CLAIMS

1. Compounds of general formula 1

5 in which

M

represents an element of group 12;

 R_{M}

represents the hydrogen atom, a halogen atom, or an alkyl, cycloalkyl, aryl, alkoxy, cycloalkoxy, aryloxy, alkylthio, cycloalkylthio, arylthio, amino, alkylamino, dialkylamino, cycloalkylamino, di(cycloalkyl)amino, alkyl(cycloalkyl)amino, arylamino, diarylamino, alkylarylamino or (cycloalkyl)arylamino radiaal;

10 \$2

15

A and B

represent, independently, a carbon chain of 2 to 4 carbon atoms, optionally substituted by one or more of the following substituted or non-substituted alkyl, cycloalkyl or aryl radicals, in which said substituent is a halogen atom, an alkyl, nitro or cyano radical,

R₁₅ represents the hydrogen atom; one of the following substituted or non-substituted alkyl, cycloalkyl or aryl radicals, in which said substituent is

L₁ and L₂

represent, independently, a group of formula - $E_{15}(R15)$ - in which

 E_{15} is an element of group 15 and

a halogen atom, an alkyl, nitro or cyano radical; a radical of formula $-E_{14}RR'R''$ in which E_{14} is an element of group 14 and R, R' and R'' represent, independently, the hydrogen atom or one of the following substituted (by one or more identical or different substituents) or non-substituted alkyl, cycloalkyl, aryl, alkoxy, cycloalkoxy, aryloxy, alkylthio, cycloalkylthio or arylthio radicals, in which said substituent is a halogen atom, the alkyl, nitro

or cyano radical; or a radical of formula -SO₂Q in which Q represents a halogen atom, an alkyl, haloalkyl or aryl radical optionally substituted by

25

20

indifferently represents a group of formula $-E'_{15}(R'_{15})(R''_{15})$ or $-E_{16}(R_{16})$ in which

E', is an element of group 15 and

E₁₆ is an element of group 16 and

R'₁₅, R"₁₅ and R₁₆ represent, independently, the hydrogen atom; one of the following substituted (by one or more identical or different substituents) or non-substituted alkyl, cycloalkyl or aryl radicals, in which said substituent is a halogen atom, the alkyl, nitro or cyano radical; a radical of formula -E'₁₄TT'T" in which E'₁₄ is an element of group 14 and T, T' and T" represent, independently, the hydrogen atom or one of the following substituted (by one or more identical or different substituents) or non-substituted alkyl, cycloalkyl, aryl, alkoxy, cycloalkoxy, aryloxy, alkylthio, cycloalkylthio or arylthio radicals, in which said substituent is a halogen atom, the alkyl, nitro or cyano radical; or a radical of formula -SO₂Q' in which Q' represents a halogen atom, an alkyl, haloalkyl or aryl radical optionally substituted by one or more substituents chosen from the alkyl, haloalkyl and halogen radicals.

2. Compounds of formula 1 as defined in claim 1, characterised in that they are presented in the form of a monomer or a dimer.

3. Compounds of general formula 1 as defined in one of claims 1 to 2, characterised in that

R_M represents an alkyl group;

A and B represent, independently, a carbon chain of 2 to 4 carbon atoms;

 L_1 and L_2 represent, independently, a radical of formula $-E_{15}(R_{15})$ - in which E_{15} is a nitrogen or phosphorus atom and R_{15} represents a hydrogen atom or a radical of formula $-E_{14}RR'R''$ in which E_{14} represents a carbon or silicon atom and R, R' and R'' represent, independently, the hydrogen atom or an alkyl radical;

L₃ represents a radical of formula -E'₁₅(R'₁₅)(R"₁₅) in which E'₁₅ is a nitrogen or phosphorus atom, and R'₁₅ and R"₁₅ represent, independently, a hydrogen atom or a radical of formula - E'₁₄TT'T" in which E'₁₄ represents a carbon or silicon atom and T, T' and T" represent, independently, the hydrogen atom or an alkyl radical.

4. Compounds of general formula 1 as defined in one of claims 1 to 3, characterized in that M represents a zinc atom.

5

 L_3

10

15

20

2:

N335

R_M represents a methyl radical;

A and B represent, independently, a carbon chain of 2 carbon atoms;

L₁ and L₂ represent, independently, a radical of formula -E₁₅(R₁₅)- in which E₁₅ is a nitrogen atom and R₁₅ represents a hydrogen atom, a methyl, ethyl, propyl, isopropyl radical or a radical of formula -E₁₄RR'R" in which E₁₄ represents a silicon atom and R, R' and R" represent, independently, the hydrogen atom or a methyl, ethyl, propyl or isopropyl radical; L₃ represents a radical of formula -E'₁₅(R'₁₅)(R"₁₅) in which E'₁₅ is a nitrogen atom, and R'₁₅ and R"₁₅ represent, independently, a hydrogen atom, a methyl, ethyl, propyl, isopropyl radical or a radical of formula -E'₁₄TT'T" in which E'₁₄ represents a silicon atom and T, T' and T" represent, independently, the hydrogen atom or a methyl, ethyl, propyl or isopropyl radical.

- 6. Compounds of general formula 1 as defined in one of claims 1 to 4 and corresponding to the following formulae:
 - [Me $_3$ SiN(H)CH $_2$ CH $_2$ N(Me)CH $_2$ CH $_2$ NSiMe $_3$]ZnMe;
 - [Me₃SiN(H)CH₂CH₂N(H)CH₂CH₂NSiMe₃]ZnMe.
- 7. Compounds of formula 1 as defined in claim 6, characterised in that they are presented in dimer form.
- 8. Process for the preparation of the products of general formula 1 as defined in claim 1, characterized in that a product of formula I

$$(L_1-A-L_2-B-L_3)^-, Y^+$$
 (I)

in which L₁, A, L₂, B and L₃ have the meanings indicated in claim 1 and Y represents the hydrogen atom, a metal or a metallic group, is reacted with a product of formula II

$$MR_{M}Z$$
 (II)

25

in which M and R_M have the meanings indicated in claim 1 and Z represents a parting group, in order to obtain a product of formula 1.

- 9. Use of the products of formula 1 as defined in any one of claims 1 to 7, as polymerization or copolymerization catalyst.
- 10. Use according to claim 9 for the polymerization or copolymerization of heterocycles, in particular epoxides such as propylene oxide.
 - 11. Use according to claim 9, for the polymerization or copolymerization of cyclic esters, in particular the polymer cyclic esters of lactic and/or glycolic acid.

12. Process for the preparation of block or random copolymers, or polymers which consist of bringing into contact with one or more monomers, a chain initiator and/or a regulator, a polymerization catalyst and optionally a polymerization solvent, at a temperature comprised between ambient temperature and 250° C, for a duration comprised between a few minutes and 300 hours, said process characterized in that the chain initiator and/or the regulator and the polymerization catalyst are represented by the same compound which is chosen from the compounds according to claims 1 to 7.

Pib

5

- 13. Process according to claim 12, characterized in that the monomer is chosen from the epoxides, and in particular propylene oxide, or the cyclic esters, and in particular the polymer cyclic esters of lactic and/or glycolic acid.
- 14. Polymers or copolymers which can be obtained by carrying out a process according to one of claims 12 or 13.

Add An