Clustered Categorical Data

Jinhwan Suk

Department of Mathematical Science, KAIST

September 15, 2020

Longitudinal Study of Mental Depression

- Repeated measurements provides a *multivariate response* $(\mathbf{Y}_1, \mathbf{Y}_2, ..., \mathbf{Y}_T)$
- ullet Consider marginal models for the $\{Y_t\}=$ mean of $\{Y_{it}\}$

Longitudinal Study of Mental Depression

TABLE 11.2 Cross-Classification of Responses on Depression at Three Times by Diagnosis and Treatment

Diagnosis		Response at Three Times ^a							
	Treatment	NNN	NNA	NAN	NAA	ANN	ANA	AAN	AAA
Mild	Standard	16	13	9	3	14	4	15	6
	New drug	31	0	6	0	22	2	9	0
Severe	Standard	2	2	8	9	9	15	27	28
	New drug	7	2	5	2	31	5	32	6

^aN, normal; A, abnormal.

Source: Reprinted with permission from the Biometric Society (Koch et al. 1977).

TABLE 11.3 Sample Marginal Proportions of Normal Response for Depression Data of Table 11.2

		S	Sample Proportion	n
Diagnosis	Treatment	Week 1	Week 2	Week 4
Mild	Standard	0.51	0.59	0.68
	New drug	0.53	0.79	0.97
Severe	Standard	0.21	0.28	0.46
	New drug	0.18	0.50	0.83

Longitudinal Study of Mental Depression

The marginal logistic model

$$logit P(Y_t = 1) = \alpha + \beta_1 s + \beta_2 d + \beta_3 t$$

(time effect is the same for each group)

- df = 12 4 = 8, $G^2 = 34.6$
- A more realistic model permits the time effect to differ by drug,

$$logitP(Y_t = 1) = \alpha + \beta_1 s + \beta_2 d + \beta_3 t + \beta_4 (d \times t)$$

- df = 12 5 = 7, $G^2 = 4.2$
- When modeling multinomial response??

Modeling a Repeated Multinomial Response

• At observation t, the marginal response distribution has l-1 logits.

$$logit_j(t) = \alpha_j + \beta_j^T x_t$$

• For a nominal response, we can use a baseline-category logit,

$$logit_j(t) = log \frac{P(Y_t = j)}{P(Y_t = I)}$$

For ordinal responses, we can use the cumulative logit,

$$logit_{j}(t) = logit [P(Y_{t} \leq j)]$$

Modeling a Repeated Multinomial Response

TABLE 11.4 Time to Falling Asleep, by Treatment and Occasion

	Time to Falling Asleep							
		Follow-up						
Treatment	Initial	< 20	20-30	30-60	> 60			
Active	< 20	7	4	1	0			
	20-30	11	5	2	2			
	30-60	13	23	3	1			
	> 60	9	17	13	8			
Placebo	< 20	7	4	2	1			
	20-30	14	5	1	0			
	30-60	6	9	18	2			
	> 60	4	11	14	22			

Source: From S. F. Francom, C.Chuang-Stein, and J. R. Landis, Statist. Med. 8: 571–582 (1989). Reprinted with permission from John Wiley & Sons Ltd.

TABLE 11.5 Sample Marginal Distributions of Table 11.4

		Response					
Treatment	Occasion	< 20	20-30	30-60	> 60		
Active	Initial	0.101	0.168	0.336	0.395		
	Follow-up	0.336	0.412	0.160	0.092		
Placebo	Initial	0.117	0.167	0.292	0.425		
	Follow-up	0.258	0.242	0.292	0.208		

Modeling a Repeated Multinomial Response

• The cumulative logit model,

$$\mathsf{logit}\left[P(Y_t \le j)\right] = \alpha_j + \beta_1 t + \beta_2 x + \beta_3 (t \times x)$$

- $df = 4 \cdot 3 3 1 1 1 = 6$
- The ML estimates are $\hat{\beta}_1 = 1.074$, $\hat{\beta}_2 = 0.046$, and $\hat{\beta}_3 = 0.662$.
- ullet At the initial observation, estimated odds is $\exp(0.046)=1.04$
- At the follow-up observation, the effect is exp(0.046 + 0.662) = 2.03

ML fitting of Marginal Logistic Models: Constraints on Cell Probabilities

- For T observations on an I-category response, at each setting of predictions the likelihood refers to I^T multinomial joint probabilities.
- π : I^T -multinomial distribution parameter.
- Marginal logistic models have the form

$$\underbrace{\mathbf{C}\log(A\pi)}_{\mathsf{logit}} = \mathbf{X}\boldsymbol{\beta}$$

$$\begin{bmatrix} 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & -1 \end{bmatrix} \log \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix} \begin{vmatrix} \pi_{11} \\ \pi_{12} \\ \pi_{21} \\ \pi_{22} \\ \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \alpha,$$

Marginal Modeling : GEEs Approach

Basic Idea

- For ML fitting, # of parameters increases dramatically as T increases.
- An alternative to ML fitting uses a multivariate generalization of quasi-likelihood
- Recall (univariate) quasi-likelihood method

$$\sum_{i=1}^{N} \frac{(y_i - \mu_i) x_{ij}}{\nu(\mu_i)} \left(\frac{\partial \mu_i}{\partial \eta_i} \right) = 0$$

- ullet GEEs(1986) also requires the correlation structure among $\{Y_t\}$
 - exchangeable : $corr(Y_s, Y_t)$ identical for all s and t.
 - autoregressive : $corr(Y_s, Y_t) = \alpha^{|t-s|}$
 - independence, unstructured, ...
 - Misspecified covariance doesn't affect consistency of GEE

The Univariate Quasi-likelihood Method

- For link function g, $\eta_i = g(\mu_i)$
- ullet QL estimates \hat{eta} are solutions of

$$\mathbf{u}(\boldsymbol{\beta}) = \sum_{i=1}^{N} \left(\frac{\partial \mu_i}{\partial \boldsymbol{\beta}} \right)^T \nu(\mu_i)^{-1} (y_i - \mu_i) = \mathbf{0}$$

where
$$\mu_i = g^{-1}(\mathbf{x_i}^T \boldsymbol{\beta})$$

• $\mathbf{E}\left[\mathbf{u}(\boldsymbol{\beta})\right] = 0$

Properties of Quasi-likelihood Estimators

- QL estimators have properties similar to ML estimators.
- QL estimators are **asymptotically efficient** among estimators that are locally linear in $\{y_i\}$
- ullet The QL estimators \hat{eta} are **asymptotically normal** with covariance matrix approximate by

$$\mathbf{V} = \left[\sum_{i=1}^{N} \left(\frac{\partial \mu_i}{\partial \boldsymbol{\beta}} \right)^T \nu(\mu_i)^{-1} \left(\frac{\partial \mu_i}{\partial \boldsymbol{\beta}} \right) \right]^{-1}$$

ullet \hat{eta} is **consistent** for eta even if the variance function is misspecified.

Sandwich Covariance Adjustment for Variance Misspecification

• If we assume that $Var(Y_i) = \nu(\mu_i)$ but the true $Var(Y_i) \neq \nu(\mu_i)$, then the asymptotic covariance of $\hat{\beta}_{QL}$ is

$$\boldsymbol{V}\left[\sum_{i=1}^{n} \left(\frac{\partial \mu_{i}}{\partial \boldsymbol{\beta}}\right)^{T} \left[\nu(\mu_{i})\right]^{-1} Var(Y_{i}) \left[\nu(\mu_{i})\right]^{-1} \left(\frac{\partial \mu_{i}}{\partial \boldsymbol{\beta}}\right)\right] \boldsymbol{V}$$
 (1)

ullet A consistent estimator of (1) : $\mu_i o \hat{\mu_i}$ and $Var(Y_i) o (y_i - \hat{\mu}_i)^2$

GEE Multivariate Methodology: Technical Details

- Let $y_i = (y_{i1}, ..., y_{iT_i})^T$ and $\mu_i = (\mu_{i1}, ..., \mu_{iT_i})^T$, $\mathbf{E}Y = \mu$
- GLM model : $\eta_{it} = g(\mu_{it}) = \mathbf{x}_{it}^T \boldsymbol{\beta}$
- Assume that y_{it} has probability mass function of form

$$f(y_{it}; \theta_{it}, \phi) = \exp\{[y_{it}\theta_{it} - b(\theta_{it})]/\phi + c(y_{it}, \phi)\}$$

From Section 4.4.2,

$$\mu_{it} = b'(\theta_{it}), \quad \nu(\mu_{it}) = b''(\theta_{it})\phi$$

• Assume a working correlation matrix $R(\alpha)$ for Y_i . Then covariance matrix is

$$V_i = B_i^{1/2} R(\alpha) B_i^{1/2} \phi$$

where $\mathbf{\textit{B}}_{\textit{i}} = \text{diag}(\mathbf{\textit{b}}''(\theta))$

GEE Multivariate Methodology: Technical Details

- Assume a working correlation matrix $R(\alpha)$ for Y_i .
- Then the working covariance matrix is

$$V_i = B_i^{1/2} R(\alpha) B_i^{1/2} \phi$$

where $\boldsymbol{B}_i = \operatorname{diag}(\boldsymbol{b}_i''(\theta))$

- $\Delta_i = \operatorname{diag}(\partial \theta_{it}/\partial \eta_{it})$
- $D_i = \partial \mu_i / \partial \beta = B_i \Delta_i X_i$
- Generalized estimating equations :

$$\sum_{i=1}^{n} \boldsymbol{D}_{i}^{T} \boldsymbol{V}_{i}^{-1} [\mathbf{y}_{i} - \boldsymbol{\mu}_{i}(\boldsymbol{\beta})] = \mathbf{0}$$

