Part A: Multiple Choice (10 marks in total)

Select the best answer for each question. Correct response scores 1 mark. There is no penalty for incorrect answers. Selecting more than one answer for a particular question will result in zero marks for that question.

1.		There	e are on	ly 150	pounds	of resour	e each unit of X1 and 3 pounds of resource 1 to make each ree 1 available. Which of the following constraints reflects ?
	A. $4 X_1 + 3$ B. $4 X_1 + 3$ C. $4 X_1 + 3$ D. $4 X_1 \le 1$	3 X ₂ ≤ 3 X ₂ =	≤ 150				
	ANSWE	R:	A	В	C	D	(circle the correct answer)
2.	What is the	goal	in optii	mizatio	on?		
	A. Find the	e best	decisio	on vari	able val	ues that s	satisfy all constraints.
							at use all available resources.
				ne deci	sion var	riables tha	at satisfy all constraints.
	D. None of						
	ANSWE	R:	Α	В	С	D	(circle the correct answer)
3.	How many points? (ign						tation problem which has 5 supply points and 4 demand
	A. 4 B. 5 C. 9 D. 20			\ \	(<i>Y</i>	
	ANSWE	R:	A	В	C	D	(circle the correct answer)
4.	_		-				Product 1 is produced, production of Product 1 not exceed ng constraints enforce this condition?
	A. $X_1 \ge M_2$ B. $X_1 \le M_2$ C. $X_1 \le M_2$ D. $X_1 \le X_2$	$_{1}^{2}X_{2}$ $_{1}^{2}Y_{1}$,	$X_1 \leq Y$	$_{1}X_{2}$			
	ANSWE		A	В	C	D	(circle the correct answer)
5.	The decision alternative a						um payoff for each alternative and then selects the the
	A. maxima B. maximi C. minima D. minimir	n dec x reg	cision ru ret deci	ıle. ision ru	ıle.		
	ANSWE	R:	A	В	C	D	(circle the correct answer)

6. What is the constraint for node 2 in the following shortest path problem?

D

- A. $-X_{12}-X_{13}=0$
- B. $-X_{12} X_{24} = 1$
- C. $X_{12} + X_{13} = 0$
- D. $-X_{12} + X_{24} = 0$

ANSWER: A B C

(circle the correct answer)

Questions 7 to 10 use the following information.

You are considering 4 investments, A, B, C and D. The payoff from each investment is a dependant on the economic condition over the next 2 years. The economy can expand or decline. The following payoff matrix has been developed for the decision problem.

	A	В	C	D
1		Payoff	Matrix	
2	Probability	0.7	0.3	
3		Ecor	nomy	
4	Investment	Decline	Expand)
5	A	-10	90	
6	В	20	50	
7	С	40	45	
8	D	15	20	

- 7. What decision should be made according to the expected regret decision rule?
 - A. A
 - B. B
 - C. C
 - D. D

ANSWER: A B C D (circle the correct answer)

- 8. What decision should be made according to the expected monetary value decision rule?
 - A. A
 - B. B
 - C. C
 - D. D

ANSWER: A B C D (circle the correct answer)

9.	A. B. C.	15 20 30 34	cted mo	onetary	value of	f Investment A?	
		ANSWER:	A	В	C	D	(circle the correct answer)
10.	A	time-series whi	ich has	no sign	ificant	upward or downward	trend is referred to as:
	В. С.	static stationary non-moving non-stationar	у				
		ANSWER:	A	В	C	D	(circle the correct answer)

Part B: Short Answer Questions (60 marks in total)

Question 11 &12: (10 marks)

Q11) A farmer is planning his spring planting. He has 20 acres on which he can plant a combination of Corn, Pumpkins and Beans. He wants to maximize his profit but there is a limited demand for each crop. Each crop also requires fertilizer and irrigation water which are in short supply. There are only 50 acre ft of irrigation available and only 8,000 pounds/acre of fertilizer available. The following table summarizes the data for the problem.

Crop	Profit per Acre (\$)	Yield per Acre (lb)	Maximum Demand (lb)	Irrigation (acre ft)	Fertilizer (pounds/acre)
Corn	2,100	21,000	200,000	2	500
Pumpkin	900	10,000	180,000	3	400
Beans	1,050	3,500	80,000	1	300

a) Formulate the LP model for this linear programming problem.

ANSWER: 4 marks

Let

 $X_1 = acres of corn$

 X_2 = acres of pumpkin

 X_3 = acres of beans

MAX: $2100X_1 + 900X_2 + 1050X_3$

Subject to: $21X_1 \le 200$

 $10X_2 <= 180$

 $3.5X_3 \le 80$

 $X_1 + X_2 + X_3 <= 20$

 $2X_1 + 3X_2 + 1X_3 \le 50$

 $5X_1 + 4X_2 + 3X_3 \le 80$

 $X_1, X_2, X_3 \ge 0$

Question 12:

The problem in question 11 is modelled in an Excel Spreadsheet and the Sensitivity Report is generated as shown below:

Variable Cells

Cell	Name	Final Value	Reduced Cost	Objective Coefficient	Allowable Increase	Allowable Decrease
\$B\$4	Acres of Com	9.52	0	2100	1E+30	350
\$C\$4	Acres of Pumpkin	0	-500.01	899.99	500.01	1E+30
\$D\$4	Acres of Beans	10.79	0	1050	210	375.00

Constraints

		Final	Shadow	Constraint	Allowable	Allowable
Cell	Name	Value	Price	R.H. Side	Increase	Decrease
\$E\$8	Corn demand Used	200000	0.017	200000	136000	152000
\$E\$9	Pumpkin demand Used	0	0	180000	1E+30	180000
\$E\$10	Bean demand Used	37777.78	0	80000	1E+30	42222.22
\$E\$11	Water Used	29.84	0	50	1E+30	20.15
\$E\$12	Fertilizer Used	8000	3.5	8000	3619.04	3238.09

Answer the following question based on the above report.

a). What is the optimal solution to this problem?

ANSWER:	1 mark
---------	--------

9.52 acres of corn and 10.79 acres of beans

Total profit: 9.52 x \$2100 + 10.79 x \$1050

$$= 19,992 + 11,329.50 = $31,321.50$$

b). Suppose the farmer can purchase more fertilizer for \$2.50 per pound, should he purchase it and how much can he buy and still be sure of the value of the additional fertilizer?

ANSWER: 2 marks

Yes, because the cost of \$2.50 is less than the shadow price of \$3.50. The allowable increase is

3619.04 pounds and so he can buy up to this amount and still be sure that the shadow price will still hold.

c).	What does the reduced cost for pumpkin indicate?	
	ANSWER:	1 mark
	It indicates that for every acre that the farmer dedicates to pumpkin, he will incur a loss of \$500.01	
d).	a Identify the pinding resource and state how much would you pay to acquire an additional unit of that resource?	
	ANSWER:	1 mark
	Fertiliser is a binding resource and the farmer can pay up to \$3.50 on top of what he is currently pay	ying to
	acquire an additional unit of the resource. Note: Corn is also a binding resource	
e).		1 mark
	If we are able to increase the demand for corn, we can potentially increase the profit by \$0.017 for or	every
	extra pound (up to a limit of 136,000 pounds)	
	END OF QUESTION 12	

Question 13: (10 marks)

Consider the following distribution problem for Ace Widgets:

			Capacity		
Depot	W1	W2	W3	W4	
P1	2	6	4	12	100
P2	7	3	10	11	250
P3	5	8	9	13	300
Demand	50	150	200	250	

a) Formulate an LP formulation for Ace Widgets including an objective function and constraints.

ANSWER.		3 marks
Let X_{ij} be the trip from Depot (i) to Warehouse (j); where $i = P1, P2, I$	P3 and $j = W1, W2,$	W3, W4

 C_{ij} be the cost from Depot (i) to Warehouse (j)

MIN: $\sum C_{ij}X_{ij}$

ST:
$$X_{11} + X_{12} + X_{13} + X_{14} = 100$$
 (or you can write $\sum X_{1j} = 100$)

$$\sum X_{1j} = 100$$

$$\textstyle \sum X_{2j} = 250$$

$$\sum\!X_{3j}=300$$

$$\sum X_{i1} = 50$$

$$\sum X_{i2} = 150$$

$$\sum X_{i3} = 200$$

$${\textstyle\sum} X_{i4} = 250$$

Network model to depict this problem. (Not required, given for clarity)

		K1=	K2=	K3=	K4=	K5=	
				Destination			
-	Source	W1	W2	W3	W4		SUPPLY
R1=	P1	2	6	4	12		100 50
		<i>50</i>	50				
R2=	P2	7	3	10	11		2 50 150
			100	150		 	
R3=	P3	5	8	9	13		300
				<i>50</i>	250		
R4=							
	DEMAND	50	150 100	200 50	250		

c) Using the solution generated in b) apply the *MODI method* (*closed-loop path*) to determine the optimized allocation for one iteration only (i.e stop after forming the first closed loop to find the updated allocations).

3marks

MODI: 1st Iteration			T									
IVIC	<i>I</i> DI. 10		K1=	2	K2=	6	K3=	13	K4=	17	K5=	
							Desti	nation				
		Source	V	/1	V	/2	V	/3	V	V 4	/	SUPPLY
R	1=	P1	2		6	-	4	+	12	1		100
		0	<i>50</i>				<i>50</i>	-9		-5		
R	2=	P2	7		3	+	10	1	11			 250
	-	3		8	150		100			-3		
R	3=	P3	5		8		9		13			300
	-	4		7		6	5 0		250			
R	4=						<i>\'</i>					
		DEMAND	50		150		200		250			

MODI: 2nd Iteration

		K1=	2	K2=	-3	K3=	4	K4=	8	K5=		
						Desti	nation					
	Source	W	1	W	/2	V	/3	٧	/4	D	5	SUPPLY
R1=	P1	2		6		4		12				100
(<u>50</u>				<i>50</i>			4			
R2=	P2	7		3		10	-	11	+			250
	3		-1	150				100	-3			
R3=	P3	5		8		9	+	13	1			300
į	5		-2		6	150		150				
R4=												
	DEMAND	50		150		200		250				

d) Is the solution from c) degenerate? How much has the solution from b) improved? (2 marks)

No

From North-West corner method:

Total cost = $2 \times 50 + 6 \times 50 + 3 \times 100 + 10 \times 150 + 9 \times 50 + 13 \times 250 = $5,900$

From MODI (after ^{1st} iteration):

Total cost = $2 \times 50 + 4 \times 50 + 3 \times 150 + 10 \times 100 + 9 \times 50 + 13 \times 150 = $4,150$

Improvement = 5900 - 4150 = \$1750

Note: The iterations beyond first are not required for this question but if you want to work on this question, this is final solution:

MODI: 3rd Iteration

110101												
		K1=	2	K2=	0	K3=	4	K4=	8	K5=		
						Desti	nation					
	Source	W	1	V	/2	V	/3	V	/4			SUPPLY
R1=	P1	2	-	6		4	+	12			>	100
0		<i>5</i> 0			6	50 +5	50	V	4			
R2=	P2	7		3		10		11		7		250
3			2	150			3/	100				
R3=	P3	5	+	8		9	-	13				300
5		+50	-2		3	150	100	150				
R4=						7		,				
	DEMAND	50		150		200		250				

MODI: Final

		K1=	0	K2=	0	K3=	4	K4=	8	K5=	
)		Destir	nation				
	Source	W	1	W	/2	W	'3	W	4		SUPPLY
R1=	P1	2		6		4		12			100
0			2		6	100			4		
R2=	P2	7		3		10		11			250
3			4	150			3	100			
R3=	P3	5		8		9		13			300
5		<i>50</i>			3	100		150			
R4=											
	DEMAND	50		150		200		250			

Total cost = $4 \times 100 + 3 \times 150 + 11 \times 100 + 5 \times 50 + 9 \times 100 + 13 \times 150 = $5,050$

----- END OF QUESTION 13 -----

Question 14 & 15: (10 marks)

Q14) A baseball card dealer must determine how many 1955 reproduced Willie Mays cards to stock. He experiences an annual demand of 100 cards. Each card is acquired from a big dealer for \$2. Each shipment must be sent by registered mail at a cost of \$4 regardless of quantity. Inventory is financed through a 16% bank loan.

Suppose a shortage penalty applies in the amount of \$0.04 per card short (on an annual basis).

a). What is the economic order quantity?

ANSWER: 3 marks

$$Q^* = \sqrt{\frac{2*100*4}{2*0.16}} \sqrt{\frac{0.04 + (2*0.16)}{0.04}} = 150$$

b). What is the optimal order level?

ANSWER: 2 mark

$$S^* = \sqrt{\frac{2*100*4}{2*0.16}} \sqrt{\frac{0.04}{0.04 + (2*0.16)}} = 16\frac{2}{3}$$

c). If the optimal policy is used, determine the number of cards on backorder when a shipment arrives.

ANSWER: 1 mark

$$Q^* - S^* = 150 - 162/3 = 1331/3$$

- b) Q15) The demand for Halloween pumpkins at the Black Cat's Patch is normally distributed with a mean of 1,000 and a standard deviation of 200. Each pumpkin costs \$0.50 and sells for \$0.90. Unsold pumpkins are disposed of at a cost of \$0.10 each.
 - a) How many pumpkins should be ordered?

ANSWER: 3 marks

$$c = \$.50 p_S = 0 p_R = \$.90 h_E = \$.10$$

$$\frac{p_S + p_R - c}{(p_S + p_R - c) + (h_E + c)} = \frac{0 + .90 - .50}{(0 + 0.90 - 0.50) + (0.10 + 0.50)} = .40$$

$$\begin{array}{ll} Pr[D \leq Q^*] = .40 & z = -.25 \\ Q^* = \mu + \ z\sigma = 1,000 - .25(200) = 950 \ pumpkins \end{array}$$

(ii) For the quantity in (a), determine the probability that there will be a shortage?

ANSWER: 1 mark

$$Pr[D > Q^*] = 1 - Pr[D \le Q^*] = 1 - 0.40 = 0.60$$

----- END OF QUESTION 14 & 15 -----

Question 16 & 17: (10 marks)

- Q16) An investor is considering 2 investments, A, B, which can be purchased now for \$10. There is a 40% chance that investment A will grow rapidly in value and a 60% chance that it will grow slowly. If A grows rapidly, the investor can cash it in for \$80 or trade it for investment C, which has a 25% chance of growing to \$100 and a 75% chance of reaching \$80. If A grows slowly, it is sold for \$50. There is a 70% chance that investment B will grow rapidly in value and a 30% chance that it will grow slowly. If B grows rapidly, the investor can cash it in for \$100 or trade it for investment D, which has a 20% chance of growing to \$95 and an 80% chance of reaching \$80. If B grows slowly, it is sold for \$45. A decision tree for the problem can be constructed as below.
 - a) . Using backward induction and the expected monetary value (EMV) approach, what is the EMV at decision nodes 1 and 2 (indicated in red in the given diagram).

b). Evaluate the complete decision tree using the Expected Monetary Value (EMV) criteria and advice on the course of action. What is the EMV at decision node 3 as indicated in red in the diagram?

ANSWER: 3 marks

Choose B and sell B regardless whether it's growing slowly or rapidly. EMV = \$83.5

Q17) Eagle Credit Union (ECU) has experienced a 10% default rate with its commercial loan customers (i.e. 90% of commercial loan customers pay back their loans). ECU has developed a statistical test to assist in predicting which commercial loan customers will default. The test assigns either a rating of 'Approve' or 'Reject' to each loan applicant. When applied to recent loan commercial customers who paid their loans, the test gave an 'Approve' rating in 80% of the cases examined. When applied to recent loan commercial customers who defaulted, it gave a 'Reject' rating in 70% of the cases examined.

Note: To answer this question it may be easier to draw the decision tree or the joint probability table:

a)Fill in the joint probability table below

1 mark

	Joint Pro	Joint Probabilities			
	Pay	Default	Total		
Approve	0.720	0.030	0.750		
Reject	0.180	0.070	0.250		
Total	0.900	0.100			

b). What is the conditional probability of a 'Reject' rating given that the customer defaulted?

ANSWER: 1 marks

P(Reject|Default) = 0.070/0.100 = 0.7

c). What is the conditional probability of an 'Approve' rating given that the customer defaulted?

ANSWER: 1 marks

P(Approve|Default) = 0.030/0.100 = 0.3

d). Suppose a new customer receives a 'Reject' rating. If that customer gets the loan anyway, what is the probability of default?

ANSWER: 2 marks

P(Default|Reject) = 0.070/0.250 = 0.28

----- END OF QUESTIONS 16 & 17-----

Question 18 & 19: (10 marks)

- Q18) The customer service desk at Joe's Discount Electronics store receives 5 customers per hour on average. On average, each customer requires 10 minutes for service. The customer service desk is staffed by a single clerk.
- a). Determine the Arrival rate and the Service rate.

ANSWER: 1 mark

$$\lambda = 5$$
 (per hour)

$$\mu = 1/10 \text{ x } 60 = 6 \text{ (per hour)}$$

b). What is the average time a customer spends in the customer service area?

ANSWER: 1 mark

 $W = 1/(\mu - \lambda) = 1/(6-5) = 1$ Note: you will get the same answer if you use the formula given in the formula sheet

c). What is the probability that the customer service clerk takes more than 10 minutes?

ANSWER: 1 mark

$$P(x > 10 \text{mins}) = e^{-10/10} = 0.368$$

d). What is the average number of customers in the queue?

ANSWER: 1 mark

$$Lq = \frac{\lambda^2}{\mu(\mu - \lambda)} = 4.17$$

e). What is the probability that there are less than 5 customers arriving in an hour?

ANSWER: 2 mark

 $f(x) = \frac{\theta^x e^{-\theta}}{x!}$ for a distribution having mean θ , (e = 2.71828...)

$$P(x=0) = (5^{\circ} e^{-5})/(0!) = 0.00674 \text{ (NOTE: 0!=1)}$$

$$P(x=1) = (5^{1} e^{-5})/(1!) = 0.03369$$

$$P(x=2) = (5^2 e^{-5})/(2!) = 0.08422$$

$$P(x=3) = (5^3 e^{-5})/(3!) = 0.14037$$

$$P(x=4) = (5^4 e^{-5})/(4!) = 0.17547$$

P(less than 5 customers) = 0.441

- Q19) Simulate the arrival of patients at a clinic using the uniform random number given in the table. The mean inter-arrival time is two minutes. Using the formula $t_n = -b \log_e(r_n)$, calculate the arrival time for 5 customers.
 - a). If service time is a constant at five minutes, complete the table below:

Customer	Random Number	Interarrival Time	Arrival Time	Service Starts	Service Ends	Number of patient in the clinic
1	0.42	$-2 \times -0.87 = 1.74$	1.74	1.74	6.74	4
2	0.96	$-2 \times -0.04 = 0.08$	1.82	6.74	11.74	4
3	0.37	$-2 \times -0.99 = 1.99$	3.81	11.74	16.74	3
4	0.52	$-2 \times -0.65 = 1.31$	5.11	16.74	21.74	2
5	0.23	$-2 \times -1.47 = 2.94$	8.05	21.74	26.74	_1

b).	Calculate the average	number of	patients	in the	e clinic.
-----	-----------------------	-----------	----------	--------	-----------

Average number of patients in the clinic is 2.8 (but in the long run there will be a 'never-ending' queue!)	there will be a 'never-ending' queue!)	(but in the long run the	nts in the clinic is 2.8	Average number of J
---	--	--------------------------	--------------------------	---------------------

Question 20: (10 marks)

The following is a set of quarterly sales data recorded over a period of 3 years. The deseasonalised sales data has also been worked out for you:

Period	Actual Sales	Seasonally adjusted
1	5	6.16
2	6	6.53
3	8	6.36
4	7	6.92
5	6.2	7.63
6	6.5	7.07
7	11	8.75
8	9	8.90
9	7.4	9.11
10	10	10.88
11	12	9.54
12	10.3	10.19

a) Fit a least square regression line for the above data.

ANSWER: 4 marks

X	Y	XY	X ²
1	6.16	6.2	1
2	6.53	13.1	4
3	6.36	19.1	9
4	6.92	27.7	16
5	7.63	38.2	25
6	7.07	42.4	36
7	8.75	61.2	49
8	8.90	71.2	64
9	9.11	82.0	81
10	10.88	108.8	100
11	9.54	105.0	121
12	10.19	122.2	144
78	98.04278	697.0	650

Sum: 78 **Mean:** 6.5

Regression line: y = mx + c

8.170232

$$m = \frac{n\sum xy - \sum x\sum y}{n\sum x^2 - (\sum x)^2} = 0.417829$$

$$c = \frac{\overline{y} - m \overline{x}}{} = 5.454345$$

y = 0.42x + 5.45

b) Using the least square regression line from part (a), forecast the sales for the next 4 quarters in the next year (Period 13, 14, 15 and 16) using the multiplicative model. Assume the following seasonal index,

Quarter	Index
1	81.22%
2	91.89%
3	125.76%
4	101.13%

ANSWER: 2 mark

$$Y_{13} = (0.42 \times 13 + 5.45) \times 0.8122 = 8.8$$

$$Y_{14} = (0.42 \times 14 + 5.45) \times 0.9189 = 10.4$$

$$Y_{15} = (0.42 \times 15 + 5.45) \times 1.2576 = 14.7$$

$$Y_{16} = (0.42 \times 16 + 5.45) \times 1.0113 = 12.3$$

c) Considering the following coefficients generated from regression summary statistics. Forecast the sales for the next 4 quarters in the next year (Period 13, 14, 15 and 16) using the additive model.

Coefficients:

	_				
Intercept	Period	1	2	3	4
5.34	0.43	-1.28	-0.41	1.99	0

ANSWER: 2 mark

$$Y_{13} = (0.43 \times 13 + 5.34) - 1.28 = 9.625$$

$$Y_{14} = (0.43 \times 14 + 5.34) - 0.41 = 10.925$$

$$Y_{15} = (0.43 \times 15 + 5.34) + 1.99 = 13.758$$

$$Y_{16} = (0.43 \times 16 + 5.34) + 0 = 12.192$$

If the sales in 2018the next year turn out to be Quarter 1: 8.5, Quarter 2: 10, Quarter 3: 15 and Quarter 4: 12, calculate the MAPE of the forecast in b) and c) and comment which model should be used.

ANSWER: 2 marks

Multiplicative model MAPE =
$$\frac{0.04+0.039+0.017+0.023}{0.029}$$
 = 0.029

Additive model MAPE =
$$\frac{0.132+0.093+0.083+0.016}{4}$$
 = 0.081

The multiplicative seems to be a better forecast technique for this se of data.

----- END OF QUESTION 20-----

Formula Sheet

Expected Value of a Project

If a decision has a number of outcomes, i, each having a payoff x_i , with probability $p(\overline{x_i})$ then the expected value of the decision is given by $\sum_i x_i p(x_i)$

Bayes' Theorem

To find the posterior probability that event A_i will occur given that event B has occurred

$$P(A_i/B) = \frac{P(A_i \cap B)}{P(B)} = \frac{P(A_1)P(B/A_1) + P(A_2)P(B/A_2) + \dots + P(A_n)P(B/A_n)}{P(A_1)P(B/A_1) + P(A_2)P(B/A_2) + \dots + P(A_n)P(B/A_n)}$$

Tabular form for calculations

States of	Prior	Conditional	Joint	Posterior
Nature	Probabilities	Probabilities	Probabilities	Probabilities
A1	$P(A_1)$	$P(B \mid A_1)$	$P(B \cap A_1)$	$P(A_1 \mid B)$
A2	$P(A_2)$	$P(B A_2)$	$P(B \cap A_2)$	$P(A_2 \mid B)$
			P(<i>B</i>)	

Least Squares Regression

For bivariate data consisting of n pairs of observations (x, y), the Least Squares Line of Best Fit is y = mx + c,

where
$$m = \frac{n\sum xy - \sum x\sum y}{n\sum x^2 - (\sum x)^2}$$
 and $c = \overline{y} - m\overline{x}$.

Simple exponential smoothing

$$\hat{\mathbf{y}}_{t+1} = \hat{\mathbf{y}}_t + a(\mathbf{y}_t - \hat{\mathbf{y}}_t),$$

where : \hat{y}_t : forecast value, y_t : observed value, α : smoothing factor, t: period (time) index

Mean Squared Error

Mean Absolute Percent Error

$\sum_{i=1}^{n} (Y_i - F_i)^2$	$\sum_{i=1}^{n} F_i - Y_i $	Y_i are the actual (observed) values
$MSE = \frac{\sum_{i=1}^{I} (I_i - F_i)}{I_i}$	$MAPF = \frac{\sum_{i=1}^{n} \overline{Y_i}}{Y_i}$	F_i are the fitted (forecast) values
n	n	n is the number of forecast values

Queuing, Probability and Simulation

Service and waiting times for a single server queue, Poisson arrivals, Exponential service:

 λ = the average number of arrivals per time period (arrival rate)

 $\frac{1}{\lambda}$ = the average time between arrivals

 μ = the average number of services per time period (service rate)

 $\frac{1}{\mu}$ = the average time taken for each service

 $P_0 = 1 - \frac{\lambda}{\mu}$ the probability that no units are in the system

 $L_q = \frac{\lambda^2}{\mu(\mu - \lambda)}$ the average number of units in the waiting line

 $L = L_q + \frac{\lambda}{\mu}$ the average number of units in the system

 $W_q = \frac{L_q}{\lambda}$ the average time a unit spends in the waiting line

 $W = W_q + \frac{1}{\mu}$ the average time a unit spends in the system

 $P_{w} = \frac{\lambda}{\mu}$ the probability that an arriving unit has to wait for service

 $P_n = \left(\frac{\lambda}{\mu}\right)^n P_0$ the probability of *n* units in the system

Probability distributions:

The Poisson distribution

$$f(x) = \frac{\theta^x e^{-\theta}}{x!}$$
 for a distribution having mean θ , $(e = 2.71828...)$

The exponential distribution

 $f(x) = \frac{1}{\theta} e^{-x/\theta}$ for a distribution having mean θ , (e = 2.71828...)

$$P(x \le x_0) = 1 - e^{-x_0/\theta}$$

$$P(x \ge x_0) = e^{-x_0/\theta}$$
 for a given value of x_0

Linear congruential generation of uniform random variables

Let X_0 be an integer chosen at random (the random seed) then uniformly distributed integers are generated as $X_{n+1} = AX_n \mod B$ where A and B are large co prime integers. Random numbers between 0 and 1 are calculated as $r_n = \frac{X_n - 1}{B - 2}$.

Generation of Exponentially distributed random variables

Exponential variates with mean b are generated from uniform [0,1] random numbers, r_n , by the transformation $t_n = -b \log_e(r_n)$.

Inventory Models: Deterministic Demand

Holding $cost(per\ item) = h$ Order cost = k Item cost = c Back order $cost(per\ item) = p$ Annual demand = A Production Rate = B

Economic Order Quantity

Optimal order quantity: $Q^* = \sqrt{\frac{2Ak}{ch}}$

Number of orders per year = $\frac{A}{Q^*}$

Time between orders (cycle time) = $\frac{Q^*}{A}$ years

Total annual cost = ordering cost + holding cost = $\frac{Ak}{Q} + \frac{Qch}{2}$

Economic Production Quantity

Optimal production lot size : $Q^* = \sqrt{\frac{2Ak}{ch}} \sqrt{\frac{B}{B-A}}$

Number of production runs per year = $\frac{A}{Q^*}$

Time between setups (cycle time) = $\frac{Q^*}{A}$ years

Total annual cost = setup cost + holding cost = $\frac{Ak}{Q} + \frac{chQ}{2} \left(\frac{B-A}{B} \right)$

EOQ with back orders

Optimal order quantity,
$$Q^* = \sqrt{\frac{2Ak}{ch} \left(\frac{p+ch}{p}\right)}$$

Quantity at the beginning of each cycle, $S^* = \sqrt{\frac{2Ak}{ch} \left(\frac{p}{p+ch}\right)}$

Maximum number of backorders = $Q^* - S^*$

Number of orders per year =
$$\frac{A}{Q^*}$$

Time between orders (cycle time) = $\frac{Q^*}{A}$ years

Total annual cost = setup + holding + backorder

$$= \frac{Ak}{Q} + \frac{chS^2}{2Q} + \frac{p(Q-S)^2}{2Q}$$

Formula for total cost using Quantity discounts.

Total annual cost = purchase cost + holding cost + item cost

$$= \frac{Ak}{Q} + \frac{chQ}{2} + Ac$$

Inventory models under random demand, assumed to be normally distributed with mean μ and standard deviation σ .

Single Period Order Quantity

 $P\left(demand < Q^*\right) = \frac{C_u}{C_u + C_v}, \quad Q^* = \mu + z\sigma$

Cost of overestimating demand : $C_v = h_E + c$

Cost of underestimating demand : $C_u = P_S + P_R - c$

Where:

Unit Cost = c

Penalty for item held at end of inventory cycle = h_E

Penalty for each item short (goodwill etc.) = P_S

Selling Price = P_R

Reorder Point Model

Reorder Point : $\mathbf{r} = \mu + z\sigma$

Average Inventory: $\frac{Q}{2} + z\sigma$

Total Annual Cost : $\left(\frac{Q}{2} + z\sigma\right) ch + \frac{Ak}{Q}$

Cumulative Probabilities for the Standard Normal Distribution

Table gives P(Z < z) for Z = N(0,1)

z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2,9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990
3.1	0.9990	0.9991	0.9991	0.9991	0.9992	0.9992	0.9992	0.9992	0.9993	0.9993
3.2	0.9993	0.9993	0.9994	0.9994	0.9994	0.9994	0.9994	0.9995	0.9995	0.9995
3.3	0.9995	0.9995	0.9995	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9997
3.4	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9998
3.5	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998
3.6	0.9998	0.9998	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999
3.7	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999
3.8	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999
3.9	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000