Homework for Distributed Database Systems

(Issue: 2012 / 3 / 14 Due: 2012 / 3 / 28)

1. Fragmentation

A supply-part database consists of three relations as shown below.

SUPPLIER		
SNO	SNAME	COUNTRY
S1	SN1	USA
S2	SN2	INDIA
S3	SN3	CHINA
S4	SN4	CHINA
S5	SN5	INDIA
S6	SN6	USA

SUPPLY			
SNO	PNO	QTY	
S1	P1	60	
S1	Р3	70	
S2	P2	60	
S3	Р3	55	
S3	P4	96	
S4	P2	65	
S6	P2	70	
S6	P4	96	

	PARTS		
PNO	PNAME	PRICE	
P1	PC	10000	
P2	CAMERA	8000	
Р3	VIDEO	5000	
P4	HI-HI	3000	

There are three applications:

Q1: Print SNO of suppliers who supply parts with price less than 6000.

Q2: For each supplier in USA, print SNAME, and PNO of the parts that s/he supplies.

Q3: For each supplier, print SNO, SNAME, the number of parts s/he supplies.

a) Determine a set of simple predicates that is complete and minimal. Justify your answer.

Solution:

Change to application statement to SQL:

Q1: select SNO

from PARTS, SUPPLY

where PARTS.PNO = SUPPLY.PNO and PARTS.PRICE < 6000

Q2: select SNAME, PNO

from SUPPLIER, SUPPLY

where SUPPLIER.SNO = SUPPLY.SNO and SUPPLIER.COUNTRY = "USA"

Q3: select SNO, SNAME, COUNT(*)

from SUPPLIER, SUPPLY

where SUPPLIER.SNO = SUPPLY.SNO

group by SUPPLIER.SNO

Simple predicate from application:

Q1: price < 6000

Q2: country = "USA"

Q3: null

Since "price < 6000" is related to relation PARTS and "country = "USA"" is related to relation SUPPLIER, we need two sets of complete and minimal simple predicates.

Set of complete and minimal simple predicate for relation PARTS:

```
{"price < 6000"}
```

Set of complete and minimal simple predicate for relation SUPPLIER:

```
{"country = "USA""}
```

Checking for completeness:

```
The minterm predicates for PARTS is {"price < 6000", "price >= 6000"}
```

The minterm predicates for SUPPLIER is {"country = "USA", country ≠ "USA"}

```
PARTS 1 = \sigma price < 6000 PARTS PARTS 2 = \sigma price >= 6000 PARTS
```

SUPPLIER 1 = σ country = "USA" SUPPLIER

SUPPLIER $2 = \sigma$ country \neq "USA" SUPPLIER

Fragments		Q1	Q2	Q3
SUPPLIER 1	S1		Х	Х
	S6		Х	Х
SUPPLIER 2	S2			Х
	S3			X
	S4			X
	S5			X
PARTS 1	P3	Х		
	P4	Х		
PARTS 2	P1			
	P2			

Since all the tuples in all fragments have the same probability to be accessed by all applications, the two set of simple predicates are complete.

Checking for minimality:

For relation PARTS: The addition of predicate "price < 6000" divide PARTS into two fragments which accessed differently by Q1.

Therefore, "price < 6000" is relevant and so {"price < 6000"} is minimal for PARTS. For relation SUPPLIER: The addition of predicate "country < "USA"" divide SUPPLIER into two fragments which accessed differently by Q2.

Therefore, "country < "USA"" is relevant and so {"country < "USA""} is minimal for SUPPLIER.

b) Derive a horizontal fragmentation step by step, and show the contents of each fragmentation.

Solution:

For relation PARTS:

- 1. complete and minimal simple predicate: p1 = "price < 6000"
- 2. minterm predicate: p1, ¬p1.
- 3. Implications among simple predicate: none
- 4. Removal of predicate due to contradiction: none
- 5. Do the horizontal fragmentation:

PARTS
$$1 = \sigma$$
 price < 6000 PARTS PARTS $2 = \sigma$ price $>= 6000$ PARTS

PARTS 1		
PNO	PNAME	PRICE
P3	VIDEO	5000
P4	HI-HI	3000

PARTS 2		
PNO	PNAME	PRICE
P1 PC 10000		10000
P2	CAMERA	8000

For relation SUPPLIER:

6. complete and minimal simple predicate: p1 = "country = "USA""

- 7. minterm predicate: p1, ¬p1.
- 8. Implications among simple predicate: none
- 9. Removal of predicate due to contradiction: none
- 10. Do the horizontal fragmentation:

SUPPLIER 1 = σ country = "USA" SUPPLIER SUPPLIER 2 = σ country \neq "USA" SUPPLIER

SUPPLIER 1			
SNO SNAME COUNTR			
S1	SN1	USA	
S6	SN6	USA	

SUPPLIER 2			
SNO SNAME		COUNTRY	
S2	SN2	INDIA	
S3	SN3	CHINA	
S4	SN4	CHINA	
S5	SN5	INDIA	

F or relation SUPPLY, do derived fragmentation:

Temp1 = SUPPLY \bowtie SUPPLIER1

Temp2 = SUPPLY \bowtie SUPPLIER2

 $SUPPLY1 = Temp1 \bowtie PARTS1$

 $SUPPLY2 = Temp1 \bowtie PARTS2$

 $SUPPLY3 = Temp2 \bowtie PARTS1$

 $SUPPLY4 = Temp2 \bowtie PARTS2$

SUPPLIER1				
SNO	PNO	QTY		
S6 P4 96				

SUPPLIER3			
SNO	PNO	QTY	
S1	P3	70	
S3	P3	55	
S3	P4	96	

SUPPLILER2				
SNO PNO QTY				
S1	P1	60		
S6	P2	70		

]	SUPPLIER4			
	SNO PNO QTY			
	S2	P2	60	
1	S4	P2	65	

2. Allocation

a) You are given a fragment F, a set of sites S_1, S_2, \ldots, S_m , and a set of queries, Q_1, Q_2, \ldots, Q_n . Workload of the system is represented by two arrays: Size[1..n], and Freq[1..n, 1..m]. Size[i] is the size of data to be transferred for query i when the fragment is not allocated at the site where the query is issued. Freq[i,j] is the frequency of query i issued at site j. Write the procedure (in pseudo-code form) that determines the site where F should be allocated so that the total data transferring cost is minimized.

Solution:

Begin

MinCost := MAX;

```
For site := 1 to m do
        Cost := GetCost(site);
        If cost < Min_cost then
             MinCost := Cost;
             MinSite := site;
        End
      End:
      Return minSite;
  End
Function GetCost (site) /* compute the cost if F is allocated at the site)
 Begin
   Cost := 0;
   For this Site := 1 to m do
      For query := 1 to n do
        If thisSite != site then Cost += Freq[query, thisSite]*Size[query];
   Return cost;
 End
```

b) Follow the above question. If you are also given an array Update[1..n], where Update[i] represents the update cost of query i (Update[i] = 0 indicates that query i does not involve any updates). Write the procedure (in pseudo-code form) that determines whether F should be replicated another site.

Solution:

```
Begin
   Let LocatedSite is the site determined in a)
   For site := 1 to m do
   If site != LocatedSite and Benificial(site) then return True
   Return False:
 End
 Function Benificial (Site)
 Begin
    UpdateCost = 0;
    Saving = 0;
    For query := 1 to k do
       For site := 1 to m do
           UpdateCost += Freq[query, Site]*Update[query];
       Saving += Freq[query, Site]*size[query];
   End;
   Return (Saving > UpdateCost);
End
```

In this algorithm, when the two cost is equal, we do not replicate the data since we should not make some effort for no reward.