Grundlagen der Systemsoftware Modul: InfB-GSS

Veranstaltung: 64-091

Utz Pöhlmann 4poehlma@informatik.uni-hamburg.de 6663579

Louis Kobras 4kobras@informatik.uni-hamburg.de 6658699

Marius Widmann 4widmann@informatik.uni-hamburg.de 6714203

24. Mai 2016

Zettel Nr. 3 (Ausgabe: 09. Mai 2016, Abgabe: 25. Mai 2016)

Scaling aus dem Blockgraph-Package hat rumgesponnen. Deswegen scaled floating image, deswegen kleine Labels. Sorry:'((Zur Not reinzoomen, ist ja eine Vektorgrafik)

Scheduling-Algorithmen

Teilaufgabe a

Teilaufgabe b

Queue-Platz 4									P_5		P_2																										
Queue-Platz 3							P_4	P_1			P_5		P_2																								
Queue-Platz 2					P_2	P_3		P_4			P_1		P_5			P_2																					
Queue-Platz 1	P_1			P_1		P_2		P_3			P_4		P_1			P_{5}			P_2			P_5			P_2			P_5					P_{5}				
Prozess		P_1				P_1			P_2			P_3		P_4			P ₁			P_{5}			P_2			P_{5}			P_2		P_5					P_5	
ž.			2 3	-	 		,	8	9 1	0 1	1 1	2 1	1	4 1	5 1	6 1	7 18	- 13) 2) 2	1 2	2 2	3 2	4 2	5 2	s 2	7 2	8 2	9 3	0 :	31 3	2 3	3 3	4 3	5 3	3 37	38

Echtzeit & Mehrprozessor-Scheduling

Teilaufgabe a

Auftrag A1 benötigt alle 4 Ticks 1 Tick zum Rechnen.

Auftrag A2 benötigt alle 7 Ticks 3 Ticks zum Rechnen.

Auftrag A3 benötigt alle 3 Ticks 1 Tick zum Rechnen.

Bringt man dies alles auf einen Nenner:

Auftrag A1 benötigt alle 84 Ticks 21 Ticks zum Rechnen.

Auftrag A2 benötigt alle 84 Ticks 36 Ticks zum Rechnen.

Auftrag A3 benötigt alle 84 Ticks 28 Ticks zum Rechnen.

21 + 36 + 28 = 85

85 Ticks benötigte Zeit > 84 Ticks zur Verfügung stehende Zeit

Somit gibt es keinen "guten" Zeitplan.

Teilaufgabe b.ii

24. Mai 2016

Teilaufgabe c

Prioritätsinversion

${\bf Teilaufgabe\ a}$

Anmerkung: Die x-Achsenabschnitte sind in 10er-Schritten zu lesen.

24. Mai 2016 2