Homework2

1 . Suppose all the numbers are 8-bit long. Give the result of the following expressions of C language in full 8-bit 2's complement form and signed decimal form.

Expression	2's-complement	Signed 8-bit Decimal			
3+2	0000 0101	5			
99/2					
(-23)/2					
-127-1					
125+3					
125>>3					

2. The following C code pieces are executed on a typical 32-bit machine with 2's complement encoding. Please give the output and show how you can get the result in detail.

```
int main() { 
    int x = 257; 
    char y = -10; 
    int z = 128; 
    char a = (char)x; 
    short b =(short)y; 
    unsigned short d = (unsigned short)b; 
    char c = (char)z; 
    unsigned int e = (c > 0) ? 0 : 1; 
    int f = ((unsigned) z<<24)>>24; 
    Int g =(z<<24)>>24; 
    printf("a=%d,b=%d,d=%x,c=%d,e=%d,f=%d,g=%d\n",a,b,d,c,e,f,g); 
}
```

3.

Consider a **16-bit** floating-point representation based on the IEEE floating-point format, which is illustrated below.

S	E	Е	E	E	E	E	F	F	F	F	F	F	F	F	F
		_	_		_			•			•	•	•	•	

- 1. Filling the blanks with proper values.
 - 1) The denormalized values can be represented in a form $V = (-1)^{sign} * (0.fraction) * 2^{E}$, where $E = ___[1]___;$
 - 2) The normalized values can be represented in a form $V = (-1)^{sign} * (1.fraction) * 2^{(e-bias)}$, where bias = ___[2]___, and the value of e ranges from ___[3]___ to ___[4]___.
- 2. Give the equivalent value of the following numeric numbers or FP representation.

Numeric value	FP representation (in hex)
(12.625) ₁₀	(0x [1]) ₁₆
(-0.09375) ₁₀	(0x [2]) ₁₆
[3]	(0x4C18)16
[4]	(0x7EB0)16

3. Calculate both the **sum** and **multiplication** of (12.625)₁₀ and (0x4C18)₁₆, and then round the results to **5** bits to the right of the binary point with **Round-to-Even** rounding modes. Give your steps detailed.