第 12 章简单机械

杠杆

杠杆

一根硬棒,在力的作用下能绕着固定点O转动,这根硬棒就是杠杆(lever)。

• 支点: 杠杆可以绕其转动的点 O

动力: 使杠杆转动的力 *F*₁阻力: 阻碍杠杆转动的力 *F*₂

• 动力臂: 从支点 O 到动力 F_1 作用线的距离 l_1 • 阻力臂: 从支点 O 到动力 F_1 作用线的距离 l_1

杠杆的平衡条件

图12.1-2 探究杠杆的平衡条件

杠杆的平衡条件是:

动力imes动力臂=阻力imes阻力臂 $F_1l_1=F_2l_2$

生活中的杠杆

- 等臂杠杆
- 省力杠杆
- 费力杠杆

滑轮

定滑轮和动滑轮

轴固定不动的滑轮叫做定滑轮。

随物体移动的滑轮叫做动滑轮。

- 定滑轮可以改变力的方向
- 定滑轮可以胜利
 - 。 不改变力的方向
 - 。 费距离

滑轮组

通常把定滑轮和动滑轮组合在一起,构成滑轮组。

动滑轮上有几段绳子承担物重,提起物体的力就是物重的几分之一。

机械效率

有用功和额外功

直接把钩码提升,这部分功是必须要做的,叫做有用功,用 W_{π} 表示。

若用滑轮组提升钩码,我们还不得不克服动滑轮本身的重力和摩擦力等因素的影响而做功,这部分功叫做额外功,用 W 额表示。有用功加额外功是总共做的功,叫做总功,用 $W_{\dot{\mathbb{Q}}}$ 表示。总功、有用功和额外功之间的关系为:

$$W_{\mathbb{A}}=W_{\mathbb{A}}+W_{\mathbb{A}}$$

机械效率

有用功跟总功的比值叫做机械效率。一般用 η 表示机械效率:

$$\eta = rac{W_{ ext{f}}}{W_{ ext{d}}}$$

使用任何机械都不可避免地要做额外功,有用功总是小于总功,所以机械效率总是小于1的。

机械效率通常用百分数表示。