תורת הסיבוכיות (236313) אביב תשע"ב מועד ב' 19.9.2014

מרצה: פרופ' אייל קושלביץ

מתרגל: יוחאי קפלן

הנחיות:

- המבחן הוא עם חומר סגור.
- חל איסור מפורש על החזקת אמצעי תקשורת נייד, דוגמת טלפון סלולרי ברשות הנבחן בעת הבחינה.
 - נמקו את כל תשובותיכם.
 - בכל סעיף ניתן לקבל 20% מהניקוד אם במקום תשובה כותבים "לא יודע/ת".
 - מותר להשתמש בכל טענה שהוכחה בהרצאה או בתרגול, בתנאי שמצטטים אותה באופן מדויק.
- השתדלו לא להתעכב יתר על המידה על סעיף מסויים, כדי לצבור מקסימום נקודות בזמן העומד לרשותכם.

בהצלחה!

שאלה 1 (שאלת ש"ב, 10 נקודות)

m NL=RL' נגדיר את המחלקה m RL' על ידי השמטת הדרישה של ריצה בזמן פולינומי מהגדרת על ידי השמטת הדרישה או

שאלה 2 (שאלת ש"ב, 20 נקודות)

.s-t-CON $\notin AC^0$ מטרת שאלה זו מטרת מטרת .PARITY $\notin AC^0$ ידוע כי

- מתוך מתוך ס"ס ס"ס ($(n+2)\times(n+2)$ מסדר מטריצה של מטריצת מטריצת מטריצת מטריצת מטריצה את מטריצה מסדר ($(n+2)\times(n+2)\times(n+2)$ מתוך מטריצה מטריצת מטריצת מטריצת מטריצת מטריצת מטריצת מטריצת מטריצת ($(n+2)\times(n+2)\times(n+2)\times(n+2)$ ממריש מטריצת מטרי
- עה אים האמתים כמו בי G_1 וקשת בין u ל־w אם המחשב את מטריצת השכנויות של גרף G_2 שבו יש אותם הצמתים כמו בי G_1 וקשת בין u ל־w ביu ל־u בין בדיוק באורך בדיוק 2 בין u ל־u ל-u ל-u ל־u ל-
 - . (נקודות) PARITY \leq_{Λ} c° s-t-CON בעזרת G_2 הראו כי

שאלה 3 (20 נקודות)

תזכורת: עבור מחלקת שפות C נגדיר את $\exists_p C$ להיות כל השפות כך שקיים יחס חסום פולינומית גדיר את תזכורת: עבור מחלקת שפות $x \in L \iff \exists_p y : (x,y) \in R_L$

נגדיר את ההיררכיה הפולינומית של C בצורה הרקורסיבית הבאה:

 $\neg PH_0(C) = C$

 $.PH_{i}\left(C
ight)=\exists_{p}\stackrel{\sim}{PH_{i-1}}\left(C
ight)$ נסמן $.PH\left(C
ight)=\bigcup_{i\in\mathbb{N}}PH_{i}\left(C
ight)$ (שימו לב כי

- .1. הוכח/הפרך: $\forall C: PH_1(C) = NP^C$ נקודות).
- 2. הוכח שההיררכיה הפולינומית של PSPACE קורסת לרמה 0 (5 נקודות).
- .(ט נקודות) בו אך אך אך אך אך אך קורסת של דורסת אל קורסת של קורסת אל קורסת אל קורסת אל קורסת אל קורסת אל הפולינומית אל $E=\bigcup_{c\in\mathbb{N}}DTIME\left(2^{cn}\right)$ הוכח הוכח אל הוכח אל הוכח אל הפולינומית של הפולינומית אל הוכח א

שאלה 4 (50 נקודות)

למחלקות סבוכיות בסגנון BPP לא ידועות שפות שלמות או גרסאות מתאימות של משפטי היררכיה. בשאלה זאת נבחן וריאציה על המושג של שפה, שמאפשרת להתגבר על בעיות אלו.

בעיית הבטחה π מוגדרת ע"י שתי קבוצות זרות של מילים (π_{YES},π_{NO}) . בעיית הבטחה ניתן לפיתרון בזמן פולינומי בי ע"י שתי קבוצות את כל המילים ב- π_{NO} . נגדיר את כל המילים בי דוחה את כל המילים ב- π_{NO} . נגדיר את כל המילים בי נאבר בי ודוחה את כל המילים בי נגדיר את (p-P) להיות מחלקת בעיות ההבטחה הניתנות לפיתרון בזמן פולינומי.

M נגדיר את p-BPP נסמנה p-BPP להיות מחלקת בעיות ההבטחה כך שקיימת מ"ט הסתברותית פולינומית (נסמנה p-BPP) להיות מחלקת בעיות ההבטחה כך שקיימת:

- $\Pr\left[M\left(x\right)=acc\right]\geq\frac{2}{3}\,:\!x\in\pi_{YES}$ לכל •
- $\Pr\left[M\left(x
 ight)=rej
 ight]\geqrac{2}{3}\,:\!\!x\in\pi_{NO}$ לכל

- $L=\{ig(M,x,1^kig)|rac{2}{3}$ מ"ט הסתברותית שרצה זמן $k\geq 1$ ומקבלת את את מ"ט הסתברותית שרצה מון לבוח הוכח שרצה את הסתברותית פולינומיות (6 נקודות).
 - בא: באלגוריתם הבא: $L\in BPP$ ע"י האלגוריתם הבא: על קלט מתחכם טוען את א את א הרץ את M על אנדים וענה כמוה. ($M,x,1^k$) אלגוריתם לא נכון (6 נקודות).
 - אז: $\pi_1 \leq \pi_2$ אז: בעיות הבטחה כך אם $\pi_1 \leq \pi_2$ אז:
 - $\pi_1 \in p$ -P אז $\pi_2 \in p$ -P אם (א)
 - $\pi_1 \in p ext{-}BPP$ אז $\pi_2 \in p ext{-}BPP$ (ב)

הוכח את תשובתך (6 נקודות).

- .4 הוכיח את שלמותה (6 נקודות). $p ext{-}BPP$.
- 5. הנח כי p-P=p-MP, הוכח כי p-NP=p-MP, הוכח כי p-P=p-MP, הוכח כי p-P=p-MP, הוכח כי p-NP=p-MP בעיות ההבטחה כך שקיימת מ"ט א"ד פולינומית שיש לה מסלול מקבל לכל p-MP בסופו המוודא מקבל מסלול מקבל לכל p-MA p-MA p-MA שבסופו המוודא מקבל כל p-MA בהסתברות גדולה מ"ב p-MA
- 6. תהי $\pi_{NO}\subseteq L$ בעיית הבטחה. נאמר ששפה L היא **קונסיסטנטית** עם π אם $\pi_{YES}\subseteq L$ בעיית הבטחה. נאמר ששפה $L\in P^\pi$ אם קיימת מ"ט דטרמיניסטית פולינומית π בר (π_{YES},π_{NO}) את מחלקת השפות הקונסיסטנטיות עם π . נאמר ש־ π_{VES} אם קיימת מ"ט דטרמיניסטית פולינומית π_{VES} ברוב בר π_{VES} בצורה דומה נגדיר את π_{VES} ו־ π_{VES} כך ש־ π_{VES} (π_{VES}) בצורה דומה נגדיר את π_{VES} (π_{VES}) בער כך ש־ π_{VES} (π_{VES}) בער שווה π_{VES} (π_{VES}) בקודות)?
 - יס נקודות)? איזה מחלקה מוכרת שווה אויה אויזה מחלקה מוכרת 7. לאיזה מחלקה מוכרת אויזה מחלקה מוכרת שווה מוכרת שווה אויזה מוכרת שווה מוכרת שווח מוברת שו
- .0 $(t\left(n\right))$ אנדיר $p-BP\left(t\left(n\right)\right)$ להיות מחלקת בעיות ההבטחה הניתנות לפיתרון הסתברותי בזמן $p-BP\left(t\left(n\right)\right)$ זמן. תהי $M_1,M_2\dots$ מניה של מכונות הטורינג ההסתברותיות כך שניתן בהינתן m_1 לחשב את קידוד $m_1,M_2\dots$ נגדיר את הפונקציה $m_1,M_2\dots$ להיות מכונה שעל קלט $m_1,M_2\dots$ והיא דוחה קלט מצורה אחרת) מבצעת:
- 1^{n+1} על הקלט M_i אז המכונה המכונה אם אסלול (באופן אקראי) אז סמלץ מסלול f(i) < n < f(i+1) אם אם אס אסלול הקלט היא אלא עוצרת במהלכם, קבל.
- (ב) אם לאלי ($f(i)+1)^3$ למשך למשך ($f(i)+1)^3$ לשם על אח את כל מסלולי החישוב של M_i על מסלולי החישוב אז סמלץ את לפחות לפחות לפחות $\frac{2}{3}$ אחרת אחרת אחרת M

.(נקודות) או פיית ההבטחה של ב' $p-BP\left(n^5\right)$ נמצאת של נקודות).

9. הוכח p- $BP\left(n^2\right)\subsetneq p$ - $BP\left(n^2\right)\subsetneq p$ - $BP\left(n^5\right)$ 10. ניתן להשתמש בעובדה שקיימת מניה של מכונות הטורינג ההסתברותיות שמקיימת את הדרישות מהסעיף הקודם ושבה כל מכונה מופיעה אינסוף פעמים.