Algorytmy mrówkowe

Autorzy: *Tomasz Duszka Jakub Janczak*

Grafika: *Barbara Janczak*

opis Zachowania mrówek

- Mrówki to zwierzęta żyjące w koloniach, które stały się przedmiotem badań naukowców
- Pojedyńczy osobnik nie jest zbyt inteligentny (tj. jego mechanizm decyzyjny nie jest zbyt skomplikowany), ale jako społeczeństwo stanowią doskonały model, dla takich zagadnień jak optymalizacja czy szukanie najkrótszej scieżki

Algorytm działania mrówki

- Szukając pożywienia pojedyńcza mrówka wybiera swój następny krok biorąc pod uwagę przede wszystkim obecność feromonu pozostawionego w danym miejscu
- Sama również pozostawia ślad (feromon)
- Po odnalezeniu pożywienia, mrówka wraca do mrowiska za pomocą informacji zawartej na ścieżce (wzmacniając tym samym ślad feromonowy)
- Z czasem kolonia mrówek odnajduje poszukiwaną najkrótszą scieżkę (natura [tak jak algorytm] uodparnia się na lokalne minima, poprzez zanikanie feromonu w czasie).

opis sposobu optymalizacji

 mrówki w trakcie poszukiwania najkrótszej drogi korzystają ze zjawiska tzw. "niepełnej ewaluacji" tj. im krótsza ścieżka tym więcej feromonu zostaje na niej pozostawione w jednostce czasu

Podobienstwa miedzy Kolonia mrówek, a modelem Komputerowym

 modeluje zespół kooperujących ze sobą bytów (tj. mamy n mrówek, których zachowanie prowadzi do rozwiązania)

- zastosowanie feromonu i zjawiska parowania
- celem obu jest znalezienie najlepszego rozwiązania (dla mrówek najkrótszej drogi do pożywienia)
- stosowanie modelu stochastycznego do wyboru następnego kroku (częściowy wpływ feromonu, ale nie całkowity)

Róznice w stosunku do oryginalu

- dyskretna przestrzeń (graf)
- przechowywanie informacji o stanie mrówek (prawdziwe mrówki prawie nie posiadają pamięci i wnioskują tylko na podstawie aktualnych danych wejściowych)
- w modelu komputerowym ilość pozostawionego feromonu jest zależna od jakości znalezionego rozwiązania
- często feromon zostaje pozostawiany dopiero po znalezieniu rozwiązania
- celem poprawienia wydajności stosuje się pewne optymalizacje takie jak:
 - przewidywanie kilku ruchów naprzód
 - wycofywanie się
 - lokalne poszukiwania inną metodą

Elementy meta-heurystyki Aco (Aut colony optimization)

- zarządzanie tworzeniem i aktywnością [przemieszczaniem] mrówek
- zarządzanie parowaniem feromonu
 - w trakcie kroku
 - po znalezieniu rozwiązania
- dodatkowe zadania demona (opcjonalne)
 - obserwowanie stanu symulacji i wprowadzanie lokalnych optymalizacji

zastosowanie algorytmu mrówkowego do problemu Komiwojazera (model Ant

- opis problemu
- rozwiązanie
 - mrówki znajdują sie w węzłach grafu
 - w każdym kroku mrówki wybierają najlepszą możliwą krawędź na podstawie:
 - kosztu krawędzi
 - ilości feromonu
 - po znalezieniu rozwiązania zwiększamy ilość feromonu na znalezionej ścieżce zgodnie z jej kosztem

Model Max-MINAS

- modyfikacja modelu Ant System
- ogrniczenia gorne i dolne na ilość feromonu na krawędzi
- krawędzie inicjowane maksymalną ilością feromonu

Model Max-MinAS zwykle znajduje o wiele lepsze rozwiązania od modelu AS.

Wykorzystanie w praktyce

Algorytmy mrówkowe są wykorzystywane np. w następujących statycznych problemach kombinatorycznych:

- przypisania fabryka-miasto
- szeregowania zadan na maszynach
- wyznaczania tras pojazdów
- kolorowania grafu

Algorytmy dynamiczne

Algorytmy mrówkowe można też wykorzystać w dynamicznych problemach kombinatorycznych, czyli głównie routing w sieciach komunikacyjnych. Rozróżnia się tutaj dwa podejścia:

- routing połączeniowy (pakiety tego samego połączenia przesyłane są tą samą drogą)
- routing bezpołączeniowy (każdy pakiet może być przesłany inną drogą)

Dla obu z tych podejść istnieje wiele możliwych algorytmów opisanych w literaturze.

Implementacja Aco na maszynach rownoleglych

- można przypisać każdą mrówkę do osobnego procesora
 - proste w implementacji
 - niestety narzuty komunikacji są zbyt duże
- podział kolonii mrówek na p podkoloni (gdzie p oznacza ilość procesorów)
 - każdą podkolonią zarządza osobny procesor
 - dobra skalowalność
 - doświadczenia pokazują że można tym sposobem uzyskać prawie liniowe przyspieszenie

wiecej informacji na:

http://k2k.ds14.agh.edu.pl/dokuwiki//doku.php?id=mr:mrowki