DSP Review

DSP Overview

DSP could be classified into two parts:

——Signal Analysis and Digital Filter

DSP Overview

Chapter 8: Infinite Impulse Response Filters

Analog Filter design
Design Low-pass IIR Digital Filter
Impulse Invariance IIR Filter Design Method
Bilinear Transform IIR Filter Design Method

Chapter 7: Design of FIR Digital Filter

Properties of FIR Filters FIR filter design based on Windows

Chapter 6: Filter Structures

Block Structure

Mason and Transpose Theorem

IIR and FIR Structures

- 8.1 An Introduction to Infinite Impulse Response Filters
- 8.2 The Laplace Transform
- 8.3 Analog Low-Pass Filters
- 8.4 Impulse Invariance IIR Filter Design Method
- 8.5 Bilinear Transform IIR Filter Design Method
- 8.6 Low-Pass IIR Filter Design
- 8.7 Other Types IIR Filter Design

8.3 Analog Filter design

Contents:

Filter Specifications

Butterworth Approximation

Chebyshev Approximation

Cauer Approximation

Comparison of above Analog Filters

(1) Butterworth Approximation

Magnitude Frequency Character:

$$\left| H(j\Omega) \right|^2 = \frac{1}{1 + \left(\frac{\Omega}{\Omega_c}\right)^{2N}}$$

N is a positive integer, the order of Filter. Ω_c is the cut-off frequency.

Features:

- Maximally Flat Magnitude
- 3dB Cutoff Frequency

Summary for Calculation Method

- (1) Requirements
- (2) Calculate N
- (3) Calculate Ω_c
- (4) Find H(s)

Useful Formula

N=1:
$$H(s) = \frac{\Omega_c}{s + \Omega_c}$$

N=2:
$$H(s) = \frac{\left(\Omega_c\right)^2}{s^2 + \sqrt{2}\Omega_c s + \Omega_c^2}$$

N=3:
$$H(s) = \frac{(\Omega_c)^3}{s^3 + 2\Omega_c s^2 + 2\Omega_c^2 s + \Omega_c^3}$$

8.6 Low-Pass IIR Filter Design

Procedures of Designing IIR DF with AF design:

- Required Targets for DF
- Transfer Function for Analogy Filter H_a(S)
- Filter transition (s plane -> z plane) to obtain Transfer Function for digital filter H(z)
- Digital frequency transition, to obtain other digital filters according to the digital LP filter

Two Methods for $H_a(s)$ to H(z):

- Impulse Response Invariance method IRI
- Bilinear Transformation method BLT

Design IIR LP DF with BLT Method

Steps:

- 1) Given ω_s , ω_p , α_p and α_s of DF.
- 2) According to:

$$\Omega = \frac{2}{T} tg \frac{\omega}{2}$$

to calculate pre-warped critical frequency: Ω_s , Ω_p

- 3) According to Ω_p , Ω_s , α_p and α_s , design the prototype of LP AF and get $H_a(s)$
- 4) Using BLT, we can get the Transfer Function of DF.

$$H(z) = H_a(s)|_{s = \frac{2}{T} \cdot \frac{1-z^{-1}}{1+z^{-1}}}$$

- 7.1 An Introduction to Finite Impulse Response Filters (FIR)
- 7.2 Properties of FIR Filters
- 7.3 Low-Pass FIR Filter Design
- 7.4 Examples to Design other Types Linear Phase FIR Filter

FIR Filter

Characteristic of FIR DF:

- Always Stable: Poles at origin point
- Zeros of Linear Phase FIR: z_i , z_i^* , $\frac{1}{z_i}$, $\frac{1}{z_i^*}$
- Linear Phase DF

Phase Delay & Group Delay:

- Both are constant
 - Even Symmetry:
- Only Group Delay
 - Odd Symmetry:

$$\begin{cases} \theta_0 = 0 \text{ and } \tau = \frac{N-1}{2} \\ h(n) = h(N-1-n) \end{cases}$$

$$\begin{cases} \theta_0 = \pm \frac{\pi}{2} \text{ with } \tau = \frac{N-1}{2} \\ h(n) = -h(N-1-n) \end{cases}$$

$$Z_i$$
 $\theta(\omega)$

 $H(z) = \sum h(r)z^{-r}$

$$\tau_g(\omega) = -\frac{d\theta(\omega)}{d\omega}$$

+ Order N: odd or even

The Phenomenon of Gibbs

Summary:

The phenomenon of Gibbs results in the convolution of windowed frequency function and $H_d(e^{j\omega})$.

- (1) Transition band: the band between positive and negative acromion.
- (2) The width of transition band is the mainlobe width of windows spectrum. For rectangular $w_R(e^{j\omega})$, the width is $4\pi/N$.

The width of transition band is decided by the selected windows.

For one certain type of windows, increasing N can make transition band more steep.

Summary of Windows

<u>Window</u> <u>Functions</u>	Transition band- width		<u>Minimum</u> stopband/dB
Rectangular	4π/N 1.8π/N	-13	21
Hanning	8π/N 6.2π/N	-32	44
Hamming	8π/N 6.6π/N	-43	53
Blackman	12π/N 11π/N	-58	74

FIR Design with Windows

Steps:

Performance requirements -> $H_d(e^{j\omega})$

- (1) Expand $H_d(e^{j\omega})$ to Fourier Series, get $h_d(n)$;
- (2) Truncate $h_d(n)$ to N=2M+1 (windows);
- (3) Shift the truncated $h_d(n)$ right with M points, get h(n);
- (4) Multiply h(n) by the choosing windows function;
- (5) Realize h(n) or H(z) by hardware or software.

- **6.1 Block Structure**
- **6.2 Mason and Transpose Theorem**
- **6.3 Example of Filter Structures**

Contents

Filters:

Described by H(z) or h(n)

Described by diagram (*Mason's Rule*)

Filter Structure:

•FIR Filter:

Direct Form, Cascade Form

•IIR Filter:

Direct Form, Canonical, Cascade, Parallel Form

Transpose Theorem:

Every structure has two realizations at least.

Mason's Rule

Mason's Rule:

If g_i denotes the route gain from the <u>Source Node</u> to <u>Destination Node</u>, and Δ_i is the <u>cofactor</u> of g_i , then, the Transfer Function <u>H</u> from the source to destination is:

$$H = \frac{1}{\Delta} \sum_{i} g_{i} \Delta_{i}$$

Mason's Rule provides a step by step method to obtain the Transfer Function from a block diagram or signal flow graph.

<u>Derived by Samuel Jefferson Mason.</u>

Equivalent Structures

Target: various realization of a given Transfer Function.

Equivalent Structure: the same *Transfer Function*.

Transpose Theorem:

(Proved at section 4.72 of A. V. Oppenheim's Book)

- Reverse the direction of all paths;
- Maintain the path gain;
- Exchange the positions of input and output.

The Transfer Function is the same to original one, when there are only one input and one output.

DSP Overview

Chapter 0: Introduction of signal and signal processing

Characterization and Classification of Signals

Digital Signal Processing

DSP Processes & Features

Chapter 1: Discrete Sequences and Systems

Discrete Sequences

Discrete Linear Time-Invariant Systems

Causality and Stability Properties of LTI systems

Chapter 2: Periodic Sampling

Sampling Low-Pass Signals

Discrete Convolution

DSP Overview

Chapter 3: z-Transform

z-Transform & ROC
Inverse z-Transform

Chapter 4: The Discrete Fourier Transform

DTFT, DFS, DFT
DFT Leakage, Resolution, Properties

Circular Convolution, Frequency Response

Chapter 5: The Fast Fourier Transform

FFT (Butterfly algorithm) & Inverse FFT

Linear convolution with DFT

Piecewise Convolution for Long Sequence

- 1.1 Discrete Sequences
- 1.2 Signal Amplitude, Magnitude, Power
- 1.3 Signal Processing Operational Symbols
- 1.4 Introduction to Discrete Linear Time-Invariant Systems
- 1.5 Discrete Linear Systems
- 1.6 Time-Invariant Systems
- 1.7 The Commutative Property of Linear Time-Invariant Systems
- 1.8 The Causality Property of Linear Time-Invariant Systems
- 1.9 The Stability Property of Linear Time-Invariant Systems
- 1.10 Analyzing Linear Time-Invariant Systems

1. Basic Sequences

- a. Left-side, Right-side and Two-side
- b. Unit sample, Unit step, Rectangular sequence
- c. Real exponent, Sinusoidal sequence

2. Signal Processing Operational Symbols

- a. Basic operation of sequences
- b. Multiplication, Addition, Unit Delay

3. <u>Discrete LTI System</u>

- a. Linear
- b. Time-shift Invariant
- c. Causality
- d. Stability
- 4. For LTI systems, $y(n)=x(n)^* x(n)$

- 2.1 Aliasing: Signal Ambiguity in the Frequency Domain
- 2.2 Sampling Low-Pass Signals
- 2.3 A Generic Description of Discrete Convolution
 - 2.3.1 Discrete Convolution in the Time Domain
 - 2.3.2 The Convolution Theorem
 - 2.3.3 Applying the Convolution Theorem

Sampling Theorem-Shannon Theorem

1. Band-limited signals

$$\begin{split} \hat{X}_a(\Omega) &= \frac{1}{2\pi} X_a(\Omega) * P(\Omega) \\ &= \frac{1}{T} \sum_{m=-\infty}^{\infty} X_a(\Omega - m\Omega_0) \end{split}$$

Discrete Convolution in the Time Domain

Calculation steps:

(1) Time-reversed

 $h(-k) \leftarrow h(k)$

(2) Right shift n

 $h(n-k)\leftarrow h(-k)$

(3) Multiplication

x(n)-h(n-k)

(4) Sum

 $\sum [x(n)-h(n-k)]$

Note: the resulted length is *N+M-1*.

3.1 The z-Transform

- 3.1.1 Poles and Zeros on the z-Plane and Stability
- 3.1.2 The ROC of z-Transform
- 3.1.3 The Properties of z-Transform

3.2 The Inverse z-Transform

- 3.2.1 General Expression of Inverse z-Transform
- 3.2.2 Inverse z-Transform by Partial-Fraction Expansion

1. z-Transform

$$X(z) = Z[x(n)] = \sum_{n=-\infty}^{\infty} x(n)z^{-n}$$

- ROC & Pole-zero plot
- (a) Right-side Sequence: ROC |z|>r1;
- (b) Left-side Sequence: ROC |z|<r2;
- (c) Two-side Sequence: ROC r1<|z|<r2.

2. The Properties of ZT

- (a) Linear
- (b) Time shifting $Z[x(n+n_0)] = z^{n_0}X(z)$

$$Z[a^n x(n)] = X\left(\frac{z}{a}\right)$$

- (c) Frequency shifting (scaling in the z-domain) $Z[a^n x(n)] = X\left(\frac{z}{a}\right)$ (d) Differential $Z[nx(n)] = -z\frac{dX(z)}{dz}$ $R_{x-} < |z| < R_{x+}$
- (e) Conjugation
- (f) Initial Value Theorem $x(0) = \lim X(z)$
- (q) Convolution in z-domain

$$Z[x(n) * h(n)] = X(z) \cdot H(z)$$

3. Inverse z-Transform

$$x(n) = \frac{1}{2\pi j} \oint_{c} X(z) z^{n-1} dz$$

- (a) Part Fractional method
- (b) General Expression Residue method
 - Draw the zero-pole plot, find the ROC, and draw the closed curve C, containing the origin.
 - Calculate the residue numbers in & out of C, get the value of x(n).

- DTFT
- Understanding the DFT Equation
- Inverse DFT
- DFT Leakage
- Windows
- DFT Resolution, Zero Padding, and Frequency-Domain Sampling
- DFT Properties
- Frequency Response

DTFT, DFS and DFT

1. DTFT:
$$\begin{cases} X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x(n)e^{-jn\omega} \\ x(n) = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega})e^{jn\omega} d\omega \end{cases}$$

$$\begin{cases} \widetilde{X}(k) = \sum_{n=0}^{N-1} \widetilde{x}(n) W_N^{kn} \\ \widetilde{x}(n) = \frac{1}{N} \sum_{k=0}^{N-1} \widetilde{X}(k) W_N^{-kn} \end{cases}$$

3. DFT:
$$\begin{cases} X(k) = \sum_{n=0}^{N-1} x(n)W_N^{kn}, & k = 0, \dots, N-1 \\ x(n) = \frac{1}{N} \sum_{k=0}^{N-1} X(k)W_N^{-kn}, & n = 0, \dots, N-1 \\ W_N = e^{-j\frac{2\pi}{N}} \end{cases}$$

$$W_{N} = e^{-j\frac{2\pi}{N}}$$

Circular Convolution

Concentric Method:

- 1) Multiply the corresponding values on the two circles and sum. We get $x_3(0)$;
- 2) Shift x_2 (n-m) 1 point, i.e., the outer circle rotate 1 point clockwise. Repeat (1) and we get x_3 (1);
- 3) In the same way, we get x₃(n); 0≤n≤N-1.

Frequency Response

LTI System:

- a. Frequency Response: $H(e^{jw})$
- b. Transfer Function: H(z)
- c. Difference Equation

Fast Fourier Transform - FFT

FFT Reverse & Rearrangement and In-place Computation

Inverse Fast Fourier Transform - IFFT

High-efficient FFT for Real Sequences

Discrete Convolution Using FFT

Piecewise Convolution for Long Sequences

Decimation in Time FFT (DIT-FFT)

Decimation in Frequency FFT (DIF-FFT)

Discrete Conv. using DFT

1. Using DFT to do Discrete Convolution

The most important condition:

The Length of Circular Convolution must bigger than or equal to that of Linear Convolution:

N'>=N+M-1

- 2. Piecewise Convolution for Long Sequence:
- a. Overlap-Add method
- b. Overlap-Save method

Conclusion

Chapter 1: Discrete Sequences and Systems

Chapter 2: Periodic Sampling

Chapter 3: z-Transform and Inverse z-Transform

Chapter 4: The Discrete Fourier Transform

Chapter 5: The Fast Fourier Transform

Chapter 6: Filter Structure

Chapter 7: Finite Impulse Response Filters

Chapter 8: Infinite Impulse Response Filters

The End