In [1]: #Importing necessary libraries import pandas as pd import seaborn as sns import matplotlib.pyplot as plt %matplotlib inline from sklearn.preprocessing import StandardScaler, LabelEncoder from sklearn.tree import DecisionTreeClassifier from sklearn.model_selection import train_test_split, cross_val_score from sklearn.model_selection import GridSearchCV from sklearn.metrics import classification_report, accuracy_score, confusior

In [2]: #Loading data bank = pd.read_csv("bank.csv",sep=';') bank.head(2)

Out[2]:

	age	job	marital	education	default	housing	loan	contact	month	day_of_we
0	56	housemaid	married	basic.4y	no	no	no	telephone	may	m
1	57	services	married	high.school	unknown	no	no	telephone	may	m

2 rows × 21 columns

In [3]: bank.describe()

Out[3]:

	age	duration	campaign	pdays	previous	emp.var.rate	cc
count	41188.00000	41188.000000	41188.000000	41188.000000	41188.000000	41188.000000	4
mean	40.02406	258.285010	2.567593	962.475454	0.172963	0.081886	
std	10.42125	259.279249	2.770014	186.910907	0.494901	1.570960	
min	17.00000	0.000000	1.000000	0.000000	0.000000	-3.400000	
25%	32.00000	102.000000	1.000000	999.000000	0.000000	-1.800000	
50%	38.00000	180.000000	2.000000	999.000000	0.000000	1.100000	
75%	47.00000	319.000000	3.000000	999.000000	0.000000	1.400000	
max	98.00000	4918.000000	56.000000	999.000000	7.000000	1.400000	
4							b

```
In [4]: #Checking Missing values
bank.isnull().sum()
```

Out[4]: age 0 job 0 marital 0 education 0 0 default housing 0 0 loan contact 0 0 month day_of_week 0 0 duration 0 campaign pdays 0 0 previous poutcome 0 0 emp.var.rate 0 cons.price.idx cons.conf.idx 0 euribor3m 0 nr.employed 0

In [5]: #Checking for duplicates
bank.duplicated().sum()

dtype: int64

Out[5]: 12

In [6]: #Investigating these 12 duplicates
bank[bank.duplicated()]

0

Out[6]:

		age	job	marital	education	default	housing	loan	contact	month
	1266	39	blue- collar	married	basic.6y	no	no	no	telephone	may
1	2261	36	retired	married	unknown	no	no	no	telephone	jul
1	4234	27	technician	single	professional.course	no	no	no	cellular	jul
1	6956	47	technician	divorced	high.school	no	yes	no	cellular	jul
1	8465	32	technician	single	professional.course	no	yes	no	cellular	jul
2	20216	55	services	married	high.school	unknown	no	no	cellular	aug
2	20534	41	technician	married	professional.course	no	yes	no	cellular	aug
2	25217	39	admin.	married	university.degree	no	no	no	cellular	nov
2	8477	24	services	single	high.school	no	yes	no	cellular	apr
3	2516	35	admin.	married	university.degree	no	yes	no	cellular	may
3	6951	45	admin.	married	university.degree	no	no	no	cellular	jul
3	8281	71	retired	single	university.degree	no	no	no	telephone	oct

12 rows × 21 columns

Age Distribution

```
In [7]: sns.histplot(x="age", data=bank, kde=True, hue= "y")
    plt.title("Age Distribution and Deposits\n")
    plt.show()
```

Age Distribution and Deposits


```
In [9]: # Distribution of Marital Status
    plt.figure(figsize=(7,3))
    sns.countplot(x="marital", data= bank, hue ="y")
    plt.title("Marital Status and Deposits\n")
    plt.show()
```

Marital Status and Deposits


```
In [10]: # Distribution of Education Status
plt.figure(figsize=(12,4))
sns.countplot(x="education", data= bank, hue ="y")
plt.title("Education Status and Deposits\n")
plt.show()
```



```
In [12]: le = LabelEncoder()
    bank[cols] = bank[cols].apply(le.fit_transform)
    bank.head(3)
```

```
Out[12]:
```

	age	job	marital	education	default	housing	loan	contact	month	day_of_week	 car
0	56	3	1	0	0	0	0	1	6	1	
1	57	7	1	3	1	0	0	1	6	1	
2	37	7	1	3	0	2	0	1	6	1	

3 rows × 21 columns

```
In [13]: # Correlation Analysis using Heatmap
    plt.figure(figsize=(23,10))
    sns.heatmap(bank.corr(), cmap='bwr', annot=True)
    plt.show()
```



```
In [ ]: # Outcome "y" is positively correlated with duration of call and also shows
# multicolinearty can be seen among some
# input features. This can be handled by dropping those variables or by perf
```

```
X = bank.drop("y", axis=1)
```

y = bank.y

scaler = StandardScaler()

X_scaled = pd.DataFrame(scaler.fit_transform(X), columns = X.columns)

```
In [16]: # Model building - Decision Tree Classifier
         #Train-test split
         train_X, test_X, train_y, test_y = train_test_split(X_scaled, y, test_size=@)
         decision tree = DecisionTreeClassifier()
         decision tree.fit(train X, train y)
Out[16]: DecisionTreeClassifier()
In [18]: print('Train Score: {}'.format(decision tree.score(train X, train y)))
         print('Test Score: {}'.format(decision_tree.score(test_X, test_y)))
         Train Score: 1.0
         Test Score: 0.8883224083515416
In [19]: cross val score(decision tree, train X, train y, cv=5).mean()
Out[19]: 0.8880371720376579
In [20]: | ypred = decision_tree.predict(test_X)
         print(classification_report(test_y,ypred))
                        precision
                                     recall f1-score
                                                        support
                    0
                            0.94
                                       0.94
                                                 0.94
                                                          10968
                    1
                            0.50
                                       0.51
                                                 0.51
                                                           1389
                                                 0.89
                                                          12357
             accuracy
            macro avg
                            0.72
                                       0.72
                                                 0.72
                                                          12357
         weighted avg
                            0.89
                                       0.89
                                                 0.89
                                                          12357
In [21]: # Hyperparameter tunning
         #Applying Grid search cv to find best estimaters to improve model performand
         param_grid = {
             'max_depth': [3, 5, 7,10, None],
             'criterion' : ['gini', 'entropy'],
             'min_samples_leaf': [3, 5, 7, 9,10,20]
             }
In [22]: gscv = GridSearchCV(decision tree, param grid, cv=5, verbose=1)
         gscv.fit(train X, train y)
         Fitting 5 folds for each of 60 candidates, totalling 300 fits
Out[22]: GridSearchCV(cv=5, estimator=DecisionTreeClassifier(),
                      param_grid={'criterion': ['gini', 'entropy'],
                                   'max_depth': [3, 5, 7, 10, None],
                                   'min_samples_leaf': [3, 5, 7, 9, 10, 20]},
                      verbose=1)
In [23]: |gscv.best_params_
Out[23]: {'criterion': 'gini', 'max_depth': 5, 'min_samples_leaf': 10}
```

```
In [24]: |gscv.best_estimator_
Out[24]: DecisionTreeClassifier(max_depth=5, min_samples_leaf=10)
In [25]: cross_val_score(gscv.best_estimator_, train_X, train_y, cv=5).mean()
Out[25]: 0.914258828247674
In [26]: clf = DecisionTreeClassifier(criterion= 'gini', max_depth= 5, min_samples_le
         clf.fit(train_X, train_y)
Out[26]: DecisionTreeClassifier(max_depth=5, min_samples_leaf=3)
In [27]: print('Train Score: {}'.format(clf.score(train_X, train_y)))
         print('Test Score: {}'.format(clf.score(test_X, test_y)))
         Train Score: 0.9177274461517116
         Test Score: 0.9113053330096301
In [28]: | pred_y = clf.predict(test_X)
In [29]: #Confusion Matrix
         cm = confusion_matrix(pred_y, test_y)
         ConfusionMatrixDisplay(cm, display_labels=clf.classes_).plot()
         plt.show()
                                                                        10000
             0
                         10516
                                                   644
                                                                       - 8000
          True label
                                                                       6000
                                                                       4000
                          452
                                                   745
             1 -
                                                                       - 2000
                           0
                                                    1
```

Predicted label

```
In [30]: #Classification Report
print(classification_report(pred_y, test_y))
```

	precision	recall	f1-score	support
0 1	0.96 0.54	0.94 0.62	0.95 0.58	11160 1197
accuracy macro avg	0.75	0.78	0.91 0.76	12357 12357
weighted avg	0.92	0.91	0.91	12357

```
In [31]: #Accuracy Score
    accuracy = accuracy_score(test_y,pred_y)
    print("Test Accuracy of Decision Tree Classifier : {}".format(accuracy*100))
```

Test Accuracy of Decision Tree Classifier: 91.13053330096301

Cross-Validation Accuracy Scores Decision Tree : 91.082010873053

In [33]: from sklearn import tree
fig = plt.figure(figsize=(25,20))
t= tree.plot_tree(clf,filled=True,feature_names=X.columns)

In []:	
In []:	
In []:	
In []:	