

Matrizen

Fragen?

- * Matrizengrößen. Sei A eine $m \times n$ -Matrix und B eine $p \times q$ -Matrix.
 - a) Wann kann man A + B berechnen und welche Größe hat das Ergebnis?
 - b) Wann kann man $A \cdot B$ berechnen und welche Größe hat das Ergebnis?

a)
$$\frac{1}{n} + \frac{p}{g} = \frac{m}{n} \frac{A+B}{n}$$

2.8.
$$2\left(\frac{1}{3}\frac{2}{4}\right) + 2\left(\frac{5}{4}\frac{6}{4}\right) = 2\left(\frac{1}{3}\frac{1}{4}\frac{5}{4}\frac{2}{4}\right) \in \mathbb{R}^{2\times 2}$$

$$2\left(\frac{1}{3}\frac{2}{4}\right) + 2\left(\frac{1}{3}\frac{2}{4}\frac{3}{4}\right) = 2\left(\frac{1}{3}\frac{2}{4}\frac{3}{4}\frac{3}{4}\right) = 2\left(\frac{1}{3}\frac{2}{4}\frac{3}{4}\frac{3}{4}\right) = 2\left(\frac{1}{3}\frac{2}{4}\frac{3}{4}\frac{3}{4}\right) = 2\left(\frac{1}{3}\frac{2}{4}\frac{3}{4}\frac{3}{4}\frac{3}{4}\right) = 2\left(\frac{1}{3}\frac{2}{4}\frac{3}{4}\frac{3}{4}\frac{3}{4}\right) = 2\left(\frac{1}{3}\frac{2}{4}\frac{3}{4}\frac{3}{4}\frac{3}{4}\frac{3}{4}\frac{3}{4}\right) = 2\left(\frac{1}{3}\frac{3}{4}\frac{3}\frac{3}{4}\frac{3}{4}\frac{3}{4}\frac{3}{4}\frac{3}{4}\frac{3}\frac{3}{4}\frac{3}\frac{3}{4}\frac{3}{4}\frac{3}{4}\frac{3}\frac{3}{4}\frac{3}\frac{3}{4}\frac{3}{4}\frac{3}\frac{3}{4}\frac{3}\frac{3}{4}\frac{3}{$$

2.6.
$$z \left(\frac{120}{2012} \right)_3 \left(\frac{1}{2} \right)_4 = z \left(\frac{45}{14} \right)_2$$
Eigener Lösungsversuch.

Anz. Zeilen gleich!

Anz Spalfen gleich!

falls M = p & N = q, Matrizen gleich:

Größe!

$$N=p$$
, dentee an \prod_{ij}

Rechnen mit Matrizen. Bestimmen Sie die Größen aller Matrizen und berechnen Sie falls möglich.

Sie falls möglich.

a)2
$$\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}$$
 +2 $\begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$ = 2 $\begin{pmatrix} 1 & 2 & 3 \\ 5 & 5 & 7 \end{pmatrix}$

b) $\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$ + $\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}$ = $\begin{pmatrix} 2 & 4 \\ 0 & 2 \end{pmatrix}$ + $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ = $\begin{pmatrix} 2 & 4 \\ 0 & 2 \end{pmatrix}$ + $\begin{pmatrix} 1 & 0 \\ 0 & 3 \end{pmatrix}$ $\begin{pmatrix} 1 & 2 \\ 0 & 3 \end{pmatrix}$ Matrixen addition multiplication $\begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}^T$ $\begin{pmatrix} 1 & 4 & 7 \\ 1 & 2 & 3 \end{pmatrix}^T$ $\begin{pmatrix} 1 & 4 & 7 \\ 1 & 2 & 3 \end{pmatrix}^T$ $\begin{pmatrix} 1 & 4 & 7 \\ 1 & 2 & 3 \end{pmatrix}^T$

$$\begin{array}{cccc}
 & \text{d} \\
 & \text{d} \\
 & \text{d} \\
 & \text{d} & \text{d} & \text{d} & \text{d} & \text{d} & \text{d} \\
 & \text{d} & \text{d} & \text{d} & \text{d} & \text{d} & \text{d} \\
 & \text{d} & \text{d} & \text{d} & \text{d} & \text{d} & \text{d} \\
 & \text{d} & \text{d} & \text{d} & \text{d} & \text{d} & \text{d} \\
 & \text{d} & \text{d} & \text{d} & \text{d} & \text{d} & \text{d} \\
 & \text{d} & \text{d} & \text{d} & \text{d} & \text{d} \\
 & \text{d} & \text{d} & \text{d} & \text{d} & \text{d} \\
 & \text{d} & \text{d} & \text{d} & \text{d} & \text{d} \\
 & \text{d} & \text{d} & \text{d} & \text{d} & \text{d} \\
 & \text{d} & \text{d} & \text{d} & \text{d} & \text{d} \\
 & \text{d} & \text{d} & \text{d} & \text{d} & \text{d} \\
 & \text{d} & \text{d} & \text{d} & \text{d} & \text{d} \\
 & \text{d} & \text{d} & \text{d} & \text{d} & \text{d} \\
 & \text{d} & \text{d} & \text{d} & \text{d} & \text{d} \\
 & \text{d} & \text{d} & \text{d} & \text{d} & \text{d} \\
 & \text{d} & \text{d} & \text{d} & \text{d} & \text{d} \\
 & \text{d} & \text{d} & \text{d} & \text{d} & \text{d} \\
 & \text{d} & \text{d} & \text{d} & \text{d} & \text{d} \\
 & \text{d} & \text{d} & \text{d} & \text{d} & \text{d} \\
 & \text{d} & \text{d} & \text{d} & \text{d} & \text{d} \\
 & \text{d} & \text{d} & \text{d} & \text{d} & \text{d} \\
 & \text{d} & \text{d} & \text{d} & \text{d} & \text{d} \\
 & \text{d} & \text{d} & \text{d} & \text{d} & \text{d} \\
 & \text{d} & \text{d} & \text{d} & \text{d} & \text{d} \\
 & \text{d} & \text{d} & \text{d} & \text{d} & \text{d} \\
 & \text{d} & \text{d} & \text{d} & \text{d} & \text{d} \\
 & \text{d} & \text{d} & \text{d} & \text{d} & \text{d} \\
 & \text{d} & \text{d} & \text{d} & \text{d} & \text{d} \\
 & \text{d} & \text{d} & \text{d} & \text{d} & \text{d} \\
 & \text{d} & \text{d} & \text{d} & \text{d} & \text{d} \\
 & \text{d} & \text{d} & \text{d} & \text{d} & \text{d} \\
 & \text{d} & \text{d} & \text{d} & \text{d} & \text{d} \\
 & \text{d} & \text{d} & \text{d} & \text{d} & \text{d} \\
 & \text{d} & \text{d} & \text{d} & \text{d} & \text{d} \\
 & \text{d} & \text{d} & \text{d} & \text{d} & \text{d} & \text{d} \\
 & \text{d} & \text{d} & \text{d} & \text{d} & \text{d} \\
 & \text{d} & \text{d} & \text{d} & \text{d} & \text{d} \\
 & \text{d} & \text{d} & \text{d} & \text{d} & \text{d} \\
 & \text{d} & \text{d} & \text{d} & \text{d} & \text{d} \\
 & \text{d} & \text{d} & \text{d} & \text{d} & \text{d} \\
 & \text{d} & \text{d} & \text{d} & \text{d} & \text{d} \\
 & \text{d} & \text{d} & \text{d} & \text{d} & \text{d} \\
 & \text{d} & \text{d} & \text{d} & \text{d} & \text{d} \\
 & \text{d} & \text{d} & \text{d} & \text{d} & \text{d} \\
 & \text{d} & \text{d} & \text{d} & \text{d} & \text{d} \\
 & \text{d} & \text{d} & \text{d} & \text{d} & \text{d} \\
 & \text{d} & \text{d} & \text{d} & \text{d} \\
 & \text{d} & \text{d} & \text{d} & \text{d} \\
 & \text{d} & \text{d} & \text{d}$$

f)
$$\begin{pmatrix} 1 & 3 & 0 \end{pmatrix}^T = \begin{pmatrix} 1 & 3 & 3 \end{pmatrix}^T = \begin{pmatrix} 1 & 2 & 3 \end{pmatrix}$$

g)
$$\begin{pmatrix} 1 \\ 2 \end{pmatrix}^T = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$

$$h)_{2} \left(\underbrace{\begin{array}{ccc} 1 & 0 & 2 \\ 3 & 1 & 0 \end{array}}_{3} \right) _{3} \left(\begin{array}{ccc} 1 & 2 \\ 3 & 0 \\ 4 & 0 \end{array} \right) = 2 \underbrace{\left(\begin{array}{ccc} 9 & 2 \\ 6 & 6 \end{array} \right)}_{3}$$

i)
$$\begin{pmatrix} 1 & 0 & 2 \\ 3 & 1 & 0 \end{pmatrix}$$
 2 $\begin{pmatrix} 2 & 1 & 3 \\ 4 & 5 & 6 \end{pmatrix} =$

k) Kommutativ? Mit
$$A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$
, $B = \begin{pmatrix} 3 & 7 \\ 0 & 0 \end{pmatrix}$ berechnen Sie $A \cdot B = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} 3 & 7 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & | \mathfrak{O} \\ 0 & | \mathfrak{O} \end{pmatrix}$

$$B \cdot A = \begin{pmatrix} \frac{3}{0} & \frac{7}{0} \\ 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} \frac{\sigma}{0} & | \mathfrak{O} \\ 0 & | \mathfrak{O} \end{pmatrix}$$

$$B \cdot A = \begin{pmatrix} \frac{3}{0} & \frac{7}{0} \\ 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} \frac{\sigma}{0} & | \mathfrak{O} \\ 0 & | \mathfrak{O} \end{pmatrix}$$

l) Einheitsmatrix
$$E_n = 1 = I \in \mathbb{R}^{n \times n}$$
. Mit $n = 3$ und $A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}$ berechnen

Sie
$$A \cdot E_n = \begin{pmatrix} \frac{1}{4} & \frac{2}{5} & \frac{3}{6} \\ \frac{1}{7} & 8 & 9 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} \frac{1}{4} & \frac{1}{5} & \frac{1}{6} \\ \frac{1}{7} & 8 & 9 \end{pmatrix} = A$$
 En neutrale Elt. Egl. Hatrizen mult. $E_n \cdot A = \begin{pmatrix} \frac{1}{9} & \frac{1}{9} & \frac{1}{9} & \frac{1}{9} \\ \frac{1}{9} & \frac{1}{9} & \frac{1}{9} & \frac{1}{9} \end{pmatrix} = A$

Eigener Lösungsversuch.

a)
$$\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} + \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix} =$$

b)
$$\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} + \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} =$$

c)
$$2 \cdot \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} + \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

d)
$$\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}^T =$$

e)
$$\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}^T =$$

f)
$$(1 \ 2 \ 3)^T =$$

g)
$$\binom{1}{2}^T =$$

h)
$$\begin{pmatrix} 1 & 0 & 2 \\ 3 & 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} 1 & 2 \\ 3 & 0 \\ 4 & 0 \end{pmatrix} =$$

$$i)\ \begin{pmatrix}1&0&2\\3&1&0\end{pmatrix}\cdot\begin{pmatrix}2&1&3\\4&5&6\end{pmatrix}=$$

k) **Kommutativ?** Mit
$$A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$
, $B = \begin{pmatrix} 3 & 7 \\ 0 & 0 \end{pmatrix}$ berechnen Sie

1) Einheitsmatrix
$$E_n = 1 = I \in \mathbb{R}^{n \times n}$$
. Mit $n = 3$ und $A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}$ berechnen

Sie
$$A \cdot E_n = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = E_n \cdot A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix} = 0$$

Algebraische Strukturen. Welche algebraische Struktur besitzt:

a)
$$(\mathbb{R}^{m \times n}, +, \cdot)$$
 (mit · Skalar
multiplikation: $\lambda \cdot A$)

b)
$$(\mathbb{R}^{n \times n}, +, \cdot)$$
 (mit · Matrizenmultiplikation: $A \cdot B$)

Lösung.

Strebermult. •: Abg.
$$\checkmark$$
Assor: $\lambda(\mu A) = (\lambda \mu)A \checkmark$
Wirtung 1: $\Lambda \cdot A = A \checkmark$
Distribut.: $(\lambda + \mu) \cdot A = \lambda A + \mu A \checkmark$
 $\lambda(A+B) = \lambda A + \lambda B$

b) tester. Add +: si chea) abelische Gruppe

Habrison multiplitation •: Abgeschl.
$$\frac{1}{n} = \frac{1}{n} = \frac{$$

Distributiv:
$$A.(B+C) = AB+AC$$

$$(A1B) \cdot C = AC+BC$$

Eigener Lösungsversuch.

