

Classify one static image into 8 different emotions

2. Related Works

Machine Learning: Flourishing Mainstream

3. Proposed Method

4. Results

01Introduction

Classify one static image into 8 different emotions

Introduction

Classify one static image into 8 different emotions

Problem: Image Classification

Classify one static image into 8 different emotions

Machine Learning: Flourishing Mainstream

机器学习算法是主流

Emotion Recognition

Widely studied human-computer interaction

机器学习算法是主流

情感识别

被广泛研究的人机接口方式,可依据媒体对象不同进行分类。

机器学习算法是主流

Machine Learning: Flourishing Mainstream

Mathematical Models based on Feature Extraction

机器学习算法是主流

Classic Pattern Recognition(PR) Pipeline

Multi-modeling merging

Feature Extraction

Image Processing

Cropping Transformation

Trainingon Databases

Features: CNN + SIFT + HOG + LBP + LPQ

VGG-

CNN: Fine-tuning on Different Databases in Different Steps

VGG-16

FACE

#: 2.6M Pre-trained Model

FER 2013 Public Test

#: 3k 10 epoch

FER 2013 Private Test

#: 3k 5 epoch Layer Freeze

Target Database

CK+ JAFFE KDEF FTEID

#: 12k 10-100 epoch

Features: CNN + SIFT + HOG + LBP + LPQ

LBP

HOG

LPQ

Scanning

整合多种流行方法

posterior probability distribution

$$x \to p(c_i \mid x)$$

Classifiers: SVM, MLP

整合多种流行方法

Results from different posterior probability distribution

$$\{p(c_i \mid x_j)\} \rightarrow p(c_i \mid \{x_j\})$$

$$p(x_i \mid c) \perp p(x_{j(\neq i)} \mid c) \rightarrow p(c_i \mid \{x_j\}) = \prod_j p(c_i \mid x_j)$$

$$\cdots \sim p(c_i \mid \{x_j\}) \propto \sum_i p(c_i \mid x_j)$$

$$p(c_i \mid \{x_j\}) \propto \sum_j w_{ij} p(c_i \mid x_j) \quad \left(\sum_j w_{ij} = 1\right)$$

04 Results

Result More Accurate Facial Emotion Recognition

Methods	Precision
Wang. et al. 2013	88.80%
Liu. et al. 2016	92.40%
Kaya. et al. 2017	98.47%
Ours	94.38%

Thank you