Hypothesis Testing

Chi-Squared Test & Shapiro Wilk Test

Math & Stats Tutorial
Day 5

Prabesh Dhakal

13 May 2019

Statistics Tutorial Day 5

Prabesh Dhakal, 13 May 2019

PLAN FOR TODAY

- 1. Review: Quartiles, IQR, Outliers, Distribution
- 2. Density Distribution
- 3. p-Value
- 4. Shapiro-Wilk Test
- 5. Chi-square Test
- 6. R-Studio Session

REVIEW: QUARTILES

Quartiles are the values that divide a list of numbers into 4 equal parts (quarters)

Steps Involved

- 1. Put the list of number in order
- 2. Cut the list into 4 equal parts
- 3. If the values lie between two numbers from the observation, take an average of the two values

REVIEW: QUARTILES EXAMPLE (1)

Quartiles for odd number of observations

Observations: 5, 7, 4, 4, 6, 2, 8

- 1. Put them in order: 2, 4, 4, 5, 6, 7, 8
- 2. Cut the list into quarters:

Prabesh Dhakal, 13 May 2019 Statistics Tutorial Day 5

REVIEW: QUARTILES EXAMPLE (21)

Quartiles for even number of observations

Observations: 4, 6, 3, 1, 80, 6, 3, 7, 5, 8

- 1. Put them in order: 1, 3, 3, 4, 5, 6, 6, 7, 8, 80
- 2. Cut the list into quarters:

In this case, median is between 5 and 6: median = (5+6)/2 = 5.5

Statistics Tutorial Day 5
Prabesh Dhakal, 13 May 2019

REVIEW: OUTLIERS

Outliers in a data set are observations that are:

Either: Lower than $(Q_1 - 1.5 * IQR)$

Or: Higher than $(Q_3 + 1.5 * IQR)$

The whiskers of the box plot end at the values $(Q_1 - 1.5 * IQR)$ and $(Q_3 + 1.5 * IQR)$.

REVIEW: DISTRIBUTIONS (1)

There are many ways a data set might be distributed.

However, the nature of distribution in a given industry/topic tends to be similar.

Distribution of data can be represented with scatter plots, bar plots, histograms, box plots, density plots (represented by curves), etc.

REVIEW: DISTRIBUTIONS (2)

Statistics Tutorial Day 5

REVIEW: SKEW OF DISTRIBUTIONS

Right Skew

mode < median < mean

Symmetric

mean = median = mode

Left Skew

mean < median < mode

TASK:

Following charts were created based on different data sets.

Given the charts, how would you describe the skew of the distribution?

SIDE REMARK

FREQUENCY VS RELATIVE FREQUENCY

Frequency is the raw count of your data.

- the number of times an event occurred

Relative Frequency is the absolute frequency normalized by the total number of events.

- how often something happened divided by the total outcomes

Hobby	Freq.	Rel. Freq.
Music	45	0.31
Dance	32	0.22
Running	12	0.08
Skating	8	0.06
Reading	39	0.27
Salsa	7	0.05
Total:	143	1

Rel. Frequency Histogram: https://www.statisticshowto.datasciencecentral.com/relative-frequency-histogram-2/

RELATIVE FREQUENCY (DENSITY) HISTOGRAMS

Blue line represents the density of the data

The histogram and blue lines do not match that well here.

What happens if the number of bins is increased?

Statistics Tutorial Day 5

Prabesh Dhakal, 13 May 2019

Hypothesis Testing

Process of Hypothesis Testing

Significance Level (α)

p – value

Statistics Tutorial Day 5
Prabesh Dhakal, 13 May 2019

PROCESS FOR HYPOTHESIS TESTING

Step 1	Specify H_0 , H_1 , and an acceptable level of α
Step 2	Define a sample-based test statistic and the rejection region for the specified ${\cal H}_0$
Step 3	Collect the sample data and calculate the test statistic
Step 4	Decide to either reject or fail to reject \boldsymbol{H}_0
Step 5	Interpret the results/make recommendation for action

SIGNIFICANCE LEVEL (α)

 α denotes the probability of making a Type I Error (rejecting true H_0)

Significance level of a hypothesis test is the max. acceptable probability of rejecting a true null hypothesis.

The significance level (α) should be low so that the risk of incorrectly rejecting H_0 is minimized. (typically, $\alpha = 0.10 \ or \ 0.05 \ or \ 0.01$)

WHY CARE ABOUT TYPE I ERROR?

Type I Error (rejecting true H_0) 'generally' leads to more serious consequence

Identify the H_0 and H_1 of the following cases:

- 1. Bayer wants to test the toxicity (side effects) of a drug that it is testing.
- 2. Continental emits some pollutant during its manufacturing process. The German environmental agency, who is performing its periodic test, requires it to have a **mean** emission less than a threshold **T**.

What α value would you choose for these examples?

p-value

probability of you making the observations if H₀ were true

 $p - value = P(data | H_0 is true)$

Video source: https://www.youtube.com/watch?v=-MKT3yLDkqk

COMPARING (α) AND p - value

When $p - value \leq \alpha$, we reject H_0

- The result is statistically significant
- We are reasonably sure that there is something besides chance that gave us an observed sample

When $p - value > \alpha$, we fail to reject the H_0

- The result is not statistically significant.
- We are reasonably sure that our observed data can be observed by chance alone

Exercises

χ^2 Test for a Multinomial Population (Example)

Suppose we had a genetic experiment where we hypothesize the 9:3:3:1 ratio of characteristics A, B, C and D. A sample of 160 offspring are observed and the actual frequencies are 82, 35, 29, and 14, respectively.

The hypotheses to be tested are:

 H_0 : $p_1 = 9/16$, $p_2 = 3/16$, $p_3 = 3/16$, $p_1 = 1/16$

 H_1 : the proportions differ from those specified

We reject H_0 if χ^2 statistic that we calculate exceeds the critical value from χ^2 distribution (from the table) at a given α and degree of freedom (k).

χ² TEST (Chi-squared Test) of Independence

χ2 Test is used to test how likely is it that an observed distribution is due to chance/randomness.

Hypotheses:

- H_0 = features are stochastically independent (patterns are random)
- H_1 = there is a statistically significant relationship

Test:

$$X^{2} = \sum_{i=1}^{n} \frac{(O_{i} - Ei)^{2}}{E_{i}}$$

Shapiro — Wilk Test for Normality

Tests whether a random sample $x_1, x_2, ... x_n$ comes from a normal distribution.

The hypotheses to be tested are:

 H_0 : the population is normally distributed

 H_1 : the proportions is not normally distributed

You are testing AGAINST the assumption of Normality.

!!Caution!!: This test does not apply to large data sets.

R-Session

- 1. Read the data
- 2. Perform Chi-square Test of Independence
- 3. Perform Shapiro-Wilk's Test

PLAN FOR NEXT WEEK

That's it for today! :-)

Next week, we are going to discuss:

- 1. Other tests
- 2. Correlation and Regression

If you want to reach me, mail me at: prabesh.dhakal@stud.leuphana.de