Algebraic Equations

$$\rightarrow (a + b + c)^2 = a^2 + b^2 + c^2 + 2ab + 2ac + 2bc$$

$$\rightarrow (a - b - c)^2 = a^2 + b^2 + c^2 - 2ab - 2ac + 2bc$$

$$\rightarrow (a + b)^3 = a^3 + 3ab^2 + 3a^2b + b^3$$

$$\rightarrow (a - b)^3 = a^3 + 3ab^2 - 3a^2b - b^3$$

$$\rightarrow (a + b)(a - b) = a^2 - b^2$$

$$\to (a^m)(a^n) = a^{m+n}$$

$$\rightarrow (a^m)^n = a^{mn}$$

$$\to (ab)^m = a^m b^m$$

$$\rightarrow x^0 = 1$$

$$\rightarrow a \& b = \frac{(a*b)}{(a+b)}$$

$$\rightarrow \sqrt{k(k+1) + \sqrt{k(k+1) + \dots + \infty}} = + (k+1)$$

$$\rightarrow \sqrt{k(k+1) - \sqrt{k(k+1) - \dots - \infty}} = -k$$

$$\to \sqrt[n]{x} = x^{\frac{1}{n}}$$

$$\rightarrow log(ab) = log a + log b$$

$$\rightarrow \log \frac{a}{b} = \log a - \log b$$

$$\rightarrow log_a a = 1$$

$$\rightarrow log_a 1 = 0$$

$$\rightarrow log \ a^b = b \ log \ a$$

$$\to \log \frac{a}{b} = \frac{1}{\log \frac{b}{a}}$$

Read as:

Percentages:

	1	
1	100	
2	50	
3	33.33	
4	25	
5	20	
6	16.66	
7	14.28	
8	12.5	
9	11.11	
10	10	
11	9.09	
12	8.33	

Increase

accicasc
8.33
9.09
10
11.11
12.5
14.28
16.66
20
25
33.33
37.5
40
42.85
50

decrease

Read as:

- \rightarrow If a increases by 10%,
- \rightarrow (1.1)a
- \rightarrow Now, 1.1a must decrease by 9.09% to become a.

Simple Interest and Compound Interest:

$$\rightarrow$$
 Simple Interest = $\frac{Principal * Time * Rate of Interest}{100}$

$$\rightarrow Amount = P(1 + \frac{r}{100})^n$$

Therefore, $Compound\ interest = Amount - Principal$

Alligation method:

Ratio and proportion:

$$\rightarrow if \frac{a}{b} = \frac{b}{c} then, \frac{a+b}{b} = \frac{c+d}{d}$$

$$\rightarrow if \frac{a}{b} = \frac{c}{d} then, \frac{a-b}{b} = \frac{c-d}{d}$$

$$\rightarrow if \frac{a}{b} = \frac{c}{d} then, \frac{a+b}{a-b} = \frac{c+d}{c-d}$$

Work and time:

 $\rightarrow M_1$ people with efficiency D_1 can do W_1 work in T_1 time.

$$\frac{M_1 D_1 T_1}{W_1} = \frac{M_2 D_2 T_2}{W_2}$$

$$\rightarrow Time \ \alpha \ \frac{1}{Work}$$

$\rightarrow \textit{Efficiency} \; \alpha \; \textit{Work}$

Time, Speed and Distance:

Converting kmph to mps \rightarrow multiply with $\frac{5}{18}$ Converting mps to kmph \rightarrow multiply with $\frac{18}{5}$

2D geometry shapes:

Shape Name	Area	Perimeter	Terms
Square	a^2	4×a	a=side of square
Rectangle	l×b	2(l+b)	l=length b=breadth
Circle	πr^2	2πr	r=radius
Equilateral triangle	$(\sqrt{3}/4)\times a^2$	3×a	a=side of triangle
Right angled triangle	$1/2 \times b \times h$	b + hypotenuse + h	b=base h=height
Isosceles triangle	1/2 × b × h	2a + b	a=side of triangle b=base h=height
Rhombus	½ × d1 × d2	4×s	s=side of rhombus d1,d2 are diagonals
Parallelogram	b × h	2(l+b)	l=length b=breadth h=height

3D geometry shapes:

Shape Name	Volume	Surface Area	Terms
Cube	a^3	$6 \times a^2$	a=side of cube
Cuboid	l×b×h	2(lb+bh+hl)	l=length b=breadth h=height
Sphere	$(4/3)\pi r^3$	$4\pi r^2$	r=radius
Hemisphere	$(2/3)\pi r^3$	$3\pi r^2$	r=radius
Cylinder	$(\pi r^2) \times h$	2πrh + 2πr ²	r=radius h=height
Cone	$(\frac{1}{3})(\pi r^2) \times h$	πr(r+l)	r=radius h=height l=slant height

Statistics

- It is sum of values to the number of values.Mean = $(\frac{Sum\ of\ values}{No.of.values})$
- Mean of linear data = $(\frac{a1+a2+a3+....+an}{n})$
- Harmonic Mean of two numbers a,b [H.M = $(\frac{2ab}{a+b})$]
- To calculate the harmonic mean of a, b, and c, you would divide the number of terms by the reciprocal of each number, as follows: $[H.M = (\frac{3}{\frac{1}{a} + \frac{1}{b} + \frac{1}{c}})]$
- Geometric Mean of the series $a_1, a_2, a_3, ..., a_n$ is as follows

- [G.M = $\sqrt[n]{a1 * a2 * a3 *....an}$]
- Relation b/w A.M ,G.M & H.M => G.M = $\sqrt{A.M * H.M}$
- Relation between Mean, Median and Mode:
 Mean Mode = 3 (Mean Median)
- Variance = $\sqrt{STANDARD\ DEVIATION}$ Step 1: Add up the numbers in your given data set.
 - Step 2: Square your answer:
 - Step 3: Take your set of original numbers from Step 1, and square them individually this time:
 - Step 4: Subtract the amount in Step 2 from the amount in Step 3.
 - Step 5: Subtract 1 from the number of items in your data set.
 - Step 6: Divide the number in Step 4 by the number in Step 5. This gives you the variance:
 - Step 7: Take the square root of your answer from Step 6. This gives you the standard deviation.