Principles of Abstract Interpretation MIT press

Ch. 13, Topology

Patrick Cousot

pcousot.github.io

PrAbsInt@gmail.com github.com/PrAbsInt/

These slides are available at http://github.com/PrAbsInt/slides/slides-13--topology-PrAbsInt.pdf

Chapter 13

Ch. 13, Topology

- A topology can be thought of as abstracting away all properties irrelevant to the notion of limit (of functions, sequences, etc.)
- We will use topology to discuss safety and liveness program properties

en.wikipedia.org/wiki/General_topology

Topology (Section 13.1)

Topology

- Let X be a non empty set.
- A topology \mathcal{T} on \mathcal{X} is a family $\mathcal{T} \in \wp(\mathcal{X})$ of subsets of \mathcal{X} , called the *open sets* such that
 - (a) The union of open sets is an open set

$$\forall P \in \wp(\mathcal{T}) . \bigcup P \in \mathcal{T}$$

(b) The finite intersection of open sets is an open set

$$\forall n \in \mathbb{N} : \forall P_1, \dots, P_n \in \mathcal{T} : \bigcap_{i=1}^n P_i \in \mathcal{T}$$

(so in particular $\bigcap \emptyset = X \in T$ and $\bigcup \emptyset = \emptyset \in T$).

• The pair $\langle X, T \rangle$ is called a *topological space*.

Example 13.1

set X:

topologies on X:

non-topologies on \mathcal{X} :

Closed sets

- The closed sets $\overline{T} \in \rho(X)$ of a topology T are the complements of the open sets.
- For $P \in \wp(X)$, define $\neg P \triangleq X \setminus P$.

$$\overline{T} \triangleq \{ \neg U \mid U \in T \}$$

- T is closed by union so \overline{T} is closed by intersection (by De Morgan laws)
- Define the closure $\rho \in \wp(\mathcal{X}) \to \overline{\mathcal{T}}$

$$\rho(P) \triangleq \bigcap \{ C \in \overline{\mathcal{T}} \mid P \subseteq C \} \tag{13.4}$$

en.wikipedia.org/wiki/Open_set
en.wikipedia.org/wiki/Closed set

Topological closure (Section 13.2)

Topological closure

Lemma 13.5 $\rho \in \wp(X) \mapsto \overline{T}$ in (13.4) is a *topological closure* satisfying the Kazimierz Kuratowski closure axioms [Kuratowski, 1958, 1961]

- (a) ρ is expansive i.e. $P \subseteq \rho(P)$
- (b) ρ is idempotent i.e. $\rho \circ \rho = \rho$
- (c) ρ is strict i.e. $\rho(\emptyset) = \emptyset$
- (d) ρ preserves finite joins i.e. $\rho(P \cup Q) = \rho(P) \cup \rho(Q)^a$

Notice that a topological closure ρ is an upper closure (since 13.5-(d) implies that ρ is increasing:

if
$$P \subseteq Q$$
 then $P \cup Q = Q$ so $\rho(Q) = \rho(P \cup Q) = \rho(P) \cup \rho(Q)$ proving that $\rho(P) \subseteq \rho(Q)$.

en.wikipedia.org/wiki/Kuratowski_closure_axioms

^aby recurrence this holds for any finite numbers of joins.

Proof of Lemma 13.5 $\rho(P) \triangleq \bigcap \{C \in \overline{T} \mid P \subseteq C\}$

- $\rho \in \wp(X) \mapsto \overline{T}$ since the intersection of closed sets is closed
- It $P \in \overline{T}$ is closed then $\rho(P) = P$
- ρ is expansive, idempotent and increasing
- Therefore $\langle \wp(X), \subseteq \rangle \stackrel{\mathbb{T}}{\longleftarrow} \langle \wp(\wp(X)), \subseteq \rangle$ is a Galois connection
- $\varnothing \subseteq \rho(\varnothing)$ and $\varnothing \subseteq \mathbb{1}(\varnothing)$ implies $\rho(\varnothing) \subseteq \varnothing$, so $\rho(\varnothing) = \varnothing$ by antisymmetry.
- Since ρ is \subseteq -increasing and \cup is a lub, we have $\rho(P) \cup \rho(Q) \subseteq \rho(P \cup Q)$.
- By expansivity, $P \subseteq \rho(P)$ and $Q \subseteq \rho(Q)$ so $P \cup Q \subseteq \rho(P) \cup \rho(Q)$
- Hence $\rho(P \cup Q) \subseteq \rho(\rho(P) \cup \rho(Q))$ since ρ is increasing.
- Because the finite intersection of open sets is an open set, the finite union of closed sets is a closed set so $\rho(\rho(P) \cup \rho(Q)) = \rho(P) \cup \rho(Q)$
- Hence $\rho(P \cup Q) \subseteq \rho(P) \cup \rho(Q)$
- Proving $\rho(P \cup Q) = \rho(P) \cup \rho(Q)$ by antisymmetry.

Topology defined by a topological closure

Topology defined by a topological closure

Lemma 13.6 Any topological closure ρ on $\wp(X)$ defines a topology

$$\mathcal{T} \triangleq \{ \neg \rho(P) \mid P \in \wp(\mathcal{X}) \}$$

The sets $\{\rho(P) \mid P \in \wp(X)\}\$ are the *closed sets*.

Lemma 13.6 A topological closure ρ on $\rho(X)$ defines a topology $\mathcal{T} \triangleq \{ \neg \rho(P) \mid P \in \rho(X) \}.$

Proof of Lemma 13.6 • Let ρ be topological closure operator (hence an upper closure) on $\wp(X)$.

- Let $\mathcal{T} \triangleq \{ \neg \rho(P) \mid P \in \wp(\mathcal{X}) \}$ be the complements of the closed sets $\{ \rho(P) \mid P \in \wp(\mathcal{X}) \}$.
- $\langle \wp(X), \subseteq \rangle$ is a complete lattice
- So $\langle \rho(\wp(X)), \subseteq \rangle$ is a complete lattice (Theorem 11.86)
- So $\langle \rho(\wp(X)), \subseteq \rangle$ is closed by intersection.
- By De Morgan laws, the complement T is therefore closed by union.
- Moreover by 13.5-(d), the finite union of closed sets is closed
- So, by De Morgan laws, the complement T is therefore closed by finite intersection.
- This proves that T is a topology on X.

Dense sets

Definition 1 The *dense sets* P of the topological space $\langle \mathcal{X}, \mathcal{T} \rangle$ are such that $\rho(P) = \mathcal{X}$ that is belong to $\rho^{-1}(\mathcal{X})$.

Example A classical example is the rationals \mathbb{Q} are dense in the reals \mathbb{R} .

- Let $\rho(X)$, $X \in \wp(\mathbb{Q})$ be the operation that adds the limits of the sequences of elements of X.
- For example the limit of the sequence of rationals 3, 3.1, 3.14, 3.141, 3.1415, 3.14159, ... is π .
- Then $\rho(\mathbb{Q}) = \mathbb{R}$.

en.wikipedia.org/wiki/Rational_number
en.wikipedia.org/wiki/Construction_of_the_real_numbers (Construction from Cauchy sequences)
hen.wikipedia.org/wiki/Dense set

Lemma 13.11 $P \in \wp(X)$ is dense if and only if $P = \neg \rho(P) \cup P$.

Proof of Lemma 13.11

- We first prove that for all $P \in \wp(X)$, $\rho(\neg \rho(P)) = \neg \rho(P)$.
 - Indeed $\neg \rho(P) \subseteq \rho(\neg \rho(P))$ since ρ is expansive.
 - Moreover $P \subseteq \rho(P)$ so $\neg \rho(P) \subseteq \neg P$
 - Hence $\rho(\neg \rho(P)) \subseteq \rho(\neg P)$
 - Proving $\neg \rho(P) = \rho(\neg \rho(P))$ by antisymmetry.
- If P is dense then $\rho(P) = X$ so $\neg \rho(P) = \emptyset$ proving $P = \neg \rho(P) \cup P$.
- Reciprocally, if $P = \neg \rho(P) \cup P$ then $\rho(P)$

$$= \rho(\neg \rho(P) \cup P)$$

= \rho(\partial \rho(P)) \cup \rho(P)

$$= \neg \rho(P) \cup \rho(P)$$
 (as proved above)

= X

proving, by def., that P is dense.

П

Lemma 13.12 Any subset $P \in \wp(\mathcal{X})$ is the intersection $P = \rho(P) \cap (P \cup \neg \rho(P))$ of a closed set $\rho(P)$ and a dense set $(P \cup \neg \rho(P))$.

Lemma 13.12 Any subset $P \in \wp(X)$ is the intersection $P = \rho(P) \cap (P \cup \neg \rho(P))$ of a closed set $\rho(P)$ and a dense set $(P \cup \neg \rho(P))$.

Proof of Lemma 13.12

Let $P \in \wp(X)$. Since $P \subseteq \rho(P)$, we have

- P $= \rho(P) \cap P$ $= (\rho(P) \cap P) \cup (\rho(P) \cap \neg \rho(P))$ $= \rho(P) \cap (P \cup \neg \rho(P)).$
- By def. $\rho(P)$ is a closed set.
- $P \cup \neg \rho(P)$ is dense by previous Lemma 13.11

 ♥ "Ch. 13, Topology"
 -18/23

 © P. Cousot, NYU, CIMS, CS

- Lemma 13.12 will be used in next Chapter **14** to characterize safety and liveness trace properties.
- To learn more about topology: [Armstrong, 1983; Bourbaki, 1966; Simmons, 1963].

Bibliography I

- Armstrong, Mark A. (1983). *Introduction to Topology and Modern Analysis*. McGraw-Hill Inc.
- Bourbaki, Nicolas (1966). Elements of Mathematics: General Topology, Addison—Wesley.
- Kuratowski, Kazimierz (1958). *Topologie, tome I.* 4th ed. Éditions Jacques Gabay, Paris.
- (1961). Topologie, tome II. 3rd ed. Éditions Jacques Gabay, Paris.
- Ore, Oystein (Mar. 1951). "Review: Jacques Riguet, Relations Binaires, Fermetures, Correspondances de Galois". *J. Symbolic Logic* 16.1, p. 61. URL:

https://projecteuclid.org:443/euclid.jsl/1183731055.

Simmons, George S. (1963). Basic Topology. Springer.

Home work

■ Read Ch. 13 "Topology" of

Principles of Abstract Interpretation
Patrick Cousot
MIT Press

The End, Thank you