BAYESIAN ESTIMATION OF RISK-NEUTRAL PROBABILITY

Alexander Vlasov (avlasov@nes.ru)

New Economic School – 2025-06-20

CONTENTS

Limitations of RA models

IMPLIED PROBABILITY DENSITY

$$S = \sum_{s=1}^{K} \phi(s)q(s)$$

$$\phi^* \stackrel{d}{=} \frac{\phi(s)}{\sum_{s=1}^K \phi(s)} = \frac{\phi(s)}{1/(1+r)} = (1+r)\phi(s)$$

$$S = \frac{1}{1+r} \sum_{s=1}^{K} \phi^*(s) q(s) = \frac{1}{1+r} \mathbb{E}^*[q(s)].$$

For TAS utility, the implied risk-neutral probability is

$$\phi^*(s) = \pi \frac{\beta u'[c(s)]}{u'[c(0)]} (1+r) = \pi \frac{u'[c(s)]}{u'[c(0)]} \approx \pi,$$

for $c(s) \approx c(0)$ or u' is constant (risk-neutrality).

BREEDEN-LITZENBERGER (1978) FORMULA

For short-term, $r \approx 0$.

$$C(S,t) = \mathbb{E}^* \left[[S(T) - \mathcal{K}]^+ \mid S(t) = S \right]$$

$$= \int_0^{+\infty} (x - \mathcal{K})^+ dP^*(x)$$

$$= \int_{\mathcal{K}}^{+\infty} x dP^*(x) - \mathcal{K} \int_0^{+\infty} dP^*(x)$$

$$= \int_{\mathcal{K}}^{+\infty} x dP^*(x) - \mathcal{K} (1 - P^*(\mathcal{K}))$$

$$\frac{\partial C}{\partial \mathcal{K}} = -\mathcal{K}p^*(\mathcal{K}) - 1 + P^*(\mathcal{K}) + \mathcal{K}p^*(\mathcal{K}) = P^*(\mathcal{K}) - 1$$
$$\frac{\partial^2 C}{\partial \mathcal{K}^2} = p^*(\mathcal{K}).$$

REFERENCES [1]

Breeden, Douglas T. and Robert H. Litzenberger (1978). "Prices of State-Contingent Claims Implicit in Option Prices". In: *The Journal of Business* 51(4), pp. 621–651. ISSN: 0021-9398. JSTOR: 2352653.