Podstawy fizyki – sezon 2 4. Pole magnetyczne

Agnieszka Obłąkowska-Mucha

AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 106 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha

Pola magnetycznego

- Magnetostatyka nauka o stałych niezależnych od czasu polach magnetycznych (część magnetyznu, który z kolei jest galęzią elektromagnetyzmu)
- Źródłem pola magnetycznego jest magnes trwały lub obwód z prądem.
- Każdy magnes ma dwa bieguny umownie nazwane północnym i południowym. Magnes jest odpowiedinkiem dipola elektrycznego.
- Nie ma monopoli magnetycznych!!!! Magnes po podzieleniu dalej ma DWA bieguny!
- Nie można zatem mówić o pełnej analogii pomiędzy polami: elektrycznym i magnetycznym.
- Ale podobieństwa są w szczególności będziemy omawiać linie pola (magnetycznego), oddziaływanie magnesów i oddziaływanie pola magnetycznego na ładunek (elektryczny).

Źródła pola magnetycznego

- Magnes wytwarza wokół siebie wektorowe pole magnetyczne.
- Źródłami pola magnetycznego są również elektromagnesy cewki z drutu nawinięte na rdzeń żelazny, prąd elektryczny wytwarza pole.
- Cząstki budujace materię (elektrony, protony, neutrony) są źródłami pola magnetycznego.
 Wewnetrzne pole charakteryzuje cząstkę (jak masa lub ładunek elektryczny).
- Wypadkowe pole niektórych materiałów może być różne od zera są to magnesy trwałe, np. Fe_3O_4 .
- ▶ 1820 H.Oersted wykazał, że poruszające się ładunki elektryczne są żródłami pola magnetycznego.
- Pole magnetyczne opisywane jest: wektorem natężenia pola \overrightarrow{H} oraz wektorem indukcji pola magnetycznego \overrightarrow{B} .

In bulk material the domains usually cancel, leaving the material unmagnetized.

Externally applied magnetic field.

Linie pola magnetycznego

Pole magnetyczne ilustrowane jest za pomocą linii pola:

 Z obserwacji wynika, że bieguny jednoimmienne się odpychają, różnoimmenne się przyciągają.

Indukcja magnetyczna

Wartość wektora indukcji magnetycznej charakteryzuje siłę pola magnetycznego:

$$[B] = T = \frac{N}{C \frac{m}{s}} = \frac{N}{A m}$$

źródło	indukcja <u>B</u> [T]
kosmos	10^{-10}
Ziemia	10^{-4}
magnes sztabkowy	0.01
elektromagnes	1.5
magnes nadprzewodzący	8
gwiazda neutronowa	10 ⁸

Indukcja pola magnetycznego

- Pole elektryczne można było zbadać umieszczając w nim ładunek i znajdując siłę działąjącą na niego ze strony pola.
- Podobnie wyznaczymy pole magnetyczne umieścimy w nim naładowaną cząstkę próbną i znajdziemy siłę.
- Okazuje się, że na poruszający się dodatni ładunek próbny w polu magnetycznym działa siła (Lorentza) określona jako: $\overrightarrow{F_L} = q \overrightarrow{v} \times \overrightarrow{B}$
- Siła Lorentza jest prostopadła do wektorów \overrightarrow{v} oraz \overrightarrow{B} .

Wyznaczanie siły Lorentza

- Trzy wektory $\overrightarrow{F_L}$, \overrightarrow{v} , \overrightarrow{B} tworzą trójkę wektorów prawoskrętnych.
- Zwrot wektora znajdziemy za pomocą reguły prawej dłoni (śruby prawoskrętnej):

Siła Lorentza nie ma składowej równoległej do prędkości \vec{v} – nie zmienia energii kinetycznej, może jedynie zmieniać kierunek prędkości.

Ruch ładunku w polu magnetycznym

▶ Jeśli naładowana cząstka wpada w obszar pola magnetycznego prostopadle do wektora indukcji \vec{B} , to pod wpływem siły Lorentza porusza się po okręgu.

Siła Lorentza jest tutaj siłą dośrodkową:

$$F_L = F_d$$

$$qvB = \frac{mv^2}{R}$$

odkrycie pozytonu

Promieniowanie kosmiczne

 Pole magnetyczne Ziemi chroni ją przed naładowanymi cząstkami z promieniowania kosmicznego

Ładunek w polu magnetycznym

Jeśli ładunek wpada pod dowolnym kątem –porusza się po linii śrubowej

Ruch ładunku w polu magnetycznym po okręgu lub torze śrubowym jest

podstawą urządzeń służących np. do:

spektrometrów,

cyklotronów i synchrotronów,

 \overrightarrow{B}

Przewód z prądem w polu magnetycznym

 Pole magnetyczne wytwarza poprzeczną siłę, która działa na elektrony – działa ona również na przewodnik z prądem.

w czasie t przez przekrój x-x przepływa ładunek q

$$q = It = I \frac{L}{v_d}$$

stąd siła Lorentza działająca na przewodnik z prądem I o długości L w polu o indukcji B:

$$\overrightarrow{F_L} = I \overrightarrow{L} \times \overrightarrow{B}$$

Ramka z prądem w polu magnetycznym

- Modelem silnika elektrycznego jest ramka z prądem w polu magnetycznym.
- Pracę wykonują siły magnetyczne (Lorentza) uwaga! błąd w kierunku sił na rysunku

Siła Lorentza działa na boki ramki z prądem i powoduje jej obrót

po wykonaniu połowy obrotu.

komutator zmienia kierunek prądu i siły dalej obracają ramkę

Moment działający na ramkę

 Na boki ramki działają siły Lorentza – momenty sił 2 i 4 się znoszą, a moment sił 1 i 3 powoduje obrót ramki

$$\vec{M} = \vec{M}_1 + \vec{M}_3 + \vec{M}_2 + \vec{M}_4$$

$$= 0$$

$$M = 2 I a B \frac{b}{2} \sin \alpha$$

$$S = a b$$

jeśli zamiast ramki mamy cewkę o N zwojach:

$$M = N I S B \sin \alpha$$

Moment działający na ramkę

- Jeśli ruch zwoju opiszemy ruchem wektora normalnego \overrightarrow{n} , to określimy dipolowy moment magnetyczny zwoju: $\overrightarrow{\mu} = IS \overrightarrow{n}$.
- Moment obrotowy, jaki uzyskuje ramka od pola magnetycznego \vec{B} :

$$\overrightarrow{M} = \overrightarrow{\mu} \times \overrightarrow{B}$$

Pole obraca zwój tak, aby wektory $\vec{\mu}$ i \vec{B} były zgodne

W silniku elektrycznym kierunek prądu w cewce zmienia się w chwili, gdy kierunek wektora n pokrywa się z kierunkiem indukcji magnetycznej n.

Pole magnetyczne - zastosowanie

 Przewodząca ramka w polu magnetycznym – moment skręcający

Galwanometr, amperomierz, woltomierz

Mierniki elektryczne

 Analogowe mierniki prądu i napięcia wykorzystują pomiar momentu siły magnetycznej działającej na sprężynę (cewkę) pochodzącej od pola magnetycznego

Silniki elektryczne

 Pierwszy pracujący silnik elektryczny - 1837 w USA (Thomas Davenport) do napędu wiertarki i tokarki do drewna – 450 obr/min

Elektron – momenty magnetyczne (*)

▶ Jeśli wyobrazimy sobie elektron jako wirującą kulkę o momencie pędu \vec{S} (co jest niestety sprzecze ze zrozumieniem elektronu jako cząstki punktowej, bez wymiarów), to można mu przypisać spinowy moment magnetyczny $\vec{\mu}_S$:

$$\vec{\mu}_S = -\frac{e}{m} \; \vec{S}$$

• W zewnętrznym polu magnetycznym elektron ustawia się zgodnie z kierunkiem \vec{B} , ale jego spin \vec{S} ma przeciwny zwrot.

Pamiętajmy, że elektrony wykonują ruch obrotowy w atomie. Zatem również ten ruch opisany jest orbitalnym momentem magnetycznym

sany jest
$$\vec{\mu}_{orb} = -\frac{e}{2m} \vec{L}_{orb}$$

Własności magnetyczne materii

Każdy elektron w atomie ma spinowy i orbitalny moment magnetyczny.

Wypadkowy moment magnetyczny materiału jest sumą momentów magnetycznych (orbitalnych i spinowych) elektronów oraz momentów magnetycznych poszczególnych atomów.

- Jeśli ta wypadkowa jest różna od zera, to taki materiał ma własności magnetyczne:
 - diamagnetyzm słabe momenty magnetyczne są indukowane (w przeciwnym kierunku) w atomach, gdy zostaną one umieszczone w zewnętrznym polu magnetycznym, po usunięciu pola zewnetrznego – momenty magnetyczne znikają - bizmut, krzem, cynk, magnez, złoto, miedź
 - paramagnetyzm (pierwiastki ziem rzadkich lantanowce, aktynowce, tlen, tlenek azotu, glin, platyna, potas, sód, magnez, wapń),
 - ferromagnetyzm (żelazo, kobalt, nikiel)

Materia magnetyczne

PARAMAGNETYZM

- Atomy mają momenty magnetyczne zorientowane chaotycznie, materiał nie wytwarza własnego pola.
- Przyłożone zewnętrzne pole magnetyczne częściowo porządkuje momenty (w kierunku pola), ale wewnętrzne pole znika po usunięciu pola zewnętrznego

FERROMAGNETYZM

- Momenty magnetyczne są trwale uporządkowane, powstają obszary (domeny) o dużym momencie magnetycznym.
- Zewnętrzne pole magnetyczne ustawia pola domen – powstaje wypadkowe bardzo duże pole, które częściowo się utrzymuje po usunięcie pola zewnętrznego

Ferromagnetzym

▶ Namagnesowanie ferromagnetów- poniżej temperatury krytycznej (Curie) T_C :

Temperatura Curie:

Fe 770 C Co 1331 C Ni 358 C

 Fe_3O_4 585 C stopy 900 C

Magnesowanie ferromagnetyków – pętla histerezy

 Zewnętrzne pole magnetyczne powoduje ustawienie momentów magnetycznych

Podsumowanie

- Pole magnetyczne źródła.
- Siła I orentza.
- Oddziaływanie ramki z prądem z polem magnetycznym.
- Model silnika elektrycznego.
- Własności magnetyczne materii.
- Magnesowanie, pętla histerezy

Pokazy doświadczeń

- Linie pola magnetycznego- magnes, elektromagnes, cewka.
- Siła Lorentza zależność od kierunku prądu.
- Ramka w polu magnetycznym.
- Własności magnetyczne materiałów

Pole magnetyczne wokół przewodnika z pradem

Poruszający się ładunek elektryczny jest źródłem pola magnetycznego:

Indukcja magnetyczna

- Poruszający się ładunek elektryczny jest źródłem pola magnetycznego.
- Jak wyznaczyć indukcję tego pola?

element dl przewodnika z prądem o natężeniu i wytwarza w punkcie P, odległym od tego elementu o \vec{r} , pole o indukcji $d\vec{B}$:

$$\overrightarrow{dB} = \frac{\mu_0}{4\pi} \frac{i \overrightarrow{dl} \times \overrightarrow{r}}{r^3}$$

prawo Biota-Savarta (1820)

Całkowite pole wytworzone przez przewodnik:

$$B = \int dB$$

Prawo Biota-Savarta jest odpowiednikiem prawa Coulomba dla pola elektrycznego

Pole od przewodnika o kształcie łuku

 Przykł. wykorzystania prawa Biota-Savarta – obliczenie pola od przewodnika wygiętego w łuk:

procedura:

- dzielimy przewodnik na małe elementy ,
- z reguły prawej ręki wyznaczamy zwrot wektora indukcji w środku C,
- obliczamy dB i potem B całkowite.

$$\overrightarrow{dB} = \frac{\mu_0}{4\pi} \frac{i \overrightarrow{dl} \times \overrightarrow{r}}{r^3}$$

$$dB = \frac{\mu_0}{4\pi} \frac{i \ dl \ r \sin \pi/2}{r^3}$$

$$dl = R \ d\phi$$

$$r = R$$

$$dl = \frac{\mu_0}{4\pi} \frac{i \ dl \ r \sin \pi/2}{r^3}$$

$$dl = R \ d\phi$$

$$r = R$$

$$dl = \frac{\mu_0}{4\pi} \frac{i}{R} \int_0^{\phi} d\phi \ dl \ dl \ \phi = 2\pi$$
we procedure.

$$\phi = 2\pi$$
:
$$B = \frac{\mu_0}{2} \frac{\iota}{R}$$

wartość indukcji pola magnetycznego w środku kołowego przewodu z prądem

Pole wokół przewodnika

Obliczenie pola od przewodnika o długości l z prądem o natężeniu I:

$$dB = \frac{\mu_0}{4\pi} \frac{I \ dl \sin \theta}{r^2}$$

Aby uzależnić dB tylko od kąta θ zastosujemy podstawienia:

$$l = a ctg \theta$$

Po scałkowaniu po całej (nieskończonej) długości przewodnika otrzymujemy

$$B = \frac{\mu_0}{2\pi} \frac{I}{a}$$

ćwiczenia!

Prawo Ampera

- Wyznaczenie indukcji magnetycznej wokół przewodnika z prądem może być skomplikowane...
- W niektórych przypadkach można wykorzystać prawo Ampera:

Prawo Amprera - zastosowania

$$\oint \overrightarrow{B} \cdot \overrightarrow{dl} = \mu_0 I_P$$

Prawo Ampera dla nieskończonego prostoliniowego przewodnika:

$$I_P = I$$

$$\oint \overrightarrow{B} \cdot \overrightarrow{dl} = B \oint \overrightarrow{dl} = B \cdot 2\pi r$$

$$B = \frac{\mu_0}{2\pi} \frac{I}{r}$$

wartość indukcji pola magnetycznego w odległości r od prostoliniowego nieskończonego przewodu z prądem

prawo B-S..

Trochę praktyki...

Inne (ciekawe) przykłady

Torus

Solenoid

ćwiczenia!

Dwa przewody z prądem

 Dwa przewody z prądem oddziałują na siebie siłami elektrycznymi – jeden przewodnik wytwarza pole magnetyczne na drugi przewodnik z prądem działa siła Lorentza (symetrycznie na odwrót również).

W przypadku dwóch równoległych przewodów o długości L:

$$B_1 = \frac{\mu_0}{2\pi} \frac{I_1}{r}$$

$$F_2 = B_1 I_2 L$$

również:

$$B_2 = \frac{\mu_0}{2\pi} \frac{I_2}{r}$$
 $F_1 = B_2 I_1 L$

co daje:

$$F = \frac{\mu_0}{2\pi} \frac{I_1 I_2 L}{r}$$

siła odziaływania dwóch przewodników z prądem. Zwroty – reguła " prawej ręki"

Prawo Gaussa dla pola magnetycznego

- Nie ma monopoli magnetycznych magnes po podzieleniu nadal ma DWA bieguny (bo magnetyzm jest związany z ustawieniem spinów, mikrostrukturą)
- Jeżli zatem otoczymy magnes powierzchnią Gaussa (czyli dowolną powierzchnią zamkniętą) – całkowity "ładunek magnetyczny" wewnątrz niej wyniesie zero! Tyle samo linii pola wchodzi do powierzchni, co wychodzi.

$$\oint \vec{B} \cdot \vec{ds} = 0$$

prawo Gaussa dla pola magnetycznego: wypadkowy strumień magnetyczny przechodzący przez dowolną powierzchnię zamkniętą wynosi zero

Dotychczas pokazaliśmy:

Poznaliśmy dotychczas trzy równania opisujące pola elektryczne i magnetyczne:

$$\oint \vec{E} \cdot \vec{ds} = \frac{1}{\varepsilon_0} \sum q_i$$

$$\oint \vec{B} \cdot \vec{ds} = 0$$

źródłowość pola:

pole elektryczne - pojedyncze ładunki elektryczne,

pole magnetyczne jest bezźródłowe, brak monopoli magnetycznych

$$\oint \vec{B} \cdot \vec{dl} = \mu_0 I_P$$

Źródłem pola magnetycznego może również być prąd elektryczny.

Czy źródłem pola elektrycznego może być pole magnetyczne ???

Zamiast podsumowania

- Zamiast podsumowania ... przejrzymy ponownie slajdy.
- Proszę o pytania!

