

Module IN 2111

3D User Interfaces - Dreidimensionale Nutzerschnittstellen -

Prof. Gudrun Klinker

Human Factors Fundamentals: Cognition SS 2023

HCI: The Human Side

[Don Norman: The Design of Everyday Things, 1988]

Overview

Agenda

- 1. Information Processing
- 2. Cognition

Literature

- Wickens and Carswell (1997), Information Processing.
 In: Salvendy (Ed.) The Handbook of human factors and ergonomics (2nd Ed.), pp. 89-129.
- Wickens (2002), Multiple resources and performance prediction. Theor. Issues in Ergon. Sci.: 3(2), 159-177.
- Wickens, Hollands, Banbury, Parasuraman (2016), Engineering Psychology and Human Performance (4th Ed.) Ch. 10, Routledge Taylor & Francis.
- LaViola, Kruijff, McMahan, Bowman and Poupyrev (2017), 3D User Interfaces Theory and Practice (2nd Ed.), Addison Wesley.

Overview

1. Information Processing

- → 1.1 Foundations
 - 1.2 Attention
 - 1.3 Decision-Making, Behavior, and Skills
 - 1.4 Selection and Control of Action

1.1 Foundations

1. Information Processing

[adapted from: Wickens and Carswell 1997, Wickens 2002, Wickens et al 2016, Laviola et al 2016]

1.1 Foundations: Stages

1. Information Processing

Stages

1.1 Foundations: Stages

Short-term sensory store (STSS)

- Special storage capacity associated directly with sensory systems
 - Functionally limitless short-term store of massive amounts of information
 - Without much recoding ("raw data")
- Temporary mechanism for prolonging the representation of the raw stimulus evidence for short durations
 - Visual: ½ second
 - Auditory: 2-4 seconds

1.1 Foundations: Stages

1. Information Processing

Perception

- Very fast
 - requiring little attention
- Processing modes
 - Bottom-up
 - Driven by sensory input
 - Top-down
 - Driven by long-term memory (expected events)

1.1 Foundations: Cognition, Learning

- Stages
- Cognition, Learning

1.1 Foundations: Cognition, Learning

Working memory

- Blurred boundary to perception
 - Processes require more time than pure perception
 - Cognitive operations
 - Rehearsal
 - Reasoning
 - Image transformation
 - Planning
- Limited resources (capacity)!
 - Vulnerable to disruption when shared across several tasks
- Some transfer to/from long-term memory: learning

1.1 Foundations: Feedback, Attention

1.1 Foundations: Mental Resources

Overview

1. Information Processing

- 1.1 Foundations
- → 1.2 Attention
 - 1.3 Decision-Making, Behavior, and Skills
 - 1.4 Selection and Control of Action

1.2 Attention

 Major component in processing visual stimuli and search behavior

1. Information Processing

Involves

- Selection of some information for further processing
- Inhibiting other information from receiving further processing

Three components

- Orienting to sensory events
- Detecting signals for focused processing
- Maintaining a vigilant/alert state

1.2 Attention

Forms of attentive behavior:

- Selective attention
 - Choosing which events or stimuli to process
- Focused attention
 - Effort to maintain processing these elements without being distracted
- Divided attention
 - Ability to process more than one event or stimulus at a given point in time

1.2 Attention

- Three mental operations:
 - Disengaging attention from current locus
 - Moving attention to new location
 - Reengaging attention in a new location
- Attention in one sensory channel can trigger attention within another channel
- Links between different sensory modalities (multisensory processing)

1.2 Attention

- Bottlenecks / errors
 - Limitations of our sensory systems
 - At a spatial or temporal level
 - Dependent on the mode of attention
 - Information overload
 - Spatial: too many objects in the FOV
 - Temporal: rapid sequences of stimuli
- Examples
 - Change blindness / change deafness
 - Perceptual tunneling
 - Cognitive capture

1. Information Processing

1. Information Processing 1.2 Attention: Resource Sharing

Functional brain models

[source: highlands.edu]

[scource: American Psychological Association]

Functional Areas of the Brain

1. Information Processing

Multitasking: Separate resources for

Stages

[adapted from: Wickens and Carswell 1997, Wickens 2002, Wickens et al 2016]

1. Information Processing

Multitasking:
Separate resources
for

- Stages
- Processing Codes

1. Information Processing

Perception

1. Information Processing

Multitasking: Separate resources for

Cognition Responding Manual **Spatial Spatial** Vocal Visual Verbal Auditory **Tactile Spatial** Verbal

- Stages
- **Processing Codes**
- Perceptual Modalities
- Visual Channels

Verbal

Overview

1. Information Processing

- 1.1 Foundations
- 1.2 Attention
- → 1.3 Decision-Making, Behavior, and Skills
 - 1.4 Selection and Control of Action

Based on the identification of

- Current situation
- Potential actions
- Consequences

Decision models

- Normative
 - Statistical, economical methods, assuming rational behavior
- Behavioral / skills
 - Account for human limitations, heuristics
- Naturalistic
 - Task-based decision making in realistic situations

Behavior

- Usage of specific strategies to make decisions
- Based on experience
- Can be affected by culture, belief
- Can be affected by emotional state
- Issues:
 - Temporal discounting
 - Dynamic inconsistencies
 - Conditioning
 - Habituation (can be used to cure phobias)

Skills

- Allow for more accurate and faster responses
- Can be acquired over time

Three stages in acquiring skills

- Cognitive stage
 - Declarative knowledge, conscious set of instructions
- Associative stage
 - Behavioral tuning, decreasing error rates
- Autonomous stage
 - Non-declarative knowledge in long-term memory

Overview

1. Information Processing

- 1.1 Foundations
- 1.2 Attention
- 1.3 Decision-Making, Behavior, and Skills
- 1.4 Selection and Control of Action

1.4 Selection and Control of Action

- Speed and accuracy of responses depend on
 - Stimulus-response compatibility
 - Stimulus-response consistency over time
 - Number of parallel tasks (task switching)
 - Uncertainty
 - Pre-cueing
- Fitts' law: speed-accuracy tradeoff
- Steering law: time to steer through a tunnel

Overview

Agenda

- 1. Information Processing
- → 2. Cognition

Overview

2. Cognition

- 2.1 Foundations
 - 2.2 Situation Awareness
 - 2.3 Evaluating Cognitive Issues

2. Cognition

2.1 Foundations

Cognition related to knowledge stored in our brain

Knowledge: information about the world

Should be

- True
- Justified
- Coherent

Cognition: the driving force behind the generation and usage of knowledge

2. Cognition

2.1 Foundations

Category knowledge in long-term memory

Represented as

- images
- feature records
- amodal symbols
- statistical patterns in neural networks

2. Cognition

2.1 Foundations

Types of category knowledge in long-term memory

- Declarative (explicit):
 - Facts, events
- Nondeclarative (implicit):
 - Priming
 - Procedural (skills, habits)
 - Associative memory
 - →conditioning: emotional responses
 - Nonassociative memory
 - →conditioning: habituation, sensitization

2.1 Foundations

- Usage of long-term memory
 - (Re-)activation of specific memory traces through pattern completion and recapitulation

 Recall (affected by cues and context in highly associative memory)

- Problems with memory recall
 - Biased
 - Misattribution due to wrongly matched cues
 - Suggestive triggering (→skewed recall)
 - Blocked / suppressed memory
 - Matching failure due to overload of cues

2.1 Foundations

Working memory

- Short-term storage
- Temporary
- Performs manipulations / transformation actions on bits and pieces of information
- Individual differences: memory span, amount of storage
- Fast memory decay:
 - Verbal item recall: 6 seconds

Overview

2. Cognition

- 2.1 Foundations
- → 2.2 Situation Awareness
 - 2.3 Evaluating Cognitive Issues

2.2 Situation Awareness

Impact of cognition on interaction in spatial environments

- Internalized model of the current state of the user's environment
 - Perception of elements in the environment (time and space)
 - Comprehension of their meaning
 - Projection of their status in the near future
- Information types
 - From various sources
 - Spatial relationships
 - Fellow users
 - Task states

2.2 Situational Awareness: Wayfinding

[adapted from: Laviola et al 2017]

2.2 Situational Awareness: Wayfinding

2.2 Situation Awareness: Wayfinding

2. Cognition

Cognitive mapping

 Processing multiple sources of sensory information from the environment to execute a suitable travel trajectory

- Environment information stored in long-term memory (spatial knowledge, "cognitive map")
 - Mental hierarchical structure (tree) of spatial knowledge
- Use of existing spatial knowledge, acquisition of new knowledge, combination of both
- Tight feedback loop (perceived new information vs. existing cognitive map)
- Spatial orientation: knowledge of current location and viewing direction

2.2 Situation Awareness: Wayfinding 2. Cognition

Types of spatial knowledge (increasing levels of abstraction)

- Landmark knowledge
- Procedural knowledge (route knowledge)
- Survey knowledge

Search strategies

- Influence the effectiveness of spatial knowledge acquisition
- Affect the efficiency of building a cognitive map and also qualitatively different kinds of spatial knowledge

2.2 Situation Awareness: Wayfinding

2. Cognition

Reference frames:

- Egocentric (egomotion):
 - Relative to certain part of the human body
 (station point (nodal point of the eye), retinocentric, headcentric, bodycentric, proprioceptive subsystems)
 - Provides information such as
 - Distance (physical feedback: number of strides, arm's length)
 - Orientation (direction of eye, head, torso; user motion)
- Exocentric: object- or world-relative

2.2 Situation Awareness: Wayfinding 2. Cognition

Spatial judgments

 Egomotion: seeing oneself in the center of space

- Match egocentric information to cognitive map (exocentric)
- Upon entering a world:
 - egocentric information (landmark, procedural knowledge)
- By wayfinding methods (generalization):
 - Build up an exocentric representation (survey knowledge)

Overview

2. Cognition

- 2.1 Foundations
- 2.2 Situation Awareness
- → 2.3 Evaluating Cognitive Issues

2.3 Evaluating Cognitive Issues

Typical issues

- Mental load (cognitive load)
 - Exogenous demands (defined by the task being performed)
 - Task difficulty
 - Priority
 - Situational contingencies
 - Endogenous demands (attention and processing resources)
 - Resource allocation during different stages of processing
 - Stages
 - Processing codes
 - Modalities
 - Visual channels

2.3 Evaluating Cognitive Issues

Typical issues

- Human error
 - Lack of success in task performance
 - Examples:
 - Cognitive: long term / short term memory limitations
 - Physical: sensory / motor limitations
 - Strongly tied to our abilities and skills and depends on attention mechanisms

2.3 Evaluating Cognitive Issues

Evaluation methods

- Subjective measures
 - SBSOD (Santa Barbara Sense of Direction)
 - NASA TLX
- Performance measures
 - SAGAT (Situation Awareness Global Assessment Technique)
 (freeze online probe technique)
 - Drawing of maps after the tour
- Psycho-Physiological methods, measuring
 - Heart rate, pupil dilation, eye movements, brain activity(EEG)
 - (Emotional) stress and anxiety: galvanic skin response, heart rate, EEG

Thank you!

