ЗАДАНИЕ на лабораторные работы №2

Тема: Программно- алгоритмическая реализация методов Рунге-Кутта 2-го и 4-го порядков точности при решении системы ОДУ.

Цель работы. Получение навыков разработки алгоритмов решения задачи Коши при реализации моделей, построенных на системе ОДУ, с использованием метода Рунге-Кутта 4-го порядка точности.

Исходные данные.

1. Задана система уравнений и краевые условия, описывающие радиационный перенос в цилиндре, заполненном излучающим высокотемпературным газом

$$\begin{cases} F = -\frac{c}{3Rk(z)} \frac{du}{dz}, \\ \frac{1}{R} \frac{1}{z} \frac{d}{dz} (zF) = ck(z)(u_p - u) \end{cases}$$

$$0 \le z \le 1$$

При $z = 0$, $F(0) = 0$
 $z = 1$, $F(1) = 0.393 c u(1)$.

Обозначения:

F(z), u(z)-искомые функции, поток излучения в Br/cm^2 и объемная плотность энергии излучения в Дж/ cm^3 ,

 $k(z) \equiv k(T(z))$ -коэффициент поглощения, 1/см. Варианты задания данного коэффициента представлены в таблице

№	T, K	k(T)	
		Вариант 1	Вариант 2
1	2000	8.200E-03	1.600E+00
2	3000	2.768E-02	5.400E+00
3	4000	6.560E-02	1.280E+01
4	5000	1.281E-01	2.500E+01
5	6000	2.214E-01	4.320E+01
6	7000	3.516E-01	6.860E+01
7	8000	5.248E-01	1.024E+02
8	9000	7.472E-01	1.458E+02
9	10000	1.025E+00	2.000E+02

Замечание. При интерполяции по таблице целесообразно сделать замену переменных, позволяющую выполнять процедуру полиномом 1-й степени

$$\xi = \ln(T), \quad \eta = \ln(k),$$

R, c -радиус цилиндра и скорость света. $c = 3 \cdot 10^{10}$ см/с,

$$u_{_p}(z)$$
 - функция Планка, при этом $u_{_p}(z) = \frac{3.084 \cdot 10^{-4}}{\exp(4.799 \cdot 10^4 / T(z)) - 1}$

T(z) - температурное поле в цилиндре.

Принимаем
$$T(z) = (T_w - T_0) z^p + T_0$$
.

Для отладки принять

 $R = 0.35 \, c_M$.

 $T_{w} = 2000 K$

 $T_0 = 10^4 K$,

p = 4

Замечание. Подбор начального условия для функции u(z) при решении задачи методом стрельбы удобно проводить по формуле $u(0) = \xi u_{_{D}}(0)$, где ξ не превышает 1.

Результаты работы

- 1. Алгоритм и программа, реализующие решение сформулированной краевой задачи сведением ее к задаче Коши (метод стрельбы).
- 2. Графики зависимостей F(z), u(z), $u_p(z)$ от безразмерной координаты z при указанных выше параметрах. Указать диапазон параметра ξ , обеспечивающего получение решения.
- 3. Результаты исследования влияния параметров задачи на выходные данные, т.е. зависимости . F(0), u(0) от k(0), T_{w} , T_{0} , p, R.

Вопросы при защите лабораторной работы.

- 1. Какие способы тестирования программы можете предложить?
- 2. Приведите классификацию методов решения систем ОДУ для задачи Коши
- 3. Получите систему разностных уравнений для решения сформулированной задачи неявным методом Эйлера. Опишите алгоритм реализации полученных уравнений.

- 4. Получите систему разностных уравнений для решения сформулированной задачи неявным методом трапеций. Опишите алгоритм реализации полученных уравнений.
- 5. Из каких соображений проводится выбор численного метода того или иного порядка точности, учитывая, что чем выше порядок точности метода, тем он более сложен и требует, как правило, больших ресурсов вычислительной системы?

Методика оценки работы.

Модуль 2, срок - 12-я неделя.

- 1. Задание полностью выполнено оценка удовлетворительно.
- 2. В дополнение к п.1 даны исчерпывающие ответы на контрольные вопросы- оценка отлично.