

UNIVERZITET U NOVOM SADU FAKULTET TEHNIČKIH NAUKA

GEOPROSTORNE BAZE PODATAKA

RELACIONI MODEL PODATAKA – Koncepcija

Mrežni i hijerarhijski model

- U korišćenju 70-ih godina
- Nedostaci
 - čvrsta povezanost programa i fizičke strukture podataka
 - strukturalna komleksnost
 - proceduralno orijentisani jezici za manipulaciju podacima

Mrežni i hijerarhijski model

Vrste modela podataka

- Relacioni model
 - pojava ideje 70-ih, korišćenje 80-ih
 - prednosti i nedostaci (nedostatak konteksta)
- Semantički modeli
 - ER (Chen)
 - semantičke hijerarhije (Smith i Smith)
 - semantički model (Hammer i Mcleod)

Vrste modela podataka

- Objektno orjentisani modeli
 - zasnovanost na
 - mrežnom i semantičkim modelima i
 - objektno orijentisanim programskim jezicima
 - pojava i razvoj u 80-im
- Logički modeli
 - dalja nadgradnja relacionog modela
 - uvođenje dedukcije u baze podataka

- Motiv razvoja otklanjanje nedostataka klasičnih modela podataka
 - čvrsta povezanost logičkih i fizičkih aspekata
 - strukturalna kompleksnost
 - navigacioni jezik

- Zahtev: nezavisnost programa od podataka
- Kod ranijih MP fizički aspekti BP ugrađeni u programe
 - raspodela slogova po zonama
 - fizički redosled ⇒ logičko grupisanje slogova
 - transformacija vrednosti ključa u adresu
 - lanci slogova sa pokazivačima
 - hijerarhijski redosled slogova
 - postupci zaštite podataka

Rešenje

- potpuno odvajanje prezentacionog od formata memorisanja
- relacija kao skup n-torki (torki)
- apstraktni opis relacije: šema relacije

N(R, K)

- *R* skup obeležja
- *K* skup ključeva

■ Primer:

```
• Fakultet ({FAK, NAZ, BIP}, {FAK})
```

```
• r(Fakultet)={(PMF, Matematički, 7),
(EKF, Ekonomski, 4),
(ETF, Elektrotehnički, 9),
(MAF, Mašinski, 7)}
```

• Torka (EKF, Elektronski, 8), narušava uslov integriteta

- Problem selekcije podataka putem proceduralnih jezika kod ranijih MP
- Asocijativno adresiranje
 - svaki podatak u BP se pronalazi na osnovu naziva relacije, obeležja i vrednosti ključa
 - skup torki sa zajedničkom osobinom se selektira na sličan način
- Strukturalna jednostavnost
 - tabela kao reprezent relacije

■ Primer:

Fakultet

FAK	NAZ	BIP
FIL	Filozofski	1
PMF	Matematički	7
ETF	Elektrotehnički	9
EKF	Ekonomski	4
MAF	Mašinski	7

Projektant

MBR	IME	PRZ	FAK
М3	lva	Ban	PMF
M1	Ana	Tot	MAF
M4	Ana	Ras	FIL
M8	Aca	Рар	ETF
М6	lva	Ban	EKF
M5	Eva	Tot	ETF

- Problem povezivanja podataka u tabelama
 - rešenje putem posebne tabele
 - rešenje putem prostiranja ključa
- Pojam stranog ključa

- Deklarativni jezik
 - opredeljenje za predstavljanje podataka i njihovih veza putem tabela iniciralo je potrebu razvoja tehnike za njihovo korišćenje
 - dva alata za upitni jezik
 - relaciona algebra
 - relacioni račun
 - skupovni operatori
 - spoj (join)

- SQL Structured Query Language
 - zasnovan na relacionom računu
 - deklarativan
 - rad sa skupovima
 - osnovni upitni blok SQL-a je:

```
SELECT < lista obeležja>
FROM < lista relacija>
WHERE < kvalifikacioni izraz>
```


■ Primer:

• SELECT ime, prz, bip FROM fakultet, projektant WHERE bip > 5 AND fakultet.fak = projektant.fak

IME	PRZ	BIP
lva	Ban	7
Ana	Tot	7
Aca	Рар	9
Eva	Tot	9