Lecture 1: Introduction to Computer Networks

Timothy A. Gonsalves
Professor and Head
Dept. of CSE, IIT Madras

Short Term Course on "Teaching Computer Networks Effectively". Sponsored by AICTE.

Overview of the Syllabus for Computer Networks

- Multiple co-located hosts: addressing, LAN access methods; CSMA/CD, Ethernet, Token passing, Token Ring, wireless LANs; Simple performance models; WAN access methods - PPP.
- Remotely located hosts: addressing, interconnection of LANs; repeaters, bridges, routers; ATM cell-switching

Overview of the Syllabus for Computer Networks

- IP: routing protocols (distance vector, link state packet routing); congestion control concepts and mechanisms (choke packets, leaky bucket, token bucket); IPv4, CIDR (Classless Interdomain routing)
- End-to-end reliability: the end-to-end argument; protocols - TCP, UDP, RPC; connection establishment, flow control.

Overview of the Syllabus for Computer Networks

 Application protocols for email, ftp, web, DNS.

Advanced topics:

Wireless networks and sensor networks; network management systems; security threats and solutions; IPv6; Multimedia applications and its impact on networking.

References

- 1. Peterson & Davie, "Computer Networks, A Systems Approach", 3rd ed, Harcourt, 2005
- 2. Andrew S. Tanenbaum, "Computer Networks", 4th ed., Prentice Hall, 2003.
- 3. Bertsekas and Gallagher "Data Networks, PHI, 2000
- 4.William Stallings, "Data and Computer Communications," 5th edition, PHI, 2005

Course Schedule

- Goals of Networking, physical media, RS232 based communication
- Host-to-host communication, packet switching, framing, CRC, stop and wait protocol, sliding window protocol
- Multiple colocated hosts: addressing, ethernet (CSMA/CD), Token Ring (FDDI), MACAW (wireless LANs), bridges
- Internetworking, addressing, ATM cell switching, LANE
- IP routing algorithms, RIP, OSPF, BGP
- end-to-end communication: UDP, TCP, RPC
- Congestion control (Router based, process based)
- Applications: DNS, HTTP
- Advanced Topics: Network Intrusion Detection, SNMP
- Sign Off

Computer Networks

- Heterogeneous systems need to talk to each other:
 - Media to connect
 - wired twisted pair, coaxial cable, fibre
 - wireless radio
 - Topology of the Network
 - Protocols and software.

Computer Networks and Distributed Systems

- Distributed systems and Computer Networks:
 - Closely related
 - Distributed system transparent
 - Computer Network not transparent

Purpose of a Computer Network

- Primary objective of Computer Networks:
 - Transfer data from machine A to machine B
 - Facilitates access to remote information
 - Facilitates sharing of data
 - Facilitates person to person communication
 - Facilitates Interactive Entertainment
 - Not every machine is connected to every other machine
 - Establish connection between a pair of machines
 - Transfer data
 - Enable machines of different speeds to communicate with each other

Simplest Form of Transfer of Data Across Machines

Eg.: Sharing of Data on DOS machines

- Transfer data from machine A to machine B:
 - DOS machines connected by a serial line
 - No networking support in DOS
 - machine A: copy file to the com1 port
 - machine B: copy com1 to file

Sharing of Data on DOS machines

- Issues:
 - Synchronisation
 - if sender is faster than receiver
 - Error on the line
 - require error checking

Solution (a)

- Solution (a):
 - Synchronisation: interrupt driven
 - Error: checksum, CRC, parity
 - Overrun: flow control
 - sender should send data at the rate at with receiver is ready to accept.

Solution (b)

- Use RTS (Request To Send) from B → A
- At A:
 - clear RTS
 - open (file)
 - while not eof(file) do
 - read a byte
 - wait until RTS is high
 - send a byte
 - endwhile
 - send eof
 - close(file)

Solution (b) (contd)

- At B:
 - open(file)
 - repeat
 - set RTS
 - get a byte
 - clear RTS
 - write byte to file
 - until eof
 - close(file)

Data Flow Diagram using RTS

Issues

- If read at A is faster than get at B
 - read at A is completed before RTS is reset by B.
 - A will transmit another byte.
 - B will be swamped by A.
- One more signal is required:
 - RTS alone is not sufficient.
 - CTS (Clear To Send) A → B
 - RTS (Request To Send) B → A

Data Flow Diagram using RTS and CTS

The Algorithm

- At A:
 - clear CTS
 - open(file)
 - wait for RTS to go High
 - while not eof(file) do
 - read byte
 - send byte
 - toggle CTS
 - wait for RTS toggle
 - endwhile
 - wait for RTS toggle
 - send eof

The Algorithm

- At B:
 - open(file)
 - set RTS
 - while not eof(file)
 - wait for CTS toggle
 - read byte
 - write to file
 - toggle RTS
 - endwhile

Error Control

- At A:
 - Read file
 - compute Checksum
 - repeat
 - send file
 - send Checksum
 - check wires
 - wait for ack
 - get ack
 - until ack
 - send finish

Error Control

- At B:
 - open(file)
 - while not (finish) do
 - get file
 - get checksum from A
 - compute Checksum from file received
 - compare the two
 - if same then send send acknowledgement
 - endwhile

Issues

- What if file is very large?
 - Heavy retransmissions
 - Very inefficient
- Requires splitting the file.
 - Split file into what units?
 - packets?

Packetised File Transmission

- At A:
 - Packetise file
 - Transmit each packet separately with its own error control
 - If erroneous retransmit

At B:

- Receive packet by packet
- Check for errors
- Acknowledge reception of packet
- Assemble packets and save to a file

Packet based transmission: Issues

- A Protocol is required for:
 - Start/end of a byte
 - Start/end of a packet
 - Start/end of a file
 - Error control mechanism required
 - Out of order arrival of packets:
 - Sequence number for each packet

A Layered Approach to Error Control

- files: checksum
- messages: checksum or CRC
- packets: CRC
- **bytes:** parity
- bits: voltage levels
- Different error control mechanisms at different layers

LAN: Multiple co-located PCs

- Connect by a shared bus
 - Broadcast: every PC receives every packet
- Issues:
 - Addresses to distinguish receiver
 - Medium access control

Internet: Multiple LANs

- Mesh topology, not broadcast
- Issues:
 - Globally-unique addresses
 - Routing
 - Subnets may provide different levels of service
 - End hosts need to ensure desired service

A Layered Approach to Computer Networks

- Physical Layer
- Data Link Layer
- Network Layer
- Transport Layer
- Session Layer
- Presentation Layer
- Application Layer

- Different layers of abstraction
- Different error control mechanisms at different layers

Layer to Layer Communication

- Layer n on 'A' talks to Layer n on 'B'.
 - No data transferred directly between layers at the same level.
 - Data and control flow from one layer to the layer below it until it reaches Physical Layer.
 - All transmission only at the Physical Layer.

Design of a Network

- Layer to Layer interface must be well understood.
- A set of layers and protocols constitute a network architecture.
- A set of protocols, one per layer is called a protocol stack.

H = **Header M** = **Message**

Design of a Network

- Addresses for source and destination
 - multiple machines with multiple processes
 - a process on one machine must know the identity of process on the other machine that it wants to talk to
 - Machine Address
 - Process Address

Design of a Network

- Virtual communication between peers except Physical Layer.
- Each layer thinks that there is a horizontal communication.
- Procedures at each layer:
 - Send To Other Side
 - Get From Other Side
- each layer communicates with lower layers
- each layer needs a mechanism to identify senders and receivers

Design of a Network (Continued)

- Modes of data transfer
 - Simplex, duplex, half-duplex
- Number of logical channels
 - Minimum two
 - One for data, one for control

Design of a Network (Continued)

- Layers of abstraction
- PDU formats at each layer
- Mechanisms for error control at each layer
- Mechanisms for flow control
- Sequencing of PDUs at each layer
- Support multiple protocols at each layer

Example of Multiple protocols in the same layer

Different requirements for different Applications

- protocol stack for:
 - file application:
 - RRP / HHP
 - Digital Library
 - RRP / HHP

Must ensure reliable transmission

- Video Application:
 - MSP / HHP enable QoS, jitter, delay video on demand / video conferencing

Layering in a Network

- Abstracting details away from physical layer:
 - keeps switches in the middle of the Network as simple as possible
 - Compare with telephone network: put intelligence in switch
 - telephone handsets as simple as possible
 - A single physical connection to multiplex different conversations

Layering in a Network

- flow control:
 - prevents sender from swamping receiver
- message formats:
 - different sizes at different levels
 - assemble / disassemble messages

Layer to Layer Communication

- Each layer provides service to the layer above it
 - Layer n provides services for Layer n+1
 - Layer n service provider
 - Layer n+1 service user

Interfaces between Layers

- Service access point (SAP)
 - place where Layer n+1 accesses Layer n services
- unique address
 - SAP in telephone NW
 - telephone jack or socket
 - SAP address:
 - telephone number

Exchange of information between two layers. (IDU)

Interfaces and Services

SDU

- transmitted across Network
- Control job
- useful for lower layer to do their
- e.g. number of bytes
- Layer n fragments data into PDUs (Protocol Data Unit – packets)
 - each PDU has a header.
- PDUs are used by peers

Services and Protocols

Services:

 set of primitives or operations that a layer provides to the layer above it.

Protocols:

 set of rules governing the format and meaning of frames, packets, messages exchanged between peers.

Types of Services

- connection oriented service
 - Telephone system
- connection less
 - E.g. Postal system
 - Two letters posted at the same time to same address
 - (second message come before first no acknowledgement)
- reply paid telegram
 - Acknowledgement received for message

- Physical layer:
 - Transmits bits 0 & 1
 - what voltage to use
 - width of a bit
 - connection establishment
 - tearing down of connection
 - number of pins on Network connector and use of each pin on the connector

- Data Link Layer:
 - convert it to a line that appears free of undetected transmission errors to the layer above it.
 - data frames, ack frames
 - handshaking between transmitter, receiver
 - control access to the shared channel

- Network Layer:
 - operation of the subnet
 - routing of packets src to destination
 - static / dynamic routing;
 - congestion control

- Transport Layer:
 - Lowest end-to-end layer
 - split data from session passes to Network Layer, pieces arrive correctly at the other end.
 - flow control
- Session Layer (not used in Internet):
 - allows uses on different machines to establish a session between them.
 - synchronisation, check parity

- Presentation Layer (not used in Internet):
 - coding standards machine to Network and back
 - Example: ASCII to Unicode and vice versa
- Application Layer:
 - variety of protocols required
 - File transfer protocol, Simple Mail Transfer Protocol, Directory Server, Simple Network Management Protocol

The TCP/IP Protocol Stack

Application SNMP TELNET FTP SMTP DNS **TCP UDP Transport** IP **NetWork** Physical + ARPANET SATNET Packet LAN Radio **DLL**

A Simple Network

- Connecting two machines directly to physical medium
 - Encoding
 - Framing and error detection
 - Link should appear reliable
 - shared link
 - medium access

Summary

- Handshaking for flow control
- Redundancy for error control
- Protocol: set of conventions for communication
- End-to-end protocol for robustness
- Layered architecture simplifies a complex problem