STSCI 5080 Probability Models and Inference

Lecture 16: CLT, χ^2 and t Distributions

October 23, 2018

Example

If X_n and X have pdfs f_n and f, respectively, and $X_n \stackrel{d}{\to} X$, then does $f_n(x) \to f(x)$ pointwise?

Example

If X_n and X have pdfs f_n and f, respectively, and $X_n \stackrel{d}{\to} X$, then does $f_n(x) \to f(x)$ pointwise?

Answer: No (but the opposite is true).

Counterexample

Consider a pdf

$$f_n(x) = \begin{cases} 1 - \cos(2\pi nx) & \text{if } 0 \le x \le 1 \\ 0 & \text{otherwise} \end{cases}$$

For x < 0, $F_n(x) = 0$, for $0 \le x \le 1$,

$$F_n(x) = \int_0^x f_n(y) dy = x - \frac{1}{2\pi n} \sin(2\pi nx) \to x,$$

and for x > 1, $F_n(x) = 1$. Hence,

$$X_n \stackrel{d}{\rightarrow} U[0,1].$$

But $f_n(x)$ does not converge pointwise.

CLT

Denote by $\Phi(x)$ the cdf of N(0,1).

Theorem

Let $X_1, ..., X_n$ be a random sample from a cdf F, where F has mean μ and variance $\sigma^2 > 0$. Then

$$\frac{\sqrt{n}(\overline{X}_n - \mu)}{\sigma} \stackrel{d}{\to} N(0, 1),$$

or equivalently

$$\sqrt{n}(\overline{X}_n - \mu) \stackrel{d}{\to} N(0, \sigma^2).$$

Verify that

$$X_n \stackrel{d}{\to} X \Rightarrow \sigma X_n \stackrel{d}{\to} \sigma X.$$

We also note that

$$X \sim N(\mu, \sigma^2) \Rightarrow aX + b \sim N(a\mu + b, a^2\sigma^2).$$

The CLT implies that

$$\begin{split} &P(a < \sqrt{n}(\overline{X}_n - \mu)/\sigma < b) \\ &P(a \le \sqrt{n}(\overline{X}_n - \mu)/\sigma < b) \\ &P(a < \sqrt{n}(\overline{X}_n - \mu)/\sigma \le b) \\ &P(a \le \sqrt{n}(\overline{X}_n - \mu)/\sigma \le b) \end{split} \rightarrow \Phi(b) - \Phi(a)$$

for any a < b. We note that

$$\Phi(-x) = 1 - \Phi(x)$$

for any x > 0.

Example

Let $X_1,\ldots,X_{12}\sim U[0,1]$ i.i.d. Use CLT to approximate $P(|\overline{X}_{12}-1/2|<0.1).$

Example

Let $X_1, \ldots, X_{12} \sim U[0, 1]$ i.i.d. Use CLT to approximate $P(|\overline{X}_{12} - 1/2| < 0.1)$.

We have

$$\mu = \frac{1}{2} \quad \text{and} \quad \sigma^2 = \frac{1}{12},$$

so that

$$P(12|\overline{X}_{12} - 1/2| < x) \approx \Phi(x) - \Phi(-x) = 2\Phi(x) - 1.$$

Hence,

$$P(|\overline{X}_{12} - 1/2| < 0.1) = P(12|\overline{X}_{12} - 1/2| < 1.2)$$

 $\approx 2\Phi(1.2) - 1$
 $\approx 0.729.$

Theorem

If $Y_n \sim Bin(n, p)$, then

$$\frac{Y_n - np}{\sqrt{np(1-p)}} \stackrel{d}{\to} N(0,1).$$

Proof

By definition, $Y_n = X_1 + \cdots + X_n$ for independent Bernoulli trials X_1, \ldots, X_n with success probability p. We note that $E(X_1) = p$ and $Var(X_1) = p(1-p)$, and so

$$\frac{Y_n - np}{\sqrt{np(1-p)}} = \frac{\sqrt{n}(\overline{X}_n - p)}{\sqrt{p(1-p)}} \stackrel{d}{\to} N(0,1)$$

by CLT.

Example

If $Y \sim Bin(100, 1/2)$, then use CLT to approximate P(Y > 60).

Example

If $Y \sim Bin(100, 1/2)$, then use CLT to approximate P(Y > 60).

In this case, np = 50 and np(1-p) = 25. Hence,

$$P(Y > 60) = P\left(\frac{Y - 50}{5} > \frac{60 - 50}{5}\right) \approx 1 - \Phi(2) \approx 0.023.$$

Proof of CLT

Theorem (Continuity theorem for mgfs)

Let X_n and X have mgfs ψ_n and ψ , respectively. If $\psi_n(\theta) \to \psi(\theta)$ for any θ in an open interval containing the origin, then $X_n \stackrel{d}{\to} X$.

Proof of CLT

Theorem (CLT)

Let $X_1, ..., X_n$ be a random sample from a cdf F, where F has mean μ and variance $\sigma^2 > 0$. Then

$$\frac{\sqrt{n}(\overline{X}_n - \mu)}{\sigma} \stackrel{d}{\to} N(0, 1).$$

Proof of CLT using mgfs

Let

$$Y_i = \frac{X_i - \mu}{\sigma}, i = 1, \ldots, n.$$

We note that Y_1, \ldots, Y_n are i.i.d. with mean zero and unit variance, and

$$\frac{\sqrt{n}(\overline{X}_n - \mu)}{\sigma} = \sqrt{nY_n}.$$

Denote by $\psi(\theta)$ the mgf of Y_1 : $\psi(\theta) = E(e^{\theta Y_1})$. The mgf of $\sqrt{n}\overline{Y}_n$ is

$$\psi_n(\theta) = E(e^{\theta \sum_{i=1}^n Y_i/\sqrt{n}}) = E(e^{\theta Y_1/\sqrt{n}} \cdots e^{\theta Y_n/\sqrt{n}})$$
$$= E(e^{\theta Y_1/\sqrt{n}}) \cdots E(e^{\theta Y_n/\sqrt{n}}) = \{\psi(\theta/\sqrt{n})\}^n.$$

Now, since $\psi'(0)=E(Y_1)=0$ and $\psi''(0)=E(Y_1^2)=1$, we can expand $\psi(\theta)$ as

$$\psi(\theta) = \psi(0) + \psi'(0)\theta + \frac{\theta^2}{2}\psi''(0) + \theta^2 R(\theta)$$
$$= 1 + \frac{\theta^2}{2} + \theta^2 R(\theta)$$

by Taylor's theorem, where $\lim_{\theta\to 0}R(\theta)=0$. Substituting this expansion, we have

$$\psi_n(\theta) = \{\psi(\theta/\sqrt{n})\}^n = \left(1 + \frac{\theta^2}{2n} + \frac{\theta^2}{n}R(\theta/\sqrt{n})\right)^n \to e^{\theta^2/2},$$

which is the mgf of N(0,1). By the continuity theorem, we have $\sqrt{nY_n} \stackrel{d}{\to} N(0,1)$.

Functions of sample mean

Theorem (Continuous mapping theorem)

If $Y_n \stackrel{P}{\to} \mu$ (constant) and if g(x) is continuous at $x = \mu$, then $g(Y_n) \stackrel{P}{\to} g(\mu)$.

Proof

Since g(x) is continuous at $x = \mu$, for any $\varepsilon > 0$, there exists $\delta > 0$ such that

$$|x - \mu| < \delta \Rightarrow |g(x) - g(\mu)| < \varepsilon.$$

This implies that

$$\{|Y_n-\mu|<\delta\}\subset\{|g(Y_n)-g(\mu)|<\varepsilon\},$$

so that

$$P\{|g(Y_n) - g(\mu)| < \varepsilon\} \ge P(|Y_n - \mu| < \delta),$$

but $\lim_{n\to\infty} P(|Y_n - \mu| < \delta) = 1$. Hence, we have

$$\lim_{n\to\infty} P\{|g(Y_n)-g(\mu)|<\varepsilon\}=1.$$

Since $\varepsilon > 0$ is arbitrary, we conclude that $g(Y_n) \stackrel{P}{\to} g(\mu)$.

Delta method

Example

If $\sqrt{n}(Y_n - \mu) \stackrel{d}{\to} N(0, \sigma^2)$ and g(x) is differentiable at $x = \mu$, then

$$\sqrt{n}\{g(Y_n) - g(\mu)\} \xrightarrow{d} N(0, \{g'(\mu)\}^2 \sigma^2).$$

Proof (heuristic)

By differentiability, we have

$$g(x) \approx g(\mu) + g'(\mu)(x - \mu).$$

Plugging in $x = Y_n$, we have

$$\sqrt{n}\{g(Y_n) - g(\mu)\} \approx g'(\mu)\sqrt{n}(Y_n - \mu) \stackrel{d}{\to} N(0, \{g'(\mu)\}^2 \sigma^2).$$

Example

Let $X_1,\ldots,X_n\sim Ex(\lambda)$ i.i.d. Since $E(X_1)=1/\lambda$, i.e., $\lambda=1/E(X_1)$, it is reasonable to "estimate" λ by $\widehat{\lambda}=1/\overline{X}_n$ (which is indeed the MLE). By the continuous mapping theorem, $\widehat{\lambda}$ is consistent, i.e., $\widehat{\lambda}\stackrel{P}{\to}\lambda$. What is the limiting distribution of $\sqrt{n}(\widehat{\lambda}-\lambda)$?

Example

Let $X_1,\ldots,X_n\sim Ex(\lambda)$ i.i.d. Since $E(X_1)=1/\lambda$, i.e., $\lambda=1/E(X_1)$, it is reasonable to "estimate" λ by $\widehat{\lambda}=1/\overline{X}_n$ (which is indeed the MLE). By the continuous mapping theorem, $\widehat{\lambda}$ is consistent, i.e., $\widehat{\lambda}\stackrel{P}{\to}\lambda$. What is the limiting distribution of $\sqrt{n}(\widehat{\lambda}-\lambda)$?

We first note that

$$\sqrt{n}(\overline{X}_n-1/\lambda)\stackrel{d}{\to} N(0,1/\lambda^2).$$

Since the derivative of g(x) = 1/x at $x = 1/\lambda$ is

$$g'(1/\lambda) = -\frac{1}{1/\lambda^2} = -\lambda^2$$

we have

$$\sqrt{n}(\widehat{\lambda} - \lambda) \stackrel{d}{\to} N(0, \lambda^2).$$

Example

Let $X_1,\ldots,X_n\sim Po(\lambda)$ i.i.d. We want to estimate $\theta=g(\lambda)=P(X_1=0)=e^{-\lambda}$. Find the limiting distribution of $\sqrt{n}(\widehat{\theta}-\theta)$ where $\widehat{\theta}=g(\overline{X}_n)=e^{-\overline{X}_n}$.

Example 16.5 (cont)

Example

Another natural estimator for $\theta = e^{-\lambda}$ is $\widetilde{\theta} = \overline{Y}_n$ where

$$Y_i = \begin{cases} 1 & \text{if } X_i = 0 \\ 0 & \text{otherwise} \end{cases}$$

because $E(Y_i) = P(X_i = 0) = e^{-\lambda} = \theta$. Find the limiting distribution of $\sqrt{n}(\tilde{\theta} - \theta)$? Which estimator do you think is better?

Chapter 6 Distributions Derived from the Normal Distribution

 χ^2 distribution

Definition

Let $Z_1, \ldots, Z_n \sim N(0, 1)$ i.i.d. Then $V = Z_1^2 + \cdots + Z_n^2$ is said to follow the χ^2 distribution with n degrees of freedom, $V \sim \chi^2(n)$ in short.

Recall that $Y = Z_1^2$ has pdf

$$g(y) = \begin{cases} \frac{1}{\sqrt{2\pi}} y^{-1/2} e^{-y/2} & \text{if } y > 0\\ 0 & \text{otherwise} \end{cases},$$

which coincides with the pdf of Ga(1/2, 2). By the regeneration property of the gamma distribution, we have:

Theorem

$$\chi^2(n) = Ga(n/2,2)$$
. Hence, the pdf of $V \sim \chi^2(n)$ is

$$f(v) = \frac{1}{2^{n/2}\Gamma(n/2)}v^{n/2-1}e^{-x/2}$$
 for $v > 0$,

and the mgf of V is

$$\psi(\theta) = (1 - 2\theta)^{-n/2}$$
 for $\theta < 1/2$.

t distribution

Definition

If $Z \sim N(0,1)$ and $V \sim \chi^2(n)$, and Z and V are independent, then

$$T = \frac{Z}{\sqrt{V/n}}$$

is said to follow the t distribution with n degrees of freedom, $T \sim t(n)$ in short.

Theorem

The pdf of $T \sim t(n)$ is

$$f_T(t) = rac{\Gamma\{(n+1)/2\}}{\sqrt{n\pi}\Gamma(n/2)} \left(1 + rac{t^2}{n}
ight)^{-(n+1)/2}, \quad -\infty < t < \infty.$$

Proof (outline)

The cdf of $U = \sqrt{V/n}$ is

$$P(U \le u) = P(\sqrt{V/n} \le u) = P(V \le nu^2) = F_V(nu^2),$$

so that the pdf of U is

$$f_U(u) = 2nuf_V(nu^2).$$

The pdf of T = Z/U is given by

$$f_T(t) = \int_0^\infty f_U(u) f_Z(ut) du.$$

Properties of t distribution

Denote by $f_n(t)$ the pdf of t(n).

• If n = 1, then the pdf is

$$f_1(t) = \frac{1}{\pi(1+t^2)},$$

which coincides with the Cauchy density.

• If $Y \sim \chi^2(n)$, then for any positive integer k,

$$E(|Y|^k) \begin{cases} < \infty & \text{if } k < n \\ = \infty & \text{if } k \ge n \end{cases}.$$

• If $n \to \infty$, then $f_n(t) \to e^{-t^2/2}/\sqrt{2\pi}$ (pdf of N(0,1)) pointwise.