Engineering Mathematics-II (BAS-203)

Unit 3 Sequence and Series

Que1. Find the Fourier constant a_0

(i)
$$f(x) = x^2, -\pi \le x \le \pi$$
 [2018-19] (ii) $f(x) = \begin{cases} 0, & -\pi < x < 0 \\ x, & 0 < x < \pi \end{cases}$ [2015-16]

Que2. Write the Dirichlet's condition for Fourier series

[2016-17]

Que3. If
$$f(x) = \left(\frac{\pi - x}{2}\right)^2$$
, $0 < x < 2\pi$, Show that $f(x) = \frac{\pi^2}{12} + \sum_{n=1}^{\infty} \frac{\cos nx}{n^2}$

Que4. Obtain a Fourier Series of $f(x) = \left(\frac{\pi - x}{2}\right)$ expansion of the function f(x) in the interval of $(0,2\pi)$ and hence Show that $1 - \frac{1}{2} + \frac{1}{5} - \frac{1}{7} + \dots = \frac{\pi}{4}$

Que5. Find the Fourier series of the following function in interval $-\pi \le x \le \pi$

$$(i) f(x) = x \sin x$$
 [2018-19] $(ii) f(x) = x \cos x$ $(iii) f(x) = x^3$ [2015-16]

Que6. Find the Fourier Series to represent the function
$$f(x)$$
 given by
$$f(x) = \begin{cases} -k, & -\pi < x < 0 \\ k, & 0 < x < \pi \end{cases}$$
Hence Show that $1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots = \frac{\pi}{4}$ [2015-16]

Que7. Find the Fourier series of $f(x) = \pi - x$, $0 \le x \le 2\pi$

Que8. Find the Fourier Series for the function
$$f(x) = \begin{cases} -1, -\pi < x < -\frac{\pi}{2} \\ 0, -\frac{\pi}{2} < x < \frac{\pi}{2} \\ 1, \frac{\pi}{2} < x < \pi \end{cases}$$

Que9. Find the Fourier series expansion of the function $f(x) = x + \frac{x^2}{4}$ in the interval $(-\pi, \pi)$.

Que10. Obtain a Fourier series expansion of the function

(i)
$$f(x) = e^{-x}$$
, $0 < x < 2\pi$ (ii) $f(x) = x$, $0 < x < 2\pi$

Que11. Find the Fourier Series for f(x) given by

$$f(x) = \begin{cases} x , & -\pi < x < 0 \\ -x , & 0 < x < \pi \end{cases}$$
Hence Show that $\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots = \frac{\pi^2}{8}$

[2017-18], [2016-17]

Que12. Obtain the Fourier Series for the function
$$f(x) = \begin{cases} 1 + \frac{2x}{\pi}, -\pi < x < 0 \\ 1 - \frac{2x}{\pi}, 0 < x < \pi \end{cases}$$
 [2021-22]

Hence deduce that $\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{5^2} + \cdots = \frac{\pi^2}{9}$

Engineering Mathematics-II (BAS-203)

Unit 3 Sequence and Series

Que1. Find the Fourier constant

(i)
$$f(x) = |x|$$
 in interval $(-2, 2)$ [2016-17] (ii) $f(x) = 1 + |x|$ in interval $(-3, 3)$ [2021-22]

Que2. Find the Fourier series to represent the function f(t) given by

[2015-16]

$$f(t) = \begin{cases} t & , & 0 < t < 1 \\ (1-t) & , & 1 < x < 2 \end{cases}$$

Que3. Obtain the Fourier series for the function $f(x) = \begin{cases} 1 + \frac{2x}{l}, & -l < x < 0 \\ 1 - \frac{2x}{l}, & 0 < x < l \end{cases}$

Que4. Find the Fourier series of the following function in interval -2 < x < 2

$$(i)f(x) = |x|$$
 $(ii)f(x) = 4 - x^2$ $(iii)f(x) = \begin{cases} 0, -2 < x < 0 \\ 1, 0 < x < 2 \end{cases}$

Que5. Obtain a Fourier series expansion of the function $f(x) = e^{-x}$, -l < x < l

Que6. Obtain the Fourier Series for the function
$$f(x) = \begin{cases} \pi x & \text{if } 0 < x < 1 \\ \pi(2-x), & 1 < x < 2 \end{cases}$$

Que7. If f(x) = 1, in interval $(0, \pi)$ is expanded in half range cosine series then find the value of a_0 .

Que8. Find the half range cosine series of the following function

$$(i) f(x) = 2x - 1, 0 < x < 1$$
 [2016-17] $(ii) f(x) = x(\pi - x), 0 < x < \pi$ [2015-16]

$$(iii) f(x) = \sin\left(\frac{\pi x}{l}\right), 0 < x < l$$
 $(iv) f(t) = \begin{bmatrix} 2t & 0 < t < 1 \\ 2(2-t), 1 < t < 2 \end{bmatrix}$ [2017-18]

Que9. Find the half range sine series of the following function

$$(i) f(x) = x - x^2, 0 < x < 1 \text{ [2016-17]} \qquad (ii) f(t) = \begin{cases} t, & 0 < t < 2 \\ 4 - t, & 2 < t < 4 \end{cases}$$
 [2018-19]

Que10. Find the half range sine series of the function $f(x) = \begin{cases} \omega x, & 0 \le x \le \frac{l}{2} \\ \omega(l-x), & \frac{l}{2} \le x \le l \end{cases}$ Hence obtain the sum of series $\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots = \frac{\pi^2}{8}$

Que11. Find the series of cosine of multiple of x which will represents $x \sin x$ in the interval $(0, \pi)$ and Show that $\frac{1}{1.3} - \frac{1}{3.5} + \frac{1}{5.7} - \dots = \frac{\pi - 2}{8}$

Engineering Mathematics-II (BAS-203) Unit 3 Sequence and Series

Que 1 Discuss the convergence of the sequences $\{a_n\}$ where

(i)
$$a_n = \frac{n+1}{n}$$
 (ii) $a_n = \frac{1}{n}$ (iii) $a_n = \frac{2n}{n^2+1}$

[2018-19]

Que 2 Test the series $\sum_{n=1}^{\infty} \frac{1}{n} \sin \frac{1}{n}$

[2021-22]

Que 3 Examine the nature of series 6-5-1+6-5-1+6-5-1..... $+\infty$.

Que 4 Examine the nature of series $1 + 2 + 3 + \cdots + n + \cdots$... ∞

Que 5 Test the convergence of series $1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \cdots \infty$.

Que 6 Discuss the nature of series $2-2+2-2+...+\infty$.

Que 7 Test the Convergence of the series $\frac{1}{\sqrt{1}+\sqrt{2}} + \frac{1}{\sqrt{2}+\sqrt{3}} + \frac{1}{\sqrt{3}+\sqrt{4}} + \cdots$

<u>Oue 8</u> Test the Convergence of the series $\frac{1}{1+2^{-1}} + \frac{2}{1+2^{-2}} + \frac{3}{1+2^{-3}} + \cdots$

Que 9 Test the Convergence of the series $\frac{\sqrt{2}-1}{3^3-1} + \frac{\sqrt{3}-1}{4^3-1} + \frac{\sqrt{4}-1}{5^3-1} + \cdots$

Que 10 Test the Convergence of the series $\frac{2^q}{1^p} + \frac{3^q}{2^p} + \frac{4^q}{3^p} + \cdots$

Que 11 Test the Convergence of the series whose nth term is

(i)
$$\sum_{n=1}^{\infty} \frac{2n^2 + 3n}{5 + n^5}$$
 (ii) $\frac{n^2}{2^n}$ (iii) $\sum (\sqrt[3]{n^3 + 1} - n)$ (iv) $\sum \left(\frac{3n - 1}{2^n}\right)$ (v) $\sum \frac{n!}{n^n}$ (vi) $\sum \frac{\sqrt{n}}{\sqrt{n^2 + 1}} x^n$ (x > 0)

Que 12 Discuss the Convergence of the series $\frac{x}{1.2} + \frac{x^2}{3.4} + \frac{x^3}{5.6} + \frac{x^4}{7.8} + \cdots$ [2021-22]

<u>Que 13</u> State D' Alembert test. Test the series $1 + \frac{x}{2} + \frac{x^2}{5} + \frac{x^3}{10} + \cdots$ [2018-19]

Que 14 Define Raabe's Test. Discuss the Convergence of the series $\frac{x}{1} + \frac{1}{2} \frac{x^3}{3} + \frac{1}{2} \frac{3}{4} \frac{x^5}{5} + \frac{1}{2} \frac{3}{4} \frac{5}{6} \frac{x^7}{7} + \dots (x > 1)$

Que 15 Discuss the Convergence of the series $1 + \frac{1}{2}x + \frac{1}{2}\frac{3}{4}x^2 + \frac{1}{2}\frac{35}{46}x^3 + \dots (x > 0)$

Que 16 Discuss the Convergence of the series $\frac{1}{2}x^2 + \frac{9}{8}x^3 + x^4 + \frac{25}{32}x^5 + \dots \infty$

Que 17 Show that the series $\frac{1}{x} + \frac{2!}{x(x+1)} + \frac{3!}{x(x+1)(x+2)} + \dots \infty$ converges if x > 2 & diverges if x < 2

Que 18 Discuss the Convergence of the series $\frac{x^2}{2 \log 2} + \frac{x^3}{3 \log 3} + \frac{x^4}{4 \log 4} + \dots$

Que 19 Test the Convergence of the series $\frac{1^2}{4^2} + \frac{1^2}{4^2} = \frac{5^2}{8^2} + \frac{1^2}{4^2} = \frac{5^2}{8^2} = \frac{9^2}{12^2} + \frac{1^2}{4^2} = \frac{5^2}{8^2} = \frac{9^2}{12^2} = \frac{13^2}{16^2}$

Que 20 Test the Convergence of the series

$$1 + \frac{\alpha \cdot \beta}{1 \cdot \gamma} x + \frac{\alpha(\alpha+1)\beta(\beta+1)}{1 \cdot 2\gamma(\gamma+1)} x^2 + \frac{\alpha(\alpha+1)(\alpha+2)\beta(\beta+1)(\beta+2)}{1 \cdot 2 \cdot 3\gamma(\gamma+1)(\gamma+2)} x^3 + \cdots$$