

WitMotion Shenzhen Co., Ltd

Datasheet

AHRS IMU Sensor | SINDT

The Robust Acceleration, Angular velocity & Angle Detector

The SINDT is a IMU sensor device, detecting acceleration, angular velocity as well as angle. The robust housing and the small outline makes it perfectly suitable for industrial applications such as condition monitoring and predictive maintenance. Configuring the device enables the customer to address a broad variety of application by interpreting the sensor data by smart algorithms and Kalman filtering.

BUILT-IN SENSORS

Accelerometer

Gyroscope

Tutorial Link

Google Drive

Link to instructions DEMO: WITMOTION Youtube Channel SINDT Playlist

If you have technical problems or cannot find the information that you need in the provided documents, please contact our support team. Our engineering team is committed to providing the required support necessary to ensure that you are successful with the operation of our AHRS sensors.

Contact

Technical Support Contact Info

Application

- AGV Truck
- Platform Stability
- Auto Safety System
- 3D Virtual Reality
- Industrial Control
- Robot
- Car Navigation
- UAV
- Truck-mounted Satellite Antenna Equipment

Contents

Tutorial Link	2 -
Contact	2 -
Application	2 -
Contents	3 -
1 Overview	4 -
2 Features	5 -
3 Specification	5 -
3.1 Parameter	6 -
3.2 Size	7 -
3.3 Axial Direction	8 -
4 PIN Definition	9 -
5 Communication Protocol	10 -
5.1 Output Data Format	10 -
5.1.1 Time Output	10 -
5.1.2 Acceleration Output	11 -
5.1.3 Angular Velocity Output	11 -
5.1.4 Angle Output	12 -
5.1.5 Quaternion	13 -
5.2 Config Commands	14 -
5.2.1 Register Address	14 -
5.2.2 Save Configuration	15 -
5.2.3 Calibrate	15 -
5.2.4 Installation Direction	15 -
5.2.5 Sleep/ Wake up	15 -
5.2.6 Algorithm Transition	16 -
5.2.7 Gyroscope Automatic Calibration	16 -
5.2.8 Return Content	17 -
5.2.9 Return Rate	18 -
5.2.10 Baud Rate	18 -
5.2.11 Set X Axis Acceleration Bias	19 -
5.2.12 Set Y Axis Acceleration Bias	19 -
5.2.13 Set Z Axis Acceleration Bias	19 -
5. 2.14 Set X Axis Angular Velocity Bias	20 -
5.2.15 Set Y Axis Angular Velocity Bias	20 -
5.2.16 Set Z Axis Angular Velocity Bias	- 20 -

1 Overview

SINDT's scientific name is AHRS IMU sensor. A sensor measures 3-axis angle, angular velocity and acceleration. Its strength lies in the algorithm which can calculate three-axis angle accurately.

SINDT is employed where the highest measurement accuracy is required. SINDT offers several advantages over competing sensor:

- Heated for best data availability: new WITMOTION patented zero-bias automatic detection calibration algorithm outperforms traditional accelerometer sensor
- High precision Roll Pitch Yaw (X Y Z axis) Acceleration + Angular Velocity + Angle output
- Low cost of ownership: remote diagnostics and lifetime technical support by WITMOTION service team
- Developed tutorial: providing manual, datasheet, Demo video, PC software, mobile phone APP and 51 serial, STM32, Arduino, and Matlab sample code, communication protocol
- WITMOTION sensors have been praised by thousands of engineers as a recommended attitude measurement solution

2 Features

- The default baud rate of this device is 9600 and could be changed.
- The interface of this product only leads to a serial port
- The module consists of a high precision gyroscope, accelerometer sensor.
 The product can solve the current real-time motion posture of the module quickly by using the high-performance microprocessor, advanced dynamic solutions and Kalman filter algorithm.
- The advanced digital filtering technology of this product can effectively reduce the measurement noise and improve the measurement accuracy.
- Maximum 200Hz data output rate. Output content can be arbitrarily selected, the output speed 0.2HZ~ 200HZ adjustable.

3 Specification

3.1 Parameter

Parameter	Specification
Working Voltage	TTL:3.3V-5V
Current	<40mA
> Size	55mm x 36.8mm X 24mm
> Data	Angle: X Y Z, 3-axis
	Acceleration: X Y Z, 3-axis
	Angular Velocity: X Y Z, 3-axis
	Time, Quaternion
> Output frequency	0.2Hz200Hz
> Interface	Serial TTL level,
> Baud rate	9600(default, could be changed)

Measurement Range & Accuracy								
Sensor	Measurement Range	Accuracy/ Remark						
> Accelerometer	X, Y, Z, 3-axis	Accuracy: 0.01g						
	±16g	Resolution: 16bit						
		Stability: 0.005g						
Gyroscope	X, Y, Z, 3-axis	Resolution: 16bit						
	-±2000°/s	Stability: 0.05°/s						
Angle/ Inclinometer	X, Y, Z, 3-axis	Accuracy:X, Y-axis: 0.05°						
	X, Z-axis: ±180°	Z-axis: 1°						
	Y ±90°	(Angle of Z-axis will have						
	(Y-axis 90° is singular	accumulated error)						
	point)							

3.2 Size

Parameter	Specification	Tolerance	Comment		
Length	55	±0.1			
Width	36.8	±0.1	Unit: millimeter.		
Height	24	±0.1	John Millimeter.		
Weight	100	±1	Unit: gram		

3.3 Axial Direction

The coordinate system used for attitude angle settlement is the northeast sky coordinate system. Place the module in the positive direction, as shown in the figure below, direction right is the X-axis, the direction forward is the Y-axis, and direction upward is the Z-axis. Euler angle represents the rotation order of the coordinate system when the attitude is defined as Z-Y-X, that is, first turn around the Z-axis, then turn around the Y-axis, and then turn around the X-axis.

4 PIN Definition

	PIN	Color	Function
>	VCC	RED	Input Supply TTL :powered by 3.3-5V
>	RX	GREEN	Serial data input RX :connected with TX
>	TX	YELLOW	Serial data output TX :connected with RX
>	GND	BLACK	Ground GND

5 Communication Protocol

Level: TTL level

Baud rate: 4800, 9600 (default), 19200 38400, 57600, 115200, 230400,

460800, 921600, stop bit and parity

5.1 Output Data Format

5.1.1 Time Output

0x55	0x50	YY	MM	DD	hh	mm	SS	msL	msH	SUM	

YY: Year, 20YY Year

MM: Month
DD: Day
hh: hour
mm: minute
ss: Second
ms: Millisecond

Millisecond calculate formula:

ms=((msH<<8)|msL)

Sum = 0x55 + 0x51 + YY + MM + DD + hh + mm + ss + ms + TL

5.1.2 Acceleration Output

0x55	0x51	AxL	AxH	AvL	AvH	AzL	AzH	TL	TH	SUM	1
07.00	0,00	, , , , _	, , , , , , ,	' ' ' -	, .,	<i>'</i>	, . _	. –			1

Calculate formula:

 $a_x = ((AxH < < 8)|AxL)/32768*16g(g is Gravity acceleration, 9.8m/s²)$

 $a_y = ((AyH < < 8)|AyL)/32768*16g(g is Gravity acceleration, 9.8m/s²)$

 $a_z = ((AzH < < 8)|AzL)/32768*16g(g is Gravity acceleration, 9.8m/s²)$

Temperature calculated formular:

T=((TH<<8)|TL)/100 ℃

Checksum:

Sum=0x55+0x51+AxH+AxL+AyH+AyL+AzH+AzL+TH+TL

Note:

1. The data is sent in hexadecimal, not ASCII code.

Each data is transmitted in turn of low byte and high byte, and the two are combined into a signed short type data.

For example, X-axis acceleration data Ax, where AxL is low byte and AxH is high byte. The conversion method is as follows:

Assuming that Data is actual data, DataH is its high byte, and DataL is its low byte, then: Data = (short) (DataH $<< 8 \mid$ DataL).

It must be noted that DataH needs to be coerced into a signed short data and then shifted, and the data type of Data is also a signed short type, so that it can represent negative numbers.

5.1.3 Angular Velocity Output

	0x55	0x52	wxL	wxH	wvL	wvH	wzL	wzH	TL	TH	SUM
--	------	------	-----	-----	-----	-----	-----	-----	----	----	-----

Calculated formular:

 $w_x = ((wxH < < 8)|wxL)/32768*2000(°/s)$

 $w_y = ((w_y H < < 8) | w_y L)/32768 * 2000 (°/s)$

 $w_z = ((wzH < < 8)|wzL)/32768*2000(°/s)$

Temperature calculated formular:

T=((TH<<8)|TL) /100 ℃

Checksum:

Sum=0x55+0x52+wxH+wxL+wyH+wyL+wzH+wzL+TH+TL SINDT-TTL | Datasheet v20-0707 | http://wiki.wit-motion.com/english

5.1.4 Angle Output

Calculated formular:

Roll(X axis)Roll=((RollH<<8)|RollL)/32768*180(°)

Pitch(Y axis)Pitch=((PitchH<<8)|PitchL)/32768*180(°)

Yaw(Z axis)Yaw = ((YawH < < 8)|YawL)/32768*180(°)

Version calculated formula:

Version=(VH<<8)|VL

Checksum:

Sum=0x55+0x53+RollH+RollL+PitchH+PitchL+YawH+YawL+VH+VL

Note:

- 1. The coordinate system used for attitude angle settlement is the northeast sky coordinate system. Place the module in the positive direction, as the figure shown in Chapter 3.3, direction right is the X-axis, the direction forward is the Y-axis, and direction upward is the Z-axis. Euler angle represents the rotation order of the coordinate system when the attitude is defined as Z-Y-X, that is, first turn around the Z-axis, then turn around the Y-axis, and then turn around the X-axis.
- 2. Although the range of the roll angle is \pm 180 degrees, in fact, since the coordinate rotation sequence is Z-Y-X, when expressing the attitude, the range of the pitch angle (Y-axis) is only \pm 90 degrees, and it will change to less than 90 after exceeding 90 degrees Degrees while making the X-axis angle greater than 180 degrees. For detailed principles, please Google Euler angle and posture-related information.
- 3. Since the three axes are coupled, they will show independent changes only at small angles, and the attitude angles will change at large angles. For example, when the Y-axis is close to 90 degrees, even if the attitude only rotates around the Y-axis, the angle of the axis will also change greatly, which is an inherent problem with Euler angles indicating attitude.

5.1.5 Quaternion

0×55	0~50	001	Q0H	011	O1H	021	O2H	U3I	U3H	CHM
		QUL	QUII	QIL	QIII	Q_L	QZII	ŲJL	QJII	3011

Calculated formular:

Q0=((Q0H << 8)|Q0L)/32768

Q1=((Q1H<<8)|Q1L)/32768

Q2=((Q2H<<8)|Q2L)/32768

Q3=((Q3H<<8)|Q3L)/32768

Checksum:

Sum = 0x55 + 0x59 + Q0L + Q0H + Q1L + Q1H + Q2L + Q2H + Q3L + Q3H

5.2 Config Commands

Reminder:

1. Data format

0xFF	0xAA	Address	DataL	DataH

5.2.1 Register Address

Address	Symbol	Meaning
0x00	SAVE	Save
0x01	CALSW	Calibration
0x02	RSW	Return data content
0x03	RATE	Return data Speed
0x04	BAUD	Baud rate
0x05	AXOFFSET	X axis Acceleration bias
0x06	AYOFFSET	Y axis Acceleration bias
0x07	AZOFFSET	Z axis Acceleration bias
0x08	GXOFFSET	X axis angular velocity bias
0x09	GYOFFSET	Y axis angular velocity bias
0x0a	GZOFFSET	Z axis angular velocity bias
0x30	YYMM	Year, Month
0x31	DDHH	Day, Hour
0x32	MMSS	Minute, Second
0x33	MS	Millisecond
0x34	AX	X axis Acceleration
0x35	AY	Y axis Acceleration
0x36	AZ	Z axis Acceleration
0x37	GX	X axis angular velocity
0x38	GY	Y axis angular velocity
0x39	GZ	Z axis angular velocity
0x3d	Roll	X axis Angle
0x3e	Pitch	Y axis Angle
0x3f	Yaw	Z axis Angle
0x40	TEMP	Temperature
0x51	Q0	Quaternion Q0
0x52	Q1	Quaternion Q1
0x53	Q2	Quaternion Q2
0x54	Q3	Quaternion Q3

5.2.2 Save Configuration

0xFF	0xAA	0x00	SAVE	0x00
_	_		_	

SAVE: Save

0: Save current configuration

1: set to default setting

5.2.3 Calibrate

0xFF 0xAA 0x01	. CALSW 0x00
----------------	--------------

CALSW: Set calibration mode

0: Exit calibration mode

1: Enter Gyroscope and Accelerometer calibration mode

5.2.4 Installation Direction

0xFF	DIRECTION	0x00
------	-----------	------

DIRECTION: set installation direction 0: set to horizontal installation

1: set to vertical installation

5.2.5 Sleep/ Wake up

0xFF	0xAA	0x22	0x01	0x00
------	------	------	------	------

After sending the command, the module enters the sleep (standby) state, and once again, the module enters the working state from the standby state.

5.2.6 Algorithm Transition

0xFF	0xAA	0x24	ALG	0x00
_	_	_	_	

ALG: 6-axis/ 9-axis algorithm transition

0: switch to 9-axis algorithm1: switch to 6-axis algorithm

5.2.7 Gyroscope Automatic Calibration

0xFF 0xAA	0x63	GYRO	0x00
-----------	------	------	------

GYRO: gyroscope automatic calibration

0: set to gyroscope automatic calibration

1: removed to gyroscope automatic calibration

5.2.8 Return Content

		0xFF	0xAA	0x02	RSWL	RSW	/H	
RSV	RSWL byte definition							
byte	7	6	5	4	3	2	1	0
Name	0x57	0x56	0x55	0x54	0x53	0x52	0x5	0x50
	pack	pack	pack	pack	pack	pack	pack	pack
default	0	0	0	1	1	1	1	0

RSWH byte definition

byte	7	6	5	4	3	2	1	0
Name	X	Χ	Χ	Χ	Χ	0x5A	0x59	0x58
						pack	pack	pack
default	0	0	0	0	0	0	0	0

X is an undefined value.

0x50 pack: time pack

0: Not output 0X50 pack

1: Output 0X50 pack

0x51 pack: Acceleration pack

0: Not output 0x51 pack

1: Output 0x51 pack

0x52 pack: Angular velocity pack

0: Not output 0x52 packet

1: Output 0x52 pack

0x53 pack: Angle Pack

0: Not output 0x53 pack

1: Output 0x53 pack

0x59 pack: Quaternion Pack

0: Not output 0x59 pack

1: Output 0x59 pack

5.2.9 Return Rate

0xFF	0xAA	0x03	RATE	0x00

RATE: return rate

0x01:0.2Hz

0x02: 0.5Hz

0x03: 1Hz

0x04: 2Hz

0x05: 5Hz

0x06: 10Hz(default)

0x07: 20Hz

0x08: 50Hz

0x09: 100Hz

0x0a: 125Hz

0x0b: 200Hz

0x0c: Single

0x0d: Not output

After the setup is complete, need to click save, and re-power the module to take effect.

5.2.10 Baud Rate

0xFF 0xAA	0x04	BAUD	0x00
-----------	------	------	------

BAUD:

0x01: 4800

0x02: 9600(default)

0x03: 19200

0x04: 38400

0x05: 57600

0x06: 115200

0x07: 230400

0x08: 460800

0x09: 921600

5.2.11 Set X Axis Acceleration Bias

0xFF	0xAA	0x05	AXOFFSETL	AXOFFSETH

AXOFFSETL: X axis Acceleration bias low byte AXOFFSETH: X axis Acceleration bias high byte AXOFFSET= (AXOFFSETH <<8) | AXOFFSETL

Note: After setting the acceleration bias, the output value of the acceleration is the sensor measured value minus the bias value.

5.2.12 Set Y Axis Acceleration Bias

0xFF	0xAA	0x06	AYOFFSETL	AYOFFSETH
-	-			

AYOFFSETL: Y axis Acceleration bias low byte AYOFFSETH: Y axis Acceleration bias high byte AYOFFSET= (AYOFFSETH <<8) | AYOFFSETL

Note: After setting the acceleration bias, the output value of the acceleration is the sensor measured value minus the bias value.

5.2.13 Set Z Axis Acceleration Bias

0xFF	0xAA	0x07	AZOFFSETL	AZOFFSETH

AZOFFSETL: Z axis Acceleration bias low byte AZOFFSETH: Z axis Acceleration bias high byte AZOFFSET= (AZOFFSETH <<8) | AZOFFSETL

Note: After setting the acceleration bias, the output value of the acceleration is the sensor measured value minus the bias value.

5. 2.14 Set X Axis Angular Velocity Bias

GXOFFSETL: Set X axis Angular velocity bias low byte GXOFFSETH: Set Y axis Angular velocity bias high byte

GXOFFSET= (GXOFFSETH <<8) | GXOFFSETL

Note: After setting the angular velocity zero deviation, the output value of the angular velocity is the sensor measurement value minus the zero deviation value.

5.2.15 Set Y Axis Angular Velocity Bias

0xFF 0x	xAA 0x09	GYOFFSETL	GYOFFSETH
---------	----------	-----------	-----------

GYOFFSETL: Set X axis Angular velocity bias low byte GYOFFSETH: Set X axis Angular velocity bias high byte GYOFFSET= (GYOFFSETH <<8) | GYOFFSETL

Note: After setting the angular velocity zero deviation, the output value of the angular velocity is the sensor measurement value minus the zero deviation value.

5.2.16 Set Z Axis Angular Velocity Bias

GZOFFSETL: Set Z axis Angular velocity bias low byte GZOFFSETH: Set Z axis Angular velocity bias low byte GZOFFSET= (GZOFFSETH <<8) | GZOFFSETL

Note: After setting the angular velocity zero deviation, the output value of the angular velocity is the sensor measurement value minus the zero deviation value.