Label Informed Attributed Network Embedding

WSDM 2017.

Xiao Huang Texas A&M University College Station

Jundong Li Arizona State University Xia Hu
Texas A&M University
College Station

Attributed networks

Different from plain networks in which only node-to-node interactions and dependencies are observed, each node in an attributed network is often associated with a rich set of features. such as academic networks and health care systems.

ANE targets at leveraging both network proximity and node attribute affinity.

Related Work

- Propose a novel framework LANE, which can affiliate labels with the attributed network and smoothly embed them into a low-dimensional representation by modeling their structural proximities and correlations;
- Present an effective alternating algorithm to solve the optimization problem of LANE;
- Empirically evaluate and validate the effectiveness of LANE on real-world attributed networks.

Notations

小写字母表示标量,加粗表示向量,大写字母加粗表示矩阵,表示矩阵的第i行,||·||2表示欧几里得范数,I表示单位矩阵

Notations	Definitions
G	weighted adjacency matrix
A	attribute information matrix
Y	label information matrix
H	final embedding representation
$\mathbf{S}^{(G)}$	network affinity matrix
$\mathbf{S}^{(A)}$	node attribute affinity matrix
n	number of nodes in the network
d	dimension of the embedding representation

LANE

Specifically, we aim at allocating similar vector representations for nodes with similar geometrical or attribute proximities respectively

• the network structure U(G)

The key idea is to focus on each pair of nodes i and j. If they have similar locality properties, then their vector representations \mathbf{u}_i and \mathbf{u}_j should also be similar in the learned space. We use distance $\|\mathbf{u}_i - \mathbf{u}_j\|_2^2$ to measure this. For ex-

例如:节点1和节点3

cosine measure s_{ij} to calculate the similarity of two nodes, and it is straightforward to extend to other measures. Since s_{ij} would be large if nodes i and j have similar network structures, and approach small value otherwise, we can use the following product to measure the degree of disagreement between s_{ij} and $\{\mathbf{u}_i, \mathbf{u}_j\}$:

$$s_{ij} \|\mathbf{u}_i - \mathbf{u}_j\|_2^2. \tag{1}$$

minimize
$$\frac{1}{2} \sum_{i,j=1}^{n} s_{ij} \| \frac{\mathbf{u}_i}{\sqrt{d_i}} - \frac{\mathbf{u}_j}{\sqrt{d_j}} \|_2^2.$$
 (2)

 \mathbf{u}_i and \mathbf{u}_j are the i^{th} and j^{th} rows of network latent representation $\mathbf{U}^{(G)}$. We represent the pairwise similarities as a graph affinity matrix $\mathbf{S}^{(G)}$, where s_{ij} is its $(i,j)^{\text{th}}$ element. d_i and d_j are the sum of i^{th} and j^{th} rows of $\mathbf{S}^{(G)}$. We utilize

设任意图G=(V,E),其中顶点集 $V=v_1,v_2,\ldots,v_n$,边集 $E=e_1,e_2,\ldots,e_{\varepsilon}$ 。用 m_{ij} 表示顶点 v_i 与边 e_j 关联的次数,可能取值为0,1,2,...,称所得矩阵 $\mathbf{M}(G)=(m_{ij})_{n\times \varepsilon}$ 为图G的**关联矩阵**

类似地,有向图D的关联矩阵 $\mathbf{M}(D)=(m_{ij})_{n imes arepsilon}$ 的元素 $m_{i imes j}$ 定义为:

$$m_{ij} = egin{cases} 1, & v_i$$
是有向边 a_j 的始点 $\\ -1, & v_i$ 是有向边 a_j 的终点 $\\ 0, & v_i$ 是有向边 a_j 的不关联点

关联矩阵:

$$\begin{bmatrix} 1 & 0 & 0 & -1 & 1 \\ -1 & -1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & -1 \\ 0 & 0 & -1 & 1 & 0 \end{bmatrix}$$

 v_4 e_3 e_5 e_2 v_2

注:关联矩阵是描述图的另一种矩阵表示。

Based on the definition of normalized graph Laplacian [8], we can reformulate Eq. (2) into a maximization problem, and model the geometrical proximity via the objective function as follows

maximize
$$\mathcal{J}_G = \text{Tr}(\mathbf{U}^{(G)^T} \mathcal{L}^{(G)} \mathbf{U}^{(G)})$$
 (3)
subject to $\mathbf{U}^{(G)^T} \mathbf{U}^{(G)} = \mathbf{I}$.

Laplacian $\mathcal{L}^{(G)} = \mathbf{D}^{(G)^{-\frac{1}{2}}} \mathbf{S}^{(G)} \mathbf{D}^{(G)^{-\frac{1}{2}}}$, and degree matrix $\mathbf{D}^{(G)}$ is a diagonal matrix with sum of each row of $\mathbf{S}^{(G)}$ on the diagonal. A constraint is added to avoid being arbitrary.

$$L(u,v) = \left\{ egin{array}{ll} d_v & ext{if } u=v, \ -1 & ext{if } u ext{ and } v ext{ are adjacent,} \ 0 & ext{otherwise.} \end{array}
ight.$$

Let T denote the diagonal matrix with the (v, v)-th entry having value d_v . The Laplacian of G is defined to be the matrix

$$\mathcal{L}(u,v) = \left\{ egin{array}{ll} 1 & ext{if } u=v ext{ and } d_v
eq 0, \ -rac{1}{\sqrt{d_u d_v}} & ext{if } u ext{ and } v ext{ are adjacent,} \ 0 & ext{otherwise.} \end{array}
ight.$$

$$\mathcal{L} = T^{-1/2}LT^{-1/2}$$

$$= \sum_{x,y} \frac{1}{\sqrt{d_x}} A(x,y) \frac{1}{d_y} A(y,x) \frac{1}{\sqrt{d_x}}$$

$$= \sum_{x} \frac{1}{d_x} - \sum_{x \sim y} (\frac{1}{d_x} - \frac{1}{d_y})^2,$$

• the attribute latent representation U(A)

sine similarity to construct the attribute affinity matrix $\mathbf{S}^{(A)}$, and aim at minimizing the degree of disagreement between $\mathbf{U}^{(A)}$ and $\mathbf{S}^{(A)}$. We denote the corresponding Laplacian as $\mathcal{L}^{(A)} = \mathbf{D}^{(A)^{-\frac{1}{2}}}\mathbf{S}^{(A)}\mathbf{D}^{(A)^{-\frac{1}{2}}}$, where $\mathbf{D}^{(A)}$ is the degree matrix of $\mathbf{S}^{(A)}$. Then the objective function of node attributes embedding is defined as

maximize
$$\mathcal{J}_A = \text{Tr}(\mathbf{U}^{(A)T} \mathcal{L}^{(A)} \mathbf{U}^{(A)})$$
 subject to $\mathbf{U}^{(A)T} \mathbf{U}^{(A)} = \mathbf{I}.$ (4)

• incorporate U(A) into U(G)
we project U(A) into the space of U(G), and employ
variance of the projected matrix as a measurement of
the correlations

$$\rho_1 = \text{Tr}(\mathbf{U}^{(A)} \mathbf{U}^{(G)} \mathbf{U}^{(G)} \mathbf{U}^{(G)}^T \mathbf{U}^{(A)}). \tag{5}$$

投影矩阵, $P = A(A^TA)^{-1}A^T$

Label Informed Embedding

In this step, we map the node proximities in labels into a latent representation U(Y), The basic idea is to employ the learned attribute network proximity to smooth label information modeling.

the same label into the same clique \mathbf{Y}^T the cosine similarity of \mathbf{Y}^T

$$\mathcal{L}^{(YY)} = \mathbf{D}^{(Y)^{-\frac{1}{2}}} \mathbf{S}^{(YY)} \mathbf{D}^{(Y)^{-\frac{1}{2}}}$$

 $\mathbf{D}^{(Y)}$ is the degree matrix of $\mathbf{S}^{(YY)}$

Label Informed Embedding

However, due to the special structure, the rank of matrix $\mathbf{S}^{(YY)}$ is limited by the number of label categories k, which might be smaller than the embedding dimension d. It leads to unsatisfactory performance of the eigen-decomposition of $\mathcal{L}^{(YY)}$. To address this issue, we utilize the learned proximity $\mathbf{U}^{(G)}\mathbf{U}^{(G)}$ to smooth the modeling, and leverage the

maximize
$$\mathcal{J}_{Y} = \text{Tr}\left(\mathbf{U}^{(Y)^{T}}(\mathcal{L}^{(YY)} + \mathbf{U}^{(G)}\mathbf{U}^{(G)^{T}})\mathbf{U}^{(Y)}\right)$$
 subject to
$$\mathbf{U}^{(Y)^{T}}\mathbf{U}^{(Y)} = \mathbf{I}.$$

(6)

Correlation Projections

since all of the latent representations are constrained by corresponding Laplacian, we project all of them into a new space H

$$\rho_2 = \text{Tr}(\mathbf{U}^{(G)}^T \mathbf{H} \mathbf{H}^T \mathbf{U}^{(G)}). \tag{7}$$

Similarly, we project $U^{(A)}$ and $U^{(Y)}$ into the space of H and measure their correlation as

$$\rho_3 = \text{Tr}(\mathbf{U}^{(A)T} \mathbf{H} \mathbf{H}^T \mathbf{U}^{(A)}), \text{ and}$$
 (8)

$$\rho_4 = \text{Tr}(\mathbf{U}^{(Y)}^T \mathbf{H} \mathbf{H}^T \mathbf{U}^{(Y)}). \tag{9}$$

The loss function for entire three projections is defined as

$$\underset{\mathbf{II}(\cdot)}{\text{maximize}} \quad \mathcal{J}_{corr} = \rho_2 + \rho_3 + \rho_4, \tag{10}$$

Joint Representation Learning via LANE

maximize
$$\mathbf{J} = (\mathcal{J}_G + \alpha_1 \mathcal{J}_A + \alpha_1 \rho_1) + \alpha_2 \mathcal{J}_Y + \mathcal{J}_{corr}$$

subject to $\mathbf{U}^{(G)T} \mathbf{U}^{(G)} = \mathbf{I}, \quad \mathbf{U}^{(A)T} \mathbf{U}^{(A)} = \mathbf{I},$
 $\mathbf{U}^{(Y)T} \mathbf{U}^{(Y)} = \mathbf{I}, \quad \mathbf{H}^T \mathbf{H} = \mathbf{I},$ (11)

Optimization Algorithm for LANE

The second order derivative of \mathcal{J} w.r.t. $\mathbf{U}^{(G)}$ is formed as

$$\nabla_{\mathbf{U}^{(G)}}^{2} \mathcal{J} = \mathcal{L}^{(G)} + \alpha_{1} \mathbf{U}^{(A)T} \mathbf{U}^{(A)} + \alpha_{2} \mathbf{U}^{(Y)T} \mathbf{U}^{(Y)} + \mathbf{H}^{T} \mathbf{H},$$
(12)

When $\mathbf{U}^{(A)}$, $\mathbf{U}^{(Y)}$ and \mathbf{H} are fixed, Eq. (11) becomes convex w.r.t. $\mathbf{U}^{(G)}$, and we are able to obtain the optimal solution via Lagrange multipliers method. Let $\lambda_i (i = 1, \dots, 4)$

.

$$(\mathcal{L}^{(G)} + \alpha_1 \mathbf{U}^{(A)} \mathbf{U}^{(A)T} + \alpha_2 \mathbf{U}^{(Y)} \mathbf{U}^{(Y)T} + \mathbf{H} \mathbf{H}^T) \mathbf{U}^{(G)} = \lambda_1 \mathbf{U}^{(G)},$$

$$(13)$$

$$(\alpha_1 \mathcal{L}^{(A)} + \alpha_1 \mathbf{U}^{(G)} \mathbf{U}^{(G)T} + \mathbf{H} \mathbf{H}^T) \mathbf{U}^{(A)} = \lambda_2 \mathbf{U}^{(A)}, \quad (14)$$

$$(\alpha_2 \mathcal{L}^{(YY)} + \alpha_2 \mathbf{U}^{(G)} \mathbf{U}^{(G)T} + \mathbf{H} \mathbf{H}^T) \mathbf{U}^{(Y)} = \lambda_3 \mathbf{U}^{(Y)}, \quad (15)$$

$$(\mathbf{U}^{(G)} \mathbf{U}^{(G)T} + \mathbf{U}^{(A)} \mathbf{U}^{(A)T} + \mathbf{U}^{(Y)} \mathbf{U}^{(Y)T}) \mathbf{H} = \lambda_4 \mathbf{H}. \quad (16)$$

Complexity Analysis

$$\mathcal{O}(n^2)$$
.

Extensions

```
LANE w/o Label
```

maximize
$$\mathbf{J}_{G} + \beta_{1} \mathbf{J}_{A} + \beta_{2} \rho_{1} + \rho_{2} + \rho_{3}$$

subject to $\mathbf{U}^{(G)T} \mathbf{U}^{(G)} = \mathbf{I}, \quad \mathbf{U}^{(A)T} \mathbf{U}^{(A)} = \mathbf{I}, \quad (17)$
 $\mathbf{H}^{T} \mathbf{H} = \mathbf{I}.$

Experiments

Datasets

	# Nodes	# Edges	# Attributes	# Labels		
BlogCatalog	5,196	171,743	8,189	6		
Flickr	7,575	239,738	12,047	9		

Table 2: Detailed information of the datasets.

Baselines

 LCMF [47]: It conducts a joint matrix factorization on the linkage and attribute information, and maps them into a shared subspace. It uses this subspace as the learned representation.

- SpecComb: It concatenates the attributed network G
 and labels Y into one matrix, and performs normalized
 spectral embedding [41] on this combined matrix. The
 corresponding top d eigenvectors are collected as the
 embedding representation.
 - MultiView [17]: It considers the network, attributes, and labels as three views, and applies co-regularized spectral clustering on them collectively.
- LANE_on_Net and LANE_w/o_Label: They are two variations of LANE, which have been described in Section 3.6. The former one is for a plain network. The latter one only leverages the attributed network, without the help of label informed embedding.

Performance Evaluation

1、嵌入表示学习的影响(嵌入向量维度d)5-100

Figure 2: Classification performance of Original Features, LANE and its variations on Flickr dataset.

2、LANE的影响

	BlogCatalog				Flickr					
	1/16	1/8	1/4	1/2	1	1/16	1/8	1/4	1/2	1
DeepWalk	0.5488	0.7000	0.7824	0.7937	0.8100	0.3438	0.4597	0.5818	0.6819	0.7382
LINE	0.6663	0.7255	0.7332	0.6959	0.6931	0.3587	0.4920	0.5733	0.6500	0.6413
LANE_on_Net	0.6553	0.6985	0.7590	0.8046	0.8126	0.4298	0.5063	0.5698	0.6300	0.7319
LCMF	0.7119	0.7920	0.8366	0.8646	0.8401	0.3531	0.5065	0.5884	0.7026	0.7381
LANE_w/o_Label	0.7638	0.7977	0.8361	0.8513	0.8685	0.5426	0.6046	0.6578	0.6809	0.8300
SpecComb	0.6138	0.6027	0.6360	0.6965	0.5895	0.4618	0.4943	0.5800	0.7054	0.7816
MultiView	0.6478	0.7046	0.8207	0.8078	0.7903	0.4942	0.4856	0.5843	0.5870	0.8061
LANE	0.8065	0.8523	0.8856	0.8964	0.9008	0.6658	0.7645	0.8267	0.8276	0.9054

Table 3: Classification performance (F₁ score) of different methods on different datasets with d = 100.

3、参数敏感度分析

Figure 3: Performance of LANE on Flickr with different parameters α_1 and α_2 .

Related References

Laplacian eigenmaps and spectral techniques for embedding and clustering

Spectral graph theory. American Mathematical Soc., 1997

Learning spectral clustering. *NIPS*, 2004

Laplacian eigenmaps and spectral techniques for embedding and clustering. NIPS, 2001