TABLE OF CONTENTS

MDS-01: APPLICATIONS OF MULTIDIMENSIONAL SIGNAL PROCESSING
MDS-01.1: OPTIMAL MEASUREMENT BUDGET ALLOCATION FOR PARTICLE
MDS-01.2: ROBUST PRINCIPAL COMPONENT ANALYSIS USING ALPHA
MDS-01.3: QUATERNION HARRIS FOR MULTISPECTRAL KEYPOINT DETECTION
MDS-01.4: CGO: MULTIBAND ASTRONOMICAL SOURCE DETECTION WITH
MDS-01.5: DEEPCABAC: PLUG&PLAY COMPRESSION OF NEURAL NETWORK
MDS-01.6: USING BAND SUBSET SELECTION FOR DIMENSIONALITY REDUCTION
MDS-01.7: SPARSITY PRESERVED CANONICAL CORRELATION ANALYSIS
MDS-01.8: DEPENDENT SCALAR QUANTIZATION FOR NEURAL NETWORK
MDS-01.9: REGION OF INTEREST EXTRACTION BASED ON CO-SALIENCY
MDS-01.10: FEATURE INTEGRATION VIA GEOMETRICAL SUPERVISED
MDS-01.11: A NOVEL UNSUPERVISED CHANGE DETECTION APPROACH BASED ON

MDS-01.12: MULTISTATE CONSTRAINED INVARIANT KALMAN FILTER FOR
ROLLING SHUTTER CAMERA AND IMU CALIBRATION
Xiao Hu, Daniel Olesen, Per Knudsen, Technical University of Denmark, Denmark
SMR-03: MACHINE LEARNING-BASED COMPUTATIONAL IMAGE FORMATION
SMR-03.1: ESTIMATION OF VISUAL CONTENTS BASED ON QUESTION
ANSWERING FROM HUMAN BRAIN ACTIVITY
Saya Takada, Ren Togo, Takahiro Ogawa, Miki Haseyama, Hokkaido University, Japan
SMR-03.2: A FAST METHOD FOR SHAPE TEMPLATE GENERATION
ALPHIN J THOTTUPATTU, JAYANTHI SIVASWAMY, International Institute of Information Technology, India
SMR-03.3: ADAPTIVE MULTI-REGION NETWORK FOR MEDICAL IMAGE ANALYSIS71
Hemeng Tao, Zhuoyi Wang, Yang Gao, Yigong Wang, Latifur Khan, The University of Texas at Dallas, United States
SMR-03.4: INFER THE INPUT TO THE GENERATOR OF AUXILIARY CLASSIFIER
GENERATIVE ADVERSARIAL NETWORKS
Xiaoming Peng, Abdesselam Bouzerdoum, Son Lam Phung, The University of Wollongong, Australia
SMR-03.5: UNSUPERVISED LEARNING FROM LIMITED AVAILABLE DATA BY B-NMF
AND DUAL AUTOENCODER
Mohanad Abukmeil, Stefano Ferrari, Angelo Genovese, Vincenzo Piuri, Fabio Scotti, Università degli Studi di Milano, Italy
SMR-04: COMPUTATIONAL IMAGE FORMATION AND RECONSTRUCTION
SMR-04.1: EVENT-BASED HIGH FRAME-RATE VIDEO RECONSTRUCTION WITH A86
NOVEL CYCLE-EVENT NETWORK
binyi su, lei yu, wen yang, wuhan university, China
SMR-04.2: AN APPROXIMATE MESSAGE PASSING ALGORITHM FOR RAPID
PARAMETER-FREE COMPRESSED SENSING MRI
Charles Millard, Aaron T Hess, University of Oxford, United Kingdom; Boris Mailhe, Siemens Healthineers, United States; Jared
Tanner, University of Oxford, United Kingdom
SMR-04.3: SIMULTANEOUS 3D X-RAY PTYCHO-TOMOGRAPHY WITH GRADIENT
DESCENT Semih Barutcu, Pablo Ruiz, Florian Schiffers, Northwestern University, United States; Selin Aslan, Doğa Gürsoy, Argonne
National Laboratory, United States; Oliver Cossairt, Aggelos K. Katsaggelos, Northwestern University, United States
SMR-04.4: HDR IMAGING FROM QUANTIZATION NOISE
Tyush Bhandari, Imperial Conege Bondon, Chinea Hingdom, I chin II annier, Teenmear Chirestry of Humon, Germany
SMR-05: PERCEPTION AND QUALITY MODELS FOR IMAGES & VIDEO
SMR-05.1: AUTOMATIC REGION SELECTION FOR OBJECTIVE SHARPNESS
ASSESSMENT OF MOBILE DEVICE PHOTOS
Qiang Lu, Guangtao Zhai, Wenhan Zhu, Yucheng Zhu, Xiongkuo Min, Shanghai Jiao Tong University, China; Xiaoping Zhang, Ryerson University, Canada; Hua Yang, Shanghai Jiao Tong University, China
SMR-05.2: LEARNING TO BLINDLY ASSESS IMAGE QUALITY IN THE LABORATORY111
AND WILD Weixia Zhang, Shanghai Jiao Tong University, China; Kede Ma, City University of Hong Kong, Hong Kong SAR of China;
Guangtao Zhai, Xiaokang Yang, Shanghai Jiao Tong University, China

SMR-05.3: CUID: A NEW STUDY OF PERCEIVED IMAGE QUALITY AND ITS
Lucie Lévêque, Gustave Eiffel University, France; Ji Yang, Cardiff University, United Kingdom; Xiaohan Yang, Xi'an Jiaotong University, China; Pengfei Guo, Zhongkai University of Agriculture and Engineering, China; Kenneth Dasalla, University of Bath, United Kingdom; Leida Li, Xidian University, China; Yingying Wu, Hantao Liu, Cardiff University, United Kingdom
SMR-05.4: PERCEPTNET: A HUMAN VISUAL SYSTEM INSPIRED NEURAL
SMR-05.5: NOR-VDPNET: A NO-REFERENCE HIGH DYNAMIC RANGE QUALITY
SMR-05.6: SUBJECTIVE QUALITY ASSESSMENT FOR YOUTUBE UGC DATASET
SMR-05.7: EEG-BASED ASSESSMENT OF PERCEIVED QUALITY IN COMPLEX
SMR-05.8: A COMPARATIVE EVALUATION OF TEMPORAL POOLING METHODS FOR
SMR-05.9: PREDICTION OF CHROMATIC VISUAL MASKING WITH DEEP LEARNING
SMR-05.10: GRADUAL CHROMA REDUCTION AND HIGH-LEVEL VISUAL MASKING
Jim Harvey, Steven Le Moan, Massey University, New Zealand
SMR-05.11: DEEP LEARNING VS. TRADITIONAL ALGORITHMS FOR SALIENCY
SMR-05.12: PERCEPTUAL COLOUR DIFFERENCE UNIFORMITY IN HIGH
SMR-05.13: HIGH-LEVEL VISUAL MASKING OF IMAGE COMPRESSION ARTEFACTS
SMR-05.14: COMBINATION OF HANDCRAFTED AND DEEP LEARNING-BASED

Laboratory Research (LRIT) Mohammed V University, Morocco; Longin Jan Latecki, Dept. of Computer and Information

Sciences Temple University, United States; Hocine Cherifi, University of Burgundy, France

SMR-05.15: RESIDUAL NETWORKS BASED DISTORTION CLASSIFICATION AND	76
SMR-05.16: NO-REFERENCE VIDEO QUALITY ASSESSMENT BASED ON	31
SMR-05.17: PERCEPTUAL QUALITY ASSESSMENT ON DIBR SYNTHESIZED	
SMR-05.18: BLIND NATURAL IMAGE QUALITY PREDICTION USING)1
SMR-02: IMAGE & VIDEO REPRESENTATION	
SMR-02.1: PROGRESSIVE POINT TO SET METRIC LEARNING FOR) 6
SMR-02.2: SINGLE IMAGE GLARE REMOVAL USING DEEP CONVOLUTIONAL	
SMR-02.3: UNPAIRED IMAGE-TO-IMAGE SHAPE TRANSLATION ACROSS FASHION)6
SMR-02.4: AN EXPRESSION-REINFORCED SPARSE SUBSPACE CLUSTERING BY	11
SMR-02.5: HYPERGRAPH-BASED IMAGE PROCESSING	16
SMR-02.6: DEEP INHOMOGENEOUS REGULARIZATION FOR TRANSFER LEARNING	21
SMR-02.7: KEYPOINT-BASED FEATURE MATCHING FOR PARTIAL PERSON	26
SMR-02.8: EFFICIENT COUPLED DICTIONARY LEARNING AND SPARSE CODING	31
SMR-02.9: AUDIO-BASED EMOTION RECOGNITION ENHANCEMENT THROUGH	36
SMR-02.10: CASCADED MIXED-PRECISION NETWORKS	41

Xue Geng, Jie Lin, Shaohua Li, Agency for Science, Technology and Research (A*STAR), Singapore

SMR-02.11: ANALYZING SENSOR QUANTIZATION OF RAW IMAGES FOR VISUAL246 SLAM
Olivia Christie, Joshua Rego, Suren Jayasuriya, Arizona State University, United States
SMR-02.12: MULTIMODAL ATTENTION-MECHANISM FOR TEMPORAL EMOTION
Esam Ghaleb, Jan Niehues, Stylianos Asteriadis, Maastricht University, Netherlands
SMR-01: IMAGE & VIDEO SENSING AND ACQUISITION
SMR-01.1: ENHANCED IMAGE RECONSTRUCTION FROM QUARTER SAMPLING
Simon Grosche, Kristian Fischer, Fabian Brand, Jürgen Seiler, André Kaup, Friedrich-Alexander-Universität Erlangen- Nürnberg, Germany
SMR-01.2: PHOTOMETRIC CONSISTENCY FOR DUAL FISHEYE CAMERAS
SMR-01.3: EGOK360: A 360 EGOCENTRIC KINETIC HUMAN ACTIVITY VIDEO
Keshav Bhandari, Mario A. DeLaGarza, Ziliang Zong, Texas State University, United States; Hugo Latapie, Cisco, United States; Yan Yan, Texas State University, United States
SMR-01.4: PREDICTION-DECISION NETWORK FOR VIDEO OBJECT TRACKING
SMR-01.5: MULTISPECTRAL FUSION FOR OBJECT DETECTION WITH CYCLIC
SMR-01.6: OPTIMAL MEASUREMENT CONFIGURATION IN COMPUTATIONAL
SMR-01.7: CYCLEPTZ: THE LEARNING-BASED CONTROL METHOD FOR
SMR-01.8: DRCAS: DEEP RESTORATION NETWORK FOR HARDWARE BASED
COMPRESSIVE ACQUISITION SCHEME Pravir Singh Gupta, Texas A&M University, United States; Xin Yuan, Nokia Bell Labs, United States; Gwan Choi, Texas A&M University, United States
SMR-01.9: KRF-SLAM: A ROBUST AI SLAM BASED ON KEYPOINT RESAMPLING AND
Wai Mun Wong, Mediatek, Singapore; Christopher Lim, Nanyang Technological University Singapore, Singapore; Chia-Da Lee, Lilian Wang, Shih-Che Chen, Pei-Kuei Tsung, Mediatek, Taiwan
TEC-06: BIOMEDICAL AND BIOLOGICAL IMAGE PROCESSING I
TEC-06.1: ENSEMBLE OF DEEP CASCADES FOR DETECTION OF LARYNGEAL
TEC-06.2: SOFT-LABEL ANONYMOUS GASTRIC X-RAY IMAGE DISTILLATION

TEC-06.3: KNOWLEDGE-GUIDED AND HYPER-ATTENTION AWARE JOINT
TEC-06.4: AUTOMATED DETECTION OF HIGHLY AGGREGATED NEURONS IN
TEC-06.5: VESSEL-NET: A VESSEL-AWARE ENSEMBLE NETWORK FOR
TEC-06.6: MATRIX CLASSIFIER ON DYNAMIC FUNCTIONAL CONNECTIVITY FOR
TEC-06.7: ROBUST CBCT RECONSTRUCTION BASED ON LOW-RANK TENSOR
TEC-06.8: HEART RATE DETECTION FROM FACIAL VIDEOS USING A
TEC-06.9: COPD DETECTION USING THREE-DIMENSIONAL GAUSSIAN MARKOV
TEC-06.10: ATTENTION UNET++: A NESTED ATTENTION-AWARE U-NET FOR LIVER
TEC-06.11: ENHANCE GENERATIVE ADVERSARIAL NETWORKS BY WAVELET
TEC-06.12: A DEEP LEARNING-BASED CAD SYSTEM FOR RENAL ALLOGRAFT
TEC-06.13: DISENTANGLED REPRESENTATION LEARNING BASED MULTIDOMAIN
TEC-06.14: ENHANCE CATEGORISATION OF MULTILEVEL HIGH-SENSITIVITY
TEC-06.15: A GENERATIVE ADVERSARIAL NETWORK FOR MEDICAL IMAGE FUSION
TEC-06.16: UNSUPERVISED END-TO-END GROUPWISE REGISTRATION

TEC-07: BIOMEDICAL AND BIOLOGICAL IMAGE PROCESSING II

TEC-07.1: THE IMPORTANCE OF SKIP CONNECTIONS IN ENCODER-DECODER
TEC-07.2: POST-STIMULUS TIME-DEPENDENT EVENT DESCRIPTOR
TEC-07.3: CYCLE GAN-BASED DATA AUGMENTATION FOR MULTI-ORGAN
TEC-07.4: PRECISE CEREBROVASCULAR SEGMENTATION
TEC-07.5: RBVS-NET: A ROBUST CONVOLUTIONAL NEURAL NETWORK FOR
TEC-07.6: ULTRASOUND AND MAGNETIC RESONANCE IMAGE FUSION USING A
TEC-07.7: A COMPREHENSIVE FRAMEWORK FOR ACCURATE CLASSIFICATION OF
TEC-07.8: B-SPLINE LEVEL SET FOR DROSOPHILA IMAGE SEGMENTATION
TEC-07.9: RETINAL VESSEL SEGMENTATION UNDER EXTREME LOW
TEC-07.10: IDENTIFYING CHILDREN WITH AUTISM SPECTRUM DISORDER
TEC-07.11: EFFICIENT OCT IMAGE SEGMENTATION USING NEURAL
TEC-07.12: HYBRID DEEP REINFORCED REGRESSION FRAMEWORK FOR

TEC-07.13: DIAGNOSING AUTISM USING T1-W MRI WITH MULTI-KERNEL
TEC-07.14: ANALYSIS OF THE IMPORTANCE OF SYSTOLIC BLOOD PRESSURE
TEC-07.15: AN END-TO-END NETWORK FOR DETECTING MULTI-DOMAIN
TEC-02: FORMATION AND RECONSTRUCTION
TEC-02.1: PAN-SHARPENING BASED ON PARALLEL PYRAMID CONVOLUTIONAL
TEC-02.2: HDR IMAGE SALIENCY ESTIMATION BY CONVEX OPTIMIZATION
TEC-02.3: RELATIVE POSE ESTIMATION FOR STEREO ROLLING SHUTTER
TEC-02.4: SEGMENTATION ALGORITHM OF THE VALID REGION IN FISHEYE
TEC-02.5: ONE SHOT RADIAL DISTORTION CORRECTION BY DIRECT LINEAR
TEC-01: INTERPOLATION, SUPER-RESOLUTION AND MOSAICING
TEC-01.1: AHFF-NET: ADAPTIVE HIERARCHICAL FEATURE FUSION NETWORK FOR
TEC-01.2: ADAPTIVE LATTICE-AWARE IMAGE DEMOSAICKING USING GLOBAL AND
TEC-01.3: DEPTH MAP INPAINTING AND SUPER-RESOLUTION WITH ARBITRARY
TEC-01.4: A RESIDUAL DENSE GENERATIVE ADVERSARIAL NETWORK FOR

TEC-01.5: SUPER-RESOLVING COMMERCIAL SATELLITE IMAGERY USING
Xiang Zhu, Hossein Talebi, Xinwei Shi, Feng Yang, Peyman Milanfar, Google Inc., United States
TEC-01.6: SLICE-BASED SUPER-RESOLUTION USING LIGHT-WEIGHT NETWORK
TEC-01.7: SINGLE IMAGE SUPER-RESOLUTION VIA A PROGRESSIVE MIXTURE
Run Su, Baojiang Zhong, Jiahuan Ji, Soochow University, China; Kai-Kuang Ma, Nanyang Technological University, Singapore
TEC-01.8: A NEW SIMPLE DIRECT COMPUTATION OF CUBIC CONVOLUTION
TEC-01.9: FAKD: FEATURE-AFFINITY BASED KNOWLEDGE DISTILLATION FOR
University, China
TEC-01.10: HRNET: HAMILTONIAN RESCALING NETWORK FOR IMAGE
Yuzhao Chen, Xi Xiao, Tao Dai, Shu-Tao Xia, Tsinghua University, China
TEC-01.11: SD-FB-GAN: SALIENCY-DRIVEN FEEDBACK GAN FOR REMOTE
Jie Ma, Hanlin Wu, Jue Zhang, Libao Zhang, Beijing Normal University, China
TEC-01.12: SR ² : SUPER-RESOLUTION WITH STRUCTURE-AWARE
TEC-01.13: SINGLE IMAGE SUPER-RESOLUTION USING DEPTH MAPAS
TEC-01.14: A LIGHTWEIGHT NETWORK MODEL FOR VIDEO FRAME
TEC-01.15: DOES SUPER-RESOLUTION IMPROVE OCR PERFORMANCE IN THE
Vivien Robert, Artefact, France; Hugues Talbot, Université Paris-Saclay, CentraleSupelec, Inria, France
TEC-01.16: A BAYESIAN VIEW OF FRAME INTERPOLATION AND A COMPARISON
Anil Kokaram, Davinder Singh, Trinity College Dublin, Ireland; Damien Kelly, Google, United States; Simon Robinson, The Foundry, United Kingdom
TEC-01.17: FRAME RATE UP-CONVERSION USING BI-DIRECTIONAL OPTICAL
TEC-01.18: MOSAICING OF DYNAMIC MESENTERY VIDEO WITH GRADIENT
BLENDING Rumana Aktar. Virginia Huxley. Hadi AliAkharpour. Filiz Bunyak. Kannappan Palaniappan. University of Missouri-Columbia.

United States

TEC-01.19: WHERE IS THE FAKE? PATCH-WISE SUPERVISED GANS FOR TEXTURE
TEC-01.20: LIGHTWEIGHT IMAGE SUPER-RESOLUTION RECONSTRUCTION
TEC-01.21: LADDER PYRAMID NETWORKS FOR SINGLE IMAGE
Zitao Mo, Xiangyu He, Gang Li, Jian Cheng, Institute of Automation, Chinese Academy of Sciences, China
TEC-03: MACHINE LEARNING FOR IMAGE AND VIDEO PROCESSING I
TEC-03.1: PRIMARY QUALITY FACTOR ESTIMATION OF RESIZED DOUBLE
Yakun Niu, Xiaolong Li, Yao Zhao, Rongrong Ni, Beijing Jiaotong University, China
TEC-03.2: ENSEMBLE LEARNING USING BAGGING AND INCEPTION-V3 FOR
Yumna Zahid, Muhammad Atif Tahir, Muhammad Nouman Durrani, National University of Computer and Emerging Sciences, Pakistan
TEC-03.3: TYPE I ATTACK FOR GENERATIVE MODELS
TEC-03.4: MDT: UNSUPERVISED MULTI-DOMAIN IMAGE-TO-IMAGE TRANSLATOR
TEC-03.5: DYNAMIC OBJECT-AWARE MONOCULAR VISUAL ODOMETRY WITH
TEC-03.6: ST-LSTM: SPATIO-TEMPORAL GRAPH BASED LONG SHORT-TERM
Guangxi Chen, Ling Hu, Guilin University of Electronic Technology, China; Qieshi Zhang, Ziliang Ren, Xiangyang Gao, Jun Cheng, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, China
TEC-03.7: CHANNEL-GROUPING BASED PATCH SWAP FOR ARBITRARY STYLE
TRANSFER Yan Zhu, Yi Niu, Fu Li, Xidian University, China; Chunbo Zou, Xi'an institute of optics and precision mechanics of CAS, China; Guangming Shi, Xidian University, China
TEC-03.8: HUMAN DETECTION IN DENSE SCENE OF CLASSROOMS
TEC-03.9: SELECTIVE COMPLEMENTARY FEATURES FOR MULTI-PERSON POSE
TEC-03.10: EFFICIENT HEVC-TO-VVC TRANSCODER BASED ON A BAYESIAN
CLASSIFIER FOR THE FIRST QUADTREE DEPTH LEVEL
David García Lucas, University of Castilla-La Mancha, Spain; Gabriel Cebrián Márquez, University of Oviedo, Spain; Antonio Jesús Díaz Honrubia, Universidad Politécnica de Madrid, Spain; Thanuja Mallikarachchi, Cardiff Metropolitan University, United Kingdom; Pedro Cuenca, University of Castilla-La Mancha, Spain

TEC-03.11: LEARNING LIGHT FIELD SYNTHESIS WITH MULTI-PLANE IMAGES:
TEC-03.12: INFOPRINT: INFORMATION THEORETIC DIGITAL IMAGE FORENSICS
TEC-03.13: DEEP LEARNING AND INTERACTIVITY FOR VIDEO ROTOSCOPING
TEC-03.14: SUBSTITUTE MODEL GENERATION FOR BLACK-BOX ADVERSARIAL
TEC-03.15: EQ-LPR: EFFICIENT QUALITY-AWARE LICENSE PLATE RECOGNITION
TEC-03.16: PERCEPTION ENHANCED FRAME FOR VISUAL OBJECT TRACKING
TEC-03.17: LOWNET: PRIVACY PRESERVED ULTRA-LOW RESOLUTION POSTURE
TEC-03.18: CAM-NET: COMPRESSED ATTENTIVE MULTI-GRANULARITY NETWORK
TEC-04: MACHINE LEARNING FOR IMAGE AND VIDEO PROCESSING II
TEC-04.1: EXAGGERATED LEARNING FOR CLEAN-AND-SHARP IMAGE RESTORATION
TEC-04.2: TRADITIONAL METHOD INSPIRED DEEP NEURAL NETWORK FOR EDGE
Jan Kristanto Wibisono, Hsueh-Ming Hang, National Chiao Tung University, Taiwan
TEC-04.3: MULTI-STEP QUANTIZATION OF A MULTI-SCALE NETWORK FOR
TEC-04.4: BOOSTING IMAGE-BASED LOCALIZATION VIA RANDOMLY GEOMETRIC
TEC-04.5: A NOVEL CENTROID UPDATE APPROACH FOR CLUSTERING-BASED
TEC-04.6: LOSS RESCALING BY UNCERTAINTY INFERENCE FOR SINGLE-STAGE

TEC-04.7: GAPNET: GENERIC-ATTRIBUTE-POSE NETWORK FOR FINE-GRAINED	703
TEC-04.8: DESHUFFLEGAN: A SELF-SUPERVISED GAN TO IMPROVE STRUCTURELEARNING Gulcin Baykal, Gozde Unal, Istanbul Technical University, Turkey	708
TEC-04.9: SUBSET SAMPLING FOR PROGRESSIVE NEURAL NETWORK LEARNING Dat Thanh Tran, Moncef Gabbouj, Tampere University, Finland; Alexandros Iosifidis, Aarhus University, Denmark	. 713
TEC-04.10: EFFICIENT DETECTION OF PIXEL-LEVEL ADVERSARIAL ATTACKS	
TEC-04.11: HIERARCHICAL MODEL FOR LONG-LENGTH VIDEO SUMMARIZATION	. 723
TEC-04.12: ROBUST ADVERSARIAL LEARNING FOR SEMI-SUPERVISED SEMANTICSEGMENTATION Jia Zhang, Zhixin Li, Canlong Zhang, Guangxi Normal University, China; Huifang Ma, Northwest Normal University, China	.728
TEC-04.13: INPUT DROPOUT FOR SPATIALLY ALIGNED MODALITIES	. 733
TEC-04.14: SELF-SUPERVISED LEARNING OF DEPTH AND POSE USING CYCLE	738
TEC-04.15: WEAKLY-SUPERVISED DEFECT SEGMENTATION WITHIN VISUAL	. 743
TEC-04.16: ATTENTION SELECTIVE NETWORK FOR FACE SYNTHESIS AND	
TEC-04.17: CONTINUAL LEARNING OF PREDICTIVE MODELS IN VIDEO	. 753
TEC-04.18: CHANNELSPATIAL FUSION AWARE NET FOR ACCURATE AND FAST	
TEC-04.19: UNPRIORTIZED AUTOENCODER FOR IMAGE GENERATION	763
TEC-04.20: FEATURE ENHANCEMENT AND FUSION FOR IMAGE-BASED PARTICLE	. 768
TEC-04.21: DEEP MULTIMODAL SPARSE REPRESENTATION-BASED CLASSIFICATION	. 773

TEC-05: MACHINE LEARNING FOR IMAGE AND VIDEO PROCESSING III

TEC-05.1: A SIAMESE NETWORK UTILIZING IMAGE STRUCTURAL DIFFERENCES
TEC-05.2: CHROMA INTRA PREDICTION WITH ATTENTION-BASED CNN
TEC-05.3: ART2CONTOUR: SALIENT CONTOUR DETECTION IN ARTWORKS USING
TEC-05.4: PREDICTIVE CODING NETWORKS MEET ACTION RECOGNITION
TEC-05.5: INTERPRETING CNN FOR LOW COMPLEXITY LEARNED SUB-PIXEL
TEC-05.6: BOUNDARY OF DISTRIBUTION SUPPORT GENERATOR (BDSG): SAMPLE
TEC-05.7: TRIPLET DISTILLATION FOR DEEP FACE RECOGNITION
TEC-05.8: SINGLE ARCHITECTURE AND MULTIPLE TASK DEEP NEURAL
TEC-05.9: CORNET: COMPOSITE-REGULARIZED NEURAL NETWORK FOR
TEC-05.10: FAKE VIDEO DETECTION WITH CERTAINTY-BASED ATTENTION
TEC-05.11: SEGMENTING UNSEEN INDUSTRIAL COMPONENTS IN A HEAVY
TEC-05.12: DATA AUGMENTATION USING ARTIFICIAL IMMUNE SYSTEMS FOR
TEC-05.13: CONVOLUTIONAL ATTENTION MODEL FOR RESTAURANT

TEC-05.14: ROBUST STRUCTURED DICTIONARY LEARNING FOR BLOCK SPARSE	. 843
TEC-05.15: BIOLOGICALLY INSPIRED HEXAGONAL DEEP LEARNING FOR	. 848
TEC-05.16: MASKPAN: MASK PRIOR GUIDED NETWORK FOR PANSHARPENING	. 853
TEC-05.17: JITTER-ROBUST VIDEO RETARGETING WITH KALMAN FILTER AND	. 858
TEC-05.18: LEGENDRE BASED ADAPTIVE IMAGE SEGMENTATION COMBINING THE	
TEC-05.19: JOINT IMAGE SUPER-RESOLUTION VIA RECURRENT	. 868
TEC-08: RESTORATION AND ENHANCEMENT I	
TEC-08.1: BLIND IMAGE DEBLURRING WITH JOINT EXTREME CHANNELS AND	. 873
TEC-08.2: A SIMPLE YET EFFECTIVE PIPELINE FOR RADIAL DISTORTION	. 878
TEC-08.3: WAVELET CHANNEL ATTENTION MODULE WITH A FUSION NETWORK	. 883
TEC-08.4: HIGH RESOLUTION DEMOIRE NETWORK	. 888
TEC-08.5: AN EFFICIENT UNDERWATER IMAGE ENHANCEMENT MODEL WITH	. 893
TEC-08.6: FROM PLANETSCOPE TO WORLDVIEW: MICRO-SATELLITE IMAGE	. 898
TEC-08.7: LEARNING DISCRIMINATIVE REPRESENTATION FOR FACIAL	. 903
TEC-08.8: PAN-SHARPENING WITH COLOR-AWARE PERCEPTUAL LOSS AND	. 908

TEC-08.9: DEFORMABLE SPATIAL PROPAGATION NETWORKS FOR DEPTH
TEC-08.10: DEEP MORPHOLOGICAL FILTER NETWORKS FOR GAUSSIAN
TEC-08.11: FEATURE AGGREGATION ATTENTION NETWORK FOR SINGLE IMAGE
TEC-08.12: MOTION BLUR PRIOR
TEC-08.13: MULTI-SCALE FEATURES JOINT RAIN REMOVAL FOR SINGLE IMAGE
TEC-08.14: BLOCK DISTRIBUTED 3MG ALGORITHM AND ITS APPLICATION TO 3D
TEC-08.15: KERNEL REGULARIZATION FOR IMAGE RESTORATION
TEC-08.16: FEW-CLASS LEARNING FOR IMAGE-CLASSIFICATION-AWARE DENOISING
TEC-08.17: SUPER-RESOLUTION BY IMAGE ENHANCEMENT USING TEXTURE
TEC-09: RESTORATION AND ENHANCEMENT II
TEC-09.1: HISTOGRAM SPECIFICATION-BASED IMAGE ENHANCEMENT FOR
TEC-09.2: UNSUPERVISED CONDITIONAL DISENTANGLE NETWORK FOR IMAGE
TEC-09.3: ROBUST INTENSITY IMAGE RECONSTRUCITON BASED ON EVENT
TEC-09.4: MULTI-IMAGE BLIND DEBLURRING USING A SMOOTHED NUV PRIOR
TEC-09.5: PROBABILISTIC COLOR CONSTANCY
Firas Laakom, Jenni Raitoharju, Tampere University, Finland; Alexandros Iosifidis, Aarhus University, Denmark; Uygar Tuna, Jarno Nikkanen\$. Xiaomi, Finland: Moncef Gabboui, Tampere University, Finland

TEC-10.4: OPTIMIZED COLOR CONTRAST ENHANCEMENT FOR DICHROMATS
TEC-10.5: ABC-NET: AVOIDING BLOCKING EFFECT & COLOR SHIFT NETWORK
TEC-10.6: UPRIGHT ADJUSTMENT WITH GRAPH CONVOLUTIONAL NETWORKS
TEC-10.7: HYPERSPECTRAL UNMIXING VIA PLUG-AND-PLAY PRIORS
TEC-10.8: IMAGE DEHAZING WITH CONTEXTUALIZED ATTENTIVE U-NET
TEC-10.9: UNPAIRED IMAGE DENOISING
TEC-10.10: TENSOR-BASED LIGHT FIELD DENOISING BY EXPLOITING
TEC-10.11: CAST-GAN: LEARNING TO REMOVE COLOUR CAST FROM
TEC-10.12: IMAGE INPAINTING USING PARALLEL NETWORK
TEC-10.13: PAN-SHARPENING BASED ON JOINT SALIENCY DETECTION FOR
COM-02: LOSSLESS AND CHANNEL CODING OF IMAGES & VIDEO
COM-02.1: ROBUST H.264 VIDEO DECODING USING CRC-BASED SINGLE ERROR
COM-02.2: LOSSLESS VIDEO CODING BASED ON PROBABILITY MODEL
COM-02.3: MODIFIED DECODING METRIC OF DISTRIBUTED ARITHMETIC
COM-02.4: CHANNEL-WISE PROGRESSIVE LEARNING FOR LOSSLESS IMAGE1113 COMPRESSION
Hochang Rhee, Yeong Il Jang, Seoul National University, Republic of Korea; Seyun Kim, VUNO Inc., Republic of Korea; Nam Ik Cho, Seoul National University, Republic of Korea

COM-02.5: A FAST LOSSLESS IMPLEMENTATION OF THE INTRA SUBPARTITION1118 MODE FOR VVC
Santiago De-Luxán-Hernández, Gayathri Venugopal, Valeri George, Heiko Schwarz, Detlev Marpe, Thomas Wiegand, Fraunhofer HHI, Germany
COM-05: LOSSY CODING OF IMAGES & VIDEO
COM-05.1: DEEP VIRTUAL REFERENCE FRAME GENERATION FOR MULTIVIEW1123 VIDEO CODING
Jianjun Lei, Zongqian Zhang, Tianjin University, China; Dong Liu, University of Science and Technology of China, China; Ying Chen, Alibaba Group, China; Nam Ling, Santa Clara University, United States
COM-05.2: COMPRESSIVE SENSED VIDEO CODING HAVING JPEG1128 COMPATIBILITY
Evgeny Belyaev, ITMO University, Russian Federation
COM-05.3: CCALF COEFFICIENT DERIVATION USING COMBINED NEIGHBORS
COM-05.4: TWO-STEP PROGRESSIVE INTRA PREDICTION FOR VERSATILE VIDEO1137
CODING Meng Lei, Falei Luo, Peking University, China; Xinfeng Zhang, University of Chinese Academy of Sciences, China; Shanshe Wang, Siwei Ma, Peking University, China
COM-05.5: A NON-LOCAL MEAN TEMPORAL FILTER FOR VIDEO COMPRESSION
COM-05.6: ON INTRA VIDEO CODING AND IN-LOOP FILTERING FOR NEURAL1147 OBJECT DETECTION NETWORKS
Kristian Fischer, Christian Herglotz, André Kaup, Friedrich-Alexander-University Erlangen-Nürnberg, Germany
COM-05.7: CODING OF NON-RECTANGULAR SIGNALS WITH BLOCK-BASED
Priyanka Das, Nicolas Horst, Mathias Wien, RWTH Aachen University, Germany
COM-05.8: MERGE MODE WITH MOTION VECTOR DIFFERENCE
COM-05.9: A TEMPORAL PRE-FILTER FOR VIDEO CODING BASED ON BILATERAL
COM-05.10: REAL-TIME IMPLEMENTATION OF SCALABLE HEVC ENCODER
COM-05.11: ENCODING HIGH-THROUGHPUT JPEG2000 (HTJ2K) IMAGES ON A GPU
COM-05.12: RATE CONTROL FOR VERSATILE VIDEO CODING
COM-05.13: REGION-BASED PREDICTORS FOR INTRA BLOCK COPY
COM-05.14: MEMORY ASSESSMENT OF VERSATILE VIDEO CODING

COM-05.15: BLOCK-SIZE DEPENDENT OVERLAPPED BLOCK MOTION
COM-05.16: OPTIMIZATION OF MOTION COMPENSATION BASED ON GPU AND
COM-05.17: JUST NOTICEABLE QUANTIZATION LEVELS FOR HIGH DYNAMIC
COM-05.18: ANIMATED GIF OPTIMIZATION BY ADAPTIVE COLOR LOCAL TABLE
COM-05.19: A NOVEL CHROMA REPRESENTATION FOR IMPROVED HDR VIDEO
COM-05.20: ADAPTIVE SECONDARY TRANSFORM FOR IMPROVED IMAGE CODING
COM-05.21: EDGE ORIENTED HIERARCHICAL MOTION ESTIMATION FOR VIDEO
COM-04: IMAGE & VIDEO NETWORKS AND STREAMING
COM-04.1: HIGH EFFICIENCY LIVE VIDEO STREAMING WITH FRAME DROPPING
COM-04.2: DEEPMPC: A MIXTURE ABR APPROACH VIA DEEP LEARNING AND MPC
COM-04.3: IMPORTANT SCENE DETECTION OF BASEBALL VIDEOS VIA TIME-LAG
COM-03: IMAGE & VIDEO PROCESSING FOR WATERMARKING AND SECURITY
COM-03.1: UNIVERSAL ADVERSARIAL ATTACK VIA ENHANCED PROJECTED
COM-03.2: FUNDAMENTAL LIMITS OF STEGANOGRAPHIC CAPACITY FOR
COM-03.3: TOWARD RELIABLE MODELS FOR AUTHENTICATING MULTIMEDIA

COM-03.4: FAKE GENERATED PAINTING DETECTION VIA FREQUENCY ANALYSIS
Academy of Sciences, China; Yunhong Wang, Beihang University, China
COM-03.5: INFORMATION HIDING IN IMAGE ENHANCEMENT
Simying Ong, University of Malaya, Malaysia; KokSheik Wong, Monash University Malaysia, Malaysia
COM-03.6: A MODIFIED FOURIER-MELLIN APPROACH FOR SOURCE DEVICE
Sara Mandelli, Politecnico di Milano, Italy; Fabrizio Argenti, University of Florence, Italy; Paolo Bestagini, Politecnico di Milano, Italy; Massimo Iuliani, Alessandro Piva, University of Florence, Italy; Stefano Tubaro, Politecnico di Milano, Italy
COM-01: MACHINE LEARNING FOR IMAGE AND VIDEO COMPRESSION
COM-01.1: DEVELOPMENT OF NEW FRACTAL AND NON-FRACTAL DEEP RESIDUAL
Alireza Esmaeilzehi, M. Omair Ahmad, M.N.S. Swamy, Concordia University, Canada
COM-01.2: AUGMENTING JPEG2000 WITH WAVELET COEFFICIENT PREDICTION
COM-01.3: SEMANTIC-PRESERVING IMAGE COMPRESSION
Koolagudi, NIT Karnataka, India
COM-01.4: RATE DISTORTION OPTIMIZATION OVER LARGE SCALE VIDEO
CORPUS WITH MACHINE LEARNING Sam John, Akshay Gadde, Balu Adsumilli, Google, United States
COM-01.5: ASYMMETRIC CONVOLUTIONAL RESIDUAL NETWORK FOR AV1 INTRA
IN-LOOP FILTERING Jiangyue Xia, Jiangtao Wen, Tsinghua University, China
COM-01.6: MULTI-MODE INTRA PREDICTION FOR LEARNING-BASED IMAGE
Henrique Costa Jung, Nilson Donizete Guerin Jr, Raphael Soares Ramos, Bruno Macchiavello, Eduardo Peixoto, Edson Mintsu Hung, Teofilo de Campos, Universidade de Brasilia, Brazil; Renam Castro da Silva, Vanessa Testoni, Pedro Garcia Freitas, Samsung R&D Institute Brazil, Brazil
COM-01.7: SHRINKAGE AS ACTIVATION FOR LEARNED IMAGE COMPRESSION
COM-01.8: PARAMETRIC GRAPH-BASED SEPARABLE TRANSFORMS FOR VIDEO
Hilmi E. Egilmez, Qualcomm Technologies, Inc., United States; Oguzhan Teke, California Institute of Technology, United States; Amir Said, Vadim Seregin, Marta Karczewicz, Qualcomm Technologies, Inc., United States
COM-01.9: END-TO-END RATE-DISTORTION OPTIMIZATION FOR BI-DIRECTIONAL
COM-01.10: YOCO: LIGHT-WEIGHT RATE CONTROL MODEL LEARNING

ARS-01: IMAGE & VIDEO BIOMETRIC ANALYSIS

ARS-01.1: ROBUST VIDEO FACIAL AUTHENTICATION WITH UNSUPERVISED MODE DISENTANGLEMENT	1321
Minsu Kim, Hong Joo Lee, Sangmin Lee, Yong Man Ro, Korea Advanced Institute of Science and Technology (KAIST), Rep of Korea	vublic
ARS-01.2: FEATURE EXTRACTION FOR VISUAL SPEAKER AUTHENTICATION AGAINSTCOMPUTER-GENERATED VIDEO ATTACKS	
Jun Ma, Shilin Wang, Aixin Zhang, Shanghai Jiaotong University, China; Alan Wee-Chung Liew, Griffith University, Austra	alia
ARS-01.3: DEEP PERSON IDENTIFICATION USING SPATIOTEMPORAL FACIAL	1331
Konstantinos Gkentsidis, Theodora Pistola, Nikolaos Mitianoudis, Democritus University of Thrace, Greece; Nikolaos V. Boulgouris, Brunel University London, United Kingdom	
ARS-01.4: CNN PATCH POOLING FOR DETECTING 3D MASK PRESENTATION	1336
Ketan Kotwal, Sébastien Marcel, Idiap Research Institute, Switzerland	
ARS-01.5: QUICKEST INTRUDER DETECTION FOR MULTIPLE USER ACTIVEAUTHENTICATION	
Pramuditha Perera, Johns Hopkins University, United States; Julian Fierrez, Universidad Autonoma de Madrid, France; V Patel, Johns Hopkins University, United States	'ishal
ARS-01.6: INTENSITY ENHANCEMENT VIA GAN FOR MULTIMODAL FACIAL EXPRESSION RECOGNITION	
Kangkang Zhu, Yunhong Wang, Hongyu Yang, Di Huang, Beihang University, China; Liming Chen, Ecole Centrate de Lyon France	n,
ARS-01.7: UNSUPERVISED PRE-TRAINED, TEXTURE AWARE AND LIGHTWEIGHT MODEL FOR DEEP LEARNING BASED IRIS RECOGNITION UNDER LIMITED ANNOTATED DATA	1351
Manashi Chakraborty, Mayukh Roy, Prabir Kumar Biswas, Pabitra Mitra, Indian Institute Of Technology Kharagpur, India	а
ARS-01.8: CASCADED NONLINEAR SHAPE MODEL REGRESSION	1356
Pedro Martins, Bruno Silva, Jorge Batista, Institute of Systems and Robotics, University of Coimbra, Portugal, Portugal	
ARS-01.9: UNCONSTRAINED PERIOCULAR RECOGNITION: USING GENERATIVE DEEP LEARNING FRAMEWORKS FOR ATTRIBUTE NORMALIZATION	1361
Luiz A. Zanlorensi, Federal University of Paraná, Brazil; Hugo Proença, University of Beira Interior, Portugal; David Med Federal University of Paraná, Brazil	notti,
ARS-01.10: ADAPTIVE AGGREGATED TRACKLET LINKING FOR MULTI-FACETRACKING	1366
Samadhi Wickrama Arachchilage, Ebroul Izquierdo, Queen Mary University of London, United Kingdom	
ARS-01.11: A STACKING ENSEMBLE FOR ANOMALY BASED CLIENT-SPECIFIC FACE	1371
Soroush Fatemifar, Muhammad Awais, Ali Akbari, Josef Kittler, University of Surrey, United Kingdom	
ARS-04: IMAGE & VIDEO INTERPRETATION AND UNDERSTANDING	
ARS-04.1: ACED: ACCURATE AND EDGE-CONSISTENT MONOCULAR DEPTH	1376
Kunal Swami, Prasanna Vishnu Bondada, Pankaj Kumar Bajpai, Samsung Research Institute Bangalore, India	

ARS-04.2: ROBUST AUDIO-VISUAL MANDARIN SPEECH RECOGNITION BASED ON
ARS-04.3: ACTIVITY NORMALIZATION FOR ACTIVITY DETECTION IN
ARS-04.4: TEMPORAL ACTION PROPOSAL GENERATION VIA DEEP FEATURE
ARS-04.5: VIDEO LOGO RETRIEVAL BASED ON LOCAL FEATURES
ARS-04.6: RETRIEVING AND HIGHLIGHTING ACTION WITH SPATIOTEMPORAL
ARS-04.7: GPU ACCELERATED POLAR FOURIER ANALYSIS FOR FEATURE
ARS-04.8: PRIOR VISUAL RELATIONSHIP REASONING FOR VISUAL QUESTION
ARS-04.9: FPHA-AFFORD: A DOMAIN-SPECIFIC BENCHMARK DATASET FOR
ARS-04.10: ESTIMATION OF IMPRESSION ASSOCIATED WITH PORTRAITS USING
ARS-04.11: TASK-ORIENTED MULTI-MODAL QUESTION ANSWERING FOR
ARS-04.12: DCM: A DENSE-ATTENTION CONTEXT MODULE FOR SEMANTIC
ARS-04.13: A CONTEXT-BASED NETWORK FOR REFERRING IMAGE
ARS-04.14: DEPTH ESTIMATION FROM SINGLE IMAGE AND SEMANTIC PRIOR

ARS-04.15: AN END-TO-END FRAMEWORK FOR POSE ESTIMATION OF OCCLUDED	
ARS-04.16: GRAPH MATCHING APPLIED FOR TEXTURED PATTERN RECOGNITION	
ARS-04.17: DIGGING HIERARCHICAL INFORMATION FOR VISUAL PLACE	1456
ARS-04.18: VISUAL RELATIONSHIP DETECTION WITH A DEEP CONVOLUTIONAL	1461
ARS-04.19: SPATIAL KEYFRAME EXTRACTION OF MOBILE VIDEOS FOR EFFICIENT OBJECT DETECTION AT THE EDGE George Constantinou, Cyrus Shahabi, Seon Ho Kim, University of Southern California, United States	1466
ARS-04.20: GSANET: SEMANTIC SEGMENTATION WITH GLOBAL AND SELECTIVE	1471
ARS-04.21: UNSUPERVISED VISUAL RELATIONSHIP INFERENCE	1476
ARS-04.22: VC-VQA: VISUAL CALIBRATION MECHANISM FOR VISUAL QUESTION	1481
ARS-15: IMAGE & VIDEO MID-LEVEL ANALYSIS	
ARS-15.1: JOINT-DISTRIBUTION AND GAIN RATE BASED SALIENCY MODEL FOR	1486
ARS-15.2: TINY-HOURGLASSNET: AN EFFICIENT DESIGN FOR 3D HUMAN POSE	
ARS-15.3: YOU ONLY NEED THE IMAGE: UNSUPERVISED FEW-SHOT SEMANTIC	1496
ARS-15.4: FDFLOWNET: FAST OPTICAL FLOW ESTIMATION USING A DEEP	1501
ARS-15.5: ALWAYS LOOK ON THE BRIGHT SIDE OF THE FIELD: MERGING POSE	

ARS-15.6: FAST PORTRAIT SEGMENTATION WITH HIGHLY LIGHT-WEIGHT NETWORK	1511
Yuezun Li, University at Albany, SUNY, United States; Ao Luo, University of Electronic Science and Technology of China, Ch. Siwei Lyu, University at Albany, SUNY, United States	hina;
ARS-15.7: REPRESENTATION RECONSTRUCTION HEAD FOR OBJECT DETECTION	1516
ARS-15.8: DRONE-BASED VEHICLE FLOW ESTIMATION AND ITS APPLICATION TO	
ARS-15.9: AN ENHANCED LOCAL TEXTURE DESCRIPTOR FOR IMAGE	1526
ARS-15.10: RSANET: DEEP RECURRENT SCALE-AWARE NETWORK FOR CROWD	1531
ARS-05: IMAGE & VIDEO STORAGE AND RETRIEVAL	
ARS-05.1: AN END-TO-END ADVERSARIAL HASHING METHOD FOR UNSUPERVISED	1536
ARS-05.2: COARSE-TO-FINE AGGREGATION FOR CROSS-GRANULARITY ACTION	1541
ARS-05.3: END-TO-END DEEP KERNEL MAP DESIGN FOR IMAGE ANNOTATION	1546
ARS-05.4: EXTENDING HASHING TOWARDS FAST RE-IDENTIFICATION	1551
ARS-05.5: DEEP SELF-LEARNING HASHING FOR IMAGE RETRIEVAL	1556
ARS-03: IMAGE & VIDEO SYNTHESIS, RENDERING, AND VISUALIZATION	
ARS-03.1: POSE GUIDED PERSON IMAGE GENERATION BASED ON POSE	
ARS-03.2: ACTIONET: AN INTERACTIVE END-TO-END PLATFORM FOR TASK-BASED	
ARS-03.3: EXTRAPOLATIVE-INTERPOLATIVE CYCLE-CONSISTENCY LEARNING	1571

ARS-03.4: UNSUPERVISED IMAGE DECOMPOSITION IN VECTOR LAYERS
ARS-03.5: REALISTIC TALKING FACE SYNTHESIS WITH GEOMETRY-AWARE
ARS-03.6: SINGLE IMAGE SUPER-RESOLUTION VIA RESIDUAL NEURON
ARS-03.7: GAIT: GRADIENT ADJUSTED UNSUPERVISED IMAGE-TO-IMAGE
ARS-03.8: ARBITRARY STYLE TRANSFER USING GRAPH INSTANCE NORMALIZATION
ARS-03.9: LEARNING CROSS-MODAL REPRESENTATIONS FOR LANGUAGE-BASED
ARS-03.10: HANDLOOM DESIGN GENERATION USING GENERATIVE NETWORKS
ARS-03.11: SDT: A SYNTHETIC MULTI-MODAL DATASET FOR PERSON DETECTION
ARS-03.12: NOVEL VIEW SYNTHESIS WITH SKIP CONNECTIONS
ARS-03.13: PARALLAX MOTION EFFECT GENERATION THROUGH INSTANCE
ARS-03.14: DISENTANGLING THE SPATIAL STRUCTURE AND STYLE IN
ARS-03.15: IMAGE COMPRESSION WITH LAPLACIAN GUIDED SCALE SPACE
ARS-03.16: LSRAGAN: GENERATING MULTIFARIOUS COLOR PHOTOGRAPHES FROM
ARS-03.17: COMPREHENSIVE FACIAL EXPRESSION SYNTHESIS USING

ARS-03.18: DEEP VIDEO PREDICTION THROUGH SPARSE MOTION	1646
ARS-03.19: EMPIRICAL ANALYSIS OF OVERFITTING AND MODE DROP IN GAN	1651
TRAINING Yasin Yazici, Nanyang Technological University, Singapore; Chuan-Sheng Foo, Institute for Infocomm Research, Singapore; Stefan Winkler, National University of Singapore, Singapore; Kim-Hui Yap, Nanyang Technological University, Singapore; Vij Chandrasekhar, Institute for Infocomm Research, Singapore	ijay
ARS-11: MACHINE LEARNING FOR IMAGE AND VIDEO CLASSIFICATION I	
ARS-11.1: NEURAL DISCRIMINANT ANALYSIS FOR FINE-GRAINED CLASSIFICATION	1656
ARS-11.2: TOWARDS MORE EFFICIENT AND EFFECTIVE INFERENCE: THE JOINT	
ARS-11.3: FPB: IMPROVING MULTI-SCALE FEATURE REPRESENTATION INSIDE	1666
ARS-11.4: TRANSDUCTIVE PROTOTYPICAL NETWORK FOR FEW-SHOT	1671
ARS-11.5: CIRCULAR SHIFT: AN EFFECTIVE DATA AUGMENTATION METHOD FOR	1676
ARS-11.6: ENCRYPTION INSPIRED ADVERSARIAL DEFENSE FOR VISUAL	1681
ARS-11.7: FEW-SHOT LEARNING WITH ATTENTION-WEIGHTED GRAPH	1686
ARS-11.8: CLASSIFYING DEGRADED IMAGES OVER VARIOUS LEVELS OF	1691
ARS-11.9: DEFORMABLE QUATERNION GABOR CONVOLUTIONAL NEURAL	1696
ARS-11.10: DEEP SUBCLASS LINEAR DISCRIMINANT ANALYSIS FOR MULTIMODAL FEATURE SPACE LEARNING Abin Jose, RWTH Aachen, Germany; Shen Yan, Mi Zhang, Michigan State University, United States; Jens-Rainer Ohm, RWT. Aachen, Germany	
ARS-11.11: ONE-TO-ONE PERSON RE-IDENTIFICATION FOR QUEUE TIME	1706

Nasrollahi, Aalborg University / Milestone Systems A/S, Denmark; Thomas Moeslund, Aalborg University, Denmark

ARS-12: MACHINE LEARNING FOR IMAGE AND VIDEO CLASSIFICATION II

ARS-12.1: DEEP ADVERSARIAL ACTIVE LEARNING WITH MODEL UNCERTAINTY	1711
ARS-12.2: COLLABORATIVE LEARNING OF SEMI-SUPERVISED CLUSTERING AND	
ARS-12.3: M-SOSANET: AN EFFICIENT CONVOLUTION NETWORK BACKBONE	
ARS-12.4: EMOTION TRANSFORMATION FEATURE: NOVEL FEATURE FOR	1726
ARS-12.5: UNKNOWN CLASS LABEL CLEANING FOR LEARNING WITH OPEN-SET	1731
ARS-12.6: CONTINUAL LOCAL TRAINING FOR BETTER INITIALIZATION OF	1736
ARS-12.7: CASCADED CONTEXT DEPENDENCY: AN EXTREMELY LIGHTWEIGHT	1741
ARS-12.8: SCW-SGD: STOCHASTICALLY CONFIDENCE-WEIGHTED SGD	1746
ARS-12.9: CHANNEL PRUNING VIA GRADIENT OF MUTUAL INFORMATION FORLIGHT-WEIGHT CONVOLUTIONAL NEURAL NETWORKS Min Kyu Lee, Seung Hyeon Lee, Sang Hyuk Lee, Byung Cheol Song, Inha University, Republic of Korea	1751
ARS-12.10: GOING DEEPER WITH NEURAL NETWORKS WITHOUT SKIP	1756
Oyebade Oyedotun, Abdelrahman Shabayek, Djamila Aouada, Bjorn Ottersten, University of Luxembourg, Luxembourg ARS-12.11: ATTENTION BOOSTED DEEP NETWORKS FOR VIDEO CLASSIFICATION Junyong You, Norwegian Research Centre (NORCE), Norway; Jari Korhonen, Shenzhen University, China	1761
ARS-12.12: SKETCHED SPARSE SUBSPACE CLUSTERING FOR LARGE-SCALE	1766
ARS-12.13: INCREMENTAL FAST SUBCLASS DISCRIMINANT ANALYSIS	1771
ARS-12.14: FEATURE COMPARISON BASED CHANNEL ATTENTION FOR	1776

ARS-13: MACHINE LEARNING FOR IMAGE AND VIDEO CLASSIFICATION III
ARS-13.1: MULTI-MODAL FUSION WITH OBSERVATION POINTS FOR SKELETON
ARS-13.2: MOTION REPRESENTATION USING RESIDUAL FRAMES WITH 3D CNN
ARS-13.3: LEARNING STYLE CORRELATION FOR ELABORATE FEW-SHOT
ARS-13.4: DIMENSIONALITY REDUCTION VIA DIFFUSION MAP IMPROVED WITH
ARS-13.5: GROUPED TEMPORAL ENHANCEMENT MODULE FOR HUMAN ACTION
ARS-13.6: STYLE EXTRACTOR FOR FACIAL EXPRESSION RECOGNITION IN THE
ARS-13.7: TRANSFER LEARNING FOR VIDEOS: FROM ACTION RECOGNITION TO
ARS-13.8: A STUDY OF ALIGNMENT MECHANISMS IN ADVERSARIAL DOMAIN
ARS-13.9: EXTRACTING DEEP LOCAL FEATURES TO DETECT MANIPULATED
ARS-13.10: ADAPTIVE CONVOLUTIONALLY ENCHANCED BI-DIRECTIONAL LSTM
ARS-13.11: SKELETON ACTION RECOGNITION BASED ON SINGULAR VALUE
ARS-13.12: GENDER RECOGNITION ON RGB-D IMAGE
ARS-13.13: MODEL UNCERTAINTY FOR UNSUPERVISED DOMAIN ADAPTATION
ARS-13.14: CLASS INCREMENTAL LEARNING WITH TASK-SELECTION
Eun Sung Kim, Jung Uk Kim, Sangmin Lee, Korea Advanced Institute of Science and Technology (KAIST), Republic of Korea; Sang-Keun Moon, Korea Electric Power Corporation (KEPCO) Research Institute, Republic of Korea; Yong Man Ro, Korea Advanced Institute of Science and Technology (KAIST), Republic of Korea

RECOGNITION
Zihan Ye, Fuyuan Hu, Suzhou University of Science and Technology, China; Ying Liu, Shanghai Institute of Technology, China; Zhenping Xia, Suzhou University of Science and Technology, China; Fan Lyu, Tianjin University, China; Pengqing Liu, Suzhou University of Science and Technology, China
ARS-14: MACHINE LEARNING FOR IMAGE AND VIDEO CLASSIFICATION IV
ARS-14.1: REVISITING ROLE OF AUTOENCODERS IN ADVERSARIAL SETTINGS
ARS-14.2: S6: SEMI-SUPERVISED SELF-SUPERVISED SEMANTIC SEGMENTATION
ARS-14.3: GRADIENT DECONFLICTION-BASED TRAINING FOR MULTI-EXIT
ARS-14.4: AN IMAGE-BASED METHOD TO PREDICT SURFACE ENHANCED RAMAN
ARS-14.5: KNOWLEDGE DISTILLATION INSPIRED FINE-TUNING OF TUCKER
ARS-14.6: SEMI-SUPERVISED MULTI-SPECTRAL LAND COVER CLASSIFICATION
ARS-14.7: WHERE IS THE EMOTION? DISSECTING A MULTI-GAP NETWORK FOR
ARS-14.8: MULTILEVEL INTERACTION REASONING FOR COMPLEX EVENT
ARS-14.9: THE GOOD, THE BAD, AND THE UGLY: NEURAL NETWORKS STRAIGHT
ARS-14.10: ANOMALOUS MOTION DETECTION ON HIGHWAY USING DEEP
ARS-14.11: FEW SHOT LEARNING FOR POINT CLOUD DATA USING MODEL
ARS-14.12: DEEP LEARNING BASED LANDMARK MATCHING FOR AERIAL

Missouri, Columbia, United States

ARS-09: EXPLAINABLE MACHINE LEARNING FOR COMPUTER VISION

ARS-09.1: HRINET: ALTERNATIVE SUPERVISION NETWORK FOR
ARS-09.2: INTERPRETABLE SYNTHETIC REDUCED NEAREST NEIGHBOR: AN
ARS-09.3: AIM-NET: BRING IMPLICIT EULER TO NETWORK DESIGN
ARS-09.4: MULTI-SCALE EXPLAINABLE FEATURE LEARNING FOR PATHOLOGICAL
ARS-09.5: SALIENCY-DRIVEN CLASS IMPRESSIONS FOR FEATURE VISUALIZATION
ARS-09.6: VARIATIONAL ENCODER-BASED RELIABLE CLASSIFICATION
ARS-09.7: HOUGHENCODER: NEURAL NETWORK ARCHITECTURE FOR
ARS-10: GRAPH SIGNAL PROCESSING FOR IMAGE AND VIDEO ANALYSIS
ARS-10.1: SELF-TRAINING OF GRAPH NEURAL NETWORKS USING SIMILARITY
ARS-10.2: EFFICIENT GRAPH CONSTRUCTION FOR IMAGE REPRESENTATION
ARS-10.3: FACIAL EXPRESSION RECOGNITION USING SPATIAL-TEMPORAL
ARS-19: MACHINE LEARNING FOR OBJECT DETECTION
ARS-19.1: TRIPLE ATTENTION FOR ROBUST VIDEO CROWD COUNTING
ARS-19.2: TOWARDS DOMAIN GENERALIZATION IN UNDERWATER OBJECT

ARS-19.3: TRAINING WITH CACHE: SPECIALIZING OBJECT DETECTORS FROM
ARS-19.4: MGPAN: MASK GUIDED PIXEL AGGREGATION NETWORK
ARS-19.5: RADAR+RGB FUSION FOR ROBUST OBJECT DETECTION IN
ARS-19.6: INFRARED TARGET DETECTION USING INTENSITY SALIENCY AND
ARS-19.7: A CONVLSTM-COMBINED HIERARCHICAL ATTENTION NETWORK FOR
ARS-19.8: KL-DIVERGENCE-BASED REGION PROPOSAL NETWORK FOR OBJECT
ARS-19.9: NOISY LOCALIZATION ANNOTATION REFINEMENT FOR OBJECT
ARS-19.10: CONTEXT-AWARE HIERARCHICAL FEATURE ATTENTION NETWORK FOR
ARS-19.11: DETECTING PROHIBITED ITEMS IN X-RAY IMAGES: A CONTOUR
ARS-19.12: ILLUMINATING VEHICLES WITH MOTION PRIORS FOR
ARS-19.13: TARGET DETECTION IN CLUTTERED ENVIRONMENTS USING
ARS-19.14: LOCALIZING FIREARM CARRIERS BY IDENTIFYING HUMAN-OBJECT
ARS-19.15: AUTOMATED OBJECT LABELING FOR CNN-BASED IMAGE
ARS-19.16: SCALE-INVARIANT MULTI-ORIENTED TEXT DETECTION IN WILD

ARS-19.17: SHAPE-ADAPTIVE KERNEL NETWORK FOR DENSE OBJECT DETECTION	46
ARS-16: MACHINE LEARNING FOR OBJECT TRACKING	
ARS-16.1: VISUAL TRACKING VIA TEMPORALLY-REGULARIZED CONTEXT-AWARE	51
ARS-16.2: END-TO-END TEMPORAL FEATURE AGGREGATION FOR SIAMESE	56
Zhenbang Li, Qiang Wang, Jin Gao, Bing Li, Weiming Hu, Institute of Automation, Chinese Academy of Sciences, China ARS-16.3: IOU - SIAMTRACK: IOU GUIDED SIAMESE NETWORK FOR VISUAL	61
Mohana Murali Dasari, Rama Krishna Sai Subrahmanyam Gorthi, Indian Institute of Technology, Tirupati, India	
ARS-16.4: GLOBALLY SPATIAL-TEMPORAL PERCEPTION: A LONG-TERM TRACKING	66
ARS-16.5: TRACKING HUNDREDS OF PEOPLE IN DENSELY CROWDED SCENES	
ARS-16.6: AN EFFECTIVE HIERARCHICAL RESOLUTION LEARNING METHOD FOR	76
ARS-16.7: RELIABLE TEMPORALLY CONSISTENT FEATURE ADAPTATION FOR	81
ARS-16.8: HOW INCOMPLETELY SEGMENTED INFORMATION AFFECTS	
ARS-16.9: FUSION OF SALIENCY MAP AND DEEP FEATURE-BASED CORRELATION	91
ARS-16.10: PRIVACY-AWARE EDGE COMPUTING SYSTEM FOR PEOPLE TRACKING	96
ARS-16.11: OBJECT TRACKING VIA IMAGENET CLASSIFICATION SCORES	01
ARS-16.12: BAE-NET: A BAND ATTENTION AWARE ENSEMBLE NETWORK FOR	,

ARS-16.13: DUAL-DIRECTION PERCEPTION AND COLLABORATION NETWORK FOR
ARS-16.14: HIGH PERFORMANCE VISUAL TRACKING WITH SIAMESE ACTOR-CRITIC211 NETWORK Dawei Zhang, Zhonglong Zheng, Zhejiang Normal University, China
ARS-17: MACHINE LEARNING FOR RECOGNITION IN IMAGES AND VIDEOS I
ARS-17.1: DISCRIMINATIVE CLIP MINING FOR VIDEO ANOMALY DETECTION
ARS-17.2: PROPOSAL-BASED INSTANCE SEGMENTATION WITH POINT
SUPERVISION Issam Laradji, University of British Columbia, Canada; Negar Rostamzadeh, Pedro Pinheiro, David Vazquez, Mark Schmidt, Element AI, Canada
ARS-17.3: CAM-UNET: CLASS ACTIVATION MAP GUIDED UNET WITH FEEDBACK
Dongyun Lin, Yiqun Li, Shitala Prasad, Tin Lay Nwe, Sheng Dong, Zaw Min Oo, Institute for Infocomm Research, Singapore
ARS-17.4: ATTENTION-ENHANCED AND MORE BALANCED R-CNN FOR OBJECT
ARS-17.5: QAMFACE: QUADRATIC ADDITIVE ANGULAR MARGIN LOSS FOR FACE
RECOGNITION He Zhao, Yongjie Shi, Tong Xin, Xianghua Ying, Hongbin Zha, Peking University, China
ARS-17.6: IMPROVING DETECTION AND RECOGNITION OF DEGRADED FACES BY
ARS-17.7: A GENERATIVE SELF-ENSEMBLE APPROACH TO
SIMULATED+UNSUPERVISED LEARNING Yu Mitsuzumi, NTT Corporation / Kyoto University, Japan; Go Irie, Akisato Kimura, NTT Corporation, Japan; Atsushi Nakazawa, Kyoto University, Japan
ARS-17.8: LEARNING DISENTANGLED FEATURE REPRESENTATIONS FOR ANOMALY
Wei-Yu Lee, MOXA Inc., Taiwan; Yu-Chiang Frank Wang, National Taiwan University, Taiwan
ARS-17.9: FACE RECOGNITION UNDER LOW ILLUMINATION VIA DEEP FEATURE
ARS-17.10: PAIRWISE ADJACENCY MATRIX ON SPATIAL TEMPORAL GRAPH
Taiwan ADC 17.11. HIST NOTICE ADLE DIFFERENCE FOR MACHINES TO CENEDATE 317
ARS-17.11: JUST NOTICEABLE DIFFERENCE FOR MACHINES TO GENERATE
Adil Kaan Akan, Mehmet Ali Genc, Fatos Tunay Yarman Vural, Middle East Technical University, Turkey

ARS-17.12: EFFICIENT TEMPORAL-SPATIAL FEATURE GROUPING FOR VIDEO	176
Zhikang Qiu, Xu Zhao, Shanghai Jiao Tong University, China	
ARS-17.13: SPEAKER-INDEPENDENT LIPREADING WITH LIMITED DATA	181
ARS-17.14: POINT SET ATTENTION NETWORK FOR SEMANTIC SEGMENTATION	186
ARS-17.15: MT-UNET: A NOVEL U-NET BASED MULTI-TASK ARCHITECTURE FOR	191
ARS-17.16: ADVERSARIAL DEFENSE VIA LOCAL FLATNESS REGULARIZATION	196
ARS-18: MACHINE LEARNING FOR RECOGNITION IN IMAGES AND VIDEOS II	
ARS-18.1: CNN-ASSISTED COVERINGS IN THE SPACE OF TILTS: BEST AFFINE	
ARS-18.2: SPATIO-TEMPORAL SLOWFAST SELF-ATTENTION NETWORK FOR	206
ARS-18.3: PENTADENT-NET: PEDESTRIAN ATTRIBUTE RECOGNITION WITH	
ARS-18.4: BUBBLENET: A DISPERSE RECURRENT STRUCTURE TO RECOGNIZE	216
ARS-18.5: TOWARDS ADAPTIVE SEMANTIC SEGMENTATION BY PROGRESSIVE	221
ARS-18.6: KERNELIZED DENSE LAYERS FOR FACIAL EXPRESSION RECOGNITION	f
ARS-18.7: DETECTION FEATURES AS ATTENTION (DEFAT): A KEYPOINT-FREE	231
ARS-18.8: SECURITY OF FACIAL FORENSICS MODELS AGAINST ADVERSARIAL	
ARS-18.9: ACTIVE IMAGE SAMPLING ON CANONICAL VIEWS FOR NOVEL OBJECT	241

ARS-18.10: LEARNING IMAGE AESTHETICS BY LEARNING INPAINTING
ARS-18.11: VISUAL RELATIONSHIP CLASSIFICATION WITH NEGATIVE-SAMPLE
Roberto de Moura Estevão Filho, José Gabriel Rodríguez Carneiro Gomes, Federal University of Rio de Janeiro, Brazil; Leonardo de Oliveira Nunes, Microsoft, Brazil
ARS-18.12: LEARNING ENHANCED RESOLUTION-WISE FEATURES FOR HUMAN
Kun Zhang, Peng He, Ping Yao, Institute of Computing Technology, Chinese Academy of Sciences, China; Min Du, Rui Wu, Horizon Robotics, China; Ge Chen, Institute of Computing Technology, Chinese Academy of Sciences, China; Huimin Li, Beijing Institute of Technology, China; Li Fu, Tianyao Zheng, Institute of Computing Technology, Chinese Academy of Sciences, China
ARS-06: MACHINE LEARNING FOR IMAGE AND VIDEO ANALYSIS AND RETRIEVAL I
ARS-06.1: SPACE-TIME GUIDED ASSOCIATION LEARNING FOR UNSUPERVISED
Chih-Wei Wu, Chih-Ting Liu, Wei-Chih Tu, National Taiwan University, Taiwan; Yu Tsao, Academia Sinica, Taiwan; Yu-Chiang Frank Wang, Shao-Yi Chien, National Taiwan University, Taiwan
ARS-06.2: SCENE-UNIFIED IMAGE TRANSLATION FOR VISUAL LOCALIZATION
ARS-06.3: RAILCAR DETECTION, IDENTIFICATION AND TRACKING FOR RAIL YARD 2271 MANAGEMENT
Ming-Ching Chang, University at Albany - SUNY, United States; Guangliang Zhao, GE Global Research Center, United States; Abhineet Kumar Pandey, Andrew Pulver, University at Albany - SUNY, United States; Peter Tu, GE Global Research Center, United States
ARS-06.4: FUSION TARGET ATTENTION MASK GENERATION NETWORK FOR
Yunyi Li, Peking University Shenzhen Graduate School, China; Yuan Li, Fangping Chen, Fan Yang, Huizhu Jia, Xiaodong Xie, Peking University, China
ARS-06.5: IDENTITY-INVARIANT FACIAL LANDMARK FRONTALIZATION FOR FACIAL
Vassilios Vonikakis, Advanced Digital Sciences Center (ADSC), Singapore; Stefan Winkler, National University of Singapore (NUS), Singapore
ARS-06.6: ANIMGAN: A SPATIOTEMPORALLY-CONDITIONED GENERATIVE
Maryam Sadat Mirzaei, Kourosh Meshgi, RIKEN AIP, Japan; Etienne Frigo, University of Savoie Mont Blanc, France, France
ARS-06.7: SEMANTICALLY SUPERVISED MAXIMAL CORRELATION FOR
ARS-06.8: INFRARED-VISIBLE PERSON RE-IDENTIFICATION VIA CROSS-MODALITY
ARS-06.9: CRVOS: CLUE REFINING NETWORK FOR VIDEO OBJECT
ARS-06.10: SUPERVISED MULTI-VIEW DISTRIBUTED HASHING
Yunpeng Tang, Xiaobo Shen, Zexuan Ji, Tao Wang, Peng Fu, Ouan-Sen Sun, Nanjing University of Science and Technology, China

ARS-06.11: LABEL PREDICTION FRAMEWORK FOR SEMI-SUPERVISED	11
Devraj Mandal, Indian Institute of Science, India; Pramod Rao, Saarland University, Germany; Soma Biswas, Indian Institute of Science, India	rf
ARS-06.12: LOOC: LOCALIZE OVERLAPPING OBJECTS WITH COUNT	16
Issam Laradji, Unversity of British Columbia, Canada; Rafael Pardinas, Pau Rodriguez, David Vazquez, Element AI, Canada	
ARS-06.13: ILLUMINATION ADAPTIVE PERSON REID BASED ON TEACHER-STUDENT	21
ARS-06.14: CROSS-MODAL RETRIEVAL WITH NOISY LABELS	26
ARS-07: MACHINE LEARNING FOR IMAGE AND VIDEO ANALYSIS AND RETRIEVAL II	
ARS-07.1: AN EVALUATION OF DESIGN CHOICES FOR PEDESTRIAN ATTRIBUTE	31
ARS-07.2: INTRA-CLIP AGGREGATION FOR VIDEO PERSON RE-IDENTIFICATION	36
ARS-07.3: A FEATURE PAIR FUSION AND HIERARCHICAL LEARNING FRAMEWORK	41
ARS-07.4: IMAGE COMPLETION AND EXTRAPOLATION WITH CONTEXTUAL CYCLE	46
ARS-07.5: MULTI BRANCH SIAMESE NETWORK FOR PERSON RE-IDENTIFICATION	51
ARS-07.6: OPEN-SET METRIC LEARNING FOR PERSON RE-IDENTIFICATION IN	56
ARS-07.7: CROSS-YEAR MULTI-MODAL IMAGE RETRIEVAL USING SIAMESE	61
ARS-07.8: SEMI-SUPERVISED GRAPH CONVOLUTIONAL HASHING NETWORK FOR	66
ARS-07.9: SEG-HASHNET: SEMANTIC SEGMENTATION BASED UNSUPERVISED	71
ARS-07.10: LEARNING DISCRIMINATIVE PART FEATURES THROUGH ATTENTIONS	76

ARS-07.11: DOMAIN ADAPTATION FOR LANE MARKING: AN UNSUPERVISED	2381
APPROACH Ammar Saqib, Sarah Sajid, Sheikh Mahad Arif, Amara Tariq, Nazim Ashraf, Forman Christian College (A Chartered Univer Pakistan	ersity),
ARS-08: MACHINE LEARNING FOR IMAGE AND VIDEO ANALYSIS AND RETRIEVAL III	[
ARS-08.1: SKINNY: A LIGHTWEIGHT U-NET FOR SKIN DETECTION ANDSEGMENTATION	2386
Tomasz Tarasiewicz, Jakub Nalepa, Michal Kawulok, Silesian University of Technology, Poland	
ARS-08.2: GRAPH PATTERN LOSS BASED DIVERSIFIED ATTENTION NETWORK FOR	
ARS-08.3: VIDEO SUMMARIZATION WITH ANCHORS AND MULTI-HEAD ATTENTION	2396
ARS-08.4: EDGE-GAN: EDGE CONDITIONED MULTI-VIEW FACE IMAGE	2401
ARS-08.5: HUMAN MOTION GENERATION BY STOCHASTIC CONDITIONING OF DEEP RECURRENT NETWORKS ON POSE MANIFOLDS Himanshu Buckchash, Balasubramanian Raman, IIT Roorkee, India	2406
ARS-08.6: JOINT STATISTICAL AND SPATIAL SPARSE REPRESENTATION FOR	2411
ARS-08.7: GRADIENTS AS A MEASURE OF UNCERTAINTY IN NEURAL NETWORKS	2416
ARS-08.8: SELF-SUPERVISED ANNOTATION OF SEISMIC IMAGES USING LATENT	
ARS-08.9: VARIATIONAL AUTOENCODER BASED UNSUPERVISED DOMAIN	2426
ARS-08.10: IMAGE RETRIEVAL WITH LINGUAL AND VISUAL PARAPHRASING VIA	2431
ARS-08.11: SCALE-INVARIANT SIAMESE NETWORK FOR PERSON	2436
ARS-08.12: COMPLEX SPATIAL-TEMPORAL ATTENTION AGGREGATION FOR VIDEO	2441
ARS-08.13: FEW-SHOT LEARNING FOR REMOTE SENSING IMAGE RETRIEVAL	2446

ARS-02: BIOMEDICAL AND BIOLOGICAL IMAGE ANALYSIS

ARS-02.1: SEMI-SUPERVISED MULTIMODALITY LEARNING WITH GRAPH
ARS-02.2: POLLEN13K: A LARGE SCALE MICROSCOPE POLLEN GRAIN IMAGE
ARS-02.3: NDDR-LCS: A MULTI-TASK LEARNING METHOD FOR CLASSIFICATION
ARS-02.4: MULTIMODAL IMAGE-TO-IMAGE TRANSLATION FOR GENERATION OF
ARS-02.5: FAST TUMOR DETECTOR IN WHOLE-SLIDE IMAGE WITH DYNAMIC
ARS-02.6: IMPROVING ROBUSTNESS USING JOINT ATTENTION NETWORK FOR
ARS-02.7: MULTI-SCALE FEATURE PYRAMIDS FOR WEAKLY SUPERVISED
ARS-02.8: AN ENHANCED DEEP LEARNING ARCHITECTURE FOR CLASSIFICATION
ARS-02.9: MODELING SHAPE DYNAMICS DURING CELL MOTILITY IN
ARS-02.10: SEA-NET: SQUEEZE-AND-EXCITATION ATTENTION NET FOR DIABETIC
ARS-02.11: GLEASON GRADING OF HISTOLOGY PROSTATE IMAGES THROUGH
ARS-02.12: QUANTIFYING ACTIN FILAMENTS IN MICROSCOPIC IMAGES USING

ARS-02.13: AUTOMATIC MEASUREMENT OF FETAL CAVUM SEPTUM PELLUCIDUM2511 FROM ULTRASOUND IMAGES USING DEEP ATTENTION NETWORK
Yuzhou Wu, Zhigang Chen, Central South University, China; Kuifang Shen, Xiangya Hospital, China; Jia Wu, Central South University, China
ARS-02.14: RTIP: A FULLY AUTOMATED ROOT TIP TRACKER FOR MEASURING
Deniz Kavzak Ufuktepe, Kannappan Palaniappan, University of Missouri Columbia, United States; Tobias Baskin, University of Massachusetts Amherst, United States
ARS-02.15: GENERATION OF VIEWED IMAGE CAPTIONS FROM HUMAN BRAIN
ARS-02.16: GLAUCOMA DETECTION FROM RAW CIRCUMPAPILLARY OCT IMAGES
ELI-01: ELECTRONIC IMAGING
ELI-01.1: TARGETED INCORPORATING SPATIAL INFORMATION IN SPARSE
ELI-01.2: DEEP LEARNING BASED CROSS-SPECTRAL DISPARITY ESTIMATION FOR
ELI-01.3: LOW LIGHT IMAGE ENHANCEMENT BY MULTISPECTRAL FUSION OF
RGB AND NIR IMAGES Junxue Zheng, Cheolkon Jung, Shengtao Yu, Xidian University, China
ELI-01.4: PLUG-AND-PLAY REGISTRATION AND FUSION
ELI-01.5: LOCAL GEOMETRY ANALYSIS FOR IMAGE TAMPERING DETECTION
ELI-01.6: CROSS-MODAL DEEP NETWORKS FOR DOCUMENT IMAGE
Souhail Bakkali, Zuheng Ming, Mickaël Coustaty, La Rochelle Université, France; Marçal Rusiñol, Universitat Autònoma de Barcelona, Spain
ELI-01.7: INK FLOW PATTERNS IN MULTI COLOR INKJET IMAGES AND THEIR
ELI-01.8: NEW DESIGN FOR COLOR SCREEN SETS FOR HIGH-END DIGITAL
Yitzhak Yitzhaky, Ben-Gurion University, Israel
ELI-01.9: MONOCHROME AND COLOR POLARIZATION DEMOSAICKING USING
ELI-01.10: THE SUPATLANTIQUE SCANNED DOCUMENTS DATABASE FOR DIGITAL
Chaima Ben Rabah, Gouenou Coatrieux, IMT Atlantique, France; Riadh Abdelfattah, Higher School of Communications, Tunisia

ELI-01.11: DIAG2GRAPH: REPRESENTING DEEP LEARNING DIAGRAMS IN RESEARCH
Corporate Technology, United States
3D-03: IMAGE AND VIDEO PROCESSING AUGMENTED AND VIRTUAL REALITY
3D-03.1: TRACK: A MULTI-MODAL DEEP ARCHITECTURE FOR HEAD MOTION
3D-03.2: OPEN AUGMENTED REALITY SYSTEM FOR MOBILE MARKERLESS
3D-03.3: JOINT DEMOSAICKING / RECTIFICATION OF FISHEYE CAMERA IMAGES
3D-03.4: DESCRIPTOR SCORING FOR FEATURE SELECTION IN REAL-TIME VISUAL
3D-02: LIGHT-FIELD IMAGE PROCESSING AND COMPRESSION
3D-02.1: HIERARCHICAL FOURIER DISPARITY LAYER TRANSMISSION FOR LIGHT
3D-02.2: FACE AUTHENTICATION FROM GRAYSCALE CODED LIGHT FIELD
3D-02.3: LIGHT FIELD STITCHING BASED ON CONCENTRIC SPHERICAL
3D-02.4: SOFT COLOUR SEGMENTATION ON LIGHT FIELDS
3D-02.5: ROBUST DEPTH ESTIMATION FROM MULTI-FOCUS PLENOPTIC IMAGES
3D-02.6: ROBUST LIGHT FIELD DEPTH ESTIMATION WITH OCCLUSION BASED
3D-02.7: A SPATIO-ANGULAR BINARY DESCRIPTOR FOR FAST LIGHT FIELD INTER
3D-06: MACHINE LEARNING IN 3D IMAGE AND VIDEO PROCESSING
3D-06.1: POINTVOTENET: ACCURATE OBJECT DETECTION AND 6 DOF POSE

3D-06.2: SEE THROUGH OCCLUSIONS: DETAILED HUMAN SHAPE ESTIMATIONFROM A SINGLE IMAGE WITH OCCLUSIONS	. 2646
Tianyi Zhang, Jin Wang, Qing Zhu, Beijing University of Technology, China; Baocai Yin, Dalian University of Technology, C	China
3D-06.3: FUSED GEOMETRY AUGMENTED IMAGES FOR ANALYZING TEXTURED MESH	
Bilal Taha, University of Toronto, Canada; Munawar Hayat, University of Canberra, Australia; Stefano Berretti, University Florence, Italy; Naoufel Werghi, Khalifa University, United Arab Emirates	of
3D-06.4: A DEEP LEARNING FRAMEWORK FOR 3D SURFACE PROFILING OF THE	
3D-06.5: 3D OBJECT DETECTION FOR AUTONOMOUS DRIVING USING TEMPORALLIDAR DATA Scott McCrae, Avideh Zakhor, University of California, Berkeley, United States	. 2661
3D-06.6: SURFACE HOF: SURFACE RECONSTRUCTION FROM A SINGLE IMAGE	. 2666
3D-06.7: IMPROVING 3D BRAIN TUMOR SEGMENTATION WITH PREDICT-REFINE	
3D-06.8: DUAL INDEPENDENT CLASSIFICATION FOR SKETCH-BASED 3D SHAPE	
3D-06.9: VARIATIONAL AUTO-ENCODERS WITHOUT GRAPH COARSENING FOR FINE	. 2681
3D-04: POINT CLOUD PROCESSING AND COMPRESSION	
3D-04.1: A SYNDROME-BASED AUTOENCODER FOR POINT CLOUD GEOMETRY	. 2686
3D-04.2: SILHOUETTE 4D: AN INTER-FRAME LOSSLESS GEOMETRY CODER OF	. 2691
3D-04.3: CSIOR: AN ALGORITHM FOR ORDERED TRIANGULAR MESH	
3D-04.4: ON PREDICTIVE RAHT FOR DYNAMIC POINT CLOUD CODING	. 2701
3D-04.5: VIDEO-BASED CODING OF VOLUMETRIC DATA	. 2706
3D-04.6: TPN: TOPOLOGICAL PERCEPTION NETWORK FOR 3D MESH	2711
Bingtao Ma, University of Chinese Academy of Sciences, China; Yang Cong, Chinese Academy of Sciences, China; Hongsen University of Chinese Academy of Sciences, China	ı Liu,

3D-04.7: FOLDMATCH: ACCURATE AND HIGH FIDELITY GARMENT FITTING ONTO
3D-04.8: FALSE POSITIVE REMOVAL FOR 3D VEHICLE DETECTION WITH
3D-04.9: REGION ADAPTIVE GRAPH FOURIER TRANSFORM FOR 3D POINT CLOUDS
3D-04.10: LOSSY POINT CLOUD GEOMETRY COMPRESSION VIA DYADIC
3D-04.11: SAMPLING OF 3D POINT CLOUD VIA GERSHGORIN DISC ALIGNMENT
3D-04.12: PVDECONV: POINT-VOXEL DECONVOLUTION FOR AUTOENCODING
3D-04.13: ADAPTIVE BLOCK PARTITIONING OF POINT CLOUDS FOR VIDEO-BASED
3D-04.14: POINT CLOUD SEGMENTATION USING RGB DRONE IMAGERY
3D-04.15: EXPLORING LONG-SHORT-TERM CONTEXT FOR POINT CLOUD
3D-05: STEREOSCOPIC AND MULTIVIEW PROCESSING AND DISPLAY
3D-05.1: STEREO DISPARITY ESTIMATION VIA JOINT SUPERVISED,
3D-05.2: 3D MULTI PERSON TRACKING WITH DUAL 360° CAMERAS
3D-05.3: GUIDED SPARSE FEATURE MATCHING VIA COARSELY DEFINED DENSE
3D-05.4: OCCLUSION-GUIDED VERTICAL RETARGETING FOR STEREOSCOPIC
3D-05.5: NOISE-SAMPLING CROSS ENTROPY LOSS: IMPROVING DISPARITY

3D-05.6: AUTOMATIC 3D CHARACTER RECONSTRUCTION FROM FRONTAL ANDLATERAL MONOCULAR 2D RGB VIEWS Alejandro Beacco, Jaime Gallego-Vila, Mel Slater, Eventlab. University of Barcelona, Spain	. 2785
3D-05.7: CONSTRAINED BUNDLE ADJUSTMENT APPLIED TO WING 3D	. 2790
3D-05.8: 3D IMAGING FOR THERMAL CAMERAS USING STRUCTURED LIGHT	
3D-05.9: A STUDY ON LIGHT FIELD DENOISING FOR 3D CONSISTENT	
3D-05.10: MOTION RECTIFICATION NETWORK FOR UNSUPERVISED LEARNING	. 2805
3D-05.11: SELF-ATTENTION DENSE DEPTH ESTIMATION NETWORK FOR	. 2810
3D-01: 3D IMAGE AND VIDEO ANALYSIS AND COMPRESSION	
3D-01.1: LOSSLESS COMPRESSION FOR VOLUMETRIC MEDICAL IMAGES USING DEEP NEURAL NETWORK WITH LOCAL SAMPLING Omniah Nagoor, Joss Whittle, Jingjing Deng, Benjamin Mora, Mark Jones, Swansea University, United Kingdom	. 2815
3D-01.2: SEMI-AUTOMATIC GENERATION OF TIGHT BINARY MASKS AND	v;
3D-01.3: DEPTH MAPS FAST SCALABLE COMPRESSION BASED ON CODING UNIT	. 2825
3D-01.4: REAL-TIME SEMANTIC SCENE COMPLETION VIA FEATURE AGGREGATION	. 2830
3D-01.5: 3D SPARSE DEFORMATION SIGNATURE FOR DYNAMIC FACE	
3D-01.6: DEEP REGRESSION FOREST WITH SOFT-ATTENTION FOR HEAD POSE	. 2840
3D-01.7: SEGMENTATION AND 3D RECONSTRUCTION OF NON-RIGID SHAPE	. 2845

IMT-02: COMPRESSED SENSING

IMT-02.1: MSR-HARDI: ACCELERATED RECONSTRUCTION OF HARDI DATA USING	
IMT-02.2: COMPRESSED HYPERSPECTRAL PANSHARPENING	355
IMT-02.3: LOW-RANK SUBSPACE REPRESENTATION FROM OPTIMAL	360
IMT-02.4: ADMM-INSPIRED RECONSTRUCTION NETWORK FOR COMPRESSIVE	365
IMT-02.5: DEEP SMOOTHED PROJECTED LANDWEBER NETWORK FOR	370
IMT-02.6: GENERALIZED FAST ITERATIVELY REWEIGHTED	375
IMT-02.7: CHANNEL SHUFFLE RECONSTRUCTION NETWORK FOR IMAGE	380
IMT-02.8: NON-CONVEX OPTIMIZATION FOR SPARSE INTERFEROMETRIC PHASE	385
IMT-01: LEARNING-BASED MODELS FOR COMPUTATIONAL IMAGING	
IMT-01.1: AN EFFICIENT ELLIPSE DETECTOR BASED ON REGION DETECTION	390
IMT-01.2: RESIDUAL ENCODER-DECODER NETWORK FOR DEEP SUBSPACE	395
IMT-01.3: MULTIPLE EVENTS DETECTION IN SEISMIC STRUCTURES USING A	
IMT-01.4: CONVOLUTIONAL NEURAL NETWORK PRUNING USING FILTER	005

IMT-01.5: A COMPARISON OF COMPRESSED SENSING AND DNN BASED
IMT-01.6: IMPLICIT SALIENCY IN DEEP NEURAL NETWORKS
IMT-01.7: LINEAR SPACE-INVARIANT SYSTEM IDENTIFICATION AND MISMATCH
IMT-03: SPARSE AND LOW RANK MODELS
IMT-03.1: ITERATIVE CAUCHY THRESHOLDING: REGULARISATION WITH A
IMT-03.2: EXPLORING HIGHLY EFFICIENT COMPACT NEURAL NETWORKS FOR
IMT-03.3: ACCELERATED 4D MR IMAGE RECONSTRUCTION USING JOINT HIGHER
IMT-03.4: ONE-SHOT LAYER-WISE ACCURACY APPROXIMATION FOR LAYER
IMT-03.5: CLASSIFICATION VIA SIMPLICIAL LEARNING
CIS-03: COMPUTATIONAL IMAGES PROCESSING AND ANALYSIS
CIS-03.1: KINSHIP VERIFICATION FROM GAIT?
CIS-03.2: OPTIMIZATION USING ARTIFICIAL IMMUNE SYSTEMS APPLIED TO
CIS-03.3: AUGMENTED REGION-GROWING-BASED MOTION TRACKING USING
CIS-03.4: NYQUIST PULSES FOR SUB-NYQUIST SAMPLING - APPLICATION TO
CIS-03.5: FLEXIBLE SPATIAL AND ANGULAR LIGHT FIELD SUPER RESOLUTION

CIS-03.6: NON-STATIONARY HYPERSPECTRAL FORWARD MODEL AND	975
Ralph Abi-rizk, François Orieux, Alain Abergel, Université Paris-Saclay, France	
CIS-04: MOBILE IMAGING AND PHOTOGRAPHY	
CIS-04.1: FAST MULTI-STAGE MOTION-COMPENSATED APPROACH FOR HDR	
CIS-04.2: PRECISE STATISTICAL APPROACH FOR LEAF SEGMENTATION	
CIS-04.3: A MULTIPLE ATTRIBUTES IMAGE QUALITY DATABASE FOR SMARTPHONE	990
CIS-04.4: LEARNING TO MODEL AND CALIBRATE OPTICS VIA A DIFFERENTIABLE	995
CIS-01: MEDICAL IMAGING: IMAGE FORMATION, RECONSTRUCTION, RESTORATION	
CIS-01.1: A GAN BASED MULTI-CONTRAST MODALITIES MEDICAL IMAGE	000
CIS-01.2: IPA-MEDGAN: INPAINTING OF ARBITRARY REGIONS IN MEDICAL	
CIS-01.3: SUPER GAUSSIAN PRIORS FOR BLIND COLOR DECONVOLUTION OF	010
CIS-01.4: SUPER-RESOLUTION OF 3D MRI CORRUPTED BY HEAVY NOISE WITH	015
CIS-01.5: OPENCC – AN OPEN BENCHMARK DATASET FOR CORPUS CALLOSUM	tute
CIS-02: TOMOGRAPHIC IMAGING	
CIS-02.1: HDR TOMOGRAPHY VIA MODULO RADON TRANSFORM	

CIS-02.2: ACCELERATED FBP FOR COMPUTED TOMOGRAPHY IMAGE	3030
Dolmatova Anastasiya, IITP RAS (Kharkevich Institute), Moscow, Russia, Russian Federation; Chukalina Marina, FSRC "Crystallography and Photonics", Moscow, Russia, Russian Federation; Nikolaev Dmitry, IITP RAS (Kharkevich Institute), Moscow, Russia, Russian Federation	,
CIS-02.3: ACCURATE TERAHERTZ IMAGING SIMULATION WITH RAY TRACING	3035
CIS-02.4: THE RADON TRANSFORM FOR TERAHERTZ COMPUTED TOMOGRAPHY	3040
CIS-02.5: NEWTON-KRYLOV METHODS FOR POLYCHROMATIC X-RAY CT	3045
CIS-02.6: OBJECT SEGMENTATION IN ELECTRICAL IMPEDANCE TOMOGRAPHY	3050
GSS-01: IMAGING HARDWARE AND SOFTWARE	
GSS-01.1: AN EFFICIENCY-DRIVEN APPROACH FOR REAL-TIME OPTICAL FLOW	3055
GSS-01.2: LIGHTWEIGHT NEURAL NETWORKS FROM PCA & LDA BASED DISTILLED DENSE NEURAL NETWORKS Mohamed El Amine Seddik, Hassane Essafi, Abdallah Benzine, Mohamed Tamaazousti, CEA, France	3060
GSS-01.3: DESIGN AND FPGA IMPLEMENTATION OF AN ADAPTIVE VIDEO	
GSS-01.4: REINFORCEMENT LEARNING-BASED LAYER-WISE QUANTIZATION FORLIGHTWEIGHT DEEP NEURAL NETWORKS Juri Jung, Jonghee Kim, Youngeun Kim, Changick Kim, Korea Advanced Institute of Science and Technology (KAIST), Reprof Korea	
GSS-01.5: AN EFFICIENT ACCELERATOR DESIGN METHODOLOGY FOR	3075
GSS-01.6: PIECEWISE POLYNOMIAL APPROXIMATION METHOD FOR	3080
GSS-01.7: ON-DEVICE EVENT FILTERING WITH BINARY NEURAL NETWORKS	3084
GSS-01.8: ZOOM IN TO THE DETAILS OF HUMAN-CENTRIC VIDEOS	

SS-03: ADVANCED IMAGE/VIDEO CODING FOR MACHINE VISION

SS-03.1: DATA REPRESENTATION IN HYBRID CODING FRAMEWORK FOR FEATURE
SS-03.2: DEEP FEATURE COMPRESSION WITH SPATIO-TEMPORAL ARRANGING
SS-03.3: CDVA/VCM: LANGUAGE FOR INTELLIGENT AND AUTONOMOUS
SS-03.4: RESIDUAL GUIDED DEBLOCKING WITH DEEP LEARNING
SS-03.5: SEMANTICALLY SCALABLE IMAGE CODING WITH COMPRESSION OF
SS-11: COMPLEXITY REDUCTION AND REAL TIME IMPLEMENTATIONS OF THE VERSATILE VIDEO CODING STANDARD
SS-11.1: COMPLEXITY ANALYSIS OF VVC INTRA CODING
SS-11.2: TOWARDS A LIVE SOFTWARE DECODER IMPLEMENTATION FOR THE
SS-11.3: QUALITY-DRIVEN DYNAMIC VVC FRAME PARTITIONING FOR EFFICIENT
SS-11.4: COMPLEXITY ANALYSIS OF NEXT-GENERATION VVC ENCODING AND
SS-11.5: CNN ORIENTED COMPLEXITY REDUCTION OF VVC INTRA ENCODER
SS-11.6: DECODING ENERGY MODELING FOR VERSATILE VIDEO CODING
SS-07: COMPUTATIONAL IMAGING WITH OPTICAL CODING
SS-07.1: NON-LINEAR 3D RECONSTRUCTION FOR COMPRESSIVE X-RAY

SS-07.2: BROADBAND HYPERSPECTRAL PHASE RETRIEVAL FROM NOISY DATA
SS-07.3: PHASE-CODED COMPUTATIONAL IMAGING FOR
SS-02: DEEP LEARNING FOR ROBOTIC PERCEPTION AND NAVIGATION
SS-02.1: APE: A MORE PRACTICAL APPROACH TO 6-DOF POSE ESTIMATION
SS-02.2: DIFFERENT COLOR SPACES IN DEEP LEARNING-BASED WATER
SS-02.3: DRONECAPS: RECOGNITION OF HUMAN ACTIONS IN DRONE VIDEOS
SS-02.4: NOVELTY DETECTION THROUGH MODEL-BASED CHARACTERIZATION
SS-02.5: GENERALIZED CRITIC POLICY OPTIMIZATION: A MODEL FOR
SS-02.6: CALIBRANK: EFFECTIVE LIDAR-CAMERA EXTRINSIC CALIBRATION BY
SS-02.7: PATHNET: LEARNING TO GENERATE TRAJECTORIES AVOIDING
SS-08: DYNAMIC BACKGROUND RECONSTRUCTION/SUBTRACTION FOR CHALLENGING ENVIRONMENTS
SS-08.1: DEEP AUTOENCODER ARCHITECTURES FOR FOREGROUND OBJECT
SS-08.2: DYNAMIC BACKGROUND SUBTRACTION USING LEAST SQUARE
SS-08.3: CS-RPCA: CLUSTERED SPARSE RPCA FOR MOVING OBJECT DETECTION

SS-08.4: REAL-TIME SEMANTIC BACKGROUND SUBTRACTION
Anthony Cioppa, Marc Van Droogenbroeck, Marc Braham, University of Liège, Belgium
SS-08.5: DUAL INFORMATION-BASED BACKGROUND MODEL FOR MOVING
SS-08.6: SEMI-SUPERVISED BACKGROUND SUBTRACTION OF UNSEEN VIDEOS:
Jhony Heriberto Giraldo Zuluaga, Thierry Bouwmans, La Rochelle Université, France
SS-08.7: RETHINKING BACKGROUND AND FOREGROUND IN DEEP NEURAL
SS-08.8: SUMMARIZING THE PERFORMANCES OF A BACKGROUND SUBTRACTION
SS-08.9: ON THE STRUCTURES OF REPRESENTATION FOR THE ROBUSTNESS
SS-12: EMERGING APPLICATIONS AND SYSTEMS FOR IMPROVING QUALITY-OF-LIFE IN ASSISTIVE ENVIRONMENTS
SS-12.1: A CROSS-MODAL VARIATIONAL FRAMEWORK FOR FOOD IMAGE ANALYSIS
SS-12.2: BUILDING PLACEMENTS IN URBAN MODELING USING CONDITIONAL
SS-12.3: CAMERA PLACEMENT MEETING RESTRICTIONS OF COMPUTER VISION
SS-12.4: HIDDEN MARKOV MODELLING AND RECOGNITION OF EULER-BASED
SS-12.5: MOTION ANALYSIS ON DEPTH CAMERA DATA TO QUANTIFY PARKINSON'S
Sofia Balula Dias, CIPER, Faculdade de Motricidade Humana, Universidade de Lisboa, Portugal; Athina Grammatikopoulou, Nikos Grammalidis, Information Technologies Institute, Centre for Research and Technology Hellas, Greece; José Alves Diniz, CIPER, Faculdade de Motricidade Humana, Universidade de Lisboa, Portugal; Theodore Savvidis, Evdokimos Konstantinidis, Panagiotis Bamidis, Lab of Medical Physics, Aristotle University of Thessaloniki (AUTH), Greece; Michael Stadtschnitzer, Fraunhofer Institute IAIS, Sankt Augustin, Germany; Dhaval Trivedi, International Parkinson Excellence Research Centre, King's College Hospital NHS Foundation Trust, United Kingdom; Lisa Klingelhoefer, Department of Neurology, Technical University Dresden, Germany; Zoe Katsarou, Third Neurological Clinic, G. Papanikolaou Hospital, AUTH, Thessaloniki, Greece, Greece; Sevasti Bostantzopoulou, Third Neurological Clinic, G. Papanikolaou Hospital, AUTH, Greece; Kosmas Dimitropoulos, Information Technologies Institute, Centre for Research and Technology Hellas, Greece

SS-13.1: SIDU: SIMILARITY DIFFERENCE AND UNIQUENESS METHOD FOR
SS-13.2: ROBUSTNESS AND OVERFITTING BEHAVIOR OF IMPLICIT
BACKGROUND MODELS
Shirley Liu, Charles Lehman, Ghassan AlRegib, Georgia Institute of Technology, United States
SS-13.3: ONLINE LEARNING FOR BETA-LIOUVILLE HIDDEN MARKOV MODELS:
· · · · · · · · · · · · · · · · · · ·
SS-13.4: TOWARDS HUMAN-LIKE INTERPRETABLE OBJECT DETECTION VIA
Jung Uk Kim, Sungjune Park, Yong Man Ro, Korea Advanced Institute of Science and Technology (KAIST), Republic of Korea
SS-13.5: CONTRASTIVE EXPLANATIONS IN NEURAL NETWORKS
SS-13.6: PIXELHOP++: A SMALL SUCCESSIVE-SUBSPACE-LEARNING-BASED
(SSL-BASED) MODEL FOR IMAGE CLASSIFICATION Yueru Chen, Mozhdeh Rouhsedaghat, University of Southern California, United States; Suya You, Raghuveer Rao, Army Research Laboratory, United States; CC. Jay Kuo, University of Southern California, United States
SS-13.7: DEEP-URL: A MODEL-AWARE APPROACH TO BLIND DECONVOLUTION
BASED ON DEEP UNFOLDED RICHARDSON-LUCY NETWORK Chirag Agarwal, Shahin Khobahi, Arindam Bose, Mojtaba Soltanalian, Dan Schonfeld, University of Illinois at Chicago, United States
SS-10: IMAGE TIME SERIES ANALYSIS FROM CONSTELLATIONS OF SATELLITES
SS-10.1: CLUSTER KERNEL FOR LEARNING SIMILARITIES BETWEEN
SYMMETRIC POSITIVE DEFINITE MATRIX TIME SERIES Sara Akodad, Lionel Bombrun, Yannick Berthoumieu, Christian Germain, IMS Bordeaux, France
Sura Akodda, Llonet Bomorun, Tannek Berthoumtea, Christian Germain, 1145 Bordedax, 1 Tance
SS-04: LEARNING-BASED PROCESSING OF 3D VISUAL DATA
SS-04.1: FOLDING-BASED COMPRESSION OF POINT CLOUD ATTRIBUTES
Maurice Quach, Giuseppe Valenzise, Frederic Dufaux, Universite Paris-Saclay, CNRS, CentraleSupelec, Laboratoire des signaux et systemes, France
SS-04.2: 3D POINT CLOUD ENHANCEMENT USING GRAPH-MODELLED
Xue Zhang, Gene Cheung, York University, Canada; Jiahao Pang, Dong Tian, InterDigital, United States
SS-04.3: POINTHOP++: A LIGHTWEIGHT LEARNING MODEL ON POINT SETS FOR
Min Zhang, Yifan Wang, Pranav Kadam, University of Southern California, United States; Shan Liu, Tencent America, United States; CC. Jay Kuo, University of Southern California, United States

SS-13: EXPLAINABLE MACHINE LEARNING FOR IMAGE PROCESSING

SS-01: NEURAL NETWORK-BASED VISUAL DATA COMPRESSION

SS-01.1: A STUDY OF PREDICTION METHODS BASED ON MACHINE LEARNING
SS-01.2: OPTIMIZED LIFTING SCHEME BASED ON A DYNAMICAL FULLY
SS-01.3: OPTIMIZED CONVOLUTIONAL NEURAL NETWORKS FOR VIDEO INTRA
SS-01.4: CHANNEL-WISE AUTOREGRESSIVE ENTROPY MODELS FOR LEARNED
SS-01.5: HYBRID LEARNING-BASED AND HEVC-BASED CODING OF LIGHT FIELDS
SS-01.6: END-TO-END LEARNING OF COMPRESSIBLE FEATURES
SS-01.7: POINT CLOUD GEOMETRY SCALABLE CODING WITH A SINGLE
SS-01.8: END-TO-END LEARNED IMAGE COMPRESSION WITH FIXED POINT
SS-01.9: EFFICIENT FIXED-POINT IMPLEMENTATION OF MATRIX-BASED INTRA
SS-01.10: SCALABLE LEARNED IMAGE COMPRESSION WITH A RECURRENT
SS-01.11: MACHINE LEARNING BASED SYMBOL PROBABILITY DISTRIBUTION
SS-01.12: GUIDED CNN RESTORATION WITH EXPLICITLY SIGNALED LINEAR

SS-06: NOVEL CODING TOOLS FOR THE NEXT GENERATION VIDEO CODING FORMAT
SS-06.1: PERCEPTUALLY INSPIRED WEIGHTED MSE OPTIMIZATION USING
Keng-Shih Lu, Antonio Ortega, University of Southern California, United States; Debargha Mukherjee, Yue Chen, Google, United States
SS-06.2: ON EXTENDED TRANSFORM PARTITIONS FOR THE NEXT GENERATION
SS-06.3: UNIFIED SECONDARY TRANSFORM FOR INTRA CODING BEYOND AV1
SS-06.4: VERSATILE VIDEO CODING OF 360° VIDEO USING ADAPTIVE
SS-06.5: ASYMPTOTIC CLOSED-LOOP DESIGN OF TRANSFORM MODES FOR THE
SS-06.6: IMPROVED INTRA CODING BEYOND AV1 USING ADAPTIVE PREDICTION
SS-05: OPTIMIZATION, QUALITY ASSESSMENT AND PERCEPTUAL MODELING FOR IMMERSIVE TECHNOLOGIES
SS-05.1: RANK-SMOOTHED PAIRWISE LEARNING IN PERCEPTUAL QUALITY
SS-05.2: A FRAMEWORK FOR ASSESSING RENDERING TECHNIQUES FOR
SS-05.3: PERCEPTUAL VERSUS LATITUDE-BASED 360-DEG VIDEO CODING
SS-05.4: QUALITY EVALUATION OF STATIC POINT CLOUDS ENCODED USING
SS-05.5: ESTIMATING VR SICKNESS CAUSED BY CAMERA SHAKE IN VR
SS-05.6: IMPROVING PSNR-BASED QUALITY METRICS PERFORMANCE FOR POINT

Instituto de Telecomunicações, Portugal

SS-05.7: MULTI-DISTANCE POINT CLOUD QUALITY ASSESSMENT
SS-05.8: TOWARDS VISUAL SALIENCY COMPUTATION ON 3D GRAPHICAL
SS-05.9: QUALITY EVALUATION OF DIGITAL HOLOGRAPHIC DATA ENCODED ON
SS-05.10: A FIXATION-BASED 360° BENCHMARK DATASET FOR SALIENT OBJECT
SS-05.11: CONTENT-DEPENDENCY REDUCTION WITH MULTI-TASK LEARNING IN
SS-05.12: STATISTICAL CONVOLUTION ON UNORDERED POINT SET
SS-09: SYNTHETIC APERTURE RADAR OF THE SEA SURFACE: MODELLING AND IMAGE ANALYSIS
SS-09.1: DETECTION OF SHIP WAKES IN SAR IMAGERY USING CAUCHY
SS-09.2: THE EFFECT OF SEA STATE ON SHIP WAKE DETECTABILITY IN