Contents

1	08-26-2025	
	1.1	Basics
	1.2	Planes and Spheres
	1.3	Vector Notation
	1.4	Computing 3x3 Determinants
		1.4.1 Cofactor Method
		1.4.2 Diagonal Method
2	08-2	28-2025
	2.1	Checkpoint 2.23: Finding the Angle between Two Vectors
	2.2	Checkpoint 2.24: Identifying Orthogonal Vectors
	2.3	Checkpoint 2.27: Resolving Vectors into Components
	2.4	Checkpoint 2.33 (quick)
	2.5	Checkpoint 2.38
	2.6	Example 2.44: Evaluating Torque
3	09-0	02-2025
	3.1	Checkpoint 2.45
	3.2	Checkpoint 2.46
	3.3	Checkpoint 2.47
	3.4	Checkpoint 2.48
4	09-0	04-2025
	4.1	Exercises 309-312
	4.2	Example 2.59 Identifying Equations of Quadric Surfaces
	4.3	Checkpoint 2.54
	4.4	Exercise 350
5	09-0	09-2025
6	09-1	11-2025

- 7 09-16-2025
- 8 09-18-2025
- 9 09-23-2025
- 10 09-25-2025
- 11 09-30-2025
- 12 10-02-2025
- 13 10-07-2025
- 14 10-09-2025
- 15 10-21-2025
- 16 10-23-2025
- 17 10-28-2025
- 18 10-30-2025
- 19 11-06-2025
- 20 11-11-2025
- 21 11-13-2025
- 22 11-18-2025
- 23 11-20-2025
- 24 11-25-2025
- $\mathbf{25} \ 12\text{-}02\text{-}2025$
- $\mathbf{26} \ 12\text{-}04\text{-}2025$

1 08-26-2025

1.1 Basics

This class is Calculus in Three Dimensions, thus the class will require you to think in 3-D.

• Get used to drawing in 3-D.

My preference is to draw the usual vertical and horizontal axes.

Label the horizontal axis y and the vertical axis z.

Then draw a diagonal from the bottom left to the top right, passing through the origin. Label this axis x. Note that you can interchange any of the axis labels as necessary (which will come in handy when we start doing 3-D integration).

• In \mathbb{R}^3 , the (Euclidean) distance (also referred to as the L_2 norm) between any two points (x_1, y_1, z_1) and (x_2, y_2, z_2) is given by the formula

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

1.2 Planes and Spheres

In this course, you will often deal with planes and spheres (e.g., spherical coordinates).

- You will learn the canonical formula for a plane later (finding it involves cross products). For now, we will find equations for planes parallel to another plane.
- Ex. Write an equation of the plane passing through point (21, 2, 59) that is parallel to the xz-plane.

When a plane is parallel to the xz-plane, it means only the x and z coordinates may vary.

Thus taking the y-value, we get the equation y = 2.

Ex. Write an equation of the plane passing through points (2, 125, 9), (21, 25, 9), (5, 7, 9) that is parallel to the xy-plane.

When a plane is parallel to the xy-plane, it means only the x and y coordinates may vary.

Conveniently, the z-value in all 3 coordinates are equal; we get the equation z = 9.

• A sphere is the set of all points in space equidistant from a fixed point, the center of the sphere. For center (a, b, c) and radius r, we represent the sphere by the ("canonical") equation:

$$(x-a)^2 + (y-b)^2 + (z-c)^2 = r^2$$

Ex. Find the equation of the sphere with diameter \overline{PQ} where P=(2,-1,-3) and Q=(-2,5,-1).

First, find the center, which is at the midpoint of the diameter \overline{PQ} :

$$C = \left(\frac{2 + (-2)}{2}, \frac{-1 + 5}{2}, \frac{-3 + (-1)}{2}\right) = (0, 2, -2)$$

Next, find the radius using the distance formula (half the length of the diameter)

$$r = \frac{1}{2} \left\| \overline{PQ} \right\| = \frac{1}{2} \sqrt{(-2-2)^2 + (5-(-1))^2 + (-1-(-3))^2} = \frac{1}{2} \sqrt{56} = \sqrt{\frac{56}{4}} = \sqrt{14}$$

Thus the sphere is given by $x^2 + (y-2)^2 + (z+2)^2 = 14$

1.3 Vector Notation

Vectors are quantities with magnitude and direction. In \mathbb{R}^3 , the standard unit vectors are

$$\hat{i} = \langle 1, 0, 0 \rangle$$
 $\hat{j} = \langle 0, 1, 0 \rangle$ $\hat{k} = \langle 0, 0, 1 \rangle$

There are several notations. Fix points in \mathbb{R}^3 P = (0, 2, 1) and Q = (2, 5, 9)Let's represent the vector $\overrightarrow{PQ} = \langle x_Q - x_P, y_Q - y_P, z_Q - z_P \rangle$.

- Component Form: $\overrightarrow{PQ} = \langle 2-0, 5-2, 9-1 \rangle = \langle 2, 3, 8 \rangle$
- Using the unit vectors: $\overrightarrow{PQ} = 2\hat{i} + 3\hat{j} + 8\hat{k}$

Ex: Consider the vectors $v = \langle 0, 2, 1 \rangle$ and $u = \langle 2, 5, 9 \rangle$. Find a unit vector in the direction of 3v + u.

You will need the following rules (taken from your textbook)

RULE: PROPERTIES OF VECTORS IN SPACE

Let $\mathbf{v} = \langle x_1, y_1, z_1 \rangle$ and $\mathbf{w} = \langle x_2, y_2, z_2 \rangle$ be vectors, and let k be a scalar.

Scalar multiplication: $k\mathbf{v} = \langle kx_1, ky_1, kz_1 \rangle$

Vector addition: $\mathbf{v} + \mathbf{w} = \langle x_1, y_1, z_1 \rangle + \langle x_2, y_2, z_2 \rangle = \langle x_1 + x_2, y_1 + y_2, z_1 + z_2 \rangle$

Vector subtraction: $\mathbf{v} - \mathbf{w} = \langle x_1, y_1, z_1 \rangle - \langle x_2, y_2, z_2 \rangle = \langle x_1 - x_2, y_1 - y_2, z_1 - z_2 \rangle$

Vector magnitude: $\|\mathbf{v}\| = \sqrt{x_1^2 + y_1^2 + z_1^2}$

Unit vector in the direction of v: $\frac{1}{\|\mathbf{v}\|}\mathbf{v} = \frac{1}{\|\mathbf{v}\|} \langle x_1, y_1, z_1 \rangle = \left\langle \frac{x_1}{\|\mathbf{v}\|}, \frac{y_1}{\|\mathbf{v}\|}, \frac{z_1}{\|\mathbf{v}\|} \right\rangle$, if $\mathbf{v} \neq \mathbf{0}$

Solution: first find 3v + u, then find unit vector in that direction.

$$3v + u = \langle 3(0), 3(2), 3(1) \rangle + \langle 2, 5, 9 \rangle \qquad \text{(scalar multiplication)}$$

$$= \langle 0, 6, 3 \rangle + \langle 2, 5, 9 \rangle = \langle 2, 11, 12 \rangle$$

$$\frac{1}{\|3v + u\|} (3v + u) = \frac{\langle 2, 11, 12 \rangle}{\sqrt{2^2 + 11^2 + 12^2}} = \langle \frac{2}{\sqrt{269}}, \frac{11}{\sqrt{269}}, \frac{12}{269} \rangle \qquad \text{(unit vector in direction)}$$

Observe that 269 is prime, so you can't simplify the denominator. Thus we're done. Not all numbers will be pretty, but as a tip: make sure your answers are feasible. If you are taking the length of a vector with 1-digit coordinates and get a 5-digit number, that's probably wrong.

DON'T FORGET THE SQUARE ROOT $\sqrt{\ }$ when taking norms!!!!

1.4 Computing 3x3 Determinants

Useful for computing cross products. You are free to use whatever trick you want so long as you show your work. (note vertical bars means determinant, while square brackets mean matrix).

1.4.1 Cofactor Method

Key notes: +, -, + (**DON'T FORGET THE MIDDLE IS NEGATIVE**) and the 2x2 sub-determinants are the elements not in the same row or column.

$$\begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} = a \begin{vmatrix} e & f \\ h & i \end{vmatrix} - b \begin{vmatrix} d & f \\ g & i \end{vmatrix} + c \begin{vmatrix} d & e \\ g & h \end{vmatrix} = a(ei - fh) - b(di - fg) + c(dh - eg)$$
$$= aei - afg - bdi + bfg + cdh - ceg$$

For cross products between two vectors $u=\langle u_x,u_y,u_z\rangle$ and $v=\langle v_x,v_y,v_z\rangle$, you just compute the 3x3 determinant $\begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ u_x & u_y & u_z \\ v_x & v_y & v_z \end{vmatrix}$

1.4.2 Diagonal Method

Recall that the 2x2 determinant is computed using the diagonals: $\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$, where the diagonals going from right to left are positive and diagonals going from left to right are negative. We extend this idea to 3x3 determinants:

$$\begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} \xrightarrow{expand} \qquad \begin{array}{c} a & b & c \\ f & d & e & f & d \\ h & i & g & h & i & g & h \end{array} \xrightarrow{compute} aei + bfg + cdh - afh - bdi - ceg$$

which is the same result as derived from the cofactor method.

2 08-28-2025

Relevant Textbook Sections: 2.3, 2.4

2.1 Checkpoint 2.23: Finding the Angle between Two Vectors

Find the measure of the angle, in radians, formed by vectors $a = \langle 1, 2, 0 \rangle$ and $b = \langle 2, 4, 1 \rangle$. Round to the nearest hundredth.

2.2 Checkpoint 2.24: Identifying Orthogonal Vectors

For which value of x is $p = \langle 2, 8, -1 \rangle$ orthogonal to $q = \langle x, -1, 2 \rangle$?

2.3 Checkpoint 2.27: Resolving Vectors into Components

Express v = 5i - j as a sum of orthogonal vectors such that one of the vectors has the same direction as u = 4i + 2j.

Properties of the Cross Product

Let $\mathbf{u}, \mathbf{v},$ and \mathbf{w} be vectors in space, and let c be a scalar.

2.4 Checkpoint 2.33 (quick)

Use the properties of the cross product to calculate $(i \times k) \times (k \times j)$.

2.5 Checkpoint 2.38

Find the area of the parallelogram PQRS with vertices P(1,1,0), Q(7,1,0), R(9,4,2), and S(3,4,2).

2.6 Example 2.44: Evaluating Torque

A bolt is tightened by applying a force of 6 N to a 0.15-m wrench (Figure 2.62). The angle between the wrench and the force vector is 40°. Find the magnitude of the torque about the center of the bolt. Round the answer to two decimal places.

Figure 2.62 Torque describes the twisting action of the wrench.

3 09-02-2025

3.1 Checkpoint 2.45

Find the distance between point (0,3,6) and the line with parametric equations

$$x = 1 - t, y = 1 + 2t, z = 5 + 3t$$

3.2 Checkpoint 2.46

Describe the relationship between the lines with the following parametric equations:

$$x = 1 - 4t, y = 3 + t, z = 8 - 6t$$

$$x = 2 + 3s, y = 2s, z = -1 - 3s$$

3.3 Checkpoint 2.47

Find an equation of the plane containing the lines L1 and L2:

$$L1: x = -y = z$$

$$L2: \frac{x-3}{2} = y = z-2$$

On the original handout, I mistyped and had $L_2 = x - 32$. This has been corrected, as the error makes the question unsolvable since the lines would be skew.

Worked Solution

Let $L_1: x = -y = z = t$. The parameterized form of L_1 is thus $\langle t, -t, t \rangle = (0, 0, 0) + \langle 1, -1, 1 \rangle t$ Let $L_2: \frac{x-3}{2} = y = z - 2 = t$. The parameterized form of L_2 is thus $\langle 2t + 3, t, t + 2 \rangle = (3, 0, 2) + \langle 2, 1, 1 \rangle t$.

A normal vector to the plane that contains both lines is the cross product of the two lines' direction vectors, which was $\vec{n} = \langle -2, 1, 3 \rangle$ (work done in recitation).

Recall the equation of a plane is $\vec{n} \cdot (\vec{r} - \vec{r_0}) = 0$, where $\vec{r} = (x, y, z)$, \vec{n} is a normal vector of the plane, and $\vec{r_0}$ is some arbitrary point in the plane. Note I said a normal vector, since we could scale \vec{n} arbitrarily.

We have \vec{n} , so we just need to get $\vec{r_0}$. In recitation, I mentioned that we can pick any arbitrary point on either line to create the equation of the plane that contains L_1 and L_2 . This holds true, and I will arbitrarily pick some points below and prove that the resulting plane equation is the same.

• In recitation, we picked the easy point (0,0,0), which we know to lie in L_1 .

$$\vec{n} \cdot (\vec{r} - \vec{r_0}) = \langle -2, 1, 3 \rangle \cdot (x - 0, y - 0, z - 0)$$

= $-2x + y + 3z = 0$

• But what if we had picked (3,0,2), which was our anchor point for L_2 ?

$$\vec{n} \cdot (\vec{r} - \vec{r_0}) = \langle -2, 1, 3 \rangle \cdot (x - 3, y - 0, z - 2)$$

$$= -2(x - 3) + y + 3(z - 2) = 0$$

$$= -2x + 6 + y + 3z - 6 = 0$$

$$= -2x + y + 3z = 0$$
 (the 6's cancel!)

• As an extension, derive the plane equation you get if you choose the intersection point of L_1 and L_2 ! You'll see that you still reach the same plane equation.

3.4 Checkpoint 2.48

Find the distance between point P = (5, -1, 0) and the plane given by 4x + 2y - z = 3.

4 09-04-2025

Note: We do NOT cover the foci of paraboloids or ellipsoids.

4.1 Exercises 309-312

For the following exercises, the graph of a quadric surface is given.

- a. Specify the name of the quadric surface.
- b. Determine the axis of the quadric surface.

309.

310.

311.

312.

4.2 Example 2.59 Identifying Equations of Quadric Surfaces

Identify the surfaces represented by the given equations.

(a)
$$16x^2 + 9y^2 + 16z^2 = 144$$

(b)
$$9x^2 - 18x + 4y^2 + 16y - 36z + 25 = 0$$

4.3 Checkpoint 2.54

Identify the surface represented by the equation $9x^2 + y^2 - z^2 + 2z - 10 = 0$.

4.4 Exercise 350

Find the equation of the quadric surface with points P(x, y, z) that are equidistant from point Q(0, 2, 0) and plane of equation y = -2. Identify the surface.

5 09-09-2025

 $\S 3.1$ Exercises 8, 22; $\S 3.2$ Checkpoints 3.5, 3.7, $[3.8~\mathrm{opt}]$