Γραμμική Άλγεβρα (Linear Algebra)

ΑΓΓΕΛΟΣ ΣΙΦΑΛΕΡΑΣ Καθηγητής

8η Διάλεξη (Θεωρία)

Αν A είναι ένας $n \times n$ αντιστρέψιμος πίνακας, τότε υπάρχει ένας $n \times n$ πίνακας μετάθεσης P τέτοιος, ώστε:

• Ο πίνακας
$$B = PA$$
 να ικανοποιεί τη σχέση:
$$\prod_{k=1}^{n} \det(B[1 \ 2 \dots k \ | \ 1 \ 2 \dots k]) \neq 0$$

• PA = LU

όπου L είναι n-τριγωνικός κάτω πίνακας, U είναι n-τριγωνικός άνω πίνακας, $\det(L) = 1$ και $\det(U) \neq 0$.

- Ο $n \times n$ πίνακας P είναι ένας **πίνακας μετάθεσης**, αν σε κάθε γραμμή και στήλη ένα μόνο στοιχείο είναι 1 και όλα τα άλλα στοιχεία είναι 0.
- Οι γραμμές (στήλες) του P είναι μια μετάθεση των γραμμών (στηλών) του μοναδιαίου πίνακα I_n .
- π.χ., ο ακόλουθος είναι ένας 3×3 πίνακας μετάθεσης:

$$P = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}$$

• Έστω επιπλέον και ο πίνακας:

$$A = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$

• Τότε το γινόμενο ΡΑ είναι ο πίνακας:

$$PA = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} = \begin{bmatrix} a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \\ a_{11} & a_{12} & a_{13} \end{bmatrix}$$

Ενώ το γινόμενο AP είναι ο πίνακας

$$AP = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix} = \begin{bmatrix} a_{13} & a_{11} & a_{12} \\ a_{23} & a_{21} & a_{22} \\ a_{33} & a_{31} & a_{32} \end{bmatrix}$$

Ιδιότητες πίνακα μετάθεσης:

- $P^{-1} = P^{T}$ και ο P^{T} είναι πίνακας μετάθεσης.
- Αν P_1 , P_2 είναι πίνακες μετάθεσης, ο P_1P_2 είναι πίνακας μετάθεσης.

Παράδειγμα με πίνακα μετάθεσης, (1/2)

Να βρεθεί ο αντίστροφος του διπλανού πίνακα με τη μέθοδο της LU παραγοντοποίησης: $A = \begin{bmatrix} 1 & 2 & 6 \\ 4 & 8 & -1 \\ -2 & 3 & 5 \end{bmatrix}$

Ερώτηση: Παραγοντοποιείται απευθείας σε LU μορφή?

<u>Απάντηση</u>: Όχι, γιατί η ηγετική ελάσσονα ορίζουσα $2^{\eta\varsigma}$ τάξεως $|A_2|$ ισούται με 0...

Λύση στο πρόβλημα: Εναλλαγή των γραμμών 2 και 3 του πίνακα Α, ώστε ο πίνακας ΡΑ που προκύπτει να έχει μια τριγωνική παραγοντοποίηση.

Παράδειγμα με πίνακα μετάθεσης, (2/2)

$$Aρα: PA = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 2 & 6 \\ 4 & 8 & -1 \\ -2 & 3 & 5 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 6 \\ -2 & 3 & 5 \\ 4 & 8 & -1 \end{bmatrix}$$

Οπότε, μετά μπορούμε να υπολογίσουμε τους τριγωνικούς πίνακες:
$$L = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 4 & 0 & 1 \end{bmatrix}$$
 και $U = \begin{bmatrix} 1 & 2 & 6 \\ 0 & 7 & 17 \\ 0 & 0 & -25 \end{bmatrix}$

Οπότε:

$$PA = LU \Rightarrow A = P^{-1}LU \Rightarrow A^{-1} = (P^{-1}LU)^{-1} = U^{-1}L^{-1}(P^{-1})^{-1} \Rightarrow A^{-1} = U^{-1}L^{-1}P.$$

Έτσι για τον A^{-1} , αρκεί να βρούμε τους αντίστροφους των πινάκων L, U που είναι πρακτικά προτιμότερο γιατί είναι τριγωνικοί κάτω και άνω πίνακες, αντίστοιχα.

Διανυσματικοί χώροι

Ένα σύνολο V στο οποίο έχουν οριστεί οι πράξεις + (διανυσματική πρόσθεση) και · (βαθμωτός πολλαπλασιασμός), λέγεται πραγματικός διανυσματικός (ή γραμμικός) χώρος (vector space), όταν:

- i) ως προς την + ισχύουν οι ιδιότητες:
- 1. $\forall v, u, w \in V, (v + u) + w = v + (u + w)$
- 2. $\forall v, u \in V, v + u = u + v$
- 3. $\exists \mathbf{O} \in V$: $\forall u \in V$, $u + \mathbf{O} = \mathbf{O} + u = u$
- 4. $\forall u \in V, \exists (-u) \in V: u + (-u) = (-u) + u = \mathbf{O}$
- ii) ως προς την · ισχύουν οι ιδιότητες:
- 1. $\forall \lambda \in \mathbb{R}, \ \forall v, u \in V, \ \lambda \cdot (v + u) = \lambda \cdot v + \lambda \cdot u$
- 2. $\forall \lambda, \mu \in \mathbb{R}, \forall u \in V, (\lambda + \mu) \cdot u = \lambda \cdot u + \mu \cdot u$
- 3. $\forall \lambda, \mu \in \mathbb{R}, \ \forall \ \boldsymbol{u} \in V, \ \lambda \cdot (\mu \cdot \boldsymbol{u}) = (\lambda \mu) \cdot \boldsymbol{u}$
- 4. $\forall u \in V, 1 \cdot u = u$

Διανυσματικοί χώροι

- Τα στοιχεία του V λέγονται **διανύσματα** και για την αναπαράστασή τους θα χρησιμοποιούμε συνήθως γράμματα του λατινικού αλφάβητου, ενώ για τα στοιχεία του R (δηλ. τους **συντελεστές**) θα χρησιμοποιούμε γράμματα του ελληνικού αλφάβητου.
- Ο όρος διάνυσμα εδώ έχει ευρύτερη σημασία. Διάνυσμα μπορούμε να θεωρούμε και έναν πίνακα, γιατί το σύνολο $M_{m,n}$ των $m \times n$ πινάκων αποτελεί ένα διανυσματικό χώρο (αφού, ισχύουν οι ιδιότητες (i.1 i.4) ως προς την πρόσθεση πινάκων και οι ιδιότητες (ii.1 ii.4) ως προς τον πολλαπλασιασμό αριθμού με πίνακα.
- Γενικότερα, ορίζονται διανυσματικοί χώροι με συντελεστές από το σύνολο των μιγαδικών αριθμών C ή ακόμα γενικότερα, από ένα σώμα F (εμείς με τον όρο διανυσματικός χώρος (δ. χ.) θα εννοούμε τον πραγματικό διανυσματικό χώρο).

Ιδιότητες διανυσματικών χώρων

Με βάση τις ιδιότητες ορισμού του δ. χ., αποδεικνύεται ότι σε κάθε δ. χ. ισχύουν οι εξής ιδιότητες:

$$\forall \lambda \in \mathbb{R}, \lambda \mathbf{O} = \mathbf{O}$$

$$\forall u \in V, 0u = \mathbf{O}$$

$$\forall \lambda \in \mathbb{R}, \ \forall u \in V, \ \lambda u = \mathbf{O} \implies (\lambda = 0 \ \acute{\eta} \ u = \mathbf{O})$$

$$\forall \lambda \in \mathbb{R}, \forall u \in V, (-\lambda)u = \lambda(-u) = -(\lambda u)$$

$$\forall \lambda \in \mathbb{R}^*, \ \forall v, u \in V, \ \lambda v = \lambda u \implies v = u$$

$$\forall \lambda, \mu \in \mathbb{R}, \ \forall u \in V^*, \ \lambda u = \mu u \implies \lambda = \mu.$$

Διανυσματικοί υπόχωροι

- Ένα υποσύνολο V_0 ενός δ. χ. V είναι διανυσματικός υπόχωρος (δ. υπ.) του V, αν το V_0 είναι ένας δ. χ. ως προς τις πράξεις του V όταν αυτές περιοριστούν στο V_0 .
- Έτσι, αποδεικνύεται ότι το υποσύνολο V_0 ενός δ. χ. V είναι ένας δ. υπ. του V, αν και μόνον αν:

$$\forall v, u \in V_0, v + u \in V_0$$

$$\forall \lambda \in \mathbb{R}, \forall u \in V_0, \lambda u \in V_0$$

• ή γενικότερα ένα υποσύνολο V_0 ενός δ. χ. V είναι ένας δ. υπ. του V, αν και μόνον αν:

$$\forall \lambda, \mu \in \mathbf{R}, \ \forall \mathbf{v}, \mathbf{u} \in V_0, \ \lambda \mathbf{v} + \mu \mathbf{u} \in V_0$$

Διανυσματικοί υπόχωροι

• Έστω τώρα V ένας δ . χ. και $\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_k \in V$. Το $\delta/\mu\alpha$:

$$\mathbf{v} = \lambda_1 \mathbf{v}_1 + \lambda_2 \mathbf{v}_2 + \dots + \lambda_k \mathbf{v}_k, \quad \lambda_1, \lambda_2, \dots, \lambda_k \in \mathbf{R}$$

λέγεται γραμμικός συνδυασμός (linear combination) των $v_1, v_2, ..., v_k$.

- Αν επιπλέον είναι $\lambda_1 + \lambda_2 + \ldots + \lambda_k = 1$, τότε το παραπάνω διάνυσμα λέγεται **ομοπαραλληλικός συνδυασμός** (affine combination) των $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_k$.
- Για τους γραμμικούς συνδυασμούς διανυσμάτων ισχύει ότι, αν V είναι ένας δ . χ. τότε το σύνολο:

$$V_k = \{ v \in V: v = \lambda_1 v_1 + \lambda_2 v_2 + \dots + \lambda_k v_k, \quad \lambda_1, \lambda_2, \dots, \lambda_k \in \mathbb{R}, \quad v_1, v_2, \dots, v_k \in V \}$$

συμβολικά, $\langle v_1, v_2, ..., v_k \rangle$ ή $span\{v_1, v_2, ..., v_k\}$, είναι ένας δ. υπ. του V.

Διανυσματικοί υπόχωροι

- Ο χώρος $\langle v_1, v_2, ..., v_k \rangle$ λέγεται ότι είναι ο υπόχωρος του V που παράγεται από τα $v_1, v_2, ..., v_k \in V$. Επίσης θα λέμε ότι τα $v_1, v_2, ..., v_k \in V$ παράγουν τον υπόχωρο V_k του V.
- Άρα, για ν.δ.ο. $\mathbf{v} \in \langle \mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_k \rangle$, αρκεί ν.δ.ο. υπάρχουν $\lambda_1, \lambda_2, ..., \lambda_k \in \mathbb{R}$, τέτοιοι, ώστε $\mathbf{v} = \lambda_1 \mathbf{v}_1 + \lambda_2 \mathbf{v}_2 + ... + \lambda_k \mathbf{v}_k$.
- Προφανώς, το $\mathbf{O} \in \langle \mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_k \rangle$ (είναι $\lambda_1 = \lambda_2 = ... = \lambda_k = 0$) όπως επίσης και τα $\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_k \in \langle \mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_k \rangle$ $..., \mathbf{v}_k > (\pi.\chi., είναι \mathbf{v}_1 = 1\mathbf{v}_1 + 0\mathbf{v}_2 + ... + 0\mathbf{v}_k)$.

Αν θεωρήσουμε το σύνολο των διατεταγμένων *n*-άδων πραγματικών αριθμών:

$$R^n = \{(x_1, x_2, ..., x_n) : x_i \in \mathbb{R}, i = 1, 2, ..., n\}$$

και ορίσουμε σ' αυτό τις πράξεις:

$$(x_1, x_2, ..., x_n) + (y_1, y_2, ..., y_n) = (x_1 + y_1, x_2 + y_2, ..., x_n + y_n),$$

 $\lambda(x_1, x_2, ..., x_n) = (\lambda x_1, \lambda x_2, ..., \lambda x_n), \lambda \in \mathbb{R}$

τότε το σύνολο αυτό είναι ένας δ. χ. με μηδενικό στοιχείο το $\mathbf{O} = (0, 0, ..., 0)$.

Επίσης, το $\delta/\mu\alpha$ $\mathbf{x} = (x_1, x_2, ..., x_n)$ με συντεταγμένες $x_1, x_2, ..., x_n$, μπορούμε να το αντιστοιχίσουμε (ταυτίσουμε) με το **σημείο** $M(x_1, x_2, ..., x_n)$ με συντεταγμένες $x_1, x_2, ..., x_n$, του χώρου \mathbf{R}^n .

Η αρχή Ο είναι το μηδενικό δ/μα $\mathbf{O} = (0, 0, ..., 0)$ και ταυτίζουμε το σημείο $\mathbf{x} = (x_1, x_2, ..., x_n)$ με το δ/μα $(\theta \dot{\epsilon} \sigma \eta \varsigma)$ που αρχίζει από την αρχή και τελειώνει στο σημείο $\mathbf{x} = (x_1, x_2, ..., x_n)$.

Έτσι, μπορούμε να ορίσουμε και τη **γωνία** θ μεταξύ των διανυσμάτων $\mathbf{x} = (x_1, x_2, ..., x_n)$ και $\mathbf{y} = (y_1, y_2, ..., y_n)$ κατά τον συνήθη τρόπο, χρησιμοποιώντας το «επίπεδο» στον \mathbf{R}^n που περιέχει αυτά τα διανύσματα.

• Αν τώρα έχουμε τα σημεία $M(x_1, x_2, ..., x_n)$ και $N(y_1, y_2, ..., y_n)$ τότε ταυτίζουμε το προσανατολισμένο ευθύγραμμο τμήμα \overline{MN} (αρχή το M, τέλος το N) με το διάνυσμα $\mathbf{v} = \mathbf{y} - \mathbf{x} = (y_1 - x_1, y_2 - x_2, ..., y_n - x_n)$.

• Αν $\mathbf{x} = (x_1, x_2, ..., x_n)$ και $\mathbf{y} = (y_1, y_2, ..., y_n)$ είναι $\delta/\tau \alpha$ του \mathbf{R}^n , τότε το εσωτερικό γινόμενο των \mathbf{x} και \mathbf{y} ορίζεται ως ο αριθμός:

$$\mathbf{x} \cdot \mathbf{y} = x_1 y_1 + x_2 y_2 + \ldots + x_n y_n$$

• Η (Ευκλείδεια) νόρμα ή μέτρο (μήκος) του x, συμβολικά $\|x\|$, ορίζεται ως ο μη αρνητικός αριθμός:

$$\|x\| = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}$$

• Η (Ευκλείδεια) απόσταση μεταξύ των x και y, συμβολικά d(x, y), ορίζεται ως ο μη αρνητικός αριθμός:

$$d(x,y) = ||x-y|| = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2 + \dots + (x_n - y_n)^2}$$

- Με τον όρο Ευκλείδειος *n*-χώρος, εννοούμε τον Rⁿ εμπλουτισμένο με τους ορισμούς του εσωτερικού γινομένου και της απόστασης.
- Στον χώρο αυτό ορίζουμε τη γωνία θ μεταξύ των δ /των $\mathbf{x} = (x_1, x_2, ..., x_n)$ και $\mathbf{y} = (y_1, y_2, ..., y_n)$ από την ισότητα:

$$\cos \theta = \frac{\mathbf{x} \cdot \mathbf{y}}{\|\mathbf{x}\| \|\mathbf{y}\|}$$

• Αν έχουμε δύο $\delta/\tau a x$ και y κάθετα μεταξύ τους, τότε ισχύει ότι $x \cdot y = 0$.

Nα ελέγξετε εάν το σύνολο: $V_0 = \{ \mathbf{v} \in \mathbf{R}^4 : \mathbf{v} = [0 \ \alpha \ \beta \ 0]^{\mathrm{T}} \ , \ \alpha, \beta \in \mathbf{R} \}$ αποτελεί δ. χ.

Για να διαπιστώσουμε ότι είναι διανυσματικός χώρος, επειδή $V_0 \subseteq \mathbb{R}^4$, αρκεί να δούμε αν είναι ένας διανυσματικός υπόχωρος του δ. χ. \mathbb{R}^4 .

Εξετάζουμε αν: $\forall \lambda, \mu \in \mathbb{R}, \forall v, u \in V_0, \lambda v + \mu u \in V_0$

Θεωρούμε δύο τυχαία $\delta/\tau \alpha$: $\mathbf{v} = [0 \ \alpha \ \beta \ 0]^{\mathrm{T}} \ \mathrm{kal} \ \mathbf{u} = [0 \ \gamma \ \delta \ 0]^{\mathrm{T}}$

Οπότε:

$$\lambda \mathbf{v} + \mu \mathbf{u} = \lambda [0 \ \alpha \ \beta \ 0]^{T} + \mu [0 \ \gamma \ \delta \ 0]^{T} = [0 \ \lambda \alpha + \mu \gamma \ \lambda \beta + \mu \delta \ 0]^{T} = [0 \ \rho \ \sigma \ 0]^{T}, \ \rho, \sigma \in \mathbf{R}$$

Ποιόν υποχώρο παράγει το ακόλουθο δ/μ α του \mathbf{R}^2 : $\mathbf{v}_1 = [1 \ 1]^{\mathrm{T}}$?

Για τον υπόχωρο που παράγει, έχουμε:

$$\langle \mathbf{v}_1 \rangle = \{ \mathbf{v} \in V : \mathbf{v} = \lambda_1 \mathbf{v}_1, \ \lambda_1 \in \mathbf{R} \}$$

Είναι όμως:

$$\lambda_1 \mathbf{v}_1 = [\lambda_1 \ \lambda_1]^{\mathrm{T}} = [x \ y]^{\mathrm{T}} \implies x = \lambda_1, \ y = \lambda_1$$

Με απαλοιφή του λ_1 από τις παραπάνω εξισώσεις προκύπτει η εξίσωση:

$$x - y = 0$$

$$\delta\eta\lambda$$
. $\langle v_1 \rangle = \{(x, y) \in \mathbb{R}^2 : x - y = 0\}$

ή με άλλα λόγια, ο υπόχωρος του R^2 που παράγεται από το παραπάνω διάνυσμα είναι η ευθεία με εξίσωση x-y=0.

```
In [38]: p1 = line([(0,0), (5,5)])
    p2 = arrow2d((0,0), (1,1), color='red')
    p1 + p2
Out[38]:
```

- Ο υποχώρος του ${\bf R}^2$ που παράγεται από ένα δ/μ α ${\bf v}_1$ είναι το σύνολο όλων των πολλαπλάσιων του ${\bf v}_1$.
- Άρα, ο υποχώρος του R² που παράγεται από το δ/μα ν₁
 = [1, 1]^T είναι η ευθεία γραμμή η οποία διέρχεται από την αρχή των αξόνων και έχει την κατεύθυνση [1, 1].

Ποιόν υποχώρο παράγουν τα ακόλουθα δ/τ α του \mathbf{R}^3 $\mathbf{v}_1 = [1 \ 0 \ 1]^{\mathrm{T}}$ και $\mathbf{v}_2 = [-1 \ 2 \ 1]^{\mathrm{T}}$?

Για τον υπόχωρο που παράγουν, έχουμε:

$$< v_1, v_2 > = \{ v \in V : v = \lambda_1 v_1 + \lambda_2 v_2, \lambda_1, \lambda_2 \in R \}$$

Είναι όμως:

$$\lambda_1 v_1 + \lambda_2 v_2 = [\lambda_1 - \lambda_2 \ 2\lambda_2 \ \lambda_1 + \lambda_2]^T = [x \ y \ z]^T \Rightarrow x = \lambda_1 - \lambda_2, \ y = 2\lambda_2, \ z = \lambda_1 + \lambda_2.$$

Απαλείφοντας τα $λ_1$ και $λ_2$ από τις παραπάνω εξισώσεις προκύπτει η εξίσωση:

$$x + y - z = 0$$

δηλ.
$$\langle v_1, v_2 \rangle = \{(x, y, z) \in \mathbb{R}^3 : x + y - z = 0\}$$

ή με άλλα λόγια, ο υπόχωρος του \mathbb{R}^3 που παράγεται από τα παραπάνω διανύσματα είναι το επίπεδο με εξίσωση x+y-z=0.

```
In [36]: var('x,y,z')

p1 = implicit_plot3d(x+y-z==0, (x,-5,5), (y,-5,5), (z,-5,5), color='yellow')
p2 = arrow3d((0,0,0), ( 1, 0, 1), 2, color='blue')
p3 = arrow3d((0,0,0), (-1, 2, 1), 2, color='blue')
p1 + p2 + p3
Out[36]:
```

- Δυο τρισδιάστατα δ/τα v_1 και v_2 -τα οποία δεν ανήκουν στην ίδια ευθεία- παράγουν το επίπεδο το οποίο τα περιέχει.
- Άρα, ο υποχώρος του \mathbf{R}^3 που παράγεται από τα $\delta/$ τα $\mathbf{v}_1=[1\ 0\ 1]^{\mathrm{T}}$ και $\mathbf{v}_2=[-1\ 2\ 1]^{\mathrm{T}}$ είναι το παραπάνω επίπεδο.

Να δείξετε ότι τα ακόλουθα δ/τα παράγουν το δ. χ.
$$\mathbf{R}^n$$
: $\mathbf{e}_1 = \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \mathbf{e}_2 = \begin{bmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{bmatrix}, \dots, \mathbf{e}_i = \begin{bmatrix} 0 \\ \vdots \\ 1_i \\ \vdots \\ 0 \end{bmatrix}, \dots, \mathbf{e}_n = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix}$

Πράγματι, αν θεωρήσουμε ένα οποιοδήποτε δ/μα x του Rⁿ, έχουμε:

$$\mathbf{x} = [x_1 \ x_2 \ \dots \ x_n]^{\mathrm{T}} = [x_1 \ 0 \ \dots \ 0]^{\mathrm{T}} + [0 \ x_2 \ \dots \ 0]^{\mathrm{T}} + \dots + [0 \ 0 \ \dots \ x_n]^{\mathrm{T}} = x_1 [1 \ 0 \ \dots \ 0]^{\mathrm{T}} + x_2 [0 \ 1 \ \dots \ 0]^{\mathrm{T}} + \dots + x_n [0 \ 0 \ \dots \ 1]^{\mathrm{T}}$$

$$\Rightarrow \mathbf{x} = x_1 \mathbf{e}_1 + x_2 \mathbf{e}_2 + \dots + x_n \mathbf{e}_n$$

Επομένως:

$$R^n = \langle e_1, e_2, ..., e_n \rangle$$

<u>Θεώρημα</u>. Αν A είναι ένας $m \times n$ πίνακας τότε το σύνολο N των λύσεων του ομογενούς συστήματος $Ax = \mathbf{O}$ είναι ένας διανυσματικός χώρος.

Πράγματι αν $u, v \in \mathbb{N}$, τότε επειδή $Au = \mathbf{O}$ και $Av = \mathbf{O}$, είναι:

$$A(\lambda \mathbf{u} + \mu \mathbf{v}) = \lambda A \mathbf{u} + \mu A \mathbf{v} = \lambda \mathbf{O} + \mu \mathbf{O} = \mathbf{O}$$

άρα $\lambda u + \mu v ∈ N$.

Ο παραπάνω δ.χ. Ν, λέγεται **μηδενικός χώρος** ή **μηδενο-χώρος** (null space) του πίνακα A, συμβολικά null(A), και είναι ένας από τους τρεις διανυσματικούς χώρους που συσχετίζονται με έναν πίνακα.

• Ο δεύτερος χώρος που συσχετίζεται με τον πίνακα A είναι ο **γραμμο-χώρος** (row space) του A, συμβολικά row(A), ο οποίος ορίζεται ως ο χώρος που παράγεται από τα δ /τα που αντιστοιχούν στις γραμμές του A, δηλ.

$$row(A) = \langle A_{(1)}, A_{(2)}, ..., A_{(m)} \rangle$$

• Ο τρίτος χώρος είναι ο **στηλο-χώρος** (column space) του A, συμβολικά col(A), ο οποίος ορίζεται ως ο χώρος που παράγεται από τα δ /τα που αντιστοιχούν στις στήλες του A, δ ηλ.

$$col(A) = \langle A^{(1)}, A^{(2)}, ..., A^{(n)} \rangle$$

Η γραμμική εξάρτηση σε ένα δ. χ. V ορίζεται ως εξής:

• Τα διανύσματα $v_1, v_2, ..., v_k$ (k > 1) ενός δ. χ. V λέμε ότι είναι γραμμικώς εξαρτημένα (linearly dependent), όταν ένα τουλάχιστον απ' αυτά ανήκει στον διανυσματικό υπόχωρο που παράγουν τα υπόλοιπα.

• Τα διανύσματα $v_1, v_2, ..., v_k$ ενός δ. χ. V που δεν είναι γραμμικώς εξαρτημένα, λέμε ότι είναι γραμμικώς ανεξάρτητα (linearly independent).

Πρόταση 2.2.1

Τα διανύσματα $v_1, v_2, ..., v_k$ ενός δ. χ. V είναι γραμμικώς εξαρτημένα, αν και μόνον αν υπάρχουν $\lambda_1, \lambda_2, ..., \lambda_k \in \mathbb{R}$, τέτοιοι, ώστε να είναι:

$$\lambda_1 v_1 + \lambda_2 v_2 + ... + \lambda_k v_k = \mathbf{O} \text{ kat } (\lambda_1, \lambda_2, ..., \lambda_k) \neq (0, 0, ..., 0)$$

Πρόταση 2.2.2

Τα διανύσματα $v_1, v_2, ..., v_k$ ενός δ. χ. V είναι γραμμικώς ανεξάρτητα, αν και μόνον αν:

$$\lambda_1 \mathbf{v}_1 + \lambda_2 \mathbf{v}_2 + \dots + \lambda_k \mathbf{v}_k = \mathbf{O} \implies (\lambda_1, \lambda_2, \dots, \lambda_k) = (0, 0, \dots, 0)$$

Είναι τα ακόλουθα δ/τα γραμμικώς ανεξάρτητα δ/τα του χώρου
$$\mathbf{R}^n$$
? $\mathbf{e}_1 = \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \mathbf{e}_2 = \begin{bmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{bmatrix}, \dots, \mathbf{e}_i = \begin{bmatrix} 0 \\ \vdots \\ 1_i \\ \vdots \\ 0 \end{bmatrix}, \dots, \mathbf{e}_n = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix}$

Πράγματι, αν θεωρήσουμε την ισότητα

$$\lambda_1 \boldsymbol{e}_1 + \lambda_2 \boldsymbol{e}_2 + \dots + \lambda_k \boldsymbol{e}_k = \mathbf{O}$$

έχουμε ισοδύναμα:

$$\begin{split} \lambda_1 [1 \ 0 \ \dots \ 0]^T + \lambda_2 [0 \ 1 \ \dots \ 0]^T + \dots + \lambda_k [0 \ 0 \ \dots \ 1]^T &= [0 \ 0 \ \dots \ 0]^T \\ \Leftrightarrow [\lambda_1 \ 0 \ \dots \ 0]^T + [0 \ \lambda_2 \ \dots \ 0]^T + \dots + [0 \ 0 \ \dots \ \lambda_n]^T &= [0 \ 0 \ \dots \ 0]^T \\ \Leftrightarrow [\lambda_1 \ \lambda_2 \ \dots \ \lambda_n]^T &= [0 \ 0 \ \dots \ 0]^T. \end{split}$$

Ιδιότητες γραμμικής εξάρτησης-ανεξαρτησίας:

- Αν m διανύσματα $v_1, v_2, ..., v_m$ ενός δ. χ. V είναι γραμμικώς εξαρτημένα, τότε και τα k (k > m) διανύσματα $v_1, v_2, ..., v_k$ είναι επίσης γραμμικώς εξαρτημένα.
- Αν m διανύσματα $v_1, v_2, ..., v_m$ ενός δ. χ. V είναι γραμμικώς ανεξάρτητα, τότε και οποιαδήποτε από αυτά είναι επίσης γραμμικώς ανεξάρτητα.
- Αν τα διανύσματα $v_1, v_2, ..., v_m$ είναι γραμμικώς ανεξάρτητα ενώ τα $v_1, v_2, ..., v_m, u$ είναι γραμμικώς εξαρτημένα, τότε: $u \in \langle v_1, v_2, ..., v_m \rangle$

Αν $V = \mathbb{R}^n$ και A είναι ο πίνακας των διανυσμάτων:

$$oldsymbol{v}_1 = egin{bmatrix} v_{11} \\ v_{21} \\ \vdots \\ v_{n1} \end{bmatrix}, oldsymbol{v}_2 = egin{bmatrix} v_{12} \\ v_{22} \\ \vdots \\ v_{n2} \end{bmatrix}, \dots, oldsymbol{v}_k = egin{bmatrix} v_{1k} \\ v_{2k} \\ \vdots \\ v_{nk} \end{bmatrix}$$

$$\delta \eta \lambda. \qquad A = \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \dots & \mathbf{v}_{1k} \\ \mathbf{v}_{21} & \mathbf{v}_{22} & \dots & \mathbf{v}_{2k} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{v}_{n1} & \mathbf{v}_{n2} & \dots & \mathbf{v}_{nk} \end{bmatrix}$$

τότε: $x_1 \mathbf{v}_1 + x_2 \mathbf{v}_2 + \ldots + x_k \mathbf{v}_k = A \mathbf{x}, \ \mathbf{x} = [x_1 \ x_2 \ \ldots \ x_k]^T$

οπότε τα $v_1, v_2, ..., v_k$ είναι γραμμικώς ανεξάρτητα όταν: $A\mathbf{x} = \mathbf{O} \implies \mathbf{x} = \mathbf{O}$

Άρα:

• Τα δ/τ α $v_1, v_2, ..., v_k$ είναι γραμμικώς ανεξάρτητα, αν και μόνον αν η εξίσωση (σύστημα) $A\mathbf{x} = \mathbf{O}$ έχει μόνο τη μηδενική λύση $\mathbf{x} = \mathbf{O}$.

ή

• Οι στήλες του πίνακα A είναι γραμμικώς ανεξάρτητες, αν και μόνον αν το ομογενές σύστημα $Ax = \mathbf{O}$ έχει μόνο τη μηδενική λύση.

Αποδεικνύεται ότι:

- Τα διανύσματα $v_1, v_2, ..., v_k$ είναι γραμμικώς εξαρτημένα, αν και μόνον αν $\operatorname{rank}(A) = r < k$, οπότε υπάρχουν ακριβώς r διανύσματα από τα παραπάνω τα οποία είναι γραμμικώς ανεξάρτητα, ενώ καθένα από τα υπόλοιπα (k-r) διανύσματα μπορεί να εκφραστεί ως γραμμικός συνδυασμός αυτών των r διανυσμάτων.
- Av rank(A) = k, τα διανύσματα είναι γραμμικώς ανεξάρτητα.
- Αν k > n, τα διανύσματα v_1, v_2, \ldots, v_k είναι γραμμικώς εξαρτημένα.

Ή αλλιώς:

• Τα διανύσματα $v_1, v_2, ..., v_n$ του \mathbb{R}^n είναι γραμμικώς ανεξάρτητα, αν και μόνον αν

$$\det([\mathbf{v}_1 \ \mathbf{v}_2 \ \dots \ \mathbf{v}_n]) \neq 0$$

Είναι τα ακόλουθα δ/τα γραμμικώς εξαρτημένα στο χώρο R⁴?

$$v_1 = \begin{vmatrix} 1 \\ 2 \\ -3 \\ 4 \end{vmatrix}, v_2 = \begin{vmatrix} 3 \\ -1 \\ 2 \\ 1 \end{vmatrix}, v_3 = \begin{vmatrix} 1 \\ -5 \\ 8 \\ -7 \end{vmatrix}$$

Πράγματι, εδώ είναι
$$k=3,\,n=4$$
 και $A=\begin{bmatrix} 1 & 3 & 1 \\ 2 & -1 & -5 \\ -3 & 2 & 8 \\ 4 & 1 & -7 \end{bmatrix}$

Οπότε, μέσω
$$SageMath$$
:
$$\begin{pmatrix}
1 & 3 & 1 \\
2 & -1 & -5 \\
-3 & 2 & 8 \\
4 & 1 & -7
\end{pmatrix}$$

$$rank(A) = 2$$

βρίσκουμε ότι rank(A) = 2 < 3, άρα είναι γραμμικώς εξαρτημένα $\delta/\tau \alpha$ στο χώρο R^4 .

Eπειδή:
$$\begin{vmatrix} 1 & 3 \\ 2 & -1 \end{vmatrix} \neq 0$$

- Τα δ/τα v_1 , v_2 είναι γραμμικώς ανεξάρτητα.
- Οπότε, πως μπορούμε να γράψουμε το v_3 ως γραμμικό συνδυασμό τους?

$$\mathbf{v}_{3} = \lambda_{1}\mathbf{v}_{1} + \lambda_{2}\mathbf{v}_{2} \iff [1 -5 8 -7]^{T} = [\lambda_{1} 2\lambda_{1} -3\lambda_{1} 4\lambda_{1}]^{T} + [3\lambda_{2} -\lambda_{2} 2\lambda_{2} \lambda_{2}]^{T}$$

$$\Leftrightarrow \begin{cases}
\lambda_{1} + 3\lambda_{2} = 1 \\
2\lambda_{1} - \lambda_{2} = -5 \\
-3\lambda_{1} + 2\lambda_{2} = 8
\end{cases}
\Leftrightarrow \begin{cases}
\lambda_{1} = -2 \\
\lambda_{2} = 1
\end{cases}$$

$$4\lambda_{1} + \lambda_{2} = -7$$

Οπότε: $v_3 = -2v_1 + v_2$