FATTI DI ANALISI 2

CONVERGENZE VARIE

- (**Puntuale**) Una successione di funzioni $f_n(x)$ converge puntualmente a f(x) se $\forall x \ \forall \varepsilon > 0 \ \exists n_0 \text{ t.c.} \ \forall n \geq n_0 \ | \ f_n(x) f(x) \ | \leq \varepsilon$
- (Uniforme) Una successione di funzioni $f_n(x)$ converge uniformemente a f(x) se $\forall \varepsilon > 0$ $\exists n_0$ t.c. $\forall n \geq n_0 \ \forall x \ | f_n(x) f(x) | \leq \varepsilon$
- (Assoluta) Una serie di funzioni $\Sigma_{n=0}^{+\infty} f_n(x)$ converge assolutamente se le serie $\Sigma_{n=0}^{+\infty} \mid f_n(x) \mid$ converge puntualmente
- (Totale / Normale) Una serie di funzioni $\Sigma_{n=0}^{+\infty}f_n(x)$ converge totalmente (al suo limite) in A se vale che $\Sigma_{n=0}^{+\infty}\sup_{x\in A}\mid f_n(x)\mid<+\infty$
- ullet Assoluta \Longrightarrow Puntuale
- Uniforme ⇒ Puntuale
- Totale \implies Uniforme, Assoluta

PASSAGGIO AL LIMITE

Nel seguito si usa $f_n(x)$ per indicare una generica successione di funzioni, f(x) il suo limite (dove esiste)

- (Continuità del Limite) Se le $f_n(x)$ definitivamente sono continue, e la convergenza è uniforme, allora f(x) è continua.
- (Derivabilità)
- (Integrabilità)

PROBLEMI DI CAUCHY

Nel seguito parliamo di un problema del seguente tipo: $\left\{ \begin{array}{l} y'=f(x,y)\\ y(x_0)=y_0 \end{array} \right.$

- (Esistenza ed Unicità Locali)
- (Teorema di Peano, Esistenza Locale)