Infinite Series

Book: Thomas Calculus (11th Edition) by George B. Thomas, Maurice D. Weir, Joel R. Hass, Frank R. Giordano

Chapter: 11 (11.4, 11.5)

Book: Calculus (5th Edition) by Swokowski, Olinick and Pence

Chapter: 11 (11.3, 11.4)

Calculus & Analytical Geometry MATH-101 Instructor: Dr. Naila Amir (SEECS, NUST)

Ratio Test

$$\lim_{n\to\infty}\frac{a_{n+1}}{a_n}$$

Root Test

$$\lim_{n\to\infty} \sqrt[n]{a_n}$$

Convergence/Divergence of a series

• In order to examine the convergence or divergence of an infinite series

$$\sum_{n=1}^{\infty} a_n$$

we need the n^{th} partial sum: $S_n = a_1 + a_2 + a_3 + \cdots + a_n$ of the series. If the sequence of these partial sums $\{S_n\}$ converges to L, then the series is convergent, and sum of the series is L. If $\{S_n\}$ diverges, then the series diverges.

• But, for most of the series, it is often impossible to find an explicit formula for S_n . However, there exist several tests in literature to test the convergence or divergence of a series that employ the $n^{\rm th}$ term a_n . But these tests just provide us the information about the convergence or divergence of the series, they do not give us the sum of a convergent series.

The Comparison Tests

Book: Thomas Calculus (11th Edition) by George B. Thomas, Maurice D. Weir, Joel R. Hass, Frank R. Giordano

Chapter: 11 (11.4)

Book: Calculus (5th Edition) by Swokowski, Olinick and Pence

Chapter: 11 (11.3)

The Basic Comparison Test

Let $\sum a_n$ and $\sum b_n$ be positive-term series.

- 1. If $\sum b_n$ converges and $a_n \le b_n$ for every positive integer n, then $\sum a_n$ converges.
- 2. If $\sum b_n$ diverges and $a_n \ge b_n$ for every positive integer n, then $\sum a_n$ diverges.

Test the following series for convergence and divergence:

$$\sum_{n=2}^{\infty} \frac{3n}{n^2 - 2} \qquad \qquad > \sqrt{-2}$$

Solution: For every $n \geq 2$,

$$\frac{3n}{n^2 - 2} > \frac{3n}{n^2} = 3\left(\frac{1}{n}\right).$$

Since $3\sum_{n=2}^{\infty} \frac{1}{n}$ is a *divergent* series so by basic comparison test the given series is divergent.

Test the following series for convergence and divergence:

$$\sum_{n=1}^{\infty} \frac{5n}{2n^3 + n^2 + 1}$$
1,
$$\frac{5n}{2n^3 + n^2 + 1} < \frac{5n}{2n^3} = \frac{5}{2} \left(\frac{1}{n^2}\right).$$

Since
$$\frac{5}{2} \sum_{n=1}^{\infty} \frac{1}{n^2}$$

Solution: For every $n \geq 1$,

Since $\frac{5}{2} \sum_{n=1}^{\infty} \frac{1}{n^2}$ is a *convergent* series so by basic comparison test the given series

The Limit Comparison Test

Let $\sum a_n$ and $\sum b_n$ be positive-term series.

1. If
$$\lim_{n\to\infty}\frac{a_n}{b_n}=c>0$$
 then $\sum a_n$ and $\sum b_n$ both converge or both diverge.

2. If
$$\lim_{n\to\infty}\frac{a_n}{b_n}=0$$
 and $\sum b_n$ converges, then $\sum a_n$ converges.

3. If
$$\lim_{n\to\infty} \frac{a_n}{b_n} = \infty$$
 and $\sum b_n$ diverges, then $\sum a_n$ diverges.

Test the following series for convergence and divergence:

Since $\sum b_n$ is divergent so $\sum a_n$ is also divergent.

$$\sum_{n=2}^{\infty} \frac{3n}{n^2 - 2}$$

Here
$$a_n = \frac{3n}{n^2 - 2}$$
. Let $b_n = \frac{1}{n}$, so that
$$\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \left(\frac{\frac{3n}{n^2 - 2}}{\frac{1}{n}} \right) = \lim_{n \to \infty} \left(\frac{3n}{n^2 - 2} \times n \right) = 3 > 0$$

Test the following series for convergence and divergence:

$$\sum_{n=1}^{\infty} \frac{5n}{2n^3 + n^2 + 1}.$$

Here
$$a_n=\frac{5n}{2n^3+n^2+1}$$
. Let $b_n=\frac{1}{n^2}$, so that
$$\lim_{n\to\infty}\frac{a_n}{b_n}=\lim_{n\to\infty}\left(\frac{5n^3}{2n^3+n^2+1}\right)=\frac{5}{2}>0$$
 Since $\sum b_n$ is convergent so $\sum a_n$ is also convergent.

Test the following series for convergence and divergence:

$$\sum_{n=2}^{\infty} \frac{(1 + n \ln n)}{(n^2 + 5)}.$$

Solution:

Here $a_n = \frac{(1 + n \ln n)}{(n^2 + 5)}$. For large n, we expect a_n to behave like $\frac{n \ln n}{n^2} = \frac{\ln n}{n}$,

which is greater than $\frac{1}{n}$ for $n \ge 3$, so we take $b_n = \frac{1}{n}$, so that

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \left(\frac{n + n^2 \ln n}{n^2 + 5} \right) = \infty$$

So, by limit comparison test $\sum a_n$ is divergent.

Practice Questions

Test the following series for convergence or divergence.

1.
$$\sum_{n=1}^{\infty} \frac{1}{n^{1/2} + n^{3/2}}$$

$$3. \quad \sum_{n=1}^{\infty} \frac{\sqrt{n}}{n^2 + 1}$$

$$\sum_{n=2}^{\infty} \frac{1}{\sqrt{n} \ln n}$$

$$\underbrace{\sum_{n=1}^{\infty} \frac{1}{n!}} \qquad \underbrace{\sum_{n=1}^{\infty} \frac{$$

Practice Questions

Book: Thomas Calculus (11th Edition) by George B. Thomas, Maurice D. Weir, Joel R. Hass, Frank R. Giordano

Exercise: 11.4Q # 1 to Q # 36

Book: Calculus (5th Edition) by Swokowski, Olinick and Pence

Exercise: 11.3Q # 13 to Q # 46

Ratio Test
$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n}$$
Root Test $\lim_{n \to \infty} \sqrt[n]{a_n}$

The Ratio and Root Tests

$$\sum_{n=1}^{\infty} \frac{(2n)!}{n^8}$$

Book: Thomas Calculus (11th Edition) by George B. Thomas, Maurice D. Weir, Joel R. Hass, Frank R. Giordano

Chapter: 11 (11.5)

Book: Calculus (5th Edition) by Swokowski, Olinick and Pence

Chapter: 11 (11.4)

The Ratio Test (D' Alembert's Test)

Let $\sum a_n$ be a positive-term series and suppose that

$$\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = L.$$

Then

- 1. the series converges if L < 1,
- 2. the series diverges if L > 1 or L is infinite,
- 3. the test is inconclusive if L = 1.

Investigate the convergence/divergence of the following series

$$\sum_{n=0}^{\infty} \frac{2^n + 5}{3^n}$$
.

Here
$$a_n = \frac{2^n + 5}{3^n}$$
 and $a_{n+1} = \frac{2^{n+1} + 5}{3^{n+1}}$. Thus,

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \left(\frac{2^{n+1} + 5}{3^{n+1}} \cdot \frac{3^n}{2^n + 5} \right) = \lim_{n \to \infty} \left(\frac{1}{3} \cdot \frac{2 + 5 \cdot 2^{-n}}{1 + 5 \cdot 2^{-n}} \right) = \frac{1}{3} \lim_{n \to \infty} \left(\frac{2 + 5 \cdot 2^{-n}}{1 + 5 \cdot 2^{-n}} \right) = \frac{2}{3}.$$

Since,
$$L = \frac{2}{3} < 1$$
 so by ratio test $\sum a_n$ is convergent.

The Ratio Test (D' Alembert's Test)

Test the following series for convergence and divergence:

$$\sum_{n=1}^{\infty} \frac{(2n)!}{(n!)^2}. \qquad (\gamma+1) \downarrow = (\gamma+1) \uparrow \downarrow$$

Solution:

Here
$$a_n = \frac{(2n)!}{(n!)^2}$$
 and $a_{n+1} = \frac{(2n+2)!}{[(n+1)!]^2}$. Thus,
$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \left(\frac{(2n+2)!}{[(n+1)!]^2} \cdot \frac{(n!)^2}{(2n)!} \right) = \lim_{n \to \infty} \left(\frac{(2n+2)(2n+1)(2n)!}{[(n+1).n!]^2} \cdot \frac{(n!)^2}{(2n)!} \right)$$

$$= \lim_{n \to \infty} \left(\frac{(2n+2)(2n+1)(2n)!}{(n+1)^2(n!)^2} \cdot \frac{(n!)^2}{(2n)!} \right) = \lim_{n \to \infty} \left(\frac{2(n+1)(2n+1)}{(n+1)^2} \right) = 2 \lim_{n \to \infty} \left(\frac{2n+1}{n+1} \right)$$

$$= 2(2) = 4.$$

Since, L = 4 > 1 so by ratio test $\sum a_n$ is divergent.

The Root Test

Let $\sum a_n$ be a positive-term series and suppose that

$$\lim_{n\to\infty} \sqrt[n]{a_n} = L.$$

Then

- 1. the series converges if L < 1,
- 2. the series diverges if L > 1 or L is infinite,
- 3. the test is inconclusive if L = 1.

Investigate the convergence/divergence of the following series

$$\sum_{n=1}^{\infty} \frac{n^2}{2^n}.$$

Here
$$a_n = \frac{n^2}{2^n}$$
 and $\sqrt[n]{a_n} = \left(\frac{n^2}{2^n}\right)^{1/n} = \frac{(n^2)^{1/n}}{(2^n)^{1/n}} = \frac{(n)^{2/n}}{2}$. Thus,

$$\lim_{n \to \infty} \sqrt[n]{a_n} = \lim_{n \to \infty} \left(\frac{(n)^{2/n}}{2} \right) = \frac{1}{2} \lim_{n \to \infty} \left((n)^{2/n} \right) = \frac{1}{2}.$$

Since,
$$L = \frac{1}{2} < 1$$
 so by root test $\sum a_n$ is convergent.

Investigate the convergence/divergence of the following series

$$\sum_{n=1}^{\infty} \left(\frac{1}{1+n} \right)^n.$$

Here
$$a_n = \left(\frac{1}{1+n}\right)^n$$
 and $\sqrt[n]{a_n} = \left(\left(\frac{1}{1+n}\right)^n\right)^{1/n} = \frac{1}{1+n}$. Thus,
$$\lim_{n \to \infty} \sqrt[n]{a_n} = \lim_{n \to \infty} \left(\frac{1}{1+n}\right) = 0.$$

Since,
$$L = 0 < 1$$
 so by root test $\sum a_n$ is convergent.

Investigate the convergence/divergence of the following series

$$\sum_{n=2}^{\infty} \left(\frac{n}{\ln n} \right)^n.$$

Solution:

Here
$$a_n = \left(\frac{n}{\ln n}\right)^n$$
 and $\sqrt[n]{a_n} = \left(\left(\frac{n}{\ln n}\right)^n\right)^{1/n} = \frac{n}{\ln n}$. Thus,
$$\lim_{n \to \infty} \sqrt[n]{a_n} = \lim_{n \to \infty} \left(\frac{n}{\ln n}\right) = \lim_{n \to \infty} \left(\frac{1}{1/n}\right) = \infty.$$

So by root test $\sum a_n$ is divergent.

Practice Questions

Determine whether the following series converges or diverges?

$$1. \quad \sum_{n=1}^{\infty} \frac{e^n}{(\ln n)^n}$$

2.
$$\sum_{n=1}^{\infty} \frac{(n!)^2}{(n^2)!}$$

$$3. \quad \sum_{n=1}^{\infty} \frac{2^n}{n^3}$$

4.
$$\sum_{n=1}^{\infty} \frac{(2n+1)(3^n+1)}{4^n+1}$$

Practice Questions

Book: Thomas Calculus (11th Edition) by George B. Thomas, Maurice D. Weir, Joel R. Hass, Frank R. Giordano

Exercise: 11.5Q # 1 to Q # 44

Book: Calculus (5th Edition) by Swokowski, Olinick and Pence

Exercise: 11.4Q # 13 to Q # 40