FTAP HW 7

Zachary Fogelson July 21, 2015

Lasso Homework

Problem 1

1.

```
train <- read.csv("train.csv")
trainMeaningFull <-subset(train, select=-c(id, member_id, emp_length, revol_util))
kable(head(train))</pre>
```

id	$member_id$	${\rm funded_amnt}$	$term_m$	int_rate	installment	emp_length	annual_inc	dti	revol_util
54734	80364	25000	36	0.1189	829.10	0	85000	19.48	0.521
55742	114426	7000	36	0.1071	228.22	0	65000	14.29	0.767
57245	138150	1200	36	0.1311	40.50	15	54000	5.47	0.404
57416	139635	10800	36	0.1357	366.86	6	32000	11.63	0.256
58915	153417	5025	36	0.1008	162.34	3	85000	8.10	0.732
59006	154254	3000	36	0.1426	102.92	3	80800	14.97	0.395

kable(rbind(summary(train), sapply(train, sd)))

_							
_	id member_id		$funded_amnt$	$term_m$	int_rate	installment	
	Min. : 54734	Min.: 70699	Min.: 500	Min. :36.00	Min. :0.0542	Min.: 15.69	
	1st Qu.:496560	1st Qu.: 635543	1st Qu.: 5000	1st Qu.:36.00	1st Qu.:0.0925	1st Qu.: 163.67	
	Median $:623258$	Median: 798198	Median: 9250	Median: 36.00	Median: 0.1171	Median: 272.80	
	Mean $:626300$	Mean: 783617	Mean : 10654	Mean $:42.22$	Mean $:0.1191$	Mean: 317.15	
	3rd Qu.:767345	3rd Qu.: 967828	3rd Qu.:15000	3rd Qu.:60.00	3rd Qu.:0.1435	3rd Qu.: 417.36	
	Max. $:975902$	Max. :1198245	Max. $:35000$	Max. $:60.00$	Max. $:0.2459$	Max. :1305.19	
	NA	NA	NA	NA	NA	NA	
	170023.183351294	225109.217961916	6974.75731097762	10.5166250234748	0.0362426792330949	205.33220291880	

2.

a)

```
ols <- lm(int_rate ~ ., trainMeaningFull)
olsSum <- summary(ols)</pre>
```

Based on the OLS regression, all of the columns which are not IDs or have Na's appear to be significant

b)

olsSum\$r.squared

[1] 0.3907191

The baseline model has an R^2 of about .39. It is hard to judge if the baseline model is successful because, we do not have anything to compare it to. But using all of the available information we can explain 39% of the variance which is not terrible.

c)

plot(ols\$fitted.values, ols\$residuals)

d)

```
rmse <- mean((ols$residuals)^2)
rmse</pre>
```

[1] 0.0008002864

e)

```
test <- read.csv("test.csv")
test <- subset(test, select=-c(id, member_id, emp_length, revol_util))
test <- test[complete.cases(test),]</pre>
```

```
predOLS <- predict(ols,test, interval = "none")
rmseOLS <- mean((test$int_rate - predOLS)^2)
cat("RMSE OLS: ", rmseOLS)</pre>
```

```
## RMSE OLS: 0.0009510096
3.
interactDF <- as.data.frame(model.matrix(~(.)^2,subset(trainMeaningFull, select=-c(int_rate))))</pre>
interactTest <- as.data.frame(model.matrix(~(.)^2,subset(test, select=-c(int_rate))))</pre>
  a)
smallest = lm(trainMeaningFull$int_rate ~ 1, interactDF)
biggest = as.formula(lm(trainMeaningFull$int_rate ~ ., interactDF))
stepForwardAIC <- step(smallest, scope = biggest, k = 2, direction ="forward", trace = F)</pre>
stepForwardBIC <- step(smallest, scope = biggest, k = log(length(trainMeaningFull$int_rate)), direction</pre>
summary(stepForwardAIC)
##
## Call:
## lm(formula = trainMeaningFull$int_rate ~ term_m + `term_m:installment` +
##
       funded_amnt + installment + `funded_amnt:term_m` + `funded_amnt:installment` +
##
       `installment:dti` + dti + `annual_inc:dti` + `term_m:dti` +
       `funded_amnt:dti` + annual_inc + `funded_amnt:annual_inc` +
##
       `installment:annual_inc` + `term_m:annual_inc`, data = interactDF)
##
##
## Residuals:
##
        Min
                   1Q
                         Median
                                       ЗQ
## -0.105406 -0.008977 0.000194 0.008061 0.121621
## Coefficients:
##
                              Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                             2.434e-02 1.724e-03
                                                   14.119 <2e-16 ***
                             2.015e-03 4.262e-05
                                                   47.274
## term m
                                                            <2e-16 ***
## `term_m:installment`
                            -2.323e-05 3.694e-07 -62.886 <2e-16 ***
                             -9.958e-05 6.345e-07 -156.945
## funded amnt
                                                            <2e-16 ***
## installment
                             2.640e-03 2.017e-05 130.867
                                                             <2e-16 ***
## `funded amnt:term m`
                             1.185e-06 1.103e-08 107.461
                                                            <2e-16 ***
## `funded_amnt:installment` -2.400e-09 5.531e-11 -43.392
                                                            <2e-16 ***
## `installment:dti`
                            -5.404e-06 4.009e-07 -13.479
                                                             <2e-16 ***
## dti
                                                   13.541
                             1.312e-03 9.689e-05
                                                             <2e-16 ***
## `annual_inc:dti`
                            -4.248e-10 2.341e-10
                                                   -1.815
                                                            0.0695 .
                             -2.558e-05 2.352e-06 -10.877
## `term_m:dti`
                                                             <2e-16 ***
## `funded_amnt:dti`
                             1.407e-07 1.225e-08
                                                    11.490
                                                             <2e-16 ***
                                                   22.765
## annual_inc
                             2.621e-07 1.151e-08
                                                             <2e-16 ***
                                                   27.463
## `funded_amnt:annual_inc`
                             3.629e-11 1.321e-12
                                                             <2e-16 ***
                            -1.129e-09 4.182e-11 -26.994
## `installment:annual_inc`
                                                             <2e-16 ***
                            -7.165e-09 2.960e-10 -24.208
                                                             <2e-16 ***
## `term m:annual inc`
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.01686 on 34014 degrees of freedom
## Multiple R-squared: 0.7837, Adjusted R-squared: 0.7836
```

F-statistic: 8216 on 15 and 34014 DF, p-value: < 2.2e-16

```
summary(stepForwardBIC)
```

```
##
## Call:
## lm(formula = trainMeaningFull$int_rate ~ term_m + `term_m:installment` +
##
       funded amnt + installment + `funded amnt:term m` + `funded amnt:installment` +
       `installment:dti` + dti + `annual_inc:dti`, data = interactDF)
##
##
## Residuals:
        Min
                    1Q
                          Median
                                        3Q
## -0.105365 -0.009233 0.000332 0.008219 0.113695
## Coefficients:
##
                               Estimate Std. Error t value Pr(>|t|)
                              5.612e-02 8.239e-04 68.115 < 2e-16 ***
## (Intercept)
## term_m
                              1.180e-03 1.844e-05
                                                    63.957 < 2e-16 ***
                             -2.253e-05 3.718e-07 -60.611 < 2e-16 ***
## `term_m:installment`
## funded_amnt
                             -9.336e-05 5.872e-07 -158.997 < 2e-16 ***
                              2.445e-03 1.864e-05 131.161 < 2e-16 ***
## installment
                              1.161e-06 1.110e-08 104.588 < 2e-16 ***
## `funded_amnt:term_m`
## `funded_amnt:installment` -2.325e-09 5.184e-11 -44.855 < 2e-16 ***
## `installment:dti`
                             -8.867e-07 6.940e-08 -12.777 < 2e-16 ***
                             3.574e-04 2.612e-05
                                                    13.685 < 2e-16 ***
## dti
## `annual_inc:dti`
                            -1.313e-09 1.877e-10 -6.992 2.75e-12 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.01706 on 34020 degrees of freedom
## Multiple R-squared: 0.7785, Adjusted R-squared: 0.7784
## F-statistic: 1.328e+04 on 9 and 34020 DF, p-value: < 2.2e-16
The in-sample R^2 of the AIC function is .988.
  b) See summaries above
  c)
rmseAIC <- mean((stepForwardAIC$residuals)^2)</pre>
rmseBIC <- mean((stepForwardBIC$residuals)^2)</pre>
cat("RMSE AIC: ", rmseAIC, "RMSE BIC: ", rmseBIC)
## RMSE AIC: 0.000284109 RMSE BIC: 0.0002909594
  d)
predAIC <- predict(stepForwardAIC,interactTest, interval = "none")</pre>
predBIC <- predict(stepForwardBIC,interactTest, interval = "none")</pre>
rmseAIC <- mean((test$int_rate - predAIC)^2)</pre>
rmseBIC <- mean((test$int_rate - predBIC)^2)</pre>
cat("RMSE AIC: ", rmseAIC, "RMSE BIC: ", rmseBIC)
```

RMSE AIC: 0.000361971 RMSE BIC: 0.0003723201

```
4. a)
```

```
biggest = lm(trainMeaningFull$int_rate ~ ., interactDF)
smallest = as.formula(lm(trainMeaningFull$int_rate ~ 1, interactDF))
stepBackwardAIC <- step(biggest, scope = smallest, k = 2, direction = "backward", trace = F)
stepBackwardBIC <- step(biggest, scope = smallest, k = log(length(trainMeaningFull$int_rate)), direction
summary(stepBackwardAIC)
##
## Call:
## lm(formula = trainMeaningFull$int_rate ~ funded_amnt + term_m +
##
      installment + annual_inc + dti + `funded_amnt:term_m` + `funded_amnt:installment` +
       `funded_amnt:annual_inc` + `funded_amnt:dti` + `term_m:installment` +
##
       `term_m:annual_inc` + `term_m:dti` + `installment:annual_inc` +
##
       `installment:dti` + `annual_inc:dti`, data = interactDF)
##
##
## Residuals:
##
        Min
                   1Q
                         Median
## -0.105406 -0.008977 0.000194 0.008061 0.121621
##
## Coefficients:
##
                              Estimate Std. Error t value Pr(>|t|)
                             2.434e-02 1.724e-03
                                                   14.119
                                                           <2e-16 ***
## (Intercept)
## funded_amnt
                            -9.958e-05 6.345e-07 -156.945
                                                           <2e-16 ***
                                                  47.274
## term_m
                             2.015e-03 4.262e-05
                                                           <2e-16 ***
                             2.640e-03 2.017e-05 130.867
## installment
                                                            <2e-16 ***
## annual_inc
                             2.621e-07 1.151e-08 22.765
                                                           <2e-16 ***
## dti
                             1.312e-03 9.689e-05 13.541 <2e-16 ***
                             1.185e-06 1.103e-08 107.461 <2e-16 ***
## `funded_amnt:term_m`
## `funded_amnt:installment` -2.400e-09 5.531e-11 -43.392
                                                           <2e-16 ***
## `funded_amnt:annual_inc` 3.629e-11 1.321e-12 27.463
                                                           <2e-16 ***
## `funded_amnt:dti`
                            1.407e-07 1.225e-08
                                                  11.490
                                                           <2e-16 ***
                            -2.323e-05 3.694e-07 -62.886
                                                           <2e-16 ***
## `term m:installment`
                            -7.165e-09 2.960e-10 -24.208
## `term m:annual inc`
                                                           <2e-16 ***
## `term m:dti`
                            -2.558e-05 2.352e-06 -10.877
                                                            <2e-16 ***
## `installment:annual_inc` -1.129e-09 4.182e-11 -26.994
                                                            <2e-16 ***
## `installment:dti`
                            -5.404e-06 4.009e-07 -13.479
                                                             <2e-16 ***
## `annual_inc:dti`
                            -4.248e-10 2.341e-10
                                                  -1.815
                                                           0.0695 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.01686 on 34014 degrees of freedom
## Multiple R-squared: 0.7837, Adjusted R-squared: 0.7836
## F-statistic: 8216 on 15 and 34014 DF, p-value: < 2.2e-16
summary(stepBackwardBIC)
##
## Call:
## lm(formula = trainMeaningFull$int_rate ~ funded_amnt + term_m +
      installment + annual_inc + dti + `funded_amnt:term_m` + `funded_amnt:installment` +
##
       `funded_amnt:annual_inc` + `funded_amnt:dti` + `term_m:installment` +
##
       `term_m:annual_inc` + `term_m:dti` + `installment:annual_inc` +
##
```

```
##
       `installment:dti`, data = interactDF)
##
## Residuals:
                          Median
                                         3Q
##
         Min
                                                  Max
##
  -0.105611 -0.008993  0.000194  0.008068  0.123316
##
## Coefficients:
##
                               Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                              2.414e-02 1.720e-03
                                                      14.03
                                                               <2e-16 ***
## funded_amnt
                             -9.961e-05 6.343e-07 -157.04
                                                               <2e-16 ***
## term_m
                              2.020e-03 4.252e-05
                                                      47.51
                                                               <2e-16 ***
                              2.642e-03 2.016e-05
                                                               <2e-16 ***
## installment
                                                    131.01
## annual_inc
                              2.635e-07 1.149e-08
                                                      22.94
                                                              <2e-16 ***
                                                              <2e-16 ***
## dti
                              1.300e-03 9.667e-05
                                                      13.45
                              1.185e-06 1.103e-08 107.46
                                                               <2e-16 ***
## `funded_amnt:term_m`
## `funded_amnt:installment` -2.392e-09 5.514e-11
                                                     -43.38
                                                               <2e-16 ***
## `funded_amnt:annual_inc`
                              3.652e-11 1.315e-12
                                                      27.77
                                                               <2e-16 ***
## `funded amnt:dti`
                              1.411e-07 1.224e-08
                                                      11.52
                                                               <2e-16 ***
                                                     -62.90
## `term_m:installment`
                             -2.323e-05 3.694e-07
                                                               <2e-16 ***
## `term m:annual inc`
                             -7.221e-09 2.944e-10
                                                     -24.53
                                                               <2e-16 ***
## `term_m:dti`
                             -2.568e-05 2.352e-06
                                                     -10.92
                                                               <2e-16 ***
## `installment:annual inc`
                            -1.140e-09 4.140e-11
                                                     -27.53
                                                               <2e-16 ***
## `installment:dti`
                             -5.448e-06 4.002e-07 -13.61
                                                               <2e-16 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.01686 on 34015 degrees of freedom
## Multiple R-squared: 0.7837, Adjusted R-squared: 0.7836
## F-statistic: 8802 on 14 and 34015 DF, p-value: < 2.2e-16
The R^2 term for the best fitting model in the backward model is .988.
  b)
See summaries above.
  c)
rmseBackAIC <- mean((stepBackwardAIC$residuals)^2)</pre>
rmseBackBIC <- mean((stepBackwardBIC$residuals)^2)</pre>
cat("RMSE AIC: ", rmseBackAIC, "RMSE BIC: ", rmseBackBIC)
## RMSE AIC: 0.000284109 RMSE BIC: 0.0002841365
  d)
predBackAIC <- predict(stepBackwardAIC,interactTest, interval = "none")</pre>
predBackBIC <- predict(stepBackwardBIC,interactTest, interval = "none")</pre>
rmseBackAIC <- mean((test$int_rate - predBackAIC)^2)</pre>
rmseBackBIC <- mean((test$int_rate - predBackBIC)^2)</pre>
cat("RMSE AIC: ", rmseBackAIC, "RMSE BIC: ", rmseBackBIC)
```

```
## RMSE AIC: 0.000361971 RMSE BIC: 0.0003618948
5.
  a)
model=as.formula(paste("~", paste(names(interactDF)[-1], collapse= "+")))
x=model.matrix(model,interactDF);
lassoFit <- glmnet(x,trainMeaningFull$int_rate)</pre>
coef(lassoFit, s=.0001)
## 17 x 1 sparse Matrix of class "dgCMatrix"
##
## (Intercept)
                             3.844155e-02
## (Intercept)
## funded amnt
                            -3.108960e-05
                            1.660064e-03
## term_m
## installment
                             4.840688e-04
## annual_inc
                            -6.508191e-09
                             2.400461e-04
## dti
## funded_amnt:term_m
                            1.361600e-08
## funded_amnt:installment -1.486136e-09
## funded_amnt:annual_inc .
## funded_amnt:dti
                           -1.275527e-08
## term_m:installment
                            1.390937e-05
## term_m:annual_inc
## term m:dti
## installment:annual inc
## installment:dti
## annual inc:dti
                            -3.621717e-10
There is no \mathbb{R}^2 for the lasso model.
  b)
insamplePred <- predict(lassoFit, newx = as.matrix(interactDF), s=.0001)</pre>
lassoRMSE <- mean((insamplePred - trainMeaningFull$int_rate)^2)</pre>
cat("RMSE Lasso: ", lassoRMSE)
## RMSE Lasso: 0.0003869228
  c)
predLasso <- predict(lassoFit,newx = as.matrix(interactTest), s=.0001)</pre>
lassoRMSE <- mean((test$int_rate - predLasso)^2)</pre>
cat("RMSE Lasso: ", lassoRMSE)
6.
```

a)

```
lassoCVFit <- cv.glmnet(x,trainMeaningFull$int_rate, nfolds = 10)</pre>
lassoCVFit$lambda.min
## [1] 2.106168e-05
  b)
insampleCVPred <- predict(lassoCVFit, newx = as.matrix(interactDF), s="lambda.min")</pre>
lassoCVRMSE <- mean((insampleCVPred - trainMeaningFull$int_rate)^2)</pre>
cat("RMSE CVLasso: ", lassoCVRMSE)
## RMSE CVLasso: 0.0003080186
  c)
predCVLasso <- predict(lassoCVFit,newx = as.matrix(interactTest[-1]), s="lambda.min")</pre>
lassoCVRMSE <- mean((test$int_rate - predCVLasso)^2)</pre>
cat("RMSE CVLasso: ", lassoCVRMSE)
Logit Homework
trades <- read.csv("detailed_trades_est.csv")</pre>
  1)
logit <- glm(PCHANGE~LASK+LBID+RETURN+SIGN_VOL, family=binomial, data=trades)</pre>
AIC(logit)
## [1] 3754.378
BIC(logit)
## [1] 3784.334
  2)
interactions <- subset(trades,select = -c(PCHANGE,PCHANGEO))</pre>
interactions <- as.data.frame(model.matrix(~(.)^2, interactions))</pre>
  3)
trades.pca <- prcomp(interactions)</pre>
myModel <- lm(trades$PCHANGE~trades.pca$x[,1]+trades.pca$x[,2]+trades.pca$x[,3])</pre>
```

4)

```
error <- trades$PCHANGE-(as.numeric(myModel$fitted.values > .5))
mean(abs(error))
```

[1] 0.3431472