Searching HAS

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

63-158433

(43)Date of publication of application: 01.07.1988

(51)Int.Cl.

G01L 3/10

(21)Application number: 61-307214

(71)Applicant: ATSUGI MOTOR PARTS CO LTD

(22)Date of filing: 23.12.1986

(72)Inventor: IO SHINICHI

.....

(54) TORQUE SENSOR

(57)Abstract:

PURPOSE: To detect torque with good response and high accuracy, at low cost and in non-contact manner regardless of rest or rotation states by converting torsional displacement to change in the amount of magnetic flux and detecting the amount of the change in magnetic flux by a plurality of magnetic detecting elements in non- contact manner.

CONSTITUTION: The distal end portion of a first shaft 1 is made a structure capable of generating torsional displacement and connected to a second shaft 3. A prescribed number of poles N and S are alternately arranged as fixed magnetic poles around a connecting portion and fixed to the second shaft 3. First and second pickup paths 11 and 12 of the same numbers as those of the poles N and S, respectively, are arranged so that the pickup paths oppose to the intermediate positions of the magnetic poles. A plurality of magnetic detecting elements 13 and 14 for detecting changes in magnetic fluxes flowing in the first and second pickup paths 11

and 12, respectively, are arranged in non-contact with the first shaft 1. To which of the first and second pickup paths 11 and 12 the pole N approaches changes the amount of the magnetic fluxes flowing in the first and second pickup paths 11 and 12, respectively. From the change in the mount of the magnetic fluxes, the torsional displacement of the first shaft 1 relative to the second shaft 3 is detected in non-contact manner.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

Jud. J. 5 . 1"10

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

(19)日本国特許庁(JP)

(12) 特 許 公 報(B2)

庁内整理番号

(11)特許出願公告番号

特公平6-78956

(24)(44)公告日 平成6年(1994)10月5日

(51)Int.Cl.5

識別記号

FI

技術表示箇所

G01L 3/10

F

発明の数1(全 11 頁)

(21)出願番号 特願昭61-307214

(22)出願日

昭和61年(1986)12月23日

(65)公開番号

特開昭63-158433

(43)公開日

昭和63年(1988)7月1日

(71)出願人 999999999

株式会社ユニシアジェックス 神奈川県厚木市恩名1370番地

(72)発明者 猪尾 伸一

神奈川県厚木市恩名1370番地 厚木自動車

部品株式会社内

(74)代理人 弁理士 青木 輝夫 (外1名)

審査官 治田 義孝

(56)参考文献 特開 昭59-46526 (JP, A) 実開 昭55-36354 (JP, U)

(54) 【発明の名称】 トルクセンサ

1

【特許請求の範囲】

【請求項1】第1シャフトの先端部を捩れ変位の発生が可能な構造として第2シャフトに連結し、この連結部の周囲を取り囲むように所定数のN極およびS極を固定磁極として交互に配設して第2シャフトに固定し、これらのN極およびS極と同数の第1ピックアップ路および第2ピックアップ路をそれぞれ各磁極の中間位置に対向するように配設するとともに、第1、第2ピックアップ路を充れる磁束の変化を検出する磁気検出素子を第1シャフトに対して非接触となるように複数個配設し、該磁気検出素子のうち少なくとも2つ以上のものを第1、第2ピックアップ路における第1シャフトの軸線からの機械的偏心等を補正するように前記軸線を中心として所定角度毎に設け、第2シャフトに対して第1シャフトが捩れ変位したとき前記N極が第1ピックアップ路あるいは第

2

2ピックアップ路の何れかに近接することによって第 1、第2ピックアップ路を流れる磁束量を変化させ、こ の磁束の変化から第2シャフトに対する第1シャフトの 捩れ変位を検出するようにしたことを特徴とするトルク センサ。

【請求項2】前記磁気検出素子は、偏心補正を行う素子として第1シャフトの軸線を中心として180°の角度で相対する位置に配設される2つの素子からなることを特徴とする特許請求の範囲第1項記載のトルクセンサ。

【請求項3】前記磁気検出素子は、第1シャフトの軸線を中心として180°の角度で相対する位置に配設される2つの素子と、これらの位置以外に配設され、偏心補正を行う第1、第2ピックアップ路の間の磁束密度の不均一を補正する第3の素子とからなることを特徴とする特許請求の範囲第1項記載のトルクセンサ。

【発明の詳細な説明】

(産業上の利用分野)

本発明はトルクセンサ、特に回転トルクを非接触で精度 良く測定するトルクセンサに関する。

(従来の技術)

一般に、回転駆動力によって駆動される機器の数は非常に多く、その適用分野は多岐に亘っている。このような機器の制御にはトルク制御が重要な位置を占める場合が少なくない。すなわち、トルクは回転駆動系の制御を行う際の最も基本的かつ重要なパラメータの1つであり、トルクと回転数の情報を得るとそれらの積が馬力に比例するので動力の発生状態および伝達状態を把握することが可能になる。

従来のトルクセンサとしては、例えばこれを車両のステ アリングホイールへ加えられる操舵力を検出する操舵力 検出装置に適用したものとして、特開昭54-17228号公 報に記載のものがある。この装置では、ステアリングホ イールとステアリングシャフトとを弾性体を介して連結 し、操舵時に操舵トルクの大きさに応じて弾性体に生じ る捩れ作用によりステアリングホイールとステアリング シャフトとの間に生じる相対捩れ変位をステアリングホー イールとステアリングシャフトとの間に介装された接点 のON-OFFにより検出している。ところが、このような 装置では捩れ変位によりON-OFFされる接点やマイクロ スイッチ等を配設するため、これらの接点の配設に高度 な工作精度が要求され、また、ONとなる相対捩れ変位量 やOFFとなる相対捩れ変位量を個々に設定するのが困難 であるという問題点がある。また、特開昭55-44013号 公報に記載の装置は、ステアリングホイールから操舵ト ルクが伝達される入力軸にストレインゲージ等の電気的 変位検出部を設け、ステアリングホイールから入力する 操舵トルクと操舵抵抗との差に応じて生ずる入力軸の相 対捩れ変位を検出するものであるが、入力軸の捩れ変位 を検出するのにストレインゲージ等の電気的変位検出器 を入力軸に固着させていたため、温度変化の影響を受け 易く、その作動が不安定で、信頼性に欠けるという問題 点があった。

そこでこのような不具合を解消するものとしてさらに、特開昭58-194664号、特開昭58-218627号、特開昭58-105877号、実開昭57-192872号、実開昭58-101153号、特開昭58-5626号、特開昭61-21861号の各公報に示されたようなものが知られている。

例えば、特開昭58-194664号に記載の装置では、一端にステアリングホイールに連結され他端がステアリングギアに連結されたコラムシャフトを分割し、この分割された2つのシャフトが弾性体を介して相対的な回動変位を可能にするように連結された操舵位置に設けられ、これら2つのシャフトの相対回動変位を軸方向変位に変換して、軸方向変位の大きさによりステアリングホイールに加えられる操舵力を検出している。また、トーションバ

ー機構の捩りを静電容量の変化に変換したものとして上 記特開昭61-21861号に記載されたものがある。

(発明が解決しようとする問題点)

しかしながら、このような従来の装置にあっては、トー ションバー機構の捩れ変位をスイッチ等の部材を用いて 検出するものや相対回動変位を軸方向変位に変換するも の等のいわゆる接触型のトルクセンサでは、構造が複雑 で検出器の機構的、電気的部品点数が多く、かつ取付け に際して相当の精度が要求されるため、製造コストの増 大を招くばかりか温度・湿度等の環境変化により検出精 度が悪化することがある。すなわち、センサとしてトル クの検出を行う場合、回動軸が対象であるため、耐摩耗 性、保安性等の信頼性の面から非接触型のトルクセンサ が望ましい。一方、非接触型のトルクセンサであって も、例えば捩れ変位の量を光電的に検出するようにした もの(上記特開昭58-5626号公報参照)では、特に汚れ の激しい場所で使用できないことがある。また、以上の ような問題点に加えて接触型、非接触型の何れのトルク センサにあっても、従来の装置では回転変位の方向(す なわち、トルクの働く方向)の検出や静止トルクの検出 は相当困難であって、これらの諸問題を解決したトルク センサは未だ実現されていない。

このように、エンジンや電動機等の回転駆動部をコントロールする際に極めて重要なパラメータとなる回転および静止トルクを非接触で正確に低コストで検出できるトルクセンサの出現が望まれている。また、このようなトルクセンサを近時の緻密な制御装置に適用するために、使用条件等に拘らず極めて高精度のものが要求される傾向にある。

30 (発明の目的)

そこで本発明は、温度・湿度等の環境変化や汚れによる 影響を受けない磁界という物理量に着目し、捩れ変位を 所定の構造により磁束量の変化に変換し、この磁束量の 変化を複数個配設した磁気検出素子により非接触で検出 するとともに、その磁気検出素子のうち少なくとも2つ 以上のものを第1、第2ピックアップ路における第1シャフトの軸線を中心として所定角度毎に設けることによ り、捩れ変位をトルク量の変化として適切に測定して、 構造が簡単で応答性が良く静止・回転に拘らず低コスト でトルクを検出できる高精度な非接触型がトルクセンサ を提供することを目的としている。

(問題点を解決するための手段)

本発明によるトルクセンサは上記目的達成のため、第1シャフトの先端部を捩れ変位の発生が可能な構造として第2シャフトに連結し、この連結部の周囲を取り囲むように所定数のN極およびS極を固定磁極として交互に配設して第2シャフトに固定し、これらのN極およびS極と同数の第1ピックアップ路および第2ピックアップ路をそれぞれ各磁極の中間位置に対向するように配設するとともに、第1、第2ピックアップ路を流れる磁束の変

40

10

30

化を検出する磁気検出素子を第1シャフトに対して非接触となるように複数個配設し、該磁気検出素子のうち少なくとも2つ以上のものを第1、第2ピックアップ路における第1シャフトの軸線からの機械的偏心等を補正するように前記軸線を中心として所定角度毎に設け、第2シャフトに対して第1シャフトが捩れ変位したとき前記N極が第1ピックアップ路あるいは第2ピックアップ路の何れの側に近接するかによって第1、第2ピックアップ路を流れる磁束量を変化させ、この磁束の変化から第2シャフトに対する第1シャフトの捩れ変位を検出するようにしている。

(作用)

本発明では、第1シャフトの先端部を捩れ変位の発生が 可能な構造として第2シャフトに連結され、この連結部 の周囲を取り囲むように所定数のN極およびS極を固定 磁極として交互に配設されて第2シャフトに固定される とともに、これらのN極およびS極と同数の第1ピック アップ路および第2ピックアップ路をそれぞれ各磁極の 中間位置に対向するように配設される。また、第1、第 2ピックアップ路を流れる磁束の変化を検出する磁気検 出素子が第1シャフトに対して非接触となるように複数 個配設され、該磁気検出素子のうち少なくとも2つ以上 のものを第1、第2ピックアップ路における第1シャフ トの軸線を中心として所定角度毎に設けられ、第2シャ フトに対して第1シャフトが捩れ変位したとき前記N極 が第1ピックアップ路あるいは第2ピックアップ路の何 れの側に近接するかによって第1、第2ピックアップ路 を流れる磁束量を変化し、この磁束の変化から第2シャ フトに対する第1シャフトの捩れ変位が非接触で検出さ れる。したがって、構造が簡単で応答性が良く、静止・ 回転に拘らず低コストでトルクが精度良く測定できる。 (実施例)

以下、本発明を図面に基づいて説明する。

第1~12図は本発明の第1実施例を示す図であり、第1 図は本実施例の分解斜視図、第2図は縦側面図、第3図 は正面図である。本実施例は磁気検出素子を2個用いた 例である。

まず、構成を説明する。第1図において、1は第1シャフトであり、第1シャフト1は捩れ剛性を若干低くするための小径部2を介して第2シャフト3に連結されており、図中A、Bで示すような第1シャフトの円周方向の回転力を小径部2を経由して第2シャフト3に伝達する。また、第2図の縦側面図に示すように第2シャフト3の外周面3aには小径部2を包み込むようにして形成された円筒形のモールド部材(非磁性材)4の突端部4aが嵌合・固着されており、モールド部材4は後述するピックアップ部材7およびホール素子13、14等と一対となってトルク検出機構21を構成している。一方、モールド部材4の他端側にはドーナッツ型の磁性体埋込み部4bが形成され、磁性体埋込み部4bは軸方向に対して垂直となる

ような切断面(端面)4cを有し、磁性体埋込み部4bには端面4cにN極を臨むように配置した磁性体5aと、端面4cにS極を臨むように配置した磁性体5bとがそれぞれ8個づつ交互に同心円状でかつ等間隔になるように配設されている。さらに、各磁性体5a、5bの他端部は円環状のコモンリング6に連結されており、コモンリング6は各磁性体5a、5bから発する磁界について閉ループ状の磁気通路の一部を形成する。コモンリング6および各磁性体5a、5bは磁性体埋込み部4b内に埋設され、非接触体からなる磁性体埋込み部4b内に埋設され、非接触体からなる磁性体埋込み部4bと一体形成されている。なお、本実施例では磁性体5a、5bの個数をそれぞれ8個としているが勿論これには限定されず、端面4cにN極、S極が交互に等間隔で臨むものであれば他の個数の態様のものでもよい。

一方、第1シャフトの小径部2側の外周面1aには端面4c に面し、かつ端面4cと微少空隙を有する円板形のピック アップ部材7が嵌合・固着されており、ピックアップ部 材7の入力側の端面7aには端面7aに外接してアウターリ ング8とその内方にインナーリング9とが設けられてい る。また、端面4cに面したピックアップ部材7の端面7b には磁性体5aあるいは5bからの磁気力を受けて磁路とな る磁路片10aと磁路片10bとが磁性体5aおよび5bとそれぞ れ1対1で応答するように8個づつ交互に同心円状でか つ等間隔になるように配設され、磁路片10aはアウター リング8に磁路片10bはインナーリング9に連結され る。磁路片10aとアウターリング8とは第1ピックアッ プ路11を構成し、磁路片10bとインナーリング9とは第 2ピックアップ路12を構成する。ここで、コモンリング 6、磁路片10a、10b、アウターリング8およびインナー リング9は磁力線を通し易い材質のものが望ましく、例 えばパーマロイ、フェライト等で作られており、前記磁 性体5a、5bから発した磁気力を磁路片10a、10bを介して アウターリング8およびインナーリング9に誘導する。 ところで、磁路片10a、10bは前記磁性体5a、5bと同様に 非磁性体からなるピックアップ部材7内に一体形成され ており、定常時(すなわち、トルクが0のとき)では第 3図の正面図に示すように磁性体5aあるいは5bが磁路片 10aおよび10bの丁度中間に位置するように構成されてい る。したがって、磁性体5aから磁路片10aに至るまでの ギャップ空間IAと磁性体5aから磁路片10bに至るまでの ギャップ空間IBとは互いに等しく、同様に磁性体5bから 磁路片10bまでのギャップ空間 la と5bから磁路片10aまで のギャップ空間IBとは相等しい。したがって、第1図に 示すように第1シャフト1に円周方向A(あるいはB) の回転力が加わると前記ギャップ空間IA、IBはその回転 力に応じてそれぞれ所定量づつ変化する。さらに、上述 したアウターリング8とインナーリング9との間にはこ れらリングやピックアップ部材7と非接触でかつアウタ ーリング8からインナーリング9に(あるいはインナー リング9かアウターリング8に)かかる磁界と直角とな

(4) るような位置にホール素子(第1の磁気検出素子)13が 配置され、ホール素子13と第1シャフト1に対して180 ° の角度に相対する位置にホール素子(第 2 の磁気検出 素子) 14が配置される。またこれらホール素子13および ホール素子14はそれぞれプリント基板15に接着材等で固 着される。プリント基板15上にはホール素子13、14から の信号を検出・処理するための部材(図示せず)が配設 されるとともに、プリント基板15はプリント基板に固着 する支持部材15aを介して第1シャフト1に回動変位自 在に嵌合される。なお、ホール素子13、14は固体のホー ル効果を利用したセンサであり、磁界の強さに比例した 出力電圧を発生する素子であるが従来公知のものと同様 のものが使用可能であるので詳しい説明は省略する。 第4図はホール素子13、14からの出力をトルク量として 検出するための演算回路を示す図である。同図におい て、OP1~OP4は演算増幅器1、Ri~Riaは抵抗器であ り、ホール素子13はアウターリング8からインナーリン グ9に向かう磁界に対して正の出力電圧Qiaを、また逆 向きの磁界に対して負の出力電圧Qibを出力するものと し、同様にホール素子14はアウターリング8からインナ 20 ーリング9に向かう磁界に対し正の出力電圧Q2aを、ま た逆向きの磁界に対して負の出力電圧Q2bを出力するも のとする(第5図参照)。非反転増幅器OP1、OP2には、 例えば第6図(a)に示すような定電圧回路により5 [v] の電源電圧が供給されるとともに、差動増幅器OP 3、OP4には第6図(b)に示すような定電圧回路により 10 [V] の電源電圧が供給される。OP1、OP2は非反転増 幅器として構成され、OP1の非反転入力端子側には抵抗 器Riを介してQiaと抵抗器R2介してQzaとがパラレルで接 続され、OP2の非反転入力端子側には抵抗器Rsを介してQ 1bとR6を介してQ2bとがパラレルで接続される。したが って、OP1は正の出力電圧Qia、Q2aの加算回路を形成 し、OP2は負の出力電圧Qib、Qzbの加算回路を形成す る。そして、OP1の出力端子は抵抗器Roを介してOP3の反 転入力端子側に接続されるとともに、抵抗器R17を介し てOP4の非反転入力端子側に接続されている。同様に、0 P2の出力端子は抵抗器R12を介してOP3の非反転入力端子 側に接続されるとともに、抵抗器R14を介してOP4の反転 入力側に接続される。ここで、抵抗器R3、R4、R7、R8、 R9、R10、R11、R12、R13、R14、R15、R16、R17、および Risの値は、OP1~OP4の作動状態を定めるものであり、O P1とOP2あるいはOP3とOP4の作動特性がそれぞれ等しく 差動増幅器OP3、OP4はOP1、OP2からの出力を受けて、そ の差分が正の場合は例えば右ネジ方向にトルクが加わっ

場合は左ネジ方向にトルクが加わったとしてOP4の出力 端子から出力電圧ETLを出力する。

なるように上記各抵抗値の値が決定されている。

次に、作用を説明する。

たとしてOP3の出力端子から出力電圧ETRを、また、負の

磁気力をホール素子13、14で検知する際に、第1シャフ ト1と第2シャフト3との間に生じた機械的な捩れ変位 を磁性体5a、5bと磁路片10a、10bとの間のギャップ空間 IA、IBの変化(換言すれば、空間磁路長の変化)として とらえ、このギャップ空間IA、IBの変化をホール素子1 3、14に印加される磁界の強さの変化として検知するこ とにより非接触でトルクを検出している。続いて、第 7、8図を用いて本発明の基本的な考え方を磁気検出素 子1個(ホール素子13)の場合を例にとり説明する。第 7図(a)は定常的におけるトルク検出機構21の一部を 模式的に示す図であり、同図(b)は前述の第1図に示 したように回転力が円周方向Aの向きに加わった場合を 示し、同図(c)は回転力が円周方向Bの向きに加わっ た場合を模式的に示している。また、第8図は定常時に おけるトルク検出機構21の一部を模式的に示した斜視図 である。

定常時

トルクが加わっていないので第7図(a)に示すように 磁性体5aから磁路片10aまでのギャップ空間IAと磁性体5 aから磁路片10bまでのギャップ空間IBとはそれぞれ等し く、各々の磁性体と磁路片との位置関係はどの場所にお いても一様である。したがって、第8図に示すように1 対の磁性体5a、5bおよび磁路片10a、10bを代表として例 に採り説明することができる。いま、磁性体5aのN極か ら発した磁気力は実線の矢印で示す如く、ギャップ空間 IA、磁路片10a、アウターリング8を経てホール素子13 に至り、ホール素子13を直交してインナーリング9、磁 路片10bおよびギャップ空間IAを経由し、磁性体5bのS 極に到達する(この実線の矢印方向でホール素子13に働 く磁界の強さを磁界HAと呼ぶ)。また、磁性体5bのN極 から発した磁気力はコモンリング 6 を通して磁性体5aの S極に到達する。このように、磁性体5a、5b、磁路片10 a、10b、アウターリング8、インナーリング9およびコ モンリング6はギャップ空間 IAを挟んで閉ループ状の磁 気通路を形成している(同図実線の矢印参照)。ところ が、磁性体5aのN極で発生した磁気力は、一方では磁路 片10b側にも等しく印加しており、同図破線の矢印で示 すように上述した場合とは逆向きのルートで閉ループを 形成している(この破線の矢印方向でホール素子13に働 く磁界の強さを磁界HBと呼ぶ)。この場合、ホール素子 13に印加する磁界の強さは、実際上、透磁率の大きい磁 路片およびインナー、アウターリングに比して透磁率が 極めて小さいギャップ空間LAあるいはLBの大きさの差異 により決定される。また、磁路片10a、10b、アウターリ ング8、インナーリング9およびコモンリング6の各部 材は定常時、非定常時とも共通の磁気通路を形成してい ることから、これら各部材に経年変化等による劣化があ ってもトルクの検出精度の低下を来さない。

このように、トルクが加わらない定常時にあっては前述 本発明に係るトルクセンサは、磁性体5a、5bから発した 50 したギャップ空間IA、IBは互いに等しいので、ホール素 20

子13に印加する磁界HA、HBは等しい強さとなり互いに相 殺し合ってトルクは検出されない。

非定常時(トルクが加わった場合)

第7図(b)に示すように回転力が円周方向Aの向きに 加わったときは磁性体5aから磁路片10aまでのギャップ 空間IAと磁性体5bから磁路片10bまでのギャップ空間IA は何れも大きくなり、逆に磁性体5aから磁路片10bまで のギャップ空間IBと磁性体5bから磁路片10aまでのギャ ップ空間IBとは何れも小さくなる。したがって、これに 伴って磁界Haが磁界Haよりも大きくなってゆき、その程 度はA方向に加わる捩れ角の大きさに比例する(第9図 参照)。例えば、A方向の回転力によりホール案子13に 印加する磁界の向きを正方向とし、その出力電圧がプラ スの値となるようにホール素子13の出力を設定すれば、 第9図に示すように発生トルクの大きさおよず方向そし て静止トルクを適切に検出することができる。また、第 7図(c)に示すように回転力が円周方向Bの向きに加 わったときは磁界HAが磁界HBよりも大きくなり、上記の 場合とは逆向きのトルクを検出することができる。

このように、本実施例では磁性体5a、5bから発した磁気 力をホール素子13で検知する際に、第1シャフト1と第 2シャフト3との間に生じた捩れ変位が磁性体5a、5bと 磁路片10a、10bとの間のギャップ空間IA、IBの変化とし てとらえられ、このギャップ空間IA、IBの変化が磁界の 強さの変化としてピックアップ部材7と非接触で設けら れたホール素子13により正確に検知される。

ところで、いままでは1個の磁気検出素子(ホール素子 13) のみに着目して本発明の作用を説明してきたが、実 際には他の磁気検出素子(ホール素子14)にあっても同 様の作用が働いている(但し、ホール素子14の出力はホ ール素子13の出力に対して180°位相が異なる)。

このように、本実施例では従来の問題点で述べたよう に、相対回動変位を軸方向変位に変換するもの等の従来 装置に比して回動部分がなく構造を極めて簡素にするこ とができ、応答性や信頼性に優れ、かつ測定精度の良い トルクセンサを低コストで実現することができる。ま た、構造が簡単なことに加えてモールド部材4やピック アップ部材7の取り付け後にホール素子13、14等の調整 を行うことができるため、これら各部材の取り付けにお いて高い精度の要求される困難な工作を必要としない。 しかも、本発明では回転トルクの情報を非接触で検出し ているので、測定精度面の向上は元より、耐摩耗性、保 安性等の信頼性を飛躍的に向上させることができるばか りか、従来の装置では測定が困難であった静止トルクを も精度良く検出することができる。

以上のような効果に加えて、本実施例では第1シャフト 1の軸線を中心として180°の角度に相対する位置に2 個の磁気検出素子を設けているので、第10図に示すよう に機械加工や組立誤差によりエア・ギャップAと、エア ・ギャップBとが異なるような場合、偏芯等の影響を受 50 相対する位置にホール素子 (第4の磁気検出素子) 17が

10

けて1回転毎にトリル・リップルが発生しても(第11図 参照)、180°位相の異なる2個の磁気検出素子により このリプル分は相殺され、必要な回転トルクのみを検出 することができる。したがって、検出精度が格段に向上 するばかりか、万一、事故等により軸が偏芯、あるいは 磁気検出素子が破損するようなことがあっても回転トル クを適切に検出することができる。第12図はインナーリ ング9とアウターリング8との間に偏心がある場合の回 転角とホール素子13、14の出力電圧との関係を測定した 特性図であり、本実施例では前述の第4図に示すような 演算回路によりこの偏心に係るリプル分を適切に消去し ている。

以上のような特徴を有する本発明を例えば、自動車の操 舵力検出用としてステアリング装置に適用すれば操舵力 を制御に極めて好適である。

なお、本実施例では回転トルク検出の例として第9図に 回転角が±6°のみの態様を示しているが、これに限ら ず、例えば磁性体や磁路片およびシャフトの捩れ剛性を 調節することにより広範囲な静・動トルクをも検出でき ることは勿論である。

また、本発明では第1シャフトの先端部を捩れ変位の発 生が可能な構造として第2シャフトに連結する構成とし ているが、この第1シャフトと第2シャフトとは別々の 部材であっても、あるいは本実施例のように第1、第2 シャフトとも1本の部材で形成されるものであってもよ いことは言うまでもない。

さらに、本実施例では回転トルクの検出回路として第4 図のような演算回路を示したがこれは限定されず、トル ク・リップルが相殺されるような回路であれば他の態様 のものでもよい。

以上の第1実施例はいわゆる偏心補正を行う磁気検出素 子を2個用いて180°毎に相対させた例であるが、偏心 補正を行うには2個に限らない。例えば、素子を120° 毎に3つ設けるようにしてもよく、さらには4つ以上に 増やして、より精密に偏心補正を行うようにしてもよ

また、本発明は磁気検出素子を複数個設けるという部分 にポイントの1つがあり、上記第1実施例ではその素子 をすべて偏心補正用に用いているが、複数個の素子はこ のような補正への使用に限らず、機械的要因以外に磁束 密度の不均一を補正するものとして用いてもよく、この 態様を次の第2実施例で示す。

第13~15図は本発明の第2実施例を示す図であり、本実 施例では磁気検出素子をさらに2個追加している他は第 1 実施例と同様である。したがって、第1 実施例と同一 構成部分には同一番号を付してその説明を省略する。 第13図において、ホール素子13、14の位置以外にホール 素子13、14の場合と同様の状態でホール素子(第3の磁 気検出素子) 16とホール素子16に対して180°の角度で

40

10

11

配置され、ホール素子13、14、16、17はそれぞれ第14図 に示すブロック線図のように接続される。

したがって、本実施例では磁性体5a、5bの先端部より磁路片10a、10bに磁束が流入する際に、磁性体5a、5bと磁路片10a、10bとのエアギャップ接合点(第13図中C、D部参照)で磁束密度に不均一が生じても、第15図に示すようにこれを第3のホール素子16により平均化して打ち消すことができる。したがって、本実施例では第1実施例の効果に加えて部材の位置関係の差異による磁束密度の不均一を補正することができ、より一層の精度の向上を図ることができる。なお、ホール素子17は第1実施例のホール素子14に相当し、同様の目的を有する。

(効果)

本発明によれば、捩れ変位を所定の構造により磁束量の変化に変換し、この磁束量の変化を複数個配設した磁気検出素子により非接触で検出するとともに、その磁気検出素子のうち少なくとも2つ以上のものを第1、第2ピックアップ路における第1シャフトの軸線を中心として所定角度毎に設けることにより、捩れ変位をトルク量の変化として適切に測定しているので、構造が簡単で応答性が良く静止、回転に拘らず低コストで精度良く非接触でトルクを検出することができる。

【図面の簡単な説明】

第1~12図は本発明に係るトルクセンサの第1実施例を示す図であり、第1図はその分解斜視図、第2図はその 縦側面図、第3図はその正面図、第4図はその演算回路 12

を示す回路図、第5図はそのホール素子の特性図、第6 図(a)はその定電圧回路を示す一つの回路図、第6図 (b) はその定電圧回路を示すもう一つの回路図、第7 図(a)はその定常時の作用を説明するための模式図、 第7図(b)はその一方の方向にトルクが加わった場合 の作用を説明するための模式図、第7図(c)はその他 方の方向にトルクが加わった場合の作用を説明するため の模式図、第8図はその作用を説明するために模式的に 示した斜視図、第9図はその効果を説明するための回転 トルクの特性図、第10図はその作用を説明するための正 面図、第11図はその作用を説明するための回転トルクの 特性図、第12図はその効果を説明するための回転トルク の特性図、第13~15図は本発明の第2実施例を示す図で あり、第13図はその正面図、第14図はそのブロック線 図、第15図はその効果を説明するための回転トルクの特 性図である。

1……第1シャフト、

2 ……小径部、

3……第2シャフト、

20 5a、5b······磁性体、

10a、10b……磁路片、

11……第1ピックアップ路、

12……第2ピックアップ路、

13、14……ホール素子(磁気検出素子)、

16、17……ホール素子(第3の磁気検出素子)。

【第2図】

【第4図】

【第7図】

【第8図】

【第6図】

【第11図】

【第13図】

(b)

【第12図】

【第14図】

