Nirma University

Institute of Technology Semester End Examination (IR/RPR), December - 2018 B. Tech. in Computer Engineering / Information Technology, Semester-V CE501 Theory of Computation

Roll Exar	m No. Supervisor's initial	
Time	e: 3 Hours	
	May Ma	irks: 100
Instr	 Attempt all questions of Section I and II separately in same Answerbook. Figures to right indicate full marks. Draw neat sketches wherever necessary. Assume suitable data wherever necessary and mention the same. 	1113 . 100
	SECTION - I	
Q-1.	Do as directed.	
(A)	Use the principle of moth	[18]
(B)	Use the principle of mathematical induction to prove that for an positive integer number n , $n^3 + 2n$ is divisible by 3. Define equivalence of grammars. Given	y (6)
	Define equivalence of grammars. Given grammars G1, G2, and G3 which of the two grammars are equivalent and why? $G1 = (\{S, B, C\}, \{a, b, c\}, S, \{S \rightarrow aSBC, S \rightarrow aBC, CB \rightarrow BC, aB \rightarrow ab, bB \rightarrow bb, bC \rightarrow bc, cC \rightarrow cc\})$, (6)
	$G2 = (\{S, A, B\}, \{a, b, c\}, S, \{S \to aSA, S \to aB, B \to bBc, cA \to Ac, B \to bc\})$	
	$US = \{\{S, B, C\}, \{a, b, c\}, S, \{S \rightarrow abc, S \rightarrow aBb, Bb, \rightarrow bB, Bc, S, Cb, bC, c\}\}$	
(C)	Define regular set. Prove that for any given regular set over the alphabe Σ , we can give a grammar of type-3. Find Type-3 grammar corresponding to the following automaton:	t (6)
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
Q-2.	Answer the following.	
(A)	Define \(\lambda\)-closure (Null Closure) of	[16]
	following NFA with λ -moves, find $\delta^*(Q_0, ab)$.	(6)
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
		P.T.O.
	O R Page 1 of 4	

Page 1 of 4

(6)

(A) Convert the following null- NFA to DFA:

(B) Explain the Mealy and Moore machine. For the following Mealy machine (6) find an equivalent Moore machine:

	Input Symbol					
Current state	a		b			
	Next State	Output	Next State	Output		
q ₀	q ₁	1	q ₃	1		
q 1	q ₁	0	qo	1		
q ₂	qo	1	q ₂	0		
q ₃	q ₃	0	Q1	1		

(C) Explain Chomsky's hierarchy of grammar and languages.

(4)

Q-3. Answer the following.

[16]

(A) Consider Input alphabet as {a, b}*. Write the regular expression and give the automaton for each of the following:

(6)

- (i) Strings that starts and ends with a.
- (ii) Strings that have length greater than or equal to 3.
- (iii)Strings that have length greater than or equal to 3 and its third symbol is a.
- (B) Minimize the DFA shown in the following transition table. Take q₂ as (6) final sate.

$S \setminus \Sigma$	а	b
qo	Q5	q ₁
q ₁	q_2	q ₆
q ₂	q_2	qo
q ₃	q ₆	q ₂
Q4	q ₅	97
q ₅	q ₆	q ₂
q ₆	Q4	96
q ₇	q_2	96

OR

P. T. ().

(B) Minimize the following DFA:

(C) Convert the following NFA to DFA

SECTION - II

Q-4. Do as directed.

[16]

(4)

(4)

- (A) MCQs with justification:
 - (1) L={ $a^ib^ic^i | i>=1$ }
 - a. Regular Language
 - b. CFL
 - c. Both CFL & Regular
 - d. Neither CFL nor Regular
 - (2) L={ $a^ib^jc^j | I,j>=1$ }
 - a. Regular Language
 - b. CFL
 - c. Both CFL & Regular
 - d. Neither CFL nor Regular
 - (3) L={ $a^nb^nc^md^m | n,m>=1$ }
 - a. Regular Language
 - b. CFL
 - c. Both CFL & Regular
 - d. Neither CFL nor Regular
 - (4) L={ $0^n1^m2^{m+n} \mid n, m>=1$ }
 - a. Regular Language
 - b. CFL
 - c. Both CFL & Regular
 - d. Neither CFL nor Regular

Page 3 of 4

length palindrome. Trace the strings: ababa, abbb, abbbba

Give a CFG for the following PDA

 δ (q₂, a, a) \vdash (q₂, \in) δ (q₂, \in , Z₀) \vdash (q₂, \in)

 δ (q₀, a, Z₀) | (q₀, aZ₀) δ (q₀, a, a) | (q₀, aa) δ (q₀, c, a) | (q₁, a) δ (q₁, a, a) | (q₂, E)

(B)

Page 4 of 4

(8)