Problem Set 7 —— Linear Algebra (Spring 2024)

Dr. Y. Chen

1. Let

$$A = \left[\begin{array}{ccc} 3 & 6 & 6 \\ 4 & 8 & 8 \end{array} \right].$$

- (a) Find the projection matrix P_C onto the column space of the matrix A.
- (b) Find the 3×3 projection matrix P_R onto the row space of A.
- (c) Multiply $B = P_C A P_R$. Your answer B should be a bit surprising—can you explain it?
- 2. Three planes Π_1 , Π_2 , Π_3 in the space \mathbb{R}^3 are given by the equations

 $\Pi_1 : x + y + z = 0,$

 $\Pi_2 : 2x - y + 4z = 0,$

 $\Pi_3 : -x + 2y - z = 0.$

Determine a matrix representative (in the standard basis of \mathbb{R}^3) of a linear transformation taking the xy plane to Π_1 , the yz plane to Π_2 and the zx plane to Π_3 .

- 3. Suppose P_1 and P_2 are projection matrices $(P_i^2 = P_i = P_i^T)$. Prove: P_1P_2 is a projection if and only if $P_1P_2 = P_2P_1$.
- 4. The space M of 2 by 2 matrices has the basis

$$\left[\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array}\right], \left[\begin{array}{cc} 1 & 1 \\ 0 & 0 \end{array}\right], \left[\begin{array}{cc} 1 & 1 \\ 1 & 0 \end{array}\right], \left[\begin{array}{cc} 1 & 1 \\ 1 & 1 \end{array}\right].$$

Suppose T multiplies each matrix by $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$, i.e., T(X) = AX. Find the matrix representing this linear transformation T with respect to the above mentioned basis.

5. Consider two bases of \mathbb{R}^3

$$u_1 = (1,0,1), u_2 = (2,1,0), u_3 = (1,1,1)$$

and

$$v_1 = (1, 2, -1), v_2 = (2, 2, -1), v_3 = (2, -1, -1).$$

Define a linear transformation as follows: $T(u_i) = v_i, i = 1, 2, 3.$

- (a) Find the transition matrix from u_1, u_2, u_3 to v_1, v_2, v_3 ;
- (b) Find the matrix representation, A, of T with respect to the basis u_1, u_2, u_3 ;
- (c) Find the matrix representation, B, of T with respect to the basis v_1, v_2, v_3 ;
- (d) Can you say something about the relation between A and B?