Two Applications of the Modified Abramov-Petkovšek Reduction

Hui Huang

KLMM, AMSS, Chinese Academy of Sciences RISC-Linz, Johannes Kepler University

Outline

Modified Abramov–Petkovšek reduction

▶ Reduction-based creative telescoping

Upper and lower order bounds for telescopers

Outline

- Modified Abramov–Petkovšek reduction
- Reduction-based creative telescoping
- Upper and lower order bounds for telescopers

Notation. For f(y),

$$\sigma_y(f) := f(y+1)$$
 and $\Delta_y(f) := f(y+1) - f(y)$.

Hypergeometric terms

Definition. A nonzero term T(y) is hypergeometric over $\mathbb{C}(y)$ if

$$\frac{\sigma_y(T)}{T}\in\mathbb{C}(y).$$

Example. $T \in \mathbb{C}(y) \setminus \{0\}, y!, {y \choose 4}, \dots$

Definition. A hypergeom. term T(y) is summable if

$$T(y) = \Delta_y$$
 (hypergeom.).

Example. $y \cdot y! = (y+1)! - y!$ is summable; but y! is not.

Multiplicative decomposition

Definition. $u/v \in \mathbb{C}(y)$ is shift-reduced if

$$orall \ell \in \mathbb{Z}, \quad \gcd\left(v, \sigma_y^\ell(u)
ight) = 1.$$

For a hypergeom. term T(y), $\exists K, S \in \mathbb{C}(y)$ with K shift-reduced s.t.

$$T = SH$$
, where $\frac{\sigma_y(H)}{H} = K$.

Call

- K, a kernel of T
- \triangleright S, the corresponding shell of T

Modified A.-P. reduction (CHKL2015)

Theorem. Let T(y) be hypergeom. with multi. decomp.

$$T = SH$$
 with $\frac{u}{v} := \frac{\sigma_v(H)}{H}$.

Then $\exists a, b, q \in \mathbb{C}[y]$ with $\deg_{v}(a) < \deg_{v}(b)$ s.t.

$$T = \Delta_y(\dots) + \left(\frac{a}{b} + \frac{q}{v}\right)H,$$

Moreover,

T is summable $\iff a = q = 0$.

Term bound for q

Notation. (Iverson bracket)

$$\llbracket \cdots \rrbracket = egin{cases} 1 & \cdots & \text{is true} \\ 0 & \text{otherwise} \end{cases}$$

Proposition.

$$\# \text{ terms of } q \quad \leq \quad \begin{array}{l} \max \left(\deg_y \left(u \right), \, \deg_y \left(v \right) \right) \\ - \llbracket \deg_y (u - v) \leq \deg_y (u) - 1 \rrbracket. \end{array}$$

Bivariate hypergeometric terms

Definition. A nonzero term T(x,y) is hypergeometric over $\mathbb{C}(x,y)$ if

$$\frac{\sigma_x(T)}{T}, \frac{\sigma_y(T)}{T} \in \mathbb{C}(x,y).$$

Creative-telescoping problem. Given T(x,y) hypergeom. , find a nonzero operator $L \in C(x)\langle \sigma_x \rangle$ s.t.

$$L(T) = \Delta_y(G)$$
 for some hypergeom. $G(x, y)$

Bivariate hypergeometric terms

Definition. A nonzero term T(x,y) is hypergeometric over $\mathbb{C}(x,y)$ if

$$\frac{\sigma_x(T)}{T}, \frac{\sigma_y(T)}{T} \in \mathbb{C}(x,y).$$

Creative-telescoping problem. Given T(x,y) hypergeom. , find a nonzero operator $L \in C(x)\langle \sigma_x \rangle$ s.t.

$$L(T) = \Delta_y(G)$$
 for some hypergeom. $G(x,y)$ telescoper

Bivariate hypergeometric terms

Definition. A nonzero term T(x,y) is hypergeometric over $\mathbb{C}(x,y)$ if

$$\frac{\sigma_x(T)}{T}, \frac{\sigma_y(T)}{T} \in \mathbb{C}(x,y).$$

Creative-telescoping problem. Given T(x,y) hypergeom. , find a nonzero operator $L \in C(x)\langle \sigma_x \rangle$ s.t.

$$L(T) = \Delta_y(G)$$
 for some hypergeom. $G(x,y)$ telescoper certificate

Existence of telescopers

Definition. $p \in \mathbb{C}[x, y]$ is integer-linear if

$$p = \prod_{i} (\alpha_{i} x + \beta_{i} y + \gamma_{i})$$

where $\alpha_i, \beta_i \in \mathbb{Z}$ and $\gamma_i \in \mathbb{C}$.

Existence criterion (Wilf&Zeilberger1992, Abramov2003).

In the initial reduction

$$T = \Delta_y(\ldots) + \left(\frac{a_0}{b_0} + \frac{q_0}{v}\right) H.$$

Then

T has a telescoper \Leftrightarrow b_0 is integer-linear.

Goal. Given $\rho \in \mathbb{N}$, find a telescoper for T with order ρ .

Goal. Given $\rho \in \mathbb{N}$, find a telescoper for T with order ρ .

Idea. Set T = SH, a multi. decomp.

$$T = \Delta_y \Big(\cdots \Big) + \left(\frac{a_0}{b_0} + \frac{q_0}{v} \right) H$$

Goal. Given $\rho \in \mathbb{N}$, find a telescoper for T with order ρ .

Idea. Set T = SH, a multi. decomp.

$$T = \Delta_y \left(\cdots \right) + \left(\frac{a_0}{b_0} + \frac{q_0}{v} \right) H$$
 $\sigma_x(T) = \Delta_y \left(\cdots \right) + \left(\frac{a_1}{b_1} + \frac{q_1}{v} \right) H$

Goal. Given $\rho \in \mathbb{N}$, find a telescoper for T with order ρ .

Idea. Set T = SH, a multi. decomp.

$$T = \Delta_y \Big(\cdots \Big) + \left(rac{a_0}{b_0} + rac{q_0}{v} \right) H$$
 $\sigma_x(T) = \Delta_y \Big(\cdots \Big) + \left(rac{a_1}{b_1} + rac{q_1}{v} \right) H$ \vdots $\sigma_x^{
ho}(T) = \Delta_y \Big(\cdots \Big) + \left(rac{a_{
ho}}{b_{
ho}} + rac{q_{
ho}}{v} \right) H$

Goal. Given $\rho \in \mathbb{N}$, find a telescoper for T with order ρ .

Idea. Set T = SH, a multi. decomp.

$$c_0(x) T = \Delta_y \left(\cdots \right) + c_0(x) \left(\frac{a_0}{b_0} + \frac{q_0}{v} \right) H$$

$$c_1(x) \sigma_x(T) = \Delta_y \left(\cdots \right) + c_1(x) \left(\frac{a_1}{b_1} + \frac{q_1}{v} \right) H$$

$$\vdots$$

$$c_\rho(x) \sigma_x^\rho(T) = \Delta_y \left(\cdots \right) + c_\rho(x) \left(\frac{a_\rho}{b_\rho} + \frac{q_\rho}{v} \right) H$$

Goal. Given $\rho \in \mathbb{N}$, find a telescoper for T with order ρ .

Idea. Set T = SH, a multi. decomp.

$$+ \left\{ \begin{aligned} c_0(x) \ T &= \Delta_y \Big(\cdots \Big) + c_0(x) \, \left(\frac{a_0}{b_0} + \frac{q_0}{v} \right) H \\ c_1(x) \, \sigma_x(T) &= \Delta_y \Big(\cdots \Big) + c_1(x) \, \left(\frac{a_1}{b_1} + \frac{q_1}{v} \right) H \\ &\vdots \\ c_\rho(x) \, \sigma_x^\rho(T) &= \Delta_y \Big(\cdots \Big) + c_\rho(x) \, \left(\frac{a_\rho}{b_\rho} + \frac{q_\rho}{v} \right) H \end{aligned} \right.$$

$$\left(\sum_{i=0}^{\rho} c_i(x) \sigma_x^i\right)(T) = \Delta_y\left(\cdots\right) + \left(\sum_{j=0}^{\rho} c_j(x) \left(\frac{a_j}{b_j} + \frac{q_j}{v}\right)\right) H$$

Goal. Given $\rho \in \mathbb{N}$, find a telescoper for T with order ρ .

Idea. Set T = SH, a multi. decomp.

$$\sum_{i=0}^{\rho} c_i(x) \sigma_x^i \text{ is a telescoper for } T$$

$$\updownarrow$$

$$\sum_{j=0}^{\rho} c_j(x) \left(\frac{a_j}{b_j} + \frac{q_j}{v} \right) = 0$$

$$\updownarrow$$

$$\begin{cases} c_0(x) \frac{a_0(x,y)}{b_0(x,y)} + \dots + c_{\rho}(x) \frac{a_{\rho}(x,y)}{b_{\rho}(x,y)} = 0 \\ c_0(x) q_0(x,y) + \dots + c_{\rho}(x) q_{\rho}(x,y) = 0 \end{cases}$$

$$T = \frac{1}{x + 2y} \cdot y!$$

Consider

$$T = \frac{1}{x + 2y} \cdot y!$$

A multi. decomp. T = SH where

$$S = \frac{1}{x + 2y}$$

and

$$H = y!$$
 with $\frac{\sigma_y(H)}{H} = y + 1$.

• u := y + 1 and v := 1.

$$T = \frac{1}{x + 2y} \cdot y!$$

$$T = \Delta_y(g_0) + \left(\frac{2}{x+2y} + \frac{0}{v}\right)H$$

$$T = \frac{1}{x + 2y} \cdot y!$$

$$T = \Delta_y(g_0) + \left(\frac{2}{x+2y} + \frac{0}{v}\right)H$$
$$\sigma_x(T) = \Delta_y(g_1) + \left(\frac{2}{x+2y+1} + \frac{0}{v}\right)H$$

$$T = \frac{1}{x + 2y} \cdot y!$$

$$T = \Delta_y(g_0) + \left(\frac{2}{x+2y} + \frac{0}{v}\right)H$$
$$\sigma_x(T) = \Delta_y(g_1) + \left(\frac{2}{x+2y+1} + \frac{0}{v}\right)H$$

$$T = \frac{1}{x + 2y} \cdot y!$$
$$\left(\frac{2}{x + 2y} + \frac{0}{v}\right)$$
$$\left(\frac{2}{x + 2y + 1} + \frac{0}{v}\right)$$

Consider

$$T = \frac{1}{x + 2y} \cdot y!$$

$$c_0(x) \cdot \left(\frac{2}{x + 2y} + \frac{0}{v}\right)$$

$$+ c_1(x) \cdot \left(\frac{2}{x + 2y + 1} + \frac{0}{v}\right)$$

= 0

Consider

$$T = \frac{1}{x + 2y} \cdot y!$$

$$c_0(x) \cdot \left(\frac{2}{x+2y} + \frac{0}{v}\right)$$
$$+ c_1(x) \cdot \left(\frac{2}{x+2y+1} + \frac{0}{v}\right)$$

No solution in $\mathbb{C}(x)$!

$$= 0$$

$$T = \frac{1}{x + 2y} \cdot y!$$

$$T = \Delta_y(g_0) + \left(\frac{2}{x+2y} + \frac{0}{v}\right)H$$
$$\sigma_x(T) = \Delta_y(g_1) + \left(\frac{2}{x+2y+1} + \frac{0}{v}\right)H$$

$$T = \frac{1}{x + 2y} \cdot y!$$

$$T = \Delta_y(g_0) + \left(\frac{2}{x+2y} + \frac{0}{v}\right)H$$

$$\sigma_x(T) = \Delta_y(g_1) + \left(\frac{2}{x+2y+1} + \frac{0}{v}\right)H$$

$$\sigma_x^2(T) = \Delta_y(g_2) + \left(-\frac{-4/x}{x+2y} + \frac{2/x}{v}\right)H$$

$$T = \frac{1}{x + 2y} \cdot y!$$

$$T = \Delta_{y}(g_{0}) + \left(\frac{2}{x+2y} + \frac{0}{v}\right)H$$

$$\sigma_{x}(T) = \Delta_{y}(g_{1}) + \left(\frac{2}{x+2y+1} + \frac{0}{v}\right)H$$

$$\sigma_{x}^{2}(T) = \Delta_{y}(g_{2}) + \left(-\frac{-4/x}{x+2y+1} + \frac{2/x}{v}\right)H$$

$$\sigma_{x}^{3}(T) = \Delta_{y}(g_{3}) + \left(-\frac{-4/(x+1)}{x+2y+1} + \frac{2/(x+1)}{v}\right)H$$

Consider

$$T = \frac{1}{x + 2y} \cdot y!$$

$$T = \Delta_{y}(g_{0}) + \left(\frac{2}{x+2y} + \frac{0}{v}\right)H$$

$$\sigma_{x}(T) = \Delta_{y}(g_{1}) + \left(\frac{2}{x+2y+1} + \frac{0}{v}\right)H$$

$$\sigma_{x}^{2}(T) = \Delta_{y}(g_{2}) + \left(-\frac{-4/x}{x+2y} + \frac{2/x}{v}\right)H$$

$$\sigma_{x}^{3}(T) = \Delta_{y}(g_{3}) + \left(-\frac{-4/(x+1)}{x+2y+1} + \frac{2/(x+1)}{v}\right)H$$

$$T = \frac{1}{x+2y} \cdot y!$$

$$\left(\frac{2}{x+2y} + \frac{0}{v}\right)$$

$$\left(\frac{2}{x+2y+1} + \frac{0}{v}\right)$$

$$\left(-\frac{-4/x}{x+2y} + \frac{2/x}{v}\right)$$

$$\left(-\frac{-4/(x+1)}{x+2y+1} + \frac{2/(x+1)}{v}\right)$$

Consider

$$T = \frac{1}{x + 2y} \cdot y!$$

$$c_0(x) \cdot \left(\frac{2}{x + 2y} + \frac{0}{v}\right)$$

$$+ c_1(x) \cdot \left(\frac{2}{x + 2y + 1} + \frac{0}{v}\right)$$

$$+ c_2(x) \cdot \left(-\frac{-4/x}{x + 2y} + \frac{2/x}{v}\right)$$

$$+ c_3(x) \cdot \left(-\frac{-4/(x + 1)}{x + 2y + 1} + \frac{2/(x + 1)}{v}\right)$$

$$= 0$$

Reduction & Telescoping 10/19 Huang, CAS & JKU

Consider

$$T = \frac{1}{x+2y} \cdot y!$$

$$-2 \cdot \left(\frac{2}{x+2y} + \frac{0}{v}\right)$$

$$+2 \cdot \left(\frac{2}{x+2y+1} + \frac{0}{v}\right)$$

$$-x \cdot \left(-\frac{-4/x}{x+2y} + \frac{2/x}{v}\right)$$

$$+(x+1) \cdot \left(-\frac{-4/(x+1)}{x+2y+1} + \frac{2/(x+1)}{v}\right)$$

$$= 0$$

Reduction & Telescoping 10/19 Huang, CAS & JKU

Consider

$$T = \frac{1}{x + 2y} \cdot y!$$

Therefore,

▶ the minimal telescoper for *T* w.r.t. *y* is

$$L = (x+1) \cdot \sigma_x^3 - x \cdot \sigma_x^2 + 2 \cdot \sigma_x - 2$$

Consider

$$T = \frac{1}{x + 2y} \cdot y!$$

Therefore,

▶ the minimal telescoper for *T* w.r.t. *y* is

$$L = (x+1) \cdot \sigma_x^3 - x \cdot \sigma_x^2 + 2 \cdot \sigma_x - 2$$

the corresponding certificate is

$$G = (x+1) \cdot g_3 - x \cdot g_2 + 2 \cdot g_1 - 2 \cdot g_0$$
$$= \frac{2y!}{(x+2y)(x+2y+1)}$$

Upper bound

Example (cont.).
$$T = y!/(x+2y)$$
.

Example (cont.).
$$T = y!/(x+2y)$$
.

Initial reduction:

$$T=\Delta(g_0)+\left(rac{a_0}{b_0}+rac{q_0}{v}
ight)H$$
 with $b_0=x+2y$.

11/19 Reduction & Telescoping

Example (cont.).
$$T = y!/(x+2y)$$
.

Initial reduction:

$$T=\Delta(g_0)+\left(rac{a_0}{b_0}+rac{q_0}{v}
ight)H$$
 with $b_0=x+2y$.

 $\exists \ \rho \in \mathbb{N}^* \text{ s.t.}$

$$c_0(x)\left(\frac{a_0}{b_0}+\frac{q_0}{v}\right)+\cdots+c_{\rho}(x)\left(\frac{a_{\rho}}{b_{\rho}}+\frac{q_{\rho}}{v}\right)=0$$

Reduction & Telescoping 11/19

Example (cont.).
$$T = y!/(x+2y)$$
.

Initial reduction:

$$T=\Delta(g_0)+\left(rac{a_0}{b_0}+rac{q_0}{v}
ight)H$$
 with $b_0=x+2y$.

 $\exists \rho \in \mathbb{N}^* \text{ s.t.}$

$$\begin{cases} c_0(x) \frac{a_0}{b_0} + \dots + c_{\rho}(x) \frac{a_{\rho}}{b_{\rho}} = 0 \\ c_0(x) q_0 + \dots + c_{\rho}(x) q_{\rho} = 0 \end{cases}$$

Reduction & Telescoping 11/19

Example (cont.).
$$T = y!/(x+2y)$$
.

Initial reduction:

$$T = \Delta(g_0) + \left(\frac{a_0}{b_0} + \frac{q_0}{v}\right)H$$
 with $b_0 = x + 2y$.

$$\begin{cases} c_0(x) \frac{a_0}{b_0} + \dots + c_{\rho}(x) \frac{a_{\rho}}{b_{\rho}} = 0 \\ c_0(x) q_0 + \dots + c_{\rho}(x) q_{\rho} = 0 \end{cases}$$

• Property. $b_i = x + 2y \text{ or } x + 2y + 1.$

Example (cont.).
$$T = y!/(x+2y)$$
.

$$\begin{cases} c_0(x) \frac{a_0}{b_0} + \dots + c_{\rho}(x) \frac{a_{\rho}}{b_{\rho}} = 0 \\ c_0(x) q_0 + \dots + c_{\rho}(x) q_{\rho} = 0 \end{cases}$$

Example (cont.).
$$T = y!/(x+2y)$$
.

$$\# \mathsf{vars} =
ho + 1$$
 $\begin{cases} c_0(x) rac{a_0}{b_0} + \dots + c_{
ho}(x) rac{a_{
ho}}{b_{
ho}} = 0 \\ c_0(x) q_0 + \dots + c_{
ho}(x) q_{
ho} = 0 \end{cases}$

Huang, CAS & JKU 11/19 Reduction & Telescoping

Example (cont.).
$$T = y!/(x+2y)$$
.

$$\text{\#vars} = \rho + 1$$

$$\begin{cases} c_0(x) \frac{a_0}{b_0} + \dots + c_{\rho}(x) \frac{a_{\rho}}{b_{\rho}} = 0 \\ c_0(x) q_0 + \dots + c_{\rho}(x) q_{\rho} = 0 \end{cases}$$

Example (cont.).
$$T = y!/(x+2y)$$
.

common denom.
$$B=(x+2y)(x+2y+1)$$

$$\uparrow \quad \text{Prop. } b_i=x+2y \text{ or } x+2y+1$$

$$\begin{cases} c_0(x)\frac{a_0}{b_0}+\cdots+c_{\rho}(x)\frac{a_{\rho}}{b_{\rho}}=0 \\ c_0(x)q_0+\cdots+c_{\rho}(x)q_{\rho}=0 \end{cases}$$

Example (cont.).
$$T = y!/(x+2y)$$
.

Example (cont.).
$$T = y!/(x+2y)$$
.

#eqns over $\mathbb{C}(x) = 2$

$$\uparrow \quad \deg_y(a_i) < \deg_y(b_i)$$
common denom. $B = (x+2y)(x+2y+1)$

$$\uparrow \quad \text{Prop. } b_i = x+2y \text{ or } x+2y+1$$

#vars $= \rho + 1$
#eqns over $\mathbb{C}(x) = 3$

$$\begin{cases} c_0(x) \frac{a_0}{b_0} + \dots + c_{\rho}(x) \frac{a_{\rho}}{b_{\rho}} = 0 \\ c_0(x) q_0 + \dots + c_{\rho}(x) q_{\rho} = 0 \end{cases}$$

$$\downarrow \quad \text{Prop. } \# \text{ terms of } q \leq \quad \max_{-\lceil \deg_y(u), \deg_y(v) \rceil} (\deg_y(u) - 1 \rceil$$
#eqns over $\mathbb{C}(x) = 1$

Conclusion. Upper bound is 3.

New upper bound

Theorem. Assume T has initial reduction

$$T = \Delta_y(\cdots) + \left(\frac{a_0}{b_0} + \frac{q_0}{v}\right)H$$

with $b_0 = c \prod_{i=1}^m \prod_{k=0}^{d_i} (\alpha_i x + \beta_i y + \gamma_i + k)^{c_{ik}}$, and for each $i \neq j$, either

$$\alpha_i \neq \alpha_j$$
 or $\beta_i \neq \beta_j$ or $\gamma_i - \gamma_j \notin \mathbb{Z}$.

Then the order of the minimal telescoper for T w.r.t. y is no more than

$$\begin{split} B_{\textit{New}} := \max\{\deg_y(u), \deg_y(v)\} - [\![\deg_y(u-v) \leq \deg_y(u) - 1]\!] \\ + \sum_{i=1}^m \beta_i \cdot \max_{0 \leq k \leq d_i} \{c_{ik}\} \end{split}$$

Apagodu-Zeilberger upper bound (2006)

Definition. A hypergeom. term T is said to be proper if it is of the form

$$T = p(x, y) \prod_{i=1}^{m} \frac{(\alpha_{i}x + \alpha'_{i}y + \alpha''_{i})!(\beta_{i}x - \beta'_{i}y + \beta''_{i})!}{(\mu_{i}x + \mu'_{i}y + \mu''_{i})!(\nu_{i}x - \nu'_{i}y + \nu''_{i})!} z^{y}$$

Theorem. Assume T is proper hypergeom. Then the order of the minimal telescoper for T w.r.t. y is no more than

$$B_{AZ} = \max \left\{ \sum_{i=1}^m (\alpha_i' + \nu_i'), \sum_{i=1}^m (\beta_i' + \mu_i') \right\}.$$

	New	Apagodu-Zeilberger
proper	B_{New}	B_{AZ}
non-proper		
example		

	New	Apagodu-Zeilberger
proper	$B_{ extit{New}}$ \parallel $B_{ extit{AZ}} - \llbracket \deg_y(u - v) \leq \deg_y(u) - 1 rbracket$	B_{AZ}
non-proper		
example		

	New	Apagodu-Zeilberger
proper	$B_{ extit{New}}$ \parallel $B_{ extit{AZ}} - \llbracket \deg_y(u - v) \leq \deg_y(u) - 1 rbracket$	B _{AZ}
non-proper	B_{New}	
example		

	New	Apagodu-Zeilberger
proper	B_{New} \parallel $B_{AZ}-\llbracket \deg_y(u-v) \leq \deg_y(u)-1 rbracket$	B_{AZ}
non-proper	B_{New}	?
example		

	New	Apagodu-Zeilberger
proper	$B_{ extit{New}}$ \parallel $B_{ extit{AZ}} - \llbracket \deg_y(u - v) \leq \deg_y(u) - 1 rbracket$	B_{AZ}
non-proper	B_{New}	?
T_1	9	10

Example.

$$T_1 = \frac{(x+3y)!(x-3y)!}{(5x+3y)(3x-y)(4x-3y)!(5x+3y)!}.$$

	New	Apagodu-Zeilberger
proper	$B_{ extit{New}}$ \parallel $B_{ extit{AZ}} - \llbracket \deg_y(u - v) \leq \deg_y(u) - 1 rbracket$	B_{AZ}
non-proper	B_{New}	?
T_2	5	6

Example.

$$T_2 = \frac{(x+3y-1)!^2}{(3y-2x-4)!(2x+3y-2)!}.$$

	New	Apagodu-Zeilberger
proper	$B_{ extit{New}}$ \parallel $B_{ extit{AZ}} - \llbracket \deg_y(u - v) \leq \deg_y(u) - 1 rbracket$	B_{AZ}
non-proper	B_{New}	?
T_3	3	?

Example.

$$T_3 = \frac{x^4 + x^3y + 2x^2y^2 + 2x^2y + xy^2 + 2y^3 + x^2 + y^2 - x - y}{(x^2 + y + 1)(x^2 + y)(x + 2y)}y!$$

Example (cont.).
$$T = y!/(x+2y)$$
.

Example (cont.).
$$T = y!/(x+2y)$$
.

Initial reduction:

$$T = \Delta(g_0) + \left(\frac{a_0}{b_0} + \frac{q_0}{v}\right)H$$
 with $b_0 = x + 2y$.

15/19 Reduction & Telescoping

Example (cont.).
$$T = y!/(x+2y)$$
.

Initial reduction:

$$T = \Delta(g_0) + \left(\frac{a_0}{b_0} + \frac{q_0}{v}\right)H$$
 with $b_0 = x + 2y$.

 $\exists \rho \in \mathbb{N}^* \text{ s.t.}$

$$c_0(x)\left(\frac{a_0}{b_0}+\frac{q_0}{v}\right)+\cdots+c_{\rho}(x)\left(\frac{a_{\rho}}{b_{\rho}}+\frac{q_{\rho}}{v}\right)=0$$

15/19 Reduction & Telescoping

Example (cont.).
$$T = y!/(x+2y)$$
.

Initial reduction:

$$T = \Delta(g_0) + \left(\frac{a_0}{b_0} + \frac{q_0}{v}\right)H$$
 with $b_0 = x + 2y$.

$$\begin{cases} c_0(x) \frac{a_0}{b_0} + \dots + c_{\rho}(x) \frac{a_{\rho}}{b_{\rho}} = 0 \\ c_0(x) q_0 + \dots + c_{\rho}(x) q_{\rho} = 0 \end{cases}$$

Example (cont.).
$$T = y!/(x+2y)$$
.

Initial reduction:

$$T=\Delta(g_0)+\left(rac{a_0}{b_0}+rac{q_0}{v}
ight)H$$
 with $b_0=x+2y$.

$$\begin{cases} c_0(x) \frac{a_0}{b_0} + \dots + c_{\rho}(x) \frac{a_{\rho}}{b_{\rho}} = 0 \\ c_0(x) q_0 + \dots + c_{\rho}(x) q_{\rho} = 0 \end{cases}$$

• Property. $b_i = x + 2y \text{ or } x + 2y + 1.$

Example (cont.).
$$T = y!/(x+2y)$$
.

$$c_0(x)\frac{a_0}{b_0} + \cdots + c_i(x)\frac{a_i}{b_i} + \cdots + c_{\rho}(x)\frac{a_{\rho}}{b_{\rho}} = 0$$

Reduction & Telescoping 15/19

Example (cont.).
$$T = y!/(x+2y)$$
.

$$c_0(x)\frac{a_0}{b_0} + \dots + c_i(x)\frac{a_i}{b_i} + \dots + c_\rho(x)\frac{a_\rho}{b_\rho} = 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\exists i, s.t. \ b_i = b_0$$

Reduction & Telescoping 15/19

Example (cont.).
$$T = y!/(x+2y)$$
.

$$c_0(x)\frac{a_0}{b_0} + \dots + c_i(x)\frac{a_i}{b_i} + \dots + c_\rho(x)\frac{a_\rho}{b_\rho} = 0$$

$$\uparrow \quad \text{PFD \& } b_0 = x + 2y \quad \uparrow$$

$$\downarrow \quad \downarrow$$

$$\exists i, s.t. \ b_i = b_0$$

$$\downarrow \quad \text{Prop. } b_i = x + 2y \text{ or } x + 2y + 1$$

$$\text{minimal } i = 2$$

Example (cont.).
$$T = y!/(x+2y)$$
.

$$c_0(x)\frac{a_0}{b_0} + \dots + c_i(x)\frac{a_i}{b_i} + \dots + c_\rho(x)\frac{a_\rho}{b_\rho} = 0$$

$$\uparrow \quad \text{PFD \& } b_0 = x + 2y \quad \uparrow$$

$$\downarrow \quad \downarrow$$

$$\exists i, s.t. \ b_i = b_0$$

$$\downarrow \quad \text{Prop. } b_i = x + 2y \text{ or } x + 2y + 1$$

$$\text{minimal } i = 2$$

Conclusion. Lower bound is 2.

New lower bound

Theorem. Assume T has initial reduction

$$T = \Delta_y(\cdots) + \left(\frac{a_0}{b_0} + \frac{q_0}{v}\right)H,$$

with b_0 integer-linear w.r.t. y. Then the order of the minimal telescoper for T w.r.t. y is at least

$$\max_{\substack{p \mid b_0 \text{ irred.} \\ \deg_y(p) \, \geq \, 1}} \; \; \min_{h \in \mathbb{Z}} \left\{ \rho \in \mathbb{N} \setminus \{0\} : \sigma_y^h(p) \mid \sigma_x^\rho(b_0) \right\}$$

Abramov-Le lower bound (2005)

Theorem. Assume T has initial reduction

$$T = \Delta_y(\dots) + \frac{a_0'}{b_0}H'$$

where

$$\frac{u'}{v'}:=\frac{\sigma_y(H')}{H'},\quad \frac{c'}{d'}:=\frac{\sigma_x(H')}{H'},$$

with u', v', c', d' and b_0 integer-linear w.r.t. y. Then the order of the minimal telescoper for T w.r.t. y is at least

$$\max_{\substack{p \mid b_0 \text{ irred.} \\ \deg_{\nu}(p) \geq 1}} \min_{h \in \mathbb{Z}} \left\{ \rho \in \mathbb{N} \setminus \{0\} : \quad \text{or} \\ \sigma_y^h(p) \mid \sigma_x^{\rho-1}(d') \right\}$$

	New	Abramov-Le
	max _p min _h	$\max_p \min_h$
lower bound	$ig\{ ho:\sigma_y^h(p)\mid\sigma_{\sf x}^ ho(b_0)ig\}$	$\left\{ \rho: \begin{array}{c} \sigma_{y}^{h}(\rho) \mid \sigma_{x}^{\rho}(b_{0}) \\ \rho: \text{or} \\ \sigma_{y}^{h}(\rho) \mid \sigma_{x}^{\rho-1}(d') \end{array} \right\}$
example		

Example.

	New	Abramov-Le
	max _p min _h	max _p min _h
lower bound	$ig\{ ho:\sigma_y^h(p)\mid\sigma_x^ ho(b_0)ig\}$	$\left\{ \begin{matrix} \sigma_y^h(\rho) \mid \sigma_x^\rho(b_0) \\ \rho: & \text{or} \\ \sigma_y^h(\rho) \mid \sigma_x^{\rho-1}(d') \end{matrix} \right\}$
T_1	4	3

Example.

$$T_1 = \frac{1}{(x+3y+1)(5x-4y+4)(5x-4y+14)!}.$$

	New	Abramov-Le
	max _p min _h	$\max_p \min_h$
lower bound	$ig\{ ho:\sigma_y^h(p)\mid\sigma_x^ ho(b_0)ig\}$	$\left\{ \rho: \begin{array}{c} \sigma_y^h(\rho) \mid \sigma_x^\rho(b_0) \\ \rho: \text{or} \\ \sigma_y^h(\rho) \mid \sigma_x^{\rho-1}(d') \end{array} \right\}$
T_2	7	3

Example.

$$T_2 = \frac{1}{(x+3y+1)(5x-7y)(5x-7y+14)!}.$$

	New	Abramov-Le
	max _p min _h	$\max_p \min_h$
lower bound	$ig\{ ho:\sigma_y^h(p)\mid\sigma_x^ ho(b_0)ig\}$	$\left\{ \rho: \begin{array}{c} \sigma_y^h(\rho) \mid \sigma_x^\rho(b_0) \\ \rho: \text{or} \\ \sigma_y^h(\rho) \mid \sigma_x^{\rho-1}(d') \end{array} \right\}$
<i>T</i> ₃	12	5

Example.

$$T_3 = \frac{1}{(x+5y+1)(5x-12y)(5x-12y+24)!}.$$

Summary

Result.

Order bounds for telescopers

Future work.

▶ Creative telescoping for *q*-hypergeometric terms