Theorem. (Existence - Uniqueness Thrm, $\exists ! \ Thrm$). If I is an interval, $a \in$ I, and p_u for all $1 \le k \le n-1$, and f are cts on I, then $\forall b_i$, for $0 \le i \le n-1$, (then initial value problem)

(1)
$$y^{(n)} + \sum_{k=1}^{n} y^{(n-k)} p_u(x) = f(x)$$

& $y^{(i)}(a) = b_i$, has a unique soln on I.

Note: the solns to linear ODEs are unique on the whole interval I.

Theorem. Thrm. If $w = \{y \in \mathcal{D}^{(n)}(I) \mid y \text{ satisfies } (1)\}$ then dim $W \ge n$.

Proof. put $y_i^{(i)}(a) = \delta_{ij}$, where

$$\delta_{ij} = \begin{cases} 1, & \text{if } i = j; \\ 0, & \text{if } i \neq j \end{cases}$$

for $1 \le i, j \le n$. By the $\exists!$ Thrm, for each j there is a unique soln to (1) on I. Now,

$$W(a) = (y_j^{(i)}(a)) \in \operatorname{Mat}_n(\mathbb{R})$$
$$= I_n$$

$$|W(a)| = 1 \neq 0$$

whence, y_1, \ldots, y_n are linearly independent. Hence,

$$dimW \le n$$

Theorem. Thrm (Strong wronskian converse) If y_1, \ldots, y_n are linearly independent (in $\mathscr{D}^{(n)}(I)$) and y_1, \ldots, y_n are solns to

Date: 03.24.15

$$y^{(n)} + \sum_{k=1}^{n} y^{(n-k)} p_k(x) = 0$$

where p_k are cts on I for k = 1, ..., n, then $|W(a) \neq 0$ for all $a \in I$.

Proof. Assume that there is an $a \in I$ st |W(a)| = 0, then the linear system

$$(1) W(a)\vec{x} = \vec{0}$$

has a nontrivial soln, say $\vec{x} = \vec{c} \in \mathbb{R}^n$ $(W(a) \in \operatorname{Mat}_n(\mathbb{R}))$. Denote: $\vec{c} = (c_1, \dots, c_n) \neq \vec{0}$. Put $y = \sum_{j=1}^{n} c_j y_j$, then y satisfies (*) and

$$y(a) = \sum_{j=1}^{n} c_j y_j(a) = 0 \implies$$

$$y'(a) = \sum_{j=1}^{n} c_j y_j'(a) = 0 \implies$$

$$y''(a) = \sum_{j=1}^{n} c_j y_j''(a) = 0 \implies$$

$$y^{(n-1)}(a) = \sum_{j=1}^{n} c_j y_j^{(n-1)}(a) = 0 \text{ (by(1))}$$

Notice that $y \equiv 0$ on I also satisfies (*) and is such that $y^{(k)}(a) = 0$ for $1 \leq a$ $k \leq n-1$ by $\exists!$ thrm,

$$\sum_{j=1}^{n} c_j y_j \equiv 0 \text{ on } I$$

Thus, since y_1, \ldots, y_n are lin ind, all $c_j = 0$, which is a contradiction.

Theorem. If

$$W = \{ y \in \mathbb{R}^{(n)}(I) \mid y \text{ satisfies } (*) \}$$

then $dim W \leq n$

Proof. let y_1, \ldots, y_n be lin ind solns of (*); we show that there are scalars $c_j \in \mathbb{R}$ st $y = \sum_{j=1}^n c_j y_j$ on I. Consider the linear system

(2)
$$W(a)\vec{x} = \begin{pmatrix} y(a) \\ y'(a) \\ \vdots \\ y^{(n-1)}(a) \end{pmatrix}$$

where W(a) in the Wronskian matrix of y_1, \ldots, y_n . By the SWC, $|W(a)| \neq 0$. Thus, (2) has a unique, not-trivial soln, say $\vec{0} \pm \vec{x} = \vec{c} \neq \vec{0} \in \mathbb{R}^n$. Thus

Date: 03.25.15

$$W(a)\vec{c} = \begin{pmatrix} y(a) \\ y'(a) \\ \vdots \\ y^{(n-1)}(a) \end{pmatrix}$$

has rows

$$\sum_{j=1}^{n} c_j y_j(a) = y(a)$$

$$\sum_{j=1}^{n} c_j y_j'(a) = y'(a)$$

$$\sum_{j=1}^{n} c_j y_j''(a) = y''(a)$$

$$\vdots$$

$$\sum_{j=1}^{n} c_j y_j^{(n-1)}(a) = y^{(n-1)}(a)$$

Finally, since both y and $\sum_{j=1}^n c_j y_j$ are solns to the hom nth order linear ODE (*) (the ODE being home and y_j , for $1 \leq j \leq n$, being solns, so is any linear combo of y_j s since the soln space to a linear home ODE is linear) and both y and $\sum_{j=1}^n c_j y_j$ satisfy all the same n many initial ?conbos?, by the \exists ! thrm, $y = \sum_{j=1}^n c_j y_j$ on I. $\therefore y \in \text{Span } \{y_j \in W \mid 1 \leq j \leq n\}$. Thus, dim $W \leq n$.

Corollary. If

$$W = \{ y \in D^{(n)}(I) \mid y \text{ satisfies } (x) \}$$

where

(*)
$$y^{(n)} + \sum_{k=1}^{n} y^{(n-k)} p_k(x) = 0$$

then dim W = n.

Proof. We showed that $n \leq \dim W \leq n$.

Example. y'' - y = 0

Note that both $y_1 = \cosh x$ and $y_2 = \sinh x$ are solns on \mathbb{R} . The soln space is $2 - \dim^2 l$. Not also that if

$$a \cosh x + b \sinh x = 0$$
 for all $x \in \mathbb{R}$

then in particular, $x = 0 \implies a = 0$.

 $\therefore b \sinh x = 0 \text{ for all } x.$

However, if $x \neq 0$ then $\sinh x \neq 0$; whence, b = 0. Hence, $B = \{\cosh x , \sinh x\}$ are linearly independent solns to y'' = y, and the soln space has dim'n 2, B is a basis for the soln space. \therefore every soln to y'' = y has the form

$$y = a\cosh x + b\sinh x$$

for some $a,b\in\mathbb{R}$. Likewise, $B'=\{e^x,e^{-x}\}$ is also a basis. Note:

$$|W(x)| = \begin{vmatrix} e^x & e^{-x} \\ e^x & -e^{-x} \end{vmatrix} = e^x \begin{vmatrix} 1 & e^{-x} \\ 1 & -e^{-x} \end{vmatrix} = \begin{vmatrix} 1 & 1 \\ 1 & -1 \end{vmatrix} = -2 \neq 0$$

 \therefore by Wronsky's Thrm, B' is lin ind.

Example. Example: y'' + y = 0Here $B = \{\cos x, \sin x\}$ is a basis.

nth order hom linear ODEs with constant coefficients:

$$(1) \sum_{k=0}^{n} a_k y^{(k)} = 0$$

consider

$$y = e^{rx}$$

then

$$y' = re^{rx} = ry \implies$$

$$y'' = r^{2}e^{rx} = r^{2}y \implies$$

$$\vdots$$

$$y^{(k)} = r^{k}y$$

thus, $y = e^{rx}$ yields

$$0 = \sum_{k=0}^{n} a_k y^{(k)}$$

$$= \sum_{k=0}^{n} a_k r^k y$$

$$= y \sum_{k=0}^{n} a_k r^{(k)} \implies$$

$$\sum_{k=0}^{n} a_k r^{(k)} = 0$$

 $\therefore y = e^{rx}$ is a soln to (1) if r is a root (zero) of the char poly of $\sum_{k=0}^{n} a_k y^{(k)} = 0$,

$$\rho(x) = \sum_{k=0}^{n} a_k x^k,$$

then $y = e^{rx}$ is a soln to $\sum_{k=0}^{n} a_k y^{(k)} = 0$.

Example. If $r_1, \ldots, r_n \in \mathbb{R}$ are paiswise distinct then $e^{r_1 x}, \ldots, e^{r_n x}$ are linearly independent (in $\mathscr{F}(\mathbb{R})$), we use the Wronskian:

$$|W(x)| = \begin{vmatrix} e^{r_1 x} & e^{r_2 x} & \cdots & e^{r_n x} \\ r_1 e^{r_1 x} & r_2 e^{r_2 x} & \cdots & r_n e^{r_n x} \\ \vdots & \vdots & \ddots & \vdots \\ r_1^{n-1} e^{r_1 x} & r_2^{n-1} e^{r_2 x} & \cdots & r_n^{n-1} e^{r_n x} \end{vmatrix}$$

$$e^{(r_1 + r_2 + \dots + r_n)x} = \begin{vmatrix} 1 & 1 & \cdots & 1 \\ r_1 & r_2 & \cdots & r_n \\ \vdots & \vdots & \ddots & \vdots \\ r_1^{n-1} & r_2^{n-1} & \cdots & r_n^{n-1} \end{vmatrix}$$

$$e^{(r_1 + r_2 + \dots + r_n)x} \prod_{1 \le i < j \le n} (r_j - r_i) \ne 0$$

(for all x). therefore by the wronskian thrm, $e^{r_1x}, e^{r_2x}, \dots, e^{r_nx}$ ar lin ind,

Example. (Vandermonds)

consider

$$V_n(x) = \begin{pmatrix} 1 & x & x^2 & \cdots & x^{n-1} \\ 1 & r_2 & r_2^2 & \cdots & r_2^{n-1} \\ 1 & r_3 & r_3^2 & \cdots & r_3^{n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & r_n & r_n^2 & \cdots & r_n^{n-1} \end{pmatrix}$$

which is an $n \times n$ Vandermonde Matrix. Put

$$f(x) = \det V_n(x) \in P_{n-1}[\mathbb{R}],$$

then $f(r_j) = \det(V_n(r_j)) = 0$ for all $2 \le j \le n$, by the alternating property of determinates. therefore by the factor Thrm,

$$f(x) = a \prod_{2 \le j \le n} (x - r_j),$$

where

$$a = (-1)^{n-1} \begin{vmatrix} 1 & x & x^2 & \cdots & x^{n-1} \\ 1 & r_2 & r_2^2 & \cdots & r_2^{n-1} \\ 1 & r_3 & r_3^2 & \cdots & r_3^{n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & r_n & r_n^2 & \cdots & r_n^{n-1} \end{vmatrix},$$

which is an $(n-1) \times (n-1)$ det. therefore by the inductive hypothesis,

$$a = (-1)^{n-1} \prod_{2 \le i < j \le n} (r_j - r_i)$$

therefore

$$f(x) = (-1)^{n-1} \prod_{2 \le i < j \le n} (r_j - r_i) \prod_{2 \le j \le n} (x - r_j)$$

Notice that

$$\prod_{2 \le j \le n} (x - r_j) = (-1)^{n-1} \prod_{2 \le j \le n} (r_j - x).$$

Therefore

$$f(x) = (-1)^{n-1} \prod_{2 \le i \le j \le n} (r_j - r_i)(-1)^{n-1} \prod_{2 \le j \le n} (r_j - x)$$
$$= \prod_{2 \le j \le n} (r_j - x) \prod_{2 \le i \le j \le n} (r_j - r_i).$$

In particular,

$$\det V_n(r_1) = f(r_1)$$

$$= \prod_{2 \le j \le n} (r_j - r_1) \prod_{2 \le j \le i \le n} (r_j - r_i)$$

$$= \prod_{1 \le i \le j \le n} (r_j - r_i).$$

Recall: the characteristic poly of $\sum_{k=0}^{n} a_k y^{(k)}$ is

$$\rho(x) = \sum_{k=0}^{n} a_k x^{(k)},$$

Date: 03.31.15

and we showed that if r_1, \ldots, r_n are pairwise distinct then $B = \{e^{r_1 x}, \ldots, e^{r_n x}\}$ is linearly independent (in $\mathscr{C}^{(\infty)}(\mathbb{R})$). We also showed that if r is a zero of $\rho(x)$ then $y = e^{rx}$ is a soln to $\sum_{k=0}^n a_k y^{(k)} = 0$. This all immediatly implies the following:

Theorem. If $\rho(x) \sum_{k=0}^{n} a_k x^{(k)}$ has n many distinct real zeros then the soln space of

$$(*) \sum_{k=0}^{n} a_k y^{(k)} = 0$$

has basis $\{e^{r_1x}, \ldots, e^{r_nx}\}$, i.e., every soln of * has the form

$$\sum_{j=1}^{n} c_j e^{r_j x}.$$

Example. (Revisited)

Consider y'' - y = 0. This has char poly

$$\rho(x) = x^2 - 1 = (x - 1)(x + 1),$$

which has zeros ± 1 .

Thus, $B = \{e^x, e^{-x}\}$ is a basis for the soln space of

$$y'' - y = 0$$

Q: What are the mising basis elements if a char poly has repeating zeros? Recall the "ring" of polynomials

$$\mathbb{R}[x] = \{ \sum_{k=0}^{n} a_k x^k \mid n \in \mathbb{N} \& a_k \in \mathbb{R} \},$$

where

$$\sum_{k=0}^{n} a_k x^{(k)} + \sum_{k=0}^{n} b_k x^{(k)} = \sum_{k=0}^{n} (a_k + b_k) x^{(k)}$$

$$\sum_{i=0}^{m} a_i x^{(i)} \sum_{j=0}^{m} b_j x^{(j)} = \sum_{k=0}^{m+n} c_k x^{(k)}, \text{ where}$$

$$c_k = \sum_{i+j=k} a_i b_j.$$

Notation. Put $D = \frac{d}{dx} : \mathscr{C}^{(\infty)}(I)$ $D^0 = i$ (identity on $\mathscr{C}^{(\infty)}(I)$), and

$$D^n = DD^{n-1}$$
 for $n \in \mathbb{Z}^+$.

Books

Hausen and sullivan "Real Analysis"

Reference: I.N. Herstein's "Topics in Abstract Algebra" (2nd ed), "Abstract

Algebra" (3rd ed) Artin's "Algebra"

(Formal poly : See hungerfords springer GTM.)