Outlier Detection Analysis Jiyan Aytek

If your data is bad, your machine learning — tools are useless

What is an outlier?

Most Common Causes of Outliers

HUMAN ERRORS

DATA ENTRY ERRORS

INSTRUMENT ERRORS

MEASUREMENT ERRORS

EXPERIMENTAL ERRORS

DATA EXTRACTION OR EXECUTING ERRORS

Most Common Causes of Outliers

DATA PROCESSING ERRORS

DATA MANIPULATION

SAMPLING ERRORS

VARIOUS SOURCES

NATURAL

NOT AN ERROR

Outlier Example

"An outlier is an observation which deviates so much from the other observations as to arouse suspicions that it was generated by different mechanism"

-Hawkins,1980

Clustering

Invalid or Outlier Data

Detection Methods: Uni-variate Methods

Boxplot

$$\begin{array}{lll} (x > (Q3 + \textbf{1.5*IQR})) \ \lor & (x < (Q1 - \textbf{1.5*IQR})) \rightarrow (x \text{ is an outlier}) \\ (x > (Q3 + \textbf{3*IQR})) & \lor & (x < (Q1 - \textbf{3*IQR})) \rightarrow (x \text{ is an extreme-value}) \end{array}$$

Boxplot

He wants to create a graph that helps him understand the <u>spread</u> of distances (and the <u>median distance</u>) that people travel. What kind of a graph should he create?

Which data set could be represented by the box plot shown below?

Choose 1 answer:

- (A) 1, 3, 6, 8, 10, 12, 13, 13, 16, 18, 20
- 1, 3, 6, 8, 10, 12, 13, 13, 16, 18, 19
- © 1, 3, 6, 8, 10, 11, 13, 13, 18, 18, 19
- D 1, 3, 6, 8, 10, 11, 13, 13, 16, 18, 19

Identifying outliers in a dataset (with Boxplot)

Boxplot

```
import numpy as np

def outliers_iqr(ys):
    quartile_1, quartile_3 = np.percentile(ys, [25, 75])
    iqr = quartile_3 - quartile_1
    lower_bound = quartile_1 - (iqr * 1.5)
    upper_bound = quartile_3 + (iqr * 1.5)
    return np.where((ys > upper_bound)) | (ys < lower_bound))</pre>
```

Standard Deviation

Using Standard Deviation

For value X=x:

$$(x>(\mu+2\sigma))\ \lor\ (x<(\mu-2\sigma))\to$$

(x is an outlier)

$$(x>(\mu+3\sigma))\ \lor\ (x<(\mu-3\sigma))\to$$

(x is an extreme-value)

Z Score

$$z = \frac{X - \mu}{\sigma}$$

Hard Edges Method

Data yielding outside of the (1th - 99th) quantile/percentile interval will be evaluated as outlier.

Why use Hard Edges Method?

- No calculate std, mean, median
- Basic and quick
- Appropriate for big dataset (for example : 300.000 rows)

Detection Methods: Multi-variate Methods

LOCAL OUTLIER FACTOR

https://towardsdatascience.com/local-outlier-factor-for-anomaly-detection-cc0c770d2ebe

