BÀI TẬP TÍCH VÔ HƯỚNG CỦA HAI VECTO

Dạng 1:Tính tích vô hướng của hai vectơ

Bàì 1: Cho Δ*ABC* đều, cạnh bằng a, đường cao AH. Tính các tích vô hướng sau:

a)
$$\overrightarrow{ABAC}$$
; $(2\overrightarrow{AB})(3\overrightarrow{HC})$ \overrightarrow{DS} : $\frac{a^2}{2}$; $-\frac{3a^2}{2}$ b) $(\overrightarrow{AB} - \overrightarrow{AC})(2\overrightarrow{AB} + \overrightarrow{BC})$ \overrightarrow{DS} :

Bài 2: Cho $\triangle ABC$ có BC = a, CA= b, AB = c.

a) Tính \overrightarrow{ABAC} theo a, b, c. Từ đó suy ra: $\overrightarrow{ABBC} + \overrightarrow{BCCA} + \overrightarrow{CAAB}$.

$$\text{DS} \ \frac{b^2 + c^2 - a^2}{2}; \dots$$

b) Gọi G là trọng tâm của $\triangle ABC$, tính độ dài AG và cosin của góc nhon tạo bởi AG và BC.

Bài 3: Cho hình thang vuông ABCD, đường cao AB = 2a, đáy lớn BC = 3a, đáy nhỏ AD = 2a.

- a) Tính $\overrightarrow{AB}.\overrightarrow{CD}; \overrightarrow{BD}.\overrightarrow{BC}; \overrightarrow{AC}.\overrightarrow{BD}$
- b) Gọi I là trung điểm của CD, tính $\overrightarrow{AI}.\overrightarrow{BD}$. Từ đó suy ra góc của AI và BD.

Bài 4: Cho hình vuông ABCD cạnh a. Tính các TVH sau:

a)
$$\overrightarrow{ABAC}$$
; $\overrightarrow{AB}.\overrightarrow{BD}$ b) $(\overrightarrow{AB} + \overrightarrow{AD})(\overrightarrow{BD} + \overrightarrow{BC})$; $(\overrightarrow{AB} - \overrightarrow{AC})(\overrightarrow{AB} - 2\overrightarrow{AD})$

c) $(\overrightarrow{AB} + \overrightarrow{AC} + \overrightarrow{AD})(\overrightarrow{DA} + \overrightarrow{DB} + \overrightarrow{DC})$ d) $\overrightarrow{MA}.\overrightarrow{MB} + \overrightarrow{MC}.\overrightarrow{MD}$, M là điểm bất kì trên đường tròn nội tiếp hình vuông.

Bài 5: Cho $\triangle ABC$ có BC = 4, CA= 3, AB = 2. Tính

- a) $\overrightarrow{AB}\overrightarrow{AC}$. Suy ra cosA
- b) Gọi G là trọng tâm của $\triangle ABC$, tính $\overrightarrow{AG}.\overrightarrow{BC}$
- c) Tính $\overrightarrow{GA}.\overrightarrow{GB} + \overrightarrow{GB}.\overrightarrow{GC} + \overrightarrow{GC}.\overrightarrow{GA}$

1

d) Gọi D là chân đường phân giác trong của góc A. Tính \overrightarrow{AD} theo $\overrightarrow{AB}, \overrightarrow{AC}$; độ dài của AD

Bài 6: Cho $\triangle ABC$ có BC = 6, AB = 5 và $\overrightarrow{BC}.\overrightarrow{BA}$ = 24.

- a) Tính $S_{\Delta ABC}$; AC
- b) Tính độ dài trung tuyến BM và cosin của góc nhọn tạo bởi BM và đường cao AH.

Bài 7: Cho MM' là đường kính bất kỳ của đường tròn tâm O, bán kính R. A là điểm cố định và OA = d. AM cắt (O) tại N. CMR $\overrightarrow{AM}.\overrightarrow{AM}$ '; $\overrightarrow{AM}.\overrightarrow{AM}$ có giá trị không phụ thuộc vào M.

Bài 8: Cho 2 vecto \vec{a} , \vec{b} thoả mãn: $|\vec{a}| = 1$, $|\vec{b}| = 2$, $|\vec{a} - 2\vec{b}| = \sqrt{15}$.

- a) Tính $\vec{a}\vec{b}$ b) Xác định k để góc giữa $(\vec{a}+\vec{b}),(2k\vec{a}-\vec{b})$ bằng 60° .
- **Bài 9:** Cho $\triangle ABC$ vuông có cạnh huyền $BC = a\sqrt{3}$. Gọi AM là trung tuyến, biết $\overrightarrow{AM}.\overrightarrow{BC}\frac{1}{2}a^2$.

Tính đô dài AB và AC.

Bài 10: Cho hình thang vuông ABCD, đường cao AB. Biết $\overrightarrow{AC}.\overrightarrow{AB} = 4a^2, \overrightarrow{CA}.\overrightarrow{CB} = 9a^2, \overrightarrow{CB}.\overrightarrow{CD} = 6a^2$.

- a) Tính các cạnh của hình thang
- b) Gọi IJ là đường trung bình của hình thang, tính độ dài hình chiếu của IJ trên BD.
- c) Gọi M là điểm trên AC và $\overrightarrow{AM} = k\overrightarrow{AC}$. Tính k để BM \perp CD.

Dạng 2: Chứng minh một đẳng thức về TVH hay tích độ dài

Bài 1: Cho $\triangle ABC$, G là trọng tâm. CMR

a) $\overrightarrow{MA}.\overrightarrow{BC} + \overrightarrow{MB}.\overrightarrow{CA} + \overrightarrow{MC}.\overrightarrow{AB} = 0$

b)
$$MA^2 + MB^2 + MC^2 = 3MG^2 + GA^2 + GB^2 + GC^2$$
, M bất kỳ. Suy ra $MA^2 + MB^2 + MC^2$ đạt GTNN

Bài 2: Cho ΔABC, M là trung điểm BC và H là trực tâm. CMR

a)
$$\overrightarrow{MH}.\overrightarrow{MA} = \frac{1}{4}BC^2$$

B)
$$MA^2 + MH^2 = AH^2 + \frac{1}{2}BC^2$$

Bài 3: Cho hình chữ nhật ABCD, M tuỳ ý. CMR

a)
$$MA^2 + MC^2 = MB^2 + MD^2$$

b)
$$\overrightarrow{MA}.\overrightarrow{MC} = \overrightarrow{MB}.\overrightarrow{MD}$$

b)
$$\overrightarrow{MA}.\overrightarrow{MC} = \overrightarrow{MB}.\overrightarrow{MD}$$
 c) $MA^2 = 2\overrightarrow{MA}.\overrightarrow{MO}$, O

là tâm hen và M thuộc đường tròn ngoại tiếp hen.

Bài 4: CMR ABCD là hbh khi và chỉ khi $\overrightarrow{AB}.\overrightarrow{AD} + \overrightarrow{BA}.\overrightarrow{BC} + \overrightarrow{CB}.\overrightarrow{CD} + \overrightarrow{DC}.\overrightarrow{DA} = 0$.

Bài 5: Cho tứ giác ABCD có P, Q là trung điểm của 2 đường chéo. CMR

a)
$$\overrightarrow{AB}.\overrightarrow{CD} = \frac{1}{2}(AD^2 + BC^2 - AC^2 - DB^2)$$

b)
$$AB^2 + BC^2 + CD^2 + DA^2 = AC^2 + BD^2 + 4PQ^2$$

Bài 6: Cho hbh ABCD, M tuỳ ý. CMR

a)
$$MA^2 + MC^2 - MB^2 = MD^2 + 2DA^2 - DB^2$$

b) M di động trên đường thẳng d, xác định vị trí của M để $MA^2 + MC^2 - MB^2$ đat GTNN

Bài 7: Cho $\triangle ABC$, M tuỳ ý.

- a) CMR $\vec{m} = \vec{MA} + \vec{MB} 2\vec{MC}$ không phu thuộc vào vi trí của M.
- b) Gọi O là tâm đường tròn ngoại tiếp ΔABC. CMR

$$MA^2 + MB^2 - 2MC^2 = 2\overrightarrow{MO}.\overrightarrow{m}$$

- c) Tìm quỹ tích các điểm M thoả mãn $MA^2 + MB^2 = 2MC^2$
- d) M di động trên đường tròn ngoại tiếp ΔABC, tìm vị trí của M để $MA^2 + MB^2 - 2MC^2$ dat GTNN, GTLN.

Bài 8: Cho ΔABC, I là trung điểm của trung tuyến AM. CMR

$$2AM^{2} + MB^{2} + MC^{2} = 4MI^{2} + 2IA^{2} + IB^{2} + IC^{2}$$

Bài 9: Cho $\triangle ABC$ đều cạnh a, M thuộc đường tròn ngoại tiếp $\triangle ABC$.

Tìm GTLN, GTNN của $MA^2 - MB^2 - MC^2$

Bài 10: Cho ΔABC , trung tuyễn AM, đường cao AH. CMR

a)
$$\overrightarrow{AB}.\overrightarrow{AC} = AM^2 - \frac{BC^2}{4} = \frac{1}{2}(AB^2 + AC^2 - BC^2)$$
; b) $AB^2 + AC^2 = 2AM^2 + \frac{AB^2}{2}$

b)
$$AB^2 + AC^2 = 2AM^2 + \frac{AB^2}{2}$$

c)
$$AB^2 - AC^2 = 2AB.MH$$

d)
$$s_{ABC} = \sqrt{AB^2 \cdot AC^2 - (\overrightarrow{AB} \cdot \overrightarrow{AC})}$$

Dạng 3: Chứng minh hai vecto vuông góc- Thiết lập điều kiện vuông góc

Bài 1: CMR trong tam giác ba đường cao đồng quy.

Bài 2: Cho ΔABC cân tại A, O là tâm đường tròn ngoại tiếp. Gọi D là trung điểm của AB và E là trọng tâm $\triangle ACD$. CMR OE \perp CD.

Bài 3: Cho hình thang vuông ABCD, đường cao AD = h, cạnh đáy AB = a, CD = b. Tìm hệ thức giữa a, b, h sao cho:

a)
$$AC \perp BD$$

b)
$$BD \perp AM$$
, với AM là trung tuyến của ΔABC

Bài 4: Cho $\triangle ABC$ vuông tại A có AB = c, AC = b. Tìm điểm D trên AC sao cho $BD \perp AM$, với AM là trung tuyến của

Bài 5: Cho hình thang vuông ABCD, đường cao AB= h, cạnh đáy AD = a, BC = b. Tìm hệ thức giữa a, b, h sao cho:

a)
$$\widehat{CID} = 90^{\circ}$$
, với I là trung điểm của AB. b) $BD \perp CI$

b)
$$BD \perp CI$$

c)
$$DI \perp AC$$

d) Trung tuyến BM của ΔABC vuông góc với trung tuyến CN của ΔBCD

Bài 6: Cho $\triangle ABC$ nội tiếp đường tròn tâm O. Gọi BH và CK lần lượt là đường cao của $\triangle ABC$. CMR $OA \perp HK$

Bài 7: Cho 2 vecto \vec{a} , \vec{b} với $|\vec{a}| = |\vec{b}|$. Tìm góc giữa chúng biết rằng $\vec{p} = \vec{a} + 2\vec{b} \perp \vec{a} = \vec{5}\vec{a} - 4\vec{b}$.

Dạng 4: Tập hợp điểm thoả mãn đẳng thức về TVH hay tích độ dài.

Bài 1: Cho Δ*ABC*, tìm tập hợp những điểm M thoả mãn:

a)
$$\overrightarrow{MA}.\overrightarrow{MB} = k$$
, k là số cho trước.

b)
$$MA^2 + \overrightarrow{MA}.\overrightarrow{MB} = 0$$

c)
$$MB^2 + \overrightarrow{MA}.\overrightarrow{MB} = a^2 \text{ v\'oi BC} = a.$$

Bài 2: Cho $\triangle ABC$, tìm tập hợp những điểm M thoả mãn:

a)
$$\overrightarrow{AM}.\overrightarrow{BC} = k$$
, k là số cho trước. b) $MA^2 - MB^2 + CA^2 - CB^2 = 0$

b)
$$MA^2 - MB^2 + CA^2 - CB^2 = 0$$

c)
$$MC^2 - MB^2 + BC^2 = \overrightarrow{MA}.\overrightarrow{MB} - \overrightarrow{MA}.\overrightarrow{MC}$$
 d) $3MA^2 = 2MB^2 + MC^2$

d)
$$3MA^2 = 2MB^2 + MC^2$$

Bài 3: Cho đoạn AB. Tìm tập hợp điểm M thoả mãn:

a)
$$MA^2 - 2MB^2 = k$$
, k cho trước b) $3MA^2 + MB^2 = AB^2$ c) $2MA^2 = MA.MB$

b)
$$3MA^2 + MB^2 = AB^2$$

c)
$$2MA^2 = MA.MB$$

Bài 4: Cho $\triangle ABC$, tìm tập hợp những điểm M thoả mãn:

a)
$$(\overrightarrow{MA} - \overrightarrow{MB})(2\overrightarrow{MB} - \overrightarrow{MC}) = 0$$
 b) $2MA^2 + \overrightarrow{MA}.\overrightarrow{MB} - \overrightarrow{MA}.\overrightarrow{MC} = 0$

b)
$$2MA^2 + \overrightarrow{MA}.\overrightarrow{MB} - \overrightarrow{MA}.\overrightarrow{MC} = 0$$

c)
$$\overrightarrow{MA}.\overrightarrow{MB} = \overrightarrow{AB}.\overrightarrow{MC}$$

d)
$$MA^2 + MB^2 + MC^2 = AB^2 + AC^2$$

Bài 5: Cho hình vuông ABCD cạnh bằng a, tìm tập hợp những điểm M thoả mãn:

a)
$$\overrightarrow{MD}.\overrightarrow{MB} + \overrightarrow{MA}.\overrightarrow{MC} = a^2$$

b)
$$\overrightarrow{MA}.\overrightarrow{MB} + \overrightarrow{MD}.\overrightarrow{MC} = 3a^2$$

c)
$$(\overrightarrow{MA} + \overrightarrow{MB} - \overrightarrow{MC})(\overrightarrow{MA} - \overrightarrow{MD}) = 0$$
 d) $MA^2 - MB^2 + MC^2 = a^2$

d)
$$MA^2 - MB^2 + MC^2 = a^2$$