5. Интеграл ФНП

5.1. Общая схема интегрирования

Постановка задачи.

В некоторой области Ω (дуга кривой, участок поверхности, тело и т. д.) распределена или действует непрерывно некоторая функция скалярная g или векторная \vec{G} , то есть определены g(M) или \vec{G} $\forall M \in \Omega$

Ex. Область Ω — дуга кривой l: y = y(x). Тогда скалярная функция g(M) — плотность в точке M

Ex. Область Ω — трубка в \mathbb{R}^3 . Тогда векторная величина $\vec{G}(M)$ — скорость жидкой частицы, движущейся по трубке

Из всех векторов \vec{v} (для всех $M \in \Omega$) складывается «поле жидких скоростей»

Ex. Область Ω – кривая, по которой движется точка M под действием силы $\vec{G}(M)$

Задача интегрирования — найти суммарное содержание скалярной величины или действие векторной величины в области Ω

<u>Схема</u>: величины g(M) и $\vec{G}(M)$, меняясь от точки к точке заменяются на квазипостоянные на малых (элементарных) участках $d\omega$

Так как g(M) или $\vec{G}(M)$ должны быть непрерывны на Ω , то на малом участке $d\omega$ их изменение незначительно и значение функции можно считать почти постоянным, приняв за это значение какое-либо среднее $g_{\text{CD}}(M)$, $\vec{G}_{\text{CD}}(M)$

Тогда элементарное содержание g(M) в $d\omega$ будет отличаться от среднего содержания, то есть $g_{\rm cp.}d\omega$ на бесконечно малую большего порядка

 $\mathit{Ex.}$ Проиллюстрируем на примере $\int_a^b f(x) dx$

S — площадь по наибольшей границе, σ — площадь по наименьшей границе, $S_{ ext{трапеции}}$ — «истинная» площадь

Так как f(x) непрерывна $\forall x \in [a,b]$, то $\Delta f \overset{\Delta x \to 0}{\to} 0$

Для простоты рассмотрим монотонно возрастающую f(x)

Хотим доказать, что $S-S_{\text{трапеции}}$ — бесконечно малая большего порядка, чем $S_{\text{трапеции}}$ или S

$$0 \le S - S_{\text{трапеции}} \le dx \Delta y$$

Сравним
$$\frac{dx\Delta y}{S} = \frac{dx\Delta y}{dxf(x+\Delta x)} = \frac{\Delta y}{\text{огран.}} \xrightarrow{\Delta x \to 0} 0$$
, таким образом $S - S_{\text{трапеции}} = o(S_{\text{трапеции}})$

Смысл интеграла в случае векторной функции $\overrightarrow{G}(M)$: будем интегрировать только скалярные выражения вида $\overrightarrow{G}(M) \cdot d\vec{\omega}$ – скалярное произведение векторов, где $d\vec{\omega}$ - ориентированный

элемент $d\omega$

Ex. Сила $\vec{F}(M)$ перемещает точку M вдоль плоской кривой l. При этом сила совершает работу по перемещению (работа A – скалярная величина)

Известна формула для $\vec{F}=\mathrm{const}$ и перемещения \vec{s} по прямой: $A=\vec{F}\cdot\vec{s}$

Разобьем дугу на элементы $dl \approx ds$ и ориентируем их (зададим направление перемещению ds) dl = ds + o(dl), $d\vec{s}$ — вектор элементарного перемещения, как правило, ds направлен согласовано с Ox

Элемент работы $dA = \vec{F} \cdot d\vec{s} = (F_x, F_y) \cdot (dx, dy) \stackrel{\text{обозн.}}{=} (P, Q) \cdot (dx, dy) = Pdx + Qdy$ — скаляр. Вся работа равна $A = \int dA$

Nota. Ориентированный участок поверхности $d\vec{\sigma}$ – это размер участка $d\sigma$, умноженный на вектор нормали к участку \vec{n} , то есть $d\vec{\sigma} = \vec{n} d\sigma$

Итак, схема интегрирования:

- $\mathbf{1}^*$ Дробление области Ω на элементы $d\omega$
- ${\bf 2^*}$ Выбор постоянного значения функции на $d\omega,$ то есть $g_{\rm cp.}$ или $\vec{G}_{\rm cp.}$
- ${\bf 3^*}$ Составление подынтегрального выражения $g_{\rm cp.} d\omega$ или $\vec{G}_{\rm cp.} d\vec{\omega}$
- ${f 4}^*$ «Суммирование» элементарных величин $\int g d\omega$ или $\int ec G dec \omega$

5.2. Классификация интегралов

1* По размерности Ω

n=1: прямая (определенный интеграл \int_a^b)

n=2: плоскость (двойной интеграл \iint_D)

n=3: пространство \mathbb{R}^3 (тройной \iiint_V или \iiint_T)

2* По виду функции

Скалярная g(M) (І рода)

n=1: определенный, криволинейный I рода

n = 2: двойной, поверхностный I рода

n=3: тройной

кривая (криволинейный интеграл \int_A^B) поверхность, криволинейная (поверхностный интеграл \iint_S)

Векторная $\vec{G}(M)$ (II рода)

криволинейный II рода (интегралы в про-

екциях)

поверхностный II рода