Normalizing Flows

Mostafa Tavassolipour Fall 2024

Normalizing Flows vs. VAE

VAE
$$x \rightarrow |q(z|n) \rightarrow z \rightarrow |P(n)| \rightarrow x$$

$$\hat{\theta} = \max_{i \ge 1} |\log P(x_i)| \Rightarrow \hat{\theta} = \arg \max_{i \ge 1} -kL(q_p(z|x) || P_{\theta}(x,z))$$

$$\Phi = \arg \min_{i \ge 1} kL(q_p(z|x) || P_{\theta}(x,z))$$

Normalizing Flow:

$$\partial_{ML} = ang max \sum_{i \in I} log P(x_i)$$

$$P_{X}(x) = P_{Z}(f_{\theta}(x)) | det(J) |$$

$$J = \frac{df_{\theta}^{-1}}{dx}$$

$$O(n^3)$$

Change of Variable Formula: 1-Dimensional

$$P_X(x) = P_Z(f^{-1}(x)) \left| \frac{\partial f^{-1}(x)}{\partial x} \right|$$

Normalizing: Change of variables gives a normalized density after applying an invertible transformation

Flow: Invertible transformations can be composed with each other

$$\mathsf{z}_m = \mathsf{f}_\theta^m \circ \cdots \circ \mathsf{f}_\theta^1(\mathsf{z}_0) = \mathsf{f}_\theta^m(\mathsf{f}_\theta^{m-1}(\cdots(\mathsf{f}_\theta^1(\mathsf{z}_0)))) \triangleq \mathsf{f}_\theta(\mathsf{z}_0)$$

- Start with a simple distribution for z_0 (e.g., Gaussian)
- Apply a sequence of M invertible transformations to finally obtain $\mathbf{x} = \mathbf{z}_M$
- By change of variables

$$\underline{p_X(\mathbf{x};\theta)} = p_Z\left(\mathbf{f}_{\theta}^{-1}(\mathbf{x})\right) \prod_{m=1}^{M} \left| \det\left(\frac{\partial (\mathbf{f}_{\theta}^m)^{-1}(\mathbf{z}_m)}{\partial \mathbf{z}_m}\right) \right|$$

(Note: determininant of product equals product of determinants)

Diagonal Jacobian

Triangular Jacobian

$$\alpha_i = f_{z_i \leqslant i}$$

Models with Normalizing Flows

- NICE (Non-linear Independent Component Estimation, 2015)
- RealNVP (Real-valued Non-Volume Preserving, 2017)
- Inverse Autoregressive Flow (Kingma et al., 2016)
- Masked Autoregressive Flow (Papamakarios et al., 2017)
- I-resnet (Behrmann et al, 2018)
- Glow (Kingma et al, 2018)
- MintNet (Song et al., 2019)
- And many more

NICE

• Unit Jacobian determinant: |J| = 1

$$x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

$$\Rightarrow z_1 = x_1$$

$$\Rightarrow z_2 = x_2 + m(x_1)$$

Inverse:

$$x_1 = z_1$$

$$x_2 = z_2 - m(z_1)$$

$$\chi_{1} \begin{bmatrix} I_{Jxd} & 0 \\ -m'(z_{1}) & I \end{bmatrix}$$

NICE: Results

(a) Model trained on MNIST

(b) Model trained on TFD

NICE: Results on Complex Data

(c) Model trained on SVHN

(d) Model trained on CIFAR-10

RealNVP: non-Volume preserving extension of Nice

$$Z_0 \rightarrow f_1 \rightarrow Z_1 \rightarrow f_2 \rightarrow Z_2 \rightarrow \cdots \rightarrow f_k \rightarrow Z_k = \lambda$$

(a) Forward propagation

$$y_1 = x_1$$

 $y_2 = s(x_1)x_2 + t(x_1)$

(b) Inverse propagation

$$x_1 = y_1$$

$$x_2 = \frac{y_2 - t(y_1)}{S(y_1)}$$

$$x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

$$\left| \int \right| z \left(\frac{1}{S(x_0)} \right)^{d}$$

Samples generated via Real-NVP

RealNVP: More Results

CIFAR-10

Imagenet (32x32)

Imagenet (64x64)

CelebA

LSUN

Real-NVP: latent space interpolation

GLOW: Result on CelebA

GLOW: Interpolation

GLOW: Sample Generated Face

Masked Autoregressive Flow (MAF)

MAF

- Forward mapping from $z \mapsto x$:
 - Let $x_1 = \exp(\alpha_1)z_1 + \mu_1$. Compute $\mu_2(x_1), \alpha_2(x_1)$
 - Let $x_2 = \exp(\alpha_2)z_2 + \mu_2$. Compute $\mu_3(x_1, x_2), \alpha_3(x_1, x_2)$
- Sampling is sequential and slow (like autoregressive): O(n) time

Masked Autoregressive Flow (MAF)

- Inverse mapping from $\mathbf{x} \mapsto \mathbf{z}$:
 - Compute all μ_i, α_i (can be done in parallel using e.g., MADE)
 - Let $z_1 = (x_1 \mu_1)/\exp(\alpha_1)$ (scale and shift)
 - Let $z_2 = (x_2 \mu_2)/\exp(\alpha_2)$
 - Let $z_3 = (x_3 \mu_3)/\exp(\alpha_3)$...
- Jacobian is lower diagonal, hence efficient determinant computation
- Likelihood evaluation is easy and parallelizable (like MADE)
- Layers with different variable orderings can be stacked

Inverse Autoregressive Flow (IAF)

IAF

- Forward mapping from $z \mapsto x$ (parallel):
 - Sample $z_i \sim \mathcal{N}(0,1)$ for $i=1,\cdots,n$
 - Compute all μ_i , α_i (can be done in parallel)
 - Let $x_1 = \exp(\alpha_1)z_1 + \mu_1$
 - Let $x_2 = \exp(\alpha_2)z_2 + \mu_2 \dots$
- Inverse mapping from $\mathbf{x} \mapsto \mathbf{z}$ (sequential):
 - Let $z_1 = (x_1 \mu_1)/\exp(\alpha_1)$. Compute $\mu_2(z_1), \alpha_2(z_1)$
 - Let $z_2 = (x_2 \mu_2)/\exp(\alpha_2)$. Compute $\mu_3(z_1, z_2), \alpha_3(z_1, z_2)$
- Fast to sample from, slow to evaluate likelihoods of data points (train)
- Note: Fast to evaluate likelihoods of a generated point (cache z_1, z_2, \ldots, z_n)

Figure adapted from Eric Jang's blog

IAF vs. MAF

$$P(x_{1}, x_{2}, ..., x_{n})$$

$$= P(x_{1}) P(x_{2}|x_{1}) P(x_{3}|x_{1}, x_{2}) --- P(x_{n}|x_{1}, ..., x_{n-1})$$

- Computational tradeoffs
 - MAF: Fast likelihood evaluation, slow sampling
 - IAF: Fast sampling, slow likelihood evaluation
- MAF more suited for training based on MLE, density estimation
- IAF more suited for real-time generation
- Can we get the best of both worlds?

Inverse CDF trick:

 Step 1: Dimension-wise Gaussianization (Jacobian is a diagonal matrix and is tractable)

Note: Even though each dimension is marginally Gaussian, they are **not** jointly Gaussian. Aside: Approximating this with a Gaussian prior is a shallow flow model known as a copula model (Sklar, 1959).

 Step 2: apply a rotation matrix to the transformed data (Jacobian is an orthogonal matrix and is tractable)

• Note: $\mathcal{N}(\mathbf{0}, \mathbf{I})$ is rotationally invariant

 Gaussianization flow: repeat Step 1 and Step 2 (stacking learnable Gaussian copula). Transform data into a normal distribution.

Experiment: 2-D density estimation

Summary

- Transform simple distributions into more complex distributions via change of variables
- Jacobian of transformations should have tractable determinant for efficient learning and density estimation

• Computational tradeoffs in evaluating forward and inverse transformations