

Introdução ao R 5. Análise bivariada 1/19

Fúlvio Nedel SPB/UFSC

Introdução Objetivos

Variável dependente numérica

independente numérica Variável independente categórica

dependente é categórica

Introdução ao uso do

em Ciências da Saúde

5 - Análise de dados bivariada

Fúlvio Borges Nedel

Departamento de Saúde Pública – SPB Centro de Ciências da Saúde – CCS Universidade Federal de Santa Catarina – UFSC

Grups de Recerca d'Amèrica i Àfrica Llatines – GRAAL http://graal.uab.cat

4 de dezembro de 2017

Roteiro

Introdução ao R 5. Análise bivariada 2/19

Fúlvio Nedel SPB/UFSC

Objetivos da análise Variável dependente é numérica Variável independente numérica Variável independente categórica

dependente é categórica

- 1 Introdução
 - Objetivos da análise
- 2 Variável dependente é numérica
 - Variável independente é numérica
 - Variável independente é categórica
- 3 Variável dependente é categórica

Introdução

Introdução ao R 5. Análise bivariada 3/19

> Fúlvio Nedel SPB/UFSC

Introdução

análise

Variável
dependente é
numérica
Variável
independente é
numérica
Variável
independente é
categórica

 A análise continua com uma descrição do comportamento da variável dependente de acordo com as variáveis independentes

Crie uma nova linha comentada em seu arquivo de sintaxe. Algo como:

```
### Análise bivariada
```

■ Inicie com uma sessão vazia, carregue o arquivo de dados e o pacote epiDisplay, e "attache":-) o banco cursoR2

```
rm(list=ls())
load('cursoR.RData')
ls()
[1] "cursoR" "cursoR2"
library(epiDisplay)
attach(cursoR2)
```


Introducão Relembrando...

Introdução ao R 5. Análise bivariada

Fúlvio Nedel SPB/UFSC

Objetivos da análise

Objetivos da análise

- 1 Descrever o Índice de Massa Corporal (IMC) e analisar fatores associados à sua média.
- 2 Descrever a frequência de categorias do estado nutricional e analisar fatores possivelmente associados à obesidade:
 - idade
 - sexo
 - condição socioeconômica
 - participação em grupos de promoção da saúde

Temos portanto duas abordagens, uma que toma a variável dependente como numérica e outra que a toma como dicotômica.

Variável dependente é numérica

Introdução ao R 5. Análise bivariada 5/19

Fúlvio Nedel

Introdução Objetivos

Variável dependente é numérica

Variável independente numérica

Variável dependente é categórica

- 1 Introdução
 - Objetivos da análise
- 2 Variável dependente é numérica
 - Variável independente é numérica
 - Variável independente é categórica

3 Variável dependente é categórica

Var. numérica × var. numérica

Introdução ao R 5. Análise bivariada 6/19 ■ correlação

plot(idade, imc)

plot(imc ~ idade)

abline(v = mean(idade),

col = c(3,4))

Fúlvio Nedel SPB/UFSC

ntrodução Objetivos o análise

numérica Variável independente (

independente é numérica

independente é
categórica

Variável
dependente é
categórica

abline(lm(imc ~ idade), col = 2)

h = mean(imc, na.rm = T),

```
■ regressão linear simples (se normal) ?cor.test
```

?lm

```
cor.test(idade, imc, method = 'kendall')
Kendall's rank correlation tau
data: idade and imc
z = 0.71744, p-value = 0.4731
alternative hypothesis: true tau is not equal to 0
sample estimates:
       tau
0.02813146
summary(lm(imc ~ idade))
Call:
lm(formula = imc ~ idade)
Residuals:
     Min
               1Q Median
                                         Max
-10.4715 -3.6304 -0.5756 2.8711 18.0931
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 26,14111
                        1.46285 17.870
                                          <2e-16 ***
idade
             0.02536
                        0.02238
                                           0.258
```

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1

Residual standard error: 4.969 on 297 degrees of freedom (1 observation deleted due to missingness)

Multiple R-squared: 0.004304, Adjusted R-squared: 0.000951 F-statistic: 1.284 on 1 and 297 DF, p-value: 0.2581

Var. numérica × var. numérica IMC ∼ idade

Introdução ao R 5. Análise bivariada 7/19

Fúlvio Nedel SPB/UFSC

Objetivos da análise Variável dependente é numérica

Variável independente é numérica

Variável dependente é categórica

Teste de Shapiro-Wilk para normalidade H_0 : a variável tem distribuição normal

shapiro.test(imc)

 ${\tt Shapiro-Wilk\ normality\ test}$

data: imc

W = 0.97272, p-value = 1.864e-05

shapiro.qqnorm(imc)

shapiro.test(idade)

Shapiro-Wilk normality test

data: idade

W = 0.98656, p-value = 0.00675

shapiro.qqnorm(idade)

Introdução ao R

5. Análise bivariada

Fúlvio Nedel

8/19

Var. numérica \times var. categórica dicotômica

 $IMC \sim sexo$

A função tapply

```
library(e1071)
```

(media = tapply(imc, sexo, mean, na.rm = T)) Feminino Masculino

27.50779 28.26534

(dp = tapply(imc, sexo, sd, na.rm = T))

Feminino Masculino 4.650701 5.529724

(assim = tapply(imc, sexo, skewness, na.rm = T)) Feminino Masculino

0.5069652 0.6976254

26.95312 27.44598

Feminino Masculino 6.148597 7.580262

(curto = tapply(imc, sexo, kurtosis, na.rm = T)) independente é categórica Feminino

Variável

Análise por estratos

- A função tapply permite a execução de uma função sobre uma variável em grupos separados de outra.
- Veja a família apply: ?apply, ?tapply, ?sapply, ?mapply
- 0.06725562 0.06663441 (mediana = tapply(imc, sexo, median, na.rm = T)) Feminino Masculino
- (p2575 = cbind(P25 = tapply(imc, sexo, quantile, probs = .25, na.rm = T), P75 = tapply(imc, sexo, quantile, probs = .75, na.rm = T))) P25 P75

Masculino

- Feminino 24.21875 30.36735 Masculino 23.96126 31.54152
- (iiq = tapply(imc, sexo, IQR, na.rm = T))

Introdução ao R 5. Análise

Fúlvio Nedel

bivariada

Var. numérica × var. categórica dicotômica

 $\mathsf{IMC} \sim \mathsf{sexo}$

```
par(mfrow = c(1,3))
hist(imc[sexo == 'Masculino'], main = 'Homens')
hist(imc[sexo == 'Feminino '], main = 'Mulheres')
plot(imc ~ sexo, ylab = 'imc')
```

ntrodução Objetivos da análise

Variável dependente é numérica Variável independente

Variável independente é categórica

categórica

	media	dp	assimetria	curtose	mediana	P25	P75	iiq
Feminino	27,51	4,65	0,51	0,07	26,95	24,22	30,37	6,15
Masculino	28,27	5,53	0,70	0,07	27,45	23,96	31,54	7,58

Var. numérica × var. categórica dicotômica

 $\mathsf{IMC} \sim \mathsf{sexo}$

G R A A L

Introdução ao R 5. Análise bivariada 10/19

> Fúlvio Nedel SPB/UFSC

Introdução Objetivos análise

Variável dependente é numérica Variável independente

Variável independente é categórica

Variável dependente é categórica

- Comparação de médias: testes paramétricos
- Comparação de medianas: testes não paramétricos

Signature Nacodoro

plot(imc ~ sexo)

t.test(imc ~ sexo)

Welch Two Sample t-test

data: imc by sexo

t = -1.1837, df = 176.34, p-value = 0.2381

alternative hypothesis: true difference in means is not equal to 0 95 percent confidence interval:

-2.0205603 0.5054524

sample estimates:

mean in group Feminino mean in group Masculino 27.50779 28.26534

kruskal.test(imc, sexo)

Kruskal-Wallis rank sum test

data: imc and sexo

Kruskal-Wallis chi-squared = 0.48678, df = 1, p-value = 0.4854

Var. numérica × var. categórica politômica

IMC ~ condição socioeconômica

Introdução ao R 5. Análise bivariada 11/19

> Fúlvio Nedel SPB/UFSC

Introdução Objetivos análise

Variável dependente numérica

Variável independente é categórica

dependente é categórica

```
ANOVA
```

```
bartlett.test(imc ~ abep2)
```

Bartlett test of homogeneity of variances

data: imc by abep2

Bartlett's K-squared = 1.3948, df = 2, p-value = 0.4979

anova(aov(imc ~ abep2))

Analysis of Variance Table

Response: imc

Df Sum Sq Mean Sq F value Pr(>F)

abep2 2 0.4 0.1894 0.0074 0.9926 Residuals 278 7089.2 25.5008

Mesiduais 270 7009.2 20.0000

pairwise.wilcox.test(imc, abep2)

Pairwise comparisons using Wilcoxon rank sum test

data: imc and abep2

A/B C C 1 -D/E 1 1

P value adjustment method: holm

?pairwise.t.test

plot(imc ~ abep2)

Variável dependente é categórica

Introdução ao R 5. Análise bivariada 12/19

Fúlvio Nedel SPB/UFSC

Objetivos da análise Variável dependente é numérica Variável independente é numérica Variável independente é categórica

Variável dependente é categórica

- 1 Introdução
 - Objetivos da análise
- 2 Variável dependente é numérica
 - Variável independente é numérica
 - Variável independente é categórica
- 3 Variável dependente é categórica

$\overline{\mathsf{Var.}}$ categórica imes var. numérica Obesidade \sim idade

Introdução ao R 5. Análise bivariada 13/19

Fúlvio Nedel SPB/UFSC

Variável dependente é categórica

Já vimos como descrever a associação entre uma variável numérica e uma categórica

```
não
 sim
64.02 64.11
round(tapply(idade, obeso, sd, na.rm = T), 2)
 sim
       não
12.97 12.85
round(tapply(idade, obeso, median, na.rm = T), 2)
sim não
65.5 64.0
round(tapply(idade, obeso, IQR, na.rm = T), 2)
```

round(tapply(idade, obeso, mean, na.rm = T), 2)

vlab = 'idade')

plot(obeso, idade,

kruskal.test(idade. obeso)

não

sim 18.25 18.00

Kruskal-Wallis rank sum test

data: idade and obeso

Kruskal-Wallis chi-squared = 0.0104, df = 1, p-value = 0.9188

library(gmodels)

Total Observations in Table:

Var. categórica \times var. categórica Obesidade \sim sexo

G R A A L

299

Introdução ao R 5. Análise bivariada 14/19

Fúlvio Nedel SPB/UFSC

Variável
dependente é
numérica
Variável
independente
numérica
Variável
variável

dependente é categórica

Variável

CrossTable(sexo, obeso,	ı	obeso			
prop.chisq = F,	sexo	sim	não	Row Total	Į
chisq = T, fisher = T)	Feminino	54	143		
	i	0.274	0.726	0.659	ĺ
Cell Contents	į	0.643	0.665	į į	ĺ
	į	0.181	0.478	j j	
l i N i					ĺ
N / Row Total	Masculino	30	72	102	ı
1		0.294	0.706	0.341	ı
N / Col Total	į	0.357	0.335	į į	ĺ
N / Table Total	į	0.100	0.241	i i	ĺ

Column Total

299

84

0.281

215

0.719

Var. categórica \times var. categórica Obesidade \sim sexo

299

Introdução ao R 5. Análise bivariada 14/19

Fúlvio Nedel

Variável dependente é categórica

library(gmodels)		
<pre>CrossTable(sexo, obeso,</pre>		
<pre>prop.chisq = F,</pre>		
chisq = T, fisher	=	Ί

Cell Contents

,		
= F,		
isher	=	T)

sexo	obeso sim	não	Row Total
Feminino	54 0.274 0.643 0.181	143 0.726 0.665 0.478	197 0.659
Masculino	30 0.294 0.357	72 0.706 0.335	102 0.341

0.281

215

0.719

Total	${\tt Observations}$	in	Table:	29

N / Row Total N / Col Total N / Table Total

Statistics for All Table Factors

Pearson's Chi-squared test

Column Total

 $Chi^2 = 0.1331494$ d.f. = 1 p = 0.7151887

Pearson's Chi-squared test with Yates' continuity correction

$$Chi^2 = 0.05253029$$
 d.f. = 1 p = 0.8187175

Introducã

bivariada

Variável dependente é

categórica

5. Ana

Var. categórica × var. categórica Obesidade ∼ sexo

Row Total

197

o ao lise	ĸ
14/	19
ledel FSC	
FSC	

prop.chisq = F,
 chisq = T, fisher = T)
Cell Contents

N / Row Total

N / Col Total

Feminino | 54 | 0.274 | 0.643 | 0.181 |

sexo

Column Total

obeso

sim

0.726 0.659 0.665 0.478 72 102 0.294 0.706 0.341 0.335 0.357 0.100 0.241 84 215 299 0.281 0.719

não

143

N / Table Total

library(gmodels)

CrossTable(sexo, obeso,

Total Observations in Table: 29
Statistics for All Table Factors

Fisher's Exact Test for Count Data

Sample estimate odds ratio: 0.9065962

Alternative hypothesis: true odds ratio is not equal to 1 p = 0.786248 95% confidence interval: 0.5186835 1.601355

Alternative hypothesis: true odds ratio is less than 1 p = 0.407084 95% confidence interval: 0 1.467891

Alternative hypothesis: true odds ratio is greater than 1 p = 0.6932558 95% confidence interval: 0.5637979 Inf

Var. categórica × var. categórica Obesidade ∼ sexo

Introdução ao R 5. Análise bivariada 15/19

Fúlvio Nedel SPB/UFSC

Objetivos da análise
Variável
dependente é
numérica
Variável
independente é
numérica
Variável
independente é
independente é

Variável dependente é categórica

tabpct(sexo, obeso)

obeso

obeso

Row percent

sexo	sim	não	Total
Feminino	54	143	197
	(27.4)	(72.6)	(100)
Masculino	30	72	102
	(29.4)	(70.6)	(100)

Column percent

sexo	sim	%	não	%
Feminino	54	(64.3)	143	(66.5)
Masculino	30	(35.7)	72	(33.5)
Total	84	(100)	215	(100)

Distribution of obeso by sexo

$$\begin{split} RP_{m/f} &= \frac{29,4}{27,4} = 1,073 \\ OR_{m/f} &= \frac{29,4/70,6}{27,4/72,6} = \frac{0,416}{0,377} = 1,103 \end{split}$$

?chisq.test(sexo, obeso)
?fisher.test(sexo, obeso)

Var. categórica × var. categórica

G R A A L

```
Introdução ao R
5. Análise
bivariada 16/19
```

Fúlvio Nedel SPB/UFSC

Objetivos da análise Variável dependente é numérica

Variável dependente é categórica

```
Epi::twoby2(sexo, obeso)
```

2 by 2 table analysis:

Outcome : sim

Comparing : Feminino vs. Masculino

 sim não
 P(sim)
 95% conf. interval

 Feminino
 54 143
 0.2741
 0.2164
 0.3406

 Masculino
 30 72
 0.2941
 0.2139
 0.3895

95% conf. interval
Relative Risk: 0.9320 0.6393 1.3586
Sample Odds Ratio: 0.9063 0.5342 1.5376
Conditional MLE Odds Ratio: 0.9066 0.5187 1.6014
Probability difference: -0.0200 -0.1307 0.0835

Exact P-value: 0.7862 Asymptotic P-value: 0.7152

Var. categórica \times var. categórica Obesidade $\sim \overline{\mathsf{sexo}}$


```
Introdução ao R
   5. Análise
bivariada 17/19
```

Fúlvio Nedel

Variável dependente é categórica

epiR::epi.2by2(table(sexo,obeso))

	Outcome +	Outcome -	Total	Inc risk *
Exposed +	54	143	197	27.4
Exposed -	30	72	102	29.4
Total	84	215	299	28.1
	Odds			
Exposed +	0.378			
Exposed -	0.417			
Total	0.391			

Point estimates and 95 % CIs:

0.93 (0.64, 1.36) Inc risk ratio (W) Odds ratio (W) 0.91 (0.53, 1.54) Attrib risk (W) * -2.00 (-12.82, 8.82) Attrib risk in population (W) * -1.32 (-11.52, 8.89) Attrib fraction in exposed (%) -7.30 (-56.41, 26.39) Attrib fraction in population (%) -4.69 (-33.40, 17.84)

X2 test statistic: 0.133 p-value: 0.715 W: Wald confidence limits

* Cases per 100 population units

Var. categórica \times var. categórica Obesidade $\sim sexo$


```
Introdução ao R
   5. Análise
bivariada 18/19
```

Fúlvio Nedel

Variável dependente é categórica

```
Rcoisas::bolero(sexo, obeso)
                  Tabela 2 por 2
        bolero(independente, dependente, dec=2, dnn)
                                   barplot(table(sexo.obeso), beside = T.
Var. dependente : obeso = sim
                                           xlab = 'Obesidade',
Var. independente: sexo = Feminin
                                           legend.text = levels(sexo),
                                           args.legend = list(x="topleft"))
           obeso
           sim não Sum
sexo
  Feminino 54 143 197
                                       ■ Mascrilio
  Masculino 30 72 102
      84 215 299
  Sum
```


Proporções (%)

IC95% (exato) : 0.60 1.36 Razão de Odds : 0.91 : IC95% (exato) : 0.52 1.60 Valor-p: Pearson, Yates: 0.819; Fisher: 0.786

TAREFA

Introdução ao R 5. Análise bivariada 19/19

Fúlvio Nedel SPB/UFSC

Introdução
Objetivos da análise
Variável
dependente é numérica
Variável
independente e numérica
Variável
independente e categórica

Variável dependente é categórica

Descrição bivariada

- Descreva a relação entre o peso e a altura (estão no banco cursoR)
- Descreva a relação entre o IMC e a participação em grupos
- Descreva a relação entre o IMC e a condição socioeconômica em sete níveis (variável abepcls, em cursoR)
- Descreva a relação entre a obesidade e a participação em grupos de promoção à saúde
- Descreva a relação entre a obesidade e a condição socioeconômica