

## $MAT3007 \cdot Homework 5$

Due: 11:59:59 pm, November 15

## **Instructions:**

- Homework problems must be carefully and clearly answered to receive full credit. Complete sentences that establish a clear logical progression are highly recommended.
- You must submit your assignment in Blackboard. Please upload a file or a zip file. The file name should be in the format last name-first name-hw5. Any nonstandard assignment will not be graded..
- The homework must be written in English.
- Late submission will not be graded.
- Each student **must not copy** homework solutions from another student or from any other source.

## **Problem 1 (50pts).** Consider the following linear program:

maximize 
$$3x_1 + 4x_2 + 3x_3 + 6x_4$$
  
subject to  $2x_1 + x_2 - x_3 + x_4 \ge 12$   
 $x_1 + x_2 + x_3 + x_4 = 8$   
 $-x_2 + 2x_3 + x_4 \le 10$   
 $x_1, x_2, x_3, x_4 \ge 0$ . (1)

After transforming the problem into standard form and apply Simplex method, we obtain the final tableau as follow:

| В | 0 | 2  | 9  | 0 | 3         | 0 | 36 |
|---|---|----|----|---|-----------|---|----|
| 1 | 1 | 0  | -2 | 0 | -1        | 0 | 4  |
| 4 | 0 | 1  | 3  | 1 | 1         | 0 | 4  |
| 6 | 0 | -2 | -1 | 0 | -1 1 $-1$ | 1 | 6  |

- a) Derive the dual problem of the linear program (1) and calculate a dual solution based on complementarity conditions. Given that the optimal solution to the primal solution is unique, investigate whether the dual solution is unique.
- b) Do the optimal solution and the objective function value change if we
  - decrease the objective function coefficient for  $x_3$  to 0?
  - increase the objective function coefficient for  $x_3$  to 9?
  - decrease the objective function coefficient for  $x_4$  to 5?
  - increase the objective function coefficient for  $x_1$  to 7?

e) Find the possible range for adjusting the coefficient 8 of the second constraint such that the current basis is kept optimal.

**Problem 2 (50pts).** An insurance company is introducing three products: special risk insurance, mortgage insurance, and long-term care insurance. The expected profit is \$500 per unit on special risk insurance, \$250 per unit on mortgage insurance and \$600 per unit on long term care insurance. The work requirements are as follows:

| Department     | Woi          | rking hours p | Working hours available |     |
|----------------|--------------|---------------|-------------------------|-----|
|                | Special risk | Mortgage      | Long-term care          |     |
| Underwriting   | 2            | 1             | 1                       | 240 |
| Administration | 3            | 1             | 2                       | 150 |
| Claims         | 1            | 2             | 4                       | 180 |

The management team wants to establish sales quotas for each product to maximize the total expected profit.

- 1. Formulate this problem as a linear optimization problem. Specify the decision variables, objective function, and constraints.
- 2. After solving the problem, the final simplex tableau (for the standard form) is given as below (the variables are in the natural order as in the description of the problem):

| В | 0 | 50  | 0 | 0 | 140  | 80   | 35400 |
|---|---|-----|---|---|------|------|-------|
| 4 | 0 | 0.5 | 0 | 1 | -0.7 | 0.1  | 153   |
| 1 | 1 | 0   | 0 | 0 | 0.4  | -0.2 | 24    |
| 3 | 0 | 0.5 | 1 | 0 | -0.1 | 0.3  | 39    |

Show the dual variables corresponding to the services of the three departments. Using complementarity conditions to explain why mortgage insurance is not sold.

- 3. Find the range of working hours available for underwriting to keep the current basis optimal.
- 4. Find the range of the expected profit on long-term care insurance such that the current basis remains optimal.