Introduction to Machine Learning

Singular Value Decomposition

Varun Chandola

May 8, 2019

Outline

Contents

1	Sing	gular Value Decompostion	1
	1.1	Economy Sized SVD	1
	1.2	Connection between Eigenvectors and Singular Vectors	:
	1.3	PCA Using SVD	:
	1.4	Low Rank Approximations Using SVD	:
	1.5	The Matrix Approximation Lemma	4
	1.6	Equivalence Between PCA and SVD	4
	1.7	SVD Applications	Ę

1 Singular Value Decompostion

• For any matrix **X** $(N \times D)$

$$\underbrace{\mathbf{X}}_{N \times D} = \underbrace{\mathbf{U}}_{N \times N} \underbrace{\mathbf{S}}_{N \times D} \underbrace{\mathbf{V}}_{D \times D}^{\top}$$

U is a $N \times N$ matrix and all columns of **U** are orthonormal, i.e., $\mathbf{U}^{\top}\mathbf{U} = \mathbf{I}_{N}$. **V** is a $D \times D$ matrix whose rows and columns are orthonormal (i.e., $\mathbf{V}^{\top}\mathbf{V} = \mathbf{I}_{D}$ and $\mathbf{V}\mathbf{V}^{\top} = \mathbf{I}_{D}$). **S** is a $N \times D$ matrix containing the r = min(N, D)

singular values $\sigma_i \geq 0$ on the main diagonal and 0s in the rest of the matrix. The columns of **U** are the left singular vectors and the columns of **V** are the right singular vectors.

The lower panel above shows the truncated SVD approximation of rank ${\cal L}.$

1.1 Economy Sized SVD

• Assume that N > D

$$\underbrace{\mathbf{X}}_{N\times D} = \underbrace{\tilde{\mathbf{U}}}_{N\times D} \underbrace{\tilde{\mathbf{S}}}_{D\times D} \underbrace{\tilde{\mathbf{V}}}_{D\times D}^{\top}$$

2

1.2 Connection between Eigenvectors and Singular Vectors

• Let $X = USV^T$

$$\mathbf{X}^{\top}\mathbf{X} = \mathbf{V}\mathbf{S}^{\top}\mathbf{U}^{\top}\mathbf{U}\mathbf{S}\mathbf{V}^{\top}$$
$$= \mathbf{V}(\mathbf{S}^{\top}\mathbf{S})\mathbf{V}^{\top}$$
$$= \mathbf{V}\mathbf{D}\mathbf{V}^{\top}$$

- \bullet where $\mathbf{D}=\mathbf{S}^2$ is a diagonal matrix containing squares of singular values.
- Hence,

$$(\mathbf{X}^{\mathsf{T}}\mathbf{X})\mathbf{V} = \mathbf{V}\mathbf{D}$$

- Which means that the columns of V are the eigenvectors of $X^{\top}X$ and D contains the eigenvalues.
- Similarly one can show that the columns of \mathbf{U} are the eigenvectors of $\mathbf{X}\mathbf{X}^{\top}$ and \mathbf{D} contains the eigenvalues.

Remember that both U and V are orthonormal matrices.

1.3 PCA Using SVD

 Assuming that X is centered (zero mean) the principal components are equal to the right singular vectors of X.

1.4 Low Rank Approximations Using SVD

 \bullet Choose only first L singular values

$$\underbrace{\mathbf{X}}_{N imes D} pprox \underbrace{ ilde{\mathbf{U}}}_{N imes L} \underbrace{ ilde{\mathbf{S}}}_{L imes L} \underbrace{ ilde{\mathbf{V}}}^{ op}$$

- Only need NL + LD + L values to represent $N \times D$ matrix
- Also known as $rank\ L$ approximation of the matrix \mathbf{X} (Why?) Because the rank of the approximate matrix will be L.

1.5 The Matrix Approximation Lemma

- ullet Among all possible rank L approximations of a matrix ${f X},$ SVD gives the best approximation
 - In the sense of minimizing the Frobenius norm

$$\|\mathbf{X} - \mathbf{X}_L\|$$

• Also known as the Eckart Young Mirsky theorem

1.6 Equivalence Between PCA and SVD

- For data X (assuming it to be centered)
- Principal components are the eigenvectors of $\mathbf{X}^{\top}\mathbf{X}$
- Or, principal components are the columns of V

$$\mathbf{W} = \mathbf{V}$$

Or

$$\hat{\mathbf{W}} = \hat{\mathbf{V}}$$

- $\hat{\mathbf{W}}$ are the first L principal components and $\hat{\mathbf{V}}$ are the first L right singular vectors.
- For PCA, data in latent space:

$$\begin{split} \hat{\mathbf{Z}} &= \mathbf{X}\hat{\mathbf{W}} \\ &= \hat{\mathbf{U}}\hat{\mathbf{S}}\hat{\mathbf{V}}^{\top}\mathbf{V} \\ &= \hat{\mathbf{U}}\hat{\mathbf{S}} \end{split}$$

• Optimal reconstruction for PCA:

$$\hat{\mathbf{X}} = \hat{\mathbf{Z}}\hat{\mathbf{W}}^{\top} \\
= \hat{\mathbf{U}}\hat{\mathbf{S}}\hat{\mathbf{V}}^{\top}$$

Optimal reconstruction is same as truncated SVD approximation!!

Singular Value Decomposition - Recap

- What is the (column) rank of a matrix?
- Maximum number of linearly independent columns in the matrix.
- For $\mathbf{X} = \mathbf{U}\mathbf{S}\mathbf{V}^{\top}$ (SVD):
 - What is the rank of $\hat{\mathbf{X}}^{(1)} = \mathbf{U}_{:1} \sigma_1 \mathbf{V}_{:1}^{\top}$?
 - The rank is 1 because each column of $\hat{\mathbf{X}}^{(1)}$ is a scaled version of the vector $U_{:1}$.
- How much storage is needed for a rank 1 matrix?
 - -O(N)

Importance of the Matrix Approximation Lemma

- There are many ways to "approximate" a matrix with a lower rank approximation
- Low rank approximation allows us to *store* the matrix using much less than $N \times D$ bits $(O(N \times L)$ bits only)
- ullet SVD gives the best possible approximation

$$\|\mathbf{X} - \hat{\mathbf{X}}\|_{2}^{2}$$

1.7 SVD Applications

- A faster way to do PCA (truncated SVD, sparse SVD)
- Other applications as well:
 - Image compression
 - Recommender Systems
 - * There are better methods
 - Topic modeling (Latent Semantic Indexing)

References