Midterm Exam A CS/MATH 113 Discrete Mathematics

Habib University — Spring 2023

11 March, 2023. 1300-1415h.

This exam consists of $\underline{4}$ questions for a total of $\underline{40}$ points on $\underline{2}$ pages. Attempt all problems and submit this sheet with your answer sheet by the end of the exam.

SU	udent ID:	
St	udent Name:	
1.	Tautologies Prove or disprove that the following are tautologies.	(10 points)
	(a) $(a \Longrightarrow b) \iff (\neg a \Longrightarrow \neg b)$	
	Solution: We prove using a counterexample that this statement is not	a tautology.
	<i>Proof.</i> Consider $a \equiv T, b \equiv F$.	
	Then LHS is $T \Longrightarrow F$ which evaluates to F .	_
	And RHS is $F \Longrightarrow T$ which evaluates to T .	
	(b) $(a \wedge b \wedge c \wedge d) \implies (c \wedge b \wedge a \wedge d)$	
	Solution: We use the commutative property of conjunction.	
	<i>Proof.</i> Because of the commutative property, LHS \equiv RHS.	
	Therefore, LHS \implies RHS.	
2	Logical Equivalence	(10 points)
	Show that $\forall x (P(x) \land Q(x)) \equiv \forall x P(x) \land \forall x Q(x)$.	(10 points)

Solution: We prove that LHS \implies RHS, and vice versa, through a sequence of infer-

ences.

CS/MATH 113 Midterm Exam Spring 2023

$Proof. \ \underline{Case}: \ LHS \implies R.$	HS		
$P(c) \wedge Q(c)$	UI on LHS, c is an arbitrary element	(1)	
P(c)	simplification on (1)	(2)	
$\forall x P(x)$	UG on (2)	(3)	
Q(c)	simplification on (1)	(4)	
$\forall x Q(x)$	UG on (4)	(5)	
$\forall x Q(x) \land \forall x Q(x)$	conjunction on (3) , (5)		
$Case: RHS \implies LHS$			
$P(c) \wedge Q(c)$	UI on RHS, c is an arbitrary element	(1)	
$\forall x (P(x) \land Q(x))$	UG on (1)		
	• •		

3. Subsets (10 points)

Prove that $\{12n \mid n \in \mathbb{Z}\}$ is a subset of $\{2n \mid n \in \mathbb{Z}\} \cap \{3n \mid n \in \mathbb{Z}\}.$

```
Solution: Let A = \{12n \mid n \in \mathbb{Z}\}, B = \{2n \mid n \in \mathbb{Z}\}, C = \{3n \mid n \in \mathbb{Z}\}. Then we have to show that A \subseteq (B \cap C). We do so by showing that A \subseteq B and A \subseteq C.

Proof. \ \underline{Case}: A \subseteq B.
Consider \ a \in A.
Then \ a = 12k \ for \ some \ k \in \mathbb{Z}.
Then \ a = 2 \cdot 6k.
\therefore a \in B.
\underline{Case}: \ A \subseteq C.
Consider \ a \in A.
Then \ a = 12k \ for \ some \ k \in \mathbb{Z}.
Then \ a = 3 \cdot 4k.
\therefore a \in C.
```

4. Function Properties

(10 points)

Given $g:A\to B$ and $f:B\to C$, prove that: if $(f\circ g)$ is onto, then so is f.

Solution: We prove the above by contradiction.

Proof. Assume that $(f \circ g)$ is onto and f is not.

Now, $f \circ g : A \to C$.

For an arbitrary $a \in A$, we have that $(f \circ g)(a) = f(g(a))$.

Because f is not onto, there is an element, $c \in C$ that f does not map to.

That is, $\not\exists a \in A \ni f(g(a)) = c$.

 $\therefore f \circ g$ is not onto. \perp

Good luck!