Lecture 3: Branching and Looping

Table of contents

	0.1	Objectives
Ĺ	Brai	ching
	1.1	Instruction Pointer
	1.2	JMP Instruction
		1.2.1 Relative vs Absolute Offset Address
		1.2.2 Types of Jumps:

0.1 Objectives

1 Branching

- By default, the CPU loads and executes programs sequentially.
- A branch, or transfer of control, is a way of altering the order in which statements are executed.
- There are two basic types of transfer:

- 1. **Unconditional transfer**, in which a transfer is occurred unconditionally.
- 2. **Conditional transfer**, in which a transfer is occurred based on a certain condition.

1.1 Instruction Pointer

• The EIP, or instruction pointer, register contains the address of the next instruction to be executed. Certain machine instructions manipulate EIP, causing the program to *branch* to a new location.

1.2 JMP Instruction

- The JMP instruction causes an unconditional transfer to a destination address.
- The destination (target) operand specifies the address of the instruction being jumped to. This operand can be an immediate value, a generalpurpose register, or a memory location.

In this course, we only consider the immediate value for the destination operand.

1.2.1 Relative vs Absolute Offset Address

• The destination address, within the instruction stream, can be relative offset or absolute offset

• A relative offset is a signed displacement to the current value of the EIP.

$${\sf Offset}\ {\sf Address} = {\sf EIP} + {\sf DEST}$$

• An absolute address is an offset from the base of the code segment.

$$Offset Address = DEST$$

1.2.2 Types of Jumps:

- 1. Near Jump:
- 2. Short jump:
- 3. Far Jump