Institute for Analysis and Scientific Computing

Lothar Nannen, Markus Wess

Numerische Mathematik - Kreuzlübung 8

Übungstermin: 26.11.2019 20. November 2019

Aufgabe 43:

Sei $A \in \mathbb{K}^{m \times n}$ und A^{\dagger} die Pseudo-Inverse aus Definition 5.20 der Vorlesung. Weiter heisst eine lineare Abbildung $P : \mathbb{R}^m \to \mathbb{R}^m$ orthogonale Projektion auf den Teilraum $U \subset \mathbb{R}^m$, wenn gilt $\mathcal{R}(P) \subset U$ und $\mathcal{R}(P-I) \subset U^{\perp}$, wobei $I : \mathbb{R}^m \to \mathbb{R}^m$ die Identität ist. Beweisen Sie folgende Aussagen.

- a) $A^{\dagger} = A^{-1}$, falls A eine reguläre Matrix ist.
- b) A^{\dagger} die sogenannte Moore-Penrose Inverse von A, d.h. $AA^{\dagger}A = A$, $A^{\dagger}AA^{\dagger} = A^{\dagger}$ und AA^{\dagger} , $A^{\dagger}A$ sind hermitesch.
- c) AA^{\dagger} ist eine orthogonale Projektion auf $\mathcal{R}(A)$.
- d) $A^{\dagger}A$ ist eine orthogonale Projektion auf $\mathcal{N}(A)^{\perp}$.

Aufgabe 44:

Sei $c \in \mathbb{C}$ und $A_c := \begin{pmatrix} 1 & 0 \\ 1-c & c \end{pmatrix} \in \mathbb{C}^{2\times 2}$.

- a) Berechnen Sie A_c^{\dagger} .
- b) Zeigen Sie, dass die Abbildung $c \mapsto A_c$ als Abbildung von \mathbb{R} nach $\mathbb{R}^{2\times 2}$ stetig ist.
- c) Untersuchen Sie, für welche $c \in \mathbb{R}$ die Abbildung $c \mapsto A_c^{\dagger}$ als Abbildung von \mathbb{R} nach $\mathbb{R}^{2 \times 2}$ stetig ist.

Hinweis zu a): Für den Fall, dass A_c singulär ist diagonalisieren Sie zunächst die Matrix A^*A . Die Singulärwerte von A sind die Wurzeln der Eigenwerte von A^*A .

Aufgabe 45:

Seien x_1, \ldots, x_m paarweise verschiedene Stützstellen mit Stützwerten y_1, \ldots, y_m . Gesucht sei ein Polynom $p \in \Pi_n$ mit n < m - 1, sodass $\sum_{j=1}^m |p(x_j) - y_j|^2$ minimal wird.

- a) Zeigen Sie mit Hilfe des Satzes 5.17, dass die Lösung $p \in \Pi_n$ des Ausgleichsproblems eindeutig ist.
- b) Stützstellen und Stützwerte seien gegeben durch

Berechnen Sie $p \in \Pi_2$, sodass $\sum_{j=1}^6 |p(x_j) - y_j|^2$ minimal wird. Skizzieren Sie p und die dazugehörigen Stützstellen und Stützwerte.

Aufgabe 46:

Sei $m \geq n,\, A = QR \in \mathbb{C}^{m \times n}$ mit Matrizen $Q \in \mathbb{C}^{m \times m},\, R \in \mathbb{C}^{m \times n}$ der Form

$$Q = \begin{pmatrix} Q_{11} & Q_{12} \\ Q_{21} & Q_{22} \end{pmatrix}, \quad R = \begin{pmatrix} R_1 \\ \mathbf{0} \end{pmatrix}$$

und $Q_{11}, R_1 \in \mathbb{C}^{n \times n}, Q_{21} \in \mathbb{C}^{(m-n) \times n}, Q_{12} \in \mathbb{C}^{n \times (m-n)}$ und $Q_{22} \in \mathbb{C}^{(m-n) \times (m-n)}$. Weiters sei Q unitär und R_1 eine obere Dreiecksmatrix mit positiven Hauptdiagonaleneinträgen.

Zeigen Sie, dass damit R_1 , Q_{11} und Q_{21} eindeutig bestimmt sind.

Aufgabe 47:

Seien A, Q, R wie in Aufgabe 46 und $b \in \mathbb{C}^m$. Zeigen Sie, dass $x \in \mathbb{C}^n$ genau dann Lösung des Minimierungsproblems

$$||Ax - b||_2^2 = \min!$$

ist, wenn es $R_1x = (Q_{11}^*, Q_{21}^*)b$ löst. Wieviele Rechenoperationen sind zur Berechnung von x notwendig, wenn R_1 , Q_{11} und Q_{21} bereits vorhanden sind?

Aufgabe 48:

Sei $A \in \mathbb{R}^{n \times n}$ die Matrix aus Aufgabe 42. Berechnen Sie die LU-Zerlegung von A nach Alg. 6.6 sowie die Konditionszahlen $\operatorname{cond}_{\infty}(L)$ und $\operatorname{cond}_{\infty}(U)$. Welche Probleme erkennen Sie, wenn diese LU-Zerlegung zur Lösung eines linearen Gleichungssystems mit der Matrix A verwendet wird? Beachten Sie dabei den Unterschied zwischen den Begriffen Kondition und Stabilität aus dem Beginn der Vorlesung.