Julia Sets Theory and Algorithms

Josh Lipschultz & Ricky LeVan MATH/CAAM 435

April 15, 2014

A quick recap of last week:

A quick recap of last week:

Definition

The stable set of a a complex polynomial $P : \mathbb{C} \to \mathbb{C}$, denoted S(P), is the complement of J(C).

A quick recap of last week:

Definition

Preliminaries

The stable set of a a complex polynomial $P: \mathbb{C} \to \mathbb{C}$, denoted S(P), is the complement of J(C).

Definition

An orbit is bounded if there exists a K such that $|Q_c^{\circ n}(z)| < K$ for all n. Otherwise the orbit is unbounded.

Remark

The points of S^1 were supersensitive. That is, any open ball around $z \in S^1$ has the property that $\bigcup_{n=0}^{\infty} Q_n^{\circ n}(z) = \mathbb{C} \setminus \{p\}$ for at most one point p.

We also defined the Julia Set J_c as the boundary of the filled Julia set K_c . (The filled Julia set is the set of bounded points of Q_c .) We could alternatively define J_c as the closure of the set of repelling points of Q_c (in fact, this definition isn't limited to the quadratic

Cantor Construction

Preliminaries

J_c Algorithm ○○

Cantor Construction

Preliminaries

J_c Algorithm ○○

 K_c Algorithm

Cantor Construction

Preliminaries

Cantor Construction

00

Preliminaries

 J_c Algorithm $\bullet \circ$

Cantor Construction

00

Preliminaries

J_c Algorithm ○●