PATENT SPECIFICATION

(11) **1 409 009**

(21) A (31) (32) H

5

35

40

(21) Application No. 59232/73

(22) Filed 20 Dec. 1973

(31) Convention Application No. 127999/72

(32) Filed 20 D c. 1972 in

(33) Japan (JA)

(44) Complete Specification published 8 Oct. 1975

(51) INT CL2 G03C 1/08//C07C 53/24; C07D 249/18

(52) Index at acceptance

G2C 212 242 26Y 304 30X 321 326 362 371 C19E2A C19HX

C2C 1452 20Y 213 247 250 252 25Y 292 29Y 30Y 366 367 37X 628 67Y 69Y 77Y 798 79Y CM ZG

5

15

25

35

40

(54) THERMALLY DEVELOPABLE LIGHT-SENSITIVE MATERIAL

(71) We, FUJI PHOTO FILM CO., LTD., a Japanese Company, of No. 210, Nakanuma, Minami/Ashigara-Shi, Kanagawa, Japan, do hereby declare the invention for which we pray that a patent may be granted to us, and the method by which it is to be performed, to be particularly described in and by the following statement:—

The present invention relates to a heat-developable light-sensitive material. Heretofore, photographic methods using silver halide have been widely practiced. since silver halides provide and the have been widely

10

ERRATA

SPECIFICATION No. 1,409,009

Page 7, line 10, for monosulphate read monosulphonate
Page 12, line 23, after (C) insert was
Page 13, line 25, for 2-(p-dimethylaminostryryl) read 2-(p-dimethylaminostryryl)

THE PATENT OFFICE 1st December, 1975

halide. The present invention relates to this recent proposal.

Heat-developable light-sensitive materials so far proposed are unfortunately insufficiently light-sensitive. It is however known that merocyanine dyes, the so-called colour sensitizers for silver halide emulsions, can also sensitize heat-developable light-sensitive materials.

Nonetheless, not all colour sensitizing agents effective for silver halide emulsions are necessarily effective for a heat-developable light-sensitive material.

We have discovered that a quinoline compound represented by the general formula (I) hereinafter described and certain derivatives thereof show good sensitizing effects for certain heat-developable light-sensitive materials.

Thus the present invention consists in a heat-developable light-sensitive material comprising a support bearing:

(a) an organic silver salt,

(b) a light-sensitive silver halide, or a compound capable of forming a light-

SEE ERRATA SLIP ATTACHED

PATENT SPECIFICATION

(11)1 409 009

(21) Application No. 59232/73 (31) Conv ntion Application No. 127999/72

(22) Filed 20 D c. 1973

(32) Filed 20 Dec. 1972 in

(33) Japan (JA)

5

10

15

20

25

30

35

40

(44) Complete Sp cification published 8 Oct. 1975

(51) INT CL2 GO3C 1/08//CO7C 53/24; CO7D 249/18

(52) Index at acceptance

G2C 212 242 26Y 304 30X 321 326 362 371 C19E2A C19HX

C2C 1452 20Y 213 247 250 252 25Y 292 29Y 30Y 366 367 37X 628 67Y 69Y 77Y 798 79Y CM ZG

(54) THERMALLY DEVELOPABLE LIGHT-SENSITIVE MATERIAL

(71) We, FUJI PHOTO FILM CO., LTD., a Japanese Company, of No. 210, Nakanuma, Minami/Ashigara-Shi, Kanagawa, Japan, do hereby declare the invention for which we pray that a patent may be granted to us, and the method by which it is to be performed, to be particularly described in and by the following

The present invention relates to a heat-developable light-sensitive material. Heretofore, photographic methods using silver halide have been widely practiced, since silver halides provide excellent sensitivity and gradation compared with electrophotographic methods or diazo-type photographic

However, a silver halide light-sensitive material which is used in this method must, after imagewise exposure, be developed and then subjected to stopping, discolouring or fading and also to prevent the non-developed area (hereinafter referred to as "background") from blackening. Much time and labour are incurred and operators are exposed to danger from handling the necessary chemicals, and their hands and clothes may become stained.

Therefore, it would be desirable to process silver halide material in a dry state such that the processed images could be maintained stable.

Various proposals have been made to this end, for instance a combined developing and fixing method described in U.S. Patent 2,875,048, British Patent No. 954,453 and Federal German Patent No. 1,163,142, and a proposal to substitute dry processing operations for the wet processing operations in the conventional silver halide photographic method, as described in Federal German Patent No. 1,174,159 and British Patent Nos. 943,476 and 951,644. A recent proposal, as described in Japanese Patent Publication No. 22185/70, U.S. Patents 3,152,904, 3,457,075, 3,635,719 and 3,645,739 and British Patent No. 1,205,000, is to use a heat-developable light-sensitive material containing a light-sensitive element comprising mainly a silver salt such as a long-chain carboxylic acid (e.g. silver behenate), of saccharin, or of benzotriazole, and a catalytic amount of a silver

halide. The present invention relates to this recent proposal. Heat-developable light-sensitive materials so far proposed are unfortunately insufficiently light-sensitive. It is however known that merocyanine dyes, the socalled colour sensitizers for silver halide emulsions, can also sensitize heatdevelopable light-sensitive materials.

Nonetheless, not all colour sensitizing agents effective for silver halide emulsions are necessarily effective for a heat-developable light-sensitive material.

We have discovered that a quinoline compound represented by the general formula (I) hereinafter described and certain derivatives thereof show good sensitizing effects for certain heat-developable light-sensitive materials.

Thus the present invention consists in a heat-developable light-sensitive material comprising a support bearing:

(a) an organic silver salt,

(b) a light-sensitive silver halide, or a compound capable of forming a light-

5

10

15

20

25

30

35

40

15

20

25

30

35

5

10

15

20

25

30

35

sensitive silver halide by reaction with said organic silver salt (a), in an amount effective to catalyze the reaction of compounds (a) and (c),

(c) a reducing agent capable of reducing to elemental silver the organic silver salt (a) when the material is being heated in the presence of the component (b) which has been exposed to light,

(d) a bind r, which may be omitted if the organic silver salt (a) and/or the reducing agent (c) act as a binder,

(e) a quinoline compound represented by the following general formula (I):

$$N = \frac{CH - CH}{\underline{a}}C - (X - Y) \underline{n}$$

$$CH_2$$

$$CH_2$$

$$CH_3$$

$$CH_4$$

$$CH_4$$

$$CH_4$$

$$CH_4$$

$$CH_4$$

$$CH_4$$

$$CH_5$$

$$CH_6$$

$$CH_6$$

$$CH_7$$

$$CH_8$$

10 R1 and R2 being each independently an alkyl group having from 1 to 4 carbon atoms or a benzyl group; X and Y are each independently =C—or =N—; n is 1 or 2; a is 0 or 1; and Q represents the atoms necessary to complete a quinoline nucleus which may be further substituted; or (e) may be a quinoline ring N-oxide derived from said quinoline compound or a

quinolinium salt derived from said quinoline compound.

R' and R² are preferably methyl, ethyl or propyl such as n-propyl. R¹ and R² can be the same or different. Also, the quinoline nucleus in the general formula can be substituted, such as by an alkyl group having 1 to 4 carbon atoms, such as methyl, ethyl, isopropyl or isobutyl (any of which may be substituted with a halogen atom or a hydroxyl group, thus being e.g. hydroxyethyl or β -chloroethyl), a phenyl group, an alkoxy group having 1 to 4 carbon atoms such as methoxy, ethoxy, propoxy or butoxy, a halogen such as a fluorine, chlorine, bromine or iodine, a dialkylamino group in which the alkyl moiety may have I to 4 carbon atoms (e.g. methyl, ethyl, propyl, isopropyl, butyl or t-butyl), an alkoxycarbonyl group having 1 to 4 carbon in the alkoxy moiety (such as a methoxycarbonyl or ethoxycarbonyl group) and $-(X=Y)_aD$, X, Y, n and D being as hereinbefore defined in connection with the general formula (I).

Now, specific examples of the compounds represented by the general formula (I), quinoline ring N-oxides thereof and quinolinium salts thereof, useful as the sensitizing agent in the present invention, are given below:

(1) 4-(p-dimethylaminostyryl)quinoline

(2) 4-(4-p-dimethylaminophenyl-1,3-butadienyl)quinoline

(3) 2-(4-dimethylaminostyryl)quinoline

5

10

15

(4) 2-(p-dimethylaminobenzylidene)aminoquinoline

(5) 4-(p-dimethylaminophenylimino)methylquinoline

(6) 4-(p-dimethylaminophenylazo)quinoline

N=N-CH₃

(7) 4-I(3-p-dimethylaminophenyl)-2-propenylidene]-aminoquinoline

(8) 6-chloro-2-(p-dimethylaminostyryl)quinoline

10 CH=CH—CH=CH—CH3

(9) 6-methoxy-2-(p-dimethylaminostyryl)quinoline

(10) 8-fluoro-4-(p-dimethylaminostyryl)quinoline

15 (11) 4-(p-dipropylaminostyryl)quinoline

10

5

(12) 4-(p-methylbenzylaminostyryl)quinoline

(13) 4-(p-dimethylaminostyryl)quinoline-1-oxide

(14) 4-(p-diethylaminophenylimino)methylquinoline-1-oxide

C2H5

(15) 2-[4-(p-dimethylaminophenyl)-1,3-butadienyl]quinoline-1-oxide

(16) 4-(p-dimethylaminostyrylquinolinium) ethyl iodide

(17) 4-(3,4-dioxymethylenephenylethylenyl)quinolinium ethyl iodide

(18) 2,4-bis(p-dimethylaminostyryl)quinolinium ethyl iodide

10

15

20

25

5

15

20

25

(19) 4-(p-dimethylaminostyryl)quinolinium 1,2-dihydroxypropyl tosylate

(20) 4-(p-dimethylaminostyryl)quinolinium n-heptyl iodide

(21) 2-(p-dimethylaminostyryl)-6-dimethylaminoquinolinium ethyl iodide

CH₃

$$CH_3$$

$$CH = CH$$

$$CH_3$$

$$CH_3$$

$$CH_3$$

$$CH_3$$

$$CH_3$$

(22) 4-[4-(p-dimethylaminophenyl)-1,3-butadienyl]quinolinium n-heptyl iodide

$$n-C_7H_{15}$$
 N
 $CH=CH$
 CH_2
 CH_3
 CH_3

(23) 2-[4-(p-dimethylaminophenyl)-1,3-butadienyl]quinolinium ethyl bromide

$$\begin{array}{c} CH=CH \\ C_2H_5 \\ B_{\Gamma} \end{array}$$

These compounds can be used alone or in combinations of two or more.

Compounds (1), (17), (20), (21), and (22) are particularly preferred.

The compound effective as the sensitizing agent in material according to the present invention (component (e)) is suitably added in an amount of from 10⁻⁶ mol to 10⁻² mol, preferably 10⁻³ mol to 10⁻³ mol, per 1 mol of the organic silver salt (a), the amount chosen depending for example upon the kind of compound used, the kind of organic silver salt, the kind of silver halide, the kind of reducing agent and the processing temperature. If the amount of the component (e) exceeds 10-2 mol per mol of organic silver salt, and the component (e) is one giving rise to considerable density of colour, the degree of colouration of the light-sensitive layer can become too great, which is not desirable for some uses.

Suitable examples of organic silver salts which can be used as component (a) in the present invention are the silver salts of organic compounds having an imino group or a mercapto group, and the silver salts of organic (preferably carboxylic) acids, as disclosed in U.S. Patent 3,457,075. Silver salts of organic acids having 10

or more carbon atoms are preferable.

	1,102,002	6
5	Specific examples of these silver salts include the silver salt of benzotriazole, of saccharin, of phthalazinone, of 3-mercapto-4-phenyl-1,2,4-triazole, of 4-hydroxy-6-methyl-1,3,3a,7-tetrazaindene, of 2-(S-ethylthioglycolamido)-benzothiazole, silver caprate, silver laurate, silver myristate, silver palmitate, silver stearate, silver behenate, silver adipate and silver sebacate. Examples of component (b) in the present invention, capable of forming a light-sensitive silver halide by the reaction thereof with the organic silver salt (a), include hydrogen halide.	.5
10	being strontium, cadmium, zinc, tin, chromium, sodium, barium, iron, caesium, lanthanum, copper, calcium, nickel, magnesium, potassium, aluminium, antimony, gold, cobalt, mercury, lead, beryllium, lithium, manganese, gallium, indium, platinum, thallium or bismuth, and the halide being the chloride, bromide or iodide.	10
15	Other examples of component (b) are organic halogen compounds such as monochlorotriphenylmethane, monobromotriphenylmethane, 2-bromo-2-methylpropane, 2-bromobutyric acid, 2-bromoethanol, dichlorobenzophenone, triiodomethane, tribromomethane and tetrabromomethane. Suitable silver halides for use as a support of the silver ha	15
20	Suitable silver halides for use as component (b) are silver chloride, silver bromide, silver bromoiodide, silver chlorobromoiodide, silver chlorobromoiodide, silver chlorobromoiodide, silver chlorobromide and silver iodide. These light-sensitive silver halides can be of coarse grains or of fine grains. Emulsions of extremely fine grains are particularly useful.	20
25	Emulsions containing a light-sensitive silver halide (b) can be prepared in any conventional manner. Exemplary emulsions are produced using the single jet method, the double jet method (e.g. a Lippmann's emulsion), or are an ammoniacal emulsion, a thiocyanate- or thioether-ripened emulsion, or are as described in, e.g. U.S. Patents 2,222,264, 3,320,069 and 3,271,157.	25
30	Silver halides (b) used in material according to the present invention can be sensitized with conventional chemical sensitizers such as reducing agents, sulphur, selenium compounds, gold compounds, platinum compounds, palladium compounds, or combinations thereof. Suitable procedures for chemical sensitization are described in, e.g. U.S. Patent 2,623,499, 2,399,083, 3,297,447 and 3,297,446.	30
35	The compounds which can be employed as component (b) may be used independently or as a combination of two or more. This component (b) is suitably added in an amount of from 0.001 mol to 0.5 mol per 1 mol of the organic silver salt, component (a). If the amount of the component (b) is less than 0.001 mol per mol of (a), the sensitivity is reduced, while if it exceeds 0.5 mol per mol of (a), the	35
40	leaving the material open to light, diminishing the contrast between the image areas and non-image areas. The reducing agent which is used as component (c) in the present investigation.	40
45	images upon heating the light-sensitive material in the presence of the exposed component (b), which is a silver halide catalyst or can form such. The best reducing agent for a particular material depends upon the organic silver salt used. For example, when using a silver salt of a higher fatty acid such as silver behenate, or using the silver salt of heavest-involved.	45
50	difficult to reduce, comparatively strong reducing agents such as a bis-phenol (e.g. 4.4'-methylenebis-(3-methyl-5-t-butylphenol) or an ascorbic acid respectively are suitable. On the other hand, comparatively weak reducing agents such as a substituted phenol (e.g., p-phenylphenol) are suitable for silver salts which are comparatively easy to reduce, such as silver laurate. Examples of frequently useful	50
55	substituted or unsubstituted phenois, substituted or unsubstituted bis-phenois, substituted or unsubstituted bis-naphthols, di- or poly-hydroxynaphthalenes, di- or higher-polyhydroxynapthalenes, di- or higher-polyhydroxynapthalenes, hydroquinone monoethers, di-ethers and tetra-ethers, ascorbic acid or derivatives thereof 3-pyrazolidae, pyrazolidae	55
60	Preferred substituted phenols, bisphenols, bisnaphthols and naphthols are those where the substituted groups are alkyl (C_1 — C_8), alkoxy (C_1 — C_8), phenyl, halogen, amino, alkyl substituted amino (C_1 — C_8), benzyl, hydroxyalkyl (C_1 — C_8), acetyl or nitro.	60
65	Most preferred of the hydroquinone ethers are the monoalkyl (C_1-C_8) ethers, the monoaralkyl ethers and the monoaryl ethers.	65

<u> </u>	1,405,009	8
	from 0.2 to 3 g of silver per square metre of the support, preferably 0.4 to 2 g of silver per square metre.	
	An antistatic layer or an electroconductive layer can be provided on the heat-	
5	developable light-sensitive material of the present invention if desired. Also, an	
3	antihalation substance or an antihalati n dye can be incorporated therein, as disclosed in British Patents 1,276,727 and 1,261,102.	5
	If desired, a matting agent such as starch titanium dioxide zinc oxide or	
	silica, as well as a fluorescent brightening agent such as a stilbene, triazine, oxazole	
10	or coumarin can be additionally incorporated in the material. The components (a) to (e) and any additives can be applied on a support, to	10
	form a heat-developable light-sensitive material according to the invention using	10
	various coating methods including immersing methods, air-knife coating methods	
	curtain-coating methods and extrusion coating methods using a hopper as described in U.S. Patent 2,681,294. If desired, two or more layers can be applied at	
15	the same time. The components (a) to (e) and any additives may be present in a	15
	single layer or some may be applied as separate layers.	
	Some optically sensitizing dyes used for silver halide emulsions can increase the light sensitivity of the heat-developable light-sensitive material of the present	
	invention. Useful optical sensitizers include the evanine does and the merocyanine	
20	dyes, as disclosed in U.S. Patents 3.457.075 and 3.761.279. The amount used of the	20
	cyanine or merocyanine dyes is preferably from 10^{-6} mol to 10^{-2} mol per 1 mol of the organic silver salt (a).	
	In order to enhance the transparency of the thermally developable light-	
25	sensitive layer, to increase the image density and to improve the shelf-life of the	
23	material, a top-coating polymer layer, preferably 1 to 20 microns thick, can be provided on the light-sensitive layer. Suitable top-coating polymers include	25
	polyvinyl chloride, polyvinyl acetate, vinyl chloridevinyl acetate conclymers	
	polyvinyi butyral, polysturene, polymethyl methacrylate, polyurethane rubbers	
30	xylene resins, benzyl cellulose, ethyl cellulose, cellulose acetate butyrate, cellulose acetate, polyvinylidene chloride, chlorinated polypropylene, polyvinyl	30
	pyrrolidone, cellulose propionate, polyvinyl formal, cellulose acetate phthalate	30
	polycarbonates and cellulose acetate propionate.	
	Heat-developable light-sensitive material according to the invention can be developed, after being exposed to irradiation in the ultraviolet and/or visible range	
35	from a xenon lamp, tungsten lamp, mercury lamp, or other light source, by merely	35
	heating the light-sensitive material. Heating temperatures of 100 to 160°C more	
	preferably 110 to 140°C, are suitable for such development. Higher or lower temperatures can be selected within the above-described range, shortening or	
	prolonging the developing time respectively. The developing time is usually from 1	
40	second to 60 seconds. The material can be heated, for example, by being brought	40
	into contact with a heating plate or the like or with a heated drum, or, in some cases, by being passed through heated space, or by using high-frequency induction	
	heating or a laser beam.	
45	The present invention will now be illustrated in greater detail by reference to	45
43	the following examples of preferred embodiments. Unless otherwise indicated, all parts, percentages and ratios are by weight.	45
	EXAMPLE 1. 3.4 Grams of behenic acid was dissolved in 100 ml of toluene at 60°C, and the	
	solution temperature was held to 60°C. Then, 100 ml of a dilute nitric acid aqueous	
50	solution of a pH of 2.0 (at 25°C) was mixed thereinto with stirring. This solution	50
	mixture was maintained at 60°C, and to this was added, while continuing the stirring, an aqueous solution prepared by adding aqueous ammonia to about 80 ml	
	of an aqueous solution containing 1.7 g of silver nitrate to form a silver ammonium	
e e	complex salt and making the total amount 100 ml with water. Thus, a dispersion	
55	containing fine crystals of silver behenate was obtained. Upon leaving this dispersion for 20 minutes at room temperature (about 20—30°C), it separated into	55
	an aqueous phase and a toluene phase.	
•	First, the aqueous phase was removed. Then, 400 ml of fresh water was added	
60	thereto for washing followed by decanting. This procedure was repeated 3 times. Then, 400 ml of water was added thereto and silver behenate was collected by	60
	centrifuging. Thus, 4 g of rod-shaped silver behenate crystals of about 1 micron in	w
	length and about 0.05 micron in width were obtained, 2.5 Grams of the thus	
	obtained silver behenate was added to 20 ml of an isopropyl alcohol solution containing 2 g of polyvinyl butyral and was subjected to ball milling for 1 hour to	
	- 6 - 6 - 6 - 7 - 100 I Hour to	

30

35

40

25

30

35

1,405,005	9
sensitive composition. This composition was then applied to a polyethyl	salt
Ammonium bromide (2.5% by weight methanol solution) 1 ml	
Compound (1) (0.025% by weight 2-methoxy-ethanol solution)	
2,2'-Methylenebis(6-t-butyl-4-methyl-phenol) (25° by weight solution in 2 methyl-phenol)	10
Phthalazinone (2.5% by weight solution in 2-methory others)	
Tetrachlorophthalic anhydride (0.6% by weight methanol solution)	15
Separately, for the purpose of comparison, there were prepared in a similar manner a thermally developable Light-sensitive Material (B) not containing developable Light-sensitive Material (C) containing as a sensitizing dye a merocyanine dye (represented by the following formula) in place of Compound (1) Merocyanine Dye:	
	prepare a polymer dispersion. To 20 ml of this polymer dispersion of the silver were added the following components to prepare a thermally developable lipt sensitive composition. This composition was then applied to a polyethyl terephthalate film support in a silver amount of 1.5 g per 1m² of the suppor prepare a thermally developable Light-sensitive Material (A). Ammonium bromide (2.5% by weight methanol solution) Compound (1) (0.025% by weight 2-methoxy-ethanol solution) 1 ml 2,2'-Methylenebis(6-t-butyl-4-methyl-phenol) (25% by weight solution in 2-methoxy-ethanol) 3 ml Phthalazinone (2.5% by weight solution in 2-methoxy-ethanol) I ml Tetrachlorophthalic anhydride (0.6% by weight methanol solution) Separately, for the purpose of comparison, there were prepared in a simi manner a thermally developable Light-sensitive Material (B) not containing compound (1), the sensitizer according to the present invention, and a thermal developable Light-sensitive Material (C) containing as a sensitizing dye in the same amount.

On each of these Light-sensitive Materials (A) to (C) was top-coated a 15% by weight tetrahydrofuran solution of vinyl chloride-vinyl acetate copolymer (comprising 95% by weight of vinyl chloride and 5% by weight of vinyl acetate) in a dry thickness of 10 microns.

Each of these Light-sensitive Materials (A) to (C) was exposed to 240,000 lux-sec from a tungsten light source through an optical wedge. Thereafter, the materials were heated at 120°C for 10 seconds to develop, then the resulting blackened density was measured.

The reciprocal number of exposure amount necessary to provide a density higher than fog (transmittance at the unexposed area upon heating) by 0.1 was selected to express the sensitivity. The results obtained are shown below wherein the relative sensitivity of the Light-sensitive Material (B) was taken as 100.

			taken as 100.
	Light-sensitive Material (A)	Light-sensitive Material (B)	Light-sensitive Material (C)
Relative Sensitivity	20,000	100	500
			

From the above-described results, it can be seen that the sensitizing agent of the present invention exhibits an outstanding sensitizing effect.

EXAMPLE 2. The same procedures as described in Example 1 were conducted except for using both Compound (1) and the merocyanine dye used in Example 1 in the same amounts in place of Compound (1). The results obtained are shown 40

	Light-sensitive Material (A) (containing compound (1) and the merocyanine dye	Light-sensitive Material (B) (containing neither Compound (I) nor merocyanine dye)	Light-sensitive Material (C) (containing the merocyanine dye)	
Relative Sensitivity	25,000	100	500	
It can be seen fr and the merocyanine	om the results, that dye served to obtain	the combined use an even more exc	e of Compound (1) cellent effect.	
The same proceed for using Compound (EXAMPI dures as described in (21) in place of Com were obtained.	n Example I were	conducted except ame amount. Thus,	
	Light-sensitive Material (A)	Light-sensitive Material (B)	Light-sensitive Material (C)	
Relative Sensitivity	5,200	100	500	
The same effect a	as in Example 1 was	observed.		
EXAMPLE 4. The same procedures as described in Example 1 were conducted except for using Compound (7) in place of Compound (1). The results obtained are as follows.				
	Light-sensitive Material (A)	Light-sensitive Material (B)	Light-sensitive Material (C)	
Relative Sensitivity	3,800	100	500	
maintaining the solution	EXAMPI ic acid was dissolved on at 10°C, 100 ml o	in 100 ml of buty	acetate and, while	
aqueous solution (coor containing 8.5 g of silve the lauric acid with the silver salt was washed polyvinyl butyral and laurate and dispersed usalt. To 20 ml of this percomponents to prepar	or of a sign of	ile continuing the silver nitrate ammo thereto over a 1 mi l-shaped silver laurrin width were obtater and methanol. alcohol were addeepare a polymer disthesilver salt were mable light-sensitive.	stirring, 50 ml of an onium complex salt nute period to react ate crystals of about ained. The resulting Thereafter, 3.0 g of the 2.7 g of silver spersion of the silver added the following the composition. The	
aqueous solution (concontaining 8.5 g of silv the lauric acid with the I micron in length and silver salt was washed polyvinyl butyral and laurate and dispersed usalt. To 20 ml of this pecomponents to prepar resulting composition vilver amount of 1.7 g light-sensitive material	oled to 0°C) of a sign of the ritrate was added to silver ion. Thus, rod about 0.05 micron successively, with ware 20 ml of isopropylusing a ball mill to propose a thermally develow as applied to a polyoper I m² of the suppose (A).	ile continuing the silver nitrate ammo thereto over a 1 mi l-shaped silver laurin width were obtater and methanol. alcohol were addeepare a polymer disthesilver salt were pable light-sensitivethylene terephthal	stirring, 50 ml of an onium complex salt nute period to react ate crystals of about ained. The resulting Thereafter, 3.0 g of the 2.7 g of silver spersion of the silver added the following the composition. The ate film support in a	
aqueous solution (coor containing 8.5 g of silve the lauric acid with the lauric acid with the lauric and laurate and the laurate and dispersed usalt. To 20 ml of this percomponents to prepar resulting composition visilver amount of 1.7 g light-sensitive material Ammonium bro (2.5°, by weigh	oled to 0°C) of a sign of the ritrate was added a silver ion. Thus, rod d about 0.05 micron successively, with wa 20 ml of isopropyl using a ball mill to preolymer dispersion of the a thermally develow was applied to a polymer I m² of the supper I m² of the supper I d(A).	ile continuing the silver nitrate ammo thereto over a 1 mi l-shaped silver lauri in width were obtater and methanol. alcohol were addeepare a polymer disthe silver salt were epable light-sensitivet hylene terephthal ort to prepare a the	stirring, 50 ml of an onium complex salt nute period to react ate crystals of about ained. The resulting Thereafter, 3.0 g of the 2.7 g of silver spersion of the silver added the following the composition. The ate film support in a	
aqueous solution (coor containing 8.5 g of silve the lauric acid with the lauric acid with the lauric and length and silver salt was washed polyvinyl butyral and laurate and dispersed usalt. To 20 ml of this percomponents to prepar resulting composition silver amount of 1.7 g light-sensitive material Ammonium bro (2.5°, by weigh (0.025°, by weigh containing the compound (20) (0.025°, by weigh containing the containing th	or of a sign of a sign of a sign of a silver ion. Thus, rod a shout 0.05 micron successively, with wa 20 ml of isopropylasing a ball mill to presolymer dispersion of a thermally develow as applied to a polyce per I m² of the supper I m² of t	ile continuing the silver nitrate ammo thereto over a 1 mi l-shaped silver laurin width were obtater and methanol. alcohol were addeepare a polymer disthes silver salt were epable light-sensitive thylene terephthal ort to prepare a the	stirring, 50 ml of an onium complex salt nute period to react ate crystals of about ained. The resulting Thereafter, 3.0 g of the 2.7 g of silver spersion of the silver added the following the composition. The ate film support in a termally developable	
aqueous solution (coor containing 8.5 g of silv the lauric acid with the I micron in length and silver salt was washed polyvinyl butyral and laurate and dispersed usalt. To 20 ml of this percomponents to prepar resulting composition viewer amount of 1.7 g light-sensitive material Ammonium bro (2.5° by weigh Compound (20) (0.025° by weigh p-Phenylphenol	or of a sign of a sign of a sign of a silver ion. Thus, rod a shout 0.05 micron successively, with wa 20 ml of isopropylasing a ball mill to presolymer dispersion of a thermally develow as applied to a polyce per I m² of the supper I m² of t	ile continuing the silver nitrate ammo thereto over a 1 mi l-shaped silver lauri in width were obtater and methanol. alcohol were addeepare a polymer disthe silver salt were pable light-sensitive thylene terephthal ort to prepare a the old solution)	stirring, 50 ml of an onium complex salt nute period to react at crystals of about ained. The resulting Thereafter, 3.0 g of the to 2.7 g of silver spersion of the silver added the following the composition. The ate film support in a termally developable	

11		1,409,0	09		11	
	Tetrachlorophtha (0.6° by weight	alic anhydride methanol solution)		l ml		
5	Separately, for the purposes of comparison, there were prepared in a similar manner a thermally developable Light-sensitive Material (B) not containing Compound (20) and a thermally developable Light-sensitive Material (C) containing as a sensitizing dye a merocyanine dye (the same dye as used in Example 1) in place of Compound (20) in the same amount. One each of these Light-sensitive Materials (A) to (C) was top-coated a 15% by weight tetrahydrofuran solution of vinylarchloride-vinyl acetate copolymer (comprising 95% by weight of vinyl chloride and 5% by weight of vinyl acetate) in a					
10	Each of these thre	rons. e Light-sensitive N	Saterials (A) to (C) was exposed to a	10	
15	tungsten light source through an optical wedge to impart thereto an exposure of 240,000 lux sec. Thereafter, the materials were heated at 120°C for 10 seconds to develop, and then the resulting blackened density was measured. The relative sensitivity was determined in the same manner as in Example 1. The results thus obtained are shown in the following table.					
		Light-sensitive Material (A)	Light-sensitive Material (B)	Light-sensitive Material (C)		
	Relative Sensitivity	4,700	100	500		
20	From the above-de according to the presen	escribed results, it invention shows	can be seen that the can outstanding effe	ne sensitizing agent	20	
	The same procedur using Compound (18) results thus obtained ar	ill diace of Comb	Example 5 were co	inducted except for same amount. The		
		Light-sensitive Material (A)	Light-sensitive Material (B)	Light-sensitive Material (C)		
	Relative Sensitivity	1,200	100	500	•	
	The same effect as	in Example 5.				
30	The same procedur using Compound (4) in thus obtained are given	place of Compound	Example 5 were co	nducted except for mount. The results	30	
		Light-sensitive Material (A)	Light-sensitive Material (B)	Light-sensitive Material (C)		
	Relative Sensitivity	1,400	100	500		
	The same effect as	in Example 5 was	observed.			
35	6 Grams of benzotr and the solution was con an aqueous solution prep nitric acid solution (pl temperature of 3°C. Thu benzotriazole was obtain	pled to -15°C. To to a pared by dissolving the street by dissolving the street by at 25°C: 2.0) and a dispersion continued. Upon leaving the street by the s	I in 100 ml of isoam his solution was ad 8.5 g of silver nitrate and the mixture valuing fine crystals this dispersion for	ded, under stirring, e in 100 ml of dilute was adjusted to a of the silver salt of	35	
40	phase. First, the aqueous pi thereto for washing folio	parated into an action hase was removed.	Then, 400 ml of free. This procedure wa	an isoamyl acetate sh water was added s repeated 3 times	40	
45	Then, 400 ml of water w collected by centrifugin diameter of the silver sa	as added thereto a g. Thus, 8 g of alr	nd the silver salt of	f benzotriazole was	45	

1	- 7

	1,409,00	19	
obtained silver salt of be solution containing 4 g of hours to prepare a poly dispersion of the silver thermally developable applied to a polyethylen 1 m² of the support to (A).	mer dispersion of t salt were added the light-sensitive come terephthalate film	and was subjected he silver salt. To 40 ne following compaposition. This con	to ball milling for 4 0 ml of this polymer onents to prepare a mposition was then
Ammonium Iodio (8.5°, by weight	de methanol solution)		1 ml
Solution containi Monopalmitate a in 10 ml of 2-me	ng 2 g of Ascorbic nd 2 g of Ascorbic thoxy-ethanol	Acid Acid Dipalmitate	10 ml
Compound (8) (0.2° by weight	2-methoxy-ethanol	solution)	l ml
N-Ethyl-N'-dodec (2.5° by weight	ylurea 2-methoxy-ethanol	solution)	2 ml
Separately, for the programmer a thermally de Compound (8) and a containing as a sensitizing Example 1) in place of Conference of these Loweight tetrahydrofuran (comprising 95% by weight	thermally developed the therma	pable Light-sensi ine dye (the same the same amount, crials (A) to (C) to	b) not containing tive Material (C) dye as described in p-coated a 15% by
(comprising 95% by weig dry thickness of 8 micro Each of these Light- light source through an c lx-sec. Thereafter, the m Then, the resulting black determined in the same obtained are tabulated b	ns. sensitive Materials optical wedge to im aterials were heate ened density was i	(A) to (C) was experience (C) wa	posed to a tungsten posure of 1,200,000 econds to develop.
	Light-sensitive Material (A)	Light-sensitive Material (B)	Light-sensitive Material (C)
Relative Sensitivity	450	100	150
From the above-de according to the present	mvention snows a	ii outstanding effe	hat the sensitizer ct.
The same procedu except for using Comp amount. Thus, the result		in Example 8	
	Light-sensitive Material (A)	Light-sensitive Material (B)	Light-sensitive Material (C)
Relative Sensitivity	400	100	150
The same effect as i	n Example 8 was	observed.	
The same procedu except for using Comp amount. Thus, the results		in Example 8	

м	Light-sensitive Material (A)	Light-sensitive Material (B)	Light-sensitive Material (C)
Relative Sensitivity	390	100	150
The same effect as	in Example 8 was	observed.	
WHAT WE CLAIM I. A heat-developab (a) an organic silver (b) a light-sensitive sensitive silver halide by effective to catalyze the (c) a reducing agent salt (a) when the materi which has been exposed (d) a binder, which reducing agent (c) act as (e) a quinoline comp	ole light-sensitive me salt, silver halide, or a control reaction with said reaction of composition of reducing all is being heated in the light, may be omitted if a pinder.	compound capable organic silver salt ounds (a) and (c). g to elemental silven the presence of the organic silver	of forming a light- (a), in an amount or the organic silver the component (b) salt (a) and/or the
	 CH—CH—	C (x = Y) D	(1)
	` / <u>a</u>	'n	•
wherein-D K	$ \mathbb{R}^{1}$	or So	CH ₂
R ¹ and R ² being each			Li
carbon atoms or a ber or =N—; n is 1 or 2; a is 0 quinoline nucleus which in N-oxide derived from said quinoline compound 2. A light-sensitive in methyl athyl or methyl athyl athyl or methyl athyl or methyl athyl athyl or methyl athyl or methyl athyl ath	or 1; and Q represe nay be further subs I quinoline compou I. naterial as claimed	nts the atoms neces tituted; or (e) may t nd or a quinolinium	sary to complete a be a quinoline ring a salt dervied from
3. A light-sensitive m is 4-(p-dimethylaminost aminoquinolinium ethyliodide, 4-(3,4-dioxymethyldimethylaminophenyl)-1.	aterial as claimed ir yryl)quinoline, 2- iodide, 4-(p-dimet lenephenylethyleny 3-butadienyllquinol	Claim 1 or 2, wher (p-dimethylaminost hylaminostyryl)quin l)quinolinium ethyl inium g-hentyl iodi	ein component (e) tryryl)-6-dimethyl- nolinium n-heptyl iodide, or 4-[4-(p-
component (e) is present silver salt (a).	material as claime in an amount of 10	d in any precedin fo 10 ⁻² mol per n	g claim, wherein nol of said organic
J. O DEDENHISHIVE M	aterial as claimed	ine dve	
6. A light-sensitive magaid merocyanine dye is r	aterial as claimed in	Claim 6 wherein c	aid cyanine dye or ol per mol of said
6. A light-sensitive massaid merocyanine dye is porganic silver salt (a). 7. A light-sensitive morganic silver salt (a) is a compound containing an	aterial as claimed in present in an amous aterial as claimed i silver sait of an org imino group or a	Claim 6, wherein so not of 10 ⁻⁶ to 10 ⁻² m in any preceding clanic carboxylic acid mercanto group	ol per mol of said aim, wherein said d or of an organic
6. A light-sensitive manual of the first of	aterial as claimed in present in an amous saterial as claimed in silver sait of an org imino group or a la aterial as claimed in ming a light-sensition tydrogen halide, an	Claim 6, wherein sont of 10 ⁻⁶ to 10 ⁻² m in any preceding clanic carboxylic acid mercapto group. In any preceding clayer in any preceding clayer halide by ammonium halide	ol per mol of said aim, wherein said d or of an organic aim, wherein said reaction with said or a metal halide,

	.,10,,00	14
5	potassium, aluminium, antimony, gold, cobalt, mercury, lead, beryllium, lithium, manganese, gallium, indium, platinum, thallium or bismuth. 10. A light-sensitive material as claimed in any of Claims 1 to 7, wherein said compound capable of forming a light-sensitive silver halide by reaction with said organic silver salt (a) is monochlorotriphenylmethane, mon bromotriphenylmethane, 2-bromo-2-methylpr pane, 2-bromo-butyric acid, 2-bromoethanol, dichlorobenzoph none, triiodomethane, tribromomethane or tetrabromomethane.	5
10	11. A light-sensitive material as claimed in any preceding claim, wherein said light-sensitive silver halide is silver chloride, silver bromide, silver bromoiodide, silver chlorobromoiodide, silver chlorobromide or silver iodide. 12. A light-sensitive material as claimed in any preceding claim, wherein said	10
15	a substituted or unsubstituted bisphenol, a substituted or unsubstituted bisphenol, a substituted or unsubstituted naphthol or bis-naphthol, a di- or poly-hydroxy-naphthalene, di- or higher- polyhydroxybenzene, di- or higher- polyhydroxy-naphthalene, a hydroquinone mono-, di-, tri- or tetra-ether, ascorbic acid or a derivative thereof, a 3-pyrazolidone, a pyrazolin-5-one, a reducing sugar, kojic acid or hinokitiol.	15
20	13. A heat-developable light-sensitive material as claimed in Claim 1 and substantially as hereinbefore described with reference to and as shown in any one of Examples 1 to 10. 14. A method of developing a light-sensitive material as claimed in any preceding point which material as claimed in any	20
25	preceding claim, which material has been imagewise-exposed, comprising heating the material to a temperature for a duration until a black image is obtained. 15. A method as claimed in Claim 14, wherein the temperature is from 100° to 160°C. 16. A method as claimed in Claim 15, wherein the temperature is from 110° to 140°C.	25
30	17. A method as claimed in any of Claims 14 to 16, wherein the duration is from 1 to 60 seconds. 18. A material bearing a visible image developed by a process as claimed in any of Claims 14 to 17.	30

GEE & CO.,
Chartered Patent Agents,
Chancery House, Chancery Lane,
London WC2A 7QU
— and —
39 Epsom Road, Guildford, Surrey,
Agents for the Applicants.

Printed for Her Majesty's Stationery Office by the Courier Press, Leamington Spa, 1975. Published by the Patent Office, 25 Southampton Buildings, London, WC2A 1AY, from which copies may be obtained.