Lesson 2: Properties of Parent Functions (Exponential and Sinusoidal)

Today you will be investigating properties of more parent functions by graphing them. For all graphs, you will be identifying the **intervals of increase and decrease**: these are the *x*-values where the function's *y*-values are **increasing** or **decreasing**, respectively.

Some of the functions you are investigating are exponential. There are an infinite number of exponential parent functions (also called base function). The general form for an exponential function is $f(x) = B^x$, where B > 0 and $B \ne 1$. Why do we need these restrictions on B? *Hint*: domain is $\{x \in \mathfrak{R}\}$

Negative B: some values would make the function undefined ex: $f(x) = (-2)^{x}$ $f(x) = (-2)^{\frac{1}{2}}$

B can't be = 1 $e^{x} \cdot f(x) = 1^x$ because this is just a horizontal line

Jan 31-9:35 PM

Ex 1) Identify the equation of the parent (base) function for each exponential function.

a)
$$g(x) = 3(4)^{2x} - 5$$

b)
$$h(x) = 2\left(\frac{1}{3}\right)^{x-4} + 1$$

c)
$$g(x) = (3) 5^{2x-4}$$

$$g(x) = 4^{x}$$

$$h(x) = \left(\frac{1}{3}\right)^{x}$$

$$\int g(x) = 5^{x}$$

U4L2 Properties of Parent Functions (Exponential and Sinusoidal) DONE.note April 24, 2019

Some of the functions you are investigating are periodic. A **periodic function** has a **self-repeating** graph. A periodic graph has the following properties:

- Cycle: the cycle of a graph is the smallest repeating pattern.
- Period: length of one cycle is called the period (read off the
- Maximum (max): the y-value of the highest point of the graph. Also called the peak.

- Minimum (min): the y-value of the lowest point of the graph. Also called the trough.
- Amplitude: the amplitude of the function is the vertical distance from the equation of the axis to either the maximum or minimum value.
- Equation of the axis: the equation of the axis is the horizontal line halfway between the maximum and minimum values on the graph.

1 cycle

Apr 21-4:22 PM

For each parent function provided:

- Name the function and complete the table of values
- **Graph** the function. Verify with graphing technology. State the**domain** and range.
- Choose between 3 and 5 "**key points**" needed to properly sketch the function.
- Identify the intervals of increase and decrease (inc/dec)
- State any other **key features** of the graph/table (intercepts, asymptotes, 1st/2nd differences, period, max, min, amplitude, equation of the axis, etc.)

Apr 21-4:25 PM

1) $f(x) = \left(\frac{1}{2}\right)^x$ x f(x)-4
16
-3
8
-2
4
-1
2
0
1
0.5
2
0.25
3
0.125

0.0625

Name: Exponential Function, base

Domain: $\{x \in \Re\}$

Range: $\{y \in \Re | y > 0\}$

Key Points: (-1, 2), (0, 1), (1, 0.5)

Intervals of inc/dec: decreasing for all $x \in \Re$

Features: always decreasing curve; y-intercept (0, 1); no x-intercept; horizontal asymptote at y = 0; 1^{st} and 2^{nd} differences follow a similar pattern to y-values; y-values have a constant ratio (equal to the base)

U4L2 Properties of Parent Functions (Exponential and Sinusoidal) DONE.noteApoik 24, 2019

2) $f(x) = 4^x$

Name: Exponential Function, base 4

1st cottos

		10
x	f(x)	
-4	0.00390625	
-3	0.15625	
-2	0.0625	
-1	0.25	.,
0	1	٩
1	4	١ ५
2	16	4
3	64 5	٧ 4
4	256	ļ ⁻ , '

:30

Domain: $\{x \in \Re\}$

Range: $\{y \in \Re | y > 0\}$

Key Points: (-1, 0.25), (0, 1), (1, 4)

Intervals of inc/dec: increasing for all $x \in \Re$

Features: always increasing curve; y-intercept (0, 1); no x-intercept; horizontal asymptote at y = 0; 1st and 2nd differences follow a similar pattern to y-values; y-values have a constant ratio (equal to the base)

Apr 21-4:27 PM

Name: Sine Function

x (°)	-360	-270	-180	-90	0	90	180	270	360	450	540	630	720
f(x)	0	1	0	-1	0	1	0	-1	0	1	0	-1	0

Domain: $\{x \in \Re\}$

Range: $\{y \in \Re \mid -1 \le y \le 1\}$

Key Points: (0°, 0), (90°, 1), (180°, 0), (270°, -1), (360°, 0)

Intervals of inc/dec: (for $0^{\circ} \le x \le 360^{\circ}$) inc: $0^{\circ} < x < 90^{\circ}$ and $270^{\circ} < x < 360^{\circ}$

dec: $90^{\circ} < x < 270^{\circ}$

Features: y-intercept (0°, 0); x-intercepts at (0°, 0), (180°, 0), (360°, 0) over domain of $0^{\circ} \le x \le 360^{\circ}$; period of 360° ; max

value = 1; min value = -1; amplitude = 1;

equation of the axis y = 0; table shows a repeating pattern of y-values.

Apr 21-4:27 PM

HW U4L2:

- 1. p. 243 #1, 2
- 2. p. 352 #2, 6, 8a-d, 10
- 3. p. 364 #12

*Bring laptops/ iPads tomorrow! &