Московский Физико-Технический Институт Кафедра высшей математики

ПИСЬМЕННЫЙ ГОС ЭКЗАМЕН КОНСУЛЬТАЦИЯ

Составители:

Голубев М. О. Скубачевский А. А. Глухов И. В. Останин П. А. Глухов И. В. Днестрян А. И. Математический анализ
Математический анализ 2
Аналитическая геометрия
Линейная алгебра
Дифференциальные уравнения
ТФКП

Набор и вёрстка — Д. Хромов.

Долгопрудный, 2023 г.

Содержание

Математический анализ	2
Условия	 2
Ответы	
Решения	 4
Математический анализ 2	g
Условия	
Ответы	 11
Решения	 13
Аналитическая геометрия	26
Условия	 26
Ответ	
Решения	
Линейная алгебра	33
Условия	 33
Ответы	
Решения	
Дифференциальные уравнения	41
Условия	 41
Ответы	
Решения	
Теория функций комплексного переменного	51
Условия	51
Ответы	
Решения	

Математический анализ

Условия

- **1.** Пусть $a_1=1,\ a_{n+1}=\frac{3a_n}{1+a_n}.$ Докажите, что последовательность $\{a_n\}$ сходится, и найдите ее предел.
- **2.1.** У ограниченной последовательности a_n есть ровно 7 частичных пределов, среди которых нет нулевых, а у ограниченной последовательности b_n ровно 4 частичных предела, среди которых нет нулевых. Верно ли, что у последовательности $a_n + b_n$ не менее 3 частичных пределов?
- **2.2.** Функция $f:[0,+\infty)\to\mathbb{R}$ непрерывна и ограничена на $[0,+\infty)$. Известно, что $\forall\,x\in[0,+\infty)$ $f(x)\neq0$.
 - 1. Существует ли предел $\lim_{x\to +\infty} f(x)$?
 - 2. Может ли функция f(x) принимать значения разных знаков?
 - 3. Достигает ли функция f(x) максимума на $[0, +\infty)$?
- 3. Вычислите предел

$$\lim_{x \to 0} \frac{(1+x^2)^{5+\frac{1}{x}} - \sqrt{1+2x}}{\operatorname{tg}(x + \cos x - 1) - x}.$$

4. Вычислите предел

$$\lim_{x \to 0} \left(\frac{\ln^2(1+x) + \arcsin(2x - x^2)}{\sin x + \operatorname{tg} x} \right)^{\frac{x}{\sin 2x - 2 \arctan x}}.$$

5. Найдите асимптоты, точки локального экстремума и перегиба и постройте график функции

$$y = -3x + 1 - \frac{3}{x - 4}.$$

6. Вычислите интеграл

$$\int \frac{2x^3 + 5x^2 - 1}{x^3 + x^2} dx.$$

7. Вычислите интеграл

$$\int \frac{x \arctan x}{\sqrt{1+x^2}} dx.$$

8. Найдите первый и второй дифференциалы в точке P(1,1) функции

$$w = \ln^2(3 - x^3 - y^4).$$

Разложите функцию w по формуле Тейлора в окрестности точки P до $o\left((x-1)^2+(y-1)^2\right)$.

9. Исследуйте на сходимость интеграл

$$\int_{0}^{+\infty} \frac{\arctan\left(\frac{3x}{(2+x)^4}\right)}{x^{2\alpha} \ln^3(3+x)} dx.$$

10. Исследуйте на сходимость и абсолютную сходимость интеграл

$$\int\limits_{0}^{1} \frac{\ln^{\alpha}(1+x^2)\cos\frac{1}{x}}{x^4} dx.$$

- **11.** Исследуйте функциональный ряд $\sum_{n=1}^{\infty} \arctan\left(\frac{nx^2}{n^3+x^3}\right)$ на сходимость и равномерную сходимость на множествах $E_1=(0,1)$ и $E_2=(1,+\infty)$.
- 12. Вычислите интеграл

$$\int_{0}^{2\pi} \left(\sum_{n=1}^{\infty} \frac{\sin^2 nx}{2^n} \right) dx.$$

Ответ обоснуйте.

13. Разложите в ряд Маклорена функцию $f(x) = \int\limits_0^{2x} \ln(2+v^2) \, dv$ и найдите радиус сходимости полученного ряда.

Ответы

- $1. \lim_{k \to \infty} a_k = 2.$
- **2.1.** Неверно.
- 2.2.
 - 1. Не обязательно.
 - 2. Нет.
 - 3. Не обязательно.
- 3. -12.
- 4. $e^{\frac{1}{24}}$.
- **5.** x=4 вертикальная осимптота, t=-3x+1 наклонная асимптота. x=3 точка локального минимума, x=5 точка локального максимума.

- **6.** $2x + \ln|x| + \frac{1}{x} + 2\ln|x+1| + \text{const}$.
- 7. $\arctan x\sqrt{1+x^2} \ln (x + \sqrt{1+x^2}) + \text{const.}$
- 8. $w = 9(x-1)^2 + 24(x-1)(y-1) + 16(y-1)^2 + o((x-1)^2 + (y-1)^2)$.
- **9.** Интеграл сходится тогда и только тогда, когда $\alpha \in [-1,1)$.
- **10.** Интеграл сходится абсолютно при $\alpha > 3/2$, сходится условно при $\alpha \in (1,3/2]$ и расходится при $\alpha \leqslant 1$.
- **11.** Ряд сходится равномерно на E_1 и поточечно на E_2 .
- 12. π
- **13.** $f(x) = (2 \ln 2)x + 2 \sum_{k=0}^{\infty} (-1)^{k-1} \frac{2^{2k} x^{2k+1}}{k(2k+1)}, \quad R_{\text{cx}} = \frac{1}{2}.$

Решения

1. $a_1=1>0,$ если $a_k>0,$ то $a_{k+1}>0,$ значит, по индукции $a_k>0$ $\forall k.$

 $a_2=3/2,\,a_3=9/5,\,$ поэтому можно предположить, что последовательность возрастающая. Предположим, что $a_k < a_{k+1},\,$ тогда

$$a_k < a_{k+1} \iff a_k(1+a_{k+1}) < a_{k+1}(1+a_k) \iff \frac{3a_k}{1+a_k} < \frac{3a_{k+1}}{1+a_{k+1}}.$$

Значит, по индукции $a_k < a_{k+1} \ \forall k$.

Так как $a_k > 0$,

$$a_{k+1} = 3 - \frac{3}{1 + a_k} < 3.$$

Следовательно, последовательность a_k монотонна и ограничена, а значит, по теореме Вейерштрасса у нее есть предел $\lim_{k\to\infty} a_k = A \in \mathbb{R}$.

Перейдем к пределу в формуле для a_k :

$$A = \frac{3A}{1+A}.$$

Так как последовательность возрастает и $a_1=1,\ A\neq 0.$ Значит, A=2.

2.1. Рассмотрим последовательности:

$$a_n: 1, 2, 3, 4, 5, 6, 7, 1, 2, 3, 4, 5 \dots,$$

 $b_n: 4, 3, 2, 1, 4, 3, 2, 4, 3, 2, 1, 4 \dots,$

для которых $x_{n+7} = x_n \ \forall n \in \mathbb{N}$. Тогда

$$a_n + b_n : 5, 5, 5, 5, 9, 9, 9, 5, 5, 5, 5, 9, \dots$$

У этой последовательности 2 частичных предела, поэтому утверждение неверно.

2.2.

- 1. Не обязательно, например, функция $f(x) = \sin x + 2$ удовлетворяет условию, но не имеет предела на бесконечности.
- 2. Предположим, что $\exists x_1: f(x_1) < 0, \exists x_2: f(x_2) > 0$. Тогда по теореме о промежуточных значениях $\exists \xi \in (x_1, x_2): f(\xi) = 0$, что противоречит условию. Значит, f(x) не может принимать значения разных знаков.
- 3. Не обязательно, например, функция $f(x) = 2 e^{-x}$ удовлетворяет условию, но не достигает максимума.
- **3.** Разложим знаменатель до $o(x^2)$:

$$\cos x = 1 - \frac{x^2}{2} + o(x^2), \quad \operatorname{tg} y = y + o(y^2), \quad \Longrightarrow \quad \operatorname{tg}(x + \cos x - 1) - x = \operatorname{tg}\left(x - \frac{x^2}{2} + o(x^2)\right) - x = -\frac{x^2}{2} + o(x^2).$$

Разложение корня:

$$\sqrt{1+2x} = 1 + x - \frac{x^2}{2} + o(x^2).$$

Разложение первого слагаемого в числителе:

$$(1+x^2)^{5+\frac{1}{x}} = \exp\left(\left(5+\frac{1}{x}\right)\ln(1+x^2)\right) = \exp\left(\left(5+\frac{1}{x}\right)(x^2+o(x^3))\right) = \exp\left(x+5x^2+o(x^2)\right) = 1 + x + 5x^2 + \frac{x^2}{2} + o(x^2) = 1 + x + \frac{11}{2}x^2 + o(x^2).$$

Тогда дробь принимает вид

$$\frac{1+x+\frac{11}{2}x^2-\left(1+x-\frac{x^2}{2}\right)+o(x^2)}{-\frac{x^2}{2}+o(x^2)} = \frac{6x^2+o(x^2)}{-\frac{x^2}{2}+o(x^2)} = \frac{6+o(1)}{-\frac{1}{2}+o(1)},$$

следовательно, предел равен (-12).

4. Обозначим функцию в степени через g(x), а основание через f(x). Разложим знаменатель g(x):

$$sh 2x - 2 \arctan x = 2x + \frac{(2x)^3}{6} - 2\left(x - \frac{x^3}{3}\right) + o(x^3) = 2x^3 + o(x^3).$$

Тогда

$$g(x) = \frac{1}{2x^2 + o(x^2)}.$$

Разложим знаменатель f(x):

$$\sin x + \operatorname{tg} x = x - \frac{x^3}{6} + x + \frac{x^3}{3} + o(x^3) = 2x + \frac{x^3}{6} + o(x^3).$$

Числитель f(x):

$$\ln^2(1+x) = \left(x - \frac{x^2}{2} + o(x^3)\right)^2 = x^2 - x^3 + o(x^3),$$

$$\arcsin(2x - x^2) = 2x - x^2 + \frac{1}{6}(8x^3) + o(x^3) = 2x - x^2 + \frac{4}{3}x^3 + o(x^3).$$

Тогда

$$f(x) = \frac{1 + \frac{1}{6}x^2 + o(x^2)}{1 + \frac{1}{12}x^2 + o(x^2)} = \left(1 + \frac{1}{6}x^2 + o(x^2)\right)\left(1 - \frac{1}{12}x^2 + o(x^2)\right) = 1 + \frac{1}{12}x^2 + o(x^2), \quad \ln f(x) = \frac{1}{12}x^2 + o(x^2).$$

Искомый предел равен

$$\lim_{x \to 0} f(x)^{g(x)} = \lim_{x \to 0} e^{g(x)\ln(f(x))} = \lim_{x \to 0} \exp\left(\frac{1}{2x^2 + o(x^2)} \left(\frac{1}{12}x^2 + o(x^2)\right)\right) = e^{\frac{1}{24}}.$$

5. Функция y(x) непрерывна во всех точках, кроме x=4, где она стремится к бесконечности, значит, x=4— вертикальная асимптота.

Так как $\lim_{x \to \infty} (y(x) - (-3x + 1)) = 0, y = -3x + 1$ — наклонная асимптота.

$$y' = -3 + \frac{3}{(x-4)^2} = 3\frac{(5-x)(x-3)}{(x-4)^2}.$$

Видно, что $y'(x)\geqslant 0$ при $x\in [3;4)\cup (4;5],\ y'(x)\leqslant 0$ при $x\in (-\infty;3]\cup [5,+\infty),\ y'(x)=0$ в точках x=3,x=5. Значит, функция возрастает на $[3;4)\cup (4;5]$ и убывает на $(-\infty;3]\cup [5,+\infty),\ x=3$ — точка локального минимума, x=5 — точка локального максимума.

$$y''(x) = -\frac{6}{(x-4)^3}.$$

Видно, что y''(x)>0 при $x\in (-\infty,4)$, значит, на этом множестве функция выпукла вниз. y''(x)<0 при $x\in (4,+\infty)$, значит, на этом множестве функция выпукла вверх.

Если домножить уравнение на x^2 и подставить x=0, получим B=-1. Если домножить на x+1 и подставить x=-1, получим C=2. Подставим x=1 в обе части, получим A=1. Тогда

$$\int 2x^3 + 5x^2 - 1x^3 + x^2 dx = \int \left(2 + \frac{1}{x} - \frac{1}{x^2} + \frac{2}{x+1}\right) dx = 2x + \ln|x| + \frac{1}{x} + 2\ln|x+1| + \text{const.}$$

7. Сделаем замену

6. Выделим целую часть:

$$y = \operatorname{arctg} x$$
, \Longrightarrow $x = \operatorname{tg} y$, $1 + x^2 = \frac{1}{\cos^2 y}$, $dx = \frac{1}{\cos^2 y} dy$.

Тогда искомый интеграл принимает вид

$$I = \int \frac{y \operatorname{tg} y}{1/\cos y} dy = \int y \frac{\sin y}{\cos^2 y} dy = -\int y d\left(\frac{1}{\cos y}\right).$$

Интегрируем по частям:

$$I = \frac{y}{\cos y} - \int \frac{dy}{\cos y}.$$

Вспомним, что

$$\int \frac{dv}{\sin v} = \int \frac{d(v/2)}{\sin(v/2)\cos(v/2)} = \int \frac{d\operatorname{tg}(v/2)}{\operatorname{tg}(v/2)} = \ln\left|\operatorname{tg}\frac{v}{2}\right| + \operatorname{const}.$$

Тогда

$$\begin{split} I &= \frac{y}{\cos y} - \ln\left|\operatorname{tg}\left(\frac{\pi}{4} + \frac{y}{2}\right)\right| + \operatorname{const} = \operatorname{arctg} x\sqrt{1 + x^2} - \ln\left|\frac{1 + \operatorname{tg}(\operatorname{arctg}(x)/2)}{1 - \operatorname{tg}(\operatorname{arctg}(x)/2)}\right| + \operatorname{const} = \\ &= \operatorname{arctg} x\sqrt{1 + x^2} - \ln\left(x + \sqrt{1 + x^2}\right) + \operatorname{const}. \end{split}$$

8. Пользуясь тем, что df(x) = f'(x)dx, получаем

$$dw = 2\ln(3-x^3-y^4)d\ln(3-x^3-y^4) = \frac{2\ln(3-x^3-y^4)}{3-x^3-y^4}d(3-x^3-y^4) = \frac{2\ln(3-x^3-y^4)}{3-x^3-y^4}(-3x^2dx-4y^3dy).$$

В точке (1,1) получаем dw(1,1)=0. Найдем второй дифференциал в точке (1,1):

$$d^{2}w = d\left(\frac{2\ln(3-x^{3}-y^{4})}{3-x^{3}-y^{4}}(-3x^{2}dx-4y^{3}dy)\right)\Big|_{(x,y)=(1,1)} = \left(\frac{2(-3x^{2}dx-4y^{3}dy)}{3-x^{3}-y^{4}}d\ln\left(3-x^{3}-y^{4}\right)\right)\Big|_{(x,y)=(1,1)} = \frac{18dx^{2}+48dxdy+32dy^{2}}{3-x^{3}-y^{4}}d\ln\left(3-x^{3}-y^{4}\right)$$

По формуле Тейлора получаем

$$w = 9(x-1)^2 + 24(x-1)(y-1) + 16(y-1)^2 + o\left((x-1)^2 + (y-1)^2\right).$$

9. Обозначим подынтегральное выражение через f(x). Видно, что функция знакопостоянна. Интеграл имеет две особенности: в x=0 и в $x=\infty$. Разобъем на два интеграла так, чтобы в каждом была только одна особенность:

$$\int_{0}^{+\infty} f(x) \, dx = \int_{0}^{5} f(x) \, dx + \int_{5}^{+\infty} f(x) \, dx.$$

При $x \to 0$:

$$\ln^3(3+x) \stackrel{\text{cx.}}{\sim} 1$$
, $\arctan\left(\frac{3x}{(2+x)^4}\right) \stackrel{\text{cx.}}{\sim} x$, $\Longrightarrow f(x) \stackrel{\text{cx.}}{\sim} \frac{1}{x^{2\alpha-1}}$.

Интеграл

$$\int_{0}^{1} \frac{dx}{x^{\beta}}$$

сходится тогда и только тогда, когда $\beta < 1$, значит, первый интеграл сходится тогда и только тогда, когда $2\alpha - 1 < 1$, т. е. $\alpha < 1$. При $x \to \infty$:

$$\operatorname{arctg}\left(\frac{3x}{(2+x)^4}\right) \stackrel{\operatorname{cx.}}{\sim} \frac{1}{x^3}, \implies f(x) \stackrel{\operatorname{cx.}}{\sim} \frac{1}{x^{2\alpha+3} \ln^3 x}.$$

Интеграл

$$\int_{2}^{+\infty} \frac{dx}{x^{\alpha} \ln^{\beta} x}$$

сходится тогда и только тогда, когда $\alpha>1$ или $\alpha=1;\beta>1$. Значит, второй интеграл сходится, если $\alpha\geqslant 1$.

Таким образом, интеграл сходится тогда и только тогда, когда $\alpha \in [-1, 1)$.

10. Сделаем замену y = 1/x, тогда исследуемый интеграл равен

$$I = \int_{1}^{+\infty} y^2 \ln^{\alpha} \left(1 + \frac{1}{y^2} \right) \cos y \, dy.$$

Рассмотрим функции

$$g(y) = y^{2\alpha} \ln^{\alpha} \left(1 + \frac{1}{y^2} \right), \quad f(y) = \frac{\cos y}{y^{2\alpha - 2}}, \quad \Longrightarrow \quad I = \int_{1}^{+\infty} g(y) f(y) \, dy.$$

Функция f(y) непрерывна при любых α . У функции g(y) существует отличный от нуля предел на бесконечности:

$$\lim_{y \to +\inf} \left(y^2 \ln \left(1 + \frac{1}{y^2} \right) \right)^{\alpha} = 1 \neq 0.$$

Рассмотрим функцию

$$h(v) = \frac{\ln(1+v)}{v}, \quad \Longrightarrow \quad h'(v) = \frac{\frac{v}{1+v} - \ln(1+v)}{v^2}.$$

По теореме Лагранжа для функции h $\exists \, \xi \in [0,v] : h(v) = 1/(1+\xi)$. Тогда

$$\ln(1+v) = \frac{v}{1+\xi} > \frac{v}{1+v}, \quad \Longrightarrow \quad h'(v) < 0$$

Значит, h(v) монотонно убывает. Отсюда, с учетом того, что $v = 1/y^2$ — монотонная на интересующем нас интервале функция, получаем, что g(y) — монотонная функция

Тогда по следствию из признака Абеля сходимость І равносильна сходимости

$$\int_{1}^{+\infty} f(y) \, dy = \int_{1}^{+\infty} \frac{\cos y}{y^{2\alpha - 2}} \, dy.$$

Этот интеграл сходится абсолютно при $\alpha > 3/2$, сходится условно при $\alpha \in (1, 3/2]$ и расходится при $\alpha \leqslant 1$.

11. Фиксируем $x_0 \in E_1 \cup E_2$. Рассмотрим числовой ряд

$$\sum_{n=1}^{\infty} \arctan\left(\frac{nx_0^2}{n^3 + x_0^3}\right).$$

Члены этого ряда эквивалентны $\frac{1}{n^2}$. Ряд $\sum_{n=1}^{\infty} \frac{1}{n^2}$ сходится, значит, по признаку сравнения исходный ряд сходится на обоих множествах E_1, E_2 .

Заметим, что при $x \in E_1$

$$\left| \operatorname{arctg} \left(\frac{nx^2}{n^3 + x^3} \right) \right| \leqslant \left| \frac{nx^2}{n^3 + x^3} \right| \leqslant \frac{n}{n^3} \leqslant \frac{1}{n^2}.$$

Значит, по признаку Вейерштрасса исходный ряд сходится абсолютно и равномерно на E_1 .

Рассмотрим последовательность $x_n = n \in E_2$. Тогда

$$\operatorname{arctg}\left(\frac{n\cdot n^2}{n^3+n^3}\right) = \operatorname{arctg}\frac{1}{2} \nrightarrow 0.$$

Значит, не выполнено необходимое условие сходимости, и ряд не сходится равномерно на Е2.

12.

Теорема 1.1. Пусть задана последовательность непрерывных функций $f_n:[a,b] o \mathbb{R}$ и f
ightrightarrows f. Тогда

$$\lim_{n \to \infty} \left(\int_a^b f_n(x) \, dx \right) = \int_a^b \lim_{n \to \infty} f_n(x) \, dx.$$

Эта теорема распространяется на ряды:

Теорема 1.2. Пусть задана последовательность непрерывных функций $f_n:[a,b] \to \mathbb{R}$ и ряд $S = \sum_{n=1}^{\infty} f_n$ сходится равномерно. Тогда

$$\sum_{n=0}^{\infty} \left(\int_{a}^{b} f_n(x) dx \right) = \int_{a}^{b} \sum_{n=0}^{\infty} f_n(x) dx.$$

Заметим, что

$$\left|\frac{\sin^2 nx}{2^n}\right| \leqslant \frac{1}{2^n}.$$

Так как ряд $\sum_{n=1}^{\infty} \frac{1}{2^n}$ сходится, по признаку Вейерштрасса исходный ряд сходится равномерно. Тогда

$$I = \sum_{n=1}^{\infty} \int_{0}^{2\pi} \frac{\sin^{2} nx}{2^{n}} dx = \sum_{n=1}^{\infty} \frac{1}{2^{n}} \int_{0}^{2\pi} \frac{1 - \cos(2nx)}{2} dx = \sum_{n=1}^{\infty} \frac{\pi}{2^{n}} = \pi.$$

13. Так как подынтегральная функция непрерывная,

$$f'(x) = 2\ln(2+4x^2) = 2\ln 2 + 2\ln(1+2x^2) = 2\ln 2 + 2\sum_{k=0}^{\infty} (-1)^{k-1} \frac{(2x)^{2k}}{k}, \quad R_{\text{cx}} = \frac{1}{2}.$$

Чтобы получить разложение для f(x), воспользуемся теоремой о почленном интегрировании ряда, учитывая, что f(x) = 0:

$$f(x) = (2 \ln 2)x + 2 \sum_{k=0}^{\infty} (-1)^{k-1} \frac{2^{2k} x^{2k+1}}{k(2k+1)}, \quad R_{\text{cx}} = \frac{1}{2}.$$

Радиус сходимости при этом сохраняется.

Математический анализ 2

Условия

Ряды. Системы функций

- **1.** Разложите функцию $f(x)=\frac{1}{2}(\pi-x),\ x\in(0,2\pi)$ в ряд Фурье. Постройте график суммы ряда и исследуйте ряд на равномерную сходимость на $(-\infty;+\infty)$.
- **2.** Вычислите сумму числового ряда $\sum_{k=1}^{\infty} \frac{1}{4k^2 1}$, разложив функцию $f(x) = \sin \frac{x}{2}$, где $0 \leqslant x \leq \pi$, в ряд Фурье по косинусам.

Функции нескольких переменных

- **3.** Исследуйте на экстремум функцию $u(x,y) = 3(x^2 + y^2) x^3 + 4y$.
- **4.** Исследуйте на экстремум функцию u(x,y), заданную неявно уравнением $2x^2 + 2y^2 + u^2 + 8yu u + 8 = 0$.
- **5.** Исследуйте условные экстремумы функции u(x,y) = 2x + 2y 1 относительно уравнения связи $x^2 + 4xy + y^2 6 = 0$.
- **6.** Исследуйте условные экстремумы функции u = 4x + 2y 6z относительно уравнения связи $x^2 + y^2 z^2 = -4$.

Кратные интегралы

- 7. Представьте кратный интеграл $I = \iint_G f(x,y) \, dx dy$, в виде повторных двумя способами, где G область, ограниченная $y = 2x^2$ и x + y = 1.
- 8. Вычислите $\iiint_G y\,dxdydz$, где G область, ограниченная плоскостями $x=0;\;y=0;\;z=0;\;2x+y+z=4.$
- 9. Вычислите $\iiint\limits_C z\,dxdydz$, где $G=\{(x,y,z)\in\mathbb{R}^3: \frac{1}{2}\leqslant x\leqslant 1;\ \frac{1}{3}\leqslant xy\leqslant 1;\ 2\leqslant x^2yz\leqslant 4.\}$
- **10.** Вычислите $\iint_G (xy^2 2y^2) \, dx dy$, $G = \{x^2 + y^2 \leqslant 4x, \, x \geqslant 2\}$.
- 11. Найдите объем тела, ограниченного поверхностями

$$\begin{cases} x^2 + y^2 \leqslant 2, \\ z \geqslant 0, \\ 2x - 3y + z - 23 \leqslant 0. \end{cases}$$

12. Найдите объем тела, ограниченного поверхностями $x^2+y^2+z^2=4,\,z=\sqrt{x^2+y^2}$ $(z<\sqrt{x^2+y^2})$

Поверхностные интегралы. Формула Остроградского-Гаусса

13. Вычислите $\iint\limits_{S}z\,dS$, где

$$S = \begin{cases} x = u \cos v, \\ y = u \sin v, & u \in [0; 1], v \in [0; 2\pi]. \\ z = v, \end{cases}$$

- **14.** Найдите площадь поверхности конуса $z = \sqrt{x^2 + y^2}$, заключенного внутри цилиндра $x^2 + y^2 = 2x$.
- **15.** Вычислите $\iint_S (x^5+z)\,dydz$, где S внутренняя сторона полусферы $x^2+y^2+z^2=R^2,z\leqslant 0$.

Математический анализ 2

16. Вычислите $\iint\limits_S x^3\,dydz+y^3\,dzdx+z^3\,dxdy,$ где S — внутренняя сторона сферы $x^2+y^2+z^2=R^2.$

17. Вычислите
$$\iint_S yz \, dz dx$$
, где S — внешняя сторона части эллипсоида $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1; z \geqslant 0; a,b,c > 0.$

Криволинейные интегралы. Формула Грина. Формула Стокса

18. Вычислите
$$I = \int\limits_{\gamma} ((y+x^2)\,dx - x\,dy),$$
 где

$$\gamma = \begin{cases} x = 2\cos t, \\ y = \sin t, \end{cases} \quad t \in [0, \pi].$$

19. Вычислите
$$I = \int\limits_{\gamma^+} (xy\,dx + (x+3)\,dy)$$
, где γ — граница области $G = \{(x,y): x^2+y^2 < 1; x < 0; y > 0\}$.

20. Вычислите
$$\oint_{\gamma} y dx + z dy + x dz$$
, где

$$\gamma = \begin{cases} x^2 + y^2 + z^2 = R^2, \\ x + y + z = 0, \end{cases}$$

ориентирована положительно относительно $\mathbf{k} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$.

Ответы

Ряды. Системы функций

$$\mathbf{1.}\ f(x) \sim \sum_{k=1}^{\infty} \frac{\sin(kx)}{k},\, x \in (0,2\pi).$$
 График суммы ряда:

Ряд не сходится равномерно.

2.
$$f(x) = \frac{2}{\pi} - \sum_{n=1}^{\infty} \frac{4}{\pi (4n^2 - 1)} \cos nx$$
. Сумма $S = 1/2$ получается при подстановке $x = 0$.

Функции нескольких переменных

- **3.** u(0,-2/3) = -4/3 строгий локальный минимум.
- **4.** u(0,-2)=1 строгий локальный минимум, u(0,16/7)=-8/7 строгий локальный максимум.
- **5.** u(1,1)=3 строгий условный минимум, u(-1;-1)=-5 строгий условный максимум.
- **6.** u(2,1,3) = -8 условный максимум, u(-2,-1,-3) = 8 условный минимум.

Кратные интегралы

7.
$$\iint_{G} f(x,y) \, dx dy = \int_{-1}^{0,5} dx \int_{2x^{2}}^{1-x} f(x,y) \, dy, \quad \iint_{G} f(x,y) dx dy = \int_{0}^{0,5} dy \int_{-\sqrt{y/2}}^{\sqrt{y/2}} f(x,y) \, dx + \int_{0,5}^{2} dy \int_{-\sqrt{y/2}}^{1-y} f(x,y) \, dx.$$

- 8. $\frac{16}{3}$
- **9.** 18.
- 10. $\frac{64}{15}$.
- **11.** 46π

12.
$$\frac{16\pi}{3} \left(1 - \frac{\sqrt{2}}{2} \right)$$
.

Поверхностные интегралы. Формула Остроградского-Гаусса

- **13.** $\pi^2(\ln(1+\sqrt{2})+\sqrt{2})$.
- **14.** $\sqrt{2}\pi$.
- **15.** $-\frac{2R^7\pi}{7}$.
- 16. $-\frac{12\pi R^5}{5}$.
- 17. $\frac{\pi abc}{4}$.

Криволинейные интегралы. Формула Грина. Формула Стокса

18.
$$-2\pi - \frac{16}{3}$$
.

19.
$$\frac{\pi}{4} + \frac{1}{3}$$
.
20. $-\sqrt{3}\pi R^2$.

20.
$$-\sqrt{3}\pi R^2$$
.

Решения

Ряды. Системы функций

Тригонометрический ряд — это ряд

$$\frac{a_0}{2} + \sum_{k=1}^{\infty} (a_k \cos(kx) + b_k \sin(kx)). \tag{1}$$

Определение 2.1. Пусть f — это 2π -периодическая абсолютно интегрируемая функция. Тогда тригонометрический ряд (1), где

$$a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx, \quad a_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(kx) dx, \quad b_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin(kx) dx,$$

называется $Pядом \ \Phi ypьe \ \phi yнкции \ f(x)$. В этом случае пишут:

$$f(x) \sim \frac{a_0}{2} + \sum_{k=1}^{\infty} \left(a_k \cos(kx) + b_k \sin(kx) \right).$$

Если функция четная, то

$$b_k = 0$$
, $a_k = \frac{2}{\pi} \int_0^{\pi} f(x) \cos(kx) dx$, $a_0 = \frac{2}{\pi} \int_0^{\pi} f(x) dx$.

Если функция нечетная:

$$a_k = 0$$
, $a_0 = 0$, $b_k = \frac{2}{\pi} \int_0^{\pi} f(x) \sin(kx) dx$.

Определение 2.2. Точка x_0 называется *почти регулярной точкой* функции f(x), если $\exists f(x_0+0)$, $f(x_0-0)$, $f'_+(x_0)$, $f'_-(x_0)$.

Если при этом $f(x_0) = \frac{1}{2}(f(x_0+0)+f(x_0-0))$, то x_0 — регулярная точка.

Теорема 2.1 (Поточечная сходимость ряда Фурье). Пусть $f-2\pi$ -периодическая, абсолютно интегрируемая на $[-\pi,\pi]$ функция, и при этом x_0- ее почти регулярная точка. Тогда ряд Фурье функции f в этой точке сходится $\kappa \frac{1}{2}(f(x_0+0)+f(x_0-0))$, а если точка регулярная, то κ значению $f(x_0)$.

Теорема 2.2 (Равномерная сходимость ряда Фурье). Пусть $f-2\pi$ -периодическая, непрерывная и кусочно непрерывно дифференцируемая функция, тогда ряд Фурье этой функции сходится к ней равномерно.

Теорема 2.3 (Непрерывность суммы равномерно сходящегося ряда). Пусть функциональный ряд $\sum_{k=0}^{\infty} u_k(x)$ сходится равномерно на множестве E. Пусть $u_k(x)$ непрерывна в точке $x_0 \, \forall k, x_0 \in E$. Тогда сумма ряда $S = \sum_{k=0}^{\infty} u_k(x)$ непрерывна в x_0 .

1. Продолжим f(x) 2π -периодически на $\mathbb R$ до функции $\tilde f$. Определим ее в точках $x=2\pi n, n\in \mathbb Z$ полусуммой левого и правого пределов в этих точках: $\tilde f(x)=0$. Такое определение приведет к тому, что все точки функции $\tilde f$ будут регулярными, а ряд будет сходиться поточечно к функции $\tilde f$ по теореме о поточечной сходимости. Построим график $\tilde f$.

Докажем, что график суммы ряда функции $\tilde{f}(x)$ совпадает с графиком самой функции $\tilde{f}(x)$. Будем доказывать с помощью теоремы 2.1. То, что $\tilde{f}(x)$ 2π -периодическая и каждая ее точка регулярная, мы знаем: точки непрерывности всегда регулярны, а в точках разрыва мы специально выбрали значения функции $\tilde{f}(x) = (f(x_0+0)+f(x_0-0))/2$, чтобы функция была регулярной. $\tilde{f}(x)$ абсолютно интегрируемая на $[0,2\pi]$.

Таким образом, все условия теоремы 2.1 выполняются. Значит, ряд Фурье функции $\tilde{f}(x)$ сходится поточечно. Причем сходится к $\tilde{f}(x_0) \, \forall x_0 \in \mathbb{R}$. То есть значение суммы ряда в каждой точке равно значению нашей функции, то есть их графики совпадают.

Представим эту функцию в виде ряда. Заметим, что $\tilde{f}(x)$ нечетная. Значит, $a_k=0$. Найдем b_k :

$$b_k = \frac{1}{\pi} \int_0^{2\pi} \frac{\pi - x}{2} \sin(kx) \, dx = \left/ \frac{u}{2} = \frac{\pi - x}{2}; \, dv = \sin(kx) dx \right/ =$$

$$= \frac{1}{\pi} \left(\frac{\pi - x}{2} \frac{1}{k} (-\cos(kx)) \Big|_0^{2\pi} - \int_0^{2\pi} \frac{1}{2k} \cos(kx) dx \right) = \frac{1}{\pi} \left(-\frac{\pi}{2} \frac{1}{k} (-1) - \frac{\pi}{2} \frac{1}{k} (-1) \right) = \frac{1}{k}.$$

Таким образом:

$$\tilde{f}(x) \sim \frac{a_0}{2} + \sum_{k=1}^{\infty} a_k \cos(kx) + b_k \sin(kx) = \sum_{k=1}^{\infty} \frac{\sin(kx)}{k}, \quad x \in (0, 2\pi).$$

Разложение f на $(0, 2\pi)$ совпадает с этим.

Если бы ряд сходился равномерно, то он сходился бы к непрерывной функции по теореме 2.3, но \tilde{f} не является непрерывной.

2. Продолжим f(x) до четной функции на отрезок $[-\pi;\pi]$, а затем до 2π -периодической на все \mathbb{R} .

Представим эту функцию в виде ряда. Так как $\tilde{f}(x)$ четная, $b_k = 0$. Найдем a_0, a_k :

$$a_k = \frac{2}{\pi} \int_0^{\pi} \sin\frac{x}{2} \cos(kx) \, dx = \frac{2}{\pi} \int_0^{\pi} \left(\sin\frac{(2k+1)x}{2} - \sin\frac{(2k-1)x}{2} \right) \frac{1}{2} \, dx =$$

$$= \frac{1}{\pi} \left(\frac{2}{2k-1} \cos\frac{(2k-1)x}{2} \Big|_0^{\pi} - \frac{2}{2k+1} \cos\frac{(2k+1)x}{2} \Big|_0^{\pi} \right) = -\frac{4}{\pi} \frac{1}{4k^2 - 1}.$$

$$a_0 = \frac{2}{\pi} \int_0^{\pi} \sin\frac{x}{2} \, dx = \frac{2}{\pi} \cdot 2 \left(-\cos\frac{x}{2} \Big|_0^{\pi} \right) = \frac{4}{\pi}.$$

Получаем:

$$f(x) = \frac{2}{\pi} - \sum_{k=1}^{\infty} \frac{4}{\pi} \frac{1}{4k^2 - 1} \cos kx.$$

Подставив x = 0, получим

$$\sum_{k=1}^{\infty} \frac{1}{4k^2 - 1} = \frac{1}{2}.$$

Функции нескольких переменных

Теорема 2.4 (Необходимое условие экстремума). Если $x_0 - mov$ жа экстремума функции f $u \exists \frac{\partial f}{\partial x_i}(x_0)$, mo $\frac{\partial f}{\partial x_i}(x_0) = 0$.

Определение 2.3. $x_0 - cmauuoнарная точка функции <math>f$, если функция f дифференцируема в этой точке и $df(x_0) = 0$.

Теорема 2.5 (Достаточное условие экстремума). Пусть f дважды непрерывно дифференцируема g некоторой окрестности стационарной точки g. Пусть второй дифференциал g функции g в точке g — положительно(отрицательно) определенная квадратичная форма. Тогда g — точка строгого локального минимума (строгого локального максимума) функции g . Если g — неопределенная квадратичная форма, то данная стационарная точка не является точкой экстремума.

Теорема 2.6 (Достаточное условие экстремума для функции двух переменных). Пусть f(x,y) дважеды непрерывно-дифференцируема в окрестности стационарной точки x_0 . Тогда:

- 1. Если в (x_0,y_0) $(f_{xx}\cdot f_{yy}-f_{xy}^2)>0$ то в этой точке строгий экстремум: если $f_{xx}>0$ минимум, если $f_{xx}<0$ максимум.
- 2. Если $(f_{xx}f_{yy}-f_{xy}^2)<0$, в точке (x_0,y_0) нет экстремума.
- 3. Если $(f_{xx}f_{yy}-f_{xy}^2)=0$, то экстремум может как быть, так и не быть.

План исследования на экстремум.

- 1. Найти первые производные.
- 2. Приравняв первые производные к нулю, найти стационарные точки функции Лагранжа.
- 3. Найти вторые производные.
- 4. Для каждой стационарной точки исследовать $d^2f(x_0)$ на знакоопределенность и сделать вывод о наличии экстремума в исследуемой точке.
- 3. Найдем стационарные точки:

$$\frac{\partial u}{\partial x} = 6x - 3x^2 = 0, \implies x_1 = 0; \ x_2 = 2.$$

$$\frac{\partial u}{\partial y} = 6y + 4 = 0, \implies y = -\frac{2}{3}.$$

Две стационарные точки: (0, -2/3); (2, -2/3).

Найдем второй дифференциал и исследуем его на положительную или отрицательную определенность с помощью критерия Сильвестра в каждой из точек по отдельности (пункты а и б):

$$u_{xx}'' = 6 - 6x, \quad u_{yy}'' = 6, \quad u_{xy}'' = 0, \quad \Longrightarrow \quad d^2f = u_{xx}dx^2 + u_{yy}dy^2 = (6 - 6x)dx^2 + 6dy^2.$$

1. (0: -2/3)

В этой точке производные равны $u_{xx} = 6$, $u_{yy} = 6$. Тогда главные миноры матрицы квадратичной формы второго дифференциала будут равны

$$u_{xx}u_{yy} - u_{xy}^2 = 36 > 0$$
 и $u_{xx} = 6 > 0$.

Значит, (0; -2/3) — точка строгого минимума. u(0, -2/3) = -4/3.

2. (2; -2/3)

Производные равны $u_{xx} = -6$, $u_{yy} = 6$. Значит, $u_{xx}u_{yy} - u_{xy}^2 = -36 < 0$. Следовательно, в этой точке нет экстремума по теореме 2.6.

Примечание. Не обязательно использовать критерий Сильвестра. Можно привести форму к диагональному виду и исследовать на знакоопределенность по определению.

4. Продифференцируем уравнение по x и y:

$$\frac{\partial}{\partial x}: \quad 4x + 2uu_x + 8yu_x - u_x = 0,$$

$$\frac{\partial}{\partial y}: \quad 4y + 2uu_y + 8u + 8yu_y - u_y = 0.$$

 ${
m T.}$ к. производные u по x и y равны нулю в стационарной точке, имеем:

$$\begin{cases} 0 = 4x, \\ 0 = 4y + 8u, \end{cases} \implies \begin{cases} x = 0, \\ y = -2u. \end{cases}$$

Подставив это в уравнение из условия, получим:

$$7u^2 + u - 8 = 0$$
, \Longrightarrow $u_1 = 1; y_1 = -2$ $u_2 = \frac{8}{7}; y_2 = \frac{16}{7}$.

Продифференцируем уравнение, задающее u, дважды:

$$\begin{split} \frac{\partial^2}{\partial x^2} : & 4 + 2u_x^2 + 2uu_{xx} + 8yu_{xx} - u_{xx} = 0, \\ \frac{\partial^2}{\partial x \partial y} : & 2u_y u_x + 2uu_{xy} + 8u_x + 8yu_{xy} - u_{xy} = 0, \\ \frac{\partial^2}{\partial y^2} : & 4 + 2u_y^2 + 2uu_{yy} + 8u_y + 8u_y + 8yu_{yy} - u_{yy} = 0. \end{split}$$

1.
$$(0; -2)$$

$$\frac{\partial^2}{\partial x^2}: \quad 4 + 0 + 2u_{xx} - 16u_{xx} - u_{xx} = 0, \qquad u_{xx} = \frac{4}{15} > 0, \\
\frac{\partial^2}{\partial x \partial y}: \quad 2u_{xy} - 16u_{xy} - u_{xy} = 0, \qquad \Longrightarrow \quad u_{xy} = 0, \\
\frac{\partial^2}{\partial y^2}: \quad 4 + 2u_y y - 16u_{yy} - u_{yy} = 0, \qquad u_{yy} = \frac{4}{15} > 0.$$

Значит, d^2u — положительно определённая квадратичная форма, следовательно u(0,-2)=1—строгий локальный минимум.

$$2. \ (0; -16/7)$$
 В этом случае находим

$$u_{xy} = 0$$
, $u_{xx} = -\frac{4}{15} < 0$, $u_{yy} = -\frac{4}{15} < 0$.

Таким образом, d^2u — отрицательно определённая квадратичная форма, следовательно u(0,16/7) = -8/7 — строгий локальный максимум.

Пусть на открытом множестве $G \in \mathbb{R}^n$ заданы функции $f, \varphi_1, \dots, \varphi_m$ $(1 \leqslant m \leqslant n)$. Уравнениями связи называются условия вида

$$\{\varphi_i = 0\}_{i=1}^m.$$

Обозначим $E = \{x \in G : \varphi_i(x) = 0, 1 \le i \le m\}.$

Определение 2.4. Точка $x_0 \in E$ называется *точкой условного минимума* функции f при связях (4), если $\exists U(x_0) : \forall x \in U(x_0) \cap E \longrightarrow f(x_0) \leqslant f(x)$;

Определение 2.5. x_0 — условная стационарная точка $\iff \exists \lambda_1, \dots, \lambda_m$ такие, что x_0 — стационарная точка для

$$L = f(x) - \sum_{j=1}^{m} \lambda_j \varphi_j(x),$$

называемой функцией Лагранжа, где λ_j — множитель Лагранжа.

Теорема 2.7 (Достаточное условие условного экстремума). Пусть $f, \varphi_1, \dots \varphi_m - \partial \mathcal{B}$ важды непрерывнодифференцируемые функции в некоторой окрестности стационарной точки x_0 функции L. Тогда:

- 1. Если $d^2L(x_0)$ положительно определённая квадратичная форма, то x_0 —строгий условный минимум.
- 2. Если $d^2L(x_0)$ отрицательно определённая квадратичная форма, то x_0 —строгий условный максимум.
- 3. Если $d^2L(x_0)$ неопределенная квадратичная форма ничего не можем сказать. В этом случае надо прибегнуть к дифференцированию уравнений связи, выразить дифференциал одних независимых переменных через другие и подставить в d^2L . Полученная таким образом квадратичная форма называется $\widetilde{d}^2L(x_0)$.
- 4. Если $\widetilde{d^2L}(x_0)$ положительно определенная квадратичная форма, то x_0 строгий условный минимум.

Eсли $\widetilde{d^2L}(x_0)$ — отрицательно определенная квадратичная форма, то x_0 — строгий условный максимим.

Если же $d^2L(x_0)$ — неопределенная квадратичная форма, то экстремума нет.

План исследования на условный экстремум:.

- 1. Составить функцию Лагранжа.
- 2. Найти стационарные точки функции Лагранжа.
- 3. Для каждой стационарной точки исследовать $d^2L(x_0)$.
 - (a) Eсли d^2L положительно или отрицательно определенная квадратичная форма, то ответ получен.
 - (b) Если же d^2L неопределенная квадратичная форма, то дифференцируем уравнения связи, в них выражаем dx, dy друг через друга и подставляем в d^2L . Это и будет называться $\widetilde{d^2L}$. Далее уже исследуем его.
- **5.** Функция Лагранжа:

$$L = 2x + 2y - 1 - \lambda(x^2 + 4xy + y^2 - 6).$$

Найдем стационарные точки:

$$\begin{cases} \frac{\partial L}{\partial x} : & 2 - 2\lambda x - 4\lambda y = 0, \\ \frac{\partial L}{\partial y} : & 2 - 4\lambda x - 2\lambda y = 0, \end{cases} \implies x = y = \frac{1}{3\lambda}.$$

Подставив эти значения в уравнение связи, получим два решения: (1,1), $\lambda_1 = 1/3$ и (-1,-1), $\lambda_2 = -1/3$. Второй дифференциал функции Лагранжа:

$$d^{2}L = L''_{xx}dx^{2} + 2L''_{xy}dxdy + L''_{yy}dy^{2} = -2\lambda(dx^{2} + 2 \cdot 2dxdy + dy^{2}).$$

Отсюда находим квадратичную форму:

$$\begin{pmatrix} -2\lambda & -4\lambda \\ -4\lambda & -2\lambda \end{pmatrix}$$

Первый минор равен $\Delta_1 = -2\lambda$, второй минор равен $\Delta_2 = -12\lambda^2 < 0$. Значит, квадратичная форма неопределенная. Поэтому, следуя алгоритму, продифференцируем уравнение связи:

$$2xdx + 4xdy + 4ydx + 2ydy = 0$$
, $\implies dx = -dy$.

Подставив это в d^2L , получим:

$$\widetilde{d^2L} = 4\lambda du^2$$
.

Если $\lambda > 0$, то $\widetilde{d^2L}$ — положительно определенная квадратичная форма, значит, u(1,1) = 3 — строгий условный минимум. Если $\lambda < 0$, то $\widetilde{d^2L}$ — отрицательно определенная квадратичная форма, значит, u(-1,-1) = -5 — строгий условный максимум.

6. Функция Лагранжа:

$$L = 4x + 2y - 6z - \lambda(x^2 + y^2 - z^2 + 4).$$

Найдем стационарные точки:

$$\begin{cases} \frac{\partial L}{\partial x}: & 4 - 2\lambda x = 0, \\ \frac{\partial L}{\partial y}: & 2 - 2\lambda y = 0, \\ \frac{\partial L}{\partial z}: & -6 + 2\lambda z = 0, \end{cases} \implies \begin{cases} x = \frac{2}{\lambda}, \\ y = \frac{1}{\lambda}, \\ z = \frac{3}{\lambda}. \end{cases}$$

Подставив эти значения в уравнение связи, получим два решения: (2,1,3), $\lambda_1=1$ и (-2,-1,-3), $\lambda_2=-1$. Найдем вторые производные функции Лагранжа:

$$L_{xx}'' = -2\lambda, \quad L_{yy}'' = -2\lambda, \quad L_{zz} = 2\lambda.$$

Все смешанные производные равны нулю. Тогда

$$d^2L = -2\lambda dx^2 - 2\lambda dy^2 + 2\lambda dz^2.$$

При $\lambda=\pm 1$ d^2L — неопределенная квадратичная форма. Поэтому будем дифференцировать уравнения связи. В точке (2,1,3):

$$2xdx + 2ydy - 2zdz = 0$$
, \implies $dy = 3dz - 2dx$.

В точке (-2, -1, -3) получается то же самое.

Подставим продифференцированные уравнения связи в d^2L . Получим:

1. В точке (2,1,3), т. е. при $\lambda = 1$:

$$\widetilde{d^2L} = -2dx^2 - 2(3dz - 2dx)^2 + 2dz^2 = -10dx^2 + 24dxdz - 16dz^2.$$

Это отрицательно определенная квадратичная форма. Значит, u(2,1,3)=-8 — условный максимум.

2. В точке (-2, -1, -3), т. е. при $\lambda = -1$:

$$\widetilde{d^2L} = 10dx^2 - 24dxdz + 16dz^2.$$

Это положительно определенная квадратичная форма. Значит, u(-2,-1,-3)=8 — условный минимум.

Кратные интегралы

Определение 2.6. Множество $X: \{(x,y), \ a \leqslant x \leqslant b, \ \varphi_1(x) \leqslant y \leqslant \varphi_2(x)\}$ — элементарно относительно OY. Множество $X: \{(x,y), \ a \leqslant y \leqslant b, \ \alpha(y) \leqslant x \leqslant \beta(y)\}$ — элементарно относительно OX.

Если f — интегрируема на множестве X, элементарном относительно OY, то

$$\iint\limits_X f(x,y)\,dxdy = \int\limits_{x_1}^{x_2} dx \int\limits_{\varphi_1(x)}^{\varphi_2(x)} f(x,y)\,dy.$$

Если f — интегрируема на множестве X, элементарном относительно OX, то

$$\iint\limits_X f(x,y)\,dxdy = \int\limits_a^b dy \int_{\alpha(y)}^{\beta(y)} f(x,y)\,dx.$$

7. Способ 1. Заметим, что относительно OY область G элементарная. Найдём точки пересечения кривых, ограничивающих область: (0,5;0,5) и(-1;2)

$$\iint_{G} f(x,y) \, dx dy = \int_{-1}^{0,5} dx \int_{2x^{2}}^{1-x} f(x,y) \, dy.$$

Способ 2. Возьмём две области, элементарные относительно OX (y от 0 до 0,5 в первой области и от 0,5 до 2 во второй).

8.

Определение 2.7. Множество $G = \{x = (x_1, \dots, x_n) = (x', x_n) : x' \in X', \quad \varphi(x') \leqslant x_n \leqslant \psi(x')\}$, где $X' \subset \mathbb{R}^{n-1}$ —и змеримое замкнутое множество, а функции φ , ψ — непрерывны на X', называется элементарным относительно оси OX_n множеством.

Теорема 2.8. Пусть функция f непрерывна на элементарном относительно оси OX_n множестве G. Тогда

$$\int_{G} f(x) dx = \int_{X'} \int_{\varphi(x')}^{\psi(x')} f(x', x_n) dx_n dx'.$$

Т. е. в трехмерном случае, если область G элементарна относительно OZ, то

$$\iiint\limits_{G} f(x,y,z)\,dxdydz = \iint\limits_{X'} \,dxdy \int\limits_{\varphi(x,y)}^{\psi(x,y)} f(x,y,z)\,dz.$$

В данной задаче G элементарна относительно оси OZ, поэтому

$$\iiint\limits_G y \, dx dy dz = \iint\limits_{X'} dx dy \int_0^{4-2x-y} y \, dz.$$

Здесь X' — треугольник, ограниченный осями $OX,\,OY$ и прямой y=4-2x,z=0. Поэтому

$$\iiint\limits_{\Omega} y \, dx dy dz = \int_0^2 dx \int_0^{4-2x} y dy \int_0^{4-2x-y} dz.$$

Вычислим полученный повторный интеграл:

$$\iiint_{G} y \, dx dy dz = \int_{0}^{2} dx \int_{0}^{4-2x} (4y - 2xy - y^{2}) \, dy = \int_{0}^{2} dx \int_{0}^{4-2x} 4y \, dy - \int_{0}^{2} 2x dx \int_{0}^{4-2x} y \, dy - \int_{0}^{2} dx \int_{0}^{4-2x} y^{2} \, dy =$$

$$= \int_{0}^{2} 2(4-2x)^{2} \, dx - \int_{0}^{2} x(4-2x)^{2} \, dx - \frac{1}{3} \int_{0}^{2} (4-2x)^{3} \, dx =$$

$$= \int_{0}^{2} (32 - 32x + 8x^{2}) \, dx - \int_{0}^{2} (16x - 16x^{2} + 4x^{3}) dx - \frac{1}{3} \int_{0}^{2} (64 - 96x + 48x^{2} - 8x^{3}) \, dx = \frac{16}{3}.$$

9. По условию

$$2 \leqslant x^2 y z \leqslant 4, \quad \Longrightarrow \quad \frac{2}{x^2 y} \leqslant z \leqslant \frac{4}{x^2 y};$$
$$\frac{1}{3} \leqslant x y \leqslant 1, \quad \Longrightarrow \quad \frac{1}{3x} \leqslant y \leqslant \frac{1}{x}.$$

Получаем интеграл:

$$\iiint_{G} y \, dx dy dz = \int_{1/2}^{1} dx \int_{1/3x}^{1/x} dy \int_{2/x^{2}y}^{4/x^{2}y} dz = \int_{1/2}^{1} dx \int_{1/3x}^{1/x} \frac{1}{2} \left(\frac{16}{x^{4}y^{2}} - \frac{4}{x^{4}y^{2}} \right) dy = \int_{1/2}^{1} \frac{6}{x^{4}} dx \int_{1/3x}^{1/x} \frac{1}{y^{2}} dy = \int_{1/2}^{1} \frac{6}{x^{4}} (3x - x) \, dx = \int_{1/2}^{1} \frac{6}{x^{4}} (3x - x) \, dx = \int_{1/2}^{1} \frac{12}{x^{3}} \, dx = 18.$$

10.

Теорема 2.9 (Теорема о замене переменных в кратном интеграле). Пусть

$$F = \begin{cases} x = x(u,v), \\ y = y(u,v), \end{cases}$$

есть отображение открытого измеримого множества $G \subset \mathbb{R}^2_{uv}$ на открытое измеримое множество $G^* \subset \mathbb{R}^2_{xy}$ со свойствами:

- 1. F взаимно однозначно отображает G на G^st
- 2. F непрерывно дифференцируемо на G,
- 3. якобиан отображения $J(u,v)=\dfrac{\partial(x,y)}{\partial(u,v)}\neq 0$ на G,
- 4. F, J непрерывно продолжаемы на \bar{G} ,
- 5. функция f непрерывна на G^* и непрерывна продолжима на \bar{G}^*

Tог ∂a

$$\iint\limits_{G_x} f(x,y)\,dxdy = \iint\limits_{G} f(x(u,v),y(u,v))|J(u,v)|\,dudv.$$

Напомним некоторые из стандартных систем координат.

Полярные координаты:

$$\begin{cases} x = r\cos\varphi, \\ y = r\sin\varphi, \end{cases} \quad r > 0, \, \varphi \in [0; 2\pi], \quad |J| = r.$$

Сферические координаты:

$$\begin{cases} x = r\cos\varphi\cos\psi, \\ y = r\sin\varphi\cos\psi, \quad r > 0, \, \varphi \in [0; 2\pi], \, \psi \in \left[-\frac{\pi}{2}; \frac{\pi}{2}\right], \quad |J| = r^2\cos\psi. \\ z = r\sin\psi, \end{cases}$$

Цилиндрические координаты:

$$\begin{cases} x = r \cos \varphi, \\ y = r \sin \varphi, \quad r > 0, \, \varphi \in [0; 2\pi], \quad |J| = r. \\ z = z, \end{cases}$$

Заметим, что $x^2+y^2\leqslant 4x\Longleftrightarrow (x-2)^2+y^2\leqslant 4$. Перейдем к полярным координатам:

$$\begin{cases} x = r\cos\varphi + 2, \\ y = r\sin\varphi, \end{cases} \quad r > 0, \, \varphi \in [0; 2\pi], \quad |J| = r.$$

Из условия $x \geqslant 2$ получаем:

$$r\cos\varphi + 2 \geqslant 2 \iff \cos\varphi \geqslant 0 \iff \varphi \in \left[0, \frac{\pi}{2}\right] \bigcup \left[\frac{3\pi}{2}, 2\pi\right].$$

Значит, интеграл принимает вид

$$\iint_G (xy^2 - 2y^2) \, dxdy = \iint_G y^2 (x - 2) \, dxdy = \int_0^2 dr \int_0^{\pi/2} r^2 \sin^2 \varphi \cdot r \cos \varphi \cdot r \, d\varphi + \int_0^2 dr \int_{3\pi/2}^{2\pi} r^2 \sin^2 \varphi \cdot r \cos \varphi \cdot r \, d\varphi = 2 \int_0^2 r^4 dr \int_0^{\pi/2} \sin^2 \varphi \, d\sin \varphi = \frac{64}{15}.$$

11. Сделаем цилиндрическую замену координат:

$$\begin{cases} x = r \cos \varphi, \\ y = r \sin \varphi, \quad r > 0, \, \varphi \in [0; 2\pi], \quad |J| = r. \\ z = z, \end{cases}$$

Объем равен

$$V = \iiint\limits_{G} dx dy dz = \int\limits_{0}^{2\pi} d\varphi \int\limits_{0}^{\sqrt{2}} r \, dr \int\limits_{0}^{23-2r\cos\varphi + 3r\sin\varphi} dz = \int\limits_{0}^{2\pi} d\varphi \int\limits_{0}^{\sqrt{2}} r(23-2r\cos\varphi + 3r\sin\varphi) \, dr.$$

Заметим, что интеграл от $\cos \varphi$ и $\sin \varphi$ по периоду равен нулю, значит,

$$V = \int_{0}^{2\pi} d\varphi \int_{0}^{\sqrt{2}} 23r \, dr = 46\pi.$$

12. Сделаем сферическую замену координат:

$$\begin{cases} x = r\cos\varphi\cos\psi, \\ y = r\sin\varphi\cos\psi, \quad r > 0, \, \varphi \in [0; 2\pi], \, \psi \in \left[-\frac{\pi}{2}; \frac{\pi}{2}\right], \quad |J| = r^2\cos\psi. \end{cases}$$

Из второго ограничения в условии получаем

$$r\sin\psi = \sqrt{r^2\cos^2\psi} = r\cos\psi, \quad \Longrightarrow \quad \psi \in \left\lceil\frac{\pi}{4}\right\rceil.$$

Объем равен

$$\iiint_{G} dx dy dz = \int_{0}^{2\pi} d\varphi \int_{\pi/4}^{\pi/2} \cos \psi d\psi \int_{0}^{2} r^{2} dr = \frac{16\pi}{3} \left(1 - \frac{\sqrt{2}}{2} \right).$$

Поверхностные интегралы. Формула Остроградского-Гаусса

Определение 2.8. Пусть G — измеримая область в \mathbb{R}^2 , S — поверхность, заданная параметрически т. е. x = x(u,v); y = y(u,v); z = z(u,v), x,y,z — дифференцируемые функции на G. И на S задана функция f(x,y,z). Поверхностным интегралом I рода называется

$$\iint\limits_{S} f(x,y,z) dS = \iint\limits_{G} f\left(x(u,v),y(u,v),z(u,v)\right) |[\mathbf{r}'_{u} \times \mathbf{r}'_{v}]| du dv,$$

где $\mathbf{r} = (x(u,v), y(u,v), z(u,v)).$

13. В данной задаче

$$\mathbf{r} = \begin{pmatrix} u \cos v \\ u \sin v \\ v \end{pmatrix}, \quad \Longrightarrow \quad \mathbf{r}'_u = \begin{pmatrix} \cos v \\ \sin v \\ 0 \end{pmatrix}, \quad \mathbf{r}'_v = \begin{pmatrix} -u \sin v \\ u \cos v \\ 1 \end{pmatrix}.$$

Используя это, находим

$$|[\mathbf{r}_{u} \times \mathbf{r}_{v}]| = \left| \det \begin{pmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \cos v & \sin v & 0 \\ -u \sin v & u \cos v & 1 \end{pmatrix} \right| = |((\sin v)\mathbf{i} + (-\cos v)\mathbf{j} + (u\cos^{2}v + u\sin^{2}v)\mathbf{k}|$$
$$= \sqrt{\sin^{2}v + \cos^{2}v + u^{2}} = \sqrt{1 + u^{2}}.$$

Искомый интеграл равен

$$\iint_{G} v\sqrt{1+u^{2}} \, du dv = \int_{0}^{2\pi} v \, dv \int_{0}^{1} \sqrt{1+u^{2}} \, du = \pi^{2} (\ln(1+\sqrt{2}) + \sqrt{2}).$$

14. В данном случае конус — поверхность, по которой ведется интегрирование, а цилиндр задает ограничения на область G. Чтобы найти площадь поверхности, нужно взять поверхностный интеграл от f=1 по нашей поверхности.

$$\mathbf{r} = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \implies \mathbf{r}'_x = \begin{pmatrix} 0 \\ 1 \\ \frac{x}{\sqrt{x^2 + y^2}} \end{pmatrix}, \quad \mathbf{r}'_y = \begin{pmatrix} 1 \\ 0 \\ \frac{y}{\sqrt{x^2 + y^2}} \end{pmatrix}.$$

Используя это, находим

$$|[\mathbf{r}_u \times \mathbf{r}_v]| = \left| \det \begin{pmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 0 & \frac{x}{\sqrt{x^2 + y^2}} \\ 0 & 1 & \frac{y}{\sqrt{x^2 + y^2}} \end{pmatrix} \right| = \sqrt{1 + \frac{x^2}{x^2 + y^2} + \frac{y^2}{x^2 + y^2}} = \sqrt{2}.$$

Искомая площадь равна

$$S = \int\limits_{S} dS = \iint\limits_{G} |\mathbf{r}_x' \times \mathbf{r}_y'| \, dS = \iint\limits_{G} \sqrt{2} \, dx dy = \sqrt{2} \iint\limits_{G} \, dx dy = \sqrt{2} \cdot \underbrace{\pi \cdot \mathbf{1}^2}_{\text{kpyr R} = 1} \cdot \underbrace{\pi \cdot \mathbf{1}^2}_{\text{kpyr R$$

15.

Определение 2.9. *Потоком векторного поля* **а** через ориентированную поверхность S называется поверхностный интеграл I рода:

$$\iint_{S} (\mathbf{a}, \mathbf{n}) dS,$$

он же иначе называется поверхностным интегралом II рода.

Поверхностный интеграл второго рода можно также записать в виде

$$\int_{S} (\mathbf{a}, \mathbf{n}) dS = \iint_{S^{+}} P \, dy dz + Q \, dz dx + R \, dx dy; \quad \mathbf{a} = \begin{pmatrix} P \\ Q \\ R \end{pmatrix}.$$

$$\int_{S} (\mathbf{a}, \mathbf{n}) dS = \iint_{S^{+}} P \, dy dz + Q \, dz dx + R \, dx dy = \iint_{G} \begin{vmatrix} P & Q & R \\ x'_{u} & y'_{u} & z'_{u} \\ x'_{v} & y'_{v} & z'_{v} \end{vmatrix} du dv; \quad \mathbf{a} = \begin{pmatrix} P \\ Q \\ R \end{pmatrix}.$$

В данной задаче

$$\mathbf{a} = \begin{pmatrix} x^5 + z \\ 0 \\ 0 \end{pmatrix}.$$

Параметризуем поверхность:

$$\begin{cases} x = R\cos\varphi\cos\psi, \\ y = R\sin\varphi\cos\psi, \\ z = R\sin\psi. \end{cases}$$

Здесь $\varphi \in [0; 2\pi], \ \psi \in [-\frac{\pi}{2}; 0]$ (нижняя полусфера). Вычислим вектор нормали:

$$\mathbf{N} = \mathbf{r}_u' imes \mathbf{r}_v' = egin{array}{ccc} \mathbf{i} & \mathbf{j} & \mathbf{k} \ x_\varphi' & y_\varphi' & z_\varphi' \ x_\psi' & y_\psi' & z_\psi' \ \end{array}.$$

Проекция вектора нормали на ось OZ:

$$n_z = x_{\varphi} y_{\psi} - x_{\psi} y_{\varphi} = -R \sin \varphi \cos \psi (-R \sin \varphi \cos \psi) - (-R \cos \varphi \sin \psi) (R \cos \varphi \cos \psi) = R^2 \cos \psi \sin \psi < 0.$$

Здесь было учтено, что $\psi \in [-\frac{\pi}{2}; 0]$. Значит, **n** направлен наружу на этой стороне полусферы, а по условию должен внутрь, следовательно, перед интегралом нужно поставить знак «—».

$$\iint_{S} P \, dy dz = -\iint_{G} \begin{vmatrix} (R\cos\varphi\cos\psi)^{5} + R\sin\psi & 0 & 0\\ -R\sin\varphi\cos\psi & R\cos\varphi\cos\psi & 0\\ -R\cos\varphi\sin\psi & -R\sin\varphi\sin\psi & R\cos\psi \end{vmatrix} d\varphi d\psi =$$

$$= -\int_{0}^{2\pi} \int_{-\pi/2}^{0} \left((R\cos\varphi\cos\psi)^{5} + R\sin\psi \right) R^{2}\cos\varphi\cos^{2}\psi d\varphi d\varphi = -\frac{2R^{7}\pi}{7}.$$

16.

Формула Остроградского-Гаусса. Пусть область $G \subset \mathbb{R}^3$ с кусочно гладкой границей δG , ориентированной внешними нормалями. В G задано векторное поле $\mathbf{a} \in C^1(\overline{G})$ (\mathbf{a} непрерывно дифференцируемо на замыкании области G). Тогда:

$$\iint_{\delta G} (\mathbf{a}, \mathbf{n}) dS = \iiint_{G} \operatorname{div} \mathbf{a} \, dx dy dz.$$

В данной задаче векторное поле а равно

$$\mathbf{a} = \begin{pmatrix} x^3 \\ y^3 \\ z^3 \end{pmatrix}.$$

Тогда div $\mathbf{a} = 3(x^2 + y^2 + z^2)$. Поверхность S ориентирована не внешними нормалями (внутренняя сторона сферы по условию), значит, в формуле Остроградского-Гаусса нужно поставить «—». После перехода к сферическим координатам, получим

$$\iint_{S} x^{3} dydz + y^{3} dzdx + z^{3} dxdy = -\iiint_{G} 3(x^{2} + y^{2} + z^{2})dG = -3 \int_{0}^{2\pi} d\varphi \int_{-\pi/2}^{\pi/2} \cos\psi d\psi \int_{0}^{R} r^{2} \cdot r^{2} dR = -\frac{12\pi R^{5}}{5}.$$

17. Обозначим через S_1 множество

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} \leqslant 1, \quad z = 0.$$

Тогда $S \cup S_1$ — это замкнутая поверхность. Воспользуемся для нее теоремой Остроградского—Гаусса:

$$\iint\limits_{S} yz\,dzdx + \iint\limits_{S_{1}} yz\,dzdx = + \iint\limits_{G} z\,dxdydz,$$

где

$$\mathbf{a} = \begin{pmatrix} 0 \\ yz \\ 0 \end{pmatrix}, \quad \text{div } \mathbf{a} = z,$$

а G — множество, ограниченное $S \cup S_1$. Поскольку на S_1 z=0, интеграл по S_1 равен нулю. Значит,

$$\iint\limits_{S} yz \, dz dx = \iint\limits_{G} z \, dx dy dz.$$

Сделаем замену

$$\begin{cases} x = a\cos\psi\cos\varphi, \\ y = b\cos\psi\sin\varphi, & \varphi \in [0; 2\pi]; \psi \in \left[0; \frac{\pi}{2}\right] \text{ (t. K. } z \geqslant 0). \\ z = c\sin\psi, & \end{cases}$$

Тогда интеграл равен

$$\iint\limits_{C} y\,dxdydz = \int\limits_{0}^{2\pi} d\varphi \int\limits_{0}^{\pi/2} \frac{\sin 2\psi}{2}\,d\psi \int\limits_{0}^{1} cr \cdot abcr^{2}\,dr = \frac{\pi abc^{2}}{4}.$$

Криволинейные интегралы. Формула Грина. Формула Стокса

Определение 2.10. Пусть задана кривая: $\mathbf{r}:[a,b]\to\mathbb{R}^3;\ \mathbf{r}\in\mathbb{C}^1([a,b])$. Пусть на этой кривой определено векторное поле, зависящее от трех переменных $\mathbf{f}:\Gamma\subset\mathbb{R}^3\to\mathbb{R}^3$. Тогда следующий интеграл называется криволинейным интегралом $II\ poda$ от вектор-функции \mathbf{f} по кривой Γ :

$$\int_{\Gamma} (\mathbf{f}, d\mathbf{r}) = \int_{a}^{b} (\mathbf{f}, \mathbf{r}'(t)) dt.$$

Пусть векторное поле задано покоординатно:

$$\mathbf{f} = \begin{pmatrix} P(x(t), y(t), z(t)) \\ Q(x(t), y(t), z(t)) \\ R(x(t), y(t), z(t)) \end{pmatrix}.$$

Тогда криволинейный интеграл II рода можно расписать в следующем виде:

$$\int_{\Gamma} (\mathbf{f}, d\mathbf{r}) = \int_{\Gamma} P \, dx + Q \, dy + R \, dz =
= \int_{a}^{b} [P(x(t), y(t), z(t)) \cdot x'(t) + Q(x(t), y(t), z(t)) \cdot y'(t) + R(x(t), y(t), z(t)) \cdot z'(t)] dt.$$
(2)

18. Поймем для начала, чему равны P и Q в данной задаче. Множитель P стоит при dx, а Q — при dy. Тогда:

$$I = \int_{0}^{\pi} ((\sin t + 4\cos^{2} t)(-2\sin t) + (-2\cos t)\cos t)dt = \int_{0}^{\pi} (-2\sin^{2} t - 8\sin t\cos^{2} t - 2\cos^{2} t)dt =$$

$$= -2\pi - 8\int_{0}^{\pi} \cos^{2} t d(-\cos t) = -2\pi + \frac{8}{3}\cos^{3} t\Big|_{0}^{\pi} = -2\pi - \frac{16}{3}.$$

19.

Формула Грина. Пусть область G — ограничена, $G \subset \mathbb{R}^2$, ∂G состоит из конечного числа кусочно гладких кривых $\Gamma = \partial G$; $P,Q \in \mathbb{C}^1(G) \cap \mathbb{C}(\bar{G})$, направление обхода области положительное. Тогда:

$$\int_{\Gamma^+} P \, dx + Q \, dy = \iint_G (Q'_x - P'_y) \, dx dy.$$

В данной задаче $Q_x'=1;\; P_y'=x.$ По формуле Грина искомый интеграл равен:

$$\iint_G (1-x)\,dxdy = \left/ \begin{cases} x = r\cos\varphi, \\ y = r\sin\varphi, \end{cases} \right/ = \int\limits_{\pi/2}^\pi d\varphi \int\limits_0^1 (1-r\cos\varphi)rdr = \int\limits_{\pi/2}^\pi d\varphi \int\limits_0^1 rdr - \int\limits_{\pi/2}^\pi \cos\varphi d\varphi \int\limits_0^1 r^2dr = \frac{\pi}{4} + \frac{1}{3}.$$

20.

Формула Стокса. Пусть γ — плоский замкнутый кусочно-гладкий контур, S — кусочно-гладкая поверхность, натянутая на γ , \mathbf{a} — непрерывно дифференцируема в окрестности S. Ориентации γ и S согласованы по правилу буравчика (Вкручиваем буравчик по направлению ориентации γ . Если направление нормалей к поверхности совпадает с направлением буравчика, то все согласовано). Тогда справедлива формула Стокса:

$$\oint_{\gamma} (\mathbf{a}, d\mathbf{r}) = \iint_{S} (\operatorname{rot} \mathbf{a}, \mathbf{n}) dS.$$

Заметим, что L — это пересечение сферы и плоскости, т. е. окружность. Проверим, в нужную ли сторону направлены нормали к поверхности:

$$\mathbf{N} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \quad \mathbf{n} = \frac{\mathbf{N}}{N} = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}.$$

Поскольку $(\mathbf{n}, \mathbf{k}) > 0$, знак менять не нужно.

Векторное поле, как видим из условия, равно:

$$\mathbf{a} = \begin{pmatrix} y \\ z \\ x \end{pmatrix}.$$

Тогда

$$\operatorname{rot} \mathbf{a} = \begin{pmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ y & z & x \end{pmatrix} = [\nabla \times \mathbf{a}] = \begin{pmatrix} -1 \\ -1 \\ -1 \end{pmatrix}.$$

По формуле Стокса получаем

$$\oint_{\gamma}(\mathbf{n},d\mathbf{r}) = \iint_{S}(\operatorname{rot}\mathbf{a},\mathbf{n})\,dS = -\sqrt{3}\iint_{S}\,dS = -\sqrt{3}\pi R^{2}.$$

Аналитическая геометрия

Условия

Прямые и плоскости в пространстве

- 1. Составьте каноническое уравнение прямой, проходящей через точку M(1;2;1) параллельно прямой $x-y+z+3=0,\ 2x+4y+5=0.$
- **2.** Прямая l_1 проходит через точки $A_1(1;-1;1)$ и $A_2(0;3;4)$, а прямая l_2 через точки $B_1(-1;1;-7)$ и $B_2(-4;1;-6)$.

Найдите

- 1. угол между l_1 и l_2 ;
- 2. уравнение плоскости (в координатной форме), проходящей через точку M(0;0;4) и параллельной прямым l_1 и l_2 ;
- 3. расстояние между прямыми l_1 и l_2 .
- **3.** Найдите угол между прямой $\frac{x-1}{2} = y 2 = \frac{z+5}{3}$ и плоскостью 2x 3y + z = 7.
- **4.** Найдите уравнение плоскости, проходящей через прямую $\begin{cases} x-y+z=1,\\ x+3y-z=-2 \end{cases}$ и равноудаленной от точек M(0;0;1) и N(0;0;2).
- **5.** Составьте уравнение биссектральной плоскости того двугранного угла между плоскостями 3x + 4y + 12z 3 = 0 и 4x 12y 3z + 4 = 0, внутри которого лежит точка A(1; 2; 3).
- **6.** Найдите радиус-вектор точки пересечения прямой $[\mathbf{r}; \mathbf{a}] = \mathbf{b}$ и плоскости $(\mathbf{r}; \mathbf{n}) = D$.

Кривые второго порядка, их геометрические свойства

7. Запишите в каноническом виде и определите тип кривой второго порядка

$$9x^2 - 54x + 4y^2 + 40y + 145 = 0.$$

- 8. Составьте уравнение касательной к кривой $\frac{x^2}{36} \frac{y^2}{4} = 1$ в точке $M_0\left(-10; \frac{8}{3}\right)$.
- **9.** Составьте уравнения касательных к эллипсу $x^2 + \frac{y^2}{5} = 1$, проведенных из точки A(2;1), и найдите угол между ними.
- **10.** Какое множество точек комплексной плоскости задается уравнением $|z-2\sqrt{3}|+|z+2\sqrt{3}|=8\sqrt{3}$?

Разные задачи

- **11.** Определите тип поверхности второго порядка, заданного уравнением $z^2 = xy$.
- **12.** Напишите уравнение, задающее множество точек, равноудаленных от прямых l_1 : x=0, z=1 и l_2 : y=0, z=-1. Определите тип поверхности второго порядка, образованной этими точками.
- **13.** В прямоугольной системе координат найдите канонические уравнения прямолинейных образующих поверхности (x-y-3)(x+y+1)=5z, проходящих через точку A(-1;1;-1).
- **14.** Исследуйте на экстремум каждую непрерывно дифференцируемую функцию u = u(x; y), заданную неявно условиями: $3x^2 + y^2 + u^2 6x 4y 6u + 15 = 0$.

Ответ

Прямые и плоскости в пространстве

1.
$$\frac{x-1}{-2} = \frac{y-2}{1} = \frac{z-1}{3}$$
.

2. 1)
$$\arccos \frac{3}{\sqrt{65}}$$
; 2) $x - 2y + 3z - 12 = 0$; 3) $\frac{30}{\sqrt{14}}$.

3.
$$\arcsin \frac{2}{7}$$
.

4.
$$2x + 2y + 1 = 0$$
 или $4y - 2z + 3 = 0$.

5.
$$7x - 8y + 9z + 1 = 0$$
.

$$\mathbf{6.}\ \frac{[\mathbf{a};\mathbf{b}]}{(\mathbf{a};\mathbf{a})} + \mathbf{a}\left(\frac{D}{(\mathbf{a};\mathbf{n})} - \frac{(\mathbf{a};\mathbf{b};\mathbf{n})}{(\mathbf{a};\mathbf{a})\cdot(\mathbf{a};\mathbf{n})}\right).$$

Кривые второго порядка, их геометрические свойства

7.
$$\frac{x'^2}{3^2} + \frac{y'^2}{2^2} = 1$$
, $x' = y + 5$, $y' = x - 3$, эллипс.

$$8. \ 5x + 12y + 18 = 0.$$

9.
$$2x - y - 3 = 0$$
 и $2x + 3y - 7 = 0$, $\arccos \frac{1}{\sqrt{65}}$.

10. Эллипс
$$\frac{x^2}{48} + \frac{y^2}{36} = 1$$
.

Разные задачи

11. Konyc.

12.
$$4z = x^2 - y^2$$
 — гиперболический параболоид.

13.
$$\frac{x+1}{1} = \frac{y-1}{1} = \frac{z+1}{-2}$$
 и $\frac{x+1}{5} = \frac{y-1}{-5} = \frac{z+1}{2}$.

14.
$$u_1(1;2) = 4$$
 — максимум; $u_2(1;2) = 2$ — минимум.

Решения

Прямые и плоскости в пространстве

1. Прямая l_1 , параллельная искомой прямой l, задается как пересечение двух плоскостей

$$\begin{cases} x - y + z + 3 = 0, \\ 2x + 4y + 5 = 0. \end{cases}$$

Выразим x и z через y:

$$\begin{cases} x = -2y - \frac{5}{2}, \\ z = 3y - \frac{1}{2}. \end{cases}$$

Значит, направляющий вектор прямых l, и l_1

$$\mathbf{a} = \begin{pmatrix} -2\\1\\3 \end{pmatrix}.$$

Уравнение прямой с направляющим вектором ${\bf a}$, проходящей через точку M(1;2;1):

$$\frac{x-1}{-2} = \frac{y-2}{1} = \frac{z-1}{3}.$$

Замечание Не сказано, что мы работаем в прямоугольной декартовой системе координат (ПДСК), поэтому \mathbf{a} нельзя искать как векторное произведение векторов $\begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$ и $\begin{pmatrix} 0 \\ 2 \\ 4 \end{pmatrix}$, так как эти векторы могут не быть нормалями к соответствующим плоскостям.

2. Так как нужно найти угол и расстояние, имеется в виду, что в задаче ПДСК. Параметрическое уравнение прямой:

$$\mathbf{r} = \mathbf{r_0} + \mathbf{a}t.$$

(а) Направляющие векторы прямых:

$$l_1: \quad \mathbf{a_1} = \overrightarrow{A_1 A_2} = \begin{pmatrix} -1 \\ 4 \\ 3 \end{pmatrix}, \qquad l_2: \quad \mathbf{a_2} = \overrightarrow{B_1 B_2} = \begin{pmatrix} -3 \\ 0 \\ -1 \end{pmatrix}.$$

Обозначим угол между прямыми l_1 , l_2 через φ , угол между векторами \mathbf{a}_1 , \mathbf{a}_2 через ψ . Угол между прямыми всегда не больше 90°, поэтому $\cos \varphi = |\cos \psi|$. Значит,

$$\cos\varphi = \frac{|(\mathbf{a}_1,\mathbf{a}_2)|}{|\mathbf{a}_1||\mathbf{a}_2|} = \frac{|(-1)\cdot(-3)+0+3\cdot1|}{\sqrt{1^2+4^2+3^2}} = \frac{3}{\sqrt{65}}, \quad \Longrightarrow \quad \varphi = \arccos\frac{3}{\sqrt{65}}.$$

(b) Если направляющие векторы плоскости — это \mathbf{a}_1 , \mathbf{a}_2 , и она проходит через точку с радиус-вектором \mathbf{r}_0 , то уравнение этой плоскости имеет вид

$$(\mathbf{r} - \mathbf{r}_0, \, \mathbf{a}_1, \, \mathbf{a}_2) = 0 \iff \begin{vmatrix} x - x_0 & y - y_0 & z - z_0 \\ a_{1x} & a_{1y} & a_{1z} \\ a_{2x} & a_{2y} & a_{2z} \end{vmatrix} = 0.$$

В данной задаче $x_0 = 0, y_0 = 0, z_0 = 4$, поэтому уравнение плоскости:

$$\begin{vmatrix} x & y & z - 4 \\ a_{1x} & a_{1y} & a_{1z} \\ a_{2x} & a_{2y} & a_{2z} \end{vmatrix} = 0 \iff \begin{vmatrix} x & y & z - 4 \\ -1 & 4 & 3 \\ -3 & 0 & -1 \end{vmatrix} = 0 \iff x - 2y + 3z - 12 = 0.$$

(c) Пусть точки M_1 , M_2 лежат на скрещивающихся прямых l_1 , l_2 с направляющими векторами \mathbf{a}_1 , \mathbf{a}_2 . Расстояние между прямыми равно высоте в параллелепипеде, образованном векторами $\overline{M_1M_2}$, \mathbf{a}_1 , \mathbf{a}_2 . Высота, в свою очередь, равна отношению объема этого параллелепипеда к площади основания, образованного векторами \mathbf{a}_1 , \mathbf{a}_2 . Возьмем в качестве M_1 точку A_1 , а в качестве M_2 точку B_1 . Тогда

$$V = (\mathbf{r}_1 - \mathbf{r}_2, \mathbf{a}_1, \mathbf{a}_2) = \begin{vmatrix} 2 & -2 & 8 \\ -1 & 4 & 3 \\ -3 & 0 & 1 \end{vmatrix} = 120, \quad [\mathbf{a}_1, \mathbf{a}_2] = \begin{pmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ -1 & 4 & 3 \\ -3 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 4 \\ -8 \\ 12 \end{pmatrix}, \quad S = |[\mathbf{a}_1, \mathbf{a}_2]| = 4\sqrt{14}.$$

Значит.

$$\rho = \frac{V}{S} = \frac{30}{\sqrt{14}}.$$

3. Так как нужно найти угол и расстояние, имеется в виду ПДСК. Обозначим данную прямую через l, данную плоскость через α , угол между ними через φ , а угол между направляющим вектором **a** прямой и вектором нормали **n** плоскости через ψ . Тогда $\sin \varphi = |\cos \psi|$. Значит,

$$\sin \varphi = \frac{|(\mathbf{a}, \mathbf{n})|}{|\mathbf{a}||\mathbf{n}|} = \frac{|2 \cdot 2 + 1 \cdot (-3) + 3 \cdot 1|}{|\sqrt{2^2 + 1^2 + 3^2}||\sqrt{2^2 + (-3)^2 + 1^2}|} = \frac{2}{7}.$$

4. Возможны два случая: плоскость α_1 пересекает MN в точке A, плоскость α_2 параллельна MN.

Случай 1. Точка A — это середина отрезка MN. Найдем направляющий вектор данной прямой:

$$\begin{cases} 2x + 2y = -1, \\ x - y + z = 1 \end{cases} \iff \begin{cases} x = -y - \frac{1}{2}, \\ z = 2y + \frac{3}{2}, \end{cases} \implies \mathbf{a} = \begin{pmatrix} -1 \\ 1 \\ 2 \end{pmatrix}.$$

Выберем на прямой точку K с координатами (-1/2;0;3/2). Тогда в качестве второго направляющего вектора возьмем \overrightarrow{AK} . Значит, уравнение плоскости α_1 :

$$\begin{vmatrix} x - 0 & y - 0 & z - 3/2 \\ -1 & 1 & 2 \\ -1/2 & 0 & 0 \end{vmatrix} = 0 \iff 4y - 2z + 3 = 0.$$

Случай 2. Плоскость α_2 проходит через точку K и параллельна MN и **a**. Значит, ее уравнение:

$$\begin{vmatrix} x+1/2 & y-0 & z-3/2 \\ 0 & 0 & 1 \\ -1 & 1 & 2 \end{vmatrix} = 0 \iff 2x+2y+1 = 0.$$

5. Так как нужно составить уравнение биссектральной плоскости, имеется в виду ПДСК.

Расстояние от точки $M_0(x_0, y_0, z_0)$ до плоскости, заданной уравнением $\alpha: ax+by+cz+d=0$, вычисляется по формуле

$$\rho(M_0, \alpha) = \frac{|ax_0 + by_0 + cz_0 + d|}{\sqrt{a^2 + b^2 + c^2}}.$$

Обозначим плоскости, заданные в условии, через α_1 и α_2 . Уравнение на биссектральные плоскости имеет вид $\rho(M,\alpha_1)=\rho(M,\alpha_2)$.

$$\frac{|3x+4y+12z-3|}{\sqrt{3^2+4^2+12^2}} = \frac{|4x-12y-3z+4|}{\sqrt{3^2+4^2+12^2}} \iff \begin{bmatrix} x-16y-15z+7=0, \\ 7x-8y+9z+1=0. \end{bmatrix}$$

Обозначим полученные плоскости через β_1 и β_2 соответственно. Рассмотрим часть пространства Π , которая задается неравенством

$$(3x + 4y + 12z - 3)(4x - 12y - 3z + 4) \le 0.$$

Если подставить точку A(1,2,3), неравенство будет выполнено, значит, $A \in \Pi$. Если подставить точку $C(-7,0,0) \in \beta_1$, неравенство не будет выполнено, значит, искомая плоскость — это не β_1 , а β_2 .

6. Обозначим данную прямую через l, данную плоскость через α . Уравнение прямой в параметрическом виде: $\mathbf{r} = \mathbf{r}_0 + \mathbf{a}t$. Ищем \mathbf{r}_0 в виде $\mathbf{r}_0 = t[\mathbf{a}, \mathbf{b}]$. Подставим в уравнение прямой из условия:

$$\mathbf{b} = [t[\mathbf{a}, \mathbf{b}], \mathbf{a}] = -t[\mathbf{a}, [\mathbf{a}, \mathbf{b}]] = -t(\mathbf{a}(\mathbf{a}, \mathbf{b}) - \mathbf{b}(\mathbf{a}, \mathbf{a})) = t(\mathbf{a}, \mathbf{a})\mathbf{b}, \implies t = \frac{1}{(\mathbf{a}, \mathbf{a})}.$$

Здесь была использована следующая формула:

Теорема 3.1 («бац-цаб»). Для любых векторов a, b, c выполнено равенство

$$[\mathbf{a}, [\mathbf{b}, \mathbf{c}]] = \mathbf{b}(\mathbf{a}, \mathbf{c}) - \mathbf{c}(\mathbf{a}, \mathbf{b}).$$

Значит,

$$\mathbf{r}_0 = \frac{[\mathbf{a}, \mathbf{b}]}{(\mathbf{a}, \mathbf{a})}.$$

Обозначим точку пересечения l с α через M. Тогда $\mathbf{r}_M = \mathbf{r}_0 + \mathbf{a}t_M$ удовлетворяет уравнению плоскости:

$$(\mathbf{r}_0 + \mathbf{a}t_M, \mathbf{n}) = D \iff t_M = \frac{D - (\mathbf{r}_0, \mathbf{n})}{(\mathbf{a}, \mathbf{n})}.$$

Значит, радиус-вектор точки M равен

$$\mathbf{r}_M = \frac{[\mathbf{a}, \mathbf{b}]}{(\mathbf{a}, \mathbf{a})} + \mathbf{a} \frac{D - (\mathbf{r}_0, \mathbf{n})}{(\mathbf{a}, \mathbf{n})}.$$

Кривые второго порядка, их геометрические свойства

7. Требуется преобразовать систему координат, т. е. повернуть координатные оси и сместить начало координат так, чтобы получилось каноническое уравнение кривой второго порядка. Так как в данной задаче нет слагаемого с xy, поворачивать координатные оси не нужно. Выделим полные квадраты:

$$9x^2 - 54x + 4y^2 + 40y + 145 = 0 \iff 9(x^2 - 6x + 9) + 4(y^2 + 10y + 25) = 6 \iff \frac{(x-3)^2}{2^2} + \frac{(y+5)^2}{3^2} = 1.$$

Тогда получаем эллипс

$$\frac{x'^2}{3^2} + \frac{y'^2}{2^2} = 1$$
, где $x' = y + 5$, $y' = x - 3$.

8.

Уравнение касательной к кривой, заданной уравнением $\frac{x^2}{a^2} \pm \frac{y^2}{b^2} = 1$, имеет вид

$$\frac{xx_0}{a^2} \pm \frac{yy_0}{b^2} = 1.$$

Подставив координаты точки M_0 , получим

$$\frac{x(-10)}{36} - \frac{y(8/3)}{4} = 1 \quad \Longleftrightarrow \quad 5x + 12y + 18 = 0.$$

9. Обозначим искомые касательные через l_1 , l_2 . Предположим, что эти прямые не параллельны оси y. Тогда уравнения этих прямых имеют вид

$$l_{1,2}: y-1=k_{1,2}(x-2).$$

Выразим у и подставим в уравнение эллипса:

$$5x^2 + (1 + k_{1,2}(x-2))^2 = 5 \iff (k^2 + 5)x^2 + 2(k-2k^2)x + 4k^2 - 4k - 4 = 0.$$

Чтобы прямые $l_{1,2}$ были касательными, это уравнение должно иметь единственное решение. Значит,

$$\frac{D}{4} = (k-2k^2)^2 - (k^2+5)(4k^2-4k-4) = -15k^2 + 20k + 20 = 0 \iff k = -\frac{2}{3} \text{ или } k = 2.$$

Уравнения прямых $l_{1,2}$:

$$l_1: y = 1 + 2(x - 2), l_2: y = 1 - \frac{2}{3}(x - 2).$$

Так как нашлось две прямых, случай вертикальной касательной рассматривать не нужно.

Геометрический смысл углового коэффициента — тангенс угла наклона прямой: $k_1 = \operatorname{tg} \alpha_1$, $k_2 = \operatorname{tg} \alpha_2$. Значит, тангенс угла между прямыми равен

$$\operatorname{tg} \varphi = |\operatorname{tg}(\alpha_1 - \alpha_2)| = \left| \frac{\operatorname{tg} \alpha_1 - \operatorname{tg} \alpha_2}{1 + \operatorname{tg} \alpha_1 \operatorname{tg} \alpha_2} \right| = 8.$$

Следовательно,

$$\varphi = \operatorname{arctg} 8 = \operatorname{arccos} \frac{1}{65}.$$

10. Вспомним фокальное свойство эллипса: для любой точки M, принадлежащей эллипсу, выполнено равенство

$$|F_1M| + |F_2M| = 2a.$$

Уравнение из условия имеет вид

$$|z - z_1| + |z - z_2| = \text{const}, \quad z_1 = 2\sqrt{3}, z_2 = -2\sqrt{3}.$$

Видно, что это эллипс. Расстояние от центра эллипса до фокусов равно $c = 2\sqrt{3}$, большая полуось равна $a = 4\sqrt{3}$. Тогда $b = \sqrt{a^2 - c^2} = 6$. Значит, каноническое уравнение этого эллипса:

$$\frac{x^2}{48} + \frac{y^2}{36} = 1.$$

Разные задачи

11. Сделаем замену переменных

$$x = \frac{1}{\sqrt{2}}(x' - y'), \quad y = \frac{1}{\sqrt{2}}(x' + y').$$

Получаем уравнение

$$z'^2 = \frac{1}{2}(x'^2 - y'^2) \iff \frac{x'^2}{2} - \frac{y'^2}{2} - z'^2 = 0.$$

Это уравнение конуса с осью Ox'

12. Ищем такие точки M(x,y,z), что $\rho(M,l_1)=\rho(M,l_2)$. Прямая l_1 параллельна Oy, а прямая l_2 параллельна Ox. Отсюда видно, что это уравнение эквивалентно

$$(x-0)^2 + (z-1)^2 = (y-0)^2 + (z-(-1))^2 \iff 4z = x^2 - y^2.$$

Это уравнение гиперболического парабалоида.

13. Обозначим поверхность из условия через γ . Заметим, что $A \in \gamma$. Прямолинейные образующие задаются уравнениями

$$l_1: \begin{cases} \alpha(x-y-3) = 5z, \\ x+y+1 = \alpha, \end{cases}$$
 $l_2: \begin{cases} \alpha(x+y+1) = 5z, \\ x-y-3 = \alpha. \end{cases}$

Подставив координаты точки A в первую систему, находим $\alpha_1 = 1$. Если подставить координаты точки A во вторую систему, получится $\alpha_2 = -5$. Значит, уравнения образующих:

$$l_1: \quad \begin{cases} x-y-3=5z, \\ x+y+1=1, \end{cases} \qquad l_2: \quad \begin{cases} x+y+1=-z, \\ x-y-3=-5. \end{cases}$$

Приведем их к каноническому виду:

$$l_1: \quad \frac{x+1}{1} = \frac{y-1}{1} = \frac{z+1}{-2}, \qquad l_2: \quad \frac{x+1}{5} = \frac{y-1}{-5} = \frac{z+1}{2}.$$

14. Выделим полный квадрат в уравнении из условия:

$$3x^2 + y^2 + u^2 - 6x - 4y - 6u + 15 = 0 \iff 3(x-1)^2 + (y-2)^2 + (u-3)^2 = 1.$$

Выразим u:

$$u_{1,2} = 3 \pm \sqrt{1 - 3(x - 1)^2 - (y - 2)^2}.$$

Получилось, что u_1 и u_2 задают верхнюю и нижнюю половины эллипсоида соответственно. Отсюда видно, что $u_1(1;2) = 4$ — максимум; $u_2(1;2) = 2$ — минимум.

Линейная алгебра Содержание

Линейная алгебра

Условия

Системы линейных алгебраических уравнений

1. (2018) Найдите общее решение СЛУ, укажите частное решение и ФСР однородной системы:

$$\begin{cases} 3x_1 + 2x_2 + x_3 - x_4 = 7, \\ -2x_1 + 3x_2 + 12x_3 + 2x_5 = 18. \end{cases}$$

2. (2019) Определите, при каких значениях параметра λ система уравнений несовместна:

$$\begin{cases} 2x_1 - x_2 - 5x_3 = -1; \\ x_1 - 2x_2 - 4x_3 = 1; \\ -2x_1 - 2x_2 + 2x_3 = \lambda. \end{cases}$$

Линейные пространства

- 3. (2018) В евклидовом пространстве подпространство L задано системой линейных уравнений с матрицей $\begin{pmatrix} 1 & 1 & 1 & -17 \\ 2 & -13 & 0 & 1 \end{pmatrix}$ в ОНБ. Найдите базис в ортогональном дополнении L^\perp пространства L.
- **4.** (2003) Подпространство L_1 есть линейная оболочка векторов (4,2,1), (2,-1,-5), (-1,4,0), а подпространство L_2 есть линейная оболочка векторов (-2,3,1), (5,3,13), (7,0,12). Найдите размерность подпространств $L_1 + L_2$, $L_1 \cap L_2$.
- **5.** Докажите, что многочлены 1, t, t^2-1 , t^3-t образуют базис e' в пространстве многочленов третьей степени. Найдите матрицы перехода от e' к стандартному базису $e=(1,t,t^2,t^3)$ и от e к e'. Найдите координаты многочлена $-2t+t^2+t^3$ в обоих базисах.

Линейные отображения

- **6.** (2017) Пространства многочленов M и N заданы базисами: $M = \langle 1, t+t^2, t^2+t^3, t^3 \rangle, \ N = \langle 2, t, 3t^2 \rangle.$ Пусть $\varphi: M \to N$ отображение дифференцирования. Найдите матрицу отображения φ в заданных базисах. Найдите ядро и образ отображения φ . Исследуйте его сюръективность и инъективность.
- 7. Пусть $M_{2\times 2}$ пространство матриц размера 2×2 , а $M_{2\times 1}$ пространство матриц размера 2×1 . Найдите ядро и образ линейного отображения $\varphi:M_{2\times 2}\to M_{2\times 1}$, заданного правилом $\varphi(x)=x^T\begin{pmatrix} -1\\2\end{pmatrix}$.
- 8. (2001) Числа 0, 2 и -1 собственные значения матрицы $A = \begin{pmatrix} 1 & -2 & -1 \\ -1 & 1 & 1 \\ 1 & 0 & -1 \end{pmatrix}$. Найдите соответствующие собственные векторы.
- 9. (2002, 2003) Линейное преобразование $\varphi(\mathbf{x}) = A\mathbf{x}$, $\mathbf{x} \in \mathbb{R}^2$ задано в базисе векторов $(1,0)^T$, $(0,1)^T$ матрицей $A = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$. Найдите базис, в котором матрица преобразования φ имеет диагональный вид. Выпишите этот вид. Является ли преобразование, заданное матрицей A в ОНБ самосопряжённым? Ортогональным? Вычислите A^k для натуральных k.

Квадратичные формы

- **10.** (2020) Квадратичная форма $k(x_1, x_2, x_3) = 2x_1^2 + 3x_3^2 x_1x_2$ задана в базисе (e_1, e_2, e_3) . Запишите её в базисе (e_1', e_2', e_3') , если $e_1 = e_1' + e_2' + e_3'$, $e_2 = e_1' + e_2'$, $e_3 = e_1' + e_3'$.
- **11.** (2004) Приведите квадратичную форму $x_1^2 5x_2^2 + x_3^2 + 4x_1x_2 + 2x_1x_3 + 10x_2x_3$ к каноническому виду с помощью метода Лагранжа или элементарных преобразований её матрицы.
- **12.** (2017) Квадратичная функция $6x_1x_2 + 3x_3^2$ записана в ортонормированном базисе трёхмерного евклидова пространства. Найдите ортонормированный базис, в котором она имеет диагональный вид, и напишите этот вид. Исследуйте функцию на знакоопределённость.

Линейная алгебра

Ответы

Содержание

Системы линейных алгебраических уравнений

$$\mathbf{1.} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 8 \\ 0 \\ 0 \\ 17 \end{pmatrix} + \begin{pmatrix} -7/4 & -7/2 \\ 1 & 0 \\ 0 & 1 \\ -13/4 & -19/2 \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \end{pmatrix}.$$

2. Система несовместна при $\lambda \neq 4$

Линейные пространства

$$\mathbf{3.} \begin{pmatrix} 1 \\ 1 \\ 1 \\ -17 \end{pmatrix}, \begin{pmatrix} 2 \\ -13 \\ 0 \\ 1 \end{pmatrix}.$$

4. $\dim(L_1 + L_2) = 3$, $\dim(L_1 \cap L_2) = 2$.

5.
$$S_{e \to e'} = \begin{pmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, S_{e' \to e} = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \xi = \begin{pmatrix} 0 \\ -2 \\ 1 \\ 1 \end{pmatrix}, \xi' = \begin{pmatrix} 1 \\ -1 \\ 1 \\ 1 \end{pmatrix}.$$

Линейные отображения

6. Ker $\varphi = \langle 1 \rangle$, Im $\varphi = N$, φ сюръективно и не инъективно.

7. Im
$$\varphi = M_{2\times 1}$$
, Ker $\varphi = \left\{ A = \begin{pmatrix} 2z & 2w \\ z & w \end{pmatrix} \middle| z, w \in \mathbb{R} \right\}$.

8.
$$v_1 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, v_2 = \begin{pmatrix} 3 \\ -2 \\ 1 \end{pmatrix}, v_3 = \begin{pmatrix} 0 \\ -1 \\ 2 \end{pmatrix}.$$

9. $S = \frac{1}{\sqrt{2}} \begin{pmatrix} -1 & 1 \\ 1 & 1 \end{pmatrix}$, $S^{-1}AS = \begin{pmatrix} 1 & 0 \\ 0 & 3 \end{pmatrix}$, $A^k = \frac{1}{2} \begin{pmatrix} 3^k + 1 & 3^k - 1 \\ 3^k - 1 & 3^k + 1 \end{pmatrix}$, преобразование является самосопряженным, не является ортогональным.

Квадратичные формы

10.
$$k(\xi_1, \xi_2, \xi_3) = 6\xi_1^2 + 5\xi_2^2 + 3\xi_3^2 - 11\xi_1\xi_2 - 6\xi_1\xi_3 + 5\xi_2\xi_3$$
.

11.
$$k(\xi_1,\xi_2,\xi_3)=\xi_1^2-\xi_2^2+\xi_3^2$$
, где $\xi_1=x_1+2x_2+x_3,\ \xi_2=3x_2-x_3,\ \xi_3=x_3.$

12.
$$S = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 0 & 1 \\ 1 & 0 & -1 \\ 0 & \sqrt{2} & 0 \end{pmatrix}$$
, $B' = S^T B S = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & -3 \end{pmatrix}$, форма не знакоопределенная.

Линейная алгебра Содержание

Решения

Системы линейных алгебраических уравнений

1. Перепишем систему в матричном виде и приведем к упрощенному виду:

$$\begin{pmatrix} 3 & 2 & 1 & -1 & 7 \\ -2 & 3 & 12 & 2 & 18 \end{pmatrix} \sim \begin{pmatrix} 3 & 2 & 1 & -1 & 7 \\ 4 & 7 & 14 & 0 & 32 \end{pmatrix} \sim \begin{pmatrix} 0 & 13/4 & 19/2 & 1 & 17 \\ 1 & 7/4 & 7/2 & 0 & 8 \end{pmatrix}.$$

Решение неоднородной системы линейных уравнений есть сумма частного решения и произведения фундаментальной матрицы системы на столбец констант:

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 8 \\ 0 \\ 0 \\ 17 \end{pmatrix} + \begin{pmatrix} -7/4 & -7/2 \\ 1 & 0 \\ 0 & 1 \\ -13/4 & -19/2 \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \end{pmatrix}.$$

Чтобы понять, как написана фундаментальная матрица, рассмотрим первое уравнение в упрощенной системе:

 $\frac{13}{4}x_2 + \frac{19}{2}x_3 + x_4 = 17.$

Из второй и третьей строки ответа следует, что $x_2 = c_1$, $x_3 = c_2$, поэтому, если посмотреть на четвертую строку ответа, действительно получится это же уравнение:

$$x_4 = 17 - \frac{13}{4}c_1 - \frac{19}{2}c_2 \quad \Longleftrightarrow \quad x_4 = 17 - \frac{13}{4}x_2 - \frac{19}{2}x_3 \quad \Longleftrightarrow \quad \frac{13}{4}x_2 + \frac{19}{2}x_3 + x_4 = 17.$$

2. Перепишем систему в матричном виде и упростим:

$$\begin{pmatrix} 2 & -1 & -5 & | & -1 \\ 1 & -2 & -4 & | & 1 \\ -2 & -2 & 2 & | & \lambda \end{pmatrix} \sim \begin{pmatrix} 0 & 3 & 3 & | & -3 \\ 1 & -2 & -4 & | & 1 \\ 0 & -3 & -3 & | & \lambda - 1 \end{pmatrix}.$$

Система совместна при $\lambda - 1 = 3$, т. е. при $\lambda = 4$. При $\lambda - 1 \neq 3$ ранг расширенной матрицы больше ранга основной матрицы системы, значит, система несовместна по теореме Кронекера–Капелли.

При $\lambda = 4$ система принимает вид:

$$\begin{pmatrix} 1 & -2 & -4 & | & 1 \\ 0 & 1 & 1 & | & -1 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & -2 & | & -1 \\ 0 & 1 & 1 & | & -1 \end{pmatrix} \implies \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} -1 \\ -1 \\ 0 \end{pmatrix} + c \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix}.$$

Линейные пространства

3. Система уравнений имеет вид

$$\begin{pmatrix} 1 & 1 & 1 & -17 \\ 2 & -13 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = 0.$$

Обозначим первую строку матрицы через a_1^T , а вторую через a_2^T . Тогда система эквивалентна

$$\begin{cases} \langle a_1, x \rangle = 0, \\ \langle a_2, x \rangle = 0. \end{cases}$$

Тем самым подпространство L состоит из всех векторов, ортогональных a_1 и a_2 . Значит, ортогональное дополнение L^{\perp} есть линейная оболочка векторов a_1 и a_2 .

Заметим, что ранг матрицы, задающей L, равен двум, так как в ней есть невырожденная подматрица

$$\begin{pmatrix} 1 & -17 \\ 0 & 1 \end{pmatrix}.$$

Значит, a_1 и a_2 линейно независимы, следовательно, они образуют базис в L^{\perp} .

4. $\dim(L_1 + L_2) = 3$, если мы сможем найти среди этих шести векторов три линейно независимых:

$$\det \begin{pmatrix} 7 & 0 & 12 \\ -1 & 4 & 0 \\ 2 & -1 & -5 \end{pmatrix} = \det \begin{pmatrix} 7 & 0 & 12 \\ 1 & -4 & 0 \\ 0 & 7 & -5 \end{pmatrix} = 7 \cdot ((-4) \cdot (-5) - 0) + 12 \cdot (7) = 7 \cdot (20 + 12) \neq 0.$$

Значит, действительно, $\dim(L_1 + L_2) = 3$.

Найдем размерность L_2 . Второй вектор равен сумме первого и третьего. При этом первый и третий векторы линейно независимы, так как матрица, составленная из них, содержит невырожденную подматрицу

$$\begin{pmatrix} 7 & 0 \\ -2 & 3 \end{pmatrix}.$$

Значит, $\dim L_2 = 2$.

Найдем ранг системы векторов, порождающих L_1 :

$$\begin{pmatrix} 4 & 2 & 1 \\ 2 & -1 & -5 \\ -1 & 4 & 0 \end{pmatrix} \sim \begin{pmatrix} 0 & 4 & 11 \\ 0 & 7 & -5 \\ -1 & 4 & 0 \end{pmatrix}.$$

Это невырожденная матрица, значит, $\dim L_1 = 3$.

Поскольку $\dim L_1=3, L_1\cap L_2=L_2$, поэтому $\dim L_1\cap L_2=\dim L_2=2$. В общем случае, зная размерности L_1, L_2 и L_1+L_2 , размерность пересечения $L_1\cap L_2$ можно найти с помощью формулы

$$\dim(L_1+L_2)=\dim L_1+\dim L_2-\dim(L_1\cap L_2),\quad \Longrightarrow\quad \dim(L_1\cap L_2)=2.$$

5. В базисе e многочлен $-2t + t^2 + t^3$ имеет вид

$$\xi = \begin{pmatrix} 0 \\ -2 \\ 1 \\ 1 \end{pmatrix}.$$

Столбцы матрицы перехода $S_{e o e'}$ — это координатные столбцы векторов e' в базисе e:

$$S_{e \to e'} = \begin{pmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

Чтобы выписать матрицу перехода от e' к e выразим векторы e_i через e'_i :

$$e_1 = e_1', \quad e_2 = e_2', \quad e_3 = e_3' + e_1', \quad e_4 = e_4' + e_2'.$$

Значит, матрица перехода $S_{e'
ightarrow e}$ имеет вид

$$S_{e' \to e} = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

Можно заметить, что $S_{e'\to e} = (S_{e\to e'})^{-1}$. Так как мы смогли выразить векторы базиса e через векторы e', система векторов e' действительно образует базис.

Найдем координатный столбец многочлена $-2t + t^2 + t^3$ в базисе e'.

$$\xi = S_{e \to e'} \xi' \quad \Longleftrightarrow \quad \xi' = (S_{e \to e'})^{-1} = \begin{pmatrix} 1 \\ -1 \\ 1 \\ 1 \end{pmatrix}.$$

Линейные отображения

6. Многочлены будем записывать столбцами в стандартном базисе:

$$M = \left\langle \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} \right\rangle, \quad N = \left\langle \begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 3 \end{pmatrix} \right\rangle.$$

Обозначим векторы базиса в M через e_1, e_2, e_3, e_4 , а векторы базиса в N через g_1, g_2, g_3 . Тогда φ задается матрицей

 $(\varphi(e_1) \quad \varphi(e_2) \quad \varphi(e_3) \quad \varphi(e_4)),$

где $\varphi(e_i)$ — координатные столбцы образов базисных векторов в базисе g_1, g_2, g_3 . Получаем матрицу отображения φ :

 $\begin{pmatrix} 0 & 1/2 & 0 & 0 \\ 0 & 2 & 2 & 0 \\ 0 & 0 & 1 & 1 \end{pmatrix}.$

Видно, что $e_1 \in \operatorname{Ker} \varphi$. Последние три столбца линейно независимы.

Пусть $x = \alpha_1 e_1 + \alpha_2 e_2 + \alpha_3 e_3 + \alpha_4 e_4 \in \text{Ker } \varphi$. Тогда $\varphi(x) = \alpha_2 \varphi(e_2) + \alpha_3 \varphi(e_3) + \alpha_4 (e_4) = 0$. Значит, так как $\varphi(e_2), \varphi(e_3), \varphi(e_4)$ линейно независимы, $\alpha_2 = \alpha_3 = \alpha_4$. Следовательно, $\text{Ker } \varphi = \langle e_1 \rangle$.

Так как $\varphi(e_2), \varphi(e_3), \varphi(e_4)$ линейно независимы, $\dim \operatorname{Im} \varphi = 3 = \dim N$. Следовательно, $\operatorname{Im} \varphi = N$.

Так как в ядре ${\rm Ker}\, \varphi$ есть ненулевой вектор, отображение φ не инъективно. Так как образ совпадает ${\rm Im}\, \varphi$ с N, отображение φ сюръективно.

7. Введем базис в $M_{2\times 2}$:

$$e_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \quad e_2 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad e_3 = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \quad e_4 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}.$$

Образы этих базисных векторов:

$$\varphi(e_1) = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} -1 \\ 2 \end{pmatrix} = \begin{pmatrix} -1 \\ 0 \end{pmatrix}, \quad \varphi(e_2) = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} -1 \\ 2 \end{pmatrix} = \begin{pmatrix} 0 \\ -1 \end{pmatrix},$$
$$\varphi(e_3) = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} -1 \\ 2 \end{pmatrix} = \begin{pmatrix} 2 \\ 0 \end{pmatrix}, \quad \varphi(e_4) = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} -1 \\ 2 \end{pmatrix} = \begin{pmatrix} 0 \\ 2 \end{pmatrix}.$$

Матрица отображения φ :

$$\begin{pmatrix} -1 & 0 & 2 & 0 \\ 0 & -1 & 0 & 2 \end{pmatrix}$$

Таким образом, φ действует на произвольную матрицу $A = \begin{pmatrix} x & y \\ z & w \end{pmatrix}$ по формуле:

$$\varphi\left(A\right) = \begin{pmatrix} -1 & 0 & 2 & 0 \\ 0 & -1 & 0 & 2 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ w \end{pmatrix}.$$

Ранг матрицы отображения φ равен двум, поэтому dim Im $\varphi = 2$. Следовательно, Im $\varphi = M_{2\times 1}$.

Матрица $A = \begin{pmatrix} x & y \\ z & w \end{pmatrix}$ лежит в $\operatorname{Ker} \varphi$, если и только если:

$$\begin{pmatrix} -1 & 0 & 2 & 0 \\ 0 & -1 & 0 & 2 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ w \end{pmatrix} = 0 \iff \begin{cases} x = 2z, \\ y = 2w. \end{cases}$$

Тем самым,

$$\operatorname{Ker} \varphi = \left\{ A = \begin{pmatrix} 2z & 2w \\ z & w \end{pmatrix} \middle| z, w \in \mathbb{R} \right\}.$$

8. Так как все три собственных значения различны, каждое собственное подпространство имеет размерность 1. Собственные векторы ищутся из системы $(A - \lambda I)v = 0$.

$$\lambda_1 = 0: \quad \begin{pmatrix} 1 & -2 & -1 \\ -1 & 1 & 1 \\ 1 & 0 & -1 \end{pmatrix} \sim \begin{pmatrix} 1 & -2 & -1 \\ -1 & 1 & 1 \\ 0 & 1 & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{pmatrix}, \quad \Longrightarrow \quad v_1 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}.$$

$$\lambda_2 = 2: \quad \begin{pmatrix} -1 & -2 & -1 \\ -1 & -1 & 1 \\ 1 & 0 & -3 \end{pmatrix} \sim \begin{pmatrix} -1 & -2 & -1 \\ 0 & 1 & 2 \\ 1 & 0 & -3 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & -3 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \end{pmatrix}, \quad \Longrightarrow \quad v_2 = \begin{pmatrix} 3 \\ -2 \\ 1 \end{pmatrix}.$$

$$\lambda_3 = -1:$$
 $\begin{pmatrix} 2 & -2 & -1 \\ -1 & 2 & 1 \\ 1 & 0 & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1/2 \\ 0 & 1 & 1/2 \end{pmatrix}, \implies v_3 = \begin{pmatrix} 0 \\ -1 \\ 2 \end{pmatrix}.$

9. Так как матрица A симметрична, преобразование самосопряженное. Так как столбцы A не представляют собой векторы ортонормированного базиса, преобразование не ортогональное.

Найдем собственные числа A:

$$\det(A - \lambda I) = \begin{vmatrix} 2 - \lambda & 1 \\ 1 & 2 - \lambda \end{vmatrix} = (\lambda - 2)^2 - 1 = (\lambda - 3)(\lambda - 1), \implies \lambda_1 = 1, \quad \lambda_2 = 3.$$

Ищем собственные векторы:

$$\lambda_1 = 1:$$
 $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}, \implies v_1 = \begin{pmatrix} -1 \\ 1 \end{pmatrix}, \qquad \lambda_2 = 3:$ $\begin{pmatrix} -1 & 1 \\ 1 & -1 \end{pmatrix}, \implies v_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}.$

Можно было немного ускорить вычисления. Так как собственные векторы матрицы A ортогональны, а уравнение на вектор v_1 имеет вид

$$\begin{pmatrix} 1 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = 0,$$

можно было сразу сказать, что $\binom{1}{1}$ будет собственным вектором, отвечающим $\lambda_2=3$.

Матрица перехода к ортонормированному базису из собственных векторов имеет вид

$$S = \frac{1}{\sqrt{2}} \begin{pmatrix} -1 & 1\\ 1 & 1 \end{pmatrix}.$$

В этом базисе на диагонали матрицы A стоят ее собственные значения:

$$S^{-1}AS = \begin{pmatrix} 1 & 0 \\ 0 & 3 \end{pmatrix}.$$

Поскольку S — ортогональная матрица, $S^{-1} = S^T$. Тогда

$$A^{k} = \left(S\begin{pmatrix}1 & 0\\ 0 & 3\end{pmatrix}S^{-1}\right)^{k} = S\begin{pmatrix}1 & 0\\ 0 & 3^{k}\end{pmatrix}S^{-1} = \frac{1}{2}\begin{pmatrix}-1 & 1\\ 1 & 1\end{pmatrix}\begin{pmatrix}1 & 0\\ 0 & 3\end{pmatrix}\begin{pmatrix}-1 & 1\\ 1 & 1\end{pmatrix} = \frac{1}{2}\begin{pmatrix}3^{k} + 1 & 3^{k} - 1\\ 3^{k} - 1 & 3^{k} + 1\end{pmatrix}.$$

Квадратичные формы

10. k имеет матрицу

$$B = \begin{pmatrix} 2 & -1/2 & 0 \\ -1/2 & 0 & 0 \\ 0 & 0 & 3 \end{pmatrix}.$$

В новом базисе

$$B' = S^T B S,$$

где $S = S_{e \to e'}$. Выразим e' через e:

$$\begin{cases} e'_1 = e_2 + e_3 - e_1, \\ e'_2 = e_1 - e_3, \\ e'_3 = e_1 - e_2 \end{cases} \implies S_{e \to e'} = \begin{pmatrix} -1 & 1 & 1 \\ 1 & 0 & -1 \\ 1 & -1 & 0 \end{pmatrix}.$$

Тогда

$$B' = S^T B S = \begin{pmatrix} -1 & 1 & 1 \\ 1 & 0 & -1 \\ 1 & -1 & 0 \end{pmatrix} \begin{pmatrix} 2 & -1/2 & 0 \\ -1/2 & 0 & 0 \\ 0 & 0 & 3 \end{pmatrix} \begin{pmatrix} -1 & 1 & 1 \\ 1 & 0 & -1 \\ 1 & -1 & 0 \end{pmatrix} = \begin{pmatrix} 6 & -11/2 & -3 \\ -11/2 & 5 & 5/2 \\ -3 & 5/2 & 3 \end{pmatrix}.$$

Значит, в новом базисе форма k имеет вид

$$k(\xi_1, \xi_2, \xi_3) = 6\xi_1^2 + 5\xi_2^2 + 3\xi_3^2 - 11\xi_1\xi_2 - 6\xi_1\xi_3 + 5\xi_2\xi_3.$$

11. Метод Лагранжа. Последовательно выделяем полные квадраты, уменьшая количество переменных вне полных квадратов:

$$x_1^2 - 5x_2^2 + x_3^2 + 4x_1x_2 + 2x_1x_3 + 10x_2x_3 = (x_1 + 2x_2 + x_3)^2 - x_3^2 - 4x_2^2 - 4x_2x_3 - 5x_2^2 + x_3^2 + 10x_2x_3 = (x_1 + 2x_2 + x_3)^2 - 9x^2 + 6x_2x_3 = (x_1 + 2x_2 + x_3)^2 - (3x_2 - x_3)^2 + x_3^2 = \xi_1^2 - \xi_2^2 + \xi_3^2$$

где $\xi_1 = x_1 + 2x_2 + x_3$, $\xi_2 = 3x_2 - x_3$, $\xi_3 = x_3$.

Чтобы найти матрицу перехода к новому базису, нужно вычислить S^{-1} , где $\xi = Sx$,

$$S = \begin{pmatrix} 1 & 2 & 1 \\ 0 & 3 & -1 \\ 0 & 0 & 1 \end{pmatrix}.$$

Если на каком-то шаге вне выделенных полных квадратов не остается квадратов переменных, то нужно сделать стандартную замену. Например, если вне полных квадратов осталось только слагаемое $6x_2x_3$, то нужно заменить $x_2 = \xi_1 - \xi_2$, $x_3 = \xi_1 + \xi_2$.

Элементарные преобразования матрицы. Будем делать одновременно элементарные преобразования строк и столбцов.

$$B = \begin{pmatrix} 1 & 2 & 1 \\ 2 & -5 & 5 \\ 1 & 5 & 1 \end{pmatrix} \overset{\text{стр.}}{\to} \begin{pmatrix} 1 & 2 & 1 \\ 0 & -9 & 3 \\ 0 & 3 & 0 \end{pmatrix} \overset{\text{стлб.}}{\to} \begin{pmatrix} 1 & 0 & 0 \\ 0 & -9 & 3 \\ 0 & 3 & 0 \end{pmatrix} \overset{\text{стр.}+\text{стлб.}}{\to} \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 1 \\ 0 & 1 & 0 \end{pmatrix} \overset{\text{стр.}+\text{стлб.}}{\to} \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = B'.$$

Чтобы найти матрицу перехода к новому базису, проделаем эти преобразования столбцов с единичной матрицей:

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \overset{\text{стлб.}}{\to} \begin{pmatrix} 1 & -2 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \overset{\text{стлб.}}{\to} \begin{pmatrix} 1 & -2/3 & -1 \\ 0 & 1/3 & 0 \\ 0 & 0 & 1 \end{pmatrix} \overset{\text{стлб.}}{\to} \begin{pmatrix} 1 & -2/3 & -5/3 \\ 0 & 1/3 & 1/3 \\ 0 & 0 & 1 \end{pmatrix} = S^{-1}.$$

Можно проверить, что это действительно обратная матрица к матрице

$$S = \begin{pmatrix} 1 & 2 & 1 \\ 0 & 3 & -1 \\ 0 & 0 & 1 \end{pmatrix},$$

полученной в методе Лагранжа.

12. Квадратичная форма имеет вид

$$k(x) = \langle Bx, x \rangle, \quad B = \begin{pmatrix} 0 & 3 & 0 \\ 3 & 0 & 0 \\ 0 & 0 & 3 \end{pmatrix}.$$

Матрица B симметричная, значит, существует ортонормированный базис из собственных векторов матрицы B. Ищем собственные значения B:

$$\det(B - \lambda I) = \begin{vmatrix} -\lambda & 3 & 0 \\ 3 & -\lambda & 0 \\ 0 & 0 & 3 - \lambda \end{vmatrix} = (3 - \lambda)(\lambda^2 - 9), \implies \lambda_{1,2} = 3, \lambda_3 = -3.$$

Ищем собственные векторы:

$$\lambda = 3: \quad \begin{pmatrix} -3 & 3 & 0 \\ 3 & -3 & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & -1 & 0 \end{pmatrix}, \quad \Longrightarrow \quad v_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \, v_2 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

Здесь собственные векторы уже получились ортогональными друг другу.

$$\lambda = -3: \quad v_3 \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}.$$

Значит, матрица перехода имеет вид

$$S = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 0 & 1\\ 1 & 0 & -1\\ 0 & \sqrt{2} & 0 \end{pmatrix}.$$

В новом базисе форма имеет вид

$$B' = S^T B S = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & -3 \end{pmatrix}.$$

Отсюда видно, что форма не знакоопределенная.

Замечание. Знакоопределенность можно исследовать с помощью *критерия Сильвестра*: k(x) положительно определена $(\forall x \neq 0 \ k(x) > 0) \iff$ миноры $\Delta_1, \Delta_2, \Delta_3$ положительны.

Для проверки неотрицательной определенности ($\forall \, x \neq 0 \,\, k(x) \geqslant 0$) нельзя использовать критерий Сильвестра.

Дифференциальные уравнения

Условия

Линейные обыкновенные дифференциальные уравнения с постоянными коэффициентами

- **1.** Найдите общее решение уравнения $y'' + y = 2\sin^2\frac{x}{2} + x^2$.
- **2.** Дано линейное однородное дифференциальное уравнение порядка n с постоянными действительными коэффициентами. Известно, что $x^{170} \sin^4(3x)$ одно из решений этого уравнения. Найдите минимально возможное значение n. Ответ обоснуйте.

Системы линейных однородных дифференциальных уравнений с постоянными коэффициентами

3. Найдите все действительные решения системы уравнений

$$\begin{cases} \dot{x} = -2x + y - z, \\ \dot{y} = -6x - 4y + 3z, \\ \dot{z} = -2x + 2y - 3z, \end{cases} \qquad \lambda_1 = -1, \ \lambda_{2,3} = -4.$$

4. Найдите все действительные решения системы уравнений

$$\begin{cases} \dot{x} = -2x + 3y - 2z, \\ \dot{y} = x - 2y - z, \\ \dot{z} = 2x + 2y - 5z, \end{cases} \qquad \lambda_{1,2,3} = -3.$$

5. Найдите все действительные решения системы уравнений

$$\begin{cases} \dot{x} = -7x + 15y, \\ \dot{y} = -6x + 11y. \end{cases}$$

Найдите положения равновесия, определите их характер и нарисуйте фазовые траектории в окрестности положения равновесия.

Линейные обыкновенные дифференциальные уравнения с переменными коэффициентами

- **6.** Найдите все действительные решения уравнения $x^2y'' 2x(x+1)y' + 2(x+1)y = -2x^3$.
- 7. Найдите общее решение уравнения

$$(1-x^2)y'' - xy' + y = 1,$$
 $0 < x < 1,$

зная два его решения $y_1 = 1, y_2 = 5x + 1.$

8. Какой наименьший возможный порядок может иметь линейное обыкновенное дифференциальные уравнение, имеющее решения $y_1 = x, y_2 = \sin x$ и $y_3 = 1$ на некотором промежутке?

Простейшая задача вариационного исчисления

9. Исследуйте на экстремум функционал

$$J(y) = \int_{1}^{e} \left(x^{2}y'^{2} - 2xyy' + y^{2} + 4y \ln x \right) dx, \qquad y(1) = -\frac{1}{2}, \qquad y(e) = -\frac{3}{2}.$$

10. Исследуйте на экстремум функционал

$$J(y) = \int_{0}^{1} e^{y'} dx, \qquad y(0) = 0, \qquad y(1) = 1.$$

Разные задачи

- **11.** Решите уравнение $e^{xy}(xdy+ydx)+x^2dx+rac{dy}{\sqrt{y}}=0.$
- **12.** Найдите непрерывно дифференцируемую на промежутке $(0; +\infty)$ функцию y(x), удовлетворяющую равенству

$$\int_{1}^{x} \frac{y(t)}{t} dt = e^{x} - y(x).$$

Ответы

Линейные обыкновенные дифференциальные уравнения с постоянными коэффициентами

1.
$$y = C_1 \sin x + C_2 \cos x - \frac{x}{2} \sin x + x^2 - 1$$
.

2. 855.

Системы линейных однородных дифференциальных уравнений с постоянными коэффициентами

3.
$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = C_1 e^{-t} \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} + C_2 e^{-4t} \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix} + C_3 e^{-4t} \begin{bmatrix} \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix} t + \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix} \end{bmatrix}.$$

4.
$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = C_1 e^{-3t} \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix} + C_2 e^{-3t} \left[\begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix} t + \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \right] + C_3 e^{-3t} \left[\begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix} \frac{t^2}{2} + \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} t + \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} \right].$$

Линейные обыкновенные дифференциальные уравнения с переменными коэффициентами

6.
$$C_1x + C_2xe^{2x} + x^2$$
.

7.
$$y = C_1 x + C_2 \sqrt{1 - x^2} + 1$$
.

8. 2.

Простейшая задача вариационного исчисления

9.
$$y = -\ln x - \frac{1}{2}$$
 – абсолютный минимум.

10.
$$y = x - \text{абсолютный (слабый) минимум.}$$

Разные задачи

11.
$$e^{xy} + \frac{x^3}{3} + 2\sqrt{y} = C$$
.

12.
$$y(x) = e^x + \frac{e - e^x}{r}$$
.

Решения

Линейные обыкновенные дифференциальные уравнения с постоянными коэффициентами

1. Решим однородное уравнение y'' + y = 0. Характеристическое уравнение:

$$\lambda^2 + 1 = 0, \implies \lambda_{(1)} = \pm i.$$

Корни $\lambda_{(s)}=a\pm bi$ кратности s характеристического уравнения соответствуют базисным решениям вида

$$x^{0}e^{ax}\cos x$$
 и $x^{0}e^{ax}\sin x$, ..., $x^{s-1}e^{ax}\cos x$ и $x^{s-1}e^{ax}\sin x$.

В нашем случае s=1, поэтому решение однородного уравнения имеет вид

$$y_0 = C_1 \cos x + C_2 \sin x.$$

Преобразуем правую часть уравнения:

$$2\sin^2\frac{x}{2} + x^2 = 1 - \cos x + x^2 = (1 + x^2) + (-\cos x).$$

Заметим, что это сумма квазимногочленов, т.е. выражений вида

$$P_k(x)e^{ax}(\alpha\cos bx + \beta\sin bx).$$

Обозначим $\mu = a + bi$. Если μ не совпадает с корнями характеристического уравнения, частное решение ищется в виде

$$y_{\text{\tiny H}} = Q_k(x)e^{ax}(\gamma\cos bx + \delta\sin bx).$$

Если же μ совпал с некоторым корнем $\lambda_{(s)}$, то частное решение ищется в виде

$$y_{\mathbf{q}} = x^{s} Q_{k}(x) e^{ax} (\gamma \cos bx + \delta \sin bx).$$

Найдем частное решение, соответствующее правой части $1+x^2=(1+x^2)e^0$ — многочлену второй степени. В данном случае $\mu=0$, значит, частное решение ищем в виде

$$y_{41} = P_2(x)e^0 = Ax^2 + Bx + C.$$

Подставим в уравнение $y'' + y = 1 + x^2$:

$$2A + Ax^2 + Bx + C = 1 + x^2$$
, \implies $A = 1, B = 0, C = -1$.

Следовательно,

$$y_{y1} = x^2 - 1.$$

Найдем частное решение, соответствующее правой части $(-\cos x) = -e^0\cos(1\cdot x)$ — квазимногочлену нулевой степени. Здесь $\mu = \pm i$ совпадает с корнями характеристического уравнения, поэтому ищем частное решение в виде

$$y_{42} = x^{1} P_{0}(x) (A \sin x + B \cos x) = x(a \sin x + b \cos x).$$

Подставим в уравнение $y'' + y = -\cos x$:

$$y_{42}'' + y_{42} = -x(a\sin x + b\cos x) + 2(a\cos x - b\sin x) + x(a\sin x + b\cos x) = 2(a\cos x - b\sin x) = -\cos x.$$

Значит, $a=-1/2,\,b=0.$ Таким образом, решение начального уравнения имеет вид

$$y = y_0 + y_{41} + y_{42} = C_1 \sin x + C_2 \cos x - \frac{x}{2} \sin x + x^2 - 1.$$

2. Преобразуем решение:

$$x^{170}\sin^4(3x) = x^{170} \cdot \frac{1}{4}(1 - \cos 6x)^2 = x^{170} \cdot \frac{1}{4}\left(1 - 2\cos 6x + \frac{1}{2}(1 + \cos 12x)\right) =$$

$$= \frac{3}{8}x^{170} - \frac{1}{2}x^{170}\cos 6x + \frac{1}{8}x^{170}\cos 12x.$$

Это сумма трех квазимногочленов. Первое слагаемое соответствует $\lambda_{(s_1)}=0,\ s_1\geqslant 171,\$ второе — $\lambda_{(s_2)}=0\pm 6i,\ s_2\geqslant 171,\$ третье — $\lambda_{(s_3)}=0\pm 12i,\ s_3\geqslant 171.\$ Характеристический многочлен минимальной степени, соответствующий таким корням, имеет вид

$$P = \lambda^{s_1} (\lambda^2 + 6^2)^{s_2} (\lambda^2 + 12^2)^{s_3}.$$

Порядок уравнения не меньше, чем степень этого многочлена, значит,

$$n \geqslant s_1 + 2s_2 + 2s_3 \geqslant 5 \cdot 177 = 855.$$

Этот минимум достигается для уравнения с характеристическим многочленом P, где $s_1 = s_2 = s_3 = 171$.

Системы линейных однородных дифференциальных уравнений с постоянными коэффициентами

3. Перепишем систему в матричном виде

$$\begin{pmatrix} \dot{x} \\ \dot{y} \\ \dot{z} \end{pmatrix} = \begin{pmatrix} -2 & 1 & -1 \\ -6 & -4 & 3 \\ -2 & 2 & -3 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}.$$

Найдем собственный вектор, соответствующий λ_1 :

$$\lambda_1 = -1: \quad (A - (-1)E)h = 0 \sim \begin{pmatrix} -1 & 1 & -1 \\ -6 & -3 & 3 \\ -2 & 2 & -2 \end{pmatrix} \sim \begin{pmatrix} -1 & 1 & -1 \\ 2 & 1 & -1 \end{pmatrix} \sim \begin{pmatrix} 0 & 1 & -1 \\ 1 & 0 & 0 \end{pmatrix}, \quad \Longrightarrow \quad h_1 = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}.$$

Соответствующее базисное решение:

$$\psi_1(t) = h_1 e^{\lambda_1 t} = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} e^{-t}.$$

Найдем собственный вектор, соответствующий $\lambda_{2,3}$:

$$\lambda_{2,3} = -4: \quad (A - (-4)E)h = 0 \sim \begin{pmatrix} 2 & 1 & -1 \\ -6 & 0 & 3 \\ -2 & 2 & 1 \end{pmatrix} \sim \begin{pmatrix} 2 & 1 & -1 \\ -2 & 0 & 1 \\ 2 & 0 & -1 \end{pmatrix} \sim \begin{pmatrix} -2 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}, \quad \Longrightarrow \quad h_2 = \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix}.$$

Соответствующее базисное решение:

$$\psi_2(t) = h_2 e^{\lambda_2 t} = \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix} e^{-4t}.$$

Найдем присоединенный вектор к h_2 :

$$(A - (-4)E)h_{2\pi.} = h_2 \sim \begin{pmatrix} 2 & 1 & -1 & 1 \\ -6 & 0 & 3 & 0 \\ -2 & 2 & 1 & 2 \end{pmatrix} \sim \begin{pmatrix} 2 & 1 & -1 & 1 \\ -2 & 0 & 1 & 0 \end{pmatrix} \sim \begin{pmatrix} 0 & 1 & 0 & 1 \\ -2 & 0 & 1 & 0 \end{pmatrix}, \implies h_{2\pi.} = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}.$$

Соответствующее базисное решение:

$$\psi_3(t) = (h_2 t + h_{2\pi}) e^{\lambda_2 t} = \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix} t + \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix} e^{-4t}.$$

Тогда получается ответ:

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = C_1 \psi_1(t) + C_2 \psi_2(t) + C_3 \psi_3(t) = C_1 e^{-t} \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} + C_2 e^{-4t} \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix} + C_3 e^{-3t} \begin{bmatrix} \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix} t + \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix} \end{bmatrix}.$$

4. Способ 1. Перепишем систему в матричном виде

$$\begin{pmatrix} \dot{x} \\ \dot{y} \\ \dot{z} \end{pmatrix} = \begin{pmatrix} -2 & 3 & -2 \\ 1 & -2 & -1 \\ 2 & 2 & -5 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}.$$

Здесь может быть два сценария: есть 2 независимых собственных вектора и 1 присоединенный вектор, или есть 1 независимый собственный вектор и 2 присоединенных. Найдем собственный вектор:

$$\lambda_{1,2,3} = -3: \quad (A - (-3)E)h = A_{\lambda}h = 0^{\ 1} \sim \begin{pmatrix} 1 & 3 & -2 \\ 1 & 1 & -1 \\ 2 & 2 & -2 \end{pmatrix} \sim \begin{pmatrix} 0 & 2 & -1 \\ 1 & 1 & -1 \end{pmatrix} \sim \begin{pmatrix} 0 & 2 & -1 \\ 1 & -1 & 0 \end{pmatrix}, \quad \Longrightarrow \quad h_1 = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}.$$

 $^{^{1}}A_{\lambda} = A - \lambda E$.

Соответствующее базисное решение:

$$\psi_1(t) = h_1 e^{\lambda_1 t} = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix} e^{-3t}.$$

Найдем присоединенный вектор к h_1 :

$$A_{\lambda}h_{1\pi.} = h_1 \sim \begin{pmatrix} 1 & 3 & -2 & | & 1 \\ 1 & 1 & -1 & | & 1 \\ 2 & 2 & -2 & | & 2 \end{pmatrix} \sim \begin{pmatrix} 0 & 2 & -1 & | & 0 \\ 1 & 1 & -1 & | & 1 \end{pmatrix} \sim \begin{pmatrix} 0 & 2 & -1 & | & 0 \\ 1 & -1 & 0 & | & 1 \end{pmatrix}, \quad \Longrightarrow \quad h_{1\pi.} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}.$$

Соответствующее базисное решение:

$$\psi_2(t) = (h_1 t + h_{1\pi}) e^{\lambda t} = \begin{bmatrix} \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix} t + \begin{pmatrix} 1 \\ 0 \\ 0 \end{bmatrix} e^{-3t}.$$

Найдем присоединенный вектор к $h_{1\pi}$:

$$A_{\lambda}h_{1\pi.\pi.} = h_{1\pi.} \sim \begin{pmatrix} 1 & 3 & -2 & | & 1 \\ 1 & 1 & -1 & | & 0 \\ 2 & 2 & -2 & | & 0 \end{pmatrix} \sim \begin{pmatrix} 0 & 2 & -1 & | & 1 \\ 1 & 1 & -1 & | & 0 \end{pmatrix} \sim \begin{pmatrix} 0 & 2 & -1 & | & 1 \\ 1 & 1 & -1 & | & 0 \end{pmatrix} \sim \begin{pmatrix} 0 & 2 & -1 & | & 1 \\ 1 & -1 & 0 & | & -1 \end{pmatrix}, \quad \Longrightarrow \quad h_{1\pi.\pi.} = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}.$$

Соответствующее базисное решение:

$$\psi_3(t) = \left(h_1 \frac{t^2}{2!} + h_{1\pi.}t + h_{1\pi.\pi.}\right) e^{\lambda t} = \left[\begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix} \frac{t^2}{2} + \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} t + \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}\right] e^{-3t}.$$

Тогда получается ответ:

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = C_1 e^{-3t} \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix} + C_2 e^{-3t} \left[\begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix} t + \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \right] + C_3 e^{-3t} \left[\begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix} \frac{t^2}{2} + \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} t + \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} \right].$$

Способ 2. Вспомним, что e^{At} — фундаментальная матрица решений системы. Характеристическое уравнение системы: $(\lambda + 3)^3 = 0$.

По теореме Гамильтона–Кэли фундаментальная матрица решений удовлетворяет характеристическому уравнению системы $(A+3E)^3=A_\lambda^3=0$. Тогда, поскольку E перестановочна с A_λ ,

$$e^{At} = e^{(-3E + A_{\lambda})t} = e^{-3Et} \cdot e^{A_{\lambda}t} = e^{-3t} \left((A_{\lambda}t)^0 + \frac{(A_{\lambda}t)^1}{1!} + \frac{(A_{\lambda}t)^2}{2!} + 0 \right) = e^{-3t} \left(E + A_{\lambda}t + \frac{A_{\lambda}^2t^2}{2} \right).$$

Значит,

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = e^{-3t} \left(E + A_{\lambda} t + \frac{A_{\lambda}^2 t^2}{2} \right) \begin{pmatrix} C_1 \\ C_2 \\ C_3 \end{pmatrix}.$$

5. Перепишем систему в матричном виде

$$\begin{pmatrix} \dot{x} \\ \dot{y} \end{pmatrix} = \begin{pmatrix} -7 & 15 \\ -6 & 11 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}.$$

Найдем собственные числа:

$$\det(A - \lambda E) = (-7 - \lambda)(11 - \lambda) + 6 \cdot 15 = \lambda^2 - 4\lambda + 13, \implies \lambda = 2 \pm 3i.$$

Найдем собственный вектор:

$$\lambda = 2 + 3i: \quad (A - \lambda E)h = 0 \sim \begin{pmatrix} -9 - 3i & 15 \\ -6 & 9 - 3i \end{pmatrix} \sim \begin{pmatrix} 3 + i & -5 \\ -2 & 3 - i \end{pmatrix}, \quad \Longrightarrow \quad h_1 = \begin{pmatrix} 3 - i \\ 2 \end{pmatrix}.$$

Тогда

$$\psi(t) = h_1 e^{(2+3i)t} = \binom{3-i}{2} e^{2t} (\cos 3t + i \sin 3t) = e^{2t} \binom{3\cos 3t + \sin 3t}{2\cos 3t} + ie^{2t} \binom{-\cos 3t + 3\sin 3t}{2\sin 3t}.$$

Базисные решения имеют вид

$$\psi_1(t) = \text{Re}\left(h_1 e^{(2+3i)t}\right), \quad \psi_2(t) = \text{Im}\left(h_1 e^{(2+3i)t}\right).$$

Тогда решение системы:

$$\binom{x}{y} = C_1 e^{2t} \begin{pmatrix} 3\cos 3t + \sin 3t \\ 2\cos 3t \end{pmatrix} + C_2 e^{2t} \begin{pmatrix} -\cos 3t + 3\sin 3t \\ 2\sin 3t \end{pmatrix}.$$

Определение 5.1. Точка $\mathbf{x_0}$ называется *положением равновесия* автономной системы дифференциальных уравнений $\dot{\mathbf{x}} = \mathbf{F}(\mathbf{x})$, если $\mathbf{F}(\mathbf{x_0}) = \mathbf{0}$.

В данном случае положение равновесия определяется из системы

$$\begin{pmatrix} 0 \\ 0 \end{pmatrix} = \begin{pmatrix} -7 & 15 \\ -6 & 11 \end{pmatrix} \begin{pmatrix} x_0 \\ y_0 \end{pmatrix}, \quad \Longrightarrow \quad (x_0; y_0) = (0; 0).$$

Так как $\operatorname{Re} \lambda > 0$, $\operatorname{Im} \lambda \neq 0$, это ycmoйчивый фокус. Вектор скорости а в точке <math>(1;0) равен

$$\mathbf{a} = \begin{pmatrix} \dot{x} \\ \dot{y} \end{pmatrix} = \begin{pmatrix} -7 & 15 \\ -6 & 11 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} -7 \\ -6 \end{pmatrix},$$

значит, «раскрутка» идет по часовой стрелке.

Линейные обыкновенные дифференциальные уравнения с переменными коэффициентами

6. Однородное уравнение:

$$x^2y'' - 2x(x+1)y' + 2(x+1)y = 0,$$

Ищем решение в виде $y = e^{\alpha x}$. Подставляем в уравнение:

$$\alpha^2 x^2 e^{\alpha x} - 2x(x+1)\alpha e^{\alpha x} + 2(x+1)e^{\alpha x} = 0.$$

Так как остается слагаемое $e^{\alpha x}$, решений такого вида нет. Тогда ищем решения в виде $y=x^{\alpha}$: ²

$$x^2\alpha(\alpha-1)x^{\alpha-2} - 2x(x+1)\alpha x^{\alpha-1} + 2(x+1)x^{\alpha} = 0 \quad \Longleftrightarrow \quad x(2-2\alpha) + \alpha^2 - 3\alpha + 2 = 0, \quad \Longrightarrow \quad \alpha = 1.$$

3начит, y = x — частное решение однородного уравнения. Тогда по теореме Лиувилля—Остроградского

$$\frac{d}{dx} \left(\frac{y_0}{x} \right) = \frac{c}{x^2} \exp\left(-\int \frac{-2x(x+1)}{x^2} \, dx \right) = \\
= \left/ -\int \frac{-2x(x+1)}{x^2} \, dx = \int \left(2 + \frac{2}{x} \right) \, dx = 2x + \ln x^2 + \tilde{D} \right/ = \frac{c}{x^2} \exp\left(2x + \ln x^2 + \tilde{D} \right) = \tilde{C}e^{2x}.$$

Отсюда находим

$$y_0 = Cxe^{2x} + Dx.$$

Обозначим правую часть исходного уравнения через f(x), коэффициент при старшей производной через a(x), а базисные решения x и xe^{2x} через $\varphi_1(x)$ и $\varphi_2(x)$ соответственно.

²Также иногда решения ищутся в виде y = ax + b или $y = a\sin\alpha x + b\cos\alpha x$.

Частное решение неоднородного уравнения найдем с помощью метода вариации постоянных: ищем решение в виде $y = C(x)xe^{2x} + D(x)x$, где функции C(x) и D(x) удовлетворяют системе уравнений

$$\begin{pmatrix} \varphi_1 & \varphi_2 \\ \varphi_1' & \varphi_2' \end{pmatrix} \begin{pmatrix} D' \\ C' \end{pmatrix} = \begin{pmatrix} 0 \\ f(x)/a(x) \end{pmatrix}.$$

В данной задаче система имеет вид

$$\begin{cases} x \cdot D' + xe^{2x} \cdot C' = 0, \\ 1 \cdot D' + (e^{2x} + 2xe^{2x}) \cdot C' = -2x, \end{cases} \implies \begin{cases} C' = -e^{-2x}, \\ D' = 1, \end{cases} \implies \begin{cases} C(x) = \frac{e^{-2x}}{2} + C, \\ D(x) = x + D. \end{cases}$$

Значит, решение неоднородного уравнения имеет вид

$$y = \tilde{C}xe^{2x} + \tilde{D}x + \left(C + \frac{e^{-2x}}{2}\right)xe^{2x} + (x+D)x = C_1x + C_2xe^{2x} + x^2.$$

7. Решение этого уравнения имеет вид $y = y_0 + y_4 = C_1 \varphi_1 + C_2 \varphi_2 + y_4$. Одно базисное решение однородного уравнения можно найти в виде разности известных решений неоднородного уравнения, поделенной на 5:

$$\varphi_1(x) = \frac{y_2(x) - y_1(x)}{5} = x.$$

Общее решение однородного уравнения найдем по формуле Лиувилля-Остроградского:

$$\frac{d}{dx} \left(\frac{y_0}{x} \right) = \frac{C}{x^2} \exp\left(\int \frac{x}{1 - x^2} \, dx \right) =$$

$$= \left/ \int \frac{x}{1 - x^2} \, dx = \int \frac{d(1 - x^2)}{(-2)(1 - x^2)} = -\frac{1}{2} \ln(1 - x^2) + D \right/ = \frac{C_1}{x^2} \frac{1}{\sqrt{1 - x^2}}.$$

Отсюда

$$\frac{y_0}{x} = C_1 \int \frac{dx}{x\sqrt{1-x^2}} = C_1 \int x^{-2} (1-x^2)^{-1/2} dx.$$

Сделаем замену $t=\sqrt{\frac{1}{x^2}-1}$. Тогда $x=\frac{1}{\sqrt{t^2+1}},\, dx=-\frac{1}{2}(t^2+1)^{-3/2}\cdot 2tdt$:

$$\frac{y_0}{x} = C_1 \int (t^2 + 1) \left(1 - \frac{1}{t^2 + 1} \right)^{-1/2} \cdot (-1)(t^2 + 1)^{-3/2} t \, dt = -C_1 \int dt = -C_1 t + C_2.$$

Значит, общее решение однородного уравнения имеет вид $y_0 = C_1 \sqrt{1-x^2} + C_2 x$. Тогда общее решение уравнения:

$$y = C_1 x + C_2 \sqrt{1 - x^2} + 1.$$

8.

Теорема 5.1. Если $y_1, y_2, \dots y_n$ линейно зависимы на промежутке I, то Вронскиан $W[y_1(x), \dots, y_n(x)] \equiv 0$ на I.

Теорема 5.2. Пусть $y_1, y_2, \dots y_k$ — решения уравнения $y^{(n)} + a_{n-1}y^{(n-1)} + \dots + a_0(x)y^{(0)} = 0$. Тогда $y_1, y_2, \dots y_k$ линейно зависимы на промежутке I тогда и только тогда, когда их Вронскиан $W(x) \equiv 0$ на I.

Предположим, что n=1. Тогда $\varphi_1=\sin x-1$ и $\varphi_2=x-1$ — это решения однородного уравнения первого порядка. Значит, они должны быть линейно зависимы на каком-то промежутке, но это не так.

Ищем уравнение второго порядка: a(x)y'' + b(x)y' + c(x)y = f(x). В качестве базисных решений однородного уравнения рассмотрим

$$\varphi_1(x) = y_2 - y_3 = \sin x - 1, \quad \varphi_2(x) = y_1 - y_3 = x - 1.$$

Общее решение однородного уравнения $y_0(x)$ выражается через $\varphi_1(x)$, $\varphi_2(x)$, т. е. они линейно зависимы на некотором промежутке I. Значит,

$$W[y_0; \sin x - 1; x - 1] = 0 \iff \begin{vmatrix} y_0 & \sin x - 1 & x - 1 \\ y'_0 & \cos x & 1 \\ y''_0 & -\sin x & 0 \end{vmatrix} = 0.$$

Отсюда получаем, что искомое неоднородное уравнение имеет вид:

$$(\sin x - 1 - x\cos x + \cos x)y'' + (x\sin x - \sin x)y' + y\sin x = f(x).$$

Подставив $y = y_3 = 1$, получим $f(x) = \sin x$, значит, искомое уравнение:

$$(\sin x - 1 - x\cos x + \cos x)y'' + (x\sin x - \sin x)y' + y\sin x = \sin x.$$

Поэтому искомое n равно 2.

Простейшая задача вариационного исчисления

9. Обозначим через F(x, y, y') подынтегральное выражение.

Необходимое условие экстремума (уравнение Эйлера-Лагранжа):

$$\frac{\partial F}{\partial y} - \frac{d}{dx} \left(\frac{\partial F}{\partial y'} \right) = 0.$$

В данной задаче оно принимает вид

$$-2xy' + 2y + 4\ln x - \frac{d}{dx}(2x^2y' - 2xy) = 0 \iff -2xy'' - 4xy' + 4y + 3\ln x = 0 \iff x^2y'' + 2xy'' - 2y = 2\ln x.$$

Во всех слагаемых степень х совпадает с порядком производной, значит, это уравнение Эйлера.

Уравнение Эйлера решается с помощью замены $x = e^t$:

$$y'_x = \frac{y'_t}{x'_t} = y'_t e^{-t}, \quad y''_{xx} = \frac{(y'_x)'_t}{x'_t} = (y''_{tt} - y'_t)e^{-2t}.$$

Подставляем в полученное уравнение:

$$y_{tt}'' + y_t' - 2y = 2t, \quad \Longrightarrow \quad \lambda^2 + \lambda - 2 = 0, \quad \Longrightarrow \quad \lambda_1 = -2, \ \lambda_2 = 1, \quad \Longrightarrow \quad y_0 = Ce^{-2t} + De^t.$$

Частное решение ищем в виде $y_{\text{ч}} = At + B$. Подставив в уравнение $y_{tt}'' + y_t' - 2y = 2t$, получим

$$0 + A - 2At - 2B = 2t$$
, $\implies A = -1, B = -\frac{1}{2}$.

Значит, общее решение неоднородного уравнения имеет вид

$$y = \frac{C}{x^2} + Dx - \ln x - \frac{1}{2}.$$

Учитывая граничные условия y(1) = -1/2, y(e) = -3/2, получим экстремаль

$$\hat{y} = -\ln x - \frac{1}{2}.$$

Найдем приращение

$$\Delta J = J(\hat{y} + h) - J(\hat{y}) = \left/ \hat{y} = y; \ h \in C^{1}[1, e]; \ h(1) = h(e) = 0 \right/ =$$

$$= \int_{1}^{e} \left(x^{2} (2y'h' + h'^{2}) - 2x(yh' + hy' + hh') + (2yh + h^{2}) + 4h \ln x \right) dx = (2x^{2}y' - 2xy)h \Big|_{1}^{e} + 2x \cdot \frac{h^{2}}{2} \Big|_{1}^{e} + \int_{1}^{e} \left((-4xy' - 2x^{2}y'')h + x^{2}h'^{2} + (2y + 2xy')h - 2xy'h + 2 \cdot \frac{h^{2}}{2} + 2yh + h^{2} + 2h \ln x \right) = \int_{1}^{e} (x^{2}h'^{2} + 2h^{2}) dx \ge 0.$$

Значит,

$$\hat{y} = -\ln x - \frac{1}{2}$$

дает абсолютный минимум.

10. Обозначим подынтегральное выражение через F(x,y,y') и запишем уравнение Эйлера:

$$\frac{\partial F}{\partial y} - \frac{d}{dx} \left(\frac{\partial F}{\partial y'} \right) = 0 \quad \Longleftrightarrow \quad 0 - \frac{d}{dx} e^{y'} = 0 \quad \Longleftrightarrow \quad y' = C \quad \Longleftrightarrow \quad y = Cx + D.$$

Если учесть граничные условия, получим экстремаль

$$\hat{y} = x$$

Найдем приращение

$$\Delta J = J(\hat{y} + h) - J(\hat{y}) = \left/ \hat{y} = y; \ h \in C^{1}[0, 1]; \ h(0) = h(1) = 0 \right/ = \int_{0}^{1} (e^{y' + h'} - e^{y'}) \, dx = \int_{0}^{1} e \left(e^{h'} - 1 \right) \, dx \geqslant$$

$$\geqslant \int_{0}^{1} e \left(h' + 1 - 1 \right) \, dx = e h \Big|_{0}^{1} = 0.$$

Значит, $\hat{y} = x$ дает абсолютный (слабый ³) минимум.

Разные задачи

11. Выделим полный дифференциал:

$$e^{xy}d(xy)+d\left(\frac{x^3}{3}\right)+d\left(2\sqrt{y}\right)=0\quad\Longleftrightarrow\quad d\left(e^{xy}+\frac{x^3}{3}+2\sqrt{y}\right)=0\quad\Longleftrightarrow\quad e^{xy}+\frac{x^3}{3}+2\sqrt{y}=C.$$

12. Дифференцируя обе части данного равенства, имеем

$$\frac{y(x)}{x} = e^x - y'(x).$$

Кроме того, подставляя в первоначальное равенство x = 1, получаем, что y(1) = e. Несложно увидеть, что исходное интегральное уравнение эквивалентно полученной задаче Коши для уравнения первого порядка. Это уравнение линейное; соответствующее однородное уравнение имеет вид

$$y' + \frac{y}{x} = 0,$$

и его решения описываются формулой

$$y_0 = \frac{C}{r}.$$

Применяя метод вариации постоянной, находим общее решение неоднородного уравнения:

$$y = \frac{C}{x} + e^x - \frac{e^x}{x}.$$

Учитывая начальное условие, окончательно имеем

$$y = e^x + \frac{e - e^x}{x}.$$

³ Равенство нулю достигается при $h \neq 0$.

Теория функций комплексного переменного

Условия

- **1.** Исследуйте функцию $f(z)=z\bar{z}$ на дифференцируемость и голоморфность (регулярность).
- **2.** Разложите функцию $f(z)=-1-\frac{3}{z-i}+\frac{1}{(z-9i)^3}$ в ряд Лорана по степеням (z-2i) в кольце K, которому принадлежит точка $z_0=5+2i$. Укажите границы кольца K.
- **3.** Применяя теорию вычетов найдите интеграл $\oint_{|z-3i-1|=2} \frac{dz}{e^{2z}-2e^z-3}$ (обход контура по часовой стрелке).
- **4.** Вычислите интеграл $\oint\limits_{|z-1|=2} \frac{\operatorname{tg} z}{(z-i)^2} \, dz.$

Ответы

1. Функция дифференцируема в точке (0,0) и не голоморфна ни в одной точке.

2.
$$f(z) = -1 - 3\sum_{n=0}^{+\infty} \frac{(-i)^n}{t^{n+1}} - \frac{i}{2 \cdot 7^3} \sum_{n=0}^{+\infty} (n+1)(n+2) \frac{t^n}{(7i)^n}$$
, кольцо К: $1 < |z-2i| < 7$.

3.
$$\oint_{|z-3i-1|=2} \frac{dz}{e^{2z} - 2e^z - 3} = \frac{\pi i}{2}.$$

4.
$$\oint_{|z-1|=2} \frac{\operatorname{tg} z}{(z-i)^2} dz = 2\pi i \left(\frac{1}{\cos^2 i} - \frac{1}{\left(\frac{\pi}{2} - i\right)^2} \right).$$

Решения

1. Функция f(z) = u(x,y) + iv(x,y) дифференцируема в точке $z_0 = x_0 + iy_0$ тогда и только тогда, когда u(x,y), v(x,y) дифференцируемы в точке (x_0,y_0) и выполнены условия Коши-Римана:

$$\frac{\partial u}{\partial x}(x_0, y_0) = \frac{\partial v}{\partial y}(x_0, y_0), \quad \frac{\partial u}{\partial y}(x_0, y_0) = -\frac{\partial v}{\partial x}(x_0, y_0).$$

В данном случае

$$f(z) = z\bar{z} = (x+iy)(x-iy) = x^2 + y^2.$$

Видно, что $u(x,y)=x^2+y^2$, v(x,y)=0 дифференцируемы всюду. Из условий Коши-Римана получаем

$$\frac{\partial u}{\partial x}(x_0, y_0) = 2x_0 = \frac{\partial v}{\partial y}(x_0, y_0) = 0, \quad \frac{\partial u}{\partial y}(x_0, y_0) = 2y_0 = -\frac{\partial v}{\partial x}(x_0, y_0) = 0.$$

Значит, f(z) дифференцируема только в точке (0,0).

Определение 6.1. Функция f(z) называется *регулярной (голоморфной)* в точке z_0 , если она является дифференцируемой в некоторой окрестности точки z_0 .

Так как f(z) дифференцируема только в одной точке, она не является голоморфной ни в какой точке.

2. Рядом Лорана по степеням z-2i имеет вид

$$\sum_{n=-\infty}^{+\infty} c_n (z-2i)^n = \sum_{n=0}^{+\infty} c_n (z-2i)^n + \sum_{n=1}^{+\infty} \frac{c_{-n}}{(z-2i)^n}.$$

Первый ряд в формуле выше называется правильной частью ряда Лорана, а второй — главной частью ряда Лорана. Правильная часть ряда Лорана сходится в некотором круге |z-2i| < R, а главная часть ряда Лорана сходится во внешней части круга $|z-2i| > \rho$. Тогда ряд Лорана сходится в кольце $\rho < |z-2i| < R$.

Сделаем замену t = z - 2i:

$$f(z) = -1 - \frac{3}{z-i} + \frac{1}{(z-9i)^3} = -1 - \frac{3}{t+i} + \frac{1}{(t-7i)^3}.$$

Точке $z_0 = 5 + 2i$ соответствует $t_0 = 5$. Видно, что $1 = |i| < |t_0| = 5 < |7i| = 7$. Значит, дробь $\frac{3}{t+i}$ будем раскладывать по отрицательным степеням t, а дробь $\frac{1}{(t-7i)^3}$ по неотрицательным степеням t. Пользуясь формулой

$$\frac{1}{1-t} = \sum_{n=0}^{+\infty} t^n, \quad |t| < 1,$$

разложим первую дробь:

$$\frac{3}{t+i} = \frac{3}{t} \frac{1}{1+\frac{i}{t}} = \frac{3}{t} \sum_{n=0}^{+\infty} \left(\frac{-i}{t}\right)^n = 3 \sum_{n=0}^{+\infty} \frac{(-i)^n}{t^{n+1}}.$$

Чтобы разложить вторую дробь, заметим, что

$$\frac{1}{\left(1 - \frac{t}{7i}\right)^3} = \frac{7i}{2} \frac{d}{dt} \frac{1}{\left(1 - \frac{t}{7i}\right)^2} = \frac{(7i)^2}{2} \frac{d^2}{dt^2} \frac{1}{\left(1 - \frac{t}{7i}\right)}.$$

Тогда, пользуясь тем, что в круге сходимости дифференцировать степенной ряд можно почленно, получаем:

$$\begin{split} \frac{1}{(t-7i)^3} &= -\frac{i}{7^3} \frac{1}{\left(1-\frac{t}{7i}\right)^3} = -\frac{i}{7^3} \frac{(7i)^2}{2} \frac{d^2}{dt^2} \frac{1}{\left(1-\frac{t}{7i}\right)} = -\frac{i}{7^3} \frac{(7i)^2}{2} \frac{d^2}{dt^2} \sum_{n=0}^{+\infty} \left(\frac{t}{7i}\right)^n = -\frac{i}{7^3} \frac{(7i)^2}{2} \sum_{n=0}^{+\infty} \frac{d^2}{dt^2} \left(\frac{t}{7i}\right)^n = \\ &= -\frac{i}{7^3} \frac{(7i)^2}{2} \sum_{n=0}^{+\infty} n(n-1) \frac{t^{n-2}}{(7i)^n} = -\frac{i}{7^3} \frac{1}{2} \sum_{n=0}^{+\infty} (n+1)(n+2) \frac{t^n}{(7i)^n}. \end{split}$$

Получаем разложение f(z):

$$f(z) = -1 - 3\sum_{n=0}^{+\infty} \frac{(-i)^n}{t^{n+1}} - \frac{i}{2 \cdot 7^3} \sum_{n=0}^{+\infty} (n+1)(n+2) \frac{t^n}{(7i)^n}.$$

Радиус сходимости степенного ряда не меняется при дифференцировании, поэтому из признака Даламбера следует, что правильная часть ряда Лорана сходится при |t| < |7i| = 7. Также из признака Даламбера получаем, что главная часть ряда Лорана сходится при |-i| < |t|. Пересекая эти области сходимости, получаем кольцо сходимости ряда Лорана:

Кольцо К:
$$1 < |z - 2i| < 7$$
.

3.

Теорема 6.1.

$$\oint_{\gamma} f(z) dz = 2\pi i \sum_{k} \operatorname{res}_{z=z_{k}} f(z),$$

zде z_k — особые точки функции f(z) внутри контура γ .

В данном случае особые точки функции f(z) (помимо бесконечно удаленной точки, которая всегда является особой) — это нули знаменателя $e^{2z}-2e^z-3$. Сделаем замену $t=e^z$, тогда получаем два нуля знаменателя: t=-1 и t=3, значит,

$$f(z) = \frac{1}{(e^z + 1)(e^z - 3)}.$$

Решения уравнения $e^z+1=0$ имеют вид $z_1=\pi i+2\pi i k$, где $k\in\mathbb{Z}$. Решения уравнения $e^z-3=0$: $z_2=\ln 3+2\pi i k$, где $k\in\mathbb{Z}$.

По условию контур интегрирования $\gamma:|z-3i-1|=2$, т. е. это окружность с центром в точке 3i+1 и радиусом 2. Значит, из серии z_1 внутрь контура попадает только точка $z=\pi i$, а из серии z_2 не попадает ни одна точка.

Требуется вычислить интеграл по контуру γ , ориентированному против часовой стрелки. Он отличается от интеграла по контуру, ориентированному по часовой стрелке, только знаком. Поэтому по теореме Коши о вычетах получаем

$$\oint_{\gamma} f(z) dz = -2\pi i \operatorname{res}_{z=\pi i} f.$$

Вычислим производную знаменателя в точке πi :

$$\frac{d}{dz} \left(e^{2z} - 2e^z - 3 \right) \Big|_{z=\pi i} = 2e^z (e^z - 1) \Big|_{z=\pi i} = 4 \neq 0.$$

Значит, точка πi для функции f является полюсом первого порядка.

Вычет в полюсе n-ого порядка вычисляется по формуле

$$\operatorname{res}_{z=z_0} f(z) = \frac{1}{(n-1)!} \lim_{z \to z_0} \frac{d^{n-1}}{dz^{n-1}} (z - z_0)^n f(z).$$

Вычисляем вычет в точке πi :

$$\mathop{\rm res}_{z=\pi i} f(z) = \lim_{z \to \pi i} \frac{z - \pi i}{(e^z + 1)(e^z - 3)}.$$

В окрестности $z=\pi i$ имеем $1+e^z=1-e^{z-\pi i}=-(z-\pi i)+o(z-\pi i).$ Тогда

$$\mathop{\rm res}_{z=\pi i} f(z) = \lim_{z\to\pi i} -\frac{1}{(1+o(z-\pi i))(e^z-3)} = \frac{1}{4}.$$

Искомый интеграл равен

$$\oint_{\gamma} f(z) \, dz = \frac{\pi i}{2}.$$

4. Особые точки функции определяются нулями знаменателя:

$$\cos z = 0$$
 или $z - i = 0$.

Значит, особые точки — это $z=\pi/2+\pi n$, где $n\in\mathbb{Z}$, и z=i. Контур интегрирования — это окружность с центром в точке 1 и радиусом 2. Так как $\sqrt{2}<2$, точка i лежит внутри контура интегрирования. Также внутрь контура попадает точка $z=\pi/2$.

Так как tg $i \neq 0$, а в знаменателе стоит $(z-i)^2$, то точка z=i является полюсом второго порядка функции f. В точке $\pi/2$ обнуляется только $\cos z$. Так как $(\cos z)' = -\sin z$ не равна нулю в точке $\pi/2$, то точка $z=\pi/2$ есть полюс первого порядка.

Вычислим вычеты:

$$\mathop{\rm res}_{z=\pi/2} f(z) = \lim_{z \to \pi/2} \frac{z - \frac{\pi}{2}}{\cos z} \lim_{z \to \pi/2} \frac{\sin z}{(z-i)^2} = \lim_{z \to \pi/2} \frac{1}{-\sin z} \lim_{z \to \pi/2} \frac{1}{\left(\frac{\pi}{2} - i\right)^2} = -\frac{1}{\left(\frac{\pi}{2} - i\right)^2}.$$

Здесь мы воспользовались правилом Лопиталя при вычислении первого предела. В точке i:

$$\operatorname{res}_{z=i} f(z) = \lim_{z \to i} \frac{d}{dz} \operatorname{tg} z = \frac{1}{\cos^2 i}.$$

Из теоремы о вычетах получаем ответ:

$$\oint_{|z-1|=2} f(z) dz = 2\pi i \left(\frac{1}{\cos^2 i} - \frac{1}{\left(\frac{\pi}{2} - i\right)^2} \right).$$