Convex order condition

Let $(X_t)_{t>0}$ denote a martingale. Then for $0 \le T_1 \le T_2$:

$$\mathbb{E}((X_{T_2} - K)^+) = \mathbb{E}(\mathbb{E}((X_{T_2} - K)^+ | X_{T_1})) \quad \text{(from the tower property}$$

$$\geq \mathbb{E}(\mathbb{E}(X_{T_2} - K | X_{T_1})^+)$$
(from the **conditional Jensen inequality** applied to the convex function $f(x) = (x - K)^+$)
$$= \mathbb{E}((X_{T_1} - K)^+).$$

Hence we see that call option prices with maturity T_2 are \geq call option prices with maturity T_1 . This is known as the **convex ordering** condition, which we can write as $\mu_{T_1} \leq \mu_{T_2}$, where μ_t denotes the density of X_t .

Bass martingale with random initial starting distribution

Let B^{α} denote a Brownian motion with $B_0^{\alpha} \sim \alpha$ (i.e. a random initial starting point with density α). Then the density of B_t^{α} is

$$\int_{-\infty}^{\infty} R_t(y-x)\alpha(x)dx = (R_t * \alpha)(y).$$

Moreover

$$\mathbb{E}(F(B_1^{\alpha})|B_t^{\alpha} = x) = \int_{-\infty}^{\infty} R_{1-t}(y-x)F(y)dy = (R_{1-t} * F)(x).$$

Now let $M_t = \mathbb{E}(F(B_1^{\alpha})|B_t^{\alpha})$ for $t \in (0,1]$. We wish to choose α so that $M_0 \sim \mu_0$ and $M_1 \sim \mu_1$, for two given distributions μ_0 and μ_1 (both with zero expectations), with μ_0, μ_1 in convex order.

Then

$$M_t = (R_{1-t} * F)(B_t^{\alpha}). \tag{1}$$

Let μ be a probability density. We define the **push-forward** $F_{\#}\mu$ of μ by F as the distribution of F(X) if $X \sim \mu$, so

$$\mathbb{P}(F(X) \le x) = \mathbb{P}(X \le F^{-1}(x)) = \int_{-\infty}^{F^{-1}(x)} \mu(y) dy$$

Thus if μ_t denotes the density of M_t , (1) implies that

$$\mu_t = (R_{1-t} * F)_{\#}(R_t * \alpha)$$

since the distribution of B_t is $R_t * \alpha$. In particular

$$\mu_0 = (R_1 * F)_{\#}(\alpha)
\mu_1 = F_{\#}(R_1 * \alpha)$$
(2)

since $R_0 * f = f$ for any f.

Deriving the fixed point equation for the distribution function of α

Recall that for two probability densities ν_1 and ν_2 , for $h = G_{\nu_1}^{-1}(G_{\nu_2})$, $\nu_1 = h_{\#}\nu_2$. Applying this to (2) (assuming F is strictly increasing) we see that

$$R_{1} * F = G_{\mu_{0}}^{-1} \circ G_{\alpha}$$

$$F = G_{\mu_{1}}^{-1} \circ G_{R_{1}*\alpha} = G_{\mu_{1}}^{-1} \circ (R_{1} * G_{\alpha})$$
(3)

using that $G_{R_1*\alpha} = R_1*G_\alpha$. To check this identity, we take derivatives of the right hand side wrt x to get

$$\frac{d}{dx}\int_{-\infty}^{\infty}R_1(y)G_{\alpha}(x-y)dy = \int_{-\infty}^{\infty}R_1(y)G'_{\alpha}(x-y)dy = \int_{-\infty}^{\infty}R_1(y)\alpha(x-y)dy = (R_1*\alpha)(x).$$

Then using (3) and then (4), we see that

$$G_{\alpha} = G_{\mu_0} \circ (R_1 * F) = G_{\mu_0} \circ (R_1 * (G_{\mu_1}^{-1} \circ (R_1 * G_{\alpha}))) = \Phi(G_{\alpha})$$

where Φ is shorthand for the all operators successively being applied to G_{α} on the right hand side. This is conceptually similar to a simple non-linear 1d equation of the form x = g(x) in first year Numerical analysis, which we can solve using the fixed point method $x_{n+1} = g(x_n)$ if |g'(x)| < 1. We can use the same method here except now the scalar x_n is replaced by a function G_{α}^n , so the iterative scheme becomes

$$G_{\alpha}^{n+1} = \Phi(G_{\alpha}^{n})$$

which (under suitable conditions) converges to a function $G_{\alpha}^{\infty}(.)$, which is the desired cdf for α so as to make $M_0 \sim \mu_0$ and $M_1 \sim \mu_1$. Note once we have G_{α} can compute the distribution of B_1^{α} and hence the required function F to make $F(B_1^{\alpha})) \sim \mu_1$.