

Recipe: recipe(.formula, .data)

#Helps to create a recipe.

Estimate the required preprocessing transformations.

bake(new_data= NULL) #Applies a recipe to a data set.

Standardization and Normalization:

step_log()

#Normalizes predictors by applying log transformation.

step_normalize()

#Normalizes predictors by forcing mean = 0, sd = 1.

step_center()

#Normalizes numeric columns by forcing mean = 0.

step_scale()

#Normalizes predictors by by forcing sd = 1.

Handling Missing Data:

step_impute_median()

#Imputes missing numeric values with median

step_impute_mean()

#Imputes missing numeric values with mean.

step_impute_mode()

#Imputes missing numeric values with mode.

Encoding Categorical Variables:

step_dummy()

#Creates dummy variables for categorical predictors.

step_other()

#Collapses infrequent factors into an "other" category.

Feature Engineering:

step_mutate()

#Creates a new feature from an existing one.

step_interact()

#Creates interaction terms between features.

<u>Tidymodels Cheatsheet</u>

Data Filtering and Columns Selection:

step_select()

#Selects specific variables to retain in the dataset.

step_slice()

#Selects a subset of rows to retain in the dataset.

all_nominal_predictors()

#Selects all categorical predictor variables in the dataset.

all_numeric_predictors()

Selects all numeric predictor variables in the dataset.

Linear Regression:

linear reg()

#Specifies a linear reg model

set_engine("lm")

#Set computational engine to fit the data.

set_mode()

#To define the purpose of model (regression/classification)

Ridge & Lasso Regression:

linear_reg(penalty=, mixture=)

set_engine("glmnet")

#To set the computational engine to fit the data.

Decision Tree:

When datasets have non-linear relationships.

decision_tree() # Specifies a decision tree model.

set_engine("rpart")

#To set the computational engine to fit the data.

Logistic Regression:

Predict the probability of an outcome that can be one of two possible states.

logistic_reg() #Specifies a logistic reg model .

Gradient Boosted Models:

Automatically handles missing values and does not require scaling of data.

boost_tree() #Specifies gradient boosted model.

Random Forest:

Delivers high accuracy & Robust against overfitting. rand forest() #Specifies Random Forest Model.

Correlation Matrix:

cor(use="complete.obs")

#helps to create a correlation matrix.

corrplot() #helps to visualize the correlation matrix.

Workflows:

workflow() #Helps to combine recipe and model together.

add_recipe() #add your recipe to the workflow.

add_model() #add your model to the workflow.

fit(.data)

parsnip

#This helps to fit/run the workflow to the data.

tidymodels

Data Splitting:

initial_split(.data, prop=) #define your split and data proportion.

training() #creates a train dataset. testing() #creates a test dataset.

Making Predictions:

predict (workflow, .data) #make prediction on test data using fitted workflow.

bind_rows() #put all predictions metrics in one dataset.

bind_cols() #add predictions to the original data.

Model Evaluation & Metrics:

metrics(truth =, estimate =)

#used to extract rmse, mae and rsq.

truth #indicates actual dependent variable values.

estimate #indicates predicted values of dependent variables.

