Chapter 3. Determinant

Jaesoek Jang

In This Chapter...

- Determinant
 - A Scalar value
 - Numbers or functions
 - Only square matrix
 - Rule for determinant
 - Similar to the 2×2 matrix in Chapter 2
 - Develop some properties of determinants
 - Evaluate and make usage of determinants

Introduction

- In Chapter 2
 - \circ A 2×2 invertible matrix $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$
 - $ad bc \neq 0$
 - o For a 3×3 matrix

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{11}a_{21} & a_{11}a_{22} & a_{11}a_{23} \\ a_{11}a_{31} & a_{11}a_{32} & a_{11}a_{33} \end{bmatrix} \sim \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ 0 & a_{11}a_{22} - a_{12}a_{21} & a_{11}a_{23} - a_{13}a_{21} \\ 0 & a_{11}a_{32} - a_{12}a_{31} & a_{11}a_{33} - a_{13}a_{31} \end{bmatrix}$$
(1)

$$A \sim \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ 0 & a_{11}a_{22} - a_{12}a_{21} & a_{11}a_{23} - a_{13}a_{21} \\ 0 & 0 & a_{11}\Delta \end{bmatrix}$$

$$\Delta = a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - a_{11}a_{23}a_{32} - a_{12}a_{21}a_{33} - a_{13}a_{22}a_{31}$$
 (2)

$$\Delta = a_{11} \cdot \det \begin{bmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{bmatrix} - a_{12} \cdot \det \begin{bmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{bmatrix} + a_{13} \cdot \det \begin{bmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{bmatrix}$$

Permutation

Rearrangement of some integers

$$1, 2, 3, 4, 5, 6 \rightarrow 3, 1, 4, 5, 2, 6,$$

then
$$p(1) = 3$$
, $p(2) = 1$, $p(3) = 4$, $p(4) = 5$, $p(5) = 2$ and $p(6) = 6$.

A permutation is characterized as even or odd according to a rule we will illustrate. Consider the permutation

$$p:1,2,3,4,5 \rightarrow 2,5,1,4,3$$

of the integers 1, 2, 3, 4, 5. For each k in the permuted list on the right, count the number of integers to the right of k that are smaller than k. There is one number to the right of 2 smaller than 2, three numbers to the right of 5 smaller than 5, no numbers to the right of 1 smaller than 1, one number to the right of 4 smaller than 4, and no numbers to the right of 3 smaller than 3. Since 1 + 3 + 0 + 1 + 0 = 5 is odd, p is an *odd permutation*. When this sum is even, p is an *even permutation*.

If p is a permutation on $1, 2, \dots, n$, define

$$\sigma(p) = \begin{cases} 1 & \text{if } p \text{ is an even permutation} \\ -1 & \text{if } p \text{ is an odd permutation.} \end{cases}$$

det A = I

Definition

The *determinant* of an $n \times n$ matrix **A** is defined to be

$$\det \mathbf{A} = \sum_{p} \sigma(p) a_{1p(1)} a_{2p(2)} \cdots a_{np(n)}$$
(8.1)

with this sum extending over all permutations p of $1, 2, \dots, n$. Note that det A is a sum of terms, each of which is plus or minus a product containing one element from each row and each column of A.

- Notation
 - \circ det A as |A|

• Example)
$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$$

• Only two permutations
• $p_1: 12 \rightarrow 12$ and $p_2: 1,2 \rightarrow 2,1$

• $p_1: 12 \rightarrow 12$ and $p_2: 1,2 \rightarrow 2,1$

• $p_1: 12 \rightarrow 12$ and $p_2: 1,2 \rightarrow 2,1$

• $p_1: 12 \rightarrow 12$ and $p_2: 1,2 \rightarrow 2,1$

• $p_1: 12 \rightarrow 12$ and $p_2: 1,2 \rightarrow 2,1$

• $p_1: 12 \rightarrow 12$ and $p_2: 1,2 \rightarrow 2,1$

• $p_1: 12 \rightarrow 12$ and $p_2: 1,2 \rightarrow 2,1$

• $p_1: 12 \rightarrow 12$ and $p_2: 1,2 \rightarrow 2,1$

• $p_1: 12 \rightarrow 12$ and $p_2: 1,2 \rightarrow 2,1$

• $p_1: 12 \rightarrow 12$ and $p_2: 1,2 \rightarrow 2,1$

• $p_1: 12 \rightarrow 12$ and $p_2: 1,2 \rightarrow 2,1$

• $p_1: 12 \rightarrow 12$ and $p_2: 1,2 \rightarrow 2,1$

• $p_1: 12 \rightarrow 12$ and $p_2: 1,2 \rightarrow 2,1$

• $p_1: 12 \rightarrow 12$ and $p_2: 1,2 \rightarrow 2,1$

• $p_1: 12 \rightarrow 12$ and $p_2: 1,2 \rightarrow 2,1$

• $p_1: 12 \rightarrow 12$ and $p_2: 1,2 \rightarrow 2,1$

• $p_1: 12 \rightarrow 12$ and $p_2: 12$

• Example)
$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

• Example)
$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$
• Example) $A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$
• Six permutations

Six permutations

$$p_1:1,2,3\to 1,2,3,$$
 (even); $p_2:1,2,3,\to 1,3,2,$ (odd);

$$p_3:1,2,3\rightarrow 2,3,1,$$
 (even); $p_4:1,2,3,\rightarrow 2,1,3,$ (odd);

$$p_5: 1, 2, 3, \rightarrow 3, 1, 2, \text{ (even)}; p_6: 1, 2, 3, \rightarrow 3, 2, 1, \text{ (odd)}.$$

- Some fundamental properties of determinants
 - $\circ |A^t| = |A|$
 - $\circ |A| = 0$, if A has a zero row or column
 - o If B is formed from A by type I operation, |B| = -|A| |B| = -|A|

$$b_{11} = a_{31}, b_{12} = a_{32}, b_{13} = a_{33},$$

$$b_{21} = a_{21}, b_{22} = a_{22}, b_{23} = a_{23},$$

$$b_{31} = a_{11}, b_{32} = a_{12}, b_{33} = a_{13}.$$

$$|\mathbf{B}| = b_{11}b_{22}b_{33} - b_{11}b_{23}b_{32} + b_{12}b_{23}b_{31}$$

$$= -b_{12}b_{21}b_{33} + b_{13}b_{21}b_{32} - b_{13}b_{22}b_{31}$$

$$= a_{31}a_{22}a_{13} - a_{31}a_{23}a_{12} + a_{32}a_{23}a_{11}$$

$$= -a_{32}a_{21}a_{13} + a_{33}a_{21}a_{12} - a_{33}a_{22}a_{11}$$

$$= -a_{32}a_{21}a_{13} + a_{33}a_{21}a_{12} - a_{33}a_{22}a_{11}$$

$$= -|\mathbf{A}|.$$

- o If two rows or two columns are same, |A| = 0
- o If B is formed from A by type II operation(α), $|B| = \alpha |A|$
- o If one row or column of A is a constant multiple of another row or column, |A| = 0

- -3Xz. = -3Xz. Hindal
- Some fundamental properties of determinants
 - Each element of row k of $A_i'' a_{ki} = k_{ki} + c_{ki}$

$$\circ |A| = |B| + |C|$$

o If D is formed from A by type III operation, |D| = |A|

$$\mathbf{D} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \cdots & \cdots & \cdots & \cdots \\ a_{i1} & a_{i2} & \cdots & a_{in} \\ \cdots & \cdots & \cdots & \cdots \\ \alpha a_{i1} + a_{k1} & \alpha a_{i2} + a_{k2} & \cdots & \alpha a_{in} + a_{kn} \\ \cdots & \cdots & \cdots & \cdots \\ a_{n1} & a_{n2} & \cdots & a_{in} \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \cdots & \cdots & \cdots & \cdots \\ a_{i1} & a_{i2} & \cdots & a_{in} \\ \cdots & \cdots & \cdots & \cdots \\ a_{n1} & \alpha a_{n2} & \cdots & \alpha a_{in} \end{pmatrix} + \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \cdots & \cdots & \cdots & \cdots \\ a_{i1} & a_{i2} & \cdots & a_{in} \\ \cdots & \cdots & \cdots & \cdots \\ a_{n1} & a_{n2} & \cdots & a_{in} \end{pmatrix} + \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \cdots & \cdots & \cdots & \cdots \\ a_{i1} & a_{i2} & \cdots & a_{in} \\ \cdots & \cdots & \cdots & \cdots \\ a_{k1} & a_{k2} & \cdots & a_{kn} \\ \cdots & \cdots & \cdots & \cdots \\ a_{k1} & a_{k2} & \cdots & a_{kn} \\ \cdots & \cdots & \cdots & \cdots \\ a_{n1} & a_{n2} & \cdots & a_{in} \end{pmatrix}$$

- Some fundamental properties of determinants
 - If A is honsingular $|A| \neq 0$
 - \circ If A, B are $n \times n$ matrices, |AB| = |A||B|

[AB] - [A] [B]

• Example)
$$A = \begin{pmatrix} a_{11} & 0 & 0 \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

• Example)
$$A = \begin{pmatrix} a_{11} & 0 & 0 \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$
• $A_{11} \begin{pmatrix} a_{11} & 0 & 0 \\ a_{21} & a_{22} & a_{23} \\ a_{32} & a_{33} \end{pmatrix}$
• $A_{11} \begin{pmatrix} a_{11} & 0 & 0 \\ a_{21} & a_{22} & a_{23} \\ a_{32} & a_{33} \end{pmatrix}$
• $A_{11} \begin{pmatrix} a_{11} & 0 & 0 \\ a_{21} & a_{22} & a_{23} \\ a_{32} & a_{33} \end{pmatrix}$
• $A_{11} \begin{pmatrix} a_{11} & 0 & 0 \\ a_{21} & a_{22} & a_{23} \\ a_{32} & a_{33} \end{pmatrix}$
• $A_{11} \begin{pmatrix} a_{11} & 0 & 0 \\ a_{21} & a_{22} & a_{23} \\ a_{32} & a_{33} \end{pmatrix}$
• $A_{11} \begin{pmatrix} a_{11} & 0 & 0 \\ a_{22} & a_{23} \\ a_{32} & a_{33} \end{pmatrix}$

• Definition n = 0—locate exponsion For $n \ge 2$, the determinant of an $n \times n$ matrix $A = [a_{ij}]$ is the sum of n terms of the form $\pm a_{1j}$ det A_{1j} , with plus and minus signs alternating, where the entries $a_{11}, a_{12}, \ldots, a_{1n}$ are from the first row of A. In symbols,

$$\det A = a_{11} \det A_{11} - a_{12} \det A_{12} + \dots + (-1)^{1+n} a_{1n} \det A_{1n}$$

$$= \sum_{j=1}^{n} (-1)^{1+j} a_{1j} \det A_{1j}$$

Theorem 1

The determinant of an $n \times n$ matrix A can be computed by a cofactor expansion across any row or down any column. The expansion across the ith row using the cofactors in (4) is

$$\det A = a_{i1}C_{i1} + a_{i2}C_{i2} + \dots + a_{in}C_{in}$$

The cofactor expansion down the jth column is

$$\det A = a_{1j} C_{1j} + a_{2j} C_{2j} + \dots + a_{nj} C_{nj}$$

Theorem 2

If A is a triangular matrix, then det A is the product of the entries on the main diagonal of A.

Properties of Determinants

Theorem 3

Row Operations

Let A be a square matrix.

- a. If a multiple of one row of A is added to another row to produce a matrix B, then $\det B = \det A$.
- b. If two rows of A are interchanged to produce B, then $\det B = -\det A$.
- c. If one row of A is multiplied by k to produce B, then det $B = k \cdot \det A$.

Lemma 8.1

Let **A** be $n \times n$, and suppose for k or column r has all zero elements, except perhaps for a_{kr} . Then

$$|\mathbf{A}| = (-1)^{k+r} a_{kr} |\mathbf{A}_{kr}|,$$
 (8.3)

where \mathbf{A}_{kr} is the $n-1 \times n-1$ matrix formed by deleting row k and column r of \mathbf{A} .

$$\mathbf{A} = \begin{pmatrix} a_{11} & 0 & 0 & \cdots & 0 \\ a_{12} & a_{22} & a_{23} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{n1} & a_{n2} & a_{n3} & \cdots & a_{nn} \end{pmatrix}.$$

• Example)
$$A = \begin{pmatrix} 4 & 2 & -3 \\ 3 & 4 & 6 \\ 2 & -6 & 8 \end{pmatrix} \rightarrow B = \begin{pmatrix} 4 & 2 & -3 \\ -5 & 12 \\ 14 & -1 \end{pmatrix}$$

- o row2 of B: -2*(row1)+row2o row3 of B: 3*(row1)+row3o If B is formed from A by type III operation, |B| = |A|

$$\circ$$
 $|A| = |B|$

•
$$|B| = (-1)^{1+2}(2)|B_{12}| = -2\begin{vmatrix} -5 & 12 \\ 14 & -1 \end{vmatrix} = -2(5-168) = 326$$

$$\mathbf{A} = \begin{pmatrix} -6 & 0 & 1 & 3 & 2 \\ -1 & 5 & 0 & 1 & 7 \\ 8 & 3 & 2 & 1 & 7 \\ 0 & 1 & 5 & -3 & 2 \\ 1 & 15 & -3 & 9 & 4 \end{pmatrix}. \quad \mathbf{B} = \begin{pmatrix} -6 & 0 & 1 & 3 & 2 \\ -1 & 5 & 0 & 1 & 7 \\ 20 & 3 & 0 & -5 & 3 \\ 30 & 1 & 0 & -18 & -8 \\ -17 & 15 & 0 & 18 & 10 \end{pmatrix}.$$

$$\mathbf{C} = \begin{pmatrix} -1 & 5 & 1 & 7 \\ 20 & 3 & -5 & 3 \\ 30 & 1 & -18 & -8 \\ -17 & 15 & 18 & 10 \end{pmatrix}. \quad \blacksquare \quad \mathbf{D} = \begin{pmatrix} -1 & 0 & 0 & 0 \\ 20 & 103 & 15 & 143 \\ 30 & 151 & 12 & 202 \\ -17 & 70 & 1 & -109 \end{pmatrix}.$$

$$\mathbf{E} = \begin{pmatrix} 103 & 15 & 143 \\ 151 & 12 & 202 \\ -70 & 1 & -109 \end{pmatrix}. \implies \mathbf{F} = \begin{pmatrix} 1153 & 0 & 1778 \\ 991 & 0 & 1510 \\ -70 & 1 & -109 \end{pmatrix}.$$

Cofactor expansion.

THEOREM 8.2 Cofactor Expansion by a Row

For any k with $1 \le i \le n$.

$$|\mathbf{A}| = \sum_{j=1}^{n} (-1)^{k+j} a_{kj} M_{kj}.$$
 (8.4)

THEOREM 8.3 Cofactor Expansion by a Column

For any *j* with $1 \le j \le n$,

$$|\mathbf{A}| = \sum_{i=1}^{n} (-1)^{i+j} a_{ij} M_{ij}.$$
 (8.5)

Cofactor expansion

Collactor expansion
$$\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \vdots & \vdots \\ |\mathbf{A}| = |[a_{ij}]| = \begin{vmatrix} a_{k1} & a_{k2} & \cdots & a_{kn} \\ \vdots & \vdots & \vdots & \vdots \\ a_{kn} & a_{kn} & \vdots & \vdots \\ \vdots & \vdots & \vdots & \vdots \\ a_{kn} & \vdots & \vdots & \vdots \\ \vdots & \vdots & \vdots & \vdots \\ a_{kn} & 0 & \cdots & 0 \end{vmatrix}$$

• Example)
$$A = \begin{pmatrix} -6 & 3 & 7 \\ 12 & -5 & -9 \\ 2 & 4 & -6 \end{pmatrix}$$

• $|A| = -6 \begin{vmatrix} -5 & -9 \\ 4 & -6 \end{vmatrix} - 3 \begin{vmatrix} 12 & -9 \\ 2 & -6 \end{vmatrix} + 7 \begin{vmatrix} 12 & -5 \\ 2 & 4 \end{vmatrix} = 172$

= $-6 \begin{pmatrix} 30+36 \end{pmatrix} - 3 \begin{pmatrix} -12+16 \end{pmatrix} + 1 \begin{pmatrix} 48+16 \end{pmatrix}$

= $-396 + 162 + 106$

A Determinant Formula for A^{-1} $b_{ij} = \frac{1}{[A_i]} (-1)^{\frac{1}{2}} M_{ij}$

Elements of a matrix inverse

THEOREM 8.4 Elements of a Matrix Inverse

Let **A** be a nonsingular $n \times n$ matrix and define an $n \times n$ matrix $\mathbf{B} = [b_{ij}]$ by

Then
$$\mathbf{B} = \mathbf{A}^{-1}$$
.

$$b_{ij} = \frac{1}{|\mathbf{A}|} (-1)^{i+j} M_{ji}.$$

o M_{ji} : determinant of $(n-1)\times(n-1)$ matrix from A removing row j and column i

$$b_{ij} = \frac{1}{1 \text{Al}} \left(-1\right)^{i} t_{ij}$$

A Determinant Formula for A^{-1}

• Example)
$$A = \begin{pmatrix} 2 & 4 & 1 \\ 6 & 3 & -3 \\ 2 & 9 & -5 \end{pmatrix}$$

$$\begin{vmatrix} 3 & -3 \\ q & -5 \end{vmatrix} = -16 - (-2n)$$

$$\beta_{12} = -\begin{vmatrix} 6 & -3 \\ -5 \end{vmatrix} = -(-30-(-6))$$

$$= -(-24)$$

$$B_{32} = - \begin{vmatrix} -2 & 1 \\ 6 & -8 \end{vmatrix} = - (6-6) = 0$$

$$\beta_{23} = -\begin{vmatrix} 2 & 4 \\ 2 & 9 \end{vmatrix} = -\cdot (-18-8)$$

$$= -2 \begin{vmatrix} -20 \\ 2 \end{vmatrix} = \begin{vmatrix} -2 \\ 20 \end{vmatrix} = \begin{vmatrix} -2 \\ 2$$

• A determinant formula for the unique solution of a nonhomogeneous system AX = B, when A is nonsingular

$$x_k = \frac{1}{|A|} |A(k;B)|, \text{ for } k = 1,2,...,n,$$

• A(k; B) is the matrix obtained from A by replacing column k of A with B

Let **A** be a nonsingular $n \times n$ matrix of numbers, and **B** be an $n \times 1$ matrix of numbers. Then the unique solution of $\mathbf{AX} = \mathbf{B}$ is determined by

$$X_k = \frac{1}{|\mathbf{A}|} |\mathbf{A}(k; \mathbf{B})| \tag{8.7}$$

for $k = 1, 2, \dots, n$, where $\mathbf{A}(k; \mathbf{B})$ is the matrix obtained from \mathbf{A} by replacing column k of \mathbf{A} with \mathbf{B} .

Cramer's Rule

• A determinant formula for the unique solution of a nonhomogeneous system AX = B, when A is nonsingular.

$$\circ (x_k = \bigcap_{|A|} A(k; B))$$
, for $k = 1, 2, ..., n$,

• A(k;B) is the matrix obtained from A by replacing column k of A with B.

Cramer's Rule

• A determinant formula for the unique solution of a nonhomogeneous system AX = B, when A is nonsingular

o
$$x_k = \frac{1}{|A|} |A(k;B)|$$
, for $k = 1,2,...,n$,

• A(k; B) is the matrix obtained from A by replacing column

$$k \text{ of } A \text{ with } B$$

$$\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{2n} \end{vmatrix} + \cdots + a_{nn} X_n + \cdots$$

Cramer's Rule

• Example)
$$x_1 - 3x_2 - 4x_3 = 1$$

• $x_1 + x_2 - 3x_3 = 14$
• $x_2 - 3x_3 = 5$

nple)
$$(-x_1 + x_2 - 3x_3) = 14$$

$$x_2 - 3x_3 = 5$$

$$\frac{1}{0} - 3 - 4$$
 $\frac{1}{0} - \frac{13}{2}$
 $\frac{15}{25}$
 $\frac{15}{25}$
 $\frac{15}{25}$
 $\frac{15}{25}$
 $\frac{15}{25}$
 $\frac{15}{25}$
 $\frac{15}{25}$
 $\frac{15}{25}$

$$X_{(=, |A|)} = \frac{1}{|A|} \begin{vmatrix} 1 & -3 & -4 \\ A(1, B) \end{vmatrix} = \frac{1}{|A|} \begin{vmatrix} 1 & -3 & -4 \\ A(1, B) \end{vmatrix}$$

$$X_2 = \frac{1}{|A|} |A(2,B)| = \frac$$

$$X_{1} = \frac{1}{|A|} |AC1,b) |$$

$$= \frac{1}{|A|} |B| = \frac{1}{|A|} |AC1,b) |$$

$$= \frac{1}{|A|} |B| = \frac{1}{|A|} |AC1,b) |$$

$$= \frac{1}{|A|} |AC1,b|$$

$$= \frac{1}{|A|$$

$$X_{2} = \frac{1}{2} \begin{vmatrix} 3 & 6 \\ -5 & 8 \end{vmatrix}$$

$$= \frac{1}{2} (24+30)$$

$$= \frac{1}{2} \cdot 5 + \frac{1}{2} = \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{2} \cdot \frac$$

$$A = \begin{bmatrix} 5 & -1 & 2 & 2 & 7 \\ 0 & 3 & 0 & -4 & 7 \\ -5 & -8 & 0 & 3 & 7 \\ 0 & 5 & 0 & -6 & 7 \end{bmatrix}$$

$$A = \begin{bmatrix} 2 & 4 & 5 & 6 & 7 \\ 3 & 7 & 0 & 1 & -2 & 7 \\ -1 & 4 & 0 & 6 \end{bmatrix}$$

$$= 2 \begin{vmatrix} 1 & -4 & 3 & 4 & 7 & 7 \\ 3 & -9 & 5 & 10 & 7 & 7 \\ -1 & 4 & 0 & 6 & 7 & 7 \\ -1 & -4 & 0 & 6 & 7 & 7 & 7 \\ -1 & -4 & 0 & 6 & 7 & 7 & 7 & 7 \\ -1 & -4 & 0 & 6 & 7 & 7 & 7 & 7 \\ -1 & -4 & 0 & 6 & 7 & 7 & 7 & 7 \\ -1 & -4 & 0 & 6 & 7 & 7 & 7 & 7 \\ -1 & -4 & 0 & 6 & 7 & 7 & 7 & 7 \\ -1 & -4 & 0 & 6 & 7 & 7 & 7 & 7 \\ -1 & -4 & 0 & 6 & 7 & 7 & 7 & 7 \\ -1 & -4 & 0 & 6 & 7 & 7 & 7 & 7 \\ -1 & -4 & 0 & 6 & 7 & 7 & 7 & 7 \\ -1 & -4 & 0 & 6 & 7 & 7 & 7 & 7 \\ -1 & -4 & 0 & 6 & 7 & 7 & 7 & 7 \\ -1 & -4 & 0 & 6 & 7 & 7 & 7 & 7 \\ -1 & -4 & 0 & 6 & 7 & 7 & 7 & 7 \\ -1 & -4 & 0 & 6 & 7 & 7 & 7 & 7 \\ -1 & -4 & 0 & 6 & 7 & 7 & 7 \\ -1 & -4 & 0 & 6 & 7 & 7 & 7 \\ -1 & -4 & 0 & 6 & 7 & 7 & 7 \\ -1 & -4 & 0 & 6 & 7 & 7 & 7 \\ -1 & -4 & 0 & 6 & 7 & 7 \\ -1 & -4 & 0 & 6 & 7 & 7 \\ -1 & -4 & 0 & 6 & 7 & 7 \\ -1 & -4 & 0 & 6 & 7 & 7 \\ -1 & -4 & 0 & 6 & 7 \\ -1 & -4 & 0 & 0 & 7 \\ -1 & -4 & 0 & 0 & 7 \\ -1 & -4 & 0 & 0 & 7 \\ -1 & -4 & 0 & 0 & 7 \\ -1 & -4 & 0 & 0 & 7 \\ -1 & -4 & 0 & 0 &$$

Properties of Determinant

- $|A| = A^T$
 - o a_{1i} : each element of first row vector of A
 - o a_{i1} : each element of first column vector of A
 - o C_{1i} : cofactor expansion of A(except first row and ith column)
 - o C_{i1} : cofactor expansion of A(except ith row and first column)
 - $\circ |A| = \sum_{i=1}^n a_{1i} C_{1i}$
 - $\circ |A^T| = \sum_{i=1}^n a_{i1} C_{i1}$
 - By definition of determinant
 - $\sum_{i=1}^{n} a_{1i} C_{1i} = \sum_{i=1}^{n} a_{i1} C_{i1}$
 - $|A| = |A^T|$

Properties of Determinant

- $\det AB = (\det A)(\det B)$
 - Verification by example

•
$$A = \begin{bmatrix} 6 & 1 \\ 3 & 2 \end{bmatrix}$$
, $B = \begin{bmatrix} 4 & 3 \\ 1 & 2 \end{bmatrix}$

- $\det A = 9$, $\det B = 5$
- $\bullet \ AB = \begin{bmatrix} 25 & 20 \\ 14 & 13 \end{bmatrix}$

$$o \det AB = 25 \times 13 - 20 \times 14 = 325 - 280 = 45 = 9 \times 5$$

 $\circ \det EA = (\det E)(\det A)$

•
$$\det E = \begin{cases} 1 & E \text{ is a row replacement} \\ -1 & E \text{ is an interchange} \\ r & E \text{ is a sclar mutiplication} \end{cases}$$

Warning: A common misconception is that Theorem 6 has an analogue for *sums* of matrices. However, det(A + B) is *not* equal to det A + det B, in general.

1A+B1 7 1A1+1B1

Linearity property of the determinant function

$$\bigcirc A = \begin{bmatrix} a_1 & \cdots & a_{j+1} & x & a_{j+1} & \cdots & a_2 \end{bmatrix} \rightarrow 0 \text{ the minor }$$

 \circ Define a transformation T from \mathbb{R}^n to \mathbb{R}

•
$$T = \det[\mathbf{a}_1 \quad \dots \quad \mathbf{a}_{j-1} \quad \mathbf{x} \quad \mathbf{a}_{j+1} \quad \dots \quad \mathbf{a}_2]$$
• $T(c\mathbf{x}) = cT(\mathbf{x})$ Type $T(\mathbf{u}) = \mathbf{a}_1$
• $T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v})$

the waterprination from.

$$\begin{bmatrix}
1 & 2 & 3 \\
2 & 3 & 3
\end{bmatrix} = \begin{bmatrix}
1 & 1 & 3 \\
1 & 1 & 3 \\
1 & 4 & 3
\end{bmatrix} = \begin{bmatrix}
1 & 1 & 3 \\
1 & 6 & 3
\end{bmatrix}$$
to tester expansion a det = \Box

$$\frac{\mathbb{C}(v+v)}{v} = \frac{1}{2} \det \left(\frac{\mathbb{C}[\alpha_{i_1}, \dots, \widehat{v}+v]}{\mathbb{C}[\alpha_{i_1}, \dots, \widehat{v}+v]}, \dots, \alpha_{i_n} \right)$$

Determinants as Area or Volume

Theorem 9

If A is a 2×2 matrix, the area of the parallelogram determined by the columns of A is $|\det A|$. If A is a 3×3 matrix, the volume of the parallelepiped determined by the columns of A is $|\det A|$.

Determinants as Area or Volume

Let \mathbf{a}_1 and \mathbf{a}_2 be nonzero vectors. Then for any scalar c the area of the parallelogram determined by $(\mathbf{a}_1 \text{ and } \mathbf{a}_2)$ equals the area of the parallelogram determined by $(\mathbf{a}_1 \text{ and } \mathbf{a}_2 + c \mathbf{a}_1)$.

Theorem 10

Let $T: (\mathbb{R}^2 \to \mathbb{R}^2)$ be the linear transformation determined by a 2×2 matrix A. If S is a parallelogram in \mathbb{R}^2 , then

$$\{\text{area of } (T)S\} = |\det A| \cdot \{\text{area of } S\}$$
 (5)

If T is determined by a 3×3 matrix A, and if S is a parallelepiped in \mathbb{R}^3 , then

$$\{\text{volume of } T(S)\} = |\det A| \cdot \{\text{volume of } S\}$$
 (6)

Theorem 10

PROOF Consider the 2×2 case, with $A = [\mathbf{a}_1 \ \mathbf{a}_2]$. A parallelogram at the origin in \mathbb{R}^2 determined by vectors \mathbf{b}_1 and \mathbf{b}_2 has the form $\delta_t + \delta_t + \delta_t$

$$S = \{s_1b_1 + s_2b_2 : 0 \le s_1 \le 1, \ 0 \le s_2 \le 1\}$$

The image of S under T consists of points of the form 9 = [b, b]

$$T(s_1\mathbf{b}_1 + s_2\mathbf{b}_2) = s_1T(\mathbf{b}_1) + s_2T(\mathbf{b}_2) \mathsf{T}(\mathsf{S}_1\mathsf{b}_1 + \mathsf{S}_2\mathsf{b}_2)$$
$$= s_1A\mathbf{b}_1 + s_2A\mathbf{b}_2 \qquad = \mathsf{S}_1\mathsf{T}(\mathsf{b}_1) + \mathsf{S}_2\mathsf{T}(\mathsf{b}_2)$$

where $0 \le s_1 \le 1$, $0 \le s_2 \le 1$. It follows that T(S) is the parallelogram determined by the columns of the matrix $[A\mathbf{b}_1 \ A\mathbf{b}_2]$. This matrix can be written as $A\underline{B}$, where $B = [\mathbf{b}_1 \ \mathbf{b}_2]$. By Theorem 9 and the product theorem for determinants, $[A\mathbf{b}_1 \ A\mathbf{b}_2] = [A\mathbf{b}_1 \ A\mathbf{b}$

Theorem 10

An arbitrary parallelogram has the form $(\mathbf{p} + S)$ where \mathbf{p} is a vector and S is a parallelogram at the origin, as above. It is easy to see that T transforms $\mathbf{p} + S$ into $T(\mathbf{p}) + T(S)$. (See Exercise 26.) Since translation does not affect the area of a set,

{area of
$$T(\mathbf{p} + S)$$
} = {area of $T(\mathbf{p}) + T(S)$ }
= {area of $T(S)$ } Translation
= $|\det A| \cdot \{\text{area of } \mathbf{p} + S\}$ By equation (7)
= $|\det A| \cdot \{\text{area of } \mathbf{p} + S\}$ Translation

This shows that (5) holds for all parallelograms in \mathbb{R}^2 . The proof of (6) for the 3×3 case is analogous.

The conclusions of Theorem 10 hold whenever S is a region in \mathbb{R}^2 with finite area or a region in \mathbb{R}^3 with finite volume.

EXAMPLE 5 Let a and b be positive numbers. Find the area of the region E bounded

by the ellipse whose equation is

EXAMPLE 5 Let a and b be positive numbers. Find the area of the region E bounded by the ellipse whose equation is

$$\frac{x_1^2}{a^2} + \frac{x_2^2}{b^2} = 1$$

$$0 x_2 = \pm b \sqrt{1 - \frac{x_1^2}{a^2}}$$

•
$$\int_0^{\frac{\pi}{2}} ab\sqrt{1-\sin^2\theta}\cos\theta \,d\theta$$

•
$$\frac{ab}{4}[0+\pi-0-0] = \frac{ab}{4}\pi$$

$$b_1 = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$$

$$b_2 = \begin{bmatrix} 5 \\ 1 \end{bmatrix}$$

$$b_1 = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$$

$$b_2 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$det A = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$$

$$det A = \lambda$$

$$2 \cdot (1 - 15) = \lambda$$

$$2 \cdot (1 - 15) = \lambda$$