Analyzing Non-linear Ordinary Differential Equations

MATH 26600

Rutuj Gavankar

1 Introduction

1.1 Linearizing a system

A system of linear differential equations is easy to analyze and has analytical solutions in most cases. To analyze as system of non-linear equations, the system must be linearized. Let

$$\frac{\mathrm{d}x}{\mathrm{d}t} = F(x, y) \tag{1}$$

$$\frac{\mathrm{d}y}{\mathrm{d}t} = G(x, y) \tag{2}$$

be a system of first-order differential equations. The steady-state solutions of this system are the solutions for which x(t) and y(t) are invariant. That is to say,

$$F(x,y) = 0 (3)$$

$$G(x,y) = 0 (4)$$

We can analyzing this system around these equilibrium points by making linear approximations of the function around these points. Using first order Taylor series expansion for F and G we get

$$F(x,y) \approx F(x_0, y_0) + F_x(x_0, y_0)(x - x_0) + F_y(x_0, y_0)(y - y_0)$$
(5)

$$G(x,y) \approx G(x_0, y_0) + G_x(x_0, y_0)(x - x_0) + G_y(x_0, y_0)(y - y_0)$$
(6)

Where x_0 and y_0 are the equilibrium points for the system. The system can be re-written in matrix-vector notation as

$$\begin{bmatrix} \frac{\mathrm{d}x}{\mathrm{d}t} \\ \frac{\mathrm{d}y}{\mathrm{d}t} \end{bmatrix} = \begin{bmatrix} F_x(x_0, y_0) & F_y(x_0, y_0) \\ G_x(x_0, y_0) & G_y(x_0, y_0) \end{bmatrix} \begin{bmatrix} x - x_0 \\ y - y_0 \end{bmatrix}$$
 (7)

Now, let $x - x_0$ be u and $y - y_0$ be v, and \vec{v} be the vector $\langle u, v \rangle$

$$\therefore \frac{\mathrm{d}\vec{v}}{\mathrm{d}t} = J\vec{v} \tag{8}$$

Where J is the Jacobian matrix,

$$J = \begin{bmatrix} F_x(x_0, y_0) & F_y(x_0, y_0) \\ G_x(x_0, y_0) & G_y(x_0, y_0) \end{bmatrix}$$

Now, Eq. 8 is an eigenvalue problem. The local stability and the behaviour of the system around the equilibrium points can be inferred from the eigenvalues of J.

1.2 Characterizing a system

Near the equilibrium points, the non-linear system has similar behavior to the linear approximation, and thus, the stability of the system can be analyzed by analyzing the eigenvalues of the system. Let $\lambda_{1,2}$ be the eigenvalues of the system.

- 1. If the eigenvalues of the system are real and positive at an equilibrium point, $(\lambda_{1,2} > 0)$, the point is a *nodal-source*. The solutions tend to diverge away from this point. The system is unstable around this point.
- 2. If the eigenvalues of the system are real and negative at an equilibrium point, $(\lambda_{1,2} < 0)$, the point is a *nodal-sink*. The solutions tend to converge towards this point. The system is stable around this point.
- 3. If the eigenvalues of the system are real, but $\lambda_1 < 0$ and $\lambda_2 > 0$, the point is a saddle point. The solutions tend to diverge away from this point. The system is unstable around this point.
- 4. If the eigenvalues of the system imaginary, $(\lambda_{1,2} = \pm ki)$, the point is a *center*. The solutions tend to oscillate around this point. The system is stable around this point.
- 5. If the eigenvalues of the system are complex, $(\lambda_{1,2} = a \pm bi)$, and Re $\{\lambda_{1,2}\} > 0$, the point is a *spiral-source*. The solutions tend to spiral-out from the equilibrium point. The system is unstable around this point.
- 6. If the eigenvalues of the system are complex, $(\lambda_{1,2} = a \pm bi)$, and Re $\{\lambda_{1,2}\}$ < 0, the point is a *spiral-source*. The solutions tend to spiral-in to the equilibrium point. The system is stable around this point.

1.3 Quantitative Analysis of a System

1.4 Examples and Solutions

Example 1. [1, p. 488] Consider the system for $(x, y \ge 0)$

$$\frac{\mathrm{d}x}{\mathrm{d}t} = x(10 - x - y)$$

$$\frac{\mathrm{d}y}{\mathrm{d}t} = y(30 - 2x - y)$$

The Jacobian of the system is

$$J = \begin{bmatrix} 10 - 2x - y & -x \\ -2y & 30 - 2x - 2y \end{bmatrix}$$

The system has equilibrium points at (0,0), (10,0), (0,30). Analyzing the system at (0,0),

$$J|_{(0,0)} = \begin{bmatrix} 10 & 0\\ 0 & 30 \end{bmatrix}$$

Since J is a diagonal matrix, the eigenvalues of J are the elements along its diagonal. That is, $\lambda_{1,2} = \{10,30\}$. Since both the eigenvalues are real and positive, the point (0,0) is a nodal-source. Similarly, analyzing the system at (10,0),

$$J|_{(10,0)} = \begin{bmatrix} -10 & -10 \\ 0 & 10 \end{bmatrix}$$

The eigenvalues of J are $\lambda_{1,2} = \{-10, 10\}$. Since both the eigenvalues are real and nonzero, and $\lambda_1 < 0, \lambda_2 > 0$, the point (10,0) is a saddle point. Now analyzing the system at (0,30),

$$J|_{(0,30)} = \begin{bmatrix} -20 & 0\\ -60 & -30 \end{bmatrix}$$

The eigenvalues for J are $\lambda_{1,2} = \{-30, -20\}$. Since both eigenvalues are real and negative, (0,30) is a nodal-sink. Now to graphically analyze the system, the nullclines can be plotted in the phase plane. To find the horizontal nullclines,

$$\frac{\mathrm{d}x}{\mathrm{d}t} = 0$$

$$\therefore x(10 - x - y) = 0$$

That is, x = 0 or y = 10 - x. To find the vertical nullclines,

$$\frac{\mathrm{d}y}{\mathrm{d}t} = 0$$
$$\therefore y(30 - 2x - y) = 0$$

That is, y = 0 or y = 30 - 2x. The nullclines intersect at (0,0), (10,0), (15,0), (0,30), which are the steady-state points of this system.

Figure 1: Nullclines and vector fields

Example 2. [1, p. 488] Consider the system for $(x, y \ge 0)$

$$\frac{\mathrm{d}x}{\mathrm{d}t} = x(2 - x - y)$$

$$\frac{\mathrm{d}y}{\mathrm{d}t} = y(y - x^2)$$

The Jacobian of the system is

$$J = \begin{bmatrix} 2 - 2x - y & -x \\ -2xy & 2y - x^2 \end{bmatrix}$$

Steady-states in the region $(x,y\geq 0)$ are (0,0) , (1,1) and (2,0). Analyzing point (0,0),

$$J = \begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix}$$

The eigenvalues of J are $\lambda_{1,2}=\{2,0\}$

Figure 2: Nullclines and vector fields

Example 3. [1, p. 487]

$$\frac{\mathrm{d}x}{\mathrm{d}t} = x(x-1)$$
$$\frac{\mathrm{d}y}{\mathrm{d}t} = x^2 - y$$

For

1.
$$x_0 = -1, y_0 = 0$$

$$2. \ x_0 = 0.8, \ y_0 = 0$$

3.
$$x_0 = 1, y_0 = 3$$

Figure 3: Solution Curves and Nullclines

Figure 3 shows the solution curves in the xy-plane with t as an implicit parameter. The direction of the arrows shows the tendancy of the solutions as $t \to \infty$. The above system has x-nullclines at x = 0 and x = 1 and y-nullclines at $y = x^2$. The interesection points of the nullclines are the steady-states of the system.

2 Hamiltonian Systems

2.1 Conserved Quantities

A real-valued function H(x,y) is a conserved quantity if

$$\frac{\mathrm{d}}{\mathrm{d}t}H(x(t),y(t)=0\tag{9}$$

A system of differential equations is called a *Hamiltonian system* if there exists a real-valued function H(x, y) such that

$$\frac{\mathrm{d}x}{\mathrm{d}t} = \frac{\partial H}{\partial y} \tag{10}$$

$$\frac{\mathrm{d}y}{\mathrm{d}t} = \frac{\partial H}{\partial x} \tag{11}$$

2.2 Examples

Example 1.

$$\frac{\mathrm{d}x}{\mathrm{d}t} = y$$
$$\frac{\mathrm{d}y}{\mathrm{d}t} = x^2 - a$$

Where a is a parameter.

Solution

$$H(x,y) = \frac{y^2}{2} - \frac{x^3}{3} + ax$$

To verify that this system is a Hamiltonian system if H is the Hamiltonian function,

$$\frac{\partial}{\partial y}H(x,y) = y$$
$$= \frac{\mathrm{d}x}{\mathrm{d}t}$$

And,

$$-\frac{\partial}{\partial x}H(x,y) = x^2 - a$$
$$= \frac{\mathrm{d}y}{\mathrm{d}t}$$

Since $H_x(x,y) = -y'(t)$ and $H_y(x,y) = x'(t)$, the system is Hamiltonian for H(x,y) as the Hamiltonian function (From Eq. 10 and Eq. 11).

3 Dissipative Systems

References

[1] Paul Blanchard, Robert L. Devaney, and Glen R. Hall. *Differential equations*. Boston, MA: Brooks/Cole, Cengage Learning, 2012., 2012.