

Exercice 1

le c**nam**

- 1) Quelle est la valeur de la meilleure solution connue du problème, pour l'instant ?
- 2) Quelle est la valeur de la meilleure borne inférieure de la valeur optimale du problème, pour l'instant ?
- 3) Pour chacune des feuilles, indiquer si elle peut être élaguée et pourquoi ?

RAPPEL : Pour un problème de maximisation, val. d'une solution admissible ≤ val. optimale en entier ≤ val. optimale en continu

RAPPEL : Pour un problème de minimisation, val. optimale en continu ≤ val. optimale en entier ≤ val. d'une solution admissible

3

RCP104 - Optimisation en Informatique

Décembre 2014

Exercice 1 - Solution

le c**nam** Alsace

- I) Quelle est la valeur de la meilleure solution connue du problème, pour l'instant ?
- 2) Quelle est la valeur de la meilleure borne inférieure de la valeur optimale du problème, pour l'instant ?

27

- 3) Pour chacune des feuilles, dire si elle peut être élaguée et pourquoi.
 - D = 28 : Non élaguée car entre 31 et 27
 - F = 27 : Non élaguée car elle peut donner des solutions admissibles
 - G = 35 : élaguée car > solution optimale (31)
 - H = 31 : élaguée car égale solution optimale
 - I = Impossible : élaguée car pas de solution admissible

4

RCP104 - Optimisation en Informatique

Exercice 2

le c**nam** Alsace

Résoudre le programme linéaire suivant par l'algorithme du simplexe ?

$$\begin{array}{llll} \min & x_1 & + & 2x_2 \\ & \text{seq} & 4x_1 & + & 3x_2 & \geq 12 \\ & 6x_1 & + & x_2 & \geq 6 \\ & 2x_1 & + & 5x_2 & \geq 9 \\ & & x_j & \geq 0 & \forall j = 1, 2 \end{array}$$

5

RCP104 - Optimisation en Informatique

Ex	erci	ce 2	- Sc	luti	on		le c nar Alsace
				(x ₁	$(x_2) = ($	33/14, 6/7) de val	eur Z = 57/14
Tabl	eau #1						
x1	x2	s1	s2	s3	- z		
4	3	-1	0	0	0	12	
6	1	0	-1	0	0	6	
2	5	0	0	-1	0	9	
1	2	0	0	0	1	0	
Table	eau #2						
x1	x2	s1	s2	s3	- z		
0	7/3	-1	2/3	0	0	8	
1	1/6	0	-1/6	0	0	1	
0	14/3	0	1/3	-1	0	7	
0	11/6	0	1/6	0	1	-1	
Table	eau #3						
x1	x2	s1	s2	s3	- z		
0	0	-1	1/2	1/2	0	9/2	
1	0	0	-5/28	1/28	0	3/4	
0	1	0	1/14	-3/14	0	3/2	
0	0	0	1/28	11/28	1	-15/4	

Exercice 2 - Solution

le c**nam** Alsace

 $(x_1, x_2)=(33/14, 6/7)$ de valeur Z =57/14

```
Tableau #4

x1 x2 s1 s2 s3 -z

0 0 -2 1 1 0 9

1 0 -5/14 0 3/14 0 33/14

0 1 1/7 0 -2/7 0 6/7

0 0 1/14 0 5/14 1 -57/14
```

> 7

RCP104 - Optimisation en Informatique

Décembre 2014

Exercice 3

le c**nam**

Soit le programme linéaire suivant :

- 1) Ecrire le dual de ce programme linéaire ?
- 2) Rechercher une solution optimale de ce dual en utilisant l'algorithme du simplexe ?

8

 $RCP104-Optimisation\ en\ Informatique$

Exercice 3 - Solution

le c**nam**

I) Min w: $y_1 + y_2 + y_3$ scq

$$y_1 - y_2 - y_3 \ge 2$$

 $-y_1 + 2y_2 - y_3 \ge 2$
 $y_2 - y_3 \ge 0$

2)
$$(y_1, y_2, y_3) = (6,4,0)$$
 de valeur $w = 10$

9

RCP104 - Optimisation en Informatique

Décembre 2014

Exercice 4

le c**nam**

Résoudre le Programme Linéaire en Nombres Entiers suivant par la :

$$\begin{cases} \max 4x_1 - x_2 \\ s.c. \\ 7x_1 - 2x_2 \le 14 \\ x_2 \le 3 \\ 2x_1 - 2x_2 \le 3 \\ x_1 \ge 0 \quad x_2 \ge 0 \text{ et entiers} \end{cases}$$

- I) Méthode graphique?
- 2) Méthode Branch & Bound ?

10

RCP104 – Optimisation en Informatique

Exercice 4 – Solution

le c**nam**

I) Méthode graphique

Pour commencer, nous traçons les lignes des contraintes :

- $7x_1 2x_2 = 14$
- $x_2 = 3$
- $2x_1 2x_2 = 3$

Nous obtenons une solution continue qui a une valeur Z_{max} = 8,43 avec x I = 20/7 et x2 = 3.

- Pour trouver une solution entière, nous traçons la ligne de l'objectif 4x₁ x₂ = partie entière inférieure de Z_{max}=8. On trouve qu'il n'existe aucune solution entière ayant cette valeur.
- Puis, on trace la ligne $4x_1 x_2 = 8 1 = 7$ ce qui donne une solution optimale entière qui a une valeur $Z_{max} = 7$ avec $x_1 = 2$ et $x_2 = 1$. Le graphique suivant montre le démarche cité ci-avant :

II

RCP104 - Optimisation en Informatique

Exercice 4 – à Rendre

le c**nam** Alsace

Résoudre le Programme Linéaire en Nombres Entiers suivant par la :

$$\begin{cases} \max 4x_1 - x_2 \\ s.c. \\ 7x_1 - 2x_2 \le 14 \\ x_2 \le 3 \\ 2x_1 - 2x_2 \le 3 \\ x_1 \ge 0 \quad x_2 \ge 0 \text{ et entiers} \end{cases}$$

- Méthode Branch & Bound ?

Pour la méthode du simplexe, utiliser cet outil en ligne : http://www.zweigmedia.com/RealWorld/simplex.html

13

RCP104 - Optimisation en Informatique

Décembre 2014

Références

le c**nam**

- ▶ Cours Optimisation en Informatique Sourour ELLOUMI et Eric Soutif
- ▶ Cours Modélisation Luciano porretta

14

 $RCP104-Optimisation\ en\ Informatique$