EECS 376: Foundations of Computer Science

Seth Pettie Lecture 15

Today's Agenda

- 1) Recap: NP (efficiently verifiable languages)
- Cook-Levin TheoremThe SAT problem is as hard as any problem in NP

Verifiable Computations

- * Example: Decision version of Traveling Salesperson Problem (TSP)
 Given 4 cities and pair-wise distances between them, is there a
 tour of length at most 100 that visits all the cities?
- * Remark: Here we only care about feasibility, not the actual tour.
- * **Certificate:** $A \rightarrow B \rightarrow C \rightarrow D \rightarrow A$. Cost: 20+30+12+35 = 97.
- * Reply: We can verify and are convinced.

Verifiable Computations

- * Example 3: Subset Sum
- * Given integers $a_1, ..., a_n$ and target t, is there a subset of numbers that sums to t?
- * Certificate: The subset of numbers.
- * Reply: We can verify and are convinced.

The Class NP

- * **Definition:** A decision problem L is **efficiently verifiable** if there exists an algorithm V(x,c) called a **verifier** such that:
- 1. V(x,c) is efficient with respect to x (polynomial time in |x|).
- 2. If $x \in L$, then there is <u>some</u> certificate c such that V(x,c) accepts.
- 3. If $x \notin L$, then V(x, c) rejects <u>all</u> certificates c.
- * Definition: The class NP = the class of efficiently <u>verifiable</u> languages

P and NP

- * Formally: Let *L* be a language.
- * $L \in \mathbf{P}$ if there exists a polynomial time in |x| algorithm M(x) such that:
 - * $x \in L \Longrightarrow M(x)$ accepts
 - * $x \notin L \Longrightarrow M(x)$ rejects
- * $L \in \mathbf{NP}$ if there exists a polynomial time in |x| algorithm V(x,c) such that:
 - * $x \in L \Longrightarrow V(x,c)$ accepts for at least one c
 - * $x \notin L \Longrightarrow V(x,c)$ rejects for every c
- * Note: $P \subseteq NP$ (V: ignore c and just run M on x)

What is P vs NP about?

Informally: Verifying an answer (given a hint/solution) seems much easier than figuring out the answer.

E.g. TSP, Ham-cycle, independent set, clique, subset sum ... all lie in NP (but we don't know if they are in P)

Major open question (P vs NP?): Is NP strictly bigger than P?

Pictorially

Right now

NΡ

EASY TO CHECK HARD TO SOLVE

Р

EASY TO SOLVE

If P = NP

P = NP

EASY TO CHECK EASY TO SOLVE

Pictorially

Problems beyond NP we won't study here

Right now

TSP NP

Clique

EASY TO CHECK
HARD TO SOLVE
Subset-Sum Ham-cycle

LIS P
Sort
EASY TO SOLVE
LCS

If P = NP

Two amazing results (got Turing awards)

Cook-Levin (1971): SAT is NP-hard.

- * <u>SAT</u>: stands for Satisfiability problem, will see next.
- NP-hard: means if SAT in P, then all of NP will be in P.
 (i.e. just need to show SAT in P to show P=NP)

Karp (1972): Actually TSP, Ham-cycle, clique, Subset Sum, ... are "equivalent" to SAT. (next couple lectures)

(i.e. if any of them in P, then P=NP)

A "Hard" Language for NP

- * Informal Definition: A language L is called NP-Hard if L ∈ P implies that NP = P.
- * In other words: A poly-time algorithm for L can be converted to yield poly-time algorithms for all efficiently verifiable languages! That is, for every language in NP.

Cook-Levin: SAT is NP-Hard

Satisfiability Problem (SAT)

- * Boolean *variables* x,y,z ... taking values true or false (1 or 0)
- * A Boolean *literal* is a variable (x) or its negation $(\neg x \text{ or } \overline{x})$
- * A Boolean **operator** is AND, OR (Λ,V)
- * A Boolean *formula* is a formula involving Boolean literals and operators, e.g., $\phi = (\neg x \land y) \lor (x \land \neg z)$
- * A **satisfying assignment** for ϕ is a true/false assignment to the variables such that ϕ evaluates to true.
- * ϕ is **satisfiable** if it has a satisfying assignment
- * **SAT** = $\{\phi : \phi \text{ is a satisfiable Boolean formula}\}$

Satisfiability Problem (SAT)

- * Example 1: $\phi(x,y) = \neg x \wedge y$
- * Question: What is $\phi(1,0)$ and $\phi(0,0)$?
- * Example 2: $\phi(x,y,z) = (\neg x \lor y) \land (\neg x \lor z) \land (y \lor z) \land (x \lor \neg z)$
- * Question: Are these ϕ satisfiable?
- * Question: Is SAT ∈ NP?

(i.e., is SAT efficiently verifiable.)

(i.e., if ϕ is satisfiable, is there an efficiently verifiable certificate?)

Why is Satisfiability Important?

- * Theorem [Cook-Levin]: SAT is NP-Hard.
- * Let L ∈ NP and let V be a verifier for L.
- * NP-Hard means: If SAT \in P then L \in P
- * Proof Strategy: Make an efficient algorithm for L
 - * M on input x:
 - * Construct formula $\phi_{V,x}$ (using the efficient algorithm of Cook-Levin)
 - * Accept iff $\phi_{V,x} \in SAT$ (using the assumed efficient decider for SAT)

Goal: Proof (main idea) of Cook-Levin Theorem

First: A concrete example

k-clique problem: Given a graph G and an integer k, is there a clique of size k (a subset S of k vertices, so that every two vertices in S are adjacent)

Q: Is the problem in NP?

What is an efficiently verifiable certificate?

What does the verifier need to do?

- 1) check if every pair of vertices in S has an edge in G,
- 2) check that size of S is k.

Goal: Reduce finding clique certificate to SAT

Key insight:

Given graph G, the question of whether a certificate exists for k-clique can be reduced to solving a SAT instance.

Formally: Given instance G of k-clique,

design a formula Φ_G (in poly-time), s.t.

 Φ_G is satisfiable iff G has a k-clique

 Φ_G is unsatisfiable iff all cliques in G have size <k.

How?

Recall: Certificate = subset S of vertices

Verifier: (i) Check edge between each pair in S. (ii) Check that |S| > k

Let us view the certificate c as o-1 string y of length n

(i) Formula for checking each pair in S has an edge.

$$\Phi_1 = \bigwedge_{(i,j) \text{ not an edge}} \overline{y_i} \vee \overline{y_j}$$

(for each non-edge, one of its vertices is not in S)

(ii) Formula for checking $\sum_i y_i \ge k$ if k=1 $\Phi_2 = \bigvee_i y_i$ (union over y_i) Can you think of a formula for k=2?

(the naïve idea does not scale well for general k, you get about n^k terms, but it is possible to construct shorter formulas using logical circuits)

Summary: Finding clique certificate via SAT

Key insight:

Given graph G, the question of whether a certificate exists for k-clique can be reduced to solving a SAT instance.

```
Formally: Given instance G of k-clique design a formula \Phi_G (in poly time), s.t. \Phi_G is satisfiable iff G has a k-clique \Phi_G is unsatisfiable iff all cliques in G have size < k.
```

```
\Phi_G = \Phi_1 \wedge \Phi_2

\Phi_1 = \text{Formula for checking each pair in S} \text{ has an edge in G.}

\Phi_2 = \text{Formula for checking } \sum_i y_i \ge k
```

 $\Phi_G \in SAT$ iff G has a clique of size k

Proving Cook-Levin Theorem

- * Theorem [Cook-Levin]: SAT is NP-Hard.
- * Let $L \in NP$ and let V be a verifier for L.
- * **High-level Idea:** There is a poly-time algorithm that given a string x, constructs a Boolean formula $\phi_{V,x}$ such that:
 - * $x \in L \Rightarrow \phi_{V,x}$ is satisfiable
 - * $x \notin L \Rightarrow \phi_{V,x}$ is unsatisfiable

 $\phi_{V,x}$ depends on the logic of V and on the instance x.

SAT is NP-Hard: Setup

- * Let V(x,c) be a verifier (i.e. a TM) for some $L \in NP$.
- * For every input x and a certificate c:
 - * V makes at most $|x|^k$ steps (for some fixed k).
 - $\Rightarrow V$ can affect only the first $|x|^k$ cells of the tape
- * Goal: Design a Boolean formula that is satisfiable iff some certificate c causes V(x,c) to accept in $|x|^k$ steps
- Turing machine engineering!
- * **Definition:** A **configuration** of V represents the tape content of V, state of V, and location of V's head. **Example:** 011q₅0001:
 - * V's tape content is 0110001\pm\...
 - * V is in state q_5 ; V's head points to the 4th cell

A Configuration Tableau

- * A tableau is an array of symbols:
 - Rows represent configurations (flanked by # symbols)
 - * Symbols can be from $S = \{0,1\} \cup Q \cup \{\#, \$, \bot\}$
 - * Successive rows correspond to configurations

+	$rac{k}{2}$								-	
Ť	#	q_{st}	w 1	<i>W</i> 2		Wn	Т		Т	#
	#									#
	#									#
1										
n^k										
<u> </u>	#									#

Initial configuration
After 1 step

V halts after at most nk steps

Proof Overview

- * Given an input x, construct a Boolean formula $\phi_{V,x}$ that represents every valid tableau such that
 - * V accepts x for some certificate $c \Rightarrow \phi_{V,x} \in SAT$
 - * V rejects x for all certificates c $\Rightarrow \phi_{V,x} \notin SAT$
- * $\phi_{V,x} = \phi_{V,x,start} \wedge \phi_{V,x,cell} \wedge \phi_{V,x,accept} \wedge \phi_{V,x,move}$
 - 1. ϕ_{start} enforces the **starting configuration** at the top line
 - 2. ϕ_{cell} ensures that every cell contains **exactly one** symbol
 - ϕ_{accept} ensures that V reaches an accepting configuration
 - 4. ϕ_{move} ensures that each configuration *follows from the previous* configuration, according to the code of V

The Starting Configuration

 ϕ_{start} enforces the starting configuration

" 90	#	q_o	х	\$	С	Т	Т	#
-------	---	-------	---	----	---	---	---	---

- Initial state q_o
- * Input x, |x| = n; certificate c, |c| = m
- * \$ a special symbol that separates x and c
- * WE DO NOT KNOW c (!!), so we leave a "placeholder"

$$\phi_{\text{start}} = t_{1,1,\#} \wedge t_{1,2,q_0} \wedge t_{1,3,x_1} \wedge t_{1,4,x_2} \wedge \dots \wedge t_{1,n+2,x_n} \wedge t_{1,n+3,\$} \wedge \\ (t_{1,n+4,1} \vee t_{1,n+4,0} \vee t_{1,n+4,\bot}) \wedge (t_{1,n+5,1} \vee t_{1,n+5,0} \vee t_{1,n+5,\bot}) \wedge \dots \\ (c_1 \text{ can be either 1 or 0 or } \bot)$$

This fixes the first n+3 symbols

Cell Consistency

* ϕ_{cell} ensures that every cell contains **exactly** one symbol

Accepting Configurations

 ϕ_{accept} ensures that V reaches an accepting configuration

Logical Transitions

 ϕ_{move} ensures that each configuration follows from the previous configuration according to the δ function

Definition: A 2x3 "window" is valid if it could appear in a valid tableau

(Basically enforcing valid execution of V)

Theorem: The whole tableau is valid if and only if every 2x3 window is valid

P=NP Conclusion

- * Conclusion: P = NP iff there is an efficient algorithm for testing satisfiability of Boolean formulae.
- * Common <u>Belief</u>: There is no efficient algorithm for deciding satisfiability, in which case $P \neq NP$.

