SHARC与 MCU 控制协议 v0.4 2012.09.06

目录

ID=0:控制所有模块的状态····································	2
ID=1:控制噪声门(噪声门开启信号返回值请看最后一页)····································	2
ID=2:控制移频······	····· 2
ID=3:控制高低通滤波器····································	3
ID=4:控制 PEQ·······	3
ID=5:控制压限······	····· 4
ID=6:控制电平大小······	···· 4
ID=7:控制电平表(电平返回值请看最后一页)····································	···· 4
ID=8:控制混音器····································	5
ID=9:控制延时·····	5
ID=10:控制正弦波发生器频率····································	····· 6
ID=11://往任意地址里面写任意值····································	6
ID=12://从任意地址里面读任意值 此值会在"DSP处理结果"字中返回····································	···· 6
ID=7 控制电平表 DSP 数据返回格式····································	7
ID=1 控制噪声门(噪声门开启信号数据返回格式)	····· 7
其他 ID 返回格式:	7

注: ID=11 和 ID=12 是在 v0.3 基础上添加的

MCU 发给 DSP 协议格式: (每个单元由一个字(4个字节)组成),注意:发送时低字节先发

ID=0: 控制所有模块的状态

帧头	ID/长度	首地址	数据(int)	CRC
0xDEADBEEF	ID<<24 Len<<16	模块地址	模块状态:	长度+首地
	Len=除帧头外,所		0:无效;1:有效;	址+数据长
	有字的个数		2:静音 3:旁路	度+具体数
			整型	据之和

例如:要改变 ScalerCH1_1 模块的状态(_Layout1_ScalerCH1_1 = 0x000C056A)为静音,需要发送给 DSP 的指令如下:

OxDEAD BEEF // 帧头 发送按照 EF BE AD DE 低字节先发送

0x0004 0000//长度=4; ID=00x000C056A//模块地址0x000000002// 2: 静音

0xxxxxxxxxx //CRC 校验=0x00040000+ 0x000C056A +0x2

ID=1: 控制噪声门(噪声门开启信号返回值请看最后一页)

帧头	ID/长度	首地址	threshold	attackTime	decayTime	CRC
0xDEADBEEF	ID<<24 Len<<16	噪声门模	-1200 dB	201000ms	201000ms	ID/长度+首
	Len=除帧头外,所	块地址;	数据类型:	浮点	浮点	地址+数据
	有字的个数		浮点			长度+具体
						数据之和

例如:要设置 NoiseGate1 模块 (_Layout1_NoiseGate1=0x000C0500), 需要发送给 DSP 的指令如下:

OxDEAD BEEF // 帧头,发送按照 EF BE AD DE 低字节先发送

0x01060000//长度=6; ID=10x000C0500// 模块地址

0xC1200000 // threshold = -10; 因为 threshold 的类型是浮点,发给 **DSP** 的也要是 **32** 位表示的浮点数

0x 41A00000 // attackTime = 20.0 0x 41A00000 // decayTime = 20.0

0xxxxxxxx //CRC 校验=0x01040000+0x000C0500 +0xC1200000+0x 41A00000+0x 41A00000

ID=2: 控制移频

帧头	ID/长度	移频量	CRC
0xDEADBEEF	ID<<24 Len<<16	110Hz	ID/长度+首
	Len=除帧头外,所	整型	地址+数据
	有字的个数		长度+具体
			数据之和

例如:要设置移频量是 1Hz,需要发送给 DSP 的指令如下:

OxDEAD BEEF // 帧头,发送按照 EF BE AD DE 低字节先发送

 0x02030000
 //长度=3; ID=2

 0x00000001
 // 移频量

 0xxxxxxxxxx
 //CRC 校验同上

ID=3: 控制高低通滤波器

帧头	ID/长度	首地址	HLPF &Type&	freq	CRC
			Slope		
0xDEADBEEF	ID<<24 Len<<16	高低通滤	HLPF: 12	10	ID/长度+首
	Len=除帧头外,所	波器模块	Type:0—2;	20k Hz	地址+数据
	有字的个数	地址;	Slope:06	浮点	长度+具体
			整型		数据之和

注: HLPF: 1= HPF; 2= LPF; 位于低 8 位

Type: 0: Bessel; 1:Butterworth; 2:Link-Riley 位于高 8 位

Slope: 0: -6dB 1: -12dB 2: -18dB 3: -24dB 4: -36dB 5: -48dB 位于高 16 位

例如:要设置 HighPassCH1 模块 (Layoutl HighPassCH1=0x000C052F), 需要发送给 DSP 的指令如下:

OxDEAD BEEF // 帧头

0x03050000 //长度=5; ID=3 0x000C0500 // 模块地址

0x00030201 // HLPF = 1: HPF; Type = 2: Link-Riley; Slope = 3: -24dB

 0x 447A0000
 // freq=1000.0

 0xxxxxxxxx
 //CRC 校验同上

ID=4: 控制 PEQ

帧头	ID/长度	首地址	Ch&Type&	freq	gain	Q	CRC
			Band				
0xDEADBEEF	ID<<24	PEQ 模块	Ch :031	10	-20	0.520	ID/ 长度+
	Len<<16	地址	Type:35	20000Hz	20dB	浮点	首地址+数
	Len= 除 帧		Band	浮点	浮点		据长度+具
	头外,所有		=07				体数据之
	字的个数		整型				和

注: Ch=0-31: 0~15: 输入通道 1~16;

16~31: 输出通道 1~16, 位于低 8 位

Type=3---5: 3=PEQ; 4= lowShelf; 5= highShelf, 位于高 8 位

Band =0--30, 共 31 段, (注:前面只有 0~14:共 15 段), 位于高 16 位

Gain = 0 时,表示此段 PEQ Bypass

例如:要设置 PEQ5BandCH1 (_Layout1_PEQ5BandCH1=0x000C0538),需要发送给 DSP 的指令如下:

OxDEAD BEEF // 帧头

0x04070000 //长度=7; ID=4 0x000C0538 // 模块地址

0x00010302 // Ch=2; Type=3= PEQ; Band =1;

 0x 447A0000
 // freq=1000.0

 0x 00
 // gain = 0.0

 0x 3F800000
 // Q = 1.0

 0xxxxxxxxx
 //CRC 校验同上

ID=5: 控制压限

帧头	ID/长度	首地址	Thres	gain	Knee	ratio	Attack	Decay	CRC
			hold		Depth		Time	Time	
0xDEA	ID<<24	压限模块	-120	0	0.1	1	20	20	ID/长度+
DBEEF	Len<<16	地址;	0 dB	100	60	100	1000ms	1000ms	首地址+
	Len= 除 帧 头		浮点	浮点	浮点	浮点	浮点	浮点	数据长度
	外,所有字的								+ 具 体 数
	个数								据之和

例如:要设置 Limiter1 模块 (_Layout1_AGCLimiterCore1=0x000C0554), 需要发送给 DSP 的指令如下:

OxDEAD BEEF // 帧头,发送按照 EF BE AD DE 低字节先发送

0x00000000 // gain = 0;

0x3F800000 // kneedepth = 1;

0x3F800000 // ratio= 1;

ID=6: 控制电平大小

帧头	ID/长度	首地址	amp	CRC
0xDEADBEEF	ID<<24 Len<<16	电平模块	-1.01.0	ID/长度+首地
	Len=除帧头外,所	地址;	浮点	址+数据长度+
	有字的个数			具体数据之和

例如:要设置 ScalerCH1_1 模块 (_Layout1_ScalerCH1_1=0x000C056A),需要发送给 DSP 的指令如下:

OxDEAD BEEF // 帧头,发送按照 EF BE AD DE 低字节先发送

0x06040000//长度=4; ID=60x000C056A// 模块地址0x 3F800000// amp =1.00xxxxxxxxx//CRC 校验同上

ID=7: 控制电平表(电平返回值请看最后一页)

帧头	ID/长度	首地址	attackTime	decayTime	CRC
0xDEADBEEF	ID<<24 Len<<16	电平表模	31000ms	31000ms	ID/长度+首
	Len=除帧头外,所	块的地址;	浮点	浮点	地址+数据
	有字的个数				长度+具体
					数据之和

例如:要设置 ScalerCH1 1 模块 (Layout1 CH1meter=0x000C05C2),需要发送给 DSP 的指令如下:

OxDEAD BEEF // 帧头,发送按照 EF BE AD DE 低字节先发送

 0x 41A00000
 // decayTime = 20.0

 0xxxxxxxxx
 //CRC 校验同上

ID=8: 控制混音器

帧头	ID/长度	outch	Value1	Value2	Value3	Value4	Value5	CRC
0xDEA	ID<<24	Ch1ch16:	整型	整型	整型	整型	整型	ID/长度
DBEEF	Len<<16	015						+ 首 地
	Len= 除 帧	整型						址 + 数
	头外,所有							据长度
	字的个数							+ 具 体
								数据之
								和

注: Value1 = v1<<24 | v2<<16 | v3<<8 | v4;

Value2 = v5<<24 | v6<<16 | v7<<8 | v8;

Value3 = v9<<24 | v10<<16 | v11<<8 | v12;

Value4 = v13<<24 | v14<<16 | v15<<8 | v16;

Value5 = v17<<24 | v18<<16;

某个输出通道 Outch 的电平 = v1*in1 + v2*in2 + ... + v17*in3 + v18*in4

v1--v18 分别表示 18 个输入通道的电平值

发送时 v*100, 比如界面上混音值是 0.05, 则发送值是 5

则混音的最大值只能是 2.55 (乘以 100 后, 就是 255),

注: 此协议只支持 18*16 的 Mixer 模块,如要控制输入输出数不一样的 Mixer,需要修改协议

例如: 要设置混音器, 需要发送给 DSP 的指令如下:

OxDEAD BEEF // 帧头,发送按照 EF BE AD DE 低字节先发送

0x08080000 //长度=8; ID=8

0x 0 // outch = 0

0x010001000 // v1=1; v2=0; v3=1; v4=0 0x 010001000 // v5=1; v6=0; v7=1; v8=0

0x 010001000 // v9=1; v10=0; v11=1; v12=0

0x 010001000 // v13=1; v14=0; v15=1; v16=0

0x 010000000 // v17=1; v18=0; 0xxxxxxxx //CRC 校验同上

ID=9: 控制延时

帧头	ID/长度	首地址	delay	CRC
0xDEADBEEF	ID<<24 Len<<16	延时模块	1.34—maxDelay	ID/长度+首
	Len=除帧头外,所	地址;	ms	地址+数据
	有字的个数		浮点	长度+具体
				数据之和

例如:要设置 DelayOffChipCH1 模块 (_Layout1_DelayOffChipCH1=0x000C05B2),需要发送给 DSP 的指令如下:

OxDEAD BEEF // 帧头,发送按照 EF BE AD DE 低字节先发送

0x09040000//长度=4; ID=90x000C05B2// 模块地址0x41A00000// delay = 20ms0xxxxxxxxx//CRC 校验同上

ID=10: 控制正弦波发生器频率

帧头	ID/长度	首地址	频率	CRC
0xDEADBEEF	ID<<24 Len<<16	正弦模	024k	ID/长度+首
	Len=除帧头外,所	块地址;	浮点	地址+数据
	有字的个数			长度+具体
				数据之和

例如:要设置 TestGenSine 模块(_Layout1_TestGenSine=0x000B4208) 频率为 1000Hz, 需要发送给 DSP 的指令如下:

OxDEAD BEEF // 帧头,发送按照 EF BE AD DE 低字节先发送

0x0a040000//长度=4; ID=a0x000B4208// 模块地址0x447A0000// 1000Hz

0xxxxxxxxx //CRC 校验同上

ID=11: //往任意地址里面写任意值

帧头	ID/长度	首地址	具体数据	CRC
0xDEADBEEF	ID<<24 Len<<16	音频模块	具体写入	ID/长度+首地址+
	Len=除帧头外,所	的参数地	什么数据	数据长度+具体
	有字的个数	址;		数据之和

例 1: 要把 level 模块的 amps (_Layout1_levelamps=0x000B88DC)设成 1.0,需要发送给 DSP 的指令如下:

OxDEAD BEEF // 帧头,发送按照 EF BE AD DE 低字节先发送

 0x0B040000
 //长度=4; ID=11

 0x000B88DC
 // amps 参数地址

0x3F800000 // 1.0; 因为 amp 的类型是浮点, 所以发给 DSP 的也要是 32 位表示的浮点数

0x 3F8F88DC //CRC 校验=0x00040000+0x000B88DC +0x3F800000

ID=12: //从任意地址里面读任意值 此值会在"DSP处理结果"字中返回

帧头	ID/长度	地址	CRC
0xDEADBEEF	ID<<24 Len<<16	模块参数	长度+首地址+数
	Len=除帧头外,所	的地址	据长度+具体数
	有字的个数		据之和

例如:要读取 level 模块的当前值(_Layout1_levelamps=0x000B88DC),需要发送给 DSP 的指令如下:

0xDEAD BEEF // 帧头

0x0C03 0000//长度=3; ID=120x000B88DC//参数地址0xxxxxxxxxx//CRC 校验

数据返回格式:

ID=7 控制电平表 DSP 数据返回格式

DSP 返回 MCU 协议格式:

帧头	长度<<16	Cur	Pk	CRC
0xDEADBEEF	0x00040004	浮点	浮点	ID/长度+处
		单位: dB	单位: dB	理结果之和

例如: 0xDEAD BEEF // 帧头

0x00040004 //长度=4, 固定值 4

0x3F800000 // Cur = 1.0 0x3F800000 // Pk = 1.0

0xxxxxxxxx //CRC 校验同上

ID=1 控制噪声门(噪声门开启信号数据返回格式)

DSP 返回 MCU 协议格式:

帧头	长度<<16	NoiseGateOn	CRC
0xDEADBEEF	0x00030004	0: 噪声门关闭	ID/长度
		1:噪声门开启	+处理结
			果之和

例如: 0xDEAD BEEF // 帧头

 0x00030004
 //长度=3, 固定值 4

 0x00000001
 // NoiseGateOn = 1

 0xxxxxxxxxx
 //CRC 校验同上

其他 ID 返回格式:

DSP 返回 MCU 协议格式:

帧头	长度<<16	DSP 处理结 果	CRC
0xDEADBEEF	0x00030004	02	ID/ 长度 + 处 理结果之和

例如: 0xDEAD BEEF // 帧头

0x00030004 //长度=3, 固定值 4

0x0 // DSP 处理结果 = 0: 没错误

0xxxxxxxxx //CRC 校验同上

DSP 处理结果:

0: NO_ERROR

1: CRC_ERROR

2: NOT_HANDLED