Store Sales Prediction

```
In [27]: library(ggplot2)
    library(caret)
    library(gridExtra)
    library(dplyr)
    library(stringr)
```

Data Exploration and Cleaning

```
In [5]: df <- read.csv('C:/Datasets/SalesTrain.txt',na.strings='')
    head(df,5)
    length(df[,1])</pre>
```

Item_Identifier	Item_Weight	Item_Fat_Content	Item_Visibility	Item_Type	Item_MRP	Outlet_Identifier	0
FDA15	9.30	Low Fat	0.01604730	Dairy	249.8092	OUT049	
DRC01	5.92	Regular	0.01927822	Soft Drinks	48.2692	OUT018	
FDN15	17.50	Low Fat	0.01676007	Meat	141.6180	OUT049	
FDX07	19.20	Regular	0.00000000	Fruits and Vegetables	182.0950	OUT010	
NCD19	8.93	Low Fat	0.00000000	Household	53.8614	OUT013	

8523

Check for duplicates

In [6]: sum(duplicated(df))

0

Summarize Data

```
Item Identifier Item Weight
                                           Item Fat Content Item Visibility
                   10
                         Min. : 4.555
                                                 : 316
                                                           Min.
         FDG33 :
                                                                  :0.00000
         FDW13
                   10
                         1st Qu.: 8.774
                                          low fat: 112
                                                            1st Qu.:0.02699
                                                           Median :0.05393
         DRE49
                    9
                         Median :12.600
                                          Low Fat:5089
               :
                    9
         DRN47 :
                         Mean
                               :12.858
                                          reg : 117
                                                            Mean :0.06613
         FDD38
                    9
                         3rd Qu.:16.850
                                                            3rd Qu.:0.09459
                                           Regular:2889
                    9
         FDF52:
                         Max.
                                :21.350
                                                           Max.
                                                                   :0.32839
         (Other):8467
                         NA's
                                 :1463
                         Item_Type
                                         Item_MRP
                                                        Outlet_Identifier
         Fruits and Vegetables:1232
                                                        OUT027 : 935
                                      Min.
                                             : 31.29
                              :1200
         Snack Foods
                                      1st Qu.: 93.83
                                                        OUT013 : 932
         Household
                              : 910
                                      Median :143.01
                                                        OUT035: 930
         Frozen Foods
                              : 856
                                      Mean
                                             :140.99
                                                       OUT046: 930
         Dairy
                              : 682
                                      3rd Qu.:185.64
                                                       OUT049: 930
         Canned
                              : 649
                                      Max.
                                             :266.89
                                                       OUT045 : 929
         (Other)
                               :2994
                                                        (Other):2937
         Outlet_Establishment_Year Outlet_Size
                                                 Outlet_Location_Type
                :1985
                                   High : 932
                                                 Tier 1:2388
                                                 Tier 2:2785
         1st Qu.:1987
                                   Medium:2793
         Median :1999
                                   Small :2388
                                                 Tier 3:3350
         Mean
                :1998
                                   NA's :2410
         3rd Qu.:2004
         Max.
                :2009
                    Outlet_Type
                                  Item_Outlet_Sales
         Grocery Store
                          :1083
                                  Min. :
                                             33.29
         Supermarket Type1:5577
                                  1st Qu.: 834.25
         Supermarket Type2: 928
                                  Median : 1794.33
         Supermarket Type3: 935
                                  Mean
                                         : 2181.29
                                  3rd Qu.: 3101.30
                                  Max.
                                         :13086.97
In [8]:
        names(df)[1]
        length(unique(df[,1]))
        names(df)[5]
        length(unique(df[,5]))
        names(df)[7]
        length(unique(df[,7]))
        'Item Identifier'
        1559
        'Item_Type'
        16
        'Outlet Identifier'
        10
```

Item identifier has many levels and likely cannot be included as a feature as is. Prefixes are explored.

In [7]:

summary(df)

```
In [9]: itemprefix <- unique(substring(df[,1],1,3))
    paste(length(itemprefix), 'levels')
    itemprefix

itemprefix2 <- unique(substring(df[,1],1,2))
    itemprefix2</pre>
```

'71 levels'

'FDA' 'DRC' 'FDN' 'FDX' 'NCD' 'FDP' 'FDO' 'FDH' 'FDU' 'FDY' 'FDS' 'FDF' 'NCB' 'DRI' 'FDW' 'FDC' 'FDR' 'FDV' 'DRJ' 'FDE' 'NCS' 'DRH' 'NCX' 'DRZ' 'FDB' 'FDK' 'FDL' 'FDM' 'NCP' 'NCL' 'DRK' 'FDI' 'FDZ' 'NCI' 'FDJ' 'FDG' 'NCZ' 'FDQ' 'FDD' 'DRG' 'NCR' 'FDT' 'DRB' 'DRE' 'DRA' 'NCF' 'NCH' 'NCO' 'NCN' 'NCC' 'DRD' 'DRF' 'DRL' 'NCM' 'NCU' 'DRY' 'NCW' 'DRM' 'NCT' 'NCQ' 'DRP' 'DRQ' 'NCK' 'NCY' 'DRN' 'NCA' 'NCE' 'NCJ' 'NCO' 'DRO'

'FD' 'DR' 'NC'

2 letter prefix only has 3 levels. 3 level prefix has 71 levels. Overfitting will be evaluated before deciding which prefix to keep in the model. For now both will be added to the data frame.

```
In [10]: df$ItemPrefix2 <- factor(substring(df[,1],1,2))
    df$ItemPrefix3 <- factor(substring(df[,1],1,3))
    df$ItemNumber <- as.numeric(substring(df[,1],4,5))
    df<-df[,-1]
    head(df,5)</pre>
```

Item_Weight	Item_Fat_Content	Item_Visibility	Item_Type	Item_MRP	Outlet_Identifier	Outlet_Establishm
9.30	Low Fat	0.01604730	Dairy	249.8092	OUT049	
5.92	Regular	0.01927822	Soft Drinks	48.2692	OUT018	
17.50	Low Fat	0.01676007	Meat	141.6180	OUT049	
19.20	Regular	0.00000000	Fruits and Vegetables	182.0950	OUT010	
8.93	Low Fat	0.00000000	Household	53.8614	OUT013	
4						>

The fat content should only have 2 levels. This is corrected below.

In [11]: df\$Item_Fat_Content <- factor(ifelse(df\$Item_Fat_Content %in% c('reg','Regular'), 'r
head(df,5)</pre>

Item_Weight	Item_Fat_Content	Item_Visibility	Item_Type	Item_MRP	Outlet_Identifier	Outlet_Establishm
9.30	low	0.01604730	Dairy	249.8092	OUT049	
5.92	reg	0.01927822	Soft Drinks	48.2692	OUT018	
17.50	low	0.01676007	Meat	141.6180	OUT049	
19.20	reg	0.00000000	Fruits and Vegetables	182.0950	OUT010	
8.93	low	0.00000000	Household	53.8614	OUT013	
4						•

Summary of data after cleaning

```
Item Weight
                Item Fat Content Item Visibility
Min. : 4.555
                low:5517
                                 Min. :0.00000
1st Qu.: 8.774
                reg:3006
                                 1st Qu.:0.02699
Median :12.600
                                 Median :0.05393
Mean
     :12.858
                                 Mean
                                        :0.06613
3rd Qu.:16.850
                                 3rd Qu.:0.09459
Max.
      :21.350
                                 Max.
                                        :0.32839
NA's
       :1463
               Item_Type
                               Item_MRP
                                             Outlet_Identifier
Fruits and Vegetables:1232
                            Min. : 31.29
                                             OUT027 : 935
                    :1200
                            1st Qu.: 93.83
                                             OUT013 : 932
Snack Foods
Household
                    : 910
                            Median :143.01
                                             OUT035 : 930
                    : 856
Frozen Foods
                            Mean
                                   :140.99
                                             OUT046 : 930
                    : 682
                            3rd Qu.:185.64
                                             OUT049 : 930
Dairy
Canned
                    : 649
                            Max.
                                   :266.89
                                             OUT045 : 929
(Other)
                    :2994
                                             (Other):2937
Outlet_Establishment_Year Outlet_Size
                                       Outlet_Location_Type
      :1985
                         High : 932
                                       Tier 1:2388
1st Qu.:1987
                         Medium: 2793
                                       Tier 2:2785
Median :1999
                         Small :2388
                                       Tier 3:3350
Mean :1998
                         NA's :2410
3rd Qu.:2004
Max.
     :2009
                        Item_Outlet_Sales ItemPrefix2 ItemPrefix3
          Outlet_Type
Grocery Store
                :1083
                        Min. : 33.29
                                           DR: 799
                                                       FDX
                                                             : 295
Supermarket Type1:5577
                        1st Qu.: 834.25
                                           FD:6125
                                                       FDT
                                                              : 281
Supermarket Type2: 928
                        Median : 1794.33
                                           NC:1599
                                                       FDS
                                                              : 279
Supermarket Type3: 935
                        Mean : 2181.29
                                                       FDR
                                                              : 275
                                                              : 271
                        3rd Qu.: 3101.30
                                                       FDW
                        Max. :13086.97
                                                       FDY
                                                              : 271
                                                       (Other):6851
  ItemNumber
Min.
      : 1.00
1st Qu.:15.00
Median :30.00
Mean :30.33
3rd Qu.:45.00
```

Check for near zero variance.

:60.00

Max.

In [13]: nearZeroVar(df, saveMetrics=TRUE)

	freqRatio	percentUnique	zeroVar	nzv
Item_Weight	1.048780	4.86917752	FALSE	FALSE
Item_Fat_Content	1.835329	0.02346592	FALSE	FALSE
Item_Visibility	175.333333	92.45570808	FALSE	FALSE
Item_Type	1.026667	0.18772733	FALSE	FALSE
Item_MRP	1.166667	69.67030388	FALSE	FALSE
Outlet_Identifier	1.003219	0.11732958	FALSE	FALSE
Outlet_Establishment_Year	1.569742	0.10559662	FALSE	FALSE
Outlet_Size	1.169598	0.03519887	FALSE	FALSE
Outlet_Location_Type	1.202873	0.03519887	FALSE	FALSE
Outlet_Type	5.149584	0.04693183	FALSE	FALSE
Item_Outlet_Sales	1.062500	40.98322187	FALSE	FALSE
ItemPrefix2	3.830519	0.03519887	FALSE	FALSE
ItemPrefix3	1.049822	0.83304001	FALSE	FALSE
ItemNumber	1.006410	0.70397747	FALSE	FALSE

Check for outliers

```
In [14]: par(mfrow=c(1,5), mar=c(2,2,2,2))
boxplot(df$Item_Weight,main='Item Weight')
boxplot(df$Item_Visibility,main='Item Visibility')
boxplot(df$Item_MRP,main='Item MRP')
boxplot(df$Outlet_Establishment_Year,main='Outlet Establishment')
boxplot(df$Item_Outlet_Sales,main='Outlet Sales')
```



```
In [15]: par(mfrow=c(2,3), mar=c(2,2,2,2))
    hist(df$Item_Weight,main='Item Weight',breaks=20)
    hist(df$Item_Visibility,main='Item Visibility',breaks=20)
    hist(df$Item_MRP,main='Item MRP',breaks=20)
    hist(df$Outlet_Establishment_Year,main='Outlet Establishment',breaks=20)
    hist(df$Item_Outlet_Sales,main='Outlet Sales',breaks=20)
```


The two variables with extreme values are item visibility and outlet sales. However, the extreme values are numerous and are consistent with the skewed distributions observed in the histogram. Therefore they are not considered outliers.

Next, check for correlations.

```
In [16]: cor(df[,c(1,3,5,7,14)],use='complete.obs')
```

-0.014047726

1.000000000

Item_MRP

0.027141154

-0.006061148

Outlet_Establishment_Year

-0.011588290

-0.016935201

ItemNι

0.0252

-0.0265

Item_Weight Item_Visibility

1.00000000

-0.01404773

Item_Weight

Item_Visibility

```
Item MRP
                                  0.02714115
                                             -0.006061148
                                                          1.000000000
                                                                                -0.001656520
                                                                                            -0.0188
          Outlet_Establishment_Year
                                  -0.01158829
                                             -0.016935201
                                                         -0.001656520
                                                                                 1.000000000
                                                                                            0.0011
                      ItemNumber
                                  0.02528662
                                             -0.026579321
                                                         -0.018875820
                                                                                 0.001171761
                                                                                            1.0000
In [17]:
         chisqfun <- function(a,b){</pre>
              if(a==b) return(0)
              else return(round(chisq.test(table(df[,a],df[,b]))$p.value,2))
         matrix(mapply(chisqfun,rep(c(2,4,6,8:10,12:13),8),rep(c(2,4,6,8:10,12:13),rep(8,8)))
         Warning message in chisq.test(table(df[, a], df[, b])):
         "Chi-squared approximation may be incorrect"Warning message in chisq.test(table(d
         f[, a], df[, b])):
         "Chi-squared approximation may be incorrect"Warning message in chisq.test(table(d
         f[, a], df[, b])):
         "Chi-squared approximation may be incorrect"Warning message in chisq.test(table(d
         f[, a], df[, b])):
         "Chi-squared approximation may be incorrect"Warning message in chisq.test(table(d
         f[, a], df[, b])):
         "Chi-squared approximation may be incorrect"Warning message in chisq.test(table(d
         f[, a], df[, b])):
         "Chi-squared approximation may be incorrect"Warning message in chisq.test(table(d
         f[, a], df[, b])):
         "Chi-squared approximation may be incorrect"Warning message in chisq.test(table(d
         f[, a], df[, b])):
         "Chi-squared approximation may be incorrect"Warning message in chisq.test(table(d
         f[, a], df[, b])):
         "Chi-squared approximation may be incorrect"Warning message in chisq.test(table(d
```

Some of the factors are not independent. The strength of correlation will be evaluated after dummy coding.

Next, factors will be coded and pre-processing will be performed.

100

```
In [18]:
           X <- predict(dummyVars(Item_Outlet_Sales~.,df,fullRank=TRUE),df)</pre>
           dimnames(X)[[2]] \leftarrow gsub('','',dimnames(X)[[2]])
           head(X,5)
               Item_Weight Item_Fat_Content.reg Item_Visibility Item_Type.Breads Item_Type.Breakfast Item_Type.C
            1
                      9.30
                                             0
                                                   0.01604730
                                                                                                 0
            2
                      5.92
                                             1
                                                                             0
                                                                                                 0
                                                   0.01927822
                                                   0.01676007
            3
                     17.50
                                             0
                                                                             0
                                                                                                 0
            4
                     19.20
                                             1
                                                   0.00000000
                                                                             0
                                                                                                 0
            5
                      8.93
                                             0
                                                   0.00000000
                                                                             0
                                                                                                 0
           preprocessparams <- preProcess(X,method=c('center','scale','bagImpute'))</pre>
In [19]:
           processedX <- predict(preprocessparams, X)</pre>
           head(processedX,5)
               Item_Weight Item_Fat_Content.reg Item_Visibility Item_Type.Breads Item_Type.Breakfast Item_Type.C
            1
                -0.7661631
                                     -0.7381039
                                                   -0.9706752
                                                                     -0.1741831
                                                                                         -0.1143393
                                                                                                           -0.2
            2
                -1.4940692
                                      1.3546638
                                                                                                           -0.2
                                                   -0.9080580
                                                                     -0.1741831
                                                                                         -0.1143393
            3
                 0.9997627
                                     -0.7381039
                                                   -0.9568612
                                                                     -0.1741831
                                                                                         -0.1143393
                                                                                                           -0.2
            4
                 1.3658693
                                      1.3546638
                                                   -1.2816826
                                                                     -0.1741831
                                                                                         -0.1143393
                                                                                                           -0.2
            5
                -0.8458452
                                     -0.7381039
                                                   -1.2816826
                                                                                         -0.1143393
                                                                                                           -0.2
                                                                     -0.1741831
           Check for and remove any correlated dummy variables
In [20]: | cormatrix <-cor(X,use='complete.obs')</pre>
           cormatrix[is.na(cormatrix)] <- 0</pre>
           findCorrelation(cormatrix,0.9,names=TRUE, exact=FALSE)
           findCorrelation(cormatrix, 0.9, exact=FALSE)
           Warning message in cor(X, use = "complete.obs"):
           "the standard deviation is zero"
           'Outlet Identifier.OUT035' 'Outlet Identifier.OUT018' 'Outlet Type.SupermarketType1'
           25 22 34
```

Data Visualization

processedX <- processedX[,-c(25,22,34)]</pre>

In [21]:

Item visibility, MRP, outlet indentifier, and outlet type seem to have the largest effects on sales.

Linear Model

First model with all the current features.

```
In [23]:
         linearmod <-lm(df[,11]~processedX)</pre>
         lmsummary <- summary(linearmod)</pre>
         1msummary
        Call:
         lm(formula = df[, 11] ~ processedX)
         Residuals:
            Min
                     1Q Median
                                     3Q
                                            Max
         -4372.4 -682.0
                          -87.0
                                  571.3 7880.6
        Coefficients: (8 not defined because of singularities)
                                                 Estimate Std. Error t value Pr(>|t|)
         (Intercept)
                                                2283.7186
                                                            12.9386 176.505 < 2e-16
         processedXItem_Weight
                                                  -2.3546
                                                            13.8642 -0.170
                                                                              0.8651
         processedXItem Fat Content.reg
                                                 24.2491
                                                            13.8339
                                                                              0.0797
                                                                      1.753
        processedXItem_Visibility
                                                 -15.8401
                                                            13.0961 -1.210
                                                                              0.2265
        processedXItem_Type.Breads
                                                  0.1974
                                                            14.4324 0.014 0.9891
        processedXItem_Type.Breakfast
                                                  9.1583
                                                            13.5397
                                                                      0.676
                                                                              0.4988
        processedXItem_Type.Canned
                                                 14.2974
                                                            16.8406
                                                                      0.849
                                                                              0.3959
         processedXItem_Type.Dairy
                                                -11.7418
                                                            18.2689 -0.643
                                                                              0.5204
         processedXItem_Type.FrozenFoods
                                                 -2.3343
                                                            17.9588 -0.130
                                                                              0.8966
```

42 2000

40 4544

~ ~~~

~ 4~4~

Significance of features is summarized below.

In [25]: sigfeatures <- lmsummary\$coefficients[abs(lmsummary\$coefficients[,4])<=0.05,]
sigfeatures</pre>

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	2283.71861	12.93858	176.504568	0.000000e+00
processedXItem_MRP	970.89650	12.63025	76.870748	0.000000e+00
processedXOutlet_Identifier.OUT013	750.78317	33.93937	22.121307	1.900360e-105
processedXOutlet_Identifier.OUT017	102.15748	14.27344	7.157173	8.926718e-13
processedXOutlet_Identifier.OUT019	188.08163	29.37974	6.401745	1.618243e-10
processedXOutlet_Identifier.OUT027	1649.66946	38.07139	43.330953	0.000000e+00
processedXOutlet_Identifier.OUT045	278.83950	14.50041	19.229768	1.099017e-80
processedXOutlet_Identifier.OUT046	278.17601	20.44095	13.608759	9.792648e-42
processedXOutlet_Identifier.OUT049	578.17295	18.15598	31.844759	3.124907e-210
$processed XOutlet_Establishment_Year$	1239.59742	46.90286	26.429038	6.045229e-148
processedXOutlet_Size.Medium	-578.03530	23.82113	-24.265652	8.720852e-126
processedXItemPrefix3.NCH	-37.35915	17.17607	-2.175070	2.965258e-02
processedXItemPrefix3.NCI	-36.40136	17.91378	-2.032031	4.218181e-02
processedXItemNumber	53.04357	12.53284	4.232366	2.336990e-05

Add interactions of significant features to design matrix.

```
In [28]: sigfeaturelist <- str_replace_all(dimnames(sigfeatures)[[1]],'processedX','')[-1]
sigfeaturelist</pre>
```

'Item_MRP' 'Outlet_Identifier.OUT013' 'Outlet_Identifier.OUT017' 'Outlet_Identifier.OUT019' 'Outlet_Identifier.OUT027' 'Outlet_Identifier.OUT045' 'Outlet_Identifier.OUT046' 'Outlet_Identifier.OUT049' 'Outlet_Establishment_Year' 'Outlet_Size.Medium' 'ItemPrefix3.NCH' 'ItemPrefix3.NCI' 'ItemNumber'

Check for and remove interactions that are highly correlated with other features.

```
In [30]:
          intercormatrix <-cor(InterX,use='complete.obs')</pre>
          intercormatrix[is.na(cormatrix)] <- 0</pre>
          diag(intercormatrix) <- 0</pre>
          maxcor <- apply(intercormatrix,1,max)</pre>
          filteredindex <- 1:length(maxcor)</pre>
          filteredindex <- filteredindex[(maxcor >= 0.9)&(filteredindex>98)]
          filteredindex
          125 126 135 144 145 153 165 170 171
In [31]:
          InterX <-InterX[,-filteredindex]</pre>
          Run linear model with interactions.
In [32]:
          linearmodinter <-lm(df[,11]~InterX)</pre>
          lmintersummary <- summary(linearmodinter)</pre>
          lmintersummary
          Call:
          lm(formula = df[, 11] ~ InterX)
          Residuals:
              Min
                        10 Median
                                         3Q
                                                 Max
          -5514.8 -534.7 -53.6 452.4 6873.6
          Coefficients: (36 not defined because of singularities)
                                                                          Estimate Std. Error
          (Intercept)
                                                                        2284.92041 12.28974
          InterXItem Weight
                                                                          -6.06602
                                                                                      13.16625
          InterXItem_Fat_Content.reg
                                                                          17.44366
                                                                                      13.12486
          InterXItem_Visibility
                                                                         -13.72552
                                                                                      12.43355
          InterXItem_Type.Breads
                                                                           1.64473
                                                                                     13.68194
          InterXItem_Type.Breakfast
                                                                           8.65375
                                                                                     12.83275
          InterXItem_Type.Canned
                                                                          10.90327
                                                                                     15.97262
          InterXItem_Type.Dairy
                                                                          -9.23726
                                                                                      17.32069
          InterXItem_Type.FrozenFoods
                                                                          -6.18434
                                                                                      17.02545
                                                                           0 50574
                                                                                      10 45436
          Filter out insignificant features.
          siginter <-lmintersummary$coefficients[] siginter <-lmintersummary$coefficients[],4]<=0.05,]</pre>
In [33]:
          siginterlist <- str_replace_all(dimnames(siginter)[[1]],'InterX','')[-1]</pre>
          siginterlist <- siginterlist[13:25]</pre>
          siginterlist
          'Item MRPxOutlet Identifier.OUT013'
                                             'Item MRPxOutlet Identifier.OUT017'
          'Item MRPxOutlet Identifier.OUT019'
                                             'Item MRPxOutlet Identifier.OUT027'
          'Item MRPxOutlet Identifier.OUT045'
                                             'Item MRPxOutlet Identifier.OUT046'
          'Item MRPxOutlet Identifier.OUT049'
                                            'Item MRPxOutlet Establishment Year'
          'Item MRPxOutlet Size.Medium' 'Item MRPxItemPrefix3.NCH' 'Item MRPxItemPrefix3.NCI'
          'Item_MRPxItemNumber' 'Outlet Identifier.OUT013xItemPrefix3.NCH'
```

```
In [34]: fullX <- as.data.frame(processedX)</pre>
         for(a in siginterlist){
                 fullX <- mutate(fullX,!!a := InterX[,a])</pre>
         fullX <- as.matrix(fullX)</pre>
         linearmodfull <-lm(df[,11]~fullX)</pre>
         lmfullsummary <- summary(linearmodfull)</pre>
         1mfullsummary
         Call:
         lm(formula = df[, 11] ~ fullX)
         Residuals:
             Min
                      1Q Median
                                      3Q
                                             Max
         -5548.3 -539.1 -51.3 455.9 6917.1
         Coefficients: (8 not defined because of singularities)
                                                        Estimate Std. Error t value
         (Intercept)
                                                       2285.3341
                                                                    12.2749 186.179
         fullXItem_Weight
                                                         -6.3010
                                                                    13.1433 -0.479
         fullXItem_Fat_Content.reg
                                                         17.2192
                                                                   13.1198
                                                                              1.312
         fullXItem_Visibility
                                                        -12.4791
                                                                    12.4140 -1.005
         fullXItem_Type.Breads
                                                          1.6217
                                                                    13.6760 0.119
         fullXItem_Type.Breakfast
                                                          8.9046
                                                                    12.8283 0.694
         fullXItem_Type.Canned
                                                         11.1434
                                                                    15.9631
                                                                              0.698
         fullXItem_Type.Dairy
                                                         -9.5597
                                                                    17.3132 -0.552
         fullXItem_Type.FrozenFoods
                                                         -6.6393
                                                                    17.0187 -0.390
                                                          0 0007
                                                                    40 4404
                                                                             ^ 474
```

Add square and cube features for continuous features.

```
In [35]:
         nonlinX <- as.data.frame(fullX)</pre>
         continuouslist <- c('Item_Weight','Item_MRP','Item_Visibility','Outlet_Establishment</pre>
         for(a in continuouslist){
              sqname <- paste(a,'sqr',sep='.')</pre>
              cubname <- paste(a, 'cub', sep='.')</pre>
              nonlinX <- mutate(nonlinX,!!sqname := fullX[,a]^2)</pre>
              nonlinX <- mutate(nonlinX,!!cubname := fullX[,a]^3)</pre>
         nonlinX <- as.matrix(nonlinX)</pre>
         nonlinearmod <-lm(df[,11]~nonlinX)</pre>
         nlmsummary <- summary(nonlinearmod)</pre>
         nlmsummary
         Call:
         lm(formula = df[, 11] ~ nonlinX)
         Residuals:
             Min
                       1Q Median
                                       3Q
                                               Max
         -5451.3 -533.3 -50.9
                                    456.1 6908.8
         Coefficients: (10 not defined because of singularities)
                                                             Estimate Std. Error t value
         (Intercept)
                                                           2309.78682 24.45734 94.441
         nonlinXItem_Weight
                                                             47.52413 32.04466 1.483
         nonlinXItem_Fat_Content.reg
                                                             16.73881
                                                                        13.12263
                                                                                    1.276
         nonlinXItem_Visibility
                                                            -19.48536
                                                                        15.44958 -1.261
         nonlinXItem_Type.Breads
                                                              0.34177
                                                                        13.68739 0.025
         nonlinXItem_Type.Breakfast
                                                              8.97961
                                                                        12.85298
                                                                                    0.699
         nonlinXItem_Type.Canned
                                                             10.17210
                                                                        15.97353
                                                                                    0.637
         nonlinXItem Type.Dairy
                                                             -8.72684
                                                                        17.34316 -0.503
         nonlinXItem_Type.FrozenFoods
                                                             -7.47347
                                                                         17.04192 -0.439
```

Only the cube of item weight and MRP is significant (at alpha = 0.1), so other cube and square terms are removed.

```
In [36]: | finalX <- as.data.frame(fullX)</pre>
         continuouslist <- c('Item_Weight','Item_MRP')</pre>
         for(a in continuouslist){
             cubname <- paste(a,'cub',sep='.')</pre>
             finalX <- mutate(finalX,!!cubname := fullX[,a]^3)</pre>
         finalX <- as.matrix(finalX)</pre>
         finallinearmod <-lm(df[,11]~finalX)</pre>
         finallmsummary <- summary(finallinearmod)</pre>
         finallmsummary
         Call:
         lm(formula = df[, 11] ~ finalX)
         Residuals:
             Min
                      1Q Median
                                       3Q
                                              Max
         -5459.4 -531.9
                           -53.0
                                   452.7 6914.5
         Coefficients: (8 not defined because of singularities)
                                                          Estimate Std. Error t value
         (Intercept)
                                                         2290.3463 12.3960 184.765
         finalXItem_Weight
                                                           52.2886
                                                                      31.8723
                                                                                1.641
         finalXItem_Fat_Content.reg
                                                           16.4154 13.1180 1.251
         finalXItem_Visibility
                                                          -13.3536
                                                                      12.4133 -1.076
                                                            0.3820 13.6849 0.028
         finalXItem_Type.Breads
                                                           8.8011
10.5802
         finalXItem_Type.Breakfast
                                                                      12.8506 0.685
         finalXItem_Type.Canned
                                                                      15.9649
                                                                                0.663
         finalXItem_Type.Dairy
                                                           -8.8606
                                                                      17.3183 -0.512
         finalXItem_Type.FrozenFoods
                                                           -7.2372
                                                                      17.0190 -0.425
```

The singularities are caused by features that are linear combinations of other features. These are filtered out by taking only features listed in the linear model coefficient summary.

In [46]: finalfeaturelist <- str_replace_all(dimnames(finallmsummary\$coefficients)[[1]],'fina</pre> finalX <- finalX[,finalfeaturelist]</pre> finallinearmod <-lm(df[,11]~finalX)</pre> finallmsummary <- summary(finallinearmod)</pre> finallmsummary Call: lm(formula = df[, 11] ~ finalX) Residuals: Min 1Q Median 3Q Max -5459.4 -531.9 -53.0 452.7 6914.5 Coefficients: Estimate Std. Error t value (Intercept) 2290.3463 12.3960 184.765 finalXItem_Weight 52.2886 31.8723 1.641

 (Intercept)
 2290.3463
 12.3960
 184.765

 finalXItem_Weight
 52.2886
 31.8723
 1.641

 finalXItem_Fat_Content.reg
 16.4154
 13.1180
 1.251

 finalXItem_Visibility
 -13.3536
 12.4133
 -1.076

 finalXItem_Type.Breads
 0.3820
 13.6849
 0.028

 finalXItem_Type.Breakfast
 8.8011
 12.8506
 0.685

 finalXItem_Type.Canned
 10.5802
 15.9649
 0.663

 finalXItem_Type.Dairy
 -8.8606
 17.3183
 -0.512

 finalXItem_Type.FrozenFoods
 -7.2372
 17.0190
 -0.425

Check for normality of residuals

Shapiro-Wilk normality test

data: sample(finallmsummary\$residuals, 5000)
W = 0.95835, p-value < 2.2e-16</pre>

Histogram of Residuals

The residual distribution has heavy tails, possibly indicating a large influence of features not captured in the model or in the data set.

The significance of features in the model is summarized below.

t-values

Innal/them Visibility

Leat Conference of an artifler of the Search of Table Bead of a final strength of the Search of the Searc

In [49]: finallmsummary\$coefficients[finallmsummary\$coefficients[,4]<=0.1,]</pre>

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	2290.34625	12.39601	184.764729	0.000000e+00
finalXltem_MRP	1066.70848	27.22300	39.184090	1.302347e-308
finalXOutlet_Identifier.OUT013	757.53434	32.14573	23.565630	5.852413e-119
finalXOutlet_Identifier.OUT017	102.78752	13.51861	7.603411	3.194981e-14
finalXOutlet_Identifier.OUT019	188.75018	27.82621	6.783181	1.255057e-11
finalXOutlet_Identifier.OUT027	1657.92788	36.05383	45.984797	0.000000e+00
finalXOutlet_Identifier.OUT045	280.17338	13.73227	20.402561	2.382812e-90
finalXOutlet_Identifier.OUT046	282.81046	19.36473	14.604412	1.007887e-47
finalXOutlet_Identifier.OUT049	580.33109	17.19359	33.752763	2.506709e-234
finalXOutlet_Establishment_Year	1247.30512	44.41542	28.082702	6.066573e-166
finalXOutlet_Size.Medium	-575.99995	22.56530	-25.525916	1.726855e-138
finalXItemPrefix3.FDT	-33.18683	16.42859	-2.020065	4.340826e-02
finalXItemPrefix3.FDW	-28.90952	16.27265	-1.776571	7.567502e-02
finalXItemPrefix3.NCC	-27.80474	15.79873	-1.759935	7.845516e-02
finalXItemPrefix3.NCI	-39.57200	16.97821	-2.330752	1.978995e-02
finalXItemPrefix3.NCT	-27.45584	15.69773	-1.749033	8.032187e-02
finalXItemNumber	42.89486	11.89430	3.606338	3.123483e-04
finalXItem_MRPxOutlet_Identifier.OUT013	358.82433	31.75561	11.299556	2.146993e-29
finalXItem_MRPxOutlet_Identifier.OUT017	43.16997	13.43739	3.212676	1.320001e-03
finalXItem_MRPxOutlet_Identifier.OUT019	85.70648	27.86869	3.075368	2.109179e-03
finalXItem_MRPxOutlet_Identifier.OUT027	718.87112	35.43004	20.289877	2.129859e-89
finalXItem_MRPxOutlet_Identifier.OUT045	119.19688	13.65513	8.729091	3.061507e-18
finalXItem_MRPxOutlet_Identifier.OUT046	106.75557	19.24694	5.546625	3.000675e-08
finalXItem_MRPxOutlet_Identifier.OUT049	260.89385	17.07128	15.282615	4.975527e-52
$final X I tem_MRPxOutlet_Establishment_Year$	569.37033	43.67207	13.037402	1.767222e-38
finalXItem_MRPxOutlet_Size.Medium	-253.85440	22.59335	-11.235804	4.380714e-29
finalXItem_MRPxItemPrefix3.NCH	-24.23002	13.45744	-1.800493	7.181867e-02
finalXItem_MRPxItemPrefix3.NCI	-31.60884	10.79118	-2.929137	3.408177e-03
finalXItem_MRPxItemNumber	37.53014	11.95861	3.138337	1.704971e-03
finalXItem_Weight.cub	-33.51879	16.37811	-2.046560	4.073228e-02
finalXItem_MRP.cub	-23.52734	11.49696	-2.046396	4.074845e-02

Cross validation is performed to check for overfitting.

```
In [51]: fulllinearmodel <- train(finalX,df[,11],method='lm',trControl=trainControl(method='r
fulllinearmodel

Linear Regression

8523 samples
    113 predictor

No pre-processing
Resampling: Cross-Validated (5 fold, repeated 3 times)
Summary of sample sizes: 6819, 6817, 6819, 6819, 6818, 6819, ...
Resampling results:

RMSE    Rsquared    MAE
    1077.878    0.6014958    759.3767</pre>
```

Tuning parameter 'intercept' was held constant at a value of TRUE

The RMSE is comparable to that of the model fit to the entire data set, indicating overfitting is minimal. Therefore the model will not be reduced further, nor will any regularization penalties be added.

Decision Tree

```
In [64]:
         Grid <- expand.grid(cp=c(0.0005,0.001,0.002,0.003,0.004,0.005))
         treemodel <- train(processedX,df[,11],method='rpart',trControl=trainControl(method='</pre>
         treemodel
         CART
         8523 samples
          106 predictor
         No pre-processing
         Resampling: Cross-Validated (5 fold, repeated 3 times)
         Summary of sample sizes: 6817, 6818, 6819, 6820, 6818, 6818, ...
         Resampling results across tuning parameters:
                  RMSE
                            Rsquared
                                       MAE
           ср
           5e-04 1148.888 0.5520473 793.2892
           1e-03 1105.266 0.5813093 773.1895
           2e-03 1098.391 0.5859018 782.0021
           3e-03 1101.527 0.5835262 785.5887
           4e-03 1102.768 0.5825808 786.9578
           5e-03 1106.873 0.5794607 790.0889
```

RMSE was used to select the optimal model using the smallest value. The final value used for the model was cp = 0.002.

```
In [69]: Grid <- expand.grid(cp=c(0.0016,0.0017,0.0018,0.0019,0.002))</pre>
         treemodel <- train(processedX,df[,11],method='rpart',trControl=trainControl(method='</pre>
         treemodel
         CART
         8523 samples
          106 predictor
         No pre-processing
         Resampling: Cross-Validated (5 fold, repeated 3 times)
         Summary of sample sizes: 6818, 6818, 6819, 6819, 6817, ...
         Resampling results across tuning parameters:
                   RMSE
                             Rsquared
                                        MAE
           ср
           0.0016
                   1097.356 0.5868223 779.9323
           0.0017 1097.245 0.5868887 780.0096
           0.0018 1097.269 0.5868148 780.4726
           0.0019 1097.308 0.5867609 780.5750
```

RMSE was used to select the optimal model using the smallest value. The final value used for the model was cp = 0.0017.

0.0020 1098.377 0.5859599 781.1463

Model Selection

The linear model is slightly better than the decision tree model in terms of cros validation RMSE, therefore the linear model will be selected as the final model.

The test data set is processed the same way as the training set.

```
In [89]: | test <- read.csv('C:/Datasets/SalesTest.txt',na.strings='')</pre>
          test$Item_Outlet_Sales <- 0</pre>
          test$ItemPrefix2 <- factor(substring(test[,1],1,2))</pre>
          test$ItemPrefix3 <- factor(substring(test[,1],1,3))</pre>
          test$ItemNumber <- as.numeric(substring(test[,1],4,5))</pre>
          itemID <- test[,1]</pre>
          test<-test[,-1]
          test$Item Fat Content <- factor(ifelse(test$Item Fat Content %in% c('reg','Regular')
          testX <- predict(dummyVars(Item_Outlet_Sales~.,df,fullRank=TRUE),test)</pre>
          dimnames(testX)[[2]] <- gsub(' ','',dimnames(testX)[[2]])</pre>
          processedtestX <- predict(preprocessparams, testX)</pre>
          processedtestX <- processedtestX[,-c(25,22,34)]</pre>
          IntertestX <- as.data.frame(processedtestX)</pre>
          for(a in 1:12){
               for(b in (a+1):13){
                   intername <- paste(sigfeaturelist[a], sigfeaturelist[b], sep='x')</pre>
                   IntertestX <- mutate(IntertestX,!!intername := processedtestX[,sigfeaturelis</pre>
               }
          }
          IntertestX <- as.matrix(IntertestX)</pre>
          fulltestX <- as.data.frame(processedtestX)</pre>
          for(a in siginterlist){
                   fulltestX <- mutate(fulltestX,!!a := IntertestX[,a])</pre>
          fulltestX <- as.matrix(fulltestX)</pre>
          finaltestX <- as.data.frame(fulltestX)</pre>
          for(a in continuouslist){
               cubname <- paste(a,'cub',sep='.')</pre>
               finaltestX <- mutate(finaltestX,!!cubname := fulltestX[,a]^3)</pre>
          finaltestX <- as.matrix(finaltestX)</pre>
          finaltestX <- finaltestX[,finalfeaturelist]</pre>
```

Then the model is used to predict sales for the test set.

```
In [90]: results <- predict(fulllinearmodel,finaltestX)

In [94]: resulttable <- as.data.frame(itemID)
    resulttable$Outlet_Identifier <- test$Outlet_Identifier
    resulttable$Item_Outlet_Sales <- results
    write.csv(resulttable,'C:/Datasets/SalesTestPredict.csv')</pre>
```