Projet Open Data : Consommations d'électricité

GARCIA Lisa - ROBERT Ambre

Université de Bordeaux

February 2, 2023

Sommaire

- Introduction
- 2 Les données
- 3 Analyse descriptive
- Prédictions
- Conclusion

Introduction

Introduction

- Objectif : étudier les différents facteurs qui font varier la consommation d'électricité
- Plateformes d'Open Data utilisées : Odré et le site de l'INSEE
- Zone géographique étudiée : les différentes régions de France métropolitaine, hors Corse
- Domaine temporel : par heure pour des données allant de 2016 à 2022

Les données

Jeu de données

Variables	Description	
Région	Région de France métropolitaine (hors Corse)	
Année	De 2016 à 2022	
Mois	Numéro du mois de l'année	
Jour	Numéro associé au jour de la semaine	
Heure	Point horaire	
Consommation (MW)	Consommation en Mégawatt	
Date	Date du jour	
TMin (°C)	Température minimale en degrés celsius	
TMax (°C)	Température maximale en degrés celsius	
TMoy (°C)	Température moyenne en degrés celsius	
Population	Nombre d'habitant pour une région et une année données	
Bioénergies (MW)	Production Bioénergies en Mégawatt	
Hydraulique (MW)	Production hydraulique en Mégawatt	
Eolien (MW)	Production éolienne en Mégawatt	
Solaire (MW)	Production solaire en Mégawatt	
Nucléaire (MW)	Production nucléaire en Mégawatt	
Thermique (MW)	Production thermique en Mégawatt	
Ech. physiques (MW)	Solde imports/exports (flux physiques) en Mégawatt	

Table: Tableau des variables du jeu de données.

Analyse descriptive

Carte de la consommation moyenne d'électricité (en MW) entre 2016 et 2022 par région

Carte de la consommation moyenne d'électricité (en MW) par habitant par région entre 2016 et 2022

Consommation moyenne par habitant par région en fonction de l'année

Carte de chaleur des températures moyennes par région entre 2016 et 2022

Température moyenne par région en fonction de l'année

Etude sur les mois

Figure: Consommations d'électricité (haut) et températures (bas) par mois

Matrice des corrélations

Prédictions

Prédictions

Objectif

Nous souhaitions prédire les consommations d'électricité pour le dernier trimestre de 2022, soit pour des dates entre le 1er octobre 2022 et le 31 décembre 2022.

Méthode

- Centrer réduire nos données.
- Découpage du jeu de données en apprentissage/test.

Prédictions

Objectif

Nous souhaitions prédire les consommations d'électricité pour le dernier trimestre de 2022, soit pour des dates entre le 1er octobre 2022 et le 31 décembre 2022.

Méthode

- Centrer réduire nos données.
- Découpage du jeu de données en apprentissage/test.

Forêt Aléatoire

Avec paramètres par défaut

RMSE =
$$\sqrt{\mathbb{E}\left((\hat{y} - y)^2\right)} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (\hat{y}_i - y_i)^2} \approx 528.957$$

Histogramme des erreurs de prédiction

Forêt Aléatoire - Variables importantes

	feature	importance
0	Population	0.7
1	TMax (°C)	0.15
2	Ech. physiques (MW)	0.04
3	Thermique (MW)	0.04
4	TMoy (°C)	0.02
5	Hydraulique (MW)	0.01
6	Solaire (MW)	0.01
7	Nucléaire (MW)	0.01

Figure: Variables importantes dans la forêt aléatoire.

Forêt Aléatoire

Sur le jeu de deonnées réduit et avec les paramètres par défaut

RMSE =
$$\sqrt{\frac{1}{n} \sum_{i=1}^{n} (\hat{y_i} - y_i)^2} \approx 516.165$$

Forêt Aléatoire - Comparaison des résultats

Jeu de données	Paramètres	RMSE
Complet	Par défaut	528.957
Réduit	Par défaut	516.165
Réduit	CV	515.602

Table: Comparaison des résultats.

Réseau de neurones

Avec codage disjonctif complet sur la variable Mois

RMSE =
$$\sqrt{\mathbb{E}((\hat{y} - y)^2)} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (\hat{y}_i - y_i)^2} \approx 461.76$$

Réseau de neurones

Avec la variable Mois comme nombre entre 1 et 12

RMSE =
$$\sqrt{\mathbb{E}\left((\hat{y} - y)^2\right)} = \sqrt{\frac{1}{n}\sum_{i=1}^{n}(\hat{y}_i - y_i)^2} \approx 368.75$$

Conclusion

Conclusion

Pour conclure

- Différents facteurs influençant la consommation d'électricité
- Tendance du modèle à surestimer car moins de consommation en 2022

Pistes d'améliorations

- Enlever l'année 2020
- Ajouter d'autres variables exogènes
- Prédire sur la variable de consommation par habitant