Toxins 2018, 10, 362

because of commercial demands in the fishing industry. However, for non-bivalve vectors, no specific monitoring plans have been established to date [26].

The production or capture of echinoderms and tunicates in the EU is small compared to those of fish and other seafood [13]. The commercialization of gastropods and crustaceans has been growing in the last few years [14]. According to FAO reports from recent years [27], crustacean fisheries exceeded the production of bivalve mollusks in the EU, and marine gastropod fisheries have also increased considerably, duplicating in the last two decades.

Therefore, bearing in mind the growing consumers' interest in these species, it is of special importance to evaluate the exposure to marine biotoxins through the ingestion of these new vectors as well as the adjustment of the existing reference methods for this new scenario. In this work, samples of different invertebrate and fish species from the North Atlantic waters were analyzed using the PCOX method in order to detect new vectors for these biotoxins and evaluate their potential as a threat to public health.

2. Results and Discussion

A total of 98 samples were analyzed using the PCOX method [10] with slight modifications [28] to determine and quantify PSTs. The samples were collected from three different sites: Madeira Island, São Miguel Island (Azores archipelago), and the Moroccan Atlantic coast (the sampling sites are described in detail in the Material and Methods section). Several edible (with commercial interest) and non-edible species were selected to search for potential new vectors and the prevalence of the screened biotoxins in the food web: gastropods (*Stramonita haemastoma, Phorcus lineatus, Cerithium vulgatum, Gibbula umbilicalis, Aplysia depilans, Charonia lampas, Onchidella celtica, Patella gomesii, Patella aspera, Umbraculum umbraculum, Patella ordinaria*), crustaceans (*Pollicipes pollicipes*), bivalves (*Mytilus* spp.), starfish (*Ophidiaster ophidianus, Marthasterias glacialis, Echinaster sepositus*), sea-cucumber (*Holothuria (Platyperona) sanctori*), sea-urchins (*Paracentrotus lividus, Arbacia lixula, Sphaerechinus granularis, Diadema africanum*), and fish (*Sphoeroides marmuratus*).

Since the PCOX method is not validated for these different matrices, optimizations were needed and made for echinoderms and gastropods species, thus adding an additional step prior to the HPLC-FLD analyses and enhancing the reliability of the results [29].

2.1. Madeira Island (Madeira Archipelago)

From a total of 22 samples collected during the summer of 2012, 15 were positive for PSTs, with 7 above the maximum legislated value [30,31] (Table 1).

Sampling Data	Sampling Site	Sample	Species	Code	μg STX.diHCleq/Kg SM
8 August 2012	Northern coast	Limpet	Patella ordinaria	336	1123.3
	of Madeira	Limpet	Patella aspera	337	122.4
		Sea urchin	Paracentrotus lividus	339#1	<loq< td=""></loq<>
		Starfish	Ophidiaster ophidianus	341#1	2071
	Reis Magos	Starfish	O. ophidianus	341#2	2224.1
16 September 2012		Starfish	O. ophidianus	341#3	4625.4
		Limpet	P. aspera	344	866.4
		Sea urchin	Arbacia lixula	345	<loq< td=""></loq<>
		Sea snail	Stramonita haemastoma	346	964.5
18 September 2012	Caniçal	Limpet	P. aspera	350	12.2
		Limpet	Umbraculum umbraculum	351	536.8
		Starfish	Echinaster sepositus	353	668
		Sea snail	Charonia lampas	354	1423.4
		Sea urchin	Diadema africanum	355#1	276.3
		Sea urchin	D. africanum	355#2	227.9

Table 1. Quantified paralytic shellfish toxins (PSTs) samples in Madeira island, Madeira Archipelago.

Values in bold are above the legal limit; STX: saxitoxin; eq: equivalents; SM: Shellfish Meat; LOQ: Limit of quantification.

Regarding toxin uptake, the highest values were detected in echinoderms, more specifically, in the red velvet starfish *O. ophidianus* (4625.4 µg STX.diHCleq/Kg), followed by gastropods *C. lampas*

Toxins 2018, 10, 362 4 of 13

(1423.4 μg STX.diHCleq/Kg SM), *P. ordinaria* (1123.3 μg STX.diHCleq/Kg SM), and *S. haemostoma* (964.5 μg STX.diHCleq/Kg SM).

Concerning monitoring, bivalves are the selected key sentinel species for which all analytical methods have been validated [22,23,26]. Being the Madeira archipelago located in oligotrophic waters where mussels are quite rare, echinoderms and gastropods showed a good potential as bio-indicators for toxin monitoring, as suggested in previous works [11,32,33].

2.2. São Miguel Island (Azores Archipelago)

From a total of 38 samples from June 2013, 22 were positive for PSTs, with 7 above the maximum legislated value [30,31] (Table 2).

Sampling Data	Sampling Site	Sample	Species	Code	μg STX.diHCleq/Kg SM
7 June 2013	Lagoa	Sea urchin	Sphaerechinus granularis	409#3	43.4
		Sea urchin	S. granularis	409#4	42.5
		Starfish	O. ophidianus	412	1689.6
	-	Sea snail	S. haemastoma	413	939.4
		Limpet	Patella gomesii	415	1192.4
	Mosteiros	Limpet	P. gomesii	420	902.3
	Etar	Sea urchin	A. lixula	421	<loq< td=""></loq<>
		Sea urchin	A. lixula	423	111.7
	Ilhéu S. Roque	Starfish	O. ophidianus	424	2588.4
8 June 2013		Sea urchin	S. granularis	425#1	<loq< td=""></loq<>
		Sea urchin	S. granularis	425#2	<loq< td=""></loq<>
		Sea urchin	S. granularis	425#3	<loq< td=""></loq<>
		Starfish	Marthasterias glacialis	426#2	3.8
	Cruzeiro	Starfish	M. glacialis	428	7744.3
		Sea snail	S. haemastoma	431	678.3
		Sea urchin	A. lixula	432	<loq< td=""></loq<>
9 June 2013	Caloura	Starfish	M. glacialis	433#1	47.5
		Starfish	M. glacialis	433#2	24.9
		Sea snail	S. haemastoma	434	544.7
		Starfish	O. ophidianus	435	920.3
10 June 2013	Caloura	Starfish	O. ophidianus	440	245
10 June 2013	Caloura	Sea snail	S. haemastoma	443	128.6

Table 2. Information on Azores samples.

Values in bold are above the legal limit.

Regarding toxin uptake (Table 2), similarly to Madeira, we detected seven values above the legal limit in starfish ($O.\ ophidianus$ and $M.\ glacialis$), followed by mollusks $S.\ haemostoma$ and $P.\ gomesii$ (939.4 and 902.3 µg STX.diHCleq/Kg SM, respectively). The maximum uptake value detected was in the yellow spiny starfish $M.\ glacialis$ from Cruzeiro, with 7744.3 µg STX.diHCleq/Kg.

2.3. Moroccan Coast

The northwestern Moroccan coast was surveyed during July 2013, supplying a total of 38 samples, with 28 of them (74%) positive for saxitoxin and its analogs (Table 3).

Sampling Data	Sampling Site	Sample	Species	Code	μg STX.diHCleq/Kg SM
22 July 2013	Casablanca	Bivalve	Mytilus sp.	447	1376.9
	Corniche	Sea snail	Phorcus lineatus	448	929.4
23 July 2013		Sea snail	P. lineatus	449	1404.5
		Limpet	Patella sp.	450	1090.5
	Sidi Bouzid	Sea slug	Aplysia depilans	451	<loq< td=""></loq<>
		Bivalve	Mytilus sp.	453	2266.4
		Sea snail	Cerithium vulgatum	454	158.8
		Sea snail	C. vulgatum	455	2556
	El Jadida Sâada	Sea cucumber	Holothuria (Platyperona) sanctori	458#1	2.3
		Limpet	Patella sp.	459	8.6
		Starfish	M. glacialis	463	1852.4

Table 3. Moroccan samples information.

Toxins 2018, 10, 362 5 of 13

Ta	h	le 3	 C_{α}	nt.

Sampling Data	Sampling Site	Sample	Species	Code	μg STX.diHCleq/Kg SM
	El Jadida Haras	Barnacle	Pollicipes pollicipes	464	17.7
	Mrizika	Bivalve	Mytilus sp.	465	1140.4
		Barnacle	P. pollicipes	466	17.6
		Limpet	Patella sp.	467	3622.5
		Bivalve	Mytilus sp.	468	1080.9
		Sea snail	Gibbula umbilicalis	469	1.6
		Sea snail	P. lineatus	470	1043.9
24 11 2012		Starfish	M. glacialis	473	1325.4
24 July 2013		Sea slug	Onchidella celtica	474	38.8
	Oualidia	Sea snail	C. lampas	475	0.02
		Sea slug	A. depilans	476	0.6
		Sea snail	S. haemastoma	477	384
		Sea snail	P. lineatus	482	85.7
		Sea snail	G. umbilicalis	483	12.1
		Barnacle	P. pollicipes	484	17.4
		Bivalve	Mytilus sp.	485	2708.9

Values in bold are above the legal limit.

All positive values were found in mollusks and echinoderms. Thirteen were above the European [30,31] maximum legal limit. It is important to notice that the highest concentration value detected was in a limpet, with a total amount of 3622.5 μ g STX.diHCleq/Kg SM, despite the presence of mussels in this region.

2.4. Statistical Analysis

The results of the generalized linear model for PST content as a function of genus and region (Patella and Paracentrotus) and region (Madeira and Morocco) did not find significant differences for region, despite the southwards increase detected in the whole data set. This could be explained by the low number of samples and organisms included and by the fact that these two sampling regions are closer to each other, relative to Azores. On the other hand, a significant difference was detected in toxin concentrations between genera, with higher concentrations in Patella than in the sea urchin ($F_{1,16} = 10.4$, p < 0.01), which seems to be a general pattern for sea urchins and limpets in all the three regions (see Tables 1–3).

2.5. General Discussion

One of the primary aims of this work was to screen new vectors for PSTs in order to evaluate public health threats related to seafood consumption. From a total of 66% of positive results, we report 14 new vectors for these hydrophilic phycotoxins, belonging to three different phyla: mollusks (*P. aspera*, *S. haemostoma*, *U. umbraculum*, *P. gomesii*, *P. ordinaria*, *C. vulgatum*, *O. celtica*), echinoderms (*O. ophidianus*, *A. lixula*, *E. sepositus*, *D. africanum*, *S. granularis*, *H.* (*Platyperona*) *sanctori*), and crustaceans (*P. pollicipes*). In Figure 1 are displayed some examples of the toxin elution in different matrices, showing that the toxin retention time was dependent on the analyzed matrix used in the PCOX method.

We highlight the latitudinal pattern of PSTs uptake, since the percentage of positive results follows a north-south gradient: Azores (58%) < Madeira (68%) < Morocco (74%). Though many of the causes of dinoflagellate bloom formation are still to unravel, the water temperature and eutrophication play a pivotal role, which is consistent with our results. Water temperature in the Atlantic Ocean rises, in general, following a north-south gradient towards the Equator, and human anthropic pressures are higher in Morocco than in the Portuguese islands screened in this survey [34–39]. We also defined a qualitative pattern of toxin profiles, as shown in Figure 2.