- 1. Sean Z_1, Z_2 iid con distribución Normal estandar y (R, Θ) sus coordenadas polares. Probar que $\Theta \sim \text{Unif}(0, 2\pi)$.
- 2. Hacer el ejercicio 5.11 del libro.
- 3. Probar que $\frac{\psi(t)}{t} = \frac{\sqrt{2 \log \log t}}{\sqrt{t}}$ es decreciente para t suficientemente grande.
- 4. Sean X_1, X_2, \ldots , i.i.d. con distribución F y Sea

$$\hat{F}_n(x) = \frac{1}{n} \# \{ m \le n : X_m \le n \}.$$

El objetivo de este ejercicio es probar que

$$D_n(x) = \sqrt{n}(\hat{F}_n(x) - F(x))$$

converge en distribución al puente browniano.

- a) Observar que por la Ley de los Grandes Números $|\hat{F}_n(x) F(x)| \to 0$ para todo 0 < x < 1.
- b) Utilizando la transformacion $Y_k = F(X_k)$ mostrar que basta considerar el caso en que F es la distribución uniforme en (0,1).
- c) Sean Y_1, Y_2, \ldots i.i.d $\mathcal{U}(0,1)$ y $Y_{(1)} < Y_{(2)} < \ldots$ la muestra ordenada. Sean W_1, W_2, \ldots i.i.d $\mathcal{E}(1)$ y $Z_n = W_1 + \cdots + W_n$. Probar que $(Y_{(1)}, \ldots, Y_{(n)})$ y $(Z_1/Z_{n+1}, \ldots, Z_n/Z_{n+1})$ tienen la misma distribución. Sugerencia: Hallar la densidad de $(Y_{(1)}, \ldots, Y_{(n)})$ y de $r(Z_1, \ldots, Z_{n+1})$ donde

$$r(z_1,\ldots,z_{n+1})=(z_1/z_{n+1},\ldots,z_n/z_{n+1},z_{n+1})$$

d) Sea $\tilde{D}_n(k/n) = \sqrt{n}(Z_k/Z_{n+1} - k/n)$ y extender al [0,1] interpolando linealmente. Probar que

$$\|\tilde{D}_n - D_n\|_{\infty} \to 0$$

en probabilidad cuando $n \to \infty$.

e) Sea $S_n = S_n(Z_1 - 1, \dots, Z_n - 1)$ y S_n^* definidos como en la clase. Mostrar que

$$\tilde{D}_n(x) = \frac{n}{Z_{n+1}} \left(S_n^*(t) - x \left[S_n^*(1) + \frac{Z_{n+1} - Z_n}{\sqrt{n}} \right] \right).$$

f) Probar que $Z_{n+1}/n \to 0$ y

$$\frac{Z_{n+1} - Z_n}{\sqrt{n}} \to 0$$

en probabilidad.

- g) Asumir (o probar) que el Teorema de Slutsky vale también para sucesiones de variables aleatorias a valores en espacios métricos.
- h) Probar que los procesos $(D_n(x), 0 \le x \le 1)_{n\ge 1}$ convergen al proceso $(W(t), 0 \le t \le 1)$ dado por

$$W(t) = B(t) - tB(1),$$

denominado Puente Browniano (B es un Movimiento Browniano).

Fecha estimada de entrega: 9 de Junio.

^{*}Entregar los ejercicios 4.d, 4.e, 4.f y 4.h.