# ELMED219

Thursday Jan. 6th, 2022

Lab 0: Introduction to some theory and tools of machine learning

Alexander S. Lundervold (HVL)











Iris Setosa Iris Versicolor Iris Setosa





Iris Setosa Iris Versicolor Iris Setosa







Diabetes



| Patient ID | Age | ВМІ    | Plasma glucose | Diastolic blood pressure | Insulin |     |
|------------|-----|--------|----------------|--------------------------|---------|-----|
| 1          | 50  | 33.6   | 148            | 72                       | 0       |     |
| 2          | 31  | 26.6   | 85             | 66                       | 0       | 100 |
| 3          | 21  | 28.1   | 89             | 66                       | 94      | 3.0 |
| 4          |     | (1855) | ) per          | 0.555                    |         |     |



No diabetes

Diabetes

No diabetes



| Patient ID | Age |
|------------|-----|
| 1          | M   |
| 2          | 31  |
| 3          | 21  |
| 4          |     |

ML models learn from features / representations of data

|     | Î |
|-----|---|
| -22 | ĺ |
|     |   |
|     | ĺ |
|     |   |



No diabetes



No diabetes



Diabetes



# ML models learn from features / representations of data

| *** |  |
|-----|--|
|     |  |
|     |  |
|     |  |







No diabetes

No diabetes

Diabetes



2-22. Flowers of three iris plant species<sup>16</sup>



# Machine learning

Two (very) simple examples



1-22. Flowers of three iris plant species<sup>16</sup>



# Machine learning

Two (very) simple examples

See also





ypprox f(x; heta)

an image



$$y pprox f(x; \theta)$$

an image



what's in the image



## Opacity



### Function approximation



 $y \approx f(x; \theta)$ 

features of a patient

healthy or not healthy

# Some ingredients

| Data          | Labels / annotations | Training data |  |
|---------------|----------------------|---------------|--|
| Trained model | Measure of success   | Purpose       |  |

# Some ingredients

| _          |   |
|------------|---|
| <br>$\sim$ | - |
|            |   |
|            |   |

Feature vectors (think of the flowers) Images Speech

# Labels / annotations

{cat, dog, horse}
{cancer, not-cancer}
{coalfish, pollock}
{diabetes, no diabetes}

### Training data

Pairs {(data, label)} Input to ML model

#### Trained model

A function sample  $\rightarrow$  label

#### Measure of success

Is it doing a good job? Accuracy, loss, ... Used as a *feedback signal* 

## Purpose...

What's the model for?
Broader context
"Business impact"

#### Machine learning



Machine learning



Deep learning



Machine learning



Deep learning



Processing / compute



Machine learning



Deep learning



Processing / compute





Further exploration of the basics of ML

# Further exploration of the basics of ML



