测量金属的杨氏模量

星期四 第六组 1号台 甘城屹

- 一、数据及处理 对用不同的测量方法测得的数据分别作以下记录:
 - (一) CCD 成像系统测定杨氏模量
- 1. 对测量某物理量的多个数据和测量多次的数据列表:
- (1) 观察伸长变化

i	$\Delta m_i / g$	m_i / g	r_i / mm	r_i' / mm	$\overline{r_{l}}$ / mm		
0	0	0	4.22	4.25	4.235		
1	199.81	199.81	4.11	4.13	4.120		
2	199.66	399.47	3.97	4.02	3.995		
3	199.78	599.25	3.89	3.90	3.895		
4	200.06	799.31	3.80	3.92	3.81		
5	199.60	998.91	3.67	3.68	3.675		
6	199.92	1198.83	3.57	3.56	3.565		
7	199.62	1398.45	3.46	3.42	3.44		
8	199.82	1598.27	3.30	3.30	3.315		

(2) 测金属丝直径

	1	2	3	4	5	6	7	8	9	10
d' /mm	0.325	0.321	0.322	0.320	0.320	0.321	0.321	0.321	0.322	0.320

$$\overline{d}' = 0.3213mm$$

$$\sigma_{\overline{d'}} = \sqrt{\frac{\sum_{i=1}^{10} (d'_i - \overline{d'})^2}{10 \times 9}} = 4.726 \times 10^{-4} mm$$

$$\sigma_d = \sqrt{\sigma_{d'}^2 + \frac{e^2}{3}} = \sqrt{(4.726 \times 10^{-4})^2 + \frac{0.001^2}{3}} mm = 7 \times 10^{-4} mm$$

$$\bar{d}' = (3213 \pm 7) \times 10^{-4} mm$$

2. 对一次测量的物理量结果及其不确定度做记录;

测金属丝原长:

$$L = 102.40cm - 24.60cm = 77.80cm$$

$$\sigma_L = \frac{e}{\sqrt{3}} = \frac{0.01}{\sqrt{3}} cm = 5.77 \times 10^{-3} cm$$

3. 用最小二乘法分别对 1.中的 r - m 关系进行处理 使用 origin 软件对 r-m 的数据进行线性拟合,如下图所示:

可知: $r(mm) = -5.6726 \times 10^{-4} m(g) + 4.2367$ 斜率为 $k = -5.6726 \times 10^{-4} mm/g = -5.6726 \times 10^{-4} m/kg$ 另外相关系数 Pearson's r=0.9991630

4. 计算杨氏模量及其不确定度。

由实验原理可知
$$E = \frac{FL}{s\delta L} = \frac{4gL}{\pi d^2} \frac{1}{|k|} = \frac{4 \times 9.8 \times 0.7780}{3.14 \times (0.3213 \times 10^{-3})^2} \frac{1}{5.6726 \times 10^{-4}} Pa = 1.6586 \times 10^{11} Pa$$
下面计算不确定度: $\frac{\sigma_k}{|k|} = \sqrt{\frac{1}{Pearson's \, r^2} - 1} = \sqrt{\frac{1}{0.9991630^2} - 1} = 0.015474$

$$\sigma_E = E \sqrt{\left(\frac{\sigma_L}{L}\right)^2 + \left(2\frac{\sigma_d}{d}\right)^2 + \left(\frac{\sigma_k}{k}\right)^2}$$

$$= 1.6586 \times 10^{11} \times \sqrt{\left(\frac{5.77 \times 10^{-3}}{77.80}\right)^2 + \left(2\frac{7 \times 10^{-4}}{0.3213}\right)^2 + (0.015474)^2 Pa}$$

$$= 0.03 \times 10^{11} Pa$$

$$E = (1.66 \pm 0.03) \times 10^{11} Pa$$

(二) 梁的弯曲测定杨氏模量

1. 对测量某物理量的多个数据和测量多次的数据列表:

观察伸长变化

i	$\Delta m_i / g$	m_i / g	r _i / mm	r_i' / mm	$\overline{r_i}$ / mm	λ_i / mm
0	0	0	34.388	34.372	34.38	0
1	199.81	199.81	32.918	32.863	32.8905	1.4895
2	199.66	399.47	31.340	31.332	31.336	3.044
3	199.78	599.25	29.782	29.670	29.726	4.654
4	200.06	799.31	28.170	28.101	28.1355	6.2445
5	199.60	998.91	26.628	26.530	26.579	7.801
6	199.92	1198.83	25.052	25.052	25.052	9.328

- 2. 对一次测量的物理量结果及其不确定度做记录;
- ①梁的有效长度l = 28.60cm

$$\sigma_l = \frac{e}{\sqrt{3}} = \frac{0.01}{\sqrt{3}}cm = 5.77 \times 10^{-3}cm$$

②梁的宽度a = 10.00mm

$$\sigma_a = \frac{e}{\sqrt{3}} = \frac{0.01}{\sqrt{3}} mm = 5.77 \times 10^{-3} mm$$

③梁的厚度h == 1.50mm

$$\sigma_h = \frac{e}{\sqrt{3}} = \frac{0.01}{\sqrt{3}} mm = 5.77 \times 10^{-3} mm$$

3. 用最小二乘法分别对 1.中的 $\lambda - m$ 关系进行处理 使用 origin 软件对 $\lambda - m$ 的数据进行线性拟合,如下图所示:

可知: $\lambda(mm) = 7.83 \times 10^{-3} m(g) - 0.04174$ 斜率为 $k = 7.83 \times 10^{-3} mm/g = 7.83 \times 10^{-3} m/kg$ 另外相关系数 *Pearson's r*=0.99996

4. 计算杨氏模量及其不确定度。

由实验原理可知
$$E = \frac{Gl^3}{4\lambda ah^3} = \frac{gl^3}{4akh^3} = \frac{9.8 \times 0.2860^3}{4 \times 0.01 \times 7.83 \times 10^{-3} \times 0.0015^3} Pa = 2.1688 \times 10^{11} Pa$$

下面计算不确定度:
$$\frac{\sigma_k}{|k|} = \sqrt{\frac{\frac{1}{Pearson's\,r^2}-1}}{\frac{7-2}{7-2}} = \sqrt{\frac{\frac{1}{0.99996^2}-1}}{\frac{7-2}{7-2}} = 4.000 \times 10^{-3}$$

$$\sigma_E = E \sqrt{\left(3\frac{\sigma_l}{l}\right)^2 + \left(\frac{\sigma_a}{a}\right)^2 + \left(\frac{\sigma_k}{k}\right)^2 + \left(3\frac{\sigma_h}{h}\right)^2}$$

 $= 2.1688 \times 10^{11}$

$$\times \sqrt{\left(3 \times \frac{5.77 \times 10^{-3}}{28.60}\right)^2 + \left(\frac{5.77 \times 10^{-3}}{10}\right)^2 + (4.000 \times 10^{-3})^2 + \left(\frac{5.77 \times 10^{-3}}{1.5}\right)^2} Pa$$

 $= 1.2 \times 10^9 Pa$

$$E = (2.169 \pm 0.012) \times 10^{11} Pa$$

- 二、分析与讨论 在用 CCD 法和光杠杆法测定金属丝杨氏模量实验中, 对出现的下列两种情况分别分析可能的原因:
- 1. 开始加第一、二个砝码时 r 的变化量大于正常的变化量;
- ①金属丝没有完全伸直,有的地方扭曲,在受力后拉直而变长;
- ②超出了弹性形变范围;
- ③光杠杆法测定中、初始调节不到位、角度、位置不合适、出现异常。
- 2. 开始加第一、二个砝码时 r 的变化量小于正常的变化量。
- ①小圆柱与限位螺丝之间存在摩擦,初始砝码质量较小时,金属丝应变不够灵敏。
- ②光杠杆法测定中,初始调节不到位,角度、位置不合适,出现异常。