TP3 Analyse des performances cinematiques et determination d'une loi Entree – Sortie

MPSI

RESOLUTION ET VERIFICATION DES LOIS E/S

PLATE-FORME 6 AXES, ROBOT ERICC

MAXPID, OUVRE-PORTAIL, HAPTIQUE

1 OBJECTIFS

1.1 Contexte pédagogique

Analyser:

- Identifier le besoin et définir les exigences du système
- Définir les frontières de l'analyse

Modéliser :

- ☐ Déterminer la trajectoire d'un point d'un solide
- ☐ Écrire le vecteur position, vitesse d'un point d'un solide,

Résoudre:

- Choisir un modèle et une méthode de résolution
- Choisir les valeurs des paramètres de la résolution numérique
- ☐ Choisir les grandeurs physiques tracées ;
- ☐ Choisir les paramètres de simulation

Expérimenter:

- ☐ Justifier et/ou proposer un protocole expérimental
- ☐ Choisir les réglages et les configurations matérielles sur le système ou la chaîne d'acquisition
- ☐ Proposer ou justifier l'implantation de la prise de mesure.
- ☐ Évaluer et commenter les écarts entre les résultats expérimentaux avec l'ordre de grandeurs des résultats attendus (simulés ou définis au cahier des charges).
- ☐ Comparer les résultats obtenus aux grandeurs physiques simulées ou attendues
- Interpréter les écarts

Communiquer:

■ Mettre en œuvre une communication

1.2 Évaluation des écarts

Au cours de ce TP on s'attachera à évaluer chacun des écarts.

1.3 Prérequis

- Modéliser et paramétrer un mécanisme.
- Réaliser un assemblage avec SW.
- Réaliser des courbes avec Méca3D.
- Traiter des fichiers de données avec Python ou Excel.

1.4 Ressources

- 1. Sujet.
- 2. Document ressource sur le fonctionnement du système.
- 3. Modélisation 3D SolidWorks.

1.5 Déroulement du TP

Organisation des séances :

- ☐ 1 séances de 2h00 et de manipulation et de mise en forme des résultats.
- 1 séance de présentation 20 minutes environ par équipe. Le PowerPoint support est fourni.

Répartition des rôles :

- ☐ Équipe de 3 (ou 4) :
 - 1 chef de projet.
 - 1 modélisateur analytique (+numérique).
 - 1 modélisateur numérique
 - 1 expérimentateur.

2 Presentation du cycle TP

2.1 Objectifs

Les objectifs sont :

- d'analyser les constituants d'un système;
- de proposer un modèle de comportement de la partie mécanique des systèmes (à savoir un schéma cinématique paramétré);
- de déterminer la loi E/S qui mènerait à un préchoix du moteur.

2.2 Tâches à réaliser

- Prendre en main et mettre en œuvre le système.
- Analyser succinctement les composants du système.
- Proposer une modélisation du système sous forme de schéma cinématique paramétré.
- Déterminer la loi Entrée/Sortie géométrique et cinématique analytiquement.
- Tracer la loi E/S analytique.
- Tracer la loi E/S en utilisant SolidWorks.
- Tracer la loi E/S expérimentale.
- Comparer les courbes issues du modèle théorique, de SolidWorks et du dispositif expérimental.
- Réaliser une présentation.

Le compte rendu sous la forme d'une présentation Power Point devra obligatoirement faire apparaître :

- le schéma cinématique paramétré;
- la superposition de la courbe expérimentale et de la courbe modélisée avec Excel des lois Entrées Sorties géométrique et cinématique ;
- l'analyse argumentée de chacun des 3 écarts.

2.3 Objectifs de l'expérimentateur

ANALYSER	0	Mettre en service le système. Analyser les constituants du système (chaînes d'énergie et chaîne d'information). Présenter le fonctionnement du système.
EXPERIMENTER	_ 	Réaliser une mesure préliminaire. Identifier les capteurs et comprendre leur fonctionnement. Réaliser une mesure dans les mêmes conditions que les modélisateurs.
COMMUNIQUER		Traiter les résultats pour qu'ils puissent être tracés sur Excel.

2.4 Objectifs du modélisateur

ANALYSER	Analyser le fonctionnement cinématique du système.
MODELISER – RESOUDRE	Réaliser un schéma cinématique paramétré et un graphe des liaisons. Modélisateur 1 : Réaliser l'assemblage du système à partir des classes d'équivalence déjà établies. Réaliser une modélisation à partir de Méca 3D. Tracer les courbes permettant de tracer les lois E/S. Modélisateur 2 : Déterminer la loi E/S du mécanisme analytiquement.
COMMUNIQUER	Modélisateur 1 : Traiter les résultats issus de Méca 3D pour qu'ils soient exploitables sous Excel. Modélisateur 2 : Traiter les résultats théoriques pour qu'ils soient exploitables sous Excel.

2.5 Objectifs du chef de projet

ANALYSER	 Analyser les objectifs : Définir ce qu'est la loi E/S pour le système considéré. Choisir un format de résultats finaux (anticiper le format de la feuille Excel).
	Réaliser la synthèse des travaux sous forme d'un document PowerPoint.
COMMUNIQUER	 Mise en forme de l'analyse du mécanisme.
	 Mise en forme du schéma cinématique.
	 Mise en forme du protocole expérimental.
2	☐ S'assurer que les conditions de simulation et les conditions d'expérimentation sont les mêmes.
¥	Anticiper le fait qu'il faille réaliser un graphe avec la superposition des courbes issues :
COA	 des résultats expérimentaux ;
	 des résultats issus de la modélisation avec SolidWorks ;
	des résultats issus de la modélisation analytique.