Computer Networks and Distributed Systems

Computer Networks – Network Layer

Course 527 – Spring Term 2014-2015

Anandha Gopalan

a.gopalan@imperial.ac.uk http://www.doc.ic.ac.uk/~axgopala

Contents

- Interconnecting networks (Layers 1 to 3)
 - Repeaters, bridges, routers
- Network Layer
 - Routing
 - Static, distance vector, link state
 - Internet Protocol (IP)
 - Datagrams (packets)
 - IP addressing
 - Fragmentation
 - Other protocols (ARP, ICMP)

Inter-Networks

- Inter-networks formed from smaller networks
 - Extending physical limits of networks
 - Separating traffic (to spread load or administration)
- Different devices interconnect with different low-level protocols
 - Cooperation at higher layers to provide uniform service

Repeater

- Amplifies electrical signal
 - Makes two wires appear as one
 - Improves signal propagation distance

- Operates at physical layer
 - Transparent to higher layers
 - No checking/generating of checksums
 - CSMA/CD must cope with longer propagation delays
 - Ethernet (10Mb/s): up to 4 repeaters with 2.5km max length

Bridge/Switch

- Interconnecting LANs with traffic isolation
- Conditional forwarding

 Only forward frames destined for other LAN
- Operates at data link layer
 - Reduces load on sub-network
 - Idea of store & forward results in higher delay
 - Network layers must be same (but not processed)
 - Physical layers may be different

Source Routing Bridge

- Sender issues discovery frame
 - Copied down every link, recording path list
- Destination chooses route based on discovery frames
 - Or, sends discovery frames back to sender for decision
- Routing path carried in data frames
 - Connection-oriented

Source Routing Bridge

- Keeps bridges simple but end hosts complex
 - Hosts must discover routes and put routes in frames
- Route exploration can wipe out benefits
 - Bad for networks with high degree of connectivity
 - Must cache routes or be very inefficient
- Have to rerun discovery if bridge/route fails
- Token Ring networks use this

Transparent Bridge

- Transparent
 - Hosts and routers are oblivious to their presence in the network
- Records MAC addresses and links in table
 - If destination MAC on same link as source → do not forward
 - If link for destination MAC known → only forward on that link
 - Otherwise use flooding → Send on all links except source link
- Used in Ethernet

Transparent Bridge

- Backwards learning
 - Listen to traffic on your links and build host/link tables
- Loops in topology
 - Make determining location of source impossible
 - Causes frames to proliferate
- Network layer protocol often handles loops
 - Packets may have limited lifetime
- Build spanning tree (loop-free subset)

Transparent Bridge

Two types

Store-and-Forward

Store the entire frame and verify CRC before forwarding frame

– Cut-Through

 Forward frame after reading destination MAC and without performing a CRC check

Comparison: Types of Bridges

Transparent

- Connectionless
 - Low overhead to send one frame
 - Failures handled by bridge
- Transparent at hosts
 - Backwards learning to locate hosts
- Sub-optimal routing
- Complexity in bridge

Source Routing

- Connection-oriented
 - Overhead of discovery on first frame
 - Failures handled by hosts
- Not transparent at hosts
 - Discovery frames locate host
- Optimal routing
- Complexity in hosts

Combination: Mixed Media Bridge

- Interconnect different networks
 - e.g. Ethernet and Token Ring
 - Can be source-routing/transparent on different sides
 - Holds routing tables which differentiate network type
- Handles different maximum frame lengths (segmentation/fragmentation)
 - 1518 Bytes on Ethernet
 - 4KB on 4Mb/s token ring
 - 17.6KB on 16Mb/s token ring

Segmentation with Switches

 Switches can segment traditional networks

Collapsed backbone

 Backbone in switch rather than shared wire

Separating Collision Domains

- Shared medium requires CSMA/CD to arbitrate
 - Contention can be problem on busy network
 - Hosts in separate collision domains not competing for media
- Switches form ends of collision domains

Hub, Switches vs. Routers

Network Switch

- Lives at Datalink layer
 - Knows about MAC addresses and frames
- Interconnects network segments

Hub

- Lives at Datalink layer
 - Knows about MAC addresses and frames
- Passively interconnects ports
 - Acts as single network segment

Router

- Lives at Network Layer
 - Knows about IP addresses and IP packets
- Interconnects separate networks
- Carries out more intelligent routing decisions

Routing

- Problem: No single network can serve all users
 - Network too long, too much traffic, too complex for lower layers, can't maintain complete network plan
 - Think Internet scale!
- Solution
 - LANs (subnets) interconnected using routers
 - Routing refers to selecting path from source to destination across multiple subnets
 - Network layer must cope with differing underlying LANs

Router/Gateway

- Determines next hop for packet, depending on destination address
- Lookup in routing table
- Operates at network layer
 - Router forwards packets based on destination networks, unlike bridges, which use hosts
- Verifies/modifies packets
 - Updates fields affected by routing
 - Checks/recalculates checksum

Router/Gateway

- Typically used for connecting sites
 - Overcome physical and administrative boundaries
 - Greater management and traffic isolation

- Not transparent to end nodes
 - Frames addressed to router's data link address
 - Host needs to know whether/which router to send to

Routing: Objectives

- Correctness: Find a route (if it exists)
- Efficiency: Routes should provide good performance
 - Should use minimal resources
- Robustness: Return route even when links/nodes fail
- Fairness: Hosts should have equal access to network
 - Respect priority markings for Quality of Service (QoS)
- Adaptability: Routes should reflect network conditions
 - But no overreacting to problems
- Simplicity: Cheap, predictable and verifiable

Routing: Metrics

- Efficiency find routes with good properties in terms of
 - Available bandwidth
 - Delay
 - Link latencies
 - Hop count
 - Price
 - Priority for traffic types

Routing: Properties

- No centralised control
 - No knowledge of topology or underlying protocols

- Interconnection on global (Internet) scale
 - May use intermediate networks to get to destination
 - Hide underlying interconnection of networks from users
 - Networks may be not completely inter-connected

Routing Strategies

- Static (non-adaptive) routing
 - Compute routes once and load into router
 - Worked for early ARPANET

- Dynamic (adaptive) routing
 - Change routes to reflect changes in topology/load (as seen through congestion)
 - Usually used in packet-switched networks
 - Distance Vector Routing and Link State Routing

Non-Adaptive Routing

- Routing using fixed directory
 - Full address maps of how to route to host
 - Default link for unknown hosts
- All packets for host pair always take same route
- Often used with list of known hosts/links
 - May be set up by pathfinder algorithm (similar to source-routing bridge)
- Static routing tables for workstations use this
 - Most traffic sent to default gateway/router

Adaptive Routing: Flooding + Random

Flooding

- Send packet to all neighbours except source
 - Unless packet seen before (remove loops)
- Shortest path and fast discovery
- Good for pathfinders and essential/low latency data
- But inefficient and leads to high load on network

Random

- Forward packet to random link
- Highly robust but slow convergence and inefficient

Adaptive Routing: Distance Vector

- Used in ARPANET and Internet until 1979
 - By Bellman-Ford (1957), Ford-Fulkerson (1962)
 - Implemented as Routing Information Protocol (RIP)
- Router maintains table (vector) of distances
 - Usually delay/queue length to each neighbour
 - Periodically exchanges this information with neighbours
 - Re-computes distance and updates its tables

Example: Distance Vector Routing

cost
$$(R \rightarrow D) =$$

cost $(R \rightarrow N) + cost (N \rightarrow D)$

Port
$$1 \rightarrow 17 + 81 = 98$$

Port $2 \rightarrow 2 + 97 = 99$
Port $3 \rightarrow 35 + 62 = 97$
Port $4 \rightarrow 5 + 118 = 123$
Port $5 \rightarrow 41 + 29 = 70$

Best choice here is port 5, with distance vector of 70

Example: Distance Vector Routing

Distance Vector Problems

- Poor efficiency
 - Slow to converge after changes
 - Distance vectors increase linearly with network size
 - May not fit inside packet
- Route finding suboptimal
 - Only considers delay not bandwidth of links
 - Prone to oscillations in cost
 - Routing tables do not include paths

Adaptive Routing: Link State

- Each router maintains (partial) map of network
 - Consists of more than just neighbours
 - May include bandwidth and other metrics

Properties

- Faster convergence and more reliable
- Less bandwidth intensive than DVR
- But more complex and memory/CPU intensive

Adaptive Routing: Link State

- Each router does the following
 - 1. Discover identities of all neighbours
 - 2. Measure delay (or cost) to neighbours (ECHO packet)
 - 3. Construct and send Link State packet to all routers
 - 4. Compute shortest path to every other router
 - Use Dijkstra's algorithm
- When link state changes
 - Notification packet flooded throughout network
 - All routers re-compute routes

Link State Packets

- ID of source, sequence number (to handle order & loss)
- Time-to-live (decremented each second until discarded)
- List of neighbours with costs

Link State Distribution

- Based on flooding algorithm
 - Don't send on incoming link
- Sequence number to ensure only newer state packets forwarded
 - Drop old & duplicate packets
 - Some delay in forwarding to wait for newer packets
- Different routers have different views of topology
 - Inconsistencies, loops, unreachable nodes

Hierarchical Routing

- Complete Internet map in every router infeasible
- Instead exploit hierarchy and use regions
 - Router knows local topology in detail
 - Router knows route to other regions
 - But not their internal arrangements
- Regions may map to
 - Geographical area (e.g. London academic network routes between universities)
 - Organisation's network (e.g. Imperial has routers in core network, routing between departments and to external links)

Internet Routing

- Autonomous systems (AS) are regions on the Internet
- Within ASs: Open Shortest Path First (OSPF)
 - Variant of Link State Routing
 - Supports load balancing over multiple lines
 - Routing includes type of service (but not used)
- Between ASs: Border Gateway Protocol (BGP)
 - Variant of Distance Vector Protocol
 - Records exact path used
 - Supports custom routing policies

Internet Protocol (IP)

- Basic protocol for the Internet
 - Defined in RFC 791 (updated in 1349, 2474, 6864)
- Datagram oriented
 - Treats packets independently
 - Packets contain complete addressing information
 - Unreliable delivery (no notification)
 - Variable sized data payload
 - No checksum on data payload, just on header

IP Services

- Addressing
- Packet timeouts
 - Avoid congestion and routing problems
- Fragmentation
 - May split packets if underlying network requires it
- Type of Service through priorities
 - Requires routers on path to read and treat differently
- Other options
 - Source routing requirements, route recording, security labels

IP Datagrams

- IP datagrams are "virtual" or "universal" packets
 - IP dest addr is always final destination address
 - Physical dest addr in frame is changed at each hop
- Along the path each router
 - Removes packet from LAN frame
 - Determines next router/local link
 - Re-encapsulates in appropriate LAN frame for next hop

IP Datagram Format

- Version: IP version (usually 4)
- Internet Header Length
 - In 4 byte multiples (5 <= IHL <= 15)</p>
 - Options increase this
 - Gives data offset
- Type of Service
 - Trade-off between delay, reliability and throughput
- Total Length
 - Max 64KB with IPv4

IP Datagram Format

- Time to Live (TTL)
 - Handles routing loops
 - Decremented each routing hop
 - Datagram dropped when = 0
- Protocol
 - 0 = reserved, 1 = ICMP, 6 = TCP, 17 = UDP
 - Similar to Ethernet protocol type field
- Header checksum
 - 1s complement sum of header (not data)
 - Sum of header and checksum should = 0
- Source and destination addresses
- Options
 - Security, loose/strict source routing, record route, stream ID, timestamp, ...
 - Padded to multiples of 32 bits

IP Addressing

- Ethernet addresses are 48 bits and written as hex pairs
- IP addresses are 32 bits and written as dotted decimal
 - E.g. 146.169.7.41
 - No direct mapping of IP addrs to Ethernet addrs
- IP addr identifies network and host on that network
 - Not machine but connection to network
 - Device on n networks has n IP addrs one for each
- Address space administered by ICANN (Internet Corporation for Assigned Names and Numbers)
 - Assigned addresses don't have to be connected

IP Address Classes

₽ ~41	<	32 Bi	its —		Range of Host Addresses
A	0 Network		Host		1.0.0.0 to 127.255.255.255
В	1 0 Netv	vork	Hos	șt	128.0.0.0 to 191.255.255.255
C		Network		Host	192.0.0.0 to 223.255.255.255
D		Mu	ılticast		224.0.0.0 to 239.255.255.255
E		Reserved	for Future U	Jse	240.0.0.0 to 247.255.255.255

Special IP Addresses

- Addrs with all bits 0 or 1 are not assigned to hosts
 - Useful at start-up if host/network not known
- Broadcast is never valid source address
- Loopback is for local inter-process communication (IPC)
 - Should never exist on the network wire

Private Internet Address Ranges

Address ranges for internal use

```
10.0.0.0 – 10.255.255.255 (10/8 bit prefix)
172.16.0.0 – 172.31.255.255 (172.16/12 bit prefix)
192.168.0.0 – 192.168.255.255 (192.168/16 bit prefix)
```

- Addresses never routed on public Internet
 - Not all devices need to be globally visible
 - Used for testing and NAT (see later slides)

Subnets

- As organisations grow, need finer control over network sizes
 - Single class A/B/C network not good enough
- Subnet is sub-network within assigned IP network
 - To global Internet there is no distinction
 - Internally subnet addrs may be used for routing, admin
- Trade division into subnets for number of hosts in subnet
 - Subnets can be any size within host field

Subnets

- Use high-order bits from host field to create subnets within network class:
 - subnet mask & address = network portion
- Number of hosts and subnets
 - 2^{subnet_bits} = number of subnets per network
 - Although usage of all 0s and 1s is not RFC-compliant
 - $2^{(32 \text{network_bits} \text{subnet_bits})} 2 = \text{num of hosts per subnet}$
 - All 0s and all 1s are not valid addresses

Subnet Example

- In DoC, we have a class B network
 - 8 bits for subnets and 8 bits for hosts
 - Subnet mask 255.255.255.0 with class B net → 256 subnets, each with 254 hosts

Example

- 146.169.7.41 is global IP address of host 41 (maidenhair) on subnet 7 (DSE group) on IP network 146.169.0.0
- Full DNS name: maidenhair.doc.ic.ac.uk
- Broadcast to subnet on 146.169.7.255
- 7-net subnet mask of 255.255.255.0, DoC network mask of 255.255.0.0

Mapping IP Addresses to Devices

- Need to translate between addresses

 - Network layer → hosts send packets using IP addrs
- Static mapping
 - May be sufficient for small isolated network
 - But Ethernet addr space is larger than IP addr space
- But IP addresses are virtual
 - No relation to hardware, maintained in software
- IP supports interconnections of different networks
 - Not all devices have Ethernet addresses

Dynamic Address Resolution

- Need to bind protocol address dynamically
 - Only possible for two devices on same network
- Table lookup
 - IP addr/data link addr in sequential/hash table
- Closed-form computation
 - Make physical addr simple function of IP addr
- Message exchange
 - Dedicated protocol for dynamic lookup, e.g. ARP
 - Usual method on TCP/IP networks with static addresses,
 e.g. Ethernet

Address Resolution Protocol (ARP)

- Hosts maintain caches of IP/data link address mappings for LAN
- If host A has no entry for host B
 - A broadcasts ARP request
 - Requesting data link addr for B's IP address
 - B recognises its IP address
 - Returns ARP response with its data link address
 - B also caches A's data link/IP address mapping
 - Likely to need it in future exchanges
- ARP is network layer protocol, not visible to the user

ARP Message Format

- HW Addr Type: 1 = Ethernet
- Proto Addr Type: 0800h = IP
- HW Addr Length: 6 bytes
- Proto Addr Length: 4 bytes
- Operation: 1 = request,2 = response
- Target HW Addr: undefined on request
- Target machine swaps target and sender in response

Internet Control Message Protocol (ICMP)

- Allows routers to send control/error msgs to other routers/hosts
 - Behaves as if higher level protocol, but integral to IP
- ICMP provides for feedback about comms problems
 - IP unreliable → no guarantees of delivery, loss notification, control msg return

ICMP Message Format

- Type (8bit) + code (8bit) gives kind of message
- Type 3 codes

0 = Net unreachable

1 = Host unreachable

2 = Protocol unreachable

3 = Port unreachable

4 = Fragmentation needed and

DF set

5 = Source route failed

 1s compliment checksum of type & code Other types include

0 = Echo reply

5 = Redirect

8 = Echo request (ping)

11 = Time exceeded

12 = Parameter problem

13 = Timestamp

14 = Timestamp reply

15 = Information request

16 = Information reply

17 = Address mask request

18 = Address mask reply

Issues with IP Addressing

- Support for mobility (laptops, phone, ...)
 - Connect to different points in different networks
 - Routing depends on address used
- Expansion of networks
 - Renumbering/adding new number ranges hard
 - Hosts with multiple IP addresses
- Total size of address space limited

Address Space Problem

- Shortage of unallocated addresses
 - Practical address space in IPv4 is 100 million hosts
 - IP is more popular than its designers expected

- Some addr classes are unnecessarily large
 - Some organisations have more than they need
 - Class B is bigger than most people use
 - 64516 host addrs with 254 subnets of 254 hosts
 - Never mind class A!

Address Space Solutions

- Stricter access to allocation
 - Class A "virtually impossible" to obtain now
 - Blocks of class C now allocated in preference to class B
- Make address allocation more flexible
 - Classless Inter-Domain Routing (CIDR)
- Reuse addresses in different parts of network
 - Network Address Translation (NAT)
- Add more address bits
 - IPv6

Classless Inter-Domain Routing (CIDR)

- Partition world into four zones
- Allocate networks with subnet masks
 - Size according to need, not just fixed classes A/B/C
 - "Subnetting for global Internet"
- Advantages
 - More efficient allocation
 - Works alongside previous allocations
- Disadvantages
 - Makes routing harder
 - Not fundamentally larger address space

- Europe
 - **194.0.0.0 195.255.255.255**
- North America
 - -198.0.0.0 199.255.255.255
- Central/South America
 - -200.0.0.0 201.255.255.255
- Asia & Pacific
 - -202.0.0.0 203.255.255.255
- Future use
 - -204.0.0.0 223.255.255.255

Network Address Translation (NAT)

- Often only fraction of hosts require external access
- Hide large network in small Internet address range
 - External addr → real, allocated IP address
 - Internal addrs → from private addresses range
 - Gateway box translates internal addrs to dynamically allocated external addrs for traffic leaving LAN
- Full address becomes IP addr + port
 - External addr may be shared by multiple hosts over time
 - Can lead to problems if changes aren't anticipated...

IPv6

- IETF addresses many problems of IPv4 with IPv6
- 128 bit addresses (vs. 32 bit in IPv4)
 - $-3.4*10^{38}$ unique host addresses (vs. $4.2*10^9$ in IPv4)
- Simplified 7 field header (vs. 13 fields in IPv4)
 - Faster processing in routers possible
 - More options through extension headers
 - Support for authentication, privacy, service types, mobility,
 ...
- Compatible with IPv4 for transition
 - Some gateways and tricks to hide IPv6's greater capabilities

Issues with IPv6

- Difficult to implement properly
- Transition from IPv4 to IPv6 hard and slow
 - Not widely deployed over backbone
 - Router/switch manufacturers not pushing it
 - ISPs and network providers not demanding it
 - Many of the benefits lost in gateways to IPv4
- Currently useful within organisation
 - But not many people to talk IPv6 with
 - Mobile phones may push adoption...