Электробезопасность

Действие электрического тока на организм человека

Электробезопасность - система организационных и технических мероприятий, защитных средств и методов, обеспечивающий защиту работающих и иных людей от вредного и опасного воздействия электрического тока, электрической дуги, электромагнитного поля и статического электричества

Виды воздействия электрического тока на организм человека:

повреждения, в результате электродинамического эффекта и взрывоподобного

Электродинамическое (механическое) действие – разрыв тканей

образования пара от перегретой током жидкости и крови.

Виды электротравм

1) **Местные** - местное повреждение организма — поражение кожи, мягких тканей, связок, костей

Электрические ожоги

Электрические знаки разных степеней

Металлизация кожи Электроофтальмия

Механические повреждения

разрывы кожи, сухожилий, кровеносных сосудов, вывихи суставов и переломы костей вследствие резких непроизвольных судорожных сокращений мышц под действием электрического тока, проходящего через тело человека

Виды электротравм

- 2) Общие электротравмы, имеющие общее воздействие на организм человека электрические удары это возбуждение живых тканей электрическим током, сопровождающееся непроизвольным судорожным сокращением мышц. (25%).
- 3) Смешанные электротравмы удар+ местные травмы ожоги. (55%).

Примерно 74% случаев поражения людей током сопровождается возникновением электрических травм.

Электрическое сопротивление тела человека

R_h зависит от:

- состояния кожи
- параметров электрической цепи
- физиологических факторов
- состояния окружающей среды

Ткань тела	Удельное				
человека	объемное				
	сопротивление,				
	Ом·м				
Сухая кожа	$3 \cdot 10^3 - 2 \cdot 10^4$				
Кости	$10^4 - 2 \cdot 10^6$				
Мышечная ткань	1 - 3				
Кровь	1 - 2				
Спиномозговая	0.5 0.6				
жидкость	0,5 - 0,6				

Электрическое сопротивление тела человека

$$\underline{Z}_h = 2 \cdot \underline{Z}_9 + R_{\rm B} = \frac{2}{\frac{1}{R_9} + j\omega C_9} + R_{\rm B}$$

$$C_{9} = \frac{\varepsilon \cdot \varepsilon_{0} \cdot S}{d_{9}} \qquad R_{9} = \frac{\rho_{9} \cdot d_{9}}{S}$$

 ε — диэлектрическая проницаемость эпидермиса;

 $\varepsilon_0 = 8,85 \cdot 10^{-12} -$ электрическая постоянная, $\Phi/{\rm M}$;

S – площадь электрода, M^2 ;

 d_{9} – толщина эпидермиса, м;

 $\rho_{\rm 9}$ — удельное сопротивление эпидермиса (10^4 — $10^5~{
m Om\cdot m}$)

$$R_h = 2 \cdot R_3 + R_B$$

$$C_h \approx 0.5C_3$$

Зависимость R_h от параметров электрической цепи

Факторы, влияющие на исход поражения электрическим током

1. Величина тока

Первичные критерии электробезопасности:

Наименование тока	<i>I_h</i> для переменного тока (50 Гц), мА	I_h для постоянного тока, м $\mathbf A$	Режим работы
Пороговый ощутимый	0,6 – 1,5	5 - 8	Нормальный
Пороговый неотпускающий	Ж.: 11 М.: 16	Ж.: 50 М.: 80	Аварийный длительный
Пороговый фибрилляционный	100	300	Аварийный кратковременный

ГОСТ 12.1.038-82 «Система стандартов безопасности труда (ССБТ). Электробезопасность. Предельно допустимые значения напряжений прикосновения и токов»

Предельно допустимые значения напряжений прикосновения и токов при аварийном режиме производственных электроустановок напряжением до $1000~\mathrm{B}$ (переменный ток $50~\mathrm{\Gamma u}$):

	Время воздействия, с											
	0,08	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	1	свыше 1
U, B	550	340	180	135	120	105	95	85	75	65	60	20
I, MA	550	400	190	150	140	125	105	90	75	65	50	6

Факторы, влияющие на исход поражения электрическим током

2. Продолжительность воздействия тока

Факторы, влияющие на исход поражения электрическим током

3. Путь прохождения тока

Путь протекания тока	Доля тока через сердце, %	Частота возникновения, %
Правая рука - ноги	6,7	20
Левая рука – ноги	3,7	17
Рука – рука	3,3	40
Нога - нога	0,4	6

4. Влияние частоты и рода тока

5. Влияние индивидуальных свойств человека.

- здоровье
- психологическая подготовленность
- квалификация
- возраст

6. Параметры внешней среды.

Классификация помещений по степени опасности поражения электрическим током

- □ Без повышенной опасности это сухие, беспыльные помещения с нормальной температурой воздуха и с изолирующими (например, деревянными) полами
- □ **С повышенной опасностью** помещение, в котором выполняется одно из 5 условий:
- сырость (относительная влажность >75%);
- высокая температура (>35 °C периодически в течении суток);
- токопроводящая пыль (угольная, металлическая);
- токопроводящие полы (металл, земляные, железобетонные, кирпичные);
- возможность одновременного прикосновения к заземленным металлоконструкциям, с одной стороны, и металлическим корпусам электрооборудования с другой
- □ **Особо опасные помещения** это помещения, которые удовлетворяют одному из трех приведенных ниже условий:
- особая сырость (около 100 %);
- химически активная или органическая среда, разрушающая изоляцию;
- одновременно любые два условия для помещения с повышенной опасностью.

Явления, возникающие при стекании тока в землю

Заземлитель — это проводник или группа проводников, соединенных между собой, находящихся в контакте с землей

Стекание тока в землю через одиночный заземлитель

Полушаровой заземлитель - шаровой заземлитель, заглубленный на половину, т.е. так, что его центр находится на уровне земли

Допущения:

- 1. Земля во всем объеме однородна и обладает одинаковым удельным сопротивлением.
- 2. Ток по земле растекается равномерно, его плотность будет убывать с увеличением *x* расстояния от центра заземлителя.
- 3. Удельное электрическое сопротивление грунта >> удельного электрического сопротивления материала заземлителя.

Стекание тока в землю через одиночный заземлитель

Уравнение потенциальной кривой полушарового заземлителя:

$$\frac{\varphi_3(x)}{\varphi_3} = \frac{r}{x} \to \varphi_3(x) = \frac{r}{x} \cdot \varphi_3 = \frac{k}{x}$$

Плотность тока:
$$j = \frac{I_3}{2 \cdot \pi \cdot x^2}$$

$$dU = E \cdot dx$$
$$E = j \cdot \rho$$

Потенциал точки A относительно бесконечно удаленной точки с $\phi = 0$.

$$\varphi_{A} = U_{A} = \int_{x}^{\infty} dU$$

$$\varphi_{A} = \int_{x}^{\infty} E dx = \int_{x}^{\infty} \frac{I_{3} \cdot \rho}{2 \cdot \pi \cdot x^{2}} dx$$

$$= \frac{I_{3} \cdot \rho}{2 \cdot \pi \cdot x}$$

Потенциал полушарового заземлителя:

$$\varphi_3 = \varphi_{max} = \frac{I_3 \cdot \rho}{2 \cdot \pi \cdot r}$$

Стекание тока в землю через групповой заземлитель

$$\varphi_{\rm rp} = \varphi_{01} + \sum_{2}^{n} \varphi_{{\rm H}i}$$

где ϕ_{01} - собственный потенциал первого электрода, В:

$$\varphi_{01} = I_1 \cdot R_1$$

n - количество электродов в групповом заземлителе

 $\varphi_{\text{н}i}$ - потенциал, наведенный на первом электроде одним из соседних, В:

$$\varphi_{\rm H} = \frac{\varphi_0 \cdot r}{\chi}$$

Стекание тока в землю через групповой заземлитель

Если групповой заземлитель состоит из одинаковых электродов, размещенных по вершинам правильного многоугольника:

$$\varphi_{\rm rp} = \varphi_0 + \sum_{n-1} \varphi_{\rm H}$$

Если одинаковые электроды группового заземлителя расположены на одинаковых расстояниях один от другого:

$$\varphi_{\Gamma p} = \varphi_0 + (n-1) \cdot \varphi_H$$

Сопротивление группового заземлителя

Сопротивление группового заземлителя:

$$R_{\rm rp} = \frac{R_{\infty}}{\eta};$$
 $\frac{1}{R_{\rm rp}} = \eta \cdot \frac{1}{R_{\infty}}$

где η - коэффициент, характеризующий уменьшение проводимости заземлителей и называемый коэффициентом использования (коэффициентом экранирования)

Сопротивление группового заземлителя, Ом, в общем случае:

$$R_{\rm rp} = \frac{1}{\eta \cdot \sum_{1}^{n} \frac{1}{R_{\rm oi}}}$$

При равенстве сопротивлений растеканию всех электродов $R_{0i} = R_0$

$$R_{\rm rp} = \frac{R_o}{\eta \cdot n}$$

Стекание тока в землю через групповой заземлитель

Если все электроды одинаковы, то:

Потенциал группового заземлителя:

$$\varphi_{\infty} = \frac{I_3 \cdot R_0}{n}$$

где R_0 - сопротивление растеканию тока единичного электрода, Ом; I_3 - ток, стекающий через групповой

заземлитель, А

Сопротивление группового заземлителя:

$$R_{\infty} = \frac{R_0}{n}$$

При бесконечно больших расстояниях между электродами S≥40 м:

$$\varphi_{\infty} = \varphi_{01} = \varphi_{02} = \dots = \varphi_{0n}$$

ИЛИ

$$\varphi_{\infty} = I_1 \cdot R_1 = I_2 \cdot R_2 = \dots = I_n \cdot R_n$$

где $I_1, I_2, \dots I_3$ - токи, стекающие через электроды, A;

 $R_1, R_2, \dots R_3$ - сопротивления растеканию токов, Ом

Сопротивление группового заземлителя (при расстояниях межу электродами $S \ge 40$ м):

$$R_{\infty} = \frac{1}{\sum_{1}^{n} \frac{1}{R_{0}}}$$

Напряжение прикосновения

Напряжение прикосновения U_h - напряжение (или разность потенциалов) между двумя точками цепи тока, которых одновременно касается человек, или, с другой стороны, падение напряжения в сопротивлении тела человека

$$U_h = I_h \cdot R_h$$

Напряжение прикосновения для человека, касающегося заземленного корпуса и стоящего на земле:

$$U_h = \varphi_{
m pyкu} - \varphi_{
m horu} = \varphi_{
m 3} - \varphi_{
m och} = \varphi_{
m 3} \cdot lpha_1$$

где α_1 - коэффициент напряжения прикосновения, или коэффициент прикосновения, учитывающий форму потенциальной кривой ($0 \le \alpha_1 \le 1$)

Напряжение прикосновения

Напряжение прикосновения оказывается приложенным не только к сопротивлению тела человека, но и к последовательно соединенному с ним сопротивлению $R_{\rm of}$:

$$\varphi_3 \cdot \alpha_1 = I_h \cdot (R_h + R_{06}) \quad \text{и} \quad I_h = \frac{U_h}{R_h}$$
 то:
$$U_h = \frac{\varphi_3 \cdot \alpha_1 \cdot R_h}{R_h + R_{06}} = \varphi_3 \cdot \alpha_1 \cdot \alpha_2$$

где α_2 - коэффициент напряжения прикосновения, учитывающий падение напряжения в сопротивлении растеканию основания, на котором стоит человек

Напряжение шага

Напряжение шага $U_{\rm m}$ - напряжение между двумя точками цепи тока, находящимися одна от другой на расстоянии шага, на которых одновременно стоит человек, или, иначе говоря, падение напряжения в сопротивлении тела человека

$$U_{\text{III}} = I_h \cdot R_h$$

$$U_{\text{III}} = \varphi_{\text{H}1} - \varphi_{\text{H}2} = \varphi_{\text{X}} - \varphi_{\text{X+a}} = \varphi_{\text{3}} \cdot \beta_{\text{1}}$$

где а –размер шага, β_1 - коэффициент напряжения шага или просто, коэффициент шага, учитывающий форму потенциальной кривой $(0 \le \beta_1 \le 1)$

Для одиночного полушарового заземлителя:

$$\beta_1 = \frac{r \cdot a}{x \cdot (x + a)}$$

Разность потенциалов между двумя точками, на которых стоит человек делится между сопротивлением тела человека и последовательно соединенного с ним сопротивлением растеканию основания, на котором стоит человек:

$$U_{\text{III}} = \frac{\varphi_3 \cdot \beta_1 \cdot R_h}{R_h + 2 \cdot R_{\text{H}}} = \varphi_3 \cdot \beta_1 \cdot \beta_2$$

 β_2 - коэффициент напряжения шага, учитывающий падение напряжения в сопротивлении растеканию основания