MAT1830 - Discrete Mathematics for Computer Science Assignment #3

Submit by uploading a pdf to moodle by 11:55pm Wednesday in week 8

Assessment questions/solutions for this unit must not be posted on any website.

For Question 1, each 'no' needs an accompanying example. For Question 2, full justifications are required.

(1) Let E be the binary relation on the set $\{a, b, c, d, e, f, g, h, i\}$ pictured below. Write down whether E is reflexive, symmetric, antisymmetric, transitive. When E does not have one of these properties give an example of why not.

[Each 'no' needs an accompanying example.] [4]

- (2) Let R be a binary relation on $\mathcal{P}(\{1,\ldots,50\}) \{\emptyset\}$ defined by XRY if and only if $\operatorname{sum}(X) \leq \operatorname{sum}(Y)$, where $\operatorname{sum}(X)$ is the sum of the elements of X and $\operatorname{sum}(Y)$ is the sum of the elements of Y.
 - Is R reflexive? Is R symmetric? Is R antisymmetric? Is R transitive?

[Fully justify each answer.] [8]

(3) Let S be the equivalence relation on $\{-1,0,1\} \times \{0,1,2,3\}$ defined by (a,b)S(c,d) if and only if $a^2+b=c^2+d$. Write down the equivalence classes of S.

[Answer only required.] [4]

- (4) State how many possible partial order relations U there are on the set $\{a, b, c, d\}$ such that
 - bUa, cUa, dUa; and
 - $b \mathcal{V} c$, $c \mathcal{V} b$, $d \mathcal{V} b$ and $d \mathcal{V} c$.

Draw a Hasse diagram for each possible relation.

[Answer only required.] [4