# COL 351: Analysis and Design of Algorithms

Lecture 8

### **DFS in Directed Graphs**

· Topological sort in DAGS (directed acyclic graphs)



· Unique Path Graph

(Checking if  $\forall x,y$ , there is unique  $x \rightarrow y$  path in G.)

· Finding SCC &

#### **DFS Algorithm**

```
Preprocessing:
For each v \in V(G_1):

Set VISITEO(v) = False

count = 1
```

```
DFS(x)

1. ST(x) = count ++

2. Set VISITED(x) = True

2. For each y ∈ N(x):

4. FT(n) = count ++
```





#### Classification of non-tree edges wrt DFS tree



#### **Topological Sort in DAGs**

**Lemma:** For any edge (x, y) in a DAG, we have FT(y) < FT(x).

Proof: By discussion on previous slide, we have:

(a) For any tree | find edge 
$$(x,y)$$
:  $ST(x) < ST(y) < FT(y) < FT(x)$ 

(b) For any ross edge  $(x,y)$ :  $ST(y) < FT(y) < ST(x) < FT(x)$ 

In both cases  $FT(y) < FT(x)$ 

**Theorem:** Vertices arranged in decreasing order of their finish time during DFS is a topological ordering of G.

Proof: Let 
$$v_1...v_n$$
 be such that  $FT(v_i) > FT(v_2) > ... > FT(v_n)$ .

For any edge  $(v_i, v_j)$  we have  $FT(v_j) < FT(v_i) = i < j$ 
 $\Rightarrow$  All edges are from Left to Right.

## **Topological Sort in DAGs**

1. Perform DFS traversal on G  
2. Sort vertices 
$$v_1 - v_n$$
 such that
$$FT(v_1) > FT(v_2) > --- > FT(v_n)$$

Time = 
$$O(m+n) + O(n) = O(m+n)$$
  
Complexity For Step 1 For Bucket sort

#### **Unique Path graph**

**Definition:** A directed graph G is said to be a unique path graph if for each pair (x,y), we have:

if there there is an x->y path in G then there is a unique path from x to y in G.



### Unique Paths from source x

**Simpler Question:** Given a vertex x, how to check that for all y, there is a unique path from x to y?

UNIQUE (x)

- 1. Compute DFS(2)
- 2. If you encounter Forward / Gross edge then return "False" Else return "True".

Forward / Cross
edges results
in Non-unique
baths from
ne to some
verten y





Back edges in DFS(x)
aren't problematic because
any simple path starting
from x can't contain
back edges of DFS(2)

Time = O(m+n)

#### **Unique Path graph**

**Simpler Question:** Given a vertex x, how to check that for all y, there is a unique path from x to y?

Main Question: Is G a unique path graph?



#### Implication of Lemma:

- → Directly applying algorithm
  from previous slide to each
  × will take O(m.n) time
- → We can bring down "m" to D(n) value. This is because we can abort DFS(x) if we find 2 back edges from & ame verten
- $\rightarrow$  This modified OFS will take O(n) time per nerten.

## **Unique Path graph**

Algorithm Implementation

- 1) For each x, we compute DFS with x as root.
- ② While computing DFS(x) we keep trock of count of non tree edges. If count  $\geq n$ , then we ABORT as it would imply:
  - either a FWD edge
  - or a CROSS edge
  - or 2 back edges from same verten
- (3) Now if we encountered less than n non-tree edges then time for DFS (n) is O(n).

Moreover after competing DFS(x) we can check using ST/FT if we encountered FWD/closs edgl-If not, then Unique Path property is satisfied for xxV.