

Algorithm Analysis

CS 1.3 - Core Data Structures

What is algorithm analysis?

In Computer Science, **algorithm analysis** is the study of the performance of algorithms. It answers the question on how many resources an algorithm consumes.

Your program requires **resources** that come in the form of:

- 1. Time
- 2. Space

So in other words, we need to question:

- 1. How much **time** does it take for an algorithm to run?
- 2. How much **space** does it take for an algorithm to run?

Time Complexity

Space Complexity

Importance of Algorithm Analysis

- Estimate how much time required to run an algorithm
- Estimate how much space required to run an algorithm
- Compare the performance of different algorithms without being reliant on specific configurations and hardware.
- Analyze how the time changes when the input size grows
- Helps choose the most efficient algorithm to solve a particular problem

Example: An algorithm that takes too long to run could render results that are outdated or useless to a program that require time-sensitive information.

Time Complexity

What is time complexity?

The time complexity of an algorithm is the amount of time taken by the algorithm to complete its process as a function of its input length, *n*.

What is time complexity?

The time complexity of an algorithm is the amount of time taken by the algorithm to complete its process as a function of its input length, n.

Refers to functions in mathematics: f(x)

Math

Time Complexity

For time complexity, input is labeled as "n", the function machine is labeled as "T" to stand for time, and the output therefore is T(n).

Time Complexity

Size of input or "n"

The time complexity of an algorithm is commonly expressed using **asymptotic notations**.

The time complexity of an algorithm is commonly expressed using **asymptotic notations**.

Math Review: Asymptotes

What is an Asymptote?

The time complexity of an algorithm is commonly expressed using **asymptotic notations**.

There are three common asymptotic notations:

- Big O
- Big Theta
- Big Omega

Big OUpper Bound Asymptote
"Worst Case"

 $\operatorname{Big} \Omega$ Lower Bound Asymptote "Best Case"

Big θAverage Bound Asymptote
"Average Case"

Sequential Search / Linear Search

- Best Case (Big Ω): Target value is at index 0.
- Worst Case (Big O): Target value is not in list.
- Average Case (Big θ): Target value in middle of list

Binary Search

- Best Case (Big Ω): Target value is in middle.
- Worst Case (Big O): Target value is not in list.
- Average Case (Big θ): Target value in middle of list

Big OUpper Bound Asymptote
"Worst Case"

Big O Notation

Using not-boring math to measure code's efficiency

20 minute pair breakout

1. Read the linked article

- 2. Answer the following questions in your group:
 - a. When should you optimize
 an algorithm for an early
 stage product?
 - b. When should you optimize an algorithm for a popular product?
 - c. Should all algorithms be optimized? Why or why not?Defend your answer.

Big OUpper Bound Asymptote
"Worst Case"

Big Ω Lower Bound Asymptote "Best Case"

Big θAverage Bound Asymptote
"Average Case"

Time complexity estimates the time to run an algorithm. It's calculated by counting elementary operations.

Big O Counting Rules

- **O(1)** set of non-recursive and non-loop statements.
- **O(n)** loops that are incremented/decremented by a constant rate
- **O(n^c)** number of times the innermost statement is executed. (2 for-loops would be $O(n^2)$
- O(log n) loop variables are divided by a constant amount.
- O(log log n) loop variable is reduced/increased exponentially.


```
def sum_list(num_lst):
    total = 0
    for num in num_list:
        total += num
    return total
```

$$T(n) =$$


```
def sum_list(num_lst):
    total = 0
    for num in num_list:
        total += num
    return total
```

$$T(n) = O(1) +$$


```
def sum_list(num_lst):
    total = 0

    for num in num_list:
        total += num

    return total
```

$$T(n) = O(1) + O(n) +$$


```
def sum_list(num_lst):
    total = 0
    for num in num_list:
        total += num
    return total
```

$$T(n) = O(1) + O(n) + O(1)$$

$$T(n) = O(1) + O(n) + O(1)$$

Simplifies to....

$$T(n) = O(n) + O(2)$$

But Big O simplifies this even more...

$$T(n) = O(n)$$

General Counting Rules for Big O 😭

- Ignore constants, for example:
 - O(2) is reduced to O(1)
 - O(2n) is reduced to O(n)
 - $O(2 \log n)$ is reduced to $O(\log n)$
- We only care about the most dominant term in the equation.

Here is the order of dominance:

$$O(1) < O(logn) < O(n) < O(nlogn) < O(n^2) < O(2^n) < O(n!)$$

General Counting Rules for Big O

• Ignore constants, for example:

- o O(2) is O(1)
- o O(2n) is O(n)
- O(n/2) is O(n)
- We only care about the most dominant term in the equation.

Here is the order of dominance:

$$O(1) < O(logn) < O(n) < O(nlogn) < O(n^2) < O(2^n) < O(n!)$$

Big Theta and Omega

Asymptotic Notation

So far we have only learned about big O but there's more to the story...

- Big-⊖ notation: tight bound
- Big- Ω notation: lower bound
- Big O notation: upper bound

The term asymptotic means approaching a value or curve arbitrarily closely (i.e., as some sort of limit is taken).

From Khan Academy

 $\Theta(g(n)) = \{f(n): \text{ there exist positive }$ constants c1, c2 and n0 such that 0
<= c1*g(n) <= f(n) <= c2*g(n) for all n >= n0\}

From Khan Academy

From Khan Academy

A comparison

Space Complexity

What is space complexity?

The space complexity is the amount of space (i.e. memory) taken by the algorithm to run as a function of its input length, *n*.

What is space complexity?

The space complexity is the amount of space (i.e. memory) taken by the algorithm to run as a function of its input length, *n*.

Refers to functions in mathematics: f(x)

Space includes:

- Space used by the input, *n*.
- Auxiliary space.

Space Complexity

Resources & Credits

Resources & Credits

- Big O Notation: Interview Cake