Université Paris Cité LIPADE

Algorithmic Complexity

Non-Deterministic Time

Jean-Guy Mailly (jean-guy.mailly@u-paris.fr)

2022

Outline

Non-Deterministic Time Complexity Classes

Polynomial Hierarchy

Complexity of Well-Known Problems
SAT and Related Problems
Other Theoretical Problems
Video Games

Determining the Complexity of a Problem

Reminder on DTM vs NDTM [Turing 1936]

Intuition on Solving an Exponential Problem...

..... with DTM

- Linear calculations since δ is a 1 to 1 mapping from configurations to transitions
- Exponential number of steps cannot be avoided

Intuition on Solving an Exponential Problem...

. with DTM

- Linear calculations since δ is a 1 to 1 mapping from configurations to transitions
- Exponential number of steps cannot be avoided

..... with NDTM

- ► The tree structure can simulate parallel computing
- ► The solving time is the length of the longest branch of the tree
- COULD BE polynomial (no guarantee in general)
- ▶ When it stays exponential, it **COULD BE smaller exponential** (e.g. $\mathcal{O}(2^n)$ steps instead of $\mathcal{O}(10^n)$)

Solving an Equation...

Does f(n) = 0 have a solution, with $n \in [0, 1, ..., 10^9]$?

Solving an Equation...

Does f(n) = 0 have a solution, with $n \in [0, 1, ..., 10^9]$?

..... with DTM

► Compute f(0). If it works, fine, otherwise compute f(1), then f(2),...

Solving an Equation...

Does f(n) = 0 have a solution, with $n \in [0, 1, ..., 10^9]$?

.... with DTM

- ► Compute f(0). If it works, fine, otherwise compute f(1), then f(2),...
- ► Not efficient: if the solutions of the equation are huge (e.g. 10⁹), then a lot of useless calculations are made

Solving an Equation...

Does f(n) = 0 have a solution, with $n \in [0, 1, ..., 10^9]$?

..... with DTM

- Compute f(0). If it works, fine, otherwise compute f(1), then f(2),...
- ► Not efficient: if the solutions of the equation are huge (e.g. 10⁹), then a lot of useless calculations are made

..... with NDTM

▶ Compute f(i) on the i^{th} branch of the tree, with $0 \le i \le 10^9$

Solving an Equation...

Does f(n) = 0 have a solution, with $n \in [0, 1, ..., 10^9]$?

..... with DTM

- Compute f(0). If it works, fine, otherwise compute f(1), then f(2),...
- Not efficient: if the solutions of the equation are huge (e.g. 10⁹), then a lot of useless calculations are made

..... with NDTM

- ▶ Compute f(i) on the i^{th} branch of the tree, with $0 \le i \le 10^9$
- ► Whatever the solution of the problem, it is obtained in the time of a « single » *f*(*i*) computation

Non-Deterministic Complexity Classes

Evaluating Time with NDTM

Given a function $f: \mathbb{N} \mapsto \mathbb{N}$, NTIME(f(n)) is the set of all languages decided by a NDTM \mathcal{M} in less than g(n) steps (longer branch), with $g(n) \in \mathcal{O}(f(n))$

Non-Deterministic Complexity Classes

Evaluating Time with NDTM

Given a function $f: \mathbb{N} \mapsto \mathbb{N}$, NTIME(f(n)) is the set of all languages decided by a NDTM \mathcal{M} in less than g(n) steps (longer branch), with $g(n) \in \mathcal{O}(f(n))$

Proposition

- ▶ $\forall f : \mathbb{N} \mapsto \mathbb{N}$, then $\mathsf{DTIME}(f(n)) \subseteq \mathsf{NTIME}(f(n))$
- ∀f(n) ≥ n, NTIME(f(n)) is closed for finite union and finite intersection
 - ▶ if $\mathcal{L}_1, \dots, \mathcal{L}_m \in \mathsf{NTIME}(f(n))$, then $\mathcal{L}_1 \cup \dots \cup \mathcal{L}_m \in \mathsf{NTIME}(f(n))$
 - ▶ if $\mathcal{L}_1, \dots, \mathcal{L}_m \in \mathsf{NTIME}(f(n))$, then $\mathcal{L}_1 \cap \dots \cap \mathcal{L}_m \in \mathsf{NTIME}(f(n))$

Non-Deterministic Complexity Classes

Evaluating Time with NDTM

Given a function $f: \mathbb{N} \mapsto \mathbb{N}$, NTIME(f(n)) is the set of all languages decided by a NDTM \mathcal{M} in less than g(n) steps (longer branch), with $g(n) \in \mathcal{O}(f(n))$

Proposition

- ▶ $\forall f : \mathbb{N} \mapsto \mathbb{N}$, then $\mathsf{DTIME}(f(n)) \subseteq \mathsf{NTIME}(f(n))$
- ∀f(n) ≥ n, NTIME(f(n)) is closed for finite union and finite intersection
 - ▶ if $\mathcal{L}_1, \dots, \mathcal{L}_m \in \mathsf{NTIME}(f(n))$, then $\mathcal{L}_1 \cup \dots \cup \mathcal{L}_m \in \mathsf{NTIME}(f(n))$
 - ▶ if $\mathcal{L}_1, \dots, \mathcal{L}_m \in \mathsf{NTIME}(f(n))$, then $\mathcal{L}_1 \cap \dots \cap \mathcal{L}_m \in \mathsf{NTIME}(f(n))$

Closeness under complement is an open question. The answer is mainly assumed to be « no »

Polynomial vs Exponential Time

Definition

The complexity class NP is the set of languages decided in polynomial time by a NDTM, i.e

$$\mathsf{NP} = \bigcup_{k \in \mathbb{N}} \mathsf{NTIME}(n^k)$$

► The complexity class NEXP is the set of languages decided in exponential time by a NDTM, i.e

$$\mathsf{NEXP} = \bigcup_{k \in \mathbb{N}} \mathsf{NTIME}(2^{n^k})$$

Polynomial vs Exponential Time

Definition

The complexity class NP is the set of languages decided in polynomial time by a NDTM, i.e

$$\mathsf{NP} = \bigcup_{k \in \mathbb{N}} \mathsf{NTIME}(n^k)$$

The complexity class NEXP is the set of languages decided in exponential time by a NDTM, i.e

$$\mathsf{NEXP} = \bigcup_{k \in \mathbb{N}} \mathsf{NTIME}(2^{n^k})$$

Theorem

$$\mathsf{P} \subset \mathsf{NP} \subset \mathsf{EXP} \subset \mathsf{NEXP}$$

Moreover, $P \neq EXP$, $NP \neq NEXP$. P = NP, NP = EXP or EXP = NEXP are *open questions*

Polynomial vs Exponential Time

Definition

The complexity class NP is the set of languages decided in polynomial time by a NDTM, i.e

$$\mathsf{NP} = \bigcup_{k \in \mathbb{N}} \mathsf{NTIME}(n^k)$$

► The complexity class NEXP is the set of languages decided in exponential time by a NDTM, i.e

$$\mathsf{NEXP} = \bigcup_{k \in \mathbb{N}} \mathsf{NTIME}(2^{n^k})$$

Theorem

$$\mathsf{P} \subset \mathsf{NP} \subset \mathsf{EXP} \subset \mathsf{NEXP}$$

Moreover, $P \neq EXP$, $NP \neq NEXP$.

P = NP, NP = EXP or EXP = NEXP are open questions: Millennium Prize Problems

Examples of Problems in NP

Clique

- ▶ Input: G a graph, $k \in \mathbb{N}$
- ▶ Problem: Does *G* contain a clique with size *k*?

Subset Sum

- ▶ Input: $\{a_1, \ldots, a_n\} \subset \mathbb{N}, k \in \mathbb{N}$
- ▶ Problem: Is there a subset $S \subseteq \{a_1, ..., a_n\}$ s.t. $\sum_{x \in S} x = k$?

Outline

Non-Deterministic Time Complexity Classes

Polynomial Hierarchy

Complexity of Well-Known Problems SAT and Related Problems Other Theoretical Problems Video Games

Determining the Complexity of a Problem

Complement of a Class

Definition

Given a complexity class C, its complement COC is defined by

$$\mathtt{COC} = \{\bar{\mathcal{P}} \mid \mathcal{P} \in \mathbf{C}\}$$

For complexity classes C defined with DTM, COC = C

Complement of a Class

Definition

Given a complexity class C, its complement coC is defined by

$$\mathtt{COC} = \{\bar{\mathcal{P}} \mid \mathcal{P} \in \mathbf{C}\}$$

For complexity classes C defined with DTM, COC = C

Important Complement Class

CONP is the complement complexity class of NP

Examples of Problems in CONP

No Clique

- ▶ Input: G a graph, $k \in \mathbb{N}$
- ▶ Problem: Does G contain no clique with size k?

Why determining if a graph has a k-clique has not the same complexity than proving that it has no k-clique?

Examples of Problems in CONP

No Clique

- ▶ Input: G a graph, $k \in \mathbb{N}$
- ▶ Problem: Does G contain no clique with size k?

Why determining if a graph has a k-clique has not the same complexity than proving that it has no k-clique?

- To accept an instance of Clique: just exhibit one example of a k-clique to answer YES
- ➤ To accept an instance of No Clique: you have to check every k-subgraph G' and check if it's a clique

Relations between P, NP, coNP

Theorem

 $P\subseteq NP \text{ and } P\subseteq CONP$

but NP = coNP or NP \neq coNP is still an open question

Relations between P, NP, coNP

Theorem

 $P \subseteq NP$ and $P \subseteq CONP$

but NP = coNP or NP ≠ coNP is still an open question

Idea of the polynomial hierarchy: define generalized complexity classes with similar inclusion pattern

Oracle Machines

Definition

Given C_1 , C_2 two complexity classes, $C_1^{C_2}$ is the set of all problems which can be solved by a Turing machine from the class C_1 with an oracle from the class C_2

Oracle Machines

Definition

Given C_1 , C_2 two complexity classes, $C_1^{C_2}$ is the set of all problems which can be solved by a Turing machine from the class C_1 with an oracle from the class C_2

Oracle of class C_2 : abstract entity which can solve in one step a problem from C_2

Oracle Machines

Definition

Given C_1 , C_2 two complexity classes, $C_1^{C_2}$ is the set of all problems which can be solved by a Turing machine from the class C_1 with an oracle from the class C_2

Oracle of class C_2 : abstract entity which can solve in one step a problem from C_2

Example

A problem belongs to P^{NP} if it can be solved by a DTM with polynomially many calls to a NP oracle (i.e. a polynomial NDTM)

[Stockmeyer 1976]

Definition

$$\blacktriangleright \ \Delta_0^P = \Sigma_0^P = \Pi_0^P = P$$

$$ightharpoonup \Sigma_{k+1}^{\mathsf{P}} = \mathsf{NP}^{\Sigma_k^{\mathsf{P}}}$$

[Stockmeyer 1976]

Definition

The polynomial hierarchy is the set of complexity classes defined recursively by

$$\blacktriangleright \ \Delta_0^P = \Sigma_0^P = \Pi_0^P = P$$

$$\blacktriangleright \ \Delta_{k+1}^{\mathsf{P}} = \mathsf{P}^{\Sigma_k^{\mathsf{P}}}$$

$$ightharpoonup \Sigma_{k+1}^{\mathsf{P}} = \mathsf{NP}^{\Sigma_k^{\mathsf{P}}}$$

Ρ

[Stockmeyer 1976]

Definition

$$ightharpoonup \Delta_0^P = \Sigma_0^P = \Pi_0^P = P$$

$$ightharpoonup \Sigma_{k+1}^{\mathsf{P}} = \mathsf{NP}^{\Sigma_k^{\mathsf{P}}}$$

[Stockmeyer 1976]

Definition

$$ightharpoonup \Delta_0^P = \Sigma_0^P = \Pi_0^P = P$$

$$ightharpoonup \Sigma_{k+1}^{\mathsf{P}} = \mathsf{NP}^{\Sigma_k^{\mathsf{P}}}$$

[Stockmeyer 1976]

Definition

$$\blacktriangleright \ \Delta_0^P = \Sigma_0^P = \Pi_0^P = P$$

$$ightharpoonup \Sigma_{k+1}^{\mathsf{P}} = \mathsf{NP}^{\Sigma_k^{\mathsf{P}}}$$

[Stockmeyer 1976]

Definition

$$\blacktriangleright \ \Delta_0^P = \Sigma_0^P = \Pi_0^P = P$$

$$ightharpoonup \Sigma_{k+1}^{\mathsf{P}} = \mathsf{NP}^{\Sigma_k^{\mathsf{P}}}$$

[Stockmeyer 1976]

Definition

$$ightharpoonup \Delta_0^P = \Sigma_0^P = \Pi_0^P = P$$

$$ightharpoonup \Sigma_{k+1}^{\mathsf{P}} = \mathsf{NP}^{\Sigma_k^{\mathsf{P}}}$$

[Stockmeyer 1976]

Definition

$$\blacktriangleright \ \Delta_0^P = \Sigma_0^P = \Pi_0^P = P$$

$$ightharpoonup \Sigma_{k+1}^{\mathsf{P}} = \mathsf{NP}^{\Sigma_k^{\mathsf{P}}}$$

- $ightharpoonup C_1
 ightharpoonup C_2$ means that $C_1 \subset C_2$
- ightharpoonup PH = $\bigcup_{i \in \mathbb{N}} \Sigma_i^P$

Relative Hardness of Problems

Polynomial-Time Functional Reduction

A polynomial-time functional reduction f is a total computable function from a problem \mathcal{P}_1 to a problem \mathcal{P}_2 such that, for any instance i of \mathcal{P}_1 ,

- \blacktriangleright f(i) can be computed in polynomial-time in the size of i
- ▶ *i* is a positive instance of \mathcal{P}_1 iff f(i) is a positive instance of \mathcal{P}_2 Notation:

$$\mathcal{P}_1 \leq_f^P \mathcal{P}_2$$

Relative Hardness of Problems

Polynomial-Time Functional Reduction

A polynomial-time functional reduction f is a total computable function from a problem \mathcal{P}_1 to a problem \mathcal{P}_2 such that, for any instance i of \mathcal{P}_1 ,

- \blacktriangleright f(i) can be computed in polynomial-time in the size of i
- ▶ *i* is a positive instance of P_1 iff f(i) is a positive instance of P_2

$$\mathcal{P}_1 \leq_f^P \mathcal{P}_2$$

C-hardness

Notation:

A problem \mathcal{P} is C-hard iff for each $\mathcal{P}' \in C$, $\mathcal{P}' \leq_f^P \mathcal{P}$

Intuition: \mathcal{P} is at least as hard to solve as every problem from C

Completeness

C-completeness

A problem $\mathcal P$ is C-complete iff it is C-hard and $\mathcal P\in C$

Intuition: \mathcal{P} is one of the hardest problems from C

Completeness

C-completeness

A problem $\mathcal P$ is C-complete iff it is C-hard and $\mathcal P\in C$

Intuition: $\ensuremath{\mathcal{P}}$ is one of the hardest problems from C

A lot of interesting AI problems are complete for NP, coNP, Σ_2^P or Π_2^P

Outline

Non-Deterministic Time Complexity Classes

Polynomial Hierarchy

Complexity of Well-Known Problems SAT and Related Problems Other Theoretical Problems Video Games

Determining the Complexity of a Problem

- ▶ $V = \{x_1, ..., x_n\}$ a set of Boolean variables
- ▶ $C = \{\neg, \lor, \land\}$ a set of connectives
- ▶ A well formed formula (wff) ϕ is:
 - ▶ an atom: $\phi = x_i$
 - ▶ the negation of a wff: $\phi = \neg \psi$
 - ▶ the conjunction of two wffs: $\phi = \psi_1 \wedge \psi_2$
 - ▶ the disjunction of two wffs: $\phi = \psi_1 \lor \psi_2$
- ▶ Interpretation $\omega : V \mapsto \mathbb{B} = \{0, 1\}$
- Semantics of connectives:

 - $\qquad \qquad \omega(\psi_1 \wedge \psi_2) = \min(\omega(\psi_1), \omega(\psi_2))$
- $\blacktriangleright \ \omega \models \phi \text{ iff } \omega(\phi) = 1$

Theorem [Cook 1971]

Given a propositional formula ϕ , the SAT problem consists in determining whether ϕ is consistent, i.e. whether ϕ has a model.

SAT is NP-complete.

General knowledge: SAT is the first problem which has been proved NP-complete.

Theorem [Cook 1971]

Given a propositional formula ϕ , the SAT problem consists in determining whether ϕ is consistent, i.e. whether ϕ has a model.

SAT is NP-complete.

General knowledge: SAT is the first problem which has been proved NP-complete.

The power of propositional logic to express a lot of « real » problems (solving games, planning,...) has led to the development of quite efficient methods to solve NP-complete problems. But even these methods do not allow to solve ALL instances of NP-complete problems.

Normal Forms

- ▶ A literal *I* is either a variable *x* or its negation $\neg x$
- ▶ A clause is a disjunction of literals $I_1 \lor \cdots \lor I_n$
- ► A cube is a conjunction of literals $I_1 \wedge \cdots \wedge I_n$

Conjunctive Normal Form

A formula is in CNF if it is a conjunction of clauses

Disjunctive Normal Form

A formula is in DNF if it is a disjunction of cubes

CNF-SAT

Any formula can be transformed in an equivalent CNF formula

► The transformation can be done in polynomial time

CNF-SAT

Any formula can be transformed in an equivalent CNF formula

- ► The transformation can be done in polynomial time
- Solving CNF-SAT is NP-complete

CNF-SAT

Any formula can be transformed in an equivalent CNF formula

- ► The transformation can be done in polynomial time
- Solving CNF-SAT is NP-complete

DNF-SAT

Any formula can be transformed in an equivalent DNF formula

Solving DNF-SAT is polynomial

CNF-SAT

Any formula can be transformed in an equivalent CNF formula

- ► The transformation can be done in polynomial time
- Solving CNF-SAT is NP-complete

DNF-SAT

Any formula can be transformed in an equivalent DNF formula

- Solving DNF-SAT is polynomial
- ► The transformation cannot be done in polynomial time :(

Tractable Classes

- ▶ A binary clause is a clause with two literals: $l_1 \lor l_2$
- ► A 2CNF is a CNF formula with only binary clauses

Complexity of 2SAT

Determining if a 2CNF formula is satisfiable is in P

Tractable Classes

- ▶ A Horn clause is a clause with at most one positive literal: $X_1 \lor \neg X_2 \cdots \lor \neg X_n$
- ► A Horn formula (or Horn CNF) is a CNF formula with only Horn clauses

Complexity of Horn-SAT

Determining if a Horn formula is satisfiable is in P

Quantified Boolean Formula

- ▶ A canonical QBF is a formula $Q_1 X_1, Q_2 X_2, \dots Q_n X_n, \phi$ with
 - $ightharpoonup \mathcal{Q}_i \in \{\forall,\exists\} \text{ and } \mathcal{Q}_i \neq \mathcal{Q}_{i+1}$
 - \triangleright $\mathcal{X}_1, \dots \mathcal{X}_n$ form a partition of the Boolean variables in ϕ
 - $ightharpoonup \phi$ is a propositional formula
- ► E.g. $\exists x_1, x_3, \forall x_2, (\neg x_1 \lor x_2) \land (\neg x_3 \lor x_2)$
- ▶ $\exists_n \text{QBF}$ is the decision problem: is the QBF $\exists \mathcal{X}_1, \forall \mathcal{X}_2, \dots \mathcal{Q}_n \mathcal{X}_n, \phi$ true?
- ▶ $\forall_n \text{QBF}$ is the decision problem: is the QBF $\forall \mathcal{X}_1, \exists \mathcal{X}_2, \dots \mathcal{Q}_n \mathcal{X}_n, \phi$ true?

Complexity of $\exists_n QBF$

 $\exists_n QBF$ is Σ_n^P -complete

Complexity of $\forall_n QBF$

 $\forall_n QBF \text{ is } \Pi_n^P \text{-complete}$

Set Packing

Definition

Given a universe $\mathcal U$ and $\mathcal S\subseteq 2^{\mathcal U}$, a set packing of $\mathcal U$ is a subset $\mathcal C\subseteq \mathcal S$ s.t. all elements in $\mathcal C$ are pairwise disjoints

Theorem [Karp 1972]

Given \mathcal{U}, \mathcal{S} and $k \in \mathbb{N}$, determining whether there is a set packing \mathcal{C} s.t. $|\mathcal{C}| = k$ is NP-complete

Knapsack Problem

Definition

Given a list of objects x_1, \ldots, x_n , each of them associated with a value v_1, \ldots, v_n and a weight w_1, \ldots, w_n , a knapsack with a maximal weight W, and an integer V, is it possible to fill the bag with some of the objects, such that the sum of the weights is lesser than W and the sum of the values is greater than V?

Theorem

Solving the Knapsack Problem is NP-complete

Kernel of a Graph

Definition

A graph is a pair $G = \langle N, E \rangle$ where elements of N are called *nodes* and $E \subseteq N \times N$ is the set of *edges* between the nodes. A *kernel* of G is a subset $K \subseteq N$ s.t. $\forall n_i, n_j \in K, (n_i, n_j) \notin E$ and $\forall n_j \in N \setminus K, \exists n_i \in K$ s.t. $(n_i, n_j) \in E$

Theorem [Creignou 1995]

Given a graph G, determining whether G has a kernel is NP-complete.

Shortest Implicant

Definition

An implicant of a formula ϕ is a conjunction of literals $c = x_1 \wedge \cdots \wedge x_n$ s.t. $c \vdash \phi$.

Theorem [Umans 2001]

Given a formula ϕ and $k \in \mathbb{N}$, determining whether ϕ has an implicant c s.t. $|c| \le k$ is Σ_2^P -complete

Super Mario Bros.

Theorem [Aloupis et al. 2015]

It is NP-hard to decide whether the goal is reachable from the start of a stage in generalized Super Mario Bros.

Donkey Kong Country

Theorem [Aloupis et al. 2015]

It is NP-hard to decide whether the goal is reachable from the start of a stage in generalized Donkey Kong Country.

The Legend of Zelda

Theorem [Aloupis et al. 2015]

It is NP-hard to decide whether a given target location is reachable from a given start location in generalized Legend of Zelda, LoZ II: The Adventure of Link and LoZ: A Link to the Past.

Metroid

Theorem [Aloupis et al. 2015]

It is NP-hard to decide whether a given target location is reachable from a given start location in generalized Metroid.

Pokémon

Theorem [Aloupis et al. 2015]

- ► It is NP-hard to decide whether a given target location is reachable from a given start location in generalized Pokémon.
- ► It is NP-complete to decide whether a given target location is reachable from a given start location in generalized Pokémon in which the only overworld game elements are enemy Trainers.

More Information on Complexity of Problems

- ► [Garey and Johnson 1979]: One of the most well-known book on the topic, a lot of classical results
- [Schaefer and Umans 2002a, Schaefer and Umans 2002b]:
 More recent collection of results

Outline

Non-Deterministic Time Complexity Classes

Polynomial Hierarchy

Complexity of Well-Known Problems
SAT and Related Problems
Other Theoretical Problems
Video Games

Determining the Complexity of a Problem

Bounds of Complexity

In some cases, it's not easy to determine precisely the complexity of a problem, but we can give lower/upper bounds.

- \blacktriangleright Lower bound: C-hardness. E.g. if ${\mathcal P}$ is NP-hard, ${\mathcal P}$ is at least as hard as SAT
- ▶ Upper bound: C membership. E.g. if $\mathcal{P} \in \Sigma_2^P$, \mathcal{P} is at most as hard as Shortest Implicant problem.

Bounds of Complexity

In some cases, it's not easy to determine precisely the complexity of a problem, but we can give lower/upper bounds.

- \blacktriangleright Lower bound: C-hardness. E.g. if ${\mathcal P}$ is NP-hard, ${\mathcal P}$ is at least as hard as SAT
- ▶ Upper bound: C membership. E.g. if $\mathcal{P} \in \Sigma_2^P$, \mathcal{P} is at most as hard as Shortest Implicant problem.
- Exact complexity: C-completeness

Bounds of Complexity

In some cases, it's not easy to determine precisely the complexity of a problem, but we can give lower/upper bounds.

- \blacktriangleright Lower bound: C-hardness. E.g. if ${\mathcal P}$ is NP-hard, ${\mathcal P}$ is at least as hard as SAT
- ▶ Upper bound: C membership. E.g. if $\mathcal{P} \in \Sigma_2^P$, \mathcal{P} is at most as hard as Shortest Implicant problem.
- Exact complexity: C-completeness

Prove C-completeness: prove hardness (c.f. polynomial functional reductions) + prove membership

"NP algorithm" for SAT.

Algorithm 1 SAT

```
Input: \phi
  Let \omega be some interpretation
  for c a clause in \phi do
     sat clause = false
     for / a literal in c do
         if \omega(I) = 1 then
             sat clause = true
         end if
     end for
     if not sat clause then
         return False
     end if
  end for
  return True
```


"NP algorithm" for SAT.

Algorithm 2 SAT

```
Input: \phi
  Let \omega be some interpretation
  for c a clause in \phi do
     sat clause = false
     for / a literal in c do
         if \omega(I) = 1 then
             sat clause = true
         end if
     end for
     if not sat clause then
         return False
     end if
  end for
  return True
```

Non-deterministic guess

"NP algorithm" for SAT.

Algorithm 3 SAT

```
Input: \phi
  Let \omega be some interpretation
  for c a clause in \phi do
     sat clause = false
     for / a literal in c do
         if \omega(I) = 1 then
             sat clause = true
         end if
     end for
     if not sat_clause then
         return False
     end if
  end for
  return True
```

- Non-deterministic guess
- ightharpoonup Each execution of the algorithm tests a different value of ω

"NP algorithm" for SAT.

Algorithm 4 SAT

```
Input: \phi
  Let \omega be some interpretation
  for c a clause in \phi do
     sat clause = false
     for I a literal in c do
         if \omega(I) = 1 then
             sat clause = true
         end if
     end for
     if not sat clause then
         return False
     end if
  end for
  return True
```

- Non-deterministic guess
- ▶ Each execution of the algorithm tests a different value of ω
- If there is one execution that returns True, then ϕ is a positive instance

"NP algorithm" for SAT.

Algorithm 5 SAT

```
Input: \phi
  Let \omega be some interpretation
  for c a clause in \phi do
     sat clause = false
     for I a literal in c do
         if \omega(I) = 1 then
             sat clause = true
         end if
     end for
     if not sat clause then
         return False
     end if
  end for
  return True
```

- Non-deterministic guess
- ightharpoonup Each execution of the algorithm tests a different value of ω
- If there is one execution that returns True, then ϕ is a positive instance
- In this case, ω is called a *certificate* for ϕ

Certificate

Definition

A certificate (also called a witness) is a word that certifies the answer to a computation, or certifies the membership of some word in a language.

Example

- ▶ P = "Given a polynomial P, has P at least one root?". The instance $P(x) = x^2$ can be verified with the certificate x = 0: P(0) = 0.
 - x = 0 is a certificate that P is a positive instance of P

Certificate

Definition

A certificate (also called a witness) is a word that certifies the answer to a computation, or certifies the membership of some word in a language.

Example

- ▶ \mathcal{P} = "Given a polynomial P, has P at least one root?". The instance $P(x) = x^2$ can be verified with the certificate x = 0: P(0) = 0.
 - x = 0 is a certificate that P is a positive instance of P
- ▶ \mathcal{P} '= "Given a polynomial P, is P(x) positive for all x?" The instance $P'(x) = x^2 2$ can be verified with the certificate x = -1: $P'(-1) = (-1)^2 2 = 1 2 = -1 < 0$. x = -1 is a certificate that P' is a negative instance of \mathcal{P} '

NP and CONP Membership

Proposition

Let \mathcal{P} be a problem. Given an instance x of \mathcal{P} and a certificate c, if the problem

 \mathcal{P}' : « Is c a proof that x is a positive instance of \mathcal{P} ? »

is in P, then $P \in NP$

Proposition

Let \mathcal{P} be a problem. Given an instance x of \mathcal{P} and c a certificate, if the problem

 \mathcal{P}' : « Is c a proof that x is a negative instance of \mathcal{P} ? »

is in P, then $P \in CONP$

NP and CONP Membership

Proposition

Let $\mathcal P$ be a problem. Given an instance x of $\mathcal P$ and a certificate c, if the problem

 \mathcal{P}' : « Is c a proof that x is a positive instance of \mathcal{P} ? »

is in P, then $P \in NP$

Proposition

Let $\mathcal P$ be a problem. Given an instance x of $\mathcal P$ and c a certificate, if the problem

 \mathcal{P}' : « Is c a proof that x is a negative instance of \mathcal{P} ? »

is in P, then $P \in CONP$

NP: Problems where checking a solution is easy coNP: Problems where checking a counter-example is easy

Certificate Verification

"NP algorithm" for SAT.

Algorithm 6 SAT

```
Input: \phi
  Let \omega be some interpretation
  for c a clause in \phi do
     sat clause = false
     for / a literal in c do
         if \omega(I) = 1 then
             sat clause = true
         end if
     end for
     if not sat clause then
         return False
     end if
  end for
  return True
```

Certificate Verification

"NP algorithm" for SAT.

Algorithm 8 SAT

```
Input: \phi
  Let \omega be some interpretation
  for c a clause in \phi do
     sat clause = false
     for I a literal in c do
         if \omega(I) = 1 then
             sat clause = true
         end if
     end for
     if not sat clause then
         return False
     end if
  end for
  return True
```

 \blacktriangleright "P algorithm" for verifying ω

Algorithm 9 Verify Interpretation

```
Input: \phi, \omega
  for c a clause in \phi do
      sat clause = false
     for / a literal in c do
         if \omega(I) = 1 then
             sat clause = true
         end if
     end for
      if not sat clause then
         return False
     end if
  end for
  return True
```

Certificate Verification

"NP algorithm" for SAT.

Algorithm 10 SAT

```
Input: \phi
  Let \omega be some interpretation
  for c a clause in \phi do
     sat clause = false
     for I a literal in c do
         if \omega(I) = 1 then
             sat clause = true
         end if
     end for
     if not sat clause then
         return False
     end if
  end for
  return True
```

 \blacktriangleright "P algorithm" for verifying ω

Algorithm 11 Verify Interpretation

```
Input: \phi, \omega
  for c a clause in \phi do
      sat clause = false
     for / a literal in c do
         if \omega(I) = 1 then
             sat clause = true
         end if
     end for
      if not sat clause then
         return False
     end if
  end for
  return True
```

General C-Membership with a Certificate

Proposition

Let \mathcal{P} be a problem. Given an instance x of \mathcal{P} and a certificate c, if the problem

 \mathcal{P}' : « Is c a proof that x is a positive instance of \mathcal{P} ? »

is in Π_{i-1}^P , then $\mathcal{P} \in \Sigma_i^P$

General C-Membership with a Certificate

Proposition

Let \mathcal{P} be a problem. Given an instance x of \mathcal{P} and a certificate c, if the problem

 \mathcal{P}' : « Is c a proof that x is a positive instance of \mathcal{P} ? »

is in Π_{i-1}^P , then $\mathcal{P} \in \Sigma_i^P$

Proposition

Let $\mathcal P$ be a problem. Given an instance x of $\mathcal P$ and a certificate c, if the problem

 \mathcal{P}' : « Is c a proof that x is a negative instance of \mathcal{P} ? »

is in Σ_{i-1}^P , then $\mathcal{P} \in \Pi_i^P$

References

- [Turing 1936] A. M. Turing, *On computable numbers, with an application to the Entscheidungsproblem.* Proceedings of the London Mathematical Society, 1936.
- [Cook 1972] S. A. Cook, A Hierarchy for Nondeterministic Time Complexity. STOC, 187–192, 1972.
- [Seiferas et al 1978] J. I. Seiferas, M. J. Fischer and A. R. Meyer, Separating Non-deterministic Time Complexity Classes. J. ACM, 25.1, 146–167, 1978.
- [Stockmeyer 1976] L. J. Stockmeyer, *The polynomial-time hierarchy*. Theoretical Computer Science, 3, 1–22, 1976.

References

- [Cook 1971] S. A. Cook, *The Complexity of Theorem-Proving Procedures*. Proc. of the Third Annual Symposium on Theory of Computing, 151–158, 1971.
- [Karp 1972] R. M. Karp, Reducibility Among Combinatorial Problems. Proc. of Symposium on the Complexity of Computer Computations, 85–103, 1972.
- [Creignou 1995] N. Creignou, *The Class of Problems That are Linearly Equivalent to Satisfiability or a Uniform Method for Proving NP-Completeness*. Theoretical Computer Science, 145, 111–145, 1995.
- [Umans 2001] C. Umans, *The Minimum Equivalent DNF Problem and Shortest Implicants*. J. Comput. Syst. Sci., 63, 597–611, 2001.

References

- [Aloupis *et al.* 2015] G. Aloupis, E. D. Demaine, A. Guo and G. Viglietta, *Classic Nintendo games are (computationally) hard.* Theor. Comput. Sci. 586: 135-160, 2015.
- [Garey and Johnson 1979] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman, 1979.
- [Schaefer and Umans 2002a] M. Schaefer and C. Umans, Completeness in the Polynomial-Time Hierarchy: A Compendium. Sigact News September, 2002.
- [Schaefer and Umans 2002b] M. Schaefer and C. Umans, Completeness in the Polynomial-Time Hierarchy: Part II. Sigact News December, 2002.