Modèles Linéaires Appliqués (STT5100)

Arthur Charpentier

Compléments d'algèbre linéaire et de géométrie

Automne 2022

Point et vecteurs (dimension 2)

Il s'agit de rappels, certaines définitions sont malheuresement tautologiques (toutes mes excuses)

Repère

On se place ici dans $\mathcal{E} = (\mathbf{0}, \vec{e_1}, \vec{e_2})$

Un point est défini par ses coordonnées

$$P = \begin{pmatrix} p_1 \\ p_2 \end{pmatrix} = \begin{pmatrix} 3 \\ 2 \end{pmatrix} \in \mathcal{E}$$

L'origine est

$$O = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \in \mathcal{E}$$

Point et vecteurs (dimension 2)

Un vecteur est défini par ses coordonnées

$$\vec{u} = \mathbf{u} = \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} = \begin{pmatrix} 3 \\ 2 \end{pmatrix} \in \mathbb{R}^2$$

et

$$\vec{e}_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 et $\vec{e}_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$.

$$P = \mathbf{O} + \vec{u} = \begin{pmatrix} p_1 \\ p_2 \end{pmatrix} = \begin{pmatrix} 0 + u_1 \\ 0 + u_2 \end{pmatrix}$$

On notera que

Produit scalaire, norme et orthogonalité (dimension 2)

Produit scalaire

Soient $\vec{u}, \vec{v} \in \mathbb{R}^2$, $\langle \vec{u}, \vec{v} \rangle = \mathbf{u}^\top \mathbf{v} = \begin{pmatrix} u_1 \\ u_2 \end{pmatrix}^\top \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = u_1 v_1 + u_2 v_2$.

Orthogonalité

Soient $\vec{u}, \vec{v} \in \mathbb{R}^2$, $\vec{u} \perp \vec{v}$ si $\langle \vec{u}, \vec{v} \rangle = 0$.

Si
$$\vec{u} = \begin{pmatrix} u_1 \\ u_2 \end{pmatrix}$$
 et $\langle \vec{u}, \vec{v} \rangle = 0$, alors $\vec{v} = \begin{pmatrix} -\alpha u_2 \\ \alpha u_1 \end{pmatrix} \propto \begin{pmatrix} -u_2 \\ u_1 \end{pmatrix}$

Vecteur orthogonal

Soit $\vec{u} = \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} \in \mathbb{R}^2$, on notera $\vec{u}_{\perp} = \begin{pmatrix} -u_2 \\ u_1 \end{pmatrix}$.

Produit scalaire, norme et orthogonalité (dimension 2)

Longueur (norme Euclidienne)

Soit
$$\vec{u} \in \mathbb{R}^2$$
, alors $||\vec{u}|| = \sqrt{\langle \vec{u}, \vec{u} \rangle} = \sqrt{u_1^2 + u_2^2}$.

Produit scalaire, norme et orthogonalité (dimension 2)

Inégalité de Cauchy-Schwarz

Soient $\vec{u}, \vec{v} \in \mathbb{R}^2$, $|\langle \vec{u}, \vec{v} \rangle| \le ||\vec{u}|| \cdot ||\vec{v}||$.

Angle

Soient
$$\vec{u}, \vec{v} \in \mathbb{R}^2$$
, $\cos(\theta) = \frac{\langle \vec{u}, \vec{v} \rangle}{||\vec{u}|| \cdot ||\vec{v}||} \in [-1; +1].$

Orthogonalité et colinéarité

Soient
$$\vec{u}, \vec{v} \in \mathbb{R}^2$$

$$\begin{cases} \vec{u} \perp \vec{v} \text{ si } \cos(\theta) = 0, \text{ ou } \theta = \pm \frac{\pi}{2} \\ \vec{u} /\!\!/ \vec{v} \text{ si } \cos(\theta) = \pm 1, \text{ ou } \theta \in \{0, \pi\} \end{cases}$$

Droite (dimension 2)

$$\mathcal{D} = (A, \vec{u})$$

Soient $A \in \mathcal{E}$ et $\vec{u} \in \mathbb{R}^2$, la droite \mathcal{D} passant par P et de vecteur directeur \vec{u} est l'ensemble des points P tels qu'il existe $t \in \mathbb{R}$ tel que $P = A + t\vec{u}$.

$\mathcal{D} = (A, \vec{u})$ – équation implicite

Soient $A \in \mathcal{E}$ et $\vec{u} \in \mathbb{R}^2$, la droite $\mathcal{D} = (A, \vec{u})$ est l'ensemble des points P tels que $\langle \vec{u}_{\perp}, P - A \rangle = 0$

En effet

$$\langle \vec{u}_{\perp}, P - A \rangle = \begin{pmatrix} -u_2 \\ u_1 \end{pmatrix}^{\top} \begin{pmatrix} x - a_1 \\ y - a_2 \end{pmatrix} = -u_2 x + u_1 y + \gamma = 0$$

 $où \gamma = a_1 u_2 - a_2 u_1$.

Droite (dimension 2)

$$\mathcal{D} = (A, \vec{u})$$
 – équation implicite

Si la droite \mathcal{D} a pour équation ax + by + c = 0, alors $\vec{u} /\!/ \binom{b}{-a}$.

Droite (dimension 2)

$$\mathcal{D} = (A, \vec{u})$$
 – équation explicite

Soient $A \in \mathcal{E}$ et $\vec{u} \in \mathbb{R}^2$, la droite $\mathcal{D} = (A, \vec{u})$ est l'ensemble des points $P = \begin{pmatrix} x \\ v \end{pmatrix}$ tels que $y = \frac{u_2}{u_1}x - \frac{\gamma}{u_1}$

Le ratio $\frac{u_2}{u_1}$ est la pente de la droite \mathcal{D} .

$$\begin{cases} \mathcal{D} \text{ est horizontale si } \vec{u} /\!\!/ \vec{e_1}, \text{ i.e. } u_2 = 0 \\ \mathcal{D} \text{ est verticale si } \vec{u} /\!\!/ \vec{e_2}, \text{ i.e. } u_1 = 0 \end{cases}$$

$\mathcal{D} = (A, \vec{u})$ – équation explicite

Si la droite \mathcal{D} a pour équation y = a + bx, alors $\vec{u} /\!/ \binom{1}{b}$.

Matrice (2×2) et applications linéaires

Une application linéaire transforme $\vec{u} = \begin{pmatrix} u_1 \\ u_2 \end{pmatrix}$ en $\vec{v} = \begin{pmatrix} v_1 \\ v_2 \end{pmatrix}$

$$\begin{cases} v_1 = a_{11}u_1 + a_{12}u_2 \\ v_2 = a_{21}u_1 + a_{22}u_2 \end{cases} \text{ noté } \vec{v} = \mathbf{A}\vec{u}, \text{ où } \mathbf{A} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$$

L'application est "linéaire" car $\mathbf{A}[t_1\vec{u}_1 + t_2\vec{u}_2] = t_1\mathbf{A}\vec{u}_1 + t_2\mathbf{A}\vec{u}_2$

Matrice (2×2) Identitée

$$\mathbf{A} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \mathbb{I}$$
 est la matrice identité.


```
1 > M = matrix(c(1,5,2,4),2,2)
2 > M
3 [,1] [,2]
4 [1,] 1 2
5 [2,] 5 4
```

Matrice (2×2) Multiplication

Si
$$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$$
 et $\mathbf{B} = \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix}$, $\mathbf{C} = \mathbf{A}\mathbf{B}$ vaut
$$\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix} = \begin{pmatrix} a_{11}b_{11} + a_{12}b_{21} & a_{11}b_{12} + a_{12}b_{22} \\ a_{21}b_{11} + a_{22}b_{21} & a_{21}b_{12} + a_{22}b_{22} \end{pmatrix}$$
 autrement dit $c_{i,j} = a_{i1}b_{1j} + a_{i2}b_{2j}$, $i,j \in \{1,2\}$.

Exemple:

```
1 > M
2 [,1] [,2]
3 [1,] 1 2
4 [2,] 5 4
5 > M %*% M
6 [,1] [,2]
7 [1,] 11 10
8 [2,] 25 26
```

On notera classiquement $\mathbf{A}^2 = \mathbf{A}\mathbf{A}$.

Matrice
$$(2 \times 2)$$
 Transposée

Si
$$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$$
, la transposée de \mathbf{A} est $\mathbf{A}^{\top} = \begin{pmatrix} a_{11} & a_{21} \\ a_{12} & a_{22} \end{pmatrix}$.

Matrice (2×2) Inverse

S'il existe **B** telle que $AB = \mathbb{I}$ ou $BA = \mathbb{I}$, on note $B = A^{-1}$.

Matrice (2×2) Rang 1

S'il existe \vec{v} tel que $\vec{A} = vv^{\top}$, \vec{A} sera dite de rang 1.

Matrice (2×2) Inverse

Si $\mathbf{A} \neq \mathbf{0}$ et si \mathbf{A} n'est pas de rang 1, alors \mathbf{A}^{-1} existe.

Matrice (2×2) Inverse

Si $\mathbf{A} = (\vec{a}_1, \vec{a}_2)$, \mathbf{A}^{-1} existe si \vec{a}_1 et \vec{a}_2 ne sont pas parallèles.

```
1 > M
2 [,1] [,2]
3 [1,] 1 2
4 [2,] 5 4
5 > solve(M)
            [,1] [,2]
7 [1,] -0.6666667 0.3333333
8 [2,] 0.8333333 -0.1666667
```

Les inverses sont liées à la résolution de systèmes d'équations linéaires, par exemple

$$\begin{cases} x + 2y = 3 \\ 5x + 4y = 9 \end{cases} \text{ soit } \boldsymbol{M} \begin{pmatrix} x \\ y \end{pmatrix} = \boldsymbol{b} \text{ ou } \begin{pmatrix} x \\ y \end{pmatrix} = \boldsymbol{M}^{-1} \boldsymbol{b}$$

```
1 > solve(M) %*% c(3.-9)
2 [,1]
3 [1,] -5
4 [2,] 4
5 > solve(M, c(3, -9))
6 [1] -5 4
```

(la solution est unique si **M** est inversible).

Matrice (2×2)

Soient **A**, **B** et **C** trois matrices 2×2 .

- A+B=B+A
- **AB** ≠ **BA** (en général)
- A + (B + C) = (A + B) + C
- \triangleright A(BC) = (AB)C
- \triangleright A(B+C) = AB + AC
- \triangleright (A+B)C) = AC + BC
- $(A+B)^{\top} = A^{\top} + B^{\top}$
- $(AB)^{\top} = B^{\top} A^{\top}$
- $(\mathbf{A}^{\top})^{\top} = \mathbf{A}$

Matrice (2 × 2) Homothétie

 $\mathbf{A} = \lambda \mathbb{I}$ est une homothétie de centre 0, de rapport λ .

Matrice (2×2) Rotation

$$\mathbf{A} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$
 est une rotation de centre 0, d'angle θ .

Matrice (2×2) Projection (orthogonale)

Soit \vec{v} tel que $||\vec{v}|| = 1$, $\mathbf{A} = \mathbf{v}\mathbf{v}^{\top} = \begin{pmatrix} v_1^2 & v_1v_2 \\ v_1v_2 & v_2^2 \end{pmatrix}$ est une projection sur $\mathcal{D} = (O, \vec{v})$.

Exemple:

$$\mathbf{A} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} = R_0(\theta) \text{ et } \mathbf{B} = \begin{bmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{bmatrix} = R_0(\phi)$$
alors
$$\mathbf{AB} = \begin{bmatrix} \cos \theta \cos \phi - \sin \theta \sin \phi & -\cos \theta \sin \phi - \sin \theta \cos \phi \\ \sin \theta \cos \phi + \cos \theta \sin \phi & -\sin \theta \sin \phi + \cos \theta \cos \phi \end{bmatrix} \text{ i.e.}$$

$$\mathbf{AB} = \begin{bmatrix} \cos(\theta + \phi) & -\sin(\theta + \phi) \end{bmatrix} = R_0(\theta + \phi)$$

$$\mathbf{AB} = \begin{bmatrix} \cos(\theta + \phi) & -\sin(\theta + \phi) \\ \sin(\theta + \phi) & \cos(\theta + \phi) \end{bmatrix} = R_{\mathbf{0}}(\theta + \phi)$$

On notera que si $\mathbf{A} = R_{\mathbf{0}}(\theta)$, $\mathbf{A}^{\top} = R_{-\mathbf{0}}(\theta) = \mathbf{A}^{-1}$. Pour une matrice de rotation. $\mathbf{A}^{-1} = \mathbf{A}^{\mathsf{T}}$

Matrice (2×2) orthogonale

Si $\mathbf{A}^{-1} = \mathbf{A}^{\mathsf{T}}$, \mathbf{A} sera dite orthogonale.

Matrice (2×2) Projection (orthogonale)

Si
$$\mathbf{A} = \mathbf{v}\mathbf{v}^{\mathsf{T}}$$
, avec $||\vec{v}|| = 1$, $\mathbf{A}^2 = \mathbf{A}$ et $\mathbf{A}\vec{u}/||\vec{v}|$, $\forall \vec{u}$.

Preuve: Si $\mathbf{A} = \mathbf{v} \mathbf{v}^{\mathsf{T}}$.

$$\mathbf{A}^2 = \mathbf{A}\mathbf{A} = \mathbf{v}\mathbf{v}^{\mathsf{T}}\mathbf{v}\mathbf{v}^{\mathsf{T}} = \mathbf{v}\|\vec{v}\|^2\mathbf{v}^{\mathsf{T}} = \mathbf{v}\mathbf{1}\mathbf{v}^{\mathsf{T}} = \mathbf{v}\mathbf{v}^{\mathsf{T}} = \mathbf{A}.$$

Si
$$\vec{u} = \begin{pmatrix} u_1 \\ u_2 \end{pmatrix}$$
,

$$\mathbf{A}\vec{u} = \begin{pmatrix} v_1^2 & v_1v_2 \\ v_1v_2 & v_2^2 \end{pmatrix} \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} = \begin{pmatrix} v_1^2u_1 + v_1v_2u_2 \\ v_1v_2u_1 + v_2^2u_2 \end{pmatrix} = \begin{pmatrix} (u_1v_1 + u_2v_2)v_1 \\ (u_1v_1 + u_2v_2)v_2 \end{pmatrix}$$

donc $A\vec{u} = \lambda \vec{v}$.

Si $||\vec{v}|| \neq 1$, on noramlise, en divisant par $||\vec{v}||^2$,

Matrice (2×2) Projection (orthogonale)

Si
$$\mathbf{A} = \frac{\mathbf{v} \mathbf{v}^{\top}}{\mathbf{v}^{\top} \mathbf{v}}, \ \mathbf{A}^{2} = \mathbf{A} \text{ et } \mathbf{A} \vec{u} = \frac{\langle \vec{u}, \vec{v} \rangle}{\|\vec{v}\|^{2}} \vec{v} /\!\!/ \vec{v}, \ \forall \vec{u}.$$

Preuve:

$$\mathbf{A}^{2} = \frac{\mathbf{v}\mathbf{v}^{\top}}{\mathbf{v}^{\top}\mathbf{v}} \frac{\mathbf{v}\mathbf{v}^{\top}}{\mathbf{v}^{\top}\mathbf{v}} = \frac{\mathbf{v}\mathbf{v}^{\top}}{\mathbf{v}^{\top}\mathbf{v}} = \mathbf{A}$$

$$\mathbf{A}\mathbf{u} = \frac{\mathbf{v}\mathbf{v}^{\top}\mathbf{u}}{\mathbf{v}^{\top}\mathbf{v}} = \frac{\mathbf{v}\langle\vec{u},\vec{v}\rangle}{\|\vec{v}\|^2}\vec{v} = \frac{\langle\vec{u},\vec{v}\rangle}{\|\vec{v}\|^2}\vec{v}$$

Projection orthogonale (dimension 2)

```
1 > u = c(3,2)
v = c(-1,4)
3 > Lv = sqrt(as.numeric(t(v)%*%v))
4 > (v = v/Lv)
5 [1] -0.2425356 0.9701425
 > (P = v %*% t(v))
              [,1] \qquad [,2]
 [1,] 0.05882353 -0.2352941
  [2,] -0.23529412 0.9411765
_{10} > (Pu = as.numeric(P %*% u))
11 [1] -0.2941176 1.1764706
```


Projection orthogonale (de \vec{u} sur \vec{v})

Soient $\vec{u}, \vec{v} \in \mathbb{R}^2$, la projection orthogonale de \vec{u} sur \vec{v} est $\vec{u}_{v} = \mathcal{P}_{v}(\vec{u}) = \frac{\langle \vec{u}, \vec{v} \rangle}{\|\vec{v}\|^{2}} \vec{v}.$

Matrices (2×2) orthonormées

$$\mathbf{M}$$
 est orthonormée si $\mathbf{M}^{\mathsf{T}}\mathbf{M} = \mathbb{I}$ (ou $\mathbf{M}^{-1} = \mathbf{M}^{\mathsf{T}}$).

Les matrices de rotations sont orthonormées.

Matrices (2×2) symmétriques

 \boldsymbol{A} est symmétrique si $\boldsymbol{A}^{\top} = \boldsymbol{A}$.

Forme Linéaire (dimension 2)

Pour tout matrice A, $u \mapsto Au$ est une application linéaire.

Pour tout vecteur \mathbf{a} , $\ell : \mathbf{u} \mapsto \mathbf{a}^{\top} \mathbf{u}$ est une forme linéaire.

Forme linéaire

L'ensemble des points $\boldsymbol{u}=(x,y)$ tels que $\ell(\boldsymbol{u})=k$ est une droite

Forme linéaire

L'application $\ell : \boldsymbol{u} \mapsto \boldsymbol{a}^{\mathsf{T}} \boldsymbol{u}$ est différentiable, avec

$$\frac{\partial \ell}{\partial u_1} = a_1 \text{ et } \frac{\partial \ell}{\partial u_2} = a_2$$

autrement dit grad $(\ell)(\mathbf{u}) = \mathbf{a}$.

Preuve:
$$\frac{\partial \ell}{\partial u_1} = \frac{\partial (a_1 u_1 + a_2 u_2)}{\partial u_1} = a_1$$

Forme quadratique

Pour tout matrice **A** symmétrique, $q: u \mapsto u^{\top} A u$ est une application quadratique.

Forme quatratique

L'application $q : u \mapsto u^{\top} A u$ est différentiable, avec $grad(q)(\mathbf{u}) = 2\mathbf{A}\mathbf{u}.$

Preuve:
$$q(\mathbf{u}) = \begin{pmatrix} u_1 & u_2 \end{pmatrix} \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} u_1 \\ u_2 \end{pmatrix}$$
 ou $a_{11}u_1^2 + 2a_{12}u_1u_2 + a_{22}u_2^2$, car $a_{12} = a_{21}$, soit
$$\frac{\partial q(u_1, u_2)}{\partial u_1} = 2a_{11}u_1 + 2a_{12}u_2 \text{ et } \frac{\partial q(u_1, u_2)}{\partial u_2} = 2a_{12}u_1 + 2a_{22}u_2$$

Matrice définie positive

Pour tout matrice \boldsymbol{A} symmétrique, A est définie positive si pour tout $\boldsymbol{u} \neq \boldsymbol{0}$, $q(\boldsymbol{u}) > 0$.

Ellipse

Pour tout matrice **A** symmétrique, A est définie positive, k'ensemble des points $\mathbf{u} = (x, y)$ tels que $q(\mathbf{u}) = k > 0$ est une ellipse.

Si
$$\mathbf{A} = \lambda \mathbb{I}$$
, $\{\mathbf{x} : q(\mathbf{u}) = k > 0\}$ est un cercle,

$$\begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \lambda (x^2 + y^2) = k$$

Si **A** est diagonale, $\{x : q(u) = k > 0\}$ est une ellipse dont les axes sont $\vec{e_1}$ et $\vec{e_2}$

$$\begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = ax^2 + by^2 = k$$

$$\mathbf{A} = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$$

$$\mathbf{A} = \begin{pmatrix} 1 & 0 \\ 0 & 3 \end{pmatrix}$$

$$\mathbf{A} = \begin{pmatrix} 3 & 0 \\ 0 & 1 \end{pmatrix}$$

(les axes de l'ellipse sont en lien avec les vecteurs propres de **A** hors programme)

Vecteur Gaussien (dans \mathbb{R}^2)

Si $X \sim N(0, \Sigma)$, les courbes d'iso-densité sont des ellipses.

Pour rappel,

$$f(\mathbf{x}) = \frac{1}{2\pi\sqrt{\det(\mathbf{\Sigma})}} \exp\left(-\frac{\mathbf{x}^{\mathsf{T}}\mathbf{\Sigma}^{-1}\mathbf{x}}{2}\right)$$

Linéaire ou affine (dimension 2 ou 3)

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} ax + by \\ cx + dy \end{bmatrix}$$

est un système linéaire, mais pas affine. On obtient un système affine en augmentant la dimension,

$$\begin{bmatrix} 1 & 0 & 0 \\ a & b & c \\ d & e & f \end{bmatrix} \begin{bmatrix} 1 \\ x \\ y \end{bmatrix} = \begin{bmatrix} 1 \\ a + bx + cy \\ d + ex + fy \end{bmatrix}$$

(on utilisera cette astuce dans les modèles de régression)

Point et vecteurs (dimension 3)

Repère

On se place ici dans $\mathcal{E} = (\mathbf{0}, \vec{e_1}, \vec{e_2}, \vec{e_3})$

Un point est défini par ses coordonnées

$$P = \begin{pmatrix} p_1 \\ p_2 \\ p_3 \end{pmatrix} \in \mathcal{E}$$

L'origine est

$$O = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \in \mathcal{E}$$

Point et vecteurs (dimension 3)

Un vecteur est défini par ses coordonnées

$$\vec{u} = \mathbf{u} = \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix} \in \mathbb{R}^3$$

avec

$$\vec{e}_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \ \vec{e}_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \text{ et } \vec{e}_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}.$$

On notera que

$$P = \mathbf{O} + \vec{u} = \begin{pmatrix} p_1 \\ p_2 \\ p_3 \end{pmatrix} = \begin{pmatrix} 0 + u_1 \\ 0 + u_2 \\ 0 + u_3 \end{pmatrix}$$

Produit scalaire, norme et orthogonalité (dimension 3)

Produit scalaire

$$\vec{u}, \vec{v} \in \mathbb{R}^3$$
, $\langle \vec{u}, \vec{v} \rangle = \boldsymbol{u}^\top \boldsymbol{v} = \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix}^\top \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} = u_1 v_1 + u_2 v_2 + u_3 v_3$.

Orthogonalité

Soient $\vec{u}, \vec{v} \in \mathbb{R}^3$, $\vec{u} \perp \vec{v}$ si $\langle \vec{u}, \vec{v} \rangle = 0$.

Longueur (norme Euclidienne)

Soit $\vec{u} \in \mathbb{R}^3$, alors $||\vec{u}|| = \sqrt{\langle \vec{u}, \vec{u} \rangle} = \sqrt{u_1^2 + u_2^2 + u_3^2}$.

Produit scalaire, norme et orthogonalité (dimension 3)

Inégalité de Cauchy-Schwarz

Soient $\vec{u}, \vec{v} \in \mathbb{R}^3$, $|\langle \vec{u}, \vec{v} \rangle| \le ||\vec{u}|| \cdot ||\vec{v}||$.

Angle

Soient
$$\vec{u}, \vec{v} \in \mathbb{R}^3$$
, $\cos(\theta) = \frac{\langle \vec{u}, \vec{v} \rangle}{||\vec{u}|| \cdot ||\vec{v}||} \in [-1; +1].$

Orthogonalité et colinéarité

Soient
$$\vec{u}, \vec{v} \in \mathbb{R}^3$$
 $\begin{cases} \vec{u} \perp \vec{v} \text{ si } \cos(\theta) = 0, \text{ ou } \theta = \pm \frac{\pi}{2} \\ \vec{u} /\!\!/ \vec{v} \text{ si } \cos(\theta) = \pm 1, \text{ ou } \theta \in \{0, \pi\} \end{cases}$

Plan (dimension 3)

En dimension 2, on pouvait caractériser la droite de manière équivalente, soit par le vecteur directeur \vec{u} , soit par le vecteur normal \vec{u}_{\perp} . En dimension 3, on utilise seulement le vecteur normal, orthogonal au plan

$$\mathcal{P} = (A, \vec{n})$$
 – équation implicite

Soient $A \in \mathcal{E}$ et $\vec{n} \in \mathbb{R}^3$, le plan $\mathcal{P} = (A, \vec{n})$ est l'ensemble des points P tels que $\langle \vec{n}, P - A \rangle = 0$.

En effet

$$\langle \vec{n}, P - A \rangle = \begin{pmatrix} n_1 \\ n_2 \\ n_3 \end{pmatrix}^{\top} \begin{pmatrix} x - a_1 \\ y - a_2 \\ z - a_3 \end{pmatrix} = n_1 x + n_2 y + n_3 z - \gamma = 0$$

où
$$\gamma = a_1 n_1 + a_2 n_2 + a_3 b_3$$
.

Plan (dimension 3)

Example: le plan
$$\mathcal{P}: x_1 + x_2 + x_3 - 4 = 0$$
 est orthogonal à $\vec{n} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$

$$\mathcal{P} = (A, \vec{u}, \vec{v})$$

Soient $A \in \mathcal{E}$ et $\vec{u}, \vec{v} \in \mathbb{R}^2$ non parallèle, le plan \mathcal{D} passant par P et engendré par \vec{u} et \vec{v} est l'ensemble des points P tels qu'ils existent $s, t \in \mathbb{R}$ tel que $P = A + s\vec{u} + t\vec{v}$,

Matrice (3×3) Transposée

Si
$$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}, \ \mathbf{A}^{\top} = \begin{pmatrix} a_{11} & a_{21} & a_{31} \\ a_{12} & a_{22} & a_{32} \\ a_{13} & a_{32} & a_{23} \end{pmatrix}.$$

Matrice (3×3) Inverse

S'il existe **B** telle que $AB = \mathbb{I}$ ou $BA = \mathbb{I}$, on note $B = A^{-1}$.

Matrice (3×3) Rang 1

S'il existe $\vec{v} = \mathbf{v}$ tel que $\mathbf{A} = \mathbf{v}\mathbf{v}^{\mathsf{T}}$, \mathbf{A} sera dite de rang 1. **A** n'est pas inversible.

Matrice (3×3) Rang 2

S'il existe $\vec{v} = \mathbf{v}$ et $\vec{v} = \mathbf{v}$, non colinéaires, tels que

$$\mathbf{A} = \begin{pmatrix} \vec{u} & \vec{v} \end{pmatrix} \begin{pmatrix} \vec{u}^{\top} \\ \vec{v}^{\top} \end{pmatrix} = \begin{pmatrix} u_1 & v_1 \\ u_2 & v_2 \\ u_3 & v_3 \end{pmatrix} \begin{pmatrix} u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{pmatrix}$$

alors **A** sera dite de rang 2.

A n'est pas inversible.

Remarque si on note $\|\cdot\|_F$

$$\|\boldsymbol{M}\|_F^2 = \sum_{i,j} M_{i,j}^2$$
 où $\boldsymbol{M} = [M_{i,j}]$

un problème classique (analyse des correspondances, ACP) est

$$\min_{\mathbf{A}} \{ ||\mathbf{X} - \mathbf{A}||_F^2 \}$$
 sous contrainte rang $(\mathbf{A}) = k \in \{1, 2\}$

Matrice (3×3) Inverse

Si $\mathbf{A} = (\vec{a}_1, \vec{a}_2, \vec{a}_3)$, \mathbf{A}^{-1} existe si \vec{a}_1, \vec{a}_2 et \vec{a}_3 sont linéairement indépendants, autrement dit

$$x_1\vec{a}_1 + x_2\vec{a}_2 + x_3\vec{a}_3 = \vec{0} \implies x_1 = x_2 = x_3 = 0.$$

```
1 > M = matrix(c(1,5,2,4,3,4,3,5,6),3,3)
2 > M
3 [,1] [,2] [,3]

      4
      [1,]
      1
      4
      3

      5
      [2,]
      5
      3
      5

      6
      [3,]
      2
      4
      6

7 > solve(M)
8 [,1] [,2] [,3]
9 [1,] 0.05 0.3 -0.275
10 [2,] 0.50 0.0 -0.250
11 [3,] -0.35 -0.1 0.425
```

Matrice $(3 \times \overline{3})$ Projection (orthogonale) sur un plan

Soient \vec{u} et \vec{v} , orthogonaux, tels que $||\vec{u}|| = ||\vec{v}|| = 1$,

$$\mathbf{A} = \begin{pmatrix} \vec{u} & \vec{v} \end{pmatrix} \begin{pmatrix} \vec{u}^{\top} \\ \vec{v}^{\top} \end{pmatrix} = \begin{pmatrix} u_1 & v_1 \\ u_2 & v_2 \\ u_3 & v_3 \end{pmatrix} \begin{pmatrix} u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{pmatrix}$$

est une projection sur $\mathcal{P} = (O, \vec{u}, \vec{v})$,

$$\mathbf{A}\vec{x} = \langle \vec{u}, \vec{x} \rangle \vec{u} + \langle \vec{v}, \vec{x} \rangle \vec{v}$$

Matrice (3×3) Projection (orthogonale) sur un plan

Comme
$$||\vec{u}|| = \vec{u}^{\top}\vec{u} = ||\vec{v}|| = \vec{v}^{\top}\vec{v} = 1$$
 et $\vec{u}^{\top}\vec{v} = 0$, $\mathbf{A}^2 = \mathbf{A}$

Example si $\vec{u} = \vec{e_1}$ et $\vec{v} = \vec{e_2}$

$$\mathbf{A} = \begin{pmatrix} \vec{e}_1 & \vec{e}_2 \end{pmatrix} \begin{pmatrix} \vec{e}_1^{\top} \\ \vec{e}_2^{\top} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

qui est effectivement la projection sur le plan orthogonal à \vec{e}_3 $(\mathbf{A}\vec{e}_3 = O)$. On peut noter que $\mathbf{A}^2 = \mathbf{A}$.

```
1 > X = cbind(c(1,0,0),c(0,1,0))
_{2} > (A = X %*% t(X))
3 [,1] [,2] [,3]
4 [1,] 1 0 0
5 [2,] 0 1 0
6 [3,] 0 0 0
7 > A %*% c(0,0,1)
8 [,1]
9 [1,] 0
10 [2,] 0
11 [3,] 0
```

On peut aussi généraliser si les vecteurs ne sont ni orthogonaux, ni de norme 1.

Matrice (3×3) Projection (orthogonale) sur un plan

Soient $\vec{x_1}$ et $\vec{x_2}$, notons $\boldsymbol{X} = (\vec{x_1} \ \vec{x_2})$

$$\mathbf{A} = \mathbf{X}(\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}$$

est une projection sur $\mathcal{P} = (O, \vec{x_1}, \vec{x_2})$, et si $\vec{x_1} \perp \vec{x_2}$

$$\mathbf{A}\vec{u} = \frac{\langle \vec{x}_1, \vec{u} \rangle}{\|\vec{x}_1\|^2} \vec{x}_1 + \frac{\langle \vec{x}_1, \vec{u} \rangle}{\|\vec{x}_2\|^2} \vec{x}_2$$

On peut considérer la projection sur \vec{x}_1 et \vec{x}_2 . Notons $X = (x_1 \ x_2)$. $A = X(X^\top X)^{-1}X^\top$ est la projection orthogonale sur $\{\vec{x}_1, \vec{x}_2\}$ (c'est à dire le plan $\mathcal{P} = (0, \vec{x}_1, \vec{x}_2)$)

```
1 > X = cbind(c(.8, .2, 0), c(.4, .6, 0))
_{2} > P=X %*% solve(t(X)%*%X) %*% t(X)
3 > P
  [,1] [,2] [,3]
5 [1,] 1 0 0
6 [2,] 0 1 0
7 [3,] 0 0 0
8 > P %*% c(.6,.6,0.6)
  [,1]
10 [1,] 0.6
11 [2,] 0.6
12 [3,] 0.0
```

