Quiz 6: Time and Events

Due Jun 22 at 11:59pm **Points** 100 **Questions** 4

Available Jun 16 at 8am - Jun 22 at 11:59pm 7 days Time Limit 60 Minutes

Allowed Attempts 2

Instructions

You can take this quiz up to 2 times, giving you a chance to correct simple arithmetic errors.

This guiz was locked Jun 22 at 11:59pm.

Attempt History

	Attempt	Time	Score
LATEST	Attempt 1	36 minutes	6.25 out of 100

Score for this attempt: **6.25** out of 100

Submitted Jun 22 at 12:34pm This attempt took 36 minutes.

Question 1 0 / 25 pts

What is the definition of the Lamport happened-before relation?

Your Answer:

Lamport happened-before relations orders events based on the causal relationship of the pair. If event A happens before B, the time of A is before the time of B.

1. (Local) If e1 happens before e2 in the same process, then e1 -> e2 2. (Communication) If e1 is sending of message m and e2 is receipt of message m, then e1 -> e2. 3. (Transitivity) If e1 -> e2 and e2 -> e3, then e1 -> e3.

Question 2

0 / 25 pts

Provide the logical timestamps for the events in the timeline above, assuming **both** send and receive events are counted, and logical time starts at 0 at each process.

Answer 1:

ou Answered

1

orrect Answer

2

Answer 2:

ou Answered

2

orrect Answer

3

Answer 3:

ou Answered

7

orrect Answer

8

Answer 4:

ou Answered

0

orrect Answer

1

Answer 5:

ou Answered

1

orrect Answer

2

https://sit.instructure.com/courses/37839/quizzes/41096

Answer 6:

Question 3 0 / 25 pts

Provide the vector timestamps for the events in the timeline above, assuming **both** send and receive events are counted, and vector time starts at 000 at each process.

	Answer 1:
ou Answered	000
orrect Answer	110
	Answer 2:
ou Answered	100
orrect Answer	210
	Answer 3:
ou Answered	111
orrect Answer	343
	Answer 4:
ou Answered	000
orrect Answer	010
	Answer 5:
ou Answered	010
orrect Answer	020
	Answer 6:
ou Answered	100
orrect Answer	230
	Answer 7:
ou Answered	110
orrect Answer	240

Question 4	6.25 / 25 pts
e.com/courses/37839/quizzes/41096	

Here is a series of timelines for the execution of the distributed mutual exclusion algorithm, where we assume that all logical clocks start at zero.

Show the following data structures **for process** p_2 after each step: LT, the timestamps of the last messages received by p_2 from each process (and its own logical clock), and REQUESTS, the list of active requests that p_2 knows about, ordered by timestamp and process id.

- 1. First process p_0 broadcasts a request to the other resources. LT(0)=1, LT(1)=0, LT(2)=2 REQUESTS=(1, p_0)
- 2. Each of the other two processes acknowledges the request.

LT(0)=
$$\begin{bmatrix} 5 \\ \end{bmatrix}$$
, LT(1)= $\begin{bmatrix} 3 \\ \end{bmatrix}$, LT(2)= $\begin{bmatrix} 3 \\ \end{bmatrix}$ REQUESTS= $\begin{bmatrix} (3,p1), (3,p2), (5,p0) \\ \end{bmatrix}$

3. Then process p_2 broadcasts a request.

4

REQUESTS= (4,p1), (4,p2), (6,p0)

4. Each of the other two processes acknowledges the request (p₁'s ack is received first).

LT(0) = 7 , LT(1) = 5 , LT(2) = 6

7

REQUESTS= (5,p1), (7,p2), (7,p0)

5. Finally process p_0 releases the resource.

LT(0)= 8 , LT(1)= 8 , LT(2)=

8

REQUESTS= (8,p1), (8,p2), (8,p0)

Answer 1:

ou Answered

5

orrect Answer

1

Answer 2:

ou Answered

3

orrect Answer

0

Answer 3:

Correct!

3

Answer 4:

ou Answered

(3,p1), (3,p2), (5,p0)

orrect Answer

(1,p0)

I	
	Answer 5:
ou Answered	6
orrect Answer	1
	Answer 6:
ou Answered	4
orrect Answer	0
	Answer 7:
Correct!	4
	Answer 8:
ou Answered	(4,p1), (4,p2), (6,p0)
orrect Answer	(1,p0),(4,p2)
	Answer 9:
Correct!	7
	Answer 10:
ou Answered	5
orrect Answer	6
	Answer 11:
ou Answered	7
orrect Answer	8
	Answer 12:
ou Answered	(5,p1), (7,p2), (7,p0)
orrect Answer	(1,p0),(4,p2)

	Answer 13:
Correct!	8
	Answer 14:
ou Answered	8
orrect Answer	6
	Answer 15:
ou Answered	8
orrect Answer	9
	Answer 16:
ou Answered	(8,p1), (8,p2), (8,p0)
orrect Answer	(4,p2)

Quiz Score: 6.25 out of 100