Projectagon-Based Reachability Analysis for Circuit-Level Formal Verification

Chao Yan

The University of British Columbia

Motivation

- Circuit-Level Verification: verifying circuits using non-linear ODE models
 - Analog and mixed signal (AMS) circuits
 - Deep-submicron circuit effects undermine digital abstractions
- Analog Bugs
 - Account for large percentage of critical bugs
 - Analog design lacks systematic design flow and test methodologies
 - Analog design relies on designer intuition and expertise
 - Intel Sandy Bridge Chipset.
 - Lost: one billion \$!
 - Passed all Intel's internal tests and all of OEM tests.
- Simulations cannot find all critical bugs before fabrication.
 - Incomplete coverage: difficult to cover all corner cases.
 - Inaccurate models: ideal working conditions and input signals.
- Problem Statement

We need formal methods to circuit-level design errors.

Contributions

This thesis demonstrates the feasibility of formally verifying behaviors for circuits modeled by non-linear, ordinary differential equations.

- Verification as Reachability
 - Methodology for specifying circuit properties
 - Table-based methods for modeling circuits
 - lacktriangle Circuit verification o reachability analysis
- Reachability Analysis
 - Projectagon-based reachability analysis
 - Solve nonlinear ODEs by maximum principle
 - Improvements: robustness, efficiency, accuracy, usability
- Practical Circuit Verification Examples
 - Yuan-Svensson toggle circuit,
 - A flip-flop circuit
 - An arbiter circuit
 - The Rambus ring oscillator

Circuit-Level Formal Verification

Verification need of designers

Verify simple properties

Outline

- Motivation and Contributions
- Verification as Reachability
- Соно: Reachability Analysis
- Circuit Verification Examples
- Conclusion

Formal Verification

- Goal: show Model |= Specification
- Model: nonlinear ordinary differential inclusion
 - Nonlinear
 - Real circuits are nonlinear
 - Linear dynamics can be analyzed by simulations or other methods
 - Inclusion
 - Deterministic models are approximations of reality
 - Non-deterministic behaviors: e.g., input uncertainty, PVT variation, noise
- Specification
 - Continuous extension of LTL
 - Continuous variables
 - Dense time
 - Brockett's annulus
 - Specifying analog signals
 - Providing propositions over continuous spaces
 - Probability
 - Specify analog properties
 - Metastability behaviors are common

Example: 2-input Arbiter

A Black-Box View

- Request signals: r_1, r_2 ; grant signals: g_1, g_2
- Mutually exclusive access
- Handshake protocol
- Liveness

Initially:

$$\forall i \in \{1,2\}. \ \neg \mathsf{r}_i \land \neg \mathsf{g}_i$$

Assume (environment controls r_1 and r_2):

$$\forall i \in \{1,2\}. \qquad \Box (\mathsf{r}_i \overset{\mathbf{W}}{\Rightarrow} \mathsf{g}_i) \land \Box (\neg \mathsf{r}_i \overset{\mathbf{W}}{\Rightarrow} \neg \mathsf{g}_i) \land \\ \Box (\mathsf{g}_i \overset{\mathbf{U}}{\Rightarrow} \neg \mathsf{r}_i)$$

Guarantee (arbiter controls g_1 and g_2):

Handshake:

$$\forall i \in \{1,2\}. \ \Box(\neg \mathsf{g}_i \overset{\mathbf{W}}{\Rightarrow} \mathsf{r}_i) \land \ \Box(\mathsf{g}_i \overset{\mathbf{W}}{\Rightarrow} \neg \mathsf{r}_i)$$

Mutual Exclusion:

$$\Box \neg (\mathsf{g}_1 \wedge \mathsf{g}_2)$$

Liveness:

$$\forall i \in \{1,2\}. (\Box(\mathsf{r}_i \overset{\mathbf{U}}{\Rightarrow} \mathsf{g}_i)) \land (\Box(\neg \mathsf{r}_i \overset{\mathbf{U}}{\Rightarrow} \neg \mathsf{g}_i))$$

Specification

- Continuous LTL
 - Continuous variables & trajectories
 - Dense time
 - *p*: *p* holds for the current time.
 - $\square p$: p holds for this and all subsequent time.
 - $p \cup q$: p holds until a time for which q holds.
 - p W q: p holds forever or until a time for which q holds.

- Brockett's Annulus
- Continuous Specification

Specification

- Continuous LTL
- Brockett's Annulus

- Brockett's annulus allows entire families of signals to be specified.
- Region 1 represents a logical low signal.
- Region 2 represents a monotonically rising signal.
- Region 3 represents a logical high signal.
- Region 4 represents a monotonically falling signal.
- Map continuous trajectories to discrete sequences.
- Continuous Specification

Specification

- Continuous LTL
- Brockett's Annulus
- Continuous Specification

Initially:

$$\forall i \in \{1,2\}. B_1(r_i) \wedge B_1(g_i)$$

Assume (environment controls r_1 and r_2):

$$\forall i \in \{1,2\}. \qquad \Box(B_3(r_i) \overset{\mathbf{W}}{\Rightarrow} B_{2,3}(g_i)) \land \Box(B_1(r_i) \overset{\mathbf{W}}{\Rightarrow} B_{4,1}(g_i)) \land \\ \Box(B_3(g_i) \overset{\mathbf{U}}{\Rightarrow} B_{4,1}(r_i))$$

Guarantee (arbiter controls g_1 and g_2):

Handshake:

$$\forall i \in \{1,2\}. \ \Box (B_1(g_i) \overset{\mathbf{W}}{\Rightarrow} B_{2,3}(r_i)) \land \ \Box (B_3(g_i) \overset{\mathbf{W}}{\Rightarrow} B_{4,1}(r_i))$$

Mutual Exclusion:

$$\Box \neg (B_{2,3}(g_1) \land B_{2,3}(g_2))$$

Liveness:

$$\forall i \in \{1,2\}. (\Box(B_3(r_i) \stackrel{\mathbf{U}}{\Rightarrow} B_{2,3}(g_i))) \land (\Box(B_1(r_i) \stackrel{\mathbf{U}}{\Rightarrow} B_{4,1}(g_i)))$$

Liveness and Probability

- Metastability
 - There must exist trajectories where contested request are never granted
 - Liveness is not "always" satisfied
 - No ideal arbiter
- Almost Surely
 - Liveness is not always satisfied, but it may be satisfied with probability 1.
 - Solution: introduce probability theory to logic
 - Almost-surely version of LTL "always" operator
 - A trajectory ϕ satisfies $\Box_Z S$ iff S holds everywhere along ϕ , or if ϕ is in a negligible set, Z.
 - The probability of S holding everywhere along ϕ is equal to 1.
 - Z is the same for all trajectories.
- Continuous Specification

$$\forall i \in \{1,2\}. \qquad \alpha \text{-ins} \Rightarrow (\Box_Z(B_3(r_i) \overset{\mathbf{U}}{\Rightarrow} B_{2,3}(g_i)))$$

$$\wedge \qquad (B_3(r_i) \overset{\mathbf{U}}{\Rightarrow} (B_{2,3}(g_i) \vee B_3(r_{\sim i}))) \wedge (\Box(B_1(r_i) \overset{\mathbf{U}}{\Rightarrow} B_4(g_i)))$$

Outline

- Motivation and Contributions
- Verification as Reachability
- Соно: Reachability Analysis
- Circuit Verification Examples
- Conclusion

Representing and manipulating high-dimensional regions: projectagons

- COHO projects high-dimensional polyhedra onto two-dimensional subspaces.
- Projectagons are efficiently manipulated using two-dimensional computational geometry algorithms.
- Соно uses both geometrical and inequality representations.
- Projectagon faces correspond to edges of the projection polygons.
- Solving dynamic systems: linear differential inclusions.
- Basic step of Соно

- Representing and manipulating high-dimensional regions: projectagons
- Solving dynamic systems: linear differential inclusions.
 - Approximate the ODEs by linear differential inclusions.
 - least squares method
 - linear programming
 - Compute forward reachable region using the Maximum Principle
 - Efficient: matrix computations
 - Accurate: work on each face rather than the whole projectagon.
- Basic step of Соно

- Representing and manipulating high-dimensional regions: projectagons
- Solving dynamic systems: linear differential inclusions.
- Basic step of Соно

- A bounding projectagon is obtained by moving each face forward in time.
- The advanced face is projected onto two-dimensional subspaces to maintain the structure of projectagon.
- Computation continues until no new reachable region found

- Representing and manipulating high-dimensional regions: projectagons
- Solving dynamic systems: linear differential inclusions.
- Basic step of Соно
- All approximations over-approximate the reachable space: Соно is sound.
- Available at http://coho.sourceforge.net

- Robustness
 - Arbitrary precision rational(APR)
 - ill-conditioned problems
 - simple implementation
 - Remove infeasible regions
 - incomplete boundary
 - guarantee non-empty projectagon faces
- Efficiency
- Accuracy
- Usability

- Robustness
- Efficiency
 - Guess-verify strategy
 - step-size is much smaller than necessary
 - guess a larger step-size based on previous step
 - verify the step-size and model is correct
 - Approximation algorithms
 - linear programming
 - projection algorithm
 - Hybrid computation
 - APR is expensive
 - floating point, interval, APR
- Accuracy
- Usability

- Robustness
- Efficiency
- Accuracy
 - Interval closure
 - over-approximation by using convex hull
 - non-convex polygons are constraints of variables
 - interval propagation
 - Reduce model error
 - asymmetric bloating
 - anisotropic bloating
 - multiple models
 - Reduce projection error
- Usability

- Robustness
- Efficiency
- Accuracy
- Usability
 - Interface based on hybrid automata
 - Templates for reachability computations
 - Options for trade-off of performance and accuracy

Infeasible Regions

- Infeasible regions
 - Projection polygons are computed independently
 - Infeasible regions: the prism from this region does not intersect with other prisms
 - Leads to incomplete boundaries in the next step

- Clipping infeasible regions
 - The problem of determinating if a projectagon is non-empty is NP-complete
 - Approximation techniques must be applied
 - Make a projectagon feasible to its convex hull

Infeasible Regions

- Algorithm
 - Construct the convex hull of the projectagon
 - Project onto all planes to obtain an updated convex hull
 - Compute the intersection of the projectagon and the updated convex hull
 - Repeat until the result converges
- Projectagon Faces
 - Use interval closure to find an accurate projectagon face if it is feasible

$$prism(e) \bigcap convexhull(P) \bigcap intervalClosure(e,P)$$

Use convex hull to find an over-approximated projectagon face otherwise

$$prism(e) \bigcap convexhull(P)$$

Hybrid Computation

- Arbitrary precision rational numbers (APR)
 - Expensive
 - Only necessary for ill-conditioned problems
- Hybrid computation
 - Use double-precision arithmetic for general computation
 - Use interval computation to validate the result
 - Use APR to repeat the computation if failed
- **Applications**
 - Linear programming
 - Geometric computations
 - Projection algorithms

Outline

- Motivation and Contributions
- Verification as Reachability
- Соно: Reachability Analysis
- Circuit Verification Examples
- Conclusion

Example: Arbiter

Arbiter

- Based on cross-couple NANDs
- The *metastability filters* ensure that no grant is asserted until metastability has resolved.

Reachability Computation

- Stiffness
 - Vastly different node capacitances: z₁,z₂
 - Ill-conditioned Jacobian matrix for ODE $\dot{x} = f(x)$
 - Difficult to find a good time-step
 - Large: large model error
 - Small: large projection and simplification errors
- Solution
 - Changing variables: converge much more rapidly
 - Additional invariants: reduce over-approximation
- Performance
 - 6-dimensional non-convex regions
 - \sim 90 hours
 - large number of steps
 - circuit modeling, projection, linear programming
 - 1 \sim 2G memory
 - large tables for circuit models

- Safety Properties
 - → Mutual Exclusion
 - O Handshake Protocol
 - O Brockett Annuli

Liveness Properties

- Safety Properties
 - Mutual Exclusion
 - → Handshake Protocol
 - O Brockett Annuli

Liveness Properties

- Safety Properties
 - Mutual Exclusion
 - O Handshake Protocol
 - ⇒ Brockett Annuli

Liveness Properties

- Safety Properties
 - Mutual Exclusion
 - O Handshake Protocol
 - O Brockett Annuli
- Liveness Properties
 - Initialization: stable within 200ps
 - Uncontested Requests: grant the client within 350ps
 - Contested Requests: metastability within hyper-rectangle
 - Reset: withdraw grants within 270ps
 - Fairness: grant the other client within 420ps

Metastability and Liveness

- Metastable Behaviours
 - Fail to show a client is eventually granted when both requests asserted concurrently
 - lacktriangle Trajectories cannot leave the metastable region M because of over-approximation
 - Cannot be solved by reachability analysis
- Almost-Surely Verification
 - lacktriangle Bound the metastable region M by Соно
 - Compute interval Jacobian matrix in M
 - lacktriangle Show divergence holds everywhere in M using dynamical system theory [Mitchell96]

Other Circuits

- The Yuan-Svensson Toggle Circuit
 - Revealed a leakage current bug
 - The period of output is twice that of the input
 - Verify that the output and input signals satisfy the same Brockett's annulus.
- A Flip-Flop Circuit
 - Showed the output satisfies the specification
 - Modeled circuit with multiple inputs with timing constraints
- The Rambus Ring Oscillator
 - Real problem from industry
 - Space reduction to improve performance of reachability analysis
 - Combine reachability analysis with other methods (e.g., static analysis) to solve practical problems
 - Find sufficient conditions that guarantee oscillation from all initial conditions except for a set of measure zero.

Conclusions

- Circuit Verification as Reachability Analysis
 - A systematic way of translating verification problems to reachability analysis problems
 - Modeling: modified nodal analysis, table-based models from simulations.
 - Specification: Brockett annulus, LTL and probability theory
 - Efficient reachability analysis
 - Projectagon-based reachability analysis
 - Improvements: robustness, efficiency, accuracy, etc.
- Correctness and Efficiency Demonstrated by Circuit Verification Examples
 - Synchronous: Flip-flop, toggle
 - Asynchronous: Arbiter
 - Analog: Rambus ring oscillator
- Verification of Practical Circuits
 - Stiffness: challenges of reachability analysis
 - Metastability: cannot be solved by reachability analysis alone
- Analog Properties of Practical Circuits Can be Formally Verified Based on Reachability Analysis.

Future Work

- Verify Larger, Practical AMS Circuits
 - Parameterized verification
 - Point verification: specialized tools for common circuit classes
- Combine Reachability Analysis with Other Methods
 - Small-signal analysis
 - Static invariant computations: HYSAT, HSOLVER
 - Almost-surely verification
- Specification
 - Check properties automatically
 - Integrate with other verification tools
- Improve Performance of COHO
 - Parallel computation
 - More efficient approximation algorithms
- More applications
 - Apply to other hybrid system problems
 - Compare with other reachability analysis tools