Multiple Access Media

Reading: Peterson and Davie,

Chapter 2

Multiple Access Media

- Multiple senders on some media
 - Buses (Ethernet)
 - Radio, Satellite
 - Token Ring
- Need methods to mediate access
 - Fair arbitration
 - Good performance

IEEE 802.11

Ring Topology: Multihop

FDDI, IEEE 802.5

Ethernet Frame Format

- 64 bit preamble: allows the receiver to synchronize with the signal
- Source, Destination: 48-bit address (6 bytes)
- Type: demultiplexing key, it identifies which higherlevel protocols this frame should be delivered
- Data: 46 bytes, up to 1500 bytes
 - Minimum length to ensure detection of collision
 - Upper bound of time a sender can occupy

MAC addresses

- Every Ethernet device has unique address.
- Ethernet addresses are typically printed as a sequence of six numbers separated by colons
- Each manufacturer of Ethernet devices is allocated a different prefix that must be prepended to the address on every adaptor they build.
 - For example, Advanced Micro Devices has been assigned the 24-bit prefix 080020 (or 8:0:20).
- A given manufacturer then makes sure the address suffixes it produces are unique.

Receiver Algorithm

- Ethernet adaptor receives ALL frames but accepts only the following:
 - Frames addressed to its own address
 - Frames addressed to the broadcast address (Ethernet address consisting of all 1s)
 - Frames addressed to a multicast address (address that has the first bit set to 1 but is not the broadcast address), if it has been instructed to listen to that address
 - All frames, if it has been placed in promiscuous mode
- It passes to the host only the frames that it accepts.

Transmitter algorithm (Multiple Access Media)

- Problem: demands can conflict, e.g., two hosts send simultaneously
 - STDM does not address this problem fully
 - Solution is a Media Access Control (MAC) algorithm
- Two solutions (of many)
 - Carrier sense multiple access with collision detection (CSMA/CD)
 - Send only if medium is idle
 - Stop sending immediately if collision detected
 - Token ring/Fiber Distributed Data Interface (FDDI)
 pass a token around a ring; only token holder sends

"Token Pass" MAC protocols

token passing:

- control token message explicitly passed from one node to next, sequentially
 - transmit while holding token
- concerns:
 - token overhead
 - latency
 - single point of failure (token)

Carrier Sense Multiple Access with Collision Detection (CSMA/CD)

Used by Ethernet

- Xerox and IEEE 802.3 (10Mbps standards)
- IEEE 802.3u (Fast Ethernet, 100Mbps standard)
- Also applies to 1-Gbps, 10-Gbps, 40-Gbps, and 100-Gbps versions

Goal

 Distributed algorithm that provides fair efficient access to a shared medium

Ethernet MAC Algorithm

- Sender/Transmitter
 - If line is idle
 - Send immediately
 - Send maximum of 1500B data (Ensure the upper bound of time a sender can occupy the line)
 - Wait 9.6 μs (10⁻{-6}) second) before sending again
 - If line is busy
 - Wait until line becomes idle
 - Send immediately (1-persistent)
 - If collision detected
 - Stop sending and jam signal (32 bit jam signal+64 bit preamble) → "Runt frame"
 - Try again later

Why? -- Explanations

- Because there is no centralized control
- possible for two (or more) adaptors to begin transmitting at the same time (collide)
 - either because both found the line to be idle
 - or because both had been waiting for a busy line to become idle
- Ethernet supports collision detection

Ethernet MAC Algorithm

Node A starts transmission at time 0

Node B starts transmission at time T

How can we ensure that A knows about the collision? (Sender "Smart")

COMP535

Collision Detection

Example

- Node A's message reaches node B at time T
- Node B's message reaches node A at time 2T
- For node A to detect a collision, node A must still be transmitting at time 2T

802.3

- 2T is bounded to 51.2μs (assume: 2500m Ethernet)
- At 10Mbps 51.2μs = 512b or 64B
- Packet length \geq 64B = 512b
- Details: 14 bytes of header (6B source addr, 6B dest addr, 2B type) plus 46 bytes of data plus 4 bytes of CRC., total 64 bytes

Ethernet MAC Algorithm

Node A starts transmission at time 0

Node B starts transmission at time T

At time 2T, A is still transmitting and notices a collision

Jamming after Collision

- Ensures that all hosts notice the collision
- Jam signal is 32-bit, how does it notify the collision to other hosts?
 - Stop transmitting the current frame
 - Start transmitting the jam signal ≠ CRC
 - CRC check fails at other hosts → collision
 - Discard the frame due to CRC error

Retransmission

- How long should a host wait to retry after a collision?
 - Binary exponential backoff
 - Maximum backoff doubles with each failure
 - After N failures, pick an N-bit number

 - N=2; it then waits 0, 51.2, 102.4, or 153.6 μs(selected randomly) before trying again
 - O N=3; it waits $k \times 51.2 \mu s$ for $k = 0...2^3 1$, again selected at random
 - 2N discrete possibilities from 0 to maximum = 2N -1

Wireless

- IEEE 802.11 (Wi-Fi)
 - A physical and multiple access layer standard for wireless local area networks (WLAN)

Wireless Technologies

	Bluetooth (802.15.1)	Wi-Fi (802.11)	4G Cellular
Typical link length	10 m	100 m	Tens of kilometers
Typical data rate	2 Mbps (shared)	150-450 Mbps	1-5 Mbps
Typical use	Link a peripheral to a computer	Link a computer to a wired base	Link mobile phone to a wired tower
Wired technology analogy	USB	Ethernet	PON

Wireless

- IEEE 802.11 (Wi-Fi)
 - A physical and multiple access layer standard for wireless local area networks (WLAN)

Ad Hoc Network: no servers or access points

Differences from Ethernet

- wireless nodes cannot usually transmit and receive at the same time (on the same frequency)
 - power generated by the transmitter is much higher than any received signal is likely to be and so swamps the receiving circuitry
- a node may not receive transmissions from another node
 - Too far, or blocked by obstacle
- =>Collision detection is not feasible
 - Wireless transceivers can't send and receive on the same channel at the same time
- To be more precise: whenever collision detected, the signals cannot be sent to the sender device that the
 COMP535 collision has been occured

-IEEE 802.11 MAC Layer Standard

- Similar to Ethernet
- But consider the following:

Hidden Terminal Problem

B and C are unaware of each other since their signals do not carry that far.=> collision at A, but neither B nor C is aware of this collision. (hidden nodes)

COMP535

-IEEE 802.11 MAC Layer Standard

Another problem

Exposed Terminal Problem

COMP535

Mistake: for C to conclude that it cannot transmit to anyone just because it can hear A's transmission.

C can transmit to node D. This is not a problem since C's transmission to D will not interfere with B's ability to receive from A (but will interfere when B is transmitting to A)

-IEEE 802.11 MAC Layer Standard – CSMA/CA

- Solution to the Hidden Terminal Problem
 - Request/Ready to Send (RTS)
 - Clear to Send (CTS)

The RTS (from B) may not be heard by a hidden terminal (C), the CTS probably will be. This **CTS** (from A) effectively tells the nodes (e.g. C) within range of the receiver that they should not send anything for a while (including the RTS and CTS packets.)

-IEEE 802.11 MAC Layer Standard

- Solution to the Exposed Terminal Problem
 - Request to Send (RTS)
 - Clear to Send (CTS)

COMP535

