ANALYSIS OF CALIBRATION AND PRE-PROCESSING OF GEM DATA AND ITS APPLICATION TO THE BINGO

BINGO Telescope

University of São Paulo Nicolli Soares (F. Abdalla & C. Tello)

OUTLINE

- Brief Contextualization
- The Galactic Emission Mapping project (GEM)
- GEM Design & Observation
- Calibration and data processing BINGO
- GEM Data description and processing
- Step 1 GEM_2300_0
- Step 2 GEM_2300_1
- Step 2 GEM_2300_2

BRIEF CONTEXTUALIZATION

COBE satellite results (1990's)

CMB mean & anisotropies

Lack of full-sky map of (diffuse)
Galactic emissions on large scales

- More than one frequency
- At the same (good) angular resolution
- At the same beam pattern
- Improve template parameters
- Control over scanning strategy as a systematic

THE GALACTIC EMISSION MAPPING PROJECT - GEM

Maps at (receivers) 1.465 2.3 GHz 5.0 10.0

0.408

- Improve foreground description through 5 freqs
- Portable telescope
- Possible in different countries at different latitudes
- Combination between telescope rotation (at fixed zenith)
 and Earth's rotation
- Double-shielded to minimize sidelobe pick-up
- Collab. Brazil, Colombia, USA, Italy, Portugal, and Spain

THE GALACTIC EMISSION MAPPING PROJECT - GEM

The 2.3 GHz continuum survey of the GEM project -

C. Tello et al. (2013)

Description	Colombia	Brazil
Observational site	Villa de Leyva	Cachoeira Paulista
Longitude (WGS84)	-73°35′0.53″	-44°59′54.34′
Latitude (WGS84)	+5°37′7.84″	$-22^{\circ}41'0.74''$
Altitude (m.a.s.l.)	2173	572
Observing runs	1995-Jun-1–18	1999-May-18-Jun-17
		1999-Oct-11-26
Antenna mounting	altazimuthal	altazimuthal
Azimuth scanning speed (rpm)	0.99632 ± 0.00036	1.00290 ± 0.00063
Sky coverage (%)	46.3	46.8
Pointing accuracy	6′.84	5:26
Center frequency (MHz)	2300	2300
Pre-detection BW (MHz)	100	100
Gain $(K V^{-1})$	54.675	50.928
Gain susceptability (K ⁻¹)	-0.02381 ± 0.00028	-0.02164 ± 0.00006
System temperature (K)	85.466	61.644
RMS sensitivity (mK)	11.42	8.24
RF plate $T_{\rm cal}$ (K)	310.572	308.031
Horizontal <i>HPBW</i> (°)	2.30 ± 0.13	2.31 ± 0.03
Vertical <i>HPBW</i> (°)	1.92 ± 0.18	1.82 ± 0.12
Beam efficiency (%)	75.0 ± 3.5	75.0 ± 3.5
Aperture efficiency (%)	38.0	39.9
PSS (Jy K ⁻¹)	306	291

GEM - DESIGN & OBSERVATION

- 5.5m diameter
- Extension 2.1m (halo extension)
- Parabolic Reflector
 - Prime-focus mounted feed antenna
 - Cassegrain optics
- Mounted over an alt-az rotating base
- Circularly scan the sky around the zenith at a rate of ~ 1 rpm
- 1 rpm turns the scan insensible to atmospheric fluctuations
- Protections allow a ground rejection (<10 GHz). Minimum sidelobe pick-up

Observation strategy of GEM

DATA CALIBRATION AND PRE-PROCESSING (BINGO)

- GEM will serve as an outrigger for BINGO
- Used to improve the pre-processing part
- Mainly to handle the foreground contamination
- Interaction with HIDE&SEEK

ANALISYS OF GEM
DATA

BINGO PIPELINE
DATA
PRE-PROCESSING

DATA DESCRIPTION AND PROCESSING

STEP 1

- Temporal synchronization of the raw data
- (First) Conversion of digital-physical units (V to K)

STEP 2

- Calibration of the rotation speed.
- Calibration of the radiometer signal to antenna temp. (V to K)
- Tight pointing (calibrates beam pattern using the Moon position)
- Sun ephemeris

STEP 3

- Removal RFI
- Removal ground effects

STEP 1 - GEM_2300_0

INPUTS (DIGITAL UNITS)

OUTPUT AT PHYSICAL UNITS

- Frame count
- Time (s)
- Elevation (degree)
- Azimuth (degree)
- Radiometer temperature sensors: T1, T2, T3, T4 (°C)
- Radiometer signal (Volts)
- Tns Noise temperature (°C)
- Vns Noise voltage (Volts)
- Heater Voltage (Volts)

STEP 1 - GEM_2300_0

OUTPUT AT PHYSICAL UNITS

- Frame count
- Time (s)
- Azimuth (degree)

- **Time Synchronization**
 - initial info used
- records the time Elevation (degree) (yr/m/d/hr/min/sec/ms) of the file
- Radiometer temperature sensors: T1, T2, T3, T4 (°C)
- Radiometer signal (Volts)
- Tns Noise temperature (°C)
- Vns Noise voltage (Volts)
- Heater Voltage (Volts)

STEP 1 - GEM_2300_0

OUTPUT AT PHYSICAL UNITS

- Frame count
- Time (s)
- Elevation (degree)
- Azimuth (degree)

Main factor in conversions

Digital-Physical units use a cte factor defined according to the data acquisition system (through an ADC

multiplexer module.)

- Radiometer temperature sensors: T1, T2, T3, T4 (°C)
- Radiometer signal (Volts)
- Tns Noise temperature (°C)
- Vns Noise voltage (Volts)
- Heater Voltage (Volts)

STEP 2 - GEM_2300_1

INPUT

- Frame count
- Time (s)
- Azimuth (graus)

OUTPUT

- Average rotation speed of the plate (deg/sec)
- Average rotation period (s)
- Average angular distance per frame (deg/frame)
- Horizontal pointing for each frame in relation to azimuth position (degree)

STEP 2 - GEM_2300_2

INPUTS

- Frame count
- Time (s)
- Elevation (degree)
- Azimuth (degree)
- T1 (°C)
- Radiometer signal (Volts)
- T2 (°C)
- T4 (°C)
- Tns noise temperature(°C)
- Vns noise voltage (volts)

- Frame count
- Time (s)
- Elevation (degree)
- Radiometer signal (K)
- Azimuth (degree)
- T2 (K)
- Background (K)
- Sun's horizontal coordinates (degree)
- Sun's angle (degree)

STEP 3 - IN PROCESSING

THE ANALYSIS OF STEP 3 WILL STILL BE CARRIED OUT

