Tutorial of ST5215

AY2020/2021 Semester 1

20 Aug 2020

Exercise 1 (Generalization of Hölder's inequality). For 0 and <math>q = -p/(1-p)

$$E|XY| \ge (E|X|^p)^{1/p} (E|Y|^q)^{1/q}$$

Exercise 2 (Generalization of Minkowski's inequality).

$$\left(E\left(\sum_{j=1}^{n} |X_j| \right)^r \right)^{1/r} > \sum_{j=1}^{n} \left(E |X_j|^r \right)^{1/r} \quad \text{for } 0 < r < 1$$

- Exercise 3 Let Y be measurable from (Ω, \mathcal{F}) to (Λ, \mathcal{G}) and Z a function from (Ω, \mathcal{F}) to \mathcal{R}^k . If Z is Borel on $(\Omega, \sigma(Y))$, then there is a Borel function h from (Λ, \mathcal{G}) such that $Z = h \circ Y$
- Exercise 4 Let ϕ_X be a ch.f. of X. Show that $|\phi_X| \leq 1$, and uniformly continuous.
- Exercise 5 Find the ch.f. and m.g.f. for the Cauchy distribution (i.e., P_X has p.d.f. $f(x) = (\pi(1+x^2))^{-1}$
- Exercise 6 If X_i has the Cauchy distribution C(0,1), $i=1,\ldots,k$, then Y/k has the same distribution as X_1 .