# Customer Retention for the Google Merchandise Store

Jay Patel | Sanchit Deora | Anshika Saxena | James Diffenderfer

**Group 10** 

## **Objective**

- Predicting Customer Retention for a company or store
- Given data collected on a Google Merchandise Store (GStore) customer, predict if that customer will return to shop at the GStore again

### **Software and Tools**















## **Google Merchandise Store Data Set**

- Data originally provided for <u>Kaggle Customer Revenue Prediction</u> competition
- Data provided in training and testing sets
  - Training set (25 GB): User transactions from August 1, 2016 to April 30, 2018
  - **Testing set (8 GB)**: User transactions from May 1, 2018 to October 15, 2018
- List of 13 original features (orange indicates JSON data)
  - fullVisitorId, channelGrouping, date, device, geoNetwork, totals, sessionId,
    socialEngagementType, hits, trafficSource, visitId, visitNumber, visitStartTime

- Created customerReturns labels
- Subsampled rows from full data set
  - Used KMeans clustering and stratified sampling
- Percentage of returning customers:
  - Full Dataset: 33.3 %
  - Subsampled Dataset: 33.4 %



- Used data transformation to make data more comprehensive
  - Cyclic features (Date, Time)
  - Location features (Latitude,Longitude)
- Normalised data for better performance



- Filled in missing values
  - Filled **-1** for numerical values
  - Filled **'UNK'** for string values
- Deleted columns if more than 90% of the data was missing



- Used Extra Trees Classifier to get
  importance for each feature
- Removed possibly non-contributing features



## **Data Set After Preprocessing**

- Preprocessing pipeline resulted in 42 features
- Training/Testing split is approximately 81/19
  - Training Set: 1,537,503 samples
  - **Testing Set**: 361,429 samples

## Modeling

#### Baseline Models

- Linear Regression
- Gaussian Naive Bayes Classifier
- Multinomial Naive Bayes Classifier

#### Trees

- Random Forest Classifier
- XGBoosted Trees



**Random Forest** 

## Modeling

#### Support Vector Machines

Linear SVM

#### Neural Networks

- DNN: 2 hidden layers, ReLU activation, dropout layers
- DNN: 1 hidden layer, dropout layers,
  batch normalization, ReLU activation

#### Clustering

KMeans

| Layer (type)                                                                | 0utput | Shape | Param # |
|-----------------------------------------------------------------------------|--------|-------|---------|
| dense (Dense)                                                               | (None, | 48)   | 2016    |
| batch_normalization (BatchNo                                                | (None, | 48)   | 192     |
| activation (Activation)                                                     | (None, | 48)   | 0       |
| dropout (Dropout)                                                           | (None, | 48)   | 0       |
| dense_1 (Dense)                                                             | (None, | 24)   | 1176    |
| batch_normalization_1 (Batch                                                | (None, | 24)   | 96      |
| activation_1 (Activation)                                                   | (None, | 24)   | 0       |
| dropout_1 (Dropout)                                                         | (None, | 24)   | 0       |
| dense_2 (Dense)                                                             | (None, | 1)    | 25      |
| batch_normalization_2 (Batch                                                | (None, | 1)    | 4       |
| activation_2 (Activation)                                                   | (None, | 1)    | 0       |
| Total params: 3,509<br>Trainable params: 3,363<br>Non-trainable params: 146 |        |       |         |

#### **DNN Model Summary**





## Challenges

#### Data Preprocessing

- Large Data Set Combined Training/Testing totals 33 GB
- JSON columns in original data set
- Processing missing values

#### Model Training

Memory issues training certain models

### **Future Work**

#### Ensemble Methods

Combine models using weighted voting to create ensemble method

#### Develop Scalability

Implement data preprocessing pipeline using Spark

#### Additional Data Preprocessing

Attempt to extract and engineer more useful features from some JSON data

# Thank you!