PARADIGMAS DA ANÁLISE

ANÁLISE E DESENVOLVIMENTO DE SISTEMAS Análise e Desenvolvimento de Sistemas

Prof. Evandro Zatti, M. Eng.

FUNDAMENTOS

- A Análise de Sistemas é uma das etapas da Engenharia de Software;
- Ela compreende basicamente o processo de estudo das necessidades do cliente como subsídio para a construção do software;
- Aqui são apresentados os diferentes paradigmas de análise:
 - ✓ Análise Estruturada;
 - ✓ Análise Essencial;
 - ✓ Análise Orientada a Objetos.

ANÁLISE ORIENTADA A OBJETOS

ANÁLISE E DESENVOLVIMENTO DE SISTEMAS Análise e Desenvolvimento de Sistemas

Prof. Evandro Zatti, M. Eng.

HISTÓRICO E FUNDAMENTOS

- É um método de análise baseado no paradigma de orientação a objetos;
- Criada no final da década de 1980;
- O processo de análise foca em um conjunto de objetos, com atributos (dados) e métodos (procedimentos), e que interagem entre si através da troca de mensagens;
- Nos anos 1990 este paradigma ganhou maior atenção por autores como Booch (Análise e Projeto Orientados a Objetos com Aplicações), Jacobson (Engenharia de Software Orientada a Objetos), Rumbaugh (Técnicas de Modelagem de Objetos), sendo os idealizadores da UML (*Unified Modeling Language* – Linguagem de Modelagem Unificada).

ANÁLISE ORIENTADA A OBJETOS X ANÁLISE ESSENCIAL

- Em OO, o sistema é estruturado baseando-se em objetos de domínio do problema, ao invés de funções e procedimentos, que precisam ter conhecimento de onde os dados residem;
- Em OO, o sistema apresenta uma **abstração** que se mantém mais próxima do **mundo real**;
- Em OO, os objetos do domínio induzem a **requisitos mais estáveis**, e as modificações ficam limitadas somente a alterações nestes objetos.

CARACTERÍSTICAS DA ORIENTAÇÃO A OBJETOS

- Objetos são abstrações do mundo real;
- Objetos são independentes e encapsulam suas representações de estado e informações;
- A funcionalidade de um sistema é expressa em termos de **serviços** que objetos prestam;
- Áreas de dados compartilhadas são eliminadas;
- Objetos se comunicam através do envio de mensagens;
- Objetos podem ser distribuídos;
- Objetos podem ser executados sequencialmente ou em forma paralela.

MODELAGEM CONCEITUAL

- A modelagem de um sistema orientado a objetos consiste:
 - ✓ Na análise do domínio da aplicação;
 - ✓ Modelagem das entidades;
 - ✓ Modelagem dos fenômenos do domínio.
- Esta tarefa envolve basicamente dois mecanismos:
 - ✓ Abstração;
 - ✓ Representação.

MODELAGEM CONCEITUAL

ABSTRAÇÃO

Observar um domínio e capturar sua estrutura

Entidade Observada

REPRESENTAÇÃO

Descrever o domínio de forma convencionada (Ex.: UML)

Entidade Representada

ANÁLISE ORIENTADA A OBJETOS X IRUP

- Atualmente a maioria dos sistemas comerciais são construídos sob o paradigma orientado a objetos;
- São diversas metodologias (prescritivas e ágeis) utilizadas com este paradigma;
- IRUP (IBM Rational Unified Process) é uma das principais metodologias prescritivas que norteiam o desenvolvimento de sistemas orientados a objeto;

ANÁLISE ORIENTADA A OBJETOS X IRUP

- As principais fases e artefatos gerados pelo IRUP para a análise e desenvolvimento orientados a objetos prevê:
 - ✓ Especificação de Requisitos;
 - ✓ Mapeamento de Processos de Negócio (BPMN);
 - ✓ Casos de Uso: diagrama e especificações (narrativas);
 - ✓ Diagrama de Classes;
 - ✓ Diagrama do Modelo Lógico Relacional do Banco de Dados;
 - ✓ Diagrama de Atividades;
 - ✓ Diagrama de Sequência.

CASO DE USO

ANÁLISE E DESENVOLVIMENTO DE SISTEMAS Análise e Desenvolvimento de Sistemas

Prof. Evandro Zatti, M. Eng.

FUNDAMENTOS

"Um caso de uso conta uma história estilizada sobre como um usuário final (alguém desempenhando um entre vários papéis possíveis) interage com o sistema sob um conjunto específico de circunstâncias. A história pode ser um texto narrativo, um delineamento de tarefas ou interações, uma descrição baseada em gabarito ou uma representação diagramática."

(PRESSMAN e MAXIM, 2015)

CASO DE USO

- É a representação de uma unidade funcional do sistema;
- Descreve um cenário de possível interação com um utilizador ou um outro sistema;
- Por se tratar de uma unidade funcional, é baseado nos **requisitos funcionais**, podendo:
 - ✓ Um requisito funcional se desmembrar em mais de um caso de uso;
 - ✓ Mais de um requisito funcional ser fundido em um único caso de uso.

CASO DE USO

- Exemplos de caso de uso:
 - ✓ Cadastrar cliente;
 - ✓ Agendar consulta;
 - ✓ Efetivar matrícula.
- Pode ser representado principalmente por:
 - ✓ Diagrama de caso de uso (diagrama);
 - ✓ Narrativa (especificação) de caso de uso (textual).

DIAGRAMA DE CASO DE USO

- É a representação **gráfica** (diagramática) dos casos de uso do sistema, suas dependências e derivações;
- Notação UML (*Unified Modeling Language* Linguagem de Modelagem Unificada).

EXEMPLO DE DIAGRAMA DE CASO DE USO

• Ator: é um usuário ou perfil de usuário do sistema. É representado por um boneco e um rótulo com o nome do ator.

 Caso de Uso: define uma funcionalidade macro do sistema. É representado por um elipse.

Caso de Uso 1

Caso de Uso 2

- Relacionamento: representa a relação entre componentes:
 - ✓ Ator x Caso de Uso (uso)
 - ✓ Ator x Ator (generalização)
 - ✓ Caso de Uso x Caso de Uso (inclui / estende).

- **Usa (uses):** quando um ator executa um caso de uso. Representado por uma linha simples, sem seta.
 - ✓ Exemplo: O Ator 1 executa o Caso de Uso 1.

- Generalização: quando casos de uso de um ator também são casos de uso de outro.
 - ✓ Exemplo: os casos de uso do Ator 1 também são casos de uso do Ator 2, ou seja: o Ator 2 herda os casos de uso do Ator 1.

- Includes (includes): quando a execução de um caso de uso é essencial para a execução de outro.
 - ✓ Exemplo: Executar o Caso de uso 2 é essencial na execução do Caso de Uso 1.

- Estende (extends): quando a execução de um caso de uso deriva para outro caso de uso, mas não necessariamente.
 - ✓ Exemplo: Na execução do Caso de uso 1 pode ou não haver a execução do Caso de Uso 2.

EXEMPLO DE DIAGRAMA DE CASO DE USO

ESPECIFICAÇÃO (NARRATIVA) DE CASO DE USO

- É a representação detalhada dos casos de uso;
- Narrativa de caso de uso;
- Padrão IRUP.

* ver documento anexo *

REFERÊNCIAS

- BOOCH, G.; RUMBAUGH, J.; JACOBSON, I. **UML 2.0** *Reference Manual*. Boston: Addison Wesley, 2004.
- CARDOSO. A. Análise Orientada a Objetos.
 - ✓ Disponível em http://www.alexandre.eletrica.ufu.br/esof/aula05.pdf. Acesso em 16/03/2019.
- PRESSMAN, R. W, MAXIM B. R. **Software Engineering A Practitioner's Approach**. 8th Ed. New York: McGraw-Hill, 2015.