Robben 5.1.

Notice that $M.\begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ so $\lambda_1 = 1$ is an eigenvalue of M.

By contradiction, assume that M is diagonalizable. Then there exist $P \in \mathbb{R}^{2\times 2}$ invertible and $h_z \in \mathbb{R}$ such that

 $M = P \begin{pmatrix} \lambda_1 0 \\ 0 \lambda_2 \end{pmatrix} P^{-1}$

Since $Tr(M) = \lambda_1 + \lambda_2 = 2$, use get $\lambda_2 = 1$ So

 $H = P \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} P^{-1} = PP^{-1} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$: we

get a contradiction.

Conclusion: M is not diagonalizable

Problem 5.2 a) Compute $HM^T = (Id_n - 2P_s)(Id_n - 2P_s^T)$ (because $P_s^T = P_s$) $= (Id_n - 2P_s)(Id_n - 2P_s)$ $= Id_n - 4P_s + 4P_s^2$ $= Id_n$

because $P_s^2 = P_s$.

It is therefore orthogonal.

b) M is symmetric $(M^{-}M)$ so we get from a) that $M^{2} = Idn$ det $\lambda \in \mathbb{R}$ be an eigenvalue of M, and $v \in \mathbb{R}^{n} \setminus \partial V$ an associated eigenvector. We get $M^{2}v = v$ so $M(\lambda v) = v$ which gives $\lambda^{2} = 1$ since $v \neq 0$: $\lambda = 1$ or $\lambda = -1$.

c) dot $k=\dim S$. dot $(\sigma_1...\sigma_k)$ be a basis of S and $(\sigma_{k+1},...,\sigma_n)$ be a basis of S^{\perp} (recall that $\dim S^{\perp}=n-k$). Then $(\sigma_1,...\sigma_k,\sigma_{k+1},...\sigma_n)$ is a basis of \mathbb{R}^n

For $i \in \{1, -2\}$, compute: $M v_i = v_i - 2kv_i = v_i - 2v_i = -v_i$ because $k_i v_i = v_i$ since $v_i \in S$. We get that v_i is an eigenvector of M (with eigenvalue -1)

• For $i \in \{k+1, ..., n\}$, compute $M \circ i = \circ i - 2 \beta_i \circ i = \circ i$ (because $\beta_i \circ i = 0$, since $v_i \in S^{\perp}$). We got that v_i is an eigenvector of M (with eigenvalue 1).

 $(\tau_{1}...\tau_{n})$ is therefore a basis of \mathbb{R}^{n} consisting of eigenvectors of M.

Problem 5.3.

a) Compute:
$$\sigma_{1}^{T} A \sigma_{2} = \sigma_{1}^{T} (\lambda_{2} \sigma_{2}) = \lambda_{2} \sigma_{1}^{T} \sigma_{2}$$

 $\sigma_{1}^{T} A \sigma_{2} = (A^{T} \sigma_{1})^{T} \sigma_{2}$
(because $A = A^{T}$) $= (A \sigma_{1})^{T} \sigma_{2}$
 $= \lambda_{1} \sigma_{1}^{T} \sigma_{2}$.

We get that
$$\lambda_1 \ U_1^T \ U_2 = \lambda_2 \ U_1^T \ U_2$$
. Since $\lambda_1 \neq \lambda_2$, we deduce that $U_1^T \ U_2 = 0$: $U_1 \perp U_2$

b) Assume that A is diagonalizable. For
$$\lambda \in Sp(A)$$
, we write $\int E_{\lambda} = keu(A-\lambda Jd_{n})$ the corresponding eigenspace l_{n} and l_{n} the multiplicity of λ .

By the Gram-Schmidt procedure, we can find any basis (u(x),...um) of Ex orthonormal

$$\mathcal{B} = \left\{ u_1^{(3)}, \ldots, u_{m_{\lambda}}^{(n)} \mid \lambda \in \mathcal{S}_{p}(A)^{\ell} \right\}.$$

- The vectors of B are all eigenvectors of A (because they all belong to E_{λ} for some $\lambda \in Sp(B)$)
- . They all have evid norm (by construction).
- and verify that end is we have $u \neq u' \in S$ and $u \in G_{\lambda}$ for some $\lambda, \lambda' \in Sp(A)$.
 - Case 1: $\lambda \neq \lambda$. Then by @: u_lu'.
 - Case 2: $\lambda = \lambda'$. Then by construction u.L.w.

Conclusion: B is orthonormal.

It remains to check that B is a basis of \mathbb{R}^n .

Let xER". Since A is diagonalizable x can be expressed as a linear combination of eigenvectors of A:

$$\chi = \sum_{\lambda \in Sp(A)} \alpha_{\lambda} \alpha_{\lambda}$$

for some $d_{\lambda} \in \mathbb{R}$, $\sigma_{\lambda} \in \mathbb{E}_{\lambda}$. Since $\mathbb{E}_{\lambda} \subset \operatorname{Span}(B)$ we get that $x \in \operatorname{Span}(B)$: hence B spans \mathbb{R}^{n} (and is hence a basis because it is orthonormal). Problem 5.4

a)
$$\chi_{\ell} = \frac{A \chi_{\ell-1}}{\|A \chi_{\ell-1}\|} = \frac{A \frac{A \chi_{\ell-2}}{\|A \chi_{\ell-2}\|}}{\|A \frac{A \chi_{\ell-2}}{\|A \chi_{\ell-2}\|}}$$

$$= \frac{A^2 \chi_{\ell-2}}{\|A^2 \chi_{\ell-2}\|}$$

$$= \frac{A^2 \frac{A \chi_{\ell-2}}{\|A \chi_{\ell-2}\|}}{\|A^2 \frac{A \chi_{\ell-3}}{\|A \chi_{\ell-3}\|}} = \frac{A^3 \chi_{\ell-3}}{\|A^3 \chi_{\ell-3}\|}$$

$$= ---- = \frac{A^{\ell} \chi_{0}}{\|A^{\ell} \chi_{0}\|}$$

b) The set of vectors that have their first coordinate in the basis $(v_1, ..., v_n)$ equal to zero is $Span(v_2, ..., v_n)$. This is an hyperplane of R^n : a randomly chosen vector has zero probability to belong to it (for instance in R^3 a randomly chosen vector will be obtained of the horizontal plane with probability 1).

c)
$$x_0 = x_1 x_1 + ... + x_n x_n$$
 so

$$A^{t} x_{0} = \alpha_{1} A^{t} x_{1} + ... + \alpha_{n} A^{t} x_{n}$$

$$= \alpha_{1} \lambda_{1}^{t} x_{1} + ... + \alpha_{n} \lambda_{n}^{t} x_{n}.$$

Consequently:

$$\mathcal{A}_{t} = \frac{A^{t} \mathcal{A}_{0}}{\|A^{t} \mathcal{A}_{0}\|} = \frac{\alpha_{1} \sigma_{2} + \left(\frac{\lambda_{2}}{\lambda_{1}}\right)^{t} \alpha_{2} \sigma_{2} + \dots + \left(\frac{\lambda_{n}}{\lambda_{n}}\right)^{t} \alpha_{n} v_{n}}{\|\alpha_{1} \sigma_{1} + \left(\frac{\lambda_{2}}{\lambda_{1}}\right)^{t} \alpha_{2} \sigma_{2} + \dots + \left(\frac{\lambda_{n}}{\lambda_{n}}\right)^{t} \alpha_{n} v_{n}\|}$$

Since
$$\left(\frac{\lambda_i}{\lambda_i}\right)^{\xi} \xrightarrow{\rightarrow +\infty} 0$$
 for all $i \in \{2, ..., n\}$, we get $x_1 \xrightarrow{\rightarrow} dx \ \forall x_2 \xrightarrow{\rightarrow} dx \ \forall x_3 \xrightarrow{\rightarrow} dx \ \forall x_4 \xrightarrow{\rightarrow} dx \ \forall x_5 \xrightarrow{\rightarrow} dx \ \forall x_5$

$$\mathcal{N}_{\xi} \xrightarrow{\xi \to +\infty} \frac{||\alpha_1 \nabla_1||}{||\alpha_1 \nabla_2||} = \frac{|\alpha_1|}{|\alpha_2|} \nabla_1.$$

and

$$\|A \mathbf{a}_{\ell}\| \xrightarrow{\xi \to +\infty} \|A \frac{\mathbf{a}_{1}}{\mathbf{a}_{1}} \mathbf{\sigma}_{1}\| = \|A \mathbf{\sigma}_{1}\| = \|\lambda_{1} \mathbf{\sigma}_{1}\| = \lambda_{1}$$

Problem: 5.5

The function f is continuous over the unit sphere $S = x \in \mathbb{R}^n \mid ||x|| = 14$ and admits therefore a maximum on S, at some x_k

Since for all $c \neq 0$ and $x \in S$, f(rx) = f(x), x_k is a global maximizer of f on $R^n \setminus \lambda 0 \gamma$.

Hence $\nabla f(x_{\bullet}) = 0$. By definition:

$$f(x) = \frac{\sum_{i,j=1}^{n} A_{i,j} a_{i} a_{j}}{\sum_{i=1}^{n} a_{i}^{2}}$$
 so

 $\frac{\partial f(x)}{\partial x_{k}} = \left(\frac{2 A_{k,k} x_{k} + \sum_{i \neq k} (A_{i,k} + A_{k,i}) x_{i}}{\|x\|^{4}} - 2 x_{k} x^{4} x^{4} \right)$

For 265, this simplifies to (using that Air=Ari)

$$\frac{\partial}{\partial n_k} f(x) = 2 \sum_{i=1}^n A_{k,i} x_i - 2 x_k x^T A_{n.}$$

Hence, $\frac{\partial}{\partial n_k} f(n_k) = 0$ gives that for all k:

$$\sum_{i=1}^{n} A_{R,i} (a_{*})_{i} = (\bar{a}_{*}^{T} A_{R_{*}}) (a_{*})_{R}$$

We conclude that $Ax_{+} = \lambda x_{+}$, where $\lambda = x_{+}^{T}Ax_{+}$