Semaine 9 - Nombres réels, suites réelles

Valentin De Bortoli email : valentin.debortoli@gmail.com

1 Un théorème de point fixe (1)

Soit f une application croissante de [0, 1] dans [0, 1].

- 1 Soit $A = \{x \in [0,1], f(x) \ge x\}$. Montrer que A admet une borne supérieure.
- **2** Montrer que f admet un point fixe, c'est-à-dire, $\exists x_0 \in [0,1] \mid f(x_0) = x_0$.

2 Un théorème de point fixe (2)

Soit f une application continue de [0, 1] dans [0, 1].

- 1 Soit $A = \{x \in [0,1], f(x) \ge x\}$. Montrer que A admet une borne supérieure.
- **2** Montrer que f admet un point fixe, c'est-à-dire, $\exists x_0 \in [0,1] \mid f(x_0) = x_0$.

3 Inégalité(s) de Shapiro

- 1 Montrer que $\forall (a,b,c) \in \mathbb{R}_+^{*3}$ on $\frac{b+c}{a} + \frac{c+a}{b} + \frac{a+b}{c} \geq 6$.
- 2 Soit $(x_1, x_2, x_3) \in \mathbb{R}_+^{*3}$. On pose $y_1 = x_2 + x_3$, $y_2 = x_1 + x_3$ et $y_3 = x_1 + x_2$. Montrer que $\frac{x_1}{y_1} + \frac{x_2}{y_2} + \frac{x_2}{y_2} \ge \frac{3}{2}$.
- 3 Soit $(x_1, x_2, x_3, x_4) \in \mathbb{R}_+^{*3}$. On pose $y_1 = x_2 + x_3$, $y_2 = x_3 + x_4$, $y_3 = x_4 + x_1$ et $y_4 = x_1 + x_2$. Montrer que $(x_1 + x_2 + x_3 + x_4)^2 \ge 2(x_1y_1 + x_2y_2 + x_3y_3 + x_4y_4)$.
 - 4 Montrer que $\sum_{i=1}^4 \frac{x_i}{y_i} \ge 2$.

Remarque : ces inégalités sont appelées les inégalités de Shapiro et on a $\sum_{i=1}^{n} \frac{x_i}{x_{i+1}+x_{i+2}} \geq \frac{n}{2}$ (où l'addition est à prendre modulo n) pour $n \leq 12$ dans le cas pair et $n \leq 23$ dans le cas impair. On remarquera qu'ici on a montré les cas n=3 et n=4. Un contre-exemple pour le cas n=14 a été trouvé en 1985 par Troesch, le voici : (0,42,2,42,4,41,5,39,4,38,2,38,0,40).

4 Une borne inférieure

Soit $n \in \mathbb{N}^*$.

- **1** Déterminer inf $\left\{ (x_1 + \dots + x_n) \left(\frac{1}{x_1} + \dots + \frac{1}{x_n} \right), (x_1, \dots x_n) \in \mathbb{R}_+^n \right\}$.
- 2 Cet infimum est-il atteint?

5 Borne inférieure et borne supérieure

Soit
$$A = \left\{ \frac{mn}{(m+n)^2}, \ (m,n) \in \mathbb{N}^* \right\}$$
.

- 1 Montrer que $\forall x \in A, 0 < x \leq \frac{1}{4}$.
- 2 Montrer que A admet une borne supérieure et une borne inférieure et les déterminer.
- 3 L'infimum est-il atteint? Même question concernant le supremum.

6 Convergence au sens de Césaro

Soit $(u_n)_{n\in\mathbb{N}^*}\in\mathbb{C}^{\mathbb{N}^*}$. On définit $(v_n)_{n\in\mathbb{N}^*}$ de la manière suivante :

$$\forall n \in \mathbb{N}^*, \ v_n = \frac{\sum\limits_{k=1}^n u_k}{n}$$

- **1** Montrer que $u_n \to l \in \mathbb{C} \implies v_n \to l \in \mathbb{C}$.
- 2 Trouver un contrexemple à la réciproque.
- **3** Supposons que $(\omega_n)_{n\in\mathbb{N}}\in\mathbb{C}^{\mathbb{N}}$ et $\omega_{n+1}-\omega_n\to l\in\mathbb{C}^*$. Montrer que $\omega_n\underset{+\infty}{\sim}ln$.
- 4 On définit $(w_n)_{n\in\mathbb{N}^*}$ de la manière suivante :

$$\forall n \in \mathbb{N}^*, \ w_n = \frac{\sum\limits_{k=1}^n k u_k}{n^2}$$

Montrer que $w_n \to \frac{l}{2}$.

7 Suite sous-additive

Soit $(u_n)_{n\in\mathbb{N}}\in\mathbb{R}^{\mathbb{N}}$ une suite sous-additive au sens où :

$$\forall (p,q) \in \mathbb{N}^2, \ u_{p+q} \le u_p + u_q$$

- 1 Rappeler la définition de inf $\left\{\frac{u_n}{n}, \ n \in \mathbb{N}^*\right\}$.
- 2 Soit $n=qm+r, r\in [0,q-1]$, la division euclidienne de n par q. Établir une inégalité faisant intervenir u_n , u_q et u_1 .
 - **3** Montrer que la suite $(\frac{u_n}{n})_{n\in\mathbb{N}^*}$ tend vers inf $\{\frac{u_n}{n}, n\in\mathbb{N}^*\}$.
 - **2** Soit $(v_n)_{n\in\mathbb{N}}\in\mathbb{R}_+^{*\mathbb{N}}$ qui vérifie :

$$\forall (p,q) \in \mathbb{N}^2, \ v_{p+q} \le v_p v_q$$

Que peut-on dire de la suite $(v_n)_{n\in\mathbb{N}}$?

8 Rationnels et irrationnels

Soit $\left(r_n = \frac{p_n}{q_n}\right)_{n \in \mathbb{N}}$ une suite de rationnels $((p_n)_{n \in \mathbb{N}} \in \mathbb{Z}^{\mathbb{N}} \text{ et } (q_n)_{n \in \mathbb{N}} \in (\mathbb{N} \setminus \{0\})^{\mathbb{N}})$. On suppose que $r_n \to x \in \mathbb{R} \setminus \mathbb{Q}$.

1 Montrer que $q_n \to +\infty$.

9 Une équation et des parties entières

1 Pour x=8 on a $\frac{x}{2}-\sqrt{x}=2(2-\sqrt{2})>1$. Donc à partir de x=8 les parties entières de $\frac{x}{2}$ et \sqrt{x} sont différentes. Il s'agit maintenant de trouver les solutions pour x<8 (une autre solution aurait de résoudre une équation du second degré $-\sqrt{x}^2+(\frac{x}{2}-1)^2=0$. On aurait trouvé une borne similaire) :

- $\lfloor \frac{x}{2} \rfloor = 0$ si et seulement si $x \in [0, 2[$. $\lfloor \sqrt{x} \rfloor = 0$ si et seulement si $x \in [0, 1[$. Donc [0, 1[dans l'ensemble des solutions
- $\lfloor \frac{x}{2} \rfloor = 1$ si et seulement si $x \in [2, 4[. \lfloor \sqrt{x} \rfloor = 1 \text{ si et seulement si } x \in [1, 4[. Donc [2, 4[dans l'ensemble des solutions.]]])$
- $\lfloor \frac{x}{2} \rfloor = 2$ si et seulement si $x \in [4, 6[$. $\lfloor \sqrt{x} \rfloor = 2$ si et seulement si $x \in [4, 8[$. Donc [4, 6[dans l'ensemble des solutions.

On s'arrête là car on sait que les prochaines solutions se trouvent après x = 9. On sait donc qu'il n'y en aura plus. On a l'ensemble de solutions suivant :

$$S = [0, 1] \cup [4, 6] \tag{1}$$

10 Une propriété de la partie entière

Soit $n \in \mathbb{N}^*$. Soit $x \in \mathbb{R}_+$.

1 Montrer que $\lfloor \frac{\lfloor nx \rfloor}{n} \rfloor = \lfloor x \rfloor$.

11 Somme et partie entière

Soit $n \in \mathbb{N}^*$. Soit $x \in \mathbb{R}_+$.

- $\textbf{1} \quad \text{Montrer que } \lfloor nx \rfloor n \lfloor x \rfloor = n\{x\} \{nx\}. \ \text{En déduire que } n\{x\} \{nx\} \in \mathbb{Z}.$
- **2** Montrer que $\sum_{k=0}^{n-1} \lfloor x + \frac{k}{n} \rfloor = \lfloor nx \rfloor$.

Remarque : on pourra commencer par considérer x tel que $\{x\} < \frac{1}{n}$.

12 Nombre de zéros et factorielle

- 1 Donner le nombre de zéros à la fin de 10!.
- 2 Même question mais pour 25!
- **3** Même question mais pour n! avec $n \in \mathbb{N}$. On exprimera le résultat en utilisant la fonction partie entière.