Ex-1 det's define the following events:

A - knoduct is manufactured by factory A] exhaustive

B - knoduct is manufactured by factory B

D - knoduct is defective

linen:

P(A) = 0.8, P(B) = 1 - P(A) = 0.2

G P(D(A) = 0.3, P(D(B) = 0.1)

1) P(D) = P(A) P(D(A) + P(B) P(D(B)) total probability

= (0.8)(0.3) + (0.2)(0.1) =
$$\boxed{0.26}$$

2) P(A(D) = $P(D(A) P(A)$ Baye's

Therem

= $(0.3)(0.8)$ = $\boxed{12} \approx 0.923$

Ex-2 Events:
$$W = \text{Service working}$$
,
 $S = \text{Successful access}$ attempt, S_i (for ith attempt) : $P(W) = 0.8$, $P(S|W) = 0.9$ $P(S_i)$
1) $P(I^{\text{If}} \text{ attempt fails}) = 1 - P(I^{\text{St}} \text{ attempt success})$
 $P(S_i^C) = 1 - P(W)P(S|W)$
 $= 1 - (0.8)(0.9) = 0.28$
2) $P(W|S_i^C) = P(S_i^C|W)P(W) = (0.1)(0.8)$
 $P(S_i^C) = 0.286$

$$3 \neq P(S_{1}^{C} | S_{1}^{C}) = P(S_{2}^{C} | S_{1}^{C}) = P(W) P(S_{2}^{C} | S_{1}^{C}) + P(W)(1)$$

$$= (0.8)(0.1)(0.1) + 0.2 = [0.743]$$

$$4 \Rightarrow P(W | S_{1}^{C} | S_{2}^{C}) = P(S_{1}^{C} | S_{2}^{C} | W) P(W) = (0.1)^{2} \cdot (0.8)$$

$$= P(S_{1}^{C} | S_{2}^{C}) = P(S_{1}^{C} | S_{2}^{C} | W) P(W) = (0.1)^{2} \cdot (0.8)$$

$$= [0.038]$$

Two dice are holled, $X_1 \subseteq X_2$ are observations

1) P(at least one of X_1 or X_2 is 6) = $\frac{2C_1 \cdot 6 - 1}{36}$ = $\frac{11}{36}$ 2) P(X_1 or X_2 = 6 | $X_1 \neq X_2$) = $\frac{2C_1 \times 5}{6 \times 5}$ = $\frac{10}{30}$ = $\frac{1}{3}$

Ex-4 Events: C: Color-blind, M: male, f: female

given, P(C|M) = 0.05, P(C|F) = 0.01 P(M) = P(F) = 0.5 P(M|C) = P(C|M) P(M) = 0.05 P(C|M)P(M) + P(C|F)P(F) = 0.05 + 0.01 P(C|M)P(M) + P(C|F)P(F) = 0.05 + 0.01

EX-5 at fiven event E is independent of itself.

Thus $P(E \cap E) = P(E|E) \cdot P(E)$ $= (P(E))^2 \xrightarrow{\text{on } P(E|E) = P(E)}$ But $P(E \cap E) = P(E)$ by default, thus, $P(E) = (P(E))^2 = P(E)(1 - P(E)) = 0$ Thus, P(E) = 0 or 1

by lywer,
$$P(A) = 0.3$$
, $P(B) = 0.4$
i) A & B are independent $\Rightarrow P(A \cap B) = P(A)P(B)$
 $\Rightarrow P(A \cup B) = P(A) + P(B) - P(A \cap B)$
 $= 0.3 + 0.4 - (0.3)(0.4)$
 $= 0.58$

ii) AGB are mutually exclusive => P(AnB) = 0 Thus, $P(A \cap B) = P(A) + P(B) = 0.7$

C) lywen P(A) = 0.6 & P(B) = 0.8. Yes, AGB can be independent as in that case, P(AnB) = 0.6+0.8-(0.6) = 0.92 which is possible. No, A&B cannot be mutually exclusive, as P(AnB) = 0.6+0.8 = 1.4 is impossible

 $\frac{1}{\sqrt{f(n)}} \text{ is non-decreasing}$ $\sqrt{f(n)} \in [0,1] \ \forall \ x$ √ F(n) is right continuous \Rightarrow $\sqrt{\lim_{n\to\infty} f(n)} = 1$ & $\lim_{n\to\infty} f(n) = 0$

-> CDF is Valid

3)

F(x)

Same reasons as 1)

$$P(x^2 > 5) = P(x | > \sqrt{5}) = P(x > \sqrt{5}) + P(x < -\sqrt{5})$$
 $= 1 - (0.5 + \sqrt{5}) + 0 = 0.388$

Ex-7 1) $P(x \le 0.8) = F(0.8) = 0.5$

Ex-7 iy
$$P(x \le 0.8) = F(0.8) = 0.5$$

$$\Rightarrow E(x) = (0.5)(0) + \int_{0.75}^{2} x = 0.5 dx$$

$$= 0 + 0.75' = 0.75'$$

s>
$$Var(x) = E[(X - E(x))^2]_2$$

= (0.5)(0-0.75)² + $\int_1^2 (x - 0.75)^2 (0.5) dx$
= 0.604

$$Ex-8 f(n) = \begin{cases} ce^{-2\pi}, & x > 0 \\ 0, & x < 0 \end{cases}$$

$$1 = \int f(n) dx = \int ce^{-2\pi} dx = c \left[\frac{e^{-2\pi}}{-2} \right]_0^{\infty} \Rightarrow c = 2$$

$$P(x > 2) = \int 2e^{-2\pi} dx = \left[e^{-2\pi} \right]_0^{\infty} = \frac{e^{-4}}{2} = 0.018$$

Fx-9 given saturation leads to binomial dist with
$$\eta=39$$
 $\rho=0.7$ Thus,
$$\rho(x=0) = \begin{pmatrix} 3 \\ 0 \end{pmatrix} 0.7^{\circ} 0.3^{\circ} = 0.027$$

$$\rho(x=1) = \begin{pmatrix} 3 \\ 1 \end{pmatrix} 0.7^{\circ} 0.3^{\circ} = 0.189$$

$$\rho(x=2) = \begin{pmatrix} 3 \\ 2 \end{pmatrix} 0.7^{\circ} 0.3 = 0.441$$

$$\rho(x=3) = \begin{pmatrix} 3 \\ 3 \end{pmatrix} 0.7^{\circ} 0.3^{\circ} = 0.343$$

This is the desired PMF.

$$\frac{\text{Ex-10}}{\text{Paf}} = \frac{P(0.4 \le x \le 0.8)}{P(x \le 0.8)} = \frac{P(0.4 \le x \le 0.8)}{P(x \le 0.8)}$$

$$= 0.5 \times 2(0.4 + 0.8) \times (0.8 - 0.4)$$

$$= 0.5 \times 0.8 \times 2 \times 0.8$$

$$= 0.75$$

Ex-II Juvier,
$$X \sim \exp(\lambda)$$

$$P(X > a + b \mid X > a) = \inf_{\alpha \in A} \frac{\lambda e^{-\lambda x} dx}{\lambda e^{-\lambda x} dx}$$

$$= e^{-\lambda (a + b)} = e^{-\lambda a}$$

This example demonstrates the memory---lessness property of the enponential distorbution.

$$\frac{E \times -12}{E}$$
 | $E = \begin{cases} 1 & \text{if } E \text{ occurs} \\ 0 & \text{if } E^c \text{ occurs} \end{cases}$ all heads on tors of 5 fair coins.

=> $I_E = 1$ when (1, 1, 1, 1, 1) is observed from the sample space $\{x_1, x_2, x_3, x_4, x_5\}$ buch that $x_i \in \{0, 1\}$ for all i, $1 \Rightarrow head$, $0 \Rightarrow tail$

Thus $P(\{I_E=1\}^5) = \left(\frac{1}{2}\right)^5 = \boxed{\frac{1}{32}}$ rouses are independent

Ex-13 Juvien COF:

⇒ PMF(x):

$$\begin{cases}
0.5 & x=0 \\
0.5 & x=1 \\
0 & \text{otherwise}
\end{cases}$$

Ex-14 liven, P(white) = p = 0.5, P(black) = 1-p = 0.5 $P(\text{two white of first 4}) = {4 \choose 2} 0.5^2 0.5^2 = 0.375$

nth tors, we have exactly x-1 heads in 1^{st} n-1 torses the Probability that n torses are required: P(x=n) = P(x-1 heads in n-1 torses) P(head) $= \binom{n-1}{n-1} P^{n-1} (1-p)^{n-n} \cdot P \text{ nthrows}$ $= \binom{n-1}{n-1} P^{n} (1-p)^{n-n} \quad \text{which is what we had to show } 1^{st}$

 $P(x=k) = e^{-\lambda} \frac{\lambda}{k!} k$ sit his priver $\lambda = 1$

=>
$$P(\text{at least }i) = 1 - P(x=0)$$

= $1 - e^{-1}i^0 = 0.632$