

에너지 빅데이터 활용데이터 사이언스 경진대회

유광남

데이터 파일

- 1. Train.csv
- > 1300 세대의 2016.07.26 ~ 2018.06.30 전력 데이터

- 2. Test.csv
- > 200 세대의 2017.07.01 ~ 2018.06.30 전력 데이터
- 3. 인천_시간별__기상자료(16-18)_축소__7월1일.csv (주최측 제공)
- > 인천 지역의 2016.07.20 ~ 2018.07.01 날씨 데이터

결측치

- 1. Train.csv, Test.csv 파일 결측치로 데이터 개수에 차이가 있음
- 2. ID 481번 기준으로 데이터 개수의 분포가 다름
- > 0~481 번 데이터만 사용하는 것을 고려

결측치 처리

- a. 결측치는 모두 0으로 변경
- b. 0.003 보다 작은 값은 0으로 변경
- c. 시간별 전력을 하루 단위로 합쳐 날짜별 전력으로 변경
- d. 유효한 데이터만 사용하기 위해 앞뒤로 0인 구간을 삭제
- e. 데이터 중간에 o이 있는 경우 값 변경 (ex. 평균값)

https://dacon.io

Feature

- 1. 전력 데이터 정규화 (*meter id 별로 따로 처리)
- > 최대값으로 나눔 > 로그를 씌움 > 평균으로 뺌 > 표준편차로 나눔
- 2. 전력데이터에 해당하는 날짜의 시간, 요일 정보를 사용
- > 시간은 주기가 365일, 최대값이 8월 1일인 사인함수를 사용
- 3. 2018.07.01 을 예측하는 경우 날씨 데이터 사용을 고려함
- 4. 2018.07.01 이후를 예측하는 경우 날씨 데이터 사용 X
- 5. 예측하는 날의 약 10주 전 데이터를 모아 1차원 벡터로 사용

모델

LightGBM

조건에 따라 18개 모델을 생성함

- > ID: (0~481 / 0~1500)
- > 전력데이터 중 0에 대한 처리를 3 종류로 분류
- > 2018.07.01 예측에 날씨 데이터 (사용 / 사용 X)
- > 기상 모델 사용시 2018.07.02 예측을 위해 (74 / 75)일 데이터 사용

시간별 전력 수요 예측(18.07.01)

2018.07.01의 시간별 수요 예측을 위해 2018.03.01~2018.06.30 기간 내 일요일에 해당하는 시간별 수요의 분포를 구함

Gauss 함수로 weight를 주어 좀 더 일반적인 대표값을 구함

https://dacon.io

모델 선택

1-R2 score

	0		2		4		6		8		10		12		14		16	
0 -	0	38	63	36	34	55	34	45	60	29	23	19	35	21	28	23	16	51
	38	0	117	52	66	94	31	81	128	48	65	31	21	60	57	22	55	45
2 -	63	117	0	47	38	25	76	32	21	56	54	80	116	43	54	90	53	88
	36	52	47	0	31	41	27	29	58	21	34	35	63	27	37	44	29	53
4 -	34	66	38	31	0	23	24	16	32	16	46	29	56	18	21	45	20	57
	55	94	25	41	23	0	61	26	28	43	56	55	85	25	31	63	38	104
6 -	34	31	76	27	24	61	0	32	73	13	48	22	35	37	34	26	29	26
	45	81	32	29	16	26	32	0	24	19	45	46	85	27	34	58	32	61
8 -	60	128	21	58	32	28	73	24	0	46	52	76	116	38	52	80	42	96
	29	48	56	21	16	43	13	19	46	0	34	24	51	22	28	31	19	42
10 -	23	65	54	34	46	56	48	45	52	34	0	45	73	25	52	43	22	66
	19	31	80	35	29	55	22	46	76	24	45	0	23	21	12	15	21	54
12 -	35	21	116	63	56	85	35	85	116	51	73	23	0	51	39	17	42	61
	21	60	43	27	18	25	37	27	38	22	25	21	51	0	16	35	11	79
14 -	28	57	54	37	21	31	34	34	52	28	52	12	39	16	0	29	22	71
	23	22	90	44	45	63	26	58	80	31	43	15	17	35	29	0	25	51
16 -	16	55	53	29	20	38	29	32	42	19	22	21	42	11	22	25	0	58
	51	45	88	53	57	104	26	61	96	42	66	54	61	79	71	51	58	0

SMAPE

18개 결과에 대해 1-R2 score, SMAPE를 계산, 각 score의 중간값 보다 작은 데이터만 선별하고 평균을 구함 https://dacon.io

모델 선택

Single model, Multiple model 의 private, public score 차이 (백분율)
Single model: mean=0.53, std=0.95, private score가 public score에 비해 약 0.5% 높다.
Multiple model: mean=0.49, std=0.23, single model 처럼 private score가 public score에 비해 약 0.5% 높음, single model에 비해 std가 4배 작아 더 안정적으로 예측가능함

https://dacon.io

THANK YOU

대회 참가해보기