

Combinational Modules

4:1 mux

1:4 de-mux

2:4 decoder

4	input		rity
	enco	oder	

е	$s_1 s_0$	У
0		0
1	00	x ₀
1	01	X ₁
1	10	X ₂
1	11	X ₃

е	$s_1 s_0$	$y_3y_2y_1y_0$
0		0000
1	00	000x
1	0 1	0 0 x 0
1	10	0 x 0 0
1	11	x 0 0 0

$s_1 s_0$	$y_3y_2y_1y_0$
00	0001
01	0010
10	0100
11	1000

$X_3X_2X_1X_0$	e s ₁ s ₀
0000	0
0001	1 00
001-	1 01
01	1 10
1	1 11

Lab exercise 2: 3-Port Switch

3-Port Switch Design

3:1 Mux

```
ENTITY mux_3_1 IS

PORT (X: IN bit_vector (2 DOWNTO 0);
S: IN bit_vector (1 DOWNTO 0);
e: IN bit;
y: OUT bit
);
END mux_3_1;
```

X **/→**

CASE statement

```
ARCHITECTURE casestmt OF mux 3 1 IS
BEGIN
 PROCESS (S, X, e)
  BEGIN
   IF e = '1' THEN
    CASE S IS
      WHEN "00" => y \le X(0);
      WHEN "01" => y \le X(1);
      WHEN OTHERS => y <= X(2);
    END CASE;
   ELSE y <= '0';
   ENDIF;
  END PROCESS;
END ARCHITECTURE casestmt;
```


3:1 mux

е	$s_1 s_0$	У
0		0
1	0 0	x ₀
1	0 1	X ₁
1	10	X ₂
1	11	??

Selected Signal Assignment

ARCHITECTURE ssa OF mux_3_1 IS
BEGIN

SIGNAL t: bit;
WITH S SELECT
t <= X(0) WHEN "00",
X(1) WHEN "01",
X(2) WHEN OTHERS;
y <= t AND e;
END ARCHITECTURE ssa;

3:1 mux

е	$s_1 s_0$	У
0		0
1	0 0	x ₀
1	0 1	X ₁
1	10	X ₂
1	11	??

1 to 3 De-mux

```
ENTITY de-mux_1_3 IS

PORT (x: IN bit;
e: IN bit;
S: IN bit_vector (1 DOWNTO 0);
Y: OUT bit_vector (2 DOWNTO 0)
);
END de-mux_1_3;
```


CASE statement

```
ARCHITECTURE casestmt OF de-mux 1 3 IS
BEGIN
 PROCESS (S, x, e)
  BEGIN
   IF (x AND e) THEN
    CASE S IS
      WHEN "00" => Y <= "001";
      WHEN "01" => Y <= "010";
      WHEN OTHERS => Y <= "100";
    END CASE;
   ELSE Y <= "000";
   ENDIF;
  END PROCESS;
END ARCHITECTURE casestmt;
```


1:3 de-mux

е	$s_1 s_0$	$y_2y_1y_0$
0		000
1	0 0	0 0 x
1	0 1	0 x 0
1	10	x 0 0
1	11	55

Selected Signal Assignment

ARCHITECTURE ssa OF de-mux_1_3 IS BEGIN

SIGNAL T: bit_vector (2 DOWNTO 0);

Y <= T WHEN (x AND e) ELSE

"000";

WITH S SELECT

T <= "001" WHEN "00",

"010" WHEN "01",

"100" WHEN OTHERS;

END ARCHITECTURE ssa;

1:3 de-mux

е	$s_1 s_0$	$y_2y_1y_0$
0	-	000
1	0 0	0 0 x
1	0 1	0 x 0
1	10	x 0 0
1	11	??

3 Input Priority Encoder

```
ENTITY Priority_3 IS

PORT (X: IN bit_vector (2 DOWNTO 0);
S: OUT bit_vector (1 DOWNTO 0);
e: OUT bit
);
END Priority_3;
```

IF statement

ARCHITECTURE ifstmt OF Priority_3 IS BEGIN

PROCESS (X)

BEGIN

IF
$$X(2) = '1' THEN S <= "10"; e <= '1';$$

ELSE S <= "00"; e <= '0';

END IF;

END PROCESS;

END ARCHITECTURE ifstmt;

3 input priority encoder

$x_2x_1x_0$	e s ₁ s ₀
000	0
001	1 00
01-	1 01
1	1 10

IF statement

ARCHITECTURE ifstmt OF Priority_3 IS BEGIN

PROCESS (X)

BEGIN

IF
$$X(2) = '1' THEN S <= "10";$$

ELSIF X(1) = '1' THEN S <= "01";

ELSE S <= "00";

END IF;

IF X = "000" THEN e <= '0'; ELSE e <= '1';

END IF;

END PROCESS;

END ARCHITECTURE ifstmt;

3 input priority encoder

$x_2x_1x_0$	e s ₁ s ₀
000	0
001	1 00
01-	1 01
1	1 10

Conditional signal assignment

ARCHITECTURE cond OF Priority_3 IS BEGIN

e <= '0' WHEN X = "000" ELSE '1'; END ARCHITECTURE cond;

3 input priority encoder

$x_2x_1x_0$	e s ₁ s ₀
000	0
001	1 00
01-	1 01
1	1 10

3:1 Mux, 2 bit wide

```
ENTITY mux_3_1_2bit IS
 PORT (X2: IN
                 bit vector (1 DOWNTO 0);
                 bit vector (1 DOWNTO 0);
        X1: IN
                 bit_vector (1 DOWNTO 0);
        X0: IN
                bit vector (1 DOWNTO 0);
        S: IN
        e: IN
                bit;
        y: OUT bit_vector (1 DOWNTO 0)
END mux 3 1 2bit;
```

X2 /

X1 /→

 $X0 \neq$

CASE statement

```
ARCHITECTURE casestmt OF mux 3 1 2bit IS
BEGIN
 PROCESS (S, X0, X1, X2, e)
  BEGIN
   IF e = '1' THEN
    CASE S IS
      WHEN "00" => y <= X0;
      WHEN "01" => y <= X1;
      WHEN OTHERS => y <= X2;
    END CASE;
   ELSE y <= "00";
   ENDIF;
  END PROCESS;
END ARCHITECTURE casestmt;
```


3:1 mux

е	$s_1 s_0$	У
0		00
1	0 0	XO
1	0 1	X1
1	10	X2
1	11	??

Selected Signal Assignment

```
ARCHITECTURE ssa OF mux_3_1_2bit IS
BEGIN
 SIGNAL t: bit vector (1 DOWNTO 0);
 WITH S SELECT
   t <= X0 WHEN "00",
       X1 WHEN "01",
       X2 WHEN OTHERS;
 y \le t AND e;
END ARCHITECTURE ssa;
```


3:1 mux

е	$s_1 s_0$	У
0		00
1	0 0	XO
1	0 1	X1
1	10	X2
1	11	??

