

Zaštitno kodiranje III – konvolucijsko kodiranje

Teorija informacije

Općeniti model konvolucijskog kodera

- konvolucijski koder izgrađen je od
 - posmačnih registara i logike (zbrajači u aritmetici modulo 2)

blok kodovi su bezmemorijski

koder za konvolucijski kôd (n, k, L)

Općeniti model konvolucijskog kodera (II)

- na ulazu podaci organizirani u okvire duljine k bita
- na svaki brid takta koji upravlja radom kodera k bita se pomiče u desno
- time je svaki put generirano n bita na izlazu, n > k
- takav odnos osigurava zalihost u kodu
- koder ima i memoriju, svaki slijed on n bita na izlazu ovisi o sadašnjem kao i o L-1 prethodnih ulaznih okvira, L>1
- L se naziva constraint length granična duljina kodera
 - kod komercijalnih kodera $L \le 10$
- za kodnu brzinu R vrijedi izraz: R = k/n
- primjer: k = 1, L = 3 i n = 2
- svaki bit s ulaza (k = 1) generira 2 bita na izlazu (n = 2)
- dakle, R = 1/2
- u praksi: k i n su mali cijeli brojevi, a L se mijenja u svrhu upravljanja redundancijom koda

Koder sa serijskim i paralelnim ulazom

- konvolucijski koderi, k = 2, n = 3
- a) paralelni ulaz
 - S/P serijsko-paralelna pretvorba slijeda bita
- b) serijski ulaz

Veze u koderu

- veze povezuju zbrajače i izlaze bistabila registra
 - te veze se ne odabiru proizvoljno
 - one utječu na udaljenost koda
 - dobri kodovi su pronađeni za sve *L* < 20
- za razliku od blok kodova, konvolucijski kodovi nemaju veličinu bloka
 - problem je što na kraju ulaznog slijeda treba dodati bitove u stanju nula kako bi se posmačni registar u koderu "očistio" od podatkovnih bita
 - dodane nule ne predstavljaju korisnu informaciju pa je R < k/n</p>

Sistematski i nesistematski koder

- a) sistematski koder (k = 1, n = 2)
 - ulazna k-torka pojavljuje se na izlazu kodera kao dio n-torke pridružene toj k-torci
 - smanjuje se Hammingova udaljenost između kodnih riječi
- b) nesistematski koder (k = 1, n = 2)

Primjer konvolucijskog kodera za k = 1 i n = 2

- primjer: konvolucijski koder, R = 1/2, L = 3
- na izlazu kodera je komutator (*switch*), tj. sklopka koja prvo uzme uzorak izlaza gornjeg zbrajača (bit $s_i^{(1)}$), a onda donjeg (bit $s_i^{(2)}$)
 - \blacksquare uzorkovanje se ponavlja za svaki ulazni bit d_i
 - od svakog bita d_i nastaju dva bita na izlazu: $s_i^{(1)}s_i^{(2)}$
 - izlaz ovisi o d_i kao i o d_{i-1} i d_{i-2} (zbog L=3)

Primjer rada kodera R = 1/2, L = 3

Primjer rada kodera R = 1/2, L = 3 (II)

- izlazni slijed s = 1110001011
- t₁ do t₆ su vremenski trenuci
- u t₄ i t₅ su na ulaz dovedeni simboli 0
 - dodane su L 1 = 2 nule
 - u t₅ je koder "očišćen"
 - bit nove poruke može doći na ulaz u t₆

Impulsni odziv kodera

- odziv kodera na bit 1 na njegovom ulazu
- ulazni slijed d = 100
- izlazni slijed s = 111011 impulsni odziv

d _i	B_0	B ₁	B ₂	s _i ⁽¹⁾	s _i ⁽²⁾
1	1	0	0	1	1
0	0	1	0	1	0
0	0	0	1	1	1

ullet impulsni odziv izlaza $s^{(1)}$ je 111, a izlaza $s^{(2)}$ 101

Impulsni odziv kodera (II)

- izlaz kodera na bilo koji ulazni slijed možemo promatrati kao superpoziciju vremenski pomaknutih impulsnih odziva
 - to pokazuje da su konvolucijski kodovi linearni
- primjer:

	1.111=	1	1	1		
101 a 111	0.111 =		0	0	0	
101*111:	$= \frac{0.111}{1.111} =$			1	1	1
	\sum	1	1	0	1	1

Ulaz d	Izlaz s					
1	11	10	11			
0		00	00	00		
1			11	10	11	
\oplus	1 1	v 10	+00	→ 10	→11	

- pri tome je na izlazu $s^{(1)}$ slijed 11011 to je konvolucija slijeda $\mathbf{d} = 101$ i slijeda 111, tj. impulsnog odziva od $s^{(1)}$
- isto vrijedi i za izlaz $s^{(2)}$: konvolucija slijeda $\mathbf{d}=101$ i slijeda 101, tj. impulsnog odziva od $s^{(2)}$ daje 10001

Impulsni odziv kodera (III)

- izlaz kodera je isti kao i na slajdu 9
- pokazuje da je konvolucijski kod linearan
 - izlaz kodera je konvolucija ulaznog slijeda i impulsnog odziva kodera – otuda i naziv
- u primjeru kodera sa slajda 7 vrijedi:
 - efektivna kodna brzina R = 3/10 < 1/2 (= k/n)
 - na primjer, za poruku duljine 300 bita, izlazna kodna riječ imala bi duljinu 604 bita
 - R = 300/604 puno bliže 1/2 od 3/10

Prikaz kodera pomoću vektora veza

- za koder se definira n vektora veza
- vektor veze = funkcijski generator (FG) h_i
 - *i*-ti izlaz $(1 \le i \le n)$, po jedan FG za svaki zbrajač
- uz serijski ulaz, svaki vektor ima dimenziju 1× *L·k*
 - za k = 1 potrebno n vektora, svaki dimenzije $1 \times L$
- $lackbox{10}{\hspace{-0.1cm}\blacksquare} h_j$ opisuje veze između izlaza bistabila posmačnog registra i j-tog zbrajača
 - simbol 1 na i-toj poziciji unutar vektora veza j-tog zbrajača označava da je izlaz i-tog bistabila posmačnog registra vezan na j-ti zbrajač
 - simbol 0 označava da takva veza ne postoji
- primjer (slajd 7): $\mathbf{h}^{(1)} = [1 \ 1 \ 1] i \ \mathbf{h}^{(2)} = [1 \ 0 \ 1]$
- $\mathbf{h}^{(1)}$ i $\mathbf{h}^{(2)}$ <u>impulsni odzivi</u> izlaza $s^{(1)}$, odnosno $s^{(2)}$

Prikaz kodera pomoću vektora veza (II)

- (za primjer sa slajda 7) ako je na ulazu kodera slijed **d**, izlazi su: $\mathbf{s}^{(1)} = \mathbf{d} * \mathbf{h}^{(1)}$, $\mathbf{s}^{(2)} = \mathbf{d} * \mathbf{h}^{(2)}$
 - pri čemu * označava konvoluciju u diskretnom vremenu
- cijeli izlazni slijed nastaje prepletanjem $\mathbf{s}^{(1)}$ i $\mathbf{s}^{(2)}$ $\mathbf{s} = \left(s_1^{(1)} s_1^{(2)} s_2^{(1)} s_2^{(2)} s_3^{(1)} s_3^{(2)} \dots\right)$
- operacija konvolucije je ekvivalentna množenju u domeni transformacije
- (<u>definicija</u>) *D*-transformacija: $f(D) = \sum_{i=0}^{\infty} f_i D^i$ • ovo je i dalje prikaz u vremenu

Prikaz kodera pomoću vektora veza (III)

- D označava jedinično kašnjenje T [s] koje uzrokuje bistabil u posmačnom registru
 - množenje s D je pomak za T [s], množenje s D² je pomak za 2T [s] itd.
- prijenosne funkcije impulsnih odziva su:
 - (slajd 7) $h^{(1)}(D)=1+D+D^2$, $h^{(2)}(D)=1+D^2$
- ◆ transformacije izlaza s⁽¹⁾ i s⁽²⁾ su:

$$s^{(1)}(D)=d(D)h^{(1)}(D), \quad s^{(2)}(D)=d(D)h^{(2)}(D)$$

transformacija ukupnog izlaza s je:

$$s(D)=s^{(1)}(D^2)+Ds^{(2)}(D^2)$$
 impulsni odziv kodera
za $d(D)=100$ $s(D)=1+D^2+D^4+D(1+D^4)=1+D+D^2+D^4+D^5$

Prikaz kodera pomoću vektora veza (IV)

$$s(D) = s^{(1)}(D^2) + Ds^{(2)}(D^2)$$

- objašnjenje izraza;
 - $s^{(1)}$ se množi s 1, a $s^{(2)}$ s D zato jer se radi o prepletanju tih izlaznih simbola, pa svaki simbol $s_i^{(2)}$ kasni za T vremena (množenje s D) u odnosu na relevantni simbol $s_i^{(1)}$
 - u izrazu se nalaze $s^{(1)}(D^2)$ i $s^{(2)}(D^2)$, a ne $s^{(1)}(D)$ i $s^{(2)}(D)$: s obzirom da se u ukupnom izlaznom slijedu **s** simboli $s_i^{(1)}$ pojavljuju naizmjenično sa simbolima $s_i^{(2)}$, to znači da su $s_i^{(1)}$ i $s_{i+1}^{(1)}$ međusobno razmaknuti za 2T vremena, isto vrijedi i za $s_i^{(2)}$
 - zato treba promatrati sljedove $f(D^2)$, tj. $s^{(1)}(D^2)$ i $s^{(2)}(D^2)$

Primjer prikaza pomoću vektora veza

- za primjer odziva kodera sa slajdova 10 i 11
- $\mathbf{d} = [1 \ 0 \ 1], \ d(D) = 1 + D^2$

$$h^{(1)}(D) = 1 + D + D^{2}, \quad h^{(2)}(D) = 1 + D^{2}$$

$$s^{(1)}(D) = d(D)h^{(1)}(D) = (1 + D^{2})(1 + D + D^{2}) = 1 + D + D^{3} + D^{4}$$

$$s^{(2)}(D) = d(D)h^{(2)}(D) = (1 + D^{2})(1 + D^{2}) = 1 + D^{4}$$

$$s(D) = s^{(1)}(D^{2}) + Ds^{(2)}(D^{2}) =$$

$$= 1 + D^{2} + D^{6} + D^{8} + D(1 + D^{8}) =$$

$$= 1 + D + D^{2} + D^{6} + D^{8} + D^{9}$$

što odgovara slijedu 11 10 00 10 11

Generirajuća matrica koda

- za generirajuću matricu koda G, ulazni slijed
 d i izlazni slijed s vrijedi: s = d·G
- konvolucijski koder je linearan
 - svaki bit s ulaza možemo promatrati kao samostalan ulazni simbol
 - odziv na više uzastopnih bitova je zbroj pomaknutih impulsnih odziva kodera
- za primjer kodera sa slajda 7:
 - neka su $\mathbf{h}^{(1)} = \left[h_1^{(1)} h_2^{(1)} h_3^{(1)} \right], \quad \mathbf{h}^{(2)} = \left[h_1^{(2)} h_2^{(2)} h_3^{(2)} \right]$
 - $h_j^{(m)}$ je j-ti bit u impulsnom odzivu izlaza $s^{(m)}$, $1 \le j \le 3$, $1 \le m \le 2$
 - na ulaz kodera slijed bita ... d_{i-2} d_{i-1} d_i d_{i+1} d_{i+2} ...

Generirajuća matrica koda (II)

- kad bit d_i uđe u krajnji lijevi bistabil kodera (B_0) u preostala dva bistabila su d_{i-1} (u B_1) i d_{i-2} (u B_2)
- bit d_i proizvede sljedeće vrijednosti izlaza kodera:

$$s_{i}^{(1)} = d_{i} \cdot h_{1}^{(1)}, \quad s_{i+1}^{(1)} = d_{i} \cdot h_{2}^{(1)}, \quad s_{i+2}^{(1)} = d_{i} \cdot h_{3}^{(1)}$$

$$s_{i}^{(2)} = d_{i} \cdot h_{1}^{(2)}, \quad s_{i+1}^{(2)} = d_{i} \cdot h_{2}^{(2)}, \quad s_{i+1}^{(2)} = d_{i} \cdot h_{3}^{(2)}$$

- kako se bit d_i pomiče kroz koder svaki put pomnoži sljedeći koeficijent impulsnog odziva **h**^(m)
 - pojašnjenje: bit $d_i = 1$ svojim prolaskom kroz koder proizvede na izlazu $s^{(m)}$ slijed od tri bita $h_1^{(m)} h_2^{(m)} h_3^{(m)} (= 1 \cdot \mathbf{h}^{(m)})$, a bit $d_i = 0$ proizvede slijed 0 0 0 (= $0 \cdot \mathbf{h}^{(m)}$)
- ukupni slijed s kojeg na izlazu proizvede prolazak bita d_i

kroz koder je: $\mathbf{s} = \left[s_i^{(1)} s_i^{(2)} s_{i+1}^{(1)} s_{i+1}^{(2)} s_{i+2}^{(1)} \right] = \left[d_i h_1^{(1)} d_i h_1^{(2)} d_i h_2^{(1)} d_i h_3^{(2)} d_i h_3^{(1)} d_i h_3^{(2)} \right]$

■ dakle, za poruku duljine 1 bit $\mathbf{G} = \begin{bmatrix} h_1^{(1)} h_1^{(2)} h_2^{(1)} h_2^{(2)} h_3^{(1)} h_3^{(2)} \end{bmatrix}$

Generirajuća matrica koda (III)

• na sličan način bit d_{i+1} proizvede odziv

$$s_{i+1}^{(1)} = d_{i+1} \cdot h_1^{(1)}, \quad s_{i+2}^{(1)} = d_{i+1} \cdot h_2^{(1)}, \quad s_{i+3}^{(1)} = d_{i+1} \cdot h_3^{(1)}$$

$$s_{i+1}^{(2)} = d_{i+1} \cdot h_1^{(2)}, \quad s_{i+2}^{(2)} = d_{i+1} \cdot h_2^{(2)}, \quad s_{i+3}^{(2)} = d_{i+1} \cdot h_3^{(2)}$$

ullet sada je ukupni odziv kojeg proizvedu bitovi d_i i d_{i+1}

$$\mathbf{s} = \left[s_{i}^{(1)} \ s_{i}^{(2)} \ s_{i+1}^{(1)} \ s_{i+1}^{(2)} \ s_{i+2}^{(1)} \ s_{i+2}^{(2)} \ s_{i+3}^{(1)} \ s_{i+3}^{(2)} \right] = \left[d_{i} \cdot h_{1}^{(1)}, d_{i} \cdot h_{1}^{(2)}, d_{i} \cdot h_{2}^{(1)} + d_{i+1} \cdot h_{1}^{(1)}, d_{i} \cdot h_{2}^{(2)} + d_{i+1} \cdot h_{1}^{(2)}, d_{i} \cdot h_{1}^{(2)} \right] + d_{i+1} \cdot h_{2}^{(1)}, d_{i} \cdot h_{3}^{(2)} + d_{i+1} \cdot h_{2}^{(2)}, d_{i+1} \cdot h_{3}^{(1)}, d_{i+1} \cdot h_{3}^{(2)} \right]$$

ako se prikaz pretvori u s = d·G, tada proizlazi

$$\mathbf{G} = \begin{bmatrix} h_1^{(1)} h_1^{(2)} & h_2^{(1)} h_2^{(2)} & h_3^{(1)} h_3^{(2)} & 0 & 0 \\ 0 & 0 & h_1^{(1)} h_1^{(2)} & h_2^{(1)} h_2^{(2)} & h_3^{(1)} h_3^{(2)} \end{bmatrix}$$

- evidentno je donji redak pomak gornjeg udesno
 - razlog tome je kašnjenje bita d_{i+1} za bitom d_i za T [s], tj. za trajanja kašnjenja zbog prolaska bita kroz bistabil

Generirajuća matrica koda (IV)

- općeniti oblik generirajuće matrice konvolucijskog koda (n, 1, L):
 - impulsni odziv izlaza $s^{(m)}$, $1 \le m \le n$
 - je $\mathbf{h}^{(m)} = [h_1^{(m)} h_2^{(m)} \dots h_L^{(m)}]$
 - ulazna poruka $\mathbf{d} = [\mathbf{d}_1 \ \mathbf{d}_2 \ ... \ \mathbf{d}_r]$

$$\mathbf{G} = \begin{bmatrix} h_1^{(1)}h_1^{(2)}...h_1^{(n)} & h_2^{(1)}h_2^{(2)}...h_2^{(n)} & h_3^{(1)}h_3^{(2)}...h_3^{(n)} & ... & h_L^{(1)}h_L^{(2)}...h_L^{(n)} \\ & h_1^{(1)}h_1^{(2)}...h_1^{(n)} & h_2^{(1)}h_2^{(2)}...h_2^{(n)} & ... & h_{L-1}^{(1)}h_{L-1}^{(2)}...h_{L-1}^{(n)} & h_L^{(1)}h_L^{(2)}...h_L^{(n)} \\ & & h_1^{(1)}h_1^{(2)}...h_1^{(n)} & ... & h_{L-2}^{(1)}h_{L-2}^{(2)}...h_{L-2}^{(n)} & h_{L-1}^{(1)}h_{L-1}^{(2)}...h_{L-1}^{(n)} & h_L^{(1)}h_L^{(2)}...h_L^{(n)} \\ & & & \ddots \end{bmatrix}$$

- Toeplitzova matrica svaki redak je pomak prethodnog za jednu poziciju udesno
 - elementi matrice koji nisu prikazani jednaki su nulama
 - dimenzija matrice je $r \times (L + r 1)$

Dijagram stanja konvolucijskog kodera

- konvolucijski koder automat s konačnim brojem stanja (engl. finite-state machine)
- stanje najmanja količina informacije koja, zajedno s trenutnim ulazom u automat, određuje izlaz iz automata
 - koder ima 2^{L-1} mogućih stanja
- za koder s R = 1/n, stanje predstavlja sadržaj L 1 <u>krajnje desno pozicioniranih bistabila</u> u posmačnom registru kodera (<u>ne nužno</u>)
 - ako je u t_i stanje kodera $X_i = m_{i-1}m_{i-2}...m_{i-L+1}$
 - tada je kodna riječ U_i potpuno određena s X_i i m_i
 - pri određivanju izlaza stanje X_i predstavlja prošlost kodera
 - koder je Markovljev ako vrijedi $P(X_{i+1}|X_i,X_{i-1},...,X_0)=P(X_{i+1}|X_i)$

Dijagram stanja konvolucijskog kodera (II)

- primjer: koder sa slajda 7, R = 1/2, L = 3
- četiri stanja: a, b, c i d
- iz svakog stanja moguća su samo dva prelaza, ovisno o ulaznom bitu

Dijagram stanja konvolucijskog kodera (III)

- neka je d = 11011 iza kojih slijedi 00
 - pretpostavka: na početku svi bistabili u stanju 0

ulazni	sadržaj	stanje u	stanje u	izlaz u t _i	
bit m _i	registra	t_i	t_{i+1}	u_1	u_2
	000	00	00		
1	100	00	10	1	1
1	110	10	11	0	1
0	<u>01</u> 1	11	01	0	1
1	101	01	10	0	0
1	100	→10	11	0	1
0	011	11	01	0	1
0	001	01	00	1	1

 \blacksquare **U** = 11 01 01 00 01 01 11

Ovisnost izlaza o početnom stanju registra

ulazni	sadržaj	stanje u	stanje u	izlaz u <i>t_i</i>	
bit m _i	registra	t_i	t_{i+1}	<i>u</i> ₁	u_2
	11x	1x	11		
1	111	11	11	1	0
1	111	11	11	1	0
0	011	11	01	0	1
1	101	01	10	0	0
1	110	10	11	0	1
0	011	11	01	0	1
0	001	01	00	1	1

- \bullet **U** = 10 10 01 00 01 01 11
 - **U** nije samo funkcija ulaznog bita i *L* − 1 bita koji mu prethode

Stablasti dijagram konvolucijskog kodera

- dijagram stanja nije dobar za praćenje rada kodera u grar vremenu
- rješenje: stablasti dijagram
 - vertikalna linija čvor
 - horizontalna grana
- primjer:
 - za ulazni slijed $x_{14} = 1101$
 - izlazni slijed y₁₄ = 11010100
 - masno otisnuti put
 - problem: broj grana raste
 s 2^r
 - r je broj granskih riječi u uzastopnom slijedu

Rešetkasti dijagram konvolucijskog kodera

- stablasta struktura se ponavlja nakon L grananja (u stablastom dijagramu od t_4)
 - izlaz kodera ovisi samo o trenutnom i prethodnih L
 1 ulaza
 - npr. ako je ulazni slijed 1 0 0 x y ili 0 0 0 x y
 - promatrano slijeva (prvi bit slijeda) udesno
 - za L = 3, kad četvrti bit (bit x) uđe u koder, krajnji lijevi bit je "izbačen" iz kodera i više ne utječe na izlaz
 - dakle, bilo koja dva čvora koji imaju istu oznaku (a, b, c ili d u stablu) u trenutku t_i mogu biti stopljeni u jedan čvor
 - svi putovi koji iz njih proizlaze bit će međusobno identični

Rešetkasti dijagram konvolucijskog kodera (II)

- u svakom trenutku rešetka koristi 2^{L-1}
 čvorova za prikaz 2^{L-1} stanja kodera
 - u trenutku t_4 dosegnuta je dubina L=3
 - od tog trenutka struktura se ponavlja

Dekodiranje konvolucijskih kodova

- u kanalima bez memorije uveden pojam udaljenost koda
 - to je udaljenost između primljene riječi i 2^k mogućih poslanih kodnih riječi (k je broj bita poruke)
 - **riječ** je ono što primimo kanalom (nije nužno dio korištenog koda *K*)
 - kodna riječ je dio koda K
 - obje imaju isti broj simbola (bita)
 - u prijemniku se odabire ona kodna riječ koja je najbliža primljenoj riječi
 - takvo pravilo zahtijeva računanje 2^k udaljenosti odnosno metrika
 - optimalno je ono odlučivanje koje daje rezultat s minimalnom vjerojatnosti pogreške za binarni simetrični kanala ($p_{\rm g} < 0.5$) i za kanal s aditivnim bijelim Gaussovim šumom (AWGN)

Dekodiranje prema načelu najveće vjerojatnosti

- engl. Maximum Likelihood, ML
- problem dekodiranja ML-om je u tome što je u rešetkastom dijagramu nužno odrediti sve putove kako bi se dekodiranje provelo
 - broj putova raste eksponencijalno s brojem primljenih simbola
- zato se za dekodiranje konvolucijskih kodova najčešće koristi Viterbijev algoritam
 - algoritam je optimalan jer radi prema načelu ML
 - koristi strukturu kodne rešetke i tako smanjuje složenost proračuna
 - složenost dekodera nije funkcija broja simbola u kodiranom slijedu

Viterbijev algoritam

- Viterbijev algoritam poboljšava i ubrzava proračun tako što uspoređuje metrike putova koji se spajaju u nekom stanju i odbacuje putove s lošijom metrikom
 - navedeni postupak se ponavlja za sva stanja
 - na ovaj način na svakoj razini rešetke imamo 2^m "preživjelih" putova (engl. *surviving paths*)
 - L = m + 1, m je broj stanja
 - broj proračuna eksponencijalno raste s k i m
 - Viterbijev je algoritam ograničen na kodove s malim k i m

Prikaz načina rada Viterbijevog algoritma

• konvolucijski koder, R = 1/2, L = 3

 optimalno dekodiranje konvolucijskih kodova svodi se na pronalaženje puta u rešetkastom dijagramu koji od primljene kodne riječi c' ima minimalnu Hammingovu udaljenost

Zaštitno kodiranje III 2021. 32

ulazni bit 0

ulazni bit 1

Viterbijev algoritam: primjer (1/5)

optimalnim putom: elimiramo put s većom kumulativnom Hammingovom metrikom

Viterbijev algoritam: primjer (2/5)

Viterbijev algoritam: primjer (3/5)

Viterbijev algoritam: primjer (4/5)

Viterbijev algoritam: primjer (5/5)

DEKODIRANI NIZ SIMBOLA: 0 0 0 1 0 1

Zaštitno kodiranje III 2021. 37

Viterbijev algoritam: neka praktična pitanja

- iz primjera je vidljivo da Viterbijev dekoder može u potpunosti početi s radom (kad su sva stanja uključena) nakon trećeg koraka grananja
- pitanje: Koliko dugo (do kojeg koraka grananja) algoritam treba ponavljati, tj. kada treba donijeti odluku o primljenom slijedu bitova?
 - na ovaj se način određuje dio bitova koji pripadaju izvornoj poruci
 - odgovor na dano pitanje je jako bitan jer cijena dekodera ovisi o veličini memorije u koju se spremaju "preživjeli" putovi
 - pokazuje se da veličina memorije koja je 4 do 5 puta dulja od L daje performanse koda bliske optimumu
 - kao izlaz dekodera, tj. bitovima poruke proglašavaju se bitovi koji pripada najvjerojatnijem putu od svih "preživjelih"
 - kad se donese odluka o izlazu dekodera, svi "preživjeli" putovi u memoriji brišu se i u istu spremaju novi
- pitanje: Što dekoder radi ako u istom stanju ima dva puta koji imaju jednaku metriku? U takvim prilikama dekoder odabire slučajno jedan od ta dva puta

Prijenosna funkcija konvolucijskog kodera

• primjer kodera, R = 1/2, L = 3

- D je neodređena oznaka pozicije (engl. placeholder)
- eksponent od D označava Hammingovu udaljenost izlazne riječi prema riječi sastavljenoj isključivo od simbola 0

Proračun prijenosne funkcije kodera

- put a b c e (počinje i završava u stanju 00) ima prijenosnu funkciju D⁵
 - udaljenost od puta sastavljenog samo od "0" je 5
- putovi a b d c e i a b c b c e imaju prijenosnu funkciju D⁶
- skup jednadžbi stanja

$$X_b = D^2 X_a + X_c$$

$$X_c = DX_b + DX_d$$

$$X_d = DX_b + DX_d$$

$$X_d = D^2 X_c$$

 X_a , ..., X_e su prazne varijable za označavanje djelomičnih putova do čvorova grafa

Prijenosna funkcija i udaljenost koda

- Prijenosna funkcija, T(D)
 - (engl. transfer function ili generating function)

$$T(D) = \frac{X_e}{X_a} = \frac{D^5}{1 - 2D} = D^5 + 2D^6 + 4D^7 + \dots + 2^l D^{l+5} + \dots, l = 0, 1, 2, \dots$$

$$T(D) \text{ pokazuje da postoji:} \qquad \text{pomoćni izraz: } \frac{1}{1 - x} = \sum_{n=0}^{\infty} x^n, |x| < 1$$

- jedan put s udaljenošću 5 od puta sastavljenog isključivo od "0", dva puta s udaljenošću 6, četiri s udaljenošću 7
- općenito postoji 2^l putova s udaljenošću l + 5 od puta sastavljenog isključivo od "0", l = 0, 1, 2, ...
- slobodna udaljenost koda, d_f , (engl. free distance) jednaka je Hammingovoj težini najmanjeg člana u izrazu za T(D), u ovom primjeru $d_f = 5$ (zbog D^5)
 - T(D) nije iskoristiv za veliki L
 - » složenost mu raste eksponencijalno raste s L

Kodno pojačanje

- engl. coding gain
 - CG definiran kao smanjenje odnosa energije bita prema spektralnoj gustoći snage šuma, E_b/N_0 , potrebnog za postizanje tražene vjerojatnosti pogreške bita, P_e , u sustavu s kodiranjem u odnosu na sustav bez kodiranja, a s istim modulacijskim postupkom i kanalom
 - izražava se jedinicom decibel (dB)

$$t = \left| \frac{d_f - 1}{2} \right|$$

- CG se mijenja u ovisnosti o potrebnom P_e
- za dekoder s tvrdim odlučivanjem: $CG \le 10\log_{10}[R(t+1)]$
 - R je kodna brzina, t je broj pogrešaka koje kôd može ispraviti
- za dekoder s mekim odlučivanjem: $CG \le 10\log_{10}(Rd_f)$
 - ullet d_f je slobodna udaljenost koda

Granične vrijednosti kodnih pojačanja

- gornja granica na kodno pojačanje u odnosu na BPSK sustav bez kodiranja
 - Gaussov kanal i dekodiranje s tvrdim odlučivanjem
 - kodna brzina R = 1/2

L	d _f	gornja granica (dB)	L	d _f	gornja granica (dB)
3	5	3,97	3	8	4,26
4	6	4,76	4	10	5,23
5	7	5,43	5	12	6,02
6	8	6,00	6	13	6,37
7	10	6,99	7	15	6,99
8	10	6,99	8	16	7,27
9	12	7,78	9	18	7,78

Optimalni kodovi male granične duljine

• kodna brzina R = 1/2

granična duljina <i>L</i>	slobodna udaljenost d_f	kodni vektori
3	5	111 101
4	6	1111 1011
5	7	10111 11001
6	8	101111 110101
7	10	1001111 1101101
8	10	10011111 11100101
9	12	110101111 100011101

- ovi kodovi ne propagiraju katastrofičnu pogrešku
- imaju maksimalnu slobodnu udaljenost za zadani R
 i L

Optimalni kodovi male granične duljine (II)

• kodna brzina R = 1/3

granična duljina <i>L</i>	slobodna udaljenost <i>d_f</i>	kodni vektori
3	8	111 111 101
4	10	1111 1011 1101
5	12	11111 11011 10101
6	13	101111 110101 111001
7	15	1001111 1010111 1101101
8	16	11101111 10011011 10101001

Zaštitno kodiranje III 2021. 45

Turbo kodovi

 engl Parallel Concatenated Convolutional Code (skr. PCCC) with interleaving

- prepletač (engl. interleaver)
 - mijenja poredak ulaznog slijeda bita/okteta na deterministički način
 - ulaz i izlaz sadrže iste simbole, ali drugačije poredane

RSC koder

- vrste prepletanja
 - blokovsko, pseudoslučajno (u turbo kodovima), ...
 - prepletač popravlja performanse koda
- obično se koriste dva ista konstitutivna koda
 - rekurzivni sistematski konvolucijski (RSC) kodovi
 - obično imaju malu graničnu duljinu L
 - RSC kôd se dobiva koristeći nesistematski konvolucijski koder s povratnom vezom

Turbo koder

 turbo koder: paralelna veza najčešće dva jednaka RSC kodera odvojena sklopom za prepletanje bitova (engl. interleaver)

