## 时差法测有机玻璃棒和黄铜棒中声速

张学涵 + — 2022 年 3 月 31 日

表 1. 有机玻璃棒和黄铜棒的长度与声波在其中传播时间的关系

| 有机玻璃棒长度 L/cm | 声波在有机玻璃棒中传播时间 $t/\mu s$ | 黄铜棒长度 L/cm | 声波在黄铜棒中传播时间 $t/\mu s$ |
|--------------|-------------------------|------------|-----------------------|
| 27.040       | 153                     | 25.978     | 101                   |
| 23.036       | 133                     | 21.990     | 90                    |
| 17.542       | 108                     | 17.998     | 82                    |

根据原始数据表1,最小二乘法拟合出图1(有机玻璃棒)、图2(黄铜棒)。

从图I 可以看出斜率为  $0.21142 \,\mathrm{cm} \,\mu\mathrm{s}^{-1}$ , 故

$$v_{\rm fd, Tright in} = 2114.2 \, \mathrm{m \, s}^{-1}$$
,相关系数  $r = 1.000$ 

从图2 可以看出斜率为 $0.41653 \,\mathrm{cm} \,\mu\mathrm{s}^{-1}$ ,故

$$v_{\text{苗铜棒}} = 4165.3 \,\mathrm{m \, s^{-1}},$$
相关系数  $r = 0.9958$ 

Email: fjtcin@mail.ustc.edu.cn.

<sup>†</sup>大雾实验工具开发团队成员.



图1. 时差法测有机玻璃棒中声速的最小二乘法拟合图



图2. 时差法测黄铜棒中声速的最小二乘法拟合图