

Alexandre Zanini

Regulação Econômica No Setor Elétrico Brasileiro: Uma Metodologia Para Definição De Fronteiras De Eficiência E Cálculo Do Fator X Para Empresas Distribuidoras De Energia Elétrica

Tese apresentada ao Programa de Pós-graduação em Engenharia Elétrica do Departamento de Engenharia Elétrica da PUC-Rio como parte dos requisitos parciais para obtenção do título de Doutor em Engenharia Elétrica.

Orientador: Reinaldo Castro Souza

Alexandre Zanini

Regulação Econômica No Setor Elétrico Brasileiro: Uma Metodologia Para Definição De Fronteiras De Eficiência E Cálculo Do Fator X Para Empresas Distribuidoras De Energia Elétrica

Tese apresentada como requisito parcial para obtenção do título de Doutor pelo Programa de Pós-Graduação em Engenharia Elétrica da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

Dr. Reinaldo Castro SouzaOrientador
Departamento de Engenharia Elétrica - PUC-Rio

Dra. Mônica BarrosDepartamento de Engenharia Elétrica - PUC-Rio

Dra. Marina Figueira de MelloDepartamento de Economia - PUC-Rio

Dr.Rogério Silva de Mattos UFJF

> Dr. Rafael Schechtman CBIE

Prof. José Eugenio Leal Coordenador Setorial do Centro Técnico Científico - PUC-Rio Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

Alexandre Zanini

Nascido em Juiz de Fora-MG em 1973. Graduou-se em Economia (1996) pela Universidade Federal de Juiz de Fora, UFJF. Especialista em Métodos Estatísticos Computacionais (1997), pela mesma instituição. Mestre em Eng. Elétrica em Teoria de Controle e Estatística (2000) pela Pontifícia Universidade Católica do Rio de Janeiro, PUC-Rio. Suas pesquisas de interesse incluem as áreas de previsão; análise estatística multivariada; e sistemas inteligentes aplicados à previsão e classificação de padrões.

Ficha Catalográfica

Zanini, Alexandre

Regulação econômica no setor brasileiro : uma metodologia para definição de fronteiras de eficiência e cálculo do fator X para empresas distribuidoras de energia elétrica / Alexandre Zanini ; orientador: Reinaldo Castro Souza. – Rio de Janeiro : PUC, Departamento de Engenharia Elétrica, 2004.

147 f.; 30 cm

Tese (doutorado) – Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Engenharia Elétrica.

Inclui referências bibliográficas.

CDD: 621.3

Agradecimentos

A DEUS, pela dádiva da VIDA.

Ao meu orientador, Prof. Reinaldo Castro Souza, por todas oportunidades a mim oferecidas e pelo estímulo e incentivo constantes na minha formação acadêmica.

Aos meus professores, pela excelente formação e aos funcionários, pela paciência e torcida dispensadas a mim.

A todos os amigos da PUC-Rio, especialmente a Macrini, Evandro, Luiz Felipe, Lucio e Ana Paula.

Ao amigo Rogério. Meu eterno mestre e amigo.

A José e Neimar pela amizade nesta longa jornada.

Aos amigos Ana Paiva e Jalves por todo o incentivo e dedicação a este mineiro.

Ao José Francisco (Cepel), companheiro de pesquisa, pela grande ajuda nas conclusões e construção da tese.

Ao CNPq, pela bolsa do doutorado, sem a qual este trabalho não poderia ter sido realizado.

À minha família, especialmente aos meus pais, Alberto e Adelina, que me me fizeram o homem que sou.

À Renata. Qualquer palavra que eu diga será sempre muito pouco para agradecer tudo o que você fez por mim. Esta tese também é sua.

Resumo

Zanini, A. Regulação econômica no setor elétrico brasileiro: uma metodologia para definição de fronteiras de eficiência e cálculo do fator X para empresas distribuidoras de energia elétrica. Rio de Janeiro, 2004. 147p. Tese de Doutorado - Departamento de Engenharia Elétrica, Pontificia Universidade Católica do Rio de Janeiro, PUC-Rio.

O setor elétrico nos últimos anos vem passando por grandes mudanças estruturais em diversas regiões do planeta. Essas mudanças são devidas a processos de reestruturação do setor energético visando o aumento da eficiência e da qualidade. No Brasil, para este fim, foram criados órgãos responsáveis pelo setor, de modo que se viabilizem e regulamentem estas mudanças, seja por meio da criação de instrumentos de incentivos à competição ou permitindo a participação de agentes privados nos processos de geração, distribuição e comercialização de energia. Neste contexto foi criada a ANEEL (Agência Nacional de Energia Elétrica), responsável por instituir as regras de mercado de energia elétrica visando assegurar a competitividade do setor.

Dentro das atribuições da ANEEL, está a realização de revisões tarifárias periódicas. Esta revisão tarifária compreende: a) reposicionamento das tarifas de fornecimento de energia elétrica em nível compatível com a preservação do equilíbrio econômico-financeiro do contrato de concessão; e b) determinação do Fator X que será aplicado nos reajustes tarifários com o objetivo de compartilhar ganhos de produtividade com os consumidores. Para determinar o Fator X é necessário medir a eficiência, o que pode ser feito basicamente através de duas alternativas: 1) comparar a empresa com fronteiras de eficiência construídas para o mercado regulado a partir de grupos de similaridade; 2) comparar a empresa com o mercado não regulado.

Desta forma, o objetivo da tese é propor uma metodologia para definição de fronteiras de eficiência entre as empresas de distribuição de energia elétrica através da conjugação de redes neurais e de modelos econométricos, particularmante, os modelos de análise de fronteira estocástica.

Palavras-chave

Setor Elétrico; Regulação Econômica; Redes Neurais; Fronteira de Eficiência; Análise de Fronteira Estocática.

Abstract

Zanini, A. Economic regulation in the brazilian electric power supply sector: a methodology for defining production efficiency frontier and estimating the X-factor. Rio de Janeiro, 2004. 146p. DSc. Thesis – Electrical Engineering Department, Pontifical Catholic University of Rio de Janeiro, PUC-Rio.

In recent years, the electric power supply sector has undergone major structural changes in a variety of regions throughout the planet. These changes are due to restructuring processes taking place in the energy sector towards the increase of quality and efficiency. In Brazil, it was created agencies responsible for the sector, in order to foster and regulate those changes, either by means of creating instruments for promoting competition or by allowing private agents participation in the processes of generating, distributing and trading energy. In this context, it was created the Brazilian Electricity Regulatory Agency (ANEEL), responsible for binding rules to assure market competition in the electric power supply sector.

Among the duties of the regulatory agency of the electric power supply sector in Brazil there is the periodical revision of energy prices. Such revisions involve estimating the X Factor applied to update prices so that gains in productivity are shared with consumers. To estimate the X Factor it is necessary to measure efficiency and, for this, two issues are important: the choices of benchmarks and of techniques for productivity measurement. This thesis proposes an approach to define frontier efficiency of electric power distribution utilities based on clustering homogeneous utilities using neural networks and estimating the frontiers through econometric techniques.

Keywords

Electrical Sector, Economic Regulation, Neural Networks, Frontier Efficiency.

Sumário

1 Introdução	14
1.1. Motivação	14
1.2. Objetivo	15
1.3. Contribuições da Tese	17
1.4. Organização da Tese	17
2 Principais Abordagens da Regulação por Incentivos	19
2.1. Comentários Preliminares	19
2.2. Descrição Sucinta dos Métodos	19
3 Métodos e Técnicas de <i>Benchmarking</i> : Definições e a Expe	eriência
Internacional	22
3.1. Comentários preliminares	22
3.2. Average Benchmarking	23
3.3. Métodos de Frontier Benchmarking (benchmarking por melhe	or prática)
	24
4 Modelos de Fronteira Estocástica	41
4.1. Considerações Gerais	41
4.2. Estimando a Fronteira de Produção	44
4.2.1. Mínimos Quadrados Corrigidos	44
4.2.2. Modelo de Fronteira Estocástica	47
4.3. Estimando a Fronteira de Custos	54
4.4. Diferenças entre os Modelos de Fronteira de Produção e Fro	nteira de
Custo	58
5 Redes Neurais Artificiais	60
5.1. Introdução	60

5.2. Caracteristicas Principais	62
5.2.1. Arquitetura	64
5.2.1.1. Redes Feedforward de Uma Única Camada	64
5.2.1.2. Redes Feedforward de Múltiplas Camadas	65
5.2.1.3. Redes Recorrentes	66
5.2.2. Métodos de Aprendizagem	67
5.2.2.1. Aprendizagem Supervisionada	68
5.2.2.2. Aprendizagem Não-Supervisionada	68
5.2.2.3. Aprendizagem Por Reforço	70
5.3. Mapas Auto-Organizáveis de Kohonen	71
6 O Modelo de Regulação do Setor Elétrico no Brasil e a Propost	a para
Cálculo do Fator X	76
6.1. Introdução	76
6.2. O Fator X	79
6.3. Cálculo do Fator X para uma Empresa Específica (j)	83
7 Modelo Híbrido: Conjugação de Redes Neurais Artificiais e Aná	ilise de
Fronteira Estocástica para Cálculo do X ^O	87
7.1. Classificação de Padrões: Encontrando Grupos de Similaridade	87
7.1.1. PSOM: Pruning Self Organizing Maps	89
7.2. Análise de Fronteira Estocástica	92
7.2.1. Hipótese sobre Retornos de Escala	92
7.2.2. Tratamento de Outliers nos Modelos de Fronteira Estocástica	94
7.3. Metodologia Proposta	94
8 Análises e Resultados	96
8.1. Definindo inputs e outputs: escolha de variáveis para definição de	os
agrupamentos e estimação das fronteiras de eficiência	96
8.2. Encontrando grupos de empresas similares utilizando o SOM	105
8.2.1. Duas Variáveis no Vetor de Entrada	106
8.2.2. Três Variáveis no Vetor de Entrada	109
8.2.3. Resultados da Análise de Sensibilidade	114
8.3. Encontrando grupos de empresas similares utilizando o PSOM	115

8.4. Estimando os Modelos de Fronteira Estocástica	118
8.4.1. Análise da Hipótese de Retornos de Escala Constante	118
8.4.2. Tratamento de Pontos Discrepantes e Estimação dos Mode	los de
Fronteira Estocástica	122
9 Conclusões	138
9.1. Considerações Finais	138
9.2. Trabalhos Futuros	140
Referências Bibliográficas	142

Lista de figuras

Figura 1. Análise de regressão de custos	24
Figura 2. Conjunto de possibilidades de produção e fronteira de produção $y=f(x)$.41	
Figura 3. Fronteira de custo	43
Figura 4. Fronteiras de produção estimadas por OLS e COLS	46
Figura 5. Função densidade do erro composto no modelo Normal/Half-Normal	50
Figura 6. Célula neural biológica (as setas largas indicam a seqüência de propa	agação de
sinais pelos neurônios)	61
Figura 7. Representação funcional de um neurônio artificial	61
Figura 8. Redes neurais tipo feedforward com uma única camada de	unidades
processadoras. (a) Arquitetura. (b) Sentido de propagação do sinal funcior	1al.65
Figura 9. Redes neurais tipo feedforward com múltiplas camadas. (a) Arquit	etura. (b)
Sentido de propagação do sinal funcional e do sinal de erro.	66
Figura 10. Arquitetura recorrente de rede sem nenhuma camada intermediária.	67
Figura 11. Diagrama de blocos do processo de aprendizagem supervisionada.	68
Figura 12. Diagrama de blocos dos processos auto-organizados.	69
Figura 13. Arquitetura de uma rede competitiva simples com conexões diretas	
(feedforward) excitatórias da entrada para a saída e conexões laterais inibitórias	
(setas tracejadas).	70
Figura 14. Diagrama de blocos do processo de aprendizagem por reforço.	71
Figura 15. Arquiteturas típicas de um SOM. (a) Bidimensional. (b) Unidim	nensional.
	72
Figura 16. Representação da fronteira de eficiência.	85
Figura 17. Representação da Tabela de Dados Multivariados	88
Figura 18. Rede em zona plana vs. rede em zona de relevo acidentado.	99
Figura 19: Topologia da rede	105
Figura 20: Redução para três grupos	109
Figura 21: Redução para três grupos	112
Figura 22: Diagrama de dispersão dos protótipos	112
(construído a partir dos logaritmos das coordenadas apresentadas no quadro 7) 112	

Figura 23: Retornos de escala	118
Figura 24: Custos operacionais por MWh das empresas ordenadas pelo seu	consumo
total	120
Figura 25: Custos operacionais por MWh em função do consumo total	121
Figura 26: Diagrama de dispersão das variáveis	123
número de consumidores (NCON) e energia distribuída (CONS)	123
Figura 27: Diagrama de dispersão das variáveis	123
extensão de rede (REDE) e número de consumidores (NCON)	123
Figura 28: Diagrama de dispersão das variáveis	124
extensão de rede (REDE) e energia distribuida (CONS)	124
Figura 29: Gráfico Qui-Quadrado	125
Figura 30: <i>Boxplots</i> dos indicadores de eficiência obtidos em cada modelo	129

Lista de tabelas

Tabela 1: Reforma do setor elétrico e características benchmarking (abreviaçõe Distribution T:Transmission S: Supply SCE: Southern California Edison)	es: <i>D:</i> 29
Tabela 2: Processo benchmarking	32
Tabela 3: Benchmarking na regulação de empresas de distribuição	35
Tabela 4 – <i>Clusters</i> de distribuidoras	113
Tabela 5 – <i>Clusters</i> de disribuidoras após a implementação do PSOM	117
Tabela 6 – Média dos Custos Operacionais Unitários (\$R/MWh) por escalas de empresas ordenadas pelo seu consumo total.	e 10 119
Tabela 6 – Modelos de fronteira estocástica (SFA)	128
Tabela 7 – Estatísticas descritivas dos indicadores de eficiência	129
Tabela 8 – Indicadores de eficiência das concessionárias do grupo 1 (empresas porte)	de grand
Tabela 9 – Indicadores de eficiência das concessionárias do grupo 2 (empresas porte)	de médic 131
Tabela 10 – Indicadores de eficiência das concessionárias do grupo 3 (empresa pequeno porte)	ns de 132
Tabela 11 – Matriz de correlações entre os indicadores de eficiência	133
Tabela 12 – Concessionárias em ordem crescente de eficiência	134
Tabela 13 – Matriz de correlações entre os <i>rankings</i> das concessionárias	135
Tabela 14 – Média geométrica dos indicadores de eficiência dos modelos DEA	-CRS e

Lista de quadros

Quadro 1. Questoes	28
Quadro 02: Estudo de benchmarking single e cross-country	38
Quadro 03: Matriz de coeficientes de correlação	103
Quadro 04: Protótipos	107
Quadro 05: Distribuição de concessionárias por grupo (utilizando duas variáve entrada)	eis no vetor de 107
Quadro 06: Alocação das empresas nos neurônios	108
Quadro 07: Protótipos	109
Quadro 08: Distribuição de concessionárias por grupo (utilizando três variávei entrada)	s no vetor de 110
Quadro 09: Alocação das empresas nos neurônios	111
Quadro 10: Deslocamento das empresas com a inclusão da variável km de redo	e114