Licenciatura em Tecnologias e Sistemas de Informação

Bases de Dados

1ºAno - 2ºSemestre

2008/09

José Luís Pereira Carlos Sousa Pinto

Departamento de Sistemas de Informação

Universidade do Minho

LTSI- 2008/09

Modelo Relacional de **Bases de Dados**

- Normalização (cont.)
 - Dependências funcionais $(X \rightarrow Y, ou seja, X determina Y)$ Exemplos:

NºFuncionário → Nome_Funcionário, Departamento (NºFactura, Cod_produto) → Qtd_vendida, Preço_venda

- A manipulação de dependências funcionais é governada por regras
 - Reflexividade (se X ≥ Y então X → Y)
 - Aumentatividade (se X → Y então XZ → YZ)
 - Transitividade ($\underline{se} X \rightarrow Y \underline{e} Y \rightarrow Z \underline{então} X \rightarrow Z$)
 - Decomposição ($\underline{se} X \rightarrow YZ \underline{então} X \rightarrow Y \underline{e} X \rightarrow Z$)
 - União ($\underline{se} X \rightarrow Y \underline{e} X \rightarrow Z \underline{então} X \rightarrow YZ$)
 - Pseudotransitividade ($\underline{se} X \rightarrow Y \underline{e} YW \rightarrow Z \underline{então} XW \rightarrow Z$)

LTSI - 2008/09

Modelo Relacional de **Bases de Dados**

- Normalização
 - Conceito
 - Decomposição sucessiva de relações sem perda de informação
 - Objectivo principal → redução dos níveis de redundância
 - · Os problemas da redundância
 - Problemas de manutenção
 - Espaço de armazenamento
 - Redução do desempenho
 - · Dependências funcionais
 - Funcionais / Multivalor / Junção

LTSI - 2008/09

Modelo Relacional de **Bases de Dados**

- Normalização (cont.)
 - · Por exemplo, o esquema relacional:

Alunos (NºAluno, Nome, Data Nasc, Sexo) Disciplinas (Cod_Disc, Designação, Ano) Notas (NºAluno, Cod_Disc, Nota)

traduz as seguintes dependências funcionais:

NºAluno → Nome, Data_Nasc, Sexo Cod_Disc → Designação, Ano (NºAluno, Cod_Disc) → Nota

LTSI - 2008/09

LTSI - 1° ano / 2° sem

Modelo Relacional de Bases de Dados

- Normalização (cont.)
 - Processo de normalização
 - 1aFN (remover grupos repetidos)

Encomendas (nºencomenda, nºcliente, cliente, endereço_cliente, data_encomenda, cod_produto, produto, qtd_encomend)

 \downarrow

Encomendas (<u>nºencomenda</u>, nºcliente, cliente, endereço_cliente, data_encomenda)

+

Linhas_Encomenda (nºencomenda, cod_produto, produto, qtd_encomend)

LTSI - 2008/09

Modelo Relacional de Bases de Dados

- Normalização (cont.)
 - Processo de normalização (cont.)
 - 2ªFN (todos os atributos não-chave dependem da totalidade da chave)

Linhas_Encomenda (nºencomenda, cod_produto, produto, qtd_encomend)

 \mathbf{J}

Linhas_Encomenda (nºencomenda, cod_produto, qtd_encomend)

+

Produtos (cod_produto, produto)

LTSI - 2008/09

.

Modelo Relacional de Bases de Dados

- Normalização (cont.)
 - Processo de normalização (cont.)
 - 3ªFN (não existem dependências transitivas entre atributos não-chave)

Encomendas (nºencomenda, nºcliente, cliente, endereço_cliente, data_encomenda)

 \downarrow

Encomendas (nºencomenda, nºcliente, data_encomenda)

+

Clientes (nºcliente, cliente, endereço_cliente)

LTSI - 2008/09

Modelo Relacional de Bases de Dados

- Normalização (cont.)
 - Processo de normalização (cont.)
 - Resultado final

Encomendas (nºencomenda, nºcliente, data_encomenda)

Clientes (nºcliente, cliente, endereço_cliente)

Linhas_Encomenda (nºencomenda, cod_produto, qtd_encomend)

Produtos (cod_produto, produto)

LTSI - 2008/09

- 2008/09

LTSI - 1° ano / 2°sem

Modelo Relacional de **Bases de Dados**

- Normalização (cont.)
 - BCNF (todos os atributos são funcionalmente dependentes da chave, de toda a chave e nada mais que a chave)
 - Exemplo: "num determinado contexto hospitalar em que existem diversos serviços e médicos às respectivas especialidades [...] num serviço cada paciente é sempre atendido pelo mesmo médico"

R (paciente, serviço, médico), contudo também:

médico → servico, logo R não está na BCNF !!!

desta forma só será possível registar um médico num dado serviço quando este atender o seu primeiro doente...

Soluções?

LTSI - 2008/09

Modelo Relacional de **Bases de Dados**

• Normalização (cont.)

Possível solução:

R1 (paciente, médico) R2 (médico, serviço)

R1 e R2 estão na BCNF, mas existem alguns problemas:

Paciente	Médico	
J. Silva	C.Costa	
J.Silva	B.Sousa	

Médico	Serviço	
C.Costa	Cardiologia	
B.Sousa	Cardiologia	

Desta forma poder-se-á ter pacientes com médicos diferentes no mesmo serviço! O que se passa é que se perdeu a dependência: (paciente, servico) → médico

LTSI - 2008/09

Modelo Relacional de **Bases de Dados**

• Normalização (cont.)

Uma outra solução:

R (paciente, serviço, médico)

R2 (médico, serviço)

Esta solução sofre de maior redundância mas mantém as duas dependências funcionais:

Qual seria a solução obtida via Modelo Conceptual?

• Exemplo, considere-se a seguinte relação

• 4ªFN (não existem dependências multivalor)

Se X ->> Y e X ->> Z então Y e Z são independentes!

R (agente, produto, zona)

Modelo Relacional de

Bases de Dados • Normalização (cont.)

X ->> Y

que pretende representar o seguinte facto:

"agente vende produto na zona"

O que acontece se, neste contexto, "todos os agentes vendem todos os produtos que representam nas zonas em que actuam"?

X multidetermina Y

Muita redundância!!!

12

LTSI - 2008/09

LTSI - 1° ano / 2° sem

Modelo Relacional de Bases de Dados

- Normalização (cont.)
 - 5ªFN (não existem dependências de junção)

Se uma relação puder ser decomposta sem perda de informação num conjunto de relações menores, deve sê-lo.

• Exemplo:

X		Y	Z
x	1	y1	z1
х	1	y1	z2
х	1	y2	z2
X.	2	у3	z2
X.	2	y4	z2
X.	2	y4	z4
X.	2	у5	z4
X.	3	y2	z5

Apenas a junção entre as três projecções possíveis reconstrói a relação!

Raríssima e difícil de detectar!

LTSI - 2008/09 14

LTSI - 1° ano / 2°sem 4