Roztoky, pH

Aktivita, iontová síla, kyseliny a zásady, pH

Aktivita roztoku

Aktivita roztoku

- Popisuje reálné chování roztoku. Na rozdíl od ideálního roztoku, se v reálném roztoku částice navzájem ovlivňují.
- Aktivita jakékoliv čisté látky v kondenzovaném stavu (kapalina nebo pevná látka) je jednotková.
- Aktivita plynu závisí na jeho parciálním tlaku, obvykle se označuje jako fugacita.
- $\bullet \ \mu_i = \mu_i^0 + RT \ln a_i$
- ullet μ_i chemický potenciál, μ_i^0 standardní chemický potenciál
- Ativitu lze vyjádřit jako součin molární koncentrace a aktivitního koeficientu
- \bullet a $= \gamma c$
- Aktivitní koeficient je úměrný náboji iontů v roztoku a iontové síle roztoku

Aktivita roztoku

lontová síla roztoku

lontová síla roztoku

- $\bullet \ \log \gamma = -0,509 \mathrm{z}^2 \sqrt{\mathrm{I}}$
- I iontová síla roztoku popisuje množství iontů v roztoku
- $\bullet I = \frac{1}{2} \sum_{i=0}^{n} c_i z_i^2$
- c $_i$ molalita; z $_i$ náboj; 0,509 konstanta pro vodné roztoky při 25 °C

Aktivita roztoku

Střední aktivitní koeficienty ve vodných roztocích při 25 °C

Střední aktivitní koeficienty ve vodných roztocích při 25 °C

$\boxed{c_m[mol.kg^{-1}]}$	0,1	1,0	4,0	10,0
HCI	0,796	0,809	1,762	10,44
NaOH	0,766	0,678	0,903	3,52
KOH	0,798	0,756	1,352	6,22
H ₂ SO ₄	0,265	0,130	0,171	0,553
AgNO ₃	0,734	0,429	0,210	
$Ca(NO_3)_2$	0,48	0,35	0,42	

VOHLÍDAL, Jiří. Chemické tabulky. Praha: SNTL, 1982.

Kyseliny a zásady

- Arrheniova teorie kyseliny jsou látky, které ve vodném roztoku uvolňují ion H⁺, resp. H₃O⁺, zásady uvolňují OH⁻
- Brønstedova teorie kyseliny jsou donory protonů, zásady jejich akceptory
- Lewisova teorie kyseliny jsou akceptorem elektronových párů, zásady donorem
 - $\bullet \ |\mathsf{NH}_3 + \mathsf{BF}_3 \longrightarrow \mathsf{NH}_3 {\to} \mathsf{BF}_3$ zásada kyselina

- Silné kyseliny a zásady zcela disociují
- $HCI + H_2O \longrightarrow H_3O^+ + CI^-$
- NaOH \longrightarrow Na⁺ + OH⁻
- Slabé kyseliny a zásady disociují pouze z části

$$\bullet \ \, \mathsf{CH_3COOH} + \mathsf{H_2O} \mathop{\Longrightarrow}\limits_{\longleftarrow}^{\mathrm{pK}_a} \mathsf{H_3O}^+ + \mathsf{CH_3COO}^-$$

- $\bullet \ \ \mathsf{NH_3} + \mathsf{H_2O} \stackrel{\mathrm{pK}_b}{=\!\!\!=\!\!\!=\!\!\!=} \mathsf{OH}^- + \mathsf{NH}_4^+$
- ullet pK_a , pK_b disociační konstanta
- $\mathbf{K}_a = \frac{[\mathbf{H}_3\mathbf{O}^+][\mathbf{Cl}^-]}{[\mathbf{HCl}]}; \mathbf{K}_b = \frac{[\mathbf{OH}^-][\mathbf{NH}_4^+]}{[\mathbf{NH}_3]}$
- $\bullet \ \operatorname{pK}_a = -\log \operatorname{K}_a; \operatorname{pK}_b = -\log \operatorname{K}_b$

Kyselina	pl	K_a
Fenol		9,89
H ₂ CO ₃	pK_{a1}	6,35
-	pK_{a2}	10,33
kys. octová		4,75
HNO ₂		3,29
HF		3,2
H ₃ PO ₄	pK_{a1}	2,16
	pK_{a2}	7,21
	pK_{a3}	12,32
H ₃ PO ₃	pK_{a1}	2,00
	pK_{a2}	6,58
kys. trichloroctová		0,70

Zásada	pK_b	
$Be(OH)_2$		10,30
nikotin	pK_{b1}	5,98
	pK_{b2}	10,88
NH_3		4,75
AgOH		3,96

Konjugované páry kyselina a zásad

- Liší se o H⁺
- $HCI + H_2O \longrightarrow H_3O^+ + CI^-$
- \bullet HCI \longrightarrow CI $^-$
- $\bullet \ H_2O \longrightarrow H_3O^+$
- Konjugovaná zásada k silné kyselině je slabá
- Konjugovaná kyselina k slabé zásadě je silná

Autoionizace vody

- Voda je amfoterní, chová se jako kyselina i zásada
- $2 H_2 O \longleftrightarrow H_3 O^+ + OH^-$
- lontový součin vody:

•
$$K_w = [H^+][OH^-] = 1.10^{-14} \text{ mol.dm}^{-3}$$

- $pK_w = -\log K_w = 14$
- Pro konjugovaný pár kyselina-zásada platí:
 - $\bullet \ \mathrm{K}_a\mathrm{K}_b = \mathrm{K}_w$
 - $\bullet \ \mathrm{pK}_a + \mathrm{pK}_b = \mathrm{pK}_w$

pH a pOH

•
$$pH = -\log a_{H_3O^+} = -\log[H_3O^+]$$

•
$$pOH = -\log a_{OH^-} = -\log[OH^-]$$

•
$$pH + pOH = 14,00$$

- ullet pH < 7 roztok je kyselý
- pH = 7 roztok je neutrální
- ullet pH > 7 roztok je zásaditý

•	,		
рН	рОН	$[H^+]$	[OH ⁻]
0	14	1,0	10^{-14}
2	12	0,01	10^{-12}
4	10	0,0001	10^{-10}
6	8	10^{-6}	10^{-8}
8	6	10^{-8}	10^{-6}
10	4	10^{-10}	0,0001
12	2	10^{-12}	0,01
14	0	10^{-14}	1,0

Výpočet pH

Silné kyseliny a zásady

- $pH = -\log[H^+] = -\log c_{kys} = 14 + \log c_{zas}$
- pH = 14 pOH

Slabé kyseliny a zásady

- $\bullet \ [\text{H}^+] = \sqrt{K_a[HA]_0}$
- pH = $\frac{1}{2}$ pK_a $\frac{1}{2}$ log c_{kys}
- $\bullet \ \mathrm{pH} = 14 \tfrac{1}{2} \mathrm{pK}_b + \tfrac{1}{2} \log c_{zas}$

Soli silné kyseliny i zásady

- $NaCl + H_2O \longrightarrow Na^+ + Cl^- + H_2O$
- $KNO_3 + H_2O \longrightarrow K^+ + NO_3^- + H_2O$
- Nedochází k ovlivnění [H⁺] ani [OH⁻]

Kyseliny a zásady Roztoky solí

Soli slabé kyseliny nebo slabé zásady

- $\bullet \ \ \mathsf{NH_4NO_3} + \mathsf{H_2O} \longrightarrow \mathsf{NH_4}^+ + \mathsf{NO_3}^- + \mathsf{NH_3} + \mathsf{H}^+$
- $\bullet \ \mathrm{pH} = 7 \tfrac{1}{2} (\mathrm{pK}_b + \log c)$
- $NaF + H_2O \longrightarrow Na^+ + F^- + HF + OH^-$
- $\bullet \ \mathsf{NH_4F} + \mathsf{H_2O} \longrightarrow \mathsf{NH_4}^+ + \mathsf{F}^- + \mathsf{NH_3} + \mathsf{H}^+ + \mathsf{HF} + \mathsf{OH}^-$
- $\bullet \text{ pH} = 7 + \frac{1}{2}(\text{pK}_a \text{pK}_b)$

Příklad

- $pK_a(HF) = 3,17$
- $pK_b(NH_3) = 4,75$
- pH = $7 + \frac{1}{2}(3, 17 4, 75) = 6, 21$

Pufry, tlumivé (ústojné) roztoky

- Jde o směs slabé kyseliny a její soli nebo slabé zásady a její soli
- Příkladem je např. acetátový pufr směs kyseliny octové a octanu sodného
- Rovnováhy v pufru lze popsat rovnicemi
- $CH_3COOH + H_2O \longleftrightarrow CH_3COO^- + H_3O^+$
- $CH_3COONa + H_2O \longleftrightarrow CH_3COOH + Na^+ + OH^-$
- Přídavkem kyseliny vzniknou molekuly kyseliny octové, přídavkem zásady ionty octanu. pH roztoku se nezmění.
- $pH = pK_a + log \frac{[A^-]}{[HA]}$
- $pH = 14 pK_b + \log \frac{[B]}{[BH^+]}$

Pufr	Složení	Rozsah pH
Acetátový	CH ₃ COOH/CH ₃ COONa	3,8 - 5,8
Fosfátový	NaH ₂ PO ₄ /Na ₂ HPO ₄	6,2 - 8,2
Borátový	$H_3BO_3/Na_2B_4O_7$	8,25 - 10,25

Příklad výpočtu pH slabé kyselina

Jaké je pH 0,2 M kyseliny octové, p $K_a=4,76$?

$$CH_3COOH \longleftrightarrow CH_3COO^- + H^+$$

$$K_a = 10^{-\text{pK}_a} = 10^{-4.76} = 0,000017$$

$$K_a = \frac{[\mathrm{CH_3COO^-}][\mathrm{H^+}]}{[\mathrm{CH_3COOH}]} = \frac{x.x}{0.2-x}$$

Dosadíme za K_a a upravíme získaný výraz, čímž dostaneme kvadratickou rovnici:

$$x^2 + 0,000017x - 0,0000034 = 0$$

Kvadratickou rovnici vyřešíme pomocí diskriminantu:

$$x_{1,2} = \frac{-b \pm \sqrt{D}}{2a} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-0.000017 \pm \sqrt{0.000017^2 - 4.1.(-0.0000034)}}{2.1}$$

Ze dvou vypočítaných kořenů zvolíme ten kladný, koncentrace totiž nemůže být záporná.

$$x = 0,0018$$

$$\mathrm{pH} = -\log[H^+] = -\log 0,018 = 2,74$$