Álgebra Lineal - Verano 2021

Cuestionario 2 - Espacios vectoriales

En todos los ejercicios, puede realizar los cálculos a mano o utilizando R.

- 1. Sean $v_1 = (1, 2, 1), v_2 = (-1, 3, 2), v_3 = (-13, -1, 2) y v_4 = (1, 1, 0).$
 - (a) Mostrar que $\{v_1, v_2, v_3\}$ es un conjunto linealmente dependiente y encontrar una relación lineal entre ellos
 - (b) Mostrar que $\mathcal{B} = \{v_1, v_2, v_4\}$ es un conjunto linealmente independiente y por lo tanto \mathcal{B} es una base de \mathbb{R}^3 .
- 2. Hallar bases y determinar la dimensión de cada uno de los siguientes subespacios:
 - (a) $S = \langle (1, 1, -1), (0, 1, 1), (1, 3, 1) \rangle \subset \mathbb{R}^3$.
 - (b) $S = \{x \in \mathbb{R}^5 : x_1 2x_3 + x_5 = 0, 2x_1 + x_4 2x_5 = 0, 3x_1 2x_3 + x_4 x_5 = 0\}.$
- 3. Sea $T: \mathbb{R}^4 \to \mathbb{R}^2$ la transformación lineal dada por

$$T(x_1, x_2, x_3, x_4) = (x_1 + 3x_2, 2x_3 - 7x_4)$$

- (a) Escribir la matriz asociada a la transformación dada por T.
- (b) Si Nu(T) $\subset \mathbb{R}^k$ y Im(T) $\subset \mathbb{R}^m$, hallar k y m.
- (c) Hallar generadores de los subespacios Nu(T) e Im(T).
- (d) Calcular las dimensiones de ambos subespacios y verificar el Teorema de la Dimensión.
- 4. Dados u = (1, 1, 1, 1), v = (1, -1, 2, 0), w = (2, 1, 0, 1), P = (1, -2, 0, 3) y Q = (2, 1, 1, 1),
 - (a) hallar ||P||.
 - (b) hallar el ángulo que forman P y Q.
 - (c) verificar que el conjunto de vectores $\{u, v, w\}$ es linealmente independiente y hallar por Gram-Schmidt una base ortonormal de $V = \langle u, v, w \rangle$.
 - (d) completar la base hallada en el ítem anterior a una base ortonormal \mathcal{B} de \mathbb{R}^4 .
 - (e) escribir al vector P como combinación lineal de los vectores de $\mathcal B$ y verificar el resultado obtenido.

Para entregar. Dados u = (2, 2, 1) y v = (2, 1, 3).

- (a) hallar ||u|| y ||v||.
- (b) hallar el ángulo que forman u y v.
- (c) hallar la proyección de w = (1, 1, 1) sobre las recta $\langle u \rangle$.
- (d) verificar que el conjunto de vectores $\{u, v\}$ es linealmente independiente y hallar por Gram-Schmidt una base ortonormal de $V = \langle u, v \rangle$.
- (e) completar la base hallada en el ítem anterior a una base ortonormal \mathcal{B} de \mathbb{R}^3 .
- (f) escribir al vector (1,0,0) como combinación lineal de los vectores de \mathcal{B} y verificar el resultado obtenido.