## ORIGINAL PAPER

# Global biodiversity research during 1900–2009: a bibliometric analysis

Xingjian Liu · Liang Zhang · Song Hong

Received: 23 August 2010/Accepted: 23 December 2010/Published online: 4 January 2011 © Springer Science+Business Media B.V. 2010

**Abstract** We performed a bibliometric analysis of published biodiversity research for the period of 1900-2009, based on the Science Citation Index (SCI) database. Our analysis reveals the authorial, institutional, spatiotemporal, and categorical patterns in biodiversity research and provides an alternative demonstration of research advancements, which may serve as a potential guide for future research. The growth of article outputs has exploded since the 1990s, along with an increasing collaboration index, references, and citations. Ecology, environmental sciences, biodiversity conservations, and plant science were most frequently used subject categories in biodiversity studies, and Biological Conservation, Journal of Soil and Water Conservation, Conservation Biology and Biodiversity and Conservation were most active journals in this field. The United States was the largest contributor in global biodiversity research, as the U.S. produced the most single-country and collaborative articles, had the greatest number of top research institutions, and had a central position in collaboration networks. We perceived an increasing number of both internationally collaborative and inter-institutionally collaborative articles, with the latter form of collaboration being more prevalent than the former. A keyword analysis found several interesting terminology preferences, confirmed conservation's central position as a topic in biodiversity research, revealed the adoption of advanced technologies, and demonstrated keen interest in both the patterns and underlying processes of ecosystems. Our study reveals patterns in scientific outputs and academic collaborations and serves as an alternative and innovative way of revealing global research trends in biodiversity.

X. Liu

Department of Geography, University of Cambridge, Cambridge, UK

X. Lin

The James and Marilyn Lovell Center for Environmental Geography and Hazards Research, Texas State University-San Marcos, San Marcos, TX, USA

I. Zhano

Institute of Geodesy and Geophysics, Chinese Academy of Sciences, Wuhan, China

S. Hong (\subseteq)

School of Resource and Environmental Science, Wuhan University, Wuhan, China e-mail: environmentalanalytics@gmail.com



**Keywords** Bibliometrics  $\cdot$  Biodiversity  $\cdot$  Conservation  $\cdot$  Research trends  $\cdot$  Scientific outputs

#### Introduction

Biodiversity refers to variety in life forms and is usually measured at three different levels: genes, species, and ecosystems. Biodiversity is vital for human beings, not only because ecosystems support human beings, but also because individual species all have important roles to play in the ecosystem and can, therefore, greatly impact the environment in which humans live. Biodiversity is closely related to other global environment changes and globalization issues, such as climate change, land use and land cover change, and sustainable development (Vitousek 1994; Thuiller et al. 2005; Gude et al. 2007). However, it has been argued that human activities have been accompanied by a loss in biodiversity and even massive extinction of certain genes, species, and/or ecosystems. Although international organizations and countries have made significant efforts to conserve biodiversity, such as the "Convention on Biological Diversity," the "Census of Marine Life," and "DIVERSITAS" (Glowka et al. 1994; Cropper 1993; Costello et al. 2010), these efforts have not been sufficient, and biodiversity loss has continued (Tisdell 2003; Burns et al. 2009). Biodiversity has been studied from various perspectives, including the spatiotemporal patterns of biodiversity (Gray 1997; Heino et al. 2005), the underlying dynamics of biodiversity changes (Pielke et al. 2002), the methods and technologies for biodiversity research (Hadrys et al. 1992; Muyzer et al. 1993; Mueller and Wolfenbarger 1999; Manzelli et al. 2007) and the practical conservation of biodiversity (Margules and Pressey 2000; Myers et al. 2000). In addition to these studies, a bibliometric analysis of global biodiversity research could serve as an alternative and innovative way of revealing global research trends in biodiversity.

Bibliometric analysis includes a series of visual and quantitative procedures to generalize the patterns and dynamics in scientific publications (Pritchard 1969). Bibliometric analyses have been conducted to reveal the global trends of various research fields (Falagas et al. 2006; Tarkowski 2007; Xie et al. 2008; Li et al. 2008). Whereas conventional bibliometric methods center on citation and content analysis, the newly-developed bibliometric analysis evaluates the scholarly outputs of authors, institutions, and countries, and identifies the temporal evolution of research patterns (Chiu and Ho 2007; Li et al. 2009; Zhang et al. 2009).

In this paper, we perform a bibliometric analysis of published biodiversity research for the period of 1900–2009. More specifically, this article aims at (1) revealing the authorial, institutional, spatiotemporal, and categorical patterns in biodiversity research; (2) summarizing the global research trends from multiple perspectives; and (3) providing an alternative demonstration of research advancements, which may serve as a potential guide for future research.

## Data and methods

We gathered academic publications related to biodiversity research based on the Scientific Citation Index (SCI) bibliographic database, which was maintained by the Institute of Scientific Information, USA. SCI is the most frequently-used index in scientific output



analysis (Kostoff 2000). We performed bibliographic searches and compiled references using an online version of the SCI database. Seven search terms, including "biodiversity," "biological diversity," "bio-diversity," "genetic diversity," "ecosystem diversity," "species diversity," and "landscape diversity" were used to locate publications that contained these words in publications' titles, abstracts, or keyword lists. These searching terms are designed based on previous bibliometric analysis of biodiversity and related researches (Cameron 2008; Chen et al. 2009). We also gathered all papers that were published in six specialized journals, including Biodiversity and Conservation, Systematics and Biodiversity, Biological Conservation, Conservation Biology, Journal of Soil and Water Conservation, Resources Conservation and Recycling. We then retrieved individual document information, including author name(s), author affiliation(s), subject category(ies), journal name(s), publication title(s), and publication year(s), and eliminated duplicated records. Although we searched documents published between 1900 and 2009, the earliest biodiversity-related publication in the SCI database was published in 1922. Using the above-mentioned searching strategy, a total of 75,860 publications were identified in the SCI database as being biodiversity-related.

As is common in other bibliometric analyses (Ho 2007; Tian et al. 2008; Zhang et al. 2010), research published by authors from England, North Ireland, Scotland, and Wales were labeled as documents originating in the United Kingdom, and publications from Hong Kong were apportioned with those from Mainland China. The collaborations among authors, institutions, or countries were determined based on the complete count strategy, i.e., each signatory on the documents was treated equally. At the author level, "collaborated documents" referred to those publications with two or more signatories. In addition, inter-institutionally collaborative publications and internationally collaborative publications were defined as publications by two or more institutions and countries/territories, respectively.

Seventeen document types were found among the total 75,860 publications, and the most frequent document type was peer-reviewed journal articles (61,418), which were responsible for 81.0% of the total publications. Proceeding papers (4,746; 6.3%), reviews (4,163; 5.5%), editorial materials (2,719; 3.6%), and letters (1,017; 1.3%) also comprised a significant portion of total. Other less significant document types included meeting abstracts (716), bibliographies (3), biographical items (17), book reviews (103), corrections (143), corrections/additions (66), discussions (12), items about individuals (12), news items (320), notes (378), reprints (18), and software reviews (6). The number shown in parentheses indicates the number of papers found for each document type. As consistent with other bibliometric research, we focused on original and peer-reviewed articles and excluded documents of all other types from further analysis.

As for the publishing language, 59,895 or 97.5% of the 61,418 journal articles were written in English. This observation was consistent with the fact that English is the dominant academic language and that most SCI indexed journals are published in English. Other major publication languages included French (396), Spanish (354), Portuguese (259), Russian (234), and German (142). Additionally, Chinese (38), Japanese (25), Polish (22), Czech (10), Finnish (8), Hungarian (7), Croatian (6), Korean (5), Turkish (5), Dutch (4), Italian (4), Lithuanian (2), Slovakian (1), and Swedish (1) were minor publication languages in biodiversity research.

A bibliometric analysis was performed to reveal the trends in biodiversity studies from the following perspectives: publication outputs, subject categories and major journals, author productivity, geographic and institutional distribution of publications, and keywords analysis.



## Results and discussions

## Publication outputs

A clear interest in biodiversity research did not emerge until the 1990s, although a few publications related to biodiversity were published previously (Fig. 1a). Along with the development of SCI, biodiversity research continually grew in this long period, started to go up significantly in the year of 1980 and rocketed in the past two decades (Fig. 1a). The United Nations Convention on Biological Diversity (CBD) was signed by 150 government leaders at the 1992 Rio Earth Summit is dedicated to promoting sustainable development. Build on many breakthroughs since 1992, biodiversity research has became one of the most important and dynamic field of environmental and ecological research. Although this growing scientific productivity was commonly ascribed to the increasing amount of SCI-indexed publications, we found that the number of standardized publications on biodiversity, defined as the ratio of the annual number of publications on biodiversity to the annual number of publications in the SCI database, was also increasing (Fig. 1b). This rising number of standardized publications suggested a clear research focus on biodiversity, after controlling for the increasing number of publications being indexed in the SCI database.

We summarized the temporal evolution of major scientific productivity descriptors for the period of 1980–2009 in Table 1. The number of publications on biodiversity exploded from 117 in 1980–7,533 in 2009, and the average length of articles was 10.45 pages. The collaboration index, which was defined as the average number of signatories per publication, increased from 1.85 in 1980–4.45 in 2009. This growing collaboration index suggested that biodiversity studies progressively became more collaborative, whereas the growth rate is on par with collaboration index documented in other bibliometric studies (He et al. 2005; Cameron 2008; Gonzalez-Alcaide et al. 2008). Another example of expanding research in the field of biodiversity was the increasing number of citations and references that were found. The average number of references grew from 21.99 in 1980 to 45.58 in 2009. This growing number of references indicated an expanding accumulation of knowledge about biodiversity. In addition, publications on biodiversity had drawn, on average, 16.30 citations per document. All of these scientific output descriptors revealed solid growth within the research field, in terms of increasing scientific production and research collaboration.



Fig. 1 The growth of absolute and standardized publication outputs



Table 1 Scientific outputs descriptors during 1980-2009

| Year    | TP     | AU       | AU/TP | PG       | PG/TP | NR        | NR/TP | TC        | TC/TP |
|---------|--------|----------|-------|----------|-------|-----------|-------|-----------|-------|
| 1980    | 117    | 217      | 1.85  | 1,031    | 8.81  | 2,573     | 21.99 | 2,360     | 20.17 |
| 1981    | 134    | 253      | 1.89  | 1,206    | 9.00  | 2,358     | 17.60 | 2,151     | 16.05 |
| 1982    | 156    | 299      | 1.92  | 1,428    | 9.15  | 3,217     | 20.62 | 3,103     | 19.89 |
| 1983    | 198    | 405      | 2.05  | 1,757    | 8.87  | 4,009     | 20.25 | 3,471     | 17.53 |
| 1984    | 171    | 344      | 2.01  | 1,665    | 9.74  | 3,456     | 20.21 | 2,979     | 17.42 |
| 1985    | 218    | 445      | 2.04  | 2,175    | 9.98  | 4,508     | 20.68 | 4,270     | 19.59 |
| 1986    | 192    | 400      | 2.08  | 2,090    | 10.89 | 4,627     | 24.10 | 3,539     | 18.43 |
| 1987    | 190    | 383      | 2.02  | 1,792    | 9.43  | 3,980     | 20.95 | 2,978     | 15.67 |
| 1988    | 248    | 504      | 2.03  | 2,192    | 8.84  | 4,682     | 18.88 | 5,205     | 20.99 |
| 1989    | 292    | 687      | 2.35  | 2,589    | 8.87  | 4,836     | 16.56 | 6,368     | 21.81 |
| 1990    | 358    | 781      | 2.18  | 3,229    | 9.02  | 7,104     | 19.84 | 8,415     | 23.51 |
| 1991    | 624    | 1,476    | 2.37  | 6,638    | 10.64 | 16,720    | 26.79 | 21,357    | 34.23 |
| 1992    | 787    | 1,861    | 2.36  | 7,740    | 9.83  | 19,353    | 24.59 | 23,410    | 29.75 |
| 1993    | 883    | 2,151    | 2.44  | 8,817    | 9.99  | 21,487    | 24.33 | 32,249    | 36.52 |
| 1994    | 1,142  | 3,007    | 2.63  | 11,200   | 9.81  | 30,326    | 26.56 | 36,564    | 32.02 |
| 1995    | 1,335  | 3,659    | 2.74  | 13,738   | 10.29 | 41,454    | 31.05 | 40,799    | 30.56 |
| 1996    | 1,458  | 4,033    | 2.77  | 14,647   | 10.05 | 53,917    | 36.98 | 45,592    | 31.27 |
| 1997    | 1,617  | 4,972    | 3.07  | 16,627   | 10.28 | 60,731    | 37.56 | 52,972    | 32.76 |
| 1998    | 1,894  | 5,972    | 3.15  | 20,479   | 10.81 | 74,042    | 39.09 | 58,358    | 30.81 |
| 1999    | 2,127  | 6,906    | 3.25  | 22,524   | 10.59 | 80,565    | 37.88 | 59,145    | 27.81 |
| 2000    | 2,407  | 8,295    | 3.45  | 25,411   | 10.56 | 96,522    | 40.10 | 73,723    | 30.63 |
| 2001    | 2,728  | 9,395    | 3.44  | 29,285   | 10.73 | 1,10,218  | 40.40 | 69,103    | 25.33 |
| 2002    | 3,009  | 10,864   | 3.61  | 32,328   | 10.74 | 1,22,290  | 40.64 | 70,624    | 23.47 |
| 2003    | 3,529  | 13,378   | 3.79  | 38,076   | 10.79 | 1,47,817  | 41.89 | 71,525    | 20.27 |
| 2004    | 3,884  | 14,870   | 3.83  | 41,165   | 10.60 | 1,65,049  | 42.49 | 70,058    | 18.04 |
| 2005    | 4,704  | 18,281   | 3.89  | 50,985   | 10.84 | 2,03,711  | 43.31 | 67,599    | 14.37 |
| 2006    | 5,300  | 22,026   | 4.16  | 57,872   | 10.92 | 2,33,255  | 44.01 | 58,247    | 10.99 |
| 2007    | 6,091  | 25,613   | 4.21  | 66,095   | 10.85 | 2,73,003  | 44.82 | 42,820    | 7.03  |
| 2008    | 7,071  | 30,700   | 4.34  | 73,105   | 10.34 | 3,11,430  | 44.04 | 27,276    | 3.86  |
| 2009    | 7,533  | 33,556   | 4.45  | 79,061   | 10.50 | 3,43,382  | 45.58 | 9,920     | 1.32  |
| Total   | 61,418 | 2,27,492 |       | 6,41,806 |       | 24,62,937 |       | 1,00,1144 |       |
| Average |        |          | 3.70  |          | 10.45 |           | 40.10 |           | 16.30 |

TP number of publications, AU number of authors, PG page count, NR cited references, TC total citation count; AU/TP, PG/TP, NR/TP, and TC/TP, average of authors, pages, references, and citations in a paper

## Subject categories and major journals

Published biodiversity research covered 185 ISI identified subject categories in the SCI database. The four most common categories were ecology (25,584 articles; accounting for 21.3% of the total), environmental sciences (14,472; 12.0%), biodiversity conservation (11,578; 9.6%), and plant science (6,831; 5.7%). The first two and the fourth subject categories were general topics, while biodiversity conservation focused exclusively on biodiversity-related research. This finding suggested that conservation remained a top priority among the various topics being explored in biodiversity research. Other major





Fig. 2 Annual growth rates of articles in most active subject categories

subject categories in biodiversity research included genetics and heredity, evolutionary biology, marine and freshwater biology, microbiology, agronomy, biochemistry and molecular biology, forestry, biotechnology and applied microbiology, and zoology. However, none of these subject categories accounted for more than 10% of the total articles. We demonstrated the annual growth rates of articles in the top four categories in Fig. 2. Although these four categories enjoyed a continuous growth in the last two decades, their annual growth rates fluctuated widely. These fluctuations in growth rates suggested that the research focus in biodiversity shifted among different subject categories.

Published research on biodiversity appeared in 2,624 journals, and the top 25 most productive journals are summarized in Table 2, along with number of papers that the corresponding journals published, the number of citations that each journal received for these articles. The average citation rate of journals in biodiversity is the most direct indicator for assessing the impacts of journals: The higher the citation rate is, the greater the journal's impact is to this field. There was a high concentration of biodiversity publications in these top journals. These 25, or 0.95% out of the 2,624 journals, had published 22,521 or 36.7% of the total 61,418 articles. Biological Conservation ranked first and published 4,558 articles on biodiversity. The Journal of Soil and Water Conservation published the second most articles (2,860), followed by Conservation Biology (2,674), Biodiversity and Conservation (2,181), Resources Conservation and Recycling (1,064), Molecular Ecology (969), Forest Ecology and Management (701), and Ecology (608). From the titles and themes of these top journals, we again observed the central position of conservation as a subject in biodiversity research. Biodiversity articles that were published in these journals had received, on average, 21.26 citations, which was greater than the impact factors of these journals. We admit that these citation rates are not directly comparable to journals' impact factors (as the latter are computed with a 2-year window). Therefore, our comparisons focus on the inter-journal differences in citations to biodiversity researches, i.e., the impacts of journals in biodiversity research.

Several journals released a sizeable number of highly cited biodiversity articles, including the following: *Nature* (222 articles on biodiversity with 35,016 citations),



Table 2 The 25 most active journals in biodiversity research

| Journal                                | TP    | TP (%) | TC     | TC (%) | TC/TP | IF     |
|----------------------------------------|-------|--------|--------|--------|-------|--------|
| Biological Conservation                | 4,558 | 7.42   | 90,155 | 9.01   | 19.78 | 3.167  |
| Journal of Soil and Water Conservation | 2,860 | 4.66   | 23,429 | 2.34   | 8.19  | 1.033  |
| Conservation Biology                   | 2,674 | 4.35   | 94,595 | 9.45   | 35.38 | 4.666  |
| Biodiversity and Conservation          | 2,181 | 3.55   | 24,521 | 2.45   | 11.24 | 2.066  |
| Resources Conservation and Recycling   | 1,064 | 1.73   | 8,772  | 0.88   | 8.24  | 1.987  |
| Molecular Ecology                      | 969   | 1.58   | 24,894 | 2.49   | 25.69 | 5.960  |
| Forest Ecology and Management          | 701   | 1.14   | 9,297  | 0.93   | 13.26 | 1.950  |
| Ecology                                | 608   | 0.99   | 30,384 | 3.03   | 49.97 | 4.411  |
| Theoretical and Applied Genetics       | 592   | 0.96   | 18,042 | 1.80   | 30.48 | 3.363  |
| Genetic Resources and Crop Evolution   | 564   | 0.92   | 3,573  | 0.36   | 6.34  | 1.238  |
| PNAS                                   | 504   | 0.82   | 29,976 | 2.99   | 59.48 | 9.432  |
| Applied and Environmental Microbiology | 463   | 0.75   | 21,259 | 2.12   | 45.92 | 3.686  |
| Marine Ecology-Progress Series         | 437   | 0.71   | 7,288  | 0.73   | 16.68 | 2.519  |
| Conservation Genetics                  | 411   | 0.67   | 2,352  | 0.23   | 5.72  | 1.849  |
| Journal of Biogeography                | 408   | 0.66   | 7,877  | 0.79   | 19.31 | 4.087  |
| Oikos                                  | 397   | 0.65   | 10,503 | 1.05   | 26.46 | 3.147  |
| Journal of Clinical Microbiology       | 384   | 0.63   | 9,354  | 0.93   | 24.36 | 4.162  |
| Ecological Applications                | 384   | 0.63   | 15,343 | 1.53   | 39.96 | 3.672  |
| Journal of Applied Ecology             | 362   | 0.59   | 9,476  | 0.95   | 26.18 | 4.197  |
| Crop Science                           | 359   | 0.58   | 6,531  | 0.65   | 18.19 | 1.735  |
| Hydrobiologia                          | 356   | 0.58   | 3,111  | 0.31   | 8.74  | 1.754  |
| Oecologia                              | 331   | 0.54   | 8,184  | 0.82   | 24.73 | 3.129  |
| Agriculture Ecosystems & Environment   | 328   | 0.53   | 4,712  | 0.47   | 14.37 | 3.130  |
| Euphytica                              | 316   | 0.51   | 3,499  | 0.35   | 11.07 | 1.405  |
| Ecology Letters                        | 310   | 0.50   | 11,698 | 1.17   | 37.74 | 10.318 |

TP number of publication, TC total citation count, TC/TP average of citations in a paper, IF 2009 ISI Impact factor

Science (186 articles with 27,553 citations), American Naturalist (192 articles with 15,015 citations), and Proceedings of the Royal Society of London Series B-Biological Sciences (155 articles with 7,729 citations). The ten-most cited articles had been cited 2,111 times on average, and the most cited articles included "Profiling of Complex Microbial-Populations by Denaturing Gradient Gel-Electrophoresis Analysis of Polymerase Chain Reaction-Amplified Genes-Coding for 16s Ribosomal-RNA" (Muyzer et al. 1993) and "Biodiversity Hotspots for Conservation Priorities" (Myers et al. 2000) received 3,154 and 2,965 citations, respectively.

## Author productivity

An author productivity analysis revealed that a small group of productive authors have contributed a large number of publications on biodiversity. Among the 119,720 authors who (co)authored at least one biodiversity paper, 117,715 or 98.3% contributed less than ten papers, while the top 2,005 or 1.7% authors produced 30,788 or 50.1% of the total articles. The most productive authors in biodiversity research were Gaston and Nevo with



| Author          | TP  | CP  | AU  | CO  | AU/TP | DC  | DC/TP | MC                       |
|-----------------|-----|-----|-----|-----|-------|-----|-------|--------------------------|
| Gaston, KJ      | 141 | 133 | 630 | 489 | 4.47  | 218 | 1.55  | Blackburn, TM (17)       |
| Nevo, E         | 135 | 132 | 588 | 453 | 4.36  | 236 | 1.75  | Belies, A (38)           |
| Lindenmayer, DB | 83  | 81  | 386 | 303 | 4.65  | 156 | 1.88  | Fischer, J (24)          |
| Possingham, HP  | 83  | 82  | 419 | 336 | 5.05  | 209 | 2.52  | Wilson, KA (18)          |
| Tscharntke, T   | 77  | 76  | 356 | 279 | 4.62  | 126 | 1.64  | Steffan-Dewenter, I (32) |
| Hamrick, JL     | 77  | 77  | 210 | 133 | 2.73  | 79  | 1.03  | Godt, MJW (22)           |
| Schmid, B       | 75  | 74  | 390 | 315 | 5.20  | 151 | 2.01  | Roscher, C (12)          |
| Cowling, RM     | 63  | 63  | 374 | 311 | 5.94  | 192 | 3.05  | Rouget, M (17)           |
| Tilman, D       | 60  | 53  | 245 | 185 | 4.08  | 103 | 1.72  | Reich, PB (9)            |
| Samways, MJ     | 56  | 50  | 139 | 83  | 2.48  | 66  | 1.18  | Grant, PBC (4)           |
| Hebert, PDN     | 55  | 55  | 258 | 203 | 4.69  | 148 | 2.69  | Hallwachs, W (6)         |
| Hyde, KD        | 55  | 53  | 210 | 155 | 3.82  | 75  | 1.36  | McKenzie, EHC (12)       |
| Melchinger, AE  | 53  | 53  | 295 | 242 | 5.57  | 88  | 1.66  | Warburton, ML (13)       |
| Chung, MG       | 53  | 48  | 156 | 103 | 2.94  | 33  | 0.62  | Chung, MY (29)           |
| Hermy, M        | 52  | 52  | 259 | 207 | 4.98  | 113 | 2.17  | Honnay, O (14)           |
| Li, Y           | 51  | 50  | 346 | 295 | 6.78  | 252 | 4.94  | Shi, YS (4)              |
| Macdonald, DW   | 50  | 50  | 320 | 270 | 6.40  | 212 | 4.24  | Feber, RE (5)            |
| Zhang, Y        | 50  | 50  | 320 | 270 | 6.40  | 243 | 4.86  | Yu, Y (6)                |
| Mac Nally, R    | 49  | 43  | 154 | 105 | 3.14  | 51  | 1.04  | Fleishman, E (13)        |
|                 | 40  | 40  | 212 | 2.0 |       |     | 2.20  | 61                       |

**Table 3** The 20 most productive authors and major collaborators

49

312

263

49

TP total publications, CP collaborated publications, AU signatories on publications or number of authors, CO co-authorships, DC distinct collaborators, MC major collaborator and number of collaborated publications

6.37

3.39

Sebastiani, F (13)

166

141 and 135 articles, respectively. Other prolific authors included Lindenmayer with 83 papers, Possingham with 83, Tscharntke with 77, and Hamrick with 77. There were 35 authors who wrote over 40 articles each. In Table 3, we present the article output descriptors of the 20 most productive authors and their major collaborators. We noticed that several authors tended to cooperate with a small group of collaborators, i.e., setting smaller values of distinct collaborators per article and signatories per article. This type of author included Samways and Hamrick, averaging 2.48 and 2.73 signatories on their papers, respectively. In contrast, some authors collaborated with a relatively large group of co-authors. For example, Macdonald and Vendramin averaged 6.40 and 6.37 signatories on their papers, respectively, while the average number of authors per article for all biodiversity articles was 3.70.

We geocoded the affiliations of authors using CiteSpace (Chen 2004) and plotted the world-wide geographic distribution of authors (Fig. 3a). We could distinguish the major spatial clusters of authors in North America, Europe, and Japan and several minor clusters in other parts of the world. A close view of the spatial distributions of authors in North America and Europe (Fig. 3b and c) revealed the sub-clusters of authors within these geographic regions. For example, there were two clusters of authors on the east and west coasts of the United States and another two clusters of authors near London, UK and Paris, France. These clusters of authors were consistent with the fact that these regions house a large number of universities, e.g., the northeastern part of United States, and that certain



Vendramin, GG



 $\label{eq:Fig.3} \textbf{a} \textbf{ Global geographic distribution of authors.} \textbf{b} \textbf{ Spatial clusters of authors in North America.} \textbf{c} \textbf{ Spatial cluster of authors in west Europe}$ 

universities/research institutions made substantial contributions to biodiversity publications, such as the University of Oxford's contribution to the author cluster near London.

# Geographic and institutional distribution of publications

We generated the data on the geographic and institutional distributions of publications based on the affiliation information of authors. The 30 most productive countries/territories are summarized in Table 4, in terms of the number of total publications and total citations for single country articles and international collaborations, respectively. Out of these

Table 4 The 30 most productive countries/territories in biodiversity research

| Country        | TP     | Single-c | ountry   |       |        | Interna | tionally-co | llaborated |        |
|----------------|--------|----------|----------|-------|--------|---------|-------------|------------|--------|
|                |        | SP       | TC       | TC/SP | SP (%) | СР      | TC          | TC/CP      | CP (%) |
| USA            | 20,558 | 14,076   | 3,14,816 | 22.37 | 68.47  | 6,482   | 15,2280     | 23.49      | 31.53  |
| UK             | 6,710  | 3,207    | 70,768   | 22.07 | 47.79  | 3,503   | 84,373      | 24.09      | 52.21  |
| France         | 4,111  | 1,765    | 27,151   | 15.38 | 42.93  | 2,346   | 46,635      | 19.88      | 57.07  |
| Australia      | 3,764  | 2,301    | 45,178   | 19.63 | 61.13  | 1,463   | 31,926      | 21.82      | 38.87  |
| Canada         | 3,614  | 2,087    | 32,294   | 15.47 | 57.75  | 1,527   | 37,050      | 24.26      | 42.25  |
| Germany        | 3,355  | 1,409    | 20,303   | 14.41 | 42.00  | 1,946   | 34,817      | 17.89      | 58.00  |
| China          | 2,775  | 1,584    | 6,803    | 4.29  | 57.08  | 1,009   | 10,577      | 10.48      | 36.36  |
| Spain          | 2,593  | 1,442    | 16,416   | 11.38 | 55.61  | 1,333   | 21,482      | 16.12      | 51.41  |
| Brazil         | 2,308  | 1,484    | 9,115    | 6.14  | 64.30  | 824     | 13,960      | 16.94      | 35.70  |
| Italy          | 2,219  | 1,193    | 10,995   | 9.22  | 53.76  | 1,026   | 16,859      | 16.43      | 46.24  |
| India          | 1,973  | 1,513    | 7,059    | 4.67  | 76.69  | 460     | 5,898       | 12.82      | 23.31  |
| Japan          | 1,909  | 1,158    | 11,823   | 10.21 | 60.66  | 751     | 11,074      | 14.75      | 39.34  |
| Sweden         | 1,676  | 801      | 16,431   | 20.51 | 47.79  | 812     | 19,065      | 23.48      | 48.45  |
| Netherlands    | 1,613  | 676      | 16,133   | 23.87 | 41.91  | 1,000   | 22,656      | 22.66      | 62.00  |
| Switzerland    | 1,376  | 495      | 12,779   | 25.82 | 35.97  | 881     | 17,996      | 20.43      | 64.03  |
| Mexico         | 1,298  | 576      | 5,189    | 9.01  | 44.38  | 676     | 13,002      | 19.23      | 52.08  |
| South Africa   | 1,252  | 721      | 8,538    | 11.84 | 57.59  | 577     | 12,686      | 21.99      | 46.09  |
| Belgium        | 1,096  | 428      | 5,442    | 12.71 | 39.05  | 668     | 12,340      | 18.47      | 60.95  |
| Finland        | 1,013  | 561      | 9,465    | 16.87 | 55.38  | 430     | 7,787       | 18.11      | 42.45  |
| Russia         | 1,005  | 659      | 1,690    | 2.56  | 65.57  | 354     | 5,308       | 14.99      | 35.22  |
| New Zealand    | 991    | 481      | 7,591    | 15.78 | 48.54  | 524     | 9,480       | 18.09      | 52.88  |
| Argentina      | 778    | 376      | 2,501    | 6.65  | 48.33  | 322     | 5,231       | 16.25      | 41.39  |
| Norway         | 762    | 326      | 5,218    | 16.01 | 42.78  | 436     | 10,768      | 24.70      | 57.22  |
| Denmark        | 698    | 288      | 4,827    | 16.76 | 41.26  | 490     | 11,547      | 23.57      | 70.20  |
| Israel         | 614    | 261      | 3,853    | 14.76 | 42.51  | 323     | 6,263       | 19.39      | 52.61  |
| Portugal       | 584    | 199      | 1,494    | 7.51  | 34.08  | 415     | 7,058       | 17.01      | 71.06  |
| Poland         | 561    | 352      | 1,526    | 4.34  | 62.75  | 209     | 2,421       | 11.58      | 37.25  |
| South Korea    | 512    | 267      | 1,287    | 4.82  | 52.15  | 218     | 1,755       | 8.05       | 42.58  |
| Turkey         | 485    | 255      | 781      | 3.06  | 52.58  | 149     | 1,638       | 10.99      | 30.72  |
| Czech Republic | 466    | 208      | 1,641    | 7.89  | 44.64  | 258     | 3,674       | 14.24      | 55.36  |

TP total publication, SP single-country publication, CP internationally collaborated publication, TC citations



30 countries, 17 were from Europe, 3 were from North America, 2 were from South America, 5 were from Asia, 2 were from Oceania, and 1 was from Africa.

The productivity ranking of countries was headed by the U.S., which was responsible for the most single-country (14,076) and internationally collaborative articles (6,482). The UK published the second highest number of articles (6,710), followed by France (4,111), Australia (3,764), Canada (3,614), and Germany (3,355). There were 24,845 single-country articles from these six countries, which were responsible for 40.1% of the total 61,418 articles. As is consistent with other bibliometric analyses (Xie et al. 2008; Tarkowski 2007; Zhang et al. 2010), economic developments were correlated with the academic outputs: the seven industrialized countries (G7 group: Canada, France, Germany, Italy, Japan, the UK, and the USA) and four major developing countries ("BRIC": Brazil, Russia, India, and China) were all among the top list of thirty countries. Although both single-country and internationally collaborative articles increased in the last three decades, the proportion of single-country articles decreased from 90% in the early 1980s to approximately 70% in 2009. The change in the percentage of internationally-collaborative articles suggested that the academic communities of biodiversity research became more internationally connected (Fig. 4). Another observation on the academic exchange would be that internationally collaborative articles generally drew more citations than those produced by individual countries.

Applying a threshold to the network centralities in the collaboration network of countries/territories, we visualized a core group of countries in the collaboration network using NetDraw (Borgatti 2002). Network centrality measures the relative importance of nodes within networks and could be viewed as an indicator of countries' positions within the collaboration network in our case. The United States took the central position in the collaboration network, as it was the principal collaborator with majorly productive countries, such as the UK and Germany (Fig. 5).

Among the 23,989 institutions that participated in biodiversity research, the Chinese Academy of Sciences led institutional productivity with 912 papers, followed by USDA ARS with 852, the University of California-Davis with 752, the Institut National de la Recherche Agronomique (INRA) with 694, the Spanish National Research Council (CSIC)



Fig. 4 International collaborative and single-country articles in biodiversity research





Fig. 5 Core international collaboration network (The *thickness of links* represents the strength of collaborations, and the *size of nodes* represents the amount of single-country publications)

with 652, the University of Wisconsin with 631, the Russian Academy of Sciences with 567, and the University of Georgia with 530. Of the 30 most prolific institutions in biodiversity research, 17 were from the U.S. (Table 5). The institutional productivity values could be biased by the fact that the Chinese Academy of Sciences and Russian Academy of Sciences are over-arching institutions that each house hundreds of branches.

Inter-institutional collaboration was more prevalent than international collaboration, as the average number of institutions per article increased from 2.0 in 1970s to 3.1 in 2009 (Fig. 6) and the 30 most productive institutions were characterized by inter-institutional collaboration on 60% of their papers (Table 5). Additionally, the number of inter-institutionally collaborative articles exceeded the number of single-institution articles around 1995. Applying a threshold to the network centralities in the collaboration network of the 500 most productive institutions, we identified a cluster of 20 of the most central institutions to the collaboration network (Fig. 7). Institutions in the U.S., especially those affiliated with the University of California system, tended to collaborate more with each other. In contrast, although the Chinese Academy of Sciences produced a substantial amount of publications, its links with other central programs were fewer. Moreover, collaboration could improve an article's influence, as the citations to inter-institutionally collaborative articles were generally greater than those from individual institutions.

## Temporal evolution of keyword frequencies

We used a keywords analysis to demonstrate the biodiversity research trends and frontiers (Chiu and Ho 2007; Xie et al. 2008; Malarvizhi et al. 2010). The keywords analysis in our study utilized author keywords and keywords plus and could provide a relatively comprehensive overview of research trends (Table 6). The author keywords were provided by article authors as parts of the articles, and the keywords plus were produced by ISI based on each article's citations and references. Both author keywords and keywords plus are termed keywords for simplicity.

The 61,418 articles had 121,207 unique keywords, which appeared 647,011 times. However, 79,546 or 65.63% out of these 121,207 keywords appeared in one paper, and



Table 5 The 30 most productive research institutions in biodiversity research

| Institution                                           | TP  | Sing | le-instit | ution |        | Inter | -instituti | onal  |        |
|-------------------------------------------------------|-----|------|-----------|-------|--------|-------|------------|-------|--------|
|                                                       |     | SI   | TC        | TC/SI | SI (%) | CI    | TC         | TC/CI | CI (%) |
| Chinese Academy of Sciences, China                    | 912 | 268  | 1,685     | 6.29  | 29.39  | 644   | 5,088      | 7.90  | 70.61  |
| USDA ARS, USA                                         | 852 | 230  | 3,917     | 17.03 | 27.00  | 622   | 10,584     | 17.02 | 73.00  |
| University of California-Davis, USA                   | 752 | 208  | 5,428     | 26.10 | 27.66  | 544   | 12,956     | 23.82 | 72.34  |
| INRA, France                                          | 694 | 181  | 3,251     | 17.96 | 26.08  | 513   | 10,858     | 21.17 | 73.92  |
| CSIC, Spain                                           | 652 | 159  | 2,879     | 18.11 | 24.39  | 493   | 7,888      | 16.00 | 75.61  |
| University of Wisconsin, USA                          | 631 | 188  | 5,015     | 26.68 | 29.79  | 443   | 10,969     | 24.76 | 70.21  |
| Russian Academy of Sciences, Russia                   | 567 | 295  | 895       | 3.03  | 52.03  | 272   | 2,748      | 10.10 | 47.97  |
| University of Georgia, USA                            | 530 | 142  | 3,585     | 25.25 | 26.79  | 388   | 9,791      | 25.23 | 73.21  |
| USDA, USA                                             | 520 | 188  | 1,712     | 9.11  | 36.15  | 332   | 4,976      | 14.99 | 63.85  |
| Swedish University of Agricultural<br>Science, Sweden | 505 | 182  | 4,365     | 23.98 | 36.04  | 323   | 5,721      | 17.71 | 63.96  |
| Oregon State University, USA                          | 504 | 135  | 4,739     | 35.10 | 26.79  | 369   | 11,108     | 30.10 | 73.21  |
| University of California-Berkeley, USA                | 487 | 105  | 3,675     | 35.00 | 21.56  | 382   | 11,313     | 29.62 | 78.44  |
| University of Oxford, UK                              | 484 | 92   | 2,594     | 28.20 | 19.01  | 392   | 11,942     | 30.46 | 80.99  |
| University Nacional Autonoma, Mexico                  | 474 | 154  | 1,957     | 12.71 | 32.49  | 320   | 6,284      | 19.64 | 67.51  |
| University of Minnesota, USA                          | 473 | 115  | 6,945     | 60.39 | 24.31  | 358   | 14,539     | 40.61 | 75.69  |
| CNRS, France                                          | 465 | 61   | 1,337     | 21.92 | 13.12  | 404   | 8,844      | 21.89 | 86.88  |
| University of Florida, USA                            | 464 | 117  | 2,358     | 20.15 | 25.22  | 347   | 6,752      | 19.46 | 74.78  |
| US Forest Service, USA                                | 461 | 126  | 2,270     | 18.02 | 27.33  | 335   | 8,248      | 24.62 | 72.67  |
| Colorado State University, USA                        | 457 | 100  | 3,154     | 31.54 | 21.88  | 357   | 10,355     | 29.01 | 78.12  |
| University of Helsinki, Finland                       | 429 | 121  | 2,647     | 21.88 | 28.21  | 308   | 5,210      | 16.92 | 71.79  |
| University of British Columbia, Canada                | 412 | 117  | 1,868     | 15.97 | 28.40  | 295   | 6,409      | 21.73 | 71.60  |
| University of Washington, USA                         | 399 | 91   | 3,693     | 40.58 | 22.81  | 308   | 9,419      | 30.58 | 77.19  |
| University of Queensland, Australia                   | 388 | 77   | 1,491     | 19.36 | 19.85  | 311   | 5,127      | 16.49 | 80.15  |
| Stanford University, USA                              | 367 | 77   | 4,038     | 52.44 | 20.98  | 290   | 16,117     | 55.58 | 79.02  |
| University of Illinois, USA                           | 361 | 110  | 2,186     | 19.87 | 30.47  | 251   | 4,625      | 18.43 | 69.53  |
| Colorado State University, USA                        | 361 | 77   | 1,503     | 19.52 | 21.33  | 284   | 6,609      | 23.27 | 78.67  |
| CSIRO, Australia                                      | 357 | 121  | 7,515     | 62.11 | 33.89  | 236   | 7,902      | 33.48 | 66.11  |
| USGS, USA                                             | 351 | 78   | 1,832     | 23.49 | 22.22  | 273   | 4,878      | 17.87 | 77.78  |
| Harvard University, USA                               | 333 | 66   | 2,201     | 33.35 | 19.82  | 267   | 9,814      | 36.76 | 80.18  |
| University of Cambridge, UK                           | 325 | 46   | 818       | 17.78 | 14.15  | 279   | 7,307      | 26.19 | 85.85  |

TP total publication, SI single-institution publication, CI inter-institutionally collaborated articles, TC total citations

113,771 (93.87%) keywords appeared in less than 10 papers. We present the 50 most frequently used keywords within each of the 5-year intervals during 1990–2009 in Table 6. During this period, 50 or 0.04% of the 121,207 keywords appeared 109,612 times and, thus, were responsible for 16.9% of the total keyword occurrences. The frequency of keywords and their ranks follows the power-law distribution: there is a small group of keywords that are widely-used, whereas most keywords are not employed frequently. This power-law distribution has also been discovered in other bibliometric studies (Li et al. 2008).









Fig. 7 Core inter-institutional collaboration network (The *thickness of links* represents the strength of collaborations, and the *size of nodes* represents the amount of single-institution publications)

Ranked among these 50 most frequently used keywords were "biodiversity," "genetic diversity," and "species diversity," which were the search terms in the data retrieval process. However, "biological diversity," "bio-diversity," "ecosystem diversity," and "landscape diversity," which were also used as search terms, were not listed among the 50 most commonly used keywords. "Species-diversity" also ranked 15th, and the online SCI search engine treated "species-diversity" and "species diversity" equally. The temporal evolution of ranks of the keywords "species richness" and "species diversity" revealed an interesting terminology preference: "species diversity" ranked 9th during 1990–1994, whereas its rank decreased to 53rd by 2009. In contrast, the rank of "species richness" increased from 37th to 6th in the last two decades. This change in terminology preference suggested that recent studies prefer "species richness" to "species diversity." Additionally, the keyword "diversity" ranked 3rd and indicates that many authors used this broad



Table 6 The temporal evolution of most frequently used keywords

| Biodiversity         137         5         1,126         1           Biodiversity         301         1         932         3           Genetic diversity         301         1         932         3           Diversity         265         2         1,024         2           Conservation         176         3         867         4           Patterns         125         6         436         6           Populations         147         4         506         5           Species richness ↑         36         37         228         19           Evolution         110         7         350         7           Gommunities         77         12         293         9           Management ↑         43         30         274         12           Identification         69         15         255         16           DNA         65         20         277         11           Species-diversity         110         7         269         13           Dynamics         64         25         187         26           Markers         29         15         257 <t< th=""><th>Rank 6 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4</th><th>Cnt Rank</th><th>Cnt</th><th>1</th><th></th><th></th><th></th><th></th><th></th></t<> | Rank 6 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | Cnt Rank | Cnt   | 1    |             |      |    |          |       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|----------|-------|------|-------------|------|----|----------|-------|
| ity 137 5 1,126 liversity 301 1 932  265 2 1,024 ltion 176 3 867 ltis 147 4 506 ltitles 1 10 7 350 ltitles 77 12 293 ltitles 77 12 293 ltitles 77 12 293 ltitle 43 30 274 ltion 69 15 255 liversity 110 7 269 s 64 22 304 s 64 25 187 ltice 69 15 257                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 6 4 6                                      |          |       | Kank | c <u>it</u> | Rank |    |          |       |
| liversity 301 1 932 liversity 265 2 1,024 ltion 176 3 867 ltis 147 4 506 littles 147 4 506 littles 77 12 28 ltitles 77 12 293 ltitles 43 30 274 ltion 69 15 253 liversity 110 7 269 s 64 22 304 ce 49 25 187 ltice 15 255 liversity 110 7 269 s 64 25 187 ltice 69 15 257                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ω c1 4 /                                     | 3,399 1  | 8,127 | 1    | 12,789      | 1    | 4  | 20,1505  | 15.76 |
| tion 176 3 1,024 tion 176 3 867 tiles 147 4 506 ichness 147 4 506 ichness 147 4 506 ichness 147 4 506 ichness 147 4 506 ities 77 12 28 ities 77 12 28 ities 77 12 28 ities 77 12 28 ities 64 15 258 in 65 20 277 iversity 110 7 269 s 64 22 304 ce 49 25 187 ice 69 15 257                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4 6 4 7                                      | 2,250 3  | 5,180 | 2    | 8,663       | 2    | 2  | 1,46,986 | 16.97 |
| tion 176 3 867  125 6 436  as 147 4 506  ichness ↑ 36 37 228  ities 110 7 350  ities 77 12 293  ent ↑ 43 30 274  tion 69 15 255  an 76 13 292  an 76 13 292  an 64 22 304  s 64 22 304  ce 49 25 187  ce 69 15 257                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4 /                                          | 2,298 2  | 4,906 | 3    | 8,493       | 3    | -  | 1,10,077 | 12.96 |
| ns 125 6 436 ichness ↑ 47 4 506 ichness ↑ 36 37 228 ities 77 12 293 inn ↑ 43 30 274 ition 69 15 255 inn 76 13 292 in 76 13 292 in 76 20 277 iversity 110 7 269 s 64 22 304 s 64 22 304 ce 49 25 187                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              | 1,891 4  | 4,058 | 4    | 6,992       | 4    | -  | 1,09,574 | 15.67 |
| ns 147 4 506 ichness ↑ 36 37 228 ities 110 7 350 ities 77 12 293 itin 43 30 274 ition 69 15 255 in 76 13 292 in 76 13 292 inversity 110 7 269 s 64 22 304 ce 49 25 187 ice 69 15 257                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                            | ,011 6   | 1,912 | 5    | 3,484       | 5    | _  | 928,899  | 19.20 |
| ichness † 36 37 228  ities 110 7 350  ities 77 12 293  ent † 43 30 274  tion 69 15 255  nn 76 13 292  nn 76 13 292  inversity 110 7 269  s 64 22 304  ce 49 25 187  ce 69 15 257                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | S                                            | 1,025 5  | 1,689 | 7    | 3,367       | 9    | 3  | 56,150   | 16.68 |
| tites 110 7 350 titles 77 12 293 tent ↑ 43 30 274 tion 69 15 255 nn 76 13 292 nn 65 20 277 tiversity 110 7 269 s 64 22 304 ce 49 25 187 tee 69 15 257                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 19                                           | 781 7    | 1,883 | 9    | 2,928       | 7    | 31 | 52,590   | 17.96 |
| tities 77 12 293 tent ↑ 43 30 274 tion 69 15 255  nn 76 13 292 nn 65 20 277 iiversity 110 7 269 s 64 22 304 ce 49 25 187 tee 69 15 257                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7                                            | 709 10   | 1,560 | 8    | 2,729       | ∞    | 3  | 52,171   | 19.12 |
| tion 43 30 274 tion 69 15 255 n 76 13 292 n 76 20 277 iversity 110 7 269 s 64 22 304 ce 49 25 187 tce 69 15 257                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6                                            | 761 8    | 1,503 | 10   | 2,634       | 6    | 4  | 49,015   | 18.61 |
| tion 69 15 255  n 76 13 292  n 76 13 292  iversity 110 7 269  s 64 22 304  ce 49 25 187  ce 69 15 257                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 12                                           | 680 11   | 1,538 | 6    | 2,535       | 10   | 21 | 43,821   | 17.29 |
| nn 76 13 258 liversity 110 7 269 s 64 22 304 ce 49 25 187 ce 69 15 258                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 16                                           | 737 9    | 1,347 | 12   | 2,408       | 11   | 7  | 43,005   | 17.86 |
| ation 76 13 292 65 20 277 65 20 277 nics 64 22 304 rs 29 53 214 lance 49 25 187 bance 69 15 257                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 14                                           | 74 12    | 1,367 | 11   | 2,388       | 12   | 5  | 42,258   | 17.70 |
| ss-diversity 110 7 269 nics 64 22 304 rs 29 53 214 lance 49 25 187 bance 69 15 257                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10                                           | 608 15   | 1,141 | 14   | 2,117       | 13   | 5  | 38,623   | 18.24 |
| 110     7     269       64     22     304       29     53     214       49     25     187       69     15     257                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 111                                          | 659 13   | 1,093 | 15   | 2,094       | 14   | 6  | 36,753   | 17.55 |
| 64     22     304       29     53     214       49     25     187       69     15     257                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 13                                           | 550 17   | 1,142 | 13   | 2,071       | 15   | 10 | 35,848   | 17.31 |
| 29     53     214       49     25     187       69     15     257                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8                                            | 649 14   | 1,031 | 16   | 2,048       | 16   | 14 | 34,432   | 16.81 |
| 49     25     187       69     15     257                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 21                                           | 555 16   | 066   | 17   | 1,788       | 17   | 37 | 34,332   | 19.20 |
| 69 15 257                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 26                                           | 537 18   | 941   | 18   | 1,714       | 18   | 8  | 34,054   | 19.87 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 15                                           | 498 19   | 298   | 19   | 1,691       | 19   | 4  | 33,957   | 20.08 |
| Population 75 14 232 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 17                                           | 437 22   | 845   | 21   | 1,589       | 20   | 8  | 31,044   | 19.54 |
| Differentiation 69 15 226 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 20                                           | 447 21   | 752   | 26   | 1,494       | 21   | 11 | 30,170   | 20.19 |
| $RAPD \uparrow 20 94 187 26$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 26                                           | 483 20   | 743   | 27   | 1,433       | 22   | 74 | 27,586   | 19.25 |



|           | 1  |
|-----------|----|
|           |    |
| continued |    |
| Table 6   |    |
| <u> </u>  | Sp |

| Keywords                      | 1990–19 | 1994  | 1995–1999 | 666  | 2000–2004 | 904  | 2005–2009 | 600  | Total |      | RC   | TC     | TC/TP |
|-------------------------------|---------|-------|-----------|------|-----------|------|-----------|------|-------|------|------|--------|-------|
|                               | Cnt     | Rank  | Cnt       | Rank | Cnt       | Rank | Cnt       | Rank | Cnt   | Rank |      |        |       |
| Habitat                       | 33      | 43    | 156       | 32   | 402       | 25   | 801       | 23   | 1,392 | 23   | 20   | 27,024 | 19.41 |
| Forest                        | 37      | 36    | 191       | 25   | 424       | 23   | 714       | 29   | 1,366 | 24   | 13   | 26,832 | 19.64 |
| Community structure           | 40      | 31    | 153       | 33   | 356       | 31   | 814       | 22   | 1,363 | 25   | 11   | 26,151 | 19.19 |
| Growth                        | 65      | 20    | 200       | 23   | 386       | 26   | 685       | 32   | 1,336 | 26   | 12   | 24,712 | 18.50 |
| Extinction                    | 36      | 37    | 187       | 56   | 415       | 24   | 682       | 34   | 1,320 | 27   | 13   | 24,421 | 18.50 |
| Dispersal                     | 21      | 06    | 109       | 49   | 362       | 29   | 797       | 24   | 1,289 | 28   | 99   | 23,943 | 18.57 |
| Variability ↓                 | 83      | 11    | 214       | 21   | 358       | 30   | 632       | 38   | 1,287 | 29   | 27   | 23,309 | 18.11 |
| Polymorphism                  | 99      | 23    | 174       | 29   | 363       | 28   | 675       | 35   | 1,272 | 30   | 12   | 21,586 | 16.97 |
| Microsatellites ↑             | 2       | 1,239 | 49        | 105  | 346       | 33   | 846       | 20   | 1,258 | 31   | 1219 | 21,463 | 17.06 |
| Species diversity \( \big  \) | 68      | 6     | 229       | 18   | 374       | 27   | 551       | 53   | 1,243 | 32   | 44   | 21,306 | 17.14 |
| Competition                   | 89      | 18    | 195       | 24   | 346       | 33   | 609       | 39   | 1,218 | 33   | 21   | 21,300 | 17.49 |
| Strains                       | 46      | 26    | 168       | 30   | 344       | 35   | 909       | 41   | 1,163 | 34   | 15   | 21,261 | 18.28 |
| Landscape                     | 7       | 322   | 99        | 125  | 268       | 49   | 784       | 25   | 1,115 | 35   | 297  | 21,197 | 19.01 |
| Richness                      | 19      | 101   | 79        | 84   | 293       | 41   | 269       | 31   | 1,088 | 36   | 70   | 21,194 | 19.48 |
| Plants                        | 51      | 24    | 148       | 35   | 327       | 36   | 562       | 50   | 1,088 | 36   | 26   | 20,838 | 19.15 |
| Habitat fragmentation         | ∞       | 287   | 82        | 79   | 288       | 44   | 704       | 30   | 1,082 | 38   | 257  | 20,687 | 19.12 |
| Birds                         | 32      | 4     | 140       | 37   | 352       | 32   | 557       | 52   | 1,081 | 39   | 20   | 20,392 | 18.86 |
| Selection                     | 46      | 26    | 157       | 31   | 290       | 43   | 580       | 47   | 1073  | 40   | 21   | 2,0054 | 18.69 |
| Biogeography                  | 30      | 47    | 112       | 48   | 259       | 51   | 651       | 36   | 1,052 | 41   | 15   | 19,966 | 18.98 |
| Population-structure          | 21      | 06    | 52        | 136  | 234       | 57   | 741       | 28   | 1,048 | 42   | 108  | 19,771 | 18.87 |
| Ecosystems                    | 25      | 65    | 132       | 39   | 311       | 38   | 570       | 49   | 1038  | 43   | 27   | 19,469 | 18.76 |
| Fragmentation                 | 20      | 94    | 114       | 46   | 301       | 40   | 969       | 44   | 1,031 | 44   | 54   | 19,328 | 18.75 |



Table 6 continued

| Keywords     | 1990–19 | 994  | 1995–1999 | 66   | 2000–2004 | 40   | 2005–2009 | 60   | Total |      | RC    | TC     | TC/TP |
|--------------|---------|------|-----------|------|-----------|------|-----------|------|-------|------|-------|--------|-------|
|              | Cnt     | Rank | Cnt       | Rank | Cnt       | Rank | Cnt       | Rank | Cnt   | Rank |       |        |       |
| Productivity | 20      | 94   | 92        | 64   | 322       | 37   | 595       | 45   | 1,029 | 45   | 57    | 18,384 | 17.87 |
| Community    | 38      | 34   | 135       | 38   | 274       | 47   | 562       | 50   | 1,009 | 46   | 16    | 16,748 | 16.60 |
| AFLP ↑       | 0       | 8789 | 35        | 225  | 285       | 45   | 685       | 32   | 1,005 | 47   | 8,757 | 16,578 | 16.50 |
| Phylogeny    | 23      | 72   | 103       | 53   | 270       | 48   | 909       | 40   | 1,002 | 48   | 32    | 16,273 | 16.24 |
| Sequences    | 30      | 47   | 107       | 50   | 308       | 39   | 533       | 55   | 826   | 49   | 16    | 15,864 | 16.22 |
| Consequences | 15      | 145  | 85        | 75   | 259       | 51   | 578       | 48   | 937   | 50   | 76    | 15,616 | 16.67 |

Cnt count of occurrences, R rank, RC change in rank, TC total citations of papers that have the corresponding keywords, TP total number of papers that have the corresponding keywords



term instead of specific diversity types. According to studies on changes in plant species diversity of aquatic ecosystems in the agricultural landscape in West Poland during the last 30 years, Goldyn (2010) indicated that the species diversity of the whole landscape declined. The number of species, as well as Shannon and Simpson diversity indices were calculated from 157 sampling quadrats to identify whether the relationships among the relationships among landscape characteristics and plant diversity in tropical forests could be used to predict biodiversity (Hernandez-Stefanoni 2006).

There were high-ranking keywords representing three different levels of biodiversity: genetic diversity, such as "DNA"; species diversity, such as the previously mentioned "species richness"; and ecosystem diversity, such as "ecosystems." We also found words that were included in the definition of biodiversity ranked high in our keyword list. "Populations," "population," "communities," and "ecosystems" ranked 6th, 20th, 9th, and 43rd in our list, respectively. Although biodiversity studies the variation of life forms in ecosystems, the rank of "variability" decreased from 11th to 29th in the last two decades. Meanwhile, "polymorphism" ranked consistently around 30th. As for the types of ecosystems, more research tended to focus on terrestrial ecosystems, although surveys of marine biodiversity were conducted in recent years. "Vegetation," "forest," and "plants" were among the 50 most common keywords, while no keywords that represent marine and freshwater ecosystems were found in the list. Tree species diversity of four tropical forest vegetation types is investigated in Xishuangbanna and southwestern China, while the results reveal the long-tailed rank/abundance diagrams of these forests (Cao and Zhang 1997).

"Conservation" was the keyword with the highest rank, apart from our search terms. Two possible reasons can be used to explain this result. First, conservation is a significant target on various biodiversity research fields. Second, the biodiversity of soils underpins many crucial ecosystem services which support the plants and animals typically targeted by conservation efforts (Parker 2010). This observation again confirmed our previous conjecture that conservation held a central position in biodiversity studies. Biodiversity research focused on both the patterns and underlying processes of ecosystems, as "patterns," "evolution," "dynamics," and "growth" ranked consistently high at 5th, 8th, 16th, and 26th, respectively, in the last two decades. High-ranking keywords related to ecological patterns also included "community structure" and "population structure," while keywords related to ecological processes included "disturbance," "competition," and "dispersal." "Management" ranked 10th during 1990–2009, and we conjectured that another aim of biodiversity would be the management of natural resources.

Marking technologies were widely applied in biodiversity research at various levels. "Markers" ranked 17th in 1990–2009. Additionally, three marking technology terms were among the keywords that enjoyed the greatest rank advancements in the last two decades (Hadrys et al. 1992; Mueller and Wolfenbarger 1999; Manzelli et al. 2007): "Microsatellites" ranked 1239th in 1990–1994, and its rank soared to 20th by 2009; "AFLP" ranked 8789th and was found in no papers in 1990–1994, while its rank grew to 32nd in 2005–2009; and "RAPD" was adopted earlier than the other two and ranked 94th in 1990–1994, whereas it ranked 27th in 2005–2009.

## **Conclusions**

In this paper, we provide an alternative perspective on the global research trends in biodiversity studies. We conducted a bibliometric analysis of the patterns of authorship, journal and subject categories, geographic and institutional distributions, and temporal



evolutions of keyword frequencies. Our study suggests that there has been steady growth in the scientific outputs in biodiversity research and confirms the dynamic collaborations in this field. The scientific outputs in biodiversity research enjoyed substantial growth during the last century, with increasing publications, collaboration index, references, and citations.

Ecology, environmental sciences, biodiversity conservations and plant science were most frequently used subject categories in biodiversity studies. *Biological Conservation, Journal of Soil and Water Conservation, Conservation Biology and Biodiversity and Conservation* published most articles on biodiversity, and top 25 journals were responsible for 36.7% of the total biodiversity papers. A small group of productive authors contributed a substantial amount of papers, as the top 1.7% of the productive authors published 50.1% of the total articles. Gaston and Nevo were the most prolific authors in biodiversity research, and 35 of the authors have produced more than 40 papers. The spatial distribution of authors and several spatial clusters of authors were also visualized.

At the country level, the U.S. attained a dominant position in global biodiversity research by contributing the largest number of single-country and internationally collaborative articles. The scientific outputs were related to economic developments, as fully developed and fast-developing countries were all among the list of productive countries. At institutional level, Chinese Academy of Sciences, USDA ARS, University of California-Davis, Institut National de la Recherche Agronomique (INRA) and Spanish National Research Council (CSIC) were the five most productive institutions. Additionally, interinstitutional collaborations were more prevalent than international collaborations. Moreover, collaborative works drew more citations than single-country or single-institution publications.

A keywords analysis found several interesting terminology preferences, confirmed conservation's central position in biodiversity research, revealed the adoption of advanced technologies, and demonstrated keen interest in both the patterns and underlying processes of ecosystems.

**Acknowledgments** The authors are thankful to Prof. Yuh-Shan Ho (Peking University, China) for his pioneering work in the bibliometric methods that were employed in this study. The authors would also like to thank Mr. Nan Feng (University of Alabama at Huntsville, USA), Mr. Chi Chen (University of Sydney, Australia), Ms. Wei Zou (University of Hong Kong, China), and Ms. Yangjie Guo (Wuhan University, China) for their valuable suggestions in preparing this manuscript. Comments from the anonymous referees and the editor are also gratefully appreciated.

#### References

Borgatti SP (2002) Netdraw network visualization. Analytic technologies, USA

Burns CE, Collins SL, Smith MD (2009) Plant community response to loss of large herbivores: comparing consequences in a South African and a North American grassland. Biodivers Conserv 18:2327–2342 Cameron EZ (2008) Productivity in conservation research in the southern hemisphere. Conserv Biol 22:232–233

Cao M, Zhang JH (1997) Tree species diversity of tropical forest vegetation in Xishuangbanna, SW China. Biodivers Conserv 6:995–1006

Chen C (2004) Searching for intellectual turning points: progressive knowledge domain visualization. Proc Nat Acad Sci 101:5303–5310

Chen J, Zhang B, Ma K, Jiang Z (2009) Bibliometric analysis of status quo of conservation biology in China. Biodivers Sci 17:423–429

Chiu WT, Ho YS (2007) Bibliometric analysis of tsunami research. Scientometrics 73:3-17

Costello MJ, Coll M, Danovaro R et al (2010) A census of marine biodiversity knowledge, resources, and future challenges. PLoS ONE 5:1–15



- Cropper A (1993) Convention on biological diversity. Environ Conserv 20:364-365
- Falagas ME, Karavasiou AI, Bliziotis IA (2006) A bibliometric analysis of global trends of research productivity in tropical medicine. Acta Trop 99:155–159
- Glowka L, Burhenne-Guilmin F, Synge H (1994) A guide to convention on biological diversity. IUCN, Gland, CH
- Goldyn H (2010) Changes in plant species diversity of aquatic ecosystems in the agricultural landscape in West Poland in the last 30 years. Biodivers Conserv 19:61–80
- Gonzalez-Alcaide G, Aleixandre-Benavent R, Navarro-Molina C, Valderrama-Zurian JC (2008) Coauthorship networks and institutional collaboration patterns in reproductive biology. Fertil Steril 90:941–956
- Gray JS (1997) Marine biodiversity: patterns, threats and conservation needs. Biodivers Conserv 6:153–175 Gude PH, Hansen AJ, Jones DA (2007) Biodiversity consequences of alternative future land use scenarios in Greater Yellowstone. Ecol Appl 17:1004–1018
- Hadrys H, Balick M, Schierwater B (1992) Applications of random amplified polymorphic DNA (RAPD) in molecular ecology. Mol Ecol 1:55–63
- He T, Zhang J, Teng L (2005) Basic research in biochemistry and molecular biology in China: a bibliometric analysis. Scientometrics 62:249–259
- Heino J, Paavola R, Virtanen R, Muotka T (2005) Searching for biodiversity indicators in running waters: do bryophytes, macroinvertebrates, and fish show congruent diversity patterns? Biodivers Conserv 14:415–428
- Hernandez-Stefanoni JL (2006) The role of landscape patterns of habitat types on plant species diversity of a tropical forest in Mexico. Biodivers Conserv 15:1441–1457
- Ho YS (2007) Bibliometric analysis of adsorption technology in environmental science. J Environ Prot Sci 1:1–11
- Kostoff RN (2000) The underpublishing of science and technology results. The Scientist 14:6
- Li T, Ho YS, Li CY (2008) Bibliometric analysis on global Parkinson's disease research trends during 1991–2006. Neurosci Lett 441:248–252
- Li J, Zhang Y, Wang X, Ho YS (2009) Bibliometric analysis of atmospheric simulation trends in meteorology and atmospheric science journals. Crotica Chemica Acta 82:695–705
- Malarvizhi R, Wang MH, Ho YS (2010) Research trends in adsorption technologies for dye containing wastewaters. World Appl Sci J 8:930–942
- Manzelli M, Pileri L, Lacerenza N et al (2007) Genetic diversity assessment in *Somali sorghum (Sorghum bicolor* (L.) Moench) accessions using microsatellite markers. Biodivers Conserv 16:1715–1730
- Margules CR, Pressey RL (2000) Systematic conservation planning. Nature 405:243-253
- Mueller UG, Wolfenbarger LL (1999) AFLP genotyping and fingerprinting. Trends Ecol Evol 14:389–394 Muyzer G, de Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 168
- rRNA. Appl Environ Microbiol 59:695–700

  Myers N, Mittermeier RA, Mittermeier CG (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858
- Parker SS (2010) Buried treasure: soil biodiversity and conservation. Biodivers Conserv 19:3743–3756
- Pielke RA, Marland G, Betts RA et al (2002) The influence of land-use change and landscape dynamics on the climate system: relevance to climate-change policy beyond the radiative effect of greenhouse gases. Philos Trans R Soc Lond Ser A-Math Phys Eng Sci 360:1705–1719
- Pritchard A (1969) Statistical bibliography or bibliometrics? J Doc 25:348–349
- Tarkowski SM (2007) Environmental health research in Europe-Bibliometric analysis. Eur J Pub Health 17:14–18
- Thuiller W, Lavorel S, Araujo MB et al (2005) Climate change threats to plant diversity in Europe. Proc Natl Acad Sci 102:8245–8250
- Tian YG, Wen C, Hong S (2008) Global scientific production on GIS research by bibliometric analysis from 1997–2006. J Informetr 2:65–74
- Tisdell C (2003) Socioeconomic causes of loss of animal genetic diversity: analysis and assessment. Ecol Econ 45:365–376
- Vitousek PM (1994) Beyond global warming-ecology and global change. Ecology 75:1861-1876
- Xie S, Zhang J, Ho YS (2008) Assessment of world aerosol research trends by bibliometric analysis. Scientometrics 77:113–130
- Zhang W, Qian W, Ho YS (2009) A bibliometric analysis of research related to ocean circulation. Scientometrics 80:305–316
- Zhang L, Wang MH, Hu J, Ho YS (2010) A review of published wetland research, 1991–2008: ecological engineering and ecosystem restoration. Ecol Eng 36:973–980

