

CHAPTER3: DATABASE ANALYSIS AND DESIGN

Piyarat Ngamsanit, D.I.S., Department of Information System, BA, RMUTI

วงจรการพัฒนาระบบฐานข้อมูล

(DATABASE SYSTEM DEVELOPMENT LIFE CYCLE: DSDLC)

- 1.1 การวิเคราะห์สถานการณ์
- 1.2 การกำหนดปัญหา
- 1.3 การกำหนดวัตถุประสงค์
- 1.4 การกำหนดขอบเขตของฐานข้อมูล

"รู้เขา รู้เรา รบร้อยครั้ง ชนะร้อยครั้ง"

1.1 การวิเคราะห์สถานการณ์

- ต้องรู้การทำงานภายในองค์กร รู้ว่าใครทำหน้าที่อะไร เพื่อกำหนดภาระหน้าที่
- ต้องรู้โครงสร้างการดำเนินงานองค์กร เพื่อสร้าง แผนภาพการไหลของข้อมูลในองค์กร
- การค้นหาข้อเท็จจริง
- การสัมภาษณ์
- การสำรวจ หรือการใช้แบบสอบถาม
- การสังเกตการณ์
- การทบทวนหรือวิเคราะห์เอกสาร

1.1 การวิเคราะห์สถานการณ์

- การค้นหาข้อเท็จจริง
 - เป็นวิธีที่นำมาใช้เพื่อรวบรวมข้อมูลต่าง ๆ ซึ่งประกอบด้วย การวิเคราะห์เอกสาร การสังเกตการณ์ การใช้
 แบบสอบถาม การสัมภาษณ์ และการวางแผนความต้องการร่วมกัน
 - ก่อนที่จะเริ่มไปหาข้อมูลต้องปฏิบัติดังนี้
 - มีการทำงานอะไรบ้างที่สนับสนุนระบบงานปัจจุบัน
 - วัตถุประสงค์และความต้องการของธุรกิจ ที่ต้องถูกสนับสนุนในระบบใหม่
 - ระบบมีประโยชน์อะไรบ้าง
 - ระบบต้องประมวลผลรายการธุรกรรมใดบ้าง
 - มีขั้นตอนอะไรที่จะถูกลดการทำงานไป
 - ผลกระทบที่จะมีต่อระบบที่จะพัฒนา

1.1 การวิเคราะห์สถานการณ์

■ การสัมภาษณ์

- เป็นวิธีเก็บข้อมูลได้อย่างละเอียด
- สามารถสอบถามเพื่อให้เกิดความเข้าใจในปัญหา รวมถึงสภาพการณ์ต่าง ๆ ที่เกิดขึ้นใน หน่วยงาน
- นักวิเคราะห์ระบบที่มีประสบการณ์จะสามารถพูดชักนำปัญหาต่าง ๆ ได้อย่างตรงประเด็น
- เป็นวิธีการเก็บข้อมูลโดยตรง ผ่านการสนทนา

1.1 การวิเคราะห์สถานการณ์

การสำรวจ หรือการใช้แบบสอบถาม

- เหมาะกับการรวบรวมข้อเท็จจริงจากกลุ่มคนต่าง ๆ จำนวนมาก
- ภายในแบบสอบถาม จะบรรจุคำถามต่าง ๆ ไว้หลายหัวข้อ
- ประเภทคำถามมีทั้งแบบปลายปิด และปลายเปิด
- ปลายปิด เป็นคำถามที่กำหนดตัวเลือกไว้แล้ว
- ปลายเปิด เป็นคำถามที่ให้ผู้ตอบแบบสอบถามมีอิสระในการตอบคำถาม

1.1 การวิเคราะห์สถานการณ์

■ การสังเกตการณ์

- เป็นเทคนิคในการรวบรวมข้อมูลเพื่อรู้ระบบงานเดิม
- นักวิเคราะห์ระบบจะสังเกตคนและกิจกรรมต่าง ๆ ที่เกี่ยวข้อง
- เพื่อให้รู้ระบบที่ดำเนินการอยู่
- วิธีนี้ทำถูกนำมาใช้เมื่อข้อมูลที่รวบรวมมาจากวิธีอื่น ๆ ไม่สามารถสร้างความชัดเจนได้
- มีข้อดี คือ ทำให้นักวิเคราะห์รู้ขั้นตอนการทำงาน รู้เส้นทางการเดินทางของข้อมูลที่ส่งไปตามหน่วยงาน ต่าง ๆ

1.1 การวิเคราะห์สถานการณ์

■ การทบทวนหรือวิเคราะห์เอกสาร

- วิเคราะห์เอกสารเพื่อศึกษาและทำความเข้าใจกับระบบงานเดิม
- โดยเอกสารที่นำมาวิเคราะห์ จะประกอบด้วยฟอร์ม หรือรายงานต่าง ๆ ที่ถูกสร้างขึ้นมาจากระบบเดิม
- เอกสารที่สำคัญอย่างอื่นเช่น บันทึกช่วยจำ คู่มือนโยบาย ผังโครงสร้างองค์กร แบบฟอร์มต่าง ๆ

การศึกษาเบื้องต้น

(DATABASE INITIAL STUDY)

•Ex. เอกสารเดิม

ใบยืมครุภัณฑ์		
เรื่อง ขออนุมัติการขีมครุภัณฑ์	วันที่ เดือนพ.ศ. พ.ศ	
เนื่องด้วยข้าพเจ้า นาย/นาง/นางสาว. ตำแหน่งสังกัด	โทรสัพท์กายใบ	
มีความประสงค์ที่จะขออนุญาตยืมครุภัณฑ์คอมพิวเตอร์		
□ Apple iPad □ อื่น ๆ	. พร้อมด้วยอุปกรณ์ต่อพ่วง จำนวนครื่อง	
ตั้งแต่วันที่ถึงวันที่ถึงวันที่		
โดยจะขอรับมอบอุปกรณ์ในวันที่		
ลงชื่อ()	
<u>คำอนุมัติ</u> ☐ อนุญาต ☐ ไม่อนุญาต เนื่องจาก		
	ลงชื่อ () วันที่ / /	

1.2 การกำหนดปัญหา

- ระบบเดิมมีหน้าที่การทำงานอย่างไร
- มีข้อมูลนำเข้าระบบอะไร
- มีเอกสารหรือรายงานอะไรบ้าง
- มีรายงานจากระบบถูกนำไปใช้อย่างไรบ้าง ใครเป็นผู้ใช้ รายงาน
- มีข้อจำกัดหรือสิ่งรบกวนอะไรบ้างที่ส่งผลกระทบต่อ ระบบ

ปัญหาที่เกิดขึ้นในการทำงาน อาจไม่อยู่ในรูปแบบโครงสร้างที่แน่ชัด จำเป็นต้อง รวบรวมรายละเอียดของปัญหาให้มากที่สุด

1.3 การกำหนดวัตถุประสงค์

- วัตถุประสงค์หลักคืออะไร
- จะต้องมีการอินเตอร์เฟชกับระบบงานเดิม หรือ ระบบงานในอนาคตอย่างไร
- ระบบจะแชร์ข้อมูลเพื่อนำไปใช้งานร่วมกับระบบอื่นๆ หรือผู้ใช้อื่นๆ อย่างไร

1.4 กำหนดขอบเขตของฐานข้อมูล

- ขอบเขต (Scope)
 - คือการออกแบบให้ตรงกับความต้องการในส่วน ปฏิบัติงาน
- เส้นแบ่งเขต (Boundaries)
 - เกี่ยวข้องกับงบประมาณ รวมถึงฮาร์ดแวร์และ ซอฟแวร์

- เป็นระยะที่**สำคัญ**ที่สุด
- 🔲 มุ่งการออกแบบจำลองงานข้อมูล
- 🗖 นำเสนอข้อมูล 2 มุมมอง
 - มุมมองทางธุรกิจ
 - มุมมองของนักออกแบบ

■ [WHAT] มุมมองทางธุรกิจ

- ปัญหาที่เกิดขึ้นคืออะไร
- มีแนวทางแก้ไขอะไรบ้าง
- สารสนเทศที่ต้องการ
- ข้อมูลที่ต้องการมีอะไรบ้าง

■ [HOW] มุมมองของนักออกแบบ

- กำหนดโครงสร้างข้อมูลอย่างไร
- กำหนดการเข้าถึงข้อมูลอย่างไร
- แปลงข้อมูลเป็นสารสนเทศอย่างไร

ระยะการออกแบบฐานข้อมูล

- 2.1 การวิเคราะห์ความต้องการ
- 2.2 การออกแบบเชิงแนวคิด
- 2.3 การเลือกระบบจัดการฐานข้อมูล
- 2.4 การออกแบบเชิงตรรกะ
- 2.5 การออกแบบเชิงกายภาพ

2.1 การวิเคราะห์ความต้องการ

- ความต้องการในสารสนเทศ
- ผู้ใช้สารสนเทศ
- แหล่งที่มาของสารสนเทศ
- การประกอบร่างเป็นสารสนเทศ
- การพัฒนาและรวบรวมมุมมองข้อมูลจากผู้ใช้
- การสำรวจระบบงานปัจจุบัน
- การประสานงานกับทีมออกแบบ

2.2 การออกแบบเชิงแนวคิด

จะใช้แบบจำลอง E-R มีขั้นตอนดังนี้

- กำหนด Entity, Attribute, Primary Key, Foreign key กำหนดความสัมพันธ์ระหว่าง entity
- เลือก Key หลักให้ถูกต้อง
- ดำเนินการกับ Attribute ที่มี Multivalued
- การเพิ่ม Derived Attribute ที่เหมาะสม
- ความจำเป็นที่ต้องมีความสัมพันธ์แบบ
 Supertype/subtype
- ตรวจสอบความซ้ำซ้อนของแบบจำลอง
- ทบทวนและตรวจสอบความต้องการ

2.3 การเลือกระบบจัดการฐานข้อมูล

- ค่าใช้จ่ายด้านต้นทุนต่าง ๆ เช่น ราคา การบำรุงรักษา ลิขสิทธิ์
- เครื่องมือและคุณลักษณะของ DBMS
- การคัดเลือกแบบจำลองฐานข้อมูล
- ความสะดวกในการเคลื่อนย้าย
- ความต้องการด้านฮาร์ดแวร์ของ DBMS

2.4 การออกแบบเชิงตรรกะ

 การออกแบบฐานข้อมูลเชิงตรรกะ เป็นกระบวนการ นำแบบจำลองแนวคิดมาแปลงเป็นแบบจำลองเชิง ตรรกะ โดยให้อยู่ในรูปแบบของรีเลชั่น

กิจกรรมในการออกแบบเชิงตรรกะ

- ✓แปลงแผนภาพหรือ E-R มาเป็น Relation
- ✓ Normalization เพื่อขจัดวามซ้ำซ้อนของ Relation
- ✓ ตรวจสอบ Relation มีข้อมูลครบถ้วนหรือไม่
- ✓ ตรวจสอบความคงสภาพในข้อมูลว่าเป็นไปตาม ข้อบังคับหรือไม่
- ✓ ทบทวนแบบจำลองเชิงตรรกะร่วมกับผู้ใช้งาน
- ✓ ตรวจสอบการรอบรับความเติบโตของข้อมูลในที่จะ เกิดขึ้นในอนาคต

2.5 การออกแบบเชิงกายภาพ

- เป็นกระบวนการคัดเลือกสื่อจัดเก็บข้อมูล การคัดเลือกรูปแบบโครงสร้างแฟ้มข้อมูล ว่า จะใช้วิธีการเข้าถึงข้อมูลในฐานข้อมูลแบบใด
- การออกแบบฐานข้อมูลเชิงกายภาพต้อง คำนึงถึงประสิทธิภาพของระบบโดยรวม

การนำไปใช้

(IMPLEMENTATION AND LOADING)

3. การนำไปใช้

- เป็นระยะการออกแบบเสร็จสมบูรณ์เรียบร้อย
- สร้างฐานข้อมูลลงใน DBMS ด้วยภาษา DDL
- พัฒนาโปรแกรมแอปพลิเคชั่นด้วยPHP,
 JAVA, C++
- การกำหนดสิทธิ์การเข้าถึงข้อมูล

การทดสอบและประเมินผล (TESTING AND EVALUATION)

4. การทดสอบและประเมินผล

- ระยะเวลาในการเรียนรู้
- ประสิทธิภาพของระบบ
- ความคงทนของระบบ
- การกู้คืนระบบ
- การง่ายต่อการดัดแปลง

การปฏิบัติงาน (OPERATION)

5. การปฏิบัติงาน

เป็นระยะการปฏิบัติงานจริง ซึ่งปัญหาบาง
ประการอาจถูกค้นพบในขณะที่ปฏิบัติงานจริง
เช่น ระบบทำงานช้าลงเมื่อมีลูกค้าเข้ามา
ติดต่อกับฐานข้อมูล

การบำรุงรักษาและสนับสนุน (MAINTENANCE AND SUPPORT)

6. การบำรุงรักษาและสนับสนุน

- ตรวจสอบประสิทธิภาพของระบบเป็นระยะ ๆ
- บำรุงรักษาระบบด้วยการป้องกัน แก้ไขให้ ถูกต้อง รวมถึงการอัปเกรดระบบฐานข้อมูล เพื่อรองรับเทคโนโลยีใหม่
- สรุปผลการใช้งานระบบฐานข้อมูล ซึ่งอาจ จัดทำเป็นรายงาน

ผู้บริหารข้อมูลและผู้บริหารฐานข้อมูล DATA ADMINISTRATORS AND DATABASE ADMINISTRATORS

มีหน้าที่รับผิดชอบในด้านการจัดการและการควบคุมกิจกรรมความสัมพันธ์ต่าง ๆ ที่เกี่ยวข้อง กับข้อมูลในฐานข้อมูลในองค์กร

Data Administrators (DA)

- เกี่ยวข้องกับงานการวางแผน เพื่อนำไปสู่การออกแบบเชิงตรรกะ
- มุ่งดูแลงานด้านการจัดการฐานข้อมูล

Database Administrators (DBA)

- เกี่ยวข้องกับงานด้านแอปพลิเคชั่นและการออกแบบเชิงกายภาพ รวมถึงการบำรุงรักษาและ สนับสนุนระบบ
- มุ่งงานเชิงเทคนิค

ความแตกต่างระหว่าง DA และ DBA

ผู้บริหารข้อมูล (DA)	ผู้บริหารฐานข้อมูล (DBA)
ทำแผนกลยุทธ์และวางแผนระบบสารสนเทศ	ประเมินผล DBMS ใหม่ที่นำมาใช้งาน
กำหนดนโยบายและเป้าหมายระยะยาว	ดำเนินงานตามแผนนโยบายให้บรรลุเป้าประสงค์
ออกกฎมาตรฐาน นโยบาย และชุดคำสั่ง	ออกกฎมาตรฐาน นโยบาย และชุดคำสั่ง
กำหนดความต้องการข้อมูล	นำความต้องการที่รวบรวม ไปใช้งานให้เกิดผล
ออกแบบฐานข้อมูลเชิงแนวคิดและเชิงตรรกะ	ออกแบบฐานข้อมูลเชิงตรรกะและกายภาพ
พัฒนาและบำรุงรักษาแบบจำลองข้อมูล	ติดตั้งระบบฐานข้อมูล
ร่วมมือประสานงานกับทีมงานพัฒนาระบบ	ตรวจสอบและควบคุมฐานข้อมูล
จัดทำแผนการบริหารจัดการ	จัดทำแผนงานเชิงเทคนิค

ขอซักถาม ?

