A tensão inversa de ponta de um rectificador de onda completa deve:

a)	ser suficientemente pequena para que o díodo dure muito	
ъ)	ser pelo menos igual a metade da tensão alternada que existe nos terminais do secundário do transformador	
c)	ser pelo menos igual à tensão máxima existente nos terminais do secundário do transformador	⊠
d)	variar com a tensão aplicada	
Not	a: 2 1 3 5 5 5 5 10 5 5 5 5 10 5 5 5 5 10 5 5 5 5	

Ao valor máximo da tensão que o elemento rectificador pode suportar em sentido inverso ao da condução chama-se "máxima tensão inversa de ponta".

Considerando o instante em que o ponto l é positivo em relação ao ponto 8 e que entre l e 8 existem, por exemplo, 100 Vmax, esses 100 V ficam aplicados entre os pontos 10 e 9 e, portanto, no sentido inverso da condução (considera-se o sentido convencional), uma vez que entre os pontos 2 e 3 não há praticamente resistência (o dícdo, no sentido da condução, não oferece resistência).

2.8.7.1

Considere o circuito:

o qual constituiră um rectificador de onda completa se se inverter o diodo:

a)	фī	,	
c)	άĵ		
al	34		X