15 Funktorialität der Konstruktion

Satz 38 (orig. 35). Sei $f: X \to Y$ eine stetige Abbildung zwischen irreduziblen affin-algebraischen Mengen. Es sind äquivalent:

- (i) f ist ein Morphismus affin-algebraischer Mengen.
- (ii) $\forall g \in \Gamma(Y)$ gilt $g \circ f \in \Gamma(X)$.
- (iii) f ist ein Morphismus von Räumen von Funktionen, d.h. für alle $U \subseteq Y$ offen und alle $g \in \mathcal{O}_Y(U)$ gilt $g \circ f \in \mathcal{O}_X(f^{-1}(U))$.

Beweis.

- $(i) \Leftrightarrow (ii)$ Folgt aus Satz 29.
- $(iii) \Rightarrow (ii)$ U := Y und Satz 36.
- $(ii) \Rightarrow (iii)$

Betrachte $\Gamma(f):\Gamma(Y)\to\Gamma(X)$, $h\mapsto h\circ f$. Aufgrund des Verklebungsaxioms reicht es, die Bedingung für U von der Form D(g) zu zeigen; hier gilt:

$$f^{-1}(D(g)) = \{x \in X \mid \underbrace{g(f(x))}_{=\Gamma(f)(g)(x)} \neq 0\} = D(g \circ f)$$

Deswegen induziert $\Gamma(f)$:

$$h \longmapsto h \circ f$$

$$\mathcal{O}_Y(D(g)) \longrightarrow \mathcal{O}_X(D(g \circ f))$$

$$\Gamma(Y)_g \longrightarrow \Gamma(X)_{g \circ f}$$

$$\frac{h}{g^n} \longmapsto \frac{h \circ f}{(g \circ f)^n}$$

mit $h \circ f, g \circ f \in \Gamma(X)$ nach Voraussetzung.

Insgesamt erhalten wir:

Theorem 39 (orig. 36). Die obige Konstruktion definiert einen volltreuen Funktor $\{irreduzible \ aff. \ alg. \ Mengen \ \ddot{u}ber \ k\} \rightarrow \{R\ddot{a}ume \ mit \ Funktionen \ \ddot{u}ber \ k\}.$