UNIVERSIDAD DEL BÍO-BÍO

FACULTAD DE CIENCIAS BÁSICAS DEPARTAMENTO DE MATEMÁTICA CHILLÁN

Docentes Jorge Torres

Paula Verdugo Gijsbertus Van Der Veer

Calculo Diferencial Máximos y Mínimos

- 1. Dada la función $y = \frac{1}{3}x^3 + \frac{1}{2}x^2 6x + 8$, calcular:
 - a) Puntos críticos.
 - b) Intervalos en los cuales y es creciente y decreciente.
 - c) Máximos y mínimos de y.
- 2. Dada la función $y = x^4 + 2x^3 3x^2 4x + 4$, calcular:
 - a) Intervalos en los que y es creciente y decreciente.
 - b) Máximos y mínimos de y.
- 3. Demostrar que la función $y = x^3 8$ no tiene máximos y mínimos.
- 4. Hallar los máximos y mínimos de la función $y = \frac{1}{x-2}$, determinando los intervalos en los que función es creciente y decreciente.
- 5. Hallar los máximos y mínimos de la función $f(x) = 2 + x^{\frac{2}{3}}$ determinando los intervalos en los que la función es creciente y decreciente.
- 6. Determinar la concavidad, convexidad y puntos de inflexión de la función:
 - a) $y = 3x^4 10x^3 12x^2 + 12x 7$.
 - b) $y = x^4 6x + 2$
 - c) $y = 3x + (x+2)^{\frac{3}{5}}$
- 7. Hallar los máximos y mínimos de la función $f(x) = x(12-2x)^2$ aplicando el criterio de la segunda derivada.
- 8. Hallar los máximos y minimos de las funciones siguientes en los intervalos dados:

a)
$$y = -x^2$$

en
$$-2 < x < 2$$

$$(x-3)^2$$

en
$$0 \le x \le 4$$

c)
$$y = \sqrt{25 - 4x^2}$$

$$en -2 \le x \le 2$$

$$\mathbf{d})y = \sqrt{x-4}$$

en
$$4 \le x \le 29$$