UNIT 6 SEQUENTIAL LOGIC SYNCHRONOUS AND ASYNCHRONOUS

Introduction

- Digital circuits considered thus far have been combinational.
- In combinational circuits, the output depends only and immediately on their inputs. They have no memory, i.e. dependence on past values.
- Sequential circuits, however, act as storage elements and have memory. They can store, retain, and then retrieve information when needed at a later time.
- This course distinguishes sequential logic from combinational logic.

Sequential circuit

- A special type of circuit that has a series of inputs and outputs.
- The outputs depend on both the combination of present inputs and previous outputs.
- The previous output is treated as the present state.
- Contains the combinational circuit and its memory storage elements.
- Can contain only the memory element.

S.N.	Combinational Circuits	Sequential Circuits
Output	Depend only on the present inputs	Depend on both present inputs and present state(previous output)
Feedback	Not present	Present
Memory element	Not required/present	Memory elements play an important role and require
Clock signal	Not required	Required
Design	simple to design	Not simple/Complex

Clock Signal and Triggering

Clock signal

- A periodic signal in which ON time and OFF time need not be the same.
- When on time and off time of the clock signal are the same, a square wave is used to represent the clock signal.

- A clock signal is considered as the square wave.
- It repeats with a certain time period, which will be equal to twice the 'ON time' or 'OFF time'.

Triggering of Flip-flop

• Defines when output state of Flip-flop changes.

Types of Sequential Circuits

1. Asynchronous sequential circuits

- The clock signals are not used
- Operated through the pulses. So, the changes in the input can change the state of the circuit.
- The internal state is changed when the input variable is changed.
- The un-clocked flip-flops or time-delayed are the memory elements.
- Similar to the combinational circuits with feedback.

2. Synchronous sequential circuits

- synchronization of the memory element's state is done by the clock signal.
- The output is stored in either flip-flops or latches(memory devices).
- The synchronization of the outputs is done with either only negative edges of the clock signal or only positive edges.

Storage Elements: Latches/Flip-flops

- A storage element can maintain a binary state indefinitely (as long as power is delivered to the circuit), or until directed by an input signal to switch states.
- Storage elements that operate with signal levels (rather than signal transitions) are referred to as **latches**.
- Storage elements controlled by a clock transition are flip-flops.
- For this reason latches are said to be level sensitive devices, and flip-flops are said to be edge sensitive devices.
- Although latches can store information they are not practical for use as storage elements in synchronous sequential circuits.
- They must be studied however, because they are the basic building blocks of flip-flops.

Flip-flops

- Basic digital memory circuit.
- Stores 1-bit, therefore called 1-bit memory cell.
- It has two stable states: logic 1 and logic 0
- It can flip from one state to another and then flop back, so named Flip-flop.
- Also known as multivibrator.
- Two outputs Q and Q' (always complementary).
- If Q=1 and Q'=0, it is in SET state.
- If Q=0 and Q'=1, it is in RESET state.

Positive Level trigg. FF

Positive Edge trigg. FF

Megative Edge trigg. FF

Application of Flip-flops

- As a memory element
- In registers
- In counters/timers
- As a delay element

Types of Flip-flops

- i. SR Flip-flops
- ii. D Flip-flops
- iii. JK Flip-flops
- iv. T Flip-flops
- v. Master-slave Flip-flops

SR Flip-flops

- The SR flip flop is a 1-bit memory bi-stable device having two inputs, i.e., SET and RESET.
- The SET input 'S' set the device or produce the output 1, and the RESET input 'R' reset the device or produce the output 0.
- The SET and RESET inputs are labelled as **S** and **R**, respectively.
- Can be implemented using NOR and NAND gates.
- Often called a *latch* as it holds or latch, in either stable state.

NAND gate SR latch

Truth Table

State	S	R	Q	Q'	Description
Set	1	0	0	1	Set Q'>>1
	1	1	0	1	No change
Reset	0	1	1	0	Reset Q'>>0
	1	1	1	0	No change
Invalid	0	0	1	1	Invalid
					Condition

Fig: Logic Diagram

Case 1: R' = 0 and S' = 1 (set Q' >> 1)

• As S is HIGH, the output of NAND gate A i.e., Q becomes LOW. This causes both the inputs of NAND gate B to become LOW and hence, the output of NAND gate B i.e., Q' becomes HIGH.

Case 2: R' = 1 and S' = 0

• As R is HIGH, the output of NAND gate B i.e., Q' becomes LOW. This causes both the inputs of NAND gate A to become LOW and hence, the output of NAND gate A i.e., Q becomes HIGH.

Case 3: R' = 1 and S' = 1

• The output remains in previous state i.e., it holds the previous data.

Case 4: R' = 0 and S' = 0

The flip flop will be in undefined state. Because the low inputs of S and R, violates the rule of flip – flop that the outputs should complement to each other.

So, the flip flop is in undefined state (or forbidden state).

NOR gate SR latch

Truth Table

S	R	Q	Q'	REMARKS
1	0	1	0	SET
0	0	1	0	NO CHANGE
0	1	0	1	RESET
0	0	0	1	NO CHANGE
1	1	?	?	INVALID

Fig: Logic Diagram

1. Clocked/Gated S-R Flip-Flop

• The operation of a basic flip-flop can be modified by providing an additional control input that determines when the state of the circuit is to be changed.

• The limitation with a S-R flip-flop using NOR and NAND gate is the

invalid state.

• This problem can be overcome by using a stable SR flip-flop that can change outputs when certain invalid states are met, regardless of the condition of either the Set or the Reset inputs.

Fig: Logic Symbol

Truth Table

Clk	S	R	Q_{n+1}
0	X	X	Q_n
1	0	0	Q_n
1	0	1	0
1	1	0	1
1	1	1	Invalid

Fig: Logic Diagram

A clock pulse is given to the inputs of the AND Gate. If the value of the clock pulse is '0', the outputs of both the AND Gates remain '0'.

Fig: Gated RS Flip-flop (NAND)

Characteristics Table

Q _n	S	R	Q_{n+1}	Remarks
0	0	0	0	No Change
0	0	1	0	Reset
0	1	0	1	Set
0	1	1	X	Invalid
1	0	0	1	No Change
1	0	1	0	Reset
1	1	0	1	Set
1	1	1	X	Invalid

Characteristics equation, $Q_{n+1}=S+Q_nR'$

2. Gated D (Delay or Data) Flip-flop

- Only one input called data (D) input and two outputs Q and Q.
- Can be constructed from SR Flip-flop by inserting an inverter between S and R and assigning symbol D to input S.
- The output Q is always same as D input.

Fig: Logic Diagram D Flipflop

Fig: Logic Symbol

Characteristics Table

Q _n	D	Q_{n+1}	Remarks
0	0	0	Same as D
0	1	1	Same as D
1	0	0	Same as D
1	1	1	Same as D

$$Q_{n+1}=D$$

Advantages:

- Drawback of RS flipflop (invalid state) is overcome.
- Single input to drive the flipflop.

3. Gated JK Flip-flop

- Refined form of RS Flip-flop.
- Invalid states are defined as toggled state.
- Constructed using cross coupled NOR gates and two and AND gates.

Fig: Logic Diagram JK Flipflop

Fig: Logic Symbol

Case I: J=0, K=0

- If J=0, K=0, the output of two AND gates i.e., R and S are equal to 0.
- We know that if R=S=0, the output Q and Q' i.e., $Q_{n+1}=Q_n$ and $Q'_{n+1}=Q'_n$.

Case II: J=0, K=1

i. Provided that Q=1 and Q'=0

S=EN.J.Q' R=EN.K.Q
=1.0.0 = 0 = 1.1.1 = 1
i.e.,
$$Q_{n+1}=0$$

ii. Provided that Q=0 and Q'=1

S=EN.J.Q' R=EN.K.Q
=1.0.1 = 0 = 1.1.0 = 0
i.e., remain in rest state,
$$Q_{n+1}$$
=0

Case III: J=1, K=0

i. Provided that Q=1 and Q'=0

S=EN.J.Q' R=EN.K.Q
=1.1.0 = 0 = 1.0.1 = 0
i.e.,
$$Q_{n+1}=1$$

ii. Provided that Q=0 and Q'=1

S=EN.J.Q' R=EN.K.Q
=1.1.1 = 1 = 1.0.0 = 0
i.e.,
$$Q_{n+1}=1$$

Case IV: J=1, K=1

i. Provided that Q=1 and Q'=0

S=EN.J.Q' R=EN.K.Q
=1.1.0 = 0 = 1.1.1 = 1
i.e.,
$$Q_{n+1}$$
=0

ii. Provided that Q=0 and Q'=1

S=EN.J.Q' R=EN.K.Q
=1.1.1 = 1 = 1.1.0 = 0
i.e.,
$$Q_{n+1}=1$$

• The outputs are inverted i.e., toggled from reset to set[Q=0 to Q=1].

Characteristics table

Q _n	J	K	Q_{n+1}	Remarks
0	0	0	0	No Change
0	0	1	0	Reset
0	1	0	1	Set
0	1	1	1	Toggle
1	0	0	1	No Change
1	0	1	0	Reset
1	1	0	1	Set
1	1	1	0	Toggle

Characteristics equation, $Q_{n+1}=Q_n'J+Q_nK'$

4. Gated Toggle Flip-flop (T Flip-flop)

- Made by shorting J and K input of JK Flip-flop.
- Output Toggles each time for T=1.

Fig: Logic Symbol

Fig: Logic Diagram T Flipflop

Characteristics Table:

Q_n	T	Q_{n+1}	Remarks
0	0	0	No change
0	1	1	Toggle
1	0	1	No change
1	1	0	Toggle

Characteristics equation, $\mathbf{Q}_{n+1} = \mathbf{Q}_n \mathbf{T} + \mathbf{Q}_n \mathbf{T}$ ' $= (\mathbf{Q}_n \oplus \mathbf{T})$

Master slave Flip-flop

Race around condition in JK FF:

- In "JK Flip Flop", when both the inputs and CLK set to 1 for a long time, then Q output toggle until the next CLK transition. Thus, the uncertain or unreliable output produces. This problem is referred to as a *race-round condition* in JK flip-flop and avoided by ensuring that the CLK set to 1 only for a very short time.
- Used to *eliminate the race around condition*.
- Constructed by combining two *JK flip flops*.
- Flip flops are connected in a series configuration.
- In these two flip flops, the *1st flip flop* work as *"master"*, called the master flip flop, and the *2nd* work as a *"slave"*, called slave flip flop.
- The master-slave flip flop is designed in such a way that the output of the "master" flip flop is passed to both the inputs of the "slave" flip flop.
- The output of the "slave" flip flop is passed to inputs of the master flip flop.
- Apart from these two flip flops, an *inverter or not gate* is also used for passing the inverted clock pulse to the "slave" flip flop, the inverter is connected to the clock's pulse.

- The master-slave flip flop is designed in such a way that the output of the "master" flip flop is passed to both the inputs of the "slave" flip flop.
- The output of the "slave" flip flop is passed to inputs of the master flip flop.
- Apart from these two flip flops, an *inverter or not gate* is also used for passing the inverted clock pulse to the "slave" flip flop, the inverter is connected to the clock's pulse.

Working:

- When the clock pulse =1, the slave flip flop will be in the isolated state, and the system's state may be affected by the J and K inputs. The "slave" remains isolated until the CP is 1. When the CP set to 0, the master flip-flop passes the information to the slave flip flop to obtain the output.
- The master flip flop responds first from the slave because the master flip flop is the positive level trigger, and the slave flip flop is the negative level trigger.
- The output Q'=1 of the master flip flop is passed to the slave flip flop as an input K when the input J set to 0 and K set to 1. The clock forces the slave flip flop to work as reset, and then the slave copies the master flip flop.
- When J=1, and K=0, the output Q=1 is passed to the J input of the slave. The clock's negative transition sets the slave and copies the master.
- The master flip flop toggles on the clock's positive transition when the inputs J and K set to 1. At that time, the slave flip flop toggles on the clock's negative transition.
- The flip flop will be disabled, and Q remains unchanged when both the inputs of the JK flip flop set to 0

Flip-flip excitation table

Transition		RS	FF	JK FF		D FF	T FF
$\mathbf{Q_n}$	Q_{n+1}	S	R	J	K	D	T
0	0	0	X	0	X	0	0
0	1	1	0	1	X	1	1
1	0	0	1	X	1	0	1
1	1	X	0	X	0	1	0

FF as a State Machine:

Table: State diagrams of the four types of flip-flops.

NAME	STATE DIAGRAM
SR	S,R=0,0 S,R=1,0 Q = 0 S,R=0,1
JK	J,K=0,0 or 1,1 J,K=0,0 J,K=0,1 or 1,1
D	D = 0 $Q = 0$ $D = 1$ $Q = 1$
T	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$