	$\tau_{1-}^{\#2} + \alpha$	$\tau_{1-}^{#1} +^{\alpha}$	$\sigma_{1}^{#2} \dagger^{\alpha}$	$\sigma_{1^{-}}^{*1} + ^{lpha}$	$\tau_{1+}^{#1} + \alpha \beta$	$\sigma_{1+}^{\#2} + ^{\alpha\beta}$	$\sigma_{1^+}^{*1} \dagger^{lphaeta}$	
	0	0	0	0	$\frac{i\sqrt{2}k}{t_1+k^2t_1}$	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	0	$\sigma_{1^{+}lphaeta}^{\#1}$
	0	0	0	0	$\frac{i(2k^3r_5-kt_1)}{(1+k^2)^2t_1^2}$	$\frac{-2k^2r_5+t_1}{(1+k^2)^2t_1^2}$	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\sigma_{1^+ lpha eta}^{\# 2}$
	0	0	0	0	$\frac{{}_{-2}k^4r_{5+k}^2t_{1}}{(1+k^2)^2t_{1}^2}$	$-\frac{i(2k^3r_5-kt_1)}{(1+k^2)^2t_1^2}$	$-\frac{i\sqrt{2}k}{t_1+k^2t_1}$	$ au_{1}^{\#1}{}_{lphaeta}$
	i kr5+2k ³ r5	0	$-\frac{1}{\sqrt{2}(k^2r_5+2k^4r_5)}$	$\frac{1}{k^2 r_5}$	0	0	0	$\sigma_{1^-\alpha}^{\#1}$
	$-\frac{i(6k^2r_5+t_1)}{\sqrt{2}k(1+2k^2)^2r_5t_1}$	0	$\frac{6k^2r_5+t_1}{2(k+2k^3)^2r_5t_1}$	$-\frac{1}{\sqrt{2} (k^2 r_5 + 2 k^4 r_5)}$	0	0	0	$\sigma_{1^- lpha}^{\#2}$
I	0	0	0	0	0	0	0	$ au_{1^{-}lpha}^{\#1}$
	$\frac{6k^2r_5+t_1}{(1+2k^2)^2r_5t_1}$	0	$\frac{i(6k^2r_5+t_1)}{\sqrt{2}k(1+2k^2)^2r_5t_1}$	$-\frac{i}{kr_5+2k^3r_5}$	0	0	0	$t_{1-\alpha}^{\#2}$

$f_{1}^{#2} + \alpha$	$f_{1}^{#1} +^{\alpha}$	$\omega_{1^{-}}^{\#2}\dagger^{lpha}$	$\omega_{1^{ ext{-}}}^{\sharp_{1}}\dagger^{lpha}$	$f_{1+}^{#1} \dagger^{\alpha\beta}$	$\omega_{1}^{#2} + \alpha^{\beta}$	$\omega_{1}^{#1} + \alpha \beta$	
0	0	0	0	$\frac{ikt_1}{\sqrt{2}}$	$-\frac{t_1}{\sqrt{2}}$	$k^2 r_5 - \frac{t_1}{2}$	$\omega_{1^{+}lphaeta}^{\#1}$
0	0	0	0	0	0	$-\frac{t_1}{\sqrt{2}}$	$\omega_{1}^{\#2}{}_{lphaeta}$
0	0	0	0	0	0	$-\frac{ikt_{1}}{\sqrt{2}}$	$f_{1+\alpha\beta}^{\#1}$
$-\frac{1}{3}ikt_1$	0	$\frac{t_1}{3\sqrt{2}}$	$k^2 r_5 + \frac{t_1}{6}$	0	0	0	$\omega_{1^{-}~lpha}^{\#1}$
$-\frac{1}{3}i\sqrt{2}kt_1$	0	<u>†1</u> 3	$\frac{t_1}{3\sqrt{2}}$	0	0	0	$\omega_{1^-}^{\#2}{}_{lpha}$
0	0	0	0	0	0	0	$f_{1^-\alpha}^{\#1}$
2 k ² t <u>1</u>	0	$\frac{1}{3} i \sqrt{2} k t_1$	<u> </u>	0	0	0	$f_{1^-\alpha}^{\#2}$

	$\sigma_{0}^{\#1}$	$\tau_0^{\#1}$	$ au_{0}^{\#2}$	$\sigma_0^{\#1}$
$\sigma_{0^+}^{\sharp 1}$ †	0	0	0	0
$\tau_{0^{+}}^{\#1}$ †	0	0	0	0
$\tau_{0^{+}}^{\#2} \dagger$	0	0	0	0
$\sigma_{0}^{\#1}$ †	0	0	0	$-\frac{1}{t_1}$
	ω ^{#1}	f#1	· f#?	2 ,,,#1

	$\omega_{0}^{\#1}$	$f_{0^{+}}^{#1}$	$f_{0^{+}}^{#2}$	$\omega_0^{\#1}$
$\omega_{0}^{\#1}$ †	0	0	0	0
$f_{0}^{#1}\dagger$	0	0	0	0
$f_{0}^{#2}$ †	0	0	0	0
$\omega_{0}^{\#1}$ †	0	0	0	-t ₁

	$\omega_{2^{+}\alpha\beta}^{\#1}$	$f_{2+\alpha\beta}^{\#1}$	$\omega_2^{\sharp 1}_{\alpha\beta\chi}$
$\omega_{2}^{\#1}\dagger^{lphaeta}$	<u>t</u> 1 2	$-\frac{ikt_1}{\sqrt{2}}$	0
$f_{2+}^{#1} \dagger^{\alpha\beta}$	$\frac{i k t_1}{\sqrt{2}}$	$k^2 t_1$	0
$\omega_2^{\#1} \dagger^{\alpha\beta\chi}$	0	0	<u>t</u> 1 2

Added source term: $f^{lphaeta}$ $ au_{lphaeta}+\omega^{lphaeta\chi}$ $\sigma_{lphaeta\chi}$	$\frac{1}{3}t_1 \partial^{\alpha} f^{\lambda}_{\alpha} \partial^{\kappa} f_{\lambda \kappa} + r_5 \partial_{\alpha} \omega_{\lambda}^{\alpha}_{\theta} \partial^{\lambda} \omega^{\theta \kappa}_{\kappa} - r_5 \partial_{\theta} \omega_{\lambda}^{\alpha}_{\alpha} \partial^{\lambda} \omega^{\theta \kappa}_{\kappa}$	$\frac{1}{2} t_1 \partial^{\alpha} f^{\lambda}_{\kappa} \partial^{\kappa} f_{\lambda \alpha} + \frac{1}{2} t_1 \partial_{\kappa} f_{\theta}^{\ \lambda} \partial^{\kappa} f_{\lambda}^{\ \theta} + \frac{1}{2} t_1 \partial_{\kappa} f^{\lambda}_{\ \theta} \partial^{\kappa} f_{\lambda}^{\ \theta} -$	$\frac{1}{3} t_1 \partial_{\kappa} f^{\lambda}_{\ \lambda} \partial^{\kappa} f'_{\ \prime} + 2 t_1 \omega_{\ \prime \kappa \theta} \partial^{\kappa} f^{\prime \theta} - \frac{1}{3} t_1 \omega_{\ \prime \alpha}^{\ \alpha} \partial^{\kappa} f'_{\ \kappa} - \frac{1}{3} t_1 \omega_{\ \prime \lambda}^{\ \lambda} \partial^{\kappa} f'_{\ \kappa} +$	$\frac{1}{3}t_1 \omega_{\kappa\alpha}^{\alpha} \partial^{\kappa}f'_{,} + \frac{1}{3}t_1 \omega_{\kappa\lambda}^{\lambda} \partial^{\kappa}f'_{,} + \frac{2}{3}t_1 \partial^{\alpha}f_{\kappa\alpha} \partial^{\kappa}f'_{,} -$	$\frac{1}{2}t_1 \partial^{\alpha} f_{\theta \kappa} \partial^{\kappa} f_{\alpha}^{\theta} - \frac{1}{2}t_1 \partial^{\alpha} f_{\kappa \theta} \partial^{\kappa} f_{\alpha}^{\theta} - \frac{1}{2}t_1 \partial^{\alpha} f_{\kappa}^{\lambda} \partial^{\kappa} f_{\alpha \lambda} +$	$r_5 \partial_\theta \omega_{\lambda}^{\ \ \alpha} \partial_\kappa \omega^{\ \ \ \ \ } -r_5 \partial_\alpha \omega_{\lambda}^{\ \ \ \theta} \partial_\kappa \omega^{\ \ \ \ \ \ } + 2 r_5 \partial_\theta \omega_{\lambda}^{\ \ \alpha} \partial_\kappa \omega^{\ \ \ \ \ \ } -$	$-\frac{1}{3}t_1 \omega_{,\alpha}^{\alpha_l} \omega_{\kappa\alpha}^{\kappa} - t_1 \omega_{,\kappa}^{\kappa\lambda} \omega_{\kappa\lambda}^{l} - r_5 \partial_{,} \omega_{\kappa\lambda}^{\kappa\lambda} \partial_{,} \omega_{\lambda\alpha}^{\alpha} - r_5 \partial_{\alpha} \omega_{\lambda\beta}^{\alpha} \partial_{\kappa} \omega_{\beta\kappa\lambda}^{\theta\kappa\lambda} +$	Layi aliyiali delisity
Total #:	$\tau_{2}^{*1}\alpha\beta$ - 2	$\tau_{1+}^{\#1}\alpha\beta$ +	$\tau_{1}^{#1\alpha} ==$	$\tau_{1}^{+2\alpha} + 2$	$\tau_{0+}^{\#2} == 0$	$\tau_{0+}^{\#1} == 0$	SO(3) ir $\sigma_{0+}^{\#1} == 0$	

Total #:	$\tau_{2+}^{\#1}{}^{\alpha\beta} - 2 \bar{l} k \sigma_{2+}^{\#1}{}^{\alpha\beta} == 0$	$\tau_{1+}^{\#1}{}^{\alpha\beta} + ik \sigma_{1+}^{\#2}{}^{\alpha\beta} == 0$	$\tau_{1}^{\#1}{}^{\alpha} == 0$	$t_{1}^{\#2\alpha} + 2 ik \sigma_{1}^{\#2\alpha} == 0$	$t_{0+}^{\#2} == 0$	$\tau_{0+}^{\#1} == 0$	$\sigma_{0+}^{\#1} == 0$	SO(3) irreps	Source constraints
17	5	3	3	3	1	1	1	#	

Unitarity conditions

 $\sigma_2^{\#1} \dagger^{\alpha\beta\chi}$

 $r_5 < 0 \&\& t_1 < 0 || t_1 > 0$

(No massive particles)

 $\sigma_{2^{+}\alpha\beta}^{\#1}$

0

 $\sigma_{2}^{\#1}{}_{\alpha\beta\chi}$

0

0

 $\frac{2}{t_1}$

 $\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$

 $\frac{4k^2}{(1+2k^2)^2t_1}$

0