Recall

For $n \in \mathbb{N}$, let X, \widetilde{X}, Y and X_i , i = 1, ..., n be random variables.

Properties of expectation

- (LOTUS) Let $g: \mathbb{R}^2 \to \mathbb{R}$.
 - If X, Y discrete with joint PMF p(x,y), then $E[g(X,Y)] = \sum_{x} \sum_{y} g(x,y) p(x,y)$.
 - If X, Y joint continuous with joint PDF f(x,y), then $E[g(X,Y)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x,y) f(x,y) dx dy$.
- (linear) $\forall \alpha, \beta \in \mathbb{R}$, $E[\alpha X + \beta Y] = \alpha E[X] + \beta E[Y]$. By induction, $E[\sum_{i=1}^{n} X_i] = \sum_{i=1}^{n} E[X_i]$. In general, to justify $E[\sum_{i=1}^{\infty} X_i] = \sum_{i=1}^{\infty} E[X_i]$ we need some additional conditions and two important ones are: (1) $X_i \geq 0$ for all $i \in \mathbb{N}$. Or (2) $\sum_{i=1}^{\infty} E[|X_i|] < \infty$.
- (monotone) If $X \leq Y$, then $E[X] \leq E[Y]$. In particular, $|E[X]| \leq E[|X|]$.

Covariance

- Cov(X, Y) := E[(X E[X])(Y E[Y])] = E[XY] E[X]E[Y].
- X, Y independent $\implies E[XY] = E[X]E[Y] \iff Cov(X, Y) = 0.$
- Properties of $Cov(\cdot, \cdot)$:
 - (1) Cov(X, X) = Var(X) > 0.
 - (2) Cov(X, Y) = Cov(Y, X).
 - (3) $\operatorname{Cov}(\alpha X + \widetilde{X}, Y) = \alpha \operatorname{Cov}(X, Y) + \operatorname{Cov}(\widetilde{X}, Y)$ for $\alpha \in \mathbb{R}$.

It follows from (2) and (3) that $Cov(\cdot, \cdot)$ is bilinear. Note that Cov(X, X) = 0 only implies P(X = E[X]) = 1 (see e.g., Chebyshev's inequality in later lectures).

• $\operatorname{Var}(\sum_{i=1}^n X_i) = \sum_{i=1}^n \operatorname{Var}(X_i) + 2\sum_{1 \le i < j \le n} \operatorname{Cov}(X_i, X_j)$. In particular, $\operatorname{Var}(X + Y) = \operatorname{Var}(X) + \operatorname{Var}(Y) + 2\operatorname{Cov}(X, Y)$.

Moreover, if X_1, \ldots, X_n are pairwise independent, then $\operatorname{Var}(\sum_{i=1}^n X_i) = \sum_{i=1}^n \operatorname{Var}(X_i)$.

Examples

Example 1 (yet another example for $Cov(X,Y) = 0 \implies X,Y$ independent). Let X,Y be random variables with the joint PDF:

Figure 1: f(x,y) = 1 on the shadowed region

By symmetry, E[XY] = 0 and E[X] = 0, hence Cov(X, Y) = 0. However, X, Y are NOT independent from the "shape" of f(x, y).

Example 2. For L > 0, let $X, Y \stackrel{i.i.d.}{\sim} U(0, L)$. Find E[|X - Y|].

Solution. By independence, the joint PDF of X, Y is

$$f(x,y) = f_X(x)f_Y(y) = \frac{1}{L}\chi_{(0,L)}(x)\frac{1}{L}\chi_{(0,L)}(y) = \frac{1}{L^2}\chi_{(0,L)\times(0,L)}(x,y).$$

Applying the formula of E[g(X,Y)], we have

$$E[|X - Y|] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} |x - y| f(x, y) dx dy$$

$$= \int_{0}^{L} \int_{0}^{x} (x - y) \frac{1}{L^{2}} dy dx + \int_{0}^{L} \int_{0}^{y} (y - x) \frac{1}{L^{2}} dx dy$$

$$= \frac{1}{L^{2}} \int_{0}^{L} x^{2} dx = \frac{L}{3}.$$

Alternatively, note $|X - Y| = \max(X, Y) - \min(X, Y)$. Define $U = \min(X, Y), V = \max(X, Y)$. Then by e.g., [Tutorial 10, Example 3], the joint PDF of U, V is $f(u, v) = \begin{cases} 2\frac{1}{L^2} & 0 < u < v < L \\ 0 & \text{otherwise.} \end{cases}$ Hence

$$E[|X - Y|] = E[V - U] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (v - u) f(u, v) du dv = \int_{0}^{L} \int_{0}^{v} (v - u) \frac{2}{L^{2}} du dv = \frac{L}{3}.$$

Denote the sample space by Ω . Let A, B be events $\subset \Omega$. Let χ_A be the *indicator variable* with respect to A, i.e., for $\omega \in \Omega$,

$$\chi_A(\omega) := \begin{cases} 1 & \omega \in A \\ 0 & \omega \notin A. \end{cases}$$

Then we have some readily-checked convenient facts:

(a) $E[\chi_A] = P(A)$.

(b)
$$\chi_{A^c} = 1 - \chi_A$$
; $\chi_{A \cap B} = \chi_A \chi_B$, $\chi_A^2 = \chi_A$; $\chi_{A \cup B} = 1 - \chi_{A^c \cap B^c} = 1 - (1 - \chi_A)(1 - \chi_B)$.

Example 3. In the above notations, prove $Cov(\chi_A, \chi_B) = P(B)(P(A|B) - P(A))$ if P(B) > 0.

Proof. By (a) and (b),

$$Cov(\chi_A, \chi_B) = E[\chi_A \chi_B] - E[\chi_A] E[\chi_B]$$

$$= E[\chi_{A \cap B}] - P(A)P(B)$$

$$= P(A \cap B) - P(A)P(B)$$

$$= P(B)(P(A|B) - P(A)).$$

Remark. By Example 3, χ_A, χ_B independent $\iff \text{Cov}(\chi_A, \chi_B) = 0$.

Example 4. Let X, Y be random variables with joint PDF

$$f(x,y) = \begin{cases} \frac{1}{y}e^{-y-x/y} & x > 0, y > 0\\ 0 & \text{otherwise.} \end{cases}$$

Show that Cov(X, Y) = 1.

Solution. By change of variable, let t = x/y in the inner integral (where y is fixed) when it appears during the computations below. Then dx = ydt. Applying the formula for E[g(X,Y)], we have

$$E[X] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x f(x, y) dx dy = \int_{0}^{\infty} \int_{0}^{\infty} \frac{x}{y} e^{-y - x/y} dx dy = \int_{0}^{\infty} \int_{0}^{\infty} t e^{-y - t} y dt dy$$
$$= \int_{0}^{\infty} y e^{-y} dy \int_{0}^{\infty} t e^{-t} dt = 1 \times 1 = 1.$$

And

$$E[Y] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} y f(x, y) dx dy = \int_{0}^{\infty} \int_{0}^{\infty} e^{-y - x/y} dx dy = \int_{0}^{\infty} \int_{0}^{\infty} e^{-y - t} y dt dy$$
$$= \int_{0}^{\infty} y e^{-y} dy \int_{0}^{\infty} e^{-t} dt = 1 \times 1 = 1.$$

And

$$E[XY] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} xy f(x,y) dx = \int_{0}^{\infty} \int_{0}^{\infty} x e^{-y-x/y} dx dy = \int_{0}^{\infty} \int_{0}^{\infty} y t e^{-y-t} y dt dy$$
$$= \int_{0}^{\infty} y^{2} e^{-y} dy \int_{0}^{\infty} t e^{-t} dt = 2 \times 1 = 2.$$

Hence
$$Cov(X, Y) = E[XY] - E[X]E[Y] = 2 - 1 \times 1 = 1.$$

Remark. To calculate the last integrals of the computations in Example 4, we can apply integration by parts to get a recursive formula $\int_0^\infty x^n e^{-x} dx = n \int_0^\infty x^{n-1} e^{-x} dx$ for $n \in \mathbb{N}$. Hence by induction, $\int_0^\infty x^n e^{-x} dx = n!$ (, which is exactly the definition of gamma function $\Gamma(n+1) = n\Gamma(n) = n!$).