Discrete Maths Notes

August 24, 2023

Contents

1	Logic						
	1.1	Propos	ositional Logic	2			
		1.1.1	Basics	2			
		1.1.2	Terminology	2			
		1.1.3	Examples	3			
			Satisfiability, Tautology, Contradiction				
	1.2	Truth	Tables	4			
			Basics				
			Connective Outputs				
		1.2.3	Examples	5			

1 Logic

1.1 Propositional Logic

1.1.1 Basics

A **proposition** is a statement that is either true or false.

Prepositions will be represented mathematically with capital letters A, B, C...

These prepositions are then are connected into more complex compound prepositions using *connectives*. Connectives are statements like "and, implies, if-then" and are represented mathematically with the symbols below.

f It's not always easy to determine if they're true/false.

	Connectives					
Symbol	Name	Reading				
\wedge	AND	And, But, Also	A and B			
V	OR	-	A or B			
\Rightarrow	IMPLICATION	If A, Then B If A, then B A implies B A, therefore B A only if B B follows from A A is a sufficient condition for B B is a necessary condition for A	A implies B			
\iff	BICONDITIONAL	If & only if A is necessary and sufficient for B	A if and only if B			
「一	NEGATION	Not	Not A			

(3) A Bicondtional can also be thought of $(A \Longrightarrow B) \land (B \Longrightarrow A)$ Negation may sometimes be represented as A1 or \overline{A}

1.1.2 Terminology

 $A \wedge B$ - conjuction of conjuncts A and B

 $A \vee B$ - <u>disjunction</u> of <u>disjuncts</u> A and B

 $A \implies B - A$ is the <u>hypothesis/antecedant</u> and B is the <u>conclusion/consequence</u>

1.1.3 Examples

1 Compound Proposition

If all humans are mortal_{prp} A and all Greeks are human_{prp} B then all Greeks are moral_{prp} C can be represented as $A \wedge B \implies C$

2 Negation

Chocolate is sweet \rightarrow Chocolate is <u>not</u> sweet

Peter is tall and thin \rightarrow Peter is short or fat

The river is shallow or polluted \rightarrow The river is deep and polluted.

• Short and fat would be incorrect!

or not polluted would be incorrect!

3 Implication: $\frac{\text{hypothesis}}{\text{onclusion}}$

If the rain continues then the river will flood

A sufficient condition for a network failure is that the central switch goes down

The avocados are ripe only if they are dark and soft

A good diet is a necessary condition for a healthy cat

1.1.4 Satisfiability, Tautology, Contradiction

A proposition is <u>satisfiable</u> if it is true for *at least one* combination of boolean values.

A Boolean Satisfiability Problem (SAT) is checking for satisfiability in a propositional logic formula.

• You don't need a whole truth table for this, just look for one!

A Tautology is a proposition that is always true

 $_{\mathrm{ex}}\ A \vee \neg A$

A Contradiction is a proposition that is always false.

 $_{\mathrm{ex}}$ $A \wedge \neg A$

1.2 Truth Tables

1.2.1 Basics

Truth Tables are used for determining all the possible outputs of a complex compound propostion.

<u>The Columns</u> Are for the prepositions, intermediate compound prepositions and the whole compound preposition.

The intrmt' prepositions are optional steps to make solving easier, use as needed.

<u>The Rows</u> Are to contian the different sets of possible truth values for each proposition. You will have 2^p rows where p is the number of propositions (then +1 for the header).

A The connectives in a compound propositional logic problem follow an order of precedence (the PEMDAS of logic) in the following order;

$$\neg \ , \wedge \ , \vee \ , \implies \ , \iff$$

1.2.2 Connective Outputs

Ne	Negation		
\overline{A}	$\neg A$		
Т	F		
F	Τ		

\mathbf{And}					
\overline{A}	В	$A \wedge B$			
$\overline{\mathrm{T}}$	Т	Τ			
Τ	F	F			
F	Τ	F			
F	F	F			

Or				
\overline{A}	В	$A \lor B$		
$\overline{\mathrm{T}}$	Т	Τ		
\mathbf{T}	F	Γ		
\mathbf{F}	Γ	Γ		
F	F	F		

Implication					
$A \mid B \mid A \implies B$					
Т	Т	Т			
Τ	F	F			
\mathbf{F}	Т	Τ			
F	F	Т			

An implication is true when the hypothesis is false or the conclusion is true.

Bicondtional					
\overline{A}	В	$A \iff B$			
Т	Т	Т			
\mathbf{T}	F	F			
\mathbf{F}	Γ	F			
F	F	$\mid T \mid$			

A Bicondtional is true when the two prepositions have the same value.

1.2.3 Examples

$A \implies B \iff B \implies A$						
\overline{A}	B	$A \implies B$	$B \implies A$			
Т	Т	Τ	Τ	Т		
Τ	F	F	$\mid \mathrm{T}$	F		
F	F T F	Т	F	F		
\mathbf{F}	F	$\mid \mathrm{T} \mid$	T	$\mid \mathrm{T} \mid$		

$A \wedge \neg B \implies \neg C$						
A	В	С	$A \wedge \neg B$			
Τ	Т	Т	F	Т		
Τ	Т	F	F	Τ		
Τ	F	Τ	Γ	F		
Τ	F	F	Γ	Τ		
F	Τ	Τ	F	Τ		
F	Τ	F	F	Τ		
F	F	Τ	F	Τ		
F	F	F	F	Τ		

1 Remember, columns like $A \implies B$ are optional in-between steps to help solve each problem.