

Advanced Active Materials for the Exploration of Space

Materials Science Division
Engineering and Technology Directorate
Kennedy Space Center, Florida

Luke Roberson, Ph.D.
(<u>Luke.B.Roberson@nasa.gov</u>)
4/10/2012

Materials Science Division Organizational Chart

NE-L Murray, S. – Chief Parker, D. – Deputy Balles, A. – Technical Integration Manager

NE-L1 Failure Analysis & Material Eval. NE-L2 Mat. Testing & Corrosion Control

NE-L3 Prototype Development NE-L4 Materials and Processing NE-L5 Applied Physics

NE-L6 Chemical Analysis & Polymer Branch Griffin, T.- Chief

Chemical Analysis Polymer Science & Technology Lab

Lab Overview

Mission

To develop and apply new technologies in polymer and material chemistry that benefit NASA's programs and mission

Team

5 NASA scientists and 4 contractors

Areas of Expertise

Polymer Nanocomposites
Next Generation Wire Materials
Carbon Nanotube and Nanofiber Materials
Conductive Polymers
Polymer Processing
Fire and Polymers
Foam and Insulation Materials

Numerous Collaborative Efforts

NASA Centers (JSC, LaRC, MSFC, GSFC, GRC)

KSC Directorates (Shuttle, Ares, Orion, Ground support operations)

Academia (Alberta, FIT, GT, Harding, Illinois-Urbana Champagne, UCF, UF, USF)

Industry Space Act Agreements (Thermax, DeWAL, Sharklet, Crosslink, Sabic, Amalgam)

Industry Contracts (ARCnano, Epner, Conductive Composites)

3

Composite Materials for Space Exploration

Materials Science Division
Engineering and Technology Directorate
Kennedy Space Center, Florida

Luke Roberson, Ph.D. (<u>Luke.B.Roberson@nasa.gov</u>)
4/10/2012

Materials Science Division Organizational Chart

NE-L Murray, S.– Chief Parker, D.-Acting Russell, R. – Acting Deputy Balles, A. – Technical Integration Mgr

[[2] [2] [] 图 图

NE-L1 Failure Analysis & Material Eval. NE-L2 Mat. Testing & Corrosion Control

NE-L3 Prototype Development

NE-L4 Materials and Processing NE-L5 Applied Physics

NE-L6 Chemical Analysis & Polymer Branch Griffin, T.- Chief

Chemical Analysis Polymer Science & Technology Lab

Lab Overview

Mission

To develop and apply new technologies in polymer and material chemistry that benefit NASA's programs and mission

Team

5 NASA scientists and 4 contractors

Areas of Expertise

Polymer Nanocomposites
Next Generation Wire Materials
Carbon Nanotube and Nanofiber Materials
Conductive Polymers
Polymer Processing
Fire and Polymers
Foam and Insulation Materials

Numerous Collaborative Efforts

NASA Centers (JSC, LaRC, MSFC, GSFC, GRC)

KSC Directorates (Shuttle, Ares, Orion, Ground support operations)

Academia (Alberta, FIT, GT, Harding, Illinois-Urbana Champagne, UCF, UF, USF)

Industry Space Act Agreements (Thermax, DeWAL, Sharklet, Crosslink, Sabic, Amalgam)

Industry Contracts (ARCnano, Epner, Conductive Composites)

3

Technology Readiness Levels

John F. Kennedy Space Center

TECHNOLOGY READINESS LEVELS (TRL's)

Composites/Materials Development at KSC

John F. Kennedy Space Center

- Smart Materials and Detection Systems
- Aerogel composites
- Aerogel for environmental remediation
- Chemochromic hazardous gas detectors
- Antimicrobial polymers
- CNTs and conductive polymer technologies

Why Wiring?

Aged Wire

- Cracks and frays over time
- Hard to detect damage
- Extensive maintenance related damage during ground processing work

Space Shuttle Orbiter

- 183 miles of wiring buried deep within structure of vehicle
- Difficult to manually inspect

Next Generation Wiring Materials

Wire System Failures

- STS-93 (July 1999)
 - Short circuit in 14 AWG polyimide, Kapton[®] type insulated wire
- TWA 800 (July 1996)
 - -Frayed Kapton® wire in center tank area
- Swiss Air 111 (September 1998)
 - Damaged wire in plane's entertainment system

Wiring Technology Solutions

- Manual Repair Technologies for polyimide and fluorinated wires
- In-Situ Damage Detection Systems for Vehicle Health Monitoring
- Self-healing or self-repair insulation

Wire System Materials

John F. Kennedy Space Center

Insulation and Repair Materials

Present Wiring Repairs

Casting of Wire Repair Films

Manual Repair Concept

Laboratory Repair Process

Wire Detection Systems & Integration

John F. Kennedy Space Center

- In-situ wire damage detection system
 - Capable of wire damage detection "on-the-fly"
- Smart Connectors
 - Small, lightweight, ultra reliable
- Integrated vehicle health monitoring (IVHM)
 - System-of-systems level, providing high level of reliability

X-ray image of miniaturized TDR connector

Aerogel Technology

- Aerogel materials are generally silica based, light weight materials, fully breathable, and treated to be super-hydrophobic.
- Aerogel granules are free flowing, fills small cavities, does not compact, no preconditioning required, and can be molded or formed using binders.
- Aerogel granules (Nanogel®) by Cabot Corp.:
 - 90% porous with a mean pore diameter of 20 nm.
 - Bead bulk density ≈ 80 kg/m³ (5 lbs/ft³).
 - Individual beads are fragile; but have high elastic compression of over 50% with no damage.
 - k-value ≈ 18 mW/m-K @ 25 C and 760 torr.
- Aerogel Spaceloft® blanket manufactured by Aspen Aerogels:
 - Bulk density 6 to 8 lbs/ft³.
 - k-value ≈ 12 mW/m-K @ 38 C and 760 torr.
- Aerogel Pyrogel® blanket manufactured by Aspen Aerogels:
 - Flexible aerogel composite blanket designed for hightemperature applications (up to 650°C/1200°F).

Aerogel Composites

John F. Kennedy Space Center

AeroFoam™ = polyimide foam + aerogel

Enhanced thermal and vibration damping performance. Structural integrity to the aerogel and cryogen storage capabilities.

AeroPlastic demo testing on cryo-piping system

AeroPlastic[™] = thermoplastic + aerogel Extruded process, composite reducing heat transfer by 40-60%. Cryogen storage and transfer applications such as piping and seal.

Fiber/Textile + aerogel structural composites

Aerogel for Oil Remediation

Lightest solid known (80 kg/m³) – floats on water

High oil absorbency – 250 gallons/m³

Super-hydrophobic material (repels water)

Environmentally friendly – inert amorphous silica

Stable – long consistent service life, no UV degradation

Commercially manufactured in bulk quantities

Aerogel incorporated into mesh bag, blanket, or filled boon for easy deployment

Aerogels for Oil Remediation

John F. Kennedy Space Center

KSC's Solution

- Aerogel booms are 20% more effective than commercial PP/PE booms
- Reusable booms Oil recovered through distillation
- \$2800 per m³ = 250 gallons oil
- Increase effectiveness through catalyst or bacterial infusion
- Cabot Nanogel and EnviroUSA: Commercial small business collaborations through existing SAA with NASA KSC

Domestic inventory	Europe inventory	Sustainable capacity per month
100 m ³	2000 m ³	600 m ³
25,000 gallons equivalency	500,000 gallons equivalency	150,000 gallons equivalency

Antimicrobial Countermeasures

Shuttle Potable Water

Water generated on-orbit by fuel cells and stored in four 170-lb Inconel bellows tanks lodine (3-4 mg/L)

ISS Potable Water

Ground-supplied potable water (Shuttle, Progress, ATV, HTV, or commercial cargo) and reuse water recovered from humidity condensate and/or urine (SRV-K and WRS)

Iodine, Silver Nitrate, Silver Fluoride

Orion Potable Water

Ground-supplied potable water stored in Five Inconel 718 Tanks (14.3 gal)
Miles of Titanium water lines
Silver Fluoride (0.4 mg/L)

Antimicrobial Countermeasures

Multiple technologies are required for persistent microbial control in potable water systems

Antimicrobial materials
Biocide delivery systems (ionic silver)
Point-of-use sterilizing-grade filtration
Solid state lighting systems (UV-A and UV-C LEDs)

Antimicrobial Polymers

In collaboration with Sharklet Technologies and UF

Surface Morphology and Surface Chemistry

- Efficacy studies after 21 days decreases biofilm formation
- Easy to imprint during manufacture of polymer articles through a coining process
- Can be used in conjunction with antimicrobial polymers

Antimicrobial Materials

Microgravity Flight Experiments

Measure ability of Sharklet® patterned coupons in combination with chemical surface treatments to inhibit biofilm formation by bacteria in reduced gravity

Chemochromic Hydrogen Sensors

In collaboration with FSEC/UCF

Irreversible Sensor

A patent-pending irreversible color changing H₂ gas sensor was developed at KSC in partnership with UCF and ASRC.

Changes color from a light tan to black in the presence of H₂.

Can be manufactured into any polymer part, tape, fiber, or fabric material for unlimited potential uses.

■ Paint, Gloves, Coveralls, PPE

Operates under ambient and cryogenic temperatures.

Reversible Hydrogen Sensor In collaboration with FSEC/UCF

Chemochromic Hydrogen Sensors

John F. Kennedy Space Center

LPA OMBUU Deployment for STS 117, 118, 120, 122, 123 STS-118 LOAD-1 HP SKID (H2CONC-B)

STS-130 and 131 Operations

John F. Kennedy Space Center

TSM for STS-131

STS-130 H2 Pressure Flange A3362

Hypergolic Fuels

Direct Applications

- Boiler Feed Water Treatment
- Monopropellant
- Bipropellant
- Fuel Cells
- Polymers
- Metallurgical

Derivative Applications

- Solid Propellant
- Gun Propellant
- Explosives
- Pesticides
- Pharmaceutical

monomethylhydrazine

HyperPigment

John F. Kennedy Space Center

Pigment shown is 1% by weight KAuCl₄ on silica

Concentrations were tested up to 5% to increase color response

Pigment can be incorporated into most polymer materials - SCAPE suits

Conductive Inks Formulations for Multiple Applications

CNT Ink Dust Screens

In collaboration with Electrostatics Laboratory

CNT Ink Printed Circuitry

In collaboration with Crosslink

Screen printed polymer-composite material

Line thickness and width increases conductivity

50 Ohm resistance able to measure damage to circuits

Technology Readiness Levels

John F. Kennedy Space Center

Hydrogen Tape

AeroPlastic

AeroFoam

Manual Repair Technology

Wire Damage Detection

CNT Inks

Aerogel Remediation

Antimicrobial Materials

Aerogel Composite Fabrics

HyperTape

Acknowledgements

Chemical Analysis and Polymer Lab

Dr. Tim Griffin
Anne Caraccio
Dr. Kathy Loftin
Jeremy O'Neal (2010 intern)
Tyson Bevirt (2010 intern)
Megan Morford (2010 intern)

NASA Materials Science Division

Dr. LaNetra Tate* Gayle Krishingha Dean Lewis Rupert Lee

ASRC Applied Chemistry Lab

Dr. Pedro Medelius
Dr. Tracy Gibson
Dr. Mary Whitten
Dr. Scott Jolley
Dr. Robert Devor
Dr. Steve Trigwell
Sarah Snyder
Lilly Fitzpatrick
Rubie Vinje

NASA Technology Integration

Karen Thompson Nancy Zeitlin Orlando Melendez

Environmental Life Support

Dr. Ray Wheeler Dr. Mike Roberts Michelle Birmele David Smith LaShelle McCoy Dr. John Sager[†]

Surface Systems Office

Rob Mueller
Dr. Carlos Calle
David Smith*
Eddie Santiago-Maldonado
Dr. Mike Hogue
Dr. Charlie Buhler[†]

NASA/ASRC Fluids Division

Robert Johnson
James Fesmire
Jared Sass
Angela Krenn
Wes Johnson
Brekke Coffman
Stephen Huff*
Craig Fortier
Dr. Barry Meneghelli
Judy McFall

LaRC

Dr. Erik Weiser Bert Cano

Applied Physics Lab

Dr. Bob Youngquist Dr. Janine Captain Dr. Chris Immer[†]

Technology Transfer Office

David Makufka Alexis Hongaman Carol Dunn Jim Nichols Jeff Kohler Lewis Parrish Pasquale Ferrari

Patent Counsel and Legal

Randy Heald Ginger Arrington Amber Hufft Penny Chambers

Shuttle Operations

Trent Smith*
Norm Peters

Questions?

John F. Kennedy Space Center

Testing and Processing Equipment

John F. Kennedy Space Center

- Fire Testing
 - Cone Calorimeter
 - Oxygen Index**
 - UL94 fire test
 - NASA Std 6001 fire test
 - Radiant Panel*
 - NBS Smoke Chamber*
 - Two foot tunnel*
 - Glow wire ignition*
- Cryogenic Materials Testing
 - Cryogenic moisture uptake (CMU)**
 - Brittleness/Impact test **
 - Liquid helium cold finger test**
 - Single Pin-Socket Krytox Contamination Electrical Characterization under Cryogenic Conditions**
- Specialty Test Equipment

- Cellular Solid Analysis
 - Pycnometer (closed/open cell)**
 - Surface area measurement**
- Thermal Analysis
 - Thermogravimetric analysis (TGA)
 - Differential Scanning Calorimetry (DSC)
 - Dynamic Mechanical Analysis (DMA)
- Physical Testing
 - Tensile Test
 - Compressive Test
 - Pull/Peel Test
- Electrical Testing
 - 4-point probe
 - Surface /Volume resistance
- Polymer Processing capabilities
 - Extrusion
 - Injection molder
 - Fiber spinning equipment
 - Melt, ball, and high intensity mixers³¹

^{*}in collaboration with Cryogenics Test Laboratory

^{**}in collaboration with Florida Tech

What Are Polymers?

POLY MERS are made of many **MONO MERS**

Polymers: Derived from the Greek words **poly** and **mers** meaning "many parts".

- Large molecules composed of repeated chemical units
- When you think of **POLYMER** most automatically think \rightarrow **PLASTIC**. However, polymers are a wide range of *natural* and *synthetic* materials with a wide variety of properties.
- Molecular weight of the resulting synthesized polymer can range from the very lightest of molecules up to huge gels.