Examen médian: OS02 - Théorie de la décision - 2 h

11 novembre 2009

Documents autorisés : Polycopiés distribués et un formulaire.

Exercice 1 (6 points) Soient ξ_1, \ldots, ξ_n des variables aléatoires i.i.d. dont la loi admet la densité de probabilité $f_{\theta}(x)$:

$$f_{\theta}(x) = \begin{cases} \theta x & si \quad x \in \left[0, \sqrt{\frac{2}{\theta}}\right] \\ 0 & si \quad x \notin \left[0, \sqrt{\frac{2}{\theta}}\right] \end{cases}, \quad \theta > 0.$$

On veut tester l'hypothèse de base $\mathcal{H}_1 = \{f = f_{\theta_1}\}\$ contre l'hypothèse concurrente $\mathcal{H}_2 = \{f = f_{\theta_2}\}\$, où $\theta_1 > 1$ et $\theta_2 < 1$ sont des constantes connues.

Introduisons le test («ad hoc») suivant :

$$\delta(\xi_1, \dots, \xi_n) = \begin{cases} \mathcal{H}_2 & si \quad \xi_{(n)} > c \\ \mathcal{H}_1 & si \quad \xi_{(n)} \leq c \end{cases}$$

 $o\dot{u}\ \xi_{(n)} = \max\{\xi_1, \dots, \xi_n\}.$

- 1. Calculer les risques α_1, α_2 du test δ en fonction du seuil $c \in \mathbb{R}$. Dessiner (approximativement!) les courbes $\alpha_i = \alpha_i(c)$.
- 2. Déterminer le risque α_2 en fonction de $\alpha_1: \alpha_1 \mapsto \alpha_2(\alpha_1)$ et dessiner (approximativement!) sa courbe representative en coordonnées $\alpha_1O\alpha_2$.

Réponses:

FIGURE 1 – Les densités de probabilité sous $\mathcal{H}_1 = \{f = f_{\theta_1}\}\$ et $\mathcal{H}_2 = \{f = f_{\theta_2}\}.$

1) Les densités de probabilité sous \mathcal{H}_1 et \mathcal{H}_2 sont graphiquement représentés sur la figure 1. On calcule le risque α_1 . Soit $0 \le c \le \sqrt{\frac{2}{\theta_1}}$.

$$\alpha_1 = \mathbb{P}_1(\max\{\xi_1, \dots, \xi_n\} > c) = 1 - \mathbb{P}_1(\xi_1 \le c \text{ et } \xi_2 \le c \dots \text{ et } \xi_n \le c)$$

$$= 1 - \prod_{i=1}^n \mathbb{P}_1(\xi_i \le c) = 1 - [\mathbb{P}_1(\xi \le c)]^n = 1 - \left[\int_0^c \theta_1 x dx\right]^n = 1 - \left[\frac{\theta_1 c^2}{2}\right]^n.$$

Pour $c \in \mathbb{R}$ on obtient :

FIGURE 2 – Les risques α_1, α_2 du test δ en fonction du seuil $c \in \mathbb{R}$ et le risque α_2 en fonction de α_1 .

$$\alpha_1 = \begin{cases} 1 & \text{si } c < 0 \\ 1 - \left[\frac{\theta_1 c^2}{2}\right]^n & \text{si } 0 \le c \le \sqrt{\frac{2}{\theta_1}} \\ 0 & \text{si } \sqrt{\frac{2}{\theta_1}} < c \end{cases}$$

Cette function représentée sur la figure 2. On calcule le seuil c comme fonction de $\alpha_1, 0 < \alpha_1 < 1$:

$$c = \sqrt{2/\theta_1} \sqrt[2n]{1 - \alpha_1}$$

On calcule le risque α_2 . Soit $0 \le c \le \sqrt{\frac{2}{\theta_2}}$.

$$\alpha_2 = \mathbb{P}_2(\max\{\xi_1, \dots, \xi_n\} \le c) = \mathbb{P}_2(\xi_1 \le c \text{ et } \xi_2 \le c \dots \text{ et } \xi_n \le c)$$
$$= \prod_{i=1}^n \mathbb{P}_2(\xi_i \le c) = \left[\mathbb{P}_2(\xi \le c)\right]^n = \left[\int_0^c \theta_2 x dx\right]^n = \left[\frac{\theta_2 c^2}{2}\right]^n.$$

Pour $c \in \mathbb{R}$ on obtient :

$$\alpha_2 = \begin{cases} 0 & \text{si } c < 0 \\ \left[\frac{\theta_2 c^2}{2}\right]^n & \text{si } 0 \le c \le \sqrt{\frac{2}{\theta_2}} \\ 1 & \text{si } \sqrt{\frac{2}{\theta_2}} < c \end{cases}$$

2) Finalement, en utilisant le paramétrage $\alpha_1 = \alpha_2(c)$ et $\alpha_2 = \alpha_2(c)$, le risque α_2 comme fonction de α_1 est définie de la façon suivante :

$$\alpha_2 = (1 - \alpha_1) \left(\frac{\theta_2}{\theta_1}\right)^n \text{ pour } 0 < \alpha_1 < 1$$

Cette fonction est représentée graphiquement sur la figure 2.

Exercice 2 (10 points) La loi de Cauchy est une loi de probabilité classique qui doit son nom au mathématicien Augustin Louis Cauchy. Une variable aléatoire ξ suit une loi de Cauchy $C(\theta, a)$ si elle admet une densité $f(x; \theta, a)$ dépendant des deux paramètres θ et a (a > 0) et définie par :

$$f(x; \theta, a) = \frac{1}{\pi} \left[\frac{a}{(x - \theta)^2 + a^2} \right], \quad -\infty < x < \infty$$

La fonction de répartition de loi de Cauchy est

$$F(x; \theta, a) = \frac{1}{\pi} \arctan\left(\frac{x-\theta}{a}\right) + \frac{1}{2}$$

Soit ξ une observation (l'échantillon de taille n=1) de distribution $C(\theta,1)$. On considère l'hypothèse de base $\mathcal{H}_1 = \{\theta = 0\}$ et l'hypothèse concurrente $\mathcal{H}_2 = \{\theta = 1\}$.

- 1. Déterminer le rapport de vraisemblance (RV) $\Lambda(\xi)$ pour choisir entre \mathcal{H}_1 et \mathcal{H}_2 . Écrire le test RV.
- 2. Étudier la fonction (RV) $x \mapsto \Lambda(x)$. Définir les extrema de la fonction $x \mapsto \Lambda(x)$ (à l'aide des points critiques), les intervalles de croissance et de décroissance en utilisant la dérivée de $\Lambda(x)$. Dessiner (approximativement!) le graph $x \mapsto \Lambda(x)$.
- 3. A l'aide du graph $x \mapsto \Lambda(x)$ définir les régions d'acceptation des hypothèses \mathcal{H}_1 et \mathcal{H}_2 en fonction du seuil h du test RV.
- 4. Donner l'expression des risques α_1, α_2 du test RV en fonction de $F(x; \theta, 1)$ pour le seuil h = 2. La fonction $c \mapsto R(c) = \mathbb{P}_1(\Lambda(\xi) \ge c)$, est-elle continue sur c > 0?
- 5. Ce test $\delta(\xi)$, est-il optimal dans la classe \mathcal{K}_{α} en un sens quelconque? Si la réponse est «oui», préciser dans quel sens ce test est optimal.
- 6. Considérons le test («ad hoc») suivant :

$$\tilde{\delta}(\xi) = \left\{ egin{array}{ll} \mathcal{H}_2 & si & 1 < \xi < 3 \\ \mathcal{H}_1 & sinon \end{array} \right.$$

Ce test $\tilde{\delta}(\xi)$, est-il optimal dans la classe \mathcal{K}_{α} en un sens quelconque? Si la réponse est «oui», préciser dans quel sens ce test est optimal. Donner l'expression de α dans la classe \mathcal{K}_{α} ?

Réponses:

1) Le RV $\Lambda(\xi)$ pour choisir entre \mathcal{H}_1 et \mathcal{H}_2 est donné par :

$$\Lambda(\xi) = \frac{1 + \xi^2}{1 + (\xi - 1)^2}$$

Le test RV est:

$$\delta(\xi) = \begin{cases} \mathcal{H}_2 & \text{si} & \Lambda(\xi) > h \\ \mathcal{H}_1 & \text{sinon} \end{cases}.$$

FIGURE 3 – Le rapport de vraisemblance et les densités de probabilité sous $\mathcal{H}_1 = \{f = f(x; 0, 1)\}$ et $\mathcal{H}_2 = \{f = f(x; 1, 1)\}$.

2) La dérivée de $x \mapsto \Lambda(x)$ est :

$$\frac{d\Lambda(x)}{dx} = \frac{2x[1+(x-1)^2] - 2(x-1)(x^2+1)}{(1+(x-1)^2)^2}$$

et les points critiques sont : $x_{p1}=\frac{1-\sqrt{5}}{2}$ et $x_{p2}=\frac{1+\sqrt{5}}{2}$. La fonction (RV) $x\mapsto \Lambda(x)$ est présentée sur la figure 3. Elle possède une asymptote horizontale d'équation y=1 (car $\lim_{x\to\pm\infty}\Lambda(x)=1$). Les extrema de la fonction $x\mapsto \Lambda(x)$ et les intervalles de croissance et de décroissance sont présentés dans le tableau 1.

x	$]-\infty,x_1[$	$x = x_{p1}$	$]x_{p1}, x_{p2}[$	$x = x_{p2}$	$]x_{p2},\infty[$
$\Lambda(x)$	décroissante	\min	${\it croissante}$	max	décroissante

TABLE 1 – Les extrema de la fonction $x \mapsto \Lambda(x)$ et les intervalles de croissance et de décroissance.

- 3) Les régions d'acceptation Ω_1 et Ω_2 des hypothèses \mathcal{H}_1 et \mathcal{H}_2 en fonction du seuil h du test RV sont présentées sur la figure 3.
- 4) Soit h = 2. Premièrement, on trouve les solutions de l'équation $\Lambda(x) = 2$. Cette dernière se réduit à l'équation quadratique $x^2 4x + 3 = 0$. On obtient deux solutions réelles $x_1 = 1$ et $x_2 = 3$. Ensuite, on

calcule les risques α_1 et α_2 :

$$\alpha_1 = \mathbb{P}_1(\Lambda(\xi) > 2) = \mathbb{P}_1(1 < \xi < 3) = F(3; 0, 1) - F(1; 0, 1) \simeq 0.1476$$

et

$$\alpha_2 = \mathbb{P}_2(\Lambda(\xi) \le 2) = 1 - \mathbb{P}_2(1 < \xi < 3) = 1 - F(3; 1, 1) + F(1; 1, 1) \simeq 0.6476$$

On peut remarquer que l'équation $\Lambda(x) = 1$ admet une solution unique $x_1 = \frac{1}{2}$. On considère trois cas pour étudier la continuité de la fonction $c \mapsto R(c) = \mathbb{P}_1(\Lambda(\xi) \ge c)$:

- 1. Soit $c: \Lambda(x_{p1}) \leq c < 1$. Alors $R(c) = \mathbb{P}_1(\Lambda(\xi) \geq c) = 1 [F(x_2; 0, 1) F(x_1; 0, 1)]$, où x_1 et x_2 sont des solutions de l'équation quadratique $\Lambda(x) = c$, $-\infty < x_1 < x_2 < \frac{1}{2}$. D'après les théorèmes généraux, la fonction $c \mapsto R(c)$ est continue sur $[\Lambda(x_{p1}), 1]$.
- 2. Soit c = 1, alors $R(1) = 1 F\left(\frac{1}{2}; 0, 1\right) = \frac{1}{2} \frac{1}{\pi}\arctan\left(\frac{1}{2}\right)$.
- 3. Soit $c: 1 < c \le \Lambda(x_{p2})$. Alors $R(c) = \mathbb{P}_1(\Lambda(\xi) \ge c) = 1 [F(x_2; 0, 1) F(x_1; 0, 1)]$, où x_1 et x_2 sont des solutions de l'équation quadratique $\Lambda(x) = c$, $\frac{1}{2} < x_1 < x_2 < \infty$. D'après les théorèmes généraux, la fonction $c \mapsto R(c)$ est continue sur $]1, \Lambda(x_{p2})]$.

Pour conclure sur la continuité il nous reste à étudier le comportement de la fonction $c \mapsto R(c)$ au point c = 1. Il est evident que

$$\lim_{c\rightarrow 1^+}R(c)=\lim_{c\rightarrow 1^-}R(c)=R(1)=\frac{1}{2}-\frac{1}{\pi}\arctan\left(\frac{1}{2}\right).$$

Si la limite à droite est égale à la limite à gauche et égale à R(1), alors la fonction $c \mapsto R(c)$ est continue en 1 et, donc, la fonction $c \mapsto R(c) = \mathbb{P}_1(\Lambda(\xi) \ge c)$ est continue sur $[\Lambda(x_{p1}), \Lambda(x_{p2})]$.

- 5) Le test $\delta(\xi)$ est le plus puissant dans la classe \mathcal{K}_{α} .
- 6) D'après le point 4), le test $\tilde{\delta}(\xi)$ est le plus puissant dans la classe \mathcal{K}_{α} avec $\alpha = F(3;0,1) F(1;0,1)$.

Exercice 3 (4 points) Soit ξ un (seul!) échantillon de distribution \mathcal{F} , dont la densité de probabilité est f. On considère l'hypothèse de base $\mathcal{H}_1 = \{f = f_1\}$ et l'hypothèse concurrente $\mathcal{H}_2 = \{f = f_2\}$. Les densités f_1 et f_2 sont définies de la façon suivante :

$$f_1(x) = \begin{cases} 2x & si & x \in [0,1], \\ 0 & si & x \notin [0,1] \end{cases} \qquad f_2(x) = \begin{cases} 2 - 2x & si & x \in [0,1], \\ 0 & si & x \notin [0,1] \end{cases}$$

- 1. Déterminer un test $\delta(\xi)$ du rapport de vraisemblance pour choisir entre \mathcal{H}_1 et \mathcal{H}_2 .
- 2. Calculer les risques α_1, α_2 en fonction du seuil h du test RV. La fonction $c \mapsto R(c) = \mathbb{P}_1(\Lambda(\xi) \geq c)$, est-elle continue sur c > 0?
- 3. Ce test δ , est-il optimal en un sens quelconque? Si la réponse est «oui», préciser dans quel sens ce test est optimal.
- On suppose que les hypothèses simples H₁ et H₂ sont des événements aléatoires : P(H₁) = p, P(H₂) = q et p + q = 1. Déterminer un test δ_Q(ξ) (Q = (p,q)) qui minimise le coût de Bayes J_Q = pα₁ + qα₂, où α_i = P_i(δ_Q ≠ H_i).

Réponses:

1) Le test du RV est

$$\delta(\xi) = \begin{cases} \mathcal{H}_2 & \text{si} \quad \Lambda(\xi) = \frac{1-\xi}{\xi} \geq h \\ \mathcal{H}_1 & \text{si} \quad \Lambda(\xi) \leq h \end{cases}$$

2) On commence avec le risque α_1

$$\alpha_1 = \mathbb{P}_1 \left(\Lambda(\xi) \ge h \right) = \mathbb{P}_1 \left(\xi \le \frac{1}{h+1} \right) = \int_0^{\frac{1}{h+1}} 2x dx = \frac{1}{(h+1)^2}$$

ensuite

$$\alpha_2 = \mathbb{P}_2\left(\Lambda(\xi) < h\right) = \mathbb{P}_2\left(\xi > \frac{1}{h+1}\right) = \int_{\frac{1}{h+1}}^1 (2-2x)dx = \left[2x - x^2\right]\Big|_{\frac{1}{h+1}}^1 = \frac{h^2}{(h+1)^2}.$$

La fonction $c\mapsto R(c)=\mathbb{P}_1(\Lambda(\xi)\geq c)=\frac{1}{(c+1)^2}$ est continue sur le demi-axe positif des $c\in]0,\infty].$

- 3) C'est une «question cours» : $\delta(\xi)$ est un test le plus puissant.
- 4) Le test de Bayes minimise le coût de Bayes

$$\delta(\xi) = \begin{cases} \mathcal{H}_2 & \text{si} \quad \Lambda(\xi) = \frac{1-\xi}{\xi} \geq \frac{p}{q} \\ \mathcal{H}_1 & \text{si} \quad \Lambda(\xi) < \frac{p}{q} \end{cases}$$