

Automated Detection of Pacemakers in ECGs Using Deep Learning

Dvora Shlanger - Rottman, Elisheva Tufik, Sigal Sina, Gal Goshen, Raizy Kellerman, Michal Cohen-Shelly, Avi Sabbag

Aim and Background

Electrocardiograms (ECGs) are vital tools in cardiac diagnostics. At Sheba Medical Center, over 1.5 million retrospective ECG recordings are available, yet they lack labels for pacemaker presence a visually distinct and critical feature for model training and evaluation. Detecting pacemakers from ECGs could also facilitate sample selection for advanced machine learning workflows.

This study aimed to develop a deep learning (DL) model to automate labeling pacemaker presence in ECG recordings, enabling efficient sample selection in Sheba Medical Center's large dataset.

Methods

The study adapted the first-place PhysioNet 2020 Challenge model, initially designed for detecting 27 cardiac abnormalities, into a binary classification model for pacemaker detection. Training was conducted on the PhysioNet dataset (21,837 ECGs) and validated on Sheba's dataset (77 ECGs; 53.2% female, mean age: 65, 9 with paced rhythms).

Results

Despite significant class imbalance (296 of 21,837 labeled as pacemaker in PhysioNet), the model achieved an accuracy of 86% on the PhysioNet dataset and 73% on Sheba's dataset. Classification metrics, including precision, recall, and F1-scores, underscored the challenges of class imbalance while highlighting the model's potential

Conclusions

This DL model successfully identified pacemaker presence in ECG recordings, serving as a foundation for advanced modeling workflows. Future work will focus on training with larger, more balanced datasets to further optimize performance and assess broader applicability.