Math 417 Problem Set 4

Starred (*) problems are due Friday, February 19.

- 27. (Gallian, p.72, #49) If G is a group with $a, b \in G$, so that |a| = 4, |b| = 2, and $a^3b = ba$, find the value of |ab|.
- (*) 28. If G is a group with $a, b \in G$, and $ab = b^2a$ and $a^2b = ba$, show that a = b = e.

[What other "words" in a and b are equal to one another?]

- (*) 29. (Gallian, p.87, #14) Suppose that G is a <u>cyclic</u> group that has exactly three subgroups: G, $\{e\}$, and a subgroup of order 7. What is |G|? Is there anything special about the number 7?
- 30. (Gallian, p.88, #24, sort of) Show that if G is a group with $a, b \in G$ and ab = ba, then $\langle b \rangle \leq C_G(a) =$ the centralizer of a in G.
- 31. (Gallian, p.89, #31) If G is a <u>finite</u> group, show that there is an integer $n \ge 1$ so that $a^n = e$ for all $a \in G$.

[The smallest such n is called the *exponent* of the group G, and will divide any other value of n (Why?).]

- 32. (Gallian, p.98, #38) If G is a group and $a, b \in G$ have $|a^2| = |b^2|$, must we have |a| = |b|? Show it is always true, or give an example of a group where it is false!
- 33. If G is a group and $a, b \in G$ have |a| = 12 and |b| = 15, then what are all of the possible orders of the subgroup $H = \langle a \rangle \cap \langle b \rangle$? You can arrange for each of the possibilities to occur by choosing appropriate elements of a single group $G = (\mathbb{Z}_n, +, 0)$; show how!
- (*) 34. Show that if is G is a group and $a, b \in G$ with |a| = 5 and |b| = 7, then $\langle a \rangle \cap \langle b \rangle = \{e\}$. Use this to show that if, in addition, G is abelian, then |ab| = 35.