Esercizi

Algebra e Geometria Corso di Laurea in Informatica 4 Maggio 2016

Esercizio 1. Sia $f: \mathbb{R}_2[x] \to M_2(\mathbb{R})$ l'applicazione lineare definita da:

$$f(a+bx+cx^{2}) = \begin{pmatrix} a+b & b+c \\ a+c & a+2b+c \end{pmatrix}.$$

- a) Scrivere la matrice associata a f rispetto alla base canonica di $\mathbb{R}_2[x]$ in dominio e alla base canonica di $M_2(\mathbb{R})$ in codominio.
- b) Determinare nucleo e immagine di f.
- c) Stabilire se f è iniettiva e/o suriettiva.
- d) Calcolare l'immagine tramite f del vettore $1 + x + x^2$.
- e) Calcolare la controimmagine tramite f del vettore $\begin{pmatrix} 2 & 2 \\ 2 & 4 \end{pmatrix}$.
- f) Determinare, se possibile, tre vettori appartenenti a $\operatorname{Im} f$ a due a due linearmente indipendenti che non costituiscano una base di $\operatorname{Im} f$.
- g) Scrivere la matrice associata a f rispetto alla base $\mathcal{B} = \{1, 1 + x, 1 + x + x^2\}$ di $\mathbb{R}_2[x]$ in dominio e alla base

$$\mathcal{D} = \left\{ \left(\begin{array}{cc} 1 & 1 \\ 1 & 1 \end{array} \right), \left(\begin{array}{cc} 0 & 1 \\ 1 & 1 \end{array} \right), \left(\begin{array}{cc} 0 & 0 \\ 1 & 1 \end{array} \right), \left(\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array} \right) \right\}$$

di $M_2(\mathbb{R})$ in codominio.

Esercizio 2. Sia $f: \mathbb{R}^3 \to \mathbb{R}^3$ l'applicazione lineare definita da

$$f(x, y, z) = (0, x + 3y - 2z, 2x + 6y - 4z).$$

- a) Scrivere la matrice A associata a f rispetto alla base canonica di \mathbb{R}^3 in dominio e codominio.
- b) Determinare gli autovalori di f e stabilire se f è diagonalizzabile. In caso affermativo, trovare se possibile due matrici distinte P e Q tali che $P^{-1}AP = D = Q^{-1}AQ$ sia una matrice diagonale.

Esercizio 3. Sia $k \in \mathbb{R}$ e sia data

$$A_k = \left(\begin{array}{ccc} k & 1 & 2 \\ 1 & k & k \\ 0 & 0 & 2 \end{array}\right).$$

- a) Stabilire per quali valori di k la matrice A_k è invertibile.
- b) Stabilire per quali valori di k la matrice A_k è diagonalizzabile.
- c) Scelto uno dei valori di k trovati in b), determinare tutte le matrici diagonali simili a A_k .
- d) Scelto uno dei valori di k trovati in b), stabilire se esiste una matrice $B \in M_3(\mathbb{R})$ con gli stessi autovalori di A_k che non sia simile ad A_k .

Esercizio 4. Sia $f: \mathbb{R}^3 \to \mathbb{R}^3$ l'applicazione lineare tale che $f(\mathbf{e_1} + \mathbf{e_2}) = 2k\mathbf{e_1} + 3\mathbf{e_2} + k\mathbf{e_3}, f(\mathbf{e_2}) = k\mathbf{e_1} + 2\mathbf{e_2} + k\mathbf{e_3}, f(\mathbf{e_1} - \mathbf{e_3}) = \mathbf{0}_{\mathbb{R}^3}, \text{ con } k \in \mathbb{R}.$

- a) Scrivere la matrice A_k associata a f rispetto alla base canonica di \mathbb{R}^3 in dominio e codominio.
- b) Stabilire per quali valori di k la matrice A_k ha 0 come autovalore.
- c) Stabilire per quali valori di k, se esistono, la matrice A_k ha un autovalore di molteplicità algebrica 3.
- d) Stabilire per quali valori di k la matrice A_k è diagonalizzabile.
- e) Stabilire per quali valori di k il vettore $2\mathbf{e_1} + 3\mathbf{e_2} + \mathbf{e_3}$ è autovettore di A_k .
- f) Scelto uno dei valori di k trovati in d), stabilire se esiste una matrice $B \in M_3(\mathbb{R})$ con lo stesso polinomio caratteristico di A_k che non sia simile ad A_k .