

WLR-711E 扫描式激光传感器 上位机软件说明书 V1.0

北京万集科技股份有限公司

1、简述

感谢使用北京万集科技股份有限公司的扫描式激光传感器产品,本文档为WLR-711E型号产品配套使用的上位机软件说明书,本说明书不适于其他型号的扫描式激光传感器产品。以下为上位机软件主界面:

图 1.1 上位机软件主界面

2. 各模块介绍

本上位机软件的主界面分成 3 部分,波形显示界面、状态查询界面、参数设置界面。该 3 部分由中间的隔断条进行分隔,可调整隔断条的位置,对各界面的窗口进行放大或缩小。

2.1 上位机版本号查询

2.2 网络连接

上位机软件需要进行网络连接, WLR-711E 产品采用 TCP 连接方式进行数据的通信,出厂默认 Ip 地址为 192.168.0.2,激光器 Ip 与电脑 Ip 必须处于同一网段,具体参考如下设置:

图 2.2.1 电脑本地 Ip 设置方式 1

图 2.2.2 电脑本地 Ip 地址设置方式 2

确定 Ip 后,点击【监控】按钮,弹出以下对话框:

图 2.2.3 点击监控按钮弹出的对话框

连接:产品出厂默认服务器 Ip 为 192.168.0.2 ,端口号为 2110,若没有改变产品的出厂 Ip,则可直接点击【连接】即可连接上。

广播:在连接多台设备或忘记 Ip 地址的情况下,可点击【广播】按钮,上位机软件将不断的获取与电脑已经连接的产品的 Ip,对于相同的 Ip、端口号及 Mac 地址列表中只会显示一次不会重复显示,如下图所示。

图 2.2.4 广播得到的 Ip 地址

若已经忘记了 Ip,通过广播得到之后,如果需要连接激光器 Ip 和端口号为广播得到的最后一个 Ip 和端口号则不需要手动修改,关闭广播后直接点击【连接】即可;如果需要连接的激光器不是广播得到的最后一个 Ip 和端口号激光器则需手动修改服务器 Ip 界面参数,也可选中广播列表中一行结果,点击右键选择【Ip 写入】功能将 Ip 设置到服务器 Ip 参数中。

图 2.2.5 服务器 Ip 设置界面

2.3 多端口连接

本产品拥有 2 个可供连接其他设备的 TCP 端口,可同时使用,其中一个端口默认 2110 可变并且不可为 7070;另一个为 7070 端口,固定不可更改。例如需要同时连接 2 台不同电脑,根据激光器 Ip 和端口号,两台电脑的上位机软件需要输入激光器的 Ip,端口号则需要分别输入 2110 和 7070,则可以实现一台激光器与两台设备同时连接,但是 7070 端口不可更改且不能实现单点波形功能。

因此该端口不建议使用。

2.4 应用功能

2.4.1 扫描波形

观察波形显示界面窗口,有极坐标系与直角坐标系两种显示:

极坐标系: 获得扫描范围内不同角度下,被测物体与 WLR-711E 产品之间的距离。

直角坐标系:将极坐标系转换为直角坐标系,转换时以产品的发光点为零点,与显示选项中零点横坐标的数值设置构成 Y 轴,进行转换。

双击波形显示界面窗口,弹出扫描波形数据设置对话框:

图 2.4.1.1 扫描波形数据设置对话框

单帧获取:点击一次则获取一帧扫描数据。

连续获取:点击一次则不断的获取扫描数据。

测量选项: 勾选开启功能,将在桌面上生成测量 excel 文件,选择扫描波形中的测量点的坐标,上位机将自动求得该点的间隔框中输入的帧数,如 100 帧数据的最大值、最小值和平均值,待数据稳定后,点击保存可将当前测量值存入生成的 excel 文件中。勾选修正,可以将当前极坐标中距离小于 20mm 的点修

改为数据大于 20mm 的前一个点的值相同,起到一定的扫描波形"滤波"作用,该操作只为上位机软件操作,并没有改变产品的真实输出值。

显示选项:

间隔包数:设置绘图的间隔包数,最小设置为 1,但设置为 1 时,每 20ms 进行绘图,可能导致电脑运行卡顿,具体情况取决于电脑本身的处理性能。

屏显包数:设置将多少包数据绘制到一张图上,便于查看不同包数据之间的 异同。

实测间隔: 丢帧情况测试,产品输出的扫描数据帧协议中含有时间戳,在连续获取数据时,由于电机转速为 50Hz,数据帧之间的时间间隔应该为 20ms,因此通过时间戳的判断即可得到是否出现的丢帧,每丢一帧数据,实测间隔加 1。

最大测距范围:滤除预期距离以外的测距数据,便于观察预期之内的数据,超过最大测距范围的测距数据被修改为最大测距的设定值,默认为 20 米。

零点横坐标: 由极坐标转换为 XY 坐标时,必须从极坐标中选择一个角度 作为零点横坐标。

统计数据:显示接收到的数据包数。

清除数据:清除绘图窗口中的数据。

保存数据:对数据进行保存。

读取数据:对已经保存的数据进行读取,播放。

2.4.2 运行状态查询

图 2.4.2.1 运行状态显示

主控版本号:区分不同版本的产品主控 ARM 程序。

计时版本号:区分不同版本的 FPGA 程序。

硬件版本号:生产的批号,便于生产追踪。

通信状态:网络连接后进度条流动显示通信正常,进度条停止流动显示则通信异常。

零点上升沿时间:产品内部零点的前沿计时值,分为高低两路。

零点脉宽:产品内部零点的脉宽值,分为高低两路。

激光使能: 开启表示激光正在发光; 关闭表示激光停止发光。

加热状态: 已加热表示程序中开启加热功能; 未加热表示程序中没有开启加热。电机温度检测低于-5℃ , 加热开启, 否则加热关闭。

复位参数:复位次数为激光器的总复位次数,软件复位类型包括断电复位、 看门狗复位、软件复位,软件复位类型显示最近十次的复位。

图 2.4.2.2 复位次数查询界面

2.4.3 应用设置

扫描起始角度(°):	90	串口波特率:	115200 🔻	单点/扫描:	扫描	参数下载
扫描终止角度(°):	270	模式:	0.5°, 50⊦ ▼	通道选择:	高阈值 🔻	读取参数
扫描点数:	360	看门狗配置:	开启 ▼	高回波数:	3	6 5. 4%35.4%
码盘零刻度偏移:	0	错误修正:	修正 ▼	低回波数:	3	重启设备
高阈值电压 <mark>(V)</mark> :	1	修正表状态:	修正	低整体偏移:	0	
低阈值电压(V):	0.15	时间/距离:	距离	高整体偏移:	0	
激光高压(V):	80	硬件版本号:	711E-1702-50			

图 2.4.3.1 应用设置界面

扫描起始角度:以电机扫描产品内部零点为0°,发光的起始角度。

扫描终止角度: 以电机扫描产品内部零点为 0°, 发光的终止角度。扫描的终止角与扫描起始角之间角度共 180°。

看门狗配置:使用的 ARM 芯片内部狗,选择开启或关闭,建议保持开启。

模式: 扫描分辨率, 可选 0.5° 50Hz 或 0.25° 50Hz。

高、低回波数:多脉冲计时设置,高阈值至少设置为 1 重,低阈值至少为两重,程序默认均为 3 重。

码盘零刻度偏移:由于码盘与负载装配偏差,可能导致码盘零点的位置与扫描零点的位置不对应,通过零点偏移进行调整。

高整体偏移: 高阈值通道测距数据的整体偏移。

低整体偏移: 低阈值通道测距数据的整体偏移。

单点/扫描:激光器分为单点模式与扫描模式,单点模式时电机不转,扫描模式时电机旋转。

通道选择:选择高阈值、低阈值或全通道输出。

激光高压:激光驱动的高压值。

高阈值电压:高阈值通道的阈值电压配置值。

低阈值电压:低阈值通道的阈值电压配置值。

错误修正:修正,将 FPGA 输出的异常值进行编号,知道异常状态;不修正,不对 FPGA 的输出值进行处理,保持 FPGA 的实际输出。因此在目前所有异常情况下均不会输出为 0 的数据,若出现为 0 的数据,则需继续考虑增加异常状态。

硬件版本号: 生产的批号, 便于生产追踪。

时间/距离:激光器扫描数据输出的类型。

2.4.4 生产设置

网络配置——			_				
设备IP:	192 . 168 .	2.2	设备子网掩码	255 . 25	55 . 255 . 0	设备号端口号	号: 2110
默认网关:	192 . 168 .	2 . 1		F8-B5-68-9	0-00-FF	心跳:	关闭
	,			,		读取参数	下载参数
APD参数配置						 li式 ————	
击穿电压(V):	200	- 电压衰调	城系数: 0.6		设置值(V):		开启测试
击穿电压温度	(°C): 25	读取参	数 下载参	数	min:0	max:280	配置
电机转速参数	で						
PID-P: 6	转向:	正转	读取	数	设置值(V): [)	开启测试
PID-I: 0.1	开闭环:	闭环 💽	· 参数 ⁻	载			置置
PID-D: 1	 电机转速:	3000			min:0	max: 120	

图 2.4.4.1 生产设置界面

网络配置:

设备端口号: TCP 端口号设置,可根据需求设置。

设备子网掩码: TCP 子网掩码, 可根据需求设置。

设备默认网关: TCP 默认网关,可根据需求设置。

设备 IP: TCP IP 地址设置,可根据需求设置。

MAC 地址: MAC 地址设置,保证每台之间 MAC 地址不冲突。

APD 参数配置:

击穿电压:根据每台设备 APD 不同的参数进行设置。

击穿电压温度:根据每台设备 APD 不同的参数进行设置。

电压衰减系数:固定为 0.6, 无研发人员同意, 不可更改。

电机转速参数配置:

PID P/PID-I/PID-D: 设置电机转速的 PID 参数。

转向设置:正向:面向产品的航空插头接线端,电机顺时针方向旋转。反向:面向产品的航空插头接线端,电机逆时针方向旋转。

APD 击穿电压测试:某些测试需要对 APD 高压进行一定的调整,可以设定想要输出的高压值,并进行配置后输出。

激光功率测试:配置激光驱动的输出功率对应的高压,高压改变输出功率即改变,电机开始测试,同时用功率计测量激光的输出功率,不断的增加高压输出, 当输出功率达到预设功率时,此时的高压值即为日后使用的高压值。

2.4.5 秘钥下载

应用设置 │ 生产设置 密钥下载 主控程序下载 灰尘检	测		
	-串口设置		
	串口号:	COM1	•
	波特率:	9600	打开串口
	发行设备:		
	发行		
	状态查询		
	清空信息	_	
		_	

图 2.4.5.1 发行软件界面

该环节只允许生产使用,具体操作方法见生产工艺文档。

2.4.6 主控程序下载

应用设置│生产设置│密钥下载│主控程序	下载 灰尘检测	
目标中: 192 . 168 . 0 . 端口号: 6060	2 检测端口	
./data.bin	选择文件 开始下载	停止
操作记录		
J		₹

图 2.4.6.1 主控程序下载界面

主控程序下载采用 UDP 方式,端口号为 6060,选择需要下载程序的 bin 文件,保持目标 Ip 地址与激光器 Ip 地址一致,点击【检测端口】,显示连接后点击【开始下载】。

2.4.7 灰尘检测

图 2.4.7.1 灰尘检测界面

查询结果共包含十个通道,见面显示为十个通道的电压值;

若需初始化透过率参数,可点击【透过率初始化】、【透过率初始化】按钮用

于出厂标定,所以该按钮需要慎重点击;点击【透过率初始化】会弹出提示文字:请确定激光器处于常温下,并保持滤光片表面清洁,请慎重选择【继续】【退出】。

2.4.8 单点波形

图 2.4.8.1 单点波形数据接收设置界面

单点波形主要用于生产进行数据修正, WLR-711E 需要进行两次修正,分别对高低阈值通道进行修正。具体修正方法见工艺附件。

2.4.9 电机转速测试

图 2.4.9.1 电机转速测试界面

电机速度测试为测试当前电机的转速,电机开启检测,对电机转速进行显示。