Weekly Presentation Week 40

Luleå University of Technology

September 29, 2020

Group members

- Y-students
 - Martin Blaszczyk Project leader and object detection
 - Edward Cedergård -Arm and gripping tool
 - Niklad Dahlqvist Arm and gripping tool
 - Måns Norell Movable base
- D-students
 - Edward Källstedt Object detection
 - Albin Martinsson Arrowhead and Git

Overview

What we have done and what we are working on:

- Full duplex to half duplex serial communication
- Dynamixel data packages

Full-duplex to half-duplex

Dynamixel communication

Curcuit

Dynamixel data packages overview

- Data packets structure
- Timing of response
- Example package

Dynamixel data packages

Instruction package - send to the motor

Header	ID	Length	Instruction	Param 1	 n	Checksum
0xFFFF	ID	Length	Instruction	param 1	 n	Checksum

Status return package - recieve from the motor

Header	ID	Length	Error	Param 1	 n	Checksum
0×FFFF	ID	Length	Error	Param 1	 n	Checksum

Header 0xFFFF

Header allways fixed.

Header	ID
0xFFFF	ID

ID is a unique number for each motor connected.

Header	ID	Length
0xFFFF	ID	Length

Length of the message, excluding the header bytes.

Header	ID	Length	Instruction	Param 1	 Param n
0×FFFF	ID	Length	Instruction	param 1	 Param n

Parameters, depends on the instruction.

Header	ID	Length	Instruction	Param 1	 n	Checksum
0xFFFF	ID	Length	Instruction	param 1	 n	Checksum

The checksum is calculated as

 $\mathsf{Checksum} = (\mathsf{ID} + \mathsf{Length} + \mathsf{Instruction} + \mathsf{Parameter1} + \dots$

Parameter N)

where "" is the "not" operation and only the lower byte is used.

Status return package

						Checksum
0xFFFF	ID	Length	Error	Param 1	 Param n	Checksum

Similar to instruction package but each bit in the error byte represents one possible error.

Timing of return package

- Return delay can be set for each motor
- Values between 0 508 microseconds

Example package

Header	ID	Length	Instr.	P.1	P.2	P.3	Checksum
0xFFFF	0×01	0×04	0×03	0×1E	0×00	0×00	0×D9

Writes the data 0x0000 at memory position 0x1E. (Goal position = 0)

Logic analyzer example

Logic analyzer example

18 / 29

Demonstration

• https://youtu.be/f_JAT8srcIc

Additional information

- https://emanual.robotis.com/docs/en/dxl/ax/ax-12a/
- https://emanual.robotis.com/docs/en/dxl/protocol1/
- http: //www.crustcrawler.com/products/bioloid/docs/AX-12.pdf

Movable Base

What has been done

- CAD model for base have been made
- Controllers have been made to move the base to a specific point in space
- Real world limitations have been applied to the controllers

CAD Model

THIS IS NOT THE FINAL BASE MODEL

It's for prototyping and is modelled to be modular and easy to attach parts to

Figure: Model of base

New Controllers

Two **PID** controller are made in order to move to a user specific coordinate by

- Setting the robot to a specific angle
- Move the robot a user defined distanced

Simulations With Limitations

Figure: Motor speeds

Figure: The angle towards the center and the angle towards the line comparison

Simulations With Limitations

Figure: Block diagram

Figure: The angle towards the line

What Is To Be Done

- Stability analysis on PIDs
- 3D print and build robot
- Implement controllers on robot

Overall timetable

Sep	Oct	Nov	Dec
Concept generation	Evaluation	Evaluation	
Theory	Prototyping	Evaluation	Finishing up
Simulation	Evaluation	Evaluation	
Prototyping	Final Design	Evaluation	

Time plan for September

Subproject	Week 1	Week 2	Week 3	Week 4
Arrowhead	Reading	Setup	API	Prototyping
Movable base	Reading	Modeling	Simulation	Implementation
Arm and grip	Reading	Kinematics	Simulation	Prototyping
Object detection	Reading	Testing	Prototyping	Evaluation

Questions?