

RS-232 TRANSCEIVER WITH SPLIT SUPPLY PIN FOR LOGIC SIDE

Check for Samples: TRS3253E-EP

FEATURES

- V_L Pin for Compatibility With Mixed-Voltage Systems Down to 1.8 V on Logic Side
- Enhanced ESD Protection on RIN Inputs and DOUT Outputs
 - ±8 kV IEC 61000-4-2 Air-Gap Discharge
 - ±8 kV IEC 61000-4-2 Contact Discharge
 - ±15 kV Human-Body Model
- Low 300-µA Supply Current
- · Specified 1000-kbps Data Rate
- Auto Powerdown Plus Feature

APPLICATIONS

- Hand-Held Equipment
- PDAs
- Cell Phones
- Battery-Powered Equipment
- Data Cables

SUPPORTS DEFENSE, AEROSPACE, AND MEDICAL APPLICATIONS

- Controlled Baseline
- One Assembly and Test Site
- One Fabrication Site
- Available in Military (-55°C to 125°C)
 Temperature Range
- Extended Product Life Cycle
- Extended Product-Change Notification
- Product Traceability

DESCRIPTION

The TRS3253E is a three-driver and five-receiver RS-232 interface device, with split supply pins for mixed-signal operations. All RS-232 inputs and outputs are protected to ±8 kV using the IEC 61000-4-2 Air-Gap Discharge method, ±8 kV using the IEC 61000-4-2 Contact Discharge method, and ±15 kV using the Human-Body Model.

The charge pump requires only four small $0.1-\mu F$ capacitors for operation from a 3.3-V supply. The TRS3253E is capable of running at data rates up to 1000 kbps, while maintaining RS-232-compliant output levels.

The TRS3253E has a unique V_L pin that allows operation in mixed-logic voltage systems. Both driver in (DIN) and receiver out (ROUT) logic levels are pin programmable through the V_L pin. This eliminates the need for additional voltage level shifter while interfacing with low-voltage microcontroller or UARTs. The TRS3253E is available in a space-saving QFN package (4 mm × 4 mm RSM).

NC - No internal connection

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

SLLSEF5 – DECEMBER 2013 www.ti.com

DESCRIPTION (CONTINUED)

Auto-powerdown plus can be disabled when FORCEON and FORCEOFF are high. With auto-powerdown plus enabled, the device activates automatically when a valid signal is applied to any receiver or driver input. INVALID is high (valid data) if any receiver input voltage is greater than 2.7 V or less than –2.7 V, or has been between –0.3 V and 0.3 V for less than 30 µs. INVALID is low (invalid data) if all receiver input voltages are between –0.3 V and 0.3 V for more than 30 µs. Refer to Figure 6 for receiver input levels.

ORDERING INFORMATION(1)

T_J	PACKAGE	ORDERABLE PART NUMBER	TOP-SIDE MARKING	VID NUMBER
-55°C to 125°C	QFN - RSM	TRS3253EMRSMREP	RS53EP	V62/13621-01XE

⁽¹⁾ For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI website at www.ti.com.

FUNCTION TABLES

Each Driver(1)

	INPUTS		ОИТРИТ		
DIN	FORCEON	FORCEOFF	TIME ELAPSED SINCE LAST RIN OR DIN TRANSITION	DOUT	DRIVER STATUS
X	Χ	L	X	Z	Powered off
L	Н	Н	X	Н	Normal operation with
Н	Н	Н	X	L	auto-powerdown plus disabled
L	L	Н	<30 µs	Н	Normal operation with
Н	L	Н	<30 µs	L	auto-powerdown plus enabled
L	L	Н	>30 µs	Z	Powered off by
Н	L	Н	>30 µs	Z	auto-powerdown plus feature

⁽¹⁾ H = high level, L = low level, X = irrelevant, Z = high impedance

Each Receiver⁽¹⁾

	INPU	JTS	OUTPUTS	
RIN1-RIN5	FORCEOFF	TIME ELAPSED SINCE LAST RIN OR DIN TRANSITION	ROUT1-ROUT5	RECEIVER STATUS
X	L	X	Z	Powered off
L	Н	<30 µs	Н	Normal operation with
Н	Н	<30 µs	L	auto-powerdown plus
Open	Н	<30 µs	Н	disabled/enabled

(1) H = high level, L = low level, X = irrelevant, Z = high impedance (off), Open = input disconnected or connected driver off

Submit Documentation Feedback

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

FUNCTIONAL BLOCK DIAGRAM

SLLSEF5 – DECEMBER 2013 www.ti.com

TERMINAL FUNCTIONS

TERMINAL		DESCRIPTION		
NAME	RSM	DESCRIPTION		
C1+, C2+	29, 1	Positive terminal of the voltage-doubler charge-pump capacitor		
V+	30	5.5-V supply generated by the charge pump		
C1-, C2-	31, 2	Negative terminal of the voltage-doubler charge-pump capacitor		
INVALID	6	Invalid Output Pin		
V-	3	-5.5-V supply generated by the charge pump		
DIN1 DIN2 DIN3	4 5 7	Driver inputs		
ROUT5 - ROUT1	10, 11, 12, 13, 14	Receiver outputs. Swing between 0 and V _L .		
V_L	15	Logic-level supply. All CMOS inputs and outputs are referenced to this supply.		
RIN5-RIN1	17, 18, 19, 20, 21	RS-232 receiver inputs		
DOUT3 DOUT2 DOUT1	22 23 25	RS-232 driver outputs		
GND	26	Ground		
V _{CC}	27	3-V to 5.5-V supply voltage		
FORCEOFF	28	Powerdown Control input (Refer to Truth Table)		
FORCEON	9	Powerdown Control input (Refer to Truth Table)		

ABSOLUTE MAXIMUM RATINGS(1)

over junction temperature range (unless otherwise noted)

			MIN	MAX	UNIT
	V _{CC} to GND		-0.3	6	V
	V _L to GND		-0.3	$V_{CC} + 0.3$	V
	V+ to GND		-0.3	7	V
	V- to GND		0.3	-7	V
	$V+ + V- ^{(2)}$			13	V
V	Input voltage	DIN, FORCEOFF to GND, FORCEON to GND	-0.3	6	V
VI		RIN to GND		±25	V
V	V+ + V- ⁽²⁾	DOUT to GND		±13.2	V
Vo	Output voltage	ROUT	-0.3	$V_{L} + 0.3$	V
T_{J}	Junction temperature			150	°C
T _{stg}	Storage temperature range	·	-65	150	°C

⁽¹⁾ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

(2) V+ and V- can have maximum magnitudes of 7 V, but their absolute difference cannot exceed 13 V.

THERMAL INFORMATION

		TRS3253E-EP	
	THERMAL METRIC ⁽¹⁾	RSM	UNITS
		32 PINS	
θ_{JA}	Junction-to-ambient thermal resistance (2)	37.2	
θ_{JCtop}	Junction-to-case (top) thermal resistance (3)	30.1	
θ_{JB}	Junction-to-board thermal resistance (4)	7.8	9004
Ψлт	Junction-to-top characterization parameter ⁽⁵⁾	0.4	°C/W
ΨЈВ	Junction-to-board characterization parameter ⁽⁶⁾	7.6	
θ_{JCbot}	Junction-to-case (bottom) thermal resistance (7)	2.4	

- (1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.
- (2) The junction-to-ambient thermal resistance under natural convection is obtained in a simulation on a JEDEC-standard, high-K board, as specified in JESD51-7, in an environment described in JESD51-2a.
- (3) The junction-to-case (top) thermal resistance is obtained by simulating a cold plate test on the package top. No specific JEDEC-standard test exists, but a close description can be found in the ANSI SEMI standard G30-88.
- (4) The junction-to-board thermal resistance is obtained by simulating in an environment with a ring cold plate fixture to control the PCB temperature, as described in JESD51-8.
- (5) The junction-to-top characterization parameter, ψ_{JT}, estimates the junction temperature of a device in a real system and is extracted from the simulation data for obtaining θ_{JA}, using a procedure described in JESD51-2a (sections 6 and 7).
- (6) The junction-to-board characterization parameter, ψ_{JB}, estimates the junction temperature of a device in a real system and is extracted from the simulation data for obtaining θ_{JA}, using a procedure described in JESD51-2a (sections 6 and 7).
- (7) The junction-to-case (bottom) thermal resistance is obtained by simulating a cold plate test on the exposed (power) pad. No specific JEDEC standard test exists, but a close description can be found in the ANSI SEMI standard G30-88.

SLLSEF5 - DECEMBER 2013 www.ti.com

RECOMMENDED OPERATING CONDITIONS

				MIN	MAX	UNIT
V_{CC}	Supply voltage			3	5.5	V
V_{L}	Supply voltage			1.65	V_{CC}	V
	Input logic threshold low		V _L = 3 V or 5.5 V		8.0	
		DIN, FORCEOFF, FORCEON	$V_{L} = 2.3 \text{ V}$		0.6	V
			V _L = 1.65 V		0.5	
			$V_{L} = 5.5 \text{ V}$	2.4		
		DIN FORCEOUS	$V_L = 3 V$	2.0		V
	Input logic threshold high	DIN, FORCEOFF, FORCEON	V _L = 2.7 V	1.4		V
			V _L = 1.95 V	1.25		
	Junction temperature			-55	125	°C
	Receiver input voltage			-25	25	V

ELECTRICAL CHARACTERISTICS(1)

over junction temperature range, $V_{CC} = V_L = 3$ V to 5.5 V, C1–C4 = 0.1 μF (tested at 3.3 V \pm 10%), C1 = 0.047 μF , C2–C4 = $0.33 \mu F$ (tested at 5 V ± 10%) (unless otherwise noted)

	PARAMETER		TEST CONDITIONS	MIN	TYP ⁽²⁾	MAX	UNIT
I_{l}	Input leakage current	FORCEOFF, FORCEON			±0.01	±2.9	μΑ
		Auto-powerdown plus disabled	No load, FORCEOFF and FORCEON at V _{CC}		0.5	1.11	mA
loc	Supply current	Powered off	No load, FORCEOFF at GND		1	10	
Icc	$(T_J = 25^{\circ}C)$	Auto-powerdown plus enabled	No load, FORCEOFF at V _{CC} , FORCEON at GND, All RIN are open or grounded		1	10	μΑ

⁽¹⁾ Testing supply conditions are C1–C4 = 0.1 μ F at V_{CC} = 3.3 V ± 0.15 V; C1–C4 = 0.22 μ F at V_{CC} = 3.3 V ± 0.3 V; and C1 = 0.047 μ F and C2–C4 = 0.33 μ F at V_{CC} = 5 V ± 0.5 V. All typical values are at V_{CC} = 3.3 V or V_{CC} = 5 V, and T_J = 25°C.

ESD PROTECTION

PARAMETER	TEST CONDITIONS 1 an-Body Model :		UNIT
	Human-Body Model	±15	
RIN, DOUT	IEC 61000-4-2 Air-Gap Discharge	±8	kV
	IEC 61000-4-2 Contact Discharge	±8	

RECEIVER SECTION

Electrical Characteristics

over junction temperature range, $V_{CC} = V_L = 3$ V to 5.5 V, C1–C4 = 0.1 μ F (tested at 3.3 V \pm 10%), C1 = 0.047 μ F, C2–C4 = 0.33 μ F (tested at 5 V \pm 10%), $T_A = T_{MIN}$ to T_{MAX} (unless otherwise noted)

	PARAMETER	TEST C	CONDITIONS	MIN	TYP ⁽¹⁾	MAX	UNIT
I _{off}	Output leakage current	ROUT, receivers disab	led		±0.05	±25	μΑ
V_{OL}	Output voltage low	I _{OUT} = 1.6 mA				0.4	V
V _{OH}	Output voltage high	$I_{OUT} = -1 \text{ mA}$		V _L - 0.6	$V_{L} - 0.1$		V
\/	Input threshold low	T 25°C	V _L = 5 V	0.8	1.2		V
V_{IT-}		T _J = 25°C	$V_{L} = 3.3 \text{ V}$	0.6	1.5		
\/	lanut throohold high	T 25°C	V _L = 5 V		1.8	2.4	V
V _{IT+}	Input threshold high	$T_J = 25^{\circ}C$	$V_{L} = 3.3 \text{ V}$		1.5	2.4	V
V _{hys}	Input hysteresis				0.5		V
	Input resistance	$T_J = 25^{\circ}C$		3	5	7	kΩ

⁽¹⁾ Typical values are at $V_{CC} = V_L = 3.3 \text{ V}$, $T_J = 25^{\circ}\text{C}$

Switching Characteristics

over junction temperature range, $V_{CC} = V_L = 3 \text{ V}$ to 5.5 V, C1–C4 = 0.1 μF (tested at 3.3 V \pm 10%), C1 = 0.047 μF , C2–C4 = 0.33 μF (tested at 5 V \pm 10%), $T_J = T_{MIN}$ to T_{MAX} (unless otherwise noted)

PARAMETER		TEST CONDITIONS		UNIT
t _{PHL}	Descriver propagation delay	Descriper input to receiver output C 450 pC	0.15	
t _{PLH}	Receiver propagation delay	Receiver input to receiver output, $C_L = 150 \text{ pF}$		μs
t _{PHL} - t _{PLH}	Receiver skew		50	ns
t _{en}	Receiver output enable time	From FORCEOFF	200	ns
t _{dis}	Receiver output disable time	From FORCEOFF	200	ns

(1) Typical values are at $V_{CC} = V_L = 3.3 \text{ V}, T_J = 25^{\circ}\text{C}.$

SLLSEF5 - DECEMBER 2013 www.ti.com

DRIVER SECTION

Electrical Characteristics

over junction temperature range, $V_{CC} = V_L = 3$ V to 5.5 V, C1–C4 = 0.1 μF (tested at 3.3 V \pm 10%), C1 = 0.047 μF , C2–C4 = 0.33 μ F (tested at 5 V \pm 10%), $T_J = T_{MIN}$ to T_{MAX} (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP ⁽¹⁾	MAX	UNIT
V _{OH}	Output voltage swing	All driver outputs loaded with 3 k Ω to ground, V _{CC} = 3.1V to 5.5V	±5	±5.4		V
r _O	Output resistance	$V_{CC} = V + = V - = 0$, Driver output = $\pm 2 V$	300	10M		Ω
Ios	Output short-circuit current	$V_{T_OUT} = 0$			±60	mA
	Output leakage current	$V_{T_OUT} = \pm 12 \text{ V}, \overline{\text{FORCEOFF}} = \text{GND},$ $V_{CC} = 3 \text{ V to } 3.6 \text{ V}$. 25	
I _{OZ}		$V_{T_OUT} = \pm 12 \text{ V}, \overline{\text{FORCEOFF}} = \text{GND},$ $V_{CC} = 4.5 \text{ V} \text{ to } 5.5 \text{ V}$			±25	μΑ
	Driver input hysteresis				0.5	V
	Input leakage current	DIN, FORCEOFF, FORCEON		±0.01	±2.9	μΑ

⁽¹⁾ Typical values are at $V_{CC} = V_L = 3.3 \text{ V}$, $T_J = 25^{\circ}\text{C}$

Timing Requirements

over junction temperature range, $V_{CC} = V_L = 3$ V to 5.5 V, C1–C4 = 0.1 μ F (tested at 3.3 V \pm 10%), C1 = 0.047 μ F, C2–C4 = 0.33 μ F (tested at 5 V \pm 10%), $T_j = T_{MIN}$ to T_{MAX} (unless otherwise noted)

	PARAMETER			MIN	TYP ⁽¹⁾	MAX	UNIT
	Maximum data rate	$R_L = 3 \text{ k}\Omega$, $C_L = 200 \text{ pF}$, One	1000			kbps	
	Time-to-exit powerdown	$ V_{T_{-}OUT} > 3.7 \text{ V}$		100		μs	
t _{PHL} - t _{PLH}	Driver skew ⁽²⁾				100		ns
	Transition-region slew rate	$\begin{array}{l} V_{CC}=3.3 \text{ V}, \\ T_j=25^{\circ}\text{C}, \\ R_L=3 \text{ k}\Omega \text{ to 7 k}\Omega, \\ \text{Measured from 3 V} \\ \text{to } -3 \text{ V or } -3 \text{ V to 3 V} \end{array}$	C _L = 150 pF to 1000 pF	15		150	V/µs

Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

Typical values are at V_{CC} = V_L = 3.3 V, T_J = 25°C. Driver skew is measured at the driver zero crosspoint.

AUTO-POWERDOWN SECTION

Electrical Characteristics

over recommended ranges of supply voltage and junction temperature (unless otherwise noted) (see Figure 7)

	PARAMETER	TEST CONDITIONS	MIN	MAX	UNIT
V _{IT+(valid)}	Receiver input threshold for INVALID high-level output voltage	FORCEON = GND, FORCEOFF = V _L		2.7	V
V _{IT-(valid)}	Receiver input threshold for INVALID high-level output voltage	FORCEON = GND, FORCEOFF = V _L	-2.7		V
V _{T(invalid)}	Receiver input threshold for INVALID low-level output voltage	FORCEON = GND, FORCEOFF = V _L	-0.3	0.3	V
V _{OH}	INVALID high-level output voltage	I _{OH} = -1 mA, FORCEON = GND, FORCEOFF = V _L	V _L – 0.6		V
V _{OL}	INVALID low-level output voltage	$I_{OL} = 1.6 \text{ mA}, \text{FORCEON} = \text{GND},$ FORCEOFF = V_L	_	0.4	V

Switching Characteristics

over recommended ranges of supply voltage and junction temperature (unless otherwise noted) (see Figure 7)

	PARAMETER	MIN	TYP ⁽¹⁾	MAX	UNIT
t _{valid}	Propagation delay time, low- to high-level output		0.1		μs
t _{invalid}	Propagation delay time, high- to low-level output		50		μs
t _{en}	Supply enable time		25		μs
t _{dis}	Receiver or driver edge to auto-powerdown plus		30		μs

(1) All typical values are at $V_{CC} = V_L = 3.3 \text{ V}$ and $T_J = 25^{\circ}\text{C}$.

- (1) See datasheet for absolute maximum and minimum recommended operating conditions.
- (2) Silicon operating life design goal is 10 years at 105°C junction temperature (does not include package interconnect life).
- (3) Enhanced plastic product disclaimer applies.

Figure 1. TRS3253E-EP Operating Life Derating Chart

SLLSEF5 – DECEMBER 2013 www.ti.com

APPLICATION INFORMATION

 $^{^{\}dagger}$ C3 can be connected to V_{CC} or GND.

NOTES: A. Resistor values shown are nominal.

B. Nonpolarized ceramic capacitors are acceptable. If polarized tantalum or electrolytic capacitors are used, they should be connected as shown.

V_{CC} vs CAPACITOR VALUES

V _{CC}	C1	C2, C3, and C4
3.3 V \pm 0.3 V 5 V \pm 0.5 V 3 V to 5.5 V	0.1 μF 0.047 μF 0.1 μF	0.1 μF 0.33 μF 0.47 μF

Figure 2. Typical Operating Circuit and Capacitor Values

Submit Documentation Feedback

PARAMETER MEASUREMENT INFORMATION

- A. C_L includes probe and jig capacitance.
- B. The pulse generator has the following characteristics: PRR = 250 kbit/s, $Z_O = 50 \Omega$, 50% duty cycle, $t_r \le 10$ ns, $t_f \le 10$ ns.

Figure 3. Driver Slew Rate

- A. C_L includes probe and jig capacitance.
- B. The pulse generator has the following characteristics: PRR = 250 kbit/s, $Z_O = 50 \Omega$, 50% duty cycle, $t_r \le 10$ ns, $t_f \le 10$ ns.

Figure 4. Driver Pulse Skew

- A. C_L includes probe and jig capacitance.
- B. The pulse generator has the following characteristics: $Z_0 = 50 \Omega$, 50% duty cycle, $t_r \le 10$ ns. $t_f \le 10$ ns.

Figure 5. Receiver Propagation Delay Times

- A. C_L includes probe and jig capacitance.
- B. The pulse generator has the following characteristics: Z_0 = 50 Ω , 50% duty cycle, $t_r \le 10$ ns, $t_f \le 10$ ns.
- C. t_{PLZ} and t_{PHZ} are the same as t_{dis} .
- D. t_{PZL} and t_{PZH} are the same as t_{en} .

PARAMETER MEASUREMENT INFORMATION (continued)

Figure 6. Receiver Enable and Disable Times

Submit Documentation Feedback

PARAMETER MEASUREMENT INFORMATION (continued)

[†] Auto-powerdown plus disables drivers and reduces supply current to 1 μA.

- NOTES: A. C_L includes probe and jig capacitance.
 - B. The pulse generator has the following characteristics: PRR = 5 kbit/s, Z_O = 50 Ω , 50% duty cycle, $t_f \le 10$ ns, $t_f \le 10$ ns.

Figure 7. INVALID Propagation-Delay Times and Supply-Enabling Time

PACKAGE OPTION ADDENDUM

15-Apr-2017

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package	Pins	Package	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
TRS3253EMRSMREP	ACTIVE	VQFN	RSM	32	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-55 to 125	RS53EP	Samples
V62/13621-01XE	ACTIVE	VQFN	RSM	32	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR	-55 to 125	RS53EP	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

PACKAGE OPTION ADDENDUM

15-Apr-2017

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF TRS3253E-EP:

NOTE: Qualified Version Definitions:

• Catalog - TI's standard catalog product

PACKAGE MATERIALS INFORMATION

www.ti.com 15-Jan-2014

TAPE AND REEL INFORMATION

_		
		Dimension designed to accommodate the component width
	В0	Dimension designed to accommodate the component length
	K0	Dimension designed to accommodate the component thickness
	W	Overall width of the carrier tape
ı	P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TRS3253EMRSMREP	VQFN	RSM	32	3000	330.0	12.4	4.25	4.25	1.15	8.0	12.0	Q2

www.ti.com 15-Jan-2014

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TRS3253EMRSMREP	VQFN	RSM	32	3000	367.0	367.0	35.0

- NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.
 - B. This drawing is subject to change without notice.
 - C. QFN (Quad Flatpack No-Lead) Package configuration.
 - The package thermal pad must be soldered to the board for thermal and mechanical performance. See the Product Data Sheet for details regarding the exposed thermal pad dimensions.

RSM (S-PVQFN-N32)

PLASTIC QUAD FLATPACK NO-LEAD

THERMAL INFORMATION

This package incorporates an exposed thermal pad that is designed to be attached directly to an external heatsink. The thermal pad must be soldered directly to the printed circuit board (PCB). After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).

For information on the Quad Flatpack No—Lead (QFN) package and its advantages, refer to Application Report, QFN/SON PCB Attachment, Texas Instruments Literature No. SLUA271. This document is available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.

Bottom View

Exposed Thermal Pad Dimensions

4207868-2/1 07/14

NOTE: All linear dimensions are in millimeters

RSM (S-PVQFN-N32)

PLASTIC QUAD FLATPACK NO-LEAD

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. This package is designed to be soldered to a thermal pad on the board. Refer to Application Note, Quad Flat—Pack Packages, Texas Instruments Literature No. SLUA271, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com http://www.ti.com.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
- F. Customers should contact their board fabrication site for recommended solder mask tolerances and via tenting recommendations for vias placed in the thermal pad.

IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

TI's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyers and others who are developing systems that incorporate TI products (collectively, "Designers") understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products used in or for Designers' applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.

TI's provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer's company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.

Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers' own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer's non-compliance with the terms and provisions of this Notice.