Übungsklausur Physik für Infotronik WS2013/2014

Zeit: 90 Minuten

Erreichbare Punktzahl: 90

Hilfsmittel: Formelsammlungen, Taschenrechner

Aufgabe 1 (15 Punkte):

Ein Güterwagen (Masse $m_1 = 60$ t) rollt reibungsfrei einen Ablaufberg (Höhenunterschied h = 2 m) herab und stößt an einen zweiten, stehenden Wagen (Masse $m_2 = 30$ t).

- a) Welche gemeinsame Endgeschwindigkeit (Angabe in km/h) entsteht nach dem Stoß bei der Annahme eines inelastischen Stoßprozesses?
- b) Wie groß ist die kinetische Energie des Gesamtsystems (Angabe in MJ) vor dem Zusammenstoß der beiden Wagen?
- c) Wie groß ist die kinetische Energie des ersten Güterwagens (Angabe in MJ) nach dem Zusammenstoß bei Annahme eines elastischen Stoßprozesses?
- d) Wie groß wäre die Endgeschwindigkeit (Angabe in km/h) des zweiten Wagens nach dem Stoß, wenn dieser ebenfalls eine Masse von 60 t hätte bei Annahme eines elastischen Stoßprozesses?

Aufgabe 2 (15 Punkte):

Der metallischen Elektrodenkugel eines Van-de-Graaf-Generators wird durch ein Band mit einer Rate von 150 μ C/s Ladung zugeführt. Zwischen dem Band (welches auf Null-Pozenzial liegt) und der Kugel herrscht eine Potenzialdifferenz von 1,25 MV. Die Kugel gibt mit derselben Rate Ladung an die Umgebung ab, sodass das Potenzial von 1,25 MV erhalten bleibt.

- a) Mit welcher Leistung muss das Band mindestens angetrieben werden?
- b) Wie klein kann der Radius der Kugel gewählt werden, damit das elektrische Feld in der Nähe der Kugeloberfläche die Durchschlagfestigkeit der Luft (3 MV/m) nicht übersteigt?

Aufgabe 3 (25 Punkte):

Sie sollen einen luftgefüllten Plattenkondensator für Pulslaser konstruieren, der eine Energie von 100 kJ speichern kann.

- a) Welches Volumen muss der Zwischenraum zwischen den Platten mindestens haben?
- b) Nehmen Sie an, Sie hätten ein Dielektrikum mit der Durchschlagsfestigkeit 3,00·10⁸ V/m und der relativen Dielektrizitätskonstanten von 5,0 entwickelt. Welches Volumen muss dieses Dielektrikum zwischen den Platten einnehmen, damit der Kondensator eine Energie von 100 kJ speichern kann?

Aufgabe 4 (20 Punkte):

Betrachten Sie die Anordnung in der Abbildung: eine rechteckige Leiterschleife mit Seitenlängen von 10 cm und 5 cm und einem ohmschen Widerstand von 2,5 Ω bewegt sich mit einer konstanten Geschwindigkeit von 2,4 cm/s durch ein Gebiet, in dem ein homogenes, aus der Papierebene heraus zeigendes Magnetfeld mit einer Feldstärke von 1,7 T herrscht. Zum Zeitpunkt t=0 tritt die Vorderkante der Schleife in das Magnetfeld ein. Die folgenden Teilaufgaben gelten für das Intervall $0 \le t \le 16s$:

- a) Skizzieren Sie den zeitlichen Verlauf des magnetischen Flusses durch die Leiterschleife.
- b) Skizzieren Sie den zeitlichen Verlauf der Induktionsspannung.
- c) Skizzieren Sie den zeitlichen Verlauf des durch die Schleife fließenden Stromes. Vernachlässigen Sie Selbstinduktionseffekte.

Aufgabe 5 (15 Punkte):

Sie vermessen eine unbekannte Batterie: zuerst schließen Sie an die Klemmen einen Lastwiderstand R_1 =5,0 Ω an. Die Stromstärke im Stromkreis beträgt dann 0,5 A. Schließen Sie danach stattdessen einen Widerstand R_2 =11,0 Ω an, so fließt ein Strom von nur 0,25 A. Berechnen Sie:

- a) die Quellenspannung Uo und
- b) den Innenwiderstand R_{in} der Batterie.

Lösung 1:

a) Die potenzielle Energie des ersten Güterwagens wird vollständig in kinetische Energie umgesetzt (reibungsfreies Rollen). Daraus ergibt sich die Geschwindigkeit des ersten Güterwagens kurz vor dem Stoß:

$$E_{kin1} = E_{pot1}$$

$$\frac{m_1}{2}v^2 = m_1 \cdot g \cdot h$$

$$v_1 = \sqrt{2 \cdot g \cdot h} = \sqrt{2 \cdot 9.81 \frac{m}{s^2} \cdot 2m} = 6.264 \frac{m}{s}$$

Der Satz der Erhaltung des Impulses besagt:

$$v_1 \cdot m_1 + v_2 \cdot m_2 = v_{1+2} \cdot (m_1 + m_2)$$

Darauf folgt mit $v_2 = 0$ (ruhender Wagen 2):

$$v_{1+2} = \frac{m_1 \cdot \sqrt{2 \cdot g \cdot h}}{(m_1 + m_2)} = \frac{60t \cdot \sqrt{2 \cdot 9,81 \frac{m}{s^2} \cdot 2m}}{(60 + 30)t} = 4,176 \frac{m}{s} = 15,034 \frac{km}{h}$$

b)
$$E_{ges} = E_{kin1} + E_{kin2}$$

$$E_{ges} = E_{kin1} + 0 = \frac{m_1}{2}v^2 = m_1 \cdot g \cdot h = 6 \cdot 10^4 kg \cdot 9,81 \frac{m}{s^2} \cdot 2 m = 1,1772 \cdot 10^6 Nm$$

$$E_{ges} = 1,1772 MJ$$

c) Bei einem elastischen Stoß gilt das Gesetz der Erhaltung der Energie:

$$\begin{split} E_{kin1} + E_{kin2} &= E'_{kin1} + E'_{kin2} \\ \frac{m_1 \cdot v_1^2}{2} + \frac{m_2 \cdot v_2^2}{2} &= \frac{m_1 \cdot v_1'^2}{2} + \frac{m_2 \cdot v_2'^2}{2} \end{split}$$

Außerdem gilt das immer Gesetz der Erhaltung des Impulses:

$$v_1 \cdot m_1 + v_2 \cdot m_2 = v_1' \cdot m_1 + v_2' \cdot m_2$$

Daraus ergibt sich für die Geschwindigkeit des ersten Wagens nach dem Stoß:

$$v_1' = \frac{(m_1 - m_2) \cdot v_1 + 2 \cdot m_2 \cdot v_2}{m_1 + m_2}$$

Bei v_2 = 0 (ruhender Wagen 2) gilt:

$$v_1' = \frac{(m_1 - m_2)}{(m_1 + m_2)} \cdot v_1$$

Die kinetische Energie des ersten Wagens nach dem Stoß berechnet sich daraus:

$$E'_{kin1} = \frac{m_1 \cdot {v'_1}^2}{2} = \frac{m_1}{2} \cdot \frac{(m_1 - m_2)^2}{(m_1 + m_2)^2} \cdot 2 \cdot g \cdot h$$

$$E'_{kin1} = \frac{6 \cdot 10^4 kg}{2} \cdot \frac{(6-3)^2 \cdot 10^8 kg^2}{(6+3)^2 \cdot 10^8 kg^2} \cdot 2 \cdot 9,81 \frac{m}{s^2} \cdot 2 m = 1,308 \cdot 10^5 J = 0,1398 MJ$$

d) Für die Geschwindigkeit des zweiten Wagens nach dem Stoß ergibt sich:

$$v_2' = \frac{(m_2 - m_1) \cdot v_2 + 2 \cdot m_1 \cdot v_1}{m_1 + m_2}$$

Für den Sonderfall m_2 = m_1 und v_2 = 0 (ruhender Wagen 2) ergibt sich: $v_2^\prime=v_1$

Daraus ergibt sich:

$$v_2' = v_1 = \sqrt{2 \cdot g \cdot h} = \sqrt{2 \cdot 9.81 \frac{m}{s^2} \cdot 2m} = 6.264 \frac{m}{s} = 22.55 \frac{km}{h}$$

Lösung 2:

a) Die benötigte Leistung ist die Rate, mit der der Van-de-Graaf-Generator elektrische Arbeit verrichtet:

$$P = \frac{dW}{dt} = \frac{d(q \cdot \Delta \phi)}{dt} = \Delta \phi \cdot \frac{dq}{dt} = 1,25 \ MV \cdot 150 \ \frac{\mu C}{s} = 1,25 \cdot 150 \ \frac{V \cdot As}{s} = 187,5 \ W$$

b) Das elektrische Feld auf der Oberfläche einer leitenden Kugel ergibt sich aus dem Potenzial auf der Oberfläche und dem Kugelradius:

$$E_r = \frac{\phi(r)}{r}$$

$$r = \frac{\phi(r)}{E_r} = \frac{\phi(r)}{E_{max}} = \frac{1,25 \ MV \cdot m}{3 \ MV} = 0,417 \ m$$

Lösung 3:

a) Die elektrische Energie, die im Kondensator höchstens gespeichert werden kann, ergibt sich aus der Spannung, die maximal möglich ist, ohne dass es zum dielektrischen Durchschlag kommt:

$$E_{el,max} = \frac{1}{2}C \cdot U_{max}^2$$

Ein luftgefüllter Plattenkondensator mit der Fläche **A** und dem Abstand **d** der Platten hat die Kapazität:

$$C = \varepsilon_0 A/d$$

Die maximale Spannung zwischen den Platten ergibt sich aus dem maximal möglichen elektrischen Feld E_{max} zwischen ihnen, also aus der Durchschlagsfestigkeit:

$$U_{max} = E_{max} \cdot d$$

Mit dem Volumen **V = A·d** zwischen den Platten folgt daraus:

$$E_{el,max} = \frac{1}{2}C \cdot U_{max}^2 = \frac{\varepsilon_0 A}{2d} (E_{max} d)^2 = \frac{1}{2}\varepsilon_0 \cdot Ad \cdot E_{max}^2 = \frac{1}{2}\varepsilon_0 \cdot V \cdot E_{max}^2$$

Für das Volumen ergibt sich daher (1J = 1 Nm = 1 VAs = 1 CV):

$$V = \frac{2 \cdot E_{el,max}}{\varepsilon_0 \cdot E_{max}^2} = \frac{2 \cdot 100 \, kJ}{(8.854 \cdot 10^{-12} C^2 N^{-1} m^{-2}) (3.00 \, MV \cdot m^{-1})^2} = \frac{2 \cdot 10^5 \cdot V^2 A^2 s^2 m}{79.69 \cdot A^2 s^2 m^{-2} V^2 m^{-2}}$$

$$V = 2510 m^3$$

b) Nach Einführen des Dielektrikums mit ϵ_{rel} =5 und E_{max} = 3·10 8 V/m ergibt sich:

$$V = \frac{2 \cdot E_{el,max}}{\varepsilon_{rel} \cdot \varepsilon_0 \cdot E_{max}^2} = \frac{2 \cdot 100 \ kJ}{5 \cdot (8,854 \cdot 10^{-12} C^2 N^{-1} m^{-2}) (3,00 \cdot 10^8 V \cdot m^{-1})^2} = 0,0502 \ m^3$$

Lösung 4:

Wir müssen drei Zeitspannen betrachten:

- 1) die Zeitspanne t₁ für den vollständigen Eintritt der Schleife in das Magnetfeld
- 2) die Zeitspanne t2, während sich die Schleife vollständig im Magnetfeld befindet
- 3) die Zeitspanne t₃ für den vollständigen Austritt der Schleife aus dem Magnetfeld

Wir berechnen zuerst die Zeitspannen:

$$t_1 = \frac{l}{v} = \frac{10 \text{ cm}}{2.4 \text{ cm s}^{-1}} = 4.17s$$

$$t_2 = \frac{L - l}{v} = \frac{(20 - 10) \text{ cm}}{2.4 \text{ cm s}^{-1}} = 4.17s$$

$$t_3 = \frac{l}{v} = \frac{10 \text{ cm}}{2.4 \text{ cm s}^{-1}} = 4,17s$$

a) Wenn sich die Schleife vollständig in dem Magnetfeld befindet (Zeitspanne t_2), dann beträgt der magnetische Fluss:

$$\Phi_{mag,2} = n \cdot B \cdot A = 1.7 T \cdot (0.05 \cdot 0.1) m^2 = 8.5 \cdot 10^{-3} Wb$$

Während der Zeitspanne t_1 steigt der magnetische Fluss linear von null auf diesen Wert an, während der Zeitspanne t_3 fällt der magnetische Fluss von diesem Wert linear auf null ab. Danach bleibt der magnetische Fluss bis 16s bei null.

b) Gemäß dem Faradayschen Gesetz gilt für die induzierte Spannung:

$$U_{ind} = -\frac{d\Phi_{mag}}{dt}$$

Da der magnetische Fluss während der ersten Zeitspanne t₁, linear ansteigt, gilt:

$$U_{ind,1} = -\frac{\Delta \Phi_{mag}}{\Delta t} = -\frac{8.5 \cdot 10^{-3} Wb}{4.17s} = -2.04 \cdot 10^{-3} \frac{Vs}{s} = -2.04 \cdot 10^{-3} V$$

Da der magnetische Fluss während der zweiten Zeitspanne t2, konstant bleibt, gilt:

$$U_{ind,2} = -\frac{d\Phi_{mag}}{dt} = 0$$

Da der magnetische Fluss während der dritten Zeitspanne t₃, linear abfällt, gilt:

$$U_{ind,3} = -\frac{\Delta \Phi_{mag}}{\Delta t} = -\frac{-8.5 \cdot 10^{-3} Wb}{4.17s} = 2.04 \cdot 10^{-3} \frac{Vs}{s} = 2.04 \cdot 10^{-3} V$$

c) Gemäß dem ohmschen Gesetz gilt:

$$I_{ind} = \frac{U_{ind}}{R}$$

Dementsprechend gilt:

$$I_{ind,1} = \frac{U_{ind,1}}{R} = \frac{-2,04 \cdot 10^{-3} V}{2,5 \Omega} = -8,16 \cdot 10^{-4} A$$

$$I_{ind,2} = \frac{U_{ind,2}}{R} = 0$$

$$I_{ind,3} = \frac{U_{ind,3}}{R} = \frac{2,04 \cdot 10^{-3} V}{2,5 \Omega} = 8,16 \cdot 10^{-4} A$$

Lösung 5:

Wir wenden auf beide Fälle die Kirchhoffsche Maschenregel an. Diese lautet: Beim Durchlaufen einer geschlossenen Schleife eines Stromkreises ist die Summe aller Spannungen gleich null:

$$U_O - R_{in} \cdot I - R_{ext} \cdot I = 0$$

Im ersten Fall:

$$U_O - R_{in} \cdot (0.5 A) - (5.0 \Omega) \cdot (0.5 A) = 0$$

$$U_0 - R_{in} \cdot (0.5 A) = 2.5 V$$

$$U_0 = 2.5 V + R_{in} \cdot (0.5 A)$$

Im zweiten Fall:

$$U_O - R_{in} \cdot (0.25 A) - (11.0 \Omega) \cdot (0.25 A) = 0$$

$$U_O - R_{in} \cdot (0.25 A) = 2.75 V$$

$$U_Q = 2,75 V + R_{in} \cdot (0,25 A)$$

Daraus ergibt sich:

$$2.5 V + R_{in} \cdot (0.5 A) = 2.75 V + R_{in} \cdot (0.25 A)$$

$$R_{in} \cdot (0.25 A) = 2.75 V - 2.5V$$

$$R_{in} = \frac{0.25 \, V}{0.25 \, A} = 1 \, \Omega$$

$$U_Q = 2.5 V + R_{in} \cdot (0.5 A) = 2.5 V + (1 \Omega) \cdot (0.5 A) = 3 V$$