Suites et Séries – TD_6 17-18 octobre 2022

Exercice 1: sous-suites

Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle.

- 1. On suppose que $(u_n)_{n\in\mathbb{N}}$ est croissante et qu'elle admet une sous-suite majorée. Montrer que $(u_n)_{n\in\mathbb{N}}$ converge.
- 2. On suppose que $(u_n)_{n\in\mathbb{N}}$ est croissante et qu'elle admet une sous-suite convergente. Montrer que $(u_n)_{n\in\mathbb{N}}$ converge.
- 3. On suppose que $(u_n)_{n\in\mathbb{N}}$ est bornée et est divergente. Montrer qu'elle admet au moins deux valeurs d'adhérence différentes.
- 4. On suppose que $(u_n)_{n\in\mathbb{N}}$ n'est pas majorée. Montrer qu'elle admet une sous-suite qui diverge vers $+\infty$.
- 1. Montrons que $(u_n)_{n\in\mathbb{N}}$ est convergente. Puisqu'elle est croissante, il suffit de montrer qu'elle est majorée. Soit $(u_{\phi(n)})_{n\in\mathbb{N}}$ une sous-suite de $(u_n)_{n\in\mathbb{N}}$ qui est majorée : il existe $M\in\mathbb{R}$ tel que $u_{\phi(n)}\leqslant M$ pour tout $n\in\mathbb{N}$.

Puisque $(u_{\phi(n)})_{n\in\mathbb{N}}$ est une sous-suite de $(u_n)_{n\in\mathbb{N}}$, on a $\phi(n)\geqslant n$ pour tout $n\in\mathbb{N}$. Comme $(u_n)_{n\in\mathbb{N}}$ est croissante, on a donc $u_n\leqslant u_{\phi(n)}\leqslant M$ pour tout $n\in\mathbb{N}$. La suite $(u_n)_{n\in\mathbb{N}}$ est croissante et majorée donc elle converge.

Si $(u_n)_{n\in\mathbb{N}}$ est croissante et admet une sous-suite majorée, alors elle converge.

2. Une suite convergente est majorée. En effet, si $(v_n) \in \mathbb{N}$ converge vers un nombre réel $\ell \in \mathbb{R}$, il existe un rang $N \in \mathbb{N}$ tel que $|v_n - \ell| \leq 1$ pour tout $n \geq N$ donc $v_n \leq \ell + 1$ pour tout $n \geq N$. On a donc :

$$\forall n \in \mathbb{N}, \quad v_n \leqslant \max(v_0, v_1, \dots, v_{N+1}, \ell+1)$$

ce qui montre que $(v_n) \in \mathbb{N}$ est majorée.

Si $(u_n)_{n\in\mathbb{N}}$ est croissante et admet une suite extraite convergente, elle admet donc une sous-suite majorée, et on conclut avec la question 1 que $(u_n)_{n\in\mathbb{N}}$ converge.

Si $(u_n)_{n\in\mathbb{N}}$ est croissante et admet une sous-suite convergente, alors elle converge.

- 3. Puisque $(u_n)_{n\in\mathbb{N}}$ est bornée, le théorème de Bolzano-Weierstrass montre qu'elle admet au moins une valeur d'adhérence a. Puisque $(u_n)_{n\in\mathbb{N}}$ diverge, elle ne converge pas vers a donc (négation de la définition de la convergence vers a) il existe $\varepsilon > 0$ tel que, pour tout $N \in \mathbb{N}$, il existe $n \ge N$ tel que $|u_n a| \ge \varepsilon$. Construisons une sous-suite $(u_{n_k})_{k\in\mathbb{N}}$ de $(u_n)_{n\in\mathbb{N}}$.
 - Pour N = 0, il existe $n_0 \ge N = 0$ tel que $|u_{n_0} a| \ge \varepsilon$.
 - Si n_k est construit, pour $N=n_k+1$, il existe $n_{k+1}\geqslant N=n_k+1>n_k$ tel que $|u_{n_{k+1}}-a|\geqslant \varepsilon$.

On a donc construit une sous-suite $(u_{n_k})_{k\in\mathbb{N}}$ vérifiant :

$$\forall k \in \mathbb{N}, \quad |u_{n_k} - a| \geqslant \varepsilon \tag{1}$$

Cette sous-suite est bornée car $(u_n)_{n\in\mathbb{N}}$ est bornée. Elle admet donc, d'après le théorème de Bolzano-Weierstrass, une valeur d'adhérence b: il existe une sous-suite de $(u_{n_k})_{k\in\mathbb{N}}$ qui converge

vers b. D'après (1), on a $b \neq a$. Cette sous-suite est aussi une sous-suite de $(u_n)_{n \in \mathbb{N}}$ donc b est une deuxième valeur d'adhérence de $(u_n)_{n \in \mathbb{N}}$ différente de a.

Si $(u_n)_{n\in\mathbb{N}}$ est bornée et divergente, alors elle admet deux valeurs d'adhérence différentes.

On peut aussi raisonner de la manière suivante : on sait que u admet au moins une valeur d'adhérence $a \in \mathbb{R}$ d'après le théorème de Bolzano-Weierstrass. Si elle n'en admet pas d'autres (c'est-à-dire $Adh(u) = \{a\}$), alors d'après le cours, comme elle est bornée, elle converge ce qui contredit le fait qu'elle diverge. On a donc $Adh(u) \neq \{a\}$ et comme $Adh(u) \neq \emptyset$ car $a \in Adh(u)$, Adh(u) a au moins deux éléments, d'où le résultat.

4. On va construire par récurrence pour tout $n \in \mathbb{N}$ des entiers $\phi(n)$ tels que

$$\phi(n+1) > \phi(n)$$
 et $u_{\phi(n)} \geqslant n$

- Pour n=0, il suffit de choisir $\phi(0)$ tel que $u_{\phi(0)}\geqslant 0$ (possible car $(u_n)_{n\in\mathbb{N}}$ n'est pas majorée).
- Supposons $\phi(n)$ construit pour un $n \in \mathbb{N}$. Posons

$$A = \max(n, u_0, \dots, u_{\phi(n)}) + 1$$

Puisque $(u_n)_{n\in\mathbb{N}}$ n'est pas majorée, on peut trouver un entier $p\in\mathbb{N}$ tel que $u_p\geqslant A$. Par définition de A, il est clair que p ne peut être égal à $0, 1, \ldots, \phi(n)$. On a donc $p>\phi(n)$ et $u_p\geqslant n+1$. On pose alors $\phi(n+1)=p$.

La suite $(u_{\phi(n)})_{n\in\mathbb{N}}$ est une sous-suite de $(u_n)_{n\in\mathbb{N}}$ car $\phi:\mathbb{N}\to\mathbb{N}$ est strictement croissante. De plus, par construction, elle tend vers $+\infty$.

Si $(u_n)_{n\in\mathbb{N}}$ n'est pas majorée, alors elle admet une sous-suite qui diverge vers $+\infty$.

Exercice 2 : limites supérieures et inférieures

Soit $u=(u_n)_{n\in\mathbb{N}}$ une suite réelle bornée. On définit les suites $(s_n)_{n\in\mathbb{N}}$ et $(r_n)_{n\in\mathbb{N}}$ par

$$\forall n \in \mathbb{N}, \quad s_n = \sup\{u_k, \ k \geqslant n\} \quad \text{ et } \quad r_n = \inf\{u_k, \ k \geqslant n\}$$

1. Dans chacun des deux exemples suivantes, déterminer (si elles existent) les limites des suites $(s_n)_{n\in\mathbb{N}}$ et $(r_n)_{n\in\mathbb{N}}$:

a.
$$u = n \mapsto \frac{1}{n+1}$$
 b. $u = n \mapsto (-1)^n \left(1 + \frac{1}{n+1}\right)$

2. Montrer que les suites $(s_n)_{n\in\mathbb{N}}$ et $(r_n)_{n\in\mathbb{N}}$ sont convergentes.

Dans la suite, on note $\limsup u$ la limite de $(s_n)_{n\in\mathbb{N}}$ (« limite supérieure de u ») et $\liminf u$ la limite de $(r_n)_{n\in\mathbb{N}}$ (« limite inférieure de u »).

- 3. Soit $\ell \in \mathbb{R}$. Montrer que u converge vers ℓ si, et seulement si, $\limsup u = \liminf u = \ell$.
- 4. Soit λ une valeur d'adhérence de $(u_n)_{n\in\mathbb{N}}$. Montrer que $\lambda \in [\liminf u, \limsup u]$.
- 5. Montrer que pour tout $\varepsilon > 0$ et tout $N \in \mathbb{N}$, il existe un entier $p \geqslant N$ tel que

$$\limsup u - 2\varepsilon \leqslant u_p \leqslant \limsup u + 2\varepsilon$$

- 6. En déduire qu'il existe une sous-suite de $(u_n)_{n\in\mathbb{N}}$ qui converge vers $\limsup u$. Quel est le théorème que l'on vient de redémontrer?
- 1. Premier cas a. On a immédiatement $s_n = \frac{1}{n+1}$ et $r_n = 0$ pour tout $n \in \mathbb{N}$ donc

$$\lim_{n \to +\infty} s_n = \lim_{n \to +\infty} r_n = 0$$

Deuxième cas b. Soit $n \in \mathbb{N}$.

— Si n = 2p est pair, alors

$$s_n = s_{2p} = \left(1 + \frac{1}{n+1}\right) = \left(1 + \frac{1}{2p+1}\right)$$
$$r_n = r_{2p} = -\left(1 + \frac{1}{n+2}\right) = -\left(1 + \frac{1}{2n+2}\right)$$

— Si n = 2p + 1 est impair, alors

$$s_n = s_{2p+1} = \left(1 - \frac{1}{n+2}\right) = \left(1 - \frac{1}{2p+2}\right)$$

$$r_n = r_{2p+1} = -\left(1 - \frac{1}{n+1}\right) = -\left(1 - \frac{1}{2p+1}\right)$$

— On a donc

$$\lim_{k \to +\infty} s_{2p} = \lim_{k \to +\infty} s_{2p+1} = 1$$

$$\lim_{k \to +\infty} r_{2p} = \lim_{k \to +\infty} r_{2p+1} = -1$$

D'après le cours, on en déduit

$$\lim_{n \to +\infty} s_n = 1 \quad \text{ et } \quad \lim_{n \to +\infty} r_n = -1.$$

- 2. Comme u est bornée, il existe $M \in \mathbb{R}$ tel que $|u_n| \leq M$ pour tout $n \in \mathbb{N}$.
 - La suite $(s_n)_{n\in\mathbb{N}}$ est minorée. En effet, u est bornée donc elle est minorée : il existe $m\in\mathbb{R}$ tel que $u_n\geqslant m$ pour tout $n\in\mathbb{N}$. On en déduit que $s_n\geqslant m$ pour tout $n\in\mathbb{N}$.
 - La suite est $(s_n)_{n\in\mathbb{N}}$ est décroissante car

$$\forall n \in \mathbb{N}, \quad \{u_k, \ k \geqslant n+1\} \subset \{u_k, \ k \geqslant n\}$$

donc

$$\forall n \in \mathbb{N}, \quad \underbrace{\sup\{u_k, \ k \geqslant n+1\}}_{=s_{n+1}} \subset \underbrace{\sup\{u_k, \ k \geqslant n\}}_{=s_n}$$

La suite est $(s_n)_{n\in\mathbb{N}}$ est décroissante et minorée, donc elle converge. De même, on montre que $(r_n)_{n\in\mathbb{N}}$ est croissante et majorée, donc elle converge.

3. — Supposons $\limsup u = \liminf u = \ell$. On a:

$$\forall n \in \mathbb{N}, \quad r_n \leqslant u_n \leqslant s_n$$

En passant à la limite, comme $r_n \to \ell$ et $s_n \to \ell$ quand $n \to +\infty$, par encadrement (théorème des gendarmes), on en déduit que u converge vers ℓ .

— Supposons que la suite u converge vers ℓ . Soit $\varepsilon > 0$. Il existe $N \in \mathbb{N}$ tel que

$$\forall k \geqslant N, \quad \ell - \varepsilon \leqslant u_k \leqslant \ell + \varepsilon$$

Pour $n \ge N$, on a $s_n \ge u_n \ge \ell - \varepsilon$. Comme $\ell + \varepsilon$ est un majorant de $\{u_k : k \ge n\}$, par définition de la borne supérieure on a $s_n \le \ell + \varepsilon$. Finalement, on a

$$\forall n \geqslant N, \quad \ell - \varepsilon \leqslant s_n \leqslant \ell + \varepsilon$$

donc

$$\forall n \geqslant N, \quad |s_n - \ell| \leqslant \varepsilon$$

c'est-à-dire que $(s_n)_{n\in\mathbb{N}}$ converge vers ℓ .

On fait de même pour montrer que $\liminf u = \ell$.

4. Soit $\varphi: \mathbb{N} \to \mathbb{N}$ strictement croissante telle que $u_{\varphi(n)} \xrightarrow[n \to +\infty]{} \lambda$. Pour tout $n \in \mathbb{N}$, on a

$$u_{\varphi(n)} \leqslant s_{\varphi(n)}$$
 (*)

Comme $(s_n)_{n\in\mathbb{N}}$ converge ver $\limsup u$, il en est de même pour la suite extraite $(s_{\varphi(n)})_{n\in\mathbb{N}}$. Par passage à la limite dans (*), on obtient $\lambda \leq \limsup u$. De même, on obtient $\liminf u \leq \lambda$. Finalement, $\lambda \in [\liminf u, \limsup u]$.

5. Soit $\varepsilon > 0$.

Rappel: soit A une partie non vide et majorée de \mathbb{R} (elle admet donc une borne supérieure). Alors, pour tout $\varepsilon > 0$, il existe $a \in A$ tel que

$$\sup(A) - \varepsilon < a \leqslant \sup(A)$$

En particulier ici, pour tout $N \in \mathbb{N}$ il existe un entier $p \geqslant N$ tel que

$$s_N - \varepsilon \leqslant u_p \leqslant s_N$$

Comme $(s_n)_{n\in\mathbb{N}}$ converge vers $\limsup u$, il existe $N\in\mathbb{N}$ tel que

$$\forall n \geq N$$
, $\limsup u - \varepsilon \leq s_n \leq \limsup u + \varepsilon$

On en déduit qu'il existe un entier $p \ge N$ tel que

$$\limsup u - 2\varepsilon \leqslant s_N - \varepsilon \leqslant u_p \leqslant s_N \leqslant \limsup u + \varepsilon \leqslant \limsup u + 2\varepsilon$$

6. Construisons par récurrence sur k une suite strictement croissante d'entiers $(p_k)_{k\in\mathbb{N}^*}$ telle que, pour tout $k\in\mathbb{N}^*$, on a

$$\limsup u - \frac{2}{k} \leqslant u_{p_k} \leqslant \limsup u + \frac{2}{k}$$

— Pour k=0, on applique la question précédente avec $\varepsilon 1$ et N=0, cela nous donne l'existence d'un p_0 tel que

$$\limsup u - 2 \leqslant u_{p_0} \leqslant \limsup u + 2$$

— Si p_k est construit, on applique la question précédente avec $\varepsilon = \frac{1}{k}$ et $N = p_k + 1$, cela nous donne l'existence d'un $p_{k+1} > p_k$ tel que

$$\limsup u - \frac{2}{k+1} \leqslant u_{p_{k+1}} \leqslant \limsup u + \frac{2}{k+1}$$

La suite $(u_{p_k})_{k\in\mathbb{N}}$ est une sous-suite de $(u_n)_{n\in\mathbb{N}}$ qui converge, par encadrement, vers lim sup u. On a donc montré en particulier qu'il existe une sous-suite de $(u_n)_{n\in\mathbb{N}}$ qui converge, c'est le théorème de Bolzano-Weierstrass.

Exercice 3: suite logistique

Soit $m \in \mathbb{R}$. On considère la suite $(u_n)_{n \in \mathbb{N}}$ définie par $u_0 \in [0,1]$ et $u_{n+1} = m u_n (1 - u_n)$ pour tout $n \in \mathbb{N}$. On pose $f_m : x \mapsto m x (1 - x)$.

Partie I: étude numérique

1. Écrire une fonction logistique(m,u0,n) qui prend en arguments m, u_0 et n, et renvoie la liste $[u_0,\ldots,u_n]$.

```
import matplotlib.pyplot as plt
import numpy as np

def f(x, m):
    return m*x*(1-x)

def logistique(m, u0, n):
    u = [u0]
    for _ in range(n):
```

u.append(f(u[-1], m)

2. Écrire une fonction escalier(m,u0,n) qui prend en arguments m, u_0 et n, et trace le graphique de construction de $[u_0, \ldots, u_n]$:

Ne pas hésiter à reprendre les codes écrits dans les séances précédentes...

```
def escalier(m,u0,n):
       fig,ax=plt.subplots()
       # Move left y-axis and bottim x-axis to centre, passing through (0,0)
       ax.spines['left'].set_position('zero')
       ax.spines['bottom'].set_position('zero')
       # Eliminate upper and right axes
       ax.spines['right'].set_color('none')
       ax.spines['top'].set_color('none')
11
       # Show ticks in the left and lower axes only
       ax.xaxis.set_ticks_position('bottom')
       ax.yaxis.set_ticks_position('left')
       L = logistique(m,u0,n)
15
       X = np.linspace(min(L)-0.2,max(L)+0.2,1000)
16
       Y = m*X*(1-X)
17
       for i in range(n-1):
18
           plt.plot([L[i],L[i]],[L[i],L[i+1]],'b')
           plt.plot([L[i],L[i+1]],[L[i+1],L[i+1]],'b')
           plt.plot([L[i],L[i]],[L[i],0],'b--')
21
       plt.plot(X,Y,'k')
22
       plt.plot(X,X,'k')
23
       plt.show()
```

- 3. Étudier le comportement asymptotique (que se passe-t-il quand $n \to +\infty$?) de la suite selon la valeur de m.
 - Quand $m \in [0,1]$, la suite semble converger vers 0, quelle que soit la valeur de u_0 .
 - Quand $m \in [1,3]$, la suite semble converger vers le point fixe non nul de f_m , quelle que soit la valeur de $u_0 > 0$.
 - Quand $m \in [3, 3.44...]$, la suite semble avoir deux valeurs d'adhérence : une pour les termes d'indices pairs, et une autre pour les termes d'indices impairs.
 - Quand m est proche de 3.5, il semble y a voir 4 valeurs d'adhérence.
 - Pour m proche de 4, le comportement est difficile à comprendre.
- 4. Pour $m_1 = 3.5$, observez le comportement de la suite quand on change un peu la valeur de u_0 . Faire de même pour $m_2 = 3.8$. Que remarque-t-on?

Le comportement de la suite change beaucoup quand on modifie u_0 dans le cas m=3,8. En particulier, il est difficile de savoir si les suites ont les mêmes valeurs d'adhérence.

En fait, pour $m \ge 3.57$ (à peu près...), le comportement devient chaotique : une petite perturbation initiale provoque des grandes variations de la suite.

5. On va tracer le "diagramme des bifurcations" de la suite. La variable des abscisses est m; et pour chaque m, on représente en ordonnées les valeurs d'adhérence de la suite $(u_n)_{n\in\mathbb{N}}$. Pour cela, on va supposer que la suite s'approche rapidement de ses valeurs d'adhérence. Pour chaque m, on va donc tracer $u_{300}, u_{301}, u_{302}, \ldots, u_{599}$ au dessus de l'abscisse m. Réaliser avec Python le diagramme des bifurcations.

On obtient le diagramme de bifurcation suivant :

Partie II: étude théorique

Si on le souhaite, on pourra utiliser Sympy pour faire les calculs.

1. Déterminer les valeurs possibles de m pour que l'intervalle [0,1] soit stable par f_m .

Si m < 0, on a $f_m(\frac{1}{2}) = \frac{m}{4} < 0$.

Si $m \ge 0$, la fonction f_m est polynomiale de degré 2 et est positive sur [0,1]. Son maximum est atteint en $x = \frac{1}{2}$ et vaut alors $\frac{m}{4}$.

L'intervalle [0,1] est stable par f_m si et seulement si $m \in [0,4]$.

2. Soit $m \in [0,1]$. Montrer que la suite logistique converge vers 0.

 \triangleright Si m=0, alors pour tout $n\geqslant 1$, $u_n=0$.

 \triangleright Supposons $m \in]0,1].$

Le seul point fixe dans [0,1] est 0.

 \triangleright Pour tout $n \in \mathbb{N}$, on a $0 \leqslant u_n \leqslant 1$ et

$$u_{n+1} = mu_n(1 - u_n) \leqslant u_n.$$

La suite est décroissante et minorée par 0, donc elle converge. La seule limite possible est 0, donc

$$u_n \xrightarrow[n \to +\infty]{} 0.$$

3. Soit $m \in]1,2]$. Montrer que la suite logistique converge. On utilisera les graphiques de Python pour voir les différents cas à étudier.

On a maintenant deux points fixes : 0 et $\frac{m-1}{m}$. On distingue alors quatre cas

- Si $u_0 = 0$: alors pour tout $n \in \mathbb{N}$, $u_n = 0$.
- Si $u_0 \in \left]0, \frac{m-1}{m}\right]$: Comme f_m est croissante sur cet intervalle, que f(0) = 0 et $f\left(\frac{m-1}{m}\right) = \frac{m-1}{m}$, l'intervalle $\left]0, \frac{m-1}{m}\right]$ est stable par f_m .

Comme $x \mapsto f(x) - x$ pour x ne s'annule qu'aux extrémités de cet intervalle, cette fonction est de signe constant, ici positif. Ainsi, la suite $(u_n)_{n \in \mathbb{N}}$ est croissante. Elle est de plus majorée (par $\frac{m-1}{m}$), donc elle converge. Comme elle est strictement positive, sa limite est $\frac{m-1}{m}$.

— Si $u_0 \in \left[\frac{m-1}{m}, \frac{1}{2}\right]$: On vérifie que f_m laisse cette intervalle stable. La fonction f_m est croissante sur cet intervalle et $f\left(\frac{m-1}{m}\right) = \frac{m-1}{m}$. De plus, $f(1/2) = \frac{m}{4} \leqslant \frac{1}{2}$, donc $\left[\frac{m-1}{m}, \frac{1}{2}\right]$ est stable par f_m .

Comme $f(x) \leq x$ pour tout x dans cet intervalle, la suite $(u_n)_{n \in \mathbb{N}}$ est décroissante. Elle est de plus minorée (par $\frac{m-1}{m}$), donc elle converge vers la seule limite possible : $\frac{m-1}{m}$.

- si $u_0 \in \left[\frac{1}{2}, 1\right]$: alors $u_1 \in \left[0, \frac{1}{2}\right]$ et on est ramené aux cas précédents.
- 4. On suppose maintenant $m \in [2,3]$.
 - (a) Observer avec Python le comportement de la suite.

La suite semble converger vers le deuxième point fixe de f_m . Ici la suite n'est plus monotone, elle oscille autour de sa limite. Cela est dû au fait que le point fixe est dans la partie décroissante de f_m

(b) Déterminer la ou les limites possibles pour la suite $(u_n)_{n\in\mathbb{N}}$.

Le calcul fait aux questions précédentes reste valable. Les limites possibles sont 0 et $\frac{m-1}{m}$.

Dans la suite, on note l_m le point fixe non nul de f_m .

(c) Déterminer un intervalle I_m stable par f_m , contenant l_m , sur lequel f_m est décroissante.

On va chercher cet intervalle sous la forme $\left[\frac{1}{2},b\right]$. Comme f_m est décroissant sur un tel intervalle, on peut essayer de voir si $b=f\left(\frac{1}{2}\right)$ convient. Pour cela, il suffit de vérifier si $f\left(f\left(\frac{1}{2}\right)\right)\geqslant\frac{1}{2}$. Par continuité, si $m\in[2,1+\sqrt{5}]$, on a $f\left(\frac{m}{4}\right)\in\left[\frac{1}{2},\frac{m}{4}\right]$. Comme $m\in[2,3]$, l'intervalle $I_m=\left[\frac{1}{2},\frac{m}{4}\right]$ est stable par f_m .

(d) Montrer que si $u_0 \in I_m$, les suites $(u_{2n})_{n \in \mathbb{N}}$ et $(u_{2n+1})_{n \in \mathbb{N}}$ convergent vers l_m .

Comme f_m est décroissante sur I_m , $f_m \circ f_m$ est croissante sur I_m . Calculons les points fixes de $f_m \circ f_m$: Comme $m^2 - 2m - 3 < 0$ si $m \in [0, 3[$, $f_m \circ f_m$ a les mêmes points fixes que $f_m : 0$ et $\frac{m-1}{m}$.

Le même type de raisonnement qu'à la question 2, appliqué à l'intervalle I_m et à $f_m \circ f_m$, permet alors de montrer que les suites $(u_{2n})_{n\in\mathbb{N}}$ et $(u_{2n+1})_{n\in\mathbb{N}}$ convergent vers l_m .

(e) Conclure.

Si $u_0 \in I_m$, la suite converge vers l_m d'après la question précédente.

Si $u_0 \in]0, \frac{1}{2}]$: sur cet intervalle, $f_m(x) \ge x$ donc la suite est croissante au début. Si elle reste dans cette intervalle, alors elle converge vers une valeur dans $]0, \frac{1}{2}]$, ce qui est impossible car les seules limites possibles pour u sont 0 et $l_m > \frac{1}{2}$. Donc il existe $N \in \mathbb{N}^*$ tel que $u_N \ge \frac{1}{2}$. Comme le maximum de f_m est $\frac{m}{4}$, on a donc $u_N \in I_m$ et la suite converge donc vers l_m .

Si $u_0 \in [\frac{1}{2}, 1[$: alors $u_1 \in]0, \frac{m}{4}]$ et on est ramené à un cas déjà traité. La suite converge donc vers l_m .

Si $u_0 = 0$ ou $u_0 = 1$: alors $\forall n \in \mathbb{N}^*, u_n = 0$.

- 5. On va essayer d'utiliser un raisonnement similaire au précédent pour décrire le comportement de la suite pour $m \in]3, 1 + \sqrt{5}[$.
 - (a) Observer le comportement de la suite avec Python.
 - (b) Montrer que l_m (la limite d'avant) est un point répulsif pour f_m , c'est-à-dire que $|f'_m(l_m)| > 1$.

Quand m > 3, on a donc $|f'_m(l_m)| > 1$ donc l_m est un point répulsif pour f_m .

(c) Déterminer les valeurs de m > 3 telles que l'intervalle I_m de la question 4c soit encore stable par f_m .

On a vu à la question 4c que cet intervalle était stable pour $m \in [2, 1 + \sqrt{5}]$.

(d) Quelles sont les limites possibles pour les suites $(u_{2n})_{n\in\mathbb{N}}$ et $(u_{2n+1})_{n\in\mathbb{N}}$?

On cherche les points fixes de $f_m \circ f_m$. D'après le code Python de la question 4d, il y en a 4 : $0, \frac{m-1}{m}, l = \frac{m+1-\sqrt{m^2-2m-3}}{2m}$ et $l' = \frac{m+1+\sqrt{m^2-2m-3}}{2m}$.

Comme précédemment, 0 n'est limite de ces suites que si $u_0=0$ ou $u_0=1$.

Comme $\frac{m-1}{m}$ est un point répulsif, on peut admettre que les suites étudiées convergent vers ce point si et seulement si elles atteignent ce point pour un certain n_0 .

La démonstration de ce résultat n'est pas demandée. L'étude des points répulsifs ne fait pas partie du cours.

Dans les autres cas, les limites possibles pour $(u_{2n})_{n\in\mathbb{N}}$ et $(u_{2n+1})_{n\in\mathbb{N}}$ sont $l=\frac{m+1-\sqrt{m^2-2m-3}}{2m}$ et $l'=\frac{m+1+\sqrt{m^2-2m-3}}{2m}$.

(e) Montrer que ces suites convergent bien vers ces limites.

Ici, il y a beaucoup de cas à distinguer. Comme f_m est décroissante sur I_m , $f \circ f$ est croissante sur I_m .

- Si $u_0 \in \left[\frac{1}{2}, l\right]$. Comme $f \circ f$ est croissante, on a $f \circ f\left(\frac{1}{2}\right) \leqslant f \circ f(l) = l$. Comme de plus I_m est stable par $f \circ f$, on a $f \circ f\left(\frac{1}{2}\right) \in \left[\frac{1}{2}, l\right]$. Par croissance de $f \circ f$, l'intervalle $\left[\frac{1}{2}, l\right]$ est stable par $f \circ f$. La fonction $x \mapsto f \circ f(x) x$ est de signe constant sur cet intervalle, donc la suite $(u_{2n})_{n \in \mathbb{N}}$ est monotone et bornée. Elle converge donc vers la seule limite possible, l. Par continuité de f_m , la suite $(u_{2n+1})_{n \in \mathbb{N}}$ converge vers f(l) = l'.
- Si $u_0 \in [l, l_m]$. Les deux extremités de cet intervalle sont fixes par $f \circ f$, et $f \circ f$ est croissante sur cet intervalle, donc $[l, l_m]$ est stable par $f \circ f$. La fonction $x \mapsto f \circ f(x) x$ est de signe constant négatif sur cet intervalle, donc la suite $(u_{2n})_{n \in \mathbb{N}}$ est décroissante et bornée. Elle converge donc vers l si $u_0 < l_m$ et est constante égale à l_m si $u_0 = l_m$. Par continuité de f_m , la suite $(u_{2n+1})_{n \in \mathbb{N}}$ converge vers f(l) = l' si $u_0 < l_m$ et est constante égale à l_m si $u_0 = l_m$.
- Si $u_0 \in [l_m, l']$.

On fait comme dans le cas précédent. La suite $(u_{2n})_{n\in\mathbb{N}}$ converge vers l' et la suite $(u_{2n+1})_{n\in\mathbb{N}}$ converge vers l.

— Si $u_0 \in \left[l', \frac{m}{4}\right]$.

On fait comme dans le premier cas. La suite $(u_{2n})_{n\in\mathbb{N}}$ converge vers l' et la suite $(u_{2n+1})_{n\in\mathbb{N}}$ converge vers l.

— Sinon : Comme dans la question 4.(e), on se ramène à un cas déjà traité.