

Class period 14

Visualize_Data_Distribution part3

Quiz

- ให้นักศึกษาโหลดข้อมูลข้อมูลสถิติการเดินทางบนโครงข่ายคมนาคม ปี 2563 2567จาก
- https://datagov.mot.go.th/dataset/9b9970e9-edd8-4518-99ae-2b81115068c2/resource/71a552d0-0fea-4e05-b78c-42d58aa88db6/download/passengers.xlsx
- และโหลดลง google colab
- ลองดึงเฉพาะข้อมูล ทาอากาศยานสุวรรณภูมิ ขาออกประเทศและสร้างตารางเก็บไว้ในตัวแปรใหม่

plt.plot()

- ฟังก์ชั่น plot สามารถวาด scatter ได้เหมือนกัน และการใช้งานจะยืดหยุ่นกว่า สามารถกำหนดให้ลากเส้นเชื่อมจุด scatter แต่ ละจุดได้
- plt.plot() input ตัวที่ 3 คือ ตัวกำหนดหน้าตาของ marker เช่น
- plt.plot(df['PetalLength'][:50],df['SepalLength'][:50],'o-r')
- input ตัวที่ 3 'o-r' หน้าตาmarker/ลักษณะของเส้นเชื่อมจุด/สี
- o คือ กำหนดหน้าตา marker เป็นสัญลักษณ์วงกลม
- - คือ กำหนดสัญลักษณ์ที่จะใช้ลากเส้นเชื่อมจุดเป็นเส้นทึบ
- r คือ ตัวย่อของแม่สีแดง

ตัวอย[่]างการใช้งาน plt.plot()

• plt.plot(df['PetalLength'][:50],df['SepalLength'][:50],'o-r',alpha=0.5)

ตัวอย[่]างการใช้งาน plt.plot()

• plt.plot(df['PetalLength'][:50],df['SepalLength'][:50],'*:b',alpha=0.5)

ตัวอยางการใช้งาน plt.plot() แบบ plot กราฟซ้อนกัน

- plt.plot(df['PetalLength'][:50],df['SepalLength'][:50],'o--r',alpha=0.5)
- plt.plot(df['PetalLength'][50:100],df['SepalLength'][50:100],'x-c',alpha=0.5)
- plt.plot(df['PetalLength'][100:],df['SepalLength'][100:],'*:m',alpha=0.5

3D scatter

- การสร้างกราฟ scatter 3 มิติ สามารถสร้างได้โดยใช้คำสั่ง
- ax = plt.axes(projection = "3d") เพื่อกำหนดให้สร้างกราฟจำลอง 3 มิติ
- การใช้งาน input แกนX แกนY แกนZ และใส่ parameter ปรับแต่งกราฟ
- ax.scatter(แกนX,แกนY,แกนZ,สี,สามารถใช้ parameter:s เพิ่ม nomination ที่ 4)
- เช่น
- ax.scatter(df2['PetalLength'],df2['SepalLength'],df2['SepalWidth'],c=df2['Name'],s=80*df2['PetalWidth'])

ตัวอย่างการใช้งาน ax.scatter สร้าง 3D scatter

- ax = plt.axes(projection = "3d")
- ax.scatter(df2['PetalLength'],df2['SepalLength'],df2['SepalWidth'],c=df2['Name'],s=80*df2['PetalWidth'])

Bubble Chart

- กราฟฟองสบู[่] คือ กราฟ scatter ที่ใช[้]ขนาดของ marker ในการสื่อปริมาณของข้อมูลในการดูความหลากหลายของข้อมูล เช่น ต[้]องการดูความหลากหลายของดอกไม[้]พันธุ์ Iris-setosa
- plt.scatter(df['PetalLength'][:50],df['SepalLength'][:50],s=900* df['PetalWidth'][:50],c='r',alpha=0.5)

ตัวอย่างการนำข้อมูลตารางมาสร้าง Bubble Chart

- โหลดข้อมูล ข้อมูลสถิติการเดินทางบนโครงข่ายคมนาคม ปี 2562 จาก
- https://datagov.mot.go.th/dataset/9b9970e9-edd8-4518-99ae-2b81115068c2/resource/ad077d2d-5378-4e8a-b524-4814348df439/download/passenger-2019.xlsx
- โหลดข้อมูลลง google colab
- import pandas as pd
- data = pd.read_excel('/content/passenger-19.xlsx')
- data

ตาราง

	รูปแบบ การเด็น ทาง	วัตถุประสงค์	สาธารณะ/ ส่วนบุคคล	หน่วย งาน	ยานพาหนะ/ท่า	เดือน	หน่วย	ปริมาณ
0	ทางถนน	การเดินทางระหว่าง จังหวัด	สาธารณะ	บขส.	รถ ขบส. และ รถ ร่วม	มกราคม	คน	5236331
1	ทางถนน	การเดินทางระหว่าง จังหวัด	สาธารณะ	ขบ.	รถหมวด 3	มกราคม	คน	2550864
2	ทางถนน	การเดินทางระหว่าง จังหวัด	ส่วนบุคคล	ทล.	รถยนต์เฉพาะ 4 ล้อ (10 จุดสำรวจ)	มกราคม	คัน	28907234
3	ทางถนน	การเดินทางระหว่าง จังหวัด	ส่วนบุคคล	กทพ.	รถยนต์ทุกประเภท (10 จุดสำรวจ)	มกราคม	คัน	56404661
4	ทางถนน	การเดินทางภายใน จังหวัด/กรุงเทพ	สาธารณะ	ขบ.	รถหมวด 4	มกราคม	คน	108716
367	ทาง อากาศ	การเดินทางระหว่าง ประเทศ	สาธารณะ	ทอท.	ท่าอากาศยาน ตอนเมือง ขาออก ประเทศ	ธันวาคม	คน	744031
368	ทาง อากาศ	การเดินทางระหว่าง ประเทศ	สาธารณะ	ทอท.	ท่าอากาศอื่น ๆ ของ ทอท.ขาเข้า ประเทศ	ธันวาคม	คน	755055
369	ทาง อากาศ	การเดินทางระหว่าง ประเทศ	สาธารณะ	ทอท.	ท่าอากาศอื่น ๆ ของ ทอท. ขาออก ประเทศ	ธันวาคม	คน	682621
370	ทาง อากาศ	การเดินทางระหว่าง ประเทศ	สาธารณะ	ทย.	ท่าอากาศยาน ภูมิภาด ขาเข้า ประเทศ	ธันวาคม	คน	72067
371	ทาง อากาศ	การเดินทางระหว่าง ประเทศ	สาธารณะ	ทย.	ท่าอากาศยาน ภูมิภาค ขาออก ประเทศ	ธันวาคม	คน	59594

372 rows × 8 columns

ขั้นตอนการ clean และเลือกข้อมูล

- เช็คและ drop ข้อมูลที่ missing
- data drop = data.dropna()
- data_drop
- ต้องการสร้าง Bubble Chart ดูปริมาณของข้อมูลเดือนมกราคม เทียบระหว่าง 'รถ ขบส. และ รถร่วม', 'รถหมวด 3' และ 'รถยนต์เฉพาะ 4 ล้อ (10 จุดสำรวจ)'
- เลือกเฉพาะข้อมูลปริมาณของ 'รถ ขบส. และ รถร่วม', 'รถหมวด 3' และ 'รถยนต์เฉพาะ 4 ล้อ (10 จุดสำรวจ)' ด้วย iloc และ คูณข้อมูลปริมาณด้วย 0.001 เนื่องจากตัวเลขปริมาณมากเกินไป
- 0.001 * data drop.iloc[:3,7]

```
0 5236.331
```

1 2550.864

2 28907.234

Name: ปริมาณ, dtype: float64

ขั้นตอนสร้าง Bubble Chart

- import ฟังก์ชั่นที่ต้องการใช้งาน
- import matplotlib
- from matplotlib import pyplot as plt
- plt.scatter([0,100,200],[200,200,200],s=list(0.001*data_drop.iloc[:3,7]),
 alpha=0.5)
- สร้างกราฟ scatter โดยกำหนดจุด 3 จุดอยู่ตำแหน่ง แกนx ที่ 0,100,200 ตามลำดับและตำแหน่ง แกนy ที่ 200 ทั้ง 3 จุด จากนั้นกำหนด parameter:s เป็น list ปริมาณข้อมูลทั้ง 3 ข้อมูลที่ต้องการเปรียบเทียบ และกำหนดความโปร่งแสงเป็น 50%

ผลลัพธ์จะได้ (ไม่ค่อยสวยงาม) ปรับแต่งกราฟต่อ

• plt.scatter([0,100,200],[200,200,200],s=list(0.001*data_drop.iloc[:3,7]),a lpha=0.5)

plt.xlim() กำหนดความยาวของแกน x

- สามารถกำหนดความยาวของแกน x เองได ้ เนื่องจากขนาดจุดมันล้นกรอบของกราฟ
- โดยใช้คำสั่ง plt.xlim()เช่น
- plt.scatter([0,100,200],[200,200,200],s=list(0.001*data_drop.iloc[:3,7]), alpha=0.5)
- plt.xlim((-50,300));

กำหนดขนาดความกว้างความยาวของรูปกราฟ

- แก้จุดซ้อนกันด้วย
- matplotlib.rcParams['figure.figsize']=[8,5]
- ทำงานใน memory กำหนดขนาดของรูปกราฟ กว้าง*ยาว ตัวอย[่]าง กว้าง 8 ยาว 5
- กลับไปรันโค้ดก่อนหน้านี้อีกรอบ

