

MÉMO

Calcul de dose : l'essentiel

Unités

Unités de masse et de capacité

	Multiples de la valeur de référence			Valeur de référence	Sous-multiples de la valeur de référence					nce
Préfixe	kilo-	hecto-	déca-		déci-	centi-	milli-			micro-
Valeur	1000	100	10	1	1/10	1/100	1/1000			1/1000000
Capacité	kilolitre	hectolitre	décalitre	litre	décilitre	centilitre	millilitre			microlitre
	(kL)	(hL)	(daL)	(<u>L</u>)	(dL)	(cL)	(mL)			(µL)
Masse	kilogram-	hectogram-	décagram-	gramme (g)	décigram-	centigram-	milligram-			microgram-
	me	me	me		me	me	me			me
	(kg)	(hg)	(dag)		(dg)	(cg)	(mg)			(µg)

Exemples:

- 1000 mL = 1 L
- 0.5 L = 500 mL
- 70 mL = 0.07 L
- 1000 mg = 1 g
- 3 g = 3000 mg
- 25 dg = 2,5 g

À noter : 1 gamma (γ) = 1 μ g. Cette unité n'est pas à utiliser mais peut parfois être encore retrouvée !

Unités de temps

- **1 min** = 60 s
- **1 h** = 60 min = 60 x 60 s = 3600 s
- 1 j = 24 h = 24 x 60 min = 1440 min = 86400 s

Pour additionner ou soustraire des durées, il faut commencer par les secondes, puis les minutes et enfin les heures.

Conversions

Conversion volume et capacité

Exemple: **1** 48 mL = 4,8 cL = 48 cm³

Volume	dm³			cm ³			mm³		
Capacité	hL	daL	L	dL	cL	mL			μL
Ex ①				0	4	8			
Ex 😢				0	4	0			
Ex 🕄				2	5	0			

2 $0.4 \text{ dL} = 4 \text{ cL} = 40 \text{ cm}^3$

3 25 cL = 250 cm 3

Produit en croix / Règle de trois

Le « Produit en croix » ou « Règle de trois » permet de rechercher une <u>inconnue</u> à partir de trois données <u>connues</u> en s'aidant d'un tableau. Il faut définir et nommer le chiffre recherché en utilisant des <u>unités comparables</u>.

Exemple 1:

On doit injecter 250 mg d'aspirine à un patient. Pour cela, vous avez un flacon de 5 mL dosé à 500 mg d'aspirine.

Quel volume **Y** (en mL) devez-vous injecter pour administrer 250 mg d'aspirine ?

	mg (masse d'aspirine)	mL (volume du solvant)
Ce que l'on connaît	500	5
Ce que l'on cherche	250	У

$$500 \times Y = 250 \times 5$$

 $Y = (250 \times 5) / 500$
 $Y = 2,5$

On injectant **2,5 mL**, on administrera 250 mg d'aspirine.

Exemple 2:

Injecter 250 mg d'amoxicilline-Acide clavulanique par 5 kg de poids pour un enfant de 30 kg. Quelle est la dose **Y** à administrer ?

	Poids (kg)	Dose (mg)
Ce que l'on connaît	5	250
Ce que l'on cherche	30	γ

On pose **Y** = dose à administrer à l'enfant 5 x **Y** = 250 x 30 **Y** = (250 x 30) / 5 **Y** = 1500 mg = **1,5** g

Concentrations

La concentration est la quantité d'un produit actif dissous dans l'unité de volume d'une solution.

- → Elle peut être exprimée en pourcentage (%) ou en unité de volume (g /L; mg/L; mg/L; mg/L ...)
- → Un produit dosé à x % signifie qu'il a x grammes de produit actif pour 100 ml.

Exemples:

- Une ampoule de NaCl de 10 ml est dosée à 0,9 %, ainsi la dose X de NaCl contenue dans l'ampoule est de 0,09 g (car 0,9 % signifie 0,9 g dans 100 mL; soit 0,09 g dans 10 mL)
- Un flacon de 10 mL est dosé à 30 g/L, ainsi ce flacon contient 0,3 g soit 300 mg de principe actif [X = (30 g x 0,01 L) / 1 L = 0,30 g].

Débit

Le débit est le rapport d'un volume sur le temps.

$$D\acute{e}bit = \frac{Volume (en gouttes ou mL)}{Dur\acute{e}e (en min ou h)}$$

➤ Le débit d'une perfusion classique s'exprime en **gouttes par minute** alors que le celui d'un pousse-seringue électrique est en **mL/h**, à ne pas confondre avec l'unité de la prescription souvent en mg/h.

Pour le calculer, il faut se souvenir que :

Pour perfuseurs (solutés isotoniques Na Cl 0,9% et G5%)	1 mL = 20 gouttes			
Pour transfuseurs (sang)	1 mL = 15 gouttes			
Pour perfuseurs de précision (en pédiatrie)	1 mL = 60 gouttes			

Méthodologie:

- 1) Identifier le volume du soluté à administrer
- 2) Identifier la durée
- 3) Identifier l'unité dans laquelle doit être calculé le débit (gouttes ? mL ?)
- 4) Appliquer la formule de calcul du débit

Quelques conseils ...

 Lire attentivement la prescription jusqu'au bout sans se précipiter

- Avoir une idée de l'ordre de grandeur du résultat avant de calculer
- En cas de doute sur la prescription, demander un avis complémentaire.
- Un contrôle du résultat obtenu doit être effectué:
 - En vérifiant que le résultat est **cohérent**
 - En faisant contrôler, en cas de doute par un autre professionnel de santé
- Ne pas hésiter à utiliser la calculatrice

- En cas de doute, ne jamais aller jusqu'à l'administration au patient
- Ne pas hésiter à réfléchir à voix haute

Rendez-vous sur <u>www.omedit-centre.fr</u> pour découvrir de nombreuses formations en ligne.

