FULLWAVE RECTIFIER

Circuit Components:

AC voltage source, transformer unit, 1N4007 diode x 4, resistor 1k ohm, capacitor 100u Farad, inductor 1m Henry.

Definition:

A full wave rectifier converts the entire alternating current (AC) waveform into direct current (DC), unlike a half wave rectifier that only rectifies one half of the AC cycle.

It utilizes both the positive and negative halves of the input AC signal.

<u>Bridge Full Wave Rectifier</u>: Uses four diodes arranged in a bridge configuration. Each pair of diodes conducts during alternating halves of the AC cycle, making it more efficient as it doesn't require a centre-tapped transformer.

Operation:

In both types, the diodes allow current to pass only during their forward-bias state, blocking reverse current. This results in a unidirectional current output that follows the shape of the AC waveform.

The output voltage is pulsating DC, requiring filtering (often with a capacitor) to smooth it into a more constant DC voltage.

Waveforms: (simulated to 10ms)

Input waveform: Pure AC signal

Output waveform: Pulsating DC

Efficiency and Ripple Factor:

Full wave rectifiers are more efficient than half wave rectifiers (about 81% vs. 40.6% for half wave). The ripple factor, which represents the smoothness of the DC output, is lower for full wave rectifiers, making them preferable in applications requiring more stable DC output.

Applications:

Used in power supplies to convert AC to DC in various electronic devices.

Common in battery chargers, radio signals, and power distribution systems.