1 An Overview (week 1)

Overview DIS

2 Semistructured Data Management

2.1 Horizontal Fragmentation

2.1.1 Relational Databases

- 1. At which phase of the database lifecycle is fragmentation performed?
 - √ At database design time
 - O During distributed query processing
 - O During updates to a distributed database
- 2. The reconstruction property expresses that
 - O In case of a node failure the data can be recovered from a fragment from another node
 - $\sqrt{\ }$ The original data can be fully recovered from the fragments
 - O Every data value of the original data can be found in at least one fragment

2.1.2 Primary Horizontal Fragmentation (week 2)

- 1. Example: application A1 accesses
 - 1. Fragment F1: with frequency 3
 - 2. Fragment F2: with frequency 1

A1 accesses the whole relation with frequency

- $\sqrt{13/7}$
- \bigcirc 4/7
- \bigcirc 14/7

2. Consider the access frequencies below: How many horizontal fragments would a minimal and complete fragmentation have?

- $\sqrt{3}$
- \bigcirc 4
- \bigcirc 6
- 3. Which of the following sets of simple predicates is complete?

- O Location = "Munich", Budget > 200000
- O Location = "Munich", Location = "Bangalore"
- \bigcirc Location = "Paris", Budget ≤ 200000
- $\sqrt{\text{ None of those}}$
- 4. Which is true for MinFrag algorithm?
 - The output is independent of the order of the input
 - O It produces a monotonically increasing set of predicates
 - $\sqrt{}$ It always terminates
 - All of the above statements are true
- 5. When deriving a horizontal fragmentation for relation S from a horizontally fragmented relation R
 - $\sqrt{}$ Some primary key attribute in R must be a foreign key in S
 - \bigcirc Some primary key attribute in S must be a foreign key in R
 - O Both are required

2.2 Graph Databases (week 3)

2.2.1 Semi-structured Data

1.	Semi-stru	ictured data
	\bigcirc	Is always schema-less
		Always embeds schema information into the data
	\bigcirc	Must always be hierarchically structured
	\bigcirc	Can never be indexed
2.	Why is X	IML a document model?
	\bigcirc	It supports application-specific markup
	\bigcirc	It supports domain-specific schemas
		It has a serialized representation
	\bigcirc	It uses HTML tags
2.2.	2 Graj	oh Data Model
1.	In a grap	h database
	\bigcirc	There is a unique root node
		Each node has a unique identifier
	\bigcirc	Data values in leaf nodes are unique
	\bigcirc	The labels of edges leaving a node are different
	\bigcirc	There is a unique path from the root to each leaf
2.	The simu	lation relationship is a relation
		Among nodes in the data and schema graph
	\bigcirc	Among edges in the data and schema graph
	\bigcirc	Among sets of nodes in the data and schema graph
	\bigcirc	Among sets of edges in the data and schema graph
3.	Which is	true?
	\bigcirc	For each labelled edge in S a corresponding edge in D can be identified
	\bigcirc	For each root node in S a corresponding root node D can be identified
		For each leaf node in ${\cal D}$ a corresponding typed node in ${\cal S}$ can be identified
	0	For each node in S a unique path reaching it from a root node can be identified
		xists a uniquely defined simulation relationship among a graph database D nema graph ${\cal S}$
	\bigcirc	The data and schema graph are simulation equivalent

1/	Ambiguous classification cannot occur
•	Multiple classification cannot occur
$\bigcirc \\ \checkmark$	graph S_1 subsumes S_2 Every graph database corresponding to S_1 corresponds also to S_2 S_2 simulates S_1 S_1 has fewer nodes than S_2
2.2.3 Sche	ma Extraction
$\bigcirc \\ \checkmark$	wrong? In a dataguide Every path in the data graph occurs only once Every node in the data graph occurs only in one data guide node Every data guide node has a unique set of nodes A leaf node in the data graph corresponds always to a leaf node in the data guide
√ ○	Every node of the data graph occurs exactly once Every path of the data graph occurs at most once Every label of an outgoing edge of a node in the schema graph is unique
	rmation Retrieval and Data Mining
	rmation Retrieval (week 4)
	al model attempts to model The interface by which a user is accessing information The importance a user gives to a piece of information The formal correctness of a query formulation by user All of the above
2. If the top	The precision of the system at 50 is 0.5 The precision of the system at 100 is 0.5 The recall of the system is 0.5 None of the above
3. If retrieva	al system A has a higher precision than system B The top k documents of A will have higher similarity values than the top k documents of B

$\sqrt{\ }$ The top k documents of A will contain more relevant documents than the top k documents of B	nts
A will recall more documents above a given similarity threshold than E	}
O Relevant documents in A will have higher similarity values than in B	
3.1.2 Text-based Information Retrieval	
1. Full-text retrieval means that	
O The document text is grammatically deeply analyzed for indexing	
O The complete vocabulary of a language is used to extract index terms	
$\sqrt{\ }$ All words of a text are considered as potential index terms	
 All grammatical variations of a word are indexed 	
2. The term-document matrix indicates	
$\sqrt{}$ How many relevant terms a document contains	
○ How relevant a term is for a given document	
$\sqrt{}$ How often a relevant term occurs in a document collection	
Which relevant terms are occurring in a document collection	
3. Let the query be represented by the following vectors: $(1, 0, -1)$ $(0, -1, 1)$; document by the vector $(1, 0, 1)$	the
○ Matches the query because it matches the first query vector	
Matches the query because it matches the second query vector	r
O Does not match the query because it does not match the first query vec	tor
O Does not match the query because it does not match the second quevector	ery
4. Which is right? The term frequency is normalized	
$\sqrt{\ }$ By the maximal frequency of a term in the document	
O By the maximal frequency of a term in the document collection	
O By the maximal frequency of a term in the vocabulary	
O By the maximal term frequency of any document in the collection	
5. The inverse document frequency of a term can increase	
O By adding the term to a document that contains the term	
$\mbox{ By adding a document to a document collection that does a contain the term$	ıot
O By removing a document from the document collection that does not c tain the term	on-
O By adding a document to a document collection that contains the term	1

3.2 Advanced Retrieval Models (week 5)

3.2.1 Latent Semantic Indexing

1. In vector space retrieval each row of the matrix M^t corresponds to
$\sqrt{ m A~document}$
○ A concept
○ A query
○ A query result
 2. Applying SVD to a term-document matrix M. Each concept is represented
As a linear combination of documents in the document collection
\bigcirc As a least square approximation of the matrix ${f M}$
3. The number of term vectors in the SVD for LSI
\bigcirc Is smaller than the number of rows in the matrix ${f M}$
$\sqrt{\ }$ Is the same as the number of rows in the matrix M
\bigcirc Is larger than the number of rows in the matrix ${f M}$
4. A query transformed into the concept space for LSI has \sqrt{s} components (number of singular values)
\bigcirc m components (size of vocabulary)
\bigcirc n components (number of documents)
3.2.2 User Relevance Feedback
1. Can documents which do not contain any keywords of the original query receive a positive similarity coefficient after relevance feedback?
○ No
\bigcirc Yes, independent of the values β and γ
$\sqrt{\text{ Yes, but only if } \beta > 0}$
\bigcirc Yes, but only if $\gamma > 0$
3.2.3 Link-based Ranking
2. A positive random jump value for exactly one node implies that
a random walker can leave the node even without outgoing edges
 a random walker can reach the node multiple times even without outgoing edges
a random walker can reach the node even without incoming edges

- O none of the above
- 3. Given the graph below and an initial hub vector of (1,1,1). The hub-authority ranking will result in the following

- \bigcirc authority vector (0,0,1); hub vector (1,1,0)
- \bigcirc authority vector (0,0,2); hub vector (2,2,0)
- $\sqrt{\text{ authority vector }}(0,0,1)$; hub vector $(\frac{1}{2},\frac{1}{2},0)$
- \bigcirc authority vector (0,0,2); hub vector (1,1,0)

3.2.4 Inverted Files (week 6)

- 1. A posting indicates
 - O The frequency of a term in the vocabulary
 - O The frequency of a term in a document
 - $\sqrt{}$ The occurrence of a term in a document
 - O The list of terms occurring in a document
- 2. When indexing a document collection using an inverted file, the main space requirement is implied by

 - $\sqrt{\text{ The postings file}}$
- 3. Using a trie in index construction
 - Helps to quickly find words that have been seen before
 - O Helps to quickly decide whether a word has not seen before
 - O Helps to maintain the lexicographic order of words seen in the documents
 - $\sqrt{\text{ All of the above}}$
- 4. Maintaining the order of document identifiers when partitioning the document collection is important
 - $\sqrt{\ }$ In the index merging approach for single node machines

In the map-reduce approach for parallel clusters
○ In both
○ In neither of the two
3.2.5 Distributed Retrieval
1. When applying Fagin's algorithm for a query with three different terms for finding the k top documents, the algorithm will scan
○ 2 different lists
$\sqrt{\ 3\ ext{different lists}}$
$\bigcirc k$ different lists
it depends how many rounds are taken
2. Once k documents have been identified that occur in all of the lists
\bigcirc These are the top- k documents
$\sqrt{}$ The top- k documents are among the documents seen so far
\bigcirc The search has to continue in round-robin till the top- k documents are identified
\bigcirc Other documents have to be searched to complete the top- k list

Credits

Quiz questions were taken from the lecture notes of Prof. Karl Aberer.