THE ULTIMATE BEGINNERS GUIDE TO GENETIC ALGORITHMS IN PYTHON

COURSE CONTENT

- Part 1: Genetic algorithms from scratch
 - Transport of products
 - Fitness function, crossover, mutation, population, individual, selecting the best individuals, integration with MySql
- Part 2: Libraries for genetic algorithms
 - Transport of product and fligth schedule
 - DEAP (Distributed Evolutionary Algorithms in Python)
 - MLROSe

PLAN OF ATTACK – GENETIC ALGORITHM FROM SCRATCH

- 1. Evolutionary and genetic algorithms
- 2. Fitness function
- 3. Crossover
- 4. Mutation
- 5. Population
- 6. Individuals
- 7. Selecting the best individuals
- Genetic algorithms with MySql

EVOLUTIONARY ALGORITHS VS GENETIC ALGORITHMS

- Evolutionary algorithms
 - Computational Models of Natural Evolution Processes
 - Simulation of species evolution
 - Survival of the fittest
 - Self organization, adaptive behavior
 - Genectic algorithms
 - Branch of Evolutionary Algorithms
 - Better and better solutions based on the evolution of previous generations

GENETIC ALGORITHMS

Refrigerator A 0.751 m³ 999,90

Notebook A 0.00350 m³ 2.499,90

Microwave C 0.0319 m³ 299,29

Notebook 0.527 m³ 3.999,00

Cell phone 0.0000899 m³ 2.199,12

Ventilator 0.496 m³ 199,90

Refrigerator B 0.635 m³ 849,00

TV 55' 0.400 m³ 4.346,99

TV 50'

0.290 m³

3.999,90

Microwave A 0.0424 m³ 308,66

Refrigerator C 0.870 m³ 1.199,89

Maximum capacity: 3 m³ Total: 4.79 m³

TV 42' 0.200 m³ 2.999,90

Microwave B 0.0544 m³ 429,90

Notebook B 0.498 m³ 1.999,90

INDIVIDUAL

- Individuals represent the solutions
- A set of individuals make up a population
- The chromosome represents a solution

FITNESS FUNCTIONS

- Quality measurement to find out how the chromosome solves the problem
- Whether it is an acceptable solution and can be used for evolution

Total: 10,856.48

Cubic meters: 1.76

CROSSOVER (ONE POINT)

- It combines pieces of the chromosome of two parents, generating more fit children
- The population tends to evolve
- Create diversity

CROSSOVER (ONE POINT)

Gene

MUTATION

- Mutation creates diversity by randomly changing genes of the chromosomes
- It is applied less frequently than crossover
- It changes the genes according to a probability

MUTATION

- Mutation creates diversity by randomly changing genes of the chromosomes
- It is applied less frequently than crossover
- It changes the genes according to a probability

1	0	1	1	0	1	0

POPULATION

Individual 1

SELECTING THE INDIVIDUALS

PLAN OF ATTACK – LIBRARIES FOR GENETIC ALGORITHMS

- 1. DEAP (Distributed Evolutionary Algorithms in Python)
- 2. MLROSe
- 3. Transport of products
- 4. Flight schedule

FLIGHT SCHEDULE

