Multi-omics Data Preprocessing and Functional Clustering

Chi Yen Tseng¹, Emilio S. Rivera¹, John R. Tipton^{2,} Trevor Glaros¹| Biochemistry and Biotechnology Group, Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA; ²Statistical Sciences, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA

Introduction

EVALUATE NORMALIZATION METHODS IN MULTI-OMICS DATASETS

- Examining normalization strategies is critical for multi-omics data preprocessing to reduce systematic error and discover biological differences.
- In this study, multi-omics datasets were acquired from the cardiomyocyte and motor neuron cells in a time-course exposure study to acetylcholinesterase (AChE)-active chemicals. We compared different normalization methods and assessed the effectiveness by observing if a normalized dataset could improve QC feature consistency and treatmentrelated variance while preserve time-related variance.

2. FINITE MIXTURES FOR FUNCTIONAL CLUSTERING

 We use Bayeian hierarchical modeling (BHM) framework for functional clustering. Each time-varying omic feature is assumed to belong to a latent cluster while capturing uncertainty and hierarchical structures.

Material and Methods

OMICS PREPROCESSING WORKFLOW

4k to 8k features in each omic.

MODEL STATEMENT

1. VARIANCE EXPLAINED BY TIME OR TREATMENT

- PERMANOVA MODEL
- Main effects of Time, Treatment, and their interaction (Bray-Curtis Distance)

The adonis2() result includes:

- R²: Proportion of variance explained by each predictor.
- F-value: Ratio of explained to unexplained variance.
- p-value: Statistical significance
- 2. FUNCTIONAL CLUSTERING
- Let Y_ir (t) be the expression value of omic feature i for replicate r at time t transformed to log₂FC relative to time 0
- . Spline Representation:

For each cluster k, we have a vector of spline coefficients $\beta_k \in \mathbb{R}^B$ and a B-spline basis where $\mathbf{B}(t)$, which gives the functional mean for that cluster:

$$\mu_k(t) = \mathbf{B}(t)\mathbf{\beta}_k$$

2. Cluster Membership:

Each omic feature $Y_{i*}(t)$ is assumed to belong to a cluster indexed by a latent indicator z_i where $z_i \in \{1, ..., K\}$.

3. Data Likelihood:

Given the cluster membership z_i , the observation $Y_{ir}(t)$ is centered around the cluster-specific mean $\mu_{z_i}(t)$, with shared noise σ :

$$Y_{ir}(t) \mid z_i, \sigma^2 = k \sim \mathcal{N}(\mu_k(t), \sigma^2)$$

- 4. Prior Distributions
- Mixture proportions $\pi \sim \text{Dirichlet}(\alpha)$
- -Bayesian smoothing spline prior for each cluster:

$$\beta_{kj} \sim \mathcal{N}(0,2)$$

 $\beta_{kj} \sim \mathcal{N}(\beta_{kj-1}, \sigma_{\beta}^2), \quad j = 2, ..., p$

-Observation noise parameter:

$$\sigma \sim \mathcal{N}^+(0,1)$$

Results and Discussion

NORMALIZATION EVALUATION (METABOLOMICS)

(a) PQN caused the most consistent change in QC feature consistency and variance explained by treatment.

(b) KEGG pathways PQN > Quantile

FUNCTIONAL CLUSTERING (PROTEOMICS)

(b) 105 proteins grouped into 10 clusters, colored by mean posterior probability in predictions.

(d) Example of original protein intensity with model-fitted prediction.

Conclusion

We identified the most effective normalization methods for multi-omics datasets and demonstrate a clustering strategy that accounts for the uncertainty and hierarchical structures of time-varying omics features.

Acknowledgements

The Los Alamos National Laboratory Directed R&D Fund, LDRD, grant number 20230084DR, funded this work. The funders had no role in the study design, data collection, analyses, data interpretation, or the decision to publish.

Reference

1. Muehlbauer, L. K., et al. Anal. Chem. 2023, 95 (2), 659–667.

clustering.

QC feature

consistency

(RSD < 0.2)

variance explained

after normalization.

by time or treatment