

Introduction

Semester 2, 2022 Kris Ehinger

How to access livestream chat

COMP90086_2022_SM2

2022 Semester 2

Home

Subject Overview

Ed Discussion

Modules

Assignments

Quizzes

Grades

Lecture Capture

Discussions

Zoom

Gradescope

My Echo360 Media

Computer Vision (COMP90086_2022_SM2) A

Computer vision is a subfield of Al/machine learning that focusses on algorithms for understanding images and video. This subject is an introduction to the basic principles of image formation and computational methods for interpreting images.

To read an overview of the subject, go to the Subject Overview in the subject

<u>Livestream chat - Lecture 01 - Introduction</u>

All Sections

Outline

- What is computer vision?
- Welcome to COMP90086
- Overview of computer vision

What is computer vision?

Demo

Computer vision

- Algorithms for high-level understanding of digital images or videos
- Simulate or replicate processes that a biological visual system can do
- Often interdisciplinary AI, machine learning, physics (optics), neuroscience, psychology, art

Computer vision tasks

- Recognize images
- Localise and identify objects
- Segment image regions
- Model relations between images
- Recover 3D structure
- Perform visual navigation
- Perform visually-guided actions (e.g., grasping objects)

Related fields

Welcome to COMP90086

Lecturers

- Kris Ehinger (subject co-ordinator)
- kris.ehinger@unimelb.edu.au

- Tom Drummond
- tom.drummond@unimelb.edu.au

Tutors

Jiayang Ao (head tutor)

- Kazi Adnan
- Yujing (Mark) Jiang
- Khoi Nguyen
- Jey Panisilvam
- Zihan (Sucy) Yang

Contacting us

- General inquiries: Ed forum on LMS
 - We encourage all students to join in discussions answering other students' questions is one of the best ways to improve your own understanding
 - Please do not post sections of your code or reports publicly! If you must include these, private-message the instructors
- Personal/private concerns: Email the instructors
 - If you email us about a general inquiry, we may ask you to re-post your question in the forum
- Please include COMP90086 in email subject

Dual delivery

- Lectures are on campus with simultaneous livestream
- Exams are online only
- Choice of online or in-person workshops

Lectures

- Wednesdays 2.15-3.15pm
- Fridays 11.00am-12.00
- On-campus lecture with simultaneous livestream:
 - On-campus: Sidney Myer Asia Centre, B02 (Carillo Gantner Theatre)
 - Online: click Lecture Capture on Canvas LMS to view simultaneous livestream, use Discussions for chat
- Lecture recordings available under Lecture Capture on Canvas LMS

Workshops (starting week 2)

Day	Start	End	Location
Monday	15:15	16:15	207-221 Bouverie St-B117
Monday	16:15	17:15	online
Monday	17:15	18:15	online
Tuesday	10:00	11:00	Elec. Engineering-122
Tuesday	11:00	12:00	Elec. Engineering-124
Tuesday	12:00	13:00	207-221 Bouverie St-B114
Tuesday	13:00	14:00	online
Tuesday	13:00	14:00	online
Tuesday	14:15	15:15	207-221 Bouverie St-B117
Tuesday	15:15	16:15	online
Wednesday	17:15	18:15	online
Wednesday	18:15	19:15	online
Thursday	13:00	14:00	207-221 Bouverie St-B117
Thursday	14:15	15:15	207-221 Bouverie St-B117
Thursday	14:15	15:15	online
Thursday	15:15	16:15	Elec. Engineering-124
Thursday	17:15	18:15	online

Current COVID advice

- Latest COVID guidelines:
 - https://www.unimelb.edu.au/coronavirus
- For students coming to campus for the first time: complete the COVIDSafe Campus online module and health declaration, and update your contact details
- Do not come to campus if you have any COVID-19 symptoms, however mild, even if you have a negative rapid antigen test result
- Wear masks in classroom settings, except where removing a mask is necessary for clear communication or when otherwise required

Subject material

- LMS is the primary portal for the subject
 - Lecture schedule, tutorial/practical schedule
 - Content page for each week
- Lecture content
 - Handouts will be posted before lecture
 - Slides and lecture capture available after lecture
- Workshops
 - Cover content from previous week's lecture
 - Handouts posted before the first tutorial/practical
 - Solutions posted after the last tutorial/practical

Assessment

- Assignments 1-3 (20%, weeks 3-10)
 - Implement algorithms, experiment on provided data sets, and answer questions
 - Individual work
- Final project (30%, week 12)
 - Design a method to solve an open-ended computer vision problem, present algorithm and experiments in a written report
 - Work in groups of 2
- Final exam (50%, during exam period)

Prerequisites

- Machine learning background
 - Training, testing, evaluating machine learning algorithms
 - Common methods like clustering, KNN, neural networks
- Programming skills
 - Workshops and assignments are in Python
- Mathematical skills
 - Basic familiarity with probability, geometry, linear algebra

Textbooks

- Suggested links and readings will be posted on LMS each week
- Readings are not required optional links to expand your knowledge of the week's topics if you are interested

Recommended textbook

- Computer Vision: Algorithms and Applications 2nd Ed, Richard Szeliski (2021)
- Electronic copy available at https://szeliski.org/Book/

Other textbooks

- Pattern Recognition and Machine Learning by Christopher Bishop
- Computer Vision: Models, Learning, and Inference by Simon J.D. Prince

To do (this week!)

Join the Ed forum (invite link in unimelb email)

Install Jupyter Notebook

Introduction to computer vision

What is an image?

Machine learning problem

- Example: object recognition task
 - Input: image
 - Label: object class (e.g., "bicycle")
 - Attributes: ?

Difficulties

- Class similarity
- Within-class variation
 - Exemplars
 - Size
 - Position
 - Lighting
- Background clutter
- Occlusion

Visual encoding

Machine learning problem

Is computer vision just classification?

https://www.youtube.com/watch?v=0Pj-jzy6ESE

Emptying a Cluttered Bin

5x

"Multi-View Picking" | Doug Morrison

AUSTRALIAN CENTRE FOR ROBOTIC VISION | ROBOTIC VISION.ORG

https://www.youtube.com/watch?v=daAvvAlCE5o

https://www.elderlab.yorku.ca/research/sensing/

PROGRESSIVE GROWING OF GANS FOR IMPROVED QUALITY, STABILITY, AND VARIATION

Tero Karras NVIDIA Timo Aila NVIDIA

Samuli Laine NVIDIA Jaakko Lehtinen NVIDIA Aalto University

Content of this subject

Week 1		
Week 2	Image formation and image processing	
Week 3	processing	
Week 4	Object recognition	Asst 1 due
Week 5	Object recognition	
Week 6	Feature correspondence,	
Week 7	stereo & 3D	Asst 2 due
Week 8	Shape and texture models	
Week 9	Generation	
Week 10	Segmentation	Asst 3 due
Week 11	Object detection & attention	
Week 12	Revision & guest lecture	Final project due