BRL

AD 662719

CONTRACT 169

REPORT NO. 6

UPPER ATMOSPHERE WINDS FROM GUN LAUNCHED VERTICAL PROBES (Yuma, 16-19 November 1966)

SPACE INSTRUMENTS RESEARCH, INC.

CLEARINGHOUSE

White in Secretary for the M

To mention for age to a 154

UPPER ATMOSPHERE WINDS FROM GUN LAUNCHED VERTICAL PROBES (Yuma, 16-19 November 1966)

Prepared for

U. S. Army Ballistic Research Laboratories Aberdeen Proving Ground, Maryland

Contract No. DA-01-009-AMC-169(X)

Prepared by:

Approved by:

Marvin Anthony

Research Assistant

and

Research Assistant

Howard D. Edwards,...

Technical Director

originate Legister Hay serger 118 distribution is walimited.

SPACE INSTRUMENTS RESEARCH, INC. Atlanta, Georgia

June 1967

TABLE OF CONTENTS

	Page
Introduction	1
Data Acquisition	2
Data Reduction	4
Interpretation of Data	6
Illustrations	8 & 9
Synopsis of Results	10
References	12
Table of Trail Information	15
WIND PROFILES:	
Fifteen Trail Releases November 16-19, 1966	16

NOTE: The wind vector as given in this report is considered to point in the direction toward which the wind is blowing, (that is, a west wind is toward the west). Most meteorologists are accustomed to a toward difference (that is, a west wind is toward the west.)

INTRODUCTION

For several years upper atmospheric winds over the lower Mest Indies have been studied by firing high altitude ballistic probes from a sixteen-inch gun. The installation of a similar 16" gun at Yuma Proving Ground, Arizona, early in 1966 has made possible a similar study of winds in this region. These firings are being carried cut by the U. S. Army Ballistic Research Laboratories, Aberdeen Proving Ground, Maryland, under the direction of Dr. Charles M. Murphy, and by the Space Research Institute of McGill University, Canada, under the direction of Dr. G. V. Bull.

Atmospheric winds are studied by releasing chemical trails from the gun-fired probes during the upper portion of their trajectories. To date, the primary chemical which has been released is trimethyl aluminum (TMA). TMA produces a chemiluminescent glow in regions of the atmosphere above 85 kilometers, thus allowing the trails to be photographed while being distorted by upper atmosphere winds. The photographs are then reduced to provide wind information by Space Instruments Research, Inc. (SIR), using computer techniques.

The purpose of this report is to summarize results of these studies for the period from November 16 through November 19, 1966.

A "Table of Trail Information" is given on page 15 and lists the trail number, shot number, date, time and altitude interval. Previous results for winds over Barbados, West Indies, are covered in Technical Reports No. 1, 2, 3, and 5. Technical report No. 4 covers previous results for winds over " Na, Arizona.

DATA ACQUISITION

The chemical trails are formed almost vertically over the gunsite (longitude 114.3°W. latitude 32.9°N) and extend from an altitude of approximately 85 kilometers through apogee. In some firings, TMA is also released on the down leg of the trajectory. To the unaided eye, the chemical release first appears as a straight white trail resembling a jet contrail. Within a minute or so, the trail is distorted into strange shapes by the upper atmospheric winds (see Figure 1) and fades from view within approximately fifteen minutes after initial release.

Space Instruments Research has established three photographic triangulation stations at Yuma and Fila Bend, Arizona, and Blythe, California. These sites are located at distances of up to 150 kilometers from the gunsite (see Figure 2).

Equipment at each site, built by SIR, consists of a camera unit containing two seven-inch focal length cameras mounted on a concrete pedestal, and an electronic control unit. Cameras are automatically pulsed to take exposures of 3, 6, and 12 seconds duration every 30 seconds.

Since commercial power is either unreliable or unavailable at many site locations, SIR has developed a battery operated 115-volt power supply for the control equipment. The power supply is tuning-fork controlled and provides 60 cycle power with an accuracy of 0.005% for the camera programmer so that pictures can be taken simultaneously at each site. A data block containing 24 tiny lights, mounted in each camera unit, records time, firing number, and site information in the corner of each frame of film.

During a typical night's operation, the gun is fired at one to two hour intervals, from sunset to sunrise. Photographs are taken by all sites during the time that the trail is visible. The film is then returned to Atlanta for processing and data reduction.

DATA REDUCTION

Several computer programs have been developed which make it possible to calculate upper atmosphere winds from measurements made directly on the photographs of the luminous trails.

Since the method used is basically three-dimensional triangulation using spherical trigonometry, it is necessary to know precisely the direction each camera was pointed during a given firing. The direction is determined by first taking accurate measurements of the locations of several star images on the film, and then computing the azimuth and elevation of the optical axis of the camera by means of a computer program. This computer program makes use of the celestial coordinates of some 6,000 stars which have been stored on magnetic tape.

Wind speeds and directions are then determined from the location of the trail in space at a succession of known times. The location is found, using either a point location program or a trail location program, or both, and depends on the physical shape of the chemical release cloud.

Point location method. If the chemical release exhibits discrete points (resulting either from turbulence or from the nature of the release mechanism) and these points can be identified on films from two or more sites, the point location program can be used to calculate the position of each point in longitude, latitude, and altitude above sea level.

These calculations are made from data taken at successive times.

A wind program is then used to calculate both vertical and horizontal winds from the motion of these points as a function of time.

Most of the chemical releases produce a Trail location method. smooth trail having few, if any, identifiable points. In such cases, film coordinates of a large number of incremental points along the film image of the trail are fed into the computer from data from two or more sites. The trail location program attempts to triangulate each point from one site with many points from another site, finally choosing points from both sites whose optical paths from camera into space form the closest spatial intersection. After doing many hundreds of such calculations, the computer is able to construct coordinates for a mathematical curve in the shape of the trail in space. Then, as with the point location program, winds can be determined from the motion of the curve with time. Here, however, it must be assumed that vertical winds are essentially zero. This assumption is borne out by previous studies which have shown vertical winds in this altitude region to be of the order of a few meters per second compared to horizontal winds ranging up to 150 meters per second.

Corrections for variables such as atmospheric refraction, rotation of camera about optical axis, and camera focal length, are incorporated into the programs to maintain high accuracy. Focal length and camera rotation are, in fact, calculated from measurements of the positions of star images on the films.

INTERPRETATION OF DATA

Following the "Table of Trail Information," horizontal wind velocities are presented in tabular form and in plots of wind speed, direction, and components.

Winds were calculated at altitude intervals of one kilometer. Points on the various plots show the actual computed result, as listed in the table preceding the plot. A curve has been fitted to each set of points to aid in detecting wind patterns and to indicate reliability of the plotted results. Each curve has been drawn with a knowledge of intermediate results leading to the wind calculations and of the consistency of the winds as calculated between each of the five or more time intervals used. In cases where point-to-point curve fitting was not thought to reflect actual variations in wind speed, direction, or components, a more appropriate smooth curve has been drawn. Otherwise, the curves are fitted directly to the data points. Results of certain portions of the trails are at times less accurate than others due to the spatial orientation of those trail segments relative to the available photographic stations. Less accurate data also can result from photographs obscured by haze and clouds and from trails of short duration.

<u>Vind speed plot</u>. This plot shows the speed of the wind in meters per second as a function of height in kilometers above sea level.

<u>Wind direction plot</u>. The wind vector is considered to point in the direction <u>toward</u> which the wind is moving. The direction plot shows the direction of this vector in degrees clockwise from north as seen from above. Thus, a wind direction toward the east would be 90 degrees.

Wind components plot. While plots of wind direction and speed do completely describe the wind vector, it has been found helpful in studying wind patterns to present the north-south (N-S) and east-west (E-N) velocity components of the vector. In the north-south plot, north is positive; south is negative. In the east-west plot, east is positive, west negative. Components are plotted in meters per second versus height in kilometers.

The wind direction and components described above are referenced to true north. In addition, components have been calculated relative to magnetic north for comparison with other ionospheric phenomena. These components are not plotted but are listed in the tabulations preceding each set of plots.

Throughout this report, where shorter notation was desirable, "Up" or "U" and "Down" or "D" have replaced uptrail and downtrail, respectively.

FIGURE 1
PHOTOGRAPHS OF SHOT TWENTY-SIX

Photographs taken 132 seconds after firing:

YUMA BLYTHE GILA BEND

This set of pictures shows trail just as the vehicle stopped releasing chemical. Numbers indicate altitude in kilometers.

Photographs taken 202 seconds after firing:

YUMA

BLYTHE

GILA BEND

These pictures show trail corresponding to ground plot on next page.

Figure 2

Location of SIR Photographic Stations

HARP - Yuma

SYNOPSIS OF RESULTS

The following comments may be helpful in interpreting the data contained in this report. Only those trails with unusual characteristics are discussed.

Trails No. Y12, Y13, Y22, and Y23 gave unusually high wind speeds which were generally in an eastward direction. On all four trails these high wind speeds occurred primarily in an altitude region from 104 to 112 kilometers.

Trail No. Y13

Results at several altitudes of the uptrail were unobtainable because of insufficient data. The downtrail, however, did provide results at some of these altitudes, and the curve was consequently drawn through plotted results. For altitudes where neither uptrail nor downtrail provided results, a dashed curve was drawn in a smooth fashion. Separate curves were drawn at altitudes where confirmed differences in uptrail and downtrail exist.

These differences in uptrail and downtrail results are primarily in wind speed. The wind direction at some of the altitudes where speed differences occur is the same.

Trail No. Y15

Uptrail and downtrail winds were distinctly different at practically all altitudes for which both up and down results were obtained.

Trail No. Y20

The apogee for this shot (No. 29) was quite high, being approximately 180 km. However, since the chemical was spread over such a long range,

the visible trail faded very rapidly, particularly at the high altitudes. Therefore, only wind data up to 167 km was obtainable.

Trail No. Y22

The wind results of the uptrail and downtrail again differed distinctly at some altitudes. The magnitude of difference becomes larger with increasing altitude.

REFERENCES

- 1. Albritton, D. L., L. C. Young, H. D. Edwards, and J. L. Brown, "Position Determination of Artificial Clouds in the Upper Atmosphere," Photogrammetric Engineering, September 1962.
- 2. Armstrong, E. B., "Observations of Luminous Clouds Produced in the Upper Atmosphere by Exploding Grenades 1, 11 and 111," Planet, Space Sci., 11, 733-758, 1963.

THE PARTY CONTROL OF THE PARTY OF THE PARTY CONTROL OF THE PARTY OF TH

- 3. Bedinger, J. F., Compendium of Wind Data from the Vapor Trail Technique," GCA Tech. Report. 66-7-N, March 1966.
- 4. Blamont, J. E., "Turbulence in Atmospheric Motions Between 90 and 130 km of Altitude," Planetary and Space Sciences, 10, 89-101, 1963.
- 5. Bull, G. V., C. H. Murphy, "Gun Launched Missiles for Upper Atmosphere Research," AIAA Preprint No. 64-18, January 1964.
- 6. Bull, G. V., H. J. Luckert, "Report of the March 1965 Test Firing Series," Project HARP, McGill University Report SRI-H-R-9, July 1965.
- 7. Cato, O., "Turbulent Diffusion of Sodium Vapor Trails in the Upper Atmosphere," GCA Technical Report No. 65-5-N, Contract NASw-1083, March 1965.
- 8. Champion, K. S. W., "Atmospheric Structure and Its Variations in the Lower Thermosphere," Planet, Space Sci., 13, 325-338, 1965.
- 9. Edwards, H. D., M. M. Cooksey, C. G. Justus, R. N. Fuller, D. L. Albritton, N. W. Rosenberg, "Upper Atmosphere Wind Measurements Determined from Twelve Rocket Experiments," J. Geophys. Res., 68, 3021-3032, 1963.
- Edwards, H. D., C. G. Justus, D. C. Kurts, "Evening Twilight Winds from 68 to 140 Kilometers for May 21, 1963," <u>J. Geophys. Res.</u>, 68, 6062-6063, 1963.
- 11. Elford, W. G., and R. G. Roper, "Turbulence in the Lower Thermosphere," to be published in Space Research VII, 1967.
- Golomb, D., and M. M. MacLeod, "Diffusion Coefficients in the Upper Atmosphere from Chemiluminous Trails," J. Geophys. Res., 71, 2299-2305, 1966.
- 13. Golomb, D., N. W. Rosenberg, C. Abaronian, J. A. Hill, and H. L. Alden, "Oxygen Atom Determination in the Upper Atmosphere by Chemiluminescence of Vitric Oxide," J. Geophys. Res., 70, 1155-1173, 1965.
- 14. Hines, C. O., "Ionospheric Movements and Irregularities," Research in Geophysics, Vol. 1, 299-318, 1964.

- 15. Hines, C. O., "Minimum Vertical Scale Sizes in the Wind Structure Above 100 Kilometers," J. Geophys. Res., 69, 2847-2848, 1964.
- Hines, C.O., "Dynamical Heating in the Upper Atmosphere," J. Geophys. Res., 70, 177-183, 1965.
- 17. Hines, C. O., "Diurnal Tide in the Upper Atmosphere," <u>Jour. Geophys.</u> Research 71, 1453, 1966.
- 18. Hines, C. O., "On the Analysis and Interpretation of Winds Observed at Heights of 85 to 135 Kilometers: A Rebuttal," J. Geophys. Res. 71, 1461, 1966.
- Johnson, E. R., and R. H. Lloyd, "Determination of Diffusion Coefficients from Observations on Grenade Glow Clouds," <u>Australian Jour. Phys.</u> 16, 490-499, 1963.
- 20. Justus, C. G., "The Energy Balance of Turbulence in the Upper Atmosphere," J. Geophys. Res. 71, No. 15, August 1, 1966.
- Justus, C. G., H. D. Edwards, R. N. Fuller, "A Method Employing Star Backgrounds for Improving the Accuracy of the Location of Clouds or Objects in Space," Photogrammetric Engineering, July 1964.
- 22. Kochanski, A., "Atmospheric Motions from Sodium Cloud Drifts at Four Locations," Monthly Weather Review, Vol. 94, No. 4, April 1966.
- 23. Lloyd, K. H., and L. M. Shappard, "Atmospheric Structure at 130-200 km Altitude from Observations on Grenade Glow Clouds During 1962-63," Australian Jour. Phys., 19, 323-342, 1966.
- 24. Morgan, A. W., 'Measurements of Winds by Chemical Releases in the Upper Atmosphere, NASA Technical Memorandum, NASA TM X-53363, December 1965.
- Murphy, C. H., G. V. Bull, H. D. Edwards, "Upper Atmosphere Winds Measured by Gun Launched Projectiles," AMS/AIAA Conference on Aerospace Meteorology, March 1966, and J. Geophys. Res. (in press).
- 26. Noel, T. M., "A Measurement of Turbulence Power and Small Eddy Scale Near 105 Kilometers," J. Geophys. Res., 68, 2862-2863, 1963.
- 27. Nordberg, W., "Rocket Soundings in the Mesosphere," in NASA SP-49 (Meteorological Observations above 30 km) 1964.
- 28. Roper, R. G., "Dissipation of Wind Energy in the Height Range 80 to 140 km." Jour. Geophys. Res., 71, September 15, 1966.
- 29. Roper, R. G., "The Semidiurnal Tide in the Lower Thermosphere," <u>Jour. Geophys. Res.</u> (accepted for publication, probably Dec. 15, 1966).

- 30. Roper, R. G., "Atmospheric Turbulence in the Meteor Region," <u>Jour.</u> Geophys. Res. (accepted for publication, probably December 15, 1966.)
- 31. Rosenberg, N. W., H. D. Edwards, and J. W. Wright, "Ionospheric Winds: Motions into Night and Sporadic E Correlations," Space Research 4, 171-181, 1964.
- 32. Rosenberg, N. W., D. Golomb, E. F. Allen, "Chemiluminescence of Trimethyl aluminum Released into the Upper Atmosphere," J. Geophys. Res. 68, 5895-5898, 1963.
- 33. Rosenberg, N. W., D. Golomb, E. F. Allen, "Resonance Radiation of Al0 from Trimethyl Aluminum Released into the Upper Atmosphere," J. Geophys. Res. 69, 1451-1454, 1964.
- 34. Rosenberg, N. W., D. Golomb, E. F. Allen, "Chemiluminescent Techniques for Studying Nighttime Winds in the Upper Atmosphere," J. Geophys. Res. 68, 3328-3330, 1963.
- 35. Rosenberg, N. W., C. G. Justus, "Space and Time Correlations of Ionospheric Winds," Radio Science, 1, No. 2, February 1966.
- 36. Shappard, L. M., and K. H. Lloyd, "Atmospheric Density and the Diffusion of Grenade Glow Clouds," Planet Space Sci., 12, 317-318, 1964.
- 37. Zimmerman, "Small-Scale Wind Structure Above 100 km," Jour. Geophys. Res., 69, 784-785, 1964.

TABLE OF TRAIL INFORMATION

Trail No.	Shot No.	Date	Time (MST)	Altitudes (km)
Y10	0017	16 November 1966	18:41:24	92-112
Y11	9100	16 November 1966	20:41:52	90-119
Y12	0010	16 November 1966	22:32:07	90-112
Y13	0029	17 November 1966	00:16:13	96-120
Y14	0022	13 November 1966	18:18:47	88-120
Y15	0023	13 November 1966	20:12:21	85-127
Y16	^024	18 November 1966	21:49:42	89-139
Y17	0025	18 Movember 1966	23:43:00	89-138
Y18	0025	19 November 1966	01:01:22	91-144
Y19	0027	19 November 1966	02:35:35	88-120
Y20	0038	19 Povember 1966	04:52:53	92-167
Y21	0030	15 Movember 1966	19:45:00	93-142
Y22	0031	19 November 1966	21:21:29	91-111
Y23	0032	19 November 1966	22:37:53	90-111
Y24	0033	19 November 1966	23:59:14	91-147

TABULATIONS AND PLOTS

是一个时间,我们是一个时间,我们是一个时间,我们是一个时间,我们是一个时间,我们是一个时间,我们是一个时间,我们是一个时间,我们是一个时间,我们是一个时间,我们

FIFTEEN TMA TRAILS - 16-19 NOVEMBER, 1966

NOTE: The wind vector as given in this report is considered to point in the direction toward which the wind is blowing, (that is, a west wind is toward the west.) Most meteorologists are accustomed to a 180° difference, (that is, a west wind is from the west.)

UPTRAIL

ALTITUDE	DIRECTION	SPEED	GEOG	RAPHIC	MAGN	IETIC
	WIND	WIND		WIND COMPO	NENTS (M/S)	•
(KM)	(DEG)	(M/S)	N-S	E-W	N-S	E-W
92.0	318.7	39.7	29.8	-26 • 2	22.4	-32.7
93.0	321.1	41.5	32.3	-26.0	24.9	-33.2
94.0	327.9	42.5	36.0	-22.6	29.3	-30.8
95.0	7 • 2	53.5	53•1	6.7	53.1	-6.6
96.0	20.3	56.9	53•4	19•8	56•6	6.0
97.0	28•7	51.1	44•8	24.5	49.5	12.7
98.0	43.9	40.3	29.0	27.9	35.0	19.9
99.0	78•7	30.7	6.0	30.1	13.2	27.7
100.0	108.0	32.2	-9.9	30.6	-2 • 1	32.1
101.0	119.3	34.8	-17.4	30.2	-9.4	33.6
102.0	116.8	29.6	-13.3	26 • 4	-6•4	28.9
103.0	106.1	20.6	-5.7	19.8	-0.7	20.6
104.0	62.8	15.4	7.0	13.7	10.2	11.6
105.0	40.9	22.5	17.0	14.7	20.1	10.1
106.0	29•7	19.1	16.6	9.5	18.4	5.1
197.0	208.0	24.7	-21.8	-11.6	-24.0	-5.9
198.0	220.8	68.0	-51.5	-44 • 4	-60.8	-30•4
109.0	220.2	87.2	-66.6	-56 • 2	-78•4	-38.1
110.9	219.6	110.4	-85.0	-70.5	-99•7	-47.4
111.0	224•4	118.7	-84.9	-83.1	-102 • 7	-59.6
112.0	231.2	123.5	-77•3	-96 • 3	-98.6	-74.3

• UP

TRAIL NO. Y10 18:41:24 MST 16 NOVEMBER 1966 H.A.R.P. YUMA

WIND DIRECTION
• UP

TRAIL NO. Y10 18:41:24 MST 16 NOVEMBER 1966 H.A.R.P. YUMA

UPTRAIL

WIND WIND WIND COMPONENTS (M/S) (KM) (DEG) (M/S) N-S E-W N-S E-W 90.0 54.0 5.7 3.4 4.6 4.4 3.6 91.0 349.7 4.7 4.5 -1.6 4.0 -2.7 92.0 9.0 5.6 5.6 0.9 5.6 -0.5 93.0 46.3 10.7 7.4 7.7 9.1 5.6 94.0 78.4 21.6 4.4 21.2 9.5 19.5 95.0 88.0 32.0 1.1 32.0 8.9 30.7 96.0 79.7 37.7 6.8 37.1 15.7 34.3	ALTITUDE
90.0 54.0 5.7 3.4 4.6 4.4 3.6 91.0 340.7 4.7 4.5 -1.6 4.0 -2.7 92.0 9.0 5.6 5.6 0.9 5.6 -0.5 93.0 46.3 10.7 7.4 7.7 9.1 5.6 94.0 78.4 21.6 4.4 21.2 9.5 19.5 95.0 88.0 32.0 1.1 32.0 8.9 30.7 96.0 79.7 37.7 6.8 37.1 15.7 34.3	
90.0 54.0 5.7 3.4 4.6 4.4 3.6 91.0 340.7 4.7 4.5 -1.6 4.0 -2.7 92.0 9.0 5.6 5.6 0.9 5.6 -0.5 93.0 46.3 10.7 7.4 7.7 9.1 5.6 94.0 78.4 21.6 4.4 21.2 9.5 19.5 95.0 88.0 32.0 1.1 32.0 8.9 30.7 96.0 79.7 37.7 6.8 37.1 15.7 34.3	(KM)
91.0 340.7 4.7 4.5 -1.6 4.0 -2.7 92.0 9.0 5.6 5.6 0.9 5.6 -0.5 93.0 46.3 10.7 7.4 7.7 9.1 5.6 94.0 78.4 21.6 4.4 21.2 9.5 19.5 95.0 88.0 32.0 1.1 32.0 8.9 30.7 96.0 79.7 37.7 6.8 37.1 15.7 34.3	
92.0 9.0 5.6 5.6 0.9 5.6 -0.5 93.0 46.3 10.7 7.4 7.7 9.1 5.6 94.0 78.4 21.6 4.4 21.2 9.5 19.5 95.0 88.0 32.0 1.1 32.0 8.9 30.7 96.0 79.7 37.7 6.8 37.1 15.7 34.3	
93.0 46.3 10.7 7.4 7.7 9.1 5.6 94.0 78.4 21.6 4.4 21.2 9.5 19.5 95.0 88.0 32.0 1.1 32.0 8.9 30.7 96.0 79.7 37.7 6.8 37.1 15.7 34.3	
94.0 78.4 21.6 4.4 21.2 9.5 19.5 95.0 88.0 32.0 1.1 32.0 8.9 30.7 96.0 79.7 37.7 6.8 37.1 15.7 34.3	
95.0 88.0 32.0 1.1 32.0 8.9 30.7 96.0 79.7 37.7 6.8 37.1 15.7 34.3	
96.0 79.7 37.7 6.8 37.1 15.7 34.3	
9/.0 10.0 43.2	97.0
98.0 81.2 50.6 7.8 50.0 19.9 46.5	
99.0 95.5 71.8 -6.9 71.5 10.9 71.0	
190.0 102.5 74.9 -16.2 73.1 2.3 74.8	100.0
101.0 105.5 64.3 -17.2 62.0 -1.4 64.3	101.0
102.0 126.7 21.3 -12.7 17.1 -8.1 19.7	102.0
103.0 215.3 71.3 -58.2 -41.2 -66.6 -25.6	103.0
104.0 212.9 110.2 -92.5 -59.9 -104.4 -35.3	104.0
105.0 211.5 125.4 -106.9 -65.6 -119.8 -37.3	105.0
196.0 213.7 133.6 -111.1 -74.1 -125.9 -44.5	196.0
107.0 226.6 135.3 -93.0 -98.2 -114.3 -72.3	107.0
108.0 233.3 136.3 -81.5 -109.3 -105.9 -85.9	108.0
109.0 255.6 133.0 -33.0 -128.8 -63.7 -116.7	109.0
110.0 261.1 138.8 -21.4 -137.1 -54.5 -127.6	110.0
111.0 269.7 145.5 -0.7 -145.5 -36.5 -140.9	111.0
112.0 284.5 161.3 40.3 -156.2 0.6 -161.3	112.0
113.0 288.5 157.3 49.8 -149.2 11.5 -156.9	113.0
114.0 291.8 155.8 58.0 -144.6 20.6 -154.4	114.0
115.0 301.6 140.0 73.3 -119.2 41.7 -133.6	115.0
116.0 305.3 135.8 78.5 -110.8 48.8 -126.1	116.0
117.0 307.3 135.0 81.8 -107.4 52.8 -124.2	
118.0 309.5 132.1 83.9 -102.0 56.2 -119.5	
119.0 317.6 100.8 74.5 -67.9 55.5 -84.1	

• UP

TRAIL NO. Y11
20:41:52 MST
16 NOVEMBER 1966
H.A.R.P. YUMA

• UP

TRAIL NO. Y11 20:41:52 MST 16 NOVEMBER 1966 H.A.R.P. YUMA

UPTRAIL

ALTITUDE	DIRECTION	SPEED	6E06	RAPHIC	MAG	NETIC
	WIND	WINU		WIND COMPOR	VENTS (M/S)
(KM)	(DEG)	(M/S)	N-3	£-W	N-S	E-W
90.0	132.5	14.4	-9.8	10.7	-6.9	12.8
91.0	114.6	13.2	-5.5	12.0	-2.4	13.0
92.0	90.9	12.5	-0.2	12.5	2.9	12.2
93.0	87.6	37.6	1.6	37.6	10.8	36.0
94.0	96 • 8	39.0	-4.6	38.7	5.1	38.6
95.0	97.5	45.4	-5.9	45.0	5.4	45.1
96.0	97.5	59.3	-7.7	58.8	7.0	58.9
97.0	92•9	64.7	-3.3	64.6	12.7	63.4
98.0	104.3	61.9	-15.3	60•∪	-0.1	61.9
99.0	157.6	47.0	-43.5	17.9	-37.8	28.1
100.0	185.8	71.5	-71.1	-7.3	-70.7	10.4
101.0	202.0	76.3	-70.7	-28.6	-75.6	-10.3
102.0	216.4	84.9	-68.3	-50.3	-78.6	-31.9
103.0	234.6	118.5	-68.7	-96.6	-90•4	-76.7
104.0	242.8	126.9	-58.0	-112.8	-84.0	-95.1
105.0	254.3	149.7	-40.4	-144.2	-74.7	-129.8
106.0	262.5	153.0	-20.0	-151.6	-56.7	-142.0
107.0	268•6	169.1	-4.2	-169.1	-45.7	-162.9
108.0	284 • 1	173.5	42.3	-168.2	-0 - 4	-173.4
109.0	293.7	181.3	72.9	-165.9	29.8	-178.7
110.0	310.6	132.8	86.4	-100.8	58.9	-119.0
111.0	311.0	128.4	84.3	-96 • 8	57.9	-114.6
112.0	315.8	118.3	84.8	-82.5	61.9	-100.8

• UP

TRAIL NO. Y12 22:32:07 MST 16 NOVEMBER 1966 H.A.R.P. YUMA

WIND DIRECTION
• UP

TRAIL NO. Y12 22:32:07 MST 16 NOVEMBER 1966 H.A.R.P. YUMA

UPTRAIL

ALTITUDE	DIRECTION	SPEED	GEOG	RAPHIC	MAG	NETIC
	WIND	WIND		WIND COMPONENTS (M/S)		
(KM)	(DEG)	(M/S)	N-S	E-W	N-S	E-W
96.0	123.2	59.9	-32.8	50.1	-19.5	56.6
97.0	146•1	59.7	-49.6	33.3	-39.9	44.5
98.0	186 • 6	78.3	-77.8	-5.1	-77.6	10.3
99.0	228.7	82.6	-54.5	-52.0	-68 • 1	-46.7
100.0	248.9	109.9	-39.6	-102.5	-63.6	-89.6
106.0	284•7	165.6	42.0	-160.2	1.3	-165.6
107.0	289.7	167.6	56•4	-157.8	15.8	-166.8
108.0	298•8	160.2	77•2	-140.4	40.3	-155.1
109.0	312.1	154.4	103.6	-114.5	72 • 2	-136.5
110.0	345 • 3	114.7	110.9	-29.2	100.3	-55.6
111.0	0.2	112.1	112.1	0.4	108.7	-27.2
112.0	16.6	117.2	112.3	33 • 4	117.1	4.7
113.0	28•9	129.5	113.4	62.5	125.3	32.7
116.0	34.0	116.1	96.2	65.0	109•2	39.3
118.0	36.2	93.6	75.5	55•3	86•8	35.0
119.0	38.5	68.3	53.5	42.5	62.3	28.0
120.0	44.8	59.6	42.3	42.0	51.3	30.3

JOWNTRAIL

ALTITUDE	DIRECTION	SPEED	GEOG	RAPHIC	MAG	NETIC
	WIND	GNIW	WIND COMPONENTS (M/S))
(KM)	(DEG)	(M/S)	N-S	E-W	N-S	E-W
103.0	274.7	150.9	12.3	-150.4	-25.1	-148.8
104.0	281.7	162.6	33.1	-159.2	-7.1	-162.4
105.0	285•5	165.7	44.4	-159.7	3.7	-165.7
106.0	290.6	162.7	57.3	-152.2	18.1	-161.6
107.0	293.8	150.6	60.7	-137.8	24.9	-148.5
198.0	301.6	146.6	75.8	-124.8	43.7	-139.9
109.0	317.4	138.8	102.2	-93.9	75.9	-116.2
110.0	338.0	119.8	111.1	-44.8	96 • 7	-70.8
111.0	358∙Ù	110.6	110.5	-3.9	166 • 1	21.0
112.0	15.6	117.1	112.8	31.5	117.1	2.8
113.0	26 • 1	127.2	114.3	55.9	124.5	26.0
114.0	32.3	131.9	111.5	7⊍•5	125.4	40.9
115.0	35.5	120.8	98.3	70.2	112.6	43.8
116.0	37.4	102.9	81.8	52.5	94.7	40.4
117.0	37.9	87.3	68.9	53·6	89.6	35.0
118.9	39.9	67.5	51.8	43.4	60.7	24.3
119.0	46.0	44.2	34.2	35 • 3	41.8	, 5 . 8
120.0	55.9	43.4	24.3	.45 • 9	32.4	28.8

- UP
- ▲ DOWN

TRAIL NO. Y13 00:16:13 MST 17 NOVEMBER 1966 H.A.R.P. YUMA

WIND DIRECTION

- UP
- ▲ DOWN

TRAIL NO. Y13 00:16:13 MST 17 NOVEMBER 1966 H.A.R.P. YUMA

UPTRAIL

ALTITUDE	DIRECTION	SPEED	GEO	GRAPHIC		ETIC
	WIND	WIND			NENTS (M/S)	
(KM)	(DEG)	(M/S)	N-S	E-W	N-S	€-W
88.0	202.9	42.5	-39•2	-16.6	-42 • 1	-6 • 4
89.0	210.5	46.1	-39.7	-23 • 4	-44 • 2	-12.9
90 .0	224.5	43.0	-30.7	-30+2	-37 • 2	-21.7
91.0	228•2	45.1	-30.1	-33 • 6	-37.4	-25.2
92.0	228•1	47.9	-32.0	-35 • 6	-39.8	-26.6
93.0	231.5	49.0	-30.5	-38 • 4	-39.0	-29.7
94.0	255•1	56.8	-14.6	-54.9	-27.7	-49.6
95.0	269•2	61.0	-∪.8	-61.0	-15.8	-58.9
96.0	287•7	49.1	14.9	-46 • 8	2•9	-49.0
97.0	298•6	41.4	19.8	-36 • 4	10.2	-40.2
98.0	311.6	36.5	24•2	-27.3	16.7	-32.4
99.0	347.7	34.0	33.2	-7.2	30.4	-15.2
190.9	13.1	40.8	39•8	9•2	40.8	-0.9
191.0	36.5	41.1	33.0	24 • 4	38.0	15.5
192.9	62•4	39.3	18.2	34.8	26•2	29•2
193.0	89•4	39.2	0 • 4	39•2	10.0	37.9
104.0	88.7	33.9	0.8	33.9	9•1	32.7
105.9	25.5	33.0	29.8	14.2	32 • 4	6 • 4
196.9	350.0	39.3	38.7	-6 • 8	35.8	-16.1
107.0	336 • 2	38∙წ	35.5	-15.7	30.5	-24.0
108.0	336.6	36.1	33.2	-14 • 4	28.6	-22.1
109.0	351.7	27.5	27.3	-4.0	25.5	-10.6
110.0	355.7	25.6	25.5	-1.9	24•2	-8.1
111.0	0.0	21.2	21.2	0.0	20•5	-5.2
112.0	16.7	12.4	11.9	3 • 6	12.4	0.6
113.9	88•9	7.8	0.1	7 • 8	2.0	7.5
114.0	126.0	14.7	-8 • 6	11.9	-5.4	13.7
115.0	131.2	16.8	-11.1	12.6	-7 • 7	14.9
116.0	132•2	20.9	-14.0	15.5	-9.8	18.5
117.0	137.0	26.0	-19.0	17.7	-14.1	21.8
118.0	141.2	26.9	-21.0	16.9	-16.2	21.5
119.0	142.9	26.0	-20.8	15.7	-16.3	20.3
120.0	151.2	24.4	-21.4	11.7	-17.9	16.6

• UP

TRAIL NO. Y14
18:18:47 MST
18 NOVEMBER 1966
H.A.R.P. YUMA

TRAIL NO. Y14
18:18:47 MST
18 NOVEMBER 1966
H.A.R.P. YUMA

ALTITUDE	DIRECTION WIND	SPEED WIND		APHIC	MAGN LNTS (M/S)	IETIC
/ V M)	(DEG)	(M/S)	N-S	£-W	N-S	E – W
(KM)	178.3	55.4	-54•6	9.3	-50.6	22.5
85.0			-51.3	-2.9	-50.4	9.8
86.0	183 • 2	51.4	-91•3 -47•4	-9.1	-48 • 2	2.8
87.0	190.9	48.2	-41.9	-17.4	-44.9	-6.6
88.0	202+6	45.3	-41•9 -40•1	-22 • 8	-44.5	-12.2
89.0	299•6	46.1	-35 • 1	-19•1	7 • 8 د –	-9.9
90.9	208 • 5	40.0	-27•6	-16.2	-30.7	-8.9
91.0	210.4	32.0 23.8	-7·9	-22.5	-13 • 2	-19.9
92.0	250.6	30.4	10.4	-28.5	3.1	-30.2
93.0	290 • 1	26.4	20.4	-16.7	15.7	-21.2
94.0	329.7	29.2	27.6	9.6	29.1	2.5
95.0	19•1	42.1	35•4	22.7	39.9	13.3
96.0	32•6	40.3	28•2	28 • 8	34.4	21.0
97.0	45.5	53.9	-13.6	52.2	-0.3	53.9
98.0	104.7	67.1	-32•1	59.0	-16.6	65.1
99.0	118.5	81.1	-51.3	62.8	-34.3	73.5
100.0	129•2		-60.9	59.7	-44.3	72.9
191.0	135.6	85.3	-7U•1	56.0	-54.2	71.5
102.0	141.4	89•8 89•0	-73.8	49.7	-59.3	66.3
103.0	146 • 1	75.9	-70.1	29•3	-60•7	45.7
104.0	157.3	17.9	-16.1	-7 • 8	-17.5	-3.6
195.0	205•7	14.0	-9.5	-10.3	-11.7	-7.6
106.0	227.5	11.2	-2.3	-11.0	-4.9	-10.1
197.0	258•2	10.0	6•1	- 7•9	4.0	-9.2
198.9	307.8	17.0	16.7	-3.1	15.4	-7.1
109.0	349•4	19.5	19.4	-2.3	18.2	-7.0
110.0	353.1	20.9	20.7	-3.0	19.3	-8.U
111.0	351•8 348•4	22.9	22.4	-4.6	20.6	-10.0
112.0	344.9	23.0	22.2	-6.0	20.0	-11.3
113.0	343.7	22.7	21.8	-6.4	19.6	-11.6
114.0 115.0	338•1	21.4	19.9	-8.0	17.3	-12.7
	315.5	17.4	12.4	-12 • 2	9•0	-14.9
116.0	281.2	14.4	2.8	$-14 \cdot 1$	-0.8	-14,4
118.0	258 • 3	20.7	-4.2	-20.3	-9.1	-18.6
	243.5	20.1	-9.0	-18.0	-13.2	-15.2
119.0	229•9	23.9	-15.4	-18.3	-19.4	-15.9
120.0 121.0	222.4	29.0	-21.4	-19.6	-25.6	-13.7
	229.4	28.2	-18.3	-21.4	-23·U	-10.2
122.0 123.0	227.0	37.2	-25.4	-27.2	-31.3	-20.1
124.0	229.8	41.5	-26.8	-31 • 7	-33.8	-24.1
125.0	234.8	45.2	-26.0	-36.9	-34.3	-29.4
126.0	240.1	55.1	-21.5	-47.8	-38 • 4	49 • 6
14000	2 U = 1	1				

DOWNTRAIL

de de la company de la comp

ALTITUDE	DIRECTION	SPEED	GEO:	GKAPHIC	MAGN	ETIC
	WIND	MIND		WIND COMPO	NENTS (M/5)	
(KM)	(DEG)	(M/S)	N-S	E-W	N-S	E-W
101.0	146.6	76.5	-63.8	42.2	-51.4	56.6
102.0	150.3	66.4	-57.7	32.8	-47.9	46.0
103.0	150.2	60.7	-52.7	30.2	-43.6	42.2
104.0	158.0	46.8	-43.3	17.5	-37.7	27.6
105.0	215.5	20.5	-16.7	-11.9	-19.1	-7.4
106.0	257.3	21.8	-4.8	-21.3	-9.9	-19.5
107.0	275.9	21.2	2.2	-21 • 1	-3 • 1	-21.0
108.0	298•7	16.3	7.8	-14.3	4 • 0	-15.8
109.0	352.9	12.4	12.3	-1.5	11.6	-4.5
110.0	359.4	16.9	16.9	-0.2	16.3	-4.4
111.0	344•2	22.6	21.7	-6.1	19.5	-11.3
112.0	336•6	26.6	24.4	-10.6	21.0	-16.3
113.0	328 • 4	27.4	23.3	-14.3	19.1	-19.6
114.0	321.7	26.3	20.6	-16.3	16.0	-20.9
115.0	311.5	25.1	16.6	-18.8	11.5	-22.3
116.0	298.0	23.5	11.0	-20.7	5.6	-22.8
117.0	283.3	21.4	4.9	-20.8	-0 • 4	-21.4
118.0	266.9	21.0	-1.1	-20.9	-6.2	-20.0
119.0	250.1	21.9	-7.4	-20.6	-12.2	-18.1
120.0	229•6	21.8	-14 • 1	-16.6	-17.8	-12.6
121.0	220.9	24.6	-18.6	-16 • 1	-22.0	-11.0
122.0	219•1	23.7	-18.4	-14.9	-21.5	-9.9
123.0	216.8	18.9	-15.1	-11.3	-17.4	-7.2
124.0	218.0	14.5	-11.4	-8.9	-13.2	-5.8
125.0	219.9	9.9	-7.6	-6.3	-8.9	-4.2
126.0	215.8	3.5	-2.9	-2.1	-3.3	-1.3
127.0	42.6	3.8	2 • 8	2 • 6	3 • 4	1.8

20:12:21 MST UP DOWN 18 NOVEMBER 1966 N-S۵ H.A.R.P. YUMA E - W146 142 138 134 130 126 122 118 HEIGHT (km) 110 106 102 98 94 90 86 -160 -120 -80 - 40

SPEED (n. s)

WIND COMPONENTS

TRAIL NO. Y15

• UP

DOWN

TRAIL NO. Y15
20:12:21 MST
18 NOVEMBER 1966
H. A.R.P. YUMA

WIND DIRECTION

- UP
- ▲ DOWN

TRAIL NO. Y15 20:12:21 MST

18 NOVEMBER 1966

H.A.R.P. YUMA

UPTRAIL

ALTITUDE	DIRECTION	SPEED	GEO	GRAPHIC	MAGN	ETIC
	WIND	WIND		WIND COMPO	DNENTS (M/S)	
(KM)	(DEG)	(M/S)	N-S	E-W	N-S	E-W
89.0	268•5	26.1	-0.7	-26.1	-7.1	-25.1
90.0	268•6	28.6	-0.7	-28.6	-7.7	-27.5
91.0	270.6	21.1	0.2	-21.1	-5.0	-20.5
92.0	271.0	18.5	0.3	-18.5	-4.3	-18.0
93.0	287.8	18.3	5.6	-17.4	1 • 1	-18.2
94.0	352.3	4.6	4.5	-0.6	4 • 2	-1.7
95.0	98•8	18.0	-2 • 8	17.8	1.7	17.9
96.0	105.9	32.0	-8.8	30.8	-0.9	32.0
97.0	107.7	39.4	-12.0	37.5	-2 • 4	39.3
98.0	110.1	43.1	-14 • 8	40.4	-4 • 4	42.8
99.0	116.3	53.9	-23.9	48.3	-11.3	52.7
100.0	126.2	63.7	-37.6	51.4	-23.8	59.1
191.0	155.5	54.2	-49.3	22.5	-42.2	33.9
102.0	200.5	46.2	-43.3	-16.1	-45.9	-4.9
103.0	229.6	38.5	-25.0	-29.3	-31.4	-22.2
194.0	249.3	33.9	-12.0	-31.7	-19•4	-27.8
105.9	257•1	35.4	-7.9	-34.5	-16.1	-31.5
106.0	261.8	37.2	-5 • 3	-36.9	-14.2	-34.5
197.0	265•1	39.5	-3.4	-39.4	-13.0	-37.4
108.0	267•4	41.0	-1.9	-41.0	-11.9	-39.3
109.0	266•5	43.9	-2.7	-43.8	-13.4	-41.8
110.9	269•8	43.3	-0.2	-43.3	-10.9	-41.9
111.0	272•1	42.0	1.5	-41.9	-8 • 9	-41.0
112.0	284 • 3	36.5	9.0	-35.4	0.0	-36.5
113.0	291•9	35.7	13.3	-33.1	4•7	-35.4
114.0	293•4	35.1	13.9	-32 • 2	5 • 5	-34.6
115.0	302.8	36.6	19.9	-30.8	11•7	-34.8
116.9	312•4	39.7	26.8	-29.4	18.7	-35.1
117.0	317.8	38.9	28.8	-26 • 1	21.5	-32.4
118.0	324•8	39.9	32.6	-23.0	25.9	-30.3
119.0	333•4	43.2	38•6	-19 • 4	32.6	-28.3
120.0	337•9	47.6	44.1	-17.9	38.3	-28.2
121.0	345 • 3	50.8	49•2	-12.9	44.5	-24.6
122.0	352 • 7	54.0	53.5	-6.9	50.2	-19.9
123.0	0 • 3	57.2	57.2	0.3	55.5	-13.5
124.0	12.0	61.9	60.6	12.9	61.9	-2.4
125.0	16.4	64.1	61.5	18.1	64.1	2.4

ALTITUDE	DIRECTION	SPEED	GEOGR	APHIC	MAGN	ETIC
RETTION	WIND	WIND	W	IND COMPON	ENTS (M/S)	
(KM)	(DEG)	(M/S)	N-S	E-W 31•7	N-S 66•9	E-W 15•7
126.0	27.5	68.7	61.0	40.9	66.9	25.4
127.0	35 • 3	70.7	57•7 51•8	49.9	62.5	35.6
128.0	43.9	72.0 71.9	43.1	57.5	55.9	45.1
129.0 130.0	53•1 61•1	71.6	34.6	62.7	49.0	52.3
131.0	73.8	71.2	19.8	68 • 4	36.0	61.4
132.0	88.9	74.4	1.5	74 • 4	19.8	71.7
133.0	100.1	80.3	-14.1	79•0	5 • 8	80.0
134.0	106.3	87.8	-24•7	84.2	-3.2	87.7 89.0
135.0	112.3	89•9	-34 • 1	83 • 2	-12•6 -21•8	93.3
136.0	117•4	95.8	-44.1	85.1	-21 • 8 -23 • 8	89.2
137.0	119•2	92.3	-45 · 0	80•6 77•7	-29.3	87.6
138.0	122•8 125•8	92•4 92•1	-50°0 -53•9	74.7	-33.9	85.7
139.0	1470	7 C + 1				

:

TRAIL NO. Y16 21:49:42 MST 18 NOVEMBER 1966 H.A.R.P. YUMA

WIND DIRECTION

• UP

TRAIL NO. Y16
21:49:42 MST
18 NOVEMBER 1966
H.A.R.P. YUMA

ALTITUDE	DIRECTION	SPEED	GEO	GRAPHIC	MAGI	NETIC
	WIND	MIND		WIND COMPO		
(KM)	(DEG)	(M/S)	N-S	E-W	N-S	E-W
89.0	25.5	38.8	35.0	16.7	38.0	7.6
90.0	32 • 4	40.5	34 • 2	21.7	38.5	12.6
91.0	39.9	44.9	34.5	28.8	40.5	19.4
92.0	47 • 1	51.4	35.0	37.7	43.2	27.9
93.0	73.5	44.4	12.7	42.6	22.8	38.2
94.0	97•8	35.2	-4 • 8	34.8	3.9	34.9
95.0	118.9	32.6	-15.8	28.5	-8.3	31.5
96.0	126.8	38.6	-23 • 1	30.9	-14.8	35.6
97.0	122.6	45.9	-24.7	38.7	-14.4	43.6
98.0	120.2	55.6	-28.0	48.1	-15.3	53.5
99.9	130.4	55.7	-36 • 1	42.4	-24.6	50.0
190.9	179.7	55.0	-55.0	0.3	-53•2	13.8
101.0	209•1	71.0	-62.0	-34.6	-68.6	-18.3
102.0	234•4	95.4	-55.5	-77.5	-72.9	-61.5
103.0	239.0	90•2	-46 • 4	-77•4	-64.0	-63.6
104.0	243.1	91.7	-41.5	-81.7	-60.3	-69.0
105.0	255 • 6	93.2	-23 • 1	-90.3	-44 • 6	-81.8
106.0	264•1	102.2	-10.5	-101.7	-35 • 2	-96.0
197.0	265•9	109.3	-7.9	-109.0	-34.5	-103.7
108.0	281.3	108.9	21.4	-106.7	-5.5	-108.7
109.0	296•9	88.9	40.3	-79.3	19.5	-86.8
110.0	316.5	74.2	53.8	-51.0	39.6	-62.7
111.0	338 • 3	72.1	66.9	-26.7	58.3	-42.3
112.0	345•4	67.5	65•3	-17.0	59•1	-32.6
113.0	345.6	67.3	65•2	-16.8	59.1	-32.3
114.0	353.8	64.3	63.9	-7.0	60 • 2	-22.5
115.0	2 • 3	61.6	61.5	2 • 5	60•2	-12.7
116.0	2 • 4	62.6	62.6	2 • 6	61.3	-12.9
117.0	5•9	59.6	59•3	6 • 1	59.0	-8.7
118.0	11.2	55.1	54•1	10.7	55.1	-2.9
119.0	23.4	47.8	43.8	19.0	47.1	7.6
120.0	42 • 6	45.7	33.7	30.9	40.3	21.7
121.0	60.8	47.5	23.2	41.4	32.7	34.4
122.0	76.6	49.4	11.5	48.0	23.0	43.7
123.0	91 • 7	54.5	-1.6	54.5	11.9	53.2
124.0	104 • 1	55.5	-13.5	53.8	0 • 2	55.5
125.0	114.6	53.5	-22 • 3	48.7	-9.6	52.7

CONTINUED

ALTITUDE	DIRECTION	SPEED	GEOGRAPHIC		MAGNETIC	
	WIND	WIND	W	IND COMPON	IENTS (M/S)	
(KM)	(DEG)	(M/S)	N-S	E-W	N-S	É-W
126.0	126 • 1	55.6	-32.8	44.9	-20.7	51.6
127.0	138.8	59.3	-44 • 7	39.1	-33.7	48.9
128.0	149•6	63.4	-54.7	32.0	-45.1	44.5
129.0	157.3	68.9	-63.6	26 • 6	-55.1	41.4
130.0	163.3	73.1	-70.0	20.9	-62.7	37.5
131.0	163.9	81.8	-78.6	22.7	-70.6	41.3
132.0	170.1	78.5	-77.4	13.5	-71.7	32.1
133.0	172.9	74.6	-74.0	9.3	-69.4	27.2
134.9	176.6	76.8	-76.6	4.6	-73.1	23.3
135.0	177.8	77.2	-71.1	3 • 0	-74.0	21.9
136.9	178.9	78.4	-78.4	1.5	-75.6	20.8
137.0	181.5	74.5	-74.5	-2.0	-72.7	16.4
138.0	188.8	74.3	-73.4	-11.4	-73.9	7.0

TRAIL NO. Y17
23:43:09 MST
18 NOVEMBER 1966
H.A.R.P. YUMA

WIND DIRECTION

• UP

TRAIL NO. Y17 23:43:09 MST 18 NOVEMBER 1966 H.A.R.P. YUMA

ALTITUDE	DIRECTION	SPEED	GEO	GRAPHIC	MAGI	NETIC
	WIND	WIND			NENTS (M/S	
(KM)	(DEG)	(M/S)	N-S	E-W	N-S	E-W
91.0	55.9	39.6	22.2	32.8	29.6	26.3
92.0	76.9	53.7	12.1	52.3	24.6	47.7
93.0	101.5	47.6	-9.5	46.7	2.3	47.6
94.9	139.3	35.6	-27.0	23.2	-20.5	29.1
95.0	155.8	42.4	-38.7	17.4	-33.2	26.4
96.0	164.7	52.9	-51.1	13.9	-46.1	26.1
97.0	172.4	63.8	-63.2	8 • 4	-59.2	23.7
98.0	199.6	109.4	-103.1	-36 • 6	-108.9	-10.1
99.9	215.7	111.9	-90.9	-65.2	-104.2	-40.8
100.0	225•2	116.4	-82.1	-82.5	-99.9	-59.8
101.0	234.1	126.1	-73.9	-102.2	-96.8	-80.9
102.0	253.9	123.9	-34.4	-119.0	-62.6	-106.9
104.0	278•2	138.4	19.7	-137.0	-14.6	-137.6
103.0	265.0	126.7	-11.0	-126 • 2	-41.7	-119.6
105.0	294.8	130.9	54•8	-118.9	23.8	-128.7
106.0	310.0	120.6	77.5	-92 • 4	52•4	-108.6
107.0	321.1	106.1	82•6	-66 • 6	63.7	-84.9
108.0	329•2	98.4	84.5	-50.4	69•5	-69.6
109.0	336 • 6	94.6	86•8	-37.5	74.9	-57.7
110.0	341.3	91.1	86•2	-29.3	76.7	-49.6
111.0	358.5	74.0	74.0	-1.9	71.3	-20.1
112.0	7 • 7	66.7	66•1	8 • 9	66.3	-7.6
113.0	13.1	61.9	60.3	14.1	61.9	-1.2
114.0	20.6	57.5	53.8	20.2	57.1	6.3
115.0	27•4	56.2	49•9	25.8	54•7	12.7
116.0	34•8	61.1	50.2	34.8	57.2	21.4
117.0	43 • 1	64.8	47.3	44.3	56.7	31.3
118.9	52 • 1	61.9	38.0	48 • 8	48.8	37.9
119.0	61•1	57.4	27.8	50.3	39•3	41.9
120.0	74.0	53.1	14•6	51.1	26.7	45.9
121.0	86.8	50.3	2 • 8	50.2	15•1	48.0
122.0	104.3	49.7	-12.3	48.1	-0.1	49.6
123.0	117•6	51.5	-23.9	45.7	-11.9	50.2
124.0	132.0	54.2	-36.2	40.3	-25.2	48.0
125.0	140.8	56.8	-44.0	35•9	-33.8	45.6

CONTINUED

ALTITUDE	DIRECTION	SPEED	GEOG	RAPHIC	MAGN	IETIC
	WIND	WIND		WIND COMPOR	NENTS (M/S)	
(KM)	(DEG)	(M/S)	N-S	E-W	N-S	E-W
126.0	149•4	58.7	-50.5	29.9	-41.6	41.4
127.0	155.8	59.9	-54.6	24.6	-46 • 9	37.3
128.0	163.5	59.4	-56.9	16.9	-51.0	30.4
129.0	170.8	59.0	-58.3	9•5	-54.2	23.6
130.0	177.7	56.6	-56.6	2 • 3	-54.3	16.2
131.0	183.6	51.9	-51.8	-3 • 2	-51:0	9.6
132.0	189•2	47.5	-46.9	-7.6	-47.3	4 • 2
133.0	195•1	45.8	-44.2	-11•9	-45.8	-0.7
134.0	201.1	43.8	-40.9	-15.7	-43 • F	-5.1
135.0	209.0	40.6	-35.6	-19.7	-39•4	-10.3
136.0	216.6	38.9	-31.2	-23.2	-36.0	-14.8
137.0	223.1	36.7	-26.8	-25.1	-32.2	-17.7
138.0	230.4	32.5	-20.7	-25 • 1	-26.2	-19.2
139.0	241.6	31.1	-14.8	-27.3	-21 • 1	-22.8
140.0	250•4	25.5	-8.6	-24.0	-14.2	-21.1
141.0	265.0	23.6	-2.0	-23.6	-7.7	-22.4
142.0	271.6	21.9	0.6	-21.9	-4.8	-21.4
143.0	267•7	23.0	-0.9	-23.0	-6.5	-22.1
144.0	274.1	25.5	1.8	-25.5	-4.5	-25.2

TRA!L NO. Y18 01:01:22 MST 19 NOVEMBER 1966 H.A.R.P. YUMA

> 120 200 DIRECTION (deg)

WIND DIRECTION

TRAIL NO. Y18

UPTH IL

ALTITUDE	DIRECTION	GEB9V	<u>ಆಕರಿ</u>	GRAPH16		NETIC
	WIND	WIND			ONENTS (M/S	
(KM)	(DEG)	(M/S)	N-S	E-W	N-S	E-W
88.0	24.3	56.0	51.0	23.0	55.1	9.7
89.0	37.9	64.0	50.5	39.3	58 • 6	25.7
90.0	57•6	42.0	22.5	35.4	30.5	28.8
91.0	166•6	24.2	-23.5	5•6	-21.4	11.2
92.0	186•1	52.7	-52•4	-5.6	-52•2	7.5
93.0	192•4	73.7	-71.9	-15.8	-73.6	2.4
94.0	190.9	86.8	-85.2	-16 • 4	-86.6	5.1
95.0	190.9	104.1	-102.2	-19.8	-103.9	6.0
96.0	196•2	107.4	-103.2	-30.1	-107.4	-3.8
97.0	201.8	115.9	-107.6	-43.0	-114.9	-15.2
98.0	206.0	124.6	-112.0	-54•6	-122.0	-25•4
99.0	212.4	130.4	-110.1	-69•9	-123.9	-40.6
100.0	227•6	116.9	-78.8	-86 • 4	-97•6	-64.3
101.0	260.8	102.0	-16 • 2	-100.7	-40.5	-93.6
102.0	264•6	101.3	-9.6	-100.9	-34 • 1	-95.4
103.0	292•8	98.6	38.2	-90.9	14.6	-97.5
104.0	311.5	90.8	60.2	-68.0	41.6	-80.7
105.0	331.9	72.6	64.0	-34.2	53.6	-48.9
106.0	10.2	68.6	67.5	12.1	68.4	-4.9
107.0	35.8	80.2	65.1	46.9	74.6	29.4
108.0	47.9	85.5	57.4	63.4	71.2	47.3
109.0	55•1	88.1	5 • • 5	72.3	66.7	57.6
110.0	64 • 8	90.3	38.4	81.7	57.3	69.7
111.0	73 • 1	94.0	27.3	89•9	48•6	80.4
112.0	75•4	90.0	22.7	87.1	43.4	78.8
113.0	80.6	86.7	14 • 1	85.5	34.7	79.4
114.0	84•7	70.9	6.5	70.6	23.7	66.8
115.0	89•2	50.8	0.7	50.8	13.2	49.1
116.0	94•2	31.1	-2 • 3	31.1	5 • 4	30.7
117.0	108.7	17.2	-5.5	16.3	-1.3	17.2
118.0	230.8	13.6	-8.6	-10.5	-10.9	-8.1
119.0	245.1	21.7	-9 • 1	-19.7	-13.7	-16.9
120.0	250.8	24.8	-8 • 2	-23.4	-13.7	-20.7

• UP

TRAIL NO. Y19 02:35:35 MST 19 NOVEMBER 1966 H.A.R.P. YUMA

TRAIL NO. Y19

ALTITUDE	DIRECTION	SPEED	GEO	GRAPHIC		ETIC
	WIND	WIND		WIND COMPO	VENTS (M/S)	
(KM)	(DEG)	(M/S)	N-S	E-W	N-S	E-W
92.0	195.7	65.1	-62.7	-17.7	-65.1	-1.7
93.0	204.8	66.7	-60.6	-28.0	-65•6	-12.2
94.0	215.1	65.5	-53.6	-37.7	-61.2	-23.3
95.0	229.7	64.6	-41.7	-49.3	-52.6	-37.5
96.0	236.9	66.9	-36 • 6	-56.0	-49.3	-45.3
97.0	239.5	65.2	-33 • 1	-56.2	-45•9	-46.3
98.0	247.6	70.4	-26.8	-65.0	-42.0	-56.4
99.0	255•2	78.7	-20.0	-76 • 1	-38 • 1	-68.8
190.0	277•4	86.8	11.2	-86 • 1	-10.3	-86 • 2
101.0	291.8	98.1	36.4	-91.1	12.9	-97.3
102.0	306 • 4	93.1	55•3	-74•9	35 • 2	-86•2
103.0	324.7	77.0	62.8	-44.4	49.9	-58.5
194.0	353.8	63.3	62.9	-6.9	59.3	-22.2
105.0	34.5	70.8	58•4	40.1	66.5	24.5
196.0	49.7	71.1	46.0	54.2	57.9	41.2
107.0	56.8	70.0	38.3	58.6	51.5	47.4
108.0	68•6	56.5	20.6	52.6	32.9	45.9
109.0	79•1	46.8	8 • 8	46.0	19.9	42.4
110.0	90•0	37.7	0.0	37•7	9•3	36.5
111.0	101.9	28.0	-5•8	27•4	1 • 1	28.0
112.0	121.8	19.2	-10.1	16.3	- 5∙8	18.3
113.0	170.9	13.7	-13.5	2 • 2	-12.5	5.5
114.0	227.8	20.6	-13.8	-15.3	-17.1	-11.4
115.0	249.7	33.3	-11.6	-31.2	-18.9	-27.4
116.0	255.5	44.0	-11.0	-42.6	-21.1	-38.6
117.0	258•2	57.2	-11.7	-56.0	-25.1	-51.4
118.0	269.4	67.7	-11.3	-66•8	-27.4	-62.0
119.0	262.0	77.9	-10.9	-77•1	-29.5	-72.0
120.Ò	263.5	87.6	-10.0	-87.1	-31.1	-82.0
121.0	264•9	93.7	-8•3	-93•4	-31.0	-88.5
122.0	267.4	98.6	-4.5	-98.5	-28.6	-94 • 4
123.0	268.7	98.6	-2.3	-98.6	-26.5	-95.0
124.0	272.7	94.2	+ • 4	-94 • 1	-18.9	-92.3
125.0	275•3	91.3	8 • 5	-90.9	-14.1	-90•2

CONTINUED

ALTITUDE	DIRECTION	SPEED	GEO	GRAPHIC	MAGNI	ETIC
	WIND	WIND			NENTS (M/S)	
(KM)	(DEG)	(M/S)	N-S	E-W	N-S	E-W
126.0	276.7	85.3	10.0	-84.7	-1:1 • 2	-84.6
127.0	278.0	77.8	10.8	-77.0	-8.5	-77.3
128.9	277•2	69.6	8 • 8	-69.1	-8.5	-69.1
129.0	274•9	63.2	5 • 4	-63.0	-10.3	-62.4
130,0	273.3	53.5	3 • 1	-53•4	-10.1	-52.5
131.0	270.1	44.6	0.1	-44•6	-10.9	-43.3
132.0	265•1	34.9	-3.0	-34 • 7	-11 • 4	-32.9
133.0	254•3	22.9	-6.2	-22 • 1	-11 • 4	-19.9
134.0	226•5	13.0	 9.0	-9•4	-11.0	-6.9
135.0	165•9	12.0	-11.7	2.9	-10.6	5.7
136.0	134.7	20.6	~14.5	14.7	-10.4	17.8
137.0	125.5	30.1	-17.5	24.5	-10.9	28.1
138.0	119.8	39.2	-19.5	34•Ó	-10.5	37.8
139.0	117.5	47.3	-21.8	42•0	-10.8	46.1
140.0	115.5	55•1	-23.7	49•8	-10.7	54.1
141.0	113.8	62.4	-25•2	57•1	-10.4	61.5
142.0	112.8	68.7	-26.6	63.3	-10.2	67.9
143.0	109•1	80.3	-26.3	75•9	-6.8	80.0
144.0	110.1	78.5	-26.9	73 • 8	-7.9	78.2
145.0	110.9	82.3	-29.3	76 • 9	-9.5	81.7
146.0	111.5	84.6	-31.0	78•7	-10.7	83.9
147.0	113.0	86.5	-33.8	79•6	-13.2	85.5
148.0	113.7	88.1	-35•4	8.0 • 7	-14.4	86.9
149.0	114.7	89.6	-37.5	81.4	-16.3	88.1
150.0	114.3	92.3	-38.0	84.2	-16.1	91.0
151.0	117.0	92.4	-42.0	82.3	-20•4	90.1
152.0	119.2	92.0	-44.9	80•4	-23.7	89.0
153.0	121.6	91.9	-48.2	78.3	-27•4	87.8
154.0	124 • 2	91.6	-51.5	75 • 7	-31.3	86.0
155.0	126 • 7	90.9	-54•4	72.9	-34.8	84.0
156.0	128.7	91.4	-57.2	71.3	-37.9	83.2
157.0	130.2	92.4	-59.7	70.6	-40•5	83.1
158.0	133.0	90.6	-61.8	66.3	-43.6	79.5
159.0	.35 • 2	88.3	-62.6	62.2	-45.4	75.7
160.0	137.3	87.8	-64.6	59.5	-48.0	73.6
162.0	139.5	87.6	-66•6	56.9	-50.5	71.5
162.0	141.9	85.1	-66.9	52.5	-51.9	67.4
163.0	143.9	86.3	-69•7	50.8	-55.1	66.4
164.0	146.8	92.9	- 77•7	50.9	-62 • 8	68.5
165.0 166.0	148•8 150•9	96•5 95•5	-82•5 -83•4	50•0	-67•7	68.8
167.0	152.0	95•3 95•7	-84·5	46 • 5	-69 • 4	65.6
TOISA	19200	7701	-04.5	44.9	-70.8	64.3

the contest of the co

TRAIL NO. Y20
04:52:53 MST
19 NOVEMBER 1966
HARP YUMA

ALTITUDE	DIRECTION	SPEED	650	GRAPHIC	MAGN	NETIC
MEILLODE	WIND	WIND	020		NENTS (M/S)	
(KM)	(DEG)	(M/S)	N-S	E-W	N-S	E-W
93.0	291 • 4	49.1	17.9	-45•8	6.1	-48.8
94.0	326 • 8	33.5	28.0	-18.3	22.6	-24.6
95.0	8 • 7	25.7	25•4	3.9	25.6	-2.5
96.0	59.9	37.2	18.7	32•2	26.1	26.6
97.0	70.6	42.1	14.0	39.7	23.3	35.0
98.0	88.9	50.9	1.0	50.9	13.5	49.1
99.0	105.1	38.1	-9.9	36.8	-0.5	38.1
190.0	117.6	20.9	-9.7	18.6	-4.8	20.4
101.0	78.6	2.0	0.4	2.0	0.9	1.8
102.0	347.6	21.0	20.6	-4.5	18.9	-9.4
103.0	349.9	39.5	38.9	-6.9	36.0	-16.3
194.0	353.5	34.7	34.5	-3.9	32.5	-12.3
105.0	330.5	31.5	27.4	-15.5	22.7	-21.8
196.9	285.9	30.9	8.5	-29.8	0.9	-31.0
197.0	247.8	55.3	-20.9	-51•2	-32 • 9	-44.5
108.0	239.8	75.9	-38.2	-65.5	-53 • 1	-54.1
109.0	238.0	105.5	-55.9	-89 • 4	-76.2	-72.9
110.0	238.6	121.8	-63.5	-103.9	-87.1	-85.1
111.9	240.4	133.3	-65.9	-115.8	-92 • 4	-96.0
112.0	243.5	139.7	-62.2	-125•1	-91 • 1	-105.9
113.0	248•4	141.7	-52.1	-131.8	-82 • 9	-114.9
114.0	256 • 1	136.3	-32.8	-132.3	-64•4	-120.2
115.0	262•1	133.5	-18.3	-132.2	-50.3	-123.6
116.0	266•4	131.3	-8 • 2	-131.0	-40 • 2	-125.0
117.0	269.9	119.3	-0.2	-119.3	-29.6	-115.6
118.0	272•1	114.4	4 • 3	-114.3	-24.0	-111.8
119.0	274•6	103.5	8 • 3	-103 • 1	-17.3	-102.0
120.0	276.8	91.5	10.8	-90.9	-11.9	-90.8
121.0	276•9	84.5	10.1	-83 • 8	-10.8	-83.7
122.0	280.4	68.2	12.3	-67 • 1	-4 • 6	-68.1
123.0	281.7	56.5	11.4	-55.3	-2 • 6	-56.4
124.0	283.6	44.0	10.4	-42.8	-0.5	-44.0
125.0	288•4	30.3	9.5	-28.8	2 • 1	-30.3
126.0	334.5	7.7	6.9	-3.3	5.9	-4.9
127.0	59•6	9.6	4 • 8	8 • 2	6.7	6.8

CONTINUED

ALTITUDE	DIRECTION	SPEED	GEOGR	APHIC	MAGN	ETIC
	WIND	WIND	W	IND COMPON	ENTS (M/S)	
(KM)	(DEG)	(M/S)	N-S	E-W	N-S	E-W
128.0	82.0	20.9	2•9	20.7	7.9	19.3
129.0	90.0	32.3	U • 0	32.3	8.0	31.3
130.0	95•2	46.3	-4.2	46.1	7.3	45.7
131.0	95•8	54.0	-5.5	53.8	7.9	53.5
132.0	97•1	63.7	-7.9	63.2	7.9	63.2
133.0	100.0	70.3	-12.2	69.3	5.2	70.2
134.0	101.9	80.1	-16.5	78.3	3.3	80.0
135.0	103.6	87.7	-20.6	85.3	1.0	87.7
136.0	105.1	88.9	-23.2	85.8	-1 • 4	88.9
137.0	106 • 4	91.0	-25.8	87.3	-3.5	91.0
138.0	107.7	91.6	-27.8	87.3	-5.5	91.5
139.0	104.9	88•4	-22•7	85•4	-1.0	88•4
140.0	106.3	86.9	-24.4	83•4	-3.1	86.8
141.0	105•1	86.3	-22 • 4	83.3	-1 • 2	86.3
142.0	104.8	79.0	-20.3	76•3	-0.9	78.9

WIND SPEED

• UP

TRAIL NO. Y21 19:45:00 MST 19 NOVEMBER 1966 H.A.R.P. YUMA

WIND DIRECTION
• UP

TRAIL NO. Y21 19:45:00 MST 19 NOVEMBER 1966 H.A.R.P. YUMA

UPTRAIL

ALTITUDE	DIRECTION	SPEED	GEOGRAPHIC		MAG	MAGNETIC	
*	WIND	WIND		WIND COMPONENTS			
(KM)	(DEG)	(M/S)	N-S	E-W	N-S	E-W	
91.0	289•8	52.0	17.6	-49.0	5.0	-51.8	
92.0	300.7	54.4	27.8	-46.7	15.4	-52.1	
93.0	345.7	39.7	38.4	-9.8	34.8	-19.0	
94.0	1.5	36.1	36•1	0.9	35.2	-8.0	
95.0	51•4	37.4	23.3	29.2	29.8	22.6	
96.0	76.8	42.1	9.6	40.9	19.4	37.3	
97.0	97•6	35.8	-4 • 7	35.5	4 • 2	35.6	
98.0	124.9	25.4	-14.5	20.9	-8.9	23.8	
99.0	140.8	21.5	-16.7	13.6	-12.8	17.3	
196.0	178•1	10.1	-10.1	0.3	-9.7	2.8	
191.0	319•4	20.5	15.6	-13.3	11.8	-16.7	
102.0	339.5	35.8	33.5	-12.5	29.4	-20.4	
103.0	336.0	31.3	28,46	-12.7	24.6	-19.3	
104.0	298•7	39.4	19.0	-34.6	9.9	-38.2	
105.0	276.1	57.7	6 • 2	-57.4	-8 • 1	-57.2	
106.0	258•2	107.0	-21.8	-104.7	-46.9	-96.1	
197.9	250.9	143.4	-46.9	-135.5	-78.8	-119.8	
108.0	251.9	162.9	-50.7	-154.8	-87.2	-137.6	
109.0	261.3	169.2	-25.6	-167.2	-66•0	-155.8	

DOWNTRAIL

			DOMINATE				
ALTITUDE	DIRECTION	SPEED	GEOG	RAPHIC	MAG	NETIC	
	WIND	WIND	1	NO COMPOI	OMPONENTS (M/S)		
(KM)	(DEG)	(M/S)	N-S	E-W	N-S	E-W	
99.0	140.3	28.0	-21.5	17.9	-16.4	22.6	
100.0	162.2	3.0	-2.9	0.9	-2.6	1.6	
101.0	346.0	9.3	9.0	-2.2	8 • 2	-4.3	
102.0	2 • 1	21.5	21.5	0.8	21.0	-4.5	
103.0	335 • 7	39.3	35.8	-16.2	30.7	-24.5	
194.0	305.4	41.7	24.2	-34.0	15.1	-38.9	
105.0	275.8	60.7	6.1	-60.4	-9.0	-60.0	
106.0	257•2	113.3	-25.1	-110.5	-51.5	-100.9	
107.0	254.9	141.3	-36.8	-136 • 4	-69.2	-123.1	
108.0	254.7	149.8	-39.6	-144.5	-74.0	-130.3	
109.0	264•1	151.6	~15.5	-150.8	-52 • 1	-142 • 3	
110.0	272•7	148.0	$t \bullet 1$	-147.9	-29.5	-149.1	
111.0	282•∪	145.3	3∪•1	-142.2	~5.8	-145.2	

WIND SPEED

- UP
- ▲ DOWN

TRAIL NO. Y22 21:21:29 MST 19 NOVEMBER 1966 H.A.R.P. YUMA

WIND DIRECTION

- UP
- ▲ DOWN

TRAIL NO. Y22 21:21:29 MST 19 NOVEMBER 1966

UPTRAIL

ALTITUDE	DIRECTION	SPEED	GEOG	RAPHIC	MAGI	NETIC	
	WIND	WIND		WIND COMPON	NENTS (M/S	NTS (M/S)	
(KM)	(DEG)	(M/S)	N-S	E-W	N-S	E-W	
90.0	326 • -	44.8	37.5	-24.5	30.3	-33.0	
91.0	327 • 1	44.4	37.5	-23.7	30.5	-32.2	
92.0	348.7	53.1	52.0	-10.4	47.8	-22.9	
93.0	31.1	43.9	37.6	22.7	42.0	12.7	
94,0	54.5	48.1	28.0	39.2	36.8	31.1	
95.0	74 • U	55.3	15.2	53.1	27.8	47.7	
96.0	84.0	54.7	5•7	54 • 4	18.9	51.3	
97.0	93.5	41.9	-2.6	41.8	7.8	41.2	
98.0	50.0	7.8	5.0	6.0	6.3	4.6	
99.0	318.0	43.9	32.6	-29.4	24.4	-36.5	
100.0	315.2	55.7	39.5	-39.3	28.6	-47.8	
101.0	324.2	86.3	70.0	-50.5	55•4	-66.2	
102.0	331.2	97.7	85.6	-47.0	71.4	-66.6	
103.0	327.0	87.0	73.0	-47.3	59.1	-63.8	
104.0	287.1	84.9	25.0	-81 • 1	4 • 3	-34.8	
105.0	271.2	116.1	2 • 5	-116 • 1	-26.2	-113.1	
106.0	266.7	148.5	-8 • 4	-148.3	-44.6	-141.7	
107.0	269•4	166.3	-1.7	-166.3	-42.6	-160.8	
108.0	275.6	166.5	16.2	-165.7	-25.1	-164.6	
109,0	279.2	167.0	26.7	-164.8	$-14 \cdot 7$	-166.3	
116.0	281.7	172.6	35•1	-169.0	-7.6	-172.4	
111.0	283.3	185.4	42.7	-180.4	-3.0	-185.4	

SPEED (m/s)

• UP

TRAIL NO. Y23
22:37:53 MST
19 NOVEMBER 1966
H.A.R.P. YUMA

• +P

TRAIL NO. Y23
22.37:53 MST
19 NOVEMBER 1966
H.A.R.P. YUMA

UPTRAIL

ALTITUDE	DIRECTION	SPEED	GEO	GRAPHIC		NETIC
	WIND	WIND			DNENTS (M/S)	
(KM)	(DEG)	(M/S)	N-S	E-W	N-S	E-W
91.0	4 • 4	57.6	57•5	4 • 4	56.8	-9.9
92.0	27•7	39.9	35.4	18.6	38.9	9.3
93.0	42 • 1	37.2	27.6	25.0	32.9	17.4
94.0	72•2	22.1	6.7	21.0	11.7	18.7
95.0	209.4	22.4	-19.5	-11.0	-21.6	-5.9
96.0	219.2	34.9	-27.1	-22.0	-31.7	-14.7
97.0	234.3	33.7	-19.7	-27.3	-25.8	-21.6
98.0	274.6	39.6	3.2	-39•4	-6.6	-39.0
99.0	291.0	47.2	17.0	-44 • 1	5.6	~46.9
100.0	311.8	55.4	36.9	-41.3	25.6	-49.1
101.0	346•4	62.6	60.9	-14.7	55.4	-29.2
192.0	343.3	42.0	40.3	-12 • 1	36.1	-21.6
193.0	266.5	50.3	-3.1	-50.2	-15.4	-47.9
104.0	258•3	68.7	-13.9	-67.3	-30.0	-61.8
105.0	256•9	82.7	-18.8	-80•5	-38.0	-73.4
106.0	257.1	91.6	-20.5	-89.2	-41.8	-81.4
107.0	253.8	107.4	-29•9	-103.1	-54.4	-92.6
108.0	262.3	133.3	-17.8	-132 • 1	-49.8	-123.7
109.0	270.4	125.5	0.9	-125.5	-30.0	-121.9
110.0	277•2	119.8	15.0	-118.9	-14.7	-118.9
111.0	290.2	100.3	34.7	-94 • 1	10.5	-99.7
112.9	309.0	80.2	50.5	-62.3	33.0	-72.8
113.0	331.0	71.3	62.4	-34.5	52•Û	-48.8
114.0	340.5	72.5	68.4	-24.2	60.3	-40.3
115.0	353.0	70.8	70.3	-8.6	66.0	-25.6
116.0	5•7	64.0	63.7	6 • 4	63.3	-9.5
117.0	46 • 4	56.2	38.8	40.7	47.6	29.9
118.0	70.3	65.7	22.2	61.8	36 • 7	54.4
119.0	74•1	72.8	2∪•0	70.0	36 • 6	62.9
120.0	93.9	86.9	-6.0	86.7	15.5	85.5
121.0	101.3	89.3	-17.5	87.5	4.6	89.1
122.0	105.2	93.3	-24.4	90.0	-1.5	23.2
123.0	109.9	95.6	-32.5	90.0	-9.3	95.2
124.0	114.8	96.9	-40.7	0.88	-17.8	95.3
125.0	119.7	98.6	-48.9	85•7	-26.3	95.1

CONTINUED

ALTITUDE	DIRECTION	SPEED	GEOGR		MAGN	ETIC
	v. IND	WIND	W	IND COMPON	NENTS (M/S)	
(KM)	(DEG)	(M/S)	N-S	E-W	N-5	ヒーw
126.0	124 • 2	100.1	-56 • 3	82.8	-34.2	94.1
127.0	128.5	101.3	-63.1	79.2	-41.7	92.3
128.0	132.6	102.3	-69 • 2	75 • 3	-48.5	90.0
129.0	135.7	102.1	-73.1	71.3	-53.3	87.1
130.0	138 • 6	103.4	-77.6	60.3	-58 • 4	85.3
131.6	141.9	103.7	-81.7	ó+•0	-63.4	82.1
132.0	145.2	103.7	-85.2	59.1	-68.0	78.3
133.0	147.1	132.1	-85.6	55.5	-69 • 3	74.9
134.0	150.0	100.3	-86.8	50.2	-71.8	70.0
135.0	152.0	99.3	-87.7	46 • 6	-73.5	66.8
136.0	153.9	98.2	-88.2	43.2	-74.9	63.6
137.0	155.8	96.9	-88.3	39.7	-75.8	60•2
138.0	157.6	95.8	-88.6	36•5	-76.9	57.2
139.0	159•4	94.2	-80.2	33.1	-77.3	53.8
140.0	161.7	90.4	-85.8	28.4	-76.2	48.6
141.0	162.7	89.4	-85.4	26•6	-76.2	46.8
142.0	164.6	78.3	-75.5	20.8	-68.1	38.7
143.0	165+4	75.6	-73.2	19.1	-66.2	36.5
1 4.0	166.1	71.7	-67.6	17.2	-63.2	33.8
145.0	166.8	67.	-65.5	15.4	-59.7	31.0
146.0	106.7	63.2	-61.5	14.5	-56.0	29.2
147.9	166•2	60.1	-58.3	14.3	-53.0	28.2

WIND SPEED

• UP

TRAIL NO. Y24 23:59:14 MST 19 NOVEMBER 1966 H.A.R.P. YUMA

• UP

TRAIL NO. Y24 23:59:14 MST 19 NOVEMBER 1966 H.A.R.P. YUMA

UNCLASSIFILD				
Security Classification	endangan ing representation of		and the second s	
DOCUMENT CONT			•	
(Security classification of title, body of abuttact and indexing ennotation in 1st be entered when the overall report is classified)				
1. ORIGINATING ACTIVITY (Corporate puther)	24. REPORT SECURITY CLASS			
Space Instruments Research, Inc.	<u>Unc</u> assified		17100	
Atlanta, Georgia		26. GROLP		
3. REPORT TITLE				
UPPER ALIOSPHERE MINDS FROT GUN-LAU	CORED VERTI	CAL PROB	ES (YUTA.	
16-19 HOVEHBER 1966)	TOTAL TENT		20 (10 m)	
TO IS NOT CHIEF ISOS				
4. DESCRIPTIVE NOTES (Type of report or ' inclusive dates)			•	
5. AUTHOR(S) (First name, middle initial, last name)				
	•			
Robert L. Fuller				
S. REPORT DATE	Ta. TOTAL NO. OF	PAGES	75. NO. OF REFS	
June 1967	85		37	
ES. CONTRACT OR GRANT NOUN - U - JUY - MIC- 109 (A)	9a. ORIGINA TOR'S	REPORT NUMB		
,	-			
b. PROJECT NO. ROTE 11014501853C	BRL Contract 169 Report 6			
•				
c.	9b. OTHER REPORT NO(5) (Any other numbers that may be assigned this report)			
	inis tepotij			
d.	ļ			
10. DISTRIBUTION STATEMENT				
This document has been approved for publ	ic release ar	nd sale; if	ts	
distribution is unlimited.		•		
11. SUPPLEMENTARY NOTES	12. SPONSORING MI		ITY	
	Commanding			
			Research Laboratories	
13. ABSTRACT	Acerdeen i	roving Gr	ound, Md. 21005	
	1066	n lumino	us thails wone	
On the night of 18-19 Hovember				
produced between 85km and 167km by from projectiles fired from a smoot				
Trom projectites tired from a shoot	on some	Tuo 3	dditional sate of	
Yuma Proving Ground, Arizona (114.2)	W, 32.0 H)	. 1WO d	duritional Sets of	
four trails each were produced on t	ne nights o	10-17	Hovember 1900 and	
19-20 November 1966. These trails	uere photog	raphed b	y cameras located	
at Yuma and Gila Bend in Arizona and	d at Blythe	, Califo	rnia and have been	
analyzed to yield wind profiles. The	his treport	contains	the tabulated	
wind data for all fifteen trails to	nether with	plots v	ersus altitude of	
wind components, wind speed, and wi	nd heading.	, '		
with components, with speed, and we		•	_	
			Î	

UNCLASSIFIED
Security Classification LINK A LINK D ROLU ROLE ROLE HARP High Altitude Research Project Ionospheric Winds

UNCLASSIFIED

Security Classification