

Clase 7 /03

Introducción histórica

La lógica matemática surge como el resultado de la convergencia de cuatro líneas de pensamiento:

- 1. La lógica antigua (Aristóteles, megárico-estoica).
- 2. La idea de un lenguaje completo y automático para el razonamiento.
- 3. Los nuevos progresos en álgebra y geometría acaecidos después de 1825.
- 4. La idea de que hay partes de la matemática que son sistemas deductivos, esto es, cadenas de razonamientos que se conforman a las reglas de la lógica.

¿Para qué se usa?

- En matemáticas, la lógica es una herramienta útil para demostrar teoremas e inferir resultados, así como para resolver problemas.
- En la computación, la lógica se aplica en la elaboración y revisión de programas, en el estudio de lenguajes formales y la relación existente entre ellos, así como en la obtención de resultados en forma recursiva.
- En inteligencia artificial se logra que una máquina tome decisiones precisas.

¿De qué trata la lógica?

En una primera aproximación al tema, podremos dar la siguiente definición:

La lógica investiga la relación de *consecuencia* que se da entre una serie de premisas y la conclusión de un argumento correcto. Se dice que un argumento es *correcto* (válido) si su conclusión *se sigue* o es *consecuencia* de sus premisas; de otro modo es *incorrecto*.

Por un *argumento* entendemos un sistema de enunciados, de un lenguaje determinado. Uno de esos enunciados es designado como la *conclusión* y el resto como las *premisas*.

Un *enunciado* se define como una expresión lingüística que establece un pensamiento completo:

- Interrogativos,
- Imperativos,
- Declarativos:
 - Enunciados de acción: sujeto no determinado. Ejemplos: "es verano":

"hace calor".

Enunciados de atribución de propiedades a sujetos determinados.

Ejemplos: "Luis es alto"; "El verano es caluroso".

Enunciados de relación entre sujetos. Ejemplos: "Luis es hermano de Juan" (Relación binaria); "Los Pirineos están entre España y Francia" (Relación Ternaria).

Forma de presentación de los sistemas lógicos

Los diferentes sistemas lógicos elementales tienen en común, en su presentación, una etapa previa de simbolización que suele hacerse a dos niveles:

Lógica proposicional: Frases declarativas simples, enunciados y proposiciones.

Lógica de predicados: Se toma como base los componentes de una proposición, términos, cuantificadores ...

Lógica proposicional

Proposición:

Una proposición o enunciado es una oración, frase o expresión matemática que puede ser falsa (representada con la letra F) o verdadera (representada con la letra V), pero no ambas a la vez. Se clasifica en proposiciones simples y proposiciones compuestas.

Variables de enunciado (letras enunciativas, o también letras proposicionales):

```
p, q, r, . . .
```

Conectivos: Para combinar proposiciones y formar nuevas proposiciones más complejas usamos los llamados conectivos lógicos.

1. Negación (\neg). La forma enunciativa $\neg p$ permite simbolizar un enunciado del tipo:

```
no p;
no es cierto que p;
es falso que p.
```

 $\sim p$

2. Conjunción ($^{\wedge}$). La forma enunciativa $p \wedge q$, simboliza enunciados de la forma:

```
p y q;
p pero q;
p no obstante q;
p sin embargo q.
```

3. Disyunción (V). La forma enunciativa $p \lor q$ simboliza enunciados de la forma:

```
p o q;
al menos p o q.
```

4.Disyución exclusiva. Sólo se puede cumplir una de las dos proposiciones integrantes, pero no ambas a la vez se representa como $p \lor q$ y se lee como

```
p o bien q;
p o exclusiva q
```

5.Condicional (\rightarrow). La forma enunciativa p \rightarrow q simboliza enunciados de la forma:

```
Si p entonces q;
si p, q;
p implica q;
p sólo si q;
```


p suficiente para q; q si p; q necesario para p

 \Longrightarrow

6.Bicondicional (\leftrightarrow). p \leftrightarrow q denota enunciados de la forma:

p si y sólo si q; p necesario y suficiente para q \Leftrightarrow / $p \Rightarrow q \land q \Rightarrow p$

Nombre	Lenguaje natural	Lenguaje formal
Bicondicional	si y solo si	\leftrightarrow
Condicional	si entonces	\rightarrow
Conjunción	у	٨
Disyunción (incluyente)	0	V
Disyunción (excluyente)	o bien o bien	<u>V</u>
Negación	no	~ 0 ¬

Tabla de verdad:

El número de casos o filas que tiene la tabla de verdad de una proposición compuesta es siempre 2^n (n: es el número de proposiciones involucradas)

Negación:

p: el cielo es azul

p	$\neg p$
V	F
F	V

Conjunción:

p: hoy es lunes

q: el jueves hay fiesta

p	q	$p \wedge q$
V	V	V
V	F	F
F	V	F
F	F	F

Disyunción inclusiva:

p: Estudiamos informática

q: Nos vamos al cine

p V q: Estudiamos informática o nos vamos al cine

p	q	$p \lor q$
V	V	V
V	F	V
F	V	V
F	F	F

Disyunción excluyente:

p: vamos en autobús

q: vamos en taxi

р	q	p⊻q
_	,	

V	V	F
V	F	V
F	V	V
F	F	F

Condicional:

p: Hace buen tiempo

q: Iremos al campo

 $p\Rightarrow q$: Si hace buen tiempo entonces iremos al campo

p	q	p o q
V	V	V
V	F	F
F	V	V
F	F	V

Bicondicional:

p: Un triángulo es equilátero

q: Un triángulo tiene los tres lados iguales

 $\mathsf{p} \Leftrightarrow q$: Un triángulo es equilátero sí y solo sí tiene los tres lados iguales

р	q	p⇒q	q⇒p	p⇒q∧ q⇒p	р⇔
					q
٧	V	V	V	V	٧
٧	F	F	V	F	F
F	V	V	F	F	F
F	F	V	V	V	V

p	q	$p \leftrightarrow q$
V	V	V
V	F	F
F	V	F
F	F	V

Para armar la tabla:

En donde se asignan los valores de verdad:

$$(\),[\],\{\ \}$$

$$\sim,\Lambda,V,\veebar,\Rightarrow,\Leftrightarrow$$

Ejemplo

Construir la tabla de verdad de $(p \Rightarrow \sim q) \vee r$

р	q	r	~ q	$p \Rightarrow \sim q$	$(p \Rightarrow \sim q)$
					$\vee r$
V	V	V	F	F	V
V	V	F	F	F	F
V	F	V	V	V	V
V	F	F	V	V	V
F	V	V	F	V	V
F	V	F	F	V	V
F	F	V	V	V	V
F	F	F	V	V	V

Clasificación:

Según los valores de verdad se define como:

Tautología: Cuando todos los valores de verdad de la tabla son verdaderos.

Contradicción: Cuando todos los valores de verdad de la tabla son falsos.

Indeterminada: Cuando en su tabla de verdad hay verdaderos y falsos.

Construyan la tabla para la siguiente proposición y clasifíquenla: $q \land \sim (q \lor p)$

$$(\sim p \rightarrow q) \land (\sim r \lor q)$$

Equivalencia Lógica

Diremos que P y Q son lógicamente equivalentes si toda asignación de verdad que hace verdadera a P hace verdadera a Q y viceversa.

Notación. Denotaremos la equivalencia lógica entre P y Q por $P \Leftrightarrow Q$.

Ejemplo:

Comprobar $[p \Rightarrow (q \land r)] \Leftrightarrow [\sim p \lor (q \land r)].$

Leyes Lógicas:

Nombre	Ley lógica
1) Doble negación o involución	$\sim (\sim p) \Leftrightarrow p$
2) Leyes conmutativas	$p \lor q \Leftrightarrow q \lor p$ $p \land q \Leftrightarrow q \land p$
3) Leyes asociativas	$(p \lor q) \lor r \Leftrightarrow p \lor (q \lor r)$ $(p \land q) \land r \Leftrightarrow p \land (q \land r)$
4) Leyes distributivas	$(p \lor q) \land r \Leftrightarrow (p \land r) \lor (q \land r)$ $(p \land q) \lor r \Leftrightarrow (p \lor r) \land (q \lor r)$
5) Leyes de idempotencia	$p \lor p \Leftrightarrow p$ $p \land p \Leftrightarrow p$
6) Leyes de De Morgan	$\sim (p \lor q) \Leftrightarrow \sim p \land \sim q$ $\sim (p \land q) \Leftrightarrow \sim p \lor \sim q$

Nombre	Ley lógica
7) Ley de identidad	$p \lor F \Leftrightarrow p$ $p \land V \Leftrightarrow p$
8) Ley de dominación	$p \lor V \Leftrightarrow V$ $p \land F \Leftrightarrow F$
9) Contrapositiva	$p \to q \Leftrightarrow \sim q \to \sim p$
10) Ley del condicional	$p \to q \Leftrightarrow \sim p \lor q$
11) Ley del bicondicional	$p \leftrightarrow q \Leftrightarrow (p \rightarrow q) \land (q \rightarrow p)$
12) Disyunción excluyente	$p \underline{\vee} q \Leftrightarrow \sim (p \leftrightarrow q)$

Nombre	Ley lógica
13) Ley de absorción total	$p \lor (p \land q) \Leftrightarrow p$ $p \land (p \lor q) \Leftrightarrow p$
14) Ley de absorción parcial	$p \lor (\sim p \land q) \Leftrightarrow p \lor q$ $p \land (\sim p \lor q) \Leftrightarrow p \land q$

1.ley del condicional

Ejemplo

 $[p{\Rightarrow}(q{\wedge}r)] \Leftrightarrow [{\sim}p{\vee}(q{\wedge}r)].$

Ley del Complemento

$$p \vee \sim p \iff V$$

$$p \wedge \sim p \Longleftrightarrow F$$

Ejemplo:

Simplificar la siguiente proposición:

$$\sim (\sim p \lor \sim q)$$

Actividad

Simplificar la siguiente proposición:

$$\sim (p \lor q) \lor (\sim p \land q)$$