Package 'DNLC'

December 10, 2016

Type Package

Version 1.0.0 **Date** 2016-11-23

Description

sion data matrix.

Title Differential Network Local Consistency Analysis

Author Yao Lu, Yusheng Ding, Lingqing Liu, Tianwei Yu Maintainer Yusheng Ding <yushengding93@gmail.com> Description Using Local Moran's I for detection of differential network local consistency.</yushengding93@gmail.com>					
			License GPL (>= 2)		
			Imports igraph, spdep, fdrtod	ol, GOstats, locfdr, mvtnorm, caTools	
LazyData true					
Depends R (>= 2.10)					
NeedsCompilation no					
DNLC_statistics gene_fdrtest init_simulation_genes significant_genes .	e_net	2 3 4 5			
Index		6			
cal_lmi_data	Calculate local moran's I matrix for a network and a gene expression matrix	_			

cal_lmi_data() will calculate the local moran's I data for a input igraph object and gene expres-

2 DNLC_statistics

Usage

```
cal_lmi_data(gene_expr, gene_graph)
```

Arguments

Expression for genes. Each row is a gene, and each column is a sample. gene_expr The graph of gene network. gene_graph

Details

cal_lmi_data() will calculate the local moran's I matrix for a input igraph object and gene expression data matrix. The function will return a matrix in the same dimension of the input gene expression matrix. Every gene x's lmi data takes a row.

Value

A table of local moran's I data. Row name is gene id. Each row stands for the local moran's I data of gene x. Each column stands for a sample.

Examples

```
simulation <- init_simulation_gene_net()</pre>
lmi_data = cal_lmi_data( simulation$gene_expr, simulation$gene_graph)
t_data = DNLC_statistics(simulation$gene_graph, simulation$gene_expr,
 simulation$patient_matrix, lmi_data = lmi_data)
fdr_result <- gene_fdrtest(t_data)</pre>
sig_genes <- significant_genes(fdr_obj = fdr_result, thres = 0.2)</pre>
```

DNLC_statistics

calculate t statistics for gene graph using DNLC method.

Description

a function to calculate t statistics for genes in the graph.

Usage

```
DNLC_statistics(gene_graph, gene_expr = "x", clinic_data = "y",
   confounder_matrix = NULL, lmi_data = NULL)
```

Arguments

```
gene_graph
                 graph of gene
                 expr of gene
gene_expr
clinic_data
                 patient data
confounder_matrix
                 other message describe clinic message
lmi_data
```

lmi data for each gene.

gene_fdrtest 3

Details

This function first calculates the matrix of local moran's I, and then conducts testing for the association of each gene's local moran's I with the clinical outcome variable. Clinical confounder variables such as age, gender etc can be included.

Value

```
all_gene_id gene ids in graph
t_data t-data for each gene
```

Examples

```
simulation <- init_simulation_gene_net()
t_data = DNLC_statistics(simulation$gene_graph, simulation$gene_expr,
    simulation$patient_matrix, lmi_data = simulation$lmi_matrix)
fdr_result <- gene_fdrtest(t_data)
sig_genes <- significant_genes(fdr_obj = fdr_result, thres = 0.2)</pre>
```

gene_fdrtest

Use local false discovery rate for the detection of genes with significant LMI change

Description

This function use locfdr function to calculate fdr_result

Usage

```
gene_fdrtest(gene.data)
```

Arguments

```
gene.data gene_id_all: gene id t_data: t statistic for each gene
```

Value

```
return fdr_result for t_data
```

fdr\$name all gene id

fdr\$fdr fdr value for gene

Examples

```
simulation <- init_simulation_gene_net()
t_data = DNLC_statistics(simulation$gene_graph, simulation$gene_expr,
    simulation$patient_matrix, lmi_data=simulation$lmi_matrix)
fdr_result <- gene_fdrtest(t_data)
sig_genes <- significant_genes(fdr_obj = fdr_result, thres = 0.2)</pre>
```

init_simulation_gene_net

Create a random network for simulation

Description

This function will create a network for DNLC. This function will change correlation of chosen genes and its one hop neighbor between treatment groups to simulate LMI changes.

Usage

```
init_simulation_gene_net(base_correlation = 0.4,
    change_correlation = 0.8, sample_size = 100, num_gene = 5000, change_gene_num=5)
```

Arguments

base_correlation

base correlation of network

change_correlation

change correlation for selected genes

sample_size multi size of patient data

num_gene gene number in the network

change_gene_num

number of genes around which the correlation structure is to be changed

Value

lmi_matrix matrix of local moran's I data

patient_matrix

matrix of patient data

neigh_list id of changed gene.

gene_graph igraph object of gene network gene_expr gene expression data matirx significant_genes 5

Examples

```
simulation <- init_simulation_gene_net()
t_data = DNLC_statistics(simulation$gene_graph, simulation$gene_expr,
    simulation$patient_matrix, lmi_data = simulation$lmi_matrix)
fdr_result <- gene_fdrtest(t_data)
sig_genes <- significant_genes(fdr_obj = fdr_result, thres = 0.2)</pre>
```

significant_genes

Selecting significant genes according to fdr result

Description

Choose the significant genes according to fdr result

Usage

```
significant_genes(fdr_obj, thres)
```

Arguments

fdr_obj fdr result come from function gene_fdrtest thres threshold to identify significant genes

Value

ID of significant genes

Examples

```
simulation <- init_simulation_gene_net()
t_data = DNLC_statistics(simulation$gene_graph, simulation$gene_expr,
    simulation$patient_matrix, lmi_data = simulation$lmi_matrix)
fdr_result <- gene_fdrtest(t_data)
sig_genes <- significant_genes(fdr_obj = fdr_result, thres = 0.2)</pre>
```

Index

```
*Topic \textasciitildekwd1
    cal\_lmi\_data, 1
    {\tt DNLC\_statistics, 2}
    gene_fdrtest, 3
    init_simulation_gene_net, 4
    significant_genes, 5
*Topic \textasciitildekwd2
    {\tt cal\_lmi\_data}, 1
    DNLC_statistics, 2
    gene_fdrtest, 3
    init_simulation_gene_net, 4
    significant\_genes, 5
cal_lmi_data, 1
DNLC_statistics, 2
{\tt gene\_fdrtest}, {\tt 3}
init_simulation_gene_net, 4
significant_genes, 5
```