

Pareto Tracer-PPO: Enhancing Proximal Policy Optimization for Multi-Objective Reinforcement Learning

Pablo Uriel Benítez Ramírez¹

¹Posgrado de Ciencias e Ingeniería a Computación Universidad Nacional Autónoma de México

Mayo 22, 2025

Motivation

Real world tasks often juggle conflicting objectives:

- speed and safety
- profit and risk
- energy consumption and emisions

Standard PPO uses a fixed linear combination \longrightarrow misses true Pareto trade-offs, i.e., gives only one point of the Pareto front.

So the **Goal** is to find a set of policies approximating the Pareto front in one training run.

Imagine tuning for both speed and safety: a single weight can't capture every compromise

Pareto Tracer Algorithm

Developement by Adanay Martín and Oliver Schütze (2014) it is a Predictor-Corrector method, that computes as follows

- **Predictor step:** computes per k objective the Jacobian $J \in \mathbb{R}^{k \times n}$, and solves to find a direction that moves toward Pareto critical points.
- Corrector step: projects the update policy back onto the Pareto-manifold of dimension k-1.
- + PPO: replace single gradient with the Pareto Tracer update within the clipped surrogate.

Predictor finds a direction that improves all objectives as much as possible; Corrector keeps us on the front. Like searching in little steps the front.

Experimental environments & Results

For first approach **MO-Test** (Bandit), a discrete single-step multi-objective bandit environment designed to approximate the Pareto front of the functions:

$$f_1(x_1, x_2) = \frac{1}{2} \left(\sqrt{1 + (x_1 + x_2)^2} + \sqrt{1 + (x_1 - x_2)^2} + x_1 - x_2 \right) + \lambda e^{\left(-(x_1 - x_2)^2\right)},$$

$$f_2(x_1, x_2) = \frac{1}{2} \left(\sqrt{1 + (x_1 + x_2)^2} + \sqrt{1 + (x_1 - x_2)^2} - x_1 + x_2 \right) + \lambda e^{\left(-(x_1 - x_2)^2\right)}.$$

Define a discretization mapping $\mathbb{R}^{n \times n} \longrightarrow [-2, 2]^2$.

Figure: Pareto Front of the functions, the blue dots are all the candidate solutions, and the red dots represents the non dominated subset of those

For the second approach MO-MountainCar with

- time penalty: -1.0 for each time step,
- reverse penalty: -1.0 for each time step the action is 0 (reverse)
- forward penalty: -1.0 for each time step the action is 2 (forward)

Figure: Left figure shows the evolution of the rewards (returns). Right figure shows the evolution of the weights

Comparisions

Pareto Tracer	PPO-			PPO Scalarization	baseline	
time/	1		П	time/	1 1	
l fps	1	2739	П	fps	1177	
iterations	1	1000	П	iterations	1000	
time_elapsed	1	748	П	$time_elapsed$	1739	
total_timesteps	1	2048000	П	total_timesteps	2048000	
train/	1		П	train/	1	
approx_kl	1	0.0000035	П	approx_kl	0.0022319271	
clip_fraction	1	0.00000	П	clip_fraction	0.00576	
clip_range	1	0.2	Ш	clip_range	0.2	
entropy_loss		-0.0247	П	entropy_loss	I -0.0372	
explained_variance	1	-0.00022	П	explained_variance	6.56e-07	
learning_rate	1	0.0001000	П	learning_rate	0.0003	
loss	1	83.12395	П	loss	-0.00266	
n_updates	1	5000	Ш	n_updates	9990	
policy_gradient_loss	1	8.43660	П	policy_gradient_loss	-0.000819	
value_loss	1	74.68735	П	value_loss	0.0111	

Figure: Outputs of Pareto Tracer PPO & PPO Scalarization for MO-Mountain Car

Conclusions & Future Work

Pareto Tracer-PPO efficiently approximates a diverse set of Pareto-optimal policies in one go.

Benefits:

- No need to re-train for each scalar weight.
- Better coverage.

Future work:

- Theoretically analyze convergence on high-dimensional fronts.
- Change the Corrector step to be more efficient.
- Scale to more than 3 objectives.

Pareto Tracer brings true multi-objective updates to PPO—unlocking richer sets of policies in one shot

Thank you for your attention