Global Exercise - 12

Tuan Vo

12th January 2022

1 A remark about the derivation from coupled to decoupled form of linear hyperbolic systems

1. Case 1: $W := R^{-1}U$ as the scheme shown in exercise

$$U_t + AU_x = 0$$

$$U_t + R\Lambda R^{-1}U_x = 0$$

$$R^{-1}U_t + \Lambda R^{-1}U_x = 0$$

$$W_t + \Lambda W_x = 0$$

where the matrix A is diagonalizable with a transformation matrix $R \in \mathbb{R}^{N \times N}$ in the form

$$A = R\Lambda R^{-1}$$
.

2. Case 2: W := TU as the scheme shown in lecture note

$$U_t + AU_x = 0$$

$$U_t + T^{-1}\Lambda TU_x = 0$$

$$TU_t + \Lambda TU_x = 0$$

$$W_t + \Lambda W_x = 0$$

where the matrix A is diagonalizable with a transformation matrix $T \in \mathbb{R}^{N \times N}$ in the form

$$A = T^{-1}\Lambda T.$$

- \rightarrow Note in passing that both schemes result in the same solution.
- \rightarrow We have just to be consistent with which scheme to follow.

2 Correlation between Domain of dependence (DoD) and Courant-Friedrichs-Lewy (CFL) condition

Example 1. Examine the numerical domain of dependence and the corresponding CFL condition of the One-sided method, where the stencils point to the left.

Figure 1: Numerical domain of dependence for One-sided method.

As it can be seen from Figure 1, the numerical value computed at point A depends essentially on computed initial conditions laying between point D and E.

1. Perspective of indical subscription: Line (l_1) passing point A(j,n) and B(j-1,n-1) has the following form

$$(l_1): \quad \tau = \tau_A + \frac{\tau_B - \tau_A}{\xi_B - \xi_A} (\xi - \xi_A)$$

$$\Leftrightarrow \tau = n + \frac{(n-1) - n}{(j-1) - j} (\xi - j)$$

$$\Leftrightarrow \tau = n + \frac{-1}{1} (\xi - j), \qquad (1)$$

where τ is the indical variable corresponding to t, and x the indical variable to x. Hence, line (l_1) passing line x with index $\tau = 0$ at point D leads to the following relation

$$\xi = j - n \Leftrightarrow x_{\xi} = x_{j-n} \Leftrightarrow x_{\xi} = x_j - n\Delta x \Leftrightarrow x_{\xi} - x_j = -n\Delta x. \tag{2}$$

Likewise, line (l_2) passing line x with index $\tau = 0$ at point E leads to the following relation

$$x_{\xi} - x_{j} = 0. \tag{3}$$

Therefore, by combining (2) and (3) we arrive at the numerical domain of dependence for the One-sided method in terms of indical perspective

$$\mathcal{D}_{\Delta t}(x_j, t_n) = \left\{ x_{\xi} \middle| - n\Delta x \le x_{\xi} - x_j \le 0 \right\}. \tag{4}$$

Next, by using the CFL number $\nu := a\Delta t/\Delta x$ we obtain the following equality

$$-n\Delta x = -n\Delta t \frac{a\Delta x}{a\Delta t} \stackrel{(CFL)}{=} -n\Delta t \frac{a}{\nu} = -\frac{at_n}{\nu}.$$
 (5)

Then, by substituting (5) into (4) with limit consideration we obtain the entire set of the numerical domain of dependence, as follows

$$\mathcal{D}_{\Delta t}(x_j, t_n) = \left\{ x \left| -\frac{at_n}{\nu} \le x - x_j \le 0 \right\} \right]. \tag{6}$$

Besides, the analytical domain of dependence for the linear advection PDE reads

$$\mathcal{D}(x_j, t_n) = \left\{ x \,\middle|\, x = x_j - at_n \right\}. \tag{7}$$

Furthermore, the CFL condition enforces that

$$\mathcal{D}\left(x_{i}, t_{n}\right) \subset \mathcal{D}_{\Delta t}\left(x_{i}, t_{n}\right),\tag{8}$$

which implies that characteristics should lie with the triangular zone under the line (l_1) and (l_2) , as shown in Figure 1. Therefore, substitution of (7) into (6) yields the CFL condition applied on the linear advection equation, as follows

$$-\frac{at_n}{\nu} \le (x_j - at_n) - x_j \le 0 \Leftrightarrow -\frac{at_n}{\nu} \le -at_n \le 0, \tag{9}$$

which, equally, leads to the CFL condtion

$$\therefore \quad \boxed{0 \le \nu \le 1 \Leftrightarrow 0 \le \Delta t \le \frac{\Delta x}{a}}.$$
 (10)

Herein, the CFL condition (10) leads to constraint on the time step Δt for the case when a > 0. Note in passing that ν is non-negative.

2. Perspective of fixed-point value:

Line (l_1) passing point $A(x_j, t_n)$ and $B(x_{j-1}, t_{n-1})$ has the following form

$$(l_1): \quad t = t_A + \frac{t_B - t_A}{x_B - x_A} (x - x_A) \Leftrightarrow t = t_n + \frac{t_{n-1} - t_n}{x_{j-1} - x_j} (x - x_j)$$
$$\Leftrightarrow t = t_n + \frac{-\Delta t}{-\Delta x} (x - x_j). \tag{11}$$

Hence, line (l_1) passing line t = 0 at point D leads to the relation

$$x = x_j - \frac{t_n \Delta x}{\Delta t} \Leftrightarrow x - x_j = -\frac{t_n \Delta x}{\Delta t}.$$
 (12)

Likewise, line (l_2) passing line t=0 at point E leads to the relation

$$x - x_j = 0. (13)$$

Therefore, combination of (12) and (13) leads to the numerical domain of dependence for the One-sided method in terms of fixed-point value

$$\mathcal{D}_{\Delta t}(x_j, t_n) = \left\{ x \left| -\frac{t_n \Delta x}{\Delta t} \le x - x_j \le 0 \right\}.$$
(14)

Besides, the analytical domain of dependence for the linear advection PDE, as given by (7), reads

$$\mathcal{D}(x_j, t_n) = \left\{ x \mid x = x_j - at_n \right\}. \tag{15}$$

Then, by taking into consideration of requirement of the CFL condition, we obtain the following relation

$$-\frac{t_n \Delta x}{\Delta t} \le (x_j - at_n) - x_j \le 0, \tag{16}$$

which we have substituted (15) into (14). Herein, the relation (16) enforcing CFL condition on the time step Δt

$$\therefore \quad 0 \le \Delta t \le \frac{\Delta x}{a}, \tag{17}$$

which is similar to (10).

Example 2. Examine the numerical domain of dependence and the corresponding CFL condition of the One-sided method, where the stencils point to the right.

Figure 2: Numerical domain of dependence for One-sided method, where the stencils point to the right.

Similarly, by following steps done in Example 1 we obtain the following summary:

1. Point E in terms of fixed-point value satisfying

$$(l_2): t = t_n + \frac{t_{n-1} - t_n}{x_{j+1} - x_j} (x - x_j) (18)$$

2. Numerical domain of dependence reads

$$\mathcal{D}_{\Delta t}(x_j, t_n) = \left\{ x \mid 0 \le x - x_j \le -\frac{at_n}{\nu} \right\}. \tag{19}$$

3. Analytical domain of dependence reads

$$\mathcal{D}(x_j, t_n) = \left\{ x \mid x = x_j - at_n \right\}. \tag{20}$$

4. CFL condition reads

$$\therefore \quad \Delta t \ge \frac{\Delta x}{a}. \tag{21}$$

Note in passing that the advection velocity a in this Example 2 is a < 0.

Example 3. Examine the numerical domain of dependence and the corresponding CFL condition for a three-point scheme.

Figure 3: General numerical domain of dependence for a three-point scheme.

Similarly, by following steps done in Example 1 we obtain the following summary:

1. Point D and E in terms of fixed-point value satisfying

$$(l_1): t = t_n + \frac{t_{n-1} - t_n}{x_{j-1} - x_j} (x - x_j) (22)$$

$$(l_2): t = t_n + \frac{t_{n-1} - t_n}{x_{j+1} - x_j} (x - x_j) (23)$$

2. Numerical domain of dependence reads

$$\mathcal{D}_{\Delta t}(x_j, t_n) = \left\{ x \mid |x - x_j| \le \frac{at_n}{\nu} \right\}. \tag{24}$$

3. Analytical domain of dependence reads

$$\mathcal{D}(x_j, t_n) = \left\{ x \mid x = x_j - at_n \right\}. \tag{25}$$

4. CFL condition reads

$$\therefore \left| \left| \frac{a\Delta t}{\Delta x} \right| \le 1. \right| \tag{26}$$

Example 4. Examine the numerical domain of dependence of Lax-Friedrichs method.

Figure 4: General numerical domain of dependence for a three-point scheme.

Similarly, by following steps done in Example 1, or the same as 3 we obtain the following summary:

1. Point D and E in terms of fixed-point value satisfying

$$(l_1): t = t_n + \frac{t_{n-1} - t_n}{x_{j-1} - x_j} (x - x_j) (27)$$

$$(l_2): t = t_n + \frac{t_{n-1} - t_n}{x_{j+1} - x_j} (x - x_j) (28)$$

2. Numerical domain of dependence reads

$$\mathcal{D}_{\Delta t}(x_j, t_n) = \left\{ x \mid |x - x_j| \le \frac{at_n}{\nu} \right\}. \tag{29}$$

3. Analytical domain of dependence reads

$$\mathcal{D}(x_j, t_n) = \left\{ x \mid x = x_j - at_n \right\}. \tag{30}$$

4. CFL condition reads

$$\therefore \left| \frac{a\Delta t}{\Delta x} \right| \le 1.$$
 (31)

3 Conservation form - Finite Volume Method

Example 5. Consider the Burgers' equation

$$u_t + \left(\frac{1}{2}u^2\right)_x = 0.$$

1. Show that the upwind scheme for this version of Burgers' equation as follows

$$u_j^{n+1} = u_j^n + \frac{\Delta t}{\Delta x} \left(\frac{1}{2} (u_{j-1}^n)^2 - \frac{1}{2} (u_j^n)^2 \right)$$

can be represented in conservation form.

2. If we rewrite the above Burgers' equation as

$$u_t + uu_x = 0,$$

we can assume it as a linear advection problem with speed u. Prove that the upwind scheme for the latter equation as

$$u_j^{n+1} = u_j^n + \frac{u_j^n \Delta t}{\Delta x} (u_{j-1}^n - u_j^n)$$

cannot be represented in conservation form.

Approach:

1. If we take the numerical flux

$$\tilde{F}_{j+1/2}(u_j^n, u_{j+1}^n) = f(u_j^n) = \frac{1}{2}(u_j^n)^2,$$

then the corresponding numerical scheme can be rewritten in conservation form

$$u_j^{n+1} = u_j^n + \frac{\Delta t}{\Delta x} (\tilde{F}_{j-1/2}(u_{j-1}^n, u_j^n) - \tilde{F}_{j+1/2}(u_j^n, u_{j+1}^n)).$$

2. Proof. Let us take a look at the derivatives of $H_{\Delta t}$ by u_{j-1}^n, u_j^n and u_{j+1}^n as follows

$$x = \partial_{u_{j-1}^n} H_{\Delta t} = \frac{u_j^n \Delta t}{\Delta x},$$

$$y = \partial_{u_j^n} H_{\Delta t} = 1 + \frac{u_{j-1}^n \Delta t}{\Delta x} - \frac{2u_j^n \Delta t}{\Delta x},$$

$$z = \partial_{u_{j+1}^n} H_{\Delta t} = 0.$$

Summation of the term $x|_{j+1}$, the term $y|_j$, and the term $z|_{j-1}$ must be equal to 1 in order to satisfy the conservation form. However, we observe that the summation of these three terms does not satisfy the equality to 1, as follows

$$x|_{j+1} + y|_j + z|_{j-1} = 1 + \frac{\Delta t}{\Delta x} (u_{j+1}^n - 2u_j^n + u_{j-1}j^n)$$

 $\neq 1.$

Besides, if we would like to check this property for the first scheme, we obtain the following relations

$$x = \frac{\Delta t}{\Delta x} u_{j-1}^n,$$

$$y = 1 - \frac{\Delta t}{\Delta x} u_j^n,$$

$$z = 0,$$

which leads to the summation of these three terms, i.e. the term $x|_{j+1}$, the term $y|_j$, and the term $z|_{j-1}$, equal to 1, as follows

$$x|_{j+1} + y|_j + z|_{j-1} = 1.$$