

Übung 07: Sequentielle Schaltungen

Einführung in die Rechnerarchitektur

Niklas Ladurner

School of Computation, Information and Technology Technische Universität München

29. November 2024

Feedback

t1p.de/era2425

home.in.tum.de/~ladu/

Keine Garantie für die Richtigkeit der Tutorfolien. Bei Unklarheiten/Unstimmigkeiten haben VL/ZÜ-Folien recht!

Sequentielle Schaltungen

- **kombinatorische** Schaltungen: zustandsfrei, Ausgänge nur abhängig von Eingängen.
 - → z.B.: HA letzte Woche, Addierer, XOR
- sequentielle Schaltungen: zustandsbehaftet, Ausgänge wirken über Rückkopplung auf Schaltung ein! (Zyklus im Graphen)
 - ightarrow z.B.: Zähler, Speicher, Statusautomaten

Latches und Flipflops¹

SR-Latch

- pegelgesteuert
- Set, Reset
- "verbotener" Zustand (1,1), Ausgang abhängig von Implementierung

D-Flipflop

- (positiv) taktflankengesteuert
- Bei fallender Flanke bleibt Zustand gespeichert, bei steigender Flanke wird D übernommen.

¹Die Definition ist hier tatsächlich ein wenig ungenau: Es gibt taktflanken- und pegelgesteuerte Flipflops, letztere werden aber im englischsprachigen Raum meist Latches genannt.

Floating-Point-Zahlen

- Fixkommazahlen bekannt aus H02:)
- Fließkommazahlen der Form $(-1)^{sign} \cdot 1.mantissa \cdot 2^{exp-bias}$

sign	exponent	mantissa
1	1000 0010	110 0000 0000 0000 0000
1 bit	8 bit	23 bit

- Bei 32-Bit-Floats: 1 Bit Vorzeichen, 8 Bit Exponent, 23 Bit Mantisse, Bias 127
- implizite 1 vor der Mantisse wird nicht mitgespeichert
- Sonderfälle ± 0 , $\pm \infty$, NaN: für HA einfach ignorieren
- Visualisierung: Float Toy

Floating-Point-Zahlen: Beispiel

sign	exponent	mantissa
1	1000 0010	110 0000 0000 0000 0000
1 bit	8 bit	23 bit

- 1. Vorzeichen: $(1)_2 \rightarrow (-1)$
- **2.** Exponent: $(1000\ 0010)_2 = 130$, 130 bias = 130 127 = 3
- 3. Mantisse: $(1.110\ 0000\ 0000\ 0000\ 0000)_2 = 1.75$

$$n = (-1) \cdot 1.75 \cdot 2^3 = -14$$

Fragen?

Artemis-Hausaufgaben

- "H07 Addition von Gleitkommazahlen" bis 08.12.2024 23:59 Uhr
- Wahrheitstabellen, Logiksynthese, Implementierung in Digital
- Erklärung IEEE Floating Point Zahlen
- Float Toy

Links

- Zulip: "ERA Tutorium Do-1600-1" bzw. "ERA Tutorium Fr-1500-2"
- ERA-Moodle-Kurs
- ERA-Artemis-Kurs
- Elektronik-Kompendium zu Flipflops
- Repository: Digital

Übung 07: Sequentielle Schaltungen

Einführung in die Rechnerarchitektur

Niklas Ladurner

School of Computation, Information and Technology Technische Universität München

29. November 2024

