Exercise 1

Let $A, B \subseteq \mathbb{N}$. Define the notion of reducibility $A \leq_m B$. Prove whether it is true that if A is recursive and B is finite, non-empty then $A \leq_m B$. Analyze the case without the finiteness hypothesis for B.

Solution:

First, let us formally define many-one reducibility: A set A reduces to a set B (written $A \leq_m B$) if there exists a total computable function $f : \mathbb{N} \to \mathbb{N}$ such that for all $x \in \mathbb{N}$:

$$x \in A \iff f(x) \in B$$

For the first case, we prove that with B finite and non-empty, the property does not hold by constructing a counterexample:

Let $A = \mathbb{N} \setminus 0$ (recursive) and B = 1 (finite, non-empty). Assume by contradiction that $A \leq_m B$ through some reduction function f. Then:

- For all $x \in A$, f(x) = 1 (since B = 1)
- For all $x \notin A$, $f(x) \neq 1$ This contradicts the fact that f must be total, as \overline{B} is infinite.

For the general case, we can restore the property by requiring B to be recursive. Then for any recursive A, we can construct a reduction:

$$f(x) = egin{cases} \mu y.\ (y \in B) & ext{if } x \in A \ \mu y.\ (y
otin B) & ext{if } x
otin A \end{cases}$$

This *f* is computable since:

- 1. A is recursive so χ_A is computable
- 2. B being recursive means both B and \overline{B} are r.e., allowing us to compute the minima

Exercise 2

State the second recursion theorem and use it to prove that for every $k\geq 0$ there exist two indices $x,y\in\mathbb{N}$ such that x-y=k and $\varphi_x=\varphi_y$.

Solution:

The Second Recursion Theorem states that for any total computable function $h: \mathbb{N} \to \mathbb{N}$, there exists $e \in \mathbb{N}$ such that: $\phi_e = \phi_{h(e)}$

To prove the claim, let $k \ge 0$ and define: h(x) = x - k

This function is total and computable. By the Second Recursion Theorem, there exists $e \in \mathbb{N}$ such that: $\phi_e = \phi_{h(e)} = \phi_{e-k}$

Let x = e and y = e - k. Then:

1.
$$x - y = e - (e - k) = k$$

2.
$$\phi_x = \phi_e = \phi_{e-k} = \phi_y$$

Therefore, we have found indices satisfying both required conditions.

Exercise 3

Given two functions $f,g:\mathbb{N}\to\mathbb{N}$, with f total, define the predicate $Q_{f,g}(x)\equiv \prime\prime f(x)=g(x)\prime\prime$. Show that if f and g are computable then $Q_{f,g}$ is semidecidable. Does the converse hold, i.e., if $Q_{f,g}$ is semidecidable can we deduce that f and g are computable?

Solution:

Let f and g be computable functions. Then:

- 1. First part: Let's prove that $Q_{f,g}$ is semidecidable.
 - Since f and g are computable, there exist indices e_1,e_2 such that $f=\phi_{e_1}$ and $g=\phi_{e_2}$
 - The semi-characteristic function of $Q_{f,g}$ can be written as:

$$sc_{Q_{f,g}}(x) = egin{cases} 1 & ext{if } f(x) = g(x) \ \uparrow & ext{otherwise} \end{cases}$$

- This is equivalent to $sc_{Q_{f,q}}(x) = 1(\mu z. \left| f(x) g(x)
 ight|)$
- Since f and g are computable, this is computable by composition
- Therefore $Q_{f,g}$ is semidecidable
- 2. Second part: The converse does not hold. Let's provide a counterexample:
 - Let f(x) = x (which is computable)
 - Let $g(x) = egin{cases} x & ext{if } x \in K \ \uparrow & ext{otherwise} \end{cases}$
 - Then $Q_{f,g}$ is semidecidable as it coincides with the halting problem K
 - However, g is not computable as it would solve the halting problem

Exercise 4

Let $\mathbb{P}=\{2k\mid k\in\mathbb{N}\}$ be the set of even numbers. Study the recursiveness of the set $A=\{x\in\mathbb{N}:|W_x\cap\mathbb{P}|\geq 2\}$, i.e., determine if A and \bar{A} are recursive/recursively enumerable.

Solution:

Let $\mathbb{P}=\{2k\mid k\in\mathbb{N}\}$ be the set of even numbers. We want to study the recursiveness of the set $A=\{x\in\mathbb{N}:|W_x\cap\mathbb{P}|\geq 2\}$, i.e., determine if A and \bar{A} are recursive/recursively enumerable.

First, we observe that the set A is saturated, since it can be expressed as $A = \{x \mid \phi_x \in \mathcal{A}\}$, where $\mathcal{A} = \{f \in \mathcal{C} \mid |dom(f) \cap \mathbb{P}| \geq 2\}$.

We will use the Rice-Shapiro theorem to prove that both A and \bar{A} are not r.e.:

- 1. A is not r.e. Consider the identity function $id \notin A$, since $dom(id) \cap \mathbb{P} = \mathbb{P}$ is infinite. However, we can find a finite subfunction $\theta \subseteq id$, defined as $\theta(x) = \begin{cases} x & \text{if } x \in 0, 2 \\ \uparrow & \text{otherwise} \end{cases}$ which satisfies $|dom(\theta) \cap \mathbb{P}| = |0, 2| = 2$, and thus $\theta \in A$. Therefore, by the Rice-Shapiro theorem, we conclude that A is not r.e.
- 2. \bar{A} is not r.e.

Note that if θ is the function defined above, then $\theta \not\in \bar{A}$. However, the always undefined function $\emptyset \subseteq \theta$ and $|dom(\emptyset) \cap \mathbb{P}| = |\emptyset| = 0 < 2$, so $\emptyset \in \bar{A}$. Therefore, by the Rice-Shapiro theorem, we conclude that \bar{A} is not r.e.

In conclusion, neither A nor \bar{A} are recursive, as they are not both r.e.

Exercise 5

State the second recursion theorem and use it to prove that the set $B=\{x\in\mathbb{N}:|W_x|=x+1\}$ is not saturated.

Solution:

- 1. Second Recursion Theorem: For any total computable function $f:\mathbb{N}\to\mathbb{N}$, there exists $e_0\in\mathbb{N}$ such that $\phi_{e_0}=\phi_{f(e_0)}$
- 2. To prove B is not saturated:
 - Let's define a function $g(x,y) = \{0 \mid \text{if } y \leq x \uparrow \text{otherwise} \}$
 - By s-m-n theorem, there exists a computable function s such that $\phi_{s(x)}(y)=g(x,y)$
 - By the second recursion theorem, there exists e such that $\phi_e = \phi_{s(e)}$
 - ullet Therefore $|W_e|=e+1$, so $e\in B$
 - However, there exists $e' \neq e$ such that $\phi_e = \phi_{e'}$ (since every computable function has infinitely many indices)
 - But $|W_{e'}|=e+1
 eq e'+1$, so e'
 otin B
 - Therefore B is not saturated

Exercise 6

Let $A, B \subseteq \mathbb{N}$. Define the notion of reducibility $A \leq_m B$. Consider the set $S_4 = \{4 * n \mid n \in \mathbb{N}\}$, i.e., the set of multiples of 4. Prove that A is recursive if $A \leq_m S_4$.

Solution:

- 1. First, recall that $A \leq_m B$ means there exists a total computable function $f: \mathbb{N} \to \mathbb{N}$ such that $\forall x \in \mathbb{N}: x \in A \iff f(x) \in B$
- 2. Let's prove that if $A \leq_m S_4$ then A is recursive:
 - S_4 is recursive since its characteristic function is: $\chi_{S_4}(x) = \{1 \quad \text{if } 4 | x \ 0 \quad \text{otherwise} \}$
 - Let f be the reduction function $A \leq_m S_4$

- Then $\chi_A(x) = \chi_{S_4}(f(x))$
- Since both f and χ_{S_4} are computable, χ_A is computable
- Therefore A is recursive

Exercise 7

Study the recursiveness of the set $A=\{x\in\mathbb{N}:\exists y\in W_x.\,\exists z\in E_x.\,x=y+z\}$, i.e., determine if A and \bar{A} are recursive/recursively enumerable.

Solution:

- First, let's prove that $K \leq_m A$, showing that A is not recursive:
 - Define $g(x,y) = \{1 \text{ if } x \in K \uparrow \text{ otherwise } \}$
 - By s-m-n theorem, there exists total computable s such that $\phi_{s(x)}(y) = g(x,y)$
 - Then:
 - $ullet x \in K \implies W_{s(x)} = \mathbb{N} \wedge E_{s(x)} = 1 \implies s(x) \in A$
 - $ullet x
 otin K \implies W_{s(x)}=\emptyset \implies s(x)
 otin A$
 - Therefore $K \leq_m A$, so A is not recursive
- A is r.e. since:
 - Its semi-characteristic function is:

$$sc_A(x) = 1(\mu w.\left(H(x,(w)_1,(w)_3) \wedge S(x,(w)_2,(w)_1+(w)_2,(w)_3)
ight))$$

• Since A is r.e. but not recursive, \bar{A} cannot be r.e.

Exercise 8

Study the recursiveness of the set $B=\{x\in\mathbb{N}:W_x\cup E_x=\mathbb{N}\}$, i.e., determine if B and \bar{B} are recursive/recursively enumerable.

Solution:

- B is saturated since $B=\{x|\phi_x\in\mathcal{B}\}$ where $\mathcal{B}=f\in\mathcal{C}|dom(f)\cup cod(f)=\mathbb{N}$
- By Rice-Shapiro theorem:
 - B is not r.e. because:
 - The identity function $id \in B$ since $dom(id) = cod(id) = \mathbb{N}$
 - No finite subfunction $\theta \subseteq id$ can be in B since $dom(\theta) \cup cod(\theta)$ is finite
 - \bar{B} is not r.e. because:
 - ullet $\emptyset \in ar{B}$
 - $\emptyset \subseteq id$ but $id \in B$
- Therefore, neither B nor \bar{B} are recursive.

Exercise 9

Let $A,B\subseteq \mathbb{N}$ such that \bar{A} is finite and $B\neq \emptyset,\mathbb{N}$. Prove that $A\leq_m B$.

Solution:

Let $\bar{A}=a_1,\ldots,a_n$ be finite and let $b\in B,c\not\in B$. Define:

$$f(x) = egin{cases} c & ext{if } x \in a_1, \dots, a_n \ b & ext{otherwise} \end{cases}$$

- 1. f is computable since \bar{A} is finite
- 2. f is total by definition
- 3. For all $x \in \mathbb{N}$:

$$ullet x \in A \iff x
otin ar{A} \iff f(x) = b \in B$$

•
$$x \notin A \iff x \in \bar{A} \iff f(x) = c \notin B$$

Therefore $A \leq_m B$.

Exercise 10

Consider the set $A = \{x \mid W_x = E_x \cup 0\}$. We need to establish if A and \bar{A} are recursive/recursively enumerable.

Solution:

Let's observe that A is saturated since $A=\{x\mid \phi_x\in A\}$ where $A=\{f\mid dom(f)=cod(f)\cup 0\}.$

By Rice-Shapiro's theorem, we can prove that both A and \bar{A} are not r.e., and thus not recursive:

- 1. *A* is not r.e.:
 - Consider the identity function id
 otin A, since $dom(id) = \mathbb{N}
 otin \mathbb{N} \cup 0 = cod(id) \cup 0$
 - However, the empty function $\emptyset \subseteq id$ belongs to A, since $dom(\emptyset) = \emptyset = \emptyset \cup 0 = cod(\emptyset) \cup 0$
 - Therefore, by Rice-Shapiro's theorem, A is not r.e.
- 2. \bar{A} is not r.e.:
 - If we take f=(0,0), we have $f
 otinar{A}$ since $dom(f)=0=0\cup 0=cod(f)\cup 0$
 - However, consider $g=(0,1)\subseteq f.$ Then $g\in ar{A}$ since $dom(g)=0
 eq 1\cup 0=cod(g)\cup 0$
 - Therefore, by Rice-Shapiro's theorem, \bar{A} is not r.e.

Exercise 11

Consider the set $B=\{x\in\mathbb{N}\mid 4x+1\in E_x\}$. We need to establish if B and \bar{B} are recursive/recursively enumerable.

Solution:

We will prove that B is not recursive by showing $K \leq_m B$.

Let us define:

$$g(x,y) = egin{cases} 4x+1 & ext{if } x \in K \ \uparrow & ext{otherwise} \end{cases}$$

g is computable since $g(x,y) = (4x+1) \cdot 1(\Psi_U(x,x))$

By the s-m-n theorem, there exists $s:\mathbb{N}\to\mathbb{N}$ computable and total such that:

$$\phi_{s(x)}(y) = g(x,y) \ orall x,y$$

Then s is a reduction function for $K \leq_m B$ since:

- If $x \in K$: $\phi_{s(x)}(y) = 4x + 1$ thus $4x + 1 \in E_{s(x)}$ and therefore $s(x) \in B$
- If $x \notin K$: $\phi_{s(x)}(y) \uparrow$ for all y, thus $E_{s(x)} = \emptyset$ and therefore $s(x) \notin B$

B is r.e. since its semi-characteristic function is computable:

$$sc_B(x) = 1(\mu(y,t). S(x,y,4x+1,t))$$

Since B is r.e. but not recursive, by the complementation theorem we can conclude that \bar{B} is not r.e.

Exercise 12

Show that for any $k \geq 2$, the function $sum_k : \mathbb{N}^k \to \mathbb{N}$ defined by $sum_k(x_1, \dots, x_k) = \sum_{i=1}^k x_i$ is primitive recursive.

Solution:

First recall that the class of primitive recursive functions \mathcal{PR} is the smallest class containing:

- 1. Zero function: $z: \mathbb{N}^k \to \mathbb{N}, z(x_1, \dots, x_k) = 0$
- 2. Successor function: $s:\mathbb{N}\to\mathbb{N}, s(x)=x+1$
- 3. Projections: $U_i^k: \mathbb{N}^k o \mathbb{N}, U_i^k(x_1, \dots, x_k) = x_i$

And closed under:

- Composition
- Primitive recursion

For k=2, we can define sum_2 by primitive recursion:

$$egin{aligned} sum_2(x_1,0) &= x_1 \ sum_2(x_1,x_2+1) &= s(sum_2(x_1,x_2)) \end{aligned}$$

For k > 2, we can define inductively:

$$sum_k(x_1,\ldots,x_k)=sum_2(sum_{k-1}(x_1,\ldots,x_{k-1}),x_k)$$

Since composition preserves primitive recursiveness and $sum_2 \in \mathcal{PR}$, by induction we have $sum_k \in \mathcal{PR}$ for all $k \geq 2$.

Exercise 13

Given a function $f: \mathbb{N} \to \mathbb{N}$, define: $Z(f) = g: \mathbb{N} \to \mathbb{N} | \forall x \in \mathbb{N}$. $g(x) = f(x) \vee g(x) = 0$

Show that Z(id) is not enumerable, where id is the identity function. Is it true for all functions f that Z(f) is not enumerable?

Solution:

To prove Z(id) is not enumerable, we proceed by contradiction. Assume Z(id) is enumerable. Then there would exist a surjective function $f: \mathbb{N} \to Z(id)$.

We can construct a bijective correspondence between $\mathcal{P}(\mathbb{N})$ and Z(id) by defining $h:Z(id)\to\mathcal{P}(\mathbb{N})$ as:

$$h(g) = \{x \in \mathbb{N} \mid g(x) = 0\}$$

For any $g \in Z(id)$, h uniquely constructs the set $D \subseteq \mathbb{N}$ where:

$$g(x) = \{0 \mid \text{if } x \in D | x \mid \text{if } x \notin D \}$$

At this point, we can define a surjective function $\bar{g}: \mathbb{N} \to \mathcal{P}(\mathbb{N})$ as:

$$ar{g} = h \circ f$$

This would imply $\mathcal{P}(\mathbb{N})$ is enumerable, which contradicts Cantor's theorem. Therefore, Z(id) cannot be enumerable.

This property does not hold for all functions. For f = 0 (constant zero function):

$$Z(0) = 0$$

which is a finite set and thus enumerable. In general, Z(f) is enumerable if and only if f = 0.

Exercise 14

Consider $A = \{x \mid W_x \subseteq x\}$. We need to establish if A and \bar{A} are recursive/recursively enumerable.

Solution:

Let's show that $K \leq_m A$. Define:

$$g(x,y) = egin{cases} x & ext{if } x \in K \ \uparrow & ext{otherwise} \end{cases}$$

By s-m-n theorem, $\exists s: \mathbb{N} \to \mathbb{N}$ computable and total such that $\phi_{s(x)}(y) = g(x,y)$. Then:

- If $x \in K$: $W_{s(x)} = x$, thus $s(x) \in A$
- If $x \notin K$: $W_{s(x)} = \emptyset \subseteq s(x)$, thus $s(x) \notin A$

Therefore A is not recursive. However, A is r.e. since:

$$sc_A(x) = 1(\mu w.\, H(x,w) \wedge (w=x))$$

Thus \bar{A} is not r.e.

Exercise 15

Consider the set $B = \{x \in \mathbb{N} : |W_x| > 1\}$. We need to establish if B and \bar{B} are recursive/recursively enumerable.

Solution:

First, observe that B is saturated since $B=\{x\mid \phi_x\in B\}$ where $B=f\in C: |dom(f)|>1.$ Using Rice-Shapiro's theorem, we can prove that both B and \bar{B} are not r.e.

For B not r.e.: Consider the constant function $\mathbf{1}(x) = 1$. Then $\mathbf{1} \notin B$ since $|dom(\mathbf{1})| = 1$. However, if we consider the finite function:

$$heta(x) = egin{cases} 1 & ext{if } x \leq 1 \ \uparrow & ext{otherwise} \end{cases}$$

We have that $\theta \subseteq c_1$ and $\theta \in B$ since $|dom(\theta)| = 2$. Therefore, by Rice-Shapiro's theorem, B is not r.e.

For \bar{B} not r.e.: Consider θ as defined above. Then $\theta \notin \bar{B}$. However, the empty function $\emptyset \subseteq \theta$ and $\emptyset \in \bar{B}$ since $|dom(\emptyset)| = 0 \le 1$. Therefore, by Rice-Shapiro's theorem, \bar{B} is not r.e.

Exercise 16

State the s-m-n theorem and use it to prove that there exists a total computable function $s:\mathbb{N}\to\mathbb{N}$ such that $|W_{s(x)}|=2x$ and $|E_{s(x)}|=x$.

Solution:

First, let us define:

$$g(x,y) = egin{cases} y/2 & ext{if } y < 2x \ \uparrow & ext{otherwise} \end{cases}$$

This function is computable since:

$$g(x,y)=rac{y}{2}+\mu z. \operatorname{sg}(2x-y)$$

By the s-m-n theorem, there exists a total computable function $s: \mathbb{N} \to \mathbb{N}$ such that:

$$\phi_{s(x)}(y) = g(x,y)$$

Therefore:

- 1. $W_{s(x)}=y|y<2x$, thus $|W_{s(x)}|=2x$
- 2. $E_{s(x)} = \{y/2 \mid y < 2x\} = \{z \mid z < x\}$, thus $|E_{s(x)}| = x$

Exercise 17

State the Second Recursion Theorem and use it to show there exists some $x\in\mathbb{N}$ s.t. $\varphi_x(y)=y^x, \forall y\in\mathbb{N}$

Solution:

By the Second Recursion Theorem, for any total computable function $h: \mathbb{N} \to \mathbb{N}$, there exists $e_0 \in \mathbb{N}$ such that $\phi_{e_0} = \phi_{h(e_0)}$.

Let us define:

$$g(n,y)=y^n$$

By the s-m-n theorem, there exists a total computable function $s:\mathbb{N}\to\mathbb{N}$ such that:

$$\phi_{s(n)}(y)=g(n,y)=y^n$$

Applying the Second Recursion Theorem to s, there exists $x \in \mathbb{N}$ such that:

$$\phi_x = \phi_{s(x)}$$

Therefore:

$$\phi_x(y) = \phi_{s(x)}(y) = y^x ext{ for all } y \in \mathbb{N}$$

Exercise 18

Prove that $F = \{\theta \mid \theta : \mathbb{N} \to \mathbb{N} \land \text{dom}(\theta) \text{ finite}\}$ (unary functions with finite domain) set is countable.

Solution:

For any finite function $\theta \in F$, we can encode it uniquely as a natural number using the following encoding:

$$ilde{ heta} = \prod_{i=1}^n p_{x_i+1}^{y_i+1}$$

where:

- $(x_1,y_1),\ldots,(x_n,y_n)$ represents the input-output pairs of θ
- p_i represents the i-th prime number

Given an encoding $z = \tilde{\theta}$:

• $x \in dom(\theta)$ iff $(z)_{x+1} \neq 0$

•
$$\theta(x) = (z)_{x+1} - 1$$
 when $x \in dom(\theta)$

This encoding is:

- 1. Injective (each finite function has a unique encoding)
- 2. Computable (we can effectively compute the encoding and decoding)

Therefore, we have established a one-to-one correspondence between F and a subset of \mathbb{N} , proving that F is countable.

Exercise 19

Study the recursiveness of $B = \{x \mid \phi_x(x) \downarrow \land \phi_x(x) \text{ odd}\}$

Solution:

We show that $K \leq_m B$ to prove B is not recursive.

Define
$$g(x,y)$$
 as: $g(x,y) = egin{cases} 1 & ext{if } x \in K \ \uparrow & ext{otherwise} \end{cases}$

By the s-m-n theorem, there exists $s:\mathbb{N}\to\mathbb{N}$ total computable such that: $\varphi_s(x)(y)=g(x,y)$

Then s is a reduction function $K \leq_m B$ since:

$$ullet x \in K \Rightarrow arphi_s(x)(s(x)) \downarrow = 1(odd) \Rightarrow s(x) \in B$$

•
$$x \notin K \Rightarrow \varphi_s(x)(s(x)) \uparrow \Rightarrow s(x) \notin B$$

Therefore:

- 1. B is not recursive
- 2. B is r.e. since $sc_B(x) = 1(\varphi_x(x)) \cdot sg(mod(\varphi_x(x),2))$
- 3. *B* is not r.e. (otherwise *B* would be recursive)

Exercise 20

State the Second Recursion Theorem and use it to show there exists some $x \in \mathbb{N}$ s.t.

$$|W_x| = x$$

Solution:

By the Second Recursion Theorem, for any total computable $f : \mathbb{N} \to \mathbb{N}$, there exists $e \in \mathbb{N}$ such that $\phi_e = \phi_{f(e)}$.

Define:
$$h(x,y) = \begin{cases} x & \text{if } y \leq |W_x| \\ \uparrow & \text{otherwise} \end{cases}$$

By s-m-n theorem, $\exists s$ total computable such that $\phi_{s(x)}(y) = h(x,y)$.

By Second Recursion Theorem, $\exists e$ such that: $\phi_e = \phi_{s(e)}$

Therefore $|W_e| = e$, proving the existence of such e.

Exercise 21

Define the class of primitive recursive functions. Using only the definition, show that the function $f: \mathbb{N} \to \mathbb{N}$ defined by f(y) = 2y + 1 is primitive recursive.

Solution:

First, let us recall that the class PR of primitive recursive functions is the smallest class containing:

Base functions:

1. Zero function: z(x) = 0

2. Successor function: s(x) = x + 1

3. Projection functions: $U_i^k(x_1,\ldots,x_k)=x_i$

And closed under:

- 1. Composition
- 2. Primitive recursion

To show f(y) = 2y + 1 is primitive recursive, we can construct it using only these operations:

1. Define double(y) by primitive recursion:

$$egin{cases} double(0) = 0 \ double(y+1) = double(y) + 2 = s(s(double(y))) \end{cases}$$

2. Then f(y) = s(double(y))

Therefore, f is primitive recursive as it is constructed using only composition and primitive recursion from the base functions.

Exercise 22

Classify the following set from the point of view of recursiveness $A=\{x\mid W_x\cap E_x\supseteq 0\}$, i.e., establish if A and \overline{A} are recursive/recursively enumerable.

Solution:

A is saturated since $A=\{x\mid \phi_x\in A\}$ where $A=\{f\mid 0\in dom(f)\cap cod(f)\}.$

Let's prove
$$K \leq_m A$$
. Define: $g(x,y) = egin{cases} 0 & ext{if } x \in K \ \uparrow & ext{otherwise} \end{cases}$

By s-m-n theorem, $\exists s: \mathbb{N} o \mathbb{N}$ total computable such that $\phi_{s(x)}(y) = g(x,y)$.

Then:

$$ullet \ x \in K \implies \phi_{s(x)}(0) = 0 \implies 0 \in W_{s(x)} \cap E_{s(x)} \implies s(x) \in A$$

$$ullet x
otin K \implies \phi_{s(x)}(0)\uparrow \Longrightarrow 0
otin W_{s(x)}\cap E_{s(x)} \implies s(x)
otin A$$

Therefore:

- 1. A is not recursive
- 2. A is r.e. since $sc_A(x) = 1(\mu y. (H(x, 0, y) \land S(x, 0, 0, y)))$
- 3. \overline{A} is not r.e.

Exercise 23

Classify the following set from the point of view of recursiveness $B=\{x\in\mathbb{N}\mid\exists y.\,\phi_x(y)=x+1\}$, i.e., establish if B and \overline{B} are recursive/recursively enumerable. Also establish if B is saturated.

Solution:

First, let's prove B is r.e. Its semi-characteristic function is:

$$sc_B(x)=1(\mu w.\left(S(x,(\omega)_1,x+1,(\omega)_2)
ight))$$

Now let's show $K \leq_m B$. Define: $g(x,y) = \begin{cases} s(x) & \text{if } x \in K \\ \uparrow & \text{otherwise} \end{cases}$

By s-m-n theorem, $\exists s$ total computable such that $\phi_{s(x)}(y) = g(x,y)$.

Then:

$$ullet \ x \in K \implies \phi_{s(x)}(0) = x+1 \implies s(x) \in B$$

•
$$x \notin K \implies \phi_{s(x)}(y) \uparrow \text{ for all } y \implies s(x) \notin B$$

Therefore:

- 1. B is not recursive
- 2. B is r.e.
- 3. \overline{B} is not r.e.

For saturation: Define by Second Recursion Theorem an index e such that:

$$\phi_e(y) = egin{cases} e+1 & ext{if } y=e \ \uparrow & ext{otherwise} \end{cases}$$

Then $e \in B$. Let $e' \neq e$ such that $\phi_{e'} = \phi_e$. Then $\phi_{e'}(e') = \phi_e(e') \uparrow$, hence $e' \notin B$. Therefore B is not saturated.

Exercise 24

State the s-m-n theorem. Use it to prove that there exists a total computable function $k: \mathbb{N} \to \mathbb{N}$ such that for all $x, y \in \mathbb{N}$ it holds that $\phi_{k(x)}(y) = lcm(x, y)$, where lcm is the least common multiple of x and y.

Solution:

First, let's state the s-m-n theorem: For any $m,n\geq 1$, there exists a total computable function $s_n^m:\mathbb{N}^{m+1}\to\mathbb{N}$ such that for all $e\in\mathbb{N}, \vec{x}\in\mathbb{N}^m, \vec{y}\in\mathbb{N}^n$: $\phi_e^{(m+n)}(\vec{x},\vec{y})=\phi_{s_e^m(e,\vec{x})}^{(n)}(\vec{y})$

To prove the existence of k, define: $f(x,y) = \mu z \le x \cdot y$. $(x|z \wedge y|z)$

Then f is computable since: $f(x,y) = \mu z \le x \cdot y$. $(\overline{sg}(div(x,z)) \cdot \overline{sg}(div(y,z)))$

By the s-m-n theorem, there exists $k:\mathbb{N}\to\mathbb{N}$ total computable such that: $\phi_{k(x)}(y)=f(x,y)=lcm(x,y)$

Exercise 25

Classify the following set from the point of view of recursiveness $A=x\mid W_x\cup E_x\subseteq \mathbb{P}$, where \mathbb{P} is the set of even numbers, i.e., establish if A and \overline{A} are recursive/recursively enumerable.

Solution: *A* is saturated since $A = \{x \mid \phi_x \in A\}$ where $A = \{f \mid dom(f) \cup cod(f) \subseteq \mathbb{P}\}$.

Let's prove
$$\overline{K} \leq_m A$$
. Define: $g(x,y) = \begin{cases} 0 & \text{if } x \in \overline{K} \\ 1 & \text{otherwise} \end{cases}$

By s-m-n theorem, $\exists s$ total computable such that $\phi_{s(x)}(y) = g(x,y)$.

Then:

$$ullet \ x \in \overline{K} \implies \phi_{s(x)}(y) = 0 \implies W_{s(x)} \cup E_{s(x)} \subseteq \mathbb{P} \implies s(x) \in A$$

$$ullet \ x
ot\in \overline{K} \implies \phi_{s(x)}(y)=1 \implies W_{s(x)}\cup E_{s(x)}
ot\subseteq \mathbb{P} \implies s(x)
ot\in A$$

Therefore:

- 1. *A* is not r.e.
- 2. \overline{A} is r.e. since $sc_{\overline{A}}(x) = 1(\mu w. \left(H(x,(\omega)_1,(\omega)_2) \wedge odd((\omega)_1) \vee S(x,(\omega)_1,(\omega)_2,(\omega)_3) \wedge odd((\omega)_2)\right))$

Exercise 26

Classify $B = \{x \in \mathbb{N} \mid 2x + 1 \in W_x\}$ from the point of view of recursiveness, i.e., establish if B and \overline{B} are recursive/recursively enumerable. Also establish if B is saturated.

Solution:

First, B is r.e. since: $sc_B(x) = 1(\mu w. H(x, 2x + 1, w))$

Let's prove $K \leq_m B$. Define: $g(x,y) = \{1 \quad \text{if } y = 2s(x) + 1 \land x \in K \ \uparrow \ \text{ otherwise } \}$

By s-m-n theorem, $\exists s$ total computable such that $\phi_{s(x)}(y) = g(x,y)$.

Then:

$$ullet x \in K \implies 2s(x) + 1 \in W_{s(x)} \implies s(x) \in B$$
 $ullet x
otin K \implies W_{s(x)} = \emptyset \implies 2s(x) + 1
otin W_{s(x)} \implies s(x)
otin B$

Therefore:

- 1. *B* is not recursive
- 2. *B* is r.e.
- 3. \overline{B} is not r.e.

For saturation: Define by Second Recursion Theorem an index e such that:

$$\phi_e(y) = egin{cases} 1 & ext{if } y = 2e+1 \ \uparrow & ext{otherwise} \end{cases}$$

Then $e \in B$. Let $e' \neq e$ such that $\phi_{e'} = \phi_e$. Then $2e' + 1 \notin W_{e'} = 2e + 1$, hence $e' \notin B$. Therefore B is not saturated.

Exercise 27

Let us study the recursiveness of the set

$$B = \{x \mid k \cdot (x+1) \in W_x \cap E_x \text{ for all } k \in \mathbb{N}\}$$

In other words, determine if B and \bar{B} are recursive/recursively enumerable.

Solution:

Let us prove that set B is not recursive by showing that $K \leq_m B$. We will then prove that B is recursively enumerable, which will imply that \bar{B} is not recursively enumerable.

We show that $K \leq_m B$ by constructing a computable reduction function. Let us define:

$$g(x,y) = egin{cases} 1 & ext{if } x \in K \ \uparrow & ext{otherwise} \end{cases}$$

This function is computable since $g(x,y)=sc_K(x)$. By the smn theorem, there exists a total computable function $s:\mathbb{N}\to\mathbb{N}$ such that $\phi_{s(x)}(y)=g(x,y)$ for all $x,y\in\mathbb{N}$.

We shall prove that s is a reduction function for $K \leq_m B$:

- 1. If $x \in K$, then:
 - $ullet \ \phi_{s(x)}(y)=1 ext{ for all } y\in \mathbb{N}$
 - Therefore $W_{s(x)}=E_{s(x)}=\mathbb{N}$
 - Thus for all k, $k(s(x)+1) \in W_{s(x)} \cap E_{s(x)}$

- Hence $s(x) \in B$
- 2. If $x \notin K$, then:
 - $\phi_{s(x)}(y) \uparrow$ for all $y \in \mathbb{N}$
 - Therefore $W_{s(x)} = E_{s(x)} = \emptyset$
 - Thus no k(s(x)+1) can be in $W_{s(x)}\cap E_{s(x)}$
 - Hence $s(x) \notin B$

B is recursively enumerable since its semi-characteristic function is computable:

$$sc_B(x) = 1(\mu w.\left(H(x,k\cdot(x+1),(\omega)_2)\wedge S(x,(\omega)_1,k\cdot(x+1),(\omega)_2)
ight))$$

where H and S are the standard halting and computation predicates respectively.

Therefore:

- B is recursively enumerable but not recursive
- Since B is not recursive but is r.e., \bar{B} cannot be r.e. (otherwise B would be recursive)
- Thus \bar{B} is not recursively enumerable

Exercise 28

Does there exist a total non-computable function $f: \mathbb{N} \to \mathbb{N}$ such that its image $cod(f) = \{y \mid \exists x \in \mathbb{N}. \ f(x) = y\}$ is finite? Provide an example or prove that such a function does not exist.

Solution: Yes, such a function exists. Consider the function:

$$f(x) = egin{cases} \overline{sg}(\phi_x(x)) & ext{if } x \in W_x \ 0 & ext{if } x
otin W_x \end{cases}$$

This function has the following properties:

- 1. It is total, as it provides a value for every input $x \in \mathbb{N}$.
- 2. It is not computable because for every $x \in \mathbb{N}$, $f(x) \neq \phi_x(x)$. Specifically:
 - If $\phi_x(x) \downarrow$, then $f(x) = \overline{sg}(\phi_x(x)) \neq \phi_x(x)$
 - If $\phi_x(x) \uparrow$, then $f(x) = 0 \neq \phi_x(x)$
- 3. By construction, $cod(f) \subseteq 0, 1$, which is clearly finite.

Exercise 29

State the s-m-n theorem and use it to prove that there exists a total computable function $k:\mathbb{N}\to\mathbb{N}$ such that $W_{k(n)}=\{x\in\mathbb{N}\mid x\geq n\}$ and $E_{k(n)}=\{y\in\mathbb{N}\mid y \text{ is even}\}$ for all $n\in\mathbb{N}$.

Solution: Let us first define a computable function of two arguments f(n, x) that satisfies the conditions when viewed as a function of x, with n as a parameter:

$$f(n,x) = egin{cases} 2(x-n) & ext{if } x \geq n \ \uparrow & ext{otherwise} = 2(x-n) + \mu z. \, (n-x) \end{cases}$$

By the s-m-n theorem, there exists a total computable function $k: \mathbb{N} \to \mathbb{N}$ such that $\phi_{k(n)}(x) = f(n,x)$ for all $n,x \in \mathbb{N}$. Therefore:

1.
$$W_{k(n)} = \{x \mid f(n,x)\downarrow\} = \{x \mid x \geq n\}$$

2.
$$E_{k(n)}=f(n,x)\mid x\in\mathbb{N}=2z\mid z\in\mathbb{N}$$

Exercise 30

State the s-m-n theorem and use it to prove that there exists a total computable function $k: \mathbb{N} \to \mathbb{N}$ such that for all $n \in \mathbb{N}$, $W_{k(n)} = \{z^n \mid z \in \mathbb{N}\}$ and $E_{k(n)}$ is the set of odd numbers.

Solution: Let us define a computable function of two arguments f(n,x) that meets the required conditions:

$$f(n,x) = egin{cases} 2z+1 & ext{if } x=z^n ext{ for some } z \ \uparrow & ext{otherwise} \end{cases} = 2 \cdot \mu z. \left| x-z^n
ight| + 1$$

By the s-m-n theorem, there exists a total computable function $k: \mathbb{N} \to \mathbb{N}$ such that $\phi_{k(n)}(x) = f(n,x)$ for all $n,x \in \mathbb{N}$. Therefore:

1.
$$W_{k(n)} = \{x \mid f(n,x) \downarrow \} = \{x \mid \exists z \in \mathbb{N}. \ x = z^n\} = \{z^n \mid z \in \mathbb{N}\}$$

2.
$$E_{k(n)} = \{f(n,x) \mid x \in W_{k(n)}\} = \{2z+1 \mid z \in \mathbb{N}\}$$

Exercise 31

Do there exist an index $e \in \mathbb{N}$ and a non-computable function $f : \mathbb{N} \to \mathbb{N}$ such that, denoting by dom(f) and cod(f) the domain and codomain of f respectively (where $dom(f) = x \mid f(x) \downarrow$ and $cod(f) = y \mid \exists x. \ f(x) = y$), it holds that $dom(f) = W_e$ and $cod(f) = E_e$? Provide an example or prove non-existence.

Additionally, can such a function f with $dom(f) = W_e$ and $cod(f) = E_e$ be found for every $e \in \mathbb{N}$?

Solution: For the first part, consider an index $e \in \mathbb{N}$ of the identity function, where $W_e = E_e = \mathbb{N}$. Define $f : \mathbb{N} \to \mathbb{N}$ as:

$$f(x) = egin{cases} \phi_x(x) + 1 & ext{if } x \in W_x \ 0 & ext{otherwise} \end{cases}$$

The function f is total, therefore $dom(f) = \mathbb{N} = W_e$. Furthermore, $dom(f) = \mathbb{N} = E_e$. Indeed, for any $n \in \mathbb{N}$:

- If n=0, consider an index x of the always undefined function, then f(x)=0
- If n > 0, consider any index x of the constant function n-1, then f(x) = (n-1) + 1 = n

For the second question, the answer is no. For example, if we consider $e \in \mathbb{N}$ such that ϕ_e is the always undefined function, any f such that $dom(f) = W_e = \emptyset$ must coincide with ϕ_e and thus would be computable.

Exercise 32

Provide the definition of the set \mathcal{PR} of primitive recursive functions and prove that the function $cpr: \mathbb{N}^2 \to \mathbb{N}$ defined as

$$cpr(x,y) = |\{p \mid x \leq p < y \land p \text{ prime}\}|$$

is primitive recursive, where cpr(x,y) counts the number of primes in the interval [x,y].

Solution: Let us first define $cpr': \mathbb{N}^2 \to \mathbb{N}$ such that $cpr'(x,k) = |p| \ x \le p < x+k \land p$ prime by primitive recursion:

$$cpr'(x,0) = 0$$

 $cpr'(x,k+1) = cpr'(x,k) + \chi_{Pr}(x+k)$

Then cpr(x,y) = cpr'(x,y-x), which as composition of primitive recursive functions is itself primitive recursive.

Exercise 33

State the s-m-n theorem and use it to prove that there exists a total computable function $s: \mathbb{N} \to \mathbb{N}$ such that for all $x \in \mathbb{N}$, $W_{s(x)} = \{(k+x)^2 \mid k \in \mathbb{N}\}$.

Solution: Define a function $g: \mathbb{N}^2 \to \mathbb{N}$ such that when viewed as a function of y it has the desired properties:

$$g(x,y) = egin{cases} k & ext{if } \exists k.\,, y = (x+k)^2 \ \uparrow & ext{otherwise} \end{cases}$$

This can be written as $g(x,y)=\mu k$. $|(x+k)^2-y|$. This function is computable, therefore by the s-m-n theorem there exists a total computable function $s:\mathbb{N}\to\mathbb{N}$ such that $\phi_{s(x)}(y)=g(x,y)$ for all $x,y\in\mathbb{N}$.