Колоризация черно-белых изображений на основе искусственных нейронных сетей

Студент: Карпухин Александр Сергеевич, ИУ7-81Б

Руководитель: Исаев Андрей Львович

Актуальность метода

- колоризация:
 - черно-белых и выцветших фотографий
 - художественных фильмов
 - документальной хроники
 - записей с камер видеонаблюдения
- восстановление в алгоритмах сжатия с потерями

Цель и задачи работы

Цель работы — разработка метода колоризации черно-белых изображений на основе искусственных нейронных сетей.

Задачи работы:

- анализ архитектур нейронных сетей и существующих нейросетевых алгоритмов колоризации;
- выбор архитектуры для разработки на ее основе метода колоризации черно-белых изображений;
- разработка метода колоризации, в частности, архитектуры искусственной нейронной сети;
- разработка и тестирование программного обеспечения, реализующего разработанный метод;
- исследование применимости разработанного метода.

Существующие архитектуры

Архитектура	Учет пространственного расположения объектов	Инвариантность к пространственным преобразованиям	Масштабируемость	Вычислительная сложность
Многослойный перцептрон	Нет	Низкая	Высокая	Высокая
Когнитрон	Да	Низкая	Средняя	Средняя
Неокогнитрон	Да	Средняя	Средняя	Средняя
Сверточная нейронная сеть	Да	Высокая	Высокая	Низкая

Существующие решения

Решение	Качество колоризации	Вычислительная сложность	Колоризация изображений произвольного разрешения	Используемый подход
Let there be Color!	Высокое	Высокая	Да	Объединение глобальных и локальных признаков
Colorful Image Colorization	Среднее	Средняя	Нет	Сегментация цветового пространства
Residual encoder	Низкое	Средняя	Нет	Остаточные связи

Основные недостатки — требовательность к характеристикам вычислительной системы и неприменимость некоторых решений к изображениям произвольного разрешения.

Постановка задачи

Ограничения:

- минимальное разрешение изображения 32 на 32 пикселя
- входное изображение в формате: BMP, GIF, EXIF, JPG, PNG, TIFF

Метод колоризации черно-белых изображений

Обработка нейронной сетью: извлечение признаков

Обработка нейронной сетью: назначение цветов пикселям

Функция активации Softmax:

$$y_i = \frac{e^{\hat{x}_i}}{\sum_{j=1}^K e^{\hat{x}_j}},$$

где: $\hat{x}_i = x_i - \max(X)$, $x_i \in X$.

Алгоритм назначения цветов пикселям

Квантизированная цветовая палитра RGB в модели CIE LAB

В

Алгоритм наложения цветов

Алгоритмы оптимизации параметров сети

Алгоритм	Накопление импульса	Адаптивная скорость обучения	Вероятность затухания градиентов
Ускоренный градиент Нестерова	Да	Нет	Средняя
Adagrad	Нет	Да	Средняя
RMSProp	Нет	Да	Низкая
Adam	Да	Да	Низкая

Обучение сверточной нейронной сети

Функция ошибки:

$$J(x, y) = -\sum_{i=1}^{n} x_i \log y_i$$

Импульс:

$$m_t = \beta_1 m_{t-1} + (1 - \beta_1) \nabla_{\theta} \mathbf{J}$$

Второй момент:

$$v_t = \beta_2 v_{t-1} + (1 - \beta_2) \nabla_{\theta} J^2$$

Обновление параметров сети:

$$\theta_t = \theta_{t-1} - \frac{\eta}{\sqrt{\nu_t + \varepsilon}} m_t$$

Обозначения: t — номер шага обучения; θ_t - вектор параметров сети на шаге t; J — функция ошибки; η , β_1 , β_2 - параметры обучения; ε — вспомогательная константа во избежание деления на 0.

Схема реализованного ПО

Исследование

Исследуемые параметры:

- время работы
- качество колоризации

Критерии оценки:

- среднее время обработки одного изображения
- вероятность верного распознавания (1)
- вероятность верного назначения цветов (2)

Выборка:

- 7 групп по 1000 изображений различного разрешения для оценки времени работы
- 50 изображений для оценки качества колоризации

Условия:

- обучающая выборка из 100000 изображений с разрешением 256 на 256 пикселей
- обучение в течение 10000 эпох

$$P_r = \frac{N_r}{N} \tag{1}$$

$$P_c = \frac{N_c}{N} \tag{2}$$

где:

- $-N_r$ число изображений без ошибок распознавания
- N_c число изображений без ошибок колоризации
- N − размер тестовой выборки

Результаты исследования

Выполнение на графическом процессоре более чем в 300 раз быстрее. Запуск на ГП позволяет обрабатывать около 60 кадров/с (256x256 пикселей) или около 20 кадров/с (512x512 пикселей).

Значения критериев оценки качества колоризации:

- вероятность верного распознавания 72%
- вероятность верного назначения цветов 52%

Заключение

В результате выполнения работы поставленная цель была достигнута, а также были решены следующие задачи:

- проведен анализ архитектур нейронных сетей и существующих нейросетевых алгоритмов колоризации;
- выбрана архитектура для разработки на ее основе метода колоризации черно-белых изображений;
- разработан метод колоризации черно-белых изображений, в частности, описана архитектура искусственной нейронной сети;
- разработано программное обеспечение, реализующее метод колоризации черно-белых изображений;
- проведено исследование применимости разработанного метода.

Дальнейшее развитие

- повышение скорости работы нейронной сети (использование AVX или нескольких ГП)
- повышение качества распознавания за счет расширения обучающей выборки
- увеличение эффективности распознавания (модификация архитектуры)
- использование ансамблей нейронных сетей