

planetmath.org

Math for the people, by the people.

proof of Poincaré lemma

 ${\bf Canonical\ name} \quad {\bf ProofOfPoincare Lemma}$

Date of creation 2013-03-22 14:24:36 Last modified on 2013-03-22 14:24:36

Owner pbruin (1001) Last modified by pbruin (1001)

Numerical id 4

Author pbruin (1001)

Entry type Proof
Classification msc 53-00
Classification msc 55N05

Let X be a smooth manifold, and let ω be a closed differential form of degree k>0 on X. For any $x\in X$, there exists a contractible neighbourhood $U\subset X$ of x (i.e. U is homotopy equivalent to a single point), with inclusion map

$$\iota \colon U \hookrightarrow X$$
.

To construct such a neighbourhood, take for example an open ball in a coordinate chart around x. Because of the homotopy invariance of de Rham cohomology, the kth de Rham cohomology group $H^k(U)$ is isomorphic to that of a point; in particular,

$$H^k(U) = 0$$
 for all $k > 0$.

Since $d(\iota^*\omega) = \iota^*(d\omega) = 0$, this implies that there exists a (k-1)-form η on U such that $d\eta = \iota^*\omega$. In the case where X is a contractible manifold, such an η exists globally since we can choose U = X above.