

6.434/16.391 Statistics for Engineers and Scientists

Lecture 13 11/05/2012

Laboratory for Information and Decision Systems
Massachusetts Institute of Technology

Lecture 13 11/05/2012

RAO-BLACKWELL THEOREM

Rao-Blackwell Theorem

• Theorem: Let $S(\mathbf{X})$ be an estimator of $g(\theta)$. Suppose $T(\mathbf{X})$ is sufficient statistic for θ , and $\mathbb{E}\{|S(\mathbf{X})|\}<\infty$, for all $\theta\in\Theta$. Let

$$T^*(\mathbf{X}) = \mathbb{E}\left\{S(\mathbf{X})|T(\mathbf{X})\right\}$$

Then $\forall \theta \in \Theta$, $T^*(\mathbf{X})$ is also an estimator for $g(\theta)$ with

$$\mathbb{E}\left\{\left[T^*(\mathbf{X}) - g(\theta)\right]^2\right\} \le \mathbb{E}\left\{\left[S(\mathbf{X}) - g(\theta)\right]^2\right\}$$

If $\mathbb{V}{S} < \infty$, $\forall \theta \in \Theta$, then the inequality is strict, unless

$$T^*(\mathbf{X}) = S(\mathbf{X})$$

Remark

• Remark: $\mathbb{E}\{T^*(\mathbf{X})\} = \mathbb{E}\{\mathbb{E}\{S(\mathbf{X})|T(\mathbf{X})\}\}$ $= \mathbb{E}\{S(\mathbf{X})\}$

If $S(\mathbf{X})$ is unbiased, then $T^*(\mathbf{X})$ is also unbiased, and the conclusion becomes

$$\mathbb{V}\left\{T^*(\mathbf{X})\right\} \leq \mathbb{V}\left\{S(\mathbf{X})\right\}, \ \forall \theta \in \Theta$$

- Interpretation: Suppose $S(\mathbf{X})$ is an estimator for θ and we have a sufficient statistic $T(\mathbf{X})$ for θ . We can always construct a uniformly better (no worse) estimator by conditioning on $T(\mathbf{X})$
- Thus, in our search for best estimator, we only need to consider statistic that are functions of a sufficient statistic.

Double expectation formula

- Before the proof of Rao-Blackwell Theorem, we provide the following three facts
 - Double expectation formula
 - Conditioning reduces variance
 - Mean squared error property
- Consider two random variables X and Y. We have

$$\mathbb{E}\big\{\mathbb{E}\left\{X|Y\right\}\big\} = \mathbb{E}\{X\}$$

Conditioning reduces variance

• Consider two random variables S and T. We have

$$\mathbb{V}\big\{\mathbb{E}\{S|T\}\big\} = \mathbb{V}\{S\} - \mathbb{E}\big\{\mathbb{V}\{S|T\}\big\}$$

- Proof:
- Step 1. Conditional variance:

$$\mathbb{V}\{S|T\} = \mathbb{E}\{S^2|T\} - \mathbb{E}^2\{S|T\}$$

Then we have

$$\mathbb{E}\{\mathbb{V}\{S|T\}\} = \underbrace{\mathbb{E}\{\mathbb{E}\{S^2|T\}\}}_{=\mathbb{E}\{S^2\}} - \mathbb{E}\{\mathbb{E}^2\{S|T\}\}$$
(1)

Conditioning reduces variance

• Step 2. Variance of $\mathbb{E}\{S|T\}$

$$\mathbb{V}\left\{\underbrace{\mathbb{E}\{S|T\}}_{Z}\right\} = \mathbb{E}\left\{\underbrace{\mathbb{E}^{2}\{S|T\}}_{Z^{2}}\right\} - \mathbb{E}^{2}\left\{\underbrace{\mathbb{E}\{S|T\}}_{Z}\right\} \\
= \mathbb{E}\left\{\mathbb{E}^{2}\{S|T\}\right\} - \mathbb{E}^{2}\left\{S\right\} \tag{2}$$

Adding (1) and (2), and move $\mathbb{E}\{\mathbb{V}\{S|T\}\}\$ to the right hand side, we obtain

$$\mathbb{V}\big\{\mathbb{E}\{S|T\}\big\} = \mathbb{V}\{S\} - \mathbb{E}\big\{\mathbb{V}\{S|T\}\big\}$$

Mean squared error

The expression of mean squared error is given by

$$\mathbb{E}\left\{\left[T(\mathbf{X}) - g(\theta)\right]^{2}\right\} = \mathbb{V}\left\{T(\mathbf{X})\right\} + \mathbb{B}^{2}\left(\theta, T(\mathbf{X})\right)$$

where
$$\mathbb{B}(\theta, T(\mathbf{X})) = \mathbb{E}\{T(\mathbf{X})\} - g(\theta)$$

• Proof:

L.H.S =
$$\mathbb{E}\left\{\left[T(\mathbf{X}) - \mathbb{E}\left\{T(\mathbf{X})\right\} + \mathbb{E}\left\{T(\mathbf{X})\right\} - g(\theta)\right]^2\right\}$$

= $\mathbb{V}\left\{T(\mathbf{X})\right\} + \left[\mathbb{E}\left\{T(\mathbf{X})\right\} - g(\theta)\right]^2$

where the second equality is due to

$$\mathbb{E}\{T(\mathbf{X}) - \mathbb{E}\{T(\mathbf{X})\}\} = 0$$

Proof of Rao-Blackwell Theorem (1 of 2)

 Proof: First, according to the relationship between MSE and bias (lecture note 11, slide 11), we have

$$\mathbb{E}\left\{ \left[T^*(\mathbf{X}) - g(\theta) \right]^2 \right\} = \mathbb{V}\left\{ T^*(\mathbf{X}) \right\} + \mathbb{B}^2 \left\{ \theta, T^*(\mathbf{X}) \right\}$$
$$\mathbb{E}\left\{ \left[S(\mathbf{X}) - g(\theta) \right]^2 \right\} = \mathbb{V}\left\{ S(\mathbf{X}) \right\} + \mathbb{B}^2 \left\{ \theta, S(\mathbf{X}) \right\}$$

where

$$\mathbb{B} \{\theta, T^*(\mathbf{X})\} = \mathbb{E} \{T^*(\mathbf{X})\} - g(\theta)$$
$$\mathbb{B} \{\theta, S(\mathbf{X})\} = \mathbb{E} \{S(\mathbf{X})\} - g(\theta)$$

Recall that

$$\mathbb{E}\{T^*(\mathbf{X})\} = \mathbb{E}\{\mathbb{E}\{S(\mathbf{X})|T(\mathbf{X})\}\}$$
$$= \mathbb{E}\{S(\mathbf{X})\}$$

Thus

$$\mathbb{B}\left\{\theta, T^*(\mathbf{X})\right\} = \mathbb{B}\left\{\theta, S(\mathbf{X})\right\}$$

Proof of Rao-Blackwell Theorem (2 of 2)

• Since conditioning reduces variance, we have

$$\mathbb{V}\left\{T^*(\mathbf{X})\right\} \le \mathbb{V}\left\{S(\mathbf{X})\right\}$$

Therefore,

$$\mathbb{E}\left\{\left[T^*(\mathbf{X}) - g(\theta)\right]^2\right\} \le \mathbb{E}\left\{\left[S(\mathbf{X}) - g(\theta)\right]^2\right\}$$

with equality only if $\mathbb{E}\{\mathbb{V}\{S|T\}\}=0$. Thus, $\mathbb{V}\{S|T\}=0$, i.e.,

$$\mathbb{E}\left\{ \left[S - \mathbb{E}\{S|T\} \right]^2 \,\middle|\, T \right\} = 0$$

which implies

$$S = \mathbb{E}\{S|T\} = T^*$$