

Lab 11 Answer Sheet

Name & Std. No.: Riley Lawson 116555487 Lab Section: 6

Date: 11/12/2020

Submission Instructions:

Prelab:

- 1. Complete the prelab
- 2. Submit this report with the prelab completed to Canvas before your lab starts

Lab:

- 1. Complete the lab according to the instructions
- 2. Take screenshots of your ModelSim waveform (note: to receive points your NetID has to be present in the screenshot) and insert them into this document.
- 3. Include screenshots of any related block design files or Verilog files in the report
- 4. Complete this report and reupload it to Canvas

Lab 11 Answer Sheet

PRELAB:

Complete the prelab and make sure you have your designs and circuit diagrams ready before the lab session. You may refer to your text book, Chapter 6.

Q1. Design a simple counting device (Section 2.0).

Number of States: 6

Number of State Variables: 4

State Table:

State Table.				
Present State	Next State		Output	
	w=0	w=1	Output	
Α	Α	В	0	
В	В	С	1	
С	С	D	2	
D	D	E	3	
E	E	F	4	
F	F	Α	5	

State-Assigned Table:

Present State	Next State		Output
	w=0	w=1	
000	000	001	000
001	001	010	001
010	001	100	010
011	001	100	011
100	100	101	100
101	101	000	101

Canonical SOP Expressions for Next State Logic:

Y0 = |w|y1|y0 + |w|y2|y0 + w|y1|y0 + w|y2|y0

Y1 = |w|y2|y1y0 + w|y2y1 + |y2y1|y0

 $Y2 = \frac{1}{2} w!y2!y1y0 + y2!y1!y0 + wy2!y1$

Simplified Next State Logic Expressions:

Y0 = w XOR y0

Y1 = wy0 XOR y1

Y2 = wY0Y! XOR y2

Lab 11 Answer Sheet

Circuit Diagram:

Q2. Design a simple counter (Section 3.0).

Number of States: 4

Number of State Variables: 5

State Table:

Present State	Next State		Qutaut
	w=0	w=1	Output
А	А	В	0
В	В	С	2
С	С	D	4
D	D	А	5

State-Assigned Table:

Present State	Next State		Output
	w=0	w=1	Output
000	000	010	000
010	010	100	010
100	100	101	100
101	101	000	101

Canonical SOP Expressions for Next State Logic:

Y1 = !Q1wQ0 + Q1!w!Q0

Y2 = !wQ0 + w!Q0

Lab 11 Answer Sheet

```
Simplified Logic Expressions:
Y1 = Q1 XOR wQ0
Y2 = !wQ0 XOR Q0
Next State Logic Verilog Code:
     module circuit nsl(w, Q1, Q0, Y1, Y0);
           input w, Q1, Q0;
           output Y1, Y0;
           assign Y0 = w ^ Q0;
           assign Y1 = Q1 ^ (w \& Q0);
     endmodule
Output Logic Verilog Code:
     module circuit ol(Q1, Q0, Z2, Z1, Z0);
           input Q1, Q0;
           output reg Z2, Z1, Z0;
           always @(Q1 or Q0)
           begin
                 case({Q1,Q0})
                2'b00: \{Z2, Z1, Z0\} = 3; b000;
                 2'b01: \{Z2, Z1, Z0\} = 3; b010;
                 2'b10: \{Z2, Z1, Z0\} = 3; b100;
                 2'b11: \{Z2, Z1, Z0\} = 3; b101;
                endcase
     endmodule
```

LAB:

Lab 11 Answer Sheet

2.0 A Simple Counting Device

Screenshots:

<<<Insert a screenshot of your module-6 counter BDF here>>>

<<< Insert a screenshot of your waveform for your modulo-6 counter here>>>

Lab 11 Answer Sheet

3.0 A Simple Counter

Screenshots:

<<<Insert a screenshot of your simple counter here>>>

Lab 11 Answer Sheet

<<<Insert a screenshot of your output logic here>>> module circuit_ol (Q1, Q0, Z2, Z1, Z0); input Q1, Q0; output reg Z2, Z1, Z0; always @(Q1 or Q0) begin] case({Q1 or Q0}) 2'b00: {z2, z1, z0} = 3'b000; 2'b01: {z2, z1, z0} = 3'b010; 2'b10: {z2, z1, z0} = 3'b100; 2'b11: {z2, z1, z0} = 3'b101; endcase end endmodule 🔙 📝 📗 🔻 This PC \times **Drive Tools** Computer View > This PC rjlawson (\\my.files.ia Quick access

<<< Insert a screenshot of your waveform for your simple counter here>>>

