```
1 # load required packages
2 import numpy as np
3 import pandas as pd
4 pd.set option('display.max columns',100)
5 import matplotlib.pyplot as plt
6 %matplotlib inline
7 import seaborn as sns
8 sns.set style('darkgrid')
9 import tensorflow as tf
10 from sklearn.metrics import confusion_matrix
11 from sklearn.preprocessing import LabelBinarizer
12 from sklearn.utils import class weight
13 from sklearn metrics import accuracy_score
1 # load data
2 train df = pd.read csv('/content/drive/MyDrive/drugsComTrain raw.tsv', sep = '
3 test df = pd.read csv('/content/drive/MyDrive/drugsComTest raw.tsv', sep = '\t
1 # remove na values from DataFrame
2 train df = train df.dropna()
3 test df = test df.dropna()
1 # exploration
2 def explore(df):
      print("Shape: ", df.shape, "/n")
      print(df.dtypes, "/n")
      print(df.head(), "/n")
      # numeric data statistics
      print(df.describe())
      df.hist(figsize=(14,14), xrot=45)
      plt.show()
      # categorical data statistics
      print(df.describe(include = 'object'))
      for column in df.select_dtypes(include = 'object'):
          if df[column].nunique() < 10:</pre>
              sns.countplot(y = column, data = df)
               plt.show()
               plt.savefig('{}_dist.png'.format(column))
19 explore(train_df)
```

```
(160398, 7) /n
Shape:
Unnamed: 0
                  int64
drugName
                 object
condition
                 object
review
                 object
rating
                float64
date
                 object
usefulCount
                  int64
dtype: object /n
   Unnamed: 0
                                  drugName
                                                                  condition
0
       206461
                                 Valsartan
                                            Left Ventricular Dysfunction
1
        95260
                                Guanfacine
2
        92703
                                    Lybrel
                                                             Birth Control
3
                                Ortho Evra
       138000
                                                             Birth Control
                Buprenorphine / naloxone
4
        35696
                                                         Opiate Dependence
                                                  review
                                                           rating
   "It has no side effect, I take it in combinati...
0
                                                               9.0
1
   "My son is halfway through his fourth week of ...
                                                               8.0
   "I used to take another oral contraceptive, wh...
2
                                                               5.0
3
   "This is my first time using any form of birth...
                                                               8.0
   "Suboxone has completely turned my life around...
                                                               9.0
                 date
                        usefulCount
        May 20, 2012
0
                                  27
1
      April 27, 2010
                                 192
2
   December 14, 2009
                                  17
    November 3, 2015
3
                                  10
   November 27, 2016
                                  37
                                rating
           Unnamed: 0
                                          usefulCount
       160398.000000
                                        160398.000000
count
                        160398.000000
       115957.147309
                             6.995923
                                             28.097613
mean
        67015.899492
                             3.272303
                                             36.457876
std
             2.000000
                             1.000000
                                              0.000000
min
25%
        58065.250000
                             5.000000
                                              6.000000
50%
       115845.500000
                             8.000000
                                             16.000000
75%
       173826.750000
                            10.000000
                                             36.000000
max
       232291.000000
                            10.000000
                                          1291.000000
                  Unnamed: 0
                                                                 rating
 16000
                                              50000
 14000
                                              40000
 12000
 10000
                                              30000
  8000
                                              20000
```

6000

	drugName	condition	review	date
count	160398	160398	160398	160398
unique	3431	884	112105	3579
top	Levonorgestrel	Birth Control	"Good"	March 1, 2016
freq	3631	28788	33	146

```
1 # obtain counts for conditions
2 condition_counts = train_df['condition'].value_counts()
3 print(condition_counts[condition_counts > 1000])
```

Birth Control	28788
Depression	9069
Pain	6145
Anxiety	5904
Acne	5588
Bipolar Disorde	4224
Insomnia	3673
Weight Loss	3609
Obesity	3568
ADHD	3383
Diabetes, Type 2	2554
Emergency Contraception	2463
High Blood Pressure	2321
Vaginal Yeast Infection	2274
Abnormal Uterine Bleeding	2096
Bowel Preparation	1859
ibromyalgia	1791
Smoking Cessation	1780
Migraine	1694
Anxiety and Stress	1663
Major Depressive Disorde	1607
Constipation	1595
Panic Disorde	1463
Chronic Pain	1455
Migraine Prevention	1413
Urinary Tract Infection	1316
Muscle Spasm	1244
Osteoarthritis	1239
Generalized Anxiety Disorde	1164
Erectile Dysfunction	1086
Opiate Dependence	1079
Irritable Bowel Syndrome	1014
Name: condition, dtype: int64	

```
1 # visualiztions
2 fig, ax = plt.subplots(1, 1)
3 ax = sns.countplot(x = 'condition', data = train_df)
4 ax.set_title('Distribution of Conditions')
5 ax.set_xticklabels(ax.get_xticks(), rotation = 45)
6 fig.show()
7 fig.savefig('condition_dist.png')
```



```
1 # set data and labels
2 x_train = train_df['review']
3 x_test = test_df['review']
4 y_train = train_df['condition']
5 y_test = test_df['condition']

1 # labels to one hot endoced
2 def prepare_targets(y_train, y_test):
3    one_hot = LabelBinarizer()
4    one_hot.fit(y_train)
5    y_train = np.argmax(one_hot.transform(y_train), axis = 1)
6    y_test_one_hot = one_hot.transform(y_test)
7    y_test = np.argmax(one_hot.transform(y_test), axis = 1)
8    y_test_rev = one_hot.inverse_transform(y_test_one_hot)
9    return y_train, y_test, y_test_one_hot, y_test_rev
10
11 y_train, y_test, y_test_one_hot, y_test_rev = prepare_targets(y_train, y_test)
```

```
1 # create weights for classes
 2 class weights = class weight.compute class weight('balanced', np.unique(y trai
4 weights = dict(enumerate(class_weights))
5 print(weights)
   72276825302986, 1: 1.6418326574427482, 2: 0.6158341535433071, 3: 0.58287284044
1 # baseline model; all predictions birth control
2 count_bc = condition_counts['Birth Control']
 3 base_acc = count_bc/len(y_train)
4 print(base_acc)
    0.26142152722913886
1 # vectorize text
 2 \text{ vocab\_size} = 1500
 3 \text{ review len max} = 200
4 encoder = tf.keras.layers.experimental.preprocessing.TextVectorization(
      max_tokens = vocab_size,
      output_sequence_length = review_len_max)
8 # develop vocabulary
9 encoder.adapt(x_train.values)
11 # vectorize text
12 x train = encoder(x train)
13 x test = encoder(x test)
```

```
1 print('Training input shape: ', x_train.shape)
2 print(len(x_train))
3 print(len(x_train[0]))
4 print(x_train[0].shape)
5 print('Test input shape: ', x_test.shape)
6 print(len(x_test))
7 print(len(x_test[0]))
8 print(x_test[0].shape)
   Training input shape: (110121, 200)
   110121
   200
   (200,)
   Test input shape: (36827, 200)
   36827
   200
   (200,)
1 print(y_train.shape)
   (110121,)
```

```
1 # classifiying with tf.keras RNN
2 model = tf.keras.models.Sequential([
     tf.keras.layers.Embedding(input dim = vocab size + 1, output dim = 16),
     tf.keras.layers.Bidirectional(tf.keras.layers.LSTM(units = 16, dropout = 0
     tf.keras.layers.Dense(32, activation = 'softmax')
6 1
7)
9 # compile model
10 model.compile(loss = tf.keras.losses.SparseCategoricalCrossentropy(),
             optimizer = 'Adam',
             metrics = ['acc'])
14 model.summary()
   Model: "sequential"
   Layer (type)
                            Output Shape
                                                  Param #
   embedding (Embedding)
                            (None, None, 16)
                                                  24016
   bidirectional (Bidirectional (None, 32)
                                                 4224
   dense (Dense)
                            (None, 32)
                                                  1056
   Total params: 29,296
   Trainable params: 29,296
   Non-trainable params: 0
1 # test model
2 history = model.fit(x = x_train, y = y_train,
        epochs = 50,
        batch_size = 50,
        validation split = 0.2,
        class_weight = weights,
   Epoch 22/50
                        1762/1762 [=======
   Epoch 23/50
   1762/1762 [====
                              =======] - 35s 20ms/step - loss: 1.2107 - a
   Epoch 24/50
   Epoch 25/50
                                     -1 _ 21c 17mc/c+an _ locc: 1 2005 _ a
```

I/UZ/I/UZ [] - JI3	1/1113/3(CP - 1033: 1:2003 - a
Epoch 26/50	
1762/1762 [=========] - 31s	18ms/step - loss: 1.1817 - a
Epoch 27/50	
1762/1762 [=========] - 32s	18ms/step - loss: 1.1740 - a
Epoch 28/50	
1762/1762 [==========] - 33s	19ms/step - loss: 1.1762 - a
Epoch 29/50	
1762/1762 [==========] - 32s	18ms/step - loss: 1.1684 - a
Epoch 30/50	
1762/1762 [==========] - 34s	19ms/step - loss: 1.1671 - a
Epoch 31/50	
1762/1762 [==========] - 34s	19ms/step - loss: 1.1591 - a
Epoch 32/50	
1762/1762 [==========] - 35s	20ms/step - loss: 1.1555 - a
Epoch 33/50	•
1762/1762 [============] - 35s	20ms/step - loss: 1.1334 - a
Epoch 34/50	
1762/1762 [===========] - 31s	18ms/step - loss: 1.1413 - a
Epoch 35/50	
1762/1762 [===========] - 31s	18ms/step - loss: 1.1393 - a
Epoch 36/50	
1762/1762 [==========] - 35s	20ms/step - loss: 1.1348 - a
Epoch 37/50	
1762/1762 [=========] - 32s	18ms/step - loss: 1.1417 - a
Epoch 38/50	
1762/1762 [=========] - 35s	20ms/step - loss: 1.1259 - a
Epoch 39/50	
1762/1762 [=========] - 33s	18ms/step - loss: 1.1276 - a
Epoch 40/50	
1762/1762 [=========] - 32s	18ms/step - loss: 1.1097 - a
Epoch 41/50	
1762/1762 [==========] - 31s	18ms/step - loss: 1.1100 - a
Epoch 42/50	
1762/1762 [=========] - 30s	17ms/step - loss: 1.1121 - a
Epoch 43/50	
1762/1762 [=========] - 33s	19ms/step - loss: 1.1032 - a
Epoch 44/50	
1762/1762 [==========] - 34s	19ms/step - loss: 1.0905 - a
Epoch 45/50	
1762/1762 [=========] - 33s	19ms/step - loss: 1.0928 - a
Epoch 46/50	
1762/1762 [=========] - 31s	18ms/step - loss: 1.0922 - a
Epoch 47/50	
1762/1762 [==========] - 31s	18ms/step - loss: 1.0919 - a
Epoch 48/50	
1762/1762 [==========] - 34s	19ms/step - loss: 1.0893 - a
Epoch 49/50	
1762/1762 [==========] - 31s	18ms/step - loss: 1.0879 - a
Epoch 50/50	
1762/1762 [==========] - 31s	17ms/step - loss: 1.0783 - a

```
1 # save model
2 model.save('drug_review_rnn_50.h5')
1 # model results
 2 acc = history.history['acc']
 3 val_acc = history.history['val_acc']
4 loss = history.history['loss']
5 val loss = history.history['val loss']
6 \text{ epochs} = \text{range}(1, \text{len(acc)} + 1)
8 fig, (ax0, ax1) = plt.subplots(2, 1, figsize = (15,15))
9 fig.suptitle('Model Results')
10 ax0.plot(epochs, acc, 'bo', label = 'Training Accuracy')
11 ax0.plot(epochs, val_acc, 'b', label = 'Validation Accuracy')
12 ax0.set title('Training and Validation Accuracy')
13 ax0.legend()
15 ax1.plot(epochs, loss, 'bo', label = 'Training Loss')
16 ax1.plot(epochs, val_loss, 'b', label = 'Validation Loss')
17 ax1.set_title('Training and Validation Loss')
18 ax1.legend()
19 fig.tight_layout(rect=[0, 0.03, 1, 0.9])
21 fig.savefig('model_results.png')
```

Model Results

- 1 # model performance
- 2 predictions = model.predict(x_test)

```
1 print(predictions[0])
2 print(y test[0])
3 print(v test one hot[0])
4 print(y_test_rev[0])
    [4.1943714e-03 5.3141492e-05 1.1367062e-04 9.5583566e-02 2.2228974e-01
     1.9638129e-02 1.8428185e-03 7.2395586e-08 2.5014702e-05 5.0075510e-06
     2.4951330e-01 7.3006345e-06 3.9542447e-06 1.4613361e-06 1.5919979e-01
     1.8198247e-04 1.3924406e-03 4.0000530e-05 2.0378804e-01 6.9832919e-07
     7.5372423e-05 1.2797008e-06 2.0408104e-04 6.0204049e-05 4.9668624e-06
     5.3810249e-06 4.0609650e-02 6.3067378e-04 3.0860517e-06 4.8659804e-06
     1.6989521e-04 3.5602206e-04]
    10
    Depression
1 # build confusion matrix
2 def plot cm(y true, y pred, figsize = (30, 30)):
      cm = confusion_matrix(y_true, y_pred, labels = np.unique(y_true))
      cm_sum = np.sum(cm, axis = 1, keepdims = True)
      cm_perc = cm / cm_sum.astype(float) * 100
      annot = np.empty like(cm).astype(str)
      nrows, ncols = cm.shape
      for i in range(nrows):
          for j in range(ncols):
              c = cm[i, j]
              p = cm_perc[i, j]
              if i == j:
                 s = cm sum[i]
                 annot[i, j] = \frac{1}{8} \frac{1}{8} \ln \frac{d}{8}  (p, c, s)
              elif c == 0:
                 annot[i, j] = ''
              else:
                 annot[i, j] = \frac{1}{8} \ln \frac{1}{8} \ln \frac{1}{8}
      cm = pd.DataFrame(cm, index = np.unique(y_true), columns = np.unique(y_true)
      cm.index.name = 'Actual'
      cm.columns.name = 'Predicted'
      fig, ax = plt.subplots(figsize = figsize)
      sns.heatmap(cm, cmap= "YlGnBu", annot = annot, fmt = '', ax = ax)
      fig.savefig('confusion matrix.png')
26 plot_cm(y_test_one_hot.argmax(axis = 1), predictions.argmax(axis = 1))
```


✓ 0s completed at 11:43 AM