Amendments to the Claims

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1. (Currently Amended) A process for the production of an ¹⁸F-labelled tracer which comprises treatment of a solid support-bound precursor of formula (I):

Y

wherein the TRACER is of formula (A):

$$- \bigvee_{R^1 - N}^{H} O \qquad (A)$$

wherein Y^- is an anion, preferably trifluoromethylsulphonate (triflate) anion; and R^1 is either (i) a group CH-NP^{1A}P^{2A} in which P^{1A} and P^{2A} are each independently hydrogen or a protecting group, or (ii) a carbonyl group;

with ¹⁸F to produce the labelled tracer of formula (II)

$$^{18}F$$
 $\stackrel{\text{H}}{\underset{\text{H}}{\bigvee}}$ $\stackrel{\text{O}}{\underset{\text{H}}{\bigvee}}$ $\stackrel{\text{(II)}}{\underset{\text{H}}{\bigvee}}$

wherein R¹ is as defined for the compound of formula (I); optionally followed by:

- (i) removal of excess ¹⁸F⁻, for example by ion-exchange chromatography; and/or
- (ii) removal of any protecting groups; and/or
- (iii) removal of organic solvent; and/or

- (iv) formulation of the resultant compound of formula (II) as an aqueous solution.
- 2. (Currently Amended) A process according to claim 1 for the production of 5[¹⁸F]fluorouracil which comprises treatment of a solid support-bound precursor of formula (Ia):

wherein Y⁻ is an anion, preferably trifluoromethylsulphonate (triflate) anion; with ¹⁸F⁻ to produce the labelled tracer of formula (IIa)

$$^{18}F$$
 \sim ^{C-N}H N O (IIa)

optionally followed by:

- (i) removal of excess ¹⁸F⁻, for example by ion-exchange chromatography; and/or
- (ii) removal of organic solvent; and/or
- (iii) removal of any protecting groups; and/or
- (iv) formulation of the resultant compound of formula (IIa) as an aqueous solution.
- 3. (Withdrawn) A process according to claim 1 for the production of $5[^{18}F]$ fluorocytosine which comprises treatment of a solid support-bound precursor of formula (Ib):

SOLID SUPPORT-LINKER-I
$$^+$$

$$+C-N$$

$$+$$

or an amine protected derivative thereof, wherein Y^- is an anion, preferably trifluoromethylsulphonate (triflate) anion, P^{1A} and P^{2A} are independently hydrogen or a protecting group;

with ¹⁸F⁻ to produce the labelled tracer of formula (IIb)

or an amine protected derivative thereof, wherein P^{1A} and P^{2A} are as defined for the compound of formula (Ib), optionally followed by:

- (i) removal of excess ¹⁸F⁻, for example by ion-exchange chromatography; and/or
- (ii) removal of organic solvent; and/or
- (iii) removal of any protecting groups; and/or
- (iv) formulation of the resultant compound of formula (IIb) as an aqueous solution.
- 4. (Withdrawn) A process for the production of an ¹⁸F-labelled tracer which comprises treatment of a compound of formula (III), (IIIa), or (IIIb):

$$\begin{array}{c|c}
\hline
B \\
Y^{-}
\end{array}$$

$$\begin{array}{c|c}
H \\
N \\
H
\end{array}$$

$$\begin{array}{c|c}
H \\
O \\
(III)
\end{array}$$

$$\begin{array}{c|c}
 & Y \cdot & H \\
 & & N \\
 & & C - N \\
 & & H
\end{array}$$
(IIIa)

$$\begin{array}{c|c}
 & Y \\
\hline
 & Y \\
\hline
 & HC \\
 & HC \\
\hline
 & HC \\
\hline
 & HC \\
 & HC \\
\hline
 & HC \\
 & HC \\$$

or an amine protected derivative thereof, wherein R^1 , P^{2A} , P^{1A} , and Y^- are as defined in claim 1, and phenyl ring B is optionally substituted with one to five substituents independently selected from halo, C_{1-6} alkyl, C_{1-6} haloalkyl, hydroxy, C_{1-6} alkoxy, amino, C_{1-6} hydroxyalkyl, and nitro;

with ¹⁸F to produce the labelled tracer of formula (II), (IIa), or (IIb) respectively as defined in claims 1 to 3 or an amine protected derivative thereof, optionally followed by:

- (i) removal of excess ¹⁸F⁻, for example by ion-exchange chromatography; and/or
- (ii) removal of any protecting groups; and/or
- (iii) removal of organic solvent; and/or
- (iv) formulation of the resultant compound of formula (II), (IIa), or (IIb) as an aqueous solution.
- 5. (Currently Amended) A process for the production of a ¹⁸F-labelled tracer of formula (II), according to claim 1, for use in PET which comprises treatment of a solid support-bound precursor of formula (I):

Y

wherein the TRACER is of formula (A):

$$- \bigvee_{R^{1} = N \atop H} ^{H} O \qquad (A)$$

wherein Y^- is an anion, preferably trifluoromethylsulphonate (triflate) anion; and R^1 is either (i) a group CH–NP^{1A}P^{2A} in which P^{1A} and P^{2A} are each independently hydrogen or a protecting group, or (ii) a carbonyl group; wherein R^1 is as defined for the compound of formula (I); optionally followed by:

- (i) removal of excess ¹⁸F⁻, for example by ion-exchange chromatography; and/or
- (ii) removal of any protecting groups; and/or
- (iii) removal of organic solvent; and/or
- (iv) formulation of the resultant compound of formula (II) as an aqueous solution.
- 6. (Previously presented) A compound of formula (I):

$$SOLID\ SUPPORT\text{-}LINKER\text{-}I^{+}\text{-}TRACER \qquad (I)$$

 \mathbf{Y}^{-}

wherein the TRACER is of formula (A):

$$- \bigvee_{R^{1} = N}^{H} O \qquad (A)$$

wherein Y^- is an anion, preferably trifluoromethylsulphonate (triflate) anion; and R^1 is either (i) a group $CH-NP^{1A}P^{2A}$ in which P^{1A} and P^{2A} are each independently hydrogen or a protecting group, or (ii) a carbonyl group.

7. (Previously presented) A compound of formula (Ia):

wherein Y is an anion, preferably trifluoromethylsulphonate (triflate) anion.

8. (Withdrawn) A compound of formula (Ib):

SOLID SUPPORT-LINKER-I*
$$+C-N$$

or an amine protected derivative thereof, wherein Y^- is an anion, preferably trifluoromethylsulphonate (triflate) anion, P^{1A} and P^{2A} are independently hydrogen or a protecting group.

9. (Previously presented) A radiopharmaceutical kit for the preparation of an ¹⁸F-labelled tracer for use in PET, which comprises treatment of a solid support-bound precursor of formula (I):

Y

wherein the TRACER is of formula (A):

$$- \bigvee_{R^{1}-N}^{H} O \qquad (A)$$

wherein Y is an anion, preferably trifluoromethylsulphonate (triflate) anion; and

Appl. No. 10/538,904 Examiner's Interview of October 7, 2008

 R^1 is either (i) a group CH-NP^{1A}P^{2A} in which P^{1A} and P^{2A} are each independently hydrogen or a protecting group, or (ii) a carbonyl group;

wherein R¹ is as defined for the compound of formula (I); which comprises:

- (i) a vessel containing a compound of formula (I) and
- (ii) means for eluting the vessel with a source of ¹⁸F;
- (iii) an ion-exchange cartridge for removal of excess ¹⁸F⁻; and optionally
- (iv) a cartridge for solid-phase deprotection of the resultant product of formula (II), claim 1.
- 10. (Previously presented) A cartridge for a radiopharmaceutical kit for the preparation of an ¹⁸F-labelled tracer for use in PET which comprises treatment of a solid support-bound precursor of formula (I):

Y

wherein the TRACER is of formula (A):

$$- \bigvee_{\substack{N \\ R^{1}-N \\ H}} O \qquad (A)$$

wherein Y^- is an anion, preferably trifluoromethylsulphonate (triflate) anion; and R^1 is either (i) a group CH-NP^{1A}P^{2A} in which P^{1A} and P^{2A} are each independently hydrogen or a protecting group, or (ii) a carbonyl group;

wherein R^1 is as defined for the compound of formula (I); further wherein

- (i) a vessel containing a compound of formula (I), as defined in claim 1-and
- (ii) means for eluting the vessel with a source of ¹⁸F⁻.
- 11. (Withdrawn) A method for obtaining a diagnostic PET image which comprises the step of using a radiopharmaceutical kit according to claim 9.

Appl. No. 10/538,904 Examiner's Interview of October 7, 2008

12. (Previously presented) A method for obtaining a diagnostic PET image which comprises the step of using a cartridge for a radiopharmaceutical kit according to claim 10.