Листок 6

$Tema\ 6(2.2)$. Корни из единицы. Круговой многочлен

Упражнения и задачи

- 1. Пусть k поле, $f = a_n x^n + \dots + a_1 x + a_0 \in k[x]$, $f' = n a_n x^{n-1} + \dots + a_1 \in k[x]$ формальная производная f. Докажите следующие свойства: 1) (f+g)' = f' + g'; 2) (fg)' = f'g + fg'.
- 2. Пусть k поле, $f \in k[x]$. докажите, что $\alpha \in k$ кратный корень $\Leftrightarrow f'(\alpha) = 0$.
- 3. Пусть $f \in \mathbb{F}_{p^m}[x]$. Докажите, что $f \in \mathbb{F}_p \Leftrightarrow (f(x))^p = f(x^p)$.
- 4. Докажите, что если d|n и Φ_n определен, то $\Phi_n \mid \frac{x^n-1}{x^d-1}.$
- 5. Пусть $f \in \mathbb{F}_q[x]$ неприводимый, $\deg f = m$. Докажите, что $f \mid x^{q^n} x \Leftrightarrow m \mid n$.
- 6. Докажите, что $\prod' f = x^{q^n} x$, где произведение берется по всем неприводимым унитарным многочленам $f \in \mathbb{F}_q[x]$ таким, что $\deg f \mid n$. Сделайте вывод о числе неприводимых унитарных многочленов степени d в $\mathbb{F}_q[x]$ (на этот раз для произвольного конечного поля, $q = p^n$).
- 7. Докажите, что если char $k=p \not\mid n$, то $\Phi_n = \prod_{d\mid n} (x^d-1)^{\mu(n/d)}.$
- 8. Докажите, что \mathbb{F}_q есть (q-1)-е круговое поле над любым своим подполем.
- 9. Пусть $\alpha \in \mathbb{F}_q, \, n \in \mathbb{Z}$. Докажите, что $x^q x + \alpha \mid x^{q^n} x + n\alpha$.
- 10. Пусть $f \in \mathbb{F}_q[x], \ q=p^n$. Докажите, что $f'(x)=0 \Leftrightarrow f=g^p$ для некоторого $g \in \mathbb{F}_q[x]$.
- 11. Пусть $f \in \mathbb{F}_q[x]$, $q = p^n$, $\deg f = m \geqslant 1$, $f(0) \neq 0$. Докажите, что $\exists e \in \mathbb{Z}_+ \ e \leqslant q^m 1$ такое что $f(x) \mid x^e 1$. Наименьшее такое e называется порядком многочлена f(x) в $\mathbb{F}_q[x]$. Докажите также следующие свойства:
 - Пусть $f \in \mathbb{F}_q[x]$ неприводимый, тогда порядок f равен порядку $\alpha \in \mathbb{F}_{q^m}^*$, α корень f;
 - Пусть $f \in \mathbb{F}_q[x]$ неприводимый, тогда порядок f делит $x^e 1$;
 - Пусть $c \in \mathbb{Z}_+$, e порядок f, тогда $f(x) \mid x^c 1 \Leftrightarrow e \mid c$;
 - Пусть $e_1, e_2 \in \mathbb{Z}_+$, тогда наибольший общий делитель многочленов $x^{e_1} 1, x^{e_2} 1$ в $\mathbb{F}_q[x]$ равен $x^d 1$, где $d = (e_1, e_2)$.

SageMath

- Исследуйте основные функции SageMath связанные с работой в кольцах многочленов над конечными полями:
 - Кольцо многочленов: PolynomialRing();
 - Неприводимость многочлена: is_irreducible();
 - Разложение многочлена на множители: factor();
 - Корни многочлена: roots();
 - Круговой многочлен: cyclotomic_polynomial();
 - Поле разложения: splitting_field();
 - Расширение полей: extension().

Темы для самостоятельного изучения

• Изучите "элементарные" доказательство неприводимости кругового многочлена $\Phi_n(x)$ в $\mathbb{Z}[x]$. (см. например https://www.lehigh.edu/ shw2/c-poly/several_proofs.pdf)