Name	Aryaman Agarwal
UID no.	2021700002
Experiment No.	3

AIM:	Experiment based on Strassen's Matrix Multiplication	
Program 1		
PROBLEM STATEMENT:	Write C code to perform matrix multiplication using strassen's matrix multiplication.	
ALGORITHM/ THEORY	Let us consider two matrices X and Y. We want to calculate the resultant matrix Z by multiplying X and Y.	
	Naïve Method	
	First, we will discuss naïve method and its complexity. Here, we are	
	calculating $Z = X \times Y$. Using Naïve method, two matrices (X and Y) can be multiplied if the order of these matrices are $p \times q$ and $q \times r$. Following is the algorithm.	
	Algorithm: Matrix-Multiplication (X, Y, Z)	
	for i = 1 to p do	
	for $j = 1$ to r do	
	Z[i,j] := 0	
	for $k = 1$ to q do	
	$Z[i,j] := Z[i,j] + X[i,k] \times Y[k,j]$	
	Complexity	
	Here, we assume that integer operations take O(1) time. There are three	
	for loops in this algorithm and one is nested in other. Hence, the algorithm takes O(n3) time to execute.	
	Strassen's Matrix Multiplication Algorithm	
	In this context, using Strassen's Matrix multiplication algorithm, the time	
	consumption can be improved a little bit.	
	Strassen's Matrix multiplication can be performed only on square	
	matrices where n is a power of 2. Order of both of the matrices are n × n.	
	Divide X, Y and Z into four (n/2)×(n/2) matrices as represented below –	
	Z=[IKJL]	
	X=[ACBD] and Y=[EGFH]	

Using Strassen's Algorithm compute the following -

 $M1:=(A+C)\times(E+F)$

 $M2:=(B+D)\times(G+H)$

 $M3:=(A-D)\times(E+H)$

M4:=A×(F-H)

 $M5:=(C+D)\times(E)$

 $M6:=(A+B)\times(H)$

M7:=D×(G−E)

Then,

I:=M2+M3-M6-M7

J:=M4+M6

K:=M5+M7

L:=M1-M3-M4-M5

Analysis

 $T(n)=\{c7xT(n2)+dxn2ifn=1otherwise\}$

where c and d are constants

Using this recurrence relation, we get T(n)=O(nlog7)

Hence, the complexity of Strassen's matrix multiplication algorithm is O(nlog7

	From Ymyg
	T = (Au+ A12)+ Ber
	T = (A11+A12)+ B22
	L' = (A21-A1) * (B11+B12)
	VI = (P12-P12) * (P1+P22)
	2 2
	$C_{11}' = P' + S' - T' + V'$ = $64 + 0 - 32 + 0$
	= 64+0-32+0
	= 33
	C12' = RF' + T'
	= 0+32=32
	C21'= Q'+ S'
	= 32+0
	C22' = P'+ R'-0'-u'
	= 6410-32-0
	= 32
+	Similarly, by dividing of vongrecusion , we can use
	motor moltoplization.

Resistant or like a Br strasser's multiplications: $T(n) = \begin{cases} 1 & n = 1 \\ 7T(n) + n^2 & n > 2 \end{cases}$ $T(n) = 7T(n) + n^2$ 0 = 7 + 3 = 2 + 2 + 2 = 0 $\log 0 = \log 7 = 2.81 > k$ By case 1 $O(n^{\log_2 7}) = O(n^{2.81})$

```
PROGRAM:
```

```
#include <stdlib.h>
#define MAX_SIZE 8
void add(int **a, int **b, int size, int **c)
     int i, j;
     for (i = 0; i < size; i++)
           for (j = 0; j < size; j++)
                c[i][j] = a[i][j] + b[i][j];
void sub(int **a, int **b, int size, int **c)
     int i, j;
     for (i = 0; i < size; i++)
           for (j = 0; j < size; j++)
                c[i][j] = a[i][j] - b[i][j];
void multiply(int **c, int **d, int size, int size2, int **new)
     if (size == 1)
     //if there is only one element in matrixnew[0][0] =
           c[0][0] * d[0][0];
     else
           int i, j;
           //dividing the matrix into 4 matrixint nsize =
           size / 2;
           //space for part-1 of the matrix A
           int **c11 = malloc(nsize * sizeof(int *));for (i = 0; i <
           nsize; i++)
```

```
c11[i] = malloc(nsize * sizeof(int));
//space for part-2 of the matrix A
int **c12 = malloc(nsize * sizeof(int *));for (i = 0; i <
nsize; i++)
     c12[i] = malloc(nsize * sizeof(int));
//space for part-3 of the matrix A
int **c21 = malloc(nsize * sizeof(int *));for (i = 0; i <
nsize; i++)
     c21[i] = malloc(nsize * sizeof(int));
//space for part-4 of the matrix A
int **c22 = malloc(nsize * sizeof(int *));for (i = 0; i <
nsize; i++)
     c22[i] = malloc(nsize * sizeof(int));
//space for part-1 of the matrix B
int **d11 = malloc(nsize * sizeof(int *));for (i = 0; i <
nsize; i++)
     d11[i] = malloc(nsize * sizeof(int));
//space for part-2 of the matrix B
int **d12 = malloc(nsize * sizeof(int *));for (i = 0; i <
nsize; i++)
     d12[i] = malloc(nsize * sizeof(int));
//space for part-3 of the matrix B
int **d21 = malloc(nsize * sizeof(int *));for (i = 0; i <
nsize; i++)
     d21[i] = malloc(nsize * sizeof(int));
```

```
//space for part-4 of the matrix B
int **d22 = malloc(nsize * sizeof(int *));for (i = 0; i <
nsize; i++)
     d22[i] = malloc(nsize * sizeof(int));
//allocating spaces for strassens formulas of matrixmultiplication
int **m1 = malloc(nsize * sizeof(int *));for (i = 0; i <
nsize; i++)
     m1[i] = malloc(nsize * sizeof(int));
int **m2 = malloc(nsize * sizeof(int *));for (i = 0; i <
nsize; i++)
     m2[i] = malloc(nsize * sizeof(int));
int **m3 = malloc(nsize * sizeof(int *));for (i = 0; i <
nsize; i++)
     m3[i] = malloc(nsize * sizeof(int));
int **m4 = malloc(nsize * sizeof(int *));for (i = 0; i <
nsize; i++)
     m4[i] = malloc(nsize * sizeof(int));
int **m5 = malloc(nsize * sizeof(int *));for (i = 0; i <
nsize; i++)
     m5[i] = malloc(nsize * sizeof(int));
int **m6 = malloc(nsize * sizeof(int *));for (i = 0; i <
nsize; i++)
     m6[i] = malloc(nsize * sizeof(int));
int **m7 = malloc(nsize * sizeof(int *));for (i = 0; i <
nsize; i++)
     m7[i] = malloc(nsize * sizeof(int));
```

```
for (i = 0; i < nsize; i++)
     for (j = 0; j < nsize; j++)
          //top-left half of the matrixc11[i][j] =
          c[i][j];
          //top-right half of the matrixc12[i][j] =
          c[i][j + nsize];
          //bottom-left half of the matrixc21[i][j] =
          c[i + nsize][j];
          //bottom-right half of the matrix c22[i][j] = c[i
          + nsize][j + nsize];
          d11[i][j] = d[i][j];
          d12[i][j] = d[i][j + nsize];
          nsize][j + nsize];
//creating 2 matrix for temporary storage int **temp1 =
malloc(nsize * sizeof(int *));for (i = 0; i < nsize; i++)
     temp1[i] = malloc(nsize * sizeof(int));
int **temp2 = malloc(nsize * sizeof(int *));for (i = 0; i <
nsize; i++)
     temp2[i] = malloc(nsize * sizeof(int));
//first formula
//P = (A11 + A22)*(B11 + B22)
add(c11, c22, nsize, temp1);
add(d11, d22, nsize, temp2);
multiply(temp1, temp2, nsize, size, m1);
```

```
free(temp1);
free(temp2);
int **temp3 = malloc(nsize * sizeof(int *));for (i = 0; i <
nsize; i++)
     temp3[i] = malloc(nsize * sizeof(int));
//Q = (A21 + A22) * B11
add(c21, c22, nsize, temp3); multiply(temp3,
d11, nsize, size, m2);free(temp3);
int **temp4 = malloc(nsize * sizeof(int *));for (i = 0; i <
nsize; i++)
     temp4[i] = malloc(nsize * sizeof(int));
//R = A11 * (B12 - B22)
sub(d12, d22, nsize, temp4); multiply(c11,
temp4, nsize, size, m3);free(temp4);
int **temp5 = malloc(nsize * sizeof(int *));for (i = 0; i <
nsize; i++)
     temp5[i] = malloc(nsize * sizeof(int));
sub(d21, d11, nsize, temp5); multiply(c22,
temp5, nsize, size, m4);free(temp5);
int **temp6 = malloc(nsize * sizeof(int *));for (i = 0; i <
nsize; i++)
     temp6[i] = malloc(nsize * sizeof(int));
//T = (A11 + A12) * B22
add(c11, c12, nsize, temp6); multiply(temp6,
d22, nsize, size, m5);free(temp6);
```

```
int **temp7 = malloc(nsize * sizeof(int *));for (i = 0; i <
nsize; i++)
     temp7[i] = malloc(nsize * sizeof(int));
int **temp8 = malloc(nsize * sizeof(int *));for (i = 0; i <
nsize; i++)
     temp8[i] = malloc(nsize * sizeof(int));
//U = (A21 - A11) * (B11 + B12)
sub(c21, c11, nsize, temp7);
add(d11, d12, nsize, temp8);
multiply(temp7, temp8, nsize, size, m6);
free(temp7);
free(temp8);
int **temp9 = malloc(nsize * sizeof(int *));for (i = 0; i <
nsize; i++)
     temp9[i] = malloc(nsize * sizeof(int));
int **temp10 = malloc(nsize * sizeof(int *));for (i = 0; i <
nsize; i++)
     temp10[i] = malloc(nsize * sizeof(int));
//V = (A12 - A22)*(B21 + B22)
sub(c12, c22, nsize, temp9);
add(d21, d22, nsize, temp10);
multiply(temp9, temp10, nsize, size, m7);
free(temp9);
free(temp10);
//matrices for temporary storage
int **te1 = malloc(nsize * sizeof(int *));for (i = 0; i <
nsize; i++)
     te1[i] = malloc(nsize * sizeof(int));
int **te2 = malloc(nsize * sizeof(int *));for (i = 0; i <
nsize; i++)
```

```
te2[i] = malloc(nsize * sizeof(int));
int **te3 = malloc(nsize * sizeof(int *));for (i = 0; i <
nsize; i++)
     te3[i] = malloc(nsize * sizeof(int));
int **te4 = malloc(nsize * sizeof(int *));for (i = 0; i <
nsize; i++)
     te4[i] = malloc(nsize * sizeof(int));
int **te5 = malloc(nsize * sizeof(int *));for (i = 0; i <
nsize; i++)
     te5[i] = malloc(nsize * sizeof(int));
int **te6 = malloc(nsize * sizeof(int *));for (i = 0; i <
nsize; i++)
     te6[i] = malloc(nsize * sizeof(int));
int **te7 = malloc(nsize * sizeof(int *));for (i = 0; i <
nsize; i++)
     te7[i] = malloc(nsize * sizeof(int));
int **te8 = malloc(nsize * sizeof(int *));for (i = 0; i <
nsize; i++)
     te8[i] = malloc(nsize * sizeof(int));
add(m1, m7, nsize, te1);
sub(m4, m5, nsize, te2);
add(te1, te2, nsize, te3); // C11
add(m3, m5, nsize, te4); // C12
add(m2, m4, nsize, te5); // C21
add(m3, m6, nsize, te6);
sub(m1, m2, nsize, te7);
     add(te6, te7, nsize, te8); // C22
```

```
int a = 0:
int b = 0;
int c = 0;
int d = 0;
int e = 0;
int nsize2 = 2 * nsize;
for (i = 0; i < nsize2; i++)
     for (j = 0; j < nsize2; j++)
           //C11
           if (j \ge 0 \&\& j < nsize \&\& i \ge 0 \&\& i < nsize)
           //C12
                  if (j >= nsize && j < nsize2 && i >= 0 && i <
                 a = j - nsize;
                 new[i][j] = te4[i][a];
           //C21
                  if (j \ge 0 \&\& j < nsize \&\& i > = nsize \&\& i <
                 new[i][j] = te5[c][j];
           //C22
           if (j >= nsize && j < nsize2 && i >= nsize && i <
                 d = i - nsize;
                 e = j - nsize;
                 new[i][j] = te8[d][e];
```

```
//deallocating all the spaces
          free(m1);
          free(m2);
          free(m3);
          free(m4);
          free(m5);
          free(m6);
          free(m7);
          free(te1);
          free(te2);
          free(te3);
          free(te4);
          free(te5);
          free(te6);
          free(te7);
          free(te8);
          free(c11);
          free(c12);
          free(c21);
          free(c22);
          free(d11);
          free(d12);
          free(d21);
          free(d22);
void main()
    int size, itr, itr1, i, j, nsize; printf("Enter
     Size of matrix\n");scanf("%d", &size);
    int tempS = size;
    //allocating space for matrix A
    int **a = malloc(size * sizeof(int *));for (i = 0; i <</pre>
    size; i++)
          a[i] = malloc(size * sizeof(int));
    //allocating space for matrix B
    int **b = malloc(size * sizeof(int *));
```

```
for (i = 0; i < size; i++)
     b[i] = malloc(size * sizeof(int));
//Taking inputs for matrix A printf("Enter elements
of matrix A:\n");for (itr = 0; itr < size; itr++)
     for (itr1 = 0; itr1 < size; itr1++)
           scanf("%d", &a[itr][itr1]);
//Taking inputs for matrix B printf("Enter elements
of matrix B:\n");for (itr = 0; itr < size; itr++)
     for (itr1 = 0; itr1 < size; itr1++)
           scanf("%d", &b[itr][itr1]);
//allocating space to store result of multiplicationint **new =
malloc(size * sizeof(int *));
for (i = 0; i < size; i++)
     new[i] = malloc(size * sizeof(int));
//strassens multiplication multiply(a, b,
size, size, new);
printf("Matrix C:\n"); for (i = 0; i
< size; i++)
     for (j = 0; j < size; j++)
           printf("%d
                             ", new[i][j]);
     printf("\n");
```

RESULT:

```
PS D:\BTECH\SEM-4\DAA\Practicals\Exp3> ./main.exe Enter Size of matrix
Enter elements of matrix A:
2222
3 3 3 3
Enter elements of matrix B:
2222
3 3 3 3
4444
Matrix C:
10
     10
          10
               10
20
     20
          20
               20
30
     30
         30
               30
     40
          40
               40
PS D:\BTECH\SEM-4\DAA\Practicals\Exp3>
```

CONCLUSION

:

- Implemented Strassen's Matrix multiplication using C language.
- Time
 Complexity(all cases):
 O(n^2.81)