esercizio pipeline

Sia data la seguente sequenza di istruzioni assembler:

```
LB $3, 30($0)
ADD $2, $0, $0
LB $1, 845($2)
ADDI $1, $1, 4
ADDI $2, $2, 3
SB $1, 82($2)
SUB $4, $3, $2
```

Si consideri la pipeline MIPS a 5 stadi vista a lezione, con possibilità di data-forwarding e di scrittura e successiva lettura dei registri in uno stesso ciclo di clock. Si mostri il diagramma degli stadi della pipeline per l'esecuzione del codice.

																commenti															
istr	uzio	ne	Ī	1	 I	2	Ī	3	3	Ī	4	Ī	5	Ī	6	Ī	7		8	 I	9	I	10	Ī	11	Ī	12	Ī	13	I	
			1		 		 											 		 		1		1						-	
LB	\$3,	30(\$0)		IF	١.	II	DΙ	I	EΧ		ME		WB					-		- [1							
ADD	\$2,	\$0, \$0	-		- 1	II	F	1	ID	1	EX	1	ME	-	WB	-		١		-		1		Ι		1		1		1	fw out-ALU -> in-ALU
LB	\$1,	845(\$2)	-		- [- 1]	ΙF	1	ID	1	ΕX	-	ME	-	WB	-		- [1		Ι		1		1		1	fw MEM/WB.LMD -> in-ALU
ADDI	\$1,	\$1, 4	١		- 1		١			ı	IF	1	ID	١	ID	١	ΕX	١	ME	-	WB	1		ı		1		ı		ı	stallo
ADDI	\$2,	\$2, 3	١		- 1		١			I			IF	١	IF	١	ID	١	EX	-	ME	1	WB	ı		1		ı		ı	<pre>fw MEM/WB.ALUOut -> in-ALU</pre>
SB	\$1,	82(\$2)	١		- 1		١			I		1		١		١	IF	١	ID	-	ID	1	EX	ı	ME	1	WB	ı		ı	stallo
SUB	\$4,	\$3, \$2	1		-		١			I		1		1		1		١	IF	-	IF	١	ID	I	EX	I	ME	I	WB	I	

esercizio pipeline

Sia data la seguente sequenza di istruzioni assembler:

```
LB $3, 450($0)
ADD $2, $0, $0
LB $1, 558($2)
ADDI $2, $2, 5
SUB $4, $3, $2
ADDI $1, $1, 7
SB $1, 58($2)
```

Si consideri la pipeline MIPS a 5 stadi vista a lezione, senza possibilità di data-forwarding, ma con possibilità di scrittura e successiva lettura dei registri in uno stesso ciclo di clock. Si mostri il diagramma degli stadi della pipeline per l'esecuzione del codice.

			CICLI	C
istruzione	1	2 3 4 5	6 7 8 9	10 11 12 13 14 15 16 17
	1	 	I I I	
LB \$3, 450(\$0)	IF	ID EX ME WB		
ADD \$2, \$0, \$0	1	IF ID EX ME	WB	
LB \$1, 558(\$2)			ID EX ME WB	3
ADDI \$2, \$2, 5	1		IF ID EX ME	E WB
SUB \$4, \$3, \$2	1	1 1 1 1 1	IF ID ID	O ID EX ME WB
ADDI \$1, \$1, 7	1	1 1 1 1 1	IF IF	
SB \$1, 58(\$2)	1	1 1 1 1 1	1 1 1	IF ID ID EX ME WB

esercizio pipeline

Sia data la seguente sequenza di istruzioni assembler:

```
LB $3, 450($0)
ADD $2, $0, $0
LB $1, 558($2)
ADDI $2, $2, 5
SUB $4, $3, $2
ADDI $1, $1, 7
SB $1, 58($2)
```

Si consideri la pipeline MIPS a 5 stadi vista a lezione, con possibilità di data-forwarding e di scrittura e successiva lettura dei registri in uno stesso ciclo di clock. Si mostri il diagramma degli stadi della pipeline per l'esecuzione del codice.

											С	Ι	C I		I		C	L	0 C	K										commenti
istruz	zior	ne		Ī	1	 I	2	ī	3	Ī	4		5	I	6	Ī	7	1	8	ı	9	Ī	10	 I	11	ī	12		13	I
				_ 				 		 		 I		1		 		 I		 I		 I		 I		 I		 I		-
LB \$	\$3,	450	(\$0)	ĺ	IF	i	ID	ĺ	EX	İ	ME	Í	WB	İ		İ		Ì		Ì		Ì		İ		Ì		İ		
ADD S	\$2,	\$0 ,	\$0	- 1		-	IF	1	ID	1	EX	1	ME	1	WB	1		-		-		-		-		1		1		fw out-ALU -> in-ALU
LB \$	\$1,	558	(\$2)	- 1		-		-	IF	-	ID	1	EX	1	ME	1	WB	-		-		-		-		-		1		fw MEM/WB.ALUOut -> in-ALU
ADDI S	\$2,	\$2,	5	- 1		-		1		1	IF	1	ID	1	EX	1	ME	-	WB	-		-		-		1		1		fw out-ALU -> in-ALU
SUB \$	\$4,	\$3,	\$2	- 1		- 1		-		-		1	IF	1	ID	1	EX	-	ME	-	WB	- [-		-		1		l
ADDI S	\$1,	\$1,	7	- 1		- 1						-		1	IF	-	ID	-	EX	-	ME	-	WB	- [1		l
SB S	\$1,	58(\$2)	- 1		-		-		-		-		-		1	IF	-	ID	-	ID	-	ID	- [EX	-	ME	1	WB	stallo
				_																										-

esercizio pipeline con data-forwarding

Sia data la seguente sequenza di istruzioni assembler, dove i dati immediati sono espressi in esadecimale

SUB \$2, \$7, \$5 LW \$1, 7(\$2) ADD \$2, \$1, \$8 SW \$3, 73(\$1) SUBI \$2, \$3, 4 ADDI \$7, \$3, 8 ADD \$1, \$7, \$2 Si consideri la pipeline MIPS a 5 stadi vista a lezione, con possibilità di data-forwarding e con possibilità di scrittura e successiva lettura dei registri in uno stesso ciclo di clock:

• mostrare come evolve la pipeline durante l'esecuzione del codice, spiegando nel dettaglio i motivi di un eventuale stallo o dell'utilizzo di un particolare circuito di by-pass.

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
SUB \$2, \$7, \$5	IF	ID	EX	MEM	WB											EX.ALUOutput_sub -> EX.Top_ALU_input_lw
LW \$1,7(\$2)		IF	ID	EX	MEM	WB										MEM.LMD_lw -> EX.Top_ALU_input_add
ADD \$2, \$1, \$8			IF	ID	ID	EX	MEM	WB								
SW \$3,73(\$1)				IF	IF	ID	EX	MEM	WB							
SUBI \$2, \$3, 4						IF	ID	EX	MEN	WB						MEM.ALUOutput_subi -> EX.Bottom_ALU_input_add
ADDI \$7, \$3, 8							IF	ID	EX	MEN	1 WB					EX.ALUOutput_addi -> EX.Top_ALU_input_add
ADD \$1, \$7, \$2								IF	ID	EX	MEM	WB				

Esercizio Pipeline 1: Dipendenze

Si consideri il seguente frammento di codice:

si individuino le dipendenze ReadAfterWrite (RAW) e WriteAfterWrite (WAW).

#	codice	R1	R2	R3	R4	commento
1	LOOP: LW \$1, 0(\$2)	W	R			legge R2, scrive R1
2	ADDI \$1,\$1, 1	RW				legge e scrive R1
3	SW \$1, 0(\$2)	R	R			legge R1 e R2
4	ADD \$2, \$1, \$2	R	RW			legge R1, legge e scrive R2
5	SUB \$4, \$3, \$2		R	R	W	legge R2 3 R3, scrive R4
6	BENZ \$4, LOOP				R	legge R4

Linee codice	Spiegazione dipendenza	Tipo
2←1	ADDI legge R1 che è scritto da LW	RAW
2←1	ADDI scrive R1 che è scritto da LW	WAW
3←2, 3←1	SW legge R1 che è scritto da ADDI, e prima da LW	RAW
4←2, 4←1	ADD legge R1 che è scritto da ADDI, e prima da LW	RAW
5←4	SUB legge R2 che è scritto da ADD	RAW
6←5	BENZ legge R4 che è scritto da SUB	RAW

Corso di Architettura degli Elaboratori

Anno Accademico 2016/2017

Esercizi pipeline

es-p1

Sia data la seguente sequenza di istruzioni assembler, dove i dati immediati sono espressi in esadecimale

SW \$9, O(\$1) LW \$1, 7(\$9) SUB \$9, \$1, \$8 SW \$3, 73(\$9) SUBI \$9, \$3, 9 SW \$7, 78(\$9) LW \$9, A(\$7) Si consideri la pipeline MIPS a 5 stadi vista a lezione, con possibilità di data-forwarding e con possibilità di scrittura e successiva lettura dei registri in uno stesso ciclo di clock:

• mostrare come evolve la pipeline durante l'esecuzione del codice, spiegando nel dettaglio i motivi di un eventuale stallo o dell'utilizzo di un particolare circuito di by-pass.

Soluzione (da compilare)

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
SW \$9, 0(\$1)																				
LW \$1, 7(\$9)																				
SUB \$9, \$1, \$8																				
SW \$3, 73(\$9)																				
SUBI \$9, \$3, 9																				
SW \$7, 78(\$9)																				
LW \$9, A(\$7)																				

Commenti alla soluzione:

es-p2

Sia data la seguente sequenza di istruzioni assembler, dove i dati immediati sono espressi in esadecimale

SW \$1, A4(\$2) LW \$2, 90(\$1) SUB \$1, \$2, \$8 SW \$3, 4(\$2) ADDI \$1, \$3, 4 ADDI \$2, \$3, 8 LW \$2, 15(\$1) Si consideri la pipeline MIPS a 5 stadi vista a lezione, con possibilità di data-forwarding e con possibilità di scrittura e successiva lettura dei registri in uno stesso ciclo di clock:

• mostrare come evolve la pipeline durante l'esecuzione del codice, spiegando nel dettaglio i motivi di un eventuale stallo o dell'utilizzo di un particolare circuito di by-pass.

Soluzione (da compilare)

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
SW \$1, A4(\$2)																				
LW \$2, 90(\$1)																				
SUB \$1, \$2, \$8																				
SW \$3, 4(\$2)																				
ADDI \$1, \$3, 4																				
ADDI \$2, \$3, 8																				
LW \$2, 15(\$1)																				

Commenti alla soluzione:

es-p3

Sia data la seguente sequenza di istruzioni assembler, dove i dati immediati sono espressi in esadecimale

SUB \$5, \$1, \$4 LW \$1, 7(\$5) ADD \$5, \$1, \$8 LW \$3, 73(\$5) ADDI \$5, \$5, 3 SW \$7, 78(\$3) LW \$5, A(\$7) Si consideri la pipeline MIPS a 5 stadi vista a lezione, con possibilità di data-forwarding e con possibilità di scrittura e successiva lettura dei registri in uno stesso ciclo di clock:

• mostrare come evolve la pipeline durante l'esecuzione del codice, spiegando nel dettaglio i motivi di un eventuale stallo o dell'utilizzo di un particolare circuito di by-pass.

Soluzione (da compilare)

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
SUB \$5, \$1, \$4																				
LW \$1, 7(\$5)																				
ADD \$5, \$1, \$8																				
LW \$3, 73(\$5)																				
ADDI \$5, \$5, 3																				
SW \$7, 78(\$3)																				
LW \$5, A(\$7)																				

Commenti alla soluzione: