Plotting with Analysator's MayaVi interface

Otto Hannuksela

$\mathrm{May}\ 4,\ 2015$

Contents

1	Plot	tting the grid	2	
2	Hov	v to navigate	2	
3	Pick	ker options	2	
	3.1	Cut_through	3	
		3.1.1 Cut-through: Example Args fields	6	
	3.2	Velocity_space and Velocity_space_nearest_cellid	7	
	3.3	Velocity_space_iso_surface and Velocity_space_nearest_cellid_iso_surface	ice	7
	3.4	Pitch_angle	8	
	3.5	Gyrophase angle	9	

1 Plotting the grid

```
import pytools as pt
f = pt.vlsvfile.VlsvReader('bulk.0000872.vlsv')
grid = pt.grid.MayaviGrid(f, 'rho')
```

2 How to navigate

In order to navigate, use the mouse scroll to zoom, mouse 3 to move the image and mouse 1 to tilt the grid.

3 Picker options

Analysator has implemented many picker options. These include:

- 1. None
- 2. Velocity_space
- 3. Velocity_space_nearest_cellid
- 4. Velocity_space_iso_surface
- 5. Velocity_space_nearest_cellid_iso_surface
- 6. Pitch_angle
- 7. Gyrophase_angle
- 8. Cut_through (See Section 3.1)

3.1 Cut_through

The cut-through option requires specifying the variable to be plotted with the *Args* field in MayaVi and needs two clicks somewhere in the MayaVi plot (starting and ending point for the cut-through). The cut-through feature is best illustrated in Figures 1-4.

Figure 1: Example plot with the cut-through function demonstrating its use. The cut-through is drawn as a line and we are plotting the cut-through of rho, as specified in the Args-field seen in the picture.

Figure 2: Example plot with the cut-through function demonstrating its use.

Figure 3: Example plot with the cut-through function demonstrating its use.

Figure 4: Example plot with the cut-through function demonstrating its use.

3.1.1 Cut-through: Example Args fields

Example Args fields: Plots rho :	
plot rho	
Plots the x-component of E :	
plot E,x	
Plots the magnitude of B :	
plot E, magnitude	

3.2 Velocity_space and Velocity_space_nearest_cellid

Draws the velocity space for the cell we click on. If there exists no velocity space data in the vlsv file for the given cellid, then using <code>Velocity_space_nearest_cellid</code> is adviced, as it picks the nearest cellid with velocity distribution data and draws it.

Example is shown in Figure 5

Figure 5: A velocity space drawn for a clicked cellid. The cell is marked with a θ in the plot.

3.3 Velocity_space_iso_surface and Velocity_space_nearest_cellid_iso_surface

Same as with Velocity_space but draws an iso-surface plot.

Example is shown in Figure 6

Figure 6: A velocity space drawn for a clicked cellid. The cell is marked with a θ in the plot.

3.4 Pitch_angle

Draws a pitch angle plot for a given cell id. Example: Figure 7

Figure 7: A pitch angle plot drawn for a clicked cellid. The cell is marked with a θ in the plot.

3.5 Gyrophase angle

Draws a gyrophase angle plot for a given cell id. This feature was added to Analysator thanks to Yann's contribution.

Example: Figure 8

Figure 8: A gyrophase angle plot drawn for a clicked cellid. The cell is marked with a θ in the plot.