Complejidad Computacional Tarea 2.1

Karla Adriana Esquivel Guzmán Andrea Itzel González Vargas Luis Pablo Mayo Vega Carlos Gerardo Acosta Hernández

Entrega: 04/04/17 Facultad de Ciencias UNAM

Ejercicios

1. Demuestra que el lenguaje $\Sigma_i SAT$ es completo para Σ_i^P bajo reducciones polinomiales temporales. Recuerda que SAT es NP-completo.

Demostración: Por casos.

- Caso $\mathbf{i} = \mathbf{1}$ Para $\Sigma_1 SAT$, como $\Sigma_1^P = NP$ tenemos que $\Sigma_1 SAT = SAT$ y ya sabemos que SAT es NP-completo. Entonces, en particular, $\Sigma_1 SAT$ es $\Sigma_1^P-completo$.
- Caso i > 1 Por demostrar que $\Sigma_i SAT$ es Σ_i^P – completo. Primero, definimos

$$\Sigma_i SAT = \exists u_1 \forall u_2 \exists \dots Q_i u_i \varphi(u_1, u_2, \dots, u_i) = 1$$
(1)

donde Q_i es un cuantificador (\exists o \forall dependiendo de la paridad de i), φ es una fórmula booleana, y cada u_k es un vector de variables booleanas.

Por construcción, $\Sigma_i SAT \in \Sigma_i^P$. Falta ver que sea $\Sigma_i^P - difícil$ Tenemos que:

$$\Sigma_i^p = \{L \mid \exists M \in TM \ (en \ tiempo \ polinomial) \ t. \ q. \ \exists \beta_1 \forall \beta_2 \dots Q \beta_i \alpha \beta_1 \dots \beta_i \in L(M) \} \quad (2)$$

entonces $x \in L$ sii

$$\exists \beta_1 \forall \beta_2 \exists \dots Q_i \beta_i M(x, \beta_1, \dots, \beta_i) = 1$$
(3)

Notamos que 1 y 3 son muy parecidas, entonces podríamos resolver la pregunta $\xi x \in L$? con una asignación de valores de verdad en $\Sigma_i SAT$, es decir, podemos reducir L a una instancia de $\Sigma_i SAT$. Además, L es un lenguaje cualquiera en Σ_i^P , por lo que $\Sigma_i SAT$ es $\Sigma_i^P - difícil$.

$$\therefore \Sigma_i SAT \ es \ \Sigma_i^P - completo$$

2. Demuestra que si 3SAT es temporalmente reductible polinomialmente a $\overline{3SAT}$ entonces PH=NP.

Sabemos que 3SAT es NP-completo, entonces $\overline{3SAT} \in coNP$. Supongamos que 3SAT es reductible a $\overline{3SAT}$, esto implica que NP=coNP. Como $\sum_{1}^{p}=NP$ y $\prod_{1}^{p}=coNP$, entonces $\sum_{1}^{p}=\prod_{1}^{p}$. Como vimos en clase, para toda $i\geq 1$ si $\sum_{i}^{p}=\prod_{i}^{p}$ entonces $PH=\sum_{i}^{p}$, o sea que la jerarquía se colapsa al nivel i. Como $\sum_{1}^{p}=\prod_{1}^{p}$ entonces $PH=\sum_{1}^{p}=NP$. Por lo tanto si 3SAT es reductible a $\overline{3SAT}$ (o sea NP=coNP), entonces PH=NP.

3. Demuestra que si $P^A = NP^A$ (para algún lenguaje A), entonces $PH^A \subseteq P^A$.

Tenemos que si $P^A = NP^A$ entonces P^A es cerrado bajo el complemento $=> P^A = coNP$, ahora de manera concisa tenemos que $P^A = \Sigma_1$ $P^A = \Gamma_1$ P^A .

Ahora Demostremos por Inducción que si $P^A = \Sigma_1$ $P^A = \Gamma_1$ $P^A = \sum_{i+1}$ $P^A = \Gamma_{i+1}$ P^A

- Consideremos una Σ_{i+1} P^A M \in TM, que consiste en una serie de ramificaciones seguidas por una serie de ramificaciones universales.
- Consideremos ahora los subarboles de la trayectoria de un calculo cuyas raices son el primer paso universal a lo largo del camino para cada uno de estos subarboles, M esta realizando un calculo \Box_i .

Por Hipotesis $\sqcap_1 P^A = P^A$ así podemos reemplazar cada uno de estos subarboles de calculo por un método determinista en calculo de tiempo polinomial para formar una nueva Maquina S.

- Si dejamos que a(n) sea el máximo número de pasos dados por la Maquina alterna antes de que comiencen las ramas universales y P(n) sea el numero de pasos dados por cualquiera de las maquinas P^A deterministas, que hemos sustituido por los calculos para \sqcap_i , entonces el tiempo en que corre S esta limitado por $a(n) + P^A(a(n))$.
- Observemos que $P^A(a(n))$ es una composición de funciones, porque los subprocedimientos en P^A estan calculando entradas que pueden ser mas grandes que n (Pero deberían ser mas pequeñas o igual a a(n) ya que solo se han ejecutado a(n) pasos en el tiempo que se usan los subprocedimientos.
- -Como a y p son polinomiales también lo es su composicion, Por lo tanto S esta en NP^A , por Hipotesis $P^A = NP^A => S$ esta en P^A
- -De forma similar puede ser usado para reducir una maquina $\sqcap_{i+1} P^A$ a una coNP M∈MT y Como $P^A = \Sigma_i P^A$, poniendolo asi en P^A también completamos el colapso de la jerarquía. Por lo tanto $PH^A \subset PH^A$

4. Demuestra que si $EXP \subseteq P/poli$, entonces $EXP = \Sigma_2^p$.

Dem.

Sea $L \in EXP$, entonces existe una máquina de Turing $time-oblivious\ M$ que decide L en tiempo $2^{p(n)}\ p.a$. polinomio p. Sea $s \in \{0,1\}^n$ una cadena de entrada para M. Sabemos por la definición de M que para cada $i \in [2^{p(n)}]$ denotamos con z_i la codificación de la i-ésima "instantánea" de la ejecución de M con la entrada s. Como $EXP \subseteq P/poli$, entonces existe un circuito C de tamaño q(n) (p.a. polinomio q), tal que calcula z_i a partir de una i. La correctud de lo que calcula este circuito mencionado puede ser expresado como un predicado coNP. Así,

$$s \in L \iff \exists C \in \{0,1\}^{q(n)} \ \forall i, i1, ..., ik \in \{0,1\}^{p(n)} \ T(s, C(i), C(i_1), ..., C(i_k)) = 1$$
 (4)

donde T es una TM que verifica esas condiciones en tiempo polinomial. Se puede entonces concluir que $L \in \Sigma_2^P$, que es lo que queremos. Para probar esto, consideremos $p(n) = 2^{n^k}$. Consideremos cada entrada (i,t) en la tabla de M, codifica una cadena $z_{i,t}$, i.e., el contenido de la celda i, al momento t, siempre que la cabeza lectora esté en la entrada i al momento t, y de ser así, z almacena el estado interno de M. Ahora consideremos

$$L_M = \{ \langle s, i, t, z \rangle \mid con \ la \ entrada \ s \ tenemos \ z_{i,t} = z \ para \ M \}$$
 (5)

Simulando M tendremos que $L_M \in EXP \subseteq P/poli$. Utilizando circuitos de tamaño polinomial para L_M , podemos construir un circuito de tamaño polinomial C de múltiple salida, tal que $C(\langle s,i,t\rangle)=z$. Como buscábamos en (1), decimos entonces que:

$$s \in L \iff \exists C \ \forall i, t \ t.q. \ C(\langle s, i, t \rangle) \ acepta \ si$$

 $C(\langle s, i-t, t-1 \rangle), \ C(\langle s, i, t-1 \rangle), \ C(\langle s, i+1, t-t1 \rangle) \ y \ C(\langle s, 1, 2^{n^k} \rangle) \ aceptan.$

Por lo tanto si $EXP \subseteq P/poli$, entonces $EXP = \Sigma_2^p$.