Definition (Vecteurs redondants, indépendance linéaires, bases)

Soit une famille de vecteur $\overrightarrow{v}_1, \overrightarrow{v}_2, \cdots, \overrightarrow{v}_m$ dans \mathbb{R}^n .

- \overrightarrow{V}_1 est redondant s'il est nul. Un vecteur $\overrightarrow{V}_j, j > 1$ est redondant si il est combinaison linéaire des vecteurs qui le précèdent dans la liste, $\overrightarrow{V}_1, \overrightarrow{V}_2, \cdots, \overrightarrow{V}_{j-1}$.
- La famille de vecteurs $\overrightarrow{V}_1, \overrightarrow{V}_2, \cdots, \overrightarrow{V}_m$ est une **base** d'un sous-espace vectoriel V de \mathbb{R}^n , si chaque vecteur \overrightarrow{V}_j est dans V, si $V = \operatorname{Vect}(\overrightarrow{V}_1, \overrightarrow{V}_2, \cdots, \overrightarrow{V}_m)$ et si les vecteurs $\overrightarrow{V}_1, \overrightarrow{V}_2, \cdots, \overrightarrow{V}_m$ sont linéairement indépendants.

Lorsque que $\overrightarrow{V}_1, \overrightarrow{V}_2, \cdots, \overrightarrow{V}_m$ sont linéairement indépendants, la famille $\overrightarrow{V}_1, \overrightarrow{V}_2, \cdots, \overrightarrow{V}_m$ est une famille libre. Lorsque que $\overrightarrow{V}_1, \overrightarrow{V}_2, \cdots, \overrightarrow{V}_m$ ne sont pas linéairement indépendants, ils forment une famille liée.

Chanitre 2 Chanitre 3

$$A = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & -1 \\ 0 & -1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 & 1 \end{bmatrix}, \operatorname{Frel}(A|\overrightarrow{0}) = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \end{bmatrix} = \begin{bmatrix} \alpha \\ 0 \\ -\beta \\ \beta \\ 0 \\ 0 \end{bmatrix} = \alpha \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} + \beta \begin{bmatrix} 0 \\ 0 \\ -1 \\ 1 \\ 0 \\ 0 \end{bmatrix}$$

$$\mathbf{1}\overrightarrow{v}_1 + 0\overrightarrow{v}_2 + 0\overrightarrow{v}_3 + 0\overrightarrow{v}_4 + 0\overrightarrow{v}_5 + 0\overrightarrow{v}_6 = \overrightarrow{0} \Rightarrow \overrightarrow{v}_1 = \overrightarrow{0}$$

$$0\overrightarrow{v}_1 + 0\overrightarrow{v}_2 + (-1)\overrightarrow{v}_3 + \mathbf{1}\overrightarrow{v}_4 + 0\overrightarrow{v}_5 + 0\overrightarrow{v}_6 = \overrightarrow{0} \Rightarrow \overrightarrow{v}_4 = \overrightarrow{v}_3$$

Résumé (Différentes caractéristiques des matrices inversibles)

Soit $A \in M_n(\mathbb{R})$ une matrice $n \times n$. Sont équivalentes :

- i) A est inversible,
- ii) $\forall \overrightarrow{b} \in \mathbb{R}^n$, $A\overrightarrow{x} = \overrightarrow{b}$ admet une et une seule solution,
- iii) $\exists \overrightarrow{b}_0 \in \mathbb{R}^n$, $A\overrightarrow{x} = \overrightarrow{b}_0$ admet une et une seule solution,
- iv) $Frel(A) = I_n$,
- v) Rang(A) = n,
- vi) $\operatorname{Im}(A) = \mathbb{R}^n$,
- vii) $\operatorname{Ker}(A) = \{\overrightarrow{0}\},\$
- viii) Les vecteurs colonnes de A forment une base de \mathbb{R}^n ,
- ix) Les vecteurs colonnes de A engendrent \mathbb{R}^n ,
- x) Les vecteurs colonnes de A sont linéairement indépendants.

Chapitre 2 Chapitre 3

Caractérisation utile des bases.

Problem

Soit $\mathcal{B}=(\overrightarrow{v}_1,\overrightarrow{v}_2,\cdots,\overrightarrow{v}_m)$ une base d'un sous-espace vectoriel V de \mathbb{R}^n et soit $\overrightarrow{v}\in V$. Combien de solutions c_1,\cdots,c_m l'équation

$$\overrightarrow{V} = c_1 \overrightarrow{V}_1 + \dots + c_m \overrightarrow{V}_m \tag{1}$$

admet-elle?

Comme $\overrightarrow{V} \in V = \operatorname{Vect}(\overrightarrow{V}_1, \overrightarrow{V}_2, \cdots, \overrightarrow{V}_m)$ il existe une solution de l'équation (1) c_1, \cdots, c_m avec $v = c_1 \overrightarrow{V}_1 + \cdots + c_m \overrightarrow{V}_m$. Soit d_1, \cdots, d_m une autre solution éventuelle de l'équation (1) permettant de décomposer \overrightarrow{V} suivant la base \mathcal{B} , à savoir

$$\overrightarrow{V} = d_1 \overrightarrow{V}_1 + \dots + d_m \overrightarrow{V}_m \tag{2}$$

En soustrayant (2) à (1), on obtient

$$(c_1-d_1)\overrightarrow{v}_1+\cdots+(c_m-d_m)\overrightarrow{v}_m=\overrightarrow{0}. \tag{3}$$

Puisque la famille \mathcal{B} est une famille libre, on déduit de l'équation (3) que $c_1-d_1=0,\cdots,c_m-d_m=0$. Par conséquent les représentations données par (1) et (2) sont identiques.

Chapitre 2 Chapitre 3

Proposition (Bases et unicité des représentations)

Soit

$$\mathcal{B} = (\overrightarrow{v}_1, \overrightarrow{v}_2, \cdots, \overrightarrow{v}_m)$$

une famille de vecteurs contenus dans un sous-espace vectoriel V de \mathbb{R}^n .

La famille \mathcal{B} est une base de V si et seulement si chaque vecteur \overrightarrow{V} peut être décomposé de manière unique comme combinaison linéaire des vecteurs de \mathcal{B} , à savoir il existe un unique "m-uplet" c_1, \dots, c_m de nombres réels tel que

$$\overrightarrow{V} = \overset{}{}_1 + \cdots + \overset{}{}_m \overrightarrow{V}_m.$$

Dans la suite on dira que les c_i sont les **coordonnées** du vecteur \overrightarrow{V} dans la base \mathcal{B} .

$$[\overrightarrow{X}]_{\mathcal{B}} = \begin{bmatrix} c_1 \\ \vdots \\ c_m \end{bmatrix}_{\mathcal{B}} \text{ est le vecteur coordonnée de } \overrightarrow{X} \text{ dans la base } \mathcal{B}.$$

On a déjà prouvé : \mathcal{B} est une base de V, alors tout $\vec{v} \in V$ s'écrit de manière unique

$$\overrightarrow{V} = \overset{}{}_1 + \cdots + \overset{}{}_m \overrightarrow{V}_m.$$

Réciproquement, si tout $ec{v} \in V$ s'écrit de manière unique ainsi, alors

- $V = \operatorname{Vec}(\overrightarrow{v}_1, \overrightarrow{v}_2, \cdots, \overrightarrow{v}_m), \text{ et donc } \mathcal{B} \text{ est un système générateur.}$
- ② $\overrightarrow{0} = c_1 \overrightarrow{V}_1 + \cdots + c_m \overrightarrow{V}_m$ implique $c_1 = \ldots = c_m = 0$ et donc la bamille est libre

Chapitre 2 Chapitre 3

Exercice

Soient les vecteurs de \mathbb{R}^3

$$\overrightarrow{V}_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \quad et \quad \overrightarrow{V}_2 = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix},$$

et considérons le plan $\mathrm{Vect}(\overrightarrow{V}_1, \overrightarrow{V}_2)$ dans \mathbb{R}^3 . Est-ce que le vecteur

$$\overrightarrow{x} = \begin{bmatrix} 5 \\ 7 \\ 9 \end{bmatrix}$$

appartient à V ? Visualiser la réponse.

On se demande s'il existe deux scalaires c_1 et c_2 tels que $\overrightarrow{x} = c_1 \overrightarrow{v}_1 + c_2 \overrightarrow{v}_2$. Cela revient à considérer le système linéaire qui a pour matrice augmentée

$$M = \begin{bmatrix} 1 & 1 & \vdots & 5 \\ 1 & 2 & \vdots & 7 \\ 1 & 3 & \vdots & 9 \end{bmatrix}$$
 avec $Frel(M) = \begin{bmatrix} 1 & 0 & \vdots & 3 \\ 0 & 1 & \vdots & 2 \\ 0 & 0 & \vdots & 0 \end{bmatrix}$.

Ce système est donc consistant et admet pour unique solution $c_1 = 3$ et $c_2 = 2$ de sorte que

$$\overrightarrow{x} = c_1 \overrightarrow{v}_1 + c_2 \overrightarrow{v}_2 = 3 \overrightarrow{v}_1 + 2 \overrightarrow{v}_2 \in V.$$

En fait $\mathcal{B} = (\overrightarrow{V}_1, \overrightarrow{V}_2)$ est une base de V.

Chapitre 2 Chapitre 3

Le **vecteur coordonnée** de $\overrightarrow{v}=3\overrightarrow{v}_1+2\overrightarrow{v}_2$ dans la base $\mathcal{B}=(\overrightarrow{v}_1,\overrightarrow{v}_2)$ est

$$\begin{bmatrix} c_1 \\ c_2 \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}_{\mathcal{B}}.$$

 $\begin{bmatrix} 3 \\ 2 \end{bmatrix}_{\mathcal{B}}$ est "l'adresse" de \overrightarrow{x} dans le système de coordonnées c_1, c_2 .

En introduisant ce système de coordonnées, on a identifié V à \mathbb{R}^2 . (les coordonnées cartésiennes ont un sens également dans le cas d'axes obliques....)

On note \mathcal{B} la base $\overrightarrow{v}_1, \overrightarrow{v}_2$ et $[\overrightarrow{x}]_{\mathcal{B}}$ le vecteur coordonnée de \overrightarrow{x} dans la base \mathcal{B} .

Si

$$\overrightarrow{x} = \begin{bmatrix} 5 \\ 7 \\ 9 \end{bmatrix} = c_1 \overrightarrow{v}_1 + c_2 \overrightarrow{v}_2 = 3 \overrightarrow{v}_1 + 2 \overrightarrow{v}_2,$$

alors

$$[\overrightarrow{x}]_{\mathcal{B}} = \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}.$$

Figure - -

$$[\overrightarrow{x}]_{\mathcal{B}} = \begin{bmatrix} c_1 \\ \vdots \\ c_m \end{bmatrix}$$
 veut dire $\overrightarrow{x} = c_1 \overrightarrow{v}_1 + \dots + c_m \overrightarrow{v}_m$.

On notera que l'on une relation matricielle

Proposition

$$\overrightarrow{x} = P [\overrightarrow{x}]_{\mathcal{B}}, \quad \text{avec} \quad P = \begin{bmatrix} \overrightarrow{v}_1 & \overrightarrow{v}_2 & \cdots & \overrightarrow{v}_m \end{bmatrix},$$

P étant une matrice de taille $n \times m$

L'équation $\overrightarrow{x} = P[\overrightarrow{x}]_{\mathcal{B}}$ résulte directement de la définition des coordonnées.

Dans l'exemple, nous avons considéré le cas

$$\overrightarrow{x} = \begin{bmatrix} 5 \\ 7 \\ 9 \end{bmatrix}, \quad [\overrightarrow{x}]_{\mathcal{B}} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}, \quad P = \begin{bmatrix} 1 & 1 \\ 1 & 2 \\ 1 & 3 \end{bmatrix},$$

$$\overrightarrow{x} = P[\overrightarrow{x}]_{\mathcal{B}}$$
 ou encore $\begin{bmatrix} 5\\7\\9 \end{bmatrix} = \begin{bmatrix} 1 & 1\\1 & 2\\1 & 3 \end{bmatrix} \begin{bmatrix} 3\\2 \end{bmatrix}$.

Proposition (Linéarité des coordonnées)

Soit \mathcal{B} une base d'un sous-espace de \mathbb{R}^n . Alors on a :

(a)
$$\forall \overrightarrow{x} \in V, \forall \overrightarrow{y} \in V$$
,

(a)
$$\forall \overrightarrow{x} \in V, \forall \overrightarrow{y} \in V,$$

$$[\overrightarrow{x} + \overrightarrow{y}]_{\mathcal{B}} = [\overrightarrow{x}]_{\mathcal{B}} + [\overrightarrow{y}]_{\mathcal{B}},$$
 (b) $\forall \overrightarrow{x} \in V, \forall k \in \mathbb{R},$
$$[k\overrightarrow{x}]_{\mathcal{B}} = k[\overrightarrow{x}]_{\mathcal{B}}.$$

(b)
$$\forall \overrightarrow{x} \in V, \forall k \in \mathbb{R}$$
,

$$[k\overrightarrow{x}]_{\mathcal{B}} = k[\overrightarrow{x}]_{\mathcal{B}}.$$

Exercice

Considérons la base de \mathbb{R}^2 , $\mathcal{B} = \overrightarrow{v}_1, \overrightarrow{v}_2$, où $\overrightarrow{v}_1 = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$ et

$$\overrightarrow{\mathsf{V}}_2 = \begin{bmatrix} -1 \\ 3 \end{bmatrix}$$
.

- (a) Soit $\overrightarrow{x} = \begin{bmatrix} 10 \\ 10 \end{bmatrix}$. Trouver $[\overrightarrow{x}]_{\mathcal{B}}$.
- (b) Soit \overrightarrow{y} tel que $[\overrightarrow{y}]_{\mathcal{B}} = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$. Déterminer \overrightarrow{y} .

Chapitre 2 Chapitre 3

(a) Pour trouver les \mathcal{B} -coordonnées du vecteur \overrightarrow{x} , on écrit \overrightarrow{x} comme combinaison linéaire des vecteurs de la base.

$$\overrightarrow{x} = c_1 \overrightarrow{v}_1 + c_2 \overrightarrow{v}_2$$
 c'est-à-dire $\begin{bmatrix} 10 \\ 10 \end{bmatrix} = c_1 \begin{bmatrix} 3 \\ 1 \end{bmatrix} + c_2 \begin{bmatrix} -1 \\ 3 \end{bmatrix}$.

Ce système admet pour solution $c_1=4$, $c_2=2$ de sorte que $[\overrightarrow{x}]_{\mathcal{B}}=\begin{bmatrix} 4\\2 \end{bmatrix}$.

Ici nous avons deux base de \mathbb{R}^2 et donc une matrice P carrée. Une autre méthode générique consiste à utiliser l'équation $\overrightarrow{x} = P[\overrightarrow{x}]_{\mathcal{B}}$ autrement dit $[\overrightarrow{x}]_{\mathcal{B}} = P^{-1}\overrightarrow{x}$, c'est-à-dire

$$[\overrightarrow{x}]_{\mathcal{B}} = \begin{bmatrix} 3 & -1 \\ 1 & 3 \end{bmatrix}^{-1} \overrightarrow{x} = \frac{1}{10} \begin{bmatrix} 3 & 1 \\ -1 & 3 \end{bmatrix} \begin{bmatrix} 10 \\ 10 \end{bmatrix} = \begin{bmatrix} 4 \\ 2 \end{bmatrix}.$$

$$\overrightarrow{y} = 2\overrightarrow{v}_1 + (-1)\overrightarrow{v}_2 = 2\begin{bmatrix}3\\1\end{bmatrix} + (-1)\begin{bmatrix}-1\\3\end{bmatrix} = \begin{bmatrix}7\\-1\end{bmatrix}.$$

Autrement, on peut aussi directement utiliser la formule

$$\overrightarrow{y} = P[\overrightarrow{y}]_{\mathcal{B}} = \begin{bmatrix} 3 & -1 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} 2 \\ -1 \end{bmatrix} = \begin{bmatrix} 7 \\ -1 \end{bmatrix}.$$

Chapitre 2 Chapitre 3

FIGURE - -

Base adaptée

Soit $L\subset \mathbb{R}^2$ la droite engendrée par le vecteur $egin{bmatrix} 3 \\ 1 \end{bmatrix}$. Soit T

l'application linéaire de \mathbb{R}^2 dans lui-même qui projette chaque vecteur \overrightarrow{x} orthogonalement sur la droite L.

On peut faciliter l'étude de T en introduisant un système de coordonnées dans lequel L serait un des axes avec deuxième axe l'axe othogonal à L. Cela revient à considérer une nouvelle base \mathcal{B} .

Suivant ce système de coordonnées, T transforme $\begin{bmatrix} c_1 \\ c_2 \end{bmatrix}$ en $\begin{bmatrix} c_1 \\ 0 \end{bmatrix}$.

Dans le système de coordonnées c_1, c_2, T est représenté par la matrice

 $\mathcal{A}_{\mathcal{B}} = egin{bmatrix} 1 & 0 \ 0 & 0 \end{bmatrix},$

car

$$\begin{bmatrix} c_1 \\ 0 \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}_{\mathcal{B}} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix}_{\mathcal{B}}.$$

Chanitre 2 Chanitre 3

FIGURE --

La matrice dans une base adaptée

Soit $\mathcal{B}=(\overrightarrow{v}_1,\overrightarrow{v}_2)$ une base de \mathbb{R}^2 telle que \overrightarrow{v}_1 est parallèle à la droite L et \overrightarrow{v}_1 est parallèle à la droite L^\perp . Par exemple $\overrightarrow{v}_1=\begin{bmatrix}3\\1\end{bmatrix}$ et $\overrightarrow{v}_2=\begin{bmatrix}-1\\3\end{bmatrix}$.

Si $\overrightarrow{x} = c_1 \overrightarrow{v}_1 + c_2 \overrightarrow{v}_2$, alors $T(\overrightarrow{x}) = \text{Proj}_L(\overrightarrow{x}) = c_1 \overrightarrow{v}_1$, ou encore

$$[\overrightarrow{x}]_{\mathcal{B}} = \begin{bmatrix} c_1 \\ c_2 \end{bmatrix}, \quad \text{alors} \quad [T(\overrightarrow{x})]_{\mathcal{B}} = \begin{bmatrix} c_1 \\ 0 \end{bmatrix},$$

Chapitre 2 Chapitre 3

La matrice $B = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$ qui transforme $[\overrightarrow{x}]_{\mathcal{B}} = \begin{bmatrix} c_1 \\ c_2 \end{bmatrix}$ en $[T(\overrightarrow{x})]_{\mathcal{B}} = \begin{bmatrix} c_1 \\ 0 \end{bmatrix} \text{ est "la matrice de } T \text{ relativement à la base}$ \mathcal{B} " (ou aussi \mathcal{B} -matrice de T) dans le sens où

$$[T(\overrightarrow{x})]_{\mathcal{B}} = B[\overrightarrow{x}]_{\mathcal{B}}.$$

On peut représenter le travail sous forme d'un diagramme comme suit :

$$\overrightarrow{X} \xrightarrow{A} T(\overrightarrow{X})$$

$$\uparrow_{P} \qquad \uparrow_{P}$$

$$[\overrightarrow{X}]_{\mathcal{B}} \xrightarrow{B} [T(\overrightarrow{X})]_{\mathcal{B}}$$

Definition (Matrice d'une application linéaire)

Soit $T: \mathbb{R}^n \longrightarrow \mathbb{R}^n$ une application linéaire et \mathcal{B} une base de \mathbb{R}^n . La matrice carrée \mathcal{B} d'ordre n qui transforme $[\overrightarrow{x}]_{\mathcal{B}}$ en $[T(\overrightarrow{x})]_{\mathcal{B}}$ est la matrice de T relativement à la base \mathcal{B} .

$$\forall \overrightarrow{x} \in \mathbb{R}^n, \quad [T(\overrightarrow{x})]_{\mathcal{B}} = B[\overrightarrow{x}]_{\mathcal{B}}.$$

La matrice B est construite en colonnes de la manière suivante, en notant $\mathcal{B} = (\overrightarrow{V}_1, \cdots, \overrightarrow{V}_n)$,

$$B = \left[[T(\overrightarrow{v}_1)]_{\mathcal{B}} \quad \cdots \quad [T(\overrightarrow{v}_n)]_{\mathcal{B}} \right].$$

Chapitre 2 Chapitre 3

Il faut vérifier que les colonnes de B sont bien les vecteurs $[T(\overrightarrow{V}_1)]_{\mathcal{B}}\cdots[T(\overrightarrow{V}_n)]_{\mathcal{B}}$. Soit $\overrightarrow{X}=c_1\overrightarrow{V}_1+\cdots+c_n\overrightarrow{V}_n$. Comme T est linéaire, on a

$$T(\overrightarrow{x}) = c_1 T(\overrightarrow{v}_1) + \cdots c_n T(\overrightarrow{v}_n)$$

et par conséquent,

$$[T(\overrightarrow{x})]_{\mathcal{B}} = c_1[T(\overrightarrow{v}_1)]_{\mathcal{B}} + \cdots c_n[T(\overrightarrow{v}_n)]_{\mathcal{B}}$$

$$\begin{bmatrix} [T(\overrightarrow{v}_1)]_{\mathcal{B}} & \cdots & [T(\overrightarrow{v}_n)]_{\mathcal{B}} \end{bmatrix} [\overrightarrow{x}]_{\mathcal{B}} = B[\overrightarrow{x}]_{\mathcal{B}}.$$

On peut utiliser cette méthode pour construire B, bien qu'il soit souvent plus simple d'utiliser un diagramme comme on l'a fait dans l'exemple précédent.

Changement de base avec une matrice P

$$\overrightarrow{X} \xrightarrow{A} T(\overrightarrow{X})$$

$$\uparrow_{P} \qquad \qquad \uparrow_{P}$$

$$[\overrightarrow{X}]_{\mathcal{B}} \xrightarrow{B} [T(\overrightarrow{X})]_{\mathcal{B}}$$

Pour tout \vec{x} , nous avons $\vec{x} = P[\vec{x}]_{\mathcal{B}}$ et $T(\vec{x}) = P[T(\vec{x})]_{\mathcal{B}}$ De même $T(\vec{x}) = A\vec{x}$ et $[T(\vec{x})]_{\mathcal{B}} = B[\vec{x}]_{\mathcal{B}}$.

Donc
$$T(\vec{x}) = A\vec{x} = AP[\vec{x}]_{\mathcal{B}}$$
 et $T(\vec{x}) = PB[\vec{x}]_{\mathcal{B}}$

$$AP = PB$$
, $B = P^{-1}AP$ et $A = PBP^{-1}$.

P est la matrice de passage de la base $\mathcal U$ à la base $\mathcal B$ (P comme "passage")

Chapitre 2 Chapitre 3

Definition (Matrice de passage)

Soit $T: \mathbb{R}^n \to \mathbb{R}^n$ une application linéaire et $\mathcal{B} = (\overrightarrow{V}_1, \cdots, \overrightarrow{V}_n)$ une base de \mathbb{R}^n . Soit B la matrice de T relativement à la base \mathcal{B} , et A la matrice de T relativement à la base canonique $\mathcal{U} = (\overrightarrow{e}_1, \cdots, \overrightarrow{e}_n)$. Enfin soit

$$P = \begin{bmatrix} \overrightarrow{V}_1 & \cdots & \overrightarrow{V}_n \end{bmatrix}$$

la matrice de passage de la base $\mathcal U$ à la base $\mathcal B$. Alors

$$AP = PB, \quad B = P^{-1}AP, \quad A = PBP^{-1}.$$

On revient à l'exemple. Soit $L\subset\mathbb{R}^2$ la droite engendrée par le vecteur $\begin{bmatrix} 3\\1 \end{bmatrix}$. Soit T l'application linéaire de \mathbb{R}^2 dans lui-même qui projète chaque vecteur \overrightarrow{x} orthogonalement sur la droite L. On avait vu que la matrice de T relativement à la base

$$\mathcal{B} = \left(\begin{bmatrix} 3 \\ 1 \end{bmatrix}, \begin{bmatrix} -1 \\ 3 \end{bmatrix} \right)$$

était la matrice

$$B = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$
.

$$A = PBP^{-1} = \begin{bmatrix} 3 & -1 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \left(\frac{1}{10} \begin{bmatrix} 3 & 1 \\ -1 & 3 \end{bmatrix} \right) = \begin{bmatrix} 0, 9 & 0, 3 \\ 0, 3 & 0, 1 \end{bmatrix}.$$

Chapitre 2 Chapitre

matrice d'une symétrie

$$\overrightarrow{\mathcal{V}}_1 = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}, \ \overrightarrow{\mathcal{V}}_2 = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} \text{ et } f \text{ la symétrie orthogonale par rapport}$$
 au plan $\langle \overrightarrow{\mathcal{V}}_1, \overrightarrow{\mathcal{V}}_2 \rangle$

On cherche un vecteur \overrightarrow{w} perpendiculaire à \overrightarrow{v}_1 et \overrightarrow{v}_2 via les équations $\langle \overrightarrow{v}_1, \overrightarrow{w} \rangle$ et $\langle \overrightarrow{v}_2, \overrightarrow{w} \rangle$. On trouve $\overrightarrow{w} = \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}$ dans $\mathcal{B} = (\overrightarrow{v}_1, \overrightarrow{v}_2, \overrightarrow{w})$ la matrice de f est $\mathcal{B} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$.

$$P = \begin{bmatrix} 1 & 0 & 1 \\ -1 & 1 & 1 \\ 0 & 1 & -1 \end{bmatrix} \text{ passage de } \mathcal{B} \text{ à } (\overrightarrow{e}_1, \overrightarrow{e}_2, \overrightarrow{e}_3)$$

matrice d'une symétrie

On calcule
$$P^{-1}=rac{1}{3}egin{bmatrix}2&-1&1\\1&1&2\\1&1&-1\end{bmatrix}$$
 . Dans la base canonique on obtient

obtient

$$A = PBP^{-1} = \begin{bmatrix} 1 & 0 & 1 \\ -1 & 1 & 1 \\ 0 & 1 & -1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix} \frac{1}{3} \begin{bmatrix} 2 & -1 & 1 \\ 1 & 1 & 2 \\ 1 & 1 & -1 \end{bmatrix}$$
$$= \frac{1}{3} \begin{bmatrix} 1 & -2 & 2 \\ -2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}$$

Chapitre 2 Chapitre 3

Definition

Soient A et B deux matrices carrées d'ordre n. On dit qu'elles sont semblables si il existe une matrice P inversible telle que

$$AP = PB$$
 ou bien de manière équivalente $B = P^{-1}AP$.

En clair, deux matrices sont semblables si elles représentent la même application linéaire mais dans des bases différentes.

- Une homothétie possède la même matrice dans toutes les
- Deux projections sur un sous-espace de même dimension sont semblables.
- Deux symétries par rapport à un sous-espace de même dimension sont semblables.

Exercice

Est-ce que les matrices
$$A = \begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix}$$
 et $B = \begin{bmatrix} 5 & 0 \\ 0 & -1 \end{bmatrix}$ sont semblables ?

Chapitre 2 Chapitre 3

On cherche s'il existe une matrice inversible $P = \begin{bmatrix} x & y \\ z & t \end{bmatrix}$ telle que l'on ait AP = PB. Cette dernière relation s'écrit composante par composante sous la forme

$$\begin{bmatrix} x+2z & y+2t \\ 4x+3z & 4y+3t \end{bmatrix} = \begin{bmatrix} 5x & -y \\ 5z & -t \end{bmatrix},$$

ce qui fournit le système

$$x + 2z = 5x$$
, $y + 2t = -y$, $4x + 3z = 5z$, $4y + 3t = -t$

ou encore z = 2x, t = -y.

Donc toute matrice $P = \begin{bmatrix} x & y \\ 2x & -y \end{bmatrix}$ vérfie AP = PB.

Cependant, pour répondre à la question posée, il faut vérifier que parmi ces matrices, certaines sont inversibles. Or on a $\det(P)=-3xy$. Donc P est inversible si et seulement si $xy\neq 0$, et par exemple en prenant x=y=1, on voit que

$$P = \begin{bmatrix} 1 & 1 \\ 2 & -1 \end{bmatrix}$$

est inversible et vérifie AP = PB. Par conséquent, les matrices A et B sont semblables.

Chapitre 2 Chapitre 3

Exercice

La matrice
$$\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$$
 est-elle semblable à $\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$?

Exercice

Soient A et B deux matrices carrées d'ordre n semblables. Soit $k \in \mathbb{N}$. Alors les matrices A^k et B^k sont semblables.

$$A^k = \underbrace{A \times A \cdots \times A}_{k \text{ fois}}, \quad B^k = \underbrace{B \times B \cdots \times B}_{k \text{ fois}}.$$

Comme A et B sont semblables, il existe $P \in M_n(\mathbb{R})$ inversible telle que $B = P^{-1}AP$. Par conséquent

$$B^k = \underbrace{(P^{-1}AP) \times (P^{-1}AP) \cdots \times (P^{-1}AP)}_{k \text{ fois}}.$$

En utilisant l'associativité de la multiplication des matrices, on a

$$(P^{-1}AP) \times (P^{-1}AP) = (P^{-1}A) \times (PP^{-1}) \times (AP).$$

Puisque $PP^{-1} = I_n$, on en déduit que

$$(P^{-1}AP) \times (P^{-1}AP) = P^{-1}A^2P.$$

qui conduit de proche en proche à la relation

$$B^k = P^{-1}A^kP,$$

ce qui prouve que A^k et B^k sont semblables.