Analytical Insights on Student Alcohol Consumption

By: Andy Ma, Haoliang (Jack) Hu, Truc Ly, Vi Tran, Shawn Ha

Table of contents

01

Dataset Introduction

What is/are the importance/questions?

03

Regression/Classification Methods

Applying regression and classification to our dataset

02

Visualizations

Exploratory data analysis and descriptive statistics

04

Conclusions

Recommendations/Impact

Introduction to the Dataset

About Our Dataset

- Real-life data based on self-reports and performance metrics, from Portugal
- Our dataset consists of a total of 1,044
 records of grades achieved by students in
 enrolled in secondary schools
- It includes classes in Math and Portuguese
- Students have a variety of attributes: age, daily alcohol consumption, etc.

1 df_math.head(10)

	school	sex	age	address	famsize	Pstatus	Medu	Fedu	Mjob	Fjob	 famrel	freetime	goout	Dalc	Walc	health	absences	G1	G2	G3
0	GP	F	18	U	GT3	А	4	4	at_home	teacher	 4	3	4	1	1	3	6	5	6	6
1	GP	F	17	U	GT3	T	1	1	at_home	other	 5	3	3	1	1	3	4	5	5	6
2	GP	F	15	U	LE3	Т	1	1	at_home	other	 4	3	2	2	3	3	10	7	8	10

1 df_portuguese.head(10)

	school	sex	age	address	famsize	Pstatus	Medu	Fedu	Mjob	Fjob	 famrel	freetime	goout	Dalc	Walc	health	absences	G1	G2	G3
0	GP	F	18	U	GT3	Α	4	4	at_home	teacher	 4	3	4	1	1	3	4	0	11	11
1	GP	F	17	U	GT3	Т	1	1	at_home	other	 5	3	3	1	1	3	2	9	11	11
2	GP	F	15	U	LE3	Т	1	1	at_home	other	 4	3	2	2	3	3	6	12	13	12

```
print("There are " + str(len(student_merged[porgMask])) +" students enrolled in the portuguese course.")
print("There are " + str(len(student_merged[mathMask])) +" students enrolled in the mathematics course.")
```

There are 649 students enrolled in the portuguese course.

There are 395 students enrolled in the mathematics course.

Central Questions

- Is there a relationship between regular alcohol consumption and student class performance?
- Do other seemingly important variables affect student grades (like father's education, extra educational support?)
- Identify any interrelationships between the student's attributes

Visualizations

Methodology

- Libraries: Matplotlib.pyplot, and Altair
- Groupby ["independent variable"]
- Aggregate by the mean of G1, G2, G3
- Create multiple subplots using
 - o fig, ax = plt.subplots(rows, cols)

'G3' Grade Distribution of Students

Correlation Between Variables

	Medu	Fedu	studytime	freetime	failures	Dalc	G1	G2	G3
Medu	1.000000	0.623455	0.064944	0.030891	-0.236680	0.019834	0.205341	0.215527	0.217147
Fedu	0.623455	1.000000	-0.009175	-0.012846	-0.250408	0.002386	0.190270	0.164893	0.152457
studytime	0.064944	-0.009175	1.000000	-0.143198	-0.173563	-0.196019	0.160612	0.135880	0.097820
freetime	0.030891	-0.012846	-0.143198	1.000000	0.091987	0.209001	0.012613	-0.013777	0.011307
failures	-0.236680	-0.250408	-0.173563	0.091987	1.000000	0.136047	-0.354718	-0.355896	-0.360415
Dalc	0.019834	0.002386	-0.196019	0.209001	0.136047	1.000000	-0.094159	-0.064120	-0.054660
G1	0.205341	0.190270	0.160612	0.012613	-0.354718	-0.094159	1.000000	0.852118	0.801468
G2	0.215527	0.164893	0.135880	-0.013777	-0.355896	-0.064120	0.852118	1.000000	0.904868
G3	0.217147	0.152457	0.097820	0.011307	-0.360415	-0.054660	0.801468	0.904868	1.000000

Average Grades by Workday Alcohol Consumption: Math Average Grades by Workday Alcohol Consumption: Portuguese G1 G1 G2 G2 12 G3 G3 10 8 Average Grades Average Grades 4 2 -

Levels of Workday Alcohol Consumption: 1: Low - 5:Very High

Levels of Workday Alcohol Consumption: 1: Low - 5:Very High

Average Grades by Parent's Cohabitation Status: Math vs Portuguese

Include or not

Proportion of family support - 'No' by Passing status:

Fail: 50.9%

Pass (math): 40.8%

Pass (Portuguese): 37.9%

Regression/ Classification

Running a Regression Model

That doesn't make sense ('Final' attribute)!

OLS Regression Results

Dep. Variable: Model:	1201	G3 OLS	R-squared: Adj. R-squar	red:	0.261 0.254		
	coef	std err	t	P> t	[0.025	0.975]	
Intercept	10.4964	0.550	19.089	0.000	9.417	11.576	
higher[T.yes]	2.1613	0.381	5.675	0.000	1.413	2.909	
schoolsup[T.yes]	-1.0535	0.360	-2.924	0.004	-1.761	-0.346	
failures	-1.5838	0.196	-8.091	0.000	-1.968	-1.199	
studytime	0.6068	0.137	4.443	0.000	0.339	0.875	
Dalc	-0.4323	0.121	-3.580	0.000	-0.669	-0.195	
health	-0.1646	0.076	-2.163	0.031	-0.314	-0.015	

Behind-the-scenes forward selection yielded higher, failures, and studytime as good predictors...

Caveat: R-squared

Another regression model...

Is studytime affected by students' behaviors and upbringings?

Dep. Variable: Model:	study	time R-squ OLS Adj.		0.090 0.079			
	coef	std err		P> t	[0.025	0.9751	
Intercept	1,4678	0.174	8.424	0.000	1.126	1,810	
<pre>Intercept romantic[T.yes]</pre>	0.1147	0.065	1.755	0.080	-0.014	0.243	
famsup[T.yes]	0.2069	0.065	3.196	0.001	0.080	0.334	
reason[T.home]	0.0097	0.081	0.120	0.905	-0.150	0.169	
reason[T.other]	-0.1150	0.106	-1.090	0.276	-0.322	0.092	
reason[T.reputation]	0.2949	0.083	3.558	0.000	0.132	0.458	
higher[T.yes]	0.3757	0.108	3.487	0.001	0.164	0.587	
famrel	-0.0172	0.033	-0.524	0.600	-0.082	0.047	
failures	-0.1293	0.056	-2.302	0.022	-0.240	-0.019	

OLS Regression Results

Yes, in some instances.

Interestingly...

y, X = dmatrices('G3 ~ romantic',data= student_merged[mathMask], return_type='dataframe')

		OLS Regres	sion Result	S		
Dep. Variable:		G3	R-squared			0.017
Model:		OLS	Adj. R-so	quared:		0.014
	coef	std err	t	P> t	[0.025	0.975]
Intercept	10.8365	0.280	38.638	0.000	10.285	11.388
romantic[T.yes]	-1.2607	0.485	-2.599	0.010	-2.215	-0.307

Takeaway: May not actually be indicative of any real world relationship . .

Feature Selection for Classification

Forward feature selection

```
def best_regressors(k,all):
    current_regressors = []
    r_values = []
    for x in range(k): #run best_next_regressor function
        reg_x, r_value = best_next_regressor(current_regressors,all)
        current_regressors.append(reg_x)
        r_values.append(r_value)
    return current_regressors, r_values

best_regressors(10,all_regressors)
```

Top 10 features:

```
(('failures',
   'school',
   'higher',
   'studytime',
   'schoolsup',
   'Dalc',
   'Fjob',
   'health',
   'Mjob',
   'sex'),
```

Building a Classification Model (KNN)

What is a good combination of features?

```
Y, X = dmatrices('Final ~ failures + studytime', data=df, return_type='dataframe')
Y
y = Y['Final'].values

# Split the data into training and test sets with a 70/30 split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=1)

knn = neighbors.KNeighborsClassifier(n_neighbors=3, weights='uniform')
knn.fit(X_train, y_train)
```

What is the best K?

The best model is the KNN model with 3 neighbor(s) with an test accuracy of 0.7993630573248408

Building a Classification Model (KNN)

Do our predictors make sense?

An example use of this model...

Final Thoughts

Conclusions Going Forward

Conclusions

Data Takeaways

Effects on grades exist, may be weak

Caveats

Self-reported data may be inaccurate

Further Research

Larger sample, anonymized information