

CRYSTAL OSCILLATORS

Table of Contents

Introduction	1
Quality Assurance	2
OCXO's	3-5
TCVCXO's	6
TCXO's	7-12
VCXO's	13
QPL Clock Oscillators	14
Clock Oscillators	15-20
Dual Baud Rate Generators	21-22
Specifying Form	23
Order Information	24

STC Components 2277 South Grand Avenue Santa Ana, CA 92705 (714) 556-1228 Bulk Rate
U.S. Postage
PAID
Permit No: 269
Cerritos, Calif

TO:

P. Accardi Anders Inc. 77 Wolcott Road, Simsbury,, CT 06070

DISTRIBUTOR FOR CRYSTALS AND MAGNETICS PRODUCTS

Switched Mode Power Supplies • Wall Mount Adapters • Delay Lines • DC-DC Converters • Pulse Transformers Power Transformers • EMI/RFI Filters • Crystals & Oscillators • Analog & Digital Panel Meters

CRYSTALS & OSCILLATORS

TTL OSCILLATORS

Frequency 1.8432 MHz	Quan 25 2.50	tity Pricing 50 2.25	(Per Unit Pric 100 2.00	e, FOB Santa 250 1.85	Ana) 500 1.80	1000 1.77
4.0, 8.0, 9.6, 10.0, 12.0, 14.31 16.0, 16.257, 20.0 MHz	818, 2.25	2.00	1.90	1.80	1.70	1.65
24.0, 25.0, 25.175, 28.332, 28 32.0, 40.0, 48.0 MHz	.63636, 30.0, 2.25	2.00	1.95	1.85	1.75	1.70
50 MHz	3.00	2.50	2.25	2.10	2.05	1.96

All Frequencies In Stock

2277 South Grand Ave. Santa Ana, CA 92705 Tel: (714) 556-1228 Fax: (714) 556-2350

STC Components

Harmony Crystals

Quar	ntity Pi	ricing			e, FOB Santa		
Frequency/Package 32.768 KHz/DT-38	50	<u>100</u>	<u>250</u> .35		1000 25	<u>2500</u>	<u>5000</u>
32.708 KHZ/D1-38						.22	
1.8432 MHz/HC-49/U	2.25	2.00	1.80	1.50	1.35	1.27	1.25
2.0000 MHz/HC-49/U	1.80	1.60	1.40	1.20	1.10	1.07	1.05
2.4576 MHz/HC-49/U	1.40	1.20	1.00	.90	.80	.78	.76
3.579545, 4.0, 4.9152, 5.12, 6.0, 6.14	4, 8.0,						
9.6, 10.24, 12.0, 12.288, 14.31818, 16.0, 18.432 MHz/HC-49/U	.75	.50	.44	.42	.41	.39	.38
19.6608, 20.0 MHz/HC-49/U	1.25	1.00	.80	.70	.65	.63	.61
24.0, 25.0 MHz/HC-49/U	1.50	1.25	1.05	.95	.82	.80	.79
30.0 MHz 3rd OT 40.0 MHz 3rd OT/HC-49/U	.80	.65	.55	.52	.50	.49	.48

Other Products

DC-DC Converters
Delay Lines
EMI/RFI Filters
Digital & Analog Panel Meters

Switched Mode Power Supplies Pulse Transformers Power Transformers Wall Mount Adapters

Daiwa
ECS
Ecliptek
Epson
Fox

Dove Electronics - Crystals & Oscillators
(Also available through our affiliation with Dove Electronics)
M-Tron
RXD
Monitor
NEL
Statek
Oscillatek
Pletronics

Commercial, Military, TTL, CMOS, HCMOS, ECL

2277 South Grand Ave. Santa Ana, CA 92705 Tel: (714) 556-1228 Fax: (714) 556-2350

OSCILLATEK CRYSTAL OSCILLATORS

OCXO'S TCVCXO'S TCXO'S CLOCK OSCILLATORS

Since 1979, Oscillatek has been a steadily growing supplier of precision crystal oscillators. Oscillatek has always been guided by three principles:

- 1. Excellence in Customer Service
- 2. Engineering Leadership
- 3. Quality Products

We will always be guided by these three principles. Thus, despite enormous growth, numerous exciting new products, and greatly expanded facilities, we will always be a company with a very simple message. Whatever your oscillator requirement, come to Oscillatek for its fulfillment. You will find a friendly, courteous company ready to give priority to your needs. Your oscillators will be designed and manufactured by intelligent experts in this very specialized technology, with careful attention to quality from the very first contact until the final oscillator is shipped. You will find it very easy to talk to us, even when discussing the most difficult requirements. After all, that's our business.

OUR PRODUCTS

OCXO'S

Ovenized crystal oscillators offer very good stability versus temperature, especially in applications where space and power are not at a premium. Our expertise here is in thermal and mechanical design.

TCVCXO'S

Voltage-tuned TCXO's for low-distortion linear and phase-locked loop applications are another Oscillatek strength.

TCXO'S

Our temperature compensated crystal oscillators are used in applications where reliability, size, weight and power requirements are difficult to meet with ovenized oscillators. Our computer-aided compensation network synthesis technique allows us to use a minimum number of components most effectively to reduce compensation error to the minimum possible.

CLOCK OSCILLATORS

Our crystal-controlled thick film hybrid clock oscillators offer high reliability in small packages. We offer many standard packages including DIP, TO-5, TO-8, Flatpack and LCC. One of our specialties is very high frequency clock oscillators. All hybrid oscillators are manufactured in our new, controlled-environment clean room.

QUALITY ASSURANCE

Corporate policy dictates that quality is of primary concern in the manufacture of every Oscillatek oscillator, be it Hybrid, TCXO, commercial, or military. Oscillatek's quality program as defined in the Quality Assurance Manual meets the requirements of MIL-I-45208, and is structured to ensure that delivered products conform to specifications, Implementation of the program is the responsibility of the Quality Assurance Department, where quality and workmanship are monitored closely from incoming inspection through final pre-shipping inspection.

The test department is equipped with a master frequency standard continuously calibrated to the National Bureau of Standards from which signals are distributed to every test station, and an automatic test facility with software capable of automatically measuring and recording the output frequencies of oscillators at programmable time intervals and temperatures. Additional test capabilities include sinusoidal vibration, phase noise, acceleration, and seal testing. All equipment is calibrated to a program which meets MIL-STD-45662.

Workmanship standards are designed along the guidelines of MIL-STD-883, MIL-STD-454, and MIL-0-55310. Oscillatek has several products qualified to MIL-0-55310 and has had its facility surveyed and approved by numerous military and aerospace contractors. Government source inspection is available through DCAS on an itinerant basis.

Hybrid devices using custom hybrid microcircuit construction are assembled in a Class 100.000 cleanroom facility for both commercial and military applications. Operation of this facility is in accordance with FED-STD-209 and MIL-0-55310.

We at Oscillatek realize that quality is achieved only through a commitment to excellence. This commitment can be seen on a daily basis throughout our manufacturing facility.

CRYSTAL OSCILLATORS ocxo

High Stability Ovenized Oscillators

A high stability ovenized oscillator is the most stable of all crystal oscillators. The crystal and its associated circuitry are held to a specific temperature within a very tight tolerance through the use of a proportional oven and control circuit. Very sensitive and fast response thermistors (thermal detectors) are employed in strategic locations to detect any thermal change in the oscillator oven and command immediate corrective action. A typical simplified circuit appears below.

The ability of an ovenized oscillator to remain at a constant temperature lends itself to the use of 3rd, 5th and 7th overtone crystals with turn points in exess of 100° C. For that reason, ovenized oscillators provide very high frequency stability and very low aging rates.

The ovenized oscillator comes in many sizes with varying degrees of stabilities over wide temperature ranges. The ability of an ovenized oscillator to remain stable is dependent on the ability of the oven to maintain a constant temperature at the turn temperature of the crystal. The stability of an ovenized oscillator over wide temperature variations is directly related to size and power. If size is constrained, then more power must be available to maintain the same temperature versus frequency stability. If physical size is not a factor, additional thermal insulation may be employed and power reduced.

At Oscillatek, our engineers can design an OCXO to meet the exact needs of your application, at minimal cost, if you provide us with exact requirements and acceptable tolerances for the following parameters. (Additional oscillator specifying information can be found on page 23.)

Important OCXO Parameters

- 1. Nominal output frequency.
- 2. Setability
- 3. Aging
- 4. Output
- 5. Load
- 6. Short term stability
- 7. Phase noise
- 8. Electrical tuning
- 9. Warm-up time
- 10. Input supply voltage
- 11. Input supply current
- 12. Operating temperature range
- 13. Storage temperature range
- 14. Frequency stability versus temperature
- 15. Frequency stability versus load change
- 16. Frequency stability versus input voltage change 17. Package size
- 18. MIL-Specifications

OVEN CONTROLLED CRYSTAL OSCILLATORS OCXO P/N 5333 & 8001

OUTPUT:

Frequency: 2.019600 MHz Waveform: Square

HCMOS Compatible "1" Level: 4.5 ± 0.5 V "0" Level: 0.5V

Rise/Fall Times: 20n Sec maximum

Duty Cycle: $50\% \pm 10\%$

Load: 500 Ω to +4.5V, 100pf to Gnd

P/N 5333

STABILITY:

Temperature: \pm 1 x 10⁻⁸, 0°C to + 70°C Supplies: 1 x 10⁻⁹/percent (each supply)

AGING: 1 x 10⁻⁸/Day 5 x 10⁻⁷/Year

FREQUENCY ADJUSTMENT: Mechanical

Range: \pm 5 x 10⁻⁶ minimum

Setability: 1 x 10⁻⁸

SUPPLIES:

Oscillator: +11.5VDC \pm 0.5VDC, 40mA max. Oven: + 26VDC \pm 2.6VDC, 500mA max. Power (stabilized @ + 25°C): 3 Watts, max.

> +11.5V DC GND (11.5V + SIGNAL)

NC CASE GND +26V DC (OVEN) OVEN (26V) GND

WHEN SPECIFIED
OTHERWISE, NO CONNECTION

WARM-UP: 2 x 10-7 within 10 min. @ + 25°C

P/N 8001

OUTPUT on SMA connector:

Frequency: 100.00 MHz Waveform: Sinewave Level: +7dBm minimum Load: 50 O

Harmonics: -20dBc Subharmonics: -20dBc

STABILITY:

Temperature: \pm 3 x 10⁻⁸, 0°C to +50°C **Supply:** \pm 1 (10⁻⁸), 15VDC \pm 5%

PHASE NOISE:

100Hz -95dBc 1KHz -120dBc 10KHz -140dBc 100KHz -145dBc **AGING:** 1 x 10⁻⁸/Day 5 x 10⁻⁷/Year

FREQUENCY ADJUSTMENT:

Mechanical: \pm 3 x 10⁻⁶ minimum Electrical: 3 x 10⁻⁷ minimum

SUPPLY:

Voltage: + 15VDC \pm 5%

Power: 6 watts maximum @ turn on stabilized @ +25°C: 2 watts maximum

WARM-UP: 2 x 10-7 within 10 min. @ + 25°C

OVEN CONTROLLED CRYSTAL OSCILLATORS

MODEL 800 SERIES OCXO

In the 800 Series of Oven Controlled Crystal Oscillators, Oscillatek offers a wide range of performance and mechanical options. The following options are offered as suggestions of possible starting points for your unique requirements for precision Ovenized Quartz Crystal Oscillators.

Output Options (Standard): TTL, CMOS, HCMOS, or SINE:

+7dBm, 50 Ω **Harmonics:** -20dBc

Supply (Standard:)

Voltage: $24VDC \pm 5\%$ Stability: 1 x 10^{-9} /percent

Power:

Turn-on: 8 W maximum Stabilized @ +25°C; 3 W maximum

Frequency Adjust:

Mechanical: For 10 years aging Electrical (with option "E"):

3 x 10⁻⁷ minimum for 0 to +5V or external 20K potentiometer

Phase Noise (Sine, 10MHz):

Offset	SSB Level
100 Hz	-130dBc/Hz
1 KHz	-140dBc/Hz
10 KHz	-145dBc/Hz
50 KHz	-150dBc/Hz

Supply Options:

Any specified voltage in the range of 12VDC to 28VDC. Multiple supplies for oven, RF and Logic.

Output Options (Additional):

Sine Output: Levels from -20dBm to +13dBm ECL: Available with addition of -5.2V supply

ORDERING METHOD

				_								
OUTPUT LOGIC	MODEL NUMBER	AGING PER DAY	TEMP. RANGE		EQUE TION	NCY ST	ABILITY	VOLTAGE CONTROL	FREQ	UENC	Υ	SUPPLY VOLTAGE
T = TTL	X802	1 = 1 x 10 ⁻⁸	A = 0°C to +50°C	39 =	± 3 x	10 ⁻⁹ ,	28 = ± 2 x 10 ⁻⁸ 18 = ± 1 x 10 ⁻⁸	E	TTL = .0	1Hz to 30	MHz	SPECIFIED
S = SINE	X803	$2 = 5 \times 10^{-9}$	B = 0°C to +70°C	59 =	± 5 x	10 ⁻⁹ ,	58 = ± 5 x 10 ⁻⁸ 18 = ± 1 x 10 ⁻⁸	VOLTAGE	SINE = 1	00KHz to	30MHz	SUPPLY VOLTAGE:
C = CMOS		$3 = 3 \times 10^{-9}$	C = -20°C to +70°C	18 =	±1x	10-8,	$58 = \pm 5 \times 10^{-8}$ $28 = \pm 2 \times 10^{-8}$	12.2.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	CMOS =			12VDC
HC = HCMOS		$4 = 1 \times 10^{-9}$	D = -40°C to +70°C	28 =	± 2 x	10~8,	$17 = \pm 1 \times 10^{-7}$ $58 = \pm 5 \times 10^{-8}$	IS	HCMOS =	.01Hz to	o 30MHz	TO 28VDC
			E = -55°C to +70°C	58 =	± 5 x	10 ⁻⁸ ,	$ \begin{array}{c} 27 = \pm 2 \times 10^{-7} \\ 17 = \pm 1 \times 10^{-7} \end{array} $	DESIRED				
												4
EXAMPL	E	S	X802	2	В	18		_ 10 l	ИHz	,	24\	V

NOTE: SX8022B18-10MHz,24V is a catalog number which defines an ovenized crystal oscillator in the X802 package with a 10MHz Sine output, aging of 5 x 10-9/day, stability of ± 1 x 10-8 over the temperature range of 0°C to +70°C, operating on a +24VDC supply.

TEMPERATURE COMPENSATED VOLTAGE CONTROLLED CRYSTAL OSCILLATORS

OUTPUT:

Frequency: 4.00MHz Waveform: Square

HCMOS/TTL Compatible
Duty Cycle: 50% ± 10%

STABILITY: ± 2.5PPM including **Temperature:** 0°C to +50°C

Supply: 5.0VDC ± 5% Load: 3 to 5 TTL Gates SUPPLY: +5.0VDC ± 5% Current: 15mA maximum

Aging: 1 x 10⁻⁶/Year

VOLTAGE CONTROL CHARACTERISTICS:

Deviation: \pm 150Hz (\pm 37.5PPM)

Control Voltage: $0 \pm 5V$ Input Impedance: 20K Ω minimum

Transfer Slope: Negative Modulation Rate: DC to 3KHz

Linearity: \pm 10%

P/N 2785

PIN FUNCTION

1 +10VDC
2 OUTPUT
3 GND, CASE
4 GND, CASE
5 VCO INPUT

OUTPUT:

Frequency: 1.455MHz Waveform: Sine Level: +7dBm Load: 50 O

> Harmonics: < -20dBc Spurious: < -60dBc

STABILITY: ± 400PPM including Temperature: -32°C to +85°C Supply: 9.6V to 10.2VDC

Load: 50 to 1005L SUPPLY: 9.6 to 10.2VDC Current: 35mA maximum

VOLTAGE CONTROL CHARACTERISTICS:

Deviation: \pm .08% minimum **Control Voltage:** 0 ± 5 V

Input Impedance: 50K Ω minimum

Transfer Slope: Negative Modulation Rate: DC to 10KHz

Linearity: ± 10%

OUTPUT:

Frequency: 138.6MHz

Waveform: Sine

Level: +7dBm minimum

Load: 50 Ω

Harmonics: < -20dBc Subharmonics: < -20dBc Spurious: < -60dBc

STABILITY:

Temperature: \pm 1 \times 10⁻⁶,

0°C to +70°C

Supply: \pm 15 x 10⁻⁷/percent

SUPPLY: +15 ± 2VDC Current: 20mA maximum Aging: 2 x 10⁻⁶/Year

VOLTAGE CONTROL CHARACTERISTIC:

Deviation: ± 700Hz minimum **Control Voltage:** 0 to +5V

Input Impedance: 10K Ω minimum

Transfer Slope: Negative Modulation Rate: DC to 1KHz

Linearity: ± 20%

TCXO'S VCXO'S TCVCXO'S

Oscillatek TCXO's have been designed for use in military, aerospace and commercial timing applications, where reliability, size, weight and power requirements are difficult to meet with ovenized oscillators. Our computer aided compensation network synthesis technique allows us to use a minimum number of components most effectively to reduce compensation error to the minimum possible.

FEATURES:

- Low power consumption.
- A wide range of options for frequency stability versus temperature within the -55°C to +125° range.
- Frequency range .01 Hz to 200 MHz.
- HCMOS, TTL, CMOS, ECL and Sine Wave output options.
- Fast warm-up.
- Cost effective.

NOTE: Our model number is to be used for reference only when specifying a specific oscillator requirement. A wide variety of options and variations, which are difficult to code into a model number, are available.

TEMPERATURE COMPENSATED CRYSTAL OSCILLATORS WITH USER DEFINED OPTIONS

TCXO MODELS X101 & X114

ORDERING METHOD

OUTPUT LOGIC	MODEL NUMBER	TEMP. RANGE	FREQUENCY STABILITY OPTION		FREQUENCY RANGE	
T = TTL	X 101	A = 0°C to 50°C	$17 = \pm 1 \times 10^{-7}, 27 = \pm 2 \times 10^{-7}, 57 = \pm 5 \times 10^{-7}, 16 = \pm 1 \times 10^{-6}, 26 = \pm 2 \times 10^{-6}, 56 = \pm 5 \times 10^{-6}$		TTL = .01 Hz to 125 MHz	
C = CMOS	X114	B = 0°C to 70°C	$27 = \pm 2 \times 10^{-7}$, $57 = \pm 5 \times 10^{-7}$, $16 = \pm 1 \times 10^{-6}$, $26 = \pm 2 \times 10^{-6}$, $56 = \pm 5 \times 10^{-6}$	_	CMOS = .01 Hz to 15 MHz	
E = ECL		C = -20°C to 70°C	$27 = \pm 2 \times 10^{-7}$, $57 = \pm 5 \times 10^{-7}$, $16 = \pm 1 \times 10^{-6}$, $26 = \pm 2 \times 10^{-6}$, $56 = \pm 5 \times 10^{-6}$		ECL = 1 MHz to 200 MHz	
S = SINE		$0 = -40^{\circ}\text{C} \text{ to } 85^{\circ}\text{C}$	$57 = \pm 5 \times 10^{-7}$, $16 = \pm 1 \times 10^{-6}$, $26 = \pm 2 \times 10^{-6}$, $56 = \pm 5 \times 10^{-6}$, $15 = \pm 1 \times 10^{-5}$		SINE = 100 KHz to 200 MHz	
		E = -55°C to 85°C	$16 = \pm 1 \times 10^{-6}$, $26 = \pm 2 \times 10^{-6}$, $56 = \pm 5 \times 10^{-6}$, $15 = \pm 1 \times 10^{-5}$			
HC = HCMOS		F = -55°C to 105°C	$26 = \pm 2 \times 10^{-6}, 56 = \pm 5 \times 10^{-6}, 15 = \pm 1 \times 10^{-5}$		HCMOS = .01Hz to 125 MHz	
		G = -55°C to 125°C	$56 = \pm 5 \times 10^{-6}$, $15 = \pm 1 \times 10^{-5}$, $25 = \pm 2 \times 10^{-5}$			
EXAMP	LE	T X114	B 27 – 10 MH			

NOTE: TX114B27=10MHZ is a model number selected with TTL output in X114 package and with ± 2 x 10-7 stability over 0°C to 70°C.

MODELS X121 & X151 TCXO

ORDERING METHOD

	ONDERING WETTOD					
	MODEL NUMBER	TEMP. RANGE	FREQUENCY STABILITY OPTION	_	FREQUENCY RANGE	
T = TTL	X 121	A = 0°C to 50°C	$17 = \pm 1 \times 10^{-7}, 27 = \pm 2 \times 10^{-7}, 57 = \pm 5 \times 10^{-7}, 16 = \pm 1 \times 10^{-6}, 26 = \pm 2 \times 10^{-6}, 56 = \pm 5 \times 10^{-6}$		TTL = .01 Hz to 125 MHz	
C = CMOS	X 151	B = 0°C to 70°C	27 = \pm 2 x 10-7, 57 = \pm 5 x 10-7, 16 = \pm 1 x 10-6, 26 = \pm 2 x 10-6, 56 = \pm 5 x 10-8] —	CMOS = .01 Hz to 15 MHz	
E = ECL		C = -20°C to 70°C	27 = \pm 2 x 10-7, 57 = \pm 5 x 10-7, 16 = \pm 1 x 10-6, 26 = \pm 2 x 10-6, 56 = \pm 5 x 10-6		ECL = 1 MHz to 200 MHz	
S = SINE		$\mathbf{D} = -40^{\circ}\text{C} \text{ to } 85^{\circ}\text{C}$	$57 = \pm 5 \times 10^{-7}$, $16 = \pm 1 \times 10^{-6}$, $26 = \pm 2 \times 10^{-6}$, $56 = \pm 5 \times 10^{-6}$, $15 = \pm 1 \times 10^{-5}$	1	SINE = 100 KHz to 200 MHz	
		E = -55°C to 85°C	$16 = \pm 1 \times 10^{-6}$, $26 = \pm 2 \times 10^{-6}$, $56 = \pm 5 \times 10^{-6}$, $15 = \pm 1 \times 10^{-5}$	1		
HC = HCMOS		F = -55°C to 105°C	$26 = \pm 2 \times 10^{-6}$, $56 = \pm 5 \times 10^{-6}$, $15 = \pm 1 \times 10^{-5}$	1	HCMOS = .01 Hz to 125 MHz	
		G = -55°C to 125°C	$56 = \pm 5 \times 10^{-6}$, $15 = \pm 1 \times 10^{-5}$, $25 = \pm 2 \times 10^{-5}$			
EXAMP	LE	T X121	B 27 – 10 MH:	z		

NOTE: TX121B27-10MHZ is a model number selected with TTL output in X121 package and with ± 2 x 10-7 stability over 0°C to 70°C.

TCXO MODELS X154 & X201

ORDERING METHOD

OILD ET MILL THOU					
OUTPUT LOGIC	MODEL NUMBER	TEMP. RANGE	FREQUENCY STABILITY OPTION	_	FREQUENCY RANGE
T = TTL	X 154	A = 0°C to 50°C	$17 = \pm 1 \times 10^{-7}$, $27 = \pm 2 \times 10^{-7}$, $57 = \pm 5 \times 10^{-7}$, $16 = \pm 1 \times 10^{-6}$, $26 = \pm 2 \times 10^{-6}$, $56 = \pm 5 \times 10^{-6}$		TTL = .01 Hz to 125 MHz
C = CMOS	X201	B = 0°C to 70°C	27 = \pm 2 x 10-7, 57 = \pm 5 x 10-7, 16 = \pm 1 x 10-6, 26 = \pm 2 x 10-6, 56 = \pm 5 x 10-6		CMOS = .01 Hz to 15 MHz
E = ECL		C = -20°C to 70°C	27 = \pm 2 x 10-7, 57 = \pm 5 x 10-7, 16 = \pm 1 x 10-6, 26 = \pm 2 x 10-6, 56 = \pm 5 x 10-6		ECL = 1 MHz to 200 MHz
S = SINE		$\mathbf{D} = -40^{\circ}\text{C} \text{ to } 85^{\circ}\text{C}$	$57 = \pm 5 \times 10^{-7}$, $16 = \pm 1 \times 10^{-6}$, $26 = \pm 2 \times 10^{-6}$, $56 = \pm 5 \times 10^{-6}$, $15 = \pm 1 \times 10^{-5}$		SINE = 100 KHz to 200 MHz
		E = -55°C to 85°C	$16 = \pm 1 \times 10^{-6}$, $26 = \pm 2 \times 10^{-6}$, $56 = \pm 5 \times 10^{-6}$, $15 = \pm 1 \times 10^{-5}$		
HC = HCMOS		F = -55°C to 105°C	26 = \pm 2 x 10-6, 56 = \pm 5 x 10-6, 15 = \pm 1 x 10-5		HCMOS = .01 Hz to 125 MHz
		6 = -55°C to 125°C	$56 = \pm 5 \times 10^{-6}$, $15 = \pm 1 \times 10^{-5}$, $25 = \pm 2 \times 10^{-5}$		
EXAMP	LE	T X201	B 27 – 10 MHz		

NOTE: TX201B27-10MHZ is a model number selected with TTL output in X201 package and with ± 2 x 10-7 stability over 0°C to 70°C.

MODELS X202 & X205 TCXO

	CONNECT	CONNECTION				
PIN	CMOS, TTL, SINE	ECL				
1	OUTPUT	OUTPUT				
2	SUPPLY	Vcc				
*3	GND	Vee				
4	CASE	CASE				
*5	RF RETURN	RF RET.				

*Internally connected

WEIGHT = < 2 oz.

MOUNTING = P.C.B. Type

SEAL = Solder

OPTIONS

OUTPUT LOGIC ● FREQUENCY ● STABILITY TEMPERATURE RANGE ● SUPPLY VOLTAGE

STANDARD SPECIFICATIONS

ELECTRICAL

Supply Voltage: Standard: +12V DC ± 5%; ECL: -5.2V DC
 Optional: Specify from +5V DC to 28V DC range

• Supply Current: TTL: 15 mA Typical @ 20 MHz

CMOS: 10mA Typical @ 10 MHz, as low as 1.5mA

ECL: Less than 80mA

SINE: 20mA Typical @ 20 MHz, as low as 2.0mA Supply current is frequency dependent, consult factory.

Output:

LOGIC	"1" LEVEL	"0" LEVEL	SYMMETRY	LOAD		
ΤΤL	2.4V Min.	2.4V Min. 0.5VMax.		10 TTL (< 20MHz) 6 TTL (< 20MHz)		
CMOS	V∞ -1.0V Min.	1.0V Max.	40/60	10 pf Nominal 50 pf Maximum		
ECL	10K Logic Family		40/60	Standard ECL		
SINE	100 KHz to 10 MHz: 1 VRMS, 1K OHMS Above 10 MHz: 0.5 VRMS, 50 OHMS Harmonics: -20dBc Min.					

- Short Term Aging: 1 x 10⁻⁹/sec. (Controlled environment)
- Voltage Stability: ± 2 x 10⁻²/percentage change
- Mechanical Frequency Adj.: To compensate for a minimum of 5 years aging.

ENVIRONMENTAL

- Shock: 50g; 11msec. per MIL-STD-202, method 213, cond. G
- Vibration: 5g to 500 Hz per MIL-E-5400 Fig. 2, curve III
- Storage Temperature: -55°C to 85°C Altitude: Sea level to space
- Humidity: MIL-STD-202, method 103, cond. B

NOTE: These are typical values, for critical requirements consult factory.

"O" ring seal freq. adj.

X205

ŀ	200 = 03	-
	CONNECT	ION
PIN	CMOS, TTL, SINE	ECL
1	GND, CASE	CASE
2	SUPPLY	Vcc
3	OUTPUT	OUTPUT

Vee

WEIGHT = < 2 oz.

MOUNTING = P.C.B. Type
SEAL = Solder

4 GND, CASE

ORDERING METHOD

OUTPUT LOGIC	MODEL NUMBER	TEMP. RANGE	FREQUENCY STABILITY OPTION		FREQUENCY RANGE
T = TTL	X202	A = 0°C to 50°C	$17 = \pm 1 \times 10^{-7}$, $27 = \pm 2 \times 10^{-7}$, $57 = \pm 5 \times 10^{-7}$, $16 = \pm 1 \times 10^{-6}$, $26 = \pm 2 \times 10^{-6}$, $56 = \pm 5 \times 10^{-6}$		TTL = .01 Hz to 125 MHz
C = CMOS	X205	B = 0°C to 70°C	27 = \pm 2 x 10-7, 57 = \pm 5 x 10-7, 16 = \pm 1 x 10-6, 26 = \pm 2 x 10-6, 56 = \pm 5 x 10-6	_	CMOS = .01 Hz to 15 MHz
E = ECt.		c = -20°C to 70°C	27 = \pm 2 x 10-7, 57 = \pm 5 x 10-7, 16 = \pm 1 x 10-6, 26 = \pm 2 x 10-6, 56 = \pm 5 x 10-6		ECL = 1 MHz to 200 MHz
S = SINE		D = -40°C to 85°C	$57 = \pm 5 \times 10^{-7}$, $16 = \pm 1 \times 10^{-6}$, $26 = \pm 2 \times 10^{-6}$, $56 = \pm 5 \times 10^{-6}$, $15 = \pm 1 \times 10^{-5}$		SINE = 100 KHz to 200 MHz
		E = -55°C to 85°C	$16 = \pm 1 \times 10^{-6}, 26 = \pm 2 \times 10^{-6}, 56 = \pm 5 \times 10^{-6}, 15 = \pm 1 \times 10^{-5}$		
HC =HCMOS		F = -55°C to 105°C	26 = \pm 2 x 10-6, 56 = \pm 5 x 10-6, 15 = \pm 1 x 10-5		HCMOS = .01 Hz to 125 MHz
		G = -55°C to 125°C	$56 = \pm 5 \times 10^{-6}, 15 = \pm 1 \times 10^{-5}, 25 = \pm 2 \times 10^{-5}$		

EXAMPLE T X205 B 27 - 10 MHz

NOTE: TX205B27~10MHZ is a model number selected with TTL output in X205 package and with ± 2 x 10-7 stability over 0°C to 70°C.

TEMPERATURE COMPENSATED CRYSTAL OSCILLATORS WITH USER DEFINED OPTIONS

TCXO MODEL DIP MINIATURE

OPTIONS

 OUTPUT LOGIC • FREQUENCY • STABILITY • TEMPERATURE RANGE • SUPPLY VOLTAGE

M84

STANDARD SPECIFICATIONS

- Voltage stability: V_{cc} ± 5%, ∆ F < 1PPM $V_{cc} \pm 10\%$, $\Delta F < 2PPM$
- Duty cycle: 40-60% (TTL, CMOS, ECL)
- Aging: 5PPM first year; 2PPM per year thereafter
- Frequency Adjust: Control voltage in range of 9 to 5V (variable capacitor optional)
- Storage Temperature: -55°C to 85°C

NOTE: These are typical values, for critical requirements consult factory

TTL

- Load: 10TTL up to 20 MHz 6TTL above 20 MHz
- Output: Square wave "0" = .5V max. "1" = 2.4V min.
- Input Current: Typical values are as follows: 4 to 32 MHz < 40 mA

ECL

- Supply Voltage: -5.2V ± 5%
- Input Current: 70mA max.
- Output: ECL Compatible (10KH Series)

SINEWAVE

- Supply Voltage: $5V \pm 5\%$
- Input Current: Typical values are as follows: 25 mA (Max) 5mA to 10 mA Typical at 5.00 MHz
- Output:

.3V RMS min. into 1K Ohms

CMOS

- Input Voltage: 4.5V to 15V (Specify)
- Output Levels: 10% max. to 90% min. of Vdd, CL = 15PF.

ORDERING METHOD

OUTPUT LOGIC	PACKAGE DIP	PIN OPTION	PIN CONNECTIONS			TEMPE	RATURE RANGE/	_	FREQUENCY (RANGE)	
T = TTL	M84 = .8"x.5"x.375" No insulation	04 = 4 Pins	1 =	I PIN	CONNECTION	,	A2	0° - + 50°C, ± 2PPM		TTL = 1KHz to 32MHz *CMOS = 1KHz to
C = CMOS	stand offs	Pin dia = .018" ± .001			TTL, CMOS, SINE	ECL	A5	0° - + 50°C, ± 5PPM		10MHz
E = ECL	M846 = .8"x.5"x.375"	T.001		7	GND/CASE GND	-5.2V			_	ECL = 4MHz to
S = SINE	with glass stand offs			8	OUT	OUT	B5	0° - + 70°C, ± 5PPM		32MHz
	4 places			14	Vcc	GND	C10	-30° - + 70°C, ± 10PPM		SINE = 4MHz to 32 MHz
	NOTE: Lower height available for limited			1	FREQ. ADJ/MOD (0		D15	-30° - + 85°C, ± 15PPM		Note: Contact factory
	range of frequencies		S =		It Factory for spe its & freq. adjust			nsult factory for special juirements.		for very low current and HC-MOS requirements.
				/						

NOTE: TM84041B5-5.000 000 MHZ is a model number in above example selected with TTL compatible output in 4-Pin DIP package with glass stand offs, and 5PPM stability over 0° to 70°C.

B5

Consult factory for any

required

special testing or screening

5.000 000

EXAMPLE

T

M84

04

1

HC-MOS TTL M83 SERIES VCXO 4 PIN DIP PACKAGE

VOLTAGE CONTROLLED CRYSTAL OSCILLATORS

The state of the s

OPTIONS

OUTPUT LOGIC ● FREQUENCY ● STABILITY

TEMPERATURE RANGE ● SUPPLY VOLTAGE

SPECIFICATIONS

OUTPUT: High Speed C-MOS / TTL Compatible

OPERATING TEMP. RANGE: -45°C to +85°C

As Specified, See Options

STORAGE TEMP. RANGE: -55°C to 125°C

SUPPLY VOLTAGE: $5.0~\text{VDC}, \pm 5\%$

SUPPLY CURRENT: 45 mA MAX. @ 30 MHz

35 mA MAX. @ 20 MHz 25 mA MAX. @ 10 MHz

DUTY CYCLE: 60 / 40%, 50% Level

Tr, Tf: 15.0 nS MAX., 10% to 90% Levels

Voh: Vcc-0.2 V MIN.

Vol: 0.2 V, MAX.

Control Voltage: 0.5 VDC to 4.5 VDC

TRANSFER SLOPE: Positive

ORDERING METHOD

T = TTL HC = HC-MOS HC	OUTPUT LOGIC	PACKAGE TYPE	PIN OPTION	PIN CONNECTIONS	TEMP. RANGE	STABILITY	DEVIATION*	_	FREQUENCY RANGE
HC-MOS Stand Offs) M83G = .8"x.5" Standard DIP (with Glass Stand Offs) S = Consult Factory for special Factory for special Factory for Special To To To C		Standard DIP	04 = 4 Pins	1 -		25 = ± .0025 %			
Standard DIP (with Glass Stand Offs) S = Consult Factory for special Standard DIP (with Glass Stand Offs) S = Consult Factory for Special	HC-MOS			7 GND/CASE	-	50 = ± .005%			32 MHz
S = Consult Factory for special D = -45° to 85°C Deviation over full 0.5 to 4.5 V control voltage range. Deviation per volt = ± deviation / 2 V		Standard DIP (with				100 = ± .01%		_	
		diass stand ons)			-45° to 85°C	voltage range.			

EXAMPLE HC M83G 04 1 B 50 B — 10.000 MHZ Write "Screening to MIL-0-55310/16, Class B, Table II is required.

NOTE: HCM83G041 B50B-10.000 MHz is a model number in above example selected with HC-MOS compatible output in 4-Pin DIP package with glass stand offs, standard Pin Outs, \pm .005% stability over 0°C to 70°C temperature range, and a deviation of \pm 100 ppM over a control voltage of 0.5 to 4.5 VDC.

QPL'D CLOCK OSCILLATORS

M55310/09/14/16/17

- MIL-O-55310/9 (TO5 Equivalent Package)
 - OUTPUT: TTL Square wave.
 - FREQUENCY RANGE: 400 KHz to 30 MHz
 - SCREENING CLASS: B

NOTE: For QPL part number selection see the latest slash sheet issued by DESC on M55310/9.

- MIL-O-55310/14 (DIP Package)
 - OUTPUT: TTL Square wave.
 - FREQUENCY RANGE: .1 Hz to 25 MHz
 - SCREENING CLASS: B

NOTE: For QPL part number selection see the latest slash sheet issued by DESC on M55310/14.

- MIL-O-55310/16 (DIP Package)
 - **OUTPUT:** TTL Square wave.
 - FREQUENCY RANGE: 0.1 Hz to 60 MHz
 - SCREENING CLASS: B

NOTE: For QPL part number selection see the latest slash sheet issued by DESC on M55310/16.

- MIL-O-55310/17 (DIP Package)
 - **OUTPUT:** TTL Square wave.
 - FREQUENCY RANGE: 250 KHz to 32 MHz
 - SCREENING CLASS: B

NOTE: For QPL part number selection see the latest slash sheet issued by DESC on M55310/17

NOTE: Consult Factory for current qualification status on different MIL-0-55310 slash sheets.

CRYSTAL CLOCK OSCILLATORS

WITH USER DEFINED OPTIONS

OPTIONS

OUTPUT LOGIC ● FREQUENCY ● STABILITY
 TEMPERATURE RANGE ● SUPPLY VOLTAGE

SPECIFICATIONS

- Absolute stability: Range .005% thru .1% (Specify) Inclusive of calibration tolerance at 25°C, operating temperature range, input voltage change, load change, aging, shock and vibration.
- Ouput options: Dual Phase, multiple frequency, enable/disable, consult factory.
- Duty cycle: 40-60%
- Storage: -55°C to 125°C
- Environmental: Per MIL-0-55310/16

NOTE: These are typical values, for critical requirements consult factory

TTL

- Supply Voltage: 5V DC ± 10%
- Load: 10TTL up to 20 MHz
 6TTL above 20 MHz
- Output: Square wave "0" = .5V max. "1" = 2.4V min.
- Input Current:
- 1 Hz to 3.2 MHz < 70mA 3.2 MHz to 25 MHz < 30mA 25 MHz to 120 MHz < 70mA

ECL

- Input Current: 75mA max.
- Output: ECL Compatible
 (from 10KH Series)
 or
 (from 100K Series)

HCMOS

- Supply Voltage: 5V ± 10%
- Load: 50 pF
- Von: Vcc -0.2V min.
- Vol: 0.2V max.
- \bullet Input Current: 20 MHz < 30mA 50 MHz < 60mA

CMOS 4000 Series

- Input Voltage: 4.5V to 15V Supply Voltage must be specified
- Output Levels: "0" o.1 (Vdd) max. "1" 0.9 (Vdd) min.
- Input Current: 5V, 3.4mA Typ 15V, 19mA Typ

Note: For frequencies above 10MHz we suggest HCMOS

ORDERING METHOD

OUTPUT LOGIC	PACKAGE DIP	PIN OPTION	FIN				** STABIL	.ITY	TEMP. RANGE	_	FREQUENCY (RANGE)
T = TTL C = CMOS E = ECL (10KH) HC = HCMOS EK = ECL (100K)	M80 = .8"x.5"x.2" Standard DIP (without Glass Stand Offs) M86 = .8"x.5"x.2" Standard DIP (with Glass Stand Offs at 4 places)	14 = 14 Pins 04 = 4 Pins Pin dia = .018" \pm .001		7 GNE 8 OUT 14 Vcc REST NC/		Vee OUT GND	or aging. Fi .0015%. ** ± .00159	025% 05% 11% 5% es not in requency	R = 0°C to 50°C S = 0°C to 70°C X = -20°C to 70°C Y = -40°C to 85°C Z1 = -55°C to 10: Z = -55°C to 125°C ide calibration tolerar accuracy at 25°C is acy at +25°C available Must be specified wher	C 5°C — °C nce ±	TTL = 1Hz to 120MHz CMOS = 700Hz to 12MHz ECL = 3.2MHz to 120MHz HCMOS = 60Hz to 120MHz
EXAMPL	E T	M8G	04	1	D	Z	: -	10	00 MHZ	screening	REENED" if to MIL-0-55310/16, able II is required.

NOTE: TM8G041DZ-100 MHZ is a model number in above example selected with TTL compatible output in 4-Pin DIP package with glass stand offs, standard Pin Outs & ± .01% stability over -55°C to 125°C.

TO5, TO8 CRYSTAL CLOCK OSCILLATORS

WITH USER DEFINED OPTIONS

OPTIONS

 OUTPUT LOGIC ● FREQUENCY ● STABILITY TEMPERATURE RANGE ● SUPPLY VOLTAGE

SPECIFICATIONS

- Absolute Stability: Range .005% thru .1% (Specify) Inclusive of calibration tolerance at 25°C, operating temperature range, input voltage change, load change, aging, shock and vibration.
- Ouput Options: Dual Phase, multiple frequency, enable/disable, consult factory.
- Duty cycle: 40-60%
- Storage: -55°C to 125°C
- Environmental: Per MIL-0-55310/09

NOTE: These are typical values, for critical requirements consult factory

TTL

- Supply Voltage: 5V DC ± 10%
- Load: 10TTL up to 20 MHz 6TTL above 20 MHz
- Output: Square wave "0" = .5V max. "1" = 2.4V min.
- Input Current: .1 Hz to 3.2 MHz < 40mA 3.2 MHz to 25 MHz < 30mA 25 MHz to 75 MHz < 70mA

HC-MOS

- Input Voltage: 5V ± 10%
- Output: Square wave "0" = 0.2V max. "1" = Vdd -0.2V min
- Input Current:

10MHz 20mA max. 20MHz 30mA max. 50MHz 60mA max

CMOS

- Input Voltage: 4.5V to 15V Supply Voltage must be specified
- Output Level: "0" 0.1 (Vdd) max.
- Input Current: 5V. 3.4mA Tvp 15V, 19mA Typ

Note: For frequencies above 10MHz we suggest HCMOS

ORDERING METHOD

OUTPUT LOGIC	PACKAGE SELECTION		NO. OF PINS	PIN	NECTIONS			** STA	BILITY	TEMP. RANGE	_	FREQUENCY (RANGE)
T = TTL C = CMOS HC = HCMOS	05 = T05 08 = T08		8 = 8 Pins	1 =	PIN 4 5 8 REST	CONNECTION GND OUT Vcc NC/ITP		*B = : C = : D = : E = : F = :	ng. Frequency	$\begin{array}{l} \textbf{R} = 0^{\circ}\text{C to } 50^{\circ}\text{C} \\ \textbf{S} = 0^{\circ}\text{C to } 70^{\circ}\text{C} \\ \textbf{X} = -20^{\circ}\text{C to } 70^{\circ}\text{I} \\ \textbf{Y} = -40^{\circ}\text{C to } 85^{\circ}\text{I} \\ \textbf{ZI} = -55^{\circ}\text{C to } 10 \\ \textbf{Z} = -55^{\circ}\text{C to } 125 \\ \text{clude calibration tolerar} \\ \textbf{Accuracy at } 25^{\circ}\text{C} \\ \text{is} \end{array}$	5°C —	TTL = 1Hz to 60MHz CMOS = 5MHz to 12MHz HC-MOS = 60Hz to 50MHz
				S =	Special Pin Factory)	Out (Consult		** ± .0	0015% Accur oility options.	acy at +25°C available Must be specified wher		
EXAMPL	E	С	05	8	1	D	Z 1	1.	_ 1	0 MHZ	screenin	CREENED" if g to MIL-O-55310/16,

NOTE: C0581DZ1-10 MHZ is a model number in above example selected with CMOS compatible output in TO5 package with 8 pins, standard Pin Outs, ± .01% stability over -55°C to 105°C.

Class B, Table II is required.

FLATPACK LCC PACKAGES CRYSTAL CLOCK OSCILLATO

WITH USER DEFINED OPTIONS

OUTPUT LOGIC	PACKAGE TYPE		PIN CONNECTION		G ME		TEMP. RANGE	_	FREQUENCY RANGE
F = TTL HC = HCMOS Please contact the factory if you have other output requirements.	480 = .480" x .480" Leadless chip package with 625 = .625" x .625" Flat Package 20 Pins	carrier 40 pins x .15"	= LCC-PACKA6 PIN 4,10 31,37 39 REST = FLAT-PACKA6 PIN 10 11 20 REST	CONM. Voc GND OUT NC/ITP	Frequency accu	.5% 6 6 not include c racy at 25°C ccuracy at +:	25°C available on all stability	_	TTL = 60Hz to 60MHz HC-MOS = 60Hz to 60MHz
XAMPLE	нс	480	1	D	Z	_	40MHz	i	Write "Screened" if screen- ing to MIL-0-55310/16, Class

NOTE: HC4801DZ-40.000000MHz is a model number in above example selected with HC-MOS compatible output in a 40 Lead, LCC package with glass stand offs, standard Pin Out, ± .01% stability over -55°C to +125°C.

TM1100 SERIES — 4 PIN DIP PACKAGE

CRYSTAL CLOCK OSCILLATORS

OUTPUT LOGIC • FREQUENCY • STABILITY **OPTIONS**

TEMPERATURE RANGE ● SUPPLY VOLTAGE

SPECIFICATIONS

OUTPUT: TTL COMPATIBLE

OPERATING TEMP. RANGE: 0°C to +70°C STORAGE TEMP. RANGE: -55°C to 125°C

SUPPLY VOLTAGE: $5.0 \text{ VDC}, \pm 10\%$

SUPPLY CURRENT: 60 mA MAX. @ 50 MHz

45 mA MAX. @ 30 MHz 30 mA MAX. @ 20 MHz

20 mA MAX. @ 10 MHz

DUTY CYCLE: 60/40%, at the 1.4V level

Tr. Tf: 60 Hz to 4 MHz. 20 ns MAX. 4.01 MHz to 20 MHz, 10 ns MAX. Above 20.0 MHz, 5 ns MAX.

Voh: 2.4 V MIN. Vol: 0.5 V, MAX.

PIN CONNECTIONS								
1	SEE OPTION CHART							
7	GND / CASE							
8	OUTPUT							
14	Vcc							

100 MHz

ORDERING METHOD

STANDARD SERIES—TTL	ABSOLUTE STABILITY			_	FREQUENCY			
TM1100	± .01%	OPT. #	DESCRIPTION	PIN 1 FUNC.	PIN 1	PIN 8		60 Hz
TM1114	± .05%	А	STANDARD	N.C.	N.C.	w		to 120 MHz
TM1115	± .1%	AD**	DUAL PHASE	OUTPUT	w	w	—	
TM1144 TM1145	± .0025% ± .005%	AE**	ENABLE	INPUT				
1111140	⊥ .003%	AF**	DUAL FREQ. ***	OUTPUT		w		
		AZ**	TRI-STATE	INPUT				

EXAMPLE	TM1100	AE	_	40 MHz	Write "Screened" if screening to MIL-0-55310/16, Class B, Table II is required

NOTE: TM1100AE-40.000000 MHz is a model number in above example selected with TTL compatible output in 4-pin DIP package with glass stand offs, standard Pin Out, ± .01% stability over 0°C to 70°C, and ouput disable capability.

^{**}Not available above 50MHz

^{***} Pin 1 freq. is binarily derived from the pin 8 freq.

CRYSTAL CLOCK OSCILLATORS

OPTIONS • OUTPUT LOGIC • FREQUENCY • STABILITY

• TEMPERATURE RANGE • SUPPLY VOLTAGE

SPECIFICATIONS

OUTPUT: HIGH SPEED C-MOS

OPERATING TEMP. RANGE: 0°C to +70°C STORAGE TEMP. RANGE: -55°C to 125°C

SUPPLY VOLTAGE: $5.0 \text{ VDC}, \pm 10\%$

SUPPLY CURRENT: 60 mA MAX. @ 50 MHz

45 mA MAX. @ 30 MHz 30 mA MAX. @ 20 MHz 20 mA MAX. @ 10 MHz

DUTY CYCLE: 60/40%, at the 50% level **Tr. Tf:** 5.0nS MAX, 10% to 90% Levels

Voh: Vcc-0.2V MIN **Vol:** 0.2 V, MAX.

PIN CONNECTIONS								
1	SEE OPTION CHART							
7	GND / CASE							
8	OUTPUT							
14	Vcc							

ORDERING METHOD

STANDARD SERIES—HCMOS	ABSOLUTE STABILITY				_	FREQUENCY		
HCM1100	土 .01%	OPT. #	DESCRIPTION	PIN 1 FUNC.	PIN 1	PIN 8		60 Hz
HCM1114	± .05%	А	STANDARD	N.C.	N.C.	w		to 50 MHz
HCM1115	± .1%	AD**	DUAL PHASE	OUTPUT	سنت	~~~	_	
HCM1144 HCM1145	± .0025% ± .005%	AE**	ENABLE	INPUT		-J-		
1101111110	± .000 %	AF**	DUAL FREQ. ***	OUTPUT		w		
		AZ**	TRI-STATE	INPUT				

EXAMPLE HCM1100 AE	-	40 MHz	Write "Screened" if screening to MIL-0-55310/16, Class B, Table II is required
--------------------	---	--------	--

NOTE: HCM1100AE-40.000000 MHz is a model number in above example selected with HC-MOS compatible output in 4-pin DIP package with glass stand offs, standard Pin Out, ± .01% stability over 0°C to 70°C, and ouput disable capability.

^{**}Not available above 50 MHz

^{***}Pin 1 freq. is binarily derived from the pin 8 freq.

EM1100 SERIES — 4 PIN DIP PACKAGE — 10 MHz - 350 MHz

CRYSTAL CLOCK OSCILLATORS

OPTIONS

- OUTPUT LOGIC FREQUENCY STABILITY
- TEMPERATURE RANGE SUPPLY VOLTAGE

SPECIFICATIONS

OUTPUT: 10K Series Compatible to 120 MHz

10KH Series Compatible above 120 MHz

OPERATING TEMP. RANGE: 0°C to +70°C STORAGE TEMP. RANGE: -55°C to 125°C SUPPLY VOLTAGE: -5.2 VDC. \pm 5%

SUPPLY CURRENT: 40 mA TYP., 60 mA MAX.

DUTY CYCLE: 60 / 40%, 50% Level Tr, Tf: 2.0 nS MAX., 20% to 80% Levels

Voh: -0.98 V MIN., -0.74 V MAX. Vol: -1.63 V MAX.. -1.95 V MIN.

F	PIN CONNECTIONS						
1	SEE OPTION CHART						
7	VEE						
8	OUTPUT						
- 14	Vcc / CASE						

NOTE: With the exception of the "AR" Output Option, these devices will not develop an Output Signal without an External Emitter Resistor connected from the Output to VEE.

ORDERING METHOD

STANDARD SERIES—ECL	ABSOLUTE STABILITY			-	FREQUENCY				
EM1100	± .01%	OPT. #	DESCRIPTION	PIN 1 FUNC.	PIN 1	PIN 8	FREQ. RANGE AVAILABLE		
EM1114	± .05%	A	Standard	NONE	N.C.	~~~	10 MHz - 350 MHz	_	10 MHz
EM1115	± .1%	AD	Dual Phase	OUTPUT	~~	<i>></i>	10 MHz - 120 MHz		to 350 MHz
EM1144	+ .0025%	AE	Enable	INPUT		~~_	10 MHz - 120 MHz		330 WITZ
		AEM	Enable	INPUT		~	10 MHz - 350 MHz		"AF" Option,
EM1145	± .005%	AF	F, F/2 OUT	F/2 0UT	\sim	~~~	20 MHz - 350 MHz		Specify Pin #8
		AR*	INTERNAL RE	NONE	N.C.	<i>></i>	10 MHz - 350 MHz		frequency
		* Internal Resisto	Emitter r (620 Ω)						

EXAMPLE

EM1100 **AEM** 350 MHz Write "Screened" if screening to MIL-0-55310/16, Class B, Table II is required

NOTE: EM1100AEM-350MHz is a model number in above example selected with ECL compatible output in 4-pin DIP package with glass stand offs, standard Pin Outs, \pm .01% stability over 0°C to 70°C, and outut disable capability.

10/06/92

Mr. Phil Accardi United Technologies Photonics 1289 Blue Hills Avenue Bloomfield, CT 06002

Dear Mr. Accardi:

Thank you for your recent inquiry about Oscillatek oscillators. Please find enclosed a catalog listing our product line.

Oscillatek's representative in your area is
Addelco Corporation
20 Freeman Place
Needham, MA 02192
Phone: 617-444-4754

If you have a requirement or if you would like to receive a quotation, please contact our representative or our sales department. We are eager to earn your business.

Our sales department consists of Bill Beck, Marketing Manager; Angela Baumgarten, Marketing Administrator; and Tricia Ebeling, Sales Administrator. We will promptly provide answers to any pricing, delivery, or technical questions you may have.

Thank you for your interest in our company. We look forward to your call.

Best regards,

Tricia Cheling
Tricia Ebeling
Sales Administrator

Enclosure

PROGRAMMABLE DIVIDERS TM1135 SERIES

DUAL BAUD RATE GENERATORS

FEATURES

- Pin for pin compatible with most of the standard dual baud rate generators available in the market to provide a crystal controlled reference for serial communications applications.
- Very versatile can be used as a programmable oscillator with crystal frequency in the range of 3.20MHz to 5.20MHz
- Internal crystal oscillator designated to meet your temperature/stability requirements.
- CMOS, TTL Compatibility
- Choice of 2 x 16 output frequencies, selectable manually or using software control.
- Dual feature allows to receive and transmit simultaneously.
- Resistance weld, hermetically sealed 18 Pin Dip package, can be screened to MIL-O-55310/16. Class B. Table II.
- TM1135D has direct oscillator frequency available at Pin 1 along with divide by 4 (oscillator ÷ 4) available at Pin 10. TM1135C is similar to TM1135D except oscillator frequency is not available at Pin 1.
- TM1135E is same as TM1135D except crystal frequency is 4.9152MHz to get zero error at 19,200 baud.
- TM1135C, TM1135D, and TM1135E operate from a single 5V DC supply.

PIN FUNCTIONS

PIN NO.	CONN.	FUNCTION
1	NC Fo	No connection for TM1135C. Oscillator output for TM1135D and TM1135E
2	Vcc	Power supply; 5VDC
3	FR	ver output selected by Receiver Divisor select data bits.
4-7	RA, RB, TC, RD 4 5 6 7	These inputs as shown in Table 1, select the receiver output frequency Fr.
8	STR	Strobing or hard wiring this Pin to high level loads the receiver data (RA, RB, Rc, RD) into the receiver divisor select register
9	NC	No connection
10	F0/4	Internal oscillator frequency divided by 4
11	GND	Ground
12	STT	Strobing or hard wiring this pin to high level, loads the transmitter data (TA, TB, Tc, Tb) into the transmitter-divisor select register.
13-16	TD. TC. TB. TA 13 14 15 16	These inputs as shown in Table 1, select the transmitter output frequency FT.
17	FT	This output runs at a frequency selected by the transmitter divisor select data bits.
18	NC	No connection

OUTPUT OPTIONS

TABLE 1

			TM1135		Fo = 5.0 + 4 = 1.1			TM113	35 E REF. = F	Fo = 4 0 ÷ 4 = 1		
Divisor Select DCBA	Desired Baud Rate	Desired Frequency (KHz)	Actual Baud Rate	Actual Frequency (KHz)	Deviation	Divisor	Duty Cycle	Actual Baud Rate	Actual Frequency (KHz)	Deviation	Divisor	Duty Cycle
0000	50.00	0.80000	50.00	0.800000	0.0000%	6336	50-50	50.00	0.800000	0.0000%	6144	50-50
0001	75,90	1.20000	75.00	1.200000	0.0000%	4224	50-50	75.00	1.200000	0.0000%	4096	50-50
0010	110.00	1.76000	110.00	1.760000	0.0000%	2880	50-50	109.93	1.758983	0.0100%	2793	40-60
0011	134.50	2.15200	134.52	2.152357	0.0166%	2355	50-50	134.50	2.152000	0.0000%	2284	50-50
0100	150.00	2.40000	150.00	2.400000	0.0000%	2112	50-50	150.00	2.400000	0.0000%	2048	50-50
0101	300.00	4.80000	300.00	4.800000	0.0000%	1056	50-50	300.00	4.800000	0.0000%	1024	50-50
0110	600.00	9.60000	600.00	9.600000	0.0000%	528	50-50	600.00	9.600000	0.0000%	512	50-50
0111	1200.00	19.20000	1200.00	19.200000	0.0000%	264	50-50	1200.00	19.200000	0.0000%	256	50-50
1000	1800.00	28.80000	1800.00	28.800000	0.0000%	176	50-50	1796.49	28.743859	0.1949%	171	40-60
1001	2000.00	32.00000	2005.06	32.081013	0.2532%	158	50-50	1994.81	31.916883	0.2597%	154	50-50
1010	2400.00	38.40000	2400.00	38.400000	0.0000%	132	50-50	2400.00	38.400000	0.0000%	128	50-50
1011	3600.00	57.60000	3600.00	57.600000	0.0000%	88	50-50	3614.11	57.825882	0.3921%	85	40-60
1100	4800.00	76.80000	4800.00	76.800000	0.0000%	66	50-50	4800.00	76.800000	0.0000%	64	50-50
1101	7200.00	115.20000	7200.00	115.200000	0.0000%	44	50-50	7144.19	114.306976	0.7751%	43	40-60
1110	9600.00	153.60000	9600.00	153.600000	0.0000%	33	48-52	9600.00	153.600000	0.0000%	32	50-50
1111	19200.00	307.20000	19800.00	316.800000	3.1250%	16	50-50	19200.00	307.200000	0.0000%	16	50-50

BLOCK DIAGRAM

■ ENVIRONMENTAL

Per MIL-0-55310/16 (Typical) For special requirements consult factory

ELECTRICAL CHARACTERISTICS (TYPICAL)

MAXIMUM RATINGS

MAXIMUM RATINGS	
Operating Temperature Range	O°C to 70°C
Storage Temperature Range5	5°C to 125°C
+ VE Voltage on any pin w.r.t. ground	+ 8v
- VE Voltage on any pin wirit ground	- 3v

■ STANDARD CONDITIONS (UNLESS OTHERWISE NOTED)

Temperature = 0° C to 70° C Vcc = +5V ± 5%

D C CHARACTERISTICS

CHARACTERISTICS	MIN	TYP	MAX	UNIT	CONDITIONS
Input Voltage Low level = (VIL) High level = (VIH)	_ 2.0	_	0.8	V V	
Output Voltage Low level = (VOL) High level = (VOH)	- 3.5	 	0.4 0.4 —	> > >	OL = 1.6mA, for Fo/4 = 3.4mA, for FR, FT IOM = 100 µA
Input Current Low level (IIL)	-	-	- 0.1		Vin = gnd Ra, Rd, Ta, Td
Input Capacitance (All inputs)	_	5	10	pF	Vin = GND
Supply Current = (ICC)			50	mA	

A C CHARACTERISTICS

CHARACTERISTICS	MIN	TYP	MAX	UNIT	CONDITIONS
Clock Frequency = (Fo) Strobe Pulse Width	.01 150	_	5.2 DC	MHz	
Input Set Up Time	200	_	_	nS	
Input Hold Time Strobe to New Freg.	50	_	_	nS	
Delay	_		3.5	иS	at Fo=5 MHz

ORDERING METHOD

ORDERING								
MODEL	=		RATURE BILITY		TE	MPERATURI RANGE	E	FREQUENCY RANGE
TM1135 C TM1135 D TM1135 E TM1135 S		C = ± D = ± E = ± F = ± NOTE:	.0025% .005% .01% .05% .1%	ıly	Y = -	0°C to +50 0°C to +70 20°C to +70 30°C to +85 55°C to +12	0°C 0°C 5°C	TM1135 C = 5.0688 MHz onl TM1135 D = 5.0688 MHz onl TM1135 E = 4.9152 MHz onl TM1135 S = specify from 3.2 MHz to 5.20 MHz to use as programmable oscillator
					/			
EXAMPLE	TM1135 C	-	D	S	5.0	688 MHz		"SCREENED" if screening to MIL-O- 0/16, Class B, Table II is required.

Oscillatek Crystal Oscillators SPECIFYING AND RFQ FORM

PLEASE SPECIFY CRITICAL PARAMETERS ONLY

Name:	_ Title:
Company:	Phone: Ext.:
Address:	Dept.: Mail Stop:
City: State:	Zip: Date:
QUANTITY NEEDED:	
Immediate:	Delivery Required:
Future:	Approximate Due Date:
CUSTOMER SPEC DRAWING NO.	
DEVICE TYPE AND APPLICATION:	
FREQUENCY & STABILITY	OUTPUT WAVEFORM:
Frequency	_ Sine □
Frequency Stability Versus	Output Level
Temperature	Harmonics Subs.
Time	Spurious
Supply Variation	_ Load
Load Variation	VSWR
Acceleration	_ Square □
Operating Temp. Range °C to °	C TTL CMOS ECL HCMOS
Freq. Tolerance @ 25°C	Rise Time Fall Time
Freq. Trim Range	
POWER SUPPLY:	Duty Cycle Measured @
Osc ± @ m	a Logic "0" Logic "1"
Oven ± @ m	a Load
Warm Up	Logic Supply
ADDITIONAL SPECS OR COMMENTS:	
ENVIRONMENTAL:	VCXO CHARACTERISTICS (FREQ. CONTROL):
Storage/Non-Op. Temp	_ Frequency Deviation
Shock	Control Voltage
Vibration	Linearity
Acceleration	Transfer Function
Humidity	Modulation Rate
Seal	Input Impedance
Other	_ Other
MECHANICAL:	
	I/O Connectors
Size	
Size Mounting	_ Finish
	Finish

ORDER INFORMATION

Oscillatek offers designers a wide selection of high quality crystal controlled thick film oscillators, temperature compensated crystal oscillators and a variety of custom designed oscillators for unique applications.

Oscillatek is a service oriented organization where sales and engineering work very closely with the customer to achieve optimum designs which give the best performance with reasonable cost. Engineering also helps our customers by providing samples in a timely manner. Our philosophy is to solve customer problems by establishing open communications with our customers. Engineering is constantly involved in research and development to prepare Oscillatek for tomorrow's oscillator requirements.

Our Quality Control department is responsible for maintenance of quality by constantly monitoring the following:

- 1. Administration of a MIL-I-45208 inspection system on a continuous basis.
- 2. Calibration of test and production equipment in accordance with MIL-STD-45662.
- 3. Incoming inspection of all raw materials and components.
- 4. In-process inspection at critical points.
- 5. Final inspection for acceptance.

We are very responsive to all inquiries and requests for information from our customers. Besides our standard oscillators described in the following pages, we also provide service for special custom applications to fit your needs precisely. Call us or mail a request for product information; it may be one of the most important steps you have ever taken to fulfill your oscillator needs.

TECHNICAL ASSISTANCE

Since Oscillatek is represented across the U.S. and throughout the world by trained field engineers and representatives, any technical assistance you may need is just a phone call and a few minutes away. Whether you need additional technical information, assistance in selecting a crystal oscillator or just want to know if your design is taking advantage of the very latest technology contact the Oscillatek factory or the representative nearest you. You'll receive the information you need, without any obligation.

WARRANTY

Products manufactured by Oscillatek are warranted against defective material and workmanship for one year from date of shipment. Oscillatek's obligation for any defect shall be limited to repair or replacement of defective parts. Oscillatek assumes no liability if defects result from improper use, operation outside rated capacities. repairs not made by us, or misapplication of the equipment.

No other warranty is expressed or implied, and Oscillatek neither makes nor authorizes any other person to make any other warranty concerning its products. Oscillatek is not liable for consequential damages.

Warranty returns must first be authorized by Quality Assurance and are to be returned prepaid.

ORDERING INFORMATION

Always order by model number or part number. If modification or special testing to meet specific requirements is needed, contact our sales department.

Your order may be placed through your local representative or directly to our factory:

> 620 N. Lindenwood Drive Olathe, Kansas 66062 U.S.A.

Phone: 913-829-1777 Telex: 437045 Fax: 913-829-3505

Unless shipping instructions accompany the order, we shall use our own judgement as to the best method of shipment. The price of our products includes packing but does not include shipping costs.

NOTE: Catalog specifications are subject to change without notice.

CRYSTAL OSCILLATORS

LOCATION

OSCILLATEK is located in Johnson County, Kansas in the city of Olathe (O LAY THUH), a suburb of Greater Kansas City.

From Kansas City International Airport (MCI) take I-29 south to I-635 south to I-35 south. Take the first Olathe exit (approximately 35 miles south of the airport) and go left 4 blocks on Santa Fe to Lindenwood Drive, then left to the OSCILLATEK plant, 620 N. Lindenwood Drive.

Shuttle bus service is available hourly from the airport to most major hotels in Johnson County.

A DOVER TECHNOLOGIES COMPANY

620 NORTH LINDENWOOD DRIVE OLATHE, KANSAS 66062 PHONE: (913) 829-1777 TELEX: 437045 FAX: (913) 829-3505