Aging effects on expectancy use in driving scenes as assessed by the ideal observer Shimozaki, Steven S., Hutchinson, Claire V., Swan, Eleanor, & Mahal, Jaspreet School of Psychology, University of Leicester (ibshimo2@gmail.com; ch190@le.ac.uk)

Introduction

Aging and driving

- Older drivers tend to have more accidents (e.g., National Highway Traffic Safety Administration, USA, 2009; Ryan, Legge, & Rossman, 1998)
- Older drivers tend to reduce their driving (e.g., Glasgow, 2000) or cease driving altogether (e.g., Keay, Munoz, Turano, et al., 2009)
 - having a negative impact on Quality of Life (e.g., Windsor et al., 2007)

Aging, driving, and visual attention

- Aging has effects on cognition (e.g., see Salthouse, 2000; Butler & Zacks, 2006) and vision (e.g., see review in Sekuler & Sekuler, 2002).
- Clear aging effects upon visual attention: the Useful Field of View (UFOV), (e.g., Sekuler, Bennett, & Mamelak, 2000), a visual search task.
- Performance in the UFOV predicts driving performance in the aged (e.g., Owsley et al., 1998).

Visual attention, cueing tasks, and aging effects

 However, results of studies of aging effects in cueing are mixed (review in Swan et al., 2015), possibly due to a reliance on reaction times.

Ideal observer analysis of aging effects in cueing tasks (Swan et al., 2015)

- Proposed a Bayesian ideal observer analysis of cueing tasks (e.g. Eckstein, et al., 2002; Shimozaki, 2010)
- The Bayesian IO analysis quantifies the optimal use of information provided by a (predictive) cue.
- The measure: weight, with the ideal weight equal to the cue validity.
- 70% peripheral valid cue in a cued yes/no detection of a simple (2D Gaussian) target, set sizes 2 and 6
- Results, younger participants: The weights were not affected by set size and close to optimal (70).
- Results, older participants: The weights were less optimal with the larger set size.
- Conclusions: Older participants had difficulty with using the cue information as set size increased.

Study Aim: Extending the ideal observer for cueing to the use of expectations in naturalistic driving scenes

- Eckstein, Drescher, & Shimozaki (2006): demonstrated the application of the ideal observer for cueing to the use of expectations (prior knowledge) in more naturalistic scenes (e.g., a chimney on top of a roof).
- This study: assessing the use of expectations in driving scenes for both younger and older drivers.

1. Online pilot study: determining expectancy heat maps

- 172 participants (age: 22.31, sd=7.42, 142 female), self-reported UK drivers
- 150 grey-scale driving scenes from Birmingham, UK, presented online
- Scenes were free-viewed and also varied in size. For the control and main studies the scene size was 36.87° x 28.07°.

- For each scene, participants were asked to indicate the most likely location of one driving-related target.
- E.g., this scene: 'Sign for directions?'
- Targets: Pedestrians (n=40), bicyclists (n=9), vehicles (n=40), motorcycles (n=4), bus stops (n=11), road signs (n=86)

- Each response was blurred (2D Gaussian, sd = 1.41°).
- Blurred responses were summed and normalized to create expectancy heat maps.

Example of an original image, filtered by the expectancy heat map.

Results, online pilot study

- Peak expectancies tended to be below center (2.73°, se = 0.14, 142 of 150 scenes), reflecting better vision/attention and dominance of information in the lower hemifield (e.g., Danckert & Goodale, 2003).
- Peak expectancies tended to be left of center left of center (8.58°, se = 0.40, 133 of 150 scenes), reflecting driving on the left in the UK.
- Most maps could be described as 1 or 2 contiguous areas (as in the example above).

2. Creating the stimuli: Photoshopping™ targets into scenes

- Targets appropriate for each scene were cropped from another set of driving scenes and were 'photoshopped' into the peak (high) expectancy location and one lower (low) expectancy location.
- 75 of the scenes were chosen (80 originally, 5 eliminated post-hoc) for the main study.
- Elimination was based upon expectancy maps (a single continuous area that was too small or too close to the edge, more than two contiguous areas) or ambiguous instructions during study.
- Target sizes were scaled roughly for distance (depth).

3. Control study: assessing local stimulus and eccentricity differences (between high and low expectancy locations)

High expectation

Target present

Target absent

Target present

Target absent

- Task: yes/no detection, two conditions (high and low expectation)
- One trial: 1 sec preview text display giving target identity for the trial -> fixation cross (250ms minimum) -> stimulus
- Stimulus durations: Younger 50ms, Older 200ms
- Target present: targets presented with uniform grey backgrounds, except for elliptical areas surrounding targets (ellipses: 1.41° beyond maximum horizontal and vertical extents of targets)
- Target absent: created from the original scenes
 - Eye-tracking ensured central fixation before stimulus presentation (Eyelink 1000, SR Research).
- Targets: Pedestrians (n=28), bicyclists (n=9), vehicles (n=11), motorcycles (n=1), bus stops (n=5) and road signs (n=21)

Results, control study, standard SDT yes/no detection analyses

Larger d-primes for high expectation locations (F(1,46) = 28.45, p<.001)

- Lambda-center: criterion measure adjusted so that 0 = unbiased observer ($\lambda_{center} = \lambda d'/2$, see Wickens, T., 2002)
- Older participants had more negative criteria, indicating a bias to say 'yes' (F(1,46) = 6.564, p = 0.014).

High expectation locations were:

- More to the left (8.78°, se = .054, vs 4.98° , se = 0.66, p <.05), and thus perceived to be closer to the participants
- And thus larger (37.39 deg², se = 2.15 vs 23.09 deg², se = 1.00, p <.05), as expected from the difference in perceived depth.

4. Main study: assessing the use of expectancy

Target present, high expectation

Target absent (original scene)

Target present, low expectation

- Task: yes/no detection, three trial types (high expectation target present, low expectation target present, target absent)
- Equivalent to a cued yes/no detection task with a set size (number of locations) of 2
- One trial, younger participants ('flicker', e.g., Rensink, O'Regan, & Clark, 1997): 1 sec preview text display giving target identity for the trial -> fixation cross (250ms minimum) -> target absent scene (150ms) -> uniform grey (blank, 50 ms) -> stimulus (50ms)
- One trial, older participants: 1 sec preview text display giving target identity for the trial -> fixation cross (250ms minimum) -> stimulus (200ms)

Modeling (based on the Bayesian Ideal Observer for cueing tasks (e.g., Eckstein et al., 2002; Eckstein et al., 2006; Shimozaki, 2010)

- Predicts maximal performance and optimal use of the expectation (cueing) information
- Use of expectation information quantified by the weight. For cueing tasks the ideal weight is the cue validity.
- Estimation of weight: normalized integration of heat maps for areas within ellipses for high and low locations
 - Weights: high=0.717, se=0.010; low=0.283, se=0.010
- Two model fits:
 - Weighted: predicting optimal use of expectancy information, given the weights above
 - Equal (weights): predicting no use of expectancy information
- Difference in d-primes from control study were included in the model. Ratio of d'_{low}/d'_{high} fixed, overall d' varied.

Results, main study

- Larger hit rates for high expectation (F(1,45) = 77.42, p < .001)
- Age X Expectation interaction; younger participants had a larger high vs. low expectation difference (F(1,45) = 4.525, p = 0.039)
- No difference (by age) for false alarms

Model fits

	$\chi^{2}(1)$	р	proportion	crit
younger, weighted	2.922	0.087	1.19	-0.96
younger, equal	30.54	<.001	1.18	-0.86
old, weighted	59.52	<.001	0.92	-0.94
older, equal	0.335	0.563	0.98	-0.84

- Younger: fit to weighted model, no fit to equal model, suggesting use of expectancy
- Older: no fit to weighted model, fit to equal model, suggesting no use of expectancy
- Proportions (proportion of 1 = same d's as control study):
- Younger proportions > 1 (p< .05), suggesting general improvement with full scene context
- Negative criteria (p<.05), suggesting bias to say 'yes.'

Conclusions

For these more naturalistic driving scenes:

- The model fits suggest the use of expectancy by the younger, but not the older, participants.
- The younger participants also seemed to benefit generally from the full scene context.

Participants, control and main studies

- All UK drivers, Snellen acuity 20/30 or above (except for one older participant, 20/40)
- 49 younger: 25 (14 female) in control study (age=21.76 yrs, sd= 2.63); 24 (21 female) in experimental study (age=22.42 years, sd=2.82)
- 46 older (all passed the Mini-Mental State Exam, Folstein, & McHugh, 1975): 23 (10 female) in control study (age=71.39 yrs, sd=5.37); 23 (7 female) in the experimental study (age = 71.04 years, sd=3.87)
- Driving experience: Younger participants-3.21 yrs, sd=2.11; older participants-46.26 yrs, sd=9.84