ロボットインターフェース設計論 課題

2024 年度開講 ロボットインターフェース設計論レポート

千葉工業大学 先進工学部 未来ロボティクス学科 22C1704 鷲尾 優作

■ 問題 1

素数 7 で割った余り [0,1,2,3,4,5,6] を元とし、次の演算が定義されているガロア体 GF(7) について、(1) (6) の式の値を求めよ。

+	0	1	2	3	4	5	6	×		0	1	2	3	4	5	6
0	0	1	2	3	4	5	6	0)	0	0	0	0	0	0	0
1	1	2	3	4	5	6	0	1	.	0	1	2	3	4	5	6
2	2	3	4	5	6	0	1	2	:	0	2	4	6	1	3	5
3	3	4	5	6	0	1	2	3	;	0	3	6	2	5	1	4
4	4	5	6	0	1	2	3	4	Į	0	4	1	5	2	6	3
5	5	6	0	1	2	3	4	5	,	0	5	3	1	6	4	2
6	6	0	1	2	3	4	5	6	;	0	6	5	4	3	2	1

求めるべき式は以下である。

$$(1) 2+4, (2) 5-2, (3) 2-5, (4) 4 \times 3, (4) 4 \div 3, (6) 1 \div 6.$$

■ 回答 1

7で割った余りを元とする演算であるから、以下のように計算できる。

$$(1) \ 2+4\equiv 6 \pmod{7}$$

$$(2) \ 5-2=5+(-2)=5+5\equiv 10\equiv 3 \pmod{7}$$

$$(3) \ 2-5=2+(-5)=2+2\equiv 4 \pmod{7}$$

$$(4) \ 4\times 3\equiv 12\equiv 5 \pmod{7}$$

$$(5) \ 4\div 3=4\times 3^{-1}=4\times 5\equiv 20\equiv 6 \pmod{7}$$

$$(6) \ 1\div 6=1\times 6^{-1}=1\times 6\equiv 6 \pmod{7}$$

■ 問題 2

下図のように 7 文字からなる文字列の各文字の 7 ビットの ASCII コード (表 1) に偶数パリティで計算された垂直水平パリティが付与された 64 ビットの符号語が送信され、式 (1) の符号語を受信した。 1 ビットまでの誤りがあることを考慮して送信された 7 文字の正しい "文字列"を復号せよ。

	b_1	b_2	b_3	b_4	b_5	b_6	b_7	b_8
W_1	X11	X12	X13	X14	X15	X16	X17	X18
W_2	x_{21}	x_{22}	x_{23}	x_{24}	x_{25}	x_{26}	x_{27}	x_{28}
W_3	x ₃₁	x_{32}	x_{33}	x_{34}	x_{35}	x ₃₆	X37	X38
W_4	x_{41}	X_{42}	x_{43}	x_{44}	x_{45}	x_{46}	x_{47}	x_{48}
W_5	x_{51}	x_{52}	x_{53}	x_{54}	x_{55}	X56	x_{57}	X58
W_6	X61	X62	X63	X64	X65	X66	X67	X68
W_7	x_{71}	x_{72}	x ₇₃	x_{74}	x_{75}	x ₇₆	x_{77}	x ₇₈
W_8	X81	X82	X83	X84	X85	X86	X87	X88

受信語 $(x_{11}x_{12}x_{13}x_{14}x_{15}x_{16}x_{17}x_{18}x_{21}x_{22}x_{23}x_{24}x_{25}x_{26}x_{27}x_{28}$ 受信語 $(W_1W_2W_3W_4W_5W_6W_7W_8) = x_{31}x_{32}x_{33}x_{34}x_{35}x_{36}x_{37}x_{38}x_{41}x_{42}x_{43}x_{44}x_{45}x_{46}x_{47}x_{48}$ $x_{51}x_{52}x_{53}x_{54}x_{55}x_{56}x_{57}x_{58}x_{61}x_{62}x_{63}x_{64}x_{65}x_{66}x_{67}x_{68}$ $x_{71}x_{72}x_{73}x_{74}x_{75}x_{76}x_{77}x_{78}x_{81}x_{82}x_{83}x_{84}x_{85}x_{86}x_{87}x_{88})$

表 1: ASCII コード

	_0	_1	_2	_3	_4	_5	_6	_7	_8	_9	_A	_B	_C	_D	_E	_F
2_{-}		!	"	#	\$	%	&	,	()	*	+	,	-		/
3_	0	1	2	3	4	5	6	7	8	9	:	;	\	=	>	?
4_	@	A	В	С	D	Ε	F	G	Н	I	J	K	L	\mathbf{M}	N	О
5_	Р	Q	R	S	Τ	U	V	W	X	Y	Z	\	^	-	{	}
6_	•	a	b	c	d	е	f	g	h	i	j	k	1	m	n	О
7_	р	q	r	s	t	u	v	w	X	у	Z	{		}	~	DEL

※ たとえば 'A' の ASCII コードは、上記表から 16 進数で 0x41、2 進数 (100 0001)

■ 回答 2

訂正後の7行7ビット(W1~W7, b1~b7)のビット列を示す。

 $W_1:1010110$ (2)

 $W_2:1100001$ (2)

 $W_3:1110010$ (2)

 $W_4:1101001$ (2)

 $W_5:1101111$ (2)

 $W_6:1110101$ (2)

 $W_7:1110011$ (2)

したがって、割り当てられる ASCII コードは以下の通りである。

 $W_1: 1010110_2 = 0x56_{16} = \rightarrow \text{'V'}$

 $W_2: 1100001_2 = 0x61_{16} = \rightarrow$ 'a'

 $W_3: 1110010_2 = 0x72_{16} = \rightarrow \text{'r'}$

 $W_4: 1101001_2 = 0x69_{16} = \rightarrow$ 'i'

 $W_5: 1101111_2 = 0x6F_{16} = \rightarrow \text{'o'}$

 $W_6: 1110101_2 = 0x75_{16} = \rightarrow$ 'u'

 $W_7: 1110011_2 = 0x73_{16} = \rightarrow$'s'

よって、誤り訂正後の文字列は:

Various

■ 問題 3

下記の生成行列 G・検査行列 H が与えられた時に、情報語長 4 ビットの情報 $(1\ 1\ 1\ 0)$ を 7 ビット長のハミング符号で符号化した符号語を求めよ。

$$H = \begin{bmatrix} 0 & 1 & 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 & 0 & 1 \end{bmatrix} \qquad G = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \end{bmatrix}$$

※情報 i=(x1,x2,x3,x4) が与えられた時のハミング符号 w=(x1,x2,x3,x4,c1,c2,c3) の求め方 (※足し算は排他的論理和を適用)

w = iG

ハミング符号 w が与えられた時の、検査の仕方は、 $e=Hw^T$ を計算し、e=0 の時は、誤りなし、 $e\neq 0$ の時は、e と一致する H の列の列番号が誤っているビットの位置を示す。

■ 回答 3

情報語:i = (1, 1, 1, 0)

まずiとGの積を2進数排他的論理和として求める

行列 G の各行を g_1, g_2, g_3, g_4 とすると:

$$g_1 = [1, 0, 0, 0, 0, 1, 1]$$

$$g_2 = [0, 1, 0, 0, 1, 0, 1]$$

$$g_3 = [0, 0, 1, 0, 1, 1, 0]$$

$$g_4 = [0, 0, 0, 1, 1, 1, 1]$$

情報語 $i = (x_1, x_2, x_3, x_4) = (1, 1, 1, 0)$ より、

 $w=x_1g_1\oplus x_2g_2\oplus x_3g_3\oplus x_4g_4=g_1\oplus g_2\oplus g_3$

$$g_1 \oplus g_2 = [1, 0, 0, 0, 0, 1, 1] \oplus [0, 1, 0, 0, 1, 0, 1]$$

$$= [1 \oplus 0, \ 0 \oplus 1, \ 0 \oplus 0, \ 0 \oplus 0, \ 0 \oplus 1, \ 1 \oplus 0, \ 1 \oplus 1]$$

$$= (g_1 \oplus g_2) \oplus g_3 = [1, 1, 0, 0, 1, 1, 0] \oplus [0, 0, 1, 0, 1, 1, 0]$$

$$=[1\oplus 0,\ 1\oplus 0,\ 0\oplus 1,\ 0\oplus 0,\ 1\oplus 1,\ 1\oplus 1,\ 0\oplus 0]$$

$$= [1, 1, 1, 0, 0, 0, 0]$$

よって求める符号語は w = (1, 1, 1, 0, 0, 0, 0) となる

$$w = (1, 1, 1, 0, 0, 0, 0)$$

■ 問題 4

生成行列 G ・検査行列 H に問題 3 のものを使い、"あ" "た"に、0000~1111までを割り当 て、8文字の情報 (文字列)をハミング符号で符号化し送信した。あ 0000, い 0001, う 0010, え 0011, お 0100, か 0101, き 0110, く 0111, け 1000, こ 1001, さ 1010, し 1011, す 1100, せ 1101, そ 1110, た 1111 下記の受信した情報の誤りの有無をしらべ、誤りがあれば誤りのある箇所を特定し、送信さ れた情報 (文字列)を復号せよ。

 $\begin{bmatrix} 1011111 & 0111010 & 0001111 & 1000000 & 0100001 & 0001101 & 0100010 & 1010100 \end{bmatrix}$

■ 回答 4

各受信語 $w=(x_1,x_2,x_3,x_4,c_1,c_2,c_3)$ について、 $e=Hw^T$ を計算し、e=0 で誤りなし、 $e\neq 0$ で該当する列位置のビットを反転する。

1. $w_1 = 10111111 \ e = Hw_1^T = [1, 0, 1]^T \to H$ 第 2 列

第2ビット (x2) を反転:1011111 → 11111111 データ部:1111 → 「た」

2. $w_2 = 0111010$ $w_2 = (0, 1, 1, 1, 0, 1, 0)$ $e = Hw_2^T = [1, 1, 0]^T \to H$ 第 3 列

第3ビット (x3) を反転:0111010 → 0101010 データ部:0101 → 「か」

 $3. \ w_3 = 00011111 \ e = 0$ 、誤りなし

データ部:0001 → 「い」

4. $w_4 = 10000000 \ e = [0, 1, 1]^T \to H$ 第 1 列

第1ビット(x1)反転:1000000 → 0000000 データ部:0000 → 「あ」

5. $w_5 = 0100001 \ e = [1,0,0]^T \to H$ 第 5 列

第5ビット(c1)反転:0100001→0100101 データ部:0100→「お」

6. $w_6 = 0001101 \ e = [0, 1, 0]^T \rightarrow H$ 第 6 列

第6ビット (c2) 反転:0001101 → 0001111 データ部:0001 → 「い」

7. $w_7 = 0100010 \ e = [1, 1, 1]^T \to H$ 第 4 列

第4ビット (x4) 反転:0100010 → 0101010 データ部:0101 → 「か」

8. $w_8 = 1010100 \ e = [0, 0, 1]^T \to H$ 第 7 列

第 7 ビット (c3) 反転:1010100 \rightarrow 1010101 データ部:1010 \rightarrow 「さ」

よって、復号後の文字列は「たかいあおいかさ」となる。

たかいあおいかさ

■ 問題 5

生成多項式 $G(x)=x^4+x^3+x^2+1$ が与えられた時に、情報 $(1\ 0\ 1)=x^2+1=P(x)$ に対応する 7 ビットの巡回符号 F(x) を求めよ。なお、解答は、2 進符号で記述すること。

※ $F(x) = x^4 P(x) + R(x)$ 、R(x) は $x^4 P(x)$ を G(x) で割った余り。

■ 回答 5

まず
$$x^4P(x)$$
 を求める: $x^4P(x) = x^4(x^2+1) = x^6 + x^4$ 次に $x^6 + x^4$ を $G(x) = x^4 + x^3 + x^2 + 1$ で割る。

1. $x^6 + x^4 \div (x^4 + x^3 + x^2 + 1)$: 商: $x^6 \div x^4 = x^2$ $x^2 \cdot G(x) = x^6 + x^5 + x^4 + x^2$ 剰余: $(x^6 + x^4) \oplus (x^6 + x^5 + x^4 + x^2) = x^5 + x^2$

2. $x^5 + x^2 \div (x^4 + x^3 + x^2 + 1)$: 商: $x^5 \div x^4 = x$ $x \cdot G(x) = x^5 + x^4 + x^3 + x$ 剩余: $(x^5 + x^2) \oplus (x^5 + x^4 + x^3 + x) = x^4 + x^3 + x + x^2$

3. $(x^4 + x^3 + x^2 + x) \div (x^4 + x^3 + x^2 + 1)$: 商: $x^4 \div x^4 = 1$ $1 \cdot G(x) = x^4 + x^3 + x^2 + 1$ 乗余: $(x^4 + x^3 + x^2 + x) \oplus (x^4 + x^3 + x^2 + 1) = x + 1$ よって余り $R(x) = x + 1$ よって余り $R(x) = x + 1$ よって余り $R(x) = x + 1$ たって待号語: $F(x) = x^4P(x) + R(x) = (x^6 + x^4) + (x + 1) = x^6 + x^4 + x + 1$ $F(x) = x^6 + x^4 + x + 1$ を 2 進列で表すと: $x^6 : 1, x^5 : 0, x^4 : 1, x^3 : 0, x^2 : 0, x^1 : 1, x^0 : 1$

■ 問題 6

生成多項式 $G(x) = x^4 + x^3 + x^2 + 1$ が与えられた時に、(1) (3) の受信した符号語の剰余 (余り) を求め、誤りの有無を示せ。なお、誤りの根拠となる「剰余」と「誤りの有無」を明示すること。

- $(1) (1000101)(= x^6 + x^2 + 1)$
- (2) $(1101001)(=x^6+x^5+x^3+1)$
- (3) $(0101110)(=x^5+x^3+x^2+x)$
- (1) 受信語: $(1000101)_2 = x^6 + x^2 + 1$

■ 回答 6

$$x^6 + x^2 + 1 \div (x^4 + x^3 + x^2 + 1)$$

$$\xrightarrow{x^2 \text{で割る}} x^2 (x^4 + x^3 + x^2 + 1) = x^6 + x^5 + x^4 + x^2$$
 剩余 $= (x^6 + x^2 + 1) \oplus (x^6 + x^5 + x^4 + x^2) = x^5 + x^4 + 1.$

続いて $x^5 + x^4 + 1 \div (x^4 + x^3 + x^2 + 1)$ を行う:

$$x^5 + x^4 + 1 \xrightarrow{x \text{ call } 5} x(x^4 + x^3 + x^2 + 1) = x^5 + x^4 + x^3 + x$$

剰余 = $(x^5 + x^4 + 1) \oplus (x^5 + x^4 + x^3 + x) = x^3 + x + 1$.

これ以上次数が低い多項式 (x^3+x+1) なので割れず、剰余は

$$R_1(x) = x^3 + x + 1 \neq 0.$$

よって、(1) は誤り

(2) 受信語: $(1101001)_2 = x^6 + x^5 + x^3 + 1$

$$\begin{split} x^6 + x^5 + x^3 + 1 &\div (x^4 + x^3 + x^2 + 1) \\ &\xrightarrow{x^2 \text{で割る}} x^2 (x^4 + x^3 + x^2 + 1) = x^6 + x^5 + x^4 + x^2 \\ &\Re \Rightarrow (x^6 + x^5 + x^3 + 1) \oplus (x^6 + x^5 + x^4 + x^2) = x^4 + x^3 + x^2 + 1. \end{split}$$

ここで、 $x^4 + x^3 + x^2 + 1$ は G(x) そのものなので、

$$R_2(x) = 0.$$

よって、(2) は誤りなし

(3) 受信語: $(0101110)_2 = x^5 + x^3 + x^2 + x$

$$x^5 + x^3 + x^2 + x \div (x^4 + x^3 + x^2 + 1)$$

$$\xrightarrow{x \text{ で割る}} x(x^4 + x^3 + x^2 + 1) = x^5 + x^4 + x^3 + x$$
剰余 = $(x^5 + x^3 + x^2 + x) \oplus (x^5 + x^4 + x^3 + x) = x^4 + x^2$.

さらに $x^4 + x^2 \div G(x)$ を行う:

$$x^4 + x^2 \xrightarrow{\text{1 cell S}} (x^4 + x^3 + x^2 + 1)$$

剰余 = $(x^4 + x^2) \oplus (x^4 + x^3 + x^2 + 1) = x^3 + 1.$

よって、

$$R_3(x) = x^3 + 1 \neq 0.$$

(3) は誤り

$$(1)$$
 $R_1(x) = x^3 + x + 1 \neq 0 \Rightarrow$ 誤り (2) $R_2(x) = 0 \Rightarrow$ 誤りなし (3) $R_3(x) = x^3 + 1 \neq 0 \Rightarrow$ 誤り

参考文献

[1] 滝田謙介. ロボットインターフェース設計論 課題 2024-修正版 20241207.pdf. 日本工業大学ロボティクス 学科, 2024.