

# Exploratory Data Analysis in R

Session 6
Amrom Obstfeld
Introduction to R
Workshop
May 6, 2019

| 7:00 am-8:00 am   | BREAKFAST BALLROOM LOBBY 2ND FLOOR                       |
|-------------------|----------------------------------------------------------|
| 8:00 am -8:10 am  | Instructor and Course Introduction                       |
| 8:10 am-9:50 am   | Introduction to R and RStudio for Reproducible Reporting |
| 9:50 am-10:10 am  | REFRESHMENT BREAK BALLROOM-LOBBY 2ND FLOOR               |
| 10:10 am-11:50 am | Data Wrangling                                           |
| 12:00 pm-1:00 pm  | LUNCH BALLROOM LOBBY 2ND FLOOR                           |
| 1:00 pm-2:50 pm   | Data Understanding                                       |
| 2:50 pm-3:10 pm   | REFRESHMENT BREAK BALLROOM LOBBY -2ND FLOOR              |
| 3:10 pm-5:00 pm   | Exploratory Data Analysis                                |

#### Goals and Objectives

- Appreciate the role and process of exploratory data analysis (EDA) in understanding data
- Learn about MIMIC-III data set and its utility in learning to work with biomedical data
- Further reinforce the skills learned during the previous five sessions



## What is EDA



## **Exploratory Data Analysis**



## **Exploratory Data Analysis**

EDA is an iterative process in which we:

- 1. Generate questions about our data.
- 2. Search for answers by visualizing, transforming, and modelling our data.
- 3. Use what we learn to refine your questions and/or generate new questions.

## **Exploratory Data Analysis**

#### Two Fundamental Questions

- 1. What is the distribution of data in each of my variables
- 2. How do my variables relate with one another

## How do we explore variation in data?

#### Quantitative

Range, mean, median, mode

#### Histograms



## Categorical

Frequency (counts, percent)



## How do we explore COvariation in data?





## EDA as Data QC

#### Investigate:

- Missing data
- Outliers
- Logical discrepancies



Medical Information Mart for Intensive Care (MIMIC)-III data set



#### MIMIC Data set

- MIMIC-III is a widely-used, freely available biomedical dataset
- Developed by the MIT Lab for Computational Physiology
- Deidentified health data associated with >40,000 critical care patients
- Includes demographics, vital signs, laboratory tests, medications, free text notes and more
- Details are available at <a href="https://mimic.physionet.org/">https://mimic.physionet.org/</a>



#### MIMIC Data Access

- Course in protecting human research participants including HIPAA requirements.
- Data use agreement
  - outlines appropriate data usage
  - security standards
  - forbids efforts to identify individual patients

## Common uses for MIMIC

- Educational coursework
  - medical analytics courses
- Research
  - machine learning approaches for prediction of patient outcomes
  - semantic analysis of unstructured patient note
- Datathons



### **EDA Exercise**



## EDA exercise outline

#### For each exercise:

- Explicit task description
- Use functions to complete the task
- Question-set based on your findings

#### EDA exercise outline







Use the code block below to run `library()` on "tidyverse"



Use the read\_csv() function to read mimic.csv into a new data frame called "mimic"

Explore the data frame using some of the tools we've learned today (summary(), head())



- 1. How many rows are in the data frame?
- 2. How many columns are in the data frame?
- 3. What does each row in the data frame represent?
- 4. How many columns contain information about the patient's admission and how many relate to the test order?

- Use `filter()` to find the rows that have NA in the valuenum column
- Use `select()` to narrow down to just the "panel\_test",
   "test\_name", "component", "value" and "valuenum" columns
- Use `arrange()` to order the data frame by "value" and "component" columns

- 1. What is the difference between the "value" and "valuenum" columns?
- 2. What kind of result values in the data set appear in the "value" column but are NA in the "valuenum" column?

- Use group\_by() and summarize() to get a sense for the counts
  of data in some of the columns with categorical data
- Use n() and n\_distinct inside of the summarize() function to count the rows and distinct values in each categorical variable



```
mimic %>%
   group_by(religion) %>%
   summarise(d_pt = n_distinct(subject_id))
```

- 1. How many distinct patients and admissions are in the data frame?
- 2. How many different panel tests and components are in the data frame?
- 3. What is the most common religion for patients in the data frame?
- 4. \*Challenge Question\* What is the most commonly ordered test in the data set?

- Use ggplot() to assess the distribution of charttime and valuenum
- Try different scales to visualize the laboratory results
- Use the fill aesthetic to parse out the contribution of different categorical variables, such as category or fluid types, to the distribution of laboratory values

```
ggplot(mimic)+
  geom_histogram(aes(valuenum,fill=category))+
  scale_x_log10()
```

- 1. What do you notice about the pattern of charttimes and valuenums in the data frame?
- 2. Are there differences between the distribution of results for "Chemistry" and "Hematology" test categorys?
- 3. Are there outlier categories with only a few results?
- 4. \*Challenge Question\* Can you estimate what the reference range is for the "Hemoglobin"?

## Show and Tell 1 – What about NAs?

 Missing data (NA) is important to be aware of because its presence may indicate a problem with the data or may influence the statistics and conclusions we make

```
mimic %>%
  mutate_all(is.na) %>%
  summarise_all(sum) %>%
  arrange(desc(value))
```

## Show and Tell 2 – Characters in numeric data

- Analyzing laboratory data can be challenging for several reasons
- One reason is that numeric data can often be stored as characters

## Show and Tell 3 – Working With Dates

- Medical data is inherently temporal in nature
- R has several packages that help in dealing with datetime based data

```
library(lubridate)
mimic %>%
   mutate(charthour = hour(charttime)) %>%
   filter(!category %in%
         c("HEMATOLOGY", "CHEMISTRY")) %>%
   distinct(curr service, category, charttime,
            charthour, hadm id, panel test) %>%
ggplot(aes(x=charthour,fill=category))+
  geom bar()+
  facet_wrap(~curr service, scales = "free y")
```