Who returns to hospitals?

MLE

Skoltech

March 20, 2017

MLE (Skoltech) ML Project March 20, 2017 1 / 11

Overview

- Data description
- 2 Problem statement
- 3 Visualization
- Multiclass classification
- Feature importance
- 6 Binary classification

MLE (Skoltech) ML Project March 20, 2017 2 / 11

Data description

- This data has been prepared to analyze factors related to readmission as well as other outcomes pertaining to patients with diabetes.
- Data Set Information:
 - Some general features (age, weight, race etc.)
 - A hospital admission
 - A diabetic encounter, that is, one during which any kind of diabetes was entered to the system as a diagnosis.
 - The length of stay (1 14 days)
 - Substitution is a substitution of the encounter of the
 - Medications were administered during the encounter
- The database contains incomplete, redundant, and noisy information.
 We excluded several features that were irrelevant or had a high percentage of missing values (payer code, medical specialty and weight).

MLE (Skoltech) ML Project March 20, 2017 3 / 1

Problem statement

Problem:

We want to predict the probability of patient readmission based on the known features.

- We have tried different approaches: we considered
 - all data
 - only relevant medical data (e.g. medications, number of lab procedures)
 - drug data separately

MLE (Skoltech) ML Project March 20, 2017 4 / 11

Visualization

Multiclass classification

- Readmission labels: the patient was readmitted within 30 days, was readmitted in more that 30 days and was not readmitted [< 30, > 30, No]
- Methods:
 - Random Forest Classifier
 - One Vs Rest Classifier(estimator=Logistic Regression)
 - Output Code Classifier(estimator=Logistic Regression)
- Accuracy

Methods	All data	Medical data	Drug data
Random Forest	0.58	0.57	0.53
One Vs Rest	0.57	0.57	0.54
Output Code	0.57	0.57	0.54

Table: Accuracy table

6 / 11

Feature importance

- 5 most important features for all data: admission source id, number emergency, number inpatient, primal diagnosis, number of lab procedures
- 5 most important features for medical data: number of lab procedures, diagnosis 1, diagnosis 2, diagnosis 3, number of medications

Figure: Feature importance for all and medical datasets

MLE (Skoltech) ML Project March 20, 2017 7 / 1.

Binary classification

- We reduced the problem to two binary classification problems:
 - The first class is readmission within 30 days, the second one in more than 30 days and no readmission
 - 2 The first class is readmission within 30 days and in more than 30 days, the second one no readmission
- Methods:
 - Ada Boost Classifier (estimator=Logistic Regression)
 - MLP Classifier (logistic activation function)
 - Naive Bayes
 - 4 Linear Discriminant Analysis

Binary classification

Here we considered all dataset.

- First binarization readmission within 30 days
- Second binarization readmission within and more than 30 days

Methods	First binarization	Second binarization
Ada Boost	0.59	0.60
MLP	0.59	0.60
Naive Bayes	0.59	0.60
LDA	0.59	0.60

Table: ROC-AUC score table for binary classification

Binary classification

Figure: ROC-AUC curves

MLE (Skoltech) ML Project March 20, 2017 10 / 11

The End