Exercise 8.1

To what irreducible representations can the following direct product representations be reduced for the specified point group?

(a)
$$\Gamma^{A_1} \otimes \Gamma^{A_1}$$
, $\Gamma^{A_1} \otimes \Gamma^{A_2}$, $\Gamma^{A_2} \otimes \Gamma^E$, $\Gamma^E \otimes \Gamma^E$ for \mathscr{C}_{3v}

(b)
$$\Gamma^{E'} \otimes \Gamma^{E'}$$
, $\Gamma^{A''_1} \otimes \Gamma^{A''_2}$, $\Gamma^{A''_2} \otimes \Gamma^{E''}$ for \mathscr{D}_{3h}

(c)
$$\Gamma^{E_1} \otimes \Gamma^{E_1}$$
, $\Gamma^{E_1} \otimes \Gamma^{E_2}$, $\Gamma^{E_2} \otimes \Gamma^{E_2}$ for \mathscr{C}_{5v} .

Solution 8.1

There are two methods. I will apply one for the first issue and the other for the second and third issue.

(a) Firstly, we should show the character table. For \mathscr{C}_{3v} , it is

$\mathscr{C}_{3\mathrm{v}}$	E	$2C_3$	$3\sigma_v$
$\overline{A_1}$	1	1	1
A_2	1	1	-1
E	2	-1	0

With (8-3.6) and (8-3.10), if we assume

$$\Gamma^{A_1} \otimes \Gamma^{A_1} = a_1 \Gamma^{A_1} \oplus a_2 \Gamma^{A_2} \oplus e \Gamma^E$$
,

then for class E,

$$\chi^{\Gamma^{A_1} \otimes \Gamma^{A_1}}(E) = \chi^{\Gamma^{A_1}}(E)\chi^{\Gamma^{A_1}}(E) = a_1 \chi^{A_1}(E) + a_2 \chi^{A_2}(E) + e \chi^{E}(E),$$

where a_1 , a_2 and e are variables to be solved, which can be simplified into

$$1 \times a_1 + 1 \times a_2 + 2 \times e = 1 \times 1 = 1.$$

Similarly, for classes $2C_3$ and $3\sigma_v$, we obtain

$$a_1 + a_2 - e = 1,$$

 $a_1 - a_2 = 1.$

Solve the group of linear equations in form Ax = b,

$$\begin{pmatrix} 1 & 1 & 2 \\ 1 & 1 & -1 \\ 1 & -1 & 0 \end{pmatrix} \begin{pmatrix} a_1 \\ a_2 \\ e \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

it is easy to find

$$a_1 = 1, \quad a_2 = 0, \quad e = 0.$$

Thus,

$$\Gamma^{A_1} \otimes \Gamma^{A_1} = \Gamma^{A_1}. \tag{8.1}$$

In the same way, what we need to change for different direct products is the vector b. We can obtain

$$\Gamma^{A_1} \otimes \Gamma^{A_2} = \Gamma^{A_2}, \tag{8.2}$$

$$\Gamma^{A_2} \otimes \Gamma^E = \Gamma^E, \tag{8.3}$$

$$\Gamma^E \otimes \Gamma^E = \Gamma^{A_1} \oplus \Gamma^{A_2} \oplus \Gamma^E. \tag{8.4}$$

(b) Firstly, the character table of \mathcal{D}_{3h} should be demonstrated.

$\mathscr{D}_{3\mathrm{h}}$	E	$2C_3$	$3C_2'$	σ_h	$2S_3$	$3\sigma_v$
A'_1	1	1	1	1	1	1
A_2'	1	1	-1	1	1	-1
$\bar{E'}$	2	-1	0	2	-1	0
A_1''	1	1	1	-1	-1	-1
$A_2^{\prime\prime}$	1	1	-1	-1	-1	1
E''	2	-1	0	-2	1	0

We can calculate reduction coefficients of direct product $\Gamma^{E'} \otimes \Gamma^{E'}$ via (8-3.11). For instance, for irreducible representation A'_1 ,

$$a_1' = \frac{1}{12}(1 \times 2 \times 2 \times 1 + 2 \times (-1) \times (-1) \times 1 + 3 \times 0 \times 0 \times 1 + 1 \times 2 \times 2 \times 1 + 2 \times (-1) \times (-1) \times 1 + 3 \times 0 \times 0 \times 1)$$

$$= \frac{1}{12} \times (4 + 2 + 0 + 4 + 2 + 0) = 1.$$

In the same way, we can calculate others' reduction coefficients.

$$a'_{2} = \frac{1}{12}(4+2-0+4+2-0) = 1,$$

$$e' = \frac{1}{12}(8-2+0+8-2+0) = 1,$$

$$a''_{1} = \frac{1}{12}(4+2+0-4-2-0) = 0,$$

$$a''_{2} = \frac{1}{12}(4+2-0-4-2+0) = 0,$$

$$e'' = \frac{1}{12}(8-2+0-8+2+0) = 0.$$

Finally,

$$\Gamma^{E'} \otimes \Gamma^{E'} = \Gamma^{A'_1} \oplus \Gamma^{A'_2} \oplus \Gamma^{E'}. \tag{8.5}$$

Similarly,

$$\Gamma^{A_1''} \otimes \Gamma^{A_2''} = \Gamma^{A_2'}, \tag{8.6}$$

$$\Gamma^{A_2''} \otimes \Gamma^{E''} = \Gamma^{E'}. \tag{8.7}$$

(c) Firstly, the character table of \mathcal{C}_{5v} should be shown.

$\mathscr{C}_{\mathrm{5v}}$	E	$2C_5$	$2C_{5}^{2}$	$5\sigma_v$
$\overline{A_1}$	1	1	1	1
A_2	1	1	1	-1
E_1	2	$2\cos\frac{2\pi}{5}$	$2\cos\frac{4\pi}{5}$ $2\cos\frac{2\pi}{5}$	0
$\underline{E_2}$	2	$2\cos\frac{4\pi}{5}$	$2\cos\frac{2\pi}{5}$	0

Here, we should note

$$\cos 36^{\circ} = \cos \frac{\pi}{5} = \frac{\sqrt{5} + 1}{4},$$
$$\cos 72^{\circ} = \cos \frac{2\pi}{5} = \frac{\sqrt{5} - 1}{4}.$$

The calculation process is omitted. The result is

$$\Gamma^{E_1} \otimes \Gamma^{E_1} = \Gamma^{A_1} \oplus \Gamma^{A_2} \oplus \Gamma^{E_2}, \tag{8.8}$$

$$\Gamma^{E_1} \otimes \Gamma^{E_2} = \Gamma^{E_1} \oplus \Gamma^{E_2}, \tag{8.9}$$

$$\Gamma^{E_2} \otimes \Gamma^{E_2} = \Gamma^{A_1} \oplus \Gamma^{A_2} \oplus \Gamma^{E_1}. \tag{8.10}$$

Exercise 8.2

To what irreducible representation must ψ^{σ} belong if the integral

$$\int \psi^{\sigma}(X)^* F^{\lambda}(X) \psi^{\rho}(X) d\tau$$

is to be non-zero in the following cases?

(a)
$$\mathscr{C}_{4v}$$
 $\Gamma^{\lambda} = \Gamma^{E}$; $\Gamma^{\rho} = \Gamma^{A_1}$, Γ^{A_2} , Γ^{B_1} , Γ^{B_2}

- (b) $\mathscr{D}_{6h} \Gamma^{\lambda} = \Gamma^{E_{1u}}; \Gamma^{\rho} = \Gamma^{E_{2u}}$
- (c) $\mathscr{T}_{\mathrm{d}} \Gamma^{\lambda} = \Gamma^{T_2}$; $\Gamma^{\rho} = \Gamma^{A_2}$, Γ^{E} , Γ^{T_1} , Γ^{T_2} .

Solution 8.2

We should solve the reduction of these direct products. The irreducible representations included in these results are what we want.

(a) The character table of the point group \mathscr{C}_{4v} is shown below.

$\overline{\mathscr{C}_{4 ext{v}}}$	E	$2C_4$	C_2	$2\sigma_v$	$2\sigma_d$
$\overline{A_1}$	1	1	1	1	1
A_2	1	1	1	-1	-1
B_1	1	-1	1	1	-1
B_2	1	-1	1	-1	1
E	2	0	-2	0	0

Thus, in the same way,

$$\Gamma^E \otimes \Gamma^{A_1} = \Gamma^E, \tag{8.11}$$

$$\Gamma^E \otimes \Gamma^{A_2} = \Gamma^E, \tag{8.12}$$

$$\Gamma^E \otimes \Gamma^{B_1} = \Gamma^E, \tag{8.13}$$

$$\Gamma^E \otimes \Gamma^{B_2} = \Gamma^E. \tag{8.14}$$

Finally, we conclude that only ψ^{σ} will belong to Γ^{E} to obtain a non-zero integral if $\Gamma^{\lambda} = \Gamma^{E}$ and $\Gamma^{\rho} = \Gamma^{A_{1}}$. The same conclusion is suitable for cases where Γ^{ρ} equals to $\Gamma^{A_{2}}$, $\Gamma^{B_{1}}$ or $\Gamma^{B_{2}}$.

(b) The character table of the point group \mathcal{D}_{6h} is shown below.

$\mathcal{D}_{6\mathrm{h}}$	E	$2C_6$	$2C_3$	C_2	$3C_2'$	$3C_2^{\prime\prime}$	i	$2S_3$	$2S_6$	σ_h	$3\sigma_d$	$3\sigma_v$
$\overline{A_{1g}}$	1	1	1	1	1	1	1	1	1	1	1	1
A_{2g}	1	1	1	1	-1	-1	1	1	1	1	-1	-1
B_{1g}	1	-1	1	-1	1	-1	1	-1	1	-1	1	-1
B_{2g}	1	-1	1	-1	-1	1	1	-1	1	-1	-1	1
E_{1g}	2	1	-1	-2	0	0	2	1	-1	-2	0	0
E_{2g}	2	-1	-1	2	0	0	2	-1	-1	2	0	0
A_{1u}	1	1	1	1	1	1	-1	-1	-1	-1	-1	-1
A_{2u}	1	1	1	1	-1	-1	-1	-1	-1	-1	1	1
B_{1u}	1	-1	1	-1	1	-1	-1	1	-1	1	-1	1
B_{2u}	1	-1	1	-1	-1	1	-1	1	-1	1	1	-1
E_{1u}	2	1	-1	-2	0	0	-2	-1	1	2	0	0
E_{2u}	2	-1	-1	2	0	0	-2	1	1	-2	0	0

Thus, in the same way,

$$\Gamma^{E_{1u}} \otimes \Gamma^{E_{2u}} = \Gamma^{B_{1g}} \oplus \Gamma^{B_{2g}} \oplus \Gamma^{E_{1g}}. \tag{8.15}$$

Finally, we conclude that only ψ^{σ} will belong to $\Gamma^{B_{1g}}$, $\Gamma^{B_{2g}}$ or $\Gamma^{E_{1g}}$ to obtain a non-zero integral if $\Gamma^{\lambda} = \Gamma^{E_{1u}}$ and $\Gamma^{\rho} = \Gamma^{E_{2u}}$.

(c) The character table of the point group \mathcal{T}_d is shown below.

\mathcal{T}_{d}	\overline{E}	$8C_3$	$3C_2$	$6S_4$	$6\sigma_d$
$\overline{A_1}$	1	1	1	1	1
A_2	1	1	1	-1	-1
E	2	-1	2	0	0
T_1	3	0	-1	1	-1
T_2	3	0	-1	-1	1

Thus, in the same way,

$$\Gamma^{T_2} \otimes \Gamma^{A_2} = \Gamma^{T_1}, \tag{8.16}$$

$$\Gamma^{T_2} \otimes \Gamma^E = \Gamma^{T_1} \oplus \Gamma^{T_2}, \tag{8.17}$$

$$\Gamma^{T_2} \otimes \Gamma^{T_1} = \Gamma^{A_2} \oplus \Gamma^E \oplus \Gamma^{T_1} \oplus \Gamma^{T_2}, \tag{8.18}$$

$$\Gamma^{T_2} \otimes \Gamma^{T_2} = \Gamma^{A_1} \oplus \Gamma^E \oplus \Gamma^{T_1} \oplus \Gamma^{T_2}. \tag{8.19}$$

Finally, we conclude that

- (1) Only ψ^{σ} will belong to Γ^{T_1} to obtain a non-zero integral if $\Gamma^{\lambda} = \Gamma^{T_2}$ and $\Gamma^{\rho} = \Gamma^{A_2}$.
- (2) Only ψ^{σ} will belong to Γ^{T_1} or Γ^{T_2} to obtain a non-zero integral if $\Gamma^{\lambda} = \Gamma^{T_2}$ and $\Gamma^{\rho} = \Gamma^{E}$.
- (3) Only ψ^{σ} will belong to Γ^{A_2} , Γ^{E} , Γ^{T_1} or Γ^{T_2} to obtain a non-zero integral if $\Gamma^{\lambda} = \Gamma^{T_2}$ and $\Gamma^{\rho} = \Gamma^{T_1}$.
- (4) Only ψ^{σ} will belong to Γ^{A_1} , Γ^{E} , Γ^{T_1} or Γ^{T_2} to obtain a non-zero integral if $\Gamma^{\lambda} = \Gamma^{T_2}$ and $\Gamma^{\rho} = \Gamma^{T_2}$.