실험 1.

옴의 법칙과 키르히호프의 법칙

1. 목 적

- (1) 희로상에서 전류, 전압, 저항과의 관계를 실험적으로 증명해 본다.
- (2) 직·병렬 회로에서의 키르히호프의 법칙을 실험을 통해 확인한다.

2. 이 론

Ⅱ 음의 법칙

전압 V와 저항 R로 구성된 폐희로에서는 전류 I가 흐른다는 것을 알 수 있다. 여기서 만일 전압이 상수로서 일정하게 유지되고 저항이 증가한다면 전류는 강소하게 될 것이다. 또, 저항이 일정하고 전압이 증가한다면 전류는 증가하게 될 것이다. 이러한 결과는 매우 중요 한 사실로서 전류, 전압, 저항 사이의 상호 관계를 설명적으로 나타내었는데, 이를 음의 법칙 (Ohm's law)이라 한다.

이를 식으로 표현하면 아래와 같다.

$V = I \times R$

여기서 I는 전류(current), V는 전압(voltage), R는 저항(resistance)을 나타낸다. 이 공식은 전기·전자 분야의 가장 기초적인 관계식 가운데 하나인데, 다른 두 가지 법칙 (I = V/R, R = V/I)도 역시 정확하게 같은 형태이다. 특정 문제에 있어서 공식의 선택은 어떤 값이 알려져 있는지, 그리고 우리가 찾고자 하는 값이 무엇인지에 따라 결정된다.

[2] 키르히호프의 전압 법칙

키르히호프의 전압 법칙 (kirchhoff's voltage law: KVL)은 조금 복잡한 희로를 해석하는데 유용하게 사용된다. Gustav Robert Kirchhoff에 의하여 발견된 이 법칙은 근대 희로 해석의 기초이다. 아래 그림 1.1과 같이 저항 소자들을 작렬로 연결한 희로에서 KVL을 적용해 보자.

이 회로에서 직렬 연결된 저항기들의 전체 등가 저항 Rr는

$$R_T = R_1 + R_2 + R_3 \tag{1-1}$$

가 되며 음의 법칙에 따라 이 희로상에 흐르는 총 전류 /가는

$$I_T = V_T / R_T \tag{1-2}$$

즉, 다음과 같이 된다.

$$V_T = I_T \times R_T \tag{1-3}$$

그림 1.1 직류 희로의 등가 저항

따라서 식 (1-1)을 식 (1-3)에 대입하면 다음과 같이 된다.

$$V_T = I_T (R_1 + R_2 + R_3)$$

= $I_T \times R_1 \times I_T \times R_2 + I_T \times R_3$ (1-4)

여기서

 $I_T \times R_1 = R_1$ 양단의 전압 강하 = V_1 $I_T \times R_2 = R_2$ 양단의 전압 강하 = V_2 $I_T \times R_3 = R_3$ 양단의 전압 강하 = V_3

이므로 식 (1-4)를 달리 나타내면 다음과 같이 된다.

$$V_T = V_1 + V_2 + V_3$$
 (1-5)

이와 같이 임의의 폐희로에서 각 저항에 걸린 전압의 총 합은 그 희로 내의 인가 전압과 같다 는 사실을 이론적으로 확인할 수 있는데, 이를 키르히호프의 전압 법칙이라 한다. 회로 해석시에는 + 또는 -의 국성을 표시하는 것이 편리할 때가 있는데, 예를 들어 그림 1.1(a)에서 보면 전류 I의 방향과 전압 강하 V_I , V_2 , V_3 의 방향이 같고 (전류가 각 소자의 + 에서 - 방향으로 호름) 전압원 V_7 의 방향은 반대 (전류가 전압원의 - 에서 + 방향으로 호름)가 되어 다음과 같이 되는 것을 알 수 있다.

$$V_1 + V_2 + V_3 - V_T = 0$$

③ 키르히호프의 전류 법칙

그림 1.2의 직·병렬 회로에서 전류의 방향을 그림의 화살표 방향으로 하여 총 전류 I_T 가 $I_{I,\ I_2}$ 로 나누어져 들어갔다가 다시 I_T 로 합해져 나오는 것을 볼 수 있다.

병렬 회로 A, B 간의 전압 VAB는

$$V_{AB} = I_1 \times R_1 = I_2 \times R_2 \tag{1-6}$$

가 되고, 병렬 연결되어 있는 저항기들은 하나의 등가 저항 R_{T} 로 대치할 수 있다. 이 때

$$V_{AB} = I_T \times R_T = I_1 \times R_1 = I_2 \times R_2$$

가 되고, 이것을 다시 정리하면

$$I_1 = I_T \times (R_T/R_1)$$
$$I_2 = I_T \times (R_T/R_2)$$

를 일을 수 있다. 여기에서 11 과 12를 더하면

$$I_1 + I_2 = I_7 \times R_T (1/R_1 + 1/R_2)$$
 (1-7)

이고, 병릴 연결된 저함기에서는

$$1/R_T = 1/R_1 + 1/R_2$$

이므로 식 (1-7)은

$$I_1 + I_2 = I_T$$

로 나타낼 수 있는데, 이를 키르히호프의 전류 법칙 (Kirchhoff's current law : KCL) 이라 한다. 이는 희로 내의 한 점으로 흘러 둘어오는 전류의 합계는 그 점을 통하여 흘러 나가는 전류의 총 합과 같다는 의미로 해석할 수 있다.

3. 사용 계기 및 부품

직류 전원 장치 : -1-

디지털 멀티미터: -1-

직류 전류계 : -1-

직류 전압계 : -1-

SPST/SPDT : -1-

저항

: 100, 560, 1000, 1200, 2200, 3900, 2.2kg, 15kg, 22kg, 100kg,

4. 실험 방법

Ⅱ 옴의 법칙

- (1) 그림 1.3과 같이 간단한 회로를 구성하고 공급 전압은 4.5 V로 하라.
- (2) 그림 1.3을 보고 주어진 표 1.1(a)의 첫 번째 저항값 56Ω을 디지털 멀티미터를 이용하여 측정 값을 기록하라.
- (3) 측정된 저항값으로 계산 전류를 계산하라.

- (4) 저항기를 바꾸어 가며 호르는 측정 전류를 측정하라.
- (5) 백분을 오차를 계산하라.
- (6) 그림 1.3에서 저항기를 표 1.1 (a)에 있는 두 번째와 세 번째의 저항기로 바꾸어 가며 (1) ~ (5)까지 반복하여 나머지 빈칸을 기록하라.
- (7) 표 1.2 (b)의 빈 칸을 옴의 법칙을 이용하여 계산하라.

[2] 키르히호프의 전압 법칙

- (8) 표 1.2의 R₁, R₂, R₃의 실제 저항값을 측정하여 표 1.2에 기입하라.
- (9) 표 1.2에 있는 저항기와 전압을 참고로 그림 1.4 의 회로를 결선하라.
- (10) R1, R2, R3 에 각각 걸리는 V1, V2, V3를 측정하여 표 1.2에 기록하라.
- (11) V1, V2, V3의 함 V7 를 계산하여 표 1.2에 기록하라.
- (12) 표 1.2를 참조하여 공급 전원과 저항기를 바꾸어 가며 (9), (10), (11)을 반복하라.

③ 키르히호프의 전류 법칙

- (13) 표 1.3 (a)를 보고 사용되는 저항기의 실제 저항값을 측정하여 기록하라.
- (14) 그림 1.5의 희로를 결선하라.

- (15) 각 전류계에 호르는 전류를 계산하고 측정하여 표 1.3 (b)에 기록하라.
- (16) 회로 전체에 흐르는 전류를 계산하고 측정하라.

그림 1.5 간단한 직·병렬 회로

5. 예비 보고서

- (1) 음의 법칙에 대하여 설명하라.
- (2) 키르히호프의 법칙에 대하여 설명하라

실험 1. 음의 법칙과 키르히호프의 법칙

					제출일		
4 4	하	A.,	학	번	조	성	명
		A B			7.5		

- 예비 보고서 -

(1)

(2)

실험 1. 옴의 법칙과 키르히호프의 법칙

		원 명 원 경 원 원 원 원 원 원 원 원 원 원 원 원 원 원 원 원	
a store a learn	Sand of Balling		

- 실험 결과 -

班 1.1 (a)

4.5V

저항체 계산된 전류 실제 저항값 축정된 전류 - 백분을 오차 er in gr (AA) = (%) €6 > 1 5 pt 3.5 1 87.1 2 100 J 0. 33360 14.6 3 21.9 KB 0.21 22 K.S.

2.13

丑 1.1 (b)

30 V 250mA

2360

3.18 ks

2 1 A 15kΩ 3 24 V 1 MΩ 4 10μΑ 100 kΩ 5 12 V 2.5mA 6 720aV 120 Ω

丑 1.2

	교육 기의	건두	KING KING ON		Salas WS with 1 West		Selected W	R3		V2	V3	(TO)
			지함 하	414	त्रुपर	즐겁다	21.5	奇정값	V		402.5	(V4)
1	3V	0.14	2202	· 76	390 /	0.33kd	100	21.7	nomy	45. 8mV	3.101	3.15
2	3v/	0.12	100	#\$5.3	-336	0.13	390	K	67.2mV	0.4070	3.67	3.15
3	4.5V		220	LX	390-1	Ky, v	(100)	>. 1€	Vietos	0.600V	3.98	4.69
4-	-6V		-2-2k		10		22		-	-		-

丑 1.3 (a)

And the tolerand	Ru				R3		# R4		
	層鴨縣	শক্ত	4411	島山港	Haraus	CANA.	44.8 E		中海为政
1	4.5V	350	4	390 104		-100		100 2	R
2	3V	(100)		220- 4	th.	399-/9	K	390 90	-
3	2.5V	220-7	44	390 /	,K	(100)		1000	2
4	6V	2.2k		10		22		22	, X.

丑 1.3 (b)

		lister (r Pilo	1811 1811		· Zis	÷	**************************************	is with
1	4.5V	WELL STATE OF THE SECOND	Hacta	el har sente la seco	n Stranler (SS)	ACRES CONTRACTOR	Total Jan.		A STORY THE
2	3V	18 9 4		7 F 7 F 7	500	7 to 64	235.50	100	34 A
3	2.5V	10-10-5	100		18/18	News, to	d plant	0.00000	8.00
4	6V		arright v	5.150.57	S	C. Shake			

-검 토-