Task-Orientated Human-Robot Teleoperation using Wearable Sensors

Qilong Yuan*, Teoh Yee Seng#, Qinghua Lu*, I-Ming Chen#

*School of Mechanical and Aerospace Engineering, NTU, Singapore.

*School of Electro-Mechanical Engineering, Foshan Univ., China

Presented by:

Dr. Qilong Yuan

19th Nov 2017

Introduction

In engine part repairing

- Surface treatment such as plasma spraying and spray painting are needed
- Workers need to properly cover the parts using masking tapes for the surface protection.
- Tedious and arduous manual work.

Research Objective

 To develop an automatic robotic system and the corresponding methods to do surface covering process using masking tapes

Taping Workpiece Samples

Automatic Taping Solutions

- Existing solutions for objects with simple geometries
- General Solution
 - An automatic system based on a robot manipulator, a rotating platform, a 3D scanner and novel taping end-effectors for taping process.
 - The taping path planning method to cover region of interests is developed for variety of surfaces.

Automatic Robot Taping

- Reconstruction of workpiece model, system coordinate calibration
- Path planning
- Robot execution

Automatic Robot Taping

- Reconstruction of workpiece model, system coordinate calibration
- Path planning
- Robot execution

System Setup

Taping End-Effector Design

- The taping tool is used as the robot end-effector to handle the tapes and conduct the actual taping process.
 - The tape holder is used to hold the masking tapes.
 - The tape roller is used to attach tape to surfaces.
 - The tape cutter used to separate tape segments.
 - The "compliance spring" mechanism with 10 mm compliance at
 23 N from the internal extension spring
 - Linear potentiometer enables distance/force feedback

Reconstruction of workpiece model

- The object is mounted on the rotating platform.
- A 3D scanner is used to scan the object
 - The result is point cloud data (x,y, and z points on the surfaces)
 - Kinect (2-3mm), Artec Eva (<0.5mm), Sick (~0.5 mm).

Box Scanning Result

Engine Part Scanning Result

The scan result: Post processing is required

Normal Smoothing

Sampling

Segmentation

Post-Processing

Surface Covering Methods

- Covering an area: Separate into sub-surfaces and cover each area applying tape segments in proper direction
 - Major parts have special geometries, flat, cylindrical or rotary surfaces etc.
 - Same type of workpieces have the same surface covering solution, which can be predefined.
 - How does the tape follow the surface for individual tape segment?

Principle for Point to Point Taping

Define the tape frame

- The y axis is the tape heading direction
- The z axis is the up normal direction, $X=Y\times Z$

Taping along surfaces

- Tape following the surface
- Numerically, given a small taping forward step dl, estimate the next taping point,

$$\hat{p}_{i+1} = p_i + y_i dl$$

- Then, project it on surface
- How to determine where to twist your tape?

Twisting the tape

- The twist axis is not moving, and it is perpendicular to surface normal of the two adjacent small tape element
 - Rotating Axis

$$V_i = \frac{z_i \times z_{i+1}}{\left| z_i \times z_{i+1} \right|}$$

Rotating Angle

$$\varphi_i = a\cos(z_i \cdot z_{i+1})$$

Update the taping direction after twisting

$$y_{i+1} = F(\varphi_i, V_i, y_i)$$

$$y_{i+1} = \cos \varphi_i y_i + \sin \varphi_i (V_i \times y_i) + (1 - \cos \varphi_i) (V_i \cdot y_i) V_i$$

Point to Point Taping

- Initial Taping Orientation to make sure the tape reach the target
 - Numerical Solution
- The introduced method match exactly with the geodesic path using the geodesic path algorithm
- Much faster with less computation then the geodesic path algorithm.

Taping Path Planning

- Taping path planning on the workpiece
 - Cylindrical-like surface (a)
 - Rotational Symmetrical surfaces (b)
 - Freeform surface (including flat surfaces) with no grooves (c)
 - Surfaces with grooves. (d)

Robot Platform Path Generation

- The rotating platform collaborates with robot manipulator
- At a time t, calculate the posture of the end-effector
 - The rotating angel for the rotating platform, θ
 - The target posture of the end-effector with respect to the platform T_{R2P}
 - The coordinate mapping between the robot bask and the platform base T_{R2P} , which is calibration initially.

Robotic Taping Experiments (1)

- Preliminary taping tests on
 - Cylindrical like surface (see Figure (i))
 - Freeform surface taping (see Figure (ii))
 - Grooves surface taping (see Figure (iii))

(i)

(ii)

(iii)

Robotic Taping Experiments (2)

Taping an engine part

- Overlapping of tape (10%)
- Taping speed: 1.6m/min
- 11 mins, tape length 18 meter, area 7000(cm2)
- With force feedback, the system can attach the tape properly along the entire surface.

Failure while no feedback

Robotic Taping Experiments (2)

Force Feedback

- Force feedback based on linear distant sensors
 - Define the force range: $F_{min} < F < Fmax$
 - Loop:
 - If Fmin < F < FmaxGo to Next
 - If F < Fmin $d_n = d_n + 0.05$
 - Else if F > Fmax $d_n = d_n 0.05$
 - Go to Loop
 - Next: Go to next point

Potentiometer

No Force Feedback

With Force Feedback

Competition: Robot VS Human

Inner liner taping: Comparison between human operator and robot

Operator	Time	Tape Length	Area	Quality (Overlap, wrinkle)
No. 1	1m 56s	1.9m	350cm ²	Uneven, Wrinkle
No. 2	1m 39s			Uneven, Wrinkle
No. 3	2m 41s			Uneven, Wrinkle
No. 4	2m 12s			Uneven, Wrinkle
Robot Taper	1m			Even overlap, Flat

Remarks: The competition is based on taping the inner liner with 10 tape segments. Four people participate in the challenge with robot.

Human 1

Human 2

Human 3

Human 4

Robot Taper

Competition: Robot VS Human

Volunteer subjects feel difficult in taping

- Uneasy to maintain even overlapping
- Incremental errors in orientation
- Wrinkle happens very often
- Tedious and arduous

Competition

- Robot can cover the majority of the parts for the engine repairing
- Robot is faster
- Human is more flexible taping tiny features.
- Deal to size of the taping rollers and surface geometry constraints, taping tiny grooves on the surfaces is not available.
- Robot can do the major job, and leave tiny difficult parts to human

Thank You!

Email: MICHEN@ntu.edu.sg