Introducing the Greenhouse Effect

EES 3310/5310
Global Climate Change
Jonathan Gilligan

Class #4: Monday, Feb. 1 2021

Basic Principles from Friday

- Steady temperature means:
 - Heat_{out} = Heat_{in}
- Heat in:
 - Sunlight (shortwave)
 - Does not depend on temperature
- Heat out:
 - Emitted radiation (longwave)
 - Depends on temperature
- If Heat_{out} \neq Heat_{in'}
 - Temperature rises or falls until

$$Heat_{out} = Heat_{in}$$

Temperature of the Earth

Bare-Rock Model: No Atmosphere

A subtle point...

- Emissivity ε is fraction absorbed
- Albedo α is fraction reflected
- For an opaque surface, $\alpha + \varepsilon = 1$
- So how is $\alpha = 0.30$ and $\varepsilon = 1.00$?
- α & ε are different for shortwave & longwave.
- Shortwave: $\alpha = 0.30$, $\varepsilon = 0.70$
- Longwave: $\alpha = 0.00$, $\varepsilon = 1.00$

Temperature of Earth (Bare Rock Model)

- 1. $F_{\text{out}} = F_{\text{in}}$ (Heat flux balances)
- 2. On average,

$$F_{\rm in} = \frac{(1-\alpha)}{4} I_{\rm solar}$$

- 3. $F_{\text{out}} = \varepsilon \sigma T^4$.
- 4. Solve for *T*:

$$T = \sqrt[4]{\frac{(1-\alpha)I_{\text{solar}}}{4\varepsilon\sigma}}$$

$$I_{\text{solar}} = 1350 \text{ W/m}^2$$

$$\alpha = 0.30$$

$$\varepsilon = 1$$

$$\sigma = 5.67 \times 10^{-8} \text{ W m}^{-2} \text{ K}^{-4}$$

$$T = 254 \text{ K} = -19 \text{ °C} = -2 \text{ °F}$$

Terrestrial Planets

	Earth	Mars	Venus
Distance from sun	1 AU	1.5 AU	0.72 AU
1/Distance ²	1.00	0.44	1.9
Solar constant	$1350 \mathrm{W/m^2}$	$600 \mathrm{W/m^2}$	2604 W/m^2
Albedo	0.30	0.17	0.71
T _{bare rock}	254 K (– 2 ° F)	216 K (– 70 °F)	240 K (– 27 ° F)
$T_{ m surface}$	295 K (71 °F)	240 K (– 28 °F)	700 K (800 °F)
Δ_T	41 K (74°F)	24 K (42 °F)	460 K (828 °F)

Oops! We forgot the atmosphere!

Does Earth look like a blackbody?

One-Layer Model of the Greenhouse Effect

Layer Model

Atmosphere Make simplifying assumptions:

- Perfectly transparent to shortwave light
 - Like a pane of glass: $\varepsilon = 0$
- Perfectly opaque to longwave light
 - Like a blackbody: $\varepsilon = 1$

Anything that transmits most shortwave and absorbs most longwave is a greenhouse gas

Balance of energy for earth system

- Always start analyzing from the top down
 - Look at energy balance at the boundary to space, above the top of the atmosphere.

Balance of energy for earth system

• At top of atmosphere: $F_{\text{out}} = F_{\text{in}}$

$$I_{\text{up, atmos}} = I_{\text{in}}$$
 (intensity of absorbed sunlight)

$$\varepsilon \sigma T_{\text{atmos}}^4 = \frac{(1 - \alpha)I_{\text{solar}}}{4}$$

• Aha! We can find T_{atmos} !

$$T_{\rm atmos} = \sqrt[4]{\frac{(1-\alpha)I_{\rm solar}}{4\varepsilon\sigma}}$$

Balance of energy for earth system

$$T_{\rm atmos} = \sqrt[4]{\frac{(1-\alpha)I_{\rm solar}}{4\varepsilon\sigma}}$$

- Just like bare rock model!
- We call this the **skin temperature**

Atmosphere: Heat_{in} = Heat_{out}

$$I_{\text{up,ground}} = I_{\text{up,atm}} + I_{\text{down,atm}}$$

Atmosphere: heat in = heat out.

$$I_{\text{up,ground}} = I_{\text{up,atm}} + I_{\text{down,atm}}$$

$$I_{\text{up,atm}} = I_{\text{down,atm}} = \varepsilon \sigma T_{\text{atm}}^{4}$$

Atmosphere: heat in = heat out.

$$I_{\text{up,ground}} = I_{\text{up,atm}} + I_{\text{down,atm}}$$

$$I_{\text{up,atm}} = I_{\text{down,atm}} = \varepsilon \sigma T_{\text{atm}}^{A}$$

$$I_{\text{up,ground}} = \varepsilon \sigma T_{\text{ground}}^{A}$$

Atmosphere: heat in = heat out.

$$I_{
m up,ground} = I_{
m up,atm} + I_{
m down,atm}$$
 $I_{
m up,atm} = I_{
m down,atm} = \varepsilon \sigma T_{
m atm}^A$
 $I_{
m up,ground} = \varepsilon \sigma T_{
m ground}^A$
 $\varepsilon \sigma T_{
m ground}^A = 2\varepsilon \sigma T_{
m atm}^A$

Principles:

- Start at the top.
- For each layer, Heat_{out, up} = Heat_{out, down}
- Each layer balances Heat_{in, total} = Heat_{out, total}
 - Each layer has uniform temperature:
 - The top and bottom of the layer have the same temperature.
 - So the intensity emitted from the top and bottom is the same.
- The bottom layer of the atmosphere tells us Heat up, ground
- Get ground temperature from Heat up, ground

Finish the problem

$$\varepsilon \sigma T_{\text{ground}}^{4} = 2\varepsilon \sigma T_{\text{atm}}^{4}$$

$$T_{\text{ground}}^{4} = 2T_{\text{atm}}^{4}$$

$$T_{\text{ground}} = \sqrt[4]{2} T_{\text{atm}}$$

$$= 1.19 T_{\text{atm}}$$

- Skin temp: $T_{\text{atm}} = T_{\text{skin}} = T_{\text{bare rock}} = 254 \text{ K}$
- Ground temp (1-layer): $T_{\text{ground}} = \sqrt[4]{2}T_{\text{atm}} = 302 \text{ K}$
- Difference: Greenhouse effect = 48 K

Note: These numbers are slightly different from what's in the book. Don't worry about that.

Greenhouse Gases

Greenhouse Gases

Greenhouse Gases

- Brightness: Stefan-Boltzmann law:
 - $\blacksquare I = \varepsilon \sigma T^4$
 - $\epsilon = 1$

- Brighter = Hotter
- Hotter = closer to ground
 - Satellite can see through atmosphere to low altitude (hot, bright) in "window" region.
 - Satellite can see to middle-troposphere (cold, dimmer) in "water vapor" region
 - Satellite can't see past top of troposphere (very cold, very dim) in CO region.

Earth Seen by Satellites

Visible

6.8 μm (Water Vapor)

$12.0 \, \mu \text{m}$ (Window)

Water, Window, Visible

CO₂ peak vs. Window

Terrestrial Planets

Earth, Mars, Venus

	Earth	Mars	Venus
Solar constant	$1350 \mathrm{W/m}^2$	$600 \mathrm{W/m^2}$	2604 W/m^2
Albedo	0.30	0.17	0.71
$T_{ m radiative}$	254 K	216 K	240 K
Actual T _{surface}	295 K	240 K	700 K
One-Layer T _{surface}	302 K	257 K	286 K

Vocabulary note:

- "radiative temperature"
- "skin temperature"
- "bare rock temperature"

all mean the same thing.

Earth, Mars, Venus

	Earth	Mars	Venus
Solar constant	1350 W/m^2	$600 \mathrm{W/m^2}$	2604 W/m^2
Albedo	0.30	0.17	0.71
Tradiative	254 K	216 K	240 K
Actual T _{surface}	295 K	240 K	700 K
One-Layer T _{surface}	302 K	257 K	286 K
Difference	7 K	17 K	-414 K

One-layer model works pretty well for Earth.

Not so well for Mars
Terribly for Venus.

Earth, Mars, Venus

	Earth	Mars	Venus
Solar constant	1350 W/m^2	$600 \mathrm{W/m^2}$	2604 W/m^2
Albedo	0.30	0.17	0.71
Tradiative	254 K	216 K	240 K
Actual T _{surface}	295 K	240 K	700 K
One-Layer T _{surface}	302 K	257 K	286 K
Difference	7 K	17 K	-414 K
Atmospheric pressure at surface	1013 mb	6 mb	92,000 mb