

多旋翼飞行器设计与控制

第四讲 动力系统建模和估算

全权 副教授 qq_buaa@buaa.edu.cn 自动化科学与电气工程学院 北京航空航天大学

东方智慧

简单

核心问题

的何估算一架多旋翼飞行器 的各项性能指标?

大纲

- 1.总体描述
- 2.动力系统模型
- 3.性能计算和实验验证
- 4.评估网站Flyeval.com介绍
- 5.本讲小结

1.总体描述

动力系统建模分为四部分: 螺旋桨建模、电机建模、电调建模、电池建模。模型所有输入,如表中所示。为了简化本节课讲解,螺旋桨参数可以归为为拉力系数和转矩系数。

□动力系统各器件参数设定

		4. 2	
器件	参数指标	拉力和转	系数 矩系数
螺旋桨	$oldsymbol{\Theta}_{\mathrm{p}}$ ={直径 D_{p} ,螺距 H_{p} ,桨叶数 B_{p} ,叶片平均气动弦长 c_{p} ,重量 G_{p} }	C_{T}	$C_{ m M}$
电机	$oldsymbol{\Theta}_{\mathrm{m}}$ ={标称空载电流 I_{m0} ,标称空载电压 U_{m0} ,标称空载 KV 值 K_{V0} ,最大电流 I_{ml}	Max '	
	内阻 R_{m} ,重量 G_{m} }		
电调	$oldsymbol{\Theta}_{\mathrm{e}}$ ={最大电流 I_{eMax} ,内阻 R_{e} ,重量 G_{e} }		
电池	$oldsymbol{\Theta}_{\mathrm{b}}$ ={总容量 C_{b} ,内阻 R_{b} ,总电压 U_{b} ,最大放电倍率 K_{b} ,重量 G_{b} }		

螺旋桨的

1.总体描述

□求解悬停时间的总体思路

电流和电压

- 螺旋桨模型: 拉力和转矩
- 电机模型
- 电调模型
- 电池模型

□螺旋桨模型

电调输入

电流和电压

(1) 拉力模型

拉力系数 度(kg/m³) (RPM) 直径(m) ↑

$$P_{a} = 101325(273 + T_{t})$$

$$P_{a} = 101325(1 - 0.0065 \frac{h}{273 + T_{t}})^{5.2561}$$

$$\rho_0 = 1.293 \ kg \ / \ m^3$$

□螺旋桨模型

海拔、温度 螺旋桨参数 海拔、温度 螺旋桨参数

$$N = 60 \sqrt{\frac{T}{D_{\rm p}^4 C_{\rm T} \rho}}$$

单个 螺旋
$$\rightarrow T = \frac{G}{n_r}$$
 飞机重量(N) 桨个数

$$N = 60 \sqrt{\frac{G}{n_{\rm r} D_{\rm p}^4 C_{\rm T} \rho}}$$
转速(RPM)

重量

旋翼

2.动力系统模型

$$M = C_{\rm M} \frac{G}{n_{\rm r} C_{\rm T}} D_{\rm p}$$

□ 电机模型

海拔、温度 螺旋桨参数 海拔、温度 螺旋桨参数

(1)电磁转矩

$$K_{\rm T} = \frac{60}{2\pi} K_{\rm E} = 9.55 K_{\rm E}$$

$$K_{\rm E} = \frac{U_{\rm m0} - I_{\rm m0} R_{\rm m}}{K_{\rm V0} U_{\rm m0}}$$

器件参数 厂商可提供

□ 电机模型

图4.1 三相无刷电机电路

不考虑开关器件动作的过渡 过程,并忽略电枢绕组的电 感。这样,无刷直流电动机 的模型可以简化为右图. 方波驱动—梯形波反 电势与方波电流

图4.2 电机等价电路

□电机模型

(2) 输出转矩

$$M=K_{\mathrm{T}}ig(I_{\mathrm{m}}-I_{\mathrm{m0}}ig)$$

拉力逆模型得到转矩

文载电流 (已知)

(3) 等效电流

$$I_{\rm m} = \frac{M}{K_{\rm T}} + I_{\rm m0}$$

 $I_{\rm m}$ $I_{\rm a}$ $I_{\rm a}$ $I_{\rm a}$ $I_{\rm a}$ $I_{\rm b}$ $I_{\rm b}$ $I_{\rm b}$ $I_{\rm c}$ $I_{$

(4) 等效电压

$$U_{
m m}=K_{
m E}N+R_{
m m}I_{
m m}$$
拉力逆模型
得到的转速

在无刷直流电机中, 电机转速正比于反电动势

□ 电调模型

海拔、温度 螺旋桨参数 海拔、温度 螺旋桨参数

图4.4 电调模型

 U_{eo} 为电调调制后的等效 直流电压,可表示为 $U_{eo} = U_{m} + I_{m}R_{e}$

电调输出电压满足

$$\sigma = \frac{U_{\mathrm{eo}}}{U_{\mathrm{e}}} \approx \frac{U_{\mathrm{eo}}}{U_{\mathrm{b}}}$$
电池

□ 电调模型

海拔、温度 螺旋桨参数 海拔、温度 螺旋桨参数

图4.4 电调模型

电调输入电流为

$$I_{\rm e} = \sigma I_{\rm m}$$

而电调输入电压(电池输出 电压)为

电池模型

螺旋桨参数 海拔、温度

申池建模对电池实际放电讨 的放电能力呈线性变化

放电时间(min) 最小放 1000 (mAh)

• 螺旋桨模型

$$N = 60 \sqrt{\frac{G}{\rho D_{\rm p}^4 C_{\rm T} \left(\mathbf{\Theta}_{\rm p}\right) n_{\rm r}}}, \ M = \rho D_{\rm p}^5 C_{\rm M} \left(\frac{N}{60}\right)^2$$

• 电机模型

$$U_{\mathrm{m}} = f_{U_{\mathrm{m}}}(\boldsymbol{\Theta}_{\mathrm{m}}, M, N), I_{\mathrm{m}} = f_{I_{\mathrm{m}}}(\boldsymbol{\Theta}_{\mathrm{m}}, M, N)$$

• 电调模型

$$\begin{split} & \sigma = f_{\sigma} \left(\mathbf{\Theta}_{\mathrm{e}}, U_{\mathrm{m}}, I_{\mathrm{m}}, U_{\mathrm{b}} \right) \\ & I_{\mathrm{e}} = f_{I_{\mathrm{e}}} \left(\sigma, I_{\mathrm{m}} \right) \\ & U_{\mathrm{e}} = f_{U_{\mathrm{e}}} \left(\mathbf{\Theta}_{\mathrm{b}}, I_{\mathrm{e}} \right) \end{split}$$

• 电池模型

$$T_{\rm b} = f_{T_{\rm b}} \left(\Theta_{\rm b}, I_{\rm b} \right)$$

问题1: 给定总重量G, 求解悬停时间 T_{hover} , 电调输入油门指令 σ , 电调输入电流 I_e , 电调输入电压 U_e , 电池电流 I_b , 转速 N, 螺旋 桨转矩M 。

螺旋桨模型

$N = 60 \sqrt{\frac{G}{\rho D_{\rm p}^4 C_{\rm T} n_{\rm r}}}, \ M = \rho D_{\rm p}^5 C_{\rm M} \left(\frac{N}{60}\right)^2$

电机模型

$$U_{m} = f_{U_{m}}(\mathbf{\Theta}_{m}, M, N)$$

$$I_{m} = f_{I_{m}}(\mathbf{\Theta}_{m}, M, N)$$

电调模型

$$\begin{split} & \sigma = f_{\sigma} \left(\mathbf{\Theta}_{\mathrm{e}}, U_{\mathrm{m}}, I_{\mathrm{m}}, U_{\mathrm{b}} \right) \\ & I_{\mathrm{e}} = f_{I_{\mathrm{e}}} \left(\sigma, I_{\mathrm{m}} \right) \\ & U_{\mathrm{e}} = f_{U_{\mathrm{e}}} \left(\mathbf{\Theta}_{\mathrm{b}}, I_{\mathrm{e}} \right) \end{split}$$

$$I_{\rm b} = n_{\rm r} I_{\rm e} + I_{\rm other}$$

$$I_{\rm b} = n_{\rm r} I_{\rm e} + I_{\rm other}$$
 \square $T_{\rm hover} = f_{T_{\rm b}} \left(\Theta_{\rm b}, I_{\rm b}\right)$

电池模型

问题2. 给定总重量 G,电调输入油门指令 $\sigma=1$,求解飞行器的 极限情况下电调输入电流 I_a , 电调输入电压 U_a , 电池电流 I_b , 转速N,系统效率 η (系统效率是指在满油门状态下螺旋桨输出 功率与电池输出功率的比值)。

$$\mathbf{\Theta}_{\mathrm{e}},\mathbf{\Theta}_{\mathrm{p}},\mathbf{\Theta}_{\mathrm{m}},U_{\mathrm{b}}$$

$$\Box$$

$$M = \rho D_{p}^{5} C_{M} \left(\frac{N}{60}\right)^{2}$$

$$U_{m} = f_{U_{m}} \left(\mathbf{\Theta}_{m}, M, N\right)$$

 $\sigma = f_{\sigma}(\boldsymbol{\Theta}_{e}, U_{m}, I_{m}, U_{b}) = 1$

$$I_{\mathrm{m}} = f_{I_{\mathrm{m}}}\left(\boldsymbol{\Theta}_{\mathrm{m}}, M, N\right)$$

$$I_{e} = f_{I_{e}}(1, I_{m})$$

$$I_{b} = n_{r}I_{e} + I_{other}$$

$$U_{e} = f_{U_{e}}(\Theta_{b}, I_{b})$$

$$I_{\rm m}, U_{\rm m}, M, N$$

问题3. 给定总重量G, 电调输入油门指令 $\sigma=0.8$,求解飞行 器的最大载重和最大倾斜角。

$$\mathbf{\Theta}_{\mathrm{e}}, \mathbf{\Theta}_{\mathrm{p}}, \mathbf{\Theta}_{\mathrm{m}}, U_{\mathrm{b}}$$

$$\sigma = f_{\sigma} \left(\mathbf{\Theta}_{e}, U_{m}, I_{m}, U_{b} \right) = 0.8$$

$$M = \rho D_{p}^{5} C_{M} \left(\frac{N}{60}\right)^{2}$$

$$U_{m} = f_{U_{m}} \left(\mathbf{\Theta}_{m}, M, N\right)$$

$$I_{m} = f_{I_{m}} \left(\mathbf{\Theta}_{m}, M, N\right)$$

$$I_{\rm m}, U_{\rm m}, M, N$$

$$T = C_{\rm T} \rho D_{\rm p}^4 \left(\frac{N}{60}\right)^2$$
 单旋翼最大拉力

$$G_{\text{maxload}} = n_{\text{r}}T - G$$

最大载重

$$\theta_{\text{max}} = \arccos \frac{G}{n_{\text{r}}T}$$
 最大俯仰角

最大负载下,多旋翼的 极限。之所以取占空比 0.8而不是1,是为了给予 控制的一定裕度。

问题4: 给定总重量 G, 求解飞行器的最大飞行速度, 最远飞行距离以及综合飞行时间(指飞行器飞行距离达到最远时的飞行时间)。

图 4.5 多旋翼前飞受力图

- □ 飞行器前飞速度
- 阻力跟拉力的关系

$$F_{\text{drag}} = G \tan \theta$$
$$T = \frac{G}{n_{\text{r}} \cos \theta}$$

• 阻力跟速度的关系

$$F_{\text{drag}} = \frac{1}{2} C_{\text{D}} \rho V^2 S$$

$$C_{\text{D}} = C_{\text{D}_1} \cdot (1 - \sin^3 \theta) + C_{\text{D}_2} \cdot (1 - \cos^3 \theta)$$

$$V(\theta) = \sqrt{\frac{2G \tan \theta}{\rho S[C_{D_1} \cdot (1 - \sin^3 \theta) + C_{D_2} \cdot (1 - \cos^3 \theta)]}}$$

飞行器前飞速度 由俯仰角决定

问题4: 给定总重量 G, 求解飞行器的最大飞行速度, 最远飞行距离以及综合飞行时间(指飞行器飞行距离达到最远时的飞行时间)。

图 4.5 多旋翼前飞受力图

□飞行器前飞距离

• 螺旋桨转速
$$N = 60\sqrt{\frac{G}{\rho C_T D_p^4 n_r \cos \theta}}$$

• 螺旋桨转矩
$$M = \frac{GC_{\rm M}D_{\rm p}}{C_{\rm T}n_{\rm r}\cos\theta}$$

- 飞行时间(见第一问) $T_{\mathrm{fly}}(heta)$ (飞行时间, $oxdot{\mathbf{min}}$)
- 飞行距离 $Z(\theta) = 60V(\theta)T_{fly}(\theta)$
- 最远飞行距离 $\max_{\theta \in [0, \theta_{\max}]} Z(\theta) \longrightarrow$ 找到某俯仰角使飞行距离最远

□约束问题

约束1: 电调输入油门在[0,1]之间; 一般我们希望, 合理的油门在50%左右, 也就是说油门在中间的时候(上下控制余量都足够), 恰好多旋翼能够悬停。

约束2: 电机电枢电流不超限, 否则电机会烧掉。

约束3: 电调输入电流不超限, 否则电调会烧掉。

约束4: 电池输出电流不超限, 否则发热损坏电池。

图片 4.6 实验验证设备

- 1.验证在不同转速下,模型算出的拉力大小与电调电流大小是否与实际相符
- 2.验证悬停时间这一代表性性能指标

表.实验参数表

环境参数	$h=50 \text{m}, T_t=25 ^{\circ}\text{C}$
螺旋桨参数	APC 10x45MR (D_p =10inch, H_p =4.5inch, B_p =2)
电机参数	Sunnysky Angel A2212(K_{V0} =980RPM/V, R_{m} =0.12 Ω , U_{m0} =20V, I_{m0} =0.5A, I_{mMax} =20A)
电调参数	$I_{\rm eMax} = 30 \rm A, R_e = 0.008 \Omega$
电池参数	ACE (C_b =4000mAh, U_b =12V, R_b =0.016 Ω , K_b =25C)

□验证悬停时间

- 为了模拟飞行器悬停状态,实验中产生的拉力可以当做飞行器悬停时单个旋翼产生的拉力
- 悬停时间与电池安全放电时间等效
- 实验结果:

虚拟飞行器参数	G=1	$4.7N, n_r = 4$	
环境参数和动力 系统参数	见上页的实验参数表		
悬停时间	实验结果	12.5min	
	估算结果	12.2min	

比较相符

4.评估网站Flyeval.com介绍

基于本讲的理论,我们建立了一个在线性能估算网站flyeval.com.用户在网站上输入机架布局参数、环境参数和动力系统参数后,可以方便地得到性能估算结果。

4.评估网站Flyeval.com介绍

除了性能估算的功能,该网站还提供辅助设计功能。用户简单地输入多旋翼需要达到的飞行性能指标,网站自动推荐最优的多旋翼配置方案。

5.本讲小结

- 动力系统性能是飞行总体性能的核心
- 多旋翼性能评估网站 www.flyeval.com (评估+设计)
- 设计就是寻求最佳的配置,即给定一架多旋翼飞行器的悬停时间、最大负载重量和飞行距离等飞行性能给出最佳的动力系统配置。
- 未来工作: 增加动态的飞行指标。

资源

(1)可靠飞行控制研究组主页课程中心(全部课件下载)

http://rfly.buaa.edu.cn/course

- (2) 关注可靠飞行控制研究组公众号 buaarfly(文章、资讯等)
- (3) 多旋翼设计与控制交流QQ群:183613048
- (4) 视频课程(MOOC)同步发布, 网易云课堂搜索 "多旋翼"

http://study.163.com/course/introduction/1003715005.htm

- (5) 同名中文书本教材《多旋翼飞行器设计与控制》即将在电子工业出版社出版,敬请期待
- (6) 有疑问可联系课程总助教戴训华,邮箱: dai@buaa.edu.cn

致谢

感谢控制组同学

史东杰

戴训华

为本节课程准备作出的贡献。

谢谢

更详细的内容可以参考我们的教材:《多旋翼飞行器设计与控制》,电子工业出版社。

中文版目前在亚马逊、当当、京东、天猫(电子工业出版社旗舰店)等网站有售。

英文版本Introduction to Multicopter Design and Control, 在Springer出版,在亚马逊有售。