STOCHASTIC DUAL NEWTON ASCENT FOR EMPIRICAL RISK MINIMIZATION

Zheng Qu¹

Peter Richtárik¹ Martin Takáč² Olivier Fercoq³

 1 University of Edinburgh 2 Lehigh University 3 Telecom Paris-Tech

Introduction

We study the problem of minimizing the average of a large number of $1/\gamma$ -smooth convex functions penalized with a 1-strongly convex regularizer.

$$\min_{w \in \mathbb{R}^d} P(w) := \frac{1}{n} \sum_{i=1}^n \phi_i(\mathbf{a}_i^{\mathsf{T}} \mathbf{w}) + \lambda \mathbf{g}(\mathbf{w}). \tag{P}$$

Each $a_i \in \mathbb{R}^d$ and we write $\mathbf{A} = [a_1, \dots, a_n] \in \mathbb{R}^{d \times n}$. Let g^* and $\{\phi_i^*\}_i$ be the Fenchel conjugate functions of g and $\{\phi_i\}_i$, respectively. In the case of g, for instance, we have $g^*(s) = \sup_{w \in \mathbb{R}^d} \langle w, s \rangle - g(w).$

The (Fenchel) dual problem of (P) can be written as:

$$\max_{\alpha \in \mathbb{R}^n} D(\alpha) := \frac{1}{n} \sum_{i=1}^n -\phi_i^*(-\alpha_i) - \lambda g^* \left(\frac{1}{\lambda n} \mathbf{A} \alpha\right). \tag{D}$$

The Algorithm

Sampling \hat{S} : A random subset of $\{1, 2, \dots, n\}$ such that $\forall i : \mathbf{Prob}(i \in \hat{S}) > 0 \text{ and } \mathbf{Prob}(\hat{S} = \emptyset) = 0.$

Algorithm 1: SDNA Algorithm

- 1: Initialization: $\alpha^0 \in \mathbb{R}^n$; $\bar{\alpha}^0 = \frac{1}{\lambda n} \mathbf{A} \alpha^0$
- 2: **for** $k = 0, 1, 2, \dots$ **do**
- Primal update: $w^k = \nabla g^*(\bar{\alpha}^k)$
- Generate a random set of blocks $S_k \sim \bar{S}$
- Compute:

$$\Delta \alpha^k = \underset{\mathbf{h} \in \mathbb{R}^n}{\operatorname{arg\,min}} \langle \mathbf{A}^\top w^k, \mathbf{I}_{S_k} \mathbf{h} \rangle + \frac{1}{2} \mathbf{h}^\top \mathbf{X}_{S_k} \mathbf{h}$$
$$+ \sum_{i \in S_k} \phi_i^* (-\alpha_i^k - \mathbf{h}_i)$$

- Dual update: $\alpha^{k+1} := \alpha^k + (\Delta \alpha^k)_{S_k}$
- Average update: $\bar{\alpha}^{k+1} = \bar{\alpha}^k + \frac{1}{\lambda n} \sum_{i \in S_k} \Delta \alpha_i^k a_i$
- 8: end for

Where $\mathbf{X} = \mathbf{A}^T \mathbf{A}$ and \mathbf{X}_{S_k} is the matrix obtained from **X** retaining elements \mathbf{X}_{ij} for which both $i, j \in S_k$ and zeroing out all other elements.

Iteration Complexity of SDNA

Theorem: Let \hat{S} be a uniform sampling and let $\tau :=$ $\mathbf{E}[|\hat{S}|]$. The output sequence $\{w^k, \alpha^k\}_{k\geq 0}$ of Algorithm 1 satisfies:

$$\mathbf{E}[P(w^k) - D(\alpha^k)] \le \frac{(1 - \sigma)^k}{\theta(\hat{S})} (D(\alpha^*) - D(\alpha^0)),$$

where $\sigma := \frac{\tau \min(1, s_1)}{n}$, $\theta(\hat{S}) := \min_i \frac{p_i \lambda \gamma n}{v_i + \lambda \gamma n}$, $s_1 =$ $\lambda_{\min} \left| \left(\frac{1}{\tau \gamma \lambda} \mathbf{E}[(\mathbf{A}^{\top} \mathbf{A})_{\hat{S}}] + \mathbf{I} \right)^{-1} \right| \text{ and } v \in \mathbb{R}^{n}_{++} \text{ is a vector}$ satisfying:

$$\mathbf{E}[(\mathbf{A}^{\top}\mathbf{A})_{\hat{S}}] \leq \operatorname{diag}(p) \cdot \operatorname{diag}(v). \tag{1}$$

Comparison with Mini-Batch SDCA

Algorithm 2: Minibatch SDCA

- 1: **Parameters:** uniform sampling \hat{S} , vector $v \in \mathbb{R}^n_{++}$
- 2: Initialization: $\alpha^0 \in \mathbb{R}^n$; set $\bar{\alpha}^0 = \frac{1}{\lambda n} \mathbf{A} \alpha^0$
- 3: **for** $k = 0, 1, 2, \dots$ **do**
- Primal update: $w^k = \nabla g^*(\bar{\alpha}^k)$
- Generate a random set of blocks $S_k \sim S$
- Compute for each $i \in S_k$ $h_i^k = \arg\min_{k \in \mathbb{Z}} h_i (a_i^\top w^k) + \frac{v_i}{2} |h_i|^2 + \phi_i^* (-\alpha_i^k - h_i)$
- Dual update: $\alpha^{k+1} := \alpha^k + \sum_{i \in S_k} h_i^k e_i$
- Average update: $\bar{\alpha}^{k+1} = \bar{\alpha}^k + \frac{1}{\lambda n} \sum_{i \in S_k} h_i^k a_i$
- 9: end for

Theorem: If (1) holds, then the output sequence $\{w^k, \alpha^k\}_{k>0}$ of Algorithm 2 satisfies:

$$\mathbf{E}[P(w^k) - D(\alpha^k)] \le \frac{(1 - \theta(\hat{S}))^k}{\theta(\hat{S})} \left(D(\alpha^*) - D(\alpha^0) \right).$$

Moreover, $\theta(\hat{S}) \leq \sigma$.

Numerical Experiments

Comparison of SDNA and SDCA for minibatch sizes $\tau = 1, 32, 256$ on a real (left) and synthetic (right) dataset. The methods coincide

Time it takes for SDNA and SDCA to process a singe epoch as a function of the minibatch size τ .

Runtime of SDNA for minibatch sizes $\tau = 1, 4, 16, 32, 64$.

References

- [1] Richtárik, P. and Takáč, M.: On optimal probabilities in stochastic coordinate descent methods, arXiv:1310.3438, 2013.
- for big data optimization, arXiv:1212.0873, 2012.
- Richtárik, P. and Takáč, M.: Iteration complexity of randomized block-coordinate descent methods for minimizing a composite function, Mathematical Programming, 2012.
- [2] Richtárik, P. and Takáč, M.: Parallel coordinate descent methods [4] Takáč, M., Bijral, A., Richtárik, P. and Srebro, N.: Mini-batch primal and dual methods for SVMs, In ICML, 2013.
- Qu, Z., Richtárik, P. and Zhang, T.: Randomized dual coordinate ascent with arbitrary sampling, arXiv:1411.5873, 2014.
- [6] Qu, Z., Richtárik, P., Takáč, M. and Fercoq, O.: Stochastic Dual Newton Ascent for Empirical Risk Minimization, arXiv:1502.02268, 2015.