VIDEO SENSORS II

Catalin Golban

CONTENTS

CONTENTS

Course structure

- 1. Remember from last course and goals for today
- 2. Theoretical refresh: vectors, dot product, cross product, coordinate systems, transformations
- 3. Essential matrix: scope, proof
- 4. Fundamental matrix
- 5. Fundamental matrix estimation
- 6. Conclusions

REVIEW OF THE LAST COURSE AND GOALS FOR TODAY

Bosch Engineering Center Cluj **Automated driving activities**

SOFTWARE ENGINEERING

Radar Systems

Connectivity

Ultrasonic Systems

Central processing unit

Electric Power Steering

Review of the last course and goals for today Review - intrinsic parameters of the camera

- O camera center
- u_0 , v_0 principal point
- *u*, *v* image coordinates
- f focal length distance from O to principal point
- dpx, dpy size of pixels
- f_x , f_y focal length in pixels units

$$f_x = \frac{f}{dpx}$$
 $f_y = \frac{f}{dpy}$

Review of the last course and goals for today Review - computer vision and 3D perception

$$K = \begin{bmatrix} f_x & 0 & u_0 \\ 0 & f_y & v_0 \\ 0 & 0 & 1 \end{bmatrix} \qquad \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = K \cdot \begin{bmatrix} x/z \\ y/z \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = K \cdot \begin{bmatrix} x/z \\ y/z \\ 1 \end{bmatrix}$$

$$\frac{(v-v_0)}{f_v} = \frac{y}{z}$$

$$\frac{(u-u_0)}{f_x} = \frac{x}{z}$$

Review of the last course and goals for today Review - parameters of the camera

Extrinsic parameters

- represent position and orientation of the camera in the car (world) coordinate system
 - Convention use the center of the rear axis
- *R* matrix for each axis and *T* represents the translation vector applied on the system
- they can be written in the following form $[R|T] = \begin{bmatrix} r_{11} & r_{12} & r_{13} & t_1 \\ r_{21} & r_{22} & r_{23} & t_2 \\ r_{31} & r_{32} & r_{33} & t_3 \end{bmatrix}$
- there are three rotations applied in 3D space pitch, roll and yaw

$$\begin{bmatrix} u \\ v \\ 1 \end{bmatrix} \sim K \cdot \left(R \cdot \begin{bmatrix} x \\ y \\ z \end{bmatrix} + T \right) = K \cdot [R|T] \cdot \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

Review of the last course and goals for today General concepts - review

 3D reconstruction – the process of creating the 3D shape and position of real objects from images

in computer vision for automated driving

using the stereo system

using the mono system in time

stereo mono camera camera

points are on the same scan-line

Review of the last course and goals for today

Review – disparity and 3D

3D reconstruction

Disparity is small in far range and big in close range

Review of the last course and goals for today Simplified camera representations

Camera, magenta is the optical center

Camera with coordinate system attached

Camera with coordinate system attached Blue dot is projected in the green dot in the image plane

Review of the last course and goals for today Goal for today – geometry of a mono system

Target: T+∆t

 Find the mathematical relationship between the two projections (green) of a given point in space (blue)? Review of the last course and goals for today Goal for today - geometry of a stereo system

Target: Left Right

 Find the mathematical relationship between the two projections (green) of a given point in space (blue)?

THEORETICAL REFRESH

Theoretical refresh **Vectors**

- A quantity that has direction and magnitude
 - General theory about vectors and vector spaces you get from your linear algebra course
 - For computer vision we need 3-dimensional vector spaces, in the linear algebra course you studied n-dimensional vector spaces
 - Magnitude will be noted as $|\bar{a}|$

Theoretical refresh **Vector's coordinates**

- A quantity that has direction and magnitude
- Has coordinates when represented in a certain coordinate system
 - Coordinates are vector's projection on some orthogonal axes
 - $\bar{a} = (a_1 \quad a_2 \quad a_3)$ for 3-dimensional case
 - Based on axis unit vectors: $\bar{a} = a_1\bar{\iota} + a_2\bar{\jmath} + a_3\bar{k}$
 - $\bar{a} = (a_1 \ a_2 \ ... \ a_n)$ for n-dimensional case

Theoretical refresh **Dot product**

- A quantity that has direction and magnitude
- Has coordinates when represented in a certain coordinate system
- Dot product
 - $\bar{a} \cdot \bar{b} = |\bar{a}| |\bar{b}| \cos(\alpha)$
 - If $\bar{a}=(a_1 \quad a_2 \quad a_3)$ and $\bar{b}=(b_1 \quad b_2 \quad b_3)$ then

$$\bar{a} \cdot \bar{b} = a_1 b_1 + a_2 b_2 + a_3 b_3 = \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix}' \cdot \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} = \begin{bmatrix} a_1 & a_2 & a_3 \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$$

- Remark
 - If vectors are perpendicular then the dot product is zero

Theoretical refresh Cross product

- A quantity that has direction and magnitude
- Has coordinates when represented in a certain coordinate system
- Dot product
- Cross product
 - Direction perpendicular to the two vectors
 - Magnitude $|\bar{a} \times \bar{b}| = |\bar{a}||\bar{b}|\sin(\alpha)$

$$\begin{vmatrix} \bar{a} \times \bar{b} \end{vmatrix} = \begin{vmatrix} \bar{\iota} & \bar{J} & \bar{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$$

Theoretical refresh **Cross product matrix form**

$$\bar{a} \times \bar{b} = \begin{bmatrix} 0 & -a_3 & a_2 \\ a_3 & 0 & -a_1 \\ -a_2 & a_1 & 0 \end{bmatrix} \cdot \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} = \bar{a}_{\times} \cdot \bar{b} \qquad \qquad |\bar{a} \times \bar{b}| = \begin{vmatrix} \bar{\iota} & \bar{\jmath} & \bar{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$$

- A quantity that has direction and magnitude
- Has coordinates when represented in a certain coordinate system
- Dot product
- Cross product
- Cross product matrix form

$$|\bar{a} \times \bar{b}|$$

$$\left| \bar{a} \times \bar{b} \right| = \begin{vmatrix} \bar{\iota} & \bar{\jmath} & \bar{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$$

Theoretical refresh **Translation**

- A quantity that has direction and magnitude
- Has coordinates when represented in a certain coordinate system
- Dot product
- Cross product
- Cross product matrix form
- Translation
 - \bar{T} represents the coordinates of the **first** coordinate system in the **second** coordinate system

Theoretical refresh **Translation**

- A quantity that has direction and magnitude
- Has coordinates when represented in a certain coordinate system
- Dot product
- Cross product
- Cross product matrix form
- Translation
 - \bar{T} represents the coordinates of the **second** coordinate system in the **first** coordinate system

Theoretical refresh Rotation matrix

$$R \cdot \overline{X_1} = \overline{X_2} - \overline{T}$$
 $\overline{X_2} = R \cdot \overline{X_1} + \overline{T}$

- A quantity that has direction and magnitude
- Has coordinates when represented in a certain coordinate system
- Dot product
- Cross product
- Cross product matrix form
- Translation
- Rotation
 - Rotation matrix $R \cdot R^t = I$
 - $R \cdot \overline{X_1}$ are the coordinates of $\overline{X_1}$ in the coordinate system with red axes

Theoretical refresh Rotation around single axis

$$R \cdot \bar{P} = R \cdot \begin{bmatrix} x_P \\ y_P \\ z_P \end{bmatrix} = \begin{bmatrix} x_P \\ \cos(\alpha) y_P - \sin(\alpha) z_P \\ \sin(\alpha) y_P + \cos(\alpha) z_P \end{bmatrix}$$

- A quantity that has direction and magnitude
- Has coordinates when represented in a certain coordinate system
- Dot product
- Cross product
- Cross product matrix form
- Translation
- Rotation
 - Rotation matrix $R \cdot R^t = I$
 - $R \cdot \overline{P}$ are the coordinates of the vector \overline{P} in the coordinate system with red axes

Theoretical refresh **General 3D rotation**

$$R = \begin{bmatrix} \cos(\gamma) & -\sin(\gamma) & 0 \\ \sin(\gamma) & \cos(\gamma) & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} \cos(\beta) & 0 & \sin(\beta) \\ 0 & 1 & 0 \\ -\sin(\beta) & 0 & \cos(\beta) \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos(\alpha) & -\sin(\alpha) \\ 0 & \sin(\alpha) & \cos(\alpha) \end{bmatrix}$$

- A quantity that has direction and magnitude
- Has coordinates when represented in a certain coordinate system
- Dot product
- Cross product
- Cross product matrix form
- Translation
- Rotation
 - Rotation matrix $R \cdot R^t = I$
 - $R \cdot \overline{P}$ are the coordinates of the vector \overline{P} in the coordinate system with red axes

ESSENTIAL MATRIX

Geometry of two cameras

Target:

 Find the mathematical relationship between the two projections (green) of a given point in space (blue)?

Geometry of two cameras

- Consider two projections (green)
 of a given point in space (blue)
- \bar{T} translation vector between the cameras (magenta)
- R rotation matrix from the C_2 coordinate system to C_1
- $\overline{P_1}$ column vector with coordinates of the point P in C_1 (orange)
- $\overline{P_2}$ column vector with coordinates of the point P in C_2 (red)

Geometry of two cameras

- Constraint the magenta, orange and red vectors are co-planar
 - Cross product of any two of them, dot product with the third is zero!
- Expressed in the C_1 the values of the three column vectors are:

$$\overline{T}$$
, $\overline{P_1}$, $R \cdot \overline{P_2}$

Geometry of two cameras

- Constraint the magenta, orange and red vectors are co-planar
 - Cross product of any two of them, dot product with the third is zero!
- Expressed in the C₁ the values of the three column vectors are:

$$\overline{T}$$
, $\overline{P_1}$, $R \cdot \overline{P_2}$
 $\overline{P_1} \cdot (\overline{T} \times R \cdot \overline{P_2}) = 0$

• In matrix form ('means transpose):

$$\overline{P_1}' \cdot (\overline{T}_x \cdot R \cdot \overline{P_2}) = \overline{P_1}' \cdot (\overline{T}_x \cdot R) \cdot \overline{P_2} = 0$$

Geometry of two cameras

- Constraint the magenta, orange and red vectors are co-planar
 - Cross product of any two of them, dot product with the third is zero!
 - In matrix form:

$$\overline{P_1}' \cdot (\overline{T}_{\times} \cdot R) \cdot \overline{P_2} = 0$$

• $E = \overline{T}_{\times} \cdot R$ is the **essential matrix** relating the two cameras

Geometry of two cameras

$$\overline{P_1}' \cdot (\overline{T}_{\times} \cdot R) \cdot \overline{P_2} = 0$$

- $E = \overline{T}_{\times} \cdot R$ essential matrix
- Remarks:
 - Equation still holds by multiplying $\overline{P_1}$, $\overline{P_2}$ or \overline{T}_{\times} with a scalar factor
 - Example: $k_1 \overline{P_1}' \cdot (k_2 \overline{T}_{\times} \cdot R) \cdot k_3 \overline{P_2} = 0$
 - Thus \overline{T}_{\times} has only 2 degrees of freedom (DoF). Let them be t_1 and t_2
 - Essential matrix has 5 DoF:
 - $\mathsf{E}(\alpha,\beta,\gamma,t_1,t_2)$
 - $\overline{P_1}' \cdot \mathsf{E}(\alpha, \beta, \gamma, t_1, t_2) \cdot \overline{P_2} = 0$

FUNDAMENTAL MATRIX

Geometry of two cameras

$$\overline{P_1}' \cdot (\overline{T}_{\times} \cdot R) \cdot \overline{P_2} = 0$$

 $E = \overline{T}_{\times} \cdot R$ essential matrix

$$\overline{P_1} = \begin{bmatrix} x_{P_1} \\ y_{P_1} \\ z_{P_1} \end{bmatrix} \quad \overline{P_2} = \begin{bmatrix} x_{P_2} \\ y_{P_2} \\ z_{P_2} \end{bmatrix}$$

Essential matrix constraint becomes:

$$\begin{bmatrix} \chi_{P_1} \\ \chi_{P_1} \\ \chi_{P_1} \end{bmatrix}' \cdot (\overline{T}_{\times} \cdot R) \cdot \begin{bmatrix} \chi_{P_2} \\ \chi_{P_2} \\ \chi_{P_2} \end{bmatrix} = 0$$

• It can be divided with z_{P_1} and z_{P_2}

Geometry of two cameras

$$\overline{P_1}' \cdot (\overline{T}_{\times} \cdot R) \cdot \overline{P_2} = 0$$

$$\overline{P_1} = \begin{bmatrix} x_{P_1} \\ y_{P_1} \\ z_{P_1} \end{bmatrix} \qquad \overline{P_2} = \begin{bmatrix} x_{P_2} \\ y_{P_2} \\ z_{P_2} \end{bmatrix}$$

Essential matrix constraint becomes:

$$P \begin{bmatrix} x_{P_1}/z_{P_1} \\ y_{P_1}/z_{P_1} \\ 1 \end{bmatrix}' \cdot (\overline{\boldsymbol{T}}_{\times} \cdot \boldsymbol{R}) \cdot \begin{bmatrix} x_{P_2}/z_{P_2} \\ y_{P_2}/z_{P_2} \\ 1 \end{bmatrix} = 0$$

But remember the projection equation:

$$\begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = K \cdot \begin{bmatrix} x/z \\ y/z \\ 1 \end{bmatrix} \qquad K^{-1} \cdot \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} x/z \\ y/z \\ 1 \end{bmatrix}$$

Geometry of two cameras

Essential matrix constraint becomes:

$$\begin{bmatrix} x_{P_1}/z_{P_1} \\ y_{P_1}/z_{P_1} \\ 1 \end{bmatrix}' \cdot (\overline{\boldsymbol{T}}_{\times} \cdot \boldsymbol{R}) \cdot \begin{bmatrix} x_{P_2}/z_{P_2} \\ y_{P_2}/z_{P_2} \\ 1 \end{bmatrix} = 0$$

$$\left(K_1^{-1} \cdot \begin{bmatrix} u_1 \\ v_1 \\ 1 \end{bmatrix}\right)' \cdot (\overline{T}_{\times} \cdot R) \cdot K_2^{-1} \cdot \begin{bmatrix} u_2 \\ v_2 \\ 1 \end{bmatrix} = 0$$

Geometry of two cameras

$$\overline{P_1}' \cdot (\overline{\boldsymbol{T}}_{\times} \cdot \boldsymbol{R}) \cdot \overline{P_2} = 0$$

$$\overline{P_1} = \begin{bmatrix} x_{P_1} \\ y_{P_1} \\ z_{P_1} \end{bmatrix} \quad \overline{P_2} = \begin{bmatrix} x_{P_2} \\ y_{P_2} \\ z_{P_2} \end{bmatrix}$$

Essential matrix constraint becomes:

$$\begin{bmatrix} x_{P_1}/z_{P_1} \\ y_{P_1}/z_{P_1} \\ 1 \end{bmatrix}' \cdot (\overline{\boldsymbol{T}}_{\times} \cdot \boldsymbol{R}) \cdot \begin{bmatrix} x_{P_2}/z_{P_2} \\ y_{P_2}/z_{P_2} \\ 1 \end{bmatrix} = 0$$

$$\begin{bmatrix} u_1 \\ v_1 \\ 1 \end{bmatrix}' \cdot K_1^{-T} \cdot (\overline{T}_{\times} \cdot \mathbf{R}) \cdot K_2^{-1} \cdot \begin{bmatrix} u_2 \\ v_2 \\ 1 \end{bmatrix} = 0$$

Geometry of two cameras

$$\overline{P_1}' \cdot (\overline{T}_{\times} \cdot R) \cdot \overline{P_2} = 0$$

$$\overline{P_1} = \begin{bmatrix} x_{P_1} \\ y_{P_1} \\ z_{P_1} \end{bmatrix} \quad \overline{P_2} = \begin{bmatrix} x_{P_2} \\ y_{P_2} \\ z_{P_2} \end{bmatrix}$$

Fundamental matrix constraint:

$$\begin{bmatrix} u_1 \\ v_1 \\ 1 \end{bmatrix}' \cdot K_1^{-T} \cdot (\overline{T}_{\times} \cdot \mathbf{R}) \cdot K_2^{-1} \cdot \begin{bmatrix} u_2 \\ v_2 \\ 1 \end{bmatrix} = 0$$

 Fundamental relates pixel coordinates from different views of the same scene

Intuition

$$\begin{bmatrix} u_1 \\ v_1 \\ 1 \end{bmatrix}' \cdot K_1^{-T} \cdot (\overline{T}_{\times} \cdot R) \cdot K_2^{-1} \cdot \begin{bmatrix} u_2 \\ v_2 \\ 1 \end{bmatrix} = 0$$
$$\begin{bmatrix} u_1 \\ v_1 \\ 1 \end{bmatrix}' \cdot F \cdot \begin{bmatrix} u_2 \\ v_2 \\ 1 \end{bmatrix} = 0$$

If
$$\begin{bmatrix} u_1 \\ v_1 \\ 1 \end{bmatrix}' \cdot F = \begin{bmatrix} a & b & c \end{bmatrix}$$
 then the constraint

becomes
$$\begin{bmatrix} a & b & c \end{bmatrix} \cdot \begin{bmatrix} u_2 \\ v_2 \\ 1 \end{bmatrix} = 0$$

If
$$F \cdot \begin{bmatrix} u_2 \\ v_2 \\ 1 \end{bmatrix} = \begin{bmatrix} a' \\ b' \\ c' \end{bmatrix}$$
 then the

constraint becomes
$$\begin{bmatrix} u_1 & v_1 & 1 \end{bmatrix} \cdot \begin{bmatrix} a' \\ b' \\ c' \end{bmatrix} = 0$$

https://www.robots.ox.ac.uk/~vgg/hzbook/hzbook2/HZepipolar.pdf

Refresh line equation: ax+by+c=0

$$\begin{bmatrix} a & b & c \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = 0$$

Intuition

$$\begin{bmatrix} u_1 \\ v_1 \\ 1 \end{bmatrix}' \cdot K_1^{-T} \cdot (\overline{\boldsymbol{T}}_{\times} \cdot \boldsymbol{R}) \cdot K_2^{-1} \cdot \begin{bmatrix} u_2 \\ v_2 \\ 1 \end{bmatrix} = 0$$
$$\begin{bmatrix} u_1 \\ v_1 \\ 1 \end{bmatrix}' \cdot F \cdot \begin{bmatrix} u_2 \\ v_2 \\ 1 \end{bmatrix} = 0$$

If
$$\begin{bmatrix} u_1 \\ v_1 \\ 1 \end{bmatrix}' \cdot F = \begin{bmatrix} a & b & c \end{bmatrix}$$
 then the constraint

becomes
$$\begin{bmatrix} a & b & c \end{bmatrix} \cdot \begin{bmatrix} u_2 \\ v_2 \\ 1 \end{bmatrix} = 0$$

If
$$F \cdot \begin{bmatrix} u_2 \\ v_2 \\ 1 \end{bmatrix} = \begin{bmatrix} a' \\ b' \\ c' \end{bmatrix}$$
 then the

constraint becomes
$$\begin{bmatrix} u_1 & v_1 & 1 \end{bmatrix} \cdot \begin{bmatrix} a' \\ b' \\ c' \end{bmatrix} = 0$$

https://www.robots.ox.ac.uk/~vgg/hzbook/hzbook2/HZepipolar.pdf

Refresh line equation: ax+by+c=0

$$\begin{bmatrix} a & b & c \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = 0$$

Intuition on rectified images

$$\begin{bmatrix} u_1 \\ v_1 \\ 1 \end{bmatrix}' \cdot K_1^{-T} \cdot (\overline{\boldsymbol{T}}_{\times} \cdot \boldsymbol{R}) \cdot K_2^{-1} \cdot \begin{bmatrix} u_2 \\ v_2 \\ 1 \end{bmatrix} = 0$$
$$\begin{bmatrix} u_1 \\ v_1 \\ 1 \end{bmatrix}' \cdot F \cdot \begin{bmatrix} u_2 \\ v_2 \\ 1 \end{bmatrix} = 0$$

If
$$\begin{bmatrix} u_1 \\ v_1 \\ 1 \end{bmatrix}' \cdot F = \begin{bmatrix} a & b & c \end{bmatrix}$$
 then the constraint

becomes
$$\begin{bmatrix} a & b & c \end{bmatrix} \cdot \begin{bmatrix} u_2 \\ v_2 \\ 1 \end{bmatrix} = 0$$

If
$$F \cdot \begin{bmatrix} u_2 \\ v_2 \\ 1 \end{bmatrix} = \begin{bmatrix} a' \\ b' \\ c' \end{bmatrix}$$
 then the

constraint becomes
$$\begin{bmatrix} u_1 & v_1 & 1 \end{bmatrix} \cdot \begin{bmatrix} a' \\ b' \\ c' \end{bmatrix} = 0$$

Refresh line equation: ax+by+c=0

$$\begin{bmatrix} a & b & c \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = 0$$

Intuition on rectification

A compact algorithm for rectification of stereo pairs

Andrea Fusiello¹, Emanuele Trucco², Alessandro Verri³

- ¹ Dipartimento Scientifico e Tecnologico, Università di Verona, Ca' Vignal 2, Strada Le Grazie, 37134 Verona, Italy; e-mail: fusiello@sci.univr.it
- ² Heriot-Watt University, Department of Computing and Electrical Engineering, Edinburgh, UK
- ³ INFM, Dipartimento di Informatica e Scienze dell'Informazione, Università di Genova, Genova, Italy

Received: 25 February 1999 / Accepted: 2 March 2000

ESSENTIAL MATRIX ESTIMATION

Essential matrix estimation

Mathematica model

$$\begin{bmatrix} u_1 \\ v_1 \\ 1 \end{bmatrix}' \cdot K_1^{-T} \cdot (\overline{\boldsymbol{T}}_{\times} \cdot \boldsymbol{R}) \cdot K_2^{-1} \cdot \begin{bmatrix} u_2 \\ v_2 \\ 1 \end{bmatrix} = 0$$

For **more points** we have:

$$\begin{bmatrix} u_{1,i} \\ v_{1,i} \\ 1 \end{bmatrix}' \cdot K_1^{-T} \cdot \mathsf{E}(\boldsymbol{\alpha}, \boldsymbol{\beta}, \boldsymbol{\gamma}, \boldsymbol{t_1}, \boldsymbol{t_2}) \cdot K_2^{-1} \cdot \begin{bmatrix} u_{2,i} \\ v_{2,i} \\ 1 \end{bmatrix} = 0$$

Let:

$$r_i(\alpha, \beta, \gamma, t_1, t_2)$$

$$= \begin{bmatrix} u_{1,i} \\ v_{1,i} \\ 1 \end{bmatrix}' \cdot K_1^{-T} \cdot \mathsf{E}(\alpha, \beta, \gamma, t_1, t_2) \cdot K_2^{-1} \cdot \begin{bmatrix} u_{2,i} \\ v_{2,i} \\ 1 \end{bmatrix}$$

 $r_i(\alpha, \beta, \gamma, t_1, t_2)$ - means how good the essential matrix constraint is respected given that point correspondences have noise (i.e. how close is green point to orange line)

https://www.robots.ox.ac.uk/~vgg/hzbook/hzbook2/HZepipolar.pdf

If
$$F \cdot \begin{bmatrix} u_2 \\ v_2 \\ 1 \end{bmatrix} = \begin{bmatrix} a' \\ b' \\ c' \end{bmatrix}$$
 then the

constraint becomes
$$\begin{bmatrix} u_1 & v_1 & 1 \end{bmatrix} \cdot \begin{bmatrix} a' \\ b' \\ c' \end{bmatrix} = 0$$

Essential matrix estimation

Mathematica model

For **more points** we have:

$$\begin{bmatrix} u_{1,i} \\ v_{1,i} \\ 1 \end{bmatrix}' \cdot K_1^{-T} \cdot \mathsf{E}(\boldsymbol{\alpha}, \boldsymbol{\beta}, \boldsymbol{\gamma}, \boldsymbol{t_1}, \boldsymbol{t_2}) \cdot K_2^{-1} \cdot \begin{bmatrix} u_{2,i} \\ v_{2,i} \\ 1 \end{bmatrix} = 0$$

Let:

$$r_i(\alpha, \beta, \gamma, t_1, t_2)$$

$$= \begin{bmatrix} u_{1,i} \\ v_{1,i} \\ 1 \end{bmatrix}' \cdot K_1^{-T} \cdot \mathsf{E}(\alpha, \beta, \gamma, t_1, t_2) \cdot K_2^{-1} \cdot \begin{bmatrix} u_{2,i} \\ v_{2,i} \\ 1 \end{bmatrix}$$

https://www.robots.ox.ac.uk/~vgg/hzbook/hzbook2/HZepipolar.pdf

Find
$$\alpha, \beta, \gamma, t_1, t_2$$
 by doing:

$$argmin \sum_{i} (r_i(\alpha, \beta, \gamma, t_1, t_2))^2$$

If
$$F \cdot \begin{bmatrix} u_2 \\ v_2 \\ 1 \end{bmatrix} = \begin{bmatrix} a' \\ b' \\ c' \end{bmatrix}$$
 then the

constraint becomes
$$\begin{bmatrix} u_1 & v_1 & 1 \end{bmatrix} \cdot \begin{bmatrix} a' \\ b' \\ c' \end{bmatrix} = 0$$

Essential matrix estimation Mathematica model

Find α , β , γ , t_1 , t_2 by doing:

$$argmin \sum_{i} (r_i(\alpha, \beta, \gamma, t_1, t_2))^2$$

Gauss-Newton (see your numerical calculus course)

https://en.wikipedia.org/wiki/Gauss%E2%80%93Newton_algorithm

https://www.robots.ox.ac.uk/~vgg/hzbook/hzbook2/HZepipolar.pdf

If
$$F \cdot \begin{bmatrix} u_2 \\ v_2 \\ 1 \end{bmatrix} = \begin{bmatrix} a' \\ b' \\ c' \end{bmatrix}$$
 then the

constraint becomes
$$\begin{bmatrix} u_1 & v_1 & 1 \end{bmatrix} \cdot \begin{bmatrix} a' \\ b' \\ c' \end{bmatrix} = 0$$

Review of the last course and goals for today Goal for today - geometry of a mono system

Ego-motion estimation for mono

$$\begin{split} r_i(\alpha,\beta,\gamma,t_1,t_2) \\ &= \begin{bmatrix} u_{1,i} \\ v_{1,i} \\ 1 \end{bmatrix}' \cdot K_1^{-T} \cdot \mathsf{E}(\alpha,\beta,\gamma,t_1,t_2) \cdot K_2^{-1} \cdot \begin{bmatrix} u_{2,i} \\ v_{2,i} \\ 1 \end{bmatrix} \end{split}$$

$$argmin \sum_{i} (r_i(\alpha, \beta, \gamma, t_1, t_2))^2$$

Review of the last course and goals for today Goal for today - geometry of a stereo system

PROJECTIVE GEOMETRY

References

- https://www.amazon.com/Multiple-View-Geometry-Computer-Vision/dp/0521540518
- http://robotics.stanford.edu/~birch/projective/
- http://robotics.stanford.edu/~birch/projective/projective.pdf
- https://www.robots.ox.ac.uk/~vgg/hzbook/hzbook2/HZepipolar.pdf
- http://mathworld.wolfram.com/ProjectiveGeometry.html

 H_{image} , H_1 , H_2 — homography matrices

$$P_1 = H_1 \cdot P$$

$$P_2 = H_2 \cdot P$$

$$H_{image} = H_2 \cdot H_1^{-1}$$

$$P_2 = H_{image} \cdot P_1$$

Transfer via plane

For details see the references

CONCLUSIONS

Conclusions **Conclusions**

- Essential matrix as key part for
 - Rectification
 - Ego-motion estimation

Same theory applicable for mono & stereo

