SVM - One-Versus-One (OVO)

SVM - One-Versus-One (OVO)

Théorie

Les machines à vecteurs de support (SVM) sont des modèles de classification supervisés qui cherchent à maximiser la marge de séparation entre les classes. Pour un problème multiclasse, l'approche One-Versus-One (OVO) entraı̂ne un SVM pour chaque paire de classes, ce qui permet une meilleure séparation lorsque les classes sont bien distinctes.

Hyperparamètres

Nous allons tester un seul hyperparamètre pour réduire le temps d'entraînement : - Paramètre de régularisation (C) : contrôle la pénalisation des erreurs de classification (valeurs entre 0.1 et 1).

Exemple en Python

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.svm import SVC
from sklearn.multiclass import OneVsOneClassifier
from sklearn.metrics import classification_report, confusion_matrix, accuracy_score
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler

# Chargement des ensembles de données
train_data = pd.read_csv('covertype_train.csv')
val_data = pd.read_csv('covertype_val.csv')
```

```
test_data = pd.read_csv('covertype_test.csv')
# Préparation des données
X_train = train_data.drop('Cover_Type', axis=1)
y_train = train_data['Cover_Type']
X_val = val_data.drop('Cover_Type', axis=1)
y_val = val_data['Cover_Type']
X_test = test_data.drop('Cover_Type', axis=1)
y_test = test_data['Cover_Type']
# Standardisation des données
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_val = scaler.transform(X_val)
X_test = scaler.transform(X_test)
# Recherche du meilleur hyperparamètre (C seulement)
C_values = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1] # Entre 0.1 et 1
train_accuracies = []
val_accuracies = []
for C in C_values:
   model = OneVsOneClassifier(SVC(kernel='rbf', C=C))
   model.fit(X_train, y_train)
   y_train_pred = model.predict(X_train)
   y_val_pred = model.predict(X_val)
    train_accuracies.append(accuracy_score(y_train, y_train_pred))
    val_accuracies.append(accuracy_score(y_val, y_val_pred))
# Sélection du meilleur hyperparamètre
best_C = C_values[val_accuracies.index(max(val_accuracies))]
print(f"Meilleur hyperparamètre : C={best_C}")
# Affichage du graphique
plt.figure(figsize=(8, 6))
plt.plot(C_values, train_accuracies, marker='o', linestyle='dashed', label='Train Accuracy')
plt.plot(C_values, val_accuracies, marker='s', linestyle='dashed', label='Validation Accuracy
plt.xlabel("Paramètre de régularisation (C)")
```

```
plt.ylabel("Précision")
plt.title("Impact de la régularisation sur la performance du SVM (OVO)")
plt.legend()
plt.show()

# Modèle final avec le meilleur hyperparamètre
final_model = OneVsOneClassifier(SVC(kernel='rbf', C=best_C))
final_model.fit(X_train, y_train)
y_test_pred = final_model.predict(X_test)

# Affichage de la matrice de confusion
conf_matrix = confusion_matrix(y_test, y_test_pred)
print("\nMatrice de confusion :")
print(conf_matrix)

print("\nÉvaluation sur l'ensemble de test")
print(classification_report(y_test, y_test_pred))
```

Meilleur hyperparamètre : C=1

Impact de la régularisation sur la performance du SVM (OVO)

${\tt Matrice}$	de	confusion	:

[[1	1223	454	0	0	0	0	31]
[372	1834	42	0	0	9	4]
[0	23	252	0	0	6	0]
[0	0	18	0	0	3	0]
[4	64	6	0	0	0	0]
[0	39	98	0	0	7	0]
Γ	56	0	0	0	Ο	0	103]]

Évaluation sur l'ensemble de test

	precibion	recarr	II BCOIC	Bupport
1	0.74	0.72	0.73	1708
2	0.76	0.81	0.78	2261
3	0.61	0.90	0.72	281

	4	0.00	0.00	0.00	21
	5	0.00	0.00	0.00	74
	6	0.28	0.05	0.08	144
	7	0.75	0.65	0.69	159
accur	racy			0.74	4648
macro	avg	0.45	0.45	0.43	4648
weighted	avg	0.71	0.74	0.72	4648

/home/ensai/.local/lib/python3.10/site-packages/sklearn/metrics/_classification.py:1531: Und_warn_prf(average, modifier, f"{metric.capitalize()} is", len(result))

/home/ensai/.local/lib/python3.10/site-packages/sklearn/metrics/_classification.py:1531: Und_warn_prf(average, modifier, f"{metric.capitalize()} is", len(result))

/home/ensai/.local/lib/python3.10/site-packages/sklearn/metrics/_classification.py:1531: Und_warn_prf(average, modifier, f"{metric.capitalize()} is", len(result))