Rundungsfehler und Gleitkommaarithmetik Vorlesung vom 6.11.15

Runden und Rundungsfehler:

Der absolute Rundungsfehler ist nicht gleichmäßig beschränkt.

Der relative Rundungsfehler ist gleichmäßig beschränkt.

Obere Schranke: Maschinengenauigkeit $eps = eps(q, \ell)$.

Praktische Realisierung von Gleitkommazahlen:

Endlicher Exponentenbereich bewirkt endlichen Zahlenvorrat. Datentypen: double, float.

Zahlenmengen statt Zahlen:

Menge aller Gleitkomma-Approximationen von $x \in \mathbb{R}$ mit relativem Fehler $eps(q, \ell)$.

Menge aller reellen Zahlen, die auf $\tilde{x} \in \mathbb{G}(q,\ell)$ gerundet werden.

Folgerung: Gleichheitsabfragen von Gleitkommazahlen verboten.

Algebraische Eigenschaften:

Gleitkommaarithmetik, Verlust von Assoziativität, Distributivität, Invertierbarkeit.

Folgerung: Übliche Umformungen sind nicht mehr äquivalent.

Kondition

Auswirkung von Eingabefehlern auf das Ergebnis

Das Landau-Symbol o

Definition

Sei $f: I \to \mathbb{R}$ mit I = (-a, a) eine Funktion.

Wir verabreden die Schreibweise

$$\lim_{\varepsilon \to 0} \, \frac{f(\varepsilon)}{\varepsilon} = 0 \quad \Longleftrightarrow \quad f(\varepsilon) = o(\varepsilon) \quad (\text{für } \varepsilon \to 0) \; .$$

Beispiele:

$$\varepsilon^2 = o(\varepsilon), \qquad \varepsilon \sqrt{\varepsilon} + \varepsilon \sum_{i=1}^{28} (\sin(\varepsilon))^i = o(\varepsilon), \qquad \dots$$

gegeben: $x, y \in \mathbb{R}$, $x, y \neq 0$.

Approximationen mit relativem Fehler ε :

$$\tilde{x} = x(1 + \varepsilon_x), \quad \tilde{y} = y(1 + \varepsilon_y), \quad \varepsilon = \max\{|\varepsilon_x|, |\varepsilon_y|\}$$

Satz: Es gilt
$$\frac{|(x\cdot y)-(\tilde x\cdot \tilde y)|}{|x\cdot y|}\leq 2\ \varepsilon+\varepsilon^2\ .$$

gegeben: $x, y \in \mathbb{R}$, x, $y \neq 0$.

Approximationen mit relativem Fehler ε :

$$\tilde{x} = x(1 + \varepsilon_x), \quad \tilde{y} = y(1 + \varepsilon_y), \quad \varepsilon = \max\{|\varepsilon_x|, |\varepsilon_y|\}$$

Satz: Es gilt

$$\frac{|(x \cdot y) - (\tilde{x} \cdot \tilde{y})|}{|x \cdot y|} \le 2 \varepsilon + \varepsilon^2.$$

Dominierender Fehleranteil: 2ε

gegeben: $x, y \in \mathbb{R}$, x, $y \neq 0$.

Approximationen mit relativem Fehler ε :

$$\tilde{x} = x(1 + \varepsilon_x), \quad \tilde{y} = y(1 + \varepsilon_y), \quad \varepsilon = \max\{|\varepsilon_x|, |\varepsilon_y|\}$$

Satz: Es gilt

$$\frac{|(x \cdot y) - (\tilde{x} \cdot \tilde{y})|}{|x \cdot y|} \le 2 \varepsilon + \varepsilon^2.$$

Dominierender Fehleranteil: 2ε

Vernachlässigung des Terms höherer Ordnung $o(\varepsilon)=\varepsilon^2$

gegeben: $x, y \in \mathbb{R}$, x, $y \neq 0$.

Approximationen mit relativem Fehler ε :

$$\tilde{x} = x(1 + \varepsilon_x), \quad \tilde{y} = y(1 + \varepsilon_y), \quad \varepsilon = \max\{|\varepsilon_x|, |\varepsilon_y|\}$$

Satz: Es gilt

$$\frac{|(x \cdot y) - (\tilde{x} \cdot \tilde{y})|}{|x \cdot y|} \le 2 \varepsilon + \varepsilon^2.$$

Dominierender Fehleranteil: 2ε

Vernachlässigung des Terms höherer Ordnung $o(\varepsilon)=\varepsilon^2$

Die relative Kondition ist der Verstärkungsfaktor κ von ε : $\kappa=2$

Relative Kondition der Division und Addition

Satz: (Division)

Es gilt
$$\frac{|(x/y) - (\tilde{x}/\tilde{y})|}{|x/y|} \leq \frac{2}{\varepsilon} + o(\varepsilon) \; .$$

relative Kondition der Division: $\kappa = 2$.

Relative Kondition der Division und Addition

Satz: (Division)

Es gilt
$$\frac{|(x/y) - (\tilde{x}/\tilde{y})|}{|x/y|} \le 2 \varepsilon + o(\varepsilon) \ .$$

relative Kondition der Division: $\kappa = 2$.

Satz: (Addition)

Es sei
$$x, y > 0$$
. Dann gilt
$$\frac{|(x+y) - (\tilde{x} + \tilde{y})|}{|x+y|} \leq 1\varepsilon.$$

relative Kondition der Addition: $\kappa = 1$.

Relative Kondition der Subtraktion

Satz: (Subtraktion)

Es sei
$$x, y > 0$$
. Dann gilt
$$\frac{|(x-y) - (\tilde{x} - \tilde{y})|}{|x-y|} \le \left(\frac{|x| + |y|}{|x-y|}\right) \varepsilon.$$

relative Kondition der Subtraktion: $\kappa = \frac{|x| + |y|}{|x - y|}$

Auslöschung: Ist $x \approx y$, so wird $\kappa = \frac{|x| + |y|}{|x - y|}$ beliebig groß!!!

Matlab – Beispiel

```
>> format long;
x = double(pi)
x = 3.14159265358979
>> y=double(pi+1e-14)
y = 3.14159265358980
>> y-x
ans = 1.021405182655144e-14
```

Nieder mit der Auslöschung

Subtraktion fast gleich großer Zahlen vermeiden!

Einlochen eines Golfballs

Distanz zum Loch: d, Radius des Lochs: r_L , Abschlagswinkel: x

minimaler Abstand zum Lochmittelpunkt: $f(x) = d|\sin(x)|$

Einlochen eines Golfballs

Distanz zum Loch: d, Radius des Lochs: r_L , Abschlagswinkel: x

minimaler Abstand zum Lochmittelpunkt: $f(x) = d|\sin(x)|$

optimal: $x_0=0$, erlaubte Toleranz: $|x-x_0|<|\arcsin(r_L/d)|$

Kondition der Funktionsauswertung

gegeben: Intervall $I\subset\mathbb{R}$, $f:I\mapsto\mathbb{R}$, $x_0\in I$

Problem: (*)

Auswertung von f an der Stelle x_0

Kondition der Funktionsauswertung

gegeben: Intervall $I\subset \mathbb{R}$, $f:I\mapsto \mathbb{R}$, $x_0\in I$

Problem: (*)

Auswertung von f an der Stelle x_0

Definition (Absolute Kondition)

Die absolute Kondition κ_{abs} von (*) ist die kleinste Zahl mit der Eigenschaft

$$|f(x_0) - f(x)| \le \kappa_{\text{abs}}|x_0 - x| + o(|x_0 - x|).$$

Liegt dies für keine reelle Zahl $\kappa_{\rm abs}$ vor, so wird $\kappa_{\rm abs}=\infty$ gesetzt.

Absolute Kondition und Ableitung

Satz: Ist f differenzierbar in x_0 , so gilt $\kappa_{abs} = |f'(x_0)|$.

Absolute Kondition und Ableitung

Satz: Ist f differenzierbar in x_0 , so gilt $\kappa_{abs} = |f'(x_0)|$.

Beispiel:

Sei
$$f(x) = x^2$$
, $x_0 \in \mathbb{R}$. Dann ist $\kappa_{abs} = |f'(x_0)| = 2|x_0|$.

Kondition und Lipschitz-Stetigkeit

Definition: Die Funktion $f:I\to\mathbb{R}$ heißt Lipschitz-stetig mit Lipschitz-Konstante L, falls

$$|f(x) - f(y)| \le L|x - y| \quad \forall x, y \in I$$
.

Beispiel: f(x) = |x| ist Lipschitz-stetig mit Lipschitz-Konstante L = 1.

Satz: Ist $f:I\to\mathbb{R}$ Lipschitz-stetig mit Lipschitz-Konstante L, so genügt die absolute Kondition $\kappa_{\rm abs}$ von (*) der Abschätzung

$$\kappa_{\rm abs} \leq L$$
.

Geschachtelte Funktionen

Satz: Geschachtelte Funktionsauswertung: $f(x) = g \circ h(x) = g(h(x))$.

 $\kappa_{\rm abs}(h,x_0)$: abs. Kondition der Auswertung von h an der Stelle x_0 .

 $\kappa_{\rm abs}(g,y_0)$: abs. Kondition der Auswertung von g an der Stelle $y_0=h(x_0)$.

Dann gilt

$$\kappa_{\rm abs} \leq \kappa_{\rm abs}(g, y_0) \, \kappa_{\rm abs}(h, x_0)$$
.

Ist h differenzierbar in x_0 und g differenzierbar in y_0 , so liegt Gleichheit vor.

Geschachtelte Funktionen

Satz: Geschachtelte Funktionsauswertung: $f(x) = g \circ h(x) = g(h(x))$.

 $\kappa_{\rm abs}(h,x_0)$: abs. Kondition der Auswertung von h an der Stelle x_0 .

 $\kappa_{\rm abs}(g,y_0)$: abs. Kondition der Auswertung von g an der Stelle $y_0=h(x_0)$.

Dann gilt

$$\kappa_{\rm abs} \leq \kappa_{\rm abs}(g, y_0) \kappa_{\rm abs}(h, x_0).$$

Ist h differenzierbar in x_0 und g differenzierbar in y_0 , so liegt Gleichheit vor.

Beispiel: Das Golfproblem

$$f(x) = |d \cdot \sin(x)| = g(h(x)), g(y) = |y|, h(x) = d \cdot \sin(x), \quad x_0 = 0$$

$$\kappa_{\text{abs}}(g, h(x_0)) = d, \quad \kappa_{\text{abs}}(h, x_0) \le 1 \quad \Longrightarrow \quad \kappa_{\text{abs}} \le d$$

Relative Kondition von Funktionsauswertungen

gegeben: Intervall $I \subset \mathbb{R}$, $f: I \to \mathbb{R}$, $0 \neq x_0 \in I$, $f(x_0) \neq 0$

Problem: (*)

Auswertung von f an der Stelle x_0

Definition 3.6 (Relative Kondition)

Die relative Kondition $\kappa_{\rm rel}$ von (*) ist die kleinste Zahl mit der Eigenschaft

$$\frac{|f(x_0) - f(x)|}{|f(x_0)|} \le \kappa_{\text{rel}} \frac{|x_0 - x|}{|x_0|} + o(|x_0 - x|).$$

Liegt dies für keine reelle Zahl $\kappa_{\rm rel}$ vor, so wird $\kappa_{\rm rel}=\infty$ gesetzt.

absolute Kondition

$$|f(x_0) - f(x)| \le \kappa_{\text{abs}} |x_0 - x| + o(|x_0 - x|)$$

relative Kondition

$$\frac{|f(x_0) - f(x)|}{|f(x_0)|} \le \kappa_{\text{rel}} \frac{|x_0 - x|}{|x_0|} + o(|x_0 - x|)$$

absolute Kondition

$$|f(x_0) - f(x)| \le \kappa_{\text{abs}} |x_0 - x| + o(|x_0 - x|)$$

relative Kondition

$$\frac{|f(x_0) - f(x)|}{|f(x_0)|} \le \kappa_{\text{rel}} \frac{|x_0 - x|}{|x_0|} + o(|x_0 - x|)$$

Satz: Es gilt

$$\kappa_{\rm rel} = \frac{|x_0|}{|f(x_0)|} \kappa_{\rm abs}.$$

Beispiel: f(x) = ax,

absolute Kondition:

$$\kappa_{\rm abs} = |f'(x_0)| = |a|$$

Beispiel: f(x) = ax,

absolute Kondition:

$$\kappa_{\rm abs} = |f'(x_0)| = |a|$$

relative Kondition:

$$\kappa_{\rm rel} = \frac{|x_0|}{|f(x_0)|} \kappa_{\rm abs} = \frac{|x_0|}{|ax_0|} |a| = 1$$

Beispiel: f(x) = ax,

absolute Kondition:

$$\kappa_{\rm abs} = |f'(x_0)| = |a|$$

relative Kondition:

$$\kappa_{\rm rel} = \frac{|x_0|}{|f(x_0)|} \kappa_{\rm abs} = \frac{|x_0|}{|ax_0|} |a| = 1$$

Folgerung: Relative und absolute Kondition können sich beliebig stark unterscheiden.

aus
$$|a|\gg 1$$
 folgt $\kappa_{\rm abs}\gg \kappa_{\rm rel}$

aus
$$|a|\ll 1$$
 folgt $\kappa_{
m abs}\ll \kappa_{
m rel}$

weiteres Beispiel: absolute Kondition der Subtraktion