# A Continuous Life-years Gained Priority Score for Ventilator Allocation

- 1 Theory
- 2 Simulation using CDC data

# Theory

In military triage situations, a utilitarian framework is employed to save the greatest number of wounded soliders in a mass casualty event

Identify patients who will survive without critical care (Green)

In military triage situations, a utilitarian framework is employed to save the greatest number of wounded soliders in a mass casualty event

- Identify patients who will survive without critical care (Green)
- Exclude patients who obviously will not survive with critical care (Blue)

In military triage situations, a utilitarian framework is employed to save the greatest number of wounded soliders in a mass casualty event

- Identify patients who will survive without critical care (Green)
- Exclude patients who obviously will not survive with critical care (Blue)
- 3 Rank order patients who will die without critical care by P(ICUSurvival) (Red > Yellow)

In military triage situations, a utilitarian framework is employed to save the greatest number of wounded soliders in a mass casualty event

- Identify patients who will survive without critical care (Green)
- Exclude patients who obviously will not survive with critical care (Blue)
- 3 Rank order patients who will die without critical care by P(ICUSurvival) (Red > Yellow)
- 4 Treat as many patients as possible in order of P(ICUSurvival)

# Problems with military triage approach in the COVID-19 Pandemic

### Three patients with COVID-19



28 year old female
• SOFA: 30% survival



80 year old male
• SOFA: 75% survival



60 year old maleSOFA: 50% survival

Who gets the one remaining ventilator?

# New York ventilator allocation policy

| Step 2 – Mortality Risk Assessment Using SOFA <sup>1</sup>                                                                                                |                                                                               |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--|
| Color Code and Level of Access                                                                                                                            | Assessment of Mortality Risk/<br>Organ Failure                                |  |
| Blue No ventilator provided. Use alternative forms of medical intervention and/or palliative care or discharge. Reassess if ventilators become available. | Exclusion criterion OR SOFA > 11                                              |  |
| Red<br>Highest<br>Use ventilators as available                                                                                                            | SOFA < 7<br>OR<br>Single organ failure <sup>2</sup>                           |  |
| Yellow<br>Intermediate<br>Use ventilators as available                                                                                                    | SOFA 8 – 11                                                                   |  |
| Green  Use alternative forms of medical intervention or defer or discharge.  Reassess as needed.                                                          | No significant organ failure  AND/OR  No requirement for lifesaving resources |  |

# Priority rankings under NY triage system



Goes against "youngest first" allocation principles and does not maximize life-years saved

# Maximizing life-years gained

An alternative utilitarian approach is to maximize life-years gained

Priority Score that maximizes life-years gained

$$PriorityScore = P(ICUSurvival) * (100 - age)$$

# Priority Score vs. Patient Age, by Probability of ICU Survival



# Range of possible priority scores by patient age



### Allocation that maximizes life-years saved

# Life-years gained allocation



28 year old female

- SOFA: 30% survival
- 100 28 = 72 years of life left
- · 22 life-years gained with vent



80 year old male

- SOFA: 75% survival
- 100 80 = 20 years of life left
- 15 life-years gained with vent



60 year old male

- SOFA: 50% survival
- 100 60 = 40 years of life left
- 20 life-years gained with vent

:

2

# Simulation using CDC data

#### Data sources

We took data from the CDC report Severe Outcomes Among Patients with Coronavirus Disease 2019 — United States, February 12–March 16, 2020



# COVID-19 Age Distribution of patients requiring ICU



#### Calibration of the SOFA score

The Sequential Organ Failure Assesment (SOFA) score is a validated bedside predictor of ICU mortality. The calibration of SOFA scores is drawn from *Raith et al. JAMA*, 2017



# Simulated ICU population from CDC Data



#### Simulated SOFA score distribution



Currently drawn from  $f(SOFA|age) = N(8 + \frac{age-65}{30}, 3.5)$ , need to replace with a distribution estimated from real data.

# SOFA Score by Age

| Age   | Mean SOFA | Survival with Ventilator |
|-------|-----------|--------------------------|
| 20–44 | 6.6       | 79%                      |
| 45-54 | 7.3       | 75%                      |
| 55-64 | 7.5       | 74%                      |
| 65-74 | 7.9       | 73%                      |
| 75–84 | 8.5       | 70%                      |

# Simulated Outcomes by Age



# Lottery allocation



A random allocation of 1000 ventilators would save 736 out of 2000 patients admitted to the ICU. A lottery saves 28,508 (38%) out of a total of possible 75,313 life years.

# Youngest first allocation



Youngest first allocation 1000 ventilators would save 774 out of 2000 patients admitted to the ICU. Youngest first saves 38,832 (52%) out of a total of possible 75,313 life years.

# Maximizing ICU survival



A P(ICUsurvival) triage system of 1000 ventilators would save 869 out of 2000 patients admitted to the ICU. Maximizing ICU survival saves 35,401 out of a total of possible 75,313 (47%)

# Maximizing Life-years gained



Prioritizing life-years for 1000 ventilators would save 823 out of 2000 patients admitted to the ICU. Maximizing life-years gained saves 39,729 out of a total of possible 75,313 (53%) life-years.

# Maximizing life-years vs. ICU survival

Prioritizing young sick patients over old healthy patients leads to more ICU deaths in exchange for more life-years gained.

#### The Tradeoff

Prioritizing life-years gained over ICU survival saves an additional 4,328 life-years for this 2000 patient sample, at a cost of 46 more deaths in the ICU.