Periodontitis

Seunghoon Kim Jaewoong Lee Semin Lee

Ulsan National Institute of Science and Technology jwlee230@unist.ac.kr

2020-11-25

Overview

- Introduction
- Materials
- Methods
- Results
- 5 Discussion References

Introduction

Microbiome

- Microbiota: the micro-organisms which live inside & on humans (Turnbaugh et al., 2007)
- Microbiome: about 10^{13} micro-organisms whose which collective genome (Gill et al., 2006)

Figure: Concept of a core human microbiome (Turnbaugh et al., 2007)

rRNA

- Ribosomal RNA
- Well-known as a key to phylogeny (Olsen & Woese, 1993)

Periodontitis (Periodontal disease)

- CAL (Clinical Attachment Loss) & BL (Bone Loss) (Flemmig, 1999)
- Risk Factors (Van Dyke & Dave, 2005)
 - Smoking
 - 2 Diabetes
 - Genetic factor
 - 4 Host response

Materials

16S rRNA Sequencing

- 100 Healthy people
- 50 Chronic periodontitis Early
- 50 Chronic periodontitis Moderate
- 50 Chronic periodontitis Severe

Methods

Qiime2 Workflow

Figure: Qiime2 Workflow (Bolyen et al., 2019, 2018)

Denoising techniques

- DADA2: Amplicon Sequence Variants (ASVs) (Callahan et al., 2016)
- Deblur: Operational Taxonomic Units (OTUs) (Amir et al., 2017)

Figure: Denoising Techniques

Taxonomy Classification

- Greengenes (GG) (DeSantis et al., 2006)
- SILVA (Pruesse et al., 2007)

Figure: Taxonomy Classification

"A **higher** performance at taxonomic levels above *genus* level; but performance appears to drop at *species* level" (Gihawi et al., 2019)

Rarefaction

- a statistical method of estimating the number of species expected in a random sample which taken from a collection (James & Rathbun, 1981)
- allows comparisons of the species richness among communities
- a good choice for normalization (Weiss et al., 2017)

Alpha- & Beta-diversity

- alpha-diversity: the richness of taxa at a single community
- beta-diversity: the taxonomic differentiation between communities

Alpha-diversity

- Shannon's diversity index: a quantitative measure of community richness
- Observed Features: a quantitative measure of community richness
- Faith's Phylogenetic Diversity: a qualitative measure of community richness which incorporates phylogenetic relationship between the features
- Evenness: a measure of community evenness

(Bolyen et al., 2019, 2018)

Beta-diversity

- Jaccard distance: a qualitative measure of community dissimilarity
- Bray-Curtis distance: a quantitative measure of community dissimilarity
- unweighted UniFrac distance: a qualitative measure of community dissimilarity which incorporates phylogenetic relationships between the features
- weighted UniFrac distance: a quantitative measure of community dissimilarity which incorporates phylogenetic relationship between the features

(Bolyen et al., 2019, 2018)

Results

Quality Filter

- \therefore Maximum Sequence Length $n_{forword} = 300$, $n_{reverse} = 265$
- \therefore The longest length which has sequence quality \geq 30 at middle.

Rarefaction

Figure: Frequency per sample

- \therefore p-sampling-depth $n_{DADA2} = 3786$ and $n_{Deblur} = 7253$
- ∵ it is ...

Alpha-diversity I

Figure: Alpha Diversity from DADA2 with Kruskal-Wallis among All Groups

Alpha-diversity II

(a) Evenness vector (p < 0.05)

I j unite

(b) Faith PD $(p < 10^{-18})$

(c) Observed features ($p < 10^{-12}$) (d) Shannon ($p < 10^{-4}$)

Figure: Alpha Diversity from Deblur with Kruskal-Wallis among All Groups

Beta-diversity I

Discussion

References I

- Amir, A., McDonald, D., Navas-Molina, J. A., Kopylova, E., Morton, J. T., Xu, Z. Z., . . . others (2017). Deblur rapidly resolves single-nucleotide community sequence patterns. *MSystems*, *2*(2).
- Bolyen, E., Rideout, J. R., Dillon, M. R., Bokulich, N. A., Abnet, C., Al-Ghalith, G. A., . . . others (2018). *Qiime 2: Reproducible, interactive, scalable, and extensible microbiome data science* (Tech. Rep.). PeerJ Preprints.
- Bolyen, E., Rideout, J. R., Dillon, M. R., Bokulich, N. A., Abnet, C. C., Al-Ghalith, G. A., . . . others (2019). Reproducible, interactive, scalable and extensible microbiome data science using qiime 2. *Nature biotechnology*, *37*(8), 852–857.
- Callahan, B. J., McMurdie, P. J., Rosen, M. J., Han, A. W., Johnson, A. J. A., & Holmes, S. P. (2016). Dada2: high-resolution sample inference from illumina amplicon data. *Nature methods*, *13*(7), 581–583.

References II

- DeSantis, T. Z., Hugenholtz, P., Larsen, N., Rojas, M., Brodie, E. L., Keller, K., . . . Andersen, G. L. (2006). Greengenes, a chimera-checked 16s rrna gene database and workbench compatible with arb. *Applied and environmental microbiology*, 72(7), 5069–5072.
- Flemmig, T. F. (1999). Periodontitis. *Annals of Periodontology*, 4(1), 32–37.
- Gihawi, A., Rallapalli, G., Hurst, R., Cooper, C. S., Leggett, R. M., & Brewer, D. S. (2019). Sepath: benchmarking the search for pathogens in human tissue whole genome sequence data leads to template pipelines. *Genome biology*, 20(1), 1–15.
- Gill, S. R., Pop, M., DeBoy, R. T., Eckburg, P. B., Turnbaugh, P. J., Samuel, B. S., ... Nelson, K. E. (2006). Metagenomic analysis of the human distal gut microbiome. *science*, *312*(5778), 1355–1359.

References III

- James, F. C., & Rathbun, S. (1981). Rarefaction, relative abundance, and diversity of avian communities. *The Auk*, *98*(4), 785–800.
- Olsen, G. J., & Woese, C. R. (1993). Ribosomal rna: a key to phylogeny. *The FASEB journal*, 7(1), 113–123.
- Pruesse, E., Quast, C., Knittel, K., Fuchs, B. M., Ludwig, W., Peplies, J., & Glöckner, F. O. (2007). Silva: a comprehensive online resource for quality checked and aligned ribosomal rna sequence data compatible with arb. *Nucleic acids research*, 35(21), 7188–7196.
- Turnbaugh, P. J., Ley, R. E., Hamady, M., Fraser-Liggett, C. M., Knight, R., & Gordon, J. I. (2007). The human microbiome project. *Nature*, 449(7164), 804–810.
- Van Dyke, T. E., & Dave, S. (2005). Risk factors for periodontitis. Journal of the International Academy of Periodontology, 7(1), 3.

References IV

Weiss, S., Xu, Z. Z., Peddada, S., Amir, A., Bittinger, K., Gonzalez, A., ... others (2017). Normalization and microbial differential abundance strategies depend upon data characteristics. *Microbiome*, 5(1), 27.