[midod]

Si f es diferenciable en \overline{A} y $f(\overline{A})$ es extremo relativo $\Rightarrow \nabla f(\overline{A}) = \overline{0}$ (demostración).

Sea una función $f:D\subset R^n\to R$ y el punto $\overrightarrow{x_0}\in\operatorname{int}(D)$ y f es diferenciable en él. Si f admite un extremo en $\overrightarrow{x_0}$ entonces todas las derivadas parciales primeras de f son nulas en $\overrightarrow{x_0}$, $\frac{\partial f}{\partial x_1}(\overrightarrow{x_0})=\frac{\partial f}{\partial x_2}(\overrightarrow{x_0})=\dots=\frac{\partial f}{\partial x_n}(\overrightarrow{x_0})=0$, es decir, el vector gradiente en dicho punto es el vector nulo ($\overrightarrow{\nabla f}(\overrightarrow{x_0})=\overrightarrow{0}$)

Demostración: Si suponemos que f alcanza un extremo local en $\overrightarrow{x_0}$, por ejemplo un máximo local, se verifica que $\forall \overrightarrow{u} \in R^n$ la función $\varphi(t) = f(\overrightarrow{x_0} + t\overrightarrow{u})$ admite un máximo local para t = 0. Entonces, por la condición necesaria para la existencia extremos locales para funciones de una variable real se cumple $\varphi'(0) = 0$ y usando la regla de la cadena para determinar $\varphi'(t)$, resulta: $\varphi'(t) = \overrightarrow{\nabla f}(\overrightarrow{x_0} + t\overrightarrow{u}) \cdot \overrightarrow{u}$ y evaluada en t = 0, es $\varphi'(0) = \overrightarrow{\nabla f}(\overrightarrow{x_0}) \cdot \overrightarrow{u} = 0$ $\forall \overrightarrow{u} \Rightarrow \overrightarrow{\nabla f}(\overrightarrow{x_0}) = \overrightarrow{0}$.