23 Spring Midterm Question

线性代数 23春季 期中试题 发布版

Q1.(20 points, 4 points each) 暂无选择题。

- Q2.(25 points, 5 points each) Fill in the blanks
- (1)Let $u,v\in\mathbb{R}^n$ with $\|u\|=2$, $\|v\|=4$ and $u^Tv=6$. Then $\|3u-v\|=$ _____.
- (2) Let A be an $n \times n$ matrix with $A^2 = -A$ and let I be the $n \times n$ identity matrix. Then $(A I)^{-1} = \underline{\hspace{1cm}}$.

(3)Let
$$A=egin{bmatrix}1&a&a&a\ a&1&a&a\ a&a&1&a\ a&a&a&1\end{bmatrix}$$
 with $rank\left(A
ight)=1.$ Then $a=$ _____.

(4)Let α be a nonzero 3-dimensional real column vector in \mathbb{R}^3 with $\alpha^T \alpha \neq 1$, and I_3 be the 3×3 identity matrix. Then rank $\left(I_3 - \alpha \alpha^T\right) = \underline{\qquad}$.

(5) Let
$$A=egin{bmatrix}1&1\1&0\0&-1\end{bmatrix},b=egin{bmatrix}2\1\1\end{bmatrix}.$$

Then the least squares solution to Ax = b is $\hat{x} = \underline{\hspace{1cm}}$.

Q3 (15 points) Let $\alpha \in R$, and

$$A_lpha = egin{bmatrix} 1 & -lpha & 1+lpha \ lpha & lpha^2 & lpha \ -lpha & 1 & -2 \end{bmatrix}.$$

- (a) By applying row operations, determine for which values of α is the matrix A_{α} invertible?
- (b) Find the values of α such that the nullspace of $A_{\alpha}, N(A_{\alpha})$, has dimension 1?
- (c) Let $\alpha = 2$. Write down the matrix inverse of A_{α} .

Q4.(10points)

Let

$$A = egin{bmatrix} 1 & 1 & 1 \ 9 & -3 & 1 \ -1 & 2 & 2 \end{bmatrix}.$$

Find an LU factorization of A.

Q5.(10 points)

Consider the following system ofline are quations:

$$(I): egin{cases} x_1+x_2=0,\ x_2-x_4=0. \end{cases}$$

Note that the above system (I) has four variables x_1, x_2, x_3, x_4 . Suppose another homogeneous

system of linear equations (II) has special solutions

$$u = egin{bmatrix} 0 \ 1 \ 1 \ 0 \end{bmatrix}, v = egin{bmatrix} -1 \ 2 \ 2 \ 1 \end{bmatrix}.$$

Find the common nonzero solutions of systems (I) and (II).

Q6.(8 points)

Let $R^{2 imes 2}$ be the vector space consisting of all 2 imes 2 real matrices.

Let
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
.

$$E=\left\{E_{11}=egin{bmatrix}1&0\0&0\end{bmatrix},E_{12}=egin{bmatrix}0&1\0&0\end{bmatrix},E_{21}=egin{bmatrix}0&0\1&0\end{bmatrix},E_{22}=egin{bmatrix}0&0\0&1\end{bmatrix}
ight\}.$$

- (a) Show that E is a basis for $\mathbb{R}^{2\times 2}$.
- (b) Show that $T: \mathbb{R}^{2 \times 2} \to \mathbb{R}^{2 \times 2}, X \mapsto XA$ is a linear transformation.
- (c)Find the matrix representation of T with respect to the ordered basis $E_{11}, E_{12}, E_{21}, E_{22}$.

Q7.(6 points) Let A,B be two $m \times n$ matrices. Prove

(a)
$$rank(A+B) \leq rankA + rankB$$

(b)
$$rank\left(A+B
ight)\geq rankA-rankB$$

Q8.(6 points)

Let A be an $m \times n$ matrix with rank r. Show that there exist an $m \times r$ matrix B and an $r \times n$ matrix C such that A = BC and both B and C have rank r.

(共25分,每小题5分)填空题。

$$(1)$$
设 $u,v\in\mathbb{R}^n$ 且 $\parallel u\parallel=2,\parallel v\parallel=4$ 以及 $u^Tv=6.$ 则 $\parallel 3u-v\parallel=$ _____.

(2)设A为一个n阶矩阵,且 $A^2 = -A, I$ 表示n阶单位矩阵。则 $(A-I)^{-1} =$ _____.

$$(3)$$
设 $A = egin{bmatrix} 1 & a & a & a \ a & 1 & a & a \ a & a & 1 & a \ a & a & a & 1 \end{bmatrix}$ 且 $rank\left(A
ight) = 1$. 则 $a =$ ______.

(4)设 $\alpha \in \mathbb{R}^3$ 为一个非零列向量且 $\alpha^T \alpha \neq 1$, I_3 为 3×3 单位矩阵.则 $\mathrm{rank}\left(I_3 - \alpha \alpha^T\right) =$ _____

(5)

$$\diamondsuit A = egin{bmatrix} 1 & 1 \ 1 & 0 \ 0 & -1 \end{bmatrix}, b = egin{bmatrix} 2 \ 1 \ 1 \end{bmatrix}.$$

则 Ax = b 的最小二乘解 $\hat{x} =$ _____.

Q3 (15 points)设 α 为实数, A_{α} 为

$$A_lpha = egin{bmatrix} 1 & -lpha & 1+lpha \ lpha & lpha^2 & lpha \ -lpha & 1 & -2 \end{bmatrix}.$$

- (a)对矩阵 A_{α} 做初等行变换, α 为何时时, A_{α} 为可逆矩阵?
- $(b)\alpha$ 取何值时,矩阵 A_α 的零空间的维数等于1?
- (c)设 $\alpha=2$, 求矩阵 A_{α} 的逆矩阵.

Q4.(10 points)设

$$A = egin{bmatrix} 1 & 1 & 1 \ 9 & -3 & 1 \ -1 & 2 & 2 \end{bmatrix}.$$

求A的一个LU分解

Q5.(10 points) 考虑以下线性方程组:

$$(I): egin{cases} x_1+x_2=0,\ x_2-x_4=0. \end{cases}$$

注意上述方程组(I)有四个变量 x_1, x_2, x_3, x_4 。假设另一个齐次线性方程组(II)有特殊解

$$u = egin{bmatrix} 0 \ 1 \ 1 \ 0 \end{bmatrix}, v = egin{bmatrix} -1 \ 2 \ 2 \ 1 \end{bmatrix}.$$

找出方程组(I)和(II)的共同非零解。

Q6.(8 points)

设 $R^{2 imes 2}$ 为所有2 imes 2实矩阵构成的向量空间. 设 $A=egin{bmatrix} a & b \ c & d \end{bmatrix}$, 且

$$E=egin{cases} E_{11}=egin{bmatrix} 1&0\0&0 \end{bmatrix}, E_{12}=egin{bmatrix} 0&1\0&0 \end{bmatrix}, E_{21}=egin{bmatrix} 0&0\1&0 \end{bmatrix}, E_{22}=egin{bmatrix} 0&0\0&1 \end{bmatrix} iggredge.$$

(a)证明: E为 $R^{2\times 2}$ 的一组基。

(b)证明: $T: \mathbb{R}^{2\times 2} \to \mathbb{R}^{2\times 2}, X \mapsto XA$ 为线性变换

(c)求 T 在有序基 $E_{11}, E_{12}, E_{21}, E_{22}$ 下的矩阵表示

Q7.(6 points)设A, B都为 $m \times n$ 矩阵,证明:

(a) $rank(A+B) \leq rankA + rankB$

(b) $rank\left(A+B
ight)\geq rankA-rankB$

Q8.(6 points)

设 A 为一个秩为r的 $m \times n$ 矩阵. 证明: 存在一个 $m \times r$ 矩阵B和一个 $\tau \times n$ 矩阵C,使得 A = BC,其中B,C的秩都为r.