Résumé Analyse Factorielle Générale

Cas Simple: Métrique Euclédienne M=I et matrice des poidsN=I

La matrice des données: $X_{n,p}$ centrée(centre de gravité coinside avec l'origine des axes $g = 0_{\mathbb{R}^p}$)

Ajustement dans \mathbb{R}^p : Ajustement du nuage des individus $\mathcal{N}(\mathcal{I})$ dans l'espace des variables.

La matrice à diagonaliser: $(X'X)_{p\times p}$ dite aussi matrice d'inertie

 u_{α} : Le $\alpha - i \grave{e} m e$ axe factoriel dans \mathbb{R}^p :

Il est M unitaire (le cas euclédien $M=I_{p\times p}$) et c'est le vecteur propre de la matrice $(X\prime X)_{p\times p}$ relatif à la valeur propre rangée par ordre croissant au rang α

 F_{α} : La $\alpha - i e^{ime}$ composante

$$F_{\alpha} = X u_{\alpha} = \left[\begin{array}{c} F_{\alpha}(i) \end{array} \right] = \left[\begin{array}{c} X_i' \\ \end{array} \right]_{n \times 1} u_{\alpha} \text{ où } F_{\alpha}(i) \text{ est la composante du i-èm individus (il not set la compo$$

y'en a n) sur l'axe u_{α}

$$F_{\alpha} \prime F_{\alpha} = ||F_{\alpha}||^2 = \lambda_{\alpha}$$

Ajustement dans \mathbb{R}^n : Ajustement du nuage des variables $\mathcal{N}(\mathcal{J})$ dans l'espace des individus.

La matrice à diagonaliser: XX' c'est une matrice $(n \times n)$

 v_{α} : Le $\alpha - i\grave{e}me$ axe factoriel dans \mathbb{R}^n :

 v_{α} Il est unitaire et c'est le vecteur propre de la matrice $(XX')_{n\times n}$ relatif à la valeur propre rangée par ordre croissant au rang α

$$G_{\alpha} = X v_{\alpha} = \begin{bmatrix} G_{\alpha}(j) \end{bmatrix}$$
 où $G_{\alpha}(j)$ est la composante de la j-ème variable (il y'en a p) sur $v_{\alpha} = v_{\alpha}$

l'axe engendré par le vecteur unitaire v_c

$$G_{\alpha} G_{\alpha} = \|G_{\alpha}\|^2 = \lambda_{\alpha}$$

Régle 1:

Sur le sous éspace de \mathbb{R}^p engendré par les vecteurs u_{α} (orthonormés: vecteurs unitaires et orthogonaux deux à deux)

les coordonnées des individus sont les composantes de F_{α} (projection de X sur l'axe u_{α}) et aussi les composantes de $\sqrt{\lambda_{\alpha}}v_{\alpha}$

$$F_{\alpha} = \left[F_{\alpha}(i) \right]_{n \times 1} = \left[X_{i}' \right]_{p \times 1} u_{\alpha} = X u_{\alpha} = \sqrt{\lambda_{\alpha}} v_{\alpha}$$

Régle 2:

Sur le sous éspace de \mathbb{R}^n engendré par les vecteurs v_{α} (vecteurs orthonormés)

les coordonnées des variables sont les composantes de G_{α} et aussi les composantes de $\sqrt{\lambda_{\alpha}}u_{\alpha}$

$$G_{\alpha} = \left[G_{\alpha}(j) \right]_{p \times 1} = X' v_{\alpha} = \sqrt{\lambda_{\alpha}} u_{\alpha}$$

Régle 3:

Relation entre les deux ajustements: On a les F_{α} proportionnelle à v_{α} avec coefficient de proportionalité $\sqrt{\lambda_{\alpha}}$ et de même les G_{α} proportionnelle à u_{α} avec coefficient $\sqrt{\lambda_{\alpha}}$

$$v_{\alpha} = \frac{1}{\sqrt{\lambda_{\alpha}}} X u_{\alpha} \text{ est un vecteur}(n \times 1)$$

 $v_{\alpha} = \frac{1}{\sqrt{\lambda_{\alpha}}} F_{\alpha} \Longleftrightarrow F_{\alpha} = \sqrt{\lambda_{\alpha}} v_{\alpha}$

$$u_{\alpha} = \frac{1}{\sqrt{\lambda_{\alpha}}} X' v_{\alpha} \text{ est un vecteur}(p \times 1)$$

$$u_{\alpha} = \frac{1}{\sqrt{\lambda_{\alpha}}} G_{\alpha} \Longleftrightarrow G_{\alpha} = \sqrt{\lambda_{\alpha}} u_{\alpha}$$

Cas Général: Métrique quelconque

Critére d'ajustement: Résumé par la matrice de poids dite aussi matrice de pondérations des individus notée: $\mathbf{N}_{n,n}$

Métrique de \mathbb{R}^p (formule de distance) entre individus notée: $\mathbf{M}_{p,p}$

La matrice des données: $X_{n,p}$

Ajustement dans \mathbb{R}^p :

La matrice à diagonaliser: $(X/NXM)_{p\times p}$ dite aussi matrice d'inertie

 u_{α} : Le $\alpha - i \grave{e} m e$ axe factoriel dans \mathbb{R}^p :

Il est M-unitaire: uMu = 1

et c'est le vecteur propre de la matrice $(X/NXM)_{p\times p}$ relatif à la valeur propre rangée par ordre croissant au rang α

 F_{α} : La $\alpha - i e^{ine}$ composante

$$F_{\alpha} = XMu_{\alpha} = \begin{bmatrix} F_{\alpha}(i) \\ F_{\alpha}(i) \end{bmatrix}_{n \times 1}$$
 $F_{\alpha}(i)$ est la composante du i-èm individus sur l'axe u_{α}
$$F_{\alpha} = \|F_{\alpha}\|_{N}^{2} = \lambda_{\alpha}$$

Le système à résoudre:

$$S: \begin{cases} \max(F_{\alpha}'NF_{\alpha}) = \max_{u}(u'_{\alpha}MX'NXMu_{\alpha}) \\ 'uMu - 1 = 0 \end{cases}$$

Ajustement dans \mathbb{R}^n :

Critére d'ajustement résumé par la matrice des masses des p points dite aussi matrice de pondérations des variables, notée: $\mathbf{P}_{p \times p}$

Métrique de \mathbb{R}^n (formule de distance) entre variables notée: $\mathbf{Q}_{n\times n}$

La matrice des données: $X_{n,p}$

Ajustement du nuage des variables dans l'espace des individus.

La matrice à diagonaliser: XPXQ

 \mathbf{v}_{α} : Le $\alpha - i\grave{e}me$ axe factoriel dans \mathbb{R}^{n} :

 \mathbf{v}_{α} Il est Q-unitaire et c'est le vecteur propre de la matrice $(XPX'Q)_{n\times n}$ relatif à la valeur propre rangée par ordre croissant au rang α

$$G_{\alpha}=X'Qv_{\alpha}=\left[\begin{array}{c}G_{\alpha}(j)\end{array}\right]_{p imes 1}$$
 $G_{\alpha}(j)$ est la composante de la j-ème variable (il y'en a p)sur

l'axe engendré par le vecteur unitaire \mathbf{v}_{α}

$$G_{\alpha} PG_{\alpha} = \|G_{\alpha}\|_{P}^{2} = \lambda_{\alpha}$$

Relation entre les deux ajustements:

Si les masses et les métriques dans $\mathbb{R}^p(N$ et M) et dans $\mathbb{R}^n(P)$ matrice des masses des p points colonnes et Q métrique dans \mathbb{R}^n) n'ont pas de relation privilégiées entre elles , on perd les relations de transitions.

En ACP on utilise les mêmes métriques dans les deux espaces $M_{p\times p}=P=I_{p\times p}$

$$N_{n \times n} = Q = \frac{1}{n} I_{n \times n}$$

(lorsque les individus ont le même poids, sinon $D=[p_i]$ matrice des poids.