Semester Project - Final Defence

A Semi-Supervised Approach to Citation Matching in the Humanities

Student: Tao Sun

Supervisor: Matteo Romanello

Digital Humanities Laboratory, EPFL

Problem Defintion

- Scientific Citation
 - Well-structured
 - Straightforward citation matching
- Humanities Citation
 - Old papers are of great importance
 - Various citation styles throughout history
 - So, how to match them?

Problem Defintion

• Problem:

- How to match citations in the humanities publications?
- One seed ref -> Find all other refs pointing to the same doc

Data:

- Citation data from Linked Books project
- Large scale: 4 million references —> reduce search space
- Lack of Ground Truth —> semi-supervised learning

Approach

Step by Step Approach

- Local Clustering (1 step)
 - Group references in one document
- Global Clustering (2 steps)
 - Group references among documents

Do Classification in the reduced search space

Step 1: Local Glustering

- Abbreviation Partial Reference
 - e.g. <u>ibid.</u>, voi. i, pp. 167-169.
 - Formulate rules for various situations

Abbreviation	Meaning (to the one right before)	
idem / id / eadem / ead	Same author	
ibidem / ibid	Same reference Same source	
ivi		
op. cit. / op. ctt.		
•••	•••	

Step 1: Local Glustering

- Rule-Based Matching
 - Order in a document
 - Rules of partial references
 - Iteration through all for several times

Step 2: Hash Matching

Hash Function

- Consider citation matching as deduplicated task
- Generate keys/hashes for each citation (local cluster)
- Bigrams of Title, Author Names, {Year-1, Year, Year+1}
 - Morassi, Novità e precisazioni sul Tiepolo in « Le Arti », 1942, p. 91.
 - Hashes: morassi #1942, morassi # novita # precisazioni, ...

Step 2: Hash Matching

Step 3: Do Classification

- Build Binary Classifier
- Logistic Regression

Seed Ref

Citation 1

Seed Ref

Citation 2

- Feature vector
 - Token/Ngrams Similarity of Author and Title
 - Exactly Year Match (0/1)
 - LCS (Longest Common Sequence) Similarity of Publisher

Step 3: Do Classification

- Semi-supervised Learning
- Disambiguation Dataset
 - Ref pointing to doc in the catalogue of Italian libraries
- Pos / Neg Ex. (50 / 50) -> Boost classifier
- Run on unlabelled data -> high confidence (0.9)
 - -> Enrich training set (6000 / 6000)
- Re-train on all

Evaluation

Discussion

Local Evaluation

Pair of full ref and partial refs (collected by 2 annotators)

- Hard to generate a single metric to evaluate
- Main problems:
 - Highly dependent on extracting orders
 - Highly dependent on parsing results

Hash Evaluation

- Refs with title/author/year fields as "Full" refs (495339 in total)
- Use Black List to ban hashes with returned refs > 500

- 30 Samples for annotating
 - 10 of 0-10 / 10-100 / 100-500 returns

Hash Evaluation

Hash Function		
Baseline	15	
Title	3031	
Author-Title	1026	
Author-Year	1011	
Author-Year (Blur)	1350	
Author-Year-Page	2	
Author-Year-Page (Blur)	3	
Author-Year-Num ³	217	
Combined	3583	

Hash Function	Recall	Precision
Baseline	6.48	27.78
Title	82.44	33.59
Author-Title	73.89	54.74
Author-Year	84.52	62.87
Author-Year (Blur)	86.25	43.82
Author-Year-Page	12.50	12.50
Author-Year-Page (Blur)	25.00	25.00
Author-Year-Num ³	20.75	31.65
Combined	84.47	25.47

Hash Evaluation

- False Negative:
 - 54 citations -> Not in our samples of "Full" refs
 - Not contain year or author or title field

Robust on Extracting and Parsing Results

Classification Evaluation

Classification Evaluation

Recall: 96% Precision: 41%

Classification Evaluation

- Difference in the distribution of training and test set
- Training: most of Negative Pairs have zero vector
- Test: each pair share same hashes
 - fewer with zero vector

Get more hash samples for training?

Reference

- Colavizza, Giovanni, Matteo Romanello, and Frédéric Kaplan. "The references of references: a method to enrich humanities library catalogs with citation data." International Journal on Digital Libraries (2017): 1-11.
- Fedoryszak, Mateusz, and Łukasz Bolikowski. "Efficient Blocking Method for a Large Scale Citation Matching." D-Lib Magazine 20, no. 11/12 (2014).
- Fedoryszak, Mateusz, Dominika Tkaczyk, and Łukasz Bolikowski. "Large scale citation matching using Apache Hadoop." International Conference on Theory and Practice of Digital Libraries. Springer, Berlin, Heidelberg, 2013.

"Thank you!"

Tao Sun