計量経済 I: 宿題 9

村澤 康友

提出期限: 2025年7月15日

注意:すべての質問に解答しなければ提出とは認めない. 授業の HP の解答例の結果を正確に再現すること (乱数は除く). グループで取り組んでよいが,個別に提出すること. 解答例をコピペした場合は提出点を 0 点とし,再提出も認めない. すべての結果を Word に貼り付けて印刷し(A4 縦・両面印刷可・手書き不可・写真 不可・文字化け不可), 2 枚以上の場合は向きを揃えて問題番号順に重ね,左上隅をホッチキスで留めること.

- 1. (教科書 p. 236, 実証分析問題 9-A) データセット「9_1_cig_xt.dta」をパネル・データとして gretl に読み込み, 以下の分析を行いなさい.
 - (a) 教科書 p. 225 の「喫煙本数」を「生活の満足度」で説明する単回帰モデルの 2007 年と 2009 年の推定結果を再現しなさい.
 - (b) 教科書 p. 226 の「喫煙本数」の差分を「生活の満足度」の差分で説明する単回帰モデルの推定結果を再現しなさい. ※変数の変換方法は資料「gretl 入門」を参照.
 - (c) 前問の分析に所得を共変量として加えた重回帰モデルを推定しなさい.
- 2. (教科書 p. 236, 実証分析問題 9-B) データセット「9_2_life_xt.dta」をパネル・データとして gretl に読み込み, 以下の分析を行いなさい.
 - (a) 教科書 p. 228 の「生活の満足度」を「怪我・病気ダミー」と「年収」で説明する重回帰モデルの 2009 年の推定結果を再現しなさい.
 - (b) 教科書 p. 229 の「生活の満足度」の差分を「怪我・病気ダミー」と「年収」の差分で説明する重回 帰モデルの推定結果を再現しなさい.
 - (c) パネル・データによる線形回帰モデルの推定は以下の手順で実行する.
 - i. メニューから「モデル」→「パネル」→「固定効果あるいは変量効果」を選択.
 - ii.「従属変数」を1つ選択.
 - iii.「説明変数(回帰変数)」を選択.
 - iv.「固定効果」か「変量効果(ランダム効果)」をチェック.
 - v.「OK」をクリック.

教科書 p. 231 の固定効果モデルと教科書 p. 233 の変量効果モデルの推定結果を再現しなさい.

※ただ実行して終わるのでなく、データ分析の際は、以下の点に常に注意すること:

分析前 データの数値を確認し、表・グラフ・統計量でデータの特徴を把握する.

分析後 推定値の統計的有意性・符号・大きさを確認し、分析結果を解釈する.

解答例

1. (a) 2007年

モデル 1: 最小二乗法 (OLS), 観測: 1–3022 従属変数: neig

	係教	係数		Error	t-ratio	p値	Ī
const	5.73	678	0.281	568	20.37	0.000	00
life	-0.68	5414	0.102	435	-6.691	0.000	00
Mean depende	nt var	3.9	66992	S.D.	dependen	t var	5.346335
Sum squared re	esid	850	88.68	S.E.	of regress	ion	5.308018
R^2		0.0	14609	Adji	isted \mathbb{R}^2		0.014282
F(1,3020)		44.	77234	P-va	lue(F)		$2.63e{-11}$
Log-likelihood		-933	31.411	Akai	ke criterio	n	18666.82

2009年

Schwarz criterion

モデル 2: 最小二乗法 (OLS), 観測: 1–3022 従属変数: neig

係数

18678.85 Hannan-Quinn

Std. Error t-ratio

18671.15

р値

const	5.07249	0.2727	02	18.60	0.000	0
life	-0.507946	0.0946	631	-5.366	0.000	0
Mean depender	nt var 3.6	91016	S.D. d	lependent	tvar	4.964790
Sum squared re	sid 737	761.82	S.E. o	f regressi	on	4.942109
\mathbb{R}^2	0.0	09444	Adjus	ted \mathbb{R}^2		0.009116
F(1,3020)	28.	79208	P-valu	$\operatorname{ne}(F)$		8.67e-08
Log-likelihood	-911	15.560	Akaik	e criterio	n	18235.12
Schwarz criterio	on 182	247.15	Hanna	n-Quinn	i.	18239.44

(b) 差分の単回帰

モデル 3: Pooled OLS, 観測数: 3022 クロスセクションユニット数: 3022 時系列の長さ= 1 従属変数: d_ncig

係数 Std. Error *t*-ratio p値 d_life -0.287266 0.109858 -2.615 0.0090

Mean dependent var -0.275976S.D. dependent var 5.322167Sum squared resid 85607.61 S.E. of regression 5.323299 Uncentered \mathbb{R}^2 0.002258Centered \mathbb{R}^2 -0.000425 F(1,3021)P-value(F)6.8376070.008970Log-likelihood -9340.598Akaike criterion 18683.20 Schwarz criterion 18689.21 Hannan-Quinn 18685.36

(c) 差分の重回帰

モデル 4: Pooled OLS, 観測数: 3022 クロスセクションユニット数: 3022 時系列の長さ= 1 従属変数: d_ncig

	係数		Std. Error		t-ratio	p値
d_{life}	-0.30	0654	0.10	9478	-2.746	0.0061
d _income	0.00	314364	0.00	00643058	4.889	0.0000
Mean depender	nt var	-0.275	976	S.D. dep	endent var	5.322167
Sum squared re	esid	84935	6.49	S.E. of re	egression	5.303238
Uncentered \mathbb{R}^2		0.010	092	Centered	R^2	0.007429
F(2,3020)		15.39	386	P-value(.	F)	2.23e-07
Log-likelihood		-9328.	688	Akaike c	riterion	18661.38
Schwarz criteri	on	18673	3.40	Hannan-	Quinn	18665.70

2. (a) 2009年

モデル 1: 最小二乗法 (OLS), 観測: 1–3020 従属変数: life

	係数		Std. Error		t-ratio	р値
const	2.67366		0.030	05300	87.57	0.0000
shock	-0.124873	3	0.034	16006	-3.609	0.0003
income	0.000282	2184	7.100	062e-005	3.974	0.0001
Mean depend	lent var	2.703	3974	S.D. dep	endent var	0.938548
Sum squared	resid	2633	.179	S.E. of re	egression	0.934227
\mathbb{R}^2		0.009	9842	Adjusted	R^2	0.009186
F(2,3017)		14.99	9441	P-value(.	F)	$3.31\mathrm{e}{-07}$
Log-likelihoo	d -	-4078	.226	Akaike c	riterion	8162.452
Schwarz crite	erion	8180	.491	Hannan-	Quinn	8168.939

(b) 差分

モデル 2: Pooled OLS, 観測数: 3020 クロスセクションユニット数: 3020 時系列の長さ= 1 従属変数: d_life

	係	数	S	td. Error	t-ratio	р値
const	0.215365		0.0	313550	6.869	0.0000
shock	-0.140	117	0.0)484445	-2.892	0.0039
d_{income}	0.000	223286	0.0	000161409	1.383	0.1667
Mean depende	nt var	0.1642	238	S.D. depe	endent var	1.310712
Sum squared r	esid	5168.7	730	S.E. of re	gression	1.308893
R^2		0.0034	134	Adjusted	R^2	0.002773
F(2,3017)		5.1973	346	P-value(I	F)	0.005581
Log-likelihood		-5096.6	523	Akaike cr	iterion	10199.25
Schwarz criteri	ion	10217	.29	Hannan-	Quinn	10205.73

(c) 固定効果

モデル 1: 固定効果モデル, 観測数: 6040 クロスセクションユニット数: 3020 時系列の長さ= 2 従属変数: life

	係数	標準設	误差 t-ratio	p 値	
const	2.48153	0.04532	39 54.75	0.0000	
y2	0.215365	0.03135	6.869	0.0000	
$shock_y2$	-0.140117	0.04844	-2.892	0.0039	
income	0.0002232	286 0.00016	1.383	0.1667	
Mean depe	endent var	2.621854	S.D. dependen	nt var 0.95	2447
Sum squar	red resid	2584.365	回帰の標準誤差	0.92	5527
LSDV \mathbb{R}^2		0.528256	Within \mathbb{R}^2	0.01	8844
F(3022, 30	17)	1.117939	P-value (F)	0.00	1099 名前の付けられた説明
Log-likelih	ood	-6006.637	Akaike criterio	on 1805	59.27
Schwarz cı	riterion	38331.99	Hannan-Quin	n 2509	97.00
$\hat{ ho}$		-1.000000	Durbin-Watso	n 1.99	9449

変数についての結合検定 (Joint test on named regressors) -

検定統計量: F(3,3017) = 19.3148

なお、p値 (p-value) = P(F(3,3017) > 19.3148) = 2.10651e-12

定数項がクロスセクションユニット (グループ) ごとに異なるかどうかの検定 -

帰無仮説: 各クロスセクションユニットは共通の定数項を持つ

検定統計量: F(3019, 3017) = 1.08635

なお、p値(p-value) = P(F(3019,3017) > 1.08635) = 0.0114664

変量効果

モデル 2: 変量効果モデル (GLS), 観測数: 6040 クロスセクションユニット数: 3020 時系列の長さ= 2

従属変数: life

	係数		標	準誤差	z	p 値	
const	2.45439		0.02	63360	93.20	0.0000	
shock	0.0153	3078	0.03	49948	0.4374	0.6618	
y2	0.2129	96	0.03	10253	6.865	0.0000	
$shock_y2$	-0.1397	777	0.04	84373	-2.886	0.0039	
income	0.0003	303324	5.20	242e-005	5.830	0.0000	
Mean depend	ent var	2.621	1854	S.D. depe	endent var	0.952447	
Sum squared resid		5393.587		回帰の標準誤差		0.945288	
Log-likelihood	1	-8228	.545	Akaike cı	riterion	16467.09	
Schwarz crite	rion	1650	0.62	Hannan-	Quinn	16478.73	
$\hat{ ho}$		-1.000	0000	Durbin-V	Vatson	1.999449	
$\hat{\sigma}_v^2 = 0.0372258$							
$\hat{\sigma}_{\varepsilon}^2 = 0.856601$							
$\theta = 0.0408154$							

名前の付けられた説明変数についての結合検定 (Joint test on named regressors) –

漸近的検定統計量: $\chi^2(4)=95.628$ なお、p 値 (p-value) = 8.37905e-20

ブロイシュ=ペーガン (Breusch-Pagan) 検定 -

帰無仮説: 個別誤差 (unit-specific error) の分散は 0 である

漸近的検定統計量: $\chi^2(1) = 5.22889$ なお、p 値 (p-value) = 0.0222147

ハウスマン (Hausman) 検定 –

帰無仮説: GLS 推定値は一致性を持つ 漸近的検定統計量: $\chi^2(1)=0.27467$ なお、p 値 (p-value) = 0.600216