Data Augmentation

Ki Hyun Kim

nlp.with.deep.learning@gmail.com

Introduction

- 핵심 특징(feature)를 간직한 채, noise를 더하여 데이터를 확장하는 방법
 - 보통은 핵심 특징을 보존하기 위한 휴리스틱한 방법을 사용
- 이를 통해 더욱 noise robust한 모델을 얻을 수 있음
- 규칙을 통해 증강(augment)하는 것은 옳지 않음
 - 모델이 그 규칙을 배우게 될 것
 - Randomness가 필요함

Simple Image Augmentation

- Salt & Pepper Noise
 - Adding RGB(255, 255, 255) noise
 - Adding RGB(0, 0, 0) noise
- A human can recognize image even within the noise.

- Noise may release irrelevant feature (bias).
 - Prevent overfitting.

Simple Image Augmentation

- Rotation
 - 회전을 통해 새로운 샘플을 생성
- Flipping
 - 대칭이 성립하는 이미지에 대해서 주로 실행(e.g. 얼굴)
 - 글씨나 숫자의 경우 제한적으로 성립
- Shifting
 - 일정 pixel 이내로 이미지를 좌우상하로 이동

Simple Text Augmentation

- Dropping
 - 임의로 단어를 생략

나는 학교에 가는 것을 좋아한다.

나는 ____ 가는 것을 좋아한다 .

- Exchange
 - 임의로 대상 단어를 주변 단어와 위치 교환

나는 가는 것을 좋아한다 학교에 .

By Generative Models

• Autoencoder(AE) 또는 GAN을 통해 이미지 등을 학습 후 생성하는 형태

It has obvious limit, but

• 한계: 기존 데이터를 통해 새로운 지식을 배울 수 없다.

• 하지만 최적화 측면에서, 좀 더 유리할 수는 있다.