第11回定期ミーティング

2024/12/24 早稲田大学 基幹理工学研究科 電子物理システム学専攻 史研究室 石黒将太郎・野口颯汰

1. 先行研究紹介

A) NPHM

2. 実装状況

3. 今後の研究計画

Learning Neural Parametric Head Models

Simon Giebenhain, Tobias Kirschstein, Markos Georgopoulos, Martin Runz, Lourdes Agapito, Matthias Nießner Technical University of Munich, Synthesia, University College London

Training

図1:NPHMのモデルアーキテクチャ

Inference

取り組んだ問題と背景

- ✓ 3D Faceを表現するためのパラメトリック空間として主流であるのは、DECAにも使用されている FLAMEであり、複数の3D Faceデータセットをテンプレートフィッティング後に、PCA分析をベース とした手法で組み立てられる
- ✓ PCAベースの手法は、入力データに対する剛性に優れるという特徴を持つが、局所的な表面の微細な表現に弱いことや、固定されたテンプレートメッシュを基にするため髪形や歯の生成ができない

このモデルの特徴

- ✓ ニューラルパラメトリックヘッドモデル(NPHM)は、顔のキーポイントを中心とする局所座標が対象 とする小さなMLPを複数導入することにより、局所的な表面の表現が得意
- ✔ SDFによってcanonical spaceでの頭部ジオメトリを表現してから、ポーズ空間で形状変化を学ぶため、アイデンティティと表情を表現する潜在空間の分離度が高い
- ✓ 255人を対象とした平均3.5Mサイズの頭部スキャンを5200以上用意し、これらをもとにトレーニング することでトレーニング時の正確なフィッティング誤差を得る

3Dデータセット

Num. Subjects
Total num. Scans
Num. Vertices/Scan

255 (188m/67f) 5200 $\approx 1.5M$

表2:NPHMの3Dデータセットについて

モデルアーキテクチャ

図2:NPHMのトレーニング過程

損失関数

$$\mathcal{L}_{id} = \sum_{j \in J} \mathcal{L}_{IGR} + \lambda_a \|\hat{\mathbf{a}}_j - \mathbf{a}_j\|_2^2 + \lambda_{sy} \mathcal{L}_{sy} + \lambda_{reg}^{id} \|\mathbf{Z}_j^{id}\|_2^2,$$

$$\mathcal{L}_{\text{ex}} = \sum_{\substack{i,j \in J,L \\ x \in X_{j,l}}} \lVert \mathcal{F}_{\text{ex}}(x, \mathbf{z}_{j,l}^{\text{ex}}, \hat{\mathbf{z}}_{j}^{\text{id}}) - \delta(x)_{j,l} \rVert_2^2 + \lambda_{\text{reg}}^{ex} \lVert \mathbf{z}_{j,l}^{\text{ex}} \rVert_2^2$$

表2:NPHMの3Dデータセットについて

定量評価(identity)

Method	L_1 -Chamfer \downarrow	N. C. ↑	F-Score@1.5↑
BFM [32]	$1.341e{-2}$	0.936	0.319
FLAME [21]	$0.640e{-2}$	0.931	0.530
Global PCA [2]	$0.563e{-2}$	0.954	0.571
Local PCA [2]	$0.416e{-2}$	0.960	0.756
ImFace [48]	$0,404e{-2}$	0.954	0.832
ImFace* [48]	$0.312e{-2}$	0.971	0.883
NPM [27]	$0.200e{-2}$	0.975	0.947
Ours	0.182e - 2	0.978	$\boldsymbol{0.954}$

^{*} trained on our data

定性評価(identity)

定量評価(expression)

Method	L_1 -Chamfer \downarrow	N. C. ↑	F-Score@1.5 ↑
BFM [32]	$1.271e{-2}$	0.937	0.508
FLAME [21]	$0.679e{-2}$	0.924	0.351
Global PCA [2]	$0.515e{-2}$	0.956	0.606
Local PCA [2]	$0.535e{-2}$	0.950	0.641
ImFace [48]	$0.369e{-2}$	0.959	0.824
ImFace* [48]	$0.321e{-2}$	0.971	0.879
NPM [27]	$0.299e{-2}$	0.962	0.891
Ours	0.272e - 2	0.969	0.913

^{*} trained on our data

定性評価(expression)

FFHQのEMOCA由来の物理条件を用いたStage1完了

使用GPU: RTX 3080ti Laptop

Image size: 256×256

Batch size: 8

Max step: 5000

Global Encoder: ResNet18

学習時間:約8日間

- AffectNetデータセット追加
- ResNet50 verもやりたい

無表情への変換

Source

Target

Stage1: DECA

Stage1: EMOCA S: DECA, T: DECA S: DECA, T: EMOCA

笑顔への変換

Source

Stage1: DECA S: DECA、T: DECA

Stage1: EMOCA S: DECA、T: EMOCA

笑顔への変換

Source

Target

Stage1: DECA

Stage1: EMOCA S: DECA, T: DECA S: DECA, T: EMOCA

しかめっ面への変換

Source

Target

Stage1: DECA S: DECA、T: DECA

Stage1: EMOCA S: DECA、T: EMOCA

2月までには現在のモデル性能について結論づけたい

1. 研究テーマ

2. 実装状況

3. 今後の研究計画

Step1:表情編集に特化したDDIMを訓練

Step2:変換前後でβ変化しないように訓練

図. DECA[1]とDiffusionAutoencoders[2]を元にした提案モデル

^[1] YAO FENG et al. Learning an Animatable Detailed 3D Face Model from In-The-Wild Images
[2] Konpat Preechakul et al. Diffusion Autoencoders: Toward a Meaningful and Decodable Representation

提供モデル

- ✓ CelebA データセットで分類機を訓練 (分類機のみいけそう)
- ✔ 40種類の属性
- ✓ アノテーションテキストの中身(30000)

Brown_Hair Male Mouth_Slightly_Open Smiling ... 0.jpg -1 1 1 -1 ... :

- ✓ 実際のトレーニングの流れ
 - 1. LMDB形式に変更
 - 2. 画像サイズを<mark>128×128</mark>もしくは256×256に変換
 - 3. Pytorch_lightningで訓練

自作モデル

- ✔ AffectNetで分類機を訓練
- ✔ 8種類の感情
- ✔ アノテーション中身

aro.npy:Arousalの値

exp.npy:表情ラベル(インデックス)

Ind.npy:ランドマークの座標

val.npy:Valenceの値

研究の進捗データの前処理

表. AffectNetの表情カテゴリー

Neutral	75374
Нарру	134915
Sad	25959
Surprise	14590
Fear	6878
Disgust	4303
Anger	25382
Contempt	4250
None	33588
Uncertain	12145
Non-Face	82915
Total	420299


```
287651
Label_0 Label_1 Label_2 Label_3 Label_4 Label_5 Label_6 Label_7
0.jpg -1 1 -1 -1 -1 -1 -1 -1
1.jpg 1 -1 -1 -1 -1 -1 -1 -1
2.jpg 1 -1 -1 -1 -1 -1 -1 -1
3.jpg -1 1 -1 -1 -1 -1 -1 -1
5.jpg -1 -1 -1 -1 -1 1 -1
7. jpg -1 -1 -1 -1 -1 1 -1
10.jpg -1 1 -1 -1 -1 -1 -1 -1
13.jpg -1 1 -1 -1 -1 -1 -1 -1
15.jpg 1 -1 -1 -1 -1 -1 -1 -1
16.jpg 1 -1 -1 -1 -1 -1 -1 -1
18.jpg -1 -1 -1 -1 -1 1 -1
21.jpg -1 -1 1 -1 -1 -1 -1 -1
22.jpg -1 1 -1 -1 -1 -1 -1 -1
23.jpg -1 1 -1 -1 -1 -1 -1 -1
27.jpg 1 -1 -1 -1 -1 -1 -1 -1
```

図. ラベル付した結果

LMDB形式に変換

A data.mdb	10.83 GB	MDB ファイル	2024-12-16 23:02:38
A lock.mdb	8 KB	MDB ファイル	2024-12-16 23:02:38

研究の進捗 _{出力結果}

8種類の表情変換が可能に & Contempt・Fearなど不自然

研究の進捗 今後の研究

```
(diffae) islabshi@islabshi-SYS-5049A-TR:~/workspace-cloud/hayata.noguchi/diffae_affectnet$ python run ffhq128 cls.py
conf: ffhq128 autoenc cls
Global seed set to 0
loading pretrain ... 130M
step: 1019986
loading latent stats ...
/home/islabshi/anaconda3/envs/diffae/lib/python3.8/site-packages/pytorch_lightning/callbacks/model_checkpoint.py:446: UserWarning: Checkpoint directory checkpoints/ffhq128_autoenc_cl
 exists and is not empty.
rank_zero_warn(f"Checkpoint directory {dirpath} exists and is not empty.")
/home/islabshi/anaconda3/envs/diffae/lib/python3.8/site-packages/pytorch_lightning/callbacks/model_checkpoint.py:432: UserWarning: ModelCheckpoint(save_last=True, save_top_k=None, mo
nitor=None) is a redundant configuration. You can save the last checkpoint with ModelCheckpoint(save top k=None, monitor=None).
 rank zero warn(
Using native 16bit precision.
GPU available: True, used: True
TPU available: False, using: 0 TPU cores
IPU available: False, using: 0 IPUs
LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0,1,2,3]
  | Name
  | model
                    | BeatGANsAutoencModel | 128 M
                    | BeatGANsAutoencModel | 128 M
    ema model
                                             4.1 K
                                            4.1 K
  | ema_classifier | Linear
          Trainable params
         Non-trainable params
          Total params
1,028.394 Total estimated model params size (MB)
 Epoch 1: 4%|
                                                                                                                                       | 386/8989 [00:27<10:02, 14.27it/s, loss=0.19, v num=
```

評価指標	目的	計算手法/特徴	使用目的
PSNR	ピクセルレベルの類似度	平均二乗誤差 (MSE) を基に計算	再構築品質評価
SSIM	構造的類似性	輝度・コントラスト・構造の3要 素	再構築品質評価
LPIPS	知覚的類似性	学習済みネットワークの特徴空 間での距離	再構築品質評価
感情分類精度	感情転送性能	HSEmotionでターゲット感情と の一致率を計算	感情操作の正確性評価
CSIM	被写体のアイデンティティ保持	CosFaceモデルでの特徴ベクト ル間のコサイン類似度	被写体特徴の保持性能評価
ユーザースタディ	リアリズムと感情表現の主観的 評価	ペア比較法・感情識別タスク	視覚的品質と感情表現の検証

- 途中で訓練が終了した原因調査
- 最適なエポック等 ハイパーパラメーターの調整

表情変換の精度を評価する コードを作成

今年度中に計画してる部分の実装を目指す

