3 Lineare Ausgleichsrechnung

- (3.1) Sei $A \in \mathbb{R}^{K \times N}$ und $b \in \mathbb{R}^K$. Dann gilt:
 - $x \in \mathbb{R}^N$ minimiert $|Ax b|_2 \iff A^T Ax = A^T b$.
- (3.2) Zu $A\in\mathbb{R}^{K\times N}$ mit R= rang(A) existieren Singulärwerte $\sigma_1,...,\sigma_R>0$ und eine Singulärwertzerlegung

$$A = V \Sigma U^T$$

mit $V \in \mathbb{R}^{K \times K}$, $U \in \mathbb{R}^{N \times N}$ orthogonal und $\Sigma \in \mathbb{R}^{K \times N}$ mit $\Sigma[r,r] = \sigma_r$ für r = 1,...,R und $\Sigma[k,n] = 0$ sonst.

- (a.3) $A^+ = U\Sigma^+V^T$ ist die *Pseudo-Inverse* mit $\Sigma^+ \in \mathbb{R}^{N \times K}$ mit $\Sigma^+[r,r] = 1/\sigma_r$ für r=1,...,R und $\Sigma^+[n,k] = 0$ sonst.
- $_{(3.4)}$ $x = A^+b$ löst die Normalengleichung $A^TAx = A^Tb$.
- (3.5) Sei $A \in \mathbb{R}^{K \times N}$ und $b \in \mathbb{R}^K$.

Dann gilt für die Tikhonov-Regularisierung mit $\alpha > 0$:

 $x \in \mathbb{R}^N$ minimiert $|Ax - b|_2^2 + \alpha |x|_2^2 \iff (A^T A + \alpha I_N)x = A^T b$.

(3.6) Es gilt
$$\lim_{\alpha \to 0} (A^T A + \alpha I_N)^{-1} A^T b = A^+ b$$
.

Ein schlecht konditioniertes Gleichungssystem

Wir betrachten das lineare Gleichungssystem Ax = b mit der Hilbertmatrix

$$A = \left(\frac{1}{m+n+1}\right)_{m,n=0,\dots,N} \in \mathbb{R}^{N+1 \times N+1}$$

und der rechten Seite
$$b = \left((-1)^n \left(\log(2) + \sum_{m=1}^n (-1)^m\right)\right)_{n=0,\dots,N} \in \mathbb{R}^{N+1}.$$

Die exakte Lösung lautet:

Ν	<i>x</i> ₀	<i>x</i> ₁	<i>X</i> ₂	<i>X</i> ₃	<i>x</i> ₄	<i>X</i> ₅	<i>x</i> ₆
1	0.93	-0.48					
2	0.99	-0.80	0.33				
3	1.00	-0.94	0.66	-0.22			
4	1.00	-0.98	0.86	-0.53	0.15		
5	1.00	-1.00	0.95	-0.77	0.42	-0.11	
6	1.00	-1.00	0.98	-0.90	0.67	-0.32	0.07

(Beispiel aus Kress: Numerical Analysis)

Ein schlecht konditioniertes Gleichungssystem

Stören wir nun aber die rechte Seite geringfügig, indem wir log(2) nur bis auf 5 Nachkommastellen auswerten, so erhalten wir folgende Lösung:

Ν	<i>x</i> ₀	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₄	<i>x</i> ₅	<i>x</i> ₆
1	0.93	-0.48					
2	0.99	-0.81	0.33				
3	1.00	-0.96	0.70	-0.25			
4	1.01	-1.16	1.63	-1.70	0.72		
5	1.06	-2.74	12.68	-31.16	33.87	-13.26	
6	1.39	-16.58	151.10	-584.81	1071.96	-926.77	304.50

Also: Eine geringfügige Störung der Daten führt zu einer großen Störung des Ergebnisses. Der Grund dafür liegt in der schlechten Kondition der Hilbertmatrix. Diese ist in der Spektralnorm:

Ν	1	3		5	6
$\kappa_2(A)$	19.28	524.06	1.55 <i>e</i> + 04	4.77 <i>e</i> + 05	1.495 <i>e</i> + 07

(Beispiel aus Kress: Numerical Analysis)

Invertierung der Hilbert-Matrix (Matlab)


```
>> H = hilb(3); IH = inv(H); IH(1,1:3)
ans = 9.000000000000003 - 36.00000000001 30.00000000001
>> H = hilb(5); IH = inv(H); IH(1,1:3)
>> H = hilb(7); IH = inv(H); IH(1,1:3)
ans = 49.0000000578711 - 1176.00000232576 8820.00002248178
>> H = hilb(9); IH = inv(H); IH(1,1:3)
ans = 80.9999332549633 - 3239.99529943927 41579.919225348
>> H = hilb(11); IH = inv(H); IH(1,1:3)
ans = 120.91751059331 -7251.2942628623 141342.563141014
```

Ein schlecht konditioniertes Gleichungssystem

Wir können die Kondition verbessern, indem wir die Tikhonov-Regularisierung auf die Hilbertmatrix anwenden, d.h.

$$x^{\alpha} = (A^T A + \alpha I_N)^{-1} A^T b.$$

Regularisieren wir mit einem Parameter $\alpha = 10^{-10}$, so erhalten wir

Ν	x ₀	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	X ₄	<i>x</i> ₅	<i>x</i> ₆
1	0.93	-0.48					
2	0.99	-0.81	0.33				
3	1.00	-0.95	0.69	-0.24			
4	0.99	-0.89	0.47	0.06	-0.14		
5	1.00	-0.91	0.52	0.02	-0.18	0.04	
6	1.00	-0.94	0.58	0.08	-0.25	-0.17	0.20