

# Preventing Gradient Attenuation in Lipschitz Constrained Convolutional Networks



Qiyang Li\*, Saminul Haque\*, Cem Anil, James Lucas, Roger Grosse, Jörn-Henrik Jacobsen

\*Equal Contribution University of Toronto, Vector Institute

# Objective

Training an expressive convolutional neural network with a known, tight upper-bound on its Lipschitz constant by enforcing gradient norm preservation (GNP).

#### Motivation

### Why Lipschitz-constrained Networks?

- 1. Provable adversarial robustness via large-margin training.
- 2. 1-Wasserstein distance estimation via Kantorovich and Rubinstein duality [8].

## Why Gradient Norm Preservation (GNP)?

- 1-Lipschitz-constrained networks suffer from two common problems solved by GNP:
- 1. Loose upper-bound obtained by  $Lip(f_1 \circ f_2) \leq Lip(f_1) Lip(f_2)$ .
- 2. Gradient attenuation during backpropagation since  $\|\nabla_{\mathbf{x}}\mathcal{L}\|_2 \leq \text{Lip}(f) \|\nabla_{\mathbf{y}}\mathcal{L}\|_2$ , where  $\mathbf{y} = f(\mathbf{x})$ .

#### Challenges of Enforcing GNP for Convolutional Networks

- 1. Optimization over the space of GNP convolutions does not have an established method.
- 2. Topology is unknown for GNP convolutions.

## Background

**GNP Functions:** f is GNP if  $||\nabla f(\mathbf{x})^T \mathbf{g}||_2 = ||\mathbf{g}||_2, \forall \mathbf{g}$ .

- GNP functions have a Lipschitz constant of 1; Composition of GNP functions are GNP.
- GNP linear functions are orthogonal; GNP convolutions are orthogonal convolutions.

Symmetric Projectors:  $\mathbb{P}(n, k) = \{P | P = P^T = P^2, rank(P) = k, P \in \mathbb{R}^{n \times n}\}.$ 

 $\mathbb{P}(n) = \bigcup_k \mathbb{P}(n,k)$  has n+1 connected components:  $\{\mathbb{P}(n,0),\cdots,\mathbb{P}(n,k),\cdots,\mathbb{P}(n,n)\}$ .

# Orthogonal Convolutions Are Disconnected

## Block Convolution Parameterization in 1-D [6]

$$\mathcal{W}(H, P_{1:K-1}) = H \square \left[ P_1 \left( I - P_1 \right) \right] \square \cdots \square \left[ P_{K-1} \left( I - P_{K-1} \right) \right],$$
  
where  $P_i \in \mathbb{P}(n), H \in O(n), [X \square Y]_i = \sum_{i=1}^{\infty} X_{i'} Y_{i-i'}.$ 



**Theorem 1**: 1-D orthogonal convolution space has 2(K-1)n+2 connected components.

**Extension to 2-D**: Analogous parameterization and disconnectedness results as 1-D [10]. **Implication**: Gradient-based optimization would be trapped in the initial connected component.

## Overcoming Disconnectedness

**Theorem 2:** For any convolution  $C = \mathcal{W}(H, P_{1:K-1}, Q_{1:K-1})$  with input and output channel sizes of n  $(P_i, Q_i \in \mathbb{P}(n))$ , there exists a convolution  $C' = \mathcal{W}(H', P'_{1:K-1}, Q'_{1:K-1})$  with input and output channels sizes of 2n constructed from only n-rank projectors  $(P'_i, Q'_i \in \mathbb{P}(2n, n))$  such that  $C'(\mathbf{x})_{1:n} = C(\mathbf{x}_{1:n})$ . That is, the first n channels of the output is the same with respect to the first n channels of the input under both convolutions.

**Implication**: Using this, one can double the number of channels of a BCOP constructed network to represent all the connected components of the original network in a *single* connected component.

# Block Convolution Orthogonal Parameterization (BCOP)

A BCOP orthogonal convolution of 2n channel size is

$$W(H, P_{1:K-1}, Q_{1:K-1}), P_i, Q_i \in \mathbb{P}(2n, n)$$

We can use any unconstrained matrix  $\tilde{R} \in \mathbb{R}^{2n \times n}$  to parameterize  $T \in \mathbb{P}(2n, n)$ ,

$$T = RR^T, R = \psi(\tilde{R})$$

where  $\psi$  can be any differentiable orthogonalization procedure that results in a matrix of the same size,  $R \in \mathbb{R}^{2n \times n}$ , with orthonormal columns:  $R^T R = I$  (e.g., Björck orthogonalization [2]).

**Design Rationale**:  $\mathbb{P}(2n, n)$  is the largest connected component of  $\mathbb{P}(2n)$  by dimensionality and using  $\mathbb{P}(2n, n)$  to construct BCOP layers represents all networks with channel size of n.

### **Building GNP Convolutional Networks**

| erates into identity  Not GNP  | Removed Removed               |
|--------------------------------|-------------------------------|
|                                |                               |
| : 1 \( \tau \) 1 \( \tau \)    |                               |
| into $1 \times 1$ convolutions | Cyclic padding instead        |
| ity properties unknown         | Invertible downsampling [5]   |
| GNP in general                 | Orthogonalize the matrix [1]  |
| CMD in gonoral                 | GroupSort [1]                 |
|                                | GNP in general GNP in general |



## Empirical Results: Provable Adversarial Robustness Under $L_2$ Norm

#### Ablation Study (Provable Adversarial Robustness with L<sub>2</sub> Metric)

| Dataset                                                               |       |        | OSSN [4] | <b>RKO</b> [3] | <b>SVCM</b> [7] | BCOP                  |
|-----------------------------------------------------------------------|-------|--------|----------|----------------|-----------------|-----------------------|
| $\begin{array}{c} \textbf{MNIST} \\ (\varepsilon = 1.58) \end{array}$ | Small | Clean  | 96.86    | 97.28          | 97.24           | 97.54                 |
|                                                                       |       | Robust | 42.95    | 43.58          | 28.94           | <b>45.84</b>          |
|                                                                       | Large | Clean  | 98.31    | 98.44          | 97.93           | 98.69                 |
|                                                                       |       | Robust | 53.77    | 55.18          | 38.00           | <b>56</b> .37         |
| CIFAR10 $(\varepsilon = 36/255)$                                      | Small | Clean  | 62.18    | 61.77          | 62.39           | 64.53                 |
|                                                                       | Sman  | Robust | 48.03    | 47.46          | 47.59           | <b>50</b> . <b>01</b> |
|                                                                       | Laves | Clean  | 67.51    | 70.01          | 69.65           | 72.16                 |
|                                                                       | Large | Robust | 53.64    | 55.76          | 53.61           | <b>58</b> .26         |

#### State-of-the-art Comparison $(L_2)$

| Dataset                |        | BCOP-Large    | FC-3  | KW-Large [9] | KW-Resnet [9] |
|------------------------|--------|---------------|-------|--------------|---------------|
| MNIST                  | Clean  | 98.69         | 98.71 | 88.12        |               |
| $(\varepsilon=1.58)$   | Robust | <b>56</b> .37 | 54.46 | 44.53        |               |
| CIFAR10                | Clean  | 72.16         | 62.60 | 59.76        | 61.20         |
| $(\varepsilon=36/255)$ | Robust | <b>58</b> .26 | 49.97 | 50.60        | 51.96         |

## Singular Value Distribution of a Conv Layer Jacobian Before and After Training



# Empirical Results: 1-Wasserstein Distance Estimation

|        | BCOP | RKO  | OSSN |
|--------|------|------|------|
| MaxMin | 9.91 | 8.95 | 7.39 |
| ReLU   | 8.28 | 7.82 | 7.06 |

Proceedings of the 35th International Conference on Machine Learning, pages 5393-5402, 2018.

Note: All the methods give a lower bound on the Wasserstein distance (higher is better).

## References

- [1] C. Anil, J. Lucas, and R. Grosse. Sorting out Lipschitz function approximation. In K. Chaudhuri and R. Salakhutdinov, editors, *Proceedings of the 36th International Conference on Machine Learning*, volume 97 of *Proceedings of Machine Learning Research*, pages 291–301, Long Beach, California, USA, 09–15 Jun 2019. PMLR.
- [2] Å. Björck and C. Bowie. An iterative algorithm for computing the best estimate of an orthogonal matrix. SIAM Journal on Numerical Analysis, 8(2):358–364, 1971.
- [3] M. Cisse, P. Bojanowski, E. Grave, Y. Dauphin, and N. Usunier. Parseval networks: Improving robustness to adversarial examples. In *Proceedings of the 34th International Conference on Machine Learning-Volume 70*, pages 854–863. JMLR. org, 2017.
- [4] H. Gouk, E. Frank, B. Pfahringer, and M. Cree. Regularisation of neural networks by enforcing Lipschitz continuity. arXiv preprint arXiv:1804.04368, 2018.
- [5] J.-H. Jacobsen, A. W. Smeulders, and E. Oyallon. i-RevNet: Deep invertible networks. In International Conference on Learning Representations, 2018.
- [6] J. Kautsky and R. Turcajová. A matrix approach to discrete wavelets. In Wavelet Analysis and Its Applications, volume 5, pages 117–135. Elsevier, 1994. [7] H. Sedghi, V. Gupta, and P. M. Long. The singular values of convolutional layers. In International Conference on Learning Representations, 2019.
- [7] H. Sedghi, V. Gupta, and P. M. Long. The singular values of convolutional layers. In *International Conference on Learning Representations*, 2019. [8] C. Villani. *Optimal transport: old and new*, volume 338. Springer Science & Business Media, 2008.
- [9] E. Wong, F. Schmidt, J. H. Metzen, and J. Z. Kolter. Scaling provable adversarial defenses. In Advances in Neural Information Processing Systems, pages 8400–8409, 2018.
  [10] L. Xiao, Y. Bahri, J. Sohl-Dickstein, S. Schoenholz, and J. Pennington. Dynamical isometry and a mean field theory of CNNs: How to train 10,000-layer vanilla convolutional neural networks. In