

ISE 2211 • Exam I • 19 January 2018

SOLUTION

1) Joe Tritschler is having an extremely busy day. His to-do list currently has twelve things, including writing and solving this stats exam and a host of other activities. If he needs to complete six of those things before lunch, determine the number of differently-ordered ways he could do them. Also compute the number of un-ordered ways he could do those six things and state whether Joe Tritschler is likely to lose his mind either way.

Formulae:

$$P\binom{n}{r} = \frac{n!}{(n-r)!}$$

$$\binom{n}{r} = \frac{n!}{r! (n-r)!}$$

$$P\binom{12}{6} = \frac{12!}{(12-6)!}$$

$$P(\frac{12}{6}) = \frac{12!}{(12-6)!} = \frac{12 \times 11 \times 10 \times 9 \times 8 \times 7 \times 6}{6!}$$

$$\binom{12}{6} = \frac{12!}{6!(12-6!)} = 924 \text{ ways}$$

2) The following numbers are recorded frequencies in kHz from a crystal-locked oscillator:

67.20 67.29 67.05 67.11 66.98 67.06 67.14 67.23 67.36 67.00

Compute the sample mean, sample variance, sample standard deviation, and sample range. Include a <u>unit</u> with each answer.

each answer.

Hint:
$$s^2 = \frac{\sum x_1^2 - (\sum x_1)^2}{n}$$

Sample Mean: $X = \frac{\sum x_1^2 - (\sum x_1)^2}{n}$

Sample Variance: $S^2 = \frac{\sum x_1^2 - (\sum x_1)^2}{n}$
 $= \frac{45080.6248 - \frac{671.42^2}{10}}{10}$
 $= \frac{45080.6248 - \frac{671.42^2}{10}}{10}$

Sample 9td. dev.: $+\sqrt{S^2} = 0.1261 \text{ kHz}$

Tange: $\times \text{max.} - \times \text{min.} = 67.36 - 66.98$
 $= 0.38 \text{ kHz}$

Draw a histogram that displays the <u>relative</u> frequency distribution of oscillator frequencies. Choose the number of bins and bin width appropriately. Label all axes.

of bins:
$$\sqrt{10} = 3.16$$
 choose 3 bins (f)

 $\sqrt{2}$ bin 1: $66.98 + \frac{0.38}{3} = 67.107$

bin 2: $67.36 + \frac{0.38}{3} = 67.233$

bin 3: $67.74 + \frac{0.38}{3} = 67.36$

Ordered frequencies:

 66.98

bin 1 67.05

 67.06
 67.14

bin 2 $+ 0.4$

bin 3 $+ 0.4$
 67.14

bin 3 $+ 0.4$
 67.14

bin 3 $+ 0.4$

bin 3 $+ 0.4$

bin 3 $+ 0.4$

contains freq.

 67.23
 67.23
 67.23
 67.23
 67.23
 67.23
 67.23
 67.23
 67.23
 67.23
 67.23
 67.23
 67.23
 67.23
 67.24

Diff 67.36

(KHZ)

67.233

3) A sample space contains the outcomes S{q r s t u v w} with associated probabilities shown below. Define event E_A {t u v}, E_B {q r s t u}, and E_C {q r s}. Sketch a Venn diagram showing these three events and all outcomes in the sample space.

$$P(q) = 0.434$$

 $P(t) = 0.235$
 $P(s) = 0.101$
 $P(t) = 0.139$
 $P(u) = 0.004$
 $P(v) = 0.027$
 $P(w) = 0.060$

Perform the following set operations and resulting probability for each.

$$E_A \cap E_B$$

$$(E_A \cap E_{B'}) \cup E_C$$

Additionally, shade this operation on the Venn diagram.