

بسم الله الرحمن الرحيم

Project Title: Transistor-Level 4-BIT ALU DESIGN

Module: 4-BIT ALU UNIT

Design

• Author: Ahmed Assem Mohamed

21 ذو القعدة، 1446 عدد 1446

1. Abstraction

This report presents the design and implementation of a **4-Bit Arithmetic Logic Unit (ALU)** using 130nm **CMOS** technology. The ALU can perform both arithmetic and logical operations. Control logic allows the selection between these two classes of operations via the most significant bit (MSB) of a 4-bit selection line. The circuit was meticulously developed and simulated using Cadence Virtuoso.

2. Logic Function and Truth Table

Sel[3:0]	Mode	Operation	Output = $f(A, B)$	Notes
0000	Arithmetic	Increment A	A + 1	Wraps around on overflow
0001	Arithmetic	Increment B	B + 1	Wraps around on overflow
0010	Arithmetic	Transfer A	А	Pass- through
0011	Arithmetic	Transfer B	В	Pass- through
0100	Arithmetic	Decrement A	A - 1	Wraps around on underflow
0101	Arithmetic	Multiply A and B	A×B	8-bit result shown
0110	Arithmetic	Add A and B	A + B	4-bit result
0111	Arithmetic	Subtract A - B	A - B	A assumed ≥ B
1000	Logic	1's Complement A	~A	Bitwise NOT

21 نو القعدة، 1446

1001	Logic	1's Complement B	~B	Bitwise NOT
1010	Logic	AND	A & B	Bitwise AND
1011	Logic	OR	(A B)	Bitwise OR
1100	Logic	XOR	A ^ B	Bitwise XOR
1101	Logic	XNOR	~(A ^ B)	Bitwise XNOR
1110	Logic	NAND	~(A & B)	Bitwise NAND
1111	Logic	NOR	~(A B)	Bitwise NOR

Some sample test cases. Example Input/Output Combinations (for A = 0101 (5), B = 0011 (3))

Sel[3:0]	Operation	Output (Binary)	Output (Decimal)
0000	A + 1	0110	6
0001	B + 1	0100	4
0010	Transfer A	0101	5
0011	Transfer B	0011	3
0100	A - 1	0100	4
0101	A×B	00001111 (15)	15
0110	A + B	1000	8
0111	A - B	0010	2
1000	~A	1010	10
1001	~B	1100	12
1010	A&B	0001	1
1011	A B	0111	7
1100	A^B	0110	6
1101	~(A ^ B)	1001	9

21 ذو القعدة، 1446 عند 1446

1110	~(A & B)	1110	14
1111	~(A B)	1000	8

3. Circuit Design

3.1. Schematic

3.2. Design Approach

- 130nm CMOS process
- 1.2V VDD
- INPUTS: 4-BIT IN0, 4-BIT IN1, 4 SEL
- OUTPUTS: 8-BIT OUT, 3-BIT OVF
- Input parameter: WN_ALU
- Sizes: All gates have this size(even if it is the parameter for MUX-8X1) why? as already each gate is designed alone,

21 ذو القعدة، 1446

- which is suitable size, this parameter is only to reduce number of variables
- Design Approach: 4-BIT ALU is the integration between 4*(1-BIT LU), 1*(4-BIT AU), and 4*(MUX_2X1)
- Although there is 8-bit output, all these bits are important only with MUL-circuit, for the rest of operations only the first 4 is important.
- OVF Flags: OVF_FA, OVFA_INC, OVFB_INC
 The first one is used only with FA-circuit, The second one is used only with INC/DEC-circuit for A input, The third one is used only with INC-circuit for B input.
- NOTE: OVF flags are designed on the assumption that the inputs are signed numbers.

3.3. Symbol

21 ذو القعدة، 1446

4. Simulation and Results

Inputs

Outputs

Note: the simulation result is performed with a max input f = 20.0MHZ

21 نو القعدة، 1446 عددة 1446