EAS 5830: BLOCKCHAINS

Choosing Block Producers in PoS Systems

Dr. Brett Hemenway Falk

Bitcoin

- Chance of becoming block producer is proportional to hash power
- Anyone can try to produce a block
- A bitcoin block is only "valid" if its hash is less than a "target" value

Lottery-based leader election

Leader election in Proof of Stake

- Chance of becoming leader is proportional to stake
 - "Follow the Satoshi"
 - Enumerate all minted coins (in the order they were minted)
 - Generate a pseudorandom number between 1 and the total number of coins
 - The owner of that coin gets to be the next block producer
 - Caveat: generating randomness on the blockchain is hard

Method 1: Hashing

- Hash the previous block
 - o $H(B^{r-1})$ looks "random"

Method 1: Hashing

- Hash the previous block
 - o $H(B^{r-1})$ looks "random"

Problem: Susceptible to "grinding" attacks

- Attacker can insert transactions into blocks to ensure $H(B^{r-1})$ chooses a coin they own
- Similar attacks on related deterministic schemes

Method 3: Verifiable Delay Functions (VDFs)

- What if you had a function, *F*, with the properties:
 - \circ Delay: It takes at least 30 seconds to evaluate F() using the best hardware
 - Verifiable: Given x and y, you can check whether F(x) = y almost instantly
- This solves the decommitment problem

Method 3: VDFs

Method 3: VDFs

- Stakers post their randomness
- Once the block is finalized, everyone begins computing
- When computation is finished, F(a+b+c) is posted on chain

Method 3: VDFs

- Ethereum block
- Even if Charlie and b, he can't F(a+b+c) befor

Problem: **It's hard to get timing right**

What if new hardware comes out that can compute F() in 1s?

ers post their randomness rain.

the block is finalized, one begins computing p+c).

n computation is finished, p+c) is posted on chain

- Stakers post a Verification Key for a VRF
 - This is usually just the same PK for their signature scheme
- Stakers submit their VRF applied to the previous block
- Randomness is a + b + c
- Publishing VKs effectively commits stakers to their inputs

Voting-based leader election

Voting for block producers

- Stakeholders cast stake-weighted votes to elect a committee
 - Sometimes called "delegation"
- Committee members take turns proposing blocks
- Committee runs a classical (permissioned) consensus algorithm to certify blocks
 - o PBFT
 - <u>Tendermint</u>
 - CometBFT
 - o Clique
 - o <u>Aura</u>
 - Hotstuff
 - Consensus succeeds as long as 2/3rds of the committee is "honest"

Validator churn

- o Election-based systems have validator sets that tend to ossify
 - On the Cosmos Hub only top 180 validators (by stake) participate
 - Thorchain forces "churn"
- o Lottery-based systems can pull in validators with lower stake