

Advection

1D: $u_t + au_x = 0$. In 2D:

$$u_t + a(x, y)u_x + b(x, y)u_y = 0.$$

Or more generally, we can write this as:

$$u_t + \nabla \cdot (\vec{w}u) = 0,$$

with a vector field $\vec{w}(x, y)$.

• [m25_2d_adv.m]

- Advection and the wave equation are quite different from diffusion: they are hyperbolic and "information" about the solution travels along characteristics. These are the lines traced out my the vector field w(x, y).
- The numerics are a bit different too: this code uses "upwinding" finite differences which are appropriate for advection-dominited problems, but we haven't talked about them in this course.
- But we could look more carefully about constructing the matrices in this code...

Heat equation

$$u_t = \nabla^2 u = u_{xx} + u_{yy}$$

on a square or rectangle. We can apply centered 2nd-order approximation to each derivative.

In the method of lines approach, we write

$$u_{xx} + u_{yy} \approx \frac{v_{i-1,j}^n - 2v_{ij}^n + v_{i+1,j}^n}{h^2} + \frac{v_{i,j-1}^n - 2v_{ij}^n + v_{i,j+1}^n}{h^2}.$$

This gives a stencil in *space* (then still need to deal with time).

```
(1)

| (i,j+1)

|

| (i+1,j)

1)-----(-4)----(1)

|(i,j)

|

|
```

- Using forward or backward Euler, accuracy is $O(k + h^2)$.
- And a stability restriction for FE of $k < h^2/4$.
- In principle, our "finite difference Laplacian" maps a matrix of 2D grid data to another such, and is thus a "4D tensor".
 However, in practice we stretch out 2D to 1D, so that the tensor becomes a matrix:

$$\frac{v}{dt} = Lv.$$

 How does this "stretch" work? It defines an ordering of the grid points. In Matlab: meshgrid() and (:), see later.

Matrix structure

Let's look at the structure of L. We choose an ordering for the grid points (why this one? see below) and assume zero boundary conditions:

^ y										
1		0	0	0						
1										
	0	x4	8x	x12	0					
	_	_	_							
	0	x3	x7	x11	0					
1	0	ν .Ο	v 6	x10	0					
1	U	λZ	XU	XIO	U					
i	0	x1	x5	x9	0					
i										
-		0	0	0						
+-					> x					

Mile and the second sec

The discrete Laplacian now looks like this:

	-4	1	0	0	1	0	0	0	0	0	0	0	v1
	1	-4	1	0	0	1	0	0	0	0	0	0	v2
	1 0	1	-4	1	0	0	1	0	0	0	0	0	v3
	1 0	0	1	-4	0	0	0	1	0	0	0	0	v4
												-	1 1
1	1	0	0	0	-4	1	0	0	1	0	0	0	v5
Lv =	1 0	1	0	0	1	-4	1	0	0	1	0	0	v6
h^2	1 0	0	1	0	0	1	-4	1	0	0	1	0	v7
	1 0	0	0	1	0	0	1	-4	0	0	0	1	8v
												-	1 1
	1 0	0	0	0	1	0	0	0	-4	1	0	0	v9
	1 0	0	0	0	0	1	0	0	1	-4	1	0	v10
	1 0	0	0	0	0	0	1	0	0	1	-4	1	v11
	1 0	0	0	0	0	0	0	1	0	0	1	-4	v12