OpenWrt

Cesta do hlubin otevřeného systému pro domácí routery

Martin Strbačka • martin.strbacka@nic.cz • 21.05.2013

Obsah: První část

- Představení OpenWrt
- Trocha historie
- Jak to bootuje?
- Filesystem
- Ipkg balíčky
- UCI
- LuCl

Obsah: Druhá část

- Jak to nainstalovat?
- Předpřipravené balíčky, ImageBuilder, Buildroot-NG
- Připojení ke konzoli
- Instalace z bootloaderu
- Zápis do MTD, sysupgrade
- JTAG
- I2C, GPIO, SPI aneb co umí procesor a jsme schopni toho využít?
- Užití routeru na netradičních místech

Představení OpenWrt

- Linuxová distribuce pro embedded zařízení (převážně SOHO routery)
- Spíše framework, meta distribuce
- Neexistuje žádná zaštiťující organizace
- Historie:
 - 2003 Linksys WRT54G
 - http://seattlewireless.net/ Je v tom Linux!
 - 2004 openwrt.org
 - 2013 Zatím poslední stabilní vydání (Attitude Adjustment)

10 let a stále na trhu

Vnitřnosti

- Linux kernel + Busybox + uClibc
- Správce balíčků opkg
- UCI
- Buildroot-NG

Současný stav

- ~50 podporovaných platforem (ARM, MIPS, PowerPC, x86)
 - wiki.openwrt.org/toh/start
- > 1500 balíčků
- Linux kernel 3.3.x
- Linaro GCC 4.6
- uClibc 0.9.33.2 (eglibc, musl)

Jak to bootuje

- 1) Bootloader (dnes nejčastěji U-Boot + patche)
 - Low-level HW init
- 2) Linux kernel + připojí se mtd oddíl s názvem "rootfs"
- 3) Spustí se /etc/preinit
 - Vytvoří složky, připojí /proc, /dev
 - FailSafe
 - Připojí jffs2 overlay "rootfs_data"
 - Nahraje moduly, inicializuje hotplug
- 4) Init, spouštění skriptů v /etc/rc.d

Souborový systém

- Historie
 - nvram
 - Konfigurační volby uloženy jako páry klíč, hodnota
 - symlink
 - Zapisovatelné soubory linkovány do RW oddílů
 - mini_fo
 - Speciální FS, bezešvé spojení RO a RW oddílů v jeden
- Dnes
 - overlayfs (jffs2 + squashfs)
 - Nástupce mini_fo, stabilnější

Souborový systém - porovnání

Firmware od výrobce

TP-Link WR1043ND Flash Layout stock firmware							
Layer0	m25p80 spi0.0: m25p64 8192KiB						
Layer1	mtd0	mtd1	mtd3				
Size in KiB	128KiB	8000KiB	64KiB				
Name	u-boot	firmware	art				
mountpoint	none	I	none				
filesystem	none	SquashFS?	none				

Openwrt

TP-Link WR1043ND Flash Layout								
Layer0	m25p80 wspi0.0: m25p64 8192KiB							
Layer1	mtd0 <i>u-boot</i> 128KiB	mtd5 <i>firmware</i> 8000KiB			mtd4 art 64KiB			
Layer2		mtd1 kernel 1280KiB	mtd2 <i>rootfs</i> 6720KiB					
mountpoint			/					
filesystem			<u>mini_fo</u>					
Layer3				mtd3 <i>rootfs_data</i> 5184KiB				
Size in KiB	128KiB	1280KiB	1536KiB	5184KiB	64KiB			
Name	u-boot	kernel		rootfs_data	art			
mountpoint	none	none	/rom	/overlay	none			
filesystem	none	none	<u>SquashFS</u>	JFFS2	none			

Opkg – Správce balíčků

- ...nebo ipkg?
- Opkg je fork lpkg
- Ipkg není dále vyvýjen
 - Ipkg je registrovaná ochranná známka
- *.ipk a *.opk jsou identické soubory
 - Velmi podobné *.deb
 - TGZ soubory obsahujicí data.tar.gz a control.tar.gz
 - Vyšší rozlišení ve specifikaci cílové platformy
- Opkg nainstaluje i deb balíček, neprovede ale skripty

UCI – Unified Configuration Interface

- Problém různé daemony mají různé konfigurační soubory na různých místech
- UCI zavádí jednotnou syntaxi konfiguračních souborů
- Všechny konfigurační soubory jsou umístěné v /etc/config/
- Init skripty konvertují UCI soubory do:
 - Parametrů předávaných daemonu
 - Dočasných konf. souborů ve /var/etc/
- Některé konf. soubory nejsou ucifikovány záměrně
 - hosts.{deny,allow}, inittab, shells, atd..

LuCI

- WEB UI, ano existuje, navzdory názoru některých vývojářů
- LuCl = Lua + UCl
- Výchozí WEB UI pro OpenWrt

Další alternativy: Gargoyle, X-Wrt

Gargoyle

http://www.gargoyle-router.com/wiki/doku.php?id=screenshots

Přestávka

Jak to nainstalovat?

- wiki.openwrt.org/toh/start
- Výběr správného instalačního obrazu
 - Použít předkompilované
 - Použít ImageBuilder
 - Zkompilovat vlastní
 - Buildroot-NG
- Nahrát
 - Nejčastěji přes webové rozhraní
 - Skrze bootloader
 - TFTP
 - Xmodem
 - Skrze JTAG (dříve z důvodu velikosti Flash paměti nutnost odstranění bootloaderu)

ImageBuilder

- Pohodlné sestavení firmware "na míru" z předkompilovaných balíčků
- make image PROFILE=<profile> PACKAGES=<+pkg1 -pkg2> FILES=</path>
- Seznam profilů -> make info
- Soubory obsažené v adresáři předaném v parametru FILES budou přidány do squashfs oddílu
 - Existující soubory budou přepsány
- Zkompilované firmware jsou umístěny v ./bin

Buildroot-NG

- SDK pro snadnou cross-kompilaci firmware
- Využívá kconfig (Linux kernel menuconfig)
- Zjednodušuje:
 - Nastavení cross-compiling toolchainu
 - Standardní workflow scénáře
 - Stáhnout, patchnout, zkompilovat, vyrobit balíček
- Možnost připojit vlastní soubory ze složky ./files

Formáty firmware

- Výsledkem sestavení firmware jsou vždy 4 soubory
 - openwrt-ar71xx-generic-tl-wr703n-v1-{squashfs,jffs2}-{factory,sysupgrade}.bin
- SquashFS Systém souborů je rozdělen na RO a RW část a spojen v jeden celek pomocí overlayfs
- Jffs2 Celý systém souborů je formátován jako RW
 - Nevýhody: plýtvání místem, systém kvůli kompresi není schopen zjistit zbývající volné místo, náchylné k havárii
- Factory Standardní formát firmware, určený k nahrání do nového zařízení
- Sysupgrade Formát firmware určený k upgrade systému skrze nástroj sysupgrade

Připojení ke konzoli

- Téměř všechna zařízení mají sériovou konzoli (UART)
- Problém: najít jí a zjistit nastavení
 - wiki.openwrt.org/toh/start
- Co hledáme?
 - 2 4 podezřelích vodičů (Rx, Tx, GND, 3V3)
 - Občas jsou označené (TP_IN, TP_OUT TP-Link)
 - Občas jsou ve formě neosazeného headeru nebo pájecích plošek
 - Někdy výrobci obvod záměrně "poškozují"
- Co k tomu potřebujeme?
 - USB-TTL konvertor (ebay "pl2303", "usb ttl", "ca-42")
 - Uživatelé Windows pozor na "made in China"!

UART

http://wiki.openwrt.org/toh/tp-link/tl-wr740n

UART

http://wiki.openwrt.org/toh/tp-link/tl-wr741nd

Bootloader - Instalace

- Hodí se:
 - V případě poškození kernelu
 - Nahrání špatného firmware
 - Při návratu k originálnímu firmware

```
hornet> tftpboot 0x81000000 openwrt-ar71xx-generic-tl-wr703n-v1-squashfs-factory.bin
hornet> erase 0x9f020000 +0x3c0000
hornet> cp.b 0x81000000 0x9f020000 0x3c0000
hornet> bootm 9f020000
```

- U-Boot mapuje RAM a Flash jako jeden adresní prostor
- Je nutné znát offsety
 - mohou být změněny při kompilaci zavaděče

Operace s MTD

- cat /proc/mtd
- Podrobnější info o hranicích a velikostech oddílů
 → dmesg
- Při flashování firmware z běžícího systému existuje několik možností:
 - cat firmware > /dev/mtdX
 - dd if=firmware of=/dev/mtdX
 - mtd write firmware linux

JTAG – Joint Test Action Group

- Standardizované rozhraní pro testování a programování
- Umožňuje oživit bricknuté zařízení (poškozený bootloader)
- Zjednodušeně JTAG umožňuje naprogramování flash paměti
- Použití JTAG je složitější, je nutné správně inicializovat zařízení
 - Device specific, assembler
 - Nutné inicializovat nastavení taktovacích freq, ram modulu atd
- Výrobce občas zakáže zápis do Flash

JTAG

http://wiki.openwrt.org/toh/tp-link/tl-wr1043nd

GPIO – General Purpose Input/Output

- Porty (piny) připojené přímo do procesoru
- Jejich stavy a směry můžeme snadno ovlivňovat
- V routerech běžně slouží k blikaní stavovými led diodami, spínání napajení USB portu, UART, atd.
- OpenWrt obsahuje kernelové moduly podporující připojení SD karty či I2C zařízení skrze GPIO
- Napěťové úrovně
 - -3V3 0 (false)
 - 0V = 1 (true)
- Jak je ovládat
 - Odstranit modul který gpio používá (rmmod leds_gpio)
 - echo 27 > /sys/class/gpio/export
 - cat /sys/class/gpio/gpio27/value

I2C

- I2C protokol podporuje mnoho obvodů mimo jiné inteligentní LCD, audio a video obvody
- Nejčastější využití I2C v OpenWrt RTC

1-Wire

- Zjednodušená verze I2C
- Pouze jeden datový vodič
- Pro levná a pomala zařízení
- Např. teploměr

SPI

- Většina SoC má dnes SPI rozhraní nativně a je přes něj připojena Flash paměť
- Pomocí bitbangu je možné emulovat SPI na GPIO a připojit k němu SD či MMC kartu. Z hlediska podpory SPI připojit k němu SD či MMC kartu. Z hlediska přenosu jsou totožné

Extrémní úpravy – USB

https://forum.openwrt.org/viewtopic.php?id=37368

Netradiční použití

http://wiki.openwrt.org/toh/tp-link/tl-wr703n

Děkuji za pozornost

Martin Strbačka • martin.strbacka@nic.cz

