Exercici 35. Per a cadascun dels nombres enters $2 \le N \le 25$, calculeu una arrel primitiva mòdul N, o bé comproveu que no existeix.

Solució 35. Sabem que solament tenen arrels primitives les $N \in [2, 4, p^{\alpha}, 2p^{\alpha}]$, amb p primer i $\alpha \in \mathbb{N}, \alpha \geq 1$. Això vol dir que si $N \in [8, 12, 15, 16, 20, 21, 24]$, no hi hauran arrels primitives.

Anomenem ordre de g $(\#[g]), g \in (\frac{\mathbb{Z}}{N\mathbb{Z}})^*$, al primer nombre $d : g^d \equiv 1 \pmod{N}$.

Definim una arrel primitiva de $(\frac{\mathbb{Z}}{N\mathbb{Z}})^*$ com aquell element $g: \#[g] = \#(\frac{\mathbb{Z}}{N\mathbb{Z}})^*$. És a dir, g és arrel primitiva $(modN) \iff \#[g] = \varphi(N)$.

$$N = 2$$
:

Anomenem al candidat per ser arrel primitiva: $a \in (\frac{\mathbb{Z}}{2\mathbb{Z}})^* \Rightarrow a \in [1]$. També sabem que $\varphi(2) = 1$.

$$1^1 \equiv 1^{\varphi(2)} \equiv 1 \pmod{2} \Rightarrow 1$$
 és arrel primitiva (mod 2).

$$\frac{N=3:}{a \in (\frac{\mathbb{Z}}{3\mathbb{Z}})^*} \Rightarrow a \in [1,2]$$
. També sabem que $\varphi(3)=2$.
$$1^1 \equiv 1 \pmod{3}, \text{ però} \neq \varphi(3) \Rightarrow \text{No és arrel primivita (mod 3)}$$

$$2^1 \equiv 2 \pmod{3}$$

$$2^2 \equiv 1 \pmod{3} \Rightarrow 2 \text{ és arrel primitiva (mod 3)}$$

$$N = 4$$
: $a \in (\frac{\mathbb{Z}}{4\mathbb{Z}})^* \Rightarrow a \in [1, 3]$. També sabem que $\varphi(4) = 2$. 1 no és arrel primitiva, ja que $1 \neq \varphi(4)$

$$3^1 \equiv 3 (mod4)$$

$$3^2 \equiv 1 (mod4) \Rightarrow 3 \text{ és arrel primitiva (mod 4)}$$

$$N=5$$
: $a\in (\frac{\mathbb{Z}}{4\mathbb{Z}})^*\Rightarrow a\in [1,2,3,4,5]$. També sabem que $\varphi(5)=4$. 1 no és arrel primitiva, ja que $1\neq \varphi(5)$

$$\begin{aligned} 2^1 &\equiv 2 (mod5) \\ 2^2 &\equiv 4 (mod5) \\ 2^3 &\equiv 3 (mod5) \\ 2^4 &\equiv 1 (mod5) \Rightarrow 2 \text{ \'es arrel primitiva (mod 5)} \end{aligned}$$

I així seguim fins a N=25. Podem resoldre-ho també amb el Mathematica. La instrucció PrimitiveRoot[N], ens donarà una arrel primitiva (mod N), i la instrucció PrimitiveRootList[N], ens donarà totes les arrels primitives (mod N).

Fem doncs una llista amb el que ens dona si busquem les arrels des de 2 fins a 25:

N	2	3	4	5	6	7	8	9	10	11	12	13
Arrel	1	2	3	2	5	3	{}	2	7	2	{}	2

N	14	15	16	17	18	19	20	21	22	23	24	25
Arrel	3	{}	{}	3	11	2	{}	{}	13	5	{}	2