Lecture 4: Probability

Jacob M. Montgomery

Quantitative Political Methodology

Lecture 4

CLass business

- PROBLEM SET 1 IS DUE RIGHT NOW
- ▶ Problem set 2 will be distributed today via the syllabus

Facebook and survey

- Sign up for our Facebook group: https://www.facebook.com/groups/1071702902960687/
- ► Take the class survey! Can't assign teams until you all do.

https:

//wustl.az1.qualtrics.com/jfe/form/SV_6rpSYD3xxmbRe5v

Roadmap

Last time:

- Visualizing data
- Measures of central tendency and spread

This time:

- Understand core concepts of probability
- Understanding concept of a "parameter"
- Introduce some probability distributions

Why are we studying this?

Probability defined

Imagine tossing a coin...

► Can you predict the outcome of a single coin toss?

Probability defined

Imagine tossing a coin...

- ► Can you predict the outcome of a single coin toss?
- ► Can you predict the *overall* outcome of 100 coin tosses?

Probability defined

Imagine tossing a coin...

- Can you predict the outcome of a single coin toss?
- Can you predict the overall outcome of 100 coin tosses?

AF p. 73: "For a particular possible outcome for a random phenomenon, the probability of that outcome is the proportion of times that the outcome would occur in a very long sequence of observations."

Example

Imagine you were rolling two six-sided dice.

- 1. Write down all possible scores.
- 2. Calculate the probability of each score
 - ▶ What is the probability of rolling a 2?

36 possible outcomes for the two dice:

1,1	1,2	1,3	1,4	1,5	1,6
2,1	2,2	2,3	2,4	2,5	2,6
3,1	3,2	3,3	3,4	3,5	3,6
4,1	4,2	4,3	4,4	4,5	4,6
5,1	5,2	5,3	5,4	5,5	5,6

6,1 6,2 6,3 6,4 6,5 6,6

How many outcomes will generate a total score of 2?

5,1 5,2 5,3 5,4 5,5 5,6 6,1 6,2 6,3 6,4 6,5 6,6

$$P(roll=2) = \frac{1}{36} = 0.028.$$

Putting this all togetheer

y_k	$Pr(Y = y_k)$
2	1/36
3	2/36

Putting this all togetheer

y_k	$Pr(Y = y_k)$
2	1/36
3	2/36
4	3/36
5	4/36
6	5/36
7	6/36
8	5/36
9	4/36
10	3/36
11	2/36
12	1/36

More formal definition

Probability is the relative frequency of occurrence for some particular outcome if a process is repeated a large number of times under similar conditions

More formal definition

Probability is the relative frequency of occurrence for some particular outcome if a process is repeated a large number of times under similar conditions

- ▶ If I flip a coin three times, what is the probability that I will get exactly two heads?
- ▶ If I roll two dice, what is the probability of getting a two?
- ▶ If I take a random sample of 100 Wash U students, what is the probability that less than 40% of the sample will be male?

Frequency distribution (discrete probability distribution)} is a probability distribution of a discrete variable Y assigns a probability to each possible outcome.

Frequency distribution (discrete probability distribution)} is a probability distribution of a discrete variable Y assigns a probability to each possible outcome.

▶ Let $S = \{y_1, y_2, ..., y_k\}$ be the set of all possible outcomes,

Frequency distribution (discrete probability distribution)} is a probability distribution of a discrete variable Y assigns a probability to each possible outcome.

▶ Let $S = \{y_1, y_2, ..., y_k\}$ be the set of all possible outcomes, and Y be the realization of the variable.

Frequency distribution (discrete probability distribution)} is a probability distribution of a discrete variable Y assigns a probability to each possible outcome.

- ▶ Let $S = \{y_1, y_2, ..., y_k\}$ be the set of all possible outcomes, and Y be the realization of the variable.
- ▶ Then, $p(y_k) = Pr(Y = y_k)$, where
- ▶ $0 \le p(y_k) \le 1 \ \forall \ k$

Frequency distribution (discrete probability distribution)} is a probability distribution of a discrete variable Y assigns a probability to each possible outcome.

- ▶ Let $S = \{y_1, y_2, ..., y_k\}$ be the set of all possible outcomes, and Y be the realization of the variable.
- ▶ Then, $p(y_k) = Pr(Y = y_k)$, where
- ▶ $0 \le p(y_k) \le 1 \ \forall \ k$

$$\sum_{k=1}^K p(y_k) = 1$$

We already made one of these

Уk	$Pr(Y=y_k)$
2	1/36
3	2/36
4	3/36
5	4/36
6	5/36
7	6/36
8	5/36
9	4/36
10	3/36
11	2/36
12	1/36

We already made one of these

Уk	$Pr(Y = y_k)$
2	1/36
3	2/36
4	3/36
5	4/36
6	5/36
7	6/36
8	5/36
9	4/36
10	3/36
11	2/36
12	1/36

▶
$$p(y_k) = Pr(Y = y_k)$$
▶ $0 \le p(y_k) \le 1 \ \forall \ k$
▶ $\sum_{k=1}^{K} p(y_k) = 1$

$$\sum_{k=1}^{K} p(y_k) = 1$$

Parameters of distributions

▶ In probability theory we often wish to identify two important characteristics of distribution.

Parameters of distributions

- In probability theory we often wish to identify two important characteristics of distribution. - We wish to know the mean (μ), which is sometimes called the expected value.
 - We wish to know the variance (σ^2)
- ▶ NOTE: This is **not** the same as \bar{x} and s^2 .

Parameters of distributions

- In probability theory we often wish to identify two important characteristics of distribution. - We wish to know the mean (μ), which is sometimes called the expected value.
 - We wish to know the variance (σ^2)
- NOTE: This is **not** the same as \bar{x} and s^2 . Why are these greek letters?

y_k	$Pr(Y=y_k)$
2	1/36
3	2/36
4	3/36
5	4/36
6	5/36
7	6/36
8	5/36
9	4/36
10	3/36
11	2/36
12	1/36

$$\mu = \sum_{k=1}^{K} y_k Pr(Y = y_k)$$

y_k	$Pr(Y = y_k)$
2	1/36
3	2/36
4	3/36
5	4/36
6	5/36
7	6/36
8	5/36
9	4/36
10	3/36
11	2/36
12	1/36

$$\mu = \sum_{k=1}^{n} y_k Pr(Y = y_k) = 2(1/36) + 3(2/36) + \dots + 12(1/36)$$

y_k	$Pr(Y=y_k)$
2	1/36
3	2/36
4	3/36
5	4/36
6	5/36
7	6/36
8	5/36
9	4/36
10	3/36
11	2/36
12	1/36

$$\mu = \sum_{k=1}^{K} y_k Pr(Y = y_k) = 2(1/36) + 3(2/36) + \dots + 12(1/36) = 7$$

y_k	$Pr(Y=y_k)$
2	1/36
3	2/36
4	3/36
5	4/36
6	5/36
7	6/36
8	5/36
9	4/36
10	3/36
11	2/36
12	1/36

$$\mu = \sum_{k=1}^{K} y_k Pr(Y = y_k) = 2(1/36) + 3(2/36) + \dots + 12(1/36) = 7$$

The variance of a distribution

Уk	$Pr(Y=y_k)$
2	1/36
3	2/36
4	3/36
5	4/36
6	5/36
7	6/36
8	5/36
9	4/36
10	3/36
11	2/36
_12	1/36

$$\sigma^2 = E(Y - \mu)^2$$

The variance of a distribution

y_k	$Pr(Y = y_k)$
2	1/36
3	2/36
4	3/36
5	4/36
6	5/36
7	6/36
8	5/36
9	4/36
10	3/36
11	2/36
12	1/36

$$\sigma^2 = E(Y - \mu)^2$$
 requires extra calculations

A little simulation

```
posVal<-c(1,2,3,4,5,6)
numRoll<-10
die1<-sample(x = posVal, size=numRoll, replace=TRUE)
die2<-sample(x = posVal, size=numRoll, replace=TRUE)
total<-die1+die2
hist(total)</pre>
```



```
posVal<-c(1,2,3,4,5,6)
numRoll<-100
die1<-sample(x = posVal, size=numRoll, replace=TRUE)
die2<-sample(x = posVal, size=numRoll, replace=TRUE)
total<-die1+die2
hist(total)</pre>
```



```
posVal<-c(1,2,3,4,5,6)
numRoll<-1000
die1<-sample(x = posVal, size=numRoll, replace=TRUE)
die2<-sample(x = posVal, size=numRoll, replace=TRUE)
total<-die1+die2
hist(total)</pre>
```



```
posVal<-c(1,2,3,4,5,6)
numRoll<-10000
die1<-sample(x = posVal, size=numRoll, replace=TRUE)
die2<-sample(x = posVal, size=numRoll, replace=TRUE)
total<-die1+die2
hist(total)</pre>
```


End of part 1

- What is a probability?
- What is a frequency distribution?
- ► What are the two most important parameters for characterizing a distribution?