Тема 5. Функція декількох змінних. Частинні похідні та диференціали функції декількох змінних План

- 1. Поняття функції декількох змінних.
- 2. Границя та неперервність функції декількох змінних.
- 3. Частинні похідні функції декількох змінних.
- 4. Диференціал функції декількох змінних.

1. Поняття функції декількох змінних

Теорія функції однієї змінної, яка вивчалася раніше, дозволяє дослідити взаємозв'язок між двома змінними величинами, але на практиці часто виникає ситуація, коли взаємозалежними є вже не дві, а три і більше величин. Наприклад, сила току в провіднику залежить від напруги й опору; об'єм прямокутного паралелепіпеда визначається трьома лінійними розмірами; кількість витраченого автомобілем палива залежить від пройденої відстані, швидкості, рельєфу дороги, ваги вантажу і т. д. У зв'язку зі сказаним виникла необхідність введення поняття функції декількох змінних.

Нехай задано множину Z, елементами якої ϵ дійсні числа z й множину D, елементами якої ϵ упорядковані пари дійсних чисел (x,y). Якщо кожній парі чисел (x,y) із множини D за певним законом

ставиться у відповідність єдине число z із множини Z, то кажуть, що z є функцією двох незалежних змінних x і y. Для вказаної функціональної залежності прийнято позначення z = f(x,y) (або z = z(x,y)). Множина D називається областю визначення або областю існування функції z, а множина Z – областю її значень.

Область визначення зручно зображати у вигляді сукупності точок на площині у декартовій прямокутній системі координат Oxy (x і y розглядаються як абсциса й ордината точки відповідно). Як правило, областю визначення функції двох змінних ε деяка обмежена або необмежена область площини.

Приклад 1. Знайти область визначення функції $z = \ln(x - y)$.

Розв'язання. Так як логарифмічна функція визначена тільки для додатного аргументу, то необхідно, щоб x та y задовольняли нерівність x-y>0 або y< x. Це означає , що областю визначення є напівплощина, що розміщена під прямою y=x , за виключенням цієї прямої (рис. 1).

Геометричним зображенням функції двох змінних (її графіком), як правило,

 ϵ деяка поверхня у просторі. Наприклад, графіками функцій $z = \sqrt{25 - x^2 - y^2}$ і z = 1 + 5x - y ϵ напівсфера й

Аналогічно попередньому визначаються функції трьох і більше змінних. Якщо кожній трійки дійсних чисел (x,y,z) із заданої множини Ω (елементами множини ε упорядковані трійки чисел) ставиться у

плошина відповідно.

відповідність єдине дійсне число u із заданої множини U, то кажуть, що u є функцією трьох незалежних змінних x,y і z. Для цієї залежності прийнято позначення u=f(x,y,z). Область визначення Ω для функції трьох змінних можна задати сукупністю точок у просторі в декартовій прямокутній системі координат Oxyz.

2. Границя та неперервність функції декількох змінних

Число A називається ϵ раницею функції f(x,y) в точці $M_0(x_0,y_0)$, якщо для будь-якого наперед заданого числа $\epsilon>0$ знайдеться число r>0 таке, що для всіх точок M(x,y), які задовольняють умові $|MM_0|< r$, виконується нерівність

$$|f(x,y)-A|<\varepsilon$$
.

Для вказаної границі прийнято наступне позначення

$$\lim_{\substack{x \to x_0 \\ y \to y_0}} f(x, y) = A.$$

$$\Pi$$
риклад 1 . Знайти границі: a) $\lim_{\substack{x \to 0 \ y \to 0}} \frac{xy}{2 - \sqrt{xy + 4}}$, б) $\lim_{\substack{x \to 0 \ y \to 0}} \frac{\sin xy}{y}$.

Розв'язання. а) Знаходимо границю за допомогою вказаних очевидних перетворень:

$$\lim_{\substack{x \to 0 \\ y \to 0}} \frac{xy}{2 - \sqrt{xy + 4}} = \left| \frac{0}{0} \right| = \lim_{\substack{x \to 0 \\ y \to 0}} \frac{xy(2 + \sqrt{xy + 4})}{(2 - \sqrt{xy + 4})(2 + \sqrt{xy + 4})} = \lim_{\substack{x \to 0 \\ y \to 0}} \frac{xy(2 + \sqrt{xy + 4})}{-xy} = -\lim_{\substack{x \to 0 \\ y \to 0}} (2 + \sqrt{xy + 4}) = 4.$$

б) Враховуючи, що $\lim_{x\to 0}\frac{\sin x}{x}=1$ (перша чудова границя), маємо

$$\lim_{\substack{x \to 0 \\ y \to 0}} \frac{\sin xy}{y} = \frac{0}{0} = \lim_{\substack{x \to 0 \\ y \to 0}} \frac{x \sin xy}{xy} = \lim_{\substack{x \to 0 \\ y \to 0}} x \cdot \lim_{\substack{x \to 0 \\ y \to 0}} \frac{\sin xy}{xy} = 0 \cdot 1 = 0.$$

Функція z = f(x, y) називається неперервною в точці $M_0(x_0, y_0)$, яка належить області визначення функції, якщо виконується рівність

$$\lim_{\substack{x \to x_0 \\ y \to y_0}} f(x, y) = f(x_0, y_0). \tag{1}$$

Уведемо позначення:

$$\Delta x = x - x_0$$
, $\Delta y = y - y_0$, $\Delta z = f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0, y_0)$.

Рівність (1) можна подати у наступному вигляді:

$$\lim_{\begin{subarray}{c} \Delta x \to 0 \\ \Delta y \to 0 \end{subarray}} (f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0, y_0)) = \lim_{\begin{subarray}{c} \Delta x \to 0 \\ \Delta y \to 0 \end{subarray}} \Delta z = 0 \ . \end{subarray}$$
 (2)

Функція називається неперервною в деякій області, якщо вона неперервна в кожній точці цієї області.

Приклад 2. Дослідити на неперервність функцію $z = 3x^2 - y^2$.

Pозв'язання. Дана функція визначена на всій площині Oxy. Нехай M(x,y) — довільна точка цієї площини. Перевіримо виконання рівності (2) в цій точці. Можемо записати

$$\Delta z = 3(x + \Delta x)^{2} - (y + \Delta y)^{2} - (3x^{2} - y^{2}) = 6x\Delta x + 3\Delta x^{2} - 2y\Delta y - \Delta y^{2},$$

$$\lim_{\begin{subarray}{l} \Delta x \to 0 \\ \Delta y \to 0 \end{subarray}} \Delta z = \lim_{\begin{subarray}{l} \Delta x \to 0 \\ \Delta y \to 0 \end{subarray}} (6x\Delta x + 3\Delta x^{2} - 2y\Delta y - \Delta y^{2}) = 0.$$

Таким чином, дана функція неперервна на всій площині Оху.

3. Частинні похідні функції декількох змінних

Нехай задана функція z = f(x,y) і нехай точка M(x,y) належить області визначення цієї функції разом із деяким своїм околом. Частинним приростом функції z = f(x,y) по змінній x в точці M(x,y) називається приріст функції z за умови, що незалежна змінна x одержує приріст Δx , а незалежна змінна y зберігає стале значення, тобто

$$\Delta_x z = f(x + \Delta x, y) - f(x, y). \tag{1}$$

Аналогічно визначається частинний приріст z по змінній у:

$$\Delta_{y}z = f(x, y + \Delta y) - f(x, y). \tag{2}$$

Частинною похідною по х від функції z = f(x,y) називається границя відношення частинного приросту $\Delta_x z$ функції z до приросту Δx аргументу x за умови, що приріст аргументу прямує до нуля. Для вказаної частинної похідної прийняті такі позначення: $\frac{\partial z}{\partial x}$, $\frac{\partial f(x,y)}{\partial x}$, z_x' , $f_x'(x,y)$. Можемо записати

$$\frac{\partial z}{\partial x} = \lim_{\Delta x \to 0} \frac{\Delta_x z}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x, y) - f(x, y)}{\Delta x}.$$
 (3)

 $ext{\it Частинна похідна по y}$ позначається через $frac{\partial z}{\partial y}, frac{\partial f(x,y)}{\partial y}, z'_y, f'_y(x,y)$ і визначається аналогічно попередньому:

$$\frac{\partial z}{\partial y} = \lim_{\Delta y \to 0} \frac{\Delta_y z}{\Delta y} = \lim_{\Delta y \to 0} \frac{f(x, y + \Delta y) - f(x, y)}{\Delta y}.$$
 (4)

Як випливає з означення, при знаходженні частинної похідної по x потрібно вважати, що y є сталою величиною, а x — змінною. При знаходженні частинної похідної по y вважаємо, що x є сталою, а y — змінною.

$$\Pi p u \kappa n a \partial 1$$
. Знайти частинні похідні $\frac{\partial z}{\partial x}$ і $\frac{\partial z}{\partial y}$ від функцій: а) $z = 4x^3 + 3y^2$ tg x ; б) $z = 4 \ln \left(\frac{x^2}{y} + 1 \right) + y^x$.

Розв'язання. а) Вважаючи, що x – змінна, а y – стала, маємо

$$\frac{\partial z}{\partial x} = 4(x^3)'_x + 3y^2(\operatorname{tg} x)'_x = 12x^2 + \frac{3y^2}{\cos^2 x}.$$

Вважаємо, тепер, що y – змінна, а x – стала:

$$\frac{\partial z}{\partial y} = (4x^3)'_y + 3\operatorname{tg} x(y^2)'_y = 6y\operatorname{tg} x.$$

6)
$$\frac{\partial z}{\partial x} = \left(4\ln\left(\frac{x^2}{y} + 1\right) + y^x\right)_x' = 4\frac{1}{\frac{x^2}{y} + 1}\left(\frac{x^2}{y} + 1\right)_x' + y^x \ln y = \frac{4y}{x^2 + y} \cdot \frac{2x}{y} + y^x \ln y = \frac{8x}{x^2 + y} + y^x \ln y;$$

$$\frac{\partial z}{\partial y} = \left(4\ln\left(\frac{x^2}{y} + 1\right) + y^x\right)_y' = 4\frac{1}{\frac{x^2}{y} + 1} \cdot \left(\frac{x^2}{y} + 1\right)_y' + xy^{x-1} = \frac{4y}{x^2 + y} \cdot \left(-\frac{x^2}{y^2}\right) + xy^{x-1} = -\frac{4x^2}{y(x^2 + y)} + xy^{x-1}.$$

4. Диференціал функції декількох змінних

Розглянемо функцію z = f(x,y). Нехай точка M(x,y) належить області визначення цієї функції разом із деяким своїм околом. Якщо незалежні змінні x і y отримали в точці M(x,y) приріст Δx і Δy відповідно, то *повний приріст* Δz заданої функції визначається рівністю

$$\Delta z = f(x + \Delta x, y + \Delta y) - f(x, y). \tag{1}$$

Припустимо, тепер, що в деякому околі точки M(x,y) існують обидві частинні похідні $\frac{\partial z}{\partial x}$ і $\frac{\partial z}{\partial y}$, а у самій точці M вказані похідні неперервні. Можна показати, що при виконанні даних умов повний приріст Δz визначається через частинні похідні наступним чином

$$\Delta z = \frac{\partial f(x, y)}{\partial x} \Delta x + \frac{\partial f(x, y)}{\partial y} \Delta y + \alpha_1 \Delta x + \alpha_2 \Delta y, \tag{2}$$

де α_1 і α_2 — нескінченно малі при $\Delta x \to 0$ і $\Delta y \to 0$. У цьому випадку функція z = f(x,y) називається диференційованою в точці M(x,y). Сума перших двох доданків правої частини формули (2), яка є головною частиною приросту, називається *повним диференціалом* і позначається символом dz. Таким чином

$$dz = \frac{\partial f(x, y)}{\partial x} \Delta x + \frac{\partial f(x, y)}{\partial y} \Delta y.$$
 (3)

Для незалежних змінних $dx = \Delta x$, $dy = \Delta y$ (диференціал дорівнює приросту). Отже, формулу (3) можна переписати у вигляді

$$dz = \frac{\partial f(x, y)}{\partial x} dx + \frac{\partial f(x, y)}{\partial y} dy.$$
 (4)

Перший доданок правої частини формули (4) (або (3)) називається частинним диференціалом по змінній х, а

другий – по змінній у. Як бачимо, повний диференціал дорівнює сумі частинних диференціалів.

Подібно до попереднього визначається диференціал функції трьох і більше змінних. Для функції u = f(x, y, z) можемо записати

$$du = \frac{\partial u}{\partial x} dx + \frac{\partial u}{\partial y} dy + \frac{\partial u}{\partial z} dz . ag{5}$$

Приклад 1. Знайти повний диференціал функцій: а) $z = x^2 + y^x$, б) $z = u^2 v + w^3 e^{uv}$.

$$P$$
озв'язання. a) $\frac{\partial z}{\partial x} = 2x + y^x \ln y$, $\frac{\partial z}{\partial y} = xy^{x-1}$; $dz = \frac{\partial z}{\partial x} dx + \frac{\partial z}{\partial y} dy = (2x + y^x \ln y) dx + xy^{x-1} dy$;

6)
$$\frac{\partial z}{\partial u} = 2uv + vw^3 e^{uv}$$
, $\frac{\partial z}{\partial v} = u^2 + uw^3 e^{uv}$, $\frac{\partial z}{\partial w} = 3w^2 e^{uv}$;

$$dz = (2uv + vw^{3}e^{uv})du + (u^{2} + uw^{3}e^{uv})dv + 3w^{2}e^{uv}dw.$$

Відповідно до формули (2) для малих значень Δx та Δy має місце наближена рівність $\Delta z \approx dz$. Підставивши в останнє співвідношення замість Δz і dz відповідні вирази, одержимо формулу для наближеного обчислення:

$$f(x_0 + \Delta x, y_0 + \Delta y) \approx f(x_0, y_0) + \frac{\partial f(x_0, y_0)}{\partial x} \Delta x + \frac{\partial f(x_0, y_0)}{\partial y} \Delta y$$
 (6)

Приклад 2. Обчислити наближено за допомогою диференціалу значення функції z за вказаних значень

аргументів x та y, якщо

$$z = \sqrt[3]{x^3 + y^4 + 10}$$
; $x = 1,09$; $y = 1,973$.

Розв'язання. Застосовуємо формулу (6):

$$f(x,y) = \sqrt[3]{x^3 + y^4 + 10}; \quad x_0 = 1, \quad y_0 = 2, \quad \Delta x = 0,09, \quad \Delta y = -0,027;$$

$$\frac{\partial f(x,y)}{\partial x} = \frac{x^2}{\sqrt[3]{(x^3 + y^4 + 10)^2}}, \quad \frac{\partial f(x,y)}{\partial y} = \frac{4y^3}{\sqrt[3]{(x^3 + y^4 + 10)^2}};$$

$$f(1,2) = \sqrt[3]{1 + 16 + 10} = 3, \quad \frac{\partial f(1,2)}{\partial x} = \frac{1}{9}, \quad \frac{\partial f(1,2)}{\partial y} = \frac{32}{27}.$$

Отже,
$$\sqrt[3]{1,09^3 + 1,973^4 + 10} \approx 3 + \frac{1}{9} \cdot 0,09 - \frac{32}{27} \cdot 0,027 = 2,978$$
.