06.03.2020

$$d(a,b) = \begin{cases} \frac{1}{\min\{i: n_i \neq m_i\}}, & \text{gdy } a \neq b, \\ 0, & \text{gdy } a = b. \end{cases}$$

- (a) Wykazać, że djest metryką w $\mathbb{N}^{\mathbb{N}},$ przy czym $d(a,b) \leq \max\{d(a,c),d(b,c)\},$ dla $a,b,c \in \mathbb{N}^{\mathbb{N}}.$
- (b) Wykazać, że każde dwie kule w przestrzeni $(\mathbb{N}^{\mathbb{N}}, d)$ są albo rozłączne, albo jedna zawiera się w drugiej.
- (c) Które z następujacych zbiorów są otwarte w przestrzeni $(\mathbb{N}^{\mathbb{N}}, d)$:

$$A = \{(n_1, n_2, \dots) : n_i = 1 \text{ dla co najmniej trzech indeksów } i\},$$

- $B = \{(n_1, n_2, \ldots) \colon n_i = 1 \text{ dla nieskończenie wielu } i\}.$
- (d) Niech < będzie porządkiem leksykograficznym w $\mathbb{N}^{\mathbb{N}}$ (tzn. $(n_1, n_2, \ldots) < (m_1, m_2, \ldots)$ jeśli dla pewnego $i, n_i < m_i$ oraz $n_j = m_j$ dla j < i) i niech, dla a < b, $(a,b) = \{x \colon a < x < b\}$. Wykazać, że przedziały (a,b) są otwarte w przestrzeni $(\mathbb{N}^{\mathbb{N}}, d)$. Niech $c = (2, 1, 1, \ldots)$. Pokazać, że nie istnieje przedział (a,b) taki, że $c \in (a,b) \subseteq B(c,\frac{1}{2})$.
- (2) Niech \mathcal{T} będzie rodziną wszystkich zbiorów $U \subseteq \mathbb{R}^2$ takich, że przecięcie $U \cap L$ z każdą prostą równoległą do osi x-ów oraz z każdą prostą równoległą do osi y-ów, jest otwarte ze względu na metrykę euklidesową w L.
 - (a) Podać przykład zbioru $V \in \mathcal{T}$, który nie jest otwarty w metryce euklidesowej.
 - (b) Sprawdzić, że \mathcal{T} jest topologia w \mathbb{R}^2 i przestrzeń $(\mathbb{R}^2, \mathcal{T})$ jest Hausdorffa.
 - (c) Pokazać, że jeśli $C\subseteq\{(x,y)\in\mathbb{R}^2\colon x>0,y>0\}$ jest zbiorem nieskończonym, to istnieje $U\in\mathcal{T}$ takie, że $0\in U$ i zbiór $C\setminus U$ jest nieskończony.
 - (d) Wykazać, ze topologia \mathcal{T} jest niemetryzowalna. Wskazówka. Założyć, że $\mathcal{T} = \mathcal{T}(d)$, pokazać, że każda kula $B(0, \frac{1}{n})$ zawiera punkt c_n o obu współrzędnych dodatnich, rozpatrzyć $C = \{c_1, c_2, \ldots\}$ i wyprowadzić z (c) sprzeczność.
- (3) W przestrzeni metrycznej (X, ρ) , dla $A \subseteq X$ definiujemy funkcję $\rho(\cdot, A) \colon X \to \mathbb{R}$ (odległości od zbioru) wzorem $\rho(x, A) = \inf_{a \in A} \rho(x, a)$. Sprawdzić, że taka funkcja jest ciągła i że $x \in \overline{A}$ wtedy i tylko wtedy gdy $\rho(x, A) = 0$.
- (4) Niech \mathcal{T} będzie topologią Zariskiego w zbiorze nieskończonym X. Udowodnić, że domknięcie każdego zbioru nieskończonego w X jest całą przestrzenią.
- (5) Niech $Y \subseteq X$ będzie podzbiorem przestrzeni topologicznej (X, \mathcal{T}) . Dla $A \subseteq Y$ domknięcie A w podprzestrzeni (Y, \mathcal{T}_Y) (w przestrzeni (X, \mathcal{T})) oznaczamy przez \overline{A}^Y (odpowiednio \overline{A}^X).
 - (a) Wykazać, że $\overline{A}^Y = \overline{A}^X \cap Y$.
 - (b) Wykazać, że jeśli $\overline{A}^Y=Y,$ to $\overline{A}^X=\overline{Y}^X.$
- (6) Niech A i B będą zbiorami rozłącznymi w przestrzeni topologicznej (X, \mathcal{T}) . Wykazać, że jeśli zbiór A jest otwarty w X, to $\overline{A} \cap \operatorname{Int}(\overline{B}) = \emptyset$.

- (7) Znaleźć zanurzenie homeomorficzne przestrzeni (\mathbb{R}, d_e) w przestrzeń (\mathbb{R}^2, d_r) , gdzie d_r jest metryką "rzeka".
- (8) Niech T będzie sumą trzech odcinków łączących punkt (0,0) z punktami (1,0), (-1,0) i (0,1) na płaszczyźnie, rozpatrywaną z topologią euklidesową.
 - (a) Pokazać, że nie istnieje ciągła i różnowartościowa funkcja $f\colon T\to [0,1]$. Wskazówka. Skorzystać z własności Darboux dla funkcji f obciętej do każdego z trzech wymienionych odcinków w T.
 - (b) Wskazać trzy kule otwarte w T, z których żadne dwie nie są homeomorficzne.
- (9) Korzystając z zadania 8 wykazać, że przestrzeń (\mathbb{R}^2, d_r) nie jest homeomorficzna z przestrzenią (\mathbb{R}^2, d_c), gdzie d_r jest metryką "rzeka" i d_c jest metryką "centrum".
- (10) Niech (X, \mathcal{T}) będzie przestrzenią topologiczną. Zauważyć, że rzut $\pi_i \colon X^d \to X$ na i-tą oś jest funkcją ciągłą.

Zauważyć, że dla dowolnej przestrzeni topologicznej (Y, \mathcal{S}) , funkcję $f: Y \to X^d$ można zapisać jako $f = (f_1, \dots, f_d)$, gdzie $f_i: Y \to X$ są składowymi funkcji.

Udowodnić, że $f: Y \to X^d$ jest ciągła wtedy i tylko wtedy gdy ma ciągłe składowe.