Stewart house 32 Russell Square London WC1B 5DN

June 2004

Advanced Subsidiary/Advanced Level

General Certificate of Education

Subject: 6690 Decision Maths

Paper: D2

Question Number	A game in which the gain to one player is equal to the loss of the other If there is a stable solution(s) aij in a game, the location			
	of this stable solution is called the saddle point. It is the points where row maximin = column minimax	B2, 1, 0 (2)		
2)	Subtract all 4 11 3 0 Lems from some 19 25 16 13 17 20 14 12	MI AI/ (2)		
	Reducing rows 2 4 2 0 then columns 4 5 2 0 3 1 1 0	BI		
	minimum 1 3 1 0 un covered 1 0 0 0 1 2 0 0 0	m 1 A 1 V (3)		
	minimum 0 2 0 0 uncovered 1 2 3 0 0 0 0 0 2 2 0 0 1	MI AIS		
	e.g. matching D-AAMS H-Sorsorsorm K-MLAA T-LMLL	AIV		
·	Total 88 points	A1 (4)		

Stewart house 32 Russell Square London WC1B 5DN

June 2004

Advanced Subsidiary/Advanced Level

General Certificate of Education

Subject: 6690 Decision Maths

Paper:	D2
--------	----

Question Number	Scheme	Marks			
3) (a)(i)	i) Minimum connector using eg frim : AC, CB, CD, CE length = 98+74+82+103 = 357 {1,3,2,4,5} So upper bound = 2x357 = 714				
(ii)	(134) = (117	(4) m: A1 A1 (3)			
(b)	Residual Minimum Connector is AC, CB, CD length 254	MI AI			
	Lower bound = 254 + 103 + 115 = 472	MIA1 (4)			
(c)	$472 \leq solution \leq 552$	BIV (1)			
		`			

Stewart house 32 Russell Square London WC1B 5DN

June 2004

Advanced Subsidiary/Advanced Level

General Certificate of Education

Subject: 6690 Decision Maths				
Question Number	Scheme	Marks		
4) (a)		mı Al		
	max min -2 # 1 not stable	A1 (3)		
(b)	Let Emma play R1 with probability p If Freddie plays C1 Emmas winnings are $-4p+2(1-p)=2-6p$ C2	MI AI AI (3)		
	2 -2+50	mi Aly		
	need intersection of 2-6p and -2+5p	ml		
	2-6p = -2+5p. 4 = 11p p = 4	AI		
	So Emma should play RI with probability # R2	A 1(3)		
(c)	value to Freddie $\frac{2}{11}$, makix $\begin{pmatrix} 4 - 2 \\ 1 - 1 \\ -3 & 2 \end{pmatrix}$	B 1/ B1,B1		

Stewart house 32 Russell Square London WC1B 5DN

June 2004

Advanced Subsidiary/Advanced Level

General Certificate of Education

Subject: 6690 Decision Maths

Paper: D2

Question Number	Scheme	Marks
5) (a)	Idea of many supply and demand points and many units to be moved. Costs are variable and dependent upon the supply and demand points, need to minimize costs. Practical costs proportional to number of units.	B2,1,0 (2)
<i>(b)</i>	Supply = 120 Demand = 110 so not balanced	B1 (1)
(c)	Adds 0, 0, 0, 10 to column f d e f A 45 B 5 30 C 30 10 Cost 545	m1, A1 m1, A1 B1/(5)
(4)	$R_1 = 0$ $R_2 = -1$ $R_3 = -3$ $K_1 = 5$ $K_2 = 7$ $K_3 = 3$	MI AI
(e)	A 15 30 B 35	mi AIV (5) mi AIV DMI AIV
	c 30 10 EBE 475	[18]

Stewart house 32 Russell Square London WC1B 5DN

June 2004

Advanced Subsidiary/Advanced Level

General Certificate of Education

Subject: 6690 Decision Maths				Paper: D2	
Question Number	·	Marks			
6) (a)	Stage -	- Number	of weeks	to finish	BI
			seing atten	~	BI
	Actor -		iarney to un		B1 (3)
(b)	Stage	State	Action	Value	
(1)	1	F G H	F-Home G-Home H-Home	500 -80 = 420 * 700 -90 = 610 * 600 -70 = 530 *	MI AI
	2	D 	DF DG DH_ EF	1500 - 200 + 420 = 1720 $1500 - 160 + 610 = 1950 #$ $1500 - 120 + 530 = 1910$ $1300 - 170 + 420 = 1550$	MI AIN AIN
		E	E H	1300 - 100 + 610 = 1810	(4)
		A	AD AE	900 - 180 + 1950 = 2670 + 900 - 150 + 1810 = 2560	mi AIV
	3	B	B E	800 - 140 + 1950 = 2610 + 800 - 120 + 1810 = 2490	AIN
		<u></u>	C D C E	1000 -200 +1950 = 2750 +	(4)
	4	Home	Home - A Home - B Home - C	-70 + 2670 = 2600 + -80 + 2610 = 2530 -150 + 2750 = 2600 +	m (2)
(c)	Home <	A > 1	0-6		B2/1/0
	Tota	d profit s	2600		B1 ↑ (3)