Variables y Propiedades

Declaración de una variable

Para declarar una variable se debe utilizar la palabra clave 'var' seguida del nombre de la variable, su tipo de dato y valor. El valor inicial es opcional.

```
var num:Int = 10
```

Las variables pueden cambiar de valor en cualquier momento, ya sea por el flujo del programa o por una asignación directa.

```
num = 20 // La variable ahora vale 20
```

Si se desea una variable que no cambie su valor, es decir una constante, se debe utilizar la palabra clave let seguido de su nombre, tipo de dato y valor. El valor inicial (y permanente) no es opcional.

```
let num:Int = 10 // Este valor no puede cambiar
```

Es posible delcarar una variable y asignarle un valor sin indicar el tipo de dato. Si no se especifica un tipo de dato, Swift inferirá y asignará el tipo de manera automática.

```
let ten = 10 // num is an Int
let pi = 3.14 // pi is a Double
let floatPi: Float = 3.14 // floatPi is a Float
```

Los nombres de las variables y constantes no están limitados a caracteres alfanuméricos, pueden contener la mayoría de caracteres *Unicode* aunque existen algunas excepciones. Los nombres no pueden contener espacios, símbolos matemáticos, flechas, símbolos *Unicode* privados y no pueden comenzar con un número.

```
var π: Double = 3.14159
var III: String = "Apples"
```

Tipos de datos

Los tipos de datos son una parte muy importante de cualquier lenguaje de programación.

Enteros

Se utiliza para representar números sin parte fraccionaria. En Swift se pueden usar enteros con signo o sin signo de 8, 16, 32 y 64 bits. Se debe utilizar la palabra clave Int al declarar una variable.

Tipo	Tamaño	Rango
Int8	8 bits	[-128, 128]
Int16	16 bits	[-2 ¹⁵ , 2 ¹⁵ -1]
Int32	32 bits	$[-2^{31}, 2^{31}-1]$
Int64	16 bits	$[-2^{63}, 2^{63}-1]$
UInt32	Depende la plataforma	$[0, 2^{32}]$
UInt64	Depende la plataforma	$[0, 2^{64}]$

Ejemplo

```
// Swift program to demonstrate integer datatype

// Creating signed integer data types
var digit1: Int = 10

// Display the number
print("Signed integer data type is", digit1)

// Creating unsigned integer data type
var digit2: UInt = 23

// Display the number
print("Unsigned integer data type is", digit2)
```

String

Cadena de caracteres, se declara con la palabra clave String.

```
// Swift program to demonstrate string datatype

// Creating string data type
var inputdata1: String = "GeeksforGeeks"

// Display the value
print("String data type is", inputdata1)

// Creating string data type
var inputdata2: String
inputdata2 = "GFG"

// Display the value
print("String data type is", inputdata2)
```

Float

Para representar números no enteros utilizando 32 bits de memoria. El tipo de dato permite números de hasta 6 decimales, el rango de números que es posible almacenar son [1.2E⁻³⁸, 3.45E^38^]. Se utiliza la palabra clave `+Float` en la declaración.

```
// Swift program to demonstrate float datatype

// Creating float data type
var inputdata1: Float = 3.0545

// Display the value
print("Float data type is", inputdata1)

// Creating double data type
var inputdata2: Float = 0.978623

// Display the value
print("Float data type is", inputdata2)
```

Double

Números no enteros de doble precisión, se emplean 64 bits de memoria. Se pueden representar números de hasta 15 decimales. El rango de números posibles es [2.3E⁻³⁰⁸, 1.7E^308^]. Se utiliza la palabra clave `+Double` en la declaración.

```
// Swift program to demonstrate double datatype

// Creating double data type
var inputdata1: Double = 23.098545

// Display the value
print("Double data type is", inputdata1)

// Creating double data type
var inputdata2: Double = 1.9786677532

// Display the value
print("Double data type is", inputdata2)
```

Booleano

Valores lógicos true y false. Se utiliza la palabra clave Bool en la declaración.

```
// Swift program to demonstrate boolean datatype
// Creating boolean data type
```

```
var inputdata1: Bool = true

// Display the value
print("Boolean data type is", inputdata1)

// Creating boolean data type
var inputdata2: Bool = false

// Display the value
print("Boolean data type is", inputdata2)
```

Character

Se utiliza para almacenar un solo caracter. Se utiliza la palabra clave Character en la declaración.

```
// Swift program to demonstrate character datatype

// Creating character data type
var inputdata1: Character = "G"

// Display the value
print("Character data type is", inputdata1)

// Creating character data type
var inputdata2: Character = "E"

// Display the value
print("Character data type is", inputdata2)
```

Anterior | Inicio | Siguiente