

Total marks = 20Date: 21/09/2022

- 1. If $f(x,y) = \frac{(x+y)}{(2+\cos x)}$ and $\epsilon = 0.02$, then show that there exists a $\delta > 0$ such that for all (x,y), $\sqrt{x^2 + y^2} < \delta \Rightarrow |f(x,y) f(0,0)| < \epsilon$. (5)
- 2. Show that the function $h(x,y) = \ln(\sqrt{x^2 + y^2})$ satisfies a Laplace equation (The two-dimensional Laplace equation is given by $\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = 0$). (5)
- 3. $w = \ln(x^2 + y^2 + z^2), x = \cos t, y = \sin t, z = 4\sqrt{t}$ Express (a) $\frac{dw}{dt}$ as a function of t, both by using the Chain Rule and by expressing w in terms of t and differentiating directly with respect to t. Then (b) evaluate $\frac{dw}{dt}$ at the value t = 3. (2.5+2.5)
- 4. Find the derivative of the function $g(x,y) = x \frac{y^2}{x} + \sqrt{3} \sec^{-1}(2xy)$ at $P_0 = (1,1)$ in the direction of A = 12i + 5j. (5)

Worksheet - 3 to the exist suppose there exists -1 = Cosx =1 > -1+2 ≤ 2+ cosx, ≤ 2+1 7 152+cosx 53. 17 3 = 2+(05x) = 1 $\Rightarrow \frac{1\times +91}{3} \leq \frac{\times +9}{2+\log x} \leq 1\times +91$ $\frac{2+y}{2+\cos x} \le |x+y| \le |x|+|y|$ [Now, $f(x,y) = \frac{x+y}{2+wx}$, f(0,0) = 0.] Then for 121 28 and 19128 $\Rightarrow |f(x,y)-f(0,0)| < 2\delta = 2$ · 8=0.01.701. 1×1 < 1×2+42 0 8 1191 < 1×12+32 Note: Hence, we have proved that there exists a $\delta = 0.0170$ s.t. for all (x, t) $\sqrt{x^2+y^2}$ $\angle S \Rightarrow |f(x,y)-f(0,0)| \angle 2$. SCHOOL SELENT CON TENENTS ON COUNTY 1

Now,
$$\frac{d\omega}{dt} = \frac{2\omega}{2x} \frac{dx}{dt} + \frac{2\omega}{2y} \frac{dx}{dt} + \frac{2\omega}{2z} \frac{dz}{dt}$$

$$= \frac{2x \sin t + 2x \cos t + 4t^{-1/2}z}{x^{2} + y^{2} + 2^{2}}$$

$$= \frac{-2 \cos t \sin t + 2x \sin t \cos t + 4t^{-1/2}z}{x^{2} + y^{2} + 2^{2}}$$

$$= \frac{16}{1 + 16t} \qquad 0.5$$

$$= \frac{16}{1 + 16t} \qquad 0.5$$

$$= \frac{16}{1 + 16t} \qquad 0.5$$

$$\frac{d\omega}{dt} = \frac{12\hat{i} + 5\hat{j}}{12^{2} + 5\hat{j}} = \frac{12}{13}\hat{i} + \frac{5}{13}\hat{j} \qquad 0.5$$

$$\frac{2}{13}\hat{i} + \frac{5}{13}\hat{j} \qquad 0.5$$

 $9_{y}(1) = -2 + \frac{\sqrt{3}}{\sqrt{3}} = -1$. (0.8) Now, $\nabla g = g_x i + g_y j = 3i - j$ Hence Derivative of the function g in the direction of ROOD A = 12i+5j at P. (1,1) is 2. (Dig) po = (2000) 79. U $=(3i-j)\cdot(\frac{12}{13}i+\frac{5}{13}j)$ (1.11111) (-1.3113) (-1.

	Page No. Date: / /
0	R Alternative Solution of 9.1:>
	Let, 8=0.01.
	·: -1 \(\cos \(\times \)
-	=) 1 52+Cos x ≤ 3.
	$\frac{2}{3} + \frac{x+y}{3} \leq \frac{x+y}{2+\cos x} \leq x+y$
	$\frac{1}{3} \leq \frac{1}{3+\cos x} \leq x+y \leq x+y \leq x+y $
	Then 12128 & 14128 => 1f(x,y)-f(0,0)/ ()
	$\left(f(0,0)=0\right) = \frac{x+y}{2+\cos x}$
+	< 12+81
	< 1×1+18
_	$=2\times0.01\left(2\right) .$
-	= 0.02
-	= ξ.
-	
-	-x
-	
_	
-	
+	
-	