Solucionário Curso de Física Básica III

Gabriel O. Alves André M. Neto

Conteúdo

2	Cap	ítulo 2																						6
	2.1	Questão	1	 																				6
	2.2	Questão :	2	 																				6
	2.3	Questão a	3	 																				7
	2.4	Questão 4	4	 																				7
	2.5	Questão .	5	 																				8
	2.6	Questão	6	 																				8
	2.7	Questão '	7	 																				9
	2.8	Questão	8	 																				10
	2.9	Questão s	9	 																				10
3	Cap	ítulo 3																						12
	3.1	Questão	1	 																				12
	3.2	Questão 2	2	 																				12
	3.3	Questão a	3	 																				13
	3.4	Questão	4	 																				13
	3.5	Questão .	5	 																				13
	3.6	Questão	6	 																				15
	3.7	Questão '	7	 																				16
	3.8	Questão	8	 																				16
	3.9	Questão s	9	 																				17
	3.10	Questão	10																					18
	3.11	Questão	11																					18
	3.12	Questão	12																					19
	3.13	Questão	13																					19
	3.14	Questão	14																					21
	3.15	Questão	15																					21
	3.16	Questão	16		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	22
4	Cap	ítulo 4																						24
	4.1	Questão	1	 																				24
	4.2	Questão 2	2	 																				25
	4.3	Questão 3	3	 																				27
	4.4	Questão 4	4	 																				27
	4.5	Questão .	5	 																				28
	4.6	Questão	6	 																				30
	47	Questão '	7																					30

	4.8	Questão 8	0
	4.9	Questão 9	1
		Questão 10	
		Questão 11	
5	_	ítulo 5	
	5.1	Questão 1	
	5.2	Questão 2	
	5.3	Questão 3	
	5.4	Questão 4	
	5.5	Questão 5	9
	5.6	Questão 6	1
	5.7	Questão 7	2
	5.8	Questão 8	2
	5.9	Questão 9	4
	5.10	Questão 10	4
6	Can	ítulo 6	ξ.
U	6.1	Questão 1	
	6.2	Questão 2	_
	6.3	Questão 3	
	6.4		
	6.5	4	-
	6.6	· v	
	6.7	4	-
	6.8	Questão 8	
	6.9	Questão 9	
	6.10	Questão 10	9
7	Cap	ítulo 7 50	0
	7.1	Questão 1	0
	7.2	Questão 2	0
	7.3	Questão 3	0
	7.4	Questão 4	0
	7.5	Questão 5	1
0	Con	ítulo 8 52	1
8	-		
	8.1	Ÿ	
	8.2	· ·	
	8.3	Questão 3	
	8.4	Questão 4	4

CONTEÚDO

	8.5	Questão	5 -	Ve	er																								54
	8.6	Questão	6.																										55
	8.7	Questão	7.																										55
	8.8	Questão	8 .																										56
	8.9	Questão	9 .																										56
	8.10	Questão																											59
	8.11	Questão	11																										61
9	Can	ítulo 9																											62
U	9.1	Questão	1																										62
	9.2	Questão																											62
	9.3	Questão																											63
	9.4	Questão																											63
	9.5	Questão																											63
	9.6	Questão																											63
	9.7	Questão																											64
	9.8	Questão																											67
	9.9	Questão																											68
		Questão																											70
		Questão																											70
		Questão																											70
10	Con	ítulo 10																											71
10	_	Questão	1																										71
		•																											72
		Questão																											72
		Questão																											72
		Questão																											74
		Questão																											$\frac{74}{74}$
		Questão																											74
		Questão Questão																											76
		Questão																											77
		Questão Questão																											77
		Questão Questão																											77
		Questão Questão																											77
		Questão Questão																											78
	10.15	Questao	19	•	•	•	•	•	•	 •	•	•	 •	•	•	•	 •	•	•	•	•	•	•	•	•	•	•	•	10
11	-	ítulo 11																											7 9
		Questão																											79
	11.2	Questão	2 .																										79
	11.3	Questão	3.																										79

	11.4	Questão 4																	80
	11.5	Questão 5																	81
	11.6	Questão 6																	81
	11.7	Questão 7																	83
	11.8	Questão 8																	83
12	Cap	ítulo 12																	86
	12.1	Questão 1																	86
	12.2	Questão 2																	86
	12.3	Questão 3																	87
	12.4	Questão 4																	88
	12.5	Questão 5																	88

2 Capítulo 2

2.1 Questão 1

Se o próton e o elétron estão a uma distância r, a razão entre as força elétrica e gravitacional é:

$$\frac{F_e}{F_g} = \frac{\frac{1}{4\pi\varepsilon_0}\frac{e^2}{r^2}}{\frac{GMm}{r^2}} = \frac{1}{4\pi\varepsilon_0}\frac{e^2}{GMm}$$

Tomando a carga do elétron e do próton como $e=1.6\times 10^{-19}C$, a constante gravitacional como $G=6.6\times 10^{-11}m^3kg^{-1}s^{-2}$ e as massas do próton e do elétron como $M=1.67\times 10^{-27}kg$ e $m=9.11\times 10^{-31}kg$, respectivamente, a razão encontrada é:

$$\frac{F_e}{F_g} = 9 \times 10^9 \times \frac{(1.6 \times 10^{-19})^2}{6.6 \times 10^{-11} \times 1.67 \times 10^{-27} \times 9.11 \times 10^{-31}}$$

$$\frac{F_e}{F_g} = 2.3 \times 10^{39}$$

2.2 Questão 2

a) Nas condições NTP temos que P=1atm e T=273K, logo podemos encontrar o número de mols de H_2 contido em 1l por meio da equação de Clapeyron:

$$PN = nRT \implies n = \frac{PV}{RT} = \frac{1 \times 1}{0.082 \times 273} \approx 0.45 \text{mol}$$

Onde usamos $R \approx 0.082 \frac{atm L}{mol K}$, pois a pressão é dada em atm e o volume em litros. Como cada molécula de H_2 contém 2 prótons, a carga positiva total vale,

$$Q = (2n)e = (2 \times 0.45 \times 6 \times 10^{23}) \times (1.6 \times 10^{-19}) \approx 8.6 \times 10^{3} C$$

b) A força de atração é obtida através da Lei de Coulomb:

$$F = -\frac{1}{4\pi\varepsilon_0} \frac{Q^2}{r^2} = 9 \times 10^9 \frac{(8.6 \times 10^3)^2}{1^2} = 6.65 \times 10^{17} N$$

Como $1kgf \approx 9.81N$, obtemos após a conversão:

$$F = -6.8 \times 10^{16} \text{kgf}$$

2.3 Questão 3

2.4 Questão 4

Se a carga se desloca perpendicularmente à uma distância $\delta x \ll d$, sendo d a distância da carga positiva até o centro do segmento, a força que a atua sobre ela vale:

$$F = -2\frac{q^2}{4\pi\varepsilon_0} \frac{\sin\theta}{(d^2 + \delta x^2)}$$

Figura 1: Deslocamento perpendicular ao segmento

Calculamos sua componente vertical pois as componentes horizontais se anulam, devido ao fato das cargas +q se encontrarem horizontalmente opostas. Além disso, veja que $d^2 + \delta x^2 \approx d^2$, pois $d \gg \delta x$ e que $\sin \theta = \delta x/d$. Portanto:

$$F = -2\frac{q^2}{4\pi\varepsilon_0 d^3} \delta x$$

Se $\delta x > 0$, então F < 0. A força elétrica atuará como força restauradora, a carga negativa retornará à posição inicial mesmo sofrendo pequenas perturbações na posição.

Agora, consideraremos o caso em que o deslocamento ocorre ao longo do segmento. A força resultante sob a carga negativa é:

$$F = -\frac{1}{4\pi\varepsilon_0} \underbrace{\frac{q^2}{(d+\delta x)^2}}_{\text{Carga esquerda}} + \frac{1}{4\pi\varepsilon_0} \underbrace{\frac{q^2}{(d-\delta x)^2}}_{\text{Carga direita}} = -\frac{q^2}{4\pi\varepsilon_0} [(d-\delta x)^{-2} - (d+\delta x)^{-2}] \quad (2.4.1)$$

Figura 2: Deslocamento ao longo do segmento

Agora, veja que,

$$\frac{1}{(d^2 + \delta x)^2} = \frac{1}{d^2(1 + \frac{\delta x}{d^2})^2}$$

Assim, podemos utilizar a aproximação $(1+x)^n \approx 1 + nx$, pois $\delta x \ll d$, e a (2.4.1) fica:

$$F = -\frac{q^2}{4\pi\varepsilon_0} [(\frac{1}{d^2}(1 - 2\frac{\delta x}{d}) - \frac{1}{d^2}(1 - 2\frac{\delta x}{d})]$$

Simplificando:

$$F = \frac{q^2}{4\pi\varepsilon_0 d^3} \delta x$$

Portanto, se $\delta x > 0$, e teriamos F > 0. o que implica que a força não é restauradora. A partícula é atraída pela carga à direita com mais intensidade, e não retorna à posição inicial, portanto o equilíbrio é instável.

2.5 Questão 5

Considerando que a distribuição encontra-se em equilíbrio, equacionamos as forças em uma das partículas. Pelo equilíbrio na direção vertical, temos que a componente da tração na direção que une as duas partículas é $mg \tan \theta$. Pela geometria do problema , calculamos a distância entre as partículas sendo $2l \sin \theta$. Igualando a força elétrica com a componente da tração nesse sentido, temos:

$$mg\frac{\sin\theta}{\cos\theta} = \frac{1}{4\pi\varepsilon_0} \frac{q^2}{(2l\sin\theta)^2}$$

Rearranjando, encontramos:

$$q^2 \cos \theta = 16\pi \varepsilon_0 l^2 mg \sin^3 \theta$$

2.6 Questão 6

2.7 Questão 7

Considere uma porção infinitesimal do fio semicircular, com carga dQ. O módulo da força que atua sobre a carga é:

$$dF = \frac{q}{4\pi\varepsilon_0} \frac{dQ}{a^2}$$

Figura 3: Aro semicircular, dividido em arcos compreendidos por um ângulo $d\theta$.

A carga da porção infinitesimal vale $dQ = \lambda dl$, onde λ representa a densidade linear de carga do fio e $dl = ad\theta$. Por conseguinte:

$$dF = \frac{q}{4\pi\varepsilon_0} \frac{a\lambda d\theta}{a^2} = \frac{q}{4\pi\varepsilon_0} \frac{\lambda}{a} d\theta$$

Agora, veja que por simetria a componente horizontal da força resultante é nula:

Figura 4: Vetores \vec{F} da força de atração devido às duas porções horizontalmente opostas do aro circular. Veja que as componentes horizontais se cancelam.

Deste modo, a força resultante corresponde somente à soma das componentes horizontais de dF:

$$dF_R = dF \cos \theta \implies F_R = \frac{q}{4\pi\varepsilon_0} \frac{\lambda}{a} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos \theta d\theta$$

Como a densidade linear de carga corresponde à razão entre a carga total do anel e seu comprimento total do anel, temos que $\lambda = Q/(\pi a)$. Já a integral, por sua vez, é $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos\theta d\theta = \sin(\pi/2) - \sin(-\pi/2) = 2$. A força que atua na carga -q vale,

$$F_R = \frac{qQ}{2\pi^2 \varepsilon_0 a^2}$$

2.8 Questão 8

Vamos adotar as coordenadas sugeridas no exercício. Por simetria, as componentes do vetor campo elétrico paralelas ao fio infinito irão se cancelar, assim, calculamos apenas a componente perpendicular ao eixo do fio, que apontam radialmente para fora. Considerando um elemento de comprimento dz localizado à uma distância z da origem, por trigonometria, calculamos o elemento dE do campo elétrico:

$$dE = \frac{1}{4\pi\varepsilon_0} \frac{dq}{r^2} \cos \theta = \frac{\lambda \rho}{4\pi\varepsilon_0} \frac{dz}{(\rho^2 + z^2)^{\frac{3}{2}}}$$

Como o fio é muito longo (infinito), z varia de $-\infty$ até $+\infty$. Assim:

$$E = \frac{\lambda \rho}{4\pi\varepsilon_0} \int_{-\infty}^{+\infty} \frac{dz}{(\rho^2 + z^2)^{\frac{3}{2}}} = \frac{\lambda}{2\pi\varepsilon_0 \rho}$$

Assim, a força que será exercida numa carga puntiforme q, apontando na direção radial para fora, terá módulo

$$E = \frac{q\lambda}{2\pi\varepsilon_0\rho}$$

2.9 Questão 9

Claramente as componentes horizontais da força de atração se anulam, e resta somente a componente vertical, que vale:

$$F = -2\frac{1}{4\pi\varepsilon_0} \frac{qQ}{r^2} \sin\theta$$

Mas $r=\sqrt{y^2+\frac{d^2}{4}}\approx d/2$, pois o termo y é desprezível em relação a d. E também vale que $\sin\theta=y/(d/2)=2y/d$. Portanto:

$$F = -2\frac{1}{4\pi\varepsilon_0} \frac{qQ}{\frac{d^2}{4}} \frac{2y}{d} = -\frac{4qQ}{\pi\varepsilon_0 d^3} y$$

Escrevendo a equação do movimento para a partícula, obtemos:

$$m\ddot{y} = F \implies \ddot{y} + \frac{4qQ}{\pi\varepsilon_0 md^3}y = 0$$

E finalmente, identificamos:

$$\omega = 2\sqrt{\frac{qQ}{\pi\varepsilon_0 md^3}}$$

3 Capítulo 3

3.1 Questão 1

3.2 Questão 2

Por simetria, somente a componente vertical do campo elétrico das partículas contribui com o campo resultante, portanto:

$$\boldsymbol{E}_r = 2E\sin\theta\hat{\boldsymbol{\rho}} = \frac{1}{2\pi\varepsilon_0} \frac{e}{r^2}\sin\theta\hat{\boldsymbol{\rho}}$$

Veja que a direção do eixo é perpendicular ao eixo que ligas as duas partículas de carga +e.

Figura 5: Modelo da molécula ionizada. A carga -e descreve uma órbita circular de raio ρ .

Agora, consulte a figura e perceba que $r=\sqrt{a^2+\rho^2}$ e $\sin\theta=\rho/r=\rho/\sqrt{a^2+\rho^2}$, portanto:

$$oxed{m{E}_r = rac{e}{2\piarepsilon_0}rac{
ho}{(
ho^2 + a^2)^{rac{3}{2}}}m{\hat{
ho}}}$$

b) A força de atração elétrica deve corresponder à força centrípeta (Considere o movimento circular em torno do eixo que liga as cargas positivas),

$$F_e = F_{cp} \implies eE_r = \frac{e^2}{2\pi\varepsilon_0} \frac{\rho}{(\rho^2 + a^2)^{\frac{3}{2}}} = m\omega^2\rho$$

Assim, segue que:

$$\omega^2 = \frac{e^2}{2\pi\varepsilon_0 m(\rho^2 + a^2)^{\frac{3}{2}}}$$

3.3 Questão 3

3.4 Questão 4

a) A contribuição para o campo elétrico de um comprimento infinitesimal dx do fio é:

$$d\mathbf{E} = \frac{1}{4\pi\varepsilon_0} \frac{dq}{x^2} \hat{\mathbf{x}} = \frac{\lambda}{4\pi r^2} \frac{dx}{x^2} \hat{\mathbf{x}}$$

Como o fio se estende de x = d até x = d + l, o campo elétrico total é:

$$\boldsymbol{E} = \frac{\lambda}{4\pi\varepsilon_0} \left(-\frac{1}{l+d} + \frac{1}{d} \right)$$

Simplificando:

$$\boxed{ \boldsymbol{E} = \frac{\lambda l}{4\pi\varepsilon_0 d(l+d)} \hat{\boldsymbol{x}} }$$

b) A densidade linear de carga do fio é $\lambda = 6 \times 10^{-6}/5 \times 10^{-2} = 6 \times 10^{-5} C/m$. Substituindo na expressão encontrada para o campo elétrico (Lembre-se de escrever todas as grandezas nas unidades apropriadas):

$$E = 9 \times 10^{9} \frac{6 \times 10^{-5} \times 5 \times 10^{-2}}{5 \times 10^{-2} \times (5+5) \times 10^{-2}} = 5.4 \times 10^{6} \frac{N}{C}$$

3.5 Questão 5

Por simetria, as componentes horizontais do campo elétrico se cancelam, portanto a contribuição provém somente das componentes verticais. Assim, o campo elétrico no ponto P devido à uma porção de comprimento dx do fio vale:

$$d\mathbf{E} = -\frac{\lambda}{4\pi\varepsilon_0} \frac{dx}{r^2} \cos\theta \hat{\mathbf{y}}$$

Mas $r^2 = (b/2)^2 + x^2$ e $\cos \theta = b/(2x)$, portanto:

$$\boldsymbol{E} = -\frac{\lambda}{4\pi\varepsilon_0} \left(\frac{b}{2}\right) \int \frac{dx}{\left(\frac{b^2}{4} + x^2\right)^{\frac{3}{2}}} \hat{\boldsymbol{y}}$$

A integral acima pode ser resolvida através de uma subsituição trigonométrica. Montando o triângulo:

Temos que $x = (\frac{b}{2}) \tan \beta$, e por conseguinte:

$$\frac{1}{(\frac{b^2}{4} + x^2)^{\frac{3}{2}}} = \frac{1}{[\frac{b^2}{4} + (\frac{b}{2})^2 \tan^2 \beta]^{\frac{3}{2}}} = \frac{2}{b^3} \frac{1}{\sec^3 \beta}$$

Pois $\tan^2 \beta + 1 = \sec^2 \beta$. Além disso, veja que:

$$x = \frac{b}{2} \tan \beta \implies dx = \frac{b}{2} \sec^2 \beta d\beta$$

Assim, a integral pode ser reescrita como:

$$\int \frac{dx}{\left(\frac{b^2}{4} + x^2\right)^{\frac{3}{2}}} = \left(\frac{8}{b^3}\right) \left(\frac{b}{2}\right) \int \frac{\sec^2 \beta}{\sec^3 \beta} d\beta = \frac{4}{b^2} \int \cos \beta d\beta = \sin \beta + C$$

Mas,

$$\sin \beta = \frac{x}{\sqrt{\frac{b^2}{4} + x^2}}$$

Portanto, a integral na expressão do campo elétrico fica, após integrarmos de x=-a/2 até x=a/2:

$$\int_{a/2}^{-a/2} \frac{dx}{\left(\frac{b^2}{4} + x^2\right)^{\frac{3}{2}}} = \frac{4x}{b^2 \sqrt{\frac{b^2}{4} + x^2}} \bigg|_{a/2}^{-a/2} = \frac{8a}{b^2 \sqrt{a^2 + b^2}}$$

Substituindo na expressão para o campo elétrico:

$$\boldsymbol{E} = -\frac{\lambda}{4\pi\varepsilon_0} \left(\frac{b}{2}\right) \int \frac{dx}{\left(\frac{b^2}{4} + x^2\right)^{\frac{3}{2}}} = -\frac{\lambda}{4\pi\varepsilon_0} \left(\frac{b}{2}\right) \frac{8a}{b^2 \sqrt{a^2 + b^2}} \hat{\boldsymbol{y}} = -\frac{\lambda}{\pi\varepsilon_0} \frac{a}{b\sqrt{a^2 + b^2}} \hat{\boldsymbol{y}}$$

Além disso, o campo elétrico no ponto P devido ao fio interior é $\mathbf{E}' = \mathbf{E}$, portanto, por superposição, o campo elétrico resultante é:

$$\mathbf{E}_r = -\frac{2\lambda}{\pi\varepsilon_0} \frac{a}{b\sqrt{a^2 + b^2}} \hat{\boldsymbol{y}}$$

3.6 Questão 6

3.7 Questão 7

3.8 Questão 8

Pela lei de Gauss consideraremos que o campo elétrico na superfície vale:

$$E_0 = \frac{Q_0}{4\pi R^2 \varepsilon_0}$$

Onde R representa o raio da Terra. Num ponto à uma altura R em relação à superfície:

$$E \approx \frac{Q}{4\pi R^2 \varepsilon_0}$$

Aqui utilizamos que $(R+h)^2 \approx R^2$, pois h é desprezível em relação à R. Subtraindo a primeira equação da segunda obtemos:

$$E - E_0 = \Delta E = \frac{1}{4\pi R^2 \varepsilon_0} (Q - Q_0)$$

Se ρ é a densidade média de carga, então:

$$Q_0 = \frac{4\pi R^3}{3}$$

e,

$$Q = \frac{4\pi(R+h)^3}{3} = \frac{4\pi(R^3 + 3R^2h + 3Rh \ 2 + h^3)}{3} \approx \frac{4\pi R^2(R+3h)}{3}$$

A expressão para a diferença da intensidade do campo elétrico fica:

$$\Delta E = \frac{\rho}{4\pi R^2 \varepsilon_0} (\frac{4\pi R^3}{3} - \frac{4\pi R^2 (R + 3h)}{3})$$

Simplificando a expressão e isolando ρ , obtemos:

$$\rho = \frac{\Delta E \varepsilon_0}{h}$$

Como $\Delta E = 300 - 20 = 280 N/C$, h = 1400 m e $\varepsilon_0 = \frac{1}{4\pi \times 9 \times 10^9} C^2/(N m^2)$, a densidade média de carga vale,

$$\rho = \frac{280}{1400 \times 9 \times 9 \times 10^9 \times 4\pi} \approx 1.8 \times 10^{-12} \frac{C}{m^3}$$

3.9 Questão 9

Como desenvolvido no texto usando a Lei de Gauss, temos que, no caso de uma densidade superficial positiva $\sigma>0$ do plano uniformemente carregado, o campo elétrico tem módulo $\frac{\sigma}{2\varepsilon_0}$ apontando para "fora" do plano. Assim, no caso da densidade superficial negativa $-\sigma$, o campo terá o mesmo módulo e apontará na direção do plano.

Dessa forma, na região entre os planos, os campos elétricos terão o mesmo sentido, com direção ao plano de carga negativa, e módulo total $\frac{\sigma}{\varepsilon_0}$ (ou seja, $-\frac{\sigma}{\varepsilon_0}$, onde o sinal negativo indica que o campo aponta para baixo, onde localiza-se o plano negativamente carregado). Pelo mesmo argumento, fora da região entre os planos, os campos irão se cancelar.

3.10 Questão 10

a) Pela Lei de Gauss, o campo elétrico no interior da esfera à uma distância r de seu centro é:

$$E = \int \mathbf{E} \cdot d\mathbf{A} = 4\pi r^2 E = \frac{Q}{\varepsilon_0}$$

Mas $Q = \frac{4\pi}{3}r^3\rho$, logo:

$$\boxed{\boldsymbol{E} = E\hat{\boldsymbol{r}} = \frac{\rho r}{3\varepsilon_0}\hat{\boldsymbol{r}}}$$

b) Se o elétron está a uma distância r=a do centro, a força de atração é (Tomando Q=e):

$$F = eE = \frac{e^2}{4\pi a^2}$$

Igualando à força centrípeta:

$$F = eE \implies m_e a\omega^2 = \frac{e^2}{4\pi a^2}$$

Isolando ω :

$$\omega = \frac{e}{(4\pi\varepsilon_0 m_e a^3)^{1/2}}$$

3.11 Questão 11

Escrevendo o vetor constante como $\mathbf{c} = c_x \hat{\mathbf{x}} + c_y \hat{\mathbf{y}} + c_z \hat{\mathbf{z}}$ e o vetor \mathbf{r} como $\mathbf{r} = x\hat{\mathbf{x}} + y\hat{\mathbf{y}} + z\hat{\mathbf{z}}$, seu produto vetorial pode ser encontrado a partir do determinante:

$$egin{aligned} oldsymbol{c} imes oldsymbol{r} & \hat{oldsymbol{x}} & \hat{oldsymbol{z}} \ c_x & c_y & c_z \ x & y & z \ \end{vmatrix} = (yc_z - zc_y) \hat{oldsymbol{x}} + (zc_x - xc_z) \hat{oldsymbol{y}} + (xc_y - yc_x) \hat{oldsymbol{z}} \end{aligned}$$

O divergente é calculado como.

$$\operatorname{div}(\boldsymbol{c} \times \boldsymbol{r}) = \nabla \cdot (\boldsymbol{c} \times \boldsymbol{r}) = \frac{\partial (\boldsymbol{c} \times \boldsymbol{r})_x}{\partial x} + \frac{\partial (\boldsymbol{c} \times \boldsymbol{r})_y}{\partial y} + \frac{\partial (\boldsymbol{c} \times \boldsymbol{r})_z}{\partial z}$$
$$\operatorname{div}(\boldsymbol{c} \times \boldsymbol{r}) = \frac{\partial (yc_z - zc_y)}{\partial x} + \frac{\partial (zc_x - xc_z)}{\partial y} + \frac{\partial (xc_y - yc_x)}{\partial z}$$

Claramente todas as derivadas parciais se anulam, portanto:

$$\operatorname{div}(\boldsymbol{c} \times \boldsymbol{r}) = 0$$

3.12 Questão 12

Vamos aqui aplicar a Lei de Gauss nas superfícies esféricas de raio r concêntricas à casca esférica de raio interno b e externo c (e portanto, concêntrica à esférica de raio a). Por simetria, sabemos que o campo elétrico deve ser radial e esfericamente simétrico, assim, o fluxo nas superfícies descritas pode ser facilmente calculado por $\int \mathbf{E} \cdot \mathbf{A} = E(4\pi r^2) = \frac{Q_{tot}}{\varepsilon_0}$

Assim, na região $0 \le r \le a$, temos:

$$E(4\pi r^2) = \frac{Q_{tot}}{\varepsilon_0} = \frac{\rho}{\varepsilon_0} \frac{4\pi}{3} r^3 \implies \mathbf{E} = \frac{\rho r}{3\varepsilon_0} \hat{r}$$

Analogamente, para a região $a \le r \le b$:

$$E(4\pi r^2) = \frac{\rho}{\varepsilon_0} \frac{4\pi}{3} a^3 \implies \mathbf{E} = \frac{\rho}{3\varepsilon_0} \frac{a^3}{r^2} \hat{\mathbf{r}}$$

Em $b \le r \le c$:

$$E(4\pi r^{2}) = \frac{\rho}{\varepsilon_{0}} \frac{4\pi}{3} \left(a^{3} + r^{3} - b^{3} \right) = \frac{\rho}{\varepsilon_{0}} \frac{4\pi}{3} r^{3} - \frac{\rho}{\varepsilon_{0}} \frac{4\pi}{3} (b^{3} - a^{3})$$

Dessa forma:

$$\boldsymbol{E} = \left(\frac{\rho r}{3\varepsilon_0} - \frac{\rho}{3\varepsilon_0} \frac{(b^3 - a^3)}{r^2}\right) \hat{\boldsymbol{r}}$$

Sugestão: pense numa distribuição de carga que gera o mesmo vetor campo elétrico numa certa região do espaço.

Finalmente, para $r \geq c$:

$$E4\pi r^2 = \frac{\rho}{\varepsilon_0} \frac{4\pi}{3} (a^3 + c^3 - b^3) \implies \mathbf{E} = \frac{\rho}{3\varepsilon_0} \frac{(a^3 + c^3 - b^3)}{r^2} \hat{\mathbf{r}}$$

3.13 Questão 13

a) O volume de uma casca esférica infinitesimal de espessura dr que dista r da origem é $dV=4\pi r^2 dr$. Logo, podemos calcular a carga total da distribuição através de:

$$dQ = \rho dV \implies Q = 4\pi \int \rho r^2 dr$$

Como $\rho = \rho_0 e^{-\frac{r}{a}}$, temos:

$$Q = 4\pi\rho_0 \int r^2 e^{-\frac{r}{a}} dr {3.13.1}$$

Com a constante. A integral acima pode ser resolvida após utilizarmos integração por partes duas vezes. Podemos escolher,

$$f(x) = r^2 \implies f'(x) = 2r$$

$$g'(x) = e^{-\frac{r}{a}} \implies g(x) = -ae^{-\frac{r}{a}}$$

Pois como,

$$\int f(x)g'(x) = f(x)g(x) - \int f'(x)g(x)dx$$

A integral fica:

$$\int r^2 e^{-\frac{r}{a}} dr = -ae^{-\frac{r}{a}} r^2 + 2a \int r e^{-\frac{r}{a}} dr$$
 (3.13.2)

Podemos utilizar integração por partes novamnte para resolver a segunda integral:

$$f(x) = r \implies f'(x) = 1$$

 $g'(x) = e^{-\frac{r}{a}} \implies g(x) = -ae^{-\frac{r}{a}}$

Portanto:

$$\int re^{-\frac{r}{a}}dr = -ae^{-\frac{r}{a}}r + a\int e^{-\frac{r}{a}}dr = -ae^{-\frac{r}{a}}r - a^2e^{-\frac{r}{a}}$$
(3.13.3)

Substituindo a (3.13.3) na (3.13.2) obtemos:

$$\int r^2 e^{-\frac{r}{a}} dr = -ae^{-\frac{r}{a}} r^2 - a^2 e^{-\frac{r}{a}} r - a^3 e^{-\frac{r}{a}}$$
$$\int r^2 e^{-\frac{r}{a}} dr = -ae^{-\frac{r}{a}} r^2 (r^2 + 2ar + 2a^2)$$

Como a distribuição de cargas se estende até o infinito, a carga total da distribuição vale:

$$Q = 4\pi\rho_0 \int_0^\infty r^2 e^{-\frac{r}{a}} dr = -4\pi a \left[e^{-\frac{r}{a}} (r^2 + 2ar + 2a^2) \right] \Big|_0^\infty$$

Claramente todos os termos vão á zero quando $r\to\infty$, e quando $r\to0$ só resta o termo $2a^2$, portanto:

$$Q = 4\pi\rho_0 \int_0^\infty r^2 e^{-\frac{r}{a}} dr = 8\pi\rho_0 a^2$$

b) Pela Lei de Gauss:

$$E(R) = \frac{Q(R)}{4\pi R^2 \varepsilon_0} \tag{3.13.4}$$

Podemos encontrar a carga integrando a (3.13.1) de 0 até R, de maneira similar ao item anterior:

$$Q(R) = -4\pi a \left[e^{-\frac{r}{a}} (r^2 + 2ar + 2a^2) \right] \Big|_0^R = 8\pi a^3 - 4\pi e^{-\frac{R}{a}} (R^2 a + 2a^2 R + 2a^3)$$
$$Q(R) = 8\pi a^3 \left[1 - \frac{1}{2} \left(\frac{r^2}{a^2} + 2\frac{r}{a} + 2 \right) e^{-\frac{R}{a}} \right]$$

Substituindo na (3.13.4) finalmente obtemos:

$$E(r) = \frac{2\rho_0 a^3}{\varepsilon_0 R^2} \left[1 - \frac{1}{2} \left(\frac{r^2}{a^2} + 2\frac{r}{a} + 2 \right) e^{-\frac{R}{a}} \right]$$

3.14 Questão 14

3.15 Questão 15

Perceba que a esfera do enunciado é equivalente à um sistema constituído de uma esfera sem cavidade de mesmo raio e mesma densidade de carga ρ , somada à uma segunda esfera de densidade de carga $-\rho$ que tem as mesmas dimensões da cavidadade:

Através do princípio da superposição podemos encontrar o campo elétrico resultante na região da cavidade, basta calcular o campo elétrico das esferas de densidade ρ e $-\rho$ separadamente e somá-los:

$$m{E}_{ ext{Resultante}} = m{E}_{ ext{Positivo}} + m{E}_{ ext{Negativo}}$$

Como o ponto P se encontra em uma região interna à esfera de carga $-\rho$, o campo elétrico é dado, conforme visto em questões anteriores, por:

$$oldsymbol{E}_{ ext{Negativo}} = -rac{
ho}{3arepsilon_0} oldsymbol{r}$$

Onde r representa a distância do centro da cavidade ao ponto P. Perceba que o ponto P também se encontra na região interna da esfera de carga positiva, o campo elétrico é obtido de maneira análoga:

$$\boldsymbol{E}_{\text{Positivo}} = \frac{\rho}{3\varepsilon_0} \boldsymbol{R}$$

Onde R representa a distância do centro da esfera maior ao ponto P. Somando as duas expressões:

$$m{E}_{ ext{Resultante}} = rac{
ho}{3arepsilon_0} (m{R} - m{r})$$

Agora, perceba que ao analisar a figura acima podemos inferir que a diferença $\mathbf{R} - \mathbf{r}$ corresponde ao vetor que liga o centro das esferas. Deste modo, o campo elétrico resultando é simplesmente,

$$oxed{E_{ ext{Resultante}} = rac{
ho}{3arepsilon_0} oldsymbol{d}}$$

3.16 Questão 16

a) Como o cilindro é infinitamente longo, a descrição não pode depender da altura do cilindro em que colocamos a origem. Assim, essa simetria implica que o campo elétrico não depende de z. Analogamente, rotacionando, a descrição deve

se manter, e dessa forma, o campo elétrico não depende de ϕ . Assim, por simetria, o campo elétrico deve ser radial para fora, dependendo apenas de ρ , a distância ao eixo do cilindro.

b) Vamos aplicar a Lei de Gauss a uma superfície cilíndrica de raio ρ e comprimento l com eixo alinhado ao do cilindro. Dessa forma, pela simetria do campo elétrico, calcula-se o fluxo de maneira simples: $\int \mathbf{E} \cdot d\mathbf{A} = 2\pi \rho l E$. Temos assim:

$$2\pi\rho lE = \frac{Q_{tot}}{\varepsilon_0} = \frac{\delta}{\varepsilon_0}\pi\rho^2 l \implies \mathbf{E} = \frac{\delta}{2\varepsilon_0}\rho\hat{\boldsymbol{\rho}}$$

na região $0 \le \rho \le R$. É claro que para $\rho \ge R$ temos:

$$oldsymbol{E} = rac{\delta}{2arepsilon_0} rac{R^2}{
ho} oldsymbol{\hat{
ho}}$$

4 Capítulo 4

4.1 Questão 1

Tome a origem na posição da partícula de carga +2q. O potencial no ponto P devido a cada uma das partículas:

$$V_1 = \frac{2q}{\sqrt{x^2 + y^2}}, \quad V_2 = -\frac{q}{\sqrt{(l-x)^2 + y^2}}$$

Figura 6: Representação do sistema no plano xy.

O potencial resultante corresponde à soma algébrica dos potenciais V_1 e V_2 , deste modo, a superfície equipotencial V_0 é definida pelos pontos x e y que satisfazem:

$$V_1 + V_2 = \frac{2q}{\sqrt{x^2 + y^2}} - \frac{q}{\sqrt{(l-x)^2 + y^2}} = 0$$

Manipulando a equação acima, temos:

$$\frac{2q}{\sqrt{x^2 + y^2}} = \frac{q}{\sqrt{(l-x)^2 + y^2}} \implies 4[(l-x)^2 + y^2] = x^2 + y^2$$
$$4(l^2 - 2xl + x^2 + y^2) - x^2 - y^2 = 0$$

Expandindo e dividindo ambos os lados por três:

$$x^2 - \frac{8}{3}xl + \frac{4}{3}l^2 + y^2 = 0$$

Escrevendo de uma forma mais sugestiva:

$$x^{2} - 2 \cdot \frac{4}{3}xl + y^{2} = -\frac{4}{3}l^{2}$$

Isso nos sugere que podemos transformar a expressão $x^2-2.\frac{4}{3}xl$ em um termo da forma $(x-a)^2=x^2+2ax+a^2$. Para fazer isto basta tomar $a=\frac{4}{3}l$ e adicionar um termo $(\frac{4}{3}l)^2=\frac{16}{9}l^2$ em ambos os lados da equação, pois chegamos em:

$$x^{2} - 2 \cdot \frac{4}{3}xl + \frac{16}{9}l^{2} + y^{2} = -\frac{4}{3}l^{2} + \frac{16}{9}l^{2}$$

Agora, perceba que $x^2 - 2.\frac{4}{3}xl + \frac{16}{9}l^2 = (x - \frac{4}{3}l)^2$. Obtermos, ao reescrever a expressão anterior:

$$(x - \frac{4}{3}l)^2 + y^2 = \frac{4}{9}l^2$$

Figura 7: Superfície equipotencial

Como a equação de um círculo é da forma:

$$(x - x_c)^2 + (y - y_c)^2 = r^2$$

A expressão para a superfície equipotencial corresponde à um círculo com centro $(\frac{4}{3}l,0)$ e raio $r=\frac{2}{3}l$.

4.2 Questão 2

Para uma distância r > R podemos considerar que toda a carga está concentrada na origem. Neste caso, o campo elétrico de um ponto que dista r' da origem é:

$$E(r') = \frac{q}{4\pi\varepsilon_0 r'^2}$$

Tomando $V(\infty) = 0$, temos que o potencial vale:

$$V(r) = -\int_{\infty}^{r} E(r')dr' = -\int_{\infty}^{r} \frac{q}{4\pi\varepsilon_0 r'^2} dr' = \frac{q}{4\pi\varepsilon_0 r} \quad (r \geqslant R)$$
(4.2.1)

Já para um ponto no interior da esfera, o campo elétrico a uma distância r' é:

$$E(r') = \frac{\rho}{3\varepsilon_0}r' = \frac{q}{4\pi\varepsilon_0}\frac{r'}{R^3}$$

Substituindo na expressão para o potencial:

$$V(r) - V(R) = -\int_{R}^{r} E(r')dr' = -\frac{q}{4\pi\varepsilon_{0}R^{3}} \int_{R}^{r} r'^{2}dr' = \frac{q}{4\pi\varepsilon_{0}R^{3}} \left(\frac{R^{2}}{2} - \frac{r^{2}}{2}\right)$$
(4.2.2)

Mas podemos calcular V(R) a partir da (4.2.1) tomando r=R e substituir na (4.2.2), obtendo:

$$V(r) - \frac{q}{4\pi\varepsilon_0 R} = \frac{q}{4\pi\varepsilon_0 R^3} \left(\frac{R^2}{2} - \frac{r^2}{2}\right)$$

Simplificando:

$$V(r) = \frac{q}{4\pi\varepsilon_0 R} \left(\frac{3}{2} - \frac{r^2}{2R^2} \right) \ (0 \leqslant r \leqslant R)$$

O gráfico obtido a partir das duas equações é:

4.3 Questão 3

A energia $U(\mathbf{r})$ da carga é dada por $U(\mathbf{r}) = qV(\mathbf{r})$, onde $V(\mathbf{r})$ é o potencial ao qual ela está sujeita. No caso, esse potencial corresponde ao potencial de um campo elétrico uniforme, ou seja, o vetor E é constante. Dessa forma, no cálculo do potencial podemos escolher um ponto arbitrário como referencial (o potencial é definido a menos de uma constante). Assim:

$$V(\mathbf{r}) = -\int_{\mathbf{O}}^{\mathbf{r}} \mathbf{E} \cdot d\mathbf{l} = \mathbf{E} \cdot \int_{\mathbf{O}}^{\mathbf{r}} d\mathbf{l} = -\mathbf{E} \cdot \mathbf{r}$$

Dessa forma, temos que:

$$V(\boldsymbol{r}) = -q\boldsymbol{E}\cdot\boldsymbol{r}$$

4.4 Questão 4

Vamos considerar um dipolo ideal, que tem dimensões desprezíveis, ou seja, caráter pontual.

a) A energia potencial da carga no campo do dipolo será simplesmente $U(\mathbf{r}) = qV_{dip}(\mathbf{r})$. Assim, temos:

$$U(\mathbf{r}) = q \frac{\mathbf{p}}{4\pi\varepsilon_0 r^2} \hat{\mathbf{r}} = \frac{qp}{4\pi\varepsilon_0 z^2} = U(z)$$

b) A força que a carga exerce sobre o diplo é o oposto da força que o dipolo irá exercer sobre a carga, ou seja: $\mathbf{F}_{dip} = -\mathbf{F}_{carga}$. Como sabemos a energia potencial da carga no campo do dipolo, temos que $\mathbf{F}_{carga} = -gradU(\mathbf{r}) \implies \mathbf{F}_{dip} = gradU(\mathbf{r}) = gradU(z)$. Assim:

$$\boldsymbol{F}_{dip} = \frac{dU}{dz}\boldsymbol{\hat{z}} = -\frac{qp}{2\pi\varepsilon_0 z^3}\boldsymbol{\hat{z}}$$

c)

4.5 Questão 5

a) Primeiramente tomaremos a origem na posição do dipolo p_1 . O vetor posição da carga $-q_2$ é \boldsymbol{r} , e seu módulo é $|\boldsymbol{r}|$. Já para a carga q_2 o vetor posição é $\boldsymbol{r} + \boldsymbol{\delta r}$, e seu módulo vale, desprezando o termo $|\boldsymbol{\delta r}|^2$:

$$|\mathbf{r} + \boldsymbol{\delta r}| = \sqrt{|\mathbf{r}|^2 + 2|\mathbf{r}||\delta \mathbf{r}|\cos \theta} = |\mathbf{r}|\left(1 + \frac{|\delta \mathbf{r}|}{|\mathbf{r}|}\cos \theta\right)^{\frac{1}{2}} \approx |\mathbf{r}| + |\delta \mathbf{r}|\cos \theta$$

Onde foi utilizada a aproximação $(1+x)^n \approx 1 + nx$, pois $x \ll 1$.

A energia eletrostática de interação entre o dipolo e a carga $-q_2$ é:

$$U_1 = -q_2 V(\boldsymbol{r}) = -\frac{q_2}{4\pi\varepsilon_0} \frac{\boldsymbol{p_1} \cdot \boldsymbol{r}}{|\boldsymbol{r}|^3}$$

Já para a carga q_2 :

$$U_2 = q_2 V(\boldsymbol{r} + \boldsymbol{\delta r}) = -\frac{q_2}{4\pi\varepsilon_0} \frac{\boldsymbol{p_1} \cdot (\boldsymbol{r} + \boldsymbol{\delta r})}{|\boldsymbol{r} + \boldsymbol{\delta r}|^3}$$

Mas como $|r + \delta r| \approx |r| + |\delta r| \cos \theta$,

$$\frac{1}{|\boldsymbol{r} + \boldsymbol{\delta r}|^3} = \frac{1}{|\boldsymbol{r}|^3} \left(1 + \frac{|\boldsymbol{\delta r}|}{|\boldsymbol{r}|} \cos \theta \right)^{-3} \approx \frac{1}{|\boldsymbol{r}|^3} \left(1 - 3 \frac{|\boldsymbol{\delta r}|}{|\boldsymbol{r}|} \cos \theta \right)$$

Portanto:

$$U_2 = \frac{q_2}{4\pi\varepsilon_0 |\mathbf{r}|^3} (\mathbf{p_1} \cdot \mathbf{r} + \mathbf{p_1} \cdot \boldsymbol{\delta r}) \left(1 - 3 \frac{|\boldsymbol{\delta r}|}{|\mathbf{r}|} \cos \theta \right)$$

Ignorando os termos de segunda ordem e fazendo a distributiva:

$$U_2 = \frac{q_2}{4\pi\varepsilon_0 |\mathbf{r}|^3} \left[\mathbf{p_1} \cdot \mathbf{r} + \mathbf{p_1} \cdot \boldsymbol{\delta r} - 3(\mathbf{p_1} \cdot \mathbf{r}) \frac{|\boldsymbol{\delta r}|}{|\mathbf{r}|} \cos \theta \right]$$

A energia total vale, portanto:

$$U = U_1 + U_2 = \frac{q_2}{4\pi\varepsilon_0 |\mathbf{r}|^3} \left[\mathbf{p_1} \cdot \boldsymbol{\delta r} - 3(\mathbf{p_1} \cdot \mathbf{r}) \frac{|\boldsymbol{\delta r}|}{|\mathbf{r}|} \cos \theta \right]$$

$$U = \frac{1}{4\pi\varepsilon_0 |\mathbf{r}|^3} \left[\mathbf{p_1} \cdot (q_2 \boldsymbol{\delta r}) - 3\mathbf{p_1} \cdot \left(\frac{\mathbf{r}}{|\mathbf{r}|} \right) (q_2 |\boldsymbol{\delta r}| \cos \theta) \right]$$

Mas perceba que $q_2 \delta r = p_2$, que $r/|r| = \hat{r}$ e que $q_2 |\delta r| \cos \theta = p_2 \cdot \hat{r}$, portanto a expressão anterior fica na forma desejada:

$$U = \frac{\boldsymbol{p_1} \cdot \boldsymbol{p_2}}{4\pi\varepsilon_0 |\boldsymbol{r}|^3} - 3 \frac{(\boldsymbol{p_1} \cdot \hat{\boldsymbol{r}})(\boldsymbol{p_2} \cdot \hat{\boldsymbol{r}})}{4\pi\varepsilon_0 |\boldsymbol{r}|^3}$$

b) Para o dipolo paralelo temos que $\mathbf{p_1} \cdot \mathbf{p_2} = p_1 p_2 \cos 0 = p_1 p_2$, $\mathbf{p_1} \cdot \hat{\mathbf{r}} = 1$ e $\mathbf{p_2} \cdot \hat{\mathbf{r}} = 1$, portanto:

$$U = -2 \frac{p_1 p_2}{2\pi \varepsilon_0 |\boldsymbol{r}|^3}$$

Já para o dipolo antiparalelo temos que $\mathbf{p_1} \cdot \mathbf{p_2} = p_1 p_2 \cos 180 = -p_1 p_2$, $\mathbf{p_1} \cdot \hat{\mathbf{r}} = -1$ e $\mathbf{p_2} \cdot \hat{\mathbf{r}} = 1$, portanto:

$$U = 2 \frac{p_1 p_2}{2\pi \varepsilon_0 |\mathbf{r}|^3}$$

Se os dipolos são perpendiculares à \mathbf{r} , então $\mathbf{p_1} \cdot \hat{\mathbf{r}} = 0$ e $\mathbf{p_2} \cdot \hat{\mathbf{r}} = 0$. Se eles também são paralelos entre si, vale que:

$$U = \frac{p_1 p_2}{4\pi\varepsilon_0 |\boldsymbol{r}|^3}$$

c) O caso mais favorecido é o de dipolos paralels e alinhados, pois assim a energia U é mínima. Deste modo, para a molécula de água, temos:

$$U = 2 \times (2 \times 9 \times 10^9) \times \frac{(6.2 \times 10^{-30})^2}{(5 \times 10^{-10})^3} = 5.53 \times 10^{-21} J$$

Convertendo para eV (Basta dividir pelo valor da carga do elétron):

$$U = 3.34 \times 10^{-2} eV$$

4.6 Questão 6

Tomaremos a carga da partícula α como 2e e da folha de ouro como 79e. A separação entre a partícula α e a folha de ouro é mínima quando toda a sua energia cinética inicial é convertida em energia potencial:

$$E_c = U = \frac{q_1 q_2}{4\pi\varepsilon_0 r}$$

Resolvendo para R, obtemos (Não se esqueça de converter a energia cinética de eV para J):

$$U = 9 \times 10^9 \times \frac{(2 \times 1.6 \times 10^{-19})(79 \times 1.6 \times 10^{-19})}{7.68 \times 10^6 \times (2 \times 1.6 \times 10^{-19})} \approx 3 \times 10^{-14} m$$

4.7 Questão 7

4.8 Questão 8

a) A energia inicial do sistema vale:

$$U_0 = \frac{3}{5} \left(\frac{Q^2}{4\pi\varepsilon_0 R} \right)$$

A bolha se divide em duas novas bolhas de mesmo raio R_f e carga Q' = Q/2. Assumindo que a densidade das bolhas é a mesma antes e após o processo, podemos encontrar o raio final das bolhas em termos do raio inicial R a partir da conservação de carga:

$$Q = 2Q' \implies \rho \frac{4\pi R^3}{3} = 2\rho \frac{4\pi R'^3}{3} \implies R' = 2^{-\frac{1}{3}}R$$

Deste modo, como Q'=Q/2 e $R'=2^{-\frac{1}{3}}R$, a energia potencial eletrostática do sistema na situação final é:

$$U = 2U' = 2\left(\frac{3}{5}\right)\left(\frac{Q'^2}{4\pi\varepsilon_0 R'}\right) = \frac{3}{5}\left(\frac{Q^2}{4\pi\varepsilon_0 R}\right)2^{-\frac{2}{3}}$$

Calculando a variação de energia potencial entre os estados iniciais e finais:

$$\Delta U = -(U' - U) = \frac{3}{5} \left(\frac{Q^2}{4\pi\varepsilon_0 R} \right) (1 - 2^{-\frac{2}{3}})$$

b) Como A=235, o raio atômico é dado por:

$$R = 1.3 \times 235^{\frac{1}{3}} \times 10^{-15} m \approx 8 \times 10^{-15} m$$

Como há 92 prótos no U_{235} , a carga do núcleo é Q = +92e, deste modo, pela resposta do item anterior temos que a energia liberada na fissão vale:

$$\Delta U = \frac{3}{5} \left(\frac{1}{4\pi\varepsilon_0} \right) \left(\frac{Q^2}{R} \right) (1 - 2^{-\frac{2}{3}}) = \frac{3}{5} \times 9 \times 10^9 \times \frac{(92 \times 1.6 \times 10^{-19})}{8 \times 10^{-15}} = 5.4 \times 10^{-11} J$$

Para realizar a conversão para MeV basta dividir o valor encontrado por $e = 1.6 \times 10^{-19}$ e em seguida dividi-lo novamente por 10^6 :

$$\Delta U = \frac{= 5.4 \times 10^{-11}}{1.6 \times 10^{-19} \times 10^6} = 337 MeV$$

4.9 Questão 9

a) Identidade 4.5.24: $div(f\mathbf{v}) = fdiv(\mathbf{v}) + grad(f) \cdot \mathbf{v}$

Temos que $div(f\mathbf{v}) = \partial_x(fv_x) + \partial_y(fv_y) + \partial_z(fv_z)$. Usando a regra da cadeia em cada uma das derivadas parciais:

$$div(f\mathbf{v}) = (\partial_x f)v_x + (\partial_x v_x)f + (\partial_u f)v_u + (\partial_u v_u)f + (\partial_z f)v_z + (\partial_z v_z)f$$

Agrupando os termos que multiplicam f e aqueles que multiplicam componentes de \boldsymbol{v} , temos:

$$div(f\boldsymbol{v}) = f(\partial_x v_x + \partial_y v_y + \partial_z v_z) + (\partial_x f)v_x + (\partial_y f)v_y + (\partial_z f)v_z = fdiv(\boldsymbol{v}) + grad(f) \cdot \boldsymbol{v}$$

b) Identidade 5.4.26

4.10 Questão 10

a) Como $V(\infty) = 0$, podemos considerar que caga elemento de carga dQ da casca esférica contribui para o potencial no ponto O com $dV = \frac{dQ}{4\pi\varepsilon_0 R}$. Assim, basta integrar sobre toda a carga da esfera para conseguir o potencial total no ponto O, uma vez que o potencial de cada uma dos elementos de carga se somam. Assim:

$$dV = \frac{dQ}{4\pi\varepsilon_0 R} = \frac{\sigma dS}{4\pi\varepsilon_0 R} = \frac{\sigma}{4\pi\varepsilon_0} R d\Omega$$

onde $d\Omega = \frac{dS}{R^2}$ é o elemento de ângulo sólido subtendido pela área dS no ponto O. Portanto:

$$V(O) = \frac{\sigma R}{4\pi\varepsilon_0} \int_{\text{Casca}} d\Omega = \frac{\sigma R}{4\pi\varepsilon_0} 2\pi = \frac{\sigma R}{2\varepsilon_0}$$

b) Como temos o potencial V(O), podemos calcular a energia potencial que a partícula de carga q terá naquele ponto e, que por estar em repousto, será sua energia total:

$$E_0 = qV(O) = \frac{q\sigma R}{2\varepsilon_0}$$

O campo elétrico apontará para para longe da casca com direção sobre seu eixo de simetria. Por conservação de energia, podemos calcular a velocidade da partícula no infinito, onde o pontencial, por hipótese, é zero. Assim:

$$E_{\rm cin}^{\infty} = E_0 \implies \frac{mv_{\infty}^2}{2} = \frac{q\sigma R}{2\varepsilon_0} \implies v_{\infty} = \left(\frac{q\sigma R}{m\varepsilon_0}\right)^{\frac{1}{2}}$$

4.11 Questão 11

a) É facil ver que o potencial na superfície da esfera V(R) é simplesmente $V(R) = \frac{Q}{4\pi\varepsilon_0 R}$. Assim, a energia de um elemento de carga na superfície da esfera $dU = \frac{1}{2}dQV(R)$. Dessa forma:

$$U = \frac{1}{2}V(R) \int dQ = \frac{Q^2}{8\pi\varepsilon_0 R}$$

b) Variando o raio em dR, a energia eletrostática da configuração varia em $dU=\frac{dU}{dR}dR$. Essa variação de energia corresponde ao trabalho exercido pela força radial F nesse deslocamento: FdR. Assim, FdR=-dU (por conservação de energia). Assim, $F=-\frac{dU}{dR}$. Portanto:

$$F = -\frac{dU}{dR} = \frac{Q^2}{8\pi\varepsilon_0 R^2}$$

Dessa forma, encontramos a densidade de força radial:

$$f = \frac{F}{4\pi R^2} = \frac{Q^2}{32\pi^2 \varepsilon_0 R^4}$$

5 Capítulo 5

5.1 Questão 1

5.2 Questão 2

a) Podemos montar o seguinte circuito a partir da situação descrita no enunciado:

Vemos que os capacitores se encontram em paralelo, deste modo a capacitância equivalebte vale:

$$C_{eq} = C + 2C = 3C$$

Além disso a carga total é $Q_{eq}=Q+Q=2Q.$ Pela relação Q=CV concluímos que:

$$V = \frac{Q_{eq}}{C_{eq}} = \frac{2}{3} \frac{Q}{C}$$

b) Como $U=q^2/2c$, na situação em que os capacitores estão isolados suas energias são:

$$U_C = \frac{Q^2}{2C}$$

e,

$$U_{2C} = \frac{Q^2}{4C}$$

Já na situação final, em que a capactiância equivalente é $C_{eq}=3C$ e a carga total vale 2Q, a energia armazenada é:

$$U_{eq} = \frac{Q_{eq}^2}{2C_{eq}} = \frac{(2Q)^2}{2(3C)} = \frac{2Q^2}{3C}$$

O decréscimo de energia é:

$$\Delta U = U_C + U_{2C} - U_{eq} = \frac{Q^2}{12C}$$

5.3 Questão 3

Para resolver esta questão precisamos utilizar as leis de Kirchhoff, tanto para tensões quanto para correntes - o que nos dará quatro equações. Veja que é possível identificar a seguinte malha triangular, formada pelos capacitores C_1 e C_3 , e pela queda de tensão E (que foi simplesmente substituída por um curto no desenho, já que E=0):

Ou seja, se aplicarmos Kirchoff nesta malha veremos que:

$$V_1 - V_2 + \underbrace{E}_{=0} = 0 \implies V_1 = V_2$$

mas esta relação pode ser reescrita em termos das cargas e das capacitâncias, o que dá:

$$Q_1 C_1 = Q_2 C_2 (5.3.1)$$

Analogamente, podemos identificar uma segunda malha:

Que gera:

$$Q_3C_3 = Q_4C_4 (5.3.2)$$

Por último podemos usar a lei de Kirchoff para as correntes, temos que a corrente que passa pelo eletrômero vale:

$$i_E = i_1 - i_3 = i_4 - i_2 = 0$$

Como i=dQ/dt essa relação se traduz, em termos das tensões e capactiâncias, tanto em:

$$Q_1 = Q_3 (5.3.3)$$

quanto em

$$Q_2 = Q_4 (5.3.4)$$

Se dividirmos as duas primeiras equações enumeradas pela outra obteremos:

$$\frac{Q_1C_1}{Q_3C_3} = \frac{Q_2C_2}{Q_4C_4}$$

Mas as cargas se cancelam, como acabos de ver, e obtemos:

5.4 Questão 4

A solulão deste exercício se torna bem simples se forem utilizadas transformações $Y-\Delta$ (Ou transformações triângulo - estrela). Veja que os três capacitores em vermelho a seguir estão em uma configuração Y:

Figura 8: A associação Y foi substituida por uma associação $\Delta.$

Como todos os capacitores são idênticos, os novos capacitores, agora em configuração Δ , tem capacitância:

$$C' = \frac{C.C}{C+C+C} = \frac{C}{3}$$

Podemos então redesenhar o circuito como:

¹https://en.wikipedia.org/wiki/Y-%CE%94_transform. Perceba que aqui usaremos as fórmulas contrários para a conversão de Δ para Y e de Y para Δ .

Figura 9: Capacitores em paralelo circulados em azul.

Onde os capacitores em vermelho correspondem a transformação resultante. Veja agora que os capacitores circulos estão em paralelo. A capacitância equivalente de um capacitor C com um capacitor C/3 em série é:

$$C' = C + \frac{C}{3} = \frac{4C}{3}$$

O circuito é redesenhado como:

Para os capacitores 4C/3 em série temos:

$$\frac{1}{C'} = \frac{3}{4C} + \frac{3}{4C} \implies C = \frac{4C}{6}$$

Portanto, temos:

A capacitância equivalente do circuito vale, então:

$$C_{eq} = \frac{4C}{3} + \frac{4C}{6} = 2C$$

5.5 Questão 5

Neste exercício, a estratégia de resolução consiste em realizar uma transformação da configuração Δ para a configuração Y. Os capacitores que serão convertidos estão em vermelho:

Figura 10: A região em vermelho corresponde a uma associação Δ .

Utilizando a fórmula para a converção (Consulte o link fornecido), encontramos que a capacitância do capacitor superior, adjacente aos capacitores 2C é:

$$C' = \frac{C.(2C) + (2C).C + (2C)(2C)}{C} = 8C$$

Para os outros dois capacitores temos:

$$C' = \frac{C.(2C) + (2C).C + (2C)(2C)}{2C} = 4C$$

Agora podemos redesenhar o circuito, que se torna razoavelmente mais simples:

Figura 11: A associação Δ foi substituida por uma associação Y.

Resolvendo para os capacitores em série na parte superior:

$$C'^{-1} = \frac{C_1 C_2}{C_1 + C_2} = \frac{8C}{9}$$

e para os capacitores em série na parte inferior:

$$C'^{-1} = \frac{C_1 C_2}{C_1 + C_2} = \frac{4C}{3}$$

Portanto, finalmente podemos reescrever o circuito como:

Para os capacitores em paralelo temos que:

$$C' = \frac{8C}{9} + \frac{4C}{3} = \frac{20C}{9}$$

Resultado que em série com 4C resulta em uma capacitância equivalente:

$$\boxed{\frac{1}{C_{eq}} = \frac{1}{C_1} + \frac{1}{C_2} = \frac{9}{20C} + \frac{1}{4C} \implies C_{eq} = \frac{10}{7}C}$$

5.6 Questão 6

Perceba que como foi dito na sugestão do enunciado, a porção circuito à direita da linha tracejada tem a mesma capacitância C_{eq} do circuito completo. Isto é, a porção à direita é idêntica ao circuito completo. Deste modo, podemos redesenhá-lo:

A capacitância equivalente dos capacitores C e C_{eq} em paralelo é:

$$C//C_{eq} = C + C_{eq}$$

Que fica em série com o capacitor C, portanto a capacitância equivalente final do circuito é:

$$C_{eq} = \frac{C(C_{eq} + C)}{C + (C + C_{eq})} \implies C_{eq}^2 + C_{eq}C - C^2 = 0$$

Que é uma equação de segundo grau. Resolvendo para C_{eq} obtemos:

$$C_{eq} = \frac{-C \pm \sqrt{C^2 + 4C}}{2}$$

Mas como C > 0, prevalece a raiz:

$$C_{eq} = \left(\frac{\sqrt{5} - 1}{2}\right)C$$

5.7 Questão 7

Vamos, primeiramente, calcular a capacitância do capacitor de placas paralelas de área A a uma distância D preenchido por uma lâmina dielétrica de constante κ e espessura d, tal que d < D. Assim sendo, para calcular a capacitância, definida por $C = \frac{Q}{V}$, basta calcular V. Calculando a integral de linha do campo elétrico entre as placas, percebemos que, independente da colocação da lâmina, temos a seguinte expressão para V:

$$V = E(D - d) + \frac{E}{\kappa}d = E\left(D - d\left(\frac{\kappa - 1}{\kappa}\right)\right)$$

Isso pois, na região com ar entre as placas (de espessura D-d), o campo elétrico tem módulo $E = \frac{\sigma}{\varepsilon_0} = \frac{QA}{\varepsilon_0}$, e, no dielétrico (de espessura d), vale em módulo $\frac{E}{\kappa}$. Assim, a capacitância será:

$$C = \frac{Q}{V} = \frac{\sigma A}{\frac{\sigma}{\varepsilon_0} \left(D - d \left(\frac{\kappa - 1}{\kappa} \right) \right)} = \frac{\varepsilon_0 A}{\left(D - d \left(\frac{\kappa - 1}{\kappa} \right) \right)}$$

Agora, vamos considerar um capacitor de espessura D-d com ar entre as placas em série com um capacitor de espessura d preenchido de material dielétrico de constante κ . O primeiro apresenta capacitância $C_1 = \frac{\varepsilon_0 A}{D-d}$, enquanto o segundo apresentará $C_2 = \kappa \frac{\varepsilon_0 A}{d}$. Portanto, em série, teremos a seguinte capacitância equivalente:

$$\frac{1}{C_{eq}} = \frac{1}{C_1} + \frac{1}{C_2} = \frac{1}{\varepsilon_0 A} \left(D - d + \frac{d}{\kappa} \right) = \frac{1}{\varepsilon_0 A} \left(D - d \left(\frac{\kappa - 1}{\kappa} \right) \right)$$

Assim:

$$C_{eq} = \frac{\varepsilon_0 A}{\left(D - d\left(\frac{\kappa - 1}{\kappa}\right)\right)}$$

E portanto, os dois sistemas descritos terão a mesma capacitância.

5.8 Questão 8

Foi visto no capítulo que a capacitância de um capacitor esférico de raio interno R_1 e raio externo R_2 é:

$$C = 4\pi\varepsilon_0 \left(\frac{R_1 R_2}{R_2 - R_1}\right) = 4\pi\varepsilon_0 \left(\frac{1}{R_1} - \frac{1}{R_2}\right)^{-1}$$

Para porção do capacitor de constante dielétrica κ_1 , de raio interno a e raio externo c, temos então que:

$$C_1 = 4\pi\varepsilon_0 \kappa_1 \left(\frac{1}{a} - \frac{1}{c}\right)^{-1}$$

Já para a segunda porção:

$$C_2 = 4\pi\varepsilon_0 \kappa_2 \left(\frac{1}{c} - \frac{1}{b}\right)^{-1}$$

Como as porções são concêntricas, podemos considerar que o capacitor consiste dos dois capacitores C_1 e C_2 em série, deste modo temos que:

$$\boxed{\frac{1}{C} = \frac{1}{C_1} + \frac{1}{C_2} = \frac{1}{4\pi\varepsilon_0} \left[\frac{1}{\kappa_1} \left(\frac{1}{a} - \frac{1}{c} \right) + \frac{1}{\kappa_2} \left(\frac{1}{c} - \frac{1}{b} \right) \right]}$$

Outra solução possível: Podemos também tentar calcular a capacitância pela definição $C = \frac{Q}{V}$. Como já calculado no texto, a diferença de potêncial V entre um par de esferas condutoras concêntricas de raios $R_1 < R_2$ com ar entre elas, como $\mathbf{E} = \frac{Q}{4\pi\varepsilon_0 r^2} \hat{\mathbf{r}}$, é $V = \frac{Q}{4\pi\varepsilon_0} \left(\frac{1}{R_1} - \frac{1}{R_2}\right)$. Como, em cada meio dielétrico, o campo elétrico vale $\frac{\mathbf{E}}{\kappa}$, a diferença de potencial entre as duas esféricas preenchidas de dielétrico vale:

$$V = \frac{Q}{\kappa_1 4\pi \varepsilon_0} \left(\frac{1}{a} - \frac{1}{c} \right) + \frac{Q}{\kappa_2 4\pi \varepsilon_0} \left(\frac{1}{c} - \frac{1}{b} \right)$$

Dessa forma, calculando a capacitância por $C = \frac{Q}{V}$, temos:

$$C = \frac{Q}{V} = 4\pi\varepsilon_0 \left[\frac{1}{\kappa_1} \left(\frac{1}{a} - \frac{1}{c} \right) + \frac{1}{\kappa_2} \left(\frac{1}{c} - \frac{1}{b} \right) \right]^{-1}$$

5.9 Questão 9

5.10 Questão 10

a) Vamos aqui aplicar a Lei de Gauss. Fora da esfera, não há material dielétrico, assim, vale a aplicação normal da Lei de Gauss, que, junto com a simetria esférica, para r > a implica em:

$$E4\pi r^2 = \frac{Q_{tot}}{\varepsilon_0} = \frac{1}{\varepsilon_0} \rho \frac{4\pi}{3} a^3 \implies \mathbf{E} = \frac{\rho a^3}{3\varepsilon_0 r^2} \hat{\mathbf{r}}$$

Agora, para o interior do dielétrico usaremos o campo \boldsymbol{D} . Como $div\boldsymbol{D}=\frac{\rho_l}{\varepsilon_0}$, onde ρ_l é a densidade de carga livre, vale, pelo Teorema de Gauss, a equação global $\int \boldsymbol{D} \cdot d\boldsymbol{S} = \frac{Q_f^{tot}}{\varepsilon_0}$. Assim, novamente pela simetria esférica:

$$D4\pi r^2 = \frac{1}{\varepsilon_0} \rho \frac{4\pi}{3} r^3 \implies \mathbf{D} = \frac{\rho r}{3\varepsilon_0} \hat{\mathbf{r}}$$

Finalmente, como $D = \kappa E$, temos: ²

$$\boldsymbol{E} = \frac{\rho r}{3\kappa\varepsilon_0}\hat{\boldsymbol{r}}$$

Perceba a descontinuidade do campo elétrico em r=a. Isso era esperado, uma vez que sabemos que a componente perpendicular do campo elétrico à superfície de material dielétrico é descontínua, e, no caso, pelo campo ser radial, ele consiste justamente apenas na componente perpendicular à superfície da esfera.

b) Como temos as expressões para o campo elétrico em todo espaço, basta integrá-lo para encontrar o potencial.

²Alguns autores definem o campo no interior do dielétrico como $D = \varepsilon E$, onde $\varepsilon = \varepsilon_0 \kappa$, e assim o ε_0 não aparece dividindo a densidade de carga livre e nem a carga total contida no volume nas expressões para as Leis de Maxwell no interior de dielétricos.

6 Capítulo 6

6.1 Questão 1

a) O potencial V(x) de um elétron a uma distância x do cátodo é:

$$V(x) = -\left(\frac{x}{d}\right)V$$

A energia potencial eletrostática associada é, portanto:

$$U(x) = eV(x) = -\left(\frac{x}{d}\right)eV$$

Por conservação de energia:

$$\frac{mv_0^2}{2} = \frac{mv^2}{2} - \left(\frac{x}{d}\right)eV$$

Resolvendo para v, encontramos:

$$v(x) = v_0 \sqrt{1 + \frac{2eVx}{mv_0^2 d}}$$

b) A corrente pode ser escrita como:

$$i(x) = \frac{dq}{dt} = e\frac{dN}{dt}$$

Onde N representa o número de elétros em x. O número de elétrons passando por um cilindro de espessura dx em x e seção transversal A é:

$$N(x) = n(x) \underbrace{Adx}_{\text{Volume}}$$

Substituindo na expressão para a corrente:

$$i = eA\frac{dx}{dt}$$

Mas dx/dt é simplesmente a velocidade dos elétrons no ponto x, logo podemos substituir na expressão acima e resolver para n(x):

$$n(x) = \frac{i}{eAv_0} \left[1 + \frac{2eVx}{mv_0^2 d} \right]^{-\frac{1}{2}}$$

6.2 Questão 2

6.3 Questão 3

Temos que P = VI, e como V = RI, podemos relacionar a potência qual a tensão e a resistência. No caso da lâmpada, P = 1.5W e V = 9V, deste modo, sua resistência quando acesa é:

$$R = \frac{V^2}{P} = \frac{9^2}{1.5} = 54\Omega$$

Além disso sabemos que a resistividade varia de acordo com a temperatura através de,

$$\rho = \rho_0 [1 + \alpha \Delta T]$$

Pela segunda lei de Ohm sabesmo que $R = \rho l/A$, deste modo a expressão acima pode ser reescrita como:

$$R = R_0[1 + \alpha \Delta T]$$

Temos que $R_0=4.5\Omega$, que é a resistência do filamento a $20^{\circ}C$. Temos então que:

$$T = T_0 + \frac{1}{\alpha} \left(\frac{R}{R_0} - 1 \right) = 20 + \frac{1}{4.5 \times 10^{-3}} \left(\frac{54}{4.5} - 1 \right) \approx 2.4 \times 10^{3 \circ} C$$

6.4 Questão 4

6.5 Questão 5

6.6 Questão 6

Como a condutividade varia linearmente como a distância, podemos escrevê-la na forma:

$$\sigma(x) = Ax + B$$

Sendo A e B constantes. Pelos dados do enunciado podemos contruir o sistema:

$$\sigma(0) = B = \sigma_0$$

$$\sigma(l) = Al + B = \sigma_1$$

Resolvendo o sistema encontramos:

$$\sigma(x) = \left(\frac{\sigma_1 - \sigma_0}{l}\right)x + \sigma_0$$

A segunda lei de Ohm nos diz que $R = \rho l/S = l/(\sigma S)$, ou para uma porção infinitesimal do cilindro em questão:

$$dR = \frac{1}{S} \frac{dx}{\sigma(x)}$$

Substituindo pela expressão encontrada para a condutividade e integrando:

$$R = \frac{1}{S} \int_0^l \frac{dx}{\left(\frac{\sigma_1 - \sigma_0}{l}\right) x + \sigma_0}$$

Resolvendo a integral obtemos (Isso pode ser feito por substituição, tomando $u = \left(\frac{\sigma_1 - \sigma_0}{l}\right) x + \sigma_0$ e $du = \frac{(\sigma_1 - \sigma_0)}{l} dx$):

$$R = \frac{l}{S(\sigma_1 - \sigma_0)} \ln \left(\frac{\sigma_1}{\sigma_0}\right)$$

6.7 Questão 7

A corrente no circuito é:

$$i = \frac{\mathcal{E}}{R_{eq}} = \frac{\mathcal{E}}{r + R}$$

Deste modo, a potência fornecida ao resistor R é, em função de sua resistência:

$$P(R) = Vi = Ri^{2} = \mathcal{E}^{2} \left[\frac{R}{(r+R)^{2}} \right]$$

Derivando e igualando à 0, a fim de encontrar para qual valor R_{max} a potência dissipada é máxima:

$$\frac{dP}{dR} = \mathcal{E}^2 \left[\frac{1}{(r+R)^2} - 2\frac{R}{(r+R)^3} \right] = 0$$

Resolvendo para R encontramos que:

$$R_{max} = r$$

b) Como R=r, a potência dissipada pelo resistor é:

$$P = \mathcal{E}^2 \left[\frac{R}{(r+R)^2} \right] = \frac{\mathcal{E}^2}{4}$$

Que é a mesma potência dissipada pela bateria, pois r = R.

6.8 Questão 8

6.9 Questão 9

A energia utilizada para aquecer a água é:

$$Q = mc\Delta T = 500 \times 1 \times (100 - 20) = 40.000 cal \approx 1.7 \times 10^5 J$$

A potência associada é:

$$P_{H_2O} = \frac{Q}{\Delta t} = \frac{1.7 \times 10^5}{6 \times 60} \approx 472W$$

Como o aquecedor opera a 110V e 5A, sua potência total é:

$$P = VI = 110 \times 5 = 550W$$

A eficiência do aquecedor vale, portanto:

$$\eta = \frac{472}{550} \approx 85\%$$

6.10 Questão 10

7 Capítulo 7

7.1 Questão 1

O torque sob a espira é dado por:

$$\tau = \boldsymbol{m} \times \boldsymbol{B_0} = |\boldsymbol{m}||\boldsymbol{B_0}|\sin\theta$$

Assumindo que $\sin \theta \approx \theta$, a equação do movimento para a bússola é:

$$\tau = I\ddot{\theta} = -|\boldsymbol{m}||\boldsymbol{B_0}|\theta$$

que corresponde à equação do MHS, portanto:

$$\omega = \sqrt{\frac{|\boldsymbol{m}||\boldsymbol{B_0}|}{I}}$$

7.2 Questão 2

7.3 Questão 3

7.4 Questão 4

Na região do filtro de velocidades o campo elétrico \boldsymbol{E} é balanceado pelo campo magnético \boldsymbol{B} , portanto podemos descobrir qual é a velocidade de entrada do íon na região semicircular através da relação entre dos dois campos:

$$|\boldsymbol{E}| = v|\boldsymbol{B}| \implies v = \frac{|\boldsymbol{E}|}{|\boldsymbol{B}|}$$

Como na região circular não há campo elétrico, a força magnética (devido ao campo |B'|) é igual à força centrípeta, portanto podemos obter o raio da órbita a partir de:

$$F_{cp} = F_B \implies \frac{mv^2}{R} = ev|\mathbf{B'}|$$

Resolvendo para R e substituindo v pela velocidade encontrada, obtemos:

$$R = \frac{|\boldsymbol{E}|}{|\boldsymbol{B}||\boldsymbol{B'}|} \frac{m}{e}$$

7.5 Questão 5

O módulo do torque do momento de dipolo da espira é dado por:

$$|\boldsymbol{m}| = iS = i(\pi a^2)$$

O Torque exercido, por sua vez, vale:

$$|\boldsymbol{\tau}| = |\boldsymbol{B}||\boldsymbol{m}|\sin\left(\frac{\pi}{2}\right) = |\boldsymbol{B}|(\pi a^2)i$$

Pois como torque é exercido sob um curtíssimo período de tempo o campo magnético permanece perpendicular ao vetor do dipolo magnético da espira. Devido ao torque a espira inicialmente adquire uma velocidade angular ω , e gira até um ângulo máximo θ_0 . Como o torque exerce uma mudança no momento angular, podemos encontrar a velocidade angular adquirida através de:

$$|\tau|\Delta t = \Delta L = I\Delta\omega = I\omega$$

Pois $\omega_0 = 0$. Resolvendo para ω obtemos:

$$\omega = \frac{|\boldsymbol{B}|(\pi a^2)i\Delta t}{I} = \frac{|\boldsymbol{B}|(\pi a^2)q}{I}$$

A força restauradora do fio de torção vale:

$$F = -k\theta$$

Como $F = -dU/d\theta$, a energia potencial associada a um ângulo de torção θ é:

$$U = \frac{k}{2}\theta^2$$

Podemos então obter o ângulo máximo de deflexão a partir da conservação de energia, pois toda a energia cinética de rotação é convertida em energia potencial U:

$$\frac{I\omega^2}{2} = \frac{k}{2}\theta_0^2$$

Substituindo ω pelo valor encontrado:

$$\frac{|{\bf B}|^2(\pi a^2)^2 q^2}{I} = k\theta_0^2$$

Resolvendo para θ_0 obtemos:

$$\theta_0 = \frac{\pi a^2 |\boldsymbol{B}|}{\sqrt{Ik}} q$$

8 Capítulo 8

8.1 Questão 1

8.2 Questão 2

As linhas de campo magnético são círculos concêntricos ao fio, conforme representado na figura (Confira também o exemplo da seção 8.1 do livro):

Pela lei de Ampère, vale para um ponto que dista r do fio a relação:

$$\oint \mathbf{B} \cdot d\mathbf{l} = \mu_0 i \implies B2\pi r B = \mu_0 i$$

Ou seja,

$$B = -\frac{\mu_0 i}{2\pi r}$$

Tendo obtido a fórmula, consideremos agora o sistema da figura:

A contribuição do fio superior na figura com o campo elétrico é, pela regra da mão direita:

$$\boldsymbol{B}_1 = \frac{\mu_0 i}{2\pi (b+x)} \boldsymbol{\hat{z}}$$

E para o fio inferior:

$$\boldsymbol{B}_2 = \frac{\mu_0 i}{2\pi (b-x)} \boldsymbol{\hat{z}}$$

Somando ambas as contribuições:

$$\mathbf{B} = \frac{\mu_0 i}{2\pi} \left(\frac{1}{b+x} + \frac{1}{b-x} \right) \hat{\mathbf{z}} = \frac{\mu_0 i b}{\pi (b^2 - x^2)} \hat{\mathbf{z}}$$

Agora, no segundo caso, temos que o campo devido ao fio superior vale:

$$\boldsymbol{B}_1 = \frac{\mu_0 i}{2\pi (b+x)} \hat{\boldsymbol{z}}$$

E para o fio inferior (Veja que desta vez o sinal é contrário):

$$\boldsymbol{B}_2 = -\frac{\mu_0 i}{2\pi (x-b)} \hat{\boldsymbol{z}}$$

Ao somar os campos obtemos, novamente:

$$\mathbf{B} = \frac{\mu_0 i}{2\pi} \left(\frac{1}{b+x} + \frac{1}{b-x} \right) \hat{\mathbf{z}} = \frac{\mu_0 i b}{\pi (b^2 - x^2)} \hat{\mathbf{z}}$$

8.3 Questão 3

8.4 Questão 4

8.5 Questão 5 - Ver

a) Podemos rapidamente calcular o campo magnético gerado por uma espira circular a partir de Biot-Savart. Para um fio que consiste de um arco circular de raio R e abertura θ , conforme a figura, o campo magnético no ponto O fica:

$$\boldsymbol{B} = \frac{\mu_0 i}{4\pi} \int \frac{d\boldsymbol{l} \times \hat{\boldsymbol{r}}}{R^2}$$

Mas dl e \hat{r} são perpendiculares³, e também sabemos que $dl = Rd\theta$. Portanto:

$$oldsymbol{B} = -rac{\mu_0 i}{4\pi R} \int_0^{ heta_0} d heta \hat{oldsymbol{z}} = -rac{\mu_0 i heta_0}{4\pi R} \hat{oldsymbol{z}}$$

No caso do exercício, temos que $\theta_0 = \pi$, portanto:

$$oldsymbol{B} = -rac{\mu_0 i}{4R} \hat{oldsymbol{z}}$$

Os fios retilíneos muito longos não contribuem com o campo magnético pois os elementos de corrente idl estão na mesma direção do versor \hat{r} , que corresponde ao vetor unitário da direção do ponto P a um ponto qualquer no fio.

b) Assim como foi calculado no exercício anterior, o campo magnético gerado pela parte circular do fio é (Considerando que o sentido da corrente é horário):

$$oldsymbol{B}_1 = -rac{\mu_0 i}{4R} oldsymbol{\hat{z}}$$

 $^{^3}$ Se trabalharmos com coordenadas cilíndricas podemos escrever $d\pmb{l} = -dl\hat{\pmb{\theta}}$ (O sinal é negativo pois a corrente flui em sentido horário), pois assim $d\pmb{l} \times \hat{\pmb{r}} = -dl\hat{\pmb{z}}$, isto é, o campo magnético resultante tem direção ortogonal aos versores \hat{r} e $\hat{\theta}$, no sentido "saindo da página".

Já para calcular a contribuição dos fios retilíneos podemos usar o resultando do exercício 2 com x=0 e b=R, dividindo-o por dois, pois os fios só possuem metade da extensão:

$$\boldsymbol{B}_2 = -\frac{\mu_0 i}{2R} \hat{\boldsymbol{z}}$$

Somando os dois campos obtemos:

$$\mathbf{B} = \mathbf{B}_1 + \mathbf{B}_2 = -\frac{\mu_0 i}{4R} \left(1 + \frac{2}{\pi} \right) \hat{\mathbf{z}}$$

8.6 Questão 6

A partir do resultado do exercício anterior podemos encontrar o campo magnético devido às porções circulares do fio. Para o arco de raio a:

$$oldsymbol{B}_1 = -rac{\mu_0 i heta}{4\pi a} oldsymbol{\hat{z}}$$

E para o arco de raio b:

$$oldsymbol{B}_2 = -rac{\mu_0 i heta}{4\pi b} oldsymbol{\hat{z}}$$

As porções retilíneas não contribuem com o campo magnético, portanto, o campo resultante no ponto P fica:

$$\mathbf{B} = \mathbf{B}_1 + \mathbf{B}_2 = \frac{\mu_0 i}{4\pi} \frac{(a-b)\theta}{ab}$$

8.7 Questão 7

Considere um ponto no segmento AB do circuito:

O campo magnético para um ponto no segmento é dado por :

$$oldsymbol{B} = -rac{\mu_0 i'}{2\pi d} \hat{oldsymbol{z}}$$

Deste modo, a força exercida sob um trecho infinitesimal $d\boldsymbol{l}$ do segmento é:

$$dF = -i\mathbf{dl} \times \mathbf{B}$$

Com o sinal negativo devido à direção do vetor dl. Como o campo magnético "entra" na página, dl e B são perpendiculares. Também podemos escrever $dl = dl\hat{y}$. Deste modo, a expressão para a força fica:

$$dF = +\frac{\mu_0 i i'}{2\pi d} (\hat{\boldsymbol{y}} \times \hat{\boldsymbol{z}}) dl$$

Sabemos que $\hat{y} \times \hat{z} = \hat{x}$, além disso, podemos integrar dl de 0 até b, obtendo:

$$\boldsymbol{F}_1 = +\frac{\mu_0 i i'}{2\pi} \frac{b}{d} \hat{\boldsymbol{x}}$$

Podemos obter a força para o segmento CD da mesma maneira, o que resulta em:

$$\boldsymbol{F}_2 = -\frac{\mu_0 i i'}{2\pi} \frac{b}{d+a} \boldsymbol{\hat{x}}$$

Veja que para este segmento a direção da corrente é oposta, portanto a força tem sinal contrário. Por simetria, as forças sob os segmentos BC e AD se anulam, e por conseguinte, a força resultante é:

$$\mathbf{F} = \mathbf{F}_1 + \mathbf{F}_2 = +\frac{\mu_0 i i'}{2\pi} \frac{ab}{d(d+a)}$$

8.8 Questão 8

8.9 Questão 9

a) Imaginando o Solenóide como na seguinte figura, podemos calcular a contribuição de uma porção de comprimento dl da espira, a uma distância z do ponto P, que é o ponto no qual desejamos obter o campo magnético resultante.

Por Biot-Savart, podemos escrever:

$$d\mathbf{B} = \frac{\mu_0 i}{4\pi} \frac{d\mathbf{l} \times \hat{\mathbf{r}}}{r^2}$$

Como $|d\mathbf{l} \times \hat{\mathbf{r}}| = dl$, o módulo da expressão acima fica:

$$dB = \frac{\mu_0 i}{4\pi} \frac{dl}{r^2}$$

Mas por simetria, as componentes não verticais do campo magnético de pontos diametralmente opostos se anulam (Veja o exemplo 2 da seção 8.3, pg. 151). Deste modo, devemos leval em conta somente a componente vertical, dada por:

$$dB = \frac{\mu_0 i}{4\pi} \frac{dl}{r^2} \sin \varphi \implies B = \frac{\mu_0 i}{4\pi} \int \frac{dl}{r^2} \sin \varphi = \frac{\mu_0 i a}{4\pi} \int \frac{dl}{r^3}$$

Como $r = \sqrt{a^2 + x^2}$ e $dl = 2\pi andz$, a integral fica:

$$B = \frac{\mu_0 i n a^2}{2} \int \frac{dz}{(a^2 + z^2)^{\frac{3}{2}}}$$

Esta integral já foi resolvida em exercícios anteriores, e vale:

$$\int \frac{dz}{(a^2 + z^2)^{\frac{3}{2}}} = \frac{z}{a^2 \sqrt{a^2 + z^2}} + C$$

Substituindo na expressão do campo magnético e utilizando os limites de integração apropriados:

$$B(x) = \frac{\mu_0 i n a^2}{2} \left[\frac{z}{a^2 \sqrt{a^2 + z^2}} \right] \Big|_{-\left(\frac{L}{2} + x\right)}^{\frac{L}{2} - x}$$

Obtemos:

$$B(x) = \frac{\mu_0 ni}{2} \left[\frac{\frac{L}{2} - x}{\sqrt{a^2 + (\frac{L}{2} - x)^2}} + \frac{\frac{L}{2} + x}{\sqrt{a^2 + (\frac{L}{2} + x)^2}} \right]$$

Tomando x = 0, obtemos:

$$B(0) = \frac{\mu_0 in}{2} \left[\frac{L}{\sqrt{a^2 + L^2/4}} \right]$$

Se $L \gg a$, então,

$$B(0) = \frac{\mu_0 i n}{2}$$

b) A integral que obtemos para calcular o campo do solenóide é:

$$B = \frac{\mu_0 i n a^2}{2} \int_{-L/2-x}^{L/2-x} \frac{dz}{(a^2 + z^2)^{\frac{3}{2}}}$$

Podemos reescrever como:

$$B = \frac{\mu_0 i n a^2}{2} \int_{-L/2}^{L/2} \frac{dz}{(a^2 + (z - x)^2)^{\frac{3}{2}}}$$

Como $x \gg a$ e $x \gg z$, então:

$$B = \frac{\mu_0 i n a^2}{2x^3} \int_{-L/2}^{L/2} dz = \frac{\mu_0 i n a^2 L}{2x^3}$$

Ou,

$$B = \frac{\mu_0}{2\pi x^3} (nLi\pi a^2)$$

Como m=iS, então o momento de dipolo associado ao solenóide é $m=nLi\pi a^2$, portanto:

$$B = \frac{\mu_0}{2\pi x^3} m$$

c) A razão entre B(x) e B(0) elimina algumas das contantes:

$$\frac{B(x)}{B(0)} = \frac{\frac{L}{2} - x}{\sqrt{a^2 + (\frac{L}{2} - x)^2}} + \frac{\frac{L}{2} + x}{\sqrt{a^2 + (\frac{L}{2} + x)^2}}$$

Podemos reescrever a equação anterior de tal modo que ela se torne função de x/L:

$$\frac{B(x/L)}{B(0)} = \frac{\frac{1}{2} - \frac{x}{L}}{\sqrt{\frac{a^2}{L^2} + \left(\frac{L}{2} - \frac{x}{L}\right)^2}} + \frac{\frac{L}{2} + x}{\sqrt{a^2 + \left(\frac{L}{2} + x\right)^2}}$$

Mas L = 10a, portanto, após algumas manipulações, a equação anterior fica:

$$\frac{B(x/L)}{B(0)} = \frac{\frac{1}{2} - \frac{x}{L}}{\sqrt{0.01 + \left(\frac{1}{2} - \frac{x}{L}\right)^2}} + \frac{\frac{1}{2} + x}{\sqrt{0.01 + \left(\frac{1}{2} + x\right)^2}}$$

Plotando o gráfico obtemos:

8.10 Questão 10

a) Trabalhando com coordenadas polares podemos escrever um elemento de área no disco como:

$$dS = rdrd\theta$$

Deste modo, a corrente dq presente nesta porção vale $dq = \sigma dS = \sigma r dr d\theta$. Além disso, temos que,

$$i = \frac{dq}{dt} = \sigma r \frac{d\theta}{dt} dr = \sigma \omega r dr$$

O que corresponde à corrente i(r) associada à uma faixa de espessura dr a uma distância r do centro do disco.

Vimos também que o campo magnético no centro de um fio circular, no qual o sentido da corrente é anti-horário, é:

$$oldsymbol{B}_0(r) = rac{\mu_0 i}{2r} \hat{oldsymbol{z}}$$

Deste modo, a contribuição de cada faixa para o campo magnético total vale,

$$\boldsymbol{B}_0(r) = \frac{\mu_0 \sigma \omega}{2} dr \hat{\boldsymbol{z}}$$

Integrando de 0 até R obtemos o campo resultante no centro do disco:

$$\boldsymbol{B} = \frac{\mu_0 \sigma \omega R}{2} \hat{\boldsymbol{z}}$$

b) Vimos que a corrente de uma faixa que dista r da origem é:

$$i(r) = \sigma \omega r dr$$

Como a área S da superfície definida pela faixa circular é $\mathbf{S} = \pi r^2 \hat{\mathbf{z}}$, a contribuição para o momento de dipolo de cada faixa é:

$$d\boldsymbol{m} = i\boldsymbol{S} = \pi \sigma \omega r^3 dr \hat{\boldsymbol{z}}$$

Integrando de 0 até R obtemos a contribuição de todas as faixas, o que nos leva à:

$$oldsymbol{m} = rac{\pi\sigma\omega R^4}{4} \hat{oldsymbol{z}}$$

8.11 Questão 11

9 Capítulo 9

9.1 Questão 1

Pela Lei de Lenz, temos que:

$$\mathcal{E} = -\frac{d\Phi}{dt} \implies \mathcal{E} = NA\frac{B}{\Delta t}$$

Pela primeira Lei de Ohm podemos relacionar a força eletromotriz com a resistência e a corrente gerada. Como a duração do pulso é Δt , temos que:

$$\mathcal{E} = Ri = R\frac{Q}{\Delta t}$$

Podemos então resolver as equações para B, obtendo:

$$B = \frac{QR}{NS}$$

9.2 Questão 2

- a) O campo magnético está "entrando na página", portanto podemos escrevê-lo como $\mathbf{B} = B\hat{\mathbf{z}}$, onde $\hat{\mathbf{z}}$ representa o vetor unitário ortogonal à página. Assumindo que a área englobada pelo circuito tem normal $\hat{\mathbf{n}}$, de mesma orientação que o versor $\hat{\mathbf{z}}$, isto é, "saindo" da página, então $\Phi = \mathbf{B} \cdot \mathbf{S} < 0$ e $\mathcal{E} = -d\Phi/dt > 0$, pois conforme a haste cai a área definida pelo circuito aumenta. Como $\mathcal{E} > 0$, a corrente terá a mesma orientação do circuito, anti-horária. (Pois como definimos a normal do circuito como "saindo" da página, isto é $\hat{\mathbf{n}} > 0$, pela regra da mão direita, a orientação do circuito é anti-horária).
- b) Para encontrar a força agindo sob a barra devido à indução devemos primeiro encontrar a corrente induzida e depois a força, através de $dF = i(\mathbf{dl} \times \mathbf{B})$.

A área englobada pelo circuito é A = ly, onde y representa o deslocamento vertical da barra. Como o campo magnético $\mathbf{B} = B\hat{z}$ é constante, temos que:

$$\varepsilon = -\frac{d(\boldsymbol{B} \cdot \boldsymbol{A})}{dt} = B\frac{dA}{dt} = Bl\frac{dy}{dt} = Blv$$

A corrente induzida vale, então:

$$i = \frac{\mathcal{E}}{R} = \frac{Blv}{R}$$

A força agindo sob um elemento de corrente idl pertencente à haste de comprimento l é, portanto:

$$dF = i(dl \times B)$$

Como o campo magnético é constante ao longo da barra e perpendicular ao elemento de corrente:

$$\boldsymbol{F} = ilB\hat{\boldsymbol{y}} = \frac{B^2l^2v}{R}\hat{\boldsymbol{y}}$$

Como a força resultante corresponde à força peso menos a força magnética, temos que:

$$a = g - \frac{B^2 l^2 v}{mR}$$

c) Para encontrar a velocidade terminal basta utilizar o resultando do item anterior, tomando a=0 e resolver para para $v=v_0$:

$$v_0 = \frac{mgR}{B^2l^2}$$

d) Pelo item b) , temos que i = Blv. Deste modo:

$$i_0 = \frac{Blv_0}{R} = \frac{mgR}{Bl}$$

e) A variação de energia potencial da haste, após ter percorrido uma distância $y=v_0\Delta t$ é:

$$U = mgv_0 \Delta t = \left(\frac{mg}{Rl}\right)^2 R \Delta t$$

Agora, a energia dissipada no resistor é:

$$E = P\Delta t = \frac{\epsilon^2}{R}\delta t = \frac{(Bl)^2}{R}v^2R\delta t = \left(\frac{mg}{Bl}\right)^2R\Delta t$$

Assim, podemos ver que as energia são iguais, e a energia total é conservada.

- 9.3 Questão 3
- 9.4 Questão 4
- 9.5 Questão 5
- 9.6 Questão 6

Vimos que o campo magnético no centro de uma espira de raio a é:

$$oldsymbol{B} = rac{\mu_0 i}{2a} \hat{oldsymbol{z}}$$

Assim, como $a \gg b$ podemos aproximar que o campo magnético é aproximadamente \boldsymbol{B} através da espira de raio b. Como a área da espira menor vale $\boldsymbol{S} = \pi b^2 \hat{\boldsymbol{n}}$, então o fluxo é:

$$\Phi_{(1)2} = \boldsymbol{B} \cdot \boldsymbol{S} = BS \cos \theta = \frac{\mu_0 i \pi b^2}{2a} \cos \theta$$

Mas o fluxo também é dado pelo produto entre a indutância mútua $L_{(1)2}$ e a corrente i, portanto::

$$\Phi_{(1)2} = L_{(1)2}i$$

Por conseguinte,

$$L_{(1)2} = \frac{\mu_0 \pi b^2}{2a} \cos \theta$$

9.7 Questão 7

Vimos que módulo do campo magnético de um ponto a uma distância x do fio é:

$$B = \frac{\mu_0 i}{2\pi x}$$

Trabalhando com coordenadas polares, o campo magnético em um ponto interno a espira circular é:

$$B = \frac{\mu_0 i}{2\pi (b + r\cos\theta)}$$

Onde r representa a distância radial do ponto em relação a centro da espira, conforme a figura.

Como o elemento de área em coordenadas polares é $dS=rdrd\theta,$ o fluxo na espira é:

$$\Phi = \int \int \mathbf{B} \cdot d\mathbf{S} = \frac{\mu_0 i}{\pi} \int_0^a \int_0^\pi \frac{r dr d\theta}{b + r \cos \theta}$$
 (9.7.1)

Começaremos integrando em relação à θ , isto é, devemos calcular, tomando r=cte.:

$$\int_0^\pi \frac{d\theta}{b + r\cos\theta}$$

O cálculo deste integral é um pouco extenso. Primeiro realizaremos a substituição:

$$t = \tan\frac{\theta}{2}$$

Pois assim,

$$t = \frac{\sin\frac{\theta}{2}}{\cos\frac{\theta}{2}} = \frac{\sqrt{1 - \cos^2\frac{\theta}{2}}}{\cos\frac{\theta}{2}}$$

Ao rearranjar a equação obtemos:

$$\cos^2\frac{\theta}{2} = \frac{1}{1+t^2}$$

Mas pela fórmula do meio ângulo, temos que:

$$\cos^2\frac{\theta}{2} = \frac{1 + \cos\theta}{2}$$

Assim, pelas fórmulas anteriores encontramos que:

$$\cos \theta = \frac{1 - t^2}{1 + t^2}$$

Ao derivar ambos os lados podemos encontrar a relação entre os diferenciais:

$$-\sin\theta d\theta = -\frac{4t}{(1+t^2)^2}dt$$

Mas,

$$\sin \theta = \sqrt{1 - \cos^2 \theta} = \sqrt{1 - \frac{(1 - t^2)^2}{(1 + t^2)^2}} = \frac{2t}{1 + t^2}$$

Assim,

$$d\theta = \frac{2}{1+t^2}dt$$

Finalmente, podemos reescrever a integral como:

$$\int \frac{d\theta}{b + r\cos\theta} = \int \frac{1}{b + r\left(\frac{1-t^2}{1+t^2}\right)} \left(\frac{2}{1+t^2}\right) dt$$

Simplificando,

$$2\int \frac{1}{(b-r)t^2 + (b+r)}dt$$

Fazendo uma segunda substituição, da forma:

$$t = \sqrt{\frac{b+r}{b-r}} \tan \varphi$$

Temos que,

$$dt = \sqrt{\frac{b+r}{b-r}}\sec^2\varphi d\theta$$

Assim, podemos reescrever a integral anterior como:

$$\frac{2}{\sqrt{b^2-r^2}}\int d\varphi = \frac{2}{\sqrt{b^2-r^2}}\arctan\left(\sqrt{\frac{b-r}{b+r}}t\right) = \frac{2}{\sqrt{b^2-r^2}}\arctan\left(\sqrt{\frac{b-r}{b+r}}\tan\frac{\theta}{2}\right)$$

Aplicando os limites de integração apropriados, obtemos:

$$\int_0^\pi \frac{d\theta}{r + b\cos\theta} = \frac{2}{\sqrt{b^2 - r^2}} \arctan\left(\sqrt{\frac{b - r}{b + r}}\tan\frac{\theta}{2}\right)\Big|_0^\pi = \frac{\pi}{\sqrt{b^2 - r^2}}$$

Assim, a integral na (9.7.2) fica:

$$\Phi = \frac{\mu_0 i}{\pi} \int_0^a \int_0^\pi \frac{r dr d\theta}{b + r \cos \theta} = \mu_0 i \int_0^a \frac{r dr}{\sqrt{b^2 - r^2}}$$
(9.7.2)

Através de uma substituição trigonométrica do tipo $r = b \sin \varphi$ é possível resolver a integral acima, o que nos leva a:

$$\Phi = \mu_0 i \left[-\sqrt{b^2 - r^2} \right] \Big|_0^a = \mu_0 i \left(b - \sqrt{b^2 - r^2} \right)$$

Mas $\Phi = L_{12}i$, portanto:

$$L_{12} = \mu_0 i (b - \sqrt{b^2 - r^2}) = \mu_0 i b \left[1 - \sqrt{1 - \left(\frac{r}{b}\right)^2} \right]$$

9.8 Questão 8

Assim como no caso da Bobina toroida, o campo magnético no centro do Toróide, a uma distância r do seu centro pode ser encontrado a partir da Lei de Ampère:

$$\int \mathbf{B} \cdot d\mathbf{l} = 2\pi r B = N\mu_0 i$$

O que resulta em:

$$\mathbf{B} = \frac{N\mu_0 i}{2\pi r} \hat{\boldsymbol{n}}$$

Onde $\hat{\boldsymbol{n}}$ representa o vetor unitário ortogonal à seção transversal do toróide. Se tomarmos a origem como o centro da seção quadrada do Toróide, o campo magnético para um ponto no plano x,y fica:

$$\mathbf{B}(x,y) = \frac{N\mu_0 i}{2\pi (R+x)} \hat{\boldsymbol{n}}$$

Além disso, um elemento de área na seção transversal do Toróide é dS=dxdy, com tanto x quanto y variando de -L/2 até L/2. Deste modo, o fluxo resultante sobre o Toróide é:

$$\Phi = N \int \int \mathbf{B} \cdot d\mathbf{S} = \frac{\mu_0 i}{2\pi} N^2 \int_{-\frac{L}{2}}^{\frac{L}{2}} \int_{-\frac{L}{2}}^{\frac{L}{2}} \frac{dx dy}{R + x}$$

Integrando primeiro em relação a y encontramos:

$$\Phi = \frac{\mu_0 i}{2\pi} N^2 L \int_{-\frac{L}{2}}^{\frac{L}{2}} \frac{dx}{R+x}$$

E agora em relação a x, obtemos:

$$\Phi = \frac{\mu_0 i}{2\pi} N^2 L \ln \left(\frac{2R + L}{2R - L} \right)$$

Como $\Phi = L_{11}i$, então:

$$L_{11} = \frac{\mu_0}{2\pi} N^2 L \ln \left(\frac{2R + L}{2R - L} \right)$$

9.9 Questão 9

No contexto do problema podemos tratar a pequena espira de raio a como um dipolo magnético $\mathbf{m} = m\hat{\mathbf{z}}$. Sabemos que o campo magnético devido a um dipolo magnético é dado por (Conferir seção 8.3, eq. 8.3.16, pg 153 do livro texo):

$$\boldsymbol{B} = \frac{\mu_0}{4\pi} \left[\frac{3(\boldsymbol{m} \cdot \boldsymbol{R})}{R^5} \boldsymbol{R} - \frac{\boldsymbol{m}}{R^3} \right]$$

Como $\mathbf{m} \cdot \mathbf{R} = mR\cos\varphi = mR(z/R) = mz$ e $\mathbf{R}/R = \hat{\mathbf{R}}$, podemos reescrever a expressão anterior como:

$$\boldsymbol{B} = \frac{\mu_0}{4\pi} \left[\frac{3mz}{R^4} \hat{\boldsymbol{R}} - \frac{m}{R^3} \hat{\boldsymbol{z}} \right]$$

Agora, veja que para uma faixa circular de espessura dr, a uma distância R do dipolo, podemos escrever sua área como $d\mathbf{S} = 2\pi r dr \hat{\mathbf{z}}$. Deste modo, podemos escrever o fluxo como:

$$\Phi = \int \boldsymbol{B} \cdot d\boldsymbol{S} = \frac{\mu_0}{4\pi} \int_0^a \left[\frac{3mz}{R^4} \hat{\boldsymbol{R}} - \frac{m}{R^3} \hat{\boldsymbol{z}} \right] \cdot [2\pi r dr \hat{\boldsymbol{z}}]$$

Como $\hat{\boldsymbol{R}} \cdot \hat{\boldsymbol{z}} = \cos \varphi = z/R$ e $\hat{\boldsymbol{z}} \cdot \hat{\boldsymbol{z}} = 1$, ficamos com:

$$\Phi = \frac{\mu_0 m}{2} \int_0^b \left[\frac{3z^2 r}{R^5} - \frac{r}{R^3} \right] dr$$

Mas, $R = \sqrt{r^2 + z^2}$, por conseguinte:

$$\Phi = \frac{\mu_0 m}{2} \int_0^b \left[\frac{3z^2 r}{(z^2 + r^2)^{\frac{5}{2}}} - \frac{r}{(z^2 + r^2)^{\frac{3}{2}}} \right] dr$$

O resultado da primeira integral é:

$$\int_0^b \frac{3z^2r}{(z^2+r^2)^{\frac{5}{2}}} dr = -\frac{z^2}{(b^2+z^2)^{\frac{3}{2}}}$$

e da segunda,

$$-\int_0^b \frac{r}{(z^2+r^2)^{\frac{5}{2}}} dr = \frac{1}{(b^2+z^2)^{\frac{1}{2}}}$$

Logo:

$$\Phi = \frac{\mu_0 m}{2} \left[\frac{1}{(b^2 + z^2)^{\frac{1}{2}}} - \frac{z^2}{(b^2 + z^2)^{\frac{3}{2}}} \right] = -\frac{\mu_0 m}{2} \frac{b^2}{(b^2 + z^2)^{\frac{3}{2}}}$$

A variação do fluxo em relação ao tempo é, pela regra da cadeia:

$$\frac{d\Phi(z(t))}{dt} = \frac{d\Phi}{dz}\frac{dz}{dt}$$

Mas dz/dt = -v e $\frac{d\Phi}{dz} = \frac{3b^2}{2} \frac{(2z)}{(z^2+b^2)^{\frac{5}{2}}}$, logo:

$$\frac{d\Phi(z(t))}{dt} = -\frac{3}{2}\mu_0 \frac{mb^2vz}{(z^2 + b^2)^{\frac{5}{2}}}$$

Pela lei de Lenz, temos que ${\bf E}=-d\Phi/dt=Ri$ e $m=I\pi a^2,$ a resposta fica:

$$i = \frac{3}{2}\mu_0 \frac{\pi a^2 b^2 v I z}{Ri(z^2 + b^2)^{\frac{5}{2}}}$$

- 9.10 Questão 10
- 9.11 Questão 11
- 9.12 Questão 12

10 Capítulo 10

10.1 Questão 1

A o valor de R para o qual a potência dissipada é afetada o mínimo possível por pequenas variações é o valor que minimiza ou maximiza a potência. Deste modo, devemos procurar um R tal que dP/dR=0. A resistência equivaente do circuito é:

$$R_{eq} = R_1 + R_2 / / R$$

Onde $R_2//R$ representa a associação em paralelo entre R_2 e R. Deste modo, temos que a corrente i que passa pela resistência R_1 e a resistência equivalente $R_2//60$ vale:

$$i = \frac{\mathcal{E}}{R_{eq}}$$

E a tensão sob a resistência equivalente $R_2//R$, que é a tensão sob resistores R_2 e R, vale:

$$V = (R_2//R)i = \frac{(R_2//R)}{R_{eq}}\mathcal{E}$$

Como a potência dissipada no resistor R é $P = Vi_R$, e a corrente i_R que passa pelo resistor R pode ser escrita como $i_R = V/R$, então a potência pode ser calculada como $P = \frac{V^2}{R}$. Deste modo:

$$P = \frac{V^2}{R} = \frac{1}{R} \left[\frac{(R_2//R)}{R_{eq}} \mathcal{E} \right]^2 = \frac{1}{R} \left[\frac{\frac{RR_2}{R + R_2}}{R_1 + \frac{RR_2}{R + R_2}} \right]^2 \mathcal{E}^2$$

Substituindo pelos valores numéricos $R_1=20$ e $R_2=60$ obtemos, após algumas simplficações:

$$P = \frac{1}{R} \left[\frac{\frac{R60}{R+60}}{20 + \frac{R60}{R+60}} \right]^2 \mathcal{E}^2 = \frac{60R}{(1200 + 80R)^2} \mathcal{E}^2$$

Derivando e igualando a zero:

$$\frac{dP}{dR} = 0 \implies \frac{d}{dR} \left[\frac{R}{(1200 + 80R)^2} \right] = \left[\frac{1}{(1200 + 80R)^2} - \frac{2(80)R}{(1200 + 80R)^3} \right] = 0$$

Resolvendo para R, encontramos:

$$R = 15\Omega$$

10.2 Questão 2

10.3 Questão 3

10.4 Questão 4

Podemos resolver este exercício simplesmente através das leis de Kirchoff. A lei de Kirchoff para malhas nos permite extrair duas equações. Primeiro, considere as correntes i_1 , i_2 e i_3 conforme mostradas na figura:

Agora, considere a malha destacada:

Como a soma das tensões deve ser nula, e a queda de tensão para todos os componentes está no mesmo sentido, então:

$$L\frac{di_1}{dt} + \frac{q_1}{C} + \frac{q_3}{C} = 0$$

Mas como i = dq/dt, então podemos reescrever a expresão anterior como uma EDO de segunda ordem:

i)
$$\ddot{q}_1 + \frac{1}{LC}(q_1 + q_3) = 0$$

Agora, considere a segunda malha:

Veja que a queda de tensão no resistor pelo qual passa a corrente i_3 é contrária a queda de tensão do indutor e capacitor pelo qual passa a corrente i_2 , portanto, a EDO fica:

ii)
$$\ddot{q}_2 + \frac{1}{LC}(q_2 - q_3) = 0$$

Agora, a lei de Kirchoff para nós nos permite extrair uma última informação. Como as correntes se relacionam por $i_1 = i_2 + i_3$, portanto podemos reescrever a EDO i) como:

iii)
$$(\ddot{q}_2 + \ddot{q}_3) + \frac{1}{LC}(q_2 + 2q_3) = 0$$

O circuito funciona como um sistema acoplado com dois graus de liberdade, pois há 3 correntes distintas mas 1 "vínculo", estabelecido pela relação $i_1 = i_2 + i_3$. A primeira frequência de oscilação pode ser obtida se fizermos i) + ii, pois o termo contendo q_3 desaparece, e obtemos:

$$(\ddot{q}_1 + \ddot{q}_2) + \frac{1}{LC}(q_1 + q_2) = 0$$

Podemos introduzir uma nova variável $\eta=q_1+q_2$, pois assim a EDO acima fica:

$$\ddot{\eta} + \frac{1}{LC}\eta = 0$$

E claramente:

$$\omega = \frac{1}{\sqrt{LC}}$$

Por fim, veja que pela equação ii) temos:

$$\ddot{q}_2 + \frac{1}{LC}q_2 = \frac{1}{LC}q_3$$

Portanto, podemos substituir na expressão iii), obtendo:

$$\ddot{q}_3 + \frac{3}{LC}q_3 = 0$$

Assim, a segunda frequência é:

$$\omega_2 = \sqrt{\frac{3}{LC}}$$

10.5 Questão 5

10.6 Questão 6

A impedância do trecho contendo o indutor é:

$$Z_1 = R + iX_L = R + i\omega L$$

E para o trecho contendo o capacitor,

$$Z_1 = R - iX_C = R - \frac{i}{\omega C}$$

Deste modo, a impedância equivalente é dada por:

$$\frac{1}{Z_{eq}} = \frac{1}{Z_1} + \frac{1}{Z_2} = \frac{1}{R + i\omega L} + \frac{1}{R - \frac{i}{\omega C}}$$

Apó tirar o MMC e algumas manipulações obtemos:

$$\frac{1}{Z_{eq}} = \frac{2R + i\left(\omega L - \frac{1}{\omega C}\right)}{R^2 + iR\left(\omega L - \frac{1}{\omega C}\right) + \frac{L}{C}}$$

Mas se $\tau_C = \tau_L$ então RC = L/R, o que implica que $R^2 = L/C$. Logo, podemos substituir o termo L/C no denominador por R^2 , obtendo:

$$\frac{1}{Z_{eq}} = \frac{2R + i\left(\omega L - \frac{1}{\omega C}\right)}{2R^2 + iR\left(\omega L - \frac{1}{\omega C}\right)}$$

Veja que os termos no numerador e denominador diferem somente por um termo R sendo multiplicado, portanto as explicações se cancelam após colocarmos R em evidência no denominador. Como $R^2 = L/C$, obtemos então:

$$\boxed{\frac{1}{Z_{eq}} = \frac{1}{R} = \sqrt{\frac{C}{L}}}$$

10.7 Questão 7

Sendo i_1 a corrente que passa pelo capacitor e pelo indutor L_1 e i_2 a corrente que passa pelo indutor L_2 , a queda de tensão nos resistores L_1 e L_2 é dada por (Conferir equação 9.5.19, da seção 9.5, pg 179),

$$V_{1} = L_{1} \frac{di_{1}}{dt} + L_{12} \frac{di_{2}}{dt}$$
$$V_{2} = L_{2} \frac{di_{2}}{dt} + L_{12} \frac{di_{1}}{dt}$$

respectivamente. Mas pela lei de Kirchoff para malhas devemos ter, para a malha na qual está contido o resistor L_2 :

$$L_2 \frac{di_2}{dt} + L_{12} \frac{di_1}{dt} = 0 \implies \frac{di_2}{dt} = -\frac{L_{12}}{L_2} \frac{di_1}{dt}$$

Já para a malha contendo o capactitor e o indutor, devemos ter:

$$\frac{q_1}{C} + L_2 \frac{di_2}{dt} + L_{12} \frac{di_1}{dt} = 0$$

Substituindo o termo di_2/dt em termos de di_1/dt :

$$\frac{q_1}{C} + L_1 \frac{di_1}{dt} - \frac{L_{12}^2}{L_2} \frac{di_1}{dt} - = 0$$

Mas $di_1/dt = \ddot{q}_1$, portanto a equação anterior fica:

$$\ddot{q}_1 + \frac{L_2}{(L_1 L_2 - L_{12}^2)C} q_1 = 0$$

A frequência angular de oscilação vale, portanto:

$$\omega = \sqrt{\frac{L_2}{(L_1 L_2 - L_{12}^2)C}}$$

10.8 Questão 8

A impedância do capacitor é dada por:

$$Z_1 = -iX_c = -\frac{i}{\omega C}$$

E para o indutor e resistor:

$$Z_2 = R + iX_L = R + i\omega L$$

A impedância equivalente do circuito vale, então:

$$Z_{eq} = \frac{Z_1 Z_2}{Z_1 + Z_2} = -\frac{i}{\omega C} \left[\frac{R + i\omega L}{R + i(\omega L - \frac{1}{\omega C})} \right] = -\left[\frac{Ri - \omega L}{\omega RC - i(\omega^2 LC + 1)} \right]$$

Multiplicando o numerador e o denomiador pelo complexo conjugado da expressão $R\omega C + i(\omega^2 LC + 1)$ no denominador obtemos:

$$Z_{eq} = -\left[\frac{(Ri - \omega L)(\omega RC - i(\omega^2 LC - 1))}{K}\right]$$

Onde K um número real, resultante da multiplicação do denominador pelo seu conjugado. Deste modo, para encontrar o valor de ω para o qual a reatância se anula, basta encontrar ω que deixa a parte imaginária na expressão no numerador nula. Obtemos, após realizar a distributiva:

$$(Ri - \omega L)(\omega RC - i(\omega^2 LC - 1)) = R + i\omega(\omega^2 L^2 C - L + R^2 C)$$

Igualando a parte imaginária a zero, temos:

$$\omega^2 L^2 C - L + R^2 C = 0$$

Cuja solução é:

$$\omega = \sqrt{\frac{1}{LC} - \frac{R^2}{L^2}}$$

10.9 Questão 9

10.10 Questão 10

10.11 Questão 11

10.12 | Questão 12

a) Podemos escrever o versor normal a espira como:

$$\hat{\boldsymbol{n}} = \hat{\boldsymbol{r}} = \cos\theta \hat{\boldsymbol{x}} + \sin\theta \hat{\boldsymbol{y}} = \cos(\omega t) \hat{\boldsymbol{x}} + \sin(\omega t) \hat{\boldsymbol{y}}$$

Onde θ representa o ângulo percorrido pelo vetor ao longo do plano xy. Como $\mathbf{B} = B\hat{\mathbf{x}}$ e $\mathbf{S} = S\hat{\boldsymbol{n}}$ fluxo sob a espira é dado por:

$$\Phi = \mathbf{B} \cdot \mathbf{S} = BS(\mathbf{x} \cdot \mathbf{n}) = BS\cos(\omega t)$$

E pela Lei de Lenz, a f.e.m. induzida é:

$$\mathcal{E} = -\frac{d\Phi}{dt} = \omega BS \sin(\omega t)$$

A impedância da espira é dada por $Z=R+iX_L=R+i\omega L,$ deste modo, seu módulo vale:

$$|Z| = \sqrt{R^2 + (\omega L)^2}$$

E a fase correspondente é:

$$\varphi = \tan^{-1} \left(\frac{\omega L}{R} \right)$$

Como na forma polar temos que $Z = |Z|e^{i\varphi}$, a corrente correspondente é:

$$I = \frac{\mathcal{E}}{Z} = \frac{\omega BS \sin(\omega t - \varphi)}{\sqrt{R^2 + (\omega L)^2}}$$

b) Como $\mathbf{m} = I\mathbf{S} = IS\hat{\mathbf{n}}$, ficamos com:

$$m = IS = IS[\cos(\omega t)\hat{x} + \sin(\omega t)\hat{y}]$$

c) O torque sob a espira é dado por:

$$au = m{m} imes m{B}$$

Portanto basta calcular o produto vetorial:

$$m{m} imes m{B} = egin{array}{cccc} \hat{m{x}} & \hat{m{y}} & \hat{m{z}} \\ IS\cos{(\omega t)} & IS\sin{(\omega t)} & 0 \\ B & 0 & 0 \\ \end{array} = BIS\sin{(\omega t)}\hat{m{z}}$$

Portanto:

$$oldsymbol{ au} = BIS\sin{(\omega t)}\hat{oldsymbol{z}}$$

10.13 Questão 13

11 Capítulo 11

11.1 Questão 1

11.2 Questão 2

11.3 Questão 3

a) Pela equação 11.8.8 da seção 11.8, pág. 254, temos que a densidade de energia magnética vale:

$$\mu_M = \frac{\boldsymbol{B}^2}{2\mu}$$

Pois $\boldsymbol{H}=\boldsymbol{B}/\mu$. Como o volume compreendido pelo toróide é V=lS, a energia armazenada no anel de Rowland é:

$$U_M = \mu_M V = \frac{\boldsymbol{B}^2}{2\mu} lS$$

Podemos agora escrever o campo magnético em termos do fluxo, pois:

$$\Phi = \frac{B}{S}$$

Assim, a energia fica,

$$U_M = \frac{1}{2} \left(\frac{l}{\mu S} \right) \Phi^2$$

Mas a relutância magnética é dada por:

$$\mathcal{R} = \frac{l}{\mu S}$$

Assim, a expressão para a energia se torna:

$$U = \frac{\mathcal{R}\Phi^2}{2}$$

b) A auto-indutância é:

$$L = \frac{\Phi}{i}$$

E temos,

$$\Phi = NBS$$

e,

$$Bl = \mu Ni \implies i = \frac{Bl}{N\mu}$$

Substituindo na expressão para L:

$$L = NBS\left(\frac{N\mu}{Bl}\right)$$

Como $\mathcal{R} = l/\mu S$, a expressão para a auto-indutância fica:

$$\boxed{L = \frac{N^2}{\mathcal{R}}}$$

11.4 Questão 4

A relutância da porção de ferro é dada por:

$$\mathcal{R} = \frac{l}{\mu S}$$

Onde l representa o comprimento do toróide, μ a permeabilidade no seu interior e S a área da seção transversal. Já para o entreferro:

$$\mathcal{R}_0 = \frac{l_0}{\mu_0 S}$$

Sendo l_0 o comprimento do entreferro. Deste modo, a força magnetomotriz $\mathcal{M}=Ni$ é dada por:

$$Ni = \mathcal{R} + \mathcal{R}_0 = \left(\frac{l}{\mu S} + \frac{l_0}{\mu_0 S}\right) \Phi$$

Resolvendo para a permeabilidade relativa, dada por $\mu_R = \mu/\mu_0$:

$$\mu_R = \frac{Bl}{\mu_0 Ni - Bl_0}$$

Como $l=2\pi r$, obtemos, ao utilizar os valores do enunciado:

$$\mu_R = \frac{1 \times 2\pi \times 5 \times 10^{-2}}{4\pi \times 10^3 \times 1 - 1 \times 10^{-3}} \approx 1.22 \times 10^3$$

11.5 Questão 5

a) A relutância da porção de ferro é dada por:

$$\mathcal{R} = \frac{l}{\mu S}$$

De acordo com o resultado do exercício 3, a energia armazenada é $U = \mathcal{R}\Phi^2/2$, portanto:

$$U = \frac{1}{2} \left(\frac{l}{\mu S} \right) B^2 S^2 = \frac{B^2 l S}{2\mu}$$

Como $\mu = \mu_R \mu_0 = 1220 \mu_0$, botemos:

$$U = \frac{1^2 \times (2\pi \times 5 \times 10^{-2}) \times 10^{-4}}{2 \times 1220 \times 4\pi \times 10^{-7}} = 0.01J$$

b) Adotando o mesmo procedimento do item anterior, obtemos:

$$U = \frac{1^2 \times 10^{-3} \times 10^{-4}}{2 \times 4\pi \times 10^{-7}} = 0.04J$$

c) Novamente pelo resultado do problema 3, temos que $L=N^2/\mathcal{R}_{eq}$. A relutância equivalente do sistema corresponde a relutância do entreferro mais a relutância do anel de ferro:

$$\mathcal{R}_{eq} = \frac{l_0}{\mu_0 S} + \frac{l}{\mu_R \mu S} = \frac{1}{S\mu_0} \left(l_0 + \frac{l}{\mu_R} \right)$$

Substituindo na expressão para a indutância:

$$L = \frac{\mu_0 S N^2}{\left(l_0 + \frac{l}{\mu_R}\right)}$$

Obtemos, ao utilizar os valores numéricos:

$$L = \frac{4\pi \times 10^{-7} \times 10^{-4} \times (1000)^2}{\left(10^{-3} + \frac{2\pi \times 5 \times 10^{-2}}{1220}\right)} = 0.1H$$

11.6 Questão 6

Podemos imaginar o circuito magnético da seguinte maneira:

Com a relutância \mathcal{R}_1 dada por:

$$\mathcal{R}_1 = \frac{l_1}{\mu S} = \frac{b}{\mu S}$$

E com,

$$\mathcal{R}_2 = \frac{l_2}{\mu S} = \frac{2a+b}{\mu S}$$

Se escolhermos uma malha do circuito, devemos ter que:

$$\oint m{H} \cdot m{dl} = \mathcal{M} = \mathcal{M}_1 + \mathcal{M}_2$$

Onde \mathcal{M}_1 e \mathcal{M}_2 representa a força magnetomotriz no braço externo e no braço central, respectivamente. Além disso, se o fluxo no braço central é Φ_1 , então devemos ter:

$$\Phi_1 = \Phi_2 + \Phi_2 \implies \Phi_2 = \frac{\Phi_1}{2}$$

Por fim, lembre-se que podemos escrever a força magnetomotriz como $\mathcal{M} = \mathcal{R}\Phi = \mathcal{R}BS$, assim, temos que:

$$\mathcal{M} = \mathcal{R}_1 Phi_1 + \mathcal{M}_2 \Phi_2 = B_1 \left(\frac{b}{\mu} + \frac{b+2a}{2\mu} \right)$$

Resolvendo para B_1 obtemos:

$$B_1 = \frac{2\mu Ni}{2a + 3b}$$

e por conseguinte,

$$B_2 = \frac{\mu Ni}{2a + 3b}$$

11.7 Questão 7

O campo H é, por definição:

$$oldsymbol{H} = rac{oldsymbol{B}}{\mu_0} - oldsymbol{M}$$

Como $\nabla \cdot \boldsymbol{B} = 0$, temos:

$$abla \cdot oldsymbol{H} = -oldsymbol{
abla} \cdot oldsymbol{M}$$

Se $\mathbf{H} = -\nabla \xi$, então a expressão acima fica:

$$\nabla \cdot \nabla \xi = \Delta \xi = \nabla \cdot M$$

A densidade volumétrica de carga de polarização se relaciona com o vetor de polarização dielétrica através de:

$$\rho_P = -\boldsymbol{\nabla} \cdot \boldsymbol{P}$$

Portanto, pela analogia entre P e M, temos que:

$$\Delta \xi = \nabla \cdot \boldsymbol{M} = -\rho_m$$

11.8 Questão 8

Se considerarmos que a magnetização tem a forma:

$$M = M\hat{z}$$

E que o versor normal à superfície do cilindro é $\hat{\boldsymbol{n}} = \hat{\boldsymbol{r}}$, temos, pela relação $\boldsymbol{J}_m = \boldsymbol{M} \times \hat{\boldsymbol{n}}$ entre densidade de corrente e magnetização, que \boldsymbol{J}_M tem direção $\hat{\boldsymbol{\varphi}}$, pois $\hat{\boldsymbol{z}} \times \hat{\boldsymbol{r}} = \hat{\boldsymbol{\varphi}}$. Ou seja, a densidade de corrente é tangencial à superfície do cilindro, e assume a forma de espiras circulares ao longo de sua superfície. Assim, temos que:

$$dm = (di)S = J_M \overbrace{Sdz}^{dV} \implies di = Mdz$$

Onde dm representa o momento de dipolo magnético de uma espira de corrente di.

Foi visto no capítulo 8 que o campo magnético em um ponto no eixo de uma espira, a uma distância z do centro seu centro, sendo a o raio da espira e di a corrente pela qual ela é percorrida, é:

$$\boldsymbol{B}_0 = B_0 \hat{\boldsymbol{z}} = \frac{\mu_0 a^2 di}{2(a^2 + z^2)^{\frac{3}{2}}} \hat{\boldsymbol{z}}$$

Assim, o campo total correponde a soma da contribuição de cada espira:

$$\mathbf{B} = \int B_0 = \int \frac{\mu_0 a^2}{2(a^2 + z^2)^{\frac{3}{2}}} \underbrace{di\hat{\mathbf{z}}}_{\mathbf{M}z\hat{\mathbf{z}}} = \int \frac{\mu_0 a^2}{2(a^2 + z^2)^{\frac{3}{2}}} \mathbf{M} dz$$

Integrando em relação a z, a fim de obter a contribuição total do campo magnético, obtemos:

$$oldsymbol{B} = rac{\mu_0}{2} \left(rac{z}{\sqrt{a^2 + z^2}}
ight) oldsymbol{M}$$

Se $z \gg a$, podemos reescrever a expressão anterior e utilizar a aproximação $(1+x)^n \approx 1+nx$, obtendo:

$$B = \frac{\mu_0}{2} \left(1 + \frac{a^2}{z^2} \right)^{-\frac{1}{2}} \boldsymbol{M} \approx \frac{\mu_0}{2} (1 - \frac{a^2}{2z^2}) \boldsymbol{M}$$

Assim, se z=L/2, que é a posição correspondente ao centro do cilindro, temos que:

$$B = \mu_0 i (1 - \frac{2a^2}{z^2}) M$$

E se z=L, que corresponde ao norte do cilindro, temos:

$$\mathbf{B} = \frac{\mu_0 i}{2} (1 - \frac{a^2}{2z^2}) \mathbf{M}$$

12 Capítulo 12

12.1 Questão 1

12.2 Questão 2

a) Pelo resultado do exemplo da seção 8.1, temos que:

$$\boldsymbol{B} = \frac{mu_0 i}{2\pi} \frac{1}{a} \hat{\boldsymbol{\varphi}}$$

Mas como $i = j\pi a^2$:

$$oldsymbol{B} = rac{\mu_0 j a}{2} \hat{oldsymbol{arphi}}$$

b) Como $\boldsymbol{E} = \frac{1}{\sigma} \boldsymbol{j} = \frac{j}{\sigma} \hat{\boldsymbol{z}}$ e,

$$oldsymbol{S} = rac{1}{\mu_0} oldsymbol{E} imes oldsymbol{B}$$

Temos,

$$oldsymbol{S} = -rac{j^2}{2\sigma}aoldsymbol{\hat{
ho}}$$

c) A potência dissipada pelo efeito Joule é:

$$P = Vi = Ri^{2} = \frac{l}{\sigma S}(jS)^{2} = \frac{j^{2}\pi a^{2}l}{\sigma}$$

Onde usamos a segunda lei de Ohm para calcular a resistência de um trecho de comprimento l do fio. Agora, como o vetor de Poyinting atravessa a área,

$$\mathbf{A} = 2\pi a l \hat{\boldsymbol{\rho}}$$

que corresponde a área compreendida pela superfície de um trecho de comprimento l do fio, o fluxo resultante é:

$$\boldsymbol{S} \cdot \boldsymbol{A} = -\left(\frac{j^2}{2\sigma}a\right)(2\pi a l) = \frac{j^2\pi a^2 l}{\sigma}$$

Ou seja, o fluxo do vetor de Poynting através da superfície e a potência dissipada pelo efeito Joule são iguais.

12.3 Questão 3

Podemos relacionar a potência da lâmpada com o vetor de Poynting, que por sua vez está relacionaod à intensidade do campo elétrico e do campo magnético. Para a onda plana, que tem densidade de energia elétrica e magnética iguais, vale a relação:

$$S = cU = c(2U_E) = c(2U_M)$$

Mas o vetor de Poynting também é igual à potência irradiada por área, ou seja, vale que:

$$S = \frac{P}{A}$$

No caso do campo elétrico, sabemos que densidade de energia vale:

$$U_E = \frac{\varepsilon_0}{2} E^2$$

Relacionando com o vetor de Poynting, temos:

$$U_E = \frac{S}{2c} \implies E = \sqrt{\frac{P}{Ac} \left(\frac{1}{\varepsilon_0}\right)}$$

Substituindo pelos valores numéricos, temos:

$$E = \sqrt{\frac{100}{4\pi \times 1^2 \times 3 \times 10^8} \times 4\pi \times 9 \times 10^9} \approx 54.7V/m$$

Também podemos fazer o mesmo para o campo magnético, pois sabemos que:

$$U_M = \frac{B^2}{2\mu_0}$$

O que nos leva a:

$$B = \sqrt{\frac{P\mu_0}{Ac}}$$

Que resulta em,

$$B = \sqrt{\frac{100}{4\pi \times 1^2 \times 3 \times 10^8} \times 4\pi \times 10^{-7}} \approx 1.83 \times 10^{-7} T$$

12.4 Questão 4

a) Para resolver esta questão, podemos utilizar a equação 12.5.18 da seção 12.5, que relaciona a intensidade da onda com sua amplitude:

$$I = \frac{1}{2}c\varepsilon_0 E_{max}^2$$

O que nos leva a:

$$E_{max} = \sqrt{\frac{2I}{c\varepsilon_0}}$$

A intensidade da radiação vale, no SI:

$$I = \frac{2cal}{cm^2min} = \frac{1393J}{m^2s}$$

Assim, substituindo pelos valores numéricos na expressão para E_{max} obtemos,

$$E_{max} = \sqrt{\frac{2 \times 1393}{3 \times 10^8} \times 3 \times 10^9} \approx 1.02 \times 10^3 V/m$$

Agora, para o campo magnético, temos que (Verifique a 12.5.14):

$$B_{max} = \frac{E_{max}}{c}$$

Portanto:

$$B_{max} = \frac{1.02 \times 10^3}{3 \times 10^8} = 3.4 \times 10^{-6} T$$

b) Como a energia deve ser conservada, devemos ter que:

$$I_0(4\pi R^2) = I(4\pi L^2)$$

Onde I_0 e R representam a intensidade da radiação na superfície do Sol e seu raio, respectivamente, e I, a intensidade da radiação que atinge a Terra e L a distância Terra-Sol. Substituindo pelos dados do enunciado o valor obtido para I_0 é:

$$I_0 = \left(\frac{L}{R}\right)^2 I = \left(\frac{1.5 \times 10^{11}}{6.9 \times 10^8}\right)^2 \times 1393 \approx 6.58 \times 10^7 \frac{W}{m}$$

12.5 Questão 5