Période 1 : Langage/Données/Machines

Constructions élémentaires Mettre en évidence un corpus de constructions élémentaires. Séquences, affectation, conditionnelles, boucles bornées, boucles non bornées, appels de fonction. Utilisation de bibliothèques Utiliser la documentation d'une bibliothèque. Aucune connaissance exhaustive d'une bibliothèque particulière n'est exigible. Écriture d'un entier positif dans une base b ≥ 2 Passer de la représentation d'une base dans une autre. Les bases 2, 10 et 16 sont privilégiées. Valeurs booléennes : and, or, not. Dresser la table d'une expression booléenne. Le ou exclusif (xor) est évoqué. Quelques applications directes comme l'addition binaire sont présentaties. L'attention des élèves est attrée sur le caractèristiques des différents constituants d'une machine. Le a présentation se limite aux concepts généraux. On distingue les architectures monoprocesseur et les architectures monoprocesseur et les architectures monoprocesseur et les architectures multiprocesseur. Des activités débranchées sont proposées. Les circuits combinatoires réalisent des fonctions booléennes. Évaluer le nombre de bits nécessaires à l'écriture en base 2 d'un entier, de la somme ou du produit de deux nombres entiers. Utiliser le complément à 2. Il s'agit de décrire les tailles courantes des entiers (8, 16, 32 ou 64 bits). Représentation approximative des nombres réels : notion de nombre féoltant Calculer sur quelques erreprésentation de nombre féoltant Il faut éviter de tester l'égalité de deux flottants. Représentation de nombre féoltant Calculer sur quelques erreprésentation de nomb	Contonue	Canacitée etteralmen	Commontaires
Constructions élémentaires corpus de constructions élémentaires. boucles bornées, boucles non bornées, appels de fonction. Utilisation de bibliothèques Utiliser la documentation d'une bibliothèque. Aucune connaissance exhaustive d'une bibliothèque particulière n'est exigible. Écriture d'un entier positif dans une base b ≥ 2 Passer de la représentation d'une base dans une autre. Les bases 2, 10 et 16 sont privilégiées. Valeurs booléennes : 0, 1. Opérateurs booléens : and, or, not. Dresser la table d'une expression booléenne. Le ou exclusif (xor) est évoqué. Expressions booléennes Quelques applications directes comme l'addition binaire sont présentées. L'attention des élèves est attirée sur le caractér séquentiel de certains opérateurs booléens. Modèle d'architecture séquentielle (von Neumann) Dérouler l'exécution d'une séquence d'instructions simples du type langage machine. La présentation se limite aux concepts généraux. Modèle d'architecture (von Neumann) Dérouler l'exécution d'une séquence d'instructions simples du type langage machine. La présentation se limite aux concepts généraux. Dérouler l'exécution d'une sequence d'instructions simples du type langage machine. Le cuit s'une de débraux. Evaluer le nombre de bits nécessaires à l'écriture en base 2 d'un entier, de la somme ou du produit de deux nombres réels : notion de nombre fiebs in nécessaires à l'écriture en base 2 d'un entier, de la somme ou du produit de deux nombres réels : notion de nombre fiebs en nombres	Contenus	Capacités attendues	Commentaires
elémentaires corpus de constructions elémentaires. diementaires diune bibliothèque Ditiliser la documentation d'une bibliothèque particulière n'est exigible. Les bases 2, 10 et 16 sont privilégiées. Les diementaires Le ou exclusif (xor) est évoqué. Quelques applications directes comme l'addition binaire séquentiel de certains opérateurs booléens. Distinguer les rôles et les caractères séquentiel de certains opérateurs booléens. Dérouler l'exécution d'une séquence d'instructions simples du type langage machine. Dérouler l'exécution d'une monprocesseur et les architectures multiprocesseur. Des activités débranchées sont proposées. Les duer le nombre de bits nécessaires à l'écriture en base 2 d'un entier, de la somme ou du produit de deux ombres réals in directes comme l'addition binaire d'une ntier ples d'une ntier ples d'une ntier ples d'une nti	Constructions		•
lutilisation de bibliothèques Utiliser la documentation d'une bibliothèque Dibliothèque		-	
bibliothèques d'une bibliothèque. bibliothèque particulière n'est exigible. Écriture d'un entier positif dans une base $b \geqslant 2$ valeurs booléennes: 0, 1. Opérateurs booléens: and, or, not. Expressions booléennes Distinguer les rôles et les caractéristiques des différents constituants d'une machine. Dérouler l'exécution d'une séquence d'instructions simples du type langage machine. Dévaluer le nombre de bits nécessaires à l'écriture en base 2 d'un entier, de la somme ou du produit de deux nombres réels : notion de nombres flottant Distinguer les rôles et les caractére séquentiel de certains opérateurs booléens. Le ou exclusif (xor) est évoqué. Quelques applications directes comme l'addition binaire sont présentées. L'attention des élèves est attirée sur le caractère séquentiel de certains opérateurs booléens. La présentation se limite aux concepts généraux. On distingue les architectures monoprocesseur et les architectures monoprocesseur. Des activités débranchées sont proposées. Les circuits combinatoires réalisent des fonctions booléennes. Il s'agit de décrire les tailles courantes des entiers (8, 16, 32 ou 64 bits). Il est possible d'évoquer la représentation des entiers de taille arbitraire de Python.			• •
Ecriture d'un entier positif dans une base b ≥ 2 représentation d'une base dans une autre. Valeurs booléennes : 0, 1. Opérateurs booléens : and, or, not. Expressions booléennes Distinguer les rôles et les caractéristiques des d'inferents constituants d'une machine. Dérouler l'exécution d'une séquentielle (von Neumann) Distinguer les rôles et les caractère séquentiel de certains opérateurs booléens. Distinguer les rôles et les caractère séquentiel de certains opérateurs booléens. Distinguer les rôles et les caractère séquentiel de certains opérateurs booléens. Distinguer les rôles et les caractère séquentiel de certains opérateurs d'une machine. Dérouler l'exécution d'une séquence d'instructions simples du type langage machine. Evaluer le nombre de bits nécessaires à l'écriture en base 2 d'un entier, de la somme ou du produit de deux nombres entiers. Utiliser le complément à 2. Evaluer le nombre de bits nécessaires à l'écriture en base 2 d'un entier, de la somme ou du produit de deux nombres entiers. Utiliser le complément à 2. Calculer sur quelques exemples la représentation de nombre flottant Le ou exclusif (xor) est évoqué. Quelques applications directes comme l'addition binaire sat tyrésentées. L'attention des élèves est attirée sur le caractère séquentiel de certains opérateurs généraux. On distingue les architectures multiprocesseur. Des activités débranchées sont proposées. Les circuits combinatoires réalisent des fonctions booléennes. Il s'agit de décrire les tailles courantes des entiers de taille arbitraire de Python. Calculer sur quelques exemples la représentation de nombres réels : o.1, 0.25 Il faut éviter de tester l'égalité de deux flottants. Aucune connaissance précise de la norme	Utilisation de	Utiliser la documentation	Aucune connaissance exhaustive d'une
Valeurs booléennes : O, 1. Opérateurs booléennes : and, or, not. Dresser la table d'une expression booléenne. Le ou exclusif (xor) est évoqué. Expressions booléennes Cuelques applications directes comme l'addition binaire sont présentées. L'attention des élèves est attirée sur le caractère séquentiel de certains opérateurs booléens. Modèle d'architecture séquentielle (von Neumann) Distinguer les rôles et les caractéristiques des différents constituants d'une machine. La présentation se limite aux concepts généraux. Modèle d'architecture séquentielle (von Neumann) Dérouler l'exécution d'une séquence d'instructions simples du type langage machine. Dérouler l'exécution d'une séquence d'instructions simples du type langage machine. Des activités débranchées sont proposées. Les circuits combinatoires réalisent des fonctions booléennes. Evaluer le nombre de bits nécessaires à l'écriture en base 2 d'un entier, de la somme ou du produit de deux nombres entiers. Utiliser le complément à 2. Il s'agit de décrire les tailles courantes des entiers de taille arbitraire de Python. Représentation aproximative des nombres réels : notion de nombre flottant Calculer sur quelques exemples la représentation de nombres réels : 0.1, 0.25 0.2 + 0.1 n'est pas égal à 0.3. Il faut éviter de tester l'égalité de deux flottants. Aucune connaissance précise de la norme	bibliothèques	d'une bibliothèque.	bibliothèque particulière n'est exigible.
Valeurs booléennes : O, 1. Opérateurs booléennes : and, or, not. Dresser la table d'une expression booléenne. Le ou exclusif (xor) est évoqué. Expressions booléennes Cuelques applications directes comme l'addition binaire sont présentées. L'attention des élèves est attirée sur le caractère séquentiel de certains opérateurs booléens. Modèle d'architecture séquentielle (von Neumann) Distinguer les rôles et les caractéristiques des différents constituants d'une machine. La présentation se limite aux concepts généraux. Modèle d'architecture séquentielle (von Neumann) Dérouler l'exécution d'une séquence d'instructions simples du type langage machine. Dérouler l'exécution d'une séquence d'instructions simples du type langage machine. Des activités débranchées sont proposées. Les circuits combinatoires réalisent des fonctions booléennes. Evaluer le nombre de bits nécessaires à l'écriture en base 2 d'un entier, de la somme ou du produit de deux nombres entiers. Utiliser le complément à 2. Il s'agit de décrire les tailles courantes des entiers de taille arbitraire de Python. Représentation aproximative des nombres réels : notion de nombre flottant Calculer sur quelques exemples la représentation de nombres réels : 0.1, 0.25 0.2 + 0.1 n'est pas égal à 0.3. Il faut éviter de tester l'égalité de deux flottants. Aucune connaissance précise de la norme			
Valeurs booléennes : 0, 1. Opérateurs booléennes : and, or, not. Expressions booléennes Distinguer les rôles et les caractère séquentiel de certains opérateurs booléens. Distinguer les rôles et les caractère séquentiel de certains opérateurs booléens. Distinguer les rôles et les caractère séquentiel de certains opérateurs booléens. Distinguer les rôles et les caractère séquentiel de certains opérateurs booléens. Distinguer les rôles et les caractère séquentiel de certains opérateurs booléens. Distinguer les rôles et les caractère séquentiel de certains opérateurs d'une machine. Dérouler l'exécution d'une séquence d'instructions simples du type langage machine. Des activités débranchées sont proposées. Les circuits combinatoires réalisent des fonctions booléennes. Evaluer le nombre de bits nécessaires à l'écriture en base 2 d'un entier, de la somme ou du produit de deux nombres entiers. Utiliser le complément à 2. Représentation approximative des nombres réels : notion de nombres réels : notion de nombres réels : 0.1, 0.25 Distinguer les rôles et les caractère séquentiel de certains opérateurs généraux. On distingue les architectures monoprocesseur et les architectures multiprocesseur. Des activités débranchées sont proposées. Les circuits combinatoires réalisent des fonctions booléennes. Il s'agit de décrire les tailles courantes des entiers (8, 16, 32 ou 64 bits). Il est possible d'évoquer la représentation des entiers de taille arbitraire de Python. Représentation approximative des nombres réels : notion de nombres réels : 0.1, 0.25	Écriture d'un entier positif	Passer de la	Les bases 2, 10 et 16 sont privilégiées.
Valeurs booléennes : 0, 1. Opérateurs booléennes : and, or, not. Expressions booléennes Distinguer les rôles et les caractère séquentiel de certains opérateurs booléens. Distinguer les rôles et les caractère séquentiel de certains opérateurs booléens. Distinguer les rôles et les caractère séquentiel de certains opérateurs booléens. Distinguer les rôles et les caractère séquentiel de certains opérateurs booléens. Distinguer les rôles et les caractère séquentiel de certains opérateurs booléens. Distinguer les rôles et les caractère séquentiel de certains opérateurs d'une machine. Dérouler l'exécution d'une séquence d'instructions simples du type langage machine. Des activités débranchées sont proposées. Les circuits combinatoires réalisent des fonctions booléennes. Evaluer le nombre de bits nécessaires à l'écriture en base 2 d'un entier, de la somme ou du produit de deux nombres entiers. Utiliser le complément à 2. Représentation approximative des nombres réels : notion de nombres réels : notion de nombres réels : 0.1, 0.25 Distinguer les rôles et les caractère séquentiel de certains opérateurs généraux. On distingue les architectures monoprocesseur et les architectures multiprocesseur. Des activités débranchées sont proposées. Les circuits combinatoires réalisent des fonctions booléennes. Il s'agit de décrire les tailles courantes des entiers (8, 16, 32 ou 64 bits). Il est possible d'évoquer la représentation des entiers de taille arbitraire de Python. Représentation approximative des nombres réels : notion de nombres réels : 0.1, 0.25	dans une base $b \geqslant 2$	représentation d'une base	, ,
1. Opérateurs booléens : and, or, not. Expressions booléennes Distinguer les rôles et les caractèristiques des différents constituants d'une machine. Dérouler l'exécution d'un entier relatif Distinguer les rôles et les caractères séquentiel de certains opérateurs booléens. Distinguer les rôles et les caractères séquentiel de certains opérateurs booléens. Distinguer les rôles et les caractères séquentiel de certains opérateurs booléens. Distinguer les rôles et les caractères séquentiel de certains opérateurs booléens. La présentation se limite aux concepts généraux. On distingue les architectures monoprocesseur et les architectures multiprocesseur. Des activités débranchées sont proposées. Les circuits combinatoires réalisent des fonctions booléennes. Il s'agit de décrire les tailles courantes des entiers (8, 16, 32 ou 64 bits). Il s'agit de décrire les tailles courantes des entiers (8, 16, 32 ou 64 bits). Il set possible d'évoquer la représentation des entiers de taille arbitraire de Python. Des activités débranchées sont proposées. Les circuits combinatoires réalisent des fonctions booléennes. Il s'agit de décrire les tailles courantes des entiers (8, 16, 32 ou 64 bits). Il set possible d'évoquer la représentation des entiers de taille arbitraire de Python. Des activités débranchées sont proposées. Les circuits combinatoires réalisent des fonctions booléennes. Il s'agit de décrire les tailles courantes des entiers de taille arbitraire de Python. Des activités débranchées sont proposées. Les circuits combinatoires réalisent des fonctions booléennes. Il s'agit de décrire les tailles courantes des entiers de taille arbitraire de Python. Des activités débranchées sont proposées. Les circuits combinatoires réalisent des fonctions booléennes. Il s'agit de décrire les tailles courantes des entiers de taille arbitraire de Python. Des activités débranchées sont proposées. Les circuits combinations de fonctions d	·		
1. Opérateurs booléens : and, or, not. Expressions booléennes Distinguer les rôles et les caractèristiques des différents constituants d'une machine. Dérouler l'exécution d'un entier relatif Distinguer les rôles et les caractères séquentiel de certains opérateurs booléens. Distinguer les rôles et les caractères séquentiel de certains opérateurs booléens. Distinguer les rôles et les caractères séquentiel de certains opérateurs booléens. Distinguer les rôles et les caractères séquentiel de certains opérateurs booléens. La présentation se limite aux concepts généraux. On distingue les architectures monoprocesseur et les architectures multiprocesseur. Des activités débranchées sont proposées. Les circuits combinatoires réalisent des fonctions booléennes. Il s'agit de décrire les tailles courantes des entiers (8, 16, 32 ou 64 bits). Il s'agit de décrire les tailles courantes des entiers (8, 16, 32 ou 64 bits). Il set possible d'évoquer la représentation des entiers de taille arbitraire de Python. Des activités débranchées sont proposées. Les circuits combinatoires réalisent des fonctions booléennes. Il s'agit de décrire les tailles courantes des entiers (8, 16, 32 ou 64 bits). Il set possible d'évoquer la représentation des entiers de taille arbitraire de Python. Des activités débranchées sont proposées. Les circuits combinatoires réalisent des fonctions booléennes. Il s'agit de décrire les tailles courantes des entiers de taille arbitraire de Python. Des activités débranchées sont proposées. Les circuits combinatoires réalisent des fonctions booléennes. Il s'agit de décrire les tailles courantes des entiers de taille arbitraire de Python. Des activités débranchées sont proposées. Les circuits combinatoires réalisent des fonctions booléennes. Il s'agit de décrire les tailles courantes des entiers de taille arbitraire de Python. Des activités débranchées sont proposées. Les circuits combinations de fonctions d			
1. Opérateurs booléens : and, or, not. Expressions booléennes Distinguer les rôles et les caractèristiques des différents constituants d'une machine. Dérouler l'exécution d'un entier relatif Distinguer les rôles et les caractères séquentiel de certains opérateurs booléens. Distinguer les rôles et les caractères séquentiel de certains opérateurs booléens. Distinguer les rôles et les caractères séquentiel de certains opérateurs booléens. Distinguer les rôles et les caractères séquentiel de certains opérateurs booléens. La présentation se limite aux concepts généraux. On distingue les architectures monoprocesseur et les architectures multiprocesseur. Des activités débranchées sont proposées. Les circuits combinatoires réalisent des fonctions booléennes. Il s'agit de décrire les tailles courantes des entiers (8, 16, 32 ou 64 bits). Il s'agit de décrire les tailles courantes des entiers (8, 16, 32 ou 64 bits). Il set possible d'évoquer la représentation des entiers de taille arbitraire de Python. Des activités débranchées sont proposées. Les circuits combinatoires réalisent des fonctions booléennes. Il s'agit de décrire les tailles courantes des entiers (8, 16, 32 ou 64 bits). Il set possible d'évoquer la représentation des entiers de taille arbitraire de Python. Des activités débranchées sont proposées. Les circuits combinatoires réalisent des fonctions booléennes. Il s'agit de décrire les tailles courantes des entiers de taille arbitraire de Python. Des activités débranchées sont proposées. Les circuits combinatoires réalisent des fonctions booléennes. Il s'agit de décrire les tailles courantes des entiers de taille arbitraire de Python. Des activités débranchées sont proposées. Les circuits combinatoires réalisent des fonctions booléennes. Il s'agit de décrire les tailles courantes des entiers de taille arbitraire de Python. Des activités débranchées sont proposées. Les circuits combinations de fonctions d	Valeurs hooléennes : 0	Dresser la table d'une	l e ou exclusif (xor) est évoqué
and, or, not. Expressions booléennes Distinguer les rôles et les caractère séquentiel de certains opérateurs booléens. Distinguer les rôles et les caractère séquentiel de certains opérateurs booléens. L'a présentation se limite aux concepts généraux. On distingue les architectures monoprocesseur et les architectures monoprocesseur et les architectures multiprocesseur. Dérouler l'exécution d'une séquentielle (von Neumann) Evaluer le nombre de bits nécessaires à l'écriture en base 2 d'un entier, de la somme ou du produit de deux nombres entiers. Utiliser le complément à 2 Représentation de nombre flottant Distinguer les rôles et les caractère séquentiel de certains opérateurs booléens. La présentation se limite aux concepts généraux. On distingue les architectures multiprocesseur. Des activités débranchées sont proposées. Les circuits combinatoires réalisent des fonctions booléennes. Il s'agit de décrire les tailles courantes des entiers (8, 16, 32 ou 64 bits). Il est possible d'évoquer la représentation des entiers de taille arbitraire de Python. Calculer sur quelques exemples la représentation de nombres réels : notion de nombres réels : 0.1, 0.25 Aucune connaissance précise de la norme			· · ·
Expressions booléennes Distinguer les rôles et les caractère séquentiel de certains opérateurs booléens. Distinguer les rôles et les caractéristiques des différents constituants d'une machine. Modèle d'architecture séquentielle (von Neumann) Dérouler l'exécution d'une séquence d'instructions simples du type langage machine. Dévaluer le nombre de bits nécessaires à l'écriture en base 2 d'un entier, de la somme ou du produit de deux nombres entiers. Utiliser le complément à 2. Représentation approximative des nombre sfels : notion de nombre flottant Distinguer les rôles et les caractère séquentiel de certains opérateurs booléens. La présentation se limite aux concepts généraux. On distingue les architectures multiprocesseur. Des activités débranchées sont proposées. Les circuits combinatoires réalisent des fonctions booléennes. L'attention des élèves est attirée sur le caractère séquentiel de certains opérateurs booléens.	<u>-</u>	expression booleenine.	
Caractère séquentiel de certains opérateurs booléens. Distinguer les rôles et les caractéristiques des différents constituants d'une machine. Dérouler l'exécution d'une séquentielle (von Neumann) Evaluer le nombre de bits nécessaires à l'écriture en base 2 d'un entier, de la somme ou du produit de deux nombres entiers. Utiliser le complément à 2. Représentation approximative des nombres réels : notion de nombre flottant Distinguer les rôles et les généraux. On distingue les architectures monoprocesseur et les architectures multiprocesseur. Des activités débranchées sont proposées. Les circuits combinatoires réalisent des fonctions booléennes. Il s'agit de décrire les tailles courantes des entiers (8, 16, 32 ou 64 bits). Il est possible d'évoquer la représentation des entiers de taille arbitraire de Python. Calculer sur quelques exemples la représentation de nombres réels : notion de nombres réels : 0.1, 0.25			· · · · · · · · · · · · · · · · · · ·
Distinguer les rôles et les caractéristiques des différents constituants d'une machine. Dérouler l'exécution d'une séquentielle (von Neumann) Evaluer le nombre de bits nécessaires à l'écriture en base 2 d'un entier, de la somme ou du produit de deux nombres entiers. Utiliser le complément à 2. Distinguer les rôles et les caractéristion se limite aux concepts généraux. On distingue les architectures monoprocesseur et les architectures multiprocesseur. Des activités débranchées sont proposées. Les circuits combinatoires réalisent des fonctions booléennes. Il s'agit de décrire les tailles courantes des entiers (8, 16, 32 ou 64 bits). Il est possible d'évoquer la représentation des entiers de taille arbitraire de Python. Représentation approximative des nombres réels : notion de nombres réels : 0.1, 0.25	Expressions booleennes		
Distinguer les rôles et les caractéristiques des différents constituants d'une machine. Modèle d'architecture séquentielle (von Neumann) Dérouler l'exécution d'une séquence d'instructions simples du type langage machine. Dévaluer le nombre de bits nécessaires à l'écriture en base 2 d'un entier, de la somme ou du produit de deux nombres entiers. Utiliser le complément à 2. Représentation approximative des nombres réels : notion de nombre flottant Distinguer les rôles et les généraux. On distingue les architectures monoprocesseur et les architectures multiprocesseur. Des activités débranchées sont proposées. Les circuits combinatoires réalisent des fonctions booléennes. Il s'agit de décrire les tailles courantes des entiers (8, 16, 32 ou 64 bits). Il est possible d'évoquer la représentation des entiers de taille arbitraire de Python. O.2 + 0.1 n'est pas égal à 0.3. Il faut éviter de tester l'égalité de deux flottants. Aucune connaissance précise de la norme			
caractéristiques des différents constituants d'une machine. Dérouler l'exécution d'une séquentielle (von Neumann) Evaluer le nombre de bits nécessaires à l'écriture en base 2 d'un entier, de la somme ou du produit de deux nombres entiers. Utiliser le complément à 2. Calculer sur quelques exemples la nombre s'réels : notion de nombre flottant Caractéristiques des différents constituants d'ifférents constituants d'un entier relatif Caractéristiques des différents constituants d'une machine. On distingue les architectures monoprocesseur et les architectures monoprocesseur. Des activités débranchées sont proposées. Les circuits combinatoires réalisent des fonctions booléennes. Il s'agit de décrire les tailles courantes des entiers (8, 16, 32 ou 64 bits). Il est possible d'évoquer la représentation des entiers de taille arbitraire de Python. Calculer sur quelques exemples la représentation de nombres réels : notion de nombres réels : 0.1, 0.25 Aucune connaissance précise de la norme			booléens.
caractéristiques des différents constituants d'une machine. Dérouler l'exécution d'une séquentielle (von Neumann) Evaluer le nombre de bits nécessaires à l'écriture en base 2 d'un entier, de la somme ou du produit de deux nombres entiers. Utiliser le complément à 2. Calculer sur quelques exemples la nombre s'réels : notion de nombre flottant Caractéristiques des différents constituants d'ifférents constituants d'un entier relatif Caractéristiques des différents constituants d'une machine. On distingue les architectures monoprocesseur et les architectures monoprocesseur. Des activités débranchées sont proposées. Les circuits combinatoires réalisent des fonctions booléennes. Il s'agit de décrire les tailles courantes des entiers (8, 16, 32 ou 64 bits). Il est possible d'évoquer la représentation des entiers de taille arbitraire de Python. Calculer sur quelques exemples la représentation de nombres réels : notion de nombres réels : 0.1, 0.25 Aucune connaissance précise de la norme			
caractéristiques des différents constituants d'une machine. Dérouler l'exécution d'une séquentielle (von Neumann) Evaluer le nombre de bits nécessaires à l'écriture en base 2 d'un entier, de la somme ou du produit de deux nombres entiers. Utiliser le complément à 2. Calculer sur quelques exemples la nombre s'réels : notion de nombre flottant Caractéristiques des différents constituants d'ifférents constituants d'un entier relatif Caractéristiques des différents constituants d'une machine. On distingue les architectures monoprocesseur et les architectures monoprocesseur. Des activités débranchées sont proposées. Les circuits combinatoires réalisent des fonctions booléennes. Il s'agit de décrire les tailles courantes des entiers (8, 16, 32 ou 64 bits). Il est possible d'évoquer la représentation des entiers de taille arbitraire de Python. Calculer sur quelques exemples la représentation de nombres réels : notion de nombres réels : 0.1, 0.25 Aucune connaissance précise de la norme			
différents constituants d'une machine. Séquentielle (von Neumann) Dérouler l'exécution d'une séquence d'instructions simples du type langage machine. Dévaluer le nombre de bits nécessaires à l'écriture en base 2 d'un entier, de la somme ou du produit de deux nombres entiers. Utiliser le complément à 2. Représentation approximative des nombres réels : notion de nombre flottant différents constituants d'une machine. On distingue les architectures monoprocesseur et les architectures multiprocesseur. Des activités débranchées sont proposées. Les circuits combinatoires réalisent des fonctions booléennes. Il s'agit de décrire les tailles courantes des entiers (8, 16, 32 ou 64 bits). Il est possible d'évoquer la représentation des entiers de taille arbitraire de Python. Calculer sur quelques exemples la représentation de nombres réels : 0.1, 0.25 Aucune connaissance précise de la norme		Distinguer les rôles et les	La présentation se limite aux concepts
Modèle d'architecture séquentielle (von Neumann) Dérouler l'exécution d'une séquence d'instructions simples du type langage machine. Dévaluer le nombre de bits nécessaires à l'écriture en base 2 d'un entier, de la somme ou du produit de deux nombres entiers. Utiliser le complément à 2. Représentation approximative des nombres réels : notion de nombre flottant d'une machine. monoprocesseur et les architectures multiprocesseur. Des activités débranchées sont proposées. Les circuits combinatoires réalisent des fonctions booléennes. Il s'agit de décrire les tailles courantes des entiers (8, 16, 32 ou 64 bits). Il est possible d'évoquer la représentation des entiers de taille arbitraire de Python. Calculer sur quelques exemples la représentation de nombres réels : 0.1, 0.25 Aucune connaissance précise de la norme		caractéristiques des	généraux.
séquentielle (von Neumann) Dérouler l'exécution d'une séquence d'instructions simples du type langage machine. Evaluer le nombre de bits nécessaires à l'écriture en base 2 d'un entier, de la somme ou du produit de deux nombres entiers. Utiliser le complément à 2. Représentation approximative des nombres réels : notion de nombre flottant Dérouler l'exécution d'une séquence d'instructions simples du type langage machine. Multiprocesseur. Des activités débranchées sont proposées. Les circuits combinatoires réalisent des fonctions booléennes. Il s'agit de décrire les tailles courantes des entiers (8, 16, 32 ou 64 bits). Il est possible d'évoquer la représentation des entiers de taille arbitraire de Python. Calculer sur quelques exemples la représentation de nombres réels : 0.1, 0.25 Aucune connaissance précise de la norme		différents constituants	On distingue les architectures
séquentielle (von Neumann) Dérouler l'exécution d'une séquence d'instructions simples du type langage machine. Evaluer le nombre de bits nécessaires à l'écriture en base 2 d'un entier, de la somme ou du produit de deux nombres entiers. Utiliser le complément à 2. Représentation approximative des nombres réels : notion de nombre flottant Dérouler l'exécution d'une séquence d'instructions simples du type langage machine. Multiprocesseur. Des activités débranchées sont proposées. Les circuits combinatoires réalisent des fonctions booléennes. Il s'agit de décrire les tailles courantes des entiers (8, 16, 32 ou 64 bits). Il est possible d'évoquer la représentation des entiers de taille arbitraire de Python. Calculer sur quelques exemples la représentation de nombres réels : 0.1, 0.25 Aucune connaissance précise de la norme	Modèle d'architecture	d'une machine.	monoprocesseur et les architectures
(von Neumann) séquence d'instructions simples du type langage machine. Des activités débranchées sont proposées. Les circuits combinatoires réalisent des fonctions booléennes. Evaluer le nombre de bits nécessaires à l'écriture en base 2 d'un entier, de la somme ou du produit de deux nombres entiers. Utiliser le complément à 2. Représentation approximative des nombres réels : notion de nombre flottant Séquence d'instructions simples du type langage fonctions booléennes. Les circuits combinatoires réalisent des entiers (8, 16, 32 ou 64 bits). Il est possible d'évoquer la représentation des entiers de taille arbitraire de Python. O.2 + 0.1 n'est pas égal à 0.3. Il faut éviter de tester l'égalité de deux flottants. Aucune connaissance précise de la norme		Dérouler l'exécution d'une	=
simples du type langage machine. Evaluer le nombre de bits nécessaires à l'écriture en base 2 d'un entier, de la somme ou du produit de deux nombres entiers. Utiliser le complément à 2. Représentation approximative des nombres réels : notion de nombre flottant Evaluer le nombre de bits nécessaires à l'écriture en base 2 d'un entier, de la somme ou du produit de deux nombres entiers. Utiliser le complément à 2. Les circuits combinatoires réalisent des fonctions booléennes. Il s'agit de décrire les tailles courantes des entiers (8, 16, 32 ou 64 bits). Il est possible d'évoquer la représentation des entiers de taille arbitraire de Python. Calculer sur quelques entiers des entiers de taille arbitraire de Python. Il faut éviter de tester l'égalité de deux flottants. Aucune connaissance précise de la norme		séquence d'instructions	·
machine. Évaluer le nombre de bits nécessaires à l'écriture en base 2 d'un entier, de la somme ou du produit de deux nombres entiers. Utiliser le complément à 2. Représentation approximative des nombres réels : notion de nombre flottant Évaluer le nombre de bits nécessaires à l'écriture en base 2 d'un entier, de la somme ou du produit de deux nombre entiers. Utiliser le complément à 2. Il s'agit de décrire les tailles courantes des entiers (8, 16, 32 ou 64 bits). Il est possible d'évoquer la représentation des entiers de taille arbitraire de Python. O.2 + 0.1 n'est pas égal à 0.3. Il faut éviter de tester l'égalité de deux flottants. Aucune connaissance précise de la norme	(von reumann)	•	· · ·
Evaluer le nombre de bits nécessaires à l'écriture en base 2 d'un entier, de la somme ou du produit de deux nombres entiers. Utiliser le complément à 2. Représentation approximative des nombres réels : notion de nombres flottant Evaluer le nombre de bits nécessaires à l'écriture en base 2 d'un entier, de la somme ou du produit de deux nombres de sentiers (8, 16, 32 ou 64 bits). Il est possible d'évoquer la représentation des entiers de taille arbitraire de Python. Utiliser le complément à 2. Il faut éviter de tester l'égalité de deux flottants. Aucune connaissance précise de la norme			
nécessaires à l'écriture en base 2 d'un entier, de la somme ou du produit de deux nombres entiers. Utiliser le complément à 2. Représentation approximative des nombres réels : notion de nombre flottant nécessaires à l'écriture en base 2 d'un entier, de la somme ou du produit de deux nombier, de la somme ou du produit de deux nombres entiers. Utiliser le complément à 2. Calculer sur quelques exemples la représentation de nombres réels : 0.1, 0.25 Représentation de nombres réels : 0.1, 0.25 entiers (8, 16, 32 ou 64 bits). Il est possible d'évoquer la représentation des entiers de taille arbitraire de Python.			
nécessaires à l'écriture en base 2 d'un entier, de la somme ou du produit de deux nombres entiers. Utiliser le complément à 2. Représentation approximative des nombres réels : notion de nombre flottant nécessaires à l'écriture en base 2 d'un entier, de la somme ou du produit de deux nombier, de la somme ou du produit de deux nombres entiers. Utiliser le complément à 2. Calculer sur quelques exemples la représentation de nombres réels : 0.1, 0.25 Représentation de nombres réels : 0.1, 0.25 entiers (8, 16, 32 ou 64 bits). Il est possible d'évoquer la représentation des entiers de taille arbitraire de Python.		Évaluer le nombre de bits	Il s'agit de décrire les tailles courantes des
Représentation binaire d'un entier relatif Représentation binaire d'un entier relatif Calculer sur quelques approximative des nombres réels : notion de nombres réels : 0.1, 0.25 base 2 d'un entier, de la somme ou du produit de deux nombres, de la somme ou du produit de deux nombres entiers. Utiliser le complément à 2. Calculer sur quelques exemples la li faut éviter de tester l'égalité de deux flottants. Ou 64 bits). Il est possible d'évoquer la représentation des entiers de taille arbitraire de Python.			_
Représentation binaire d'un entier relatif Représentation Calculer sur quelques approximative des nombres réels : notion de nombres réels : 0.1, 0.25 Représentation binaire deux nombres entiers. Utiliser le complément à 2. Il est possible d'évoquer la représentation des entiers de taille arbitraire de Python. O.2 + 0.1 n'est pas égal à 0.3. Il faut éviter de tester l'égalité de deux flottants. Aucune connaissance précise de la norme			•
deux nombres entiers. Utiliser le complément à 2. Représentation approximative des nombres réels : notion de nombre flottant deux nombres entiers. Utiliser le complément à 2. des entiers de taille arbitraire de Python. 0.2 + 0.1 n'est pas égal à 0.3. Il faut éviter de tester l'égalité de deux flottants. Aucune connaissance précise de la norme	Représentation hinaire		
Représentation approximative des nombres réels : notion de nombre flottant Utiliser le complément à 2. Calculer sur quelques exemples la représentation de nombres réels : 0.1, 0.25 Utiliser le complément à 2. 0.2 + 0.1 n'est pas égal à 0.3. Il faut éviter de tester l'égalité de deux flottants. Aucune connaissance précise de la norme			
Représentation approximative des nombres réels : notion de nombre flottant Calculer sur quelques exemples la ll faut éviter de tester l'égalité de deux flottants. Aucune connaissance précise de la norme	d uit etillet telalli		des entiers de taille arbitraire de Fython.
approximative des nombres réels : notion de nombre flottant exemples la exemples la ll faut éviter de tester l'égalité de deux flottants. Il faut éviter de tester l'égalité de deux flottants. Aucune connaissance précise de la norme		Otiliser le complement à 2.	
approximative des nombres réels : notion de nombre flottant exemples la exemples la ll faut éviter de tester l'égalité de deux flottants. Il faut éviter de tester l'égalité de deux flottants. Aucune connaissance précise de la norme			
approximative des nombres réels : notion de nombre flottant exemples la exemples la ll faut éviter de tester l'égalité de deux flottants. Il faut éviter de tester l'égalité de deux flottants. Aucune connaissance précise de la norme	Représentation	Calculer sur quelques	0.2 + 0.1 n'est pas égal à 0.3.
nombres réels : notion de nombres réels : 0.1, 0.25 flottants. Aucune connaissance précise de la norme	-		, ,
nombre flottant nombres réels : 0.1, 0.25 Aucune connaissance précise de la norme		<u> </u>	•
' I		•	
Iou 1/3 IIFFF-754 n'est exicible	THOMBIC HOLLAND	ou 1/3.	IEEE-754 n'est exigible.
Identifier les fonctions Les différences entre systèmes			,
d'un système d'exploitation libres et propriétaires sont	Systèmes d'exploitation		· · · · · · · · · · · · · · · · · · ·
d'exploitation. évoquées.		-	·
		•	·
Utiliser les commandes de Les élèves utilisent un système			•
		•	•
commande. Il ne s'agit pas d'une étude théorique des			• •
Gérer les droits et systèmes d'exploitation.			systemes d'exploitation.
permissions d'accès aux		="	
fichiers.		fichiers.	

Période 2: Langages/Interaction Homme-machine sur le web

Diversité et unité des langages de programmation	Repérer, dans un nouveau langage de programmation, les traits communs et les traits particuliers à ce langage.	Les manières dont un même programme simple s'écrit dans différents langages sont comparées.
Modalités de l'interaction entre l'homme et la machine Événements	Identifier les différents composants graphiques permettant d'interagir avec une application Web. Identifier les événements que les fonctions associées aux différents composants graphiques sont capables de traiter.	Il s'agit d'examiner le code HTML d'une page comprenant des composants graphiques et de distinguer ce qui relève de la description des composants graphiques en HTML de leur comportement (réaction aux événements) programmé par exemple en JavaScript.
Interaction avec l'utilisateur dans une page <i>Web</i>	Analyser et modifier les méthodes exécutées lors d'un clic sur un bouton d'une page <i>Web</i> .	
Interaction client- serveur. Requêtes HTTP, réponses du serveur	Distinguer ce qui est exécuté sur le client ou sur le serveur et dans quel ordre. Distinguer ce qui est mémorisé dans le client et retransmis au serveur. Reconnaître quand et pourquoi la transmission est chiffrée.	Il s'agit de faire le lien avec ce qui a été vu en classe de seconde et d'expliquer comment on peut passer des paramètres à un site grâce au protocole HTTP.
Formulaire d'une page Web	Analyser le fonctionnement d'un formulaire simple. Distinguer les transmissions de paramètres par les requêtes POST ou GET.	Discuter les deux types de requêtes selon le type des valeurs à transmettre et/ou leur confidentialité.
PROJET: site web		

Période 3: Langage & types construits

Spécification	Prototyper une fonction. Décrire les préconditions sur les arguments. Décrire des postconditions sur les résultats.	Des assertions peuvent être utilisées pour garantir des préconditions ou des postconditions.
Mise au point de programmes	Utiliser des jeux de tests.	L'importance de la qualité et du nombre des tests est mise en évidence. Le succès d'un jeu de tests ne garantit pas la correction d'un programme.
p-uplets. p-uplets nommés	Écrire une fonction renvoyant un p-uplet de valeurs.	
Tableau indexé, tableau donné en compréhension	Lire et modifier les éléments d'un tableau grâce à leurs index. Construire un tableau par compréhension. Utiliser des tableaux de tableaux pour représenter des matrices : notation a [i] [j]. Itérer sur les éléments d'un tableau.	Seuls les tableaux dont les éléments sont du même type sont présentés. Aucune connaissance des tranches (slices) n'est exigible. L'aspect dynamique des tableaux de Python n'est pas évoqué. Python identifie listes et tableaux. Il n'est pas fait référence aux tableaux de la bibliothèque NumPy.
Dictionnaires par clés et valeurs	Construire une entrée de dictionnaire. Itérer sur les éléments d'un dictionnaire.	Il est possible de présenter les données EXIF d'une image sous la forme d'un enregistrement. En Python, les p-uplets nommés sont implémentés par des dictionnaires. Utiliser les méthodes keys (), values () et items ().
PROJET 2: à définir		

Période 4: Traitement de données en tables; algo & réseau

Indexation de tables		Est utilisé un tableau doublement indexé ou un tableau de p-uplets qui partagent les mêmes descripteurs.
Recherche dans une table	Rechercher les lignes d'une table vérifiant des critères exprimés en logique propositionnelle.	La recherche de doublons, les tests de cohérence d'une table sont présentés.
Tri d'une table	Trier une table suivant une colonne.	Une fonction de tri intégrée au système ou à une bibliothèque peut être utilisée.

	10	II
	Construire une nouvelle	La notion de domaine de valeurs est mise
Fusion de tables	table en combinant les	en évidence.
l asion de tables	données de deux tables.	
	Écrire un algorithme de	
	recherche d'une	
	occurrence sur des	
	valeurs de type	
Parcours séquentiel d'un		On montre que le coût est linéaire
tableau	quelconque.	On montre que le coût est linéaire.
	Écrire un algorithme de	
	recherche d'un extremum,	
	de calcul d'une moyenne.	
	Ésilas con algorithmas de tol	
	Écrire un algorithme de tri.	La terminaison de ces algorithmes est à
L	Décrire un invariant de	justifier.
Tris par insertion, par	boucle qui prouve la	On montre que leur coût est quadratique
sélection	correction des tris par	dans le pire cas.
	insertion, par sélection.	
	Faster our design	
	Écrire un algorithme qui	
A1	prédit la classe d'un	H - 1 - 20 - 11
Algorithme des k plus	élément en fonction de la	Il s'agit d'un exemple d'algorithme
proches voisins	classe majoritaire de ses	d'apprentissage.
	k plus proches voisins.	
	Montrer la terminaison de	Des assertions peuvent être utilisées.
Recherche dichotomique		La preuve de la correction peut être
dans un tableau trié	là l'aide d'un variant de	l ·
dans un tableau the	boucle.	présentée par le professeur.
	bodcie.	Exemples : problèmes du sac à dos ou du
	Résoudre un problème	rendu de monnaie.
Algorithmos gloutons	•	
Algorithmes gloutons	grâce à un algorithme	Les algorithmes gloutons constituent une
	glouton.	méthode algorithmique parmi d'autres qui seront vues en terminale.
Transmission de données	Mettre en évidence	Le protocole peut être expliqué et simulé en
dans un réseau	l'intérêt du découpage des	
Protocoles de		Le lien est fait avec ce qui a été vu en
communication	leur encapsulation.	classe de seconde sur le protocole TCP/IP.
Architecture d'un réseau	Dérouler le	Le rôle des différents constituants du réseau
	fonctionnement d'un	local de l'établissement est présenté.
	protocole simple de	
	récupération de perte de	
	paquets (bit alterné).	
	Simuler ou mettre en	
	œuvre un réseau.	
Périphériques d'entrée et	Identifier le rôle des	Les activités peuvent être développées sur
de sortie	capteurs et actionneurs.	des objets connectés, des systèmes
Interface Homme-	Réaliser par	embarqués ou robots.
Machine (IHM)	programmation une IHM	
	répondant à un cahier des	
	charges donné.	
PROJET 3: à définir		

Références

Wack p. 85; Dowek p.7

Swinnen: variables p.13; séquences P.21; test p.22; boucles: p124 et

p.28. Fonctions: Wack p.114, Swinnen p . 62. Import de bibliothèque: p. 50 Swinnen

https://www.youtube.com/watch?v=Tr9E_vzKRVo

Didier Müller: chap. 3; IPT Benjamin Wack p. 37; Ronan boulic: Représentation des entiers en binaire https://www.youtube.com/watch?v=a5gLSc0tbjl

Web (voir bookmark). Delacroix p.105 Construction d'activité avec Digital de Hneemann. Attention à l'interprétation de "L'attention des élèves est attirée sur le caractère séquentiel de certains opérateurs booléens." --> lazy interpretation python (voir remarque liste NSI)

Du transistor au microprocesseur (TIMSIT)
David Roche + simulation en ligne ou Digital?

Ronan Boulic - EPFL