⑫ 公 関 特 許 公 報 (A) 平2-169569

®Int. Cl. 5

識別記号

庁内整理番号

❸公開 平成2年(1990)6月29日

C 07 D 207/09 A 61 K 31/40 31/435

AAM

6742-4C

Ж

審査請求 未請求 請求項の数 2 (全54頁)

64発明の名称 環状アミン誘導体を含有する医薬

> 20特 願 昭63-324620

223出 願 昭63(1988)12月22日

饱発 明 者 杉 本 八 郎 茨城県牛久市柏田町3073-13 @発 明 者 土 屋 裕 茨城県牛久市栄町2-35-16 ⑫発 明 者 В 篡 邦 造 茨城県つくば市春日4-19-13 エーザイ紫山寮 冗発 明 者 苅 部 則 夫 茨城県つくば市春日 4-19-13 エーザイ紫山寮 ⑫発 明 者 飯村 茨城県つくば市天久保2-23-5 メゾン学園103 洋 個発 明 者 佐 Þ 淳 茨城県つくば市春日 4-19-13 エーザイ紫山寮 木 冗発 明 者 山 西 竊 暗 茨城県竜ケ崎市松葉3-2-4 @発 明 者 小 倉 博 雄 茨城県土浦市永国1115-6 何出 頭 人 エーザイ株式会社

個代 理 人 弁理士 古谷

最終頁に続く

東京都文京区小石川 4丁目 6番10号

眀 紐

1. 発明の名称

現状アミン誘導体を含有する医薬

- 2. 特許請求の節囲
- 1 次の一般式

〔式中、

Jは(a) 置換若しくは無置換の次に示す基:① フェニル基、②ピリジル基、③ピラジル基、④ キノリル基、⑤シクロヘキシル基、⑥キノキサ リル基又は切フリル基、

(b)フェニル基が**置換されていてもよい次の**群 から選択された一価又は二価の基; ①インダニ ル、②インダノニル、③インデニル、④インデ ノニル、⑤インダンジオニル、⑥テトラロニル、 **⑦ベンズスペロニル、®インダノリル、⑨式**

(C) 段状アミド化合物から誘導される一価の基、

d)低級アルキル基、又は

(e)式 R'-CH=CH- (式中、R'は水桑原子又は低 級アルコキシカルポニル基を意味する) で示される基を意味する。

で示される基、式 -N-(CH)。- (式中、R³は水器

原子、低級アルキル基、アシル基、低級アルキ ルスルホニル基、置換されてもよいフェニル基 又はペンジル基を意味する) で示される甚、式

ル基又はフェニル基を意味する)で示される基、

0 || で示される基、式-O-C-NH-(CH),-で示される基、 | | 12

U 式-NH-C-(CH),-で示される基、式-CH,-CO-NH-(CH),-| | R²

Uf | | れる甚、式-CH-(CH) a-で示される甚 {以上の式

中、 nは 0 又は 1 ~10 の整数を意味する。R²は 式 - (CH)。- で示されるアルキレン基が置換基を R²

持たないか、又は1つ又は1つ以上のメチル基を有しているような形で水素原子又はメチル基を意味する。)、式 = (CH-CH=CH) b- (式中、 bは1~3の整数を意味する)で示される基、式=CH-(CH₂) c-(式中、 cは0又は1~9の整数を意味する)で示される基、式=(CH-CH) c= (式中、 dは0又は1~5の整数を意味する)で示され

味する。

qは1~3の整数を意味する。

式中、 は単結合若しくは二重結合を意味する。)

で表される退状アミン誘導体及びその薬理学的 に許容できる塩を有効成分とするコリンアセチ ルトランスフェラーゼ賦活作用に基づく疾患の 治療・予防剤。

2 一般式

〔式中、

けはフェニル基が置換されていてもよい次の群から選択された一価又は二価の基:①インダニル、②インダノニル、③インデニル、④インデノニル、⑤テトラロニル、⑦ベンズスペロニル、⑧インダノリル、⑨

で示される基、式 -CH=CH-C-NH-(CH₂)₂-で示される基、式 -NH- で示される基、式 -G-で示される基、式 -G-で示される基、ジアルキルアミノアルキルカルボニル基又は低級アルコキシカルボニル基を意味する。

Tは窒素原子又は炭素原子を意味する。

Oは窒素原子、炭素原子又は式 N→O で示される基を意味する。

Kは水素原子、置換若しくは無置換のフェニル基、フェニル基が置換されてもよいアリールアルキル基、フェニル基が置換されてもよいシンナミル基、低級アルキル基、ピリジルメチル基、シクロアルキルアルキル基、シクロアルキル基、低級アルコキシカルポニル基又はアシル基を発

で示される基、式 -N-(CH) n- (式中、R³は水素 | | R²

原子、低級アルキル基、アシル基、低級アルキルスルホニル基、置換されてもよいフェニル基 又はペンジル基を意味する)で示される基、式

ル基又はフェニル基を意味する)で示される基、

||| |で示される甚、式-O-C-NH-(CH),-で示される甚、 ||₁₂

で示される基、式-(CH₂)₂-CO-NH-(CH)_n-で示さ

ÓΚ

れる基、式-ĊH-(CH),-で示される基(以上の式 | | P²

中、 nは 0 又は 1 ~10 の整数を意味する。R² は 式 - (CH) n-で示されるアルキレン基が置換基を R²

持たないか、又は1つ又は1つ以上のメチル基を有しているような形で水素原子又はメチル基を意味する。)、式 = (CH-CH=CH) $_{\mathfrak{b}}$ - (式中、 \mathfrak{b} は1~3の整数を意味する)で示される基、式=CH-(CH $_{\mathfrak{d}}$) $_{\mathfrak{c}}$ -(式中、 \mathfrak{c} は0又は1~9の整数を意味する)で示される基、式=(CH-CH) $_{\mathfrak{d}}$ =(式中、 \mathfrak{d} は0又は1~5の整数を意味する)で示され

で示される基、式 -CH=CH-C-NH-(CH2)2-で示さ

れる基、式 -NH- で示される基、式 -0-で示される基、式 -S-で示される基、ジアルキルアミノアルキルカルポニル基又は低級アルコキシガルポニル基を意味する。

Tは窒素原子又は炭素原子を意味する。

Qは窒素原子、炭素原子又は式 N→Q で示される基を意味する。

Kは水素原子、置換若しくは無置換のフェニル甚、フェニル基が置換されてもよいアリールアルキル基、フェニル基が置換されてもよいシンナミル基、低級アルキル基、ピリジルメチル基、シクロアルキルアルキル基、アダマンタンメチル基、フリルメチル基、シクロアルキル基、低級アルコキシカルポニル基又はアシル基を意味する。

qは1~3の整数を意味する。

式中、 …… は単結合若しくは二重結合を意味する。〕

で表される現状アミン誘導体及びその薬理学的 に許容できる塩を有効成分とする請求項!記載 の治療・予防剤。

3. 発明の詳細な説明

〔産業上の利用分野〕

本発明は、新規環状アミン誘導体を有効成分とする医薬に関する。

〔発明に至る背景及び従来技術〕

老年人口が急激に増大する中で、アルッハイマー型老年痴呆などの老年痴呆の治療法を確立することが渇望されている。

しかしながら、現在のところ、老年痴呆を薬物で治療する試みは種々なされているが、これらの疾患に根本的に有効とされる薬剤は今のところ存在しない。

これらの疾患の治療薬の開発は種々の方向から研究されているが、有力な方向としてアルッハイマー型老年痴呆は、脳のコリン作動性機能低下を伴うことから、アセチルコリン前駆物質、アセチルコリンエステラーゼ阻害剤の方向れている。代表的なものとして、抗コリンエステラーゼ阻害剤として、フィゾスチグミン、テトラ

ヒドロアミノアクリジンなどがあるが、これらの薬剤は効果が十分でない、好ましくない副作用があるなどの欠点を有しており、決定的な治療薬はないのが現状である。

更に、最近コリンアセチルトランスフェラーゼ(ChAT) 賦活作用もこれらの疾患の治療に有効であることが注目されている。

そこで本発明者らは、この作用を有する化合物について長年にわたって鋭意研究を重ねてきた。

その結果、後で述べる一般式 (!) で示される環状アミン誘導体が、所期の目的を達することが可能であることを見出した。

具体的には下記の構造式(I)で表される本発明化合物は、優れたコリンアセチルトランスフェラーゼ(ChAT) 賦活作用を有し、更に強力かつ選択性の高い抗アセチルコリンエステラーゼ活性を有するため、脳内のアセチルコリンを増量すること、記憶障害モデルで有効であること、及び従来この分野で汎用されているフィゾスチ

グミンと比較し、作用持続時間が長く、安全性 が高いという大きな特徴を有しており、本発明 の価値は極めて高い。

本発明化合物は、コリンアセチルトランスフェラーゼの賦活作用に基づいて見出されたもので、従って中枢性コリン機能、即ち神経伝達物質としてのアセチルコリンの生体内の欠乏が原因とされる種々の疾患の治療・予防に有効である。

代表的なものとしては、アルツハイマー型老 年痴呆に代表される各種痴呆があるが、そのほ かハンチントン舞踏病、ピック病、晩発性運動 異常症などを挙げることができる。

従って、本発明の目的は、医薬としてとりわけ中枢神経系の疾患の治療・予防に有効な新規 環状アミン誘導体を提供すること、この新規環 状アミン誘導体の製造方法を提供すること、及 びそれを有効成分とする医薬を提供することで ある。

[発明の構成及び効果]

(e)式 R'-CH=CH-(式中、R'は水素原子又は低級アルコキシカルポニル基を意味する)で示される基を意味する。

| で示される基、式 -N-(CH)_n- (式中、R³は水素 | | p²

原子、低級アルキル基、アシル基、低級アルキルスルホニル基、置換されてもよいフェニル基 又はペンジル基を意味する)で示される基、式

ル基又はフェニル甚を意味する) で示される基、

||| で示される基、式-O-C-NH-(CH) - で示される基、 | | R² 本発明の目的化合物は、次の一般式(I)で 表される環状アミン誘導体及びその薬理学的に 許容できる塩である。

〔式中、

Jは(a) 置換若しくは無置換の次に示す基;①フェニル基、②ピリジル基、③ピラジル基、④キノリル基、⑤シクロヘキシル基、⑥キノキサリル基又は⑦フリル基、

(b)フェニル基が置換されていてもよい次の群から選択された一価又は二価の基; ①インダニル、②インダノニル、③インデニル、④インデノニル、⑤インダンジオニル、⑥テトラロニル、⑦ベンズスペロニル、⑧インダノリル、⑨式

NΗ

(c) 環状アミド化合物から誘導される一価の基、 (d) 低級アルキル基、又は

で示される基、式-(CH₂)₂-CO-NH-(CH)_n-で示さ

中、 nは 0 又は 1 ~10 の整数を意味する。R² は 式 - (CH)。- で示されるアルキレン基が置換基を | | n²

特たないか、又は1つ又は1つ以上のメチル基を有しているような形で水業原子又はメチル基を意味する。)、式 = (CH-CH=CH) b- (式中、 bは1~3の整数を意味する)で示される基、式 = CH-(CH2) c-(式中、 cは0 又は1~9 の整数を意味する)で示される基、式=(CH-CH) c=(式中、 dは0 又は1~5 の整数を意味する)で示され

O OH CH。 || | -C-CH2-CH-CH2-で示される基、式-CH-C-NH-CH2-|| 0

で示される基、式 -CH=CH-C-NH-(CH2)2-で示される基、式 -NH- で示される基、式 -0-で示される基、式 -S-で示される基、ジアルキルアミノアルキルカルボニル基又は低級アルコキシカルボニル基を意味する。

『は窒素原子又は炭素原子を意味する。

Oは窒素原子、炭素原子又は式 N→O で示される基を意味する。

Kは水素原子、置換若しくは無置換のフェニル基、フェニル基が置換されてもよいアリールアルキル基、フェニル基が置換されてもよいシンナミル基、低級アルキル基、ピリジルメチル基、シクロアルキルアルキル基、シクロアルキル基、チャンタンメチル基、フリルメチル基、シクロアルキル基、低級アルコキシカルポニル基又はアシル基を意味する。

qは1~3の整数を意味する。

エチルー2ーメチルプロピル基などを意味する。 これらのうち好ましい基としては、メチル基、 エチル基、プロピル基、イソプロピル基などを 挙げることができ、最も好ましいものはメチル 基である。

Jにおける「置換もしくけいル基、ののピラ、のピックロスをは無ののピックロスを表、のフェールを受ける。」を表表を表している。というでは、のでは、のでは、ないでは、では、ないでは、では、ないでは、では、ないがでは、では、ないがでは、ないがでは、ないがでは、いいがで

式中、 …… は単結合若しくは二重結合を意味する。]

本発明化合物(I)における上記の定義にお いて、J. K. R³. R¹ にみられる低級アルキル基と は、炭素数1~6の直鎖もしくは分枝状のアル キル基、例えばメチル基、エチル基、プロピル 基、イソプロピル基、ブチル基、イソブチル基: sec ープチル基、tertープチル基、ペンチル基 (アミル基)、イソペンチル基、ネオペンチル 基、tertーペンチル基、1-メチルブチル基、 2-メチルブチル基、1.2 -ジメチルプロピル 基、ヘキシル基、イソヘキシル基、1-メチル ペンチル基、2ーメチルペンチル基、3ーメチ ルペンチル基、1.1 ージメチルブチル基、1.2 ージメチルブチル基、2,2 ージメチルブチル基、 1.3 -ジメチルブチル基、2.3 -ジメチルブチ ル基、3.3 ージメチルブチル基、1ーエチルブ チル基、2-エチルブチル基、1,1,2 -トリメ チルプロピル基、1.2.2 ートリメチルプロピル 基、1-エチルー1-メチルプロピル基、1-

シカルポニル基;アミノ基;モノ低級アルキル アミノ基; ジ低級アルキルアミノ基; カルバモ イル基;アセチルアミノ基、プロピオニルアミ ノ基、ブチリルアミノ基、イソブチリルアミノ 基、パレリルアミノ基、ピバロイルアミノ基な ど、炭素数1~6の脂肪族飽和モノカルポン酸 から誘導されるアシルアミノ基:シクロヘキシ ルオキシカルポニル基などのシクロアルキルオ キシカルポニル基:メチルアミノカルポニル基、 エチルアミノカルポニル基などの低級アルキル アミノカルポニル基:メチルカルポニルオキシ 基、エチルカルポニルオキシ基、nープロピル カルポニルオキシ基など前記に定義した低級ア ルキル基に対応する低級アルキルカルポニルオ キシ基:トリフルオロメチル基などに代表され るハロゲン化低級アルキル基;水酸基;ホルミ ル基:エトキシメチル基、メトキシメチル基、 メトキシエチル基などの低級アルコキシ低級ア ルキル基などを挙げることができる。上記の置 換基の説明において、「低級アルキル基」、

「低級アルコキン基」とは、前記の定義から派生する基をすべて含むものとする。 置換基は同一又は異なる 1 ~ 3 個で置換されていてもよい。 更にフェニル基の場合は、次の如き場合も置

更にフェニル基の場合は、次の如き場合も置 換されたフェニル基に含まれるものとする。即

|| 示される基、式-0- で示される基、式-CH2-NH-C-で示される基、式-CH2-0- で示される基、式-CH2-SO2- で示される基、式-CH-で示される基

↑ 又は式-CH₂-S- で示される基を意味する。 Eは 炭素原子又は窒素原子を意味する。

これらのうち、フェニル基に好ましい置換基 としては、低級アルキル基、低級アルコキシ基、 ニトロ基、ハロゲン化低級アルキル基、低級ア

いる①~⑨について、その代表例を示せば以下 のとおりである。

ルコキシカルボニル基、ホルミル基、水酸基、低級アルコキシ低級アルキル基、ハロゲン、ペンゾイル基、ペンジルスルホニル基などを挙げることができ、置換基は同一又は相異なって 2 つ以上でもよい。

ピリジル基に好ましい基としては、低級アル キル基、アミノ基、ハロゲン原子などを挙げる ことができる。

ピラジル基に好ましい基としては、低級アルコキシカルボニル基、カルボキシル基、アシルアミノ基、カルバモイル基、シクロアルキルオキシカルボニル基などを挙げることができる。

また、Jとしてのピリジル基は、2ーピリジル基、3ーピリジル基又は4ーピリジル基が望ましく、ピラジル基は2ーピラジル基が望ましく、キノリル基は3ーキノリル基が望ましく、キノキサリル基は2ーキノキサリル基は3ーキノキサリル基は2ーフリル基が望ましい。

Jの定義において、心グループに記載されて

ペンズスペロニル

インダノリル

「ンダノリデニル

上記一連の式において、 tは 0 又は 1 ~ 4 の整数を意味し、 Sは同一又は相異なる前記した J (a)の定義における置換基のうち1 つ又は水素原子を意味するが、好ましくは水素原子 (無置換)、低級アルキル基又は低級アルコキシ基をあげることができる。更に、フェニル環の繰りあう炭素間でメチレンジオキシ基、エチレンジ

オキシ基などのアルキレンジオキシ基で置換されていてもよい。

これらのうち最も好ましい場合は、無置換若 しくはメトキシ基が1~3個置換されている場 合である。

なお、上記のインダノリデニルは J(b)の定義におけるフェニル基が置換されていてもよい二価の基の例である。すなわち J(b)の②のインダノニルから誘導される代表的な二価の基である。

Jの定義において、環状アミド化合物から誘導される一価の基とは、例えばキナナテトラーイン・カーオン、ハイドロイソキノリンーオン、ハイドロイソ・カーオン、ベー・カーバッアゼピンーオンなどを対すれているが、構造式中に環状アミドが存在すればないのみに限定される環状アミドがあるのの場合に限しては、フェール環としては、フェール環が好ましい。この場合、ア・カー環が好ましい。この場合、好ましくは炭素数1~6の低級アルキル基、好ましくは対力を表しては、好ましくは対力を表しては、対力を表しては、対しては大力を表しては、カーの低級アルキル基、好ましくは、現力を表しては、現力を表しては、対力を表しては、現力を表しては、現力を表しては、現力を表している。

$$(i) \qquad (j)$$

$$(i) \qquad (j)$$

$$(k) \qquad (l)$$

$$(k) \qquad (l)$$

$$(k) \qquad (l)$$

上記の式中で、式(i),(1) における Yは水素原子又は低級アルキル基を意味し、式(k) における Vは水素原子又は低級アルコキシ基、式(m),(n) におけるW',W² は水素原子、低級アルキル基、低級アルコキシ基、W²は水素原子又は低級アルキル基を意味する。

なお、式(j),(1) において、右側の環は7員

メチル基、炭素数 1 ~ 6 の低級 アルコキシ基、 好ましくはメトキシ基あるいはハロゲン原子に よって置換されていてもよい。

好ましい例を挙げれば次の通りである。

跟であり、式(k) において右側の現は 8 員 環である。

Jの上記の定義のうち最も好ましいものは、 フェニル環が置換されてもよいインダノンから 誘導される一価の基、環状アミド化合物から誘 導される一価の基である。

は、R²が水素原子である場合は式-(CH₂)。で表され、更にアルキレン鎖のいずれかの炭素原子に1つ又はそれ以上のメチル基が結合していてもよいことを意味する。この場合、好ましくはnは1~3である。

また、Bの一連の基において、基内にアミド 基を有する場合も好ましい基の一つである。

更に好ましい基としては、式=(CH-CH=CH) $_{b}$ -(式中、 $_{b}$ は1~3の整数を意味する)で示される基、式=CH-(CH $_{2}$) $_{c}$ -(式中、 $_{c}$ は0又は1~9の整数を意味する)で示される基、式=(CH-CH) $_{a}$ =(式中、 $_{d}$ は0又は1~5の整数を意味する)

で示される基、式 -NH- で示される基、式 -0-で示される基又は式 -S-で示される基をあげる ことができる。

現
$$-T$$
 $Q-$ については、 $5\sim7$ 員扱

げることができるが、特に好ましい現は式

【の定義における「置換又は無置換のフェニル基」、「置換もしくは無置換のアリールアルキル基」において、置換基は前記の Jの定義において(a)の①~⑦において定義されたものと同一のものである。

アリールアルキル基とは、フェニル環が上記

本発明において、薬理学的に許容できる塩とは、例えば塩酸塩、硫酸塩、臭化水素酸塩、燐酸塩などの無機酸塩、蟾酸塩、酢酸塩、トリフルオロ酢酸塩、マレイン酸塩、酒石酸塩、メタンスルホン酸塩、ベンゼンスルホン酸塩、トルエンスルホン酸塩などの有機酸塩を挙げることができる。

また置換基の選択によっては、例えばナトリウム塩、カリウム塩などのアルカリ金属塩、カリウム塩のようなアルカリ金属塩、カリンカム塩のようなアルカリ土類金属塩、トリメチルアミン塩、ピリジン塩、ピリンカージベンジルエチウムウェンカーではなどの有機である。

なお、本発明化合物は、置換基の種類によっては不斉炭素を有し、光学異性体が存在しうるが、これらは本発明の範囲に属することはいうまでもない。

具体的な例を一つ述べれば、Jがインダノン

の置換基で置換されるか、無置換のベンジル基、 フェネチル基などを意味する。

ピリジルメチル基とは具体的には、2 ーピリジルメチル基、3 ーピリジルメチル基、4 ーピリジルメチル基などを挙げることができる。

Kについては、フェニル基が置換されてもよいアリールアルキル基、置換若しくは無置換のフェニル基、フェニル基が置換されてもよいシンナミル基が最も好ましい。

好ましいアリールアルキル基は、具体的には 例えばベンジル基、フェネチル基などをいい、 これらはフェニル基が炭素数 1~6の低級アル コキシ基、炭素数 1~6の低級アルキル基、水 酸基などで置換されていてもよい。

一一は単結合もしくは二重結合を意味する。 二重結合である場合の例をあげれば、上記で述べたフェニル環が置換されてもよいインダノンから誘導される二価の基の場合、すなわちインダノリデニル基である場合をあげることができる。

骨格を有する場合、不斉炭素を有するので幾何 異性体、光学異性体、ジアステレオマーなどが 存在しうるが、何れも本発明の範囲に含まれる。

これらの定義を総合して特に好ましい化合物 群をあげれば次のとおりである。

$$J^{\perp} \xrightarrow{\qquad \qquad } B \xrightarrow{\qquad \qquad } T \xrightarrow{\qquad \qquad } 0 \longrightarrow K \qquad (A)$$

〔式中、J'はフェニル基が置換されていてもよい次の群から選択された一価又は二価の基;①インダニル、②インデニル、④インデニル、⑤テトラロニル、⑦ベンズスペロニル、⑧インダノリ

る。

B. T. Q. q. K は前記と同様の意味を有する。〕で表される現状アミン又は薬理学的に許容できる塩。

上記のJ'の定義中、最も好ましい基としては、

フェニル基が置換されていてもよいインダノニ ル基、インダンジオニル基、インダノリデニル 基をあげることができる。また、この場合、フ ェニル基は置換されていないか、同一又は相異 なる水酸基、ハロゲン、低极アルコキシ基で置 換されている場合が最も好ましい。低級アルコ キシ基とは、炭素数1~6の例えばメトキシ基、 エトキシ基、イソプロポキシ基、カープロポキ シ基、 nーブトキシ基などをいい、1~4 置換 をとりうるが、2置換の場合が好ましい。最も 好ましい場合はメトキシ基が2置換となってい る場合である。

(A) 式に含まれる化合物の中で更に好ましい 化合物群としては、次の一般式で表される化合 物(B) をあげることができる。

$$J_1 = B_1 = \underbrace{\begin{pmatrix} (CH^3)^3 \\ 0 \end{pmatrix}}_{Q} - K \qquad (B)$$

〔式中、」はフェニル基が置換されていてもよ い次の群から選択された一価又は二価の基;①

(B) 式に含まれる化合物の中で更に好ましい 化合物群としては、次の一般式で表される化合 物(C) をあげることができる。

N− で示される基、即ちピペリジンの場 合である。

(C) 式に含まれる化合物の中で更に好ましい 化合物群としては、次の一般式で表される化合 物(D) をあげることができる。

$$J_3 - R_1 - R_2 - R_3 - R_4 - R_4 - R_4 - R_5 - R_5$$

(式中、J'はフェニル基が置換されてもよいイ ンダノニル、インダンジオニル、インダノリデ ニル基から選択された基を意味する。

インダニル、②インダノニル、③インデニル、 ④インデノニル、⑤インダンジオニル、⑥テト ラロニル、のペンズスペロニル、⑧インダノリ

る。

B'は式 -(CH)n- (式中、 nは 0 又は 1~10の

整数を意味する。R2は式 -(CH),-で示されるア

ルキレン基が置換基を持たないか、又は1つ又 は1つ以上のメチル基を有しているような形で 水素原子又はメチル基を意味する。)で示され る基、式=(CH-CH=CH)_b-(式中、bは1~3の整 数を意味する)で示される基、式=CH-(CH₂)_c-(式中、 cは 0 又は 1 ~ 9 の整数を意味する) で示される基又は式=(CH-CH)。= (式中、 dは D 又は1~5の整数を意味する)で示される基を 意味する。

T.Q.q.K は前記と同様の意味を有する。〕

K'は置換若しくは無置換のフェニル基、置換 されてもよいアリールアルキル基、置換されて もよいシンナミル基を意味する。

B'は前記と同様の意味を有する。)

本発明化合物の製造方法は種々考えられるが、 (式中、J', B', K は前記と同様の意味を有する。) 代表的な方法について述べれば以下の通りであ

(式中、n, R2, R4 は前記の意味を有する)で示 される基を意味する場合〕

$$\begin{array}{c}
\mathbb{R}^4 \\
\mathbb{I} \\
\mathbb{R}^2
\end{array}$$

$$\begin{array}{c}
\mathbb{C} \\
(\mathbb{C} \mathbb{H}_2) \\
\mathbb{R}
\end{array}$$

$$\begin{array}{c}
\mathbb{C} \\
\mathbb{C} \\
\mathbb{R}
\end{array}$$

$$\begin{array}{c|c}
0\\
I \\
J-C-N-(CH)_{n}-T\\
0-K
\end{array}$$
(IV)

(式中、J, R⁴, R², n, T, Q, q, K は前記の意味を有 し、 Hal はハロゲン原子を意味する。)

即ち、一般式(II)で表される酸ハロゲンと物と、一般式(III)で表される環状アミン誘導体を、例えば炭酸ナトリウム、炭酸カリウム、炭酸カリウム、水酸化ナトリウム、水酸化カリウム、水丸が大力の水水がで、カロロホルム、インセン、が出れて、イン・カーである化合物(IV)を得ることができる。

製造方法B

Jがキナゾロン、テトラハイドロイソキノリ ンーオン、テトラハイドロベングジアゼピンー オン、ヘキサハイドロベンツアグシンーオンか

〔式中、 R^s , R^s は水素原子、低級アルキル基、低級アルコキシ基、ハロゲン原子であり、 pは $1 \sim 3$ の整数であり、 Zは式- CH_2 - で示される

甚、又は式 -N- (式中、R'は水素原子又は低級アルキル基を示す)で示される基を意味する。
 Hal, R², n, T, Q, q, Kは前記の意味を有する。}

即ち、一般式 (V) で表される置換-1.2.3,4 ーテトラハイドロー5H-1ーベンツアゼピンー2ーオンを、例えばジメチルホルムアミド溶媒中で、一般式 (Ⅵ) で表される化合物と、例えばナトリウムハイドライドの存在下に縮合して、目的物質の一つである (Ⅵ) を得ることができる。

製 造 方 法 C

Jが式 N- で示される基であり、

かつ Bが - (CH) n-で示される基である場合は次 | | p² ら選択された環状アミド化合物から誘導される 一価の基である場合は次のような方法でも製造 することができる。

$$Hal-(CH)_{n}-\uparrow \qquad Q-K \qquad (VI)$$

$$\begin{array}{c|c}
R^{2} & (CH_{2})_{P} \\
\hline
 & CH_{2} \\
\hline
 & CH_{2} \\
\hline
 & CH_{2}
\end{array}$$

$$\begin{array}{c|c}
CH_{2} & CH_{2} \\
\hline
 & CH_{2}
\end{array}$$

の製造方法によっても製造できる。

$$H_2N-(CH)_n-T$$

$$Q-K$$

$$(CH_2)_n$$

$$\begin{array}{c|c}
\downarrow \\
0 \\
N - (CH)_n - T \\
\downarrow R^2
\end{array}$$

$$\begin{array}{c}
0 - K \\
(CH_2)_9
\end{array}$$

即ち、2 - ハイドロキシメチルニコチン酸ラクトン(畑)と、一般式(IX)で表される化合物とを、常法により反応せしめて、目的物質の一つである一般式(X)で表される化合物を得ることができる。反応温度は 200 ℃前後が好ましい。

製 造 方 法 D

合(R[®], R[®] は前記のR[®], R[®] の定義と同様の意味 を有する。n. R²は前記と同様の意味を有する。) は次の製造方法によっても製造できる。

$$H_2N-(CH)_n-T$$

$$R^2$$

$$(CH_2)_q$$

$$I$$

即ち、2.3 ーピラジルカルボン酸無水物(XII)を、例えばイソプロピルアルコール中に加え還流する。アルコールを留去したのち、一般式 (IX) で表される化合物と、例えばテトラヒドロフランなどの容媒中反応させることにより、目的物質の一つである化合物 (XII) を得ること

$$\mathbb{R}_{\bullet} \longrightarrow \mathbb{Q} \longrightarrow \mathbb{Q$$

即ち、一般式(XI)で表される置換2.3 ージ ヒドロオキシピロロ(3.4-b) ベンゼンと、一般 式(VI)で表される化合物とを、例えば水素化 ナトリウム存在下に、例えばジメチルホルムア ミドなどの溶媒中、加熱下に反応せしめて、目 的物質の一つである化合物(XII)を得ることが できる。

製造方法 E

であり、 Bが式 -CONH-(CH),- で表される基で | | R²

ある場合は次の製造方法でも製造することがで きる。

ができる。

型 造 方 法 F

一般式 (I) において、 Jが 置換されてもよ 0 || || いフェニル 基であり、 B が 式 - C - (CH₂) ₃ - で示さ 0 || || れる基、又は式 - C - CH₂ - CH₂ - で示される基で 0 || 0H

ある場合は、次の方法によっても製造することができる。 下記の式中、R¹⁰ は前記の J(a)の定義における置換基を意味する。

$$OHC-CH_2-T$$

$$OHC-CH_2-K$$

$$(XM)$$

即ち、例えばチトラヒドロフランなどの溶液中で、ジイソプロピルアミン、 nーブチルリチウム/ヘキサン溶液を加え、約-80 ℃の温度にて、一般式 (XV) で表されるアセトフェノンと、一般式 (XM) で表される化合物と縮合し、化合物 (MM) を得る。これを、例えばpートルエンスルホン酸の存在下、例えばトルエンな溶媒中で脱水した後、常法により接触還元すると、目的物質の一つである化合物 (MM) が得られる。製造方法 G

本発明において、Jが心で定義されるものの中で、フェニル基が置換されてもよい①インダニル、②インダノニル、⑤インダンジオニル、

$$J'-CH_2-B'-T Q-K \qquad (XXII)$$

(式中、J'は Jが上記の定義である場合を示し、B'は上記の Bの定義において最左端の炭素原子に結合している基を除いた残基を意味する。)

即ち、一般式(XX)で表されるホスホナートに一般式(XX)で表されるアルデヒド化合物を反応せしめて(wittig反応)、目的物質の一つである一般式(XXI)で表される化合物を得、次いでこれを接触還元して目的物質の一つである化合物(XXII)を得ることができる。

Wittig反応を行う際の触媒としては、例えば ナトリウムメチラート(MeONa)、ナトリウムエ ⑥テトラロニル、⑦ベンズスペロニル又は⑨式

あり、かつ Bが - (CH) n- で示される基、式 | R²

= (CH-CH=CH) b-(式中、 bは 1 ~ 3 の整数を意味する) で示される基、式=CH-(CH2) c-(式中、 c は 0 又は 1 ~ 9 の整数を意味する) で示される基、又は式=(CH-CH) a= (式中、 dは 0 又は 1 ~ 5 の整数を意味する) で示される基である場合は、例えば次の二つの方法によって製造できる。

製 造 方 法 1

$$\begin{array}{c}
0 \\
\text{II} \\
J' - P - (0C_2H_5)_2 \\
+
\end{array}$$

チョート(EtONa)、t-BuOK、NaH などを挙げることができる。この際溶媒としては、例えばテトラヒドロフラン(THF)、ジメチルホルムアミド(DMF)、エーテル、ニトロメタン、ジメチルスルホキシド(DMSO)などを挙げることができる。また、反応温度は室温から100
で程度が好ましい結果を与える。

接触還元を行う際は、例えばパラジウム炭素、 ラニーニッケル、ロジウム炭素などを触媒とし て用いることが好ましい結果を与える。

基である場合を具体的に示せば、以下のとおり である。

$$OHC - B' - T O - K \qquad (XX)$$

る基(式中、R''.R'2 は Sの定義のうち、同一 又は相異なる水素原子、低級アルキル基、低級 アルコキシ基、ハロゲンである場合をいう)で あり、 Bが式-(CH₂),-で示される基(式中、 n は1~6で示される基を意味する)であり、式

(式中、R'³, R'⁴は、R'¹, R'²と同様の定義とする)で示される基である場合を具体的に示せば次の通りである。

$$1, -CH^{3} - B, -1$$
 $0 - K$
(XX II)

即ち、一般式 (XXII)で表される置換若しくは 無置換のインダノンなどの化合物と一般式 (XX) で表されるアルデヒド体と、常法によりアルド ール縮合を行い、目的物質の一つである一般式 (XX) で表される化合物を得る。

本反応は、例えばテトラヒドロフランなどの 溶媒中でジイソプロピルアミンと n ーブチルへ キサン溶液によりリチウムジイソプロピルアミ ドを生成させ、好ましくは約-80 ℃の温度でこれに上記の一般式(双面)で表される化合物を加える。次いで一般式(双)で表されるアルデヒド体を加えて常法により反応せしめ、室温まで昇温させることによって脱水させ、エノン体である一般式(双)で表される化合物を得る。

本反応の別方法として、両者 ((XXII)と(XX)) をテトラヒドロフランなどの溶媒に溶解し、約0 でにて、例えばナトリウムメチラートなどの塩基を加えて、室温にて反応させることによる方法によっても製造することができる。

上記の製造方法によって得られたエノン体 (XI) を前記に示したと同様の方法により還元 することにより、一般式 (XXII)で表される化合物を得ることができる。

あり、 Bが式-(CH2)。-で示される基であり、式

製造方法 1 に記載したと同様に、一具体例を示せば次の通りである。

$$\mathbb{R}_{1,1}$$
 (XX III).

OHC-(CH₂)
$$^{\nu-1}$$
 \longrightarrow N-CH₂ \longrightarrow $\stackrel{K_{1,2}}{\longrightarrow}$ (XX),

$$R_{13}$$
 $CH^{3})^{\nu-1}$
 $N-CH^{3}$
 R_{13}
 CH^{3}
 R_{14}
 CH^{3}

$$R_{13}$$
 $CH^3)^u - CH^3 - K_{13}$
 $(XX II).$

る場合を具体的に示せば以下のとおりである。

製造方法 H

Jがフェニル基の部分が置換されてもよいインダノリル基である場合は、以下の方法によって製造することができる。

即ち、化合物(XXII) を 0 セ〜室温にて、例えば水素化ホウ素ナトリウムなどで還元することにより、目的物質の一つである化合物(XXIV)を得ることができる。この場合の溶媒は、例えばメタノールなどが好ましい。

製造方法[

Jがフェニル基の部分が置換されていてもよいインデニル基を示す場合は、以下の方法によっても製造することができる。

$$B - T \qquad Q - K \qquad (XX V)$$

即ち、化合物 (XXIV)を常法により塩酸などの存在下脱水させて、目的物質の一つである化合物 (XXIV)を得ることができる。

製 造 方 法 J

Jがフェニル基の部分が置換されていてもよいインデノニル基を示す場合は、以下の方法によっても製造することができる。

ランなどの溶媒中、 1.8ージアザビシクロ〔5.4.0〕 ウンデクー 7 ーエン (DBU) とともに加熱環流することにより 8 一脱離を行い、インデノン化合物 (XX)を得る。なお、上記のブロム体は、他のハロゲンでも反応は可能である。

なお、製造方法G~Jにおいて、出発物質と して用いるインダノン類は市販品を用いるか又 は以下の方法により製造される。

$$\begin{array}{c} B - T \\ CH_2 \end{array} = K \qquad (XX M)$$

即ち、一般式 (XII)で表されるインダノン化合物を、例えば四塩化炭素などの溶媒中、 Nーブロムコハク酸イミド (NBS) と過酸化ペンソイルとともに加熱還流してブロム化し、次にこのブロム体 (XII)を、例えばテトラヒドロフ

一方、アルデヒド体は例えば以下の方法によ り製造することができる。

$$0 = \sqrt{1 - K} \qquad (i)$$

又は

即ち上記の如く、式(i)又は式(ii)で示される化合物を出発物質とし、これを上記の方法によりアルデヒド体とし、これを下記に示すウィテッヒ反応などを繰り返したり、組み合わせたりすることにより増炭反応を行い、目的とする出発物質を得ることができる。

ウィテッヒ試薬としては、例えば1炭素増長のときはメトキシメチレントリフェニルホスホランを用い、2炭素増長のときはホルミルメチレントリフェニルホスホランを用いる。

メトキシメチレントリフェニルホスホランは、 メトキシメチレントリフェニルホスホニウムクロライドとローブチルリチウムとから、例えばエーテル又はテトラヒドロフラン中で生成させる。この中にケトン体又はアルデヒド体を加えてメトキシピニル体とした後、酸処理によってアルデヒドを合成することができる。

特定の場合の具体例を以下に示す。

素などが好ましい。

具 体 例 2

以上のようにして得られる一般式(I)の化合物及びその酸付加塩は各種老人性痴呆症、特にアルツハイマー型老年痴呆の治療に有用である。

一般式(I)で示される化合物及びその酸付加塩の有用性を示すために、薬理試験結果を以下に説明する。

実験例1

In vitroアセチルコリンエステラーゼ阻害作用

一方、ホルミルメチレントリフェニルホスホランを用いる場合は、原料となるケトン体又はアルデヒド体のエーテル、テトラヒドロフラン 又はベンゼン溶液中にウィテッヒ試薬を加え、 室温から加熱環流することによって合成することができる。

このようにして合成した不飽和アルデヒド体は、必要により接触還元して飽和アルデヒド体とすることができる。この際の触媒としては、パラジウム炭素、ラネーニッケル、ロジウム炭

アセチルコリンエステラーゼ源として、マウス脳ホモジネートを用いて、Ellmanらの方法いに準拠してエステラーゼ活性を測定した。マウス脳ホモジネートに、基質としてアセチルンは検体及びDTNBを添加し、インキュペーション後、産生したチオコリンがDTNBと反応し、生じる黄色産物を412nm における吸光度変化として測定し、アセチルコリンエステラーゼ活性を求めた。

検体のアセチルコリンエステラーゼ阻害活性は50%阻害濃度(IC_{50})で表した。

結果を表しに示す。

1) Ellman, 6, L., Courtney, K.D., Andres, V. and Featherstone, R.M. (1961) Biochem. Pharmacol., $7.88 \sim 95$

表 1

表 1 (統 き)

	LOUDED STATE	// A 44m	ACLOSE STATEM
化合物	AChE阻客活性 ICso (μW)	化合物	AChE阻害活性 ICso (μM)
1	0. 23	32	0, 8
4	0. 0053	35	0.00082
5	0.10	36	0.0015
6	0.017	39	0. 15
8	0.013	. 41	0. 025
9 .	0.051	· 43	0. 030
10	0.009	55	0.36
11	0.068	58	0.019
12	0.040	62	0.80
13	0.026	64	1.0
14	0.038	66	0.017
15	0. 094	72	0.0075
17	0. 052	75	0.0016
18	0. 68	77	0. 10
19	0.064	80	0. 28
20	0. 54	82	0.020
21	50	99	0, 018
23	0. 072	100	0, 035
24	1. 1	105	0. 085
26	24	111	0.11
27	0. 41	130	0. 19
30	0. 001	134	2. 8
31	0.094	186	0, 004

化合物	AChE阻害活件 ICso(声》)	化合物	AChE阻害活性 ICs。(μW)
188	0. 081	215	0.0042
189	0. 012	216	0.017
190	0. 02	217	0.14
191	0. 085	221	0. 033
192	0. 013	222	0. 011
193	0. 2	223	0.0054
194	0. 069	224	0. 003
195	0. 0071	225	0. 48
196	0. 0013	226	0. 0049
197	0. 38	227	0. 01
198	0. 0054	228	0. 002
199	0. 023	229	0. 04
203	0. 009	230	0.16
204	0. 035	231	0.004
205	0.014	232	0. 1
206	0. 41	233	0.046
207	0.049	234	0.0018
208	0. 062	235	0. 22
209	0. 43	238	0. 072
210	0.06	239	0, 18
212	0.5	240	0. 0089
213	0.05	241	0. 22
214	0.0084	249	0. 62

実験例2

Ex vivo アセチルコリンエステラーゼ阻害作用

ラットに被検体を経口投与し、その1時間後に大脳半球を採取し、ホモジナイズ後、アセチルコリンエステラーゼ活性を測定した。なお、 生理食塩水投与群を対照とした。

結果を表2に示す。

表 2

化合物 No.	用 量 (mg/kg)	AChE阻害作用 (%)
Saline		0
	1	5 *
	3	17 **
4	10	36 **
	30	47 **
	10	5
15	30	14 **
	100	18 **

実験例3

スコポラミンの受動回避学習障害に対する作用*!

Wistar系雄性ラットを用い、装置としては
step through型の明暗箱を使用した。試行の1時間前に検体を経口投与し、30分前にスコポラミン0.5mg/kg(ip)を処置した。訓練試行では明室に動物を入れ、暗室に入った直後にポロチンドアを閉め電気ショックを床のグリットから与えた。6時間後に保持試行として再び動物を明室に入れ、暗室に入るまでの時間を測定し評価した。

効果は生食投与群とスコポラミン投与群の反応時間の差を 100%とし検体により何%拮抗したか(Reverse%)で表した。

x1 Z. Bokolanecky & Jarvik: Int. J. Neuropharmacol
6. 217~222(1967)

結果を表3に示す。

表 3

化合物No.	用 量 (mg/kg)	Reverse%
4	0.125	55
	0. 25	36 ~
13	0.25	39
13	0.5	27
15	1.0	51
1.0	2. 0	30
19	0.5	37
1.9	1. 0	39
79	0.5	22
19	1.0	38

実験例4

<u>コリンアセチルトランスフェラーゼ(ChAT) 賦活</u>活性の測定

ラット胎児の脳神経細胞の培養並びに神経細胞中コリンアセチルトランスフェラーゼ(ChAT)活性の測定

2) F. Fonnum: J. Neurochem., <u>24</u>, 407-409 (1975)

 F. Hefti, J. Haytikka, F. Eekenestein,
 H. Gnahn, R. Heuman and M. Schwab, Neuroscience, 14, 55-68 (1985)

表 4

	,	
化 合 物	コリンアセチ。 フェラーゼ	ルトランス (ChAT) 賦活活性
	Conc.	% of Cont.
CH ₃ O	10-7 M	96
CH. — CH. — CH.	10- ° N	114*
CH ₃ O	10-3 W	118**
CH.O. I C	10-7 M	107*
N-CH, -	10-e x	. 109*
CH30	10-* ¥	101
	10-7 M	93
CH, (N-CH,	10-e N	87**
	10-5 u	58**
F. II C	10-7 H	114 *
CH2 - N-CH2 -	10-ª H	119**
	10-5 M	104
CH ₂ CH ₂ O	10 ⁻⁷ ¥	112"5
CH N-CH.	10-• H	121*
CH-CH-0	10~5 N	138**
CH,O	10-7 #	93
CH, -()v-CH, -()	10-• 14	95
CH ₂ D	10-° N	73**

化 合 物	コリンアセチ	ルトランス (ChAT) 賦活活性
	Conc.	% of Cont.
OCH ₃	10 ⁻⁷ H	108
CH, O CH, CH, CH, CH,	10-• H	105
CH30	10-5 M	110**
CH O	10-7 M	101
CH ₂ O N-CH ₂ NO ₂	10- * X	105**
CH₃O	10 ⁻⁵ H	85**
CH ₂ O, 1	10-7 M	108**
CH2 - (CH3) 3 -	10-• H	103
CH30	10-5 H	88*
CH ₃ O: 1	10-7 M	101
(CH ₂) , - \\ H-CH ₂ - \\	10-• N	100
CH ₂ 0	10-3 H	84**
CH ₂ O	10 ⁻⁷ ⅓	105*s
CH. PT TCH CH CH CH.	10 A	
CH, CHO		99
CH)	10-2 A	70**

が置換されていてもよいインダノンから誘導される基である場合の化合物が最も好ましい。即ち、特に、 Jがフェニル環が置換されていてもよいインダノンから誘導される基である場合の化合物は、従来のアセチルコリンエステラーゼ阻害剤とは構造を著しく異にすること、優れたコリンアセチルトランスフェラーゼ賦活作用を有し、更に強力なアセチルコリンエステラーゼ阻害作用を有し、ことのほか主作用ー副作用市

が大きいこと、作用持続が長いこと、水溶性が高く、且つ極めて安定な化合物であり、製剤上有利であること、及び生体利用率が優れ、first pass effect を受けにくく、且つ脳内移行性も

上記の薬理実験例から強力なアセチルコリン エステラーゼ阻害作用及びコリンプセチルトラ ンスフェラーゼ賦活作用を有していることが明

本発明化合物(1)のうち、Jがフェニル環

らかとされた。

従って、本発明の目的は、コリンアセチルト ランスフェラーゼ賦活作用に基づいて種々の痴

よいなどの特徴を有している。

呆症、脳血管障害後退症に有効な化合物を有効 成分とする新規な医薬を提供するにある。

なお、本発明化合物の代表的化合物(前記を3の化合物版4,13,15,19,79)について、ラットにおける毒性試験を行ったところ、いずれもあ100mg/kg以上で重篤な毒性を示さなかった。本発明化合物は、コリンアセチルトランスフェラーゼ賦活作用が有効なあらゆる疾患に有効なあらゆる疾患に有効なあらめる疾患をあげれば、各種老人性痴呆、脳の無に伴う脳の世界ので、言語を書、、これを発展では、これを発展では、これを発展を表して、言語を書、これを発展では、これを表して、言語を書、これを表して、言語を書、これを表して、言語を書、これを表して、言語を書、これを表して、言語を書、これを表して、言語を書、これを表して、言語を書、これを表して、言語を書、記述に作う注意力低下、言語を書は表して、言語を書は表して、言語を書は表して、言語を書は表して、言語を表して、記述に作う注意という。

本発明化合物のコリンアセチルトランスフェ ラーゼ賦活作用がこれらの疾患に有効なのは、 上記の作用により脳内のアセチルコリンが増留 されることに基づくものと考えられる。

更に、本発明化合物は強力かつ選択性の高い

抗コリンエステラーゼ作用を有するので、これ らの作用に基づく医薬としても有用である。

即ち、アルツハイマー型老年痴呆のほか、例 えばハンチントン舞踏病、ピック病、晩発性異 常症などにも有用である。

本発明化合物をこれらの医薬として使用する場合は、経口投与若しくは非経口投与により投与されるが、通常は静脈内、皮下、筋肉内など注射投与される。投与量は、症状の程度;进力投与される。投与量は、症状の程度;进力投与的,低压、医薬型、調剤、特に限力、力の動力の種類などによって異なり、特に限定されないが、通常成人1日あたり約0.1~300mg、好ましくは約1~100mgであり、これを通常1日1~4回にわけて投与する。

本発明化合物を製剤化するためには、製剤の 技術分野における通常の方法で注射剤、坐薬、 舌下錠、錠剤、カブセル剤などの剤型とする。

注射剤を調製する場合には、主薬に必要によりpH調整剤、緩衝剤、懸濁化剤、溶解補助剤、

安定化剤、等張化剤、保存剤などを添加し、常 法により静脈、皮下、筋肉内注射剤とする。そ の際必要により常法により凍結乾燥物とするこ とも可能である。

懸濁剤としての例を挙げれば、例えばメチルセルロース、ポリソルベート80、ヒドロキシェチルセルロース、アラピアゴム、トラガント末、カルボキシメチルセルロースナトリウム、ポリオキシエチレンソルピタンモノラウレートなどを挙げることができる。

溶解補助剤としては、例えばポリオキシェチレン硬化ヒマシ油、ポリソルベート80、ニコチン酸アミド、ポリオキシェチレンソルピタンモノラウレート、マグロゴール、ヒマシ油脂肪酸エチルエステルなどを挙げることができる。

また安定化剤としては、例えば亜硫酸ナトリウム、メタ亜硫酸ナトリウム、エーテル等が、保存剤としては、例えばパラオキシ安息香酸メチル、パラオキシ安息香酸エチル、ソルビン酸、フェノール、クレゾール、クロロクレゾールなどを挙げることができる。

溶出液を減圧濃縮した後、残渣を塩化メチレンに溶解し、10%塩酸-酢酸エチル溶液を加え、さらに減圧濃縮して結晶を得た。これをメタノールーIPE から再結晶化し、次の物性を有する標題化合物0.33g (収率80%)を得た。

・融点(で);224~225

・元素分析値:C23H27NO・HC1 として

C H N

理論値(%) 74.68 7.63 3.79

実測値 (%) 74.66 7.65 3.77

実 施 例 2

<u>1 - ベンジル - 4 - [2 - [(1 - インダノン)</u> - 2 - イリデニル]]エチルピペリジン・塩酸 <u>塩</u>

60%水素化ナトリウム0.32gをヘキサンにて 洗浄後、THF 10mlを加えた。この中へ0℃にて ジェチル1ーインダノン-2-イルホスホナー

〔実 施 例〕

以下に実施例に従って本発明をさらに具体的に説明するが、本発明の技術的範囲がこれらの 実施例の範囲に限定されるものでないことはい うまでもない。

なお、下記の実施例において、NMR の値はす ペてフリー体での測定値を示す。

実 施 例 1

<u>1ーペンジルー4ー〔2ー〔(1ーインダノン)</u> <u>-2ーイル〕〕ェチルピペリジン・塩酸塩</u>

1ーベンジルー4ー〔2ー〔(1ーインダノン)ー2ーイリデニル〕〕エチルピペリジン0.37gをメタノール10mlに溶解し、5%ロジウムー炭素0.1gを加えた。室温常圧にで24時間水素添加した後、触媒を認別し、磁液を減圧緩縮した。この残渣をシリカゲルカラム(塩化メチレン:メタノール=200:1)にて精製し、

ト2.12gのTHF 30ml溶液を滴下した。室温にて 30分撹拌した後、再び0℃に冷却し、1ーペン ジルー4ーピペリジンアセトアルデヒド3.43g のDMF 10ml 溶液を加えた。室温で 2 時間、50 ℃ で2時間さらに2時間加熱量流した後、0℃に てメタノールと20%硫酸を加えた。10分後飽和 水酸化ナトリウム水溶液にて塩基性とし、酢酸 エチルにて抽出した。有機層を飽和食塩水にて 洗浄した後、硫酸マグネシウムで乾燥し、減圧 盗縮して得られた残渣をシリカゲルカラム(塩 化メチレン:メタノール=500 :1) にて精製 した。溶出液を減圧凝縮した後、残渣を塩化メ チレンに溶解し、10%塩酸-酢酸エチル溶液を 加え、減圧激縮して標題化合物0.78g (収率27 %)を得た。なお、ジエチル1-インダノン-2-イルホスホナートを1.37g回収した。

·分子式;C23H25NO·HC1

· 'H - NMR (CDC1₃) & ; 1.10~2.13 (7H, m) , 2.26 (2H, t) , 2.88 (2H, bd) , 3.48 (2H, s) , 6.72 ~7.07 (2H, m) , 7.30 (5H, s) , 7.10~8.00 (5H, m)

実 施 例 3

1 - ベンジル- 4 - [(5.6 - ジメトキシー 1 - インダノン) - 2 - イリデニル]メチルピペ リジン・塩酸塩

(a) 1-ベンジル-4-ピペリジンカルボアル デヒドの合成

メトキシメチレントリフェニルホスホニウム クロライド26.0gを無水エーテル 200ml に懸濁 させ、 1.6M nーブチルリチウムへキサン溶液 を室温にて滴下した。室温にて30分間撹拌した 後、 0 ℃に冷却し、1ーペンジルー4ーピペリ ドン 14.35gの無水エーテル30ml 溶液を加えた。 室温にて 3 時間撹拌した後不溶物を濾別し、濾 液を減圧漁縮した。これをエーテルに溶解し、

この反応はアルゴン努囲気下行った。

無水THF 10ml 中にジイソプロピルアミン2.05 mlを加え、さらに 0 ℃にて1.6M nーブチルリチ ウムヘキサン溶液9.12mlを加えた。0℃にて10 分撹拌した後、-78℃まで冷却し、5.6 -ジメ トキシー1ーインダノン2.55gの無水THF 30ml 溶液とヘキサメチルホスホルアミド2.31mlを加 えた。-78℃にて15分撹拌した後、(a)で得た 1 ーベンジルー 4 ーピペリジンカルボアルデヒド 2.70 g の無水THF 30ml溶液を加えた。室温まで 徐々に昇温し、さらに室温にて 2 時間撹拌した 後、1%塩化アンモニウム水溶液を加え、有機 層を分離した。水層を酢酸エチルにて抽出し、 さらに合わせた有機層を飽和食塩水にて洗浄し た。硫酸マグネシウムで乾燥後、減圧盪縮し、 得られた残渣をシリカゲルカラム(塩化メチレ ン:メタノール=500 : 1~100 : 1) にて箱 製した。溶出液を減圧激縮した後、残渣を塩化、 メチレンに溶解し、10%塩酸-酢酸エチル溶液 を加え、さらに減圧温縮して結晶を得た。これ

1N塩酸にて抽出した。さらに水酸化ナトリウム 水溶液にてpH 12 とした後、塩化メチレンにて 抽出した。硫酸マグネシウムにて乾燥後、減圧 濃縮し、得られた残渣をシリカゲルカラムにて 精製し、油状物質5.50g(収率33%)を得た。

これをメタノール40m1に溶解し、1N塩酸40m1を加えた。 3時間加熱還流した後、減圧激縮し、残渣を水に溶解後水酸化ナトリウム水溶液にて pH 12 とし、塩化メチレンにて抽出した。飽和食塩水にて洗浄後、硫酸マグネシウムにて乾燥し、減圧濃縮して得られた残渣をシリカゲルカラムにて精製し、標題化合物2.77g(収率54%)を油状物質とした得た。

- ·分子式:CiallinO
- · 'H NMR (CDC1₃) δ ; 1. 40 ~ 2. 40 (7H, m) \sim 2. 78 (2H, dt) \sim 3. 45 (2H, s) \sim 7. 20 (5H, s) \sim 9. 51 (1H, d)
- (b) <u>1-ベンジル-4-[(5,6-ジメトキシー</u> <u>1-インダノン) -2-イリデニル]メチル</u> ビベリジン・塩酸塩の合成

を塩化メチレン-IPE から再結晶化し、次の物性を有する標題化合物3.40g (収率62%)を得た。

・融点(で);237~238 (分解)

・元素分析値:C24H27NOs・HCIとして

 C
 H
 N

 理論値(%)
 69.64
 6.82
 3.38

実測値 (%) 69.51 6.78 3.30

実 施 例 4

1-ベンジル-4-[(5,6-ジメトキシ-1 -インダノン)-2-イル]メチルピベリジン

・塩酸塩

1ーペンジルー4ー [(5.6 ージチトキシー1ーインダノン)ー2ーイリデニル]メチルピペリジン0.40gをTHF 16mlに溶解し、10%パラジウムー炭素0.04gを加えた。室温常圧にて6時間水素添加した後、触媒を適別し、適液を減

・融点(で);211~212 (分解)

·元素分析値;C24H28NO3・HC1として

C H N

理論値(%) 69.30 7.27 3.37

実測値(%) 69.33 7.15 3.22

実 施 例 5

 2 - [4' - (1' - ペンジルピペリジン) エチル]

 -2.3 - ジヒドロー 1 - オキシピロロ [3,4 -b]

 ピリジン・二塩酸塩

2-ヒドロキシメチルニコチン酸ラクトン12.6

冷却下、撹拌しながら水素化ナトリウム (60%)を0.21g加える。その後、2.3 ージヒドロー5.6 ージメトキシオキシピロロ〔3.4 ー b〕ベンゼン1gを加え、80℃で4時間撹拌する。終了後、H₂0を加え、クロロホルム抽出し、クロロホルム層を水洗、乾燥(MgSO。)、溶媒を留去してシリカゲル精製すると目的物の油状物を得る。これを常法により塩酸塩にすることによりクリーム色の結晶を約0.2g得た。

- ·分子式;C24H30N2O3·2HC1
- · 'H-NMR (CDCI₃) δ:
 - 1. $12 \sim 3.4(9 \text{H, m})$, 2. $72 \sim 3.00(2 \text{H, m})$.
 - 3. 48 (2H, s), 3. 62 (2H, t), 3. 95 (6H, s).
 - 4. 26 (2H, s), 6. 90 (1H, s), 7. 28 (6H, s)

実 施 例 7

<u>4 − [N− (o−アミノベンジル) エチル] − 1</u> <u>−ペンジルピベリジン</u>

8、4-(2-アミノエチル) ペンジルピペラジン40gをシールドチューブ中で200 ℃、7時間撹拌する。その後、シリカゲルカラムで精製し、常法により塩酸塩にすることにより目的物の二塩酸塩6.37gを得た。

・融点(セ):143.5 ~145

・元素分析値:C2:H2sN3O・2HCI として

C H N

理論值(%) 61.77 6.66 10.29

実測値(%) 61.49 6.68 9.98

実 施 例 6

2 - (4' - (1' - ベンジルピベリジン) エチル) -2.3 - ジヒドロ-5.6 - ジメトキシオキシピ ロロ (3,4 - b) ベンゼン・塩酸塩

2.3 ージヒドロー5.6 ージメトキシオキシピロロ (3.4 - b) ベンゼン 0.5gを触媒量のヨウ化カリウムとともにDMF に溶解する。これを

窒素気流下2ーニトロペンズアルデヒド30g、 1ーペンジルー4ーアミノエチルピペリジン21.4 g、メタノール100ml を室温で3時間撹拌する。 反応液を氷冷し、水素化ホウ素ナトリウム16g のMoOH 30ml 溶液を滴加する。さらに室温にて 1時間反応させた後、水にあけ、メチルクロライドで抽出し、10%塩酸150ml で3回抽出し、メチレンクロライドで洗浄する。この水層を炭 酸ナトリウムでpH10にし、メチレンクロライド で抽出し、無水硫酸マグネシウムで乾燥後、溶 媒を減圧留去し、1ーペンジルー4ー〔Nー (o ーニトロペンジル)エチル〕ピペリジン28.4g を得る。

これをメタノール100ml に溶解し、10%パラジウムー炭素 (含水) 3 g を用い 4 kg/cm² 圧力で水素添加を行い、標題化合物25.6 g を得る。・分子式; C21H23N2

· 'H — NMR (CDC1,) δ ; 1.0 — 2.1 (9H.m) , 2.64 (2H.t), 2.90 (2H.m), 3.47 (2H.s), 6.65 (2H,m), 7.02 (2H.m), 7.30 (5H.s)

実 施 例 8

 $\frac{3-[2-(1-4)2n-4-24]n)}{2+n-2-(1H, 3H)}$

4- (N- (o-アミノベンジル) ェチル]
-1-ベンジルピペリジン25.6g、1.1'-カルポニルジイミダゾール15g、メタノール100mlを12時間加熱還流を行う。反応後、水をあけ、メチレンクロライドで抽出し、無水硫酸マグネシウムで乾燥し、溶媒を減圧留去する。

この残渣をシリカゲルカラムクロマトグラフィーにより精製(5%MeOH-CH₂Cl₂)し、酢酸エチルより、2回再結晶を行い標題化合物3.0gを得る。

- ·分子式; C22H27N3D
- 'H NMR (CDCI₂) δ ; 1.0 ~2.1(9H, m) , 2.7 ~3.0(2H, m) , 3.2 ~3.6(4H, m) , 4.4 (2H, s) , 6.5 ~7.4(8H, m) , 7.75(1H, s)

せる。減圧下溶媒を留去し、シリカゲルクロマトグラフィーで精製後、常法で塩酸塩とする。 淡黄色非晶質0.17gを得る(収率13.5%)。

- ·分子式;C24H31N3O·2HC1
- 'H NMR (CDCl₃) δ ; 1, 25 ~ 2, 02 (9H, m) , 2, 52 (3H, s) , 2, 79 ~ 2, 95 (2H, bd) , 3, 10 (2H, s) , 3, 48 (2H, s) , 3, 54 (2H, s) , 3, 91 (2H, bt) , 7, 14 ~ 7, 45 (9H, m)

実 施 例 10

1 - [4' - (1' - ベンジルピベリジン) ェチル] -1,2,3,4 - テトラハイドロ-5H-1-ベンツ アゼピン-2-オン・塩酸塩

ナトリウムハイドライド0.27gをジメチルホルムアミド (DMF)0.5ml に懸濁させ、氷冷下撹拌する。これに1.2.3.4 ーテトラハイドロー5H - 1 ーペンツアゼピン-2-オン0.60gをDMF

実 施 例 9

1 - (4' - (1' - ベンジルピペリジン) エチル -1, 2, 3, 4 - テトラハイドロー 4 - メチルー5 H- (1, 4) - ベンゾジアゼピン- 2 - オン・二 塩酸塩

ナトリウムハイドライド0.35gをジメチルホルムアミド (DMF) 0.5ml に懸濁させ、氷冷下撹拌、これに1.2.3.4 ーテトラハイドロー4ーメチルー5Hー1.4 ーベンツジアゼピンー2ーオン0.52gをDMF 3mlに溶かして滴下し、室温で30分間撹拌する。ここへ Nーベンジルー4ー(2ークロロエチル)ピペリジン塩酸塩0.81gをDMF3mlに溶かして滴下し、60~70℃で7時間撹拌する。氷水にあけ、塩化メチレンで抽出する。飽和食塩水で洗い、硫酸マグネシウムで乾燥さ

4mlに溶かして滴下する。60℃で15分間加熱後、 水冷し、Nーベンジルー4ー(2ークロロエチ ル)ピペリジン塩酸塩1.02gを加え、その後、 60℃で3時間30分撹拌する。放冷後、氷水にあ け、塩化メチレンで抽出する。水洗後、硫酸マ グネシウムで乾燥させ、減圧下溶媒を留去する。 シリカゲルクロマト精製後、常法で塩酸塩とし、 標題化合物1.40gを得る(収率94.8%)。

- ·分子式;C24H30N2O·HC1
- 'H NMR (CDC1₃) δ ; 1. 20 ~ 1. 92 (11H, m) , 2. 20 ~ 2. 24 (4H, bs) , 2. 60 ~ 2. 88 (4H, m) , 3. 44 (2H, s) , 7. 12 ~ 7. 24 (9H, m)

実 施 例 1 1

N - [4- (1'-ベンジルピペリジル) ェチル]
-5.6.11.12 -テトラヒドロジベンソ [b,f] ア
ゾミン-6-オン・塩酸塩

5.6.11.12-テトラヒドロベンソ (b.f.) Tソミンー 6 ーオン2.24gと60%水素化ナトリウムをジメチルフォルムアミド20mlに入れ、60℃で1時間加熱撹拌後、1 ーベンジルー4ークロロエチルピペリジン 0.7gを加え、さらに3.5。時間反応する。

反応液を水20mlにあけ、酢酸エチルで抽出し、 飽和食塩水で洗浄し、硫酸マグネシウムで乾燥 し、減圧留去する。

残渣をシリカゲルカラムクロマトグラフィーにより(5.96 MeOH in CH_2Cl_2)精製分離し、標題化合物0.6 g を得る。

·分子式;C29H32N2O·HC1

· 'H - NMR (CDC1₃) δ ; 1. 1 ~ 2. 2 (9H, m) , 3. 7 ~ 4. 1 (4H, m) , 4. 15 ~ 4. 5 (2H, m) , 4. 46 (2H, s) , 6. 8 ~ 7. 4 (13H, m)

実 施 例 1 2

10- [4'- (1'-ベンジルピベリジン) ェチル]
-10.11 -ジハイドロ-5-メチル-5H-ジベ
ンゾ [b, e] [1, 4] ジアゼピン-11-オン・塩

·分子式;C2aH31N3O·HC1

· 'H — NMR (COCl₃) & ; 1. 20 ~ 1. 91 (11H, m) , 2. 60 ~ 3. 00 (2H, bs) , 3. 22 (3H, s) , 3. 41 (2H, s) , 6. 87 ~ 7. 08 (3H, m) , 7. 08 (9H, m) , 7. 64 (1H, dd)

実 施 例 13

3-{{4'-(1'-ベンジルピペリジン) プロ ピオイル] アミノ) - 2 - ピラジンカルボン酸 イソプロピルエステル・塩酸塩

2.3 ーピラジンカルボン酸無水物18gをイソプロピルアルコール 200m1に加え1時間還流する。その後アルコールを留去し、得られる固体をTHF に溶解して4ー(2ーアミノエチル)ベンジルピペリジン30.6g、1ーハイドロキシベンゾトリアゾル21gを加える。これを冷却下、撹拌し、DCC 29.7gを加え、室温で1晩反応させる。 認過後、THF を留去し、塩化メチレンを

酸塩

加える。これを飽和炭酸カリウム水溶液、食塩水で洗浄し、乾燥後、溶媒留去する。さらにシリカゲルカラムで精製し、得られた結晶をエーテルーへキサンで再結晶すると目的物の白い結晶8.81gを得た。これを常法により塩酸塩とした。

・元素分析値;C₂₃H₃₀N₄O₃・HCl・¹/₂H₂Oとして

C H N

理論値(%) 60.58 7.07 12.29

実測値(%) 60.54 7.00 12.29

実 施 例 1 4

N - [4' - (1' - (p-ハイドロキシベンジル) ピペリジン)エチル] - 2 - キノキサリンカル ポン酸アミド・塩酸塩

2-キノキサリンカルボン酸クロライド2g を1-(p-メトキシペンジル) - 4-ピペリジ ンエチルアミン2.52gをトリエチルアミン2g 存在下、室温でTHF 中で反応させた。これを常法により後処理してカラム精製することによりN-{4'-(1'-(p-メトキシベンジル) ピペリジン) エチル} - 2 - キノキサリンカルポン酸アミド 2.5 g を得た。

これを1g塩化メチレンに溶解しBBr3により 脱メチル化反応を行い、カラム精製することに より生成物0.3gを得た。これを塩酸塩とする ことによりクリーム色の結晶を0.2g得た。

·分子式;C23H26N4O2·HC1

実 施 例 15

N- [4'-(1'-ベンジルピペリジル) エチル] -2-キノキサリンカルポン酸アミド

4-(N-ベンゾイルピペリジル) 酢酸47gと 塩化チオニル 8mlとベンゼン20ml中 2 時間加熱 還流後、滅圧留去する。

これをTHF 20mlに溶解し、氷冷撹拌下アニリン1.86g、トリエチルアミン10g、THF 30ml内に滴加する。室温で約11時間反応した後、水にあけメチレンクロライドで抽出する。飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥し、減圧留去する。残渣をシリカゲルカラムクロマトグラフィーで精製(5%MeOH in CH₂Cl₂)し4-(N-ベンゾイルピペリジル)酢酸アニリド0.9gを得る。

この4-(N-ベンゾイルピペリジル)酢酸アニリド 0.9gをTHF 10mlに溶解し、氷冷撹拌下、THF 30ml中リチウムアルミニウムハイドライド 0.38gを滴下し、さらに1時間加熱意流する。 反応後、水を加え、沈澱濾去後、酢酸エチルで抽出し、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥し、溶媒を減圧留去し、1-ベンジル-4-(N'-フェニルアミノエチル)ピペ

1ーベンジルー4ーアミノエチルピペリジン4.6 g、ピリジン50ml、4ージメチルアミノピリジンを室温、撹拌下、2ーキノキサロイルクロライド40g加える。3時間反応後、水にあけメチレンクロライドで抽出し、飽和食塩水で洗浄後、無水硫酸マグネシウムで乾燥し、溶媒を減圧留去する。

この残渣をシリカゲルカラムクロマトグラフィーで精製(5%MeOH-CH₂Cl₂)し、酢酸エチルより再結晶し、標題化合物3.0gを得る。

·分子式;C23H26N4O2·HC1

• 'H – NMR (CDCl₃) δ : 1.16 ~ 2.20 (9H, m) 、 2.76 ~ 3.04 (2H, m) 、 3.49 (2H, s) 、 3.48 ~ 3.68 (2H, t) 、 7.13 ~ 7.40 (5H, m) 、 7.70 ~ 8.26 (4H, m) 、 9.64 (1H, s)

実 施 例 16

1-ペンジル-4- (N'-フェニルアミノエチル) ピペリジン

リジン0.7 gを得る。

·分子式;C20H2aN2

· 'H — NMR (CDC1₃) δ ; 1.0 ~ 2.2 (9H, m) ~ 2.85 (2H, m) ~ 3.10 (2H, t) ~ 3.44 (2H, s) ~ 3.7 (1H, bs) ~ 6.4 ~ 6.8 (3H, m) ~ 7.0 ~ 7.4 (7H, m)

実 施 例 17

N- [4'-(1'-ベンジルピベリジル) エチル] アセトアニリド

1 ーベンジルー4 ー (N' ーフェニルアミノエチル) ピペリジン0.7 g、トリエチルアミン2.0 g、THF 20m1を氷冷下撹拌下、アセチルクロライド0.4 gを滴下する。

室温で3時間反応後、水20m1を加え、メチレンクロライドで抽出し、飽和食塩水で洗浄後、無水硫酸マグネシウムで乾燥し、溶媒を減圧留

去する。残渣をカラムクロマトグラフィーで箱 製 (5 %MeOH in CH₂Cl₂) し、標題化合物を得る。

- ·分子式;C23H28N2D
- 'H NMR (CDC1₃) δ ; 1.0 ~2.1(12H, m) , 2.6 ~3.0(2H, m) , 3.39(2H, s) , 3.67(2H, t) , 6.9 ~7.5(10H, m)

実 施 例 18

N-(3',5'-ジメトキシフェニル) -N- [4'-(1'-ベンジルピペリジル) エチル] - 4-フ ロロけい皮酸アミド・塩酸塩

$$F - \bigcirc CH = CHCNCH_2CH_2 - \bigcirc N - CH_2 - \bigcirc N$$

1 ーベンジルー 4 ー [N' ー(3',5' ージメトキシフェニル) アミノエチル] ピペリジン 1.0g、トリエチルアミン2.0g、THF 20mlを氷冷撹拌下、p-フロロけい皮酸クロライド0.51g加える。室温で2時間反応後水にあけ、酢酸エチル

下撹拌する。ここに、イソニコチン酸クロライド塩酸塩0.85gを加え、3時間30分撹拌する。減圧下溶媒を留去し、シリカゲルカラムで精製する。常法により二塩酸塩とし、淡黄色非晶質として0.75gを得る(収率73.0%)

- ·分子式;C26H29N3O·2HC1
- · 'H NMR (CDCl₃) δ ; 1. 13 ~ 2. 01 (9H, m) , 2. 81 (2H, bd) , 3. 44 (2H, s) , 3. 88 (2H, bt) , 6. 84 ~ 7. 26 (12H, m) , 8. 31 (2H, d)

実 施 例 20

<u>4- (1-ベンジルピペリジン) プロパンアニ</u> リド・塩酸塩

アニリン 0.5g、トリエチルアミン1gをTHF中に溶解する。この中に撹拌下、4ー(1ーベンジルピペリジン)プロピオン酸クロライドを1g滴下し、室温で5時間反応させる。その後、溶媒を留去し、塩化メチレンを加え、水洗、

で抽出し、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥し、溶媒を減圧留去する。

この残渣をシリカゲルカラムクロマトグラフィーにより精製 (5%MeOH in CH₂Cl₂) する。常法により塩酸塩として標題化合物0.9 gを得る。

- ·分子式;CalHasNaOaF·HCl
- 'H NMR (CDC1₃) δ ; 1. 1 ~2. 1 (9H, m) , 2. 7 ~3. 0 (2H, bd) , 3. 51 (2H, s) , 3. 83 (8H, m) , 6. 1 ~6. 4 (4H, m) , 6. 9 ~7. 8 (10H, m)

実 施 例 19

N- [4'-(l'-ベンジルピペリジン) ェチル]
-N -フェニルニコチン酸アミド・二塩酸塩

N- [4'(1'-ベンジルピペリジン) エチル] アニリン0.70g、4-(N.N'-ジメチルアミノ) ピリジン触媒量をピリジン30mlに溶かし、氷冷

MgSO. で乾燥する。これを再び溶媒を留去して シリカゲルカラム精製することにより目的物の 油状物を得た。さらにこのものを常法に従い、 塩酸塩にすることにより白い結晶O. 14gを得た。

- ・融点 (℃) ;197.5 ~198
- ・元素分析値;C21H26N2C・HC1として

C H N

理論値(%) 70.28 7.58 7.81

実測値 (%) 70.50 7.58 7.83

実 施 例 21

N- (3' -(1' -ベンジルピロリジン) メチル)

ベンジルクロライド0.74g、3 - (2'-アミ ノメチル) - ベンジルピロリジン1 gをトリエ チルアミン1.5 g存在下 THF中、室温で撹拌し 反応させた。これを常法により後処理しカラム 精製することにより、目的物を0.32g 得た。これを一般的方法により塩酸塩にした。

- ·分子式;C19H22N2D·HC1
- · 'H NMR (CDCl₃) 8;

1. 48 ~ 3. 08 (7H, m) , 3. 44 (2H, d) , 3. 62 (2 H, d) , 7. 04 ~ 7. 88 (10H, m)

実 施 例 22

4 - [4' - (N - ベンジル) ピベリジル] - 3 -ハイドロキシー p - メトキシブチロフェノン

窒素気流下、THF 7ml中にジイソプロピルアミン2mlを加え、0 ℃にて、1.6M nーブチルリチウムヘキサン溶液7.6ml を加え、10分間撹拌後、-78℃まで冷却して pーメトキシアセトフェノン1.65gのTHF 10ml溶液を加え20分間撹拌する。さらに1ーベンジルー4ーピベリジンカルボアルデヒド2.4gのTHF 10ml溶液を加え、

- ·分子式;C22H29NO2·HC1
- · 'H NMR (CDCl₃) δ; 1. 4 ~2. 3(11H, m) , 2. 4 ~2. 7(2H, m) , 2. 95(2H, t) , 3. 55(2H, s) , 3. 87(3H, s) , 6. 93(2H, d) , 7. 1 ~7. 5(5H, m) , 7. 94(2H, d)

実 施 例 2 4

10分間撹拌する。1%塩化アンモニウム水溶液を加え、メチレンクロライドで抽出し、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥後、減圧留去する。残渣をシリカゲルカラムクロマトグラフィーにより精製(5%MeOH-CH₂Cl₂)により精製し、標題化合物2.0 gを得る。

·分子式;C23H29NO,

· 'H - NMR (CDC1₅) δ; 1.0 ~2.2(9H, m) , 2.6 ~3.4(5H, m) , 3.43(2H, s) , 3.81(3H, s) , 4.1(1H) , 6.83(2H, d) , 7.17(5H, s) , 7.82(2H, d)

実 施 例 23

4 - [4'-N -ペンジル) ピペリジル] - p -メトキシブチロフェノン・塩酸塩

ディーン・スターク装置を用い、4 - 〔4' - (N-ベンジル) ピペリジル〕 - 3 - ハイドロキ

N- [4'-(1'-ペンジルピペリジン) エチル] -3-フラ<u>ンカルポン酸アミド・塩酸塩</u>

4-(2-アミノエチル) -1-ベンジルピペリジン1.64g、炭酸カリウム2.67gをクロロホルム40ml、水40mlの混液に加え、氷冷下1時間撹拌する。有機層を分離し、飽和食塩水で洗い、硫酸マグネシウムで乾燥させる。減圧下溶媒を留去し、シリカゲルカラムで精製、常法で塩酸塩とし、淡黄色非晶質として標題化合物1.60gを得る(収率61.1%)

- ·分子式;C19H24N2O2·HC1
- · 'H NMR (CDCl₂) δ; 1.47 ~ 2.10 (9H, m) 、2.81 (2H, bd) 、3.25 ~ 3.47 (4H, m) 、5.80 (1H, bs) 、6.51 (1H, dd) 、7.15 ~ 7.19 (6H, m) 、7.82 (1H, dd)

実 施 例 25

N- [4'-(1'-ベンジルピベリジン) エチル] ベンツアミド

N-(1-ラダマンタンメチル)-4-(2-アミノエチル)ピペリジン1.47g、炭酸カリウム0.73gをクロロホルム15mlと水15mlの混液に加え、氷冷下激しく搅拌する。ここにペンソイルクロライド0.90gを滴下し、室温で一夜搅拌する。有機層を分離し、水と飽和食塩水で洗炉する。が破マグネシウムで乾燥させ、溶媒を減圧下留去する。シリカゲルカラムで精製し、ペンセンーカーへキサンから再結晶し、淡黄色板状晶として標題化合物1.47gを得る(収率72.6%)。

- ・分子式; C₂₅H₃₆N₂O
- · 'H NMR (CDCl₃) δ ; 1. 29 ~ 2. 28 (27 H, m) , 2. 72 (2H, bs) , 3. 43 (2H, q) , 6. 01 (1H, bs) , 7. 31 ~ 7. 43 (3H, m) , 7. 67 (1H, dd)

法で塩酸塩として標題化合物0.52gを黄色非晶質として得る(収率37.6%)。

·分子式;C26H38N2O·HC1

• 'H — NMR (CDC1₃) δ ; 0.92 ~ 3.60 (63 H, m) , 7.29 (5 H, s)

実 施 例 2 7

N- [4'-(1'-シクロヘキシルメチルピペリジル) エチル] N -メチルペンズアミド・塩酸塩

NーメチルーNー (4'ーピペリジルエチル) ベンズアミド0.6 g、シクロヘキシルブロマイド1.2 g、炭酸水素ナトリウム2.0 g、メチルエチルケトン30mlを7時間加熱還流する。反応後水に加え、酢酸エチルで抽出し、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥し、溶媒を減圧留去する。この残渣をシリカゲルカラムクロマトグラフィーにより精製(5%MeOHー

実 施 例 26

N-メチル-N- (4' - (1' -ベンジルピベリジ

ン)エチル〕ペンツアミド・塩酸塩

ナトリウムハイドライド 0.18 g をテトラハイドロフラン (THF) 2 ml に懸陶させ、水冷下撹拌する。ここに N- [4'-(1'-ベンジルピペリジン) エチル] ベンツアミド 1.45 g をTHF 5 mlに溶かしたものを滴下する。室温で 1 時間撹拌した後、再び氷冷し、ヨウ化メチル 0.36 mlを加え、一夜室温で撹拌する。氷水にあけ、塩析下クロホルム抽出し、飽和食塩水で洗い、硫酸マグネシウムで乾燥させる。減圧下溶媒を留去し、シリカゲルクロマトで精製する。0.60 g の黄色油状物が得られる(収率 47.0%)。

また、メチル化されていない原料0.22gを回収した(回収率15.2%)。得られた油状物を常

CH₂Cl₂). し、標題化合物0.3 gを得る。

·分子式;C22H34N2D·HC1

• 'H – NMR (CDCI₃) δ ; 0.8 \sim 1.1 (20H, m) , 1.1 \sim 1.6 (4H, m) , 1.8 \sim 2.6 (5H, m) , 7.4 (5H, s)

実 施 例 28

5.6ージメトキシー1ーインダノン0.85gと 1ーベンゾイルー4ーピペリジンーカルボアルデヒド1.38gを無水THF 20ml に溶解し、0 でにて28%ナトリウムメチラート1.02gを加えた。室温にて2時間撹拌した後、酢酸エチルにて希釈し、飽和食塩水にて洗浄した。硫酸マグネシウムにて乾燥後、減圧凝縮し、得られた残渣をシリカゲルカラムにて精製し、1ーベング イルー 4 ー 〔(5,6ージメトキシー1ーインダノン) ー 2 ーイリデニル〕メチルピペリジン1.23 g (収率71%) を得た。

この化合物1.23gをTHF 20ml に溶解し、10%パラジウムー炭素 0.3gを加えた。室温常圧にて1日水素添加した後、触媒を認別し、違液を減圧激縮した。これを塩化メチレンーへキサンから再結晶化し、次の物性を有する標題化合物1.10g(収率89%)を得た。

・融点 (で):151 ~152

· 元素分析値: C24 H27 NO4 として

C H N

理論値 (%) 73.26 6.92 3.56

実測値 (%) 73.30 6.85 3.32

実 施 例 29

<u>4-〔(5,6-ジメトキシー1-インダノン) -</u> 2-イル〕メチルピペリジン・塩酸塩

チルピペリジン・塩酸塩

4-〔(5.6-ジメトキシー1-インダノン)
-2-イル〕メチルピペリジン0.25gをTHF6mlに溶解し、トリエチルアミン0.29mlと3-フルオロペンジルブロミド0.13mlを加えた。2時間加熱還流した後、減圧凝縮し、酢酸エチルにて希釈し、10%炭酸ナトリウム水溶液、飽和食塩水にて洗浄した。硫酸マグネシウムにで乾燥後、減圧濃縮し、得られた残渣をシリカゲルカラムにて精毀した。さらに常法により塩酸塩カラムにて精毀した。さらに常法により塩酸塩カラムにて精毀した。さらに常法により塩酸塩カラムにで発動化合物0.27g(収率72%)を得た。

・融点(℃);230~232 (分解)

・元素分析値;CzaHzaNOa・HC1として

C H N

理論値 (%) 66.43 6.74 3.23

実測値 (%) 66.18 6.79 3.11

1ーベンゾイルー4ー〔(5.6ージメトキシー1ーインダノン)ー2ーイル〕メチルピペリジン9.00gをジオキサン90m1に溶解し、6N塩酸90mlを加えた。10時間加熱還流した後、減圧激縮し、水で希釈した後、酢酸エチルにて抽出した。水層を50%水酸化ナトリウム水溶液にてpH12とした後、塩化メチレンにて抽出し、さらにで免塩水にて洗浄した。硫酸マグネシウムにて乾燥後、減圧激縮し、得られた残渣を常法により塩酸塩とし、メタノールーエーテルから再結晶化し、次の物性を有する標題化合物6.30g(収率85%)を得た。

· 融点 (℃);249~250 (分解)

・元素分析値;C17H23NO3・HC1として

C H N

理論館(%) 62.67 7.42 4.30

実測値 (%) 62.75 7.31 4.52

実 施 例 30

 $1 - (3 - 7 \mu \pm \mu \times \nu) - 4 - ((5, 6 - \nu) \times \nu) - 2 - 4 \mu$ ジメトキシー1 - インダノン) - 2 - 4 ル) メ

実 施 例 3 1

1 - ベンジル- 4 - [(5,6-ジメトキシー1-インダノン) - 2 - イル] メチルピペラジン・ 2 塩酸塩

5.6ージメトキシー1ーインダノン1.00g、パラホルムアルデヒド0.31g、1ーベンジルののでは、水2m1に懸るした。3時間加速を加えてpH3とした。3時間加速では、2000にで、2000にでは、2

・融点(で):227~228 (分解)

・元素分析値;C22H29N2O3・2HC1として

C H N

理論値 (%) 60.79 6.88 6.16 実測値 (%) 60.31 6.95 6.06

実 施 例 32

4- [(5,6-ジメトキシ-1-インダノン) -2-イル] メチル-1-エトキシカルボニルピ ベリジン

1ーペンジルー4ー〔(5,6ージメトキシー1ーインダノン)ー2ーイル〕メチルピペリジン0.50gをペンゼン8mlに溶解し、クロルギ酸エチル0.15mlを加えた。3時間加熱還流した後、酢酸エチルにて希釈し、飽和重曹水、飽和食塩水にて洗浄した。硫酸マグネシウムにて乾燥後、減圧濃縮し、得られた残渣を酢酸エチルーへキサンから再結晶化し、次の物性を有する標題化合物0.45g(収率94%)を得た。

この残渣をTHF 20m1 に溶解し、1.8 ージアザピシクロ〔5.4.0〕ウンデクー 7 ーェン1.66m1を加えた。30分間加熱遠流した後、減圧 濃縮し、酢酸エチルにて希釈し、飽和食塩水にて洗浄した。硫酸マグネシウムにて乾燥後、減圧濃縮し、得られた残渣をシリカゲルカラムにて精製し、標題化合物1.12g(収率56%)を油状物質として得た。

- ·分子式;C20H25NOs
- · 1 H-NMR(CDCl₃) δ ;

1. 23 (3H, t), 1. 41~2. 90 (11H, m), 3. 84 (3H, s), 3. 88 (3H, s), 4. 10 (2H, q), 6. 60 (1H, s), 6. 97 (1H, s), 7. 03 (1H, s)

実 施 例 3 4

1 - ペンジルー 4 - [(1, 3 - インダンジオン)]

- 2 - イリデニル] メチルピペリジン

無水THF 3ml中にジイソプロピルアミン

・融点(で):132~133

·元素分析値;C20H27NOs として

C H N

理論値(%) 66,46 7.53 3.88

実測値(%) 66.79 7.53 4.00

<u>実施例33</u>

4- [(5,6-ジメトキシー1-インデノン) --イル] メチルー1-エトキシカルボニルピ ペリジン

4-〔(5.6-ジメトキシー1-インダノン)
-2-イル〕メチルー1-エトキシカルボニルピペリジン2.00gを四塩化炭素30㎡に溶解し、
N-ブロムコハク酸イミド0.98gと過酸化ベン
ゾイル0.02gを加えた。5時間加熱還流した後、四塩化炭素で希釈し、飽和重曹水、飽和食塩水にて洗浄した。硫酸マグネシウムにて乾燥後、減圧海縮した。

・融点 (℃) :173 ~174 (分解)

・元素分析値;C22H21NO2 として

C H N

理論値(%) 79.73 6.39 4.23

実測値(%) 79.43 6.20 4.31

実 施 例 35

<u>1 - ベンジル- 4 - [(5,6 - ジメトキシインデ</u> ン) - 2 - イル] メチルピペリジン・塩酸塩

1ーベンジルー4ー ((5.6ージメトキシー1ーインダノール)ー2ーイル)メチルピペリジン0.24gを塩化メチレン5mlに溶解し、10%塩酸ー酢酸エチル溶液を加え、減圧濃縮した。得られた残渣を塩化メチレンーIPEから再結晶化し、次の物性を有する標題化合物0.24g(収率95%)を得た。

・融点(℃);216~217 (分解)

・元素分析値:C24H29NO2・HC1 として

C H

理論館(%) 72.07 7.56 3.50

実測値 (%) 71.82 7.63 3.33

実 施 例 36

1 - ベンジル- 4 - [3 - [(5,6-ジメトキシ - 1 - インダノン) - 2 - イリデニル]] - プ

- ·分子式;C28H31NO3·HC1
- 'H-NMR(CDCl₂) δ;

1. 10~3.00(13H.m), 3.45(2H.s), 3.50(2H.s), 3.90(3H.s), 3.95(3H.s), 6.58~7.20
(3H.m), 7.27(5H.s)

実 施 例 37

1-ベンジルー4-[3-[(5,6-ジメトキシ -1-インダノン) -2-イル]) プロピルピ ベリジン・塩酸塩

1 ーベンジルー 4 ー 〔3 ー 〔(5,6 ージメトキシー1 ーインダノン) ー 2 ーイリデニル〕〕 プロピルピベリジン0.40 gをTHF 15ml に溶解し、10%パラジウムー炭素 0.1 gを加えた。室温常圧にて 2 時間水素添加した後、触媒を適別し、滤液を減圧濃縮した。得られた残渣をシリカゲルカラムにで籍製し、常法により塩酸塩とし、標題化合物0.37 g(収率84%)を油状物質

ロピルピペリジン・塩酸塩

無水THF 5ml中にジイソプロピルアミン 0.31mlを加え、さらに0℃にて 1.6M nーブチ ルリチウムヘキサン熔液1.39mlを加えた。0℃ にて10分間撹拌した後、-78℃まで冷却し、5. 6 ージメトキシー1ーインダノン0.39gの無水 THF 5ml溶液とヘキサメチルホスホルアミド 0.35mlを加えた。-78℃にて15分間撹拌した後、 3- (1-ベンジルー4-ピペリジン)プロピ オンアルデヒド0.50gの無水THF 5ml溶液を 加えた。室温まで徐々に昇温し、さらに室温に て 3 時間撹拌した後、酢酸エチルで希釈し、飽 和食塩水にて洗浄した。硫酸マグネシウムにて 乾燥後、減圧濃縮し、得られた残渣をシリカゲ ルカラムにて精製し、常法により塩酸塩とし、 標題化合物0.55g (収率61%) を油状物質とし て得た。

として得た。

- ·分子式;C26H33NO3·HC1
- 'H-NMR (CDC1₃) δ :

1.00~3.30(18H,m), 3.38,3.43(total 2H, each s), 3.85(3H,s), 3.90(3H,s), 6.77, 6.83(total 1H, each s), 7.05,7.10(total 1H, each s), 7.18,7.20(total 5H, each s)

実 施 例 38~249

実施例1~37と同様にして合成した化合物 を表5~10に示す。

実施例	福 造 式	物 理 化 学 恒 数 (融点、元桑分析値、NMR など)
38	CH=0 -CH= -CH= - HC1	融点(で);247~248 (分解) 元素分析値(C₂₃H₂₃NO₃・HC1 として) C H N 理論値(%) 68.73 7.02 3.48 実測値(%) 68.70 6.99 3.35
39	CH 2 - N-CH 2 - HC1	融点 (で) ; 196~197 元素分析値(C₂₂H₂₅NO・HC1 として) C H N 理論値(%) 74.24 7.36 3.94 実測値(%) 74.25 7.56 3.80
40	CH-0 - CH CH HCI	融点(で);203~204 (分解) 元素分析位(C:,H:,NO;・HC1 として) で H N 理論値(X) 71.58 7.31 3.63 実測値(X) 71.58 7.25 3.65
41	CH ₃ O O . HCI	'H-NMR(CDC1 ₃) る; 1.10~3.40(14H.m). 3.48(2H.s). 3.81(3H.s). 3.85(3H.s). 3.85(3H.s). 6.25(1H.bs), 6.42 (1H.bs). 7.25(5H.s) 分子式:C24H25NO3・HC1
42	CH ₂ O	「H-NMR(COCl ₃) ð; 1.05~3.40(14H.m). 3.45(2H.s). 3.80(3H.s). 3.85(3H.s). 6.75(2H.ABq). 7.22(5H.s) 分子式; C ₃₄ H ₂₃ NO ₂ ・HCI

妻 5 (続き)

実施例	报 造 式	物 理 化 学 恒 数 (融点、元素分析値、NMR など)
43	CH30 CH3CH3 - N-CH3 - HC1	融点(で);201~202 (分解) 元素分析値(C25H31NO3・HC1 として)
44	CH30 HO N-CH3-CH3	'H-NMR(CDC1 ₂) &; 1.10~3.40(11H,m). 3,50(2H,s). 3.85(3H,s). 3.93(3H,s), 4.25(1H,bs), 6.81(1H,s). 7.07 (1H,s). 7.22(5H,s)
45	CH ₂ O	融点(で);225~226 (分解) 元素分析値(C23H25NO3・HC1 として) C H N 理論値(%) 69.08 6.55 3.50 実測値(%) 68.78 6.43 3.50
46	0 N-CH₂ -	融点 (で) ; 169~170 (分解) 元素分析値(C22H22NO・HC1 として) C H N 理論値(%) 74.67 6.84 3.96 実例値(%) 74.42 6.61 3.76
47	CH-0 -CH-2 - HC1	融点 (で) : 120~122 元案分析値(C₂₃H₂₅NO₂・HC1 として) C H N 理給値(%) 71.96 6.83 3.65 実測値(%) 71.84 6.85 3.46

実施例	機造式	物理化学恒数
大旭时	横造式	(融点、元条分析値、NMR など)
48	CH30 0 · HC1	'H-NMR (CDC1 ₃) & ; 1.40~2.40 (7H, m), 2.90 (2H, bd), 3.48 (2H, s), 3.51 (2H, bd), 3.82 (3H, s), 3.86 (3H, s), 6.30 (1H, bd), 6.43 (1H, bd), 6.50 (1H, bt), 7.23 (5H, s)
·		分子式; C24H22NO3・HCI
49	CH = 0 0 · HC1	1H-NMR (CDCl.) 8; 1.40~2.50(7H.m), 2.86(2H.bd), 3.50(4H.s), 3.90(3H.s), 3.94(3H.s), 6.59(1H.dt), 6.78 (2H.ABq), 7.22(5H.s)
	CH₃Ó	分子式:C24H27NO3·HC1
50	CH³O	'H-NMR(CDC1 ₃) &; 1.14~2.04(14H,m), 3.49(2H,s), 3.81(6H,s), 4.77(3H,dd), 6.65(1H,d), 6.82(1H,d), 7.23 (5H,s)
		分子式;C24H21NO2·C4H4O4
51	CH ₃ O CH ₃ - N-CH ₂ - NCI	'H-NMR(CDC1,) &; 1.10~2.32(9H.m). 2.99(2H.bd). 3.52(4H.s), 3.89(3H.s), 3.93(3H.s), 6.71(1H.tt), 6.84 (1H.s). 7.20(1H.s). 7.24(5H.s)
		分子式;CzsHzoNOa・HCI
	g .	融点(で);149~150
52	()-C-CH2CH2CH3-()4-CH3-() + HC1	元染分析位(CaaHanNO・HC1 として) C H N
		理論位(%) 73.83 7.88 3.91 安訓姓(%) 71.29 8.00 3.80 允品(20(%) 71.31 8.00 3.78

表 5 (続き)

実施例	神 造 式	物理化学恒数
		(融点、元素分析値、NMR など)
53	OH - CHCHaCHaCHaCHa - N-CHa - HC1.	"H-NMR (CDC1,) δ ; 1.80 \sim 2.03 (13H, ϖ), 2.80 (3H, bd), 3 43 (2H, s), 4.60 (1H, t). 7.28 (5H, s), 7.30 (5H, s)
		分子式;C22H29NO·HCI
54	O CCH=CHCH, —N-CH, — HC1	'H-NMR (CDC1 ₂) & ; 1.10~2.13 (7H.m). 2.26 (2H.t). 2.88 (2H.bd). 3.48 (2H.s). 6.72~7.07 (2H.m). 7.30 (5H.s). 7.10~8.00 (5H.m)
		分子式;C22H25NO·HC1
55	N CCH 2 CH 2 CH 2 CH 2 - N - CH 2 - 2 HC 1	融点(て);176~178 元素分析館(C21H2sN2O・2HCIとして) C H N 理論館(%) 63.80 7.14 7.09 実別値(%) 63.13 7.43 6.88 どっより(%) 62.94 7.19 6.99
56	O OH II I N—CCH a CHCH a — N-CH a —	「H-NMR (CDC)」) ð; 1.05~2.15(9H,m)、2.85(2H, bd)、3.02(2H, d)、3.25(1H, bs)、3.47(2H, s)、4.10~4.45(1H, m)、7.21(5H, s)、7.62(2H, dd)、8.70(2H, dd)
57	0 	'H-NHR(CDC1 ₃) る; 1.10~2.10(7H, m), 2.25(2H, bd), 2.85(2H, bd), 3.45(2H, bs), 6.59~7.10(2H, m), 7.20(5H, s), 7.56(2H, dd), 8.67(2H, dd)

実施例	梅 造 式	物 理 化 学 恒 数 (融点、元素分析値、NMR など)
58	N	融点 (で) ; 240~240.7 元条分析値(C₂oH₂sN₃O・2HC1として) C H N 理論値(%) 66.75 7.28 11.68 実胡値(%) 66.26 7.42 11.37 %oH₂O(%) 66.25 7.31 11.59
59	N	「H-NMR (COC1」) か; 1.80~2.24(9H, m), 2.96(2H, d), 3.64(1H, m), 4.60(1H, m), 7.20~7.58(6H, m), 8.34(2H, d)
60	0 ° N - V - V - V - CH 3 - V - CH 3 - V - HC1	'H-NMR (CDC1;) &; 1, 12—2, 20 (7H, m), 2, 34 (2H, d), 2, 74—3, 01 (2H, m), 3, 50 (2H, s), 7, 29 (2H, s), 7, 71 (2H, d), 8, 20 (2H, d)

5 6

		
実統例	複 造 式	物理化学恒数
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	-	(融点、元素分析値、NMR など)
	n	融点 (℃) ;135~140 (分解)
61	y-cH₃CH₃-√N-CH₃-√ · 2HC1	元条分析値(CュッHュッNュ0・2HC1として) C H N
01	N-Lustus VIIIs - Suci	理論值(%) 62.86 6.47 10.00 実施質(%) 59.22 6.63 9.14 %H ₂ 0 (%) 59.06 6.76 9.39
	0	融点 (で) ;80~82 (分解)
62	N-CH ₃ CH ₃ -\N-CH ₃ -\N · 2HCI	元素分析値(CaaHaaNaO · 2HC1として)
02	y-ch _a ch _a -Ch _a	で N 理論句(%) 62.56 692 9.95 実測句(%) 60.14 7.313 9.21 1・H ₂ O(%) 60.00 7.09 9.54
		'H-NMR (CDC1) &; 1. 1 ~2. 2(9H, m), 2.7~3. 1(2H, m), 3.50(2H, s).
63	N-CH,CH,-(N-CH,-(N-CH) · HC1	4.03(2H,t).6.50(1H,m).6.9~7.9(9H,m), 8.47(1H,d) 分子式;CaaHaaNaO・HCI
	9	'H-NMR (CDC1-) 8;
64	N-CH, CH, CH, HCI	1. 1 ~2. 2 (9H, m). 2. 7~3. 1 (4H, m). 3. 4~3. 7 (6H, m). 7. 0 ~7. 6 (8H, m). 8. 06 (1H, m).
	~~	分子式;CzəHzaNəO·HCI
65		'H-NMR(CDC1 ₃) ð; 1.10~2.20(11H.m), 2.27(3H.m), 2.93(2H.bd), 3,48~3.70(4H.m), 7.27(5H.s), 7.28~8.12(4H.m)
00	, C=0 .	
	CH ₃	分子式; C2 4H29N3O2・HC1

実施例	梅 造 式	物 理 化 学 恒 数 (融点、元素分析値、NUR など)	
66	N-CH, CH, -CH, -CH, -CH, -CH	'H-NHR (CDC1 ₃) σ ; 1.10-2.20(9H, m). 2.93(2H, bd). 3.40 -3.65 (6H, m). 4.43(2H, s). 7.00-7.50(4H, m). 7.31 (5H, s)	
		分子式;C23H20N2O·HCI	
67	N-CH ₃ CH ₃ -Ch ₃ -Ch ₃ -Ch ₃ -2HCI	'H-NMR (CDC1 3) & ; 1, 10~2, 20 (9H, m), 2, 22 2~2, 97 (8H, m), 3, 45 (2H, s), 3, 55 (2H, s), 6, 90~7, 20 (4H, m), 7, 20 (5H, s)	
		分子式;CaaHaoNa·2HC1	
68	N-CH3CH3-N-CH3-Q · HC1	'H-NHR(CDCl ₃) &: 1.10~2.16(13H, m). 2.16 ~2.50(2H, m). 2.87 (2H, bd). 3.03 ~3.43(4H, m). 3.48(2H, s). 7.27 (5H, s)	
		分子式:C:9H2aN2O·HC1	
69	N-CH ₂ CH ₂ -CH ₂ -CH ₂ -CH ₂ · HC1	H-NHR (CDC1;) &; 1.10~2.10 (9H, m). 1.46 (3H, d), 2.87 (2H, bd), 3.35~3.72 (3H, m), 3.46 (2H, s), 4.40 (2H, dd), 7.00~7.38 (4H, m), 7.28 (5H, s)	
		分子式;CzeHzoNzO·HCI	
70	CH ₂ CH ₂ —N-CH ₃ — HC1	'H-NHR (CDC1 ₂) Ø; 1.20~2.84(21H, m), 3.44(2H, s), 7.14 ~7.25 (9H, m)	
L		分子式; CasHoaNaO·HCl	

表 6 (続き)

実施例	梅 造 式	物 理 化 学 恒 政 (股点、元素分析値、NMR など)
71	CH2CH2 - CH2 - CH2 - HC1	'H-NMR(CDC1 ₃) <i>る</i> ; 1.44~1.80(15H,m), 2.96(2H,bs), 2.56(2H,s), 7.08~7.40(9H,m) 分子式:C ₂₃ H ₂₈ N ₂ O・HCI
72	H=CO	'H-NHR (CDC1 ₂) が; 1.24~2.50 (5H, m), 2.18 (2H, bs), 2.54~2.88 (4H, m), 3.44 (2H, s), 3.76 (3H, s), 6.64~6.76 (2H, m), 6.99 (1H, d), 7.20 (5H, s) 分子式; C ₂ 5 H ₂ N ₂ O ₂ · HC1
73	CH ₃ CH ₃	'H-NMR(CDC1 ₃) 8; 1.25~2.20(15H,m), 2.58(2H,bt), 2.86(2H,bs), 3.48(2H,s), 3.75(3H,s), 6.56~6.68(2H,m), 7.00(1H,d), 7.21(5H,s)
74	CH ₂ CH ₃ —\N-CH ₃ —\N-CH ₃ —\N-CH ₃ HC1 CH ₂ CH ₃ HC1	'H-NMR(CDC1 ₃) ð; 1.38~2.02(12H.m), 2.96(2H.d), 5.60(2H.s), 4.94(4H.m), 7.08~7.36(9H.m)
75	CH ₂ CH ₂ - N-CH ₂ - HC1	'H-NMR(CDC1 ₃) ð; 1.32~2.36(15H.m), 2.84 ~3.02(2H.m), 3.59 (2H.s), 4.09(3H.s), 6.72~6.88(2H.m), 7.20~ 7.44(7H.m)

実施例	梅 造 式	物 理 化 学 恒 政 (融点、元楽分析値、NMR など)
76	CH3O CH3CH3- N-CH3- N-CH3 - HC1	'H-NHR (CDC1,) & : 1.10~2.10(11H.m), 2.60 ~3.00(4H.m), 3.45 (2H.s), 3.45~3.80(1H.m), 3.86(6H.s), 6.22 (1H,bs), 6.57(1H.s), 7.20(5H,s), 7.46(1H,s)
77	CH-0 CH-CH N-CH HC1	分子式; C ₂ H ₃ N ₂ O ₃ ・HC1 'H-NHR(CDC1 ₃) る; 1.08~2.10(11H.m), 2.50 ~2.95(4H.m), 3.01 (3H. S), 3.45(2H. s), 3.45~3.60(1H.m), 3.85 (6H. s), 6.52(1H. s), 7.10(1H. s), 7.20(5H. s) 分子式; C ₂ H ₃ N ₂ O ₃ ・HC1
78	CH30 CH3-CH3-CH3-HCI	H-NHR(COCl ₃) る: 1,02~2.12(9H,m). 2.50~3.05(4H,m). 3.43(2H,s). 3.43~3.85(1H,m). 3.88(6H,s). 6.58(1H,s). 6.50~6.82(1H,m). 7.20(5H,s). 7.46(1H,s). 分子式:C ₂₄ H ₂₀ N ₂ O ₃ ·HCl
79	CH ₂ CH ₂ N-CH ₃ 2HC1	「H-NMR(COCI ₃) <i>る</i> ; 1.17(3H,t), 1.10~2.15(9H,m), 2.68(2H,q), 2.89(2H,bd), 3.14(2H,s), 3.51(2H,s), 3.55 (2H,s), 3.87(2H,Ut), 7.07~7.35(9H,m) 分子式; C ₂₅ H ₂₅ N ₃ O·2HC1

多 7

実施例	. 福 造 式	物 理 化 学 恒 数 (融点、元素分析値、NMR など)
80	CH ₂ CH ₂ - N-CH ₂ - HC1	'H-NMR(CDCl ₃) さ; (フリー体) 1,01~2.40(9H, m), 2,70~3.30(4H, m), 3.46(3H, s), 3,54(2H, s), 3,90~4.20(2H, m), 6,90~8.20(9H, m) 分子式: C ₂₄ H ₂ N ₃ O ₂ ·HCl
81	0 N-CH₃CH₂N-CH₃	'H-NMR (CDC1,) &: 1,12~2,12(9H,m), 2,76~3,00(2H,m), 3.50(2H,s), 3.66(2H,t), 4.36(2H,s), 7.08~7.92(9H,m)
82	© COOC3H2	'H-NMR (CDC1 ₃) & ; 1,08~2.16(9H.m), 1,42(3H.t), 2,76~3.00(2H.m), 3,32~3.62(2H.m), 3.50(2H.m), 4.53(q.2H), 7.12 ~7.40(5H.m), 7.48~7.72(1H.m), 8.58(1H.d), 8.73(1H.d)
83	COOCH 2CH 2CH 2CH 2 CH 2 CH 2 CH 2 CH 2	'H-NMR(CDC1 ₃) & ; 0.95(3H, t), 1.04~2.10(13H, m), 3.68 ~4.00 (2H, m), 4.28~4.60(2H, m), 4.48(2H, s), 5.46 (3H, t), 7.74(5H, s), 7.48~7.72(1H, m), 8.57 (1H, d), 8.71(1H, d)

実施例	柳 造 式	物 理 化 学 恒 数 (触点、元彙分析館、NMR など)
84	CH CONCH CH C	'H-NHR (CDC1,) 8; 1.00~2.06 (9H, m). 2.70~2.92 (2H, m). 3.00~ 3.13 (2H, m). 3.34~3.60 (4H, m). 7.26 (5H, s). 8.52 (1H, d). 8.62 (1H, d). 8.91 (1H, d)
85	CONCH.CHCHCHCH. HC1	「H-NHR (CDCl。」) 。 0.92~2.06(9H, m), 1.40(3H, t), 2.64~2.91(2H, m), 3.12(3H, s), 3.36~3.72(4H, m), 4.46(2H, q), 7.28(5H, s), 8.73(2H, d)
86	COOCH.	'H-NHR (CDC1 3) &; 1. 10~2. 16 (9H, m). 2. 72~3. 02 (2H, m). 3. 10~ 3. 62 (2H, m). 3. 51 (2H, s). 4. 04 (3H, s). 7. 2~ 7. 48 (5H, m). 7. 48~7. 80 (1H, m). 8. 60 (1H, d). 8. 69 (1H, d)
87	CN CONHCH.CH.2—CN-CH.2—C + HC1	'H-NHR(CDC1;) &; 1.04~2.28(9H.m), 2.36(3H.s), 3.44(2H.s), 3.50~3.76(2H.m), 7.12~7.25(5H.m), 9.03 (2H,s)
88	CONHCH, CH, -CH, -CH, -CH, -CH, -CH, -CH, -	'H-HMR(COC1,) &; 0.96~2.16(9H,m), 2.56~3.00(2H,m), 3.00~ 3,40(2H,t), 3.44(2H,s), 7.20(5H,s), 8.02(2H,s)

表 7 (統 き)

実施例	构 造 式	物 理 化 学 恒 政 (融点、元素分析値、NMR など)
89	COO - H . HCI	H-NHR (CDC1;)
90	CONHCH ₂ CH ₂ —N-CH ₂ —O · 2HC1	H-MHR (CDC1;)
91	CH3 CONCH3CH2—N-CH2— HC1	'H-NWR(CDC1,) &; 0,98~2.16(9H,m). 2,60~3.00(2H,m). 3,14(3H,s). 3,32~3,72(4H,m), 7,04~7,32(5H,m), 7,60~7.82(1H,m). 7,84~8.15(2H,m). 9,05(1H,s)
92	- 2HC1	'H-NMR(CDC1 ₃) 8; 1.00~2.05(9H,m), 2.56~3.00(2H,m), 3.08, 3.12(total 3H, each s), 3.30 ~3.70(4H,m), 7.18,7.21(total 5H, each s), 7.33~8.22(6H,m)
93	N CNHCH3CH2 N-CH2 - 2HCI	'H-NMR(CDC1 ₃) 多; 1.11~2.09(9H,m), 2.87(2H,bd), 3.20~3.62 (4H,m), 7.22(5H,s), 7.41~7.64(3H,m), 8.00 (1H,dd), 8.20(2H,s)

実施例	梅 造 式	物 理 化 学 恒 数 (融点、元素分析値、NMR など)
94	CNHCH ₂ CH ₂ -\leftan-CH ₂ -\l	融点(で):197.5~198.5 元素分析値(C34H37N30・2HC1として)
95	O N CHACH 2 CH 2 CH - CH - CH - OCH 3 . HCI	融点(で);174~176.5 元案分析値(C24H2eN4O2・HC1として) C H N 理論値(X) 65.37 6.63 12.71 実調値(X) 64.96 6.63 12.60 ½aH2U(X) 64.97 6.66 12.63

衰 8

実施例	构 造 式	物理化学恒数
96	CONHET . HCI	(融点、元盛分析館、NMR など) 'H-NMR(CDC1 ₃) ま; 0.96~2.24(9H,m). 1.25(3H,t). 2.60~3.08(2H,m). 3.44(2H,s). 3.12~3.15(4H,m). 7.20(5H,s). 8.44(2H,s)
97	CNCH ₃ CH ₃ -CH ₃	'H-NMR(CDCl ₃) ð: 1.00~2.08(9H,m), 2.70(2H,bd), 3.04(3H,bd), 3.40(2H,bd), 7.17(5H,s), 7.40~7,61(2H,m), 7.66~7.82(2H,m), 7.99~8.11(2H,m), 7.83(1H,d) 分子式: C25H23N3O・2HC1
98	0 N-CH ₂ CH ₂ -\(\sum_{N-CH_{2}}\)-\(\sum_{N	'H-NMR (CDC1 ₃) 8; 1.1 ~2.1(9H.m). 2.7~3.0(2H.m). 3.50(2H,s). 3.90(2H.t). 6.9 ~7.6(12H.m). 8.03(2H,d) 分子式: C ₂₇ H ₂₉ N ₃ O ₃ ·HC1
99	P - CH3CH2 - N-CH2 - HC1	'H-NMR(CDCI ₃) る; 1.1 ~2.1(9H, m). 2.7~3.0(2H, m). 3.48(2H, s). 3.8 ~4.0(2H, m). 6.6~7.4(14H, m) 分子式; C ₂₇ H ₂₈ N ₂ OF・HC1
100	- HC1	'H-NMR(CDC1 ₂) ð; 1.1~2.2(9H,m). 2.7~3.0(2H,m). 3.48(2H,s), 3.89(2H,m). 6.8~7.4(15H,m) 分子式; C ₂₇ H ₂₀ N ₂ O・HC1

実施例	梅 造 式	物 理 化 学 恒 数 (融点、元素分析値、NMR など)
101	CH ₃ CH ₂ NCH ₂ CH ₃ -\sqrt{N-CH ₃ -\sqrt{N}}	'H-NHR(CDC1 ₃)
102	CH ₃ O CH ₃ CH ₃ -CH ₃ -	'H-NMR(CDC1 ₃) &; 1.10~2.06(9H, m), 2.82(2H, bd), 3.43(2H, s), 3.58(3H, s), 3.88(2H, bt), 6.50(2H, d), 6.69 (2H, d), 6.98(5H, bs), 7.19(5H, s) 分子式; C ₂ eH ₂ N ₂ N ₂ O ₂
103	CH3CH2CH2-\(\tau\)N-CH2-\(\tau\)	「H-NMR(COC1 ₃) み; 1.78(3H, s), 1.0~2.1(9H, m), 2.6~3.0(2H, m), 3.43(2H, s), 3.75(2H, m), 3.73(3H, s), 6.64(4H, dd), 7.26(5H, s)
104	CH3CH2CH2-\N-CH2-\Q	'H-NMR(CDC1 ₃) が; 1.1 ~2.1(9H, m), 1.84(3H, s), 2.7~3.0(2H, m), 3.44(2H, s), 3.5~3.8(2H, m), 3.80(3H, s), 6.5 ~6.9(3H, m), 7.22(6H, s) 分子式: C13H30N2O2
105	ON CH3-CH3-CH3-CH3-CH3-CH3-CH3-CH3-CH3-CH3-	'H-NMR (CDC1 ₃) \$; 1.16~2.16 (9H, m). 2.68~2.98 (2H, m), 3.49 (2H, s), 3.84~4.09 (2H, t), 6.91~7.40 (10H, m), 8.22~8.44 (2H, m), 8.62 (1H, s)

表 8 (統 き)

		AL YES II. MA IN THE
実施例	梅 造 式	物 理 化 学 恒 数 (融点、元素分析値、NMR など)
106	0 C-N-CH₂-⟨N-CH₂-(N-CH₂-)-(N-CH₂-)-N-(N-CN-)-(N-CN-	'H-NMR(CDC1 ₂) る; 1.98~2.26(20H.m). 2.85(2H.bd). 3.48(2H.s). 3.62(2H.bt), 6.96 ~7.40(9H.m) 分子式; C ₂₂ H ₂₆ N ₂ O・HC1
107	CH3-S - NCH3CH3-\(\sigma\)N-CH3-\(\sigma\)	「H-NMR (CDC1」) ð; 0,90~2,10(9H,m), 2,65~2,98(2H,m), 2,83(3H,s), 3,47(2H,s), 3,52~3,92(2H,m), 7,26(5H,s) 7,26~7,43(5H,m) 分子式; C2,1H2のN2O2S・HC1
108	CH2CH2CNCH2CH2-\N-CH3-\\	'H-NMR(CDCl ₃) る; 1.02(3H, t), 1.10~2.00(9H, m), 1.98(2H, q), 2.80(2H, bd), 3.43(2H, s), 3.55~3.80(2H, m), 6.97~7.40(5H, m), 7.20(5H, s)
109	CH ₃ NCH ₂ CNCH ₃ CH ₂ N-CH ₃ - 2HC1	'H-NMR(CDCl ₃) る; 1.0~2.1(9H,m). 2.18(6H,s). 2.6~3.0(4H,m), 3.38(2H,s). 3.4~3.8(2H,m). 6.9~7.5(10H,m) 分子式: C ₂₄ H ₂₃ N ₃ O·2HC1
110	CH3CH3CCNCH3CH2	'H-MMR(CDCl ₃) る; 1.17(3H, t). 1.1 ~2.1(9H, m). 2.6~2.9(2H, m), 3.40(2H, s). 3.4 ~3.8(2H, m). 4.08(2H, t). 7.19(10H, s) 分子式; C ₂₃ H ₂₀ N ₂ O ₂ ·HC1

実施例		物理化学恒数
天都271	格 选 式	(触点、元素分析値、NMR など)
111	CH3CNCH3CH3-CH3-CH3-CH3-CH3-CH3-CH3-CH3-CH3-C	'H-NMR(COCl ₃) が; 1,24~1.81(9H, m). 2.0(3H, s), 2.82~2.96(2H, d). 3.54(2H, s), 3.80(2H, m), 7.18(2H, dd), 7.36(5H, s), 8.70(2H, dd)
112	CH 2 CH 2 - CH 2 - CH 2 - CH 2 - HC1	'H-NMR (CDC1 ₂)
113	CH ₂ = CHCNCH ₂ CH ₂ - A-CH ₂ - HC1	'H-NMR(CDC1 ₃) <i>お</i> : 1.16~2.06(9H, m), 2.83(2H, bd), 3.47(2H, s), 3.78(2H, bt), 5.42(1H, dd), 5.90(1H, dd), 6.20 (1H, dd), 6.99 ~7.40(10H, m) 分子式:C ₂₃ H ₂₈ N ₂ O・HC1
114	CH ₃ CNCH ₃ CH ₃ -\(\bigcap\) N-CH ₃ -\(\bigcap\) HC1	'H-NMR(CDC1 ₃) る; 1.14~2.03(12H.m), 2.83(2H.bd), 3.44(2H.s), 3.64(2H,bt), 7.00(2H.s), 7.08(2H.s), 7.22 (5H,s) 分子式; C ₂₂ H ₂₇ FN ₂ O・HCI
115	CH	'H-NMR(CDC1 ₂)

表 8 (続き)

実施例	枫 造 式	物理 化 学 恒 致 (融点、元素分析値、NUR など)
116	N - CNCH2CH2 - N-CH3 - 2HC1	'H-NMR (CDC13) &; 1.0 ~2.1 (9H, m), 2.6~3.0 (2H, m), 3.43 (2H, s), 3.85 (2H, m), 6.4 ~6.7 (3H, m), 6.9~7.3 (8H, m), 8.34 (2H, d)
117	OCH3-CH2-CNCH2-CN-CH2-CH2-CHC1	分子式: C ₂₊ H ₂₊ N ₃ O ₂ ・2HC1 'H-NMR(CDCl ₃) る: 1.0 ~2.1(9H,m), 2.6~3.0(2H,m), 3.41(2H,s), 3.84(2H,m), 6.6 ~7.2(5H,m), 7.22(5H,s), 8.37(2H,d) 分子式: C ₂₊ H ₂₊ N ₃ OF・2HCl
118	N CH ₂ CH ₂ CH ₂ CH ₂ N-CH ₂ - 2HC1	'H-NMR (CDC1 ₃) &; 1.0 ~2.1 (9H, m), 2.6~3.0 (2H, m), 3.43 (2H, s), 3.57 (6H, s), 3.83 (2H, m), 5.0 ~6.2 (3H, m), 7.0 ~7.4 (7H, m), 8.35 (2H, d)
119	CH3CHCH3CH2 N-CH2 + HC1	'H-MMR (CDC1 ₃)
120	CH3O OCH3 CH3O OCH3	'H-NMR (CDC1 ₃)

実施例	祵 造 式	物 理 化 学 恒 致 (融点、元素分析値、NMR など)
121	N CH, CH, CH, -CH, -CH, -CH, -CH, -CH, -C	'H-NMR(CDC1 ₃) &; 1.1 ~2.1(9H, m), 2.6~3.0(2H, m), 3.50(2H, s), 3.83(2H, m), 6.58(4H, dd), 7.04(2H, d), 7.19 (5H, s), 8.28(2H, d)
	OH	分子式: C2sH2sN302·2HC1
122	N CNCH3CH3-CH3-CH3-CH3-CH3-CH3-CH3-CH3-CH3-C	H-NMR (CDC1
	OH	分子式;CaeHaaNaOa・2HC1
123	N - CNCH, CH, N-CH, 2HCI	'H-NMR (CDC1 ₃) δ ; 1.1 ~2.1 (9H, m). 2.6~3.0 (2H, m). 3,44 (2H, s). 3.68 (3H, m). 3.85 (2H, m). 6.78 (4H, dd). 7.02 (2H, d). 7.23 (5H, s). 8.37 (2H, d)
	ÓCH ₃	分子式;CanHanNaOa·2HC1
124	NCH ₂ CH ₂ -N-CH ₂ -CH ₂	'H-NMR (CDC1 ₃)
		分子式:CzsHzsNs·2HC1

安 9

実施例	神 造 式	物 理 化 学 恒 数 (融点、元素分析値、NMR など)
125	CH, CH, CH, CH, CH, CH, CH, CH,	'H-NMR (CDC1 ₃)
126	H₂N - ← CH₂CH₂-← N-CH₂-← - 2HC1 CH₃	「H-NMR(CDC1 ₃) <i>も</i> ; 1,08~2,10(9H,m), 2,80~2,92(2H,d), 3,00(3H,s), 3,34~3,50(4H,m), 3,90(2H,s), 6,60(2H,d), 7,21~7,28(7H,m) 分子式:C ₂ ,H ₂ ,N ₃ O·2HC1
127	0 	'H-NMR(CDC1 ₂) ð; 1.0 ~2.1(9H, m), 2.31(3H, s), 2.5~3.1(5H, m), 3.1 ~3.6(4H, m), 7.0~7.4(9H, m) 分子式; C ₂₂ H ₃ のN ₂ O・HC1
128	O 	H-NHR(CDC1 ₃) る: 1.0 ~2.2(9H.m). 2.7~3.0(2H.m). 3.29(2H.m). 3.50(2H.s), 3.81(2H.s). 5.8(1H.s). 7.25(5H.s). 7.3 ~7.7(3H.m). 8.05(1H.d) 分子式: C22H27N2O3・HC1
129	O	'H-NMR(CDC1 ₃) 多; (フリー体) 1,10~2.06(17H,m), 2.10~2.32(3h,m), 2.96 (3H,s), 3.20~3,52(4H,m), 4.08~4.18(2H,d), 7.36~7.76(5H,m) 分子式; C22H2×N20・HC1
130	CH ₂ C-N-CH ₂ CH ₃ N-CH ₂ HC1	'H-NMR(CDC1 ₃)

実施例	梅 造 式	物 理 化 学 恒 数 (融点、元素分析値、NMR など)
131	0 	'H-NMR (CDC1 ₂)
	CH ₃	分子式;C₂₄H₂₀N₂D·HC1
132	O II DCNHCH2-N-CH2-V · HC1	'H-NWR (CDC1 ₂)
		分子式;C₂₀H₂₄N₂O₂·HCl
133	0 C-N-CH₃CH₂-	1H-NWR (CDC1 ₃) &; 1.00~3.08 (20H.m), 7.22 (5H.bs), 7.37 (5H.s)
	CH ₃	分子式;C₂₃H₃₀N₂O·HCI
134	CNHCH3CH3-CH3-CH3-TOJ · HC1	'H-NMR (CDC1 ₂)
		分子式;C,sH2,N2O2·HCl
135	O N-CH2-€ - HC1	¹H-NWR(CDC1 ₂) δ; 1.1 ~2.2 (9H, m), 2.8~3.1 (2H, m), 3.50 (4H, s), 7.30 (10H, s)
		分子式;C₂₀H₂₃NO₃・HCl
136	CH3O CNHCH2CH2-N-CH2- HCI	'H-NMR (CDC1 ₃)
	OCH,	分子式;C23H30N2O3·HCl

実施例	祖 造 式	物 理 化 学 恒 数 (融点、元素分析値、NMR など)
137	HO I - HC1	'H-NMR (CDCl ₃) 8; (フリー体) 1,12~2,16(9H,m), 2,76~3,0(2H,bd), 3,48(2H,s), 3,32~3,60(2H,m), 3,92(3H,s), 6,32~7,40(8H,m), 8,26(1H,bs), 14,0(1H,s)
	OCH:	分子式;C22H2aN2O3・HC1
138	OCNHCH2CH2-CH2-CH2-CH2-CH2	'H-NMR (CDC1 ₃) &; 1.1 ~2.2 (9H, m), 2.7~3.0 (2H, m), 3.1~3.4 (2H, m), 3.46 (2H, s), 4.90 (1H), 6.9 ~7.4 (10H, m)
		分子式;CziHzeNzOz·HCl
139	CH3CNHCH3CH3-CH3-CH3-CH3-CH3-CH3-CH3-CH3-CH3-	'H-NMR (CDC1 ₃) δ; 1.1 ~2.2 (9H, m), 2.7~3.0 (4H, m), 3.1~3.6 (2H, m), 3.55 (2H, s), 5.5 (1H), 7.30 (10H, s)
		分子式;C ₂₂ H ₂₈ N ₂ O・HCI
140	CH = CHCNHCH, CH, - N-CH, - CH, - HC1	H-NMR(CDC1,)
		分子式;C₂₃H₂₀N₂O·HCI
141	CNHCH2CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-	'H-NMR(CDC1 ₃) お; (フリー体) 1,1 ~2,2(9H,m), 2,6~3,0(2H,bd), 3,44(2H,s), 3,36~3,6(2H,m), 3,90(3H,s), 6,9~8,30 (10H,m)
	OCH,	分子式;C22H2eN2D2·HCl

		6An 378 11 24 6= 74
実施例	梅 造 式	物理化学恒数
		(融点、元素分析値、NMR など)
142	CH2CH2CH4CH2CH2 - N-CH2 - HC1	'H-NMR (CDC1 ₃)
	<u> </u>	分子式;C23H30N2O·HCI
143	CH3CH3CH42CH42← N-CH2-	'H-NMR (CDC1 ₃) δ; 1.17 (3H, t), 1.2 ~2.1 (9H, m), 2.17 (2H, q), 2.7 ~3.0 (2H, m), 3.1 ~3.4 (2H, m), 3.45 (2H, s), 5.3 (1H), 7.21 (5H, s)
		分子式;C,¬HzeNzO·IIC1
144	CHCNHCH, CH, - N-CH, - HCI	$ \begin{array}{c} ^{\text{I}}\text{H-NMR} \text{ (CDC1 }_3\text{)} \ \ \sigma \ ; \\ 1. \ 1 \sim 2. \ 0 \ (12\text{H, m}) . 2. \ 6 \sim 3. \ 0 \ (2\text{H, m}) . 3. \ 0 \sim 3. \ 3 \\ (2\text{H, m}) 3. \ 41 \ (2\text{H, s}) . 3. \ 3 \sim 3. \ 4 \ (1\text{H, m}) . 7. \ 23 \\ (10\text{H, s}) \end{array} $
	♥ Cit3	分子式;C₂₂H₂₀N₂O·HC1
145	0 	'H-NMR (CDC1 ₃) 8; 0.90~2.10 (9H, m), 2.78 (2H, bd), 3.00 ~3.70 (2H, m), 3.43 (2H, s), 4.40~4.85 (2H, m), 7.27 (10H, s), 7.38 (5H, s)
	V UI12 - V	分子式;CzaHzzNzO·HC1
146	0 COCH3CH3-CH3-	'H-NHR (CDC1 ₃) δ; 1.0 ~2.1(9H, m), 2.7~3.0(2H, m), 3.48(2H, s), 4.36(2H, t), 7.0 ~7.7(8H, m), 7.8~8.2(2H, m)
		分子式;C21H25NO2

	· · · · · · · · · · · · · · · · · · ·	
実施例	梅 造 式	物 理 化 学 恒 数 (融点、元素分析値、NBR など)
147	CH ₂ -CH ₂ -	'H-NMR (CDC1 ₃) & ; 0,86~1.90(9H,m). 2.56~3.05(4H,m). 3.38(2H,d). 4.56(1H,s). 4.68(1H,s). 7.00~7.56(12H,m). 8.10(2H,m)
	021/	分子式:C2eH31N2O3・HCI
148	CH3 = CHCNHCH3 CH3 -	'H-NuR (CDC1 ₃) δ; 1.0 ~2.1 (9H, m). 2.7~3.0 (2H, m). 3.1~3.4 (2H, m). 3.47 (2H, s). 5.58 (1H, dd). 5.9~6.1 (2H, m). 7.29 (5H, s)
		分子式;C ₁ -H ₂ -N ₂ D·HCl
149	C-N-CH ₂ CH ₂ -CN-C-	'H-NMR(CDC1 ₃) ♂; 1.00~4.08(16H, m), 7.38(10H, s)
	₩ CH3	分子式: C22H2sN2O2
150	O C-N-CH ₂ CH ₂ -N-CH ₂ -NG ₂ · HC1	'H-NЫR (CDC1,) 8; 0,90~2,10 (9H, m), 2.55~3.50 (7H, m), 3.52 (2H, s), 7.38 (5H, s), 7.80 (4H, ABq)
	¥	分子式;CュュHュァNュOュ・HC1
151	C-N-CH ₂ CH ₃ -\ CH ₃ \ CH ₃ \ CH ₃	'H-NMR (CDC1 ₃) 8; 0.96~2.08 (3H, m). 2.60~3.10 (6H, m). 3.48 (2H, d). 7.16~7.92 (14H, m)

実施例	梅 造 式	物 理 化 学 恒 数 (融点、元素分析値、NMR など)
152	CNHCH, CH, -CH, -CH, -CH, -CH, -CH, -CH, -	'H-NUR(CDC1 ₃) &; 0.80~2.04(9H.ш). 2.48~2.88(2H.ш). 3.12~ 3.52(4H.ш). 7.03~7.72(14H.ш)
153	0 	'H-NMR(CDCI ₃)
154	O CH, CH, CH, CH, CH,	'H-NMR(CDC1 ₂)
155	O	「H-NMR(CDC1」) ð; 0,90~2,18(9H.m), 2,52~3,70(7H,m), 3,72(2H,s), 7,10~7,88(4H.m), 7,38(5H.s) 分子式; C22H22N3O3
156	O N-CH ₂ -CH ₂ -CH ₂ · HC1	融点(で);216~217 (分解) 元素分析値(C ₂₂ H ₂₇ N ₃ O ₃ ・HC1 として) C H N 理論値(%) 63.23 6.75 10.05 実測値(%) 62.95 6.69 9.88

実施例	460 %	物理化学恒数
天旭切	梅 造 式	(融点、元素分析値、NMR など)
157	0 CNCH,CH, - CN-CH, - C ← CH,	'H-NMR(COCI ₃) Ø; 0,82(9H,s), 1,02~2,28(9H,m), 2,60~3,60(9H, m), 7,28(5H,s)
		分子式;C₂oH₂₂N₂O·HCI
158	Q CNHCH,CH,	'H-NMR(CDC1 ₂) δ; 0.85(9H, s). 1.12~2.28(9H, m), 2.76(2H, bd). 3.42(2H, q). 7.38(3H, m), 7.67(2H, dd)
		分子式;C,sHsoN2O·HC!
159	0 	'H-NMR (CDC1 ₃) & ; 1.0 ~2.2 (9H, m). 1.6~2.1 (5H, m). 2.2~2.6 (4H, m). 6.8 ~7.7 (9H, m)
	₩	分子式:C₂₂H₂¬N₂O·HCI
160	0 CNCH ₂ CH ₂ -CN-CH ₂ -CN-CH ₂ -CH	'H-NMR (CDC1 ₃) & : 1,00~2,05 (9H,m), 2,08,2,12 (total 3H, each s), 2,82 (2H,bd), 3,03 ~3,43 (2H,m), 3,44 (2H, s), 4,47,4,56 (total 3H, each s), 7,35 (10H,s)
		分子式;C,5H3oN2O·HCI
161	CH, CNCH, CH, -CH, -CH, -CH, -CH, -CH	"H-NMR (CDC1.) δ : 1.00~2.08 (9H, m), 2.78 (2H, bd), 2.88 (3H, s), 3.10~3.45 (2H, m), 3.43 (2H, s), 3.57 (2H, s), 7.22 (10H, s)
		分子式;C₂₃H₃₀N₂O·HC1

実施例	祸 造 式	物 理 化 学 恒 致 (触点、元彙分析値、NHR など)
162	CH ₂ CH ₂ CH ₂ -CH	'H-NMR(CDC1 ₃) 8; 1.00~2.00(9H, m), 2.03(3H, s), 2.80(2H, bd), 2.88, 2.91(total 3H, each s), 3.05 ~3.40(2H, m), 3.43(3H, s), 7.20(5H, s)
		分子式;C1+H2®N2O・HCI
163	CH = CHCNCH ₂ CH ₃ - N-CH ₃ - HC1	¹H-NHR(CDC1₃) ∂; 1.1 ~2.2(9H, m), 2.6~3.2(5H, m), 3.2~3.6 (4H, m), 6.8 ~7.1(1H, m), 7.3(5H, s), 7.5 ~ 7.8(3H, m), 8.24(2H, d)
	0,10	分子式;C2eH2sN2O3·HC1
164	CH3 CH3 CH3 CH3 CH3 CH3	'H-NMR(CDCl ₃) ð; 1.00~2.08(10H.m), 2.72~3.08(5H.m), 3.33 (2H.bd), 6.16(1H.bs), 7.07(7H.bs) 分子式; C _{2a} H _{2a} N ₂ O ₂ ·HCl
165	O N-CH ₂ -CH ₂ -CH ₂ HC1	'H-NMR(CDCl ₃) & : 0.15(2H,m). 0.56(2H,m). 0.90~2.23(10H,m), 3.00(5H,m). 3.34(4H,m), 7.40(5H,s) 分子式;C _{1.9} H _{2.0} N ₂ O・HCl
166	O	'H-NBR (CDC1 ₃) & ; 1,00~2.02(9H, m), 2.64~3,00(5H, m), 3,41(4H, m), 7,15(1H, m), 7,27(5H, s), 7,50(1H, d), 8,41 (2H, m)
1		分子式;C2,H27N3O·2HCI

変 9 (統 き)

実施例	梅 造 式	物 理 化 学 恒 致 (融点、元条分析値、NHR など)
167	0 CNCH ₂ CH ₂ -CN-CH ₂ -CN-CH ₂ · 2HC1	$ \begin{array}{c} ^{1}\text{H-NMR} \text{ (CDC1}_{2}) & \delta & ; \\ 1.04 \sim 1.04 \text{ (11H, m)}, & 2.64 \sim 3.00 \text{ (5H, m)}, & 3.58 \\ \text{ (2H, s)}, & 7.01 \text{ (1H, m)}, & 7.27 \text{ (5H, s)}, & 7.58 \text{ (2H, m)}, \\ 8.44 \text{ (1H, d)} \end{array} $
	•	分子式; CaiHaiNaO·2HC1
168	CH aCNHCH aCH a - N-CH a - HCI	'H-NMR (CDC1 ₃) δ; 1.00~2.00 (4H, m), 2.83 (2H, bd), 3.24 (2H, bd), 3.45 (2H, s), 3.59 (2H, s), 5.85 (1H, bs), 7.27 (5H, s), 7.77 (4H, ABq)
	0.2 N	分子式;C₂₂H₂₁N₂O₂·HCI
169	CH2-CH3-CH3-CH3-CH3-CH3-CH3-CH3-CH3-CH3-CH3	'H-NMR(CDCl ₃) る: 1.0~2.1(9H,m). 2.6~3.2(5H,m). 3.2~3.7 (4H,m). 7.25(5H,s). 7.3~8.1(7H,m)
170	CH ₃ COO CH ₃ CH ₃ - M-CH ₃ - HCI	'H-NHR (CDC1;) か; 1.00~2.10(9H, m), 2.25(3H, s), 2.81(2H, bd), 2.97(3H, bs), 3.10 ~3.45(2H, m), 3.43(2H, s), 7.23(4H, ABq), 7.27(5H, s) 分子式; C,4H,50N,2O; · HC1
171	O	'H-HMR (CDC1 3) 8; 1,06~1,92(9H, m), 2,70~2,99(5H, m), 3,44(2H, s), 7,22(2H, d), 7,38(5H, s), 8,50(2H, d)
		分子式;C₂₁H₂¬N₃O・2HCl

実施例	极 造 式	物理化学恒数
		(融点、元素分析値、NMR など)
172	C-NCH3CH3-N-CH3-V-HC1	'H-NMR(CDC1,) &; 0.90~1.05(9H,m), 2.70(3H,s), 3.00(2H,d), 3.22(2H,s), 3.37(1H,s), 3.46(1H,s), 7.18~ 7.60(9H,m), 7.78(3H,m)
	~~	分子式;C2eH3aN2O·HCI
173	CNHCH2CH2-CH2-H	'H-NWR(CDC1 ₂) &; 0,7 ~2.2(20H, m), 2.8 ~3.2(4H,), 3.55(2H, m), 6.95(1H, s), 8.02(2H, d), 8.34(2H, d)
	02N	分子式;C2:H3:N3O2
174	D B t 0 0 C C H 2 C H 2 C H 2 C H 2 C H 3 C H 2 C H 3	$ \begin{array}{c} \text{IH-NMR} (\text{CDC1}_3) & \mathcal{S} \\ 1. & 1 & \sim 2. \ 1 (12\text{H.m}), \ 2. \ 7 & \sim 3. \ 1 (5\text{H.m}), \ 3. \ 2 \sim 3. \ 6 \\ (4\text{H.m}), & 4. \ 22 (2\text{H.q}), \ 6. \ 7 (1\text{H.m}), \ 7. \ 2 \sim 7. \ 4 (6\text{H.m}) \\ \text{m} \end{array} $
		分子式;C2,H3oN2O3·HC!
175	CH ₂ SO ₂ - CNCH ₂ CH ₂ - N-CH ₂ -H · HCI	'H-NMR(CDC1 ₃) δ; 0.56~3.36(23H.m), 3:40 ~3.68(2H.m), 4.28 (2H.s), 7.18(5H,s), 8.34(2H.d), 8.58(2H,d)
176	N-CH°CH° - V-CH° - HCI	'H-NMR(CDC1,) &; 1.16~2.12(9H,m), 2.89(2H,bd), 3.47(2H,s), 4.35(2H,bt), 7.08 ~7.74(11H,m), 8.08(1H,bd), 8.23(1H,dd)

実施例	梅 造 式	物理化学恒数
		(触点、元粲分析値、NMR など)
177	CH2CH2CH2-CH2-CH2-CH2-CH2	'H-NHR (CDC1,) δ ; 1, 08 \sim 1, 94 (9H, m), 2, 68 \sim 3, 02 (7H, m), 3, 40 (2H, d), 7, 27 (5H, s), 7, 41 (2H, d), 7, 78 (2H, d), 10, 0 (1H, s)
	CHO T	分子式;C22H2aN2O2·HCI
178	CH ₃ CH ₂ CH ₂ - N-CH ₂ - HC1	'H-NMR (CDC1 ₂) & ; 1.10~1.98 (15H, m). 2.77 ~2.98 (6H, m). 3.12~ 3.46 (4H, m). 7.26 (9H, m)
	CH ₃ CH	分子式:C₂sH₂₄N₂O·HCI
179	CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-	'H-NMR (CDC1,) &; 1,00~2,00 (9H, m), 2,60~3,00 (7H, m), 3,45 (2H, m), 6,95 (2H, d), 7,26 (5H, s), 7,90 (2H, d)
	P ₃ C´	分子式:CzaHzzNzOFa・HCl
180	CNCH ₂ CH ₂ -CH ₂	'H-NHR (CDC1 ₃) δ; 1.00~2.10(3H, m). 2.87(2H, bd), 2.99(3H, s). 3.10~3.50(2H, m). 3.48(3H, s). 6.35~7.35(5H, m). 7.83(5H, s)
	HO	分子式;C ₂₂ H ₂₀ N ₂ O ₂ ·HCl
181	O	'H-NMR (CDC1 ₃) & ; 1.10~1.88(12H, m), 2.80(2H, d), 2.98(3H, s), 3.23~3.44(4H, m), 4.02(2H, m), 6.84(2H, d), 7.26(7H, m)
	Bt0 Sis	分子式;Cg4Hg2N2Og·HCl

実施例	构 造 式	物 理 化 学 恒 数 (融点、元彙分析値、NMR など)
182	N - CH = 0 - CNCH = CH = - N-CH = - 2HC1 CH =	'H-NHR (CDC1.)
183	N	'H-NMR (CDC1 ₂) & ; 1.04~1.98(7H, m), 2.20~3.80(7H, m), 6.60~ 7.34(7H, m), 8.67(2H, d)
184	CH ₃ OC - CNCH ₂ CH ₂ - N-CH ₂ - HC1	「H-NHR (CDC1」) ð; 0.90~2.20(11H, m). 2.60~3.30(2H, m), 2.85. 3.03(total 3H, each bs), 3.48,3.55(total 2H, each bs), 3.88(3H, s), 7.19.7.21(total 5H, each s), 7.67(4H, ABq) 分子式:C24H20N20: HC1
185	CH ₃ CH ₂ OCH ₂ - O CNCH ₂ CH ₂ - N-CH ₂ - HC1	「H-NHR(CDC1。) ð; 0.90~2.06(9H,s), 2.70~3.02(10H,m), 3.20~ 3.62(4H,m), 4.50(2H,s), 7.21~7.30(9H,d) 分子式; C2sH24N2O2・HC1

実施例	祸 造 式	物 理 化 学 恒 数 (融点、元素分析値、NMR など)
186	CH ₂ CH ₂ - N-CH ₂ - HC1	「H-MMR (COCl ₃) み; 0.90~2.10(9H, m), 2.81(2H, bd), 3.45(2H, s), 4.11(2H, t), 6.98~7.82(8H, m), 7.21(5H, s) 分子式; C ₂₁ H ₂₂ N ₂ O ₃ ·HCl
187	CH3 CH-0 - CNCH3CH3 - N-CH3 - HC1	'H-NMR (CDC1 ₃)
		分子式;CasHa4N2Oa・HCI

		<u> </u>
実施例	构 造 式	物 理 化 学 恒 数 (磁点、元嘉分析値、NMR など)
188	CH = 0 CH = -CH = -CH - HCI	'H-NMR (CDC1 ₃) δ; 1.00~3.40 (14H, m), 3.47 (2H, s), 3.78 (3H, s), 6.90~7.50 (3H, m), 7.23 (5H, s)
		分子式;CzaHzaNOa·HC1
189	CH3 - HC1	'H-NMR(CDC1 ₃) 8; 1.05~2.12(9H, m). 2.50~3.40(5H, m). 3.48 (2H, s). 3.88(3H, s). 6.98(1H, q). 7.15~7.32 (2H, m). 7.23(5H, s)
	CH=0	分子式;C₂϶H₂϶NO₂・HCl
	0	嗷点 (℃) ;199~200 (分解)
190	CH ₃ O CH ₃ O · HC1	元森分析値(C2.4H2.NO.・HC1 として)
130		理路值(%) 69.30 7.27 3.37 実測值(%) 69.24 7.40 3.38
	CH ₃ O O	敵点(で);198~199
191	CH30 CH3 -CH3 -CH3 - HC1	元案分析館(C24H29NO3・HC1 として)
		C H N 理胎位(%) 69.30 7.27 3.37 突測位(%) 69.15 7.42 3.47
	CH=0 0	融点(で);200~201
192	CH30 CH3 - CH3 - CH3 - HC1	元窯分析值(CzsHz,NO、・HCl として)
	CH,0	C H N 理胎値(%) 67.33 7.23 3.14 実測値(%) 67.10 7.16 3.00

実施例	横 造 式	物理化学恒数 (融点、元檗分析館、NMRなど)
193	г — Сн. — Сн. — Сн. — НС1	'H-NMR (CDC1 ₂) & ; 1.05~2.15(9H, m), 2.55~3.43(5H, m), 3.48 (2H, s), 7.23(5H, s), 7.23~7.43(3H, m)
194	CH. O - CH CH HCI	分子式: C22H24NOF・HC1 融点(t): 175~177 元素分析値(C22H27NO・HC1 として) C H N 理論値(%) 74.68 7.63 3.79 実測値(%) 72.77 7.64 3.62 //H20(%) 72.90 7.71 3.70
195	CH., — HCI	及点(で) ; 211~213 (分解) 元素分析値(C₂ッH₂ッN0・HC1 として)
196	CH,0 CH, -CH, -CH,	融点 (で):153~154 元条分析館(C₂₃H₂¬NO₃として) C H N 理論館(%) 75.59 7.45 3.83 実別値(%) 75.77 7.28 3.64
197	CH. O CH CH CH CH CH.	融点 (で):170~171 (分解) 元森分析値(C23H27N03として) C H N 理論値(%) 75.59 7.45 3.83 実測値(%) 75.61 7.47 3.55

実施例	福 造 式	物 理 化 学 恒 数 (融点、元桑分析値、NMR など)
198	CH ₃ CH ₃ O CH ₂ - CH ₂ - CH ₂ - HC1	融点 (で) ; 175~176 元案分析値(C₂eH₃3NO₃・HCJ として) C H N 理給値(%) 70.33 7.72 3.15 実測値(%) 70.20 7.46 3.35
199	CH. — N-CH. — HC1	融点 (で) ; 236~237 (分解) 元梁分析館(C₂₃H₂₅NO₃・HC1 として) C H N 理路館(X) 69.08 6.55 3.50 実測値(X) 68.97 6.82 3.29
200	CH ₂ - CH ₂ - CH ₂ - HC1	融点 (で) : 195~196 元 宏分析位(Cz3Hz7NO・HC1 として) で H N 理給値(%) 74.68 7.63 3.79 実測値(%) 72.72 7.77 3.78
201	CH ₂ - HCI	「H-NMR(CDC1 ₂) ゟ; 1.10~2.10(13H, m), 2.60 ~3.08(5H, m), 3.41 (2H, s), 7.00~7.85(4H, m), 7.19(5H, s) 分子式; C34H29NO・HC1
202	CH ₃ -Ch ₃ -Ch ₃ -Ch ₃ · HC1	'H-NMR(CDCl ₃) る; 1.17(3H, d), 1.12~2.10(9H, m), 2.60~2.93 (2H, m), 3.41(2H, s). 3.51(1H, q), 7.20(5H, s), 7.30~7.92(5H, m) 分子式; C ₂₂ H ₂₇ NO・HC1

実施例	複 造 式 :	物 理 化 学 恒 数 (融点、元素分析値、NMR など)
		融点 (℃) ;126~127
203	CH ₃ O CH ₂ CH ₂ CH ₂ · HC1	元素分析値(C,eH,aNO,・HC1 として)
	CH.	C H N 理論値(%) 70.33 7.72 3.15 実測値(%) 70.41 7.48 2.85
204	CH3O CH3CH3CH3CH3CH3 - N-CH3 - NCI	'H-NHR (CDC1 ₃) δ; 1.00~3.40(20H, m), 3.50(2H, s), 3.90(3H, s), 3.97(3H, s), 6.88(1H, s), 7.18(1H, s), 7.31 (5H, s)
	CH30/	分子式; CarHasNOa·HC1
205	CH ₂ O	'H-NMR (CDC1 ₃) δ; 1.05~3.36(22H, m), 3.45(2H, s), 3.85(3H, s), 3.90(3H, s), 6.78(1H, s), 7.08(1H, s), 7.21 (5H, s)
	OI(30	分子式;C28H27NO3・HC1
206	CH30 O - CH3 - CH3 - CH3 - HC1	'H-NMR (CDC1,) δ; 1.10~2.50(7H,m), 2.70~3.02(2H,m), 3.48 (2H,s), 3.56(2H,s), 3.79(3H,s), 6.69(1H,dt), 7.02~7.50(3H,m), 7.21(5H,m)
		分子式:CzəHzsNOz·HCl
207	0 - Сн Сн Сн. нст	"H-NMR (CDC1 ₃) & ; 1.50~3.57(17H, m), 3.48,3.50(total 2H, each s), 3.83,3.85(total 3H, each s), 6.57 ~7.39(4H, m), 7.22(5H, m)
	CH ₂ 0	分子式;C22H25NO2·HC1

実施例	枫 造 式	物 理 化 学 恒 政 (融点、元業分析値、NMR など)
208	CH=0 CH=CH - CH= CH - HCI	'H-NMR(CDCl ₃) る: 1.58~2.55(7H,m), 2.79~3.02(2H,m), 3.50 (2H,s), 3.63(2H,d), 3.90(6H,s), 6.63(1H,dt), 6.93(1H,d), 7.22(5H,s), 7.57(1H,d) 分子式; C ₂₄ H ₂₇ NO ₃ ·HCl
209	CH30 CH30 O . HC1	'H-NMR(COC1。) ま; 1.50~2.55(7H,m). 2.78~3.03(2H,m). 3.48 (2H,s). 3.56(2H,d). 3.85(3H,s). 4.00(3H,s). 6.62(1H,dt). 7.07(1H,d). 7.21(1H,d). 7.22 (5H,s) 分子式; Ca.Ha.NOa:HC1
210	CH30 0 - CH3 - CH30 - HC1	'H-NMR(CDCl ₃) る; 1.50~2.50(7H, m), 2.78~3.03(2H, m), 3.48 (2H, s), 3.53(2H, d), 3.82(3H, s), 3.90(3H, s), 4.03(3H, s), 6.58(1H, dt), 6.61(1H, s), 7.25 (5H, s) 分子式; C ₂₅ H ₂₇ NO ₄ ·HCI
211	P	'H-NMR(CDC1 ₂)
212	CH ₃ CH -CH ₂ -CH · HCI	'H-NMR (CDC1 ₃)

表 10 (統,き)

実施例	祝 造 式	物 理 化 学 恒 致 (融点、元粲分析値、NMR など)
213	CH - CH 2 - HC1	'H-NMR (CDC1.) & : 1.48~2.60(7H.m), 2.32(3H.s), 2.77~3.02 (2H.m), 3.49(4H.s), 6.69(1H.dt), 7.10 ~ 7.67(3H.m)
	ĆH ₉	分子式; CzaHzsNO・HCI 融点(で):174~175
214	CH30 CH3CH3 CH3 CH3 CH3 CH3 CH3 CH3 CH3 CH3	元素分析値(C23H25NO3として)
	CH ₃ U	理論位(%) 69.08 6.55 3.50 実測値(%) 69.12 6.41 3.43
215	CH ₃ O O -CH ₂ -C	融点 (で) ;175~176 元素分析値(C₃oH₃₁NO₃として)
	- cn20	理論値(%) 79.44 6.89 3.09 実初値(%) 79.04 6.87 2.77
216	CH3CH20	融点 (で) :180~181 元素分析館(C₂oH₃,NO₃・HC1 として) C H N 理論館(%) 70,65 7.30 3.17
	O CH - CH - CH - HC1	実訓館(%) 70.34 7.05 3.07
217		融点 (で) ; 228~230 (分解) 元素分析値(C₂₃H₂₃NO₃・HC1 として) C H N 理論値(%) 69, 43 6, 08 3, 52 実測値(%) 67, 89 5, 97 3, 45 ½H₃O (%) 67, 89 6, 19 3, 44

実施例	梅 造 式	物理化学恒数
		(融点、元彙分析値、NMR など)
218	O - CH2 - CH2 · HC1	'H-NHR (CDC1,) δ; 2.48~3.02(13H, m), 3.48(2H, s), 6.73(1H, dt), 7.10~8.10(4H, m), 7.22(5H, s)
		分子式: C23H25NO・HC1
		融点(で);211~213 (分解)
219	OCH-{_N-CH_2-{_}}	元索分析値(C24H27NO・HCI として)
219	· HC1	型路値(%) 75.47 7.39 3.67 実測値(%) 75.22 7.41 3.57
220	CH - CH ₂ - CH ₂ · HC1	'H-NHR (CDC1;) &; 1.20~2.60(7H,m), 1.96(3H,d), 2.70~2.97 (2H,m), 3.46(3H,s), 6.07(1H,dd), 7.21(5H,s), 7.21~7.61(5H,m)
	CII3	分子式;C₂₂H₂sNO·HC1
	0	融点 (℃) ;170~171
221	CH3 O CH3 -	元素分析値(CaeHa, NOaとして)
221		理給值(%) 77.01 7.70 3.45 実測値(%) 77.10 7.67 3.43
222	CH ₂ O CHCH ₂ CH ₃ CH ₃ CH ₃ - CH ₂ - CH ₂ · HCI	'H-NHR(CDC1 ₂) &; 1.10~2.40(13H, m), 2.70 ~3.00(2H, m), 3.45 (2H, s), 3.48(2H, s), 3.86(3H, s), 3.91(3H, s), 6.68(1H, tt), 6.80(1H, s), 7.20(6H, s)
	CH₃O	分子式; C27H39NO3·HC1

実施例	機 造 式	物 理 化 学 恒 致 (融点、元素分析値、NMR など)
223	CH ₃ O	H-NHR (CDC1) 3; 1.10~2.40 (15H, m), 2.68 ~3.00 (2H, m), 3.46 (2H, s), 3.50 (2H, s), 3.88 (3H, s), 3.93 (3H, s), 6.68 (1H, tt), 6.83 (1H, s), 7.19 (1H, s), 7.21 (5H, s)
		分子式:CzeHzsNOz・HC1
	CH ₂ O,	融点(で);130~135 元素分析値(C26H25NO3・HC1 として)
224	CH ₃ O	では、
225	CH ₂ O CH ₂ -N CH ₂ -N HC1	'H-NMR(CDC1 ₃) &; 1.10~3.50(16H, m). 3.87(3H, s). 3.93(3H, s), 6.80(1H, s). 7.00~7.25(6H, m)
		分子式;C24H29NOs·HC1
226	CH-0 CH-2 -CH-2 -CH-2 -CH-2	融点(で): 186~188 (分解) 'H-MMR(CDC1 ₂) る: 1.65~2.10(7H, m). 2.65~2.75(2H, m). 3.25~ 3.83(5H, m). 3.92(3H, s). 3.98(3H, s). 4.60 (2H, s). 6.88(1H, s). 7.19(1H, s). 7.26~7.60 (5H, m) 分子式:C24H22NO4
227	CH ₃ O CH ₂ - CH ₂ - CH ₂ · HC1	融点(t): 220~221 元素分析値(C₂sH₃,NO₃・HC1 として) C H N 理論値(X) 69.83 7.50 3.26
	ungu	理論値(X) 69.83 7.50 3.26 実測値(X) 70.03 7.51 3.26

		<u> </u>
実施例	梅 造 式	物 理 化 学 恒 数 (融点、元素分析値、NMR など)
		融点(で):212~213
228	CH ₃ O . HC1	元素分析値(C:sH:,NO: HC1 として)
228	CH30	型輪値(%) 69.83 7.50 3.26 実測値(%) 69.62 7.38 3.15
	0	融点(で);229~230 (分解)
229	CH.O. CH CH CH. · HCI	元素分析値(C₂sH₃,NO₃・HC1 として)
223	CH ₃ O	C H N 理給値(%) 69.83 7.50 3.26 実例値(%) 69.91 7.48 3.28
230	CH ₃ O	'H-NMR(CDC1,) \$\delta\$; 1.00\sigma3.50(14H,m), 3.73(2H,s), 3.86(3H,s), 3.93(3H,s), 6.82(1H,s), 7.12(1H,s), 7.22\sigma 7.80(4H,m)
	CH*0	分子式;C₂₄H₂αN₂O₅・HCl
	CH = 0 CH = -CH =	融点(で):210~211
231		元殊分析値(CaeHaoNaOs・HCI として)
		C H N 理論열(%) 62.54 6.34 6.08 実務値(%) 62.48 6.34 5.96
	CH ₃ O	敬点(で);234~236 (分解)
232		元素分析値(Cz4HzoN2Os・HCI として)
		C H N 理验館(%) 62.54 6.34 6.08 実測値(%) 62.56 6.25 5.83

表 10 (統 き)

実施例	梅 造 式	物 理 化 学 恒 数 (触点、元素分析値、NMR など)
233	CH30 CH3 - CH3 - CH3 - CH3 - HC1	'H-NNR(CDC1 ₃) る; 1.10~3.43(14H,m), 3.52(2H,s), 3.84(3H,s), 3.91(3H,s), 6.35~7.08(7H,m)
234	<u> </u>	欣点(で);146~148 元条分析値(C ₂₄ H ₂₉ NO ₄ ・HC1 として)
		型給館(%) 66.51 7.29 3.53 実測値(%) 66.73 7.00 3.24
	CH30 CH3 CH3 HCI	融点 (で) :193~194
235		元素分析値(C₂sH₃₁NO。・HC1 として)
		型給値(%) 67.33 7.23 3.14 実調値(%) 67.43 7.22 3.13
	CH ₃ O CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ O CH ₃ · HC1	融点 (で) :226~228 (分解)
236		元素分析値(C₂sH₃₁NO₄・HC1 として)
200		C H N 理論値(%) 67.33 7.23 3.14 実測値(%) 67.21 7.29 2.97
237	CH=0 CH= CH= -CH= - HC1	'H-NMR(CDC1 ₃) δ ; 0.78~3.40(14H.m), 3.46(2H.s), 3.85(3H.s), 3.91(3H.s), 5.01(2H.s), 6.78(1H.s), 6.80~ 7.43(9H.m), 7.09(1H.s)
	CH-30	分子式:C,,H,,NO,·HC1

実施例	构 造 式	物 理 化 学 恒 数 (融点、元素分析値、NMR など)
238	CH ₃ O — CH ₃ — N-CH ₃ — 2HC1	融点(℃);224~226 (分解) 元衆分析館(C₁₂H₂,N₂O₂・2HC1として) 円 N 理論館(%) 60.93 6.67 6.18 実測値(%) 58.72 6.98 5.56 H₂O (%) 58.60 6.84 5.94
239	CH=0	融点(t);253~256 (分解) 元条分析館(C.sH,,NO,・HC1 として) C H N 理論値(X) 69.83 7.50 3.26 実別値(X) 69.60 7.49 3.27
240	CH3O CH3 — H-CH3 — H . HCI.	融点(t); 225~226 (分解) 元素分析値(C, 4H, 4NO, + HCI として) C H N 理論値(X) 68.31 8.60 3.32 実調値(X) 68.17 8.49 3.51
241	CH=0 CH2 -CH2 · HC1	融点(で);226~227 (分解) 元素分析値(C.aHi,NO,・HC1 として) C H N 理論値(X) 72.17 6.92 3.01 実例値(X) 71.71 7.07 2.85
242	CH*0 CH* - CH* - CH* - · HCI	融点(で); 243~245 (分解) 元衆分析値(C, eH, NO, ・HC1 として) C H N 理論値(X) 72,17 6,92 3,01 実例値(X) 71,75 8,92 2,01

		<u>,</u>
実施例	棉 造 式	物 理 化 学 恒 数 (融点、元桑分析値、NMR など)
		融点 (で) :191~192
243	CH3O CH3 - CH3 - CH3 - CH3	元案分析値(CaeHaaNOs・HCl として)
240	CH ₃ 0 CH	C H N 理論値(%) 65.60 7.20 2.94 実測値(%) 65.34 7.27 2.79
	O OCH.	融点 (で) ;219~221
244	CH ₃ O V-CH ₃ V-CH ₃ · HCI	元素分析館(C₂-H₂sNO。・HC! として) C H N
244	CH ₃ O OCH ₃	理論値(%) 64.09 7.17 2.77 実別値(%) 63.27 7.19 2.51 以1120 (%) 62.96 7.24 2.72
245	CH30 CH3 - HC1	'H-NMR(D ₂ O) δ; 1.10~3.12(14H,m), 3.84(3H,s), 6.70(1H,s), 6.84(1H,s) 分子式; C ₁₈ H ₂₁ NO ₂ ·HC1
	NO ₂	融点 (で) ;182~183
	CH ₂ O CH ₂ - CH ₂ - CH ₃ -	元紫分析位(CaoHaaNaOs として)
246		で、 H N 理論値(%) 64.39 5.94 12.51 実測値(%) 64.42 5.78 12.52
	CH ₃ O S S CH ₃ - CH	融点 (で) ;240~241 (分解)
247		元条分析値(C,eH,s,NO,S,·HCl として)
241		理論值(%) 63.46 6.96 2.85 実測值(%) 63.18 6.78 2.80

実施例	褐 造 式	物 理 化 学 恒 致 (融点、元素分析値、NBR など)
248	CH ₃ O	融点 (で) ; 180~185 (分解) 元案分析値(C₂∍H₂₀N₂O₃・2HC1として)
240	CH30	C H N 理論値(%) 60.73 6.45 6.25 実測値(%) 60.92 6.67 6.18
	/ CH₃O	触点(で);230~232 (分解)
249	CH -	元素分析値(CssHssNOs・HC1 として) C H N 理論値(%) 69.35 6.65 2.31 実測値(%) 69.21 6.59 2.33

第1	第1頁の続き							
(51)	Int. C	Cl. ⁵			識別記	记号		庁内整理番号
Α	61 1	3	1/445 1/47 1/495 1/55					7375—4C
С	07 1	D 21 21 29 40 40 41			1 0	4	Н	7180-4C 7180-4C 6742-4C 6742-4C 6742-4C 6742-4C 8829-4C
⑫発	明	者	荒	木			伸	茨城県つくば市竹園 2-11-6 柏マンション401号
⑩発	明	者	小	笹		貴	史	茨城県つくば市吾妻 4-14-5 ヴィラ・エスポワール 206号
個発	明	者	窪	Ħ		篤	彦	茨城県つくば市並木 4-15-1 ニユーライフ並木406
@発	明	者	小	笹	美	智	子	茨城県つくば市吾妻 4 - 14 - 5 ヴィラ・エスポワール 206号
⑫発	明	者	山	津		清	實	神奈川県鎌倉市今泉台7-23-7