TDAB01 Probability and Statistics

Maryna Prus IDA, Linköping University

Lecture 8: Maximum Likelihood Estimator, Confidence Intervals

Overview

- Maximum likelihood method
- Sampling distribution
- **▶ Confidence intervals**

Point estimator (or estimator), from Lecture 7

- Observing data we may guess suitable family of distributions
- Problem: unknown parameters
- Examples:
 - ▶ Average income in Sweden \rightarrow Population expectation μ ?
 - ▶ Proportion of defect products \rightarrow Probability p ?
- Use data to determine values for unknown parameters
- Point estimate best guess about parameter based on data
- Data from different points of view
 - Practically: observations, values, sample x_1, \ldots, x_n
 - Analytically: random variables, iid X_1, \ldots, X_n
- (Point) **Estimate** one **value**; mean \bar{x}
- (Point) **Estimator** function, **random variable**; mean \bar{X}

Maximum likelihood method

- X_1, \dots, X_n i.i.d. random variables
- ▶ Distribution of $X_1, ..., X_n$ depends on *unknown* parameter $\theta \in \Theta$
- x_1, \dots, x_n observed data
- "Good" estimation of θ ?
- ▶ Idea:
 - "Good" estimation of θ -
 - value of θ that maximizes likelihood of observed data

ML estimation, Discrete case

- X_1, \ldots, X_n discrete random variables
- ▶ $P_{X_i}(x_i)$ probability function (pmf) of X_i , depends on parameter $\theta \in \Theta$
- Maximum Likelihood estimation $\hat{\theta}$ of θ maximizes joint pmf of X_1, \dots, X_n :

$$\hat{\theta} = \arg\max_{\theta \in \Theta} P_{X_1, \dots, X_n}(x_1, \dots, x_n)$$

Likelihood function:

$$L(\theta) = P_{X_1,...,X_n}(x_1,...,x_n)$$
$$= \prod_{i=1}^n P_{X_i}(x_i)$$

ML estimation, Continuous case

- X_1, \ldots, X_n continuous random variables
- ▶ $f_{X_i}(x_i)$ density function (pdf) of X_i , depends on parameter $\theta \in \Theta$
- Maximum Likelihood estimation $\hat{\theta}$ of θ maximizes joint pdf of X_1, \dots, X_n :

$$\hat{\theta} = \arg\max_{\theta \in \Theta} f_{X_1, \dots, X_n}(x_1, \dots, x_n)$$

Likelihood function:

$$L(\theta) = f_{X_1,...,X_n}(x_1,...,x_n)$$
$$= \prod_{i=1}^n f_{X_i}(x_i)$$

Interpretation

 X_1, \dots, X_n - discrete random variables

ML estimation $\hat{\theta}$ of θ maximizes

$$P_{X_1,...,X_n}(x_1,...,x_n) = P(X_1 = x_1,...,X_n = x_n)$$

• X_1, \ldots, X_n - continuous random variables

$$P(x_i - h < X_i < x_i + h) = \int_{x_i - h}^{x_i + h} f_{X_i}(t) dt$$

$$\int_{x_i-h}^{x_i+h} f_{X_i}(t) dt \approx 2 h f_{X_i}(x_i), \quad h > 0, \text{ small}$$

ML estimation $\hat{\theta}$ maximizes probability for X_1, \dots, X_n to take values "very close to" x_1, \dots, x_n

Maximizing Likelihood

- **1.** $\theta \in \mathbb{R}$, $L(\theta)$ twice differentiable
 - Solve equation

$$\frac{\partial L(\theta)}{\partial \theta} = 0$$

• Solution $\hat{\theta}$ is local maximum if

$$\frac{\partial^2 L(\theta)}{\partial \theta^2}$$
 < 0, at $\theta = \hat{\theta}$

- Check for local maximum $\hat{\theta}$ if it is global maximum
- Usually it is easier to maximize Log-Likelihood function

$$\ell(\theta) = \ln L(\theta)$$

Same result as ln(x) is strictly increasing function

Example: Poisson Distribution

•
$$X_i \sim Po(\lambda), i = 1, \ldots, n$$

Pmf of X_i :

$$P_{X_i}(x) = \frac{\exp(-\lambda) \cdot \lambda^x}{x!}, \quad x = 0, 1, 2, \dots$$

Likelihood and Log-Likelihood functions:

$$L(\lambda) = \frac{\exp(-n\lambda) \cdot \lambda^{\sum_{i=1}^{n} x_i}}{\prod_{i=1}^{n} x_i!} \quad \& \quad \ell(\lambda) = -n\lambda + \sum_{i=1}^{n} x_i \ln \lambda - \ln \prod_{i=1}^{n} x_i!$$

Derivatives of Log-Likelihood function:

$$\frac{\partial \ell(\lambda)}{\partial \lambda} = -n + \frac{\sum_{i=1}^n x_i}{\lambda} \quad \& \quad \frac{\partial^2 \ell(\lambda)}{\partial \lambda^2} = -\frac{\sum_{i=1}^n x_i}{\lambda^2} < 0$$

ML estimation of λ : $\hat{\lambda} = \bar{x}$

Sampling distribution

- ► Estimator $\hat{\theta}$ function of $X_1, \dots, X_n \rightarrow \hat{\theta}$ random variable
- ▶ Distribution of $\hat{\theta}$ sampling distribution
- Sampling distribution describes variation of $\hat{\theta}$ over all samples of size n
- ▶ **Bias** of $\hat{\theta}$: $Bias(\hat{\theta}) = \mathbb{E}(\hat{\theta}) \theta$
- Standard error of $\hat{\theta}$: $\sqrt{Var(\hat{\theta})}$
- ► Mean Squared Error:

$$MSE(\hat{\theta}) = \mathbb{E}[(\hat{\theta} - \theta)^2] = Var(\hat{\theta}) + [Bias(\hat{\theta})]^2$$

- $\hat{\theta}$ good estimator for θ if
 - $\hat{\theta}$ has correct expected value (unbiased): $\mathbb{E}(\hat{\theta}) = \theta$, or small bias
 - $\hat{ heta}$ has small standard error / small variance
 - $\hat{\theta}$ has small MSE

Sampling distribution

- ▶ Poisson data: $X_1, ..., X_n$ iid. with $X_i \sim Po(\lambda)$ (Example 9.7 in textbook)
- ML estimator for λ : \bar{X}
- $\hat{\lambda}$ unbiased: $\mathbb{E}(\hat{\lambda}) = \lambda$
- $Var(\hat{\lambda}) = \frac{\sigma^2}{n} = \frac{\lambda}{n}$, σ^2 variance of X_i
- $Var(\hat{\lambda})$ depends on unknown parameter λ
- Solution: replace λ by \bar{x} or σ^2 by s^2 , $s^2 = \frac{\sum_{i=1}^{n}(X_i \bar{X})^2}{n-1}$
- Techniques for deriving sampling distribution of estimator $\hat{\theta}$:
 - X_1, \ldots, X_n iid from $N(\mu, \sigma^2)$

$$\rightarrow \quad \hat{\theta} = \bar{X} \sim N(\mu, \sigma^2/n) \;\; {\rm exactly} \;\;$$

• X_1, \ldots, X_n iid with $E(X_i) = \mu$, $Var(X_i) = \sigma^2$, n large

$$\rightarrow$$
 $\hat{\theta} = \bar{X} \sim N(\mu, \sigma^2/n)$ approximately

Bootstrap method

Bootstrap method:

Create N bootstrap samples

$$\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(N)}$$

of the same size as the original sample by sampling with replacement

Calculate estimates

$$\hat{\theta}(\mathbf{x}^{(1)}), \dots, \hat{\theta}(\mathbf{x}^{(N)})$$

for each of these N samples

Empirical distribution of

$$\hat{\theta}(\mathbf{x}^{(1)}), \dots, \hat{\theta}(\mathbf{x}^{(N)})$$

- histogram - is approximation of sampling distribution for $\hat{ heta}$

Confidence interval

- Point estimate best guess for \(\theta \)
 Confidence interval describes uncertainty of \(\theta \)
- ▶ 95% confidence interval for θ interval [a, b] such that

$$P$$
{ *a* ≤ *θ* ≤ *b*} = 0.95

- Important: Parameter θ is fixed constant Interval is random, i.e. a and b functions of sample
- Interpretation: 95% confidence interval [a, b] covers parameter value θ , i.e. $\theta \in [a, b]$ in 95% of all possible samples If we count a and b from all samples, [a, b] covers θ in 95% of cases
- ▶ 95% confidence level Other commonly used confidence levels: 90% and 99%

Confidence interval

Confidence interval - general approach

- $\hat{ heta}$ normally distributed unbiased estimator for heta
- Standardization

$$Z = \frac{\hat{\theta} - \theta}{\sigma(\hat{\theta})} \sim N(0, 1)$$

- z_{α} $(1-\alpha)$ quantile of N(0,1) distribution
- Then

$$P(-z_{\alpha/2} \le \frac{\hat{\theta} - \theta}{\sigma(\hat{\theta})} \le z_{\alpha/2}) = 1 - \alpha$$

$$\Rightarrow \quad \boldsymbol{P}(\hat{\theta} - z_{\alpha/2} \cdot \sigma(\hat{\theta}) \le \theta \le \hat{\theta} + z_{\alpha/2} \cdot \sigma(\hat{\theta})) = 1 - \alpha$$

• $(1-\alpha)\cdot 100\%$ confidence interval for θ :

$$[\hat{\theta} - z_{\alpha/2} \cdot \sigma(\hat{\theta}), \hat{\theta} + z_{\alpha/2} \cdot \sigma(\hat{\theta})]$$

- Example: $\alpha = 0.05$
- $z_{\alpha/2} = z_{0.025} = 1.96$ from Table A4 in textbook
- $[\hat{\theta} 1.96 \cdot \sigma(\hat{\theta}), \hat{\theta} + 1.96 \cdot \sigma(\hat{\theta})]$ is 95% confidence interval for θ

Confidence interval for the population mean

- X_1, \ldots, X_n iid with $\mathbb{E}(X_i) = \mu$ and $Var(X_i) = \sigma^2$
- $\theta = \mu$ unknown, σ known
- $\hat{\theta} = \bar{X}$ estimator for θ with $\mathbb{E}(\hat{\theta}) = \mathbb{E}(\bar{X}) = \mu \text{ and } \sigma(\hat{\theta}) = Std(\bar{X}) = \sigma/\sqrt{n}$
- X_1, \dots, X_n normally distributed
 - \rightarrow $\left[\bar{X} \pm z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}\right]$ exact $(1-\alpha) \cdot 100\%$ confidence interval for μ
- X_1, \dots, X_n not normally distributed (any other distribution), n large
 - \rightarrow $\hat{\theta} = \bar{X}$ approximately normally distributed according to CLT
 - \rightarrow $\left[\bar{X}\pm z_{\alpha/2}\cdot \frac{\sigma}{\sqrt{n}}\right]$ approximate $(1-\alpha)\cdot 100\%$ confidence interval for μ
- ▶ Length of confidence interval: $2 \cdot z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}$, decreasing with increasing n
- ▶ **Selection of sample size** *n*: Choose *n* to get given length
- Examples: Examples 9.13 and 9.15 in textbook

Confidence interval for population mean

- X_1, \ldots, X_n iid, σ^2 unknown
- For large n replace σ by its estimator $s \to s(\hat{\theta}) = s/\sqrt{n}$ $\to [\bar{X} \pm z_{\alpha/2} \cdot \frac{s}{\sqrt{n}}]$ - approximate $(1-\alpha) \cdot 100\%$ confidence interval for μ
- X_1, \ldots, X_n normally distributed:

$$t = \frac{\bar{X} - \mu}{s / \sqrt{n}} \sim t (t - 1)$$

→ **Exact** $(1 - \alpha) \cdot 100\%$ confidence interval for μ :

$$\left[\bar{X}\pm t_{\alpha/2}(n-1)\frac{s}{\sqrt{n}}\right]$$

 $t_{\alpha/2}(n-1)$ - $(1-\alpha/2)$ quantile of t-distribution with $\nu=n-1$ degrees of freedom (Table A5 in textbook)

- Example: Example 9.19 in textbook
- Small sample & non-normally distributed data → bootstrap method

Confidence interval for proportion

- Some items from population have certain attribute Example: defect products
- ▶ p probability for randomly selected item to have this attribute
- $\hat{p} = \frac{1}{n} \sum_{i=1}^{n} X_i$ where $X_i = 1$ if *i*-th sampled item has attribute and $X_i = 0$ otherwise
- \hat{p} estimator for p
- \hat{p} is also mean \rightarrow same approach as for population mean
- ▶ Then $X_1, ..., X_n \stackrel{iid}{\sim} Bernoulli(p)$ and $\mathbb{E}(X_i) = p$, $Var(X_i) = p(1-p)$
- In other words

$$\mathbb{E}(\hat{p}) = p \text{ and } Var(\hat{p}) = \frac{1}{n^2} \sum_{i=1}^n Var(X_i) = \frac{1}{n^2} np(1-p) = \frac{p(1-p)}{n}$$

- $\sigma(\hat{p})$ depends on $p \rightarrow \text{use } s(\hat{p}) = \sqrt{\hat{p}(1-\hat{p})/n}$
- ▶ From CLT, for large *n*:

$$\hat{\rho} \pm z_{\alpha/2} \sqrt{\frac{\hat{\rho}(1-\hat{\rho})}{n}}$$

- approximate $(1-\alpha)100\%$ confidence interval for p

Thank you for your attention!