Università degli studi di Torino

SCUOLA DI SCIENZE DELLA NATURA

Corso di Laurea Magistrale in Fisica

Tesi di Laurea Magistrale

TESTING OF THE TD26 TYPE CAVITY UNDER BEAM LOADING FOR THE CLIC PROJECT

Relatore: Prof. Martino Gagliardi

Controrelatore: Prof. ???

Candidato: Eugenio Senes

Anno Accademico 2015/2016

Considerate la vostra semenza: fatti non foste a viver come bruti, ma per seguir virtute e canoscenza

> Dante, La Divina Commedia Canto XXVI

Abstract

A new generation of colliders capable of reaching TeV energies is under development nowadays, and to succede in this task is necessary to show that the technology for such machine is available. The CLIC project is one of the most advanced design among the possible lepton colliders, and is formed by two normal conducting LINACs. To reach such high energies are necessary accelerating structures carrying gradient beyond 100MV/m and one of the biggest limitations is developing accelerating structures that present a sufficient low occurrence of vacuum arcs. This is pursued both with the design and the conditioning, which is the process of increasing the resilience to vacuum arcs of a structure using repetitive RF pulsing sessions.

The focus of this work is on the breakdown rate testing of the TD26 type cavity with and without beam presence inside. At CERN this test has been carried out on the cavity installed in the *dogleg* line in the CLIC-test-facility 3 (CTF3), and connected on the RF side to the X-band test stand 1 (Xbox1).

Other peculiar properties of the operation have been studied also, such has beam-induced RF generation into the cavity after the breakdowns, breakdown migration,

Italian abstract

(Translate once you have the ok to the english one)

Contents

In	\mathbf{trod}	uction	1
	0.1	The CLIC poject and the CTF3 facility	1
	0.2	ı v	1
	0.3		2
1	The	eoretical background	3
	1.1	Vacuum arcs	3
			3
		<u> </u>	4
			4
	1.2		4
2	Exp	perimental setup	5
	2.1	<u>.</u>	5
	2.2		5
	2.3	1 0	6
			6
			6
	2.4		6
3	Dat	a analysis tools	7
	3.1	·	7
	3.2		7
	3.3		7
	3.4	9	7
	3.5		7
4	Res	ults and future developments	8
	4.1	<u>-</u>	8
	4.2		8
Bi	bliog	graphy 1	.1

Introduction

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Sed dui sem, aliquam id ultricies sit amet, fermentum at magna. Aenean vitae rhoncus leo. Fusce gravida consequat lacus, a porta risus bibendum semper. Morbi eget auctor velit. Pellentesque eu lacinia nisi. Maecenas sed orci eu erat porta imperdiet ac non dui. Pellentesque a odio ac quam euismod tempor. Nulla in dapibus mauris, a sodales ex. In imperdiet enim sed ornare sollicitudin. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Donec vehicula metus eu nisi ornare euismod. Proin at ex non ex iaculis porta.

0.1 The CLIC poject and the CTF3 facility

In lobortis augue porta dui venenatis sollicitudin. In sagittis quis ipsum non dictum. Sed tempus, quam non vehicula dictum, mauris nisl posuere metus, eu lobortis odio risus at dui. Nullam non ante vulputate nulla ultrices euismod eu a diam. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Nulla nec augue a risus viverra mattis. Ut tincidunt egestas nulla at semper. Fusce pretium, leo quis consectetur viverra, arcu lectus ornare leo, quis commodo ex risus sit amet velit. Nullam finibus lorem in mi tincidunt, sed feugiat lectus tincidunt. In hac habitasse platea dictumst. Sed quis auctor odio, at sodales nunc. Donec vulputate massa sit amet dolor sollicitudin, vel pretium quam scelerisque. Nullam et massa eleifend, venenatis ante vitae, ornare libero. Suspendisse potenti. Nam ante lacus, porttitor vel turpis quis, pellentesque auctor velit.

0.2 Scope and outline of the thesis

Morbi eget elementum tellus. Sed varius lacus ac nulla maximus, et varius lacus varius. Nulla faucibus magna sit amet magna auctor, vitae placerat turpis imperdiet. Duis blandit bibendum tellus nec accumsan. Aliquam arcu nulla, efficitur vitae sodales eu, tincidunt ac tortor. Cras gravida vulputate porttitor. Etiam ornare est at efficitur convallis. Quisque pulvinar tellus pulvinar lacus tristique, bibendum dapibus velit ultricies. Suspendisse id faucibus dui. Sed quis convallis dui. Etiam aliquam suscipit eros id pellentesque. Aliquam a suscipit leo, sit amet convallis dui. Donec sed pretium quam. Mauris nec tincidunt mi, in feugiat quam.

0.3 Goals

Sed convallis pulvinar dui et ullamcorper. Maecenas facilisis, ante a tristique convallis, nunc ipsum fermentum odio, a auctor ligula risus ut nibh. Praesent sit amet tempus metus. Proin enim ipsum, mollis in nunc sed, tempus tempor magna. Nam ultricies lacus et porttitor bibendum. Suspendisse sit amet placerat nibh. Curabitur rutrum massa eu tortor sodales iaculis. Mauris sit amet odio eget velit tempus auctor. Pellentesque nec posuere neque. Nam in orci vehicula, ullamcorper sapien quis, pellentesque mauris. Sed eu porta ex.

Theoretical background

Lorem ipsum dolor sit amet¹, consectetur adipiscing elit. Sed dui sem, aliquam id ultricies sit amet, fermentum at magna. Aenean vitae rhoncus leo. Fusce gravida consequat lacus, a porta risus bibendum semper. Morbi eget auctor velit. Pellentesque eu lacinia nisi. Maecenas sed orci eu erat porta imperdiet ac non dui. Pellentesque a odio ac quam euismod tempor. Nulla in dapibus mauris, a sodales ex. In imperdiet enim sed ornare sollicitudin. Pellentesque² habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Donec vehicula metus eu nisi ornare euismod. Proin at ex non ex iaculis porta.

1.1 Vacuum arcs

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Sed dui sem, aliquam id ultricies sit amet, fermentum at magna. Aenean vitae rhoncus leo. Fusce gravida consequat lacus, a porta risus bibendum semper. Morbi eget auctor velit. Pellentesque eu lacinia nisi. Maecenas sed orci eu erat porta imperdiet ac non dui. Pellentesque a odio ac quam euismod tempor. Nulla in dapibus mauris, a sodales ex. In imperdiet enim sed ornare sollicitudin. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Donec vehicula metus eu nisi ornare euismod. Proin at ex non ex iaculis porta. Here I want to test[1] some[2] quote[3]

[] [] [

1.1.1 General background

Nulla interdum molestie bibendum. Quisque condimentum justo quis lectus pretium, eget porttitor odio elementum. In dignissim sed justo et congue. In pulvinar feugiat odio eu vehicula. In ut malesuada est, sit amet porttitor dolor. Donec ullamcorper libero eros, vitae blandit nibh pellentesque quis. Aliquam aliquet ex id sapien lobortis, at molestie sem commodo. Donec quis accumsan lectus. Sed eget turpis id mi iaculis accumsan. Maecenas eget rutrum leo. Nam eu purus vitae lorem semper vestibulum. Phasellus mattis euismod faucibus.

¹first foot note

²another foot note

Vestibulum ornare sem a mattis placerat. Donec interdum blandit erat, eu iaculis risus cursus sed. Donec magna sem, finibus nec scelerisque nec, auctor in turpis.

1.1.2 Applications in particle accelerators

Morbi eget elementum tellus. Sed varius lacus ac nulla maximus, et varius lacus varius. Nulla faucibus magna sit amet magna auctor, vitae placerat turpis imperdiet. Duis blandit bibendum tellus nec accumsan. Aliquam arcu nulla, efficitur vitae sodales eu, tincidunt ac tortor. Cras gravida vulputate porttitor. Etiam ornare est at efficitur convallis. Quisque pulvinar tellus pulvinar lacus tristique, bibendum dapibus velit ultricies. Suspendisse id faucibus dui. Sed quis convallis dui. Etiam aliquam suscipit eros id pellentesque. Aliquam a suscipit leo, sit amet convallis dui. Donec sed pretium quam. Mauris nec tincidunt mi, in feugiat quam.

1.1.3 Interaction with the RF

1.2 Signal processing techniques

In lobortis augue porta dui venenatis sollicitudin. In sagittis quis ipsum non dictum. Sed tempus, quam non vehicula dictum, mauris nisl posuere metus, eu lobortis odio risus at dui. Nullam non ante vulputate nulla ultrices euismod eu a diam. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Nulla nec augue a risus viverra mattis. Ut tincidunt egestas nulla at semper. Fusce pretium, leo quis consectetur viverra, arcu lectus ornare leo, quis commodo ex risus sit amet velit. Nullam finibus lorem in mi tincidunt, sed feugiat lectus tincidunt. In hac habitasse platea dictumst. Sed quis auctor odio, at sodales nunc. Donec vulputate massa sit amet dolor sollicitudin, vel pretium quam scelerisque. Nullam et massa eleifend, venenatis ante vitae, ornare libero. Suspendisse potenti. Nam ante lacus, porttitor vel turpis quis, pellentesque auctor velit.

Sed convallis pulvinar dui et ullamcorper. Maecenas facilisis, ante a tristique convallis, nunc ipsum fermentum odio, a auctor ligula risus ut nibh. Praesent sit amet tempus metus. Proin enim ipsum, mollis in nunc sed, tempus tempor magna. Nam ultricies lacus et porttitor bibendum. Suspendisse sit amet placerat nibh. Curabitur rutrum massa eu tortor sodales iaculis. Mauris sit amet odio eget velit tempus auctor. Pellentesque nec posuere neque. Nam in orci vehicula, ullamcorper sapien quis, pellentesque mauris. Sed eu porta ex.

Experimental setup

2.1 The LINAC and the Dogleg

Bullet list example

- first point
- second point
- third point

2.2 RF power generation

Enumeration example

- 1. first point
- 2. second point
- 3. third point

Description example

first descr first point

second descr second point

third descr third point

2.3 DAQ system

2.3.1 Hardware

2.3.2 Online selection of the events

describe the online, but then the offline is in the next chapter ... but you can also build nested lists

- first point
 - first point
 - second point
- second point
- third point

2.4 Other systems

mention here thermal systems for the structure and something else???

Data analysis tools

3.1 Offline selection of the events

A tabular example

Tit1	Tit2
el1	el2
el1	el2
el1	el2

but tabulars cannot be captioned! (are in text elements)

Using the table environment, the caption works! BUT BECOMES FLOAT-ING OBJECTS (in fact is on the bottom of the page due to no more text inserted afterwards).

Same thing for the figure environment

- 3.2 Time and space positioning of the breakdowns
- 3.3 Migration of the breakdowns
- 3.4 Beam induced RF
- 3.5 Neural network based events selection

1	2	3
4	5	6
7	8	9

Table 3.1: A simple table

Results and future developments

4.1 Results

A figure example, with text in line (NO CAPTION)

A figure example, with floating object and caption

4.2 Further developments

Figure 4.1: the logo of UniTo

List of Figures

4.1 the logo of UniTo	
-----------------------	--

List of Tables

3.1	A simple table.														

Bibliography

- [1] A. Einstein, "Zur Elektrodynamik bewegter Körper. (German) [On the electrodynamics of moving bodies]," *Annalen der Physik*, vol. 322, no. 10, pp. 891–921, 1905.
- [2] M. Goossens, F. Mittelbach, and A. Samarin, *The LATEX Companion*. Reading, Massachusetts: Addison-Wesley, 1993.
- [3] D. Knuth, "Knuth: Computers and typesetting."