Reinforcement Learning

Abe Vos

Mei 2022

Model-free prediction/control

	Signaal	Evaluatie	Controle
DP	p(s', r s, a)	Policy Evaluation	Policy/Value Iteration
MC	G	MC Prediction	MC Control
TD	R_t of G_t^{λ}	$TD(0)$, $TD(\lambda)$	Sarsa, Q-learning

Kwaliteitsfunctie

- ightharpoonup Q(s,a)
- \blacktriangleright Verwachte beloning voor actie a in staat s
- ightharpoonup Beleid: $\pi(s) = \arg\max_a Q(s, a)$
- ightharpoonup Tabel met een rij voor elke (s,a)

Tabulaire Q

- lackbox Q-waarde voor alle staten en acties $\mathcal{S} imes \mathcal{A}$
- ▶ Heel groot voor staten met veel dimensies
- Discrete staten/acties

Figure 1: Lunar Lander

Lunar Lander

- Statenruimte van acht dimensies:
 - Positie (x, y)
 - ► Snelheid (x, y)
 - ► Hoek en draaisnelheid
 - ► Staan de poten wel/niet op de grond? (2 booleans)
- Vier acties:
 - Links, rechts, omhoog
 - Doe niets (omlaag)

Continue staten

- Tussen 0 en 1 zijn oneindig veel decimale getallen
- Lunar Lander gebruikt 6 continue staat variabelen
- ▶ Oneindig grote tabel voor V(S)/Q(S,A)?

Kwantisatie

- Deel continue staat op in discrete secties
- Afronden
- ► Hoeft niet per se op hele waarden

Afronden

- Bepaal op hoeveel decimalen we willen afronden, bijv.: 2
- Vermenigvuldig een continue waarde om decimalen links van punt te krijgen
 - $0.1736 * 10^2 = 17.36$
- Gooi de overgebleven decimalen weg

Afronden in Python

```
def quantize(x, decimals=2):
    return int(x * 10 ** decimals)
```

Tile coding

- Kwantisatie legt een raster over de statenruimte
 - Schaal van raster bepaalt "grofheid" van afrondingen
- Gebruik meerdere rasters
 - Verschuif, draai en schaal elk raster
- Rasters hoeven niet uit vierkanten te bestaan

Figure 2: Voorbeeld van tile coding

De vloek der dimensies

- Tile coding maakt staten telbaar
- Lunar lander posities:
 - x: -400.0 tot 400.0
 - y: -300.0 tot 300.0
- Afronden op tientallen geeft $80 \cdot 30 = 2400$ staten
 - Met andere variabelen wordt dit nog veel groter

Grote tabulaire functies

- Veel geheugen
 - ► Elke staat heeft een parameter
- Elke staat moet apart bezocht en geupdate worden
 - Trainen wordt heel traag

Functie benadering

Wat we willen

- Functie om kwaliteit voor elke actie te voorspellen a.d.h.v. huidige staat en parameters
- \blacktriangleright #Parameters \ll #staten
- Update voor een staat heeft invloed op "buurstaten"
 - $ightharpoonup s pprox s' \implies \pi(s) pprox \pi(s')$

Parametrische functies

- ightharpoonup Q(s,a) is een functie van s en a
- Gebruik supervised learning
 - ightharpoonup Q wordt een functie van s, a en ${f w}$
 - ▶ Bijvoorbeeld neuraal netwerk

Discrete acties

- lacktriangle Ons beleid kiest de actie met de hoogste Q-waarde
- ightharpoonup Evalueer $Q(s,a;\mathbf{w})$ voor elke a
- Een neuraal netwerk met meerdere outputs
 - ► Een Q-waarde voor elke actie
 - Functie van s en \mathbf{w} : $Q(s; \mathbf{w})$

Figure 3: Type functie benaderingen

Sarsa met functiebenadering

Maak een differentieerbare kwaliteitsfunctie q(s, a, w)
Maak een functie voor de gradient van q(s, a, w): q'(s, a,
Kies een learning rate: lr
Initialiseer parameters w (bijvoorbeeld w=0)

Voor elke episode

Observeer staat S en kies actie A (met bijv. epsilon g

Voor elke stap in de episode: Voer A uit, observeer R, S'

Als S' terminaal is:

w += lr * (R - q(S, A, w)) * q'(S, A, w)Ga naar volgende episode

Kies actie A' a.d.h.v. S' en q(S', a, w)w += lr * (R + discount * q(S', A', w) - q(S, A, w)

Neurale netwerken

- lacksquare Uitkomst van een neuron h_i met een input \mathbf{x}_n
 - $h_i = \sigma(w_{i1}x_{n1} + w_{i2}x_{n2} + \dots + w_{iD}x_{nD})$
 - $h_i = \sigma(\mathbf{w} \cdot \mathbf{x}_n)$
 - $ightharpoonup \sigma(\cdot)$ is een activatiefunctie
- Herhaal voor alle verborgen neuronen
- \blacktriangleright Gebruik h_1,\cdots,h_K als input voor volgende laag

Problemen met neurale netwerken

- ▶ Neurale netwerken zijn krachtige functie benaderaars
- $lackbox{Veel parameters}
 ightarrow ext{veel manieren om een probleem op te lossen}$

Overfitting

- Krachtige modellen leren alle details van de training data
 - ► Kunnen slecht generaliseren
- Student met fotografisch geheugen
 - ▶ Bereidt examen voor door alle oude examens te onthouden
 - Kan geen nieuwe vragen beantwoorden
- Student met normaal geheugen
 - Moet onderliggende principes leren
 - Kan geleerde kennis op nieuwe problemen toepassen

Figure 4: Overfitting en underfitting

Lokale optima

- Neurale netwerken zijn non-linear
- Error functie is concaaf
 - ► Heeft meerdere *lokale* optima
- ▶ Globaal optimimum is niet altijd makkelijk te vinden

Figure 5: Gradient descent in een convexe functie

Lineaire voorspeller

- Neuraal netwerk met 1 laag
 - ► Geen activatie functie
- Heeft maar 1 optimum
 - ls dus altijd globaal optimum
- ► Makkelijke afgeleide:
 - $f(\mathbf{x}; \mathbf{w}) = \mathbf{w} \cdot \mathbf{x}$
 - $\nabla_{\mathbf{w}} f(\mathbf{x}; \mathbf{w}) = \mathbf{x}$
- ► Kan geen non-lineaire verbanden leren

Feature engineering

Lineare functies

- Weinig parameters, weinig overfitting
- Zal voor veel situaties wel underfitten
- ▶ Geef model zelf non-lineaire informatie d.m.v. features

Simpele features

- lacksquare Een staat met features s_1, s_2, \cdots, s_D
- Maak nieuwe features:
- Parameters voor oorspronkelijke en nieuwe features
 - $\mathbf{w} = w_1, \cdots, w_D, w_{D+1}, \cdots, w_{D+D^2}$
- Bereken output:
 - $Q(s; \mathbf{w}) = \sum_{d=1}^{D} w_d s_d + \sum_{c=1}^{D} \sum_{d=1}^{D} w_{cd} \phi_{cd}$
- Non-lineaire features, functie is nog steeds lineair in parameters

Andere features

- ▶ Tile-coding
 - Elke tegel is een feature met waarde 0 of 1
- Radial basis function
 - lacksquare Verdeel K punten door de statenruimte m_1,\cdots,m_K
 - ightharpoonup Bereken de afstand van s tot elk punt:

$$\phi_k(s) = \sqrt{\sum_{d=1}^{D} (s_d - m_{kd})^2}$$

- Pythagoras in D dimensies
- Andere metrieken zijn mogelijk
- Tile-coding met "fuzzy" grenzen

Deep Reinforcement Learning

Features leren

- Feature engineering kan tijdrovend zijn
- Vergt ook domeinkennis
- Bestaat er een algoritme om automatisch features te leren?

Terug naar neurale netwerken

- Verborgen neuronen in een neuraal netwerk zijn "geleerde" features
- Gebruike simpelere features
 - Neuraal netwerk kan non-lineaire verbanden in features vinden
 - Bijvoorbeeld pixels

Dodelijke Triade

- Methoden voor minder variantie en grotere statenruimtes
 - Bootstrapping (TD)
 - Off-policy training (Q-learning)
 - Functie benadering
- Combinatie van alle drie zorgt voor instabiliteit

Deep Q Network

- Gebruik neuraal netwerk om Q-functie te leren
- Observeer staat als pixels
- Q-learning met neuraal netwerk: combineert bootstrapping, off-policy training en functie benadering
- Action replay: train netwerk op oude ervaringen

Q-Learning Q-table input State -Output → Q-value input Action -Deep Q-Learning Neural Network Q-value of Action1 Output Q-value of Action2 input State -Output Q-value of ActionM

Figure 7: Deep Q Network

Figure 8: Breakout voor de Atari 2600

Random Search Methodes

Random search

- ▶ Alternatief voor gradient descent
 - ► Gradients zijn niet altijd beschikbaar
- ▶ Genereer N oplossingen x_1, \dots, x_N , kies de beste x^*
 - Minimaliseert een functie $\mathcal{L}(x_n)$
- N moet heel groot zijn
- Niet praktisch voor grote zoekruimte

Simulated Annealing

- Random search gebruikt p(X = x)
- $\blacktriangleright \ \, \text{Vervang met} \,\, p(X_{\text{new}} = x | X_{\text{old}} = x^*)$
 - ► Gebruik kennis van vorige stap
 - "Goede" oplossingen liggen dichter bij elkaar
- Genereer "buurman" van vorige oplossing
 - $\qquad \qquad \textbf{Bijvoorbeeld} \ \ x = x^* + \epsilon, \epsilon \sim \mathcal{N}(0, 1)$
- lacktriangle Update wel of niet afhankelijk van temperatuur en score van x

Simulated Annealing

```
Genereer x*

Voor elke n stap 1..N:
    t := 1 - n / N
    Genereer kandidaat x

Genereer p = random.random()

Als L(x) < L(x*) of p > exp(-(L(x) - L(x*)) / t):
    x* = x
```


Evolutionaire algoritmes

- Meerdere kandidaten
- Selecteer K beste op basis van fitness
 - Fitness" is functie die we willen optimaliseren
- lacktriangle Genereer nakomelingen op basis van de top K
 - Mutatie: stochastische verandering aan een individu
 - Crossover: stochastische combinatie van twee individuen
- Toe te passen op gewichten van neuraal netwerk
 - Maar ook op architectuur

Genetisch algoritme

Genereer kandidaten X = [x1, x2, ..., xN]

Voor iedere generatie:

Evalueer fitness van alle individuen

Selecteer K kandidaten met beste fitness

Genereer N - K nieuwe kandidaten met mutatie en crossov

 ${\tt Vervang} \ {\tt N} \ {\tt -} \ {\tt K} \ {\tt slechtste} \ {\tt kandidaten} \ {\tt met} \ {\tt nieuwe} \ {\tt nakomelin}$

Figure 9: NEAT leert gewichten en architectuur

Evolutionaire strategie

- Genereer kandidaten volgens kansverdeling
- ► Selecteer beste kandidaten
- Update parameters van nieuwe kansverdeling met geselecteerde kandidaten
 - ► Monte Carlo schatting van parameters

Figure 10: CMA-ES; een evolutionaire strategie

Augmented Random Search

- Leer direct een policy met random search
- Gebruikt functie benadering, zonder gradients
- Uitbreiding van Basic Random Search

Basic Random Search

Hyperparameters: lr, v, N

```
Voor elke iteratie:
   Genereer N noise vectors met standard normaal steekproeffor elke n in 1..N:
   G_n + = \text{ beloning uit episode met beleid van: } w + v = G_n - = \text{ beloning uit episode met beleid van: } w - v = 0
```

 $w += lr / N * sum((G_n + - G_n -) * dn voor elke n in 1.$

Initialiseer parameters: w = [0, 0, ..., 0]

Aanpassingen

- Sorteer vectors dn op max(G_n+, G_n-)
 - Selecteer b beste vectoren voor update
 - Evolutie strategie
- ▶ Update stapgrootte voor BRS: lr / N
 - Vervang met lr / (b * sd)
 - sd: standaard deviatie van de 2 * b beloningen
- Standaardiseer staten
 - Zorg dat staat componenten zelfde gemiddelde/standaard deviatie hebben
 - \triangleright $(S-\mu)/\sigma$

Extra: Alpha Zero

Alpha Zero

- Verslaat wereldkampioenen in schaak en Go
- Leert een waarde functie en beleid
- $\blacktriangleright \ \mathcal{L}_{\underline{t}}(s_t, \tilde{\pi}_t, z_t) = (v_{\theta}(s_t) z_t)^2 \tilde{\pi}_t \cdot \log(p_{\theta}(s_t))$
 - $ightharpoonup z_t$: uitkomst van spel (-1 of 1)
 - $ightharpoonup ilde{\pi}_t$: schatting van optimaal beleid in t

Monte Carlo Tree Search

- Minimax algoritme met Monte Carlo Prediction
- Minimax
 - Doorzoek de "gametree" op zoek naar actie die maximale winst van tegenstander minimaliseert
 - Erg zwaar naarmate we dieper in de boom zoeken
- Monte Carlo Prediction
 - Schat de waarde van een staat door middel van simulaties

Monte Carlo Tree Search

- Node in boom voor elke actie
- ▶ Selectie: kies een punt in de boom waar we weinig van weten
- ▶ Uitbreiding: genereer nodes voor alle mogelijke acties
- Simulatie: simuleer een episode met een naïef beleid
- Update: houd het aantal gespeelde en gewonnen episodes bij voor alle nodes op het pad van de huidige tot de start node

Figure 11: Een stap van MCTS