Optical flow

Lihi Zelnik-Manor, Computer Vision

Today

From images to video

- Feature tracking
- Optical flow
- Motion segmentation
- Applications

From images to video

- ▶ A video is a sequence of frames captured over time
- Now our image data is a function of space (x,y) and time (t)

Examples of Motion fields

Forward motion

Rotation

Horizontal translation

Closer
objects
appear to
move faster!!

Motion Field & Optical Flow Field

Underlying assumption:
 The apparent motion field is a projection of the real 3D motion onto the 2d image

When does it break?

The screen is stationary yet displays motion

source.

Feature tracking vs. optical flow

- Feature tracking
 - Extract visual features and "track" them over multiple frames
- Optical flow
 - Compute image motion at each and every pixel

Motion and perceptual organization

Even "impoverished" motion data can evoke a strong percept

G. Johansson, "Visual Perception of Biological Motion and a Model For Its Analysis", Perception and Psychophysics 14, 201-211, 1973.

Tracking example

Optical flow example

Compute motion for all pixels

Today

From images to video

- Feature tracking
- Optical flow
- Motion segmentation
- Applications

Tracking challenges

- Find good features to track
 - ▶ Harris, SIFT, etc
- Large motions
 - Discrete search instead of Lucas-Kanade
- Changes in shape, orientation, color
 - Allow some matching flexibility
- Occlusions, dis-occlusions
 - Need to add/delete features
- Drift (errors accumulate over time)
 - Need to know when to terminate a track

Tracking by template matching

- The simplest way to track is by template matching
 - Define a small area around a pixel as the template
 - Match the template against each pixel within a search area in next image.
 - Use a match measure such as correlation, normalized correlation, or sum-of-squares difference
 - Choose the maximum (or minimum) as the match

Limitations of template matching

- Slow (need to check more locations)
- Does not give subpixel alignment (or becomes much slower)
 - Even pixel alignment may not be good enough to prevent drift
- May be useful as a step in tracking if there are large movements

The Lucas-Kanade Tracker

Feature tracking

- Given two subsequent frames, estimate the point translation
- Key assumptions of Lucas-Kanade Tracker
 - Brightness constancy: projection of the same point looks the same in every frame
 - Small motion: points do not move very far
 - Spatial coherence: points move like their neighbors

The brightness constancy constraint

Assumption I:

The image intensity I is constant

Time = t

Time = t+dt

$$I(x, y, t) = I(x + dx, y + dy, t + dt)$$

Small motion assumption

The brightness constancy equation

$$I(x, y,t) = I(x+dx, y+dy, t+dt)$$

Small motion assumption

The brightness constancy equation

$$I(x, y, t) = I(x + dx, y + dy, t + dt)$$

Assumption 2

Motion is small

First order Taylor expansion

$$I(x, y, t) = I(x, y, t) + \frac{\partial I}{\partial x} dx + \frac{\partial I}{\partial y} dy + \frac{\partial I}{\partial t} dt$$

$$0 = \frac{\partial I}{\partial x} dx + \frac{\partial I}{\partial y} dy + \frac{\partial I}{\partial t} dt$$

The motion equation

Simplify notations:

$$I_x dx + I_y dy + I_t dt = 0$$

 \blacktriangleright Divide by dt and denote

$$u = \frac{dx}{dt} \quad v = \frac{dy}{dt}$$

Final equation is:

$$I_{x}u + I_{y}v = -I_{t}$$

The motion equation

• Can we use this equation to recover image motion at a single pixel (x,y)?

$$I_{x}u + I_{y}v = \nabla I \begin{vmatrix} u \\ v \end{vmatrix} = -I_{t}$$

Problem

- I equation per pixel, 2 unknowns
- This means we cannot recover the motion component perpendicular to the gradient

If
$$(u, v)$$
 satisfies the equation, so does $(u+u', v+v')$ if

$$\nabla\mathbf{I}\!\cdot\!\left[\mathbf{u}'\ \mathbf{v}'\right]^{\!\!\mathrm{T}}=0$$

The aperture problem

The aperture problem

The barber pole illusion

The barber pole illusion

The aperture problem

For points on a line of fixed intensity we can only recover the normal flow

Where did the blue point move to?

We need additional constraints

Solving the ambiguity

Sometimes enlarging the aperture can help

Spatial coherence assumption

Assumption 3 [Lucas & Kanade 1981] Assume constant (u,v) in small neighborhood

$$I_{x}u + I_{y}v = -I_{t} \longrightarrow \begin{bmatrix} I_{x} & I_{y} \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = -I_{t}$$

$$\begin{bmatrix} I_{x1} & I_{y1} \\ I_{x2} & I_{y2} \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = -\begin{bmatrix} I_{t1} \\ I_{t2} \\ \vdots \end{bmatrix}$$

$$A\vec{\mathbf{u}} = \mathbf{b}$$

Lucas Kanade (1984)

Goal: Minimize $\|A\vec{\mathrm{u}}-b\|^2$

Method: Least-Squares

$$A\vec{\mathbf{u}} = b$$

$$\mathbf{A}^{T} A \vec{\mathbf{u}} = A^{T} b$$

$$2\mathbf{x}^{2} \mathbf{2}\mathbf{x}^{1} \mathbf{2}\mathbf{x}^{1}$$

$$\mathbf{u} = (A^{T} A)^{-1} A^{T} b$$

$$\vec{\mathbf{u}} = \left(A^T A\right)^{-1} A^T b$$

$$A^{T}A = \begin{bmatrix} \sum I_{x}^{2} & \sum I_{x}I_{y} \\ \sum I_{x}I_{y} & \sum I_{y}^{2} \end{bmatrix}$$

We want this matrix to be invertible

no zero eigenvalues

• Edge \rightarrow $A^T A$ becomes singular

► Homogeneous \rightarrow $A^T A \approx 0 \rightarrow 0$ eigenvalues

▶ Textured regions → two high eigenvalues

Which features can we track?

▶ Edge \rightarrow $A^T A$ becomes singular

Homogeneous regions \rightarrow low gradients $A^T A \approx 0$

► High texture →

When assumptions break

Brightness constancy is **not** satisfied

- A point does **not** move like its neighbors
 - what is the ideal window size?

The motion is **not** small (Taylor expansion doesn't hold)

Aliasing

Use multi-scale estimation

Aliasing

Temporal aliasing causes ambiguities in optical flow because images can have many pixels with the same intensity.

I.e., how do we know which 'correspondence' is correct?

To overcome aliasing: coarse-to-fine estimation.

Coarse-to-fine motion estimation

Coarse-to-fine motion estimation run Lucas-Kanade 🕳 Shift features & upsample/ run Lucas-Kanade image It image I_{t+1}

Gaussian pyramid of image I_{t+1}

Gaussian pyramid of image It

Shi-Tomasi feature tracker

- I. Find good features (min eigenvalue of 2×2 Hessian)
- 2. Use Lucas-Kanade to track with pure translation
- 3. Use affine registration with first feature patch
- 4. Terminate tracks whose dissimilarity gets too large
- Start new tracks when needed

[Shi & Tomasi, Good features to track, CVPR'94]

http://www.ces.clemson.edu/~stb/klt/

Tracking example

Figure 1: Three frame details from Woody Allen's Manhattan. The details are from the 1st, 11th, and 21st frames of a subsequence from the movie.

Figure 2: The traffic sign windows from frames 1,6,11,16,21 as tracked (top), and warped by the computed deformation matrices (bottom).

Tracking example

Implementation issues

Window size

- Small window more sensitive to noise and may miss larger motions (without pyramid)
- Large window more likely to cross an occlusion boundary (and it's slower)
- ▶ I5xI5 to 31x31 seems typical

Weighting the window

 Common to apply weights so that center matters more (e.g., with Gaussian)

Today

From images to video

- Feature tracking
- Optical flow
- Motion segmentation
- Applications

The Optical Flow Field

What can be done when we need to find the motion of each and every pixel?

Lucas-Kanade Optical Flow

- Same as Lucas-Kanade feature tracking, but for each pixel
 - As we saw, works better for textured pixels
- Operations can be done one frame at a time, rather than pixel by pixel
 - Efficient

Iterative Refinement

- Iterative Lukas-Kanade Algorithm
 - Estimate displacement at each pixel by solving Lucas-Kanade equations
 - 2. Warp I(t) towards I(t+I) using the estimated flow field
 - Basically, just interpolation
 - 3. Repeat until convergence

Coarse-to-fine motion estimation run Lucas-Kanade 🕳 warp & upsample/ run Lucas-Kanade image It image I_{t+1}

Gaussian pyramid of image It

Gaussian pyramid of image I_{t+1}

Example

Multi-resolution registration

Optical flow results

Optical Flow Results

When assumptions break

Brightness constancy is **not** satisfied

Correlation based methods

- A point does not move like its neighbors
 - what is the ideal window size?

Regularization based methods

- ▶ The motion is **not** small (Taylor expansion doesn't hold)
- Aliasing

Use multi-scale estimation

Spatial coherence

- Neighboring points in the scene typically belong to the same surface and hence typically have similar motions.
- Since they also project to nearby points in the image, we expect spatial coherence in image flow.

Formalize this Idea

Noisy ID signal:

Regularization

Membrane model

Membrane model

Membrane model

Regularization

Minimize:

Faithful to the data

Spatial smoothness assumption

$$E(f) = \sum_{x=1}^{N} (f(x) - g(x))^{2} + \lambda \sum_{x=1}^{N-1} (f(x+1) - f(x))^{2}$$

Discontinuities

Robust estimation

Noise distributions are often non-Gaussian, having much heavier tails. Noise samples from the tails are called outliers.

- Sources of outliers (multiple motions):
 - specularities / highlights
 - jpeg artifacts / interlacing / motion blur
 - multiple motions (occlusion boundaries, transparency)

Occlusion

Multiple motions within a finite region.

Coherent motion

Possibly Gaussian.

Multiple motions

Definitely not Gaussian.

Regularization

Faithful to the data

$$E(f,l) = \sum_{x=1}^{N} (f(x) - g(x))^{2} + \lambda \sum_{x=1}^{N-1}$$

Spatial smoothness assumption

$$(f(x+1)-f(x))^2$$

Weak membrane model

Faithful to the data

assumption $E(f,l) = \sum_{n=1}^{N} (f(x) - g(x))^{2} + \lambda \sum_{n=1}^{N-1} \left[l(x) (f(x+1) - f(x))^{2} + \beta (1 - l(x)) \right]$

Robustness $l(x) \in \{0,1\}$

Analog line process

Penalty function

Family of quadratics

Faithful to the data

$$E(f,l) = \sum_{x=1}^{N} (f(x) - g(x))^{2} + \lambda \sum_{x=1}^{N-1} \left[l(x) (f(x+1) - f(x))^{2} + \Psi(l(x)) \right]$$

Spatial smoothness assumption

$$\left[l(x)(f(x+1)-f(x))^2+\Psi(l(x))\right]$$

Robustness
$$0 \le l(x) \le 1$$

Analog line process

Infimum defines a robust error function.

Minima are the same:

$$E(f,l) = \sum_{x=1}^{N} (f(x) - g(x))^{2} + \lambda \sum_{x=1}^{N-1} \left[l(x)(f(x+1) - f(x))^{2} + \Psi(l(x)) \right]$$

$$E(f) = \sum_{x=1}^{N} (f(x) - g(x))^{2} + \lambda \sum_{x=1}^{N-1} \rho(f(x+1) - f(x), \sigma_{2})$$

Robust regularization

Robustness

Robust estimation

Problem: Least-squares estimators penalize deviations between data & model with quadratic error fⁿ (extremely sensitive to outliers)

error penalty function

influence function

$$\rho(\epsilon) = \epsilon^2$$

$$\psi(\epsilon) = \frac{\partial \rho(\epsilon)}{\partial \epsilon} = 2\epsilon$$

Redescending error functions (e.g., Geman-McClure) help to reduce the influence of outlying measurements.

error penalty function

influence function

$$\rho(\epsilon; s) = \frac{\epsilon^2}{s + \epsilon^2}$$

$$\psi(\epsilon; s) = \frac{2 \epsilon s}{(s + \epsilon^2)^2}$$

Robust regularization

What are E_c and E_s for optical flow estimation?

Regularization for optical flow

Add global smoothness term

[Horn and Schunk 1981]

$$E_c = \iint_D (I_x u + I_y v + I_t)^2 dx dy$$

$$E_s = \iint_D \left(u_x^2 + u_y^2\right) + \left(v_x^2 + v_y^2\right) dx dy$$

Minimize:

$$E_c + \lambda E_s$$

Solve by calculus of variations

Robust regularization for optical flow

[Black & Anandan 1993]

Regularization can over-smooth across edges

Use "smarter" regularization

Robust regularization for optical flow

[Black & Anandan 1993]

Regularization can over-smooth across edges

Use "smarter" regularization

Minimize:

$$\iint\limits_{D} \rho_{1} \Big(I_{x} u + I_{y} v + I_{t} \Big) + \lambda \Big[\rho_{2} \Big(u_{x}, u_{y} \Big) \rho_{2} \Big(v_{x}, v_{y} \Big) \Big] dx \, dy$$
Brightness constancy
Smoothness

Optimization

- Gradient descent
- Coarse-to-fine (pyramid)
- Deterministic annealing

Recent GPU Implementation

- http://gpu4vision.icg.tugraz.at/
- Real time flow exploiting robust norm + regularized mapping https://www.youtube.com/watch?v=sslNeWRb58M

A Duality Based Approach for Realtime TV- L^1 Optical Flow

C. Zach¹, T. Pock², and H. Bischof²

 $^{\rm 1}$ VRV is Research Center $^{\rm 2}$ Institute for Computer Graphics and Vision, TU Graz

Using optical flow

State-of-the-art optical flow

Start with something similar to Lucas-Kanade

- + gradient constancy
- + energy minimization with smoothing term
- + region matching
- + keypoint matching (long-range)

Today

From images to video

- Optical flow
- Feature tracking
- Motion segmentation
 - Layered representation
- Applications

Motion representations

▶ How can we describe the motion in the scene?

Block-based motion prediction

- Break image up into square blocks
- Estimate translation for each block
- ▶ Use this to predict next frame, code difference (MPEG-2)

Layered motion representation

- Break image sequence up into "layers" of coherent motion
- ▶ Each layer's motion is represented by a parametric model

Affine motion (dense)

Recall the brightness constancy equation

$$I_x u + I_y v + I_t = 0$$

Assume affine motion

$$u = a_1 + a_2 x + a_3 y$$

$$v = a_4 + a_5 x + a_6 y$$

Combine the equations

$$I_x(a_1 + a_2x + a_3y) + I_y(a_4 + a_5x + a_6y) + I_t = 0$$

- Each pixel provides one equation
- Solve with Least-squares

Layered motion

Advantages

- can represent occlusions / disocclusions
- each layer's motion can be smooth
- video segmentation for semantic processing

Difficulties:

- how do we determine the correct number?
- how do we assign pixels?
- how do we model the motion?

How do we estimate the layers?

- compute coarse-to-fine flow
- 2. estimate affine motion for each block
- cluster with k-means
- assign pixels to best fitting affine region
- 5. re-estimate affine motions in each region...

Layered motion result

[Wang & Adelson, CVPR'93]

Layered motion representation (option2)

For scenes with multiple parametric motions

Segmentation of Affine Motion

Input

Segmentation result

[Zelnik-Manor & Irani, PAMI 2000]

Today

From images to video

- Optical flow
- Feature tracking
- Motion segmentation
 - Layered representation
- Applications

Panoramas

Input

Camera ego-motion

Result by MobilEye (www.mobileye.com)

Structure from Motion

Input

Reconstructed shape

[Zhang, et al. ICCV'03]

Stabilization

[Zelnik-Manor & Irani, PAMI 2000]

SIFT Flow

$$E(\mathbf{w}) = \sum_{\mathbf{p}} \|s_1(\mathbf{p}) - s_2(\mathbf{p} + \mathbf{w})\|_1 + \frac{1}{\sigma^2} \sum_{\mathbf{p}} \left(u^2(\mathbf{p}) + v^2(\mathbf{p})\right) + \sum_{(\mathbf{p}, \mathbf{q}) \in \varepsilon} \min\left(\alpha |u(\mathbf{p}) - u(\mathbf{q})|, d\right) + \min\left(\alpha |v(\mathbf{p}) - v(\mathbf{q})|, d\right)$$

http://people.csail.mit.edu/celiu/ECCV2008/

Today

From images to video

- Optical flow
- Feature tracking
- Motion segmentation
 - Layered representation
- Applications
- How do we evaluate success? [Baker et al. ICCV'07]

Synthetic video sequence

Synthetic sequences can be used for quantitative evaluation

- Limitation
 - Hard to make these a true representative of real video and its noise and blur

Real video with ground-truth

- Paint scene with textured fluorescent paint
- ▶ Take 2 images: One in visible light, one in UV light
- Move scene in very small steps using robot
- Generate ground-truth by tracking the UV images

Middlebury dataset

http://vision.middlebury.edu/flow/

Optical flow without motion

End – Optical flow

Now you know how it works