失败风险可能造成的人身伤害或财产损失!
- 产品提升永无止境,本公司将竭诚为客户提供更优秀的产品!

MOS电路操作注意事项

静电在很多地方都会产生,采取下面的预防措施,可以有效防止 MOS 电路由于受静电放电的影响而引起的损坏:

- 1、操作人员要通过防静电腕带接地。
- 2、设备外壳必须接地。
- 3、装配过程中使用的工具必须接地。
- 4、必须采用导体包装或抗静电材料包装或运输。

+86-571-89966911

http://www.relmon.com