

نحاحك بهمنا

Matière: Mathématiques Prof: MEDIOUNI Imed

Classe: 1é S 1 Durée: 45 mn

Devoir De Contrôle N° 2

13.112018

Exercice 1: (4 points)

Pour chacune des questions suivantes, une seule des trois réponses proposées est exacte. On indiquera à chaque fois le numéro de la question et la lettre correspondante à la réponse choisie. (Aucune *justification n'est demandée)*

- 1. Le nombre $\sqrt{2}^{-2018} + \sqrt{2}^{-2018}$ est égal à :

- 2^{-2018}
- 2. L'inverse du réel $3-\sqrt{3}$ est :

$$a$$
 $\frac{1}{3} - \frac{1}{\sqrt{3}}$

$$\boxed{a} \quad \frac{1}{3} - \frac{1}{\sqrt{3}} \qquad \boxed{b} \quad \frac{1}{2} \left(1 + \frac{1}{\sqrt{3}} \right)$$

$$c$$
 3+ $\sqrt{3}$

- 3. Dans la figure ci-contre :
 - (AB)//(CD)
 - (AB)//(EF)
 - (CD)//(EF)

4. On considère la figure ci-dessous .On a :

$$a$$
 $x = \frac{a+b}{2}$

- x = |a-b|

Exercice 2: (5 points)

On considère les nombres réels :

$$a = 3\sqrt{20} - \sqrt{125} + 2$$
 et $b = \frac{1}{4}(5 - \sqrt{5})(1 + \sqrt{5}) - \frac{1}{2}\sqrt{2}\sqrt{8}$.

- 1. Montrer que: $a = \sqrt{5} + 2$ et $b = \sqrt{5} 2$.
- 2.a. Montrer que a et b sont inverses.
- b. Calculer alors : $\frac{a^{2018}}{h^{-2020}}$.
- 3. On considère la figure ci-contre où OM = 2, $MA = \sqrt{5}$ et MN = 10b. Calculer AB.

Exercice 3: (3 points)

- 1. Soit $n \in \mathbb{N}^*$. Montrer que: $\frac{1}{n} \frac{1}{n+2} = \frac{2}{n(n+2)}$.
- 2. Calculer alors la somme :

$$S = \frac{1}{1 \times 3} + \frac{1}{2 \times 4} + \frac{1}{3 \times 5} + \frac{1}{4 \times 6} + \dots + \frac{1}{97 \times 99} + \frac{1}{98 \times 100}$$

Exercice 4: (8 points)

1. Tracer un trapèze ABCD de bases [AB] et [CD] tel que AB = 6cm et CD = 8cm.

Placer les points I et J milieux respectifs de [AB] et [CD].

- 2. Les droites (AJ) et (DI) se coupent en M.
 - a. Montrer que : $\frac{MI}{MD} = \frac{AI}{DI}$
 - b. En déduire que : $IM = \frac{3}{7}ID$

3. Les droites (BJ) et (CI) se coupent en N.

- Montrer que : $IN = \frac{3}{7}IC$.
- 4. En déduire que les droites (MN) et (DC) sont parallèles.