

TEORÍA DE GRAFOS

UNIDAD 2. SUBGRAFOS

SUBGRAFO

Definición: Se dice que un grafo H es un subgrafo de un grafo G si y sólo si, cada vértice en H es también un vértice en G, cada arista en H es también una arista en G y cada arista en H tiene los mismos puntos extremos de G.

 $f_G(a2) = (2, 3), f_G(a3) = (3, 4),$ $F_G = \int f_G(a4) = (4, 5), f_G(a7) = (4, 1),$ $f_G(a8) = (1, 3),$

SUBGRAFO COBERTOR

Definición: un subgrafo H de G se llama cobertor si contiene a todos los vértices de G.

VÉRTICES DISYUNTOS

Definición: Dos o más subgrafo de un grafo G son vértices-disyuntos, si no poseen vértices comunes.

$$G = (V, A, f)$$

$$G(V) = \{1, 2, 3, 4, 5\}$$

$$f(A) = \{a1,a2,a3,a4,a5,a6,a7,a8, a9,a10\}$$

$$\begin{cases} f_G(a1) = (1, 2), f_G(a2) = (2, 3), \\ f_G(a3) = (3, 4), f_G(a4) = (4, 5), \\ f_G(a5) = (5, 2), f_G(a6) = (2, 4), \\ f_G(a7) = (4, 1), f_G(a8) = (1, 3), \\ f_G(a9) = (3, 5), f_G(a10) = (5, 1), \end{cases}$$

VÉRTICES DISYUNTOS

Subgrafo H3

Subgrafo H4

$$G = (V, A, f)$$

$$G(V) = \{1, 2, 5\}$$

$$f(A) = \{a1,a10\}$$

$$F_G = \left[f_G(a1) = (1, 2), f_G(a10) = (5, 1), \right]$$

G = (V, A, f)
G(V) = {3, 4 }
f(A) = {a3 }

$$F_{G} = \int_{-1}^{1} f_{G}(a3) = (3, 4)$$

El subgrafo H3 es vérticedisyunto del subgrafo H4

ARISTAS DISYUNTAS

Definición: Dos o más subgrafo de un grafo G son aristas-disyuntos, si ellos no poseen aristas comunes.

$$G = (V, A, f)$$

$$G(V) = \{1, 2, 3, 4, 5\}$$

$$f(A) = \{a1,a2,a3,a4,a5,a6,a7,a8, a9,a10\}$$

$$\begin{cases} f_{G}(a1) = (1, 2), f_{G}(a2) = (2, 3), \\ f_{G}(a3) = (3, 4), f_{G}(a4) = (4, 5), \\ f_{G}(a5) = (5, 2), f_{G}(a6) = (2, 4), \\ f_{G}(a7) = (4, 1), f_{G}(a8) = (1, 3), \\ f_{G}(a9) = (3, 5), f_{G}(a10) = (5, 1), \end{cases}$$

ARISTAS DISYUNTAS

Los subgrafos H5 y H6 son aristasdisyuntas ya que no tienen aristas en comunes

$$G = (V, A, f)$$

$$G(V) = \{ 2, 3, 4, 5 \}$$

$$f(A) = \{a2,a3,a4 \}$$

$$F_G = \begin{cases} f_G(a2) = (2, 3), f_G(a3) = (3, 4), \\ f_G(a4) = (4, 5), \end{cases}$$

RESTANTE AL SUPRIMIR UN CONJUNTO DE VÉRTICES

Definición: Sea G un grafo con $|V| \ge 2$ y sea $V' \in V$, la operación supresión de V' consiste en suprimir de G los vértices de V' y las aristas incidentes en ellos. Se denota $G - \{V'\}$.

Ejemplo: $G - \{5\}$.

Grafo G

$$F_G = \begin{cases} f_G(a1) = (1, 2), f_G(a2) = (2, 3), \\ f_G(a3) = (3, 4), f_G(a4) = (4, 5), \\ f_G(a5) = (5, 2), f_G(a6) = (2, 4), \\ f_G(a7) = (4, 1), f_G(a8) = (1, 3), \\ f_G(a9) = (3, 5), f_G(a10) = (5, 1), \end{cases}$$

 $f(A) = \{a1,a2,a3,a4,a5,a6,a7,a8,$

G = (V, A, f)

 $G(V) = \{1, 2, 3, 4, 5\}$

a9,a10}

SUPRIMIR UN CONJUNTO DE ARISTAS

Definición: Si A' \in A, la operación supresión de A' consiste en suprimir de G las aristas de A'. se denota $G - \{A'\}$

Ejemplo: $G - \{a5, a7, a8\}.$

$$G = (V, A, f)$$

$$G(V) = \{1, 2, 3, 4, 5\}$$

$$f(A) = \{a1,a2,a3,a4,a6,a9,a10\}$$

$$F_G = \begin{cases} f_G(a1) = (1, 2), f_G(a2) = (2, 3), \\ f_G(a3) = (3, 4), f_G(a4) = (4, 5), \\ f_G(a6) = (2, 4), f_G(a9) = (3, 5), \\ f_G(a10) = (5, 1), \end{cases}$$

a1

3

a2