<u>Claims</u>

We claim:

l	1. A method for producing <i>Pasteuria</i> endospores <i>in vitro</i> , said method comprising
2	introducing Pasteuria into a growth medium, growing the Pasteuria in said growth medium,
3	and obtaining said endospores.
1	2. The method, according to claim 1, wherein said growth medium comprises a
2	helper factor which facilitates the in vitro growth of said Pasteuria.
1	3. The method, according to claim 2, wherein said helper factor is a microorganism
2	or a chemical compound produced by a microorganism.
1	4. The method, according to claim 3, wherein said microorganism is selected from
2	the group consisting of Enterobacter cloacae and Pantoea spp.
1	5. The method, according to claim 3, wherein said microorganism has all the
2	identifying characteristics of ATCC
1	6. The method, according to claim 3, wherein said helper factor is a chemical
2	compound produced by said microorganism.
1	7. The method, according to claim 6, wherein said chemical factor passes through
2	a membrane having pores of about $0.5 \mu m$.
1	8. The method, according to claim 7, wherein said chemical factor is HF-1.
1	9. The method, according to claim 1, wherein said growth medium does not
2	comprise an antibiotic.

10. The method, according to claim 1, wherein said growing step is carried out

2	without stirring.
1	11. The method according to claim 1, wherein a compound selected from the group
2	consisting of manganese sulfate and lipids is added to induce the production of endospores.
1	12. A method of protecting a plant from infection by nematodes wherein said method
2	comprises applying to the plant, or to the plant's surroundings, a helper factor which
3	promotes the colonization or proliferation of a bacterial nematode biocontrol agent.
1	13. The method, according to claim 12, wherein said substance is a helper factor
2	which promotes the growth of <i>Pasteuria</i> .
1	14. The method, according to claim 13, wherein said helper factor is a
2	microorganism, or is a chemical compound produced by a microorganism.
1	15. The method, according to claim 14, wherein said microorganisms is a motile rod.
1	16. The method, according to claim 14, wherein said microorganism is selected from
2	the group consisting of Enterohacter cloacae and Pantoea spp.
1	17. The method, according to claim 14, wherein said microorganism has all of the
2	identifying characteristics of ATCC
1	18. The method, according to claim 14, wherein said helper factor is a chemical
2	compound produced by a microorganism.

1

1	19. The method, according to claim 18, wherem said chemical factor passes through
2	a membrane having pores of about $0.5~\mu m$.
1	20. The method, according to claim 19, wherein said chemical factor is HF-1.
1	21. The method, according to claim 12, wherein said helper factor is applied to the
2	soil.
1	22. The method, according to claim 12, wherein said helper factor is applied as a
2	seed coating.
1	23. The method, according to claim 12, wherein said plant produces said helper
2	factor.
1	24. The method, according to claim 23, wherein said plant is transformed to express
2	said helper factor.
1	25. The method, according to claim 24, wherein said helper factor is expressed in the
2	roots of said plant.
1	26. A compound designated HF-1 which facilitates the <i>in vitro</i> growth of <i>Pasteuria</i> ,
2	which can be obtained from ATCC, and which is less than 50 μ m in size.
1	27. A biologically pure culture of the isolate designated ATCC
1	28. An endospore composition produced by the process of claim 1.

29. A method for producing bacterial endospores in vitro wherein said method
comprises growing said bacteria in a growth medium which comprises a helper factor which
promotes the growth of said bacteria wherein said helper factor is a microorganism or is a
chemical compound produced by a microorganisms.

30. The method, according to claim 29, wherein said bacteria are parasites which are grown *in vitro* in the absence of living host tissue.

2

3

4

1 2