CS 156:Introduction to Artificial Intelligence

Instructor: Dr. Sayma Akther

San José State University

Agenda

- Agent
- Agent Types
- Environment Types and their Properties
- Search Problem

What is an Agent?

An entity that perceives its environment and acts upon it.

Actuators and Sensors

- Actuators: Devices that perform a physical action.
- Sensors: Devices that collect data from the environment.

Agent's Performance Measure

A criterion to evaluate the success of an agent's behavior.

Simple Reflex Agents

- Agents that directly map states to actions.
- Agents that select actions on the basis of current percepts, ignoring the rest of the percept history.
- Rule Matcher, Condition-Action Rule.
- Advantages: Speed, Simplicity
- Limitations: Lack of memory, No future planning

Simple Reflex Agents

- In Robotics
 - A vacuum cleaner robot
 - If dirt is detected → Suck
 - If obstacle ahead → Turn

Model-based Reflex Agents

- Agents that use a model of the world to make decisions.
- Agents that use memory or an internal state.

CS 156: Dr. Sayma Akther

Goal-based Agents

Agents that act to achieve specific goals.

 An intelligent program that can make decisions based on previous experiences, knowledge, user input, and the

desired goal.

Utility-based Agents

Agents that act to maximize a predefined utility.

Fully vs. Partially Observable

• In some scenarios, an agent can see everything; in others, it can't.

Deterministic vs. Stochastic

• Sometimes outcomes are predictable; other times, they involve randomness.

90% accurate				80% accurate		50% accurate			
Mon #	Tue	Wed	Thu	Fri	Sat ##	Sun	Mon ?	Tue ?	Wed ?
76°	740	70°	70°	710	76°	75°		12	2

Static vs. Dynamic

 In some cases, the environment doesn't change while the agent deliberates, but in others, it does.

Search Problem?

Components of a Search Problem

- State space S:
 - Set of possible states
- Initial state S₀
- Goal states (one or more states)
- Action
 - Given a state s, ACTION(s) returns a finite set of actions that can be executed in s
- Transition model:
 - RESULT(s, a) returns the state that results from doing action a in state s
- Cost function:
 - c(s, a, s') cost of action a in state s to reach state s'

Example Problems - Eight Puzzle

8	2	
3	4	7
5	1	6

Initial state

1	2	3
4	5	6
7	8	

Goal state

States: Any arrangement of 8 numbered tiles and an empty tile on a 3x3 board

Initial state: one specific tile configuration

Goal: tiles are numbered from one to eight around the square

Actions: move blank tile left, right, up, or down

Example Problems - Eight Puzzle

States: Any arrangement of 8 numbered tiles and an empty tile on a 3x3 board

Initial state: one specific tile configuration

Goal: tiles are numbered from one to eight around the square

Actions: move blank tile left, right, up, or down

Transition to new states

(n²-1)-puzzle

8	2	
3	4	7
5	1	6

1	2	3	4
5	6	7	8
9	10	11	12
13	14	15	

• How big is the state space of the (n²-1)-puzzle?

• 8-puzzle: 9! = 362,880 states

• 15-puzzle: 16! ~ 2.09 x 10¹³ states

• 24-puzzle: 25! ~ 10²⁵ states

Example Problems - Rubik's Cube

States: list of colors for each cell on each face

Initial state: one specific cube configuration

Actions: rotate row x or column y on face z direction a

Goal: configuration has only one color on each face

Path cost: 1 per move

Example Problems - Eight Queens (#1)

States: locations of 8 queens on chess board

Initial state: 0 queens on the board

Actions: each of the successors is obtained by adding one queen in an empty square

Goal: 8 queens are on the board, with no queens attacking each other

Path cost: 0 per move

 \rightarrow ~ 64×63×...×57 ~ 3×10¹⁴ states

Example Problems - Eight Queens (#2)

States: locations of 8 queens on chess board

Initial state: 0 queens on the board

Actions: each successor is obtained by adding one queen in any square that is not attacked by any queen already in the board, in the leftmost empty column

Goal: 8 queens are on the board, with no queens attacking each other

Path cost: 0 per move

 \rightarrow 2,057 states

Sample Search Problems

- Graph coloring
- Protein folding
- Game playing
- Airline travel
- Proving algebraic equalities
- Robot motion planning

Problem Solving in AI

- **Definition:** Problem-solving in AI refers to the methodology an AI system uses to find a solution from a given initial state using specified actions, eventually reaching a goal state.
- **Purpose**: All systems are essentially problem solvers from recognizing patterns in vast data sets to playing chess, every All task can be viewed as a problem-solving task

ayma Akther

Well-Defined Problems

Components of a well-defined problem:

- Initial State: Where we begin.
- Actions: What are the possibilities from a given state?
- Transition Model: Result of an action.
- Goal Test: Determine if a state is a goal state.
- Path Cost: Numeric cost to move from one state to another.

Well-Defined Problems

Components of a well-defined problem:

- Initial State: Where we begin.
- Actions: What are the possibilities from a given state?
- Transition Model: Result of an action.
- Goal Test: Determine if a state is a goal state.
- Path Cost: Numeric cost to move from one state to another.
- Objective: shortest? fastest? most scenic?
- Actions: go straight, turn left, turn righ

Problem Space

- **Definition**: The environment in which the search takes place.
- **Visualization**: Show a tree or graph to illustrate how states are connected.

Challenges in Problem Solving

- Large Problem Spaces: The sheer number of possibilities in some problems.
- Unknown Environments: When the AI does not have full knowledge of all possible states.
- **Dynamic Environments**: When the environment can change while the AI is deciding.

 It is often not feasible (or too expensive) to build a complete representation of the state graph

8-, 15-, 24-Puzzles

- Often it is not feasible (or too expensive) to build a complete representation of the state graph
- A problem solver must construct a solution by exploring a small portion of the graph

Visualize Search Space as a Tree

Visualize Search Space as a Tree