

ARM VGA CONTROLLER

Vinay Chandrasekhar K IMT201*55*23

VGA

- Video Graphics Array
- Analog display protocol
- Very widely used

VGA connector

ComputerHope.com

HOW?

Courtesy: Basys3 datasheet

VESA Signal 1280 x 1024 @ 60 Hz timing

General timing

Screen refresh rate	60 Hz
Vertical refresh	63.981042654028 kHz
Pixel freq.	108.0 MHz

Horizontal timing (line)

Polarity of horizontal sync pulse is positive.

Scanline part	Pixels	Time [µs]
Visible area	1280	11.851851851852
Front porch	48	0.4444444444444
Sync pulse	112	1.037037037037
Back porch	248	2.2962962962963
Whole line	1688	15.62962962963

Vertical timing (frame)

Polarity of vertical sync pulse is positive.

Frame part	Lines	Time [ms]
Visible area	1024	16.004740740741
Front porch	1	0.01562962962963
Sync pulse	3	0.04688888888889
Back porch	38	0.59392592592593
Whole frame	1066	16.661185185185

SIGNALS

VGA port, view from Wire Side

ARM BOARD

- ARM STM32F4 Discovery
- Max 168 MHz
- Cortex M4

HOW TO: PROCESS

- How to program the board using assembly?
- First figure out how to control GPIO Pins and blink LED
- Learn that board by default works at 16MHz
- Increase clock to 168 MHz
- Setup timer for accurate time measurement
- Figure out how to use interrupts to manage time
- Write code for HSYNC, VSYNC
- Test and Finish

168 MHZ CLOCK

TIMER

VESA Signal 1280 x 1024 @ 60 Hz timing

General timing

Screen refresh rate	60 Hz
Vertical refresh	63.981042654028 kHz
Pixel freq.	108.0 MHz

Horizontal timing (line)

Polarity of horizontal sync pulse is positive.

Scanline part	Pixels	Time [µs]
Visible area	1280	11.851851851852
Front porch	48	0.4444444444444
Sync pulse	112	1.037037037037
Back porch	248	2.2962962962963
Whole line	1688	15.62962962963

Vertical timing (frame)

Polarity of vertical sync pulse is positive.

Frame part	Lines	Time [ms]
Visible area	1024	16.004740740741
Front porch	1	0.01562962962963
Sync pulse	3	0.0468888888888
Back porch	38	0.59392592592593
Whole frame	1066	16.661185185185

CHALLENGES

- •Needed a clock frequency of 108 MHz, but ended up at ~5MHz: Because of loop
- *Hence only about 50+ pixels in a line
- Able to achieve 1024 lines
- Space to store the image

RESULTS: HSYNC (MUST BE \sim 64KHZ)

RESULTS: VSYNC (MUST BE \sim 60HZ)

RESULTS: ALL COLORS DISPLAYED

RESULTS: A BITMAP IMAGE

THANK YOU