

Andrzej M. Borzyszkowsk

Relacyjne Bazy Danych

Andrzej M. Borzyszkowski PJATK/ Gdańsk

materiały dostępne elektronicznie http://szuflandia.pjwstk.edu.pl/~amb

Model relacyjny

© Andrzej M. Borzyszkowski

Dane w jednej tabeli

I Oddział	Sopot	Anna	Drygas	referent	2200
I Oddział	Sopot	Patrycja	Songin	referent	2200
I Oddział	Gdynia	Mariusz	Rumak	referent	2200
I Oddział	Gdynia	Bartosz	Ostrowski	kierownik	3000
I Oddział	Gdynia	Anna	Nehrebecka	dyrektor	5500

- Nadmiarowość danych
 - powtarzalna pełna nazwa oddziału
 - pensja zależna tylko od stanowiska
- Wady
 - niespójność danych (różne pensje dla różnych referentów)
 - nie ma gdzie wpisać pensji prezesa (aktualny brak w/w)
 - nie ma gdzie wpisać danych nowego oddziału (jeszcze bez pracowników)

Dane w strukturze hierarchicznej

I Oddział	Sopot		
Anna	Drygas	referent	2200
Kazimierz	Moskal	asystent	2350
Patrycja	Songin	referent	2200

I Oddział	Gdynia		
Mariusz	Rumak	referent	2200
Bartosz	Ostrowski	kierowni	3000
Anna	Nehrebecka	dyrektor	5500

II Oddział Gdynia

- Nadmiarowość danych
 - pensja zależna tylko od stanowiska
- Wady
 - niespójność danych
 - nie ma gdzie wpisać pensji prezesa
 - wyszukiwanie wg stanowiska wymaga przeczesania całości

© Andrzej M. Borzyszkowski

Pracownicy w banku – ERD

Idea: relacyjna baza danych = tabele

- Relacyjna baza danych: tabele + operacje na tabelach
- Pojedyncza tabela, np. arkusz Excela:

lik [Wstaw Format Narzę					
	Ari	al	▼ 14				.00° 00° №	· · * ·
G1			$f(x) \sum = [u]$	ica_dom				
	А	В		D	E	F	G	н
1	nr	tytul	nazwisko	imie	kod poo	miasto	ulica dom	telefon
2	1	Pani	Kuśmierek	Małgorzata	81-124	Gdynia	NULL	058 6252840
3	2	Pan	Chodkiewicz	Jan	81-737	Gdynia	Chwarznieńska 33/5	058 6240860
4	3	Pani	Szczęsna	Jadwiga	81-444	Gdynia	Bema 41a/12	058 6243741
5	4	Pan	Łukowski	Bernard	81-620	Gdynia	Górnicza 29	058 6230799
6	5	Pan	Soroczyński	Jan	80-230	Gdańsk	Al. Hallera	058 3090788
7	6	Pani	Niezabitowska-Na	Marzena	80-619	Gdańsk	Focha 39-41 m.66	058 3099102
8	7	Pani	Kołak	Agnieszka	80-832	Gdańsk	Wąwóz 4	NULL
9	8	NULL	Hałasa	Ewa	80-511	Gdańsk	Dywizjonu 303/303	058 3483240

- wiersz jest rekordem, dane jednej osoby
- każda kolumna jest przeznaczona na pewną cechę
- numer służy głównie do identyfikacji osoby (jest kluczem)

Relacyjne bazy danych

 Dane przechowywane są w tabelach dla każdego rodzaju encji

-	wyszukiwanie wg kluczy
	głównych (indeksy)

-	powiązanie za pomocą
	kluczy obcych

Zalety

- brak redundancji każda informacja jest w jednej kopii
- wyszukiwanie wg różnych kryteriów tak samo łatwe

		l Oddział	t	Sopot	1	
		I Oddział	ł	Gdynia	2	
		II Oddzia	ıł	Gdynia	3	
15	Anna		Dryg	as	1	
12	Kazimierz		Moskal		1	
15	Patrycja		Songin		1	
15	Mariusz		Rumak		2	
11	Bartosz		Ostrowski		2	
13	Anna		Nehi	ebecka	2	
	11	kierowni	ik		3000	
	12	asystent			2350	
	13	dyrektor			5500	

prezes

referent

15

Arkusz kalkulacyjny, ograniczenia

- Problem ze współbieżnością:
 - wielu użytkowników korzysta z tych samych danych
 - jeden plik nie może być równocześnie edytowany przez kilku użytkowników
- Problem z wydajnością:
 - proste operacje wyszukiwania, sortowania i inne stają się zbyt złożone jeśli danych jest bardzo dużo
- Problem z nadmiarem danych:
 - niektóre dane powtarzają się, zajmują miejsce, kopie mogą być niedokładne
- Problem z powtarzalnością pól:
 - struktura tabeli nie przewiduje powtórzeń, np. wiele imion
 - albo zaliczonych przedmiotów

© Andrzej M. Borzyszkowski

15000

2200

Dziedziny

nagłówek

liczba=liczebność 등

Relacyjne Bazy Dan

krotki

- zbiór nie ma powtórzeń

- kolejność elementów w zbiorze jest nieokreślona

© Andrzej M. Borzyszkowski

Relacje a tabele

Terminologia

Szczesna

Łukowski

Kołak

NULL Hałasa

Soroczyński Jan

Niezabitows Marzena

klucz

główny

Pan

Pan

Pani

Pani

- Matematyczne własności relacji:
 - nie ma podwójnych krotek
 - krotki są nieuporządkowane
 - atrybuty są nieuporządkowane
- Zawartość tabeli jest uporządkowana, i wiersze i kolumny

kod p

81-444

81-620

80-230

80-619

Agnieszka 80-832

Gdvnia

Gdynia

Gdańsk

Gdańsk

Gdańsk

80-511 Gdańsk

Jadwiga

Bernard

Ewa

atrybuty liczba=stopień tabeli

- może zawierać powtórzenia wierszy
- formalnie nie jest relacją
- ale można ją uważać za przedstawienie relacji

Relacje a schematy relacji

- Schematem relacji (schema) jest jej "typ"
 - R(A1,A2,..,An)
 - każdy atrybut A ma przypisaną dziedzinę dom(A)
 - dziedziny można wymienić w schemacie relacji (w praktyce typ dziedziny)
 - Klient(nr:integer,tytul:string, nazwisko:string, imie:string, kod_p:integer, miasto:string)
 - inna nazwa: R zmienna relacyjna, intensja relacji
- Relacja to konkretny zbiór krotek
 - -r ⊂ dom(A1) × dom(A2) × dom(A3) × × dom(An)
 - inna nazwa: r stan relacji, bieżący stan relacji, ekstensja relacji
- · Podobnie nagłówek tabeli a treść tabeli

© Andrzej M. Borzyszkowski

Ograniczenia modelu relacyjnego a schematy

- Ograniczenia wynikające z modelu
 - wartości atrybutów są atomowe
 - nie ma powtórzeń wierszy (dwóch krotek o identycznych atrybutach)
- Ograniczenie wyrażane explicite w schemacie
 - wartości atrybutów muszą należeć do dziedzin
 - pewne atrybuty nie mogą przyjmować NULL
 - wartości kluczowe: nie dwóch krotek o identycznych wartościach pewnych atrybutów
 - inne ograniczenia
- Ograniczenia wymuszane przez aplikacje zewnętrzne
 - niektóre mogą być alternatywnie wyrażalne w schemacie, ale nie musza

Relacyjne bazy danych i ich schematy

- Schemat relacyjnej bazy danych
 - zbiór schematów relacji
 - oraz zbiór więzów integralności
- Stan relacyjnej bazy danych
 - zbiór stanów (relacji) dla każdego ze schematów relacji bazy danych
 - spełniających więzy integralności
- Uwaga: zbiór stanów nie spełniający więzów integralności można nazwać stanem nieprawidłowym/ niespójnym
- Język definiowania danych: Data Definition Language, służy do definiowania schematów baz danych

© Andrzej M. Borzyszkowski

Relacyjne Bazy Danych

Więzy integralności (t.j. spójności)

- Warunki, które musi spełniać każdy stan bazy danych
 - SZBD posiadający zdefiniowane więzy integralności sprawdza je przed każdą operacją na bazie danych
 - w przypadku niespełnienia warunków następuje np. odrzucenie operacji
- Rodzaje warunków:
 - wartości w odpowiedniej dziedzinie
 - w tym różne od NULL
 - jednoznaczność (klucz kandydujący)
 - istnienie (integralność referencyjna)
 - inne warunki określone w schemacie

Klucze kandydujące

- Klucz kandydujący schematu relacji R jest zbiorem K atrybutów relacji takim, że
 - jednoznaczność: żadne dwie różne krotki relacji r(R) nie mają tej samej wartości dla K
 - nieredukowalność: żaden podzbiór właściwy K nie posiada powyższej własności
- Przykłady:
 - tabela Pierwiastki chemiczne dla układu okresowego pierwiastków posiada pola nazwa, symbol, liczba atomowa każde pole jednoznacznie identyfikuje pierwiastek, każde pole jest kluczem kandydującym
 - tabela Pozycja ma klucz kandydujący złożony z dwu atrybutów, numer zamówienia i numer towaru, żaden pojedynczy atrybut nie jest kluczem kandydującym

© Andrzej M. Borzyszkowski

Andrzej M. Borzyszkowski

Relacyjne Bazy Danych

Andrzej M. Borzyszkowski

Klucz główny, klucze alternatywne

- Kluczem głównym schematu relacji nazywamy jeden wybrany klucz kandydujący
 - pozostałe klucze kandydujące nazywamy kluczami alternatywnymi
- Integralność encji wartość klucza głównego nie może być NULL
- Pojęcia klucza można stosować do schematu relacji ale również do relacji (tj. bieżącego stanu)
 - np. numer indeksu jest kluczem głównym dla schematu relacji
 Student w bazie danych Szkoła Wyższa
 - imię i nazwisko nie jest kluczem kandydującym
 - jest (prawdopodobnie) kluczem dla bieżącej wartości relacji student w PJATK Gdańsk

Klucz obcy

Andrzej M.

Danych

M. Borzyszkowski

Andrzej

- Kluczem obcym schematu relacji R2 odwołującym się do schematu relacji R1 (być może = R2) nazywamy zbiór atrybutów FK taki, że
 - wartości atrybutów FK należą do tej samej dziedziny co wartości wskazywane CK
 - CK jest kluczem kandydującym w R1
 - dla każdej krotki w R2 wartość klucza FK jest równa wartości klucza CK pewnej krotki w R1
 - tzn. klucz obcy R2 "wskazuje" krotkę w R1, krotka jest jednoznaczna, skoro CK jest kluczem kandydującym
 - najczęściej klucze obce składają się z jednego atrybutu
 - dopuszcza się, by klucz obcy miał wartość NULL (wówczas niczego nie musi wskazywać)

18

© Andrzej M. Borzyszkowski

Relacyjne Bazy Danych

Klucz obcy, przykłady

- W schemacie zamówienie będzie klucz obcy wskazujący na klienta
 - pozycja wskazuje na zamówienie oraz na towar (dwa klucze obce)
 - schematy zapas i kod_kreskowy również zawierają klucze wskazujące na towar
- W schemacie szkoły wyższej będzie klucz obcy w tabeli przedmiotów wskazujący na prowadzącego
 - będzie NULL przed dokonaniem obsady zajęć
- Klucz obcy może wskazywać na klucz kandydujący we własnej tabeli
 - np. w bazie danych pracowników można zapisywać bezpośredniego przełożonego
 - wówczas, oczywiście, co najmniej jedna krotka musi mieć wartość NULL tego klucza

Klucz obcy, wymagania

- Wartość klucza obcego występująca w relacji musi pojawić się jako wartość odpowiadającego klucza kandydującego
 - ale odwrotna zależność nie jest wymagana
 - np. istnieją towary niezamawiane, klienci, którzy nie złożyli żadnego zamówienia a nawet zamówienia bez pozycji
- Wartość klucza obcego stanowi odwołanie (reference) do krotki zawierającej wartość odpowiadającego mu klucza kandydującego (adresat odwołania)
- Integralność referencyjna: warunek by baza danych w żadnym stanie nie zawierała wartości klucza obcego nieobecnych we wskazywanej tabeli (dangling references)

© Andrzej M. Borzyszkowski

Operacje na bazie danych – obsługa naruszenia więzów integralności

- Operacje na relacjach
 - wstawianie krotki
 - usuwanie krotki
 - modyfikacja krotki (zmiana wartości atrybutów danej krotki)
- Wstawianie
 - niewłaściwa wartość atrybutu lub niedozwolona wartość NULL
 → odrzucenie operacji
 - powtórzona wartość klucza kandydującego → odrzucenie operacji
 - klucz obcy odwołujący się do nieistniejącej krotki → odrzucenie operacji (albo przypisanie wartości NULL kluczowi obcemu)

Obsługa naruszenia więzów integralności 2

- Usuwanie
 - może naruszyć tylko integralność referencyjną (usuwanie adresata odwołania klucza obcego)
 - opcja 1: → odrzucenie operacji
 - opcja 2: operacja usuwania jest propagowana (cascade) do powiązanych krotek
 - opcja 3: wartości klucza obcego ustawiane są na NULL (o ile schemat to dopuszcza)
- PostgreSQL, domyślne zachowanie: nie wolno usuwać adresata istniejącego odwołania: ON DELETE NO ACTION
 - opcja usuwania kaskadowego: ON DELETE CASCADE
 - lub ustawiania wartości NULL: ON DELETE SET NULL

21

Relacyjne Bazy Danych

Andrzej M. Borzyszkowski

Obsługa naruszenia więzów integralności 3

- Modyfikacja
 - niewłaściwa wartość atrybutu lub niedozwolona wartość NULL
 → odrzucenie operacji
 - powtórzona wartość klucza kandydującego → odrzucenie operacji
 - modyfikowany klucz obcy odwołujący się do nieistniejącej krotki → odrzucenie operacji
 - modyfikowany klucz kandydujący będący adresatem odwołania pewnego klucza obcego → analogicznie jak przy usuwaniu: albo odrzucenie operacji, albo modyfikacja klucza obcego tak by wskazywał na tę samą krotkę
- PostgreSQL, domyślne zachowanie: nie wolno modyfikować adresata istniejącego odwołania
 - specjalna opcja do modyfikacji kaskadowej

Relacyjne Bazy Danych

© Andrzej M. Borzyszkowski

© Andrzej M. Borzyszkowski