Jedenáctá přednáška

NAIL062 Výroková a predikátová logika

 ${\sf Jakub\ Bul\'in\ (KTIML\ MFF\ UK)}$

Zimní semestr 2024

Jedenáctá přednáška

Program

- LI-rezoluce a Prolog
- elementární ekvivalence
- izomorfismus a konečné modely
- definovatelnost a automorfismy
- ω-kategoricita a úplnost

Materiály

Zápisky z přednášky, Sekce 8.7 z Kapitoly 8, Sekce 9.1-9.3 z Kapitoly 9

skriptech, VL v Sekci 5.4)

8.7 LI-rezoluce (více podrobností ve

Lineární důkaz klauzule C z formule S je konečná posloupnost

$$\begin{bmatrix} C_0 \\ B_0 \end{bmatrix}, \begin{bmatrix} C_1 \\ B_1 \end{bmatrix}, \dots, \begin{bmatrix} C_n \\ B_n \end{bmatrix}, C_{n+1}$$

Lineární důkaz klauzule C z formule S je konečná posloupnost

$$\begin{bmatrix} C_0 \\ B_0 \end{bmatrix}, \begin{bmatrix} C_1 \\ B_1 \end{bmatrix}, \dots, \begin{bmatrix} C_n \\ B_n \end{bmatrix}, C_{n+1}$$

kde: B_0 a C_0 jsou varianty klauzulí z S, $C_{n+1} = C$,

• C_{i+1} je rezolventa C_i a B_i

Lineární důkaz klauzule C z formule S je konečná posloupnost

$$\begin{bmatrix} C_0 \\ B_0 \end{bmatrix}, \begin{bmatrix} C_1 \\ B_1 \end{bmatrix}, \dots, \begin{bmatrix} C_n \\ B_n \end{bmatrix}, C_{n+1}$$

- C_{i+1} je rezolventa C_i a B_i
- B_i varianta klauzule z S nebo $B_i = C_j$ pro nějaké j < i.

Lineární důkaz klauzule C z formule S je konečná posloupnost

$$\begin{bmatrix} C_0 \\ B_0 \end{bmatrix}, \begin{bmatrix} C_1 \\ B_1 \end{bmatrix}, \dots, \begin{bmatrix} C_n \\ B_n \end{bmatrix}, C_{n+1}$$

- C_{i+1} je rezolventa C_i a B_i
- B_i varianta klauzule z S nebo $B_i = C_j$ pro nějaké j < i.
- Lineární zamítnutí S je lineární důkaz \square z S

Lineární důkaz klauzule C z formule S je konečná posloupnost

$$\begin{bmatrix} C_0 \\ B_0 \end{bmatrix}, \begin{bmatrix} C_1 \\ B_1 \end{bmatrix}, \dots, \begin{bmatrix} C_n \\ B_n \end{bmatrix}, C_{n+1}$$

- C_{i+1} je rezolventa C_i a B_i
- B_i varianta klauzule z S nebo $B_i = C_j$ pro nějaké j < i.
- Lineární zamítnutí S je lineární důkaz □ z S
- Ll-důkaz je lin. důkaz, kde vš. B_i jsou varianty klauzulí z S

Lineární důkaz klauzule C z formule S je konečná posloupnost

$$\begin{bmatrix} C_0 \\ B_0 \end{bmatrix}, \begin{bmatrix} C_1 \\ B_1 \end{bmatrix}, \dots, \begin{bmatrix} C_n \\ B_n \end{bmatrix}, C_{n+1}$$

- C_{i+1} je rezolventa C_i a B_i
- B_i varianta klauzule z S nebo $B_i = C_j$ pro nějaké j < i.
- Lineární zamítnutí S je lineární důkaz \square z S
- Ll-důkaz je lin. důkaz, kde vš. B_i jsou varianty klauzulí z S
- C Ll-dokazatelná z S, $S \vdash_{LI} C$, pokud existuje Ll-důkaz

Lineární důkaz klauzule C z formule S je konečná posloupnost

$$\begin{bmatrix} C_0 \\ B_0 \end{bmatrix}, \begin{bmatrix} C_1 \\ B_1 \end{bmatrix}, \dots, \begin{bmatrix} C_n \\ B_n \end{bmatrix}, C_{n+1}$$

- C_{i+1} je rezolventa C_i a B_i
- B_i varianta klauzule z S nebo $B_i = C_j$ pro nějaké j < i.
- Lineární zamítnutí S je lineární důkaz \square z S
- Ll-důkaz je lin. důkaz, kde vš. B_i jsou varianty klauzulí z S
- C Ll-dokazatelná z S, S ⊢_{LI} C, pokud existuje Ll-důkaz
- S je Ll-zamítnutelná, pokud $S \vdash_{LI} \square$

Lineární důkaz klauzule C z formule S je konečná posloupnost

$$\begin{bmatrix} C_0 \\ B_0 \end{bmatrix}, \begin{bmatrix} C_1 \\ B_1 \end{bmatrix}, \dots, \begin{bmatrix} C_n \\ B_n \end{bmatrix}, C_{n+1}$$

- C_{i+1} je rezolventa C_i a B_i
- B_i varianta klauzule z S nebo $B_i = C_j$ pro nějaké j < i.
- Lineární zamítnutí S je lineární důkaz \square z S
- Ll-důkaz je lin. důkaz, kde vš. B_i jsou varianty klauzulí z S
- C Ll-dokazatelná z S, S ⊢_{LI} C, pokud existuje Ll-důkaz
- S je Ll-zamítnutelná, pokud $S \vdash_{LI} \square$
- korektnost (lineární i Ll-rezoluce) je zřejmá

Věta (O úplnosti lineární rezoluce): C má lineární důkaz z S, právě když má rezoluční důkaz z S (tj. $S \vdash_R C$).

Věta (O úplnosti lineární rezoluce): C má lineární důkaz z S, právě když má rezoluční důkaz z S (tj. $S \vdash_R C$).

Důkaz:

Věta (O úplnosti lineární rezoluce): C má lineární důkaz z S, právě když má rezoluční důkaz z S (tj. $S \vdash_R C$).

Důkaz: převodem na VL (Lifting lemma zachovává linearitu)

Věta (O úplnosti lineární rezoluce): C má lineární důkaz z S, právě když má rezoluční důkaz z S (tj. $S \vdash_R C$). **Důkaz:** převodem na VL (Lifting lemma zachovává linearitu)

Věta (O úplnosti LI-rezoluce pro Hornovy formule): Je-li Hornova formule T splnitelná, a $T \cup \{G\}$ je nesplnitelná pro cíl G, potom $T \cup \{G\} \vdash_{LI} \square$, a to LI-zamítnutím, které začíná cílem G.

Věta (O úplnosti lineární rezoluce): C má lineární důkaz z S, právě když má rezoluční důkaz z S (tj. $S \vdash_R C$). **Důkaz:** převodem na VL (Lifting lemma zachovává linearitu)

Věta (O úplnosti LI-rezoluce pro Hornovy formule): Je-li Hornova formule T splnitelná, a $T \cup \{G\}$ je nesplnitelná pro cíl G, potom $T \cup \{G\} \vdash_{II} \Box$, a to LI-zamítnutím, které začíná cílem G.

Důkaz:

Věta (O úplnosti lineární rezoluce): C má lineární důkaz z S, právě když má rezoluční důkaz z S (tj. $S \vdash_R C$).

Důkaz: převodem na VL (Lifting lemma zachovává linearitu)

Věta (O úplnosti LI-rezoluce pro Hornovy formule): Je-li Hornova formule T splnitelná, a $T \cup \{G\}$ je nesplnitelná pro cíl G, potom $T \cup \{G\} \vdash_{LI} \Box$, a to LI-zamítnutím, které začíná cílem G.

Důkaz: úplnost ve VL + Herbrandova věta + Lifting lemma

- **Věta (O úplnosti lineární rezoluce):** C má lineární důkaz z S, právě když má rezoluční důkaz z S (tj. $S \vdash_R C$). **Důkaz:** převodem na VL (Lifting lemma zachovává linearitu) **Věta (O úplnosti LI-rezoluce pro Hornovy formule):** Je-li Hornova formule T splnitelná, a $T \cup \{G\}$ je nesplnitelná pro cíl G, potom $T \cup \{G\} \vdash_{LI} \Box$, a to LI-zamítnutím, které začíná cílem G. **Důkaz:** úplnost ve VL + Herbrandova věta + Lifting lemma
 - Hornova formule: množina Hornových klauzulí

- Věta (O úplnosti lineární rezoluce): C má lineární důkaz z S, právě když má rezoluční důkaz z S (tj. $S \vdash_R C$).

 Důkaz: převodem na VL (Lifting lemma zachovává linearitu)

 Věta (O úplnosti LI-rezoluce pro Hornovy formule): Je-li Hornova formule T splnitelná, a $T \cup \{G\}$ je nesplnitelná pro cíl G, potom $T \cup \{G\} \vdash_{LI} \Box$, a to LI-zamítnutím, které začíná cílem G.

 Důkaz: úplnost ve VL + Herbrandova věta + Lifting lemma
 - Hornova formule: množina Hornových klauzulí
 - Hornova klauzule: nejvýše jeden pozitivní literál

- Věta (O úplnosti lineární rezoluce): C má lineární důkaz z S, právě když má rezoluční důkaz z S (tj. $S \vdash_R C$).

 Důkaz: převodem na VL (Lifting lemma zachovává linearitu)

 Věta (O úplnosti LI-rezoluce pro Hornovy formule): Je-li Hornova formule T splnitelná, a $T \cup \{G\}$ je nesplnitelná pro cíl G, potom $T \cup \{G\} \vdash_{LI} \Box$, a to LI-zamítnutím, které začíná cílem G.

 Důkaz: úplnost ve VL + Herbrandova věta + Lifting lemma
 - Hornova formule: množina Hornových klauzulí
 - Hornova klauzule: nejvýše jeden pozitivní literál
 - Pravidlo: klauzule s 1 pozitivním a alespoň 1 negativním literálem

- Věta (O úplnosti lineární rezoluce): C má lineární důkaz z S, právě když má rezoluční důkaz z S (tj. $S \vdash_R C$).

 Důkaz: převodem na VL (Lifting lemma zachovává linearitu)

 Věta (O úplnosti LI-rezoluce pro Hornovy formule): Je-li Hornova formule T splnitelná, a $T \cup \{G\}$ je nesplnitelná pro cíl G, potom $T \cup \{G\} \vdash_{LI} \Box$, a to LI-zamítnutím, které začíná cílem G.

 Důkaz: úplnost ve VL + Herbrandova věta + Lifting lemma
 - Hornova formule: množina Hornových klauzulí
 - Hornova klauzule: nejvýše jeden pozitivní literál
 - Pravidlo: klauzule s 1 pozitivním a alespoň 1 negativním literálem
 - Fakt: pozitivní jednotková klauzule

- Věta (O úplnosti lineární rezoluce): C má lineární důkaz z S, právě když má rezoluční důkaz z S (tj. $S \vdash_R C$).

 Důkaz: převodem na VL (Lifting lemma zachovává linearitu)

 Věta (O úplnosti LI-rezoluce pro Hornovy formule): Je-li Hornova formule T splnitelná, a $T \cup \{G\}$ je nesplnitelná pro cíl G, potom $T \cup \{G\} \vdash_{LI} \Box$, a to LI-zamítnutím, které začíná cílem G.

 Důkaz: úplnost ve VL + Herbrandova věta + Lifting lemma
 - Hornova formule: množina Hornových klauzulí
 - Hornova klauzule: nejvýše jeden pozitivní literál
 - Pravidlo: klauzule s 1 pozitivním a alespoň 1 negativním literálem
 - Fakt: pozitivní jednotková klauzule
 - Cíl: neprázdná klauzule bez pozitivního literálu

- Věta (O úplnosti lineární rezoluce): C má lineární důkaz z S, právě když má rezoluční důkaz z S (tj. $S \vdash_R C$).

 Důkaz: převodem na VL (Lifting lemma zachovává linearitu)

 Věta (O úplnosti LI-rezoluce pro Hornovy formule): Je-li Hornova formule T splnitelná, a $T \cup \{G\}$ je nesplnitelná pro cíl G, potom $T \cup \{G\} \vdash_{LI} \Box$, a to LI-zamítnutím, které začíná cílem G.

 Důkaz: úplnost ve VL + Herbrandova věta + Lifting lemma
 - Hornova formule: množina Hornových klauzulí
 - Hornova klauzule: nejvýše jeden pozitivní literál
 - Pravidlo: klauzule s 1 pozitivním a alespoň 1 negativním literálem
 - Fakt: pozitivní jednotková klauzule
 - Cíl: neprázdná klauzule bez pozitivního literálu
 - Programové klauzule: pravidla a fakta

- Věta (O úplnosti lineární rezoluce): C má lineární důkaz z S, právě když má rezoluční důkaz z S (tj. $S \vdash_R C$).

 Důkaz: převodem na VL (Lifting lemma zachovává linearitu)

 Věta (O úplnosti LI-rezoluce pro Hornovy formule): Je-li Hornova formule T splnitelná, a $T \cup \{G\}$ je nesplnitelná pro cíl G, potom $T \cup \{G\} \vdash_{LI} \Box$, a to LI-zamítnutím, které začíná cílem G.
 - Hornova formule: množina Hornových klauzulí
 - Hornova klauzule: nejvýše jeden pozitivní literál
 - Pravidlo: klauzule s 1 pozitivním a alespoň 1 negativním literálem

Důkaz: úplnost ve VL + Herbrandova věta + Lifting lemma

- Fakt: pozitivní jednotková klauzule
- Cíl: neprázdná klauzule bez pozitivního literálu
- Programové klauzule: pravidla a fakta
- Program: Hornova formule obsahující jen programové klauzule

Program v Prologu

```
son(X,Y):-father(Y,X),man(X). \{son(X,Y),\neg father(Y,X),\neg man(X)\} son(X,Y):-mother(Y,X),man(X). \{son(X,Y),\neg mother(Y,X),\neg man(X)\} man(charlie). \{man(charlie)\} father(bob,charlie). \{father(bob,charlie)\} mother(alice,charlie). \{mother(alice,charlie)\} ?-son(charlie,X).
```

Platí v programu daný existenční dotaz, $P \models (\exists X) son(charlie, X)$?

Platí v programu daný existenční dotaz, $P \models (\exists X) son(charlie, X)$?

Důsledek: Pro program P a cíl $G = \{\neg A_1, \dots, \neg A_k\}$ v proměnných X_1, \dots, X_n jsou následující ekvivalentní:

Platí v programu daný existenční dotaz, $P \models (\exists X) son(charlie, X)$?

Důsledek: Pro program P a cíl $G = \{\neg A_1, \dots, \neg A_k\}$ v proměnných X_1, \dots, X_n jsou následující ekvivalentní:

$$P \models (\exists X_1) \dots (\exists X_n) (A_1 \wedge \dots \wedge A_k)$$

Platí v programu daný existenční dotaz, $P \models (\exists X) son(charlie, X)$?

Důsledek: Pro program P a cíl $G = \{\neg A_1, \dots, \neg A_k\}$ v proměnných X_1, \dots, X_n jsou následující ekvivalentní:

- $P \models (\exists X_1) \dots (\exists X_n) (A_1 \wedge \dots \wedge A_k)$
- $P \cup \{G\}$ má Ll-zamítnutí začínající G

Platí v programu daný existenční dotaz, $P \models (\exists X) son(charlie, X)$?

Důsledek: Pro program P a cíl $G = \{\neg A_1, \dots, \neg A_k\}$ v proměnných X_1, \dots, X_n jsou následující ekvivalentní:

- $P \models (\exists X_1) \dots (\exists X_n) (A_1 \wedge \dots \wedge A_k)$
- $P \cup \{G\}$ má Ll-zamítnutí začínající G

Důkaz:

Platí v programu daný existenční dotaz, $P \models (\exists X) son(charlie, X)$?

Důsledek: Pro program P a cíl $G = \{\neg A_1, \dots, \neg A_k\}$ v proměnných X_1, \dots, X_n jsou následující ekvivalentní:

- $P \models (\exists X_1) \dots (\exists X_n) (A_1 \wedge \dots \wedge A_k)$
- $P \cup \{G\}$ má Ll-zamítnutí začínající G

Důkaz: Plyne z Důkazu sporem a Úplnosti Ll-rezoluce pro Hornovy formule (Program je vždy splnitelný).

Platí v programu daný existenční dotaz, $P \models (\exists X) son(charlie, X)$?

Důsledek: Pro program P a cíl $G = \{\neg A_1, \dots, \neg A_k\}$ v proměnných X_1, \dots, X_n jsou následující ekvivalentní:

- $P \models (\exists X_1) \dots (\exists X_n) (A_1 \wedge \dots \wedge A_k)$
- $P \cup \{G\}$ má Ll-zamítnutí začínající G

Důkaz: Plyne z Důkazu sporem a Úplnosti Ll-rezoluce pro Hornovy formule (Program je vždy splnitelný).

Je-li odpověď na dotaz kladná, chceme znát i výstupní substituci σ , tj. složení unifikací z rez. kroků, zúžené na proměnné v G. Platí:

$$P \models (A_1 \land \cdots \land A_k)\sigma$$

Příklady

Příklady

?-son(charlie,X).

?-son(charlie,X).

?-son(charlie,X).

X=bob výstupní substituce $\sigma = \{X/b\}$

?-son(charlie,X).

X=bob výstupní substituce $\sigma = \{X/b\}$

?-son(charlie,X).

X=bob výstupní substituce
$$\sigma = \{X/b\}$$

X=alice výstupní substituce
$$\sigma = \{X/a\}$$

ČÁST III – POKROČILÉ PARTIE

Kapitola 9: Teorie modelů

vztah mezi vlastnostmi teorií a tříd jejich modelů

- vztah mezi vlastnostmi teorií a tříd jejich modelů
- bližší matematice než informatice a aplikacím

- vztah mezi vlastnostmi teorií a tříd jejich modelů
- bližší matematice než informatice a aplikacím
- jen několik vybraných dostupných výsledků

- vztah mezi vlastnostmi teorií a tříd jejich modelů
- bližší matematice než informatice a aplikacím
- jen několik vybraných dostupných výsledků
- + co je třeba pro Gödelovy věty (Kapitola 10)

- vztah mezi vlastnostmi teorií a tříd jejich modelů
- bližší matematice než informatice a aplikacím
- jen několik vybraných dostupných výsledků
- + co je třeba pro Gödelovy věty (Kapitola 10)
- + co se nevešlo jinam

Teorie struktury A (v jazyce L):

$$\mathsf{Th}(\mathcal{A}) = \{ \varphi \mid \varphi \text{ je L-sentence a } \mathcal{A} \models \varphi \}$$

Teorie struktury A (v jazyce L):

$$\mathsf{Th}(\mathcal{A}) = \{ \varphi \mid \varphi \text{ je L-sentence a } \mathcal{A} \models \varphi \}$$

Např. pro standardní model aritmetiky $\underline{\mathbb{N}} = \langle \mathbb{N}, S, +, \cdot, 0, \leq \rangle$ říkáme Th $(\underline{\mathbb{N}})$ aritmetika přirozených čísel, je nerozhodnutelná (neexistuje algoritmus, který pro každou φ doběhne a odpoví, zda $T \models \varphi$)

Teorie struktury A (v jazyce L):

$$\mathsf{Th}(\mathcal{A}) = \{ \varphi \mid \varphi \text{ je L-sentence a } \mathcal{A} \models \varphi \}$$

Např. pro standardní model aritmetiky $\underline{\mathbb{N}} = \langle \mathbb{N}, S, +, \cdot, 0, \leq \rangle$ říkáme Th $(\underline{\mathbb{N}})$ aritmetika přirozených čísel, je nerozhodnutelná (neexistuje algoritmus, který pro každou φ doběhne a odpoví, zda $T \models \varphi$)

Pozorování: Nechť A je L-struktura a T je L-teorie.

Teorie struktury A (v jazyce L):

$$\mathsf{Th}(\mathcal{A}) = \{ \varphi \mid \varphi \text{ je L-sentence a } \mathcal{A} \models \varphi \}$$

Např. pro standardní model aritmetiky $\underline{\mathbb{N}} = \langle \mathbb{N}, S, +, \cdot, 0, \leq \rangle$ říkáme Th $(\underline{\mathbb{N}})$ aritmetika přirozených čísel, je nerozhodnutelná (neexistuje algoritmus, který pro každou φ doběhne a odpoví, zda $T \models \varphi$)

Pozorování: Nechť A je L-struktura a T je L-teorie.

■ Th(A) je kompletní teorie

Teorie struktury A (v jazyce L):

$$\mathsf{Th}(\mathcal{A}) = \{ \varphi \mid \varphi \text{ je L-sentence a } \mathcal{A} \models \varphi \}$$

Např. pro standardní model aritmetiky $\underline{\mathbb{N}} = \langle \mathbb{N}, S, +, \cdot, 0, \leq \rangle$ říkáme Th $(\underline{\mathbb{N}})$ aritmetika přirozených čísel, je nerozhodnutelná (neexistuje algoritmus, který pro každou φ doběhne a odpoví, zda $T \models \varphi$)

Pozorování: Nechť A je L-struktura a T je L-teorie.

- Th(A) je kompletní teorie
- $\mathcal{A} \in \mathsf{M}_L(T) \Rightarrow \mathsf{Th}(\mathcal{A})$ je (kompletní) jednoduchá extenze T

Teorie struktury A (v jazyce L):

$$\mathsf{Th}(\mathcal{A}) = \{ \varphi \mid \varphi \text{ je L-sentence a } \mathcal{A} \models \varphi \}$$

Např. pro standardní model aritmetiky $\underline{\mathbb{N}} = \langle \mathbb{N}, S, +, \cdot, 0, \leq \rangle$ říkáme Th $(\underline{\mathbb{N}})$ aritmetika přirozených čísel, je nerozhodnutelná (neexistuje algoritmus, který pro každou φ doběhne a odpoví, zda $T \models \varphi$)

Pozorování: Nechť A je L-struktura a T je L-teorie.

- $\mathsf{Th}(\mathcal{A})$ je kompletní teorie
- $A \in M_L(T) \Rightarrow Th(A)$ je (kompletní) jednoduchá extenze T
- $A \in M_L(T)$, T kompletní $\Rightarrow Th(A) = Csq_L(T) \sim T$

L-struktury \mathcal{A} a \mathcal{B} jsou elementárně ekvivalentní ($\mathcal{A} \equiv \mathcal{B}$), pokud v nich platí tytéž *L*-sentence, neboli: $\mathcal{A} \equiv \mathcal{B} \Leftrightarrow \mathsf{Th}(\mathcal{A}) = \mathsf{Th}(\mathcal{B})$

L-struktury \mathcal{A} a \mathcal{B} jsou elementárně ekvivalentní ($\mathcal{A} \equiv \mathcal{B}$), pokud v nich platí tytéž *L*-sentence, neboli: $\mathcal{A} \equiv \mathcal{B} \Leftrightarrow \mathsf{Th}(\mathcal{A}) = \mathsf{Th}(\mathcal{B})$

L-struktury \mathcal{A} a \mathcal{B} jsou elementárně ekvivalentní ($\mathcal{A} \equiv \mathcal{B}$), pokud v nich platí tytéž *L*-sentence, neboli: $\mathcal{A} \equiv \mathcal{B} \Leftrightarrow \mathsf{Th}(\mathcal{A}) = \mathsf{Th}(\mathcal{B})$

Například pro $\langle \mathbb{R}, \leq \rangle$, $\langle \mathbb{Q}, \leq \rangle$, $\langle \mathbb{Z}, \leq \rangle$

 $\bullet \quad \langle \mathbb{R}, \leq \rangle \equiv \langle \mathbb{Q}, \leq \rangle$

L-struktury \mathcal{A} a \mathcal{B} jsou elementárně ekvivalentní ($\mathcal{A} \equiv \mathcal{B}$), pokud v nich platí tytéž *L*-sentence, neboli: $\mathcal{A} \equiv \mathcal{B} \Leftrightarrow \mathsf{Th}(\mathcal{A}) = \mathsf{Th}(\mathcal{B})$

Například pro $\langle \mathbb{R}, \leq \rangle$, $\langle \mathbb{Q}, \leq \rangle$, $\langle \mathbb{Z}, \leq \rangle$

 $\bullet \quad \langle \mathbb{R}, \leq \rangle \equiv \langle \mathbb{Q}, \leq \rangle$

L-struktury \mathcal{A} a \mathcal{B} jsou elementárně ekvivalentní ($\mathcal{A} \equiv \mathcal{B}$), pokud v nich platí tytéž *L*-sentence, neboli: $\mathcal{A} \equiv \mathcal{B} \Leftrightarrow \mathsf{Th}(\mathcal{A}) = \mathsf{Th}(\mathcal{B})$

Například pro $\langle \mathbb{R}, \leq \rangle$, $\langle \mathbb{Q}, \leq \rangle$, $\langle \mathbb{Z}, \leq \rangle$

• $\langle \mathbb{R}, \leq \rangle \equiv \langle \mathbb{Q}, \leq \rangle$: snadno pomocí hustoty

L-struktury \mathcal{A} a \mathcal{B} jsou elementárně ekvivalentní ($\mathcal{A} \equiv \mathcal{B}$), pokud v nich platí tytéž *L*-sentence, neboli: $\mathcal{A} \equiv \mathcal{B} \Leftrightarrow \mathsf{Th}(\mathcal{A}) = \mathsf{Th}(\mathcal{B})$

- $\langle \mathbb{R}, \leq \rangle \equiv \langle \mathbb{Q}, \leq \rangle$: snadno pomocí hustoty
- $\langle \mathbb{Q}, \leq \rangle \not\equiv \langle \mathbb{Z}, \leq \rangle$:

L-struktury \mathcal{A} a \mathcal{B} jsou elementárně ekvivalentní ($\mathcal{A} \equiv \mathcal{B}$), pokud v nich platí tytéž *L*-sentence, neboli: $\mathcal{A} \equiv \mathcal{B} \Leftrightarrow \mathsf{Th}(\mathcal{A}) = \mathsf{Th}(\mathcal{B})$

- $\langle \mathbb{R}, \leq \rangle \equiv \langle \mathbb{Q}, \leq \rangle$: snadno pomocí hustoty
- $\langle \mathbb{Q}, \leq \rangle \not\equiv \langle \mathbb{Z}, \leq \rangle$:

L-struktury \mathcal{A} a \mathcal{B} jsou elementárně ekvivalentní ($\mathcal{A} \equiv \mathcal{B}$), pokud v nich platí tytéž *L*-sentence, neboli: $\mathcal{A} \equiv \mathcal{B} \Leftrightarrow \mathsf{Th}(\mathcal{A}) = \mathsf{Th}(\mathcal{B})$

- $\langle \mathbb{R}, \leq \rangle \equiv \langle \mathbb{Q}, \leq \rangle$: snadno pomocí hustoty
- $\langle \mathbb{Q}, \leq \rangle \not\equiv \langle \mathbb{Z}, \leq \rangle$: v $\langle \mathbb{Z}, \leq \rangle$ má každý prvek bezprostředního následníka, v $\langle \mathbb{Q}, \leq \rangle$ ne, tedy $\varphi \in \mathsf{Th}(\langle \mathbb{Z}, \leq \rangle) \setminus \mathsf{Th}(\langle \mathbb{Q}, \leq \rangle)$ pro následující sentenci:

L-struktury \mathcal{A} a \mathcal{B} jsou elementárně ekvivalentní ($\mathcal{A} \equiv \mathcal{B}$), pokud v nich platí tytéž *L*-sentence, neboli: $\mathcal{A} \equiv \mathcal{B} \Leftrightarrow \operatorname{Th}(\mathcal{A}) = \operatorname{Th}(\mathcal{B})$

- $\langle \mathbb{R}, \leq \rangle \equiv \langle \mathbb{Q}, \leq \rangle$: snadno pomocí hustoty
- $\langle \mathbb{Q}, \leq \rangle \not\equiv \langle \mathbb{Z}, \leq \rangle$: v $\langle \mathbb{Z}, \leq \rangle$ má každý prvek bezprostředního následníka, v $\langle \mathbb{Q}, \leq \rangle$ ne, tedy $\varphi \in \mathsf{Th}(\langle \mathbb{Z}, \leq \rangle) \setminus \mathsf{Th}(\langle \mathbb{Q}, \leq \rangle)$ pro následující sentenci:

$$\varphi = (\forall x)(\exists y)(x \le y \land \neg x = y \land (\forall z)(x \le z \rightarrow z = x \lor y \le z))$$

Pro teorii T nás hlavně zajímá, jak vypadají modely.

Pro teorii $\mathcal T$ nás hlavně zajímá, jak vypadají modely.

 T je kompletní, právě když má jediný model až na elementární ekvivalenci (všechny modely jsou elementárně ekvivalentní)

Pro teorii T nás hlavně zajímá, jak vypadají modely.

- T je kompletní, právě když má jediný model až na elementární ekvivalenci (všechny modely jsou elementárně ekvivalentní)
- Modely T až na elementární ekvivalenci jednoznačně odpovídají kompletním jednoduchým extenzím T, ty jsou tvaru $\mathsf{Th}(\mathcal{A})$ pro $\mathcal{A} \in \mathsf{M}(T)$, kde $\mathcal{A} \equiv \mathcal{B} \Leftrightarrow \mathsf{Th}(\mathcal{A}) = \mathsf{Th}(\mathcal{B})$

Pro teorii T nás hlavně zajímá, jak vypadají modely.

- T je kompletní, právě když má jediný model až na elementární ekvivalenci (všechny modely jsou elementárně ekvivalentní)
- Modely T až na elementární ekvivalenci jednoznačně odpovídají kompletním jednoduchým extenzím T, ty jsou tvaru $\mathsf{Th}(\mathcal{A})$ pro $\mathcal{A} \in \mathsf{M}(T)$, kde $\mathcal{A} \equiv \mathcal{B} \Leftrightarrow \mathsf{Th}(\mathcal{A}) = \mathsf{Th}(\mathcal{B})$

Místo hledání modelů stačí najít kompletní jednoduché extenze!

Pro teorii T nás hlavně zajímá, jak vypadají modely.

- T je kompletní, právě když má jediný model až na elementární ekvivalenci (všechny modely jsou elementárně ekvivalentní)
- Modely T až na elementární ekvivalenci jednoznačně odpovídají kompletním jednoduchým extenzím T, ty jsou tvaru $\mathsf{Th}(\mathcal{A})$ pro $\mathcal{A} \in \mathsf{M}(T)$, kde $\mathcal{A} \equiv \mathcal{B} \Leftrightarrow \mathsf{Th}(\mathcal{A}) = \mathsf{Th}(\mathcal{B})$

Místo hledání modelů stačí najít kompletní jednoduché extenze!

Motivace: ukážeme, že lze-li efektivně popsat všechny kompletní jednoduché extenze efektivně dané teorie, potom je rozhodnutelná.

Pro teorii T nás hlavně zajímá, jak vypadají modely.

- T je kompletní, právě když má jediný model až na elementární ekvivalenci (všechny modely jsou elementárně ekvivalentní)
- Modely T až na elementární ekvivalenci jednoznačně odpovídají kompletním jednoduchým extenzím T, ty jsou tvaru $\mathsf{Th}(\mathcal{A})$ pro $\mathcal{A} \in \mathsf{M}(T)$, kde $\mathcal{A} \equiv \mathcal{B} \Leftrightarrow \mathsf{Th}(\mathcal{A}) = \mathsf{Th}(\mathcal{B})$

Místo hledání modelů stačí najít kompletní jednoduché extenze!

Motivace: ukážeme, že lze-li efektivně popsat všechny kompletní jednoduché extenze efektivně dané teorie, potom je rozhodnutelná.

 algoritmus, který pro vstup (i, j) vypíše j-tý axiom i-té kompletní jednoduché extenze (v nějakém očíslování)

Kompletní jednoduché extenze

Pro teorii T nás hlavně zajímá, jak vypadají modely.

- T je kompletní, právě když má jediný model až na elementární ekvivalenci (všechny modely jsou elementárně ekvivalentní)
- Modely T až na elementární ekvivalenci jednoznačně odpovídají kompletním jednoduchým extenzím T, ty jsou tvaru $\mathsf{Th}(\mathcal{A})$ pro $\mathcal{A} \in \mathsf{M}(T)$, kde $\mathcal{A} \equiv \mathcal{B} \Leftrightarrow \mathsf{Th}(\mathcal{A}) = \mathsf{Th}(\mathcal{B})$

Místo hledání modelů stačí najít kompletní jednoduché extenze!

Motivace: ukážeme, že lze-li efektivně popsat všechny kompletní jednoduché extenze efektivně dané teorie, potom je rozhodnutelná.

- algoritmus, který pro vstup (i, j) vypíše j-tý axiom i-té kompletní jednoduché extenze (v nějakém očíslování)
- algoritmus, který postupně vygeneruje všechny axiomy teorie

Kompletní jednoduché extenze

Pro teorii T nás hlavně zajímá, jak vypadají modely.

- T je kompletní, právě když má jediný model až na elementární ekvivalenci (všechny modely jsou elementárně ekvivalentní)
- Modely T až na elementární ekvivalenci jednoznačně odpovídají kompletním jednoduchým extenzím T, ty jsou tvaru $\mathsf{Th}(\mathcal{A})$ pro $\mathcal{A} \in \mathsf{M}(T)$, kde $\mathcal{A} \equiv \mathcal{B} \Leftrightarrow \mathsf{Th}(\mathcal{A}) = \mathsf{Th}(\mathcal{B})$

Místo hledání modelů stačí najít kompletní jednoduché extenze!

Motivace: ukážeme, že lze-li efektivně popsat všechny kompletní jednoduché extenze efektivně dané teorie, potom je rozhodnutelná.

- algoritmus, který pro vstup (i, j) vypíše j-tý axiom i-té kompletní jednoduché extenze (v nějakém očíslování)
- algoritmus, který postupně vygeneruje všechny axiomy teorie

Schopnost efektivně popsat kompletní jedn. extenze je vzácná, vyžaduje silné předpoklady, ale u mnoha důležitých teorií to lze.

Teorie hustého lin. uspořádání (DeLO*) je extenze teorie uspořádání o linearitu (dichotomii), hustotu, a někdy se přidává netrivialita:

- $x \le y \lor y \le x$
- $x \le y \land \neg x = y \rightarrow (\exists z)(x \le z \land z \le y \land \neg z = x \land \neg z = y)$
- $(\exists x)(\exists y)(\neg x = y)$

Teorie hustého lin. uspořádání (DeLO*) je extenze teorie uspořádání o linearitu (dichotomii), hustotu, a někdy se přidává netrivialita:

- $x \le y \lor y \le x$
- $x \le y \land \neg x = y \rightarrow (\exists z)(x \le z \land z \le y \land \neg z = x \land \neg z = y)$
- $(\exists x)(\exists y)(\neg x = y)$

Tvrzení: Buď $\varphi = (\exists x)(\forall y)(x \leq y)$ a $\psi = (\exists x)(\forall y)(y \leq x)$. Následující jsou právě všechny kompletní jednoduché extenze DeLO* (až na ekvivalenci):

• DeLO = DeLO* $\cup \{\neg \varphi, \neg \psi\}$

 $\bullet \quad \mathsf{DeLO}^- = \mathsf{DeLO}^* \ \cup \ \{\varphi, \neg \psi\}$

• $DeLO^+ = DeLO^* \cup \{\neg \varphi, \psi\}$

 $\bullet \ \ \mathsf{DeLO}^{\pm} = \mathsf{DeLO}^* \ \cup \ \{\varphi,\psi\}$

Teorie hustého lin. uspořádání (DeLO*) je extenze teorie uspořádání o linearitu (dichotomii), hustotu, a někdy se přidává netrivialita:

- $x \le y \lor y \le x$
- $x \le y \land \neg x = y \rightarrow (\exists z)(x \le z \land z \le y \land \neg z = x \land \neg z = y)$
- $(\exists x)(\exists y)(\neg x = y)$

Tvrzení: Buď $\varphi = (\exists x)(\forall y)(x \leq y)$ a $\psi = (\exists x)(\forall y)(y \leq x)$. Následující jsou právě všechny kompletní jednoduché extenze DeLO* (až na ekvivalenci):

 $\bullet \ \ \mathsf{DeLO} = \mathsf{DeLO}^* \ \cup \ \{\neg \varphi, \neg \psi\}$

 $\bullet \ \ \mathsf{DeLO}^- = \mathsf{DeLO}^* \ \cup \ \{\varphi, \neg \psi\}$

• $DeLO^+ = DeLO^* \cup \{\neg \varphi, \psi\}$

lacksquare DeLO $^\pm$ = DeLO * \cup $\{arphi,\psi\}$

Stačí ukázat, že jsou kompletní. Potom už je zřejmé, že žádná další kompletní jednoduchá extenze DeLO* nemůže existovat.

Jak ukážeme, kompletnost plyne z faktu, že jsou ω -kategorické, tj. mají jediný spočetný model až na izomorfismus.

Připomeňme:

Připomeňme:

Věta (L.-S. bez rovnosti): Ve spočetném jazyce bez rovnosti má každá bezesporná teorie spočetně nekonečný model.

Připomeňme:

Věta (L.-S. bez rovnosti): Ve spočetném jazyce bez rovnosti má každá bezesporná teorie spočetně nekonečný model.

Jednoduchý důsledek:

Připomeňme:

Věta (L.-S. bez rovnosti): Ve spočetném jazyce bez rovnosti má každá bezesporná teorie spočetně nekonečný model.

Jednoduchý důsledek:

Důsledek: Je-li L spočetný bez rovnosti, potom ke každé L-struktuře existuje elementárně ekvivalentní spočetně nekonečná struktura.

Připomeňme:

Věta (L.-S. bez rovnosti): Ve spočetném jazyce bez rovnosti má každá bezesporná teorie spočetně nekonečný model.

Jednoduchý důsledek:

Důsledek: Je-li *L* spočetný bez rovnosti, potom ke každé *L*-struktuře existuje elementárně ekvivalentní spočetně nekonečná struktura.

Důkaz: $\mathsf{Th}(\mathcal{A})$ je bezesporná (má model \mathcal{A}), tedy dle L.-S. věty má spočetně nekonečný model $\mathcal{B} \models \mathsf{Th}(\mathcal{A})$, to znamená $\mathcal{B} \equiv \mathcal{A}$. \square

Připomeňme:

Věta (L.-S. bez rovnosti): Ve spočetném jazyce bez rovnosti má každá bezesporná teorie spočetně nekonečný model.

Jednoduchý důsledek:

Důsledek: Je-li L spočetný bez rovnosti, potom ke každé L-struktuře existuje elementárně ekvivalentní spočetně nekonečná struktura.

Důkaz: $\mathsf{Th}(\mathcal{A})$ je bezesporná (má model \mathcal{A}), tedy dle L.-S. věty má spočetně nekonečný model $\mathcal{B} \models \mathsf{Th}(\mathcal{A})$, to znamená $\mathcal{B} \equiv \mathcal{A}$. \square

Bez rovnosti tedy nelze vyjádřit např. 'model má právě 42 prvků'.

V důkazu L.-S. věty máme kanonický model pro bezespornou větev tabla z T pro $F\bot$; pro jazyk s rovností stačí faktorizovat dle =^A:

V důkazu L.-S. věty máme kanonický model pro bezespornou větev tabla z T pro $F\perp$; pro jazyk s rovností stačí faktorizovat dle $=^A$:

Věta (L.-S. s rovností): Ve spočetném jazyce s rovností má každá bezesporná teorie spočetný model (konečný, nebo nekonečný).

V důkazu L.-S. věty máme kanonický model pro bezespornou větev tabla z T pro $F\perp$; pro jazyk s rovností stačí faktorizovat dle $=^A$:

Věta (L.-S. s rovností): Ve spočetném jazyce s rovností má každá bezesporná teorie spočetný model (konečný, nebo nekonečný).

I tato verze má snadný důsledek pro konkrétní struktury:

V důkazu L.-S. věty máme kanonický model pro bezespornou větev tabla z T pro $F\perp$; pro jazyk s rovností stačí faktorizovat dle =^A:

Věta (L.-S. s rovností): Ve spočetném jazyce s rovností má každá bezesporná teorie spočetný model (konečný, nebo nekonečný).

I tato verze má snadný důsledek pro konkrétní struktury:

Důsledek: Je-li *L* spočetný s rovností, ke každé nekonečné *L*-struktuře existuje elem. ekvivalentní spočetně nekonečná struktura.

V důkazu L.-S. věty máme kanonický model pro bezespornou větev tabla z T pro $F\perp$; pro jazyk s rovností stačí faktorizovat dle =^A:

Věta (L.-S. s rovností): Ve spočetném jazyce s rovností má každá bezesporná teorie spočetný model (konečný, nebo nekonečný).

I tato verze má snadný důsledek pro konkrétní struktury:

Důsledek: Je-li *L* spočetný s rovností, ke každé nekonečné *L*-struktuře existuje elem. ekvivalentní spočetně nekonečná struktura.

Důkaz: Mějme nekonečnou L-strukturu \mathcal{A} . Podobně jako v důkazu Důsledku bez rovnosti najdeme spočetnou $\mathcal{B} \equiv \mathcal{A}$.

V důkazu L.-S. věty máme kanonický model pro bezespornou větev tabla z T pro $F\perp$; pro jazyk s rovností stačí faktorizovat dle =^A:

Věta (L.-S. s rovností): Ve spočetném jazyce s rovností má každá bezesporná teorie spočetný model (konečný, nebo nekonečný).

I tato verze má snadný důsledek pro konkrétní struktury:

Důsledek: Je-li *L* spočetný s rovností, ke každé nekonečné *L*-struktuře existuje elem. ekvivalentní spočetně nekonečná struktura.

Důkaz: Mějme nekonečnou L-strukturu \mathcal{A} . Podobně jako v důkazu Důsledku bez rovnosti najdeme spočetnou $\mathcal{B} \equiv \mathcal{A}$.

Protože v \mathcal{A} platí pro kažné $n \in \mathbb{N}$ sentence vyjadřující 'existuje alespoň n prvků' (což lze pomocí rovnosti snadno zapsat), platí i v \mathcal{B} , tedy \mathcal{B} musí být nekonečná.

 algebraicky uzavřené těleso: každý polynom nenulového stupně v něm má kořen

- algebraicky uzavřené těleso: každý polynom nenulového stupně v něm má kořen
- \mathbb{Q} není, $x^2 2$ nemá v \mathbb{Q} kořen

- algebraicky uzavřené těleso: každý polynom nenulového stupně v něm má kořen
- \mathbb{Q} není, $x^2 2$ nemá v \mathbb{Q} kořen
- lacksquare \mathbb{R} není, x^2+1 nemá v \mathbb{R} kořen

- algebraicky uzavřené těleso: každý polynom nenulového stupně v něm má kořen
- \mathbb{Q} není, $x^2 2$ nemá v \mathbb{Q} kořen
- \mathbb{R} není, $x^2 + 1$ nemá v \mathbb{R} kořen
- $\mathbb C$ je algebraicky uzavřené, ale je nespočetné

- algebraicky uzavřené těleso: každý polynom nenulového stupně v něm má kořen
- \mathbb{Q} není, $x^2 2$ nemá v \mathbb{Q} kořen
- \mathbb{R} není, $x^2 + 1$ nemá v \mathbb{R} kořen
- lacktriangle $\mathbb C$ je algebraicky uzavřené, ale je nespočetné

Algebraickou uzavřenost vyjádříme sentencemi ψ_n , pro n>0:

- algebraicky uzavřené těleso: každý polynom nenulového stupně v něm má kořen
- \mathbb{Q} není, $x^2 2$ nemá v \mathbb{Q} kořen
- \mathbb{R} není, $x^2 + 1$ nemá v \mathbb{R} kořen
- lacktriangle $\mathbb C$ je algebraicky uzavřené, ale je nespočetné

Algebraickou uzavřenost vyjádříme sentencemi ψ_n , pro n > 0:

$$(\forall x_{n-1}) \dots (\forall x_0)(\exists y)(y^n + x_{n-1} \cdot y^{n-1} + \dots + x_1 \cdot y + x_0) = 0$$

- algebraicky uzavřené těleso: každý polynom nenulového stupně v něm má kořen
- \mathbb{Q} není, $x^2 2$ nemá v \mathbb{Q} kořen
- \mathbb{R} není, $x^2 + 1$ nemá v \mathbb{R} kořen
- lacktriangle $\mathbb C$ je algebraicky uzavřené, ale je nespočetné

Algebraickou uzavřenost vyjádříme sentencemi ψ_n , pro n > 0:

$$(\forall x_{n-1}) \dots (\forall x_0)(\exists y)(y^n + x_{n-1} \cdot y^{n-1} + \dots + x_1 \cdot y + x_0) = 0$$

kde y^k je zkratka za term $y \cdot y \cdot \cdots \cdot y$

- algebraicky uzavřené těleso: každý polynom nenulového stupně v něm má kořen
- \mathbb{Q} není, $x^2 2$ nemá v \mathbb{Q} kořen
- \mathbb{R} není, $x^2 + 1$ nemá v \mathbb{R} kořen
- lacktriangle $\mathbb C$ je algebraicky uzavřené, ale je nespočetné

Algebraickou uzavřenost vyjádříme sentencemi ψ_n , pro n > 0:

$$(\forall x_{n-1}) \dots (\forall x_0)(\exists y)(y^n + x_{n-1} \cdot y^{n-1} + \dots + x_1 \cdot y + x_0) = 0$$

kde y^k je zkratka za term $y \cdot y \cdot \cdots \cdot y$

Důsledek: Existuje spočetné algebraicky uzavřené těleso.

- algebraicky uzavřené těleso: každý polynom nenulového stupně v něm má kořen
- \mathbb{Q} není, $x^2 2$ nemá v \mathbb{Q} kořen
- \mathbb{R} není, $x^2 + 1$ nemá v \mathbb{R} kořen
- lacktriangle $\mathbb C$ je algebraicky uzavřené, ale je nespočetné

Algebraickou uzavřenost vyjádříme sentencemi ψ_n , pro n > 0:

$$(\forall x_{n-1}) \dots (\forall x_0)(\exists y)(y^n + x_{n-1} \cdot y^{n-1} + \dots + x_1 \cdot y + x_0) = 0$$

kde y^k je zkratka za term $y \cdot y \cdot \cdots \cdot y$

Důsledek: Existuje spočetné algebraicky uzavřené těleso.

Důkaz: Dle Důsledku L.S. věty (s rovností) existuje spočetně nekonečná $\mathcal{A} \equiv \mathbb{C}$. Protože \mathbb{C} je těleso a splňuje ψ_n pro všechna n > 0, je i \mathcal{A} algebraicky uzavřené těleso.

9.2 Izomorfismus struktur

Izomorfismus \mathcal{A} a \mathcal{B} (v $L = \langle \mathcal{R}, \mathcal{F} \rangle$) je bijekce $h: A \to B$ splňující:

Izomorfismus A a B (v $L = \langle \mathcal{R}, \mathcal{F} \rangle$) je bijekce $h: A \to B$ splňující:

• pro každý (n-ární) $f \in \mathcal{F}$ a pro všechna $a_i \in A$:

$$h(f^{\mathcal{A}}(a_1,\ldots,a_n))=f^{\mathcal{B}}(h(a_1),\ldots,h(a_n))$$

Izomorfismus A a B (v $L = \langle \mathcal{R}, \mathcal{F} \rangle$) je bijekce $h: A \to B$ splňující:

■ pro každý (*n*-ární) $f \in \mathcal{F}$ a pro všechna $a_i \in A$:

$$h(f^{\mathcal{A}}(a_1,\ldots,a_n))=f^{\mathcal{B}}(h(a_1),\ldots,h(a_n))$$

• speciálně, je-li $c \in \mathcal{F}$ konstantní: $h(c^{\mathcal{A}}) = c^{\mathcal{B}}$

Izomorfismus A a B (v $L = \langle \mathcal{R}, \mathcal{F} \rangle$) je bijekce $h: A \to B$ splňující:

■ pro každý (n-ární) $f \in \mathcal{F}$ a pro všechna $a_i \in A$:

$$h(f^{\mathcal{A}}(a_1,\ldots,a_n))=f^{\mathcal{B}}(h(a_1),\ldots,h(a_n))$$

- speciálně, je-li $c \in \mathcal{F}$ konstantní: $h(c^{\mathcal{A}}) = c^{\mathcal{B}}$
- pro každý (*n*-ární) $R \in \mathcal{R}$ a pro všechna $a_i \in A$:

$$R^{\mathcal{A}}(a_1,\ldots,a_n)$$
 právě když $R^{\mathcal{B}}(h(a_1),\ldots,h(a_n))$

Izomorfismus A a B (v $L = \langle \mathcal{R}, \mathcal{F} \rangle$) je bijekce $h: A \to B$ splňující:

• pro každý (n-ární) $f \in \mathcal{F}$ a pro všechna $a_i \in A$:

$$h(f^{\mathcal{A}}(a_1,\ldots,a_n))=f^{\mathcal{B}}(h(a_1),\ldots,h(a_n))$$

- speciálně, je-li $c \in \mathcal{F}$ konstantní: $h(c^{\mathcal{A}}) = c^{\mathcal{B}}$
- pro každý (*n*-ární) $R \in \mathcal{R}$ a pro všechna $a_i \in A$:

$$R^{\mathcal{A}}(a_1,\ldots,a_n)$$
 právě když $R^{\mathcal{B}}(h(a_1),\ldots,h(a_n))$

Existuje-li, jsou izomorfní ('via h'), $A \simeq B$ (nebo $A \simeq_h B$).

Automorfismus A je izomorfismus A a A.

Izomorfismus \mathcal{A} a \mathcal{B} (v $L = \langle \mathcal{R}, \mathcal{F} \rangle$) je bijekce $h: A \to B$ splňující:

■ pro každý (n-ární) $f \in \mathcal{F}$ a pro všechna $a_i \in A$:

$$h(f^{\mathcal{A}}(a_1,\ldots,a_n))=f^{\mathcal{B}}(h(a_1),\ldots,h(a_n))$$

- speciálně, je-li $c \in \mathcal{F}$ konstantní: $h(c^{\mathcal{A}}) = c^{\mathcal{B}}$
- pro každý (*n*-ární) $R \in \mathcal{R}$ a pro všechna $a_i \in A$:

$$R^{\mathcal{A}}(a_1,\ldots,a_n)$$
 právě když $R^{\mathcal{B}}(h(a_1),\ldots,h(a_n))$

Existuje-li, jsou izomorfní ('via h'), $A \simeq B$ (nebo $A \simeq_h B$). Automorfismus A je izomorfismus A a A.

• tj. liší se jen 'pojmenováním prvků'

Izomorfismus \mathcal{A} a \mathcal{B} (v $L = \langle \mathcal{R}, \mathcal{F} \rangle$) je bijekce $h: A \to B$ splňující:

■ pro každý (n-ární) $f \in \mathcal{F}$ a pro všechna $a_i \in A$:

$$h(f^{\mathcal{A}}(a_1,\ldots,a_n))=f^{\mathcal{B}}(h(a_1),\ldots,h(a_n))$$

- speciálně, je-li $c \in \mathcal{F}$ konstantní: $h(c^{\mathcal{A}}) = c^{\mathcal{B}}$
- pro každý (*n*-ární) $R \in \mathcal{R}$ a pro všechna $a_i \in A$:

$$R^{\mathcal{A}}(a_1,\ldots,a_n)$$
 právě když $R^{\mathcal{B}}(h(a_1),\ldots,h(a_n))$

Existuje-li, jsou izomorfní ('via h'), $A \simeq B$ (nebo $A \simeq_h B$). Automorfismus A je izomorfismus A a A.

- tj. liší se jen 'pojmenováním prvků'
- relace 'být izomorfní' je ekvivalence

Izomorfismus A a B (v $L = \langle \mathcal{R}, \mathcal{F} \rangle$) je bijekce $h: A \to B$ splňující:

• pro každý (n-ární) $f \in \mathcal{F}$ a pro všechna $a_i \in A$:

$$h(f^{\mathcal{A}}(a_1,\ldots,a_n))=f^{\mathcal{B}}(h(a_1),\ldots,h(a_n))$$

- speciálně, je-li $c \in \mathcal{F}$ konstantní: $h(c^{\mathcal{A}}) = c^{\mathcal{B}}$
- pro každý (*n*-ární) $R \in \mathcal{R}$ a pro všechna $a_i \in A$:

$$R^{\mathcal{A}}(a_1,\ldots,a_n)$$
 právě když $R^{\mathcal{B}}(h(a_1),\ldots,h(a_n))$

Existuje-li, jsou izomorfní ('via h'), $A \simeq B$ (nebo $A \simeq_h B$). Automorfismus A je izomorfismus A a A.

- tj. liší se jen 'pojmenováním prvků'
- relace 'být izomorfní' je ekvivalence
- např. potenční algebra $\underline{\mathcal{P}(X)} = \langle \mathcal{P}(X), -, \cap, \cup, \emptyset, X \rangle$, |X| = n,

Izomorfismus \mathcal{A} a \mathcal{B} (v $L = \langle \mathcal{R}, \mathcal{F} \rangle$) je bijekce $h \colon A \to B$ splňující:

• pro každý (n-ární) $f \in \mathcal{F}$ a pro všechna $a_i \in A$:

$$h(f^{\mathcal{A}}(a_1,\ldots,a_n))=f^{\mathcal{B}}(h(a_1),\ldots,h(a_n))$$

- speciálně, je-li $c \in \mathcal{F}$ konstantní: $h(c^{\mathcal{A}}) = c^{\mathcal{B}}$
- pro každý (*n*-ární) $R \in \mathcal{R}$ a pro všechna $a_i \in A$:

$$R^{\mathcal{A}}(a_1,\ldots,a_n)$$
 právě když $R^{\mathcal{B}}(h(a_1),\ldots,h(a_n))$

Existuje-li, jsou izomorfní ('via h'), $A \simeq B$ (nebo $A \simeq_h B$).

Automorfismus A je izomorfismus A a A.

- tj. liší se jen 'pojmenováním prvků'
- relace 'být izomorfní' je ekvivalence
- např. potenční algebra $\underline{\mathcal{P}(X)} = \langle \mathcal{P}(X), -, \cap, \cup, \emptyset, X \rangle$, |X| = n, je izomorfní s $\underline{2^n} = \langle \{0, 1\}^n, -_n, \wedge_n, \vee_n, (0, \dots, 0), (1, \dots, 1) \rangle$ (operace po složkách) via $\underline{h}(A) = \chi_A$ (charakt. vektor $A \subseteq X$)

Tvrzení: Bijekce $h: A \rightarrow B$ je izomorfismus \mathcal{A} a \mathcal{B} , právě když:

Tvrzení: Bijekce $h: A \rightarrow B$ je izomorfismus \mathcal{A} a \mathcal{B} , právě když:

(i) pro každý term
$$t$$
 a e : Var \rightarrow A : $h(t^{\mathcal{A}}[e]) = t^{\mathcal{B}}[e \circ h]$

Tvrzení: Bijekce $h: A \rightarrow B$ je izomorfismus \mathcal{A} a \mathcal{B} , právě když:

- (i) pro každý term t a e: Var \rightarrow A: $h(t^{\mathcal{A}}[e]) = t^{\mathcal{B}}[e \circ h]$
- (ii) pro každou φ a e: Var \to A: $\mathcal{A} \models \varphi[e] \Leftrightarrow \mathcal{B} \models \varphi[e \circ h]$

Tvrzení: Bijekce $h: A \rightarrow B$ je izomorfismus A a B, právě když:

- (i) pro každý term t a e: Var \rightarrow A: $h(t^{\mathcal{A}}[e]) = t^{\mathcal{B}}[e \circ h]$
- (ii) pro každou φ a e : Var \to A: $\mathcal{A} \models \varphi[e] \Leftrightarrow \mathcal{B} \models \varphi[e \circ h]$

Důkaz:

Tvrzení: Bijekce $h: A \rightarrow B$ je izomorfismus A a B, právě když:

- (i) pro každý term t a e: Var \rightarrow A: $h(t^{\mathcal{A}}[e]) = t^{\mathcal{B}}[e \circ h]$
- (ii) pro každou φ a e: Var \to A: $\mathcal{A} \models \varphi[e] \Leftrightarrow \mathcal{B} \models \varphi[e \circ h]$

Důkaz: ⇒ snadno indukcí podle struktury termu resp. formule

Tvrzení: Bijekce $h: A \rightarrow B$ je izomorfismus \mathcal{A} a \mathcal{B} , právě když:

- (i) pro každý term t a e: Var \rightarrow A: $h(t^{\mathcal{A}}[e]) = t^{\mathcal{B}}[e \circ h]$
- (ii) pro každou φ a e: Var \to A: $\mathcal{A} \models \varphi[e] \Leftrightarrow \mathcal{B} \models \varphi[e \circ h]$

Důkaz: ⇒ snadno indukcí podle struktury termu resp. formule

 \leftarrow je-li h bijekce splňující (i)&(ii), dosazení $t = f(x_1, ..., x_n)$ resp. $\varphi = R(x_1, ..., x_n)$ dává vlastnosti z definice izomorfismu

Tvrzení: Bijekce $h: A \rightarrow B$ je izomorfismus A a B, právě když:

- (i) pro každý term t a e: Var \rightarrow A: $h(t^{\mathcal{A}}[e]) = t^{\mathcal{B}}[e \circ h]$
- (ii) pro každou φ a e : Var \to A: $\mathcal{A} \models \varphi[e] \Leftrightarrow \mathcal{B} \models \varphi[e \circ h]$

Důkaz: ⇒ snadno indukcí podle struktury termu resp. formule

 \leftarrow je-li h bijekce splňující (i)&(ii), dosazení $t = f(x_1, ..., x_n)$ resp. $\varphi = R(x_1, ..., x_n)$ dává vlastnosti z definice izomorfismu

Důsledek: $A \simeq B \Rightarrow A \equiv B$.

Tvrzení: Bijekce $h: A \rightarrow B$ je izomorfismus \mathcal{A} a \mathcal{B} , právě když:

- (i) pro každý term t a e: Var \rightarrow A: $h(t^{\mathcal{A}}[e]) = t^{\mathcal{B}}[e \circ h]$
- (ii) pro každou φ a e: Var \to A: $\mathcal{A} \models \varphi[e] \Leftrightarrow \mathcal{B} \models \varphi[e \circ h]$

Důkaz: ⇒ snadno indukcí podle struktury termu resp. formule

 \leftarrow je-li h bijekce splňující (i)&(ii), dosazení $t = f(x_1, ..., x_n)$ resp. $\varphi = R(x_1, ..., x_n)$ dává vlastnosti z definice izomorfismu

Důsledek: $A \simeq B \Rightarrow A \equiv B$.

Důkaz: pro každou sentenci φ máme z (ii) $\mathcal{A} \models \varphi \Leftrightarrow \mathcal{B} \models \varphi$

Tvrzení: Bijekce $h: A \to B$ je izomorfismus \mathcal{A} a \mathcal{B} , právě když:

- (i) pro každý term t a e: Var \rightarrow A: $h(t^{\mathcal{A}}[e]) = t^{\mathcal{B}}[e \circ h]$
- (ii) pro každou φ a e : Var \to A: $\mathcal{A} \models \varphi[e] \Leftrightarrow \mathcal{B} \models \varphi[e \circ h]$

Důkaz: ⇒ snadno indukcí podle struktury termu resp. formule

 \leftarrow je-li h bijekce splňující (i)&(ii), dosazení $t = f(x_1, ..., x_n)$ resp. $\varphi = R(x_1, ..., x_n)$ dává vlastnosti z definice izomorfismu

Důsledek: $A \simeq B \Rightarrow A \equiv B$.

Důkaz: pro každou sentenci φ máme z (ii) $\mathcal{A} \models \varphi \Leftrightarrow \mathcal{B} \models \varphi$

Naopak obecně ne, $\langle \mathbb{Q}, \leq \rangle \equiv \langle \mathbb{R}, \leq \rangle$, $\langle \mathbb{Q}, \leq \rangle \not\simeq \langle \mathbb{R}, \leq \rangle$

Tvrzení: Bijekce $h: A \to B$ je izomorfismus \mathcal{A} a \mathcal{B} , právě když:

- (i) pro každý term t a e: Var \rightarrow A: $h(t^{\mathcal{A}}[e]) = t^{\mathcal{B}}[e \circ h]$
- (ii) pro každou φ a e : Var \to A: $\mathcal{A} \models \varphi[e] \Leftrightarrow \mathcal{B} \models \varphi[e \circ h]$

Důkaz: ⇒ snadno indukcí podle struktury termu resp. formule

 \leftarrow je-li h bijekce splňující (i)&(ii), dosazení $t = f(x_1, ..., x_n)$ resp. $\varphi = R(x_1, ..., x_n)$ dává vlastnosti z definice izomorfismu

Důsledek: $A \simeq B \Rightarrow A \equiv B$.

Důkaz: pro každou sentenci φ máme z (ii) $\mathcal{A} \models \varphi \Leftrightarrow \mathcal{B} \models \varphi$

Naopak obecně ne, $\langle \mathbb{Q}, \leq \rangle \equiv \langle \mathbb{R}, \leq \rangle$, $\langle \mathbb{Q}, \leq \rangle \not\simeq \langle \mathbb{R}, \leq \rangle$ Platí ale:

Tvrzení: Bijekce $h: A \to B$ je izomorfismus \mathcal{A} a \mathcal{B} , právě když:

- (i) pro každý term t a e: Var \rightarrow A: $h(t^{\mathcal{A}}[e]) = t^{\mathcal{B}}[e \circ h]$
- (ii) pro každou φ a e: Var \to A: $\mathcal{A} \models \varphi[e] \Leftrightarrow \mathcal{B} \models \varphi[e \circ h]$

Důkaz: ⇒ snadno indukcí podle struktury termu resp. formule

 \leftarrow je-li h bijekce splňující (i)&(ii), dosazení $t = f(x_1, ..., x_n)$ resp. $\varphi = R(x_1, ..., x_n)$ dává vlastnosti z definice izomorfismu

Důsledek: $A \simeq B \Rightarrow A \equiv B$.

Důkaz: pro každou sentenci φ máme z (ii) $\mathcal{A} \models \varphi \Leftrightarrow \mathcal{B} \models \varphi$

Naopak obecně ne, $\langle \mathbb{Q}, \leq \rangle \equiv \langle \mathbb{R}, \leq \rangle$, $\langle \mathbb{Q}, \leq \rangle \not\simeq \langle \mathbb{R}, \leq \rangle$ Platí ale:

Tvrzení: Jsou-li \mathcal{A},\mathcal{B} konečné v jazyce s rovností, potom

$$\mathcal{A} \simeq \mathcal{B} \iff \mathcal{A} \equiv \mathcal{B}$$

Tvrzení: Bijekce $h: A \rightarrow B$ je izomorfismus A a B, právě když:

- (i) pro každý term t a e: Var $\to A$: $h(t^{\mathcal{A}}[e]) = t^{\mathcal{B}}[e \circ h]$
- (ii) pro každou φ a e: Var \to A: $\mathcal{A} \models \varphi[e] \Leftrightarrow \mathcal{B} \models \varphi[e \circ h]$

Důkaz: ⇒ snadno indukcí podle struktury termu resp. formule

$$\leftarrow$$
 je-li h bijekce splňující (i)&(ii), dosazení $t = f(x_1, ..., x_n)$ resp. $\varphi = R(x_1, ..., x_n)$ dává vlastnosti z definice izomorfismu

Důsledek: $A \simeq B \Rightarrow A \equiv B$.

Důkaz: pro každou sentenci
$$\varphi$$
 máme z (ii) $\mathcal{A} \models \varphi \Leftrightarrow \mathcal{B} \models \varphi$

Naopak obecně ne, $\langle \mathbb{Q}, \leq \rangle \equiv \langle \mathbb{R}, \leq \rangle$, $\langle \mathbb{Q}, \leq \rangle \not\simeq \langle \mathbb{R}, \leq \rangle$ Platí ale:

Tvrzení: Jsou-li \mathcal{A}, \mathcal{B} konečné v jazyce s rovností, potom

$$A \simeq B \Leftrightarrow A \equiv B$$

Důsledek Pokud má kompletní teorie v jazyce s rovností konečný model, potom jsou všechny její modely izomorfní.

Díky = vyjádříme "existuje právě n prvků", z toho plyne |A| = |B|.

Díky = vyjádříme "existuje právě n prvků", z toho plyne |A| = |B|. Buď \mathcal{A}' expanze \mathcal{A} o jména prvků, v jazyce $L' = L \cup \{c_a \mid a \in A\}$. Ukážeme: \mathcal{B} | ze expandovat na L'-strukturu \mathcal{B}' že $\mathcal{A}' \equiv \mathcal{B}'$.

Díky = vyjádříme "existuje právě n prvků", z toho plyne |A| = |B|. Buď \mathcal{A}' expanze \mathcal{A} o jména prvků, v jazyce $L' = L \cup \{c_a \mid a \in A\}$. Ukážeme: \mathcal{B} lze expandovat na L'-strukturu \mathcal{B}' že $\mathcal{A}' \equiv \mathcal{B}'$. Potom je $h(a) = c_a^{\mathcal{B}'}$ izomorfismus \mathcal{A}' a \mathcal{B}' , i pro L-redukty $\mathcal{A} \simeq \mathcal{B}$.

Díky = vyjádříme "existuje právě n prvků", z toho plyne |A| = |B|. Buď \mathcal{A}' expanze \mathcal{A} o jména prvků, v jazyce $L' = L \cup \{c_a \mid a \in A\}$. Ukážeme: \mathcal{B} lze expandovat na L'-strukturu \mathcal{B}' že $\mathcal{A}' \equiv \mathcal{B}'$. Potom je $h(a) = c_a^{\mathcal{B}'}$ izomorfismus \mathcal{A}' a \mathcal{B}' , i pro L-redukty $\mathcal{A} \simeq \mathcal{B}$.

Stačí ukázat, že pro $c_a^{\mathcal{A}'}=a\in A$ existuje $b\in B$ tak, že expanze o interpretaci konstantního symbolu c_a splňují $\langle \mathcal{A},a\rangle\equiv\langle \mathcal{B},b\rangle$.

Díky = vyjádříme "existuje právě n prvků", z toho plyne |A| = |B|. Buď \mathcal{A}' expanze \mathcal{A} o jména prvků, v jazyce $L' = L \cup \{c_a \mid a \in A\}$. Ukážeme: \mathcal{B} lze expandovat na L'-strukturu \mathcal{B}' že $\mathcal{A}' \equiv \mathcal{B}'$. Potom je $h(a) = c_a^{\mathcal{B}'}$ izomorfismus \mathcal{A}' a \mathcal{B}' , i pro L-redukty $\mathcal{A} \simeq \mathcal{B}$.

Stačí ukázat, že pro $c_a^{\mathcal{A}'} = a \in A$ existuje $b \in B$ tak, že expanze o interpretaci konstantního symbolu c_a splňují $\langle \mathcal{A}, a \rangle \equiv \langle \mathcal{B}, b \rangle$.

Buď Ω množina 'vlastností prvku a',

Díky = vyjádříme "existuje právě n prvků", z toho plyne |A| = |B|. Buď \mathcal{A}' expanze \mathcal{A} o jména prvků, v jazyce $L' = L \cup \{c_a \mid a \in A\}$. Ukážeme: \mathcal{B} lze expandovat na L'-strukturu \mathcal{B}' že $\mathcal{A}' \equiv \mathcal{B}'$. Potom je $h(a) = c_a^{\mathcal{B}'}$ izomorfismus \mathcal{A}' a \mathcal{B}' , i pro L-redukty $\mathcal{A} \simeq \mathcal{B}$.

Stačí ukázat, že pro $c_a^{\mathcal{A}'}=a\in A$ existuje $b\in B$ tak, že expanze o interpretaci konstantního symbolu c_a splňují $\langle \mathcal{A},a\rangle\equiv\langle \mathcal{B},b\rangle$.

Buď Ω množina 'vlastností prvku a', tj. formulí $\varphi(x)$ splňujících $\langle \mathcal{A}, a \rangle \models \varphi(x/c_a)$, neboli $\mathcal{A} \models \varphi[e(x/a)]$.

Díky = vyjádříme "existuje právě n prvků", z toho plyne |A| = |B|. Buď \mathcal{A}' expanze \mathcal{A} o jména prvků, v jazyce $L' = L \cup \{c_a \mid a \in A\}$. Ukážeme: \mathcal{B} lze expandovat na L'-strukturu \mathcal{B}' že $\mathcal{A}' \equiv \mathcal{B}'$. Potom je $h(a) = c_a^{\mathcal{B}'}$ izomorfismus \mathcal{A}' a \mathcal{B}' , i pro L-redukty $\mathcal{A} \simeq \mathcal{B}$.

Stačí ukázat, že pro $c_a^{A'}=a\in A$ existuje $b\in B$ tak, že expanze o interpretaci konstantního symbolu c_a splňují $\langle \mathcal{A},a\rangle\equiv\langle \mathcal{B},b\rangle$.

Buď Ω množina 'vlastností prvku a', tj. formulí $\varphi(x)$ splňujících $\langle \mathcal{A}, a \rangle \models \varphi(x/c_a)$, neboli $\mathcal{A} \models \varphi[e(x/a)]$. Protože je A konečná, existuje konečně mnoho $\varphi_1(x), \ldots, \varphi_m(x)$ tak, že pro každou $\varphi \in \Omega$ existuje i takové, že $\mathcal{A} \models \varphi \leftrightarrow \varphi_i$.

Díky = vyjádříme "existuje právě n prvků", z toho plyne |A| = |B|. Buď \mathcal{A}' expanze \mathcal{A} o jména prvků, v jazyce $L' = L \cup \{c_a \mid a \in A\}$. Ukážeme: \mathcal{B} lze expandovat na L'-strukturu \mathcal{B}' že $\mathcal{A}' \equiv \mathcal{B}'$. Potom je $h(a) = c_a^{\mathcal{B}'}$ izomorfismus \mathcal{A}' a \mathcal{B}' , i pro L-redukty $\mathcal{A} \simeq \mathcal{B}$.

Stačí ukázat, že pro $c_a^{A'}=a\in A$ existuje $b\in B$ tak, že expanze o interpretaci konstantního symbolu c_a splňují $\langle \mathcal{A},a\rangle\equiv\langle \mathcal{B},b\rangle$.

Buď Ω množina 'vlastností prvku a', tj. formulí $\varphi(x)$ splňujících $\langle \mathcal{A}, a \rangle \models \varphi(x/c_a)$, neboli $\mathcal{A} \models \varphi[e(x/a)]$. Protože je A konečná, existuje konečně mnoho $\varphi_1(x), \ldots, \varphi_m(x)$ tak, že pro každou $\varphi \in \Omega$ existuje i takové, že $\mathcal{A} \models \varphi \leftrightarrow \varphi_i$. Potom i $\mathcal{B} \models \varphi \leftrightarrow \varphi_i$.

Díky = vyjádříme "existuje právě n prvků", z toho plyne |A| = |B|. Buď \mathcal{A}' expanze \mathcal{A} o jména prvků, v jazyce $L' = L \cup \{c_a \mid a \in A\}$. Ukážeme: \mathcal{B} lze expandovat na L'-strukturu \mathcal{B}' že $\mathcal{A}' \equiv \mathcal{B}'$. Potom je $h(a) = c_a^{\mathcal{B}'}$ izomorfismus \mathcal{A}' a \mathcal{B}' , i pro L-redukty $\mathcal{A} \simeq \mathcal{B}$.

Stačí ukázat, že pro $c_a^{\mathcal{A}'} = a \in A$ existuje $b \in B$ tak, že expanze o interpretaci konstantního symbolu c_a splňují $\langle \mathcal{A}, a \rangle \equiv \langle \mathcal{B}, b \rangle$.

Buď Ω množina 'vlastností prvku a', tj. formulí $\varphi(x)$ splňujících $\langle \mathcal{A}, a \rangle \models \varphi(x/c_a)$, neboli $\mathcal{A} \models \varphi[e(x/a)]$. Protože je A konečná, existuje konečně mnoho $\varphi_1(x), \ldots, \varphi_m(x)$ tak, že pro každou $\varphi \in \Omega$ existuje i takové, že $\mathcal{A} \models \varphi \leftrightarrow \varphi_i$. Potom i $\mathcal{B} \models \varphi \leftrightarrow \varphi_i$.

Protože v \mathcal{A} platí sentence $(\exists x) \bigwedge_{i=1}^m \varphi_i$ (je splněna díky $a \in A$) a $\mathcal{B} \equiv \mathcal{A}$, máme i $\mathcal{B} \models (\exists x) \bigwedge_{i=1}^m \varphi_i$.

Díky = vyjádříme "existuje právě n prvků", z toho plyne |A| = |B|. Buď \mathcal{A}' expanze \mathcal{A} o jména prvků, v jazyce $L' = L \cup \{c_a \mid a \in A\}$. Ukážeme: \mathcal{B} lze expandovat na L'-strukturu \mathcal{B}' že $\mathcal{A}' \equiv \mathcal{B}'$. Potom je $h(a) = c_a^{\mathcal{B}'}$ izomorfismus \mathcal{A}' a \mathcal{B}' , i pro L-redukty $\mathcal{A} \simeq \mathcal{B}$.

Stačí ukázat, že pro $c_a^{A'}=a\in A$ existuje $b\in B$ tak, že expanze o interpretaci konstantního symbolu c_a splňují $\langle \mathcal{A},a\rangle\equiv\langle \mathcal{B},b\rangle$.

Buď Ω množina 'vlastností prvku a', tj. formulí $\varphi(x)$ splňujících $\langle \mathcal{A}, a \rangle \models \varphi(x/c_a)$, neboli $\mathcal{A} \models \varphi[e(x/a)]$. Protože je A konečná, existuje konečně mnoho $\varphi_1(x), \ldots, \varphi_m(x)$ tak, že pro každou $\varphi \in \Omega$ existuje i takové, že $\mathcal{A} \models \varphi \leftrightarrow \varphi_i$. Potom i $\mathcal{B} \models \varphi \leftrightarrow \varphi_i$.

Protože v \mathcal{A} platí sentence $(\exists x) \bigwedge_{i=1}^m \varphi_i$ (je splněna díky $a \in A$) a $\mathcal{B} \equiv \mathcal{A}$, máme i $\mathcal{B} \models (\exists x) \bigwedge_{i=1}^m \varphi_i$. Neboli existuje $b \in \mathcal{B}$ takové, že $\mathcal{B} \models \bigwedge_{i=1}^m \varphi_i [e(x/b)]$.

Díky = vyjádříme "existuje právě n prvků", z toho plyne |A| = |B|. Buď \mathcal{A}' expanze \mathcal{A} o jména prvků, v jazyce $L' = L \cup \{c_a \mid a \in A\}$. Ukážeme: \mathcal{B} lze expandovat na L'-strukturu \mathcal{B}' že $\mathcal{A}' \equiv \mathcal{B}'$. Potom je $h(a) = c_a^{\mathcal{B}'}$ izomorfismus \mathcal{A}' a \mathcal{B}' , i pro L-redukty $\mathcal{A} \simeq \mathcal{B}$.

Stačí ukázat, že pro $c_a^{A'}=a\in A$ existuje $b\in B$ tak, že expanze o interpretaci konstantního symbolu c_a splňují $\langle \mathcal{A},a\rangle\equiv\langle \mathcal{B},b\rangle$.

Buď Ω množina 'vlastností prvku a', tj. formulí $\varphi(x)$ splňujících $\langle \mathcal{A}, a \rangle \models \varphi(x/c_a)$, neboli $\mathcal{A} \models \varphi[e(x/a)]$. Protože je A konečná, existuje konečně mnoho $\varphi_1(x), \ldots, \varphi_m(x)$ tak, že pro každou $\varphi \in \Omega$ existuje i takové, že $\mathcal{A} \models \varphi \leftrightarrow \varphi_i$. Potom i $\mathcal{B} \models \varphi \leftrightarrow \varphi_i$.

Protože v \mathcal{A} platí sentence $(\exists x) \bigwedge_{i=1}^m \varphi_i$ (je splněna díky $a \in A$) a $\mathcal{B} \equiv \mathcal{A}$, máme i $\mathcal{B} \models (\exists x) \bigwedge_{i=1}^m \varphi_i$. Neboli existuje $b \in \mathcal{B}$ takové, že $\mathcal{B} \models \bigwedge_{i=1}^m \varphi_i [e(x/b)]$. Tedy pro každou $\varphi \in \Omega$ platí $\mathcal{B} \models \varphi[e(x/b)]$, tj. $\langle \mathcal{B}, b \rangle \models \varphi(x/c_a)$, z toho $\langle \mathcal{A}, a \rangle \equiv \langle \mathcal{B}, b \rangle$.

definovatelné množiny jsou invariantní na automorfismy (např. automorfismus grafu musí zobrazit trojúhelník na trojúhelník):

definovatelné množiny jsou invariantní na automorfismy (např. automorfismus grafu musí zobrazit trojúhelník na trojúhelník):

_	Tvrzen				-		
- 1	W	P	7	Δ	n	п	1
	v	ш	_	·		ш	9

definovatelné množiny jsou invariantní na automorfismy (např. automorfismus grafu musí zobrazit trojúhelník na trojúhelník):

Tvrzení: Je-li $D \subseteq A^n$ definovatelná v \mathcal{A} , potom pro každý automorfismus $h \in \operatorname{Aut}(\mathcal{A})$ platí h[D] = D (kde h[D] značí $\{(h(\overline{a}) \mid \overline{a} \in D\})$.

definovatelné množiny jsou invariantní na automorfismy (např. automorfismus grafu musí zobrazit trojúhelník na trojúhelník):

Tvrzení: Je-li $D \subseteq A^n$ definovatelná v \mathcal{A} , potom pro každý automorfismus $h \in \operatorname{Aut}(\mathcal{A})$ platí h[D] = D (kde h[D] značí $\{(h(\overline{a}) \mid \overline{a} \in D\})$. Je-li definovatelná s parametry \overline{b} , platí to pro automorfismy identické na \overline{b} (tj. $h(\overline{b}) = \overline{b}$ neboli $h(b_i) = b_i$ pro všechna i).

definovatelné množiny jsou invariantní na automorfismy (např. automorfismus grafu musí zobrazit trojúhelník na trojúhelník):

Tvrzení: Je-li $D \subseteq A^n$ definovatelná v \mathcal{A} , potom pro každý automorfismus $h \in \operatorname{Aut}(\mathcal{A})$ platí h[D] = D (kde h[D] značí $\{(h(\overline{a}) \mid \overline{a} \in D\})$. Je-li definovatelná s parametry \overline{b} , platí to pro automorfismy identické na \overline{b} (tj. $h(\overline{b}) = \overline{b}$ neboli $h(b_i) = b_i$ pro všechna i).

Důkaz: Ukážeme jen verzi s parametry. Nechť $D=\varphi^{\mathcal{A},\bar{b}}(\overline{x},\overline{y})$. Potom pro každé $\overline{a}\in\mathcal{A}^n$ platí následující ekvivalence:

Definovatelnost a automorfismy

definovatelné množiny jsou invariantní na automorfismy (např. automorfismus grafu musí zobrazit trojúhelník na trojúhelník):

Tvrzení: Je-li $D \subseteq A^n$ definovatelná v \mathcal{A} , potom pro každý automorfismus $h \in \operatorname{Aut}(\mathcal{A})$ platí h[D] = D (kde h[D] značí $\{(h(\overline{a}) \mid \overline{a} \in D\})$. Je-li definovatelná s parametry \overline{b} , platí to pro automorfismy identické na \overline{b} (tj. $h(\overline{b}) = \overline{b}$ neboli $h(b_i) = b_i$ pro všechna i).

Důkaz: Ukážeme jen verzi s parametry. Nechť $D=\varphi^{\mathcal{A},\bar{b}}(\overline{x},\overline{y})$. Potom pro každé $\overline{a}\in\mathcal{A}^n$ platí následující ekvivalence:

$$\begin{split} \overline{a} \in D &\Leftrightarrow \mathcal{A} \models \varphi[e(\overline{x}/\overline{a}, \overline{y}/\overline{b})] \\ &\Leftrightarrow \mathcal{A} \models \varphi[(e \circ h)(\overline{x}/\overline{a}, \overline{y}/\overline{b})] \\ &\Leftrightarrow \mathcal{A} \models \varphi[e(\overline{x}/h(\overline{a}), \overline{y}/h(\overline{b}))] \\ &\Leftrightarrow \mathcal{A} \models \varphi[e(\overline{x}/h(\overline{a}), \overline{y}/\overline{b})] \\ &\Leftrightarrow h(\overline{a}) \in D. \end{split}$$

Množiny definovatelné s parametrem 0, $\mathrm{Df}^1(\mathcal{G},\{0\})$? Jediný netriviální automorfismus zachovávající 0: $h(i) = (5-i) \bmod 5$, orbity $\{0\}$, $\{1,4\}$, a $\{2,3\}$. Tyto množiny jsou definovatelné:

Množiny definovatelné s parametrem 0, $\mathrm{Df}^1(\mathcal{G},\{0\})$? Jediný netriviální automorfismus zachovávající 0: $h(i) = (5-i) \bmod 5$, orbity $\{0\}$, $\{1,4\}$, a $\{2,3\}$. Tyto množiny jsou definovatelné:

Množiny definovatelné s parametrem 0, $\mathrm{Df}^1(\mathcal{G},\{0\})$? Jediný netriviální automorfismus zachovávající 0: $h(i) = (5-i) \bmod 5$, orbity $\{0\}$, $\{1,4\}$, a $\{2,3\}$. Tyto množiny jsou definovatelné:

• $\{1,4\}$ lze definovat pomocí E(x,y)

Množiny definovatelné s parametrem 0, $\mathrm{Df}^1(\mathcal{G},\{0\})$? Jediný netriviální automorfismus zachovávající 0: $h(i) = (5-i) \bmod 5$, orbity $\{0\}$, $\{1,4\}$, a $\{2,3\}$. Tyto množiny jsou definovatelné:

- $\{1,4\}$ lze definovat pomocí E(x,y)
- $\{2,3\}$ formulí $\neg E(x,y) \land \neg x = y$

Množiny definovatelné s parametrem 0, $\mathrm{Df}^1(\mathcal{G},\{0\})$? Jediný netriviální automorfismus zachovávající 0: $h(i) = (5-i) \bmod 5$, orbity $\{0\}$, $\{1,4\}$, a $\{2,3\}$. Tyto množiny jsou definovatelné:

- $\{0\}$ formulí x = y, tj. $(x = y)^{\mathcal{G}, \{0\}} = \{0\}$
- $\{1,4\}$ lze definovat pomocí E(x,y)
- $\{2,3\}$ formulí $\neg E(x,y) \land \neg x = y$

 $\mathrm{Df^1}(\mathcal{G},\{0\})$ je podalgebra $\underline{\mathcal{P}(V(\mathcal{G}))}$, tedy uzavřená na doplněk, sjednocení, průnik, obsahuje \emptyset a $V(\mathcal{G})$. Podalgebra generovaná $\{\{0\},\{1,4\},\{2,3\}\}$ už ale obsahuje všechny podmnožiny zachovávající automorfismus h. Dostáváme:

Množiny definovatelné s parametrem 0, $\mathrm{Df}^1(\mathcal{G},\{0\})$? Jediný netriviální automorfismus zachovávající 0: $h(i) = (5-i) \bmod 5$, orbity $\{0\}$, $\{1,4\}$, a $\{2,3\}$. Tyto množiny jsou definovatelné:

- $\{0\}$ formulí x = y, tj. $(x = y)^{\mathcal{G}, \{0\}} = \{0\}$
- $\{1,4\}$ lze definovat pomocí E(x,y)
- $\{2,3\}$ formulí $\neg E(x,y) \land \neg x = y$

 $\mathrm{Df^1}(\mathcal{G},\{0\})$ je podalgebra $\underline{\mathcal{P}(V(\mathcal{G}))}$, tedy uzavřená na doplněk, sjednocení, průnik, obsahuje \emptyset a $V(\mathcal{G})$. Podalgebra generovaná $\{\{0\},\{1,4\},\{2,3\}\}$ už ale obsahuje všechny podmnožiny zachovávající automorfismus h. Dostáváme:

$$\begin{split} \mathrm{Df}^1(\mathcal{G},\{0\}) &= \{\emptyset,\{0\},\{1,4\},\{2,3\},\{0,1,4\},\{0,2,3\},\\ & \{1,4,2,3\},\{0,1,2,3,4\}\} \end{split}$$

Izomorfní spektrum T je počet modelů T kardinality κ až na \simeq . T je κ -kategorická pokud $I(\kappa,T)=1$, ω -kategorická má-li jediný spočetně nekonečný model až na izomorfismus.

Izomorfní spektrum T je počet modelů T kardinality κ až na \simeq . T je κ -kategorická pokud $I(\kappa,T)=1$, ω -kategorická má-li jediný spočetně nekonečný model až na izomorfismus.

Tvrzení: Teorie DeLO je ω -kategorická.

Izomorfní spektrum T je počet modelů T kardinality κ až na \simeq . T je κ -kategorická pokud $I(\kappa,T)=1$, ω -kategorická má-li jediný spočetně nekonečný model až na izomorfismus.

Tvrzení: Teorie DeLO je ω -kategorická.

Důkaz: Buďte \mathcal{A}, \mathcal{B} spočetně nekonečné modely, $A = \{a_i \mid i \in \mathbb{N}\}$, $B = \{b_i \mid i \in \mathbb{N}\}$. Z hustoty najdeme indukcí $h_0 \subseteq h_1 \subseteq h_2 \subseteq \ldots$ prosté parciální fce z A do B zach. usp., $\{a_0, \ldots, a_{n-1}\} \subseteq \operatorname{dom} h_n$, $\{b_0, \ldots, b_{n-1}\} \subseteq \operatorname{rng} h_n$. Potom $\mathcal{A} \simeq \mathcal{B}$ via $h = \bigcup_{n \in \mathbb{N}} h_n$.

Izomorfní spektrum T je počet modelů T kardinality κ až na \simeq . T je κ -kategorická pokud $I(\kappa,T)=1$, ω -kategorická má-li jediný spočetně nekonečný model až na izomorfismus.

Tvrzení: Teorie DeLO je ω -kategorická.

Důkaz: Buďte \mathcal{A}, \mathcal{B} spočetně nekonečné modely, $A = \{a_i \mid i \in \mathbb{N}\}$, $B = \{b_i \mid i \in \mathbb{N}\}$. Z hustoty najdeme indukcí $h_0 \subseteq h_1 \subseteq h_2 \subseteq \ldots$ prosté parciální fce z A do B zach. usp., $\{a_0, \ldots, a_{n-1}\} \subseteq \operatorname{dom} h_n$, $\{b_0, \ldots, b_{n-1}\} \subseteq \operatorname{rng} h_n$. Potom $A \simeq \mathcal{B}$ via $h = \bigcup_{n \in \mathbb{N}} h_n$.

Důsledek: Izomorfní spektrum teorie DeLO*:

- $I(\kappa, DeLO^*) = 0$ pro $\kappa \in \mathbb{N}$
- $I(\omega, DeLO^*) = 4$

Izomorfní spektrum T je počet modelů T kardinality κ až na \simeq . T je κ -kategorická pokud $I(\kappa,T)=1$, ω -kategorická má-li jediný spočetně nekonečný model až na izomorfismus.

Tvrzení: Teorie DeLO je ω -kategorická.

Důkaz: Buďte \mathcal{A}, \mathcal{B} spočetně nekonečné modely, $A = \{a_i \mid i \in \mathbb{N}\}$, $B = \{b_i \mid i \in \mathbb{N}\}$. Z hustoty najdeme indukcí $h_0 \subseteq h_1 \subseteq h_2 \subseteq \ldots$ prosté parciální fce z A do B zach. usp., $\{a_0, \ldots, a_{n-1}\} \subseteq \operatorname{dom} h_n$, $\{b_0, \ldots, b_{n-1}\} \subseteq \operatorname{rng} h_n$. Potom $\mathcal{A} \simeq \mathcal{B}$ via $h = \bigcup_{n \in \mathbb{N}} h_n$.

Důsledek: Izomorfní spektrum teorie DeLO*:

- $I(\kappa, DeLO^*) = 0$ pro $\kappa \in \mathbb{N}$
- $I(\omega, DeLO^*) = 4$

Spočetné modely až na izomorfismus jsou například:

$$\mathbb{Q} = \langle \mathbb{Q}, \leq \rangle \simeq \mathbb{Q} \upharpoonright (0,1), \ \mathbb{Q} \upharpoonright (0,1], \ \mathbb{Q} \upharpoonright [0,1), \ \mathbb{Q} \upharpoonright [0,1]$$

Izomorfní spektrum T je počet modelů T kardinality κ až na \simeq . T je κ -kategorická pokud $I(\kappa,T)=1$, ω -kategorická má-li jediný spočetně nekonečný model až na izomorfismus.

Tvrzení: Teorie DeLO je ω -kategorická.

Důkaz: Buďte \mathcal{A}, \mathcal{B} spočetně nekonečné modely, $A = \{a_i \mid i \in \mathbb{N}\}$, $B = \{b_i \mid i \in \mathbb{N}\}$. Z hustoty najdeme indukcí $h_0 \subseteq h_1 \subseteq h_2 \subseteq \ldots$ prosté parciální fce z A do B zach. usp., $\{a_0, \ldots, a_{n-1}\} \subseteq \text{dom } h_n$, $\{b_0, \ldots, b_{n-1}\} \subseteq \text{rng } h_n$. Potom $\mathcal{A} \simeq \mathcal{B}$ via $h = \bigcup_{n \in \mathbb{N}} h_n$.

Důsledek: Izomorfní spektrum teorie DeLO*:

- $I(\kappa, DeLO^*) = 0$ pro $\kappa \in \mathbb{N}$
- $I(\omega, DeLO^*) = 4$

Spočetné modely až na izomorfismus jsou například:

$$\mathbb{Q} = \langle \mathbb{Q}, \leq \rangle \simeq \mathbb{Q} \upharpoonright (0,1), \ \mathbb{Q} \upharpoonright (0,1], \ \mathbb{Q} \upharpoonright [0,1), \ \mathbb{Q} \upharpoonright [0,1]$$

Důkaz: Husté uspořádání nemůže být konečné. Izomorfismus zobrazí minimum na minimum a maximum na maximum.

Věta: Buď T ω -kategorická ve spočetném jazyce L. Je-li

Věta: Buď T ω -kategorická ve spočetném jazyce L. Je-li

(i) L bez rovnosti, nebo

Věta: Buď T ω -kategorická ve spočetném jazyce L. Je-li

- (i) L bez rovnosti, nebo
- (ii) L s rovností a T nemá konečné modely,

Věta: Buď T ω -kategorická ve spočetném jazyce L. Je-li

- (i) L bez rovnosti, nebo
- (ii) L s rovností a T nemá konečné modely,

potom je T kompletní.

Věta: Buď T ω -kategorická ve spočetném jazyce L. Je-li

- (i) L bez rovnosti, nebo
- (ii) L s rovností a T nemá konečné modely,

potom je T kompletní.

Důkaz:

Věta: Buď T ω -kategorická ve spočetném jazyce L. Je-li

- (i) L bez rovnosti, nebo
- (ii) L s rovností a T nemá konečné modely,

potom je T kompletní.

Důkaz:(i) Důsledek L.-S. věty bez rovnosti říká, že každý model je elementárně ekvivalentní nějakému spočetně nekonečnému, ten je ale až na izomorfismus jediný.

Věta: Buď T ω -kategorická ve spočetném jazyce L. Je-li

- (i) L bez rovnosti, nebo
- (ii) L s rovností a T nemá konečné modely,

potom je T kompletní.

Důkaz:(i) Důsledek L.-S. věty bez rovnosti říká, že každý model je elementárně ekvivalentní nějakému spočetně nekonečnému, ten je ale až na izomorfismus jediný.

(ii)

Věta: Buď T ω -kategorická ve spočetném jazyce L. Je-li

- (i) L bez rovnosti, nebo
- (ii) L s rovností a T nemá konečné modely,

potom je T kompletní.

Důkaz:(i) Důsledek L.-S. věty bez rovnosti říká, že každý model je elementárně ekvivalentní nějakému spočetně nekonečnému, ten je ale až na izomorfismus jediný.

(ii) Důsledek L.-S. věty s rovností podobně říká, že všechny nekonečné modely jsou elementárně ekvivalentní. Mohla by mít elementárně neekvivalentní konečné modely, to jsme ale zakázali.

Věta: Buď T ω -kategorická ve spočetném jazyce L. Je-li

- (i) L bez rovnosti, nebo
- (ii) L s rovností a T nemá konečné modely,

potom je T kompletní.

Důkaz:(i) Důsledek L.-S. věty bez rovnosti říká, že každý model je elementárně ekvivalentní nějakému spočetně nekonečnému, ten je ale až na izomorfismus jediný.

(ii) Důsledek L.-S. věty s rovností podobně říká, že všechny nekonečné modely jsou elementárně ekvivalentní. Mohla by mít elementárně neekvivalentní konečné modely, to jsme ale zakázali.

Důsledek: DeLO, DeLO⁺, DeLO⁻, a DeLO[±] jsou kompletní, jsou to všechny (navzájem neekvivalentní) kompletní jedn. extenze $DeLO^*$.

Věta: Buď T ω -kategorická ve spočetném jazyce L. Je-li

- (i) L bez rovnosti, nebo
- (ii) L s rovností a T nemá konečné modely,

potom je T kompletní.

Důkaz:(i) Důsledek L.-S. věty bez rovnosti říká, že každý model je elementárně ekvivalentní nějakému spočetně nekonečnému, ten je ale až na izomorfismus jediný.

(ii) Důsledek L.-S. věty s rovností podobně říká, že všechny nekonečné modely jsou elementárně ekvivalentní. Mohla by mít elementárně neekvivalentní konečné modely, to jsme ale zakázali.

Důsledek: DeLO, DeLO⁺, DeLO⁻, a DeLO[±] jsou kompletní, jsou to všechny (navzájem neekvivalentní) kompletní jedn. extenze $DeLO^*$. Analogické kritérium platí i pro kardinality κ větší než ω .