MATH 145 Calculus for Engineering and Science I Recitation 3

October 27th, 2025

1. Find the following limits

1.
$$\lim_{x \to 1} \frac{x^2 - 1}{x + 1}$$

2.
$$\lim_{x \to 3} \frac{x^3 - 8}{x - 2}$$

3.
$$\lim_{h \to 0} \frac{\sqrt{a+h} - \sqrt{a}}{h}$$

2. In each of the following cases, determine the limit ℓ for the given a, and prove that it is the limit by showing how to find a δ such that $|f(x) - \ell| < \epsilon$ for all x satisfying $|x - a| < \delta$.

1.
$$f(x) = x[3 - \cos(x^2)], a = 0$$

2.
$$f(x) = x^2 + 5x - 2$$
, $a = 2$

3.
$$f(x) = \frac{x}{2-\sin^2 x}$$
, $a = 0$

3. Find the following limits in terms of the number $\alpha = \lim_{x\to 0} (\sin x)/x$.

1.
$$\lim_{x \to \infty} \frac{\sin x}{x}$$

$$2. \lim_{x \to \infty} x \sin \frac{1}{x}$$

- 4. Prove that $\lim_{x\to a} f(x) = \lim_{h\to 0} f(a+h)$.
- 5. For which of the following functions f is there a continuous function F with domain R such that F(x) = f(x) for all x in the domain of f?

1.
$$f(x) = \frac{x^2 - 4}{x - 2}$$

2.
$$f(x) = \frac{|x|}{x}$$

6. Suppose that f is continuous at a and f(a) = 0. Prove that if $\alpha \neq 0$, then $f + \alpha$ is nonzero in some open interval containing a.

1