第四次习题课

一些东西习题课上没来得及讲, 文件内容比习题课多一点

1. 第四次作业参考答案

习题 4.1 令 $G = \{(a,b)|a \in \mathbb{R}^{\times}, b \in \mathbb{R}\}$, 乘法定义为 (a,b)(c,d) = (ac,ad+b), 证明:

- (1) $K = \{(1, b) | b \in \mathbb{R}\} \triangleleft G \perp G/K \cong \mathbb{R}^{\times};$
- (2) $H = \{(a,0) | a \in \mathbb{R}^{\times} \}$ 是否为 G 正规子群.

证明: (1) $(1,0) \in K \neq \emptyset$, $\forall (1,a), (1,b) \in K$, $(1,a)(1,b)^{-1} = (1,a)(1,-b) = (1,a-b) \in K$. 故 $K \triangleleft G$.

任取 $(a,b) \in G$, $(1,x) \in K$, $(a,b)(1,x)(a,b)^{-1} = (a,ax+b)(\frac{1}{a},-\frac{b}{a}) = (1,ax) \in K$. 故 $K \triangleleft G$.

 $(a,b),(c,d) \in G, (a,b)K = (c,d)K \iff (a,b)(c,d)^{-1} = (\frac{a}{c},b-\frac{ad}{c}) \in K \iff a=c.$ 因此 $G/K = \{(a,0)K|a \in \mathbb{R}^{\times}\}.$ 令 $f:G/K \to \mathbb{R}^{\times}, (a,0)K \mapsto a, \text{则 } f$ 良定且为双射.

而 f((a,0)K(b,0)K) = f((ab,0)K) = ab = f((a,0)K)f((b,0)K), f 为同态, 故为同构.

- (2) 不是, 因为 $(1,1)(2,0)(1,1)^{-1} = (2,1)(1,-1) = (2,-1) \notin H$.
- **注:** 布置这一题时 (周三) 尚未学到同态基本定理, 第一问用同态基本定理更方便. 此外, 第一问有同学只构造了双射没说是同态, 这是不行的.

习题 4.2 证明:

- (1) 群 G 的中心 $Z(G) \triangleleft G$;
- (2) \ni *H* ≤ *G*, \exists [*G* : *H*] = 2, \ni *H* \triangleleft *G*.

证明: (1) $1 \in Z(G) \neq \emptyset$.

 $\forall g, h \in Z(G), x \in G, gh^{-1}x = gh^{-1}hxh^{-1} = gxh^{-1} = xgh^{-1}, gh^{-1} \in Z(G) \leqslant G.$

任取 $g \in G$, $gZ(G) = \{ga | a \in Z(G)\} = \{ag | g \in Z(G)\} = Z(G)g$, 故 $Z(G) \triangleleft G$.

(2) 设 $g \in G$, 若 $g \in H$, 则 gH = H = Hg.

否则 $gH \neq H, Hg \neq H$. 但 $[G:H] = 2, G = H \cup gH = H \cup Hg$, 故 gH = Hg, 得证.

注: 这依赖于左陪集个数等于右陪集个数这一事实, 证明 $aH \mapsto Ha^{-1}$ 是良定的双射即可.

习题 4.3 令 G 为群, 证明若 G/Z(G) 为循环群, 则 G 为交换群.

证明: 设 $G/Z(G) = \langle \bar{g} \rangle = \langle gZ(G) \rangle, g \in G.$

则 $\forall x, y \in G, \exists m, n \in \mathbb{N}, a, b \in Z(G), x = g^m a, y = g^n b$. 于是

$$xy = g^m a g^n b = g^m g^n a b = g^{m+n} a b = g^{n+m} b a = yx.$$

由 x,y 的任意性知 G 为交换群.

注: 直接证 G/Z(G) 是平凡群也是可行的证法. 等价类一般记作 \bar{g} 或 [g].

习题 4.4 设 $f: G \to H$ 为群同态, $M \leqslant G$.

证明 $f^{-1}(f(M)) = \ker(f)M = \{km|k \in \ker(f), m \in M\}.$

证明: $\forall g \in G$, 有

$$g \in f^{-1}(f(M)) \iff f(g) \in f(M)$$

$$\iff \exists m \in M, f(g) = f(m)$$

$$\iff \exists m \in M, f(gm^{-1}) = f(g)f(m^{-1}) = 1_H$$

$$\iff \exists m \in M, gm^{-1} \in \ker(f)$$

$$\iff \exists m \in M, k \in \ker(f), gm^{-1} = k, g = km$$

$$\iff g \in \ker(f)M.$$

因此 $f^{-1}(f(M)) = \ker(f)M$.

习题 4.5 令 G 为群, 对于 $x \in G$, 定义 $f_x : G \to G$ 为 $f_x(g) = xgx^{-1}$, 证明:

- (1) $f_x \in Aut(G)$, 称为内自同构;
- (2) $\operatorname{Inn}(G) := \{ f_x | x \in G \} \leqslant \operatorname{Aut}(G);$
- (3) $G/Z(G) \cong Inn(G)$.

证明: (1) 任取 $x \in G$.

$$\forall g \in G, f_x(x^{-1}gx) = xx^{-1}gxx^{-1} = g, f_x \ \text{iii}.$$

$$\forall g, h \in G, f_x(g) = f_x(h) \iff xgx^{-1} = xhx^{-1} \iff g = h, f_x \not = h.$$

$$\forall g, h \in G, f_x(gh) = xghx^{-1} = xgx^{-1}xhx^{-1} = f_x(g)f_x(h), f_x$$
 为同态.

故 $f_x \in Aut(G)$.

 $(2)f_{1_G} \in \text{Inn}(G) \neq \emptyset$, 设 $x, y \in G$.

 $\forall g \in G, f_x \circ f_y(g) = x(ygy^{-1})x^{-1} = xyg(xy)^{-1} = f_{xy}(g). \text{ 故 } f_x \circ f_y = f_{xy} \in \text{Inn}(G).$ 而 $\forall g \in G, f_{x^{-1}} \circ f_x(g) = x^{-1}(xgx^{-1})x = g, \text{ 知 } f_{x^{-1}} \circ f_x = \text{id}_G, \text{ 故 } f_x^{-1} = f_{x^{-1}} \in \text{Inn}(G).$ 因此 $\text{Inn}(G) \leqslant \text{Aut}(G).$

(3) 考虑 $\varphi: G \to \operatorname{Aut}(G), x \mapsto f_x, 则 \operatorname{im}(\varphi) = \operatorname{Inn}(G).$

由于 $\forall x, y \in G$, 由 (2) 的过程知 $\varphi(xy) = f_{xy} = f_x \circ f_y = \varphi(x)\varphi(y)$, 可知 φ 为群同态.

注意对 $g, h \in G, gh = hg \iff ghg^{-1} = h$, 有

 $\ker(\varphi) = \{x \in G | f_x = \mathrm{id}_G\} = \{x \in G | \forall g \in G, xgx^{-1} = g\} = Z(G).$

由同态基本定理, $G/Z(G) = G/\ker(\varphi) \cong \operatorname{im}(\varphi) = \operatorname{Inn}(G)$.

注: $f_{1_G} = \mathrm{id}_G$ 在 (2) 中并未明说, 但过程中已经了然. 有时也记 $gxg^{-1} = x^g$, 易见 $x^gy^g = (xy)^g$. 对于 $S_n(n \geq 3)$ 而言, $Z(S_n) = 1$ 从而 $\mathrm{Inn}(S_n) \cong S_n$, 以后可以证明, 若还有 $n \neq 6$, 则 S_n 只有内自同构, 于是 $\mathrm{Aut}(S_n) \cong S_n$. 而 $\mathrm{Aut}(S_6) \cong \mathbb{Z}_2 \ltimes S_6$, S_6 有外自同构.

习题 4.6 令 $U_n \subseteq \operatorname{GL}_n(\mathbb{C})$ 为 n 阶酉方阵群, $SU_n = \{A \in U_n | \det(A) = 1\}$, 证明: $U_n/SU_n \cong S^1$.

证明:记 det: $U_n \to \mathbb{C}$, $A \mapsto \det(A)$, 则 $\forall A, B \in U_n$, $\det(AB) = \det(A)\det(B)$ 知 det 为同态. $U_n = \{A \in \operatorname{GL}_n(\mathbb{C}) | A\bar{A}^T = I_n\}$, 而 $\det(\bar{A}^T) = \overline{\det(A^T)} = \overline{\det(A)}$, 从而 $\forall A \in U_n$, $|\det(A)|^2 = \det(A)\det(\bar{A}^T) = \det(A\bar{A}^T) = \det(I_n) = 1$, $\det(A) \in S^1$. 而 $\forall z \in S^1$, |z| = 1, $z\bar{z} = |z|^2 = 1$, 从而令 $A = \operatorname{diag}(z, 1, \dots, 1)$, $\bar{A}^T = \operatorname{diag}(\bar{z}, 1, \dots, 1)$, $A\bar{A}^T = \operatorname{diag}(z\bar{z}, 1, \dots, 1) = I_n$, 于是 $A \in U_n$, 且 $\det(A) = z$. 因此 $\operatorname{im}(\det) = S^1$. 而 $\ker(\det) = \{A \in U_n | \det(A) = 1\} = SU_n$, 由同态基本定理, $U_n/SU_n = U_n/\ker(\det) \cong \operatorname{im}(\det) = S^1$.

2. 补充习题

补充题 4.1 群同态下, 子群的原像是子群, 正规子群的原像是正规子群.

证明: 设 $f: G \to H$ 为群同态. 设 $M \leqslant H$, 则 $1_M = 1_H$, 于是 $1_G \in \ker(f) = f^{-1}(1_H) \subseteq f^{-1}(M) \neq \varnothing$. 而 $\forall x, y \in f^{-1}(M)$, 有 $f(x) \in M$, $f(y^{-1}) = f(y)^{-1} \in M$, 于是 $f(xy^{-1}) = f(x)f(y)^{-1} \in M$, $xy^{-1} \in f^{-1}(M)$. 因此 $f^{-1}(M) \leqslant G$.

设 $M \triangleleft G$, 则 $\forall g \in G, x \in f^{-1}(M), f(gxg^{-1}) = f(g)f(x)f(g)^{-1} \in f(g)Mf(g)^{-1} = M$. 于是 $gxg^{-1} \in f^{-1}(M)$, 由 g, x 任意性知 $f^{-1}(M) \triangleleft G$.

补充题 4.2 设 $f: G \to H, g: H \to K$ 为群同态, 求 $\ker(g \circ f)$.

解: $\ker(g \circ f) = \{a \in G | g(f(a)) = 1_K\} = \{a \in G | f(a) \in \ker(g)\} = f^{-1}(\ker(g)).$

注:由上一题,它是 G 的正规子群.

补充题 4.3 设 $H \triangleleft G, K \leqslant G$ 为群, 证明:

从而 $\ker(f) = \{(1,1)\}, f$ 为单同态从而为同构.

- (1) $HK \leq G$;
- (2) 若 $K \triangleleft G$, 则 $HK \triangleleft G$;
- (3) 在 (2) 的条件下, 若 $H \cap K = \{1\}$, 则 $\forall h \in H, k \in K, hk = kh$, 且 $HK \cong H \times K$.

证明: (1) $H \triangleleft G$, 从而 $\forall h \in H, k \in K, h_1 = k^{-1}hk \in H, h_2 = khk^{-1} \in H$, 于是 $hk = kh_0 \in KH, kh = h_2k \in HK$, 于是 HK = KH, 由第二次作业的补充题 2.5 得证. (2) $\forall g \in G, h \in H, k \in K, ghg^{-1} \in H, gkg^{-1} \in K$, 从而 $ghkg^{-1} = (ghg^{-1})(gkg^{-1}) \in HK$, 因此 $HK \triangleleft G$. (3) $\forall h \in H, k \in K, hkh^{-1} \in K, khk^{-1} \in H$, 于是 $hkh^{-1}k^{-1} = (hkh^{-1})k^{-1} = h(khk^{-1}) \in H \cap K = \{1\}, hk = kh$. 考虑 $f: H \times K \to HK, (h, k) \mapsto hk$, 则 f 是满射,并且 $\forall h_1, h_2 \in H, k_1, k_2 \in K$,有 $f((h_1, k_1)(h_2, k_2)) = f((h_1h_2, k_1k_2)) = h_1h_2k_1k_2 = h_1k_1h_2k_2 = f((h_1, k_1))f((h_2, k_2))$,从而 f 为同态. 而 $(1, 1) \in \ker(f) = \{(h, k)|hk = 1\} \subseteq \{(h, k)|h, k \in H \cap K\} = \{(1, 1)\}$,

注: 由 (1) 我们可以定义内半直积的概念. 学过正规化子后,(1) 所需的条件可以进一步弱化. 特别地, 如果 $H \triangleleft G, K \triangleleft G, H \cap K = \{1\}, HK = G, 则 G \cong H \times K.$ 此时, 称 G 为 H 和 K 的 (内) 直积.

补充题 4.4 设 $f:G \to H$ 为群同态, $M \lhd G$, 则 $N = f(M) \lhd f(G) \eqqcolon K, G/(\ker(f)M) \cong K/N$.

证明: $\forall k \in K, n \in N, \exists q \in G, m \in M, k = f(q), n = f(m), \ \vec{m} \ qmq^{-1} \in M, \$ 故

$$knk^{-1} = f(gmg^{-1}) \in N.$$

记 $\pi: K \to K/N$ 为自然的满同态, 则 $\bar{f} = \pi \circ f: G \to K/N$ 为满同态.

$$\ker \pi = N, \ \boxplus \ \ker(\bar{f}) = f^{-1}(N) = f(f^{-1}(M)) = \ker(f)M.$$

前面已经证明两个正规子群的乘积是正规子群,由同态基本定理即得证.

注:假设 f 是满同态,则证得正规子群在满同态下的像还是正规子群.正规子群的像之所以一般不是正规子群,正是因为陪域相比于同态的像太大了,而陪域的原像是整个定义域,正规子群原像正规.

若 f 为同构, 则 $G/M \cong H/N$.(再令 G = H) 即得 (自) 同构把正规子群映到正规子群.

注意我们有如下事实: 设 $H \leq G$ 为群, $f: G \to K$ 是一个群同态, 则 $f|_H: H \to K$ (或者映到 f(H)) 为群同态 (仍可记为 f). 特别地, 若 f 为同构, 则 $f: H \to f(H)$ 为群同构.

补充题 4.5 设 G, H 为群, $G \times H$ 为二者的直积. 则

- (1) $G \cong G \times \{1_H\} \triangleleft G \times H$, $\coprod (G \times H)/(G \times \{1_H\}) \cong H$;
- (2) $Z(G \times H) = Z(G) \times Z(H)$;
- (3) $G \times H$ 是 Abel 群 \iff G 和 H 均为 Abel 群.

证明: (1) 直接验证 $f: G \to G \times \{1_H\}, g \mapsto (g, 1_H)$ 为同构.

令 $\pi: G \times H \to H, (g,h) \mapsto h$, 可以验证它是同态, 且 $\ker(\pi) = G \times \{1_H\}$.

(2)
$$Z(G \times H) = \{(g,h) \in G \times H | (gx,hy) = (xg,yh), \forall (x,y) \in G \times H\}$$
$$= \{(g,h) \in G \times H | gx = xg, hy = yh, \forall x \in G, y \in H\}$$
$$= Z(G) \times Z(H).$$

(3)
$$G \times H$$
是 Abel 群 $\iff G \times H = Z(G \times H)$ $\iff G \times H = Z(G) \times Z(H)$ $\iff G = Z(G) \bot H = Z(H)$ $\iff G$ 和 H 均为 Abel 群.

注: 在此情形下, 我们可以把 $G \times \{1\}$ 与 G 等同. 本题可以推广到任意多的情况.

补充题 4.6 4 阶群是 Abel 群且只有两种: \mathbb{Z}_4 和 $\mathbb{Z}_2 \times \mathbb{Z}_2$.

证明: 若 4 阶群 G 中有 4 阶元, 则 $G \cong \mathbb{Z}_4$.

否则 G 中除单位元外均为 2 阶元, 记为 a,b,c.

由于群中元素可逆, 只能 ab = ba = c, ac = ca = b, ab = ba = c, G 为 Abel 群.

于是 $< a > \lhd G, < b > \lhd G, < a > \cap < b > = \{1\}, G = < a > < b >.$ 于是 $G \cong < a > \times < b > \cong \mathbb{Z}_2 \times \mathbb{Z}_2.$

注: Abel 群的子群都是正规子群. Klein 四元群 $K_4 \cong \mathbb{Z}_2 \times \mathbb{Z}_2$.

补充题 4.7 举例说明:

- (1) 设 G 为群,G/Z(G) 为 Abel 群, 但 G 可以不是 Abel 群;
- (2) 设 G, H 为群, $M \triangleleft G, N \triangleleft H, G \cong H, M \cong N$, 但 $G/M \not\cong H/N$;
- (3) 设 G, H 为群, $M \triangleleft G, N \triangleleft H, M \cong N, G/M \cong H/N$, 但 $G \ncong N$.

解: (1) 设 $D_{2n} = \langle r, s | s^2 = 1, r^n = 1, srs = r^{-1} \rangle$ 为二面体群.

其中 r 表示绕原点顺时针旋转 $\frac{2\pi}{n}$, s 表示关于直线 $y = x \tan \frac{2\pi}{n}$ 反射.

 $Q_8 = \{\pm 1, \pm i, \pm j, \pm k\}$ 为四元数群, 其中 $i^2 = j^2 = k^2 = ijk = -1$.

则 D_8 与 Q_8 均为非 Abel 群, 但 $Z(D_8) = \{1, r^2\}, Z(Q_8) = \{\pm 1\}.$

 $D_8/Z(D_8)$ 与 $Q_8/Z(Q_8)$ 均为 4 阶群从而为 Abel 群.

更进一步地, 它们不是循环群故都同构于 $\mathbb{Z}_2 \times \mathbb{Z}_2$.

- (2) $2\mathbb{Z} \triangleleft \mathbb{Z}, 3\mathbb{Z} \triangleleft \mathbb{Z}, \stackrel{}{\mathbb{H}} 2\mathbb{Z} \cong \mathbb{Z} \cong 3\mathbb{Z}, \stackrel{}{\mathbb{H}} \mathbb{Z}/2\mathbb{Z} \ncong \mathbb{Z}/3\mathbb{Z}.$
- $(3) \ \mathbb{Z}_2 \cong M := \{\bar{0}, \bar{2}\} \triangleleft \mathbb{Z}_4, \mathbb{Z}_2 \cong N := \mathbb{Z}_2 \times \{\bar{0}\} \triangleleft \mathbb{Z}_2 \times \mathbb{Z}_2, \ \mathbb{M}$

 $\mathbb{Z}_4/M \cong \mathbb{Z}_2 \cong (\mathbb{Z}_2 \times \mathbb{Z}_2)/N, \ \not\sqsubseteq \mathbb{Z}_4 \ncong \mathbb{Z}_2 \times \mathbb{Z}_2.$

 $D_8 = \{1, r, r^2, r^3, s, sr, sr^2, sr^3\}$, 有 $s, r^2, srsr^3$ 这 4 个 2 阶元, 而 Q_8 中二阶元只有 -1.

于是 $D_8 \not\cong Q_8$, 但 $Z(D_8) \cong \mathbb{Z}_2 \cong Z(Q_8)$, 且 $D_8/Z(D_8) \cong \mathbb{Z}_2 \times \mathbb{Z}_2 \cong Q_8/Z(Q_8)$.

补充题 4.8 设 G 为群, 集合 H 上定义有二元运算 · . 若存在满射 $f:G\to H$ 使得 $\forall a,b\in G, f(ab)=f(a)f(b),$ 则 (H,\cdot) 是群.

证明: 设 $e = f(1_G), \forall h, h_i \in H, i = 1, 2, 3, \exists g, g_i \in G, i = 1, 2, 3, h = f(g), h_i = f(g_i).$

于是
$$eh = f(1_G g) = f(g) = h = f(g1_G) = he$$
, 以及

$$(h_1h_2)h_3 = (f(g_1)f(g_2))f(g_3)$$

= $f(g_1g_2)f(g_3)$

 $= f((g_1g_2)g_3)$

 $= f(g_1(g_2g_3))$

 $= f(g_1)f(g_2g_3)$

 $= f_{(g_1)}(f(g_2)f(g_3))$

 $= h_1(h_2h_3).$

又令 $h^{-1} = f(g^{-1})$, 则 $h^{-1}h = f(g^{-1}g) = f(1_G) = e = f(gg^{-1}) = hh^{-1}$. 因此 H 是群.

注: 对于一般的带有一个二元运算的集合也可定义同态, 以上说明了一般情形下的"群的同态像是群".

3. 其他补充

(1) 特征子群

定义 4.1 设 G 为群, $H \leq G$ 使得 $\forall f \in \operatorname{Aut}(G), f(H) \subseteq H$, 称 H 为 G 的特征子群 (characteristic subgroup), 记作 H char G.

命题 **4.1** 设 H char $G, f \in Aut(G)$, 则 f(H) = H.

证明: $f, f^{-1} \in \operatorname{Aut}(G)$, 故 $f(H) \subseteq H, f^{-1}(H) \subseteq H$. 于是 $H \subseteq f(H)$, 得 f(H) = H.

补充题 4.9 举例说明设 G 为群, $H \leq G$, 可能存在 $f \in \operatorname{Aut}(G), f(H) < H$. 举例说明 f 要求在 $\operatorname{Inn}(G)$ 时也不对.

解:考虑 $\mathbb{Z} \triangleleft \mathbb{Q}$, f 为乘以 2 的自同构, 则 $f(\mathbb{Z}) = 2\mathbb{Z} < \mathbb{Z}$.

设
$$G = \left\{ \begin{pmatrix} 1 & n \\ 0 & 1 \end{pmatrix} : n \in \mathbb{Z} \right\} \leqslant \operatorname{GL}_n(\mathbb{Q}), \ \mathbb{R} \ A = \operatorname{diag}(2, 1),$$
 则 $AGA^{-1} = \left\{ \begin{pmatrix} 1 & 2n \\ 0 & 1 \end{pmatrix} : n \in \mathbb{Z} \right\} < G.$

注:结论对有限群当然成立,数元素个数即可.正规子群和特征子群之所以可以用包含于推等于,是因为条件要求的分别是所有的内自同构和自同构.

命题 4.2 证明正规子群的特征子群是正规子群.

证明: 沿用习题 4.5. 设 K char $H \lhd G$, 对 $g \in G$, f_g 限制在 H 上是自同构, 从而保持 K 不变.

注: 正规子群是在 Inn(G) 作用 (也即 G 的共轭作用) 下不变的子群, 特征子群则是在整个 Aut(G) 作用下不变的子群.

可见特征子群也是正规子群,由于正规子群可以写为共轭类的并,特征子群当然也可以.

命题 4.3 循环群的子群都是特征子群.

证明:对于 \mathbb{Z} , $\operatorname{Aut}(\mathbb{Z}) \cong \{-1,1\}$, \mathbb{Z} 的子群 $m\mathbb{Z}$ 当然在 $\operatorname{Aut}(\mathbb{Z})$ 的作用下保持不变.

对于 \mathbb{Z}_n , $n \in \mathbb{N}_+$, 它的子群是循环群 $\langle \bar{k} \rangle$, ord(k)|n,

而对 $f \in \operatorname{Aut}(\mathbb{Z}_n)$, $\exists m, (m, n) = 1, \forall x \in \mathbb{Z}_n, f(x) = x^m$, 于是 $f(\langle \bar{k} \rangle) = \langle \bar{k}^m \rangle = \langle \bar{k} \rangle$.

命题 4.4 设 G 为群, $H \triangleleft G$, $f \in Aut(G)$, 则 $f(H) \triangleleft G$.

证明:注意群的同态像是群,故 $f(H) \leq G$.

 $\forall a \in G, k = f(h) \in K, h \in H, \Leftrightarrow b = f^{-1}(a), aka^{-1} = f(bhb^{-1}) \in f(H),$ 得证.

补充题 4.10 举例说明:

- (1) 正规子群的正规子群未必是正规子群;
- (2) 特征子群的正规子群未必是正规子群;
- (3) 正规子群的特征子群未必是特征子群;
- (4) 正规子群未必是特征子群, 正规子群的正规子群即使是正规子群也未必是特征子群:
- (5) 子群的特征子群未必是正规子群;
- (6) Abel 群的子群未必是特征子群.

解: (1) $\{1,(12)(34)\} \triangleleft K_4 \triangleleft S_4$,但 $\{1,(12)(34)\}$ 不是 S_4 的正规子群 (不包含整个共轭类).

- (2) 事实上 S_4 只有内自同构,(1) 中的例子即可.
- $(3)\mathbb{Z}_4 \times \{\bar{1}\}$ 为 $\mathbb{Z}_4 \times \mathbb{Z}_4$ 的正规子群, 它有非平凡的特征子群.

但是考虑将 (\bar{a}, \bar{b}) 映为 (\bar{b}, \bar{a}) 的自同构即可得知, 上述子群当然不是特征子群.

- (4) 例子同(3);
- (5) 取子群的特征子群为这个子群为本身即可;
- (6) 例子同 (3).

(2) 换位子群

定义 4.2 设 G 是群.

(1) 对 $x, y \in G$, 称 $[x, y] = xyx^{-1}y^{-1}$ 是 x 和 y 的换位子 (或交换子)(commutator).

- (2) 对 A, B 为 G 的非空子集, 记 $[A, B] = <[a, b] | a \in A, b \in B >$ 是由 A 和 B 中元素的换位子生成的 G 的子群;
 - (3) 记 G' = [G, G] 称为 G 的换位子群 (commutator (sub)group) 或导群 (derived group).

注: 换位子可以衡量两个元素是否交换, 群中只有一个运算但是可逆, 定义的换位子不像矩阵的李括号那样. 换位子群和群的中心都可以衡量群的交换性, G 是 Abel 群当且仅当 Z(G) = G 当且仅当 $G' = \{1\}$.

命题 4.5 设 G 是群, $x, y \in G, f \in Aut(G)$, 则

- $(1)\ xy=[x,y]yx=yx[x^{-1},y^{-1}];$
- (2)f[x,y] = [f(x), f(y)].

证明:直接验证即可.

命题 4.6 设 G 是群, H char G, K char G, 则 [H, K] char G.

证明: 任取 $f \in Aut(G)$.

 $\forall x \in [H, K], \exists h_1, \dots h_r \in H, k_1 \dots k_r \in K, x = \prod_{i=1}^r [h_i, k_i].$

由于 H char G, K char $G, f(h_i) \in H, f(k_i) \in K, \forall i = 1, \dots, r.$

因此 $f(x) = \prod_{i=1}^{r} [f(h_i), f(k_i)] \in [H, K]$. 由 x 和 f 任意性即得.

注: 将特征子群全部换为正规子群也成立, 两个命题互有强弱, 但证明是类似的.

命题 4.7 设 G 是群, 则 Z(G) char G, G' char G, 且 G/G' 是 Abel 群.

证明: 任取 $f \in Aut(G)$.

 $\forall a \in Z(G), g \in G, f(a)g = f(af^{-1}g) = f(f^{-1}ga) = gf(a), f(a) \in Z(G).$

于是 $f(Z(G)) \subseteq Z(G)$, 由 f 任意性知 Z(G) char G.

根据前一命题,由于 G char G, G' = [G, G] char G.

对 $x, y \in G, xG'yG' = xyG' = yx[x^{-1}, y^{-1}]G' = yxG' = yG'xG'$. 得证.

命题 4.8 设 G 是群, 记 $G^0=G^{(0)}=G$, 对 $i\geqslant 1$, 记 $G^i=[G,G^{i-1}],G^{(i)}=[G^{(i-1)},G^{(i-1)}]$, 则 $\forall n\in\mathbb{N},G^i$ char G.

证明: 这是前面命题的直接推论.

注: 由此可知 G^n 和 $G^{(n)}$ 都是正规子群, 以后我们可以以此定义降中心列和导出列, 并分别给出幂零群和可解群的一种等价定义.

TO BE CONTINUED