CLAIMS

WHAT IS CLAIMED IS:

ر طرح ۱ ۹ ۱	1
(7)	3
	4
	5
Ė	

1

2

1

2

1

2

1

2

1

2

- 1. An optical amplifier comprising:
 - a device substrate;
 - a first waveguide embedded in the device substrate; and
 - a first plurality of lasers positioned to provide a first plurality of light beams substantially transverse to the first waveguide.
- 2. The optical amplifier of claim 1 wherein each of the first plurality of lasers are spaced apart from one another along a length of the first waveguide.
- 3. The optical amplifier of claim 2 wherein the first plurality of lasers are vertical cavity surface emitting lasers.
- 4. The optical amplifier of claim 3 wherein the first plurality of lasers share a common substrate.
- 5. The optical amplifier of claim 4 wherein the vertical cavity surface emitting lasers are bonded to the device substrate.
- 6. The optical amplifier of claim 1 wherein the device substrate is a phosphate glass doped with Erbium.

1	7. The optical amplifier of claim 1 further comprising:
2	a second waveguide embedded in the device substrate; and
3	a second plurality of lasers positioned to provide a second plurality of light
4	beams substantially transverse to the second waveguide.
1	8. The optical amplifier of claim 1, wherein the first plurality of lasers are evenly
2	spaced apart from one another.
1	9. A method of amplifying an optical signal comprising:
2	directing the optical signal through a waveguide, the optical signal having a
3	first direction of propagation; and
4	applying a plurality of light beams substantially transverse to the first
5	direction of propagation.
1	10. The method of claim 9, wherein the plurality of light beams is provided by a
2	plurality of laser diodes.
1	11. The method of claim 10, wherein the optical signal has a wavelength of
2	approximately 1550 nm, and the plurality of light beams has a wavelength of
3	approximately 980 nm.

1	12. The method of claim 11, wherein the applying the plurality of light beams
2	further comprises:
3	using a plarality of lasers each using less than 50 mW of power.
1	13. The method of claim 11, wherein the applying the plurality of light beams
2	further comprises:
3	using a plurality of lasers each using less than 20 mW of power.
1	14. The method of claim 2 further comprising:
2	reflecting the plurality of light beams back at the waveguide after passing
3	through the waveguide.
1	15. A method of making an optical signal amplifier comprising:
2	attaching a plurality of light sources to a surface of a substrate, the substrate
3	having a waveguide embedded within, wherein the plurality of light
4	sources are directed substantially transverse to the waveguide.
1	16. The method of claim 15, wherein the attaching of the plurality of light sources
2	comprises:
3	bonding a plurality of vertical cavity surface emitting lasers to the surface of
4	the substrate.

1	17. The method of claim 16, wherein each of the plurality of vertical cavity
2	surface emitting lasers is spaced apart in a line on a common semiconductor substrate.
1	18. The method of claim 16, wherein each of the plurality of vertical cavity
2	surface emitting lasers is spaced apart by a constant distance.
1	19. The method of claim 16, wherein the plurality of vertical cavity surface
2	emitting lasers each operate at less than 50 mW.
1 .	20. The method of claim 16, wherein the plurality of vertical cavity surface
2	emitting lasers each operate at less than 20 mW.
1	21. An optical amplifier comprising:
2	a substrate;
3	a waveguide embedded within the substrate, the waveguide having a primary
4	direction of propagation;
5	an array of lasers positioned to provide a plurality of pumped light beams
6	transverse to the primary direction of propagation.
1	22. The optical amplifier of claim 21, wherein at least one of the array of lasers
2	operates at less than 20 mW of power