Assignment 5: Variable Selection and Validation

Andrew G. Dunn¹

 $^{1} and rew.g. dunn@u.northwestern.edu\\$

Andrew G. Dunn, Northwestern University Predictive Analytics Program

Prepared for PREDICT-410: Regression & Multivariate Analysis.

Formatted using markdown, pandoc, and \LaTeX . References managed using Bibtex, and pandoc-citeproc.

Dummy Coding of Categorical Variables

Examine a Categorical Variable

We'll choose to examine the categorical variable OverallQual as it was the variable that offered the best performance when doing a simple linear regression to SalePrice. We realize this variable is a Lickert scale [1], 10 being Very Excellent. and 1 being Very Poor. To investigate, we perform a sort and means procedure, obtaining:

N	OverallQual	SalePrice Mean
4	1	48725
13	2	52325.31
40	3	83185.98
226	4	106485.10
825	5	134752.52
732	6	162130.32
602	7	205025.76
350	8	270913.59
107	9	368336.77
31	10	450217.32

Table 1: Sorted Means procedure with OveralQual

We run a simple linear regression model:

SalePrice =
$$\beta_0 + \beta_1$$
OverallQual + ϵ

And we get the parameter estimation and diagnostic information:

$$SalePrice = 45251 \times OverallQual - 95004$$

Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t
Intercept	1	-95004	3933.82223	-24.15	< 0.0001
OverallQual	1	45251	628.80511	71.96	< 0.0001

Table 2: Model Parameter Estimates for SalePrice = OverallQual

Source	
Root MSE	48019
R-Square	0.6388
Adj R-Square	0.6387

Source F Value 5178.75

Table 3: Model Estimator Performance for SalePrice = OverallQual

We'll compute the pass-through points for the Model SalePrice = $\beta_0 + \beta_1$ OverallQual + ϵ .

$$\begin{aligned} & \text{SalePrice} = 45251 \times 1 - 95004 = -49753 \\ & \text{SalePrice} = 45251 \times 2 - 95004 = -4502 \\ & \text{SalePrice} = 45251 \times 3 - 95004 = 40749 \\ & \text{SalePrice} = 45251 \times 4 - 95004 = 86000 \\ & \text{SalePrice} = 45251 \times 5 - 95004 = 131251 \\ & \text{SalePrice} = 45251 \times 6 - 95004 = 176502 \\ & \text{SalePrice} = 45251 \times 7 - 95004 = 221753 \\ & \text{SalePrice} = 45251 \times 8 - 95004 = 267004 \\ & \text{SalePrice} = 45251 \times 9 - 95004 = 312255 \\ & \text{SalePrice} = 45251 \times 10 - 95004 = 357506 \end{aligned}$$

The predicted model appears to only be relatively close at points 3, 5, 6, 8.

Indicator Coding a Categorical Variable

OverallQual is an interesting parameter, because it is a 10-way Lickert some would choose to incorporate the parameter into a model as a continuous variable. Above we model it as a continuous parameter, here will we dummy code it and model it as an indicator variable. Although OverallQual ranges from 1-10, we can use nine variables to investigate, this is simpler to consider as a table:

OverallQual	x1	x2	x3	x4	x5	x6	x7	x8	$\overline{x9}$
1	1	0	0	0	0	0	0	0	0
2	0	1	0	0	0	0	0	0	0
3	0	0	1	0	0	0	0	0	0
4	0	0	0	1	0	0	0	0	0
5	0	0	0	0	1	0	0	0	0
6	0	0	0	0	0	1	0	0	0
7	0	0	0	0	0	0	1	0	0
8	0	0	0	0	0	0	0	1	0
9	0	0	0	0	0	0	0	0	1
10	0	0	0	0	0	0	0	0	0

Table 4: Modeling 10-Way Lickert OverallQual with 9 Indicator Variables

We will use the data procedure to dummy code OverallQual as an indicator variable. To examine our progress we evaluate a proc freq of the OverallQual:

OverallQual	Frequency	Percent	Cumulative Frequency	Cumulative Percent
1	4	0.14	4	0.14
2	13	0.44	17	0.58
3	40	1.37	57	1.95
4	226	7.71	283	9.66
5	825	28.16	1108	37.82
6	732	24.98	1840	62.80
7	602	20.55	2442	83.34
8	350	11.95	2792	95.29
9	107	3.65	2899	98.94
10	31	1.06	2930	100.00

Table 5: Frequency OverallQual

For brevity we examine the oc_1 and oc_2 variables:

oc_1	Frequency	Percent	Cumulative Frequency	Cumulative Percent
0	2926	99.86	2926	99.86
1	4	0.14	2930	100.00

Table 6: Frequency oc_1, Indicator Variable for OverallQual 1

oc_2	Frequency	Percent	Cumulative Frequency	Cumulative Percent
0	2917	99.56	2917	99.56
1	13	0.44	2930	100.00

Table 7: Frequency oc_2, Indicator Variable for OverallQual 2

We notice that the oc_1 and oc_2 variables are properly coded to match up with the OverallQual frequency table, with oc_1 have 1 coded 4 times and oc_2 having 1 coded 13 times respectively.

We now build a model, but we hold oc_10 to be the basis of interpretation:

$$SalePrice = \beta_0 + \beta_1 oc_1 + \beta_2 oc_2 + \beta_3 oc_3 + \beta_4 oc_4 + \beta_5 oc_5 + \beta_6 oc_6 + \beta_7 oc_7 + \beta_8 oc_8 + \beta_9 oc_9 + \epsilon oc_8 + \delta_9 oc_9 + \epsilon oc_9 + \delta_9 oc_9 + \epsilon oc_9 + \delta_9 oc_$$

Resulting in the parameter estimations and model diagnostics:

DF	Parameter Estimate	Standard Error	t Value	$\Pr > t $
1	450217	7841.25572	57.42	<.0001
1	-401492	23195	-17.31	<.0001
1	-397892	14426	-27.58	<.0001
1	-367031	10447	-35.13	<.0001
1	-343732	8361.76503	-41.11	<.0001
1	-315465	7987.21777	-39.50	<.0001
1	-288087	8005.57159	-35.99	<.0001
1	-245192	8040.61424	-30.49	<.0001
1	-179304	8181.14487	-21.92	<.0001
1	-81881	8904.98663	-9.19	<.0001
	1 1 1 1 1 1 1 1	1 450217 1 -401492 1 -397892 1 -367031 1 -343732 1 -315465 1 -288087 1 -245192 1 -179304	1 450217 7841.25572 1 -401492 23195 1 -397892 14426 1 -367031 10447 1 -343732 8361.76503 1 -315465 7987.21777 1 -288087 8005.57159 1 -245192 8040.61424 1 -179304 8181.14487	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Table 8: Model Parameter Estimates for SalePrice = OverallQual Indicator Variables

Source	
Root MSE	43658
R-Square	0.7023
Adj R-Square	0.7013
F Value	765.22

Table 9: Model Estimator Performance for SalePrice = OverallQual Indicator Variables

We notice that our Adj. R-Square value has increased from 0.6388 to 0.7013. The resulting Model is:

$$\begin{aligned} & \text{SalePrice} = 450217 - 401492 \times \text{oc}_1 - 397892 \times \text{oc}_2 \\ & -367031 \times \text{oc}_3 - 343732 \times \text{oc}_4 - 315465 \times \text{oc}_5 \\ & -288087 \times \text{oc}_6 - 245192 \times \text{oc}_7 - 179304 \times \text{oc}_8 \\ & -81881 \times \text{oc} \quad 9 \end{aligned}$$

If the house is of OverallQual 1, then the above model becomes:

$$SalePrice = 450217 - 401492$$

That is to say, if the OverallQual is 1, then the SalePrice in this model is 48725. Looking back at our sorted mean we see the SalePrice for OverallQual of 1 had a mean of 48725.

If the house is of OverallQual 2, then the above model becomes:

SalePrice =
$$450217 - 397892$$

That is to say, if the OverallQual is 2, then the SalePrice in this model is 52325. Looking back at our sorted mean we see the SalePrice for OverallQual of 2 had a mean of 52325.31.

If the house is of OverallQual 3, then the above model becomes:

SalePrice =
$$450217 - 367031$$

That is to say, if the OverallQual is 3, then the SalePrice in this model is 83186. Looking back at our sorted mean we see the SalePrice for OverallQual of 3 had a mean of 83185.98.

If the house is of OverallQual 4, then the above model becomes:

SalePrice =
$$450217 - 343732$$

That is to say, if the OverallQual is 4, then the SalePrice in this model is 106485. Looking back at our sorted mean we see the SalePrice for OverallQual of 4 had a mean of 106485.10.

If the house is of OverallQual 5, then the above model becomes:

SalePrice =
$$450217 - 315465$$

That is to say, if the OverallQual is 5, then the SalePrice in this model is 134752. Looking back at our sorted mean we see the SalePrice for OverallQual of 5 had a mean of 134752.52.

If the house is of OverallQual 6, then the above model becomes:

SalePrice =
$$450217 - 288087$$

That is to say, if the OverallQual is 6, then the SalePrice in this model is 162130. Looking back at our sorted mean we see the SalePrice for OverallQual of 6 had a mean of 162130.32.

If the house is of OverallQual 7, then the above model becomes:

SalePrice =
$$450217 - 245192$$

That is to say, if the OverallQual is 7, then the SalePrice in this model is 205025. Looking back at our sorted mean we see the SalePrice for OverallQual of 7 had a mean of 205025.76.

If the house is of OverallQual 8, then the above model becomes:

$$SalePrice = 450217 - 179304$$

That is to say, if the OverallQual is 8, then the SalePrice in this model is 270913. Looking back at our sorted mean we see the SalePrice for OverallQual of 8 had a mean of 270913.59.

If the house is of OverallQual 9, then the above model becomes:

$$SalePrice = 450217 - 81881$$

That is to say, if the OverallQual is 1, then the SalePrice in this model is 368336. Looking back at our sorted mean we see the SalePrice for OverallQual of 9 had a mean of 368336.77.

If the house is of OverallQual 10, then the above model becomes:

$${\rm SalePrice} = 450217$$

That is to say, if the OverallQual is 10, then the SalePrice in this model is 450217. Looking back at our sorted mean we see the SalePrice for OverallQual of 10 had a mean of 450217.32.

It seems that we're assuming the dependent SalePrice has a linear relationship with the independent OverallQual, and that the slope does not depend on the OverallQual, but that OverallQual sets the intercept for SalePrice. The variables for β_1, \ldots, β_9 measure the effects of Quality ratings $1, \ldots, 9$ respectively, compared to a Quality rating of 10.For example, in this model $\beta_4 - \beta_2$ reflects the relative difference between OverallQual 4 and 2, respectively on SalePrice.

Dummy Code Hypothesis Testing

$$H_0: \beta_{1..9} = 0$$
 versus $H_1: \beta_{1..9} \neq 0$

For each variable $\beta_{1...9}$ we observe that the model returned results that indicate statistical significance. This model, without a continuous variable, is highly uncomfortable to work with and interpret. Even with the Adj. R-Square value being lower for this model, and all the dependent variables showing statistical significance, it still provides discomfort to the analyst.

Dummy Code another Categorical Variable

We will use the data procedure to dummy code HouseStyle as an indicator variable. To examine our progress we evaluate a proc freq of the HouseStyle:

HouseStyle	Frequency	Percent	Cumulative Frequency	Cumulative Percent
1.5Fin	314	10.72	314	10.72
1.5 Unf	19	0.65	333	11.37
1Story	1481	50.55	1814	61.91
2.5 Fin	8	0.27	1822	62.18
$2.5 \mathrm{Unf}$	24	0.82	1846	63.00
2Story	873	29.80	2719	92.80
SFoyer	83	2.83	2802	95.63
SLvl	128	4.37	2930	100.00

Table 10: Frequency HouseStyle

For brevity we examine the hs 1 and hs 2 variables, which correspond to '1Story' and '1.5Fin' respectively:

hs_1	Frequency	Percent	Cumulative Frequency	Cumulative Percent
0	1449	49.45	1449	49.45
1	1481	50.55	2930	100.00

Table 11: Frequency hs_1, Indicator Variable for HouseStyle '1Story'

hs_2	Frequency	Percent	Cumulative Frequency	Cumulative Percent
0	2616	89.28	2616	89.28
1	314	10.72	2930	100.00

Table 12: Frequency hs_2, Indicator Variable for HouseStyle '1.5Fin'

We notice that the hs_1 and hs_2 variables are properly coded to match up with the HouseStyle frequency table, with hs_1 have 1 coded 1481 times and hs_2 having 1 coded 314 times respectively.

Automated Variable Selection

Obtaining the "Best" Model

From assignment 2 we will consult the results of correlating the continous variables to SalePrice. We will take the top 7 to incorporate into our automated variable selection strategy.

Continuous Variable	Correlation to SalePrice	Prob > $ r $ under H_0 : $\rho=0$	Number of Observations	
GrLivArea	0.70678	< 0.0001	2930	
${\rm GarageArea}$	0.64040	< 0.0001	2929	
${\bf TotalBsmtSF}$	0.63228	< 0.0001	2929	
${\bf FirstFlrSF}$	0.62168	< 0.0001	2930	
${\it MasVnrArea}$	0.50828	< 0.0001	2907	
${\bf BsmtFinSF1}$	0.43291	< 0.0001	2929	
${\bf BsmtUnfSF}$	0.18286	< 0.0001	2929	

Table 13: Continuous variable correlation to SalePrice, top seven.

We run the reg procedure using the selection method; adjrsq, cp, forward, backward, and stepwise. The follow models are found to to be the ranked best by these methods.

Adjusted R-Square Selection

```
Sale Price = 6657.59 + 69.5822 \times GrLiv Area + 41.8777 \times Garage Area + 28.0007 \times Total Bsmt SF \\ -24.9846 \times First Flr SF + 16.3510 \times Mas Vnr Area + 5.19529 \times Bsmt Fin SF1 - 16.3582 \times Bsmt Unf SF \\ +12658.92 \times oc_3 + 23951.92 \times oc_4 + 36624.84 \times oc_5 + 52863.67 \times oc_6 + 79166.05 \times oc_7 \\ +117691.13 \times oc_8 + 188655.41 \times oc_9 + 207986.47 \times oc_{10} - 24331.98 \times hs_2 - 23028.05 \times hs_4 \\ -58533.55 \times hs_5 - 46629.36 \times hs_6 - 7228.92 \times hs_8 \\
```

Source	
Root MSE	33158.70
C_p	19.2110
R-Square	0.8286
Adj. R-Square	0.8274
AIC	60497.5649
BIC	60499.8969

Table 14: Model Performance

We generally expect that the selection method will result in selection of many dependent variables. We hope moving forward with the other selection methods that they are not as egregious with their incorporation of variables. We notice that of the listed models, the C_p for this model, with this method, was the lowest of the top 5.

Mallow's C_p Selection

Model Selected:

```
Sale Price = 15358.36 + 69.4728 \times GrLiv Area + 41.9804 \times Garage Area + 32.6848 \times Total BsmtSF \\ -24.8346 \times First Flr SF + 16.5745 \times Mas Vnr Area - 20.8651 \times Bsmt Unf SF + 15042.94 \times oc_4 \\ +27574.85 \times oc_5 + 43883.85 \times oc_6 + 70234.08 \times oc_7 + 108726.48 \times oc_8 \\ +179964.93 \times oc_9 + 199334.08 \times oc_{10} - 24111.27 \times hs_2 - 22835.81 \times hs_4 \\ -58314.95 \times hs_5 - 46558.00 \times hs_6 - 7327.98 \times hs_8 \\
```

Source	
Root MSE	33158.70
C_p	18.7190
R-Square	0.8284
Adj. R-Square	0.8273
AIC	60497.0985
BIC	60499.90

Table 15: Model Performance

AIC Selection (Analyst Examination of Mallow's C_p results)

We realize that the regression procedure within SAS does not allow for selection by AIC criterion. We therefor examine the output of the C_p selection and choose the model with the lowest value of AIC.

```
\begin{aligned} \text{SalePrice} &= 15358.36 + 69.4728 \times \text{GrLivArea} + 41.9804 \times \text{GarageArea} + 32.6848 \times \text{TotalBsmtSF} \\ &- 24.8346 \times \text{FirstFlrSF} + 16.5745 \times \text{MasVnrArea} - 20.8651 \times \text{BsmtUnfSF} + 15042.94 \times \text{oc}\_4 \\ &+ 27574.85 \times \text{oc}\_5 + 43883.85 \times \text{oc}\_6 + 70234.08 \times \text{oc}\_7 + 108726.48 \times \text{oc}\_8 \\ &+ 179964.93 \times \text{oc}\_9 + 199334.08 \times \text{oc}\_10 - 24111.27 \times \text{hs}\_2 - 22835.81 \times \text{hs}\_4 \\ &- 58314.95 \times \text{hs}\_5 - 46558.00 \times \text{hs}\_6 - 7327.98 \times \text{hs}\_8 \end{aligned}
```

Source	
Root MSE	33158.70
C_p	18.7190
R-Square	0.8284
Adj. R-Square	0.8273
AIC	60497.0985
BIC	60499.90

Table 16: Model Performance

We had initially expected to see the AIC selection criterion result in a model with few parameters due to AIC formulation having a built in penalty as an increasing function of the number of estimated parameters. We are sadly disappointed an have received yet another large model.

Forward Selection

```
\begin{aligned} \text{SalePrice} &= -360.76459 + 69.68463 \times \text{GrLivArea} + 41.76716 \times \text{GarageArea} + 27.93859 \times \text{TotalBsmtSF} \\ -25.34106 \times \text{FirstFlrSF} + 16.33439 \times \text{MasVnrArea} + 5.28855 \times \text{BsmtFinSF1} - 16.31118 \times \text{BsmtUnfSF} \\ &+ 12950 \times \text{oc}\_3 + 24209 \times \text{oc}\_4 + 336937 \times \text{oc}\_5 + 53201 \times \text{oc}\_6 + 79464 \times \text{oc}\_7 \\ &+ 117993 \times \text{oc}\_8 + 189014 \times \text{oc}\_9 + 208487 \times \text{oc}\_10 + 7253.75366 \times \text{hs}\_1 - 17389 \times \text{hs}\_2 \\ &- 16106 \times \text{hs}\_4 - 51606 \times \text{hs}\_5 - 39701 \times \text{hs}\_6 + 5452.76119 \times \text{hs}\_7 \end{aligned}
```

Source	
Root MSE	33160.21
C_p	20.4741
R-Square	0.82862
Adj. R-Square	0.82737
F Value	663.78
AIC	60498.82
BIC	60501.18

Table 17: Model Performance

Backward Selection

Model Selected:

```
Sale Price = 210542.11 + 669.0064 \times GrLiv Area + 41.9546 \times Garage Area + 32.9086 \times Total Bsmt SF \\ -24.8742 \times First Flr SF + 16.5710 \times Mas Vnr Area - 21.1202 \times Bsmt Unf SF - 218229 \times oc_1 \\ -205920.52 \times oc_2 - 196002 \times oc_3 - 184601 \times oc_4 - 172059 \times oc_5 - 155840 \times oc_6 \\ -129483 \times oc_7 - 90909 \times oc_8 - 19592 \times oc_9 + 5212 \times hs_1 - 18991 \times hs_2 \\ -17496 \times hs_4 - 52459 \times hs_5 - 41077 \times hs_6
```

Source	
Root MSE	33171.58
C_p	21.4498
R-Square	0.82844
Adj. R-Square	0.82725
F Value	696.34
AIC	60499.82
BIC	60502.12

Table 18: Model Performance

Stepwise Selection

```
 \begin{aligned} \text{SalePrice} &= 10670.55 + 68.9622 \times \text{GrLivArea} + 42 \times \text{GarageArea} + 33.0526 \times \text{TotalBsmtSF} \\ &- 24.7990 \times \text{FirstFlrSF} + 16.5238 \times \text{MasVnrArea} - 21.0767 \times \text{BsmtUnfSF} \\ &+ 15150 \times \text{oc}\_4 + 27671 \times \text{oc}\_5 + 43855 \times \text{oc}\_6 + 70189 \times \text{oc}\_7 + 108725 \times \text{oc}\_8 \\ &+ 179998 \times \text{oc}\_9 + 199501 \times \text{oc}\_10 + 5102 \times \text{hs}\_1 - 18928 \times \text{hs}\_2 - 17456 \times \text{hs}\_4 \\ &- 52435 \times \text{hs} \quad 5 - 41063 \times \text{hs} \quad 6 \end{aligned}
```

Source	
Root MSE	33172.66
C_p	19.6388
R-Square	0.82831
Adj. R-Square	0.82724
F Value	773.54
AIC	60498.02
BIC	60500.27

Table 19: Model Performance

We'll make a table to compare the model performance information

Model	Cont.	Ind.	Root MSE	C_p	R-Square	Adj. R-Square	F Value	AIC	BIC
Adj. R-Square	7	13	33158.70	19.2110	0.8286	0.8274	-	60497.5649	60499.8969
Mallow's C_p	6	12	33158.70	18.7190	0.8284	0.8273	-	60497.0985	60499.90
AIC	6	12	33158.70	18.7190	0.8284	0.8273	-	60497.0985	60499.90
Forward	7	14	33160.21	20.4741	0.82862	0.82737	663.78	60498.82	60501.18
Backward	6	14	33171.58	21.4498	0.82844	0.82725	696.34	60499.82	60502.12
Stepwise	6	12	33172.66	19.6388	0.82831	0.82724	773.54	60498.02	60500.27

It seems relevant to mention that models which incorporate more parameters become more complex for interpretation. Going into the variable selection, we had anticipated that Mallow's C_p and AIC would result in models of greatly reduced complexity (parameters), however the results show that these models all performed well by incorporating almost all of the continuous variables in them.

For Mallow's C_p and AIC, we received the same results because we were looking to minimize AIC. The Mallow's C_p method found the models with the lowest AIC, so we naturally used that same model for the AIC selection criteria.

In terms of an interpretable model, we're not a fan of our initial selection of OverallQual based solely on correlation criteria. This variable is large (10-way Lickert) and now that we've performed automated variable selection we'll have to incorporate it into our ultimate model. There is some concern that OverallQual is a subjective categorical measurement, as opposed to HouseStyle which is an observable categorical measurement. This likely means that we are vectoring towards building a model that will be more useful for inference than prediction. we say this because in sample we have observations of OverallQual, but out-of- sample there is no systematic way of observing and characterizing OverallQual, this is something obtained through the survey methodology.

If Dummy Variable Inclusion, Must Include all Dummy Variable for that Parameter

Select one of the six models that incorporated a dummy variable, refit the model after adding in the other dummy variables from that parameter

Report the model, interpret the coefficients.

Discuss any observations

Validation Framework

Create a Training and Test Data set

data temp; set mydata.ames_housing_data; * generate a uniform(0,1) random variable with seed set to 123; u = uniform(123); if (u < 0.70) then train = 1; else train = 0; if (train=1) then train_response=SalePrice; else train_response=:; run;

Obtaining the "Best" Model

With train_response re runn: adjusted R-Squared, Mallow's Cp, AIC, Forward, Backward and Stepwise, in six separate modeling steps

Report summary tables for each technique

Did the different techniques select the same model?

Discuss any observations, specifically how do these models compare to the models that were run against salePrice

Comparing Models with Training and Test Data

Identify each of the 6 models in a table: model_{AdjRSqr}... For each, obtain Adjusted R-Square, BIC, MSE, MAE on training set (proc reg)

Next, use a new SAS data step and a PROC MEANS statement to calculate the average squared error (MSE) and the average absolute error (MAE) for the test sample and the validation sample. Which model fits the best based on these statistics? Did the model that fit best in-sample predict the best out-of-sample?

proc reg data=part8; model train_response = extcond_ta extcond_fa/ selection=forward; output out=part9 predicted=yhat;

```
data part9b; set part9; mae = abs(yhat - train_response);
proc means data=part9b; var mae; title 'MAE Calculation';
```

Operational Validation

We have validated these models in the statistical sense, but what about the business sense? Do MSE or MAE easily translate to the development of a business policy? To do this, you will need to create a new datastep after saving the predicted values from the model. Define the variable "Prediction_Grade" (define the variable using format \$7.). Let's consider the predicted value to be "Grade 1" if it is within ten percent of the actual value, "Grade 2" if it is within fifteen percent of the actual value, and "Grade 3" otherwise. How accurate are the models under this definition of predictive accuracy? Use PROC FREQ to provide a table of the model's operational accuracy.

proc reg data=part8; model train_response = extcond_ta extcnd_fa/ selection=forward; output out=part10 predicted=yhat;

```
proc print data=part10 (obs=10);
data part10b; set part10; if train_response = . then delete;
length prediction_grade $7.;
pct_diff = abs((yhat - train_response) / train_response);

if pct_diff LE 0.10 then prediction_grade = 'Grade 1';
    else if pct_diff GT 0.10 and pct_diff LE 0.15 then prediction_grade = 'Grade 2';
    else prediction_grade = 'Grade 3';

proc print data=part10b (obs=10);
proc freq data=part10b; tables prediction_grade;
```

Best Model, Revisited with all Dummy coded Variables

If a dummy coded variable included, add the rest from that parameter

Report the model, this is the final model, report happily

Conclusion / Reflection

What were the challenges within this data set?

What are the recommendations for improving prediction accuracy

Notes on choosing OverallQual - stuborness isn't good as an analyst, be ready to be flexible - A subjective rating, instead of a measured categorical value, is likely better for inference rather than predection - Wouldn't a better method be to do variable selection without categorical variables and then add them once you found a 'good' model?

Procedures

```
title 'Assignment 5';
libname mydata '/scs/crb519/PREDICT_410/SAS_Data/' access=readonly;
* create a temporary variable (data source is read only);
data ames;
  set mydata.ames_housing_data;
ods graphics on;
proc sort data=ames;
 by OverallQual;
proc means data=ames;
  var SalePrice;
  by OverallQual;
proc reg data=ames;
  model SalePrice = OverallQual;
data ames_dummy_oc;
  set ames;
  keep SalePrice OverallQual oc_1 oc_2 oc_3 oc_4 oc_5 oc_6 oc_7 oc_8 oc_9 oc_10;
  if OverallQual in (1 2 3 4 5 6 7 8 9 10) then do;
   oc 1 = (OverallQual eq 1);
   oc_2 = (OverallQual eq 2);
   oc_3 = (OverallQual eq 3);
   oc_4 = (OverallQual eq 4);
   oc_5 = (OverallQual eq 5);
   oc_6 = (OverallQual eq 6);
   oc_7 = (OverallQual eq 7);
   oc_8 = (OverallQual eq 8);
   oc_9 = (OverallQual eq 9);
   oc_10 = (OverallQual eq 10);
    end;
proc freq data=ames_dummy_oc;
  tables OverallQual oc_1 oc_2 oc_3 oc_4 oc_5 oc_6 oc_7 oc_8 oc_9 oc_10;
proc reg data=ames_dummy_oc;
  model saleprice = oc_1 oc_2 oc_3 oc_4 oc_5 oc_6 oc_7 oc_8 oc_9;
run;
```

References

[1] Wikipedia, "Likert scale — wikipedia, the free encyclopedia." 2015 [Online]. Available: http://en.wikipedia.org/w/index.php?title=Likert_scale&oldid=653173542