Unit No. 6

Trigonometry

Exercise No. 6.1

Question No. 1

Find in which quadrant the following angles lie. Write a co-terminal angle for each:

(i) 65°

Solution:

65°

Quadrant: 1st quadrant (0° to 90°)

Co-terminal = $65^{\circ} + 360^{\circ} = 425^{\circ}$

(ii) 135°

Solution:

135°

Quadrant: 2nd quadrant (90° to 180°)

Co-terminal = $135^{\circ} - 360^{\circ} = -225^{\circ}$

(iii) -40°

Solution:

-40°

Negative angle: Rotate clockwise from 0°

Standard angle = $-40^{\circ} + 360^{\circ} = 320^{\circ}$

Quadrant: 4th quadrant (270° to 360°)

Co-terminal angle: 320°

(iv) 210°

Solution:

210°

Quadrant: 3rd quadrant (180° to 270°)

Co-terminal = $210^{\circ} - 360^{\circ} = -150^{\circ}$

$(v) - 150^{\circ}$

Solution:

-150°

Standard angle: $-150^{\circ} + 360^{\circ} = 210^{\circ}$

Quadrant: 3rd quadrant (180° to 270°)

Co-terminal angle: 210°

Convert the following into degrees, minutes, and seconds:

(i) 123.456°

Solution:

123.456°

Degrees =
$$123^{\circ}$$

Decimal =
$$0.456 \times 60 = 27.36'$$

Minutes
$$= 27'$$

Seconds =
$$0.36 \times 60 = 21.6$$
"

(ii) 58.7891°

Solution:

58.7891°

Degrees =
$$58^{\circ}$$

Decimal =
$$0.7891 \times 60 = 47.346'$$

Minutes =
$$47'$$

Seconds =
$$0.346 \times 60 = 20.76''$$

(iii) 90.5678°

Solution:

Degrees =
$$90^{\circ}$$

Decimal =
$$0.5678 \times 60 = 34.068'$$

Minutes
$$= 34'$$

Seconds =
$$0.068 \times 60 = 4.08"$$

Question No. 3

Convert the following into decimal degrees:

Decimal Degrees=
$$D + \frac{M}{60} + \frac{S}{3600}$$

$$=65+\frac{32}{60}+\frac{15}{3600}$$

$$= 65 + 0.5333 + 0.0042$$

= 65.5375°

(ii) 42° 18′ 45″

Solution:

Decimal Degrees=
$$D + \frac{M}{60} + \frac{S}{3600}$$

 $42^{\circ} 18' 45''$
 $= 42 + \frac{18}{60} + \frac{45}{3600}$
 $= 42 + 0.3 + 0.0125$
 $= 42.3125^{\circ}$

(iii) 78° 45′ 36″

Solution:

Decimal Degrees=
$$D + \frac{M}{60} + \frac{S}{3600}$$

 $78^{\circ} 45' 36''$
 $= 78 + \frac{45}{60} + \frac{36}{3600}$
 $= 78 + 0.75 + 0.01$
 $= 78.76^{\circ}$

Question No. 4

Convert the following into radians:

(i) 36°

Solution:

Radians = Degrees
$$\times \frac{\pi}{180}$$

Radians = $36 \times \frac{\pi}{180}$
Radians = $\frac{\pi}{5} rad$

(ii) 22.5°

22.5°
Radians = Degrees
$$\times \frac{\pi}{180}$$
Radians = $22.5 \times \frac{\pi}{180}$
Radians = $\frac{\pi}{8} rad$

(iii) 67.5°

Solution:

Radians = Degrees
$$\times \frac{\pi}{180}$$

Radians =
$$67.5 \times \frac{\pi}{180}$$

Radians =
$$\frac{3\pi}{8}$$
 rad

Question No. 5

Convert the following into degrees:

(i)
$$\frac{\pi}{16}$$
 rad

Solution:

$$\frac{\pi}{16}$$
 rad

Degrees = Radians
$$\times \frac{180}{\pi}$$

Degrees
$$=\frac{\pi}{16} \times \frac{180}{\pi}$$

Degrees =
$$11.25^{\circ}$$

(ii)
$$\frac{11\pi}{5}$$
 rad

Solution:

$$\frac{11\pi}{5}$$
 rad

Degrees = Radians
$$\times \frac{180}{\pi}$$

Degrees
$$=\frac{11\pi}{5} \times \frac{180}{\pi}$$

Degrees =
$$396^{\circ}$$

(iii)
$$\frac{7\pi}{6}$$
 rad

$$\frac{7\pi}{6}$$
 rad

Degrees = Radians
$$\times \frac{180}{\pi}$$

Degrees
$$=\frac{7\pi}{6} \times \frac{180}{\pi}$$

Degrees =
$$210^{\circ}$$

Find the arc length and area of a sector if:

(i) r = 6 cm and central angle $\theta = \pi/3$ radians.

Data:

$$r = 6 cm$$

central angle
$$\theta = \frac{\pi}{3} \ rad$$

To Find:

$$l = ?$$

$$A = ?$$

Solution:

$$l = r \theta$$

$$l = 6 \times \frac{\pi}{3}$$

$$l = 2\pi$$

$$l = 6.28 cm$$

$$A = \frac{1}{2} r^2 \theta$$

$$A = \frac{1}{2} (6)^2 (\frac{\pi}{3})$$

$$A = (36) (\frac{\pi}{6})$$

$$A = 6\pi \ cm^2$$

$$A = 18.84 cm^2$$

(ii) $r = 4.8/\pi$ cm and central angle $\theta = 5\pi/6$ radians.

Data:

$$r = \frac{4.8}{\pi} cm$$

central angle
$$\theta = \frac{5\pi}{6}$$
 rad

To Find:

$$l = ?$$

$$A = ?$$

$$l = r \theta$$

$$l = \frac{4.8}{\pi} \times \frac{5\pi}{6}$$

$$l = 4 cm$$

$$A = \frac{1}{2} r^2 \theta$$

$$A = \frac{1}{2} (\frac{4.8}{\pi})^2 (\frac{5\pi}{6})$$

$$A = (\frac{23.04}{\pi}) (\frac{5}{12})$$

$$A = \frac{9.6}{\pi}$$

$$A = 3.06 cm^2$$

If the central angle of a sector is 60° and the radius of the circle is 12 cm, find the area of the sector and the percentage of the total area of the circle it represents.

Data:

$$r=12~cm$$
 central angle $\theta=60^{\circ}$ central angle $\theta=60\times\frac{\pi}{180}$ rad central angle $\theta=\frac{\pi}{3}$ rad

To Find:

Area of Sector =
$$\frac{1}{2} r^2 \theta$$

Area of Sector = $\frac{1}{2} (12)^2 (\frac{\pi}{3})$

Area of Sector = $(144) (\frac{\pi}{6})$

Area of Sector = 24π

Area of Sector = $75.36 cm^2$

Area of Circle = πr^2

Area of Circle = $\pi (12)^2$

Area of Circle = $452.16 cm^2$

Required %age = $\frac{Area of Sector}{Area of Circle} \times 100\%$

Required %age =
$$\frac{75.36}{452.16} \times 100\%$$

Required %age = 16.67 %

Find the percentage of the area of sector subtending an angle $\pi/8$ radians.

Data:

central angle
$$\theta = \frac{\pi}{8}$$
 rad

To Find:

Solution:

Area of Sector =
$$\frac{1}{2} r^2 \theta$$

Area of Sector = $\frac{1}{2} r^2 (\frac{\pi}{8})$

Area of Sector = $\frac{\pi r^2}{16}$

Area of Circle = πr^2

Required %age = $\frac{Area \text{ of Sector}}{Area \text{ of Circle}} \times 100\%$

Required %age = $\frac{\pi r^2}{16\pi r^2} \times 100\%$

Required %age = $\frac{100}{16} \%$

Required %age = 6.25 %

Question No. 9

A circular sector of radius r = 12 cm has an angle of 150°. This sector is cut out and then bent to form a cone. What is the slant height and the radius of the base of this cone?

Hint: Arc length of sector = circumference of cone.

Data:

$$r = 12 cm$$

central angle
$$\theta = 150^{\circ}$$

central angle
$$\theta=150\,\times\frac{\pi}{180}$$
 rad

$$central\ angle\ \theta = \frac{5\pi}{6}\ rad$$

To Find:

$$l = ?$$

Solution:

Arc length of the sector becomes the cone's base circumference:

$$Arc\ length = r \cdot \theta$$

$$Arc\ length = 12 \cdot (\frac{5\pi}{6})$$

$$Arc\ length = 10\pi\ cm$$

Cone base circumference:

$$R = \frac{10 \,\pi}{2 \,\pi}$$

$$R = 5 cm$$

Slant height of cone:

l = 12 cm (same as radius of sector)