Тема №2. Сигналы цифрового ТВ

- 1. Определить свой номер варианта Nvar в соответствии с номером в списке группы Ngr. Если $1 \le Ngr \le 15$, то Nvar = Ngr. Если $16 \le Ngr \le 30$, то Nvar = Ngr -15. Если $31 \le Ngr \le 45$, то Nvar = Ngr -30.
- 2. Рассчитать значения яркостного сигнала E_Y и цветоразностных сигналов E_{R-Y} , E_{B-Y} для 5 полос, заданных в соответствующей варианту строке табл.2.1 (идентично практическому заданию 1). Значения сигналов основных цветов даны в табл.2.2. Результаты записать в табл.2.3 (см. ниже).

Таблица 2.1

Bap.	1	2	3	4	5
1	пурпурная	черная	красная	голубая	синяя
2	синяя	белая	пурпурная	желтая	зеленая
3	голубая	красная	желтая	зеленая	черная
4	синяя	черная	желтая	красная	пурпурная
5	зеленая	синяя	белая	красная	голубая
6	красная	желтая	голубая	черная	пурпурная
7	зеленая	красная	желтая	пурпурная	белая
8	желтая	синяя	белая	красная	голубая
9	синяя	пурпурная	черная	желтая	белая
10	красная	зеленая	белая	голубая	синяя
11	пурпурная	желтая	синяя	белая	красная
12	голубая	черная	зеленая	красная	желтая
13	зеленая	желтая	пурпурная	синяя	черная
14	желтая	красная	голубая	черная	белая
15	синяя	зеленая	белая	голубая	пурпурная

Таблица 2.2

No	E'_R	E'_R	E'_R	Цвет
1	0	0	0	черный
2	0	0	1	синий
3	1	0	0	красный
4	1	0	1	пурпурный
5	0	1	0	зеленый
6	0	1	1	голубой
7	1	1	0	желтый
8	1	1	1	белый

3. Для каждого цвета по своему варианту рассчитать значения цифрового яркостного сигнала Y и цифровых цветоразностных сигналов *CR* и *CB*. Результаты расчета записать в табл.2.3 в десятичной, двоичной и шестнадцатеричной формах. Расчет выполнять для случая 10-разрядного представления цифровых

сигналов. Расчетные формулы в соответствии с Рекомендацией 601 имеют вид.

$$Y = \text{Round}((219 E'_Y + 16) \cdot 2^{b-8}),$$

 $CR = \text{Round}((224E'_{CR} + 128) \cdot 2^{b-8}),$ (2.1)
 $CB = \text{Round}((224E'_{CB} + 128) \cdot 2^{b-8}),$

где Round(x) - операция округления до ближайшего целого, b = 10 — число двоичных разрядов квантования. Цветоразностные сигналы дополнительно ренормализуются, чтобы обеспечить одинаковый с сигналом яркости размах:

$$E'_{CR} = 0.713 \cdot E'_{R-Y}, \qquad E'_{CB} = 0.564 \cdot E'_{B-Y}.$$
 (2.2)

Таблица 2.3

	E_Y	E_{R-Y}	E_{B-Y}	Y	CR	CB	Y	CR	СВ	Y	CR	CB
	В	В	В	DEC	DEC	DEC	BIN	BIN	BIN	HEX	HEX	HEX
Цвет 1												
Цвет 2												
Цвет 3												
Цвет 4												
Цвет 5												

- 4. Изобразить временные диаграммы передачи четырех 10-разрядных двоичных слов сигналов, соответствующих первому цвету по варианту, по параллельному и последовательному интерфейсам. Порядок передачи C_B , Y, C_R , Y. Для параллельного интерфейса код биполярный БВН (NRZ), передача по положительному фронту тактового импульса. Для последовательного интерфейса код однополярных БВН с инверсией (NRZI), при этом уровень сигнала изменяется при передаче "1". Передача каждого слова начинается с младшего бита.
- 5. Записать в двоичной и шестнадцатеричной формах четвертые слова синхросигналов НАС и КАС в соответствии с Рекомендацией 656 для строки по своему варианту (табл.4). Слова должны быть 10-разрядные. Поэтому к байтам, получаемым по правилам, приведенным в табл.2.5 и табл.2.6, необходимо справа приписать два нуля.

Таблица 2.4

Bap.	Строка	Bap.	Строка	Bap.	Строка
1	2	6	385	11	624
2	25	7	500	12	8
3	172	8	326	13	300
4	18	9	600	14	616
5	250	10	315	15	14

5. Рассчитать скорость цифрового потока (битрейт) при передаче видеоинформации для варианта, приведенного в табл.2.7. Для этого надо рассчитать объем информации, содержащейся в цифровых сигналах Y, C_R , C_B в одном кад-

ре, и поделить этот объем на период кадров. При расчетах полагать $1~{\rm Mбит}=10^6~{\rm бит},\,1~{\rm \Gammaбит}=10^9~{\rm бит}.$

Таблица 2.5

Номер	Обозна-	Выполняемая функция
разряда	чение	
0	-	Нулевой бит
1	-	Нулевой бит
2	P0	проверочный бит
3	P1	проверочный бит
4	P2	проверочный бит
5	P3	проверочный бит
6	Н	Н=0 для НАС, Н=1 для КАС
7	V	V=1 во время полевого интервала гашения в строках с 624 по 23 и с
		311 по 336, V=0 вне этого интервала
8	F	F=0 во время передачи первого поля, начиная со строки 1, F=1 во
		время передачи второго поля со строки 313.
9	D7	постоянное значение 1

Таблица 2.6

D7	F	V	Н	P3	P2	P1	P0
1	0	0	0	0	0	0	0
1	0	0	1	1	1	0	1
1	0	1	0	1	0	1	1
1	0	1	1	0	1	1	0
1	1	0	0	0	1	1	1
1	1	0	1	1	0	1	0
1	1	1	0	1	1	0	0
1	1	1	1	0	0	0	1

Таблица 2.7

Bap.	Рекоменд.	Формат	Частота	Разрядов	Bap.	Рекоменд.	Формат	Частота	Разрядов
		дискр.	кадров	квантов.			дискр.	кадров	квантов.
			Гц					Гц	
1	601	4:4:4	25	10	9	2020 4K	4:2:0	25	10
2	709	4:2:2	25	10	10	2020 4K	4:4:4	50	12
3	601	4:2:2	25	10	11	2020 4K	4:2:2	50	12
4	709	4:2:0	25	10	12	2020 4K	4:2:0	50	12
5	601	4:2:0	25	10	13	709	4:2:2	50	10
6	709	4:4:4	25	10	14	709	4:2:0	50	10
7	2020 4K	4:4:4	25	10	15	709	4:4:4	50	10
8	2020 4K	4:2:2	25	10					