Math 220 B - Leoture 16 February 10, 2021

- o. Midterm Exam
 - (1) 5 Questions
 - Infinite Products, F function, sine
 - Weiers hap factorization
 - Mittag Jeffler
 - Normal families & Montel
 - Schwarz temma & applications
- (a) Available on Friday at noon, due Tresday at noon.
 - You can think about the Questions for as long
 - as you wish in this interval.
 - (3) Thosed book / closed notes I no internet I no collaboration
 - (4) c-mail if guestions arise

(5) you may use theorems proved in leature but no

homework problems can be used without proof.

(c) Office hour 4-5:30 today

1. Last hme

· if f(0) = 0 then

- we proved Schwarz demma

- we determined f & Aut A, f (0) =0

- we determined f & Aut A

Idea Use ya to recenter f so that a maps to o.

Question Is there a version of Schwarz if f (0) = 0?

Yes - Schwarz - Pick Lemma.

- we illustrate it for derivatives

Schwarz - Pick $f: \Delta \longrightarrow \Delta$ holomorphic, $\forall a \in \Delta = \Delta(o,i)$.

$$1 + \frac{1}{(a)}$$
 $\frac{1}{1 - 1} + \frac{1}{(a)}$

If
$$f\left(\frac{1}{2}\right) = \frac{1}{4}$$
, find the maximum value of $\left|f'\left(\frac{1}{2}\right)\right|$.

Proof We know this when a = 0 & x = f(a) = 0.

We use Aut (D) to reduce to this case

By Schwarz, If (0) 1 & 1. We compute using the chain out

$$f'(o) = \varphi_{\alpha}'(f(\varphi_{-a}(o))) \cdot f'(\varphi_{-a}(o)) \cdot \varphi_{-a}'(o)$$

$$= \varphi_{\alpha}'(\alpha) \cdot f'(a) \cdot \varphi_{-a}'(o)$$

$$= \frac{1}{1 - |x|^2} \cdot f'(a) \cdot (1 - |a|^2) & |f'(0)| \le 1 \quad \text{gives}$$

Schwarz f(0) = 0	Schwarz - Pick
/f'(0)/ ≤ 1	$ f'(a) \leq \frac{ - f(a) ^2}{ - a ^2}$
1 f (2) \(\(\) 2	2

Ne fine
$$d(2, w) = \left| \frac{1}{1 - \overline{2}w} \right| = pseudo hyperbolic distance$$

Schwarz - Pick
Tholomorphic maps decrease poeudo hyperbolic
distance.

This will be made precise in HWK 5.

2. Further applications of Schwarz

We can use Schwarz to study other domains e.g.

II Example All automorphisms of & are rotations.

 $\frac{P_{roo}f}{\int_{-\infty}^{\infty} f + \int_{-\infty}^{\infty} \Delta^{\times}} \longrightarrow \Delta^{\times}. \quad Since | Im f is bounded =>$

= f can be extended across o by the removable singularity

theorem. The extension f: & -> 1 is holomorphic.

He image Im f & by the open mapping theorem (draw picture)

We alarm f'(o) = 0. Then $f: \Delta^{\times} \longrightarrow \Delta^{\times}$ shows f began to f from $\Delta \longrightarrow \Delta$ hence a biholomorphism preserving o. Then f is a rotation.

To show $\tilde{f}(0) = 0$ assume otherwise $\tilde{f}(0) = \alpha \neq 0$.

Since $\alpha \in \Delta^{\times}$ we can find $\alpha \in \Delta^{\times}$, $f(\alpha) = \alpha$.

By the open mapping theorem, we can find small discs $\Delta_0, \Delta_0, \Delta_0, \Delta_0$ near 0, 0, 0 with $\Delta_0 \cap \Delta_0 = \emptyset$ and. $\Delta_0 \subseteq \tilde{f}(\Delta_0), \Delta_0 \subseteq f(\Delta_0)$. (why?).

Tet $b \in \Delta_0 \setminus \{\alpha\} \implies b \in \tilde{f}(\Delta_0) \implies b = f(\alpha), \alpha \neq 0, \alpha \in \Delta_0$ $b \in f(\Delta_0) \implies b = f(\alpha), \alpha \neq 0, \alpha \in \Delta_0$

 $\Rightarrow f(u) = f(v) = b$ = f not injective (contradiction). $u \neq v \text{ since } \Delta_0 \cap \Delta_2 = \phi$

[11] Upper half plans

Key idea
$$Use \int f \xrightarrow{c} \Delta$$
, $c(a) = \frac{a-a}{a+a}$

$$C = i \cdot \frac{1+2}{1-2}$$

Questions we can answer.

Schwarz - Pick for
$$f: f \xrightarrow{f} \Delta$$

$$E \times amphe \qquad f: \Delta \longrightarrow f^{\dagger}, \quad f(0) = 2$$
 Show

$$Z=f$$
 $f=c \circ f$. Then $f'(o)=o$ since $c(i)=\frac{2-i}{2+i}/2=i$

$$/f'(0)/ = /c'(f(0)). f'(0)/ = /c'(i). f'(0)/ < 1.$$

next time

3. Further discussion of Aut. - Loose ends

[iii] Aut A