

ГАЛОГЕНЫ И ИХ СОЕДИНЕНИЯ ТИПЫ РЕАКЦИЙ

ФИЗИЧЕСКИЕ СВОЙСТВА

F₂ - ядовитый газ светло-жёлтого цвета, Cl₂ - ядовитый газ жёлто-зелёного цвета, Br₂ - ядовитая зловонная жидкость красно-бурого цвета, I₂ - чёрные кристаллы с металлическим блеском, в водных р-рах - бурый осадок, может возгоняться с об-ем паров тёмно-фиолетового цвета.

ПОЛУЧЕНИЕ (лаборатория)

1) как продукт ОВР:

4HCl + MnO₂ = Cl₂ + MnCl₂ + 2H₂O 16HCl + 2KMnO₂ = 5Cl₃ + 2KCl + 8H₂O

+ 2MnCl₂

6HCl + KClO₃ = 3Cl₂ + KCl + 3H₂O 14HCl + K₂Cr₂O₇ = 3Cl₂ + 2CrCl₃ + 2KCl

+ 7H₂O₇ = 3Cl₂ + 2CrCl₃ + 2K

4HCl + PbO₂ = Cl₂ + PbCl₂ + 2H₂O

4HCl + Ca(ClO)₂ = 2Cl₂ + CaCl₂ + 2H₂O ПОЛУЧЕНИЕ (промышленность)

1) электролиз растворов и

расплавов галогенидов:

2NaCl (расплав, эл.ток) = 2Na + Cl₂ 2NaCl + 2H₂O(p-p) = 2NaOH + H₂ + Cl₂

ОБЩИЕ СВЕДЕНИЯ

Нахождение в ПС: VIIA-группа Строение внешнего слоя: ns²np⁵ Степени окисления: -1, O, +1, +3, +5, +7

Нахождение в природе: NaCl - поваренная (каменная) соль, NaCl*KCl - сильвинит, KCl*MgCl $_2$ *6H $_2$ O - карналлит, KCl*MgSO $_2$ *3H $_2$ O - каинит.

ХИМИЧЕСКИЕ СВОЙСТВА - СИЛЬНЕЙШИЕ ОКИСЛИТЕЛИ!!! $Fe + F_{,}(t) =$ 0, + Cl, = Fe + Cl, (t) = F, + O, = Fe + Br, (t) = Br, + O, = Fe + I, (t) = I, + O, = Cl, + H,O = Br, + H,O = F, + H,O = F, + NaOH + H,O = Cl, + NaOH (t) = Cl + NaOH = I, + NaOH (t) = I_a + NaOH (хол) = Cl, + H, = Cl, + I, + H,0 = H,S + Cl, = H,O, + Cl, = HBr + Cl, = H,O + Br, = NaI + Cl, = H,0 + Cl, = FeCl, + Cl, = PCl, + Cl, = SO, + Cl, = CO + Cl, = CuS + Cl, = H,SO, + Cl, + H,O =

ХИМИЧЕСКИЕ СВОЙСТВА СОЕДИНЕНИЙ ГАЛОГЕНОВ ОКИСЛИТЕЛЬНО-ВОССТАНОВИТЕЛЬНЫЕ РЕАКЦИИ

HClO	хлорноватистая	гипохлорит
HClO ₂	хлористая	хлорит
HClO ₃	хлорноватая	хлорат
HClO ₄	хлорная	перхлорат

химические свойства

HCl, HBr, HI и их соли - хорошие восстановители - окисляются до простых веществ

Галогенсодержащие кислородсодержащие кислоты (например, HClO₂, HClO₃, HClO₂, HClO) и их соли - хорошие окислители - восстанавливаются до галогенидов (например, HCl) и их солей. Вспоминаем лайфхак: "закрываем рукой кислород и пишем ответ".

HClO (t) =	+
KClO ₃ (t) =	
KClO ₃ (MnO ₂ , t) =	+
P + Br ₂ + H ₂ O =	
I ₂ + H ₂ S =	
F, + H,O =	
F ₂ + Si =	
F, + SiO, =	
KI + FeBr ₃ =	
KI + CuSO ₂ =	
HI + CuCl ₂ =	
HI + O, =	
HI + H ₂ SO ₂ (κ) =	
KI + H ₂ SO ₂ (κ) =	
KI + HNO ₃ (κ) =	
HI + K ₂ Cr ₂ O ₇ =	

Особое свойство HF*

PACTBOPЯЕТ СТЕКЛО!

4HF + SiO₂ = SiF₄ + 2H₂O

SiO₂ + 6HF = H₂[SiF₆] + 2H₂O