AWS SageMaker - XGBoost

Content Prepared By: Chandra Lingam, Cloud Wave LLC Copyright © 2019 Cloud Wave LLC. All Rights Reserved. All other registered trademarks and/or copyright material are of their respective owners

Algorithms Overview

Algorithm	Description
Linear Models	 + Simple and easy to understand + Performs surprisingly well for a variety of problems - Difficulty handling non-linear datasets - Features on similar scale, one-hot encoding, complex features
<u>Decision Tree</u>	 + Can Handle Complex non-linear relationship + Easily handles numeric categorical data, missing data - Prone to overfitting - Poor predictive accuracy
Ensemble Methods	 + Combines multiple simple decision trees + Addresses decision tree overfitting problem + Much better predictive performance - More complex to understand

Must Watch Videos

Gradient Boosting Machine Learning by Trevor Hastie

Learning Decision Tree by Alexander Ihler

Ensembles (Bagging) by Alexander Ihler

Lab: Compare XGBoost and Linear Regression

Compare XGBoost and Linear Regression Algorithm

Using a Simple Dataset

Understand how these algorithms learn from data

Train locally on Notebook instance

Lab: Compare XGBoost and Linear Regression

Using a **non-linear** dataset

Understand how these algorithms learn from data

Train locally on Notebook instance

Lab: Forecast Bike Rental Count

Old Kaggle Competition Problem

Complex dataset

Need to forecast hourly rentals

Lab: Forecast Bike Rental Count - Optimization

Transform Count to Log (Count)

A technique used when model needs to predict positive integers

Use inverse transform Exp (Count) on predicted value

Smoothen effect of seasonality and trend, brings count to a similar scale

Lab: Train using SageMaker's XGBoost

Upload Train and Validation files to S3

Specify Algorithm and Hyperparameters

Configure type of server and number of servers to use for Training

Create a real-time Endpoint for interactive use case

Lab: Prediction using SageMaker's XGBoost

Invoke Endpoint for interactive use cases

Connect to an existing Endpoint

Endpoint Security

Multiple observations in a single round trip

Monitoring and Scaling

<u>CloudWatch</u> – Monitoring Service

<u>AutoScaling</u> – Take automated scaling actions to maintain capacity

Instance

Instance

Model Hosting – Multiple Instance

Model Hosting – Multiple Instance

Model Hosting – Multiple Instance

Model Hosting – Scale on Demand

Model Hosting – Scale on Demand

Scaling based on Invocations

SageMakerVariantInvocationsPerInstance = Metric that records average number of requests per minute per instance

SageMakerVariantInvocationsPerInstance = 100 * 0.5 * 60 = 3,000

Add additional instance when the metric crosses 3,000

Model Hosting – Variants of Algorithm

SageMaker Hosting

Automatically Replace Unhealthy Instances

Scale number of instances based on workload

Test Multiple Variants of Model

Hyperparameters

Training Objective

```
objective
   Regression - "reg:linear"
   Binary Classification - "binary:logistic"
   Multiclass Classification - "multi:softmax"
```

Parameter References:

SageMaker Documentation

XGBoost Documentation

Bias and Variance

Photo Credit: <u>Ugrashak</u>

Biased => Does not match reality

High Bias

Model is not learning from data

Translates to large training and validation errors

Underfitting

Variance

Measures how well the algorithm generalizes for unseen data

Difference between Validation Error and Training Error

High Variance – validation error is high; but training error is small. Overfitting

High Variance

Strategies to handle High Bias (Underfitting)

Add relevant features

Combine features (Example: area = length * width)

Create higher order features

Train longer (more iterations)

Decrease Regularization

Strategies to handle High Variance – Overfitting

Use fewer features

Use straightforward features (instead of higher order features)

Reduce Training iterations

Increase Regularization

Regularization

Many features are equally good at predicting outcome

Which combination of features is the model going to use?

Feature selection depends on algorithm and regularization parameters

Regularization

Regularization – Tone down overdependence of specific features

L1 Regularization

Algorithm aggressively eliminates features that are not important

Example:

Phone GPS = Substantial weight

Standalone GPS = Zero weight

Paper Map = Zero Weight

Useful in large dimension dataset – reduce the number of features

L2 Regularization

Algorithm simply reduces weight of features

Allows other features to influence outcome

L2 Regularization is a good starting point

Example:

Phone GPS = Larger weight

Standalone GPS = Medium weight

Paper Map = Smaller weight

XGBoost Regularization

alpha – L1 Regularization. Default 0

lambda – L2 Regularization. Default 1

Hyper Parameter Tuning

XGBoost Parameter Tuning

SageMaker XGBoost Hyper Parameter Documentation

SKLearn - Automatic Tuning

<u>GridSearch</u> – Exhaustive search using specified lower and upper bound of parameter values

RandomSearch – Random Search of parameters from specified lower and upper bound

SageMaker - Automatic Tuning

<u>Bayesian Search</u> – Smart Search. Treats hyperparameter tuning as a machine learning problem. Often converges faster

Random Search – Random Search of parameters from specified lower and upper bound

Hyper Parameter Tuning

<u>n_estimators</u> (in XGBRegressor) is same as <u>num_round</u> (in <u>XGBoost</u> and <u>SageMaker</u> documentation)

This parameter controls number of rounds of boosting i.e. total number of trees.

Make sure you use correct parameter depending on the library. SKLearn *XGBRegressor silently ignores* parameters it does not understand \otimes

