2.1. Pojem funkce a její vlastnosti. Reálná funkce f jedné reálné proměnné x je taková binární relace z množiny $\mathbf R$ do množiny $\mathbf R$, že pro každé $x \in \mathbf R$ existuje nejvýše jedno $y \in \mathbf R$, pro které $[x,y] \in f$. Množinu všech x, pro které existuje právě jedno takové y, nazýváme **definičním oborem funkce** f a značíme D_f . Množinu všech y = f(x), kde $x \in D_f$, nazýváme **oborem hodnot** funkce f a značíme H_f , .

Nechť f je reálná funkce a $J \subset D_f$. Říkáme, že funkce f je v intervalu $J \subset D_f$

- rostoucí, pravě když pro všechna $x_1, x_2 \in J : x_1 < x_2 \Longrightarrow f(x_1) < f(x_2)$;
- klesající, pravě když pro všechna $x_1, x_2 \in J : x_1 < x_2 \Longrightarrow f(x_1) > f(x_2)$;
- neklesající, pravě když pro všechna $x_1, x_2 \in J : x_1 < x_2 \Longrightarrow f(x_1) \le f(x_2)$;
- **nerostoucí**, právě když pro všechna $x_1, x_2 \in J : x_1 < x_2 \Longrightarrow f(x_1) \ge f(x_2)$;
- **prostá**, právě když pro všechna $x_1, x_2 \in J : x_1 \neq x_2 \Longrightarrow f(x_1) \neq f(x_2)$.

Je-li f prostá na svém definičním oboru, existuje **inverzní funkce** f^{-1} . Tato funkce je také prostá a platí $D_{f^{-1}} = H_f$, $H_{f^{-1}} = D_f$. Grafy funkcí f a f^{-1} jsou navzájem souměrné podle přímky y = x.

Funkce f, pro kterou platí $x \in D_f \iff (-x) \in D_f$, se nazývá

- sudá, jestliže pro všechna $x \in D_f : f(-x) = f(x)$,
- lichá, jestliže pro všechna $x \in D_f : f(-x) = -f(x)$.

Funkce f, která je definovaná v ${\bf R}$, se nazývá **periodická**, jestliže existuje T>0 tak, že pro každé $k\in {\bf Z}$ platí:

$$x \in \mathbf{R} \Rightarrow f(x + kT) = f(x)$$
.

Číslo T se nazývá **perioda funkce** f; nejmenší periodu nazýváme **základní periodou funkce** f.

2.2. Lineární funkce. Lineární funkce je funkce daná předpisem:

$$y = kx + q, \quad k, q \in \mathbf{R}, \ D_f = \mathbf{R}$$

Grafem je přímka, viz obr. 2.1 a,b,c.

Obr. 2.1 a Obr. 2.1 b

2.3. Kvadratická funkce. Kvadratická funkce je funkce daná předpisem:

$$y = ax^2 + bx + c$$
, $a, b, c \in \mathbf{R}$, $a \neq 0$, $D_f = \mathbf{R}$

Grafem je parabola s vrcholem $V=\left[-\frac{b}{2a}, f\left(-\frac{b}{2a}\right)\right]$, viz obr. $2.2\,a, b$. Kvadratická funkce není na ${f R}$ prostá.

Obr. 2.2 a Obr. 2.2 b

2.4. Lineární lomená funkce. Lineární lomená funkce je funkce daná předpisem

$$y = \frac{ax+b}{cx+d}$$
, $c \neq 0$, $ad \neq bc$, $D_f = \mathbf{R} \setminus \left\{-\frac{d}{c}\right\}$

Grafem je hyperbola se středem $S=\left[-\frac{d}{c},\frac{a}{c}\right]$, viz obr. 2.3. Asymptoty mají rovnice

$$x = -d/c, \quad y = a/c.$$

Poznámka. Je-li $\,ad=bc\,,\,\,c\neq 0\,,$ potom existuje $\,k\,$ tak, že $\,a=kc\,,\,\,b=kd\,,$ a tedy

$$y = \frac{kcx + kd}{cx + d} = \frac{k(cx + d)}{cx + d} = k$$

je konstantní funkce. Je-li $\ c=0 \,, \ d \neq 0, \ {\rm je} \ y=(a/d)x+b/d \ {\rm line \acute{a}rn\acute{i}}$ funkce.

Obr. 2.3

2.5. Řešené příklady.

1. Nakreslete grafy funkcí

a)
$$y = -3x + 1$$
, b) $y = |x - 1| - |x + 1|$
c) $y = \frac{|x| + x}{x}$, d) $y = \frac{\sqrt{x^2 + 4x + 4}}{x + 2}$.

Řešení:

a) y=-3x+1: $D_f={\bf R}$ a grafem je přímka, kterou určíme dvěma body, např. průsečíkem $\left[\frac{1}{3},0\right]$ s osou x a průsečíkem [0,1] s osou y (viz obr. 2.4).

22 Kapitola 2

Obr. 2.4

b) y = |x-1| - |x+1|: $D_f = \mathbf{R}$; body -1, 1 dělí D_f na tři intervaly $(-\infty, -1)$, $\langle -1, 1 \rangle$ a $\langle 1, \infty \rangle$ a v každém z těchto intervalů je daná funkce lineární:

$$x \in (-\infty, -1) \Longrightarrow y = -x + 1 + x + 1, \ y = 2$$
$$x \in \langle -1, 1 \rangle \Longrightarrow y = -x + 1 - x - 1, \ y = -2x$$
$$x \in \langle 1, \infty \rangle \Longrightarrow y = x - 1 - x - 1, \ y = -2.$$

Graf je nakreslen na obr. 2.5.

Obr. 2.5

c) $y = \frac{|x| + x}{x}$: $D_f = \mathbf{R} \setminus \{0\}$; postupujeme stejně jako v případě b) a dostaneme:

$$x \in (-\infty, 0) \Longrightarrow y = \frac{-x + x}{x}, \ y = 0$$

 $x \in (0, \infty) \Longrightarrow y = \frac{x + x}{x}, \ y = 2$

Graf je nakreslen na obr. 2.6.

Obr. 2.6

d) $y = \frac{\sqrt{x^2 + 4x + 4}}{x + 2}$: Je $x^2 + 4x + 4 = (x + 2)^2 \ge 0$, a tedy definičním oborem je množina $D_f = \{x; x \in \mathbf{R}, \ x + 2 \ne 0\} = \mathbf{R} \setminus \{-2\}$. Dále je:

$$y = \frac{\sqrt{x^2 + 4x + 4}}{x + 2} = \frac{\sqrt{(x+2)^2}}{x+2} = \frac{|x+2|}{x+2}$$

a tedy

$$x \in (-\infty, -2) \Longrightarrow y = \frac{-(x+2)}{x+2}, \ y = -1,$$

 $x \in (-2, \infty) \Longrightarrow y = \frac{x+2}{x+2}, \ y = 1.$

Graf jsou dvě otevřené polopřímky rovnoběžné s osou x (viz obr. 2.7).

Obr. 2.7

2. Nakreslete grafy funkcí

a)
$$y = -x^2 + 2x$$
, b) $y = |x^2 - 6x + 1|$, c) $y = x^2 - x|x - 2| - 4$, d) $y = |x^2 - 4|x| + 2|$.

24 Kapitola 2

Řešení:

a) $y=-x^2+2x$: Je $D_f={\bf R}$ a $y=-(x^2-2x)=-(x^2-2x+1)+1=-(x-1)^2+1$. Tedy grafem je parabola s vrcholem [1,1]. Dosazením x=0 dostaneme y=0, což znamená, že graf protíná osu y v počátku. Podobně řešením rovnice $y=0 \Longleftrightarrow -(x-1)^2+1=0$ zjistíme, že průsečíky s osou x jsou body [0,0] a [2,0]. Graf je nakreslen na obrázku 2.8.

Obr. 2.8

b) $y=|x^2-6x+1|$: Je $\,D_f={f R}\,$ a rovnice $\,x^2-6x+1=0\,$ má kořeny $\,3\pm2\sqrt{2}\,.$ Tedy

$$y = \begin{cases} x^2 - 6x + 1 &= (x - 3)^2 - 8 & \text{pro } x \in (-\infty, 3 - 2\sqrt{2}) \cup \langle 3 + 2\sqrt{2}, \infty), \\ -x^2 + 6x - 1 &= 8 - (x - 3)^2 & \text{pro } x \in (3 - 2\sqrt{2}, 3 + 2\sqrt{2}). \end{cases}$$

Obr. 2.9

To znamená, že část grafu dané funkce ležící nad intervalem $\langle 3-2\sqrt{2}, 3+2\sqrt{2} \rangle$ je obloukem paraboly $y=-x^2+6x-1$ a zbývající část je sjednocením dvou oblouků paraboly $y=x^2-6x+1$. Graf (viz obr. 2.9) protíná osu y v bodě [0,1] a osu x v bodech $[3-2\sqrt{2},0]$, $[3+2\sqrt{2},0]$. Vrchol středního oblouku grafu je v bodě [3,8].

c) $y = x^2 - x|x - 2| - 4$: Je $D_f = \mathbf{R}$ a

$$y = \begin{cases} x^2 - x(-x+2) - 4 &= 2x^2 - 2x - 4 = 2\left(x - \frac{1}{2}\right)^2 - \frac{9}{2} & \text{pro } x \in (-\infty, 2), \\ x^2 - x(x-2) - 4 &= 2x - 4 & \text{pro } x \in (2, \infty). \end{cases}$$

Graf dané funkce (viz obr. 2.10) je tedy sjednocením oblouku paraboly $y=2x^2-2x-4$ ležícího nad intervalem $(-\infty,2)$ a polopřímky vycházející z bodu [2,0] a obsahující bod [4,4]. Graf obsahuje vrchol oblouku paraboly, kterým je bod $\left[\frac{1}{2},-\frac{9}{2}\right]$.

Obr. 2.10

d) $y=|x^2-4|x|+2|$: Funkce je sudá s $D_f={\bf R}$. Graf je tedy souměrný podle osy y, a proto stačí vyšetřit jeho část nad intervalem $(0,\infty)$ – zbývající část získáme pomocí osové souměrnosti

Rovnice $x^2 - 4x + 2 = 0$ má kořeny $2 \pm \sqrt{2}$, takže

$$y = x^2 - 4x + 2 = (x - 2 + \sqrt{2})(x - 2 - \sqrt{2})$$

a proto

$$y = \begin{cases} x^2 - 4x + 2 &= (x - 2)^2 - 2 & \text{pro } x \in \langle 0, 2 - \sqrt{2} \rangle \cup \langle 2 + \sqrt{2}, \infty \rangle, \\ -x^2 + 4x - 2 &= 2 - (x - 2)^2 & \text{pro } x \in (2 - \sqrt{2}, 2 + \sqrt{2}). \end{cases}$$

Pravá část grafu dané funkce, tj. část ležící nad intervalem $\langle 0, \infty \rangle$, se tedy skládá ze dvou oblouků paraboly $y=x^2-4x+2$ nad intervaly $\langle 0,2-\sqrt{2} \rangle$ a $\langle 2+\sqrt{2},\infty \rangle$ a z oblouku paraboly $y=-x^2+4x-2$ nad intervalem $(2-\sqrt{2},2+\sqrt{2})$. Celý graf dané funkce se tedy skládá ze šesti oblouků čtyř různých parabol (viz obr. 2.11). Z obrázku je vidět, že graf obsahuje vrcholy dvou z těchto čtyř parabol.

26 Kapitola 2

Obr. 2.11

3. Sestrojte grafy funkcí

a)
$$y = \frac{1}{|x|}$$
, b) $y = \frac{4-x}{x+2}$.

Řešení:

a) $y = \frac{1}{|x|}$: Funkce je sudá s $D_f = \mathbf{R} \setminus \{0\}$, graf je tedy souměrný podle osy y. Pro x > 0 je $y = \frac{1}{x}$, a proto graf dané funkce je sjednocením dvou větví dvou různých rovnoosých hyperbol (viz obr. 2.12).

Obr. 2.12

b) $y = \frac{4-x}{x+2}$: Je $D_f = \mathbf{R} \setminus \{-2\}$. Ukážeme, že grafem je hyperbola. Za tímto účelem upravíme algebraický výraz, jímž je funkce definována:

$$y = -\frac{x-4}{x+2} = -\frac{x+2-6}{x+2} = -1 + \frac{6}{x+2}$$
.

Položíme-li u=x+2 a v=y+1, tj. zavedeme-li nové souřadnice, dostaneme rovnici hyperboly

$$v = \frac{6}{u}$$
.

Středem hyperboly je počátek nové souřadné soustavy a asymptotami jsou její souřadné osy. Odtud plyne, že v původní souřadné soustavě má střed hyperboly souřadnice $x_0=-2$,

> $y_0=-1\,$ a asymptoty mají rovnice $\,x=-2\,,\,\,y=-1\,.$ Průsečíky hyperboly se souřadnými osami x, y jsou body [4,0] a [0,2]. Graf dané funkce je nakreslen na obr. 2.13, kde jsou vyznačeny i souřadné osy u, v.

Obr. 2.13

2.6. Neřešené příklady.

Nakreslete (do jednoho obrázku) grafy funkcí:

1.
$$y = x$$
; $y = x + 3$; $y = x - 3$ $[(-\infty, \infty)]$

2.
$$y = x^2$$
; $y = (x-2)^2$; $y = (x+2)^2$ $[(-\infty, \infty)]$

3.
$$y = \frac{1}{x}$$
; $y = \frac{1}{x-1}$; $y = \frac{1}{x+1}$
$$[(-\infty; 0) \cup (0; \infty); (-\infty; 1) \cup (1; \infty); (-\infty; -1) \cup (-1; \infty)]$$
Nelszeelete gref funkce:

Nakreslete graf funkce:

1.
$$y = 2 + x^2$$

2.
$$y = 1 + \frac{1}{x}$$
 [$(-\infty; 0) \cup (0; \infty)$]

3.
$$y = 2 + \frac{1}{x - 2}$$
 $[(-\infty; 2) \cup (2; \infty)]$

4. a)
$$y = \frac{2x-5}{x-3}$$
, b) $y = 1 - \frac{|x-2|}{x+5}$, c) $y = \left|\frac{x+1}{x-3}\right| - 4$
$$[(-\infty; 3) \cup (3; \infty); \ (-\infty; -5) \cup (-5; \infty); \ (-\infty; 3) \cup (3; \infty)]$$

5.
$$y = |x|$$

6.
$$y = |x + |x - 1|$$
 [$(-\infty; \infty)$]

7.
$$y = |x^2 - 5x + 6|$$
 [$(-\infty, \infty)$]

8.
$$y = x^2 - 5|x| + 6$$
 [$(-\infty, \infty)$]