

Phylogenetic Placements of HTS Data

Micah Dunthorn, Lucas Czech & Ľubomír Rajter

Today's aim

Today's aim

theory and background of phylogenetic placements

Today's aim

theory and background of phylogenetic placements

how to run EPA-ng and make a heattree

...assumed that you know phylogenetics

massive metabarcoding datasets - both short- & long-reads

massive metabarcoding datasets - both short- & long-reads

difficult to visualise so much data

massive metabarcoding datasets - both short- & long-reads

difficult to visualise so much data

cannot do normal phylogenetic inferences

Is metabarcoding data phylogenetically meaningful?

Is metabarcoding data phylogenetically meaningful?

short-read data....yeah, maybe

Molecular Biology and Evolution 2014; 31: 993–1009

Placing Environmental Next-Generation Sequencing Amplicons from Microbial Eukaryotes into a Phylogenetic Context

Micah Dunthorn,*,1 Johannes Otto,1 Simon A. Berger,2 Alexandros Stamatakis,2,3 Frédéric Mahé,1 Sarah Romac,4,5 Colomban de Vargas,4,5 Stéphane Audic,4,5 BioMarKs Consortium,† Alexandra Stock,1 Frank Kauff,6 and Thorsten Stoeck1

Is metabarcoding data phylogenetically meaningful?

short-read data...yeah, maybe

long-read data better

2020; 20: 429-443

DOI: 10.1111/1755-0998.13117

RESOURCE ARTICLE

Long-read metabarcoding of the eukaryotic rDNA operon to phylogenetically and taxonomically resolve environmental diversity

```
Mahwash Jamy<sup>1</sup> | Rachel Foster<sup>2</sup> | Pierre Barbera<sup>3</sup> | Lucas Czech<sup>3</sup> | Alexey Kozlov<sup>3</sup> | Alexandros Stamatakis<sup>3,4</sup> | Gary Bending<sup>5</sup> | Sally Hilton<sup>5</sup> | David Bass<sup>2,6</sup> | Fabien Burki<sup>1</sup>
```

What can it do?

What can it do?

clean your data

PUBLISHED: 20 MARCH 2017 | VOLUME: 1 | ARTICLE NUMBER: 0091

Parasites dominate hyperdiverse soil protist communities in Neotropical rainforests

Frédéric Mahé¹, Colomban de Vargas^{2,3}, David Bass^{4,5}, Lucas Czech⁶, Alexandros Stamatakis^{6,7}, Enrique Lara⁸, David Singer⁸, Jordan Mayor⁹, John Bunge¹⁰, Sarah Sernaker¹¹, Tobias Siemensmeyer¹, Isabelle Trautmann¹, Sarah Romac^{2,3}, Cédric Berney^{2,3}, Alexey Kozlov⁶, Edward A. D. Mitchell^{8,12}, Christophe V. W. Seppey⁸, Elianne Egge¹³, Guillaume Lentendu¹, Rainer Wirth¹⁴, Gabriel Trueba¹⁵ and Micah Dunthorn^{1*}

rainforest soil protists

rainforest soil protists

rainforest soil protists

What can it do?

clean your data

taxonomically assign reads/OTUs

2018; 65: 773–782

Journal of Eukaryotic Microbiology ISSN 1066-5234

ORIGINAL ARTICLE

Clarifying the Relationships between Microsporidia and Cryptomycota

David Bass^{a,b}, Lucas Czech^c, Bryony A. P. Williams^d, Cédric Berney^e, Micah Dunthorn^f, Frederic Mahé^g, Guifré Torruella^h, Grant D. Stentiford^a & Tom A. Williamsⁱ

2020; 20: 429-443

DOI: 10.1111/1755-0998.13117

RESOURCE ARTICLE

Long-read metabarcoding of the eukaryotic rDNA operon to phylogenetically and taxonomically resolve environmental diversity

```
Mahwash Jamy<sup>1</sup> | Rachel Foster<sup>2</sup> | Pierre Barbera<sup>3</sup> | Lucas Czech<sup>3</sup> | Alexey Kozlov<sup>3</sup> | Alexandros Stamatakis<sup>3,4</sup> | Gary Bending<sup>5</sup> | Sally Hilton<sup>5</sup> | David Bass<sup>2,6</sup> | Fabien Burki<sup>1</sup>
```


What can it do?

clean your data

taxonomically assign reads/OTUs

community analyses & diversities

Bioinformatics, 36(10), 2020, 3263–3265

doi: 10.1093/bioinformatics/btaa070

Advance Access Publication Date: 4 February 2020

Applications Note

Phylogenetics

Genesis and Gappa: processing, analyzing and visualizing phylogenetic (placement) data

Lucas Czech (b) 1,*, Pierre Barbera (b) 1 and Alexandros Stamatakis (b) 1,2,*

¹Computational Molecular Evolution Group, Heidelberg Institute for Theoretical Studies, Heidelberg 69118, Germany and ²Institute for Theoretical Informatics, Karlsruhe Institute of Technology, Karlsruhe 76131, Germany

Accepted: 25 August 2020

DOI: 10.1111/1755-0998.13255

RESOURCE ARTICLE

scrapp: A tool to assess the diversity of microbial samples from phylogenetic placements

Pierre Barbera¹ Lucas Czech¹ Sarah Lutteropp¹ Alexandros Stamatakis^{1,2}

The programs

The programs

pplacer

- no longer updated

METHODOLOGY ARTICLE

Open Access

pplacer: linear time maximum-likelihood and Bayesian phylogenetic placement of sequences onto a fixed reference tree

Frederick A Matsen^{1*}, Robin B Kodner^{2,3}, E Virginia Armbrust²

www.nature.com/ismej

ORIGINAL ARTICLE

Diversity patterns and activity of uncultured marine heterotrophic flagellates unveiled with pyrosequencing

Ramiro Logares¹, Stephane Audic^{2,3}, Sebastien Santini⁴, Massimo C Pernice¹, Colomban de Vargas³ and Ramon Massana¹

The programs

pplacer

- no longer updated

EPA-ng

- absorbed the power of pplacer

Syst. Biol. 60(3):291–302, 2011

© The Author(s) 2011. Published by Oxford University Press on behalf of Society of Systematic Biologists.

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/2.5), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

DOI:10.1093/sysbio/syr010

Advance Access publication on March 23, 2011

Performance, Accuracy, and Web Server for Evolutionary Placement of Short Sequence Reads under Maximum Likelihood

SIMON A. BERGER, DENIS KROMPASS, AND ALEXANDROS STAMATAKIS*

The Exelixis Lab, Scientific Computing Group, Heidelberg Institute for Theoretical Studies,
Schloss-Wolfsbrunnenweg 35, D-69118 Heidelberg, Germany;
*Correspondence to be sent to: The Exelixis Lab, Scientific Computing Group, Heidelberg Institute for Theoretical Studies,
Schloss-Wolfsbrunnenweg 35, D-69118 Heidelberg, Germany; E-mail: alexandros.stamatakis@epfl.ch.

Syst. Biol. 68(2):365–369, 2019

© The Author(s) 2018. Published by Oxford University Press on behalf of the Society of Systematic Biologists.

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contactjournals.permissions@oup.com DOI:10.1093/sysbio/syy054

Advance Access publication September 21, 2018

EPA-ng: Massively Parallel Evolutionary Placement of Genetic Sequences

Pierre Barbera^{1,*}, Alexey M. Kozlov¹, Lucas Czech¹, Benoit Morel¹, Diego Darriba^{1,2}, Tomáš Flouri^{1,3}, and Alexandros Stamatakis^{1,4}

¹Heidelberg Institute for Theoretical Studies, Schloss-Wolfsbrunnenweg 35, 69118 Heidelberg, Germany;

²Department of Computer Engineering, University of A Coruña, 15071 A Coruña, Spain;

³Department of Genetics, Evolution and Environment, University College London, Gower St., Bloomsbury, London WC1E 6BT, UK; and

⁴Karlsruhe Institute of Technology, Department of Informatics, Institute of Theoretical Informatics, Postfach 6980, 76128 Karlsruhe, Germany

*Correspondence to be sent to: Heidelberg Institute for Theoretical Studies, Schloss-Wolfsbrunnenweg 35, 69118 Heidelberg, Germany;

E-mail: pierre.barbera@h-its.org.

fasta file of query sequences
- e.g., OTU representatives, amplicons

- >6ddabb21ed47f42bf10ca56c6aa26115a83f5dbe;size=283759; 98.9 Eukaryota|Diaphoretickes|Sar|Alveolata|Ciliophora|Intramacronucleata|CON3P|Colpodea|Platyophryida|g:Platyophrya|*
 AGCTCCAATAGCGTATATTAAAGTTGTTGCAGTTAAAAAAGCTCGTAGTCGAAGTTCTGGCCCTGTTTCCGGCTCC
 GGTCGACTCAGGGCCTAGTCATCCGTCGGAGAACCCTTGTCGTCCTTCACTGGTCGCTTGGGGGAACTGACCCTTTACT
 TTGAAAAAATTAGAGTGTTTCAGGCAGGCTCTCGCCCGAATACTCCAGCATGGAATAATGGAATAGGACTTTCTTCTATT
 TTGTTGGTTATTAGTGGAAAAGTAATGATTAATAGGGACAGTTGGCGAGGTGAAATTCT
 TGGATTTATTAAAAGACGAACTAATGCGAAAGCATTTGCCAAGGATGTTTTCA
- >db5607550fddf5a6703769e3ae284c72aec81f04;size=35834; 96.8 Eukaryota|Diaphoretickes|Sar|Alveolata|Ciliophora|Intramacronucleata|CON3P|Colpodea|Cyrtolophosidida|g:Microdiaphanosoma|Microdiaphanosoma+arcuatum
- AGCTCCAATAGCGTATATTAAAGTTGTTGCAGTTAAAAAAGCTCGTAGTTGAATTTCTGGCCAATCTCATGCTGCGCTTCT AGCCGGTATGCGGTTTGGTCATCCGTAAGGGAAGCCAGTACGAACTTCAATGGTCGGCTGGGGGAACTTACAATTT ACTGTGAAAAAATTAGAGTGTTTCAGGCAGGCAATCGCTTGGATACTCCAGCATGGAATAATGGAATAGGACTTTGG TCTATTTGTTGAGTTTAAAGAAGTAATGATTAATAGGGACAGTTGGGGGGCATTCGTATTTAATTGTCAGAGGTGAAA TTCTTGGATTTAAAGAAGACGGACTTATGCGAAAGCATTTGCCAAGGATGTTTTCA

fasta file of query sequences
- e.g., OTU representatives, amplicons

fasta reference alignment

fasta file of query sequences
- e.g., OTU representatives, amplicons

fasta reference alignment

newick reference tree

same gene amplified, but full length

same gene amplified, but full length

"enough" sequences to easily visualise tree

same gene amplified, but full length

"enough" sequences to easily visualise tree

at least two exemplars from "every taxon"

same gene amplified, but full length

"enough" sequences to easily visualise tree

at least two exemplars from "every taxon"

do not mask amplified region

Available online at www.sciencedirect.com

ScienceDirect

European Journal of Protistology 77 (2021) 125747

European Journal of PROTISTOLOGY

www.elsevier.com/locate/ejop

Colpodean ciliate phylogeny and reference alignments for phylogenetic placements

Ľubomír Rajter^{a,*}, Isabelle Ewers^a, Nadine Graupner^a, Peter Vďačný^b, Micah Dunthorn^{a,c}

Reference tree

two-step trees to make sure you have inferred the in-group correctly

two-step trees to make sure you have inferred the in-group correctly

rooted before placements

two-step trees to make sure you have inferred the in-group correctly

rooted before placements

can constrain taxa to be monophyletic

