

Introduction to Robotics

1D Point Dynamics, PID Controller, Gradient Descent Search

WS 2015 / 16

Prof. Dr. Daniel Göhring
Intelligent Systems and Robotics
Department of Computer Science
Freie Universität Berlin

Outline

- So far we saw how the motion of joints is related to motions of the rigid bodies of a robot
- We assumed we could command arbitrary joint level trajectories, which would be faithfully executed by the real-world robot

Outline

- So far we saw how the motion of joints is related to motions of the rigid bodies of a robot
- We assumed we could command arbitrary joint level trajectories, which would be faithfully executed by the real-world robot
- Most robots are driven by electrical, pneumatic or hydraulic actuators, which apply torques (or for linear actuators forces)
- The *dynamics* of a robot manipulator describes how the robot moves in response to these actuator forces.

Dynamics

 The dynamics of a system describes how the controls u_t influence the change-of-state of the system

$$x_{t+1} = f(x_t, u_t)$$

- The notation x_t refers to the *dynamic state* of the system: e.g., joint positions and velocities $x_t = (q_t, \dot{q}_t)$.
- f is an arbitrary function, often smooth
- We define a nonholonomic system as one with differential constraints:

$$\dim(u_t) < \dim(x_t)$$

⇒ Not all degrees of freedom are directly controllable

Toussaint

Examples:

- An air plane flying: You cannot command it to hold still in the air, or to move straight up.
- A car: you cannot command it to move side-wards.
- Your arm: you cannot command it to throw a ball with arbitrary speed (force limits).
- A torque controlled robot: You cannot command it to apply arbitrary torques.
- What all examples have in comment:
 - One can set **controls** u_t (air plane's control stick, car's steering wheel, your muscles activations, torque/voltage/current send to a robot's motors)
 - But these controls only indirectly influence the dynamics of state,

$$x_{t+1} = f(x_t, u_t)$$

Ioussaint

The Math Behind

- In general the calculation can be done by summing up all the forces acting on the coupled rigid bodies of the robot
- We shall rely on the Lagrangian to derive the system dynamics, requiring only the potential and kinematic engeries of the system to be computed.

Proportional Control

- The simplest possible example:
- Task: Control a force u(t) at time t to move a 1-D point mass m towards from a given position x towards a certain position x*
- Proportional Control: the bigger the error (x* x), the bigger should be u(t)
- Physical analogy: Mass-Spring System

Freie Universität Berlin

Natural Systems

- Mass-Spring System
- Conservative System
- Assume no gravity
- Position and velocity x , \dot{x}

- System has kinetic energy (K) and potential energy (V)
- Lagrangian: L = K V $\frac{d}{dt} \left(\frac{\partial (K V)}{\partial \dot{x}} \right) \frac{\partial (K V)}{\partial x} = 0$

- Pull the spring and let it go: oscillation starts.
- While oscillating, kinetic energy is being transformed to potential energy and back.
- m is the mass, \ddot{x} the acceleration
- k is spring constant (F/x)

$$K = \frac{1}{2}m\dot{x}^2$$
 Kinectic Energy

$$V = \text{Work} = \int_{x}^{0} (-kx) dx = \frac{1}{2}kx^{2}$$
 Potential Spring Energy

$$K = \frac{1}{2}m\dot{x}^{2}$$

$$V = \frac{1}{2}kx^{2}$$

$$\frac{d}{dt}\left(\frac{\partial(K-V)}{\partial\dot{x}}\right) - \frac{\partial(K-V)}{\partial x} = 0$$

$$\frac{d}{dt}\left(\frac{\partial(K)}{\partial\dot{x}}\right) - \frac{\partial(K)}{\partial x} = -\frac{\partial(V)}{\partial x}$$

$$K = \frac{1}{2}m\dot{x}^{2} \qquad V = \frac{1}{2}kx^{2}$$

$$\frac{d}{dt}\left(\frac{\partial(K-V)}{\partial\dot{x}}\right) - \frac{\partial(K-V)}{\partial x} = 0$$

$$\leftrightarrow$$

$$\frac{d}{dt}\left(\frac{\partial(K)}{\partial\dot{x}}\right) - \frac{\partial(K)}{\partial x} = -\frac{\partial(V)}{\partial x}$$

$$m\ddot{x} = ma = F = -kx$$

$$\leftrightarrow$$

$$m\ddot{x} + kx = 0$$

Conservative Systems
$$m\ddot{x} + kx = 0 \quad \leftrightarrow \quad \ddot{x} + \frac{k}{m}x = 0$$

What's the frequency, given *k* and *m*

Conservative Systems
$$m\ddot{x} + kx = 0 \quad \leftrightarrow \quad \ddot{x} + \frac{k}{m}x = 0$$

m

What's the frequency, given *k* and *m*

assume:
$$x = a + be^{\omega(t+\varphi)}$$

$$\left[a + be^{\omega(t+\varphi)}\right] + \left[\frac{k}{m}a + be^{\omega(t+\varphi)}\right] = 0$$

$$\omega^2 b e^{\omega(t+\varphi)} + \frac{k}{m} b e^{\omega(t+\varphi)} + \frac{k}{m} a = 0 \quad \text{assume: } a = 0$$

$$\omega^2 = -\frac{k}{m}$$

$$\omega^2 = -\frac{k}{m}$$

$$\omega = i\sqrt{\frac{k}{m}}$$

Natural Frequency: $\omega_n = \sqrt{1}$

$$\omega_n = \sqrt{\frac{k}{m}}$$

Natural Frequency increases with stiffness and inverse mass

$$x(t) = a + be^{i\sqrt{\frac{k}{m}}(t-\varphi)}$$

real part: $x(t) = a + b\cos(\omega_n(t-\varphi))$

Freie Universität Berlin

Mass-Spring

$$x(t) = a + b\cos(\omega_n(t - \varphi))$$

• Oscillation around a with amplitude b, phase shift φ and natural frequency:

Freie Universität Berlin

P-Controller

$$V(x) = \frac{1}{2}K_P(x_t^* - x_t)^2$$

$$f = -\frac{\partial V}{\partial x}$$

$$0 = m\ddot{x} + K_P(x_t^* - x_t)$$

$$u(t) = K_p(x_t^* - x_t)$$

 $x^* = a$ (target position)

 K_o = Spring parameter

u(t) = resulting output (e.g. force / torque)