A Tutorial on inverse problems and model space search

Malcolm Sambridge

Research School of Earth Sciences Australian National University

25th Course of the International School of Geophysics
9th Int. Workshop on Numerical Modeling of Mantle Convection and Lithospheric Dynamics
8-14 September 2005, EMFCSC, Erice, Sicily.

books

See also Samizdat press (http://samizdat.mines.edu)

- Principles of inverse problems
- Fitting data and nonuniqueness
- Iterative methods
- Direct search methods and applications
- Uncertainty and Bayesian inference

What is an inverse problem?

Most people, if you describe a train of events to them, will tell you what the result would be. There are few people, however, who, if you told them a result, would be able to evolve from their own inner consciousness what the steps were which led up to that result. This power is what I mean when I talk of reasoning backwards.

Sherlock Holmes A Study in Scarlet by Arthur Conan Doyle

Forward and inverse problems

Estimation and Appraisal

Many inverse problems

Medical tomography
1970s

1300 km

Seismic tomography 1980s

Helioseismology 1990s

A philosophy for inverse problems

A way of asking questions of data!

The information you get back depends upon:

- The question you pose,
- The data you have,
- How you define fit to data,
- Your parameterization of the unknowns,

$$m(\mathbf{x}) = \sum_{i=1}^{N} \alpha_i \mathbf{B}_i(\mathbf{x})$$

Your definition of a solution.

Types of forward problem

Linear,

Nonlinear,

Linearized,

$$d = Gm$$

$$d = g(m)$$

$$\delta \mathbf{d} = G \delta \mathbf{m}$$

Figure 7.2-2: Illustration of the the effect of linearizing about an inverse problem starting model.

Linearization is like taking a tangent.

Much of inverse theory is based on linearization...

...but its usually only an approximation!

Fitting the data

Data/model relationship,

$$d = g(m)$$

To fit the data we need to measure data misfit,

$$\phi(\boldsymbol{d}, \boldsymbol{m}) = (\boldsymbol{d} - g(\boldsymbol{m}))^T C_D^{-1} (\boldsymbol{d} - g(\boldsymbol{m}))$$

For a linearized problem,

$$\phi(\delta \boldsymbol{d}, \delta \boldsymbol{m}) = (\delta \boldsymbol{d} - G\delta \boldsymbol{m})^T C_D^{-1} (\delta \boldsymbol{d} - G\delta \boldsymbol{m})$$

Should we just optimize $\phi(\boldsymbol{d}, \boldsymbol{m})$ with respect to \boldsymbol{m} ?

A least squares solution

From

$$\delta \mathbf{d} = G \delta \mathbf{m}$$

we find δm which minimizes ϕ , ... and get the normal equations

$$\delta \boldsymbol{m} = (G^T C_D^{-1} G)^{-1} G^T C_D^{-1} \delta \boldsymbol{d}$$

We introduce the generalized inverse as

$$\delta \boldsymbol{m} = G^{-g} \delta \boldsymbol{d}$$

Note that if data covariance matrix has the form

$$C_D^{-1} = \sigma^{-2}I$$

the estimated model is independent of the data errors!

Travel time tomography

Travel time equation

$$t = \int_{R_o} \frac{1}{v(\boldsymbol{x})} dl = \int_{R_o} s(\boldsymbol{x}) dl$$

If we choose a reference slowness field $s_o(x)$ and linearize the relationship about it, we get

$$\delta t = \int_{R_o} \delta s(\boldsymbol{x}) dl$$

The basis of all travel time tomography.

Discretization: Choose a set of basis functions

$$\delta s(\boldsymbol{x}) = \sum_{j=1}^{M} m_j \phi_j(\boldsymbol{x}) \quad \Rightarrow \quad \delta \boldsymbol{d} = G \delta \boldsymbol{m}$$

Linear problems and non-uniqueness

Should we just optimize data misfit?

$$\phi(\boldsymbol{d}, \boldsymbol{m}) = (\boldsymbol{d} - G\boldsymbol{m})^T C_D^{-1} (\boldsymbol{d} - G\boldsymbol{m}).$$

Regularization in inverse problems

When the problem is under or mixed-determined we can minimize a combination of data fit and model control.

$$\Psi(\boldsymbol{m}) = \phi(\boldsymbol{d}, \boldsymbol{m}) + \lambda^2 \psi(\boldsymbol{m})$$

 λ is a trade-off parameter that must be chosen. It adds stability but decreases resolution. If the regularization is chosen $\psi(\mathbf{m}) = (\mathbf{m} - \mathbf{m}_o)^T C_M^{-1} (\mathbf{m} - \mathbf{m}_o)$, we get

$$\mathbf{m}_{n+1} = \mathbf{m}_n + (G^T C_D^{-1} G + \lambda^2 C_M^{-1})^{-1} (G^T C_D^{-1} \delta \mathbf{d} - \lambda^2 C_M^{-1} (\mathbf{m}_n - \mathbf{m}_o))$$

This gives a minimum variance solution. The poorly constrained parts of the model are damped towards the reference model.

An alternative is a Laplacian operator

$$\psi(\boldsymbol{m}) = ||L\boldsymbol{m}||^2 = \boldsymbol{m}^T L^T L \boldsymbol{m}$$

L is a finite difference approximation to ∇ . This minimizes model roughness $(\frac{\partial^2 m}{\partial x^2})$ or flatness $\frac{\partial m}{\partial x}$.

$$\min_{\boldsymbol{m}} \{ \psi(\boldsymbol{m}) \}$$
 s.t. $\phi(\boldsymbol{d}, \boldsymbol{m}) < \phi^*$

Example: smoothing data

Example: smoothing data

Constructing smooth models - theory

Typically we would want to fit the data and regularize or smooth the model at the same time.

$$\psi(\boldsymbol{d}, \boldsymbol{m}) = \sum_{i=1}^{N} (d_i - s(\boldsymbol{x}_i, \boldsymbol{m}))^2 + \mu J(s)$$

Where,

$$J(s) = \int \left[\left(\frac{\partial^2 s}{\partial x^2} \right) + 2 \left(\frac{\partial^2 s}{\partial x \partial y} \right) + \left(\frac{\partial^2 s}{\partial y^2} \right) \right] d\mathbf{x}$$

Can we find a smooth model that fits the data exactly?

$$s(\boldsymbol{x}, \boldsymbol{m}) = p(\boldsymbol{x}) + \sum_{i=1}^{N} \lambda_i \phi(\boldsymbol{x} - \boldsymbol{x}_i)$$

Yes! use Thin Plate Splines for $\phi({m x})$ (Duchon, 1976) A Tutorial on inverse problems and model space search

Smooth models - practice

Relaxing the fit to data

We do not want to fit noisy data exactly!

$$\psi(\boldsymbol{d}, \boldsymbol{m}) = \sum_{i=1}^{N} (d_i - s(\boldsymbol{x}_i, \boldsymbol{m}))^2 + \mu J(s)$$

In order to relax the requirement to fit the data we must find a value of the trade-off parameter μ .

Choosing trade-off parameter

One way of finding a balance between data fit and model smoothness is Generalized Cross Validation - which essentially means use the data to find a value for μ .

$$G(\mu) = \sum_{i=1}^{N} (d_i - s_i(\boldsymbol{x}_i, \boldsymbol{m}))^2$$

Where $s_i(\boldsymbol{x}, \boldsymbol{m})$ is the TPS interpolant produced when the ith datum is removed. Find μ that minimizes $G(\mu)$. Note

$$\mu \to \infty \Rightarrow G(\mu) \uparrow$$

 $\mu \to 0 \Rightarrow G(\mu) \uparrow$

 $G(\mu)$ is a bootstrap measure of interpolation error.

Minimizing GCV to find μ

Generalized cross validation

Generalized cross validation

Features of discrete inverse problems

- Linearization is an approximation
- Parametrization is a choice
- Nonuniqueness can occur
 - over determined
 - even determined
 - under determined
- More data reduces input noise but independent data matters most.
- Trade-off between model variance and resolution (spread)

More worked examples available: Over and under-determined linear systems, error propagation, SVD, resolution and covariance matrices.

What is a solution to an inverse problem?

- → Optimal data fit solution (c.f. MAP)
- ▲ Extremal solution
- Data acceptable solutions

Linear problems

- Single minima,
- Gradient methods work,
- Quadratic convergence,
- Many unknowns,

$$\mathbf{d} = G\mathbf{m}$$
$$G_{i,j} = \frac{\partial d_i}{\partial m_j}$$

$$\phi(\boldsymbol{d},\boldsymbol{m}) = (\boldsymbol{d} - G\boldsymbol{m})^T C_D^{-1} (\boldsymbol{d} - G\boldsymbol{m}) + \lambda^2 (\boldsymbol{m} - \boldsymbol{m}_o)^T C_M^{-1} (\boldsymbol{m} - \boldsymbol{m}_o)$$

Weakly nonlinear problems

- Single minimum (?)
- Gradient methods work,
- Many unknowns,

$$\delta \mathbf{d} = \mathbf{G} \delta \mathbf{m}$$
$$G_{i,j} = \frac{\partial d_i}{\partial m_j}$$

$$\phi(\mathbf{d}, \mathbf{m}) = (\delta \mathbf{d} - G\delta \mathbf{m})^T C_D^{-1} (\delta \mathbf{d} - G\delta \mathbf{m}) + \lambda^2 (\mathbf{m} - \mathbf{m}_o)^T C_M^{-1} (\mathbf{m} - \mathbf{m}_o)$$

Weakly nonlinear problems II

But gradient methods can still fail . . .

$$\delta \mathbf{d} = \mathbf{G} \delta \mathbf{m}$$
$$G_{i,j} = \frac{\partial d_i}{\partial m_j}$$

... if you start in the wrong place.

Strongly nonlinear problems

- Multi-modal misfits
- Linearization fails
- Direct search techniques might work
- $10^0 10^2$ unknowns

$$\mathbf{d} = g(\mathbf{m})$$

Derivatives, $\frac{\partial d_i}{\partial m_j}$, of little use!

$$\phi(\boldsymbol{d}, \boldsymbol{m}) = (\boldsymbol{d} - g(\boldsymbol{m}))^T C_D^{-1} (\boldsymbol{d} - g(\boldsymbol{m})) + \lambda^2 (\boldsymbol{m} - \boldsymbol{m}_o)^T C_M^{-1} (\boldsymbol{m} - \boldsymbol{m}_o)$$

Data misfit surfaces: Receiver functions

Data misfit in History matching

A synthetic example with one unknown.

Parameter space search techniques

Derivative free or direct search techniques can be useful for weakly and strongly nonlinear problems.

Classes of direct search algorithm:

- Uniform random search
- Simulated annealing (thermodynamics)
- Evolutionary algorithms (biology)
- Neighbourhood sampling (geometry)

Uniform sampling

Uniform random sampling means uniform in volume!

Volume of the hypercube in *d* dimensions,

$$V = L^d$$

Curse of dimensionality

Pseudo - random

Quasi - random

Uniform Monte Carlo Inversion

A whole earth Monte Carlo inversion by Press (1968)

Keilis-Borok & Yanovskaya (1967) first introduced Monte Carlo inversion into geophysics.

Simulated annealing

A Global optimization technique.

Sampling from a Gibbs-Boltzmann distribution,

$$\sigma(m{m}) = \mathtt{e}^{rac{-\phi(\mathbf{m})}{T}}$$

- Temperature schedule, T decreases with time,
- Metropolis algorithm used to generate samples with an equilibrium distribution of $\sigma(\mathbf{m})$.

Evolutionary and genetic algorithms

Adaptive neighbourhood sampling

Partitioning the model space adaptively re-sampling using the Neighbourhood algorithm

A comparison of approaches

Exploitation vs Exploration

Examples: Beam power maximization

(From Kennett et. al. 2003)

Waveform fitting

Seismic waveforms

Receiver functions & Surface waves

Seismic sources

Coupled source moment tensor & depth location

(From Yoshizawa & Kennett (2002); Marson-Pidgeon et al.(2000))

Mapping out multiple acceptable regions

Mapping out acceptable regions

Probabilistic approach to inverse problems

All information in the form of probability density functions. Bayes rule

$$p(\boldsymbol{m}|\boldsymbol{d}) \propto p(\boldsymbol{d}|\boldsymbol{m})p(\boldsymbol{m}),$$

Posterior = Likelihood x prior

$$p(\boldsymbol{m}|\boldsymbol{d}) = \exp\left\{-\frac{1}{2}(\boldsymbol{d} - g(\boldsymbol{m}))^T C_D^{-1}(\boldsymbol{d} - g(\boldsymbol{m}))\right.$$
$$\left. -\frac{1}{2} (\boldsymbol{m} - \boldsymbol{m}_o)^T C_M^{-1}(\boldsymbol{m} - \boldsymbol{m}_o)\right\}$$

Statistical sampling methods are needed to draw samples from the posterior.

Markov chain Monte Carlo (MCMC) is the workhorse technique.

Bayesian sampling

Bayesian inference

Bayesian inference can be applied to:

The model inference problem Estimating the unknowns

The model comparision problem Hypothesis testing When the number of unknowns is one of your unknowns!

Example in additional material.

Intensive forward models

Current research trends are aimed at computationally intensive forward problems.

Using morphological data to constrain landscape processes

Using Thermo-chronological data to constrain deformation processes

Parallelism

An ensemble based approach is ideally suited to exploit parallel computing architectures

Inversion software

Sensitivity visualization

Real-time monitoring