TAKE-HOME CLASS QUIZ: DUE WEDNESDAY FEBRUARY 27: TAYLOR SERIES AND POWER SERIES

MATH 195, SECTION 59 (VIPUL NAIK)

Your name (print clearly in capital letters): FEEL FREE TO DISCUSS ALL QUESTIONS, BUT ONLY ENTER ANSWER CHOICES
THAT YOU PERSONALLY ENDORSE. DO NOT ENGAGE IN GROUPTHINK.
For these questions, we denote by $C^{\infty}(\mathbb{R})$ the space of functions from \mathbb{R} to \mathbb{R} that are infinitely differen-
tiable everywhere in \mathbb{R} . We denote by $C^k(\mathbb{R})$ the space of functions from \mathbb{R} to \mathbb{R} that are at least k times continuously differentiable
on all of \mathbb{R} . Note that for $k \geq l$, $C^k(\mathbb{R})$ is a subspace of $C^l(\mathbb{R})$. Further, $C^{\infty}(\mathbb{R})$ is the intersection of $C^k(\mathbb{R})$
for all k .
We say that a function f is analytic about c if the Taylor series of f about c converges to f on some open interval about c . We say that f is globally analytic if the Taylor series of f about 0 converges to f everywhere on \mathbb{R} .
It turns out that if a function is globally analytic, then it is analytic not only about 0 but about any other
point. In particular, globally analytic functions are in $C^{\infty}(\mathbb{R})$.
(1) Recall that if f is a function defined and continuous around c with the property that $f(c) = 0$, the order of the zero of f at c is defined as the least upper bound of the set of real β for which $\lim_{x\to c} f(x) / x-c ^{\beta} = 0$. If f is in $C^{\infty}(\mathbb{R})$, what can we conclude about the orders of zeros of f ? Two years ago: $11/26$ correct
(A) The order of any zero of f must be between 0 and 1.
(B) The order of any zero of f must be between 1 and 2.
(C) The order of any zero of f , if finite, must be a positive integer.
(D) The order of any zero of f must be exactly 1.
(E) The order of any zero of f must be ∞ .
Your answer:
(2) For the function $f(x) := x^2 + x^{4/3} + x + 1$ defined on \mathbb{R} , what can we say about the Taylor polynomials about 0? Two years ago: 8/26 correct
(A) No Taylor polynomial is defined for f .
(B) $P_0(f)(x) = 1$, $P_n(f)$ is not defined for $n > 0$.
(C) $P_0(f)(x) = 1$, $P_1(f)(x) = 1 + x$, $P_n(f)$ is not defined for $n > 1$.
(D) $P_0(f)(x) = 1$, $P_1(f)(x) = 1 + x$, $P_2(f) = f$, and $P_n(f)$ is not defined for $n > 2$.
(E) $P_0(f)(x) = 1$, $P_1(f)(x) = 1 + x$, $P_2(f) = f$, and $P_n(f) = f$ for all $n > 2$.
Your answer:
(3) Consider the function $F(x,p) = \sum_{n=1}^{\infty} x^n/n^p$. For fixed p , this is a power series in x . What can we say about the interval of convergence of this power series about $x=0$, in terms of p for $p \in (0,\infty)$?
Two years ago: 4/26 correct
(A) The interval of convergence is $(-1,1)$ for $0 and [-1,1] for p > 1.$
(B) The interval of convergence is $(-1,1)$ for $0 and [-1,1] for p \ge 1.$
(C) The interval of convergence is $[-1,1]$ for $0 and [-1,1] for p > 1.$
(D) The interval of convergence is $(-1,1]$ for $0 and [-1,1] for p \ge 1.$
(E) The interval of convergence is $(-1,1)$ for $0 and [-1,1) for p > 1.$
Your answer:
(4) Which of the following functions of x has a power series $\sum_{k=0}^{\infty} x^{4k}/(4k)$!? Two years ago: 9/26

correct

- (A) $(\sin x + \sinh x)/2$
- (B) $(\sin x \sinh x)/2$
- (C) $(\sinh x \sin x)/2$
- (D) $(\cosh x + \cos x)/2$
- (E) $(\cosh x \cos x)/2$

- (5) What is the sum $\sum_{k=0}^{\infty} (-1)^k x^{2k}/k!$? Note that the denominator is k! and not (2k)!. Two years ago: 12/26 correct
 - (A) $\cos x$
 - (B) $\sin x$
 - (C) $\cos(x^2)$
 - (D) $\cosh(x^2)$
 - (E) $\exp(-x^2)$

Your answer:	
--------------	--

- (6) Define an operator R from the set of power series about 0 to the set $[0, \infty]$ (nonnegative real numbers along with $+\infty$) that sends a power series $a = \sum a_k x^k$ to the radius of convergence of the power series about 0. For two power series a and b, a + b is the sum of the power series. What can we say about R(a + b) given R(a) and R(b)?
 - (A) $R(a+b) = \max\{R(a), R(b)\}$ in all cases.
 - (B) $R(a+b) = \min\{R(a), R(b)\}$ in all cases.
 - (C) $R(a+b) = \max\{R(a), R(b)\}$ if $R(a) \neq R(b)$. If R(a) = R(b), then R(a+b) could be any number greater than or equal to $\max\{R(a), R(b)\}$.
 - (D) $R(a+b) = \max\{R(a), R(b)\}$ if $R(a) \neq R(b)$. If R(a) = R(b), then R(a+b) could be any number less than or equal to $\max\{R(a), R(b)\}$.
 - (E) $R(a+b) = \min\{R(a), R(b)\}\$ if $R(a) \neq R(b)$. If R(a) = R(b), then R(a+b) could be any number greater than or equal to $\min\{R(a), R(b)\}$.

Your answer:	
--------------	--

- (7) Which of the following is/are true? Two years ago: 5/26 correct
 - (A) If we start with any function in $C^{\infty}(\mathbb{R})$ and take the Taylor series about 0, the Taylor series converges everywhere on \mathbb{R} .
 - (B) If we start with any function in $C^{\infty}(\mathbb{R})$ and take the Taylor series about 0, the Taylor series converges to the original function on its interval of convergence (which may not be all of \mathbb{R}).
 - (C) If we start with a power series about 0 that converges everywhere in \mathbb{R} , then the function it converges to is in $C^{\infty}(\mathbb{R})$ and its Taylor series about 0 equals the original power series.
 - (D) All of the above.
 - (E) None of the above.

Your a
Your a

- (8) Consider the function $f(x) := \sum_{k=0}^{\infty} x^k/2^{k^2}$. The power series converges everywhere, so f is a globally analytic function. What is the best description of the manner in which f grows as $x \to \infty$? Two years ago: 12/26 correct
 - (A) f grows polynomially in x.
 - (B) f grows faster than any polynomial function but slower than any exponential function of x (i.e., any function of the form $x \mapsto e^{mx}, m > 0$).
 - (C) f grows like an exponential function of x, i.e., it can be sandwiched between two exponentially growing functions of x.
 - (D) f grows faster than any exponential function but slower than any doubly exponential function of x. Here, doubly exponential means something of the form $e^{ae^{bx}}$ where a and b are both positive.
 - (E) f grows like a doubly exponential function of x. Here, doubly exponential means something of the form $e^{ae^{bx}}$ where a and b are both positive.

Your answer: _ (9) Consider the function $f(x) := \sum_{k=0}^{\infty} x^k / (k!)^2$. The power series converges everywhere, so the function is globally analytic. What pair of functions bounds f from above and below for x > 0? Two years ago: 12/26 correct (A) $\exp(x)$ from below and $\cosh(2x)$ from above. (B) $\exp(x)$ from below and $\cosh(x^2)$ from above. (C) $\exp(x/2)$ from below and $\exp(x)$ from above. (D) $\cosh(\sqrt{x})$ from below and $\exp(x)$ from above. (E) $\cosh(2x)$ from below and $\cosh(x^2)$ from above. Your answer: (10) Consider the function $f(x) := \max\{0, x\}$. What can we say about the Taylor series of f centered at various points? (A) The Taylor series of f centered at any point is the zero series. (B) The Taylor series of f centered at any point simplifies to x. (C) The Taylor series of f centered at any point other than zero converges to f globally. However, the Taylor series centered at 0 is not defined. (D) The Taylor series of f centered at any point is either the zero series or simplifies to x. (E) The Taylor series of f centered at any point other than the point 0 is either the zero series or simplifies to x. However, the Taylor series is not defined at 0. Your answer: (11) Which of the following functions is in $C^{\infty}(\mathbb{R})$ but is not analytic about 0? Two years ago: 3/26 correct
(A) $f_1(x) := \begin{cases} (\sin x)/x, & x \neq 0 \\ 1, & x = 0 \end{cases}$ (B) $f_2(x) := \begin{cases} e^{-1/x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$ (C) $f_3(x) := \begin{cases} e^{-1/x^2}, & x \neq 0 \\ 0, & x = 0 \end{cases}$ (D) $f_4(x) := \begin{cases} \sin(1/x), & x \neq 0 \\ 0, & x = 0 \end{cases}$ (E) All of the above. Your answer: (12) Which of the following functions is in $C^{\infty}(\mathbb{R})$ and is analytic about 0 but is not globally analytic? Two years ago: 7/26 correct (A) $x \mapsto \ln(1+x^2)$ (B) $x \mapsto \ln(1+x)$ (C) $x \mapsto \ln(1-x)$ (D) $x \mapsto \exp(1+x)$ (E) $x \mapsto \exp(1-x)$ Your answer: (13) Suppose f and g are globally analytic functions and g is nowhere zero. Which of the following is not necessarily globally analytic? (A) f + g, i.e., the function $x \mapsto f(x) + g(x)$ (B) f - g, i.e., the function $x \mapsto f(x) - g(x)$

(C) fg, i.e., the function $x \mapsto f(x)g(x)$ (D) f/g, i.e., the function $x \mapsto f(x)/g(x)$

(14)	Which of the following is an example of a globally analytic function whose reciprocal is in $C^{\infty}(\mathbb{R})$ but is not globally analytic? Two years ago: $10/26$ correct (A) x (B) x^2 (C) $x+1$ (D) x^2+1
	(E) e^x Your answer:
(15)	Consider the rational function $1/\prod_{i=1}^n(x-\alpha_i)$, where the α_i are all distinct real numbers. This rational function is analytic about any point other than the α_i s, and in particular its Taylor series converges to it on the interval of convergence. What is the radius of convergence for the Taylor series of the rational function about a point c not equal to any of the α_i s? Two years ago: $10/26$ correct (A) It is the minimum of the distances from c to the α_i s. (B) It is the second smallest of the distances from c to the α_i s. (C) It is the arithmetic mean of the distances from c to the α_i s. (E) It is the maximum of the distances from c to the α_i s.
	Your answer:
(16)	What is the interval of convergence of the Taylor series for arctan about 0? Two years ago: $11/26$ correct (A) $(-1,1)$ (B) $[-1,1)$ (C) $(-1,1]$ (D) $[-1,1]$ (E) All of $\mathbb R$
	Your answer:
(17)	What is the radius of convergence of the power series $\sum_{k=0}^{\infty} 2^{\sqrt{k}} x^k$? Please keep in mind the square root in the exponent. (A) 0 (B) $1/2$ (C) $1/\sqrt{2}$ (D) 1 (E) infinite
	Your answer: