Assignment Ncert Exampler

Rajeev Kumar **EE22BTECH11042**

I. QUESTION:- GATE 2023.54

Suppose that X is a discrete random variable with the following probability mass

$$P(X=0) = \frac{1}{2} \left(1 + e^{-1} \right) \tag{1}$$

$$P(X = k) = \frac{e^{-1}}{2k!} \text{ for } k = 1, 2, 3, \dots$$
 (2)

Which of the following is/are true?

- 1) E(X) = 1
- 2) E(X) < 1
- 3) $E(X|X > 0) < \frac{1}{2}$ 4) $E(X|X > 0) > \frac{1}{2}$

Solution:

1) As we know,

$$E(X) = \sum X p_X(X) \tag{3}$$

Therefore,

$$E(X) = 0 \cdot \frac{1}{2} \left(1 + e^{-1} \right) + \sum_{k=1}^{\infty} \frac{k e^{-1}}{2k!}$$
 (4)

$$=\sum_{k=1}^{\infty} \frac{e^{-1}}{2(k-1)!} \tag{5}$$

$$=\frac{1}{2e}\sum_{k=1}^{\infty}\frac{1}{(k-1)!}$$
 (6)

$$= \frac{1}{2e} \left(\frac{1}{0!} + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \dots \right) \tag{7}$$

$$= \frac{1}{2e} \cdot e$$
 (Using standard result of exponential series)
= 0.5 (8)

2) To find E(X|X>0), first we need to find Pr(X|X>0) which can be given as:

$$\Pr(X|X>0) = \frac{\Pr(X=k)}{1 - \Pr(X=0)}$$
(9)

$$= \frac{e^{-1}}{2k!(1 - \frac{1}{2}(1 + e^{-1}))}$$

$$= \frac{e^{-1}}{k!(1 - e^{-1})}$$
(10)

$$=\frac{e^{-1}}{k!(1-e^{-1})}\tag{11}$$

$$=\frac{1}{k!(e-1)}$$
 (12)

Therefore,

$$E(X|X>0) = \sum_{k=1}^{\infty} k \frac{1}{k!(e-1)}$$
 (13)

$$=\frac{1}{e-1}\sum_{k=1}^{\infty}\frac{1}{(k-1)!}$$
(14)

$$= \frac{1}{e-1} \left(\frac{1}{0!} + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \dots \right)$$
 (15)

$$= \frac{1}{e-1} \cdot e$$
 (Using standard result of exponential series)
= 1.582 (16)

Referring to equations (8) and (16), we get that option (2) and (4) are correct.