Muti-media assignment 2

课程	多媒体程序设计
姓名	许若敏
学号	15336212
日期	2018/11/20

第一题:

a)

解:

- 1. Adaptive Huffman Coding不需要信息源先验的统计信息。当编码多媒体信息源时,下一个符号常常是未知的,无法使用普通的哈夫曼编码,自适应哈夫曼编码这时就很占优势。
 - 2. Adaptive Huffman Coding在编码后的传输过程中无需传输字符编码表。

b)

解:

i, ii

这是decoder原始的哈夫曼编码树

step1:

输入流: 01010010101,

先解码得到第一个字符: 01 -> b, c0 = b, 更新哈夫曼树b的位置+1, 则a和b交换位置得到:

step2:

输入流: 010010101

解码: 01 -> a, c1 = a, 更新哈夫曼树a的位置+1:

step3:

输入流: 0010101 解码: 00 -> NEW

step4:

输入流: 10101

解码:由于上一个step解码是NEW,所以说明有新的符号进入,要根据初始定义的编码表进行翻

译, 即 10 -> c, c2 = c。更新哈夫曼树加入c的节点,交换第二层节点:

step4:

输入流: 101

解码: 101 -> c, c3 = c。更新哈夫曼树:

最终可解码接收序列: c0c1c2c3 = bacc

第二题:

为了比较Jpeg标准压缩效果,这里我使用c++编程实现了基本的Jpeg压缩标准,包括:颜色转换+色度二次采样,二维 DCT 变换,量化, DPCM 和 游长编码, 熵编码等。其中熵编码采用 https://www.w3.org/Graphics/JPEG/itu-t81.pdf 中的标准哈希表K:

主要Jpeg压缩编码核心实现于mjpeg.cpp文件中。

最后压缩结果保存于output文件夹中(output/animal_out.jpeg, output/animal_cartoon_out.jpeg)。其中.dat后缀文件是压缩后的二进制文件。

结合python脚本计算GIF图像的失真率,我进行实验得出如下结果(下面是程序输出图)

c++实现结果(输出gif, jpeg压缩率, jpeg失真率):

```
•100% → make clean complie && ./asg2.out
rm -rf build/*
clang++ -std=c++11 -c mjpeg.cpp -o ./build/mjpeg.o
clang++ -std=c++11 main.cpp `pkg-config --libs opencv` `pkg-config --cflags opencv` ./build/mjpeg.o -o asg2.out
saving...
        [Compression Ratio]:
        [animal] | [animal cartoon]
                                0.133
            0.276 |
[GIF]:
[jpeg]:
            0.123 I
                                 0.120
        [Distortion Ratio (MSE|SNR]:
                 [animal] |
                                      [animal cartoon]
[jpeg]: 98.577 21.021 |
                                                  24.825
                                    98.392
```

python脚本计算gif失真率结果:

```
●100% → python3 measure_gif.py

[Distortion Ratio (MSEISNR]:

[animal] | [animal cartoon]

[gif]: 48.305 3.319 | 56.707 2.638
```

GIF vs JPEG 压缩效果比较

1. animal图片

	原图	GIF	JPEG
图像细节			
失真率(MSE)	-	48.305	98.577
失真率(SNR)	-	3.319	2.638
压缩率	-	0.276	0.123

2. animal cartoon 图片

原图	GIF	JPEG
----	-----	------

图像细节	(ee)	60°	CO A
失真率(MSE)	-	56.707	98.392
失真率(SNR)	-	2.638	24.825
压缩率	-	0.133	0.120

总结,GIF和JPEG对卡通图片的压缩效果几乎一致,但是JPEG的失真率比GIF高。自然图片上使用JPEG压缩效果明显比GIF好,JPEG失真率比较GIF略高,但是肉眼上看图片细节差别不大。 所以对卡通图片进行压缩时,建议使用GIF格式,对自然图片压缩时建议使用JPEG格式。