TD 17: Fonctions de deux variables

1 Dérivation

Définition 1 (Gradient d'une fonction)

- ▶ Le **gradient** de f en un point $(x,y) \in U$ est un vecteur, noté $\nabla f(x,y) = \begin{pmatrix} \partial_1 f(x,y) \\ \partial_2 f(x,y) \end{pmatrix}$.
- Le champ de gradient : le gradient forme un champ de vecteurs, c'est-à-dire un vecteur qui varie en fonction du point (x,y) où on l'évalue : $\nabla f: |U|$

Interprétation du gradient

Le gradient d'une fonction indique la direction de plus grande pente de la surface graphe z = f(x, y). C'est un vecteur, dont l'intensité est proportionnelle à la pente, et qui pointe « dans la direction où ça monte »

Ci-contre les fonctions

- $f(x,y) = x \text{ avec } \nabla f = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$
- $f(x,y) = y \text{ avec } \nabla f = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$
- $f(x,y) = x^2 + y^2$ avec $\nabla f = \begin{pmatrix} 2x \\ 2y \end{pmatrix}$
- $f(x,y) = -y^2$ avec $\nabla f = \begin{pmatrix} 0 \\ -2y \end{pmatrix}$

Proposition 2 (Formule du développement limité d'ordre 1)

On peut écrire $f(x+h,y+k) = f(x,y) + {}^t\nabla(f)(x,y) \cdot \binom{h}{k} + \sqrt{h^2+k^2} \varepsilon(h,k)$ où $\varepsilon(0,0) = 0$ 0 et ε continue en (0,0). (Résultat non exigible.)

Exercice 1 (Pratiquer la dérivation)

Calculer

- ▶ le champ de gradient $(\nabla f)(x,y) = \begin{pmatrix} \partial_1 f \\ \partial_2 f \end{pmatrix}(x,y) = \begin{pmatrix} \partial_1 f(x,y) \\ \partial_2 f(x,y) \end{pmatrix} \in \mathbb{R}^2$
- ▶ le champ de Hessienne $(\nabla^2 f)(x,y) = \begin{bmatrix} \partial_{1,1}^2 f & \partial_{1,2}^2 f \\ \partial_{2,1}^2 f & \partial_{2,2}^2 f \end{bmatrix}(x,y) \in \mathcal{M}_{2,2}(\mathbb{R})$

pour chacune des fonctions suivantes, définies sur \mathbb{R}^2 :

- ► $f_1(x,y) = x$
 ► $f_4(x,y) = x^2 + y^2$
 ► $f_7(x,y) = e^{xy}$
 ► $f_8(x,y) = y$
 ► $f_8(x,y) = e^{x^2 + y^2}$
 ► $f_8(x,y) = e^{x^2 + y^2}$
 ► $f_9(x,y) = \frac{xy}{1 + x^2 + y^2}$

Études de points critiques $\mathbf{2}$

Définition 3 (Point critique)

- On appelle **point critique** de f un point $c_0 = (x_0, y_0) \in U$ tel que $\nabla f(x_0, y_0) = \vec{0}$.
- ▶ Le point critique c_0 est dit **non-dégénéré** si sa Hessienne $\nabla^2 f(x_0, y_0)$ est **inversible**

Forme quadratique

Une forme quadratique s'écrit : $q(x,y) = rx^2 + 2sxy + ty^2$, où $r, s, t \in \mathbb{R}$. Pour la matrice symétrique : $Q = \begin{bmatrix} r & s \\ s & t \end{bmatrix}$, on a l'écriture : $q(x,y) = (x,y) \cdot Q \cdot {x \choose y}$.

- ▶ Le gradient s'écrit alors aussi matriciellement : $\nabla q(x,y) = {2rx+2sy \choose 2sx+2ty} = 2Q{x \choose y}$.
- \blacktriangleright La matrice Hessienne de q est alors la matrice 2Q.

Proposition 4 (Classification des points fixes)

- 1. L'origine $\binom{0}{0}$ est un point critique de la forme quadratique q associée à $Q = \begin{bmatrix} r & s \\ s & t \end{bmatrix}$
- **2.** Il est non-dégénéré ssi $rt s^2 \neq 0$.

(c'est le **déterminant** det(Q))

- 3. Dans ce cas:
 - si $rt s^2 > 0$, on a un extremum local, (et alors r et t ont même signe)

 \circ si r > 0, on a un **minimum local** \circ si r < 0, on a un maximum local

• si $rt-s^2 < 0$, alors le point critique, n'est pas un extremum local.

(on parle de **point selle**.)

Exercice 2 (Points critiques de formes quadratiques)

En calculant le gradient et la Hessienne,

- trouver le (les) point critique (s'il y en a) $(\nabla f)(x_0, y_0) = \vec{0}$,
- en discuter la nature par l'étude de la Hessienne $(\nabla^2 f)(x,y) = \begin{vmatrix} r & s \\ s & t \end{vmatrix}$ pour chacune des fonctions suivantes :

•
$$f_1(x,y) = x + y$$

$$f_4(x,y) = xy$$

•
$$f_7(x,y) = x^2 + 2xy + y^2$$

$$f_2(x,y) = x^2 + y^2$$

$$f_5(x,y) = x^2 - y^2$$

►
$$f_1(x,y) = x + y$$

► $f_4(x,y) = xy$
► $f_5(x,y) = x^2 + y^2$
► $f_5(x,y) = x^2 - y^2$
► $f_8(x,y) = x^2 + 2xy + y^2$
► $f_8(x,y) = x^2 + 3xy + y^2 + 3xy + y^2 + 3x + y - 5$

$$f_3(x,y) = -(x^2 + y^2)$$

$$f_6(x,y) = x^2 - xy + y^2$$

3 Éléments de topologie du plan \mathbb{R}^2

Définition 5 (Ouverts, fermés de \mathbb{R}^2)

Une partie U de \mathbb{R}^2 est dite

ightharpoonup fermé si U contient son bord :

(il ne manque à U aucun des points du bord)

ightharpoonup ouvert si U ne rencontre pas son bord :

(U ne contient aucun des points du bord)

Définition 6 (Partie bornée)

Une partie U est dite bornée si l'une des conditions équivalentes est satisfaite

(et les deux autres le sont alors aussi)

ightharpoonup les éléments de U ont leurs deux coordonnées bornées :

$$\exists A > 0, \ \forall (x, y) \in U, -A \leqslant x, y \leqslant A$$

- ightharpoonup l'ensemble U est inclus dans un disque (on peut l'entourer par un cercle)
- \blacktriangleright l'ensemble U est inclus dans un pavé (on peut l'encadrer par un rectangle)

Théorème 7 (des bornes de Weierstrass)

Soit $K \subset \mathbb{R}^2$ une partie fermée et bornée.

Alors, toute fonction continue $f: K \to \mathbb{R}$ est bornée sur K et atteint ses bornes sur K.

Le théorème des bornes ne s'applique que sur un fermé borné.

Ainsi, la fonction $f: \left\{ egin{aligned} \mathbb{R}_+^* & \to \mathbb{R} \ (\emph{ci-contre}) \ \text{est} \\ x & \mapsto \frac{1}{x} \\ \end{aligned} \right.$ définie sur \mathbb{R}_+^* , ni fermé, ni borné.

On a $f\left(\mathbb{R}_{+}^{*}\right) = \mathbb{R}_{+}^{*}$, ainsi :

• f est minorée, et $\inf(f) = 0$. (mais la borne n'est pas atteinte!)

Exercice 3 (Problèmes de domaine)

1. Représenter les ensembles suivants du plan :

$$U = [0; +\infty[\times \mathbb{R} \quad V = \left\{ \begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^2, \ x+y > 2 \right\} \quad W = \left\{ \begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^2, \ x^2 + y^2 \leqslant 9 \right\}$$

- 2. Soit f la fonction définie par $f(x,y) = x^2 + y^2 2x$. Discuter l'existence d'extrema de f sur U, V, W et déterminer f(U), f(V), f(W).
- **3.** Mêmes questions pour la fonction g définie par g(x,y) = x + 2.

4 Problèmes typiques

Exercice 4 (D'après Esc éco 2005)

Sur l'ouvert $U =]0; +\infty[\times]0; +\infty[$, on définit une fonction f par $: f(x,y) = x^2 \ln(y) - y \ln(x)$

- **1.** On note g la fonction définie sur $]0; +\infty[$ par $g(t) = 4t^2 2t \ln(t) 1.$
 - a) Montrer que g est C^2 sur son domaine et calculer g'(t), g''(t) pour t > 0.
 - b) Étudier les variations de g' puis de g sur $]0; +\infty[$. (Préciser les limites aux bornes)
 - c) En déduire que l'équation g(t) = 0 admet une unique solution notée α .
 - d) Vérifier que : $\ln(\alpha) = 2\alpha \frac{1}{2\alpha}$
- **2.** a) Montrer que f est C^2 sur U.
 - b) Calculer les dérivées partielles d'ordre 1 de f.
 - c) En déduire que si (x_0, y_0) est un point critique de f, alors $x_0 > 1$ et $y_0 = \frac{x_0^2}{\ln(x_0)}$. d) Établir alors que $g(\ln(x_0)) = 0$.
 - Etablir alors que $g(\ln(x_0)) = 0$. En déduire que le point $M\left(e^{\alpha}, \frac{1}{\alpha}e^{2\alpha}\right)$ est le seul point critique de f.
- 3. a) Calculer les dérivées partielles d'ordre 2 de f.
- b) En utilisant la relation de la question 1.d), montrer que $2 \ln (y_0) + \frac{y_0}{x_0^2} = \frac{2}{\alpha}$. En déduire que la fonction f ne présente pas d'extremum. (puis étude d'une fonction densité)

Exercice 5 (D'après Esc éco 2007)

Pour $n \in \mathbb{N}^*$, on note f_n la fonction définie sur \mathbb{R} par $f_n(x) = nx - e^{-x}$.

- 1. a) Étudier les variations de f_n sur \mathbb{R} (On précisera les limites aux bornes).
 - b) Montrer que l'équation $f_n(x) = 0$ admet une solution unique notée u_n .
 - c) Calculer $f_n(0)$ et $f_n(\frac{1}{n})$ puis justifier que $0 < u_n < \frac{1}{n}$.
 - d) Montrer que $(u_n)_{n\in\mathbb{N}}$ converge vers 0. Montrer que $u_n = \frac{e^{-u_n}}{n}$, et trouver un équivalent de u_n pour $n \to \infty$.

On considère les fonctions : p définie sur \mathbb{R}^2 par : $g(x,y) = 2 e^{-x} + 3x^2 - 2xy + y^2$. p définie sur p par : p par :

- **2.** a) Justifier que g est de classe C^2 sur \mathbb{R}^2 .
 - b) Calculer les dérivées partielles d'ordre 1 de g.
 - c) Montrer que le seul point critique de g est le point $M = (u_2, u_2)$ où le réel u_2 est l'unique solution de l'équation $2x e^{-x} = 0$, vue au 1.b).
 - d) Calculer les dérivées partielles d'ordre 2 de g. Montrer que g présente en M un minimum local de valeur $2u_2(2+u_2)$.
- **3.** a) Montrer que $\forall (x,y) \in \mathbb{R}^2$, $g(x,y) \geqslant h(x)$.
 - b) Étudier les variations de h et montrer que $x = u_2$ est un minimum global de h.
 - c) En déduire que M est un minimum global pour g.

(puis une programmation de l'algorithme de dichotomie pour calculer u_2)