Міністерство освіти і науки України Національний технічний університет України "КПІ" Факультет інформатики та обчислювальної техніки

Кафедра автоматизованих систем обробки інформації та управління

3BIT

з лабораторної роботи № 4 дисципліни "ТЕХНОЛОГІЇ ПАРАЛЕЛЬНОГО ПРОГРАМУВАННЯ В УМОВАХ ВЕЛИКИХ ДАНИХ" на тему:

"Big Data з використанням засобів Apache Spark"

Виконали	- ІП-01мн Семченко Андрій	
студенти	– ІП-01мн Кошовець Євген – ІТ-01мн Васюк Владислав – ІТ-01мн Минзар Богдан	
	(№ групи, прізвище, ім'я, по батькові)	
Прийняв		

3MICT

1	ПОСТАНОВКА ЗАДАЧІ	3
2	використані бібліотеки, фреймворки	4
3	ОПИС РОБОТИ ПРОГРАМНОГО ЗАБЕЗПЕЧЕННЯ	5
	3.1 Загальна концепція	5
	3.2 ДЕТАЛІ РОБОТИ ПРОГРАМНОГО ЗАБЕЗПЕЧЕННЯ	5
4	ОТРИМАНІ РЕЗУЛЬТАТИ	7
	о Вимірювання часу роботи в залежності від параметрів	7
5	висновок	9
5	ПОСИЛАННЯ	10
6	ДОДАТОК 1 - ЛОГ РОБОТИ ПРОГРАМИ	11

1 ПОСТАНОВКА ЗАДАЧІ

Необхідно реалізувати вирішення обраної задачі з використанням технології Арасhe Spark. Можна запустити реалізацію локально, але якщо ϵ можливість запустити на розподіленій системі — за це можна отримати додаткові бали. Порівняти реалізації лабораторних робіт No3 та No4. Результатом виконання даної лабораторної роботи ϵ працююча програма, а також звіт про використані технології та можливості, з результатами вимірів.

Ідея полягає у тому, щоб шляхом аналізу вмісту публічного репозиторію знайти потенційні вразливості, що дозволяють втрутитись у роботу програмного забезпечення. Причому вразливості не тільки у самій реалізації програмного забезпечення, але і вразливості, спричинені недбалим обігом sensitive data, наприклад:

- Зберігання ключів доступу у файлах, що відстежуються VCS
- Зберігання ключів доступу прямо у тексті програмного забезпечення
- Зберігання бекапів у файлах, що відстежуються VCS

Зберігання sensitive data у файлах, що відстежуються системою контролю версій призводить до того, що будь хто може завантажити ці дані і використати для втручання у роботу програмного забезпечення, викрадення даних користувачів, тощо.

2 ВИКОРИСТАНІ БІБЛІОТЕКИ, ФРЕЙМВОРКИ

Розроблена програма використовує фреймворк РуSpark та написана на мові програмування Руthon 3.7 у вигляді Jupyter ноутбука. Мотивація викоритовувати Руthon — вже ϵ досвід роботи з PySpark, тож це значно спростить процес розробки та тестування коду. Для роботи з Github було використано бібліотеку GitPython [1].

3 ОПИС РОБОТИ ПРОГРАМНОГО ЗАБЕЗПЕЧЕННЯ

3.13 агальна концепція

Програмне забезпечення завантажує вміст публічного Github-репозиторію у тимчасову директорію. Далі, кожен файл даної директорії аналізується на предмет наявності в ньому певних патернів, що можуть свідчити про вразливість. Сам паттерн описується за допомогою регулярного виразу.

3.2Деталі роботи програмного забезпечення

Загальний принцип роботи:

- 1. Програма запускається у вигляді Python ноутбука з використанням Jupyter. Налаштування підключення до Spark кластеру задано в коді програми та у файлі spark-defaults.conf.
- 2. Після створення контексту Spark, програма створює DataFrame зі списком посилань на git-репозиторії, що був попередньо заданий в коді програми (однак на вхід можна використати інші джерела).
- 3. За допомогою UDF [2] виконується завантаження git-репозиторіїв в тимчасові папки кожного з воркерів, після чого зміст та шлях кожного файла в репозиторії зберігається в DataFrame. На виході маємо таблицю з полями: repo (шлях до репозиторію), path (відносний шлях до файлу в репозиторії), content (зміст файлу якщо він текстовий).
- 4. DataFrame з попереднього кроку за допомогою ще однієї UDF аналізуємо на вразливості: перевіряється шлях до кожного файлу та вміст. На виході отримуємо DataFrame з полями: repo (шлях до репозиторію), path (відносний шлях до файлу в репозиторії), issueType (тип вразливості), issueDescription (опис вразливості), lineNumber (номер рядку в файлі де знайдено вразливість).
- 5. Результати роботи програми експортується у форматі JSON за допомогою бібліотеки pandas.

Так виглядає список Completed Jobs в Spark UI після виконання:

Job Id +	Description	Submitted	Duration	Stages: Succeeded/Total	Tasks (for all stages): Succeeded/Total
1	toPandas at <timed exec="">:1 toPandas at <timed exec="">:1</timed></timed>	2021/12/22 07:03:51	8 s	1/1 (1 skipped)	200/200 (192 skipped)
0	toPandas at <timed eval="">:1 toPandas at <timed eval="">:1</timed></timed>	2021/12/22 07:03:03	48 s	2/2	392/392

4 ОТРИМАНІ РЕЗУЛЬТАТИ

о Вимірювання часу роботи в залежності від параметрів

Всі тести проводились на Kubernetes кластері з 5 машин (на базі процесора Intel(R) Xeon(R) E-2286G CPU @ 4.00GHz, 6 ядер, 12 потоків; 64 GB оперативної пам'яті на кожній)

В кожному тесті змінено два основні параметри: максимальна кількість воркерів (spark.executor.instances) та кількість використаних ядер на кожному воркері (spark.executor.cores).

spark.executor.instances	spark.executor.cores	time (seconds)
1	1	56
1	2	36
1	4	20.2
2	1	33.2
2	2	19.34
2	4	18.4
4	1	23.4
4	2	18.02
4	4	17.7
8	1	20.5

8	2	16.6
8	4	16.6

Як бачимо, найшвидше програма відпрацьовує з кількістю воркерів = 8 та кількістю ядер більше 2. Також можна помітити, що в програмі є «вузьке» місце — завантаження репозиторіїв; при подальших тестах на більшій кількісті воркерів стало зрозуміло, що час не скорочується, оскільки завантаження найбільшого репозиторію займає близько 15 секунд.

5 ВИСНОВОК

В рамках даної лабораторної роботи було розроблено програмне забезпечення на основі Apache Spark, що проводить аналіз Github-репозиторіїв на наявність в них типових вразливостей.

В рамках реалізованого алгоритму вдалося отримати пришвидшення в порівнянні з однопоточною реалізацією у 3.5 рази на конкретно взятому прикладі навантаження.

Було порівняно результати роботи програми з різними налаштуваннями паралелізму, найкращих результатів (16.6c) досягли при використанні 8 воркерів та 2+ ядер CPU на кожному воркері.

5 ПОСИЛАННЯ

[1] https://gitpython.readthedocs.io/en/stable/

[2]

 $\underline{https://spark.apache.org/docs/3.1.1/api/python/reference/api/pyspark.sql.functions.udf}.\underline{html}$

6 ДОДАТОК 1 - ЛОГ РОБОТИ ПРОГРАМИ

CPU times: user 70.7 ms, sys: 7.35 ms, total: 78.1 ms Wall time: 13.6 s

watt	watt time. 15.0 5				
6]:	repo	path	content		
	https://github.com/mikemelon/java-signin.git	java-signin/src/main/resources/config/G5_110_i	# G5教学楼110机房\n# 第1排 左侧\n172.19.13.14=(1,3)\n1		
•	https://github.com/mihail-petrov/netit-webdev	netit-webdev-java/2019-2020/@semester-2/week-2	package com.itpro.blog.controllers;public clas		
2	https://github.com/mihail-petrov/netit-webdev	netit-webdev-java/2020-2021/@semester_2/w3-1/h	None		
3	https://github.com/mihail-petrov/netit-webdev	netit-webdev-java/2019-2020/@semester-2/week-7	None		
4	https://github.com/mihail-petrov/netit-webdev	netit-webdev-java/2020-2021/@semester_2/w7-1/F	package com.netit.database;\n\npublic enum Dat		
8098	https://github.com/mihail-petrov/netit-webdev	netit-webdev-java/2020-2021/@semester_2/w19-2/	package com.trelloclone.trelloclone.repositori		
8099	https://github.com/mihail-petrov/netit-webdev	netit-webdev-java/2019-2020/@semester-2/week-6	<@ page contentType="text/html;charset=UTF-8"		
8100	https://github.com/mihail-petrov/netit-webdev	netit-webdev-java/2020-2021/@semester_2/w6-2/F	None		
8101	https://github.com/mihail-petrov/netit-webdev	netit-webdev-java/2020-2021/@semester_1/week-1	xml version="1.0" encoding="UTF-8"? \n <class< th=""></class<>		
8102	https://github.com/mihail-petrov/netit-webdev	netit-webdev-java/2019-2020/@semester-1/week-9	package tests.test;\n\nimport config.PieceColo		

8103 rows × 3 columns

	repo	path	issueType	issueDescription	lineNumber
0	https://github.com/mihail-petrov/netit-webdev	netit-webdev-java/2019-2020/@semester-2/week-2	Log file	Log files might contain information such as re	NaN
1	https://github.com/mihail-petrov/netit-webdev	netit-webdev-java/2020-2021/@semester_2/w8-1/s	Log file	Log files might contain information such as re	NaN
2	https://github.com/mikemelon/java-signin.git	java-signin/src/main/webapp/image/logo.jpg	Log file	Log files might contain information such as re	NaN
3	https://github.com/mihail-petrov/netit-webdev	netit-webdev-java/2019-2020/@semester-2/week-6	Log file	Log files might contain information such as re	NaN
4	https://github.com/mihail-petrov/netit-webdev	netit-webdev-java/2019-2020/@semester-2/week-8	Log file	Log files might contain information such as re	NaN
458	https://github.com/mikemelon/java-signin.git	java-signin/src/main/java/cn/lynu/lyq/signin/a	AWS key	Potential AWS Access Key ID expose	21.0
459	https://github.com/mihail-petrov/netit-webdev	netit-webdev-java/2019-2020/@semester-1/week-1	AWS key	Potential AWS Access Key expose	41.0
460	https://github.com/mihail-petrov/netit-webdev	netit-webdev-java/2019-2020/@semester-1/week-1	AWS key	Potential AWS Access Key expose	94.0
461	https://github.com/mihail-petrov/netit-webdev	netit-webdev-java/2019-2020/@semester-1/week-1	AWS key	Potential AWS Access Key expose	105.0
462	https://github.com/mihail-petrov/netit-webdev	netit-webdev-java/2019-2020/@semester-1/week-1	AWS key	Potential AWS Access Key expose	119.0

463 rows × 5 columns

```
▼ 0:
   repo: "https://github.com/mihail-petrov/netit-webdev-java.git"
   \textbf{path:} \ "netit-webdev-java/2019-2020/@semester-2/week-21-1/blog/blog/src/main/java/com/itpro/blog/controllers/BlogController.java"
   issueType: "Log file"
   issueDescription: "Log files might contain information such as references to secret HTTP endpoints, session IDs, user information, passwords and API keys."
   lineNumber: null
v 1:
   repo: "https://github.com/mihail-petrov/netit-webdev-java.git"
   \textbf{path: "netit-webdev-java/2020-2021/@semester\_2/w8-1/src/main/java/com/netit/logic/PageViewAggregator.java"} \\
   issueType: "Log file"
    issueDescription: "Log files might contain information such as references to secret HTTP endpoints, session IDs, user information, passwords and API keys."
   lineNumber: null
v 2:
   repo: "https://github.com/mikemelon/java-signin.git"
   path: "java-signin/src/main/webapp/image/logo.jpg"
   issueType: "Log file"
   issueDescription: "Log files might contain information such as references to secret HTTP endpoints, session IDs, user information, passwords and API keys."
   lineNumber: null
▼ 3:
   repo: "https://github.com/mihail-petrov/netit-webdev-java.git"
   \textbf{path: "netit-webdev-java/2019-2020/@semester-2/week-6-1/HelloWebWorld/web/login.jsp"}
   issueType: "Log file"
   issueDescription: "Log files might contain information such as references to secret HTTP endpoints, session IDs, user information, passwords and API keys."
   lineNumber: null
v 4:
   repo: "https://github.com/mihail-petrov/netit-webdev-java.git"
   path: "netit-webdev-java/2019-2020/@semester-2/week-8-1/HelloWebWorld/web/login.jsp"
    issueType: "Log file"
   issueDescription: "Log files might contain information such as references to secret HTTP endpoints, session IDs, user information, passwords and API keys."
   lineNumber: null
▼ 5:
   repo: "https://github.com/mihail-petrov/netit-webdev-java.git"
   \textbf{path: "netit-webdev-java/2019-2020/@semester-2/week-22-1/blog/blog/src/main/java/com/itpro/blog/models/request/HTTPRequest.java"}
   issueType: "Log file"
   issueDescription: "Log files might contain information such as references to secret HTTP endpoints, session IDs, user information, passwords and API keys."
```