Мультимодальное селективное комбинирование классификаторов для выделения полезного сигнала на энцефалограмме при быстром потоковом предъявлении визуальных раздражителей

Бухонов Сергей Александрович

Научный руководитель: д. т. н. Моттль Вадим Вячеславович

Введение

Цель работы

Определение наличия патологии на предъявляемых эксперту снимках маммограмм по записываемому сигналу энцефалограммы

Мотивация

Быстрый рост количества проходящих обследование, увеличение объема данных, создаваемых новыми технологиями скрининга

Применение ЭЭГ

Электроэнцефалография изначально появилась и получила широкое применение в физиологии и медицине как средство изучения механизмов формирования поведения человека, главным образом, для целей диагностики заболеваний мозга.

Применение ЭЭГ в ИМК

Построение интерфейса «мозг-компьютер» основано на регистрации электрической активности различных участков головного мозга в виде электроэнцефалограмм и их последующем анализе

Новое применение ИМК

Применение ИМК для существенного повышения скорости обработки снимков маммограмм экспертами-маммологами

Регистрация ЭЭГ в процессе просмотра экспертом быстро сменяющихся изображений маммограмм

Пример целевого объекта (маммограмма с патологией)

Пример нецелевого объекта (маммограмма без патологий)

C.Hope, A. Sterr, P.E. Langovan, N.Geades, **D.Windridge**, K.Young, K.Wells. High Throughput Screening for Mammography using a Human-Computer Interface with Rapid Serial Visual Presentation (RSVP) - March 28, 2013

Новое применение ИМК

Применение ИМК для существенного повышения скорости обработки снимков маммограмм экспертами-маммологами

Структура одного акта предъявления

Эксперту в течение 110 милисекунд (1,1 секунды) показывают серию из 11 маммограмм

Два типа серий:

Класс 1 – все маммограммы без патологий

Класс 2 – внутри серии есть одна раковая маммограмма

Примеры ЭЭГ сигналов при просмотре маммограмм

Сплошные линии — ЭЭГ нескольких экспертов (испытуемых) при просмотре маммограмм **с патологиями**

Пунктирные линии – ЭЭГ нескольких экспертов при просмотре маммограмм **без патологий**

Предварительная обработка фрагментов ЭЭГ

До предварительной обработки

$$\mathbf{x} = (x_i \in R, i = 1,...,m), \quad m = 1100$$

Прореживание в step=11 раз

$$\mathbf{x}' = (x_i' \in R, i = 1,...,m')$$
 $x_i' = x_{(i-1)\cdot step+1},$
 $m' = m / step = 1100 / 11 = 100$

Сглаживание скользящим окном ширины w=11

$$x_{i}'' = \frac{1}{w} \sum_{k=i-\lfloor \mathbf{w}/2 \rfloor}^{i+\lfloor \mathbf{w}/2 \rfloor} x_{k}', \quad i = \lfloor \mathbf{w}/2 \rfloor + 1, ..., m' - \lfloor \mathbf{w}/2 \rfloor$$
$$x_{i}'' = x_{\lfloor \mathbf{w}/2 \rfloor + 1}', i < \lfloor \mathbf{w}/2 \rfloor + 1 \quad x_{i}'' = x_{N'-\lfloor \mathbf{w}/2 \rfloor}', \quad i > m' - \lfloor \mathbf{w}/2 \rfloor$$

Обучающее множество фрагментов ЭЭГ:
$$\{\mathbf{x}_j, y_j\}, \quad \mathbf{x}_j = \mathbf{x}_j(\omega), \quad j = 1,...,N$$
 $y_j = +1$ - есть маммограмма с патологией (целевой класс) $y_j = -1$ - нет маммограмм с патологией (не целевой класс)

Решающее правило в виде линейной разделяющей гиперплоскости:

$$d(\mathbf{x}; \mathbf{a}, b) = \mathbf{a}^T \mathbf{x} + b \quad \begin{cases} \geq 0 \Rightarrow \hat{y}(\mathbf{x}) = +1, \\ < 0 \Rightarrow \hat{y}(\mathbf{x}) = -1, \end{cases}$$
 $\mathbf{a} \in R^m$ - направляющий вектор b - смещение вдоль направляющего вектора

Задача нахождения оптимальной разделяющей гиперплоскости:

$$\begin{cases} \sum_{i=1}^{m} a_i^2 + C \sum_{j=1}^{N} \delta_j \to \min(\mathbf{a}, b, \mathbf{\delta}), \\ y_j (\sum_{i=1}^{m} a_i x_{ij} - b) \ge 1 - \delta_j, & j = 1, ..., N, \\ \delta_j \ge 0, & j = 1, ..., N, \end{cases}$$

Обучающее множество фрагментов ЭЭГ:
$$\{\mathbf{x}_j,y_j\},\ \mathbf{x}_j=\mathbf{x}_j(\omega),\ j=1,...,N$$
 $y_j=+1$ - есть маммограмма с патологией (целевой класс) $y_j=-1$ - нет маммограмм с патологией (не целевой класс)

Решающее правило в виде линейной разделяющей гиперплоскости:

$$d(\mathbf{x}; \mathbf{a}, b) = \mathbf{a}^T \mathbf{x} + b \quad \begin{cases} \geq 0 \Rightarrow \hat{y}(\mathbf{x}) = +1, \\ < 0 \Rightarrow \hat{y}(\mathbf{x}) = -1, \end{cases}$$
 $\mathbf{a} \in R^m$ - направляющий вектор b - смещение вдоль направляющего вектора

Задача нахождения оптимальной разделяющей гиперплоскости при учете требования гладкости решающего правила

$$\begin{cases} \sum_{i=1}^m a_i^2 + \gamma \sum_{i=2}^m (a_i - a_{i-1})^2 + C \sum_{j=1}^N \delta_j \to \min(\mathbf{a}, b, \mathbf{\delta}), & \gamma \text{ - параметр, определяющий } \\ y_j (\sum_{i=1}^m a_i x_{ij} - b) \geq 1 - \delta_j, & j = 1, \dots, N, \\ \delta_j \geq 0, & j = 1, \dots, N, \end{cases}$$

Обучающее множество фрагментов ЭЭГ:
$$\{\mathbf{x}_j,y_j\},\ \mathbf{x}_j=\mathbf{x}_j(\omega),\ j=1,...,N$$
 $y_j=+1$ - есть маммограмма с патологией (целевой класс) $y_j=-1$ - нет маммограмм с патологией (не целевой класс)

Решающее правило в виде линейной разделяющей гиперплоскости:

$$d(\mathbf{x}; \mathbf{a}, b) = \mathbf{a}^T \mathbf{x} + b \quad \begin{cases} \geq 0 \Rightarrow \hat{y}(\mathbf{x}) = +1, \\ < 0 \Rightarrow \hat{y}(\mathbf{x}) = -1, \end{cases}$$
 $\mathbf{a} \in R^m$ - направляющий вектор b - смещение вдоль направляющего вектора

Задача нахождения оптимальной разделяющей гиперплоскости при учете селективности

$$\begin{cases} J(a_1,...,a_m,b,\delta_1,...,\delta_N,C,\mu) = \sum_{i=1}^m q(a_i \mid \mu) + C \sum_{j=1}^N \delta_j \to \min(\mathbf{a},\ b,\ \mathbf{\delta}), \\ q(a_i \mid \mu) = \begin{cases} 2\mu \mid a_i \mid & \text{if } \mid a_i \mid \leq \mu, \\ \mu^2 + a_i^2 & \text{if } \mid a_i \mid > \mu, \end{cases} \\ y_j \left(\mathbf{a}^T \mathbf{x}_j + b\right) \geq 1 - \delta_j, \ \delta_j \geq 0, \ j = 1,...,N. \end{cases}$$

$$\mu \text{ - степень селективности критерия при выборе информативных отсчетов}$$

Обучающее множество фрагментов ЭЭГ:
$$\{\mathbf{x}_j,y_j\},\ \mathbf{x}_j=\mathbf{x}_j(\omega),\ j=1,...,N$$
 $y_j=+1$ - есть маммограмма с патологией (целевой класс) $y_j=-1$ - нет маммограмм с патологией (не целевой класс)

Голосование по большинству

$$y = a(x) = sign\left(\sum_{i=1}^{n} a_i(x)\right)$$

где $a_i(x)$ - ответ і-ого алгоритма на объект x

Эксперимент: с учетом предварительной обработки и соблюдения требования гладкости решающего правила

	сглаживание	-	-	+	+
	требование				
	гладкости	_	+	_	+
	решающего				
	правила				
	27	0,748	0,808	0,728	0,829
	28	0,738	0,830	0,711	0,835
	30	0,772	0,818	0,744	0,825
	32	0,666	0,681	0,644	0,725
)да	33	0,765	0,831	0,731	0,852
살	37	0,720	0,826	0,736	0,845
электрода	39	0,706	0,693	0,681	0,743
	42	0,771	0,858	0,781	0,867
номер	46	0,643	0,745	0,695	0,767
É	53	0,694	0,769	0,729	0,786
-	58	0,761	0,714	0,675	0,735
	60	0,749	0,723	0,685	0,747
	63	0,733	0,747	0,701	0,745
	все	0,764	0,805	0,815	0,811

Вычислительные эксперименты

Эксперимент: с учетом критерия селективности

Вычислительные эксперименты

Эксперимент: комбинированный классификатор

Испытуемый	AUC	AUC
	(исходный)	(Комбинированный
		классификатор)
1	0.84	0.93
2	0.71	0.85
3	0.82	0.9
4	0.86	0.91

Спасибо за внимание!

- 1. В.В. Сулимова, О.В. Красоткина, С.А. Бухонов, В.В. Моттль: Применение интерфейса мозг-компьютер для распознавания маммограмм с патологиями (ITNT 2019)
- 2. Sulimova V., Bukhonov S., Krasotkina O., Mottl V., Windridge D.: Reguralized SVMs for classification of image evoked EEG potential captured from an observer.

 MLDM 2019