1. For a measurable function (or random variable) $X : (\Omega_1, \mathcal{F}) \to (\Omega_2, \mathcal{S})$ with $\mathcal{S} = \sigma(\mathcal{A})$, where \mathcal{A} is a algebra on Ω_2 , show that

$$\sigma(X) = \sigma(X^{-1}(\mathcal{A})).$$

Remark: The condition : " \mathcal{A} is a algebra" can be removed, in this case, $X^{-1}(\sigma(\mathcal{A})) = \sigma(X^{-1}(\mathcal{A}))$.

- 2. Let X_1, \dots, X_n be a sequence of independent random variables, all defined on (Ω, \mathcal{A}, P) .
 - (a) Show that $\{\omega : \sum_{n=1}^{\infty} X_n(\omega) \text{ converges}\}\$ and $\{\omega : \lim_{n\to\infty} \frac{1}{n} \sum_{i=1}^n X_i(\omega) \text{ exists}\}\$ are tail events.
 - (b) Show that $\limsup_{n\to\infty} X_n$ and $\liminf_{n\to\infty} X_n$ are a.s. constant.
- 3. Let $f \in L^1(\Omega, \mathcal{A}, \mu)$, show that if $\mu(A_n) \to 0$,

$$\int_{A_n} |f| \mathrm{d}\mu \to 0 \quad \text{as } n \to \infty.$$

- 4. (a) Suppose $X_n \stackrel{p}{\to} X$ and also that $|X_n| \leq Y$ for all n, and $Y \in L^p$. Show that $|X| \in L^p$ and $X_n \stackrel{L^p}{\to} X$. (Theorem 17.4)
 - (b) Let $\{X_j\}_{j\geq 1}$ be i.i.d. with $X_j\in L^1$. Let $Y_j=e^{X_j}$, show that

$$\left(\prod_{i=1}^{n} Y_{j}\right)^{1/n}$$

converges to a constant a.s. (Exercise 20.3)

- 5. Let $\{X_n\}_{n\geq 1}$ be a submartingale with $\sup_n E|X_n| < \infty$.
 - (a) Let $Y_n = \lim_{m \to \infty} E(X_m | \mathcal{F}_n)$, show that Y_n is \mathcal{F}_n -measurable.
 - (b) Prove that

$$EY_n < \infty$$
.

- (c) Show that Y_n is well-defined and is a martingale.
- 6. (a) State Doob's Optional Sampling Theorem.
 - (b) Let $\{X_n\}$ be a martingale, and T is a stopping time bounded by c, show that

$$E(X_c|\mathcal{F}_T) = X_T \ a.s.$$

(c) Let $\{X_n\}_{n\geq 1}$ be a martingale and let S,T be stopping times bounded by a constant, with $S\leq T$ a.s. Show that

$$E(X_T|\mathcal{F}_S) = X_S \ a.s.$$

(d) If there is no condition: $S \leq T$ in (c), show that

$$E(X_T|\mathcal{F}_S) = X_{T \wedge S} \ a.s.$$

1. Solution

1 B ∈ A . .. σ(x-(B)) ⊆ σ(x-(A))

let H = { B = S = \sigma(A) : \sigma(x^-(A)) = \sigma(x^-(B)) \frac{1}{2}, \tau A \in H

(i) \$ E H ,

(ii) $\beta \in \mathcal{H}$, $\beta' \in \mathcal{S}$, $\sigma(x^{-1}(B^c)) = \sigma((x^{-1}(B))^c) \subseteq \sigma(x^{-1}(A))$.. $\beta' \in \mathcal{H}$.

(iii) B1, ..., B4, ..- eH ..---

 $\sigma(x) = \sigma(x^{-1}(A))$

2. Solution

(a) For any k, Sw. \$\frac{1}{n} \times \tin \times \times \times \times \times \times \times \times \times For any k, \w. lim \frac{1}{n} \frac{\in}{n} \times \frac{1}{n} \times \times \frac{1}{n} \times \frac{1}{n}

(b) : lin sup Xn and lin inf Xn is Co-measurable, .. PS lin Xn = C = 0 or 1

I For any c), Let $C_0 = \inf \{C : f_{\overline{h} \to h}(C) = 1\}$ $\therefore P\{\lim_{n \to \infty} X_n \le C\} = \{0, C < C_0 : P\{\lim_{n \to \infty} X_n = C_0\} = F(C) - F(C^-) = 1\}$

: lim In = Co a.s.

Similarly, let bo = inf Sb. Flim x (6) = 13, Lin X = 6. a.s.

3. Solution

for a sequence of numbers langual increasing to on, we decompose

MITIAN = M(ITI IBON (ITI EON?) + M (ITI IBON SIT) = ON M(AN) + M (ITI I SI

: f is integrable, $|fI_{11}| > a_{n_1}| \le |f|$, By DCT $\mu(|f| I_{11}| > a_{n_1}) \longrightarrow \mu(|f| I_{11}| f| > a_{n_1}) = 0$

We get an = (M(An)) -1/2 M(/f Ian) = (M(An)) 1/2 + M(|f| Ist|| > ang) → 0

4. Solution

 $P\{|X| > Y + \epsilon\} \le P\{|X - X_n| > \epsilon\} \to 0, \quad n \to \infty.$

Note that

 $A = \{\omega: |X(\omega)| > Y(\omega)\} = \cup_{m=1}^{\infty} \{\omega: |X(\omega)| > Y(\omega) + \frac{1}{m}\} =: \cup_{m=1}^{\infty} A_m.$ Clearly, $A_m = \{\omega: |X(\omega)| > Y(\omega) + \frac{1}{m}\} \uparrow A$. Then

$$\begin{split} P(A) &= P(|X| > Y) = \lim_{m \to \infty} P(A_m) = \lim_{m \to \infty} P(|X| > Y + \frac{1}{m}) = 0. \\ \text{Thus } |X| &\leq Y \text{ a.s. and } X \in \mathcal{D}^*. \text{ If } \{X_n\} \text{ does not converge to } X \text{ in } \mathcal{D}^p, \text{ there exists a subsequence } \{X_{n_k}\} \text{ s.t. for all } k \text{ and some } \epsilon > 0, \end{split}$$

$$\begin{split} &E\{|X_{n_k}-X|^p\} \geq \epsilon. \\ &\text{As } X_{n_k} \overset{P}{\to} X, \text{ Theorem } \underbrace{6.2.7}_{\text{6.2.7}} \text{ shows that a further subsequence } \{X_{n_{k_j}}\} \text{ s.t. } X_{n_{k_j}} - X \overset{a.s.}{\to} 0 \text{ and } |X_{n_{k_i}}-X| \leq 2Y, \text{ by Lebesgue DCT} \end{split}$$

 $X \to 0 \text{ and } |X_{n_{k_j}} - X| \le 2t \text{, by Leoesgue BCT}$ $= E\{|X_{n_{k_j}} - X|^p\} \to 0 \text{ as } j \to \infty, \tag{6.8}$

which contracts (6.7). This completes the proof.

 $= : E[|X - k_j - X|^p] \rightarrow o (DCT), contradiction \underbrace{E[|X - k_j - X|^p]}_{E[|X - k_j - X|^p]} \ge \underbrace{E[|X - k_j - X|^p]}_{X_1 + \dots + X_n} \underbrace{A \cdot S}_{A \cdot S}$

: PSKI>Y] = 1 PSKI> T+ 1 3= 1 PSKI>Y+ 1 S

Suppose Xn +2X, tE20, 3 NR, E[IXNK-X]] > 2

.. Xnk P> x .. 3 Xxkj 65 X .. (xxkj-x) = 27

(b) : $(x_j)_{j \ge 1}$ is i.i.d. with $x_j \in L'$. By SLLN, $\frac{x_1 + \cdots + x_m}{n} \xrightarrow{A \cdot S} E(x_1)$ $(x_j)_{j \ge 1} = \exp\left\{\frac{1}{n} \sum_{i=1}^{n} |n|^2\right\} = \exp\left\{\frac{1}{n} \sum_{j=1}^{n} |x_j|^2\right\} \xrightarrow{\alpha \cdot S} \exp\left\{E(x_1)^2\right\} = C \quad [x_1] = \exp\{x_1\} \text{ is continuous}$

5. Solution

(a) For fixed m, $E[X_m|f_n]$ is F_n -measurable $(m \ge n)$, f_n is a σ -algebra. $Y_n = \lim_{n \to \infty} E(X_m|f_n)$ is f_n ...

(b) $EY_n = E\lim_{n\to\infty} E(X_n|f_n) \leq \lim_{n\to\infty} \inf E[E(X_n|f_n)] = \lim_{n\to\infty} \inf E[X_n] \leq \sup_{n\to\infty} E[X_n] < \infty$

(c) By Second MCT, $:= \sup_{n \in \mathbb{Z}} E[X_n] = \sup_{n \in \mathbb{Z}} E[X_n] = \lim_{n \to \infty} E[X_n] = \lim_$

6. Colution

(b) For any $A \in \mathcal{F}_T$, $E(X_T) = E(X_0) = E[X_R]$ $R(W) = I_A C + I_{BC}T(W)$ $\therefore E[X_T I_A] + E[X_T I_{B^C}] = E[X_T I_{B^C}] + E[X_C I_{B}]$ $\therefore \int_A X_T d\rho = \int_A X_C d\rho$

(6)

1d) .--..