

### Faculty of Applied Sciences B.Sc. in Computing

Academic Year 2022/2023 2<sup>nd</sup> Semester

COMP123 - 121/122

**Data Communications** 

## Data Transport Networks

(Circuit and packet switching)

#### **Switched Communications Networks**

- switching nodes provide a switching facility that move data between nodes
- stations devices attached to the network
- nodes switching devices that provide communication
  - connected by transmission links
  - dedicated point-to-point
  - usually multiplexed using either FDM or TDM

## Simple Switching Network



#### **Communication Networks**

communications network – a collection of nodes

redundant connections increase network reliability

switching technologies:

- circuit switching
- packet switching

in addition to switching functions, some nodes also deliver data to attached stations





## Circuit Switching

- uses a dedicated path between two stations
- can be inefficient
  - channel capacity
    dedicated for duration of connection
  - if no data, capacity
    wasted
- set up (connection) takes time
- once connected, transfer is transparent

has three phases



### Circuit Establishment



#### Public Circuit Switched Network



## Circuit-Switching Technology

- Driven by applications that handle voice traffic
  - Key requirement is <u>no transmission delay</u> and <u>no variation in delay</u>
- Efficient for analog transmission of voice signals
- Inefficient for digital transmission
- Transparent
  - once a circuit is established it appears as a direct connection; no special logic is needed

## Packet Switching

- circuit switching was designed for voice
- packet switching was designed for data
- transmitted in small packets
- packets contains user data and control info
  - user data may be part of a larger message
  - control information includes routing (addressing)
- packets are received, stored briefly (buffered) and passed on to the next node

#### The Use of Packets



## Advantages

- line efficiency
  - single link shared by many packets over time
  - packets queued and transmitted as fast as possible
- data rate conversion
  - stations connects to local node at own speed
  - nodes buffer data if required to equalize rates
- packets accepted even when network is busy
- priorities can be used

## **Switching Techniques**

- station breaks long message into packets
- packets sent one at a time to the network
- packets can be handled in two ways:
  - datagram
    - each packet is treated independently with no reference to previous packets
  - virtual circuit
    - a preplanned route is established before any packets are sent

## Datagram Diagram



## Virtual Circuit Diagram



## Virtual Circuits vs. Datagram

- virtual circuits
  - network can provide sequencing and error control
  - packets are forwarded more quickly
  - less reliable
- datagram
  - no call setup phase
  - more flexible
  - more reliable



## Circuit vs. Packet Switching

- performance depends on various delays
  - propagation delay
    - time it takes a signal to propagate between nodes
  - transmission time
    - time it takes for a transmitter to send a block of data
  - node delay
    - time it takes for a node to perform processing as it switches data
- range of other characteristics, including:
  - transparency
  - amount of overhead

# **Effect** of **Packet** Size on TX Time



#### **Event Timing for Circuit Switching and Packet Switching**



### Summary

- switched communications networks
  - stations / nodes
- circuit switching concepts and networks
- packet switching principles

