Introdução ao Aprendizado de Máquina para Físicos

Marcelo Vargas dos Santos Aula 1

Informações sobre o curso

Objetivo: Este curso é uma introdução ao uso de técnicas de Aprendizado de Máquina (Machine Learning, ML, em inglês) e suas aplicações na Física. O foco será nas aplicações e não nos métodos.

Horário: Quarta-Feira 10h e Quinta-Feira 14h

Sala: 105

Avaliação: Projeto

Ferramentas: Scikit-Learn, Keras (Python)

Conteúdo

Parte 1 - Aprendizado Estatístico (Statistical Learning)

- Introdução: Big Data, Ciência de Dados e Aprendizado de Máquina.
- 2. Análise exploratória de dados.
- Modelos Supervisionados com Scikit-Learn.
- Otimização de Parâmetros.
- 5. Teste de Validação de modelos.
- 6. Pré-processamento de dados.
- 7. Modelos não supervisionados.

Parte 2 - Aprendizado Profundo (Deep Learning)

- 1. Introdução: O que são redes Neurais profundas.
- 2. Tensorflow e Keras.
- 3. Treinamento de redes neurais.
- 4. Redes Neurais Convolucionais. Inception, Resnet, InceptionNet.
- Redes Neurais Recorrentes. LSTM.
- Codificador automáticos e Redes adversárias generativas.
- Aprendizado reforçado.

Motivação

Big Data & Data Science

A era do Big Data

Conhecido vs. Desconhecido

Dados científicos

Astronomia:

Sky Survey Projects	Data Volume			
DPOSS (The Palomar Digital Sky Survey)	3 TB			
2MASS (The Two Micron All-Sky Survey)	10 TB			
GBT (Green Bank Telescope)	20 PB			
GALEX (The Galaxy Evolution Explorer)	30 TB			
SDSS (The Sloan Digital Sky Survey)	40 TB			
SkyMapper Southern Sky Survey	500 TB			
PanSTARRS (The Panoramic Survey Telescope and Rapid Response System)	~ 40 PB expected			
LSST (The Large Synoptic Survey Telescope)	~ 200 PB expected			
SKA (The Square Kilometer Array)	~ 4.6 EB expected			
Table 1: Data volumes of different sky survey projects.				

Outros campos: Altas Energias (LHC), Genética, Climatologia, Saúde Pública, Sociologia, etc.

O Paradigma BIG DATA

The six Vs of big data

Big data is a collection of data from various sources, often characterized by what's become known as the 3Vs: volume, variety and velocity.

Over time, other Vs have been added to descriptions of big data:

VOLUME	VARIETY	VELOCITY	VERACITY	VALUE	VARIABILITY
The amount of data from myriad sources.	The types of data: structured, semi-structured, unstructured.	The speed at which big data is generated.	The degree to which big data can be trusted.	The business value of the data collected.	The ways in which the big data can be used and formatted.
0000	€\$ *	(S)			A

Ciência de Dados

É um campo interdisciplinar que usa métodos científicos, algoritmos e sistemas computacionais para extrair informação de dados estruturados e não estruturados.

Ferramentas: Programação, Estatística, Inteligência Artificial (Aprendizado de máquina).

Machine Learning

O que é Aprendizado de máquina?

Aprendizado de máquina (machine learning em inglês, ML) é o subcampo da Inteligência Artificial que estuda algoritmos e métodos estatísticos que sistemas computacionais usam para executar tarefas específicas sem uma programação explícita.

Exemplos: Reconhecimento de padrões, modelos preditivos, classificação e regressão.

Modelos de ML

Aprendizado supervisionado: Relacionam um conjunto de variáveis chamadas características (features), com um outro conjunto alvo (targets).

Aprendizado não supervisionado: Buscam relações entre variáveis não explicitamente relacionadas.

Reforçado: O modelo interage com um sistema a fim de coletar informação.

Misto: Combina duas das, ou as, 3 estratégias acima.

Aprendizado Supervisionado

Modelos preditivos para variáveis com rótulos

Rótulo Contínuo: Regressão

Rótulo Discreto: Classificação

Aprendizado não supervisionado

Agrupamento:

Aprendizado não supervisionado

Redução de dimensionalidade:

Aprendizado reforçado

Aplicações

Redes sociais

https://temas.folha.uol.com.br/gps-ideologico/ reta-ideologica/a-posicao-ideologica-de-mil-in fluenciadores-no-twitter.shtml

Sistemas de recomendações

Reconhecimento Facial

Piloto automático

Questões éticas envolvidas

Aplicações na Física

Altas Energias

Astrofísica

Estado Sólido e Física Estatística

Análise de sinais

FIG. 1. The gravitational-wave event GW150914 observed by the LIGO Hanford (H1, left column panels) and Livingston (L1, right column panels) detectors. Times are shown relative to September 14, 2015 at 09:50:45 UTC. For visualization, all time series are filtered with a 35–350 Hz bandpass filter to suppress large fluctuations outside the detectors' most sensitive frequency band, and band-reject