

РОССИЙСКАЯ АКАДЕМИЯ НАРОДНОГО ХОЗЯЙСТВА И ГОСУДАРСТВЕННОЙ СЛУЖБЫ ПРИ ПРЕЗИДЕНТЕ РОССИЙСКОЙ ФЕДЕРАЦИИ

Модели пересекающихся поколений (OLG)

2020

Михаил Гареев

90-15-01

mkhlgrv@gmail.com

Научный руководитель: к.э.н. Полбин А.В.

Возникновение и основная идея

- Проблема: модели экономического роста первого поколения (модель Солоу) предполагают экзогенную норму сбережения.
- Решение: модель, в которой сбережения формируются исходя из выбора экономических агентов:
 - → модель Рамсея Кааса Купманса (1963): бесконечно живущий агент выбирает уровень потребления и сбережения, максимизируя полезность;
 - ⇒ модель пересекающихся поколений Даймонда¹ (1965): в каждый момент времени существует несколько поколений, молодые работают и сберегают, пожилые тратят свои сбережения.

¹Diamond, Peter A. (1965): «National Debt in a Neoclassical Growth Model,» American Economic Review, 55, 1126–1150

Предположения

- Дискретное время;
- Индивиды живут два периода;
- ▶ Полезность индивида $U_t = \ln(c_{1,t}) + \beta \ln(c_{2,t+1})$,
 - $\Rightarrow c_{1,t}$ потребление молодого поколения,
 - $\Rightarrow c_{2,t+1}$ потребление пожилого поколения,
 - $\Rightarrow \beta \in (0,1)$ коэффициент временных предпочтений,
- Численность населения растёт с постоянным темпом n: $L_t = (1+n)^t L_0$;
- ▶ Индивиды работают только в первый период жизни, неэластично предлагая единицу труда и получая зарплату w_t .

Предположения

- **В**ыпуск описывается функцией Кобба Дугласа: $Y_t = F(K_t, L_t) = K_t{}^{\alpha} L_t{}^{1-\alpha};$
- Рынки факторов производства находятся в совершенной конкуренции;
- ▶ Обозначим $k_t = K_t/L_t$, $f(k_t) = F(K_t,1)$, тогда рентная цена капитала, равная доходности сбережений $R_t = 1 \delta + f'(k_t)$, где δ амортизация;
- ▶ Зарплата $w_t = f(k_t) R_t k_t$;
- ▶ Единица сбережений s_t без потерь трансформируется в единицу капитала K_t .

Задача индивида

> Уровень сбережений s_t индивида из поколения t — это результат решения оптимизационной задачи:

$$\max_{c_{1,t},c_{2,t+1},s_t} \ln(c_{1,t}) + \beta \ln(c_{2,t+1})$$

при ограничениях:

$$c_{1,t} + s_t \le w_t,$$

$$c_{2,t} \le R_{t+1} s_t.$$

Условия первого порядка:

$$s_t = \frac{\beta}{1+\beta} w_t.$$

Динамика капитала

Уровень капитала в момент времени t+1:

$$K_{t+1} = s_t L_t + (1 - \delta) K_t.$$

Капиталовооружённость единицы труда:

$$k_{t+1} = \frac{s_t}{1+n} + (1-\delta)\frac{k_t}{1+n};$$

$$k_{t+1} = \frac{\beta w_t}{(1+\beta)(1+n)} + (1-\delta)\frac{k_t}{1+n};$$

$$k_{t+1} = \frac{\beta(1-\alpha)k_t^{\alpha} + (1-\delta)k_t}{(1+\beta)(1+n)}.$$

▶ В устойчивом состоянии капиталовооружённость не меняется: $k^*: k^* = k_{t+1} = k_t$:

$$k^* = \left[\frac{\beta(1-\alpha)}{(1+\beta)(1+n) - (1-\delta)}\right]^{\left(\frac{1}{1-\alpha}\right)}$$

Предположения

- Дискретное время;
- Индивиды живут три периода;
- ▶ Полезность индивида из поколения τ $U_{\tau} = \ln(c_{\tau,\tau}) + \beta \ln(c_{\tau,\tau+1}) + \beta^2 \ln(c_{\tau,\tau+2})$, где:
 - $\Rightarrow c_{\tau,\tau} \equiv c_{\tau}^y$ потребление молодого поколения в период времени τ ,
 - $\Rightarrow c_{ au, au+1}\equiv c_{ au+1}t^m$ потребление среднего поколения в период времени au+1,
 - $\Rightarrow c_{ au, au+2} \equiv c_{ au+2} t^o$ потребление пожилого поколения в период времени au+2,
 - $\Rightarrow \beta \in (0,1)$ коэффициент временных предпочтений;
- Численность поколения au в момент времени t:

$$N_{\tau,t} = \begin{cases} (1+n)^\tau N_0, & \text{если } \tau \leq t+2, \\ 0, & \text{если } \tau > t+2; \end{cases}$$

Численность населения в момент времени t:

$$\widetilde{N_t} = N_{t-2,t} + N_{t-1,t} + Nt, t = (1+n)^{t-2} N_0 + (1+n)^{t-1} N_0 + (1+n)^t N_0.$$

Предположения

- Индивиды работают два первых периода жизни: молодому поколению доступна единица труда, среднему поколению доступно d>0 труда;
- ▶ Предложение труда неэластично. Индивиды предлагают весь доступный труд и получают зарплату w_t :

$$L_t = N_{t-1,t} + Nt, t = (1+n)^{t-1}N_0 + (1+n)^t N_0;$$

- **В**ыпуск описывается функцией Кобба-Дугласа: $Y_t = F(K_t, L_t) = K_t{}^{\alpha} L_t{}^{1-\alpha};$
- Рынки факторов производства находятся в совершенной конкуренции;
- ▶ Рентная цена капитала $R_t = 1 \delta + f'(k_t)$;
- ▶ Зарплата $w_t = f(k_t) R_t k_t$;
- ▶ Единица сбережений s_t без потерь трансформируется в единицу капитала K_t .

Задача индивида

▶ Уровень сбережений $s_{\tau,t}$ индивида из поколения τ в момент времени t — это результат решения оптимизационной задачи:

$$\max_{c_{1,t},c_{2,t+1},s_t} \ln(c_{\tau,\tau}) + \beta \ln(c_{\tau,\tau+1}) + \beta^2 \ln(c_{\tau,\tau+2})$$

при ограничениях:

$$\begin{aligned} c_{\tau,\tau} + s_{\tau,\tau} &\leq w_{\tau}, \\ c_{\tau,\tau+1} + s_{\tau,\tau+1} &\leq dw_{\tau+1} + R_{\tau+1}s_{\tau,\tau}, \\ c_{\tau,\tau+2} &\leq R_{t+2}s_{\tau,\tau+1}. \end{aligned}$$

Условия первого порядка:

$$s_t = \frac{\beta}{1+\beta} w_t.$$

ightharpoonup Уровень капиталовооружённости в момент времени t+1:

$$k_{t+1} = \frac{c_t^y}{1+n+d} + \frac{c_t^m}{(1+n)(1+n+d)} + k_t \frac{1-\delta}{1+n},$$

где:

$$c_t^y = w_t(1+\beta)\beta - \frac{w_{t+1}d}{R_{t+1}(1+\beta+\beta^2)},$$

$$s_t^m = \frac{\beta^2(dw_t + (w_{t-1}R_t)) - w_td}{1+\beta+\beta^2}.$$

Решение

- Аналитическое решение невозможно, приходится использовать численные методы.
- Алгоритм:
 - 1. Численно находится капиталовооружённость в устойчивом состоянии k^* :
 - 2. Находится первое приближение (линейный тренд от k_0 до $k_T = k^*$);
 - 3. Для каждого момента времени $t \in (0,T)$ при известных капитале и труде рассчитываются цены факторов производства R_t, w_t ;
 - 4. При известных ценах на факторы рассчитываются потребление и сбережения;
 - 5. При известных сбережениях формируется новая траектория капиталовооружённости, которая прибавляется к предыдущей с шагом η ;
 - Процедура повторяется с шага 3, пока разница между моделями не окажется меньше заданного уровня ζ.

Решение

: Нахождение k^{st}

Симуляция

: Траектории ${\it k}$

Симуляция

: Потребление OLG-модели

14/16

Симуляция

: Сбережения

Планы

- Налоги;
- Гетерогенные поколения;
- Увеличение числа поколений;
- Добавление досуга в функцию полезности, эластичное предложение труда, моделирование изменения пенсионного возраста;
- Открытая экономика.