INTRO TO DATA SCIENCE ADVANCED TOPIC: IMBALANCED CLASSES

REMEMBER THIS...?

Cancer Screen => classify cancer scans for doctor to review No Cancer Cancer

ISSUE: Not all errors are equal...

Error 1

Classifier Label: Cancerous

Permissable, because a physician will review it

Error 2

Classifier Label: Non-Cancerous

Not permissable, because this data will be discarded

To deal with issue 2 we need a more sophisticated definition of error rates in a binary classification problem

True Positive: An Example that is **positive** and is classified as **positive**

Label: positive

To deal with issue 2 we need a more sophisticated definition of error rates in a binary classification problem

True Positive: An Example that is **positive** and is classified as **positive**

True Negative: An Example that is **negative** and is classified as **negative**

Label: positive

Label: negative

To deal with issue 2 we need a more sophisticated definition of error rates in a binary classification problem

True Positive: An Example that is **positive** and is classified as **positive**

True Negative: An Example that is **negative** and is classified as **negative**

False Positive: An Example that is **negative** and is classified as **positive**

Label: positive

Label: negative

Label: positive

To deal with issue 2 we need a more sophisticated definition of error rates in a binary classification problem

True Positive: An Example that is **positive** and is classified as **positive**

True Negative: An Example that is **negative** and is classified as **negative**

False Positive: An Example that is **negative** and is classified as **positive**

False Negative: An Example that is **positive** and is classified as **negative**

Label: positive

Label: negative

Label: positive

Label: negative

Confusion Matrix

Condition Positive

Condition Negative

Test Positive

TRUE POSITIVE

FALSE POSITIVE (Type I error)

Test Negative

FALSE NEGATIVE (Type II error)

TRUE NEGATIVE

Confusion Matrix

n = 165	Condition Positive	Condition Negative	
Test Positive	100	10	
Test Negative	5	50	

How many classes are there?
How many patients?
How many times is disease
predicted?
How many patients actually
have the disease?

Confusion Matrix

		Condition (as determined by "Gold standard")			
	Total population	Condition positive	Condition negative	$\frac{\sum Condition\ positive}{\sum Total\ population}$	
Test outcome	Test outcome positive	True positive	False positive (Type I error)	Positive predictive value (PRV), Precision = $\frac{\Sigma \text{ True positive}}{\Sigma \text{ Test outcome positive}}$	False discovery rate (FDR) $= \frac{\Sigma \text{ False positive}}{\Sigma \text{ Test outcome positive}}$
	Test outcome negative	False negative (Type II error)	True negative	False omission rate (FOR) $= \frac{\Sigma \text{ False negative}}{\Sigma \text{ Test outcome negative}}$	$\begin{aligned} & \text{Negative predictive value (NPV)} \\ &= \frac{\Sigma \text{ True negative}}{\Sigma \text{ Test outcome negative}} \end{aligned}$
	Accuracy (ACC) = Σ True positive + Σ True negative Σ Total population	Sensitivity, Recall $\frac{\Sigma \text{ True positive}}{\Sigma \text{ Condition positive}}$	False positive rate (FPR), Fall-out $= \frac{\Sigma \text{ False positive}}{\Sigma \text{ Condition negative}}$	Positive likelihood ratio (LR+) $= \frac{TPR}{FPR}$	Diagnostic odds ratio (DOR) $= \frac{LR+}{LR-}$
		False negative rate (FNR), $\text{Miss rate} = \frac{\Sigma \text{ False negative}}{\Sigma \text{ Condition positive}}$	Specificity (SPC) = Σ True negative Σ Condition negative	Negative likelihood ratio (LR–) $= \frac{FNR}{TNR}$	

n = 165	Condition Positive	Condition Negative	
Test Positive	100	10 50	
Test Negative	5		

Accuracy:

Overall, how often is it correct?

(TP + TN) / total = 150/165 = 0.91

Precision:

When test is positive, how often is prediction correct?

TP / test yes = 100/110 = 0.91

Sensitivity/Recall/TPR:

When actual value is positive, how often is prediction correct?

TP / actual yes = 100/105 = 0.95

Specificity/TNR:

When actual value is negative, how often is prediction correct?

TN / actual no = 50/60 = 0.83

n = 165	Condition Positive	Condition Negative	
Test Positive	100	10	
Test Negative	5	50	

Precision:

When test is positive, how often is prediction correct?

TP / test yes = 100/110 = 0.91

Sensitivity/Recall/TPR:

When actual value is positive, how often is prediction correct?

TP / actual yes = 100/105 = 0.95

F score
$$F = 2 \cdot \frac{\text{precision} \cdot \text{recall}}{\text{precision} + \text{recall}}$$

IMBALANCED CLASSES

ISSUE: Many more healthy brain scans

- Imbalance confuses classifiers => only perform well on dominant class
- Situation is very common in other fields (e.g. fraud detection)

I. Undersampling the dominant class - remove some the majority class so it has less weight

- I. Undersampling the dominant class remove some the majority class so it has less weight
- 2. Oversampling the minority class add more of the minority class so it has more weight.

- I. Undersampling the dominant class remove some the majority class so it has less weight
- 2. Oversampling the minority class add more of the minority class so it has more weight.
- 3. **Hybrid** doing both

- I. Undersampling the dominant class remove some the majority class so it has less weight
- 2. Oversampling the minority class add more of the minority class so it has more weight.
- 3. Hybrid doing both

Undersampling

Randomly remove elements from the majority class.

Undersampling

Randomly remove elements from the majority class.

Undersampling

INTRO TO DATA SCIENCE

Randomly remove elements from the majority class.

Undersampling

Randomly remove elements from the majority class.

Drawback: Removing data points could lose important information

Oversampling

Duplicate elements of your minority class

Drawback: Just replicating randomly minority classes could cause overfit

