

A Level · Edexcel · Maths

2.5 Polynomials

2.5.1 Expanding Brackets / 2.5.2 Polynomial Division / 2.5.3 Factor Theorem / 2.5.4 Factorisation

Total Marks	/173
Very Hard (8 questions)	/41
Hard (8 questions)	/40
Medium (8 questions)	/40
Easy (12 questions)	/52

Scan here to return to the course or visit savemyexams.com

Easy Questions

- 1 Expand and simplify
 - (i) (2x+3)(x-4)

 - (ii) 2p(p+3)(p-2)(iii) $(y-1)(y-2)^2$

(5 marks)

2 Use the factor theorem to verify that (x-2) is a factor of $x^3 - x^2 - 14x + 24$.

(2 marks)

- **3** Factorise
 - (i) $4x^2 4x 15$
 - (ii) $3x^3 + 11x^2 4x$

4 Divide $x^3 + 6x^2 + 11x + 6$ by (x + 2).

(4 marks)

5 Given $f(x) = x^3 - 5x^2 - 2x + 24$ has a root at x = 3, fully factorise f(x).

(6 marks)

6 Use polynomial division to show that (x-2) is a factor of $2x^3 + 3x^2 - 18x + 8$.

(4 marks)

7 Given x = -2 is a root of the function $f(x) = x^3 - 3x^2 - 8x + 4$, fully factorise f(x).

(4 marks)

8 Given that (x-4) is a factor of $x^3 - kx^2 - 4x + 16$, find the value of k.

(3 marks)

9 Given that $x = \frac{1}{2}$ is a root of the function $f(x) = 2x^3 + (p^2 + 1)x^2 - 11x + 4$, find the possible values of p.

10 (a) Given that (x + 1) is a factor of $f(x) = x^3 - 5x^2 + 3x + 9$, fully factorise f(x).

(4 marks)

(b) Sketch the graph of y = f(x), labelling the coordinates of all points where the graph intersects the coordinate axes.

(3 marks)

11 Find the remainder when $x^3 - 7x - 6$ is divided by (x + 4).

- **12** The function f(x) is given by $f(x) = x^4 + ax^3 13x^2 38x 4b$, where a and b are constants.
 - Given that both (x + 1) and (x + 2) are factors of f(x) find the values of a and b.

(5 marks)

Medium Questions

1 (a) Expand and simplify y(2x+2)(7-x).

(1 mark)

(b) A rectangle has side lengths of (3x-2y+5) units and (x+3y-1) units. Find an expression for the area of the rectangle in terms of x and y.

(2 marks)

2 Given that $(3x + y)(2x - 3y)(x - 2y) = ax^3 + bx^2y + cxy^2 + dy^3$, where a, b, c and d are constants, find the values of a, b, c and d.

(2 marks)

3 Factorise completely $3x^3 - 51x^2 + 126x$.

(2 marks)

4 Divide $x^3 - 6x^2 - 9x + 14$ by (x - 7).

5 (a) $f(x) = 2x^3 - x^2 - 16x + 15$

Find the remainder when f(x) is divided by (x-2).

(2 marks)

(b) Given that (x + 3) is a factor of f(x), factorise f(x) completely.

6 (a) $f(x) = 2x^3 - 3x^2 - 72x - 3$	6 (a)	6 (a)	f(x)	(2) = 2x	3 - 3	x^{2} –	72x -	3	5
--------------------------------------	-------	-------	------	----------	-------	-----------	-------	---	---

Show that $f(x) = (2x + 1)(ax^2 + bx + c)$ where a, b and c are constants to be found.

(2 marks)

(b) Hence factorise f(x) completely.

(4 marks)

(c) Write down all the real roots of the equation f(x) = 0.

I(G) I(A) IA IIA 23A 3	7 ((a) f	f(x) =	$4x^{3} +$	$-4x^2$	23x-	- 3(
------------------------	-----	-------	--------	------------	---------	------	------

Use the factor theorem to show that (x + 2) is a factor of f(x).

(2 marks)

(b) Factorise
$$f(x)$$
 completely.

(4 marks)

(c) Write down all the real roots of the equation
$$f(x) = 0$$
.

8 (a) $f(x) = x^3 + 9x^2 + rx + s$. Given that f(2) = 0 and f(-1) = -54:

find the values of r and s.

(6 marks)

(b) Factorise f(x) completely.

(3 marks)

Hard Questions

1 (a) Expand and simplify (2-x)(3x+1)(x+1).

(1 mark)

(b) A square has side lengths of (5x-2y+3) units. Find an expression for the length of the diagonal of the square in terms of x and y.

(2 marks)

2 Given that $(2x-3y)^2(y-2x) = ax^3 + bx^2y + cxy^2 + dy^3$, where a, b, c and d are constants, find the values of a, b, c and d.

(2 marks)

3 Factorise completely $15x^3 + 19x^2 - 10x$.

(2 marks)

4 Divide $x^3 - 19x - 30$ by (x - 5).

5 (a) $f(x) = x^3 - 28x + 48$

Find the remainder when f(x) is divided by (x-3).

(2 marks)

(b) Given that (x + 6) is a factor of f(x), factorise f(x) completely.

6 (a) $f(x) = 6x^3 - 19x^2 + 11x + 6$

Show that $f(x) = (2x - 3)(ax^2 + bx + c)$ where a, b and c are constants to be found.

(2 marks)

(b) Hence factorise f(x) completely.

(4 marks)

(c) Write down all the real roots of the equation f(x) = 0.

7 (a) $f(x) = 4x^3 - 7x - 1$

Use the factor theorem to show that (2x + 1) is a factor of f(x).

(2 marks)

(b) Factorise
$$f(x)$$
 completely.

(4 marks)

(c) Write down all the real roots of the equation
$$f(x) = 0$$
.

8 (a) $f(x) = x^3 + rx^2 + sx - 30$. Given that f(2) = 0 and f(-3) = -240:

find the values of r and s.

(6 marks)

(b) Factorise f(x) completely.

(3 marks)

Very Hard Questions

1 (a) Expand and simplify (x+y)(x-y)(y-x)(-x-y).

(2 marks)

(b) A cuboid has a length of (2x-3y+3) units, a width of (2x+3y-3) units, and a height of (x - y) units. Find an expression for the volume of the cuboid in terms of x and y.

(2 marks)

2 Given that $(ax + by)(2x + y)(x - 3y) = 8x^3 + cx^2y + dxy^2 - 9y^3$, where a, b, c and dare constants, find the values of a, b, c and d.

(3 marks)

3 Factorise completely $x^5y - xy^5$.

(3 marks)

4 Divide $4x^4 - 37x^2 + 9$ by (2x - 1).

(3 marks)

5 (a) $f(x) = 6x^4 + 7x^3 - 27x^2 - 28x + 12$

Find the remainder when f(x) is divided by (2x + 3).

(2 marks)

(b) Given that (x + 2) is a factor of f(x), factorise f(x) completely.

(5 marks)

6 (a) $f(x) = 3x^4 + x^3 - 12x^2 - 49x - 15$

Show that $f(x) = (3x + 1)(ax^3 + bx^2 + cx + d)$ where a, b, c and d are constants to be found.

(2 marks)

(b) Given that (x-3) is a factor of f(x), factorise f(x) completely.

(5 marks)

(c) Hence show that the equation f(x) = 0 has exactly 2 real roots.

(2 marks)

7 Given that 3 is a root of the equation $2x^3 - x^2 - 11x - 12 = 0$, prove that the equation has no other real roots.

8 (a)
$$f(x) = 2x^4 - 15x^3 - 10x^2 + 105x + 98$$

Show that f(-1) = 0 and f(-2) = 0.

(1 mark)

(b) Hence, solve f(x) = 0.

(7 marks)