Data Analysis Name: A/B Test and Hypotheses Prioritization

CONTENTS:

- Project Description
- Data Source
- Part 1. Hypothesis Prioritization
 - Part 1. Conclusion
- Part 2. A / B Test Analysis
 - Part 2.1 Build a plot of cumulative revenue by group.
 - Part 2.2 Build a cumulative average cheque plot for groups.
 - Part 2.3 Build a plot for the relative change in the cumulative average cheque of group B to group A.
 - Part 2.4 Build a cumulative conversion plot for groups.
 - Part 2.5 Build a plot for the relative change in the cumulative conversion of group B to group A.
 - Part 2.6 Build a scatter plot for the number of orders by visitors.
 - Part 2.7 Count the 95th and 99th percentiles of the number of orders per visitor.
 - Part 2.8 Build a scatter plot of order values.
 - Part 2.9 Calculate the 95th and 99th percentiles of order values.
 - Part 2.10 Calculate the statistical significance of difference in conversion between groups from raw data.
 - Part 2.11 Calculate the statistical significance of difference in average cheques between groups by raw data.
 - Part 2.12 Calculate the statistical significance of difference in conversion between groups using refined data.
 - Part 2.13 Calculate the statistical significance of difference in average cheques between groups on refined data.
 - Part 2.14 Decision based on the test results.
 - Part 2. Conclusion
- Project Overall Conclusion

Project Description

- · Location: Online Store
- Together with the marketing department, prepare a list of hypotheses for increasing revenue
- Prioritize hypotheses, run an A / B test and analyze the results

BACK TO CONTENTS

Data Source

- · We have three dataframes
 - Hypotheses list with ranking
 - Orders data
 - Visitors data

```
In [1]: import pandas as pd
    import datetime as dt
    import numpy as np
    import matplotlib.pyplot as plt
    import seaborn as sns
    import warnings
    import scipy.stats as stats
In [2]: pd.set_option('display.max_rows', 100)
    pd.set_option('display.max_columns', 100)
    pd.set_option('display.width', 115)
    pd.set_option('display.float_format', lambda x: '%.3f' % x)
    warnings.filterwarnings('ignore')

In [3]: #pwd
```

In [5]: hypothesis_list

Out[5]:

	Hypothesis	Reach	Impact	Confidence	Efforts
0	Add two new channels to attract traffic which	3	10	8	6
1	Launch your own delivery service which will sh	2	5	4	10
2	Add blocks of product recommendations to the w	8	3	7	3
3	Change the structure of categories which will	8	3	3	8
4	Change the background color of the home page t	3	1	1	1
5	Add a page of customer reviews about the store	3	2	2	3
6	Show banners with current promotions and sales	5	3	8	3
7	Add a subscription form to all the main pages	10	7	8	5
8	Launch a promotion giving a discount on a birt	1	9	9	5

In [6]: orders_row_data

Out[6]:

	transactionId	visitorId	date	revenue	group
0	3667963787	3312258926	2019-08-15	1650	В
1	2804400009	3642806036	2019-08-15	730	В
2	2961555356	4069496402	2019-08-15	400	Α
3	3797467345	1196621759	2019-08-15	9759	В
4	2282983706	2322279887	2019-08-15	2308	В
1192	2662137336	3733762160	2019-08-14	6490	В
1193	2203539145	370388673	2019-08-14	3190	Α
1194	1807773912	573423106	2019-08-14	10550	Α
1195	1947021204	1614305549	2019-08-14	100	Α
1196	3936777065	2108080724	2019-08-15	202740	В

1197 rows × 5 columns

In [7]: visitors_raw_data.head()

Out[7]:

	date	group	visitors
0	2019-08-01	Α	719
1	2019-08-02	Α	619
2	2019-08-03	Α	507
3	2019-08-04	Α	717
4	2019-08-05	Α	756

Part 1. Hypotheses Prioritization

In the file "hypothesis_list_local_copy.csv" there are 9 hypotheses for increasing the revenue of an online store with the specified parameters Reach, Impact, Confidence, Effort

Task

- Use the ICE framework to prioritize hypotheses. Sort in descending order of priority
- Use the RICE framework to prioritize hypotheses. Sort in descending order of priority
- Let's look how the prioritization of hypotheses has changed when applying RICE instead of ICE. What is an explaination.

```
In [8]: # ICE
    hypothesis_list_ice = hypothesis_list
    hypothesis_list_ice['ICE_score'] = (
        hypothesis_list_ice['Impact'] * hypothesis_list_ice['Confidence']) / hypothesis_list_ice['Efforts']
    hypothesis_list_ice[['Hypothesis','ICE_score']].sort_values(by='ICE_score', as cending=False)
```

Out[8]:

	Hypothesis	ICE_score
8	Launch a promotion giving a discount on a birt	16.200
0	Add two new channels to attract traffic which	13.333
7	Add a subscription form to all the main pages	11.200
6	Show banners with current promotions and sales	8.000
2	Add blocks of product recommendations to the w	7.000
1	Launch your own delivery service which will sh	2.000
5	Add a page of customer reviews about the store	1.333
3	Change the structure of categories which will	1.125
4	Change the background color of the home page t	1.000

ICE framework: leaders - ## 8-0-7, second group - ## 6-2-1, last priority - ## 5-3-4

```
In [9]: # RICE
    hypothesis_list_rice = hypothesis_list
    hypothesis_list_rice['RICE_score'] = (
        hypothesis_list_rice['Reach'] * hypothesis_list_rice['Impact'] *
        hypothesis_list_rice['Confidence']) / hypothesis_list_rice['Efforts']
    hypothesis_list_rice[['Hypothesis','RICE_score']].sort_values(by='RICE_score', ascending=False)
```

Out[9]:

	Hypothesis	RICE_score
7	Add a subscription form to all the main pages	112.000
2	Add blocks of product recommendations to the w	56.000
0	Add two new channels to attract traffic which	40.000
6	Show banners with current promotions and sales	40.000
8	Launch a promotion giving a discount on a birt	16.200
3	Change the structure of categories which will	9.000
1	Launch your own delivery service which will sh	4.000
5	Add a page of customer reviews about the store	4.000
4	Change the background color of the home page t	3.000

• RICE framework: first leader group - ## 7-2-0, second group - ##6-8-3, least priority group - ## 1-5-4

BACK TO CONTENTS

Part 1. Conclusion:

• Hypotheses 7, 2, 3 got higher places through the RICE calculation because the Reach parameter ("how many users will be affected by the change you want to make") in the RICE calculation for these hypotheses gave a high aggregate numerator with equal Efforts efforts in the denominator

Part 2. A / B Test Analysis

We have already did an A / B test and got the results described in the files /orders.csv u /visitors.csv

Task

- · Analyze A / B Test
- · Conclude whether to continue the test or to stop it

Make some data research to find extremes or unusual data

```
In [10]: | orders_row_data.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 1197 entries, 0 to 1196
         Data columns (total 5 columns):
              Column
                             Non-Null Count Dtype
          0
              transactionId 1197 non-null
                                             int64
          1
              visitorId
                             1197 non-null
                                             int64
          2
              date
                             1197 non-null
                                             object
          3
                            1197 non-null
              revenue
                                             int64
                             1197 non-null
                                             object
              group
         dtypes: int64(3), object(2)
         memory usage: 46.9+ KB
In [11]: # date data to date format - ! no need (left as str)
         orders data = orders row data
         #orders_data['date'] = orders_data['date'].map(lambda x: dt.datetime.strptime
         (x, '%Y-%m-%d')) #datetime64[ns]
         #orders_data['date'] = pd.to_datetime(orders_data['date'], format='%Y-%m-%d')
          #datetime64[ns]
```

```
In [12]: orders_data.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 1197 entries, 0 to 1196
         Data columns (total 5 columns):
          #
              Column
                              Non-Null Count Dtype
          0
              transactionId 1197 non-null
                                              int64
          1
              visitorId
                              1197 non-null
                                              int64
          2
              date
                              1197 non-null
                                              object
              revenue
          3
                              1197 non-null
                                              int64
          4
              group
                              1197 non-null
                                              object
         dtypes: int64(3), object(2)
         memory usage: 46.9+ KB
In [13]: orders_data['date'].min()
Out[13]: '2019-08-01'
In [14]: orders_data['date'].max()
Out[14]: '2019-08-31'
   time period is limited by August
In [15]: orders_data.duplicated().sum()
Out[15]: 0
In [16]: orders_data['transactionId'].duplicated().sum()
Out[16]: 0
```

Out[17]:

revenue	visitorId	transactionId	
1197.000	1197.000	1197.000	count
8348.006	2165960143.099	2155621385.530	mean
39191.132	1236014192.147	1229084904.760	std
50.000	5114589.000	1062393.000	min
1220.000	1111826046.000	1166775572.000	25%
2978.000	2217984702.000	2145193898.000	50%
8290.000	3177606451.000	3237740112.000	75%
1294500.000	4283872382.000	4293855558.000	max

looks like we have extreme high numbers in revenue column

```
In [18]: # check top10 purchases by revenue

pivot_top10_purchases = orders_data.pivot_table(
    index='transactionId', values = 'revenue').sort_values(by='revenue', ascen ding=False).head(10)
    pivot_top10_purchases
```

Out[18]:

revenue

transactionId	
590470918	1294500
3936777065	202740
192721366	93940
666610489	92550
3668308183	86620
1216533772	78990
1811671147	78990
3603576309	67990
1348774318	66350
316924019	65710

two top purchases too high for our 75% purchases, others in top 10 are expensive as well

```
In [19]: # plot transactions' costs on date

plt.figure(figsize=(12,6))
   plt.scatter(orders_data['date'], orders_data['revenue'])
   #plt.xlim(['2019-07-30', '2019-09-02'])
   plt.title('Purchases, cost and date')
   plt.xlabel('Date')
   plt.xticks(rotation=45)
   plt.ylabel('Cost of purchase')
   plt.show()
```


two most expensive purchases appeared on Aug 15 and Aug 19

groups are represented by 557 (A) and 640 (B) transactions

```
In [21]: visitors_purchases_number = orders_data['visitorId'].value_counts()
         #visitors_purchases_number = orders_data['visitorId'].value_counts().mean()
         visitors_purchases_number#.head(20)
Out[21]: 4256040402
                       11
         2458001652
                       11
                        9
         2378935119
                        8
         2038680547
                        5
         3717692402
         3254689071
                        1
         4186744110
                        1
                        1
         1455861274
         3612778094
                        1
         3149228032
                        1
         Name: visitorId, Length: 1031, dtype: int64
```

two costomers have 11 purchases, few have - 9 & 8, then the number stays on 5 and drops gradually down to 1

```
In [22]: plt.figure(figsize=(12,6))
    x_values = pd.Series(range(0,len(visitors_purchases_number)))
    plt.scatter(x_values, visitors_purchases_number)
    plt.title('Purchases per number of visitors')
    plt.xlabel('Number of visitors')
    plt.ylabel('Number of purchases')
```

Out[22]: Text(0, 0.5, 'Number of purchases')

is not a normal distribution: most purchase ones, much less purchase twice and more

```
In [23]: # check the revenue per visitor
          visitor_id_revenue = orders_data.pivot_table(
              index='visitorId', values = 'revenue', aggfunc='sum').sort_values(by='reve
          nue', ascending=False)
          visitor_id_revenue
Out[23]:
                      revenue
              visitorId
          1920142716 1294500
          2108080724
                      202740
          4256040402
                      176490
          4266935830
                      157980
          2378935119
                      142939
          1995481842
                          70
          3577713868
                          60
          2738601405
                          50
          3423937755
                          50
          2705308997
                          50
          1031 rows × 1 columns
In [24]: # check total revenue from those visitors who made 11 purchases
          print(visitor_id_revenue.query('visitorId == 4256040402'))
          print()
          print(visitor_id_revenue.query('visitorId == 2458001652'))
                      revenue
         visitorId
         4256040402
                       176490
                      revenue
```

those visitors not bringing extreme revenue: 176 490 & 62 098 rubles

62098

visitorId 2458001652

```
orders_data.query('revenue == 1294500')
In [25]:
Out[25]:
                transactionId
                               visitorId
                                             date
                                                   revenue group
           425
                  590470918 1920142716 2019-08-19 1294500
                                                              В
          orders_data.query('visitorId == 1920142716')
In [26]:
Out[26]:
                transactionId
                               visitorId
                                             date
                                                   revenue group
           425
                  590470918 1920142716 2019-08-19 1294500
```

the most expensive purchase (1 294 500) was made by one visitor from group B who performed just one purchase per period

Out[27]:

group	date	Α	В
0	2019-08-01	24	21
1	2019-08-02	20	24
2	2019-08-03	24	16
3	2019-08-04	16	17
4	2019-08-05	25	23

```
In [28]: plt.figure(figsize=(12,6))
    plt.bar(pivot_plot_transactions['date'], pivot_plot_transactions['A'], label=
    'Group A Transactions', color='grey')
    plt.plot(
        pivot_plot_transactions['date'], pivot_plot_transactions['B'], label='Group B Transactions', color='green', linewidth=2)
    plt.title('Transactions per date')
    plt.xlabel('Date')
    plt.xticks(rotation=45)
    plt.ylabel('Transactions')
    plt.legend()
    plt.show()
```


transactions - no extremes

BACK TO CONTENTS

2.1. Build a plot of cumulative revenue by group. Draw conclusions and assumptions.

Out[29]:

	date	group
0	2019-08-15	В
2	2019-08-15	Α
45	2019-08-16	Α
47	2019-08-16	В
55	2019-08-01	Α

```
In [30]: # aggregated orders by date with: transactionId-number of unique, visitorId-nu
mber of unique, revenue-cumulative

orders_aggregated = date_groups.apply(
    lambda x: orders_data[np.logical_and(orders_data['date'] <= x['date'], ord
ers_data['group'] ==
    x['group'])].agg({
    'date':'max',
    'group':'max',
    'transactionId':pd.Series.nunique,
    'visitorId':pd.Series.nunique,
    'revenue':'sum'}),axis=1).sort_values(by=['date','group'])

orders_aggregated.head()</pre>
```

Out[30]:

	date	group	transactionId	visitorId	revenue
55	2019-08-01	Α	24	20	148579
66	2019-08-01	В	21	20	101217
175	2019-08-02	Α	44	38	242401
173	2019-08-02	В	45	43	266748
291	2019-08-03	Α	68	62	354874

```
In [31]: visitors_data = visitors_raw_data
    # date data to date format - ! no need (left as str)

#visitors_data['date'] = visitors_data['date'].map(lambda x: dt.datetime.strpt ime(x, '%Y-%m-%d'))
```

```
In [32]: # aggregated visitors by date with: visitors-cumulative

visitors_aggregated = date_groups.apply(
    lambda x: visitors_data[np.logical_and(visitors_data['date'] <= x['date'],
    visitors_data['group'] ==
        x['group'])].agg({
        'date':'max',
        'group':'max',
        'visitors':'sum'}),axis=1).sort_values(by=['date','group'])

visitors_aggregated.head()</pre>
```

Out[32]:

	date	group	visitors
55	2019-08-01	Α	719
66	2019-08-01	В	713
175	2019-08-02	Α	1338
173	2019-08-02	В	1294
291	2019-08-03	Α	1845

Out[34]:

	date	group	orders	buyers	revenue	visitors
0	2019-08-01	Α	24	20	148579	719
1	2019-08-01	В	21	20	101217	713
2	2019-08-02	Α	44	38	242401	1338
3	2019-08-02	В	45	43	266748	1294
4	2019-08-03	Α	68	62	354874	1845

```
In [35]: cummulative_revenue_A = cummulative_data[cummulative_data['group'] == 'A'][['d
    ate','revenue','orders']]
    cummulative_revenue_B = cummulative_data[cummulative_data['group'] == 'B'][['d
    ate','revenue','orders']]
```

```
In [36]: plt.figure(figsize=(12,6))
    plt.plot(cummulative_revenue_A['date'], cummulative_revenue_A['revenue'], labe
    l='A', marker='o', linestyle='dashed')
    plt.plot(cummulative_revenue_B['date'], cummulative_revenue_B['revenue'], labe
    l='B', marker='o', linestyle='dashed')
    plt.grid()
    plt.legend(loc='upper left')
    plt.title('Cumulative revenue by groups')
    plt.xlabel('Date')
    plt.xticks(rotation=45)
    plt.ylabel('Revenue')
    plt.show()
```


1. Groups' cumulative revenue chart

Conclusions and Assumptions

- · groups start the same growth
- · group B begins to lead in a week of test
- · after 2 weeks of the test, group A almost overtakes group B
- · August 19, group B quickly breaks away; more than a million
- the last segment of the group runs almost parallel
- it can be assumed that the sharp increase in the cumulative revenue of group B is caused by abnormally large orders

2.2. Build a cumulative average cheque plot for groups. Draw conclusions and assumptions.

2. Cumulative average cheque by groups

Conclusions and Assumptions

- the average cheque of group A sags sharply at the beginning of the test, group B goes in waves
- by the end of two weeks of the test, the average cheque of group A for a short period exceeds the average cheque of group B
- On August 19, the average cheque of group B increases sharply by 3 thousand, and then gradually decreases by 1 thousand units over the past 12 days: the cause is the expensive purchase on this date
- the average cheque of group A remains at the level of 7000 units and gradually increases towards the end of the test
- based on the fact that the fluctuations are very strong, it is too early to decide on this metric
- An additional analysis of extreme values is required: it affects the results so much

BACK TO CONTENTS

2.3. Build a plot of the relative change in the cumulative average cheque of group B to group A. Draw conclusions and assumptions.

Out[38]:

ordersB	revenueB	ordersA	revenueA	date	
21	101217	24	148579	2019-08-01	0
45	266748	44	242401	2019-08-02	1
61	380996	68	354874	2019-08-03	2
78	489567	84	425699	2019-08-04	3
101	581995	109	549917	2019-08-05	4

3. Plot for the relative change in the cumulative average cheque of group B to group A

Conclusions and Assumptions

- significant fluctuations are observed from the first days of the test and last 2 weeks from -2 to +4
- · and the anomaly is confirmed on August 19
- it is necessary to search for abnormal orders in the dataset

BACK TO CONTENTS

2.4. Build a cumulative conversion plot for groups. Draw conclusions and assumptions.

```
In [40]: cummulative_data['conversion'] = cummulative_data['orders'] / cummulative_data
['visitors']
cummulative_data.head()
```

Out[40]:

	date	group	orders	buyers	revenue	visitors	conversion
0	2019-08-01	А	24	20	148579	719	0.033
1	2019-08-01	В	21	20	101217	713	0.029
2	2019-08-02	Α	44	38	242401	1338	0.033
3	2019-08-02	В	45	43	266748	1294	0.035
4	2019-08-03	Α	68	62	354874	1845	0.037

```
In [41]: cummulative_data_A = cummulative_data[cummulative_data['group']=='A']
    cummulative_data_B = cummulative_data[cummulative_data['group']=='B']
```


In [43]: | cummulative_data_A.info() <class 'pandas.core.frame.DataFrame'> Int64Index: 31 entries, 0 to 60 Data columns (total 7 columns): Column Non-Null Count Dtype 0 date 31 non-null object 1 31 non-null group object 2 orders 31 non-null int64 3 buyers 31 non-null int64 4 31 non-null int64 revenue 5 31 non-null visitors int64 6 conversion 31 non-null float64 dtypes: float64(1), int64(4), object(2) memory usage: 1.9+ KB

4. Group cumulative conversion chart

Conclusions and Assumptions

- the first 5 days of the test, the conversion of group A was in the lead
- then the conversion of group B came in first place
- · from the 10th conversion stabilized around their average
- the conversion of group B is consistently higher than the last two weeks of the test, however, in the long term, the advantage can be nullified

BACK TO CONTENTS

2.5. Build a plot for the relative change in the cumulative conversion of group B to group A. Draw conclusions and assumptions.

Out[45]:

	date	conversionA	conversionB
0	2019-08-01	0.033	0.029
1	2019-08-02	0.033	0.035
2	2019-08-03	0.037	0.034
3	2019-08-04	0.033	0.030
4	2019-08-05	0.033	0.031


```
In [47]: plt.figure(figsize=(12,6))
         plt.plot(merged cummulative conversions['date'], merged cummulative conversion
         s['conversionB'] /
                  merged cummulative conversions['conversionA'] - 1,
                  label="Relative change in cumulative conversion group B to group A",
         marker='o', linestyle='dashed', color='g')
         plt.grid()
         plt.legend()
         #plt.axhline(y=0, color='black', linestyle='--')
         plt.axhline(y=0.12, color='grey', linestyle='--')
         plt.axis(["2019-08-21", '2019-09-01', 0, 0.5])
         plt.title('Relative change in the cumulative conversion of group B to group A'
         plt.xlabel('Date')
         plt.xticks(rotation=45)
         plt.ylabel('Ratio of a change')
         plt.show()
```


5. Plot for the relative change in the cumulative conversion of group B to group A

Conclusions and Assumptions

- strong fluctuations of the first 9 days have come to naught in the middle part of the test
- after the 21st, the conversion gain stabilized around the figure of 0.12
- the relative change in the conversion of group B is stably positive after the first week of the test

2.6. Build a scatter plot for the number of orders by visitors. Draw conclusions and assumptions.

Out[48]:

	userld	orders
1023	4256040402	11
591	2458001652	11
569	2378935119	9
487	2038680547	8
44	199603092	5

```
In [49]: # Series from 0 to observation number in orders_by_user
    x_values = pd.Series(range(0,len(orders_by_user)))
    plt.figure(figsize=(12,6))
    plt.scatter(x_values, orders_by_user['orders'])
    plt.axhline(y=2.5, color='grey', linestyle='--')
    plt.title('Number of orders per visitor')
    plt.xlabel('Visitor')
    plt.ylabel('Order quantity')
    plt.show()
```


6. Scatter chart of the number of orders per users

Conclusions and Assumptions

- · most of the users ordered one-time
- · a relatively large portion of users ordered twice
- 3 or more orders are rare
- must be selected through persentiles

BACK TO CONTENTS

2.7. Count the 95th and 99th percentiles of the number of orders per user. Select a border to identify abnormal users.

```
In [50]: np.percentile(orders_by_user['orders'], [95, 99])
Out[50]: array([2., 4.])
In [51]: np.percentile(orders_by_user['orders'], [97.2, 98.9])
Out[51]: array([3., 4.])
```

7. 95th and 99th percentiles of the number of orders per user

Border to identify abnormal users

- no more than 5% of users ordered 3 or more times (more precisely 2.8%)
- no more than 1% of users ordered 4 or more times (more precisely 1.1%)
- · most likely we need to have a limit after 2 orders

BACK TO CONTENTS

2.8. Build a scatter plot of order values. Draw conclusions and assumptions.

```
In [52]: # Series from 0 to observation number in orders_by_user
    x_values = pd.Series(range(0,len(orders_data['revenue'])))
    plt.figure(figsize=(12,6))
    plt.scatter(x_values, orders_data['revenue'])
    plt.axhline(y=50000, color='grey', linestyle='--')
    plt.title('Order value')
    plt.xlabel('Visitor')
    plt.ylabel('Value')
    plt.show()
```


8. Scatter plot of order values

Conclusions and Assumptions

- if most of the orders are within 50,000 rubles, we see several orders of very high cost, more than a million rubles and about 200,000 rubles
- it can be assumed that the border should be set at about 50,000 rubles
- check through percentiles
- we observe two large orders which are ubnormal in our case

BACK TO CONTENTS

2.9. Calculate the 95th and 99th percentiles of order values. Select a boundary to determine abnormal orders.

```
In [53]: np.percentile(orders_data['revenue'], [95, 99])
Out[53]: array([28000., 58233.2])
```

```
In [54]: np.percentile(orders_data['revenue'], [96, 97, 98])
Out[54]: array([31382., 35485., 44133.2])
```

9. 95th and 99th percentiles of order value

Boundary for determining abnormal orders

- no more than 5% of orders have a value above 28,000 rubles
- no more than 1% of orders have a value above 58 233 rubles
- between 2 and 1 percent a big step: from 44 and 58 thousand rubles
- most likely the border must be after the 98th percentile, i.e. 44 133 rubles

BACK TO CONTENTS

2.10. Calculate the statistical significance of differences in conversion between groups from raw data. Draw conclusions and assumptions.

Let us state the Null Hypothesis H0 that the conversions by groups based on 'raw' data are equal using the Mann-Whitney U test; The alternative hypothesis H1 is that the conversions are not equal

```
In [56]: orders A daily = orders data[orders data['group']=='A'][['date', 'transactionI
         d', 'visitorId', 'revenue']].groupby(
              'date', as_index=False).agg({'transactionId' : pd.Series.nunique, 'revenu
         e' : 'sum'})
         orders A daily.columns = ['date', 'ordersPerDateA', 'revenuePerDateA']
         orders A cummulative = orders A daily.apply(
             lambda x:orders A daily[orders A daily['date'] <= x['date']].agg({</pre>
                 'date' : 'max', 'ordersPerDateA' : 'sum', 'revenuePerDateA' : 'sum'}),
         axis=1).sort_values(by=['date'])
         orders A cummulative.columns = ['date', 'ordersCummulativeA', 'revenueCummulat
         iveA']
In [57]: orders B daily = orders data[orders data['group']=='B'][['date', 'transactionI
         d', 'visitorId', 'revenue']].groupby(
              'date', as_index=False).agg({'transactionId' : pd.Series.nunique, 'revenu
         e' : 'sum'})
         orders B daily.columns = ['date', 'ordersPerDateB', 'revenuePerDateB']
         orders B cummulative = orders B daily.apply(
             lambda x:orders_B_daily[orders_B_daily['date'] <= x['date']].agg(</pre>
                 {'date' : 'max', 'ordersPerDateB' : 'sum', 'revenuePerDateB' : 'sum'
         }), axis=1).sort values(by=['date'])
         orders B cummulative.columns = ['date', 'ordersCummulativeB', 'revenueCummulat
         iveB']
         data_aggregated = orders_A_daily.merge(orders_B_daily, left_on='date', right_o
In [58]:
         n='date', how='left')\
              .merge(orders_A_cummulative, left_on='date', right_on='date', how='left')\
              .merge(orders_B_cummulative, left_on='date', right_on='date', how='left')\
             .merge(visitors_A_daily, left_on='date', right_on='date', how='left')\
              .merge(visitors_B_daily, left_on='date', right_on='date', how='left')\
              .merge(visitors_A_cummulative, left_on='date', right_on='date', how='left'
         )\
             .merge(visitors B cummulative, left on='date', right on='date', how='left'
         )
         #data aggregated.head()
In [59]: | orders_by_users_A = orders_data[orders_data['group'] == 'A'].groupby('visitorI
         d', as index=False).agg(
             {'transactionId' : pd.Series.nunique})
         orders_by_users_A.columns = ['userId', 'orders']
         orders_by_users_B = orders_data[orders_data['group'] == 'B'].groupby('visitorI
         d', as index=False).agg(
             {'transactionId' : pd.Series.nunique})
         orders_by_users_B.columns = ['userId', 'orders']
```

```
In [60]:
         sample A = pd.concat([orders by users A['orders'],pd.Series(0, index=np.arange
             data aggregated['visitorsPerDateA'].sum() - len(orders by users A['orders'
         ])), name='orders')],axis=0)
         sample B = pd.concat([orders by users B['orders'],pd.Series(0, index=np.arange
             data_aggregated['visitorsPerDateB'].sum() - len(orders by users B['orders'
         ])), name='orders')],axis=0)
In [61]:
         # Statistical significance of differences in conversion by groups (p-value):
         print("Statistical significance of differences in conversions by groups (based
         on raw data) (p-value): {0:.5f}".
               format(stats.mannwhitneyu(sample_A, sample_B)[1]))
         Statistical significance of differences in conversions by groups (based on ra
         w data) (p-value): 0.00840
In [62]: # Relative conversion difference group B to group A
         print("Relative conversion difference of group B to group A (raw data): {0:.3
               format((data_aggregated['ordersPerDateB'].sum()/data_aggregated['visitor
         sPerDateB'].sum())/
                                 (data aggregated['ordersPerDateA'].sum()/data aggregate
         d['visitorsPerDateA'].sum())-1))
```

10. The statistical significance of differences in conversion between groups according to the "raw" data

Conclusions and Assumptions

 P-value is significantly less than 0.05: the difference in conversions between groups according to the "raw" data is significant

Relative conversion difference of group B to group A (raw data): 0.138

- the difference in conversion gain is high = 14%
- · we need to clean the data and repeat the comparison

BACK TO CONTENTS

2.11. Calculate the statistical significance of the difference in the average cheques between groups by raw data. Draw conclusions and assumptions.

Let us state the Null Hypothesis H0 that average cheques by groups based on 'raw' data are equal using the Mann-Whitney U test; The alternative hypothesis H1 is that average cheques of each group are not equal

```
In [63]: # p-value to compare average cheque between groups (raw data)
         print("Statistical significance of difference in the average cheques of each g
         roup (raw data): {0:.3f}".format(
             stats.mannwhitneyu(orders_data[orders_data['group']=='A']['revenue'],
                                                     orders data[orders data['group']==
          'B']['revenue'])[1]))
         Statistical significance of difference in the average cheques of each group
         (raw data): 0.365
In [64]:
         # Relative increase in the average cheque of group B ("raw" data)
         print("Relative increase in the average cheque of group B to group A (raw dat
         a): {0:.3f}".format(
             orders_data[orders_data['group']=='B']['revenue'].
                                mean()/orders data[orders data['group']=='A']['revenue'
         ].mean()-1))
         Relative increase in the average cheque of group B to group A (raw data): 0.2
         59
```

11. The statistical significance of differences in the average order receipt between groups according to raw data

Conclusions and Assumptions

- P-value greater than 0.05: there are no statistically significant differences in the average cheque between groups
- relative increase is significant = 26%
- we need to clean the data and repeat the comparison

BACK TO CONTENTS

2.12. Calculate the statistical significance of differences in conversion between groups using "cleaned" data. Draw conclusions and assumptions.

Let us state the Null Hypothesis H0 that the conversions by groups based on 'refined' data are equal using the Mann-Whitney U test; The alternative hypothesis H1 is that the conversions are not equal

```
In [65]: # Clean data: anomalies > 2 purchases u > 44 133 rubles
         users_with_many_orders = pd.concat([orders_by_users_A[orders_by_users_A['order
         s'] >= 3]['userId'],
                                          orders by users B[orders by users B['orders']
         >= 3]['userId']], axis = 0)
         #users_with_many_orders
         users with expensive orders = orders data[orders data['revenue'] > 44133]['vis
         itorId']
         #users with expensive orders
         abnormal_users = pd.concat([users_with_many_orders,users_with_expensive_orders
         ],
                                   axis = 0).drop duplicates().sort values(ascending=Tr
         ue)
         #abnormal users.shape
In [66]: # Variables sample A filtered & sample B filtered with refined order data - no
         t including abnormal users.
         sample A filtered = pd.concat([orders by users A[np.logical not(
             orders_by_users_A['userId'].isin(abnormal_users))]['orders'],pd.Series(
             0, index=np.arange(data aggregated['visitorsPerDateA'].sum() - len(orders
         by_users_A['orders'])),name='orders')],axis=0)
         sample B filtered = pd.concat([orders by users B[np.logical not(
             orders by users B['userId'].isin(abnormal users))]['orders'],pd.Series(
             0, index=np.arange(data_aggregated['visitorsPerDateB'].sum() - len(orders_
         by_users_B['orders'])),name='orders')],axis=0)
In [67]:
        # Comparison of conversion between refined groups
         print("Statistical significance of differences in conversions by groups (refin
         ed data) p-value: {0:.5f}".
               format(stats.mannwhitneyu(sample_A_filtered, sample_B_filtered)[1]))
         Statistical significance of differences in conversions by groups (refined dat
         a) p-value: 0.00370
In [68]: # The relative increase in the conversion of refined group B to refined group
         print("Relative conversion difference of group B to group A (refined data):
         {0:.3f}".
               format(sample B filtered.mean()/sample A filtered.mean()-1))
```

Relative conversion difference of group B to group A (refined data): 0.185

12. The statistical significance of differences in conversion between groups according to the "refined" data

Conclusions and Assumptions

- P-value is much less than 0.05: = 0.00370, which is even lower than before the "cleansing" of the data (0.00840)
- we can conclude that the increase in the conversion of group B really takes place

BACK TO CONTENTS

2.13. Calculate the statistical significance of the differences in the average cheque between groups according to the "refined" data. Draw conclusions and assumptions.

Let us state the Null Hypothesis H0 that average cheques by groups based on 'refined' data are equal using the Mann-Whitney U test; The alternative hypothesis H1 is that average cheques of each group are not equal

Statistical significance of difference in the average cheques of each group (refined data): 0.497

Relative increase in the average cheque of group B to group A (refined data): 0.037

13. The statistical significance of the differences in the average order receipt between groups according to the "refined" data

Conclusions and Assumptions

- P-value is significantly higher than 0.05: = 0.497; the average cheque of both groups after removing the extremes is the same
- relative increase insignificant = 3.7%

BACK TO CONTENTS

2.14. Make a decision based on the test results and explain it.

Solution Options:

- 1. Stop the test, record the win of one of the groups.
- 2. Stop the test, record the absence of differences between the groups.
- 3. Continue the test.

BACK TO CONTENTS

Part 2. Conclusion:

Summary

- Conversion (p-value) 0.0084 ("raw") vs 0.0037 ("refined")
- Conversion (change) 0.138 vs 0.185
- Avg.cheque (p-value) 0.365 vs 0.497
- Avg.cheque (change) 0.259 vs 0.037
- The conversion rate of group B is higher (and not equal to) than the conversion values of group A
- The average cheque of group B is higher (and not equal to) than that of group A, but not much
- · The test was carried out for one month
- Over the past two weeks, metric values have stabilized
- Data cleansing confirms the difference for the positive for the metrics of group B
- The relative increase in the conversion of group B to the conversion of group A was 18.5%, this is significant, even with a possible adjustment of the metric in the coming weeks

BACK TO CONTENTS

Solution: stop the test, record that group B has higher conversion rate