1 Finite memory

1.1 DFA

Deterministic Finite Automaton, M = $(Q, \Sigma, \delta, q_0, F)$

 Σ : alphabet, Q: finite set of States (independent form input length), $\delta: Q \times \Sigma \rightarrow Q$: transition function (arrows), $q_0 \in Q$ start state(s) (double circled)

Language of machine M: set A of all accepted strings, L(M) = A

Accepting state: validate input if reached Regular language : Σ^* set of all strings composed by Σ (including ε), $L(M) \subset \Sigma^*$, \exists DFA s.t. L = L(M)

Base case : prove for $w=\varepsilon$ Inductive case: assume $\delta(q_0, x) = q_i$ if $x \in T_i \ \forall i$, to prove : for each $\sigma \in$ $\sum \delta(q_0, x.\sigma) = q_i \text{ if } x.\sigma \in T_i \, \forall i, \text{ proof by }$ case on what σ and $\delta(q_0, x)$ are

Complement: $\bar{L} = \{ w \in \Sigma^* : w \not\in L \}$ L regular $\implies \bar{L} = L(M')$ regular $(M' = (Q, \Sigma, \delta, q_0, \bar{F} = Q \setminus F))$ Union: $L_1 \cup L_2 = \{w \in \Sigma^* : w \in A\}$ $L_1 \text{ or } w \in L_2\}, M = (Q = Q_1 \times Q_2)$ $Q_2, \Sigma = \Sigma_1 \cup \Sigma_2, \delta((q_1, q_2), a) =$ $(\delta_1(q_1,a),\delta(q_2,a)),q_0=(q_{1_0},q_{2_0}),F=$ $(q_1, q_2) : q_1 \in F_1 \text{ or } q_2 \in F_2)$, (accept if one accept)

Interesection: $L_1 \cap L_2 = \{w \in$ $\Sigma^*: w \in L_1 \text{ and } w \in L_2 M =$ $(Q = Q_1 \times Q_2, \delta((q_1, q_2), a) =$ $(\delta_1(q_1,a),\delta_2(q_2,a)),q_0=(q_1,q_2),F=$ $\{(q_1,q_2):q_1\in F_1 \text{ and } q_2\in F_2\}$), (accept if Halting problem : HALT $=\{\langle M,w\rangle:$ both accept)

Concatenation: $L_1 \circ L_2 = \{w \in \Sigma^* : w =$ $w_1.w_2, w_1 \in L_1 \text{ and } w_2 \in L_2$ }

1.2 NFA

Parallel computer, transition to ≥ 1 state on symbol, state may have 0 transition on symbol, take step without reading symbol ε -transitions, $\delta: Q \times (\Sigma \cup \{\varepsilon\}) \to 2^Q$

Accepts: ∃ choices that accepts (read full sequence)

 \forall NFA $\exists DFA \equiv NFA$, language regular ⇒ ∃ NFA recognize it

Delta: $\Delta: Q \times \Sigma^* \rightarrow Q$: apply FA to $seq.; Q_M = 2^{Q_N}, \forall A \subseteq Q_N, x \in$ $\Sigma^*, \Delta_M(A, x) = \Delta_N(A, x); x \in$ $L(M) \iff x \in L(N)$

Concatenation: $N = (Q = Q_1 \cup Q_2,$ $\Sigma, \delta_N, q_1 \in N_1, F_2 \in N_2$ $\delta_N(q,a):\delta_1((q \in Q_1\&q \notin F_1))|(q \in G_1)|$ $F_1\&a\neq\varepsilon$)), $\delta_1\cup\{q_1\in N_2\}$ $(q\in F_1\&a=\varepsilon)$, $\delta_2 (q \in Q_2)$

To DFA : state table for $2^{\ensuremath{Q_{N}}}$, remove unreachable states, accepting $\subset 2^{Q_N}$ containing accepting of NFA

1.3 Non-regular languages

(pumping length) s.t. $\forall s \in A : |s| > p$ $\exists (x,y,z): s=xyz \text{ s.t.}; \forall i\geq 0: xy^iz\in A, \text{ P: decidable in polynomial time on deterministic}$ |y| > 1, |xy| < p

2 Computability

2.1 Turing Machine

Turing Maching TM: $(Q, \Sigma, \Gamma, \gamma, q_0, q_a, q_r)$, Q, Σ, Γ finite sets, $\square \not\in \Sigma, \Gamma$: tape alphabet \square $\in \Gamma \& \Sigma \subseteq \Gamma, \delta: Q \times \Gamma \to Q \times \Gamma \times \{L, R\}$, Nondeterministic Turing Machine NTM : $q_a \in Q$ accepting state, $q_r \in Q$ reject state $q_a \neq q_r$

Representation: $uqv, u, v \in \Gamma^*, q \in Q, q$ curr. state, uv tape content, first symbol of v is head location

Transitions: conf. uaq_ibv , $a, b \in \Gamma$, $u, v \in \Gamma^*$, $q_i \in Q$; move to $uq_i acv$ if $\delta(q_i, b) =$ (q_i, c, L) , $uacq_i v$ if $\delta(q_i, b)(q_i, c, R)$

Computation: start conf. $C_1 = q_0 w$ for input $w \in \Sigma^*$, valid moves/transitions, accept (reject) & halt if q_a (q_r) reached

Turing-Recognizable : M recognizes $L \subseteq \Sigma^*$ $\iff \forall w \in \Sigma^* : w \in L \implies M \text{ accepts } w \text{ \& } \text{Cook-Levin} : \text{SAT} \in P \iff P = NP$ $w \not\in L \implies M$ doesn't halt or rejects wTuring-Decidable : M decides $L \subseteq \Sigma^* \iff$ $\forall w \in \Sigma^* : M \text{ halts on } w \& M \text{ accepts}$ $w \iff w \in L$

M halts on w} is undecidable but recognizable, HALT not recognizable Theorem: L decidable $\iff L, \overline{L}$ recognizable Regular problem : $REG_{TM} = \{\langle N \rangle :$ L(N) regular} is undecidable

2.2 Reductions

about another one

is sufficient to solve B

Computable function : $F: \Sigma^* \to \Sigma^*$ is computable $\iff \exists \mathsf{TM} \mathsf{s.t.} \mathsf{halts} \, \forall w \mathsf{ with }$ just f(w) on its tape

Mapping reducible: language A is mapping reducible to language $B: A \leq_m B \iff \exists f$ computable function s.t. $\forall w \in \Sigma^* : w \in$ $A \iff f(w) \in B$

Theorem : $A \leq_m B$ and B decidable $(recognizable) \implies A decidable$ (recognizable); $A \leq_m B$ and A undecidable (unrecognizable) \implies B undecidable (unrecognizable)

3 Efficiency

3.1 Time Complexity

Time complexity: M decider, $t: \mathbb{N} \to \mathbb{N}$, $t(n) = \max_{w \in \Sigma^*: |w| = n} \operatorname{steps} M$ takes on w $\mathsf{Big-O}: f,g: \mathbb{N} \to \mathbb{R}_+, f(n) = O(g(n)) \iff$ $\exists C > 0, n_0 \in \mathbb{N} \text{ s.t. } \forall n \geq n_0 f(n) \leq C \cdot g(n)$

Small-o: $f(n) = o(g(n)) \iff \forall c > 0, \exists n_0 \in$ \mathbb{N} s.t. $\forall n > n_0$ $f(n) < c \cdot q(n)$ Class: TIME $(t(n)) = \{L \subseteq \Sigma^*\}$ L decided in O(t(n))

TM, $\mathbf{P} = \bigcup_{k=1}^{\infty} \mathrm{TIME}(n^k)$

Verifier for language L: TM M s.t. $\forall x \in \Sigma^*$: $x \in L \implies \exists C \text{ s.t. } M \text{ accepts } \langle x, C \rangle$, $x \notin L \implies \forall C M \text{ rejects } \langle x, C \rangle; C$ certificate/witness

 $\delta: (Q \times \Gamma) \to \mathcal{P}(Q \times \Gamma \times \{L, R\}),$ several possible transitions

Nondet. decider for language L: NTM N s.t. $\forall x \in \Sigma^*$, every computation of N on x halts $+: x \in L \implies \exists \operatorname{computation} N \operatorname{on} x$ accepts, $x \notin L \implies \forall \text{ comp. } N \text{ on } x \text{ rejects}$

Polynomial Nondet. decider: its longest computation on x is polynomial in |x|

Theorem: L has nondet, poly-time decider $\iff L$ has a poly-time verifier

NP: class of languages that have poly-time (nondet.)verifiers : running time on any $\langle x, C \rangle$ polynomial in |x|, $\mathbf{P} \subseteq \mathbf{NP}$

3.2 Polynomial-Time Reductions

Poly-time computable func. : $f: \Sigma^* \to \Sigma^*, \exists$ some poly-time TM M s.t. halts $\forall w$ with just f(w) on its tape

Poly-time mapping: Language A is poly-time mapping reducible to $B, A \leq_P B$, if \exists poly-time comp. func. f s.t. $\forall w \in \Sigma^* : w \in$ $A \iff f(w) \in B$

Theorem : $A \leq_P B$ and $B \in P \implies A \in P$ Transitivity: $A \leq_P B$ and $B \leq_P C \implies$ $A \leq_P C$

Reducibility : Use a complexe language to reason NP-completeness : $L \in \mathrm{NP}$ and $\forall L' \in \mathrm{NP}$: $L' \leq_P L$

 $\mbox{Reduction: } A \mbox{ reduces to } B, \mbox{ show that solving } A \mbox{ } \mbox{NP-complete proof: give poly-time verifier for } L, \mbox{ } \mbo$ show SAT $\leq_P L$ (or any NP-complete L^*)

> Clique: k-clique is subset of k pairwise connected vertices

Vertex Cover: G = (V, E), vertex cover is subset S of V s.t. $\forall e \in E$ e is incident to at least one vertex in S; $S \subseteq V$ is vertex cover $\Leftrightarrow \bar{S} = (V \setminus S)$ is independent set

Independent set: subset of pairwise non-adjacent vertices

Complement: $\bar{G} = (V, \bar{E}), \bar{E} \text{ s.t. } uv \in \bar{E} \Leftrightarrow$ $uv \notin E$; $S \subseteq V$ is independent set $\Leftrightarrow S$ is a clique of \bar{G}