★ Svođenje na kontradikciju ★

1. Ispitati da li je formula $(r \land (s \Rightarrow q)) \Rightarrow ((p \Rightarrow q) \lor \neg r)) \lor (p \Rightarrow (\neg s \lor r)) = \bigwedge$

pretp. da A nije tautologija, tj. postoji valudaja v tako da Iv(A)=0

=) $T_{V}(Y_{N}(S\to 21)=1)([p=12]V_{N})=0$ i $T_{V}(P=12)V_{N})=0$ $T_{V}(Y_{N}(S\to 21)=1)=1$ $T_{V}(Y_{N}(S\to 21)=1)=1$ $T_{V}(Y_{N}(S\to 21)=1)=1$ $T_{V}(Y_{N}(S\to 21)=1)=1$ $T_{V}(Y_{N}(S\to 21)=1)=1$ $T_{V}(Y_{N}(S\to 21)=1)=1$ $T_{V}(Y_{N}(S\to 21)=1)=0$ $T_{V}(Y_{N}(S\to 21)=1)=0$

=> A jeste fautologija

2. Ispitati da li je formula $(p \land (q \lor s)) \Rightarrow (s \lor \neg p)$ tautologija.

pretp. da (pr(qus)) => (svTp) ripe tautologija, ti- postoji valuacija v tako da Ir ((pr(qvs)) =) (sv7p)) = D

- => Ir (pa(gvs))= 1 i Ir(sv)p(=0
- => Tr(p)=1 i Ir(gvs)=1 i Ir(s)=0 i Ir(n)=0

 Ir(p)=1

Za valuación $V = \begin{pmatrix} p & 5 & 5 \\ 1 & 1 & 0 \end{pmatrix}$ data formula nije takna, pa nije tautologija.

★ Diskusija po iskaznom slovu ★

3. Metodom diskusija po slovu ispitati da li je formula $(p \land q) \Rightarrow (p \lor \neg r)$ tautologija.

Distributione po slovin po. Nela je v proitvolpia velnacija

1°
$$V(p)=1 \implies I_V(pV)V(p)=1 \implies I_V(pAg)=0 (pV)V(p)=1$$

2° $V(p)=0 \implies I_V(pAg)=0 \implies I_V(pAg)=0 (pV)V(p)=1$

=) $V(p)=0 \implies I_V(pAg)=0 \implies I_V(pAg)=0 (pV)V(pAg)=0$

4. Metodom diskusija po slovu ispitati da li je formula $(\neg q \Rightarrow p) \lor (\neg p \land (q \lor s))$ tautologija.

★ ISTINITOSNE TABLICE ★

5. Koristeći istinitosnu tablicu, ispitati da li je formula

zadovoljiva. Da li je zadata formula tautologija?

p	q	74	72	7p V 2	P=79	(7pvg) => (pt=) 2g)
0	O	~	٨	(0	O
O	1	1	0	^	^	<u>(1)</u>
(O	0	١	0	^	
٨	٨	D	0	1	0	(0)

(7p/g) =) (pt=)7g)

Ta valuación $y = \begin{pmatrix} P & 2 \\ 0 & 1 \end{pmatrix}$ je $\exists v_n(A) = 1$, pa je torunk A zadovolýva. Za valuación $v_2 = \begin{pmatrix} P & 2 \\ 1 & 1 \end{pmatrix}$ formula nije torun, pa vije tantologija.

6. Metodom istinitosnih tablica ispitati da je formula

$$F:(p\Rightarrow (q\Rightarrow r))\wedge ((\neg r\vee p)\Leftrightarrow \neg q)$$

Me	\mathbf{tod}	om	istin	itosn	h=) (p=)(g=1r)		(100 b)(=) (d			
				$q)$ P $^{\prime}$	ターント	Just	79				
zadovoljiva. Da li je formula F tautologija?										1 r	2
p	q	r	72	74	9=>r	P=>(2=>r)	Trup	71Vp => 1g	+		
0	0	0	1	^	Λ	٨	1	1	1		
0	0	1	٨	0	٨	٨	O	O	ن ا	4	
O	1	0	0	<	0	N	1	0	O	<u>_</u>	
0	1	9	0	0	Λ	Λ	ð	1	٨		
1	S	0	1	1	Λ	^	٨	٨	1		

La valuación $v_n = \begin{pmatrix} p & p \\ 0 & 0 & 0 \end{pmatrix}$ formula is tatha, pa je zadovotíve.

La valuación $v_n = \begin{pmatrix} p & p \\ 0 & 0 & 0 \end{pmatrix}$ formula mix tatha, pa nije taletologija.

0

7. Metodom istinitosnih tablica ispitati da li je formula

$$F: ((p \lor \neg r) \Rightarrow q) \lor (q \Rightarrow r)$$

Post je formula tache u Svok j valuaciji, orda je tantologiji.

8. Koristeći metodu istinitosnih tablica, naći jedan model i jedan kontra-model (ako postoje) za formulu

$$F: (p \Rightarrow (r \lor s)) \land (\neg r \lor (s \Leftrightarrow \neg p)).$$

	p	r	s	70	71	rvs	P=) (r vs)	SE)7p	ファィ (St=)フp)	F
<i>→</i>	0	O	0	4	٨	0	/	0	^	1
	0	O	1	(~	>	>	^	Λ.	1
	0	>	U	4	O		/	C	0	0
	6	~	٨	1	0	>	>	^	4	
	^	0	0	0	1	O	0	₹	٨	0
	1	0	1	0	1	1	<	0	1	1
	4	~	0	0	O	1	^	\	/	1
\rightarrow	٨	4	٨	0	O	٨	1	0	0	(0)

Model za formula
$$F$$
 je valuacija $V_1 = \begin{pmatrix} P & r & S \\ O & A & A \end{pmatrix}$
Kontra-model ta F je valuacija $V_2 = \begin{pmatrix} P & r & S \\ A & A & A \end{pmatrix}$

★ Logičke posledice ★

9. Pokazati da važi $\neg p \land q, p \lor q \models q$.

Treba pok. da je u svim vodenacijewa u ksijima su franke
Tpna i pva tache i tacho i q.
Konstitemo istinitosmu tablicu

ρı	(<u>9</u>)1	70	(7PA 2)	(Pvg)
6	0	1	0	0
fo	0	1		
7	0	ပ	0	1
7	1	1 0	0	1

L valuaciji $w = \begin{pmatrix} P & Q \\ O & N \end{pmatrix}$ vazi $T_{v}(Ppnq) = T_{v}(pvq) = T_{v}(q) = 1$ pa d poste bajitka posleduca

forunla Ppnq i pvq.

10. Dokazati da važi

 $\Gamma,A \models B$ ako i samo ako $\Gamma \models A \Rightarrow B$

(=) Poraznjemo da dro vazi $\Gamma,A \neq B$, onda je $\Gamma = A \Rightarrow B$ Protep. suprotuo, ti. da vije $\Gamma = A \Rightarrow B$, sto znaci da postoji
valuacija v a rojoj su tache sve forunde (z Γ , ali $Tr(A \Rightarrow)B) = 0$ Otoda je Tv(A) = 1 i Tr(B) = 0. Dake, valuacija v je
uodal za Γ ; A, ali vije vuodal za P sto je u

Suprotuosti sa pretp. da vazi $\Gamma,A \neq B$

Potaznemo da ako vazi [+ x = 1 B , onda je [, A + B.

Pretp. suprotuo, ti da mije [, A + B, por postoji valmacija v

u kojoj su takue sie formule 12 [i Ier(A)=1 , ali Iv(B)=0.

 $\frac{1}{\sqrt{(A-1B)}} = 0$ for vari $\sqrt{(A-1B)} = 0$