Problem Set 3

Due Friday, September 27th by 5pm

(10 points per question. Please scan and upload to Canvas as a PDF)

Question 0: If you worked with up to two classmates, please list their names!

- 1. For each of the following examples, complete the following tasks:
- Task 1: Regiment the following argument in \mathcal{L}^{PL} .
- Task 2: Then, evaluate the resulting \mathcal{L}^{PL} argument by either writing a semantic proof that it is valid, or else specifying truth values for the sentence letters and proving that the argument is invalid.
 - (a) If the lawyer did it, then the doctor did not. Therefore, if the doctor did it, then the lawyer did not. (B = the lawyer did it; G = the doctor did it.)

Proof

$$B \to \neg G \models G \to \neg B$$

- 1. $B \to \neg G : PR$
- G:AS
- 3. $\neg B:1,2\rightarrow E$
- 4. $G \rightarrow \neg B : 2-3 \rightarrow I$

Argument is valid

(b) Naïve realism is false. This is because if naïve realism were true, then naïve realism would be false. (R = naïve realism is true.)

Proof

$$R \to \neg R \models \neg R$$

- 1. $R \rightarrow \neg R : PR$
- R:AS
- 3. $\neg R: 1,2 \rightarrow E$
- 4. $\neg R : 2-3 \neg I$

Argument is valid

2. Write a semantic proof that the following is a tautology.

(a)
$$((P \lor Q) \land (P \lor R)) \rightarrow (P \lor (Q \land R))$$

1 1001				
	P	Q	R	$(P \lor Q) \land (P \lor R) \to P \lor (Q \land R)$
	0	0	0	1
	0	0	1	1
	0	1	0	1
	0	1	1	1
	1	0	0	1
	1	0	1	1
	1	1	0	1
	1	1	1	1

It is a tautology because it is true for all values

3. Appeal to the definitions in order to prove the following lemmas from the book.

(a) **Lemma 2.1** If $\Gamma \vDash \varphi$, then $\Gamma \cup \Sigma \vDash \varphi$.

Proof

 $\Gamma \vDash \varphi$ means that Γ entails φ meaning that if all the premisis in Γ are true, then the premisi φ must be true. For every premisis in Σ that is added, it only has the possibility to reduce the set of combinations of the sentence letters which make φ true. Therefore φ must still be entailed in the union set.

(b) **Lemma 2.3** $\Gamma \vDash \varphi$ just in case $\Gamma \cup \{\neg \varphi\}$ is unsatisfiable.

Proof

If $\Gamma \vDash \varphi$, then there is never a case when Γ is true and φ is false. However if we add $\neg \varphi$ to Γ , there will now be a case when Γ is true in which φ is asserted to False in the premisis and φ will be true on the proposition. This means that $\Gamma \vDash \varphi$ in the case $\Gamma \cup \{\neg \varphi\}$ would be unsatisfiable.

4. Recall the definition of the interpretation set $|\varphi| := \{\mathcal{I} : \mathcal{V}_{\mathcal{I}}(\varphi) = 1\}$ from the book, proving each of the following claims for arbitrary wfss φ and ψ of \mathcal{L}^{PL} :

2

(a)
$$|\varphi \wedge \psi| = |\varphi| \cap |\psi|$$
.¹

 $^{1 |\}varphi| \cap |\psi| := \{\mathcal{I} : \mathcal{I} \in |\varphi| \text{ and } \mathcal{I} \in |\psi|\} \text{ is the intersection of the interpretation sets } |\varphi| \text{ and } |\psi|.$

Proof

We can define $|\varphi \wedge \psi| := \{\mathcal{I} : \mathcal{V}_{\mathcal{I}}(\varphi \wedge \psi) = 1\}$ and since we know that $\mathcal{V}_{\mathcal{I}}(\varphi \wedge \psi) = 1$ is true if $\mathcal{V}_{\mathcal{I}}(\varphi) = 1$ and $\mathcal{V}_{\mathcal{I}}(\psi) = 1$ is true, we can use the definistion of $|\varphi| := \{\mathcal{I} : \mathcal{V}_{\mathcal{I}}(\varphi) = 1\}$ for both φ and ψ to rise to the conclusion that it means that $|\varphi| \cap |\psi|$.

(b) $|\varphi \vee \psi| = |\varphi| \cup |\psi|^2$

Proof

Just like before, we can define $|\varphi \vee \psi| := \{\mathcal{I} : \mathcal{V}_{\mathcal{I}}(\varphi \vee \psi) = 1\}$ and since we know that $\mathcal{V}_{\mathcal{I}}(\varphi \vee \psi) = 1$ is true if $\mathcal{V}_{\mathcal{I}}(\varphi) = 1$ or $\mathcal{V}_{\mathcal{I}}(\psi) = 1$ is true, we can use the definistion of $|\varphi| := \{\mathcal{I} : \mathcal{V}_{\mathcal{I}}(\varphi) = 1\}$ for both φ and ψ to rise to the conclusion that it means that $|\varphi| \cup |\psi|$.

(c) $|\neg \varphi| = |\varphi|^c$.

Proof

We know that $|\neg \varphi| := \{ \mathcal{I} : \mathcal{V}_{\mathcal{I}}(\neg \varphi) = 1 \}$ and that means $|\neg \varphi| := \{ \mathcal{I} : \mathcal{V}_{\mathcal{I}}(\varphi) = 0 \}$ and that is the definition of $|\varphi|^c$

5. Prove that $\varphi, \psi \vDash \chi$ just in case $\vDash (\varphi \land \psi) \rightarrow \chi$.

Proof

 $\vDash (\varphi \land \psi) \to \chi$ means that for every case in which φ and ψ are both true χ must be true as well. $\varphi, \psi \vDash \chi$ also means the same thing, where now φ and ψ are premisis but also both be true for χ to be true.

 $^{|\}varphi| \cup |\psi| := \{\mathcal{I} : \mathcal{I} \in |\varphi| \text{ or } \mathcal{I} \in |\psi|\}$ is the union of the interpretation sets $|\varphi|$ and $|\psi|$.

 $^{^{3}|\}varphi|^{c}:=\{\mathcal{I}:\mathcal{I}\notin|\varphi|\}$ is the complement within the set of all \mathcal{L}^{PL} interpretations.