NLA 2021-2022 Eigenproblems

Martin Sombra

1 December 2021

The QR iteration

Set

$$T_k = Q_k^* A Q_k$$
 for $k = 0, 1, 2, ...$

The QR iteration arises when considering how to compute T_k directly from T_{k-1}

From the definition of Q_k and R_k and the relation $Q_{k-1} A = R_k Q_k$:

$$T_{k-1} = Q_{k-1}^* A Q_{k-1} = (Q_{k-1}^* Q_k) R_k$$
 (1)

$$T_k = Q_k^* A Q_k = (Q_k^* A Q_{k-1}) Q_{k-1}^* Q_k = R_k (Q_{k-1}^* Q_k)$$
 (2)

We have that $Q_{k-1}^*Q_k$ is unitary and (1) is the QR factorization of \mathcal{T}_{k-1}

Drawbacks

- a single iteration costs $O(n^3)$ flops
- convergence (when it exists) is only linear

The real QR iteration

Matrices arising from applications have real entries! From now

A real
$$n \times n$$
 matrix

The real QR iteration is defined by choosing an orthogonal $n \times n$ matrix Q_0 and setting

$$H_0 \leftarrow Q_0^T A Q_0$$

for $k = 1, 2, ...$
 $H_{k-1} = Q_k R_k \ (QR \ factorization)$
 $H_k \leftarrow R_k Q_k$

The real Schur form

If the eigenvalues of A are not real, then \mathcal{T}_k cannot converge to an upper triangular matrix

→ we content ourselves with convergence to the *real Schur form*:

$$A = Q T Q^T$$

with Q orthogonal and $\mathcal T$ block upper triangular with 1×1 and 2×2 diagonal blocks, that is

$$T = \begin{bmatrix} T_{1,1} & T_{1,2} & \cdots & T_{1,n} \\ 0 & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & T_{n-1,n} \\ 0 & \cdots & \cdots & 0 & T_{n,n} \end{bmatrix} \in \mathbb{R}^{n \times n}$$

where each $T_{i,i}$ is a 1×1 block or a 2×2 block with complex conjugate eigenvalues

Hessenberg reduction

To implement the QR iteration, we have to choose Q_0 carefully such that

$$T_0 = Q_0^T A Q_0$$

is an upper Hessenberg matrix, which would lower the complexity to $O(n^2)$ flops

Hessenberg reduction (cont.)

It is a variation of the QR factorization, and can be done with a sequence of Householder reflections

Let n=5 and choose $P_1=\begin{bmatrix}1&0\\0&\widetilde{P}_1\end{bmatrix}$ with \widetilde{P}_1 a Householder 4×4 matrix such that

$$P_1 A = \begin{bmatrix} \times & \times & \times & \times & \times \\ \times & \times & \times & \times & \times \\ 0 & \times & \times & \times & \times \\ 0 & \times & \times & \times & \times \\ 0 & \times & \times & \times & \times \end{bmatrix}, \quad A_1 = P_1 A P_1^T = \begin{bmatrix} \times & \times & \times & \times & \times \\ \times & \times & \times & \times & \times \\ 0 & \times & \times & \times & \times \\ 0 & \times & \times & \times & \times \\ 0 & \times & \times & \times & \times \end{bmatrix}$$

- P_1 leaves the first row of P_1 A unchanged
- P_1^T leaves the first column of $(P_1 A) P_1^T$ unchanged, including the zeros

Hessenberg reduction (cont.)

Choose
$$P_2 = \begin{bmatrix} \mathbb{1}_2 & \mathbb{0} \\ \mathbb{0} & \widetilde{P}_2 \end{bmatrix}$$
 with \widetilde{P}_2 a 3×3 Householder such that

$$P_2 A_1 = \begin{bmatrix} \times & \times & \times & \times & \times \\ \times & \times & \times & \times & \times \\ 0 & \times & \times & \times & \times \\ 0 & 0 & \times & \times & \times \\ 0 & 0 & \times & \times & \times \end{bmatrix}, \quad A_2 = P_2 A_1 P_2^T = \begin{bmatrix} \times & \times & \times & \times & \times \\ \times & \times & \times & \times & \times \\ 0 & \times & \times & \times & \times \\ 0 & 0 & \times & \times & \times \\ 0 & 0 & \times & \times & \times \end{bmatrix}$$

- P_1 leaves the first and second rows of $P_2 A_1$ unchanged
- P_2^T leaves the first and second columns of $(P_2 A_2) P_2^T$ unchanged

Hessenberg reduction (cont.)

Finally choose
$$P_3 = \begin{bmatrix} \mathbb{1}_3 & \mathbb{0} \\ \mathbb{0} & \widetilde{P}_3 \end{bmatrix}$$
 with \widetilde{P}_2 a 2 × 2 Householder s.t.

$$P_3 A_2 = \begin{bmatrix} \times & \times & \times & \times & \times \\ \times & \times & \times & \times & \times \\ 0 & \times & \times & \times & \times \\ 0 & 0 & \times & \times & \times \\ 0 & 0 & 0 & \times & \times \end{bmatrix}, \quad A_3 = P_3 A_2 P_3^T = \begin{bmatrix} \times & \times & \times & \times & \times \\ \times & \times & \times & \times & \times \\ 0 & \times & \times & \times & \times \\ 0 & 0 & \times & \times & \times \\ 0 & 0 & 0 & \times & \times \end{bmatrix}$$

This constructs an orthogonal $n \times n$ matrix

$$Q_0 = P_{n-2} \cdots P_1$$

such that $H_0 = Q_0^T A Q_0$ is Hessenberg

The complexity of this procedure is $5 n^3 + O(n^2)$ flops

The Hessenberg form through the QR iteration

The Hessenberg form is preserved during the QR iteration: let

$$H = QR$$
 and $H_+ = RQ$

with H Hessenberg

Since R is upper triangular, the j-th column of Q is a linear combination of the first columns of H: write

$$H = [h_1 \cdots h_n]$$
 and $Q = [q_1 \cdots q_n]$

Setting $S = R^{-1} = [s_{i,j}]_{i,j}$ we have that

$$q_j = \sum_{k=1}^J s_{k,j} h_k, \quad j = 1, \dots, n$$

and so Q is Hessenberg

Similarly the j-th row of H_+ is a linear combination of the last j rows of Q, and so H_+ is Hessenberg

The Hessenberg form through the QR iteration (cont.)

The QR factorization of H is computed with n-1 Givens rotations:

$$Q^T H = R$$

where R is upper triangular and $Q = G_1 \cdots G_{n-1}$ with

$$G_i = Givens(i, i + 1, \theta_i)$$

Then

$$H_+ = R Q = R (G_1 \cdots G_{n-1})$$

This requires $6 n^2 + O(n)$ flops

Deflation

A Hessenberg matrix $H \in \mathbb{R}^{n \times n}$ is *reduced* if it has a zero subdiagonal entry

In this case there is 0 such that

$$H = \int_{n-\rho}^{\rho} \begin{bmatrix} H_{1,1} & H_{2,2} \\ 0 & H_{2,2} \end{bmatrix}$$

and the eigenproblem problem for H decouples into the two smaller problems for $H_{1,1}$ and $H_{2,2}$ (deflation)

In practice, this happens when a subdiagonal entry is sufficiently small, for instance when

$$|h_{p+1,p}| \leq c \, \varepsilon \left(|h_{p,p}| + |h_{p+1,p+1}| \right)$$

for ε the machine epsilon and c a small constant

Typically for
$$p = n - 1$$
 and $p = n - 2$

The shifted QR iteration

For $\mu \in \mathbb{R}$ consider the single shift QR iteration

$$H_0 \leftarrow Q_0^T A Q_0$$
 (Hessenberg reduction)
for $k = 1, 2, ...$
 $H_{k-1} - \mu \mathbb{1}_n = Q_k R_k$ (QR factorization)
 $H_k \leftarrow R_k Q_k + \mu \mathbb{1}_n$

Each H is Hessenberg and orthogonally similar to A:

$$\widetilde{H} = R Q + \mu \mathbb{1}_n = Q^T (Q R + \mu \mathbb{1}_n) Q = Q^T H Q$$

The shifted QR iteration (cont.)

If μ is an eigenvalue then deflation occurs in one step

$$\widetilde{h}_{n,n-1} = 0$$
 and $\widetilde{h}_{n,n} = \lambda$

In practice, we recognize that the QR iteration is converging when $h_{n,n-1}$ is small

When this occurs, we use $\mu=h_{n,n}$ and we obtain a quadratically converging algorithm: if

$$|h_{n,n-1}| \leqslant \eta \|H\|$$
 with $0 \leqslant \eta \ll 1$

then for $\mu = h_{n,n}$ we have that

$$|\widetilde{h}_{n,n-1}| \leqslant O(\eta^2 ||H||)$$

 \leadsto the number of correct digits of $h_{n,n} \approx \lambda$ doubles at each step

The double shift strategy

When the eigenvalue λ of A is not real, we might perform two complex single shifts QR steps in succession:

$$H - \lambda \mathbb{1}_n = Q_1 R_1$$

$$H_1 \leftarrow R_1 Q_1 + \lambda \mathbb{1}_n$$

$$H_1 - \overline{\lambda} \mathbb{1}_n = Q_2 R_2$$

$$H_2 \leftarrow R_2 Q_2 + \overline{\lambda} \mathbb{1}_n$$

Set

$$Q = Q_1 Q_2$$
 and $R = R_2 R_1$

It can be shown that these $n \times n$ matrices are *real* and that

$$H_2 = Q^T H Q \in \mathbb{R}^{n \times n}$$

The double shift strategy (cont.)

To avoid complex arithmetics altogether, we would like to pass from H to H_2 directly and using only real numbers

Set M = QR, which verifies that

$$M = H^2 - 2 \operatorname{Re}(\lambda) H + |\lambda|^2 \mathbb{1}_n$$

Then the strategy is:

- compute $M = H^2 2 \operatorname{Re}(\lambda) H + |\lambda|^2 \mathbb{1}_n$
- compute the QR factorization M = QR
- set $H_2 = Q^T H Q$

The first step requires $O(n^3)$ flops and so it is still not practical...

The implicit double shift

The *implicit double shift* (or *Francis QR step*) computes this double shift in $O(n^2)$ flops:

- compute $M e_1 = \text{multiple of } e_1$,
- determine Householder matrices $P_0, P_1, \ldots, P_{n-2}$ such that if $Z = P_0 P_1 \cdots P_{n-2}$ then $Z^T H Z$ is Hessenberg and the first columns of Q and of Z are equal.

Why does it work?

The implicit QR theorem

If both

$$Q^T A Q = H$$
 and $Z^T A Z = Q$

are Hessenberg, H is unreduced, and Q and Z have the same first column, then

$$G = D^{-1}HD$$

with
$$D = diag(\pm 1, \dots, \pm 1)$$

- If both $Q^T H Q$ and $Z^T H Z$ are unreduced, then they are essentially equal
- Else the problem decouples into smaller unreduced subproblems

Implementing the implicit double shift

Set
$$s = \text{Re}(\lambda)$$
 and $t = |\lambda|^2$, write

$$M e_1 = \begin{bmatrix} x \\ y \\ z \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

with

$$x = h_{1,1}^2 + h_{1,2} h_{2,1} - s h_{1,1} + t$$

$$y = h_{2,1} (h_{1,1} + h_{2,2} - s)$$

$$z = h_{2,1} h_{3,2}$$

Implementing the implicit double shift

The computation of Me_1 and P_0 takes O(1) flops

A similarity with P_0 only changes rows and columns 1, 2 and 3:

Implementing the implicit double shift (cont.)

The mission of P_1, \ldots, P_{n-2} is to restore this matrix to Hessenberg form:

$$\rightarrow
\begin{bmatrix}
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
0 & \times & \times & \times & \times & \times \\
0 & 0 & \times & \times & \times & \times \\
0 & 0 & \times & \times & \times & \times \\
0 & 0 & \times & \times & \times & \times
\end{bmatrix}
\rightarrow \dots$$

Hence

$$P_0$$
 and $Z = P_0 P_1 \cdots P_{n-2}$

have the same first column

Implementing the implicit double shift (cont.)

To implement this strategy, we check when $h_{n-1,n-2}$ is small, in which case the eigenvalues of

$$\begin{bmatrix} h_{n-1,n-1} & h_{n-1,n} \\ h_{n,n-1} & h_{n,n} \end{bmatrix}$$

approximate the eigenvalues of A

In this case

$$s = h_{n-1,n-1} + h_{n,n}$$
 (trace) $t = h_{n-1,n-1} h_{n,n} - h_{n-1,n} h_{n,n-1}$ (determinant)

gives quadratic convergence

On the average, two QR iterations are needed per eigenvalue, and the overall process costs

$$O(n^3)$$
 flops

