3rd Year B.S. (Honors) 2019 Math Lab Assignment 03 Course: AMTH 350 (Math Lab III) Department of Applied Mathematics University of Dhaka

Name: Roll No: Write MATLAB program to solve the following problems using Script file.

No:	Problems
1	Consider the following linear system of equations:
	10 2 2 2 + 2 2 2 3 = 6
	$- \diamondsuit \diamondsuit_1 + 11 \diamondsuit \diamondsuit_2 - \diamondsuit \diamondsuit_3 + 3 \diamondsuit \diamondsuit_4 = 25$
	2 3 3 4 - 3 3 4 + 10 3 3 - 3 4 4 = -11
	3
	Solve the above system, correct up to 5 decimal places, with initial guess
	•• = (0,0,0,0) using:
	(i) Jacobi iterative method.
	(ii) Gauss-Seidel iterative method.
	(iii) SOR iterative method with $\clubsuit \spadesuit = 1.1$.
2	Consider the system of equations given below
	2 2 2 2 2 2 2 2 2 2 2
	$-4 \diamondsuit \diamondsuit_1 + 2 \diamondsuit \diamondsuit_2 - 6 \diamondsuit \diamondsuit_3 = 14$
	$2 \diamondsuit \diamondsuit_1 + 2 \diamondsuit \diamondsuit_2 + 4 \diamondsuit \diamondsuit_3 = 8$
	(a) Solve the system using Gaussian elimination method.
	(b) Solve the system using Gaussian-Jordan elimination method.
3	Use the Power method to approximate the dominant eigenvalue of the matrix
	-4 14 0 �� = (
	-5 13 0

Let
$$••$$
 $•$ $•$ $•$ $••$

4 Solve the following initial value problem over the interval [0,2]. Display all your results graphically.

(a) ode solver.

5(b)

- (b) Using Euler's method with h = 0.5 and 0.25.
- (c) Using the midpoint method with h = 0.5.
- (d) Using Heun's method with h=0.5.
- (e) Using the fourth-order RK method with h = 0.5.
- 5(a) Solve the following system of ODEs

Taking $\diamondsuit \diamondsuit = 1.2$, $\diamondsuit \diamondsuit = 0.6$, $\diamondsuit \diamondsuit = 0.8$, $\diamondsuit \diamondsuit \diamondsuit \diamondsuit \diamondsuit \diamondsuit \diamondsuit \diamondsuit \diamondsuit \diamondsuit = 0.3$.

The van der Pol equation is a second order ODE

where $\mu > 0$ is a scalar parameter. Solve the above equation using shooting method (ode45 solver) and then show the result graphically.

6 Consider the heat conduction equation

Solve the above equation using finite difference method and the show the result graphically.(In particular case let ��=1, $�\Phi_{\bullet \bullet}=1$