Интеграл Лебега

Пусть (X, \mathcal{M}, μ) это измеримое пространство.

Опр: 1. Пусть f(x) измерима и неотрицательна на X, тогда множеством минорантных функций для неё называется множество неотрицательных простых функций:

$$Q_f = \{$$
простые функции $\varphi(x) \colon 0 \le \varphi(x) \le f(x), \forall x \in X \}$

Rm: 1. Всегда функция $0 \in Q_f$ и следовательно: $Q_f \neq \emptyset$.

Опр: 2. Пусть f(x) измерима и неотрицательна на X, тогда <u>интегралом Лебега</u> функции f(x) по множеству X называется точная верхняя грань:

$$(\mathcal{L}) \int_{X} f(x) d\mu = \int_{X} f(x) d\mu = \sup_{\varphi \in Q_f} \int_{X} \varphi(x) d\mu$$

При этом будем говорить, что $f(x) \in \mathcal{L}(X)$ (интегрируема по Лебегу на X) тогда и только тогда, когда интеграл конечен, то есть:

$$f(x) \in \mathcal{L}(X) \Leftrightarrow \int_{X} f(x)d\mu < \infty$$

Если функция f(x) измерима на X, то определим функции:

- 1) $f_{+}(x) = \max\{f(x), 0\};$
- 2) $f_{-}(x) = -\min\{f(x), 0\};$

Обе функции измеримые и неотрицательные. Заметим, что всегда будет верно равенство:

$$\forall x \in X, f(x) = f_{+}(x) - f_{-}(x)$$

Опр: 3. Пусть f(x) измерима на X, тогда скажем, что f(x) интегрируема по Лебегу на X, если интегрируемы функции: $f_+(x)$ и $f_-(x)$, то есть:

$$f(x) \in \mathcal{L}(X) \Leftrightarrow f_{+}(x) \in \mathcal{L}(X) \land f_{-}(x) \in \mathcal{L}(X)$$

Если это выполнено, то полагаем, что верно равенство:

$$(\mathcal{L}) \int_{X} f(x) d\mu = \int_{X} f(x) d\mu = \int_{X} f_{+}(x) d\mu - \int_{X} f_{-}(x) d\mu$$

Утв. 1. Пусть функция f(x) измерима на (X, \mathcal{M}, μ) (далее будем писать измерима на X). Тогда:

$$f(x) \in \mathcal{L}(X) \Leftrightarrow |f(x)| \in \mathcal{L}(X)$$

$$f(x) = f_{+}(x) - f_{-}(x)$$

По определению:

$$f(x) \in \mathcal{L}(X) \Leftrightarrow f_{+}(x) \in \mathcal{L}(X) \land f_{-}(x) \in \mathcal{L}(X)$$

Когда условие выше выполнено, то верно:

$$\int_{X} f(x)d\mu = \int_{X} f_{+}(x)d\mu - \int_{X} f_{-}(x)d\mu$$

Заметим, что: $|f(x)| = f_+(x) + f_-(x)$, тогда по теореме 3 лекции 8, будет верно:

$$\int_{X} |f(x)| d\mu = \int_{X} f_{+}(x) d\mu + \int_{X} f_{-}(x) d\mu \Rightarrow |f(x)| \in \mathcal{L}(X) \Leftrightarrow f_{+}(x) \in \mathcal{L}(X) \land f_{-}(x) \in \mathcal{L}(X)$$

где интеграл от модуля определен в любой ситуации, поскольку $|f(x)| \ge 0$. Следовательно:

$$f(x) \in \mathcal{L}(X) \Leftrightarrow f_{+}(x) \in \mathcal{L}(X) \land f_{-}(x) \in \mathcal{L}(X) \Leftrightarrow |f(x)| \in \mathcal{L}(X)$$

Утв. 2. Если функция f(x), g(x) - измеримы и неотрицательны на $X, f(x) \in \mathcal{L}(X)$ и $\forall x \in X, g(x) \leq f(x),$ тогда будет верно, что $g(x) \in \mathcal{L}(X)$ и $\int_X g(x) d\mu \leq \int_X f(x) d\mu.$

 \square По определению множества Q_f будет верно:

$$Q_g \subseteq Q_f \Rightarrow \int\limits_X g(x)d\mu = \sup\limits_{\varphi \in Q_g} \int\limits_X \varphi(x)d\mu \le \sup\limits_{\varphi \in Q_f} \int\limits_X \varphi(x)d\mu = \int\limits_X f(x)d\mu < \infty$$

где последнее верно по условию. Тогда получаем конечность интеграла от $g \Rightarrow g(x) \in \mathcal{L}(X)$ и верно неравенство для интегралов.

Теорема 1. Верны следующие утверждения:

1) Если $\mu(X) = 0$ и f(x) измерима на X, то $f(x) \in \mathcal{L}(X)$ и более того:

$$\int\limits_X f(x)d\mu = 0$$

2) Если g(x) измеримы на $X, f(x) \in \mathcal{L}(X)$ и g(x) = f(x) п.в. на X, тогда $g(x) \in \mathcal{L}(X)$ и верно:

$$\int\limits_X g(x)d\mu = \int\limits_X f(x)d\mu$$

3) Если $f(x) \in \mathcal{L}(X)$, то $\mu(\{x \in X : f(x) = \pm \infty\}) = \mu(A) = 0;$

1) Достаточно проверить для $f(x) \ge 0$, поскольку любая функция разбивается не неотрицательные: $f(x) = f_+(x) - f_-(x)$. По условию:

$$\mu(X) = 0 \Rightarrow \forall \varphi(x) \in Q_f, \int_X \varphi(x) d\mu = 0 \Rightarrow \int_X f(x) d\mu = 0$$

2) Поскольку f(x) = g(x) п.в. на X, то $f_+(x) = g_+(x)$, $f_-(x) = g_-(x)$ п.в. на X, поэтому достаточно рассмотреть неотрицательные f(x) и g(x). Пусть $E = \{x \in X : f(x) = g(x)\}$, тогда $\mu(X \setminus E) = 0$ по условию (функции совпадают п.в.), рассмотрим интеграл:

$$\int_{X} g(x)d\mu = \int_{E} g(x)d\mu + \int_{X \setminus E} g(x)d\mu = \int_{E} g(x)d\mu = \int_{E} f(x)d\mu =$$

$$= \int_{E} f(x)d\mu + \int_{X \setminus E} f(x)d\mu = \int_{X} f(x)d\mu < \infty$$

где используется представление из следствия 1 лекции 8: $g(x) = g(x) \cdot \chi_E(x) + g(x) \cdot \chi_{X \setminus E}(x)$ и первый пункт текущей теоремы. Из конечности $\int_X f(x) d\mu$ следует интегрируемость $\int_X g(x) d\mu$ и равенство этих интегралов;

3) Достаточно рассмотреть $f(x) \ge 0$, предположим, что $\mu(A) > 0$. Если $\mu(X) < \infty$, то и $\mu(A) < \infty$, но в общей ситуации пусть верна σ -конечность меры на X:

$$X = \bigsqcup_{n=1}^{\infty} B_n, \, \forall n, \, B_n \in \mathcal{M}, \, \mu(B_n) < \infty$$

Тогда множество A также можно представить в аналогичном виде:

$$A = \bigsqcup_{n=1}^{\infty} (A \cap B_n), \ \mu(A) > 0 \Rightarrow \exists n_0 \colon \mu(A \cap B_{n_0}) > 0$$

Поскольку при этом будет верно: $\mu(A \cap B_{n_0}) \le \mu(B_{n_0}) < \infty$. Рассмотрим функции:

$$\forall m \geq 1, \ h_m(x) = m \cdot \chi_{A \cap B_{n_0}}(x) \in Q_f$$

Эта функция простая, поскольку она принимает всего 2 значения: 0 вне множества $A \cap B_{n_0}$ и m в этом множестве, которое самое по себе - множество конечной меры. Кроме того, на этом множестве, как подмножестве A, функция $f(x) = +\infty \Rightarrow h_m(x) \leq f(x)$. Тогда:

$$\int_{X} f(x)d\mu \ge \int_{X} h_{m}(x)d\mu = m \cdot \underbrace{\mu(A \cap B_{n_{0}})}_{>0} \xrightarrow{m \to \infty} \infty$$

Получили противоречие с тем, что $f(x) \in \mathcal{L}(X) \Rightarrow \int_X f(x) d\mu < \infty$;

Линейность интеграла Лебега в общем случае

Теорема 2. Пусть $f(x) \in \mathcal{L}(X)$ и $\alpha \in \mathbb{R}^1$, тогда $\alpha \cdot f(x) \in \mathcal{L}(X)$ и более того:

$$\int\limits_{X} \alpha \cdot f(x) d\mu = \alpha \cdot \int\limits_{X} f(x) d\mu$$

 \square Пусть $\alpha=0$, тогда: $\alpha\cdot f(x)=0$, где действует соглашение: $0\cdot\infty=0$. При этом 0 - интегрируемая функция, тогда:

$$0 = \int_X 0 \cdot f(x) d\mu = 0 \cdot \int_X f(x) d\mu = 0$$

Пусть $\alpha > 0$ (случай $\alpha < 0$ рассматривается аналогично), тогда:

$$(\alpha \cdot f)_+(x) = \alpha \cdot f_+(x), \ (\alpha \cdot f)_-(x) = \alpha \cdot f_-(x)$$

Поэтому достаточно рассмотреть случай, когда: $f(x) \ge 0$. Отметим, что:

$$h(x) \in Q_f \Leftrightarrow \alpha \cdot h(x) \in Q_{\alpha \cdot f}$$

по определению Q_f . Поэтому:

$$\int\limits_X f(x)d\mu = \sup_{h \in Q_f} \int\limits_X h(x)d\mu = \sup_{\alpha \cdot h \in Q_{\alpha f}} \int\limits_X h(x)d\mu = \frac{1}{\alpha} \cdot \sup_{\alpha \cdot h \in Q_{\alpha f}} \int\limits_X \alpha \cdot h(x)d\mu = \frac{1}{\alpha} \cdot \int\limits_X \alpha \cdot f(x)d\mu$$

где мы воспользовались линейностью по умножению для простой функции. В результате:

$$\alpha \cdot \int_{X} f(x)d\mu = \int_{X} \alpha \cdot f(x)d\mu$$

Rm: 2. У нас либо действовало соглашение, что $0 \cdot \infty = 0$, либо можно было обратиться к ситуациям, когда мера полна и тогда по предыдущей теореме, поскольку $f(x) \in \mathcal{L}(X)$, то f(x) конечна почти всюду \Rightarrow проблемы с умножением могли бы возникнуть лишь на множестве нулевой меры, а когда мера полна, то на множестве нулевой меры интеграл обязательно будет равен 0.

Теорема 3. Пусть $f(x), g(x) \in \mathcal{L}(X)$, тогда $f(x) + g(x) \in \mathcal{L}(X)$ и более того:

$$\int_{X} (f(x) + g(x))d\mu = \int_{X} f(x)d\mu + \int_{X} g(x)d\mu$$

Поскольку $\forall x \in \mathcal{L}(X), |f(x) + g(x)| \leq |f(x)| + |g(x)|,$ и согласно утверждению 1 этой лекции верно: $|f(x)| \in \mathcal{L}(X), |g(x)| \in \mathcal{L}(X),$ тогда по теореме 3 предыдущей лекции верно, что: $|f(x)| + |g(x)| \in \mathcal{L}(X).$ Согласно утверждению 2 верно, что: $|f(x) + g(x)| \in \mathcal{L}(X) \Rightarrow f(x) + g(x) \in \mathcal{L}(X).$

Покажем теперь, что верно равенство. Предположим, что $f(x) \ge 0, g(x) \le 0$ на X. Введём множества:

$$E_{+} = \{x \in X : f(x) + g(x) \ge 0\}, E_{-} = \{x \in X : f(x) + g(x) < 0\}$$

Согласно нашим рассмотрениям относительно поведения измеримых функций, верно: $E_-, E_+ \in \mathcal{M}$, тогда: $X = E_+ \sqcup E_-$. При этом, будет верно:

$$(f+g)_{+}(x) = (f(x)+g(x))\cdot\chi_{E_{+}}(x), (f+g)_{-}(x) = -(f(x)+g(x))\cdot\chi_{E_{-}}(x)$$

Заметим, что на множестве E_+ функции f(x), f(x) + g(x) и -g(x) все неотрицательны, причем верно:

$$f(x) = (f(x) + g(x)) + (-g(x))$$

По теореме 3 предыдущей лекции мы получаем, что:

$$\int_{E_{+}} f(x)d\mu = \int_{E_{+}} (f(x) + g(x))d\mu + \int_{E_{+}} (-g(x))d\mu = \int_{X} (f+g)_{+}(x)d\mu - \int_{E_{+}} g(x)d\mu$$

где мы воспользовались теоремой 2. На множестве E_- функции -(f(x)+g(x)), -g(x), f(x) - неотрицательны, поэтому верно:

$$\int_{E_{-}} (-g(x))d\mu = \int_{E_{-}} -(f(x) + g(x))d\mu + \int_{E_{-}} f(x)d\mu = \int_{X} (f+g)_{-}(x)d\mu + \int_{E_{-}} f(x)d\mu$$

Следовательно, мы получим следующее:

$$\int_{X} (f(x) + g(x))d\mu = \int_{X} (f+g)_{+}(x)d\mu - \int_{X} (f+g)_{-}(x)d\mu =$$

$$= \int_{E_{+}} f(x)d\mu + \int_{E_{+}} g(x)d\mu + \int_{E_{-}} f(x)d\mu + \int_{E_{-}} g(x)d\mu =$$

$$= \left(\int_{E_{+}} f(x)d\mu + \int_{E_{-}} f(x)d\mu\right) + \left(\int_{E_{+}} g(x)d\mu + \int_{E_{-}} g(x)d\mu\right) = \int_{X} f(x)d\mu + \int_{X} g(x)d\mu$$

где мы воспользовались знакопостояннством функций - что справедливо для неотрицательных функций, то справедливо и для неположительных функций.

В общем случае, мы можем представить сумму функций в виде:

$$f(x) + g(x) = \underbrace{f_{+}(x) + g_{+}(x)}_{>0} \underbrace{-(f_{-}(x) + g_{-}(x))}_{\leq 0}$$

По доказанному выше, будет верно:

$$\int_{X} (f(x) + g(x))d\mu = \int_{X} (f_{+}(x) + g_{+}(x))d\mu + \int_{X} (-(f_{-}(x) + g_{-}(x)))d\mu = (*)$$

Воспользуемся теоремой 3 из прошлой лекции, вынесем знак минуса из-под интеграла и воспользуемся определением интеграла Лебега:

$$(*) = \int_{X} f_{+}(x)d\mu + \int_{X} g_{+}(x)d\mu - \int_{X} f_{-}(x)d\mu - \int_{X} g_{-}(x)d\mu = \int_{X} f(x)d\mu + \int_{X} g(x)d\mu$$

Следствие 1. Если $f(x), g(x) \in \mathcal{L}(X)$ и $\alpha, \beta \in \mathbb{R}^1$, то $\alpha \cdot f(x) + \beta \cdot g(x) \in \mathcal{L}(X)$ и верно:

$$\int\limits_X (\alpha \cdot f(x) + \beta \cdot g(x)) d\mu = \alpha \cdot \int\limits_X f(x) d\mu + \beta \cdot \int\limits_X g(x) d\mu$$

□ Очевидно, как комбинация предыдущих двух теорем.

Следствие 2. Если $f(x), g(x) \in \mathcal{L}(X)$ и $\forall x \in X, \ f(x) \geq g(x),$ то будет верно: $\int_X f(x) d\mu \geq \int_X g(x) d\mu.$

 \square Функция $f(x)-g(x)\geq 0,\ f(x)-g(x)\in \mathcal{L}(X),$ тогда:

$$0 \le \int\limits_X (f(x) - g(x)) d\mu = \int\limits_X f(x) d\mu - \int\limits_X g(x) d\mu \Rightarrow \int\limits_X f(x) d\mu \ge \int\limits_X g(x) d\mu$$

Утв. 3. Если $f(x) \in \mathcal{L}(X), g(x)$ измерима на X и $|g(x)| \le |f(x)|$ п.в. на X, то $g(x) \in \mathcal{L}(X)$.

- \square Пусть $E = \{x \in X : |g(x)| \le |f(x)|\}$, тогда:
 - 1) $\mu(X \setminus E) = 0 \Rightarrow g(x) \in \mathcal{L}(X \setminus E)$ и $\int_{X \setminus E} g(x) d\mu = 0$;
 - 2) $|g(x)| \in \mathcal{L}(E)$, поскольку $|f(x)| \in \mathcal{L}(E)$, тогда $g(x) \in \mathcal{L}(E)$;

Из пунктов выше вытекает утверждение.

Rm: 3. Если функция $f(x) \in \mathcal{L}(X)$, то тогда верно:

$$\left| \int\limits_X \underbrace{f_+(x)}_{\geq 0} d\mu - \int\limits_X \underbrace{f_-(x)}_{\geq 0} d\mu \right| = \left| \int\limits_X f(x) d\mu \right| \leq \int\limits_X |f(x)| d\mu = \int\limits_X f_+(x) d\mu + \int\limits_X f_-(x) d\mu$$

Rm: 4. Если $\mu(X) < \infty$ и f(x) измерима на X и кроме того $\forall x \in X, |f(x)| \le c$, то в этом случае:

$$f(x) \in \mathcal{L}(X), \int_{X} |f(x)| d\mu \le c \cdot \mu(X)$$

Это частный случай утверждения 2, где: $|f(x)| \le c \cdot \chi_X(x)$.

Предельный переход под знаком интеграла Лебега

Пусть (X, \mathcal{M}, μ) - измеримое пространство. Далее будем говорить измеримо на X.

Теорема 4. (Беппо-Леви) Пусть $\{f_n(x)\}_{n=1}^{\infty}$ - измеримые и неотрицательные функции на X, кроме того $f_n(x) \uparrow f(x)$ на X. Тогда:

$$\int_{X} f(x)d\mu = \lim_{n \to \infty} \int_{X} f_n(x)d\mu$$

 \mathbf{Rm} : 5. f(x) это предел измеримых функций \Rightarrow она измерима. Её неотрицательность вытекает из неотрицательности $f_n(x)$, а также из того, что функции монотонно возрастают. Также допускаются бесконечные значения.

 \square Рассмотрим функции: $g_1(x) = f_1(x), \forall n \geq 2, g_n(x) = f_n(x) - f_{n-1}(x)$, при этом считаем:

$$\infty - a = \infty, \ \infty - \infty = 0$$

Тогда все функции $g_n(x)$ измеримы и неотрицательны на X. $\forall n$ построим по лемме 1 предыдущей лекции последовательность простых неотрицательных функций $\psi_{n,k}(x) \uparrow g_n(x)$ на X. Введем функции:

$$F_k(x) = \sum_{n=1}^k \psi_{n,k}(x), \ k = 1, 2, \dots$$

Все $F_k(x)$ - измеримые, неотрицательные и являются простыми функциями. Рассмотрим свойства этой последовательности:

1) Монотонность последовательности F_k на X:

$$F_{k+1}(x) - F_k(x) = \psi_{k+1,k+1}(x) + \sum_{n=1}^k (\underbrace{\psi_{n,k+1}(x) - \psi_{n,k}(x)}_{>0}) \ge 0 \Rightarrow F_k(x) \uparrow$$

2) Ограниченность сверху функциями $f_k(x)$ и f(x):

$$\forall k, F_k(x) = \sum_{n=1}^k \psi_{n,k}(x) \le \sum_{n=1}^k g_n(x) = f_k(x) \le f(x)$$

3) Ограниченность снизу функциями $f_N(x)$:

$$\forall N, \lim_{k \to \infty} F_k(x) \ge \lim_{k \to \infty} \sum_{n=1}^N \psi_{n,k}(x) = \sum_{n=1}^N \lim_{k \to \infty} \psi_{n,k}(x) = \sum_{n=1}^N g_n(x) = f_N(x)$$

где предел и сумму можно менять, поскольку число N - фиксированное. Поскольку это верно для любого N, то можно взять предел по N:

$$\lim_{k \to \infty} F_k(x) \ge \lim_{N \to \infty} f_N(x) = f(x)$$

Из пунктов выше, поскольку $F_k(x)$ монотонно возрастает и ограничена сверху, то у неё есть предел и согласно пунктам 2) и 3) этот предел будет равен:

$$\lim_{k \to \infty} F_k(x) = f(x)$$

Тогда согласно утверждению 7 предыдущей лекции:

$$\lim_{k \to \infty} \int_{X} F_k(x) d\mu = \int_{X} f(x) d\mu$$

Заметим также, что верно следующее:

$$\forall k, F_k(x) \le f_k(x) \Rightarrow \lim_{k \to \infty} \int_X f_k(x) d\mu \ge \lim_{k \to \infty} \int_X F_k(x) d\mu = \int_X f(x) d\mu$$

С другой стороны:

$$\forall k, f_k(x) \le f(x) \Rightarrow \lim_{k \to \infty} \int_X f_k(x) d\mu \le \int_X f(x) d\mu$$

Тогда из полученных неравенств мы имеем равенство:

$$\lim_{k \to \infty} \int_X f_k(x) d\mu = \int_X f(x) d\mu$$

Следствие 3. (теорема Беппо-Леви) Пусть задана последовательность: $\{f_n(x)\}_{n=1}^{\infty} \subset \mathcal{L}(X)$ и она монотонно сходится к f(x): $f_n(x) \uparrow f(x)$ на X. Пусть кроме того, $\exists c > 0$ такая, что:

$$\forall n, \int_{X} f_n(x) d\mu \le c$$

Тогда $f(x) \in \mathcal{L}(X)$ и будет верно:

$$\lim_{k \to \infty} \int_{X} f_k(x) d\mu = \int_{X} f(x) d\mu$$

Rm: 6. Поскольку функции интегрируемы, то они конечны п.в., но всё же нужно либо использовать соглашения о действиях с бесконечными величинами, либо считать, что мера μ полна \Rightarrow из конечности функций п.в. нам не важно, что происходит на множестве меры 0, либо считать, что функции конечный в каждой точке.

 \square Рассмотрим функции: $g_n(x) = f_n(x) - f_1(x)$, $n = 1, 2, \ldots$ Тогда $\forall n, g_n(x) \in \mathcal{L}(X)$, как разность интегрируемых функций, $g_n(x) \geq 0$ на X, поскольку последовательность монотонно не убывает и кроме того $g_n(x) \uparrow (f(x) - f_1(x))$. По предыдущей теореме будет верно:

$$\int\limits_X (f(x) - f_1(x)) d\mu = \lim_{n \to \infty} \int\limits_X g_n(x) d\mu = \lim_{n \to \infty} \int\limits_X f_n(x) d\mu - \int\limits_X f_1(x) d\mu \le c - \int\limits_X f_1(x) d\mu < \infty$$

Таким образом $(f(x) - f_1(x)) \in \mathcal{L}(X) \Rightarrow$ поскольку к одной интегрируемой функции мы можем прибавить другую интегрируемую функцию, а конкретно $f_1(x)$, то:

$$(f(x) - f_1(x)) + f_1(x) = f(x) \in \mathcal{L}(X) \Rightarrow \int_X (f(x) - f_1(x)) d\mu = \int_X f(x) d\mu - \int_X f_1(x) d\mu \Rightarrow$$

$$\Rightarrow \int_{X} f(x)d\mu - \int_{X} f_{1}(x)d\mu = \lim_{n \to \infty} \int_{X} f_{n}(x)d\mu - \int_{X} f_{1}(x)d\mu \Rightarrow \int_{X} f(x)d\mu = \lim_{n \to \infty} \int_{X} f_{n}(x)d\mu$$

Следствие 4. Пусть $\{f_n(x)\}_{n=1}^{\infty}$ - измеримы и неотрицательны на X, тогда:

$$\int_{X} \sum_{n=1}^{\infty} f_n(x) d\mu = \sum_{n=1}^{\infty} \int_{X} f_n(x) d\mu$$

Rm: 7. Допускаются бесконечные значения (как интегралов, так и сумм).

Пусть $g_k(x) = \sum_{n=1}^k f_n(x)$, тогда в силу неотрицательности $f_n(x)$: $g_k(x) \uparrow \sum_{n=1}^{\infty} f_n(x)$, следовательно по теореме Беппо-Леви:

$$\int\limits_{X} \sum_{n=1}^{\infty} f_n(x) d\mu = \lim_{k \to \infty} \int\limits_{X} \sum_{n=1}^{k} f_n(x) d\mu$$

В силу теоремы 3 предыдущей лекции поскольку сумма конечна, то мы получим:

$$\lim_{k \to \infty} \int\limits_{X} \sum_{n=1}^{k} f_n(x) d\mu = \lim_{k \to \infty} \sum_{n=1}^{k} \int\limits_{X} f_n(x) d\mu = \sum_{n=1}^{\infty} \int\limits_{X} f_n(x) d\mu$$

Теорема 5. (**теорема Фату**) Пусть $\{f_n(x)\}_{n=1}^{\infty}$ - измеримы и неотрицательны на X, предположим, что μ - полна и функция $f_n(x) \xrightarrow{as,X} f(x)$, где $f(x) \geq 0$ на X, тогда:

$$\int\limits_X f(x)d\mu \le \underline{\lim}_{n \to \infty} \int\limits_X f_n(x)d\mu$$

Rm: 8. Заметим, что из сходимости $f_n(x)$, пусть даже всюду, не вытекает существование предела у последовательности интегралов, но нижний предел всегда существует у них. Интегралы также могут принимать бесконечные значения.

□ Рассмотрим следующие функции:

$$\forall k, \, \varphi_k(x) = \inf_{n > k} f_n(x) \Rightarrow \forall x \in X, \, \varphi_k(x) \uparrow \land \varphi_k(x) \xrightarrow{as, X} f(x)$$

где сходимость п.в. есть на измеримом множестве $E: \mu(X \setminus E) = 0$.

$$\forall x \in E, \lim_{k \to \infty} \varphi_k(x) = \lim_{k \to \infty} \inf_{n \ge k} f_n(x) = \underline{\lim}_{k \to \infty} f_k(x) = f(x)$$

Тогда:

$$\int\limits_{X} f(x)d\mu = \int\limits_{E} f(x)d\mu = \lim_{k \to \infty} \int\limits_{E} \varphi_{k}(x)d\mu = \lim_{k \to \infty} \int\limits_{X} \varphi_{k}(x)d\mu$$

Но поскольку: $\forall k, \, \varphi_k(x) \leq f_k(x),$ то выберем последовательность, которая реализует нижний предел:

$$\{k_i\}_{i=1}^{\infty} \colon \lim_{k \to \infty} \int_X f_k(x) d\mu = \lim_{i \to \infty} \int_X f_{k_i}(x) d\mu \Rightarrow$$

$$\Rightarrow \lim_{k \to \infty} \int_Y \varphi_k(x) d\mu = \lim_{i \to \infty} \int_Y \varphi_{k_i}(x) d\mu \leq \lim_{i \to \infty} \int_Y f_{k_i} d\mu = \lim_{k \to \infty} \int_Y f_k(x) d\mu$$