MOVIE RATING PREDICTION WITH PYTHON

Recommendation systems are becoming increasingly important in today's extremely busy world. People are always short on time with the myriad tasks they need to accomplish in the limited 24 hours. Therefore, the recommendation systems are important as they help them make the right choices, without having to expend their cognitive resources.

The purpose of a recommendation system basically is to search for content that would be interesting to an individual. Moreover, it involves a number of factors to create personalised lists of useful and interesting content specific to each user/individual. Recommendation systems are Artificial Intelligence based algorithms that skim through all possible options and create a customized list of items that are interesting and relevant to an individual. These results are based on their profile, search/browsing history, what other people with similar traits/demographics are watching, and how likely are you to watch those movies. This is achieved through predictive modeling and heuristics with the data available.

Import Libraries

```
In [1]: |
        import pandas as pd
        import matplotlib.pyplot as plt
        import numpy as np
        import seaborn as sns
        from sklearn.model_selection import train_test_split
        from sklearn.linear_model import LogisticRegression
        from sklearn.svm import SVC, LinearSVC
        from sklearn.ensemble import RandomForestClassifier
        from sklearn.neighbors import KNeighborsClassifier
        from sklearn.naive_bayes import GaussianNB
        from sklearn.linear_model import Perceptron
        from sklearn.linear_model import SGDClassifier
        from sklearn.tree import DecisionTreeClassifier
        import warnings
        warnings.filterwarnings('ignore')
```

Load the data

```
In [2]: movies = pd.read_csv(r"C:\Users\user\Downloads\movies.dat", sep='::', engine='python', e
movies
```

	1	Toy Story (19	95) A	nimation Chi	ldren's Comedy
- (0 2	Jumanji (19	95)	Adventure C	nildren's Fantasy
:	1 3	Grumpier Old Men (19	95)	С	omedy Romance
2	2 4	Waiting to Exhale (19	95)		Comedy Drama
;	3 5	Father of the Bride Part II (19	95)		Comedy
4	4 6	Heat (19	95)	Acti	on Crime Thriller
3877	7 3948	Meet the Parents (20	00)		Comedy
3878	8 3949	Requiem for a Dream (20	00)		Drama
3879	9 3950	Tigerland (20	00)		Drama
3880	3951	Two Family House (20	00)		Drama
388:	1 3952	Contender, The (20	00)		Drama Thriller
		3 columns	-i+101	Lagrace	17
mov		<pre>lumns =['MovieID', 'T opna(inplace=True) ad()</pre>	1116	, Genres	. 1
[3]: N	MovieID	Т	itle		Genres
0	2	Jumanji (19	95) A	dventure Child	Iren's Fantasy
1	3	Grumpier Old Men (19	95)	Com	edy Romance
2	4	Waiting to Exhale (19	95)	С	omedy Drama
3	5	Father of the Bride Part II (19	95)		Comedy
4	6	Heat (19	95)	Action	Crime Thriller
[4]: mov	ies.ta	il()			
[4]:	Movie	elD T	itle	Genres	
3877	7 39	Meet the Parents (20	00)	Comedy	
	9 20				
3878	o	49 Requiem for a Dream (20	00)	Drama	
3878		49 Requiem for a Dream (20) 50 Tigerland (20)	-	Drama Drama	
	9 39		00)		
3879	9 39 0 39	50 Tigerland (20	00)	Drama Drama	
3879 3880 3882	9 39 0 39	Tigerland (20) Two Family House (20) Contender, The (20)	00)	Drama Drama	

```
movies.describe()
 In [6]:
 Out[6]:
                    MovieID
          count 3882.000000
           mean 1986.560793
            std 1146.483260
                    2.000000
            min
            25%
                  983.250000
            50%
                 2010.500000
                 2980.750000
            75%
            max 3952.000000
 In [7]:
          movies.dtypes
          MovieID
                        int64
 Out[7]:
          Title
                      object
          Genres
                       object
          dtype: object
          movies.shape
 In [8]:
          (3882, 3)
 Out[8]:
 In [9]:
          movies.isnull()
                MovieID
                         Title Genres
 Out[9]:
             0
                   False False
                                False
             1
                   False False
                                False
             2
                  False False
                                False
                   False False
                                False
             4
                  False False
                                False
          3877
                   False False
                                False
          3878
                   False False
                                False
           3879
                   False False
                                False
          3880
                   False False
                                False
          3881
                   False False
                                False
          3882 rows × 3 columns
In [10]:
           ratings=pd.read_csv(r'C:\Users\user\Downloads\ratings.dat.zip',sep='::', engine='python'
           ratings.columns =['UserID', 'MovieID', 'Rating', 'Timestamp']
           ratings.dropna(inplace=True)
           #Read the sample ratings dataset
           ratings.head()
```

```
Out[10]:
             UserID MovieID Rating Timestamp
                                    978302109
          0
                 1
                        661
          1
                 1
                        914
                                 3 978301968
          2
                 1
                       3408
                                 4 978300275
          3
                       2355
                                    978824291
                 1
          4
                 1
                       1197
                                 3 978302268
          #input users dataset
In [11]:
          users=pd.read_csv(r'C:\Users\user\Downloads\users.dat', sep='::', engine='python')
          users.columns =['UserID', 'Gender', 'Age', 'Occupation', 'Zip-code']
          users.dropna(inplace=True)
          #Read the sample users dataset
          users.head()
             UserID Gender Age Occupation Zip-code
Out[11]:
          0
                 2
                         Μ
                             56
                                        16
                                              70072
          1
                 3
                                        15
                                              55117
                         Μ
                             25
          2
                 4
                         Μ
                             45
                                         7
                                              02460
          3
                 5
                             25
                                        20
                                              55455
                         Μ
                 6
                         F
                             50
                                         9
                                              55117
          4
          #Merge the ratings and users with movieID and UserID
In [12]:
          ratings_user = pd.merge(ratings, users, on=['UserID'])
          ratings_movie = pd.merge(ratings, movies, on=['MovieID'])
          master_data = pd.merge(ratings_user, ratings_movie,
                                    on=['UserID', 'MovieID', 'Rating'])[['MovieID', 'Title', 'UserID'
          master_data.head()
             MovieID
Out[12]:
                                                   Title UserID Age Gender
                                                                            Occupation Rating
                                             Shine (1996)
          0
               1357
                                                             2
                                                                 56
                                                                         Μ
                                                                                    16
                                                                                            5
          1
                                        Verdict, The (1982)
                                                             2
               3068
                                                                 56
                                                                                    16
                                                                         M
                                                                                            4
               1537
                     Shall We Dance? (Shall We Dansu?) (1996)
                                                             2
                                                                 56
                                                                         Μ
                                                                                    16
                                                                                            4
          3
                647
                                  Courage Under Fire (1996)
                                                             2
                                                                 56
                                                                         Μ
                                                                                    16
                                                                                            3
          4
                2194
                                   Untouchables, The (1987)
                                                             2
                                                                 56
                                                                                    16
                                                                         M
                                                                                            4
```

In [13]: # all 5 rating movies list count = 225473

master_data[master_data['Rating'] == 5]

Out[13]:		MovieID	Title	UserID	Age	Gender	Occupation	Rating
	0	1357	Shine (1996)	2	56	М	16	5
	6	2268	Few Good Men, A (1992)	2	56	М	16	5
	10	3468	Hustler, The (1961)	2	56	М	16	5
	15	3578	Gladiator (2000)	2	56	М	16	5
	26	1610	Hunt for Red October, The (1990)	2	56	М	16	5
	998065	1077	Sleeper (1973)	6040	25	М	6	5
	998070	2022	Last Temptation of Christ, The (1988)	6040	25	М	6	5
	998071	2028	Saving Private Ryan (1998)	6040	25	М	6	5
	998076	1094	Crying Game, The (1992)	6040	25	М	6	5
	998077	562	Welcome to the Dollhouse (1995)	6040	25	М	6	5

225473 rows × 7 columns

```
In [14]: # all 5 rating movies list and Age Lass Then 25 count = 47163
master_data[(master_data['Rating'] == 5) & (master_data['Age'] < 25 ) ]</pre>
```

Out[14]:		MovieID	Title	UserID	Age	Gender	Occupation	Rating
	1883	2987	Who Framed Roger Rabbit? (1988)	18	18	F	3	5
	1884	2989	For Your Eyes Only (1981)	18	18	F	3	5
	1885	2622	Midsummer Night's Dream, A (1999)	18	18	F	3	5
	1889	1683	Wings of the Dove, The (1997)	18	18	F	3	5
	1893	3793	X-Men (2000)	18	18	F	3	5
	996033	150	Apollo 13 (1995)	6031	18	F	0	5
	996036	1010	Love Bug, The (1969)	6031	18	F	0	5
	996038	1036	Die Hard (1988)	6031	18	F	0	5
	996039	2001	Lethal Weapon 2 (1989)	6031	18	F	0	5
	996043	1097	E.T. the Extra-Terrestrial (1982)	6031	18	F	0	5

47163 rows × 7 columns

```
In [15]: # all 5 rating movies list and Age Lass Then 25 count = 47163
master_data[(master_data['Rating'] < 3) & (master_data['Age'] < 25 )]</pre>
```

:		MovielD	Title	UserID	Age	Gender	Occupation	Rating
	1898	1186	Sex, Lies, and Videotape (1989)	18	18	F	3	1
	1902	3438	Teenage Mutant Ninja Turtles (1990)	18	18	F	3	2
	1905	3439	Teenage Mutant Ninja Turtles II: The Secret of	18	18	F	3	1
	1907	1690	Alien: Resurrection (1997)	18	18	F	3	1
	1909	2	Jumanji (1995)	18	18	F	3	2
	996023	785	Kingpin (1996)	6031	18	F	0	2
	996025	1648	House of Yes, The (1997)	6031	18	F	0	2
	996030	1394	Raising Arizona (1987)	6031	18	F	0	2
	996034	151	Rob Roy (1995)	6031	18	F	0	1
	996041	553	Tombstone (1993)	6031	18	F	0	1

40329 rows × 7 columns

Out[15]:

Data Visualization

In [16]: master_data['Age'].value_counts().plot(kind='bar', color= ['cyan', 'blue'],alpha=0.5,fig
 plt.show()

In [17]: master_data['Rating'].value_counts().plot(kind='bar', color=['green', 'yellow'],alpha=0.
 plt.show()


```
In [18]: res = master_data[master_data.Title == "Only You (1994)"]
    plt.plot(res.groupby("Age")["MovieID"].count(),'--bo')
    res.groupby("Age")["MovieID"].count()
```

Out[18]: Age 18 34 25 72 35 29 45 12 50 4 56 7

Name: MovieID, dtype: int64

In [19]: #Find the ratings for all the movies reviewed by for a particular user of user id = 700
res = master_data[master_data.UserID == 700]

Loading [MathJax]/extensions/Safe.js

```
plt.show()
                   Blade
Star Wars: Episode VI - Return<u>o</u>f
                                                     llage
rn of the Jeu
Total Recall
Forrest Gump
elve Monkeys
Fren, The
                                      Twelve Monkeys
City of Lost Children, The
Killer's Kiss
Matrix, The
                                  X-Files: Fight the Future,
Asphalt Jungle
                  Mystery Science Theater 3000: The Movie
Cape Fear
Blood Simple
Running Free
Man with the Golden Gun, The
Opposite of Sex. The
                ASUIOIIAUL 3 VVII., ...,
Double Indemnity
Star Wars: Episode I - The Phantom Menace
Tando Lesson, The
                                    Kama Sutra
                      Notorious
Sunset Blvd. (a.k.a. Sunset Boulevard)
Maltese Falcon, The
Big Sleep, The
Manchurian Candidate, The
Terminator 2: Judgment Day
Chinatown
Touch of Evil
                                                                                 1.0
                                                                                           1.5
                                                                                                     2.0
                                                                                                               2.5
                                                                                                                        3.0
                                                                                                                                  3.5
                                                                                                                                            4.0
                                                                                                                                                      4.5
                                                                                                                                                               5.0
                res = master_data.groupby("Title").size().sort_values(ascending=False)[:25]
In [20]:
                plt.ylabel("Title")
                plt.xlabel("Viewership Count")
                res.plot(kind="barh", color = ['lightseagreen', 'turquoise', 'deepskyblue'])
                plt.show()
                                        Godfather, The (1972)
Shawshank Redemption, The (1994)
                                                 Being John Malkovich (1999)
                       Star Wars: Episode I - The Phantom Menace (1999)
                                              E.T. the Extra-Terrestrial (1982)
                                                       Groundhog Day (1993)
                                                      L.A. Confidential (1997)
                                                        Schindler's List (1993)
                                                   Princess Bride, The (1987)
                                                  Shakespeare in Love (1998)
                                                            Braveheart (1995)
                                                      Sixth Sense, The (1999)
Fargo (1996)
                                               Raiders of the Lost Ark (1981)
                                                           Men in Black (1997)
                                            Silence of the Lambs, The (1991)
                                                    Back to the Future (1985)
                                         Matrix, The (1999)
Terminator 2: Judgment Day (1991)
                                                  Saving Private Ryan (1998)
                                                           Jurassic Park (1993)
                           Star Wars: Episode VI - Return of the Jedi (1983)
                   Star Wars: Episode V - The Empire Strikes Back (1980)
                                 Star Wars: Episode IV - A New Hope (1977)
                                                     American Beauty (1999)
                                                                                                                                                               3500
                                                                                            500
                                                                                                       1000
                                                                                                                  1500
                                                                                                                             2000
                                                                                                                                         2500
                                                                                                                                                    3000
                res = master_data.groupby("Gender").size().sort_values(ascending=False)[:25]
In [21]:
                plt.ylabel("Gender")
                plt.xlabel("Viewership Count")
                res.plot(kind="kde")
                plt.show()
```

plt.scatter(y=res.Title, x=res.Rating , color = 'aqua')


```
In [22]: res = master_data.groupby("Rating").size().sort_values(ascending=False)[:25]
    plt.ylabel("Rating")
    plt.xlabel("Viewership Count")
    res.plot(kind='bar', color= ['red', 'darkorange'])
```

Out[22]: <Axes: xlabel='Rating', ylabel='Rating'>

Model for Machine Learning

```
In [23]: #First 500 extracted records
    first_500 = master_data[500:]
    first_500.dropna(inplace=True)

In [24]: #Use the following features:movie id, age, occupation
    features = first_500[['MovieID','Age','Occupation']].values

In [25]: #Use rating as label
    labels = first_500[['Rating']].values

In [26]: #Create train and test data set
    train, test, train_labels, test_labels = train_test_split(features, labels, test_size=0.33)
```

Logistic Regression

```
In [27]: logreg = LogisticRegression()
    logreg.fit(train, train_labels)
    Y_pred = logreg.predict(test)
    acc_log = round(logreg.score(train, train_labels) * 100, 2)
    acc_log
Out[27]: 34.86
```

K Nearest Neighbors Classifier

```
In [28]: knn = KNeighborsClassifier(n_neighbors = 3)
    knn.fit(train, train_labels)
    Y_pred = knn.predict(test)
    acc_knn = round(knn.score(train, train_labels) * 100, 2)
    acc_knn
Out[28]: 44.86
```

Gaussian Naive Bayes

```
In [29]: gaussian = GaussianNB()
    gaussian.fit(train, train_labels)
    Y_pred = gaussian.predict(test)
    acc_gaussian = round(gaussian.score(train, train_labels) * 100, 2)
    acc_gaussian
Out[29]: 34.88
```

Perceptron

```
In [30]: perceptron = Perceptron()
    perceptron.fit(train, train_labels)
    Y_pred = perceptron.predict(test)
    acc_perceptron = round(perceptron.score(train, train_labels) * 100, 2)
    acc_perceptron
Loading [MathJax]/extensions/Safe.js |
```

Out[30]: 33.05

Decision Tree