Prediction of MPE limit at a given distance

Equation from page 18 of OET Bulletin 65, Edition 97-01

$$S = \frac{P G}{4 \pi R^2} = \frac{EIRP}{4 \pi R^2} = \frac{E^2 D^2}{120 \pi R^2}$$

where: S = power density

P = power input to the antenna

G = power gain of the antenna in the direction of interest relative to an isotropic radiator

R = distance to the center of radiation of the antenna

EIRP = equivalent isotropically radiated power

E = field strength of fundamental emission

D = distance when measured field strength

NΛ	od	Ы	٠
IVI	υu		١.

[dBµV/m]
[µV/m]
[m]
[dBi]
[mW]
[cm]
[MHz]
[mW/cm^2]

Power density at prediction frequency: 0.0000000077 [mW/cm^2]

0.000000077 [W/m^2]

Maximum allowable antenna gain: 17.6 [dBi]

Margin of Compliance: 81.1 [dB]