Question 1

From largest to smallest, the asymptotic size of the given functions are (with lg taken to represent log_2 and lg^{1000} taken to mean performing the lg operation one-thousand times):

Question 2

The answers to this question rely on the discussion of the master method in chapter 4 of the CLRS textbook.

- **2.1)** T(n) = 2T(n/3) + 1, so a = 2, b = 3, f(n) = 1). Using the master method, this is case 1: $f(n) = O(n^{\log_3 2 \epsilon})$, so $\mathbf{T}(\mathbf{n}) = \mathbf{\Theta}(\mathbf{n}^{\log_3 2})$.
- **2.2)** T(n) = 5T(n/4) + n, so a = 5, b = 4, f(n) = n. Again this is case 1 of the master method: $f(n) = O(n^{\log_4 5 \epsilon})$, so $\mathbf{T}(\mathbf{n}) = \mathbf{\Theta}(\mathbf{n}^{\log_5 4})$.
- **2.3)** $T(n) = 8T(n/2) + n^3$, so $a = 8, b = 2, f(n) = n^3$. This is case 2 of the master method: $f(n) = \Theta(n^{\log_2 8})$, so $\mathbf{T}(\mathbf{n}) = \mathbf{\Theta}(\mathbf{n}^3 \mathbf{lgn})$
- **2.4)** $T(n) = T(n^{1/2}) + 1$. This recurrence relation cannot be directly translated into the form of the master method, so we use a change of variables m = lgn. S(m) = S(m/2) + 1, so $a_m = 1, b_m = 2, f(m) = 1$. This is case 2 of the master method, because $S(m) = \Theta(m^{\log_2 1}) = \Theta(mlgm)$. Changing back to our original variables, $T(n) = T(2^m) = S(m) = \Theta(mlgm) = \Theta(\lg n \lg \lg n)$

Question 3

Question 4

Suppose we label the three pegs P_1, P_2 , and P_3 . Without loss of generality, we can assume that initially all n pegs are on P_1 and our goal is to move them to P_3 under the constraints posed in the question. For convenience we also label the $n \geq 1$ discs d_1, \ldots, d_n where d_1 is the smallest and d_n is the largest disc. Let T(n) denote the number of steps required for n discs.

Our algorithm must first handle the base case, which is trivial: when n = 1, move d_n directly from P_1 to P_3 . For any input n, this is the final step.

In general, we can solve the Towers of Hanoi problem in three steps with recursion:

- 1. Move all discs d_1, \ldots, d_{n-1} from P_1 to P_2
- 2. Move disc d_n from P_1 to P_3
- 3. Move discs d_1, \ldots, d_{n-1} from P_2 to P_3 .

Notice that by relabeling the discs that step 1 is equivalent to solving the problem at level T(n-1) if our original goal was to move from P_1 to P_2 . Similarly, step 3 is equivalent to T(n-1) if the original goal was to move from P_2 to P_3 . Step 2 will always take exactly 1 operation. This gives us the recurrence relation $\mathbf{T}(\mathbf{n}) = 2\mathbf{T}(\mathbf{n} - 1) + 1$.

We can get the total number of moves as a function of n using this fact. To help understand the recurrence relation it is helpful to examine a few cases with small n. We can easily see that in the base case T(n = 1) = 1. Thus, T(n = 2) = 2(1) + 1 = 3. Further,

$$T(n = 3) = 2(3) + 1$$

$$= 2(2(1)) + 2(1) + 1$$

$$= 2^{2} + 2^{1} + 2^{0}$$

$$= 7.$$

More generally, T(n) can be viewed as a summation series: $T(n) = \sum_{i=0}^{n-1} 2^i = 2^n - 1$. To see this, we use the recurrence relation T(n) = 2T(n-1) + 1 and see that at each step we add 2^{n-1} steps (this is also apparent from the result in Method 1 above). In the base case we already have a minimum of $2^1 - 1 = 1$ steps. For n = 2 we add $2^{2-1} = 2$ steps for a total of 2 + 1 = 3 steps. In general, at the n^{th} step we are adding 2^{n-1} steps to a total of $2^{n-1} - 1$ steps from the $(n-1)^{th}$ iteration. Because $2^{n-1} + 2^{n-1} = 2 \times 2^{n-1} = 2^n$, we can simplify the series into the closed form equation $2^n - 1$ steps.

That is, in general for input of size n the Towers of Hanoi algorithm above requires $2^{n} - 1$ operations.