2622 Matematik for Økonomer

Eric Hillebrand

Opgavesæt 4

Opgave 1

Betragt funktionen

$$f: \mathbb{R}^3 \times \mathbb{R} \to \mathbb{R}$$

 $(x, \lambda) \mapsto y,$

som tager en vektor x og et tal λ som argumenter og afbilder til et tal

$$y = f(x,\lambda) = \frac{1}{2}(1-\lambda)x_1^2 + \frac{1}{2}(3-\lambda)x_2^2 + \frac{1}{2}(1-\lambda)x_3^2 + x_1x_2 + 3x_1x_3 + x_2x_3.$$

- 1. Hvis vi betragter λ som en fikseret parameter, bestem gradienten gradf med hensyn til x.
- 2. Bestem parameterværdierne λ og vektorer $x \in \mathbb{R}^3$ der opfylder gradf(x) = 0. (Tip: $\lambda_1 = -2$, $\lambda_2 = 2$, $\lambda_3 = 5$.)

Opgave 2

- 1. Lad f(x) = Ax, $x \in \mathbb{R}^n$, $A \in \mathbb{R}^{m \times n}$. Bestem Jacobi-matricen af f(x).
- 2. Lad $f: \mathbb{R}^2 \to \mathbb{R}^2$ givet ved

$$\left(\begin{array}{c} r \\ \phi \end{array}\right) \mapsto \left(\begin{array}{c} x = r\cos\phi \\ y = r\sin\phi \end{array}\right)$$

(polære koordinater). Bestem Jacobi-matricen af f og dens determinant.

3. Lad $g: \mathbb{R}^2 \to \mathbb{R}^2$ givet ved

$$\left(\begin{array}{c} x \\ y \end{array}\right) \mapsto \left(\begin{array}{c} \sqrt{x^2 + y^2} \\ \arctan \frac{y}{x} \end{array}\right).$$

Bestem Jacobi-matricen af den sammensatte funktion $(f \circ g)(x, y)$, med f fra opgave 2.2 ved hjælp af kædereglen.

Opgave 3

FMEA Section 2.1 Problem 8

8-minutters foredrag

- 1. Differentiabilitet
- 2. Kædereglen