



RFM products are now Murata products.

### **RF3701E**

- Ideal Front-End Filter for European Wireless Receivers
- Low-Loss, Coupled-Resonator Quartz Design
- Simple External Impedance Matching
- Complies with Directive 2002/95/EC (RoHS)



The RF3701E is a low-loss, compact, and economical surface-acoustic-wave (SAW) filter designed to provide front-end RF selectivity in 433.92 MHz receivers. Receiver designs using this filter include superheterodyne with 10.7 MHz or lower intermediate frequencies, plus direct conversion and superregeneratives.

## 433.92 MHz SAW Filter



#### **Electrical Characteristics**

| Characteristic                                            |                                                                | Sym               | Notes   | Minimum           | Typical           | Maximum | Units               |
|-----------------------------------------------------------|----------------------------------------------------------------|-------------------|---------|-------------------|-------------------|---------|---------------------|
| Center Frequency @ 25°C                                   |                                                                | f <sub>C</sub>    | 1, 2, 3 |                   | 433.92            |         | MHz                 |
| Insertion Loss                                            |                                                                | IL <sub>MIN</sub> | 1, 3    |                   | 2.5               | 3.2     | dB                  |
| 3 dB Bandwidth                                            |                                                                | BW <sub>3</sub>   | 1, 2, 3 | 650               | 750               | 850     | kHz                 |
| Passband Ripple, 433.72 to 434.12 MHz                     |                                                                |                   |         |                   | 0.5               | 1.0     | dB <sub>P-P</sub>   |
|                                                           | 10 to 414 MHz                                                  |                   |         | 44                | 47                |         | dB                  |
|                                                           | 414 to 424 MHz                                                 |                   |         | 42                | 45                |         |                     |
|                                                           | 424 to 431 MHz                                                 |                   |         | 27                | 30                |         |                     |
| Attenuation                                               | 431 to 432 MHz                                                 |                   | 1, 3    | 17                | 20                |         |                     |
| relative to IL <sub>MIN</sub>                             | 432 to 433 MHz                                                 |                   | 1, 3    | 14                | 17                |         |                     |
|                                                           | 434.92 to 442 MHz                                              |                   |         | 13                | 16                |         |                     |
|                                                           | 442 to 550 MHz                                                 |                   |         | 33                | 37                |         |                     |
|                                                           | 550 to 1000 MHz                                                |                   |         | 47                | 50                |         |                     |
| Temperature                                               | Freq. Temp. Coefficient                                        | FTC               | 3, 4    |                   | 0.032             |         | ppm/°C <sup>2</sup> |
| Frequency Aging                                           | Absolute Value during the First Year                           | fA                | 5       |                   | <10               |         | ppm/yr              |
| Impedance @ f <sub>C</sub>                                | Input $Z_{IN} = R_{IN}    C_{IN}$                              | Z <sub>IN</sub>   | 1       |                   | 3530 Ω    2.42 pF |         |                     |
|                                                           | Output Z <sub>OUT</sub> = R <sub>OUT</sub>    C <sub>OUT</sub> | Z <sub>OUT</sub>  |         | 3330 Ω    2.42 pF |                   |         |                     |
| Lid Symbolization (in addition to Lot and/or Date Codes)  |                                                                | 940 // YWWS       |         |                   |                   |         |                     |
| Standard Reel Quantity Reel Size 7 Inch Reel Size 13 Inch |                                                                |                   | 9       | 500 Pieces/Reel   |                   |         |                     |
|                                                           |                                                                |                   | 9       | 3000 Pieces/Reel  |                   |         |                     |

## T

#### **CAUTION: Electrostatic Sensitive Device. Observe precautions for handling.**

#### NOTES:

- Unless noted otherwise, all measurements are made with the filter installed in the specified test fixture which is connected to a 50 Ω test system with VSWR ≤ 1.2:1. The
  test fixture L and C are adjusted for minimum insertion loss at the filter center frequency, f<sub>c</sub>. Note that insertion loss and bandwidth and passband shape are dependent on
  the impedance matching component values and quality.
- 2. The frequency  $f_c$  is defined as the midpoint between the 3dB frequencies.
- 3. Where noted specifications apply over the entire specified operating temperature range of -40 to 90°C.
- 4. The turnover temperature,  $T_0$ , is the temperature of maximum (or turnover) frequency,  $f_0$ . The nominal frequency at any case temperature,  $T_c$ , may be calculated from:  $f = f_0 [1 FTC (T_0 T_0)^2]$ .
- 5. Frequency aging is the change in fc with time and is specified at +65 °C or less. Aging may exceed the specification for prolonged temperatures above +65 °C. Typically, aging is greatest the first year after manufacture, decreasing significantly in subsequent years.
- 6. The design, manufacturing process, and specifications of this device are subject to change.
- 7. One or more of the following U.S. Patents apply: 4,54,488, 4,616,197, and others pending.
- 8. All equipment designs utilizing this product must be approved by the appropriate government agency prior to manufacture or sale.
- Tape and Reel Standard for ANSI / EIA 481.

# Discontinued

#### **Absolute Maximum Ratings**

| Characteristic                                        | Value       | Units |
|-------------------------------------------------------|-------------|-------|
| Input Power Level                                     | 10          | dBm   |
| DC Voltage                                            | 12          | VDC   |
| Storage Temperature                                   | -40 to +125 | °C    |
| Operable Temperature Range                            | -40 to +125 | °C    |
| Soldering Temperature (10 seconds / 5 cycles maximum) | 260         | °C    |

#### SM3030-8 Case

8-Terminal Ceramic Surface-Mount Case 3.0 x 3.0 mm Nominal Footprint

#### **Electrical Connections**

| Pin | Connection    |  |  |
|-----|---------------|--|--|
| 1   | Input Ground  |  |  |
| 2   | Input         |  |  |
| 3   | Ground        |  |  |
| 4   | Case Ground   |  |  |
| 5   | Output Ground |  |  |
| 6   | Output        |  |  |
| 7   | Ground        |  |  |
| 8   | Case Ground   |  |  |

#### Matching Circuit to 50 $\Omega$





**PCB Footprint Dimensions** 



#### Case Dimensions

|           | mm   |      |      | Inches |       |       |  |
|-----------|------|------|------|--------|-------|-------|--|
| Dimension | Min  | Nom  | Max  | Min    | Nom   | Max   |  |
| Α         | 2.87 | 3.0  | 3.13 | 0.113  | 0.118 | 0.123 |  |
| В         | 2.87 | 3.0  | 3.13 | 0.113  | 0.118 | 0.123 |  |
| С         | 1.14 | 1.27 | 1.40 | 0.045  | 0.050 | 0.055 |  |
| D         | 0.79 | 0.92 | 1.05 | 0.031  | 0.036 | 0.041 |  |
| Е         | 0.62 | 0.75 | 0.88 | 0.024  | 0.029 | 0.034 |  |
| F         | 0.47 | 0.60 | 0.73 | 0.018  | 0.024 | 0.029 |  |
| G         | 0.47 | 0.60 | 0.73 | 0.018  | 0.024 | 0.029 |  |
| Н         | 1.07 | 1.20 | 1.33 | 0.042  | 0.047 | 0.052 |  |

#### Case Materials

| Materials             |                                                |  |  |
|-----------------------|------------------------------------------------|--|--|
| Solder Pad<br>Plating | 0.3 to 1.0 μm Gold over 1.27 to 8.89 μm Nickel |  |  |
| Lid Plating           | 2.0 to 3.0 µm Nickel                           |  |  |
| Body                  | Al <sub>2</sub> O <sub>3</sub> Ceramic         |  |  |
| Pb Free               |                                                |  |  |