

- 4. Let Γ be the set of all triangles in the plane. $ABC \sim A'B'C'$ if ABC and A'B'C' are similar triangles, i.e. have equal angles.
 - (a) $\forall ABC \in \Gamma, ABC \sim ABC$ so \sim is reflexive
 - (b) $ABC \sim A'B'C' \Rightarrow A'B'C' \sim ABC$ so \sim is symmetric
 - (c) $ABC \sim A'B'C'$ and $A'B'C' \sim A"B"C" \Rightarrow ABC \sim A"B"C"$, so \sim is transitive

Clearly (a), (b), (c) use the fact that equality of angles is an equivalence relation.

Exercise: For various predicates you've encountered, check whether reflexive, symmetric or transitive. Examples of predicates include \neq , <, >, \leq , \geq , \subseteq , \rightarrow , \leftrightarrow

4.2 Equivalence Relations and Partitions

Task: Understand how equivalence relations divide sets.

Definition: Let A be a set. A <u>partition</u> of A is a collection of non-empty sets, any two of which are disjoint such that their union is A, i.e. $\lambda = \{A_{\alpha} \mid \alpha \in I\}$ s.t. $\forall \alpha, \alpha' \in I$ satisfying $\alpha \neq \alpha', A_{\alpha} \cap A_{\alpha'} = \emptyset$ and $\bigcup_{\alpha \in I} A_{\alpha} = A$

Here I is an indexing act (may be infinite). $\bigcup_{\alpha \in I} A_{\alpha}$ is the union of all the A_{α} 's (possibly an infinite union)

Example $\{(n, n+1) \mid n \in \mathbb{Z}\}$ is a partition of \mathbb{R}

$$\mathop{\cup}_{n\in\mathbb{Z}}(n,n+1]=\mathbb{R}$$

$$(n, n+1] \cap (m, m+1] = \emptyset$$
 if $n \neq m$

Definition: If R is an equivalence relations on a set A and $x \in A$, the equivalence class of x denoted $[x]_R$ is the set $\{y \mid xRy\}$. The collection of all equivalence classes is called A modulo R and denoted A/R.

Examples:

1. $A = \mathbb{N}$ $x \equiv y \mod 3$

We have the equivalence classes $[0]_R$, $[1]_R$ and $[2]_R$ given by the three possible remainders under division by 3.

$$[0]_R = \{0, 3, 6, 9, \ldots\}$$

$$[1]_R = \{1, 4, 7, 10, \dots\}$$

$$[2]_{R}^{R} = \{2, 5, 8, 11, \dots$$

possible remainders under division by 5. $[0]_R = \{0,3,6,9,\ldots\}$ $[1]_R = \{1,4,7,10,\ldots\}$ $[2]_R = \{2,5,8,11,\ldots\}$ Clearly $[0]_R \cup [1]_R \cup [2]_R = \mathbb{N}$ and they are mutually disjoint $\Rightarrow R$ gives a partition of \mathbb{N} .

2. $ABC \sim A'B'C'$

 $[ABC] = \{ \text{The set of all triangles with angles of magnitude } \angle ABC, \angle BAC, \angle ACB \}$ The union over the set of all [ABC] is the set of all triangles and

 $[ABC] \cap [A'B'C'] = \emptyset$ if $ABC \nsim A'B'C'$ since it means these triangles have at least one angle that is different.

3.
$$A=\mathbb{C}$$
 $x\sim y$ if $|x|=|y|$ equivalence relation $[x]=\{y\in\mathbb{C}\mid |x|=|y|\}=[r]$ for $r\in[0,+\infty)$ (meaning $r\geq0$)

circle of radius |x|

$$\mathop{\cup}_{r \in [0,+\infty)}[r] = \mathbb{C}$$

 $[r_1]\cap [r_2] \neq \emptyset$ if $r_1\neq r_2$ since two distinct circles in $\mathbb{C}\simeq \mathbb{R}^2$ with empty intersection.

Theorem: For any equivalence relation R on a set A, its equivalence classes form a partition of A, i.e.

- 1. $\forall x \in A, \exists y \in A \text{ s.t. } x \in [y] \text{ (every element of } A \text{ sits somewhere)}$
- 2. $xRy \Leftrightarrow [x] = [y]$ (all elements related by R belong to the same equivalence class)
- 3. $\neg(xRy) \Leftrightarrow [x] \cap [y] = \emptyset$ (if two elements are not related by R, the they belong to disjoint equivalence classes)

Proof:

- 1. Trivial. Let y=x. $x\in [x]$ because R is an equivalence relation, hence reflexive, so xRx holds.
- 2. We will prove $xRy \Leftrightarrow [x] \subseteq [y]$ and $[y] \subseteq [x]$ " \Rightarrow " Fix $x \in A, [x] = \{z \in A \mid xRz\} \Rightarrow \forall y \in A \text{ s.t. } xRy, y \in [x].$ Furthermore, $[y] = \{w \in A \mid yRw\}$

 $\Rightarrow \forall w \in [y], yRw$ but $xRy \Rightarrow xRw$ by transitivity. Therefore, $w \in [x]$. We have shown $[y] \subseteq [x]$.

Since R is an equivalence relation, it is also symmetric. i.e. $xRy \Leftrightarrow yRx$. So by the same argument with x and y swapped $yRx \Rightarrow [x] \subseteq [y]$. Thus $xRy \Rightarrow [x] = [y]$.

" \Leftarrow " $[x] = [y] \Rightarrow y \in [x]$ but $[x] = \{y \in A \mid xRy\}$

3. " \Rightarrow " We will prove the contrapositive. Assume $[x] \cap [y] \neq \emptyset \Rightarrow \exists z \in [x] \cap [y]$. $z \in [x]$ means xRz, whereas $z \in [y]$ means $yRz \Leftrightarrow zRy$ because R is symmetric. We thus have xRz and $zRy \Rightarrow xRy$ by the transitivity of R. xRy contradicts $\neg(xRy)$ so indeed $\neg(xRy) \Rightarrow [x] \cap [y] = \emptyset$

"←" Once again we use the contrapositive:

Assume $\neg(\neg(xRy)) \Leftrightarrow xRy$. By part (b), $xRy \Rightarrow [x] = [y] \Rightarrow [x] \cap [y] \neq \emptyset$ since $x \in [x]$ and $y \in [y]$, **i.e.** these equivalence classes are non-empty. We have obtained the needed contradiction.

qed Q: What partition does "=" impose on \mathbb{R} ?

A: $[x] = \{x\}$ since $E = \{(x, x) \mid x \in \mathbb{R}\}$ the diagonal.

The one-element equivalence class is the smallest equivalence class possible (by definition, an equivalence class cannot be empty as it contains x itself)

(by definition, an equivalence class cannot be empty as it contains x itself). We call such a partition the <u>finest</u> possible partition.

Remark: The theorem above shows how every equivalence relation partitions a set. It turns out every partition of a set can be used to define an equivalence relation: xRy if x and y belong to the same subset of the partition (check this is indeed an equivalence relation!). Therefore, there

is a 1-1 correspondence between partitions and equivalence relations: to each equivalence relation there corresponds a partition and vice versa.