Approximate Dynamic Programming with Affine ADDs (AADDs)

Scott Sanner (NICTA, ANU)
William Uther (NICTA, UNSW)
Karina Valdivia Delgado (USP)

Talk Outline

- Data structures for representing Bⁿ → R
 - Why important?
 - Compact forms
 - Efficient operations
- AADDs and use in MDPs
- Contribution:
 - How to approximate AADDs efficiently?
- Results on MDPs

Motivations I

- Why do we need functions from $B^n \rightarrow R$?
- Inference in discrete graphical models:

- Factors, e.g., CPTS: P(Alarm | Earthquake, Burglar)
- Variable Elimination:

$$\sum_{x_1...x_i} \prod_{F_1...F_j} F_1(x_1...x_i) ... F_j(x_1...x_i)$$

Solving Factored MDPs:

- Dynamic Bayes Net (DBN)
- Value and reward functions: $V^0(x_1...x_i) = R(x_1...x_i)$
- Value iteration:

$$V^{n+1}(x_1...x_i) = R(x_1...x_i) + \gamma \cdot \max_{a} \sum_{x_1'...x_i'} \prod_{F_1...F_i} P_1(x_1'|_{...}a) ... Pi(x_i'|_{...}a) V^n(x_1'...x_i')$$

Motivations II

- For $B^n \rightarrow R$, why do we **need**:
 - Compact representations?
 - Efficient operations: +, ·, max(F), ⊕, ⊗, max(F₁,F₂)?
- Reason 1: Space considerations
 - V(Box-1-delivered, ..., Box-40-delivered) requires
 ~1 terabyte if all states enumerated
- Reason 2: Time considerations
 - With 1 gigaflop/s. computing power, binary operation on above function requires ~1000 seconds

Function Representation (Tables)

- How to represent functions: Bⁿ → R?
- How about a fully enumerated table...
- ...OK, but can we be more compact?

a	b	C	F(a,b,c)
0	0	0	0.00
0	0	1	0.00
0	1	0	0.00
0	1	1	1.00
1	0	0	0.00
1	0	1	1.00
1	1	0	0.00
1	1	1 -	1.00

Function Representation (Trees)

How about a tree? Sure, can simplify.

a	b	С	F(a,b,c)
0	0	0	0.00
0	0	1	0.00
0	1	0	0.00
0	_1	1	1.00
1	0	0	0.00
1	0	1	1.00
1 (1	0	0.00
1	1	1	1.00

Function Representation (ADDs)

■ Why not a directed acyclic graph (DAG)?

a	Ь	C	F(a,b,c)
0	0	0	0.00
0	O	1	0.00
0	1	0	0.00
0	1	1	1.00
1	O	0	0.00
1	0	1	1.00
1	1	0	0.00
1	1	1	1.00

Function Representation (ADDs)

■ Why not a directed acyclic graph (DAG)?

a	Ь	С	F(a,b,c)
0	0	0	0.00
0	0	1	0.00
0	1	0	0.00
0	1	1	1.00
1	O	O	0.00
1	0	1	1.00
1	1	0	0.00
1	1	1	1.00

Binary Operations (ADDs)

- Why do we order variable tests?
- Enables us to do efficient binary operations...

ADD Inefficiency

- Are ADDs enough?
- Or do we need more compactness?
- Ex. 1: Additive reward/utility functions

■
$$R(a,b,c) = R(a) + R(b) + R(c)$$

= $4a + 2b + c$

Ex. 2: Multiplicative value functions

$$V(a,b,c) = V(a) \cdot V(b) \cdot V(c)$$

$$= \gamma^{(4a + 2b + c)}$$

Affine ADD (AADD) (SanMcA05)

- Define a new decision diagram Affine ADD
- Edges labeled by offset (c) and multiplier (b):

- Semantics: if (a) then (c₁+b₁F₁) else (c₂+b₂F₂)
- Maximize sharing by normalizing nodes [0,1]
- Example: if (a) then (4) else (2)

AADD Examples

- Back to our previous examples...
- Ex. 1: Additive reward/utility functions

Ex. 2: Multiplicative value functions

■
$$V(a,b) = V(a) \cdot V(b)$$

= $\gamma^{(2a+b)}$; $\gamma < 1$
<0, $\gamma^{2} - \gamma^{3} > 0$
 $1 - \gamma^{3} > 0$
 $0 > 0$
 $1 - \gamma^{3} > 0$
 $0 > 0$
 $0 > 0$

Main AADD Theorem

- AADD can yield exponential time/space improvement over ADD
 - and never performs worse!

Empirical Comparison: Table/ADD/AADD

• Sum: $\sum_{i=1}^{n} 2^i \cdot x_i \oplus \sum_{i=1}^{n} 2^i \cdot x_i$

■ Prod: $\prod_{i=1}^{n} \gamma^{\wedge}(2^{i} \cdot x_{i}) \otimes \prod_{i=1}^{n} \gamma^{\wedge}(2^{i} \cdot x_{i})$

Application: MDP Solving

- Extend SPUDD (HSHB99)
 - Replace ADD with AADD in value iteration algorithm:

$$\begin{aligned} V^{n+1}(x_1...x_i) &= R(x_1...x_i) + \\ \gamma \cdot max_a \sum_{x1'...xi'} \prod_{F1...Fi} P_1(x_1'|...x_i) \dots Pi(x_i'|...x_i) \\ V^n(x_1'...x_i') \end{aligned}$$

Problem: Value ADD Too Large

■ Sum: $\sum_{i=1} x_i + \varepsilon$ -Noise

■ How to approximate?

Solution: APRICODD Trick

■ Merge ≈ leaves and reduce:

Error is bounded!

More Compactness? AADDs?

■ Sum: $\sum_{i=1} x_i + \varepsilon$ -Noise

■ How to approximate?

Solution: MADCAP Trick

■ Merge ≈ nodes from bottom up:

Error Analysis

Error of node merge:

$$error := \max(F_1^{MaxRange}, F_2^{MaxRange})$$

Error if replace one node with other?

$$\max(|F_1.c_l - F_2.c_l| + |F_1.b_l - F_2.b_l|, |F_1.c_h - F_2.c_h| + |F_1.b_h - F_2.b_h|)$$

Application: SysAdmin

- SysAdmin MDP (GKP, 2001)
 - Network of computers: c₁, ..., c_k
 - Various network topologies
 - Every computer is running or crashed
 - At each time step, status of c_i affected by
 - Previous state status
 - Status of incoming connections in previous state
 - Reward: +1 for every computer running (additive)

Results I: SysAdmin (10% Approx)

Results II: SysAdmin

Traffic Domain

- Binary cell transmission model (CTM)
- Actions
 - Light changes
- Objective:
 - Maximize empty cells in network

Results Traffic

Conclusions

- AADDs replace Tables & ADDs
- AADD Properties:
 - Never worse than ADD or Table
 - Sometimes exp. reduction in space & time
- Can now approximate AADD efficiently!
 - MADCAP: Approx. DP for MDPs
 - Finds logical, additive, & multiplicative stuctured approximations automatically!