Assignment

1. Consider the logistic map:

$$x_{n+1} = r x_n (1-x_n) = f(x)$$

- a) Obtain fixed points for period two. For this get $f^2(x)$ but do not go through the tedious work of solving the quartic polynomial. Instead, factor out the fixed points of f(x) from $f^2(x)$. So, now all you need to do is solve this quadratic polynomial for solutions of period 2.
- b) Draw x_n vs n for period 2,4,8 & 16 where period doubling cycling occur at:

$r_1 = 3$	period 2 starts
r ₂ =3.449	4
r ₃ =3.54409	8
r ₄ =3.5644	16

Observe the initial transient and how the solution settles to the period doubling cycle.

- c) Find the range in which period 2 solution is stable. For this:
 - i. Find derivative of $f^2(x)$ and check:

$$|f^2(\mathbf{x})'| < 1$$

ii. Also, Check for stability as was taught in class by:

Where 'a' & 'b' are period two solutions.

Do you get the same range of r from (i.) and (ii.)

d) Draw the orbit diagram for logistic map i.e. x vs r. (computationally)

2. (Computational) Consider the Henon map:

$$x_{n+1} = 1 - a x_n^2 + y_n$$

 $y_{n+1} = b x_n$

- a. Plot x_n vs y_n for a=1.4 and b=0.3
- b. Draw orbit diagram for Henon map x vs a, at b=0.3. Is this similar to that of Logistic map? Expalin