Дорогой храбрый воин или храбрая воительница! Удачи тебе на первом празднике по временным рядам! Начни с того, что напиши клятву и подпишись под ней:

Я клянусь честью студента, что буду выполнять эту работу самостоятельно.

А теперь — задачки:

1. Рассмотрим уравнение $y_t = 3 + 0.4y_{t-1} + u_t$, где u_t независимы и нормальны $\mathcal{N}(0;9)$ Я не спрашиваю, есть ли у уравнения стационарное решение и сколько их. Скажу прямо: оно есть! Верь мне! И даже добавлю, что в нём y_t представим в виде

$$y_t = c + u_t + \alpha_1 u_{t-1} + \alpha_2 u_{t-2} + \dots$$

- (a) Найди c и все α_k .
- (b) Найди $E(y_t)$, $Var(y_t)$ и первые два значения автокорреляционной функции.

Дополнительно известно, что $y_{100} = 5$.

- (c) Найди 95%-й предиктивный интервал для y_{101} .
- (d) Найди 95%-й долгосрочный предиктивный интервал для y_{100+h} , где $h \to \infty$. Зависит ли он от y_{100} ?
- 2. Временной ряд порождается MA(2) процессом $y_t = 3 + u_t + 0.5u_{t-1} + 0.2u_{t-2}$, где u_t белый шум. Однако Винни-Пух строит регрессию $\hat{y}_t = \hat{\beta}_1 + \hat{\beta}_2 y_{t-1}$ с помощью МНК.
 - (a) Найди $E(y_t)$, $Var(y_t)$, $Cov(y_t, y_s)$.
 - (b) Какие коэффициенты примерно получит Винни-Пух, если у него много наблюдений?
- 3. Рассмотрим процесс $y_t = u_1 \sin 5t + u_2 \cos 5t$, где u_t белый шум.
 - (а) Является ли данный процесс стационарным?
 - (b) Можно ли представить данный процесс в виде $MA(\infty)$? На всякий случай, чтобы не гуглить, я напомню, $MA(\infty)$ -процесс имеет вид:

$$y_t = c + \varepsilon_t + \alpha_1 \varepsilon_{t-1} + \alpha_2 \varepsilon_{t-2} + \dots,$$

где ε_t — белый шум. И да, обращу внимание, что шум ε_t не обязательно совпадает с шумом u_t

Дорогой студент, храбро решающий онлайн контрольную! Я в тебя верю, осталось три задачи! Смелее переходи на следующую страницу!

- 4. У стационарного процесса y_t первые две обычные корреляции равны $\rho_1=0.5, \rho_2=0.2,$ а ожидание равно $\mathrm{E}(y_t)=20.$
 - Известно, что $y_{100} = 25$, $y_{99} = 22$. Найди наилучший точечный прогноз для y_{101} .

Псссст, парень! Это была задача про частные корреляции!

5. Вспомни ETS(AAN) модель, а я тебе даже уравнения напишу:

$$\begin{cases} y_t = \ell_{t-1} + b_{t-1} + u_t \\ \ell_t = \ell_{t-1} + b_{t-1} + \alpha u_t \\ b_t = b_{t-1} + \beta u_t \\ u_t \sim \mathcal{N}(0; \sigma^2) \end{cases}$$

- (a) Ты вчера чатик читал? Помнишь там вопрос был? Ага! Докажи, что ни при каких ℓ_0 и b_0 этот процесс не будет стационарным. Или опровергни и приведи пример, при каких будет. Константы α , β лежат в интервале (0;1).
- (b) При $l_{100}=20,\, b_{100}=2,\, \alpha=0.2,\, \beta=0.3,\, \sigma^2=16$ построй интервальный прогноз на один и два шага вперёд.
- 6. Величины x_t равновероятно равны 0 или 1, а величины u_t нормальны $\mathcal{N}(0;1)$. Все упомянутые величины независимы. Рассмотрим процесс $z_t = x_t^2(1-x_{t-1})u_t$.
 - (a) Найди $Cov(z_t, z_s)$. Стационарен ли процесс z_t ?
 - (b) Скажу тебе по секрету, что $z_{100}=2.3$. Построй точечный и 95%-й интервальный прогноз на один и два шага вперёд. Чем интервальные прогнозы в этой задаче особенные?

Частичные решения

- 1. $c=5,\,\alpha_k=0.4^k$. При стремлении $h\to\infty$ для прогноза стационарного процесса становятся не важны прошлые значение и интервал будет иметь вид $[\mu_y-1.96\sigma_y;\mu_y+1.96\sigma_y]$.
- 2. $\mathrm{E}(y_t)=3$, ковариации зануляются при |t-s|>2. При большом количестве наблюдений $\hat{\beta}_2\approx \frac{\mathrm{Cov}(y_t,y_{t-1})}{\mathrm{Var}(y_t)}$. И $\hat{\beta}_1\approx 3-\hat{\beta}_2\cdot 3$.
- 3. Стационарный, $\mathrm{E}(y_t)=0$, ковариации проверяются по формуле косинуса суммы. Представить в виде $MA(\infty)$ нельзя. Доказательство такое: заметим, что наш процесс y_t довольно особенный: зная y_1 и y_2 можно восстановить всю траекторию процесса. А у $MA(\infty)$ это невозможно: например, в y_3 входит ε_3 , независящий от y_1 и y_2 .
- 4. Находим частные корреляции решая систему Юла-Волкера.
- 5. Дисперсия b_0 равна нулю, дисперсия b_1 не равна нулю, значит нестационарный.
- 6. Стационарный. Ковариации зануляются при |t-s| > 1. Квадрат у x_t , конечно, можно убрать. Особенность процесса состоит в том, что закон распределения z_t не является ни дискретным, ни непрерывным. Если текущее значение процесса ненулевое, то следующее будет определённо нулевым, поэтому даже 100%-й интервал на один шаг вперёд выродится в точку. При прогнозе на два шага вперёд текущее значение процесса не играет роли. С вероятностью 1/4 значение будет равно нулю, поэтому остаётся лишь добрать оставшуюся вероятность до 95%.