Aula 0.1: Revisão de Inferência Estatística

Econometria I - IBMEC

Marcus L. Nascimento

29 de outubro de 2025

1. População x Amostra

2. Estimação

3. Testes de Hipóteses

População x Amostra

Definição

- Inferência Estatística: Conjunto de técnicas que objetiva estudar uma população com base em informações obtidas a partir de uma amostra.
- População é um conjunto completo de elementos que compartilham uma ou mais características em comum.
 - Em pesquisas, corresponde ao conjunto total de indivíduos, objetos ou eventos que atendem aos critérios do estudo.
- Amostra é um subconjunto da população que contém os elementos observados.
 - A partir da amostra, quantidades de interesse podem ser medidas.

Exemplo

- Como exemplo, podemos considerar a análise da proporção de alunos de economia do IBMEC que desejam atuar no mercado financeiro.
 - População: alunos de economia do IBMEC;
 - Amostra: alunos da unidade Barra da Tijuca, alunos de Econometria I, alunos do 4º período.
- Supondo uma amostra de alunos de Econometria I, que cuidados precisamos ter na escolha e na interpretação dos resultados?

Exemplo

- Como exemplo, podemos considerar a análise da proporção de alunos de economia do IBMEC que desejam atuar no mercado financeiro.
 - População: alunos de economia do IBMEC;
 - Amostra: alunos da unidade Barra da Tijuca, alunos de Econometria I, alunos do 4º período.
- Supondo uma amostra de alunos de Econometria I, que cuidados precisamos ter na escolha e na interpretação dos resultados?
 - A amostra precisa ser "representativa" dos alunos de economia do IBMEC.

 \bullet Uma forma simples de coletar uma amostra seria selecionar aleatoriamente n alunos.

- Uma forma simples de coletar uma amostra seria selecionar aleatoriamente *n* alunos.
 - Se dois analistas seguirem tal procedimento, as amostras sorteadas serão iguais?

- Uma forma simples de coletar uma amostra seria selecionar aleatoriamente n alunos.
 - Se dois analistas seguirem tal procedimento, as amostras sorteadas serão iguais?
 - E se vários analistas realizarem o procedimento?

- Uma forma simples de coletar uma amostra seria selecionar aleatoriamente n alunos.
 - Se dois analistas seguirem tal procedimento, as amostras sorteadas serão iguais?
 - E se vários analistas realizarem o procedimento?
 - Apesar de diferentes, podemos ter respostas próximas ou iguais nas diversas amostras?

- Uma forma simples de coletar uma amostra seria selecionar aleatoriamente n alunos.
 - Se dois analistas seguirem tal procedimento, as amostras sorteadas serão iguais?
 - E se vários analistas realizarem o procedimento?
 - Apesar de diferentes, podemos ter respostas próximas ou iguais nas diversas amostras?
- Devido à natureza aleatória geralmente envolvida no processo amostral, não podemos garantir que repetições de amostras sempre produzam resultados idênticos.
- As quantidades associadas à amostra terão caráter aleatório e, portanto, devem receber tratamento probabilístico.

Estimação

Parâmetro, estimador e estimativa

- Denotaremos por X_1, \ldots, X_n uma amostra de tamanho n extraída da população.
- Parâmetro: Quantidade da população, em geral desconhecida, sobre a qual temos interesse.
 - Usualmente, representado por letras gregas tais como θ , β , μ e σ ;
 - μ e σ são utilizados como notação para a média e o desvio padrão populacionais.
- **Estimador**: Combinação de elementos da amostra construída para estimar um parâmetro de interesse na população.
 - Geralmente, representado por letras gregas com acento circunflexo: $\hat{\theta}$, $\hat{\beta}$, $\hat{\mu}$ e $\hat{\sigma}$.
- Estimativa: Valores numéricos assumidos pelos estimadores.

Exemplo

- Note que um **estimador** $\hat{\theta}$ é uma função das variáveis aleatórias constituintes da amostra, $\hat{\theta} = f(X_1, \dots, X_n)$ e, portanto, também é uma **variável aleatória**.
- Retomando o exemplo no qual desejamos estimar a proporção de alunos de economia do IBMEC (população) que desejam atuar no mercado financeiro a partir da turma de Econometria I (amostra).
 - X_i , i = 1, ..., n, é uma variável aleatória que assume o valor 1 caso o aluno deseje atuar no mercado financeiro e 0 caso contrário.
 - Qual função dos valores amostrais (estimador) podemos utilizar?

Exemplo

- Note que um **estimador** $\hat{\theta}$ é uma função das variáveis aleatórias constituintes da amostra, $\hat{\theta} = f(X_1, \dots, X_n)$ e, portanto, também é uma **variável aleatória**.
- Retomando o exemplo no qual desejamos estimar a proporção de alunos de economia do IBMEC (população) que desejam atuar no mercado financeiro a partir da turma de Econometria I (amostra).
 - X_i , i = 1, ..., n, é uma variável aleatória que assume o valor 1 caso o aluno deseje atuar no mercado financeiro e 0 caso contrário.
 - Qual função dos valores amostrais (estimador) podemos utilizar?

1.
$$\hat{\theta}_1 = f_1(X_1, \dots, X_n) = 100 \times \frac{(X_1 + X_n)}{2}$$
;

2.
$$\hat{\theta}_2 = f_2(X_1, \dots, X_n) = 100 \times X_1$$
;

3.
$$\hat{\theta}_3 = f_3(X_1, \dots, X_n) = 100 \times \frac{\sum_{i=1}^n X_i}{n}$$
.

• Diante de diferentes estimadores para um mesmo parâmetro, como decidir qual deles utilizar?

- Diante de diferentes estimadores para um mesmo parâmetro, como decidir qual deles utilizar?
 - Estudando as propriedades dos estimadores.

- Diante de diferentes estimadores para um mesmo parâmetro, como decidir qual deles utilizar?
 - Estudando as propriedades dos estimadores.
- **Vício**: Um estimador $\hat{\theta}$ é *não viciado* ou *não viesado* para um parâmetro θ se $E(\hat{\theta}) = \theta$.
- Consistência: Um estimador $\hat{\theta}$ é consistente se, à medida que o tamanho da amostra aumenta $(n \to \infty)$, seu valor esperado converge para o valor de interesse e sua variância converge para 0.

$$i) \lim_{n\to\infty} E(\hat{\theta}) = \theta$$

$$i) \lim_{n \to \infty} E(\hat{\theta}) = \theta;$$

$$ii) \lim_{n \to \infty} Var(\hat{\theta}) = 0.$$

- Observações:
 - Na definição de consistência, o estimador necessita ser não viciado apenas para valores grandes de n;
 - Na definição de vício, o resultado deve valer para qualquer n.
- **Eficiência**: Dados dois estimadores não viciados $\hat{\theta}_1$ e $\hat{\theta}_2$ para um parâmetro θ , dizemos que $\hat{\theta}_1$ é mais eficiente do que $\hat{\theta}_2$ se $Var(\hat{\theta}_1) < Var(\hat{\theta}_2)$.
- Supondo X_1,\ldots,X_n variáveis aleatórias independentes e identicamente distribuídas (i.i.d) com média μ e variância σ^2 , o que pode ser dito sobre os estimadores $\hat{\mu}=\bar{X}=\frac{\sum_{i=1}^n X_i}{n}$ (média) e $\hat{\sigma}^2=\frac{\sum_{i=1}^n (X_i-\bar{X})^2}{n}$ (variância)?

Estimação por intervalos

- Por serem variáveis aleatórias, os estimadores possuem distribuição de probabilidade.
- Podemos apresentar uma estimativa mais informativa do parâmetro, incluindo uma medida de imprecisão para a estimativa pontual.
- **Intervalo de confiança** incorpora, à estimativa pontual do parâmetro, informações a respeito da variabilidade do estimador.
- Intervalos de confiança são obtidos a partir da distribuição amostral de seus estimadores.

Estimação por intervalos (Caso Normal)

Suponha que a variável de interesse seja $X \sim N(\mu, \sigma^2)$ e que X_1, X_2, \dots, X_n seja uma amostra aleatória cujos elementos são i.i.d com densidade Normal de média μ e variância σ^2 .

$$X_i \sim N(\mu, \sigma^2), \ i=1,\ldots,n;$$
 X_i é independente de X_j para todo $i \neq j.$

Qual a distribuição amostral de $\bar{X} = \frac{\sum_{i=1}^{n} X_i}{n}$?

Estimação por intervalos (Caso Normal)

A partir da distribuição amostral de $\bar{X} = \frac{\sum_{i=1}^{n} X_i}{n}$, temos:

$$Z=rac{ar{X}-\mu}{\sigma/\sqrt{n}}\sim {\sf N}(0,1).$$

Fixando um valor γ tal que $0<\gamma<1$, é possível encontrar um valor $z_{\gamma/2}$ tal que

$$P(|Z| < z_{\gamma/2}) = P(-z_{\gamma/2} < Z < z_{\gamma/2}) = \gamma.$$

O valor de $z_{\gamma/2}$ pode ser obtido através da tabela da Normal Padrão.

Estimação por intervalos (Caso Normal)

O intervalo de confiança para μ com coeficiente de confiança γ é dado por

$$\mathsf{IC}(\mu,\gamma) = \left[ar{X} - \mathsf{z}_{\gamma/2} rac{\sigma}{\sqrt{n}}; ar{X} + \mathsf{z}_{\gamma/2} rac{\sigma}{\sqrt{n}}
ight].$$

Interpretação:

- γ representa a probabilidade do intervalo conter o verdadeiro valor da média populacional μ ;
- Supondo várias amostras de mesmo tamanho, ao calcularmos os intervalos de confiança, esperamos que a proporção de intervalos que contenham o valor de μ seja igual a γ .

Estimação por intervalos (Teorema Central do Limite)

Suponha uma amostra aleatória simples de tamanho n retirada de uma população com média μ e variância σ^2 . Representando tal amostra por n variáveis aleatórias independentes X_1, X_2, \ldots, X_n e denotando sua média por \bar{X} , temos que

$$\frac{\bar{X} - \mu}{\sigma / \sqrt{n}} \xrightarrow[n \to \infty]{D} Z.$$

onde $Z \sim N(0,1)$.

Observações:

- Note que o modelo da variável aleatória não é especificado;
- O Teorema garante que para *n* grande a distribuição da média amostral, devidamente padronizada, se comporta segundo um modelo Normal com média 0 e variância 1.

Estimação por intervalos (Caso Bernoulli)

Seja Y uma variável aleatória tal que

$$Y = \begin{cases} 1, \text{ se determinada característica \'e observada;} \\ 0, \text{ caso contrário.} \end{cases}$$

A proporção amostral pode ser escrita da seguinte forma:

$$\hat{p} = \frac{\sum_{i=1}^{n} Y_i}{n} = \hat{Y}.$$

Supondo que Y_1, Y_2, \dots, Y_n forma uma sequência de variáveis aleatórias independentes com distribuição Bernoulli.

- Para um tamanho de amostra grande, qual a distribuição aproximada de \hat{p} ?
- Construa o intervalo de confiança para p.

Testes de Hipóteses

- O objetivo de um teste de hipóteses é verificar se há evidência suficiente contra a hipótese nula, ou seja, para rejeitá-la.
 - Hipótese nula (H₀): Representa o status quo. Esta hipótese é tida como verdadeira a menos que haja evidência suficiente sugerindo o contrário;
 - Hipótese alternativa (H_1) : Representa a hipótese que o analista deseja concluir.
- Supondo que a área de marketing de uma companhia deseje avaliar a eficácia de uma nova campanha publicitária. Como as hipóteses podem ser definidas:

- O objetivo de um teste de hipóteses é verificar se há evidência suficiente contra a hipótese nula, ou seja, para rejeitá-la.
 - Hipótese nula (*H*₀): Representa o *status quo*. Esta hipótese é tida como verdadeira a menos que haja evidência suficiente sugerindo o contrário;
 - Hipótese alternativa (H_1) : Representa a hipótese que o analista deseja concluir.
- Supondo que a área de marketing de uma companhia deseje avaliar a eficácia de uma nova campanha publicitária. Como as hipóteses podem ser definidas:

 H_0 : A campanha não é eficaz;

 H_1 : A campanha é eficaz.

- Em um teste de hipóteses, duas decisões são possíveis:
 - 1. Rejeitar a hipótese nula;
 - 2. Não rejeitar a hipótese nula.

Por que n\u00e3o dizemos "aceitar a hip\u00f3tese nula"?

- Em um teste de hipóteses, duas decisões são possíveis:
 - 1. Rejeitar a hipótese nula;
 - 2. Não rejeitar a hipótese nula.

- Por que n\u00e3o dizemos "aceitar a hip\u00f3tese nula"?
 - Estamos assumindo que a hipótese nula é verdadeira e desejamos verificar se há evidência contra a mesma. Logo, a conclusão deve referir-se à rejeição da hipótese nula.

- Dois erros podem ser cometidos ao realizarmos um teste de hipóteses:
 - 1. Erro do Tipo I: Rejeitar a hipótese H_0 quando a mesma é verdadeira;
 - 2. Erro do Tipo II: Não rejeitar a hipótese H_0 quando esta é falsa.

	Situação Real	
Decisão	H ₀ Verdadeira	H₀ Falsa
Rejeitar H ₀	Erro tipo I	Decisão Correta
Não Rejeitar H₀	Decisão Correta	Erro tipo II

- Como estamos tratando de eventos em que há incerteza associada, desconhecemos a "verdade" acerca da hipótese nula. Em outras palavras, não sabemos se a decisão tomada foi correta ou se cometemos um erro.
- Em situações reais, podemos apenas definir as probabilidades associadas a tais eventos:

$$\alpha = P(\text{erro Tipo I}) = P(\text{rejeitar } H_0|H_0 \text{ verdadeira});$$

$$\beta = P(\text{erro Tipo II}) = P(\text{não rejeitar } H_0|H_0 \text{ falsa}).$$

• **Poder** do teste: Probabilidade de rejeitar H_0 quando esta é falsa $(1 - \beta)$.

- O erro mais importante a ser evitado é o erro do Tipo I.
- Nível de significância do teste corresponde à probabilidade α de erro do Tipo I.
- Com base no nível de significância α podemos determinar:
 - 1. **Região de rejeição** ou **Região crítica**: Conjuntos de valores para a estatística de teste que levam à rejeição de H_0 ;
 - 2. Valores críticos: Valores que separam as regiões de rejeição e de não rejeição.
- A região de rejeição baseia-se na hipótese alternativa.

Conceitos Básicos (Teste unilateral à esquerda)

Hipóteses:

 H_0 : $\theta \geq \theta_0$;

 H_1 : $\theta < \theta_0$.

• Rejeita H_0 se a estatística de teste for menor que o valor crítico (c_{α}) .

Conceitos Básicos (Teste unilateral à direita)

• Hipóteses:

 H_0 : $\theta \leq \theta_0$;

 H_1 : $\theta > \theta_0$.

• Rejeita H_0 se a estatística de teste for maior que o valor crítico $(c_{1-\alpha})$.

Conceitos Básicos (Teste bilateral)

• Hipóteses:

$$H_0$$
: $\theta = \theta_0$;

$$H_1$$
: $\theta \neq \theta_0$.

• Rejeita H_0 se a estatística de teste é maior que o valor absoluto do valor crítico $(c_{\alpha/2})$.

Exemplo (Teste bilateral)

Um pesquisador deseja estudar o efeito da ingestão de bebida alcoólica sobre o tempo de reação a um determinado tipo de estímulo. Um experimento é desenvolvido com voluntários que são inoculados com a substância, submetidos a um estímulo elétrico e seus tempos de reação (em segundos) são registrados. Os seguintes valores são obtidos: 9,1; 9,3; 7,2; 7,5; 13,3; 10,9; 7,2; 9,9; 8,0; 8,6.

Admite-se que o tempo de reação segue, em geral, o modelo Normal com média $\mu=8$ e desvio padrão $\sigma=2$ segundos. O pesquisador desconfia, no entanto, que o tempo médio sofre alteração por influência da substância. Neste caso, as hipóteses de interesse são:

 H_0 : os voluntários apresentam tempo de reação padrão; H_1 : os voluntários têm tempo de reação alterado.

a) Descreva as hipóteses em termos estatísticos;

Exemplo (Teste bilateral)

Um pesquisador deseja estudar o efeito da ingestão de bebida alcoólica sobre o tempo de reação a um determinado tipo de estímulo. Um experimento é desenvolvido com voluntários que são inoculados com a substância, submetidos a um estímulo elétrico e seus tempos de reação (em segundos) são registrados. Os seguintes valores são obtidos: 9,1; 9,3; 7,2; 7,5; 13,3; 10,9; 7,2; 9,9; 8,0; 8,6.

Admite-se que o tempo de reação segue, em geral, o modelo Normal com média $\mu=8$ e desvio padrão $\sigma=2$ segundos. O pesquisador desconfia, no entanto, que o tempo médio sofre alteração por influência da substância. Neste caso, as hipóteses de interesse são:

 H_0 : os voluntários apresentam tempo de reação padrão; H_1 : os voluntários têm tempo de reação alterado.

- a) Descreva as hipóteses em termos estatísticos;
- b) Encontre a região crítica para $\alpha = 0,6$;

Exemplo (Teste bilateral)

Um pesquisador deseja estudar o efeito da ingestão de bebida alcoólica sobre o tempo de reação a um determinado tipo de estímulo. Um experimento é desenvolvido com voluntários que são inoculados com a substância, submetidos a um estímulo elétrico e seus tempos de reação (em segundos) são registrados. Os seguintes valores são obtidos: 9,1; 9,3; 7,2; 7,5; 13,3; 10,9; 7,2; 9,9; 8,0; 8,6.

Admite-se que o tempo de reação segue, em geral, o modelo Normal com média $\mu=8$ e desvio padrão $\sigma=2$ segundos. O pesquisador desconfia, no entanto, que o tempo médio sofre alteração por influência da substância. Neste caso, as hipóteses de interesse são:

 H_0 : os voluntários apresentam tempo de reação padrão; H_1 : os voluntários têm tempo de reação alterado.

- a) Descreva as hipóteses em termos estatísticos;
- b) Encontre a região crítica para $\alpha = 0,6$;
- c) Calcule a probabilidade de erro do Tipo II.