

EE227 – Digital Logic Design

- Lecture Slides
- Week 4

Course Instructor:

Dr. Arslan Ahmed Amin

FAST National University of Computer and Emerging Sciences CFD Campus

Outline

- KARANUGH Map (K Map) Method
 - With 2 variables
 - With 3 variables
 - With 4 variables
- Product of Sum Simplification
- Don't Care Conditions

KARANUGH Map (K – Map)

- K Map is a pictorial method used to minimize Boolean expressions without having to use Boolean algebra theorems and equation manipulations
- It is thought as a special version of a truth table
- Using a K-map, expressions with two to four variables are easily minimized

Generating K – Map (1/2)

- A k map will contain 2ⁿ squares
 - Where n is the number of variables in the expression
- While generating a k-map one should keep in mind that any two adjacent squares in the map differ by only one bit

With	two	variab	es
V V I C I I	CVV	variab	-

m_0	m_1	m_3	m_2
m_4	m_5	m_7	m_6

x^{yz}	00	01	11	10
	x'y'z'	x'y'z	m_3 $x'yz$	m_2 $x'yz'$
1	m_4 $xy'z'$	m_5 $xy'z$	m_7 xyz	m_6 xyz'

With three variables

Generating K – Map (2/2)

With four variables

m_0	m_1	m_3	m_2
m_4	m_5	m_7	m_6
m_{12}	m_{13}	m_{15}	m_{14}
m_8	m_9	m_{11}	m_{10}

wx yz	00	01	11	10
	m_0	m_1	m_3	m_2
00	w'x'y'z'	w'x'y'z	w'x'yz	w'x'yz'
		m_5	m_7	m_6
01	w'xy'z'	w'xy'z	w'xyz	w'xyz'
	427	427	427	422
		<i>m</i> ₁₃	m ₁₅	<i>m</i> ₁₄
11	wxy'z'	wxy'z	wxyz	wxyz'
		m_9	m_{11}	m_{10}
10	wx'y'z'	wx'y'z	wx'yz	wx'yz'

K-Map - Rules of Simplification (1/4)

- While using k-map we group the 1's present in the k-map table and note the variables which are not changing
- Here are some rules for simplification and grouping of 1's
 - Groups may not include any cell containing a zero
 - Groups may be horizontal or vertical, but not diagonal

K-Map - Rules of Simplification (2/4)

Groups must contain 1, 2, 4, 8, or in general 2ⁿ cells

Each group should be as large as possible

Each cell containing a one must be in at least one group

00 01 11 10 Group I

1 0 0 0 1 Group II

K-Map - Rules of Simplification (3/4)

Groups may overlap

 Groups may wrap around the table. The leftmost cell in a row may be grouped with the rightmost cell and the top cell in a column may be grouped with the bottom cell

K-Map - Rules of Simplification (4/4)

 There should be as few groups as possible, as long as this does not contradict any of the previous rules

K – Map Simplification Steps

- 1. Populate the k-map
 - By using truth table
 - Or by using minterms
 - Introduce all the variables in each term
- 2. Form the groups by considering the rules
- Note the constant variables for each group
- 4. Multiply the constant variables of each group to form a term
- Add all the terms to obtain the simplified Boolean function

K – Map with Two Variables

Simplify the following expression by using k-map

A	В	A'	B'	A'B	AB'	AB	F
0	0	1	1	0	0	0	0
0	1	1	0	1	0	0	1
1	0	0	1	0	1	0	1
1	1	0	0	0	0	1	1

The simplified expression is

$$F = A + B$$

K – Map with Three Variables

Simplify the following Boolean function by using k-map

$$F = A'B'C' + A'B + ABC' + AC$$

$$F = A'B'C' + A'B(C + C') + ABC' + AC(B + B')$$

$$F = A'B'C' + A'BC + A'BC' + ABC' + ABC + AB'C$$

K – Map with Four Variables (1/2)

Simplify the following Boolean function by using kmap

F = A'B'C'D' + A'B'C'D + A'B'CD' + A'BCD' + AB'C'D' + AB'C'D + AB'CD'

F = B'D' + B'C' + A'CD'

K - Map with Four Variables (2/2)

Simplify the following Boolean function by using kmap

F = A'B'C'D' + A'B'CD' + A'BC'D + A'BCD + ABC'D' + ABC'D + ABC'D + AB'C'D' + AB'CD'

$$F = B'D' + ABC' + A'BD$$

K-Map - Rules of Simplification

- Groups may not include any cell containing a zero
- Groups may be horizontal or vertical, but not diagonal
- Groups must contain 1, 2, 4, 8, or in general 2ⁿ cells
- Each group should be as large as possible
- Each cell containing a one must be in at least one group
- Groups may overlap
- Groups may wrap around the table
- There should be as few groups as possible

Simple simplification rules are;

- 1. Allowed Groups of size are: 16, 8, 4, 2, 1 (Priority Order)
- 2. Grouping of adjacent 1's is allowed along horizontal and vertical direction. Folding and overlapping is allowed.
- 3. Cover maximum number of 1's with minimum number of groups.

4-Variable K-map is;

	00	01	11	10
00	m_0	m_1	m_3	m_2
01	m_4	m_5	m_7	m_6
11	m_{12}	m ₁₃	m ₁₅	m ₁₄
10	m_8	m_9	m ₁₁	<i>m</i> ₁₀

K-Map Examples

22

Ex # 1:

$$F(A,B) = \sum (1,2,3)$$

$$F(A,B) = \sum (0,1,2)$$

$$F(A,B,C) = \sum (2,3,4,5)$$

$$F(A,B,C) = \sum (2,3,4,5,6,7)$$

$$F = B + V$$

$$F(A,B,C) = \sum (1,3,4,5,7)$$

BC \boldsymbol{A} 01 00 11 10 m_{0} m_1 0 0 0 m_4 m_6 m_{5} m_7 0

$$F(A,B,C) = \sum_{i=0}^{\infty} (0,1,2,5,6,7)$$
 27

$$F = AC + \overline{A} \overline{B} + B\overline{c}$$

$$F(A,B,C) = \sum (0,2,5,6)$$

$$F(A,B,C) = \sum (0,2,3,4,6,7)$$

$$F(A,B,C) = \sum (1,2,3,5,7)$$

$$F(A,B,C) = \sum_{i=0}^{\infty} (0,2,3,5,6,7)$$

$$F = \overline{A} \overline{C} + AC + B$$

$$F(A, B, C) = \sum_{i=1}^{n} (1, 2, 4, 7)$$

Ex # 1:
$$F(A, B, C, D) = \sum (0, 1, 2, 4, 5, 6, 8, 9, 12, 13, 14)$$
 35

$$\mathsf{F} = \mathsf{C} + \mathsf{A} \, \mathsf{D} + \mathsf{B} \, \mathsf{D}$$

$$F(A,B,C) = \sum_{i=0}^{\infty} (0,1,2,3,4,5,6,7)$$
 33

Ex # 2:
$$F(A, B, C, D) = \sum (0.2, 5, 7, 8, 10, 13, 15)$$
 36

Ex # 3:
$$F(A, B, C, D) = \sum (0,2,3,45,6,7,8,10,13,14,15)$$
 37

Ex # 4:
$$F(A, B, C, D) = \sum (1,2,3,4,6,7,9,10,11,12,13,14)$$

$$F(A, B, C, D) = \sum (2,3,7,8,9,10,11,13,15)$$

$$F = \overline{B} C + A\overline{B} + AD + CD$$

Ex # 6:
$$F(A, B, C, D) = \sum (0,1,2,3,7,9,10,11,12,13,14,15)$$
 40

Product of Sum Simplification

- The 1's placed in the k-map represent the minterms present in the function
- The 0's represent the minterms not included in the function and hence is the complement of the same function
- In order to present the function as product of sum
 - 1. Combine squares containing 0's
 - Then compute the complement of the obtained example
 - The simplified function in now in product of sum

Don't Care Conditions

- The logical sum of the minterms associated with a Boolean function specifies the conditions under which the function is equal to 1
- The function is equal to 0 for the rest of the minterms
- Functions that have unspecified outputs for some input combinations are called incompletely specified functions
- A don't-care minterm is a combination of variables whose logical value is not specified
- Don't care conditions are indicated with X in k-map and truth tables and can be taken as 0 or 1

K-Map Examples (POS-Form)

Simple simplification rules are;

- 1. Allowed Groups of size are: 16, 8, 4, 2, 1 (Priority Order for 4 variables)
- Grouping of adjacent 0's is allowed along horizontal and vertical direction. Folding and overlapping is allowed.
- 3. Cover maximum number of 0's with minimum number of groups.

$$F(A, B, C) = \prod (0, 1, 6, 7)$$

$$F(A,B,C) = \prod (2,3,4,5,6,7)$$

$$F(A,B,C) = \prod (0,1,6,7)$$

$$F = (\overline{A} + \overline{B}) \cdot (A + B)$$

$$F(A,B,C) = \prod (2,3,4,5,6,7)$$

$$F = (\overline{B}) \cdot (\overline{A})$$

EE227 - DLD

Ex # 3: $F(A, B, C, D) = \prod (0,1,2,3,4,5,6,8,9,10,11,14,15)$ 43

$$F(A,B,C) = \sum (0,1,6,7) + d(2,3)$$

$$F = B + \bar{A}$$
 (SOP)

B C										
A	00	01	11	10						
0	m_0	m_1	m_3	m_2						
	1	1	X	X						
1	m_4	m_{5}	m_7	m_6						
	0	0	1	1						

$$F = \overline{A} + B \quad (POS)$$

$$F(A, B, C, D) = \sum_{i=1}^{n} (1, 3, 7, 11, 15) + d(0, 2, 5)$$

C D A B	00	01		11	10
00	m_0	m_1	m_3		m_2
	X	1		1	X
01	m_4	m_5	m_7		m_6
	0	X		1	0
11	m_{12}	m ₁₃	m_{15}		m ₁₄
	0	0		1	0
10	m_8	m_9	m_{11}		m_{10}
	0	0		1	0

$$F = CD + \overline{AB}$$
 (SOP)

$$F(A,B,C,D) = \sum (1,3,7,11,15) + d(0,2,5)$$

\subset CD								
A B	00	01	11		10			
00	m_0	m_1	m_3	m_2				
	X	1	1		X			
01	m_4	m_5	m_7	m_6				
	0	X	1		0			
1.1	m_{12}	m_{13}	m ₁₅	m_{14}				
11	0	0	1		0			
10	m_8	m_9	m_{11}	m_{10}				
	0	0)	1		0			
- 1- (
$\Gamma = [\Lambda + C] \cdot D \qquad (D \sim C)$								
		• • • • • • • • • • • • • • • • • • •	<u> </u>		1			

Simplify the following Boolean functions by using k-map method

a)
$$F_1 = xy + x'y'z' + x'yz'$$

b)
$$F_2 = A'B + BC' + BC + AB'C'$$

c)
$$F_3 = M + MC + AC + AM + AMC$$

d)
$$F(W,X,Y,Z) = \sum (1, 4, 5, 6, 12, 14, 15)$$

Answers

- a) F1 = x'z' + xy
- b) F2 = B + AC'
- c) F3 = M + AC
- d) F(w,x,y,z) = w'y'z + wxy + xz'

- Simplify the following Boolean function into
 - a) Sum-of-products form
 - b) Product-of-sums form

$$F(A,B,C,D) = \sum (0, 1, 2, 5, 8, 9, 10)$$

$$F = B'D' + B'C' + A'C'D$$

$$F' = AB + CD + BD'$$

 $F = (A' + B)(C' + D')(B' + D)$

Simplify the Boolean Function

$$F(w, x, y, z) = \sum (1, 3, 7, 11, 15)$$

Which has the don't care conditions

$$d(w, x, y, z) = \sum (0,2,5)$$

F = w'z + yz

Simplify the Boolean Function in POS form

$$F(w, x, y, z) = \sum (1, 3, 7, 11, 15)$$

Which has the don't care conditions

$$d(w, x, y, z) = \sum (0,2,5)$$

 Find all the prime implicants for the following Boolean functions, and determine which are essential

- a) $F(w, x, y, z) = \Sigma(0, 2, 4, 5, 6, 7, 8, 10, 13, 15)$
- b) $F(A, B, C, D) = \Sigma(0, 2, 3, 5, 7, 8, 10, 11, 14, 15)$

 Simplify the following Boolean functions F, together with the don't-care conditions d

a)
$$F(x, y, z) = \Sigma(0, 1, 4, 5, 6)$$

 $d(x, y, z) = \Sigma(2, 3, 7)$

- b) $F(A, B, C, D) = \Sigma(0, 6, 8, 13, 14)$ $d(A, B, C, D) = \Sigma(2, 4, 10)$
- c) $F(A, B, C, D) = \Sigma(5, 6, 7, 12, 14, 15)$ $d(A, B, C, D) = \Sigma(3, 9, 11)$