			Test n	° 1	(durée : 30) mn)
	NOM:					
	Questic	ons de cours				
a)	Soit E un	ensemble. Donne	r la définition o	d'une	distance s	ur E.

b) Soient (E,d) un espace métrique et $A\subseteq E.$ Quand dit-on que A est un ouvert de E?

Quand dit-on que A est un fermé de $E\,?$

Exercices

1) Soit E un ensemble. Soit $d_0: E \times E \to \mathbb{R}_+$ l'application définie par

$$\forall x, y \in E$$
 $d_0(x, y) = \begin{cases} 0 \text{ si } x = y \\ 1 \text{ sinon} \end{cases}$

On a vu en TD que d_0 est une distance sur E.

Montrer que, dans l'espace métrique (E, d_0) , tout sous-ensemble de E est à la fois ouvert et fermé.

2) On considère l'espace métrique $(\mathbb{R},d_{|.|})$ où $d_{|.|}$ est la distance définie par

$$\forall x,y \in \mathbb{R} \qquad d_{|.|}(x,y) = |x-y|.$$

Montrer que [0,1[n'est ni ouvert ni fermé dans $(\mathbb{R},d_{|.|}).$