

IKI20410 – Basis Data Aniati Murni Fakultas Ilmu Komputer Universitas Indonesia

### TOPIK PEMBAHASAN

- Struktur Index File
- Indexed Sequential File
- Secondary Index
- Multilevel Index
- Index B+-Tree

Elmasri Bab 6

### Struktur Index File

- Mempelajari suatu access structure yang disebut index
- Merupakan suatu upaya untuk mempercepat proses data retrieval
- Index merupakan nilai suatu attribut data yang digunakan untuk menentukan urutan (ordering) record dalam file

# Ordering Key

- Index terdiri dari 2 field: index entry dan pointer ke record / block / multilevel index
- Primary key: merupakan ordering key field, dimana setiap record mempunyai nilai primary key yang unik
- Clustering index: beberapa record bisa mempunyai nilai ordering key yang sama
- Secondary key: digunakan untuk menyusun record menurut nilai atribut-atribut tertentu
- Multilevel index: penggunaan index bertingkat untuk fast search dengan mengurangi jumlah index yang dicari
- > Dense index: mempunyai index entry untuk semua nilai search key
- Sparse key: hanya tersedia index entry untuk beberapa nilai search key

# **Indexed Sequential File (1)**

### Karakteristik:

- Ordered data file melalui primary index
- Record dapat di-akses secara sequential atau secara individual menggunakan index
- Mempunyai primary storage area dengan index overflow area yang terpisah. Contoh: IBM's Indexed Sequential Access Method (ISAM)
- Setiap struktur file indeks terkait dengan search key tertentu
- Primary/Clustering Index: search key menentukan urutan data dalam file
- Secondary Index: search key tidak menentukan urutan data dalam file

# **Indexed Sequential File (2)**

| Index | sno           | sname     | scity   |
|-------|---------------|-----------|---------|
| S001  | <b>→</b> S001 | PT Bijak  | Jakarta |
| S050  | S050          | PT Barata | Bandung |
| S060  | <b>S</b> 060  | PT Kemala | Jakarta |
| S070  | <b>→</b> S070 | PT Aman   | Jakarta |
| S100  | <b>→</b> S100 | PT Citra  | Jogya   |

## **Indexed Sequential File (3)**

### Kemampuan:

- Direct Access
- Proses Insert dan Delete memerlukan reorganisasi Index File dan File Data
- Perlu tambahan / overhead space untuk Index File
- Index File dapat berupa Dense Index atau Sparse Index

## Secondary Index (1)

- Juga merupakan ordered index file seperti primary index file
- Attribut yang digunakan sebagai index tidak terurut pada file data
- Indeks tidak perlu terdiri dari nilai yang unik, ada 3 cara menanganinya:
  - Dense index, membolehkan duplicate key values pada index
  - Distinct index, menggunakan tempat yang multivalues
  - Distinct index, menggunakan tempat pointer yang multivalues
- Mempercepat querry berdasarkan attribut yang bukan primary key

8

# **Indexed Sequential File (2)**

| Index   | sno  | sname     | scity   |
|---------|------|-----------|---------|
| Jakarta | S001 | PT Bijak  | Jakarta |
| Bandung | S050 | PT Barata | Bandung |
| Jakarta | S060 | PT Kemala | Jakarta |
| Jakarta | S070 | PT Aman   | Jakarta |
| Jogya   | S100 | PT Citra  | Jogya   |



- Digunakan bila index itu sendiri sudah terlalu besar ukurannya
- > IBM's ISAM merupakan 2-level index structure
- Dalam praktek, biasanya tidak melebihi 3-level
- B-tree merupakan contoh penggunaan multilevel full index

### Index B+-Tree

#### Karakteristik:

- Struktur data berbentuk tree yang Balanced
- Struktur fleksibel: dapat menghilangkan overhead reorganisasi data saat terjadi pertumbuhan / perubahan data
- Waktu akses relatif cepat
- Berupa file index multilevel
- Perlu tambahan / space overhead untuk file index
- Perlu tambahan / time overhead untuk perawatan file index
- Banyak digunakan pada penggunaan Relational Database Management System

### Index B+-Tree

## Kapan dipakai?

- Bila perlu banyak akses berdasarkan exact key match, pattern matching, range of values, part key specification
- Bersifat dinamis menyesuaikan dengan pertumbuhan files
- Memelihara urutan access key, sehingga pengambilan secara berurutan menjadi efisien
- Kalau proses update tidak sering, struktur ISAM akan lebih efisien, karena jumlah level index ISAM lebih kecil.