Classification and Astrophysical Parameter Estimation from Gaia: Design and First Results

C. Tiede, J. Holmberg, C.A.L. Bailer-Jones

ADASS 2006 Tucson, AZ October 2006

Gaia in a nutshell

Astrometry Spectroscopy Photometry

Entire sky to G=20 (V=20-22), Up to 100 times over 5 years, About 1 billion stars, 1 million quasars, few million galaxies

ESA mission for 2011 launch

How and when did the Galaxy form?
What is the Galaxy made of?
Substructure in disk and halo
Star formation history
Distribution of dark matter

Limitations & Requirements

- Red and blue photometric data (RP/BP) due to
 - Low spectral resolution
 - due to low dispersion of prisms
 - from broad PSF of optics
 - Low signal-to-noise ratio (for faint stars)
- Discrete classification of observed objects
 - including identification of new types of objects
- Determination of intrinsic astrophysical parameters
 - Parameter degeneracy
 - Problem of "weak" vs. "strong" parameters

Limitations & Requirements

Many variations in RP/BP

→ Strong parameter

Few variations in RP/BP

→ Weak parameter

Discrete Source Classification (DSC)

- Classification into
 - single stars
 - White Dwarfs
 - physical binaries
 - non-physical binaries
 - quasars
 - galaxies
 - asteroids and
 - + unknown objects

Estimation of label + corresponding class probabilities

Class Probability Estimates (DSC)

True Positives and False Negatives in relation to Astrophysical Parameters

→ For single stars: Plots in relation to T_{eff}, log g, [Fe/H], Av

Continuous Parameter Estimation (GSP-phot)

Estimation of T_{eff} (strong parameter)

 $0.5 < A_v < 2$ \$.0-₽ -0.4-0.63.5 4.5 true lg T_{eff} (K)

Nearest neighbor approach

Support vector machine approach

Continuous Parameter Estimation (GSP-phot)

Estimation of [Fe/H] (weak parameter)

Nearest neighbor approach

Support vector machine approach

Summary and Future

- RP/BP data quality
- DSC
 - Good accuracy for quasars, galaxies, White dwarfs
 - Difficulties to distinguish between single stars, physical and non-physical binaries (FP rate ~ 20%)
 - → Implementation of unsupervised methods

Summary and Future

Summary and Future

- RP/BP data quality
- DSC
 - Good accuracy for quasars, galaxies, White dwarfs
 - Difficulties to distinguish between single stars, physical and non-physical binaries (FP rate ~ 20%)
 - →Implementation of unsupervised methods
- GSP-phot
 - Good accuracy for strong parameters (e.g. T_{eff})
 - Difficulties to estimate weak parameters (e.g. [Fe/H])