Deep Learning for Electronic Health Record Prediction

Hao Liu Chunyuan Li Ricardo Henao

Duke University

May 22, 2017

Outline

- Problem Description
 - Task Description
 - Data Description
- 2 Data Preprocess
- 3 Preliminary Result and Future Work

Feature

- At day0, every people are given injected a virus. And given the electronic health record of several days before day0, we want to know these people's symptom after day0.
- real value time series data stored in HDF5 format

Feature

- 19 people, every person has a time series data of length about 200000, which is a record of 3 days.
- time series record contains TEMP.csv:temperature in Celsius EDA.csv:electrodermal activity in microsiemens BVP.csv:blood volume pressure ACC.csv:accelerometer,3-axis,acceleration(1/64g) IBI.csv:inter beat interval in seconds HR.csv:hearth rate from BVP in Hz

 $\bullet~1\times4$ vector for 4 days' shedding titer after day0

mean	[0.22, 1.74, 2.05, 1.63]
variance	[0.91, 2.78, 2.44, 2.17]
median	[-0.5, 1.45, 2.7, 1.7]
min	[-0.5, -0.5, -0.5, -0.5]
max	[2.2, 4.7, 4.7, 4.2]

Data Preprocess

Data Augmentation

- upsampling to augment the data
- normalize the feature
- get 374 data, each with a 20000×7 feature, and a 1×4 label.

Already Done

- Read the data from the dataset
- Data Preprocess
- Implementing seq2seq, 1D CNN, 1D ResNet and get a preliminary result

Already Done

Model

• Seq2Seq(depth = 3)

- 1D CNN (10 layers)
- 1D ResNet (8 layers)

Already Done

Preliminary Result

• 10 fold cross validation

	without Normalization on data feature					
		Loss(MAE)	Correlation	Num of Parameters		
•	Seq2Seq	1.33 ± 0.12	0.42 ± 0.05	976		
	1D CNN	1.74 ± 0.70	0.26 ± 0.34	1175		
	1D ResNet	1.25 ± 0.12	0.42 ± 0.06	160652		

	with Normalization on data feature				
		Loss(MAE)	Num of Parameters		
•	Seq2Seq	1.33 ± 0.11	976		
	1D CNN	1.28 ± 0.16	1175		
	1D ResNet	1.60 ± 0.53	160652		

Future work

- view it as a semi supervised problem, use the sequence before the labels' time as the feature
- better ways for data preprocessing
- other ways for data augmentation
- try some other kinds of networks, such as wavenet
- try attention

Feature

Label

subject_id	studyDate	studyDay	sheddingTiter
HRV15-002	2015/9/18	Day1	1.7
HRV15-002	2015/9/19	Day2	3.95
HRV15-002	2015/9/20	Day3	4.45
HRV15-002	2015/9/21	Day4	3.7
HRV15-003	2015/9/18	Day1	0
HRV15-003	2015/9/19	Day2	0
HRV15-003	2015/9/20	Day3	0
HRV15-003	2015/9/21	Day4	0
HRV15-004	2015/9/18	Day1	0.7
HRV15-004	2015/9/19	Day2	1.45
HRV15-004	2015/9/20	Day3	2.7
HRV15-004	2015/9/21	Day4	1.7
HRV15-005	2015/9/18	Day1	0.7
HRV15-005	2015/9/19	Day2	1.7
HRV15-005	2015/9/20	Day3	2.7