Chapitre 13. Limites et continuité

1 Voisinage

Définition 1.1. Soit $a \in \overline{\mathbb{R}}$

Un voisinage de a :

- * Si $a \in \mathbb{R}$, est un ensemble qui contient $[a \delta, a + \delta]$, pour un certain $\delta > 0$
- * Si $a = +\infty$, est un ensemble $[A, +\infty[$ pour un certain $A \in \mathbb{R}$
- * Si $a = -\infty$, est un ensemble $]-\infty$, A] pour un certain $A \in \mathbb{R}$

Lemme 1.2. Soit V un voisinage de $+\infty$

Alors il existe une suite $(v_n)_{n\in\mathbb{N}}\in V^{\mathbb{N}}$ telle que $v_n\xrightarrow[r\to+\infty]{}+\infty$

Définition 1.3. Soit $f: I \to \mathbb{R}$ et $a \in \overline{\mathbb{R}}$

On dit qu'une propriété (de la fonction f) est vraie <u>au voisinage de a</u> s'il existe un voisinage V de a tel que la propriété soit vraie sur $V \cap I$

2 Notion de limite

<u>Cadre</u>: Dans cette section, $f: I \to \mathbb{R}$ est une fonction définie sur une partie I de \mathbb{R} et a est un élément de I ou $\pm \infty$. En pratique, I sera un intervalle et a un point ou une borne de l'intervalle.

2.1 Limites en $\pm \infty$

Définition 2.1. Soit I un ensemble non majoré et $f: I \to \mathbb{R}$ On dit que :

- * f converge vers $l \in \mathbb{R}$ en $+\infty$ si $\forall \varepsilon > 0$, $\exists H \in \mathbb{R} : \forall x \in I$, $x \geq H \implies |f(x) l| \leq \varepsilon$
- * f tend vers $+\infty$ en $+\infty$ si $\forall A \in \mathbb{R}$, $\exists H \in \mathbb{R} : \forall x \in I, x \geq H \implies f(x) \geq A$
- * f tend vers $-\infty$ en $+\infty$ si $\forall A \in \mathbb{R}$, $\exists H \in \mathbb{R} : \forall x \in I, x \geq H \implies f(x) \leq A$

2.2 Limites en un réel

Cadre : $a \in \overline{I}$

Définition 2.2. Soit $a \in \overline{I}$ et $f : I \to \mathbb{R}$

* On dit que f tend vers $l \in \mathbb{R}$ en a si

$$\forall \varepsilon > 0, \exists \lambda > 0 : \forall x \in I, |x - a| \le \delta \implies |f(x) - l| \le \varepsilon$$

* On dit que f tend vers $+\infty$ en a si

$$\forall A \in \mathbb{R}, \exists \lambda > 0 : \forall x \in I, |x - a| \leq \delta \implies f(a) \geq A$$

* On dit que f tend vers $-\infty$ en a si

$$\forall A \in \mathbb{R}, \exists \lambda > 0 : \forall x \in I, |x - a| \leq \delta \implies f(a) \leq A$$

Proposition 2.3. Soit $a \in I$

Si f admet une limite (dans $\overline{\mathbb{R}}$) en a, cette limite est nécessairement f(a)

2.3 Variantes