5524 Quiz Results for Utkarsh Pratap Singh Jadon (jadon.1)

(!) Correct answers are no longer available.

Score for this quiz: **69** out of 69 Submitted Dec 6, 2022 at 2:08pm This attempt took 73 minutes.

Question 1	1 / 1 pts
A covariance matrix K can be factored using PCA into matrices of the Eigenvectors Q and Eigenvalues S . The Eigenvalues of K and inverse the same values.	
○ True	
False	

Question 2	1 / 1 pts
Any image compression method that can recover the exact original is considered as a <u>lossy</u> compression method.	l image
○ True	
False	

Question 3	1 / 1 pts

○ Green	
○ Red	
Blue	
Question 4	1 / 1 pt:
The Bayer Filter, used in cameras to capture F	GB color using a single CCD,
•	associated with passing
•	associated with passing
which band of light?	associated with passing
which band of light?	associated with passing
which band of light? White Blue	associated with passing
BlueGreen	associated with passing

Oilation, Dilation

O Dilation, Erosion	
Erosion, Erosion	
Erosion, Dilation	

Question 6	1 / 1 pts
What is the lower/upper output bounds for the TANH activation fur used in neural networks?	ıction
○ -Inf to 0	
-1 to 0	
O to Inf	
O to +1	

Question 7	1 / 1 pts
Aspect ratio is ratio of of image.	
height to width	
width to height	
number of pixels to number of colors	

Question 8	1 / 1 pts
How many gray levels are there for an unsigned 8-bit pixel?	
© 256	
O 127	
O 128	
O 1024	
O 255	
O 1023	
Question 9	1 / 1 pts
In the Normalized Direct Linear Transform (for computing the H the data points are scaled so their average distance to the orig	
O 1	
sqrt(2)	
0	

Question 10 1/1 pts

.5

2

Which locations (#1-#8) are the 4-connected neighbors of the center pixel x?

1	2	3
4	х	5
6	7	8

- 1, 2, 3, x
- No answer text provided.
- 0 2, 4, 5, 7
- 2, 3, 6, 7
- 1, 3, 6, 8
- 0 1, 2, 7, 8

Question 11

1 / 1 pts

Provide the missing value in this classic 3×3 Fy Sobel gradient mask (without the proper scale/normalization value).

- -1 -(?) -1
- 0 0 0
- 1 (?) 1
 - 0 1

O 4			
2			
O 0			

Question 12	1 / 1 pts
Which color space has Euclidean distance properties that are siminuman perception?	lar to
O HSI	
© LAB	
○ RGB	
O YUV	

Question 13	1 / 1 pts
The MEDIAN filtering mask is <u>separable</u> .	
○ True	
False	

Question 14	1 / 1 pts

Using a two-class classifier for detecting X and Y, the PRECISION X using the classifier is given as "the number of correctly <u>detected</u> examples" divided by "the <u>actual</u> number of X examples".	
O True	
False	
Question 15	1 / 1 pts
Training a standard classification Neural Network (or a simple Percis a form of " <u>Unsupervised</u> " Learning (not " <u>Supervised</u> ").	ceptron)
○ True	
False	
Question 16	1 / 1 pts

Question 16	1 / 1 pts
As presented in class, Hinton's definition of "Deep Learning" requirminimum of how many "hidden" layers?	es a
O 10	
O 100	
3	
2	
○ 1	

O 0				

Question 17	1 / 1 pts
What is the lower/upper output bounds for the <u>sigmoid</u> activation fused in neural networks?	unction
O to +1	
○ -1 to +1	
○ -1 to 0	
○ -Inf to 0	
O to Inf	

Question 18	1 / 1 pts
A Homography matrix transformation for two images is appropriate the corresponding points reside on any non-planar surface.	e when
O True	
False	

Question 19 1/1 pts

Structure and depth are inherently ambiguous from single view. The imaging technique that uses optical illusion to make an object "appear" to

be more distant/close or smaller/larger, is called perspective.	
homography	
○ limited	
forced	
○ stereo	
epipolar	
homogeneous	

Question 20	1 / 1 pts
When training a neural network, what is the <u>training period</u> called updates <u>all</u> weights after examining <u>all</u> examples?	that
Epoch	
Weight decay	
 Validation 	
 Normalization 	
Momentum	
O Interval	
Dropout	

Question 21	1 / 1 pts
The 2-D Laplacian filter is a non-oriented, filter	
2nd derivative	
1st derivative	
Question 22	1 / 1 pts
A "perceptron" neural network represents a <u>linearly</u> separable function/classifier.	
True	
False	
Question 23	1 / 1 pts
If matrix A is "symmetric", it has <u>real-valued</u> Eigenvalues and its Eigenvectors can be chosen to be <u>orthonormal</u> .	
True	
False	

Question 24

1 / 1 pts

or a s	square matrix M , what is Trace(M) in terms of the Eigenvalues?
	Sum of Eigenvalues
	Ratio of Eigenvalues
	Product of Eigenvalues
	Count (or number) of Eigenvalues

_____ is a process for Neural Networks for transforming the output Softmax to be more representative of the true posterior probability. Cross-entropy Entropy Weight decay Dropout Momentum Calibration

Question 26

With a very large input to a sigmoid function, the derivative of the sigmoid (for that input) is close to the value of 1.

○ True	
False	
Question 27	1 / 1 pts
Which of these three template matching algorithms is genera robust to lighting changes?	lly most
○ SAD	
○ SSD	
NCC	
Question 28	1 / 1 pts
Does "Gaussian filtering" tend to <u>smooth-over</u> or <u>preserve</u> "e	dges"?
preserve	
smooth-over	
Question 29	1 / 1 pts
For a square matrix M , what is Determinant(M) in terms of the	Eigenvalues?

Count (or number) of Eigenvalues	
Ratio of Eigenvalues	
 Sum of Eigenvalues 	

When initializing the weights in a neural network, we prefer them to be large positive values. True False

Given parallel optical axes between two cameras, one need only search "to the right" in the right image from starting point taken from the left image when finding the stereo correspondence. True False

Question 32 1/1 pts

Which tracking method, Covariance or Mean-shift, finds the best match by minimizing a cost/distance?

Covariance	
Both maximize, neither minimize	
Mean-Shift	
Both minimize, neither maximize	
Question 33	1 / 1 pts
Does "Median filtering" tend to <u>smooth-over</u> or <u>preserve</u> "edges"	?
smooth-over	
preserve	
	1 / 1 pts
Question 34	.,,,,,,,,
The Laplacian/Error pyramid is better than the original image for compression because the error signals in the pyramid are distributed by a broader range of values than original image. True	ited over
False	
Question 35	1 / 1 pts

The Epipolar constraint reduces the correspondence problem for a stereo image pair such that a point in one image corresponds to a search	
---	--

Question 37	1 / 1 pts
The MEAN (AVERAGE) filtering mask is <u>separable</u> .	
True	
○ False	

Question 38 1/1 pts

False

Derivative (gradient) masks should contain values that sum to
O 1
O

Por homography matrix H that transforms points from Image1 to Image2, what is the homography matrix that goes from Image2 to Image1? determinant(H) transpose(H) normalize(H) inverse(H)

Question 40	1 / 1 pts
In the covariance tracking method, if the feature vector used for earlin a 10 x 10 target patch region is f = [x, y, Fx, Fy, R, G, B, u, v], what final size (dimensions) of the covariance matrix for that patch region xx	is the
○ 10 x 5	
○ 2 x 2	

○ 5 x 5	
○ 10 x 10	
○ 5 x 10	
9 x 9	
○ 1x1	

What is the lower/upper output bounds for the ReLU activation function used in neural networks? -1 to 0 -1 to +1 0 to Inf -Inf to 0

Given the linear equation $\mathbf{A}\mathbf{x} = \mathbf{0}$, where $A = (B^T * B)$, (as in the camera calibration and registration slides), the least-squares solution of \mathbf{x} is the Eigenvector of \mathbf{A} corresponding to which Eigenvalue? Largest Eigenvalue

Smallest Eigenvalue		

Question 44	1 / 1 pts
The technique of hysteresis thresholding is part of the Canny edge detector, and uses(how many) threshold(s)?	
O 1	
O 3	
2	
O 0	

Question 45	1 / 1 pts
Computer vision is the process of discovering from image/video: present in the world, WHERE it is, and	WHAT is
·	

vhat it is doing
vhat is the size of it
now to recognize it
now it should see

Question 46 Transform the homogeneous coordinate (250, 175, 10) into its corresponding inhomogenous coordinate. (2.5, 1.75) (250, 175) (25, 17.5) (250, 175, 1) (250, 175, 1)

Given a particular standard deviation of *s=1.2* for a Gaussian smoothing mask, what is the mask size for a 2 standard deviation coverage? 8 × 8 9 × 9

○ 2 x 2	
○ 4 x 4	
○ 5 x 5	
○ 1x1	
○ 3 x 3	
○ 6 x 6	
7 x 7	

Question 48

2 / 2 pts

Give the Gradient Descent formula for updating parameter \boldsymbol{w} (to \boldsymbol{w}_{-} new) using the error gradient $\boldsymbol{G}_{-}\boldsymbol{w}$ (with respect to w) and learning rate \boldsymbol{m} .

use * to multiply

use / to divide

- w_new = w*m + G_w
- w_new = w m*G_w
- w_new = w m/G_w
- w_new = w^m + G_w
- \bigcirc w_new = m w*G_w
- w_new = w + m*G_w

Question 49	2 / 2 pts

What is the formula inside the double summation for the $u_{2,3}$ Central moment for a non-binary image I(x, y):

$$u_{2,3} = SUM_x SUM_y [????]$$

The possible terms are x, y, mx (mean of x), my (mean of y), and l(x,y) (image intensity at x,y)

use * to multiply

use / to divide

use ^ to raise to a power (e.g., x^2 is x^*)

- (x-mx)^2 * (y-my)^3 * I(x,y)
- x^2 * y^3 * I(x,y)
- mx^2 * my^3 * I(x,y)
- $(x + y)^{(2+3)} * I(x,y)$

Question 50 2 / 2 pts

Give the 1-D <u>squared</u> Mahalanobis distance of variable x=3 to a model having standard deviation s=2 and mean mx=1.

- _ 4
- 1

O 5	
O 6	
O 0	
○ 2	
3	

Question 51	2 / 2 pts			
In terms of gradients (Fx, Fy, Ft), give the ratio that specifies the <u>signed</u> "magnitude" of Normal Flow.				
use * to multiply				
use / to divide				
○ Fx*u + Fy*v + Ft				
○ -Ft				
○ Fx*Fx+Fy*Fy				
<pre>sqrt(Fx*Fx+Fy*Fy)</pre>				
-Ft / sqrt(Fx*Fx+Fy*Fy)				
Ft / sqrt(Fx*Fx+Fy*Fy)				

Question 52 2 / 2 pts

Give the formula (only for x , not for y) of the "pinhole camera" perspective transformation (with focal-length f) of a 3D point (X,Y,Z) to its image coordinate (\underline{x} , y).
use * to multiply
use / to divide
○ Z/f
○ X*Z
○ f*Z/X
○ f*X
○ X*Z/f
○ X/Z

Question 53 2 / 2 pts

Write the formula for disparity D in terms of corresponding x-coordinates in the left (x_l) and right image (x_r).

D=

use * to multiply

Question 54

x_l - x_r

2 / 2 pts

When employing the Harris Corner Point Detector, the Eigenvalues of the gradient matrix can be used to indicate whether there is a corner, edge, or flat region present. Which of the below Eigenvalue pairs (v1, v2) is best representative of an "Edge" location.

- $\sqrt{1} = 1.0, \sqrt{2} = 1.0$
- v1 = 1.0, v2 = 0.1
- $\sqrt{1} = 0.1, \sqrt{2} = 0.1$
- $\sqrt{1} = 1.0, \sqrt{2} = 0.9$

Question 55

2 / 2 pts

If a full-resolution image is of size 800×1000 pixels, what is the size of a "quarter-resolution" image?

250 x 250

○ 400 x 500		
200 x 250		

Question 56

2 / 2 pts

Assume you are employing the FAST corner detector to determine if a pixel X with a value of 100 is a corner point. Below are the values of the ordered pixels on the border of the circle centered at X.

67 75 131 125 140 135 69 65 67 110 145 141 100 68 69 69

Is X a FAST corner point if the intensity threshold T = 30 and the contiguous pixel count n must be at least $n^* = 4$?

- Yes, it IS a corner point
- No, it is NOT a corner point

Question 57

2 / 2 pts

Write the formula for $\underline{\text{depth}}\ Z$ as a function of focal length f, baseline T, and disparity D.

7 =

use * to multiply

use / to divide

f*D/T

Quiz Score: 69 out of 69