Міністерство освіти і науки України Національний технічний університет України "Київський політехнічний інститут імені Ігоря Сікорського"

Фізико-технічний інститут

КРИПТОГРАФІЯ

Комп'ютерний практикум №4

Вивчення криптосистеми RSA та алгоритму електронного підпису; ознайомлення з методами генерації параметрів для асиметричних криптосистем

Варіант 5

Виконали:

Студенти груп ФБ-01 та ФБ-03

Маковська М. В.

Ващенок Д. О.

Перевірив:

Чорний О. М.

Мета роботи

Ознайомлення з тестами перевірки чисел на простоту і методами генерації ключів для асиметричної криптосистеми типу RSA; практичне ознайомлення з системою захисту інформації на основі криптосхеми RSA, організація з використанням цієї системи засекреченого зв'язку й електронного підпису, вивчення протоколу розсилання ключів.

Порядок виконання роботи

- 1. Написати функцію пошуку випадкового простого числа з заданого інтервалу або заданої довжини, використовуючи датчик випадкових чисел та тести перевірки на простоту. В якості датчика випадкових чисел використовуйте вбудований генератор псевдовипадкових чисел вашої мови програмування. В якості тесту перевірки на простоту рекомендовано використовувати тест Міллера-Рабіна із попередніми пробними діленнями. Тести необхідно реалізовувати власноруч, використання готових реалізацій тестів не дозволяється.
- 2. За допомогою цієї функції згенерувати дві пари простих чисел p, q i 1 1 p, q довжини щонайменше 256 біт. При цьому пари чисел беруться так, щоб pq p1q1; p i q прості числа для побудови ключів абонента A, 1 p i q1 абонента B.
- 3. Написати функцію генерації ключових пар для RSA. Після генерування функція повинна повертати та/або зберігати секретний ключ (d, p,q) та відкритий ключ (n,e). За допомогою цієї функції побудувати схеми RSA для абонентів A і B тобто, створити та зберегти для подальшого використання відкриті ключі (e,n), (,) 1 n1 е та секретні d i d1
- 4. Написати програму шифрування, розшифрування і створення повідомлення з цифровим підписом для абонентів A і B. Кожна з операцій (шифрування, розшифрування, створення цифрового підпису, перевірка цифрового підпису) повинна бути реалізована окремою процедурою, на вхід до якої повинні подаватись лише ті ключові дані, які необхідні для її виконання. За допомогою датчика випадкових чисел вибрати відкрите повідомлення M і знайти криптограму для абонентів A и B, перевірити правильність розшифрування. Скласти для A і B повідомлення з цифровим підписом і перевірити його.
- 5. За допомогою раніше написаних на попередніх етапах програм організувати роботу протоколу конфіденційного розсилання ключів з підтвердженням справжності по відкритому каналу за допомогою алгоритму RSA. Протоколи роботи кожного учасника (відправника та приймаючого) повинні бути реалізовані у вигляді окремих процедур, на вхід до яких повинні подаватись лише ті ключові дані, які необхідні для виконання. Перевірити роботу програм для випадково обраного ключа 0 < k < n.

Хід роботи

Обрані числа:

p	204901066145616790514004106998368362225858044793392992932266945703983824399231
q	475082654572977601398337425500715893335301346496660089680978710628964109092793
p1	950075130747087145724280024757783903589003705789106214814659724171947301949323
q1	961041902946252604261396586347033381793219428283214806965755047060359634028493

Кандидати, які не пройшли перевірку простоти (в таблиці наведено лише 20 кандидатів, всі інші знаходяться в файлику new.txt):

No	Число
1	734537707117128841832377245454118051319179377674968246726270896877851933671893
2	667943164369662715071674352557171802189349038844542910153680973959724766075639
3	323242401905000176619356722289695315928306157131212712407203205998895622253783
4	510768805285395179334411052234248510644031439072342483219732726594852722393169
5	960641482199489063832558503278125043317951965157245956305166198772936766321445
6	214651625829100556253725210637755762724220135553420755694380572323679753496713
7	479797450910913001550884998762376062489739289660866525143182440130634848730645
8	167533441033753069037840649141127326816946297107554753914069454910410740131253
9	815380068790856879607551131820001198723181843063752366960746266614181353330727
10	345750071402066925928017554388919600020369567621936120247919610480972289560709
11	469167762712062440378305876010451549384115297515418902949187858418371506532669
12	299533789849749792036303463114469321116929665152105683426669777443655121618345
13	584590991700002338265736356421228897558638758509852934416848831007838314753369
14	553685752082669154871620967194302680105922417932233030670375795661041943697975
15	834913409000178708071798596978570641739976302649599476252366078548502505059363
16	741427865276151661953936475659858956748012545724245044575909154171471043556803
17	768071621894394860155931345073638008442398401454134403311990156576752049243071
18	104623295620068089383588462667491035571625490408049189977780804914789565116261
19	255995288083436770846291683631427326113259560285185982798307073655057941753751
20	695612788399331552510754471165462583102771925089051142864432660881629754802377

Маємо наступні параметри криптосистеми RSA: -Перший набір:

1	- 1	9734494242929289670843268378451533307853740754656173921856040144846838198269169371 8926286211948711507764538976708390043747279439835261928394557217656842183
6	·	6954241249825883741553278224640463433718086203569160072725091988655484432875334133 5710209992668871537977445869246893042971437261499307546354073953345459277

d 6943597994404453492203997585121967772889707824227637535986984186123080817085016218 2662661902135081426869688481440134205761163931599958927103442072505571013

BT:

 $558538773722476079356781125573387298099784401557450304522870757733306253\\692177689645177013842073197742568271840895280751736023205736686784542965\\01100602432$

ШТ:

425836734145146190883057037820470236638168061662397782431327199548684674 617013545446042804968341853227305763397064148557046087321874065322955969 46184060153

Розшифрований текст:

 $558538773722476079356781125573387298099784401557450304522870757733306253\\692177689645177013842073197742568271840895280751736023205736686784542965\\01100602432$

Цифровий підпис:

 $840362238229041537952579187390082604261283191901500520782880661850258382\\648137991981301905915545089043091217179913024889782016593856410215725049\\32429233282$

- Другий набір:

n1	9130620115950903782000313155808551663800062916363125531955357799635709044436723926724 70746224801209109696975034179253920118180116203417216960917302224060239
e1	737265546911271285660113872947002231710956724204656284344452187907178373633215344387 85515292790948645429273998937384683357501153985544116966884125940208043
d1	7024204548581649382804995562666155200218665555444651459745406538403757673488154014942 82536752317306991622796770669000618767972084025231445229585788720908059

BT:

 $869523783681084206247584151000488359192563154566887893132954497339236951\\133051830189511846769256625249750803870283774777799298191393179693701584\\306119918596$

ШТ:

170915869242776142229356521877385436952764120796540906228385838179210940977883218569173927680576248111819241496002549606354440193262726568329534967004391015

Розшифрований текст:

 $869523783681084206247584151000488359192563154566887893132954497339236951\\133051830189511846769256625249750803870283774777799298191393179693701584\\306119918596$

Цифровий підпис:

275239024207651009820480525957119491480063025307804940625664857723844569

404917123579239826297283667820594196545641174429393227255360729681177278 249971535087

Абонент А формує повідомлення:

Число k зашифровується за допомогою відкритого ключа отримувача та зберігається в змінній k1. Змінна k підписується за допомогою секретного ключа та модуля відправника й потім підписується s за допомогою відкритого ключа отримувача та зберігається в змінній s1

k1 5200106339235410479984515944970023105368435533388618089955577653269874351513578 044979940104067253569862522139777214950179657492250797363500960558162862840231 s1 5492097736306976497959167185686262254440585571840317123189094379758016597322327 98236186946016621129691258778236732336484633905052873901594130610285121773528

Абонент В за допомогою свого секретного ключа d1 знаходить наступні значення:

- k 2076988276436531176674421659318669718747831271692782697205583533702114470613237 4377066973255507864346755834221515754582114952671772503843953842368995618021
- s 310459179215842007827264917092025732498117653498243973510715454088690438057209 8633460609666088314117063455015967697718666279514017989641170125508165246370

Абонент В за допомогою відкритого ключа (e, n) абонента A перевіряє підпис А.

Висновки:

У ході виконання даної лабораторної роботи, ми зрозуміли, як працює криптосистема типу RSA, навчились організовувати засекречений зв'язок і генерувати цифровий підпис з використанням цієї системи. Ми також ознайомились з рядом сучасних методів, що використовуються для тестування великих чисел на простоту і навчились використовувати її на практиці