範例程式實修

第四組 陳鈺昕,賴兆信, 黃子晏, 宋苡瑄, 黃天芸

HW_1包含交叉驗證

HW_2 模型評估

3 HW_3 模型評估

一 HW_4 改爲支援繁體中文

HW_5 中文情感分析

• 資料與目標

資料來源: UCI Red Wine Quality Dataset

樣本數量: 1599 筆

特徵數量: 11 項化學特徵(如酒精濃度、酸度等)

目標變數: quality (紅酒品質分數,整數型)

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рΗ	sulphates	alcohol	quality
0	7.4	0.700	0.00	1.9	0.076	11.0	34.0	0.99780	3.51	0.56	9.4	5
1	7.8	0.880	0.00	2.6	0.098	25.0	67.0	0.99680	3.20	0.68	9.8	5
2	7.8	0.760	0.04	2.3	0.092	15.0	54.0	0.99700	3.26	0.65	9.8	5
3	11.2	0.280	0.56	1.9	0.075	17.0	60.0	0.99800	3.16	0.58	9.8	6
4	7.4	0.700	0.00	1.9	0.076	11.0	34.0	0.99780	3.51	0.56	9.4	5
1594	6.2	0.600	0.08	2.0	0.090	32.0	44.0	0.99490	3.45	0.58	10.5	5
1595	5.9	0.550	0.10	2.2	0.062	39.0	51.0	0.99512	3.52	0.76	11.2	6
1596	6.3	0.510	0.13	2.3	0.076	29.0	40.0	0.99574	3.42	0.75	11.0	6
1597	5.9	0.645	0.12	2.0	0.075	32.0	44.0	0.99547	3.57	0.71	10.2	5
1598	6.0	0.310	0.47	3.6	0.067	18.0	42.0	0.99549	3.39	0.66	11.0	6

• 模型與參數設定

使用 決策樹回歸(DecisionTreeRegressor) 預測紅酒品質。 為避免過擬合,使用以下策略:

★ 參數搜尋範圍:

參數 搜尋值 max_depth [2, 3, 4, 5, 6] min_samples_leaf [1, 3, 5, 10]

★使用 GridSearchCV 配合 5 折交叉驗證 (KFold),找出最佳參數組合。

最佳參數: {'max_depth': 6, 'min_samples_leaf': 10} 最佳平均 R² 分數: 0.295

• 評估與結論

平均 R² 分數 0.30:表示模型解釋約 30% 的品質變異。

R²標準差 0.021:模型在各折表現一致,穩定性佳。

模型優點:

易於解釋,適合小型資料集

有效避免過擬合(透過 max_depth 與 min_samples_leaf 調整)

每折 R² 分數: [0.3, 0.26, 0.29, 0.3, 0.32]

平均 R² 分數: 0.3

R² 分數標準差: 0.021

HW₂

資料集介紹

- 使用上課用到的紅酒資料集,1599筆資料、12項欄位
- 資料先經過特徵標準化
- 採用"quality"作為特徵與目標變數
- 切分資料集(80%訓練,20%測試)
- 使用訓練模型--決策樹

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcohol	quality
0	7.4	0.700	0.00	1.9	0.076	11.0	34.0	0.99780	3.51	0.56	9.4	5
1	7.8	0.880	0.00	2.6	0.098	25.0	67.0	0.99680	3.20	0.68	9.8	5
2	7.8	0.760	0.04	2.3	0.092	15.0	54.0	0.99700	3.26	0.65	9.8	5
3	11.2	0.280	0.56	1.9	0.075	17.0	60.0	0.99800	3.16	0.58	9.8	6
4	7.4	0.700	0.00	1.9	0.076	11.0	34.0	0.99780	3.51	0.56	9.4	5
1594	6.2	0.600	0.08	2.0	0.090	32.0	44.0	0.99490	3.45	0.58	10.5	5
1595	5.9	0.550	0.10	2.2	0.062	39.0	51.0	0.99512	3.52	0.76	11.2	6
1596	6.3	0.510	0.13	2.3	0.076	29.0	40.0	0.99574	3.42	0.75	11.0	6
1597	5.9	0.645	0.12	2.0	0.075	32.0	44.0	0.99547	3.57	0.71	10.2	5
1598	6.0	0.310	0.47	3.6	0.067	18.0	42.0	0.99549	3.39	0.66	11.0	6
1599 rows × 12 columns												

HW₂

判斷max_depth

- 使用GridSearchCV得知最合適的 max_depth為4
- 交叉驗證cv=5
- •比較欄位為"R2"

評估結論

· MAE(平均誤差的絕對值)

預測平均誤差約 ±0.52 分,算是偏小的誤差,代表模型預 測相對準確

· MSE(平均平方誤差)

表示整體誤差偏小。 因為平方的關係,越小代表越穩定

· RMSE(均方根誤差)

與 MAE 差距不大, 表示模型錯誤分布滿平均,沒太多離群值

• R²(決定係數)

模型解釋資料變異程度約33%的變異可以被模型解釋,代表模型表現普通

資料蒐集	鐵達尼號資料集(簡化版 891 ROWS × 12 COLUMNS)
資料前處理	・補上 Age 缺失値(使用平均數) ・將 Sex 轉爲數値(male=0, female=1)
特徵選擇	使用 Pclass、Sex、Age、SibSp、Parch、Fare 等欄位
建立模型	使用 Decision Tree(決策樹)分類模型
模型評估	指標包含 F1 Score、AUC、Precision、Recall、混淆矩陣

['Pclass', 'Sex', 'Age', 'SibSp', 'Parch', 'Fare'] 這 6 欄是比較乾淨、沒有太多缺失值,而且對預測生存有幫助的特徵欄位

欄位名稱	說明	資料型態
PassengerId	乘客編號(1~891)	整數
Survived	是否生存(0=死亡,1=生存)	二元分類
Pclass	艙等(1=頭等,2=二等,3=三等)	類別整數
Name	姓名(包含頭銜、婚姻等)	文字
Sex	性別(male / female)	類別文字
Age	年齡(可能有缺值)	浮點數
SibSp	同行兄弟姊妹 / 配偶人數	整數
Parch	同行父母 / 子女人數	整數
Ticket	船票號碼	文字
Fare	票價	浮點數
Cabin	客艙編號(大量缺值)	文字/缺值
Embarked	登船港口(S=南安普敦,C=瑟堡,Q=皇后鎮)	類別文字

F1 Score: 0.7542

AUC Score: 0.8261

Precision: 0.7714

Recall: 0.7368

決策樹:「性別」與「艙等」對預測結果影響最大

使用者輸入 prompt

加上風格標籤引導模型(如[風格:古文]) 幫助模型切換不同語氣與文體

max_new_tokens: 控制生成長度

temperature: 調整隨機性

top_k / top_p: 控制詞彙選擇的多樣性

do_sample=True: 啓用隨機取樣(更自然)

```
根據 style 參數取得對應的中文風格標籤,若未指定則預設為 |-
style_tag = style_labels.get(style, "一般")
# 將風格標籤加入提示詞中,以引導模型產生指定風格的內容
styled_prompt = f"[風格: {style_tag}] \n {prompt} "
# 將 styled_prompt 編碼成模型可接受的 token ID, 並轉成 tensor
input ids = tokenizer.encode(styled prompt, return tensors="pt").to(device)
# 建立 attention mask, 避免模型注意到 padding 的位置(這裡預設沒有 padding, 但為保險起見仍處理)
attention_mask = (input_ids != tokenizer.pad_token_id).long()
# 使用模型產生文字
output_ids = model.generate(
                                               # 輸入的 token
      input ids,
      attention_mask=attention_mask, # 注意力遮罩, 讓模型知道哪些位置是有效輸入
      max new tokens=max new tokens, # 生成的最大 token 數量
      temperature=temperature,
                                   # 溫度值控制隨機性,越高越多樣化
                                            # top-k 篩選(僅在前 k 個最可能的詞中選擇)
      top_k=top_k,
                                            # top-p (nucleus sampling),保留機率總和為 p 的詞集合中選擇
      top p=top p,
                                          # 啟用隨機取樣(非貪婪解碼)
      do sample=True,
      pad_token_id=tokenizer.eos_token_id # 設定 pad token 為結束符號,以避免警告
# 解碼模型輸出的 token ID,轉回可讀文字,並移除多餘空白
output_text = tokenizer.decode(output_ids[0], skip_special_tokens=True).replace(" ", "")
return output text # 回傳最終生成的文字
```

資料集

採用 tyqiangz/multilingual-sentiments 中的中文資料,僅保留標記為正面(0)與負面(1)的樣本

主要套件

- transformers:用於載入預訓練模型和分詞器
- datasets: 用於處理和載入資料集
- scikit-learn: 用於資料分割和評估指標計算
- torch: 用於模型訓練和推論

資料處理步驟

- 載入中文情感資料集
- 資料篩選: 僅保留正面與負面樣本, 排除中性資料
- 類別平衡: 為避免模型偏倚, 對兩類樣本數進行平衡處理。
- 資料分割:將資料集分為訓練集和驗證集,比例為80%與20%

模型建構與訓練

- 模型選擇: 使用 bert-base-chinese 作為預訓練模型,進行微調以適應情感分類任務
- 分詞處理:利用 BERT 分詞器對文本進行分詞,並轉換為模型可接受的輸入格式
- 自定義 Dataset: 建立 SentimentDataset 類別,將分詞後的資料與標籤封裝為可供模型訓練的格式
- 訓練參數

訓練參數與流程

- 使用 Huggingface Trainer 模組
- 訓練 3 個 epoch
- Batch Size: 16 (train) / 64 (eval)
- 使用 F1 與 Accuracy 評估模型表現
- 學習率調整、權重衰減等其他參數設定

模型表現評估

- 使用驗證集進行評估
- Accuracy: 約 90% Evaluation result: {'eval_loss': 0.4645451009273529, 'eval_accuracy': 0.86125, 'eval_f1': 0.861244579866401, 'eval_runtime': 38.2065,
- F1-score: 考慮 precision/recall 平衡

```
'eval_samples_per_second': 41.878, 'eval_steps_per_second': 0.654, 'epoch': 3
```

實際推論案例

```
[{'confidence': 0.9935, 'prediction': '負面', 'text': '這家店的服務態度真的非常差。
 {'confidence': 0.9911, 'prediction':
                                  '正面',
                                         'text':
                     'prediction':
 {'confidence': 0.9905,
                                  '負面'
                                         'text':
                     'prediction':
                                  '負面',
                                         <u>''text':'太失望</u>
 {'confidence': 0.9908,
 {'confidence': 0.9917, 'prediction': '正面',
                                         'text':
 {'confidence': 0.9966.
                     'prediction':
                                  '正面',
                                         'text':
                     'prediction':
                                  '負面',
                                         'text':
 {'confidence': 0.9945.
 {'confidence': 0.9614, 'prediction':
                                  '正面'、
                                         'text':
 {'confidence': 0.9924, 'prediction': '負面', 'text': '不值
 {'confidence': 0.9747, 'prediction': '正面', 'text':
 {'confidence': 0.9939, 'prediction': '負面', 'text': '這款手機的續航力真的很弱。
 {'confidence': 0.9921,
                     'prediction':'負面', 'text':'功能齊全,
 {'confidence': 0.9853,
                     'prediction': '正面', 'text':'雖然延遲了一下,但還是準時送達。'},
                     'prediction': '正面', 'text': '超出我的預期!真的太棒了。'},
 {'confidence': 0.9879,
 {'confidence': 0.9944.
                      'prediction':
                                  '負面', 'text': '包裝破損,內容物也有刮傷,失望。'},
```

分工

陳鈺昕	HW4程式、HW5程式
賴兆信	
黃子晏	HW3程式、簡報製作
宋苡瑄	HW2程式、簡報製作
黃天芸	HW1程式、簡報製作

END

