## 第二十一章 一元二次方程

时间: 2 小时 满分: 120 分

|     | 班级: 姓名:                                                                                 | 学号:                                  | 得分:                                                    |  |  |  |  |  |
|-----|-----------------------------------------------------------------------------------------|--------------------------------------|--------------------------------------------------------|--|--|--|--|--|
| 一、  | 选择题: 本大题共 10 小题, 每小题 3 分, 共 30 分,                                                       |                                      |                                                        |  |  |  |  |  |
|     | 关于 $x$ 的一元二次方程 $bx^2 + 18x - 4c = 4$ 的一次项和常                                             |                                      |                                                        |  |  |  |  |  |
|     | A. 18, $-4c$ B. b, $4c + 4$                                                             | C. 18, $-4c - 4$                     | D. 18, -4 <i>c</i>                                     |  |  |  |  |  |
| 2.  | 下列关于 $x$ 的方程中,是一元二次方程的是 $($                                                             |                                      |                                                        |  |  |  |  |  |
|     | A. $4x^2 + x = (2x + 1)^2$                                                              | B. $\frac{x^3 + 5x^2 + 18x}{5x} = 0$ |                                                        |  |  |  |  |  |
|     | C. $(x^2 + x)^0 - 1 = 0$                                                                | D. $-x^2 + 3 = 1$                    |                                                        |  |  |  |  |  |
| 3.  | 已知关于 $x$ 的一元二次方程 $-x^2 + 2ax = 3b$ 有实数根,                                                | 则 ( )                                |                                                        |  |  |  |  |  |
|     | A. $x_1 + x_2 = -2a$                                                                    | B. $x_1x_2 = 3b$                     |                                                        |  |  |  |  |  |
|     | C. $x_1 - x_2 = 2\sqrt{a^2 - 3b}$                                                       | D. $x_1 + 2x_2 = 2a + b$             |                                                        |  |  |  |  |  |
| 4.  | 若关于 $x$ 的方程 $ax^2 + bx + c = 0$ 有解,则下列说法正确的是(  )                                        |                                      |                                                        |  |  |  |  |  |
|     | A. 方程有两个实数根                                                                             | B. $c = 0$ 时, $x$ 必有一解               | 为 0                                                    |  |  |  |  |  |
|     | C. 当 $a > 0$ 时,方程有两个相等实数根                                                               | D. b 不可能为 0                          |                                                        |  |  |  |  |  |
| 5.  | 已知关于 $x$ 的一元二次方程 $a(x+m)^2+b=0$ 的解为 $x_1=1$ 、 $x_2=2$ ,则关于 $x$ 的一元二次方程 $a(x+m+2)^2+b=0$ |                                      |                                                        |  |  |  |  |  |
|     | 的解为( )                                                                                  |                                      |                                                        |  |  |  |  |  |
|     | A. $x_1 = 3$ , $x_2 = 4$                                                                | B. $x_1 = -1$ , $x_2 = 0$            |                                                        |  |  |  |  |  |
|     | C. $x_1 = 1$ , $x_2 = 2$                                                                | D. $x_1 = -1$ , $x_2 = 4$            |                                                        |  |  |  |  |  |
| 6.  | 如图,在平行四边形 $ACBD$ 中, $AD=6$ , $BD=\sqrt{205}$ ,                                          | 连对角线 $AB$ ,有 $AB \perp 0$            | CB, 延长 $CB$ 至 $F$ , 使 $CB = FB$ , 在                    |  |  |  |  |  |
|     | 线段 $AB$ 上取点 $E$ ,连 $EF$ ,使 $EF=2AE$ ,则 $BE$ 的                                           | 长度为 ( )                              |                                                        |  |  |  |  |  |
|     | A. 5 B. 8                                                                               | C. 10                                | D. 6                                                   |  |  |  |  |  |
| 7.  | 已知两个不等的实数 $a \times b$ 满足 $a^2 - 2a - 1 = 0 \times b^2 - 2a$                            | $2b - 1 = 0$ ,则代数式 $-b^3$            | $\frac{3}{3} + 2b^2 + 2a^2 - \frac{5}{a} - 11$ 的值为 ( ) |  |  |  |  |  |
|     | A. 0 B1                                                                                 | C. $1 + \sqrt{2}$                    | D. 1                                                   |  |  |  |  |  |
| 8.  | 如图是一种轻质的老式秤. 在某次称量中, 称量的物品                                                              | 和秤盘的总质量为800g,                        | 秤砣到手拉环的距离为 scm,此时左                                     |  |  |  |  |  |
|     | 右两边刚好平衡. 若秤盘到手拉环的距离为 $5$ cm,秤砣质量为 $m$ g,且此时 $m$ 和 $s$ 恰好满足 $m=8s+40$ ,则 $s$ 的值为         |                                      |                                                        |  |  |  |  |  |
|     |                                                                                         |                                      |                                                        |  |  |  |  |  |
|     | A. 30 B. 25                                                                             | C. 20                                | D. 55                                                  |  |  |  |  |  |
| 9.  | 计算 $\left(\frac{1+\sqrt{5}}{2}\right)^8 + \left(\frac{1-\sqrt{5}}{2}\right)^8$ 的值为 ( )  |                                      |                                                        |  |  |  |  |  |
|     | A. 5 B. 47                                                                              | C. 34                                | D. 58                                                  |  |  |  |  |  |
| 10. | 已知在 $\Delta ABC$ 中,点 $E$ 、 $F$ 分别在线段 $AB$ 、 $AC$ 上,                                     | 若 $AB = AC$ 、 $AE = EF =$            | = FC = CB, 则 ∠A 的大小为 ( )                               |  |  |  |  |  |
|     | A. $15^{\circ}$ B. $20^{\circ}$                                                         | C. 22.5°                             | $D.30^{\circ}$                                         |  |  |  |  |  |
|     | 注: 为防止有人通过测量得到答案, 本小题请将必要的                                                              | 的辅助线画在对应的图上                          | !                                                      |  |  |  |  |  |
|     | 4 D                                                                                     |                                      | $A_{\Lambda}$                                          |  |  |  |  |  |
|     | A D                                                                                     |                                      |                                                        |  |  |  |  |  |
|     | /   /                                                                                   | 1.6                                  | $E \downarrow \lambda$                                 |  |  |  |  |  |







(第10题)

| _   | 1 ± 0 = T      | I BT 11   | / I DT   | <u> </u>      | /\       | H 40 /\                    |
|-----|----------------|-----------|----------|---------------|----------|----------------------------|
|     | TE 2 3 4 4 7 . | 本大题共      | 6 //\ PU | 151 //\ LII \ | <b>→</b> | $\pi$ 10 $\hookrightarrow$ |
| _ \ | ᅷ              | 44 / W/75 | U 11145. | 151 (1) ル火 。) | ,,,      | <del>75</del> 10 //        |

- 11. 一元二次方程  $ax^2 + 2ax + b = 0$  的一次项系数为 \_\_\_\_\_\_,常数项系数为 \_\_\_\_\_,两根之和为 \_\_\_\_\_\_.
- 12. 已知在一元二次方程  $x^2 (m^2 3)x + m = 0$  中有  $x_1 + x_2 = 2$ ,则  $m = _____.$
- 13. 若方程  $x^2 + 2x 3 = 0$  与  $x^2 + bx + 3 = 0$  有一个公共解,则  $b = _____.$
- 14. 已知两实数 m、n 满足  $m^2 3m + 1 = 0$ ,  $n^2 3n + 1 = 0$ , 且  $m \neq n$ , 则代数式  $\sqrt{\frac{m}{n}} + \sqrt{\frac{n}{m}}$  的值为 \_\_\_\_\_\_.
- 15. 已知两实数 m、n 满足  $m^2 + 3m 9 = 0$ ,  $9n^2 3n 1 = 0$ , 且  $mn \neq 1$ , 则  $\frac{m+1+mn}{n}$  的值为 \_\_\_\_\_\_.
- 16. 已知 a、b、c 为两两不相等的实数,且满足  $2023(a-b)+\sqrt{2023}(b-c)+(c-a)=0$ ,则代数式  $\frac{(b-c)(c-a)}{(a-b)^2}$  的值为 \_\_\_\_\_\_.
- 三、解答题:本大题共8小题,共72分,解答应写出必要的文字说明、证明过程或演算步骤.
- 17. 用因式分解法解下列方程.
  - (1)  $x^2 6x + 8 = 0$
  - $(2) (2x+3)^2 = x^2$
  - (3)  $x^2 2ax 5x + a^2 + 5a + 6 = 0$
  - (4)  $ax^2 3a^2x x + 3a = 0$   $(a \ne 0)$

## 18. 阅读材料,完成任务.

我们已经知道,对于关于 x 的一元二次方程  $ax^2+bx+c=0$ ,由韦达定理, $x_1+x_2=-\frac{b}{a}$ , $x_1x_2=\frac{c}{a}$ . 如果用 a、 $x_1$ 、 $x_2$  来表示 b、c,那么代数式  $ax^2+bx+c$  可以化为  $ax^2-a(x_1+x_2)x+ax_1x_2$ ,即  $a(x-x_1)(x-x_2)$ ,于是我们可以得到如下法则:

对于任意的二次三项式  $ax^2 + bx + c$ ,如果一元二次方程  $ax^2 + bx + c = 0$  有实根为  $x_1$ 、 $x_2$ ,那么原式可因式分解为  $a(x - x_1)(x - x_2)$ .

利用这个法则,我们可以实现二次三项式在实数范围内的因式分解.

- (1) 在实数范围内因式分解下面的代数式:
  - ①  $x^2 x 1$
  - ②  $2x^2 8x + 5$
  - $3x^4 4x^3 + 2x^2 4x + 1$
- (2) 试说明为什么二次三项式 $x^2 + x + 1$  无法在实数范围内被因式分解.

- 19. 已知关于 x 的一元二次方程  $x^2 + (m+3)x + m 3 = 0$ .
  - (1) 求证:无论 m 取何值,方程总有两个不相等的实数根.
  - (2) 记此方程的两根分别为  $x_1$ 、 $x_2$ ,若  $x_1 + x_2 2x_1x_2 = m + 1$ ,求 m 的值.

- 20. "读书可以让人保持思想活力,让人得到智慧启发,让人滋养浩然之气".某校为响应我市全民阅读活动,利用节假日面向社会开放学校图书馆.据统计,第一个月进馆 128 人次,进馆人次逐月增加,到第三个月末累计进馆 608 人次.
  - (1) 若进馆人次的月平均增长率相同,求进馆人次的月平均增长率.
  - (2) 现图书馆举行活动,给每人发送活动邀请,每人转发 n 位好友即可获得书签一个,若第一轮只有一人转发,每人最多累计参与一轮转发,并恰好转发给了 n 个没有获得邀请的好友,且三轮发送后累计 13 人收到邀请,求 n 的值.

- 21. 如图,在  $\triangle ABC$  中,  $\triangle B=90^\circ$ , AB=5cm, BC=7cm, 点 P 从点 A 开始沿 AB 边向点 B 以 1 cm/s 的速度移动,点 Q 从点 B 开始沿 BC 边向点 C 以 2 cm/s 的速度移动,若 P、Q 同时出发,且一点到达目标点,两点均立刻停止运动,则:
  - (1) 在几秒后,  $S_{\Delta PBO} = 4 \text{ cm}^2$ ?
  - (2) 在几秒后, PQ = 5 cm? ( $P \times Q$  未离开原点前不算)



- 22. 已知实数 a、b、c 满足  $\begin{cases} a+b+c=0\\ a^2+b^2+c^2=24 \end{cases}$ 
  - (1) 求b+c和bc的值(用a表示).
  - (2) 求作一个一元二次方程,使其两根为b和c.
  - (3) 求 *a* 的最大值.

- 23. (1) 已知 x 为实数, 求代数式  $x^2 8x + 5$  的最小值.
  - (2) 已知 x 为实数,求代数式  $\frac{x^2+x+1}{x^2+1}$  的取值范围.
  - (3) 已知 x、y 均为实数,求代数式  $-3x^2 + 3xy + 6x y^2$  的最大值.

- 24. 如图,在平面直角坐标系中,A 在 y 轴正半轴上,B、C 为 x 轴上两动点.
  - (1) 如图 1, A(0,4), B 从 (-5,0) 出发,C 从 (5,0) 出发,都以每秒 t 个单位长度向 x 轴负半轴方向运动,连 AB、 AC
    - ① 当  $\angle BAC = 90^{\circ}$  时,直接写出直线 AC 的解析式.
    - ② 在①的条件下,若 P 为线段 AC 上一点,作  $PM \perp x$  轴于点 M,作  $PN \perp y$  轴于点 N,求四边形 OMPN 面积的最大值.
  - (2) 如图 2, 直线  $AB: y = -\sqrt{3}x + b$ , C 在 B 左侧, E(m,n) 为射线 AB 上一点, CD = 2m, 连接 AC, CE, DE, 若 AC = 6, DE = 5, 求 CE 的取值范围.



(第24题)