Lineare Algebra 2

Serie 7

Abgabe: 19. April 2018 r

- 1. (4 Punkte) Für eine $n \times n$ Matrix A definiere man $\sin A$ und $\cos A$ mit Hilfe der Taylorentwicklungen von $\sin x$ bzw. $\cos x$.
 - a) Man beweise, dass diese Reihen für alle A konvergieren.
 - b) Man beweise, dass $\sin tA$ eine differenzierbare Funktion von t ist und dass

$$\frac{d(\sin tA)}{dt} = A\cos tA$$

gilt.

- 2. (5 Punkte) Man diskutiere den Gültigkeitsbereich der folgenden Beziehungen:
 - a) $\cos^2 A + \sin^2 A = E$:
 - b) $e^{iA} = \cos A + i \sin A$;
 - c) $\sin(A+B) = \sin A \cos B + \cos A \sin B$;
 - d) cos(A + B) = cos A cos B + sin A sin B;
 - e) $e^{2\pi i A} = E$;
 - f) $d(e^{A(t)})/dt = e^{A(t)}A'(t)$ für eine differenzierbare Funktion A(t) von t mit Werten in den Matrizen.
- 3. (3 Punkte) Sei X ein Eigenvektor einer $n \times n$ Matrix A mit Eigenwert λ . Man beweise:
 - a) Ist A invertierbar, so ist X auch Eigenvektor von A^{-1} , und zwar zum Eigenwert λ^{-1} .
 - b) Sei p(t) ein Polynom. Dann ist X ein Eigenvektor von p(A) zum Eigenwert $p(\lambda)$.
 - c) X ist ein Eigenvektor von e^A zum Eigenwert e^{λ} .
- **4.** (2 Punkte) Man beweise die Formel $e^{SpurA} = det(e^A)$.
- 5. (2 Punkte) Welche Jordansche Normalform hat eine Matrix, deren charakteristisches Polynom $(t-7)^{13}(t-5)^2$ ist, wenn der Eigenraum zum Eigenwert 7 eindimensional und der Eigenraum zum Eigenwert 5 dreidimensional ist?