CSE 476 Lab Assignment - 14-03-2022/15-03-2022

Rooms	Area	Price (K BDT)
2	800	2000
2	1000	3000
3	1200	4000
3	1400	4200
3	1500	4500
4	1800	5000
4	2000	5500
5	2500	6500

- 1. Plot the Price vs. #Rooms and Price vs. Area using suitable diagrams.
- 2. Write the Linear regression formula for predicting the Price of an apartment given its number of rooms and floor area.
- 3. Implement Gradient Descent Optimization for estimating the parameters of a multi linear regression model in Python. [Use numpy for matrix handling].

Here, Number of Data: N //number of rows

Number of Features = M // number of columns

- i. Make the input matrix X of size (N X M)
- ii. Scale each feature, i. e. divide each x_i by $Max(x_i)$
- iii. Append a column of ones at the beginning of X to make the matrix (N X (M+1))
- iv. Make the output vector Y of size (N X 1)
- v. Initialize the weight vector B of size ((M+1) X 1) with small random numbers.
- vi. Set an error threshold L, maximum number of iterations MaxIt and learning rate η.
- vii. For Loss > Threshold L or until Max Iteration exceeds:
 - a. Calculate predictions, P = X dot B
 - b. Calculate error, E = Y P
 - c. Calculate MSE = $(1/2M) E^{T}E$
 - d. Calculate gradient of error, $\partial E/\partial B = (1/M)(P Y)X$ [Recheck formula]
 - e. Update B = B η . $\partial E/\partial B$
- viii. Print the model weights B
- 4. Show the changes in error in a plot.
- 5. Print the estimated model.
- 6. Calculate total loss for your estimated model.
- 7. Generate some test data and predict the Price for that using your model.
- 8. Implement Multi-Linear Regression using Python's Library.
- 9. Repeat Tasks 5-7 and compare.
- 10. Submit your notebook in classroom in the format Lab2_FullRegistrationNumber.ipynb. or Lab1_FullRegistrationNumber1_ FullRegistrationNumber2.ipynb.