

Complexity Classes

Complexity Classes

• What happens if you can't find an efficient algorithm? Is it your "fault" or the problem's?

• Showing that a problem has an efficient algorithm is, relatively, easy. "All" that is needed is to demonstrate an algorithm.

• Proving that no efficient algorithm exists for a particular problem is difficult. How can we prove the non-existence of something?

Decision vs Optimization Problem

- Decision problem: A decision problem is a problem that has two possible answers, yes and no.
 - E.g. Hamiltonian Cycle Problem: Given a graph, is there a cycle that visits every vertex exactly once.
- Optimization Problem: An optimization problem requires an answer that is an optimal configuration.
 - Traveling Salesman Problem: Given a weighted graph, find a Hamiltonian cycle with the smallest total weight

Decision vs Optimization Problem

- Optimization problems have decision versions.
 - Traveling Salesperson Problem: Given a weighted graph and a value W, is there a Hamiltonian cycle with a total weight $\leq W$?

 Complexity classes are usually defined for decision problems. Hard decision version implies hard optimization version.

Complexity Classes

The Theory of Complexity deals with

- the classification of certain "decision problems" into several classes:
 - the class of "easy" problems,
 - the class of "hard" problems,
 - the class of "hardest" problems;
- relations among the three classes;
- properties of problems in the three classes.

Question: How to classify decision problems

Answer: Use "polynomial-time algorithms."

• Input size of problems: The input size of a problem is the minimum number of bits ({0, 1}) needed to encode the input of the problem

- Examples:
 - Given a positive integer n, are there integers j, k > 1, such that n = jk?
 - Sort n integers $a_1, a_2, ..., a_n$

Input size?

Composite Number

– In a binary number system, any integer n>0 can be represented as

$$\sum_{i=0}^k c_i 2^i$$
, where $k=\lceil \log_2(n+1)-1 \rceil$ and hence represented by the string $c_0c_1\dots c_k$ of length $\lceil \log_2(n+1) \rceil$.

- Sorting
 - Fixed length encoding writes a_i as a binary string:

$$m = \left[\log_2 \max_i (a_i + 1)\right]$$

– Input size: *nm*

 Running times of algorithms, unless otherwise specified, should be expressed in terms of input size.

• Two positive functions f(n) and g(n) are of the same type if $c_1g(n^{a_1})^{b_1} \leq f(n) \leq c_2g(n^{a_2})^{b_2}$ for all large n, where a_1,b_1,c_1,a_2,b_2,c_2 are some positive constants.

- E.g., Polynomials are of the same type, but polynomials and exponentials are of different types.
- s: actual input size. Similarly, any t satisfying $s^{a_1} \le t \le s^{a_2}$ for some positive constants a_1 and a_2 , can also be used as a measure of the input size of the problem.

• E.g.,

- Graph problems: For many graph problems, the input is a graph G=(V,E). What is the input size?
- A natural choice: There are n vertices and e edges. So we need to encode n + e objects. With fixed length coding, the input size is $(n + e)[\log_2(n + e + 1)].$
- Since

$$[(n+e)[\log_2(n+e+1)]]^{1/2} \le n+e \le (n+e)[\log_2(n+e+1)],$$
 we may use $n+e$ as the input size.

Polynomial-Time Algorithms

Definition: An algorithm is polynomial-time if its running time is $O(n^k)$, where k is a constant independent of n, and n is the input size of the problem that the algorithm solves.

Examples:

The standard multiplication algorithm learned in school has time $O(m_1m_2)$ where m1 and m_2 are, respectively, the number of digits in the two integers

DFS has time O(n + e).

Kruskal's MST algorithm runs in time $O((e + n) \log n)$.

Polynomial-time Algorithm

• Definition: An algorithm is polynomial-time if its running time is $O(n^k)$, where k is a constant independent of n, and n is the input size of the problem.

 Examples: The integer multiplication problem, and the cycle detection problem for undirected graphs.

• Tractable Problems: Problems that can be solved in polynomial time.

Nonpolynomial-Time Algorithms

 Definition: An algorithm is non-polynomial-time if the running time is not $O(n^k)$ for any fixed $k \ge 0$.

- Example: Counting up to m
 - Input: n bits. Problem: count from 1 up to the number m represented by these *n* bits.
 - Needs $\Theta(m) = \Theta(2^n)$ time.
- Intractable Problems: Problems that cannot be solved in polynomial time.

Polynomial- vs. Nonpolynomial-Time

Nonpolynomial-time algorithms are *impractical*

For example, to run an algorithm of time complexity $O(2^n)$ for n=100 on a computer which does 1 Terraoperation (10^{12} operations) per second: It takes $2^{100}/10^{12} \approx 10^{18.1}$ seconds $\approx 4 \cdot 10^{10}$ years

For the sake of our discussion of complexity classes Polynomial-time algorithms are "practical"

Note: in reality an $O(n^{20})$ algorithm is not really practical.

The Class P

- Definition: The class P consists of all decision problems that are solvable in polynomial time
- How to prove that a decision problem is in P?
 You need to find a polynomial-time algorithm for this problem
- How to prove that a decision problem is not in P?
 You need to prove there is no polynomial-time algorithm for this problem (much harder).

Unsolvable Problems?

Are there computational problems that cannot be solved?

- HALTING: Does python program P on input X terminate?
 - while True: continue → does not terminate for any input
 - -print "Hello World!"→ terminates for any input.
- Suppose there exists an algorithm H solving HALTING, i.e.,
 - -H(P,X)=1 if program P on input X terminates.
 - H(P,X)=0 if program P on input X runs forever.

Programs as Inputs

Programs can be inputs to programs

- P= print 'Hello, world!'.
- P=01101011101001010110100010101001......

- A(X): the result of a program A that runs on X = input.
- A(X) is well-defined as a function of both A, X.
 - -A(X) might look at a piece of the bit sequence X.
 - Then A(P) is also well defined, P = program.

Halting Problem

- Can we ever build this program H?
 - -H(P,X) = 1 if program P on input X terminates.
 - -H(P,X) = 0, if program P on input X runs forever.

- Suppose we do! We show that this will lead to a contradiction.
- Assume that H(P,X) always gives the correct result.

Halting Problem

- H(P,X)=1, if program P on input X terminates.
- H(P,X)=0, if program P on input X runs forever.

Program A(P)

```
# Input: Program P
# Uses the code of program H

if H(P,P)=1, then enter infinite loop
else if H(P,P)=0, then stop
```

Halting Problem

- H(P,X)=1, if program P on input X terminates.
- H(P,X)=0, if program P on input X runs forever.

Program A(P)

if H(P,P)=1, then enter infinite loop else if H(P,P)=0, then stop

- Question: Does A(A) terminate?
 - If it does, $H(A,A)=0 \rightarrow A(A)$ runs forever.
 - If it does not, H(A,A)=1, A(A) terminates.

Classification of Problems

Certificates and Verifying Certificates

Almost ready to introduce NP. Some important concepts:

A decision problem is usually formulated as
 Is there an object satisfying some conditions?

• A Certificate is a specific object satisfying the conditions (exists only for yes-inputs by definition).

Verifying a certificate: Check that the given object (certificate)
satisfies the conditions (that is, verifying that the input is yes-input).

Certificates and Verifying Certificates

• Example:

Is given positive integer n composite

Certificate: an integer a dividing n such that 1 < a < n

Verifying a certificate: Given a certificate a, check whether a divides n. This can be done in time $O((\log_2 n)^2)$ (recall that input size is $\log_2 n$ so this is polynomial in input size)

Certificates and Verifying Certificates

• Hamiltonian Cycle: Input is a graph G = (V, E). A cycle of graph G is called Hamiltonian if it contains every vertex exactly once

- Decision problem: DHamCyc
 Does G have a Hamiltonian cycle?
- Certificate: an ordering of the n vertices in G (corresponding to their order along the Hamiltonian Cycle)

Verification: Given a certificate the verification algorithm checks
whether it is a Hamiltonian cycle of G by simply checking whether all
of the edges appear in the graph.

The Class NP

• Definition: The class NP consists of all decision problems such that, for each yes-input, there exists a certificate that can be verified in polynomial time.

• Example: DHamCyc ∈ NP. (As shown earlier, there is a polynomial time algorithm to verify a certificate.)

NP stands for "Nondeterministic Polynomial time".

One of the most important problems in computer science:

$$P = NP \text{ or } P \neq NP$$

Put another way, is every problem that can be verified in polynomial time also decidable in polynomial time?

At first glance it seems "obvious" that P ≠ NP; after all, deciding a problem is much more restrictive than verifying a certificate

Still do not know the answer...

Course Review

Course Review

So far we have learned:

Can I do better?

Algorithm designer

Algorithm Design Paradigm

Divide and Conquer

Like MergeSort

Algorithm Design Paradigm

Why not use randomness?

- QuickSort
- Still worst-case input, but we use randomness after the input is chosen.
- Always correct, usually fast.

Beyond Sorted Arrays / Linked Lists

Binary Search Trees

AVL Trees

• RB Trees

Another Way to Store Things

space to store h.

Graphs

• BFS, DFS, and applications!

• SCCs, Topological sorting, ...

Graphs

- A fundamental graph problem:
 Shortest Paths
- E.g., transit planning, packet routing, ...
- Dijkstra!
- Bellman-Ford!
- Floyd-Warshall!

Dynamic Programming

Bellman-Ford and Floyd-Warshall were examples of...

• Not programming in an action movie.

Instead, an algorithmic paradigm!

- Step 1: Identify optimal substructure.
- Step 2: Find a for the value of the optimal solution.
- Steps 3-5: Use dynamic programming: fill in a table to find the answer!

Dynamic

examples, including Longest
Common Subsequence and
Knapsack Problems

Greedy

Make a series of choices, and commit!

- Intuitively we want to show that our greedy choices never rule out success.
- Rigorously, we usually analyzed these by induction.
- Examples!
 - Activity Selection
 - Job Scheduling
 - Minimum Spanning Trees

What have we learned

- A few algorithm design paradigms:
 - Divide and conquer, dynamic programming, greedy
- A few analysis tools:
 - Worst-case analysis, asymptotic analysis, recurrence relations, probability tricks, proofs by induction
- A few common objects:
 - Graphs, arrays, trees, hash functions
- A LOT of examples!

What have we learned

The Road Ahead – Advanced Topics

Jing Tang DSA | HKUST(GZ) 40

Previous, we use greedy to obtain optimal solution.

Greedy is more powerful than you can think of.

An important strategy to design approximation algorithms.

Submodular Function

Consider a function f defined over all subsets of a set X, i.e., 2^X . f is called a *submodular function* if for any two subsets A and B of X,

$$f(A) + f(B) \ge f(A \cup B) + f(A \cap B).$$

f is said to be monotone nondecreasing if for any two subsets A and B of X,

$$A \subset B \to f(A) \le f(B)$$

Another expression

A set function $f: 2^X \to R$ is submodular if and only if for any two subsets A and B with $A \subseteq B$ and for any $x \in X \setminus B$, $f(A \cup \{x\}) - f(A) \ge f(B \cup \{x\}) - f(B).$

Prove it!

Another expression

Proof

f being submodular $\rightarrow f(A \cup \{x\}) - f(A) \ge f(B \cup \{x\}) - f(B)$.

Assume that f is submodular. Consider two subsets A and B with $A \subseteq B$ and an element $x \in X \setminus B$. We have

$$f(A \cup \{x\}) + f(B) \ge f(A \cup \{x\} \cup B) + f((A \cup \{x\}) \cap B)$$

= $f(B \cup \{x\}) + f(A)$

Rearranging the terms leads to the result.

Proof ctd.

$$f(A \cup \{x\}) - f(A) \ge f(B \cup \{x\}) - f(B) \rightarrow f$$
 is submodular.

Consider two subsets U and V. Suppose $U \setminus V = \{y_1, y_2, \dots, y_k\}$.

Denote
$$Y_i = \{y_1, ..., y_i\}$$
.

$$f(U) - f(U \cap V) = \sum_{i=0}^{\infty} f((U \cap V) \cup Y_i \cup \{y_{i+1}\}) - f((U \cap V) \cup Y_i)$$

$$\geq \sum_{i=0}^{k-1} (f(V \cup Y_i \cup \{y_{i+1}\}) - f(V \cup Y_i)) = f(U \cup V) - f(V).$$

Rearranging the terms obtains the result.

$$\max \quad f(S)$$

subject to
$$|S| \le k,$$

$$S \in 2^X,$$

where f is a monotone nondecreasing submodular function over 2^X with $f(\emptyset) = 0$.

An example:

Maximum Set Coverage

Given a collection \mathcal{C} of subsets of a finite set X and a positive integer k, find k subsets from \mathcal{C} to cover the maximum number of elements in X.

Algorithm 1 Greedy(k, f): general greedy algorithm.

Input: k: size of returned set; f: monotone and submodular set function

Output: selected subset

- 1: initialize $S \leftarrow \emptyset$
- 2: **for** i = 1 to k **do**
- 3: $u \leftarrow \operatorname{argmax}_{w \in V \setminus S} (f(S \cup \{w\}) f(S))$
- 4: $S \leftarrow S \cup \{u\}$
- 5: end for
- 6: return S

Theorem

Let $S^* = \operatorname{argmax}_{|S| \le k} f(S)$ be the set maximizing f(S) among all sets with size at most k. If $f(\cdot)$ is monotone and submodular and $f(\emptyset) = 0$, then for the set S_g computed by Greedy(k, f), we have

$$f(S_g) \ge \left(1 - \frac{1}{e}\right) f(S^*)$$

Proof.

Define
$$\Delta(x|S) = f(S \cup \{x\}) - f(S)$$

Suppose $x_1, x_2, ..., x_k$ are obtained by the greedy algorithm.

$$S_i = \{x_1, x_2, \dots, x_i\} \text{ for } i = 1, \dots, k \text{ and } S_0 = \emptyset.$$

Assume that the optimal solution is $S^* = \{u_1, u_2, ..., u_k\}$.

For i = 0, 1, ..., k - 1, we have

$$f(S^*) \le f(S^* \cup S_i)$$

$$f(S^*) \le f(S^* \cup S_i)$$

$$= f(S_i) + \Delta(u_1|S_i) + \dots + \Delta(u_k|S_i \cup \{u_1, \dots, u_k\})$$

$$\le f(S_i) + \Delta(u_1|S_i) + \Delta(u_2|S_i) + \dots + \Delta(u_k|S_i)$$

$$\le f(S_i) + k \cdot \Delta(x_{i+1}|S_i)$$

$$f(S_k) \ge \left(1 - \frac{1}{k}\right) f(S_{k-1}) + \frac{f(S^*)}{k}$$

$$f(S^*) - f(S_k) \le \left(1 - \frac{1}{k}\right) \left(f(S^*) - f(S_{k-1})\right)$$

$$= \left(1 - \frac{1}{k}\right)^k \left(f(S^*) - f(S_0)\right)$$

$$\le \left(e^{-1/k}\right)^k \left(f(S^*) - f(S_0)\right)$$

$$f(S^*) \ge \left(1 - \frac{1}{e}\right) f(S^*)$$

TECHNOLOGY (GUANGZHOC

From cardinality constraint to knapsack constraint

$$|S| \le k \to \sum_{x \in S} b(x) \le B$$

Modified Greedy

Algorithm 1: MGREEDY

- 1 initialize $S_{\rm g} \leftarrow \emptyset, V' \leftarrow V$;
- 2 while $V' \neq \emptyset$ do

3 | find
$$u \leftarrow \arg\max_{v \in V'} \left\{ \frac{f(v|S_g)}{c(v)} \right\};$$

4 | if
$$c(S) + c(u) \le b$$
 then

$$S_{\mathrm{g}} \leftarrow S_{\mathrm{g}} \cup \{u\};$$

update the search space $V' \leftarrow V' \setminus \{u\}$;

7
$$v^* \leftarrow \arg\max_{v \in V} f(v);$$

8
$$S_{\mathrm{m}} \leftarrow \arg\max_{S \in \{\{v^*\}, S_{\mathrm{g}}\}} f(S);$$

9 return $S_{\rm m}$;

Theorem

Let $S^* = \operatorname{argmax}_{|S| \le k} f(S)$ be the set maximizing f(S) among all sets with size at most k. If $f(\cdot)$ is monotone and submodular and $f(\emptyset) = 0$, then for the set S_g computed by Greedy(k, f), we have

$$f(S_g) \ge \left(\frac{1-1/e}{2}\right) f(S^*)$$

Proof.

Define
$$\Delta(x|S) = f(S \cup \{x\}) - f(S)$$

Suppose $x_1, x_2, ..., x_k, x_{k+1}$ are obtained by the greedy algorithm.

$$S_i = \{x_1, x_2, \dots, x_i\}$$
 for $i = 1, \dots, k$ and $S_0 = \emptyset$.

Assume that the optimal solution is $S^* = \{u_1, u_2, \dots, u_h\}$ and denote $S_j^* = \{u_1, u_2, \dots, u_j\}$.

For i = 0, 1, ..., k - 1, we have

$$f(S^*) \le f(S^* \cup S_i)$$

$$f(S^*) \leq f(S^* \cup S_i)$$

$$= f(S_i) + \Delta(u_1|S_i) + \dots + \Delta(u_h|S_i \cup S_{h-1}^*)$$

$$\leq f(S_i) + \Delta(u_1|S_i) + \Delta(u_2|S_i) + \dots + \Delta(u_h|S_i)$$

$$\leq f(S_i) + \sum_{j=1}^{h} \frac{b(u_j)}{b(x_{i+1})} \cdot \Delta(x_{i+1}|S_i)$$

$$= f(S_i) + \frac{b(S^*)}{b(x_{i+1})} \cdot \left(f(S_{i+1}) - f(S_i)\right)$$

$$f(S^*) - f(S_i) \le \frac{b(S^*)}{b(x_{i+1})} \Big(\Big(f(S^*) - f(S_i) \Big) - \Big(f(S^*) - f(S_{i+1}) \Big) \Big)$$

$$f(S^*) - f(S_{i+1}) \le \left(1 - \frac{b(x_{i+1})}{b(S^*)} \right) \Big(f(S^*) - f(S_i) \Big)$$

$$\le e^{-\frac{b(x_{i+1})}{b(S^*)}} \cdot \Big(f(S^*) - f(S_i) \Big).$$

Hence,

$$f(S^*) - f(S_{k+1}) \le (f(S^*) - f(S_0)) \cdot e^{-\frac{b(S_{k+1})}{b(S^*)}} \le \frac{f(S^*)}{e}$$

TECHNOLOGY (GUANGZHOU

59

• Therefore,

$$\left(1 - \frac{1}{e}\right) \cdot f(S^*) \le f(S_{k+1}) = f(S_k) + f(x_{k+1}|S_k)$$

$$\le f(S_k) + f(\{x_{k+1}\}) \le f(S_k) + f(\{x^*\})$$

Finally,

$$\max\{f(S_k), f(\{x^*\})\} \ge \frac{1 - 1/e}{2} \cdot f(S^*)$$

The End

Jing Tang DSA | HKUST(GZ) 60