

St. Francis Institute of Technology
Department of Information Technology
BE Major Project
ITM 701
Topic Final Presentation

Group No. 22

EZ-SWAP
EOREV

Justin Madhri 09
Sagar Shah 10
Dhruv Vakharia 11
Nidhi Sawant 12

DOMAIN: IOT & ELECTRIC VEHICLE

LITERATURE REVIEW [1]

Title

A Survey of Battery
Swapping Stations for
Electric Vehicles:
Operation Modes and
Decision Scenarios

Advantages

- Comprehensive
 Survey.
- Operation Modes
 Analysis.
- Decision Scenarios
 Evaluation.

- Limited focus on Technical Implementation
- Lack of Empirical Analysis
- Limited Discussion on challenges and limitation

LITERATURE REVIEW [2]

Methodology

Sizing and Locating
Planning of EV
Centralized-BatteryCharging-Station
Considering Battery
Logistics System.

Advantages

- Comprehensive
 Approach.
- Consideration of Battery Logistics.
- Mathematical Modelling and Optimization.

- Limited Scope
- Complexity of Models
- ack of Real World Validation

LITERATURE REVIEW [3]

Title

Battery Swapping Technology

Advantages

- Reduction in Carbon Emissions
- Novel Approach.
- Ideal for Long-Distance Travel.

- Technical Details
- Cost and Infrastructure
- Safety and Standards
- Charging Efficiency
- Real-World Testing

LITERATURE REVIEW [3]

Title

Battery Swapping
Technology

Advantages

- Reduction in Carbon Emissions
- Novel Approach.
- Ideal for Long-Distance Travel.

- Technical Details
- Cost and Infrastructure
- Safety and Standards
- Charging Efficiency
- Real-World Testing

LITERATURE REVIEW [4]

Title

A Monte Carlo Simulation
Approach to Evaluate
Service Capacities of EV
Charging and Battery
Swapping Stations

Advantages

- Comprehensive Evaluation Method.
- Realistic Modelling.
- Flexibility Analysis.

- Limited Scope
- Lack of Real World Validation
- Narrow Discussion on results

LITERATURE REVIEW [5]

Title

Electric Vehicles Battery
Management Network
Using Blockchain IoT

Advantages

- Integration of Blockchain and IoT
- Enhancing EVInfrastructure
- Payment Efficiency

- Data Processing is time consuming.
- Scalability
- Security of data

LITERATURE REVIEW [6]

Title

An IoT Monitoring and Control Platform for Museum Content Conservation

Advantages

- Efficient DataCollection
- Energy Efficiency.
- Visitor Comfort

- Network Reliability
- Cost and Infrastructure
- Safety and Standards

LITERATURE REVIEW [7]

Title

Sensing Technologies: A Review

Advantages

- Comprehensive Review
- Focus on Critical Capabilities.
- Discussion of Key Parameters.

- Specific Examples
- Costing
- Safety Standards

LITERATURE REVIEW [8]

Title

Electric Vehicle Battery
Swapping-Charging
System in Power
Generation Scheduling for
Managing Ambient Air
Quality and Human Health
Conditions

Advantages

- Reduction in Carbon Emissions
- Novel Approach.
- Ideal for Long-Distance Travel.

- Scalability
- Technical Details
- Cost and Infrastructure
- Safety and Standards
- Real-World Testing

LITERATURE REVIEW [9]

Title

Battery Management
System Design (BMS) for
Lithium-Ion Batteries

Advantages

- Highlighting the Importance of Lithium-Ion Batteries
- Complexity of Lithium-Ion Battery Use.
- identifies the critical issue
 of ensuring that lithium-ion
 batteries used in series have
 matching voltage levels.

- Technical Details
- BMS Infrastructure
- Real-World Testing

PROBLEM STATEMENT

The aim of this project is to develop "EZswap" - a low-cost, IoT-based batteryswapping station to address the challenges faced by electric vehicle (EV) owners with regards to EV charging infrastructure that suffers from long charging times, limited availability of charging stations, and range anxiety among users. EZ-SWAP for EV aims to bridge this gap by offering a quick and effortless alternative to traditional charging methods.

PROPOSED SOLUTION METHODOLOGY

- Easy BatterySwapping
- Sensors for Security
 Monitoring
- User-friendlyWebsite

SCOPE

- INFRASTRUCTURE INTEGRATION
- AUTOMATED SWAPPING PROCESS
- BUSINESS MODELS AND ECONOMIC VIABILITY
- REAL TIME MONITORING
- USER ACCEPTANCE AND ADOPTION FACTORS

SEM 7 OVERVIEW

Temperature Vs Time

Current Vs Time

SYSTEM FLOW

BLOCK DIAGRAM =

REFERENCES

- H. WU, "A SURVEY OF BATTERY SWAPPING STATIONS FOR ELECTRIC VEHICLES: OPERATION MODES AND DECISION SCENARIOS," IN IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 23, NO. 8, PP. 10163-10185, AUG. 2022, DOI: 10.1109/TITS.2021.3125861..
- C. HE, J. ZHU, S. LI, Z. CHEN AND W. WU, "SIZING AND LOCATING PLANNING OF EV CENTRALIZED-BATTERY-CHARGING-STATION CONSIDERING BATTERY LOGISTICS SYSTEM," IN IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, VOL. 58, NO. 4, PP. 5184-5197, JULY-AUG. 2022, DOI: 10.1109/TIA.2022.3168244.
- S. JAIN, Z. AHMAD, M. S. ALAM AND Y. RAFAT, "BATTERY SWAPPING TECHNOLOGY," 2020 5TH IEEE INTERNATIONAL CONFERENCE ON RECENT ADVANCES AND INNOVATIONS IN ENGINEERING (ICRAIE), JAIPUR, INDIA, 2020, PP. 1-4, DOI: 10.1109/ICRAIE51050.2020.9358366.

REFERENCES

- T. ZHANG, X. CHEN, Z. YU, X. ZHU AND D. SHI, "A MONTE CARLO SIMULATION APPROACH TO EVALUATE SERVICE CAPACITIES OF EV CHARGING AND BATTERY SWAPPING STATIONS," IN IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 14, NO. 9, PP. 3914-3923, SEPT. 2018, DOI: 10.1109/TII.2018.2796498.
- B. C. FLOREA, "ELECTRIC VEHICLES BATTERY MANAGEMENT NETWORK USING BLOCKCHAIN IOT," 2020 IEEE INTERNATIONAL CONFERENCE ON AUTOMATION, QUALITY AND TESTING, ROBOTICS (AQTR), CLUJ-NAPOCA, ROMANIA, 2020, PP. 1-6, DOI: 10.1109/AQTR49680.2020.9129916..
- G. ALSUHLY AND A. KHATTAB, "AN IOT MONITORING AND CONTROL PLATFORM FOR MUSEUM CONTENT CONSERVATION," 2018 INTERNATIONAL CONFERENCE ON COMPUTER AND APPLICATIONS (ICCA), BEIRUT, LEBANON, 2018, PP. 196-201, DOI: 10.1109/COMAPP.2018.8460402.

REFERENCES

- A. GAUR ET AL., "FIRE SENSING TECHNOLOGIES: A REVIEW," IN IEEE SENSORS JOURNAL, VOL. 19, NO. 9, PP. 3191-3202, 1 MAY1, 2019, DOI: 10.1109/JSEN.2019.2894665.
- MINGFEI BAN, JILANI, MOHAMMAD SHAHIDEHPOUR, DANYANG GUO, YIYUN YAO,
 "ELECTRIC VEHICLE BATTERY SWAPPING-CHARGING SYSTEM IN POWER GENERATION
 SCHEDULING FOR MANAGING AMBIENT AIR QUALITY AND HUMAN HEALTH CONDITIONS",
 IEEE,2019.
- MUHAMMAD NIZAM, HARI MAGHFIROH, RIZAL ABDULROZAQ ROSADI AND KIRANA D.U. KUSUMAPUTRI, "BATTERY MANAGEMENT SYSTEM DESIGN (BMS) FOR LITHIUM-ION BATTERIES", AIP CONFERENCE, 2020.

CONCLUSION:

TIME SAVING

REDUCED RANGE ANXIETY

PROMOTING SUSTAINABLE DEVELOPMENT

THANKYOU RIDEMORE