第 11 章 水 路

第1節 基本事項	1
1. 定 義	1
2. 堤脚水路の設置位置	
3. 水路の計画規模 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
第2節 流出量の算定 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	1
第3節 水路断面 ······	
1. 構 造	
1-1 余 裕	2
1-2 流 速	
1-3 粗土係数	
1-4 水路の設置上の留意点 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	3
2. 函渠および管渠	3
第4節 集水ます	4
第5節 府県別隆雨強度(参考) ······	5

第11章 水路

第1節 基本事項

1. 定 義

水路とは、河川改修工事等にともなう付替水路および堤防のり面排水のための堤脚水路をいう。

2. 堤脚水路の設置位置

堤脚水路の設置位置は、いわゆる「2Hルール」を適用し、堤防のり尻より 1:2.0 勾配で引いた仮想線より外に設けるものとする。

設置位置は、図 1-2-1 によらなければならない。

図 1-2-1 堤脚水路の設置位置

3. 水路の計画規模

付帯工事の場合は、現況復旧を原則とするが、流出量を算定する場合には、10 年確率を原則とする。

第2節 流出量の算定

流出量の算定は、「河川砂防技術基準(案)同解説 調査編 第5章第2節洪水流出計算」に準ずる。

流出量は、以下に示す合理式で算定することが多い。

 $Q = \frac{1}{3.6} \cdot f \cdot \gamma \cdot A$

ここに、Q:流出量 (m³/s)

f:流出係数

γ:到達時間内の降雨強度 (mm/hr)

A:流域面積 (km²)

(1) 流出係数

流出係数の値については、「河川砂防技術基準 同解説 計画編 第2章2.7.3」に準じ「河川砂防技術基準(案)同解説 調査編 第5章 第2節」を参考とする。

出典:[2.]

改訂解説・河川管理施 設等構造令 第 54 条 解説(H12.1)P266 一部加筆

出典:[第2節] 河川砂防技術基準 (案)同解説 調査編 第5章 2.2.3 (H9.10)P86

(2) 洪水到達時間

洪水到達時間は、流下時間と流入時間の和として算出する。

流下時間および流入時間の算定方法は、「河川砂防技術基準(案)同解説 調査編 第5章第2節」 に準ずるものとする。

出典:[(2)]

2. 2. 3

河川砂防技術基準 (案)同解説 調査編

(H9. 10) P86∼P89

(3) 降雨強度

降雨強度は、「河川砂防技術基準(案)同解説 調査編 第5章第2節」に準ずるものとする。 また、「水理公式集 平成11年度版 (P19、P358)」を参考としてもよい。 なお、雨量データがない場合は、「本章5.府県別降雨強度」に示す降雨強度式を使用してよい。

第3節 水路断面

1. 構 造

構造は、石張り、石積み、コンクリート構造(「建設省制定 土木構造物標準設計第1巻 側こう・暗きょ類」)とし、原則として素掘水路は設けない。

「建設省制定 土木構造物標準設計第 1 巻解説書(側こう・暗きょ類)」の断面決定図表を使用して断面決定してもよい。ただし、この図表は一律最大流量の 20% の余裕とされたものであり、次項に示す余裕と異なるため使用には十分注意する必要がある。

1-1 余裕

余裕は求めた流出量の30%とする。

1-2 流 速

一般排水溝、排水管の流速は、水路の洗掘、土砂の堆積等、維持管理面を考慮して設定するものとする。

表 3-1-1 材質による平均流速の範囲 (参考)

側溝の材質	平均流速の範囲(単位:m/s)
コンクリート	0.6~3.0
アスファルト	0.6~1.5
石張りまたはブロック	0.6~1.8

出典:[表 3-1-1] 道路土工要綱(平成 21 年度版) 2-4-2(3) 解表 2-5(H21.6)P141

1-3 粗度係数

粗度係数は、使用する材料に応じた値を用いるものとする。

表 3-1-2 マニングの粗度係数 n

水路の形式	水路の状況	nの範囲	nの標準値
カルバート	現場打ちコンクリート		0.015
	コンクリート管		0.013
	コルゲートメタル管 (1形)		0.024
	" (2形)		0.033
	// (ベービングあり)		0.012
	塩化ビニル管		0.010
	コンクリート2次製品		0.013
ライニングした	鋼, 塗装なし, 平滑	0.011~0.014	0.012
水 路	モルタル	0.011~0.015	0.013
	木、かんな仕上げ	0.012~0.018	0.015
	コンクリート、コテ仕上げ	0.011~0.015	0.015
	コンクリート,底面砂利	0.015~0.020	0.017
	石積み, モルタル目地	0.017~0.030	0.025
	空石積み	0.023~0.035	0.032
	アスファルト, 平滑	0.013	0.013
ライニングなし	土, 直線, 等断面水路	0.016~0.025	0.022
水路	土, 直線水路, 雑草あり	0.022~0.033	0.027
	砂利, 直線水路	0.022~0.030	0.025
	岩盤直線水路	0.025~0.040	0.035
自然水路	整正断面水路	0.025~0.033	0.030
	非常に不整正な断面,雑草,立木多し	0.075~0.150	0.100

出典:[表 3-1-2] 道路土工要綱(平成 21 年度版) 2-4-1 解表 2-4(H21.6)P137

1-4 水路の設置上の留意点

- ① 堤防側の水路壁高は、堤防の堤脚が水路の流水によって浸潤または浸食されないように、10cm 程度高くするものとする。
- ② 堤内地が水田の場合には、水田に溜める水が水路に流出しないように、水田湛水深 (15cm 程度) 壁を高く設定する。

図 3-1-1 堤脚水路の壁高

③ 水路等を設置する場合には、周辺環境を考慮し、環境に配慮するものとする。 水路壁の設計にあたっては「本編第3章護岸」を参考の上、多自然、景観等、環境 に配慮した設計を行うものとする。

2. 函渠および管渠

管渠はその断面が D=1,000 mm 以下に用いることを原則とし、これ以上はボックスカルバートとするが、載荷荷重状態、施工、経済面から検討し工法を選定すること。

函渠および管渠における構造および基礎の安定は、「建設省制定 土木構造物標準設計第 1 巻解説書(側こう・暗きょ類)」によること。

施工性、経済性等を考慮し、プレキャスト製品の使用を検討するものとする。

第4節 集水ます

集水ますは、側溝が配水管に接続する箇所、および側溝の断面が変化する箇所等、必要に 応じて設けるものとする。

(1) 形状寸法

形状寸法は、接続する排水溝の大きさ、位置、維持管理作業を考慮して決定するものとする。 集水ます、および排水管の維持のため人が入って容易に作業が出来る大きさとする。

構造は、「建設省制定 土木構造物標準設計第1巻 側こう・暗きょ類」および「建設省制定 土 木構造物標準設計第1巻解説書(側こう・暗きょ類)」に準ずる。

施工性、経済性等を考慮し、プレキャスト製品の使用を検討するものとする。

(2) 土砂溜まり

集水ますには、深さ 50 cm 程度の土砂溜まりを設けるものとする。ただし、流出土砂量が少な │出典:[(2)] いと考えられるような場合や維持作業の頻度が少ないと考えられる場合等ではこの限りでない。

(3) 昇降用金具

集水ます内高が 1m 以上の場合には、昇降用金具を取り付けるものとする。

(4) 蓋

集水ますには、状況に応じて蓋を設けるものとする。

図 4-1-1 集水ますの例

土木構造物標準設計 第1巻 解説書(側こ う類・暗きょ類) (H12.9)P30

出典:[図 4-1-1] 土木構造物標準設計 第1巻 解説書(側こ う類・暗きょ類) (H12.9)P10

第5節 府県別降雨強度(参考)

表 5-1-1 降 雨 強 度 式 (その1)

砂防設備技術指針(案) Ver. 3 H19 大阪府都市整備部河川室ダム砂防課

				10 107 100	加及加加斯	()() 101.0	1110 /(1/2/1.	이 마이크로 이 이다.	内が上といりの時
府県名	地均	或	確		率			年	備考
加木和	名		5	10	20	30	50	100	I/HI ~¬¬
大阪府	※ 豊	能		図 5-1-2	2 参照				
地域割は図5‐1‐1参照	* =	島		図 5-1-3	多照				
	※ 河	内		図 5-1-4	4 参照				
	※ 南 内	河		図 5-1-5	5 参照				
	※ 泉	北		図 5-1-6	6 参照				
	※ 泉	南		図 5-1-7	7 参照				

表 5-1-2 降 雨 強 度 式 (その2)

開発行為に伴う治水対策事務処理マニュアル(案) H20 京都府土木建築部河川課

年 府 地 確 考 県 域 5 10 20 30 50 100 名 名 * 上位 10 個 京 10 分≦t≦24 京 $\frac{1716.511}{t^{2/3} + 7.139}$ 時間 都 864.291 1093.198 1504.443 2040.236 都 $t^{2/3}+4.949$ $t^{2/3}+6.489$ $t^{2/3} + 8.443$ $t^{2/3} + 5.350$ 府 府 (全 域) 全資料 (参考) 918.653 1097.311 1383.430 1521.307 1714.433 10 分≦t≦24 " " $\overline{t^{2/3} + 5.773}$ $t^{2/3}+4.738$ $t^{2/3}+5.089$ $t^{2/3}+6.115$ $t^{2/3}+6.597$ 時間

表 5-1-3 降 雨 強 度 式 (その3)

設計便覧(案)河川編 H19. 12 滋賀県十木交通部

					設計便見	(条) 門川編	H19. 12 後年	負界工小	父进部
府	地	吞	雀	率	Σ	年			
県 名	域 名	2	3	5	7	10	20	備	考
		$\frac{229.6}{t^{0.5} \text{-} 0.4584}$	$\frac{273.0}{t^{0.5} - 0.3480}$	$\frac{321.0}{t^{0.5} - 0.2472}$	$\frac{351.6}{t^{0.5} - 0.1855}$	$\frac{383.4}{t^{0.5} - 0.1246}$	$\frac{441.3}{t^{0.5} \cdot 0.5372}$		
滋	*	矿	崔	率	3	年			
賀県	全域	30	50	80	100			M27~	~H5
		$\frac{523.7}{t^{0.5} - 0.4547}$	$\frac{638.0}{t^{0.5} - 0.3590}$	$\frac{738.6}{t^{0.5} - 0.3539}$	$\frac{818.6}{t^{0.5} - 0.2250}$				

出典:[表 5-1-2] 開発行為に伴う治水 対策事務処理マニュアル (案) H20 P13

出典:[表 5-1-3] 滋賀県設計便覧 (案) 河川編 H19.12 参考資料第1章

表 5-1-4 降 雨 強 度 式 (その 4)

三重県下下水道事業雨量対策計画規模等検討業務委託報告書 H17 三重県県土整備部下水道室 | 出典:[表 5-1-4]

		一里月	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	11至/17/17 日/20	沃可医时未颁多		一里水水工正	MI H /1 /2 / Z
府	地		確	<u> </u>	Z .	年		/-ttt
県名	域 名	5	7	10	30	50	100	備考
三重県	四日市	$\frac{4260}{t^{0.9} + 35.2}$	$\frac{3068.72}{t^{0.819} + 21.573}$	$\frac{5164}{t^{0.9}+37.18}$	$\frac{6546}{t^{0.9}+39.47}$	$\frac{7176}{t^{0.9}+40.25}$	$\frac{8027}{t^{0.9} + 41.13}$	
"	津	$\frac{442.11}{t^{0.501}+0.833}$	$\frac{519.41}{t^{0.51}+1.021}$	$\frac{524.34}{t^{0.492}+0.79}$	$\frac{989.04}{t^{0.546}+2.444}$	$\frac{936.4}{t^{0.518}+1.627}$	$\frac{1266.36}{t^{0.541}+2.516}$	各地区にお いては、左
"	伊 勢	$\frac{1703.46}{t^{0.666}+10.354}$	$\frac{1955.86}{t^{0.675}+11.194}$	$\frac{2420.37}{t^{0.696} + 13.691}$	$\frac{2742.33}{t^{0.68}+12.585}$	$\frac{3012.68}{t^{0.683} + 12.674}$	$\frac{3394}{t^{0.686} + 13.061}$	記の降雨強 度に参表に
"	大宮	$\frac{49.268}{t^{0.137}-0.994}$	$\frac{24.698}{t^{0.079}-1.029}$	$\frac{2.362}{t^{0.009}-1.006}$	$\frac{0.943}{t^{0.003}-1.002}$	$\frac{1.734}{t^{0.005}-1.003}$	$\frac{1.909}{t^{0.005}-1.003}$	示す降雨倍 率を考慮す ェ
"	尾鷲	$\frac{2426.15}{t^{0.623}+12.573}$	$\frac{4042.72}{t^{0.7}+21.760}$	$\frac{7060.16}{t^{0.791} + 38.484}$	$\frac{11678.05}{t^{0.846} + 56.660}$	$\frac{14153.97}{t^{0.867} + 64.987}$	$\frac{13588.39}{t^{0.839} + 56.887}$	る。
"	上野	$\frac{548.458}{t^{0.588}+1.208}$	$\frac{559.778}{t^{0.576}+1.094}$	$\frac{520.851}{t^{0.55}+0.587}$	$\frac{679.340}{t^{0.557}+0.925}$	$\frac{705.090}{t^{0.55}+0.65}$	$\frac{816.489}{t^{0.556}+0.94}$	

三重県下下水道事業雨 量対策計画規模等検討 業務委託報告書 H17 三重県県土整備部下水 道室

参表 降雨倍率

三重具下下水消事業雨量対策計画規模等検討業務委託報告書 H17 三重県県土整備部下水道室

	三重県下下水道事業雨量対策計画規	模等核	針對業績	务委託	報告書	H17	三重児	県土	整備音
地	適用地区			降雨	倍率			備	考
域	週	5	7	10	30	50	100	VĦ	7
	四日市市	1.0	1.0	1.0	1.0	1.0	1.0		
四	旧桑名市、木曽岬町、旧長島町、東員町、 川越町、朝日町	1.0	1.0	1.0	1.0	1.0	1.0		
日	いなべ市、旧多度町、菰野町	1.2	1.2	1.2	1.2	1.2	1.2		
市	鈴鹿市	1.0	1.0	1.0	1.0	1.0	1.0		
	津市、河芸町、安濃町、美里村、香良洲町	1.0	1.0	1.0	1.0	1.0	1.0		
津	亀山市、芸濃町	1.0	1.0	1.0	1.0	1.0	1.0		
伴	久居市、白山町、一志町	1.2	1.2	1.2	1.2	1.2	1.2		
	旧松阪市、旧嬉野町、旧三雲村、明和町	1.1	1.1	1.1	1.1	1. 1	1.1		
	伊勢市、二見町、御薗村、小俣町、玉城町、 度会町(北部)	1.0	1.0	1.0	1.0	1.0	1.0		
伊	鳥羽市	1.0	1.0	1.0	1.0	1.0	1.0		
勢	南島町、度会町(南部)、南勢町	1.0	1.0	1.0	1.0	1.0	1.0		
	志摩市	0.8	0.8	0.8	0.8	0.8	0.8		
	旧大宮町、大台町	1.0	1.0	1.0	1.0	1.0	1.0		
	美杉村	0.9	0.9	0.9	0.9	0.9	0.9		
大	旧飯南町、勢和村、多気町	0.9	0.9	0.9	0.9	0.9	0.9		
宮	旧飯高町	1.0	1.0	1.0	1.0	1.0	1.0		
	宮川村	1.6	1.6	1.6	1.6	1.6	1.6		
	旧大内山村、旧紀勢町	1.2	1.2	1.2	1.2	1.2	1.2		
	尾鷲市、紀伊長島町(山間部)、海山町	1.0	1.0	1.0	1.0	1.0	1.0		
_	紀伊長島(海岸部)	1.0	1.0	1.0	1.0	1.0	1.0		
尾	熊野市(山間部)	1.0	1.0	1.0	1.0	1.0	1.0		
鷲	熊野市(海岸部)、御浜町(海岸部)、紀宝町(海 岸部)、鵜殿村	1.0	1.0	1.0	1.0	1.0	1.0		
	紀和町、御浜町(山間部)、紀宝町(山間部)	1.0	1.0	1.0	1.0	1.0	1.0		
T	旧上野市、旧島ヶ原村	1.0	1.0	1.0	1.0	1.0	1.0		
野野	旧阿山町、旧伊賀村、旧大山田村	1.5	1.5	1.5	1.5	1.5	1.5		
P	名張市、旧青山町	1.2	1.2	1.2	1.2	1.2	1.2		

表 5-1-5 降 雨 強 度 式(その5)

砂防技術指針 H12. 4 奈良県土木部砂防課

						11分月1121月11日11日11	П12. 4 示尺	: 异工小司砂奶味
府		確		E	率			
県 地域名 名 -	5	10	20	30	50	100	備考	
奈良県	※奈良 大和川 流域	3925 t+29. 79	4669 t+30. 18	5376 t+30. 40	5786 t+30. 52	6307 t+30.75	6990 t+30.83	1 分≦t≦90 分 M. 30~
"	JJ	$\frac{210}{t^{0.5}-3.10}$	$\frac{241}{t^{0.5}-3.29}$	$\frac{270}{t^{0.5}-3.43}$	$\frac{287}{t^{0.5}-3.50}$	$\frac{308}{t^{0.5}-3.56}$	$\frac{337}{t^{0.5}-3.64}$	91 分≦t≦10 時間 M. 30~

但し上式は大和平野全域に適用 県内淀川流域=上式×1.3

"紀ノ川"= "×1.2" "十津川"= "×2.5" "北山川"= "×2.8"

出典:[表 5-1-5] 砂防技術指針 H12.4 Ⅱ. 計画編 Ⅱ-2

表 5-1-6 降雨強度式(その6)

砂防関係設計指針 H15. 8 改訂版 福井県土木部砂防海岸課

出典:[表 5-1-6] 砂防関係設計指針 H15.8 改訂版

府	地		確		率	4 1113. 0 以 11 7/10		ID IO
県名	域 名	5	10	20	30	50	100	備考
	※福井平野部	$egin{array}{c ccccc} \hline & \hline & & \\ \hline + & & \\ \hline + & & \\ \hline + & \\ \hline + & & \\ \hline + & \\ \hline $		$\frac{1772.4}{t^{3/4} + 8.792}$	1920.0 t ^{3/4} +9.178	$\frac{2102.5}{t^{3/4} + 9.564}$	2350.4 t ^{3/4} +10.030	10 分≦t ≦180分 福井平野 部
	"	$\frac{550.1}{t^{0/513}}$	$\frac{652.5}{t^{0/514}}$	$\frac{750.5}{t^{0/515}}$	$\frac{807.6}{t^{0/515}}$	$\frac{877.8}{t^{0/515}}$	$\frac{973.7}{t^{0/516}}$	180 分≦t ≤24 時間 福井平野 部
	※奥越山間部	$\frac{164.0}{t^{1/3} \cdot 0.574}$	$\frac{203.9}{t^{1/3} - 0.404}$	243.4 t ^{1/3} -0.262	$\frac{266.2}{t^{1/3}\text{-}0.195}$	$\frac{296.0}{t^{1/3} - 0.104}$	$\frac{335.6}{t^{1/3}\text{-}0.010}$	10 分≦t ≦180分 奥越山間 部
	"	$\frac{2685.3}{t^{3/4} + 35.140}$	$\frac{3412.3}{t^{3/4} + 39.704}$	$\frac{4112.6}{t^{3/4} + 42.850}$	4516.7 t ^{3/4} +44.320	5022.6 t ^{3/4} +45.844	$\frac{5706.3}{t^{3/4} + 47.595}$	180 分≦t ≤24 時間 奥越山間 部
4 5	※嶺北海岸部	$\frac{1352.4}{t^{3/4} + 8.489}$	$\frac{1632.9}{t^{3/4} + 9.240}$	$\frac{1905.5}{t^{3/4} + 9.858}$	$\frac{2065.2}{t^{3/4}+10.195}$	$\frac{2261.8}{t^{3/4} + 10.502}$	$\frac{2529.7}{t^{3/4}+10.899}$	10 分≦t ≦180分 嶺北海岸 部
福井県	"	$\frac{1360.2}{t^{3/4} + 8.645}$	$\frac{1574.2}{t^{3/4} + 6.842}$	$\frac{1779.7}{t^{3/4} + 5.596}$	$\frac{1898.4}{t^{3/4} + 5.020}$	$\frac{2047.0}{t^{3/4} + 4.441}$	$\frac{2246.8}{t^{3/4} + 3.742}$	180 分≦t ≤24 時間 嶺北海岸 部
	※嶺北南部	$\frac{371.8}{t^{1/2} + 0.595}$	$\frac{443.5}{t^{1/2} + 0.715}$	513.4 t ^{1/2} +0.822	$\frac{552.6}{t^{1/2} + 0.852}$	$\frac{603.3}{t^{1/2} + 0.915}$	$\frac{670.1}{t^{1/2} + 0.963}$	10 分≦t ≦180分 嶺北南部
	"	$\frac{240.8}{t^{1/2} - 4.220}$	$\frac{290.6}{t^{1/2} - 4.028}$	$\frac{338.1}{t^{1/2} - 3.895}$	$\frac{365.6}{t^{1/2} - 3.830}$	$\frac{400.0}{t^{1/2} - 3.759}$	$\frac{446.3}{t^{1/2} - 3.682}$	180 分≦t ≦24 時間 嶺北南部
	※嶺南東部	$\frac{738.7}{t^{2/3} + 3.176}$	$\frac{834.5}{t^{2/3} + 2.794}$	$\frac{928.1}{t^{2/3} + 2.566}$	$\frac{980.5}{t^{2/3} + 2.422}$	$\frac{1049.1}{t^{2/3} + 2.321}$	$\frac{1138.5}{t^{2/3} + 2.165}$	10 分≦t ≦180分 嶺北東部
	"	$\frac{864.6}{t^{2/3} + 8.715}$	$\frac{1058.8}{t^{2/3} + 11.279}$	$\frac{1246.5}{t^{2/3} + 13.193}$	$\frac{1355.9}{t^{2/3} + 14.169}$	$\frac{1492.5}{t^{2/3} + 15.214}$	$\frac{1677.7}{t^{2/3} + 16.459}$	180 分≦t ≦24 時間 嶺北東部
	※嶺南西部	$\frac{468.7}{t^{1/2} + 1.725}$	$\frac{554.1}{t^{1/2} + 1.725}$	636.9 t ^{1/2} +1.742	$\frac{682.8}{t^{1/2} + 1.721}$	$\frac{736.6}{t^{1/2} + 1.722}$	$\frac{820.4}{t^{1/2} + 1.718}$	10 分≦t ≦180分 嶺北西部
	"	$\frac{2065.0}{t^{3/4} + 17.304}$	$\frac{2575.7}{t^{3/4} + 19.553}$	$\frac{3068.6}{t^{3/4} + 21.189}$	$\frac{3350.6}{t^{3/4} + 21.858}$	$\frac{3704.4}{t^{3/4} + 22.630}$	$\frac{4182.5}{t^{3/4} + 17.304}$	180 分≦t ≦24 時間 嶺北西部

表5-1-7 降前強度式(その7)

和聚口県土木部河川県

和歌山県館内獲卓降田強度の算定 H.9.10

10.95 t 524 mm S.29~8.59 10.95 t 524 mm 8.29~8.59 10分5 t 点24 時間 S.29~H.7 10.95t \$24.0900 S.20~H.8 10分点1 点24時間 S.20~H.7 10分21 S.29~S.60 盆坊 15158.4 8465.4 t0st+31.843 11447.4 to No. + 76.101 1373.9 r⁶⁵⁶⁹+3.158 1990,0 tana+3,456 Cross+3.158 1105.5 tasm+2.006 Lto5s5+4.431 t0503+3,158 to 555+4,431 CRT+31.843 ATT+2.006-1373.9 1231.1 0.080+3,456-1231.1 1373.9 200 8465.4 21 6790.0 t⁸⁸²+27.147 11569.3 terre+48.561 2040.0 to5m+4.418 5748.1 tatso+37.273 Ltonn43,909 1245.6 toffff+3.035 1100.6 tofne+2,434 -to:220+3:032 -thm#+3.035 £0.51543,909 801+27.147 1012.8 788+4,418-1245.6 581+2,434 1012.8 1245.6 8 1100.6 6790.0 24 5308.9 t⁰⁷⁸⁰+22.512 8792.0 tilifi1+38.734 3962.2 t^{07ex}+25.849 1453.9 t⁰⁵⁴⁶+2.789 -t^{0.580}+3.026 5308.9 1140.7 to58543.026 1036,5 t^{uffet+}2,541 £074243,730 -t0m2+3,730 1786+22.512 11:40.7 1140.7 954.3 1565+2.789 594+2.541-954.3 1453.9 8 23 3072.9 t^{ll117}+20.399 4400.7 t⁰⁷⁷4-19.562 7074,6 tusc+32,287 1409.0 tom4+3.208 1057.1 t^{0.596}+2.980 1040.1 tourt+2.867 1409.0 t0580+2.980 -to588+2.980 tox8+4,096 0774+19.562 MT4+3,208unt+2,867-1057.1 1057.1 972.3 972.3 1040.1 30 4400.7 29 5842.7 tuni5+27.341 2256.1 thomas 14.748 3804.4 t⁰⁷⁶⁴+17.665 1237,3 t^{0.500}+2,816 991.4 t^{0.594}+2.954 941.6 tospt+2.590 t0394+2.954 t^(1,5)1+2,954 t0755+4,585 thresh4,585 9100+17.665⁻¹ 1010.3 one+2.816-991.4 ma+2,590-991.4 10103 1237.3 20 3804.4 941.6 进 莊 23 21 4243.3 ta7m+20,948 1639.8 t^{6.660}+10.709 2869.7 t^{0.770}+14.332 914.4 t^{uf-ss}+2.085 2869.7 885.9 tann+2.977 889.1 tans+2.871 tune44,365 t0000+2.977 £0564+4,365 to 750+14,332 932.0 932.0 885.9 885.9 0544+2:085 18.5 2 楒 889.1 914.4 23 23 2490.2 to76+13.104 3542.7 toTE+17.974 816.8 t⁰⁶¹¹+2.872 1044.0 table+3,359 2490.2 1426.9 t^{0.055}+9,639 865.5 then+3.023 1044.0 tun1+2.872 th511+4.287 t076+13.104 £0176+3,359-816.8 816.8 895.5 895.5 m+3,023 t-865.5 24 21 21 2940.0 tates+15,315 2147.0 term+11.879 708.4 t⁰⁵⁸¹+1.795 767.5 t⁰⁶¹⁹+2.942 1266.7 theth+8,754 856.8 thens+3,395 £601942.942 t0019+2.942 £0578+4.240 £0578+4.240 T8+11,879-767.5 767.5 864,3 864,3 711-1795nu+3,395 10 2147.0 856.8 708.4 24 24 24 265.4 t0.4m+0.501 2141.5 t⁶⁷²⁸+11.657 1625.3 661.2 thresh2.787 t^{0.629}+2.787 734.7 t^{0.670}+3.196 963.1 t^{0.cm}+6.695 them+2.787 t0 588+4,464 £0558+4,464 661.2 661.2 835,9 835.9 707.6+st +0.501mo+3.196 00 1625.3 365.4 1562.6 turns+8,778 422.1 t^{0.504}+1.212 821.4 £0064+6.002 577.8 to 60+2.805 749.2 749.2 t^{0.657}+4,063 1255.8 7 1255.8 t^{0.721}+8.189 422.1 £0.000+5,351 48.189 Pet+1.212-577.8 873.4 873.4 577.8 1003 01 和歌山+高野山 2 和歌山十白旗 最神十本官 発行表出 田山湖湖水 茶白菜 杨城名 世龍宗 御神茶 世駆炎 態炎

出典:[表 5-1-7] 和歌山県管内確率降 雨強度の算定 H9.10

表 5-1-8 確率年別継続時間降雨強度式(その8)

土木技術管理規定集 河川編 H15.4 兵庫県県土整備部

	神戸エリ	17		姫路:	エリア		豊岡エリア				洲本エリ	洲本エリア	
適用地域			播摩地城南部 姫路×1.0		播摩地域北部 姆路×1.2		豊岡盆地(出石川流域 を含む) 豊岡×1.0		豊岡盆地以外 豊岡×1.2		淡路地域すべて 洲本×1.0		
適用時間	10 分≦ t ≥180 分		同左		同左		同左		同左		同左		
確率年	式	r∞分	式	r to分	式	r 60分	式	r∞分	式	r⊕分	式	r 60分	
300	1474. 0 t ° 6+3. 742	95. 7	1014. 4 t ° 6+1. 763	75. 5	1217. 3 t ° 8+1. 763	90. 7	1202, 6 t 2/3+1, 959	69. 6	1443, 1 t 2/3+1, 959	83. 5	1662, 6 t ° *+3, 472	109.8	
200	1369. 4 t 0.6+3, 494	90.3	965, 8 t 0.6+1, 730	72. 1	1159.0 t 0.6+1.730	86.5	1149. 2 t 2/3+1. 952	66. 5	1379. 0 t 2/3+1. 952	79. 8	1568. 9 t 0.6+3, 387	104. 2	
150	1297. 9 t 0 6+3, 321	86. 6	931. 2 t 0.6+1, 703	69. 7	1117. 4 t 0.6+1, 703	83. 6	1111.8 t 2/3+1.949	64. 4	1334. 2 t 2/3+1, 949	77. 2	1503. 2 1 0 6+3, 324	100. 3	
100	1200, 9 t 0.6+3, 085	81.4	882. 3 t 0.6+1. 663	66. 2	1058.8 t 0.6+1.663	79. 4	1058, 5 t 2/2+1, 942	61.3	1270. 2 t 2/2+1. 942	73. 6	1412.3 t 0.6+3.237	94.8	
90	1176.6 t 0.6+3, 028	80. 1	869. 7 t 0.6+1, 652	65. 3	1043.6 t 0.6+1.652	78. 4	1044. 7 t 2/3+1. 942	60. 5	1253, 6 t 2/3+1, 942	72. 6	1388. 7 t 0.6+3, 212	93. 3	
80	1149. 4 t 0.6+2. 959	78. 6	855, 7 t 0.6+1, 642	64. 3	1026, 8 t 0.6+1, 642	77.2	1029. 2 t 2/3+1. 938	59. 6	1235. 0 t 2/3+1. 938	71. 5	1362.8 t 0.6+3.188	91.8	
70	1119.0 t 0.6+2.885	76. 9	839, 6 t 0.6+1, 628	63. 2	1007.5 t 0.6+1.628	75.8	1011.5 t 2/3+1.936	58. 6	1213.8 t 1/3+1. 936	70. 3	1333, 5 t 0.6+3, 158	90.0	
60	1084. 7 t 0.6+2. 801	75. 0	820. 9 t 0.6+1, 609	61.8	985. 1 t 0.6+1, 609	74.2	991. 5 t 2/3+1. 936	57. 4	1189.8 t 2/3+1.936	68. 9	1299. 7 t 0.6+3, 124	87.9	
50	1044.4 t 0.6+2.698	72.7	798. 7 t 0.6+1. 587	60.3	958.4 t ° 5+1.587	72.3	967. 4 t 2/2+1. 933	56. 1	1160. 9 t 2/2+1. 933	67. 3	1259.8 t 0.6+3.081	85. 4	
40	996. 5 t 0.6+2. 579	70.0	771. 8 t 0.6+1. 560	58. 4	926. 2 t 0.6+1. 560	70.0	937. 8 t ^{2/3} +1. 927	54. 4	1125. 4 t 2/3+1. 927	65. 2	1211.2 t 0.6+3, 027	82.4	
30	936.1 t 0.6+2.426	66.4	736, 9 t 0.6+1, 521	55. 9	884.3 t 0.6+1.521	67.1	899. 7 t 2/2+1. 921	52. 2	1079.6 t 2/2+1, 921	62. 6	1149.3 t 0.6+2.959	78.6	
20	853. 7 t 0.6+2, 215	61.5	687. 4 t 0.6+1, 461	52.4	824. 9 t 0.6+1, 461	62.8	845. 5 t 2/3+1. 913	49. 1	1014. 7 t 2/3+1, 913	58. 9	1062.5 t 0.6+2.857	73. 2	
10	719.9 t 0 6+1.874	53. 2	601. 7 t 0 6+1. 341	46.3	722.0 t 0 6+1.341	55. 5	751. 7 t 2/3+1. 894	43. 7	902. 0 t ^{2/3} +1, 894	52. 4	913. 4 t 0 6+2. 658	63.8	
7	653, 9 t 0.6+1, 712	48. 9	556. 4 t 0.6+1, 266	43. 0	667. 7 t 0.6+1, 266	51.6	701. 9 t ^{2/2} +1. 882	40. 8	842. 3 t 2/3+1. 882	48. 9	835, 8 t 0.6+2, 541	58.8	
5	592.5 t 0.6+1.562	44.8	512.5 t 0.6+1, 184	39.9	615. 0 t 0.6+1. 184	47.9	653. 5 t 2/3+1. 866	38. 0	784. 2 t ^{2/3} +1, 866	45. 6	760. 9 t 0.6+2. 414	54.0	
3	499.5 t 0.6+1, 352	38. 4	441. 7 t 0.6+1. 024	34.8	530.0 t 0.6+1.024	41.8	575. 8 t 2/3+1. 846	33. 5	691. 0 t 2/3+1. 846	40, 2	641.6 t 0.6+2.180	46.3	
2	422. 9 t 0.6+1, 212	32.8	378. 6 t 0.6+0. 850	30. 3	454. 3 t 0.6+0. 850	36. 3	505. 5 t 2/3+1. 811	29. 5	606, 6 t 2/3+1, 811	35. 4	536. 4 t 0.6+1, 923	39. 5	
観測所名	神戸海岸気	像台		姫路波	则候所			豊岡	期候所		洲本测恒	ÈM	
統計期間	1937~1	998		1949-	~1998		1926~1998				1919~1	998	
確率計算方法	対数ピアソ	ンⅢ型		グンク	ベル法			グン・	ベル法		対数ピアソ	ンⅢ型	

出典:[表 5-1-8] 兵庫県土木技術管理 規定集_河川編 H15.4

図 5-1-1 大阪府下降雨強度区分図

砂防設備技術指針 Ver. 3.0 H19. 9 大阪府都市整備部河川室ダム砂防課

出典: [図 5-1-1] 砂防設備技術指針 Ver. 3.0 H19.9 大阪府都市整備部 河川室ダム砂防課 PII-122

: 西能勢、池田、東能勢、 東郷、茨木、三国

碓半年 1440 日雨監 30 120 180 360 36.7 48. 8 24. 4 70. 4 24: 26.5 116.3 53.1 19. 1 83. 5 12.7 87, 0 18, 3 36.7 49.8 151.4 54 27. 8 207.4 10年 183.4 92.8 22. 2 79. 1 42. 5 58.4 63.3 33.6 22. 8 150. 2 8.6 201.5 154 46. 4 98. 4 133. 84.9 63.3 20年 214.1 39. 1 126. 8 26.6 172.8 71.5 106.3 262. 2 30年 231.8 147.3 94.8 71.5 53. 1 133.5 4 0 4 244. 2 182.2 111.9 276.3 74.8 138.7 253. 9 50年 26. 3 157. 7 26. 9 101.9 52.2 77.4 58.1 46. 2 142. 9 31.6 12.0 296.2 60年 261.7 70年 106.6 61.3 48. 8 149. 6 33. 4 204. 5 12.7 274.1 8 0年 28.3 49. 9 152. 3 55. I 82.9 9 04F 279.1 100 34.7 211.6 13. 2 110.1 50.8 400 100年 283.7 30.0 58.6 85.5 90.1 64.7 51.6 164.1 35.3 224.6 13.4 1504 301.0 380 117.2 313.3 2004 90 360 185. 6 121.2 93.5 71.4 39.0 14.8 上段:確率雨量(mm) 下段:降雨強度(mm/hr) 340 80 320 300 70 280 260 60 240 锋雨锁度(ma/hr) 220 50 200 🙀 180 流 40 160 降雨量 140 30 120 100 降雨強度 20 80 Ÿ 60 10 40 20 0 0 2 6 10 8 12 16 22 . 24 18 20 14 降雨維続時間(hr)

図 5-1-2 降雨強度曲線 (大阪府) 豊能地区

砂防設備技術指針 Ver. 3.0 H19. 9 大阪府都市整備部河川室ダム砂防課

出典: [図 5-1-2] 砂防設備技術指針 Ver. 3.0 H19.9 大阪府都市整備部 河川室ダム砂防課 PII-123, 124

: 池田、東能勢、見山、茨木、 原、樫田、枚方、三国

図 5-1-3 降雨強度曲線(大阪府)三島地区

砂防設備技術指針 Ver. 3.0 H19. 9 大阪府都市整備部河川室ダム砂防課

出典: [図 5-1-3] 砂防設備技術指針 Ver. 3.0 H19.9 大阪府都市整備部 河川室ダム砂防課 PII-125, 126

:大阪、茨木、田原、枚方、鳳 八尾、枚岡、三国、柏原

出典: [図 5-1-4]
砂防設備技術指針
Ver. 3.0 H19.9
大阪府都市整備部
河川室ダム砂防課
PII-127, 128

図 5-1-4 降雨強度曲線 (大阪府) 河内地区

砂防設備技術指針 Ver. 3.0 H19. 9 大阪府都市整備部河川室ダム砂防課

: 八尾、富田林、千早、鳳、 横山、柏原、葛城

確率年 24 75.6 46, 1 31.9 10.4 132.3 54 117. 1 27. 9 65. 6 98.2 10年 138.8 19.6 69.7 32.8 6.5 170.8 151.0 15年 55.9 58.9 35.5 74.8 27. 2 86. 0 180.5 20年 159.6 122. 9 21. 7 130. 4 22. 6 78.7 41.9 83.9 43.8 58. 9 63. 2 63. 2 66. 3 28.7 92.1 30.7 96.4 18.6 37.4 30年 80.2 40.1 84.0 171.5 194. 1 19.9 409 180.0 135. 7 23. 3 139. 7 87.5 45.2 90.3 46.3 66, 3 68, 6 42.0 86.9 211.0 50年 186.5 43. 4 89. 2 44. 6 91. 2 33.2 68. 6 70. 5 21.6 8. 8 217. 1 6 O 4F 24. 3 145. 9 24. 7 100 400 135.9 9.0 7 0年 196.3 94.6 48.1 72.1 45, 6 93, 0 34.9 106.6 138. 5 9.3 8 O 4E 200.2 380 96. 2 48. 9 9, 4 9 0 年 203.6 90 360 150, 4 25, 4 97.7 74.7 47.3 95.9 36.1 23. 5 9, 6 100年 206.7 75. 8 80, 1 152.3 99. 0 52. 1 47.9 101.1 340 150年 104, 1 53, 9 107, 7 80. I 83. 0 83. 0 50. 6 104. 9 52. 4 27. 5 38, 6 120, 1 25, 1 256. 7 200年 80 320 上段:確率雨量(mm) 下段:降雨強度(mm/hr) 300 70 280 260 60 240 降飛遊(mm/hz) 220 200 🙀 50 180. 遻 40 160 140 30 120 降雨量 100 20 80 降钢強度 60 10 40 20 0 2 8 10 12 16 18 20 22 24 降雨継続時間(hr)

図 5-1-5 降雨強度曲線(大阪府)南河内地区

砂防設備技術指針 Ver. 3.0 H19. 9 大阪府都市整備部河川室ダム砂防課

出典: [図 5-1-5] 砂防設備技術指針 Ver. 3.0 H19.9 大阪府都市整備部 河川室ダム砂防課 PII-129,130

: 富田林、鳳、横山、山滝、 岸和田、柏原

> 出典: [図 5-1-6] 砂防設備技術指針 Ver. 3.0 H19.9 大阪府都市整備部 河川室ダム砂防課 PII-131,132

図 5-1-6 降雨強度曲線(大阪府)泉北地区

砂防設備技術指針 Ver. 3.0 H19. 9 大阪府都市整備部河川室ダム砂防課

: 山滝、岸和田、上ノ郷 金熊寺、尾崎

> 出典: [図 5-1-7] 砂防設備技術指針 Ver. 3.0 H19.9 大阪府都市整備部 河川室ダム砂防課 PII-133, 134

図 5-1-7 降雨強度曲線 (大阪府) 泉南地区

砂防設備技術指針 Ver. 3.0 H19. 9 大阪府都市整備部河川室ダム砂防課