

Academic Year: 2019 -2020

Department

of

Electronics & Communication Engineering

St. Thomas' College of Engineering & Technology

Laboratory Report on Analog& Digital ElectronicsLab Code:ESC 391

Year: 2nd Stre	eam: Computer Science	& Engineering
Semester: <u>3rd</u>	Class Roll No: _	04
Group:		
University Roll No.:	12200119061	

General Information

Course Name	Analog& Digital ElectronicsLab	Semester	III	
Course Code	ESC 391	Year with stream	2 ND yearCS	
Course Credit	2	Session	2019-2020	
Faculty Instructor/s	SMC	Class hours and total class load	4hrs	
Technical Assistant/s		Laboratory	ElectronicsLab. [Room No. 106]	

Course	This laboratory courses on hands-on experiments are for undergraduate
objectives	Engineering students studying the course of Analog & Digital
3	ElectronicsLab. After completion of this course, the students will be
	able to perform various experiments to supplement their theoretical
	understanding of analog & digital electronics.

Course Outcome:

After completion of the course student will be able to

CO	CO Statements	Bloom's
		Level
C.1	Analyze the truth table of basic combinational circuits and sequential circuits.	Analyze
C.2	Apply the design knowledge of flip-flops to realise them with logic gates.	Apply
C.3	Apply the knowledge to design Shift Registers using J-K / D Flip Flop.	Create
C.4	Able to Analyze the timing diagram of different sequential logic diagram.	Analyze
C.5	Analyze the frequency of oscillation condition of an electrical circuit.	Analyze
C.6	Design of a Schmitt Trigger using 555 timer & realization of the in input /output waveform.	Create

CO--PO/PSO/BLOOM'S LEVEL matrix of the course:

СО	РО					PSO 1	PSO 2							
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12		
CO1	1						,	0		10		12		
CO2														
CO3														
CO4									>					
CO5														
CO6														

Recommended	1. 3	Sedra& Smith-Microelectronic Circuits- Oxford UP
books	2.	Boylested&Nashelsky- Electronic Devices - Pearson/PHI
	3.	Millman&Halkias – Integrated El;ectronics, McGraw Hill.
	4.	A.Anand Kumar, Fundamentals of Digital Circuits- PHI
	5. 1	D.RayChaudhuri- Digital Circuits-Vol-I & II, 2/e- Platinum
		H.Taub&D.Shilling, Digital Integrated Electronics- McGraw Hill

Grading:Grading to be done as per university rule.

List of Experiments

Expt. No.	Name of Experiment	Page No.	Date of Expt.	Signature	Grade awarded
1	Design a Full Adder using basic gates and verify its output / Design a Full Subtractor circuit using basic gates and verify its output.	4 - 11	15.09.20 & 22.09.20		
2	Construction of Decoder & Multiplexer circuits using logic gates.				
3	Realization of RS / JK / D flip flops using logic gates.				
4	Design of Shift Register using J-K / D Flip Flop.				
5	Realization of Synchronous Up/Down counter.				
6	Design a Phase-Shift Oscillator.				
7	Design of a Schmitt Trigger using 555 timer.				

EXPERIMENT NO: 1

<u>Title</u>: Design and implementation of Full Adder & Full Subtractor circuit using Logic Gates.

<u>Objective</u>: To realize the truth table of Full Adder & Full Subtractor circuit using Logic Gates.

The Experiment will Cover the Course Outcome (CO):	CO1: Analyze the truth table of basic combinational circuits and sequential circuits.
Bloom's Cognitive Domain:	Analyze

For Full Adder

TRUTH TABLE: (Fill up the table)

	INPU'	OUTPUT		
A	В	C in (Carry	S	Cout(Carry
		in)	(Sum)	out)
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Boolean Expression (applying simplification technique) for Sum and Carry

Sum (S) =
$$A'B'C_{IN} + A'BC_{IN}' + AB'C_{IN}' + ABC_{IN}$$

$$= A'(B'C_{IN} + BC_{IN}') + A(B'C_{IN}' + BC_{IN})$$

= A'(B xor C_{IN}) + A(B xnor C_{IN})

= A'(B xor C_{IN}) + A(B xor C_{IN})'

= A xor (B xor C_{IN})

= A xor B xor C_{IN}

$$\begin{aligned} \text{Carry-out(C_{out})} &= \text{A'BC}_{\text{IN}} + \text{AB'C}_{\text{IN}} + \text{ABC}_{\text{IN}}' + \text{ABC}_{\text{IN}} \\ &= (\text{A'B} + \text{AB'})\text{C}_{\text{IN}} + \text{AB(C_{\text{IN}}' + C_{\text{IN}})} \end{aligned}$$

 $= (A \text{ xor } B)C_{IN} + AB$

<u>CIRCUIT DIAGRAM</u>(IC no. and its connecting pin nos. should be indicated)

For Full subtractor

TRUTH TABLE: (Fill up the table)

	INPU	Ts	OUTPUTs		
X	Y	B _{IN} (Borrow in)	D (Difference)	Bout (Borrow out)	
0	0	0	0	0	
0	0	1	1	1	
0	1	0	1	1	
0	1	1	0	1	
1	0	0	1	0	
1	0	1	0	0	
1	1	0	0	0	
1	1	1	1	1	

Boolean Expression (applying simplification technique) for Difference and Borrow

Difference (D) = $A'B'B_{IN} + A'BB_{IN}' + AB'B_{IN}' + ABB_{IN}$

$$= (A'B + AB') B_{IN}' + (A'B' + AB) B_{IN}$$

= $(A \text{ xor } B) B_{IN}' + (A \text{ xnor } B) B_{IN}$

= (A xor B) B_{IN} ' + (A xor B)' B_{IN}

= (A xor B) xor B_{IN}

Borrow-out (B_{OUT}) = $A'B'B_{IN} + A'BB_{IN}' + A'BB_{IN} + ABB_{IN}$

 $= (A'B' + AB)B_{IN} + A'B(B_{IN}' + B_{IN})$

 $= (A \times B)B_{IN} + A'B$

 $= (A \text{ xor B})'B_{IN} + A'B$

<u>CIRCUIT DIAGRAM</u> (IC no. and its connecting pin nos. are to be indicated)

APPARATUS: 1. Trainer Kit.

COMPONENTS:

Complete the following table as per circuit diagram and collect the component from Laboratory.

Sl.no	IC no.	IC Description	Qty
1	74HC86	Quad 2-input XOR gate	1
2	74HC08	Quad 2-input AND gate	1
3	74HC32	Quad 2-input OR gate	1
4	74HC04	Hex invertor	1

OBSERVATION:

We examined the working mechanism of the Full Adder and Full Subtractor circuits and build them with XOR, AND, OR and invertor. We also tallied our outputs with the truth table of the respective circuits.

Questionnaires:

- 1. Design a Full adder circuit using 2 half adder circuits.
- 2. Design a Full subtractor circuit using 2 half subtractor circuits.
- 3. Design a Full adder circuit using only 2 input NAND gates.
- 4. Design a Full subtractor circuit using only 2 input NAND gates.

Answer:

1. Ans:

Full Adder using 2 half adder circuits

2. Ans:

Full subtractor using 2 half subtractor circuits

3. Ans:

4. Ans:

Full Subtractor circuit using 2 input NAND gates

Discussion:

Teacher's Signature	
with date	