Геометрическая вероятность

Задачи на разбор

1. Расстояние от пункта A до пункта B автобус проходит за 2 минуты, а пешеход — за 15 минут. Интервал движения автобусов 25 минут. Вы подходите в случайный момент времени к пункту A и отправляетесь в B пешком. Найдите вероятность того, что в пути вас догонит очередной автобус.

Ответ: 0,52.

2. На плоскости нарисованы две концентрические окружности, радиусы которых 3 и 5 см. Найдите вероятность того, что точка, брошенная наудачу в больший круг, попадет в кольцо, образованное этими окружностями.

Ответ: 0,64.

3. В квадрат с вершинами в точках (0;0), (0;1), (1;1), (1;0) наудачу брошена точка (x;y). Найдите вероятность того, что координаты этой точки удовлетворяют неравенству y < 2x.

Ответ: 0,75.

4. Найдите вероятность того, что сумма двух наудачу взятых чисел из отрезка [-1;1] больше нуля, а их произведение отрицательно.

Ответ: 0,25.

5. Стержень длины a случайным образом разломан на 3 части. Найдите вероятность того, что длина каждой его части окажется больше $\frac{a}{4}$.

Ответ: $\frac{1}{16}$.

6. На бесконечную шахматную доску со стороной квадрата a наудачу бросают монету радиуса r ($r < \frac{a}{2}$). Найдите вероятности следующих событий: 1) монета попадет целиком внутрь одного квадрата; 2) монета пересечет не более одной стороны квадрата.

Otbet: 1)
$$\left(1 - 2\frac{r}{a}\right)^2$$
; 2) $1 - \left(2\frac{r}{a}\right)^2$.

7. Из отрезка [0; 2] наудачу выбраны два числа x и y. Найти вероятность того, что эти числа удовлетворяют неравенствам $x^2 \le 4y \le 4x$.

Otbet: $\frac{1}{3}$.

Задачи на самостоятельного решения

8. В квадрат со стороной 1 наудачу брошена точка A. Найдите вероятности следующих событий: 1) расстояние от точки A до фиксированной стороны квадрата не превосходит x; 2) расстояние от точки A до ближайшей стороны квадрата не превосходит x.

Otbet: 1)
$$\min(x, 1), x \ge 0$$
; 2) $\begin{cases} 4x(1-x), 0 \le x \le 0.5 \\ 1, x > 0.5 \end{cases}$.

9. В интервале времени [0;T] в случайный момент времени u появляется сигнал длительности Δ . Приемник включается в случайный момент времени $v \in [0;T]$ на время t. Найдите вероятности обнаружения сигнала приемником.

Otbet:
$$1 - \frac{1}{2} \left(1 - \frac{\Delta}{T} \right)^2 - \frac{1}{2} \left(1 - \frac{t}{T} \right)^2$$
.

10. (задача Бюффона). Плоскость разграфлена параллельными прямыми, расстояние между которыми равно 2a. На эту плоскость наудачу брошена игла длиной 2l (l < a). Найдите вероятность того, что игла пересечет какую-нибудь прямую.

Otbet:
$$\frac{2l}{\pi a}$$
.