Hurricane+Python Tutorial

First, a small disclaimer. This tutorial assume that you are already familiar with the concepts of VLSI designs, such as *netlist*, *layout*, *instances* and hierarchical design.

Contents

1. Introduction	. 2
1.1 Terminology	. 2
1.2 Generalities	. 2
1.3 Various Kinds of Constructors	. 3
2. Setting up the Environment	. 3
2.1 Setting up the Pathes	. 3
2.2 User's Configurations File	. 4
2.2.1 The techno.py File	. 4
2.2.2 The settings.py File	. 4
3. Making a Standard Cell Layout	. 5
3.1 The AllianceFramework (CRL Core)	. 5
3.2 Session Mechanism (Hurricane)	. 5
3.3 Creating a new Cell (CRL Core)	. 5
3.4 The DbU Measurement Unit	. 5
3.5 Setting up the Abutment Box	. 6
3.6 Adding Nets and Components	. 6
3.6.1 Getting a Layer	. 6
3.6.2 Creating a Net	. 7
3.6.3 Creating a Component	. 7
3.7 Saving to Disk (CRL Core)	. 7
3.8 The Complete Example File	. 7
4. Manipulating Cells, Nets and Components	. 9
4.1 Hurricane Collections	. 9
4.1.1 Restrictions about using Collections	. 10
4.2 Loading a Cell with AllianceFramework	. 10
5. Make a script runnable through cgt	
5.1 Using Breakpoints	. 11
6. Making a hierarchical Cell Netlist	. 11
6.1 Creating an Instance	
6.2 Creating Nets and connecting to Instances	
6.3 Power supplies special case	
6.4 Creating the physical view of a Cell netlist	. 13
6.4.1 Transformation	. 13
6.4.2 Placing an Instance	. 13
6.4.3 Nets From Plugs to RoutingPads	. 14
6.4.4 Nets Regular wiring	. 14
6.5 The Complete Example File	. 14
7. Working in real mode	. 17
7.1 Loading a LEF file	
7.2 Loading a BLIF file Yosys	

Tool Engines (CRL Core)	. 18
1 Placer Etesian	
1 Router Katana	. 19
2 A Complete Example	. 19
Advanced Topics	. 21
1 Occurrence	. 21
2 RoutingPads	. 21
3 HyperNets	. 21
4 Miscellaeous trans-hierarchical functions	. 21

1. Introduction

This tutorial is aimed at two goals:

- Presenting how to use Python scripts to control CORIOLIS.
- Make a basic introduction about the HURRICANE database and it's concepts.

While this tutorial is aimed at presenting the Hurricane database, do not feel limited to it. You can use Hurricane objects as attributes of Python objects or use Python containers to store them. The only limitation is that you may not use Hurricane classes as base classes in Python .

All HURRICANE objects implements the PYTHON __str__() function, they print the result of C++::getString().

1.1 Terminology

In the Hurricane database, the *logical* (netlist) and *physical* (layout) views are fused. As the main goal of the database is to support place & route tools, we usually starts with a *pure* netlist which is progessively enriched to become a layout. Cell, in particular, is able to be in any intermediate state. Many of our objects have self-explanatory names, but some don't. Thus we summarize below the more important ones:

Class	Meaning
Cell	The model. A Cell do not have terminals, only nets flagged as <i>external</i>
Instance	An instance of a model
Net	A grouping of electrically connecteds components
Plug	A terminal of an instance
RoutingPad	A physical connexion (pin) to an instance

1.2 Generalities

The C++ API has been exported in Python as closely as possible. Meaning that, save for a slight change in syntax, any code written in PYTHON could be easily transformed into C++ code. There is no specific documentation written for the PYTHON interface, you may directly use the C++ one. Mostly:

- C++ namespaces are exported as PYTHON modules.
- The scope resolution operator :: converts into
- C++ blocks (between braces {}) are replaced by indentations.
- In C++, names are manageds through a dedicated Name class. It has not been exported to the PYTHON interface, you only have to use string.
- Coordinates are expressed in DbU which are long with a special semantic (see ??).

In hurricane/Session.h header we have:

```
namespace Hurricane {
   class UpdateSession {
    public:
       static void open ();
       static void close ();
```

```
};

}
So we can use it the following way in C++:
#include "hurricane/Session.h"

using namespace Hurricane;

void doSomething ()
{
    UpdateSession::open();
    // Something...
    UpdateSession::close();
}
The equivalent PYTHON code will be:
    from Hurricane import *

def doSomething ():
        UpdateSession.open()
    # Something...
    UpdateSession.close()
```

1.3 Various Kinds of Constructors

Regarding the memory allocation, the Hurricane database contains two kind of objects.

 Objects that are linked to others in the database and whose creation or deletion implies coherency operations. This is the case for Net or Horizontal. They must be created using the static create() method of their class and destroyed with their destroy() method.

And, of course, they cannot be copied (the copy constructor has been disabled).

2. Objects that are *standalone*, like Point or Box, uses the usual construction methods. They also use the PYTHON garbage collector mechanism and do not need to be explicitly deleted.

2. Setting up the Environment

2.1 Setting up the Pathes

To simplify the tedious task of configuring your environment, a helper is provided. It will setup or modify the **PATH**, **LD_LIBRARY_PATH** (or **DYLD_LIBRARY_PATH** under DARWIN), **PYTHONPATH** and **CORIOLIS_TOP** variables. It should automatically adapt to your kind of shell (Bourne like or C-Shell like).

```
<CORIOLIS_INSTALL>/etc/coriolis2/coriolisEnv.py
```

Use it like this (don't forget the eval and the backquotes):

```
dummy@lepka:~> eval '<CORIOLIS_INSTALL>/etc/coriolis2/coriolisEnv.py'
```

Note

Do not call that script in your environement initialisation. When used under RHEL6 or clones, it needs to be run in the **devtoolset2** environement. The script then launch a new shell, which may cause an infinite loop if it's called again in, say **~/.bashrc**. Instead you may want to create an alias:

```
alias c2r='eval "'<CORIOLIS_INSTALL>/etc/coriolis2/coriolisEnv.py'"'
```

2.2 User's Configurations File

You may create, in the directory you are lanching CORIOLIS tools, a special sub-directory .coriolis2/that can contains two configuration files:

- techno.py tells which technology to use.
- settings.py can overrides almost any default configuration setting.

Those two files are *optional*, if they do not exists the default settings will be used and the technology is symbolic/cmos (i.e. purely symbolic).

Note

Those two files will by processed by the $\mbox{\sc PYTHON}$ interpreter, so they can contain any code in addition to the mandatory variables.

2.2.1 The techno.py File

Must provide one variable named **technology** which value the path towards the technology file. The available technologies are installed under <CORIOLIS_INSTALL>/etc/coriolis2. For example, to use the 45nm FreeDPK which is in:

```
<CORIOLIS_INSTALL>/etc/coriolis2/45/freepdk_45/
The techno.py file must contain:
    technology = '45/freepdk_45'
```

2.2.2 The settings.py File

The entries of the parametersTable and their definitions are detailed in CGT - The Graphical Interface.

Example of file:

```
defaultStyle = 'Alliance.Classic [black]'
parametersTable = \
                               , TypeBool
                                                , False
   ( ('misc.catchCore'
   , ('misc.info'
                               , TypeBool
                                                , False
                               , TypeBool
   , ('misc.paranoid'
                                                , False
                               , TypeBool
   , ('misc.bug'
                                                , False
                               , TypeBool
   , ('misc.logMode'
                                                , False
   , ('misc.verboseLevel1'
                               , TypeBool
                                                , False
   , ('misc.verboseLevel2'
                                , TypeBool
                                                , True
```

3. Making a Standard Cell -- Layout

In this part, we well show how to create and save a terminal Cell, that is, a cell without instances (the end point of a hierarchical design). To illustrate the case we will draw the layout of a standard cell.

We will introduce the following classes: Cell, Net, Component and it's derived classes.

3.1 The AllianceFramework (CRL Core)

The Hurricane database only manage objects in memory. To load or save something from the outside, we need to use a *framework*. As of today, only one is available: the Alliance framework. It allows Coriolis to handle Alliance libraries and cells in the exact same way.

Note

To see how the AllianceFramework is configured for your installation, please have a look to alliance.conf in the etc/coriolis2 directory. It must contains the same settings as the various MBK_ variables used for ALLIANCE .

3.2 Session Mechanism (Hurricane)

In the Hurricane database, all modifications must take place inside an UpdateSession. At the closing of a session, created or modificateds objects are fully inserted in the database. This is especially true for the visualisation, a created component will be visible *only* only after the session close.

Note

See QuadTree and Query.

3.3 Creating a new Cell (CRL Core)

The creation of a new Cell occurs through the AllianceFramework, and, as stated above, inside a UpdateSession. The AllianceFramework environment is provided by the CRL module.

```
from Hurricane import *
from CRL import *

af = AllianceFramework.get()
UpdateSession.open()

cell = af.createCell('my_inv')
# Build then save the Cell.
UpdateSession.close()
```

This is the simplest call to <code>createCell()</code>, and it that case, the newly created Cell will be saved in the working library (usually, the current directory). You may supply a second argument telling into which library you want the Cell to be created.

In the Hurricane Cell object, there is no concept of *view*, it contains completly fused logical (netlist) and physical (layout) views.

3.4 The DbU Measurement Unit

All coordinates in the Hurricane database are expressed in DbU (for *Database Unit*) which are integer numbers of foundry grid. To be more precise, they are fixed points numbers expressed in hundredth of foundry grid (to allow transient non-integer computation).

To work with symbolic layout, that is, using lambda based lengths, two conversion functions are provideds:

- unit = DbU.fromLambda (lbd) convert a lambda lbd into a DbU.
- lbd = DbU.toLambda (unit) convert a DbU into a lambda lbd.

In the weakly typed PYTHON world, **1bd** is *float* while **unit** is *integer*.

3.5 Setting up the Abutment Box

To setup the abutment box, we use a Box which define a box from the coordinates of the lower left corner (x1, y1) and upper left corner (x2, y2).

3.6 Adding Nets and Components

In the Hurricane terminology, a **component** is any kind of physical object among:

- Contact
- Pad
- RoutingPad
- Horizontal
- Vertical
- Plug is the only exception and will be detailed later (see ??).

Components cannot be created *alone*. They must be part of a Net.

3.6.1 Getting a Layer

As physical elements, Components are created using a Layer. So prior to their creation, we must get one from the database. Layers are stored in the Technology, which in turn, is stored in the DataBase. So, to get a Layer:

```
layer = DataBase.getDB().getTechnology().getLayer('METAL1')
```

Note

Convention for layer names. As the database can manage both real layers and symbolic ones we adopt the following convention:

- Real layers are named in lowercase (metal1, nwell).
- Symbolic layers are named in uppercase (METAL1, NWELL).

3.6.2 Creating a Net

As said above, prior to creating any Component, we must create the Net it will belongs to. In that example we also make it an *external* net, that is, a part of the interface. Do not mistake the name of the net given as a string argument 'i' and the name of the *variable* i holding the Net object. For the sake of clarity we try to give the variable a close name, but this is not mandatory.

```
i = Net.create( cell, 'i' )
i.setExternal( True )
```


Note

Unlike some other database models, in HURRICANE, there is no explicit terminal object, you only need to make the net external. For more information about how to connect to an external net, see 6.2 Creating Nets and connecting to Instances.

3.6.3 Creating a Component

Finally, we get ready to create a Component, we will make a Vertical segment of METAL1.

With this overload of the <code>Vertical.create()</code> function the segment is created at an absolute position. There is a second overload for creating a relatively placed segment, see <code>articulated layout</code>.

If the net is external, that is, part of the interface of the cell, you may have to declare some of it's components as physical connectors usable by the router. This is done by calling the NetExternalComponents class:

```
NetExternalComponents.setExternal( segment )
```

3.7 Saving to Disk (CRL Core)

Once you are finished building your cell, you have to save it on disk. Using the AllianceFramework you can save it as a pair of file:

View	Flag	File extension
Logical / Netlist	Catalog.State.Logical	.vst
Physical / Layout	Catalog.State.Physical	.ap

To save both views, use the Catalog. State. Views flag. The files will be written in the ALLIANCE WORK_DIR.

```
af.saveCell( cell, Catalog.State.Views )
```

3.8 The Complete Example File

The example files can be found in the share/doc/coriolis2/examples/scripts/ directory (under the the root of the CORIOLIS installation).

The code needed to run it through the **cgt** viewer as been added. For the explanation of that part of the code, refer to 5. Make a script runnable through cgt.

```
#!/usr/bin/python
```

```
import sys
      Hurricane import *
from
from
      CRL
                   import *
def toDbU ( 1 ): return DbU.fromLambda(1)
def doBreak ( level, message ):
    UpdateSession.close()
    Breakpoint.stop( level, message )
    UpdateSession.open()
def buildInvertor ( editor ):
    UpdateSession.open()
    cell = AllianceFramework.get().createCell( 'invertor' )
    cell.setTerminal( True )
    cell.setAbutmentBox(Box(toDbU(0.0), toDbU(0.0), toDbU(15.0), toDbU(50.0))
    if editor:
       UpdateSession.close()
       editor.setCell( cell )
       editor.fit()
       {\it UpdateSession.open}\,(\,)
    technology = DataBase.getDB().getTechnology()
    metal1 = technology.getLayer( "METAL1'
    poly
                 = technology.getLayer( "POLY"
    ptrans
                 = technology.getLayer( "PTRANS"
                 = technology.getLayer( "NTRANS"
    ntrans
    pdif
                 = technology.getLayer( "PDIF"
                 = technology.getLayer( "NDIF"
    ndif
    contdifn = technology.getLayer( "CONT_DIF_N" )
               = technology.getLayer( "CONT_DIF_P" )
    contdifp
                = technology.getLayer( "NWELL"
    nwell
                = technology.getLayer( "CONT_POLY"
    contpoly
                 = technology.getLayer( "NTIE"
    ntie
    net = Net.create( cell, "nwell" )
    Vertical.create( net, nwell, toDbU(7.5), toDbU(15.0), toDbU(27.0), toDbU(51.0)
    vdd = Net.create( cell, "vdd" )
    vdd.setExternal( True )
    vdd.setGlobal ( True )
    \textbf{h} = \textbf{Horizontal.create}(\textbf{vdd}, \ \textbf{metal1}, \ \textbf{toDbU}(47.0), \ \textbf{toDbU}(6.0), \ \textbf{toDbU}(0.0), \ \textbf{toDbU}(15.0))
    {\tt NetExternalComponents.setExternal(\ h\ )}
    \textbf{Contact.create (vdd, contdifn, toDbU} (10.0), toDbU} (47.0), toDbU (1.0), toDbU (1.0))
    \textbf{\textit{Contact.create}} \ ( \ \textbf{\textit{vdd}}, \ \textbf{\textit{contdifp}}, \ \textbf{\textit{toDbU}} \ (\ 4.0) \ , \ \textbf{\textit{toDbU}} \ (45.0) \ , \ \textbf{\textit{toDbU}} \ (\ 1.0) \ , \ \textbf{\textit{toDbU}} \ (\ 1.0) \ )
    Vertical.create( vdd, pdif
                                     , toDbU(3.5), toDbU(4.0), toDbU(28.0), toDbU(46.0))
                                       , toDbU(10.0), toDbU(3.0), toDbU(43.0), toDbU(48.0))
    Vertical.create( vdd, ntie
    doBreak( 1, 'Done building vdd.' )
    vss = Net.create( cell, "vss" )
    vss.setExternal( True )
    vss.setGlobal ( True )
    \textbf{h} = \textbf{Horizontal.create}(\textbf{vss, metal1, toDbU}(3.0), \textbf{toDbU}(6.0), \textbf{toDbU}(0.0), \textbf{toDbU}(15.0))
```

```
NetExternalComponents.setExternal( h )
                                           , toDbU(3.5), toDbU(4.0), toDbU(4.0), toDbU(12.0))
     Vertical.create( vss, ndif
     \textbf{Contact.create (vss, contdifn, toDbU} (4.0), toDbU (5.0), toDbU (1.0), toDbU (1.0))
     doBreak( 1, 'Done building vss.' )
     i = Net.create( cell, "i" )
     i.setExternal( True )
     \mathbf{v} = \mathbf{Vertical}.\mathbf{create} ( i, metall, toDbU(5.0), toDbU(2.0), toDbU(10.0), toDbU(40.0) )
     NetExternalComponents.setExternal( v )
     \textbf{Vertical.create} \quad ( \text{ i, ptrans }, \text{ toDbU} ( \text{ 7.0}), \text{ toDbU} ( \text{ 1.0}), \text{ toDbU} ( \text{26.0}), \text{ toDbU} ( \text{39.0}) )
     \textbf{Vertical.create} \quad ( \text{ i, ntrans }, \text{ toDbU} ( \text{ 7.0}), \text{ toDbU} ( \text{ 1.0}), \text{ toDbU} ( \text{ 6.0}), \text{ toDbU} ( \text{14.0}) )
     \textbf{Vertical.create} \quad ( \text{ i, poly } \quad \text{, toDbU} ( \text{ 7.0}), \text{ toDbU} ( \text{ 1.0}), \text{ toDbU} ( \text{14.0}), \text{ toDbU} ( \text{26.0}) )
                                            , toDbU(20.0), toDbU(3.0), toDbU(4.0), toDbU(7.0))
     Horizontal.create( i, poly
     \textbf{Contact.create} \quad (\textbf{i, contpoly, toDbU}(5.0), \textbf{toDbU}(20.0), \textbf{toDbU}(1.0), \textbf{toDbU}(1.0))
     doBreak( 1, 'Done building i.' )
     nq = Net.create ( cell, "nq" )
     nq.setExternal( True )
     \mathbf{v} = \mathbf{Vertical.create}(\ \mathbf{nq},\ \mathbf{metal1},\ \mathbf{toDbU}(10.0),\ \mathbf{toDbU}(2.0),\ \mathbf{toDbU}(10.0),\ \mathbf{toDbU}(40.0))
     NetExternalComponents.setExternal(v)
                                           , toDbU(10.0), toDbU(3.0), toDbU(28.0), toDbU(37.0))
     Vertical.create( nq, pdif
                                            , toDbU(10.0), toDbU(3.0), toDbU(8.0), toDbU(12.0))
     Vertical.create( nq, ndif
     \textbf{Contact.create} \ ( \ \textbf{nq, contdifp, toDbU} \ (10.0) \ , \ \textbf{toDbU} \ (35.0) \ , \ \textbf{toDbU} \ (\ 1.0) \ , \ \textbf{toDbU} \ (\ 1.0) \ )
     Contact.create ( nq, contdifp, toDbU(10.0), toDbU(30.5), toDbU(1.0), toDbU(1.0))
     \textbf{Contact.create} \ ( \ \textbf{nq, contdifn, toDbU} \ (10.0) \ , \ \textbf{toDbU} \ (10.0) \ , \ \textbf{toDbU} \ (\ 1.0) \ , \ \textbf{toDbU} \ (\ 1.0) \ )
     doBreak( 1, 'Done building q.' )
     {\it UpdateSession.close}\,(\,)
     AllianceFramework.get().saveCell( cell, Catalog.State.Views )
     return
def ScriptMain ( **kw ):
     editor = None
     if kw.has_key('editor') and kw['editor']:
        editor = kw['editor']
     buildInvertor( editor )
     return True
```

4. Manipulating Cells, Nets and Components

In this part, we well show how to navigate through the Nets and Components of a Cell.

4.1 Hurricane Collections

In Hurricane all kind of set of objects, whether organized in a real container like a map<> (dictionary / dict) or a vector<> (table / list) or an algorithmic walkthrough of the database can be accessed through a Collection.

C++ Collections object are exposed in PYTHON through the *iterable* protocol, allowing to simply write:

```
for net in cell.getNets():
    print 'Components of', net
    for component in net.getComponents():
        print '|', component
```

In C++ we would have written:

```
for ( Net* net : cell->getNets() ) {
  cout << "Components of " << net << endl;
  for ( Component* component : net->getComponents() ) {
    cout << " | " << component << endl,
  }
}</pre>
```

4.1.1 Restrictions about using Collections

Never delete or create an element while you are iterating over a Collection.

Results can be unpredictable, you may just end up with a core dump, but more subtly, some element of the Collection may be skippeds or processed twice. If you want to create or delete en element, do it outside of the collection loop. For example:

```
cellNets = []
for net in cell.getNets():
    cellNets.append( net )

# Remove all the anonymous nets.
for net in cellNets:
    if net.getName().endswith('nymous_'):
        print 'Destroy', net
        net.destroy()
```

4.2 Loading a Cell with AllianceFramework

As presented in 2.1 The Alliance Framework, the Cell that will be returned by the getCell() call wil be:

1. If a Cell of that name is already loaded into memory, it will be returned.

Note

It means that it shadows any modifications that could have been on disk since it was first loaded. Conversely, if the Cell has been modified in memory, you will get those modifications

2. Search, in the ordered list of libraries, the first Cell that match the requested name.

Note

It means that if cells with the same name exists in different libraries, only the one in the first library will be ever used. Be also weary of cell files that may remains in the WORK_LIB, they may unexpectedly shadow cells from the libraries.

```
cell = af.getCell( 'inv_x1', Catalog.State.Views )
```

5. Make a script runnable through cgt

To use your you may run it directly like any other PYTHON script. But, for debugging purpose it may be helpful to run it through the interactive layout viewer **cgt** .

For cgt to be able to run your script, you must add to your script file a function named ScriptMain(), which takes a dictionnary as sole argument (**kw). The kw dictionnary contains, in particular, the CellViewer object we are running under with the keyword editor. You can then load your cell into the viewer using the menu:

• $\boxed{\texttt{Tools}} \to \boxed{\texttt{Python Script}}$. The script file name must be given without the .py extension.

Note

If you use breakpoints and want to see the progress of your script in the viewer, do not use the --script option of cqt.

```
ego@home:~> cgt -V --script=invertor
```

Because the script is run **before** the viewer is launched, you will only see the end result of your script.

```
def buildInvertor ( editor ):
    UpdateSession.open()
    cell = AllianceFramework.get().createCell( 'invertor' )
    cell.setTerminal( True )
    \textbf{cell.setAbutmentBox} ( \textbf{Box} ( \textbf{toDbU} (0.0), \textbf{toDbU} (0.0), \textbf{toDbU} (15.0), \textbf{toDbU} (50.0) ) )
    if editor:
       UpdateSession.close()
       editor.setCell( cell )
       editor.fit()
       \textit{UpdateSession.open} \ (\ )
    # The rest of the script...
    return
def ScriptMain ( **kw ):
    editor = None
    if kw.has_key('editor') and kw['editor']:
       editor = kw['editor']
    buildInvertor( editor )
    return True
```

5.1 Using Breakpoints

It is possible to add breakpoints inside a script by calling the <code>Breakpoint.stop()</code> function. To be able to see exactly what has just been moficated, we must close the <code>UpdateSession</code> just before calling the breakpoint and reopen it just after. The <code>Breakpoint.stop()</code> function takes two arguments:

- 1. The level above witch it will be active.
- 2. An informative message about the purpose of the breakpoint.

We can create a little function to ease the work:

```
def doBreak ( level, message ):
    UpdateSession.close()
    Breakpoint.stop( level, message )
    UpdateSession.open()
```

6. Making a hierarchical Cell -- Netlist

To illustrate the topic, we will build the netlist of a fulladder from standard cell.

6.1 Creating an Instance

Creating an Instance is straigthforward, the constructor needs only three parameters:

- 1. The Cell into which the instance is to be created.
- 2. The name of the instance.
- 3. The **master cell**, the Cell model it refers to. The master cell will be part of the hierarchical level just below the fulladder cell.

Note

Do not confuse the cell the instance is create into (fulladder) and the cells it refers to (the *master cell* $xr2_x2$).

```
af = AllianceFramework.get()
xr2_x2 = af.getCell('xr2_x1', Catalog.State.Views)

fulladder = af.createCell('fulladder')
xr2_1 = Instance.create(fulladder, 'xr2_1', xr2_x2)
```

6.2 Creating Nets and connecting to Instances

An Instance as one Plug for each external net of the *master cell*. The plug allows to create a **logical** connexion bewteen a Net of fulladder and a net from an Instance master cell.

A plug is somewhat equivalent to an *instance terminal* in others well known databases. Therefore, a plug is related to two nets:

- 1. The net of the *master cell* it is linked to. Obviously that net cannot be changed. You can access the master net with the function plug.getMasterNet().
- 2. The net of fulladder the plug is connected to. This can be set, it is how we build the netlist. To set the net, use the function plug.setNet(net). It the argument is None, the plug is disconnected.

To find the plug of an instance associated to a given net in the master cell, use instance.getPlug(masterNet). The masterNet argument being an object of class net (not it's name).

Building the a net of fulladder:

```
a = Net.create( fulladder, "a" )
a.setExternal( True )
xr2_1.getPlug( xr2_x2.getNet("i0") ).setNet( a )
a2_1 .getPlug( a2_x2.getNet("i0") ).setNet( a )
```

Note

Limitation of Hurricane Netlists. There is no explicit terminal object in the Hurricane database. Plugs are generated *on the fly* for each *external net* of the instance. One important consequence is that a *net* cannot appear on the interface as two differently named terminals (sometimes referred as *weekly connected* terminals). There is a strict bijection between external nets and plugs.

While it may be restrictive, it enforce cleaner designs and make it possible for the HyperNet concept/class.

6.3 Power supplies special case

For supplies, it may be tedious to connect the Plugs of each cell one by one (and create a lot of uneeded objects). To avoid that, we may use **Named connections**. If a signal in fulladder is set to *global*, then it will be considered as connected to any signal with the *same name* and *global* in the master cell of the instances.

```
vdd = Net.create( fulladder, "vdd" )
vdd.setExternal( True )
vdd.setGlobal ( True ) # Will be connected to all the instances.
```

6.4 Creating the physical view of a Cell netlist

Even if loaded in the viewer, an Instance will not be displayed until it is placed.

6.4.1 Transformation

To place an Instance, we apply a Transformation to the coordinate system of the *master cell*. A transformation is composed of two operations :

- 1. An Orientation, which can be a symmetry or a rotation (or a combination of those two). The Orientation **is applied first** to the coordinate system of the *master cell*. The complete list of Orientation and their codes are given on the Orientation documentation page.
- 2. A **Translation**, applied in second. Translation are represented by **Points**.

The transformation is a change of coordinate system, be aware that if the abutment box lower left corner of the *master* cell is **not** at (0,0) the result of the Transformation may not be what you expect. To simplificate the computation of the transformation of an instance, always place the lower left corner of the abutment box at (0,0)

6.4.2 Placing an Instance

Assuming that we want to place the cells of the fulladder into two rows, that the abutment box lower left corner is at (0,0) (same for the $xr2_x2$ master cell layout). Here is the code to place the $xr2_1$ instance to left of the second row.

Setting the translation on an Instance is not enough to make it be displayed, we also must set it's placement status to Instance.PlacementStatus.PLACED.

6.4.3 Nets -- From Plugs to RoutingPads

As was stated before, Plugs represent a logical connexion between two levels of hierarchy. To make the physical connexion to the *master net* in the instance, we now must create, in the fulladder, a special component which is a kind of *reference* to a component of the *master net* (in the master cell).

The so called *special component* is a RoutingPad.

The RoutingPad can be considered as an equivalent to pin in others well known databases.

For the second parameter, we must pass an Occurrence. Occurrence objects will be explained in detail later, for now, suffice to say that we must construct the Occurrence object with one parameter: the Plug for which we want to create a physical connexion.

The RoutingPad rp will be a component of the a net.

The third argument ask the constructor of the RoutingPad to select in the master net, the component which has the biggest area.

Note

Component selection. Not all the components of a net can be selected for connexion through a RoutingPad. The candidates must have been flagged with the NetExternalComponents class.

See 3.6.3 Creating a Component.

6.4.4 Nets -- Regular wiring

After the creation of the RoutingPads, the wiring is to be created with ordinary layout components (Horizontal, Vertical and Contact possibly articulated). Here is the complete code for net a. We made an articulated layout where contacts are created over RoutingPads then segments over contacts.

```
# Build wiring for a.
# Create RoutingPads first.
        = RoutingPad.create( a
rp1
                            , Occurrence( xr2_1.getPlug( xr2_x2.getNet("i0")) )
                            , RoutingPad.BiggestArea )
         = RoutingPad.create( a
rp2
                            , Occurrence( a2_1.getPlug( a2_x2.getNet("i0")) )
                            , RoutingPad.BiggestArea )
# Then regular wiring.
contact1 = Contact.create( rp1, via12, toDbU( 0.0), toDbU(-15.0) )
contact2 = Contact.create( rp2, via12, toDbU( 0.0), toDbU( 10.0) )
        = Contact.create( a , via23, toDbU(10.0), toDbU(35.0) )
Horizontal.create( contact2, turn
                                     , metal2, toDbU(35.0), toDbU(2.0) )
Vertical .create( turn , contact1 , metal3, toDbU(10.0), toDbU(2.0) )
```


Note

In order to better see the layout of the wiring only, open the Controller and in the Filter tab, uncheck Process Terminal Cells.

6.5 The Complete Example File

The example file fulladder.py can be found in the share/doc/coriolis2/examples/scripts/directory (under the the root of the Coriolis installation).

```
#!/usr/bin/python
import sys
from Hurricane import *
from
     CRL
                 import *
def toDbU ( 1 ): return DbU.fromLambda(1)
def doBreak ( level, message ):
    UpdateSession.close()
    Breakpoint.stop( level, message )
    UpdateSession.open()
def buildFulladder ( editor ):
   # Get the Framework and all the master cells.
          = AllianceFramework.get()
    af
    xr2_x2 = af.getCell( 'xr2_x1', Catalog.State.Views )
    a2_x2 = af.getCell('a2_x2', Catalog.State.Views)
    o2_x2 = af.getCell('o2_x2', Catalog.State.Views)
    UpdateSession.open()
    fulladder = af.createCell( 'fulladder' )
    \textbf{fulladder.setAbutmentBox} ( \ \textbf{Box} ( \ \textbf{toDbU} (0.0), \ \textbf{toDbU} (0.0), \ \textbf{toDbU} (90.0), \ \textbf{toDbU} (90.0), \ \textbf{toDbU} (100.0) ) ) )
    if editor:
      UpdateSession.close()
      editor.setCell( fulladder )
      editor.fit()
      UpdateSession.open()
   # Create Instances.
    a2_1 = Instance.create( fulladder, 'a2_1', a2_x2 )
    a2_2 = Instance.create( fulladder, 'a2_2', a2_x2 )
    xr2_1 = Instance.create( fulladder, 'xr2_1', xr2_x2 )
    xr2_2 = Instance.create( fulladder, 'xr2_2', xr2_x2 )
    o2_1 = Instance.create( fulladder, 'o2_1', o2_x2)
   # Create Nets.
    vss = Net.create( fulladder, "vss" )
    vss.setExternal( True )
    vss.setGlobal ( True )
    vdd = Net.create( fulladder, "vdd" )
    vdd.setExternal( True )
    vdd.setGlobal ( True )
    cin = Net.create( fulladder, "cin" )
    cin.setExternal( True )
    xr2_2.getPlug( xr2_x2.getNet('i0') ).setNet( cin )
    a2_2 .getPlug( a2_x2.getNet('i0') ).setNet( cin )
    a = Net.create( fulladder, 'a' )
    a.setExternal( True )
    xr2_1.getPlug( xr2_x2.getNet('i0') ).setNet( a )
    a2_1 .getPlug( a2_x2.getNet('i0') ).setNet( a )
```

```
b = Net.create( fulladder, 'b' )
b.setExternal( True )
xr2\_1.getPlug(xr2\_x2.getNet('il')).setNet(b)
a2_1 .getPlug( a2_x2.getNet('il')).setNet(b)
sout_1 = Net.create( fulladder, 'sout_1' )
xr2_1.getPlug(xr2_x2.getNet('q')).setNet(sout_1)
xr2\_2.getPlug(xr2\_x2.getNet('il')).setNet(sout\_1)
a2_2 .getPlug( a2_x2.getNet('il')).setNet( sout_1 )
carry_1 = Net.create( fulladder, 'carry_1' )
a2_1.getPlug( a2_x2.getNet('q' ) ).setNet( carry_1 )
o2_1.getPlug( o2_x2.getNet('i1') ).setNet( carry_1 )
carry_2 = Net.create( fulladder, 'carry_2' )
a2_2.getPlug( a2_x2.getNet('q' ) ).setNet( carry_2 )
o2_1.getPlug( o2_x2.getNet('i0') ).setNet( carry_2 )
sout = Net.create( fulladder, 'sout' )
sout.setExternal( True )
xr2_2. getPlug(xr2_x2.getNet('q')).setNet(sout)
cout = Net.create( fulladder, 'cout' )
cout.setExternal( True )
o2\_1.getPlug(o2\_x2.getNet('q')).setNet(cout)
# Instances placement.
a2_1.setTransformation( Transformation( toDbU(0.0)
                                      , toDbU(0.0)
                                       , Transformation.Orientation.ID ) )
a2_1.setPlacementStatus( Instance.PlacementStatus.PLACED )
doBreak( 1, 'Placed a2_1' )
xr2_1.setTransformation( Transformation( toDbU( 0.0)
                                       , toDbU(100.0)
                                       , Transformation.Orientation.MY ) )
xr2_1.setPlacementStatus( Instance.PlacementStatus.PLACED )
doBreak( 1, 'Placed xr2_1' )
a2_2.setTransformation( Transformation( toDbU(25.0)
                                      , toDbU(0.0)
                                      , Transformation.Orientation.ID )
a2_2.setPlacementStatus( Instance.PlacementStatus.PLACED )
doBreak( 1, 'Placed a2_2' )
xr2_2.setTransformation( Transformation( toDbU( 45.0)
                                       , toDbU(100.0)
                                        , Transformation.Orientation.MY ) )
xr2_2.setPlacementStatus( Instance.PlacementStatus.PLACED )
doBreak( 1, 'Placed xr2_2' )
o2_1.setTransformation( Transformation( toDbU(65.0)
                                      , toDbU(0.0)
                                       , Transformation.Orientation.ID )
o2_1.setPlacementStatus( Instance.PlacementStatus.PLACED )
doBreak( 1, 'Placed o2_1' )
# Add filler cells.
tie_x0 = af.getCell( 'tie_x0', Catalog.State.Views )
```

```
rowend_x0 = af.getCell( 'rowend_x0', Catalog.State.Views )
    filler_1 = Instance.create( fulladder, 'filler_1',
    filler_2 = Instance.create( fulladder, 'filler_2', rowend_x0 )
    filler_1.setTransformation( Transformation( toDbU(50.0)
                                               , toDbU( 0.0)
                                               , Transformation.Orientation.ID ) )
    filler_1.setPlacementStatus( Instance.PlacementStatus.PLACED )
    filler_2.setTransformation( Transformation( toDbU(60.0)
                                               , toDbU(0.0)
                                               , Transformation.Orientation.ID )
    filler_2.setPlacementStatus( Instance.PlacementStatus.PLACED )
    doBreak( 1, 'Filler cell placeds' )
   # Getting the layers.
    technology = DataBase.getDB().getTechnology()
              = technology.getLayer( "METAL2" )
    metal2
              = technology.getLayer( "METAL3" )
    metal3
             = technology.getLayer( "VIA12" )
    via12
              = technology.getLayer( "VIA23" )
    via23
   # Build wiring for a.
   # Create RoutingPads first.
            = RoutingPad.create( a
                                 , Occurrence( xr2_1.getPlug( xr2_x2.getNet("i0")) )
                                 , RoutingPad.BiggestArea )
    rp2
             = RoutingPad.create( a
                                 , Occurrence( a2_1.getPlug( a2_x2.getNet("i0")) )
                                 , RoutingPad.BiggestArea )
   # Then regular wiring.
    contact1 = Contact.create( rp1, via12, toDbU( 0.0), toDbU(-15.0) )
    contact2 = Contact.create( rp2, via12, toDbU( 0.0), toDbU( 10.0) )
           = Contact.create( a , via23, toDbU(10.0), toDbU(35.0) )
    \textbf{\textit{Horizontal.create}( contact2, turn} \qquad \text{\textit{, metal2, toDbU}} (35.0), toDbU (2.0) \quad )
    Vertical .create( turn , contact1 , metal3, toDbU(10.0), toDbU(2.0) )
    UpdateSession.close()
    af.saveCell( fulladder, Catalog.State.Views )
    return
def ScriptMain ( **kw ):
    editor = None
    if kw.has_key('editor') and kw['editor']:
      editor = kw['editor']
    buildFulladder( editor )
    return True
```

7. Working in real mode

The AllianceFramework only manage *symbolic* layout as ALLIANCE do. But CORIOLIS is also able to work directly in *real* mode, meaning that distances will be expresseds in microns instead of lambdas.

The *real* mode will be illustrated by working with the FreePDK45. We will assume that the FreePDK45 archives is installed under:

/home/dks/

7.1 Loading a LEF file

Importing a LEF file is simple, you just call the static function LefImport.load(). Multiple LEF file can be imported one after another.

```
# You must set "DKsdir" to where you did install the NCSU FreePDK 45nm DK.
DKsdir = '/home/dks'

library = LefImport.load( DKsdir + '/FreePDK45/osu_soc/lib/files/gscl45nm.lef' )
```


Note

Technology checking. The first imported LEF file must contains the technology. The technology described in the LEF file will be checked against the one configured in the running instance of CORIOLIS to look for any discrepencies.

7.2 Loading a BLIF file -- Yosys

The BLIF format is generated by the Yosys logic synthetizer. Here again, it is pretty straightforward: call the static function Blif.load(). If you did make your synthesis on a cell library not managed by AllianceFramework, For example the one of the FreePDK45, you must load it prior to calling the BLIF loader.

```
cell = Blif.load( 'snx' ) # load "snx.blif" in the working directory.
```

8. Tool Engines (CRL Core)

The ToolEngine class is the base class for all tools developeds in CORIOLIS. In the rest of the tutorial we will use the names tool or engine as synonyms.

8.1 Placer -- Etesian

To run the placer, create the ETESIAN engine, then call the place () function.

```
import Etesian
# [...]
etesian = Etesian.EtesianEngine.create(cell)
etesian.place()
```

You can configure the placer in two ways:

- 1. Prior to the creation of the engine, setup an abutment for the cell. The placer will fit the cells into that area. If the area is too small, it will issue an error.
- 2. Setup ETESIAN parameters through the settings.py configuration file. For example:

With this setup, the cells will be spread uniformally over the area (etesian.uniformDensity), with 3.0% of free space added and an aspect ratio of 100% (square shape).

8.1 Router -- Katana

Like for ETESIAN , you have to create the engine on the cell then call the sequence of functions detailed below.

Note

Kite vs. Katana. There are currently two router in CORIOLIS, KITE is the old one and digital only. KATANA is a re-implementation with support for mixed routing (digital **and** analog). Until KATANA is fully implemented we keep both of them.

```
import Anabatic
import Katana
# [...]

katana = Katana.KatanaEngine.create(cell)
katana.digitalInit ()
katana.runGlobalRouter ()
katana.loadGlobalRouting( Anabatic.EngineLoadGrByNet )
katana.layerAssign ( Anabatic.EngineNoNetLayerAssign )
katana.runNegociate ( Katana.Flags.NoFlags )
```

8.2 A Complete Example

The example file toolengines.py can be found in the share/doc/coriolis2/examples/scripts/directory (under the the root of the CORIOLIS installation).

This script automatically place and route the fulladder netlist as seen previously. The call to the ToolEngines is made inside the new function placeAndRoute().

Note

As the <code>ToolEngine</code> take care of opening and closing <code>UpdateSession</code>, we do not need the wrapper function <code>doBreak()</code> around the breakpoints. We directly call <code>Breakpoint</code>.

Note

The space margin for this example is very high (30%), it's only because it's too small for the placer to run correctly. For normal case it is around 3%.

```
UpdateSession.open()
fulladder = af.createCell( 'fulladder' )
# Create Instances.
a2_1 = Instance.create( fulladder, 'a2_1', a2_x2 )
a2_2 = Instance.create( fulladder, 'a2_2', a2_x2 )
xr2_1 = Instance.create( fulladder, 'xr2_1', xr2_x2 )
xr2_2 = Instance.create( fulladder, 'xr2_2', xr2_x2 )
o2_1 = Instance.create( fulladder, '02_1', o2_x2)
# Create Nets.
vss = Net.create( fulladder, "vss" )
vss.setExternal( True )
vss.setGlobal ( True )
vdd = Net.create( fulladder, "vdd" )
vdd.setExternal( True )
vdd.setGlobal ( True )
cin = Net.create( fulladder, "cin" )
cin.setExternal( True )
xr2_2.getPlug( xr2_x2.getNet('i0') ).setNet( cin )
a2_2 .getPlug( a2_x2.getNet('i0') ).setNet( cin )
a = Net.create( fulladder, 'a' )
a.setExternal( True )
xr2_1.getPlug( xr2_x2.getNet('i0') ).setNet( a )
{\tt a2\_1} \ . {\tt getPlug} \, (\quad {\tt a2\_x2} . \, {\tt getNet} \, (' \, {\tt i0'}) \ ) \, . \, {\tt setNet} \, (\ {\tt a} \ )
b = Net.create( fulladder, 'b' )
b.setExternal( True )
xr2_1.getPlug( xr2_x2.getNet('il') ).setNet( b )
a2_1 .getPlug( a2_x2.getNet('il')).setNet(b)
sout_1 = Net.create( fulladder, 'sout_1' )
xr2_1.getPlug( xr2_x2.getNet('q' ) ).setNet( sout_1 )
xr2_2.getPlug( xr2_x2.getNet('il') ).setNet( sout_1 )
a2_2 .getPlug( a2_x2.getNet('il') ).setNet( sout_1 )
carry_1 = Net.create( fulladder, 'carry_1' )
a2_1.getPlug( a2_x2.getNet('q' ) ).setNet( carry_1 )
o2_1.getPlug( o2_x2.getNet('i1') ).setNet( carry_1 )
carry_2 = Net.create( fulladder, 'carry_2' )
a2_2.getPlug( a2_x2.getNet('q' ) ).setNet( carry_2 )
o2_1.getPlug( o2_x2.getNet('i0') ).setNet( carry_2 )
sout = Net.create( fulladder, 'sout' )
sout.setExternal( True )
xr2\_2.getPlug(xr2\_x2.getNet('q')).setNet(sout)
cout = Net.create( fulladder, 'cout' )
cout.setExternal( True )
o2_1.getPlug( o2_x2.getNet('q') ).setNet( cout )
UpdateSession.close()
af.saveCell( fulladder, Catalog.State.Views )
```

return fulladder def placeAndRoute (editor, cell): # Run the placer. etesian = Etesian.EtesianEngine.create(cell) etesian.place() if editor: editor.setCell(cell) editor.fit() Breakpoint.stop(1, 'After placement') # Run the router. katana = Katana.KatanaEngine.create(cell) katana.digitalInit () katana.runGlobalRouter () katana.loadGlobalRouting(Anabatic.EngineLoadGrByNet) katana.layerAssign (Anabatic.EngineNoNetLayerAssign) katana.runNegociate (Katana.Flags.NoFlags) af.saveCell(cell, Catalog.State.Views) return def ScriptMain (**kw): editor = None if kw.has_key('editor') and kw['editor']: editor = kw['editor'] fulladder = buildFulladder(editor)

9. Advanced Topics

This is a place holder as well as a reminder to myself to write this part of the documentation.

9.1 Occurrence

The trans-hierarchical workhorse.

return True

9.2 RoutingPads

Unlike the Plugs that only make connexions between two **adjacent** hierarchical levels, Routing-Pads can refer to a deeply buried terminal.

9.3 HyperNets

This class is part of the *virtual flattening* mechanisms, it allows to go through all the components of a trans-hierarchical net.

9.4 Miscellaeous trans-hierarchical functions

placeAndRoute(editor, fulladder)

For a starter, how to get all the leaf cells...