Colisiones

Dado que $A \neq B$,

Dijimos que una función de hash tenía una colisión cuando

$$h(A) = h(B)$$

Colisiones

Eso significa que A y B caen en la misma celda de la tabla

¿Cómo podemos guardar ambos datos en la tabla?

Nos interesa poder buscarlos en el futuro

Direccionamiento Abierto

Podemos buscar otra celda que esté disponible

¿Dónde la buscamos? Debemos seguir alguna regla

¿Qué complejidad tiene esto?

$$m = 7$$

Insertemos la A. h(A) = 15; 15 mod 7 = 1

$$m = 7$$

Insertemos la A. h(A) = 15; 15 mod 7 = 1

$$m = 7$$

Insertemos la Q. h(Q) = 37; 37 mod 7 = 2

$$m = 7$$

Insertemos la Q. h(Q) = 37; 37 mod 7 = 2

$$m = 7$$

Insertemos la L. h(L) = 51; $51 \mod 7 = 2$

$$m = 7$$

Insertemos la L. h(L) = 51; $51 \mod 7 = 2$

$$m = 7$$

Insertemos la X. h(X) = 29; 29 mod 7 = 1

$$m = 7$$

Insertemos la X. h(X) = 29; 29 mod 7 = 1

Direccionamiento Abierto

Métodos populares de direccionamiento abierto son:

- Sondeo Lineal
 - Buscar en H, H + 1, H + 2, H + 3 ...
- Sondeo Cuadrático:
 - Buscar en H, $H + 1c_1 + 1^2c_2$, $H + 2c_1 + 2^2c_2$...
- Double hashing:
 - Buscar en $h_1(k)$, $h_1(k) + h_2(k)$, $h_1(k) + 2h_2(k)$, ...

Búsqueda

$$m = 7$$

¿Cómo buscamos la X con sondeo lineal?

$$h(X) = 29$$
; 29 mod 7 = 1

Búsqueda

$$m = 7$$

¿Cómo buscamos la R con sondeo lineal?

$$h(R) = 10$$
; $10 \mod 7 = 3$

Direccionamiento Abierto

¿Qué problema tiene el sondeo lineal?

¿Qué problema tienen los otros esquemas?

¿Qué problema tiene el guardar los datos en otra celda?

Eliminación

$$m = 7$$

Eliminemos la L. ¿Cómo buscamos la X con sondeo lineal?

$$h(X) = 29$$
; 29 mod 7 = 1

Direccionamiento cerrado

Si *A* ya estaba en la tabla:

Podemos guardar A y B en la misma celda...

¡Dentro de otra estructura de datos!

Si tenemos una lista en cada celda de la tabla

Hemos guardado n datos, y la tabla es de tamaño m

¿Cuál sería la complejidad de las operaciones de la tabla?

m = 7. Insertemos la A. h(A) = 15; 15 mod 7 = 1

m = 7. Insertemos la A. h(A) = 15; 15 mod 7 = 1

m = 7. Insertemos la Q. h(Q) = 37; 37 mod 7 = 2

m = 7. Insertemos la Q. h(Q) = 37; 37 mod 7 = 2

m = 7. Insertemos la L. h(L) = 51; $51 \mod 7 = 2$

m = 7. Insertemos la L. h(L) = 51; $51 \mod 7 = 2$

m = 7. Insertemos la X. h(X) = 29; 29 mod 7 = 1

m = 7. Insertemos la X. h(X) = 29; 29 mod 7 = 1

m = 7. Insertemos la F. h(F) = 58; 58 mod 7 = 2

m = 7. Insertemos la F. h(F) = 58; 58 mod 7 = 2

Factor de Carga

Se define el factor de carga λ como:

$$\lambda = \frac{n}{m}$$

Podemos fijar un valor λ_{max} , y garantizar siempre que

$$\lambda < \lambda_{max}$$

Rehashing

Si $\lambda < \lambda_{max}$, en algún momento hay que hacer crecer la tabla

A este proceso se le dice rehashing ¿Cuál es su complejidad?

¿Qué complejidad tendrían ahora las operaciones de la tabla?