HATH 100 2

LECTURE 2-D

UNIT VECTORS

Recall: The length of a vector $\vec{V} = \begin{bmatrix} V_1 \\ V_2 \end{bmatrix}$ is given by

$$\|\vec{\nabla}\| = \sqrt{\vec{\nabla} \cdot \vec{\nabla}} = \sqrt{\sqrt{2} + \sqrt{2} + \cdots + \sqrt{2}}$$

Definition: A unit vector is a vector of length 1.

Example In
$$\mathbb{R}^2$$
, $\dot{e}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, $\dot{e}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, $\dot{u} = \begin{bmatrix} \sqrt{2}/2 \\ -\sqrt{2}/2 \end{bmatrix}$

all unit vectors. 910

Exercise: Check that $\|\hat{e}_i\| = \|\hat{e}_2\| = \|\hat{u}\| = 1$

A picture of all unit vectors in \mathbb{R}^2 :

Definition: \vec{e}_1 and \vec{e}_2 are called standard unit vectors.

Example: In \mathbb{R}^n , there are n standard unit vectors, given by è, è, ..., èn, unere è; has 1 as Hs

ith components and 0 for all other components:

$$\frac{1}{e_1} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \quad \frac{1}{e_2} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \quad \frac{1}{e_3} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \quad \frac{1}{e_4} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \quad \frac{1}{e_5} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \quad \frac{1}{e_5} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \quad \frac{1}{e_5} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \quad \frac{1}{e_5} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \quad \frac{1}{e_5} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \quad \frac{1}{e_5} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \quad \frac{1}{e_5} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \quad \frac{1}{e_5} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \quad \frac{1}{e_5} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \quad \frac{1}{e_5} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \quad \frac{1}{e_5} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \quad \frac{1}{e_5} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \quad \frac{1}{e_5} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \quad \frac{1}{e_5} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \quad \frac{1}{e_5} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \quad \frac{1}{e_5} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \quad \frac{1}{e_5} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \quad \frac{1}{e_5} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \quad \frac{1}{e_5} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \quad \frac{1}{e_5} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \quad \frac{1}{e_5} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \quad \frac{1}{e_5} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \quad \frac{1}{e_5} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \quad \frac{1}{e_5} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \quad \frac{1}{e_5} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \quad \frac{1}{e_5} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \quad \frac{1}{e_5} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \quad \frac{1}{e_5} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \quad \frac{1}{e_5} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \quad \frac{1}{e_5} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \quad \frac{1}{e_5} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \quad \frac{1}{e_5} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \quad \frac{1}{e_5} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \quad \frac{1}{e_5} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \quad \frac{1}{e_5} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \quad \frac{1}{e_5} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \quad \frac{1}{e_5} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \quad \frac{1}{e_5} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \quad \frac{1}{e_5} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \quad \frac{1}{e_5} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \quad \frac{1}{e_5} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \quad \frac{1}{e_5} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \quad \frac{1}{e_5} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \quad \frac{1}{e_5} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \quad \frac{1}{e_5} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \quad \frac{1}{e_5} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \quad \frac{1}{e_5} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \quad \frac{1}{e_5} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \quad \frac{1}{e_5} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \quad \frac{1}{e_5} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \quad \frac{1}{e_5} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \quad \frac{1}{e_5} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \quad \frac{1}{e_5} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \quad \frac{1}{e_5} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \quad \frac{1}{e_5} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \quad \frac{1}{e_5} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \quad \frac{1}{e_5} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \quad \frac{1}{e_5} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \quad \frac{1}{e_5} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \quad \frac{1}{e_5} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \quad \frac{1}{e_5} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \quad \frac{1}{e_5} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \quad \frac{1}{e_5} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \quad \frac{1}{e_5} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \quad \frac{1}{e_5} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \quad \frac{1}{e_5} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \quad \frac{1}{e_5} = \begin{bmatrix}$$

Exercise: check that $||\hat{e}_i|| = 1$.

Observation: Given a direction, there is exactly one unit vector pointing in that direction.

Definition: Let \vec{v} be a non-zero vector.

The normalisation of \vec{v} is the unique vector \hat{v} with length 1 and direction the same as \vec{v} .

It's easy to see that $\hat{V} = \frac{1}{\|\hat{V}\|}\hat{V}$

positive scalar

 \Rightarrow $\hat{\nabla}$ points in the came almostical as $\hat{\nabla}$.

Example: Namalise the following vectors

(a)
$$\vec{u} = \begin{bmatrix} 3 \\ 4 \end{bmatrix}$$
 (b) $\vec{v} = \begin{bmatrix} 2 \\ -1 \\ 0 \\ 3 \end{bmatrix}$

(a) The normalisation of \hat{u} is $\hat{u} = \frac{1}{\|\hat{u}\|}\hat{u}$.

$$||\dot{u}|| = \sqrt{3^2 + 4^2} = \sqrt{9 + 16} = \sqrt{95} = 5$$
.

$$\Rightarrow \hat{u} = \frac{1}{5} \begin{bmatrix} 3 \\ 4 \end{bmatrix} = \begin{bmatrix} 3/5 \\ 4/5 \end{bmatrix}.$$

(b) Exercise: Find \hat{V} .

Solution:
$$\|\vec{y}\| = \sqrt{2^2 + (-1)^2 + 0^2 + 8^2}$$

 $= \sqrt{4 + 1 + 0 + 9}$
 $= \sqrt{4}$
 $\therefore \vec{y} = \frac{1}{14} \begin{bmatrix} 3 \\ -1 \\ 8 \end{bmatrix} = \begin{bmatrix} 3/\sqrt{14} \\ -1/\sqrt{14} \\ 0 \\ 3/\sqrt{14} \end{bmatrix}$

Remark: • The unit vector that points in the apposite direction to \vec{v} is $-\hat{v}$.

• ô doesn't make any semse!

Summary of the lecture

- · A unit vector is a sector of length 1.
- · We nove some "favourite" unit vectors of length 1, called standard vectors.
- * Given a non-zero vector \vec{v} , the process of finding the unique unit vector is called normalisation:

$$\hat{V} = \frac{1}{\|\hat{v}\|} \hat{V}.$$

You should be able to:

- · be familiar with the terminology
- · identify unit vectors, standard vectors
- · normalise vectors.