Interdependent Values in Matching Markets: Evidence from Medical School Programs in Denmark

Benjamin U. Friedrich (Northwestern Kellogg)
Martin B. Hackmann (UCLA & CESifo & NBER)
Adam Kapor (Princeton & NBER)
Sofia Moroni (Princeton)
Anne Brink Nandrup (VIVE Denmark)

August 2022

Matching is a key function of markets: education, labor, transportation, . . .

- Matching is a key function of markets: education, labor, transportation, . . .
- Many practical implementations of matching mechanisms; large lit on two-sided matching markets with heterogeneity on both sides.
 - Most empirical work assumes full information.
 - Theoretical case for stable matching mech. typically requires all agents to know own preferences.

- Matching is a key function of markets: education, labor, transportation, . . .
- Many practical implementations of matching mechanisms; large lit on two-sided matching markets with heterogeneity on both sides.
 - Most empirical work assumes full information.
 - Theoretical case for stable matching mech. typically requires all agents to know own preferences.
- In practice, colleges/programs/employers may base offers on essays, interviews, other subjective measures.
 - May be noisy; likely don't reveal all payoff-relevant info.
 - Reviewer might want to know private info held by its competitors or by applicants.

- Matching is a key function of markets: education, labor, transportation, . . .
- Many practical implementations of matching mechanisms; large lit on two-sided matching markets with heterogeneity on both sides.
 - Most empirical work assumes full information.
 - Theoretical case for stable matching mech. typically requires all agents to know own preferences.
- In practice, colleges/programs/employers may base offers on essays, interviews, other subjective measures.
 - May be noisy; likely don't reveal all payoff-relevant info.
 - Reviewer might want to know private info held by its competitors or by applicants.

We ask: (1) How do firms (higher-ed programs) compete for students in presence of interdep. values? (2) How does the presence of interdep. values—and programs' responses to this situation—affect production?

Provide first evidence for interdependent valuations in a matching market and strategic adjustment by programs to this situation.

- Provide first evidence for interdependent valuations in a matching market and strategic adjustment by programs to this situation.
 - Key margin of strategic adjustment: use of credible signals of applicants' preferences.

- Provide first evidence for interdependent valuations in a matching market and strategic adjustment by programs to this situation.
 - Key margin of strategic adjustment: use of credible signals of applicants' preferences.
 - Institutions and natural experiment allow us to test for / quantify sources of interdependent values:
 - Interdependent program values: winner's curse when candidates are rejected by competitors.
 - match effects / college like people who like them (Avery and Levin, AER 2010)
 - (Relatedly) self-selection when applications are costly (Chade, Lewis, Smith, REstud 2014).

- Provide first evidence for interdependent valuations in a matching market and strategic adjustment by programs to this situation.
 - Key margin of strategic adjustment: use of credible signals of applicants' preferences.
 - Institutions and natural experiment allow us to test for / quantify sources of interdependent values:
 - Interdependent program values: winner's curse when candidates are rejected by competitors.
 - match effects / college like people who like them (Avery and Levin, AER 2010)
 - (Relatedly) self-selection when applications are costly (Chade, Lewis, Smith, REstud 2014).
- 2 Analyze the effects of imperfect information and interdependent values in an empirically important setting.

Context: Medical schools in Denmark

- 5 years of training (finish w/ Master's degree followed by residency training)
- Students apply directly after high school
- 3 programs: Copenhagen, Aarhus, and Odense (Aalborg from 2010)
- Admissions via centralized matching procedure (CPDA) in which both sides express preferences.
- About 1,200 admissions/year (relatively constant over time)

Context: Medical schools in Denmark

- 5 years of training (finish w/ Master's degree followed by residency training)
- Students apply directly after high school
- 3 programs: Copenhagen, Aarhus, and Odense (Aalborg from 2010)
- Admissions via centralized matching procedure (CPDA) in which both sides express preferences.
- About 1,200 admissions/year (relatively constant over time)
- Dropout is a concern for public, students, programs:
 - High dropout rates (15 20%) are major concern: wasted time + resources.
 - Associated with struggling academically (O'Neill 2011).
 - 80% of university funding uses a "taximeter" scheme (passed exams weighted by course study time)

College application data from the Danish Central Admissions Secretariat (CAS), 1994-2013.

College application data from the Danish Central Admissions Secretariat (CAS), 1994-2013.

We see the universe of applications, admissions, and enrollment:

Programs' rankings of applicants in a discretionary setting

College application data from the Danish Central Admissions Secretariat (CAS), 1994-2013.

- Programs' rankings of applicants in a discretionary setting
- Applicants' (ordinal) rankings of up to 8 most preferred programs (not seen by programs)

College application data from the Danish Central Admissions Secretariat (CAS), 1994-2013.

- Programs' rankings of applicants in a discretionary setting
- Applicants' (ordinal) rankings of up to 8 most preferred programs (not seen by programs)
- Preference shifters (observed by programs): location

College application data from the Danish Central Admissions Secretariat (CAS), 1994-2013.

- Programs' rankings of applicants in a discretionary setting
- Applicants' (ordinal) rankings of up to 8 most preferred programs (not seen by programs)
- Preference shifters (observed by programs): location
- Outcomes: transfers, 1- and 3-year dropout, completion

College application data from the Danish Central Admissions Secretariat (CAS), 1994-2013.

- Programs' rankings of applicants in a discretionary setting
- Applicants' (ordinal) rankings of up to 8 most preferred programs (not seen by programs)
- Preference shifters (observed by programs): location
- Outcomes: transfers, 1- and 3-year dropout, completion
- Policy change: information experiment

Related Literature

Models of matching markets:

- Large literature starting with Gale and Shapley (AMM 1962): existence and properties of stable matching; DA algorithm, SOSM mechanism.
- Azevedo and Leshno (JPE 2016): large-market model (continuum of students, N programs).
- Chakraborty, Citanna, Ostrovsky (JET 2010): Nonexistence of stable matching mechanism with interdependent values.
- Chade et al. (REStud 2014): model of college admissions with common values in a decentralized setting and many agents
- Che and Koh (JPE 2016): aggregate preference shocks and yield-management concerns.
- Friedrich (2016): Dynamics, young workers less adversely selected than older movers.
- Avery and Levin (AER 2010): colleges like people who like them; EA/ED finds these people.
- Lee (IER 2010): common values, early decision (ED) as specific technology to address winner's curse.

Our novelty: interdependent program values + preference signals in matching setting.

Interdependent Values: Key Intuition

Suppose program 1 considers two candidates, A and B, who look the same after interviews, tests,...

- A: "You are my Nth choice. I'll accept your offer if the other programs reject me."
- B: "If you make me an offer, I will accept it. Here is evidence..."

Interdependent Values: Key Intuition

Suppose program 1 considers two candidates, A and B, who look the same after interviews, tests,...

- A: "You are my Nth choice. I'll accept your offer if the other programs reject me."
- B: "If you make me an offer, I will accept it. Here is evidence..."

Interdep. Program Values: If other programs hold extra payoff-relevant info, then program 1 is subject to "winner's curse" if it matches with A

- All else equal, program 1 should prefer B.
- Program 1 gets better at screening \implies winner's curse at program $1 \downarrow$ (at competitors \uparrow ?)

Interdependent Values: Key Intuition

Suppose program 1 considers two candidates, A and B, who look the same after interviews, tests,...

- A: "You are my Nth choice. I'll accept your offer if the other programs reject me."
- B: "If you make me an offer, I will accept it. Here is evidence..."

Interdep. Program Values: If other programs hold extra payoff-relevant info, then program 1 is subject to "winner's curse" if it matches with A

- All else equal, program 1 should prefer B.
- Program 1 gets better at screening \implies winner's curse at program $1 \downarrow$ (at competitors \uparrow ?)

Self-Selection: Student preferences pos. associated with program payoff

- All else equal, program 1 should prefer B.
- Program 1's screening efforts raise application costs ⇒ ambiguous effects on selection.

Context: Program Admissions

Two ways to get in:

- **Quota 1**: Applicants (passively) ranked by high school GPA:
 - 50-70% of seats allocated to quota 1 admissions
- Quota 2: Programs rank applicants on a broader set of characteristics:
 - E.g. subject grades, motivation letter, tests or personal interviews
 - Admission criteria and review efforts differ between programs
- Assignment via college-proposing DA algorithm:
 - Students fill out ROL with Quota-1 apps, check box next to program for Quota 2 if desired and provide additional materials.
 - Each program is divided into Q1 and Q2 pseudoprograms.
 - If apply Q2 to program j, insert j-Q2 pseudoprogram into ROL just after j-Q1.
 - Number of seats, share Q2 seats is regulated (programs would like more students).

Example: Q1 and Q2 Application

Quota 1:

Medicine Aarhus:

<u>(2</u>

Medicine Odense:

(3)

Dentistry Aarhus:

4

Math Copenhagen:

Example: Q1 and Q2 Application

Quota 1: Quota 2:

Medicine Aarhus:

Medicine Odense:

Dentistry Aarhus:

Math Copenhagen:

Quota 1: Quota 2:

X

X

Example: Q1 and Q2 Application

Extended ROL Quota 1: Quota 2: Medicine Aarhus: Χ Medicine Odense: **Dentistry Aarhus:** Math Copenhagen:

Sample: Medical School Applicants

	Copenhagen	Aarhus	Odense	
# Applicants	30,356	25,328	22,497	
Preferences and Quota 2 Applications				
Share listing j as 1st Priority	sting j as 1st Priority 0.682			
Share listing j as 1st Priority: Aarhus Locals	0.276	0.726	0.222	
Share listing j as 1st Priority: Odense Locals	0.483	0.252	0.641	
Share submitting Quota 2 Application to j	0.616	0.34	0.155	
Share submitting Quota 2 Application to j: high GPA	0.353	0.124	0.025	
Admissions and Outcome				
# Admitted	9,475	6,949	4,680	
# Enrolled	7,885	6,049	4,093	
1y Dropout Rate	0.05	0.055	0.05	
3y Dropout Rate	0.121	0.128	0.119	
3y Transfer Rate	0.005	0.011	0.016	
10y Completion Rate	0.832	0.842	0.831	
Sample Years	1994-2013	1994-2013	1994-2013	

Less likely to get in below GPA cutoff

Q2 Applicants Less Likely to Drop Out

Dropout rate by Q1/Q2 ranking

Note: Q2 admissions are ranked from -1 (highest) to 0 (lowest), Q1 admission from 0 to 1 (highest).

Odense's Admission Reform in 2002

In 2002, Odense's faculty of health sciences changed their admission process:

- Motivated in parts b/c of high dropout rates and to attract highly motivated students
- High applicant to seat ratio (6 to 1) pre 2002, yet 70% were admitted purely on the basis of the GPA
- Lower quota 1 share to 50%
- Increase review criteria for quota 2 admissions [25 min interview, motivational essay, admission test]
- No changes to curriculum or study program itself

Dropouts and Odense's Admission Reform

Odense's dropout rate falls by 7.1 p.p. (after admission reform)

Dropouts at Aarhus and Odense's Reform

- Programs cannot condition admissions on preferences
- Students who prefer & enroll at Aarhus not affected (control group)
- Students who prefer Odense & enroll at Aarhus are adversely selected after reform; dropout rate increases by 12.3 p.p. → Fig.

Program Rankings and Dropouts

	(1)	(2)	(3)	(4)	(5)
Outcome	AAR 1>2	Difference	in 3Y Dropou	t for Student	1 versus Student 2
Sample	All	All	Both ODE	None ODE	All
ODE Ranks 1>2	0.059***	-0.116***	-0.030*	-0.061**	-0.051
ODE Names 1/2	(0.017)	(0.018)	(0.017)	(0.025)	(0.039)
AAR Ranks 1>2		-0.020	-0.019	-0.039	-0.009
ODE Ranks 1>2 Post		(0.015)	(0.017)	(0.025)	(0.035) -0.073*
AAR Ranks 1>2 Post					(0.043) -0.012
					(0.038)
Observations	70,044	70,044	22,312	15,156	70,044
R-squared	0.035	0.053	0.084	0.075	0.054

- Outcome: 1 if candidate 1 drops and 2 doesn't; 0 if both or none drop out; -1 if candidate 2 drops and 1 doesn't
- Odense's ranking predicts dropouts conditional on Aarhus' ranking
- Evidence for interdependent program values

Programs Exhibit Home Bias

And adjust as expected post-reform

- Odense reduces home bias post-reform
- Aarhus shifts bonus towards students from other regions

Descriptive analysis: Summary

- Quota-2 (discretionary) application and admissions decisions together contain info about dropout.
 - Bottom Quota-2 admit to Odense 4pp less likely to drop out than bottom Q1 admit.
 - In paper: Q2 Ode applicants with high rank who enroll elsewhere 6pp less likely to drop out.
 - Screening reform at Odense resulted in higher (lower) completion rates at Odense (Aarhus).

Descriptive analysis: Summary

- Quota-2 (discretionary) application and admissions decisions together contain info about dropout.
 - Bottom Quota-2 admit to Odense 4pp less likely to drop out than bottom Q1 admit.
 - In paper: Q2 Ode applicants with high rank who enroll *elsewhere* 6pp less likely to drop out.
 - Screening reform at Odense resulted in higher (lower) completion rates at Odense (Aarhus).
- There is direct evidence of interdependent program values:
 - Odense's ranking is informative (about dropout) conditional on Aarhus' ranking;

Descriptive analysis: Summary

- Quota-2 (discretionary) application and admissions decisions together contain info about dropout.
 - Bottom Quota-2 admit to Odense 4pp less likely to drop out than bottom Q1 admit.
 In paper: Q2 Ode applicants with high rank who enroll elsewhere 6pp less likely to drop out.
 - Screening reform at Odense resulted in higher (lower) completion rates at Odense (Aarhus)
- Screening reform at Odense resulted in higher (lower) completion rates at Odense (Aarhus).
- There is direct evidence of interdependent program values:
 - Odense's ranking is informative (about dropout) conditional on Aarhus' ranking;
- And of self-selection:
 - In paper: Among Q1 admits, applied Q2 \implies 2.7 pp (se=1.1) lower dropout rate.

Descriptive analysis: Summary

- Quota-2 (discretionary) application and admissions decisions together contain info about dropout.
 - Bottom Quota-2 admit to Odense 4pp less likely to drop out than bottom Q1 admit.
 - In paper: Q2 Ode applicants with high rank who enroll *elsewhere* 6pp less likely to drop out.
- Screening reform at Odense resulted in higher (lower) completion rates at Odense (Aarhus).
- There is direct evidence of interdependent program values:
 - Odense's ranking is informative (about dropout) conditional on Aarhus' ranking;
- And of self-selection:
 - In paper: Among Q1 admits, applied Q2 \implies 2.7 pp (se=1.1) lower dropout rate.
- Admissions strategies respond to interdependent values.
 - Applicants much more likely to prefer local program.
 - Programs favor locals, disfavor rival-locals.
 - Odense favors locals less after reform.

Descriptive analysis: Summary

- Quota-2 (discretionary) application and admissions decisions together contain info about dropout.
 - Bottom Quota-2 admit to Odense 4pp less likely to drop out than bottom Q1 admit.
 - In paper: Q2 Ode applicants with high rank who enroll *elsewhere* 6pp less likely to drop out.
 - Screening reform at Odense resulted in higher (lower) completion rates at Odense (Aarhus).
- There is direct evidence of interdependent program values:
 - Odense's ranking is informative (about dropout) conditional on Aarhus' ranking;
- And of self-selection:
 - In paper: Among Q1 admits, applied Q2 \implies 2.7 pp (se=1.1) lower dropout rate.
- Admissions strategies respond to interdependent values.
 - Applicants much more likely to prefer local program.
 - Programs favor locals, disfavor rival-locals.
 - Odense favors locals less after reform.

Next: rationalize these facts with equilibrium model, investigate counterfactuals.

Model Overview

Students: On the student side, we model:

- Imperfect information about talents and admissions chances
- Preferences over programs (based on GPA & location, correlated with talents and signals)
- Quota 1 and Quota 2 application decisions based on preferences and (in the case of Quota
 2) application costs and chances of success

Programs: On the program side, we model:

- Private signals about talents
- Quota 2 admissions rules
- Dropout/persistence.

Agents and Information

- Three "inside" options (Ode, Aar, Cop): $j \in \{1,2,3\}$ with $m_j^k \in \mathbb{R}_+$ quota-k seats
- Continuum of students; each characterized by type vector

$$(X, \mathbf{u}, \omega, \mathbf{s}, \mathbf{c})$$

Preferences, costs, signals distributed according to Pr(x, u, s, c) = Q(x)F(u, s, c|x). Program payoffs have distributions $F_j(\omega_j|u, s, c, x)$ for j = 1, 2.

- **X**: finite set of **commonly observed** variables (GPA, location).
- $u_i \in \mathbb{R}$: student's utility if match to j, **private to the student.**
- $\omega_i \in \mathbb{R}$: j's payoff from matching with i, **no one observes.**
- lacksquare $s_j \in \mathbb{R}$ signal of ω_j , **private to** j.
- $c_A \in \mathbb{R}$, $A = \{1\}, \{2\}, \dots, \{1, 2, 3\}$: quota 2 application costs for set A, **private to the student.**

Each student observes own (X, u, c), decides Quota-1 ROL & for programs on list, whether to apply via Quota 2.

- Each student observes own (X, u, c), decides Quota-1 ROL & for programs on list, whether to apply via Quota 2.
- Program j = 1, ..., 3 observes (X, s_j) of applicants, picks ranking function to provide to DA procedure:

$$r_i: X \times \mathbb{R} \to [0,1]$$

- Each student observes own (X, u, c), decides Quota-1 ROL & for programs on list, whether to apply via Quota 2.
- Program j = 1, ..., 3 observes (X, s_j) of applicants, picks ranking function to provide to DA procedure:

$$r_j: X \times \mathbb{R} \to [0,1]$$

Student receives u_{ij} if match to j ($u_{i0} = 0$ if unmatched), pays Q2 app costs.

- Each student observes own (X, u, c), decides Quota-1 ROL & for programs on list, whether to apply via Quota 2.
- Program j = 1, ..., 3 observes (X, s_j) of applicants, picks ranking function to provide to DA procedure:

$$r_i: X \times \mathbb{R} \to [0,1]$$

- Student receives u_{ij} if match to j ($u_{i0} = 0$ if unmatched), pays Q2 app costs.
- \blacksquare Medical programs get ω_{ij} from each student who enrolls. \bullet Details

Analysis

Students maximize expected utility by choice of Quota 1 apps (free), Quota 2 apps (costly)

- Quota 1 apps: truthful (large mkt).
- Q2 apps: depends on u, app costs, program strategies. Details

Medical Programs are assumed to rank applicants by expected value conditional on accepting the offer.

- Theory: MLRP + conditional independence ⇒ rankings are monotone in signals. (cutoffs!)
- Empirics: relax CI assumption but restrict to monotone strategies; then verify.

On-platform outside option: best non-medical program (j=4):

- A student may include it in Q1 ROL, receives u_4 if placed, but...
- We don't model Q2 apps or admissions for this program.
- Admissions chance depends on observables only: $Pr(\operatorname{admit}_4|X) = \Phi(X'\beta_o)$.

Pick a value of X

Suppose program rankings r_i are monotone in s_i for this X.

$$D_1^2(X,\underline{s})$$

Set of people with observables X available to program 1 via quota 2.

Enrolled students

Match to j = 1 if in $D_1^2(x, \underline{s})$ and $s_1 > \underline{s}_1(X)$.

Students at the margin

To solve model, need to find cutoff functions $\underline{s}_i : \mathcal{X} \to \mathbb{R}$.

Students at the margin

Optimality requires: $\underline{s}_{i}(\cdot)$ satisfies cap. constraint, and "EV at margin" equated at all X's.

Students at the margin

"EV at margin": $E(\omega_{ij}|s_{ij}=\underline{s}_j(X), i\in D^2_i(X,\underline{s}))=\underline{\omega}_j \ \forall X$ for some $\underline{\omega}_j$.

Parametric assumptions for estimation:

■ Utility shocks, signals $(\varepsilon_1, \varepsilon_2, \varepsilon_3, \varepsilon_4, s_1, s_2, s_3)$ jointly normal $\sim N(0, \Sigma)$.

Parametric assumptions for estimation:

- Utility shocks, signals $(\varepsilon_1, \varepsilon_2, \varepsilon_3, \varepsilon_4, s_1, s_2, s_3)$ jointly normal $\sim N(0, \Sigma)$.
- Quota-2 app costs (c_1, c_2, c_3) jointly normal, $\perp \varepsilon, s$.

Parametric assumptions for estimation:

- Utility shocks, signals $(\varepsilon_1, \varepsilon_2, \varepsilon_3, \varepsilon_4, s_1, s_2, s_3)$ jointly normal $\sim N(0, \Sigma)$.
- Quota-2 app costs (c_1, c_2, c_3) jointly normal, $\perp \varepsilon, s$.
- Linear index for utility at j: $u_i = x\gamma_i + \epsilon_i$.

Parametric assumptions for estimation:

- Utility shocks, signals $(\varepsilon_1, \varepsilon_2, \varepsilon_3, \varepsilon_4, s_1, s_2, s_3)$ jointly normal $\sim N(0, \Sigma)$.
- Quota-2 app costs (c_1, c_2, c_3) jointly normal, $\perp \varepsilon, s$.
- Linear index for utility at j: $u_i = x\gamma_i + \epsilon_i$.
- Potential outcome (persistence at j): $\omega_j^* = 1(x\alpha_j + \tilde{\omega}_j > 0)$.

Parametric assumptions for estimation:

- Utility shocks, signals $(\varepsilon_1, \varepsilon_2, \varepsilon_3, \varepsilon_4, s_1, s_2, s_3)$ jointly normal $\sim N(0, \Sigma)$.
- **Quota-2** app costs (c_1, c_2, c_3) jointly normal, $\perp \varepsilon, s$.
- Linear index for utility at j: $u_j = x\gamma_j + \epsilon_j$.
- Potential outcome (persistence at j): $\omega_j^* = 1(x\alpha_j + \tilde{\omega}_j > 0)$.
- We specify marginal dist. of unobs. persistence shock at *j*:

$$\tilde{\omega}_{j}|\epsilon,s\sim N\left(
ho_{j}^{\prime}\Sigma^{-1}\left(arepsilon_{1},arepsilon_{2},s_{1},s_{2}
ight)^{\prime},1-
ho_{j}^{\prime}\Sigma^{-1}
ho_{j}
ight).$$

Consistent w/ joint normality of $u, s, \tilde{\omega}$ with $var(\tilde{\omega}_j) = 1$. But we do not specify $cov(\tilde{\omega}_j, \tilde{\omega}_k)$.

Parametric assumptions for estimation:

- Utility shocks, signals $(\varepsilon_1, \varepsilon_2, \varepsilon_3, \varepsilon_4, s_1, s_2, s_3)$ jointly normal $\sim N(0, \Sigma)$.
- Quota-2 app costs (c_1, c_2, c_3) jointly normal, $\perp \varepsilon, s$.
- Linear index for utility at j: $u_j = x\gamma_j + \epsilon_j$.
- Potential outcome (persistence at j): $\omega_i^* = 1(x\alpha_i + \tilde{\omega}_i > 0)$.
- We specify marginal dist. of unobs. persistence shock at *j*:

$$\tilde{\omega}_{j}|\epsilon,s\sim N\left(
ho_{j}^{\prime}\Sigma^{-1}\left(arepsilon_{1},arepsilon_{2},s_{1},s_{2}
ight)^{\prime},1-
ho_{j}^{\prime}\Sigma^{-1}
ho_{j}
ight).$$

Consistent w/ joint normality of $u, s, \tilde{\omega}$ with $var(\tilde{\omega}_j) = 1$. But we do not specify $cov(\tilde{\omega}_i, \tilde{\omega}_k)$.

Important restriction: graduation parameters α fixed across periods (other parameters vary pre/post).

Parametric assumptions for estimation:

- Utility shocks, signals $(\varepsilon_1, \varepsilon_2, \varepsilon_3, \varepsilon_4, s_1, s_2, s_3)$ jointly normal $\sim N(0, \Sigma)$.
- Quota-2 app costs (c_1, c_2, c_3) jointly normal, $\perp \varepsilon, s$.
- Linear index for utility at j: $u_i = x\gamma_i + \epsilon_i$.
- Potential outcome (persistence at j): $\omega_i^* = 1(x\alpha_i + \tilde{\omega}_i > 0)$.
- We specify marginal dist. of unobs. persistence shock at *j*:

$$\widetilde{\omega}_{j} | \epsilon, s \sim \mathcal{N}\left(
ho_{j}^{\prime} \Sigma^{-1}\left(arepsilon_{1}, arepsilon_{2}, s_{1}, s_{2}
ight)^{\prime}, 1 -
ho_{j}^{\prime} \Sigma^{-1}
ho_{j}
ight).$$

Consistent w/ joint normality of $u, s, \tilde{\omega}$ with $var(\tilde{\omega}_j) = 1$. But we do not specify $cov(\tilde{\omega}_i, \tilde{\omega}_k)$.

- Important restriction: graduation parameters α fixed across periods (other parameters vary pre/post).
- Program payoffs = Pr(persist) + non-grad. prefs: $\omega_j = \omega_i^* + \pi_j(x)$.

Our approach combines an "indirect inference" objective with "BLP-style" moments matching model-predicted and observed admissions shares:

 \blacksquare Match LPM coefs for each endog. outcome as function of x, prior outcomes.

- \blacksquare Match LPM coefs for each endog. outcome as function of x, prior outcomes.
- Match number of students "above bar" for Q2 admissions at each program in each year.

- Match LPM coefs for each endog. outcome as function of x, prior outcomes.
- Match number of students "above bar" for Q2 admissions at each program in each year.
- Condition on GPA cutoffs in data.

- Match LPM coefs for each endog. outcome as function of x, prior outcomes.
- Match number of students "above bar" for Q2 admissions at each program in each year.
- Condition on GPA cutoffs in data.
- We restrict to cutoff strategies; parameterize the cutoff functions directly:

$$\underline{s}_{j}(x) = x\beta_{j}^{x} + \beta_{j,t}^{0}.$$

- \blacksquare Match LPM coefs for each endog. outcome as function of x, prior outcomes.
- Match number of students "above bar" for Q2 admissions at each program in each year.
- Condition on GPA cutoffs in data.
- We restrict to cutoff strategies; parameterize the cutoff functions directly: $\underline{s}_i(x) = x\beta_i^x + \beta_{i,t}^0$.
- Separate parameters pre/post (except graduation params α); separate LPMs pre/post.

- Match LPM coefs for each endog. outcome as function of x, prior outcomes.
- Match number of students "above bar" for Q2 admissions at each program in each year.
- Condition on GPA cutoffs in data.
- We restrict to cutoff strategies; parameterize the cutoff functions directly: $\underline{s}_i(x) = x\beta_i^x + \beta_{i,t}^0$.
- Separate parameters pre/post (except graduation params α); separate LPMs pre/post.
- In practice, extract additional info from program ROLs.

Estimates

Table: Selected Estimates: "Post" Period

Program	Mean Appcost	σ Appcost	$\Sigma^{-1} ho_{\omega_j,arepsilon_j}$	$\Sigma^{-1} ho_{\omega_j,s_j}$
Ode	0.382	0.0	0.362	0.717
Aar	0.137	0.285	0.537	-0.500
Сор	0.12	0.312	0.651	0.223

Model fit: Q1 Applications to Odense (Probit)

model	data	sd (data)	×
-0.258	-0.175	0.062	constant
-0.013	-0.059	0.007	GPA
0.484	0.614	0.019	aar
-0.168	-0.129	0.015	ode
-2.006	-1.933	0.16	foreign
0.273	0.274	0.017	GPAforeign

Model fit: Number of Q2 Applicants "above bar" at Odense

Perfect-Info Counterfactual: (ε, s) of each student commonly observed.

Conclusions

We document that interdependent values exist in a matching market and have real impacts on the production of doctors.

- Evidence for interdependent program values
- Student selection on preferences/talents plays important role

Next steps: implications for market design.

- Under current scheme, applicants who like program *j* but seem like they wouldn't are at a disadvantage, leading to inefficiency.
- Should programs be able to condition on students' rankings? Relatedly, would a multi-round (e.g. "Early Decision") decentralized process result in better matches?
- What about feasible ways for programs to share info (common exam, ...)?

Student Preferences and Dropouts

	(1)	(2)	(3)	(4)			
	3Y Dropout		Completion				
Applied Quota 2	-0.020*	-0.027**	0.023	0.035**			
	(0.011)	(0.012)	(0.016)	(0.017)			
	,	,	,	,			
Add Controls	No	Yes	No	Yes			
Observations	6,607	6,607	4,694	4.694			
R-squared	0.010	0.024	0.006	0.024			
Standard errors in parentheses, *** p<0.01, ** p<0.05, * p<0.1							

- Focus on Quota-1 admissions only to isolate self-selection of applicants
- Q2 applicants have lower dropout rates, conditional on observed characteristics (GPA, location)

Dropout rate by Q1/Q2 ranking X program

Note: Q2 admissions are ranked from -1 (highest) to 0 (lowest), Q1 admission from 0 to 1 (highest).