

自动控制实践1-14

异步电机的机械特性与调速控制

复习

- 1。单个整矩绕组产生的磁场
- 2。一相绕组产生的磁场
- 3。三相绕组合成磁场
- 4。多相电机对称绕组产生的磁场
- 5。概念理解: 相数/极数; 电角度/机械角度

- 1.异步电机的运行分析
- 2.异步电机的等效电路
- 3.异步电机的功率传输关系
- 4.异步电机的机械特性
- 5.异步电动机的调速控制

哈尔滨工业大学航天学院 控制与仿真中心

1. 异步电机的运行分析

- 1.转差率/滑差/Slip *s*
- 2.理想空载下异步电机运行分析
- 3.堵转下异步电机运行分析
- 4.电动运行下异步电机运行分析

哈尔滨工业大学航天学院 <mark>控制与仿真中心</mark>

- 1.异步电机的运行分析
- 2.异步电机的等效电路
- 3.异步电机的功率传输关系
- 4.异步电机的机械特性
- 5.异步电动机的调速控制

哈尔滨工业大学航天学院 控制与仿真中心

2. 异步电机的等效电路

电动运行下异步电机的平衡关系:

1) 磁势平衡方程式

$$\mathbf{F}_0 = \mathbf{F}_1 + \mathbf{F}_2$$

$$\mathbf{I}_0 = \mathbf{I}_1 + \frac{\mathbf{I}_2}{k_i}$$

2) 电压平衡方程式

$$\mathbf{U}_{1} = -\mathbf{E}_{1} + \mathbf{I}_{1}(\mathbf{r}_{1} + \mathbf{j}\mathbf{x}_{1})$$

$$\mathbf{E}_{2s} = \mathbf{I}_2 r_2 + \mathbf{j} \mathbf{I}_2 x_{2s}$$

- 1.异步电机的运行分析
- 2.异步电机的等效电路
- 3.异步电机的功率传输关系
- 4.异步电机的机械特性
- 5.异步电动机的调速控制

哈尔滨工业大学航天学院 控制与仿真中心

4. 异步电机的功率传输关系

异步电动机的输入功率

$$P_1 = m_1 U_1 I_1 \cos \varphi_1$$

 U_1 、 I_1 、 $\cos \varphi_i$: 定子一相绕组的电压、电流、功率因数。 m_1 : 定子相数

3. 异步电机的功率传输关系

*输入功率
$$P_1 = m_1 U_1 I_1 \cos \varphi_1$$

*电磁功率: 传递到转子的功率。

通过电磁感应借助气隙磁场实现功率传递。由 等效电路,输入功率减去 r_1 、 r_m 消耗的功率,就是 传递到转子的电磁功率:

$$P_{\text{em}} = P_1 - P_{\text{Cu}1} - P_{\text{Fe}}$$

= $P_1 - m_1 I_1^2 r_1 - m_1 I_0^2 r_{\text{m}}$

哈尔滨工业大学航天学院 控制与仿真中心

3. 异步电机的功率传输关系

・电磁功率

$$P_{\rm em} = P_1 - P_{\rm Cu1} - P_{\rm Fe} = P_1 - m_1 I_1^2 r_1 - m_1 I_0^2 r_{\rm m}$$

- 转子电阻消耗的功率也是电磁功率。
- 转子电阻

$$r_2' + \frac{1-s}{s}r_2' = \frac{1}{s}r_2'$$

$$P_{\rm em} = m_1 I_2^{'2} \frac{1}{s} r_2^{'} = m_1 E_2^{'} I_2^{'} \cos \varphi_2$$

3. 异步电机的功率传输关系

· 转轴上的机械功率Pm:

输入给转子的电磁功率减去转子铜损耗P_{Cu2}。 由等效电路:

$$P_{\text{Cu}2} = m_1 I_2^{'2} r_2^{'} = s P_{\text{em}}$$

$$P_{\rm m} = P_{\rm em} - P_{\rm Cu2} = P_{\rm em} - sP_{\rm em}$$

$$P_{\rm m} = (1-s)P_{\rm em} = m_1 I_2^{'2} \frac{1-s}{s} r_2^{'}$$

哈尔滨工业大学航天学院 控制与仿真中心

3. 异步电机的功率传输关系

・输出功率P₂:

机械功率减去旋转的机械空载损耗Po。

$$P_2 = P_m - P_0$$

- 1.异步电机的运行分析
- 2.异步电机的等效电路
- 3.异步电机的功率传输关系
- 4.异步电机的机械特性
- 5.异步电动机的调速控制

哈尔滨工业大学航天学院 控制与仿真中心

4. 异步电动机的机械特性

・电磁力矩T_{em}:

可由功率传输关系分析异步电机的电磁力矩。

机械特性:以电压为参变量,电磁转矩T与转差率s(转速n)间的关系。

表达式:

$$T = \frac{3pr_2'U_1^2}{2\pi f_1 s[(r_1 + \frac{r_2'}{s})^2 + (x_1 + x_2')^2]}$$

电机转速和转矩都以磁场转速为正 向。

哈尔滨工业大学航天学院 控制与仿真中心

4. 异步电动机的机械特性

$$T = \frac{3 p r_2' U_1^2}{2 \pi f_1 s [(r_1 + \frac{r_2'}{s})^2 + (x_1 + x_2')^2]}$$

机械特性曲线分3部分:

电动机: 转矩与转速同向;

发电机: 转速高于n_s, 转矩与转

速反向;

反接制动: 电机转速与磁场转速

相反。

T_m 与 s_m

・ 临界转差率S_m

$$dT/ds = 0 \implies s_m = \pm \frac{R_2'}{\sqrt{R_1^2 + (X_1 + X_2')^2}}$$

• 最大转矩*T_m*

$$s_{m}$$
代入 $T = f(s)$ 得:

$$T_{m} = \pm \frac{m_{1}p}{2\pi f_{1}} \frac{U_{x}^{2}}{2\left[\pm R_{1} + \sqrt{R_{1}^{2} + (X_{1} + X_{2}^{\prime})^{2}}\right]}$$

哈尔滨工业大学航天学院 控制与仿真中心

4. 异步电动机的机械特性

 T_m 与 s_m

对参数表达式,通常 $R_1 << (X_1 + X_2')$

$$s_m \approx \pm \frac{R_2'}{X_1 + X_2'} \qquad T_m \approx \pm \frac{m_1 U_x^2}{2\Omega_1 (X_1 + X_2')}$$

1) 当电机参数及电源频率不变时,

//_m与 *U*_x²正比, *s*_m保持不变,与 *U*_x无关⁵m

- 2) 当电源频率及电压不变时, $s_m = T_m$ 近似与 $X_1 + X_2$ 成反比;
- 3) $T_m 与 R_2$ 无关, $s_m 则与 R_2$ 成正比。

$$s_m \approx \pm \frac{R_2'}{X_1 + X_2'}$$
 $T_m \approx \pm \frac{m_1 U_x^2}{2\Omega_1(X_1 + X_2')}$

· 两种异步电机的机械特性曲线

哈尔滨工业大学航天学院 控制与仿真中心

4. 异步电动机的机械特性

普通三相异步电动机

$$r_2$$
, $s_m : 0.1 \rightarrow 0.2$

$$s_n : 0.01 \rightarrow 0.05$$

可看成是恒速电机。

$$0 < s < s_{\rm m}: \qquad T = \frac{3 p r_2' U_1^2}{2 \pi f_1 s \frac{(r_2')^2}{s^2}} = \frac{3 p r_2' U_1^2}{2 \pi f_1 (r_2')^2} s$$

$$\Rightarrow T = ks$$

 T_m 与 s_m

- 讨载倍数
- Tm 是电动机可能产生的最大转矩。
- 如果 $T_z > T_m$,电动机将停转,为保证电动机不会因短时过载而停转,电动机必须有一定得过载倍数 K_T

$$K_T = T_m / T_N$$

- 一般电动机的 $K_T = 1.8 \sim 3.0$,在电机参数表中给出。

哈尔滨工业大学航天学院 控制与仿真中心

4. 异步电动机的机械特性

- 起动转矩 T_{st}
- 除 T_m 外, 异步电动机还有一个重要的参数: 起动转矩。
- 起动时, s=1 (n=0) 代入T = f (s) , 得

$$T_{st} = \frac{m_1}{\Omega_0} \frac{U_x^2 R_2'}{(R_1 + R_2')^2 + (X_1 + X_2')^2}$$

- 对绕线式异步电动机可通过转子回路串电阻 (加大 R_2), 可增加电动机的 T_{ST} ;

T_{st}

- 对鼠笼式异步电动机,则不可通过转子回路串电阻 来增加电动机的 TST;
- 起动转矩倍数为: K_{ST}= T_{ST}/T_N;
- 当 T_{ST} > T_L时, 电动机才能起动, 在额定负载下, 只 有Kst>1的笼型异步电动机才能额定负载起动。

鼠笼电机

- ·起动电流为5~7倍
- ·起动转矩为1~2倍

哈尔滨工业大学航天学院 控制与仿真中心

4. 异步电动机的机械特性

转矩的实用表达式

实用表达式
$$T = \frac{2T_m(1 + s_m R_1 / R_2')}{s / s_m + s_m / s + 2s_m R_1 / R_2'}$$

忽略
$$R_1$$
,则 $T = \frac{2T_m}{s/s_m + s_m/s}$

$$\begin{cases} T_{N} = \frac{2T_{m}}{s_{N}/s_{m} + s_{m}/s_{N}} \\ T_{m} = K_{T}T_{N} \end{cases}$$

$$s_{m} = s_{N}(K_{T} + \sqrt{K_{T}^{2} - 1})$$

转矩的实用表达式

额定负载时

$$T_N = \frac{2T_m}{s_N / s_m + s_m / s_N}$$

额定负载时,s 一般很小,有s/s_m < < s_m/s_s _{50%} 则

$$T = \frac{2T_m}{s_m} s$$

哈尔滨工业大学航天学院 控制与仿真中心

4. 异步电动机的机械特性

• 降低 U₁时的人为机械特性

由下式

$$s_{m} = \pm \frac{R_{2}'}{\sqrt{R_{1}^{2} + (X_{1} + X_{2}')^{2}}}$$

$$T_{m} = \pm \frac{m_{1}}{\Omega_{1}} \frac{U_{1}^{2}}{2\left[\pm R_{1} + \sqrt{R_{1}^{2} + (X_{1} + X_{2}')^{2}}\right]}$$

$$T_{st} = \frac{m_{1}}{\Omega_{1}} \frac{U_{1}^{2} R_{2}'}{(R_{1} + R_{2}')^{2} + (X_{1} + X_{2}')^{2}}$$

- 当降低 U_x 时, T_m , T_{st} 与 U_x^2 成正比, s_m 与 U_x 无关。

• 降低 4,时的人为机械特性

$$T = \frac{m_1}{\Omega_0} I_2'^2 \frac{R_2'}{s} \Longrightarrow I_{2N}'^2 / s_N = I_{2x}'^2 / s_x$$

对额定负载, U_x降低后电动机电流将大于额定值,电动机如长时连续运行,最终温升将超过允许值,导致电动机寿命缩短,甚至烧坏。

哈尔滨工业大学航天学院 控制与仿真中心

4. 异步电动机的机械特性

• 转子回路串联对称电阻时的人为机械特性

$$s_{m} = \pm \frac{R_{2}'}{\sqrt{R_{1}^{2} + (X_{1} + X_{2}')^{2}}}$$

$$T_{m} = \pm \frac{m_{1}}{\Omega_{1}} \frac{U_{1}^{2}}{2 \left[\pm R_{1} + \sqrt{R_{1}^{2} + (X_{1} + X_{2}')^{2}} \right]}$$

$$T_{st} = \frac{m_{1}}{\Omega_{1}} \frac{U_{1}^{2} R_{2}'}{(R_{1} + R_{2}')^{2} + (X_{1} + X_{2}')^{2}}$$

 $-R_2$ '增大时, n_0 , T_m 不变, s_m 增大, T_{st} 一开始增大,当增大 到 $T_{st} = T_m$ 后 T_{st} 开始减小。

• 转子回路串联对称电阻时的人为机械特性

可见,对于绕线转子异步电动机,可通过在转子回路串联 对称电阻来达到减小起动电流的目的,同时也可用于调速。

哈尔滨工业大学航天学院 控制与仿真中心

4. 异步电动机的机械特性

・ 定子回路串联对称电抗/电阻时的人为机械特性

 X_1/R_1 增大时, n_0 不变, T_m 、 s_m 、 T_{st} 随 $X_1/R1$ 的增大而减小。

与不同负载的配合特点

恒转矩负载下的稳定与不稳定运行区间

- □ 稳定运行: 扰动消除后电动机转速恢 复到原有的状态
- □ $s = s_m$ 是临界运行状态,
- □ 0 < s < s_m时,稳定运行(转速扰动负反馈)
- □ s>sm时,不稳定运行(转速扰动正反馈)

哈尔滨工业大学航天学院 控制与仿真中心

4. 异步电动机的机械特性

异步电动机的起动

- □起动方法
 - □ 直接起动
 - ·供电系统变压器容量>>异步电动机容量
 - •一般规律
 - 非频繁起动, 电机容量小于变压器30%
 - 频繁起动, 电机容量小于变压器20%
 - 动力照明共用电源, 电压降小于5%
 - □ 直接起动方法 利用开关或接触器将异步电动机直接投入 电网

异步电动机的起动

- 降压启动
 - --定子绕组串电阻或电感起动;
 - --自耦调压起动;
 - --星-三角起动;
 - --转子绕组串电阻起动

哈尔滨工业大学航天学院 控制与仿真中心

目 录

- 1.异步电机的运行分析
- 2.异步电机的等效电路
- 3.异步电机的功率传输关系
- 4.异步电机的机械特性
- 5.异步电动机的调速控制

交流调速系统正在取代直流调速系统。

对于异步电动机的调速来说:

由异步电动机的转速公式

$$n = n_s(1-s) = \frac{60f_1}{p}(1-s)$$

调速方法:

改变极对数 p,

改变转差率s,

改变电源频率 看

哈尔滨工业大学航天学院 控制与仿真中心

5. 三相异步电动机的调速

调速方法

变极调速——对鼠笼型

异步 电动机

变转差率

调定子电压 调转子电阻-绕线型 串级调速-绕线型

变频调速

变极调速特点

- 1、具有较硬的机械特性,稳定性良好;
- 2、 无转差损耗, 效率高;
- 3、接线简单、控制方便、价格低;
- 4、有级调速,级差较大,不能获得平滑调速。

适用:不需要无级调速的生产机械,如若干机床、升降机、 起重设备等。

哈尔滨工业大学航天学院 控制与仿真中心

5. 三相异步电动机的调速

5.2 转差率 s 的调速方法

- * 改变定子电压 U1,
- * 改变定子回路电阻 r_1 ,改变定子回路电抗 x_1 ,
- * 改变转子回路电阻 r_2 ,改变转子回路电抗 x_2 。

$$T = \frac{3pr_2'U_1^2}{2\pi f_1 s[(r_1 + \frac{r_2'}{s})^2 + (x_1 + x_2')^2]}$$

改变定子电压调速

- 普通异步电机,恒转矩负载,稳定运行区很小,转速变化太小,不适用。对通风机类负载,可用。
- 对转子电阻大的电机,恒转矩负载,调速范围宽,可用。

哈尔滨工业大学航天学院 控制与仿真中心

5. 三相异步电动机的调速

转子串接电阻调速

绕线型异步电动机机械特性

$$T = \frac{m_1 p U_1^2 \frac{r_2'}{s}}{2\pi f_1 [(r_1 + \frac{r_2'}{s})^2 + (x_1 + x_2')^2]}$$

$$s_m = \frac{r_2'}{\sqrt{r_1^2 + (x_1 + x_2')^2}}$$

$$T_m = \frac{1}{2} \times \frac{3p U_1^2}{2\pi f_1 [r_1 + \sqrt{r_1^2 + (x_1 + x_2')^2}]}$$

转子电阻增加, $T_{\rm m}$ 不变, $s_{\rm m}$ 增加。

转子串接电阻调速

恒转矩负载 $\frac{r_2}{s_1} = \frac{r_2 + r_s}{s} = 常值$

- 转速低,铜耗大,效率低。
- 电阻不连续,调速不平滑。

哈尔滨工业大学航天学院 控制与仿真中心

5. 三相异步电动机的调速

转子串接电阻调速特点

<u>优点</u>:方法简单,设备投资不高, 工作可靠。

缺点: 调速范围不大, 机械特性较

软,调速能耗较大,有级调速。

<u>应用:在对调速性能要求不高的地</u>

方, 如运输、起重机械等。

5.3 变频调速

变频就是把从恒压恒频(CVCF) 的交流电转换 成变压变频(VVVF)的交流电。

变频调速能够应用在大部分的电机拖动场合,由于它能提供精确的速度控制,因此可以方便地控制机械传动的上升、下降和变速运行。变频应用可以大大地提高工艺的高效性(变速不依赖于机械部分),同时可以比原来的定速运行电机更加节能。

变频器基本分类

1) 交-交变频器 (直接变频器)

用于大容量,低速调速系统,不需减速齿轮箱. 如:轧钢机,球磨机,水泥回转窑等.

2) 交-直-交变频器 (间接变频器)

主要适用于:中小功率、转速较高、负载较平稳的场合,如:压缩机、挤压机、给水泵等。频率调节范围宽,功率因数高。

变频器基本分类

按变频器的控制方法分

- 1) 压频比恒定控制
- 2) 矢量控制
- 3) 直接转矩控制

哈尔滨工业大学航天学院 控制与仿真中心

5. 三相异步电动机的调速

变频器基本分类

项目	通用变频器	高性能矢量控制变频器
控制算法	V/F控制+转矩提升 同步机异步机控制算 法基本相同	开环矢量控制(无速度传感器矢量控制) 闭环矢量控制(有速度传感器矢量控制) 异步机和同步机需要不同的控制算法
调速范围	<1:40	1:100 (开环矢量),1:1000(闭环矢量)
启动转矩	无要求	180% 0.5Hz(开环矢量), 200% 0速(闭环矢量)
稳速精度	与转差有关(2-3%)	0.5%(开环矢量),0.05%(闭环矢量)
转矩控制	无	有
控制算法	简单	复杂
电机参数	不依赖电机参数,支 持同时驱动不同类型 不同功率的电机	电机参数对控制性能的影响较大,一般只能 驱动一台电机

1。恒压频比控制

◆反映在电机内、外部电量关系上,有

$$E_1 = 4.44 f_1 w_1 k_{w1} \Phi_m$$

式中 E_1 —电机每相反电势, f_1 —供电频率, w_1 —定子每相串联匝数, kw_1 —基波绕组系数

◆电机确定后,结构参数确定(不变),则有 $\Phi_{m} \infty \frac{E_{1}}{f_{1}}$

说明: \bullet 变频运行时,必须同时调节 E_1 、 f_1 ,才能确保 Φ_m 符合要求

●控制要求是: *基频以下恒磁通,基频以上弱磁*

哈尔滨工业大学航天学院 控制与仿真中心

5. 三相异步电动机的调速

恒压频比控制

- 1、基频以下 ($f_1 \leq f_{1N}$)
 - ■设额定运行点为 f_{1N} 、 U_{1N}
 - ■为保持良好运行性能,要求维持**磁路工作点** $\Phi_{m} = C$
 - ——恒磁通。否则
 - ●磁路过饱和 → 激磁铜损过大、铁损增加
 - ●磁路欠饱和→出力小,材料未充分利用
- ■维持 Φ_m =C→ 要求 E_1/f_1 =C→ E_1 随 f_1 线性变化,但 E_1 为电机内部量,只能通过端电压 U_1 间接控制

哈尔滨工业大学航天学院 <mark>控制与仿真中心</mark>

恒压频比控制

- ① f_1 较高时: E_1 大 $\rightarrow \dot{U}_1 = \dot{E}_1 + \dot{I}_1 Z_{1\sigma} \approx -\dot{E}_1$ ($\dot{I}_1 Z_{1\sigma}$ 忽略) 则 $E_1/f_1 = C \rightarrow U_1/f_1 = C$ (恒压频比控制) \rightarrow 图中直线 a
- ② f_1 很低时($f_1 < 5$ Hz): $E_1 \to iZ_{1\sigma}$ 不能忽略,且 $Z_{1\sigma} = R_1 + j\omega_1 L_1 \approx R_1 \to 定子电阻压降 R_1 I_1$ 比重大

 $\rightarrow \dot{U}_1 \approx -\dot{E}_1$ 不成立 \rightarrow 只有适当抬高 U_1 以克服 $R_i I_1$,使

 E_1/f_1 $\Phi_m = C$ 成立.

哈尔滨工业大学航天学院 控制与仿真中心

5. 三相异步电动机的调速

恒压频比控制

- 2、基频以上 ($f_1 \ge f_{1N}$)
- $f_1 \ge f_{1N}$ 后不能再作 $U_1/f_1 = \mathbb{C}$ 控制,否则 $U_1 \ge U_{1N} \to \mathbb{C}$ 电力电子器件及电机绝缘耐压造成危害→只能**维持** $U_1 = U_{1N}$

不变

- $f_1 \ge f_{1N}$ 高频下, $U_{1N} \approx E_1 \infty f_1 \Phi_m = C$,则有 $\Phi_m \infty \frac{U_{1N}}{f_1} \infty \frac{1}{f_1}$ 即 $f_1 \uparrow \to \Phi_m \downarrow$ (弱磁)
- ■电磁转矩 $T \infty \Phi_{\mathbf{m}} \propto \frac{1}{f_1} \propto \frac{1}{\omega_1}$ $f_1 \uparrow \to T \downarrow$

哈尔滨工业大学航天学院 <mark>控制与仿真中心</mark>

恒压频比控制

♦ $U_1 = f(f_1)$ 关系成为变频调速系统电压/频率协调控制的

依据(纽带)

哈尔滨工业大学航天学院 控制与仿真中心

(

5. 三相异步电动机的调速

- 2。矢量控制(VC)与直接转矩控制(DTC)
- 3。软启动器(Soft starter)

软起动器是一种集软停车、轻载节能和多种保护功能于 一体的新颖电机控制装置。它的主要构成是串接于电源与 被控电机之间的三相反并联闸管及其电子控制电路。

变频器容量的计算

对于连续恒载运转机械所需的变频器, 其容量可用下 式近似计算:

$$S_{CN} \ge \frac{kP_N}{\eta\cos\varphi}$$

$$I_{CN} \ge kI_N$$

异步电动机变频改造中要注意 PWM驱动的影响

哈尔滨工业大学航天学院 控制与仿真中心

5. 三相异步电动机的调速

变频调速的优点

- (1) 控制电机的启动电流,降低电力线路电压波动,启动时需要的功率更低
- (2) 获得可控的加、减速功能和较好的力矩控制特性 , 获得良好的调速特性
- (3) 显著提高运行效率,节能明显;
- (4)减少机械传动部件,实现直接驱动。

变频调速应用举例

柳州露塘糖厂年度榨季的日榨量达2700吨,生产用电和 燃料消耗是全厂节能降耗的重点,该厂引进交流变频调速技术,在锅炉给水泵上安装变频调速装置,取得了满意的节能 效果,同时也大大延长了电机及水泵的维修期,经济效益十 分显著。

哈尔滨工业大学航天学院 控制与仿真中心

5. 三相异步电动机的调速

- 一台75kW水泵没装变频调速器前,工作电流在132A-150A之间,实际每天用电量1200 - 1400kWh;
- 使用变频调速器后,工作电流在40-80A之间,实际每天用电量800-900kWh,每天可节电400-500kWh,按每个榨季150天计算,每台给水泵一个榨季可节电65500kWh,三台75kW给水泵一个榨季共节电196500kWh。
- 电费价格0.70元/kWh计,每榨季节省电费金额13.8万。

变频调速应用举例

传统的空调器,采用ON/OFF控制方式,室内温度和湿度控制波动较大,影响舒适感。压缩机在启动时有很大冲击电流,需要配置比连续运行时更大的电源容量。

变频空调器,根据被控房间温度与预设温度值比较的偏差,控制变频器的频率输出,连续改变制冷压缩机的转速,以更好的精度、更高的效率、更低的噪声、更长的寿命实现房间温度调节。

哈尔滨工业大学航天学院 控制与仿真中心

5. 三相异步电动机的调速

使用变频空调可以达到以下效果:

- (1)在轻负载时,压缩机在较低转速下工作,整体效率有所提高,因而节能。
- (2)由于使用了变频技术,压缩机的开停次数减少,制冷系统的压力变化损耗减少。
- (3)室内温度不再是一个波动值而是在设定值上下一个极小范 围内变化。人的舒适度得到了改善。
- (4)减少了电动机的启动电流,可以增加压缩机的使用寿命。

		5. <u>—</u>	相异	 	力机的	 桐		
调速方式	转子串电 阻	定子调压	电磁离合器	液力偶合 器	液粘离合 器	变极	串极	变频
调速方法	改变转子 串电阻	改变定子 输入调压	改变离合 器励磁电 流	改变偶合 器工作腔 充油量	改变离合 器摩擦片 间隙	改变定子 极对数	改变逆变 器的逆变 角	改变定子 输入频率 合和电压
调速性质	有级	无级	无级	无级	无级	有级	无级	无级
调速范围	50~100 %	80~100 %	10~80%	30~97%	20~100 %	2, 3, 4, 档转速	50~100 %	5~100%
响应能力	差	快	较快	差	差	快	快	快
电网干扰	无	大	无	无	无	无	较大	有
节电效果	中	中	中	中	中	高	高	高
初始投资	低	较低	较高	中	较低	低	中	高
适用范围	绕线型异 步机	绕线型异 步机笼型 异步机	笼型异步 机	笼型异步 机同步电 机.	笼型异步 机同步电 机	笼型异步 机	绕线型异 步机	异 歩 电 机、同步 电机

致 谢

本文档所引用的许多素材,来源于互联网上国内外的课件、科技论文、文章、网页等。本文引用只是为了给学生提供更好的教学素材,非商业目的。对这些所引用素材的原创者,在此表示深深的谢意。

