A good sketch is better than a long speech: evaluate delinquency risk through real-time video analysis

Xiangyu Chang, Lili Dai, Lingbing Feng, Jianlei Han, Jing Shi, Bohui Zhang Review of Finance, 2024

Present by: Long Zhen

Research background

- Limitations of Traditional Credit Assessment:
 - Relies on historical data (credit scores, digital footprints).
 - Not useful for first-time borrowers or those with minimal financial history.
 - Over 2.5 billion adults lack bank accounts.
 - Only 7% of adults in developing countries have **credit cards**.
 - Limited credit access exacerbates poverty and inequality.
- → Emerging Alternative: Real-Time Video Analysis
 - Captures borrowers' micro-facial expressions during loan applications.
 - Offers new insights into financial stress and confidence.

Motivation

- Traditional Credit Evaluation Constraints:
 - Credit history may be missing, inaccurate, or outdated.
 - Conventional methods fail to assess real-time financial situations.
- Micro-Facial Expressions as a New Data Source:
 - Reveals unconscious emotional cues related to financial stress.
 - Can indicate borrowers' ability and willingness to repay loans.
 - Income adequacy channel & income uncertainty channel
- Advancements in Machine Learning and Fintech:
 - Real-time video processing enables large-scale facial analysis.
 - Fintech firms are seeking innovative credit assessment tools.

Contribution

- Existing Studies on Credit Assessment:
 - Traditional Methods: Rely on credit scores, digital footprints, and demographic data.
 - Behavioral Economics: Studies on borrower psychology and default risk.
- This Study:
 - Introduces real-time video analysis to predict loan delinquency.
 - Explores the unconscious nature of micro-facial expressions.
 - Provides empirical evidence using machine learning on fintech lending data.

Contribution

- Existing studies on video analysis and facial information
 - CEO's presentation and interview are informative to investors
 - Photos of borrowers/ managers/ analysts/ investors
- This paper:
 - The application of video analysis of individual borrowers in credit markets

Contribution

- Existing studies on alternative data
 - Useful to investors
 - Satellite image/customer transactions/ opinions/ mobile / real-time sales
 - These data can impact managerial insider trading behavior and disclosure decisions
- This paper:
 - New evidence on borrowers' alternative data to fintech lender

Hypothesis development

- Happiness is associated with financial well-being and lower uncertainty.
- Psychological basis: Positive affect is linked to better self-control and responsible financial decision-making.

• **H1:** The extent of borrowers' happiness facial expressions during the application process is negatively associated with future loan delinquency likelihood.

Hypothesis development

- Fear signals financial instability and higher income uncertainty. In capital markets, fear usually refers to the perceived volatility and risk of financial transactions
- Fearful borrowers face greater difficulty making timely loan repayments.

• **H2:** The extent of borrowers' fear facial expressions during the application process is positively associated with future loan delinquency likelihood.

Loan application procedures

• Step 1: Loan Application Submission

- Borrowers apply via fintech terminals installed in retail stores.
- They provide identification and necessary personal details.

• Step 2: Video Recording During Application

- Borrowers' facial expressions and behaviors are captured.
- Video recording is conducted with borrower consent.
- The recording period typically lasts up to 5 minutes.

• Step 3: Credit Assessment and Approval Decision

- Fintech firm evaluates borrower creditworthiness using internal credit scores.
- Borrowers receive approval or rejection within minutes.
- Facial expression data is not used in the current assessment process.

• Step 4: Loan Disbursement and Repayment

Research design

• Data Source:

- Proprietary dataset from a leading Chinese fintech firm.
- 4,956 loan application video clips (2017-2019).
- Applicants' facial expressions recorded during loan applications.

• Methodology:

• Step 1: Video Preprocessing

- Extracts individual video frames (10-30 frames per second).
- Enhances image quality for accurate facial recognition.
- Identifies and isolates borrower's face from background noise.

Step 2: Facial Feature Detection

- Uses OpenFace 2.0 for detecting facial landmarks.
- Tracks facial muscle movements (Facial Action Units AUs).

• Step 3: Expression Classification

- Applies the Facial Action Coding System (FACS).
- Happiness: AU6 (cheek raiser) & AU12 (lip corner puller).
- Sad: AU1 (inner brow raiser), AU4 (brow lowerer), and AU15 (lip stretcher).
- Fear: AU1, 2, 4, 5, 7, 20, 26

• Step 4: Feature Extraction for Prediction

- Calculates percentage of video frames containing happiness or fear expressions.
- Distinguishes between macro and micro-expressions (lasting less than 0.5 seconds).

Emotion	AU Descriptions	AU Examples	
Uanninaa	AU6, Cheek raiser	1 6 G	
Happiness	AU12, Lip corner puller	(E)	
	AU1, Inner brow raiser	@ 6	
Sadness	AU4, Brow lowerer		
	AU15, Lip corner depressor	12	
	AU1, Inner brow raiser	@ 6	
	AU2, Outer brow raiser	@ 6	
	AU4, Brow lowerer	100	
Fear	AU5, Upper lid raiser	1 5 E	

Research design

•
$$Happiness = \frac{\#happy-\#sad}{\#total\ frame}$$
 $Fear = \frac{\#fear}{\#total\ frame}$

- Control variable:
 - creditworthiness metric
 - Credit score
 - borrower's personal characteristics
 - Age/Gender/History loans
 - loan contract characteristics
 - Amount/Rate
- Logistic model

Delinquency =
$$\alpha + \beta_{FE} \times Facial \ Expression + \beta_{Control} \times Control \ Variables + \beta_{FF} Fixed \ Effects + \varepsilon$$
,

Main results

	Delinquency					
	(1)	(2)	(3)	(4)	(5)	
Happiness		-0.777***		-0.797***	-0.831**	
Fear		(-5.861) 0.703*** (3.055)		(-5.926) 0.624*** (2.597)	(-6.406) 0.688*** (3.081)	
Score	1.324***	1.281***	1.226***	1.190***	1.229***	
	(9.057)	(8.818)	(8.219)	(8.041)	(8.534)	
Age	,	, ,	0.265*	0.338**	0.341**	
Ü			(1.754)	(2.436)	(2.193)	
Gender			-0.068	-0.082	-0.037	
			(-0.572)	(-0.742)	(-0.329)	
History			0.184*	0.206**	0.219**	
•			(1.774)	(1.995)	(2.074)	
Amount			-0.327***	-0.306***	-0.314**	
			(-5.241)	(-5.273)	(-5.290)	
Rate			0.053	0.144	0.050	
			(0.099)	(0.268)	(0.090)	
Province Fixed Effect	No	No	No	No	Yes	
Year Fixed Effect	No	No	No	No	Yes	
Observations	4,956	4,956	4,956	4,956	4,956	
Pseudo-R ²	0.023	0.036	0.032	0.045	0.066	
AUC	0.605	0.627	0.626	0.647	0.670	

Main result

• Out-of-sample:

	In-sample	Out-of-sample (2)	
	(1)		
AUC _{Score}	0.605	0.604	
Observations	4,956	4,956	
AUC _{Score+Happiness+Fear}	0.627	0.625	
Observations	4,956	4,956	
AUC _{Score+} Controls	0.626	0.620	
Observations	4,956	4,956	
AUC _{Score+Happiness+Fear+} Controls	0.647	0.639	
Observations	4,956	4,956	
AUC _{Score+Happiness+Fear+} Controls + Fixed Effects	0.670	0.641	
Observations	4,956	4,956	

Robustness and additional results

- Alternative delinquency definitions: Examines different measures of default severity (e.g., frequency, value).
- Alternative facial expression metrics: full length of video, post-, max.
- Subsample analyses: Tests consistency across different borrower groups (e.g., male vs. female).
- Time-period validation: Confirms stability of results across different loan application periods.
- Controlling exogenous factors about facial expression
- Other type of expressions: Anger, surprise, disgust
- Cross-province analyses

Conclusion

- This study adopts a machine-learning-based video analysis to evaluate borrowers' creditworthiness in the consumer credit market.
- The findings suggest that borrowers' micro-facial expressions during the loan application process identified in real-time video data are associated with their future delinquency likelihood.

Further discussion

- Multimodal behavioral analysis:
 - Combine facial expressions with voice tone, speech patterns, and linguistic cues from loan applicants.
- Facial Expressions and Corporate Financial Decision-Making
 - Apply facial expression analysis to corporate executives
 - Investigate whether CEOs/CFOs exhibiting micro-expressions of fear or stress predict financial misreporting, stock price declines, or earnings surprises.
- Facial Expressions and Policy Reaction
 - Apply facial expression analysis to authorities when disclosing policies