CLASS: Logical Statement and Equivalence

Due Jan 23 at 11:59pm **Points** 10 **Questions** 10 **Time Limit** None **Allowed Attempts** Unlimited

Instructions

Have your Math 22 notebook prepared to write the definition and the examples.

This CLASS assignment is an introduction to Logical Statements and Equivalence.

You have multiple attempts in answering the questions.

My old lecture:

Take the Quiz Again

Attempt History

	Attempt	Time	Score
KEPT	Attempt 2	5 minutes	10 out of 10
LATEST	Attempt 2	5 minutes	10 out of 10
	Attempt 1	90 minutes	5 out of 10

① Correct answers are hidden.

Score for this attempt: 10 out of 10

Submitted Jan 23 at 4:54pm This attempt took 5 minutes.

Question 1	1 / 1 pts			
Equivalent Statements with Example (Double Negation) (https://www.youtube.com/watch?v=yfHFNph5wTE) Implication and De Morgan.pdf (https://deanza.instructure.com/courses/33250/files/10754811?wrap=1) (https://deanza.instructure.com/courses/33250/files/10754811/download?download_frd=1) not(not P) is equivalent to				
contradiction				
ОТ				
○ F				
P				

Question 2	1 / 1 pts

<u>P then Q is</u>	the same as	⇒ <u>(https://www.</u>	youtube.com/watch?
v=U8mle1Ap	P84)		

Implication and De Morgan.pdf

(https://deanza.instructure.com/courses/33250/files/10754811?wrap=1) ↓ (https://deanza.instructure.com/courses/33250/files/10754811/download? download_frd=1)

- P or Q
- P and Q
- notP and Q
- notP or Q

Question 3

1 / 1 pts

Implication and De Morgan.pdf

(https://deanza.instructure.com/courses/33250/files/10754811?wrap=1) ↓ (https://deanza.instructure.com/courses/33250/files/10754811/download? download_frd=1)

Now answer the following question:

Are the following statements logically equivalent?

 $\sim (p \wedge q)$ and $\sim p \wedge \sim q$

O Yes		
No		

1 / 1 pts **Question 4 Logical Equivalence List of Laws ⇒** (https://www.youtube.com/watch? v=FMnW2xCl3Wc&list=PLiwEbczHeZcuf7VyebtyKcVDqfViUkqfh&index=90 Tautology, Contradiction, and Logical Statements.pdf (https://deanza.instructure.com/courses/33250/files/10754985?wrap=1) (https://deanza.instructure.com/courses/33250/files/10754985/download? download_frd=1) Now answer the following question: This is called De Morgan's Laws $\sim (p \land q) \equiv \sim p \lor \sim q$ $\sim (p \vee q) \equiv \sim p \wedge \sim q$ True False

(https://deanza.instructure.com/courses/33250/files/10754985/download?download_frd=1)

Now answer the following question:

$$p \lor \sim p$$

If the statement is tautology write tautology otherwise write contradiction

tautology

Question 6 1 / 1 pts

Tautology and Contradiction with Example

(https://www.youtube.com/watch?v=A_dF9Ks65w&list=PLiwEbczHeZcuf7VyebtyKcVDqfViUkqfh&index=89)

Tautology, Contradiction, and Logical Statements.pdf
(https://deanza.instructure.com/courses/33250/files/10754985?wrap=1)
↓
(https://deanza.instructure.com/courses/33250/files/10754985/download?
download_frd=1)

Now answer the following question:

$$p \wedge \sim p$$

If the statement is tautology write tautology otherwise write contradiction

contradiction

Question 7 1 / 1 pts

Logical Equivalence List of Laws ⇒

(https://www.youtube.com/watch?

v=FMnW2xCl3Wc&list=PLiwEbczHeZcuf7VyebtyKcVDqfViUkqfh&index=90

Tautology, Contradiction, and Logical Statements.pdf

(https://deanza.instructure.com/courses/33250/files/10754985?wrap=1) ↓ (https://deanza.instructure.com/courses/33250/files/10754985/download? download_frd=1)

Now answer the following question:

Which law is this?

$$p \wedge q \equiv q \wedge p$$

$$p \lor q \equiv q \lor p$$

→

commutative law

Question 8 1 / 1 pts

Logical Equivalence List of Laws ⇒

(https://www.youtube.com/watch?

 $\underline{v = FMnW2xCl3Wc\&list = PLiwEbczHeZcuf7VyebtyKcVDqfViUkqfh\&index = 90}$

<u>Tautology, Contradiction, and Logical Statements.pdf</u>

(https://deanza.instructure.com/courses/33250/files/10754985?wrap=1) ↓ (https://deanza.instructure.com/courses/33250/files/10754985/download? download_frd=1)

Now answer the following question:

Which law is this?

$$(p \land q) \land r \equiv p \land (q \land r) \qquad (p \lor q) \lor r \equiv p \lor (q \lor r)$$

$$(p \lor q) \lor r \equiv p \lor (q \lor r)$$

associative law

Question 9

1 / 1 pts

Logical Equivalence List of Laws □

(https://www.youtube.com/watch?

v=FMnW2xCl3Wc&list=PLiwEbczHeZcuf7VyebtyKcVDqfViUkqfh&index=90

Tautology, Contradiction, and Logical Statements.pdf

(https://deanza.instructure.com/courses/33250/files/10754985?wrap=1) ↓ (https://deanza.instructure.com/courses/33250/files/10754985/download? download_frd=1)

Now answer the following question:

Which law is this?

$$p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$$
 $p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$

distributive law

Question 10

1 / 1 pts

Quiz Score: 10 out of 10