CS5321 Network Security TCP Sequence Number Inference

Week 5 Paper Summary

Transmission Control Protocol (TCP)

Layer			Protocol data unit (PDU)	Function ^[26]
Host layers	7	Application	Data	High-level protocols such as for resource sharing or remote file access, e.g. HTTP.
	6	Presentation		Translation of data between a networking service and an application; including character encoding, data compression and encryption/decryption
	5	Session		Managing communication sessions, i.e., continuous exchange of information in the form of multiple back-and-forth transmissions between two nodes
	4	Transport	Segment, Datagram	Reliable transmission of data segments between points on a network, including segmentation, acknowledgement and multiplexing
Media layers	3	Network	Packet	Structuring and managing a multi-node network, including addressing, routing and traffic control
	2	Data link	Frame	Transmission of data frames between two nodes connected by a physical layer
	1	Physical	Bit, Symbol	Transmission and reception of raw bit streams over a physical medium

TCP Sequence numbers

Why:

TCP preserves order of the packets

What:

- Each packet can be acknowledged by its sequence number
- Sequence number increments by a number of bytes sent in a packet

TCP Sequence numbers

What is the issue with acknowledging every packet?

TCP Sliding Window

Why:

- TCP preserves order of the packets
- TCP tries to maximize network throughput

What:

 TCP Sliding Window protocol allows to have up to WINDOW_SIZE bytes in-flight (i.e. sent but not acknowledged by a receiver)

Nota bene:

There are two windows -- one for each direction of the connection

Communication with TCP Sliding Window in place

Paper: "Collaborative TCP Sequence Number Inference Attack"

Year: 2012

Authors: Zhiyun Qian, Z. Morley Mao, Yinglian Xie

Why is inferring TCP Sequence Numbers interesting?

- Injection of data of attacker's choice into TCP connection
- 2. TCP Reset attack

How?

Side channels!

Threat model

Requirements for the attacker:

- Malware on the client with Internet access
- Malware that can run in the background and read packet counters
- Malware that can read the list of active TCP connections and their four-tuples
- A predictable external port number if NAT is deployed

What can unprivileged malware obtain directly?

- Four-tuple of the connection: source/destination IP addresses and source/destination port numbers
- 2. Values of system-wide packet counters

Relevant logic of Linux's TCP/IP stack

If:

- → the packet contains no error (checksum matched content etc.)
- → the sequence number is out of window

Relevant logic of Linux's TCP/IP stack

If:

- → the packet contains no error (checksum matched content etc.)
- → the sequence number is out of window
- → packet contains non-zero payload
- → sequence number is less than the beginning of the window

 2^{32}

Relevant logic of Linux's TCP/IP stack

lf:

- → the packet contains no error (checksum matched content etc.)
- → the sequence number is **out of window**
- → packet contains non-zero payload
- → sequence number is less than the beginning of the window

Then:

→ System-wide counter **DelayedACKLost** is incremented

Nota bene: this counter is not noisy, i.e. only rarely increments naturally.

How to put incrementation of DelayedACKLost to use?

- Run binary search to find the expected sequence number,
 i.e. the beginning of the window => 32 packets
- Run N-way search => even less packets (tradeoff)

N-way search: how? Golomb ruler

Overall results

The range of the attacks possible due to sequence number inference:

- client-side TCP Injection,
- passive TCP hijacking
- active TCP hijacking,
- server-side TCP injection

At least some variations of the attack were possible:

- On MacOS/BSD
- On Linux

Is this paper still relevant?

- The attack is not relevant for connections with enabled SSL/TLS.
- 2. The fix hindering relevant side-channels from unprivileged programs was suggested by authors to be merged to Linux.

> Default protocol https is used by 81.5% of all the websites.