Con. 7307-13.

GS-9261

(3 Hours)

Total Marks: 100

- N.B. (1) Question No. 1 is compulsory.
 - (2) Solve any four out of remaining six questions
 - (3) Figures to the right indicate full marks.
 - (4) Give examples wherever necessary.
 - (5) Mention Question number correctly.
- 1. (a) What is damping ratio? Show the location of roots in S-plane for different values of damping ratio.
 - (b) From the plot-zero plot given below obtain-
 - (i) Transfer function
 - (ii) Order of the system
 - (iii) Characteristic equation.
 - (iv) DC gain of the system.

(c) Find the transfer function from the signal flow graph given below:-

- (d) Define the following terms related to second order system subjected to unit step input:
 - (i) Rise time
 - (ii) Peak time
 - (iii) Peak overshoot
 - (iv) Delay time
 - (v) Settling time.

www.campuskeeda.com

[TURN OVER

(b) Sketch the root locus for a unity feedback control system with 10

$$G(s) = \frac{K}{s(s+3)(s+5)}$$
 and determine—

- K for Marginal stability.
- Frequency of oscillation for marginal stability.
- (iii) K for damping ratio of 0.5.
- Derive the time response expression for a second order control system subjected 10 to unit step input.
- What is a stepper motor? Mention its types. Explain one type of stepper motor 10 with neat diagrams.
- Define sensitivity of a control system. Derive the sensitivities S_H^T and S_G^T of a 10 feedback control system where T is the closed loop gain, H is feedback gain and G is the open loop gain of the system.
- For the transfer function given below:

$$G(s) H(s) = \frac{48(s+10)}{s(s+20)(s^2+2-4s+16)}$$

Find:

keeda.com

4 Sind Tamponsk

- Static position error coefficient-
- Static velocity error coefficient (11)
- Static acceleration error coefficient (iii)
- (iv) Steady state error if the input to the system is unit step.
- Sketch the Bode plot for a system with open loop transfer function:

G(s) H(s) =
$$\frac{30}{s(1+0.5s)(1+0.8s)}$$
 and comment on stability.

- (b) Find the range of K so that the following systems are stable: 10
 - (i) $s^4 + 7s^3 + 10s^2 + 2Ks + K = 0$
 - (ii) $s^3 + 3Ks^2 + (K + 2) s + 4 = 0$

10

www.campuskeeda.co

6. (a) For the control system shown below find K_1 and K_2 so that $M_p = 25\%$ and $t_p = 4$ sec. 10

Also find (i) Settling time

- (ii) Rise time
- (b) Find the overall transmittance using Masons gain formula.

- 7. Write short notes on:
 - (a) Nyquist stability criteria
 - (b) Error compensation Techniques.

20