看前须知

- 1. 本栏将以最大程度实现 Windows 智能 DNS 的案例重现。
- 2. 一名良好的网络工程师会时刻保证自己的计算机处于最安全的状态。
- 3. 本栏中的 Windows 均采用域环境下来实现效果,域环境与普通工作站大体相同。 根据实际情况,可以参考域环境下的配置。
- 4. 若在图片中出现与环境不符合的参数,请忽略。
- 5. 文档内的知识是永无止境的,当然也不能完全按照文档中的内容来形成脑海中的刻板印象,请读者需时刻保持清醒的头脑。文档仅提供某一方面的方法,更多视野需要由读者自身开拓。

环境:

镜像信息:

系统	系统版本	发行版本
Windows	WindowsServer2022	21Н2

网络信息表

网络名称	VlanID	子网名称	网络地址	网关	IPv4 地址池
Network10	10	Subnet10	10. 10. 10. 0/24	10. 10. 10. 254	10. 10. 10. 100-10. 10. 10. 200
Network20	20	Subnet20	10. 10. 20. 0/24	10. 10. 20. 254	10. 10. 20. 100-10. 10. 20. 200

实例信息表

实例名称	IPv4 地址	完全合格域名	
windows1	10. 10. 10. 110	dc. kangaroo. com	
WINGOWSI	10. 10. 20. 110	de. Rangar oo. com	
	10. 10. 10. 101		
windows2	10.10.10.102 (Secondary)	client.kangaroo.com	
	10. 10. 20. 101		

拓扑结构

域环境部署:

由于拓扑环境中使用普通工作站来做测试,所以可以将 Client 加入域环境中。

为域控改名:

```
☑ 管理员: Windows PowerShell
Windows PowerShell
Windows PowerShell
版权所有(C) Microsoft Corporation。保留所有权利。
安装最新的 PowerShell, 了解新功能和改进! https://aka.ms/PSWindows
PS C:\Users\Administrator> hostname
dc
PS C:\Users\Administrator> ■
```

配置静态 IP 地址:

安装域控:

Web 服务器部署

安装 IIS Web 服务

这里使用 dotnet 站点以便更好展示效果。

Web 服务器配置

新建两个站点

站点1目录为 C:\www\Contents\GuangZhou

站点 2 目录为 C:\www\Contents\Shanghai

添加网站 ? X

设置两个站点默认主页

设置两个站点默认主页内容

站点1主页文件:

```
<html>
<body bgcolor="yellow">
<center>
<h2>Hello This Is Kangaroo GuangZhou Site !!!</h2>
<%Response.Write(now())%>
IP: <%Response.Write(Request.ServerVariables("Local_Addr"))%>
</center>
</body>
</html>
```

站点 2 主页文件:

```
<html>
<body bgcolor="yellow">
<center>
<h2>Hello This Is Kangaroo Shanghai Site !!!</h2>
<%Response.Write(now())%>
```

```
IP: <%Response.Write(Request.ServerVariables("Local_Addr"))%>
</center>
</body>
</html>
```

SmartDNS 服务器配置

创建 DNS 区域子网

在配置的过程中,我们会需要使用 Poweshell 进行配置。为了实现地理隔离,首先我们需要创建 DNSClientSubnet。换句话说,就是告诉 DNS 服务器,哪一个子网属于广州的客户端,哪一个属于上海的客户端。当我将这两个客户端的子网特征告诉 DNS 后,DNS 才知道如何判断转发请求。

创建广州与上海的子网:

Add-DnsServerClientSubnet -Name "GuangZhouSubnet" -IPv4Subnet "10.10.10.0/24"

Add-DnsServerClientSubnet -Name "ShanghaiSubnet" -IPv4Subnet "10.10.20.0/24"

创建完毕后,我们可以查询一下:

当然也可以配置 IPv6 子网:

Add-DnsServerClientSubnet -Name "GuangZhouSubnet" -IPv4Subnet "10.10.10.0/24" -IPv6Subnet "2022:10:10:10::/64"

Add-DnsServerClientSubnet -Name "ShanghaiSubnet" -IPv4Subnet "10.10.20.0/24" -IPv6Subnet "2022:10:10:20::/64"

创建 DNS 作用域

创建完子网后,下一步需要创建 DNSServerZoneScope, 这一步极为重要!

我们需要在一个 DNS 区域中划分多个逻辑地理区域。我们需要理解这一个概念,举个例子,现在我们有一个名为 kangaroo.com 的 DNS 主区域,我们就要从 kangaroo.com 中再划分两个逻辑地理范围。例如,我们需要创建一个广州区域,一个上海区域。操作完毕后,我们就在同一个 DNS 主区域下面,包括了多个地理区域。

Add-DnsServerZoneScope -ZoneName "kangaroo.com" -Name "GuangZhou"

Add-DnsServerZoneScope -ZoneName "kangaroo.com" -Name "Shanghai"

创建完 DNS 作用域后,我们可以查看一下:

添加 DNS 记录

创建完逻辑地理区域后,我们必须将 Web 服务器的主机记录添加到两个作用域中。逻辑地理区域主要用来包含主机记录,串起来用以 DNS Policy 判断使用。

例如我们创建了逻辑区域 GuangZhou,那么我们就需要创建 GuangZhou 的 Web 服务器记录,创建主机记录的过程中,最主要的一步就是指定-ZoneScope。

指定参数之后创建出来的主机记录就会绑定在指定的地理区域内,之后创建策略,且只有策略中指定的子网范围客户端或特定客户端可以访问对应的"地理区域主机记录"。

就比如在作用域 GuangZhou,添加了 IP 地址为 10.10.10.110 <u>www.kangaroo.com</u> Web 服务器主机记录,那么这个主机记录就位于广州的数据中心;在上海的作用域范围中,

我们同样需要为上海的数据中心添加 IP 地址 10.10.20.110 <u>www.kangaroo.com</u> 的 Web 服务器主机记录。

在使用 Powershell 配置前,我们需要注意:我们定义的 A 记录名称为 www,所以我们的用户最终是以 www.kangaroo.com 来访问服务器的。

Add-DnsServerResourceRecord -ZoneName "kangaroo.com" -A -Name "www" -IPv4Address "10.10.10.110" -ZoneScope "GuangZhou"

Add-DnsServerResourceRecord -ZoneName "kangaroo.com" -A -Name "www" -IPv4Address "10.10.20.110" -ZoneScope "Shanghai"

创建完 DNS 记录后,我们可以查看一下:

HostName	RecordType	Туре	Timestamp	TimeToLive	RecordData
8	A	1	2022/11/21 0:00:00	00:10:00	10. 10. 10. 110
6	A	1	2022/11/21 0:00:00	00:10:00	10. 10. 20. 110
8	NS	2	0	01:00:00	dc. kangaroo. com.
8	SOA	6	0	01:00:00	[61] [dc. kangaroo. com.] [hostmaster. kangaroo. com.]
_msdcs	NS	2	0	01:00:00	dc. kangaroo. com.
_gctcp.Default-First	SRV	33	2022/11/21 0:00:00	00:10:00	[0][100][3268][dc. kangaroo. com.]
kerberos. tcp. Default	SRV	33	2022/11/21 0:00:00	00:10:00	[0][100][88][dc. kangaroo. com.]
ldaptcp.Default-Fir	SRV	33	2022/11/21 0:00:00	00:10:00	[0][100][389][dc. kangaroo. com.]
gc. tcp	SRV	33	2022/11/21 0:00:00	00:10:00	[0][100][3268][dc. kangaroo. com.]
kerberostcp	SRV	33	2022/11/21 0:00:00	00:10:00	[0][100][88][dc. kangaroo. com.]
kpasswdtcp	SRV	33	2022/11/21 0:00:00	00:10:00	[0][100][464][dc. kangaroo. com.]
ldap. tcp	SRV	33	2022/11/21 0:00:00	00:10:00	[0][100][389][dc. kangaroo. com.]
kerberosudp	SRV	33	2022/11/21 0:00:00	00:10:00	[0][100][88][dc. kangaroo. com.]
kpasswdudp	SRV	33	2022/11/21 0:00:00	00:10:00	[0][100][464][dc. kangaroo. com.]
de	A	1	0	01:00:00	10. 10. 20. 110
dc	A	1	0	01:00:00	10. 10. 10. 110
DomainDnsZones	A	1	2022/11/21 0:00:00	00:10:00	10. 10. 20. 110
DomainDnsZones	A	1	2022/11/21 0:00:00	00:10:00	10. 10. 10. 110
_ldaptcp.Default-Fir	SRV	33	2022/11/21 0:00:00	00:10:00	[0][100][389][dc. kangaroo. com.]
ldap. tcp. DomainDnsZones		33	2022/11/21 0:00:00	00:10:00	[0][100][389][dc. kangaroo. com.]
PorestDnsZones	A	1	2022/11/21 0:00:00	00:10:00	10. 10. 20. 110
PorestDnsZones	A	1	2022/11/21 0:00:00	00:10:00	10. 10. 10. 110
_ldaptcp.Default-Fir	SRV	33	2022/11/21 0:00:00	00:10:00	[0][100][389][dc. kangaroo. com.]
_ldaptcp.ForestDnsZones		33	2022/11/21 0:00:00	00:10:00	[0][100][389][dc. kangaroo. com.]
gz	A	1	2022/11/21 2:00:00	00:20:00	10. 10. 10. 101
sh	A	1	2022/11/21 0:00:00	00:20:00	10, 10, 20, 101

在上述操作中,我们创建的是基于 ZoneScope 的解析记录,但是我们需要注意的是。如果只给 ZoneScope 区域中添加记录,ZoneScope 以外没有记录的话。则除了自定义的子网用户外的访问都会出现无法解析的情况。于是,我们还需要在 ZoneScope 中增加解析记录。

这一步可以使用 GUI 创建,也可以使用 Powershell 创建:

Add-DnsServerResourceRecord -ZoneName "kangaroo.com" -A -Name "www" -IPv4Address "10.10.10.110"

Add-DnsServerResourceRecord -ZoneName "kangaroo.com" -A -Name "www" -IPv4Address "10.10.20.110"

两条 DNS 记录分别指向不同的 IP 地址

配置 DNS Policy

在子网,作用域,记录,以上条件配置好后,我们接下来就要创建 DNS 查询策略,这一步同样很重要。

在这里,我们来指定客户端的子网范围,eq为 Equal,代表等于的意思。一旦客户端子网则好成功与预定义的子网范围相匹配,则会有对应区域内的主机记录给予响应。

ZoneScope 中的参数后跟随一个 1,这个值会在后续多次用到。在本次案例中,我们所实现的是一个完全分流的场景,如果不完全分流,则会有一定比例的广州用户访问到上海的服务器。

反过来,则会由一定比例的上海用户访问到广州的服务器,更有甚者会走 DNS 流负载均衡。

当然,身为运维人员肯定是不希望这种事情的发生。我们为 ZoneScope 定义为 1,则表示广州/上海客户端百分百由广州/上海区域的主机记录给予响应。

在这里,我们仍然使用 Powershell 创建 DNS Policy:

Add-DnsServerQueryResolutionPolicy -Name "GuangZhouPolicy" -Action ALLOW -ClientSubnet "eq,GuangZhouSubnet" -ZoneScope "GuangZhou,1" -ZoneName "kangaroo.com"

Add-DnsServerQueryResolutionPolicy -Name "ShanghaiPolicy" -Action ALLOW -ClientSubnet "eq,ShanghaiSubnet" -ZoneScope "Shanghai,1" -ZoneName "kangaroo.com"

创建完 DNS Policy 后,我们可以查看一下:

模拟测试:

模拟广州测试

模拟上海测试

由于这里我是用一台计算机来实现的,所以在模拟测试广州后我们需要重新刷新 DNS 缓存。

特殊案例:

指定客户端流量重定向

如果上述方式的测试结果不是很满意,这里使用特定客户端用作测试:

Add-DnsServerClientSubnet -Name "ClientGuangZhou-2" -IPv4Subnet "10.10.10.102" Add-DnsServerZoneScope -ZoneName "kangaroo.com" -Name "ClientGuangZhou-1"

Add-DnsServerZoneScope -ZoneName "kangaroo.com" -Name "ClientGuangZhou-2"

Add-DnsServerResourceRecord -ZoneName "kangaroo.com" -A -Name "www" -IPv4Address "10.10.10.110" -ZoneScope "ClientGuangZhou-1"

Add-DnsServerResourceRecord -ZoneName "kangaroo.com" -A -Name "www" -IPv4Address "10.10.20.110" -ZoneScope "ClientGuangZhou-2"

Add-DnsServerResourceRecord -ZoneName "kangaroo.com" -A -Name "www" -IPv4Address "10.10.10.110"

Add-DnsServerResourceRecord -ZoneName "kangaroo.com" -A -Name "www" -IPv4Address "10.10.20.110"

Add-DnsServerQueryResolutionPolicy -Name "ClientGuangZhou-1" -Action ALLOW -ClientSubnet "eq,ClientGuangZhou-1" -ZoneScope "ClientGuangZhou-1,1" -ZoneName "kangaroo.com"

Add-DnsServerQueryResolutionPolicy -Name "ClientGuangZhou-2" -Action ALLOW -ClientSubnet "eq,ClientGuangZhou-2" -ZoneScope "ClientGuangZhou-2,1" -ZoneName "kangaroo.com"

模拟广州测试

模拟上海测试

由于这里我是用一台计算机来实现的,所以在模拟测试广州后我们需要重新刷新 DNS 缓存。

至此,Windows 的智能 DNS 就配置完成了,后续还有更多 DNS 相关的案例展示。 敬请期待。

文档参照:

<u>Use DNS Policy for Geo-Location Based Traffic Management with Primary Servers | Microsoft</u> Learn

SmartDNS 主辅服务器配置

在 Internet 的基础架构中, DNS 服务器广泛部署于主-辅模型中, 其中可写的区域副本存储在更为安全的主 DNS 中, 只读副本保存在多个 DNS 辅助服务器中。

辅助服务器使用区域传输协议权威传输 (AXFR) 和增量区域传输 (IXFR) 来请求和接收区域更新,其中包括对主 DNS 服务器上区域的新更改。

环境:

镜像信息:

系统	系统版本	发行版本
Windows	WindowsServer2022	21H2

网络信息表

网络名称	VlanID	子网名称	网络地址	网关	IPv4 地址池
14-1-14	,	4 1 4 11	1 7 * 11 * 11	1476	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Network10	10	Subnet10	10. 10. 10. 0/24	10. 10. 10. 254	10. 10. 10. 100-10. 10. 10. 200
Network20	20	Subnet20	10. 10. 20. 0/24	10. 10. 20. 254	10. 10. 20. 100-10. 10. 20. 200

实例信息表

实例名称	IPv4 地址	完全合格域名	
windows1	10. 10. 10. 110	dc.kangaroo.com	
WINGOWSI	10. 10. 20. 110	de. Kangaroo. com	
windows2	10. 10. 10. 111	hda kanganaa aam	
	10. 10. 10. 112	bdc. kangaroo. com	
	10. 10. 10. 101		
windows3	10. 10. 10. 102 (Secondary)	client.kangaroo.com	
	10. 10. 20. 101		

拓扑结构

拓扑思路来源:

<u>Use DNS Policy for Geo-Location Based Traffic Management with Primary-Secondary Deployments | Microsoft Learn</u>

需求分析:

您做为一名云服务商,为各地区用户提供 Web 服务解析方案,在全国范围内拥有一个名为 www.kangaroo.com 的网站。

为减少国内不同地区用户的访问响应,您在广州,上海分别部署了数据中心。Kangaroo 希望广州用户的流量重定向到广州的数据中心,上海用户的流量重定向到上海的数据中心。

随着用户日益增长的海量请求需要和高时延,高并发的不同需求之间的矛盾。您在广州与上海这两座城市分别新部署了两台 DNS 服务器:辅助服务器 1, IP 地址为 10.10.10.111;辅助服务器 2, IP 地址为 10.10.10.112。这两个辅助服务器在不同地区中充当 DNS 使用。

主服务器上存在一个可写的副本(IP 地址为 10.10.10.110),假定管理员对区域进行了更改。DNS 会使用 AXFR 和 IXFR 协议定期将区域传输到辅助服务器,辅助服务器始终会即使同步主服务器中的更改,这还有一个专业术语——动态更新(Dynamic Upate)。

安装 DNS 功能

新部署的 DNS 服务器可以按需加入到域环境中,加入至域环境中,下一步就要为这两台计算机安装 DNS 功能。

创建 DNS 辅助区域

由于两台 DNS 服务器均以加入至域环境中,在这里我们可以直接指定 ComputerName 通过 WMI 远程操作服务器。

下面的操作都会使用 Powershell 命令进行创建,GUI 点下鼠标就可以了,这里不多演示。

Add-DnsServerSecondaryZone -Name "kangaroo.com" -ZoneFile "kangaroo.com.dns" -MasterServers 10.10.10.110 -ComputerName SecondaryServer1

Add-DnsServerSecondaryZone -Name "kangaroo.com" -ZoneFile "kangaroo.com.dns" -MasterServers 10.10.10.110 -ComputerName SecondaryServer2

设置 DNS 主区域传输

这一步如果不配置,辅助 DNS 则不会被运行加载主要区域。

Set-DnsServerPrimaryZone -Name "kangaroo.com" -Notify Notify -SecondaryServers "10.10.10.111,10.10.10.112" -SecureSecondaries TransferToSecureServers -ComputerName dc

设置 DNS 区域子网

将客户端子网从主服务器复制到辅助服务器中。此处仍然使用 Powershell 来进行操作:
Get-DnsServerClientSubnet -ComputerName dc

Add-DnsServerClientSubnet -ComputerName SecondaryServer1

Get-DnsServerClientSubnet -ComputerName dc | Add-DnsServerClientSubnet -ComputerName SecondaryServer2

创建辅助 DNS 作用域

在 DNS 中,区域作用域也开始从主服务器发送 XFR 请求。管理员对主服务器上的区域作用域进行更改时,将向辅助服务器发送包含区域作用域信息的通知。随后,辅助服务器可以使用增量或更改更新其区域作用域。

Get-DnsServerZoneScope -ZoneName "kangaroo.com" -ComputerName dc |
Add-DnsServerZoneScope -ZoneName "kangaroo.com" -ComputerName
SecondaryServer1 -ErrorAction Ignore

Get-DnsServerZoneScope -ZoneName "kangaroo.com" -ComputerName dc | Add-DnsServerZoneScope -ZoneName "kangaroo.com" -ComputerName SecondaryServer2 -ErrorAction Ignore

配置 DNS Policy

在子网,作用域,记录,以上条件配置好后,我们接下来就要创建 DNS 查询策略。 一旦客户端子网刚好成功与预定义的子网范围相匹配,则会有对应区域内的主机记录给予响应。在前面章节中我们配置完毕的 DNS Policy 能被直接引用:

\$policy = Get-DnsServerQueryResolutionPolicy -ZoneName
"kangaroo.com" -ComputerName dc

\$policy | Add-DnsServerQueryResolutionPolicy -ZoneName
"kangaroo.com" -ComputerName SecondaryServer1

\$policy | Add-DnsServerQueryResolutionPolicy -ZoneName
"kangaroo.com" -ComputerName SecondaryServer2

现在,我们在辅助 DNS 服务器配置了 DNS 策略,那这些 DNS 辅助服务器将会以定义好的逻辑地理位置重定向流量。

当用户向边缘 DNS 服务器发送查询请求时,边缘 DNS 就会将请求发送至上级 DNS。 上级 DNS 服务器收到域名解析查询时, DNS 服务器会根据配置的 DNS 策略判断 DNS 请求中的字段。如果名称解析请求中的源 IP 地址与策略相匹配,则关联的区域范围将会用于响应查询,并将用户流量重定向到地理位置上最接近他们的数据中心。

在实际的生产环境中,大多数情况会和下述拓扑一致:

