NATIONAL UNIVERSITY OF SINGAPORE MATHEMATICS SOCIETY

PAST YEAR PAPER SOLUTIONS

Written by Lin Mingyan, Simon Audited by Chua Hongshen

MA2108 Mathematical Analysis I

AY 2012/2013 Sem 1

Question 1

(a) (i) We have

$$\lim_{n \to \infty} \frac{2n+1-n^2}{n^2-2n+6} = \lim_{n \to \infty} \frac{\frac{2}{n}+\frac{1}{n^2}-1}{1-\frac{2}{n}+\frac{6}{n^2}} = \frac{-1}{1} = -1.$$

(ii) Since $\left(\left(1+\frac{1}{n+2}\right)^{n+2}\right)$ is a subsequence of $\left(\left(1+\frac{1}{n}\right)^n\right)$, we have $\lim_{n\to\infty}\left(1+\frac{1}{n+2}\right)^{n+2}=e$. This implies that

$$\lim_{n \to \infty} \left(1 + \frac{1}{n+2} \right)^{2n+4} = \lim_{n \to \infty} \left(\left(1 + \frac{1}{n+2} \right)^{n+2} \right)^2 = e^2.$$

Furthermore, we have

$$\lim_{n\to\infty} \left(1+\frac{1}{n+2}\right)^4 = \left(\lim_{n\to\infty} \left(1+\frac{1}{n+2}\right)\right)^4 = 1.$$

Hence, we have

$$\lim_{n \to \infty} \left(1 + \frac{1}{n+2} \right)^{2n} = \lim_{n \to \infty} \frac{\left(1 + \frac{1}{n+2} \right)^{2n+4}}{\left(1 + \frac{1}{n+2} \right)^4} = e^2.$$

(iii) We have

$$\lim_{n \to \infty} \left(\sqrt{(n+a)(n+b)} - n \right) = \lim_{n \to \infty} \frac{(\sqrt{(n+a)(n+b)} - n)(\sqrt{(n+a)(n+b)} + n)}{\sqrt{(n+a)(n+b)} + n}$$

$$= \lim_{n \to \infty} \frac{(n+a)(n+b) - n^2}{\sqrt{n^2 + (a+b)n + ab} + n}$$

$$= \lim_{n \to \infty} \frac{(a+b)n + ab}{\sqrt{n^2 + (a+b)n + ab} + n}$$

$$= \lim_{n \to \infty} \frac{(a+b)n + ab}{\sqrt{n^2 + (a+b)n + ab} + n}$$

$$= \lim_{n \to \infty} \frac{(a+b) + \frac{ab}{n}}{\sqrt{1 + \frac{a+b}{n} + \frac{ab}{n^2}} + 1}$$

$$= \frac{a+b}{2}.$$

(b) We note that $x_{2n-1} = 1 + \frac{1}{n}$ and $x_{2n} = -\frac{1}{n}$ for all $n \in \mathbb{N}$. Let us show that $-\frac{2}{n} \le x_n \le 1 + \frac{2}{n}$ for all $n \in \mathbb{N}$. Indeed, if n = 2k - 1 is odd, then we have $x_n = 1 + \frac{1}{k} > 0 > -\frac{2}{2k-1} = -\frac{2}{n}$, and

 $x_n = 1 + \frac{1}{k} < 1 + \frac{2}{2k-1} = 1 + \frac{2}{n}$. On the other hand, if n = 2k is even, then we have $x_n = -\frac{1}{k} = -\frac{2}{n}$, and $x_n = -\frac{1}{k} < 0 < 1 + \frac{2}{n}$, which completes the claim. Hence, it follows that if (x_{n_k}) is a convergent subsequence of (x_n) , then we must have

$$0 = \lim_{k \to \infty} -\frac{2}{n_k} \le \lim_{k \to \infty} x_{n_k} \le \lim_{k \to \infty} \left(1 + \frac{2}{n_k}\right) = 1.$$

This implies that $\limsup x_n \le 1$ and $\liminf x_n \ge 0$. Now, since $\lim_{n \to \infty} x_{2n-1} = \lim_{n \to \infty} \left(1 + \frac{1}{n}\right) = 1$, and $\lim_{n \to \infty} x_{2n} = \lim_{n \to \infty} -\frac{1}{n} = 0$, we must have $\limsup x_n = 1$ and $\liminf x_n = 0$.

Question 2

- (a) (i) For all $n \in \mathbb{N}$, we have $\frac{2n^2+1}{3n^3+2n} \ge \frac{2n^2}{3n^3+2n} \ge \frac{2n^2}{3n^3+2n^3} = \frac{2}{5n}$. As the series $\sum_{n=1}^{\infty} \frac{2}{5n} = \frac{2}{5} \sum_{n=1}^{\infty} \frac{1}{n}$ is divergent, it follows from the Comparison Test that the series $\sum_{n=1}^{\infty} \frac{2n^2+1}{3n^3+2n}$ is divergent.
 - (ii) For each $n \in \mathbb{N}$, let us define $a_n := 4^n \left(\frac{n}{n+2}\right)^{n^2}$. Then we have $|a_n|^{\frac{1}{n}} = 4\left(\frac{n}{n+2}\right)^n$. Now, we note that $\left(\frac{n}{n+2}\right)^n = \left(\frac{n}{n+1} \cdot \frac{n+1}{n+2}\right)^n = \left(\frac{n}{n+1}\right)^n \left(\frac{n+1}{n+2}\right)^n.$

Furthermore, we have

$$\lim_{n\to\infty} \left(\frac{n}{n+1}\right)^n = \lim_{n\to\infty} \frac{1}{\left(\frac{n+1}{n}\right)^n} = \lim_{n\to\infty} \frac{1}{\left(1+\frac{1}{n}\right)^n} = \frac{1}{e}, \text{ and }$$

$$\lim_{n \to \infty} \left(\frac{n+1}{n+2} \right)^n = \lim_{n \to \infty} \frac{1}{\left(1 + \frac{1}{n+1} \right)^n} = \lim_{n \to \infty} \frac{\left(1 + \frac{1}{n+1} \right)}{\left(1 + \frac{1}{n+1} \right)^{n+1}} = \frac{1}{e}.$$

Hence, we have

$$\lim_{n \to \infty} |a_n|^{\frac{1}{n}} = \lim_{n \to \infty} 4\left(\frac{n}{n+2}\right)^n = \lim_{n \to \infty} 4\left(\frac{n}{n+1}\right)^n \left(\frac{n+1}{n+2}\right)^n = 4 \cdot \frac{1}{e} \cdot \frac{1}{e} = \frac{4}{e^2} < 1.$$

Therefore, we have the series $\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} 4^n \left(\frac{n}{n+2}\right)^{n^2}$ to converge absolutely by the Root Test.

(iii) For each $n \in \mathbb{N}$, let us define $b_n := \frac{(-1)^n n!(n+1)!}{(2n)!}$. Then we have

$$\left| \frac{b_{n+1}}{b_n} \right| = \frac{(n+1)!(n+2)!}{(2n+2)!} \cdot \frac{(2n)!}{n!(n+1)!} = \frac{(n+1)(n+2)}{(2n+1)(2n+2)} = \frac{n+2}{2(2n+1)}.$$

As

$$\lim_{n \to \infty} \left| \frac{b_{n+1}}{b_n} \right| = \lim_{n \to \infty} \frac{n+2}{2(2n+1)} = \lim_{n \to \infty} \frac{1 + \frac{2}{n}}{2\left(2 + \frac{1}{n}\right)} = \frac{1}{4} < 1,$$

it follows that the series $\sum_{n=1}^{\infty} b_n = \sum_{n=1}^{\infty} \frac{(-1)^n n! (n+1)!}{(2n)!}$ is absolutely convergent by the Ratio Test.

(b) (i) For all $n \in \mathbb{N}$, we have

$$a_{4n-3} = \frac{1}{2n-1}$$
, $a_{4n-2} = -\frac{1}{6n-4}$, $a_{4n-1} = -\frac{1}{6n-2}$, $a_{4n} = -\frac{1}{6n}$.

(ii) For each $n \in \mathbb{N}$, let us define $b_{2n-1} := a_{4n-3} = \frac{1}{2n-1}$ and $b_{2n} := -(a_{4n-2} + a_{4n-1} + a_{4n}) = \frac{1}{6n-4} + \frac{1}{6n-2} + \frac{1}{6n}$. Let us show that the alternating series $\sum_{n=1}^{\infty} (-1)^{n+1} b_n$ is convergent. Clearly, we have $b_n > 0$ for all $n \in \mathbb{N}$. Next, let us show that $b_n > b_{n+1}$ for all $n \in \mathbb{N}$. To this end, we first note that we have

$$b_{2n} = \frac{1}{6n-4} + \frac{1}{6n-2} + \frac{1}{6n} > \frac{3}{6n+3} = \frac{1}{2n+1} = b_{2n+1}$$

for all $n \in \mathbb{N}$. Furthermore, for all $n \in \mathbb{N}$, we have

$$\frac{1}{3n-1} + \frac{1}{3n+1} + \frac{1}{3n+3} = \frac{(3n-1)(3n+1) + (3n-1)(3n+3) + (3n+1)(3n+3)}{(3n-1)(3n+1)(3n+3)}$$

$$= \frac{27n^2 + 18n - 1}{(9n^2 - 1)(3n+3)}$$

$$< \frac{27n^2 + 18n}{(9n^2 - 4)(3n+3)}$$

$$= \frac{9n}{(3n+2)(3n+3)}$$

$$< \frac{9n}{3n(3n+3)}$$

$$= \frac{1}{n+1}$$

$$< \frac{1}{n}.$$

This implies that

$$b_{2n} = \frac{1}{6n-4} + \frac{1}{6n-2} + \frac{1}{6n} < \frac{1}{2n-1} = b_{2n-1}$$

for all $n \in \mathbb{N}$, and this completes the proof.

Finally, let us show that $\lim_{n\to\infty} b_n = 0$. Clearly, we have $\lim_{n\to\infty} b_{2n-1} = 0$. As $0 < b_{2n} < b_{2n-1}$ for all $n \in \mathbb{N}$, it follows from Squeeze Theorem that $\lim_{n\to\infty} b_{2n} = 0$. This implies that for all $\varepsilon > 0$, there exist $K_1, K_2 \in \mathbb{N}$, such that $|b_{2k-1}| < \varepsilon$ for all $k \ge K_1$, and $|b_{2k}| < \varepsilon$ for all $k \ge K_2$.

Let $K = \max\{2K_1, 2K_2\}$. Let us show that $|b_n| < \varepsilon$ for all $n \ge K$. If n = 2k - 1 is odd, then we have $2k - 1 \ge 2K \ge 2K_1$. This implies that $k \ge K_1$, and hence we have $|b_n| = |b_{2k-1}| < \varepsilon$. If n = 2k is even, then we have $2k \ge 2K \ge 2K_2$. This implies that $k \ge K_2$, and hence we have $|b_n| = |b_{2k}| < \varepsilon$, and this completes the claim.

By the Alternating Series Test, we have the series $\sum_{n=1}^{\infty} (-1)^{n+1}b_n$ to be convergent. By defining $T_m := \sum_{n=1}^{m} (-1)^{n+1}b_n$ for all $m \in \mathbb{N}$, it is easy to see that the sequence (T_n) of partial sums converge. As we have $S_{4n} = T_{2n}$ for all $n \in \mathbb{N}$, and the subsequence (T_{2n}) converges, we have the sequence (S_{4n}) to converge as desired.

(iii) The series $\sum_{n=1}^{\infty} a_n$ converges. Indeed, let s denote the limit of the sequence (S_{4n}) . We note that $S_{4n+1} = S_{4n} + a_{4n+1}$, $S_{4n+2} = S_{4n} + a_{4n+1} + a_{4n+2}$ and $S_{4n+3} = S_{4n} + a_{4n+1} + a_{4n+2} + a_{4n+3}$ for all $n \in \mathbb{N}$. As $\lim_{n \to \infty} a_{4n+1} = \lim_{n \to \infty} \frac{1}{2n+1} = 0$, it follows that $\lim_{n \to \infty} S_{4n+1} = \lim_{n \to \infty} (S_{4n} + a_{4n+1}) = s$. Similarly, we have $\lim_{n \to \infty} S_{4n+2} = \lim_{n \to \infty} S_{4n+3} = s$. By a similar argument as in part (ii), we must have $\lim_{n \to \infty} S_n = s$. So the sequence (S_n) of partial sums of $\sum_{n=1}^{\infty} a_n$ converges, and hence $\sum_{n=1}^{\infty} a_n$ is a convergent series as desired.

Question 3

(a) (i) We have

$$\lim_{x \to 1} \frac{\sqrt{x} - 1}{x - 1} = \lim_{x \to 1} \frac{\sqrt{x} - 1}{(\sqrt{x} - 1)(\sqrt{x} + 1)} = \lim_{x \to 1} \frac{1}{\sqrt{x} + 1} = \frac{1}{1 + 1} = \frac{1}{2}.$$

(ii) We have

$$\lim_{x \to \infty} \frac{\sqrt{x} - x}{\sqrt{x} + x} = \lim_{x \to \infty} \frac{\frac{1}{\sqrt{x}} - 1}{\frac{1}{\sqrt{x}} + 1} = \frac{0 - 1}{0 + 1} = -1.$$

- (iii) For $x \in (2,3)$, we have [x] = 2, so that $\frac{[x]-x}{x-2} = \frac{2-x}{x-2} = -1$. Hence, we have $\lim_{x \to 2^+} \frac{[x]-x}{x-2} = -1$.
- (b) Let $\varepsilon > 0$ be given. As f is uniformly continuous on $[a, \infty)$, it follows that there exists some $\delta_1 > 0$, such that for all $x, y \in [a, \infty)$ that satisfies $|x y| < \delta_1$, we have $|f(x) f(y)| < \varepsilon$. Next, since f is continuous on $[0, \infty)$, it is continuous (hence uniformly continuous) on [0, a], so it follows that there exists some $\delta_2 > 0$, such that for all $x, y \in [0, a]$ that satisfies $|x y| < \delta_2$, we have $|f(x) f(y)| < \varepsilon$. Finally, since f is continuous at a, it follows that there exists $\delta_3 > 0$, such that for all $x \in [0, \infty)$ that satisfies $|x a| < \delta_3$, we have $|f(x) f(a)| < \frac{\varepsilon}{2}$.

Now, set $\delta := \min\{\delta_1, \delta_2, \delta_3\} > 0$. Let us show that for all $x, y \in [0, \infty)$ that satisfies $|x - y| < \delta$, we have $|f(x) - f(y)| < \varepsilon$. Without loss of generality, let us assume that x < y. If $x < y \le a$ or $a \le x < y$, then the conclusion is immediate. Henceforth, let us assume that x < a < y. Then we have $|x - a| = a - x < y - x = |x - y| < \delta < \delta_3$, and $|y - a| = y - a < y - x = |x - y| < \delta < \delta_3$, so we have $|f(x) - f(y)| \le |f(x) - f(a)| + |f(a) - f(y)| \le \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$, and this completes the proof. As $\varepsilon > 0$ is arbitrary, this shows that f is uniformly continuous on $[0, \infty)$ as desired.

- (c) (i) Yes.
 - (ii) Firstly, since $\frac{1}{2n-1} > \frac{1}{2n}$ for all $n \in \mathbb{N}$, and the series $\sum_{n=1}^{\infty} \frac{1}{2n} = \frac{1}{2} \sum_{n=1}^{\infty} \frac{1}{n}$ is divergent, it follows that the series $\sum_{n=1}^{\infty} \frac{1}{2n-1}$ is divergent by the Comparison Test.

Now, let us define a_1 to be the smallest positive integer such that $\sum_{n=1}^{a_1} \frac{1}{2n-1} > c$ (note that such an a_1 must exist since the sequence of partial sums of the series $\sum_{n=1}^{\infty} \frac{1}{2n-1}$ tends to ∞), and let us define b_1 to be the smallest integer such that $\sum_{n=1}^{a_1} \frac{1}{2n-1} - \sum_{n=1}^{b_1} \frac{1}{2n} < c$ (note that such an b_1 must exist since the sequence of partial sums of the series $\sum_{n=1}^{\infty} -\frac{1}{2n}$ tends to $-\infty$).

Based on this, let us recursively define a_k and b_k for all positive integers k > 1 as follows: We define a_k to be the smallest integer such that

$$\sum_{n=1}^{a_k} \frac{1}{2n-1} - \sum_{n=1}^{b_{k-1}} \frac{1}{2n} = \sum_{n=1}^{a_{k-1}} \frac{1}{2n-1} - \sum_{n=1}^{b_{k-1}} \frac{1}{2n} + \sum_{n=a_{k-1}+1}^{a_k} \frac{1}{2n-1} > c,$$

and define b_k to be the smallest integer such that

$$\sum_{n=1}^{a_k} \frac{1}{2n-1} - \sum_{n=1}^{b_k} \frac{1}{2n} = \sum_{n=1}^{a_k} \frac{1}{2n-1} - \sum_{n=1}^{b_{k-1}} \frac{1}{2n} - \sum_{n=b_{k-1}+1}^{b_k} \frac{1}{2n} < c.$$

Then it is clear that $a_k < a_{k+1}$ and $b_k < b_{k+1}$ for all $k \in \mathbb{N}$.

Next, let us define $A_1 = \sum_{n=1}^{a_1} \frac{1}{2n-1}$, $A_2 = -\sum_{n=1}^{b_1} \frac{1}{2n}$, $A_{2k-1} = \sum_{n=a_{k-1}+1}^{a_k} \frac{1}{2n-1}$ and $A_{2k} = -\sum_{n=b_{k-1}+1}^{b_k} \frac{1}{2n}$ for all positive integers k > 1. Let us show that

$$\sum_{n=1}^{2k-1} A_n = \sum_{n=1}^{a_k} \frac{1}{2n-1} - \sum_{n=1}^{b_{k-1}} \frac{1}{2n} \le c + \frac{1}{2a_k - 1}$$

for all $k \in \mathbb{N}$. Indeed, since a_1 is the smallest positive integer such that $\sum_{n=1}^{a_1} \frac{1}{2n-1} > c$, we must have $\sum_{n=1}^{a_1-1} \frac{1}{2n-1} \le c$, and hence we must have $\sum_{n=1}^{a_1} \frac{1}{2n-1} = \frac{1}{2a_1-1} + \sum_{n=1}^{a_1-1} \frac{1}{2n-1} \le c + \frac{1}{2a_1-1}$. By a similar reasoning, we can also show that $\sum_{n=1}^{2k-1} A_n \le c + \frac{1}{2a_k-1}$ for all k > 1. Similarly, we have

$$\sum_{n=1}^{2k} A_n = \sum_{n=1}^{a_k} \frac{1}{2n-1} - \sum_{n=1}^{b_k} \frac{1}{2n} \ge c - \frac{1}{2b_k}$$

for all $k \in \mathbb{N}$.

Now, for each $1 \leq i \leq a_1$ and $1 \leq j \leq b_1$, let us define $x_i = \frac{1}{2i-1}$ and $x_{a_0+j} = -\frac{1}{2j}$. Furthermore, for each positive integer $N \in \mathbb{N}$, and $1 \leq k \leq a_{N+1} - a_N$, $1 \leq \ell \leq b_{N+1} - b_N$, let us define $x_{a_N+b_N+k} = \frac{1}{2(a_N+k)-1}$ and $x_{a_{N+1}+b_N+\ell} = -\frac{1}{2(b_N+\ell)}$ (In other words, the sequence (x_n) is defined as follows:

$$(x_n) = (1, \frac{1}{3}, \dots, \frac{1}{2a_1 - 1}, -\frac{1}{2}, -\frac{1}{4}, \dots, -\frac{1}{2b_1}, \frac{1}{2a_1 + 1}, \dots, \frac{1}{2a_2 - 1}, -\frac{1}{2b_1 + 2}, \dots)$$

Then it is evidently clear that $\sum_{n=1}^{\infty} x_n$ is a rearrangement of the series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$. We would like to show that the series $\sum_{n=1}^{\infty} x_n$ converges to c. To this end, for each $n>a_1+b_1$, we define f(n) to be the unique positive integer K such that $a_K+b_K < n \le a_{K+1}+b_{K+1}$. We first note that $\sum_{n=1}^{a_{N+1}+b_N} x_n = \sum_{n=1}^{2N+1} A_n$ and $\sum_{n=1}^{a_N+b_N} x_n = \sum_{n=1}^{2N} A_n$ for all $N \in \mathbb{N}$. This implies that $\sum_{n=1}^{a_{N+1}+b_N} x_n \le c + \frac{1}{2a_{N+1}-1}$ and $\sum_{n=1}^{a_N+b_N} x_n \ge c - \frac{1}{2b_N}$ for all $N \in \mathbb{N}$. Furthermore, for each positive integer $N \in \mathbb{N}$, and $1 \le k \le a_{N+1} - a_N$, we have

$$\sum_{n=1}^{a_N+b_N+k} x_n = \sum_{n=1}^{a_N+b_N} x_n + \sum_{n=a_N+1}^{a_N+k} \frac{1}{2n-1} \ge \sum_{n=1}^{a_N+b_N} x_n \ge c - \frac{1}{2b_N}, \text{ and}$$

$$\sum_{n=1}^{a_N+b_N+k} x_n \leq \sum_{n=1}^{a_N+b_N} x_n + \sum_{n=a_N+1}^{a_{N+1}} \frac{1}{2n-1} = \sum_{n=1}^{a_{N+1}+b_N} x_n \leq c + \frac{1}{2a_{N+1}-1}.$$

Similarly, for each positive integer $N \in \mathbb{N}$, and $1 \le \ell \le b_{N+1} - b_N$, we have

$$c - \frac{1}{2b_{N+1}} \le \sum_{n=1}^{a_{N+1} + b_N + \ell} x_n \le c + \frac{1}{2a_{N+1} - 1}.$$

Hence, for all $N \in \mathbb{N}$ and $a_N + b_N < M \le a_{N+1} + b_{N+1}$, we have

$$c - \frac{1}{2b_{f(M)}} = c - \frac{1}{2b_N} \le \sum_{n=1}^{M} x_n \le c + \frac{1}{2a_N - 1} = c + \frac{1}{2a_{f(M)} - 1}.$$

As $\lim_{M\to\infty} f(M) = \infty$, it follows that $\lim_{M\to\infty} c - \frac{1}{2b_{f(M)}} = c = \lim_{M\to\infty} c + \frac{1}{2a_{f(M)}-1}$. By Squeeze Theorem, we have $\sum_{n=1}^{\infty} x_n = \lim_{M\to\infty} \sum_{n=1}^{M} x_n = c$ as desired, and we are done.

(iii) It is possible to obtain two rearrangements $\sum_{n=1}^{\infty} x_n$ and $\sum_{n=1}^{\infty} y_n$ of $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$ such that $\sum_{n=1}^{\infty} x_n = c = \sum_{n=1}^{\infty} y_n$, but $\sum_{n=1}^{\infty} x_n$ cannot be obtained by rearranging finite terms from $\sum_{n=1}^{\infty} y_n$. Indeed, for each $n \in \mathbb{N}$, let us define x_n as in part (ii), and define $y_{2n-1} = x_{2n}$ and $y_{2n} = x_{2n-1}$. Then it is clear that $\sum_{n=1}^{\infty} y_n$ is a rearrangement of the series $\sum_{n=1}^{\infty} x_n$, and hence $\sum_{n=1}^{\infty} y_n$ is also a rearrangement of the series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$. Furthermore, by the definition of y_n for all $n \in \mathbb{N}$, it is also clear that $\sum_{n=1}^{\infty} x_n$ cannot be obtained by rearranging finite terms from $\sum_{n=1}^{\infty} y_n$.

Finally, for each $k \in \mathbb{N}$, let us define $S_k := \sum_{n=1}^k x_n$ and $T_k := \sum_{n=1}^k y_n$. Then it is clear that $T_{2k} = S_{2k}$ and $T_{2k+1} = T_{2k} + y_{2k+1} = S_{2k} + x_{2k+2}$ for all $k \in \mathbb{N}$. As the series $\sum_{n=1}^{\infty} x_n$ converges to c, it follows that $\lim_{k \to \infty} S_{2k} = c$, and $\lim_{k \to \infty} x_{2k+2} = 0$. This implies that

$$\lim_{k \to \infty} T_{2k} = c = \lim_{k \to \infty} T_{2k+1} = \lim_{k \to \infty} T_{2k-1}.$$

By a similar argument as in Question 2 part (b)(iii), we have $\lim_{k\to\infty} T_k = c$, and hence we have $\sum_{n=1}^{\infty} y_n = c$, and this completes the claim.

Question 4

(a) Let us first show that f(x) > f(1) for all $x \in (0,1)$. Arguing by contradiction, suppose there exists some $y \in (0,1)$ such that $f(1) \ge f(y)$. As we have $f(0) > f(1) \ge f(y)$, it follows from Intermediate Value Theorem that there exists some $c \in [0,y]$, such that f(c) = f(1), which is a contradiction.

Next, let us show that f is strictly decreasing on [0,1]. Arguing by contradiction, suppose f is not strictly decreasing on [0,1]. Then there exist $a,b \in [0,1]$, such that $a \leq b$ and $f(a) \leq f(b)$. As we have $f(1) < f(a) \leq f(b)$, it follows from Intermediate Value Theorem that there exists some $d \in [b,1]$, such that f(d) = f(a), a contradiction. So f is strictly decreasing on [0,1] as desired.

- (b) Arguing by contradiction, suppose that f is unbounded on [a,b]. Then for each $n \in \mathbb{N}$, there exists some $x_n \in [a,b]$, such that $|f(x_n)| > n$. By Bolzano-Weierstrass Theorem, there exists a convergent subsequence (x_{n_k}) of (x_n) . Let us denote the limit of the sequence (x_{n_k}) by x. By assumption, there exists some $\delta_x > 0$ and $M \in \mathbb{N}$, such that for all $y \in [a,b]$ with $|x-y| < \delta_x$, we have $|f(y)| \le M$. On the other hand, since $\lim_{k \to \infty} x_{n_k} = x$, it follows that there exists some $K \in \mathbb{N}$, such that $|x_{n_k} x| < \delta_x$ for all $k \ge K$. By letting $N = \max\{K, M\}$, we see that $|x_{n_N} x| < \delta_x$, and hence, by assumption, we have $|f(x_{n_N})| \le M \le N \le n_N < |f(x_{n_N})|$, which is a contradiction. So f must be bounded on [a,b] as desired.
- (c) (\Leftarrow): Firstly, we suppose that the series $\sum_{n=1}^{\infty} 2^n a(2^n)$ is convergent. Then this would imply that the series $\sum_{n=0}^{\infty} 2^n a(2^n)$ is convergent. Let $s := \sum_{n=0}^{\infty} 2^n a(2^n)$. For each $k \in \mathbb{N}$, let us define $b(k) := \sum_{n=0}^{\infty} a(2^n)$

 $a\left(2^{[\log_2 k]}\right)$ (in other words, if n is the unique non-negative integer such that $2^n \leq k \leq 2^{n+1} - 1$, then $b(k) = a(2^n)$).

Let us show that the series $\sum_{n=1}^{\infty} b(n)$ is convergent. To this end, let us define $S_k := \sum_{n=0}^k 2^n a(2^n)$

and $T_k := \sum_{n=1}^k b(n)$ for all $k \in \mathbb{N}$. Then we have $\lim_{n \to \infty} S_n = s$. Moreover, it is easy to verify that $T_{2^{k+1}-1} = S_k$ for all $k \in \mathbb{N}$. Furthermore, for each positive integer $n \ge 4$, we have

$$S_{[\log_2 n]-1} = T_{2^{[\log_2 n]}-1} \leq T_n \leq T_{2^{[\log_2 n]+1}-1} = S_{[\log_2 n]}.$$

As $\lim_{n\to\infty}[\log_2 n]=\infty$, this would imply that $\lim_{n\to\infty}S_{[\log_2 n]-1}=s=\lim_{n\to\infty}S_{[\log_2 n]}$. By Squeeze Theorem, we have $\lim_{n\to\infty}T_n=s$, and this completes the claim. Now, as (a(n)) is a decreasing sequence, we have $a(n)\leq a\left(2^{[\log_2 k]}\right)=b(n)$ for all $n\in\mathbb{N}$. By Comparison Test, we have the series $\sum_{n=1}^\infty a(n)$ to be convergent.

 $(\Rightarrow) \text{: Conversely, we suppose that the series } \sum_{n=1}^{\infty} a(n) \text{ is convergent. Then this would imply that the series } \sum_{n=1}^{\infty} 2a(n) \text{ is convergent. Consequently, we have the series } \sum_{k=1}^{\infty} \sum_{n=2^{k-1}}^{2^k-1} 2a(n) = \sum_{n=1}^{\infty} 2a(n) \text{ to be convergent. Now, since } (a(n)) \text{ is a decreasing sequence, we have } a(2^m) \leq a(n) \text{ for all } 2^{m-1} \leq n \leq 2^m-1. \text{ This implies that } 2^{m-1}a(2^m) \leq \sum_{n=2^{m-1}}^{2^m-1} a(n), \text{ or equivalently, } 2^ma(2^m) \leq \sum_{n=2^{m-1}}^{2^m-1} 2a(n)$

for all $m \in \mathbb{N}$. Consequently, we have the series $\sum_{m=1}^{\infty} 2^m a(2^m)$ to be convergent by the Comparison Test as desired.

Page: 7 of 7