Assignment 1

To be completed by September 6th, 3pm

1. Consider a multinomial logit model where the utility for choosing the jth option is $U_{ij} = X_i\beta_j + \epsilon_{ij}$ with the utility of option 0 is zero. Show that expected utility of the best choice is given by:

$$E(V_i) = \ln\left(\sum_{j} \exp(X_i \beta_j)\right) + \gamma$$

where γ is Euler's constant.

- 2. For this problem use dataassign1.mat which has data on the choices (the Y's) and data on the regressors (the X_1 's, the X_2 's, and Z's). The X_1 and X_2 variables are individual-level characteristics so the coefficients on these variables need to vary by choice. Each of the columns of the Z variable refer to a choice-specific attribute and hence the coefficient on this variable is common across the choices. Using Matlab¹ (Gauss, C, Fortran, and R are also acceptable—Stata is not), estimate the following:
 - (a) a multinomial logit model with X_1 and Z as the regressors
 - (b) a nested logit model with the same regressors as in a) with Y=1 and Y=2 in one nest and Y=0 in the other
 - (c) a multinomial logit model with X_1 , X_2 , and Z as the regressors
 - (d) a nested logit model with the same regressors as in c) where Y=1 and Y=2 in one nest and Y=0 in the other
- 3. Use dataasign2.mat to estimate models of the BST framework. X_1 and Z match the descriptions in 2). For the overlapping nests, one nest has $\{1,2\}$ and $\{3,4\}$ while the other has $\{1,3\}$ and $\{2,4\}$. All utilities are normalized with respect to choice 0.

¹If you use Matlab, use fminunc for unconstrained minimization