Elettronica Digitale A.A. 2020-2021

Lezione 11/03/2021

$$E = 5 V$$

$$R = 1 k\Omega$$

Ipotesi:

Diodo in conduzione

Modello ideale del diodo

$$V_D = 0 V$$

$$E = RI_D$$

$$E = RI_D$$

$$I_D = \frac{E}{R} = \frac{5}{1000} = 5 \text{ mA}$$

$$E = 5 V$$
 $R = 1 k\Omega$

Ipotesi:

Diodo in conduzione

$$E = 5V$$

$$R = 1 k\Omega$$

Ipotesi:

Diodo in conduzione

$$V_D = V_{AK} = 0.65 + 20 \times 4.265 \times 10^{-3} = 0.7353 V$$

E = 5 V	$R = 1 k\Omega$

MODELLO	I _D (mA)	V _D (V)
Esponenziale	4.237	0.762
Grafico	4.2	0.7
Caduta costante	4.3	0.7
Diodo ideale	5	0
Lineare a tratti	4.265	0.7353

Il modello del diodo a caduta di tensione costante è il miglior compromesso tra semplicità del modello e accuratezza della soluzione ottenuta.

Nei circuiti in cui la caduta di tensione sul diodo può essere considerata trascurabile, si può utilizzare il modello ideale del diodo.

Analisi dei circuiti contenenti diodi - Procedura

- Ipotizzare lo stato di ciascun diodo (Conduzione o Interdizione)
- Sostituire ciascun diodo con il corrispondente modello:
 - -) se in conduzione con un generatore di tensione costante di valore V_{γ} (modello a caduta costante), un cortocircuito (diodo ideale), un generatore con una resistenza in serie (modello lineare a tratti)
 - -) se interdetto con un circuito aperto
- Risolvere il circuito
- Verificare la correttezza delle ipotesi iniziali sullo stato di ciascun diodo:
 - se sono tutte verificate, la soluzione ottenuta è quella corretta
 - se almeno una delle ipotesi non è verificata, bisogna cambiare tale ipotesi, risolvere di nuovo il circuito e fare una nuova verifica delle ipotesi. Il processo continua fino a quando non si trova la soluzione che soddisfa le ipotesi sullo stato di tutti i diodi.

Analisi dei circuiti contenenti diodi - Procedura

STATO DEL DIODO	PARAMETRO FISSATO	VERIFICA
CONDUZIONE	$V_D = V_{\gamma}$	I _D >0
INTERDIZIONE	I _D =0	$V_D < V_{\gamma}$

$$\begin{array}{c} V_D = V_{AK} \\ \text{Anodo} \\ \text{(A)} \end{array} \qquad \begin{array}{c} \text{Catodo} \\ \text{(K)} \end{array}$$

Circuito rettificatore $V_S = V_M \sin(\omega t)$

 $V_S \ge 0$ Ipotesi: Diodo in conduzione (ON)

$$I_D = \frac{V_S}{R_L} \ge 0$$
 Ipotesi verificata

Intervallo T₁

 $V_S < 0$ Ipotesi: Diodo in interdizione(OFF)

 $V_{AK} = V_{S} < 0$ Ipotesi verificata

Peak-Inverse-Voltage (PIV)=V_M

Circuito rettificatore – Modello a caduta di tensione costante

Circuito rettificatore – Modello a caduta di tensione costante

$$I_D \ge 0 \Leftrightarrow V_S \ge V_{\gamma}$$

Circuito rettificatore – Modello a caduta di tensione costante

$$I_D \ge 0 \Leftrightarrow V_S \ge V_{\gamma}$$

 $V_{M} \sin(\omega t) \geq V_{\gamma}$

$$\sin(\omega t^*) = \frac{V_{\gamma}}{V_{M}}$$

$$\sin(\omega t^*) = \frac{V_{\gamma}}{V_M}$$
 $t^* = \frac{1}{\omega} \arcsin\left(\frac{V_{\gamma}}{V_M}\right)$

Circuito rettificatore con filtro RC

Rivelatore di picco

Diodo ideale in conduzione

$$\frac{dV_u}{dt} = \frac{dV_S}{dt} \ge 0$$

Diodo ideale interdetto

$$V_{AK} = V_S - V_u$$

PIV=2V_M

Circuito rettificatore con filtro RC

Trasformatori

Prenderemo in considerazione soltanto i trasformatori ideali, per i quali il flusso magnetico totale può essere considerato trascurabile, per cui:

$$N_1 I_1 + N_2 I_2 = 0 \rightarrow \frac{I_2}{I_1} = -\frac{N_1}{N_2}$$

$$\frac{V_2}{V_1} = \frac{N_2}{N_1}$$

Raddrizzatori a doppia semionda

Raddrizzatori a doppia semionda senza C

$$V_1 > 0 \rightarrow V_A > 0$$
, $V_B > 0$ Ipotesi: D1 ON e D2 OFF

$$V_{\mu} = V_A > 0$$

$$I_{D1} = \frac{V_A}{R_L} > 0$$
 \Longrightarrow D1 ON $V_{AK2} = V_{A2} - V_{K2} = -V_B - (V_A) = -V_B - V_A < 0$ \Longrightarrow D2 OFF PIV=2V_M

Raddrizzatori a doppia semionda senza C

$$V_1 < 0 \rightarrow V_A < 0$$
, $V_B < 0$ Ipotesi: D1 OFF e D2 ON $V_u = -V_B > 0$

$$V_{\mu} = -V_{B} > 0$$

$$I_{D2} = \frac{-V_B}{R_L} > 0$$
 D2 ON $V_{AK1} = V_{A1} - V_{K1} = V_A - (-V_B) = V_A + V_B < 0$

$$V_{AK1} = V_{A1} - V_{K1} = V_A - (-V_B) = V_A + V_B < 0$$

PIV=2V_M

D1 OFF

Raddrizzatori a doppia semionda senza C

Raddrizzatori a doppia semionda con C

