Video classification with keras

딥러닝스터디 2020-10-21 이 예 림

Video? A series of individual images!

```
Video classification = N images classification (N = \# of frames)
```

Video? A series of individual images!

```
Video classification N = \# of frames)
```

Video? A series of individual images!

```
Video classification = N images classification (N = \# of frames)
```

Subsequent frames are correlated with *semantic contents*.

> Temporal dimension > video classification results improval

(i.e., LSTM, RNN ···)

Video? A series of individual images!

```
Video classification = N images classification (N = \# of frames)
```

Subsequent frames are correlated with *semantic contents*.

> Temporal dimension > video classification results improval

(i.e., LSTM, RNN ···)

Rolling prediction averaging!

Image classification (CNN) > Video classification (Rolling averaging)

Image classification

- 1. Input: Image
- 2. Prediction
- 3. The largest corresponding probability >> The label

Video classification

- 1. Input: Frame
- 2. Loop over all frames
- 3. Prediction individually and independently
- 4. The largest corresponding probability >> The label

"Prediction flickering"

Image classification

- 1. Input: Image
- 2. Prediction
- 3. The largest corresponding probability >> The label

Video classification

- 1. Input: Frame
- 2. Loop over all frames
- 3. Prediction individually and independently
- 4. A list of the last *K* predictions
- 5. The average of the last *K* predictions
- 6. The largest corresponding probability >> The label

"Smooting out"

The sports classification dataset

1.Swimming	12.Gymnasium
2.Badminton	13.Weight lifting
3.Wrestling	14.Volleyball
4.Olympic Shooting	15.Table tennis
5.Cricket	16.Baseball
6.Football	17.Formula 1
7.Tennis	18.Moto GP

8.Hockey

9.Ice Hockey

10.Kabaddi

11.WWE

19.Chess

20.Boxing

21.Fencing

22.Basketba

The sports classification dataset

1.Swimming 12.Gymnasium

2.Badminton 13.Weight lifting

3.Wrestling 14.Volleyball

4.Olympic Shooting 15.Table tennis

5.Cricket 16.Baseball

6.Football 17.Formula 1

7.Tennis 18.Moto GP

8.Hockey 19.Chess

9.lce Hockey 20.Boxing

10.Kabaddi 21.Fencing

11.WWE 22.Basketba

- 1. Take a network pre-trained on a dataset.
- 2. Utilize the network to recognize image/object categories it was not trained on.

Advantages?

- Train a network with a new dataset > Cost + time loss, Not working
- Hundred of parameters

Two steps of transfer learning

- 1. Via feature extraction
 - Pre-trained network = Feature extractor
- 2. Via fine-tuning

Q. 무조건 좋을까?

Feature extraction이 어떻게 되는 것에 따라 다르다. 데이터의 분포(특성)이 다를 경우

VGG16

ResNet-50

- 2015 ImageNet Large Scale Visual Recognition Challenge(ILSVRC) winner.
- Developed by Microsoft
- "Deep Residual Learning for Image Recognition" (Kaiming He et al.,)
- Gradient vanishing >> Residual block (skip connection)

ImageNet Classification top-5 error (%)

ResNet-50

- 2015 ImageNet Large Scale Visual Recognition Challenge(ILSVRC) winner.
- Developed by Microsoft
- "Deep Residual Learning for Image Recognition" (Kaiming He et al.,)
- Gradient vanishing >> Residual block (skip connection)

Residual block

ResNet-50

layer name	output size	18-layer	34-layer	50-layer	101-layer	152-layer	
conv1	112×112	/×1, 64, stride 2					
		3×3 max pool, stride 2					
conv2_x	56×56	$\left[\begin{array}{c} 3\times3,64\\ 3\times3,64 \end{array}\right]\times2$	$\left[\begin{array}{c} 3\times3,64\\ 3\times3,64 \end{array}\right]\times3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	
conv3_x	28×28	$\left[\begin{array}{c} 3\times3,128\\ 3\times3,128 \end{array}\right]\times2$	$\left[\begin{array}{c} 3\times3,128\\ 3\times3,128 \end{array}\right]\times4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4$	\[\begin{pmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{pmatrix} \times 8	
conv4_x	14×14	$\left[\begin{array}{c} 3\times3,256\\ 3\times3,256 \end{array}\right]\times2$	$\left[\begin{array}{c} 3 \times 3, 256 \\ 3 \times 3, 256 \end{array}\right] \times 6$	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 6$	\[\begin{array}{c} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{array} \] \times 23	\[\begin{array}{c} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{array} \] \times 36	
conv5_x	7×7	$\left[\begin{array}{c} 3\times3,512\\ 3\times3,512 \end{array}\right]\times2$	$\left[\begin{array}{c}3\times3,512\\3\times3,512\end{array}\right]\times3$	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$	
	1×1	average pool, 1000-d fc, softmax					
FL(OPs	1.8×10 ⁹	3.6×10^{9}	3.8×10^{9}	7.6×10^9	11.3×10 ⁹	