1 Tuned parameters

Table 1: Candidate models for $\mathrm{NH_3N}$ forecasting 1 .

Machine learning techniques	Model names
Ensemble learning	RF
Deep learning	CNN
Deep learning	DNN
Deep learning	RNN
Deep learning	GRU
Deep learning	LSTM

¹All the hyper-parameters are set to be the same. Hidden layer = 10, output layer = 3, learning rate = 5e-05, epoch = 100, experiment times = 3, and scheduler is used for regularization (patience=10, factor=0.5).

Table 2: Configurations for NH₃N forecasting.

Parameter	Values	Pre-processing methods	Parameters
Input	24 hours	SG 1	span=5
Output	3 hours	SG 2	span=7
Train	12/23/21 to 1/09/22	SG 3	span=9
Valid	1/10/22 to 1/15/22	EWMA 1	span=2
Test	1/16/22 to 1/22/22	EWMA 2	span=3
		EWMA 3	span=4
		OR^2	<u>-</u>

²Three days were identified as outliers and removed from the training dataset.

2 **Reuslt 1 (Exp-1)**

2.1 test and val loss comparison in Jan

- First time showing the results in decending order of test loss.
- LSTM and GRU have lower test loss than RNN, DNN, and RF.
- ullet The lowest test loss of NH $_3$ N forecasting approach has higher validation loss than several approaches.

Table 3: Evaluation of each baseline approach for $\mathrm{NH_3N}$ forecasting.

Rank	Model-Dataset	Test loss*	valid loss
1	GRU-sg7	0.0383 ± 0.0007	1.2508 ± 0.0458
2	GRU-sg5	$0.0385 \pm\! 0.0001$	1.2644 ± 0.0081
3	LSTM-ew3	$0.0388 \pm\! 0.0006$	$1.0796 \pm 0.0112(1)$
4	LSTM-sg7	$0.0388 \pm\! 0.0003$	1.1804 ± 0.0296
5	LSTM-sg5	$0.0388 \pm\! 0.0003$	1.2346 ± 0.0520
6	GRU-ew2	$0.0389 \pm\! 0.0004$	1.1891 ± 0.0307
7	GRU-ew4	$0.0391 \pm\! 0.0004$	1.2390 ± 0.0557
8	LSTM-ew2	$0.0392 \pm \! 0.0006$	$1.0969 \pm 0.0159(2)$
9	GRU-ew3	$0.0392 \pm\! 0.0002$	1.2199 ± 0.0137
10	LSTM-ew4	$0.0395 \pm\! 0.0010$	$1.1219 \pm 0.0079(3)$
11	GRU-sg9	$0.0396 \pm\! 0.0003$	1.3097 ± 0.0175
12	LSTM-or	$0.0398 \pm\! 0.0003$	1.2612 ± 0.0269
13	LSTM-obs	$0.0405 \pm\! 0.0004$	$1.2366 \pm\! 0.0150$
14	GRU-or	$0.0405 \pm\! 0.0002$	1.3993 ± 0.0532
15	LSTM-sg9	$0.0410 \pm\! 0.0005$	$1.3076\ {\pm}0.0214$
16	GRU-obs	$0.0414 \pm\! 0.0005$	1.3638 ± 0.0359
17	RNN-sg5	$0.0415 \pm\! 0.0001$	1.5088 ± 0.0336
18	RNN-ew2	$0.0421 \pm\! 0.0007$	1.5425 ± 0.0566
19	RNN-sg7	$0.0423 \pm\! 0.0008$	$1.6267\ \pm0.0065$
20	RNN-ew4	$0.0432 \pm\! 0.0003$	1.5992 ± 0.0300

2.2 Test loss in Oct and val

• Result 1 (baseline performance in October)

Table 4: Model evaluations of each forecasting approach.

Rank	Model-Dataset	Test loss*	valid loss
1	LSTM-ew3	0.0158	1.0796
2	LSTM-ew2	0.0161	1.0969
3	LSTM-ew4	0.0163	1.1219
4	LSTM-sg5	0.0166	1.2346
5	GRU-ew3	0.0167	1.2199
6	GRU-ew4	0.0169	1.2390
7	GRU-ew2	0.0170	1.1891
8	GRU-sg9	0.0174	1.3097
9	LSTM-obs	0.0175	1.2366
10	LSTM-or	0.0177	1.2612
11	GRU-sg5	0.0178	1.2644
12	GRU-sg7	0.0180	1.2508
13	LSTM-sg7	0.0180	1.1804
14	GRU-or	0.0187	1.3993
15	LSTM-sg9	0.0188	1.3076
16	GRU-obs	0.0189	1.3638
17	RNN-ew4	0.0190	1.5992
18	RNN-ew2	0.0191	1.5425
19	RNN-ew3	0.0193	1.6041
20	RNN-sg5	0.0195	1.5088

2.3 Point out the top forecasting approach of the test loss didn't have the lowest validation loss.

• Test dataset from 1/16 to 1/22 performed differently on the same forecasting approach compared to validation loss.

Table 5: Comparison of $\mathrm{NH_{3}N}$ val/test loss from 1/16 to 1/22.

GRU	Test loss*	Val loss	LSTM	Test loss*	Val loss
sg7	0.0383 ± 0.0007	1.2508±0.0458	ew3	0.0388 ± 0.0006	1.0796±0.0112 (1)
sg5	0.0385 ± 0.0001	1.2644 ± 0.0081	sg7	0.0388 ± 0.0003	1.1804±0.0296
ew2	0.0389 ± 0.0004	1.1891±0.0307(1)	sg5	0.0388 ± 0.0003	1.2346 ± 0.0520
ew4	0.0391 ± 0.0004	1.2390±0.0557(3)	ew2	0.0392 ± 0.0006	1.0969±0.0159(2)
ew3	0.0392 ± 0.0002	1.2199±0.0137(2)	ew4	0.0395 ± 0.0010	1.1219±0.0079(3)
sg9	0.0396 ± 0.0003	1.3097±0.0175	or	0.0398 ± 0.0003	1.2612±0.0269
or	0.0405 ± 0.0002	1.3993 ± 0.0532	obs	0.0405 ± 0.0004	1.2366 ± 0.0150
obs	0.0414 ± 0.0005	1.3638 ± 0.0359	sg9	0.0410 ± 0.0005	1.3076 ± 0.0214

2.4 Test dataset from 10/10 to 10/16 performed similar on the same forecasting approach compared to validation loss.

Table 6: Val/test loss of NH_3N from 10/10 to 10/16.

		1.0796±0.0112(1)
	0161+0 0000	
ew4 0.0169±0.0001 1.2390±0.0557 (3) ew2 0.0	0101-0.0000	1.0969±0.0159(2)
ew2 0.0170±0.0004 1.1891±0.0307 (1) ew4 0.0	0163±0.0003	1.1219±0.0079(3)
sg9 0.0174±0.0002 1.3097±0.0175 sg5 0.0	0166±0.0001	1.2346±0.0520
sg5 0.0178±0.0004 1.2644±0.0081 obs 0.0	0175±0.0001	1.2366±0.0150
	0177 ± 0.0002	1.2612±0.0269
or 0.0187±0.0002 1.3993±0.0532 sg7 0.0	0180 ± 0.0002	1.1804±0.0296
obs 0.0189±0.0002 1.3638±0.0359 sg9 0.0	0188±0.0002	1.3076 ± 0.0214

2.5 The influence of each pre-processing method on model training is different.

Table 7: Evaluation of pre-processing methods on LSTM and GRU.

Rank	GRU ³	LSTM ³	GRU ⁴	LSTM ⁴
1	sg7	ew3	ew3	ew3
2	sg5	sg7	ew4	ew2
3	ew2	sg5	ew2	ew4
4	ew4	ew2	sg9	sg5
5	ew3	ew4	sg5	obs
6	sg9	or	sg7	or
7	or	obs	or	sg7
8	obs	sg9	obs	sg9

³Test loss from 1/16 to 1/22

 $^{^4}$ Number 3 stands for the number of features.

3 Result 2 (Exp-2)

Table 8: Evaluation of LSTM trained with positional encoding.

LSTM	Test loss	LSTM-3 ⁵	Test loss	Improvement
ew3	0.0158±0.0004	ew3	0.0149±0.0001	5.70%
ew2	0.0161 ± 0.0000	ew2	0.0150 ± 0.0003	6.83%
ew4	0.0163 ± 0.0003	ew4	0.0152 ± 0.0002	6.75%
sg5	0.0166 ± 0.0001	sg7	0.0155 ± 0.0003	13.89%
obs	0.0175 ± 0.0001	sg5	0.0156 ± 0.0001	11.86%
or	0.0177 ± 0.0002	or	0.0156 ± 0.0002	6.02%
sg7	0.0180 ± 0.0002	sg9	0.0160 ± 0.0005	14.89%
sg9	0.0188 ± 0.0002	obs	0.0164 ± 0.0003	6.29%

⁵Number 3 stands for the number of features.

4 **Result 3 (Exp-3)**

4.1 Colour in baseline performance

Table 9: Evaluation of each baseline approach for colour forecasting.

Rank	Model-Dataset	Test loss*	valid loss
1	LSTM-ew4	0.0136±0.0003	0.7515±0.0310(3)
2	LSTM-ew3	0.0138 ± 0.0001	0.7547 ± 0.0057
3	LSTM-ew2	0.0138 ± 0.0001	0.8011 ± 0.0131
4	GRU-ew3	0.0140 ± 0.0003	0.8068 ± 0.0070
5	GRU-ew2	0.0142 ± 0.0001	0.8330 ± 0.0104
6	LSTM-sg9	0.0143 ± 0.0005	0.7137±0.0216 (1)
7	GRU-ew4	0.0143 ± 0.0001	0.7694 ± 0.0071
8	RNN-ew3	0.0144 ± 0.0002	0.8492 ± 0.0371
9	RNN-sg9	0.0147 ± 0.0003	0.8363 ± 0.0125
10	RNN-ew4	0.0147 ± 0.0001	0.8476 ± 0.0238
11	LSTM-obs	0.0148 ± 0.0003	0.9744 ± 0.0124
12	GRU-obs	0.0149 ± 0.0003	0.9927 ± 0.0076
13	RNN-ew2	0.0150 ± 0.0002	0.9083 ± 0.0202
14	GRU-sg9	0.0151 ± 0.0001	0.7575 ± 0.0253
15	RNN-sg7	0.0158 ± 0.0001	0.8755 ± 0.0249
16	RNN-sg5	0.0158 ± 0.0001	0.8846 ± 0.0180
17	GRU-sg7	0.0159 ± 0.0005	0.7791 ± 0.0152
18	GRU-sg5	0.0160 ± 0.0004	0.8080 ± 0.0210
19	RNN-obs	0.0160 ± 0.0001	1.0623 ± 0.0394
20	LSTM-sg7	0.0161 ± 0.0003	0.7439±0.0364 (2)

Table 10: Evaluation of LSTM trained with positional encoding.

LSTM	Test loss	LSTM-3 ⁶	Test loss	Improvement
ew4	0.0136±0.0003	sg9	0.0120±0.0007	16.08%
ew3	0.0138 ± 0.0001	ew2	0.0132 ± 0.0004	4.35%
ew2	0.0138 ± 0.0001	ew3	0.0134 ± 0.0004	2.90%
sg9	0.0143 ± 0.0005	ew4	0.0135 ± 0.0003	0.74%
obs	0.0148 ± 0.0003	obs	0.0135 ± 0.0001	8.78%
sg7	0.0161 ± 0.0003	sg7	0.0143 ± 0.0003	11.18%
sg5	0.0168 ± 0.0005	sg5	0.0144 ± 0.0002	14.29%

⁶Number 3 stands for the number of features.

5 Conclusion

Table 11: Influence of pre-processing method on $\rm NH_3N$ and colour forecasting models trained with LSTM.

Rank	$\mathrm{NH_3N}$	$NH_3N + pos^7$	Colour	Colour + pos
1	ew3	ew3	ew4	sg9
2	ew2	ew2	ew3	ew2
3	ew4	ew4	ew2	ew3
4	sg5	sg7	sg9	ew4
5	obs	sg5	obs	obs
6	or	or	sg7	sg7
7	sg7	sg9	sg5	sg5
8	sg9	obs		

⁷Postional encoding.

Table 12: Evaluation of multivariate models in forecasting colour.

Rank	Model-Dataset	Test loss	Improvement
1	LSTM-ew3	0.0132 ± 0.0001	4.35%
2	LSTM-ew4	0.0135 ± 0.0002	2.17%
3	LSTM-ew2	0.0139 ± 0.0002	7.95%
4	GRU-ew4	0.0140 ± 0.0001	2.10%
5	GRU-ew3	0.0142 ± 0.0003	-1.43%
6	GRU-ew2	0.0143 ± 0.0002	-0.70%
7	GRU-sg9	0.0145 ± 0.0002	8.81%
8	LSTM-sg9	0.0146 ± 0.0001	-2.10%
9	RNN-ew4	0.0147 ± 0.0002	0.00%
10	RNN-ew3	0.0149 ± 0.0001	0.00%
11	GRU-obs	0.0149 ± 0.0002	-3.47%
12	RNN-sg9	0.0151 ± 0.0002	-0.67%
13	RNN-ew2	0.0151 ± 0.0002	-2.72%
14	LSTM-obs	0.0152 ± 0.0001	-11.76%
15	LSTM-sg7	0.0154 ± 0.0007	4.35%
16	GRU-sg5	0.0158 ± 0.0004	1.25%
17	RNN-sg7	0.0159 ± 0.0005	-7.43%
18	LSTM-sg5	0.0159 ± 0.0006	0.62%
19	RNN-obs	0.0159 ± 0.0002	-0.63%
20	RNN-sg5	0.0163 ± 0.0003	-3.16%

Table 13: Evaluation of multivariate models in forecasting $\mathrm{NH_{3}N}.$

Rank	Madal Dataset	Test loss	Imamazzamant
Kank	Model-Dataset	Test loss	Improvement
1	LSTM-ew3	$0.0379 \pm\! 0.0009$	3.32%
2	LSTM-sg7	$0.0379 \pm \! 0.0004$	4.77%
3	LSTM-ew4	$0.0380 \pm \! 0.0003$	2.06%
4	GRU-ew3	$0.0386 \pm\! 0.0004$	1.53%
5	LSTM-sg5	$0.0387 \pm\! 0.0004$	4.44%
6	LSTM-ew2	$0.0389 \pm\! 0.0004$	1.77%
7	GRU-sg7	$0.0390 \pm\! 0.0009$	-1.30%
8	GRU-sg5	$0.0392 \pm \! 0.0008$	3.21%
9	GRU-ew4	$0.0394 \pm\! 0.0004$	-0.77%
10	GRU-sg9	$0.0400 \pm\! 0.0010$	-4.44%
11	GRU-ew2	$0.0402 \pm\! 0.0012$	-3.34%
12	LSTM-sg9	$0.0409 \pm\! 0.0006$	-5.41%
13	LSTM-obs	0.0411 ± 0.0007	-4.05%
14	RNN-sg5	$0.0413 \pm \! 0.0009$	0.48%
15	RNN-sg7	$0.0417 \pm\! 0.0007$	1.42%
16	GRU-obs	$0.0420 \pm\! 0.0006$	-1.45%
17	RNN-ew2	$0.0424 \pm\! 0.0006$	-9.28%
18	RNN-ew3	$0.0426 \pm\! 0.0003$	-3.90%
19	RNN-ew4	$0.0427 \pm\! 0.0005$	-1.43%
20	RNN-obs	$0.0437 \pm\! 0.0012$	-1.16%

Figure 1: Ammonia forecasting models trained with different input features. Univariate represents training model with NH_3N only, and multivariate represents training with both NH_3N and colour. Pos represents positional encoding, which composed of sine and cosine of hours.

Figure 2: Colour forecasting models trained with different input features. Univariate represents training model with colour only, and multivariate represents training with both NH_3N and colour. Pos represents positional encoding, which composed of sine and cosine of hours.