午協力条約に基づいて公開された国際出願

(51) 国際特許分類6

C07F 9/572, 9/58, 9/6503, 9/6509. 9/6539, 9/6541, 9/6558, 9/6561, A61K 31/66

(11) 国際公開番号 A1

WO00/15645

(43) 国際公開日

2000年3月23日(23.03.00)

(21) 国際出願番号

PCT/JP99/04913

(22) 国際出願日

1999年9月10日(10.09.99)

(30) 優先権データ

特願平10/258841

1998年9月11日(11.09.98)

JP

(71) 出願人 (米国を除くすべての指定国について) 杏林製薬株式会社

(KYORIN PHARMACEUTICAL CO., LTD.)[JP/JP]

〒101-0062 東京都千代田区神田駿河台2丁目5番地 Tokyo, (JP)

(72) 発明者;および

(75) 発明者/出願人(米国についてのみ)

河野靖志(KONO, Yasushi)[JP/JP]

〒323-0820 栃木県小山市西城南5-30-8 Tochigi, (JP)

澤田孝之(SAWADA, Takayuki)[JP/JP]

〒331-0043 埼玉県大宮市大成町3丁目510番地5 Saitama, (JP)

野村昌弘(NOMURA, Masahiro)[JP/JP]

〒329-0101 栃木県下都賀郡野木町友沼6095 B203 Tochigi, (JP)

高橋雪絵(TAKAHASHI, Yukie)[JP/JP]

〒329-0101 栃木県下都賀郡野木町友沼5982-1 Tochigi, (JP)

津吹 猛(TSUBUKI, Takeshi)[JP/JP]

〒329-0206 栃木県小山市東間々田1-18-11 Tochigi, (JP)

迫江康彦(SAKOE, Yasuhiko)[JP/JP]

〒323-0021 栃木県小山市稲葉郷750-3 Tochigi, (JP)

栗山和彦(KURIYAMA, Kazuhiko)[JP/JP]

〒329-0214 栃木県小山市乙女1-7-16 Tochigi. (JP)

(74) 代理人

弁理士 箕浦 清(MINOURA, Kiyoshi)

〒102-0073 東京都千代田区九段北3丁目2番2号

九段ビル7階 Tokyo, (JP)

(81) 指定国 AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZA, ZW, 欧州特許 (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI特許 (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG). ARIPO特許 (GH, GM, KE, LS, MW, SD, SL, SZ, UG, ZW), ユー ラシア特許 (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM)

添付公開書類

国際調查報告書

PHOSPHONIC ESTER DERIVATIVES AND PROCESS FOR PRODUCING THE SAME (54)Title:

(54)発明の名称 ホスホン酸エステル誘導体及びその製造法

(57) Abstract

Phosphonic ester derivatives represented by general formula (1) and pharmacologically acceptable salts thereof having an activity of inhibiting a bond between cell adhesion molecules and thus being useful as immunosuppressants, anti-inflammatory agents, antiallergic agents and cancerous metastasis inhibitors.

本発明は細胞接着分子間の結合阻害活性を有し、免疫抑制剤、抗 炎症剤、抗アレルギー剤、癌転移抑制剤として有用なホスホン酸エ ステル誘導体及びぞれらの製造法を提供するもので、一般式 (1)

4

で表されるホスホン酸エステル誘導体及び薬理学的に許容しうる塩である。

PCTに基づいて公開される国際出願のパンフレット第一頁に掲載されたPCT加盟国を同定するために使用されるコード(参考情報)

1

明細書

ホスホン酸エステル誘導体及びその製造法

技術分野

本発明は、細胞接着分子間の結合阻害活性を有し、免疫抑制剤、 抗炎症剤、抗アレルギー剤、癌転移抑制剤として有用なホスホン酸 エステル誘導体及びそれらの製造法に関する。

背景技術

免疫反応や炎症反応において、血管内皮細胞と白血球との接着は 極めて重要な過程をしめている (Mebio,No.5, Vol.10, (1993))。こ の接着に関与する血管内皮細胞側の主な接着分子には、ICAM-1、VCAM-1、E-セレクチン、P-セレクチンなどが報告さ れており、各接着分子の発現は炎症が惹起されてからの時間によっ て異なっている(診断と治療、83巻、1164、(1995)、 Springer Semin Immunopathol, Vol.11, 163, (1989), Cell, Vol.76, 301 (1994))。即ち、炎症が惹起されてから5~30分後(即時)に発 現のピークを示し以後発現が低下するものとしてP-セレクチンが、 また2~6時間(早期)で発現のピークを示し以後発現が低下する ものとしてはE-セレクチンが、さらに12~48時間後 (晩期) に発現のピークを示すものとしてICAM-1、VCAM-1があ る。なかでも晩期に多量に発現するICAM-1、VCAM-1を 介した白血球との接着は最も強固であり、実際の各種疾患において も、これら2つの接着分子が重要な役割を果たしているとされてい る。従って、炎症時に中心的役割をなす I С А М - 1、 V С А М -1といった接着分子を介した接着を阻害することができれば、慢性

関節リウマチ、腎炎、変形性膝関節炎などの自己免疫疾患や慢性炎症性疾患、喘息、皮膚炎などのアレルギー疾患の治療薬、癌転移抑制剤として有効であると考えられる。

現在までに報告されている細胞接着阻害剤は、接着分子の発現を抑制することにより接着を阻害するいわゆる発現抑制剤と、接着分子間の結合を阻害することによって接着を阻害するいわゆる結合阻害剤とに分類される。ICAM-1やVCAM-1に関する細胞接着抑制剤のほとんどは発現抑制剤であり(特開平9-110689、特開平8-283156、特開平8-198752、特開平7-304667、特開平7-258168)、結合阻害剤については、接着分子の抗体やリガンドのようなペプチド性巨大分子を除けては、唯一JMed. Chem., Vol.38, 1057 (1995) に非ペプチド性低分子に対してのような発現抑制剤とは異なりに対して作用を示すことが多く、接着分子発現以外の機能も抑制に対して作用を示すことが多く、接着分子発現抑制剤とは異なりにようことが考えられる。このような発現抑制剤とは異なりによりはまうことが考えられる。このような発現抑制剤とは異なりによりに表別は接着分子間の結合のみを阻害することから、安全性においても優れた薬物になりうると考えられるが、いまだ満足できるのではない。

本発明は、細胞接着分子の中でも中心的役割をなすICAM-1、 VCAM-1を介する接着経路を阻害する物質を提供することによっ て、優れた免疫抑制剤、抗炎症剤、抗アレルギー剤、癌転移抑制剤 を提供することにある。

発明の開示

本発明者らは、ヒト単球様細胞株(U937)とIL-1月刺激 24時間後のヒト臍帯静脈由来血管内皮細胞(HUVEC)との結 合を阻害する化合物について鋭意研究を重ねた結果、これまでに知 eĵ\

られている細胞接着阻害剤とは構造を異にした新規なホスホン酸エステル誘導体が、接着分子の発現抑制作用を示すことなくICAM--1、VCAM-1を介した細胞間の結合を阻害することを見出し、本発明を完成した。

即ち、本発明は一般式 (1)

$$\begin{array}{c|c} & & & \\ \hline & & \\$$

[式中、Wはチアゾール環、置換されていてもよいベンゾチアゾー ル環、ビリドチアゾール環、置換されていてもよいビリジン環、置 換されていてもよいキノリン環、置換されていてもよいピリダジン 環、置換されていてもよいフタラジン環、置換されていてもよいキ ノキサリン環、置換されていてもよいピリミジン環、置換されてい てもよいキナゾリン環、置換されていてもよいチェノピリミジン環、 置換されていてもよいベンズイミダゾール環、置換されていてもよ いプリン環、置換されていてもよいインドール環を、Xは - N H (C H₂) m - (mは0~2の整数を示す)、- C O N H -を示すか、WとYが直接結合してもよいことを示す。Yは置換され ていてもよいベンゼン環、置換されていてもよいナフタレン環、置 換されていてもよいピリジン環、置換されていてもよいキノリン環、 ベンゾフラン環、クマリン環、クロマノン環、クロマン環、1,3-チアゾール環を、Zはー(CH_2) q-(qは0~2の整数を示す)、 $-CH = CH - \cdot -OCH_2 - \cdot \cdot -OC(CH_3)_2 - \cdot -SCH_2 - \cdot$ - S O C H $_2$ - $_1$ - S O $_2$ C H $_2$ - $_2$ - N H C O (C H $_2$) r - (r は0~2の整数を示す)を、R l は水素原子、炭素数1~4の低級

アルコキシカルボニル基、カルボキシル基、炭素数1~4の低級アルコキシホスホリル基を、R²は炭素数1~4の低級アルキル基を、nは0~2の整数を示す]で表されることを特徴とするホスホン酸エステル誘導体及び薬理学的に許容しうる塩、並びにそれらの少なくとも一種類以上を有効成分とする細胞接着抑制剤である。

本発明における一般式(1)で表される化合物の薬理学的に許容される塩には、塩酸塩、臭化水素酸塩、メタンスルホン酸塩、クエン酸塩、酒石酸塩のような酸付加塩、及びナトリウム塩、カリウム塩等の金属塩が挙げられる。

また、本発明の一般式(1)において、低級アルキル基、低級ア ルコキシカルボニル基、低級アルコキシホスホリル基等の「低級ア ルキル基」とは、例えばメチル、エチル、プロピル、イソプロピル 等の直鎖もしくは分岐した炭素数1~4の炭化水素を表し、「置換 されていてもよいベンゾチアゾール環、置換されていてもよいヒリ ジン環、置換されていてもよいキノリン環、置換されていてもよい ピリダジン環、置換されていてもよいフタラジン環、置換されてい てもよいキノキサリン環、置換されていてもよいピリミジン環、置 換されていてもよいキナゾリン環、置換されていてもよいチエノビ リミジン環、置換されていてもよいベンズイミダゾール環、置換さ れていてもよいプリン環、置換されていてもよいインドール環、置し 換されていてもよいベンゼン環、置換されていてもよいナフタレン 環、置換されていてもよいビリジン環」とは環上の任意の位置に低 級アルキル基、低級アルコキシ基、トリフルオロメチル基、低級ア ルコキシメチル基、ジメチルアミノ基、ジエチルアミノ基等の低級 ジアルキルアミノ基、低級アルキルチオ基、低級アルキルスルフィ ニル基、低級アルキルスルフォニル基、CI、Br、I、F等のハロゲン 原子、ヒドロキシ基、フェニル基、ピペリジン基、アセチルアミノ

基等の低級アシルアミノ基、アセチル基、ニトロ基を有するものが 挙げられる。

本発明によれば、上記一般式(1)で表される化合物は、一般式(2)で表される化合物と一般式(3)で表される化合物を縮合することによって製造することができる。

$$W$$
 Y Z $COR3 (2)$

[式中、Wはチアゾール環、置換されていてもよいベンゾチアゾー ル環、ビリドチアソール環、置換されていてもよいビリジン環、置 換されていてもよいキノリン環、置換されていてもよいピリダジン 環、置換されていてもよいフタラジン環、置換されていてもよいキ ノキサリン環、置換されていてもよいビリミジン環、置換されてい てもよいキナゾリン環、置換されていてもよいチエノピリミジン環、 置換されていてもよいベンズイミダゾール環、置換されていてもよ いプリン環、置換されていてもよいインドール環を、Xは - N H (C H₂) m - (mは0~2の整数を示す)、- C O N H -を示すか、WとYが直接結合してもよいことを示す。Yは置換され ていてもよいベンゼン環、置換されていてもよいナフタレン環、置 換されていてもよいビリジン環、置換されていてもよいキノリン環、 ベンゾフラン環、クマリン環、クロマノン環、クロマン環、1,3-チアゾール環を、Zは- (CH₂) q- (qは0~2の整数を示す)、 $-CH = CH - \langle -OCH_2 - \langle -OC(CH_3) \rangle_2 - \langle -SCH_2 - \langle -CH_3 - \langle -CH_3 - \langle -CH_2 - \rangle - \rangle \rangle \rangle \rangle)$ - S O C H $_2$ - $_1$ - S O $_2$ C H $_2$ - $_2$ - N H C O (C H $_2$) r - (r は0~2の整数を示す)を、R3はヒドロキシ基、ハロゲン原子を 示す〕

$$H_2N$$
 (CH₂)n PO(OR²)₂ (3)

[R は水素原子、炭素数1~4の低級アルコキシカルボニル基、 カルボキシル基、炭素数1~4の低級アルコキシホスホリル基を、 R^2 は炭素数 $1 \sim 4$ の低級アルキル基を、n は $0 \sim 2$ の整数を示す] 反応は、式(2)のR³がハロゲン原子である酸ハライドの場合、 トリエチルアミン、ピリジン等の有機塩基の存在下に塩化メチレン、 1.4 - ジオキサン等を溶媒として用い、0 ℃~室温下に行うことが できる。また、式(2)のR³がヒドロキシ基の場合、通常のペプ チド結合形成反応に用いられる混合酸無水物法や活性エステル法に よって製造することができ、好ましくは縮合剤を用いる方法が適し ている。反応は、ジシクロヘキシルカルボジイミド(DCC)、ジ イソプロピルカルボジイミド (DIPC) 、ジフェニルホスホニル アジド (DPPA)、ジエチルホスホニルシアニド (DEPC)、 1-エチル-3-(3-ジメチルアミノプロピル)-カルボジイミ ド(WSC)等の縮合剤の存在下、場合によっては、4-ジメチル アミノビリジン (DMAP) を触媒として加え、反応溶媒としては テトラヒドロフラン (THF)、塩化メチレン、ジメチルスルホキ シド(DMSO)、ジメチルホルムアミド(DMF)を用い、反応・ 温度としては0℃~室温下に行うことができる。

上記一般式(1)で表される化合物の中、Xが-CONH-である化合物即ち、一般式(9)

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$$

[式中、W、Y、Z、R¹、R²、nは前述の通り]で表される化合物は、一般式(7)で表される化合物と一般式(8)で表される化合物を縮合することによっても製造することができる。

$$H_2N$$
 Y Z N $(CH_2)n$ $PO(OR^2)_2$ (7)

[式中、Y、Z、R¹、R²、nは前述の通り]

[式中、W、R3は前述の通り]

反応は、式(8)のR³がハロゲン原子である酸ハライドの場合、トリエチルアミン、ヒリジン等の有機塩基の存在下に塩化メチレン、1,4ージオキサン等を溶媒として用い、0℃~室温下に行うことができる。また、式(8)のR³がヒドロキシ基の場合、通常のペプチド結合形成反応に用いられる混合酸無水物法や活性エステル法によって製造することができ、好ましくは縮合剤を用いる方法が適している。反応は、DCC、DIPC、DPPA、DEPC、WSC等の縮合剤の存在下、場合によっては、DMAPを触媒として加え、反応溶媒としてはTHF、塩化メチレン、DMSO、DMFを用い、

反応温度としては0℃~室温下に行うことができる。

上記一般式 (7) で表される化合物は、以下に示す合成経路で製造することができる。

一般式(4)のVがアミノ基である場合は(3)との縮合による方法と、また一般式(4)のVが二トロ基である場合は(3)との縮合で得られる(5)、即ち一般式(6)で表される化合物を、引続き還元する方法との2つに分かれる。

上記反応経路において一般式(5)

$$V = Z \longrightarrow N \xrightarrow{(CH_2)n} PO(OR^2)_2$$
 (5)

[式中、Vはアミノ基、ニトロ基を示し、Y、Z、R¹、R²、nは前述の通り]で表される化合物は、前記一般式(3)で表される化合物と一般式(4)で表される化合物を縮合させることによって製造することができる。

$$V$$
 Y Z $COR3 (4)$

「式中、V、Y、Z、R³は前述の通り]

反応は、式(4)のR³がハロゲン原子である酸ハライドの場合、トリエチルアミン、ピリジン等の有機塩基の存在下に塩化メチレン、1,4ージオキサン等を溶媒として用い、0℃~室温下に行うことができる。また、式(4)のR³がヒドロキシ基の場合、通常のペプチド結合形成反応に用いられる混合酸無水物法や活性エステル法によって製造することができ、好ましくは縮合剤を用いる方法が適している。反応は、DCC、DIPC、DPPA、DEPC、WSC等の縮合剤の存在下、場合によっては、DMAPを触媒として加え、反応溶媒としてはTHF、塩化メチレン、DMSO、DMFを用い、反応温度としては0℃~室温下に行うことができる。

前記合成経路において一般式(7)で表される化合物は、一般式(6)で表される化合物を還元することによっても製造することができる。

[式中、Y、Z、R¹、R²、nは前述の通り]

反応は、水素雰囲気下、Pd/C、ラネーニッケル、酸化白金等の存在下にメタノール、エタノール、DMF、1,4ージオキサン、THF等を溶媒として用い、室温から加熱下に反応させることができる。また、鉄、亜鉛、四塩化スズの存在下、酢酸、水ーエタノール混液、水ーTHF等を溶媒として用い、室温から加熱下に反応させることもできる。

前記一般式 (1) で表される化合物の中、 R ' がカルボキシル基

である化合物、即ち一般式(11)

$$\begin{array}{c|c} & & & \\ \hline & & \\$$

[式中、W、X、Y、Z、 R^2 、nは前述の通り]で表される化合物は、一般式(10)で表される化合物を加水分解することによっても製造することができる。

$$W$$
 X
 Y
 Z
 N
 $(CH_2)n$
 $PO(OR^2)_2$ (10)
 CO_2R^4

[式中、 R^4 は炭素数 $1\sim 4$ の低級アルキル基を示し、W、X、Y、Z、 R^2 、n は前述の通り]

反応は、メタノール、エタノール、DMSO、DMF等の溶媒を用い、水酸化ナトリウム水溶液、水酸化カリウム水溶液、水酸化リチウム水溶液等のアルカリ水溶液を加え、反応温度は限定されないが0℃~室温下で行うことができる。

発明を実施するための最良の形態

次に、本発明を具体例によって説明するが、これらの例によって 本発明が限定されるものではない。

アミノメチルホスホン酸ジエチル、アミノエチルホスホン酸ジエチル、アミノプロビルホスホン酸ジエチルは、Org. Synth., 65, 119 (1987)、Bull. Chem. Soc. Jpn., 45, 2531 (1972)、Helv. Chim. Acta, 75,

2545 (1992)を、アミノ(ジエトキシホスホリル)酢酸エチルは Synthesis, 580 (1996)を、アミノメチレンビスホスホン酸ジエチルは Syn. Commun., 26, 2037 (1996)を参考に合成した。

参考例1

4- (ベンゾチアゾール-2-イル) アミノ-2-クロロ安息香酸

2-クロロベンゾチアゾール(2.12g)、4-アミノー2-クロロ安息香酸エチル(2.50g)の混合物を140℃にて30分間加熱撹拌した。冷後反応物をエタノールに溶解し、水を加え析出した結晶をろ取した。4- (ベンゾチアゾール-2-イル)アミノー2ークロロ安息香酸エチルエステル(3.78g)を淡黄色粉末として得た。得られたエステル(1.28g)をエタノール(20ml)に溶解し、10%水酸化ナトリウム水溶液(5ml)を加え、1時間加熱環流した。冷後エタノールを減圧留去し、残渣に水を加えた後、反応液を希塩酸でりH3とし析出した結晶をろ取した。水洗、乾燥後、目的物(1.05g)を無色粉末として得た。

参考例2

4-[(ベンゾチアゾール-2-イル)アミノ]フェニルオキシ 酢酸

2-クロロベンゾチアゾール(19.2g)と4-アミノフェニルオキシ酢酸エチル(22.0g)の1、3-ジメチルー2-イミダゾリジノン(300mI)溶液に、ビリジニウムパラトルエンスルホン酸(2.83g)を加え、140 ℃にて2時間撹拌した。反応液に水、飽和炭酸水素ナトリウム水溶液を加え、酢酸エチルで抽出した。有機層を水、飽和食塩水で洗浄後、無水硫酸ナトリウムで乾燥した。溶媒を減圧留去後、シリカゲルカラムクロマトグラフィー(展開溶媒 n- へキサン:酢酸エチル=2:1)で精製し得られた結晶をメタノールで洗浄し、4-(ベンゾチアゾールー2-イル)アミノフェニルオキシ酢酸エチル(21.5g)を無色粉末として得た。得られたエステルを参考例1と同様にアルカリ加水分解し、目的物を無色粉末として得た。

参考例3-89

参考例 1 ~ 2 と同様にして、クロル基やメチルチオ基を有する様々なヘテロ環化合物と各種アミン誘導体を反応させ、表 1 に示した化合物を合成した。

表 1

参考例	w`	×	Υ	Z	参考?	54 W	x	Y	Z
3	O'S'N	NH	-(_	23	(J _S N	NH	-{_}	OCH₂-
4	(SN N N N N N N N N N N N N N N N N N N	NH	OMe	-	24	O's	ИН	-CS-	-OCH ₂ -
5	(Ish	NH	→(∑)	- ,	25	O's"	NH	CI CI	\
6	(N N N N N N N N N N N N N N N N N N N	NH	─	-CH ₂ -	26	$\bigcirc \!$	NH	CI CI	-OCM⊕ ₂ -
7	(SN N N N N N N N N N N N N N N N N N N	NH	- €>	-SCH ₂ -	27	(CT _S ^N ,	NH	-CI	-OCH ₂ -
8	OT _S ^N	NH	-	CH ₂ CH ₂	28	$\bigcirc \!$	NH	SMe	-OCH₂-
9	(T _S ^N	NH	─	\	29	$\bigcirc \!$	NH	OMe	-OCH ₂ -
10	OT _S N	NH	-	\checkmark	30	(J _S N _N	NH	OMe	\
11	OT _S N	NH	√ >	-NHCO(CH ₂) ₂ -	31	(J _S ^N ,	NH		
12	CTS" 1	NH(CH ₂)—(32	\bigcirc $\stackrel{N}{\searrow}$	NH	NO ₂	-OCH₂-
13 N	1eO TSN	NH	√ >	CH₂	33	© N N N		NHAc	-OCH₂-
14	Me CISN	NH	~ <u>~</u>	CH₂ .	34	(Ish	NH	Ac Ac	-OCH ₂ -
15	Me S N	NH		CH ₂	35	(J _S ^N ,	NH	√ N	-OCH ₂ -
16	Me S N	NH	-	✓	36	(N _S N _N	NH	\Diamond	-OCH ₂ -
17	N N	NH	√ >	CH ₂	. 37	\bigcirc $\stackrel{N}{\searrow}$	NH	JÛ'	
18 Me	OH ₂ C T _S N	NH	- (CH ₂	38	₩ _S ^N ,	NH	d'y	·
19 F	3C SY	NH	- (<u>-</u>)-	CH₂	39	○ N S	ИН	TŶT	_
20	()six	NH	F	-OCH₂- '	40	\bigcirc $\stackrel{N}{\searrow}$	NH		-
21	\bigcirc $\stackrel{N}{\subseteq}$ $\stackrel{N}{\subseteq}$	NH	CI	-OCH ₂ -	41	(J _S ^N ,	NH	Ci	_
22	(S ^N , N	NH	Me	-OCH ₂ -	42	(J _S ^N ,	NH		-

参考(列 W	Х	Y	Z .	参考例		Х	Y	Z
43	N S	NH :	-	CH₂	61	N N N CF ₃	NH	Me —	-OCH ₂ -
44		NH	─	\(62		NIL.	NO₂	-OCH ₂ -
45	N	NH	-()-	\(\lambda \)	02	N N CF ₃	NH	-(_)_	-OCH2*
46	S S	ΝН	− (¯)−	\	63	N N N N N N N N N N N N N N N N N N N	NH	CI CI	-OCH ₂ -
47	CINN	NH	-	\		CF₃ N			
48	ÇI N N	NH	-	\	64	CF ₃	NH		-OCH ₂ -
49	(INTOH	NH	-	\	65	N .	NH	-(_)-	\
50	N N	NH	—	\		N ₇ CI		(=)	
51	NE ^{t2}	NH		<u></u>	66	N~SMe	NH	~ >-	
52	N N	NH	- (>-	\	67	N	NH	- ⟨□}-	\
	CF ₃				68	N SMe	NH		\
53	N N SMe	NH	<u>-(_</u>)>-	\	69	Ny NEt ₂	NH	-	%
54	N SMe	NH		\	70		NH	-{	\(\lambda
55	N OEt	NH	-	\	71	NEt ₂	NH	- (_)-	\
56	N OEI	NH		\(\lambda \)	72	N N N OEt	NH	-	\(\lambda \)
57	Ph N NEt ₂	NH	~ <u></u>	\(\lambda \)	73	S NN NEt ₂	NH	-	·/~
58	Ph NEt ₂	NH	-	<u>~</u>	74	S NEt2	NH		-OCH₂-
59	Me N N N N Me	NH	-<>-	\	75	N NEt ₂	NH	-(_)-	\
60	CF ₃	NH	OMe	-OCH₂-	76	S N OEI	NH		<u> </u>

参考例	W	X	Υ	Z	参考例	w	×	Y	Z
77	SOH	NH	-(\(\)	84 .	$\mathbb{Q}_{\mathbb{N}}^{\mathbb{N}}$		OMe	-OCH ₂ -
78	NH NH	NH	-(_)-	\	85	\mathbb{Q}_{N}^{2}	NH	Me ————————————————————————————————————	-OCH ₂ -
79	N Me	NH	-(_)-	\	86	\mathbb{Q}_{N}^{2}	NH	CI	-OCH ₂ -
80	N N N	NH	-	\\	87		NH	NO₂	-OCH ₂ -
81		NH	√ _	CH ₂ CH ₂	88	$\mathbb{O}_{\mathbb{N}}$	NH		
82	$\mathbb{Q}_{\mathbb{N}}$	NH	-(_)	\(89	$\mathbb{Q}_{\mathbb{N}}^{\mathbb{N}}$	NH		-OCH ₂ -
83		NH	-(5)-	<u> </u>				ı	

参考例90

2-[(6-メチルベンゾチアゾール-2-イル) アミノ]-1,3-チアゾール-4-酢酸

1) N-ベンゾイル-N'-(6-メチルベンゾチアゾール-2-イル) チオ尿素

チオシアン酸アンモニウム (3.80g) のTHF (100ml) 溶液に室温撹拌下、ベンゾイルクロライド (7.00g) を加え、その後 5 分間加熱還流した (ベンゾイルイソチオシアネートの調製)。反応液に 2 ーアミノー 6 ーメチルベンゾチアゾール (8.20g) を加え、さらに 1 時間加熱還流した。溶媒を減圧留去し、残渣に水を加え析出した結晶をろ取した。結晶を熱エタノールで洗浄し、目的物 (7.71g) を淡黄色粉末として得た。

2) 2-[(6-メチルベンゾチアゾール-2-イル) アミノ]-1, 3-チアゾール-4-酢酸エチルエステル

上記のチオ尿素(7.52g)、水酸化リチウム1水和物(5.58g)を水(70ml)に溶解し、20分間加熱還流した。冷後、反応液に希塩酸を加えpH1とし、ついでアンモニア水でpH10とし水浴上で加温後放冷した。析出した結晶をろ取し、酢酸エチルーTHF-DMF-イソプロピルエーテルより再結晶した。N-(6-メチルベンゾチアゾール-2-イル)チオ尿素(1.37g)を無色針状晶として得た。得られたチオ尿素(1.30g)をTHF(50ml)に溶解し、4-クロロアセト酢酸エチル(5.00g)、DMAP(0.05g)を加え、20時間加熱還流した。溶媒を減圧留去し、得られた粉末に飽和炭酸水素ナトリウム水溶液を加え、酢酸エチルで抽出した。有機層を飽水素ナトリウム水溶液を加え、酢酸エチルで乾燥し、溶媒を減圧留去

した。得られた結晶をTHF-イソプロピルエーテル-イソプロピルアルコールから再結晶し、目的物(0.60g)を乳白色針状晶として得た。

3) 2-[(6-メチルベンゾチアゾールー2-イル) アミノ]-1, 3 -チアゾールー4-酢酸

上記エステル体を参考例1と同様にアルカリ加水分解し、目的物を無色粉末として得た。

参考例91

4'-(ベンゾチアゾール-2-イル) 桂皮酸

1) 4-(ベンゾチアゾール-2-イル) ベンズアルデヒド

2-(p-トリル)ベンゾチアゾール(2.42g)、N-ブロモコハク酸イミド(2.10g)、過酸化ベンゾイル(0.10g)の四塩化炭素(100ml)溶液を4時間加熱還流した。冷後、析出した結晶をろ去し、有機層を飽和炭酸水素ナトリウム水溶液で洗浄後無水硫酸ナトリウムで乾燥した。溶媒を減圧留去し、粗2-(4-ブロモメチルフェニル)ベンゾチアゾール(3.31g)を無色粉末として得た。得られたブロモ体(3.04g)とヘキサメチレンテトラミン(2.80g)を酢酸ー水(1:1)の50ml混液に溶解し、100℃にて2時間加熱撹拌した。ついで濃塩酸20mlを加え、同温にてさらに15分間加熱撹

拌した。冷後、水を加え析出した結晶をろ取し、よく乾燥した。得られた結晶をシリカゲルカラムクロマトグラフィー (展開溶媒 酢酸エチル: n- n

2) 4'-(ベンゾチアゾール-2-イル) 桂皮酸

上記アルデヒド (1.29g) とエトキシカルボニルメタンホスホン酸ジエチル (1.46g) の D M S O (30ml) 溶液を室温にて撹拌下、6 0 %水素化ナトリウム油性 (0.26g) を加えた。その後、同温にて1時間撹拌した後、水を加え析出した結晶をろ取した。乾燥後、得られた結晶をシリカゲルカラムクロマトグラフィー (展開溶媒 酢酸エチル: n - へキサン=1:3) にて精製し、4 - (ベンゾチアゾールー2-イル) 桂皮酸エチルエステル (1.55g) を黄色粉末として得た。得られたエステルを参考例1と同様にアルカリ加水分解すると、目的物が黄色粉末として得られた。

参考例 9 2

4'-[(2-クロロビリジン-5-イル)カルボニル]アミノ 桂皮酸

2-クロロピリジンー5カルボン酸 (0.47g) と4 $^{\prime}$ $^{\prime}$ $^{\prime}$ $^{\prime}$ $^{\prime}$ $^{\prime}$ $^{\prime}$ $^{\prime}$ を 酸エチル (0.63g) の D M F (20ml) 溶液に、 W S C (0.86g) を 加え室温にて 8 時間撹拌した。 反応液に水を加え、 析出した結晶を $^{\prime}$ $^{\prime}$

取し、水、飽和炭酸水素ナトリウム水溶液、水の順によく結晶を洗浄した後乾燥した。

4'-[(2-クロロビリジン-5-イル)カルボニル]アミノ 桂皮酸エチル(0.95g)を黄色粉末として得た。得られた結晶を参考 例1と同様にアルカリ加水分解し、目的物を黄色粉末として得た。

参考例 9 3

4'-[(5-クロロ-1-フェニルインドール-2-イル) カルボニル] アミノ桂皮酸

5-クロロー1-フェニルインドールー2-カルボン酸と4'-アミノ桂皮酸エチルを用い、参考例92と同様に反応させ目的物を 黄色粉末として得た。

参考例 9 4

4'-[(6-メチルベンゾチアゾール-2-イル) カルボニル] アミノ桂皮酸

6-メチルベンゾチアゾール-2-カルボン酸と4,-アミノ桂

皮酸エチルを用い、参考例92と同様に反応させ目的物を黄色粉末として得た。

実施例1

[4'-(ベンゾチアゾール-2-イル)シンナモイル]アミノメタンホスホン酸ジエチル

$$S$$
 $PO(OEt)_2$

参考例 9 1 の化合物 (0.28g) とアミノメタンホスホン酸ジエチル (0.25g) の D M F (30ml) 溶液に、W S C (0.38g)、D M A P (0.10g) を加え室温にて 1 0 時間撹拌した。反応液に水を加えた後、酢酸エチルで抽出し、有機層を水、飽和炭酸水素ナトリウム水溶液、水、希塩酸、水、飽和食塩水の順で洗浄後、無水硫酸ナトリウムで乾燥した。溶媒を減圧留去し、残渣をシリカゲルカラムクロマトグラフィー (展開溶媒 塩化メチレン:エタノール=15:1) にて精製し、目的物 (0.30g) を無色粉末として得た。融点 182-183 C $(AcOEt-iPr_2O)$

元素分析値(%): C21 H23 N2O4 PSとして

C H N

計算值: 58.60 5.39 6.51

実測値: 58.81 5.48 6.56

<u>実施例2~202</u>

参考例化合物と各種アミノホスホン酸エステルを用いて、実施例 1と同様に行い表 2 に示す化合物を得た。 表 2

実施	例 V	ı` 	×	Y	Z	n	R ¹	R²	融点(℃) (再結晶溶媒)	元素分析値 計算値/実測値 C、H、N
2		−N S	. —	-	\(1	Н	Et	138-139 (AcOEt-iPr ₂ O)	C ₂₂ H ₂₅ N ₂ O ₄ PS 59.45, 5.67, 6.30 59.22, 5.64, 6.30
3	Me	T _S V.	NH	─	-CH ₂ -	0	Н	Et	146-148	C ₂₁ H ₂₆ N ₃ O ₄ PS 56.37, 5.86, 9.39 56.07, 5.69, 9.41
4		Ts.Y	NH	-⟨ ∑̄	-CH ₂ -	1	Н	Εt	油状物	C ₂₂ H ₂₈ N ₃ O ₄ PS 57.25, 6.12, 9.10 57.00, 6.13, 9.06
5	Me	T _S N	ИН	─	-ĊH ₂ -	2	Н	Et	油状物	C ₂₃ H ₃₀ N ₃ O₄PS MS 475
6	Me	T _S N.	NH	- (\	0	Н	Et	225-227	C ₂₂ H ₂₆ N ₃ O ₄ PS 57.51, 5.70, 9.14 57.53, 5.78, 9.10
7	Me 💭	L ^N	NH	- (\(\)	1 .	Н	Et	油状物	C ₂₃ H ₂₈ N ₃ O ₄ PS 57.90, 6.00, 8.81 57.82, 5.89, 8.69
8	Me Me	L ^N	NH	─	\(\)	2	н	Et	油状物	C ₂₄ H ₃₀ N ₃ O ₄ PS 59.12, 6.20, 8.62 58.99, 6.23, 8.71
9		-N	NH	-⟨ ¯⟩-	-CH ₂ -	0	Н	Et	206.5-207.5	C ₂₁ H ₂₆ N ₃ O ₄ PS 56.37, 5.86, 9.39 56.37, 5.80, 9.55
10	Me	SN	NH	─	-CH ₂ -	0	Н	Et	152-154	C ₂₁ H ₂₆ N ₃ O ₄ PS 56.37, 5.86, 9.39 56.36, 5.79, 9.38
11	MeO	T _S .	NH	─	-CH ₂ -	0	Н	Et	170-171	C ₂₁ H ₂₆ N ₃ O ₅ PS 54.42, 5.65, 9.07 54.16, 5.56, 9.11
12	F ₃ C	S	NH	─	-CH ₂ -	0	, Н	Et	205.5-207.0	C ₂₁ H ₂₃ F ₃ N ₃ O ₄ PS 50.30, 4.62, 8.38 50.16, 4.50, 8.41
13 ^{.1}	MeO	I _S Y	. NH	-⟨ >	-CH ₂ -	. 0	Н	Et	154-155 (CH ₂ Cl ₂ -iPr ₂ O)	C ₂₂ H ₂₈ N ₃ O ₅ PS 55.34, 5.91, 8.80 55.27, 5.70, 8.97
14	Me C	N S	CONH	_	-CH ₂ -	0	н	Et	148.5-150.0	C ₂₂ H ₂₆ N ₃ O ₅ PS 55.57, 5.51, 8.84 55.49, 5.41, 8.80
15	Me C	¬N S	CONH	_	\	0	Н	Et	194-196	C ₂₃ H ₂₆ N ₃ O ₅ PS 56.67, 5.38, 8.62 56.48, 5.37, 8.82
16	\bigcirc s	Ņ	NH(CH ₂) ₂	- (_)-	_	0	н	Et	144.5-146.0	C ₂₁ H ₂₆ N ₃ O ₄ PS 56.37, 5.81, 9.39 56.12, 5.76, 9.27
17	\bigcirc s	Ż	NH(CH ₂) ₂	-		- 1	Н	Et	油状物	22H ₂₈ N ₃ O ₄ PS,1/5H ₂ O 56.81, 6.15, 9.03 56.78, 6.12, 8.84
18		N.	NH —	— -NH	ICO(CH ₂);	₂ - 0	н	Et	193.5-195.0	C ₂₂ H ₂₇ N ₄ O ₅ PS 53.87, 5.55, 11.42 53.66, 5.49, 11.44
19	Q,	- Z	NH —	NH	ICO(CH ₂)	2 ⁻ 1	н	Εt	125-127	C ₂₃ H ₂₉ N ₄ O ₅ PS 54.75, 5.79, 11.10 54.81, 5.85, 11.11

実施例	w	x	Y	Z	n	R ¹	R ²	融点 (℃) (再結晶溶媒)	元素分析値 計算値/実測値 C、H、N
20	N	NH	-(>	^	1	Н	Et	153.0-154.5 (AcOEt-iPr ₂ O)	C ₂₂ H ₂₆ N ₃ O ₄ PS 57.51, 5.70, 9.14 57.23, 5.64, 9.04
21	()s	NH	- ⟨∑}-	~	2	Н	Et	154-156 (iPr ₂ O-iPrOH)	C ₂₃ H ₂₈ N ₃ O ₄ PS 58.34, 5.96, 8.87 58.19, 5.90, 8.76
22.	S.	NH	- ⟨>-		0	Н	Et -	amorphous	C ₂₁ H ₂₄ N ₃ O ₄ PS 56.62, 5.43, 9.43 56.83, 5.49, 9.50
23	S, N	NH	─		1	Н	Et	161.5-163.5	C ₂₂ H ₂₆ N ₃ O ₄ PS 57.51, 5.70, 9.14 57.51, 5.56, 9.16
24	OT _S N	NH	- (<u>-</u>)-	-OCH ₂ -	0	H	Et	116-117	C ₂₀ H ₂₄ N ₃ O ₅ PS 53.45, 5.38, 9.35 53.40, 5.33, 9.34
25	OT _S N	NH	-	-OCH ₂ -	1	Н	Et	128.5-130.5	C ₂₁ H ₂₆ N ₃ O ₅ PS 54.42, 5.65, 9.07 54.44, 5.68, 9.04
26	(Ish	NH	-(_)_	-SCH₂-	0	Н	Et	150.5-151.5 (AcOEt)	C ₂₀ H ₂₄ N ₃ O ₄ PS ₂ 51.60, 5.20, 9.03 51.59, 5.14, 9.00
27	(Is	NH	-	-SCH ₂ -	1	Н	Et	169.5-170.5 (AcOEt)	C ₂₁ H ₂₆ N ₃ O ₄ PS ₂ 52.60, 5.46, 8.76 52.54, 5.41, 8.78
28	(S ^N N	NH		-SOCH₂-	0 .	Н	Et	182.5-184.5	C ₂₀ H ₂₄ N ₃ O ₅ PS ₂ 49.89, 5.02, 8.73 49.59, 4.88, 8.59
29	OT _S N	NH	─	-SOCH₂-	1	Н	Et	175-177	C ₂₁ H ₂₆ N ₃ O ₅ PS ₂ 50.90, 5.29, 8.48 50.53, 5.19, 8.33
30	(J _S N	NH	─	-SO ₂ CH ₂ -	0	н	Et .	188,5-190.0	C ₂₀ H ₂₄ N ₃ O ₆ PS ₂ 48.28, 4.86, 8.45 48.20, 4.71, 8.42
31	(J _S N	NH	-	-SO ₂ CH ₂ -	1	Н	Et	150.5-152.0	C ₂₁ H ₂₆ N ₃ O ₆ PS ₂ 49.31, 5.12, 8.21 49.25, 5.06, 8.21
32	(Is	NH		_	0	Н	Et	199-200	C ₁₉ H ₂₂ N ₃ O ₄ PS 54.41, 5.29, 10.02 54.59, 5.22, 10.04
33	(T _S !	NH	-		1	Н	Et	239-240 (AcOEt)	C ₂₀ H ₂₄ N ₃ O ₄ PS 55.42, 5.58, 9.69 55.64, 5.56, 9.64
34	O'S'N	NH	-	-CH ₂ -	0 .	Н	Et	194-196 (AcOEI)	C ₂₀ H ₂₄ N ₃ O ₄ PS HRMS 433.1225 433.1245
35	() _S N	NH	-	-CH ₂ -	1	н	Et	amorphous	C ₂₁ H ₂₆ N ₃ O ₄ PS HRMS 447.1382 447.1367
36	SZ.	NH	-(_)-	-CH ₂ -	2 .	н	Et	amorphous	C ₂₂ H ₂₈ N ₃ O ₄ PS HRMS 461.1538 461.1571
37	() _S N	NH	- (<u>-</u>)-	CH ₂ CH ₂	0	Н	Et	163-165 (AcOEt)	C ₂₁ H ₂₆ N ₃ O ₄ PS 56.36, 5.86, 9.39 56.44, 5.81, 9.29
38	(Is	NH	─	CH ₂ CH ₂	1	н	Et	166-167	C ₂₂ H ₂₈ N ₃ O ₄ PS 57.25, 6.12, 9.10 57.37, 6.11, 9.06
39	T _S N	NH	- (\$\tau	CH ₂ CH ₂	2	Н	Et	amorphous	C ₂₃ H ₃₀ N ₃ O ₄ PS HRMS 475.1695 475.1726

実施例	w	x	Υ	Z.	n	R ¹	R ²	融点 (℃) (再結晶溶媒)	元素分析値 計算値/実測値
	~								<u>C, H, N</u>
40	N _S N	NH	─ ◯─	\(0	H.	Et	173-175 (AcOEt-iPr ₂ O)	C ₂₁ H ₂₄ N ₃ O ₄ PS 56.62, 5.43, 9.43 56.58, 5.30, 9.39
41 (J _S N	NH	- ⟨□}-	\(\sigma\)	0	н	iPr	204.5-206.0 (EtOH)	C ₂₃ H ₂₈ N ₃ O ₄ PS 58.34, 5.96, 8.87 58.10, 5.93, 8.84
42 (J _S N	· NH	Me_	-OCH ₂ -	0	Н	Et	amorphous	C ₂₁ H ₂₆ N ₃ O ₅ PS HRMS 463.1331 463.1307
43 (J _S ^N	NH	Me	-OCH ₂ -	1,	Н	Et	amorphous	C ₂₂ H ₂₈ N ₃ O ₅ PS HRMS 477.1487 477.1514
44 (N _S N	NH	——————————————————————————————————————	-OCH ₂ -	0	н	Et	119-121	C ₂₁ H ₂₆ N ₃ O ₅ PS HRMS 463.1331 463.1310
45 (J _S N	NH	—⟨¯}— Me	-OCH ₂ -	1 .	Н	Εt	amorphous	C ₂₂ H ₂₈ N ₃ O ₅ PS HRMS 477.1487 477.1490
46	T _S N	NH	- \ -	-OCH ₂ -	0	н	Εt	amorphous	C ₂₀ H ₂₃ FN ₃ O ₅ PS HRMS 467.1018 467.1043
47	T _S N	NH	- \ -\-	-OCH ₂ -	1	Н	Et	amorphous	C ₂₁ H ₂₆ FN ₃ O ₅ PS HRMS 482.1315 (FAB) 482.1290
48	T _S N	NH	CI	-	0	н	Et	165-166 (AcOEI-iPr ₂ O)	C ₁₉ H ₂₁ CIN ₃ O ₄ PS 50.28, 4.66, 9.26 50.37, 4.57, 9.33
49 (J _S N	NH	CI	_	1	Н	Et	165-166 (AcOEt-iPr ₂ O)	C ₂₀ H ₂₃ CIN ₃ O₄PS 51.34, 4.95, 8.98 51.07, 4.88, 8.92
50	T _S N	NH	-CI	-OCH ₂ -	0	Н	Et	169.0-170.5	C ₂₀ H ₂₃ CIN ₃ O ₅ PS 49.64, 4.79, 8.68 49.79, 4.66, 8.78
51	I _S N	NH	-CI	-OCH ₂ -	1	Н	Et	amorphous	C ₂₁ H ₂₅ CIN ₃ O ₅ PS HRMS 497.0941 497.0932
52	J _S Ľ	NH	NHAc	-OCH ₂ -	0	Н	Et	169-171	C ₂₂ H ₂₇ N ₄ O ₆ PS 52.17, 5.37, 11.06 52.52, 5.30, 11.10
53 (J _S N	NH	NHAc	-OCH ₂ -	1	н	Et	182-183	C ₂₃ H ₂₉ N ₄ O ₆ PS 53.07, 5.62, 10.76 53.22, 5.50, 10.74
54	J _S Ľ	NH	OMe	-	0	, • H .	Et	160-161 (AcOEt-iPr ₂ O)	C ₂₀ H ₂₄ N ₃ O ₅ PS 53.45, 5.38, 9.35 53.46, 5.33, 9.38
55 (TSN	NH	OMe	·	1	H	Et	148-149 (AcOEt-iPr ₂ O)	C ₂₁ H ₂₆ N ₃ O ₆ PS 54.42, 5.65, 9.07 54.54, 5.63, 9.05
56	J _S N	NH	OMe	-OCH ₂ -	0	Н	Et	128.5-129	C ₂₁ H ₂₆ N ₃ O ₆ PS 52.60, 5.47, 8.76 52.49, 5.35, 8.77
57	T _S ^N	NH	OMe	-OCH ₂ -	1'	н	Εt	153-155	C ₂₂ H ₂₈ N ₃ O ₆ PS 53.54, 5.72, 8.51 53.53, 5.64, 8.45
58	Ts	NH	ОН	_	0	н	Et	192-193 (AcOEt-iPr ₂ O)	C ₁₉ H ₂₂ N ₃ O ₅ PS 52.41, 5.09, 9.65 52.35, 5.04, 9.63
59	T _s ^N	NH	ОН		1	Н	Et	amorphous	C ₂₀ H ₂₄ N ₃ O ₅ PS HRMS 449.1174 449.1185

実施例	W.	X	Y	Z	n	R ¹	R²	融点(℃) (再結晶溶媒)	元素分析値 計算値/実測値 C、H、N
60	N _S N _N	NH	Ac Ac	-OCH ₂ -	0	н	Et	157.5-159	C ₂₂ H ₂₆ N ₃ O ₆ PS 53.76, 5.33, 8.55 53.58, 5.24, 8.47
61	() S	NH	Ac	-OCH ₂ -	1	Н	Et	154-155	C ₂₃ H ₂₈ N ₃ O ₆ PS 54.65, 5.58, 8.31 54.70, 5.50, 8.14
62	CT _S N.	NH	SMe	-OCH ₂ -	0	Н	Et	155-157	C ₂₁ H ₂₆ N ₃ O ₅ PS ₂ 50.90, 5.29, 8.48 50.90, 5.23, 8.50
63	(SN N N N N N N N N N N N N N N N N N N	NH	SMe	-OCH ₂ -	1	Н	Et	158-159	C ₂₂ H ₂₈ N ₃ O ₅ PS ₂ 51.85, 5.54, 8.25 51.64, 5.39, 8.18
64	(I)	NH	OMe	\	0	H .	Et	176.5-177.0	C ₂₂ H ₂₆ N ₃ O ₅ PS 55.57, 5.51, 8.84 55.60, 5.36, 8.76
65	ST, N	NH	OMe	\(1	H	Et	amorphous	$C_{23}H_{28}N_3O_5PS$ HRMS 489.1487 489.1518
66	SN SN	NH	CI CI	-OC(Me) ₂	- 0	Н	Et	165.5-168.0	C ₂₂ H ₂₇ ClN ₃ O ₅ PS 51.61, 5.32, 8.21 51.88, 5.32, 8.19
67	SN	NH		-OC(Me) ₂ .	- 1	Н	Et	amorphous	C ₂₃ H ₂₉ CIN ₃ O ₅ PS HRMS 525.1254 525.1248
68	S	NH	CI	\(0	Н	Et	174.5-182.5	C ₂₁ H ₂₃ CIN ₃ O ₄ PS 52.56, 4.83, 8.76 52.74, 5.03, 8.77
69	(S ^N , N	NH	CI	~	1	Н	Et	amorphous	C ₂₂ H ₂₅ ClN ₃ O ₄ PS,1/5H ₂ O 53.11, 5.15, 8.45 53.06, 5.03, 8.44
70	(T _S N	NH	NO ₂	-OCH ₂ -	0	н	Et	214-217	C ₂₀ H ₂₃ N ₄ O ₇ PS 48.58, 4.69, 11.33 48.82, 4.53, 11.37
71	SN	NH	NO ₂	-OCH ₂ -	1	Н	Et	158.5-160.0	C ₂₁ H ₂₅ N ₄ O ₇ PS 49.60, 4.96, 11.02 49.65, 4.80, 11.00
72	OTS!	NH		-OCH ₂ -	0	. Н	Et	amorphous	C ₂₀ H ₂₂ Cl ₂ N ₃ O ₅ PS HRMS 517.0395 517.0383
73	(J _S ^N	NH	CI	-OCH ₂ -	1	Н	Et	amorphous	C ₂₁ H ₂₅ Cl ₂ N ₃ O ₅ PS HRMS 532.0630 (FAB) 532.0602
74	(J _S ^N	NH	CI	-OCH ₂ -	0	·Н	Et	amorphous	C ₂₀ H ₂₃ CIN ₃ O ₅ PS HRMS 483.0785 483.0792
75	O _S ^N	NH	CI	-OCH ₂ -	1	н	Et	114.0-115.5	C ₂₁ H ₂₅ CIN ₃ O ₅ PS HRMS 497.0941 497.0946
76	() _S N	NH	-{\(\bar{\pi}\)	-OCH ₂ -	0	Н	Et	141-142	C ₂₀ H ₂₃ FN ₃ O ₅ PS 51.39, 4.96, 8.99 51.24, 4.86, 9.05
77	N _S N	NH		-OCH ₂ -	1	Ĥ	Et	amorphous	C ₂₁ H ₂₅ FN ₃ O ₅ PS HRMS 481.1237 481.1247
78	N _S N	NH			0	н	Et	159-160	C ₂₁ H ₂₂ N ₃ O ₅ PS 54.90, 4.83, 9.15 54.62, 4.78, 9.15

実施例	W	×	Y	Z	n	R ¹	R²	融点(℃) (再結晶溶媒)	元素分析値 計算値/実測値 C、H、N
79	ST N	NH		_	1	н	Et	139-140	C ₂₂ H ₂₄ N ₃ O ₅ PS 55.81, 5.11, 8.87 55.81, 5.11, 8.87
80	S, N	NH	N°	_	0	Н	Et	120.5-122.0	C ₂₂ H ₂₆ N ₃ O ₅ PS 55.57, 5.51, 8.84 55.59, 5.43, 8.92
81	S	NH	Q°	_	1	Н.	Et	150-151	C ₂₃ H ₂₈ N ₃ O ₅ PS 56.43, 5.77, 8.58 56.49, 5.80, 8.57
82	(Is	NH		_	0	Н	Et	258.0-260.5	C ₂₂ H ₂₂ N ₃ O ₆ PS HRMS 487.0967 487.0952
. 83	(SN N N N N N N N N N N N N N N N N N N	NH			1	Н	Et	222-224	C ₂₃ H ₂₄ N ₃ O ₆ PS 55.09, 4.82, 8.38 54.90, 4.73, 8.34
84	() _s N	NH	CI') <u> </u>	0	Н	Εť	214.0-215.5	C ₂₂ H ₂₂ N ₃ O ₆ PS 54.21, 4.55, 8.62 53.97, 4.47, 8.65
85	OTS!	NH .	CI	· –	. 1	Н	Et	213.5-215.0	C ₂₃ H ₂₄ N ₃ O ₆ PS 55.09, 4.82, 8.38 54.87, 4.72, 8.34
86	S, N	NH	CT°		0	Н	Et	amorphous	C ₂₂ H ₂₆ N ₃ O ₅ PS HRMS 475.1331 475.1306
87	(Isin	NH	JY.		1	н	Et	油状物	C ₂₃ H ₂₈ N ₃ O ₅ PS, 1/5H ₂ O 56.02, 5.80, 8.52 55.94, 5.74, 8.53
88	O N	NH		-OCH₂-	0	Н	Et	181-182	C ₂₄ H ₂₆ N ₃ O ₅ PS HRMS 499.1331 499.1347
89	ST.N	ИН		-OCH ₂ -	- 1	Н	Et	171-173	C ₂₅ H ₂₈ N ₃ O ₅ PS HRMS 513.1487 513.1474
90	(Ish	NH .	√ N	-OCH ₂ -	0	H	Et	135-136	C ₁₉ H ₂₃ N ₄ O ₅ PS 50.66, 5.15, 12.24 50.78, 5.30, 12.43
91	(T _S N	NH	-€ <u>`</u> }-	-OCH₂-	1	H	Et	145.0-147.5	C ₂₀ H ₂₅ N ₄ O ₅ PS 51.72, 5.43, 12.06 51.97, 5.65, 11.85
92	() S	NH '			0	·H	Et	210.0(dec.)	C ₂₂ H ₂₂ CIN ₄ O ₄ PS 52.33, 4.39, 11.10 52.62, 4.42, 10.94
93	OTS!	NH	~NT	-CH ₂ -	1	Н	Et	amorphous	C ₁₈ H ₂₃ N ₄ O ₄ PS ₂ 47.57, 5.10, 12.33 47.30, 5.18, 11.99
94 M	e LIST	NH	→°S)	-CH ₂ -	0	н	Et	油状物	C ₁₈ H ₂₃ N ₄ O ₄ PS ₂ MS 454
95 M	e S	NH	~\s\j	-CH ₂ -	1	н	Et	150-151	C ₁₉ H ₂₅ N ₄ O ₄ PS ₂ 48.71, 5.38, 11.96 48.69, 5.21, 11.96
96 M	e S	NH	~\sum_s	-CH ₂ -	2	Н	Et	124.5-125.5 (THF-iPr ₂ O)	C ₂₀ H ₂₇ N ₄ O ₄ PS ₂ , 1/2H ₂ O 48.87, 5.74, 11.40 48.90, 5.38, 11.21

実施例	f w	×	Υ	Z	n	R ¹	R²	融点(℃) (再結晶溶媒	元素分析値 計算値/実測値) C、H、N
97	() _s ×	NH	-	CH ₂ CH ₂	0	CO ₂ Et	Et	amorphous	C ₂₄ H ₃₀ N ₃ O ₆ PS HRMS 519.1593 519.1584
98	OT,N	NH	- \$-	-OCH ₂ -	0	CO ₂ Et	Et	amorphous	C ₂₃ H ₂₈ N ₃ O ₇ PS HRMS 521.1386 521.1348
99	O _S N	·NH	OMe	-OCH ₂ -	0	CO ₂ Et	Et	amorphous	C ₂₄ H ₃₁ N ₃ O ₈ PS HRMS 552.1570 552.1591
100	O _S N	NH	OMe	-OCH ₂ -	0	PO(OEI) ₂	Et	amorphous	C ₂₅ H ₃₅ N ₃ O ₉ P ₂ S HRMS 615.1569 615.1595
101	O _S ^N	NH		\(0	PO(OEI) ₂	Et	amorphous	C ₂₅ H ₃₃ N ₃ O ₇ P ₂ S HRMS 581.1514 581.1494
102	N S	NH	- (<u>-</u>)-	-CH ₂ -	0	Н	Et	166-167	C ₁₉ H ₂₃ N ₄ O ₄ PS 52.53, 5.34, 12.90 52.43, 5.42, 12.78
103	N S	NH	─	-CH ₂ -	1	н	Et	152.5-153.5	C ₂₀ H ₂₅ N ₄ O ₄ PS, H ₂ O 51.49, 5.83, 12.01 51.25, 5.40, 11.80
104	N S	NH	-⟨ }	-CH ₂ -	2	н	Et	136.0-137.5 (CH ₂ Cl ₂ -iPr ₂ O)	C ₂₁ H ₂₇ N ₄ O ₄ PS 54.54, 5.88, 12.11 54.54, 5.78, 12.08
105	S N NEt ₂	NH		\(\)	0	H	Et	amorphous (C ₂₄ H ₃₂ N ₅ O ₄ PS, 1/5H ₂ O 55.31, 6.27, 13.44 55.10, 6.12, 13.36
106	S NEI2	NH.	-√> .	\(\)	1	н	Et	amorphous	C ₂₅ H ₃₄ N ₅ O ₄ PS 56.48, 6.45, 13.17 56.12, 6.42, 12.90
107	S NEt ₂	NH	- ()-	-OCH ₂ -	0	Н	Et	油状物	C ₂₃ H ₃₂ N ₅ O ₅ PS HRMS 521.1862 521.1846
108	S NEt ₂	NH	-⟨⟩ -	-OCH ₂ -	1	Н	Et	油状物	C ₂₄ H ₃₄ N ₅ O ₅ PS HRMS 535.2018 535.2037
109	SHNH	NH	-{	\	0	H	Et ²	260.5-263.0 (dec (EtOH)	C ₂₀ H ₂₃ N ₄ O ₅ PS 51.94, 5.01, 12.11 51.95, 4.98, 12.08
110	SHNH	NH	-	\(\)	1	Н	Et	236-238 (EtOH)	C ₂₁ H ₂₅ N ₄ O ₅ PS HRMS 477.1362 477.1348
111	S N NEt2	NH	- (<u>-</u>)-	\(0	H	Et	161.5-162.5	C ₂₄ H ₃₂ N ₅ O ₄ PS 55.69, 6.23, 13.53 55.45, 6.14, 13.37
112	STN NEI2	NH	-(_)-	\(1	Н	Et	油状物	C ₂₅ H ₃₄ N ₅ O ₄ PS, 1/2H ₂ O 55.54, 6.52, 12.95 55.59, 6.40, 12.94
113	S N OEt	NH	-(_)-	^	0	н	Et	147.0-148.5	C ₂₂ H ₂₇ N ₄ O ₅ PS 53.87, 5.55, 11.42 53.61, 5.50, 11.16
114	S N S N OEI	NH	-	<u> </u>	1	Н	Et	amorphous	5 ₂₃ H ₂₉ N ₄ O ₅ PS, 1/5H ₂ O 54.36, 5.83, 11.03 54.21, 5.77, 11.00

									
実施例	w .	×	Y	Z	n	R ¹	R ²	融点(℃) (再結晶溶媒)	元素分析値 計算値/実測値 C、H、N
115	CINN	NH	-	\(0	Н	Et	油状物	C ₁₈ H ₂₂ CIN ₄ O ₄ P 50.89, 5.22, 13.19 51.19, 5.14, 12.91
116	CI NN CI	NH	-(_)-	~	1	. H	Et	amorphous	C ₁₉ H ₂₄ CIN ₄ O ₄ P 52.00, 5.51, 12.77 51.74, 5.41, 12.69
117	N N	NH	(-)-	\(0	H	Et	138-140 (AcOEt)	C ₂₂ H ₂₄ CIN ₄ O ₄ P, 4/5H ₇ O 54.01, 5.27, 11.45 54.08, 5.15, 11.37
118	ÇI N N	NH	-(-)-	\(\)	1	н	Et	121-123 (AcOEt-iPr ₂ O)	C ₂₃ H ₂₆ CIN ₄ O ₄ P 56.50, 5.36, 11.46 56.47, 5.29, 11.31
119 (N TOH	NH	-(-)-	\	0	н	Et	208-210 (AcOEt-iPr ₂ O)	C ₂₂ H ₂₅ N ₄ O ₄ P 57.89, 5.52, 12.27 57.68, 5.41, 12.17
120		NH	-(_)-	\	0	,Н.	Et	173-174 (AcOEt)	C ₁₉ H ₂₄ N ₃ O ₄ P 58.61, 6.21, 10.79 58.66, 6.22, 10.84
121		NH	- \$-	\(\sigma\)	1	Н	Et	137-138 (AcOEt-iPr ₂ O)	C ₂₀ H ₂₆ N ₃ O ₄ P 59.55, 6.49, 10.42 59.82, 6.59, 10.48
122	N	NH	- (<u>-</u>)-	\(0	Ή	Et	165-168 (AcOEt)	C ₁₉ H ₂₄ N ₃ O ₄ P HRMS 390.3990 (FAB) 390.1544
123	N	NH	√	\(\lambda	1	H	Et	油状物	C ₁₉ H ₂₄ N ₃ O ₄ P HRMS 404.1739 (FAB) 404.1767
124	N _→ SMe N	NH	-	^	0	Н	Et .	198-200	C ₂₃ H ₂₇ N₄O₄PS 56.78, 5.59, 11.52 56.50, 5.56, 11.36
125	N, SMe N N	NH	- (_	<u> </u>	1	Н	Et	139.5-141.5	C ₂₄ H ₂₉ N ₄ O ₄ PS 57.59, 5.84, 11.19 57.30, 5.74, 11.11
126	NYNEt ₂	NH	- (_)-	\	0	Н	Et	164.5-166.5	C ₂₆ H ₃₄ N ₅ O ₄ PS 61.05, 6.70, 13.69 60.89, 6.73, 13.52
127	NYNEt₂ N	NH	-	\	1	H	Et	amorphous	C ₂₇ H ₃₆ N ₅ O₄P 61.70, 6.90, 13.32 61.56, 7.08, 13.19
128 (N _Y Ph N	NH	- -	^	0	Н	Et	amorphous	C ₂₈ H ₂₉ N ₄ O ₄ P, 1/5H ₂ O 64.66, 5.70, 10.77 64.76, 5.68, 10.61
129 (N Ph	NH	- (<u>-</u>)-	^	1,	н	Et	amorphous	C ₂₉ H ₃₁ N ₄ O ₄ P 65.65, 5.89, 10.56 65.54, 5.96, 10.43
130	N N SMe	NH	-	^	0	н	Et	179-181	C ₂₃ H ₂₇ N ₄ O ₄ PS 56.78, 5.59, 11.52 56.97, 5.51, 10.50
131	SMe	NH	-	<u> </u>	1	H	Εŧ	amorphous	C ₂₄ H ₂₉ N ₄ O ₄ PS, 1/2H ₂ O 56.57, 5.93, 11.00 56.40, 5.80, 10.87

									
実施例	W	X	Y	Z	n	R ¹	R ²	融点(℃) (再結晶溶媒)	元素分析値 計算値/実測値 C、H、N
132	NEt ₂	NH	- (<u>-</u>)-	\(0	н	Et	172-173 (AcOEt-iPr ₂ O)	C ₂₆ H ₃₄ N ₅ O ₄ P 61.05, 6.70, 13.69 60.92, 6.68, 13.70
133 (N NEt ₂	NH	- (_)-	\(1	Н	Et	油状物	C ₂₇ H ₃₆ N ₅ O ₄ P, 1/2H ₂ O 60.66, 6.98, 13.10 60.74, 7.00, 12.99
134	OEt OEt	NH	-	\(\)	0	н	Et	amorphous	C ₂₄ H ₂₉ N ₄ O ₅ P, 3/10H ₂ O 58.84, 6.09, 11.44 58.94, 6.04, 11.49
135	OEt OEt	ИН	-	\(1	н	Et	amorphous	C ₂₅ H ₃₁ N ₄ O ₅ P 60.23, 6.27, 11.24 59.98, 6.33, 11.20
136	NYCI NYCI	NH	- (<u>-</u>)-	\(0	н	Et	235.0(dec.)	C ₂₂ H ₂₄ CIN ₄ O ₄ P 55.64, 5.09, 11.80 55.44, 5.02, 11.71
137 (NYCI N	NH	-(-)-	\(\lambda	1	Н	Et	105-107	C ₂₃ H ₂₆ ClN ₄ O ₄ P, H ₂ O 54.50, 5.57, 11.05 54.20, 5.41, 10.83
138 (NH	- (<u>-</u>)-	\(\sigma\)	0	Н	Et	243-244 (AcOEt-iP ₂ O)	C ₂₁ H ₂₆ N ₄ O ₄ P HRMS 429.1692 (FAB) 429.1702
139		NH	- (_)-	\(1	н	Et	229-230 (AcOEt-iP ₂ O)	C ₂₂ H ₂₇ N ₄ O ₄ P, 1/2H ₂ O 58.53, 6.03, 12.41 58.73, 6.07, 12.48
140	N N N	NH	-(_)-	\(. 0	Н	Et	185-187 (AcOE1-iP ₂ O)	C ₁₉ H ₂₃ N ₆ O ₄ P, 6/5H ₂ O 50.49, 5.66, 18.59 50.86, 5.39, 18.28
141	N N N	NH	- (_)-	~	1	H	Et	170-171 (AcOEt-iP ₂ O)	C ₂₀ H ₂₅ N ₆ O ₄ P, H ₂ O 51.94, 5.88, 18.17 51.73, 5.57, 17.81
142	N Me	NH	<u>-</u>	\(\lambda	0	Н	Et	195-196 (AcOEt-iP ₂ O)	C ₂₂ H ₂₈ N ₄ O ₄ P HRMS 443.1848 (FAB) 443.1877
143	N Me	NH	-	~	1	H	Et	141-142 (AcOEt-iP ₂ O)	C ₂₃ H ₂₉ N ₄ O ₄ P 60.52, 6.40, 12.27 60.22, 6.38, 12.15
144 (NH	-(_)-	\(0	Н :	Et	191-192	C ₂₃ H ₂₆ N ₃ O ₄ P 62.86, 5.96, 9.56 62.78, 5.94, 9.54
145 (NH	- (<u>-</u>)-	\(1	н	Et	143-145 (AcOEt-iPr ₂ O)	C ₂₄ H ₂₈ N ₃ O ₄ P 63.57, 6.22, 9.27 63.76, 6.23, 9.29
146		NH	-	\(\sigma\)	0 .	н	Et	223-225 (AcOEt)	C ₂₃ H ₂₆ N ₃ O ₄ P, 1/2H ₂ O 61.60, 6.07, 9.37 61.96, 6.02, 9.26
147		NH	-	\(1	н	Et	192-193 (AcOEt)	C ₂₄ H ₂₈ N ₃ O ₄ P, 1/5H ₂ O 63.07, 6.26, 9.19 62.83, 6.18, 9.17
148		NH	OMe	-OCH ₂ -	0	н	El	128-129	C ₂₃ H ₂₈ N ₃ O ₆ P HRMS 473.1716 473.1718

実施例	W	x	Y	Z	n	R ¹	R ²	融点 (℃) (再結晶溶媒)	元素分析値 計算値/実測値 C、H、N
. 149		NH	→ OMe	-OCH ₂ -	1	н	Et	122.0-123.5	C ₂₄ H ₃₀ N ₃ O ₆ P HRMS 487.1872 487.1862
150	$\mathbb{Q}_{\mathbb{N}}^{\mathbb{N}}$	NH	→ Me	-OCH ₂ -	0	н	Et	158.5-161.0	C ₂₃ H ₂₈ N ₃ O ₅ P 60.39, 6.17, 9.19 60.47, 6.17, 9.16
151		ŃН	→ Me	-OCH ₂ -	1	Н	Et	amorphous	C ₂₄ H ₃₀ N ₃ O ₅ P HRMS 471.1923 471:1917
152		NH	-⟨□}	-OCH ₂ -	0	· н	Et	181-183	C ₂₂ H ₂₅ CIN ₃ O ₅ P 55.29, 5.27, 8.79 55.05, 5.25, 8.78
153		NH		-OCH ₂ -	1	н	Et	amorphous	C ₂₃ H ₂₈ CIN ₃ O ₅ P HRMS 492.1455 (FAB) 492.1461
154	\bigcirc	NH	NO ₂	-OCH₂-	0	н	Et	215.0-216.5	C ₂₂ H ₂₅ N ₄ O ₇ P 54.10, 5.16, 11.47 54.07, 5.13, 11.43
155		NH	NO ₂	-OCH ₂ -	1	н	Et	110-111	C ₂₃ H ₂₇ N ₄ O ₇ P 54.98, 5.42, 11.15 54.98, 5.35, 11.17
156		NH	OMe	-OCH ₂ -	0	CO ₂ Et	Et	amorphous	C ₂₆ H ₃₂ N ₃ O ₈ P HRMS 545.1927 545.1946
157		NH	-	CH ₂ CH ₂	0	CO ₂ Et	Et	amorphous	C ₂₆ H ₃₂ N ₃ O ₆ P HRMS 513.2029 513.2017
158		NH	OMe	-OCH₂-	0	PO(OEt) ₂	Et	amorphous	C ₂₇ H ₃₇ N ₃ O ₉ P ₂ HRMS 609.2005 609.1990
159		NH			0	Н	Et	amorphous	C ₂₄ H ₂₈ N ₃ O ₅ P HRMS 469.1767 469.1773
160		NH			1	H	Et	amorphous	C ₂₅ H ₃₀ N ₃ O ₅ P HRMS 483.1923 483.1925
161		NH		-OCH ₂ -	0	Н	Et	amorphous	C ₂₆ H ₂₈ N ₃ O ₅ P HRMS 493.1767 493.1792
162		NH		-OCH₂-	1	H	Et	amorphous	C ₂₇ H ₃₀ N ₃ O ₅ P HRMS 507.1923 507.1926
163	[N	NH	-	\	0	H	Et	145-147 (AcOEt)	C ₁₇ H ₂₂ N ₃ O ₄ PS 51.64, 5.61, 10.63 51.49, 5.50, 10.46
164	NEt ₂	NH	- \$-	\(\)	0	Н	Et	153.5-155.0 (AcOEt-iPr ₂ O)	C ₂₂ H ₃₂ N ₅ O ₄ P 57.25, 6.99, 15.18 57.14, 6.95, 15.07
165	N NEt ₂	NH	-(-)-	~	1	Н	Et	油状物	C ₂₃ H ₃₄ N ₅ O ₄ P HRMS 475.2348 475.2346
166	N OEI	NH	-	<u>~</u>	0	н	Εt	170-171 (EtOH)	C ₂₀ H ₂₇ N ₄ O ₅ P, 1/2H ₂ O 54.17, 6.36, 12.63 54.32, 6.06, 12.77

実施例	W	X	Y	Z	n	R ¹	R²	融点((再結晶系	6(32)6/42,0(1)8
167	OEI OEI	NH	-	~	1	Н	Et	amorphous	C ₂₁ H ₂₉ N ₄ O ₅ P HRMS 448.1876 448.4832
168		NH	-(-)-	\(0	Ĥ	Et	185-186	C ₁₈ H ₂₃ N ₄ O ₄ P 55.38, 5.94, 14.35 55.20, 5.87, 14.08
169		NH	-(_)-	\	1	н	Εt	amorphous	C ₁₉ H ₂₅ N ₄ O ₄ P, 4/5H ₂ O 54.49, 6.40, 13.38 54.47, 6.28, 13.21
170	N SMe	NH	- (_)-	\	0 ·	H	Et	166-167	C ₁₉ H ₂₅ N ₄ O ₄ PS 52.29, 5.77, 12.84 52.30, 5.68, 12.79
171	N N SMe	NH	- ()-	\(1	Н .	Et	122-123	C ₂₀ H ₂₇ N ₄ O ₄ PS HRMS 450.1489 450.1492
172 M	es N	NH	- (_)-	\(0	Н	Et	185-186 (AcOEt)	C ₁₉ H ₂₅ N ₄ O ₄ PS 52.29, 5.77, 12.84 52.08, 5.70, 12.81
173 Me	SN S	NH	-(¯) -	\	1	Н	Et	137-138 (AcOEt)	C ₂₀ H ₂₇ N ₄ O ₄ PS 53.32, 6.04, 12.44 53.32, 5.94, 12.41
174 C	N N	NH ·	-(_)-	\(0	Н	Et	270 (AcOEt-iPr ₂ O)	C ₁₈ H ₂₂ CIN ₄ O ₄ P 50.89, 5.22, 13.19 50.49, 5.08, 13.10
175 C	N N Me	NH ·	- (<u>)</u> -	\	1	н	Et	182-183 (AcOEt)	C ₁₉ H ₂₄ CIN ₄ O ₄ P 52.00, 5.51, 12.77 52.05, 5.44, 12.66
176 M	le N	NH ·	-	\	0	Н	Et	152-153 (AcOEt-iP ₂ O)	C ₂₀ H ₂₇ N ₄ O ₄ P 57.41, 6.50, 13.39 57.29, 6.43, 13.11
177 M	Me N N N	NH -	-	^	1	Н	Et	75-77 (AcOEt-iP ₂ O)	C ₂₁ H ₂₉ N ₄ O ₄ P, H ₂ O 55.99, 6.94, 12.44 55.92, 6.78, 12.37
178 PI	NEt ₂	NH -	- (<u>-</u>)-	\	0	Н	Εt	152.0-153.5	C ₂₈ H ₃₆ N ₅ O ₄ P 62.56, 6.75, 13.03 62.47, 6.70, 13.05
179	N NEt ₂	NH -	-	\	1	Н	Et	amorphous	C ₂₉ H ₃₈ N ₅ O₄P HRMS 551.2661 551.2667
180 _{Pi}	NEt ₂	NH -	~ <u></u>	\(0	Н	Et	183.0-184.5	C ₂₈ H ₃₆ N ₅ O ₄ P 62.56, 6.75, 13.03 62.83, 6.78, 13.10
¹⁸¹ PI	NEt ₂	NH -	-	~	. 1	Ĥ	Et	170.5-171.5	C ₂₉ H ₃₈ N ₅ O ₄ P, 1/2H ₂ O 62.13, 7.01, 12.49 62.15, 6.93, 12.50
182 F ₃ (NH _	OMe	-OCH ₂ -	٥.	CO ₂ Et	Et	117.0-118.5	C ₂₂ H ₂₈ F ₃ N ₄ O ₈ P 46.81, 5.00, 9.93 46.88, 4.85, 9.99
¹⁸³ F ₃ (NH	OMe	-OCH ₂ -	0	PO(OEt) ₂	Et	amorphous	C ₂₃ H ₃₃ F ₃ N ₄ O ₉ P ₂ HRMS 628.1675 628.1661
184 _{F3}	CNY	NH -	-	<u> </u>	0	Н	Et	172-173 (AcOEI-iPr ₂ O)	C ₁₉ H ₂₂ F ₃ N ₄ O ₄ P 49.79, 4.84, 12.22 49.71, 4.77, 12.13

実施例	l w	×	Υ	Z	n	R ¹	R ²	融点(℃) (再結晶溶媒)	元素分析値 計算値/実測値 C、H、N
185	F ₃ C N	NH	-(-)-	\(\lambda \)	1	Н	Et	135-136	C ₂₀ H ₂₄ F ₃ N ₄ O ₄ P 50.85, 5.12, 11.86 50.74, 4.97, 11.83
186	F ₃ C N	NH	Me	-OCH ₂ -	0	Н	Et	145-146	C ₁₉ H ₂₄ F ₃ N ₄ O ₅ P 47.90, 5.08, 11.76 48.07, 5.01, 11.68
187	F ₃ C N	. NH	Me	-OCH₂-	1	н	Et	amorphous	$C_{20}H_{26}F_3N_4O_5P$ HRMS 490.1593 490.1595
188	F ₃ C N	NH	NO ₂	-OCH ₂ -	0	н.	Et	148.0-150.5	C ₁₈ H ₂₁ F ₃ N ₅ O ₇ P 42.61, 4.17, 13.80 42.68, 4.01, 13.89
189	F ₃ C N	NH	NO ₂	-OCH ₂ -	1	. н	Et	152-153	C ₁₉ H ₂₃ F ₃ N ₅ O ₇ P 43.77, 4.45, 13.43 43.89, 4.41, 13.32
190	F ₃ C N	NH		-OCH ₂ -	0	н	Et	amorphous	C ₂₂ H ₂₄ F ₃ N ₄ O ₅ P HRMS 512.1436 512.1435
191	F ₃ C N	NH		-OCH ₂ -	1	Н	Et	amorphous	C ₂₃ H ₂₆ F ₃ N ₄ O ₅ P HRMS 526.1593 526.1603
192	F ₃ C N	NH -	OMe	-OCH ₂ -	0	H	Εt	137-139 (AcOEt-iPr ₂ O)	C ₁₉ H ₂₄ F ₃ N ₄ O ₆ P 46.25, 4.91, 11.38 46.22, 4.79, 11.46
193	F ₃ C N	NH -	OMe	-OCH ₂ -	1	Н	Et	117-118 (AcOEt-iPr ₂ O)	C ₂₀ H ₂₆ F ₃ N ₄ O ₆ P 47.43, 5.17, 11.06 47.55, 5.07, 11.08
194	F ₃ C N	NH	~_\\	-OCH ₂ -	0	Н	Et	146-147	C ₁₈ H ₂₁ CIF ₃ N ₄ O ₅ P 43.52, 4.26, 11.28 43.40, 4.13, 11.25
195	F ₃ C N OEt	NH	-()_ C:	-OCH ₂ -	1	н	Et	103.0-104.5 (AcOEt-iPr ₂ O)	C ₁₉ H ₂₃ CIF ₃ N ₄ O ₅ P 44.67, 4.54, 10.97 44.51, 4.40, 11.01
196	N OE	NH ;	-() -	\(\lambda	0 .	Н	Et	186-187	C ₂₀ H ₂₇ N ₄ O ₅ P 55.29, 6.26, 12.90 55.08, 6.26, 12.76
197	N.	NH ·	-	\(\)	1	н	Et	amorphous	C ₂₁ H ₂₉ N ₄ O ₅ P HRMS 448.1876 448.1895
198	N N N N N N N N N N N N N N N N N N N	NH -	-	~	1	н	Et	178-180 (AcOEt-iPr ₂ O)	C ₂₄ H ₃₄ N ₅ O ₄ P 59.13, 7.03, 14.37 59.10, 7.05, 14.49
199	CI Ph	CONH -		\(\lambda	0	н	Et	202-203 (AcOEt-iPr ₂ O)	C ₂₉ H ₂₉ CIN ₃ O ₅ P 61.54, 5.16, 7.42 61.64, 5.20, 7.25
200	Ph Ph	CONH -	-	\(\lambda \)	1	Н	Et	199-201 (AcOEt)	C ₃₀ H ₃₁ CIN ₃ O ₅ P 62.12, 5.39, 7.24 61.90, 5.33, 7.21
201	CIN	CONH	- (<u>-</u>)-	\(\)	0	Н	Et	201-202 (EtOH)	C ₂₀ H ₂₃ CIN ₃ O ₅ P 53.16, 5.13, 9.30 53.30, 5.13, 9.29
202	CI_N	CONH		<u> </u>	1	Н	Et	190-191 (EtOH)	C ₂₁ H ₂₅ CIN ₃ O ₅ P 54.14, 5.41, 9.02 54.23, 5.36, 8.97

実施例203

[4-(4-トリフルオロメチルビリミジン-2-イル)アミノ-2-メトキシフェニル]オキシアセチルアミノ(ジェトキシホスホリル)酢酸

$$\begin{array}{c|c}
 & H \\
 & OMe \\
 & CF_3
\end{array}$$

$$\begin{array}{c}
 & OMe \\
 & OCO_2H
\end{array}$$

実施例182の化合物(50mg)をエタノール(1ml)、1N-水酸化ナトリウム水溶液(0.13ml)の混液に加え、室温にて1時間撹拌した。反応液を水にあけ希塩酸にてpH3とした後、酢酸エチルで抽出した。有機層を水、飽和食塩水にて洗浄後、無水硫酸ナトリウムで乾燥した。溶媒を減圧留去し、残さに酢酸エチルとイソプロピルエーテルを加えて固化し、析出した結晶をろ取した。目的物(29mg)を淡黄色粉末として得た。

HRMS: C20H25F3N4O8Pとして

計算值:537.1362 実測值:537.1338

<u>実施例204</u>

(4, -アミノシンナモイル) アミノメタンホスホン酸ジエチル

4 ' ーアミノ桂皮酸とアミノメタンホスホン酸ジェチルを用い、 実施例 1 と同様に反応させ目的物を黄色粉末として得た。融点 141-142 $^{\circ}$ (AcOEt)。

元素分析値(%): C₁₄ H₂₁ N₂ O₄ P として

C H N

計算值: 53.84 6.78 8.97

実測値: 53.87 6.76 8.93

実施例205

(3, -ニトロシンナモイル) アミノメタンホスホン酸ジエチル

3 ' - アミノ桂皮酸とアミノメタンホスホン酸ジエチルを用い、実施例 1 と同様に反応させ目的物を無色粉末として得た。融点 176-177 $^{\circ}$ C (AcOEt)。

元素分析値(%): C₁₄ H₁₉ N₂ O₆ P として

C , H N

計算值: 49.13 5.60 8.18

実測値: 49.00 5.62 8.05

実施例206

[4'-(2-メタンスルフェニルビリミジン-4-イル)アミノシンナモイル]アミノメタンホスホン酸ジエチル

実施例172の化合物(0.44g)をDMF(5ml)-塩化メチレン(30ml)の混液に溶解し、0℃にて撹拌下、30分かけてメタクロロ過安息香酸(0.19g)を加えた。同温で3時間撹拌後、反応液に飽和炭酸水素ナトリウム水溶液を加え、塩化メチレンで抽出し、有機層を水、飽和食塩水で洗浄後無水硫酸ナトリウムで乾燥した。溶媒を減圧留去し、残渣をシリカゲルカラムクロマトグラフィー(展開溶媒 塩化メチレン:エタノール=10:1)にて精製し、目的物(0.39g)を淡黄色油状物として得た。

HRMS (FAB): C₁₉H₂₆N₄O₅PSとして

計算值:453.1362 実測值:453.1367

<u>実施例207~210</u>

実施例62、63、173、を用い実施例206と同様に行い表3に示す化合物を合成した。

表 3

実施例	W	х	Υ	Ζ,	n	R ¹	R ²	融点(℃) (再結晶溶媒)	元素分析値 計算値/実測値 C、H、N
207	MeOS	NH	-	\	1	Н	Et	油状物	C ₂₀ H ₂₈ N ₄ O ₅ PS HRMS 467.1518 (FAB) 467.1542
208	S,	NH	-⟨¯⟩- SOMe	-OCH ₂ -	0	н	Et	114-117	C ₂₁ H ₂₆ N ₃ O ₆ PS ₂ 49.31, 5.12, 8.21 49.02, 4.97, 8.22
209	(SN N N N N N N N N N N N N N N N N N N	NH	–√⊃ SO₂Me	-OCH₂-	0	Н	Et	161-163	C ₂₁ H ₂₇ N ₃ O ₇ PS ₂ HRMS 528.1028 (FAB) 528.1048
210	(Is	ЙΗ	-√- SO ₂ Me	-OCH ₂ -	1	н	Et	188-191	C ₂₂ H _{2e} N ₃ O ₇ PS ₂ HRMS 542.1185 542.1158

次に本発明化合物について、有用性を裏付ける成績を実験例によって示す。

ヒト血管内皮細胞とU937細胞(ヒト単球系細胞株)との接着に対する試験化合物の阻害効果

ヒト臍帯静脈由来血管内皮細胞(HUVEC)をヒトインターロイキンー1(IL-1)で刺激することによりICAM-1、VCAM-1、ELAM-1等の接着分子の発現が誘導される。刺激24時間後では、主にICAM-1、VCAM-1の発現が認められる(J. Immunol., 144, 2558 (1990)、 ibid., 149, 698 (1992))。IL-1で24時間刺激したHUVECを用いて細胞接着試験を行うことで、ICAM-1、VCAM-1を介した接着反応を試験できる。さらに、試験化合物の添加時期を、IL-1でHUVECを刺激する時と、HUVECとU937との接着時とに分けることにより、試験化合物の接着阻害作用が主に接着分子の結合阻害によるのか、または接着分子の発現抑制によるものであるか評価できる。

実験例1 接着分子の結合阻害試験

20%ウシ胎児血清及び10ng/m1血管内皮細胞増殖因子(ECGF)を含むM199培地(培養用)に浮遊したHUVECを、96穴コラーゲンコートプレート(平底)に 2×10^4 /ウエルずつ播種し、37%、5%CO $_2$ 下で培養した。約24時間培養後、ウシ胎児血清及びECGFを含まないM199培地(洗浄用)で、HUVECを2回洗浄した。次に、ヒトインターロイキン -1β (IL -1β)を10U/m1含む培養用M199培地で24時間培養した。一方、U937細胞浮遊液(1×10^7 /m1)1m1あたりに1mMBCECF-AM溶液(和光純薬工業)を $10\mu1$ ずつ加え、氷冷下で1時間インキュベートして蛍光標識した。蛍光標

識U937細胞を、リン酸緩衝生理食塩水(PBS(一))で2回洗浄後、10%ウシ胎児血清を含むRPMI-1640培地に浮遊した(1×10⁷/ml)。HUVECを洗浄用M199培地で3回洗浄した。試験化合物をジメチルスルホキシドに溶解し、さらに培養用M199培地で1000倍に希釈したものを80μ1/ウェルずつ添加した。続いて蛍光標識U937細胞浮遊液を20μ1/ウェルずつ添加した(試験化合物の最終濃度10μM)。毎分100回転、室温、1分間遠心後、37℃、5%CO₂下で30分間培養した。各ウェルを、PBS(一)100μ1で2回洗浄して、未接着細胞を除去した。0.1%ドデシル硫酸ナトリウム水溶を100μ1/ウェルずつ添加して、細胞を可溶化した。各ウェルの蛍光強度を測定し(Excitation 490nm, Emission 530nm)、検量線から接着したU937細胞数を求めた。下式に従って、接着抑制率を算出した。

結果を表4に示す。なお、100%を超える抑制率については100%として示した。

実験例2 接着分子の発現抑制試験

培養用M199培地に浮遊したHUVECを、96穴コラーゲンコートプレート(平底)に2×10⁴/ウエルずつ播種し、37℃、5%CO₂下で培養した。約24時間培養後、洗浄用M199培地で、HUVECを2回洗浄した。試験化合物をジメチルスルホキシ

ドに溶解し、さらに培養用M199培地で1000倍に希釈したも のを $80\mu1$ /ウエルずつ添加し、1時間培養した。次に、IL- 1β を含む培養用M199培地を20 μ 1/ウエルずつ添加し、2 4 時間培養した (Ι L - 1 β の最終濃度 1 0 U / m 1、試験化合物 の最終濃度10μM)。一方、U937細胞浮遊液(1×10⁷/ ml) 1 mlあたりに 1 mM BCECF-AM溶液 (和光純薬工 業)を10μ1ずつ加え、氷冷下で1時間インキュベートして蛍光 標識した。蛍光標識U937細胞を、PBS(一)で2回洗浄後、 10%ウシ胎児血清を含むRPMI-1640培地に浮遊した(1 ×107/m1)。HUVECを洗浄用M199培地で3回洗浄し た後、培養用M199培地を80μ1/ウエル及び蛍光標識U93 7細胞浮遊液を20μ1/ウエル添加した。毎分1000回転、室 温、1分間遠心後、37℃、5%C〇₂下で30分間培養した。各 ウエルを、 Ρ Β S (-) 1 0 0 μ 1 で 2 回洗浄して、未接着細胞を 除去した。0.1%ドデシル硫酸ナトリウム水溶液を100μ1/ ウエルずつ添加して、細胞を可溶化した。各ウエルの蛍光強度を測 定し(Excitation 490nm, Emission 530nm)、検量線から接着したU .937細胞数を求めた。下式に従って、接着抑制率を算出した。

接着抑制率 (%) =
$$\left(1 - \frac{試験化合物の接着細胞数 - IL-1 β 非添加対照の接着細胞数 1 L-1 β 添加対照の接着細胞数 1 L-1 $\beta$$$

結果を表4に示す。

表 4、

実施例番号	結合阻害抑制率(%) 10µM	実施例番号	発現阻害抑制率(%) 10μM
97	55	97	9
98	68	98	-5
99	69	99	-20
156	54	156	4
182	88	182	9

実験例3 ラット遅延型過敏反応試験

ルイス系雌性ラット(日本チャールス・リバー)8または9週齢 を各群5匹に分けた。ラットの右後肢足蹠部皮内に、流動パラフィ ンに懸濁したマイコバクテリウム・ブチリカム死菌(ディフコ) 0.6mg/0.05ml を注射した。7日後に、電動バリカンで背部の毛を刈 り、ダイヤルシックネスゲージ(尾崎製作所)を用いて、背部の皮 膚厚(左右2ケ所)を測定した。次に、皮膚厚測定部に抗原液 50μ Iを皮内注射した。抗原液としては、200μg/mlとなるようにマイコ バクテリウム・ブチリカム死菌を生理食塩水に懸濁させ、毎分 3000 回転、4℃、10分間遠心した上清を使用した。抗原液注射 24 時間後 に注射部位の皮膚厚を測定し、皮膚厚増加量を求め、左右2ケ所の 平均を各個体のデータとした。試験化合物は、0.5%エタノール及び 0.1% ツイーン 2 0 を含む 3 % アラビアゴム 水溶液 (実施例番号 1 8 2)、または3%アラビアゴム水溶液(実施例番号185)に懸濁し、 マイコバクテリウム・ブチリカム死菌注射日から7日後まで、1日 1回、連日、ラットの体重 100g あたり 0.5ml ずつ経口投与した。対 照群には、試験化合物の調整に用いたのと同じ組成の溶媒を投与し た。結果を、対照群の皮膚厚増加量に対する試験化合物の皮膚厚増

加量の百分率で表した。結果を表5に示す。

表 5 遅延型過敏反応に対する効果

実施例番号	投与量 (mg/kg/day,p.o.)	n	皮膚厚増加量 の百分率(%)
182	30	5	66**
185	100	5	69**
		- 00	4 ~ ~ + * * + + · · ·

** p<0.01 で有意差有り。

産業上の利用可能性

以上のように、一般式(1)で表される本発明化合物は、ICAM-1、VCAM-1等の細胞接着分子の発現抑制作用を示すことなく、これらが介する細胞間の結合を阻害し、なおかつ遅延型過敏反応試験においてもその有効性が認められた。

請求の範囲

1. 一般式(1)

「式中、Wはチアゾール環、置換されていてもよいベンゾチアゾー ル環、ピリドチアゾール環、置換されていてもよいピリジン環、置 換されていてもよいキノリン環、置換されていてもよいピリダジン 環、置換されていてもよいフタラジン環、置換されていてもよいキ ノキサリン環、置換されていてもよいピリミジン環、置換されてい てもよいキナゾリン環、置換されていてもよいチエノピリミジン環、 置換されていてもよいベンズイミダゾール環、置換されていてもよ いプリン環、置換されていてもよいインドール環を、Xは - N H (C H₂) m - (mは0~2の整数を示す)、- C O N H -を示すか、WとYが直接結合してもよいことを示す。Yは置換され ていてもよいベンゼン環、置換されていてもよいナフタレン環、置 換されていてもよいピリジン環、置換されていてもよいキノリン環、 ベンゾフラン環、クマリン環、クロマノン環、クロマン環、1,3-チアゾール環を、Zは-(CH_2) q-(qは0~2の整数を示す)、 $-CH = CH - \cdot -OCH_2 - \cdot -OC(CH_3)_2 - \cdot -SCH_2 - \cdot$ $-SOCH_2-$, $-SO_2CH_2-$, $-NHCO(CH_2)$ r - (r は0~2の整数を示す)を、R 1 は水素原子、炭素数1~4の低級 アルコキシカルボニル基、カルボキシル基、炭素数1~4の低級ア ルコキシホスホリル基を、R²は炭素数1~4の低級アルキル基を、 nは0~2の整数を示す]で表されることを特徴とするホスホン酸

エステル誘導体及び薬理学的に許容しうる塩。

2. 一般式(1)

$$\begin{array}{c|c} & & \\ \hline W & & \\ X & & \\ \hline Y & & \\ Z & & \\ \hline N & (CH_2)n & \\ \hline PO(OR^2)_2 & \\ (1) & \\ \hline \end{array}$$

[式中、Wはチアゾール環、置換されていてもよいベンゾチアゾー ル環、ピリドチアゾール環、置換されていてもよいピリジン環、置 換されていてもよいキノリン環、置換されていてもよいピリダジン 環、置換されていてもよいフタラジン環、置換されていてもよいキ ノキサリン環、置換されていてもよいビリミジン環、置換されてい てもよいキナゾリン環、置換されていてもよいチエノビリミジン環、 置換されていてもよいベンズイミダゾール環、置換されていてもよ いプリン環、置換されていてもよいインドール環を、Xは - N H (C H₂) m - (mは0~2の整数を示す)、- C O N H - を 示すか、WとYが直接結合してもよいことを示す。Yは置換されて いてもよいベンゼン環、置換されていてもよいナフタレン環、置換 されていてもよいピリジン環、置換されていてもよいキノリン環、 ベンゾフラン環、クマリン環、クロマノン環、クロマン環、1,3-チアゾール環を、 Z は - (C H₂) q - (q は 0 ~ 2 の整数を示す)、 $-CH = CH - \cdot -OCH_2 - \cdot -OC(CH_3)_2 - \cdot -SCH_2 - \cdot$ 0~2の整数を示す)を、R は水素原子、炭素数1~4の低級アル コキシカルボニル基、カルボキシル基、炭素数1~4の低級アルコキ シホスホリル基を、 R ²は炭素数 1 ~ 4 の低級アルキル基を、 n は 0 ~2の整数を示す]で表されることを特徴とするホスホン酸エステル

誘導体及び薬理学的に許容しうる塩の少なくとも一種類以上を有効成分とする細胞接着抑制剤。

3. 一般式(2)

[式中、Wはチアゾール環、置換されていてもよいベンゾチアゾー ル環、ビリドチアゾール環、置換されていてもよいビリジン環、置 換されていてもよいキノリン環、置換されていてもよいピリダジン 環、置換されていてもよいフタラジン環、置換されていてもよいキ ノキサリン環、置換されていてもよいピリミジン環、置換されてい てもよいキナゾリン環、置換されていてもよいチエノビリミジン環 、置換されていてもよいベンズイミダゾール環、置換されていても よいプリン環、置換されていてもよいインドール環を、Xは - N H (C H₂) m - (m は 0 ~ 2 の整数を示す) 、 - C O N H -を示すか、WとYが直接結合してもよいことを示す。Yは置換され ていてもよいベンゼン環、置換されていてもよいナフタレン環、置 換されていてもよいピリジン環、置換されていてもよいキノリン環、 ベンゾフラン環、クマリン環、クロマノン環、クロマン環、1.3-チアゾール環を、Zは-(CH_2) q-(qは0~2の整数を示す)、 - C H = C H - \setminus - O C H $_2$ - \setminus - O C (C H $_3$) $_2$ - \setminus - S C H $_2$ - \setminus $-SOCH_2-$, $-SO_2CH_2-$, $-NHCO(CH_2)$ r - (r は0~2の整数を示す)を、R³はヒドロキシ基、ハロゲン原子を・ 示す]で表される化合物に一般式(3)

$$H_2N$$
 (CH₂)n \rightarrow PO(OR²)₂ (3)

[式中、 R^1 は水素原子、炭素数 $1 \sim 4$ の低級アルコキシカルボニル基、カルボキシル基、炭素数 $1 \sim 4$ の低級アルコキシホスホリル . 基を、 R^2 は炭素数 $1 \sim 4$ の低級アルキル基を、nは $0 \sim 2$ の整数を示す]で表される化合物を反応させることを特徴とする一般式(1)

[式中、W、X、Y、Z、R¹、R²、nは前述の通り]で表される 化合物の製造方法。

4. 一般式(4)

$$_{V}$$
 $_{Z}$ $_{COR^3}$ (4)

[式中、Vはアミノ基、ニトロ基を、Yは置換されていてもよいベンゼン環、置換されていてもよいナフタレン環、置換されていてもよいピリジン環、置換されていてもよいキノリン環、ベンソフラン環、クマリン環、クロマノン環、クロマン環、1,3ーチアゾール環を、 Zはー(CH₂) q-(qは0~2の整数を示す)、

-CH = CH -、 $-OCH_2 -$ 、 $-OC(CH_3)_2 -$ 、 $-SCH_2 -$ 、 $-SOCH_2 -$ 、 $-SOCH_2 -$ 、 $-NHCO(CH_2)_r -$ (rは0~2の整数を示す)を、 R^3 はヒドロキシ基、ハロゲン原子を

示す]で表される化合物に一般式(3)

$$H_2N$$
 $(CH_2)n$
 $PO(OR^2)_2$
 R^1
 (3)

[式中、R は水素原子、炭素数 $1 \sim 4$ の低級アルコキシカルボニル基、カルボキシル基、炭素数 $1 \sim 4$ の低級アルコキシホスホリル基を、 R^2 は炭素数 $1 \sim 4$ の低級アルキル基を、 R^2 に表される化合物を反応させることを特徴とする一般式(5)

$$V = \sum_{i=1}^{N} (CH_2)n \underbrace{PO(OR^2)_2}_{R^1}$$
 (5)

[式中、V、Y、Z、R¹、R²、nは前述の通り]で表される化合物の製造方法。

5. 一般式(6)

[式中、Yは置換されていてもよいベンゼン環、置換されていてもよいナフタレン環、置換されていてもよいピリジン環、置換されていてもよいキノリン環、ベンゾフラン環、クマリン環、クロマノン環、クロマン環、1,3- チアゾール環を、Z は- (C H $_2$) q - (q は 0 \sim 2 の整数を示す)、- C H= C H- 、- O C (C H $_3$) $_2$ - 、- S C H $_2$ - 、- S O C H $_2$ - 、

 $-SO_2CH_2-$ 、 $-NHCO(CH_2)$ $r-(rは0~2の整数を示す)を、<math>R^1$ は水素原子、炭素数1~4の低級アルコキシカルボニル基、カルボキシル基、炭素数1~4の低級アルコキシホスホリル基を、 R^2 は炭素数1~4の低級アルキル基を、 R^2 は炭素数1~4の低級アルキル基を、 R^2 は炭素数1~4の低級アルキル基を、 R^2 は炭素数1~4の低級アルキル基を、 R^2 は炭素数1~40低級アルキル基を、 R^2 0を示す〕で表される化合物を還元することを特徴とする一般式(7)

$$H_2N$$
 Y
 Z
 N
 H
 $CH_2)n$
 $PO(OR^2)_2$
 (7)

[式中、Y、Z、R¹、R²、nは前述の通り]で表される化合物の製造方法。

6. 一般式(7)

$$H_2N = X + (CH_2)n + PO(OR^2)_2$$

$$H_3N = X + (CH$$

[式中、Yは置換されていてもよいベンゼン環、置換されていてもよいナフタレン環、置換されていてもよいヒリジン環、置換されていてもよいキノリン環、ベンソフラン環、クマリン環、クロマノン環、クロマン環、1,3- チアゾール環を、Z は- (C H $_2$)q - (q は 0 \sim 2 の整数を示す)、- - C H = C H - 、- O C H $_2$ - 、

- O C (C H $_3$) $_2$ $_3$ S C H $_2$ $_3$ S O C H $_2$ $_3$
- $-SO_2CH_2-$ 、 $-NHCO\cdot(CH_2)$ r- (rは0~2の整数を示す)を、<math>R $^{-}$ は水素原子、炭素数1~4 の低級アルコキシカルボニル基、カルボキシル基、炭素数1~4 の低級アルコキシホスホリ

ル基を、 R^2 は炭素数 $1 \sim 4$ の低級アルキル基を、n は $0 \sim 2$ の整数を示す〕で表される化合物に一般式(8)

[式中、Wはチアゾール環、置換されていてもよいベンゾチアゾール環、ピリドチアゾール環、置換されていてもよいピリダジン環、置換されていてもよいピリダジン環、置換されていてもよいフタラジン環、置換されていてもよいナノキサリン環、置換されていてもよいピリミジン環、置換されていてもよいチエノピリミジン環、置換されていてもよいチエノピリミジン環、置換されていてもよいベンズイミダゾール環、置換されていてもよいプリン環、置換されていてもよいインドール環を、R³はヒドロキシ基、ハロゲン原子を示す]で表される化合物を反応させることを特徴とする一般式(9)

$$\begin{array}{c|c}
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\$$

[式中、W、Y、Z、R¹、R²、nは前述の通り]で表される化合物の製造方法。

7. 一般式(10)

$$W$$
 X
 Y
 Z
 N
 $(CH_2)n$
 $PO(OR^2)_2$ (10)
 CO_2R^4

「式中、Wはチアゾール環、置換されていてもよいベンゾチアゾー ル環、ビリドチアゾール環、置換されていてもよいピリジン環、置 換されていてもよいキノリン環、置換されていてもよいピリダジン 環、置換されていてもよいフタラジン環、置換されていてもよいキ ノキサリン環、置換されていてもよいビリミジン環、置換されてい てもよいキナゾリン環、置換されていてもよいチエノピリミジン環、 置換されていてもよいベンズイミダゾール環、置換されていてもよ いプリン環、置換されていてもよいインドール環を、Xは - N H (C H₂) m - (m は 0 ~ 2 の整数を示す) 、 - C O N H -を示すか、WとYが直接結合してもよいことを示す。Yは置換され ていてもよいベンゼン環、置換されていてもよいナフタレン環、置 換されていてもよいピリジン環、置換されていてもよいキノリン環、 ベンゾフラン環、クマリン環、クロマノン環、クロマン環、1,3-チアゾール環を、Zは-(CH_2) q-(qは0~2の整数を示す)、 - C H = C H - \setminus - O C H $_2$ - \setminus - O C (C H $_3$) $_2$ - \setminus - S C H $_2$ - \setminus - S O C H $_2$ - $_1$ - S O $_2$ C H $_2$ - $_2$ - N H C O (C H $_2$) r - (r は0~2の整数を示す)を、R2、R1は同一または異なって炭素数 1~4の低級アルキル基を、nは0~2の整数を示す]で表される 化合物を加水分解することを特徴とする一般式 (11)

[式中、X、Y、Z、R²、nは前述の通り]で表される化合物の製造方法。

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP99/04913

A CT AS	CITICATION OF CITE			199/04212		
A. CLAS	SIFICATION OF SUBJECT MATTER .C1 ⁶ C07F9/572, C07F9/58, C07F C07F9/6541, C07F9/6558, C	79/6503, C07F9, C07F9/6561, A6	/6509, C07F 1K31/66	9/6539,		
According to International Patent Classification (IPC) or to both national classification and IPC						
	OS SEARCHED					
Minimum documentation searched (classification system followed by classification symbols) Int.Cl ⁶ C07F9/572, C07F9/58, C07F9/6503, C07F9/6509, C07F9/6539, C07F9/6541, C07F9/6558, C07F9/6561, A61K31/66						
	Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched					
Electronic of CAPI	lata base consulted during the international search (nat LUS (STN), REGISTRY (STN)	me of data base and, wh	ere practicable, sea	rch terms used)		
	MENTS CONSIDERED TO BE RELEVANT					
Category*	Citation of document, with indication, where a			Relevant to claim No.		
PA	PENICAUD, Virginie et al., "New water-soluble diamine 1 complexes as catalysts for the hydrogenation of ketones 2-3,6-7 under hydrogen pressure", Eur. J. Org. Chem., 1999, No.7, p.1745-1748					
A	JP, 59-98099, A (Fujisawa Pharmaceutical Co., Ltd.), 06 June, 1984 (06.06.84) (Family: none)			1-3,6-7		
X Y	JP, 62-185092, A (Teijin Limited), 13 August, 1987 (13.08.87) & US, 4685952, A			4 5		
X Y	WO, 96/40760, A2 (SCHERING AKTIENGESELLSCHAFT), 19 December, 1996 (19.12.96) & EP, 835259, A1 & US, 5756066, A JP, 8-92268, A (Wakamoto Pharmaceutics Co., Ltd.), 04 September, 1996 (04.09.96) (Family: none)			4 5 .		
Y				5		
	documents are listed in the continuation of Box C.	See patent famil				
"A" docume consider "E" earlier d date	pecial categories of cited documents: "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention document but published on or after the international filing at a conflict with the application but cited to understand the principle or theory underlying the invention document of particular relevance; the claimed invention cannot attend to the conflict with the application but cited to understand the principle or theory underlying the invention document of particular relevance; the claimed invention cannot attend to the conflict with the application but cited to understand the principle or theory underlying the invention document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention document published after the international filing at the conflict with the application but cited to understand the principle or theory underlying the invention document published after the international filing at the conflict with the application but cited to understand the principle or theory underlying the invention at the conflict with the application but cited to understand the principle or the conflict with the application but cited to understand the principle or the conflict with the application but cited to understand the principle or the conflict with the application but cited to understand the principle or the conflict with the application but cited to understand the principle or the conflict with the appli			e application but cited to rlying the invention laimed invention cannot be		
cited to special r "O" document	document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) document referring to an oral disclosure, use, exhibition or other "Y" considered novel or cannot be considered to involve an inventive step when the document of particular relevance; the claimed invention cannot considered to involve an inventive step when the document is combined with one or more other such documents, such			laimed invention cannot be when the document is		
"P" documer than the	document published prior to the international filing date but later than the priority date claimed combination being obvious to a person skilled in the art document member of the same patent family					
Date of the actual completion of the international search 09 December, 1999 (09.12.99) Date of mailing of the international search report 21 December, 1999 (21.12.99)				th report 1.12.99)		
	iling address of the ISA/ nese Patent Office	Authorized officer				
Facsimile No.	Facsimile No.		Telephone No.			

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP99/04913

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1. Claims Nos.:
because they relate to subject matter not required to be searched by this Authority, namely:
2. Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an
extent that no meaningful international search can be carried out, specifically:
3. Claims Nos.:
because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
This International Searching Authority found multiple inventions in this international application, as follows:
Inventions as set forth in claims are classified into the following groups:
(1) claims 1 to 3 and 6 and 7:
inventions relating to the compounds represented by the general formula
(1), a process for producing the same and utilization thereof, and
(2) claims 4 and 5: inventions relating to processes for producing the compounds represented
by the general formula (5).
There is no special technical feature common to these groups. Such being the case, the number of inventions for international application as set forth in claims is two.
the manner of the characterist application as set forth in charms is two.
1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable
claims.
2 A - 11
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
or any additional root.
3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers
only those claims for which fees were paid, specifically claims Nos.:
A
4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
the channel by ciamis income in the channel, it is covered by ciamis itos.:
Remark on Protest The additional search fees were accompanied by the applicant's protest
and the second second and the appropriate
No protest accompanied the payment of additional search fees.

A. 発明の属する分野の分類(国際特許分類 (IPC))

Int. C1. C07F9/572, C07F9/58, C07F9/6503, C07F9/6509, C07F9/6539, C07F9/6541, C07F9/6558, C07F9/6561, A61K31/66

B. 調査を行った分野

調査を行った最小限資料(国際特許分類(IPC))

Int. Cl. CO7F9/572, CO7F9/58, CO7F9/6503, CO7F9/6509, CO7F9/6539, CO7F9/6541, CO7F9/6558, CO7F9/6561, A61K31/66

最小限資料以外の資料で調査を行った分野に含まれるもの

国際調査で使用した電子データベース (データベースの名称、調査に使用した用語)

CAPLUS (STN), REGISTRY (STN)

C. 関連する	らと認められる文献	
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
P X P A	PENICAUD, Virginie et al., "New water-soluble diamine comple xes as catalysts for the hydrogenation of ketones under hydr ogen pressure", Eur. J. Org. Chem., 1999, No.7, p.1745-1748	1 2-3, 6-7
A	JP, 59-98099, A(藤沢薬品工業株式会社) 6. 6月. 1984 (06. 06. 84) (ファミリーなし)	1-3, 6-7

X C欄の続きにも文献が列挙されている。

□ パテントファミリーに関する別紙を参照。

- * 引用文献のカテゴリー
- 「A」特に関連のある文献ではなく、一般的技術水準を示す もの
- 「E」国際出願日前の出願または特許であるが、国際出願日 以後に公表されたもの
- 「L」優先権主張に疑義を提起する文献又は他の文献の発行 日若しくは他の特別な理由を確立するために引用する 文献(理由を付す)
- 「O」口頭による開示、使用、展示等に言及する文献
- 「P」国際出願日前で、かつ優先権の主張の基礎となる出願

- の日の後に公表された文献
- 「T」国際出願日又は優先日後に公表された文献であって て出願と矛盾するものではなく、発明の原理又は理 論の理解のために引用するもの
- 「X」特に関連のある文献であって、当該文献のみで発明 の新規性又は進歩性がないと考えられるもの
- 「Y」特に関連のある文献であって、当該文献と他の1以 上の文献との、当業者にとって自明である組合せに よって進歩性がないと考えられるもの
- 「&」同一パテントファミリー文献

国際調査報告

国際出願番号 PCT/JP99/04913

	四559414日	国际山积银子 FCI/JP9	3/04313
C(統き).	関連すると認められる文献		
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときに	は、その関連する箇所の表示	関連する 請求の範囲の番号
X	US, 4685952, A(Teijin Limited) 11.8月.1987(11.08.87) &JP, 62-185092, A		4 5
X Y	WO, 96/40760, A2 (SCHERING AKTIENGESELLSO 19.12月.1996(19.12.96) &EP, 835259, A1 &	CHAFT) LUS, 5756066, A	4 5
Y	JP, 8-92268, A(わかもと製薬株式会社) 4.9月.1996(04.09.96)(ファミリーなし)		
		•	
			·
		<i>,</i>	

第1欄 請求の範囲の一部の調査ができないときの意見 (第1ページの2の続き)
法第8条第3項(PCT17条(2)(a))の規定により、この国際調査報告は次の理由により請求の範囲の一部について作成しなかった。
1.
2. □ 請求の範囲は、有意義な国際調査をすることができる程度まで所定の要件を満たしてい
ない国際出願の部分に係るものである。つまり、
3. 請求の範囲 は、従属請求の範囲であってPCT規則6.4(a)の第2文及び第3文の規定に
従って記載されていない。
第Ⅱ欄 発明の単一性が欠如しているときの意見 (第1ページの3の続き)
次に述べるようにこの国際出願に二以上の発明があるとこの国際調査機関は認めた。
請求の範囲に記載された発明はそれぞれ、
①請求項1~3及び6~7 一般式(1)で表される化合物、その製造方法及び用途に関する発明
②請求項4~5 一般式(5)で表される化合物の製造方法に関する発明
の群に区分され、それぞれの群の間には共通する特別の技術的特徴を有しない。 したがって、請求の範囲に記載されている国際出願の発明の数は2である。
1. X 出願人が必要な追加調査手数料をすべて期間内に納付したので、この国際調査報告は、すべての調査可能な請求 の範囲について作成した。
2.
3. 出願人が必要な追加調査手数料を一部のみしか期間内に納付しなかったので、この国際調査報告は、手数料の納付のあった次の請求の範囲のみについて作成した。
4. 出願人が必要な追加調査手数料を期間内に納付しなかったので、この国際調査報告は、請求の範囲の最初に記載されている発明に係る次の請求の範囲について作成した。
追加調 <u>本</u> 手数料の異議の申立てに関する注意
□ 追加調査手数料の納付と共に出願人から異議申立てがあった。 図 追加調査手数料の納付と共に出願人から異議申立てがなかった
図 追加調査手数料の納付と共に出願人から異議申立てがなかった。