CSE 431/531: Algorithm Analysis and Design (Fall 2024) Divide-and-Conquer

Lecturer: Kelin Luo

Department of Computer Science and Engineering University at Buffalo

- Divide-and-Conquer
- Counting Inversions
- Quicksort and Selection
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
- Polynomial Multiplication
- Solving Recurrences
- oxdots Computing n-th Fibonacci Number

- Divide-and-Conquer
- 2 Counting Inversions
- Quicksort and Selection
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
- Polynomial Multiplication
- Solving Recurrences
- \bigcirc Computing n-th Fibonacci Number

- Divide-and-Conquer
- Counting Inversions
- Quicksort and Selection
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
- Polynomial Multiplication
- Solving Recurrences
- oxdots Computing n-th Fibonacci Number

- Divide-and-Conquer
- Counting Inversions
- Quicksort and Selection
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
- Polynomial Multiplication
- Solving Recurrences
- oxdots Computing n-th Fibonacci Number

- Divide-and-Conquer
- Counting Inversions
- Quicksort and Selection
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
- Polynomial Multiplication
- Solving Recurrences
- oxdots Computing n-th Fibonacci Number

- Divide-and-Conquer
- Counting Inversions
- Quicksort and Selection
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
- Polynomial Multiplication
- Solving Recurrences
- \bigcirc Computing n-th Fibonacci Number

- Divide-and-Conquer
- Counting Inversions
- Quicksort and Selection
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
- Polynomial Multiplication
- Solving Recurrences
- oxdots Computing n-th Fibonacci Number

Methods for Solving Recurrences

- The recursion-tree method
- The master theorem

•
$$T(n) = 2T(n/2) + O(n)$$

ullet Each level takes running time O(n)

- Each level takes running time O(n)
- There are $O(\lg n)$ levels

•
$$T(n) = 2T(n/2) + O(n)$$

- Each level takes running time O(n)
- There are $O(\lg n)$ levels
- Running time = $O(n \lg n)$

•
$$T(n) = 3T(n/2) + O(n)$$

$$T(n) = 3T(n/2) + O(n)$$

• T(n) = 3T(n/2) + O(n)

• Total running time at level *i*?

• T(n) = 3T(n/2) + O(n)

 \bullet Total running time at level $i ? \ \frac{n}{2^i} \times 3^i = \left(\frac{3}{2}\right)^i n$

- ullet Total running time at level i? $rac{n}{2^i} imes 3^i = \left(rac{3}{2}
 ight)^i n$
- Index of last level?

- ullet Total running time at level i? $rac{n}{2^i} imes 3^i = \left(rac{3}{2}
 ight)^i n$
- Index of last level? $lg_2 n$

- ullet Total running time at level i? $rac{n}{2^i} imes 3^i = \left(rac{3}{2}
 ight)^i n$
- Index of last level? $lg_2 n$
- Total running time?

- Total running time at level i? $\frac{n}{2^i} \times 3^i = \left(\frac{3}{2}\right)^i n$
- Index of last level? $lg_2 n$
- Total running time?

$$\sum_{i=0}^{\lg_2 n} \left(\frac{3}{2}\right)^i n = O\left(n\left(\frac{3}{2}\right)^{\lg_2 n}\right) = O(3^{\lg_2 n}) = O(n^{\lg_2 3}).$$

•
$$T(n) = 3T(n/2) + O(n^2)$$

•
$$T(n) = 3T(n/2) + \frac{O(n^2)}{n^2}$$

• $T(n) = 3T(n/2) + O(n^2)$

• Total running time at level *i*?

• $T(n) = 3T(n/2) + O(n^2)$

 \bullet Total running time at level $i?~\left(\frac{n}{2^i}\right)^2\times 3^i=\left(\frac{3}{4}\right)^in^2$

- \bullet Total running time at level $i ? \, \left(\frac{n}{2^i}\right)^2 \times 3^i = \left(\frac{3}{4}\right)^i n^2$
- Index of last level?

- Total running time at level $i? \left(\frac{n}{2^i}\right)^2 \times 3^i = \left(\frac{3}{4}\right)^i n^2$
- Index of last level? $lg_2 n$

- \bullet Total running time at level $i?~\left(\frac{n}{2^i}\right)^2\times 3^i=\left(\frac{3}{4}\right)^in^2$
- Index of last level? $lg_2 n$
- Total running time?

- Total running time at level i? $\left(\frac{n}{2^i}\right)^2 \times 3^i = \left(\frac{3}{4}\right)^i n^2$
- Index of last level? $lg_2 n$
- Total running time?

$$\sum_{i=0}^{\lg_2 n} \left(\frac{3}{4}\right)^i n^2 =$$

Recursion-Tree Method

• $T(n) = 3T(n/2) + O(n^2)$

- \bullet Total running time at level $i?~\left(\frac{n}{2^i}\right)^2\times 3^i=\left(\frac{3}{4}\right)^in^2$
- Index of last level? $lg_2 n$
- Total running time?

$$\sum_{i=0}^{\lg_2 n} \left(\frac{3}{4}\right)^i n^2 = O(n^2).$$

Recurrences	a	b	c	time
T(n) = 2T(n/2) + O(n)				$O(n \lg n)$
T(n) = 3T(n/2) + O(n)				$O(n^{\lg_2 3})$
$T(n) = 3T(n/2) + O(n^2)$				$O(n^2)$

Recurrences	a	b	c	time
T(n) = 2T(n/2) + O(n)	2	2	1	$O(n \lg n)$
T(n) = 3T(n/2) + O(n)				$O(n^{\lg_2 3})$
$T(n) = 3T(n/2) + O(n^2)$				$O(n^2)$

Recurrences	a	b	c	time
T(n) = 2T(n/2) + O(n)	2	2	1	$O(n \lg n)$
T(n) = 3T(n/2) + O(n)	3	2	1	$O(n^{\lg_2 3})$
$T(n) = 3T(n/2) + O(n^2)$				$O(n^2)$

Recurrences	a	b	c	time
T(n) = 2T(n/2) + O(n)	2	2	1	$O(n \lg n)$
T(n) = 3T(n/2) + O(n)	3	2	1	$O(n^{\lg_2 3})$
$T(n) = 3T(n/2) + O(n^2)$	3	2	2	$O(n^2)$

Recurrences	a	b	c	time
T(n) = 2T(n/2) + O(n)	2	2	1	$O(n \lg n)$
T(n) = 3T(n/2) + O(n)	3	2	1	$O(n^{\lg_2 3})$
$T(n) = 3T(n/2) + O(n^2)$	3	2	2	$O(n^2)$

$$T(n) = \begin{cases} & \text{if } c < \lg_b a \\ & \text{if } c = \lg_b a \\ & \text{if } c > \lg_b a \end{cases}$$

Recurrences	a	b	c	time
T(n) = 2T(n/2) + O(n)	2	2	1	$O(n \lg n)$
T(n) = 3T(n/2) + O(n)	3	2	1	$O(n^{\lg_2 3})$
$T(n) = 3T(n/2) + O(n^2)$	3	2	2	$O(n^2)$

$$T(n) = \begin{cases} ?? & \text{if } c < \lg_b a \\ & \text{if } c = \lg_b a \\ & \text{if } c > \lg_b a \end{cases}$$

Recurrences	a	b	c	time
T(n) = 2T(n/2) + O(n)	2	2	1	$O(n \lg n)$
T(n) = 3T(n/2) + O(n)	3	2	1	$O(n^{\lg_2 3})$
$T(n) = 3T(n/2) + O(n^2)$	3	2	2	$O(n^2)$

$$T(n) = \begin{cases} O(n^{\lg_b a}) & \text{if } c < \lg_b a \\ & \text{if } c = \lg_b a \\ & \text{if } c > \lg_b a \end{cases}$$

Recurrences	a	b	c	time
T(n) = 2T(n/2) + O(n)	2	2	1	$O(n \lg n)$
T(n) = 3T(n/2) + O(n)	3	2	1	$O(n^{\lg_2 3})$
$T(n) = 3T(n/2) + O(n^2)$	3	2	2	$O(n^2)$

$$T(n) = \begin{cases} O(n^{\lg_b a}) & \text{if } c < \lg_b a \\ & \text{if } c = \lg_b a \end{cases}$$

$$?? & \text{if } c > \lg_b a$$

Recurrences	a	b	c	time
T(n) = 2T(n/2) + O(n)	2	2	1	$O(n \lg n)$
T(n) = 3T(n/2) + O(n)	3	2	1	$O(n^{\lg_2 3})$
$T(n) = 3T(n/2) + O(n^2)$	3	2	2	$O(n^2)$

$$T(n) = \begin{cases} O(n^{\lg_b a}) & \text{if } c < \lg_b a \\ & \text{if } c = \lg_b a \\ O(n^c) & \text{if } c > \lg_b a \end{cases}$$

Recurrences	a	b	c	time
T(n) = 2T(n/2) + O(n)	2	2	1	$O(n \lg n)$
T(n) = 3T(n/2) + O(n)	3	2	1	$O(n^{\lg_2 3})$
$T(n) = 3T(n/2) + O(n^2)$	3	2	2	$O(n^2)$

$$T(n) = \begin{cases} O(n^{\lg_b a}) & \text{if } c < \lg_b a \\ \ref{eq:constraint} & \text{if } c = \lg_b a \\ O(n^c) & \text{if } c > \lg_b a \end{cases}$$

Recurrences	a	b	c	time
T(n) = 2T(n/2) + O(n)	2	2	1	$O(n \lg n)$
T(n) = 3T(n/2) + O(n)	3	2	1	$O(n^{\lg_2 3})$
$T(n) = 3T(n/2) + O(n^2)$	3	2	2	$O(n^2)$

$$T(n) = \begin{cases} O(n^{\lg_b a}) & \text{if } c < \lg_b a \\ O(n^c \lg n) & \text{if } c = \lg_b a \\ O(n^c) & \text{if } c > \lg_b a \end{cases}$$

$$T(n) = \begin{cases} O(n^{\lg_b a}) & \text{if } c < \lg_b a \\ O(n^c \lg n) & \text{if } c = \lg_b a \\ O(n^c) & \text{if } c > \lg_b a \end{cases}$$

• Ex: $T(n) = 4T(n/2) + O(n^2)$. Which Case?

$$T(n) = \begin{cases} O(n^{\lg_b a}) & \text{if } c < \lg_b a \\ O(n^c \lg n) & \text{if } c = \lg_b a \\ O(n^c) & \text{if } c > \lg_b a \end{cases}$$

• Ex: $T(n) = 4T(n/2) + O(n^2)$. Case 2.

$$T(n) = \begin{cases} O(n^{\lg_b a}) & \text{if } c < \lg_b a \\ O(n^c \lg n) & \text{if } c = \lg_b a \\ O(n^c) & \text{if } c > \lg_b a \end{cases}$$

• Ex:
$$T(n) = 4T(n/2) + O(n^2)$$
. Case 2. $T(n) = O(n^2 \lg n)$

$$T(n) = \begin{cases} O(n^{\lg_b a}) & \text{if } c < \lg_b a \\ O(n^c \lg n) & \text{if } c = \lg_b a \\ O(n^c) & \text{if } c > \lg_b a \end{cases}$$

- Ex: $T(n) = 4T(n/2) + O(n^2)$. Case 2. $T(n) = O(n^2 \lg n)$
- Ex: T(n) = 3T(n/2) + O(n). Which Case?

$$T(n) = \begin{cases} O(n^{\lg_b a}) & \text{if } c < \lg_b a \\ O(n^c \lg n) & \text{if } c = \lg_b a \\ O(n^c) & \text{if } c > \lg_b a \end{cases}$$

- Ex: $T(n) = 4T(n/2) + O(n^2)$. Case 2. $T(n) = O(n^2 \lg n)$
- Ex: T(n) = 3T(n/2) + O(n). Case 1.

$$T(n) = \begin{cases} O(n^{\lg_b a}) & \text{if } c < \lg_b a \\ O(n^c \lg n) & \text{if } c = \lg_b a \\ O(n^c) & \text{if } c > \lg_b a \end{cases}$$

- Ex: $T(n) = 4T(n/2) + O(n^2)$. Case 2. $T(n) = O(n^2 \lg n)$
- Ex: T(n) = 3T(n/2) + O(n). Case 1. $T(n) = O(n^{\log_2 3})$

$$T(n) = \begin{cases} O(n^{\lg_b a}) & \text{if } c < \lg_b a \\ O(n^c \lg n) & \text{if } c = \lg_b a \\ O(n^c) & \text{if } c > \lg_b a \end{cases}$$

- Ex: $T(n) = 4T(n/2) + O(n^2)$. Case 2. $T(n) = O(n^2 \lg n)$
- Ex: T(n) = 3T(n/2) + O(n). Case 1. $T(n) = O(n^{\lg_2 3})$
- Ex: T(n) = T(n/2) + O(1). Which Case?

$$T(n) = \begin{cases} O(n^{\lg_b a}) & \text{if } c < \lg_b a \\ O(n^c \lg n) & \text{if } c = \lg_b a \\ O(n^c) & \text{if } c > \lg_b a \end{cases}$$

- Ex: $T(n) = 4T(n/2) + O(n^2)$. Case 2. $T(n) = O(n^2 \lg n)$
- Ex: T(n) = 3T(n/2) + O(n). Case 1. $T(n) = O(n^{\lg_2 3})$
- Ex: T(n) = T(n/2) + O(1). Case 2.

$$T(n) = \begin{cases} O(n^{\lg_b a}) & \text{if } c < \lg_b a \\ O(n^c \lg n) & \text{if } c = \lg_b a \\ O(n^c) & \text{if } c > \lg_b a \end{cases}$$

- Ex: $T(n) = 4T(n/2) + O(n^2)$. Case 2. $T(n) = O(n^2 \lg n)$
- Ex: T(n) = 3T(n/2) + O(n). Case 1. $T(n) = O(n^{\lg_2 3})$
- Ex: T(n) = T(n/2) + O(1). Case 2. $T(n) = O(\lg n)$

$$T(n) = \begin{cases} O(n^{\lg_b a}) & \text{if } c < \lg_b a \\ O(n^c \lg n) & \text{if } c = \lg_b a \\ O(n^c) & \text{if } c > \lg_b a \end{cases}$$

- Ex: $T(n) = 4T(n/2) + O(n^2)$. Case 2. $T(n) = O(n^2 \lg n)$
- Ex: T(n) = 3T(n/2) + O(n). Case 1. $T(n) = O(n^{\lg_2 3})$
- Ex: T(n) = T(n/2) + O(1). Case 2. $T(n) = O(\lg n)$
- Ex: $T(n) = 2T(n/2) + O(n^2)$. Which Case?

$$T(n) = \begin{cases} O(n^{\lg_b a}) & \text{if } c < \lg_b a \\ O(n^c \lg n) & \text{if } c = \lg_b a \\ O(n^c) & \text{if } c > \lg_b a \end{cases}$$

- Ex: $T(n) = 4T(n/2) + O(n^2)$. Case 2. $T(n) = O(n^2 \lg n)$
- Ex: T(n) = 3T(n/2) + O(n). Case 1. $T(n) = O(n^{\lg_2 3})$
- Ex: T(n) = T(n/2) + O(1). Case 2. $T(n) = O(\lg n)$
- Ex: $T(n) = 2T(n/2) + O(n^2)$. Case 3.

$$T(n) = \begin{cases} O(n^{\lg_b a}) & \text{if } c < \lg_b a \\ O(n^c \lg n) & \text{if } c = \lg_b a \\ O(n^c) & \text{if } c > \lg_b a \end{cases}$$

- Ex: $T(n) = 4T(n/2) + O(n^2)$. Case 2. $T(n) = O(n^2 \lg n)$
- Ex: T(n) = 3T(n/2) + O(n). Case 1. $T(n) = O(n^{\lg_2 3})$
- Ex: T(n) = T(n/2) + O(1). Case 2. $T(n) = O(\lg n)$
- Ex: $T(n) = 2T(n/2) + O(n^2)$. Case 3. $T(n) = O(n^2)$

• $c < \lg_b a$: bottom-level dominates: $\left(\frac{a}{b^c}\right)^{\lg_b n} n^c = n^{\lg_b a}$

- $c < \lg_b a$: bottom-level dominates: $\left(\frac{a}{h^c}\right)^{\lg_b n} n^c = n^{\lg_b a}$
- $c = \lg_b a$: all levels have same time: $n^c \lg_b n = O(n^c \lg n)$

- $c < \lg_b a$: bottom-level dominates: $\left(\frac{a}{b^c}\right)^{\lg_b n} n^c = n^{\lg_b a}$
- $c = \lg_b a$: all levels have same time: $n^c \lg_b n = O(n^c \lg n)$
- $c > \lg_b a$: top-level dominates: $O(n^c)$