CS 321: Homework #5

- 1. Pumping Lemma Technique
 - 1. Adversary picks a positive integer p
 - 2. You pick $w \in A$ with $|w| \ge p$
 - 3. Adversary splits up w into w = xyz with $|xy| \le p$ and |y| > 0
 - 4. You pick a nonnegative integer i

You win the game if $xy^iz \notin A$. If you can describe a strategy in which you *always* win, then A is not regular.

Prove languages are not regular...

a) $\{w \in \{a, b\}^* \mid \text{num}(aa, w) = \text{num}(bbb, w)\}$

Note: Be careful in your counting: bbbb contains the substring bbb two times.

- 1. Adversary picks a positive integer p.
- 2. I pick $w = ((aa)a^{p-1})^p ((bbb)b^{p-1})^p$

Satisfying $w \in A$ with $|w| = 2(2p - 1) = 4p - 1 \ge p$.

- 3. Adversary splits up w = xyz with $|xy| \le p$ and |y| > 0
- 4. I pick i = 2

 $xy^{i}z = xyyz$ has p + |y| number of aa's

p-1 number of *bbb*'s

Since $p + |y| \neq p - 1$, xy^iz is not $\in A$, proving the language is not regular.

b) $\{w \in \{a, b\}^* \mid |w| \text{ is a square number}\}$

Hint: Choose *i* so you can argue that the length of the resulting string is strictly between adjacent squares, i.e. $n^2 < |xy^iz| < (n+1)^2$ for some *n*.

- 1. Adversary picks a positive integer p.
- 2. I pick $w = a^{2p}$

Satisfying $w \in A$ with $|w| = 2p \ge p$.

- 3. Adversary splits up w = xyz with $|xy| \le p$ and |y| > 0
- 4. I pick i = 1/3

$$xy^i z = xy^{1/3} z$$

Since (1/3) is not a multiple of 2 with creating a square number for a w, $xy^{i}z$ is not \in A, proving the language is not regular.

2. Describe a CFL

a)
$$\{w \in \{0, 1\}^* \mid \overline{w} = \text{rev}(w)\}$$

Note: \overline{w} denotes flipping every bit in the string w, for example: $\overline{00101} = 11010$.

$$S \rightarrow A \mid B \mid C \mid D \mid \varepsilon$$

$$A \rightarrow A01 \mid \epsilon$$

$$B \rightarrow B10 \mid \epsilon$$

$$C \rightarrow 0C1 \mid \epsilon$$

$$D \rightarrow 1D0 \mid \epsilon$$

- Holds true for all the strings that are considered in the CFL.

b)
$$\{w \in \{a, b\}^* \mid \text{num}(a, w) = \text{num}(b, w)\}$$

Hint: Consider the following example where we graph num(a, w) - num(b, w) for all prefixes of w:

Imagine breaking up the string into pieces every time the graph crosses the x-axis. Look at the first and last character of each such piece and think recursively.

$$S \rightarrow Sab \mid Sba \mid aSb \mid bSa \mid abS \mid baS \mid \epsilon$$

- Makes sure that for every a, there's a b.

3. Describe a PDA

$$\{w \in \{a, b\}^* \mid \text{num}(aaa, w) = \text{num}(bb, w)\}$$

PDA does not consider...

- Non-aaa strings that are not substrings a aaa of the top-half of the graph
- An additional single b character to a bb string then accepting of the top-half of the graph
- An additional single *a* character or double *a* string to a *aaa* string then accepting of the bottom-half of the graph

where these cases should have been valid representations within this PDA.