Inx = \(\frac{dt}{t} \) (x>0) dentlemi ile verilen f(x)=Inx

fontsiyonuno "Oogal Logaritmo" denir.

t(x)=ex tournisonno "Dogol Ostel fournison" devic

\$\f(x)=0\times (0>0, 0 \pm) ile tanim\i fontsiyona "Genel ostel fontsiyon" denin.

"Genel logoritmik tonkiyon" derin (Inx=logex dir)

Özellikleri

- 1 Ine=1 (@ Inxy=Inx+Iny) (3) In x = Inx-Iny
- $\bigoplus_{x^{\prime}=e^{\lambda \ln \alpha}} x^{\prime} = e^{\lambda \ln \alpha}$ $\otimes_{x^{\prime}=e^{\lambda \ln \alpha}} \otimes_{x^{\prime}=e^{\lambda \ln \alpha}}$ $\otimes_{x^{\prime}=e^{\lambda \ln \alpha}} \otimes_{x^{\prime}=e^{\lambda \ln \alpha}}$
- (1) logoxy= logox + logoy
- (2) $\ln \frac{1}{x} = -\ln x$ (3) $\log_a a = 1$ (4) $\log_a x = y < = x = a^y$ $\log_a \frac{1}{x} = -\log_a x$

& y=lnx

fonk. Artendir

y=ex

Fonk. Artandir

Fonk. Artendir

y= logax (0>1)

font. Artandic

\$ y=0× (@<0<1)

fonk. Azalandir

* y= 1080x (OKOKI)

Font. Azolandir

Limitleri

- 1) lim lax = 00
- 1 lim lox = 00 3 lim ex = 00
- @ lim ex=0
- 6 lim 0x = 0 (Ocaci) 6 lim 0x = 00 (axi)

- 1 lim a = 00 (0<0<1)
- 8 lim ex=0 (e71)
- 1 lim (1+ a) x = ea
- (1) lim (1+ax) 1/x = ea (1) lim ex-1 = 1

Torevieri

- (ef(x)) = f(x).e(x) (a(x)) = f(x). a(x) Ina (b(logaf(x)))= f'(x)

Ters Triponometrik forksiyonlar

Alt, temel trigonometrik ponkuiyon bire-bir değiller, dir, tokat tanım kümelerini bire-bir oldukları aralıklara kısıtlayabiliriz. Bu kısıtlanmış tonksiyonlar artık bire-bir oldukları için tersleri verdir ve asağıdaki sekilde gösterilirler:

Tanim Komesi	Garanta K.
-14× 51	$-\frac{\pi}{2} \le 3 \le \frac{\pi}{2}$
-14× < 1	053511
- acc < ac	- <u>n</u> < y < <u>n</u>
	0<917
x5-1 vega x21	0 < 9 < 17, 9 + 7
x6-1 vego x31	- 1 < y < 1 , y +0
	-16×61 -16×61 -00×00 -00×00 ×6-1 veya ×71

y= ArcSinx =) x=Siny # y=ArcCosx =) x=Cosy

y= Arc Tonx =) x= Tony # y= ArcCotx =) x=Cosy

y= ArcSecx =) x= Secy # y= ArcCosecx =) x=Cosecy

ornek:	×	y= Arcsinx	y: Arc Cosx
	13	76	7/3
	1/2	77	7/4
	0	0	7/2
	31/2	71/3	7/6

y= Arcsinx	y=Arccosx
- 77	211
-74	3/1
$-\frac{\pi}{3}$	57
	$\frac{7}{8} = \frac{\pi}{3}$

() O

×	y= Arc Tanx
V3	n/3
1	71/4
0	0
3	7/6

×	y= Arc Tonx
-13	- 7/3
- 1	-7/4
- 13	- 76

Dedeslikler

Türevleri

$$0 \quad y = Arc Sinx \Rightarrow y' = \frac{1}{\sqrt{1-x^2}} \quad y = Arc Sinf(x) = y' = \frac{f'(x)}{\sqrt{1-(f(x))^2}}$$

(2) y= ArcCosx T.K: [-1,1] G.K: [0,17]

*iki sitel tonbiyon ex ve ex in birlesimi ile oluşan toursidouporque

Sinùs hiperbolik tonksiyonu: Sinhx =
$$\frac{e^{x} e^{x}}{2}$$

Cosinùs " : Coshx = $\frac{e^{x} + e^{-x}}{2}$

*Bu temel cipten horeketle Tanjont, Cotoniant, Secont

ve Cosecont Hiperbolik font. tanimlanir.

Hiperbolik Fonksiyonlar isimlerini aldıkları Trigonometrik

fonksiyonlar ile birçok benzerlik gösterirler.

Dedeslikler

(7) Cosh2x = Cosh2x + Sinh2x = 2 Cosh2x - 1 = 2 Sinh2x + 1

(9) Coth2x = 1+ Coxch2x

Torevieri

6 y= Cosechx - y'= - Cothx. Cosechx

Ters Hiperbolik fonksiyonlar

Dedestitler

Torevieri

6
$$y = Sech' \times = y' = \frac{-1}{x \cdot \sqrt{1-x^2}}$$

Gazamia Socular

$$Coshx = \frac{e^{x} + e^{x}}{2} = 1$$
 $Cosh^{2}x = \frac{e^{2x} + 2 + e^{-2x}}{2} = 1$

$$2 \cosh^2 x - 1 = \frac{e^{2x} + 2 + e^{-2x}}{2} - 1 = \frac{e^{2x} + e^{-2x}}{2} = \cosh^2 x$$

$$Sinhx = \frac{e^{x} - e^{-x}}{2} = Sinh^{2}x = \frac{e^{2x} - 2 + e^{2x}}{4}$$

$$2 \sinh^2 x + 1 = \frac{e^{2x} - 2 + e^{-2x}}{2} + 1 = \frac{e^{2x} + e^{-2x}}{2} = \cosh 2x^{1/2}$$

$$2.\operatorname{Cosh(lnx}) = 2.\underbrace{\frac{e^{\ln x} + e^{-\ln x}}{2}}_{=2.\frac{x+1}{x}} = x + 1$$

$$= 2.\frac{x+1}{x} = x + 1$$

Test testing in the control of the c

 $\frac{1}{|\mathcal{A}|} \int_{\mathcal{A}} \frac{1}{|\mathcal{A}|} \int_{\mathcal{A}$

 $\frac{\sum_{S} y = ArcSinc^{X}}{\sqrt{1-c^{2}x}} = y = \frac{\sum_{S} y = ArcSinc^{X}}{\sqrt{1-\ln Sinx}} = \frac{Coux}{\sin x}$ $= y = ArcCou(\ln Sinx) = y = y = \frac{Coux}{\sin x}$ $= y = ArcCou(\ln Sinx) = y = y = \frac{Coux}{\sin x}$

Sec (Arc (0) 1)=? = Sec (Arc (0) 2) = Sec \(\frac{\pi}{5} = 2 \)

O = xsswssnx = n / S = xnolsnx = n / S = xnicsnx mil & secx = 0

ArcSinx=y

$$x + 0$$
 y=0 =1 $\lim_{x \to 0} \frac{ArcSinx}{x} = \lim_{x \to 0} \frac{y}{Siny} = 1$
 $x = Siny$

Arctan(x = y)
$$\lim_{T \to 1} \frac{y^2}{y^2} = \lim_{X \to 0^+} \frac{y^2}{X^2}$$

$$\lim_{X \to 0^+} \frac{(Arctan(x))^2}{X^2} = \lim_{X \to 0^+} \frac{y^2}{(Tany)^2} \cdot \sqrt{1 + Tan^2y}$$

$$\lim_{x \to \infty} \left(\frac{x+7}{x+3} \right)^{2x+3} = ?$$

$$\lim_{x \to \infty} \left(\frac{x+7}{x+3} \right)^{2x+3} = \lim_{x \to \infty} \left[1 + \frac{4}{x+3} \right]^{\frac{2x+3}{x+3}} = (e^4)^2 = e^8$$

(8)
$$\lim_{x\to\infty} \left(\frac{x}{x+2}\right)^{3x} = ?$$

$$\lim_{x\to\infty} \left(\frac{x}{x+2}\right)^{3x} = \lim_{x\to\infty} \frac{1}{\left(\left(1+\frac{x}{2}\right)^{x}\right)^{3}} = \frac{1}{66}$$

f(x)= Sinx olsun. f-1(x)= ArcSinx olur

$$(f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))} = \frac{1}{Cos(ArcSinx)} = \frac{1}{Cosa} = \frac{1}{\sqrt{1-x^2}}$$

$$Cosa = \sqrt{1-x^2}$$

$$Cosa = \sqrt{1-x^2}$$

$$Cosa = \sqrt{1-x^2}$$