XX Летняя Физическая Школа. 10 класс.

Первая неделя, 18.07 – 23.07.

	Лабораторная плитка, сопротивление которой $R = 20 \text{Ом}$, включе-
1	на в сеть последовательно с сопротивлением $R_0 = 10$ Ом. При длительной работе она нагрелась от комнатной температуры $t_0 = 20^{\circ}$ С до $t_1 = 52^{\circ}$ С. До какой температуры нагреется плитка, если ей включить параллельно еще одну такую же плитку?
2	Жонглер держит за концы невесомую, нерастяжимую нить, на которую нанизаны два шарика массой m каждый, могущие без трения скользить по ней. Крайние участки нити всегда составляют угол α с вертикалью, а сила натяжения нити постоянна и равна T . За какое время шарики столкнутся, если в начальный момент они неподвижны и находятся на одной высоте на расстоянии L друг от друга?
3	Мальчик раскручивает веревку длиной L с привязанным к ее концу камнем. В момент, когда траектория камня представляет собой окружность в горизонтальной плоскости на высоте h от земли, а угловая скорость вращения равна ω , камень отрывается от веревки. Найти расстояние от точки на земле, где стоит мальчик, до точки падения камня. Сопротивлением воздуха пренебречь.
4	Тонкостенная проводящая сфера радиуса 0.1 м заряжена равномерно по поверхности, полный её заряд составляет 10 мкКл. Из неё вырезали и убрали маленький кусочек площади 0.1 см ² . Найти напряжённость поля в центре сферы и в центре дырки.
5	Велосипедист ускоряется так, что $av = C$, где v — скорость велосипедиста, a — ускорение, а C — некоторая постоянная величина. Найдите время, за которое его скорость увеличится от v_1 до v_2 .
6	Четыре положительных заряда q,Q,q,Q связаны пятью нитями так, как показано на рисунке. Длина каждой нити равна l . Определите силу натяжения нити, связывающей заряды $Q>q$.

(продолжение на обороте)

7	Тело находится на абсолютно гладкой наклонной плоскости с углом α у основания. С помощью невесомых нерастяжимых нитей, перекинутых через блоки, находящиеся в основании и вершине наклонной плоскости, к телу привязан груз, имеющий массу M . Нити, подходящие к грузу, составляют с вертикалью и горизонталью углы β . Вся система находится в состоянии покоя. Определите силы натяжения нитей и массу тела, трением в блоках пренебречь. Проанализируйте, как изменятся ответы, если принять, что между телом и наклонной плоскостью существует трение (коэффициент трения μ).	
8	На закате человек, стоящий у озера, видит в абсолютно спокойной воде отражение солнца. С какой скоростью движется это отражение, если в начальный момент человек видит его под углом α к горизонтали? Считать, что глаза человека находятся на высоте h над поверхностью, а солнце садится перпендикулярно к линии горизонта.	
9	На гладком горизонтальном столе покоится шар массой m . С ним упруго сталкивается клин массой $M=m/2$, движущийся углом вперед со скоростью $v=5$ м/с. Определить, через какое время шар опять столкнется с клином. Угол клина $\alpha=30^\circ$. Клин не подпрыгивает. Считать, что потери энергии на тепло нет.	
10	Металлическое кольцо разорвалось кулоновскими силами, когда заряд кольца был равен Q . Сделали точно такое же новое кольцо, но из материала, прочность которого в 10 раз больше. Какой заряд разорвёт новое кольцо?	

XX Летняя Физическая Школа. 10 класс.

Вторая неделя, 24.07 – 29.07.

1	Массивная бусинка нанизана на невесомую нерастяжимую нить длиной L , по которой может скользить без трения. Концы нити прикреплены к невесомым кольцам, которые могут свободно скользить по горизонтальному и вертикальному стержням. В начальный момент бусинку удерживают в таком положении, чтобы нить и стержни составляли квадрат. Бусинку отпускают. Найдите ее ускорение сразу после этого и время, за которое она достигнет вертикального стержня.
2	Два одинаковых провощящих шарика радиуса R соединены длинной натянутой тонкой проволочкой длины L ($L\gg R$). Систему внесли в однородное электрическое поле E_0 , направленное вдоль проволочки. Какой заряд перетечёт по проволочке? Какое количество тепла выделится в сопротивлении проволочки?
3	Наклонная плоскость имеет угол с горизонталью α . По ней запускают косо вверх под углом β к горизонтали две цилиндрические шайбы, массой m каждая, лежащие точно одна на другой (по центру). Коэффициент трения между шайбами μ , а между нижней шайбой и плоскостью μ_0 . Какова сила, с которой действует верхняя шайба на нижнюю в верхней точке их траектории, если μ достаточно, чтобы шайбы не проскальзывали друг по другу? Может ли начаться такое проскальзывание, если его нет сначала? Какие еще начальные данные нужны для ответа на эти вопросы?
4	Вдоль прямой расположены точечные заряды Q,Q и q . Расстояние между соседними зарядами составляет L . Какую минимальную работу нужно совершить, чтобы поменять местами заряды Q и q ?
5	Самолет летит по прямой в горизонтальном направлении со скоростью $v=720~{\rm кm/ч}$. Определите, на какую величину надо изменить скорость самолета, чтобы он смог описать в горизонтальной плоскости окружность радиуса $R=8~{\rm km}$. Каков при этом угол наклона самолета? Подъемная сила направлена перпендикулярно плоскости крыльев и пропорциональна квадрату скорости самолета (коэффициент пропорциональности в обоих случаях считать одинаковым). Ускорение свободного падения положить равным $10~{\rm m/c^2}$.

Однородный проводящий контакт изогнут в виде дуги угла $2\pi - \alpha$. Вокруг центра дуги вращается с очень большой скоростью проводящий отрезок сопротивления R, так что контакт между отрезком и дугой идеальный. Сопротивление дуги равно сопротивлению отрезка. Устройство подключено к батарейке с постоянным напряжением U. Определить заряд, протекший по цепи за время t, и выделившееся тепло за это время. Сопротивлением подводящих проводов пренебречь.

7

6

Тонкий обруч, имеющий массу M, которая сосредоточена в оси, на которую он насажен, и радиус R, поставлен на горизонтальную плоскость. По гладкому каналу внутри обруча соскальзывает из верхней точки без начальной скорости шайба массой m. Определить скорость центра обруча, когда шайба находится в точке под углом φ от вертикали. Трения нет.

8

Правый конец металлического стержня длиной 1 м погружен в кипящий ацетон. На расстоянии 47 см от левого конца стержня лежит маленький кристалл нафталина. Левый конец стержня погрузили в кипящую воду. Какая доля ацетона выкипит, пока расплавится весь нафталин? Считайте, что вся теплопередача происходит только через стержень, а поток тепловой энергии через тонкий слой прямо пропорционален разности температур на торцах слоя. Количество кипящей воды в сосуде очень велико, кипение поддерживается. Температура кипения ацетона 56,2°C, температура плавления нафталина 80,3°C.

9

Мальчик сидит на расстоянии R от центра диска, равномерно раскручивающегося из состояния покоя до угловой скорости ω за время T. Какое число оборотов сделает мальчик, прежде, чем он начнет скользить относительно диска, если коэффициент трения мальчика о его поверхность равен μ ?

10

Два одинаковых маленьких шарика массы M каждый имеют одинаковые заряды Q и расположены на расстоянии L друг от друга. Ещё один маленький шарик 0.5M с зарядом 4Q находится на расстоянии 2L от первого из них и 3L от второго. Вначале шарики удерживают, затем — одновременно отпускают. Где будет лёгкий шарик в тот момент, когда расстояние между первыми и вторым станет в три раза больше начального? Какие скорости будут у шариков в этот момент?

XX Летняя Физическая Школа. 10 класс.

Третья неделя, 30.07 – 04.08.

1	Вагон длиной $4L$ и шириной L , стоящий на абсолютно гладких рельсах, заполнен водой до высоты L . В нем со дна всплывает легкий куб с ребром L . На какое расстояние и в какую сторону от точки A сдвинется вагон после успокоения воды, если плотность вещества куба в два раза меньше плотности воды, а масса пустого вагона равна массе налитой в него воды?
2	Равномерно заряженный лист, имеющий форму прямоугольного равнобедренного треугольника, сложили вдвое по диагонали. При этом была совершена работа <i>A</i> против сил электрического поля. Какую работу надо совершить, чтобы ещё раз также сложить полученный треугольник?
3	Однородный стержень массой M подвешен при помощи легких нерастяжимых нитей одинаковой длины к потолку и находится в положении устойчивого равновесия. По стержню без трения может перемещаться небольшая шайба массой m . В начальный момент конструкцию отклоняют на угол α от вертикали в плоскости подвеса и отпускают, при этом шайба находится посередине стержня. Найти ускорение шайбы в начальный момент.
4	Длинный брусок с квадратным торцом опущен в воду, так, что одна из его боковых граней находится над поверхностью воды и параллельна ей. В таком положении брусок свободно плавает. При какой плотности материала бруска это возможно?
5	Маленькому тяжёлому шарику массы m , имеющему заряд q , сообщают начальную скорость v_0 , направленную вертикально вверх. Шарик находится в однородном горизонтальном электрическом поле, напряжённость которого равна E . Пренебрегая сопротивлением воздуха и зависимостью ускорения свободного падения от высоты, определить минимальную скорость шарика в процессе его движения.
6	С какой силой расталкиваются равномерно заряженные грани куба? Поверхностная плотность заряда граней равна σ , длина ребра l .

По двум кольцевым дорогам радиуса R, лежащим в одной плоскости, движутся автомобили A_1 и A_2 со скоростями $v_1 = v = 20$ км/ч и $v_2 = 2v$. В некоторый момент автомобили находились в точках M и C на расстоянии R/2 друг от друга.

7

8

9

- 1. Найдите скорость автомобиля A_2 в системе отсчета, связанной с автомобилем A_1 в этот момент.
- 2. Найдите скорость автомобиля A_2 в системе отсчета, связанной с автомобилем A_1 , когда A_2 окажется в точке D.

Размеры автомобилей малы по сравнению с R.

Плоский конденсатор состоит из двух больших пластин площади S каждая, расположенных на малом расстоянии d ($S \gg d^2$) друг от друга. Пластины заряжены, их заряды Q и 2Q. Их замыкают проводом, имеющим сопротивление R. Какой заряд протечёт по этому проводу? Сколько на нём выделится тепла?

Птица летит горизонтально на высоте H с постоянной скоростью u. Плохой мальчик замечает птицу в момент, когда она находится в точности над его головой, и сразу же стреляет из рогатки. Какой должна быть скорость птицы, чтобы мальчик не смог попасть в нее, если максимальная скорость вылета камня равна v? Сопротивлением воздуха пренебречь.

На вертикальный цилиндрический стержень радиуса R насажено устройство, состоящее из корпуса, в котором находятся два груза одинаковой массы M, прижимаемые к стержню с помощью двух одинаковых пружин жесткостью k. Устройство вращается вокруг стержня с постоянной угловой скоростью ω и движется вниз. Найти установившуюся скорость движения устройства вниз, если коэффициент трения грузов о стержень равен μ и пружины сжаты на величину x. Массой всех остальных деталей пренебречь. Ускорение свободного падения g.

10