HW1

The Algorithm and Implementation of Gauss-Jordan Elimination, Sweep Operator, and Power Method

陳凱騫

2024-11-10

Table of contents

1. Gauss-Jordan Elimination	1
Algorithm and Code	1
Gauss-Jordan Elimination Algorithm	1
Step 2: Forward Elimination	2
Step 3: Full Gauss-Jordan Forward Elimination	2
Step 4: Backward Elimination (Refinement to RREF)	2
Final Algorithm: Full Gauss-Jordan Elimination	2
Code Implementation and example	3
	Ĭ
2. Sweep Operator	3
Algorithm and Code	3
Sweep Operator Algorithm	
Variables	4
Algorithm Steps	
Code Implementation	
Code implementation	_
3. Power Method	5
Algorithm and Code	_
Power Method Algorithm	_
Code Implementation	6
Code implementation	٠
nmd檔連結·	F

1. Gauss-Jordan Elimination

Algorithm and Code

它包含了三個主要部分:行交換 (row_switch),行處理 (gjrp),以及高斯-喬登算法 (Gauss_Jordan 和 Gauss_Jordan 2)。我們可以將這段程式碼整理為一個清晰的算法流程,如下所示:

Gauss-Jordan Elimination Algorithm

Input:

A matrix (A) of size $m \times n$.

Output:

A matrix in reduced row echelon form (RREF).

Step 1: Row Switching

Function: row_switch(matrix1, r)

- 1. Set row1 to be the r^{th} row of the matrix.
- 2. Starting from the r^{th} row, check each row below it:
 - If a non-zero element is found in the r^{th} column, switch the r^{th} row with that row.
 - If no such row is found, issue a warning that the matrix might be singular (no non-zero pivot in this column).
- 3. Return the updated matrix.

Step 2: Forward Elimination

Function: gjrp(matrix1, r)

- 1. If the value (assume a is the value) in r^{th} column and r^{th} row is not equal to zero then multiply $\frac{1}{a}$ to let it be 1.
- 2. Add/subtract multiples of the r^{th} row to the other rows(the row smaller than r) so that all other entries which below the r^{th} rows in the column are all zero.

Step 3: Full Gauss-Jordan Forward Elimination

Function: Gauss_Jordan(matrix1)

- 1. For each row (i) from 1 to (m):
 - If the diagonal element (matrix1[i, i]) is 0, call row_switch(matrix1, i) to swap rows and ensure a non-zero value occur.
 - Call gjrp(matrix1, i) to perform forward elimination on the matrix, processing the i^{th} row and eliminating entries below it.
- 2. Return the updated matrix.

Step 4: Backward Elimination (Refinement to RREF)

Function: Gauss Jordan2(matrix1)

- 1. For each row (row1) from 2 to (m):
 - For each row (i) above (row1) (i.e., from (row1-1) to 1):
 - Subtract a suitable multiple of the $row1^{th}$ row from the i^{th} row to eliminate all elements above the pivot.
- 2. Return the updated matrix.

Final Algorithm: Full Gauss-Jordan Elimination

- 1. Call Gauss_Jordan(matrix1) to perform the forward elimination, reducing the matrix to an upper triangular form (Gaussian elimination).
- 2. Call Gauss_Jordan2(matrix1) to perform the backward elimination, refining the matrix into reduced row echelon form (RREF).

Code Implementation and example

```
3x3 matrix:
```

[,1] [,2] [,3]

[1,] 4 1 2

[2,] 1 5 3

[3,] 2 3 6

3x3 matrix inverse:

[,1] [,2] [,3]

[1,] 0.3 6.938894e-18 -0.1000000

[2,] 0.0 2.857143e-01 -0.1428571

[3,] -0.1 -1.428571e-01 0.2714286

4x4 matrix:

[,1] [,2] [,3] [,4]

[1,] 10 2 3 4

[2,] 2 8 1 5

[3,] 3 1 9 6

[4,] 4 5 6 11

4x4 matrix inverse:

[,1] [,2] [,3] [,4]

[1,] 0.119142753 -0.009807483 -0.01997821 -0.02796949

[2,] -0.009807483 0.192880494 0.05957138 -0.11660007

[3,] -0.019978206 0.059571377 0.19542317 -0.12640756

[4,] -0.027969488 -0.116600073 -0.12640756 0.22302942

FindInver(A3) %*% A3

[,1] [,2] [,3]

[1,] 1.000000e+00 0.000000e+00 -1.110223e-16

[2,] 0.000000e+00 1.000000e+00 0.000000e+00

[3,] -1.110223e-16 1.110223e-16 1.000000e+00

FindInver(A4) %*% A4

[,1] [,2] [,3] [,4]

[1,] 1.000000e+00 0.000000e+00 0.000000e+00 0

[2,] -5.551115e-17 1.000000e+00 -1.110223e-16 0

[3,] -2.220446e-16 -1.110223e-16 1.000000e+00 0

[4,] 1.110223e-16 0.000000e+00 2.220446e-16 1

From the result above, we can really know the inverse matrix is what we want •

2. Sweep Operator

Algorithm and Code

此部分包含Sweep Operator的步驟說明和R程式碼。Sweep Operator可以有效計算對稱矩陣的逆矩陣。

Sweep Operator Algorithm

Suppose we have an $n \times n$ symmetric matrix A, and we want to compute its inverse A^{-1} . This algorithm uses the sweep operator to calculate $-A^{-1}$ and then takes the negative of the result to obtain

 A^{-1} .

Variables

• A: An $n \times n$ symmetric matrix, assumed to be positive definite.

• k: The current index of the diagonal element to sweep.

• inverse: If TRUE, this performs a reverse sweep operation, restoring the matrix to its original state.

Algorithm Steps

1. **Input**: Define a symmetric $n \times n$ matrix A.

 $\bullet \ \, {\rm Output:}\ \, A^{-1}$

2. Perform the sweep operation for each specified index k:

- Retrieve the diagonal element \boldsymbol{a}_{kk} .

• Update the diagonal element:

$$a_{kk} = -\frac{1}{a_{kk}}$$

• Update other elements in the k-th row and k-th column (excluding a_{kk}):

– For each $i \neq k$, update the elements in the k-th row and k-th column:

$$a_{ik} = \frac{a_{ik}}{a_{kk}}$$

$$a_{ki} = a_{ik}$$

If performing a reverse sweep (inverse = TRUE):

$$a_{ik} = -\frac{a_{ik}}{a_{kk}}$$

$$a_{ki}=a_{ik} \\$$

- Update all other elements not in the k-th row or k-th column:

– For each $i \neq k$ and $j \neq k$, update the element:

$$a_{ij} = a_{ij} - \frac{a_{ik} \cdot a_{kj}}{a_{kk}}$$

3. Take the negative of the matrix upon completion:

ullet After performing the sweep operation on each diagonal element, the final result is $-A^{-1}$.

4

• To obtain A^{-1} , take the negative of the matrix, yielding A^{-1} .

Code Implementation

```
3x3 matrix:
```

[,1] [,2] [,3]

[1,] 4 1 2

[2,] 1 5 3

[3,] 2 3 6

3x3 matrix inverse:

[,1] [,2] [,3]

- [1,] 3.000000e-01 6.938894e-18 -0.1000000
- [2,] 6.938894e-18 2.857143e-01 -0.1428571
- [3,] -1.000000e-01 -1.428571e-01 0.2714286

4x4 matrix:

[,1] [,2] [,3] [,4]

- [1,] 10 2 3 4
- [2,] 2 8 1 5
- [3,] 3 1 9 6
- [4,] 4 5 6 11

4x4 matrix inverse:

[,1] [,2] [,3] [,4]

- [1,] 0.119142753 -0.009807483 -0.01997821 -0.02796949
- [2,] -0.009807483 0.192880494 0.05957138 -0.11660007
- [3,] -0.019978206 0.059571377 0.19542317 -0.12640756
- [4,] -0.027969488 -0.116600073 -0.12640756 0.22302942

sweep_operator(A3, 1:3) %*% A3

[,1] [,2] [,3]

- [1,] 1.000000e+00 0.000000e+00 -1.110223e-16
- [2,] 0.000000e+00 1.000000e+00 0.000000e+00
- [3,] -1.110223e-16 1.110223e-16 1.000000e+00

sweep_operator(A4, 1:4) %*% A4

[,1] [,2] [,3] [,4]

- [1,] 1.000000e+00 2.775558e-17 -2.775558e-17 5.551115e-17
- [2,] 0.000000e+00 1.000000e+00 0.000000e+00 2.220446e-16
- [3,] -2.220446e-16 -2.220446e-16 1.000000e+00 -2.220446e-16
- [4,] 1.110223e-16 0.000000e+00 0.000000e+00 1.000000e+00

From the result above, we can really know the inverse matrix is what we want •

3. Power Method

Algorithm and Code

此部分涵蓋 Power Method 的算法描述和 R 程式碼實現,用於計算方陣的最大和次大特徵值。

Power Method Algorithm

The Power Method to find the largest eigenvalue follows these steps: 1. Input: square matrix A - Output: λ

- 2. Initialize a random vector u_1 with the same dimension as the square matrix A.
- 3. **Normalize** the vector u_1 by dividing it by its norm to prevent numerical overflow or underflow.
- 4. **Iteratively apply** the matrix A to the vector u_1 :

 - $\begin{array}{l} \bullet \ u_{k+1} = A \cdot u_k \\ \bullet \ \mbox{Normalize the new vector} \ u_{k+1}. \end{array}$
- 5. **Estimate the eigenvalue** as the norm of the vector u_{k+1} :
 - $\lambda = ||A \cdot u_k||$
- 6. Repeat steps 3 and 4 until the difference between successive eigenvalue estimates is smaller than a given tolerance, or a maximum number of iterations is reached.
- 7. **Return** the dominant eigenvalue λ and its corresponding eigenvector u_k .

Code Implementation

舉例之4x4矩陣:

[,1] [,2] [,3] [,4]

[1,] 4 1 -2 2

[2,] 1 3 -1 1

[3,] -2 -1 3 -2

[4,] 2 1 -2 4

絕對值後最大特徵值: 8.268169

對應的特徵向量: 0.5736358 0.3116802 -0.4947114 0.5736358

迭代次數: 12

[,1]

[1,] 4.742918

[2,] 2.577025

[3,] -4.090358

[4,] 4.742918

[,2] [,3] [,4]

- [1,] 1.2792930 -0.4782745 0.3463754 -0.7207070
- [2,] -0.4782738 2.1967917 0.2748838 -0.4782738
- [3,] 0.3463753 0.2748844 0.9764534 0.3463753
- [4,] -0.7207070 -0.4782745 0.3463754 1.2792930

Power Method之結果:

- [1] 8.268169
- [1] 2.446477

R function中的eigen()之結果:

[1] 8.268169 2.446477

gmd檔連結:

https://github.com/KaiChienChen/Simulation/blob/main/H24101222_HW1.qmd