September 27, 2017 Due: 1:00pm, October 11

Problem Set #2

Warning: Homeworks will not be graded if submitted after the deadline. For all problems, show detailed reasoning.

0. (Reading assignment) DL Book Chapter 7

- 1. (Back-propagation for 100-layer network 10 points) Implement the training algorithm for Example 1 in page 42 in lecture notes #6. Assume m=2 and $\mathbf{x}=\mathbf{y}=(-0.5,0.5)^{\mathsf{T}}$, i.e., we want to train a neural network to output 0.5 when the input is 0.5 and to output -0.5 when the input is -0.5. Assume l=100, i.e., 100 layers. We want to see if such a deep neural network can be trained. Assume also $\alpha=0.1$ (learning rate), MaxIter = 1000, and $\phi^{(k)}(x)=\tanh(x),\ k=1,2,\ldots,l$. Note that $\tanh'(x)=\mathrm{sech}^2(x)=\frac{4}{(e^x+e^{-x})^2}$, which can be used in your code. Include codes and plots in your homework. You may use any programming language.
- (a) Run your code by initializing all weights as 1.0. Plot the cost J defined in page 40 of lecture notes #6 as a function of the iteration. Cost should converge to 0, i.e., training should be successful. Print out $h_{k,i}$ and $g_{k,i}$, i = 1, 2 obtained after just one iteration as functions of k = 1, 2, ..., l.
- (b) Run your code by initializing all weights as 5. This time, the cost will be stuck at about 0.125, i.e., training will fail. Print out $h_{k,i}$ and $g_{k,i}$, i = 1, 2 obtained after just one iteration as functions of k = 1, 2, ..., l. How are they different from $h_{k,i}$'s and $g_{k,i}$'s you obtained in (a)?
- (c) Explain why training fails in (b). Try to see how $h_{k,i}$'s behave as k increases (forward propagation) and how the gradients $g_{k,i}$'s behave as k decreases (backward propagation). You will be able to see $g_{k,i}$'s vanish as k decreases, which is known as the vanishing gradient problem. Why does the gradient vanish as k decreases? How does the actual gradient $\nabla_{\mathbf{w}} J$ behave?
- (d) Run your code by initializing all weights as 0.9. This time, the cost will be stuck at about 0.125, i.e., training will fail. Print out $h_{k,i}$ and $g_{k,i}$, i = 1, 2 obtained after just one iteration as functions of k = 1, 2, ..., l. How are they different from $h_{k,i}$'s and $g_{k,i}$'s you obtained in (a) and (c)?
- (e) Explain why training fails in (d). Try to see how $h_{k,i}$'s behave as k increases (forward propagation) and how the gradients $g_{k,i}$'s behave as k decreases (backward propagation). You will be able to see $g_{k,i}$'s vanish as k decreases. Is this the only reason why training fails? How does the actual gradient $\nabla_{\mathbf{w}} J$ behave?

2. (Back-propagation with bias terms – 10 points)

(a) Let's introduce a bias term in each layer in Example 1 in pages 40–42 in lecture notes #6, i.e., $\mathbf{h}_k = \phi^{(k)}(\mathbf{h}_{k-1}w_k + \mathbf{1}b_k)$, $k = 1, 2, \dots, l$, where **1** is an all-one vector of length m and $b_k \in \mathbb{R}$ is the bias term at the k-th layer. Note that you need **1** since there are m training

examples. Define $\mathbf{u}_k = \mathbf{h}_{k-1} w_k + \mathbf{1} b_k$ and $\mathbf{g}_k = \nabla_{\mathbf{u}_k} J$, $k = 1, 2, \dots, l$. Express \mathbf{g}_l in terms of other variables such as \mathbf{u}_l , \mathbf{h}_l , and \mathbf{y} . Express \mathbf{g}_{k-1} in terms of other variables including \mathbf{g}_k , i.e., backward propagation. Express $\frac{\partial J}{\partial w_k}$, $\frac{\partial J}{\partial b_k}$, $k = 1, 2, \dots, l$ using \mathbf{h}_k and \mathbf{g}_k . Show the whole training algorithm including forward and backward propagations and gradient descent as a pseudo code.

- (b) In Example 2 in pages 43–46 in lecture notes #6, show that $\mathbf{G}^{(2)} = -\frac{1}{m}\mathbf{Y}^T$, where $\mathbf{Y}_{j,i} = 1$ if $j = y_i$ and 0 otherwise, which was defined in page 44 of lecture notes #6.
- (c) Let's introduce a bias term in the first layer in Example 2 in pages 43–46 in lecture notes #6, i.e., $\mathbf{H} = \phi(\mathbf{X}\mathbf{W}^{(1)} + \mathbf{1}\mathbf{b}^T)$, where $\mathbf{1}$ is an all-one vector of length m and \mathbf{b} is the bias vector of length n_1 . Note that you need $\mathbf{1}$ since there are m training examples. Define $\mathbf{U}^{(1)} = \mathbf{X}\mathbf{W}^{(1)} + \mathbf{1}\mathbf{b}^T$ and $\mathbf{G}^{(1)} = \nabla_{\mathbf{U}^{(1)}}J_{\text{MLE}}$. Assume the other variables such as $\mathbf{U}^{(2)}$ and $\mathbf{G}^{(2)}$ are defined the same way as done in Example 2. Express $\mathbf{G}^{(1)}$ in terms of other variables such as $\mathbf{U}^{(1)}$, $\mathbf{G}^{(2)}$, and $\mathbf{W}^{(2)}$. Express $\nabla_{\mathbf{W}^{(1)}}J_{\text{MLE}}$ and $\nabla_{\mathbf{b}}J_{\text{MLE}}$ using other variables such as \mathbf{X} and $\mathbf{G}^{(1)}$.