Susana Margarida Ferreira de Sá Faria

Modelos de Mistura: Aplicações em Análise de Regressão

Dissertação apresentada à Faculdade de Engenharia da Universidade do Porto para a obtenção do grau de Doutor em Ciências de Engenharia

Orientação: Prof. Doutor Francisco José Lage Campelo Calheiros Co-orientação: Prof. Doutora Gilda Maria De Carvalho Fernandes Soromenho Pereira

Resumo

Nesta dissertação são estudados os Modelos de Mistura no domínio da Análise de Regressão, em particular, os modelos de regressão em misturas de distribuições e os modelos de mistura de regressões lineares.

Relativamente aos modelos de regressão em misturas de distribuições, pretende-se analisar qual o modelo de regressão adequado em misturas de distribuições de componentes normais bidimensionais. Com esse objectivo, estudam-se os valores esperados condicionais e as variâncias condicionais no par aleatório mistura de componentes normais bidimensionais e conclui-se que a linearidade do modelo de regressão nem sempre é verificada. Propõese ainda a aplicação de um método para estimar o modelo de regressão nestas misturas. Os estudos numéricos efectuados mostram-nos resultados encorajadores na aplicação deste método na estimação da curva de regressão nestas misturas, comparando com outro método existente para estimar uma curva de regressão. No entanto, estes estudos evidenciam claramente que quando se ajusta um modelo linear a cada componente da mistura se obtém um melhor ajustamento aos dados.

Relativamente aos modelos de mistura de regressões lineares abordamos o problema da sua estimação e da detecção de observações inconsistentes nestes modelos.

Embora o método da máxima verosimilhança recorrendo ao algoritmo Expectation Maximization (EM) tenha sido o método mais aplicado na estimação dos parâmetros de misturas de regressões lineares, neste trabalho é proposto um novo procedimento que utiliza o algoritmo Classification Expectation Maximization (CEM) para determinar as estimativas de máxima verosimilhança dos parâmetros dessas misturas. O estudo efectuado leva-nos a considerar a aplicação do algoritmo CEM como uma alternativa de interesse para a estimação dos parâmetros destas misturas, em especial nas situações em que as verdadeiras rectas de regressão componentes da mistura são paralelas entre si.

Uma vez que a detecção de observações que parecem inconsistentes com o modelo de regressão estimado tem desempenhado um papel primordial em análise de regressão, desenvolve-se um novo teste para identificar observações *outliers* em misturas de regressões

lineares. Este teste tem como objectivo identificar se novas observações entretando obtidas podem ser consideradas *outliers* ao modelo estimado a partir do conjunto de observações iniciais. A sua aplicação permite concluir que é um teste adequado para identificar se novas observações constituem *outliers* ao modelo estimado de misturas de regressões lineares.

Abstract

In this thesis we study Mixture Models in a Regression Analysis Context. In particular, regression models in mixture distributions and the mixture of linear regression models.

Concerning regression models in mixture distributions, we study the regression model in bivariate Gaussian mixture models. For doing so, we find the expected value and the variance of bivariate Gaussian mixture in conditional distributions. At the end we conclude that the linearity of this regression model is not always verified.

The application of a method for fitting a curve of regression in these mixtures is also proposed. When comparing the results obtained by this method with those obtained by another method for fitting a regression curve, when both are applied to a set of case studies, the results obtained are particularly encouraging for further developments in the area. However, these studies clearly evidence that the best-fit regression model is obtained when a linear model is fitted to each component of the mixture.

Concerning the models of mixture of linear regressions this work concentrates on the fitting of these models and on the detection of outliers.

In most applications the parameters of a mixture of linear regression models are estimated by maximizing the likelihood, the EM algorithm being the most popular tool to estimate the maximum likelihood in mixtures of regression models. In this work, we develop a new procedure for fitting these models using a Classification EM algorithm and compare it to the EM approach. The results of the simulation suggest that the CEM algorithm performs well, especially when the true regression lines are parallel.

The detention of observations that seem inconsistent with the fitted regression model has played a primordial role in regression analysis. In this work we develop a new test for outlier detection from a mixture of linear regressions, when the CEM algorithm is used to estimate the maximum likelihood of the mixture of parameters. The objective of this test is to identify if a new observation is as an outlier from the fitted regression model. The good performance of the test shows that it is suitable for detecting if new observations are outliers of the estimated model of mixtures of linear regressions.

Agradecimentos

Em primeiro lugar quero expressar os mais profundos agradecimentos aos meus orientadores científicos, o Professor Doutor Francisco Calheiros e a Professora Doutora Gilda Soromenho, pela orientação, ajuda e amizade prestada durante a elaboração desta dissertação.

Agradeço ao Professor Francisco Calheiros com quem tive o privilégio de trabalhar desde que iniciei os meus estudos em Estatística e que me motivou para o desenvolvimento do tema deste trabalho.

Agradeço igualmente à Professora Gilda Soromenho pela sua disponibilidade e confiança demonstrada, a quem ficarei eternamente agradecida.

Não posso deixar de agradecer,

Aos meus colegas do Departamento de Matemática para a Ciência e Tecnologia da Universidade do Minho, em especial, à Professora Doutora Estelita Vaz, pelo apoio sempre demonstrado e pelos bons momentos de convívio e descontracção.

Ao Sérgio Reis Cunha, pela sua disponibilidade e apoio sempre manifestados às minhas solicitações.

À Conceição, pelo constante encorajamento, apoio e amizade sempre presentes ao longo do tempo.

À Teresa, pela energia, o ânimo e a disponibilidade que sempre me ofereceu, em especial, nos momentos mais difíceis ocorridos durante a elaboração desta dissertação.

À Ana, pela ajuda? É pouco! Pela disponibilidade? É insuficiente! Pelo apoio? Não chega! Então?... Agradeço a nossa Enorme Amizade.

Ao Paulo, pelo optimismo, pela confiança e pela compreensão sempre demonstradas.

Aos meus pais e irmã que estiveram sempre presentes, me apoiaram nos momentos mais difíceis, pela paciência que sempre tiveram, pelo incentivo que sempre manifestaram e pelo bom ambiente que proporcionaram.

Finalmente, a duas pessoas que infelizmente já não se encontram entre nós, os meus avós Maria da Piedade e Normando, pelo carinho dedicado e pelos princípios transmitidos que me ajudam a ser o que hoje sou.

A todos os amigos mencionados e a todos que não o foram, mas que de algum modo contribuíram para que eu pudesse realizar este trabalho, os meus sinceros e profundos agradecimentos.

Índice

1	Intr	roduçã	.0	1
	1.1	Tema	e objectivos	2
	1.2	Estrut	tura da dissertação	3
2	Mo	delos o	de Mistura de Distribuições	7
	2.1	Noçõe	es preliminares	S
	2.2	Métod	dos de estimação de misturas de distribuições	12
		2.2.1	Método dos momentos	13
		2.2.2	Método da máxima verosimilhança	13
		2.2.3	Métodos gráficos	16
		2.2.4	Método da distância mínima	17
		2.2.5	Métodos bayesianos	17
	2.3	Algori	itmo EM	17
		2.3.1	Algoritmo	19
		2.3.2	Desvantagem do algoritmo	20
		2.3.3	Estratégias para obtenção de soluções iniciais	21
	2.4	Métod	dos para identificar o número de componentes da mistura	22
	2.5	Come	ntários finais	25
3	MC	LUST		27
	3.1	Anális	se de <i>clusters</i>	27
		3.1.1	Construção dos <i>clusters</i>	28
		3.1.2	Métodos hierárquicos	28
		3.1.3	Métodos de partição	32
	3.2	Módu	lo informático $Mclust$	33
		3.2.1	Função $EMclust$	37
	3.3	Come	ntários finais	38

iv *ÍNDICE*

4	Mo	nentos de Misturas de Distribuições	39
	4.1	Introdução	. 39
	4.2	Coeficiente de assimetria e coeficiente de achatamento $\ \ldots \ \ldots \ \ldots$. 40
	4.3	Distribuições puras	. 41
	4.4	Mistura binária de distribuições	. 42
		4.4.1 Valor esperado e variância	. 43
		4.4.2 Coeficiente de assimetria e coeficiente de achatamento	. 49
	4.5	Generalização a misturas não binárias	. 58
		4.5.1 Estudo de dados simulados $\dots \dots \dots \dots \dots \dots \dots \dots$. 58
	4.6	Aplicação a dados reais	. 59
	4.7	Comentários finais	. 60
5	Aná	lise de Regressão em Misturas de Normais Bidimensionais	63
	5.1	Introdução à Análise de Regressão	. 63
		5.1.1 Modelo de regressão	. 64
		5.1.2 Métodos de estimação	. 65
		5.1.3 Curva de regressão	. 66
	5.2	Regressão em normais bidimensionais $\ \ldots \ \ldots \ \ldots \ \ldots \ \ldots \ \ldots$. 68
	5.3	Regressão em misturas de normais bidimensionais	. 70
		5.3.1 Estimação do modelo de regressão em misturas de normais bidimen	-
		sionais	. 81
		5.3.2~Regressão linear em misturas de normais bidimensionais	. 84
	5.4	Estudo de simulação	. 91
		5.4.1 Descrição do estudo \dots	. 91
		5.4.2 Misturas de duas componentes normais bidimensionais: resultados	. 94
		5.4.3 Misturas de três componentes normais bidimensionais: resultados .	. 99
	5.5	Aplicação de misturas de normais bidimensionais à estimação de uma curva $\overline{}$	a
		de regressão	. 105
		5.5.1 Descrição do método	. 106
		5.5.2 Descrição do estudo de simulação	. 107
	5.6	Comentários finais	. 109
6	Mo	delos de Mistura de Regressões Lineares	111
	6.1	Introdução	. 111
	6.2	Modelo de mistura de regressões $\dots \dots \dots \dots \dots \dots \dots \dots$. 115
	6.3	Estimação de misturas de regressões lineares	. 116

ÍNDICE

		6.3.1	Estimação de misturas de regressões via o algoritmo EM	116
		6.3.2	Estimação de misturas de regressões via o algoritmo CEM	118
	6.4	Estudo	o de simulação	119
		6.4.1	Descrição do estudo	120
		6.4.2	Misturas de duas regressões lineares simples: resultados	123
		6.4.3	Misturas de três regressões lineares simples: resultados	129
	6.5	Dados	reais: descrição e resultados	135
	6.6	Comer	ntários finais	136
7	No	vo Tes	te de Alteração da Estrutura	139
	7.1	Introd	ução	139
	7.2	Novo t	seste	140
		7.2.1	Descrição do novo teste	141
	7.3	Aplica	ção do novo teste	143
		7.3.1	Descrição da aplicação	143
		7.3.2	Resultados da aplicação	147
	7.4	Comer	ntários finais	147
8	Con	clusõe	s	149
	8.1	Contri	buições do trabalho	149
	8.2	Trabal	ho futuro	151
\mathbf{A}	Grá	ficos d	os Momentos de Misturas de Distribuições	153
В	Dad	los		159
\mathbf{C}	Alg	umas I	Demonstrações	163
D	Sim	ulação	em Misturas de Regressões Lineares: resultados	165
${f E}$	Apl	icação	do Novo Teste de Alteração da Estrutura: resultados	259
	Bibl	liografi	la	282

vi *ÍNDICE*

Índice de Figuras

2.1	Histograma do comprimento dos peixes	8
2.2	Função de log-verosimilhança em função dos valores médios das duas componentes	15
3.1	Clusters no modelo "EII"	35
3.2	Clusters no modelo "VEI"	35
3.3	Clusters no modelo "VVV"	35
4.1	Desvio padrão amostral v s média amostral em amostras de $\phi\left(1,1\right),\left(n=10\right)\;$.	42
4.2	Desvio padrão amostral v s média amostral em amostras de $\phi\left(1,1\right),\left(n=100\right)$.	42
4.3	Desvio padrão amostral v s média amostral em amostras de $U\left(1,2\right),\left(n=10\right)$	43
4.4	Desvio padrão amostral v s média amostral em amostras de $U\left(1,2\right),\left(n=100\right)\;$.	43
4.5	Desvio padrão amostral v s média amostral em amostras de $G\left(1,2\right),\left(n=10\right)$	44
4.6	Desvio padrão amostral v s média amostral em amostras de $G\left(1,2\right),\left(n=100\right)\;$.	44
4.7	Coef. de achatamento v s coef. de assimetria em amostras de $\phi\left(1,1\right),\left(n=10\right)$.	45
4.8	Coef. de achatamento v s coef. de assimetria em amostras de $\phi\left(1,1\right),\left(n=100\right)$.	45
4.9	Coef. de achatamento v s coef. de assimetria em amostras de $U\left(1,1\right),\left(n=10\right)$.	45
4.10	Coef. de achatamento v s coef. de assimetria em amostras de $U\left(1,1\right),\left(n=100\right)$	45
4.11	Coef. de achatamento v s coef. de assimetria em amostras de $G\left(1,1\right),\left(n=10\right)\;.$	46
4.12	Coef. de achatamento v s coef. de assimetria em amostras de $G\left(1,1\right),\left(n=100\right)$	46
4.13	Desvio padrão amostral v s média amostral em amostras de $\left(1-\pi\right)\phi\left(0,1\right)$ +	
	$\pi \phi (4,4) \text{ (n=100)} \dots \dots$	46
4.14	Desvio padrão amostral v s média amostral em amostras de $\left(1-\pi\right)\phi\left(0,1\right)$ +	
	$\pi \phi (2,1) $ (n=100)	46
4.15	Desvio padrão amostral v s média amostral em amostras de $\left(1-\pi\right)~U\left(0,2\right)+$	
	$\pi U(1,4)(n=100)$	47
4.16	Desvio padrão amostral v s média amostral em amostras de $\left(1-\pi\right)~U\left(0,2\right)+$	
	$\pi U(2,4)(n=100)$	47

4.17	Desvio padrão amostral v s média amostral em amostras de $(1-\pi)~G\left(1,2\right)+$	
	$\pi G(2,2) (n = 100)$	47
4.18	Desvio padrão amostral v s média amostral em amostras de $(1-\pi)~G\left(1,2\right)+$	
	$\pi G(4,4)(n=100)$	47
4.19	Desvio padrão amostral v s média amostral em amostras de 0.5 $\phi\left(0,1\right)+$ 0.5 $\phi\left(4,4\right)$	
	(n=100)	48
4.20	Desvio padrão amostral v s média amostral em amostras de 0.5 $\phi\left(0,1\right)+$ 0.5 $\phi\left(2,1\right)$	
	(n=100)	48
4.21	Coef. de achatamento v s coef. de assimetria em amostras de $(1-\pi)\phi(0,1)$ +	
	$\pi \phi (4,4) \text{ (n=100)} \dots \dots$	56
4.22	Coef. de achatamento v s coef. de assimetria em amostras de $(1-\pi)\phi(0,1)$ +	
	$\pi \phi(2,1) \text{ (n=100)} \dots \dots$	56
4.23	Coef. de achatamento v s coef. de assimetria em amostras de $\left(1-\pi\right)~U\left(0,2\right)+$	
	$\pi U(1,4)(n=100)$	57
4.24	Coef. de achatamento v s coef. de assimetria em amostras de $\left(1-\pi\right)~U\left(0,2\right)+$	
	$\pi U(2,4)(n=100)$	57
4.25	Coef. de achatamento v s coef. de assimetria em amostras de $\left(1-\pi\right)~G\left(1,2\right)+$	
	$\pi G(2,2) (n = 100)$	57
4.26	Coef. de achatamento v s coef. de assimetria em amostras de $\left(1-\pi\right)~G\left(1,2\right)+$	
	$\pi G(4,4)$ (n=100)	57
4.27	Coef. de achatamento v s coef. de assimetria em amostras de 0.5 $\phi\left(1,1\right)$ +	
	$0.5 \phi(4,4) (n = 100) \dots $	58
4.28	Coef. de achatamento v s coef. de assimetria em amostras de 0.5 $\phi\left(1,1\right)$ +	
	$0.5 \phi(2,1) (n = 100) \dots $	58
4.29	Desvio padrão amostral v s média amostral em amostras de $(1-\pi_1-\pi_2)\phi\left(-2,1\right)+$	
	$\pi_1 \phi(0,1) + \pi_2 \phi(4,4) (n=100) \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots$	59
4.30	Coef. de achatamento v s coef. de assimetria em amostras de $(1-\pi_1-\pi_2)\phi$ $(-2,1)+$	
	$\pi_1 \phi(0,1) + \pi_2 \phi(4,2) (n=100) \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots$	59
4.31	Desvio padrão amostral v s média amostral em amostras de $(1-\pi_1-\pi_2)U\left(0,2\right)+$	
	$\pi_1 U(1,4) + \pi_2 U(4,6) $ (n=100)	60
4.32	Coef. de achatamento v s coef. de assimetria em amostras de $(1-\pi_1-\pi_2)U\left(0,2\right)+$	
	$\pi_1 U(1,4) + \pi_2 U(4,6) (n=100)$	60
4.33	Desvio padrão amostral v s média amostral em amostras de $(1-\pi_1-\pi_2)G(1,2)+$	
	$\pi_1 G(2,2) + \pi_2 G(4,4) (n=100)$	60

4.34	Coef. de achatamento vs coef. de assimetria em amostras de $(1-\pi_1-\pi_2)G(1,2)+$	
	$\pi_1 G(2,2) + \pi_2 G(4,4) (n=100)$	60
4.35	Desvio padrão amostral v s média amostral em amostras da velocidade média $$.	61
4.36	Coef. de achatamento v s coef. de assimetria em amostras da velocidade média $% \left(1\right) =\left(1\right) \left(1\right) $.	61
4.37	Desvio padrão amostral v s média amostral em amostras da carga de tráfego $$. .	61
4.38	Coef. de achatamento v s coef. de assimetria em amostras da carga de tráfego $$.	61
5.1	Curvas de regressão da distribuição conjunta de X_1 e X_2	67
5.2	Funções densidade condicionais	69
5.3	Curvas de regressão relativas a uma mistura de três componentes normais (Dados	
	$simulados) \qquad \dots \qquad \dots \qquad \dots \qquad \dots \qquad \dots \qquad \dots \qquad \dots$	82
5.4	Curva de regressão da concentração de ozono na quantidade de radiação (Dados	
	reais)	83
5.5	Curvas de regressão numa mistura de duas componentes binormais: a regressão	
	de X_2 em X_1 é linear. (Situação I)	86
5.6	Curvas de regressão numa mistura de duas componentes binormais: a regressão	
	de X_2 em X_1 é linear (Situação II)	87
5.7	Curvas de regressão numa mistura de duas componentes binormais: a regressão	
	de X_2 em X_1 e a regressão de X_1 em X_2 são lineares (Situação I)	90
5.8	Curvas de regressão numa mistura de duas componentes binormais: a regressão	
	de X_2 em X_1 e a regressão de X_1 em X_2 são lineares (Situação II)	90
5.9	Curvas de regressão numa mistura de duas componentes binormais: a regressão	
	de X_2 em X_1 e a regressão de X_1 em X_2 são lineares (Situação III)	90
5.10	Mistura de duas componentes normais bidimensionais	95
5.11	Mistura de três componentes normais bidimensionais $\dots \dots \dots \dots$	100
5.12	Diagrama de dispersão de uma amostra gerada no caso I $\ \ldots \ \ldots \ \ldots$	109
5.13	Curva de regressão estimada e curva de regressão verdadeira	109
5.14	Diagrama de dispersão de uma amostra gerada no caso II $\ \ldots \ldots \ldots$	110
5.15	Curva de regressão estimada e curva de regressão verdadeira	110
6.1	Diagrama de dispersão do som compreendido pelo músico versus o som emitido	113
6.2	Diagramas de dispersão de amostras de misturas de duas regressões lineares simp-	
	les quando as verdadeiras rectas de regressão são paralelas entre si ($n=100$ e	
	$\pi_1 = 0.5$)	125

6.3	Diagramas de dispersão de amostras de misturas de duas regressões lineares simp-	
	les quando as verdadeiras rectas de regressão são perpendiculares entre si ($n=100$	
	e $\pi_1 = 0.5$)	126
6.4	Diagramas de dispersão de amostras de misturas de duas regressões lineares simp-	
	les quando as verdadeiras rectas de regressão são concorrentes entre si $(n=100$	
	e $\pi_1 = 0.5$)	127
6.5	Diagramas de dispersão de amostras de misturas de três regressões lineares simples	
	$(n = 100, \pi_1 = 0.4; \pi_2 = 0.3 \text{ e } \pi_3 = 0.3)$	133
6.6	Diagrama de dispersão do número de plantas infectadas <i>versus</i> o número de in-	
	sectos	135
7.1	Diagramas de dispersão de amostras de dimensão $n=100~{\rm com}~L=2~{\rm novas}$	
	observações (Situação I)	145
7.2	Diagramas de dispersão de amostras de dimensão $n=100~{\rm com}~L=2~{\rm novas}$	
	observações (Situação III)	146
A.1	Desvio padrão amostral v s média amostral em amostras de $\left(1-\pi\right)\phi\left(0,1\right)+$	
	$\pi \phi (4,4) (n=10) \dots \dots$	153
A.2	Desvio padrão amostral v s média amostral em amostras de $\left(1-\pi\right)\phi\left(0,1\right)$ +	
	$\pi \phi(2,1) \text{ (n=10)} \dots \dots$	153
A.3	Desvio padrão amostral v s média amostral em amostras de $\left(1-\pi\right)\phi\left(0,1\right)$ +	
	$\pi \phi (4,4) (n=500) \dots $	154
A.4	Desvio padrão amostral v s média amostral em amostras de $\left(1-\pi\right)\phi\left(0,1\right)$ +	
	$\pi \phi(2,1) \text{ (n=500)} \dots \dots$	154
A.5	Desvio padrão amostral v s média amostral em amostras de $\left(1-\pi\right)~U\left(0,2\right)+$	
	$\pi U(1,4)(n=10)$	154
A.6	Desvio padrão amostral v s média amostral em amostras de $\left(1-\pi\right)~U\left(0,2\right)+$	
	$\pi\;U\left(2,4\right)(\text{n=10})\;\;\dots\;\dots\;\dots\;\dots\;\dots$	154
A.7	Desvio padrão amostral v s média amostral em amostras de $\left(1-\pi\right)\ U\left(0,2\right)+$	
	$\pi U(1,4)(n=500)$	154
A.8	Desvio padrão amostral v s média amostral em amostras de de $\left(1-\pi\right)~U\left(0,2\right)+$	
	$\pi U(2,4)(n=500)$	154
A.9	Desvio padrão amostral v s média amostral em amostras de $(1-\pi)~G\left(1,2\right)+$	
	$\pi G(2,2) (n = 10) \dots \dots$	155
A.10	Desvio padrão amostral v s média amostral em amostras de $(1-\pi)~G\left(1,2\right)+$	
	$\pi G(4,4)(n=10)$	155

ÍNDICE DE FIGURAS xi

A.11	Desvio padrão amostral v s média amostral em amostras de $(1-\pi)~G\left(1,2\right)+$	
	$\pi G(2,2) (n = 500)$	55
A.12	Desvio padrão amostral v s média amostral em amostras de $(1-\pi)~G\left(1,2\right)+$	
	$\pi G(4,4)(n=500)$	55
A.13	Desvio padrão amostral v s média amostral em amostras de 0.5 $U\left(0,2\right)+$ 0.5 $U\left(1,4\right)\left(n\right)$	=
	100)	55
A.14	Desvio padrão amostral v s média amostral em amostras de 0.5 $U\left(0,2\right)+$ 0.5 $U\left(2,4\right)\left(n\right)$	=
	100)	55
A.15	Desvio padrão amostral v s média amostral em amostras de 0.5 $G\left(1,2\right)+$ 0.5 $G\left(2,2\right)\left(n\right)$	=
	100)	56
A.16	Desvio padrão amostral v s média amostral em amostras de 0.5 $G\left(1,2\right)+$ 0.5 $G\left(4,4\right)\left(n\right)$	=
	100)	56
A.17	Coef. de achatamento v s coef. de assimetria em amostras de $\left(1-\pi\right)\phi\left(0,1\right)+$	
	$\pi \phi (4,4) \text{ (n=10)} \dots 15$	56
A.18	Coef. de achatamento v s coef. de assimetria em amostras de $\left(1-\pi\right)\phi\left(0,1\right)+$	
	$\pi \phi(2,1) \text{ (n=10)} \dots 15$	56
A.19	Coef. de achatamento v s coef. de assimetria em amostras de $(1-\pi)\phi(0,1)$ +	
	$\pi \phi (4,4) \text{ (n=500)} \dots 15$	56
A.20	Coef. de achatamento v s coef. de assimetria em amostras de $(1-\pi)\phi(0,1)$ +	
	$\pi \phi (2,1) (n=500) \dots 15$	56
A.21	Coef. de achatamento v s coef. de assimetria em amostras de $\left(1-\pi\right)~U\left(0,2\right)+$	
	$\pi U(1,4)(n=10) \dots 15$	57
A.22	Coef. de achatamento v s coef. de assimetria em amostras de $(1-\pi)$ $U\left(0,2\right)+$	
	$\pi U(2,4)(n=10) \dots 15$	57
A.23	Coef. de achatamento v s coef. de assimetria em amostras de $(1-\pi)$ $U\left(0,2\right)+$	
	$\pi U(1,4)(n=500)$	57
A.24	Coef. de achatamento v s coef. de assimetria em amostras de $(1-\pi)$ $U\left(0,2\right)+$	
	$\pi U(2,4)(n=500)$	57
A.25	Coef. de achatamento v s coef. de assimetria em amostras de $(1-\pi)$ $G(1,2)$ +	
	$\pi G(2,2) (n=10) \dots 15$	57
A.26	Coef. de achatamento v s coef. de assimetria em amostras de $(1-\pi)$ $G(1,2)$ +	
	$\pi G(4,4)(n=10) \dots 15$	57
A.27	Coef. de achatamento v s coef. de assimetria em amostras de $(1-\pi)$ $G(1,2)$ +	
	$\pi G(2,2) (n = 500)$	58

A.28	Coef. de achatamento vs coef. de assimetria em amostras de $(1-\pi)$ $G(1,2)$ +	
	$\pi G(4,4)(n=500)$	158
A.29	Coef. de achatamento v s coef. de assimetria em amostras de 0.5 $U\left(0,2\right)$ +	
	$0.5\ U(1,4)(n=100)$	158
A.30	Coef. de achatamento v s coef. de assimetria em amostras de 0.5 $U\left(0,2\right)$ +	
	$0.5\ U(2,4)(n=100)$	158
A.31	Coef. de achatamento v s coef. de assimetria em amostras de 0.5 $G\left(1,2\right)$ +	
	$0.5 G(2,2) (n = 100) \dots $	158
A.32	Coef. de achatamento v s coef. de assimetria em amostras de 0.5 $G\left(1,2\right)$ +	
	$0.5 G(4.4)(n=100) \dots $	158

Índice de Tabelas

3.1	Critérios para diferentes características geométricas dos $\mathit{clusters}\ \ldots\ \ldots$	32
3.2	Parametrizações da matriz de covariância disponíveis no $MCLUST$	34
5.1	Frequências absolutas de X_1 e X_2 e valores médios condicionais	67
5.2	Número de classes construídas para cada dimensão da amostra	93
5.3	Parâmetros da função densidade da segunda componente da mistura	94
5.4	Percentagem de vezes que a SQR da curva de regressão estimada usando o	
	método proposto na secção $5.3.1$ é superior em misturas de 2 componentes	
	binormais $(n = 100)$	97
5.5	Percentagem de vezes que a SQR da curva de regressão estimada usando o	
	método proposto na secção 5.3.1 é superior em misturas de 2 componentes	
	binormais $(n = 500)$	98
5.6	Parâmetros da função densidade da segunda e da terceira componentes da	
	mistura	99
5.7	Percentagem de vezes que a SQR da curva de regressão estimada usando o	
	método proposto na secção 5.3.1 é superior, em misturas de 3 componentes	
	binormais $(n = 100)$	101
5.8	Percentagem de vezes que a SQR da curva de regressão estimada usando o	
	método proposto na secção 5.3.1 é superior, em misturas de 3 componentes	
	binormais $(n = 100)$	102
5.9	Percentagem de vezes que a SQR da curva de regressão estimada usando o	
	método proposto na secção 5.3.1 é superior, em misturas de 3 componentes	
	binormais $(n = 500)$	103
5.10	Percentagem de vezes que a SQR da curva de regressão estimada usando o	
	método proposto na secção 5.3.1 é superior, em misturas de 3 componentes	
	binormais $(n = 500)$	104

6.1	Vardadairos valores des parâmetres β , $(i-1,2)$ a σ^2 $(i-1,2)$ em mietu	
0.1	Verdadeiros valores dos parâmetros β_j $(j = 1, 2)$ e σ_j^2 $(j = 1, 2)$ em misturas de duas regressões lineares simples	124
6.2	Percentagem de vezes que o coeficiente R^2 do modelo estimado usando o	124
0.2	-	
	algoritmo CEM é superior (igual) ao mesmo coeficiente do modelo esti-	
	mado quando se aplica o algoritmo EM, em misturas de duas regressões	100
0.0		130
6.3	Percentagem de vezes que o coeficiente \mathbb{R}^2 do modelo estimado usando o al-	
	goritmo CEM é superior (igual) ao mesmo coeficiente do modelo estimado	
	quando se aplica o algoritmo EM, em misturas de duas regressões simples	
	quando as verdadeiras rectas de regressão são perpendiculares entre si .	131
6.4	Percentagem de vezes que o coeficiente \mathbb{R}^2 do modelo estimado usando o	
	algoritmo CEM é superior (igual) ao mesmo coeficiente do modelo esti-	
	mado quando se aplica o algoritmo EM, em misturas de duas regressões	
	simples quando as verdadeiras rectas de regressão são concorrentes entre si	132
6.5	Verdadeiros valores dos parâmetros $\beta_j(j=1,2,3)$ e $\sigma_j^2(j=1,2,3)$ em	
	misturas de três regressões lineares simples	132
6.6	Percentagem de vezes que o coeficiente \mathbb{R}^2 do modelo estimado usando o	
	algoritmo CEM é superior (igual) ao mesmo coeficiente do modelo esti-	
	mado quando se aplica o algoritmo EM em misturas de três regressões	
	simples	134
6.7	Coeficiente \mathbb{R}^2 quando se aplica o algoritmo EM e o algoritmo CEM na	
	estimação dos parâmetros das misturas de regressões	136
B.1	Dados relativos às características ambientais na área metropolitana de	
	Nova Iorque	160
B.2	Dados dos músicos: som emitido e som compreendido por um músico	161
B.3	Dados dos insectos: número de insectos e número de plantas infectadas .	162
D.1	Estimativas do valor absoluto do enviesamento médio dos parâmetros da	
	mistura de duas regressões lineares no caso PI	166
D.2	Estimativas do valor absoluto do enviesamento médio dos parâmetros da	
	mistura de duas regressões lineares no caso PII	167
D.3	Estimativas do valor absoluto do enviesamento médio dos parâmetros da	
	mistura de duas regressões lineares no caso PIII	168
D.4	Estimativas do valor absoluto do enviesamento médio dos parâmetros da	
	mistura de duas regressões lineares no caso PIV	169
	9	

D.5	Estimativas do valor absoluto do enviesamento médio dos parâmetros da	
	mistura de duas regressões lineares no caso PV	170
D.6	Estimativas do valor absoluto do enviesamento médio dos parâmetros da	
	mistura de duas regressões lineares no caso PVI	171
D.7	Estimativas do valor absoluto do enviesamento médio dos parâmetros da	
	mistura de duas regressões lineares no caso PVII	172
D.8	Estimativas do valor absoluto do enviesamento médio dos parâmetros da	
	mistura de duas regressões lineares no caso PVIII	173
D.9	Estimativas do valor absoluto do enviesamento médio dos parâmetros da	
	mistura de duas regressões lineares no caso PIX $\dots \dots \dots$	174
D.10	Estimativas do valor absoluto do enviesamento médio dos parâmetros da	
	mistura de duas regressões lineares no caso PX	175
D.11	Estimativas do desvio padrão dos parâmetros da mistura de duas re-	
	gressões lineares no caso PI	176
D.12	Estimativas do desvio padrão dos parâmetros da mistura de duas re-	
	gressões lineares no caso PII	177
D.13	Estimativas do desvio padrão dos parâmetros da mistura de duas re-	
	gressões lineares no caso PIII	178
D.14	Estimativas do desvio padrão dos parâmetros da mistura de duas re-	
	gressões lineares no caso PIV	179
D.15	Estimativas do desvio padrão dos parâmetros da mistura de duas re-	
	gressões lineares no caso PV $\ \ldots \ \ldots \ \ldots \ \ldots \ \ldots$	180
D.16	Estimativas do desvio padrão dos parâmetros da mistura de duas re-	
	gressões lineares no caso PVI	181
D.17	Estimativas do desvio padrão dos parâmetros da mistura de duas re-	
	gressões lineares no caso PVII	182
D.18	Estimativas do desvio padrão dos parâmetros da mistura de duas re-	
	gressões lineares no caso PVIII	183
D.19	Estimativas do desvio padrão dos parâmetros da mistura de duas re-	
	gressões lineares no caso PIX	184
D.20	Estimativas do desvio padrão dos parâmetros da mistura de duas re-	
	gressões lineares no caso PX $\ \ldots \ \ldots \ \ldots \ \ldots \ \ldots$	185
D.21	Estimativas do erro quadratico médio dos parâmetros da mistura de duas	
	regressões lineares no caso PI	186

D.22	Estimativas do erro quadratico medio dos parametros da mistura de duas	
	regressões lineares no caso PII	187
D.23	Estimativas do erro quadratico médio dos parâmetros da mistura de duas	
	regressões lineares no caso PIII	188
D.24	Estimativas do erro quadratico médio dos parâmetros da mistura de duas	
	regressões lineares no caso PIV	189
D.25	Estimativas do erro quadratico médio dos parâmetros da mistura de duas	
	regressões lineares no caso PV $\ \ldots \ \ldots \ \ldots \ \ldots \ \ldots \ \ldots$	190
D.26	Estimativas do erro quadratico médio dos parâmetros da mistura de duas	
	regressões lineares no caso PVI	191
D.27	Estimativas do erro quadratico médio dos parâmetros da mistura de duas	
	regressões lineares no caso PVII	192
D.28	Estimativas do erro quadratico médio dos parâmetros da mistura de duas	
	regressões lineares no caso PVIII	193
D.29	Estimativas do erro quadratico médio dos parâmetros da mistura de duas	
	regressões lineares no caso PIX	194
D.30	Estimativas do erro quadratico médio dos parâmetros da mistura de duas	
	regressões lineares no caso PX $\ \ldots \ \ldots \ \ldots \ \ldots \ \ldots$	195
D.31	Estimativas do valor absoluto do enviesamento médio dos parâmetros da	
	mistura de duas regressões lineares no caso EI	196
D.32	Estimativas do valor absoluto do enviesamento médio dos parâmetros da	
	mistura de duas regressões lineares no caso EII	197
D.33	Estimativas do valor absoluto do enviesamento médio dos parâmetros da	
	mistura de duas regressões lineares no caso EIII	198
D.34	Estimativas do valor absoluto do enviesamento médio dos parâmetros da	
	mistura de duas regressões lineares no caso EIV	199
D.35	Estimativas do valor absoluto do enviesamento médio dos parâmetros da	
	mistura de duas regressões lineares no caso EV	200
D.36	Estimativas do valor absoluto do enviesamento médio dos parâmetros da	
	mistura de duas regressões lineares no caso EVI	201
D.37	Estimativas do valor absoluto do enviesamento médio dos parâmetros da	
	mistura de duas regressões lineares no caso EVII	202
D.38	Estimativas do valor absoluto do enviesamento médio dos parâmetros da	
	mistura de duas regressões lineares no caso EVIII	203

D.39	Estimativas do valor absoluto do enviesamento médio dos parâmetros da	
	mistura de duas regressões lineares no caso EIX $\dots \dots \dots$	204
D.40	Estimativas do valor absoluto do enviesamento médio dos parâmetros da	
	mistura de duas regressões lineares no caso EX	205
D.41	Estimativas do desvio padrão dos parâmetros da mistura de duas re-	
	gressões lineares no caso EI	206
D.42	Estimativas do desvio padrão dos parâmetros da mistura de duas re-	
	gressões lineares no caso EII	207
D.43	Estimativas do desvio padrão dos parâmetros da mistura de duas re-	
	gressões lineares no caso EIII	208
D.44	Estimativas do desvio padrão dos parâmetros da mistura de duas re-	
	gressões lineares no caso EIV	209
D.45	Estimativas do desvio padrão dos parâmetros da mistura de duas re-	
	gressões lineares no caso EV $\ \ldots \ \ldots \ \ldots \ \ldots \ \ldots$	210
D.46	Estimativas do desvio padrão dos parâmetros da mistura de duas re-	
	gressões lineares no caso EVI	211
D.47	Estimativas do desvio padrão dos parâmetros da mistura de duas re-	
	gressões lineares no caso EVII	212
D.48	Estimativas do desvio padrão dos parâmetros da mistura de duas re-	
	gressões lineares no caso EVIII	213
D.49	Estimativas do desvio padrão dos parâmetros da mistura de duas re-	
	gressões lineares no caso EIX	214
D.50	Estimativas do desvio padrão dos parâmetros da mistura de duas re-	
	gressões lineares no caso EX	215
D.51	Estimativas do erro quadratico médio dos parâmetros da mistura de duas	
	regressões lineares no caso EI	216
D.52	Estimativas do erro quadratico médio dos parâmetros da mistura de duas	
	regressões lineares no caso EII	217
D.53	Estimativas do erro quadratico médio dos parâmetros da mistura de duas	
	regressões lineares no caso EIII	218
D.54	Estimativas do erro quadratico médio dos parâmetros da mistura de duas	
	regressões lineares no caso EIV	219
D.55	Estimativas do erro quadratico médio dos parâmetros da mistura de duas	
	regressões lineares no caso EV	220

D.56	Estimativas do erro quadratico medio dos parametros da mistura de duas	
	regressões lineares no caso EVI	221
D.57	Estimativas do erro quadratico médio dos parâmetros da mistura de duas	
	regressões lineares no caso EVII	222
D.58	Estimativas do erro quadratico médio dos parâmetros da mistura de duas	
	regressões lineares no caso EVIII	223
D.59	Estimativas do erro quadratico médio dos parâmetros da mistura de duas	
	regressões lineares no caso EIX	224
D.60	Estimativas do erro quadratico médio dos parâmetros da mistura de duas	
	regressões lineares no caso EX $\ \ldots \ \ldots \ \ldots \ \ldots \ \ldots$	225
D.61	Estimativas do valor absoluto do enviesamento médio dos parâmetros da	
	mistura de duas regressões lineares no caso CI $\ \ldots \ \ldots \ \ldots \ \ldots$	226
D.62	Estimativas do valor absoluto do enviesamento médio dos parâmetros da	
	mistura de duas regressões lineares no caso CII	227
D.63	Estimativas do valor absoluto do enviesamento médio dos parâmetros da	
	mistura de duas regressões lineares no caso CIII	228
D.64	Estimativas do valor absoluto do enviesamento médio dos parâmetros da	
	mistura de duas regressões lineares no caso CIV $\dots \dots \dots$	229
D.65	Estimativas do valor absoluto do enviesamento médio dos parâmetros da	
	mistura de duas regressões lineares no caso CV	230
D.66	Estimativas do valor absoluto do enviesamento médio dos parâmetros da	
	mistura de duas regressões lineares no caso CVI	231
D.67	Estimativas do desvio padrão dos parâmetros da mistura de duas re-	
	gressões lineares no caso CI	232
D.68	Estimativas do desvio padrão dos parâmetros da mistura de duas re-	
	gressões lineares no caso CII	233
D.69	Estimativas do desvio padrão dos parâmetros da mistura de duas re-	
	gressões lineares no caso CIII	234
D.70	Estimativas do desvio padrão dos parâmetros da mistura de duas re-	
	gressões lineares no caso CIV	235
D.71	Estimativas do desvio padrão dos parâmetros da mistura de duas re-	
	gressões lineares no caso CV	236
D.72	Estimativas do desvio padrão dos parâmetros da mistura de duas re-	
	gressões lineares no caso CVI	237

D.73	Estimativas do erro quadrático médio dos parâmetros da mistura de duas	
	regressões lineares no caso CI	238
D.74	Estimativas do erro quadrático médio dos parâmetros da mistura de duas	
	regressões lineares no caso CII	239
D.75	Estimativas do erro quadrático médio dos parâmetros da mistura de duas	
	regressões lineares no caso CIII	240
D.76	Estimativas do erro quadrático médio dos parâmetros da mistura de duas	
	regressões lineares no caso CIV	241
D.77	Estimativas do erro quadrático médio dos parâmetros da mistura de duas	
	regressões lineares no caso CV $\ \ldots \ \ldots \ \ldots \ \ldots \ \ldots$	242
D.78	Estimativas do erro quadrático médio dos parâmetros da mistura de duas	
	regressões lineares no caso CVI	243
D.79	Estimativas do valor absoluto do enviesamento médio dos parâmetros da	
	mistura de três regressões lineares no caso I $\dots \dots \dots \dots$	244
D.80	Estimativas do valor absoluto do enviesamento médio dos parâmetros da	
	mistura de três regressões lineares no caso II	245
D.81	Estimativas do valor absoluto do enviesamento médio dos parâmetros da	
	mistura de três regressões lineares no caso III	246
D.82	Estimativas do valor absoluto do enviesamento médio dos parâmetros da	
	mistura de três regressões lineares no caso IV $\dots \dots \dots \dots$	247
D.83	Estimativas do valor absoluto do enviesamento médio dos parâmetros da	
	mistura de três regressões lineares no caso V $\dots \dots \dots \dots$	248
D.84	Estimativas do desvio padrão dos parâmetros da mistura de três regressões	
	lineares no caso I	249
D.85	Estimativas do desvio padrão dos parâmetros da mistura de três regressões	
	lineares no caso II	250
D.86	Estimativas do desvio padrão dos parâmetros da mistura de três regressões	
	lineares no caso III	251
D.87	Estimativas do desvio padrão dos parâmetros da mistura de três regressões	
	lineares no caso IV	252
D.88	Estimativas do desvio padrão dos parâmetros da mistura de três regressões	
	lineares no caso V	253
D.89	Estimativas do erro quadrático médio dos parâmetros da mistura de três	
	regressões lineares no caso I	254

D.90	Estimativas do erro quadratico medio dos parametros da mistura de tres	255
D 01	regressões lineares no caso II	255
D.91	Estimativas do erro quadrático médio dos parâmetros da mistura de três regressões lineares no caso III	256
D.92	Estimativas do erro quadrático médio dos parâmetros da mistura de três	200
D.92	regressões lineares no caso IV	257
D.93	Estimativas do erro quadrático médio dos parâmetros da mistura de três	201
טפ.ט	regressões lineares no caso V	258
	regressoes inteares no caso v	200
E.1	Valores-p do teste de alteração da estrutura na mistura de duas regressões	
	lineares no caso PIII, em que $x \in [-1; 3]$	260
E.2	Valores-p do teste de alteração da estrutura na mistura de duas regressões	
	lineares no caso PIII, em que $x \in [0,2]$	261
E.3	Valores-p do teste de alteração da estrutura na mistura de duas regressões	
	lineares no caso PV, em que $x \in [-1; 3]$	262
E.4	Valores-p do teste de alteração da estrutura na mistura de duas regressões	
	lineares no caso PV, em que $x \in [0; 2]$	263
E.5	Valores-p do teste de alteração da estrutura na mistura de duas regressões	
	lineares no caso PVIII, em que $x \in [-1; 3]$	264
E.6	Valores-p do teste de alteração da estrutura na mistura de duas regressões	
	lineares no caso PVIII, em que $x \in [0; 2]$	265
E.7	Valores-p do teste de alteração da estrutura na mistura de duas regressões	
	lineares no caso EI, em que $x \in [-1; 3]$	266
E.8	Valores-p do teste de alteração da estrutura na mistura de duas regressões	
	lineares no caso EI, em que $x \in [0; 2]$	267
E.9	Valores-p do teste de alteração da estrutura na mistura de duas regressões	
	lineares no caso EVI, em que $x \in [-1; 3]$	268
E.10	Valores-p do teste de alteração da estrutura na mistura de duas regressões	
	lineares no caso EVI, em que $x \in [0; 2]$	269
E.11	Valores-p do teste de alteração da estrutura na mistura de duas regressões	
	lineares no caso EIV, em que $x \in [-1; 3]$	270
E.12	Valores-p do teste de alteração da estrutura na mistura de duas regressões	
	lineares no caso EIV, em que $x \in [0; 2]$	271
E.13	Valores-p do teste de alteração da estrutura na mistura de duas regressões	
	lineares no caso CII, em que $x \in [-1:3]$	272

E.14	Valores-p do teste de alteração da estrutura na mistura de duas regressões	
	lineares no caso CII, em que $x \in [0; 2]$	273
E.15	Valores-p do teste de alteração da estrutura na mistura de duas regressões	
	lineares no caso CIV, em que $x \in [-1; 3]$	274
E.16	Valores-p do teste de alteração da estrutura na mistura de duas regressões	
	lineares no caso CIV, em que $x \in [0; 2]$	275
E.17	Valores-p do teste de alteração da estrutura na mistura de três regressões	
	lineares no caso II, em que $x \in [-1; 3]$	276
E.18	Valores-p do teste de alteração da estrutura na mistura de três regressões	
	lineares no caso II, em que $x \in [0; 2]$	277
E.19	Valores-p do teste de alteração da estrutura na mistura de três regressões	
	lineares no caso III, em que $x \in [-1; 3]$	278
E.20	Valores-p do teste de alteração da estrutura na mistura de três regressões	
	lineares no caso III, em que $x \in [0; 2]$	279
E.21	Valores-p do teste de alteração da estrutura mistura de três regressões	
	lineares no caso IV, em que $x \in [-1; 3]$	280
E.22	Valores-p do teste de alteração da estrutura na mistura de três regressões	
	lineares no caso IV, em que $x \in [0; 2]$	281

Nomenclatura e Abreviaturas

g	número de componentes da mistura
n	dimensão da amostra
f(x)	função densidade de probabilidade da variável aleatória \boldsymbol{X}
f(y x)	função densidade de probabilidade de Y condicional a $X=\boldsymbol{x}$
F(x)	função distribuição da variável aleatória \boldsymbol{X}
E(X)	valor esperado da variável aleatória \boldsymbol{X}
V(X)	variância da variável aleatória \boldsymbol{X}
γ_1	coeficiente de assimetria de Pearson da variável aleatória \boldsymbol{X}
γ_2	coeficiente de achatamento ou " $kurtosis$ " da variável aleatória \boldsymbol{X}
μ	valor médio da variável aleatória \boldsymbol{X}
σ^2	variância da variável aleatória \boldsymbol{X}
ho	coeficiente de correlação de Pearson
cov(X,Y)	covariância entre as variáveis aleatórias X e Y
\overline{x}	média amostral
S	matriz de covariância amostral
Ψ	vector dos parâmetros desconhecidos da mistura
$ heta_j$	vector dos parâmetros desconhecidos da $j-$ ésima função densidade
	componente da mistura
w_{ij}	probabilidade condicional que a observação i pertence
	à $j-$ ésima componente de mistura
π_j	proporções ou pesos de mistura
eta_j	coeficientes de regressão
ϵ_j	erros aleatórios
$L(\Psi)$	função de verosimilhança
${ m log}L(\Psi)$	função de log-verosimilhança
$\log CL(\Psi)$	função de log-verosimilhança classificatória

exp(x)	exponencial de x
P(x)	probabilidade de ocorrer x
I_n	matriz identidade de ordem n
$\phi(x;\mu,\sigma^2)$	função densidade de probabilidade da variável aleatória normal univariada
	de valor médio μ e variância σ^2
$\phi(x;\mu,\Sigma)$	função densidade de probabilidade da variável aleatória normal univariada
	de valor médio μ e matriz de covariância Σ
U(x; a, b)	função densidade de probabilidade da variável aleatória uniforme no
	intervalo de (a, b)
G(x; a, b)	função densidade de probabilidade da variável aleatória gama de
	parâmetros a e b
$Ex(x;\lambda)$	função densidade de probabilidade da variável aleatória exponencial de
	parâmetro λ
χ_k^2	função densidade de probabilidade da variável aleatória qui-quadrado com
	k graus de liberdade
F(a,b)	função densidade de probabilidade da variável aleatória $\emph{F-Snedcor}$ com
	$a \ \mathrm{e} \ b$ graus de liberdade
SQR	soma dos quadrados dos resíduos
SQT	soma dos quadrados totais
MSE	erro quadrático médio
$VI\acute{\mathrm{E}}S$	enviesamento
R^2	coeficiente de determinação
EM	Expectation-Maximization
CEM	Classification Expectation Maximization
LRTS	Teste de razão de verosimilhança
BIC	Bayesian Information Criterion

Capítulo 1

Introdução

Em muitos estudos estatísticos somos confrontados com problemas que pretendem estudar um determinado fenómeno, com o objectivo de o descrever, de o explicar e/ou de prever o seu comportamento. No entanto, na resolução destes problemas deparamo-nos com situações de incerteza, o que tem como consequência a impossibilidade de conhecer o fenómeno de forma completamente rigorosa. Nestas circunstâncias começa-se, normalmente, por recolher ou compilar os dados que pareçam importantes, ou seja, as observações das variáveis que se consideram mais relevantes para o fenómeno em estudo. De seguida, estabelece-se um modelo que constitui uma representação simplificada desse fenómeno e que pretende dar resposta aos objectivos fixados.

Em muitos dos estudos estatísticos referidos, os problemas reduzem-se ao estudo da relação entre as variáveis mais relevantes do fenómeno em análise ou, mais especificamente, à análise da influência que uma ou mais variáveis têm sobre uma variável de interesse. À técnica estatística que tem como objectivo principal estudar um modelo que relacione essa variável de interesse com as outras variáveis designa-se por *Análise de Regressão*.

Em Análise de Regressão, a formulação de um modelo adequado ao tipo de dados é um dos principais aspectos a ter em consideração. Por essa razão, há necessidade de examinar cuidadosamente os dados, que podem ser provenientes de populações formadas por grupos distintos, cuja existência pode ou não ser conhecida à priori, desconhecendo-se quais os dados que pertencem a cada grupo. Nestas situações, estamos na presença de Modelos de Mistura, o tema principal do trabalho desenvolvido.

Os *Modelos de Mistura* têm vindo a merecer um interesse crescente quer do ponto de vista teórico quer prático, por parte dos estatísticos e da comunidade científica em geral, devido à flexibilidade e facilidade de modelar populações heterogéneas de um modo simples. O elevado número de trabalhos publicados sobre estes modelos em diversas áreas

2 Introdução

de investigação é uma prova evidente desse interesse.

1.1 Tema e objectivos

Nesta dissertação são estudados os Modelos de Mistura no domínio da Análise de Regressão. Em particular, estudam-se os modelos de regressão em misturas de distribuições e os modelos de mistura de regressões lineares.

Modelos de Regressão em Misturas de Distribuições

Na modelação de dados provenientes de populações heterogéneas multivariadas, recorrese frequentemente a misturas de distribuições de componentes normais multivariadas, devido à facilidade computacional verificada na estimação dos parâmetros desconhecidos destas misturas.

Um problema que surge nestes casos e que funciona como primeiro estímulo para o desenvolvimento deste trabalho, é o de saber qual será o modelo de regressão adequado nestas misturas de distribuições no caso bidimensional (ou seja, no caso do par aleatório mistura de componentes normais bidimensionais). O estudo da linearidade do modelo de regressão nestas misturas é outro dos assuntos abordados.

Nesta dissertação, propomos ainda a aplicação de um método simples para estimar o modelo de regressão em misturas de distribuições de componentes normais bidimensionais. Comparamos também diferentes métodos de estimação desse modelo de regressão, com o objectivo de analisar a qualidade de ajustamento do modelo aos dados.

Com base no estudo do modelo de regressão nestas misturas é ainda sugerido um método para se estimar uma curva de regressão a partir de um conjunto de observações.

Modelos de Mistura de Regressões Lineares

Uma das principais dificuldades encontradas na estimação de modelos de mistura (quer em misturas de distribuições, quer em misturas de regressões) deve-se ao facto de os estimadores dos parâmetros desconhecidos não apresentarem, em geral, uma forma explícita. Nesses casos é necessário recorrer a métodos iterativos para obter esses parâmetros.

Na estimação dos parâmetros dos modelos de mistura de regressões lineares, o método da máxima verosimilhança, recorrendo ao algoritmo Expectation-Maximization (EM), tem sido o mais aplicado. Nesta dissertação, abordamos o problema da estimação destes modelos de mistura e propomos um novo procedimento iterativo de estimação com o objectivo de melhorar a eficiência dos estimadores e a qualidade de ajustamento do modelo aos dados.

Uma vez que a detecção de observações que parecem inconsistentes com o modelo de

regressão tem desempenhado um papel primordial em análise de regressão, estudar-se-á este assunto em modelos de mistura de regressões lineares, quando se aplica o novo procedimento proposto na estimação dos parâmetros.

De um modo geral, o trabalho apresentado nesta dissertação pretende contribuir, por um lado, para a análise e desenvolvimento do modelo de regressão no par aleatório mistura de componentes binormais e, por outro lado, para o estudo das misturas de regressões lineares quer do ponto de vista da estimação, quer da detecção de observações inconsistentes.

1.2 Estrutura da dissertação

Esta dissertação desenvolve-se ao longo de oito capítulos. No primeiro capítulo é apresentado o tema desenvolvido e os principais objectivos propostos que com este trabalho se pretende atingir. É ainda apresentada uma descrição da estrutura da dissertação.

No segundo capítulo, depois de se indicar a importância dos Modelos de Mistura de Distribuições e de se exemplificar a aplicação destes modelos em diferentes áreas de investigação e em diversos problemas estatísticos, são introduzidas algumas noções preliminares sobre estes modelos. Nesse capítulo descrevem-se ainda os principais métodos usados na estimação dos parâmetros desconhecidos de modelos de mistura de distribuições, mencionando-se algumas das dificuldades encontradas na aplicação destes métodos. Uma atenção especial é dada ao algoritmo *Expectation-Maximization* (EM), usado na resolução das equações de máxima verosimilhança na estimação dos modelos de mistura, invocando alguns dos problemas encontrados na sua aplicação. Por último, apresenta-se uma revisão de alguns dos métodos existentes para identificar o número de componentes de uma mistura.

No capítulo 3, é apresentado o módulo informático *MCLUST: Model-Based Cluster Analysis* (existente no *software* de domínio público *R* e no *software* comercial *S-PLUS*) que permite estimar modelos de mistura de distribuições com componentes normais multivariadas. Descreve-se ainda a função *EMclust* implementada nesse módulo e que será utilizada no trabalho apresentado nesta dissertação. De modo a indicar as principais técnicas usadas neste módulo informático, inicia-se este capítulo com a introdução de algumas noções importantes em análise de *clusters* e com a descrição dos principais métodos de construção de *clusters*.

O capítulo 4 estuda as relações entre os momentos de misturas de distribuições. Embora este estudo não esteja directamente relacionado com os Modelos de Mistura no domínio da Análise de Regressão, foi com este trabalho que surgiu o nosso interesse pelos Modelos de Mistura. Neste capítulo, após uma revisão das definições de coeficiente de assimetria e

4 Introdução

coeficiente de achatamento, ilustra-se o comportamento das relações entre o desvio padrão amostral e a média amostral e entre o coeficiente de achatamento e o coeficiente de assimetria em subamostras de dados provenientes de distribuições puras. O estudo analítico da relação entre o valor esperado e a variância e entre o coeficientes de assimetria e de achatamento em misturas binárias de distribuições, em particular de distribuições normais, uniformes e gamas, é também apresentado e ilustrado graficamente. Generaliza-se ainda este estudo a misturas de distribuições com mais de duas componentes, recorrendo a um estudo de dados simulados. Por último, é apresentado o comportamento das relações mencionadas em subamostras de um conjunto de dados reais.

O capítulo 5 é essencialmente dedicado ao estudo do modelo de regressão no par aleatório mistura de componentes binormais. Inicia-se este capítulo com uma revisão de algumas noções importantes em Análise de Regressão, assim como de alguns métodos de estimação do modelo de regressão. Analisa-se também o modelo de regressão no par aleatório gaussiano. Depois de se estudar analiticamente os valores esperados condicionais e as variâncias condicionais em misturas de componentes normais bidimensionais, é proposto um método para estimar a regressão nestas misturas. Estabelecem-se ainda as condições que relacionam entre si os parâmetros das misturas de componentes normais bidimensionais de modo a que se verifique a linearidade da regressão nestas misturas. Compara-se também, diferentes métodos de estimação da regressão em misturas de componentes binormais, através de um estudo de simulação. Por último, com base no estudo do modelo de regressão no par aleatório mistura de componentes normais bidimensionais, propõe-se a aplicação de um método paramétrico para estimar uma curva de regressão a partir de um conjunto de observações.

No capítulo 6 inicia-se o estudo de modelos de mistura de regressões lineares. Depois de se indicar a importância destes modelos e de se apresentar alguns trabalhos desenvolvidos sobre os mesmos, introduz-se o modelo de mistura de regressões lineares. Neste capítulo descreve-se ainda o algoritmo Expectation Maximization (EM) que permite obter as estimativas de máxima verosimilhança dos parâmetros de modelos de mistura de regressões e o algoritmo Classification Expectation Maximization (CEM) que propomos neste trabalho para se obterem aquelas estimativas. O capítulo prossegue com a descrição de um estudo de simulação, que tem como objectivo comparar os estimadores obtidos pelos algoritmos EM e CEM em termos do enviesamento, da eficiência assintótica, da qualidade de ajustamento e do tempo de computação. No final do capítulo aplicam-se os dois algoritmos anteriormente referidos na estimação de misturas de regressões lineares a dois conjuntos de dados reais.

No capítulo 7, depois de uma breve revisão de técnicas de diagnóstico em análise de

5

regressão descreve-se, em misturas de regressões lineares, um teste que propomos para estudar se novas observações são compatíveis com o modelo de regressão estimado a partir de um conjunto de observações iniciais. A aplicação desse teste é também ilustrada em misturas de regressões lineares recorrendo às amostras geradas no capítulo anterior.

Finalmente, no capítulo 8 apresentamos as principais conclusões e contribuições resultantes deste trabalho e indicamos algumas sugestões para trabalho futuro.

Ao longo desta dissertação apresentamos vários estudos computacionais, nos quais se desenvolveram funções no software estatístico de domínio público R (versão 1.8.0, 2003).

6 Introdução

Capítulo 2

Modelos de Mistura de Distribuições

Os modelos de mistura de distribuições têm, desde há muito, merecido especial atenção dos estatísticos e da comunidade científica em geral, tendo-se assistido na última década a um interesse crescente no seu estudo, quer do ponto de vista teórico quer prático.

A importância destes modelos, deve-se ao facto dos mesmos serem os mais adequados quando a população em estudo é formada por várias subpopulações que estão presentes na população inicial em proporções desconhecidas. Situações destas ocorrem com frequência na prática quando os dados provêm de populações formadas por grupos distintos, cuja existência pode ou não ser conhecida à *priori*, desconhecendo-se quais os dados que pertencem a cada grupo.

Estes modelos têm sido usados em diferentes áreas de aplicação: na Astronomia, na Biologia, na Genética, na Medicina, na Engenharia, na Economia e na Agricultura, entre outros. Exemplos concretos de aplicação destes modelos são: na Biologia, a estimação de modelos de mistura de lognormais para estudar o índice de acidez de lagos norte americanos (Crawford (1994)); na Medicina, a estimação da preponderância dos diabetes e o estabelecimento da sensibilidade de testes de diagnóstico dessa doença em função de algumas variáveis, usando um modelo de mistura de normais (Thompson et al. (1998)); na Astronomia, a aplicação de um modelo de mistura de normais ao estudo da velocidade das galáxias (Roeder (1990)); na Agricultura, a estimação de um modelo de mistura de gama bivariada para estudar a idade e o período de lactação em vacas (Jones et al. (2000)); na Genética, o uso dos modelos de mistura de distribuições na construção dos mapas genéticos para diagnosticar a resistência a doenças (Doerge et al. (1997) e Kao and Zeng (1997)).

Um exemplo ilustrativo simples de aplicação de misturas de distribuições é o seguinte.

Considere-se uma população de um certo tipo de peixes, constituída por fêmeas e machos, e que se pretende estudar o comprimento desses peixes. O registo dos comprimentos dos peixes duma amostra dessa população, sem indicação do sexo do animal, permite construir o histograma apresentado na figura 2.1. Este histograma sugere a presença de dois grupos distintos, cuja existência se deve ao sexo dos peixes. No entanto, muitas outras características, como por exemplo, idade, espécie ou origem geográfica, podem formar grupos com características distintas. Neste caso, um modelo adequado para estudar o comprimento destes seres parece ser o modelo de mistura de duas distribuições.

Figura 2.1: Histograma do comprimento dos peixes

Deve realçar-se, contudo, que embora na prática, a bimodalidade num histograma seja um forte indicador da possibilidade dos dados serem provenientes de uma mistura de distribuições, podem ocorrer situações em que isso não acontece como foi ilustrado em (Day (1969)). Nesse trabalho, Day gerou três amostras aleatórias de uma distribuição normal 10-dimensional e, para cada uma das amostras, construiu o histograma da primeira variável canónica quando duas distribuições normais multivariadas eram impostas aos dados. A natureza bimodal dos histogramas obtidos sugeriram, erradamente, que os dados não eram provenientes de uma única distribuição normal. Aconselha-se assim que, após a obtenção de um histograma de natureza não unimodal, se efectue um dos testes de identificação do número de componentes do modelo de mistura, que serão descritos na secção 2.4 desta dissertação.

Por outro lado, deve notar-se que os dados podem ser provenientes de uma mistura de distribuições e não se observar a multimodalidade no histograma. Algumas destas situações são ilustradas em Titterington et al. (1985, pp. 9-16).

Os modelos de mistura de distribuições são muito aplicados em problemas estatísticos tais como, na identificação de *outliers* (ver Aitkin and Wilson (1980), Wang et al. (1997) e Scott (1992)), nos testes de robustez de técnicas estatísticas (ver Srivastava and Awan (1982) e Srivastava and Awan (1984)), na análise de *clusters* (ver Mclachlan and Basford (1988), Everitt et al. (2001, Cap. 6) Fraley and Raftery (2002)), na estimação de densidades pelo método de *kernel* (ver Silverman (1986), Scott (1992) e Marron and Wand (1992)), na análise discriminante (ver Mclachlan (1992) Hastie and Tibshirani (1996) e Fraley and Raftery (2002)), na análise de sobrevivência (ver McLachlan and McGiffin (1994) e McLachlan and Peel (2000, Cap. 10)).

A bibliografia em modelos de mistura de distribuições é vasta, aconselhando-se os seguintes livros para um conhecimento mais completo destes modelos: Everitt and Hand (1981), Lindsay (1995b), Mclachlan and Basford (1988) Titterington et al. (1985), e McLachlan and Peel (2000). Recentes desenvolvimentos de modelos de mistura de distribuições podem também ser encontrados em Titterington (1996) e em Böhning and Seidel (2003).

Este capítulo está estruturado da seguinte forma. Começa-se por introduzir algumas noções preliminares sobre Misturas Finitas e em seguida apresentaremos um resumo de alguns métodos de estimação dos parâmetros de uma mistura, focando em especial o algoritmo EM. Por último é apresentado uma revisão de métodos para identificar o número de componentes de uma mistura.

2.1 Noções preliminares

Começamos por apresentar algumas noções preliminares sobre Misturas Finitas com o objectivo familiarizar o leitor com a nomenclatura utilizada.

Seja X a variável aleatória com valores num espaço S e cuja função densidade de probabilidade é dada por:

$$f(x) = \sum_{j=1}^{g} \pi_j f_j(x)$$
 (2.1)

onde $f_j(x)$ são funções densidade de probabilidade, $0 \le \pi_j \le 1$ e $\sum_{j=1}^g \pi_j = 1$.

Definição 2.1 A variável aleatória X com função densidade de probabilidade definida de acordo com a expressão (2.1) designa-se por *mistura finita de g componentes*.

A função de distribuição de X é uma mistura finita de g distribuições e a função densidade de probabilidade dada na expressão (2.1) é uma mistura finita de g funções densidade de probabilidade.

As funções $f_j(x)$ são as densidades componentes da mistura e as quantidades π_j são designadas por proporções ou pesos de mistura. O número de componentes g pode ser um valor conhecido ou um parâmetro a estimar a partir duma amostra.

Em muitas aplicações as densidades componentes da mistura pertencem a uma família paramétrica, pelo que passam a ser representadas por $f_j(x;\theta_j)$ onde θ_j é o vector dos parâmetros desconhecidos da j-ésima densidade componente da mistura. Neste caso, a função densidade de probabilidade dada na expressão (2.1) pode ser escrita da seguinte forma:

$$f(x; \Psi) = \sum_{j=1}^{g} \pi_j f_j(x; \theta_j)$$
(2.2)

sendo Ψ o vector que contém todos os parâmetros desconhecidos do modelo de mistura e que pode ser definido de acordo com a expressão (2.3) onde ξ o vector que contém os parâmetros $\theta_1, ..., \theta_g$.

$$\Psi = (\pi_1, ..., \pi_{(g-1)}, \xi^T)^T$$
(2.3)

Um exemplo pode ser apresentado para ilustrar estes conceitos.

Exemplo 2.1 Consideremos a função densidade de probabilidade de uma mistura de uma distribuição normal e de uma distribuição Laplace com o mesmo valor médio μ , que modeliza a intensidade do vento durante a aterragem dos aviões (Jones and McLachlan (1990)):

$$f(x;\Psi) = \pi_1 \frac{1}{\sqrt{2\pi}\sigma} \exp\left\{-\frac{1}{2} \left(\frac{x-\mu}{\sigma}\right)^2\right\} + \pi_2(2\kappa)^{-1} \exp\left\{-\frac{|x-\mu|}{\kappa}\right\}$$
 (2.4)

Neste caso, tem-se
$$\Psi = (\pi_1, \xi^T)^T$$
, $\xi = (\mu, \sigma^2, \kappa)^T$, $\theta_1 = (\mu, \sigma^2)$ e $\theta_2 = (\mu, \kappa)$.

Embora, no exemplo apresentado, as componentes do modelo de mistura não pertençam à mesma família paramétrica, não é isto que se verifica na maioria das aplicações. Nesse caso, em que as densidades componentes da mistura pertencem à mesma família paramétrica, a função densidade de probabilidade dada na expressão (2.2) pode ser escrita da forma:

$$f(x; \Psi) = \sum_{j=1}^{g} \pi_j f(x; \theta_j)$$
(2.5)

sendo $f(.;\theta_j)$ um membro genérico da família paramétrica.

Além disso, apesar dos exemplos que incluem modelos de mistura de componentes normais serem os mais frequentes, podem também ser encontrados na literatura modelos com componentes binomiais (Wood (1999)), poisson (Hasselblad (1969)), exponencial (Jewell (1982)) e distribuição-t (Liu (1997)), entre outros.

Um conceito extremamente importante e que surge sempre que tenhamos um problema de estimação ou pretendamos fazer um teste é a *identificabilidade*, na medida que garante uma única caracterização para qualquer um dos modelos de mistura considerados.

Realça-se que na definição seguinte, só consideramos as misturas cujas componentes pertençam à mesma família paramétrica.

Definição 2.2 Uma mistura de distribuições com função densidade de probabilidade dada na expressão (2.5) diz-se *identificável* se só se:

$$\sum_{j=1}^{g} \pi_j \ f(x; \theta_j) = \sum_{i=1}^{\tilde{g}} \tilde{\pi}_i \ f(x; \tilde{\theta}_i) \Rightarrow g = \tilde{g} \land \left(\forall j = 1, \dots, g \ \exists i = 1, \dots, g : \pi_j = \tilde{\pi}_i \land \theta_j = \tilde{\theta}_i \right)$$
(2.6)

A partir desta definição podemos afirmar que uma mistura é identificável se a função densidade de probabilidade admite apenas uma única decomposição e portanto uma mistura de distribuições uniformes não é identificável. Basta considerar que:

$$U(x;0,1) = \pi U(x;0,\pi) + (1-\pi)U(x;\pi,1)$$
(2.7)

para qualquer π entre 0 e 1, sendo U(.;a,b) a função densidade de probabilidade de uma variável aleatória uniforme no intervalo de (a,b).

O problema da identificabilidade em misturas de distribuições foi inicialmente abordado por Teicher (1963) que obteve alguns teoremas importantes das condições necessárias e suficientes para a identificabilidade. Os seus resultados implicam, em particular, que as misturas de distribuições normais e as misturas de distribuições gama são identificáveis.

Titterington et al. apresentam em (Titterington et al. (1985, Cap. 3.1)) uma clara descrição do conceito de identificabilidade em misturas de distribuições, incluindo vários exemplos. Os autores realçam ainda o facto que muitas misturas de distribuições contínuas são identificáveis; uma excepção é uma mistura de distribuições uniformes.

Muito embora este assunto tenha grande importância, não o abordaremos nesta dissertação na medida em que só consideramos misturas identificáveis, limitando-nos aos conceitos já apresentados.

Definição 2.3 Seja X uma variável aleatória com função densidade de probabilidade dada pela expressão (2.2). Os momentos de ordem r de X são:

$$E(X^r) = \sum_{i=1}^{g} \pi_j E(X_j^r)$$
 (2.8)

onde $E(X_j^r)$ é o momento de ordem r de uma variável aleatória com função densidade de probabilidade $f_j(x;\theta_j),\ j=1,\ldots,g$.

Definição 2.4 O valor esperado da variável aleatória X com função densidade de probabilidade dada pela expressão (2.2) é:

$$E(X) = \sum_{j=1}^{g} \pi_j E(X_j)$$
 (2.9)

em que $E(X_j)$ é o valor esperado da variável aleatória com função densidade de probabilidade $f_j(x;\theta_j),\ j=1,\ldots,g.$

Definição 2.5 A variância da variável aleatória X com função densidade de probabilidade dada pela expressão (2.2) é:

$$V(X) = \sum_{j=1}^{g} \pi_j \left(V(X_j) + E^2(X_j) \right) - E^2(X)$$

$$= \sum_{j=1}^{g} \pi_j V(X_j) + \sum_{j=1}^{g} \pi_j \left(E(X_j) - E(X) \right)^2$$
(2.10)

onde $V(X_j)$ é a variância de uma variável aleatória com função densidade de probabilidade $f_j(x;\theta_j),\ j=1,\ldots,g.$ (ver Böhning (1999, p. 71))

2.2 Métodos de estimação de misturas de distribuições

Ao longo dos anos, ao problema da estimação do vector dos parâmetros desconhecidos Ψ de modelos de mistura de distribuições têm sido aplicados uma enorme variedade de métodos como, por exemplo: o método dos momentos, o método da máxima verosimilhança, os métodos gráficos, o método da distância mínima e os métodos bayesianos.

Provavelmente, como referiu Titterington em (Titterington (1996)), a existência de um grande número de métodos desenvolvidos no domínio da estimação dos parâmetros desconhecidos em modelos de mistura seja o facto de não existirem fórmulas explícitas para as estimativas desses parâmetros. Por exemplo, em modelos de mistura de componentes normais univariadas, os estimadores de máxima verosimilhança dos parâmetros não podem ser escritos de forma directa e têm de ser calculados iterativamente.

Nesta secção será feita uma referência breve a cada um dos métodos referidos. Contudo, a nossa atenção vai incidir sobre o método da máxima verosimilhança visto que vai ser

utilizado na estimação dos parâmetros nos modelos de mistura no trabalho desenvolvido nesta dissertação.

2.2.1 Método dos momentos

Um dos primeiros trabalhos sobre modelos de mistura foi apresentado por Pearson (1894) que estimou um modelo de mistura de duas distribuições normais heterocedásticas usando o método dos momentos. Este método consiste em igualar um certo número de momentos empíricos aos seus momentos teóricos. Como resultado obtém-se um sistema de equações, usualmente não lineares, de difícil resolução.

Inicialmente, este método era o mais usado para se estimar os parâmetros desconhecidos da mistura e, dada a complexidade algébrica envolvida na resolução do sistema de equações, vários trabalhos foram surgindo com objectivo de o simplicar (ver Charlier and Wicksell (1924) e Cohen (1967), por exemplo). Recentemente, um novo interesse surgiu neste método com o trabalho de Lindsay and Basak (1993) na estimação dos parâmetros de misturas de distribuições normais. Com este trabalho obteve-se um sistema de equações cuja única solução é um estimador consistente dos parâmetros desconhecidos da mistura.

2.2.2 Método da máxima verosimilhança

Rao (1948) aplicou, pela primeira vez, na estimação dos parâmetros em modelos de mistura de distribuições, o método da máxima verosimilhança cujos estimadores se obtêm como solução das equações de verosimilhança. Posteriormente muitos outros trabalhos, usando este método foram surgindo (ver Hasselblad (1966), Day (1969), Behboodian (1970), O'Neill (1978), Ganesalingam and McLachlan (1980) e Basford and McLachlan (1985)).

Consideremos $x=(x_1^T,\ldots,x_n^T)^T$ uma amostra aleatória de n realizações independentes da variável aleatória mistura de g distribuições cuja função densidade de probabilidade é definida na expressão (2.2) onde Ψ é o vector dos parâmetros desconhecidos.

Definição 2.6 A função de verosimilhança é definida por:

$$L(\Psi) = \prod_{i=1}^{n} \left\{ \sum_{j=1}^{g} \pi_j f_j(x_i; \theta_j) \right\}$$
 (2.11)

e as equações de verosimilhança são:

$$\frac{\partial L(\Psi)}{\partial \Psi} = 0 \tag{2.12}$$

Em muitas situações é mais fácil obter o maximizante do logaritmo da função de verosimilhança, e uma vez que a função logaritmo é uma função monótona crescente, é equivalente maximizar a função de verosimilhança ou a função de log-verosimilhança dada por:

$$\log L(\Psi) = \sum_{i=1}^{n} \log \left(\sum_{j=1}^{g} \pi_j f_j(x_i; \theta_j) \right)$$
(2.13)

As equações de log-verosimilhança são:

$$\frac{\partial \log L(\Psi)}{\partial \Psi} = 0 \tag{2.14}$$

Se para os modelos paramétricos, o método da máxima verosimilhança é muito utilizado porque as estimativas são fáceis de calcular e a teoria assintótica subjacente é muito atractiva, no caso dos modelos de mistura surgem dois problemas quando este método é usado.

Um desses problemas deve-se ao facto das equações de verosimilhança terem múltiplas soluções correspondendo a máximos locais, surgindo a dificuldade de identificar a raiz correspondente ao estimador de máxima verosimilhança de Ψ . Se todas as raízes das equações de verosimilhança fossem obtidas, seria fácil identificar $\hat{\Psi}$ porque corresponderia ao maior valor da função de verosimilhança. Contudo, na prática, a procura de todas essas raízes pode ser impraticável, além de não existir nenhuma garantia que todas essas raízes sejam obtidas. Um exemplo pode ser apresentado para ilustrar este facto.

Exemplo 2.2 Consideremos uma amostra de dimensão 50 proveniente de uma mistura de distribuições com função densidade dada por:

$$f(x; \Psi) = 0.5\phi(x; -0.8, 1) + 0.5\phi(x; 0.8, 1.5)$$
(2.15)

sendo $\phi(.; \mu, \sigma^2)$ a função densidade de probabilidade da variável aleatória normal univariada de valor médio μ e variância σ^2 . Todos os parâmetros da função densidade são conhecidos, excepto os valores médios das duas componentes que se pretendem estimar usando o método da máxima verosimilhança. Na figura 2.2 representa-se graficamente a função de log-verosimilhança em função dos valores médios das componentes. Nesta figura pode-se observar dois máximos locais que correspondem a duas soluções distintas das equações de verosimilhança, dificultando a identificação das estimativas de máxima verosimilhança dos parâmetros desconhecidos.

Figura 2.2: Função de log-verosimilhança em função dos valores médios das duas componentes

O segundo problema surge quando as componentes da mistura são normais heterocedásticas. Nesse caso, a função de verosimilhança é ilimitada o que faz com que os estimadores de máxima verosimilhança não existam pelo menos como máximos globais da função de verosimilhança, embora possam existir como máximos locais. Na prática, no caso univariado, o problema ocorre porque uma das componentes tem uma variância muito pequena resultante de conter poucas observações e dessas observações se encontrarem muito próximas. No caso multivariado, o problema ocorre quando numa das componentes o determinante da matriz de covariância é muito pequeno, por essa componente se poder localizar num espaço de dimensão inferior. Um exemplo pode também ser apresentado para ilustrar este facto.

Exemplo 2.3 Consideremos uma mistura de distribuições com função densidade dada por:

$$f(x; \Psi) = \pi \phi(x; \mu_1, \sigma_1^2) + (1 - \pi)\phi(x; \mu_2, \sigma_2^2)$$
(2.16)

sendo $\phi(.; \mu, \sigma^2)$ a função densidade de probabilidade da variável aleatória normal univariada de valor médio μ e variância σ^2 , em que $\sigma_1^2 \to 0$. Quando $x = \mu_1$, a função de verosimilhança tenderá para infinito (Kiefer and Wolfowitz (1956)).

Apesar da existência desses problemas, Lehmann afirmou em (Lehmann (1983)) que

o objectivo principal do método da máxima verosimilhança é determinar uma sequência de raízes das equações de verosimilhança que seja consistente e assintoticamente eficiente. Sob certas condições de regularidade, Cramér (1946) mostrou que essa sequência de raízes existe.

Para os modelos de mistura identificáveis, Peters and Walker (1978) e Redner and Walker (1984) descrevem as condições de regularidade que esses modelos de mistura devem satisfazer, de modo que exista uma sequência de raízes das equações de verosimilhança que seja consistente, eficiente e assintoticamente normais. Essas condições são essencialmente generalizações multivariadas dos resultados de Crámer.

Recentemente, Gan and Jiang (1999) também indicam as condições necessárias e suficientes para a consistência e a optimalidade assintótica de uma raiz das equações de verosimilhança.

Como as equações de máxima verosimilhança não apresentam solução analítica, para determinar as suas soluções, recorre-se basicamente a métodos numéricos de optimização entre os quais o método de *Newton-Raphson* (ver, por exemplo, Hasselblad (1966)) ou ao algoritmo *Expectation-Maximization* (EM)(Dempster et al. (1977)).

O método de *Newton-Raphson* requer relativamente poucas iterações e fornece as variâncias assintóticas dos parâmetros estimados contudo a convergência não é assegurada (ver, por exemplo, Mclachlan and Basford (1988) e Mclachlan and Krishnan (1997, pp. 5-6)).

O algoritmo EM é de simples aplicação e a convergência monótona é assegurada, mas requer muitas iterações e pode convergir para um máximo local (ver, por exemplo, Redner and Walker (1984) e McLachlan and Peel (2000)). No entanto, este algoritmo é um dos mais eficazes e o mais aplicado na resolução das equações de máxima verosimilhança na estimação dos modelos de mistura. Sendo este o algoritmo utilizado no trabalho apresentado nesta dissertação, vamos descrevê-lo e mencionar alguns dos problemas da sua aplicação na próxima secção.

2.2.3 Métodos gráficos

Métodos gráficos foram também desenvolvidos para estimar os parâmetros em modelos de mistura. Estes métodos abrangem uma grande variedade de processos exploratórios baseados em gráficos e diagramas, tais como histogramas e QQ-plot, desenvolvidos com o objectivo de tratar amostras provenientes de misturas.

Estes métodos permitem identificar a existência de mistura, embora forneçam, geralmente, estimativas pouco eficientes dos parâmetros.

2.3 Algoritmo EM

Algumas destas técnicas podem ser encontradas em Preston (1953), Cassie (1954), Tarter and Silvers (1975), Chhikara and Register (1979), Fowlkes (1979), Titterington et al. (1985, Cap. 4) e Tarter and Lock (1993, Cap. 5), entre outros.

2.2.4 Método da distância mínima

No método da distância mínima estimam-se os parâmetros de mistura, minimizando a distância entre a função de distribuição teórica designada por $F(.,\Psi)$ e a função de distribuição empírica designada por $\hat{F}_n(.)$, obtida de uma amostra de n observações independentes.

Várias distâncias têm sido usadas, como por exemplo: a de Kolmogorov (Deely and Kruse (1968)), a de Cram'er- $von\ Mises$ (Woodward et al. (1984)), o quadrado da norma L_2 (Clarke and Heathcote (1994)), a de Hellinger (Karlis and Xekalaki (1998)), entre outras.

Outras funções, além da função distribuição, foram também consideradas, como por exemplo, a função geradora de momentos (Quandt and Ramsey (1978)) e a função característica (Bryant and Paulson (1983)).

Em Titterington et al. (1985) descrevem-se as propriedades destes estimadores em modelos de mistura, em particular, na estimação das proporções de mistura.

2.2.5 Métodos bayesianos

Outro dos métodos de estimação de modelos de mistura são os métodos bayesianos.

Embora já se encontrassem definidos estimadores bayesianos para estes modelos, foi com o desenvolvimento das técnicas de *Markov Chain Monte Carlo* (MCMC), que a metodologia bayesiana em misturas tem sido mais aplicada.

Métodos de análise bayesianas para modelos de mistura antes do uso das técnicas MCMC são descritas em Titterington et al. (1985, Cap. 6), enquanto que pormenores recentes sobre este método usando MCMC podem ser encontrados em McLachlan and Peel (2000, Cap. 4).

2.3 Algoritmo EM

O algoritmo EM é um algoritmo iterativo, frequentemente utilizado para calcular os estimadores de máxima verosimilhança em problemas de dados incompletos. Estes problemas caracterizam-se pela inexistência de alguma informação dos dados. Neste trabalho iremos aplicar este algoritmo ao caso de misturas de distribuições, que podem ser vistas como um problema de dados incompletos.

Consideremos $x=(x_1^T,\dots,x_n^T)^T$ uma amostra aleatória de n realizações independentes da variável aleatória mistura de g componentes cuja função densidade de probabilidade é dada por:

$$f(x; \Psi) = \sum_{j=1}^{g} \pi_j f_j(x; \theta_j)$$
(2.17)

onde Ψ é o vector que contém todos os parâmetros desconhecidos, ou seja, o vector a estimar usando o método da máxima verosimilhança. Esta amostra designa-se de *amostra incompleta* porque não se conhece a que componente da mistura pertence cada um dos elementos da amostra. A correspondente função log-verosimilhanca é dada por:

$$\log L(\Psi) = \sum_{i=1}^{n} \log \left(\sum_{j=1}^{g} \pi_j f_j(x_i; \theta_j) \right)$$
(2.18)

Como este algoritmo requer que se trabalhe com a amostra completa, é necessário introduzir o vector desconhecido, indicador da componente a que pertence cada elemento da amostra, $Z = (Z_1, \ldots, Z_n)$ com $Z_i = (Z_{i1}, \ldots, Z_{ig})^T$, onde o elemento j de Z_i , designado por z_{ij} , é definido do seguinte modo:

$$z_{ij} = \begin{cases} 1 & \text{se } x_i \text{ prov\'em da j-\'esima componente} \\ 0 & \text{caso contr\'ario} \end{cases}$$
 (2.19)

A amostra completa é definida como $y_c = (y_1^T, \dots, y_n^T)$, onde $y_1 = (x_1^T, z_1^T)^T, \dots, y_n = (x_n^T, z_n^T)^T$ são independentes e identicamente distribuidos, com z_1, \dots, z_n realizações independentes de uma distribuição multinomial de uma prova em g categorias com probabilidade, respectivamente, π_1, \dots, π_g , ou seja,

$$Z_1, \dots, Z_n \sim Multinomial(1, \pi_1, \dots, \pi_q)$$
 (2.20)

A função densidade de probabilidade de Z_i pode assim ser escrita na forma:

$$f(z_i; \Psi) = \prod_{j=1}^{g} \pi_j^{z_{ij}}$$
 (2.21)

e a função densidade de X_i condicional a $Z_i = z_i$ é dada por:

$$f_{X_i|Z_i=z_i}(x_i; \Psi) = \prod_{j=1}^g f_j(x_i; \theta_j)^{z_{ij}}$$
 (2.22)

2.3 Algoritmo EM

donde a função densidade de probabilidade de $Y_i = (X_i, Z_i)$ será:

$$f((x_i, z_i); \Psi) = \prod_{j=1}^{g} [\pi_j f_j(x_i; \theta_j)]^{z_{ij}}$$
(2.23)

A função log-verosimilhança correspondente à amostra completa será:

$$\log L_c(\Psi) = \sum_{i=1}^n \sum_{j=1}^g z_{ij} \log \{ \pi_j f_j(x_i; \theta_j) \}$$
 (2.24)

2.3.1 Algoritmo

Cada iteração do algoritmo EM consiste em duas etapas, a etapa E (expectation) e a etapa M (maximization)(Mclachlan and Krishnan, 1997).

Na iteração (p+1) da etapa E, calcula-se:

$$Q(\Psi, \Psi^{(p)}) = E_{\Psi^{(p)}} \{ \log L_c(\Psi) | x \}$$
(2.25)

ou seja, o valor esperado condicional da função de log-verosimilhança definida pela equação (2.24) dada a amostra incompleta, usando como valor para Ψ o seu valor na iteração anterior, $\Psi^{(p)}$. Uma vez que $\log L_c(\Psi)$ é uma função linear em z_{ij} , a etapa E corresponde simplesmente ao cálculo do valor esperado condicional de Z_{ij} , dada a amostra incompleta, onde Z_{ij} é a variável aleatória correspondente a z_{ij} . Tem-se assim,

$$Q(\Psi, \Psi^{(p)}) = \sum_{i=1}^{n} \sum_{j=1}^{g} E_{\Psi^{(p)}} \{ Z_{ij} | x_i \} \log \{ \pi_j f_j(x_i; \theta_j) \}$$
 (2.26)

Como

$$E_{\Psi^{(p)}} \{Z_{ij} | x_i\} = P_{\Psi^{(p)}} \{Z_{ij} = 1 | x_i\}$$

$$= \frac{\pi_j^{(p)} f_j(x_i; \theta_j^{(p)})}{\sum_{h=1}^g \pi_h^{(p)} f_h(x_i; \theta_h^{(p)})}$$

$$= w_{ij}^{(p+1)} \qquad (i = 1, \dots, n; j = 1, \dots, g)$$
(2.27)

em que $w_{ij}^{(p+1)}$ é a probabilidade condicional de o elemento i, de valor x_i , da amostra incompleta pertencer à j-ésima componente da mistura, pode-se escrever a expressão (2.26)

na forma:

$$Q(\Psi, \Psi^{(p)}) = \sum_{i=1}^{n} \sum_{j=1}^{g} w_{ij}^{(p+1)} \log \{ \pi_j f_j(x_i; \theta_j) \}$$
 (2.28)

Na iteração (p+1) da etapa M, calcula-se o novo valor de Ψ que maximiza a expressão (2.28), ou seja, determinam-se as estimativas de máxima verosimilhança actualizadas dos parâmetros, $\Psi^{(p+1)}$. Dempster et al. (1977) mostraram que:

$$L(\Psi^{(p+1)}) \ge L(\Psi^{(p)}), \quad k = 0, 1, \dots$$
 (2.29)

o que implica que $L(\Psi^{(p)})$ converge para algum L^* por uma sequência de valores limitada superiormente.

As etapas E e M são alternadamente repetidos até se verificar o critério de paragem que pode ser baseado nas diferenças relativas dos parâmetros ou da função de verosimilhança entre iterações consecutivas (Agha and Ibrahim (1984)). Pode ainda ser baseado no Aiken's acceleration scheme (Böhning et al. (1994) e McLachlan and Peel (2000, p.52-53)) ou na função gradiente (Lindsay (1995a) e Pilla and Lindsay (2001)). Em todos estes critérios o algoritmo pára quando o valor do critério de paragem se tornar menor que uma dada constante.

2.3.2 Desvantagem do algoritmo

Um dos aspectos negativos do algoritmo EM é a sua convergência lenta. Para aumentar a sua rapidez de convergência utilizam-se principalmente aproximações de *Newton*, incluindo os métodos *quasi-Newton* (ver, por exemplo, Louis (1982), Lange (1995), Aitkin and Wilson (1980), Jamshidian and Jennrich (1997)). Recentemente outros algoritmos, tais como o algoritmo *Incremental EM* (IEM), o algoritmo *Sparse EM* (SPEM), têm sido propostos para aumentar a rapidez de convergência do algoritmo EM, preservando a sua simplicidade. Uma revisão de alguns desses algoritmos podem ser encontrados em Böhning (1999) e McLachlan and Peel (2000).

Como em qualquer processo iterativo, este algoritmo necessita de uma solução inicial para os valores dos parâmetros, designada de $\Psi^{(0)}$. A escolha desta solução inicial requer particular atenção na medida em que a velocidade de convergência do algoritmo se pode tornar extremamente lenta devido a uma má escolha. Na verdade, em alguns casos em que a função de verosimilhança não é limitada no espaço paramétrico dos parâmetros, a sucessão das estimativas geradas pode divergir se a solução inicial for escolhida demasiado próximo da fronteira. Outro aspecto a ter em conta é que as equações de máxima verosimilhança

2.3 Algoritmo EM 21

têm múltiplas soluções correspondentes a máximos locais, aconselha-se por isso, a utilização de várias soluções iniciais diferentes.

Na escolha das soluções iniciais, técnicas de geração aleatória desses valores são muito usadas na prática, principalmente para serem utilizadas como estratégias de referência para uma possível comparação entre estratégias. De seguida, vamos apresentar algumas possíveis estratégias para obter as soluções iniciais de modo aleatório.

2.3.3 Estratégias para obtenção de soluções iniciais

A primeira dessas estratégias, consiste em dividir a amostra em g grupos gerando aleatoriamente para cada observação i um número entre 1 e g. Definindo por h esse número aleatório, então $z_{ih}=1$ e $z_{ij}=0, \, \forall \, j \neq h \, {\rm com} \, j=1,\ldots,g$. Os valores iniciais dos parâmetros são calculados usando cada um dos grupos formados, ou seja, os valores iniciais das médias das componentes, designadas de $\mu_j^{(0)}$, são iguais à média amostral em cada um dos grupos; os valores iniciais das matrizes de covariância das componentes, designadas de $\Sigma_j^{(0)}$, são iguais à covariância amostral em cada um dos grupos e as proporções iniciais, designadas de $\pi_j^{(0)}$, são iguais à proporção de observações em cada grupo. Uma extensão simples desta estratégia consiste em repeti-la um determinado número de vezes e seleccionar entre elas a solução que maximiza a função de verosimilhança.

Uma estratégia alternativa, aplicada principalmente em misturas de g componentes normais com média μ_j e matriz de covariância Σ_j , consiste em gerar aleatoriamente os valores médios iniciais, $\mu_j^{(0)}$, do seguinte modo:

$$\mu_1^{(0)}, \dots, \mu_g^{(0)} \sim N(\overline{x}, S)$$
 (2.30)

onde \overline{x} é a média amostral e S a matriz da covariância amostral dos dados observados. Os valores iniciais das matrizes de covariância das componentes e das proporções podem ser dados por:

$$\Sigma_j^{(0)} = S \quad (j = 1, \dots, g)$$

$$\pi_j^{(0)} = \frac{1}{q} \quad (j = 1, \dots, g)$$
(2.31)

A extensão proposta na primeira estratégia apresentada pode também ser usada nesta segunda estratégia.

Uma outra escolha natural é usar as estimativas obtidas por qualquer um outro método de estimação. Por exemplo, Fowlkes em (Fowlkes (1979)) usa um método gráfico para obter as soluções iniciais num modelo de mistura de componentes normais enquanto que Furman

and Lindsay em (Furman and Lindsay (1994)) usam o método dos momentos para obterem as soluções iniciais no caso dessas misturas.

Muitos outros trabalhos que sugerem métodos na selecção dos valores iniciais poderiam ser enumerados, tais como: o de McLachlan (1988) onde é proposto o uso da análise em componentes principais para seleccionar as soluções iniciais em misturas multivariadas; o de Finch et al. (1989) onde sugere que, para misturas de duas componentes normais, só o valor inicial das proporções é necessário, estimando-se os outros parâmetros com base nas amostras que foram criadas, usando esse valor inicial das proporções; o de Böhning et al. (1994) que inicia o algoritmo EM com as componentes de mistura bem separadas entre si; o de Dasgupta and Raftery (1998) onde as partições obtidas por um método hierárquico aglomerativo de análise de *clusters* são usadas para inicializar o algoritmo em misturas gaussianas; o de Böhning (1999, pp. 66-70) que propõe uma pesquisa em rede num grande espaço de parâmetros para encontrar diferentes valores iniciais e o de Biernacki et al. (2003) que sugere vários métodos baseados na geração aleatória dos grupos em modelos de mistura gaussianas multivariadas, usando um algoritmo EM de classificação (CEM), um algoritmo EM estocástico (SEM) ou o próprio algoritmo EM com um critério de paragem que implica poucas iterações.

Um estudo comparativo de várias estratégias na escolha dos valores iniciais foi realizado por Karlis and Xekalaki (2003). Os resultados mostram claramente a dependência da estratégia na escolha das soluções iniciais.

2.4 Métodos para identificar o número de componentes da mistura

Em muitas situações práticas, a amostra aleatória é proveniente de uma mistura de distribuições com função densidade de probabilidade, $f(x; \Psi)$, dada pela equação (2.2), em que o número de componentes g é desconhecido e tem de ser inferido a partir dos dados.

Testar o número de componentes da mistura, ou seja, saber qual o número de componentes g numa mistura, é um problema de grande importância e de difícil tratamento que ainda não está completamente resolvido.

Vários métodos que incluem técnicas gráficas, têm sido sugeridos para identificar o número de componentes da mistura: histogramas, QQ-plot, gráfico dos resíduos versus observação, entre outros. (ver, por exemplo, Titterington et al. (1985, Cap. 4), Lindsay and Roeder (1992) e Roeder (1994)).

Um processo natural para testar qual o menor valor de g para o número de componentes

da mistura, é usar *o teste de razão de verosimilhanças (LRTS)*, onde, com base numa amostra, pretende-se testar:

 H_0 : número de componentes igual a g

versus

 H_1 : número de componentes igual a g+1

Seja $\hat{\Psi}_m$ o estimador de máxima verosimilhança de Ψ calculado sob H_m e $L\left(\hat{\Psi}_m\right)$ a função de verosimilhança da amostra sob H_m . A regra de decisão que permite testar a hipótese H_0 versus H_1 é baseada na estatística de teste, designada de razão de verosimilhanças, dada por:

$$\lambda = \frac{L\left(\hat{\Psi}_0\right)}{L\left(\hat{\Psi}_1\right)} \tag{2.32}$$

ou na transformação dessa estatística:

$$-2 \log \lambda = 2 \left\{ \log L\left(\hat{\Psi}_1\right) - \log L\left(\hat{\Psi}_0\right) \right\}$$
 (2.33)

Um valor pequeno de λ , ou equivalentemente, um valor elevado de $-2 \log \lambda$, leva-nos a rejeitar H_0 .

No entanto, no caso dos modelos de mistura de distribuições, as condições de regularidade da estatística de teste $-2 \log \lambda$ não são verificadas, em parte devido à não identificabilidade no modo de expressar a hipótese nula, pelo que a sua distribuição assintótica pode não ser um qui-quadrado com graus de liberdade igual à diferença entre o número de parâmetros das duas hipóteses.

Com efeito, consideremos, por exemplo, que pretendemos testar na hipótese nula a existência de uma única componente normal contra uma hipótese alternativa de existência de uma mistura de duas componentes normais, ou seja:

$$H_0: f(x; \Psi) = \phi(x; \mu, \sigma^2)$$
 (2.34)

versus

$$H_1: f(x; \Psi) = \pi \phi(x; \mu_1, \sigma_1^2) + (1 - \pi)\phi(x; \mu_2, \sigma_2^2)$$
(2.35)

sendo $\phi(.; \mu, \sigma^2)$ a função densidade de probabilidade da variável aleatória normal univariada de valor médio μ e variância σ^2 .

Um dos principais problemas com que deparamos neste teste reside no facto de não se

conseguir expressar de forma única a hipótese nula, o que sugere um problema de identificabilidade na definição desta hipótese, mesmo em misturas identificáveis. Neste caso podemos definir a hipótese nula de dois modos diferentes:

- $H_0: \pi = 0$, ou seja, a proporção de mistura é igual a zero. Sob a hipótese nula teremos de estimar μ_2 e σ_2^2 , enquanto que sob a hipótese alternativa iremos estimar π , μ_1 , σ_1^2 , μ_2 e σ_2^2 . Considerando que a distribuição assintótica da estatística de teste é a distribuição qui-quadrado, teremos então 3 graus de liberdade.
- $H_0: \mu_1 = \mu_2 \wedge \sigma_1^2 = \sigma_2^2$, ou seja, igualdade dos valores médios e das variâncias das duas componentes. Sob a hipótese nula teremos de estimar π , μ_1 e σ_1^2 , enquanto que sob a hipótese alternativa iremos estimar π , μ_1 , σ_1^2 , μ_2 e σ_2^2 . Considerando que a distribuição assintótica da estatística de teste é a distribuição qui-quadrado, teremos então 2 graus de liberdade.

Vários estudos de simulação, incluindo técnicas de bootstrapping, têm sido desenvolvidos para estudar o comportamento assintótico do teste LRTS. Alguns destes estudos podem ser encontrados em McLachlan (1987), Mclachlan and Basford (1988), Thode et al. (1988), Mendell et al. (1993) e Chuang and Mendell (1997). Estes trabalhos mostram, claramente, que a distribuição assintótica do teste LRTS depende da escolha das soluções iniciais e do critério de paragem usado na estimação de máxima verosimilhança dos parâmetros do modelo.

Critérios baseados na penalização da função log-verosimilhança têm sido sugeridos para determinar o número de componentes num modelo de mistura. Como em modelos de mistura de distribuições, a função de log-verosimilhança aumenta quando se adicionam mais componentes de mistura no modelo (Celeux and Soromenho (1996)), a penalização da função log-verosimilhança é realizada no sentido de evitar a escolha de modelos com grande número de parâmetros, ou seja, um grande número de componentes.

Alguns destes critérios são: o critério Akaike's Information Criterion (AIC), o critério Informational Complexity (ICOMP), o critério Bayesian Information Criterion (BIC), o critério Approximate Weight Evidence Criterion (AWE). Detalhes sobre esses critérios podem ser encontrados em McLachlan and Peel (2000, Cap. 6).

No trabalho desenvolvido vai ser usado um desses critérios, o critério BIC (Schwarz (1977)). Para usar este critério começa-se por estimar, com base nos dados, vários modelos de mistura de distribuições com diferentes número de componentes. De seguida, selecciona-

2.5 Comentários finais 25

se o modelo que maximiza:

$$BIC = 2 \log L(\hat{\Psi}) - d \log n \tag{2.36}$$

em que $\hat{\Psi}$ é o estimador de máxima verosimilhança de Ψ , d é o número de parâmetros a estimar no modelo e n é o tamanho da amostra. Refira-se que no cálculo do critério BIC, o número de componentes da mistura não é considerado como um parâmetro a estimar no modelo.

Na estatística BIC adiciona-se o termo, $-d \log n$, à função de log-verosimilhança para penalizar a complexidade do modelo com o aumento do número de componentes.

Vários estudos efectuados nos quais se escolheu o melhor modelo para os dados baseandose no critério BIC, apresentaram bons resultados (Dasgupta and Raftery (1998), Fraley and Raftery (1998), Campbell et al. (1999) e Stanford and Raftery (2000)).

2.5 Comentários finais

Neste capítulo, introduzimos algumas noções preliminares sobre Misturas de Distribuições, com o objectivo de fornecer definições importantes ao desenvolvimento do trabalho apresentado nesta dissertação e familiarizar o leitor com a nomenclatura utilizada.

Supondo que a mistura de distribuições é identificável, focámos os principais métodos de estimação dos parâmetros desconhecidos do modelo de mistura, mencionando algumas dificuldades encontradas na aplicação desses métodos. Uma atenção especial é dada ao algoritmo EM uma vez que é o mais usado para calcular os estimadores de máxima verosimilhança dos parâmetros de uma mistura.

No final deste capítulo, apresentámos um resumo de alguns métodos existentes para identificar o número de componentes de uma mistura. Em particular, descreve-se o critério usado no trabalho desta dissertação para detectar o número de componentes de misturas de distribuições.

Para terminar, gostaríamos de referir que, neste capítulo, apresentámos vários temas relacionados com misturas de distribuições de modo a melhor enquadrarmos o trabalho desenvolvido nesta dissertação.

Capítulo 3

MCLUST

No trabalho desta dissertação usamos o módulo informático MCLUST: Model-Based $Cluster\ Analysis$, descrito em Fraley and Raftery (1999) e Fraley and Raftery (2003), para estimar modelos de mistura de distribuições com componentes normais multivariadas. Este módulo é usado em sessões de trabalho do software estatístico de domínio público R^{-1} ou no programa comercial $S\text{-}PLUS^{-2}$.

Neste capítulo começamos por apresentar algumas noções importantes em análise de clusters com o objectivo de familiarizar o leitor com as técnicas usadas no MCLUST. De seguida, descrevemos este módulo informático, assim como a função EMclust implementada no MCLUST e usada neste trabalho.

3.1 Análise de clusters

Os métodos de análise de *clusters* são procedimentos de estatística multivariada que actuam sobre um conjunto de dados, com a finalidade de construir grupos ou *clusters*, de tal forma que, os elementos dentro do mesmo grupo são mais semelhantes entre si do que os elementos situados em grupos diferentes.

Os primeiros desenvolvimentos desta análise ocorreram principalmente em três áreas: na biologia, na psicologia e no reconhecimento de padrões; no entanto verificamos que este procedimento está presente em todos os ramos da actividade científica.

Uma boa introdução à análise de *clusters* pode ser encontrada em Mclachlan and Basford (1988), Kaufman and Rousseeuw (1990), Gordon (1999) e Everitt et al. (2001).

¹The Comprehensive R Archive Network - http://lib.stat/cmu.edu/R/CRAN

²Insightful Corp., Seattle, USA- http://www.insightful.com/splus

28 MCLUST

3.1.1 Construção dos clusters

As ideias subjacentes ao processo de construção de *clusters* são a ideia de *semelhança* e a de *dissemelhança*.

Definição 3.1 A semelhança mede o grau de parecença ou proximidade entre elementos.

Definição 3.2 A dissemelhança reflecte o grau de diferença, de afastamento ou divergência entre elementos.

Para usar estes conceitos de forma útil e eficaz é importante criar medidas concretas de proximidade. Estas medidas dependem da natureza das características (quantitativas ou qualitativas) que são observadas nos dados.

Várias medidas de dissemelhança e semelhança podem ser encontradas em muitos livros e artigos relacionados com análise de *clusters* como, por exemplo, Cormack (1971), Anderberg (1973), Späth (1980) e Gower and Legendre (1986).

Na construção dos grupos, podem-se usar vários tipos de métodos. Os métodos mais utilizados na prática são os *métodos hierárquicos* e os *métodos de partição*. De seguida será feita uma breve descrição de cada um destes dois métodos porque serão os métodos usados no trabalho desta dissertação.

Descrição sobre os outros métodos podem ser encontrados em Everitt and Hand (1981) e Gordon (1999).

3.1.2 Métodos hierárquicos

Os $m\acute{e}todos\ hier\'arquicos\ conduzem\ a\ uma\ hierarquia\ de partições do conjunto total dos <math>n$ dados em $1,2,\ldots,g$ grupos. Essa hierarquia caracteriza-se pelo facto de dados dois grupos, quaisquer que eles sejam, os grupos ou são disjuntos ou um deles está contido no outro. Além disso, sempre que um elemento é atribuído a um grupo não mais abandona esse grupo.

Para aplicar estes métodos hierárquicos recorre-se geralmente a dois tipos de procedimentos ou algoritmos: aglomerativos e divisivos. Nos algoritmos aglomerativos, parte-se de n grupos com um só elemento, que vão ser agrupados sucessivamente até se encontrar apenas um grupo que incluirá todos os elementos. Enquanto que nos algoritmos divisivos, começa-se com um único grupo contendo todos os elementos e formam-se novos grupos por divisão sucessiva de grupos anteriores até chegar a n grupos de um só elemento.

Os algoritmos aglomerativos têm sido os mais usados porque os divisivos são muito exigentes em termos computacionais. Apesar disso, os algoritmos divisivos podem ter van-

3.1 Análise de clusters 29

tagens sobre os aglomerativos, uma vez que podem fornecer grandes grupos ao fim dos primeiros passos do processo e os grandes grupos são o que geralmente interessa ao utilizador, em vez de uma lista longa de pequenos grupos.

Em cada nível da hierarquia de partições obtida, os grupos são obtidos quando se optimiza um critério escolhido. Critérios muito utilizados são, entre outros, o do vizinho mais próximo (single linkage), o do vizinho mais afastado (complete linkage), o da média dos grupos (group average link), o do centróide (centroid clustering, o da mediana (median linkage) ou o de Ward (Ward (1963)). Estes critérios podem se encontrados em, por exemplo, Kaufman and Rousseeuw (1990) e Everitt et al. (2001).

No entanto, Banfield and Raftery em (Banfield and Raftery (1993)) desenvolveram um método hierárquico aglomerativo que supõe que existe um modelo subjacente responsável por ter gerado cada um dos grupos. Neste método, em cada nível da hierarquia de partições, os grupos são obtidos quando se optimiza uma função de verosimilhança.

Sendo este método, designado por model-based clustering, implementado no módulo MCLUST, vai ser aqui descrito.

3.1.2.1 Método hierárquico baseado em modelos

Neste método assume-se que os dados são provenientes de uma mistura, em que cada componente da mistura representa um grupo ou *cluster* distinto.

Consideremos $x = (x_1^T, \dots, x_n^T)^T$ uma amostra aleatória com n observações proveniente de uma mistura de g distribuições cuja função densidade de probabilidade é dada na expressão (2.2).

Definição 3.3 A função de verosimilhança classificatória é dada por:

$$L(\theta, \gamma) = \prod_{i=1}^{n} f_{\gamma_i}(x_i; \theta_{\gamma_i})$$
(3.1)

onde $\gamma^T = [\gamma_1, \dots, \gamma_n]$ são os valores que indicam a que *cluster* pertence a observação, ou seja, $\gamma_i = j$ se x_i pertence à componente j da mistura.

Esta função de verosimilhança é usada como critério para obtenção dos grupos neste método hierárquico aglomerativo. Em cada nível da hierarquia de partições, os grupos são obtidos, escolhendo um γ que maximize aquela função de verosimilhança.

Um dos casos estudados por Banfield e Raftery foi o dos dados serem provenientes de uma mistura de g distribuições normais multivariadas. Como neste trabalho usamos o

30 MCLUST

módulo MCLUST para estimar estas misturas de distribuições, vamos restringir a descrição deste método hierárquico a estas misturas.

Neste caso, tem-se que:

$$f(x_i; \theta_j) = (2\pi)^{-\frac{k}{2}} |\Sigma_j|^{-\frac{1}{2}} \exp\left\{-\frac{1}{2}(x_i - \mu_j)^T \Sigma_j^{-1} (x_i - \mu_j)\right\}$$
(3.2)

em que k é a dimensão de X. A função de verosimilhança classificatória é dada por:

$$L(\theta, \gamma) = \prod_{j=1}^{g} \prod_{i \in \Upsilon_j} (2\pi)^{-\frac{k}{2}} |\Sigma_j|^{-\frac{1}{2}} \exp\left\{-\frac{1}{2} (x_i - \mu_j)^T \Sigma_j^{-1} (x_i - \mu_j)\right\}$$
(3.3)

em que $\Upsilon_j = \{i : \gamma_i = j\}$ é o conjunto de índices correspondentes às observações pertencentes ao grupo j.

Como o estimador de máxima verosimilhança de μ_j é:

$$\overline{x}_j = \frac{\sum_{i \in \Upsilon_j} x_i}{n_j} \tag{3.4}$$

ou seja, a média amostral em cada grupo j, onde n_j é o número de elementos de Υ_j , substituindo μ_j por \overline{x}_j na expressão (3.3) tem-se que a função log-verosimilhança classificatória é:

$$\log L(\theta, \gamma) = \operatorname{const} - \frac{1}{2} \sum_{i \in \Upsilon_j} \left\{ \operatorname{tr}(W_j \Sigma_j^{-1}) + n_j \, \log |\Sigma_j| \right\}$$
 (3.5)

em que
$$W_j = \sum_{i=1}^{n_j} (x_{ij} - \overline{x}_j)(x_{ij} - \overline{x}_j)^T$$
.

Aqueles autores demonstraram que esta função de log-verosimilhança dada na expressão (3.5) é máxima, quando se escolhe γ que minimize:

 \bullet o traço da matriz W em que,

$$W = \sum_{j=1}^{g} W_j \tag{3.6}$$

caso $\Sigma_j = \sigma^2 I$ (j = 1, ..., g), onde I é a matriz identidade,

- o determinante da matriz W, em que W é dado na expressão (3.6), caso $\Sigma_j = \Sigma$ ($j = 1, \ldots, g$)
- o $\sum_{j=1}^g n_j \log \left| \frac{W_j}{n_j} \right|$, caso não existam restrições nas matrizes de covariância $\Sigma_j(j=1,\ldots,g)$.

3.1 Análise de clusters 31

Banfield and Raftery (1993) desenvolveram ainda novos critérios mais gerais que maximizam aquela função de log-verosimilhança, baseados nas características geométricas dos grupos ou *clusters* (volume, forma e orientação). Estes novos critérios foram propostos quando consideraram uma reparametrização da matriz de covariância de cada *cluster* na forma:

$$\Sigma_j = \lambda_j \ D_j \ A_j \ D_j^T \tag{3.7}$$

em que D_j é a matriz ortogonal dos vectores próprios de Σ_j , A_j é uma matriz diagonal cujos elementos são proporcionais aos valores próprios de Σ_j e λ_j é um escalar. A matriz de covariância de cada *cluster* identifica assim as suas características geométricas (volume, forma e orientação): λ_j determina o seu volume, A_j determina a sua forma e D_j determina a orientação das componentes principais.

Estas características são geralmente estimadas usando os dados e podem variar, ou não, em todos os *clusters*. Consideremos os seguintes exemplos:

Exemplo 3.1 Se todos os *clusters* têm o mesmo volume, a mesma forma e a mesma orientação, as matrizes de covariância são da forma $\Sigma_j = \lambda D A D^T$.

Exemplo 3.2 Se todos os *clusters* têm o mesmo volume, a mesma forma mas a orientação dos *clusters* variar, as matrizes de covariância são da forma $\Sigma_j = \lambda D_j A D_j^T$.

Definindo por Ω_j a matriz diagonal dos valores próprios de W_j , na tabela 3.1 mostramse alguns critérios na escolha de γ que maximizam a função de log-verosimilhança dada na expressão (3.5). Estes critérios foram propostos por Banfield and Raftery (1993) para diferentes características geométricas dos *clusters*.

Utilizando a formulação das matrizes de covariância dada na expressão (3.7), aqueles autores propuseram assim um método hierárquico aglomerativo que maximiza uma função de verosimilhança para obtenção dos grupos, quando os *clusters* são representados por um modelo gaussiano multivariado.

Em Fraley (1998) podem-se encontrar vários algoritmos eficientes para este método hierárquico aglomerativo nestes modelos de mistura, para várias parametrizações das matrizes de covariância.

De seguida, descrevem-se os métodos de partição que assentam em diferentes princípios dos métodos hierárquicos e cujos resultados não constituem hierarquias.

MCLUST

Critério: Minimizar	Volume	Forma	Orientação
$\operatorname{tr}(W)$	Igual	Igual	_
$\sum_{j=1}^{g} n_j \log \left\{ \operatorname{tr} \left(\frac{A^{-1} \Omega_j}{n_j} \right) \right\}$	Variável	Igual	_
W	Igual Igual		Igual
$\sum_{j=1}^{g} \operatorname{tr}\left(A^{-1}\Omega_{j}\right)$	Igual	Igual	Variável
$\sum_{j=1}^{g} n_j \log \left\{ \operatorname{tr} \left(\frac{W_j}{n_j} \right) \right\}$	Variável	Igual	Variável
$\sum_{j=1}^{g} n_j \log \left \frac{W_j}{n_j} \right $	Variável	Variável	Variável

Tabela 3.1: Critérios para diferentes características geométricas dos clusters

3.1.3 Métodos de partição

Estes métodos, contrariamente aos métodos hierárquicos, exigem que o número de grupos seja fixado à partida.

O problema consiste em construir, a partir do conjunto inicial dos dados, uma partição, ou seja, uma colecção de grupos disjuntos cujos elementos pertencentes ao mesmo grupo sejam semelhantes e os elementos pertencentes a grupos diferentes sejam dissemelhantes.

Uma solução ideal seria o de construir todas as partições e analisá-las com vista a seleccionar a melhor. No entanto, esta solução é normalmente impraticável na prática. O problema reduz-se então a examinar algumas partições de forma a encontrar a melhor partição, o que é feito optimizando algum critério de formação dos grupos.

Nestes métodos usam-se procedimentos que, em geral, consistem no seguinte:

- 1. Seleccionar uma partição inicial dos n objectos em g grupos. Essa partição pode ser o resultado da aplicação de outro método de análise ou pode ser definida com base no conhecimento do problema ou pode mesmo ser escolhida aleatoriamente.
- 2. Considerar todas as deslocações de cada elemento do seu próprio grupo para cada um dos outros e registar a alteração produzida no critério de formação dos grupos. Na deslocação dos elementos, pode-se deslocar um elemento de cada vez ou grupos simultaneamente.
- 3. Efectuar a deslocação correspondente ao maior valor da melhoria verificada no valor do critério.
- 4. Repetir os dois últimos passos até se verificar que a deslocação de qualquer elemento não produz melhoria no valor do critério.

Um dos critérios muito usados na deslocação de um elemento de um grupo para outro, consiste em minimizar a soma dos quadrados das distâncias euclidianas entre os elementos e as médias dos respectivos grupos. Isto significa que a deslocação do elemento é feita para o grupo cuja média está mais próxima do elemento considerado. Este critério é designado de k-médias.

Outro dos critérios muito usados é o da *k-medóides*, no qual a deslocação do elemento é feita para o grupo cujo elemento central (medóide) lhe é mais semelhante.

Neste trabalho, a utilização destes métodos de partição resumem-se à obtenção de diferentes grupos para comparação com os obtidos pelo método hierárquico aglomerativo implementado no módulo MCLUST.

3.2 Módulo informático Mclust

O *MCLUST* permite efectuar a análise de *clusters* usando o método hierárquico aglomerativo proposto por Banfield and Raftery (1993), estimar funções densidade de probabilidade e efectuar análise discriminante.

A sua utilização neste trabalho, resume-se à análise de *clusters* pelo que as técnicas implementadas nesta análise foram aqui descritas. No entanto, uma descrição e aplicação da análise discriminante e da estimação de funções densidade de probabilidade podem ser encontrados em Fraley and Raftery (2002).

Neste trabalho usamos este módulo informático, para determinar os estimadores de máxima verosimilhança dos parâmetros de modelos de mistura gaussianas multivariadas, recorrendo à função *EMclust*. Esta função combina o método hierárquico aglomerativo baseado em modelos, o algoritmo EM e a estatística BIC, do seguinte modo: as partições obtidas pelo método hierárquico aglomerativo são usadas como os valores iniciais do algoritmo EM, para estimar uma variedade de modelos de mistura de distribuições normais multivariadas. Desses vários modelos, escolhe-se o melhor modelo com um número óptimo de componentes usando o critério BIC.

No MCLUST, assume-se que cada cluster é representado por um modelo gaussiano multivariado:

$$\phi(x_i; \mu_j, \Sigma_j) = (2\pi)^{-\frac{k}{2}} |\Sigma_j|^{-\frac{1}{2}} \exp\left\{-\frac{1}{2}(x_i - \mu_j)^T \Sigma_j^{-1} (x_i - \mu_j)\right\}$$
(3.8)

onde j é o índice que identifica o *cluster* e k é a dimensão da variável aleatória X.

A matriz de covariância de cada componente da mistura é também escrita usando a expressão (3.7) que identifica as características geométricas de cada *cluster*.

34 MCLUST

Estas características podem variar, ou não, em todos os clusters e por isso vários modelos são definidos para diferentes parametrizações das matrizes de covariância. A cada modelo é atribuído um código identificador das características geométricas dos clusters. Por exemplo, o modelo "VEI" designa o modelo no qual o volume de todos os clusters pode variar (V), a forma dos clusters é igual (E) e a matriz D é a matriz identidade(I), ou seja, as matrizes de covariância são da forma $\Sigma_j = \lambda A_j$.

Na tabela 3.2 mostra-se o código identificador dos vários modelos, as diferentes parametrizações das matrizes de covariância e as características geométricas dos *clusters* disponíveis no *MCLUST*.

Modelo	Σ_j	Volume	Forma	Orientação
EII	λI	Igual	Igual	_
VII	$\lambda_j I$	Variável	Igual	_
EEI	λA	Igual	Igual	Eixos coordenados
VEI	$\lambda_j A$	Variável	Igual	Eixos coordenados
EVI	λA_j	Igual	Variável	Eixos coordenados
VVI	$\lambda_j A_j$	Variável	Variável	Eixos coordenados
EEE	λDAD^T	Igual	Igual	Igual
EEV	$\lambda D_j A D_i^T$	Igual	Igual	Variável
VEV	$\lambda_j D_j A D_j^T$	Variável	Igual	Variável
VVV	$\lambda_j D_j A_j D_j^T$	Variável	Variável	Variável

Tabela 3.2: Parametrizações da matriz de covariância disponíveis no MCLUST

Para clarificar as características geométricas dos clusters dos vários modelos disponíveis no MCLUST, apresenta-se um exemplo para três desses modelos.

Exemplo 3.3 Consideremos três amostras, de dimensão 100, provenientes de três populações com função densidade de probabilidade dada por:

$$f(x_i; \Psi) = 0.5 \ \phi(x_i; \mu_1, \Sigma_1) + 0.5 \ \phi(x_i; \mu_2, \Sigma_2)$$
(3.9)

em que $x_i = [x_{i1} \ x_{i2}]^T$, $\phi(.; \mu, \Sigma)$ designa a função densidade de probabilidade da normal multivariada de valor médio μ e matriz de covariância Σ .

Suponhamos ainda que $\mu_1 = \begin{bmatrix} 0 & 0 \end{bmatrix}^T$, $\mu_2 = \begin{bmatrix} 5 & 5 \end{bmatrix}^T$ e que as matrizes de covariância Σ_1 e Σ_2 variam. Deste modo, a primeira amostra provém de uma população com $\Sigma_1 = \Sigma_2 = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$, logo os *clusters* têm o mesmo volume e forma correspondendo ao modelo

"EII". A segunda amostra provém de uma população com $\Sigma_2 = 2 \times \Sigma_1 = \begin{bmatrix} 2 & 0 \\ 0 & 8 \end{bmatrix}$, logo os *clusters* têm volumes diferentes, a mesma forma e a matriz D é a matriz identidade (os eixos principais são paralelos aos eixos coordenados), correspondendo ao modelo "VEI" e na terceira amostra têm-se $\Sigma_1 = \begin{bmatrix} 1 & -\frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & 1 \end{bmatrix}$, $\Sigma_2 = \begin{bmatrix} 1 & \frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & 4 \end{bmatrix}$, logo os *clusters* têm volume e forma e orientação diferentes correspondendo ao modelo "VVV".

Nas figuras 3.1, 3.2 e 3.3 representam-se, no plano x_1Ox_2 , os *clusters* da primeira, segunda e terceira amostra, respectivamente.

Figura 3.1: Clusters no modelo Figura 3.2: Clusters no modelo "EII" Figura 3.3: Clusters no modelo "VEI" "VVV"

O *MCLUST* utilizando a formulação das matrizes de covariância dada na expressão (3.7), implementa o método hierárquico de análise de *clusters* proposto por Banfield and Raftery (1993).

As partições obtidas por este método hierárquico aglomerativo são usadas para inicializar o algoritmo EM, ou seja, o vector γ com a indicação do *cluster* a que pertence cada observação é convertido no correspondente vector g dimensional $z_i = (z_{i1}, \ldots, z_{ig})$.

Neste caso, a função log-verosimilhança do modelo de mistura de distribuições é dada por:

$$\log L(\Psi) = \sum_{i=1}^{n} \log \left(\sum_{j=1}^{g} \pi_j \phi_j(x_i; \mu_j, \Sigma_j) \right)$$
(3.10)

em que $0 \le \pi_j \le 1 \ (j = 1, \dots, g), \sum_{j=1}^g \pi_j = 1 \ e$

$$\Psi = (\pi_1, \dots, \pi_{(g-1)}, ((\mu_1, \Sigma_1), \dots, (\mu_g, \Sigma_g))^T)^T$$
(3.11)

são os parâmetros desconhecidos a estimar usando o método de máxima verosimilhança e

36 MCLUST

recorrendo ao algoritmo EM.

A função log-verosimilhança correspondente à amostra completa é assim dada por:

$$\log L_c(\Psi) = \sum_{i=1}^n \sum_{j=1}^g z_{ij} \log \{ \pi_j \phi_j(x_i; \mu_j, \Sigma_j) \}$$
 (3.12)

Neste caso, na iteração (p+1) da etapa E, calcula-se:

$$w_{ij}^{(p+1)} = \frac{\pi_j^{(p)} \phi_j(x_i; \mu_j^{(p)}, \Sigma_j^{(p)})}{\sum_{h=1}^g \pi_h^{(p)} \phi_h(x_i; \mu_h^{(p)}, \Sigma_h^{(p)})}$$
(3.13)

enquanto que na etapa M determina-se o novo valor de Ψ que maximiza:

$$Q(\Psi, \Psi^{(p)}) = \sum_{i=1}^{n} \sum_{j=1}^{g} w_{ij}^{(p+1)} \log \{ \pi_j \phi_j(x_i; \mu_j, \Sigma_j) \}$$
(3.14)

Os novos valores de π_j e μ_j podem ser calculados usando as seguintes expressões:

$$\pi_j^{(p+1)} = \frac{\sum_{i=1}^n w_{ij}^{(p+1)}}{n} \tag{3.15}$$

$$\mu_j^{(p+1)} = \frac{\sum_{i=1}^n w_{ij}^{(p+1)} x_i}{\sum_{i=1}^n w_{ij}^{(p+1)}}$$
(3.16)

Os novos valores da matriz de covariância de cada um dos clusters, $\Sigma_j^{(k+1)}$, dependem das parametrizações dessas matrizes. No caso mais geral em que $\Sigma_j = \lambda_j D_j A_j D_j^T$, podemos usar a expressão:

$$\Sigma_{j}^{(p+1)} = \frac{\sum_{i=1}^{n} w_{ij}^{(p+1)} (x_{i} - \mu_{j}^{(p+1)}) (x_{i} - \mu_{j}^{(p+1)})^{T}}{\sum_{i=1}^{n} w_{ij}^{(p+1)}}$$
(3.17)

Detalhes sobre a expressão de $\Sigma_j^{(p+1)}$ para outras parametrizações das matrizes de covariância podem ser encontradas em Celeux and Govaert (1995).

As etapas E e M são alternadamente repetidos até se verificar que a diferença relativa dos valores da função de log-verosimilhança dada na expressão (3.10) entre iterações

consecutivas é menor que 1×10^{-5} (valor por defeito do MCLUST).

Dasgupta and Raftery (1998) obtiveram bons resultados em vários exemplos em que usaram o algoritmo EM para estimar os parâmetros de modelos de mistura gaussianos, inicializando-o com as partições obtidas pelo método hierárquico aglomerativo de análise de clusters quando estes são representados por um modelo gaussiano e escolhendo o critério BIC para determinar o número de componentes da mistura.

3.2.1 Função EMclust

A função EMclust tem como argumento obrigatório os dados. Pode-se também incluir nos argumentos iniciais quer uma lista dos códigos identificadores dos vários modelos de mistura gaussiana cujos parâmetros se pretendam que sejam estimados no algoritmo EM, quer o número máximo de clusters a considerar. Caso estes argumentos não sejam indicados, todos os modelos com o número de clusters a variar de 1 até 9 são estimados. Caso os valores dos parâmetros para inicializar o algoritmo EM não sejam indicados nos argumentos iniciais, usam-se as partições obtidas no método hierárquico aglomerativo de análise de clusters quando estes são representados pelo modelo de mistura gaussiano definido por "VVV", ou seja, as matrizes de covariância são da forma $\Sigma_j = \lambda_j D_j A_j D_j^T$.

A função devolve os valores da estatística BIC para todos os modelos escolhidos e com o número de *cluster* a variar de 1 até ao número máximo de *clusters*. O valor da função de log-verosimilhança para o melhor modelo usando o critério BIC, assim como os valores dos parâmetros estimados e os valores estimados de w_{ij} deste modelo podem ser obtidos usando a função summary associada com a função summary associada

Resumindo, indicando o número máximo de clusters (M) a considerar e os vários modelos a usar, a função EMclust consiste nos seguintes passos:

- Aplicação do método hierárquico aglomerativo de análise de clusters, usando o critério de maximização da função de verosimilhança de classificação para o modelo de mistura gaussiano definido por "VVV" (ou seja, as matrizes de covariância são diferentes em todas as componentes de mistura) e obtenção dos respectivos grupos das observações para todas as partições em que o número de grupos varia de 2 até M.
- Para cada modelo e para cada número de clusters(2,..., M), estimação dos parâmetros do modelo recorrendo ao algoritmo EM, usando como soluções iniciais deste algoritmo as partições obtidas no passo anterior.
- Determinação do valor da estatística BIC de todos os modelos com o número de clusters de $2, \ldots, M$, usando os valores dos parâmetros estimados pelo algoritmo EM.

38 MCLUST

Para cada um dos modelos, determinação também da estatística BIC quando existe apenas um grupo.

No final, o modelo com o maior valor da estatística BIC é o escolhido.

3.3 Comentários finais

Iniciámos este capítulo, introduzindo algumas noções importantes em análise de clusters com o objectivo de familiarizar o leitor com as técnicas usadas no módulo informático MCLUST. De seguida, descrevemos pormenorizadamente aquele módulo informático e a função EMclust implementada nesse módulo.

A necessidade de descrever este módulo informático surgiu porque no desenvolvimento do trabalho apresentado nesta dissertação, tivemos de estimar modelos de mistura com componentes normais multivariadas pelo que recorremos ao módulo informático MCLUST e à função EMclust.

Capítulo 4

Momentos de Misturas de Distribuições

Antes de iniciar o estudo dos momentos de misturas de distribuições, é importante explicar como surgiu a motivação deste assunto.

4.1 Introdução

Com a evolução dos meios tecnológicos tem sido possível coleccionar e tratar conjuntos de dados de maiores dimensões. Em dados de grandes dimensões, a existência de várias fases pode ser frequente. Consideremos, por exemplo, no estudo dos intervalos de tempo entre a chegada dos veículos da frente de pelotões consecutivos do tráfego rodoviário de uma estrada (Faria, 1998), as fases de tráfego congestionado e de tráfego não congestionado são facilmente detectadas; ou, por exemplo, no estudo da carga de ruptura em estruturas de betão são frequentes as rupturas frágeis e as rupturas dúcteis (Henriques, 1998) e (Henriques et al., 2002); ou ainda, no estudo dos intervalos de tempo entre duas aberturas consecutivas de um segundo guichet em filas de espera de uma repartição pública (Henriques, 2000), os estados de grande afluência e pequena afluência à repartição são frequentemente visíveis.

Durante a análise preliminar das características amostrais de sucessivas subamostras de dados provenientes dos estudos mencionados (Faria (1998), Henriques (1998) e Henriques (2000)), observaram—se determinados comportamentos nas relações entre essas características: no gráfico do desvio padrão amostral versus média amostral visualizavam-se vários arcos de circunferências e o gráfico do coeficiente de achatamento versus coeficiente de assimetria apresentava uma forma do tipo "cardióide".

Como os modelos estatísticos adequados para modelar os dados provenientes de sistemas

com coexistência de várias fases são as misturas de distribuições e porque se pretendia interpretar teoricamente os comportamentos observados naquelas análises, estudaram-se analiticamente as relações entre o valor esperado e o desvio padrão e entre o coeficiente de assimetria e o coeficiente de achatamento em misturas de distribuições.

Inicia-se este capítulo com uma revisão dos conceitos de coeficiente de assimetria e coeficiente de achatamento. De seguida, ilustramos o comportamento das relações entre o desvio padrão amostral e a média amostral e entre o coeficiente de achatamento e o coeficiente de assimetria em subamostras de dados provenientes de distribuições puras. O estudo analítico da relação entre o valor esperado e a variância de misturas binárias de distribuições é de seguida apresentado e ilustrado graficamente. Estudam-se também analiticamente os coeficientes de assimetria e de achatamento em misturas binárias de distribuições, em particular de distribuições normais, uniformes e gamas. Generaliza-se ainda este estudo a misturas de distribuições com mais de duas componentes, recorrendo a um estudo de dados simulados. Por último, é apresentado o comportamento das relações mencionadas em subamostras de um conjunto de dados reais.

4.2 Coeficiente de assimetria e coeficiente de achatamento

Comecemos por relembrar as noções de coeficiente de assimetria e coeficiente de achatamento.

Definição 4.1 O coeficiente de assimetria de Pearson de uma variável aleatória Y é definido por:

$$\gamma_1 = \frac{\mu_3}{\sqrt{\mu_2^3}} \tag{4.1}$$

e o coeficiente de achatamento ou curtose de Pearson é definido por:

$$\gamma_2 = \frac{\mu_4}{\mu_2^2} - 3\tag{4.2}$$

onde $\mu_r = E(Y - E(Y))^r$ (r = 2, ..., 4) é o momento central de ordem r da variável aleatória Y.

O coeficiente de assimetria (γ_1) caracteriza a eventual assimetria de uma distribuição, enquanto que o coeficiente de achatamento (γ_2) dá indicação do achatamento da função densidade ou de probabilidade na zona central da distribuição. Pormenores sobre a interpretação destes coeficientes podem ser encontrados em, por exemplo, Mood et al. (1974, pp. 75-77).

Como é referido em Mardia (1970), o par (γ_1, γ_2) é util na selecção de um membro de uma família de distribuições, nomeadamente da família de Pearson, no desenvolvimento de testes de normalidade e na investigação da robustez de certos métodos.

Um desenvolvimento deste tema no que respeita à família das curvas de Pearson pode ser encontrado em Johnson et al. (1994). Vários trabalhos podem ser enumerados sob o uso destes coeficientes em testes de normalidade e na investigação da robustez de certos métodos, como por exemplo, D'Agostino and Pearson (1973), Bowman and Shenton (1975), D'Agostino (1986), Nguyen and Dinh (1998) e Rahmatullah Imon (2003).

No contexto de misturas de distribuições, estudos destes coeficientes são pouco frequentes. Em Preston (1953) apresenta-se um método gráfico usando a curva (γ_1, γ_2) para estimar os parâmetros de misturas binárias de normais quando as componentes têm a mesma variância. Em Bowman and Shenton (1973), o espaço de soluções dos parâmetros de misturas binárias de normais é descrito em função dos três cumulantes: κ_3, κ_4 e κ_5 . Ainda em Withers (1991), a relação entre os cumulantes de uma binomial é utilizada para estimar os momentos de misturas de duas distribuições. Em Calheiros and Faria (2000) encontra-se um primeiro trabalho realizado sobre o estudo desenvolvido neste capítulo desta dissertação.

4.3 Distribuições puras

Antes de iniciar o estudo das relações entre o valor esperado e o desvio padrão e entre o coeficiente de assimetria e o coeficiente de achatamento em misturas de distribuições, ilustramos o comportamento destas relações em subamostras de dados provenientes de distribuições puras.

Começámos por obter subamostras de pequena dimensão (n=10) e média dimensão (n=100) a partir de uma amostra proveniente de uma distribuição pura de parâmetros fixos e de dimensão 1000. As subamostras foram construídas do seguinte modo: a primeira subamostra corresponde aos n primeiros elementos da amostra, a segunda subamostra contém os n seguintes elementos começando no segundo elemento e assim sucessivamente. Para cada uma das subamostras calculámos a média amostral, o desvio padrão amostral, o coeficiente de assimetria e o coeficiente de achatamento. Considerámos que as amostras eram provenientes de três distribuições puras: normais, uniformes e gamas.

Nas figuras 4.1 a 4.6 apresentam-se alguns exemplos de gráficos do desvio padrão amostral *versus* média amostral de subamostras provenientes dessas três distribuições puras.

Da análise desses gráficos não é visível nenhum comportamento característico e não se observam diferenças significativas nos resultados nas diferentes dimensões das subamostras.

Figura 4.1: Desvio padrão amostral v
s média amostral em amostras de $\phi(1,1)$, (n=10)

Figura 4.2: Desvio padrão amostral vs média amostral em amostras de $\phi(1,1)$, (n = 100)

Nas figuras 4.7 a 4.12 apresentam-se os correspondentes gráficos do coeficiente de achatamento *versus* coeficiente de assimetria.

Da análise destes gráficos visualiza-se que, em subamostras de pequena dimensão (n = 10), estes gráficos apresentam uma forma de tipo "cardióide" mas, para subamostras de maior dimensão (n = 100), essa forma desaparece.

A forma elipsoidal observada em alguns destes gráficos (no caso das subamostras de dimensão n=100) é justificada pela normalidade assintótica dos estimadores de máxima verosimilhança de γ_1 e γ_2 em condições de regularidade (Mood et al., 1974, p. 359). A diferença de escala observada entre os gráficos das subamostras de dimensão n=10 e n=100 é justificada do mesmo modo.

Vamos agora iniciar o estudo das relações entre o valor esperado e o desvio padrão e entre o coeficiente de assimetria e o coeficiente de achatamento em misturas de distribuições.

4.4 Mistura binária de distribuições

Seja a variável aleatória X uma mistura finita de duas componentes, cuja função densidade de probabilidade é:

$$f(x; \Psi) = (1 - \pi) f_1(x; \theta_1) + \pi f_2(x; \theta_2)$$
(4.3)

em que $\Psi = (\pi, \theta_1, \theta_2)^T$ é o vector dos parâmetros desconhecidos da mistura, $f_j(x; \theta_j)$, (j = 1, 2) são as densidades componentes da mistura, θ_j , (j = 1, 2) são o vector dos parâmetros

Figura 4.3: Desvio padrão amostral vs média amostral em amostras de U(1,2), (n=10)

Figura 4.4: Desvio padrão amostral vs média amostral em amostras de U(1,2), (n = 100)

desconhecidos da j-ésima densidade componente da mistura e π é a proporção de mistura.

4.4.1 Valor esperado e variância

Lema 4.1 O valor esperado da variável aleatória X com função densidade de probabilidade dada pela expressão (4.3) é (ver Tassi (1986)):

$$E(X) = (1 - \pi) E(X_1) + \pi E(X_2)$$
 (4.4)

em que $E(X_j)$ (j=1,2) é o valor esperado de uma variável aleatória com função densidade de probabilidade $f_j(x;\theta_j)$ (j=1,2).

Lema 4.2 A variância da variável aleatória X com função densidade de probabilidade dada na expressão (4.3) é (ver Tassi (1986)):

$$V(X) = (1 - \pi) \ V(X_1) + \pi \ V(X_2) + \pi (1 - \pi) \ (E(X_1) - E(X_2))^2 \tag{4.5}$$

em que $V(X_j)$ (j=1,2) é variância de uma variável aleatória com função densidade de probabilidade $f_j(x;\theta_j)(j=1,2)$.

Pretendendo encontrar a relação entre estes dois momentos, concluímos que:

Proposição 4.1 A relação entre o valor esperado e o desvio padrão de uma variável

Figura 4.5: Desvio padrão amostral v
s média amostral em amostras de $G\left(1,2\right),\left(n=10\right)$

Figura 4.6: Desvio padrão amostral v
s média amostral em amostras de G(1,2), (n=100)

aleatória mistura finita de duas componentes é a equação duma circunferência:

$$\left[E\left(X\right) - \frac{1}{2} \left(\frac{V(X_1) - V(X_2)}{E(X_1) - E(X_2)} + E\left(X_1\right) + E\left(X_2\right)\right)\right]^2 + V\left(X\right) =$$

$$= V\left(X_2\right) + \left(\frac{1}{2} \left(\frac{V(X_1) - V(X_2)}{E(X_1) - E(X_2)} + E\left(X_1\right) - E\left(X_2\right)\right)\right)^2 \quad (4.6)$$

Demonstração: Resolve-se a equação (4.4) em ordem a π , substitui-se na expressão (4.5) e após alguma manipulação algébrica, obtém-se a expressão (4.6).

Deste resultado podemos concluir que quando a proporção de mistura varia entre 0 e 1, os sucessivos valores do valor esperado e do desvio padrão de uma mistura de duas componentes vão definir um arco de uma circunferência.

Um aspecto que interessa realçar é que a relação quadrática obtida é independente das funções densidades componentes da mistura.

Com o objectivo de ilustrar a relação encontrada, realizaram-se dois estudos de dados simulados.

Primeiro Estudo de Dados Simulados

Neste estudo, considerámos que os dados simulados eram provenientes de distribuições normais, uniformes e gamas. No que respeita à dimensão das amostras, gerámos amostras de dimensão n=10, n=100 e n=500.

Figura 4.7: Coef. de achatamento vs coef. de assimetria em amostras de $\phi(1,1)$, (n=10)

Figura 4.8: Coef. de achatamento vs coef. de assimetria em amostras de $\phi(1,1)$, (n=100)

Figura 4.9: Coef. de achatamento vs coef. de assimetria em amostras de U(1,1), (n = 10)

Figura 4.10: Coef. de achatamento vs coef. de assimetria em amostras de U(1,1), (n = 100)

Como se pretendia obter subamostras de modo semelhante ao descrito em Faria (1998), Henriques (1998) e Henriques (2000), aplicámos o seguinte procedimento. Gerámos duas amostras de dimensão n, provenientes de duas distribuições puras pertencentes à mesma família paramétrica mas de parâmetros diferentes. De seguida obtivemos (n+1) subamostras de dimensão n destas duas amostras do seguinte modo: a primeira subamostra coincide com a primeira amostra, a segunda subamostra contém as n-1 últimas observações da primeira amostra e a primeira observações da segunda amostra, a terceira subamostra contém as n-2 últimas observações da primeira amostra e as duas primeiras da segunda amostra e assim sucessivamente. Com este procedimento e com a escolha da dimensão n para a subamostra garante-se que se obtêm subamostras de diferentes proporções das duas amostras geradas, com a proporção variando continuamente de 0 a 1, em intervalos de $\frac{1}{n}$.

Figura 4.11: Coef. de achatamento vs coef. de assimetria em amostras de G(1,1), (n = 10)

Figura 4.12: Coef. de achatamento vs coef. de assimetria em amostras de G(1,1), (n = 100)

Para cada uma das (n+1) subamostras de cada caso, determinámos o valor médio e o desvio padrão e construímos o gráfico dos (n+1) pares desses valores.

Nas figuras 4.13 a 4.18 apresentam-se alguns exemplos desses gráficos de amostras de dimensão n=100. Os exemplos destes gráficos de amostras de dimensão n=10 e n=500 encontram-se no apêndice A (ver, figura A.1 a figura A.12). A linha a cheio representa a relação entre o valor médio e o desvio padrão teóricos quando a proporção varia de 0 a 1.

Figura 4.13: Desvio padrão amostral vs média amostral em amostras de $(1 - \pi) \phi(0, 1) + \pi \phi(4, 4)$ (n=100)

Figura 4.14: Desvio padrão amostral vs média amostral em amostras de $(1-\pi)$ ϕ $(0,1)+\pi$ ϕ (2,1) (n=100)

Da análise destes gráficos é possível observar claramente o arco de circunferência definida pela relação entre estes dois momentos. Para valores pequenos de n, a pequena diferença encontrada entre os valores teóricos e os valores obtidos nas simulações devem-se apenas a flutuações de amostragem.

Figura 4.15: Desvio padrão amostral vs média amostral em amostras de $(1-\pi)~U(0,2)+\pi~U(1,4)(n=100)$

Figura 4.16: Desvio padrão amostral vs média amostral em amostras de $(1-\pi)$ $U(0,2) + \pi$ U(2,4)(n=100)

Figura 4.17: Desvio padrão amostral v
s média amostral em amostras de $(1-\pi)~G(1,2)+\pi~G(2,2)\,(n=100)$

Figura 4.18: Desvio padrão amostral vs média amostral em amostras de $(1-\pi)$ $G(1,2)+\pi$ G(4,4)(n=100)

Um aspecto a realçar destes gráficos é que quando as variâncias das duas componentes da mistura são iguais, os gráficos são simétricos em relação à recta vertical de equação $x=\frac{1}{2}\left(E(X_1)+E(X_2)\right)$.

Segundo Estudo de Dados Simulados

Com o objectivo de observarmos a relação da proposição 4.1 em subamostras obtidas a partir de amostras provenientes de populações com função densidade de probabilidade dada pela expressão (4.3) e em que $f_j(x;\theta_j)$, j=1,2 pertencem à mesma família paramétrica mas de parâmetros diferentes, realizámos um outro estudo.

Começámos por gerar amostras de dimensão 1000 do seguinte modo. Inicialmente obtivemos 1000 realizações de uma variável aleatória auxiliar, designada por Z, com distribuição de Bernoulli de parâmetro π , em que π é a proporção de mistura. Caso z_i $(i=1,\ldots,1000)$ fosse 0 gerávamos uma observação proveniente da primeira componente da mistura, caso contrário, se z_i $(i=1,\ldots,1000)$ fosse 1 gerávamos uma observação proveniente da segunda componente da mistura. De seguida, obtivemos subamostras, de dimensão n=100, de cada amostra da seguinte maneira: a primeira subamostra corresponde aos n primeiros elementos da amostra, a segunda subamostra contém os n seguintes elementos começando no segundo elemento e assim sucessivamente. Para cada uma das (n+1) subamostras de cada caso, determinámos o valor médio e o desvio padrão e construímos o gráfico dos (n+1) pares desses valores.

As funções densidade componentes da mistura foram as mesmas escolhidas no primeiro estudo de dados simulados. No que respeita à proporção de mistura, por uma questão de simplicidade, considerámos apenas $\pi=0.5$.

Nas figuras 4.19 e 4.20 apresentam-se os exemplos desses gráficos de amostras provenientes de uma mistura de duas componentes normais. Exemplos destes gráficos de amostras provenientes de uma mistura de duas componentes uniformes e gamas podem ser encontrados no apêndice A (ver figura A.13 a figura A.16). A linha a cheio representa a relação entre o valor médio e o desvio padrão teóricos quando a proporção varia de 0 a 1.

Figura 4.19: Desvio padrão amostral vs média amostral em amostras de 0.5 ϕ (0,1) + 0.5 ϕ (4,4) (n=100)

Figura 4.20: Desvio padrão amostral vs média amostral em amostras de 0.5 ϕ (0,1) + 0.5 ϕ (2,1) (n=100)

Uma vez que a proporção de mistura nas subamostras varia pouco, apenas se visualiza uma pequena parte do arco da circunferência.

4.4.2 Coeficiente de assimetria e coeficiente de achatamento

Proposição 4.2 O coeficiente de assimetria da variável aleatória X com função densidade de probabilidade dada na expressão (4.3) é :

$$\gamma_{1} = \frac{\sum_{j=1}^{2} \pi_{j} E\left(X_{j}^{3}\right) - 3 \sum_{j=1}^{2} \pi_{j} E\left(X_{j}\right) \sum_{j=1}^{2} \pi_{j} E\left(X_{j}^{2}\right) + 2 \sum_{j=1}^{2} \pi_{j} E^{3}\left(X_{j}\right)}{\sqrt{\left(\left(1-\pi\right) V\left(X_{1}\right) + \pi V\left(X_{2}\right) + \pi\left(1-\pi\right) \left(E\left(X_{1}\right) - E\left(X_{2}\right)\right)^{2}\right)^{3}}}$$
(4.7)

e o coeficiente de achatamento é:

$$\gamma_{2} = \frac{\sum_{j=1}^{2} \pi_{j} E\left(X_{j}^{4}\right) - 4 \sum_{j=1}^{2} \pi_{j} E\left(X_{j}\right) \sum_{j=1}^{2} \pi_{j} E\left(X_{j}^{3}\right) + 6 \sum_{j=1}^{2} \pi_{j} E^{2}\left(X_{j}\right) \sum_{j=1}^{2} \pi_{j} E\left(X_{j}^{2}\right)}{\pi_{1} V\left(X_{1}\right) + \pi_{2} V\left(X_{2}\right) + \pi_{1} \pi_{2} \left(E\left(X_{1}\right) - E\left(X_{2}\right)\right)^{2}\right)^{2}} - \frac{3 \sum_{j=1}^{2} \pi_{j} E^{4}\left(X_{j}\right)}{\pi_{1} V\left(X_{1}\right) + \pi_{2} V\left(X_{2}\right) + \pi_{1} \pi_{2} \left(E\left(X_{1}\right) - E\left(X_{2}\right)\right)^{2}\right)^{2}} - 3$$

$$(4.8)$$

em que $\pi_1 = 1 - \pi_2$ e $E\left(X_j^r\right)$ (j = 1, 2 e r = 2, 3, 4) é o momento de ordem r de uma variável aleatória com função densidade de probabilidade $f_j(x; \theta_j)$ (j = 1, 2).

Demonstração: Pela linearidade da esperança matemática tem-se que:

$$E(X^{r}) = (1 - \pi) E(X_{1}^{r}) + \pi E(X_{2}^{r})$$
(4.9)

e usando a definição 4.1, após alguma manipulação algébrica facilmente se obtém as expressões (4.7) e (4.8).

Estes coeficientes podem ainda ser reescritos na forma:

$$\gamma_{1} = \frac{(1-\pi) E(X_{1} - E(X_{1}))^{3} + \pi E(X_{2} - E(X_{2}))^{3}}{\sqrt{((1-\pi) V(X_{1}) + \pi V(X_{2}) + \pi(1-\pi) (E(X_{1}) - E(X_{2}))^{2})^{3}}} + \frac{(1-\pi) \pi (E(X_{1}) - E(X_{2})) \left((E(X_{1}) - E(X_{2}))^{2} (2\pi - 1) + 3 (V(X_{1}) - V(X_{2})) \right)}{\sqrt{((1-\pi) V(X_{1}) + \pi V(X_{2}) + \pi(1-\pi) (E(X_{1}) - E(X_{2}))^{2})^{3}}}$$
(4.10)

e

$$\gamma_{2} = \frac{\left(\pi_{1}E\left(X_{1} - E\left(X_{1}\right)\right)^{4} + \pi_{2}E\left(X_{2} - E\left(X_{2}\right)\right)^{4}\right)}{\left(\pi_{1}V\left(X_{1}\right) + \pi_{2}V\left(X_{2}\right) + \pi_{2}\pi_{1}\left(E\left(X_{1}\right) - E\left(X_{2}\right)\right)^{2}\right)^{2}} + \frac{4\pi_{1}\pi_{2}\left(E\left(X_{1} - E\left(X_{1}\right)\right)^{3} - E\left(X_{2} - E\left(X_{2}\right)\right)^{3}\right)\left(E\left(X_{1}\right) - E\left(X_{2}\right)\right)}{\left(\pi_{1}V\left(X_{1}\right) + \pi_{2}V\left(X_{2}\right) + \pi_{2}\pi_{1}\left(E\left(X_{1}\right) - E\left(X_{2}\right)\right)^{2}\right)^{2}} + \frac{\pi_{1}\pi_{2}\left(E\left(X_{1}\right) - E\left(X_{2}\right)\right)^{2}\left[\left(E\left(X_{1}\right) - E\left(X_{2}\right)\right)^{2}\left(3\pi_{2}^{2} - 3\pi_{2} + 1\right) + 6\left(V\left(X_{1}\right)\pi_{2} + \pi_{1}V\left(X_{2}\right)\right)\right]}{\left(\pi_{1}V\left(X_{1}\right) + \pi_{2}V\left(X_{2}\right) + \pi_{2}\pi_{1}\left(E\left(X_{1}\right) - E\left(X_{2}\right)\right)^{2}\right)^{2}} - 3\pi_{2}^{2} + \frac{1}{2}\left(2\pi_{1}^{2} - 2\pi_{1}^{2}\left(E\left(X_{1}\right) - E\left(X_{2}\right)\right)^{2}\right)^{2}}{\left(\pi_{1}V\left(X_{1}\right) + \pi_{2}V\left(X_{2}\right) + \pi_{2}\pi_{1}\left(E\left(X_{1}\right) - E\left(X_{2}\right)\right)^{2}\right)^{2}} - 3\pi_{2}^{2} + \frac{1}{2}\left(2\pi_{1}^{2} - 2\pi_{1}^{2}\left(E\left(X_{1}\right) - E\left(X_{2}\right)\right)^{2}\right)^{2}}{\left(\pi_{1}V\left(X_{1}\right) + \pi_{2}V\left(X_{2}\right) + \pi_{2}\pi_{1}\left(E\left(X_{1}\right) - E\left(X_{2}\right)\right)^{2}\right)^{2}} - 3\pi_{2}^{2} + \frac{1}{2}\left(2\pi_{1}^{2} - 2\pi_{1}^{2}\left(E\left(X_{1}\right) - E\left(X_{2}\right)\right)^{2}\right)^{2}}{\left(\pi_{1}V\left(X_{1}\right) + \pi_{2}V\left(X_{2}\right) + \pi_{2}\pi_{1}\left(E\left(X_{1}\right) - E\left(X_{2}\right)\right)^{2}\right)^{2}} - 3\pi_{2}^{2} + \frac{1}{2}\left(2\pi_{1}^{2} - 2\pi_{1}^{2}\left(E\left(X_{1}\right) - E\left(X_{2}\right)\right)^{2}\right)^{2}}{\left(\pi_{1}V\left(X_{1}\right) + \pi_{2}V\left(X_{2}\right) + \pi_{2}\pi_{1}\left(E\left(X_{1}\right) - E\left(X_{2}\right)\right)^{2}\right)^{2}} - 3\pi_{2}^{2} + \frac{1}{2}\left(2\pi_{1}^{2} - 2\pi_{1}^{2}\left(E\left(X_{1}\right) - E\left(X_{2}\right)\right)^{2}\right)^{2}}{\left(\pi_{1}V\left(X_{1}\right) + \pi_{2}V\left(X_{2}\right) + \pi_{2}\pi_{1}\left(E\left(X_{1}\right) - E\left(X_{2}\right)\right)^{2}}\right)^{2}} + \frac{1}{2}\left(2\pi_{1}^{2} - 2\pi_{1}^{2}\left(E\left(X_{1}\right) - E\left(X_{2}\right)\right)^{2}}{\left(\pi_{1}^{2} - 2\pi_{1}^{2}\left(E\left(X_{1}\right) - E\left(X_{2}\right)\right)^{2}}\right)^{2}} + \frac{1}{2}\left(2\pi_{1}^{2} - 2\pi_{1}^{2}\left(E\left(X_{1}\right) - E\left(X_{2}\right)\right)^{2}}\right)^{2}} + \frac{1}{2}\left(2\pi_{1}^{2} - 2\pi_{1}^{2}\left(E\left(X_{1}\right) - E\left(X_{2}\right)\right)^{2}}\right)^{2} + \frac{1}{2$$

Dada a complexidade na manipulação algébrica destes coeficientes, não foi possível encontrar a equação da relação entre eles.

De seguida, estudamos analiticamente estes coeficientes em misturas binárias de distribuições normais, uniformes e gamas, com o objectivo de interpretar a forma tipo "cardióide" observada em Faria (1998), Henriques (1998) e Henriques (2000).

4.4.2.1 Mistura binária de distribuições normais

Seja a variável aleatória X uma mistura finita de duas componentes, cuja função densidade de probabilidade é:

$$f(x; \Psi) = (1 - \pi) \phi(x; \mu_1, \sigma_1^2) + \pi \phi(x; \mu_2, \sigma_2^2)$$
(4.13)

em que $\phi(.; \mu_j, \sigma_j^2), j = 1, 2$ é a função densidade de probabilidade da variável aleatória normal univariada de valor médio μ_j e variância σ_j^2 , onde $\mu_1 \neq \mu_2$.

Proposição 4.3 O coeficiente de assimetria da variável aleatória X com função densidade de probabilidade dada na expressão (4.13) é:

$$\gamma_1 = \frac{(1-\pi)\pi(\mu_1 - \mu_2)\left((\mu_1 - \mu_2)^2(2\pi - 1) + 3\left(\sigma_1^2 - \sigma_2^2\right)\right)}{\sqrt{((1-\pi)\sigma_1^2 + \pi\sigma_2^2 + \pi(1-\pi)(\mu_1 - \mu_2)^2)^3}}$$
(4.14)

e o coeficiente de achatamento é:

$$\gamma_{2} = \frac{(1-\pi)\pi \left[(\mu_{1} - \mu_{2})^{4} (6\pi^{2} - 6\pi + 1) - 6(\mu_{1} - \mu_{2})^{2} (1-2\pi) (\sigma_{1}^{2} - \sigma_{2}^{2}) + 3(\sigma_{1}^{2} - \sigma_{2}^{2})^{2} \right]}{((1-\pi)\sigma_{1}^{2} + \pi\sigma_{2}^{2} + \pi(1-\pi)(\mu_{1} - \mu_{2})^{2})^{2}}$$

$$(4.15)$$

Demonstração: Uma vez que $E(X_j) = \mu_j$, $V(X_j) = \sigma_j^2$, $E(X_j - E(X_j))^3 = 0$ e $E(X_j - E(X_j))^4 = 3 \sigma_j^4$, substituindo nas expressões (4.10) e (4.11) e após alguma manipulação algébrica facilmente se obtém as expressões (4.14) e (4.15).

Os zeros do coeficiente de assimetria dado na expressão (4.14) são:

$$\pi = 0 \lor \pi = 1 \lor \pi = \frac{3}{2} \left(\frac{\sigma_2^2 - \sigma_1^2}{(\mu_1 - \mu_2)^2} \right) + \frac{1}{2}$$
 (4.16)

logo este coeficiente anula-se e muda de sinal quando:

$$-\frac{1}{3} \le \left(\frac{\sigma_2^2 - \sigma_1^2}{(\mu_1 - \mu_2)^2}\right) \le \frac{1}{3} \tag{4.17}$$

caso contrário, tem sinal constante.

Quando se verifica a relação (4.17), o gráfico coeficiente de achatamento versus coeficiente de assimetria intersecta o eixo γ_2 nos pontos de coordenadas:

(0,0)
$$e \qquad \left(0, \frac{2(\mu_1 - \mu_2)^8 \left[\frac{9(\sigma_2^2 - \sigma_1^2)^2}{(\mu_1 - \mu_2)^4} - 1\right] \left[\frac{3(\sigma_2^2 - \sigma_1^2)^2}{(\mu_1 - \mu_2)^4} + 1\right]}{\left(3(\sigma_2^2 - \sigma_1^2)^2 - (\mu_1 - \mu_2)^2 \left(2(\sigma_2^2 + \sigma_1^2) + (\mu_1 - \mu_2)^2\right)\right)^2} \right)$$
(4.18)

Um aspecto a realçar deste resultado é que o primeiro ponto corresponde às situações nas quais não se está na presença de misturas de distribuições e o segundo ponto pertence ao semi-eixo negativo de γ_2 .

Os zeros do coeficiente de achatamento dado na expressão (4.15) são:

$$\pi = 0 \lor \pi = 1 \lor \pi = \frac{\left(\sigma_2^2 - \sigma_1^2\right)}{(\mu_1 - \mu_2)^2} + \frac{1}{2} \pm \sqrt{\frac{1}{2} \frac{\left(\sigma_2^2 - \sigma_1^2\right)^2}{(\mu_1 - \mu_2)^4} + \frac{1}{12}}$$
(4.19)

Neste caso, é necessário considerar três situações diferentes:

• quando:

$$\left| \frac{\sigma_2^2 - \sigma_1^2}{(\mu_1 - \mu_2)^2} \right| < 1 - \frac{\sqrt{6}}{3} \tag{4.20}$$

o coeficiente de achatamento tem três zeros distintos e a curva (γ_1, γ_2) intersecta o eixo γ_1 na origem e em dois pontos separados pela origem;

• quando:

$$1 - \frac{\sqrt{6}}{3} < \left| \frac{\sigma_2^2 - \sigma_1^2}{(\mu_1 - \mu_2)^2} \right| < 1 + \frac{\sqrt{6}}{3}$$
 (4.21)

o coeficiente de achatamento tem dois zeros distintos e a curva (γ_1, γ_2) intersecta o eixo γ_1 na origem e num outro ponto pertencente ao semi-eixo negativo ou positivo;

• caso contrário, o coeficiente de achatamento tem apenas um zero distinto, ou seja, este coeficiente tem sinal constante.

Pela continuidade destes coeficientes em π fica justificada a forma "cardióide" observada no gráfico (γ_1, γ_2) em misturas de distribuições normais.

4.4.2.2 Misturas binária de distribuições uniformes

Seja a variável aleatória X uma mistura finita de duas componentes, cuja função densidade de probabilidade é:

$$f(x; \Psi) = (1 - \pi) U(x; a_1, b_1) + \pi U(x; a_2, b_2)$$
(4.22)

em que $U(.; a_j, b_j)$, j = 1, 2 é a função densidade de probabilidade da variável aleatória uniforme no intervalo $(a_i; b_j)$.

Proposição 4.4 O coeficiente de assimetria da variável aleatória X com função densidade de probabilidade dada pela expressão (4.22) é :

$$\gamma_1 = \frac{(1-\pi)\pi(\mu_1 - \mu_2)\left((\mu_1 - \mu_2)^2(2\pi - 1) + 3\left(\sigma_1^2 - \sigma_2^2\right)\right)}{\sqrt{((1-\pi)\sigma_1^2 + \pi\sigma_2^2 + \pi(1-\pi)(\mu_1 - \mu_2)^2)^3}}$$
(4.23)

e o coeficiente de achatamento é:

$$\gamma_{2} = \frac{(1-\pi)\pi\left((\mu_{1}-\mu_{2})^{4}\left(6\pi^{2}-6\pi+1\right)-6\left(\mu_{1}-\mu_{2}\right)^{2}\left(1-2\pi\right)\left(\sigma_{1}^{2}-\sigma_{2}^{2}\right)+3\left(\sigma_{1}^{2}-\sigma_{2}^{2}\right)^{2}\right)}{((1-\pi)\sigma_{1}^{2}+\pi\sigma_{2}^{2}+\pi(1-\pi)(\mu_{1}-\mu_{2})^{2})^{2}} - \frac{1.2\left((1-\pi)\sigma_{1}^{4}+\pi\sigma_{2}^{4}\right)}{((1-\pi)\sigma_{1}^{2}+\pi\sigma_{2}^{2}+\pi(1-\pi)(\mu_{1}-\mu_{2})^{2})^{2}}$$

$$(4.24)$$

Demonstração: Definindo $E(X_j) = \mu_j$ e $V(X_j) = \sigma_j$ e uma vez que, $E(X_j - E(X_j))^3 = 0, \ E(X_j - E(X_j))^4 = 1.8 \ \sigma_j^4, \text{ substituindo nas expressões}$ (4.10) e (4.11) e após alguma manipulação algébrica facilmente se obtém as expressões (4.23) e (4.24).

Um aspecto que interessa realçar é que o coeficiente de assimetria dado pela expressão (4.23) é formalmente igual ao coeficiente de assimetria dado na expressão (4.14). Por essa razão, os zeros do coeficiente de assimetria dado na expressão (4.23) já foram indicados na expressão (4.16) e o gráfico coeficiente de achatamento versus coeficiente de assimetria intersecta o eixo γ_2 nos pontos de coordenadas:

$$(0, -1.2) \quad e \quad \left(0, \frac{2(\mu_1 - \mu_2)^8 \left[\frac{9(\sigma_2^2 - \sigma_1^2)^2}{(\mu_1 - \mu_2)^4} - 1\right] \left[\frac{3(\sigma_2^2 - \sigma_1^2)^2}{(\mu_1 - \mu_2)^4} + 1\right]}{\left(3(\sigma_2^2 - \sigma_1^2)^2 - (\mu_1 - \mu_2)^2 \left(2(\sigma_2^2 + \sigma_1^2) + (\mu_1 - \mu_2)^2\right)\right)^2} - \frac{48}{5} \left(\sigma_1^2 + \sigma_2^2 + \left(\frac{\sigma_2^2 - \sigma_1^2}{(\mu_1 - \mu_2)^2}\right)^2\right)\right)$$

$$(4.25)$$

Os zeros do coeficiente de achatamento dado pela expressão (4.24) foram também calculados mas são expressões extensas e sem visível interesse.

Pela continuidade destes coeficientes em π fica também justificada a forma "cardióide" observada no gráfico (γ_1, γ_2) em misturas de distribuições uniformes.

4.4.2.3 Misturas binárias de distribuições gamas

Seja a variável aleatória X uma mistura finita de duas componentes, cuja função densidade de probabilidade é:

$$f(x; \Psi) = (1 - \pi)G(x; \alpha_1, \lambda_1) + \pi G(x; \alpha_2, \lambda_2)$$

$$(4.26)$$

em que $G(.; \alpha_j, \lambda_j), j=1,2$ é a função densidade de probabilidade da variável aleatória gama de parâmetros $\alpha_j>0$ e $\lambda_j>0$.

Proposição 4.5 O coeficiente de assimetria da variável aleatória X com função densidade de probabilidade dada pela expressão (4.26) é :

$$\gamma_{1} = \frac{(1-\pi)\pi(\mu_{1}-\mu_{2})\left((\mu_{1}-\mu_{2})^{2}(2\pi-1)+3\left(\sigma_{1}^{2}-\sigma_{2}^{2}\right)\right)+2\left((1-\pi)\frac{\sigma_{1}^{4}}{\mu_{1}}+\pi\frac{\sigma_{2}^{4}}{\mu_{2}}\right)}{\sqrt{((1-\pi)\sigma_{1}^{2}+\pi\sigma_{2}^{2}+\pi(1-\pi)(\mu_{1}-\mu_{2})^{2})^{3}}}$$
(4.27)

e o coeficiente de achatamento é:

$$\gamma_{2} = \frac{(1-\pi)\left(3\sigma_{1}^{4} + 6\frac{\sigma_{1}^{6}}{\mu_{1}^{2}}\right) + \pi\left(3\sigma_{2}^{4} + 6\frac{\sigma_{2}^{6}}{\mu_{2}^{2}}\right)}{((1-\pi)\sigma_{1}^{2} + \pi\sigma_{2}^{2} + \pi(1-\pi)(\mu_{1}-\mu_{2})^{2})^{2}} + \\
+ \frac{(1-\pi)\pi(\mu_{1}-\mu_{2})^{2}\left((\mu_{1}-\mu_{2})^{2}\left(3\pi^{2} - 3\pi + 1\right) + 6(\pi\sigma_{1}^{2} + (1-\pi)\sigma_{2}^{2})\right)}{(1-\pi)\sigma_{1}^{2} + \pi\sigma_{2}^{2} + \pi(1-\pi)(\mu_{1}-\mu_{2})^{2})^{2}} + \\
+ \frac{8(1-\pi)\pi\left(\frac{\sigma_{1}^{4}}{\mu_{1}} - \frac{\sigma_{2}^{4}}{\mu_{2}}\right)(\mu_{1}-\mu_{2})}{(1-\pi)\sigma_{1}^{2} + \pi\sigma_{2}^{2} + \pi(1-\pi)(\mu_{1}-\mu_{2})^{2})^{2}} - 3$$
(4.28)

Demonstração: Definindo
$$E(X_j) = \mu_j$$
, $V(X_j) = \sigma_j^2$, $E(X_j - E(X_j))^3 = \frac{2 \sigma_j^4}{\mu_j}$, $E(X_j - E(X_j))^4 = 3\sigma_j^4 + 6 \frac{\sigma_j^6}{\mu_j^2}$, substituindo nas expressões (4.10) e (4.11) e após alguma manipulação algébrica facilmente se obtém as expressões (4.27) e (4.28).

Dada a complexidade das expressões matemáticas encontradas e após tratamento algébrico, apresentam-se apenas as conclusões obtidas. Uma vez que $\mu_j = \frac{\alpha_j}{\lambda_j}$ e $\sigma_j^2 = \frac{\alpha_j}{\lambda_j^2}$ tem-se:

• quando $\alpha_1 = \alpha_2 = \alpha$ tem-se $\gamma_1 \ge \frac{2}{\sqrt{\alpha}}$, $\gamma_2 \ge \frac{6}{\alpha}$ e a curva (γ_1, γ_2) é uma curva fechada;

- quando $\alpha_1 < \alpha_2$ tem-se $\gamma_1 \ge \frac{2}{\sqrt{\alpha_2}}$, $\gamma_2 \ge \frac{6}{\alpha_2}$ e a curva (γ_1, γ_2) é uma curva aberta;
- quando $\alpha_1 > \alpha_2$ tem-se $\gamma_1 \ge \frac{2}{\sqrt{\alpha_1}}, \, \gamma_2 \ge \frac{6}{\alpha_1}$ e a curva (γ_1, γ_2) é uma curva aberta.

Podemos assim concluir que o gráfico (γ_1, γ_2) destas misturas binárias não intersecta os eixos, apresentando valores apenas no primeiro quadrante.

Nestas misturas binárias, quando $\alpha_1 = \alpha_2 = 1$, está-se no caso particular de misturas binárias de distribuições exponenciais. De seguida, estudam-se analiticamente os coeficientes de assimetria e achatamento para este caso particular.

4.4.2.4 Misturas binárias de distribuições exponenciais

Seja a variável aleatória X uma mistura finita de duas componentes, cuja função densidade de probabilidade é:

$$f(x; \Psi) = (1 - \pi)Ex(x; \lambda_1) + \pi Ex(x; \lambda_2)$$
(4.29)

em que $Ex(.;\lambda_j), j=1,2$ é a função densidade de probabilidade da variável aleatória exponencial de parâmetro $\lambda_j>0$.

Proposição 4.6 O coeficiente de assimetria da variável aleatória X com função densidade de probabilidade dada na expressão (4.29) é :

$$\gamma_{1} = \frac{(1-\pi)\pi(\mu_{1}-\mu_{2})\left((\mu_{1}-\mu_{2})^{2}(2\pi-1)-3(\mu_{2}^{2}-\mu_{1}^{2})\right)+2((1-\pi)\mu_{1}^{3}+\pi\mu_{2}^{3})}{\sqrt{((1-\pi)\mu_{1}^{2}+\pi\mu_{2}^{2}+\pi(1-\pi)(\mu_{1}-\mu_{2})^{2})^{3}}}$$
(4.30)

e o coeficiente de achatamento é:

$$\gamma_2 = \frac{6 \mu_1^4 + 6 \mu_2^4 - 6((1 - \pi) \mu_2 + \pi \mu_1)^4}{((1 - \pi) \mu_1^2 + \pi \mu_2^2 + \pi (1 - \pi) (\mu_1 - \mu_2)^2)^2}$$
(4.31)

Demonstração: Uma vez que $\alpha_1 = \alpha_2 = 1$ e $\mu_j^2 = \sigma_j^2$, j = 1, 2 substituindo directamente nas expressões (4.27) e (4.28) obtém-se as expressões (4.30) e (4.31).

Os zeros do coeficiente de assimetria dado pela expressão (4.30) são:

$$\pi = \frac{\sqrt[3]{\mu_1^3 + \mu_2^3 - \mu_2}}{\mu_1 - \mu_2} \vee \pi = \frac{-\frac{1}{2} \left(\sqrt[3]{\mu_1^3 + \mu_2^3} - 2\mu_2 \pm i\sqrt{3}\sqrt[3]{\mu_1^3 + \mu_2^3}\right)}{\mu_1 - \mu_2}, \mu_1 \neq \mu_2$$
 (4.32)

Uma vez que o segundo zero da expressão (4.32) é sempre não real e,

• quando $\mu_1 > \mu_2$, o zero $\pi = \frac{\sqrt[3]{\mu_1^3 + \mu_2^3 - \mu_2}}{\mu_1 - \mu_2}$ é sempre maior que 1;

• quando
$$\mu_1 < \mu_2$$
, o zero $\pi = \frac{\sqrt[3]{\mu_1^3 + \mu_2^3} - \mu_2}{\mu_1 - \mu_2}$ é sempre menor que 0;

podemos concluir que o coeficiente de assimetria dado pela expressão (4.30) nunca se anula e é sempre positivo qualquer que seja o valor de π entre 0 e 1.

Com o objectivo de determinar os valores máximos e mínimos deste coeficiente, calculámos a derivada da expressão (4.30) em ordem a π :

$$\frac{d\gamma_1}{d\pi} = \frac{6(\mu_1 - \mu_2)^2(\mu_1\pi + (1 - \pi)\mu_2)((1 - \pi)\mu_1^2 + \pi\mu_2^2)}{\sqrt{((1 - \pi)\mu_1^2 + \pi\mu_2^2 + \pi(1 - \pi)(\mu_1 - \mu_2)^2)^3}}$$
(4.33)

que se anula em:

$$\pi = \frac{\mu_2}{\mu_2 - \mu_1} \vee \pi = \frac{\mu_1^2}{\mu_1^2 + \mu_2^2} \tag{4.34}$$

Uma vez que o primeiro zero dado na expressão (4.34) é sempre maior que 1 , a função derivada dada pela expressão (4.33) tem apenas um zero em:

$$\pi_0 = \frac{\mu_1^2}{\mu_1^2 + \mu_2^2} \tag{4.35}$$

e o coeficiente de assimetria dado pela expressão (4.30) é crescente em $[0, \pi_0]$ e decrescente em $[\pi_0, 1]$. O máximo é em $\pi = \pi_0$ e os mínimos são em $\pi = 0$ e $\pi = 1$ onde $\gamma_1 = 2$.

Os zeros do coeficiente de achatamento dado pela expressão (4.31) são:

$$\pi = \frac{\mu_2 \pm \sqrt[4]{\mu_1^4 + \mu_2^4}}{\mu_2 - \mu_1} \vee \pi = \frac{\mu_2 \pm \sqrt[4]{-\sqrt{\mu_1^4 + \mu_2^4}}}{\mu_2 - \mu_1}, \mu_1 \neq \mu_2$$
 (4.36)

Uma vez que o segundo zero dado na expressão (4.36) é sempre não real e,

• quando
$$\mu_2 > \mu_1$$
, $\pi = \frac{\mu_2 - \sqrt[4]{\mu_1^4 + \mu_2^4}}{\mu_2 - \mu_1} < 0 \lor \pi = \frac{\mu_2 + \sqrt[4]{\mu_1^4 + \mu_2^4}}{\mu_2 - \mu_1} > 1$

• quando
$$\mu_1 > \mu_2$$
, $\pi = \frac{\mu_2 - \sqrt[4]{\mu_1^4 + \mu_2^4}}{\mu_2 - \mu_1} > 1 \lor \pi = \frac{\mu_2 + \sqrt[4]{\mu_1^4 + \mu_2^4}}{\mu_2 - \mu_1} < 0$

podemos concluir que o coeficiente de achatamento dado pela expressão (4.31) nunca se anula e é sempre positivo qualquer que seja o valor de π entre 0 e 1.

Como

$$\gamma_2 - 6 = \frac{12(1-\pi)\pi(\mu_1 - \mu_2)^2((1-\pi)\mu_2 + (1+\pi)\mu_1)(\pi\mu_1 + (2-\pi)\mu_2)}{((1-\pi)\mu_1^2 + \pi\mu_2^2 + \pi(1-\pi)(\mu_1 - \mu_2)^2)^2}$$
(4.37)

é sempre positivo qualquer que seja π entre 0 e 1, concluímos que $\gamma_2 \geq 6.$

Podemos assim concluir que o gráfico (γ_1, γ_2) destas misturas binárias não intersecta os eixos, apresentando um mínimo no ponto de coordenadas (2, 6), ponto este correspondente

às situações em que $\pi = 0$ ou $\pi = 1$.

Primeiro Estudo de Dados Simulados

Para cada uma das (n+1) subamostras obtidas no primeiro estudo de dados simulados da secção (4.4.1) deste capítulo, determinámos as estimativas do coeficiente de assimetria e de achatamento e construímos o gráfico dos (n+1) pares desses valores.

Nas figuras 4.21 a 4.26 apresentam-se esses gráficos de amostras de dimensão n=100. Os gráficos de amostras de dimensão n=10 e n=500 encontram-se no apêndice A (ver, figura A.17 a figura A.28). A linha a cheio representa a relação entre o coeficiente de assimetria e o de achatamento teóricos quando a proporção varia de 0 a 1.

Da análise destes gráficos é possível observar claramente a forma de tipo "cardióide" da curva (γ_1, γ_2) . Para valores pequenos de n, a diferença encontrada entre os valores teóricos e os valores obtidos nas simulações devem-se apenas a flutuações de amostragem.

Um aspecto a realçar destes gráficos é que, no caso de misturas binárias de distribuições normais e uniformes, quando as variâncias das duas componentes são iguais, os gráficos são simétricos em relação ao eixo γ_2 .

Figura 4.21: Coef. de achatamento vs coef. de assimetria em amostras de $(1-\pi) \phi(0,1) + \pi \phi(4,4)$ (n=100)

Figura 4.22: Coef. de achatamento vs coef. de assimetria em amostras de $(1-\pi) \phi(0,1) + \pi \phi(2,1)$ (n=100)

Segundo Estudo de Dados Simulados

Para cada uma das (n+1) subamostras obtidas no segundo estudo de dados simulados da secção (4.4.1) deste capítulo determinámos as estimativas do coeficiente de assimetria e de achatamento e construímos o gráfico dos (n+1) pares desses valores.

Figura 4.23: Coef. de achatamento vs coef. de assimetria em amostras de $(1-\pi)$ $U(0,2) + \pi$ U(1,4)(n=100)

Figura 4.24: Coef. de achatamento vs coef. de assimetria em amostras de $(1-\pi)$ $U(0,2) + \pi$ U(2,4)(n=100)

Figura 4.25: Coef. de achatamento vs coef. de assimetria em amostras de $(1-\pi)$ $G(1,2)+\pi$ G(2,2) (n=100)

Figura 4.26: Coef. de achatamento vs coef. de assimetria em amostras de $(1-\pi)$ $G(1,2) + \pi$ G(4,4)(n=100)

Nas figuras 4.27 e 4.28 apresentam-se esses gráficos das amostras provenientes de uma mistura de duas componentes normais. Os gráficos das amostras provenientes de uma mistura de duas componentes uniformes e gamas podem ser encontrados no apêndice A (ver figura A.29 a figura A.32). A linha a cheio representa a relação entre o coeficiente de assimetria e o de achatamento teóricos quando a proporção varia de 0 a 1.

Como a proporção de mistura nas subamostras varia pouco, apenas se visualiza uma pequena parte do "cardióide".

Figura 4.27: Coef. de achatamento vs coef. de assimetria em amostras de 0.5 ϕ (1, 1) + 0.5 ϕ (4, 4) (n = 100)

Figura 4.28: Coef. de achatamento vs coef. de assimetria em amostras de 0.5 ϕ (1,1) + 0.5 ϕ (2,1) (n = 100)

4.5 Generalização a misturas não binárias

A generalização das relações obtidas a misturas com mais de duas componentes depende apenas do tratamento algébrico de expressões matemáticas extensas.

Tendo consciência da enorme complexidade do estudo dessas expressões decidimos proceder a um outro estudo de dados simulados para analisar o comportamento dessas curvas a misturas não binárias.

4.5.1 Estudo de dados simulados

Neste estudo, considerámos que os dados simulados eram provenientes de distribuições normais, uniformes e gamas.

Usando o procedimento descrito no primeiro estudo de dados simulados da secção (4.4.1) deste capítulo, gerámos três amostras de dimensão n=100 provenientes de três distribuições puras pertencentes à mesma família paramétrica mas de parâmetros diferentes e obtivemos as (2n+1) subamostras de dimensão n destas três amostras.

Para cada uma dessas (2n+1) subamostras determinámos o valor médio, o desvio padrão, o coeficiente de assimetria e o coeficiente de achatamento e construímos os gráficos do desvio padrão versus valor médio e do coeficiente de achatamento versus coeficiente de assimetria. Esses gráficos são apresentados nas figuras 4.29 a 4.34.

Da análise dos gráficos das figuras 4.29, 4.31 e 4.33, é possivel visualizar os dois arcos de circunferência que nos sugerem a presença de misturas binárias de distribuições. Dos gráficos das figuras 4.30, 4.32 e 4.34, a presença de duas "cardióides" é também observada.

Figura 4.29: Desvio padrão amostral vs média amostral em amostras de $(1 - \pi_1 - \pi_2)\phi(-2, 1) + \pi_1\phi(0, 1) + \pi_2\phi(4, 4)(n=100)$

Figura 4.30: Coef. de achatamento vs coef. de assimetria em amostras de $(1 - \pi_1 - \pi_2)\phi(-2, 1) + \pi_1\phi(0, 1) + \pi_2\phi(4, 2)$ (n=100)

4.6 Aplicação a dados reais

Por último, ilustram-se o comportamento das relações mencionadas em subamostras de um conjunto de dados reais.

Este conjunto de dados foi fornecido pelo Professor Danech Pajouh e são os resultados obtidos nas medições da velocidade média (V) e da carga de tráfego (Q) de uma autoestrada parisiense. A amostra é constituída por 1245 observações das variáveis V e Q. A presença de misturas de distribuições é garantida dada a diversidade de veículos e de fases de congestionamento observadas nessa auto-estrada.

Construímos as subamostras usando o seguinte procedimento: a primeira subamostra corresponde aos n primeiros elementos da amostra, a segunda subamostra contém os n elementos sucessivos começando no segundo elemento da amostra e assim sucessivamente.

Para cada uma das subamostras determinámos o valor médio, o desvio padrão, o coeficiente de assimetria e o coeficiente de achatamento e construímos os gráficos do desvio padrão versus valor médio e do coeficiente de achatamento versus coeficiente de assimetria. Esses gráficos são apresentados nas figuras 4.35 a 4.38 quando escolhemos n=100.

Da análise dos gráficos das figuras 4.35 e 4.37, é possível visualizar vários arcos de circunferência que nos sugerem a presença de misturas de distribuições. Os resultados observados nos gráficos das figuras 4.36 e 4.38, também confirmam a existência de diversas fases neste conjunto de dados.

Figura 4.31: Desvio padrão amostral vs média amostral em amostras de $(1 - \pi_1 - \pi_2)U(0,2) + \pi_1U(1,4) + \pi_2U(4,6)$ (n=100)

Figura 4.32: Coef. de achatamento vs coef. de assimetria em amostras de $(1 - \pi_1 - \pi_2)U(0,2) + \pi_1U(1,4) + \pi_2U(4,6)$ (n=100)

Figura 4.33: Desvio padrão amostral vs média amostral em amostras de $(1 - \pi_1 - \pi_2)G(1,2) + \pi_1G(2,2) + \pi_2G(4,4)$ (n=100)

Figura 4.34: Coef. de achatamento vs coef. de assimetria em amostras de $(1 - \pi_1 - \pi_2)G(1,2) + \pi_1G(2,2) + \pi_2 G(4,4)$ (n=100)

4.7 Comentários finais

Neste capítulo, estudaram-se analiticamente as relações entre o valor esperado e o desvio padrão e entre o coeficiente de assimetria e o coeficiente de achatamento em misturas de distribuições.

Essas relações apresentam comportamentos geométricos característicos que permitem o seu uso como reveladores da presença de misturas de distribuições em dados provenientes de sistemas com coexistência de várias fases.

Em particular, este método gráfico mostrou-se eficaz em detectar a presença de misturas de distribuições num conjunto de dados reais.

Para detectar a presença de misturas de distribuições, a análise destas relações parece

4.7 Comentários finais 61

Figura 4.35: Desvio padrão amostral vs média amostral em amostras da velocidade média

Figura 4.37: Desvio padrão amostral vs média amostral em amostras da carga de tráfego

Figura 4.36: Coef. de achatamento vs coef. de assimetria em amostras da velocidade média

Figura 4.38: Coef. de achatamento vs coef. de assimetria em amostras da carga de tráfego

ser um método gráfico mais simples que as análises clássicas de bitangencialidade, unimodalidade ou bimodalidade baseadas nas relações entre proporção, médias e desvios padrões das componentes de mistura (Titterington et al., 1985, p.406-409).

Capítulo 5

Análise de Regressão em Misturas de Normais Bidimensionais

5.1 Introdução à Análise de Regressão

A análise de regressão é uma técnica estatística muito usada para analisar o comportamento de uma variável, designada por variável resposta ou variável dependente, como função de outras variáveis, designadas por variáveis explicativas, variáveis independentes ou covariáveis.

O objectivo principal da análise de regressão é o de descrever a relação entre as variáveis e estimar ou prever os valores da variável resposta para valores, por vezes não observados, das variáveis explicativas.

Em diversas áreas científicas, tais como, na agricultura, na medicina, na biologia, na economia, na sociologia, na psicologia, na física, na engenharia, na música, podem-se encontrar aplicações desta técnica estatística. Alguns exemplos concretos destas aplicações são: na agricultura, para estudar a taxa de propagação de uma infecção transmitida por insectos em plantas de batata, Turner (2000) analisou a relação entre o número de plantas contaminadas e o número de insectos; na biologia, Ruppert and Carroll (1980) estudaram a relação da concentração de sal num rio da Carolina do Norte com algumas variáveis ambientais (concentração de sal no rio em duas semanas anteriores à recolha dos dados, o volume de descarga no rio, entre outras); na medicina, para estabelecer a resposta à terapia em doentes com problemas nos pulmões, Narula et al. (1999) exprimiram a capacidade vital forçada do pulmão em função de várias variáveis explicativas, tais como a idade, o sexo, algumas características morfológicas. Outros exemplos de aplicação a situações reais são descritos em, por exemplo, Chatterjee et al. (2000, pp. 3-7) e Rousseeuw and Leroy (1987).

A formulação do problema em análise de regressão é um dos principais cuidados a ter para se seleccionar correctamente a variável resposta e as variáveis explicativas. Suponhamos, por exemplo, que se deseja saber se numa determinada empresa existe discriminação em relação às mulheres. Para fazer este estudo, registamos o salário, as habilitações e o sexo de todos os empregados da empresa. Se a pergunta for, "Em média, as mulheres têm salários inferiores aos dos homens com igual habilitações?", escolhemos para variável resposta o salário e as variáveis explicativas são as habilitações e o sexo. Mas se a pergunta for, "Em média as mulheres com mais habilitações que os homens têm iguais salários?", neste caso, consideramos as habilitações a variável resposta e o salário e o sexo como as variáveis explicativas.

A escolha das variáveis explicativas relevantes no estudo do comportamento da variável resposta é também um problema de grande importância em análise de regressão. Contudo, este assunto não será abordado nesta dissertação uma vez que estudaremos apenas situações com uma variável explicativa. Realça-se, no entanto, que alguns dos métodos de selecção das variáveis explicativas, tais como, o método regressivo (backward elimination), o método progressivo (forward selection) e o método passo a passo (stepwise method), podem ser encontrados em Chatterjee and Hadi (1988, Cap. 3) e em Chatterjee et al. (2000, Cap. 11).

5.1.1 Modelo de regressão

Em análise de regressão, a relação entre as variáveis pode ser aproximada pelo modelo de regressão dado por:

$$X_k = h(X_1, \dots, X_{k-1}) + \varepsilon \tag{5.1}$$

onde X_k é a variável resposta, X_1, \ldots, X_{k-1} (k > 1) são as variáveis explicativas, h é a função regressão e ε é um erro aleatório.

Como exemplo, consideremos o modelo:

$$X_k = \beta_0 + \beta_1 X_1 + \dots + \beta_{k-1} X_{k-1} + \varepsilon$$
 (5.2)

onde $\beta_0, \beta_1, \dots, \beta_{k-1}$ são os parâmetros do modelo ou coeficientes de regressão, que são fixos e desconhecidos.

Um modelo de regressão pode ser: *linear* ou *não linear*. Um modelo de regressão é linear quando a função regressão é linear relativamente aos parâmetros, por exemplo:

$$X_2 = \beta_0 + \beta_1 X_1 + \varepsilon \tag{5.3}$$

enquanto que num modelo de regressão não linear, a função de regressão é não linear relativamente aos parâmetros, por exemplo:

$$X_2 = \beta_0 + e^{\beta_1 X_1} + \varepsilon \tag{5.4}$$

É importante realçar que os modelos de regressão são caracterizados pela linearidade relativamente aos parâmetros e não às variáveis, ou seja, o modelo:

$$X_3 = \beta_0 + \beta_1 X_1 + \beta_2 X_2^2 + \varepsilon \tag{5.5}$$

é também um modelo de regressão linear.

O modelo dado na expressão (5.3) é também designado por modelo de regressão simples porque tem apenas uma variável explicativa, X_1 ; enquanto que o modelo dado na expressão (5.5) é um modelo de regressão múltipla porque tem mais que uma variável explicativa, X_1 e X_2 .

5.1.2 Métodos de estimação

A estimação do modelo de regressão consiste em definir uma função regressão e estimar os parâmetros ou coeficientes de regressão com base numa amostra dos dados.

Antes de indicar os métodos de estimação do modelo de regressão, é necessário introduzir dois conceitos importantes.

Consideremos os dados na forma:

$$x = (x_{i1}, x_{i2}, \dots, x_{ik}) \quad i = 1, \dots, n$$
 (5.6)

resultantes da realização de $X=(X_1,X_2,\ldots,X_k)$ em n indivíduos e em que X_k é a variável resposta e X_1,\ldots,X_{k-1} (k>1) são as variáveis explicativas.

Definição 5.1 Valor estimado ou valor ajustado de x_{ik} é $\hat{x}_{ik} = \hat{h}(x_{i1}, \dots, x_{i(k-1)})$, sendo \hat{h} a função regressão estimada e $(x_{i1}, \dots, x_{i(k-1)})$ os valores observados das variáveis explicativas (X_1, \dots, X_{k-1}) .

Definição 5.2 Erro ou resíduo é a diferença entre o valor observado, x_{ik} , e o valor ajustado pelo modelo, \hat{x}_{ik} , e designa-se por e_i , ou seja:

$$e_i = x_{ik} - \hat{x}_{ik} \quad i = 1, \dots, n.$$
 (5.7)

O resíduo ou erro exprime assim a discrepância entre o valor observado, x_{ik} , e o valor ajustado pelo modelo, \hat{x}_{ik} .

Os métodos de estimação do modelo de regressão baseiam-se, normalmente, na minimização de uma função dos erros. Vários métodos podem ser usados, tais como, o *método dos mínimos quadrados* que minimiza o valor esperado do quadrado do erro (ver, por exemplo, Birkes and Dodge (1993, Cap. 3)), o *método dos mínimos desvios absolutos* que minimiza o valor esperado do valor absoluto do erro (ver, por exemplo, Birkes and Dodge (1993, Cap. 4)), o *método da mínima mediana dos quadrados* que minimiza a mediana do quadrado do erro (ver, por exemplo, Rousseeuw (1984)), o *método dos mínimos quadrados aparados* que minimiza o valor esperado do quadrado do erro calculado com os m menores resíduos, sendo m um inteiro entre $\frac{n}{2}$ e n, em que n é a dimensão da amostra (ver, por exemplo, Rousseeuw and Leroy (1987)), entre outros.

O método mais usado é o método dos mínimos quadrados, que minimiza:

$$E\{[X_k - h(X_1, X_2, ... X_{k-1})]^2\}.$$
(5.8)

A função óptima segundo este método é:

$$h(x_1, ..., x_{k-1}) = E(X_k | X_1 = x_1 X_{k-1} = x_{k-1})$$
(5.9)

ou seja, o valor esperado da variável resposta X_k condicional aos valores observados das variáveis explicativas X_1, \ldots, X_{k-1} . Em Murteira (1992, p. 231, Teorema 3.46) demonstrase este resultado para o caso bidimensional mas facilmente se prova para k > 2.

Conhecida a função densidade de probabilidade conjunta das variáveis X_1, \ldots, X_k , ou mais directamente, a função densidade de probabilidade da variável resposta condicional aos valores observados das variáveis explicativas, o problema da estimação do modelo de regressão usando o método dos mínimos quadrados encontra-se resolvido depois de se estimar o valor esperado da variável resposta X_k condicional aos valores observados das variáveis explicativas X_1, \ldots, X_{k-1} .

5.1.3 Curva de regressão

À representação gráfica da função regressão $h(x_1,...,x_{k-1})$ definida de acordo com a expressão (5.9), chama-se curva de regressão de X_k em $X_1, X_2, ..., X_{k-1}$.

Definição 5.3 Curva de regressão de X_k em $X_1, X_2, ..., X_{k-1}$ define-se como a curva representativa dos valores médios condicionais da variável resposta X_k em função dos valores

observados $x_1, x_2, ..., x_{k-1}$ das variáveis explicativas, $X_1, X_2, ..., X_{k-1}$.

Um exemplo com dados bidimensionais pode ser apresentado para ajudar a clarificar esta definição.

Exemplo 5.1 Consideremos o par aleatório (X_1, X_2) cujas frequências absolutas da distribuição conjunta são registadas na tabela 5.1 em que $x_1 \in \{10, 20, 30, 40\}$ e $x_2 \in \{10, 20, 30, 40\}$ (por exemplo, existem 4 observações em que $(x_1 = 10, x_2 = 10)$). Na última linha dessa tabela apresentam-se o valor médio de X_1 condicional a $X_2 = x_2$ e na última coluna o valor médio de X_2 condicional a $X_1 = x_1$.

Na figura 5.1 representam-se essas observações, onde o número colocado junto de cada ponto (x_1, x_2) indica o número de observações com $X_1 = x_1$ e $X_2 = x_2$. A curva de regressão de X_1 em X_2 é apresentada a traço tracejado e a curva de regressão de X_2 em X_1 a traço contínuo.

x_2					
x_1	10	20	30	40	$\overline{x}_2 x_1$
10	4	2			13.3
20	1	5	2		21.25
30	1	2	2		22
40			1	1	35
$\overline{x}_1 x_2$	15	20	25	40	

Tabela 5.1: Frequências absolutas de X_1 e X_2 e valores médios condicionais

Figura 5.1: Curvas de regressão da distribuição conjunta de X_1 e X_2

Outros exemplos ilustrativos de curvas de regressão podem ser encontrados em Calot (1969, Cap. 6) e em Grais (1982, Cap. 4).

5.2 Regressão em normais bidimensionais

Analisemos o caso em que temos o par aleatório gaussiano (ou binormal) (X_1, X_2) , com função densidade de probabilidade conjunta dada por:

$$f(x_1, x_2) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1 - \rho^2}} \times \exp\left\{-\frac{1}{2(1 - \rho^2)} \left[\left(\frac{x_1 - \mu_1}{\sigma_1}\right)^2 - 2\rho\left(\frac{x_1 - \mu_1}{\sigma_1}\right) \left(\frac{x_2 - \mu_2}{\sigma_2}\right) + \left(\frac{x_2 - \mu_2}{\sigma_2}\right)^2 \right] \right\}$$
(5.10)

onde $-\infty < x_1 < +\infty$ e $-\infty < x_2 < +\infty$, e

$$\mu^T = [\mu_1, \mu_2] \tag{5.11}$$

é o vector dos valores médios e

$$\Sigma = \begin{bmatrix} \sigma_1^2 & \rho \sigma_1 \sigma_2 \\ \rho \sigma_1 \sigma_2 & \sigma_2^2 \end{bmatrix}$$
 (5.12)

é a matriz de covariância, em que $\rho \in [-1;1]$ é o coeficiente de correlação entre X_1 e X_2 , dado por $\rho = \frac{\text{cov}(X_1, X_2)}{\sigma_1 \sigma_2}$, com $\text{cov}(X_1, X_2) = E[(X_1 - \mu_1)(X_2 - \mu_2)]$.

A função densidade de probabilidade de X_2 condicional a $X_1 = x_1$ é dada por (ver, por exemplo, Mood et al. (1974, pp. 167-168)):

$$f(x_2|x_1) = \frac{1}{\sqrt{2\pi\sigma_2^2(1-\rho^2)}} \exp\left\{-\frac{1}{2\sigma_2^2(1-\rho^2)} \left[x_2 - \left(\mu_2 + \rho\frac{\sigma_2}{\sigma_1}(x_1 - \mu_1)\right)\right]^2\right\}$$

Da expressão (5.13), concluimos que a variável aleatória X_2 condicional a $X_1 = x_1$ é gaussiana de valor médio:

$$E(X_2|_{X_1=x_1}) = \mu_2 + \rho \frac{\sigma_2}{\sigma_1}(x_1 - \mu_1)$$
(5.13)

e variância:

$$V(X_2|_{X_1=x_1}) = \sigma_2^2(1-\rho^2)$$
(5.14)

Podemos ainda concluir que a regressão de X_2 em X_1 é linear e, além disso, que a variância condicional não depende de x_1 .

Na figura 5.2 representa-se geometricamente a curva de regressão de X_2 em X_1 , ou seja, a recta de equação dada pela expressão (5.13) e as funções densidade de X_2 condicionais a $X_1 = x_{11}$ e $X_1 = x_{12}$. Também se ilustra o facto da variância condicional ser constante (não depende de x_1).

Figura 5.2: Funções densidade condicionais

Do mesmo modo, determinamos o valor esperado e a variância da variável aleatória X_1 condicional a $X_2 = x_2$.

No entanto, em muitas situações, os dados podem ser provenientes de populações formadas por várias subpopulações, desconhecendo-se quais os dados que pertencem a cada subpopulação. Neste caso, estamos na presença de misturas de distribuições e o tratamento matemático dos valores esperados condicionais e das variâncias condicionais é mais complexo, como será demonstrado neste capítulo desta dissertação para o caso de misturas de componentes normais bidimensionais.

Neste capítulo, começamos por estudar analiticamente os valores esperados condicionais e variâncias condicionais em modelos de mistura de distribuições normais bidimensionais e propomos a aplicação de um método para estimar o modelo de regressão nestas misturas. Ilustramos a aplicação deste método a um conjunto de dados simulados e a um conjunto de dados reais, provenientes de uma mistura de distribuições normais.

De seguida e uma vez que, em misturas de distribuições normais bidimensionais, a linearidade do modelo de regressão nem sempre é verificada, estabelecemos as condições que relacionam entre si os parâmetros destas misturas de modo a que se verifique essa linearidade.

Com o objectivo de comparar diferentes métodos de estimação do modelo de regressão em misturas de distribuições normais bidimensionais, realizamos um estudo de simulação. Nesse estudo, analisamos a qualidade de ajustamento do modelo de regressão aos dados.

Finalmente, propomos a aplicação de um método para estimar uma curva de regressão a partir de um conjunto de observações. Elaboramos ainda um estudo de simulação para avaliar a eficiência da curva de regressão estimada usando esse método.

5.3 Regressão em misturas de normais bidimensionais

Consideremos o par aleatório (X_1, X_2) com função densidade de probabilidade conjunta dada por:

$$f(x_1, x_2) = \sum_{j=1}^{g} \pi_j \frac{1}{2\pi\sigma_{1j}\sigma_{2j}\sqrt{1-\rho_j^2}} \times \exp\left\{-\frac{1}{2(1-\rho_j^2)} \left[\left(\frac{x_1-\mu_{1j}}{\sigma_{1j}}\right)^2 - 2\rho_j \left(\frac{x_1-\mu_{1j}}{\sigma_{1j}}\right) \left(\frac{x_2-\mu_{2j}}{\sigma_{2j}}\right) + \left(\frac{x_2-\mu_{2j}}{\sigma_{2j}}\right)^2 \right] \right\}$$
(5.15)

onde $-\infty < x_1 < +\infty$, $-\infty < x_2 < +\infty$, g é o número de componentes da mistura, π_j são as proporções de mistura $(0 \le \pi_j \le 1, \sum_{j=1}^g \pi_j = 1)$, em que

$$\mu_i^T = [\mu_{1i}, \mu_{2i}] \tag{5.16}$$

é o vector de valores médios da função densidade de probabilidade da j-ésima componente de mistura e

$$\Sigma_{j} = \begin{bmatrix} \sigma_{1j}^{2} & \rho_{j}\sigma_{1j}\sigma_{2j} \\ \rho_{j}\sigma_{1j}\sigma_{2j} & \sigma_{2j}^{2} \end{bmatrix}$$
 (5.17)

é a respectiva matriz de covariância e onde $\rho_j \in [-1;1]$ $(j=1,\ldots,g)$ é o coeficiente de correlação entre X_1 e X_2 da j-ésima componente de mistura.

Definição 5.4 O par aleatório (X_1, X_2) com função densidade de probabilidade conjunta definida de acordo com a expressão (5.15) designa-se por *mistura finita de g componentes normais bidimensionais (ou binormais)*.

Uma vez que pretendemos determinar os valores esperados condicionais e as variâncias condicionais nestas misturas, necessitamos de obter as funções densidade de probabilidade condicionais dadas por:

$$f(x_2|x_1) = \frac{f(x_1, x_2)}{f(x_1)}$$
(5.18)

em que $f(x_1)$ é função densidade marginal de X_1 e

$$f(x_1|x_2) = \frac{f(x_1, x_2)}{f(x_2)}$$
(5.19)

em que $f(x_2)$ é função densidade marginal de X_2 .

Como conhecemos a função densidade de probabilidade conjunta, $f(x_1, x_2)$, basta-nos obter as funções densidade marginais, $f(x_1)$ e $f(x_2)$. Estas funções podem ser directamente determinadas por integração da função densidade conjunta. Temos:

Proposição 5.1 Se o par aleatório (X_1, X_2) é uma mistura de g componentes normais bidimensionais com função densidade de probabilidade conjunta definida de acordo com a expressão (5.15), então:

 $Caso\ I$

Quando

$$\forall i, \ j \in \{1, 2, \dots, g\}: \ i \neq j \land \left(\mu_{1i} \neq \mu_{1j} \lor \sigma_{1i}^2 \neq \sigma_{1j}^2\right)$$
 (5.20)

o que significa que não existem componentes da mistura com valores iguais em ambos os parâmetros $\mu_{1\bullet}$ e $\sigma_{1\bullet}^2$, a variável aleatória X_1 é uma mistura de g componentes normais univariadas, com cada componente j da mistura de valor médio μ_{1j} e variância σ_{1j}^2 , ou seja, a função densidade de probabilidade de X_1 é dada por:

$$f(x_1) = \sum_{j=1}^{g} \pi_j \frac{1}{\sqrt{2\pi}\sigma_{1j}} \exp\left\{-\frac{1}{2} \left(\frac{x_1 - \mu_{1j}}{\sigma_{1j}}\right)^2\right\} = \sum_{j=1}^{g} \pi_j f_j(x_1)$$
 (5.21)

em que

$$f_j(x_1) = \frac{1}{\sqrt{2\pi}\sigma_{1j}} \exp\left\{-\frac{1}{2} \left(\frac{x_1 - \mu_{1j}}{\sigma_{1j}}\right)^2\right\}$$
 (5.22)

é a função densidade de X_1 na componente j da mistura .

 $Caso\ II$

Quando

$$\forall i, j \in \{1, 2, \dots, g\}: i \neq j \land \mu_{1i} = \mu_{1j} \land \sigma_{1i}^2 = \sigma_{1j}^2$$
(5.23)

o que significa que ambos os parâmetros $\mu_{1\bullet}$ e $\sigma_{1\bullet}^2$ são iguais em todas as componentes da

mistura, X_1 é uma variável aleatória gaussiana com parâmetros $\mu_{1\bullet}$ e $\sigma_{1\bullet}^2$, ou seja, a função densidade de probabilidade de X_1 é dada por:

$$f(x_1) = \frac{1}{\sqrt{2\pi}\sigma_{1\bullet}} \exp\left\{-\frac{1}{2} \left(\frac{x_1 - \mu_{1\bullet}}{\sigma_{1\bullet}}\right)^2\right\}$$
 (5.24)

Caso III

Quando

$$\exists i \neq j \in \{1, 2, \dots, g\}: \ \mu_{1i} = \mu_{1j} \ \land \ \sigma_{1i}^2 = \sigma_{1j}^2$$
 (5.25)

o que significa que existem algumas componentes da mistura com valores iguais em ambos os parâmetros $\mu_{1\bullet}$ e $\sigma_{1\bullet}^2$, a variável aleatória X_1 é uma mistura de g' componentes normais univariadas em que g'=g-#I com $I=\left\{i\in\{1,2,\ldots,g\}: \forall i,j>i\in\{1,2,\ldots,g\}, \mu_{1i}=\mu_{1j} \ \land \ \sigma_{1i}^2=\sigma_{1j}^2\right\}$.

$$f(x_1) = \sum_{j=1}^{g'} \pi'_j \frac{1}{\sqrt{2\pi}\sigma_{1j}} \exp\left\{-\frac{1}{2} \left(\frac{x_1 - \mu_{1j}}{\sigma_{1j}}\right)^2\right\} = \sum_{j=1}^{g'} \pi'_j f_j(x_1)$$
 (5.26)

em que

$$f_j(x_1) = \frac{1}{\sqrt{2\pi}\sigma_{1j}} \exp\left\{-\frac{1}{2} \left(\frac{x_1 - \mu_{1j}}{\sigma_{1j}}\right)^2\right\}$$
 (5.27)

é a função densidade marginal de X_1 na componente j da mistura .

Demonstração: Nesta demonstração consideramos apenas o caso mais geral (o caso I), uma vez que facilmente se provam os outros casos a partir deste.

A densidade marginal de uma das variáveis, por exemplo X_1 , é por definição:

$$f(x_1) = \int_{-\infty}^{+\infty} f(x_1, x_2) dx_2 \tag{5.28}$$

onde $f(x_1, x_2)$ é dado na expressão (5.15).

Consideremos $v = \frac{x_2 - \mu_{2j}}{\sigma_{2j}}$, atendendo a que $dx_2 = \sigma_{2j} dv$ e completando o quadrado que figura em expoente na função integranda tem-se:

$$f(x_1) = \int_{-\infty}^{+\infty} \sum_{j=1}^{g} \pi_j \frac{1}{2\pi\sigma_{1j}\sqrt{1-\rho_j^2}} \exp\left\{-\frac{1}{2} \left(\frac{x_1-\mu_{1j}}{\sigma_{1j}}\right)^2 - \frac{1}{2(1-\rho_j^2)} \left(v - \rho_j \frac{x_1-\mu_{1j}}{\sigma_{1j}}\right)^2\right\} dv$$

e com
$$u = \frac{1}{\sqrt{1 - \rho_j^2}} \left(v - \rho_j \frac{x_1 - \mu_{1j}}{\sigma_{1j}} \right)$$
 e $dv = \sqrt{1 - \rho_j^2} du$ tem-se:

$$f(x_1) = \int_{-\infty}^{+\infty} \sum_{j=1}^{g} \pi_j \frac{1}{2\pi\sigma_{1j}} \exp\left\{ -\frac{1}{2} \left(\frac{x_1 - \mu_{1j}}{\sigma_{1j}} \right)^2 - \frac{1}{2} u^2 \right\} du =$$

$$= \sum_{j=1}^{g} \pi_j \frac{1}{\sqrt{2\pi}\sigma_{1j}} \exp\left\{ -\frac{1}{2} \left(\frac{x_1 - \mu_{1j}}{\sigma_{1j}} \right)^2 \right\} \times \underbrace{\int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi}} \exp\left\{ -\frac{1}{2} u^2 \right\} du}_{1} =$$

$$= \sum_{j=1}^{g} \pi_j \frac{1}{\sqrt{2\pi}\sigma_{1j}} \exp\left\{ -\frac{1}{2} \left(\frac{x_1 - \mu_{1j}}{\sigma_{1j}} \right)^2 \right\}$$
(5.29)

Como se pretende mostrar, X_1 é uma mistura de g componentes normais univariadas com cada componente j da mistura de valor médio μ_{1j} e variância σ_{1j}^2 .

Cada um dos casos referidos na proposição 5.1 é ilustrado no exemplo seguinte.

Exemplo 5.2 Consideremos uma mistura de distribuições com função densidade de probabilidade dada por:

$$f(x) = \pi_1 \ \phi(x; \mu_1, \Sigma_1) + \pi_2 \ \phi(x; \mu_2, \Sigma_2) + \pi_3 \ \phi(x; \mu_3, \Sigma_3)$$
 (5.30)

em que $x = [x_1, x_2]^T$, $\phi(.; \mu, \Sigma)$ designa a função densidade de probabilidade da variável aleatória normal multivariada de valor médio μ e matriz de covariância Σ .

Caso I

Suponhamos os seguintes valores dos parâmetros das funções densidades componentes da mistura:

$$\mu_1 = [\ 0 \ 0 \]^T$$
 $\mu_2 = [\ 2 \ 2 \]^T$ $\mu_3 = [\ 5 \ 5 \]^T$ $\Sigma_1 = I_2$ $\Sigma_2 = I_2$ $\Sigma_3 = I_2$

em que I_2 é a matriz identidade de ordem 2, a função densidade de probabilidade da variável X_1 é dada por:

$$f(x_1) = \pi_1 \ \phi(x_1; 0, 1) + \pi_2 \ \phi(x_1; 2, 1) + \pi_3 \ \phi(x_1; 5, 1)$$

$$(5.31)$$

em que $\phi(.; \mu, \sigma^2)$ designa a função densidade de probabilidade da variável aleatória normal univariada de valor médio μ e variância σ^2 , ou seja, X_1 é uma mistura de três componentes normais univariadas.

Caso II

Suponhamos os seguintes valores dos parâmetros das funções densidades componentes da mistura:

$$\mu_1 = [\ 0 \ 0 \]^T$$
 $\mu_2 = [\ 0 \ 2 \]^T$ $\mu_3 = [\ 0 \ 5 \]^T$ $\Sigma_1 = I_2$ $\Sigma_2 = I_2$ $\Sigma_3 = I_2$

em que I_2 é a matriz identidade de ordem 2, a função densidade de probabilidade da variável X_1 é dada por:

$$f(x_1) = \phi(x_1; 0, 1) \tag{5.32}$$

em que $\phi(.; \mu, \sigma^2)$ designa a função densidade de probabilidade da variável aleatória normal univariada de valor médio μ e variância σ^2 , ou seja, X_1 é uma variávela aleatória gaussiana.

Caso III

Suponhamos os seguintes valores dos parâmetros das funções densidades componentes da mistura:

$$\mu_1 = \begin{bmatrix} 0 & 0 \end{bmatrix}^T$$
 $\mu_2 = \begin{bmatrix} 0 & 2 \end{bmatrix}^T$ $\mu_3 = \begin{bmatrix} 5 & 5 \end{bmatrix}^T$ $\Sigma_1 = I_2$ $\Sigma_2 = I_2$ $\Sigma_3 = I_2$

em que I_2 é a matriz identidade de ordem 2, a função densidade de probabilidade da variável X_1 é dada por:

$$f(x_1) = (\pi_1 + \pi_2) \ \phi(x_1; 0, 1) + \pi_3 \ \phi(x_1; 5, 1)$$

$$(5.33)$$

em que $\phi(.; \mu, \sigma^2)$ designa a função densidade de probabilidade da variável aleatória normal univariada de valor médio μ e variância σ^2 , ou seja, X_1 é uma mistura de duas componentes normais univariadas.

Analogamente determina-se a função densidade marginal de X_2 e tem-se:

Proposição 5.2 Se o par aleatório (X_1, X_2) é uma mistura de g componentes normais bidimensionais com função densidade de probabilidade conjunta definida de acordo com a expressão (5.15), então:

 $Caso\ I$

Quando

$$\forall i, j \in \{1, 2, \dots, g\}: i \neq j \land (\mu_{2i} \neq \mu_{2j} \lor \sigma_{2i}^2 \neq \sigma_{2j}^2)$$
 (5.34)

o que significa que não existem componentes da mistura com valores iguais em ambos os parâmetros $\mu_{2\bullet}$ e $\sigma_{2\bullet}^2$, a variável aleatória X_2 é uma mistura de g componentes normais univariadas, com cada componente j da mistura de valor médio μ_{2j} e variância σ_{2j}^2 , ou seja,

a função densidade de probabilidade de X_2 é dada por:

$$f(x_2) = \sum_{j=1}^{g} \pi_j \frac{1}{\sqrt{2\pi}\sigma_{2j}} \exp\left\{-\frac{1}{2} \left(\frac{x_2 - \mu_{2j}}{\sigma_{2j}}\right)^2\right\} = \sum_{j=1}^{g} \pi_j f_j(x_2)$$
 (5.35)

em que

$$f_j(x_2) = \frac{1}{\sqrt{2\pi}\sigma_{2j}} \exp\left\{-\frac{1}{2} \left(\frac{x_2 - \mu_{2j}}{\sigma_{2j}}\right)^2\right\}$$
 (5.36)

é a função densidade de X_2 na componente j da mistura .

Caso~II

Quando

$$\forall i, j \in \{1, 2, \dots, g\}: i \neq j \land \mu_{2i} = \mu_{2j} \land \sigma_{2i}^2 = \sigma_{2j}^2$$
(5.37)

o que significa que ambos os parâmetros $\mu_{2\bullet}$ e $\sigma_{2\bullet}^2$ são iguais em todas as componentes da mistura, X_2 é uma variável aleatória gaussiana com parâmetros $\mu_{2\bullet}$ e $\sigma_{2\bullet}^2$, ou seja, a função densidade de probabilidade de X_2 é dada por:

$$f(x_2) = \frac{1}{\sqrt{2\pi}\sigma_{2\bullet}} \exp\left\{-\frac{1}{2} \left(\frac{x_2 - \mu_{2\bullet}}{\sigma_{2\bullet}}\right)^2\right\}$$
 (5.38)

Caso III

Quando

$$\exists i \neq j \in \{1, 2, \dots, g\}: \ \mu_{2i} = \mu_{2j} \ \land \ \sigma_{2i}^2 = \sigma_{2j}^2$$
 (5.39)

o que significa que existem algumas componentes da mistura com valores iguais em ambos os parâmetros $\mu_{2\bullet}$ e $\sigma_{2\bullet}^2$, a variável aleatória X_2 é uma mistura de g' componentes normais univariadas em que g'=g-#I com $I=\left\{i\in\{1,2,\ldots,g\}: \forall i,j>i\in\{1,2,\ldots,g\}, \mu_{2i}=\mu_{2j} \land \sigma_{2i}^2=\sigma_{2j}^2\right\}$.

$$f(x_2) = \sum_{j=1}^{g'} \pi'_j \frac{1}{\sqrt{2\pi}\sigma_{2j}} \exp\left\{-\frac{1}{2} \left(\frac{x_2 - \mu_{2j}}{\sigma_{2j}}\right)^2\right\} = \sum_{j=1}^{g'} \pi'_j f_j(x_2)$$
 (5.40)

em que

$$f_j(x_2) = \frac{1}{\sqrt{2\pi}\sigma_{2j}} \exp\left\{-\frac{1}{2} \left(\frac{x_2 - \mu_{2j}}{\sigma_{2j}}\right)^2\right\}$$
 (5.41)

é a função densidade marginal de X_2 na componente j da mistura.

De seguida, na determinação das funções densidade de probabilidade conjunta e dos valores esperados condicionais e variâncias condicionais, iremos considerar apenas o caso mais geral, o Caso I, uma vez que a partir deste se obtém facilmente os resultados para os

outros casos.

Depois de se obter as funções densidade marginais, $f(x_1)$ e $f(x_2)$, e atendendo à expressão (5.18), determina-se a função densidade de X_2 condicional a $X_1 = x_1$ que é dada por:

$$f(x_{2}|x_{1}) = \frac{\sum_{j=1}^{g} \pi_{j} \frac{1}{2\pi\sigma_{1j}\sigma_{2j}\sqrt{1-\rho_{j}^{2}}} \exp\left\{-\frac{1}{2(1-\rho_{j}^{2})} \left[\left(\frac{x_{1}-\mu_{1j}}{\sigma_{1j}}\right)^{2} - 2\rho_{j} \left(\frac{x_{1}-\mu_{1j}}{\sigma_{1j}}\right) \left(\frac{x_{2}-\mu_{2j}}{\sigma_{2j}}\right) + \left(\frac{x_{2}-\mu_{2j}}{\sigma_{2j}}\right)^{2} \right] \right\}}{\sum_{j=1}^{g} \pi_{j} \frac{1}{\sqrt{2\pi\sigma_{1j}^{2}}} \exp\left\{-\frac{1}{2} \left(\frac{x_{1}-\mu_{1j}}{\sigma_{1j}}\right)^{2} \right\}}$$
(5.42)

Analogamente se determina a função densidade de X_1 condicional a $X_2 = x_2$.

Uma vez determinadas as funções densidade condicionais, determinam-se os valores esperados condicionais.

Proposição 5.3 Se o par aleatório (X_1, X_2) é uma mistura de g componentes normais bidimensionais com função densidade de probabilidade conjunta dada pela expressão (5.15), o valor esperado de X_2 condicional a $X_1 = x_1$ é:

$$E(X_2|_{X_1=x_1}) = \sum_{j=1}^g w_j \left(\mu_{2j} + (x_1 - \mu_{1j}) \rho_j \frac{\sigma_{2j}}{\sigma_{1j}} \right)$$
 (5.43)

em que $w_j = \frac{\pi_j f_j(x_1)}{f(x_1)}$ é a probabilidade condicional de x_1 pertencer à j-ésima componente de mistura.

Demonstração: O valor esperado de X_2 condicional a $X_1=x_1$ é por definição:

$$E(X_2|_{X_1=x_1}) = \int_{-\infty}^{+\infty} x_2 f(x_2|x_1) dx_2$$
$$= \int_{-\infty}^{+\infty} x_2 \frac{f(x_1, x_2)}{f(x_1)} dx_2$$
(5.44)

onde $f(x_1, x_2)$ é dado na expressão (5.15) e $f(x_1)$ na expressão (5.21). Como o denominador não depende de x_2 vem:

$$E(X_2|_{X_1=x_1}) = \frac{1}{f(x_1)} \int_{-\infty}^{+\infty} x_2 f(x_1, x_2) dx_2$$
 (5.45)

Consideremos $v = \frac{x_2 - \mu_{2j}}{\sigma_{2j}}$, atendendo a que $dx_2 = \sigma_{2j} dv$ e completando o quadrado

que figura em expoente na função integranda tem-se:

$$\int_{-\infty}^{+\infty} x_2 f(x_1, x_2) dx_2 =$$

$$= \int_{-\infty}^{+\infty} \sum_{j=1}^{g} \pi_j \frac{\sigma_{2j} v + \mu_{2j}}{2\pi \sigma_{1j} \sqrt{1 - \rho_j^2}} \times$$

$$\times \exp\left\{-\frac{1}{2} \left(\frac{x_1 - \mu_{1j}}{\sigma_{1j}}\right)^2 - \frac{1}{2(1 - \rho_j^2)} \left(v - \rho_j \frac{x_1 - \mu_{1j}}{\sigma_{1j}}\right)^2\right\} dv =$$

$$= \sum_{j=1}^{g} \pi_j \frac{1}{\sqrt{2\pi} \sigma_{1j}} \exp\left\{-\frac{1}{2} \left(\frac{x_1 - \mu_{1j}}{\sigma_{1j}}\right)^2\right\} \times$$

$$f_j(x_1)$$

$$\times \int_{-\infty}^{+\infty} \frac{\sigma_{2j} v + \mu_{2j}}{\sqrt{2\pi(1 - \rho_j^2)}} \exp\left\{-\frac{1}{2(1 - \rho_j^2)} \left(v - \rho_j \frac{x_1 - \mu_{1j}}{\sigma_{1j}}\right)^2\right\} dv =$$

$$= \sum_{j=1}^{g} \pi_j f_j(x_1) \times$$

$$\times \int_{-\infty}^{+\infty} \frac{\sigma_{2j} v + \mu_{2j}}{\sqrt{2\pi(1 - \rho_j^2)}} \exp\left\{-\frac{1}{2(1 - \rho_j^2)} \left(v - \rho_j \frac{x_1 - \mu_{1j}}{\sigma_{1j}}\right)^2\right\} dv =$$

$$= \sum_{j=1}^{g} \pi_j f_j(x_1) \times$$

$$\times \left(\sigma_{2j} \int_{-\infty}^{+\infty} \frac{v}{\sqrt{2\pi(1 - \rho_j^2)}} \exp\left\{-\frac{1}{2(1 - \rho_j^2)} \left(v - \rho_j \frac{x_1 - \mu_{1j}}{\sigma_{1j}}\right)^2\right\} dv +$$

$$\rho_j \frac{x_1 - \mu_{1j}}{\sigma_{1j}}$$

$$+ \mu_{2j} \int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi(1 - \rho_j^2)}} \exp\left\{-\frac{1}{2(1 - \rho_j^2)} \left(v - \rho_j \frac{x_1 - \mu_{1j}}{\sigma_{1j}}\right)^2\right\} dv =$$

$$= \sum_{j=1}^{g} \pi_j f_j(x_1) \left(\sigma_{2j} \rho_j \frac{x_1 - \mu_{1j}}{\sigma_{1j}} + \mu_{2j}\right)$$

$$(5.46)$$

Substituindo a expressão (5.46) na expressão (5.45) tem-se:

$$E(X_2|_{X_1=x_1}) = \frac{1}{f(x_1)} \sum_{j=1}^g \pi_j f_j(x_1) \left(\mu_{2j} + (x_1 - \mu_{1j}) \rho_j \frac{\sigma_{2j}}{\sigma_{1j}}\right)$$
$$= \sum_{j=1}^g w_j \left(\mu_{2j} + (x_1 - \mu_{1j}) \rho_j \frac{\sigma_{2j}}{\sigma_{1j}}\right)$$
(5.47)

em que
$$w_j = \frac{\pi_j f_j(x_1)}{f(x_1)}$$
.

Do mesmo modo se determina o valor esperado de X_1 condicional a $X_2 = x_2$:

Proposição 5.4 Se o par aleatório (X_1, X_2) é uma mistura de g componentes normais bidimensionais com função densidade de probabilidade dada pela expressão (5.15), o valor esperado de X_1 condicional a $X_2 = x_2$ é:

$$E(X_1|_{X_2=x_2}) = \sum_{j=1}^g w_j \left(\mu_{1j} + (x_2 - \mu_{2j}) \rho_j \frac{\sigma_{1j}}{\sigma_{2j}} \right)$$
 (5.48)

em que $w_j = \frac{\pi_j f_j(x_2)}{f(x_2)}$ é a probabilidade condicional de x_2 pertencer à j-ésima componente de mistura.

Das duas proposições anteriores podemos concluir que, quando o par aleatório (X_1, X_2) é uma mistura de g componentes normais bidimensionais, a regressão de uma variável na outra é a média ponderada dos valores esperados da variável resposta condicional aos valores observados da variável explicativa em cada uma das componentes da mistura. Os pesos são as probabilidades condicionais dos valores observados da variável explicativa pertencerem a cada componente da mistura.

Proposição 5.5 Se o par aleatório (X_1, X_2) é uma mistura de g componentes normais bidimensionais com função densidade de probabilidade dada pela expressão (5.15), a variância de X_2 condicional a $X_1 = x_1$ é:

$$V(X_2|_{X_1=x_1}) = \sum_{j=1}^g w_j \left((1 - \rho_j^2) \sigma_{2j}^2 + \left(\mu_{2j} + (x_1 - \mu_{1j}) \rho_j \frac{\sigma_{2j}}{\sigma_{1j}} \right)^2 \right) - \left(\sum_{j=1}^g w_j \left(\mu_{2j} + (x_1 - \mu_{1j}) \rho_j \frac{\sigma_{2j}}{\sigma_{1j}} \right) \right)^2$$

$$(5.49)$$

 $w_j = \frac{\pi_j f_j(x_1)}{f(x_1)}$ é a probabilidade condicional de x_1 pertencer à j-ésima componente de mistura

Demonstração: Usando o teorema de König (Pestana and Velosa (2002, pág. 326)):

$$V(X_2|_{X_1=x_1}) = E(X_2^2|_{X_1=x_1}) - [E(X_2|_{X_1=x_1})]^2$$
(5.50)

e uma vez que $E(X_2|_{X_1=x_1})$ já foi determinado, basta-nos determinar $E(X_2^2|_{X_1=x_1})$,

que é por definição:

$$E(X_2^2|_{X_1=x_1}) = \int_{-\infty}^{+\infty} x_2^2 f(x_2|x_1) dx_2 =$$

$$= \int_{-\infty}^{+\infty} x_2^2 \frac{f(x_1, x_2)}{f(x_1)} dx_2$$
(5.51)

onde $f(x_1, x_2)$ é dado na expressão (5.15) e $f(x_1)$ na expressão (5.21). Como o denominador não depende de x_2 vem:

$$E(X_2^2|_{X_1=x_1}) = \frac{1}{f(x_1)} \int_{-\infty}^{+\infty} x_2^2 f(x_1, x_2) dx_2$$
 (5.52)

Consideremos $v = \frac{x_2 - \mu_{2j}}{\sigma_{2j}}$, atendendo a que $dx_2 = \sigma_{2j} dv$ e completando o quadrado que figura em expoente na função integranda tem-se que:

$$\int_{-\infty}^{+\infty} x_2^2 f(x_1, x_2) dx_2 =$$

$$= \int_{-\infty}^{+\infty} \sum_{j=1}^{g} \pi_j \frac{(\sigma_{2j} v + \mu_{2j})^2}{2\pi\sigma_{1j}\sqrt{1 - \rho_j^2}} \times$$

$$\times \exp\left\{-\frac{1}{2} \left(\frac{x_1 - \mu_{1j}}{\sigma_{1j}}\right)^2 - \frac{1}{2(1 - \rho_j^2)} \left(v - \rho_j \frac{x_1 - \mu_{1j}}{\sigma_{1j}}\right)^2\right\} dv =$$

$$= \sum_{j=1}^{g} \pi_j \frac{1}{\sqrt{2\pi}\sigma_{1j}} \exp\left\{-\frac{1}{2} \left(\frac{x_1 - \mu_{1j}}{\sigma_{1j}}\right)^2\right\} \times$$

$$f_j(x_1)$$

$$\times \int_{-\infty}^{+\infty} \frac{(\sigma_{2j} v + \mu_{2j})^2}{\sqrt{2\pi(1 - \rho_j^2)}} \exp\left\{-\frac{1}{2(1 - \rho_j^2)} \left(v - \rho_j \frac{x_1 - \mu_{1j}}{\sigma_{1j}}\right)^2\right\} dv =$$

$$= \sum_{j=1}^{g} \pi_j f_j(x_1) \times$$

$$\times \int_{-\infty}^{+\infty} \frac{(\sigma_{2j} v + \mu_{2j}^2)^2}{\sqrt{2\pi(1 - \rho_j^2)}} \exp\left\{-\frac{1}{2(1 - \rho_j^2)} \left(v - \rho_j \frac{x_1 - \mu_{1j}}{\sigma_{1j}}\right)^2\right\} dv \tag{5.53}$$

Consideremos agora $u=\frac{1}{\sqrt{1-\rho_j^2}}\left(v-\rho_j\frac{x_1-\mu_{1j}}{\sigma_{1j}}\right)$ e atendendo a que $dv=\sqrt{1-\rho_j^2}du$

tem-se que:

$$\int_{-\infty}^{+\infty} \frac{\left(\sigma_{2j} v + \mu_{2j}^{2}\right)^{2}}{\sqrt{2\pi(1 - \rho_{j}^{2})}} \exp\left\{-\frac{1}{2(1 - \rho_{j}^{2})} \left(v - \rho_{j} \frac{x_{1} - \mu_{1j}}{\sigma_{1j}}\right)^{2}\right\} dv =$$

$$= \int_{-\infty}^{+\infty} \left(\sigma_{2j} \sqrt{1 - \rho_{j}^{2}} u + \sigma_{2j}\rho_{j} \frac{x_{1} - \mu_{1j}}{\sigma_{1j}} + \mu_{2j}\right)^{2} \frac{1}{\sqrt{2\pi}} \exp\left\{-\frac{1}{2}u^{2}\right\} du =$$

$$= \sigma_{2j}^{2} \left(1 - \rho_{j}^{2}\right) \underbrace{\int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi}} u^{2} \exp\left\{-\frac{1}{2}u^{2}\right\} du +$$

$$+ \left(\sigma_{2j}\rho_{j} \frac{x_{1} - \mu_{1j}}{\sigma_{1j}} + \mu_{2j}\right)^{2} \underbrace{\int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi}} \exp\left\{-\frac{1}{2}u^{2}\right\} du +$$

$$+ 2\left(\sigma_{2j} \sqrt{1 - \rho_{j}^{2}}\right) \left(\sigma_{2j}\rho_{j} \frac{x_{1} - \mu_{1j}}{\sigma_{1j}} + \mu_{2j}\right) \underbrace{\int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi}} u \exp\left\{-\frac{1}{2}u^{2}\right\} du }_{0} =$$

$$= \sigma_{2j}^{2} \left(1 - \rho_{j}^{2}\right) + \left(\sigma_{2j}\rho_{j} \frac{x_{1} - \mu_{1j}}{\sigma_{1j}} + \mu_{2j}\right)^{2} \tag{5.54}$$

Substituindo a expressão (5.54) na expressão (5.53) e, por sua vez, esta na expressão (5.52) tem-se:

$$E(X_2^2|_{X_1=x_1}) = \frac{1}{f(x_1)} \sum_{j=1}^g \pi_j f_j(x_1) \left(\sigma_{2j}^2 (1 - \rho_j^2) + \left(\mu_{2j} + (x_1 - \mu_{1j}) \rho_j \frac{\sigma_{2j}}{\sigma_{1j}} \right)^2 \right)$$

$$= \sum_{j=1}^g w_j \left(\sigma_{2j}^2 (1 - \rho_j^2) + \left(\mu_{2j} + (x_1 - \mu_{1j}) \rho_j \frac{\sigma_{2j}}{\sigma_{1j}} \right)^2 \right)$$
(5.55)

em que $w_j = \frac{\pi_j f_j(x_1)}{f(x_1)}$

Finalmente, substituindo a expressão (5.55) e a expressão (5.43) na expressão (5.50) obtém-se $V(X_2|_{X_1=x_1})$ dado pela expressão (5.49), como se queria mostrar.

Analogamente, se determina a variância condicional de X_1 a $X_2 = x_2$:

Proposição 5.6 Se o par aleatório (X_1, X_2) é uma mistura de g componentes normais bidimensionais com função densidade de probabilidade dada pela expressão (5.15), a variância

de X_1 condicional a $X_2 = x_2$ é:

$$V(X_1|_{X_2=x_2}) = \sum_{j=1}^g w_j \left((1 - \rho_j^2) \sigma_{1j}^2 + \left(\mu_{1j} + (x_2 - \mu_{2j}) \rho_j \frac{\sigma_{1j}}{\sigma_{2j}} \right)^2 \right) - \left(\sum_{j=1}^g w_j \left(\mu_{1j} + (x_2 - \mu_{2j}) \rho_j \frac{\sigma_{1j}}{\sigma_{2j}} \right) \right)^2$$

$$(5.56)$$

 $w_j = \frac{\pi_j f_j(x_2)}{f(x_2)}$ é a probabilidade condicional de x_2 pertencer à j-ésima componente de mistura.

Das duas proposições anteriores, pode-se concluir que quando o par aleatório (X_1, X_2) é uma mistura de g componentes normais bidimensionais, então a variância condicional não é constante e depende dos valores observados da variável explicativa.

5.3.1 Estimação do modelo de regressão em misturas de normais bidimensionais

Com base no estudo analítico que efectuámos dos valores esperados condicionais em misturas de componentes normais bidimensionais, podemos concluir que os parâmetros do modelo de regressão nestas misturas são funções simples dos parâmetros de mistura (proporções de mistura, vectores dos valores médios e matrizes de covariância). Este resultado leva-nos a propor a aplicação de um método para estimar o modelo de regressão nestas misturas. Este método resume-se à estimação dos parâmetros de mistura e à determinação dos parâmetros da equação de regressão a partir das estimativas dos parâmetros de mistura.

Para ilustrar a aplicação deste método, estimamos o modelo de regressão num conjunto de dados simulados de uma mistura de três componentes normais bidimensionais e num conjunto de dados reais proveniente de uma mistura de normais bidimensionais.

Na estimação dos parâmetros de mistura aplicámos o método da máxima verosimilhança recorrendo ao algoritmo EM. Usámos o módulo informático MCLUST já descrito no capítulo 3 desta dissertação e a função EMclust implementada nesse módulo.

Dados Simulados

Começamos por gerar uma amostra de dimensão 100 proveniente de uma população com função densidade de probabilidade dada por:

$$f(x) = 0.4 \ \phi(x; \mu_1, \Sigma_1) + 0.3 \ \phi(x; \mu_2, \Sigma_2) + 0.3 \ \phi(x; \mu_3, \Sigma_3)$$
 (5.57)

em que $x = [x_1, x_2]^T$, $\phi(.; \mu, \Sigma)$ designa a função densidade de probabilidade da variável

aleatória normal multivariada de valor médio μ e matriz de covariância Σ e com os seguintes parâmetros:

$$\mu_{1} = \begin{bmatrix} -1 & 0 \end{bmatrix}^{T} \qquad \qquad \mu_{2} = \begin{bmatrix} 2 & 2 \end{bmatrix}^{T} \qquad \qquad \mu_{3} = \begin{bmatrix} 5 & 5 \end{bmatrix}^{T}$$

$$\Sigma_{1} = \begin{bmatrix} 1 & -\frac{\sqrt{2}}{2} \\ -\frac{\sqrt{2}}{2} & 1 \end{bmatrix} \qquad \qquad \Sigma_{2} = \begin{bmatrix} 1 & \sqrt{2} \\ \sqrt{2} & 4 \end{bmatrix} \qquad \qquad \Sigma_{3} = \begin{bmatrix} 1 & -\frac{\sqrt{2}}{2} \\ -\frac{\sqrt{2}}{2} & 1 \end{bmatrix}$$

A amostra foi gerada do seguinte modo. Inicialmente, obtivemos 100 realizações de uma variável aleatória auxiliar, designada por Z, com distribuição uniforme no intervalo (0;1). Se $0 \le z_i \le 0.4$, gerávamos uma observação proveniente da primeira componente da mistura, se $0.4 < z_i \le 0.7$, gerávamos uma observação proveniente da segunda componente da mistura e por fim se $0.7 < z_i \le 1$, gerávamos uma observação proveniente da terceira componente da mistura.

De seguida, com base na amostra, estimámos os parâmetros de mistura, ou seja, as proporções de mistura, $\hat{\pi}_j$ (j=1,2,3), os vectores de valores médios, $\hat{\mu}_j$ (j=1,2,3) e as matrizes de covariância, $\hat{\Sigma}_j$ (j=1,2,3). Finalmente, substituímos as estimativas destes parâmetros de mistura nas expressões (5.43) e (5.48) para se obterem os modelos de regressão ajustados aos dados.

Na figura 5.3 apresentamos no plano x_1Ox_2 as curvas de regressão estimadas usando o método proposto e as três elipses de contorno correspondentes a cada uma das componentes da mistura. A traço contínuo representa-se a curva de regressão estimada de X_2 em X_1 e a tracejado representa-se a curva de regressão estimada de X_1 em X_2 .

Figura 5.3: Curvas de regressão relativas a uma mistura de três componentes normais (Dados simulados)

Dados Reais

O conjunto de dados reais usados na aplicação do método proposto, referem-se ao dados apresentados em Chambers et al. (1983) e são relativos a um estudo da concentração de ozono, da velocidade do vento, da quantidade de radiação e da temperatura na área metropolitana de Nova Iorque durante Maio e Setembro de 1973. Na tabela B.1 do apêndice B figuram esses dados.

Estes dados foram já analisados em Müller et al. (1996) que estimaram o modelo de regressão da concentração de ozono na quantidade de radiação usando métodos bayesianos.

Com o objectivo de se estimar o modelo de regressão usando o método proposto, começámos por obter as estimativas dos parâmetros de mistura recorrendo ao módulo informático MCLUST e à função EMclust. Nos argumentos iniciais desta função, incluímos apenas os valores observados da concentração de ozono e da quantidade de radiação e concluímos que os dados eram provenientes de uma mistura de quatro componentes binormais. De seguida, substituímos as estimativas dos parâmetros de mistura na expressão (5.43) e obtivemos o modelo de regressão ajustado aos dados.

Na figura 5.4 apresentamos a curva de regressão da concentração de ozono na quantidade de radiação estimada usando o método proposto e as quatro elipses de contorno correspondentes a cada uma das componentes da mistura.

Figura 5.4: Curva de regressão da concentração de ozono na quantidade de radiação (Dados reais)

5.3.2 Regressão linear em misturas de normais bidimensionais

Como já referimos neste capítulo, quando o par aleatório (X_1, X_2) é gaussiano, a regressão de X_1 em X_2 é linear com variância constante, o mesmo acontecendo, como é óbvio, à regressão de X_2 em X_1 .

Contudo, quando o par aleatório (X_1, X_2) é uma mistura de componentes normais bidimensionais, a regressão de X_2 em X_1 não é sempre linear nem obviamente a regressão de X_1 em X_2 . No entanto, é possível, obter as situações nas quais a regressão de X_2 em X_1 é linear sem obrigatoriamente o ser a regressão de X_1 em X_2 , assim como, obter as situações nas quais a regressão de X_1 em X_2 é linear sem obrigatoriamente o ser a regressão de X_2 em X_1 .

Com o objectivo de caracterizar essas situações, estabelecem-se as condições que relacionam entre si os parâmetros da mistura para que a regressão de X_2 em X_1 seja linear.

Proposição 5.7 Se o par aleatório (X_1, X_2) é uma mistura de g componentes normais bidimensionais com função densidade de probabilidade dada pela expressão (5.15), a regressão de X_2 em X_1 é linear em duas situações:

Situação I

Quando

$$\forall i, j \in \{1, 2, \dots, g\}: \ \mu_{1j} = \mu_{1i} = \mu_x \ \land \ \sigma_{1j}^2 = \sigma_{1i}^2 = \sigma_x^2$$
 (5.58)

o que significa que a função densidade marginal de X_1 é igual em todas as componentes da mistura, ou seja, X_1 é uma variável aleatória gaussiana de parâmetros μ_x e σ_x^2 ;

Situação II

Quando

$$\forall i, j \in \{1, 2, \dots, g\}: \ \rho_i \frac{\sigma_{2i}}{\sigma_{1i}} = \rho_j \frac{\sigma_{2j}}{\sigma_{1j}} \ \land \ \mu_{2j} = (\mu_{1j} - \mu_{1i}) \rho_j \frac{\sigma_{2j}}{\sigma_{1j}} + \mu_{2i}$$
 (5.59)

o que significa que o declive da recta de regressão de X_2 em X_1 ajustada em cada componente de mistura, designado por $d_j = \rho_j \frac{\sigma_{2j}}{\sigma_{1j}}$, é igual em todas as componentes e os pontos médios das componentes, definidos por (μ_{1j}, μ_{2j}) , encontram-se todos sob a mesma recta com declive igual a d_j .

Demonstração: Esta demonstração é apresentada no Apendice C.

Em seguida, caracterizamos as duas situações referidas na Proposição 5.7 nas quais a regressão de X_2 em X_1 é linear.

Situação I

Na primeira situação, em que X_1 é uma variável aleatória gaussiana de parâmetros μ_x e σ_x^2 , tem-se:

$$E(X_2|_{X_1=x_1}) = \sum_{j=1}^{g} \pi_j \left(\mu_{2j} + (x_1 - \mu_x) \rho_j \frac{\sigma_{2j}}{\sigma_x} \right)$$
 (5.60)

e

$$V(X_{2}|X_{1}=x_{1}) = \sum_{j=1}^{g} \pi_{j} \left[(1 - \rho_{j}^{2})\sigma_{2j}^{2} + \left(\mu_{2j} + (x_{1} - \mu_{x})\rho_{j}\frac{\sigma_{2j}}{\sigma_{x}}\right)^{2} \right] - \left[\sum_{j=1}^{g} \pi_{j} \left(\mu_{2j} + (x_{1} - \mu_{x})\rho_{j}\frac{\sigma_{2j}}{\sigma_{x}}\right) \right]^{2}$$

$$(5.61)$$

Embora a regressão de X_2 em X_1 seja linear, a variância de X_2 condicional a $X_1 = x_1$ depende de x_1 .

Um exemplo pode ser apresentado para ilustrar esta situação.

Exemplo 5.3 Consideremos uma amostra proveniente de uma mistura de distribuições com função densidade de probabilidade dada por:

$$f(x) = 0.5 \ \phi(x; \mu_1, \Sigma_1) + 0.5 \ \phi(x; \mu_2, \Sigma_2)$$
 (5.62)

em que $x = [x_1, x_2]^T$, $\phi(.; \mu, \Sigma)$ designa a função densidade de probabilidade da normal multivariada de valor médio μ e matriz de covariância Σ e com os seguintes parâmetros:

$$\mu_1 = \begin{bmatrix} 0 & 0 \end{bmatrix}^T \qquad \qquad \mu_2 = \begin{bmatrix} 0 & 5 \end{bmatrix}^T$$

$$\Sigma_1 = \begin{bmatrix} 1 & -\frac{\sqrt{2}}{2} \\ -\frac{\sqrt{2}}{2} & 1 \end{bmatrix} \qquad \qquad \Sigma_2 = \begin{bmatrix} 1 & \sqrt{2} \\ \sqrt{2} & 4 \end{bmatrix}.$$

Na figura 5.5 apresentam-se no plano x_1Ox_2 as curvas de regressão estimadas usando o método proposto na secção 5.3.1 deste capítulo e as duas elipses de contorno correspondentes a cada uma das componentes da mistura. A traço contínuo representa-se a recta de regressão de X_2 em X_1 e a tracejado representa-se a curva de regressão de X_1 em X_2 .

Como se pode facilmente observar, embora a regressão de X_2 em X_1 seja linear, este modelo de regressão ajusta-se pior aos dados do que o modelo de regressão de X_1 em X_2 .

Situação II

Na segunda situação, em que o declive da recta de regressão de X_2 em X_1 ajustada aos

Figura 5.5: Curvas de regressão numa mistura de duas componentes binormais: a regressão de X_2 em X_1 é linear. (Situação I)

dados em cada componente de mistura, designado por d_j , é igual em todas as componentes e os pontos médios das componentes, (μ_{1j}, μ_{2j}) , encontram-se todos sob a mesma recta com declive igual a d_j , tem-se:

$$E(X_2|_{X_1=x_1}) = (x_1 - \mu_{1j}) \rho_j \frac{\sigma_{2j}}{\sigma_{1j}} + \mu_{2j}$$
(5.63)

$$V(X_2|_{X_1=x_1}) = \sum_{j=1}^{g} w_j (1 - \rho_j^2) \sigma_{2j}^2$$
 (5.64)

em que $w_j=\frac{\pi_j f_j(x_1)}{f(x_1)}$. De modo análogo à situação anterior, a regressão de X_2 em X_1 é linear mas a variância de X_2 condicional a $X_1 = x_1$ depende de x_1 .

Um exemplo pode ser apresentado para ilustrar esta segunda situação.

Exemplo 5.4 Consideremos uma amostra proveniente de uma população com função densidade de probabilidade dada por:

$$f(x) = 0.5 \ \phi(x; \mu_1, \Sigma_1) + 0.5 \ \phi(x; \mu_2, \Sigma_2)$$
 (5.65)

em que $x = [x_1, x_2]^T$, $\phi(.; \mu, \Sigma)$ designa a função densidade de probabilidade da normal multivariada de valor médio μ e matriz de covariância Σ e com os seguintes parâmetros:

$$\mu_1 = \begin{bmatrix} 0 & 0 \end{bmatrix}^T \qquad \qquad \mu_2 = \begin{bmatrix} 4 & -2\sqrt{2} \end{bmatrix}^T$$

$$\Sigma_1 = \begin{bmatrix} 1 & -\frac{\sqrt{2}}{2} \\ -\frac{\sqrt{2}}{2} & 1 \end{bmatrix} \qquad \qquad \Sigma_2 = \begin{bmatrix} 1 & -\frac{\sqrt{2}}{2} \\ -\frac{\sqrt{2}}{2} & 1 \end{bmatrix}.$$

Na figura 5.6 apresentam-se no plano x_1Ox_2 as curvas de regressão estimadas usando o método proposto na secção 5.3.1 deste capítulo e as duas elipses de contorno correspondentes a cada uma das componentes da mistura. A traço contínuo representa-se a recta de regressão de X_2 em X_1 e a tracejado representa-se a curva de regressão de X_1 em X_2 .

Figura 5.6: Curvas de regressão numa mistura de duas componentes binormais: a regressão de X_2 em X_1 é linear (Situação II)

Analogamente se estabelecem as condições que relacionam entre si os parâmetros de mistura para que a regressão de X_1 em X_2 seja linear, quando (X_1, X_2) é uma mistura de componentes binormais.

Proposição 5.8 Se (X_1, X_2) é uma mistura de g componentes normais bidimensionais com função densidade de probabilidade dada pela expressão (5.15), a regressão de X_1 em X_2 é linear em duas situações:

Situação I

Quando

$$\forall i, j \in \{1, 2, \dots, g\}: \ \mu_{2j} = \mu_{2i} = \mu_x \ \land \ \sigma_{2j}^2 = \sigma_{2i}^2 = \sigma_x^2$$
 (5.66)

o que significa que a função densidade marginal de X_2 é igual em todas as componentes da mistura, ou seja, X_2 é uma variável aleatória gaussiana de parâmetros μ_x e σ_x^2

Situação II

Quando

$$\forall i, j \in \{1, 2, \dots, g\}: \ \rho_i \frac{\sigma_{1i}}{\sigma_{2i}} = \rho_j \frac{\sigma_{1j}}{\sigma_{2j}} \ \land \ \mu_{1j} = (\mu_{2j} - \mu_{2i}) \rho_j \frac{\sigma_{1j}}{\sigma_{2j}} + \mu_{1i}$$
 (5.67)

o que significa que o declive da recta de regressão de X_1 em X_2 ajustada aos dados em cada componente de mistura, designado por $d_j = \rho_j \frac{\sigma_{1j}}{\sigma_{2j}}$, é igual em todas as componentes de mistura e os pontos médios das componentes, definidos por (μ_{1j}, μ_{2j}) , encontram-se todos sob a mesma recta com declive igual a d_j .

Das duas proposições anteriores, podemos concluir que,

Proposição 5.9 Se o par aleatório (X_1, X_2) é uma mistura de g componentes normais bidimensionais com função densidade de probabilidade dada pela expressão (5.15), a regressão de X_1 em X_2 e a regressão de X_2 em X_1 são lineares em quatro situações:

Situação I

Quando

$$\forall i, j \in \{1, 2, \dots, g\}: \ \mu_{2j} = \mu_{2i} \ \land \ \sigma_{2j}^2 = \sigma_{2i}^2 \ \land \ \mu_{1j} = \mu_{1i} \ \land \ \sigma_{1j}^2 = \sigma_{1i}^2$$
 (5.68)

Situação II

Quando

$$\forall i, j \in \{1, 2, \dots, g\}: \ \mu_{2j} = \mu_{2i} \ \land \ \sigma_{2j}^2 = \sigma_{2i}^2 \ \land \ \mu_{1j} = \mu_{1i} \ \land \ \rho_j \sigma_{1i} = \rho_i \sigma_{1j}$$
 (5.69)

Situação III

Quando

$$\forall i, j \in \{1, 2, \dots, g\}: \ \mu_{1j} = \mu_{1i} \ \land \ \sigma_{1j}^2 = \sigma_{1i}^2 \ \land \ \mu_{2j} = \mu_{2i} \ \land \ \rho_i \sigma_{2j} = \rho_j \sigma_{2i}$$
 (5.70)

Situação IV

Quando

$$\forall i, j \in \{1, 2, \dots, g\}: \ \rho_i = \pm 1$$
 (5.71)

Demonstração: Estas condições resultam directamente da conjunção das condições das proposições 5.7 e 5.8.

A situação IV, na qual o coeficiente de correlação entre as variáveis é igual a 1 (um) em valor absoluto, é uma situação rara em dados reais.

Um exemplo simples ilustrativo de cada uma das outras situações pode ser apresentado.

Exemplo 5.5 Suponhamos uma mistura de distribuições com função densidade de probabilidade dada por:

$$f(x) = 0.5 \ \phi(x; \mu_1, \Sigma_1) + 0.5 \ \phi(x; \mu_2, \Sigma_2)$$
 (5.72)

em que $x = [x_1, x_2]$ e $\phi(.; \mu, \Sigma)$ designa a função densidade de probabilidade da normal multivariada de valor médio μ e matriz de covariância Σ .

Situação I

Consideremos uma amostra proveniente dessa mistura com os seguintes parâmetros:

$$\mu_1 = \begin{bmatrix} 3 & 3 \end{bmatrix}^T \qquad \qquad \mu_2 = \begin{bmatrix} 3 & 3 \end{bmatrix}^T$$

$$\Sigma_1 = \begin{bmatrix} 1 & -\frac{\sqrt{2}}{2} \\ -\frac{\sqrt{2}}{2} & 1 \end{bmatrix} \qquad \qquad \Sigma_2 = \begin{bmatrix} 1 & \frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & 1 \end{bmatrix}$$

Na figura 5.7 apresentam-se no plano x_1Ox_2 as rectas de regressão estimadas usando o método proposto na secção 5.3.1 deste capítulo e as duas elipses de contorno correspondentes a cada uma das componentes da mistura. A traço contínuo representa-se a recta de regressão de X_2 em X_1 e a tracejado representa-se a recta de regressão de X_2 em X_2 .

Situação II

Consideremos agora uma amostra proveniente dessa mistura com os seguintes parâmetros:

$$\mu_{1} = \begin{bmatrix} 3 & 3 \end{bmatrix}^{T} \qquad \qquad \mu_{2} = \begin{bmatrix} 3 & 3 \end{bmatrix}^{T}$$

$$\Sigma_{1} = \begin{bmatrix} 3 & -\frac{\sqrt{6}}{2} \\ -\frac{\sqrt{6}}{2} & 1 \end{bmatrix} \qquad \qquad \Sigma_{2} = \begin{bmatrix} 2 & -\frac{\sqrt{6}}{3} \\ -\frac{\sqrt{6}}{3} & 1 \end{bmatrix}$$

Na figura 5.8 apresentam-se no plano x_1Ox_2 as rectas de regressão estimadas usando o método proposto na secção 5.3.1 deste capítulo e as duas elipses de contorno correspondentes a cada uma das componentes da mistura. A traço contínuo representa-se a recta de regressão de X_2 em X_1 e a tracejado representa-se a recta de regressão de X_2 em X_2 .

Situação III

Por último, consideremos uma amostra proveniente dessa mistura com os seguintes parâmetros:

$$\mu_1 = \begin{bmatrix} 0 & 2 \end{bmatrix}^T \qquad \qquad \mu_2 = \begin{bmatrix} 0 & 2 \end{bmatrix}^T$$

$$\Sigma_1 = \begin{bmatrix} 1 & \frac{\sqrt{6}}{2} \\ \frac{\sqrt{6}}{2} & 3 \end{bmatrix} \qquad \qquad \Sigma_2 = \begin{bmatrix} 1 & \frac{\sqrt{6}}{3} \\ \frac{\sqrt{6}}{3} & 2 \end{bmatrix}$$

Na figura 5.9 apresentam-se no plano x_1Ox_2 as rectas de regressão estimadas usando o método proposto na secção 5.3.1 e as duas elipses de contorno correspondentes a cada uma das componentes da mistura. A traço contínuo representa-se a recta de regressão de X_2 em X_1 e a tracejado representa-se a recta de regressão de X_1 em X_2 .

Figura 5.7: Curvas de regressão numa mistura de duas componentes binormais: a regressão de X_2 em X_1 e a regressão de X_1 em X_2 são lineares (Situação I)

Figura 5.8: Curvas de regressão numa mistura de duas componentes binormais: a regressão de X_2 em X_1 e a regressão de X_1 em X_2 são lineares (Situação II)

Figura 5.9: Curvas de regressão numa mistura de duas componentes binormais: a regressão de X_2 em X_1 e a regressão de X_1 em X_2 são lineares (Situação III)

5.4 Estudo de simulação

Em seguida, apresentamos um estudo de simulação que tem como objectivo comparar diferentes métodos de estimação da curva de regressão em misturas de componentes normais bidimensionais.

Neste estudo, comparamos a qualidade de ajustamento da curva de regressão estimada usando o método proposto na secção 5.3.1 deste capítulo, com a qualidade de ajustamento da curva de regressão estimada usando o método proposto em Calot (1969) e Grais (1982) que será descrito na secção seguinte. Por outro lado e uma vez que em misturas de componentes normais, é possível ajustar um modelo linear a cada uma das componentes, compara-se também a qualidade desse ajustamento com a qualidade de ajustamento da curva de regressão estimada usando o método proposto na secção 5.3.1 deste capítulo.

5.4.1 Descrição do estudo

Neste estudo, estimamos a curva de regressão em misturas de duas e três componentes normais bidimensionais.

Dimensão das amostras (n)

Gerámos amostras de dimensão n=100 e n=500 provenientes de uma mistura de componentes binormais.

Número de amostras

Para cada dimensão de amostra e para cada conjunto de valores dos parâmetros de mistura, gerámos 200 amostras.

Geração dos dados

As amostras foram geradas do seguinte modo: seja $\pi_1, \pi_2, \ldots, \pi_j$, a proporção de mistura da primeira, da segunda, ..., da j-ésima componente de mistura, respectivamente, e n a dimensão da amostra. Inicialmente, obtivemos n realizações de uma variável aleatória auxiliar, designada por Z, com distribuição uniforme no intervalo (0;1). Se $0 \le z_i \le \pi_1$, gerávamos uma observação proveniente da primeira componente da mistura, se $\pi_1 < z_i \le (\pi_1 + \pi_2)$, gerávamos uma observação proveniente da segunda componente da mistura e assim sucessivamente.

Método de estimação proposto na secção 5.3.1 deste capítulo

Para cada uma das amostras geradas e recorrendo ao módulo informático MCLUST e à função EMclust, estimámos os parâmetros de mistura. Nos argumentos iniciais daquela

função incluímos os dados e o número máximo de componentes de mistura a considerar, uma vez que conhecíamos esse valor (esse valor seria dois ou três nas amostras geradas). As estimativas dos parâmetros de mistura foram substituídas na expressão (5.43) do valor esperado condicional para se obter a curva de regressão estimada. No final, calculámos a soma dos quadrados dos resíduos da curva de regressão estimada.

Estimação de um modelo linear a cada componente de mistura

Quando se aplica a função *EMclust* aos dados, estima-se a que componente de mistura pertence cada observação, tornando-se possível identificar as observações de cada componente de mistura.

Para cada uma das amostras geradas, ajustámos um modelo linear a cada uma das componentes de mistura e calculámos a soma dos quadrados dos resíduos do modelo linear ajustado a cada componente de mistura. No final, adicionámos esses valores de todas as componentes de mistura, para se obter a soma total do quadrados dos resíduos.

Método de estimação proposto em Calot (1969) e Grais (1982)

Para cada uma das amostras geradas também se estimou a curva de regressão aplicando o método proposto em Calot (1969) e Grais (1982).

Este método baseia-se na divisão dos dados em classes. Inicialmente, os dados são ordenados segundo os valores observados da variável explicativa e divididos num número c de classes de igual amplitude. A amplitude de cada classe é igual ao quociente entre a diferença entre o valor máximo observado e o valor mínimo observado da variável explicativa e o número de classes subtraído de uma unidade, ou seja:

amplitude =
$$\frac{\text{Max}(x_1) - \text{Min}(x_1)}{c - 1}$$
 (5.73)

em que $Max(x_1)$ e $Min(x_1)$ são, respectivamente, o valor máximo observado e o valor mínimo observado da variável explicativa.

O valor mínimo observado da variável explicativa corresponde ao centro da primeira classe, o valor máximo observado da variável explicativa corresponde ao centro da última classe e os pontos médios de cada classe passam a representar os valores observados da variável explicativa da classe.

De seguida, determinam-se os valores médios da variável resposta condicionais a cada classe e a curva de regressão é obtida unindo os pontos de coordenadas definidas pelo ponto médio de cada classe e o respectivo valor médio da variável resposta. As classes com zero observações não foram consideradas na determinação da curva de regressão.

Na construção das classes, o número mínimo e máximo de classes dependeram da dimensão das amostras. Na tabela 5.2 representa-se o número de classes c que foi considerado em cada dimensão de amostra n.

n									c							
100	4	5	6	7	8	9	10	11	12	13	14	15				
500	6	7	8	9	10	12	14	16	18	20	25	30	40	50	60	70

Tabela 5.2: Número de classes construídas para cada dimensão da amostra

Na escolha de vários valores para o número de classes c teve-se como objectivo estudar a qualidade de ajustamento da curva de regressão quando se varia o número de classes. Os valores de c considerados foram determinados de modo que o número médio de elementos de cada classe fosse superior a cinco. Teve-se o cuidado de usar o número de classes calculado quando se aplica a regra de Sturges (ver, por exemplo, Pestana and Velosa (2002, p. 83)) :

$$c \approx I(\log_2 n) + 1 \tag{5.74}$$

em que I(x) define o maior inteiro não superior a x. Se aplicar esta regra, para n=100 toma-se c=7 e para n=500 toma-se c=9.

Para cada uma das amostras geradas e para cada número de classes c, determinámos a respectiva soma dos quadrados dos resíduos da curva de regressão estimada.

Comparar a qualidade de ajustamento do modelo

A partir de 100 amostras de dimensão n geradas, determinámos a percentagem de vezes que a soma dos quadrados dos resíduos da curva de regressão estimada usando o método proposto na secção 5.3.1, era superior à soma dos quadrados dos resíduos da curva de regressão estimada usando o método proposto em Calot (1969) e Grais (1982). Calculámos ainda a percentagem de vezes que a soma dos quadrados dos resíduos da curva de regressão estimada usando o método proposto na secção 5.3.1, era superior à soma dos quadrados dos resíduos quando se ajustava um modelo linear a cada uma das componentes de mistura.

Resumidamente, o estudo de simulação consiste nos seguintes passos:

- 1. Gerar uma amostra de dimensão n.
- 2. Estimar a curva de regressão usando o método proposto na secção 5.3.1 deste capítulo e o método proposto em Calot (1969) e Grais (1982).
 - 3. Ajustar um modelo linear a cada uma das componentes de mistura.
 - 3. Calcular a soma dos quadrados dos resíduos (SQR) dos modelos de regressão esti-

mados nos dois passos anteriores.

4. Repetir os passos anteriores 100 vezes. Determinar a percentagem de vezes que a soma dos quadrados dos resíduos (SQR) da curva de regressão estimada usando o método proposto na secção 5.3.1, era superior à soma dos quadrados dos resíduos (SQR) da curva de regressão estimada usando o método proposto em Calot (1969) e Grais (1982). Determinar também a percentagem de vezes que a soma do quadrados dos resíduos (SQR) da curva de regressão estimada usando o método proposto na secção 5.3.1, era superior à soma do quadrados dos resíduos (SQR) quando se ajustava um modelo linear a cada uma das componentes de mistura.

5.4.2 Misturas de duas componentes normais bidimensionais: resultados

Comecemos por estimar a curva de regressão em amostras provenientes de uma mistura de duas componentes com função densidade de probabilidade dada por:

$$f(x) = (1 - \pi) \phi(x; \mu_1, \Sigma_1) + \pi \phi(x; \mu_2, \Sigma_2)$$
(5.75)

em que $x=[x_1,x_2]^T$, $\phi(.;\mu,\Sigma)$ designa a função densidade de probabilidade da normal bivariada com valor médio μ e matriz de covariância Σ e $\pi \in [0;1]$ é a proporção de mistura.

Escolhemos $\mu_1 = \begin{bmatrix} 0 & 0 \end{bmatrix}^T$, $\Sigma_1 = \begin{bmatrix} 1 & -\frac{\sqrt{2}}{2} \\ -\frac{\sqrt{2}}{2} & 1 \end{bmatrix}$ e variámos os parâmetros da função densidade da segunda componente de mistura de acordo com as situações apresentadas na tabela 5.3. Variámos a proporção de mistura gradualmente de uma décima entre 0.1 e 0.9.

Situação	μ_2^T	Σ_2
1	[11]	$ \left[\begin{array}{cc} 1 & \sqrt{2} \\ \sqrt{2} & 4 \end{array} \right] $
2	[55]	$ \left[\begin{array}{cc} 1 & \sqrt{2} \\ \sqrt{2} & 4 \end{array} \right] $
3	[5 10]	$\left[\begin{array}{cc} 1 & \sqrt{2} \\ \sqrt{2} & 4 \end{array}\right]$
4	[11]	$\begin{bmatrix} 1 & -\frac{\sqrt{2}}{2} \\ -\frac{\sqrt{2}}{2} & 4 \end{bmatrix}$
5	[55]	$\left[\begin{array}{cc} 1 & -\frac{\sqrt{2}}{2} \\ -\frac{\sqrt{2}}{2} & 4 \end{array}\right]$
6	[5 10]	$\begin{bmatrix} 1 & -\frac{\sqrt{2}}{2} \\ -\frac{\sqrt{2}}{2} & 4 \end{bmatrix}$

Tabela 5.3: Parâmetros da função densidade da segunda componente da mistura

Na escolha dos valores dos parâmetros da função densidade da segunda componente de mistura teve-se como objectivo analisar situações extremas: as duas componentes de mistura estão próximas (situação 1 e 4) e vão afastando-se (situação 2 e 5 e depois situação 3 e 6). Além disso, as rectas de regressão ajustadas a cada componente são perpendiculares (situação 1, 2 e 3) e paralelas entre si(situação 4, 5 e 6).

As várias situações são ilustradas na figura 5.10 onde se representam as duas elipses de contorno correspondentes a cada uma das componentes da mistura de uma amostra de cada situação em que n=100 e $\pi=0.5$.

Figura 5.10: Mistura de duas componentes normais bidimensionais

Nas tabelas 5.4 e 5.5 figuram as percentagens de vezes que a soma dos quadrados dos resíduos da curva de regressão estimada usando o método proposto na secção 5.3.1 era superior à soma dos quadrados dos resíduos da curva de regressão estimada usando o método proposto em Calot (1969) e Grais (1982), para cada número de classes c considerado no estudo de simulação. A última coluna destas tabelas representa a percentagem de vezes que a soma dos quadrados dos resíduos da curva de regressão estimada usando o método proposto na secção 5.3.1 deste capítulo era superior à soma dos quadrados dos resíduos quando se ajustava um modelo linear a cada uma das componentes de mistura.

Os resultados da tabela 5.4 mostram que, em geral, o ajustamento da curva de regressão estimada usando o método proposto na secção 5.3.1 deste capítulo é melhor do que o ajustamento da curva de regressão estimada usando o método proposto por Calot (1969) e Grais (1982). As excepções surgem nas duas situações em que as componentes de mistura estão mais próximas (situação 1 e 4). Estas excepções acontecem porque torna-se difícil identificar as várias componentes de mistura quando se aplica o algoritmo EM em misturas

de distribuições com componentes pouco separadas.

Um aspecto a realçar destes resultados é que, quando se aplica a regra de Sturges e se considera c=7, o ajustamento da curva de regressão estimada usando o método proposto na secção 5.3.1 deste capítulo é melhor do que o ajustamento da curva de regressão estimada usando o método proposto em Calot (1969) e Grais (1982).

Como seria de esperar, na estimação da curva de regressão usando o método proposto em Calot (1969) e Grais (1982), à medida que o número de classes c aumenta, a qualidade do ajustamento da curva de regressão vai melhorando.

No entanto, os resultados evidenciam claramente que quando se ajusta um modelo linear a cada componente da mistura, se obtém um melhor ajustamento aos dados.

Em amostras de maior dimensão (n=500), os resultados expostos na tabela 5.5 mostram que, apenas quando o número de classes c é menor que 14, o ajustamento da curva de regressão estimada usando o método proposto na secção 5.3.1 deste capítulo é, em geral, melhor do que o ajustamento da curva estimada usando o método proposto em Calot (1969) e Grais (1982). Este resultado é explicado pelo facto do aumento do número de classes melhorar o ajustamento da curva de regressão estimada usando o método proposto em Calot (1969) e Grais (1982).

De modo análogo, realça-se que quando se aplica a regra de Sturges e se considera c=9, o ajustamento da curva de regressão estimada usando o método proposto na secção 5.3.1 deste capítulo é melhor do que o ajustamento da curva de regressão estimada usando o método proposto em Calot (1969) e Grais (1982).

Nas duas situações em que as componentes de mistura estão mais próximas (situação 1 e 4), foram obtidos resultados análogos aos observados em amostras de dimensão 100: o ajustamento da curva de regressão estimada usando o método proposto na secção 5.3.1 deste capítulo é pior.

Os resultados também evidenciam claramente que quando se ajusta um modelo linear a cada componente da mistura, se obtém um melhor ajustamento aos dados.

Em ambas as dimensões das amostras (n = 100 e n = 500), não se observam diferenças significativas nos resultados quando as rectas de regressão ajustadas a cada componente são perpendiculares (situação 1,2,3) ou paralelas entre si (situação 4,5,6).

						r	n = 10	00						
								c						
Sit.	π	4	5	6	7	8	9	10	11	12	13	14	15	
	0.1	0	1	3	7	8	14	18	21	26	28	29	41	100
	0.2	2	3	7	10	15	21	28	36	38	48	45	48	100
	0.3	6	5	16	26	30	34	45	47	45	52	58	57	100
	0.4	3	8	8	19	31	32	39	45	54	58	57	61	100
1	0.5	7	13	24	29	37	42	45	55	55	62	67	68	100
	0.6	5	10	18	26	35	43	39	52	62	57	57	63	100
	0.7	2	12	23	30	38	51	46	58	63	66	68	72	97
	0.8	4	7	12	17	29	35	36	46	54	56	63	61	100
	0.9	1	5	9	11	17	23	33	37	35	47	55	56	98
	0.1	0	2	3	7	9	11	13	16	17	16	17	19	67
	0.2	0	4	5	10	11	19	18	23	28	27	28	30	71
	0.3	0	3	5	7	11	18	22	32	29	37	35	37	61
	0.4	0	2	5	6	11	19	20	24	29	33	37	36	63
2	0.5	0	1	3	4	10	15	21	21	29	33	32	40	70
	0.6	0	1	2	5	7	18	21	24	34	34	38	42	74
	0.7	0	0	1	6	8	11	16	23	23	27	30	39	63
	0.8	0	0	1	4	8	11	14	15	17	27	31	34	68
	0.9	0	$\frac{1}{4}$	3	1 11	7 8	10	11	18 12	17	21 9	25 15	28	67
	$0.1 \\ 0.2$	0	4	3	9	8	11	11 15	13	13 13	9 14	19	12 15	74 72
	0.2	0	1	1	7	9	10	15	18	15	23	23	$\frac{10}{24}$	80
	$0.3 \\ 0.4$	1	2	6	6	10	11	17	15	18	$\frac{25}{15}$	23	21	79
3	0.5	0	2	5	4	12	24	22	26	32	29	33	34	80
0	0.6	2	1	9	8	14	19	25	22	24	28	24	30	85
	0.7	0	0	5	4	10	12	16	18	18	22	22	29	77
	0.8	1	5	8	10	11	13	21	20	18	25	27	31	81
	0.9	2	3	5	5	4	9	8	11	12	14	18	17	82
	0.1	4	4	8	9	17	23	27	30	31	41	47	45	98
	0.2	1	2	5	12	17	24	32	40	49	49	58	58	100
	0.3	1	5	12	15	20	23	38	40	40	53	61	56	100
	0.4	0	3	7	12	24	33	35	48	57	59	64	71	100
4	0.5	5	3	4	18	25	28	37	46	49	55	57	60	99
	0.6	3	7	12	17	30	29	40	51	48	53	58	62	100
	0.7	3	8	13	22	35	36	48	57	63	64	69	68	99
	$0.8 \\ 0.9$	2 5	4 8	10 15	19 23	$\frac{26}{25}$	$\frac{35}{32}$	$\frac{47}{39}$	60 48	59 55	62 59	73 57	76 67	100 99
	0.9	0	2	2	23	5	6	6	7	5	8	7	7	72
	$0.1 \\ 0.2$	0	2	$\frac{2}{4}$	6	$\frac{3}{12}$	15	16	21	16	18	18	21	86
	0.3	0	2	7	5	10	13	20	17	26	25	23	24	85
	0.4	1	1	5	4	10	14	18	25	21	33	34	31	88
5	0.5	1	2	3	8	8	15	19	20	24	28	29	35	90
~	0.6	0	0	3	6	9	11	18	20	25	25	38	33	85
	0.7	0	0	4	13	17	23	21	25	31	31	44	40	87
	0.8	1	2	6	10	8	20	20	20	23	25	25	29	84
	0.9	0	2	2	3	4	4	5	10	13	11	11	16	77
	0.1	0	3	1	6	3	7	3	6	3	7	4	8	82
	0.2	1	2	5	7	11	13	11	18	14	20	15	18	81
	0.3	0	4	4	9	10	15	13	18	16	20	23	21	82
	0.4	0	0	7	4	15	18	18	25	29	29	34	33	91
6	0.5	1	1	5	5	8	11	12	16	15	20	18	15	92
	0.6	1	2	6	8	13	14	15	20	26	23	24	29	89
	0.7	0	2	1	7	9	12	19	16	21	26	24	28	89
	0.8	0	3	5	11	9	10	15	17	20	13	18	18	81
	0.9	1	3	3	6	6	6	9	8	8	9	14	10	83

Tabela 5.4: Percentagem de vezes que a SQR da curva de regressão estimada usando o método proposto na secção 5.3.1 é superior em misturas de 2 componentes binormais (n=100)

								\overline{n}	= 50	0								
										c								
Sit.	π	6	7	8	9	10	12	14	16	18	20	25	30	40	50	60	70	
	$0.1 \\ 0.2$	4	6	16	19	$\frac{25}{26}$	29 48	40	44	$\frac{55}{62}$	62	70	71 - 77	79	86	91	88	100 100
	$0.2 \\ 0.3$	8 5	$\frac{11}{12}$	$\frac{20}{21}$	26 36	$\frac{36}{42}$	48 56	$\frac{60}{74}$	56 71	62 79	69 82	68 90	77 95	$85 \\ 94$	89 97	93 97	93 96	100
	0.3	7	13	20	35	46	61	73	81	84	89	95	99	96	100	100	99	100
1	0.5	2	16	24	28	45	59	71	73	88	89	93	93	96	98	98	99	100
-	0.6	4	13	21	28	35	50	67	78	80	88	90	97	97	97	98	99	100
	0.7	4	11	23	35	40	61	73	78	81	89	93	97	100	99	100	99	100
	0.8	7	13	21	36	49	61	67	75	76	83	89	93	95	96	97	99	100
	0.9	11	16	26	43	47	58	65	72	74	77	87	94	98	97	99	100	100
	0.1	0	2	6	13	22	42	65	77	78	80	87	91	94	94	96	97	92
	0.2	0	2	2	10	15	30	48	65	81	84	92	94	99	100	100	100	99
	0.3	0	1	2	12	13	24	45	65	75 72	82	91	93	100	99	99	100	99
9	0.4	0	1	2	6	8	23	44	60	73 ee	79 70	88	93	95	99	99	100	99
2	$0.5 \\ 0.6$	0	0	3 1	1 5	12 10	$\frac{19}{27}$	$\frac{42}{41}$	52 62	$\frac{66}{72}$	79 77	88 90	93 95	97 98	99 99	99 99	99 100	98 95
	0.7	0	0	0	4	5	12	23	43	64	77	88	93 94	98 97	99	100	100	96
	0.8	0	0	1	3	6	15	39	51	61	66	92	95	96	98	98	99	98
	0.9	0	0	0	3	10	25	46	62	70	78	87	95	98	100	100	100	91
	0.1	1	3	4	14	17	28	49	52	64	67	74	81	82	86	87	90	96
	0.2	0	5	1	11	13	31	48	58	69	73	79	85	90	95	94	94	100
	0.3	0	4	2	8	12	27	39	55	70	80	90	98	99	100	100	100	100
	0.4	1	0	2	5	9	19	37	52	63	69	89	97	99	99	100	100	100
3	0.5	0	0	2	3	8	20	33	50	69	75	87	92	96	97	97	100	100
	0.6	0	0	2	1	6	15	34	53	65	74	88	93	98	99	99	99	100
	0.7	0	0	1	3	8	19	30	44	65	74	84	92	97	99	100	100	100
	0.8	0	0	0	5	$\frac{4}{7}$	19	33	52 51	60 56	69	82	92	96	98	98	99	99
	0.9	10	$\frac{1}{17}$	$\frac{3}{22}$	6 33	39	26 57	63	51 73	56 84	61 85	77 90	92	91	99	99	100	96
	0.1	4	3	13	$\frac{35}{25}$	$\frac{35}{25}$	45	59	63	74	76	83	90	96	97	98	99	100
	0.3	6	13	20	26	37	53	67	77	82	87	95	96	100	99	100	100	100
	0.4	11	19	26	35	38	49	61	72	77	86	88	93	97	98	100	100	100
4	0.5	11	11	16	32	30	55	61	70	77	82	90	93	97	100	99	100	100
	0.6	11	15	26	32	46	50	58	69	72	81	92	96	99	99	100	100	100
	0.7	10	16	24	33	44	55	69	78	85	90	98	100	100	100	100	100	100
	0.8	12	19	29	32	39	61	74	82	90	91	97	99	100	100	100	100	100
	0.9	9	10	19	30	35	49	67	78	88	89	95	99	99	100	100	100	99
	0.1	0	4	2	9	17	33	48	57	62	68	78	81	83	82	88	93	97
	0.2	0	2	3	5	9	17	34	56	63	77	83	93	96	99	100	99	100
	0.3	$\begin{vmatrix} 0 \\ 2 \end{vmatrix}$	0	4	$\frac{4}{7}$	15	24	44	62 61	71	83 83	93	97	98	99	100	100	100 99
5	$0.4 \\ 0.5$	1	0	5 5	$\frac{7}{4}$	13 14	$\frac{21}{21}$	$\frac{41}{35}$	61 53	68 66	83 72	90 89	98 96	99 99	100 100	100 100	100 100	100
J	0.6	1	0	1	6	9	$\frac{21}{21}$	$\frac{35}{37}$	55 57	69	79	87	90 97	100	100	99	100	99
	0.7	0	1	4	8	10	20	35	53	67	76	89	94	98	100	99	100	100
	0.8	0	0	0	4	6	16	34	47	58	72	88	92	93	99	99	99	100
	0.9	0	5	5	7	15	32	44	52	64	68	83	90	94	97	99	100	99
	0.1	0	3	6	12	16	33	50	62	69	74	74	79	81	84	85	89	100
	0.2	1	2	4	9	8	17	32	49	59	65	80	87	91	96	95	96	100
	0.3	1	1	8	5	9	21	38	50	66	72	85	95	98	97	98	100	100
	0.4	1	0	4	4	13	23	43	56	65	74	93	89	95	98	99	100	100
6	0.5	0	0	3	4	13	30	43	57	69	80	89	97	98	98	99	99	100
	0.6	1	0	3	1	7	11	28	41	64	71	88	90	96	98	99	100	100
	0.7	1	0	1	4	7	18	34	54	67	68	84	87	95	97	99	99	100
	$0.8 \\ 0.9$	$\begin{vmatrix} 0 \\ 1 \end{vmatrix}$	$0 \\ 2$	$\frac{1}{3}$	6 9	7 15	$\frac{25}{28}$	$\frac{44}{42}$	54 51	60 56	75 60	78 71	83 79	91 88	95	95 96	99 96	100 99
	0.9	1		<u>.</u>	Э	19	40	42	ÐΙ	90	00	1 I	19	00	93	90	90	99

Tabela 5.5: Percentagem de vezes que a SQR da curva de regressão estimada usando o método proposto na secção 5.3.1 é superior em misturas de 2 componentes binormais (n=500)

5.4.3 Misturas de três componentes normais bidimensionais: resultados

De seguida, estimamos a curva de regressão em amostras provenientes de uma mistura de três componentes com função densidade de probabilidade dada por:

$$f(x) = \pi_1 \phi(x; \mu_1, \Sigma_1) + \pi_2 \phi(x; \mu_2, \Sigma_2) + (1 - \pi_1 - \pi_2) \phi(x; \mu_3, \Sigma_3)$$

$$(5.76)$$

em que $x = [x_1, x_2]^T$, $\phi(.; \mu, \Sigma)$ designa a função densidade de probabilidade da normal bivariada com valor médio μ e matriz de covariância Σ e $\pi = (\pi_1, \pi_2, (1 - \pi_1 - \pi_2))$ são as proporções de mistura.

Escolhemos $\mu_1 = \begin{bmatrix} 0 & 0 \end{bmatrix}^T$, $\Sigma_1 = \begin{bmatrix} 1 & -\frac{\sqrt{2}}{2} \\ -\frac{\sqrt{2}}{2} & 1 \end{bmatrix}$ e variámos os parâmetros da função densidade da segunda e da terceira componentes da mistura de acordo com as situações apresentadas na tabela 5.6. Variámos as proporções de mistura, π_1 e π_2 , gradualmente de uma décima entre 0.2 e 0.6.

Situação	μ_2^T	μ_3^T	Σ_2	Σ_3
1	[11]	[55]	$\left[\begin{array}{cc} 1 & \sqrt{2} \\ \sqrt{2} & 4 \end{array}\right]$	$\begin{bmatrix} 1 & -\frac{\sqrt{2}}{2} \\ -\frac{\sqrt{2}}{2} & 4 \end{bmatrix}$
2	[11]	[55]	$\begin{bmatrix} 1 & \sqrt{2} \\ \sqrt{2} & 4 \end{bmatrix}$	$\begin{bmatrix} 1 & \sqrt{2} \\ \sqrt{2} & 4 \end{bmatrix}$
3	[11]	[55]	$\begin{bmatrix} 1 & -\frac{\sqrt{2}}{2} \\ -\frac{\sqrt{2}}{2} & 4 \end{bmatrix}$	$\left[\begin{array}{cc} 1 & \sqrt{2} \\ \sqrt{2} & 4 \end{array}\right]$
4	[55]	[88]	$ \begin{bmatrix} 1 & \sqrt{2} \\ \sqrt{2} & 4 \end{bmatrix} $	$\left[\begin{array}{cc} 1 & -\frac{\sqrt{2}}{2} \\ -\frac{\sqrt{2}}{2} & 4 \end{array}\right]$
5	[55]	[88]	$\begin{bmatrix} 1 & \sqrt{2} \\ \sqrt{2} & 4 \end{bmatrix}$	$\begin{bmatrix} 1 & \sqrt{2} \\ \sqrt{2} & 4 \end{bmatrix}$
6	[55]	[88]	$ \begin{bmatrix} 1 & -\frac{\sqrt{2}}{2} \\ -\frac{\sqrt{2}}{2} & 4 \end{bmatrix} $	$\left[\begin{array}{cc} 1 & \sqrt{2} \\ \sqrt{2} & 4 \end{array}\right]$

Tabela 5.6: Parâmetros da função densidade da segunda e da terceira componentes da mistura

Nas situações 1 a 3, a primeira e a segunda componentes estão próximas e a terceira componente afastada; enquanto que nas situações 4 a 6, as três componentes estão mais afastadas. Em todas as situações estudadas , as rectas de regressão ajustadas em duas componentes são paralelas entre si e perpendiculares à recta de regressão ajustada à outra componente.

As várias situações são ilustradas na figura 5.11 onde se representam as duas elipses de contorno correspondentes a cada uma das componentes da mistura de uma amostra de cada situação em que n=100 e $\pi_1=0.4, \pi_2=0.3$.

Figura 5.11: Mistura de três componentes normais bidimensionais

Nas tabelas 5.7 a 5.10 figuram as percentagens de vezes que a soma dos quadrados dos resíduos da curva de regressão estimada usando o método proposto na secção 5.3.1 deste capítulo era superior à soma dos quadrados dos resíduos da curva de regressão estimada usando o método proposto em Calot (1969) e Grais (1982), para cada número de classes c considerado no estudo de simulação. A última coluna destas tabelas representa a percentagem de vezes que soma dos quadrados dos resíduos da curva de regressão estimada usando o método proposto na secção 5.3.1 era superior à soma dos quadrados dos resíduos quando se ajusta um modelo linear a cada uma das componentes de mistura.

Quando as duas primeiras componentes de mistura estão próximas e a terceira componente mais afastada, os resultados da tabela 5.7 mostram que, apenas quando o número de classes c é pequeno (c < 7), o ajustamento da curva de regressão estimada usando o método proposto na secção 5.3.1 é melhor do que o ajustamento da curva de regressão estimada usando o método proposto por Calot (1969) e Grais (1982). Estes resultados justificames pela proximidade entre a primeira e segunda componentes da mistura, dificultando a identificação das várias componentes de mistura quando se aplica o algoritmo EM.

Quando as componentes de mistura se encontram mais afastadas, os resultados que figuram na tabela 5.8 mostram que, em geral, o ajustamento da curva de regressão estimada usando o método proposto na secção 5.3.1 é melhor do que o ajustamento da curva de regressão estimada usando o método proposto por Calot (1969) e Grais (1982).

No entanto, os resultados apresentados na tabela 5.7 e 5.8 evidenciam claramente que o melhor ajustamento se obtém quando se ajusta um modelo linear a cada componente da mistura.

	n = 100														
							C	:							
Sit.	π_1	π_2	4	5	6	7	8	9	10	11	12	13	14	15	l
	0.2	0.2	17	30	41	48	62	67	71	77	78	79	81	80	99
	0.2	0.3	12	12	25	31	38	43	53	57	61	66	64	69	100
	0.2	0.4	7	9	13	19	26	38	46	45	58	51	60	65	100
	0.2	0.5	7	15	23	26	33	44	50	48	56	61	62	65	100
	0.2	0.6	5	18	18	26	35	38	46	46	50	54	58	63	100
	0.3	0.2	13	17	33	37	50	57	53	64	66	68	69	74	100
	0.3	0.3	5	10	12	20	31	33	47	51	54	60	61	70	100
1	0.3	0.4	6	10	20	35	37	46	51	57	57	66	70	73	100
	0.3	0.5	10	17	30	39	44	50	49	60	59	59	66	71	100
	0.4	0.2	6	10	27	28	41	42	48	55	56	63	64	69	100
	0.4	0.3	5	12	22	24	41	39	51	51	57	62	61	75	100
	0.4	0.4	6	14	25	31	40	48	47	56	53	65	59	74	99
	0.5	0.2	8	13	24	31	42	50	52	60	57	62	66	69	100
	0.5	0.3	9	17	28	35	47	50	56	69	61	67	70	72	100
	0.6	0.2	8	16	24	34	35	39	42	48	50	53	56	63	100
	0.2	0.2	18	22	34	41	49	59	60	65	75	71	77	83	100
	0.2	0.3	24	30	41	49	70	65	70	77	80	79	87	84	100
	0.2	0.4	16	24	35	43	46	55	59	63	69	71	76	82	99
	0.2	0.5	14	26	38	44	48	61	64	68	72	70	73	77	100
	0.2	0.6	12	23	34	38	48	53	51	61	60	67	68	64	99
	0.3	0.2	16	28	41	49	55	64	69	75	76	80	83	80	100
0	0.3	0.3	22	25	38	45	49	53	55	62	70	67	73	67	100
2	0.3	0.4	18	24	42	48	55	65	69	71	75	76	82	77	100
	0.3	0.5	22	32	39	50	54	63	55 67	62	62	71	74	72	100
	0.4	0.2	24	33 26	37	49	55	59	67	67	74	79	80	82	100
	$0.4 \\ 0.4$	$0.3 \\ 0.4$	21 17	$\frac{20}{27}$	32 36	38 46	$\frac{46}{52}$	59 57	$\frac{65}{58}$	71 60	69 68	$\frac{75}{71}$	81 76	83 75	100 100
	$0.4 \\ 0.5$	$0.4 \\ 0.2$	17	28	31	43	$\frac{32}{41}$	54	60	63	64	71	70 71	75 75	100
	0.5	$0.2 \\ 0.3$	13	23	34	38	46	$\frac{54}{57}$	54	62	69	67	68	75 75	100
	0.6	0.3	26	31	41	49	56	58	63	69	67	70	75	73	100
	0.0	0.2	14	19	32	35	46	46	55	56	59	66	66	72	100
	0.2	0.2	10	20	$\frac{32}{24}$	36	46	47	56	60	69	67	68	74	100
	0.2	0.4	10	12	15	$\frac{30}{24}$	30	39	43	53	55	60	58	61	99
	0.2	0.5	7	14	24	32	39	43	47	55	58	62	64	70	99
	0.2	0.6	5	15	21	30	32	37	46	45	43	44	53	53	100
	0.3	0.2	15	24	24	36	39	51	54	62	66	64	70	77	100
	0.3	0.3	6	18	23	28	29	40	45	54	50	59	65	64	100
3	0.3	0.4	8	17	19	32	38	41	56	53	58	60	66	68	99
	0.3	0.5	10	18	25	31	36	38	43	44	53	51	58	53	100
	0.4	0.2	4	14	20	30	37	44	43	54	54	57	57	65	99
	0.4	0.3	4	13	17	23	34	35	48	52	58	61	63	66	100
	0.4	0.4	9	13	21	36	34	44	47	51	54	58	57	65	100
	0.5	0.2	5	13	20	33	36	39	49	46	53	54	60	64	100
	0.5	0.3	7	9	22	28	39	37	41	42	44	43	49	57	99
	0.6	0.2	8	19	27	35	35	48	42	55	49	57	55	58	97

Tabela 5.7: Percentagem de vezes que a SQR da curva de regressão estimada usando o método proposto na secção 5.3.1 é superior, em misturas de 3 componentes binormais (n=100)

	n = 100 c														
								c							
Sit.	π_1	π_2	4	5	6	7	8	9	10	11	12	13	14	15	1
	0.2	0.2	0	0	4	6	13	16	19	22	26	32	31	37	100
	0.2	0.3	1	3	5	7	19	24	28	36	40	43	50	54	99
	0.2	0.4	0	2	6	6	10	18	26	29	37	42	45	49	98
	0.2	0.5	0	0	3	7	10	14	26	34	37	42	52	51	99
	0.2	0.6	0	0	1	5	10	13	17	26	23	34	38	41	97
	0.3	0.2	0	1	4	7	11	17	20	20	30	36	42	47	98
	0.3	0.3	1	1	4	4	11	14	20	26	33	45	40	43	97
4	0.3	0.4	1	0	1	2	10	13	29	33	37	39	44	49	99
	0.3	0.5	1	1	6	7	12	24	25	37	42	49	53	53	99
	0.4	0.2	0	1	2	8	13	22	27	44	37	42	42	49	96
	0.4	0.3	0	3	9	10	16	20	24	33	37	42	45	44	99
	0.4	0.4	0	1	4	7	14	23	32	25	41	50	49	55	97
	0.5	0.2	0	3	6	10	19	15	28	28	37	35	42	44	95
	0.5	0.3	2	4	5	15	22	28	30	39	45	42	53	58	93
	0.6	0.2	2	4	6	21	23	28	35	40	38	45	44	42	93
	0.2	0.2	3	9	12	15	18	21	24	24	27	37	37	39	97
	0.2	0.3	2	7	7	15	20	26	31	35	34	40	41	47	90
	0.2	0.4	3	6	7	11	13	21	27	33	35	42	44	46	90
	0.2	0.5	5	7	7	11	14	21	28	29	39	39	43	56	92
	0.2	0.6	0	3	7	9	14	18	24	26	31	42	43	46	92
	0.3	0.2	1	2	5	7	7	16	17	20	26	30	37	37	92
-	0.3	0.3	2	8	9	10	20	21	19	31	47	45	49	50	88
5	0.3	0.4	1	4	13	19	15	33	41	42	46	57	63	65	83
	0.3	0.5	2	3	7	19	18	32	40	43	51	51	58	65	87
	0.4	0.2	3	$\frac{5}{2}$	8	14	15	$\frac{21}{25}$	28	25	31 40	$\frac{41}{35}$	44	46	89
	$0.4 \\ 0.4$	$0.3 \\ 0.4$	0	1	3 6	6 17	19 27	$\frac{25}{31}$	$\frac{25}{32}$	$\frac{34}{37}$	43	33 46	49 53	60 58	90 86
	$0.4 \\ 0.5$	$0.4 \\ 0.2$	$\frac{0}{2}$	3	3	13	12	18	$\frac{32}{23}$	23	29	40	34	38	86
	0.5	$0.2 \\ 0.3$	0	5 5	6	10	13	19	29	30	36	44	39	49	86
	0.6	0.3	2	5	10	12	18	25	26	28	$\frac{30}{42}$	38	43	49	89
	0.0	0.2	3	4	6	8	8	8	13	11	13	15	17	16	98
	0.2	0.3	1	3	7	5	8	14	12	13	16	19	23	22	99
	0.2	0.4	2	3	6	13	12	13	13	18	18	19	$\frac{23}{24}$	22	99
	0.2	0.5	0	2	6	7	9	13	15	16	20	24	21	24	100
	0.2	0.6	0	2	5	12	14	15	16	22	17	23	23	27	100
	0.3	0.2	1	1	5	9	9	12	13	15	20	21	23	23	97
	0.3	0.3	2	1	5	6	8	10	10	14	21	19	16	22	98
6	0.3	0.4	1	2	6	9	12	12	17	19	24	27	31	28	99
~	0.3	0.5	1	0	7	3	5	10	14	16	18	21	18	22	97
	0.4	0.2	0	4	6	4	14	12	12	15	19	17	18	25	97
	0.4	0.3	0	4	8	7	12	21	20	26	27	25	31	37	100
	0.4	0.4	0	2	5	9	14	16	21	24	25	27	28	37	99
	0.5	0.2	1	4	6	6	10	16	11	17	16	18	25	21	99
	0.5	0.3	0	1	4	9	7	16	18	19	21	25	23	27	99
	0.6	0.2	1	7	8	12	15	14	20	21	24	24	26	31	97

Tabela 5.8: Percentagem de vezes que a SQR da curva de regressão estimada usando o método proposto na secção 5.3.1 é superior, em misturas de 3 componentes binormais (n=100)

								n =	= 500										
									c										
Sit.	π_1	π_2	6	7	8	9	10	12	14	16	18	20	25	30	40	50	60	70	
	0.2	0.2	20	21	49	49	70	77	82	87	91	94	95	97	99	99	100	100	100
	0.2	0.3	7	1	15	15	23	38	56	70	87	87	96	99	100	100	100	100	100
	0.2	0.4	0	0	1	4	15	27	45	66	76	83	92	92	98	99	99	99	100
	0.2	0.5	0	0	1	3	9	28	51	66	79	89	93	96	97	99	99	99	100
	0.2	0.6	0	2	2	5	13	29	47	58	71	79	90	98	98	99	99	99	100
	0.3	0.2	4	1	10	15	27	39	56	71	85	92	98	99	99	100	99	100	100
	0.3	0.3	0	0	0	6	9	27	51	65	78	87	100	99	100	100	100	100	100
1	0.3	0.4	0	0	2	6	11	30	53	69	75	84	89	96	99	99	99	99	100
	0.3	0.5	0	0	2	4	11	34	60	65	81	88	95	98	100	99	100	100	100
	0.4	0.2	0	0	3	2	9	23	44	61	75	87	98	99	100	100	100	100	100
	$0.4 \\ 0.4$	0.3	$\begin{vmatrix} 1 \\ 0 \end{vmatrix}$	0	3	5	8 12	20	$\frac{52}{62}$	70	83	88 94	95	97	99	99 100	99 100	99	100 100
	$0.4 \\ 0.5$	$0.4 \\ 0.2$	-	0	$\frac{4}{2}$	5		$\frac{37}{23}$	$\frac{62}{44}$	70 57	89	94 86	98 93	99 98	100 99	100	100	100 100	
	$0.5 \\ 0.5$	$0.2 \\ 0.3$	0	1 1	2 1	$\frac{4}{10}$	$7 \\ 21$	23 38	44 57	οι 71	75 80	91	93 97	98 98	100	100	100	100	100 100
	0.6	0.3	0	3	4	10	20	36	62	80	90	94	98	100	100	100	100	100	100
	0.0	0.2	7	14	16	23	31	52	63	78	92	94	98	99	100	100	100	100	100
	0.2	0.2	6	10	14	20	29	44	63	83	88	91	99	100	100	100	100	100	100
	0.2	0.4	2	4	5	6	16	32	59	66	78	87	96	96	99	100	100	100	100
	0.2	0.5	0	2	8	12	17	39	57	73	80	85	95	95	100	100	100	100	100
	0.2	0.6	1	5	11	15	22	35	52	62	78	82	94	98	99	100	100	100	99
	0.3	0.2	2	7	10	17	25	47	64	73	84	89	98	97	100	100	100	100	100
	0.3	0.3	0	0	3	7	15	33	56	70	72	86	97	100	100	100	100	100	100
2	0.3	0.4	1	1	7	8	19	29	51	79	89	92	96	98	99	100	100	100	100
	0.3	0.5	3	8	14	14	20	46	62	76	85	92	95	97	99	99	99	99	100
	0.4	0.2	0	2	6	11	20	42	64	80	83	87	94	99	99	99	100	100	100
	0.4	0.3	1	4	8	11	23	43	65	71	85	89	94	98	99	99	100	100	100
	0.4	0.4	1	1	3	14	20	38	61	68	84	91	98	97	99	99	99	99	100
	0.5	0.2	2	4	11	18	30	49	66	73	85	91	95	99	100	100	100	100	100
	0.5	0.3	3	5	9	17	29	55	75	83	89	92	97	100	100	100	100	100	100
	0.6	0.2	23	29	34	46	47	64	71	83	91	92	99	100	100	100	100	100	100
	0.2	0.2	0	1	5	6	12	26	41	57	68	83	95	96	100	100	100	100	100
	0.2	0.3	0	1	4	5	9	21	39	54	72	81	93	98	100	100	100	100	100
	0.2	0.4	0	0	1	8	9	30	46	67	75	83	93	98	100	100	99	100	100
	0.2	0.5	0	4	4	16	24	41	62	75	82	91	96	97	99	99	100	100	100
	$0.2 \\ 0.3$	0.6	0	1	7	9	23	41 33	62	75 50	82	89	93	99 06	100	100 100	100 100	100	100 100
	$0.3 \\ 0.3$	$0.2 \\ 0.3$	0	0 4	$\frac{4}{2}$	8 16	13 14	33 37	$\frac{47}{54}$	59 66	78 75	82 83	94 93	96 96	100 99	100	100	100 100	100
3	$0.3 \\ 0.3$	$0.3 \\ 0.4$	0	3	3	10	$\frac{14}{21}$	42	$\frac{54}{57}$	00 75	75 80	84	93 97	96 98	100	100	100	100	100
3	0.3	$0.4 \\ 0.5$	1	3 4	3 12	11	$\frac{21}{32}$	48	65	73 72	85	88	97 97	100	100	99	100	100	100
	0.3	0.3	0	3	5	14	19	38	58	72	77	84	94	98	99	100	100	100	100
	0.4	0.2	0	8	4	19	31	54	75	84	90	95	97	100	100	100	100	100	100
	0.4	0.4	1	10	15	22	42	56	76	86	88	95	99	100	100	100	100	100	100
	0.5	0.2	0	2	4	13	27	41	64	77	80	81	95	98	100	99	100	100	100
	0.5	0.3	1	6	13	17	35	52	68	75	85	94	96	98	99	99	100	100	100
	0.6	0.2	0	8	14	25	33	54	70	81	84	93	94	99	99	100	100	100	100

Tabela 5.9: Percentagem de vezes que a SQR da curva de regressão estimada usando o método proposto na secção 5.3.1 é superior, em misturas de 3 componentes binormais (n=500)

								n =	= 500										
									c										
Sit.	π_1	π_2	6	7	8	9	10	12	14	16	18	20	25	30	40	50	60	70	
	0.2	0.2	0	0	0	1	3	8	28	50	65	77	92	96	100	100	100	100	100
	0.2	0.3	0	0	0	0	2	7	25	41	65	76	95	97	100	100	100	100	100
	0.2	0.4	0	0	0	0	0	8	16	38	59	71	89	98	99	100	100	100	100
	0.2	0.5	0	0	0	0	0	8	26	49	71	83	96	100	100	100	100	100	100
	0.2	0.6	0	0	0	0	0	7	17	42	57	78	88	99	100	100	100	100	100
	0.3	0.2	0	0	0	0	0	7	20	49	57	75	87	96	100	100	100	100	100
	0.3	0.3	0	0	0	1	1	3	21	44	63	77	98	98	100	100	100	100	100
4	0.3	0.4	0	0	0	1	0	6	24	37	59	79	96	97	100	100	100	100	100
	0.3	0.5	0	0	0	1	2	10	27	47	69	78	96	99	100	100	100	100	100
	0.4	0.2	0	0	0	0	5	13	27	42	62	68	96	98	100	100	100	100	100
	0.4	0.3	0	0	0	0	1	7	16	42	61	74	93	97	100	99	100	100	100
	$0.4 \\ 0.5$	0.4	0	0	0	0	1	8 13	27 29	47	64	80 81	95 92	99 96	100 100	100 100	100 100	100 100	100 100
	$0.5 \\ 0.5$	$0.2 \\ 0.3$	0	0	0	$\frac{1}{0}$	0	10	$\frac{29}{32}$	$\frac{48}{46}$	67 68		92 94		100	100			
	0.6	$0.3 \\ 0.2$	1	0 1	1	2	2	$\frac{10}{14}$	$\frac{32}{29}$	52	73	78 81	94 96	98 98	100	100	100 100	100 100	100 100
	0.0	0.2	0	1	0	3	6	17	27	48	63	68	88	97	99	100	100	100	98
	0.2	0.2	0	1	0	4	4	17	40	54	63	76	93	96	100	100	100	100	95
	0.2	0.3	0	0	0	0	3	14	34	49	64	71	90	95	99	99	100	100	99
	0.2	0.4	0	0	2	2	8	18	34	52	57	76	91	93	99	100	100	100	100
	0.2	0.6	0	0	0	0	5	12	34	51	58	79	86	95	99	100	99	100	99
	0.3	0.2	0	0	0	2	3	24	40	55	71	79	89	93	96	99	99	100	94
	0.3	0.3	0	0	1	5	8	17	30	52	60	72	84	90	99	99	100	100	96
5	0.3	0.4	0	0	0	0	6	11	32	50	69	80	91	94	97	98	99	99	96
	0.3	0.5	0	2	1	3	8	14	29	46	69	74	88	95	97	98	99	100	98
	0.4	0.2	0	0	0	2	4	23	31	49	65	75	91	94	97	97	98	99	98
	0.4	0.3	0	0	0	3	3	15	33	46	64	72	90	96	100	100	100	100	98
	0.4	0.4	0	0	0	3	4	20	30	48	65	75	90	95	98	100	100	100	98
	0.5	0.2	0	0	0	7	6	25	46	50	66	80	89	96	99	100	100	100	97
	0.5	0.3	0	1	1	6	11	22	41	53	72	79	90	97	98	100	100	100	95
	0.6	0.2	0	1	0	14	16	40	53	70	79	82	94	96	100	100	100	100	96
	0.2	0.2	0	0	0	1	0	7	22	31	38	57	64	75	92	97	97	99	100
	0.2	0.3	0	0	2	1	4	7	19	34	47	61	76	87	96	98	100	100	100
	0.2	0.4	0	0	0	0	1	5	16	28	41	53	74	88	92	98	99	100	100
	0.2	0.5	0	0	0	0	2	3	14	31	53	58	83	91	95	99	99	100	100
	0.2	0.6	0	0	1	1	1	6	18	32	54	67	79	93	94	99	100	100	100
	0.3	0.2	0	0	0	0	1	7	17	34	50	56	73	77	92	98	98	99	100
	0.3	0.3	0	0	0	0	1	3	15	33	37	53	79	89	98	98	98	100	100
6	0.3	0.4	0	0	0	0	2	7	15	38	45	65	86	91	94	97	99	99	100
	0.3	0.5	0	0	0	0	1	7	18	38	54	62	86	93	100	100	100	100	100
	0.4	0.2	0	0	0	0	4	10	21	38	51	61	73 76	89	96	98	100	100	100
	0.4	0.3	0	0	0	0	1	6	15	30	42	64	76	89	94	99	100	100	100
	0.4	0.4	0	0	0	0	$\frac{2}{1}$	6	10	23	40	60	88 86	94	99	98	100	100	100 100
	$0.5 \\ 0.5$	0.2		0	0	0	0	7 5	18	$\frac{31}{34}$	51	62 68	86	90 93	98 95	98 98	99 100	100 100	100
	$0.5 \\ 0.6$	$0.3 \\ 0.2$	0	0	0	0	0	5 7	$\frac{14}{17}$	$\frac{34}{32}$	49 48	68 65	91 88	93 92	95 96	98 99	100	99	100
	0.0	0.2	U	U	U	U	U	1	11	32	40	00	00	92	90	99	100	99	100

Tabela 5.10: Percentagem de vezes que a SQR da curva de regressão estimada usando o método proposto na secção 5.3.1 é superior, em misturas de 3 componentes binormais (n=500)

Novamente se pode realçar que, em todas as situações estudadas quando se aplica a regra de Sturges e se considera c=7, o ajustamento da curva de regressão estimada usando o método proposto na secção 5.3.1 é melhor do que o ajustamento da curva de regressão estimada usando o método proposto em Calot (1969) e Grais (1982).

Em amostras de maior dimensão (n = 500), quando as duas primeiras componentes de mistura estão próximas e a terceira componente mais afastada, os resultados expostos na tabela 5.9 mostram que, apenas quando o número de classes c é menor que 14, o ajustamento da curva de regressão estimada usando o método proposto na secção 5.3.1 é, melhor do que o ajustamento da curva estimada usando o método proposto em Calot (1969) e Grais (1982).

Quando as componentes de mistura se encontram mais afastadas, na tabela 5.10 observa-se que, apenas quando o número de classes c é menor que 16, o ajustamento da curva de regressão estimada usando o método proposto na secção 5.3.1 deste capítulo é melhor do que o ajustamento da curva estimada usando o método proposto em Calot (1969) e Grais (1982).

Novamente se realça que quando se aplica a regra de Sturges e se considera c=9, o ajustamento da curva de regressão estimada usando o método proposto na secção 5.3.1 deste capítulo é melhor do que o ajustamento da curva de regressão estimada usando o método proposto em Calot (1969) e Grais (1982).

Os resultados igualmente evidenciam que, quando se ajusta um modelo linear a cada componente da mistura, se obtém um melhor ajustamento aos dados.

Em ambas as dimensões das amostras observa-se que, à medida que o número de classes c aumenta, a qualidade do ajustamento da curva de regressão usando o método proposto em Calot (1969) e Grais (1982) vai melhorando.

5.5 Aplicação de misturas de normais bidimensionais à estimação de uma curva de regressão

Um problema importante em análise de dados, é a estimação da função

$$h(x_1, x_2, \dots, x_{p-1}) = E(X_p | x_1, x_2, \dots, x_{p-1})$$
(5.77)

a partir de um conjunto de observações:

$$x = (x_{i1}, x_{i2}, \dots, x_{in}) \quad i = 1, \dots, n$$
 (5.78)

resultantes da realização de $X=(X_1,X_2,\ldots,X_p)$ em n indivíduos.

Consideremos que se desconhece quer a função densidade de probabilidade conjunta das variáveis (ou a função densidade de probabilidade da variável resposta condicional aos valores observados das variáveis explicativas), quer a forma paramétrica da função $h(x_1, x_2, ..., x_{p-1})$. Neste caso, esta função é geralmente estimada usando técnicas de regressão não paramétricas, como por exemplo, os métodos de suavização, os métodos de kernel, a regressão local polinomial, entre outras (ver Müller et al. (1996), Silverman (1986) e Eubank (2002), por exemplo).

Com base no estudo que efectuámos do modelo de regressão em misturas de componentes normais bidimensionais, vamos propor a aplicação de um método paramétrico, que descreveremos de seguida, para estimar a função $h(x_1, x_2, ..., x_{p-1})$.

5.5.1 Descrição do método

Consideremos os dados da forma:

$$(x_i, y_i) \qquad i = 1, \dots, n \tag{5.79}$$

resultantes da realização de (X,Y) em n indivíduos e que a relação entre a variável Y e X pode ser aproximada pelo modelo de regressão:

$$y_i = h(x_i) + \epsilon_i \qquad i = 1, \dots, n \tag{5.80}$$

em que h é uma função desconhecida e os erros ϵ_i são independentes e identicamente distribuídos de valor médio nulo e variância σ^2 .

Comecemos por assumir que os dados são provenientes de uma mistura de distribuições de g componentes normais bidimensionais, ou seja, (X,Y) é uma mistura de g componentes binormais. Suponhamos que os parâmetros da função densidade de probabilidade da j-ésima componente de mistura são, o vector dos valores médios:

$$\mu_j^T = [\mu_{xj}, \mu_{yj}] \quad (j = 1, \dots, g)$$
 (5.81)

e a matriz de covariância:

$$\Sigma_{j} = \begin{bmatrix} \sigma_{xj}^{2} & \rho_{j}\sigma_{xj}\sigma_{yj} \\ \rho_{j}\sigma_{xj}\sigma_{yj} & \sigma_{yj}^{2} \end{bmatrix} \quad (j = 1, \dots, g)$$
 (5.82)

da Proposição 5.3 podemos concluir que a função $h(x) = E(Y|_{X=x})$ pode ser estimada

por:

$$E(Y|_{X=x}) = \sum_{j=1}^{g} w_j \left(\mu_{yj} + (x - \mu_{xj}) \rho_j \frac{\sigma_{yj}}{\sigma_{xj}} \right)$$
 (5.83)

em que $w_j = \frac{\pi_j f_j(x)}{f(x)}$ onde π_j são as proporções de mistura, $f_j(x)$ a função densidade marginal de X na j-ésima componente da mistura e f(x) a função densidade marginal de X.

Uma vez que os parâmetros da equação de regressão dada na expressão (5.83) são funções simples dos parâmetros de mistura (proporções de mistura, vector dos valores médios e matriz de covariância), para estimarmos a função h(x) é apenas necessário estimar esses parâmetros de mistura.

Recorrendo ao módulo informático MCLUST já descrito no capítulo 3 desta dissertação e à função EMclust implementada nesse módulo, podemos estimar o número de componentes g da mistura, as proporções de mistura π_j $(j=1,\ldots,g)$, o vector de valores médios da função densidade de probabilidade de cada componente da mistura μ_j $(j=1,\ldots,g)$ e as respectivas matrizes de covariância Σ_j $(j=1,\ldots,g)$ e substituir estas estimativas na expressão (5.83) para obtermos a função h(x) estimada.

Com o objectivo de avaliar a eficiência da função estimada usando este método paramétrico, realizámos um estudo de simulação.

5.5.2 Descrição do estudo de simulação

Neste estudo, escolhemos duas funções teste:

Caso I:
$$h(x) = exp(-x^2/2) \cos(4\pi x), \quad x \in [0; \frac{\pi}{2}]$$
 (5.84)

Caso II:
$$f(x) = x + 2 \exp(-16x^2)$$
 $x \in [-2, 2]$ (5.85)

Começámos por gerar uma amostra de observações (x_i, y_i) de dimensão n = 200, aplicando o seguinte procedimento:

- 1. Gerar x_i , $(i=1,\ldots,200)$ com distribuição uniforme no intervalo (a,b), em que a=0 e $b=\frac{\pi}{2}$ no caso I e a=-2 e b=2 no caso II.
- 2. Gerar ϵ_i , $(i=1,\ldots,200)$ com distribuição normal de valor médio nulo e variância σ^2 , em que $\sigma^2=0.36$ no caso I e $\sigma^2=0.04$ no caso II.
 - 3. Determinar o valor de y_i (i = 1, ..., 200) a partir dos valores de x_i e de ϵ_i , ou seja,

no primeiro caso:

$$y_i = \exp\left(-\frac{x_i^2}{2}\right) \cos(4\pi x_i) + \epsilon_i, \quad (i = 1, \dots, 200)$$
 (5.86)

em que $x_i \sim U(0; \frac{\pi}{2})$ e $\epsilon_i \sim \phi(0; 0.36)$ e no segundo caso:

$$y_i = x_i + 2 \exp(-16x_i^2) + \epsilon_i, \quad (i = 1, \dots, 200)$$
 (5.87)

em que $x_i \sim U(-2; 2)$ e $\epsilon_i \sim \phi(0; 0.04)$.

De seguida repetimos os passos 2 e 3 no total de 100 vezes, de modo a obtermos 100 amostras de dimensão n = 200, de cada um dos casos.

Assumindo que os dados são provenientes de uma mistura de g distribuições normais bidimensionais e, para cada uma das amostras geradas, estimámos os parâmetros de mistura recorrendo à função EMclust do módulo informático MCLUST e determinámos:

$$\hat{h}_1(x), \hat{h}_2(x), \dots, \hat{h}_{100}(x)$$
 (5.88)

е

$$\widehat{f}_1(x), \widehat{f}_2(x), \dots, \widehat{f}_{100}(x)$$
 (5.89)

ou seja, para cada observação $i=1,\ldots,200,$ tivemos no primeiro caso:

$$\hat{h}_1(x_i), \hat{h}_2(x_i), \dots, \hat{h}_{100}(x_i) \quad (i = 1, \dots, 200)$$
 (5.90)

e para o segundo caso:

$$\widehat{f}_1(x_i), \widehat{f}_2(x_i), \dots, \widehat{f}_{100}(x_i) \quad (i = 1, \dots, 200)$$
 (5.91)

A estimativa final da curva de regressão é dada por: (Dias and Gamerman (2002)):

$$\widehat{h}(x_i) = \sum_{m=1}^{100} \frac{\widehat{h}_m(x_i)}{100}, \quad (i = 1, \dots, 200)$$
(5.92)

$$\widehat{f}(x_i) = \sum_{m=1}^{100} \frac{\widehat{f}_m(x_i)}{100}, \quad (i = 1, \dots, 200)$$
(5.93)

No final, determinámos o erro quadrático médio dado por (Bowman and Shenton (1975,

5.6 Comentários finais

p. 77):
$$EQM = \frac{1}{200} \sum_{i=1}^{200} E\{\widehat{h}(x_i) - h(x_i)\}^2$$
 (5.94)

e

$$EQM = \frac{1}{200} \sum_{i=1}^{200} E\{\hat{f}(x_i) - f(x_i)\}^2$$
 (5.95)

Para uma das amostras geradas no caso I, apresentamos na figura 5.12 o diagrama de dispersão e as elipses de contorno correspondentes a cada uma das componentes da mistura. Na figura 5.13 ilustra-se a tracejado a curva de regressão estimada e a traço contínuo a verdadeira curva de regressão para a função h(x). Obtivemos neste caso um erro quadrático médio de 0.053.

Figura 5.12: Diagrama de dispersão de uma amostra gerada no caso I

Figura 5.13: Curva de regressão estimada e curva de regressão verdadeira

Para uma das amostras geradas no caso II, apresentámos na figura 5.14 o diagrama de dispersão e as elipses de contorno correspondentes a cada uma das componentes da mistura. Na figura 5.15 ilustra-se a tracejado a curva de regressão estimada e a traço contínuo a verdadeira curva de regressão para a função f(x). Neste caso, obtivemos um erro quadrático médio de 0.010.

5.6 Comentários finais

Neste capítulo estudámos analiticamente os valores esperados condicionais e as variâncias condicionais em misturas de componentes normais bidimensionais. Desse estudo analítico, concluímos que nestas misturas, a regressão de uma variável na outra é a média ponderada dos valores esperados da variável resposta condicionais aos valores observados da variável explicativa em cada uma das componentes da mistura. Os pesos são as pro-

Figura 5.14: Diagrama de dispersão de uma amostra gerada no caso II

Figura 5.15: Curva de regressão estimada e curva de regressão verdadeira

babilidades condicionais dos valores observados da variável explicativa pertencerem a cada componente da mistura. Concluímos ainda que as variâncias condicionais não são constantes.

Também verificámos que a linearidade da curva de regressão nestas misturas nem sempre é observada, pelo que estudamos as situações onde a curva de regressão era linear. No entanto, concluímos que eram situações de pouco interesse prático e raras em dados reais.

Uma vez que os parâmetros do modelo de regressão em misturas de componentes normais bidimensionais são funções simples dos parâmetros de mistura, propomos a aplicação de um método para estimar o modelo de regressão nestas misturas. Os estudos numéricos efectuados mostram resultados encorajadores na aplicação deste método na estimação da curva de regressão nestas misturas comparando com o método proposto em Calot (1969) e Grais (1982). No entanto, estes estudos, evidenciam claramente que quando se ajusta um modelo linear a cada componente da mistura se obtém um melhor ajustamento aos dados.

Com base no estudo que efectuámos da curva de regressão em misturas de componentes normais bidimensionais, propomos ainda a aplicação de um método paramétrico para estimar a curva de regressão a partir de um conjunto de observações. O estudo de simulação efectuado mostrou-nos que, nos exemplos escolhidos, a eficiência do estimador obtido é elevada, levando-nos a concluir que é um método alternativo à estimação de curvas de regressão quando se recorre a técnicas de regressão não paramétricas.

Capítulo 6

Modelos de Mistura de Regressões Lineares

6.1 Introdução

Nos capítulos anteriores, foram estudados os modelos de mistura de distribuições. Neste capítulo, dedicar-nos-emos ao problema da estimação dos modelos de mistura de regressões lineares.

Como referido no capítulo anterior, o objectivo principal de um modelo de regressão é estudar a influência que uma ou mais variáveis, designadas por variáveis explicativas, têm sobre uma variável de interesse, designada por variável resposta.

Consideremos que temos n observações independentes y_1, \ldots, y_n , da variável resposta que passaremos a definir por Y, associadas aos valores observados x_1, \ldots, x_n de k variáveis explicativas que definimos por X.

Num modelo de mistura de g regressões lineares, a função densidade de probabilidade da variável resposta condicional aos valores observados das variáveis explicativas é uma mistura finita de g funções densidade de probabilidade univariadas e em que os valores médios das componentes de mistura são funções lineares das variáveis explicativas. Tem-se,

$$f(y_i|x_i) = \sum_{j=1}^{g} \pi_j f(y_i|x_i;\theta_j)$$
 (6.1)

em que $0 < \pi_j < 1$, $\sum_{j=1}^g \pi_j = 1$ e θ_j designa o vector dos parâmetros desconhecidos da j-ésima densidade componente da mistura. O parâmetro θ_j inclui o parâmetro valor médio da j-ésima densidade componente da mistura que é uma função linear das variáveis

explicativas X.

Nesta dissertação, estudaremos apenas os modelos de mistura de g regressões nos quais a variável resposta condicional aos valores observados das variáveis explicativas é uma mistura de g distribuições normais. Tem-se,

$$f(y_i|x_i) = \sum_{j=1}^{g} \pi_j \phi(y_i|x_i; \mu_j, \sigma_j^2)$$
 (6.2)

em que $\phi(.; \mu, \sigma^2)$ é a função densidade de probabilidade da variável aleatória normal univariada de valor médio μ e variância σ^2 e onde μ_j é uma função linear das variáveis explicativas X.

No entanto, diversos modelos de mistura de regressões têm sido desenvolvidos, tais como, os modelos de mistura de g regressões logística nos quais a variável resposta condicional aos valores observados das variáveis explicativas é uma mistura de g distribuições binomiais (ver, por exemplo, Aitkin (1999) e Zhang and Merikangas (2000)) ou os modelos de mistura de g regressões de Poisson nos quais a variável resposta condicional aos valores observados das variáveis explicativas é uma mistura de g distribuições de Poisson (ver, por exemplo, Aitkin et al. (1996) e Wang et al. (1996), entre outros).

Todos estes modelos são casos particulares dos modelos de mistura de modelos lineares generalizados nos quais a variável resposta condicional aos valores observados das variáveis explicativas é uma mistura de componentes da família exponencial. Pormenores sobre estes modelos podem ser encontrados em Jansen (1993), Wedel and DeSarbo (1995) e McLachlan and Peel (2000, Cap. 5), entre outros.

O interesse que se tem verificado pelos modelos de mistura de regressões lineares devese ao facto dos mesmos serem os mais adequados em aplicações onde a estimação de um único modelo de regressão não é eficiente. Estas aplicações surgem, quando os dados são provenientes de uma população formada por vários grupos (aos quais se ajustam modelos de regressão com coeficientes distintos) e se desconhece quais as observações que pertencem a cada grupo.

Realça-se que se se conhecesse o grupo a que pertence cada um dos elementos da amostra, não haveria necessidade de recorrer a modelos de mistura de regressões. Bastaria inserir, no único modelo de regressão, variáveis qualitativas, designadas por *variáveis artificiais* (dummy na literatura anglo-saxónica) que indicassem o grupo ao qual a observação pertencia. Pormenores sobre este tema podem ser encontrados em Chatterjee et al. (2000, pp. 123-144)

Um outro aspecto importante que interessa realçar nestes modelos é que não se con-

6.1 Introdução

ceptualizam as variáveis explicativas como variáveis aleatórias portanto não se especifica nenhuma distribuição para estas variáveis. Este facto mostra a diferença entre os modelos de mistura de regressões estudados neste capítulo e os modelos de regressão de misturas de distribuições normais multivariadas estudados no capítulo anterior nos quais a distribuição das variáveis explicativas é uma mistura de distribuições normais ou a distribuição normal. (ver Viele and Tong (2002))

Um exemplo ilustrativo de aplicação clara de modelos de mistura de regressões lineares é de seguida descrito.

Exemplo 6.1 Consideremos o diagrama de dispersão apresentado na figura 6.1. Estes dados foram recolhidos por Cohen (1980) que pretendia investigar a relação entre o som emitido (X) e o som compreendido por um músico (Y). O diagrama de dispersão mostra claramente que se devem ajustar duas rectas distintas aos dados: uma recta de declive aproximadamente igual a 1 e que passa pela origem e outra recta horizontal que passa no ponto de coordenadas (0,2). A necessidade de dois modelos de regressão distintos surge porque algumas vezes o músico identificava correctamente os sons, outras vezes não. Como se desconhece que observações devem ser usadas na estimação de cada uma das rectas de regressão, um modelo de mistura de duas regressões lineares simples parece ser o mais indicado para estudar a relação entre as duas variáveis.

Figura 6.1: Diagrama de dispersão do som compreendido pelo músico *versus* o som emitido

O modelo de mistura de regressões foi introduzido por Quandt (1972) e Quandt and Ramsey (1978) que estudaram o caso de misturas de duas regressões lineares (switching

regression na literatura anglo-saxónica). Para estimar os parâmetros deste modelo, propuseram minimizar a função geradora de momentos empírica tentando evitar as dificuldades que surgem com o método da máxima verosimilhança na estimação dos parâmetros destes modelos. No entanto, o método da máxima verosimilhança usando o algoritmo Expectation-Maximization (EM) (Dempster et al. (1977)) tem sido o mais utilizado na estimação dos parâmetros destes modelos.

Kiefer (1978) mostrou que para estes modelos de mistura, existe uma sequência de raízes das equações de máxima verosimilhança que é consistente, eficiente e assintoticamente normal. De Veaux (1989) desenvolveu um procedimento para estimar os parâmetros destas misturas baseado no algoritmo EM e aplicou-o aos dados recolhidos por Cohen (1980) e apresentados na figura 6.1. Jones and McLachlan (1992) estimaram um modelo de mistura de regressões lineares a um conjunto de dados reais recorrendo ao algoritmo EM. Turner (2000) estudou a propagação de uma infecção em plantas de batatas contaminadas por insectos, estimando um modelo de mistura de regressões lineares simples de duas componentes.

Mais recentemente, o problema de identificação do número de componentes de uma mistura de regressões lineares usando métodos que recorriam à função de verosimilhança destes modelos foi estudado por Hawkins et al. (2001). Em Zhang and Zhu (2004), os autores investigaram a teoria assintótica dos estimadores de máxima verosimilhança em modelos de mistura de regressões.

Neste capítulo estudamos o problema da estimação de modelos de mistura de regressões usando o método da máxima verosimilhança. Para obtermos as estimativas de máxima verosimilhança dos parâmetros destes modelos recorremos ao algoritmo Expectation Maximization (EM) (Dempster et al. (1977)) e ao algoritmo Classification Expectation Maximization (CEM) (Celeux and Govaert (1992)). Enquanto que o algoritmo EM é o mais utilizado na estimação dos parâmetros de um modelo de mistura de regressões, o algoritmo CEM tem a vantagem de calcular as estimativas dos parâmetros dos modelos e ao mesmo tempo estimar a componente a que pertence cada observação.

Com o objectivo de comparar o desempenho dos estimadores obtidos por estes dois algoritmos, em situações práticas onde as misturas de regressões lineares são adequadas, foi elaborado um estudo de simulação. Nesse estudo, analisamos as propriedades dos dois estimadores em termos do enviesamento, da eficiência assintótica, da qualidade de ajustamento do modelo aos dados e do tempo de computação.

A aplicação dos dois algoritmos na estimação de misturas de regressões lineares a dois conjuntos de dados reais foi também estudada e comparou-se a qualidade de ajustamento

dos modelos obtidos.

Este capítulo está estruturado da seguinte forma. Começa-se por introduzir o modelo de mistura de regressões e por descrever os dois algoritmos usados para estimar os parâmetros de máxima verosimilhança deste modelo. De seguida, descreve-se detalhadamente o estudo de simulação e apresentam-se os resultados obtidos. Por último, analisam-se os resultados obtidos na estimação de modelos de mistura de regressões lineares a dados reais.

6.2 Modelo de mistura de regressões

O modelo de mistura de q regressões pode ser escrito da seguinte forma:

$$Y = X \beta_j + \epsilon_j$$
 com probabilidade π_j $(j = 1, ..., g)$ (6.3)

em que Y é a matriz de dimensão $n \times 1$ das observações da variável resposta, n é o número total de observações, X é a matriz de dimensão $n \times (k+1)$ das observações das variáveis explicativas, β_j $(j=1,\ldots,g)$ é a matriz de dimensão $(k+1)\times 1$ dos coeficientes de regressão, g é o número de componentes da mistura, π_j $(j=1,\ldots,g)$ são as proporções de mistura com $0 < \pi_j < 1$ e $\sum_{j=1}^g \pi_j = 1$, e, finalmente, ϵ_{ji} $(j=1,\ldots,g,\ i=1,\ldots,n)$ são os erros aleatórios com distribuição que se supõe normal univariada de valor médio nulo e variância σ_i^2 $(j=1,\ldots,g)$.

Um exemplo pode ser apresentado para ilustrar estes modelos.

Exemplo 6.2 Consideremos o modelo de mistura de duas regressões lineares simples (g = 2 e k = 1), definido por:

$$y_i = \begin{cases} \beta_{10} + \beta_{11} x_i + \epsilon_{1i} & \text{com probabilidade} & \pi_1 \\ \beta_{20} + \beta_{20} x_i + \epsilon_{2i} & \text{com probabilidade} & (1 - \pi_1) \end{cases}$$
 $(i = 1, \dots, n)$ (6.4)

onde os ϵ_{ji} (j=1,2) são independentes, identicamente distribuidos e provenientes de uma distribuição normal univariada de valor médio nulo e variância σ_j^2 (j=1,2).

Uma vez escolhido o modelo que se pensa adequado a ajustar aos dados, é necessário proceder à estimação dos parâmetros desconhecidos do modelo.

Neste modelo de mistura de regressões, o vector que contém todos os parâmetros desconhecidos pode ser definido por:

$$\Psi = (\pi_1, \dots, \pi_g, \beta_1, \dots, \beta_g, \sigma_1^2, \dots, \sigma_q^2)^T$$

$$(6.5)$$

em que
$$\beta_j = [\beta_{j0}, ..., \beta_{jk}]^T$$
 $(j = 1, ..., g)$.

De seguida, estudamos o problema da estimação deste vector Ψ usando o método da máxima verosimilhança.

6.3 Estimação de misturas de regressões lineares

Consideremos os dados na forma:

$$(y_i, x_i) \qquad i = 1, \dots, n \tag{6.6}$$

em que y_i é o valor observado da variável resposta para a i-ésima observação e x_i é o correspondente valor observado das variáveis explicativas. Suponha que y_1, \ldots, y_n são n realizações da variável resposta provenientes de uma mistura de g distribuições normais cuja função densidade de probabilidade é definida na expressão (6.2).

A correspondente função de log-verosimilhança é dada por:

$$\log L(\Psi) = \sum_{i=1}^{n} \log \left(\sum_{j=1}^{g} \pi_j \phi\left(y_i | x_i; x_i \beta_j, \sigma_j^2\right) \right)$$
(6.7)

em que $\phi(.; \mu, \sigma^2)$ é a função densidade de probabilidade da variável aleatória normal de valor médio μ e variância σ^2 .

O estimador de máxima verosimilhança do vector Ψ definido na expressão (6.5) é obtido resolvendo o sistema de equações de máxima verosimilhança dado por:

$$\frac{\partial \log L(\Psi)}{\partial \Psi} = 0 \tag{6.8}$$

No entanto, como acontece no caso das misturas de distribuições, não é possível encontrar a solução destas equações por via analítica, pelo que teremos de recorrer a métodos iterativos.

6.3.1 Estimação de misturas de regressões via o algoritmo EM

O algoritmo EM é o processo iterativo mais usado para determinar a solução das equações de máxima verosimilhança em problemas de dados incompletos (Dempster et al. (1977) and McLachlan and Peel (2000)). Uma vez que não se conhece a que componente da mistura pertence cada uma das observações, as misturas de regressões podem ser vistas como um problema de dados incompletos.

Neste trabalho, aplicamos este algoritmo para determinar as estimativas de máxima verosimilhança do vector Ψ definido na expressão (6.5).

Como já foi mencionado na secção 2.3.1 do capítulo 2, cada iteração do algoritmo EM consiste em duas etapas, a etapa E e a etapa M, que se descrevem em seguida para o caso de misturas de regressões lineares.

Comecemos por designar por $\Psi^{(p)}=(\pi_1^{(p)},\ldots,\pi_g^{(p)},\beta_1^{(p)},\ldots,\beta_g^{(p)},\sigma_1^{2(p)},\ldots,\sigma_g^{2(p)})^T$, a estimativa de máxima verosimilhança de Ψ obtida na p-ésima iteração do algoritmo EM. Na iteração (p+1) tem-se:

Etapa E

Conhecendo as estimativas dos parâmetros desconhecidos da mistura na iteração anterior $(p-\text{\'e}sima iteração})$, ou seja, conhecendo:

$$\Psi^{(p)} = (\pi_1^{(p)}, \dots, \pi_a^{(p)}, \beta_1^{(p)}, \dots, \beta_a^{(p)}, \sigma_1^{2(p)}, \dots, \sigma_a^{2(p)})^T$$
(6.9)

calculam-se:

$$w_{ij}^{(p+1)} = \frac{\pi_j^{(p)} \phi\left(y_i | x_i; x_i \beta_j^{(p)}, \sigma_j^{2(p)}\right)}{\sum_{i=1}^g \pi_j^{(p)} \phi\left(y_i | x_i; x_i \beta_j^{(p)}, \sigma_j^{2(p)}\right)} \quad (i = 1, \dots, n; j = 1, \dots, g)$$

$$(6.10)$$

em que $w_{ij}^{(p+1)}$ é a probabilidade condicional da observação i pertencer à j-ésima componente da mistura, dada essa observação.

Etapa M

Determinam-se as estimativas actualizadas dos parâmetros desconhecidos:

$$\pi_j^{(p+1)} = \frac{\sum_{i=1}^n w_{ij}^{(p+1)}}{n} \quad (j = 1, \dots, g)$$
(6.11)

$$\beta_i^{(p+1)} = (X^T W_j X)^{-1} X^T W_j Y \quad (j = 1, \dots, g)$$
(6.12)

em que W_j é uma matriz diagonal de dimensão $n \times n$, com $w_{ij}^{(p+1)}$ o i-ésimo elemento da diagonal, e

$$\sigma_j^{2(p+1)} = \frac{\sum_{i=1}^n w_{ij}^{(p+1)} (y_i - x_i \beta_j^{(p+1)})^2}{\sum_{i=1}^n w_{ij}^{(p+1)}} \quad (j = 1, \dots, g)$$
(6.13)

As etapas E e M são alternadamente repetidos até se verificar o critério de paragem.

Da expressão (6.12), que permite determinar as estimativas de máxima verosimilhança dos coeficientes de regressão, pode-se realçar o seguinte. Esta expressão é idêntica à que se obteria para o estimador dos coeficientes de regressão dos mínimos quadrados ponderados na regressão linear de Y em X, sendo W_j uma matriz de pesos (ver, por exemplo, Birkes and Dodge (1993, p. 98)).

6.3.2 Estimação de misturas de regressões via o algoritmo CEM

Um outro algoritmo que aplicamos neste trabalho, para determinar as estimativas de máxima verosimilhança do vector Ψ definido na expressão (6.5), foi o algoritmo EM de classificação designado por algoritmo CEM (Celeux and Govaert (1992)).

Este algoritmo de classificação, permite não só calcular as estimativas de máxima verosimilhança daquele vector, mas também construir uma partição $P=(P_1,\ldots,P_g)$ do conjunto de observações. Esta partição P é caracterizada por cada elemento P_j $(j=1,\ldots,g)$ representar uma componente de mistura distinta.

Neste caso, recorrendo ao algoritmo CEM, as estimativas de máxima verosimilhança do vector Ψ definido na expressão (6.5) são obtidas maximizando a função de log-verosimilhança classificatória dada por:

$$\log CL(\Psi) = \sum_{j=1}^{g} \sum_{(y_i, x_i) \in P_j} \log \left(\pi_j \phi \left(y_i | x_i; x_i \beta_j, \sigma_j^2 \right) \right)$$

$$(6.14)$$

em que P_j (j = 1, ..., g) é um elemento da partição P.

No algoritmo CEM, cada iteração consiste em três etapas, a etapa E (expectation), a etapa C (classification) e a etapa M (maximization). É na etapa C que uma partição $P = (P_1, \ldots, P_g)$ do conjunto de observações é obtida a partir das probabilidades condicionais, w_{ij} , calculadas na etapa E.

A p+1-ésima iteração deste algoritmo está definida do seguinte modo:

 $Etapa\ E$

Conhecendo as estimativas dos parâmetros desconhecidos da mistura na iteração anterior $(p-\text{\'e}sima iteração})$, ou seja, conhecendo $\Psi^{(p)}$ definido na expressão (6.9), calculam-se as probabilidades condicionais $w_{ij}^{(p+1)}$, $(1 \le i \le n, 1 \le j \le g)$ do mesmo modo que se determinam no algoritmo EM (ver expressão (6.10)).

Etapa C

Uma partição $P^{(p+1)}=(P_1^{(p+1)},\dots,P_g^{(p+1)})$ é obtida, associando cada observação à componente de mistura onde é maior a respectiva probabilidade condicional, $w_{ij}^{(p+1)}$. Tem-se

$$P_j^{(p+1)} = \{ (y_i, x_i) : w_{ij}^{(p+1)} = \arg_h \max w_{ih}^{(p+1)} \}$$
(6.15)

se
$$w_{ij}^{(p+1)} = w_{ih}^{(p+1)}$$
e
 $j < h$ então $(y_i, x_i) \in P_j^{(p+1)}, \ (j = 1, \dots, g)$

Etapa M

As estimativas actualizadas dos parâmetros desconhecidos são calculadas a partir dos elementos da partição $P^{(p+1)}$ determinada na etapa anterior. Designando por n_j o número de observações no elemento j da partição P, ou seja, o número de observações pertencentes à componente j da mistura, tem-se:

$$\pi_j^{(p+1)} = \frac{n_j}{n} \quad (j = 1, \dots, g)$$
 (6.16)

$$\beta_j^{(p+1)} = (X_j^T W_j X_j)^{-1} X_j^T W_j Y_j \quad (j = 1, \dots, g)$$
(6.17)

em que X_j é a matriz de dimensão $n_j \times (k+1)$ das observações das variáveis explicativas pertencentes à componente j da mistura, W_j é uma matriz diagonal de dimensão $n_j \times n_j$ onde $w_{ij}^{(p+1)}$ é o i-ésimo elemento da diagonal e Y_j é a matriz de dimensão $n_j \times 1$ das observações da variável resposta pertencentes à componente j da mistura, e,

$$\sigma_j^{2(p+1)} = \frac{\sum_{i=1}^{n_j} w_{ij}^{(p+1)} (y_i - \mathbf{x}_i \beta_j^{(p+1)})^2}{\sum_{i=1}^{n_j} w_{ij}^{(p+1)}}$$
(6.18)

As etapas E, C e M são alternadamente repetidos até se verificar o critério de paragem.

Um dos aspectos negativos a realçar deste algoritmo, como acontece com o algoritmo EM, é a forte dependência dos valores iniciais dos parâmetros Ψ nas estimativas finais destes parâmetros.

6.4 Estudo de simulação

Para comparar o desempenho dos estimadores obtidos por estes dois algoritmos em misturas de regressões procedeu-se a um estudo de simulação cuja descrição e resultados se apresentam em seguida.

6.4.1 Descrição do estudo

Por se tratar de um primeiro estudo realizado com o objectivo proposto, estimámos apenas modelos de mistura de regressões simples de duas ou três componentes, ou seja, k=1 e g=2 ou g=3.

As condições consideradas no estudo de simulação foram as seguintes.

Inicialização dos algoritmos.

Os verdadeiros valores dos parâmetros foram usados como valores iniciais nos algoritmos.

Critério de paragem.

Enquanto que no algoritmo EM, o critério utilizado baseava-se nas diferenças relativas da função de log-verosimilhança definida na expressão (6.7), no caso do algoritmo CEM, baseava-se nas diferenças relativas da função de log-verosimilhança classificatória definida na expressão (6.14). Os algoritmos terminavam quando essas diferenças se tornavam menores do que 10^{-12} , ou seja, no algoritmo EM, o critério de paragem é dado por:

$$\left| \frac{\log L^{(p+1)}(\Psi) - \log L^{(p)}(\Psi)}{\log L^{(p)}(\Psi)} \right| < 10^{-12}$$
(6.19)

em que $L^{(p)}(\Psi)$ é o valor da função de log-verosimilhança definida na expressão (6.7) na p-ésima iteração e no algoritmo CEM, o critério de paragem é dado por:

$$\left| \frac{\log CL^{(p+1)}(\Psi) - \log CL^{(p)}(\Psi)}{\log CL^{(p)}(\Psi)} \right| < 10^{-12}$$
(6.20)

em que $CL^{(p)}(\Psi)$ é o valor da função de log-verosimilhança classificatória definida na expressão (6.14) na p-ésima iteração.

Dimensão das amostras (n).

O nosso estudo incidiu em três tipos de amostras: amostras de pequena dimensão (n=50), amostras de média dimensão (n=100) e amostras de grande dimensão (n=500).

Número de amostras.

Para cada dimensão de amostra e para cada conjunto de valores dos parâmetros gerámos 200 amostras.

Intervalo de valores de x.

Dois intervalos diferentes de valores da variável explicativa foram usados neste estudo: $x_i \in [-1; 3]$ e $x_i \in [0; 2]$.

Geração dos dados.

Consideremos $\pi_1, \pi_2, \ldots, \pi_j$, a proporção de mistura da primeira, da segunda, ..., da j-ésima componente de mistura, respectivamente.

Cada observação (y_i, x_i) foi gerada aplicando o seguinte procedimento. Inicialmente, gerava-se uma variável aleatória auxiliar com distribuição uniforme no intervalo (0,1), designada por Z, cujo valor seleccionava a que componente de mistura pertencia a observação: se $0 \le z < \pi_1$, a observação era proveniente da primeira componente da mistura, se $\pi_1 \le z < \pi_1 + \pi_2$, a observação era proveniente da segunda componente da mistura e assim successivamente. De seguida, gerava-se x_i com distribuição uniforme no intervalo (a,b), em que a=-1 e b=3 ou a=0 e b=2, de acordo com o intervalo de valores da variável explicativa. A variável aleatória ϵ_{ji} com distribuição normal univariada de valor médio nulo e variância σ_j^2 era por fim gerada. Finalmente, o valor de y_i é obtido a partir dos valores de x_i , ϵ_{ji} e dos verdadeiros valores dos coeficientes de regressão β_j (Hathaway and Bezdek (1993)).

Critérios para comparar o desempenho dos estimadores

Consideremos

$$\hat{\Psi}^{(m)} = (\hat{\Psi}_1^{(m)}, \hat{\Psi}_2^{(m)}, \dots, \hat{\Psi}_t^{(m)}) =
= (\hat{\pi}_1^{(m)}, \dots, \hat{\pi}_g^{(m)}, \hat{\beta}_1^{(m)}, \dots, \hat{\beta}_g^{(m)}, \hat{\sigma}_1^{2(m)}, \dots, \hat{\sigma}_g^{2(m)}) \quad (m = 1, \dots, 200)$$
(6.21)

o vector das estimativas, na m-ésima simulação, do vector Ψ definido na expressão (6.5).

Para estudar as propriedades dos estimadores definidos para cada um dos algoritmos utilizados, a partir das 200 amostras de dimensão n geradas, obtivemos as estimativas $\hat{\Psi}^{(m)}$ $(m=1,\ldots,200)$ e calculámos o valor absoluto do enviesamento médio definido por:

$$VI\acute{E}S(\hat{\Psi}_t) = \left| \frac{1}{200} \sum_{m=1}^{200} \hat{\Psi}_t^{(m)} - \Psi_t \right|$$
 (6.22)

o desvio padrão dado por :

Desvio
$$(\hat{\Psi}_t) = \sqrt{\frac{1}{199} \sum_{m=1}^{200} \left(\hat{\Psi}_t^{(m)} - \frac{1}{200} \sum_{m=1}^{200} \hat{\Psi}_t^{(m)} \right)}$$
 (6.23)

e o erro quadrático médio (EQM) definido por:

$$EQM(\hat{\Psi}_t) = \frac{1}{200} \sum_{m=1}^{200} \left(\hat{\Psi}_t^{(m)} - \Psi_t \right)^2$$
 (6.24)

Para analisar o tempo de computação dos algoritmos, a partir das 200 amostras de dimensão n geradas, calculámos o número médio de iterações necessárias à convergência dos algoritmos.

Com o objectivo de se comparar a qualidade de ajustamento do modelo aos dados, a partir das 200 amostras de dimensão n geradas, determinámos a percentagem de vezes que o coeficiente de determinação (R^2) do modelo estimado usando o algoritmo CEM era superior e igual ao coeficiente de determinação (R^2) do modelo estimado quando se aplicava o algoritmo EM na estimação dos parâmetros.

O coeficiente de determinação (R^2) é definido por:

$$R^2 = 1 - \frac{SQR}{SQT} \tag{6.25}$$

em que SQT é a variação total dos y_i , ou seja, a soma dos quadrados dos desvios em relação à média das observações da variável dependente:

$$SQT = \sum_{i=1}^{n} (y_i - \overline{y})^2$$
 (6.26)

e SQR é a variância residual, ou seja, a soma dos quadrados dos resíduos.

Quando se estima o modelo de mistura de regressões usando o algoritmo EM, a soma dos quadrados dos resíduos (SQR) é definida por:

$$SQR = \sum_{i=1}^{n} \left(y_i - x_i \, \hat{\beta}_j \right)^2 \tag{6.27}$$

onde j é a componente da mistura em que é maior o valor da probabilidade condicional w_{ij} da observação i (ver De Veaux (1989)) e $\hat{\beta}_j$ são as estimativas dos coeficientes de regressão β_j que podem ser calculadas usando a expressão (6.12). Usando o algoritmo CEM, a soma dos quadrados dos resíduos (SQR) passa a ser definida por:

$$SQR = \sum_{j=1}^{g} \sum_{i=1}^{n_j} \left(y_i - x_i \, \hat{\beta}_j \right)^2 \tag{6.28}$$

em que n_j é o número total de observações pertencentes à componente j da mistura e $\hat{\beta}_j$ são as estimativas dos coeficientes de regressão β_j que podem ser calculadas usando a expressão (6.17)

Resumidamente, o estudo de simulação consiste nos seguintes passos:

1. Gerar uma amostra de dimensão n.

- 2. Estimar um modelo de mistura de regressões usando o algoritmo EM e o algoritmo CEM. "Guardar" as estimativas dos parâmetros desconhecidos do modelo, o número de iterações necessárias à convergência dos algoritmos e o coeficiente de determinação dos modelos estimados usando os dois algoritmos.
- 3. Repetir os passos anteriores 200 vezes. Calcular, para cada parâmetro estimado, o valor absoluto do enviesamento médio dado na expressão (6.22), o desvio padrão dado na expressão (6.23) e o erro quadrático médio dado na expressão (6.24). Determinar também o número médio de iterações necessárias à convergência dos algoritmos e a percentagem de vezes que o coeficiente de determinação (R^2) do modelo estimado usando o algoritmo CEM era superior e igual ao mesmo coeficiente quando se aplicava o algoritmo EM na estimação do modelo.

6.4.2 Misturas de duas regressões lineares simples: resultados

Comecemos por comparar o desempenho dos estimadores obtidos pelos algoritmos EM e CEM na estimação de misturas de duas regressões lineares simples.

Neste caso, o modelo é definido por:

$$y_i = \begin{cases} \beta_{10} + \beta_{11} \ x_i + \epsilon_{1i} & \text{com probabilidade} & \pi_1 \\ \beta_{20} + \beta_{20} \ x_i + \epsilon_{2i} & \text{com probabilidade} & (1 - \pi_1) \end{cases}$$
 (6.29)

em que ϵ_{ji} (j=1,2) são independentes, identicamente distribuidos e provenientes de uma distribuição normal univariada de valor médio nulo e variância σ_j^2 (j=1,2).

O vector que contém todos os parâmetros desconhecidos do modelo é dado por:

$$\Psi = (\pi_1, \beta_1, \beta_2, \sigma_1^2, \sigma_2^2)^T \tag{6.30}$$

em que $\beta_{j} = [\beta_{j0}, \beta_{j1}]^{T}, \ (j = 1, 2).$

Neste estudo considerámos três diferentes configurações para as verdadeiras rectas de regressão componentes da mistura: as rectas de regressão eram paralelas, perpendiculares ou concorrentes entre si.

Gerámos amostras das três diferentes dimensões, n=50, n=100 e n=500, variando a proporção de mistura gradualmente de uma décima entre 0.1 e 0.9 e os parâmetros β_j (j=1,2) e σ_j^2 (j=1,2) de acordo com as situações descritas na tabela 6.1.

As várias situações são ilustradas nas figuras 6.2, 6.3 e 6.4 onde se apresentam os diagramas de dispersão de uma amostra de cada caso em que n = 100 e $\pi_1 = 0.5$.

Comecemos por analisar as propriedades dos estimadores definidos para cada um dos

Configuração	Casos	β_{10}	β_{20}	β_{11}	β_{21}	σ_1^2	σ_2^2
	PΙ	-1	0	1	1	0.1^{2}	0.1^{2}
	PII	-1	0	1	1	0.1^{2}	0.2^{2}
	PIII	-1	0	1	1	0.2^{2}	0.2^{2}
	PIV	-1	1	1	1	0.2^{2}	0.2^{2}
Paralelas	PV	-1	1	1	1	0.3^{2}	0.5^{2}
	PVI	-1	1	1	1	0.5^{2}	0.5^{2}
	PVII	-1	2	1	1	0.3^{2}	0.3^{2}
	PVIII	-1	2	1	1	0.5^{2}	0.5^{2}
	PIX	-1	2	1	1	0.5^{2}	0.8^{2}
	PX	-1	2	1	1	0.5^{2}	1^{2}
	EI	-1	1	1	-1	0.3^{2}	0.3^{2}
	$_{ m EII}$	-1	1	1	-1	0.5^{2}	0.5^{2}
	\mathbf{EIII}	-1	1	1	-1	0.5^{2}	0.8^{2}
	EIV	-1	1	1	-1	0.5^{2}	1^{2}
Perpendiculares	EV	-1	3	1	-1	0.3^{2}	0.3^{2}
	EVI	-1	3	1	-1	0.5^{2}	0.5^{2}
	EVII	-1	3	1	-1	0.5^{2}	1^2
	EVIII	-1	5	1	-1	0.5^{2}	0.5^{2}
	EIX	-1	5	1	-1	0.5^{2}	0.8^{2}
	EX	-1	5	1	-1	1^2	1^2
	CI	-1	-1	1	0	0.3^{2}	0.3^{2}
	CII	-1	-1	1	0	0.5^{2}	0.5^{2}
	CIII	-1	-1	1	0	0.5^{2}	0.8^{2}
Concorrentes	CIV	-1	1	1	0	0.3^{2}	0.5^{2}
	CV	-1	1	1	0	0.5^{2}	0.5^{2}
	CVI	-1	1	1	0	0.3^{2}	0.8^{2}

Tabela 6.1: Verdadeiros valores dos parâmetros β_j (j=1,2) e σ_j^2 (j=1,2) em misturas de duas regressões lineares simples

algoritmos utilizados. Devido à dimensão das tabelas destes resultados, optámos por apresentar essas tabelas em apêndice.

Nas tabelas D.1 a D.10, D.11 a D.20 e D.21 a D.30 do apêndice D figuram, respectivamente, as estimativas do valor absoluto do enviesamento médio, do desvio padrão e do erro quadrático médio dos parâmetros da mistura de duas regressões lineares quando as verdadeiras rectas de regressão são paralelas entre si. Os resultados apresentados mostram-nos que, nas situações nas quais não há, em geral, sobreposição das observações das duas rectas de regressão (situações PI, PIV e PVII), a eficiência dos estimadores obtidos pelos dois algoritmos é idêntica. No entanto, quando se mantém a distância entre as duas rectas de regressão e se aumenta um (ou ambos) os valores das variâncias σ_1^2 e σ_2^2 , observamos que as estimativas do desvio padrão e do erro quadrático médio são, em geral, menores quando recorremos ao algoritmo CEM para estimar o modelo. Por outro lado, à medida que as verdadeiras rectas de regressão se vão afastando, a eficiência de ambos os estimadores piora. Como seria de esperar, à medida que a dimensão da amostra aumenta, todas as estimativas mencionadas vão diminuindo. Relativamente aos dois intervalos de valores da variável explicativa usados neste estudo, verificamos que a eficiência de ambos os estimadores piora quando a variável explicativa é gerada no intervalo [0; 2].

Figura 6.2: Diagramas de dispersão de amostras de misturas de duas regressões lineares simples quando as verdadeiras rectas de regressão são paralelas entre si $(n=100\ {\rm e}\ \pi_1=0.5)$

Nas tabelas D.31 a D.40, D.41 a D.50 e D.51 a D.60 do apêndice D apresentam-se as estimativas do valor absoluto do enviesamento médio, do desvio padrão e do erro quadrático médio dos parâmetros da mistura de duas regressões lineares quando as verdadeiras rectas de regressão são perpendiculares entre si. Os resultados apresentados mostram-nos que as estimativas do desvio padrão e do erro quadrático médio são, em geral, menores quando recorremos ao algoritmo CEM para estimar os parâmetros desconhecidos do modelo. No entanto, quando a proporção de uma das componentes é pequena, observamos o contrário. Quanto às estimativas do valor absoluto do enviesamento médio são, em geral, maiores quando aplicámos o algoritmo CEM para estimar o modelo. À medida que a dimensão da amostra aumenta, todas estas estimativas vão diminuindo acentuadamente. Em relação aos intervalos de valores da variável explicativa usados neste estudo, observamos que a eficiência

Figura 6.3: Diagramas de dispersão de amostras de misturas de duas regressões lineares simples quando as verdadeiras rectas de regressão são perpendiculares entre si $(n=100~{\rm e}~\pi_1=0.5)$

de ambos os estimadores piora quando a variável explicativa é gerada no intervalo [0; 2].

Comparando com a configuração anterior, na qual as verdadeiras rectas de regressão são paralelas entre si, concluímos que a eficiência de ambos os estimadores piorou.

Por fim, as estimativas do valor absoluto do enviesamento médio, do desvio padrão e do erro quadrático médio dos parâmetros da mistura de duas regressões lineares quando as verdadeiras rectas de regressão são concorrentes entre si são apresentadas nas tabelas D.61 a D.66, D.67 a D.72 e D.73 a D.78 do apêndice D. Os resultados mostram-nos que estas estimativas são, em geral, maiores quando se aplica o algoritmo CEM para estimar os parâmetros desconhecidos do modelo. À medida que a dimensão da amostra aumenta, todas estas estimativas vão diminuindo. Quando a amplitude do intervalo de valores da variável explicativa diminui, a eficiência de ambos os estimadores piora, especialmente quando a proporção de uma das componentes é pequena.

Figura 6.4: Diagramas de dispersão de amostras de misturas de duas regressões lineares simples quando as verdadeiras rectas de regressão são concorrentes entre si $(n=100~{\rm e}~\pi_1=0.5)$

Comparando com a configuração anterior, na qual as verdadeiras rectas de regressão são perpendiculares entre si, concluimos que a eficiência de ambos os estimadores piorou ligeiramente.

Em relação ao tempo de computação dos algoritmos propostos, como seria de esperar, em todas as situações estudadas o número médio de iterações necessárias à convergência do algoritmo é sempre menor quando se aplica o algoritmo CEM na estimação dos parâmetros desconhecidos do modelo.

De seguida, iremos proceder à análise da qualidade de ajustamento dos dois modelos aos dados.

Na tabela 6.2 figura a percentagem de vezes que o coeficiente de determinação do modelo estimado usando o algoritmo CEM era superior (igual) ao mesmo coeficiente do modelo estimado quando se aplicava o algoritmo EM, em misturas de duas regressões simples, quando as verdadeiras rectas de regressão são paralelas entre si. Os resultados mostram que, nas situações onde não há sobreposição das observações das duas rectas de regressão (situação PI, PIV e PVII), o ajustamento dos dois modelos obtidos é idêntico. Nas outras

situações, o ajustamento do modelo estimado aplicando o algoritmo CEM é, em geral, melhor do que o obtido pelo algoritmo EM. As excepções surgem em amostras de grande dimensão (n=500), nas situações em que há sobreposição das observações nas duas rectas de regressão (situação PIII, PVI, PIX e PX). Relativamente aos dois intervalos de valores da variável explicativa usados neste estudo, não se verificam diferenças significativas entre os resultados obtidos.

Na tabela 6.3 apresenta-se a percentagem de vezes que o coeficiente de determinação do modelo estimado usando o algoritmo CEM era superior (igual) ao mesmo coeficiente do modelo estimado quando se aplicava o algoritmo EM, em misturas de duas regressões simples, quando as verdadeiras rectas de regressão são perpendiculares entre si. Os resultados mostram que, em amostras de pequena e média dimensão ($n=50~{\rm e}~n=100$, respectivamente), o ajustamento do modelo obtido aplicando o algoritmo CEM é, em geral, melhor do que o obtido pelo algoritmo EM. As excepções surgem nas situações em que a proporção de mistura é pequena e há sobreposição das observações nas duas rectas de regressão (situação EIII, EIV, EVII). Em amostras de grande dimensão (n=500), observa-se que nas situações em que a abcissa do ponto de intersecção das verdadeiras rectas de regressão se encontra dentro do intervalo de valores da variável explicativa, o ajustamento do modelo obtido aplicando o algoritmo CEM é, em geral, pior do que o obtido pelo algoritmo EM. Podemos ainda verificar que o ajustamento do modelo obtido aplicando o algoritmo CEM piora ligeiramente quando a amplitude do intervalo de valores da variável explicativa diminui.

Comparando com a configuração anterior, na qual as verdadeiras rectas de regressão são paralelas entre si verifica-se que, em geral, o ajustamento do modelo obtido aplicando o algoritmo CEM piorou.

Finalmente, a mesma percentagem obtida quando as verdadeiras rectas de regressão são concorrentes entre si, é apresentada na tabela 6.4. Os resultados também mostram que, em geral, o ajustamento do modelo obtido aplicando o algoritmo CEM é melhor do que o obtido aplicando o algoritmo EM. As excepções surgem em algumas situações em que a proporção de mistura é pequena e, em particular, em amostras de grande dimensão (n=500) é notório que o ajustamento do modelo obtido aplicando o algoritmo CEM é pior do que o obtido pelo algoritmo EM. Relativamente aos dois intervalos de valores da variável explicativa usados neste estudo, não se verificam diferenças significativas entre os resultados obtidos.

Comparando com as duas configurações anteriores, nas quais as verdadeiras rectas de regressão são paralelas entre si e perpendiculares entre si, concluímos que o ajustamento

do modelo obtido aplicando o algoritmo CEM piorou.

6.4.3 Misturas de três regressões lineares simples: resultados

De seguida, comparamos o desempenho dos estimadores obtidos pelos algoritmos EM e CEM na estimação de misturas de três regressões lineares simples.

Neste caso, o modelo é definido por:

$$y_{i} = \begin{cases} \beta_{10} + \beta_{11} x_{i} + \epsilon_{1i} & \text{com probabilidade } \pi_{1} \\ \beta_{20} + \beta_{21} x_{i} + \epsilon_{2i} & \text{com probabilidade } \pi_{2} \\ \beta_{30} + \beta_{31} x_{i} + \epsilon_{3i} & \text{com probabilidade } \pi_{3} \end{cases}$$

$$(6.31)$$

 ϵ_{ji} (j=1,2,3) são independentes, identicamente distribuídos e provenientes de uma distribuição normal univariada de valor médio nulo e variância σ_j^2 (j=1,2,3).

O vector que contém todos os parâmetros desconhecidos do modelo é dado por:

$$\Psi = (\pi_1, \pi_2, \pi_3, \beta_1, \beta_2, \beta_3, \sigma_1^2, \sigma_2^2, \sigma_3^2)^T$$
(6.32)

em que
$$\beta_j = \left[\beta_{j0},\beta_{j1}\right]^T, \ (j=1,2,3).$$

Uma vez que para amostras de pequena dimensão (n=50), poderiam ocorrer casos em que o número de observações numa componente fosse pequeno, gerámos apenas amostras de média e grande dimensão (n=100 e n=500, respectivamente), variando os parâmetros β_j (j=1,2,3) e σ_j^2 (j=1,2,3) de acordo com as situações descritas na tabela 6.5. Quanto às proporções de mistura, figuram no cabeçalho da tabela 6.6 os valores usados neste estudo de simulação.

As várias situações são ilustradas na figura 6.5 onde se apresentam os diagramas de dispersão de uma amostra de cada caso em que $n=100,\,\pi_1=0.4,\,\pi_2=0.3$ e $\pi_3=0.3$.

Comecemos por analisar as propriedades dos estimadores definidos para cada um dos algoritmos utilizados. Uma vez mais, devido à dimensão das tabelas destes resultados, optou-se por apresentá-las em apêndice.

Nas tabelas D.79 a D.83, D.84 a D.88 e D.89 a D.93 figuram, respectivamente, as estimativas do valor absoluto do enviesamento médio, do desvio padrão e do erro quadrático médio dos parâmetros da mistura de três regressões lineares simples nas situações analisadas neste estudo de simulação. Os resultados apresentados mostram claramente que estes dependem da posição relativa das verdadeiras rectas de regressão. Na situação I, na qual as verdadeiras rectas de regressão são paralelas entre si e não há sobreposição das observações das três rectas, a eficiência dos estimadores obtidos pelos dois algoritmos é idêntica. No

\overline{x}	\overline{n}	Casos				V	Valor de π_1				
			0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
	50	ΡΙ	5(93)	4(94.5)	4.5(94.5)	3(94.5)	5.5(94)	3.5(95.5)	4.5(93.5)	6(93)	4(93)
		PII	92.5(4)	93.5(4.5)	94(2.5)	96.5(0.5)	97(2)	93.5(6)	88(11)	78(20.5)	64.5(36)
		PIII	84.5(2)	89(0.5)	92(0)	88(0.5)	96(0)	93.5(0)	93.5(0)	88.5(0)	86(1.5)
		PIV	8(83.5)	9.5(88)	6.5(89.5)	3.5(94)	7(91)	5(92.5)	6.5(92)	7(87)	9.5(88)
		PV	82.5(0)	87(0)	87.5(0)	90(0)	94(0)	91(0)	91(0.5)	90(5)	86(7.5)
		PVI	75.5(0)	80(0)	85(0)	90(0)	91.5(0)	89(0)	83(0)	76.5(0)	78(0)
		PVII	8.5(85.5)	7(88)	8(89)	8(87)	6(89.5)	4(90.5)	8(86.5)	8(91.5)	10(85)
		PVIII	85(7.5)	90(2)	95.5(1.5)	96.5(1)	96.5(0)	93.5(1.5)	91.5(3)	91.5(6.5)	89(7)
		PIX	81(0)	82.5(0)	83(0)	87(0)	89.5(0)	91(0)	91.5(0.5)	88.5(1.5)	90.5(2)
		PX	72.5(0)	80(0)	83.5(0)	83(0)	81.5(0)	86(0)	91.5(0.5)	90(0)	87(1.5)
_	100	PΙ	5.5(93.5)	5.5(93)	5.5(93.5)	5.5(92)	2.5(96)	4(94.5)	2(96)	5.5(92.5)	2.5(96)
		PII	96.5(0)	99(0)	97(0)	95.5(0.5)	95.5(0)	93.5(1)	96.5(1)	96(1)	76.5(21)
		PIII	81.5(0)	80(0)	84.5(0)	83(0)	85(0)	85.5(0)	86(0)	83(0)	77.5(0)
_	_	PIV	9.5(85.5)	9(89.5)	6(91.5)	7(89.5)	7(91.5)	8(90.5)	7.5(91)	7.5(92.5)	7.5(90)
[-1; 3]	3]	PV	81.5(0)	81.5(0)	85.5(0)	86.5(0)	80(0)	82.5(0)	88.5(0)	89(0)	86(1.5)
		PVI	74.5(0)	68(0)	68(0)	80(0)	78.5(0)	71.5(0)	72(0)	67(0)	70.5(0)
		PVII	10(84.5)	11.5(84.5)		6(90)	8.5(86)	7(90)	8.5(85.5)	7(88.5)	12.5(78)
		PVIII	94(0.5)	87.5(0)	94(0)	94.5(0)	94.5(0.5)	97(0)	94(0)	92(0.5)	84(2.5)
		PIX	76.5(0)	79.5(0)	78.5(0)	80.5(0)	81(0)	79(0)	85(0)	86(0)	87.5(0)
· <u>-</u>	T 00	PX	69.5(0)	78.5(0)	80.5(0)	85(0)	86.5(0)	83(0)	84.5(0)	87(0)	88(0)
	500	PI	10.5(89)	9(89)	7(89.5)	6(90)	5.5(93)	5.5(93.5)	10(88)	4.5(94.5)	4.5(93)
		PII	91(0)	88.5(0)	93.5(0)	91(0)	90(0)	88.5(0)	87(0)	93(0)	95.5(0)
		PIII	47.5(0)	33.5(0)	31.5(0)	39.5(0)	37.5(0)	37.5(0)	31.5(0)	36.5(0)	44.5(0)
		PIV PV	10.5(82)	13.5(80.5)		14(79.5)	11(83.5)	9(87)	9.5(83.5)	17.5(75.5)	
		PV PVI	48.5(0)	49.5(0)	45(0)	55(0)	69.5(0)	65(0)	72(0)	81.5(0)	77.5(0)
		PVI	17.5(0) $16.5(72)$	11(0) 15(78)	15.5(0) 18(78)	23(0) 18(76)	40(0) $11(84)$	27(0) 14(80.5)	12.5(0) $7.5(84)$	14.5(0) $16.5(77)$	19(0) 21(66.5)
		PVIII	72(0)	76(0)	75.5(0)	71.5(0)	69(0)	73.5(0)	69(0)	71.5(0)	72(0)
		PIX	34(0)	38.5(0)	39.5(0)	56.5(0)	65(0)	72.5(0)	79(0)	82.5(0)	78(0)
		PX	39(0)	48.5(0)	67.5(0)	78.5(0)	89.5(0)	95.5(0)	96(0)	95(0)	93(0)
	50	PI	5.5(89.5)	8(89.5)	5(93)	7.5(90)	8(89)	7(91.5)	9.5(87.5)	10(86)	9.5(85)
	00	PII	93(3)	96(2)	98.5(0.5)	96.5(2)	94.5(3.5)	91.5(4.5)	90(8.5)	80.5(17)	61(36.5)
		PIII	85.5(4)	87.5(0)	90(0)	92.5(0)	94(0)	91.5(0)	94(0)	87.5(0)	89(1.5)
		PIV	10(81)	13.5(82.5)		7(89.5)	5.5(94)	5.5(90.5)	6(87.5)	11.5(84.5)	
		PV	82.5(0)	87.5(0)	87(0)	89.5(0)	94(0)	93.5(1)	92(0)	93.5(2.5)	83.5(7)
		PVI	77(0)	80(0)	88(0)	86.5(0)	88.5(0)	87(0)	88.5(0)	78(0)	78(0)
		PVII	16.5(72.5)	` '	7(87.5)	6.5(85.5)	2.5(96)	4(91)	6.5(91.5)	13(80.5)	14(78)
		PVIII	81.5(8.5)	92(2.5)	98(0.5)	94.5(1)	97.5(0.5)	94.5(2)	94.5(2)	94.5(2.5)	90(5)
		PIX	77.5(0)	84(0)	81(0)	83(0)	90.5(0)	90.5(0)	91(0)	86.5(1.5)	87(4.5)
		PX	70(0)	73.5(0)	78.5(0)	86.5(0)	89(0)	91(0)	90(0.5)	93.5(0.5)	88.5(2)
_	100	PI	10(85.5)	6(90)	8(89)	4(92.5)	5.5(88.5)	6(90)	9(89.5)	6(91.5)	7(89.5)
		PII	94.5(0)	98(0)	98.5(0)	97(0)	98(0)	96(0.5)	98.5(0.5)	91(5.5)	84(13.5)
[0; 2]		PIII	84(0)	84(0)	86(0)	84(0)	87(0)	84.5(0)	77.5(0)	86.5(0)	81(0)
		PIV	15(78.5)	8.5(86.5)	9.5(86)	6.5(88.5)	11(83)	6(90.5)	8(89)	12(80.5)	12(79.5)
		PV	82.5(0)	80.5(0)	86(0)	82.5(0)	80.5(0)	87.5(0)	86(0)	90.5(0)	85.5(2)
		PVI	64(0)	70.5(0)	71.5(0)	74.5(0)	83(0)	77.5(0)	73(0)	67.5(0)	66(0)
		PVII	,	13.5(78.5)	9(87)	4.5(91)	8.5(84.5)	7.5(89)	8.5(87.5)	12(79.5)	19(71)
		PVIII	89.5(0.5)	92(0)	94(0)	98(0)	91.5(0)	94.5(0)	94(0)	90(0)	90(1.5)
		PIX	74(0)	77.5(0)	77(0)	76(0)	80.5(0)	84.5(0)	87.5(0)	83(0)	83(2)
_		PX	75(0)	72.5(0)	78(0)	80(0)	84.5(0)	84(0)	92.5(0)	83.5(0)	86.5(0)
	500	PI	17.5(74)	13(78)	8.5(84)	6(86.5)	12.5(82)		13.5(80.5)		14(77.5)
		PII	94(0)	94(0)	89(0)	90(0)	91(0)	88(0)	89(0)	90(0)	93.5(0)
		PIII	49(0)	41(0)	35.5(0)	35.5(0)	45(0)	41(0)	36(0)	35.5(0)	45.5(0)
		PIV	23(63)	16(74)	18(77.5)	14(77.5)	13.5(80)	15(78)	19.5(68)	19(67.5)	25(60.5)
		PV	42(0)	36.5(0)	54(0)	63(0)	68.5(0)	70(0)	80(0)	77.5(0)	82.5(0)
		PVI	18.5(0)	10.5(0)	16(0)	22.5(0)	34(0)	26.5(0)	18(0)	15.5(0)	16(0)
		PVII	26(51)	24.5(60)	16(68)	22(71.5)	18.5(70.5)	` '	17(67.5)	21(69)	28(58.5)
		PVIII	70.5(0)	70.5(0)	67.5(0)	69.5(0)	69(0)	75(0)	73.5(0)	73(0)	71(0)
		PIX PX	33(0)	36.5(0)	43.5(0)	54.5(0)	68(0)	75(0)	79(0)	84(0)	79(0)
		ГЛ	33.5(0)	49(0)	68(0)	82(0)	89.5(0)	94(0)	95.5(0)	96.5(0)	92.5(0)

Tabela 6.2: Percentagem de vezes que o coeficiente \mathbb{R}^2 do modelo estimado usando o algoritmo CEM é superior (igual) ao mesmo coeficiente do modelo estimado quando se aplica o algoritmo EM, em misturas de duas regressões simples quando as verdadeiras rectas de regressão são paralelas entre si

\overline{x} n	Casos				V	Valor de π_1				
		0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
50	EI	79.5(1.5)	86(0)	70(0)	81.5(0)	87(0)	77(0)	70.5(0)	84(0)	80(0.5)
	EII	72.5(0)	69(0)	64.5(0)	69(0)	80.5(0)	64.5(0)	73(0)	66.5(0)	66.5(0)
	EIII	45.5(0)	52(0)	55(0)	72.5(0)	75(0)	84.5(0)	72.5(0)	74(0)	67(0.5)
	EIV	32(0)	51(0)	55(0)	72(0)	79.5(0)	78.5(0)	79(0)	82(0)	72(0)
	EV	74(0.5)	76(0)	76.5(0)	75.5(0)	87(0)	75.5(0)	75.5(0)	76.5(0)	78(0.5)
	EVI	63(0)	65(0)	64.5(0)	71.5(0)	79.5(0)	66(0)	63(0)	69.5(0)	62(0.5)
	EVII	33.5(0)	43.5(0)	56(0)	68.5(0)	72.5(0)	71(0)	75(0)	75(0)	79(0.5)
	EVIII	79(1.5)	76(0.5)	78(0)	83(0)	90(0)	82.5(0)	74.5(0)	85(0)	78(0)
	EIX	60.5(0.5)	65(0.5)	67.5(0)	80.5(0)	88.5(0)	90.5(0)	88(0)	90.5(0.5)	80(2.5)
	EX	61(0.5)	60.5(0)	71.5(0)	83.5(0)	91.5(0)	82.5(0)	66.5(0)	66(0)	59(0.5)
10) EI	81.5(0)	76(0)	75(0)	68(0)	68(0)	64.5(0)	67(0)	72.5(0)	83.5(0)
	$_{ m EII}$	67(0)	65.5(0)	56.5(0)	62(0)	69(0)	57.5(0)	52(0)	56(0)	62.5(0)
	EIII	13.5(0)	35.5(0)	36(0)	65.5(0)	67.5(0)	65.5(0)	70(0)	64(0)	71(0)
	$_{ m EIV}$	27.5(0)	20.5(0)	36.5(0)	68.5(0)	78(0)	74(0)	78(0)	76(0)	75(0)
[-1; 3]	EV	74.5(0)	74(0)	70.5(0)	72.5(0)	73(0)	66.5(0)	69(0)	78.5(0)	76.5(0)
	EVI	62(0)	57.5(0)	49.5(0)	51(0)	69.5(0)	56.5(0)	43.5(0)	53(0)	68.5(0)
	EVII	31.5(0)	25(0)	38.5(0)	61(0)	69.5(0)	69.5(0)	76(0)	74(0)	75(0)
	EVIII	77.5(0)	74(0)	78.5(0)	87(0)	95.5(0)	87(0)	77.5(0)	72.5(0)	70.5(0)
	EIX	58(0)	54(0)	70.5(0)	89.5(0)	88(0)	91.5(0)	90(0)	84.5(0)	86(0)
	EX	59.5(0)	63(0)	78.5(0)	89(0)	94.5(0)	88(0)	75(0)	64(0)	61.5(0)
50		59.5(0)	44.5(0)	32(0)	28(0)	50.5(0)	29.5(0)	40.5(0)	52(0)	60.5(0)
	$_{ m EII}$	26(0)	14.5(0)	10.5(0)	5(0)	47(0)	8(0)	4.5(0)	13.5(0)	27(0)
	EIII	1.5(0)	1.5(0)	3.5(0)	48.5(0)	59(0)	60.5(0)	47(0)	38(0)	34(0)
	EIV	0(0)	0(0)	8.5(0)	51.5(0)	79(0)	90(0)	84.5(0)	66.5(0)	55.5(0)
	EV	56(0)	45.5(0)	30(0)	24.5(0)	46(0)	26.5(0)	21.5(0)	50.5(0)	55(0)
	EVI	30(0)	14(0)	7(0)	14(0)	44.5(0)	10.5(0)	7.5(0)	14(0)	30.5(0)
	EVII	1.5(0)	1(0)	6.5(0)	45.5(0)	56(0)	61(0)	54.5(0)	41(0)	41(0)
	EVIII	71(0)	74.5(0)	91.5(0)	99.5(0)	100(0)	98.5(0)	92.5(0)	70(0)	73(0)
	EIX	32.5(0)	52.5(0)	80(0)	95(0)	100(0)	100(0)	100(0)	96.5(0)	81.5(0)
	EX	47(0)	74(0)	91.5(0)	100(0)	100(0)	98(0)	91(0)	69.5(0)	50.5(0)
50	EI	60.5(0)	59.5(0)	67.5(0)	71.5(0)	78.5(0)	68.5(0)	65.5(0)	62(0)	61(0)
	EII	42(0)	39(0)	50.5(0)	65.5(0)	81(0)	71.5(0)	47.5(0)	40.5(0)	38(0)
	EIII	1.5(0)	0(0)	1(0)	73(0)	80.5(0)	82(0)	71.5(0)	62(0)	69.5(0)
	EIV	12.5(0)	22(0)	37.5(0)	64(0)	85(0)	74(0)	74.5(0)	73(0)	56.5(0)
	EV	69.5(2.5)	69(0.5)	72(0)	86(0)	89(0)	86.5(0)	80(0)	73(1)	78(0.5)
	EVI	57(1)	61(0.5)	75(0)	83(0)	89(0)	80.5(0)	70.5(0)	65.5(0)	59.5(0)
	EVII	41(0)	61(0)	81(0)	87.5(0)	92(0)	89.5(0)	80(1)	70.5(1)	31(0)
	EVIII	81.5(10.5)		96(1)	94.5(1.5)	95.5(1.5)	96.5(0.5)	93(2)	92(3)	82.5(12)
	$_{ m EIX}$	86.5(1)	88(0)	85(0)	89.5(0)	93(0)	92(0)	96(0)	93(0.5)	84(7.5)
10		73.5(0) $59(0)$	$\frac{78(0)}{45(0)}$	84(0) 45.5(0)	85(0) 55.5(0)	87(0) 67(0)	87.5(0) 44(0)	82.5(0) 49.5(0)	76(0) 48(0)	73.5(0) $58(0)$
10	EII	()	28(0)		` '	· /	` '	(/	34.5(0)	()
[0; 2]	EIII	$33(0) \\ 37(0)$	14(0)	30.5(0) $21.5(0)$	45(0) $52.5(0)$	71.5(0) $75(0)$	42.5(0) $76.5(0)$	31(0) $51.5(0)$	52(0)	30.5(0) $44.5(0)$
[0, 2]	EIV	8.5(0)	13.5(0)	21.5(0) $23.5(0)$	57.5(0)	80(0)	76.5(0) $77.5(0)$	72.5(0)	63.5(0)	59.5(0)
	EV	73.5(0.5)		77.5(0)	91.5(0)	94.5(0)	86.5(0)	80(0)	72.5(0)	73.5(0)
	EVI	59.5(0.0)	57.5(0)	77.0(0)	93.5(0)	97.5(0)	89.5(0)	83(0)	64.5(0)	59(0)
	EVI	39(0)	65.5(0)	88(0)	96(0)	98(0)	93(0)	88.5(0)	79.5(0)	26.5(0)
	EVIII	90.5(1.5)	86(1)	93(0)	95.5(0)	94(0)	95(0)	94(0)	88.5(0.5)	90(1.5)
	EIX	84(0)	84(0)	83(0)	80.5(0)	85(0)	80(0)	86(0)	88.5(0.5)	85(0)
	EX	67.5(0)	69(0)	66.5(0)	83.5(0)	88.5(0)	78.5(0)	72.5(0)	69(0)	69(0)
		12(0)	4(0)	$\frac{00.5(0)}{2.5(0)}$	7.5(0)	33.5(0)	4(0)	5.5(0)	3.5(0)	12(0)
50	EII	1(0)	0(0)	1(0)	5(0)	50.5(0)	9(0)	1(0)	0(0)	2(0)
	EIII	1(0)	0(0)	1(0)	34(0)	74(0)	45(0)	17(0)	11(0)	12(0)
	EIV	3(0)	0(0)	1(0)	42(0)	83(0)	80(0)	67(0)	51(0)	46(0)
	EV	61.5(0)	75.5(0)	87.5(0)	98.5(0)	100(0)	99.5(0)	87.5(0)	73.5(0)	64.5(0)
	EVI	51.5(0)	74(0)	90(0)	98(0)	100(0)	100(0)	91(0)	78.5(0)	47.5(0)
	EVII	33.5(0)	78(0)	98(0)	100(0)	100(0)	100(0)	99(0)	89.5(0)	15(0)
	EVIII	65.5(0)	59(0)	51(0)	50.5(0)	60.5(0)	54.5(0)	56.5(0)	57(0)	66(0)
	EIX	59.5(0)	44(0)	48(0)	51(0)	72.5(0)	74.5(0)	79.5(0)	76.5(0)	78(0)
	EX	25(0)	17.5(0)	33.5(0)	50(0)	81(0)	59.5(0)	32(0)	22.5(0)	23.5(0)
		(-)	(0)	55.5(0)	55(5)	J=(J)	30.3(0)	J=(J)	(0)	_0.0(0)

Tabela 6.3: Percentagem de vezes que o coeficiente \mathbb{R}^2 do modelo estimado usando o algoritmo CEM é superior (igual) ao mesmo coeficiente do modelo estimado quando se aplica o algoritmo EM, em misturas de duas regressões simples quando as verdadeiras rectas de regressão são perpendiculares entre si

\overline{x} n		Casos				,	Valor de π_1				
		-	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
50)	CI	57(0)	66(0)	56(0)	67(0)	78.5(0)	62.5(0)	55.5(0)	62.5(0)	59.5(0)
		CII	39(0)	41.5(0)	43(0)	61(0)	61(0)	70.5(0)	58.5(0)	52(0)	44(0)
		CIII	21(0)	28(0)	34(0)	58(0)	72.5(0)	70.5(0)	65.5(0)	58.5(0)	46(0)
		CIV	33.5(0)	42.5(0)	46.5(0)	62(0)	72.5(0)	72(0)	73.5(0)	69(1)	72(1)
		CV	39(0)	43.5(0)	49(0)	60.5(0)	66(0)	58.5(0)	50.5(0)	45.5(0)	39.5(0)
		CIV	24(0)	30(0)	49(0)	65.5(0)	76.5(0)	77(0)	82.5(0)	81.5(0)	75.5(0)
10	00	CI	56(0)	43(0)	49.5(0)	46.5(0)	67(0)	50.5(0)	46(0)	50(0)	53.5(0)
		CII	38.5(0)	34.5(0)	28.5(0)	42.5(0)	66.5(0)	42.5(0)	26.5(0)	34(0)	35.5(0)
		CIII	20.5(0)	14.5(0)	23(0)	57(0)	69.5(0)	68.5(0)	57(0)	54.5(0)	51.5(0)
[-1; 3]		CIV	28(0)	20(0)	26(0)	64.5(0)	63(0)	57.5(0)	60(0)	64(0)	65.5(0)
		CV	41.5(0)	28.5(0)	27(0)	46(0)	64(0)	43.5(0)	34.5(0)	28.5(0)	41.5(0)
		CIV	18(0)	14.5(0)	37(0)	59.5(0)	74.5(0)	77(0)	79.5(0)	84.5(0)	72(1)
50	00	CI	21(0)	7(0)	5(0)	9(0)	38.5(0)	11.5(0)	5.5(0)	5(0)	18.5(0)
		CII	14.5(0)	3(0)	5(0)	8.5(0)	34.5(0)	11(0)	6(0)	4.5(0)	8.5(0)
		CIII	7(0)	5(0)	12(0)	40.5(0)	64(0)	48.5(0)	27(0)	20.5(0)	20(0)
		CIV	2.5(0)	0.5(0)	2(0)	54(0)	41(0)	47.5(0)	35(0)	23.5(0)	30(0)
		CV	7(0)	5.5(0)	10(0)	6(0)	32.5(0)	10.5(0)	4(0)	6.5(0)	5.5(0)
		CIV	0.5(0)	1.5(0)	10.5(0)	26(0)	61.5(0)	91(0)	93(0)	83.5(0)	76.5(0)
50)	CI	55(0)	62(0)	72.5(0)	86(0)	94(0)	81.5(0)	64(0)	57.5(0)	54(0)
		CII	27(0)	42.5(0)	63.5(0)	81(0)	92.5(0)	79(0)	55.5(0)	41(0)	34(0)
		CIII	19.5(0)	27.5(0)	48(0)	71(0)	88.5(0)	84(0)	69(0)	58(0)	46.5(0)
		CIV	24(0)	38(0)	63(0)	82(0)	90(0)	87.5(0)	80(0)	73(0)	59.5(0)
		CV	33.5(0)	44.5(0)	62.5(0)	81(0)	93.5(0)	80(0)	56(0)	40(0)	32(0)
		CIV	26(0)	33.5(0)	53(0)	66(0)	84(0)	92.5(0)	87.5(0)	83.5(0)	79.5(1)
10	00	CI	55(0)	54.5(0)	74(0)	85.5(0)	98(0)	89.5(0)	71(0)	57(0)	51.5(0)
		CII	30(0)	39.5(0)	61(0)	74.5(0)	95(0)	69.5(0)	58(0)	42(0)	32(0)
[0; 2]		CIII	25.5(0)	28.5(0)	37.5(0)	81(0)	92(0)	81(0)	69(0)	58.5(0)	48.5(0)
		CIV	31(0)	33.5(0)	64.5(0)	88.5(0)	94(0)	92(0)	86(0)	76.5(0)	68(0)
		CV	31(0)	46(0)	49(0)	82(0)	91(0)	74.5(0)	53(0)	36(0)	27(0)
		CIV	22.5(0)	25(0)	57(0)	82(0)	91(0)	94.5(0)	94.5(0)	95.5(0)	80(0)
50	00	CI	50.5(0)	63.5(0)	87(0)	97(0)	100(0)	100(0)	85(0)	8.5(0)	29.5(0)
		CII	15(0)	19.5(0)	36.5(0)	78(0)	96(0)	74.5(0)	41.5(0)	17(0)	15.5(0)
		CIII	14.5(0)	5(0)	20(0)	86.5(0)	81.5(0)	72.5(0)	57(0)	36.5(0)	39.5(0)
		CIV	12.5(0)	31.5(0)	78.5(0)	97.5(0)	99.5(0)	100(0)	98.5(0)	91.5(0)	78(0)
		CV	15(0)	22.5(0)	42.5(0)	73(0)	91.5(0)	78(0)	37.5(0)	21(0)	14.5(0)
		CIV	3(0)	6.5(0)	45.5(0)	86.5(0)	98.5(0)	100(0)	100(0)	100(0)	98(0)

Tabela 6.4: Percentagem de vezes que o coeficiente \mathbb{R}^2 do modelo estimado usando o algoritmo CEM é superior (igual) ao mesmo coeficiente do modelo estimado quando se aplica o algoritmo EM, em misturas de duas regressões simples quando as verdadeiras rectas de regressão são concorrentes entre si

Casos	β_{01}	β_{02}	β_{03}	β_{11}	β_{12}	β_{13}	σ_1^2	σ_2^2	σ_3^2
I	-2	6	2	1	1	1	0.5^{2}	0.5^{2}	0.5^{2}
II	-1	1	0	1	1	1	0.2^{2}	0.2^{2}	0.2^{2}
III	-1	3	3	1	-1	1	0.5^{2}	1^2	0.3^{2}
IV	-1	3	2	1	1	0	0.5^{2}	1^2	0.3^{2}
V	-1	3	2	1	-1	0	0.5^{2}	1^{2}	0.3^{2}

Tabela 6.5: Verdadeiros valores dos parâmetros $\beta_j(j=1,2,3)$ e $\sigma_j^2(j=1,2,3)$ em misturas de três regressões lineares simples

Figura 6.5: Diagramas de dispersão de amostras de misturas de três regressões lineares simples $(n=100,\,\pi_1=0.4;\,\pi_2=0.3$ e $\pi_3=0.3)$

entanto, quando se diminui a distância entre as três rectas (situação II), observamos que as estimativas do desvio padrão e do erro quadrático médio são, em geral, menores quando recorremos ao algoritmo CEM para estimar o modelo. Por outro lado, nas situações III, IV e V, nas quais as verdadeiras rectas de regressão são perpendiculares ou concorrentes entre si, verificamos que as estimativas do valor absoluto do enviesamento médio, do desvio padrão e do erro quadrático médio são, em geral, maiores quando recorremos ao algoritmo CEM para estimar o modelo. Dos resultados apresentados, também podemos concluir que, quando a dimensão da amostra aumenta ou quando a amplitude do intervalo de valores da variável explicativa aumenta, a eficiência de ambos os estimadores melhora.

Em relação ao tempo de computação dos algoritmos propostos, como seria de esperar, em todas as situações estudadas o número médio de iterações necessárias à convergência do algoritmo é sempre menor quando se aplica o algoritmo CEM na estimação dos parâmetros desconhecidos do modelo.

Relativamente à qualidade de ajustamento dos dois modelos aos dados, apresentam-se na tabela 6.6, a percentagem de vezes que o coeficiente de determinação (R^2) do modelo estimado usando o algoritmo CEM era superior (igual) ao mesmo coeficiente do modelo

								π_1									
x	n	Casos	3					π_2	!								
			0.2	0.2	0.2	0.2	0.2	0.3	0.3	0.3	0.3	0.4	0.4	0.4	0.5	0.5	0.6
			0.2	0.3	0.4	0.5	0.6	0.2	0.3	0.4	0.5	0.2	0.3	0.4	0.2	0.3	0.2
	100	I	77.5	79.5	69.5	76	69	80	75.5	74.5	64.5	79	74	69	75.5	72.5	66
			(22)	(20.5)	(29)	(23.5)	(28.5)	(19)	(23.5)	(25)	(34)	(20)	(25.5)	(30)	(24.5)	(26.5)	(32)
		II	81	81	89	89	87	87.5	94.5	91	91.5	86	72	64	88.5	88.5	55.5
			(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)
		III	72	74.5	68.5	46.5	38.5	75	77	68.5	58	74	77.5	68.5	70	71	64.5
			(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)
		IV	94.5	93.5	87	68	56	92.5	87.5	80	60.5	92	74.5	61	86	65	67
			(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)
		V	84	87	77.5	48	22	82	80.5	69.5	49.5	86.5	73.5	50	78	67	67.5
$[-1; 3]_{_}$			(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)
	500	I	95	96	96.5	95	93	99	97	99	96	96.5	95.5	92	96.5	94	95
			(0.5)	(1.5)	(1.5)	(2)	(2)	(0)	(0)	(0.5)	(3)	(1.5)	(1.5)	(5.5)	(1)	(3.5)	(4.5)
		II	51.5	66	69	67.5	63	65	70.5	66.5	57.5	70.5	68	57	68.5	61.5	57
			(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)
		III	87.5	94.5	84.5	49.5	13	82	94	90.5	78.5	76	94.5	85.5	81	89	70
			(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)
		IV	100	99.5	95	77.5	41.5	99	98.5	77.5	40	96.5	87	45.5	95	57.5	76.5
			(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)
		V	99	99	95	45	2	98.5	100	80	21	97.5	95.5	49.5	97	75.5	89
			(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)
	100	I	81.5	77.5	74	79	70.5	72.5	79.5	70.5	66.5	80.5	78.5	63.5	78.5	64.5	68
				(20.5)		(21)	(29)					(17.5)		(36)	(20)	(33.5)	
		II	79	84.5	86	90.5	90	86	87	84	89.5	91.5	87	87.5	88	86	86
		***	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)
		III	80.5	85.5	79	67	45.5	86.5	84	80	72.5	74	89.5	83.5	79	83	79
		** *	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)
		IV	92	92	83	82.5	72.5	92	88.5	82	75.5	86	82	71	82.5	76	77.5
		3 7	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)
[1 0]		V	85	87	80	47	24	86.5	89	80	39	76.5	84	63.5	81.5	75	68
$[-1; 3]_{_}$	500	т	(0) 97	(0) 94.5	$\frac{(0)}{97}$	(0)	(0) 92	(0)	$\frac{(0)}{95.5}$	(0)	(0)	(0)	$\frac{(0)}{97.5}$	(0)	$\frac{(0)}{95.5}$	(0) 96	$\frac{(0)}{94}$
	900	1				96.5		95.5		97.5		93.5		96			-
		II	(0.5) 56.5	(1) 63	(1.5) 63	(2) 63	(4)	(1.5) 65.5	(1) 76.5	(0) 68	(5.5) 61	(0) 72	(1.5) 70.5	(3) 54.5	(2.5)	(3.5) 58	(3.5) 60
		11					60								64		
		III	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)
		111	98	96	93.5	83	57.5	96.5	99	98.5	93.5	97	98	100	92.5	99	91.5
		IV	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)
		1 V	100	100	99	94.5	69.5	99.5	100	96.5	87	99	98	86.5	94	88.5	88
			(0)	(0)	(0) 92	(0) 27	(0) 17	(0) 99	(0) 100	(0) 92	(0) 45	(0) 99	(0) 99	(0) 77	(0) 100	(0) 98	(0) 94
														11			94
		V	99 (0)	99	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)

Tabela 6.6: Percentagem de vezes que o coeficiente \mathbb{R}^2 do modelo estimado usando o algoritmo CEM é superior (igual) ao mesmo coeficiente do modelo estimado quando se aplica o algoritmo EM em misturas de três regressões simples

estimado quando se aplicava o algoritmo EM, em misturas de três regressões simples. Os resultados mostram claramente que o ajustamento do modelo obtido aplicando o algoritmo CEM é, em geral, melhor do que o obtido pelo algoritmo EM. As excepções surgem em algumas situações nas quais as proporções de mistura de duas componentes são pequenas ($\pi_1 = 0.2, \pi_2 = 0.6$). Relativamente aos dois intervalos de valores da variável explicativa usados neste estudo, não se verificam diferenças significativas entre os resultados obtidos.

6.5 Dados reais: descrição e resultados

Finaliza-se o trabalho deste capítulo com a aplicação dos algoritmos anteriores na estimação de misturas de regressões lineares a dois conjuntos de dados reais.

Figura 6.6: Diagrama de dispersão do número de plantas infectadas *versus* o número de insectos

O primeiro conjunto de dados reais foram os dados recolhidos por Cohen (1967) e descritos na secção 6.1 deste capítulo, onde foi apresentado o respectivo diagrama de dispersão (figura 6.1). Na tabela B.2 do apêndice B figuram esses dados relativos aos 150 músicos. A necessidade de estimar um modelo de mistura de duas regressões lineares para descrever o comportamento das duas variáveis já foi justificada na secção 6.1 deste capítulo.

O segundo conjunto de dados reais referem-se aos dados analisados em Turner (2000). Esses dados são relativos a um estudo da propagação de uma infecção em plantas de batatas contaminadas por insectos (ver detalhes em Boiteau et al. (1998)). Nesse estudo foram realizadas 51 experiências com o objectivo de analisar a relação entre o número de plantas contaminadas e o número de insectos. O respectivo diagrama de dispersão é apresentado na figura 6.6 e na tabela B.3 do apêndice B figuram esses dados relativos às 51 experiências. Da análise deste gráfico, visualiza-se uma "bifurcação" nos dados sugerindo a necessidade de se ajustar duas rectas distintas aos dados.

	EM	CEM
Dados dos músicos	0.9121	0.9107
Dados dos insectos	0.8610	0.8855

Tabela 6.7: Coeficiente \mathbb{R}^2 quando se aplica o algoritmo EM e o algoritmo CEM na estimação dos parâmetros das misturas de regressões

Para estes dois exemplos de dados reais, aplicámos os algoritmos EM e CEM para estimar um modelo de mistura de duas regressões simples e comparámos a qualidade de ajustamento dos modelos aos dados.

Vários valores aleatórios foram usados como valores iniciais nos algoritmos e foi aplicado o mesmo critério de paragem do estudo de simulação efectuado neste capítulo.

Na tabela 6.7 figura o coeficiente de determinação dos modelos ajustados aos dois conjuntos de dados reais aplicando os dois algoritmos referidos, para um dos valores aleatórios com que se inicializaram os algoritmos. Os resultados mostram claramente que ambos os modelos estimados se ajustam bem aos dados. No entanto, para o caso dos dados dos insectos, o ajustamento do modelo estimado aplicando o algoritmo CEM é ligeiramente melhor do que o do modelo estimado recorrendo ao algoritmo EM.

6.6 Comentários finais

Neste capítulo propomos um novo procedimento de estimação de modelos de mistura de regressões lineares recorrendo ao algoritmo EM de classificação (CEM).

Este algoritmo tem a vantagem de não só calcular as estimativas de máxima verosimilhança do vector dos parâmetros desconhecidos do modelo, como também estimar a componente a que pertence cada observação.

Os estudos numéricos efectuados mostram resultados encorajadores quanto à aplicação do algoritmo CEM para estimar modelos de mistura de regressões lineares, em especial nas situações em que as verdadeiras rectas de regressão componentes da mistura são paralelas entre si. Nessas situações, em particular, a eficiência dos estimadores obtidos usando o algoritmo CEM é superior.

Em todas as configurações estudadas, a qualidade de ajustamento do modelo obtido aplicando o algoritmo CEM é, em geral, superior à do modelo estimado usando o algoritmo EM.

Em todas as simulações realizadas, o número médio de iterações necessárias à convergência do algoritmo foi sempre menor quando se aplica o algoritmo CEM na estimação dos

6.6 Comentários finais

parâmetros desconhecidos do modelo.

No entanto em ambos os algoritmos, os resultados parecem depender fortemente da proporção de mistura e da configuração das verdadeiras rectas de regressão componentes da mistura.

Os resultados obtidos da aplicação dos dois algoritmos na estimação de modelos de mistura de regressões a conjuntos de dados reais evidenciam uma ligeira melhoria na qualidade de ajustamento do modelo estimado recorrendo ao algoritmo CEM.

Como conclusão, podemos afirmar que o algoritmo CEM é uma alternativa de interesse e sucesso em relação ao algoritmo EM na estimação de misturas de regressões lineares.

Capítulo 7

Novo Teste de Alteração da Estrutura

7.1 Introdução

As técnicas de diagnóstico têm desempenhado um papel primordial em análise de regressão, tendo-se assistido nas últimas duas décadas a um interesse crescente no seu estudo.

Essas técnicas têm como objectivo quer detectar as observações que parecem inconsistentes com o modelo de regressão estimado, quer identificar as observações que têm uma grande influência nas estimativas dos parâmetros do modelo de regressão.

As primeiras observações são designadas por *outliers* ou *observações discordantes*, ou seja,

Definição 7.1 Outlier é uma observação, ou conjunto de observações, que parecem inconsistentes com o modelo de regressão.

enquanto que as segundas são designadas por observações influentes, ou seja,

Definição 7.2 Observação Influente é uma observação, ou conjunto de observações, que têm uma grande influência nas estimativas dos parâmetros do modelo de regressão.

As técnicas de diagnóstico em análise de regressão combinam ferramentas gráficas tais como gráfico dos resíduos versus valores estimados, gráfico dos resíduos versus valores observados das variáveis explicativas, QQ-plot dos resíduos, entre outras, e ferramentas numéricas tais como Mahalanobis Distance, Cook's Distance, Welsch-Ku's Distance entre outras. Para um estudo aprofundado destas técnicas aconselha-se: Cook and Weisberg (1982), Rousseeuw and Leroy (1987) e Chatterjee and Hadi (1988). Desenvolvimentos mais

recentes de outras técnicas de diagnóstico podem ainda ser encontradas em, por exemplo, Hadi (1992), Hadi and Simonoff (1997) e Billor et al. (2001).

Todos estes trabalhos referem-se a técnicas de diagnóstico desenvolvidas em análise de regressão quando existe uma única relação linear. Contudo, em misturas de regressões lineares, têm também sido apresentadas algumas técnicas. De Veaux (1989) estimou um modelo de mistura de regressões lineares a um conjunto de dados reais recorrendo ao algoritmo EM e propôs um novo procedimento baseado na análise dos resíduos para detectar as observações outliers. Turner (2000) também aplicou o algoritmo EM para estimar um modelo de mistura de regressões lineares a um outro conjunto de dados reais e desenvolveu um novo método para se representar graficamente os resíduos em misturas de regressões lineares. Em particular, aplicou esse método ao gráfico dos resíduos versus valores estimados, ao gráfico dos resíduos versus valores observados das variáveis explicativas e ao QQ-plot dos resíduos.

Neste capítulo, vamos propor um teste para identificar observações *outliers* em modelos de mistura de regressões lineares. Um aspecto que interessa realçar neste teste é que, contrariamente às técnicas usuais, não se pretende detectar quais as observações do conjunto de dados iniciais que parecem inconsistentes com o modelo de regressão, mas sim testar se novas observações entretando obtidas podem ser consideradas *outliers* ao modelo estimado a partir do conjunto de observações iniciais.

Com o objectivo de ilustrar a aplicação deste teste em misturas de regressões lineares, apresentam-se alguns exemplos de aplicação recorrendo às amostras geradas no capítulo anterior desta dissertação a partir das quais se estimaram modelos de mistura de regressões lineares, aplicando o algoritmo CEM.

Este capítulo está estruturado da seguinte forma. Começamos por descrever o novo teste por nós desenvolvido para estudar se novas observações são compatíveis com o modelo de regressão estimado a partir de um conjunto de observações iniciais ou se podem ser consideradas *outliers* a esse modelo. De seguida, ilustra-se a aplicação desse teste em misturas de regressões lineares de duas e três componentes recorrendo às amostras geradas no capítulo anterior e analisam-se os resultados obtidos nos exemplos apresentados.

7.2 Novo teste

No contexto do modelo de regressão linear, dispomos de uma relação estimada a partir de um certo número de observações, que permite explicar o comportamento de uma variável resposta em função de determinadas variáveis explicativas. Por vezes, são obti7.2 Novo teste 141

das observações adicionais dessas variáveis e procura-se testar se as novas observações são compatíveis com o modelo de regressão estimado ou se podem ser consideradas *outliers* a esse modelo. Os testes que permitem estudar este problema, designam-se por *testes de alteração da estrutura* (ver, por exemplo, Johnston (1991, Cap. 5) e Murteira et al. (2001, pp.576-578)).

De seguida, descrevemos um novo teste deste tipo que desenvolvemos para o caso de modelos de mistura de regressões lineares. Este teste baseia-se na comparação entre o modelo de mistura estimado a partir do conjunto de observações iniciais e o modelo de mistura estimado a partir da totalidade das observações disponíveis (observações iniciais e observações novas).

7.2.1 Descrição do novo teste

Consideremos um modelo de mistura de g regressões lineares com n observações e k variáveis explicativas:

$$Y = X \beta_j + \epsilon_j$$
 com probabilidade π_j $(j = 1, ..., g)$ (7.1)

em que Y é a matriz de dimensão $n \times 1$ das observações da variável resposta, X é a matriz de dimensão $n \times (k+1)$ das observações das variáveis explicativas, β_j $(j=1,\ldots,g)$ é a matriz de dimensão $(k+1) \times 1$ dos coeficientes de regressão, g é o número de componentes da mistura, π_j $(j=1,\ldots,g)$ são as proporções de mistura com $0 < \pi_j < 1$ e $\sum_{j=1}^g \pi_j = 1$, e, finalmente, ϵ_{ji} $(j=1,\ldots,g$ $i=1,\ldots,n)$ são os erros aleatórios com distribuição que se supõe normal univariada de valor médio nulo e variância σ_j^2 $(j=1,\ldots,g)$. Assuma-se que a partir das n observações se estimou o modelo de mistura de regressões aplicando o algoritmo CEM.

Suponhamos que estão disponíveis L novas observações de todas as variáveis. Juntando as n observações iniciais com as L novas observações, forma-se um novo modelo, dado por:

$$Y = X \gamma_j + u_j$$
 com probabilidade π_j $(j = 1, ..., g)$ (7.2)

em que Y é a matriz de dimensão $(n+L)\times 1$ das observações da variável resposta, X é a matriz de dimensão $(n+L)\times (k+1)$ das observações das variáveis explicativas, γ_j $(j=1,\ldots,g)$ é a matriz de dimensão $(k+1)\times 1$ dos coeficientes de regressão, g é o número de componentes da mistura, π_j $(j=1,\ldots,g)$ são as proporções de mistura com $0<\pi_j<1$

e $\sum_{j=1}^{g} \pi_j = 1$, e, finalmente, u_{ji} $(j = 1, ..., g \ i = 1, ..., (n + L))$ são os erros aleatórios com distribuição que se supõe normal univariada de valor médio nulo e variância σ_j^2 (j = 1, ..., g). Assuma-se agora que a partir das n + L observações se estimou o modelo de mistura de regressões aplicando o algoritmo CEM.

Com o objectivo de verificarmos se as observações $n+1, n+2, \ldots, n+L$ são compatíveis com o modelo de mistura de regressões lineares inicialmente estimado ou se constituem *outliers* a esse modelo, propomos o seguinte teste:

Proposição 7.1 O teste de alteração da estrutura consiste em testar:

$$H_0: \beta_j = \gamma_j \ \forall j \in [1:g]$$

$$H_1: \exists j \in [1:g]: \beta_i \neq \gamma_j$$

$$(7.3)$$

e supondo que a hipótese nula é verdadeira, tem-se que a estatística-teste:

$$F = \frac{\frac{S^* - S}{L}}{\frac{S}{n - q \times (k+1)}} \sim F(L, n - g \times (k+1))$$
 (7.4)

em que

$$S^* = \sum_{j=1}^{g} \frac{SQR_j^*}{\sigma_j^2} \tag{7.5}$$

onde SQR_j^* é a soma dos quadrados dos resíduos no modelo de mistura de regressões estimado a partir das n+L observações, em que aplicando o algoritmo CEM é definida por:

$$SQR_j^* = \sum_{i=1}^{n_j^*} (y_i - x_i \, \hat{\gamma}_j)^2$$
 (7.6)

em que n_j^* é o número total de observações pertencentes à j-ésima componente de mistura, e

$$S = \sum_{j=1}^{g} \frac{SQR_j}{\sigma_j^2} \tag{7.7}$$

onde SQR_j é a soma dos quadrados dos resíduos no modelo de mistura de regressões estimado a partir das n observações, em que aplicando o algoritmo CEM é definida por:

$$SQR_j = \sum_{i=1}^{n_j} \left(y_i - x_i \, \hat{\beta}_j \right)^2 \tag{7.8}$$

em que n_j é o número total de observações pertencentes à j-ésima componente de mistura.

Demonstração: Atendendo a que (ver Chatterjee et al. (2000, pp.80-84)):

$$\frac{SQR_j^*}{\sigma_j^2} \sim \chi_2(n_j^* - (k+1))$$
 (7.9)

e uma vez que S^* é a soma de g variáveis aleatórias independentes com distribuição qui-quadrado tem-se:

$$S^* = \sum_{j=1}^g \frac{SQR_j^*}{\sigma_j^2} \sim \chi_2((n+L) - g \times (k+1))$$
 (7.10)

Do mesmo modo, tem-se:

$$\frac{SQR_j}{\sigma_i^2} \sim \chi_2(n_j - (k+1))$$
 (7.11)

e

$$S = \sum_{j=1}^{g} \frac{SQR_j}{\sigma_j^2} \sim \chi_2(n - g \times (k+1))$$
 (7.12)

Facilmente se obtém:

$$S^* - S \sim \chi_2(L) \tag{7.13}$$

e uma vez que o quociente entre duas variáveis aleatórias qui-quadrado independentes, cada qual dividida pelo respectivo número de graus de liberdade, é uma variável aleatória com distribuição F, tem-se:

$$F = \frac{\frac{S^* - S}{L}}{\frac{S}{n - g \times (k+1)}} \sim F(L, n - g \times (k+1))$$
 (7.14)

como o queríamos demonstrar.

Com o objectivo de ilustrar a aplicação do teste em misturas de g regressões lineares, vamos de seguida apresentar alguns exemplos.

7.3 Aplicação do novo teste

7.3.1 Descrição da aplicação

Para apresentar estes exemplos, recorremos às amostras geradas no capítulo anterior, às quais estimámos modelos de mistura de duas e três regressões lineares simples aplicando o algoritmo CEM. De alguns dos casos estudados e descritos nesse capítulo, escolhemos aleatoriamente três amostras de dimensão n (no caso de duas componentes de mistura

tínhamos n = 50, n = 100 e n = 500, no caso de três componentes de mistura considerámos n = 100 e n = 500) e inserimos L novas observações que pretendíamos testar se eram compatíveis com o modelo de mistura estimado ou se constituíam *outliers* a esse modelo.

Nestes exemplos, consideremos que as L novas observações foram sempre introduzidas na primeira componente de mistura. Além disso, nos casos em que as verdadeiras rectas de regressão componentes da mistura se intersectam, as L novas observações foram inseridas em posições afastadas desse ponto de intersecção.

Três diferentes situações foram consideradas relativamente às L novas observações introduzidas:

Situação I: as L novas observações constituem outliers ao modelo estimado;

Situação II: as L novas observações pertenciam ao modelo inicialmente estimado;

 $Situação \ III$: algumas das L novas observações pertenciam ao modelo estimado e outras constituem outliers a esse modelo.

Em seguida, vamos descrever como foram introduzidas as novas observações em cada uma das situações. Relembremos apenas, que temos os dados na forma:

$$(y_i, x_i) (7.15)$$

em que y_i é o valor observado da variável resposta para a i-ésima observação e x_i é o correspondente valor observado das variáveis explicativas.

Situação I

Nesta situação, consideramos três valores para L, ou seja, L=1, L=2 e L=5 e introduzimos as novas observações (y_i,x_i) usando o seguinte procedimento:

1. Gerar x_i (i = n + 1, ..., n + L) com distribuição uniforme no intervalo (a, b).

Quando as verdadeiras rectas de regressão componentes da mistura eram paralelas entre si, considerar a=-1 e b=3 ou a=0 e b=2, de acordo com o intervalo de valores da variável explicativa. Relativamente às outras posições relativas entre as verdadeiras rectas de regressão componentes da mistura, os valores de a e b dependiam da posição do ponto de intersecção da primeira componente da mistura com as outras componentes de mistura.

2. Determinar y_i dado por (ver, Hadi and Simonoff (1993)):

$$y_i = \beta_{10} + \beta_{11} x_i - 3 \quad (i = n + 1, \dots, n + L)$$
 (7.16)

No entanto, nos casos designados por CI, CII e CIII de misturas de duas regressões lineares em que as verdadeiras rectas de regressão são concorrentes entre si, determinar y_i dado por:

$$y_i = \beta_{10} + \beta_{11} x_i + 3 \quad (i = n+1, \dots, n+L)$$
 (7.17)

Para ilustrar esta situação, alguns casos são apresentados na figura 7.1 onde se visualizam os diagramas de dispersão de amostras de dimensão n=100 geradas no capítulo anterior com L=2 novas observações. As observações iniciais são representadas por cruzes (\times) , enquanto que as novas observações são representadas por pontos (\bullet) .

Figura 7.1: Diagramas de dispersão de amostras de dimensão $n=100~{\rm com}~L=2$ novas observações (Situação I)

Situação II

Considerámos apenas dois valores para L, ou seja, L=1 e L=2 e introduzimos as novas observações (y_i,x_i) usando o procedimento descrito na secção 6.4.1 do capítulo anterior para gerar cada observação. Resumidamente, este procedimento consistiu:

- 1. Gerar x_i (i = n + 1, ..., n + L) com distribuição uniforme no intervalo (a, b), em que, a = -1 e b = 3 ou a = 0 e b = 2, de acordo com o intervalo de valores da variável explicativa.
 - 2. Gerar ϵ_{1i} com distribuição normal de valor médio nulo e variância σ_1^2 .
 - 3. Determinar y_i dado por:

$$y_i = \beta_{10} + \beta_{11} \ x_i + \epsilon_{1i} \quad (i = n+1, \dots, n+L)$$
 (7.18)

Situação III

Nesta situação, considerámos apenas L=2 e introduzimos as duas novas observações (y_i,x_i) do seguinte modo: na geração da primeira observação nova, usámos o procedimento apresentado na situação I enquanto que na geração da segunda observação, aplicámos o método descrito na situação II.

Para ilustrar esta situação, alguns casos são apresentados na figura 7.2 onde se visualizam os diagramas de dispersão de amostras de dimensão n=100 geradas no capítulo anterior com L=2 novas observações. As observações iniciais são representadas por cruzes (\times) , enquanto que as novas observações são representadas por pontos (\bullet) .

Figura 7.2: Diagramas de dispersão de amostras de dimensão $n=100~{\rm com}~L=2$ novas observações (Situação III)

Para cada uma das três amostras de dimensão n escolhidas aleatoriamente de alguns dos casos e depois de gerarmos as L novas observações de cada uma das situações, aplicámos o teste de alteração da estrutura que desenvolvemos para o caso de misturas de regressões lineares.

Começámos por estimar os modelos de mistura de g regressões lineares simples com e sem as novas observações, aplicando o algoritmo CEM. De seguida, obtivemos as respectivas somas dos quadrados dos resíduos, calculámos o valor da estatística-teste e o valor-p associado.

7.4 Comentários finais 147

7.3.2 Resultados da aplicação

Comecemos por analisar os valores-p obtidos nos testes em misturas de duas regressões lineares simples. Devido ao elevado número de tabelas dos resultados, optámos por apresentar esses valores nas tabelas E.1 a E.16 do apêndice E.

Da análise destas tabelas, concluímos que não se verificam diferenças significativas entre os resultados obtidos nas três diferentes configurações para as verdadeiras rectas de regressão componente da mistura. Deste modo, observamos que, na situação I, ou seja, quando as L novas observações constituem outliers ao modelo de mistura inicialmente estimado, os valores-p são muito pequenos levando-nos a rejeitar a hipótese de as novas observações serem compatíveis com o modelo de mistura estimado sem essas observações. Nesta situação, observamos ainda que à medida que o valor de L aumenta, em geral, os valores-p vão diminuindo. Do mesmo modo, à medida que a dimensão da amostra aumenta, em geral, os valores-p vão diminuindo. Relativamente à situação II, ou seja, quando as L novas observações pertenciam ao modelo de mistura inicialmente estimado, observamos que os valores-p são superiores a 1% e concluímos que, ao nível de 1%, não se rejeita a hipótese de as novas observações serem compatíveis com o modelo de mistura estimado sem essas observações. Finalmente, na situação III, em que algumas das L novas observações pertenciam ao modelo de mistura estimado e outras constituem outliers, os resultados apresentados também nos mostram que os valores-p são muito pequenos levando-nos a rejeitar a hipótese de as novas observações serem compatíveis com o modelo de mistura inicialmente estimado. Relativamente aos dois intervalos de valores da variável explicativa usados no estudo do capítulo anterior, não se verificam diferenças significativas entre os resultados obtidos.

De seguida, vamos analisar os valores-p obtidos nos testes em misturas de três regressões lineares simples. Uma vez mais, devido ao elevado número de tabelas desses resultados, optámos por apresentar esses valores nas tabelas E.17 a E.22 do apêndice E.

Em misturas de três regressões lineares simples e nas três situações consideradas, foram obtidos resultados análogos aos observados em misturas de duas regressões lineares simples.

7.4 Comentários finais

No capítulo anterior propusemos um novo procedimento de estimação de modelos de mistura de regressões lineares recorrendo ao algoritmo EM de classificação, CEM. Neste capítulo, para o caso desses modelos de misturas estimados aplicando aquele novo procedimento, desenvolvemos um teste para estudar se novas observações entretanto obtidas são compatíveis com o modelo estimado a partir do conjunto de observações iniciais ou se

podem ser consideradas outliers a esse modelo.

Os resultados obtidos nos exemplos escolhidos para ilustrar a aplicação deste teste, permitem afirmar que é um teste adequado para identificar, em misturas de regressões lineares, se novas observações entretanto obtidas constituem *outliers* ao modelo de mistura estimado a partir do conjunto de observações iniciais. Podemos ainda afirmar que os resultados parecem não depender da proporção de mistura e da configuração das verdadeiras rectas de regressão.

Realça-se ainda que outros exemplos de aplicação do teste, em misturas de duas e três regressões lineares simples, estudados no capítulo anterior, poderiam ter sido apresentados, verificando-se em todos o mesmo tipo de comportamento.

Capítulo 8

Conclusões

O trabalho desenvolvido nesta dissertação incidiu fundamentalmente sobre dois temas de investigação: os modelos de regressão em misturas de distribuições de componentes normais bidimensionais e os modelos de mistura de regressões simples lineares. No primeiro modelo, como foi demonstrado no capítulo 5, a distribuição marginal da variável explicativa é uma mistura de distribuições normais univariadas, ou é mesmo a distribuição normal univariada no caso dos parâmetros de todas as distribuições componentes da mistura serem iguais. No segundo modelo não se conceptualiza a variável explicativa como uma variável aleatória portanto não se especifica nenhuma distribuição para a variável explicativa.

Neste capítulo apresentam-se as principais conclusões e contribuições resultantes do trabalho realizado assim como algumas sugestões de trabalho futuro.

8.1 Contribuições do trabalho

Relativamente ao primeiro trabalho, relacionado com Misturas de Distribuições, da análise realizada sobre os momentos destas misturas concluiu-se que as relações entre o valor médio e o desvio padrão, e entre o coeficiente de assimetria e o coeficiente de achatamento, apresentam comportamentos geométricos característicos. Estes comportamentos proporcionam um método gráfico eficaz para detectar a presença de misturas de distribuições em dados provenientes de sistemas com coexistência de várias fases.

No par aleatório mistura de componentes normais bidimensionais (X_1, X_2) , os estudos efectuados permitiram concluir que a regressão de X_2 em X_1 é a média ponderada dos valores esperados de X_2 condicionais aos valores observados de X_1 em cada uma das componentes da mistura. Os pesos são as probabilidades condicionais dos valores observados de X_1 pertencerem a cada componente da mistura. Do mesmo modo, a regressão de X_1 em X_2 é a média ponderada dos valores esperados de X_1 condicionais aos valores observados de X_2

150 Conclusões

em cada uma das componentes da mistura. Os pesos são as probabilidades condicionais dos valores observados de X_2 pertencerem a cada componente da mistura. Concluiu-se ainda que a linearidade da regressão de X_2 em X_1 ou, de X_1 em X_2 , nem sempre é verificada.

Uma solução simples para tratar o problema da não linearidade da regressão em modelos de mistura de distribuições binormais é o uso de funções lineares alternativas, uma vez que é possivel ajustar um modelo linear a cada componente da mistura. Por outro lado, os estudos efectuados mostraram claramente que quando se ajusta um modelo linear a cada componente da mistura se obtém um melhor ajustamento aos dados.

A estimação de uma curva de regressão, a partir de um conjunto de observações é, geralmente realizada recorrendo a técnicas não paramétricas. Com base no estudo do modelo de regressão em misturas de distribuições normais bidimensionais, neste trabalho é sugerido um método paramétrico que se mostrou eficiente na estimação dessas curvas nos exemplos apresentados.

Na literatura existente sobre modelos de mistura de regressões lineares, o método da máxima verosimilhança recorrendo ao algoritmo Expectation Maximization (EM) tem sido o método mais aplicado na estimação dos parâmetros destes modelos. Neste trabalho é proposto um novo procedimento que utiliza o algoritmo EM de classificação (CEM) para determinar as estimativas de máxima verosimilhança destes parâmetros. As propriedades dos estimadores obtidos pelos dois algoritmos em situações práticas onde as misturas de regressões lineares são adequadas, foram comparadas em termos do enviesamento, da eficiência assintótica, da qualidade de ajustamento do modelo aos dados e do tempo de computação. O estudo efectuado leva-nos a considerar a aplicação do algoritmo CEM na estimação dos parâmetros destas misturas, em especial nas situações em que as verdadeiras rectas de regressão componentes da mistura são paralelas entre si, uma alternativa de interesse em relação ao algoritmo EM.

Neste trabalho foi ainda desenvolvido um novo teste para identificar observações outliers em misturas de regressões lineares. Contrariamente às técnicas de diagnóstico usualmente empregues em análise de regressão, não se pretendia detectar quais as observações do conjunto de dados iniciais inconsistentes com o modelo de regressão estimado. Neste caso, o objectivo era testar se novas observações entretando obtidas podiam ser consideradas outliers ao modelo de mistura estimado a partir do conjunto de observações iniciais. A aplicação desse novo teste em misturas de regressões lineares permitiu concluir que é adequado para identificar se novas observações constituem outliers ao modelo de mistura estimado a partir do conjunto de observações iniciais.

8.2 Trabalho futuro 151

8.2 Trabalho futuro

No que respeita a sugestões de trabalho futuro, é de considerar o estudo do modelo de regressão no vector aleatório mistura de componentes normais multivariadas. Isto porque, apesar da complexidade no tratamento matemático dos valores esperados condicionais e das variâncias condicionais que se encontrará neste estudo, será possível estimar a curva de regressão em situações de maior interesse prático e mais frequentes em dados reais. Nomeadamente, permitirá aplicar o método paramétrico proposto na secção 5.5 do capítulo 5 a dados tridimensionais ou de dimensão superior.

Relativamente ao modelo de mistura de regressões lineares, e tendo em conta os resultados obtidos neste trabalho, será de interesse abordar em trabalho futuro os temas que se referem a seguir.

Como foi referido nesta dissertação, uma das principais desvantagens dos algoritmos EM e CEM é a forte dependência dos valores iniciais dos parâmetros nas estimativas finais desses parâmetros. Torna-se por isso necessário comparar várias estratégias para se obter os valores iniciais dos parâmetros quando se aplicam estes algoritmos na estimação destas misturas.

Um problema de grande importância e de difícil tratamento em modelos de mistura é o de identificar o número de componentes da mistura. Será por isso pertinente explorar este assunto no caso de misturas de regressões lineares usando, nomeadamente, métodos que recorram à soma dos quadrados dos resíduos.

O problema da estimação de modelos de mistura de regressões lineares múltiplas constituem seguramente tema de investigação futura, parecendo-nos fundamental elaborar um estudo de simulação semelhante ao realizado no capítulo 6 desta dissertação , com o objectivo de se comparar o desempenho dos estimadores obtidos pelo algoritmo EM e pelo algoritmo CEM nestas misturas.

Para concluir, no contexto das técnicas de diagnóstico em misturas de regressões lineares, há várias linhas de investigação futura a considerar. Em particular, na detecção de observações que pareçam inconsistentes com o modelo de regressão, deverão explorar-se novos métodos recorrendo, nomeadamente, à função de verosimilhança.

152 Conclusões

Apêndice A

Gráficos dos Momentos de Misturas de Distribuições

Figura A.1: Desvio padrão amostral vs média amostral em amostras de $(1-\pi) \phi (0,1) + \pi \phi (4,4)$ (n=10)

Figura A.2: Desvio padrão amostral vs média amostral em amostras de $(1-\pi) \phi(0,1)+\pi \phi(2,1)$ (n=10)

Apêndice A

Figura A.3: Desvio padrão amostral vs média amostral em amostras de $(1-\pi) \phi(0,1)+\pi \phi(4,4)$ (n=500)

Figura A.5: Desvio padrão amostral vs média amostral em amostras de $(1-\pi)~U(0,2)+\pi~U(1,4)(n=10)$

Figura A.7: Desvio padrão amostral vs média amostral em amostras de $(1-\pi)~U~(0,2)+\pi~U~(1,4)(n=500)$

Figura A.4: Desvio padrão amostral vs média amostral em amostras de $(1-\pi) \phi(0,1)$ + $\pi \phi(2,1)$ (n=500)

Figura A.6: Desvio padrão amostral vs média amostral em amostras de $(1-\pi)~U~(0,2)+\pi~U~(2,4) (n=10)$

Figura A.8: Desvio padrão amostral vs média amostral em amostras de de $(1-\pi)~U~(0,2)+\pi~U~(2,4)(n=500)$

Figura A.9: Desvio padrão amostral vs média amostral em amostras de $(1-\pi)$ $G(1,2)+\pi$ G(2,2) (n=10)

Figura A.11: Desvio padrão amostral vs média amostral em amostras de $(1-\pi)$ $G(1,2)+\pi$ G(2,2) (n=500)

Figura A.13: Desvio padrão amostral vs média amostral em amostras de 0.5 $U(0,2)+0.5\ U(1,4)\ (n=100)$

Figura A.10: Desvio padrão amostral vs média amostral em amostras de $(1-\pi)$ $G(1,2) + \pi$ G(4,4)(n=10)

Figura A.12: Desvio padrão amostral vs média amostral em amostras de $(1-\pi)~G(1,2)+\pi~G(4,4)$ (n=500)

Figura A.14: Desvio padrão amostral vs média amostral em amostras de 0.5 U(0,2) + 0.5 U(2,4) (n = 100)

Figura A.15: Desvio padrão amostral vs média amostral em amostras de 0.5~G~(1,2)+0.5~G~(2,2)~(n=100)

Figura A.17: Coef. de achatamento vs coef. de assimetria em amostras de $(1-\pi) \phi(0,1) + \pi \phi(4,4)$ (n=10)

Figura A.19: Coef. de achatamento vs coef. de assimetria em amostras de $(1-\pi) \phi(0,1) + \pi \phi(4,4)$ (n=500)

Figura A.16: Desvio padrão amostral v
s média amostral em amostras de 0.5 G(1,2) + 0.5 G(4,4) (n=100)

Figura A.18: Coef. de achatamento vs coef. de assimetria em amostras de $(1-\pi) \phi(0,1) + \pi \phi(2,1)$ (n=10)

Figura A.20: Coef. de achatamento vs coef. de assimetria em amostras de $(1-\pi)\,\phi\,(0,1)+\pi\,\,\phi\,(2,1)$ (n=500)

Figura A.21: Coef. de achatamento vs coef. de assimetria em amostras de $(1-\pi)~U~(0,2)+\pi~U~(1,4)(n=10)$

Figura A.23: Coef. de achatamento vs coef. de assimetria em amostras de $(1-\pi)~U~(0,2)+\pi~U~(1,4)(n=500)$

Figura A.25: Coef. de achatamento vs coef. de assimetria em amostras de $(1-\pi)$ $G(1,2)+\pi$ G(2,2) (n=10)

Figura A.22: Coef. de achatamento vs coef. de assimetria em amostras de $(1-\pi)$ $U(0,2) + \pi$ U(2,4)(n=10)

Figura A.24: Coef. de achatamento vs coef. de assimetria em amostras de $(1-\pi)~U~(0,2)+\pi~U~(2,4)(n=500)$

Figura A.26: Coef. de achatamento vs coef. de assimetria em amostras de $(1-\pi)$ $G(1,2) + \pi$ G(4,4)(n=10)

Apêndice A

Figura A.27: Coef. de achatamento vs coef. de assimetria em amostras de $(1-\pi)$ $G(1,2)+\pi$ G(2,2) (n=500)

Figura A.29: Coef. de achatamento v
s coef. de assimetria em amostras de 0.5 U(0,2) + 0.5 U(1,4)(n=100)

Figura A.31: Coef. de achatamento vs coef. de assimetria em amostras de 0.5~G(1,2) + 0.5~G(2,2)~(n=100)

Figura A.28: Coef. de achatamento vs coef. de assimetria em amostras de $(1-\pi)~G(1,2)+\pi~G(4,4)$ (n=500)

Figura A.30: Coef. de achatamento vs coef. de assimetria em amostras de 0.5~U~(0,2) + 0.5~U~(2,4)(n=100)

Figura A.32: Coef. de achatamento vs coef. de assimetria em amostras de 0.5 G(1,2) + 0.5 G(4,4)(n=100)

Apêndice B

Dados

 $Ap \hat{e}ndice~B$

	Quantidade	Concentração	Temperatura	Velocidade
	de radiação	de ozono		do vento
-	190	41	7.4	67
	118	36	8	7.2
	149	12	12.6	74
	313 299	18 23	1.15 8.6	62 65
	99	23 19	13.8	59
	19	8	20.1	61
	256 290	16 11	$9.7 \\ 9.2$	69 66
	274	14	10.9	68
	65	18	13.2	58
	334 307	14 34	$\frac{11.5}{12}$	64 66
	78	6	18.4	57
	322	30	11.5	68
	0.44 8	11 1	$\frac{6.7}{9.7}$	62 59
	320	11	16.6	73
	25	4	9.7	61
	92 13	32 23	$\frac{12}{12}$	61 67
	252	45	14.9	81
	223	115	5.7	79
	$\frac{279}{127}$	37 29	$7.4 \\ 14.3$	76 82
	291	71	13.8	90
	323	39	11.5	87
	$\frac{148}{191}$	23 21	8 14.9	82 77
	284	37	20.7	72
	37	20	9.2	65
	$\frac{120}{137}$	12 13	$11.5 \\ 10.3$	73 76
	269	135	4	87
	248	49	9.2	85
	$\frac{236}{175}$	$\frac{32}{64}$	9.2 4.6	81 83
	314	40	10.9	83
	276	77	5.1	88
	$\frac{267}{272}$	97 97	$6.3 \\ 5.7$	92 92
	175	85	7.4	89
	264	10	14.3	73
	175 48	27 7	14.9 14.3	81 80
	260	48	6.9	81
	274	35	10.3	82
	$\frac{285}{187}$	61 79	$6.3 \\ 5.1$	84 87
	220	63	11.5	85
	$\frac{7}{294}$	16	6.9 8.6	74
	223	80 108	8	86 85
	81	20	8.6	82
	82 213	52 82	$\frac{12}{7.4}$	86 88
	2.75	50	7.4	86
	253	64	7.4	83
	$\frac{254}{167}$	59 96	9.2 6.9	81 91
	197	78	5.1	92
	183	73	2.8	93
	189 95	91 47	$\frac{4.6}{7.4}$	93 87
	92	32	15.5	84
	$\frac{252}{220}$	20 23	10.9	80 78
	230	23 21	10.3 10.9	78 75
	259	24	9.7	73
	236 259	$\frac{44}{21}$	14.9 15.5	81 76
	238	28	6.3	77
	24	9	10.9	71
	$\frac{112}{237}$	13 46	11.5 6.9	71 78
	224	18	13.8	67
	27	13	10.3	76
	238 201	24 16	10.3 8	68 82
	238	13	12.6	64
	14	23	9.2	71
	139 49	36 7	10.3 10.3	81 69
	20	14	16.6	63
	193	30	6.9	70
	191 131	14 18	14.3 8	75 76
	22.3	20	11.5	68

Tabela B.1: Dados relativos às características ambientais na área metropolitana de Nova Iorque

Dados 161

Músico	Som emitido	Som Compreendido	Músico	Som emitido	Som Compreendido
1	1.350	1.461	76	2.070	2.047
2	1.400	1.407	77	2.100	2.094
3	1.450	1.452	78	2.200	2.171
4	1.500	1.300	79	2.300	2.290
5	1.550	1.351	80	2.350	1.906
6	1.900	1.900	81	2.400	2.001
7	1.910	1.913	82	2.450	2.008
8	1.930	1.927	83	2.500	1.993
9	1.950	1.947	84	2.600	2.009
10	1.970	1.969	85	2.700	2.363
11	1.990	1.990	86	2.750	2.105
12	2.000	1.999	87	2.800	1.979
13	2.010	2.009	88	2.850	1.937
14	2.030	2.038	89	2.900	2.068
15	2.030	2.046	90	3.000	2.030
16	2.070	2.067	91	1.350	2.018
17	2.100	2.108	92	1.400	2.036
18	2.200	2.199	93 94	1.450	2.025
19	2.300	2.301		1.500	1.994
$\frac{20}{21}$	2.350	2.358	95 96	1.550	2.010
22	2.400	2.400 2.453	97	1.900	1.901
23	2.450		98	1.910	1.911 1.923
23 24	2.500 2.600	2.502 2.399	99	1.930 1.950	1.950
25	2.700	2.696	100	1.970	1.978
25 26	2.750	2.751	100	1.990	1.978
27 27	2.800	2.800	101	2.000	2.001
28	2.850	2.851	102	2.010	2.010
29	2.900	2.900	104	2.030	2.031
30	3.000	3.000	105	2.050	2.035
31	1.350	2.021	106	2.070	2.071
32	1.400	2.013	107	2.100	2.108
33	1.450	2.028	108	2.200	2.011
34	1.500	2.008	109	2.300	2.026
35	1.550	2.027	110	2.350	2.023
36	1.900	1.928	111	2.400	1.974
37	1.910	1.939	112	2.450	2.000
38	1.930	1.977	113	2.500	2.010
39	1.950	1.900	114	2.600	2.015
40	1.970	1.976	115	2.700	2.054
41	1.990	2.008	116	2.750	2.061
42	2.000	1.906	117	2.800	2.015
43	2.010	2.005	118	2.850	2.036
44	2.030	2.018	119	2.900	2.028
45	2.050	2.041	120	3.000	2.014
46	2.070	2.057	121	1.350	1.997
47	2.100	2.095	122	1.400	1.905
48	2.200	2.066	123	1.450	1.997
49	2.300	2.014	124	1.500	1.964
50	2.350	2.019	125	1.550	2.008
51	2.400	2.000	126	1.900	1.941
52 53	2.450	2.033	127	1.910	1.960 1.968
53 54	2.500 2.600	$2.506 \\ 2.042$	128 129	1.930	1.976
55	2.700	2.701	130	1.950 1.970	1.903
56	2.750	2.414	131	1.990	1.997
57	2.800	2.704	132	2.000	2.007
58	2.850	2.035	133	2.010	2.007
59	2.900	2.070	134	2.030	2.037
60	3.000	3.494	135	2.050	2.091
61	1.350	1.846	136	2.070	2.073
62	1.400	1.970	137	2.100	2.096
63	1.450	1.971	138	2.200	1.904
64	1.500	1.970	139	2.300	2.007
65	1.550	2.046	140	2.350	2.025
66	1.900	1.904	141	2.400	2.037
67	1.910	1.915	142	2.450	2.038
68	1.930	1.925	143	2.500	2.047
69	1.950	1.749	144	2.600	2.023
70	1.970	1.972	145	2.700	2.076
71	1.990	1.996	146	2.750	2.066
72	2.000	2.003	147	2.800	2.426
73	2.010	2.007	148	2.850	2.117
74	2.030	2.027	149	2.900	2.097
75	2.050	2.053	150	3.000	2.910

Tabela B.2: Dados dos músicos: som emitido e som compreendido por um músico

Apêndice B

Experiência	Nº insectos	Nº plantas
1	1	5
2	5	5
3	2	1
4	4	1
5	9	1
6	14	0
7	5	0
8	9	1
9	14	1
10	6	1
11	8	1
12	2	0
13	80	5
14	57	12
15	317	24
16	80	9
17	57	13
18	315	27
19	40	7
20	80	9
21	160	14
22	40	7
23	80	3
24	155	10
25	80	10
26	40	4
27	156	9
28	80	10
29	40	4
30	20	2
31	100	0
32	120	3
33	120	1
34	317	1
35	160	1
36	80	0
37	120	6
38	96	8
39	97	2
40	120	0
41	160	0
42	120	0
43	160	2
44	320	0
45	79	0
46	200	3
47	300	17
48	250	15
49	196	4
50	296	17
51	247	2

Tabela B.3: Dados dos insectos: número de insectos e número de plantas infectadas

Apêndice C

Algumas Demonstrações

Provar a Proposição 5.7

A regressão de X_2 em X_1 é linear quando a derivada de $E(X_2|_{X_1=x_1})$ em ordem a x_1 é uma constante.

Derivando a expressão (5.43) em ordem a x_1 vem

$$\frac{dE(X_2|_{X_1=x_1})}{dx_1} = \sum_{j=1}^g w_j \left(\rho_j \frac{\sigma_{2j}}{\sigma_{1j}} \right) + \sum_{i=1}^g \sum_{j:j>i}^g w_i w_j \left(\frac{x_1 - \mu_{1j}}{\sigma_{1j}^2} - \frac{x_1 - \mu_{1i}}{\sigma_{1i}^2} \right) \times \left(\mu_{2i} + (x_1 - \mu_{1i})\rho_i \frac{\sigma_{2i}}{\sigma_{1i}} - \left(\mu_{2j} + (x_1 - \mu_{1j})\rho_j \frac{\sigma_{2j}}{\sigma_{1j}} \right) \right) \tag{C.1}$$

Esta expressão é uma constante se a primeira parcela é uma constante e a segunda parcela é nula.

A primeira parcela dada por:

$$\sum_{j=1}^{g} w_j \left(\rho_j \frac{\sigma_{2j}}{\sigma_{1j}} \right) = \sum_{j=1}^{g} \frac{\pi_j f_j(x_1)}{f(x_1)} \left(\rho_j \frac{\sigma_{2j}}{\sigma_{1j}} \right)$$

é uma constante se:

Situação I

$$\forall i, j \in \{1, \dots, g\} : f_j(x_1) = f_i(x_1) \ \forall x_1 \in \mathbb{R},$$
 (C.2)

ou seja, se

$$\forall i, j \in \{1, \dots, g\} : \mu_{1j} = \mu_{1i} \wedge \sigma_{1j}^2 = \sigma_{1i}^2 \text{ (ver demonstração seguinte)}$$
 (C.3)

Neste caso, o factor $\left(\frac{x_1-\mu_{1j}}{\sigma_{1j}^2}-\frac{x_1-\mu_{1i}}{\sigma_{1i}^2}\right)$ da segunda parcela anula-se e consequentemente a segunda parcela. Tem-se

$$\frac{dE(X_2|_{X_1=x_1})}{dx_1} = \sum_{j=1}^g \pi_j \left(\rho_j \frac{\sigma_{2j}}{\sigma_{1j}} \right) = \text{constante}$$

Situação II

$$\forall i, j \in \{1, \dots, g\}: \ \rho_j \frac{\sigma_{2j}}{\sigma_{1j}} = \rho_i \frac{\sigma_{2i}}{\sigma_{1i}}$$
 (C.4)

o que anula a segunda parcela se

$$\forall i, j \in \{1, \dots, g\}: \ \mu_{2j} = (\mu_{1j} - \mu_{1i}) \rho_j \frac{\sigma_{2j}}{\sigma_{1j}} + \mu_{2i}$$
 (C.5)

Tem-se:

$$\frac{dE(X_2|_{X_1=x_1})}{dx_1} = \rho_j \frac{\sigma_{2j}}{\sigma_{1j}} = \text{constante}$$

Fica assim demonstrado que a regressão de X_2 em X_1 é linear nas duas situações referidas.

Provar que $f_j(x_1)=f_i(x_1)$ $\forall x_1\in\mathbb{R},\ \forall i,j\in\{1,\ldots,g\}$ é equivalente a $\mu_{1j}=\mu_{1i}\ e\ \sigma_{1j}^2=\sigma_{1i}^2\ \forall i,j\in\{1,\ldots,g\}$

$$\begin{split} & \frac{1}{\sqrt{2\pi}\sigma_{1j}} \exp\left\{-\frac{1}{2}\left(\frac{x_1-\mu_{1j}}{\sigma_{1j}}\right)^2\right\} = \frac{1}{\sqrt{2\pi}\sigma_{1i}} \exp\left\{-\frac{1}{2}\left(\frac{x_1-\mu_{1i}}{\sigma_{1i}}\right)^2\right\} \Longleftrightarrow \\ & \exp\left\{-\frac{1}{2}\left(\frac{x_1-\mu_{1j}}{\sigma_{1j}}\right)^2\right\} = \frac{\sigma_{1j}}{\sigma_{1i}} \exp\left\{-\frac{1}{2}\left(\frac{x_1-\mu_{1i}}{\sigma_{1i}}\right)^2\right\} \Longleftrightarrow \\ & \exp\left\{-\frac{1}{2}\left(\frac{x_1-\mu_{1j}}{\sigma_{1j}}\right)^2\right\} = \exp\left\{\ln\frac{\sigma_{1j}}{\sigma_{1i}} - \frac{1}{2}\left(\frac{x_1-\mu_{1i}}{\sigma_{1i}}\right)^2\right\} \Longleftrightarrow \\ & -\frac{1}{2}\left(\frac{x_1-\mu_{1j}}{\sigma_{1j}}\right)^2 + \frac{1}{2}\left(\frac{x_1-\mu_{1i}}{\sigma_{1i}}\right)^2 = \ln\frac{\sigma_{1j}}{\sigma_{1i}} \Longleftrightarrow \\ & \left(\frac{1}{\sigma_{1j}^2} - \frac{1}{\sigma_{1i}^2}\right)x_1^2 + 2\left(\frac{\mu_{1i}}{\sigma_{1i}^2} - \frac{\mu_{1j}}{\sigma_{1j}^2}\right)x_1 + \left(\frac{\mu_{1j}^2}{\sigma_{1j}^2} - \frac{\mu_{1i}^2}{\sigma_{1i}^2}\right) = 2\ln\frac{\sigma_{1j}}{\sigma_{1i}} \end{split}$$

Esta equação é indeterminada quando $\sigma_{1j}^2 = \sigma_{1i}^2$ e $\mu_{1j} = \mu_{1i}$.

Simulação em Misturas de Regressões Lineares: resultados $Ap \hat{e}ndice\ D$

1	_	_															
Part	π ₁	x [1. 2]															
Part	0.1	[-1; 3]															
[9; 2] 50 0.0055 0.0035 0.0027 0.0013 0.0018 0.0017 0.0055 0.0261 0.0222 0.0035 0.0035 0.0184 0.0184 0.0184 0.0018																	
1.0 0.0011.00210.0020.0030 0.0031 0.0031 0.0031 0.0031 0.0031 0.0031 0.0031 0.0030 0.0040 0.0040 0.0060 0.00		[0, 0]															
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		[0, 2]															
$ \begin{bmatrix} -1; 3 \\ 5 \\ 6 \\ 6 \\ 7 \\ 7 \\ 8 \\ 7 \\ 8 \\ 8 \\ 8 \\ 8 \\ 8 \\ 8$																	
	0.2	[1, 9]															
	0.2	[-1, 3]															
[6] 2 50																	
1. 1. 1. 1. 1. 1. 1. 1.		[0.9]															
1.0		[0, 2]															
1.3																	
100	0.3	[=1:3]															
$ \begin{bmatrix} [0;2] \\ [0;3] \\ [0;4] \\ [0;5] \\ [0;6] \\ [0;6] \\ [0;6] \\ [0;6] \\ [0;7] \\ [$	0.0	[1,0]															
[0; 2] 50																	
100		[0. 2]															
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		[0, 2]															
$ \begin{bmatrix} -1,3 \\ -1,3 \\ -100 \\ -10013 \\ -100$																	
100	0.4	[=1:3]															
$ \begin{bmatrix} [0;2] & 50 \\ 100 \\ $	0.1	[1,0]															
$ \begin{bmatrix} [0;2] \\ [0;2] \\ [0;0] \\ [$																	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		[0.2]															
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		[0, 2]															
$ \begin{bmatrix} -1;3 \\ -1;3 \\ -1;0 \\ -1;3 \\ -1;0 \\ -1;3 \\ -1;0 \\ -1;3$																	
$ \begin{bmatrix} 100 \\ 500 \\ 500 \\ 0.0003 \ 0.0013 \ 0.0013 \ 0.0004 \ 0.0004 \ 0.0001 \ 0.0001 \ 0.0005 \ 0.0005 \ 0.0005 \ 0.0025 \ 0.0025 \ 0.0021 \ 0.0021 \ 0.0029 \ 0.0029 \ 0.0029 \\ 0.0003 \ 0.0004 \ 0.0004 \ 0.0004 \ 0.0004 \ 0.0004 \ 0.0004 \ 0.0004 \ 0.0004 \ 0.0004 \ 0.0004 \ 0.0001 \ 0.0001 \ 0.0001 \ 0.0001 \ 0.0001 \ 0.0003 \ 0.0003 \ 0.0008 \ 0.0009 \ 0.0009 \ 0.0009 \ 0.0005 \ 0.0001 $	0.5	[-1:3]															
$ \begin{bmatrix} [0;2] & 500 & 0.0003 & 0.0003 & 0.0005 & 0.0008 & 0.0008 & 0.0004 & 0.0004 & 0.0003 & 0.0003 & 0.0003 & 0.0020 & 0.0020 \\ 0.0009 & 0.0009 & 0.0018 & 0.0018 & 0.0015 & 0.0005 & 0.0010 & 0.0014 & 0.0047 & 0.0047 & 0.0060 & 0.0093 & 0.0093 \\ 0.0040 & 0.0040 & 0.0048 & 0.0026 & 0.0026 & 0.0025 & 0.0015 & 0.0018 & 0.0017 & 0.0017 & 0.0015 \\ 0.001 & 0.0001 & 0.0001 & 0.0003 & 0.0003 & 0.0008 & 0.0009 & 0.0005 & 0.0005 & 0.0001 & 0.0001 & 0.0016 & 0.0016 \\ 0.001 & 0.0001 & 0.0001 & 0.0003 & 0.0003 & 0.0008 & 0.0009 & 0.0005 & 0.0005 & 0.0001 & 0.0001 & 0.0016 & 0.0016 \\ 0.001 & 0.0002 & 0.0002 & 0.0012 & 0.0012 & 0.0013 & 0.0018 & 0.0018 & 0.0025 & 0.0025 & 0.0028 & 0.0028 & 0.0038 \\ 0.0004 & 0.0004 & 0.0004 & 0.0004 & 0.0003 & 0.0003 & 0.0001 & 0.0001 & 0.0004 & 0.0004 & 0.0004 & 0.0004 \\ 0.0004 & 0.0004 & 0.0004 & 0.0004 & 0.0003 & 0.0003 & 0.0001 & 0.0001 & 0.0004 & 0.0004 & 0.0007 & 0.0002 \\ 0.0031 & 0.0031 & 0.0018 & 0.0012 & 0.0012 & 0.0005 & 0.0005 & 0.0004 & 0.0004 & 0.0007 & 0.0002 & 0.0002 \\ 0.0031 & 0.0019 & 0.0019 & 0.0020 & 0.0020 & 0.0001 & 0.0001 & 0.0005 & 0.0005 & 0.0004 & 0.0004 & 0.0007 & 0.0007 & 0.0002 \\ 0.0011 & 0.0011 & 0.0011 & 0.0001 & 0.0007 & 0.0007 & 0.0005 & 0.0005 & 0.0004 & 0.0004 & 0.0007 & 0.0003 & 0.0023 \\ 0.0011 & 0.0011 & 0.0001 & 0.0001 & 0.0007 & 0.0007 & 0.0005 & 0.0005 & 0.0007 & 0.0007 & 0.0003 & 0.0023 \\ 0.0011 & 0.0011 & 0.0001 & 0.0001 & 0.0007 & 0.0007 & 0.0005 & 0.0007 & 0.0007 & 0.0003 & 0.0023 \\ 0.0011 & 0.0011 & 0.0001 & 0.0001 & 0.0007 & 0.0005 & 0.0005 & 0.0005 & 0.0005 & 0.0005 & 0.0005 \\ 0.0011 & 0.0011 & 0.0001 & 0.0001 & 0.0001 & 0.0000 & 0.0001 & 0.0016 & 0.0016 & 0.0016 & 0.0056 & 0.0023 \\ 0.0011 & 0.0011 & 0.0001 & 0.0001 & 0.0001 & 0.0000 & 0.0001 & 0.0001 & 0.0001 & 0.0003 & 0.0033 \\ 0.0011 & 0.0011 & 0.0001 & 0.0001 & 0.0001 & 0.0000 & 0.0001 & 0.0001 & 0.0001 & 0.0001 & 0.0001 & 0.0001 \\ 0.0011 & 0.0011 & 0.0001 & 0.0001 & 0.0001 & 0.0002 & 0.0002 & 0.0002 & 0.0002 & 0.0002 & 0.0002 \\ 0.0011 & 0.0011 & 0.0001 & 0.0001 & 0.0002 & 0.0002 & 0.0002 & 0.000$		[-, -]															
$ \begin{bmatrix} [0;2] \\ [0;3] \\ [0;3] \\ [0;3] \\ [0;3] \\ [0;4] \\ [0;4] \\ [0;5] \\ [$			500														
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		[0: 2]	50														
$ \begin{bmatrix} -1;3 \\ 0.6 \\ -1;3 \\ 0.0001 \\ 0.0002 \\ 0.0002 \\ 0.0002 \\ 0.0002 \\ 0.0002 \\ 0.0002 \\ 0.0002 \\ 0.0002 \\ 0.0002 \\ 0.0001 \\ 0.0004 \\ 0.0003 \\ 0.0001 \\ 0.0002 \\ 0.000$			100	0.0040	0.0040	0.0048	0.0048	0.0026	0.0026	0.0005	0.0005	0.0018	0.0018	0.0017	0.0017	0.0015	0.0015
$\begin{bmatrix} 100 & 0.0002 & 0.0012 & 0.0012 & 0.0013 & 0.0013 & 0.0018 & 0.0018 & 0.0025 & 0.0025 & 0.0028 & 0.0028 & 0.0038 & 0.0038 \\ 500 & 0.0004 & 0.0004 & 0.0004 & 0.0003 & 0.0003 & 0.0001 & 0.0004 & 0.0004 & 0.0004 & 0.0007 & 0.0007 \\ 0.0031 & 0.0031 & 0.0031 & 0.0018 & 0.0012 & 0.0012 & 0.0005 & 0.0048 & 0.0048 & 0.0047 & 0.0077 & 0.0038 & 0.0038 \\ 100 & 0.0019 & 0.0019 & 0.0020 & 0.0020 & 0.0007 & 0.0007 & 0.0013 & 0.0013 & 0.0009 & 0.0029 & 0.0020 & 0.0020 & 0.0014 \\ 0.0011 & 0.0011 & 0.0011 & 0.0001 & 0.0007 & 0.0007 & 0.0007 & 0.0007 & 0.0007 & 0.0007 & 0.0003 & 0.0003 \\ 0.0017 & 0.0017 & 0.0017 & 0.0005 & 0.0005 & 0.0007 & 0.0004 & 0.0004 & 0.0048 & 0.0049 & 0.019 & 0.0102 \\ 0.0017 & 0.0017 & 0.0017 & 0.0005 & 0.0005 & 0.0027 & 0.0027 & 0.0034 & 0.0048 & 0.0048 & 0.0109 & 0.0109 & 0.0032 & 0.0032 \\ 0.0007 & 0.0007 & 0.0007 & 0.0002 & 0.0002 & 0.0002 & 0.0002 & 0.0000 & 0.0016 & 0.0016 & 0.0056 & 0.0056 & 0.0099 \\ 0.0007 & 0.0007 & 0.0002 & 0.0002 & 0.0002 & 0.0002 & 0.0002 & 0.0007 & 0.0007 & 0.0007 & 0.0007 & 0.0007 \\ 0.0007 & 0.0007 & 0.0005 & 0.0005 & 0.0025 & 0.0025 & 0.0036 & 0.0036 & 0.0029 & 0.0029 & 0.0112 & 0.0112 & 0.0013 \\ 0.0008 & 0.0008 & 0.0008 & 0.0005 & 0.0025 & 0.0025 & 0.0036 & 0.0036 & 0.0029 & 0.0029 & 0.0012 & 0.0012 \\ 0.008 & 0.0008 & 0.0008 & 0.0005 & 0.0026 & 0.0026 & 0.0024 & 0.0024 & 0.0019 & 0.0062 & 0.0062 & 0.0045 \\ 0.0008 & 0.0008 & 0.0005 & 0.0005 & 0.0006 & 0.0006 & 0.0006 & 0.0001 & 0.0011 & 0.0011 & 0.0011 \\ 0.0011 & 0.0011 & 0.0011 & 0.0011 & 0.0010 & 0.0006 & 0.0006 & 0.0008 & 0.0008 & 0.0008 & 0.0008 \\ 0.0001 & 0.0001 & 0.0001 & 0.0005 & 0.0005 & 0.0005 & 0.0006 & 0.0006 & 0.0006 & 0.0006 & 0.0004 & 0.0004 & 0.0004 & 0.0004 \\ 0.0004 & 0.0004 & 0.0004 & 0.0005 & 0.0005 & 0.0005 & 0.0006 & 0.0006 & 0.0006 & 0.0006 & 0.0006 & 0.0006 \\ 0.0018 & 0.0018 & 0.0018 & 0.0015 & 0.0015 & 0.0015 & 0.0005 & 0.0004 & 0.0004 & 0.0004 & 0.0004 & 0.0004 \\ 0.0004 & 0.0004 & 0.0004 & 0.0000 & 0.00015 & 0.0015 & 0.0005 & 0.0005 & 0.0005 & 0.0006 & 0.0006 & 0.0006 \\ 0.0004 & 0.0004 & 0.0004 & $			500	0.0001	0.0001	0.0003	0.0003	0.0008	0.0008	0.0009	0.0009	0.0005	0.0005	0.0001	0.0001	0.0016	0.0016
$ \begin{bmatrix} [0;2] & 500 & 0.0004 & 0.0004 & 0.0004 & 0.0003 & 0.0003 & 0.0001 & 0.0004 & 0.0004 & 0.0007 & 0.0002 & 0.0002 \\ 0.0031 & 0.0031 & 0.0018 & 0.0018 & 0.0012 & 0.0012 & 0.0005 & 0.0005 & 0.0004 & 0.0004 & 0.0007 & 0.0007 & 0.0003 & 0.0038 \\ 0.0019 & 0.0019 & 0.0019 & 0.0020 & 0.00007 & 0.0007 & 0.0013 & 0.0013 & 0.0009 & 0.0002 & 0.0020 & 0.0014 & 0.0014 \\ 500 & 0.0011 & 0.0011 & 0.0001 & 0.0007 & 0.0007 & 0.0005 & 0.0005 & 0.0007 & 0.0007 & 0.0003 & 0.0003 \\ 0.0011 & 0.0011 & 0.0011 & 0.0001 & 0.0007 & 0.0007 & 0.0005 & 0.0005 & 0.0007 & 0.0003 & 0.0003 & 0.0003 \\ 0.0007 & 0.0017 & 0.0017 & 0.0005 & 0.0005 & 0.0027 & 0.0027 & 0.0034 & 0.0048 & 0.0048 & 0.0109 & 0.0109 & 0.0032 \\ 0.0007 & 0.0007 & 0.0007 & 0.0002 & 0.0002 & 0.0002 & 0.0002 & 0.00016 & 0.0016 & 0.0056 & 0.0056 & 0.0056 \\ 0.0007 & 0.0007 & 0.0007 & 0.0002 & 0.0002 & 0.0002 & 0.0002 & 0.0007 & 0.0007 & 0.0007 & 0.0003 & 0.0033 \\ 0.0008 & 0.0008 & 0.0008 & 0.0008 & 0.0025 & 0.0025 & 0.0036 & 0.0029 & 0.0029 & 0.0112 & 0.0112 & 0.0063 & 0.0063 \\ 0.0008 & 0.0008 & 0.0008 & 0.0005 & 0.0026 & 0.0026 & 0.0024 & 0.0024 & 0.0019 & 0.0019 & 0.0062 & 0.0062 & 0.0045 \\ 0.0008 & 0.0008 & 0.0001 & 0.0011 & 0.0001 & 0.0006 & 0.0006 & 0.0002 & 0.0003 & 0.0030 & 0.0158 & 0.0158 & 0.0045 \\ 0.0008 & 0.0008 & 0.0001 & 0.0011 & 0.0006 & 0.0006 & 0.0006 & 0.0008 & 0.0008 & 0.0008 & 0.0008 & 0.0008 \\ 0.0001 & 0.0011 & 0.0011 & 0.0011 & 0.0006 & 0.0006 & 0.0006 & 0.0008 & 0.0008 & 0.0018 & 0.0158 & 0.0034 \\ 0.0001 & 0.0012 & 0.0002 & 0.0005 & 0.0005 & 0.0010 & 0.0006 & 0.0006 & 0.0008 & 0.0008 & 0.0008 & 0.0008 & 0.0008 \\ 0.0012 & 0.0012 & 0.0007 & 0.0007 & 0.0007 & 0.0007 & 0.0006 & 0.0006 & 0.0004 & 0.0004 & 0.0004 & 0.0004 & 0.0004 \\ 0.0004 & 0.0004 & 0.0004 & 0.0002 & 0.0005 & 0.0015 & 0.0005 & 0.0005 & 0.0004 & 0.0004 & 0.0004 & 0.0004 & 0.0004 \\ 0.0012 & 0.0012 & 0.0012 & 0.0015 & 0.0015 & 0.0006 & 0.0006 & 0.0006 & 0.0006 & 0.0006 & 0.0006 & 0.0006 \\ 0.0013 & 0.0013 & 0.0015 & 0.0015 & 0.0015 & 0.0005 & 0.0006 & 0.0006 & 0.0006 & 0.0006 & 0.0006 \\ 0.0013 & 0.0$	0.6	[-1; 3]	50	0.0001	0.0001	0.0003	0.0003	0.0024	0.0024	0.0005	0.0005	0.0040	0.0040	0.0048	0.0048	0.0060	0.0060
$ \begin{bmatrix} [0;2] \\ [0;2] \\ [0;3] \\ [0;4] \\ [0;5] \\ [0;6] \\ [0;7] \\ [$			100	0.0002	0.0002	0.0012	0.0012	0.0013	0.0013	0.0018	0.0018	0.0025	0.0025	0.0028	0.0028	0.0038	0.0038
$ \begin{bmatrix} 100 \\ 500 \\ 0.0019 & 0.0019 & 0.0020 & 0.0020 & 0.0007 & 0.0007 & 0.0013 & 0.0013 & 0.0009 & 0.0020 & 0.0020 & 0.0014 & 0.0014 \\ 500 \\ 0.0011 & 0.0011 & 0.0001 & 0.0007 & 0.0007 & 0.0007 & 0.0007 & 0.0007 & 0.0007 & 0.0007 & 0.0003 & 0.0023 & 0.0023 & 0.0023 \\ 0.0017 & 0.0017 & 0.0017 & 0.0005 & 0.0005 & 0.0027 & 0.0027 & 0.0034 & 0.0048 & 0.0048 & 0.0109 & 0.0109 & 0.0032 & 0.0032 \\ 100 & 0.0001 & 0.0001 & 0.0006 & 0.0006 & 0.0010 & 0.0010 & 0.0000 & 0.0016 & 0.0016 & 0.0056 & 0.0056 & 0.0009 & 0.0009 \\ 500 & 0.0007 & 0.0007 & 0.0002 & 0.0002 & 0.0002 & 0.0002 & 0.0002 & 0.0007 & 0.0007 & 0.0007 & 0.0007 & 0.0007 \\ 500 & 0.0007 & 0.0007 & 0.0002 & 0.0002 & 0.0002 & 0.0002 & 0.0002 & 0.0002 & 0.0002 & 0.0009 & 0.0009 & 0.0009 \\ 100 & 0.0008 & 0.0008 & 0.0005 & 0.0025 & 0.0025 & 0.0036 & 0.0036 & 0.0029 & 0.00112 & 0.0112 & 0.0013 & 0.0063 \\ 100 & 0.0008 & 0.0008 & 0.0005 & 0.0026 & 0.0026 & 0.0024 & 0.0019 & 0.0019 & 0.0062 & 0.0062 & 0.0045 \\ 500 & 0.0008 & 0.0008 & 0.0005 & 0.0005 & 0.0026 & 0.0026 & 0.0024 & 0.0019 & 0.0019 & 0.0062 & 0.0062 & 0.0045 \\ 500 & 0.0001 & 0.0011 & 0.0011 & 0.0011 & 0.0010 & 0.0006 & 0.0006 & 0.0008 & 0.0008 & 0.0008 & 0.0008 & 0.0008 & 0.0008 \\ 100 & 0.0001 & 0.0011 & 0.0011 & 0.0011 & 0.0011 & 0.0010 & 0.0006 & 0.0006 & 0.0006 & 0.0008 & 0.0008 & 0.0007 & 0.0007 & 0.0007 \\ 100 & 0.0001 & 0.0001 & 0.0005 & 0.0005 & 0.0005 & 0.0006 & 0.0006 & 0.0006 & 0.0008 & 0.0008 & 0.0002 & 0.0002 \\ 100 & 0.0012 & 0.0012 & 0.0007 & 0.0007 & 0.0007 & 0.0006 & 0.0004 & 0.0004 & 0.0004 & 0.0004 & 0.0004 \\ 100 & 0.0012 & 0.0012 & 0.0012 & 0.0015 & 0.0015 & 0.0015 & 0.0005 & 0.0004 & 0.0004 & 0.0004 & 0.0004 & 0.0006 \\ 100 & 0.0018 & 0.0018 & 0.0018 & 0.0015 & 0.0015 & 0.0015 & 0.0007 & 0.0004 & 0.0004 & 0.0004 & 0.0006 & 0.0006 \\ 100 & 0.0018 & 0.0018 & 0.0018 & 0.0015 & 0.0015 & 0.0015 & 0.0007 & 0.0004 & 0.0004 & 0.0013 & 0.0013 & 0.0016 \\ 100 & 0.0004 & 0.0004 & 0.0004 & 0.0000 & 0.0015 & 0.0015 & 0.0007 & 0.0004 & 0.0004 & 0.0004 & 0.0004 & 0.0004 \\ 100 & 0.0004 & 0.0004 & 0.0004 & 0.0000$			500	0.0004	0.0004	0.0004	0.0004	0.0003	0.0003	0.0001	0.0001	0.0004	0.0004	0.0007	0.0007	0.0002	0.0002
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		[0; 2]	50	0.0031	0.0031	0.0018	0.0018	0.0012	0.0012	0.0005	0.0005	0.0048	0.0048	0.0077	0.0077	0.0038	0.0038
$ \begin{bmatrix} -1;3 \\ 0.7 \\ -1;3 \\ 0.0017 \\ 0.0017 \\ 0.0001 \\ 0.0001 \\ 0.0001 \\ 0.0001 \\ 0.0001 \\ 0.0001 \\ 0.0001 \\ 0.0001 \\ 0.0002 \\ 0.0003 \\ 0.000$			100	0.0019	0.0019	0.0020	0.0020	0.0007	0.0007	0.0013	0.0013	0.0009	0.0009	0.0020	0.0020	0.0014	0.0014
$\begin{bmatrix} 100 & 0.0001 & 0.0001 & 0.0006 & 0.0006 & 0.0010 & 0.0010 & 0.0000 & 0.0016 & 0.0016 & 0.0056 & 0.0009 & 0.0009 \\ 500 & 0.0007 & 0.0007 & 0.0002 & 0.0002 & 0.0002 & 0.0002 & 0.0002 & 0.0007 & 0.0007 & 0.0007 & 0.0007 & 0.0003 & 0.0003 \\ 100 & 0.0017 & 0.0017 & 0.0008 & 0.0008 & 0.0025 & 0.0025 & 0.0036 & 0.0036 & 0.0029 & 0.0012 & 0.0112 & 0.0112 & 0.0112 \\ 500 & 0.0008 & 0.0008 & 0.0005 & 0.0005 & 0.0026 & 0.0024 & 0.0024 & 0.0019 & 0.0019 & 0.0062 & 0.0062 & 0.0045 \\ 500 & 0.0008 & 0.0008 & 0.0011 & 0.0011 & 0.0011 & 0.0008 & 0.0008 & 0.0008 & 0.0008 & 0.0001 & 0.0011 & 0.0011 & 0.0012 \\ 0.008 & [-1;3] & 50 & 0.0011 & 0.0011 & 0.0011 & 0.0016 & 0.0006 & 0.0006 & 0.0002 & 0.0030 & 0.0030 & 0.0158 & 0.0158 & 0.0034 \\ 100 & 0.0001 & 0.0001 & 0.0015 & 0.0005 & 0.0005 & 0.0006 & 0.0002 & 0.0002 & 0.0030 & 0.0030 & 0.0158 & 0.0158 & 0.0034 \\ 100 & 0.0001 & 0.0001 & 0.0005 & 0.0005 & 0.0002 & 0.0002 & 0.0002 & 0.0030 & 0.0030 & 0.0158 & 0.0158 & 0.0034 \\ 100 & 0.0001 & 0.0001 & 0.0005 & 0.0005 & 0.0002 & 0.0002 & 0.0003 & 0.0008 & 0.0008 & 0.0008 & 0.0072 & 0.0072 & 0.0093 \\ 100 & 0.0002 & 0.0002 & 0.0005 & 0.0005 & 0.0005 & 0.0006 & 0.0006 & 0.0006 & 0.0004 & 0.0004 & 0.0004 & 0.0004 \\ 100 & 0.0012 & 0.0012 & 0.0007 & 0.0007 & 0.0007 & 0.0005 & 0.0005 & 0.0004 & 0.0004 & 0.0004 & 0.0004 \\ 100 & 0.0018 & 0.0018 & 0.0012 & 0.0017 & 0.0006 & 0.0066 & 0.0066 & 0.0013 & 0.0013 & 0.0013 & 0.0013 \\ 100 & 0.0004 & 0.0004 & 0.0004 & 0.0001 & 0.0015 & 0.0007 & 0.0007 & 0.0004 & 0.0004 & 0.0006 & 0.0006 \\ 100 & 0.0004 & 0.0004 & 0.0000 & 0.00015 & 0.0015 & 0.0007 & 0.0007 & 0.0004 & 0.0004 & 0.0004 & 0.0004 \\ 100 & 0.0004 & 0.0004 & 0.0000 & 0.00015 & 0.0015 & 0.0007 & 0.0004 & 0.0004 & 0.0013 & 0.0013 & 0.0013 \\ 100 & 0.0004 & 0.0004 & 0.0000 & 0.00015 & 0.0015 & 0.0005 & 0.0004 & 0.0004 & 0.0004 & 0.0004 \\ 100 & 0.0004 & 0.0004 & 0.0000 & 0.0013 & 0.0013 & 0.0013 & 0.0005 & 0.0005 & 0.0005 & 0.0005 & 0.0005 \\ 100 & 0.0004 & 0.0004 & 0.0000 & 0.0000 & 0.0015 & 0.0005 & 0.0005 & 0.0005 & 0.0006 & 0.0006 \\ 100 & 0.0004 & 0$			500	0.0011	0.0011	0.0001	0.0001	0.0007	0.0007	0.0005	0.0005	0.0007	0.0007	0.0003	0.0003	0.0023	0.0023
$ \begin{bmatrix} [0;2] & 500 & 0.0007 & 0.0007 & 0.0002 & 0.0002 & 0.0002 & 0.0002 & 0.0002 & 0.0007 & 0.0007 & 0.0007 & 0.0007 & 0.0003 & 0.0003 \\ 0.0017 & 0.0017 & 0.0008 & 0.0008 & 0.0025 & 0.0025 & 0.0036 & 0.0029 & 0.0029 & 0.0112 & 0.0112 & 0.0063 & 0.0063 \\ 100 & 0.0008 & 0.0008 & 0.0005 & 0.0026 & 0.0024 & 0.0024 & 0.0019 & 0.0062 & 0.0062 & 0.0045 & 0.0045 \\ 500 & 0.0008 & 0.0008 & 0.0011 & 0.0011 & 0.0008 & 0.0008 & 0.0008 & 0.0008 & 0.0001 & 0.0001 & 0.0001 & 0.0001 & 0.0001 \\ 0.008 & [-1;3] & 50 & 0.0011 & 0.0011 & 0.0011 & 0.0011 & 0.0006 & 0.0006 & 0.0002 & 0.0022 & 0.0023 & 0.0030 & 0.0158 & 0.0158 & 0.0034 & 0.0034 \\ 0.0001 & 0.0001 & 0.0001 & 0.0001 & 0.0001 & 0.0001 & 0.0006 & 0.0006 & 0.0008 & 0.0008 & 0.0007 & 0.0072 & 0.0072 & 0.0093 & 0.0033 \\ 0.0002 & 0.0002 & 0.0005 & 0.0005 & 0.0002 & 0.0002 & 0.0006 & 0.0006 & 0.0008 & 0.0008 & 0.0072 & 0.0072 & 0.0072 & 0.0002 \\ 0.0012 & 0.0002 & 0.0005 & 0.0005 & 0.0010 & 0.0010 & 0.0006 & 0.0006 & 0.0004 & 0.0004 & 0.0004 & 0.0004 & 0.0004 \\ 0.0012 & 0.0012 & 0.0012 & 0.0007 & 0.0007 & 0.0007 & 0.0007 & 0.0004 & 0.0004 & 0.0013 & 0.0139 & 0.012 & 0.0012 \\ 0.0013 & 0.0014 & 0.0014 & 0.0015 & 0.0007 & 0.0007 & 0.0007 & 0.0004 & 0.0004 & 0.0013 & 0.0013 & 0.0016 & 0.0006 \\ 0.0014 & 0.0004 & 0.0004 & 0.0012 & 0.0015 & 0.0007 & 0.0007 & 0.0007 & 0.0004 & 0.0004 & 0.0013 & 0.0013 & 0.0016 & 0.0006 \\ 0.0018 & 0.0018 & 0.0018 & 0.0012 & 0.0015 & 0.0007 & 0.0007 & 0.0004 & 0.0004 & 0.0013 & 0.0013 & 0.0016 & 0.0006 \\ 0.0018 & 0.0018 & 0.0015 & 0.0015 & 0.0017 & 0.0007 & 0.0007 & 0.0004 & 0.001$	0.7	[-1; 3]	50	0.0017	0.0017	0.0005	0.0005	0.0027	0.0027	0.0034	0.0034	0.0048	0.0048	0.0109	0.0109	0.0032	0.0032
$ \begin{bmatrix} [0;2] \\ [0;3] \\ [$																	
$ \begin{bmatrix} 100 \\ 500 \\ 0.0008 \\ 0.0008 \\ 0.0008 \\ 0.0008 \\ 0.0008 \\ 0.0008 \\ 0.0008 \\ 0.0008 \\ 0.0008 \\ 0.0008 \\ 0.0008 \\ 0.0008 \\ 0.0008 \\ 0.0008 \\ 0.0008 \\ 0.0008 \\ 0.0008 \\ 0.0008 \\ 0.0001 \\ 0.0011 \\ 0.0011 \\ 0.0011 \\ 0.0011 \\ 0.0011 \\ 0.0011 \\ 0.0011 \\ 0.0011 \\ 0.0011 \\ 0.0011 \\ 0.0011 \\ 0.0011 \\ 0.0011 \\ 0.0011 \\ 0.0011 \\ 0.0011 \\ 0.0001 \\ 0.0005 \\ 0.00$			500														
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		[0; 2]		0.0017	0.0017	0.0008	0.0008	0.0025	0.0025	0.0036	0.0036	0.0029	0.0029	0.0112	0.0112	0.0063	0.0063
$ \begin{bmatrix} -1;3 \\ 0.8 \\ -1;3 \\ 0.00 \end{bmatrix} \begin{bmatrix} 50 \\ 0.0011 \\ 0.0001 \\ 0.0001 \\ 0.0001 \\ 0.0001 \\ 0.0005 \\ 0.0005 \\ 0.0002 \end{bmatrix} 0.0001 \\ 0.0001 \\ 0.0005 \\ 0.0005 \\ 0.0005 \\ 0.0005 \\ 0.0005 \\ 0.0005 \\ 0.0005 \\ 0.0002 \\ 0.0002 \\ 0.0002 \\ 0.0005$			100	0.0008	0.0008	0.0005	0.0005	0.0026	0.0026	0.0024	0.0024	0.0019	0.0019	0.0062	0.0062	0.0045	0.0045
$ \begin{bmatrix} 1 & 0 & 0.0001 & 0.0001 & 0.0005 & 0.0005 & 0.0022 & 0.0002 & 0.0006 & 0.0008 & 0.0008 & 0.0072 & 0.0072 & 0.0093 & 0.0093 \\ 500 & 0.0002 & 0.0002 & 0.0005 & 0.0010 & 0.0010 & 0.0006 & 0.0004 & 0.0004 & 0.0004 & 0.0004 & 0.0002 & 0.0002 \\ [0; 2] & 50 & 0.0004 & 0.0004 & 0.0020 & 0.0007 & 0.0007 & 0.0005 & 0.0040 & 0.0004 & 0.0004 & 0.0004 & 0.0002 & 0.0002 \\ 100 & 0.0012 & 0.0012 & 0.0020 & 0.0006 & 0.0066 & 0.0066 & 0.0066 & 0.0040 & 0.0013 & 0.0013 & 0.0013 & 0.0012 \\ 0.0012 & 0.0012 & 0.0012 & 0.0012 & 0.0015 & 0.0016 & 0.0066 & 0.0066 & 0.0013 & 0.0013 & 0.0060 & 0.0006 \\ 0.0018 & 0.0018 & 0.0012 & 0.0012 & 0.0015 & 0.0017 & 0.0007 & 0.0004 & 0.0004 & 0.0013 & 0.0013 & 0.0010 \\ 0.0013 & 0.0013 & 0.0015 & 0.0014 & 0.0015 & 0.0017 & 0.0007 & 0.0004 & 0.0004 & 0.0013 & 0.0013 & 0.0010 \\ 0.0004 & 0.0004 & 0.0004 & 0.0000 & 0.0000 & 0.0013 & 0.0013 & 0.0026 & 0.0027 & 0.0004 & 0.0017 & 0.0077 & 0.0017 \\ 0.0004 & 0.0004 & 0.0004 & 0.0000 & 0.0000 & 0.0013 & 0.0013 & 0.0026 & 0.0027 & 0.0007 & 0.0017 & 0.0077 & 0.0017 \\ 0.0004 & 0.0004 & 0.0000 & 0.0000 & 0.0013 & 0.0013 & 0.0026 & 0.0026 & 0.0007 & 0.0017 & 0.0017 \\ 0.0004 & 0.0004 & 0.0000 & 0.0000 & 0.0014 & 0.0014 & 0.0009 & 0.0005 & 0.0005 & 0.0026 & 0.0026 & 0.0024 \\ 0.0005 & 0.0005 & 0.0005 & 0.0005 & 0.0026 & 0.0026 & 0.0024 & 0.0024 \\ 0.0005 & 0.0005 & 0.0005 & 0.0005 & 0.0026 & 0.0026 & 0.0024 & 0.0017 \\ 0.0007 & 0.0007 & 0.0007 & 0.0008 & 0.0010 & 0.0017 & 0.0054 & 0.0078 & 0.0018 & 0.0160 & 0.0160 & 0.0009 \\ 0.0005 & 0.0005 & 0.0005 & 0.0005 & 0.0005 & 0.0005 & 0.0005 & 0.0005 & 0.0005 \\ 0.0007 & 0.0007 & 0.0008 & 0.0010 & 0.0010 & 0.0011 & 0.0011 & 0.0018 & 0.018 & 0.0160 & 0.0160 & 0.0009 \\ 0.0005 & 0.0005 & 0.0005 & 0.0005 & 0.0005 & 0.0005 & 0.0005 & 0.0005 \\ 0.0007 & 0.0007 & 0.0008 & 0.0008 & 0.0010 & 0.0011 & 0.0001 & 0.0011 & 0.0018 & 0.018 & 0.0160 & 0.0160 & 0.0009 \\ 0.0005 & 0.0005 & 0.0005 & 0.0005 & 0.0005 & 0.0005 & 0.0005 & 0.0005 & 0.0005 & 0.0005 \\ 0.0005 & 0.0005 & 0.0005 & 0.0005 & 0.0005 & 0.0005 & 0.0005 & 0.0005 & 0.0005 & 0.$			500	0.0008	0.0008	0.0011	0.0011	0.0008	0.0008	0.0008	0.0008	0.0001	0.0001	0.0011	0.0011	0.0020	0.0020
$ \begin{bmatrix} [0;2] & 50 \\ 0.0002 & 0.0002 & 0.0005 & 0.0005 & 0.0010 & 0.0010 & 0.0006 & 0.0006 & 0.0004 & 0.0004 & 0.0004 & 0.0002 & 0.0002 \\ 0.0004 & 0.0004 & 0.0002 & 0.0007 & 0.0007 & 0.0005 & 0.0005 & 0.0040 & 0.0013 & 0.0139 & 0.0139 & 0.0012 & 0.0012 \\ 100 & 0.0012 & 0.0012 & 0.0007 & 0.0066 & 0.0066 & 0.0066 & 0.0066 & 0.0013 & 0.0013 & 0.0060 & 0.0066 & 0.0066 \\ 500 & 0.0018 & 0.0012 & 0.0012 & 0.0015 & 0.0015 & 0.0007 & 0.0007 & 0.0004 & 0.0004 & 0.0013 & 0.0013 & 0.0000 \\ 0.09 & [-1;3] & 50 & 0.0013 & 0.0015 & 0.0014 & 0.0015 & 0.0017 & 0.0007 & 0.0007 & 0.0004 & 0.0004 & 0.0013 & 0.0013 & 0.0010 \\ 0.0004 & 0.0004 & 0.0000 & 0.0000 & 0.0013 & 0.0013 & 0.0026 & 0.0026 & 0.0007 & 0.0017 & 0.0178 & 0.0178 & 0.0024 & 0.0024 \\ 500 & 0.0008 & 0.0008 & 0.0000 & 0.00014 & 0.0014 & 0.0009 & 0.0005 & 0.0005 & 0.0026 & 0.0026 & 0.0024 & 0.0024 \\ [0;2] & 50 & 0.0054 & 0.0048 & 0.0069 & 0.0038 & 0.0010 & 0.0011 & 0.0007 & 0.0018 & 0.0160 & 0.0160 & 0.0009 & 0.0009 \\ \hline \end{tabular}$	0.8	[-1; 3]															
$ \begin{bmatrix} [0;2] \\ [0;2] \\ [0;2] \\ [0;2] \\ [0;2] \\ [0;2] \end{bmatrix} = \begin{bmatrix} 50 \\ 0.0004 & 0.0004 & 0.0020 & 0.0020 & 0.0007 & 0.0007 & 0.0005 & 0.0040 & 0.0139 & 0.0139 & 0.0112 & 0.0012 \\ 0.0012 & 0.0012 & 0.0007 & 0.0006 & 0.0066 & 0.0066 & 0.0066 & 0.0066 & 0.0060 & 0.0006 & 0.0060 \\ 0.0018 & 0.0018 & 0.0012 & 0.0012 & 0.0015 & 0.0007 & 0.0007 & 0.0004 & 0.0004 & 0.0013 & 0.0013 & 0.0000 \\ 0.0018 & 0.0018 & 0.0012 & 0.0015 & 0.0015 & 0.0007 & 0.0007 & 0.0004 & 0.0004 & 0.0013 & 0.0013 & 0.0000 \\ 0.0018 & 0.0018 & 0.0015 & 0.0017 & 0.0007 & 0.0007 & 0.0004 & 0.0044 & 0.0013 & 0.0013 & 0.0000 \\ 0.0004 & 0.0004 & 0.0004 & 0.0001 & 0.0017 & 0.0027 & 0.0042 & 0.0041 & 0.0271 & 0.0273 & 0.0146 & 0.0143 \\ 0.0008 & 0.0008 & 0.0008 & 0.0000 & 0.0014 & 0.0014 & 0.0009 & 0.0009 & 0.0005 & 0.0025 & 0.0026 & 0.0024 & 0.0024 \\ 0.0018 & 0.0018 & 0.0018 & 0.0068 & 0.0008 & 0.0008 & 0.0010 & 0.0011 & 0.0001 & 0.0018 & 0.018 & 0.0160 & 0.0160 & 0.0009 \\ 0.0007 & 0.0007 & 0.0008 & 0.0008 & 0.0010 & 0.0010 & 0.0001 & 0.0011 & 0.0018 & 0.018 & 0.0160 & 0.0160 & 0.0009 \\ 0.0007 & 0.0007 & 0.0008 & 0.0008 & 0.0010 & 0.0011 & 0.0001 & 0.0018 & 0.018 & 0.0160 & 0.0160 & 0.0009 \\ 0.0007 & 0.0007 & 0.0008 & 0.0008 & 0.0010 & 0.0011 & 0.0001 & 0.0018 & 0.018 & 0.0160 & 0.0160 & 0.0009 \\ 0.0007 & 0.0007 & 0.0008 & 0.0008 & 0.0010 & 0.0011 & 0.0001 & 0.0018 & 0.018 & 0.0160 & 0.0160 & 0.0009 \\ 0.0007 & 0.0007 & 0.0008 & 0.0008 & 0.0010 & 0.0011 & 0.0001 & 0.0018 & 0.018 & 0.0160 & 0.0160 & 0.0009 \\ 0.0007 & 0.0007 & 0.0008 & 0.0008 & 0.0010 & 0.0011 & 0.0001 & 0.0018 & 0.018 & 0.0160 & 0.0160 & 0.0009 \\ 0.0007 & 0.0007 & 0.0008 & 0.0008 & 0.0010 & 0.0011 & 0.0001 & 0.0018 & 0.018 & 0.0160 & 0.0160 & 0.0009 \\ 0.0007 & 0.0007 & 0.0008 & 0.0008 & 0.0010 & 0.0011 & 0.0001 & 0.0018 & 0.018 & 0.0160 & 0.0160 & 0.0009 \\ 0.0007 & 0.0007 & 0.0008 & 0.0008 & 0.0010 & 0.0011 & 0.0001 & 0.0011 & 0.0018 & 0.018 & 0.0160 & 0.0160 & 0.0018 \\ 0.0007 & 0.0007 & 0.0008 & 0.0008 & 0.0010 & 0.0010 & 0.0011 & 0.0011 & 0.0011 & 0.0011 & 0.0011 & 0.0011 \\ 0.0007 & 0.0007 & 0.000$																	
$ \begin{bmatrix} 100 \\ 500 \\ 0.0012 \\ 0.0012 \\ 0.0012 \\ 0.0012 \\ 0.0012 \\ 0.0007 \\ 0.0007 \\ 0.0007 \\ 0.0007 \\ 0.0007 \\ 0.0007 \\ 0.0007 \\ 0.0007 \\ 0.0007 \\ 0.0007 \\ 0.0007 \\ 0.0007 \\ 0.0007 \\ 0.0007 \\ 0.0007 \\ 0.0007 \\ 0.0007 \\ 0.0007 \\ 0.0008 \\ 0.00$																	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		[0; 2]															
$ \begin{bmatrix} -1;3 \end{bmatrix} & 50 & 0.0013 & 0.0015 & 0.0014 & 0.0015 & 0.0027 & 0.0007 & 0.0036 & 0.0027 & 0.0042 & 0.0041 & 0.0271 & 0.0273 & 0.0146 & 0.0143 \\ 100 & 0.0004 & 0.0004 & 0.0000 & 0.0000 & 0.0013 & 0.0013 & 0.0026 & 0.0026 & 0.0007 & 0.00178 & 0.0178 & 0.0024 & 0.0024 \\ 500 & 0.0008 & 0.0008 & 0.0000 & 0.00014 & 0.0014 & 0.0009 & 0.0009 & 0.0005 & 0.0026 & 0.0026 & 0.0026 & 0.0024 & 0.0024 \\ [0;2] & 50 & 0.0054 & 0.0048 & 0.0069 & 0.0038 & 0.0010 & 0.0017 & 0.0054 & 0.0078 & 0.0022 & 0.0021 & 0.0263 & 0.0264 & 0.0214 & 0.0173 \\ 100 & 0.0007 & 0.0007 & 0.0008 & 0.0008 & 0.0010 & 0.0011 & 0.0001 & 0.0018 & 0.018 & 0.0160 & 0.0160 & 0.0009 & 0.0009 \\ \end{bmatrix} $																	
$ \begin{bmatrix} 100 & 0.0004 & 0.0004 & 0.0000 & 0.0000 & 0.0013 & 0.0013 & 0.0026 & 0.0026 & 0.0007 & 0.0077 & 0.0178 & 0.0178 & 0.0024 & 0.0024 \\ 500 & 0.0008 & 0.0008 & 0.0000 & 0.0000 & 0.0014 & 0.0009 & 0.0009 & 0.0005 & 0.0025 & 0.0026 & 0.0024 & 0.0024 \\ [0;2] & 50 & 0.0054 & 0.0048 & 0.0069 & 0.0038 & 0.0010 & 0.0017 & 0.0054 & 0.0078 & 0.0022 & 0.0221 & 0.0226 & 0.0224 & 0.0214 & 0.0173 \\ 100 & 0.0007 & 0.0007 & 0.0008 & 0.0008 & 0.0010 & 0.0010 & 0.0001 & 0.0018 & 0.018 & 0.0160 & 0.0160 & 0.0009 \\ \end{bmatrix} $																	
$ \begin{bmatrix} 500 & 0.0008 \ 0.0008 \ 0.0008 \ 0.0000 \ 0.00000 \ 0.0014 \ 0.0014 \ 0.0009 \ 0.0009 \ 0.0005 \ 0.0005 \ 0.0026 \ 0.0026 \ 0.0024 \ 0.0024 \ 0.0024 \\ 0.0054 \ 0.0048 \ 0.0069 \ 0.0038 \ 0.0010 \ 0.0017 \ 0.0054 \ 0.0078 \ 0.0022 \ 0.0021 \ 0.0263 \ 0.0263 \ 0.0264 \ 0.0214 \ 0.0173 \\ 100 & 0.0007 \ 0.0007 \ 0.0008 \ 0.0008 \ 0.0010 \ 0.0010 \ 0.0001 \ 0.0001 \ 0.0011 \ 0.0018 \ 0.018 \ 0.0160 \ 0.0160 \ 0.0009 \ 0.0009 \\ 0.0007 \ 0.0007 \ 0.0008 \ 0.0008 \ 0.0010 \ 0.0010 \ 0.0001 \ 0.0001 \ 0.0011 \ 0.0018 \ 0.018 \ 0.0160 \ 0.0160 \ 0.0009 \ 0.0009 \\ 0.0007 \ 0.0007 \ 0.0008 \ 0.0008 \ 0.0010 \ 0.0010 \ 0.0001 \ 0.0001 \ 0.0018 \ 0.0018 \ 0.0160 \ 0.0160 \ 0.0009 \ 0.0009 \\ 0.0007 \ 0.0007 \ 0.0008 \ 0.0008 \ 0.0010 \ 0.0010 \ 0.0001 \ 0.0001 \ 0.0001 \ 0.0018 \ 0.018 \ 0.0160 \ 0.0160 \ 0.0009 \ 0.0009 \\ 0.0007 \ 0.0008 \ 0.0008 \ 0.0010 \ 0.0010 \ 0.0001 \ 0.0001 \ 0.0001 \ 0.0018 \ 0.018 \ 0.0160 \ 0.0160 \ 0.0009 \ 0.0009 \\ 0.0007 \ 0.0008 \ 0.0008 \ 0.0008 \ 0.0008 \ 0.0010 \ 0.0001 \ 0.0001 \ 0.0001 \ 0.0001 \ 0.0001 \ 0.0018 \ 0.0018 \ 0.0160 \ 0.0160 \ 0.0009 \ 0.0009 \\ 0.0007 \ 0.0008 \ 0.0008 \ 0.0008 \ 0.0008 \ 0.0010 \ 0.0001 \ 0.0001 \ 0.0001 \ 0.0001 \ 0.0001 \ 0.0018 \ 0.0018 \ 0.0160 \ 0.0160 \ 0.0009 \ 0.0009 \\ 0.0008 \ 0.0008 \ 0.0008 \ 0.0008 \ 0.0008 \ 0.0008 \ 0.0001 $	0.9	[-1; 3]															
$ \begin{bmatrix} 0;2 \end{bmatrix} & 50 & 0.0054 & 0.0048 & 0.0069 & 0.0038 & 0.0010 & 0.0017 & 0.0054 & 0.0078 & 0.0022 & 0.0021 & 0.0263 & 0.0264 & 0.0214 & 0.0173 \\ 100 & 0.0007 & 0.0007 & 0.0008 & 0.0008 & 0.0010 & 0.0010 & 0.0001 & 0.0001 & 0.0018 & 0.0160 & 0.0160 & 0.0009 & 0.0009 \\ \end{bmatrix} $																	
100 0.0007 0.0007 0.0008 0.0008 0.0010 0.0010 0.0001 0.0001 0.0018 0.0160 0.0160 0.0160 0.0009																	
		[0; 2]															
500 0.0003 0.0003 0.0005 0.0005 0.0016 0.0016 0.0012 0.0012 0.0005 0.0005 0.0007 0.0037 0.0009 0.0009																	
			500	0.0003	0.0003	0.0005	0.0005	0.0016	0.0016	0.0012	0.0012	0.0005	0.0005	0.0037	0.0037	0.0009	0.0009

Tabela D.1: Estimativas do valor absoluto do enviesamento médio dos parâmetros da mistura de duas regressões lineares no caso ${\rm PI}$

			α_1	α_1	β_1	β_1	α_2	α_2	β_2	β_2	σ_1	σ_1	σ_2	σ_2	π_1	π_1
π_1	x	n	EM	CEM	$_{\rm EM}$	CEM	$_{\rm EM}$	CEM	$_{\rm EM}$	CEM	EM	CEM	EM	CEM	$_{\rm EM}$	CEM
0.1	[-1; 3]	50													0.0161	
		100													0.0036	
		500													0.0003	
	[0; 2]	50													0.0156	
		100	0.0026	0.0004	0.0025	0.0024	0.0021	0.0020	0.0011	0.0012	0.0146	0.0165	0.0023	0.0020	0.0032	0.0037
		500	0.0010	0.0017	0.0015	0.0017	0.0016	0.0017	0.0020	0.0019	0.0022	0.0029	0.0006	0.0008	0.0002	0.0002
0.2	[-1; 3]	50	0.0012	0.0010	0.0011	0.0010	0.0013	0.0014	0.0015	0.0015	0.0178	0.0180	0.0071	0.0072	0.0010	0.0011
		100	0.0031	0.0034	0.0002	0.0003	0.0005	0.0006	0.0008	0.0008	0.0082	0.0087	0.0038	0.0039	0.0020	0.0019
		500	0.0005	0.0002	0.0002	0.0002	0.0015	0.0013	0.0001	0.0001	0.0017	0.0021	0.0003	0.0007	0.0021	0.0020
	[0; 2]	50	0.0038	0.0043	0.0007	0.0021	0.0031	0.0030	0.0030	0.0032	0.0145	0.0150	0.0105	0.0104	0.0018	0.0021
		100	0.0048	0.0050	0.0051	0.0051	0.0010	0.0009	0.0014	0.0014	0.0063	0.0066	0.0032	0.0034	0.0038	0.0038
		500	0.0013	0.0011	0.0002	0.0002	0.0025	0.0027	0.0022	0.0022	0.0016	0.0020	0.0018	0.0021	0.0014	0.0015
0.3	[-1; 3]	50	0.0022	0.0029	0.0016	0.0015	0.0001	0.0003	0.0004	0.0004	0.0082	0.0090	0.0086	0.0084	0.0118	0.0114
	. , - 1	100													0.0036	
		500													0.0023	
	[0; 2]	50													0.0005	
	[~, -]	100													0.0002	
		500													0.0001	
0.4	[-1; 3]	50													0.0053	
0.4	[1,0]	100													0.0047	
		500													0.0006	
	[0; 2]	50													0.0021	
	[0, 2]	100													0.0021	
		500													0.0037	
0.5	[-1; 3]	50													0.0020	
0.5	[-1,3]	100													0.0020	
		500													0.0022	
	[0. 0]	50													0.0003	
	[0; 2]	100													0.0101	
		500													0.0017	
0.6	[1.9]	50													0.0023	
0.0	[-1; 3]	100													0.0013 0.0024	
		500													0.0024 0.0001	
	[0.0]	500 50													0.0001	
	[0; 2]														0.0039	
		100 500													0.0010	
-0.7	[1 0]														0.0036	
0.7	[-1; 3]	50														
		100													0.0007	
	[0 0]	500													0.0032	
	[0; 2]	50													0.0026	
		100													0.0077	
	F 4 01	500													0.0006	
0.8	[-1; 3]	50													0.0012	
		100													0.0029	
		500													0.0005	
	[0; 2]	50													0.0047	
		100													0.0036	
		500													0.0013	
0.9	[-1; 3]	50													0.0246	
		100													0.0010	
		500													0.0008	
	[0; 2]	50													0.0201	
		100													0.0108	
		500	0.0011	0.0011	0.0005	0.0005	0.0036	0.0029	0.0015	0.0017	0.0009	0.0009	0.0080	0.0092	0.0016	0.0015

Tabela D.2: Estimativas do valor absoluto do enviesamento médio dos parâmetros da mistura de duas regressões lineares no caso PII

 $Ap \hat{e}ndice~D$

_	_		$_{ m EM}^{lpha_1}$	α_1 CEM	$_{ m EM}^{eta_1}$	β_1 CEM	α_2 EM	α_2 CEM	β_2 EM	β_2 CEM	σ_1 EM	σ_1 CEM	σ_2 EM	σ_2 CEM	π_1 EM	$_{ ext{CEM}}^{\pi_1}$
π ₁	[-1; 3]	50													0.0209	
0.1	[-1; 3]	100													0.0209	
		500													0.0033	
	[0; 2]	50													0.0012	
	[0, 2]	100													0.0142	
		500													0.0001	
0.2	[-1; 3]	50													0.0093	
0.2	[1,0]	100													0.0026	
		500													0.0008	
	[0; 2]	50													0.0130	
		100	0.0027	0.0034	0.0016	0.0025	0.0017	0.0004	0.0027	0.0022	0.0161	0.0227	0.0042	0.0055	0.0053	0.0044
		500	0.0023	0.0065	0.0016	0.0008	0.0015	0.0006	0.0017	0.0017	0.0023	0.0109	0.0001	0.0016	0.0003	0.0008
0.3	[-1; 3]	50	0.0067	0.0045	0.0001	0.0005	0.0038	0.0039	0.0020	0.0017	0.0103	0.0194	0.0110	0.0112	0.0035	0.0016
	-	100	0.0040	0.0029	0.0001	0.0005	0.0024	0.0035	0.0014	0.0015	0.0048	0.0118	0.0064	0.0081	0.0055	0.0041
		500	0.0004	0.0053	0.0013	0.0013	0.0012	0.0028	0.0004	0.0004	0.0016	0.0084	0.0004	0.0028	0.0007	0.0014
	[0; 2]	50	0.0093	0.0016	0.0058	0.0070	0.0019	0.0023	0.0014	0.0019	0.0165	0.0242	0.0078	0.0078	0.0021	0.0009
		100													0.0025	
		500													0.0018	
0.4	[-1; 3]	50													0.0012	
		100													0.0020	
		500													0.0039	
	[0; 2]	50													0.0093	
		100													0.0057	
	[1 0]	500													0.0011	
0.5	[-1; 3]	50													0.0004	
		100 500													0.0013 0.0013	
	[0; 2]	500 50													0.0013	
	[0, 2]	100													0.0002	
		500													0.0023	
0.6	[-1; 3]	50													0.0006	
0.0	[1,0]	100													0.0023	
		500													0.0005	
	[0; 2]	50													0.0163	
		100	0.0014	0.0022	0.0004	0.0000	0.0027	0.0035	0.0020	0.0020	0.0045	0.0065	0.0051	0.0117	0.0097	0.0118
		500	0.0027	0.0051	0.0010	0.0010	0.0015	0.0024	0.0016	0.0019	0.0016	0.0050	0.0019	0.0070	0.0011	0.0013
0.7	[-1; 3]	50	0.0009	0.0009	0.0010	0.0009	0.0008	0.0132	0.0054	0.0026	0.0089	0.0093	0.0154	0.0233	0.0014	0.0026
		100	0.0023	0.0014	0.0011	0.0012	0.0094	0.0024	0.0032	0.0032	0.0043	0.0058	0.0078	0.0149	0.0024	0.0006
		500													0.0011	
	[0; 2]	50													0.0017	
		100													0.0004	
		500													0.0010	
0.8	[-1; 3]	50													0.0052	
		100													0.0087	
	[0.0]	500													0.0007	
	[0; 2]	50													0.0040	
		100 500													0.0047	
0.0	[1.9]	500													0.0004 0.0186	
0.9	[-1; 3]	50 100													0.0186	
		500													0.0038	
	[0; 2]	500 50													0.0011 0.0317	
	[0, 2]	100													0.0061	
		500													0.0001	
		000	5.0000	0.0000	0.0000	0.0000	0.0000	5.0000	0.0000	0.0022	0.0001	0.0000	0.0040	0.0104	0.0000	0.0011

Tabela D.3: Estimativas do valor absoluto do enviesamento médio dos parâmetros da mistura de duas regressões lineares no caso PIII

						0										
π.	r	n	α_1 EM	α_1 CEM	β_1 EM	β_1 CEM	α_2 EM	α_2 CEM	β_2 EM	β_2 CEM	σ_1 EM	σ_1 CEM	σ_2 EM	σ_2 CEM	$_{\mathrm{EM}}^{\pi_{1}}$	$_{ ext{CEM}}^{\pi_1}$
0.1	[-1; 3]	50													0.0134	
0.1	[1,0]	100													0.0017	
		500													0.0004	
	[0; 2]	50													0.0123	
		100	0.0067	0.0067	0.0074	0.0074	0.0014	0.0014	0.0008	0.0008	0.0302	0.0302	0.0030	0.0030	0.0008	0.0008
		500	0.0004	0.0004	0.0012	0.0012	0.0004	0.0004	0.0001	0.0001	0.0043	0.0043	0.0002	0.0002	0.0004	0.0004
0.2	[-1; 3]	50	0.0048	0.0048	0.0005	0.0005	0.0000	0.0000	0.0003	0.0003	0.0230	0.0230	0.0059	0.0059	0.0039	0.0039
	-	100	0.0029	0.0029	0.0042	0.0042	0.0038	0.0038	0.0015	0.0015	0.0150	0.0150	0.0034	0.0034	0.0020	0.0020
		500	0.0008	0.0008	0.0001	0.0001	0.0004	0.0004	0.0005	0.0005	0.0024	0.0024	0.0008	0.0008	0.0008	0.0008
	[0; 2]	50													0.0044	
		100													0.0040	
		500													0.0021	
0.3	[-1; 3]	50													0.0058	
		100													0.0019	
	[0.0]	500													0.0012	
	[0; 2]	50													0.0076 0.0044	
		100 500													0.0044 0.0014	
0.4	[-1; 3]	50													0.0014	
0.4	[-1, 3]	100													0.0014	
		500													0.0032	
	[0; 2]	50													0.0008	
	[0, 2]	100													0.0015	
		500													0.0019	
0.5	[-1; 3]	50													0.0026	
	. , - 1	100	0.0014	0.0014	0.0005	0.0005	0.0018	0.0018	0.0006	0.0006	0.0050	0.0050	0.0046	0.0046	0.0006	0.0006
		500	0.0009	0.0009	0.0006	0.0006	0.0002	0.0002	0.0002	0.0002	0.0010	0.0010	0.0013	0.0013	0.0018	0.0018
	[0; 2]	50													0.0103	
		100													0.0008	
		500													0.0021	
0.6	[-1; 3]	50													0.0038	
		100													0.0010	
	[0.0]	500													0.0003 0.0001	
	[0; 2]	$\frac{50}{100}$													0.0001	
		500													0.0018	
0.7	[-1; 3]	50													0.0019	
0.1	[1,0]	100													0.0021	
		500													0.0010	
	[0; 2]	50													0.0063	
		100	0.0026	0.0026	0.0011	0.0011	0.0068	0.0068	0.0037	0.0037	0.0038	0.0038	0.0102	0.0102	0.0005	0.0005
		500	0.0011	0.0011	0.0010	0.0010	0.0018	0.0018	0.0010	0.0010	0.0006	0.0006	0.0024	0.0024	0.0033	0.0033
0.8	[-1; 3]	50	0.0035	0.0035	0.0025	0.0025	0.0016	0.0016	0.0001	0.0001	0.0057	0.0057	0.0296	0.0296	0.0036	0.0036
		100													0.0029	
		500													0.0005	
	[0; 2]	50													0.0011	
		100													0.0026	
		500													0.0008	
0.9	[-1; 3]	50													0.0181	
		100													0.0006	
	[0, 9]	500													0.0013	
	[0; 2]	$\frac{50}{100}$													0.0209 0.0013	
		500													0.0013	
		300	0.0000	0.0000	0.0008	0.0008	0.0045	0.0040	0.0033	0.0033	0.0002	0.0002	0.0032	0.0032	0.0009	0.0009

Tabela D.4: Estimativas do valor absoluto do enviesamento médio dos parâmetros da mistura de duas regressões lineares no caso PIV

			α_1	α_1	β_1	β_1	α_2	α_2	β_2	β_2	σ_1	σ_1	σ_2	σ_2	π_1	π_1
$\frac{\pi_1}{\pi_1}$	x	n	EM	CEM	EM	CEM	EM	CEM	EM	CEM	EM	CEM	EM	CEM	EM	CEM
0.1	[-1; 3]	50													0.0211	
		100													0.0046	
	[0.0]	500													0.0009	
	[0; 2]	50													0.0260	
		100													0.0029	
		500													0.0004	
0.2	[-1; 3]	50													0.0042	
		100													0.0038	
		500													0.0000	
	[0; 2]	50													0.0050	
		100													0.0006	
		500													0.0032	
0.3	[-1; 3]	50													0.0027	
		100													0.0004	
		500													0.0009	
	[0; 2]	50													0.0024	
		100													0.0012	
		500													0.0006	
0.4	[-1; 3]	50													0.0035	
		100													0.0002	
		500													0.0009	
	[0; 2]	50													0.0019	
		100													0.0093	
		500													0.0016	
0.5	[-1; 3]	50														0.0064
		100													0.0001	
		500													0.0011	
	[0; 2]	50													0.0024	
		100													0.0064	
	f 4 01	500													0.0014	
0.6	[-1; 3]	50													0.0072	
		100													0.0052	
	[0.0]	500													0.0013	
	[0; 2]	50													0.0006	
		100													0.0048	
	[1 0]	500													0.0001	
0.7	[-1; 3]	50													0.0061	
		100													0.0052	
	[0.0]	500 50													0.0009	
	[0; 2]	100													0.0023	
		500													0.0031 0.0017	
0.0	[1 0]														0.0017	
0.8	[-1; 3]	50 100													0.0123 0.0004	
		500													0.0004	
	[0. 0]	500 50													0.0009	
	[0; 2]	100														
		500													0.0037	
0.0	[1.9]	50													0.0016 0.0230	
0.9	[-1; 3]	50 100													0.0230 0.0020	
	[0, 9]	500													0.0011 0.0319	
	[0; 2]	50													0.0319	
		100													0.0029 0.0001	
		500	0.0025	0.0026	0.0019	0.0019	0.0000	0.0310	0.0071	0.0090	0.0016	0.0018	0.0116	0.0403	0.0001	0.0018

Tabela D.5: Estimativas do valor absoluto do enviesamento médio dos parâmetros da mistura de duas regressões lineares no caso ${\rm PV}$

			α_1	α_1	β_1	β_1	α_2	α_2	β_2	β_2	σ_1	σ_1	σ_2	σ_2	π_1	π_1
$-\pi_1$	x	n	EM	CEM	EM	CEM	EM	CEM	EM	CEM	EM	CEM	EM	CEM	EM	CEM
0.1	[-1; 3]	50													0.0312	
		100													0.0091	
		500													0.0009	
	[0; 2]	50													0.0323	
		100													0.0163	
		500													0.0029	
0.2	[-1; 3]	50													0.0150	
		100													0.0140	
		500													0.0005	
	[0; 2]	50													0.0259	
		100													0.0081	
		500													0.0015	
0.3	[-1; 3]	50													0.0053	
		100													0.0025	
		500													0.0007	
	[0; 2]	50													0.0126	
		100													0.0017	
		500													0.0003	
0.4	[-1; 3]	50													0.0027	
		100													0.0019	
		500													0.0038	
	[0; 2]	50													0.0016	
		100													0.0079	
		500													0.0011	
0.5	[-1; 3]	50													0.0032	
		100													0.0014	
		500													0.0015	
	[0; 2]	50													0.0102	
		100													0.0049	
		500													0.0032	
0.6	[-1; 3]	50														0.0043
		100													0.0023	
		500													0.0022	
	[0; 2]	50													0.0009	
		100													0.0013	
		500													0.0010	
0.7	[-1; 3]	50													0.0117	
		100													0.0006	
		500													0.0021	
	[0; 2]	50													0.0098	
		100													0.0055	
		500													0.0000	
0.8	[-1; 3]	50													0.0122	
		100													0.0078	
	fo. 01	500													0.0002	
	[0; 2]	50													0.0193	
		100													0.0034	
	[4 0]	500													0.0006	
0.9	[-1; 3]	50													0.0302	
		100													0.0113	
	[0 0]	500													0.0001	
	[0; 2]	50													0.0477	
		100													0.0092	
		500	0.0022	0.0010	0.0017	0.0020	0.0069	0.1080	0.0102	0.0096	0.0016	0.0019	0.0124	0.0957	0.0027	0.0056

Tabela D.6: Estimativas do valor absoluto do enviesamento médio dos parâmetros da mistura de duas regressões lineares no caso ${\rm PVI}$

1	_	_		α_1	α_1	β_1	β_1	α_2	α_2	β_2	β_2	σ_1	σ_1	σ_2	σ_2	π_1	π_1
1	π ₁	x [1 0]															
Fig. 100 0.0001 0.0002 0.0002 0.0003 0.0003 0.0003 0.0004 0.0007 0.0007 0.0007 0.0000 0.0002 0.0002 0.0002 0.0003 0	0.1	[-1; 3]															
[0, 2] 50																	
1. 1. 1. 1. 1. 1. 1. 1.		[0.2]															
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		[0, 2]															
1-12																	
1	0.2	[-1:3]															
$ \begin{bmatrix} $	0.2	[1,0]															
1. 1. 1. 1. 1. 1. 1. 1.																	
100 0.0090 0.0090 0.0014 0.0014 0.0113 0.0113 0.0107 0.0107 0.0283 0.0283 0.0058 0.0058 0.0058 0.0012 0.0012 0.0012 0.0014 0.0004 0.0004 0.0004 0.0006 0.0006 0.00020 0.0007 0.00007 0.00004 0.0004 0.0004 0.0004 0.0006 0.0006 0.00020 0.0007 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0003 0.0033 0.0137 0.0153 0.0153 0.0153 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0022 0.0023 0.0023 0.0039 0.0039 0.0039 0.0032 0.0032 0.0025 0.00		[0: 2]	50	0.0171	0.0171	0.0198	0.0198	0.0047	0.0047	0.0010	0.0010	0.0358	0.0358	0.0048	0.0048	0.0001	0.0001
1.0		1-7 1	100	0.0090	0.0090	0.0014	0.0014	0.0113	0.0113	0.0107	0.0107	0.0283	0.0283	0.0058	0.0058	0.0012	0.0012
100			500	0.0034	0.0034	0.0053	0.0053	0.0001	0.0001	0.0006	0.0006	0.0020	0.0020	0.0007	0.0007	0.0004	0.0004
$ \begin{bmatrix} [c] \\ [$	0.3	[-1; 3]	50	0.0053	0.0053	0.0064	0.0064	0.0023	0.0023	0.0039	0.0039	0.0327	0.0327	0.0153	0.0153	0.0022	0.0022
$ \begin{bmatrix} [0;2] \\ [$			100	0.0063	0.0063	0.0051	0.0051	0.0001	0.0001	0.0030	0.0030	0.0127	0.0127	0.0022	0.0022	0.0071	0.0071
100			500	0.0027	0.0027	0.0008	0.0008	0.0010	0.0010	0.0010	0.0010	0.0029	0.0029	0.0012	0.0012	0.0002	0.0002
$ \begin{bmatrix} 0.4 & [-1;3] & 50 & 0.0006 0.0006 0.0002 0.0020 0.0020 0.0020 0.0040 0.0040 0.0026 0.0015 0.0015 0.0015 0.0026 0.0026 \\ [-1;3] & 50 & 0.0031 0.0031 0.0017 0.0017 0.0051 0.0020 0.0020 0.0022 0.0022 0.0022 0.0152 0.0152 0.0004 0.0004 \\ [-1;3] & 50 & 0.0000 0.0000 0.0012 0.0012 0.0027 0.0027 0.0001 0.0001 0.0027 0.0027 0.0017 0.0067 0.0013 0.0013 \\ [-1;3] & 50 & 0.0210 0.0213 0.0133 0.0133 0.0003 0.0002 0.0022 0.0022 0.0012 0.0156 0.0019 0.0019 \\ [-1;3] & 50 & 0.0067 0.0067 0.0028 0.0022 0.0002 0.0006 0.0006 0.0012 0.0012 0.0006 0.0006 0.0009 0.0009 \\ [-1;3] & 50 & 0.0067 0.0067 0.0028 0.0028 0.0046 0.0046 0.0010 0.0010 0.0162 0.0162 0.0175 0.0175 0.0031 0.0013 \\ [-1;3] & 50 & 0.0067 0.0067 0.0067 0.0006 0.0006 0.0009 0.0009 0.0009 0.0009 0.0018 0.0018 0.0015 0.0015 0.0019 $		[0; 2]	50	0.0276	0.0276	0.0204	0.0204	0.0062	0.0062	0.0025	0.0025	0.0358	0.0358	0.0116	0.0116	0.0094	0.0094
$ \begin{bmatrix} -1, 3 \\ -1, 3 \\ -1, 3 \\ -1, 3 \\ -1, 3 \\ -1, 5 \\ -$			100	0.0000	0.0000	0.0014	0.0014	0.0005	0.0005	0.0045	0.0045	0.0131	0.0131	0.0091	0.0091	0.0058	0.0058
100			500	0.0006	0.0006	0.0002	0.0002	0.0020	0.0020	0.0040	0.0040	0.0026	0.0026	0.0015	0.0015	0.0026	0.0026
$ \begin{bmatrix} [0;2] \\ [$	0.4	[-1; 3]	50														
$ \begin{bmatrix} [0;2] \\ [0;2] \\ [0;2] \\ [0;0] \\ [$																	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $																	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		[0; 2]															
$ \begin{bmatrix} -1;3 \\ -1;3$																	
100																	
$ \begin{bmatrix} [0;2] & 500 & 0.0018 & 0.0015 & 0.0015 & 0.0007 & 0.0007 & 0.0013 & 0.0013 & 0.0033 & 0.0038 & 0.0008 & 0.0017 & 0.0017 \\ 500 & 0.0080 & 0.0005 & 0.0005 & 0.0005 & 0.0005 & 0.00036 & 0.00036 & 0.0102 & 0.0012 & 0.0215 & 0.0060 & 0.0060 \\ 500 & 0.0021 & 0.0021 & 0.0013 & 0.0013 & 0.0042 & 0.0042 & 0.0043 & 0.0016 & 0.0016 & 0.0014 & 0.0014 & 0.0028 & 0.0028 \\ \hline 0.6 & [-1;3] & 50 & 0.0043 & 0.0027 & 0.0027 & 0.0003 & 0.0026 & 0.0123 & 0.0123 & 0.0245 & 0.0040 & 0.0042 \\ 500 & 0.0044 & 0.0044 & 0.0006 & 0.0018 & 0.0018 & 0.0015 & 0.0015 & 0.0013 & 0.0123 & 0.0245 & 0.0040 & 0.0042 \\ 500 & 0.0044 & 0.0044 & 0.0006 & 0.0018 & 0.0018 & 0.0015 & 0.0015 & 0.0015 & 0.0015 & 0.0024 & 0.0024 & 0.0024 \\ \hline [0;2] & 50 & 0.0001 & 0.0001 & 0.0008 & 0.0008 & 0.0029 & 0.0019 & 0.0019 & 0.0015 & 0.0015 & 0.0013 & 0.0033 & 0.0024 & 0.0024 \\ \hline [0;2] & 50 & 0.0081 & 0.0081 & 0.0035 & 0.0035 & 0.0145 & 0.0071 & 0.0071 & 0.0115 & 0.0013 & 0.0033 & 0.0034 & 0.0034 \\ \hline [0;2] & 50 & 0.0081 & 0.0081 & 0.0035 & 0.0035 & 0.0145 & 0.0071 & 0.0071 & 0.0115 & 0.0015 & 0.0034 & 0.0034 & 0.0034 \\ \hline [0;2] & 50 & 0.0081 & 0.0034 & 0.0034 & 0.0034 & 0.0040 & 0.0040 & 0.0040 & 0.0040 & 0.0041 & 0.0044 & 0.0066 & 0.0066 \\ \hline [0;2] & 50 & 0.0099 & 0.0009 & 0.0032 & 0.0032 & 0.0006 & 0.0010 & 0.0010 & 0.0008 & 0.0008 & 0.0024 & 0.0024 & 0.0024 \\ \hline [0;2] & 50 & 0.0099 & 0.0099 & 0.0034 & 0.0034 & 0.0039 & 0.0004 & 0.0040 & 0.0040 & 0.0044 & 0.0024 & 0.0024 \\ \hline [0;2] & 50 & 0.0099 & 0.0099 & 0.0034 & 0.0034 & 0.0032 & 0.0011 & 0.0011 & 0.0006 & 0.0008 & 0.0023 & 0.0023 & 0.0022 \\ \hline [0;2] & 50 & 0.0057 & 0.0057 & 0.0084 & 0.0032 & 0.0032 & 0.0011 & 0.0011 & 0.0002 & 0.0022 & 0.0029 & 0.0029 \\ \hline [0;2] & 50 & 0.0057 & 0.0057 & 0.0084 & 0.0032 & 0.0032 & 0.0011 & 0.0011 & 0.0002 & 0.0002 & 0.0029 & 0.0029 \\ \hline [0;2] & 50 & 0.0058 & 0.0058 & 0.0023 & 0.0033 & 0.0033 & 0.0033 & 0.0003 & 0.0003 & 0.0037 & 0.0037 & 0.0037 \\ \hline [0;2] & 50 & 0.0058 & 0.0058 & 0.0023 & 0.0023 & 0.0034 & 0.0044 & 0.0046 & 0.0015 & 0.0042 & 0.0042 & 0.0424 & 0.0245 & 0.0045 \\ \hline [0;$	0.5	[-1; 3]															
$ \begin{bmatrix} [9;2] \\ [0;3] \\ [0;4] \\ [0;5] \\ [0;6] \\ [0;6] \\ [0;7] \\ [$																	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		fo. 01															
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		[0; 2]															
$ \begin{bmatrix} -1;3 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $																	
$ \begin{bmatrix} 100 \\ 1$	0.0	[1 0]															
$ \begin{bmatrix} [0;2] & 500 & 0.0001 & 0.0001 & 0.0008 & 0.0008 & 0.0029 & 0.0019 & 0.0019 & 0.0015 & 0.0003 & 0.0003 & 0.0024 & 0.0024 \\ [0;2] & 50 & 0.0081 & 0.0081 & 0.0035 & 0.0035 & 0.0145 & 0.0145 & 0.0011 & 0.00115 & 0.0115 & 0.0234 & 0.0234 & 0.0008 & 0.0008 \\ [0;0] & 0.0073 & 0.0073 & 0.0110 & 0.0013 & 0.0003 & 0.0040 & 0.0040 & 0.0040 & 0.0040 & 0.0044 & 0.0024 & 0.0026 \\ [0;0] & 0.0009 & 0.0009 & 0.0032 & 0.0032 & 0.0006 & 0.0006 & 0.0010 & 0.0010 & 0.0008 & 0.0008 & 0.0024 & 0.0024 & 0.0020 & 0.0020 \\ [0;0] & 500 & 0.0009 & 0.0034 & 0.0034 & 0.0034 & 0.0039 & 0.0004 & 0.0040 & 0.0040 & 0.0048 & 0.0024 & 0.0024 & 0.0020 & 0.0022 \\ [0;0] & 500 & 0.0000 & 0.0003 & 0.0005 & 0.0032 & 0.0032 & 0.0039 & 0.0004 & 0.0086 & 0.0086 & 0.0273 & 0.0213 & 0.0014 & 0.014 \\ [0;0] & 500 & 0.0000 & 0.0005 & 0.0005 & 0.0032 & 0.0032 & 0.0011 & 0.0011 & 0.0002 & 0.0002 & 0.0029 & 0.0029 & 0.0009 \\ [0;0] & 500 & 0.0057 & 0.0084 & 0.0084 & 0.0128 & 0.0128 & 0.0142 & 0.0146 & 0.0166 & 0.0256 & 0.0256 & 0.0229 & 0.0029 \\ [0;0] & 500 & 0.0033 & 0.0003 & 0.0003 & 0.0003 & 0.0003 & 0.0003 & 0.0003 & 0.0003 & 0.0003 & 0.0003 & 0.0003 \\ [0;0] & 500 & 0.0058 & 0.0058 & 0.0023 & 0.0023 & 0.0034 & 0.0054 & 0.0011 & 0.0011 & 0.0016 & 0.0166 & 0.0256 & 0.0256 & 0.0029 & 0.0029 \\ [0;0] & 500 & 0.0058 & 0.0058 & 0.0023 & 0.0023 & 0.0034 & 0.0034 & 0.0067 & 0.0097 & 0.0097 & 0.0462 & 0.0462 & 0.0041 & 0.0041 \\ [0;0] & 500 & 0.0058 & 0.0058 & 0.0023 & 0.0023 & 0.0034 & 0.0034 & 0.0067 & 0.0067 & 0.0097 & 0.0097 & 0.0462 & 0.0462 & 0.0041 & 0.0045 \\ [0;0] & 500 & 0.0058 & 0.0058 & 0.0023 & 0.0023 & 0.0034 & 0.0067 & 0.0067 & 0.0097 & 0.0097 & 0.0462 & 0.0462 & 0.0041 & 0.0045 \\ [0;0] & 500 & 0.0058 & 0.0058 & 0.0023 & 0.0023 & 0.0034 & 0.0046 & 0.0015 & 0.0015 & 0.0021 & 0.0024 & 0.0245 & 0.0045 & 0.0045 \\ [0;0] & 500 & 0.0073 & 0.0077 & 0.0077 & 0.0182 & 0.0182 & 0.0067 & 0.0008 & 0.0008 & 0.0008 & 0.0008 & 0.0008 \\ [0;0] & 500 & 0.0005 & 0.0002 & 0.0024 & 0.0024 & 0.0224 & 0.0024 & 0.0024 & 0.0025 & 0.0005 & 0.0010 & 0.0010 & 0.0010 & 0.0010 \\ [0;$	0.6	[-1; 3]															
$ \begin{bmatrix} [0;2] \\ [0;2] \\ [0;3] \\ [0;4] \\ [0;5] \\ [0;6] \\ [0;7] \\ [$																	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		[0.9]															
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		[0, 2]															
$ \begin{bmatrix} -1; 3 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$																	
$\begin{bmatrix} 100 \\ 500 \\ 500 \\ 0.0003 \\ 0.0003 \\ 0.0003 \\ 0.0003 \\ 0.0004 \\ 0.0004 \\ 0.0004 \\ 0.0004 \\ 0.0004 \\ 0.0004 \\ 0.0005 \\ 0.0005 \\ 0.0005 \\ 0.0005 \\ 0.0005 \\ 0.0005 \\ 0.0005 \\ 0.0005 \\ 0.0005 \\ 0.0005 \\ 0.0005 \\ 0.0004 \\ 0.0004 \\ 0.0004 \\ 0.0004 \\ 0.0004 \\ 0.0004 \\ 0.0004 \\ 0.0003 \\ 0.0003 \\ 0.0002 \\ 0.0002 \\ 0.0002 \\ 0.0002 \\ 0.0002 \\ 0.0002 \\ 0.0002 \\ 0.0003 \\ 0.0003 \\ 0.0003 \\ 0.0003 \\ 0.0002 \\ 0.0002 \\ 0.0002 \\ 0.0002 \\ 0.0002 \\ 0.0002 \\ 0.0002 \\ 0.0002 \\ 0.0002 \\ 0.0003 \\ 0.0003 \\ 0.0003 \\ 0.0003 \\ 0.0003 \\ 0.0003 \\ 0.0003 \\ 0.0003 \\ 0.0003 \\ 0.0003 \\ 0.0003 \\ 0.0003 \\ 0.0003 \\ 0.0003 \\ 0.0002 \\ 0.0002 \\ 0.0002 \\ 0.0002 \\ 0.0002 \\ 0.0002 \\ 0.0002 \\ 0.0002 \\ 0.0002 \\ 0.0002 \\ 0.0002 \\ 0.0003 \\ 0.0002 \\ 0.0002 \\ 0.0002 \\ 0.0002 \\ 0.0005 \\ 0.0005 \\ 0.0002 \\$	0.7	[-1:3]															
$ \begin{bmatrix} [0;2] & 500 & 0.0000 & 0.0005 & 0.0005 & 0.0032 & 0.0032 & 0.0011 & 0.0011 & 0.0002 & 0.0029 & 0.0029 & 0.0009 & 0.0009 \\ 0.0057 & 0.0057 & 0.0084 & 0.0084 & 0.0128 & 0.0128 & 0.0142 & 0.0142 & 0.0106 & 0.0166 & 0.0256 & 0.0256 & 0.0029 & 0.0029 \\ 100 & 0.0042 & 0.0040 & 0.0041 & 0.0043 & 0.0037 & 0.0054 & 0.0011 & 0.0012 & 0.0082 & 0.0079 & 0.0140 & 0.0146 & 0.0043 & 0.0043 \\ 500 & 0.0003 & 0.0003 & 0.0002 & 0.0002 & 0.0001 & 0.0001 & 0.0003 & 0.0003 & 0.0003 & 0.0003 & 0.0003 & 0.0007 & 0.0047 & 0.0007 \\ 0.008 & [-1;3] & 50 & 0.0058 & 0.0058 & 0.0023 & 0.0023 & 0.0034 & 0.0067 & 0.0067 & 0.0097 & 0.0097 & 0.0462 & 0.0462 & 0.0001 & 0.0011 \\ 0.0029 & 0.0029 & 0.0029 & 0.0026 & 0.0016 & 0.0011 & 0.0051 & 0.0051 & 0.0042 & 0.0042 & 0.0245 & 0.0245 & 0.0045 & 0.0045 \\ 500 & 0.0009 & 0.0009 & 0.0011 & 0.0011 & 0.0061 & 0.0051 & 0.0051 & 0.0021 & 0.0021 & 0.0039 & 0.0039 & 0.0013 \\ 0.0023 & 0.0071 & 0.0071 & 0.0055 & 0.0255 & 0.0214 & 0.0214 & 0.0087 & 0.0097 & 0.0099 & 0.0339 & 0.0339 & 0.0013 & 0.0013 \\ 0.009 & [-1;3] & 50 & 0.0002 & 0.0002 & 0.0024 & 0.0024 & 0.0087 & 0.0075 & 0.0075 & 0.0010 & 0.0061 & 0.0062 & 0.0001 & 0.0001 \\ 0.009 & [-1;3] & 50 & 0.0002 & 0.0002 & 0.0024 & 0.0024 & 0.0247 & 0.0087 & 0.0075 & 0.0075 & 0.0010 & 0.0061 & 0.0062 & 0.0001 & 0.0011 \\ 0.009 & [-1;3] & 50 & 0.0002 & 0.0002 & 0.0024 & 0.0024 & 0.0273 & 0.0273 & 0.0108 & 0.0082 & 0.0082 & 0.0755 & 0.0755 & 0.0173 & 0.0173 \\ 0.009 & 0.0003 & 0.0003 & 0.0003 & 0.0003 & 0.0087 & 0.0075 & 0.0075 & 0.0010 & 0.0061 & 0.0062 & 0.000$	0	[1,0]															
$ \begin{bmatrix} [0;2] & 50 & 0.0057 \ 0.0057 \ 0.0084 \ 0.0084 \ 0.0128 \ 0.0142 \ 0.0142 \ 0.0142 \ 0.0166 \ 0.0166 \ 0.0256 \ 0.0256 \ 0.0029 \ 0.0029 \\ 0.0042 \ 0.0040 \ 0.0041 \ 0.0040 \ 0.0037 \ 0.0054 \ 0.0001 \ 0.0012 \ 0.0082 \ 0.0079 \ 0.0140 \ 0.0146 \ 0.0043 \ 0.0043 \\ 0.0003 \ 0.0$																	
$ \begin{bmatrix} 100 \\ 500 \\ 500 \\ 0.0042 \\ 0.0040 \\ 0.0041 \\ 0.0003 \\ 0.0003 \\ 0.0002 $		[0: 2]	50														
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1-7 1															
$ \begin{bmatrix} 100 & 0.0029 & 0.0029 & 0.0026 & 0.0016 & 0.0011 & 0.0051 & 0.0051 & 0.0042 & 0.0042 & 0.0245 & 0.0245 & 0.0045 & 0.0045 \\ 0.0009 & 0.0009 & 0.0011 & 0.0011 & 0.0046 & 0.0046 & 0.0015 & 0.0021 & 0.0021 & 0.0039 & 0.0039 & 0.0013 & 0.0013 \\ 0.0071 & 0.0071 & 0.0071 & 0.0055 & 0.00214 & 0.0214 & 0.0087 & 0.0098 & 0.0090 & 0.0339 & 0.0339 & 0.0039 & 0.0007 \\ 100 & 0.0073 & 0.0073 & 0.0077 & 0.0077 & 0.0182 & 0.0067 & 0.0067 & 0.0008 & 0.0008 & 0.0210 & 0.0210 & 0.0054 \\ 0.0023 & 0.0023 & 0.0033 & 0.0030 & 0.0038 & 0.0087 & 0.0075 & 0.0075 & 0.0010 & 0.0010 & 0.0061 & 0.0062 & 0.0001 & 0.0010 \\ 0.09 & [-1;3] & 50 & 0.0002 & 0.0024 & 0.0024 & 0.0273 & 0.0273 & 0.0108 & 0.0108 & 0.0082 & 0.0982 & 0.0955 & 0.0755 & 0.0175 & 0.0175 & 0.0175 & 0.0175 & 0.0175 & 0.0175 & 0.0175 & 0.0175 & 0.0175 & 0.0175 & 0.0175 & 0.0175 & 0.0010 & $			500	0.0003	0.0003	0.0002	0.0002	0.0001	0.0001	0.0003	0.0003	0.0003	0.0003	0.0037	0.0037	0.0007	0.0007
$ \begin{bmatrix} 100 & 0.0029 & 0.0029 & 0.0026 & 0.0026 & 0.0011 & 0.0011 & 0.0051 & 0.0042 & 0.0042 & 0.0245 & 0.0245 & 0.0045 & 0.0045 \\ 500 & 0.0009 & 0.0009 & 0.0011 & 0.0016 & 0.0046 & 0.0015 & 0.0015 & 0.0021 & 0.0021 & 0.0039 & 0.0039 & 0.0013 & 0.0013 \\ 500 & 0.0071 & 0.0071 & 0.0055 & 0.0255 & 0.0214 & 0.0214 & 0.0087 & 0.0098 & 0.0099 & 0.0399 & 0.0339 & 0.0339 & 0.0007 & 0.0007 \\ 100 & 0.0073 & 0.0073 & 0.0077 & 0.0182 & 0.0182 & 0.0067 & 0.00067 & 0.0008 & 0.0210 & 0.0210 & 0.0054 & 0.0054 \\ 500 & 0.0023 & 0.0023 & 0.0030 & 0.0030 & 0.0087 & 0.0087 & 0.0075 & 0.0075 & 0.0010 & 0.0010 & 0.0061 & 0.0062 & 0.0001 & 0.0010 \\ 0.9 & [-1;3] & 50 & 0.00020 & 0.0024 & 0.0024 & 0.0273 & 0.0273 & 0.0108 & 0.0082 & 0.0082 & 0.0755 & 0.0755 & 0.0175 & 0.0185 & 0.0058 & 0.0381 & 0.0381 & 0.0381 & 0.0141 & $	0.8	[-1; 3]	50	0.0058	0.0058	0.0023	0.0023	0.0034	0.0034	0.0067	0.0067	0.0097	0.0097	0.0462	0.0462	0.0001	0.0001
$ \begin{bmatrix} [0;2] & 50 & 0.0071 & 0.0071 & 0.0055 & 0.0025 & 0.0214 & 0.0214 & 0.0087 & 0.0090 & 0.0090 & 0.0339 & 0.0339 & 0.0007 & 0.0007 \\ 100 & 0.0073 & 0.0077 & 0.0077 & 0.0182 & 0.0182 & 0.0087 & 0.0067 & 0.0008 & 0.0008 & 0.0210 & 0.0210 & 0.0054 & 0.0054 \\ 500 & 0.0023 & 0.0023 & 0.0030 & 0.0037 & 0.0087 & 0.0075 & 0.0075 & 0.0010 & 0.0010 & 0.0061 & 0.0062 & 0.0001 \\ 0.09 & [-1;3] & 50 & 0.0002 & 0.0002 & 0.0024 & 0.0224 & 0.0273 & 0.0273 & 0.0108 & 0.0108 & 0.0082 & 0.0082 & 0.0755 & 0.0755 & 0.0173 & 0.0173 \\ 100 & 0.0023 & 0.0023 & 0.0043 & 0.0043 & 0.0184 & 0.0184 & 0.0036 & 0.0056 & 0.0056 & 0.0485 & 0.0485 & 0.0002 & 0.0002 \\ 500 & 0.0005 & 0.0005 & 0.0001 & 0.0001 & 0.0021 & 0.0021 & 0.0025 & 0.0025 & 0.0012 & 0.0012 & 0.0062 & 0.0068 & 0.0088 \\ [0;2] & 50 & 0.0059 & 0.0058 & 0.0065 & 0.0062 & 0.0221 & 0.0184 & 0.0283 & 0.0227 & 0.0093 & 0.0092 & 0.0774 & 0.0773 & 0.0183 & 0.0179 \\ 100 & 0.0012 & 0.0012 & 0.0019 & 0.0019 & 0.0177 & 0.0177 & 0.0156 & 0.0156 & 0.0058 & 0.0058 & 0.0381 & 0.0381 & 0.0014 & 0.0014 \\ 100 & 0.0012 & 0.0012 & 0.0019 & 0.0019 & 0.0177 & 0.0177 & 0.0156 & 0.0156 & 0.0058 & 0.0058 & 0.0381 & 0.0381 & 0.0014 & 0.0014 \\ 100 & 0.0012 & 0.0012 & 0.0019 & 0.0019 & 0.0177 & 0.0177 & 0.0156 & 0.0156 & 0.0058 & 0.0058 & 0.0381 & 0.0381 & 0.0014 & 0.0014 \\ 100 & 0.0012 & 0.0012 & 0.0012 & 0.0019 & 0.0019 & 0.0177 & 0.0177 & 0.0156 & 0.0156 & 0.0058 & 0.0058 & 0.0381 & 0.0381 & 0.0014 & 0.0014 \\ 100 & 0.0012 & 0.0012 & 0.0012 & 0.0019 & 0.0019 & 0.0177 & 0.0177 & 0.0156 & 0.0156 & 0.0058 & 0.0088 & 0.0381 & 0.0381 & 0.0014 & 0.0014 \\ 100 & 0.0012 & 0.0012 & 0.0012 & 0.0019 & 0.0019 & 0.0177 & 0.0177 & 0.0156 & 0.0156 & 0.0058 & 0.0088 & 0.0381 & 0.0381 & 0.0014 & 0.0014 \\ 100 & 0.0012 & 0.$. , ,	100	0.0029	0.0029	0.0026	0.0026	0.0011	0.0011	0.0051	0.0051	0.0042	0.0042	0.0245	0.0245	0.0045	0.0045
$ \begin{bmatrix} 100 \\ 500 \\ 0.0073 \ 0.0073 \ 0.0077 \ 0.0077 \ 0.0182 \ 0.0182 \ 0.0067 \ 0.0067 \ 0.0008 \ 0.0008 \ 0.0210 \ 0.0210 \ 0.0210 \ 0.0054 \ 0.0054 \\ 0.0023 \ 0.0023 \ 0.0030 \ 0.0030 \ 0.0087 \ 0.0087 \ 0.0075 \ 0.0075 \ 0.0075 \ 0.0010 \ 0.0010 \ 0.0061 \ 0.0062 \ 0.0001 \ 0.0001 \\ 0.0023 \ 0.0023 \ 0.0024 \ 0.0024 \ 0.0024 \ 0.0273 \ 0.0273 \ 0.0108 \ 0.0188 \ 0.0082 \ 0.0082 \ 0.0755 \ 0.0755 \ 0.0173 \ 0.0173 \\ 0.0023 \ 0.0023 \ 0.0043 \ 0.0043 \ 0.0184 \ 0.0184 \ 0.0036 \ 0.0056 \ 0.0056 \ 0.0056 \ 0.0485 \ 0.0485 \ 0.0022 \ 0.0002 \\ 0.0005 \ 0.0005 \ 0.0005 \ 0.0001 \ 0.0001 \ 0.0021 \ 0.0021 \ 0.0021 \ 0.0025 \ 0.0025 \ 0.0012 \ 0.0012 \ 0.0012 \ 0.0062 \ 0.0062 \ 0.0088 \\ 0.0059 \ 0.0059 \ 0.0058 \ 0.0065 \ 0.0021 \ 0.0177 \ 0.0177 \ 0.0156 \ 0.0156 \ 0.0058 \ 0.0058 \ 0.0381 \ 0.0381 \ 0.0014 \ 0.0014 \\ 0.0012 \ 0.0012 \ 0.0012 \ 0.0019 \ 0.0177 \ 0.0177 \ 0.0156 \ 0.0156 \ 0.0058 \ 0.0058 \ 0.0381 \ 0.0381 \ 0.0014 \ 0.0014 \\ 0.0014 \ 0.0014 \ 0.0014 \ 0.0014 \ 0.0014 \ 0.0014 \\ 0.0014 \ 0.0014 \ 0.0014 \ 0.0014 \\ 0.0014 \ 0.0014 \ 0.0014 \ 0.0014 \ 0.0014 \ 0.0014 \ 0.0014 \ 0.0014 \\ 0.0014 \ 0.0014 \ 0.0014 \ 0.0014 \ 0.0014 \ 0.0014 \\ 0.0014 \ 0.00$			500	0.0009	0.0009	0.0011	0.0011	0.0046	0.0046	0.0015	0.0015	0.0021	0.0021	0.0039	0.0039	0.0013	0.0013
$ \begin{bmatrix} 500 & 0.0023 & 0.0023 & 0.0030 & 0.0030 & 0.0087 & 0.0087 & 0.0075 & 0.0010 & 0.0010 & 0.0061 & 0.0062 & 0.0001 & 0.0001 \\ 0.0 & [-1;3] & 50 & 0.0002 & 0.0002 & 0.0024 & 0.0024 & 0.0273 & 0.0188 & 0.0108 & 0.0082 & 0.0082 & 0.0755 & 0.0755 & 0.0173 & 0.0173 \\ 0.0023 & 0.0023 & 0.0043 & 0.0043 & 0.0184 & 0.0184 & 0.0036 & 0.0056 & 0.0056 & 0.0485 & 0.0485 & 0.0002 & 0.0002 \\ 500 & 0.0005 & 0.0005 & 0.0001 & 0.0001 & 0.0021 & 0.0025 & 0.0025 & 0.0012 & 0.0012 & 0.0062 & 0.0062 & 0.0088 & 0.0088 \\ 0.2 & 50 & 0.0059 & 0.0058 & 0.0065 & 0.0062 & 0.0221 & 0.0184 & 0.0186 & 0.0058 & 0.0058 & 0.0381 & 0.0381 & 0.0114 & 0.0114 \\ 0.0012 & 0.0012 & 0.0012 & 0.0019 & 0.0177 & 0.0177 & 0.0156 & 0.0156 & 0.0058 & 0.0381 & 0.0381 & 0.0014 & 0.0014 \\ 0.0012 & 0.0012 & 0.0012 & 0.0019 & 0.0019 & 0.0177 & 0.0177 & 0.0156 & 0.0156 & 0.0058 & 0.0381 & 0.0381 & 0.0014 & 0.0014 \\ 0.0012 & 0.0012 & 0.0012 & 0.0019 & 0.0019 & 0.0177 & 0.0177 & 0.0156 & 0.0156 & 0.0058 & 0.0088 & 0.0381 & 0.0381 & 0.0014 & 0.0014 \\ 0.0012 & 0.0012 & 0.0012 & 0.0019 & 0.0019 & 0.0177 & 0.0177 & 0.0156 & 0.0156 & 0.0058 & 0.0058 & 0.0381 & 0.0381 & 0.0014 & 0.0014 \\ 0.0012 & 0.0012 & 0.0012 & 0.0019 & 0.0019 & 0.0177 & 0.0177 & 0.0156 & 0.0156 & 0.0058 & 0.0058 & 0.0381 & 0.0381 & 0.0014 \\ 0.0012 & 0.0012 & 0.0012 & 0.0019 & 0.0019 & 0.0177 & 0.0177 & 0.0156 & 0.0156 & 0.0058 & 0.0058 & 0.0381 & 0.0381 & 0.0014 \\ 0.0012 & 0.0012 & 0.0012 & 0.0012 & 0.0019 & 0.00177 & 0.0177 & 0.0156 & 0.0156 & 0.0058 & 0.0058 & 0.0381 & 0.0381 & 0.0014 \\ 0.0012 & 0.0012 & 0.0012 & 0.0012 & 0.0012 & 0.0012 & 0.0012 & 0.0012 & 0.0012 & 0.0012 \\ 0.0012 & 0.0012 & 0.0012 & 0.0012 & 0.0012 & 0.0012 & 0.0012 & 0.0012 & 0.0012 & 0.0012 \\ 0.0012 & 0.0012 & 0.0012 & 0.0012 & 0.0012 & 0.0012 & 0.0012 & 0.0012 & 0.0012 & 0.0012 \\ 0.0012 & 0.0012 & 0.0012 & 0.0012 & 0.0012 & 0.0012 & 0.0012 & 0.0012 & 0.0012 & 0.0012 \\ 0.0012 & 0.0012 & 0.0012 & 0.0012 & 0.0012 & 0.0012 & 0.0012 & 0.0012 & 0.0012 \\ 0.0012 & 0.0012 & 0.0012 & 0.0012 & 0.0012 & 0.0012 & 0.0012 & 0.0012 \\ 0.0012 &$		[0; 2]	50	0.0071	0.0071	0.0055	0.0055	0.0214	0.0214	0.0087	0.0087	0.0090	0.0090	0.0339	0.0339	0.0007	0.0007
$ \begin{bmatrix} 0.9 & [-1;3] & 50 & 0.0002 & 0.0002 & 0.0024 & 0.0024 & 0.0273 & 0.0123 & 0.0108 & 0.0082 & 0.0082 & 0.0755 & 0.0755 & 0.0173 & 0.0173 \\ 100 & 0.0023 & 0.0023 & 0.0043 & 0.0043 & 0.0184 & 0.0184 & 0.036 & 0.036 & 0.0056 & 0.0485 & 0.0485 & 0.0002 & 0.0002 \\ 500 & 0.0005 & 0.0005 & 0.0001 & 0.0001 & 0.0021 & 0.0025 & 0.0025 & 0.0012 & 0.0012 & 0.0062 & 0.0062 & 0.0088 & 0.0088 \\ [0;2] & 50 & 0.0059 & 0.0058 & 0.0065 & 0.0062 & 0.0221 & 0.0184 & 0.0283 & 0.0227 & 0.0093 & 0.0092 & 0.0774 & 0.0773 & 0.0183 & 0.0179 \\ 100 & 0.0012 & 0.0012 & 0.0019 & 0.0019 & 0.0177 & 0.0177 & 0.0156 & 0.0156 & 0.0058 & 0.0381 & 0.0381 & 0.0014 & 0.0014 \\ \end{bmatrix} $			100	0.0073	0.0073	0.0077	0.0077	0.0182	0.0182	0.0067	0.0067	0.0008	0.0008	0.0210	0.0210	0.0054	0.0054
$ \begin{bmatrix} 100 \\ 0.0023 \ 0.0023 \ 0.0043 \ 0.0043 \ 0.0184 \ 0.0184 \ 0.0036 \ 0.0036 \ 0.0056 \ 0.0056 \ 0.0485 \ 0.0485 \ 0.0002 \ 0.0002 \\ 0.0005 \ 0.0005 \ 0.0005 \ 0.0001 \ 0.0001 \ 0.0021 \ 0.0021 \ 0.0025 \ 0$			500	0.0023	0.0023	0.0030	0.0030	0.0087	0.0087	0.0075	0.0075	0.0010	0.0010	0.0061	0.0062	0.0001	0.0001
$ \begin{bmatrix} 500 & 0.0005 & 0.0005 & 0.0001 & 0.0001 & 0.0021 & 0.0021 & 0.0025 & 0.0012 & 0.0012 & 0.0062 & 0.0062 & 0.0008 & 0.0008 \\ 50 & 0.0059 & 0.0058 & 0.0065 & 0.0062 & 0.0221 & 0.0184 & 0.0283 & 0.0227 & 0.0093 & 0.0092 & 0.0774 & 0.0773 & 0.0183 & 0.0179 \\ 100 & 0.0012 & 0.0012 & 0.0019 & 0.0019 & 0.0177 & 0.0177 & 0.0156 & 0.0156 & 0.0058 & 0.0381 & 0.0381 & 0.0014 & 0.0014 \\ \end{bmatrix} $	0.9	[-1; 3]	50	0.0002	0.0002	0.0024	0.0024	0.0273	0.0273	0.0108	0.0108	0.0082	0.0082	0.0755	0.0755	0.0173	0.0173
$ \begin{bmatrix} 0;2 \end{bmatrix} & 50 & 0.0059 & 0.0058 & 0.0065 & 0.0062 & 0.0221 & 0.0184 & 0.0283 & 0.0227 & 0.0093 & 0.0092 & 0.0774 & 0.0773 & 0.0183 & 0.0179 \\ 100 & 0.0012 & 0.0012 & 0.0019 & 0.0019 & 0.0177 & 0.0177 & 0.0156 & 0.0156 & 0.0058 & 0.0058 & 0.0381 & 0.0381 & 0.0014 \\ 0.0012 & 0.0012 & 0.0012 & 0.0019 & 0.0177 & 0.0177 & 0.0177 & 0.0156 & 0.0058 & 0.0058 & 0.0081 & 0.0081 & 0.0014 \\ 0.0012 & 0.0012 & 0.0012 & 0.0019 & 0.0019 & 0.0019 & 0.0177$																	
100 0.0012 0.0012 0.0019 0.0019 0.0177 0.0177 0.0156 0.0156 0.0058 0.0058 0.0381 0.0381 0.0014 0.0014																	
		[0; 2]															
$500 \qquad 0.0013 \ 0.0013 \ 0.0016 \ 0.0016 \ 0.0016 \ 0.0046 \ 0.0046 \ 0.0060 \ 0.0060 \ 0.0020 \ 0.0020 \ 0.0045 \ 0.0045 \ 0.0008 \ 0.0008$																	
			500	0.0013	0.0013	0.0016	0.0016	0.0046	0.0046	0.0060	0.0060	0.0020	0.0020	0.0045	0.0045	0.0008	0.0008

Tabela D.7: Estimativas do valor absoluto do enviesamento médio dos parâmetros da mistura de duas regressões lineares no caso ${\rm PVII}$

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	σ_2 CEM	π_1	π_1
		EM	CEM
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			
500 0.0003 0.0068 0.0029 0.0033 0.0022 0.0019 0.0006 0.0006 0.0104 0.0195 0.0006			
$ \begin{bmatrix} [0;2] & 50 & 0.0005 \ 0.0120 \ 0.0351 \ 0.0071 \ 0.0113 \ 0.0066 \ 0.0161 \ 0.0063 \ 0.1366 \ 0.1488 \ 0.0167 \\ 100 & 0.0110 \ 0.0275 \ 0.0047 \ 0.0004 \ 0.0036 \ 0.0046 \ 0.0023 \ 0.0028 \ 0.0685 \ 0.0766 \ 0.0034 \\ \end{bmatrix} $			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			
500 0.0006 0.0053 0.0006 0.0005 0.0007 0.0015 0.0004 0.0004 0.0077 0.0141 0.0040			
$ \begin{bmatrix} 0;2 \end{bmatrix} \qquad 50 \qquad 0.0173 \ 0.0048 \ 0.0089 \ 0.0049 \ 0.0073 \ 0.0108 \ 0.0014 \ 0.0129 \ 0.0588 \ 0.0655 \ 0.0178 \\ 0.0014 \ 0.0105 \ 0.0103 \ 0.0106 \ 0.0005 \ 0.0000 \ 0.0054 \ 0.0056 \ 0.0299 \ 0.0394 \ 0.0069 \\ 0.0014 \ 0.0105 \ 0.0103 \ 0.0106 \ 0.0005 \ 0.0000 \ 0.0054 \ 0.0056 \ 0.0299 \ 0.0394 \ 0.0069 \\ 0.0014 \ 0.0105 \ 0.0103 \ 0.0106 \ 0.0005 \ 0.0000 \ 0.0054 \ 0.0056 \ 0.0299 \ 0.0394 \ 0.0069 \\ 0.0014 \ 0.0105 \ 0.0103 \ 0.0106 \ 0.0005 \ 0.0000 \ 0.0054 \ 0.0056 \ 0.0299 \ 0.0394 \ 0.0069 \\ 0.0014 \ 0.0105 \ 0.0103 \ 0.0106 \ 0.0005 \ 0.0000 \ 0.0054 \ 0.0056 \ 0.0299 \ 0.0394 \ 0.0069 \\ 0.0014 \ 0.0105 \ 0.0103 \ 0.0106 \ 0.0005 \ 0.0000 \ 0.0054 \ 0.0056 \ 0.0299 \ 0.0394 \ 0.0069 \\ 0.0014 \ 0.0105 \ 0.0103 \ 0.0106 \ 0.0005 \ 0.0000 \ 0.0054 \ 0.0056 \ 0.0299 \ 0.0394 \ 0.0069 \\ 0.0014 \ 0.0105 \ 0.0105 \ 0.0005 \ 0.0000 \ 0.0005 \ 0.0000 \ 0.0054 \ 0.0056 \ 0.0009 \ 0.0005 \ 0.0000 \ 0.0005 \ 0.0000 \ 0.0005 \ 0.0000 \ 0.0005 \ 0.0000 \ 0.0005 \ 0.0000 \ 0.0005 \ 0.0000 \ 0.0005 \ 0.00000 \ 0.0005 \ 0.0000 \ 0.0005 \ 0.0000 \ 0.0005 \ 0.0000 \ 0.00000 \ 0.0000 \ 0.0000 \ 0.0000 \ 0.0000 \ 0.0000 \ 0.0000 \ 0.00000 \ 0.0000 \ 0.0000 \ 0.0000 \ 0.0000 \ 0.0000 \ 0.0000 \ 0.0000 \ 0.0000 \ 0.0000 \ 0.0000 \ 0.0000 \ 0.0000 \ 0.0000 \ 0.00000 \ 0.0000 \ 0.0000 \ 0.0000 \ 0.0000 \ 0.0000 \ 0.0000 \ 0.00000 \ 0.0000 \ 0.0000 \ 0.0000 \ 0.0000 \ 0.0000 \ 0.0000 \ 0.00000 \ 0.0000 \ 0.0000 \ 0.0000 \ 0.0000 \ 0.0000 \ 0.0000 \ 0.00000 \ 0.0000 \ 0.0000 \ 0.0000 \ 0.0000 \ 0.0000 \ 0.0000 \ 0.00000 \ 0.0000 \ 0.00000 \ 0.00000 \ 0.00000 \ 0.00000 \ 0.00000 \ 0.00000 \ 0.00000 \ 0.00000 \ 0.00000 \ 0.00000 \ 0.00000 \ 0.00000 \ 0.00000 \ 0.00000 \ 0.00000 \ 0.000000 \ 0.000000 \ 0.000000 \ 0.000000 \ 0.000000 \ 0.0000000 \ 0.0000000 \ 0.00000000$			
500 0.0020 0.0025 0.0034 0.0035 0.0041 0.0030 0.0029 0.0069 0.0132 0.0024			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			
500 0.0029 0.0065 0.0014 0.0015 0.0023 0.0013 0.0005 0.0004 0.0060 0.0109 0.0022			
[0; 2] 50 0.0180 0.0195 0.0210 0.0280 0.0008 0.0009 0.0111 0.0128 0.0511 0.0566 0.0129			
100 0.0066 0.0114 0.0139 0.0133 0.0088 0.0089 0.0088 0.0091 0.0247 0.0309 0.0118			
500 0.0009 0.0041 0.0007 0.0004 0.0031 0.0026 0.0025 0.0054 0.0102 0.0008			
0.4 [-1;3] 50 0.0159 0.0189 0.0112 0.0104 0.0126 0.0128 0.0108 0.0105 0.0290 0.0332 0.0177			
100 0.0097 0.0075 0.0062 0.0065 0.0074 0.0056 0.0035 0.0030 0.0157 0.0191 0.0143			
500 0.0047 0.0018 0.0032 0.0031 0.0027 0.0044 0.0017 0.0018 0.0060 0.0002			
[0; 2] 50 0.0055 0.0009 0.0018 0.0054 0.0342 0.0326 0.0292 0.0268 0.0305 0.0332 0.0267			
100 0.0240 0.0221 0.0153 0.0163 0.0093 0.0114 0.0077 0.0085 0.0133 0.0172 0.0085			
500 0.0039 0.0065 0.0019 0.0020 0.0043 0.0028 0.0029 0.0029 0.0036 0.0076 0.0028			
$0.5 [-1;3] 50 0.0082 \ 0.0052 \ 0.0010 \ 0.0013 \ 0.0050 \ 0.0033 \ 0.0027 \ 0.0018 \ 0.0219 \ 0.0254 \ 0.0267$			
100 0.0000 0.0018 0.0006 0.0005 0.0056 0.0072 0.0006 0.0007 0.0077 0.0107 0.0183			
$500 0.0020 \ 0.0002 \ 0.0009 \ 0.0008 \ 0.0065 \ 0.0045 \ 0.0015 \ 0.0014 \ 0.0015 \ 0.0046 \ 0.0070$	0.0101	0.0021	0.0021
[0; 2] 50 0.0022 0.0028 0.0003 0.0024 0.0139 0.0149 0.0086 0.0102 0.0293 0.0324 0.0287	0.0295	0.0003	0.0000
$100 \qquad 0.0002 \ 0.0013 \ 0.0008 \ 0.0010 \ 0.0095 \ 0.0107 \ 0.0091 \ 0.0086 \ 0.0109 \ 0.0130 \ 0.0117$	0.0142	0.0025	0.0026
500 0.0013 0.0010 0.0021 0.0019 0.0004 0.0014 0.0026 0.0029 0.0034 0.0065 0.0016	0.0046	0.0003	0.0003
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.0427	0.0033	0.0037
100 0.0023 0.0027 0.0019 0.0018 0.0114 0.0145 0.0010 0.0009 0.0033 0.0042 0.0219	0.0262	0.0015	0.0011
500 0.0041 0.0028 0.0015 0.0015 0.0020 0.0009 0.0028 0.0026 0.0022 0.0044 0.0033			
[0;2] 50 0.0087 0.0115 0.0089 0.0118 0.0011 0.0014 0.0046 0.0091 0.0242 0.0241 0.0296			
100 0.0111 0.0090 0.0088 0.0080 0.0007 0.0017 0.0053 0.0034 0.0109 0.0129 0.0168			
500 0.0027 0.0012 0.0035 0.0035 0.0045 0.0071 0.0015 0.0015 0.0026 0.0050 0.0016			
$\begin{bmatrix} 0.7 & [-1;3] & 50 & 0.0066 & 0.0062 & 0.0028 & 0.0028 & 0.0119 & 0.0047 & 0.0033 & 0.0021 & 0.0237 & 0.0234 & 0.0381 & 0.0021 & 0.0033 & 0.0033 & 0.0033 & 0.0033 & 0.0033 & 0.0033 & 0.0033 & 0.0033 & 0.0033 & 0.0033 & 0.0033 & 0.0033 & 0.0033$			
100 0.0034 0.0043 0.0004 0.0002 0.0049 0.0083 0.0055 0.0063 0.0137 0.0154 0.0093			
500 0.0042 0.0053 0.0020 0.0020 0.0080 0.0113 0.0028 0.0028 0.0031 0.0049 0.0091			
[0;2] 50 0.0020 0.0015 0.0004 0.0002 0.0484 0.0484 0.0407 0.0317 0.0221 0.0224 0.0528			
$100 \qquad 0.0140 \ 0.0138 \ 0.0168 \ 0.0164 \ 0.0004 \ 0.0053 \ 0.0044 \ 0.0039 \ 0.0086 \ 0.0093 \ 0.0196$			
500 0.0011 0.0022 0.0010 0.0010 0.0072 0.0102 0.0060 0.0060 0.0029 0.0047 0.0077			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
100 0.0033 0.0039 0.0066 0.0066 0.0187 0.0129 0.0005 0.0001 0.0077 0.0087 0.0326			
500 0.0023 0.0032 0.0017 0.0018 0.0104 0.0155 0.0073 0.0072 0.0032 0.0046 0.0009			
[0;2] 50 0.0084 0.0072 0.0163 0.0149 0.0175 0.0166 0.0171 0.0038 0.0092 0.0092 0.0718			
100 0.0008 0.0012 0.0035 0.0030 0.0072 0.0136 0.0126 0.0137 0.0064 0.0067 0.0277			
500 0.0025 0.0019 0.0016 0.0018 0.0025 0.0071 0.0006 0.0010 0.0005 0.0018 0.0116			
0.9 [-1;3] 50 0.0067 0.0093 0.0061 0.0069 0.0012 0.0346 0.0446 0.0454 0.0141 0.0125 0.1118			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			
$ \begin{bmatrix} [0;2] & 50 & 0.0092 & 0.0049 & 0.0089 & 0.0081 & 0.0499 & 0.0212 & 0.0464 & 0.0426 & 0.0162 & 0.0124 & 0.1237 \\ 100 & 0.0065 & 0.0054 & 0.0039 & 0.0033 & 0.0113 & 0.0339 & 0.0184 & 0.0243 & 0.0065 & 0.0061 & 0.0493 \\ \end{bmatrix} $			
0.0005 0.0034 0.0039 0.0033 0.0113 0.0339 0.0184 0.0243 0.0005 0.0001 0.0493 0.0044 0.0041 0.0040 0.0040 0.0028 0.0099 0.0076 0.0071 0.0003 0.0009 0.0123			
) U.UZ14	0.0000	0.0003

Tabela D.8: Estimativas do valor absoluto do enviesamento médio dos parâmetros da mistura de duas regressões lineares no caso ${\rm PVIII}$

			α_1	α_1	β_1	β_1	α_2	α_2	β_2	β_2	σ_1	σ_1	σ_2	σ_2	π_1	π_1
$\frac{\pi_1}{2}$	x	n	EM	CEM	EM	CEM	EM	CEM	EM	CEM	EM	CEM	EM	CEM	EM	CEM
0.1	[-1; 3]	50													0.0378	
		100 500													0.0043	
	[0. 0]	500 50													0.0001 0.0329	
	[0; 2]	100													0.0329 0.0105	
		500													0.0105 0.0004	
0.2	[1.9]	50													0.0004	
0.2	[-1; 3]	100													0.0079	
		500													0.0027	
	[0; 2]	500 50													0.0001	
	[0; 2]	100													0.0033	
		500													0.0022	
0.3	[-1; 3]	50													0.0010	
0.3	[-1, 3]	100													0.0043	
		500													0.0011	
	[0; 2]	50													0.0010	
	[0, 2]	100													0.0036	
		500													0.0010	
0.4	[-1; 3]	50													0.0024	
0.4	[-1, 3]	100													0.0039	
		500													0.0007	
	[0; 2]	50													0.0021	
	[0, 2]	100													0.0013	
		500													0.0013	
0.5	[-1; 3]	50													0.0017	
0.5	[-1, 3]	100													0.0085	
		500													0.0004	
	[0; 2]	50													0.0004	
	[0, 2]	100													0.0042	
		500													0.0004	
0.6	[-1; 3]	50													0.0017	
0.0	[1,0]	100													0.0046	
		500													0.0022	
	[0; 2]	50													0.0025	
	[-,-]	100													0.0027	
		500													0.0004	
0.7	[-1; 3]	50													0.0059	
	[-, -]	100													0.0018	
		500													0.0008	
	[0; 2]	50													0.0082	
	[-,-]	100													0.0017	
		500													0.0028	
0.8	[-1; 3]	50													0.0127	
	. , - 1	100													0.0002	
		500													0.0009	
	[0; 2]	50													0.0109	
	1-7 1	100													0.0074	
		500	0.0021	0.0030	0.0004	0.0005	0.0072	0.0582	0.0112	0.0124	0.0019	0.0046	0.0105	0.0608	0.0002	0.0035
0.9	[-1; 3]	50													0.0263	
	, -1	100													0.0058	
		500													0.0011	
	[0; 2]	50													0.0272	
		100													0.0128	
		500													0.0006	
			5.5000			,			,	,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		,	,		

Tabela D.9: Estimativas do valor absoluto do enviesamento médio dos parâmetros da mistura de duas regressões lineares no caso PIX $\,$

						_										
			α_1	α_1 CEM	β_1 EM	β_1 CEM	α_2	α_2 CEM	β_2	β_2 CEM	σ_1	$_{ ext{CEM}}^{\sigma_1}$	σ_2 EM	σ_2 CEM	π_1	$_{ ext{CEM}}^{\pi_1}$
$\frac{\pi_1}{2}$	x [1 2]	50	EM				EM 1.0288		EM		EM				EM	
0.1	[-1; 3]	100					1.0288									
		500					1.0004									
	[0; 2]	50					1.0054									
	[0, 2]	100					1.0259									
		500					0.9988									
0.2	[-1; 3]	50					0.9804									
0.2	[1,0]	100					1.0164									
		500					1.0082									
	[0; 2]	50					0.9849									
	[-, -]	100					0.9806									
		500					0.9970									
0.3	[-1; 3]	50	0.0138	0.0137	0.9980	0.9998	0.9969	1.0463	0.0054	0.0100	0.0692	0.0872	0.0378	0.0813	0.0010	0.0075
	. , ,	100	0.0168	0.0387	0.9913	0.9900	1.0200	1.0611	0.0033	0.0024	0.0323	0.0553	0.0205	0.0659	0.0018	0.0051
		500	0.0023	0.0278	0.9981	0.9983	0.9955	1.0452	0.0021	0.0019	0.0036	0.0339	0.0043	0.0582	0.0004	0.0078
	[0; 2]	50	0.0026	0.0357	0.9965	0.9898	1.0063	1.0445	0.0216	0.0168	0.0528	0.0789	0.0485	0.0907	0.0061	0.0114
		100	0.0119	0.0307	1.0159	1.0089	0.9662	1.0079	0.0216	0.0214	0.0189	0.0531	0.0181	0.0634	0.0037	0.0088
		500					0.9895									
0.4	[-1; 3]	50					0.9779									
		100					0.9742									
		500					1.0011									
	[0; 2]	50					0.9929									
		100					0.9746									
		500					1.0110									
0.5	[-1; 3]	50					0.9951									
		100					0.9912									
	[0.0]	500					1.0001									
	[0; 2]	$\frac{50}{100}$					1.0379 0.9778									
		500					1.0156									
0.6	[-1; 3]	50					0.9968									
0.0	[-1, 0]	100					0.9915									
		500					0.9951									
	[0; 2]	50					0.9707									
	[-, -]	100					0.9634									
		500					0.9783									
0.7	[-1; 3]	50	0.0153	0.0150	1.0065	1.0054	0.9805	1.0934	0.0202	0.0202	0.0106	0.0107	0.1153	0.1915	0.0010	0.0124
	. , ,	100	0.0046	0.0026	0.9975	0.9990	0.9352	1.0558	0.0289	0.0225	0.0088	0.0113	0.0555	0.1452	0.0035	0.0090
		500	0.0003	0.0010	0.9993	0.9990	1.0059	1.1073	0.0023	0.0002	0.0043	0.0089	0.0049	0.0998	0.0023	0.0079
	[0; 2]	50	0.0120	0.0135	1.0133	1.0142	0.9580	1.1025	0.0006	0.0173	0.0314	0.0324	0.0888	0.1669	0.0089	0.0062
		100					0.9864									
		500					1.0004									
0.8	[-1; 3]	50					0.9526									
		100					1.0065									
		500					1.0034									
	[0; 2]	50					0.9810									
		100					1.0033									
	f 4 -1	500					0.9696									
0.9	[-1; 3]	50					0.8826									
		100					1.0338									
	[0.0]	500					0.9942									
	[0; 2]	50					0.9659									
		100 500					0.8689 0.9800									
		500	0.0004	0.0027	1.0000	1.0002	0.9600	1.1430	0.0134	0.0141	0.0016	0.0007	0.0200	0.1032	0.0002	0.0002

Tabela D.10: Estimativas do valor absoluto do enviesamento médio dos parâmetros da mistura de duas regressões lineares no caso ${\rm PX}$

			α_1	α_1	β_1	β_1	α_2	α_2	β_2	β_2	σ_1	σ_1	σ_2	σ_2	π_1	π_1
π_1	x	n	EM	CEM	EM	CEM	EM	CEM	EM	CEM	EM	CEM	EM	CEM	EM	CEM
0.1	[-1; 3]	50													0.0367	
		100													0.0291	
		500													0.0135	
	[0; 2]	50													0.0644	
		100													0.0311	
		500													0.0129	
0.2	[-1; 3]	50													0.0550	
		100													0.0412	
		500													0.0187	
	[0; 2]	50													0.0565	
		100													0.0417	
		500													0.0181	
0.3	[-1; 3]	50													0.0669	
		100													0.0477	
		500													0.0200	
	[0; 2]	50													0.0634	
		100													0.0477	
		500	0.0153	0.0153	0.0129	0.0129	0.0104	0.0104	0.0087	0.0087	0.0052	0.0052	0.0041	0.0041	0.0212	0.0212
0.4	[-1; 3]	50	0.0339	0.0339	0.0226	0.0226	0.0248	0.0248	0.0167	0.0167	0.0148	0.0148	0.0125	0.0125	0.0664	0.0664
		100													0.0446	
		500													0.0222	
	[0; 2]	50													0.0692	
		100													0.0471	
		500													0.0218	
0.5	[-1; 3]	50													0.0698	
		100	0.0189	0.0189	0.0118	0.0118	0.0202	0.0202	0.0134	0.0134	0.0097	0.0097	0.0101	0.0101	0.0491	0.0491
		500													0.0213	
	[0; 2]	50	0.0445	0.0445	0.0397	0.0397	0.0401	0.0401	0.0366	0.0366	0.0146	0.0146	0.0155	0.0155	0.0735	0.0735
		100	0.0291	0.0291	0.0233	0.0233	0.0262	0.0262	0.0234	0.0234	0.0100	0.0100	0.0101	0.0101	0.0537	0.0537
		500													0.0202	
0.6	[-1; 3]	50													0.0777	
		100	0.0172	0.0172	0.0111	0.0111	0.0227	0.0227	0.0146	0.0146	0.0093	0.0093	0.0101	0.0101	0.0474	0.0474
		500													0.0221	
	[0; 2]	50													0.0723	
		100													0.0465	
		500	0.0107	0.0107	0.0100	0.0100	0.0132	0.0132	0.0119	0.0119	0.0041	0.0041	0.0054	0.0054	0.0229	0.0229
0.7	[-1; 3]	50													0.0661	
		100													0.0428	
		500													0.0206	
	[0; 2]	50													0.0633	
		100													0.0450	
		500	0.0105	0.0105	0.0090	0.0090	0.0148	0.0148	0.0133	0.0133	0.0034	0.0034	0.0059	0.0059	0.0197	0.0197
0.8	[-1; 3]	50													0.0580	
		100	0.0148	0.0148	0.0098	0.0098	0.0314	0.0314	0.0227	0.0227	0.0077	0.0077	0.0174	0.0174	0.0418	0.0418
		500													0.0185	
	[0; 2]	50	0.0344	0.0344	0.0306	0.0306	0.0740	0.0740	0.0658	0.0658	0.0114	0.0114	0.0259	0.0259	0.0591	0.0591
		100	0.0221	0.0221	0.0207	0.0207	0.0487	0.0487	0.0432	0.0432	0.0080	0.0080	0.0147	0.0147	0.0395	0.0395
		500													0.0178	
0.9	[-1; 3]	50	0.0206	0.0205	0.0132	0.0132	0.0718	0.0621	0.0455	0.0424	0.0105	0.0105	0.0331	0.0323	0.0345	0.0342
		100	0.0154	0.0154	0.0095	0.0095	0.0439	0.0439	0.0309	0.0309	0.0070	0.0070	0.0238	0.0238	0.0290	0.0290
		500	0.0065	0.0065	0.0041	0.0041	0.0178	0.0178	0.0117	0.0117	0.0035	0.0035	0.0102	0.0102	0.0138	0.0138
	[0; 2]	50	0.0346	0.0331	0.0524	0.0274	0.1480	0.1431	0.1174	0.1222	0.0112	0.0108	0.0315	0.0316	0.0643	0.0327
		100													0.0263	
		500	0.0091	0.0091	0.0080	0.0080	0.0291	0.0291	0.0234	0.0234	0.0033	0.0033	0.0100	0.0100	0.0131	0.0131

Tabela D.11: Estimativas do desvio padrão dos parâmetros da mistura de duas regressões lineares no caso PI

The color						- 0	0			0	0						
1	_	_		α_1	α_1	β_1	β_1	α_2	α_2	β_2	β_2	σ_1	σ_1	σ_2	σ_2	π_1	π_1
100		[1 0]															_
19	0.1	[-1; 3]															
[0; 2] 50																	
10		[0.0]															
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		[0; 2]															
Color																	
100																	
10	0.2	[-1; 3]															
[9; 2] 50																	
100		fo. 01															
1.03		[0; 2]															
1-13 50																	
100																	
$ \begin{bmatrix} [0;2] \\ [$	0.3	[-1; 3]															
[0; 2] 50 0.0598 0.0598 0.0516 0.0517 0.0633 0.0651 0.0638 0.0635 0.0177 0.0173 0.0235 0.0232 0.0635 0.0635 100 0.0355 0.0353 0.0334 0.0334 0.0341 0.0441 0.0393 0.0393 0.0335 0.0177 0.0173 0.0258 0.0155 0.0461 0.0461 500 0.0166 0.0166 0.0147 0.0147 0.0199 0.0199 0.0167 0.0167 0.0061 0.0061 0.0067 0.0078 0.0187 0.0188 100 0.0213 0.0213 0.0213 0.0135 0.0327 0.0326 0.0217 0.0216 0.0121 0.0119 0.0298 0.0200 0.0494 0.0493 500 0.0955 0.0094 0.0666 0.0666 0.0165 0.0150 0.0100 0.0099 0.0055 0.0057 0.0085 0.0084 0.0196 0.0196 [0; 2] 50 0.0457 0.0456 0.0404 0.0455 0.0776 0.0760 0.0647 0.0638 0.0057 0.0085 0.0084 0.0196 0.0196 100 0.0341 0.0333 0.0313 0.0308 0.0534 0.0529 0.0460 0.0456 0.0106 0.0103 0.0184 0.0180 0.0474 0.0473 500 0.0139 0.0138 0.0126 0.0125 0.0234 0.0232 0.0196 0.0195 0.0049 0.0055 0.0078 0.0076 0.0213 0.0213 0.5 [-1; 3] 50 0.0282 0.0281 0.0186 0.0187 0.0491 0.0492 0.0315 0.0315 0.0153 0.0153 0.0278 0.0267 0.0659 0.0656 500 0.0900 0.00090 0.0061 0.0061 0.0061 0.0159 0.0159 0.0049 0.0055 0.0059 0.0076 0.0213 0.0213 [0; 2] 50 0.0411 0.0411 0.0385 0.0385 0.0884 0.0874 0.0778 0.0768 0.0044 0.0044 0.0444 0.0444 0.0444 100 0.0297 0.0295 0.0260 0.0257 0.0642 0.0639 0.0550 0.0557 0.0559 0.0557 0.0559 0.0557 0.0559 0.0557 0.0559 0.0557 0.0559 0.0557 0.0559 0.0557 0.0559 0.0557 0.0559 0.0557 0.0559 0.0557 0.0559 0.0557 0.0559 0.0557 0.0559 0.0557 0.0559 0.0557 0.0559 0.0557 0.0559																	
100																	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		[0; 2]															
Care																	
$ \begin{bmatrix} 100 & 0.0213 & 0.0213 & 0.0135 & 0.0325 & 0.0327 & 0.0326 & 0.0217 & 0.0216 & 0.0121 & 0.0119 & 0.0208 & 0.0200 & 0.0494 & 0.0494 \\ 500 & 0.0095 & 0.0094 & 0.0066 & 0.0150 & 0.0150 & 0.0100 & 0.0099 & 0.055 & 0.0057 & 0.085 & 0.084 & 0.0196 & 0.0196 \\ 500 & 0.0457 & 0.0456 & 0.0404 & 0.0405 & 0.0776 & 0.0760 & 0.0647 & 0.0458 & 0.0167 & 0.0357 & 0.085 & 0.0848 & 0.0694 & 0.0693 \\ 500 & 0.0341 & 0.0333 & 0.0313 & 0.0308 & 0.0534 & 0.0529 & 0.0460 & 0.0456 & 0.0106 & 0.0103 & 0.0184 & 0.0180 & 0.0474 & 0.0473 \\ 500 & 0.0139 & 0.0138 & 0.0126 & 0.0128 & 0.0187 & 0.0491 & 0.0492 & 0.0315 & 0.0315 & 0.0155 & 0.0153 & 0.0278 & 0.0267 & 0.0659 & 0.0656 \\ 100 & 0.0182 & 0.0182 & 0.0113 & 0.0113 & 0.0131 & 0.0375 & 0.0374 & 0.0252 & 0.0251 & 0.0103 & 0.0191 & 0.0185 & 0.0444 & 0.0444 \\ 500 & 0.0090 & 0.0090 & 0.0061 & 0.0061 & 0.0159 & 0.0108 & 0.0108 & 0.0045 & 0.0045 & 0.0093 & 0.0090 & 0.0218 & 0.0218 \\ 500 & 0.0090 & 0.0090 & 0.0061 & 0.0619 & 0.0584 & 0.0874 & 0.0778 & 0.0768 & 0.0147 & 0.0145 & 0.0291 & 0.0284 & 0.0714 & 0.0714 \\ 500 & 0.0133 & 0.0133 & 0.0118 & 0.0118 & 0.0243 & 0.0220 & 0.0202 & 0.0046 & 0.046 & 0.0899 & 0.0874 & 0.0444 & 0.0444 \\ 60.6 & [-1;3] & 50 & 0.0256 & 0.0256 & 0.0256 & 0.0353 & 0.0559 & 0.0455 & 0.00557 & 0.0093 & 0.0192 & 0.0185 & 0.0484 & 0.0485 \\ 500 & 0.0133 & 0.0133 & 0.0118 & 0.0118 & 0.0243 & 0.0220 & 0.0202 & 0.0046 & 0.046 & 0.0899 & 0.0874 & 0.0244 \\ 60.6 & [-1;3] & 50 & 0.0256 & 0.0256 & 0.0256 & 0.0358 & 0.0859 & 0.0455 & 0.0557 & 0.0093 & 0.0192 & 0.0185 & 0.0484 & 0.0485 \\ 500 & 0.0072 & 0.0072 & 0.0046 & 0.0046 & 0.0182 & 0.0129 & 0.0202 & 0.0046 & 0.046 & 0.0899 & 0.0284 & 0.0249 & 0.0241 & 0.0242 \\ 60.5 & 50 & 0.0397 & 0.0397 & 0.0338 & 0.0339 & 0.0947 & 0.0940 & 0.0843 & 0.0114 & 0.0134 & 0.0389 & 0.0344 & 0.0683 & 0.0685 & 0.0655 \\ 60.5 & 50 & 0.0397 & 0.0397 & 0.0338 & 0.0339 & 0.0947 & 0.0940 & 0.0843 & 0.0141 & 0.0137 & 0.0285 & 0.0266 & 0.02268 & 0.0265 & 0.02684 & 0.0481 & 0.0444 & 0.0143 & 0.0129 & 0.0285 & 0.0265 & 0.0268 & 0.0665 & 0.0268 & 0.0665 & 0.066$																	
$ \begin{bmatrix} [0;2] & 50 & 0.0095 & 0.0094 & 0.066 & 0.0166 & 0.0150 & 0.0150 & 0.0100 & 0.0099 & 0.0058 & 0.0057 & 0.085 & 0.0084 & 0.0196 & 0.0196 \\ 100 & 0.0341 & 0.0333 & 0.0313 & 0.0308 & 0.0534 & 0.0529 & 0.0460 & 0.0166 & 0.0103 & 0.0184 & 0.0180 & 0.0474 & 0.0473 \\ 500 & 0.0139 & 0.0138 & 0.0126 & 0.0125 & 0.0234 & 0.0232 & 0.0196 & 0.0195 & 0.0049 & 0.0050 & 0.0078 & 0.0076 & 0.0213 & 0.0213 \\ 0.5 & [-1;3] & 50 & 0.0282 & 0.0281 & 0.0113 & 0.0137 & 0.0347 & 0.0295 & 0.0265 & 0.0153 & 0.0728 & 0.0267 & 0.0665 & 0.0665 \\ 100 & 0.0182 & 0.0182 & 0.0113 & 0.0113 & 0.0375 & 0.0374 & 0.0252 & 0.0251 & 0.0103 & 0.0191 & 0.0185 & 0.0444 & 0.0444 \\ 500 & 0.0090 & 0.0090 & 0.0061 & 0.0061 & 0.0159 & 0.0108 & 0.0108 & 0.0045 & 0.0045 & 0.0093 & 0.0090 & 0.0218 & 0.0218 \\ [0;2] & 50 & 0.0411 & 0.0411 & 0.0385 & 0.0385 & 0.0884 & 0.0874 & 0.0778 & 0.0768 & 0.0147 & 0.0145 & 0.0291 & 0.0284 & 0.0714 & 0.0714 \\ [0;2] & 50 & 0.0411 & 0.0411 & 0.0385 & 0.0385 & 0.0884 & 0.0874 & 0.0778 & 0.0768 & 0.0147 & 0.0145 & 0.0291 & 0.0284 & 0.0714 & 0.0714 \\ [0;2] & 50 & 0.0413 & 0.0118 & 0.0118 & 0.0243 & 0.0202 & 0.0046 & 0.0046 & 0.0046 & 0.0049 & 0.0089 & 0.0087 & 0.0241 & 0.0242 \\ [0;2] & 50 & 0.0256 & 0.0256 & 0.0257 & 0.0642 & 0.0639 & 0.0559 & 0.0559 & 0.0093 & 0.0199 & 0.0188 & 0.0484 & 0.0448 \\ [0;2] & 50 & 0.0072 & 0.0046 & 0.0144 & 0.0434 & 0.0432 & 0.0202 & 0.0046 & 0.0046 & 0.0046 & 0.0046 & 0.0049 & 0.00241 & 0.0242 \\ [0;2] & 50 & 0.0072 & 0.0072 & 0.0046 & 0.0144 & 0.0434 & 0.0439 & 0.0124 & 0.0345 & 0.0244 & 0.0248 \\ [0;2] & 50 & 0.0397 & 0.0397 & 0.0338 & 0.0339 & 0.0947 & 0.0940 & 0.0852 & 0.0843 & 0.0141 & 0.0137 & 0.0285 & 0.0276 & 0.0658 & 0.0658 \\ [0;2] & 50 & 0.0397 & 0.0397 & 0.0338 & 0.0339 & 0.0947 & 0.0940 & 0.0852 & 0.0843 & 0.0141 & 0.0137 & 0.0285 & 0.0228 & 0.0228 \\ [0;2] & 50 & 0.0397 & 0.0397 & 0.0338 & 0.0339 & 0.0947 & 0.0940 & 0.0852 & 0.0843 & 0.0141 & 0.0137 & 0.0285 & 0.0268 & 0.0658 & 0.0658 \\ [0;2] & 50 & 0.0396 & 0.0256 & 0.0220 & 0.0217 & 0.0641 & 0.0633 & 0.0575 & 0.0505 & 0.00947 & 0.0949 & $	0.4	[-1; 3]															
$ \begin{bmatrix} [0;2] \\ 100 \\ 0.0341 \\ 0.0333 \\ 0.0138 \\ 0.0126 \\ 0.0125 \\ 0.0234 \\ 0.0333 \\ 0.0313 \\ 0.0333 \\ 0.0138 \\ 0.0126 \\ 0.0125 \\ 0.0234 \\ 0.0225 \\ 0.0234 \\ 0.0225 \\ 0.0234 \\ 0.0225 \\ 0.0234 \\ 0.0232 \\ 0.0315 \\ 0.0315 \\ 0.0282 \\ 0.0281 \\ 0.0182 \\ 0.0183 \\ 0.0183 \\ 0.0018 \\ 0.$																	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$																	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		[0; 2]															
$ \begin{bmatrix} -1;3 \\ 0.5 \\ -1;3 \\ 0.0 \end{bmatrix} $																	
$ \begin{bmatrix} 100 & 0.0182 & 0.0182 & 0.0113 & 0.0113 & 0.0375 & 0.0374 & 0.0252 & 0.0251 & 0.0103 & 0.0103 & 0.0191 & 0.0185 & 0.0444 & 0.0444 \\ 500 & 0.0090 & 0.0090 & 0.0061 & 0.0061 & 0.0159 & 0.0159 & 0.0108 & 0.0108 & 0.0045 & 0.0045 & 0.0093 & 0.0090 & 0.0218 \\ 0.0090 & 0.0090 & 0.0061 & 0.0061 & 0.0087 & 0.0788 & 0.0187 & 0.0145 & 0.0291 & 0.0284 & 0.0714 & 0.0714 \\ 100 & 0.0297 & 0.0295 & 0.0260 & 0.0257 & 0.0642 & 0.0639 & 0.0559 & 0.0557 & 0.0095 & 0.0093 & 0.0192 & 0.0185 & 0.0484 & 0.0485 \\ 500 & 0.0133 & 0.0118 & 0.0118 & 0.0243 & 0.0243 & 0.0202 & 0.0046 & 0.0046 & 0.0089 & 0.0087 & 0.0241 & 0.0242 \\ 0.6 & [-1;3] & 50 & 0.0256 & 0.0256 & 0.0159 & 0.0160 & 0.0637 & 0.0629 & 0.0443 & 0.0439 & 0.0124 & 0.0124 & 0.0359 & 0.0344 & 0.0848 & 0.0681 \\ 100 & 0.0170 & 0.0170 & 0.0114 & 0.0114 & 0.0434 & 0.0432 & 0.0291 & 0.0290 & 0.0088 & 0.0087 & 0.0249 & 0.0241 & 0.0538 & 0.0539 \\ 500 & 0.0072 & 0.0072 & 0.0046 & 0.0046 & 0.0182 & 0.0120 & 0.0120 & 0.0044 & 0.0044 & 0.0100 & 0.0097 & 0.0228 & 0.0228 \\ [0;2] & 50 & 0.0397 & 0.0397 & 0.0397 & 0.0397 & 0.0394 & 0.0882 & 0.0881 & 0.0141 & 0.0137 & 0.0285 & 0.0268 & 0.0685 & 0.0656 & 0.0656 & 0.0656 & 0.0656 & 0.0656 & 0.0056 & 0.0056 & 0.0056 & 0.0056 & 0.0557 & 0.0044 & 0$																	
$ \begin{bmatrix} [0;2] \\ [$	0.5	[-1; 3]															
$ \begin{bmatrix} [0;2] \\ [0;2] \\ [0;0] \\ [$																	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$																	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		[0; 2]															
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$																	
$ \begin{bmatrix} 100 & 0.0170 & 0.0170 & 0.0114 & 0.0114 & 0.0434 & 0.0432 & 0.0291 & 0.0290 & 0.0088 & 0.0087 & 0.0249 & 0.0241 & 0.0538 & 0.0539 \\ 0.0072 & 0.0072 & 0.0046 & 0.0046 & 0.0182 & 0.0182 & 0.0120 & 0.0120 & 0.0044 & 0.0044 & 0.0100 & 0.0097 & 0.0228 & 0.0228 \\ 0.00397 & 0.0397 & 0.0339 & 0.0339 & 0.03497 & 0.0940 & 0.0852 & 0.0843 & 0.0141 & 0.0137 & 0.0285 & 0.0276 & 0.0658 & 0.0656 \\ 100 & 0.0260 & 0.0255 & 0.0220 & 0.0217 & 0.0641 & 0.0633 & 0.0577 & 0.0570 & 0.0094 & 0.0094 & 0.0227 & 0.0218 & 0.0482 & 0.0482 \\ 500 & 0.0109 & 0.0109 & 0.0099 & 0.0280 & 0.0280 & 0.0253 & 0.0252 & 0.0240 & 0.0039 & 0.0102 & 0.0099 & 0.0223 & 0.0223 \\ 0.7 & [-1;3] & 50 & 0.0226 & 0.0226 & 0.0132 & 0.0657 & 0.0654 & 0.0481 & 0.0474 & 0.0130 & 0.0129 & 0.0376 & 0.0366 & 0.0571 & 0.0571 \\ 100 & 0.0157 & 0.0156 & 0.0099 & 0.0099 & 0.0515 & 0.0511 & 0.0334 & 0.0332 & 0.0083 & 0.0082 & 0.0276 & 0.0263 & 0.0440 & 0.0440 \\ 500 & 0.0068 & 0.0068 & 0.0043 & 0.0043 & 0.0224 & 0.0222 & 0.0144 & 0.0143 & 0.0036 & 0.0036 & 0.0115 & 0.0111 & 0.0201 & 0.0201 \\ [0;2] & 50 & 0.0349 & 0.0349 & 0.0344 & 0.0314 & 0.1133 & 0.1113 & 0.1102 & 0.0105 & 0.0122 & 0.0102 & 0.0450 & 0.0420 & 0.0677 & 0.0654 & 0.0422 & 0.0144 & 0.0143 & 0.0036 & 0.0036 & 0.0036 & 0.0115 & 0.0111 & 0.0201 & 0.0201 \\ 0.8 & [-1;3] & 50 & 0.0203 & 0.0203 & 0.0200 & 0.0868 & 0.0863 & 0.0718 & 0.0714 & 0.0087 & 0.0312 & 0.0303 & 0.0452 & 0.0$																	
$ \begin{bmatrix} [6;2] & 500 & 0.0072 & 0.0072 & 0.0046 & 0.0046 & 0.0182 & 0.0182 & 0.0120 & 0.0044 & 0.0044 & 0.0100 & 0.0097 & 0.0228 & 0.0228 \\ [6;2] & 50 & 0.0397 & 0.0397 & 0.0338 & 0.0339 & 0.0947 & 0.0940 & 0.0852 & 0.0843 & 0.0141 & 0.0137 & 0.0285 & 0.0276 & 0.0658 & 0.0656 \\ [6;2] & 500 & 0.0260 & 0.0255 & 0.0220 & 0.0217 & 0.0641 & 0.0633 & 0.0577 & 0.0597 & 0.0597 & 0.0094 & 0.0094 & 0.0094 & 0.0227 & 0.0218 & 0.0482 & 0.0482 \\ [6;2] & 500 & 0.0109 & 0.0109 & 0.0099 & 0.0280 & 0.0280 & 0.0253 & 0.0252 & 0.0040 & 0.0039 & 0.0102 & 0.0099 & 0.0223 & 0.0223 \\ [6;2] & 500 & 0.0226 & 0.0224 & 0.0132 & 0.0657 & 0.0654 & 0.0481 & 0.0474 & 0.0130 & 0.0129 & 0.0376 & 0.0366 & 0.0571 & 0.0571 \\ [6;2] & 500 & 0.0068 & 0.0043 & 0.0043 & 0.0224 & 0.0232 & 0.0144 & 0.0143 & 0.0038 & 0.0082 & 0.0276 & 0.0263 & 0.0440 & 0.0444 \\ [6;2] & 500 & 0.0349 & 0.0349 & 0.0314 & 0.0314 & 0.1133 & 0.1113 & 0.1022 & 0.1005 & 0.0122 & 0.0120 & 0.0450 & 0.0420 & 0.0677 & 0.0674 \\ [6;2] & 500 & 0.0349 & 0.0349 & 0.0314 & 0.0314 & 0.1133 & 0.1113 & 0.1022 & 0.1005 & 0.0122 & 0.0450 & 0.0420 & 0.0677 & 0.0674 \\ [6;2] & 500 & 0.0102 & 0.0102 & 0.0091 & 0.0091 & 0.0345 & 0.0345 & 0.0345 & 0.0387 & 0.0087 & 0.0087 & 0.0312 & 0.0303 & 0.0452 & 0.0452 \\ [6;2] & 500 & 0.0023 & 0.0203 & 0.0134 & 0.0134 & 0.1188 & 0.1048 & 0.0790 & 0.0712 & 0.0111 & 0.0108 & 0.0499 & 0.0462 & 0.0521 & 0.0520 \\ [6;2] & 500 & 0.0046 & 0.0066 & 0.0064 & 0.0044 & 0.0274 & 0.0272 & 0.0164 & 0.0162 & 0.0037 & 0.0036 & 0.0147 & 0.0147 & 0.0177 \\ [6;2] & 500 & 0.0313 & 0.0311 & 0.0276 & 0.0276 & 0.1593 & 0.1430 & 0.1462 & 0.1335 & 0.0102 & 0.0535 & 0.0358 & 0.0319 & 0.0391 & 0.0392 \\ [6;2] & 500 & 0.0097 & 0.0097 & 0.0084 & 0.0084 & 0.0427 & 0.0423 & 0.0357 & 0.0035 & 0.0085 & 0.0319 & 0.0391 & 0.0392 \\ [6;2] & 500 & 0.0097 & 0.0097 & 0.0084 & 0.0084 & 0.0427 & 0.0423 & 0.0357 & 0.0035 & 0.0085 & 0.0319 & 0.0391 & 0.0392 \\ [6;2] & 500 & 0.0097 & 0.0097 & 0.0084 & 0.0084 & 0.0427 & 0.0423 & 0.0357 & 0.0035 & 0.0085 & 0.0319 & 0.0391 & 0.0392 \\ [6;2] & 500 & 0.00977 & 0.0097 &$	0.6	[-1; 3]															
$ \begin{bmatrix} [0;2] \\ [$																	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$																	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		[0; 2]															
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$																	
$\begin{bmatrix} 100 & 0.0157 & 0.0156 & 0.0099 & 0.0099 & 0.0515 & 0.0511 & 0.0334 & 0.0332 & 0.0083 & 0.0026 & 0.0263 & 0.0440 & 0.0440 \\ 500 & 0.0068 & 0.0068 & 0.0063 & 0.0043 & 0.0224 & 0.0222 & 0.0144 & 0.0143 & 0.036 & 0.0036 & 0.0115 & 0.0111 & 0.0201 & 0.0201 \\ 500 & 0.0349 & 0.0349 & 0.0344 & 0.0344 & 0.133 & 0.1113 & 0.1112 & 0.0120 & 0.0025 & 0.0120 & 0.0450 & 0.0420 & 0.0677 & 0.0674 \\ 100 & 0.0236 & 0.0236 & 0.0200 & 0.0200 & 0.0868 & 0.0863 & 0.0718 & 0.0714 & 0.0087 & 0.0312 & 0.0303 & 0.0452 & 0.0452 \\ 500 & 0.0102 & 0.0102 & 0.0091 & 0.0345 & 0.0345 & 0.0287 & 0.0286 & 0.037 & 0.0037 & 0.0312 & 0.0303 & 0.0452 & 0.0452 \\ 500 & 0.0102 & 0.0102 & 0.0091 & 0.0345 & 0.0345 & 0.0287 & 0.0286 & 0.037 & 0.0037 & 0.0117 & 0.0114 & 0.0212 & 0.0212 \\ 0.8 & [-1;3] & 50 & 0.0203 & 0.0233 & 0.0134 & 0.0134 & 0.1188 & 0.1048 & 0.0790 & 0.0712 & 0.0111 & 0.0108 & 0.0499 & 0.0462 & 0.0521 & 0.0522 \\ 500 & 0.0146 & 0.0146 & 0.0096 & 0.0096 & 0.0650 & 0.0637 & 0.0441 & 0.0436 & 0.0090 & 0.0090 & 0.0302 & 0.0289 & 0.0428 & 0.0428 \\ 500 & 0.0066 & 0.0066 & 0.0044 & 0.0274 & 0.0272 & 0.0164 & 0.0162 & 0.0037 & 0.0036 & 0.0147 & 0.0143 & 0.0177 & 0.0177 \\ [0;2] & 50 & 0.0313 & 0.0313 & 0.0313 & 0.0275 & 0.0275 & 0.0259 & 0.0428 & 0.0$																	
$ \begin{bmatrix} [0;2] & 500 & 0.0068 & 0.0068 & 0.0043 & 0.0224 & 0.0222 & 0.0144 & 0.0143 & 0.0036 & 0.0036 & 0.0115 & 0.0111 & 0.0201 & 0.0201 \\ [0;2] & 50 & 0.0349 & 0.0349 & 0.0314 & 0.0314 & 0.1133 & 0.1113 & 0.1022 & 0.1025 & 0.0122 & 0.0120 & 0.0450 & 0.0420 & 0.0677 & 0.0674 \\ [0;2] & 500 & 0.0236 & 0.0236 & 0.0200 & 0.0200 & 0.0868 & 0.0863 & 0.0718 & 0.0714 & 0.0087 & 0.0037 & 0.0312 & 0.0303 & 0.0452 & 0.0452 \\ [0;2] & 500 & 0.0102 & 0.0102 & 0.0091 & 0.0091 & 0.0345 & 0.0345 & 0.0287 & 0.0286 & 0.0037 & 0.0037 & 0.0117 & 0.0114 & 0.0212 & 0.0212 \\ [0;8] & 500 & 0.0203 & 0.0203 & 0.0134 & 0.0134 & 0.1188 & 0.1048 & 0.0790 & 0.0712 & 0.0111 & 0.0108 & 0.0499 & 0.0462 & 0.0521 & 0.0520 \\ [0;9] & 500 & 0.0066 & 0.0066 & 0.0066 & 0.0066 & 0.0637 & 0.0441 & 0.0436 & 0.0990 & 0.0090 & 0.0302 & 0.0289 & 0.0428 & 0.0428 \\ [0;2] & 500 & 0.0313 & 0.0311 & 0.0276 & 0.0276 & 0.1593 & 0.1430 & 0.1462 & 0.1335 & 0.0103 & 0.0102 & 0.0574 & 0.0525 & 0.0556 & 0.0550 \\ [0;2] & 500 & 0.0313 & 0.0311 & 0.0276 & 0.0276 & 0.1593 & 0.1430 & 0.1462 & 0.1335 & 0.0103 & 0.0102 & 0.0574 & 0.0525 & 0.0556 & 0.0550 \\ [0;2] & 500 & 0.0097 & 0.0094 & 0.0084 & 0.0084 & 0.0863 & 0.0815 & 0.0792 & 0.0080 & 0.0083 & 0.0319 & 0.0391 & 0.0392 \\ [0;2] & 500 & 0.0097 & 0.0097 & 0.0084 & 0.0084 & 0.0427 & 0.0423 & 0.0357 & 0.0355 & 0.0035 & 0.0145 & 0.0141 & 0.0187 \\ [0;2] & 500 & 0.0271 & 0.0275 & 0.0588 & 0.0586 & 0.1833 & 0.1789 & 0.1099 & 0.1074 & 0.0119 & 0.0118 & 0.0653 & 0.0613 & 0.0832 & 0.0841 \\ [0;2] & 500 & 0.0061 & 0.0061 & 0.0039 & 0.0039 & 0.0377 & 0.0371 & 0.0230 & 0.0228 & 0.0035 & 0.0034 & 0.0266 & 0.0195 & 0.0141 & 0.0141 \\ [0;2] & 500 & 0.0276 & 0.0276 & 0.0235 & 0.0234 & 0.2505 & 0.2302 & 0.2363 & 0.2139 & 0.0113 & 0.0112 & 0.0640 & 0.0660 & 0.0365 & 0.0352 \\ [0;2] & 500 & 0.0276 & 0.0276 & 0.0235 & 0.0234 & 0.2505 & 0.2302 & 0.2363 & 0.2139 & 0.0113 & 0.0112 & 0.0640 & 0.0600 & 0.0365 & 0.0352 \\ [0;2] & 500 & 0.0276 & 0.0276 & 0.0235 & 0.0234 & 0.2505 & 0.2302 & 0.2363 & 0.2139 & 0.0113 & 0.0112 & 0.0640 & 0.0600 & 0.0365 & 0.035$	0.7	[-1; 3]															
$ \begin{bmatrix} [0;2] & 50 & 0.0349 & 0.0349 & 0.0314 & 0.0314 & 0.1133 & 0.1113 & 0.1022 & 0.1005 & 0.0122 & 0.0120 & 0.0450 & 0.0420 & 0.0677 & 0.0674 \\ 0.0236 & 0.0236 & 0.0200 & 0.0200 & 0.0868 & 0.0863 & 0.0714 & 0.0087 & 0.0087 & 0.0312 & 0.0303 & 0.0452 & 0.0452 \\ 500 & 0.0102 & 0.0102 & 0.0091 & 0.0091 & 0.0345 & 0.0287 & 0.0286 & 0.0037 & 0.0037 & 0.0117 & 0.0114 & 0.0122 & 0.0122 \\ 0.8 & [-1;3] & 50 & 0.0203 & 0.0203 & 0.0134 & 0.0134 & 0.1188 & 0.1048 & 0.0790 & 0.0712 & 0.0111 & 0.0108 & 0.0499 & 0.0462 & 0.0521 & 0.0520 \\ 100 & 0.0146 & 0.0146 & 0.0096 & 0.0696 & 0.0650 & 0.0637 & 0.0441 & 0.0436 & 0.0090 & 0.0302 & 0.0289 & 0.0428 & 0.0428 \\ 500 & 0.0066 & 0.0066 & 0.0044 & 0.0044 & 0.0272 & 0.0164 & 0.0162 & 0.0037 & 0.0036 & 0.0147 & 0.0147 & 0.0177 \\ [0;2] & 50 & 0.0313 & 0.0311 & 0.0276 & 0.0276 & 0.1593 & 0.1430 & 0.1462 & 0.1335 & 0.0103 & 0.0102 & 0.0574 & 0.0525 & 0.0556 & 0.0556 \\ 100 & 0.0227 & 0.0227 & 0.0210 & 0.0818 & 0.0863 & 0.0815 & 0.0792 & 0.0080 & 0.0385 & 0.0319 & 0.0391 & 0.0392 \\ 500 & 0.0097 & 0.0097 & 0.0084 & 0.0084 & 0.0427 & 0.0423 & 0.0357 & 0.0355 & 0.0035 & 0.0035 & 0.0145 & 0.0141 & 0.0187 \\ 0.9 & [-1;3] & 50 & 0.0271 & 0.0275 & 0.0580 & 0.0586 & 0.1833 & 0.1789 & 0.1099 & 0.1074 & 0.0119 & 0.0168 & 0.0653 & 0.0613 & 0.0832 \\ 0.0027 & 0.0271 & 0.0275 & 0.0580 & 0.0586 & 0.1833 & 0.1789 & 0.1099 & 0.1074 & 0.0119 & 0.0118 & 0.0653 & 0.0613 & 0.0832 \\ 0.0027 & 0.00276 & 0.0235 & 0.0234 & 0.2505 & 0.2302 & 0.2363 & 0.2139 & 0.0113 & 0.0112 & 0.0640 & 0.0600 & 0.0365 & 0.0352 \\ 0.0227 & 0.0276 & 0.0276 & 0.0235 & 0.0234 & 0.2505 & 0.2302 & 0.2363 & 0.2139 & 0.0113 & 0.0112 & 0.0640 & 0.0600 & 0.0365 & 0.0352 \\ 0.0221 & 0.0221 & 0.0222 & 0.0177 & 0.1592 & 0.1426 & 0.1298 & 0.1260 & 0.0238 & 0.0074 & 0.0490 & 0.0470 & 0.0665 & 0.0308 \\ 0.0231 & 0.0221 & 0.0522 & 0.0177 & 0.1592 & 0.1426 & 0.1298 & 0.1260 & 0.0238 & 0.0074 & 0.0490 & 0.0470 & 0.0665 & 0.0308 \\ 0.0231 & 0.0221 & 0.0221 & 0.0522 & 0.0177 & 0.1592 & 0.14260 & 0.1298 & 0.1260 & 0.0238 & 0.0074 & 0.0490 & 0.0470 & 0.0665 &$																	
$ \begin{bmatrix} 100 & 0.0236 & 0.0236 & 0.0200 & 0.0868 & 0.0868 & 0.0718 & 0.0714 & 0.0087 & 0.0087 & 0.0312 & 0.0303 & 0.0452 & 0.0452 \\ 500 & 0.0102 & 0.0102 & 0.0091 & 0.0091 & 0.0345 & 0.0345 & 0.0287 & 0.0286 & 0.0037 & 0.0037 & 0.0117 & 0.0114 & 0.0212 & 0.0212 \\ \hline 0.8 & [-1;3] & 50 & 0.0203 & 0.0203 & 0.0134 & 0.0134 & 0.1188 & 0.0790 & 0.0712 & 0.0111 & 0.0108 & 0.0499 & 0.0462 & 0.0521 & 0.0520 \\ 100 & 0.0146 & 0.0146 & 0.0096 & 0.0096 & 0.0650 & 0.0637 & 0.0441 & 0.0436 & 0.0090 & 0.0090 & 0.3022 & 0.0289 & 0.0428 & 0.0428 \\ 500 & 0.0066 & 0.0066 & 0.0044 & 0.0044 & 0.0274 & 0.0272 & 0.0164 & 0.0162 & 0.0037 & 0.0036 & 0.0147 & 0.0143 & 0.0177 & 0.0177 \\ [0;2] & 50 & 0.0313 & 0.0311 & 0.0276 & 0.0276 & 0.1593 & 0.1430 & 0.1462 & 0.1335 & 0.0103 & 0.0574 & 0.0525 & 0.0556 & 0.0556 \\ 100 & 0.0227 & 0.0227 & 0.0210 & 0.0210 & 0.0878 & 0.0863 & 0.0815 & 0.0792 & 0.0080 & 0.0080 & 0.0335 & 0.0319 & 0.0391 & 0.0392 \\ 500 & 0.0097 & 0.0097 & 0.0084 & 0.0084 & 0.0427 & 0.0423 & 0.0357 & 0.0355 & 0.0035 & 0.0035 & 0.0145 & 0.0141 & 0.0187 & 0.0187 \\ 0.9 & [-1;3] & 50 & 0.0271 & 0.0275 & 0.0586 & 0.1833 & 0.1789 & 0.1099 & 0.1074 & 0.0119 & 0.0188 & 0.0653 & 0.0613 & 0.0832 & 0.0841 \\ 100 & 0.0139 & 0.0138 & 0.0087 & 0.0087 & 0.1040 & 0.1012 & 0.0703 & 0.0671 & 0.0075 & 0.0074 & 0.0507 & 0.0459 & 0.0284 & 0.0283 \\ 500 & 0.0061 & 0.0061 & 0.0039 & 0.0039 & 0.03377 & 0.0371 & 0.0230 & 0.0228 & 0.0035 & 0.0034 & 0.0206 & 0.0195 & 0.0141 & 0.0141 \\ [0;2] & 50 & 0.0276 & 0.0276 & 0.0225 & 0.0234 & 0.2505 & 0.2302 & 0.2363 & 0.2139 & 0.0113 & 0.0112 & 0.0600 & 0.0365 & 0.0352 \\ 100 & 0.0231 & 0.0201 & 0.0522 & 0.0177 & 0.1592 & 0.1426 & 0.1298 & 0.1260 & 0.0238 & 0.0074 & 0.0490 & 0.0470 & 0.0665 & 0.0300 \\ \end{bmatrix}$		fo. 01															
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		[0; 2]															
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$																	
$ \begin{bmatrix} 100 \\ 0.0146 & 0.0146 & 0.0096 & 0.0096 & 0.0650 & 0.0637 & 0.0441 & 0.0436 & 0.0090 & 0.0090 & 0.0022 & 0.0289 & 0.0428 & 0.0428 \\ 0.0066 & 0.0066 & 0.0064 & 0.0044 & 0.0274 & 0.0272 & 0.0164 & 0.0162 & 0.0037 & 0.0036 & 0.0147 & 0.0143 & 0.0177 & 0.0177 \\ 0.0313 & 0.0311 & 0.0276 & 0.0276 & 0.1593 & 0.1430 & 0.1462 & 0.1335 & 0.0103 & 0.0102 & 0.0574 & 0.0525 & 0.0556 & 0.0556 \\ 100 & 0.0227 & 0.0227 & 0.0210 & 0.0210 & 0.0878 & 0.0863 & 0.0815 & 0.0792 & 0.0080 & 0.0035 & 0.0319 & 0.0391 & 0.0392 \\ 500 & 0.0097 & 0.0097 & 0.0094 & 0.0084 & 0.0427 & 0.0423 & 0.0357 & 0.0355 & 0.0035 & 0.0035 & 0.0145 & 0.0141 & 0.0187 & 0.0187 \\ 0.9 & [-1;3] & 50 & 0.0271 & 0.0275 & 0.0588 & 0.0586 & 0.1833 & 0.1789 & 0.1099 & 0.1074 & 0.0119 & 0.0118 & 0.0653 & 0.0613 & 0.0832 & 0.0841 \\ 100 & 0.0139 & 0.0138 & 0.0087 & 0.0087 & 0.1040 & 0.1012 & 0.0703 & 0.0671 & 0.0075 & 0.0074 & 0.0507 & 0.0459 & 0.0284 & 0.0283 \\ 500 & 0.0061 & 0.0061 & 0.0039 & 0.0039 & 0.0377 & 0.0371 & 0.0230 & 0.0228 & 0.0035 & 0.0034 & 0.206 & 0.0195 & 0.0141 & 0.0141 \\ [0;2] & 50 & 0.0276 & 0.0276 & 0.0223 & 0.0234 & 0.2505 & 0.2302 & 0.2363 & 0.2139 & 0.0113 & 0.0112 & 0.0640 & 0.0600 & 0.0365 & 0.0352 \\ 100 & 0.0231 & 0.0201 & 0.0522 & 0.0177 & 0.1592 & 0.1426 & 0.1298 & 0.1260 & 0.0238 & 0.0074 & 0.0490 & 0.0470 & 0.0665 & 0.0300 \\ \hline \end{tabular}$																	
$ \begin{bmatrix} [0;2] & 500 & 0.0066 & 0.0066 & 0.0044 & 0.0044 & 0.0274 & 0.0272 & 0.0164 & 0.0162 & 0.0037 & 0.0036 & 0.0147 & 0.0143 & 0.0177 & 0.0177 \\ [0;2] & 50 & 0.0313 & 0.0311 & 0.0276 & 0.0276 & 0.1593 & 0.1430 & 0.1462 & 0.1335 & 0.0103 & 0.0102 & 0.0574 & 0.0525 & 0.0556 & 0.0556 \\ [0;0] & 0.0227 & 0.0227 & 0.0210 & 0.0210 & 0.0887 & 0.0863 & 0.0815 & 0.0792 & 0.0080 & 0.0083 & 0.0319 & 0.0392 \\ [0;0] & 0.0097 & 0.0097 & 0.0084 & 0.0084 & 0.0427 & 0.0423 & 0.0357 & 0.0355 & 0.0035 & 0.0145 & 0.0141 & 0.0187 & 0.0187 \\ [0;0] & 50 & 0.0271 & 0.0275 & 0.0588 & 0.0586 & 0.1833 & 0.1789 & 0.1099 & 0.1074 & 0.0119 & 0.0118 & 0.0653 & 0.0613 & 0.0832 & 0.0841 \\ [0;0] & 50 & 0.0261 & 0.0061 & 0.0039 & 0.0387 & 0.0371 & 0.0230 & 0.0228 & 0.0035 & 0.0034 & 0.0266 & 0.0195 & 0.0141 & 0.0141 \\ [0;2] & 50 & 0.0276 & 0.0276 & 0.0236 & 0.0234 & 0.2505 & 0.2302 & 0.2363 & 0.2139 & 0.0113 & 0.0112 & 0.0640 & 0.0600 & 0.0365 & 0.0352 \\ [0;0] & 50 & 0.0231 & 0.0201 & 0.0522 & 0.0177 & 0.1592 & 0.1426 & 0.1298 & 0.1260 & 0.0238 & 0.0074 & 0.0490 & 0.0470 & 0.0665 & 0.0300 \\ [0;0] & 50 & 0.0231 & 0.0201 & 0.0522 & 0.0177 & 0.1592 & 0.1426 & 0.1298 & 0.1260 & 0.0238 & 0.0074 & 0.0490 & 0.0470 & 0.0665 & 0.0300 \\ [0;0] & 50 & 0.0231 & 0.0201 & 0.0522 & 0.0177 & 0.1592 & 0.1426 & 0.1298 & 0.1260 & 0.0238 & 0.0074 & 0.0490 & 0.0470 & 0.0665 & 0.0300 \\ [0;0] & 50 & 0.0231 & 0.0201 & 0.0522 & 0.0177 & 0.1592 & 0.1426 & 0.1298 & 0.1260 & 0.0238 & 0.0074 & 0.0490 & 0.0470 & 0.0665 & 0.0300 \\ [0;0] & 50 & 0.0231 & 0.0201 & 0.0522 & 0.0177 & 0.1592 & 0.1426 & 0.1298 & 0.1260 & 0.0238 & 0.0074 & 0.0490 & 0.0470 & 0.0665 & 0.0300 \\ [0;0] & 50 & 0.0231 & 0.0201 & 0.0522 & 0.0177 & 0.1592 & 0.1426 & 0.1298 & 0.1260 & 0.0238 & 0.0074 & 0.0490 & 0.0470 & 0.0665 & 0.0300 \\ [0;0] & 50 & 0.0231 & 0.0201 & 0.0522 & 0.0177 & 0.1592 & 0.1426 & 0.1298 & 0.1260 & 0.0238 & 0.0074 & 0.0490 & 0.0470 & 0.0665 & 0.0300 \\ [0;0] & 50 & 0.0231 & 0.0201 & 0.0522 & 0.0177 & 0.1592 & 0.1426 & 0.1298 & 0.1260 & 0.0238 & 0.0074 & 0.0490 & 0.0470 & 0.0665 & 0.0300 \\ [$	0.8	[-1; 3]															
$ \begin{bmatrix} [0;2] & 50 & 0.0313 & 0.0311 & 0.0276 & 0.0276 & 0.1593 & 0.1430 & 0.1462 & 0.1335 & 0.0103 & 0.0102 & 0.0574 & 0.0525 & 0.0556 & 0.0550 \\ 100 & 0.0227 & 0.0227 & 0.0210 & 0.0210 & 0.0863 & 0.0863 & 0.0815 & 0.0792 & 0.0080 & 0.0335 & 0.0319 & 0.0391 & 0.0392 \\ 500 & 0.0097 & 0.0097 & 0.0084 & 0.0084 & 0.0427 & 0.0423 & 0.0357 & 0.0355 & 0.0035 & 0.0145 & 0.0141 & 0.0187 & 0.0187 \\ \hline 0.9 & [-1;3] & 50 & 0.0271 & 0.0275 & 0.0588 & 0.0586 & 0.1833 & 0.1789 & 0.1099 & 0.1074 & 0.0119 & 0.0183 & 0.0613 & 0.0832 & 0.0841 \\ 100 & 0.0139 & 0.0138 & 0.0087 & 0.0087 & 0.1040 & 0.1012 & 0.0703 & 0.0671 & 0.0075 & 0.0074 & 0.0507 & 0.0459 & 0.0284 & 0.0283 \\ 500 & 0.0061 & 0.0061 & 0.0039 & 0.0399 & 0.0377 & 0.0371 & 0.0230 & 0.0228 & 0.0035 & 0.0034 & 0.0206 & 0.0195 & 0.0141 & 0.0141 \\ [0;2] & 50 & 0.0276 & 0.0276 & 0.0235 & 0.0234 & 0.2505 & 0.2302 & 0.2363 & 0.2139 & 0.0113 & 0.0112 & 0.0640 & 0.0600 & 0.0365 & 0.0352 \\ 100 & 0.0231 & 0.0201 & 0.0522 & 0.0177 & 0.1592 & 0.1426 & 0.1298 & 0.1260 & 0.0238 & 0.0074 & 0.0490 & 0.0470 & 0.0665 & 0.0300 \\ \hline \end{tabular}$																	
$ \begin{bmatrix} 100 & 0.0227 & 0.0227 & 0.0210 & 0.0210 & 0.0878 & 0.0863 & 0.0815 & 0.0792 & 0.0080 & 0.0335 & 0.0319 & 0.0391 & 0.0392 \\ 0.0097 & 0.0097 & 0.0084 & 0.0084 & 0.0427 & 0.0423 & 0.0357 & 0.0355 & 0.0035 & 0.0035 & 0.0141 & 0.0187 & 0.0187 \\ 0.9 & [-1;3] & 50 & 0.0271 & 0.0275 & 0.0588 & 0.0586 & 0.1833 & 0.1789 & 0.1099 & 0.1074 & 0.0119 & 0.0653 & 0.0613 & 0.0832 & 0.0841 \\ 100 & 0.0139 & 0.0138 & 0.0087 & 0.0087 & 0.1040 & 0.1012 & 0.0703 & 0.0671 & 0.0075 & 0.0074 & 0.0507 & 0.0459 & 0.0284 & 0.0283 \\ 500 & 0.0061 & 0.0061 & 0.0039 & 0.0399 & 0.0377 & 0.0371 & 0.0230 & 0.0228 & 0.0035 & 0.0034 & 0.206 & 0.0195 & 0.0141 & 0.0141 \\ [0;2] & 50 & 0.0276 & 0.0276 & 0.0235 & 0.0234 & 0.2505 & 0.2302 & 0.2336 & 0.2139 & 0.0113 & 0.0112 & 0.0640 & 0.0600 & 0.0365 & 0.0352 \\ 100 & 0.0231 & 0.0201 & 0.0522 & 0.0177 & 0.1592 & 0.1426 & 0.1298 & 0.1260 & 0.0238 & 0.0074 & 0.0490 & 0.0470 & 0.0665 & 0.0300 \\ \end{bmatrix}$		fo. 01															
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		[0; 2]															
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$																	
$ \begin{bmatrix} 100 & 0.0139 & 0.0138 & 0.0087 & 0.0087 & 0.1040 & 0.1012 & 0.0703 & 0.0671 & 0.0075 & 0.0074 & 0.0507 & 0.0459 & 0.0284 & 0.0283 \\ 500 & 0.0061 & 0.0061 & 0.0039 & 0.0039 & 0.0377 & 0.0371 & 0.0230 & 0.0228 & 0.0035 & 0.0034 & 0.0206 & 0.0195 & 0.0141 & 0.0141 \\ [0;2] & 50 & 0.0276 & 0.0276 & 0.0235 & 0.0234 & 0.2505 & 0.2302 & 0.2363 & 0.2139 & 0.0113 & 0.0112 & 0.0640 & 0.0600 & 0.0365 & 0.0352 \\ 100 & 0.0231 & 0.0201 & 0.0522 & 0.0177 & 0.1592 & 0.1426 & 0.1298 & 0.1260 & 0.0238 & 0.0074 & 0.0490 & 0.0470 & 0.0665 & 0.0300 \\ \end{bmatrix} $																	
$ \begin{bmatrix} 500 \\ [0;2] \end{bmatrix} & 0.0061 \ 0.0061 \ 0.0039 \ 0.0039 \ 0.0377 \ 0.0371 \ 0.0230 \ 0.0228 \ 0.0035 \ 0.0034 \ 0.0206 \ 0.0195 \ 0.0141 \ 0.0141 \\ 0.026 \ 0.0276 \ 0.0276 \ 0.0235 \ 0.0234 \ 0.2505 \ 0.2302 \ 0.2363 \ 0.2139 \ 0.0113 \ 0.0112 \ 0.0640 \ 0.0600 \ 0.0365 \ 0.0352 \\ 100 \ 0.0231 \ 0.0201 \ 0.0522 \ 0.0177 \ 0.1592 \ 0.1426 \ 0.1298 \ 0.1260 \ 0.0238 \ 0.0074 \ 0.0490 \ 0.0470 \ 0.0665 \ 0.0300 \\ \end{bmatrix} $	0.9	[-1; 3]															
$ \begin{bmatrix} 0;2 \end{bmatrix} & 50 & 0.0276 & 0.0276 & 0.0235 & 0.0234 & 0.2505 & 0.2302 & 0.2363 & 0.2139 & 0.0113 & 0.0112 & 0.0640 & 0.0600 & 0.0365 & 0.0352 \\ 100 & 0.0231 & 0.0201 & 0.0522 & 0.0177 & 0.1592 & 0.1426 & 0.1298 & 0.1260 & 0.0238 & 0.0074 & 0.0490 & 0.0470 & 0.0665 & 0.0300 \\ \end{bmatrix} $																	
$100 \qquad 0.0231 \ 0.0201 \ 0.0522 \ 0.0177 \ 0.1592 \ 0.1426 \ 0.1298 \ 0.1260 \ 0.0238 \ 0.0074 \ 0.0490 \ 0.0470 \ 0.0665 \ 0.0300$		[0. 0]															
		[0; 2]															
500 0.0088 0.0088 0.0082 0.0082 0.0603 0.0597 0.0517 0.0512 0.0034 0.0210 0.0200 0.0137 0.0137																	
			500	0.0088	0.0088	0.0082	0.0082	0.0603	0.0597	0.0517	0.0512	0.0034	0.0034	0.0210	0.0200	0.0137	0.0137

Tabela D.12: Estimativas do desvio padrão dos parâmetros da mistura de duas regressões lineares no caso PII

			α_1	α_1	β_1	β_1	α_2	α_2	β_2	β_2	σ_1	σ_1	σ_2	σ_2	π_1	π_1
π_1	x	n	EM	CEM	EM	CEM	EM	CEM	EM	CEM	EM	CEM	EM	CEM	EM	CEM
0.1	[-1; 3]	50													0.0391	
		100													0.0357	
		500													0.0145	
	[0; 2]	50													0.0658	
		100													0.0791	
		500													0.0138	
0.2	[-1; 3]	50													0.0605	
		100													0.0394	
		500	0.0287	0.0276	0.0185	0.0180	0.0138	0.0138	0.0089	0.0089	0.0174	0.0148	0.0077	0.0076	0.0177	0.0180
	[0; 2]	50	0.1835	0.1579	0.1717	0.1347	0.0669	0.0655	0.0600	0.0579	0.0548	0.0415	0.0254	0.0244	0.0544	0.0526
		100	0.1076	0.1005	0.0895	0.0813	0.0455	0.0449	0.0408	0.0403	0.0381	0.0317	0.0190	0.0178	0.0378	0.0376
		500	0.0413	0.0388	0.0355	0.0342	0.0182	0.0182	0.0159	0.0160	0.0165	0.0141	0.0071	0.0069	0.0174	0.0176
0.3	[-1; 3]	50	0.0912	0.0735	0.0567	0.0489	0.0475	0.0454	0.0288	0.0281	0.0518	0.0361	0.0298	0.0251	0.0654	0.0608
	-	100	0.0556	0.0504	0.0348	0.0326	0.0367	0.0354	0.0234	0.0231	0.0307	0.0247	0.0197	0.0182	0.0459	0.0464
		500	0.0238	0.0226	0.0168	0.0162	0.0157	0.0157	0.0092	0.0092	0.0138	0.0124	0.0089	0.0086	0.0210	0.0210
	[0; 2]	50	0.1213	0.1114	0.1067	0.0982	0.0696	0.0669	0.0622	0.0614	0.0423	0.0360	0.0282	0.0259	0.0605	0.0604
		100	0.0870	0.0807	0.0780	0.0722	0.0483	0.0477	0.0417	0.0415	0.0343	0.0287	0.0192	0.0175	0.0485	0.0474
		500	0.0374	0.0364	0.0292	0.0288	0.0225	0.0224	0.0195	0.0194	0.0134	0.0116	0.0086	0.0083	0.0208	0.0205
0.4	[-1; 3]	50	0.0661	0.0599	0.0466	0.0443	0.0531	0.0496	0.0336	0.0324	0.0430	0.0357	0.0307	0.0274	0.0750	0.0733
		100	0.0478	0.0464	0.0312	0.0300	0.0398	0.0388	0.0237	0.0231	0.0267	0.0227	0.0228	0.0213	0.0506	0.0510
		500	0.0201	0.0196	0.0129	0.0126	0.0163	0.0162	0.0103	0.0102	0.0108	0.0099	0.0090	0.0086	0.0230	0.0231
	[0; 2]	50	0.1138	0.1023	0.0936	0.0866	0.0840	0.0762	0.0715	0.0663	0.0401	0.0323	0.0321	0.0282	0.0746	0.0725
	1-7 1	100													0.0527	
		500	0.0323	0.0310	0.0281	0.0270	0.0262	0.0259	0.0226	0.0225	0.0123	0.0109	0.0089	0.0084	0.0219	0.0221
0.5	[-1; 3]	50													0.0736	
	[-, -]	100													0.0540	
		500													0.0217	
	[0; 2]	50	0.0889	0.0859	0.0733	0.0698	0.0954	0.0908	0.0819	0.0772	0.0358	0.0296	0.0380	0.0315	0.0750	0.0755
	1-7 1	100													0.0494	
		500													0.0226	
0.6	[-1; 3]	50													0.0687	
	[-, -]	100													0.0503	
		500													0.0209	
	[0; 2]	50													0.0789	
	[-,-]	100													0.0499	
		500													0.0233	
0.7	[-1; 3]	50													0.0672	
	[-, -]	100													0.0473	
		500													0.0205	
	[0; 2]	50													0.0668	
	[0, 2]	100													0.0450	
		500													0.0220	
0.8	[-1; 3]	50													0.0626	
0.0	[1,0]	100													0.0384	
		500													0.0199	
	[0; 2]	50													0.0700	
	[0, 2]	100													0.0388	
		500													0.0172	
0.9	[-1; 3]	50													0.0399	
0.3	[-1, 3]	100													0.0338	
		500													0.0338	
	[0; 2]	50													0.0143	
	[0, 2]	100													0.0833	
		500													0.0138	
		500	0.0100	0.0179	0.0103	0.0102	0.0048	0.0580	0.0042	0.0002	0.0007	0.0000	0.0202	0.0194	0.0127	0.0130

Tabela D.13: Estimativas do desvio padrão dos parâmetros da mistura de duas regressões lineares no caso PIII

The color						0	0			0	0						
1	_	_		α_1	α_1	β_1	β_1	α_2	α_2	β_2	β_2	σ_1	σ_1	σ_2	σ_2	π_1	π_1
10		x [1 2]															_
10	0.1	[-1; 3]															
[0; 2] 50 0 0.2484 0.2240 0.2199 0.0592 0.0592 0.0592 0.0522 0.0623 0.0215 0.0215 0.0308 0.3098 0.0216 0.0215 0.0230 0.0139 0.0135 0.0334 0.0155 0.0155 0.0404 0.0404 0.0623 0.0623 0.0623 0.0423 0.0423 0.0257 0.0287 0.0287 0.0287 0.0287 0.0288 0.0288 0.0438 0.0438 0.0233 0.0233 0.0517 0.0517 0.0071 0.00																	
1.0		[0.0]															
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		[0; 2]															
10.2																	
100		f 4 01															
10	0.2	[-1; 3]															
[6] 2 50																	
100		[0.0]															
1.0 1.0		[0; 2]															
0.3																	
100																	
[0; 2] 500 0.0217 0.0217 0.0132 0.0132 0.0150 0.0150 0.0097 0.0097 0.0114 0.0076 0.0076 0.0193 0.0194	0.3	[-1; 3]															
[0; 2] 50 0.1125 0.1325 0.0930 0.0930 0.0701 0.0701 0.0581 0.0383 0.0373 0.0233 0.0253 0.0542 0.0463 0.0463 0.0065 0.0056 0.0756 0.0659 0.0669 0.0469 0.0369 0.0389 0.0237 0.0237 0.0182 0.0182 0.0463 0.0463 0.0463 0.0463 0.0263 0.0246 0.0246 0.0236 0.0236 0.0208 0.0208 0.0117 0.0117 0.0070 0.0070 0.0203 0.0203 0.041 0.0314 0.0341 0.0341 0.0340 0.0336 0.0238 0.0238 0.0333 0.0333 0.0330 0.0256 0.0256 0.0701 0.0701 0.0070 0.0070 0.0203 0.0203 0.0246 0.0246 0.0416 0.0416 0.0278 0.0377 0.0377 0.0255 0.0255 0.0231 0.0231 0.0231 0.0174 0.0174 0.0496 0.0397 0.0397 0.0397 0.0397 0.0397 0.0397 0.0397 0.0391 0.0391 0.0391 0.0391 0.0391 0.0496 0.0496 0.0496 0.0496 0.0496 0.0496 0.0397 0.0397 0.0397 0.0397 0.0397 0.0397 0.0397 0.0391 0.0391 0.0391 0.0491 0.0496																	
100																	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		[0; 2]															
$ \begin{bmatrix} 0.4 & [-1;3] & 50 & 0.0529 & 0.0572 & 0.0372 & 0.0493 & 0.0493 & 0.0333 & 0.0333 & 0.0330 & 0.0256 & 0.0256 & 0.0701 & 0.0701 \\ 500 & 0.0410 & 0.0410 & 0.0278 & 0.0277 & 0.0377 & 0.0255 & 0.0255 & 0.0231 & 0.0231 & 0.0174 & 0.0140 & 0.0496 \\ [0;2] & 50 & 0.1071 & 0.1071 & 0.0896 & 0.0896 & 0.0807 & 0.0681 & 0.0681 & 0.0310 & 0.0310 & 0.0251 & 0.0251 & 0.0679 \\ 100 & 0.0653 & 0.0655 & 0.0551 & 0.0551 & 0.0489 & 0.0489 & 0.0435 & 0.0218 & 0.0180 & 0.0180 & 0.0183 & 0.0185 \\ 500 & 0.0276 & 0.0276 & 0.0246 & 0.0236 & 0.0235 & 0.0204 & 0.0204 & 0.0105 & 0.0083 & 0.0083 & 0.0195 & 0.0195 \\ 505 & [-1;3] & 50 & 0.0541 & 0.0541 & 0.0336 & 0.0336 & 0.0547 & 0.0366 & 0.0366 & 0.0367 & 0.0307 & 0.0301 &$																	
100																	
[0; 2] 50	0.4	[-1; 3]															
$ \begin{bmatrix} [0;2] \\ 50 \\ 0.1071 \ 0.1071 \ 0.0896 \ 0.0896 \ 0.0897 \ 0.0897 \ 0.0881 \ 0.0310 \ 0.0218 \ 0.0218 \ 0.0215 \ 0.0251 \ 0.0251 \ 0.0679 \ 0.0679 \ 0.0653 \ 0.0653 \ 0.0551 \ 0.0551 \ 0.0489 \ 0.0448 \ 0.0435 \ 0.0218 \ 0.0218 \ 0.0218 \ 0.0218 \ 0.0218 \ 0.0180 \ 0.0180 \ 0.0513 \ 0.0513 \ 0.0513 \ 0.0513 \ 0.0513 \ 0.0218 \ 0.0218 \ 0.0218 \ 0.0180 \ 0.0180 \ 0.0513 \ 0.0513 \ 0.0513 \ 0.0513 \ 0.0218 \ 0.0218 \ 0.0218 \ 0.0218 \ 0.0180 \ 0.0180 \ 0.0513 \ 0.0513 \ 0.0513 \ 0.0513 \ 0.0218 \ 0.0218 \ 0.0218 \ 0.0180 \ 0.0180 \ 0.0180 \ 0.0180 \ 0.0180 \ 0.0218 \ 0.0218 \ 0.0218 \ 0.0218 \ 0.0218 \ 0.0218 \ 0.0218 \ 0.0180 \ 0.0080 \ 0.0080 \ 0.0080 \ 0.0246 \ 0.0235 \ 0.0235 \ 0.0235 \ 0.0204 \ 0.0105 \ 0.0015 \ 0.00083 \ 0.0083 \ 0.0083 \ 0.0195 \ 0.0195 \ 0.0105 \ 0.00083 \ 0.0083 \ 0.0083 \ 0.0195 \ 0.0195 \ 0.0257 \ 0.0201 \ 0$																	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $																	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		[0; 2]															
$ \begin{bmatrix} -1;3 \\ 100 \\ 0.0407 \ 0.02541 \ 0.0336 \ 0.0336 \ 0.0336 \ 0.0367 \ 0.0367 \ 0.0366 \ 0.0307 \ 0.0307 \ 0.0301 \ 0.0301 \ 0.0301 \ 0.0656 \ 0.0656 \\ 100 \\ 0.0407 \ 0.0407 \ 0.0272 \ 0.0372 \ 0.0397 \ 0.0397 \ 0.0257 \ 0.0257 \ 0.0257 \ 0.0201 \ 0.0201 \ 0.0190 \ 0.0190 \ 0.01490 \ 0.0481 \ 0.0481 \\ 100 \\ 0.0166 \ 0.0166 \ 0.0166 \ 0.0118 \ 0.0118 \ 0.0116 \ 0.0105 \ 0.0105 \ 0.0078 \ 0.0078 \ 0.0083 \ 0.0230 \ 0.0210 \ 0.0210 \ 0.0211 \\ 100 \\ 0.0563 \ 0.0563 \ 0.0485 \ 0.0485 \ 0.0604 \ 0.0604 \ 0.0504 \ 0.0794 \ 0.0292 \ 0.0292 \ 0.0292 \ 0.0280 \ 0.0280 \ 0.0787 \ 0.0787 \ 0.0787 \ 0.0787 \ 0.0563 \ 0.0485 \ 0.0485 \ 0.0604 \ 0.0604 \ 0.0504 \ 0.0535 \ 0.0196 \ 0.0196 \ 0.0198 \ 0.0188 \ 0.0516 \ 0.0516 \ 0.0553 \ 0.0553 \ 0.0485 \ 0.0485 \ 0.0604 \ 0.0604 \ 0.0535 \ 0.0535 \ 0.0196 \ 0.0196 \ 0.0198 \ 0.0188 \ 0.0516 \ 0.0516 \ 0.0553 \ 0.0553 \ 0.0553 \ 0.0196 \ 0.0196 \ 0.0198 \ 0.0280 \ 0.0280 \ 0.0251 \ 0.0251 \ 0.0252 \ 0.0252 \ 0.0252 \ 0.0252 \ 0.0252 \ 0.0252 \ 0.0252 \ 0.0252 \ 0.0254 \ 0.0306 \ 0.0306 \ 0.0306 \ 0.0706 \ 0.0766 \ 0.0667 \ 0.04410 \ 0.04410 \ 0.04410 \ 0.04410 \ 0.0810 \ 0.0810 \ 0.0810 \ 0.0810 \ 0.04410 \ 0.04410 \ 0.0810 \ 0.0810 \ 0.0810 \ 0.0810 \ 0.00410 \ 0.0410 \ 0.0410 \ 0.00410 \ 0.0810 \ 0.00410 \ 0.00410 \ 0.00410 \ 0.00410 \ 0.00410 \ 0.00410 \ 0.00410 \ 0.00$																	
100																	
$ \begin{bmatrix} [0;2] \\ [0;2] \\ [0;2] \\ [0;3] \\ [0;4] \\ [0;5] \\ [$	0.5	[-1; 3]															
$ \begin{bmatrix} [0;2] \\ [0;2] \\ [0;0] \\ [$																	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$																	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		[0; 2]															
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$																	
$ \begin{bmatrix} 100 & 0.0380 & 0.0380 & 0.0260 & 0.0260 & 0.0425 & 0.0425 & 0.0287 & 0.0176 & 0.0176 & 0.0227 & 0.0227 & 0.0477 & 0.0477 \\ 500 & 0.0155 & 0.0155 & 0.0094 & 0.0094 & 0.0205 & 0.0205 & 0.0126 & 0.0126 & 0.0181 & 0.0081 & 0.0097 & 0.0097 & 0.0210 & 0.0210 \\ 500 & 0.0758 & 0.0758 & 0.0656 & 0.0665 & 0.0696 & 0.0967 & 0.0967 & 0.0845 & 0.0845 & 0.0265 & 0.0238 & 0.0338 & 0.0238 & 0.0212 & 0.0212 & 0.0274 & 0.0229 & 0.0212 & 0.0195 & 0.0195 & 0.0226 & 0.0226 & 0.0483 & 0.0483 \\ 500 & 0.0238 & 0.0238 & 0.0212 & 0.0212 & 0.0274 & 0.0229 & 0.0229 & 0.0279 & 0.0079 & 0.0102 & 0.0102 & 0.0205 & 0.0205 \\ 500 & 0.0444 & 0.0444 & 0.0307 & 0.07$																	
$ \begin{bmatrix} [0;2] & 500 & 0.0155 & 0.0155 & 0.0094 & 0.0094 & 0.0205 & 0.0205 & 0.0126 & 0.0081 & 0.0081 & 0.0097 & 0.0097 & 0.0210 & 0.0210 \\ 0.0758 & 0.0758 & 0.0656 & 0.0656 & 0.0967 & 0.0967 & 0.0845 & 0.0845 & 0.0265 & 0.0265 & 0.0338 & 0.0338 & 0.0696 & 0.0696 \\ 0.00544 & 0.0544 & 0.0465 & 0.0465 & 0.0593 & 0.0593 & 0.0593 & 0.0512 & 0.0512 & 0.0195 & 0.0195 & 0.01926 & 0.0226 & 0.0248 & 0.0483 \\ 0.0238 & 0.0238 & 0.0212 & 0.0212 & 0.0274 & 0.0274 & 0.0229 & 0.0229 & 0.0079 & 0.0079 & 0.0102 & 0.0102 & 0.0205 \\ 0.07 & [-1;3] & 50 & 0.0444 & 0.0444 & 0.0307 & 0.0307 & 0.0707 & 0.0707 & 0.0468 & 0.0468 & 0.0210 & 0.0210 & 0.0356 & 0.0633 & 0.0633 \\ 0.0312 & 0.0312 & 0.0208 & 0.0208 & 0.0455 & 0.00319 & 0.0319 & 0.0157 & 0.0157 & 0.0278 & 0.0278 & 0.0426 & 0.0426 \\ 500 & 0.0131 & 0.0131 & 0.0089 & 0.0089 & 0.0225 & 0.0225 & 0.0146 & 0.0146 & 0.0073 & 0.0073 & 0.0114 & 0.0114 & 0.0218 & 0.0218 \\ [0;2] & 50 & 0.0704 & 0.0704 & 0.0605 & 0.0605 & 0.1247 & 0.1247 & 0.0992 & 0.0992 & 0.0234 & 0.0343 & 0.0343 & 0.0666 & 0.0666 \\ 100 & 0.0467 & 0.0467 & 0.0400 & 0.0400 & 0.0810 & 0.0810 & 0.0655 & 0.0655 & 0.0651 & 0.0171 & 0.0171 & 0.0267 & 0.0267 & 0.0433 & 0.0433 \\ 0.08 & [-1;3] & 50 & 0.0410 & 0.0410 & 0.0293 & 0.0293 & 0.1001 & 0.1001 & 0.0656 & 0.0656 & 0.0211 & 0.0211 & 0.0465 & 0.0465 & 0.0568 \\ 100 & 0.0290 & 0.0290 & 0.0194 & 0.0184 & 0.0648 & 0.0648 & 0.0427 & 0.0427 & 0.0167 & 0.0167 & 0.0161 & 0.0311 & 0.0407 & 0.0407 \\ 0.09 & [-1;3] & 50 & 0.0611 & 0.0651 & 0.0559 & 0.1636 & 0.1636 & 0.1490 & 0.0149 & 0.0124 & 0.0323 & 0.0323 & 0.0430 & 0.0343 \\ 0.09 & [-1;3] & 50 & 0.0451 & 0.0424 & 0.0424 & 0.0997 & 0.0997 & 0.0883 & 0.0883 & 0.0162 & 0.0162 & 0.0323 & 0.0323 & 0.0400 & 0.0400 \\ 0.09 & [-1;3] & 50 & 0.0403 & 0.0403 & 0.0233 & 0.1269 & 0.0566 & 0.0260 & 0.0076 & 0.0076 & 0.0145 & 0.0145 & 0.0170 & 0.0170 \\ 0.09 & [-1;3] & 50 & 0.0403 & 0.0403 & 0.0233 & 0.1269 & 0.0369 & 0.0269 & 0.0269 & 0.0269 & 0.0269 & 0.0263 & 0.0263 & 0.0233 & 0.0432 & 0.0237 & 0.0287 \\ 0.0113 & 0.0131 & 0.0083 & 0.0838 & 0.0369 & 0.03$	0.6	[-1; 3]															
$ \begin{bmatrix} [0;2] \\ [0;3] \\ [0;3] \\ [0;3] \\ [0;4] \\ [0;4] \\ [0;4] \\ [0;5] \\ [0;5] \\ [0;5] \\ [0;6] \\ [0;6] \\ [0;6] \\ [0;6] \\ [0;7] \\ [$																	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$																	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		[0; 2]															
$ \begin{bmatrix} -1;3 \\ 0.7 \\ -1;3 \\ 0.0312 \\ 0.0312 \\ 0.0312 \\ 0.0312 \\ 0.0320 \\ 0.0208 \\ 0.0208 \\ 0.0208 \\ 0.0208 \\ 0.0455 \\ 0.0455 \\ 0.0455 \\ 0.0455 \\ 0.0455 \\ 0.0455 \\ 0.0455 \\ 0.0455 \\ 0.0455 \\ 0.0455 \\ 0.0455 \\ 0.0455 \\ 0.0455 \\ 0.0455 \\ 0.0455 \\ 0.0455 \\ 0.0455 \\ 0.0455 \\ 0.0468 \\ 0.0468 \\ 0.0218 \\ 0.0312 \\ 0.0312 \\ 0.0312 \\ 0.0312 \\ 0.0312 \\ 0.0208 \\ 0.0208 \\ 0.0208 \\ 0.0228 \\ 0.0225 \\ 0.0225 \\ 0.0225 \\ 0.0225 \\ 0.0225 \\ 0.0225 \\ 0.0225 \\ 0.025 \\ 0.0466 \\ 0.0467 \\ 0.0400 \\ 0.0400 \\ 0.0400 \\ 0.0400 \\ 0.0400 \\ 0.0400 \\ 0.0400 \\ 0.0400 \\ 0.0810 \\ 0.0810 \\ 0.0810 \\ 0.0810 \\ 0.0810 \\ 0.0279 \\ 0.0279 \\ 0.0279 \\ 0.0279 \\ 0.0279 \\ 0.0279 \\ 0.0279 \\ 0.0073 \\ 0.0073 \\ 0.0073 \\ 0.0073 \\ 0.0073 \\ 0.0171 \\ 0.0171 \\ 0.0267 \\ 0.0267 \\ 0.0267 \\ 0.0433 \\ 0.0435 \\ 0.0209 \\ 0.0209 \\ 0.0209 \\ 0.0209 \\ 0.0209 \\ 0.0209 \\ 0.0194 \\ 0.0161 \\ 0.0559 \\ 0.0559 \\ 0.1636 \\ 0.1636 \\ 0.1636 \\ 0.1490 \\ 0.1490 \\ 0.0244 \\ 0.0247 \\ 0.0167 \\ 0.0073$																	
$\begin{bmatrix} 100 & 0.0312 & 0.0312 & 0.0208 & 0.0208 & 0.0455 & 0.0455 & 0.0319 & 0.0157 & 0.0157 & 0.0278 & 0.0278 & 0.0426 & 0.0426 \\ 500 & 0.0131 & 0.0131 & 0.0089 & 0.0889 & 0.0225 & 0.0225 & 0.0146 & 0.0146 & 0.0073 & 0.0073 & 0.0114 & 0.0114 & 0.0218 & 0.0218 \\ 500 & 0.0704 & 0.0704 & 0.0605 & 0.0665 & 0.1247 & 0.1247 & 0.1247 & 0.0992 & 0.0934 & 0.0234 & 0.0334 & 0.0343 & 0.0343 & 0.0348 & 0.0666 \\ 100 & 0.0467 & 0.0467 & 0.0400 & 0.0400 & 0.0810 & 0.0655 & 0.0655 & 0.0171 & 0.0171 & 0.0267 & 0.0267 & 0.0433 & 0.0433 \\ 500 & 0.0210 & 0.0210 & 0.0182 & 0.0182 & 0.0328 & 0.0328 & 0.0279 & 0.0279 & 0.0273 & 0.0073 & 0.0073 & 0.0116 & 0.0209 & 0.0209 \\ 0.8 & [-1;3] & 50 & 0.0410 & 0.0410 & 0.0293 & 0.0293 & 0.1001 & 0.1001 & 0.0656 & 0.0656 & 0.0211 & 0.0211 & 0.0455 & 0.0465 & 0.0568 & 0.0568 & 0.0211 & 0.0211 & 0.0455 & 0.0465 & 0.0568 & 0.0568 & 0.0211 & 0.0211 & 0.0455 & 0.0465 & 0.0568 & 0.0568 & 0.0212 & 0.0209 & 0.0209 & 0.0209 & 0.0299 & 0.0299 & 0.0299 & 0.0246 & 0.0266 & 0.0275 & 0.0167 & 0.0167 & 0.0311 & 0.0311 & 0.0407 & 0.0407 & 0.0477 & 0.0167 & 0.0137 & 0.0137 & 0.0092 & 0.0292 & 0.0266 & 0.0266 & 0.0215 & 0.0175 & 0.0073 & 0.0073 & 0.0145 & 0.0145 & 0.0179 & 0.0$																	
$ \begin{bmatrix} [0;2] & 500 & 0.0131 & 0.0131 & 0.0089 & 0.0089 & 0.0225 & 0.0225 & 0.0146 & 0.0146 & 0.0073 & 0.0073 & 0.0114 & 0.0114 & 0.0218 & 0.0218 \\ 0.0704 & 0.0704 & 0.0605 & 0.0605 & 0.1247 & 0.1247 & 0.0992 & 0.0929 & 0.0234 & 0.0334 & 0.0343 & 0.0666 & 0.0666 \\ 100 & 0.0467 & 0.0467 & 0.0400 & 0.0400 & 0.0810 & 0.0655 & 0.0655 & 0.0615 & 0.0171 & 0.0267 & 0.0267 & 0.0433 & 0.0433 \\ 0.0210 & 0.0210 & 0.0210 & 0.0182 & 0.0328 & 0.0328 & 0.0279 & 0.0279 & 0.0073 & 0.0073 & 0.0116 & 0.0116 & 0.0209 & 0.0209 \\ 0.8 & [-1;3] & 50 & 0.0410 & 0.0410 & 0.0293 & 0.0293 & 0.1001 & 0.1001 & 0.0656 & 0.0656 & 0.0211 & 0.0211 & 0.0465 & 0.0465 & 0.0568 \\ 100 & 0.0290 & 0.0290 & 0.0194 & 0.0194 & 0.0648 & 0.0648 & 0.0427 & 0.0427 & 0.0147 & 0.0167 & 0.0167 & 0.0167 & 0.0167 & 0.0167 & 0.0167 & 0.0167 & 0.0167 & 0.0167 & 0.0167 & 0.0167 & 0.0167 & 0.0167 & 0.0179 \\ [0;2] & 50 & 0.0611 & 0.0611 & 0.0559 & 0.0559 & 0.1636 & 0.1636 & 0.1490 & 0.1490 & 0.0234 & 0.0234 & 0.0501 & 0.0538 & 0.0538 \\ 100 & 0.0451 & 0.0451 & 0.0424 & 0.0424 & 0.0997 & 0.0983 & 0.0883 & 0.0162 & 0.0162 & 0.0323 & 0.0323 & 0.0400 & 0.0400 \\ 500 & 0.0194 & 0.0194 & 0.0160 & 0.0160 & 0.0384 & 0.0384 & 0.0345 & 0.0345 & 0.0076 & 0.0076 & 0.0145 & 0.0145 & 0.0170 & 0.0170 \\ 0.9 & [-1;3] & 50 & 0.0403 & 0.0233 & 0.0233 & 0.1269 & 0.1559 & 0.1230 & 0.1085 & 0.0203 & 0.0630 & 0.0630 & 0.0639 & 0.0369 \\ 0.0974 & 0.0274 & 0.0172 & 0.0172 & 0.0969 & 0.0969 & 0.0615 & 0.0149 & 0.0149 & 0.0422 & 0.0422 & 0.0287 & 0.0287 \\ 500 & 0.0113 & 0.0083 & 0.0083 & 0.0369 & 0.0369 & 0.0269 & 0.0269 & 0.0274 & 0.0170 & 0.0177 & 0.0137 & 0.0137 & 0.0137 \\ 0.0448 & 0.0451 & 0.1039 & 0.0390 & 0.2049 & 0.1798 & 0.1372 & 0.1515 & 0.0147 & 0.0477 & 0.0477 & 0.0669 & 0.0288 \\ 0.0448 & 0.0451 & 0.1039 & 0.0390 & 0.2049 & 0.1798 & 0.1372 & 0.1515 & 0.0151 & 0.0147 & 0.0477 & 0.0477 & 0.0669 & 0.0288 \\ 0.0448 & 0.0451 & 0.1039 & 0.0390 & 0.2049 & 0.1798 & 0.1372 & 0.1515 & 0.0151 & 0.0147 & 0.0477 & 0.0477 & 0.0669 & 0.0288 \\ 0.0448 & 0.0451 & 0.1039 & 0.0390 & 0.2049 & 0.1798 & 0.1372 & $	0.7	[-1; 3]															
$ \begin{bmatrix} [0;2] \\ [0;2] \\ [0;3] \\ [0;4] \end{bmatrix} = \begin{bmatrix} 50 \\ 0.0704 & 0.0704 & 0.0605 & 0.0605 & 0.1247 & 0.1247 & 0.0992 & 0.0992 & 0.0234 & 0.0234 & 0.0343 & 0.0343 & 0.0666 & 0.0666 \\ 0.0467 & 0.0467 & 0.0400 & 0.0810 & 0.0810 & 0.0655 & 0.0655 & 0.0617 & 0.0171 & 0.0267 & 0.0267 & 0.0433 & 0.0433 \\ 0.0210 & 0.0210 & 0.0182 & 0.0328 & 0.0328 & 0.0279 & 0.0279 & 0.0073 & 0.0073 & 0.0116 & 0.0116 & 0.0209 & 0.0209 \\ 0.08 \\ [-1;3] \\ [-1;$																	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		fo. 01															
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		[0; 2]															
$ \begin{bmatrix} -1;3 \\ 0.8 \\ [-1;3] \\ 50 \\ 0.0410 & 0.0410 & 0.0293 & 0.0293 & 0.1001 & 0.1001 & 0.0656 & 0.0616 & 0.0211 & 0.0465 & 0.0465 & 0.0568 & 0.0568 \\ 100 \\ 0.0290 & 0.0290 & 0.0194 & 0.0194 & 0.0648 & 0.0648 & 0.0427 & 0.0427 & 0.0167 & 0.0311 & 0.0311 & 0.0407 & 0.0407 \\ 500 \\ 0.0137 & 0.0137 & 0.0092 & 0.0092 & 0.0266 & 0.0266 & 0.0175 & 0.0175 & 0.0073 & 0.0145 & 0.0145 & 0.0179 & 0.0179 \\ [0;2] \\ 50 \\ 0.0611 & 0.0611 & 0.0559 & 0.0559 & 0.1636 & 0.1636 & 0.1490 & 0.1490 & 0.0234 & 0.0234 & 0.0501 & 0.0538 & 0.0538 \\ 100 \\ 0.0451 & 0.0451 & 0.0424 & 0.0424 & 0.0997 & 0.0997 & 0.0883 & 0.0883 & 0.0162 & 0.0162 & 0.0323 & 0.0323 & 0.0400 & 0.0400 \\ 500 \\ 0.0194 & 0.0194 & 0.0160 & 0.0160 & 0.0384 & 0.0345 & 0.0345 & 0.0345 & 0.0076 & 0.0076 & 0.0145 & 0.0145 & 0.0170 & 0.0170 \\ 0.9 \\ [-1;3] \\ 50 \\ 0.0403 & 0.0403 & 0.0233 & 0.0233 & 0.1569 & 0.1559 & 0.1230 & 0.1085 & 0.0203 & 0.0203 & 0.0630 & 0.0630 & 0.0359 & 0.0361 \\ 100 \\ 0.0274 & 0.0274 & 0.0172 & 0.0172 & 0.0969 & 0.0969 & 0.0615 & 0.0149 & 0.0149 & 0.0422 & 0.0422 & 0.0287 & 0.0287 \\ 500 \\ 0.0113 & 0.0113 & 0.0083 & 0.0083 & 0.0369 & 0.0369 & 0.0269 & 0.0269 & 0.0236 & 0.0236 & 0.02574 & 0.0574 & 0.0374 & 0.0337 \\ [0;2] \\ 50 \\ 0.0666 & 0.0607 & 0.0519 & 0.0519 & 0.3566 & 0.3490 & 0.3164 & 0.3028 & 0.0236 & 0.0236 & 0.0574 & 0.0574 & 0.0336 & 0.0387 \\ 100 \\ 0.0448 & 0.0451 & 0.1039 & 0.0390 & 0.2049 & 0.1798 & 0.1372 & 0.1515 & 0.0151 & 0.0147 & 0.0477 & 0.0669 & 0.0288 \\ \hline \end{tabular}$																	
$ \begin{bmatrix} 0 & 0.0290 & 0.0290 & 0.0194 & 0.0194 & 0.0648 & 0.0648 & 0.0427 & 0.0167 & 0.0167 & 0.0311 & 0.0311 & 0.0407 & 0.0407 \\ 0.0137 & 0.0137 & 0.0092 & 0.0092 & 0.0266 & 0.0266 & 0.0175 & 0.0175 & 0.0073 & 0.0073 & 0.0145 & 0.0145 & 0.0179 & 0.0179 \\ 0.0137 & 0.0137 & 0.00559 & 0.1636 & 0.1636 & 0.1490 & 0.1490 & 0.0234 & 0.0234 & 0.0501 & 0.0501 & 0.0538 & 0.0538 \\ 100 & 0.0451 & 0.0451 & 0.0424 & 0.0997 & 0.0997 & 0.0883 & 0.0883 & 0.0162 & 0.0162 & 0.0323 & 0.0323 & 0.0400 & 0.0400 \\ 500 & 0.0194 & 0.0194 & 0.0160 & 0.0160 & 0.0384 & 0.0384 & 0.0345 & 0.0076 & 0.0076 & 0.0145 & 0.0145 & 0.0170 & 0.0170 \\ 0.9 & [-1;3] & 50 & 0.0403 & 0.0403 & 0.0233 & 0.0233 & 0.1569 & 0.1599 & 0.1230 & 0.1085 & 0.0203 & 0.0630 & 0.0630 & 0.0359 & 0.0361 \\ 100 & 0.0274 & 0.0274 & 0.0172 & 0.0172 & 0.0969 & 0.0969 & 0.0615 & 0.0615 & 0.0149 & 0.0422 & 0.0422 & 0.0287 & 0.0287 \\ 500 & 0.0113 & 0.0113 & 0.0083 & 0.0383 & 0.3699 & 0.0269 & 0.0269 & 0.0271 & 0.0171 & 0.0189 & 0.0139 & 0.0137 & 0.0137 \\ [0;2] & 50 & 0.0606 & 0.0607 & 0.0519 & 0.3516 & 0.3490 & 0.3164 & 0.3028 & 0.0236 & 0.0236 & 0.0574 & 0.0574 & 0.0336 & 0.0337 \\ 100 & 0.0448 & 0.0451 & 0.1039 & 0.0399 & 0.2049 & 0.1798 & 0.1372 & 0.1515 & 0.0147 & 0.0475 & 0.0477 & 0.0669 & 0.0288 \\ \end{bmatrix}$																	
$ \begin{bmatrix} [0;2] & 500 & 0.0137 & 0.0137 & 0.0092 & 0.0092 & 0.0266 & 0.0266 & 0.0175 & 0.0175 & 0.0073 & 0.0073 & 0.0145 & 0.0145 & 0.0179 & 0.0179 \\ 0.0611 & 0.0611 & 0.0659 & 0.0559 & 0.1636 & 0.1490 & 0.1490 & 0.0234 & 0.0234 & 0.0501 & 0.0538 & 0.0538 \\ 100 & 0.0451 & 0.0451 & 0.0424 & 0.0997 & 0.0997 & 0.0883 & 0.0883 & 0.0162 & 0.0162 & 0.0323 & 0.0323 & 0.0400 & 0.0400 \\ 500 & 0.0194 & 0.0194 & 0.0160 & 0.0384 & 0.0384 & 0.0384 & 0.0345 & 0.0076 & 0.0076 & 0.0145 & 0.0145 & 0.0170 & 0.0170 \\ \hline 0.9 & [-1;3] & 50 & 0.0403 & 0.0403 & 0.0233 & 0.0233 & 0.1569 & 0.1559 & 0.1230 & 0.1085 & 0.0203 & 0.0630 & 0.0630 & 0.0359 & 0.0361 \\ 100 & 0.0274 & 0.0274 & 0.0172 & 0.0172 & 0.0969 & 0.0969 & 0.0615 & 0.0419 & 0.0149 & 0.0422 & 0.0287 & 0.0287 \\ 500 & 0.0113 & 0.0113 & 0.0083 & 0.0083 & 0.0369 & 0.0269 & 0.0269 & 0.0071 & 0.0071 & 0.0189 & 0.0189 & 0.0137 & 0.0137 \\ [0;2] & 50 & 0.0606 & 0.0607 & 0.0519 & 0.05519 & 0.3565 & 0.3490 & 0.3164 & 0.3028 & 0.0236 & 0.0236 & 0.0574 & 0.0574 & 0.0336 & 0.0387 \\ 100 & 0.0448 & 0.0451 & 0.1039 & 0.0390 & 0.2049 & 0.1798 & 0.1372 & 0.151 & 0.0147 & 0.0475 & 0.0477 & 0.0669 & 0.0288 \\ \hline \end{tabular}$	0.8	[-1; 3]															
$ \begin{bmatrix} [0;2] & 50 & 0.0611 & 0.0611 & 0.0559 & 0.0559 & 0.1636 & 0.1490 & 0.1490 & 0.0234 & 0.0234 & 0.0501 & 0.0501 & 0.0538 & 0.0538 \\ 100 & 0.0451 & 0.0451 & 0.0424 & 0.0424 & 0.0997 & 0.0983 & 0.0883 & 0.0683 & 0.0162 & 0.0162 & 0.0323 & 0.0323 & 0.0400 & 0.0400 \\ 500 & 0.0194 & 0.0194 & 0.0160 & 0.0160 & 0.0384 & 0.0345 & 0.0345 & 0.0076 & 0.0076 & 0.0145 & 0.0145 & 0.0170 & 0.0170 \\ \hline 0.9 & [-1;3] & 50 & 0.0403 & 0.0233 & 0.0233 & 0.1569 & 0.1559 & 0.1230 & 0.1085 & 0.0203 & 0.0203 & 0.0630 & 0.0630 & 0.0359 & 0.0361 \\ 100 & 0.0274 & 0.0274 & 0.0172 & 0.0172 & 0.0969 & 0.0615 & 0.0615 & 0.0419 & 0.0422 & 0.0422 & 0.0287 & 0.0287 \\ 500 & 0.0113 & 0.0083 & 0.0083 & 0.0369 & 0.0369 & 0.0269 & 0.0260 & 0.0274 & 0.0170 & 0.0189 & 0.0137 & 0.0137 \\ [0;2] & 50 & 0.0606 & 0.0607 & 0.0519 & 0.0559 & 0.3656 & 0.3490 & 0.3164 & 0.3028 & 0.0236 $																	
$ \begin{bmatrix} 100 & 0.0451 & 0.0451 & 0.0424 & 0.0424 & 0.0997 & 0.0997 & 0.0883 & 0.0883 & 0.0162 & 0.0162 & 0.0323 & 0.0323 & 0.0400 & 0.0400 \\ 0.0194 & 0.0194 & 0.0160 & 0.0160 & 0.0384 & 0.0384 & 0.0345 & 0.0345 & 0.0076 & 0.0145 & 0.0145 & 0.0170 & 0.0170 \\ 0.9 & [-1;3] & 50 & 0.0403 & 0.0403 & 0.0233 & 0.0233 & 0.1569 & 0.1599 & 0.1230 & 0.1085 & 0.0203 & 0.0630 & 0.0630 & 0.0350 & 0.0361 \\ 100 & 0.0274 & 0.0274 & 0.0172 & 0.0969 & 0.0699 & 0.0615 & 0.0615 & 0.0149 & 0.0422 & 0.0422 & 0.0287 & 0.0287 \\ 500 & 0.0113 & 0.0113 & 0.0083 & 0.0383 & 0.0369 & 0.0269 & 0.0269 & 0.0271 & 0.0149 & 0.0189 & 0.0189 & 0.0137 & 0.0137 \\ [0;2] & 50 & 0.0606 & 0.0607 & 0.0519 & 0.0519 & 0.3566 & 0.3490 & 0.3164 & 0.3028 & 0.0236 & 0.0236 & 0.0574 & 0.0574 & 0.0366 & 0.0387 \\ 100 & 0.0448 & 0.0451 & 0.1039 & 0.0390 & 0.2049 & 0.1798 & 0.1372 & 0.1515 & 0.0151 & 0.0147 & 0.0477 & 0.0669 & 0.0288 \\ \end{bmatrix}$		[0.0]															
$ \begin{bmatrix} 500 & 0.0194 & 0.0194 & 0.0160 & 0.0160 & 0.0384 & 0.0384 & 0.0345 & 0.0076 & 0.0076 & 0.0145 & 0.0145 & 0.0170 & 0.0170 \\ \hline 0.9 & [-1;3] & 50 & 0.0403 & 0.0403 & 0.0233 & 0.0233 & 0.1569 & 0.1559 & 0.1230 & 0.1085 & 0.0203 & 0.0203 & 0.0630 & 0.0630 & 0.0359 & 0.0361 \\ \hline 100 & 0.0274 & 0.0274 & 0.0172 & 0.0172 & 0.0969 & 0.0615 & 0.0615 & 0.06149 & 0.0422 & 0.0422 & 0.0287 & 0.0287 \\ \hline 500 & 0.0113 & 0.0113 & 0.0083 & 0.0369 & 0.0369 & 0.0269 & 0.0269 & 0.0071 & 0.0071 & 0.0189 & 0.0137 & 0.0137 \\ \hline [0;2] & 50 & 0.0606 & 0.0607 & 0.0519 & 0.0519 & 0.3656 & 0.3490 & 0.3164 & 0.3028 & 0.0236 & 0.0236 & 0.0574 & 0.0574 & 0.0336 & 0.0338 \\ \hline 100 & 0.0448 & 0.0451 & 0.1039 & 0.0390 & 0.2049 & 0.1798 & 0.1372 & 0.1515 & 0.0151 & 0.0147 & 0.0475 & 0.0477 & 0.0669 & 0.0288 \\ \hline \end{tabular}$		[0; 2]															
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$																	
$ \begin{bmatrix} 100 & 0.0274 & 0.0274 & 0.0172 & 0.0172 & 0.0969 & 0.0969 & 0.0615 & 0.0615 & 0.0149 & 0.0149 & 0.0422 & 0.0422 & 0.0287 & 0.0287 \\ 500 & 0.0113 & 0.0083 & 0.0083 & 0.0369 & 0.0369 & 0.0269 & 0.0269 & 0.0271 & 0.0071 & 0.0189 & 0.0189 & 0.0137 & 0.0137 \\ [0;2] & 50 & 0.0606 & 0.0607 & 0.0519 & 0.0519 & 0.3656 & 0.3490 & 0.3164 & 0.3028 & 0.0236 & 0.0236 & 0.0574 & 0.0574 & 0.0574 & 0.0336 & 0.0337 \\ 100 & 0.0448 & 0.0451 & 0.1039 & 0.0390 & 0.2049 & 0.1798 & 0.1372 & 0.1515 & 0.0151 & 0.0147 & 0.0477 & 0.0669 & 0.0288 \\ \end{bmatrix} $																	
$ \begin{bmatrix} 500 \\ [0;2] \end{bmatrix} & 0.0113 \ 0.0113 \ 0.0083 \ 0.0083 \ 0.0369 \ 0.0369 \ 0.0269 \ 0.0269 \ 0.0269 \ 0.0071 \ 0.0071 \ 0.0189 \ 0.0189 \ 0.0137 \ 0.0137 \\ 0.0606 \ 0.0607 \ 0.0519 \ 0.0519 \ 0.0519 \ 0.3656 \ 0.3490 \ 0.3164 \ 0.3028 \ 0.0236 \ 0.0236 \ 0.0236 \ 0.0574 \ 0.0574 \ 0.0336 \ 0.0337 \\ 100 \ 0.0448 \ 0.0451 \ 0.1039 \ 0.0390 \ 0.2049 \ 0.1798 \ 0.1372 \ 0.1515 \ 0.0151 \ 0.0147 \ 0.0475 \ 0.0477 \ 0.0669 \ 0.0288 \\ 0.0236 \ 0.0$	0.9	[-1; 3]															
$ \begin{bmatrix} 0;2 \end{bmatrix} & 50 & 0.0606 & 0.0607 & 0.0519 & 0.0519 & 0.3656 & 0.3490 & 0.3164 & 0.3028 & 0.0236 & 0.0236 & 0.0574 & 0.0574 & 0.0336 & 0.0337 \\ 100 & 0.0448 & 0.0451 & 0.1039 & 0.0390 & 0.2049 & 0.1798 & 0.1372 & 0.1515 & 0.0151 & 0.0147 & 0.0475 & 0.0477 & 0.0669 & 0.0288 \\ \end{bmatrix} $																	
$100 \qquad 0.0448 \ 0.0451 \ 0.1039 \ 0.0390 \ 0.2049 \ 0.1798 \ 0.1372 \ 0.1515 \ 0.0151 \ 0.0147 \ 0.0475 \ 0.0477 \ 0.0669 \ 0.0288$		[O 0]															
		[0; 2]															
$0.0187 \ 0.0187 \ 0.0161 \ 0.0161 \ 0.0611 \ 0.0611 \ 0.0510 \ 0.0510 \ 0.0068 \ 0.0068 \ 0.0198 \ 0.0198 \ 0.0134 \ 0.0134$																	
			500	0.0187	0.0187	0.0161	0.0161	0.0611	0.0611	0.0510	0.0510	0.0068	0.0068	0.0198	0.0198	0.0134	0.0134

Tabela D.14: Estimativas do desvio padrão dos parâmetros da mistura de duas regressões lineares no caso ${\rm PIV}$

 $Ap \hat{e}ndice\ D$

			α_1	α_1	β_1	β_1	α_2	α_2	β_2	β_2	σ_1	σ_1	σ_2	σ_2	π_1	π_1
π_1	x	n	EM	CEM	EM	CEM	EM	CEM	EM	CEM	EM	CEM	EM	CEM	EM	CEM
0.1	[-1; 3]	50													0.0391	
		100 500													$0.0301 \\ 0.0146$	
	[0; 2]	50													0.0140	
	[0, 2]	100													0.0304 0.0350	
		500													0.0141	
0.2	[-1; 3]	50													0.0564	
0.2	[1,0]	100													0.0414	
		500													0.0203	
	[0; 2]	50													0.0580	
	L-7 J	100													0.0372	
		500													0.0185	
0.3	[-1; 3]	50	0.1797	0.1228	0.1037	0.0811	0.1331	0.1224	0.0795	0.0763	0.0759	0.0580	0.0675	0.0596	0.0670	0.0676
	. , ,	100	0.0816	0.0784	0.0596	0.0578	0.0913	0.0884	0.0589	0.0575	0.0436	0.0397	0.0439	0.0401	0.0505	0.0507
		500	0.0335	0.0333	0.0240	0.0237	0.0356	0.0350	0.0230	0.0227	0.0202	0.0186	0.0202	0.0189	0.0194	0.0195
	[0; 2]	50													0.0639	
		100	0.1300	0.1247	0.1111	0.1031	0.1324	0.1310	0.1093	0.1091	0.0446	0.0382	0.0510	0.0456	0.0516	0.0514
		500	0.0565	0.0544	0.0475	0.0462	0.0547	0.0537	0.0484	0.0475	0.0183	0.0162	0.0230	0.0209	0.0216	0.0216
0.4	[-1; 3]	50	0.1110	0.1057	0.0729	0.0717	0.1332	0.1264	0.0892	0.0851	0.0641	0.0544	0.0802	0.0724	0.0721	0.0723
		100													0.0500	
		500													0.0221	
	[0; 2]	50													0.0672	
		100													0.0505	
		500													0.0228	
0.5	[-1; 3]	50													0.0688	
		100													0.0479	
	[0.0]	500													0.0227	
	[0; 2]	50 100													0.0744 0.0475	
		500													0.0475	
0.6	[-1; 3]	50													0.0234	
0.0	[-1, 3]	100													0.0036	
		500													0.0430	
	[0; 2]	50													0.0725	
	[0, 2]	100													0.0485	
		500													0.0230	
0.7	[-1; 3]	50													0.0648	
	L /-1	100													0.0477	
		500	0.0202	0.0201	0.0146	0.0146	0.0573	0.0554	0.0396	0.0381	0.0131	0.0128	0.0341	0.0290	0.0199	0.0198
	[0; 2]	50	0.1137	0.1100	0.1584	0.0964	0.3432	0.3113	0.2718	0.2561	0.0443	0.0382	0.1032	0.0827	0.0716	0.0634
		100	0.0781	0.0762	0.0692	0.0680	0.2115	0.2001	0.1775	0.1673	0.0297	0.0283	0.0827	0.0709	0.0448	0.0442
		500	0.0332	0.0328	0.0296	0.0293	0.0854	0.0829	0.0716	0.0701	0.0125	0.0121	0.0326	0.0278	0.0193	0.0193
0.8	[-1; 3]	50													0.0589	
		100													0.0413	
		500													0.0189	
	[0; 2]	50													0.1049	
		100													0.0427	
		500													0.0187	
0.9	[-1; 3]	50													0.0364	
		100													0.0296	
	[0.0]	500													0.0139	
	[0; 2]	50													0.0824	
		100 500													$0.0301 \\ 0.0128$	
		500	0.0276	0.0276	0.0248	0.0248	0.1523	0.1333	0.1370	0.1204	0.0103	0.0102	0.0578	0.0458	0.0128	0.0120

Tabela D.15: Estimativas do desvio padrão dos parâmetros da mistura de duas regressões lineares no caso ${\rm PV}$

The color						0	0			0	0						
1			**	α_1	α_1	β_1	β_1	α_2	α_2	β_2	β_2	σ_1	σ_1	σ_2	σ_2	π_1	π_1
10	-π ₁																_
1. 1. 1. 1. 1. 1. 1. 1.	0.1	[-1; 3]															
[0; 2] 50 0 0.6824 0.5924 0.9912 0.4615 0.1911 0.1962 0.2993 0.1991 0.1956 0.1356 0.0556 0.0641 0.0748 0.0658 0.0592 0.0588 0.3921 0.1730 0.1494 0.1811 0.0934 0.1695 0.1100 0.0460 0.0414 0.0754 0.0319 0.2026 0.1260 0.0290 0.0231 0.0452 0.0457 0.0982 0.0516 0.0220 0.0207 0.0201 0.0488 0.0739 0.0745 0.0741 0.0593 0.0030 0.0724 0.0557 0.0982 0.0516 0.0220 0.0270 0.0201 0.0488 0.0739 0.0740 0.0557 0.0982 0.0516 0.0220 0.0270 0.0201 0.0488 0.0739 0.0720 0.0557 0.0531 0.1408 0.0761 0.0611 0.0485 0.0589 0.0955 0.0531 0.0531 0.1408 0.0761 0.0611 0.0485 0.0589 0.0955 0.0531 0.0531 0.1408 0.0761 0.0611 0.0485 0.0589 0.0955 0.0531 0.0531 0.1408 0.0761 0.0611 0.0485 0.0589 0.0955 0.0531 0.0531 0.1408 0.0761 0.0611 0.0485 0.0589 0.0955 0.0531 0.0531 0.0448 0.0789 0.0443 0.0389 0.0355 0.0531 0.0531 0.0440 0.0470 0.0491 0.0441 0.0481 0.0589 0.0552 0.0442 0.0595 0.0550 0.0531 0.0531 0.0440 0.0487 0.0581 0.0589 0.0755 0.0531 0.0531 0.0440 0.0487 0.0581 0.0589 0.0755 0.0531 0.0531 0.0440 0.0487 0.0581 0.0589 0.0755 0.0531 0.0531 0.0521 0.0442 0.0399 0.0395 0.0385 0.0552 0.0442 0.0395 0.0395 0.0355 0.0555 0.0552 0.0490 0.0522 0.0442 0.0595 0.0555 0.05																	
100		[0.0]															
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		[0; 2]															
100																	
100 0.2772 0.1643 0.1428 0.1063 0.0928 0.0809 0.0551 0.0531 0.1408 0.0761 0.0611 0.0455 0.0589 0.0395		f 4 01															
10	0.2	[-1; 3]															
[6] 2 50																	
0.0 0.3884 0.2833 0.2854 0.2232 0.1331 0.1304 0.1100 0.1090 0.1210 0.0780 0.0443 0.0389 0.0522 0.0442 500 0.1271 0.1125 0.1000 0.09013 0.0527 0.0530 0.0471 0.0475 0.0511 0.0367 0.0222 0.0205 0.0210 0.208 600 1.00 0.1761 0.1225 0.1090 0.09013 0.0527 0.0580 0.0580 0.0585 0.1518 0.1030 0.0779 0.0682 0.0892 0.0712 500 0.0656 0.0587 0.0417 0.0390 0.0390 0.0883 0.0588 0.0585 0.0560 0.0567 0.00245 0.0234 0.0262 0.0255 500 0.0656 0.0587 0.0417 0.0390 0.0390 0.0383 0.0242 0.0242 0.0397 0.0320 0.0245 0.0234 0.0262 0.0258 500 0.0243 10.1973 0.2142 0.1818 0.1226 0.1240 0.1182 0.1140 0.1004 0.0674 0.0585 0.0485 0.0553 0.0485 500 0.0964 0.0872 0.0769 0.0746 0.0582 0.0563 0.0533 0.0518 0.0390 0.0288 0.0242 0.0242 0.0221 0.0222 0.0225 600 1.00		[0.0]															
1.0		[0; 2]															
1-13																	
100																	
$ \begin{bmatrix} [0;2] \\ [$	0.3	[-1; 3]															
[9; 2] 50 0.3889 0.3041 0.3491 0.2731 0.2255 0.2040 0.1815 0.1610 0.1327 0.0835 0.0885 0.0685 0.0699 0.0715 0.0043 0.0973 0.2142 0.1818 0.1296 0.1240 0.1182 0.1140 0.1040 0.0674 0.0585 0.0485 0.0593 0.0485 0.0593 0.0485 0.0593 0.0485 0.0593 0.0485 0.0593 0.0485 0.0593 0.0585 0.0593 0.0585 0.0593 0.0585 0.0593 0.0585 0.0594 0.0495 0.0729 0.0746 0.0582 0.0563 0.0533 0.0518 0.0390 0.0288 0.0242 0.0221 0.0222 0.0226 0.0485 0.0593 0.0585 0.0593 0.0585 0.0593 0.0585 0.0593 0.0585 0.0593 0.0585 0.0593 0.0585 0.0593 0.0585 0.0593 0.0585 0.0593 0.0585 0.0593 0.0585 0.0593 0.0585 0.0593 0.0585 0.0593 0.0585 0.0593 0.0585 0.0593 0.0585 0.0594 0.0496 0.0340 0.0341 0.0442 0.0419 0.0275 0.0270 0.0316 0.0261 0.0251 0.0230 0.0227 0.0223 0.0245 0.0595 0.0594 0.0496 0.0340 0.0341 0.0442 0.0419 0.0275 0.0270 0.0316 0.0261 0.0251 0.0230 0.0227 0.0223 0.0265 0.0512 0.0495 0.0552																	
100																	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		[0; 2]															
Care																	
100																	
$ \begin{bmatrix} [0;2] & 50 & 0.0549 & 0.0496 & 0.0340 & 0.0314 & 0.0442 & 0.0419 & 0.0275 & 0.0270 & 0.0316 & 0.0251 & 0.0230 & 0.0227 & 0.0223 \\ [0;2] & 50 & 0.2847 & 0.2532 & 0.2634 & 0.2134 & 0.2275 & 0.2125 & 0.1917 & 0.1712 & 0.1188 & 0.0833 & 0.0944 & 0.0739 & 0.0944 & 0.0868 \\ [0;2] & 50 & 0.0867 & 0.0820 & 0.0729 & 0.0699 & 0.0640 & 0.0627 & 0.0541 & 0.0535 & 0.0349 & 0.0278 & 0.0279 & 0.0244 & 0.0231 & 0.0232 \\ [0;3] & 50 & 0.2120 & 0.1558 & 0.1229 & 0.1032 & 0.1948 & 0.1484 & 0.1091 & 0.0194 & 0.0756 & 0.1211 & 0.0773 & 0.0919 & 0.0866 \\ [0;3] & 50 & 0.0429 & 0.0476 & 0.0298 & 0.0233 & 0.0501 & 0.0469 & 0.0285 & 0.0277 & 0.0231 & 0.0322 & 0.0266 & 0.0252 & 0.0257 \\ [0;2] & 50 & 0.0497 & 0.0476 & 0.0298 & 0.0233 & 0.0501 & 0.0469 & 0.0285 & 0.0277 & 0.0277 & 0.0231 & 0.0322 & 0.0266 & 0.0252 & 0.0257 \\ [0;2] & 50 & 0.0516 & 0.2280 & 0.2105 & 0.2012 & 0.2765 & 0.2494 & 0.2375 & 0.2102 & 0.1032 & 0.0767 & 0.1101 & 0.0765 & 0.0820 & 0.0712 \\ [0;2] & 50 & 0.0516 & 0.2280 & 0.2105 & 0.2102 & 0.765 & 0.2494 & 0.2375 & 0.2102 & 0.1032 & 0.0767 & 0.1101 & 0.0765 & 0.0820 & 0.0712 \\ [0;2] & 50 & 0.0516 & 0.0280 & 0.0612 & 0.0573 & 0.0743 & 0.0648 & 0.0616 & 0.0289 & 0.0244 & 0.0285 & 0.0245 & 0.0225 \\ [0;2] & 50 & 0.0704 & 0.0666 & 0.0612 & 0.0573 & 0.0743 & 0.0648 & 0.0616 & 0.0289 & 0.0244 & 0.0285 & 0.0245 & 0.0225 \\ [0;2] & 50 & 0.0404 & 0.0492 & 0.0464 & 0.0603 & 0.1390 & 0.1174 & 0.0842 & 0.0730 & 0.0634 & 0.0511 & 0.0902 & 0.0625 & 0.0567 & 0.0540 \\ [0;2] & 50 & 0.0404 & 0.0493 & 0.0289 & 0.0280 & 0.0572 & 0.0514 & 0.0345 & 0.0329 & 0.0263 & 0.0235 & 0.0374 & 0.0249 & 0.0345 & 0.0345 & 0.0345 & 0.0329 & 0.0263 & 0.0235 & 0.0374 & 0.0249 & 0.0335 & 0.0541 & 0.0345 & 0.0329 & 0.0263 & 0.0235 & 0.0374 & 0.0249 & 0.0335 & 0.0541 & 0.0345 & 0.0325 & 0.0344 & 0.0355 & 0.0594 & 0.0566 & 0.0589 & 0.0566 & 0.0584 & 0.0512 & 0.0566 & 0.0589 & 0.0566 & 0.0589 & 0.0566 & 0.0584 & 0.0512 & 0.0566 & 0.0589 & 0.0586 & 0.0589 & 0.0566 & 0.0580 & 0.0584 & 0.0556 & 0.0460 & 0.0464 & 0.0589 & 0.0566 & 0.0589 & 0.0566 & 0.0589 & 0.056$	0.4	[-1; 3]															
$ \begin{bmatrix} [0;2] \\ 50 \\ 0.2847 \ 0.2532 \ 0.2634 \ 0.2134 \ 0.2275 \ 0.2125 \ 0.1917 \ 0.1712 \ 0.1188 \ 0.0833 \ 0.0944 \ 0.0739 \ 0.0944 \ 0.0739 \ 0.0944 \ 0.0739 \ 0.0946 \ 0.0739 \ 0.0946 \ 0.0739 \ 0.0946 \ 0.0739 \ 0.0625 \ 0.0612 \ 0.0625 \ 0.0612 \ 0.0625 \ 0.0612 \ 0.0625 \ 0.0612 \ 0.0625 \ 0.0612 \ 0.0625 \ 0.0625 \ 0.0612 \ 0.0625 \ 0.0$																	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $																	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		[0; 2]															
$ \begin{bmatrix} -1;3 \\ 0.5 \\ -1;3 \\ 0.5 \\ 0.1096 \\ 0.1030 \\ 0.0130 \\ 0.0130 \\ 0.0130 \\ 0.0130 \\ 0.0130 \\ 0.02120 \\ 0.0130 \\ 0.0130 \\ 0.02120 \\ 0.0130 \\ 0.0130 \\ 0.0130 \\ 0.0130 \\ 0.0130 \\ 0.0130 \\ 0.0213 \\ 0.0298 \\ 0.0299 \\ 0.0298 \\ 0.0299$																	
$ \begin{bmatrix} 100 & 0.1096 & 0.1030 & 0.0638 & 0.0594 & 0.1125 & 0.0998 & 0.0703 & 0.0659 & 0.0687 & 0.0563 & 0.0717 & 0.0558 & 0.0557 \\ 500 & 0.0497 & 0.0476 & 0.0299 & 0.0283 & 0.0501 & 0.0469 & 0.0285 & 0.0277 & 0.0277 & 0.0211 & 0.0322 & 0.0266 & 0.0252 & 0.02557 \\ 500 & 0.2516 & 0.2280 & 0.2105 & 0.2012 & 0.2765 & 0.2494 & 0.2375 & 0.2102 & 0.1032 & 0.0767 & 0.1010 & 0.0765 & 0.0820 & 0.0712 \\ 500 & 0.0704 & 0.0656 & 0.0612 & 0.0573 & 0.0783 & 0.0743 & 0.0648 & 0.0616 & 0.0289 & 0.0244 & 0.0285 & 0.0243 & 0.0216 & 0.0229 \\ \hline 0.6 & [-1;3] & 50 & 0.1636 & 0.1353 & 0.0983 & 0.0868 & 0.2312 & 0.1673 & 0.1223 & 0.1030 & 0.0938 & 0.0680 & 0.1304 & 0.0838 & 0.0922 & 0.0773 \\ \hline 0.0 & 0.1040 & 0.0928 & 0.0644 & 0.0603 & 0.1390 & 0.1174 & 0.0842 & 0.0730 & 0.0634 & 0.0511 & 0.0902 & 0.0625 & 0.0567 & 0.0540 \\ \hline 0.0 & 0.0464 & 0.0439 & 0.0289 & 0.0280 & 0.0572 & 0.0514 & 0.0345 & 0.0329 & 0.0263 & 0.0235 & 0.0374 & 0.0296 & 0.0243 \\ \hline 0.0 & 0.1566 & 0.1450 & 0.1338 & 0.1251 & 0.1933 & 0.1682 & 0.1605 & 0.1440 & 0.0681 & 0.0545 & 0.0821 & 0.0563 & 0.0584 & 0.0534 \\ \hline 0.0 & 0.1566 & 0.1450 & 0.1338 & 0.1251 & 0.1933 & 0.1682 & 0.1605 & 0.1440 & 0.0681 & 0.0545 & 0.0821 & 0.0563 & 0.0584 & 0.0534 \\ \hline 0.0 & 0.1788 & 0.0565 & 0.0599 & 0.0586 & 0.0854 & 0.0815 & 0.0748 & 0.0712 & 0.0280 & 0.0244 & 0.0353 & 0.0267 & 0.0235 & 0.0241 \\ \hline 0.7 & [-1;3] & 50 & 0.1478 & 0.1268 & 0.0861 & 0.0796 & 0.3191 & 0.0204 & 0.1869 & 0.0689 & 0.1569 & 0.0889 & 0.0876 & 0.0689$																	
$ \begin{bmatrix} [0;2] \\ [0;2] \\ [0;2] \\ [0;2] \end{bmatrix} \begin{bmatrix} 500 \\ 0.2516 \\ 0.2280 \\ 0.2105 \\ 0.2280 \\ 0.2105 \\ 0.2361 \\ 0.2280 \\ 0.2105 \\ 0.2012 \\ 0.2105 \\ 0.2012 \\ 0.2105 \\ 0.2012 \\ 0.2$	0.5	[-1; 3]															
$ \begin{bmatrix} [0;2] & 50 & 0.2516 & 0.2280 & 0.2105 & 0.2012 & 0.2765 & 0.2494 & 0.2375 & 0.2102 & 0.1032 & 0.0767 & 0.1101 & 0.0765 & 0.820 & 0.0712 \\ 100 & 0.1732 & 0.1567 & 0.1542 & 0.1255 & 0.1890 & 0.1629 & 0.1525 & 0.1359 & 0.0705 & 0.0542 & 0.0737 & 0.0547 & 0.0644 & 0.0292 \\ 500 & 0.0704 & 0.0656 & 0.0612 & 0.0573 & 0.0783 & 0.0743 & 0.0648 & 0.0616 & 0.0289 & 0.0244 & 0.0285 & 0.0243 & 0.0216 & 0.0229 \\ 0.6 & [-1;3] & 50 & 0.1636 & 0.1353 & 0.0983 & 0.0868 & 0.2312 & 0.1673 & 0.1223 & 0.1030 & 0.0938 & 0.0680 & 0.1304 & 0.0838 & 0.0920 & 0.0773 \\ 100 & 0.1040 & 0.0928 & 0.0644 & 0.0603 & 0.1390 & 0.1174 & 0.0842 & 0.0730 & 0.0634 & 0.0511 & 0.0992 & 0.0625 & 0.0567 & 0.0540 \\ 500 & 0.0464 & 0.0439 & 0.0289 & 0.0257 & 0.0514 & 0.0345 & 0.0323 & 0.0235 & 0.0237 & 0.02946 & 0.0243 & 0.0243 \\ 100 & 0.1566 & 0.1450 & 0.1338 & 0.1251 & 0.1933 & 0.1682 & 0.1605 & 0.1400 & 0.0681 & 0.0545 & 0.0821 & 0.0563 & 0.0584 & 0.0584 \\ 100 & 0.1566 & 0.1450 & 0.1338 & 0.1251 & 0.1933 & 0.1682 & 0.1605 & 0.1400 & 0.0681 & 0.0545 & 0.0821 & 0.0563 & 0.0584 & 0.0534 \\ 100 & 0.1566 & 0.1450 & 0.1338 & 0.1251 & 0.1933 & 0.1682 & 0.1605 & 0.1400 & 0.0244 & 0.0353 & 0.0267 & 0.0235 & 0.0241 \\ 0.7 & [-1;3] & 50 & 0.1478 & 0.1268 & 0.0861 & 0.0796 & 0.3191 & 0.2014 & 0.1896 & 0.1533 & 0.0843 & 0.0569 & 0.1569 & 0.0889 & 0.0876 & 0.0665 \\ 100 & 0.0970 & 0.0904 & 0.0619 & 0.0588 & 0.1672 & 0.1298 & 0.1035 & 0.0884 & 0.0562 & 0.0460 & 0.1046 & 0.0691 & 0.0557 & 0.0509 \\ 500 & 0.0429 & 0.0433 & 0.0256 & 0.0256 & 0.0723 & 0.0656 & 0.0398 & 0.0374 & 0.0248 & 0.0233 & 0.0414 & 0.0319 & 0.0240 & 0.0361 & 0.0361 & 0.0487 & 0.0994 & 0.0738 & 0.0374 & 0.0248 & 0.0233 & 0.0414 & 0.0319 & 0.0264 & 0.0244 & 0.0455 & 0.0665 & 0.0348 & 0.0562 & 0.0460 & 0.1046 & 0.0691 & 0.0580 & 0.0587 & 0.0591 & 0.0482 & 0.0487 & 0.0994 & 0.0783 & 0.0783 & 0.0562 & 0.0460 & 0.1042 & 0.0994 & 0.0736 & 0.0545 & 0.0545 & 0.0545 & 0.0562 & 0.0460 & 0.0460 & 0.0663 & 0.1636 & 0.1042 & 0.0904 & 0.0786 & 0.0545 & 0.0587 & 0.0591 & 0.0482 & 0.0487 & 0.0944 & 0.0562 & 0.0478 &$																	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$																	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		[0; 2]															
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$																	
$ \begin{bmatrix} 100 & 0.1040 & 0.0928 & 0.0644 & 0.0603 & 0.1390 & 0.1174 & 0.0842 & 0.0730 & 0.0634 & 0.0511 & 0.0902 & 0.0625 & 0.0567 & 0.0540 \\ 500 & 0.0464 & 0.0439 & 0.0289 & 0.0280 & 0.0572 & 0.0514 & 0.0345 & 0.0323 & 0.0235 & 0.0374 & 0.0296 & 0.0243 & 0.0243 \\ [0;2] & 50 & 0.2271 & 0.2019 & 0.1811 & 0.1698 & 0.2891 & 0.2509 & 0.2288 & 0.2055 & 0.0968 & 0.0749 & 0.1189 & 0.0819 & 0.0860 & 0.0768 \\ 100 & 0.1566 & 0.1450 & 0.1338 & 0.1251 & 0.1933 & 0.1682 & 0.1605 & 0.1440 & 0.0681 & 0.0545 & 0.0821 & 0.0563 & 0.0584 & 0.0534 \\ 500 & 0.0703 & 0.0685 & 0.0599 & 0.0586 & 0.0854 & 0.0815 & 0.0748 & 0.0712 & 0.0280 & 0.0244 & 0.0353 & 0.0267 & 0.0235 & 0.0241 \\ \hline 0.7 & [-1;3] & 50 & 0.1478 & 0.1268 & 0.0861 & 0.0796 & 0.3191 & 0.2014 & 0.1896 & 0.1353 & 0.0843 & 0.0569 & 0.1569 & 0.0889 & 0.0876 & 0.0665 \\ 100 & 0.0970 & 0.0904 & 0.0619 & 0.0589 & 0.1672 & 0.1298 & 0.1035 & 0.0884 & 0.0562 & 0.0460 & 0.1046 & 0.0691 & 0.0557 & 0.0509 \\ 500 & 0.0429 & 0.0433 & 0.0256 & 0.0256 & 0.0723 & 0.0656 & 0.0398 & 0.0374 & 0.0248 & 0.0233 & 0.0414 & 0.0319 & 0.0260 & 0.0247 \\ [0;2] & 50 & 0.0218 & 0.1764 & 0.1724 & 0.1560 & 0.1445 & 0.2835 & 0.3184 & 0.2416 & 0.0869 & 0.0663 & 0.1636 & 0.1042 & 0.0904 & 0.0730 \\ 100 & 0.1630 & 0.1475 & 0.1323 & 0.1221 & 0.2961 & 0.1954 & 0.2014 & 0.1681 & 0.0622 & 0.0478 & 0.1164 & 0.0689 & 0.0653 & 0.0512 \\ 500 & 0.0587 & 0.0591 & 0.0482 & 0.0487 & 0.0999 & 0.0946 & 0.0783 & 0.0750 & 0.0264 & 0.0244 & 0.0415 & 0.0320 & 0.0226 & 0.0228 \\ 0.8 & [-1;3] & 50 & 0.1282 & 0.1094 & 0.0786 & 0.0723 & 0.3549 & 0.2414 & 0.2176 & 0.1641 & 0.0734 & 0.0624 & 0.1574 & 0.1077 & 0.0709 & 0.0578 \\ [0;2] & 50 & 0.1845 & 0.1642 & 0.1832 & 0.1478 & 0.5600 & 0.3656 & 0.0244 & 0.0444 & 0.0244 & 0.0444 & 0.1272 & 0.0748 & 0.0531 & 0.0440 \\ 500 & 0.0361 & 0.0356 & 0.0224 & 0.0224 & 0.0844 & 0.0755 & 0.0504 & 0.0460 & 0.0444 & 0.1272 & 0.0748 & 0.0531 & 0.0440 \\ 500 & 0.0361 & 0.0356 & 0.0224 & 0.0224 & 0.0844 & 0.0755 & 0.0504 & 0.0460 & 0.0444 & 0.1272 & 0.0748 & 0.0531 & 0.0497 & 0.0177 & 0.0537 \\ [0;2] & 50 & 0.1845$																	
$ \begin{bmatrix} [0;2] & 500 & 0.0464 & 0.0439 & 0.0289 & 0.0280 & 0.0572 & 0.0514 & 0.0345 & 0.0329 & 0.0263 & 0.0235 & 0.0374 & 0.0296 & 0.0243 & 0.0243 \\ [0;2] & 50 & 0.2271 & 0.2019 & 0.1811 & 0.1698 & 0.2891 & 0.2509 & 0.2288 & 0.2055 & 0.0688 & 0.0749 & 0.1189 & 0.0819 & 0.0860 & 0.0768 \\ [0;0] & 0.0566 & 0.1450 & 0.1338 & 0.1251 & 0.1933 & 0.1682 & 0.1605 & 0.1440 & 0.0681 & 0.0545 & 0.0821 & 0.0563 & 0.0584 & 0.0534 \\ [0;0] & 0.0703 & 0.0685 & 0.0599 & 0.0586 & 0.0854 & 0.0815 & 0.0748 & 0.0712 & 0.0280 & 0.0244 & 0.0353 & 0.0267 & 0.0235 & 0.0241 \\ [0;0] & 50 & 0.1478 & 0.1268 & 0.0861 & 0.0796 & 0.3191 & 0.2014 & 0.1896 & 0.1353 & 0.0843 & 0.0569 & 0.1569 & 0.0889 & 0.0876 & 0.0665 \\ [0;0] & 50 & 0.0970 & 0.0904 & 0.0619 & 0.0589 & 0.1672 & 0.1298 & 0.1035 & 0.0884 & 0.0562 & 0.0460 & 0.1046 & 0.0691 & 0.0557 & 0.0509 \\ [0;2] & 50 & 0.0429 & 0.0433 & 0.0256 & 0.0723 & 0.0565 & 0.0398 & 0.0374 & 0.0248 & 0.0233 & 0.0414 & 0.0319 & 0.0260 & 0.0247 \\ [0;2] & 50 & 0.2018 & 0.1764 & 0.1724 & 0.1560 & 0.4145 & 0.2835 & 0.3184 & 0.2416 & 0.0869 & 0.0663 & 0.1636 & 0.1042 & 0.0904 & 0.0730 \\ [0;0] & 50 & 0.0587 & 0.0591 & 0.0482 & 0.0487 & 0.0999 & 0.0946 & 0.0783 & 0.0750 & 0.0264 & 0.0244 & 0.0415 & 0.0320 & 0.0226 & 0.0228 \\ [0;0] & 50 & 0.1282 & 0.1094 & 0.0786 & 0.0723 & 0.3549 & 0.2414 & 0.2176 & 0.1641 & 0.0734 & 0.0624 & 0.1574 & 0.1077 & 0.0709 & 0.0578 \\ [0;0] & 50 & 0.1845 & 0.1642 & 0.1832 & 0.1478 & 0.5600 & 0.3656 & 0.4514 & 0.3275 & 0.0820 & 0.0635 & 0.1853 & 0.1183 & 0.0779 & 0.0537 \\ [0;2] & 50 & 0.1845 & 0.1642 & 0.1832 & 0.1478 & 0.5600 & 0.3656 & 0.4514 & 0.3275 & 0.0820 & 0.0635 & 0.1853 & 0.1183 & 0.0779 & 0.0537 \\ [0;2] & 50 & 0.1845 & 0.1642 & 0.1832 & 0.1478 & 0.5600 & 0.3656 & 0.4514 & 0.3275 & 0.0820 & 0.0635 & 0.1853 & 0.1183 & 0.0779 & 0.0537 \\ [0;2] & 50 & 0.1845 & 0.1642 & 0.1832 & 0.1478 & 0.5600 & 0.3656 & 0.4514 & 0.3275 & 0.0820 & 0.0635 & 0.1853 & 0.1183 & 0.0779 & 0.0537 \\ [0;2] & 50 & 0.1845 & 0.1642 & 0.1832 & 0.1478 & 0.5600 & 0.3656 & 0.4514 & 0.3275 & 0.0820 & 0.0635 & 0.1853 & 0$	0.6	[-1; 3]															
$ \begin{bmatrix} [0;2] \\ [$																	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$																	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		[0; 2]															
$ \begin{bmatrix} -1;3 \\ 0.7 \\ -1;3 \\ 0.0970 \\ 0.0904 \\ 0.0019 \\ 0.0029 \\ 0.0029 \\ 0.0019 \\ 0.0029 \\ 0.0019 \\ 0.0029 \\ 0.0019 \\ 0.0029 \\ 0.0019 \\ 0.0029 \\ 0.0029 \\ 0.0019 \\ 0.002$																	
$ \begin{bmatrix} 100 & 0.0970 & 0.0904 & 0.0619 & 0.0589 & 0.1672 & 0.1298 & 0.1035 & 0.0884 & 0.0562 & 0.0460 & 0.1046 & 0.0691 & 0.0557 & 0.0509 \\ 500 & 0.0429 & 0.0433 & 0.0256 & 0.0256 & 0.0256 & 0.0256 & 0.0236 & 0.0344 & 0.0248 & 0.0233 & 0.0414 & 0.0319 & 0.0260 & 0.0247 \\ 500 & 0.0218 & 0.1764 & 0.1764 & 0.1560 & 0.1415 & 0.2835 & 0.3184 & 0.2416 & 0.0869 & 0.0663 & 0.1636 & 0.1042 & 0.0904 & 0.0730 \\ 100 & 0.1630 & 0.1475 & 0.1323 & 0.1221 & 0.2961 & 0.1954 & 0.2014 & 0.1681 & 0.0622 & 0.0478 & 0.1164 & 0.0689 & 0.0653 & 0.0512 \\ 500 & 0.0587 & 0.0591 & 0.0482 & 0.0487 & 0.0999 & 0.0946 & 0.0783 & 0.0750 & 0.0264 & 0.0244 & 0.0415 & 0.0320 & 0.0226 & 0.0228 \\ \hline 0.8 & [-1;3] & 50 & 0.1282 & 0.1094 & 0.0786 & 0.0723 & 0.3549 & 0.2414 & 0.2176 & 0.1641 & 0.0734 & 0.0624 & 0.1574 & 0.1077 & 0.0709 & 0.0578 \\ 100 & 0.0853 & 0.0768 & 0.0560 & 0.0548 & 0.2546 & 0.1644 & 0.1518 & 0.1084 & 0.0540 & 0.0444 & 0.1574 & 0.1077 & 0.0709 & 0.0578 \\ [0;2] & 50 & 0.1845 & 0.1642 & 0.1832 & 0.1478 & 0.5600 & 0.3656 & 0.4514 & 0.3275 & 0.0820 & 0.0635 & 0.1853 & 0.113 & 0.0779 & 0.0537 \\ [0;2] & 50 & 0.1845 & 0.1642 & 0.1832 & 0.1478 & 0.5600 & 0.3656 & 0.4514 & 0.3275 & 0.0820 & 0.0635 & 0.1853 & 0.113 & 0.0779 & 0.0537 \\ [0;2] & 50 & 0.16261 & 0.1178 & 0.1084 & 0.1056 & 0.3381 & 0.2423 & 0.2517 & 0.1992 & 0.0511 & 0.0421 & 0.1329 & 0.0851 & 0.0524 & 0.0450 \\ 500 & 0.0629 & 0.0619 & 0.0480 & 0.0477 & 0.1177 & 0.1059 & 0.0980 & 0.0876 & 0.0225 & 0.0229 & 0.0504 & 0.0367 & 0.0217 & 0.0214 \\ 0.9 & [-1;3] & 50 & 0.1073 & 0.0981 & 0.1081 & 0.0720 & 0.5034 & 0.3992 & 0.3123 & 0.2567 & 0.0630 & 0.0527 & 0.1853 & 0.1289 & 0.0773 & 0.0334 \\ 100 & 0.0820 & 0.0757 & 0.0530 & 0.0515 & 0.3621 & 0.2337 & 0.2326 & 0.1637 & 0.0522 & 0.0419 & 0.1732 & 0.1033 & 0.0490 & 0.0323 \\ 500 & 0.0340 & 0.0335 & 0.0223 & 0.0224 & 0.1221 & 0.0989 & 0.0746 & 0.0611 & 0.194 & 0.0196 & 0.743 & 0.0497 & 0.0171 & 0.0156 \\ [0;2] & 50 & 0.1758 & 0.1549 & 0.2068 & 0.1367 & 0.7370 & 0.5410 & 0.4865 & 0.0800 & 0.0584 & 0.1786 & 0.1187 & 0.1084 & 0.0391 \\ [0;2] & 50 & 0.$																	
$ \begin{bmatrix} [0;2] & 500 & 0.0429 & 0.0433 & 0.0256 & 0.0256 & 0.0723 & 0.0656 & 0.0398 & 0.0374 & 0.0248 & 0.0233 & 0.0414 & 0.0319 & 0.0260 & 0.0247 \\ [0;2] & 50 & 0.2018 & 0.1764 & 0.1724 & 0.1560 & 0.4145 & 0.2835 & 0.3184 & 0.2416 & 0.0869 & 0.0663 & 0.1636 & 0.1042 & 0.0994 & 0.0730 \\ [0;2] & 500 & 0.0587 & 0.0591 & 0.0482 & 0.0498 & 0.0999 & 0.0946 & 0.0783 & 0.0750 & 0.0264 & 0.0244 & 0.0415 & 0.0320 & 0.0226 & 0.0228 \\ [0;3] & 500 & 0.1282 & 0.1094 & 0.0786 & 0.0723 & 0.3549 & 0.2414 & 0.2176 & 0.1641 & 0.0734 & 0.0624 & 0.1574 & 0.1077 & 0.0709 & 0.0578 \\ [0;3] & 500 & 0.0361 & 0.0356 & 0.0248 & 0.0243 & 0.0244 & 0.0158 & 0.1044 & 0.0154 & 0.0244 & 0.01574 & 0.0077 & 0.0709 & 0.0578 \\ [0;2] & 500 & 0.0361 & 0.0356 & 0.0224 & 0.0844 & 0.0755 & 0.0504 & 0.0346 & 0.0244 & 0.0445 & 0.0755 \\ [0;2] & 500 & 0.1845 & 0.1642 & 0.1832 & 0.1478 & 0.5600 & 0.3656 & 0.4514 & 0.3275 & 0.0820 & 0.0635 & 0.1853 & 0.1113 & 0.0779 & 0.0537 \\ [0;2] & 500 & 0.1845 & 0.1642 & 0.1832 & 0.1478 & 0.5600 & 0.3656 & 0.4514 & 0.3275 & 0.0820 & 0.0635 & 0.1853 & 0.1113 & 0.0779 & 0.0537 \\ [0;2] & 500 & 0.1621 & 0.1178 & 0.1084 & 0.1056 & 0.3381 & 0.2423 & 0.2517 & 0.1992 & 0.0511 & 0.0421 & 0.1329 & 0.0851 & 0.0524 & 0.0456 \\ [0;2] & 500 & 0.0629 & 0.0619 & 0.0480 & 0.0477 & 0.1177 & 0.1059 & 0.0980 & 0.0876 & 0.0225 & 0.0229 & 0.0504 & 0.0367 & 0.0214 \\ [0;2] & 500 & 0.1073 & 0.0981 & 0.1081 & 0.0720 & 0.5034 & 0.3992 & 0.3123 & 0.2567 & 0.0630 & 0.0527 & 0.1833 & 0.1490 & 0.0333 \\ [0;2] & 500 & 0.0340 & 0.0335 & 0.0223 & 0.0224 & 0.1221 & 0.0989 & 0.0746 & 0.0611 & 0.1944 & 0.1946 & 0.1786 & 0.1187 & 0.1084 \\ [0;2] & 500 & 0.1241 & 0.1153 & 0.0981 & 0.0944 & 0.5205 & 0.3457 & 0.4218 & 0.2875 & 0.0481 & 0.0430 & 0.1782 & 0.1188 & 0.0436 \\ [0;2] & 500 & 0.1241 & 0.1153 & 0.0981 & 0.0944 & 0.5205 & 0.3457 & 0.4218 & 0.2875 & 0.0481 & 0.0430 & 0.1782 & 0.1118 & 0.0463 & 0.0316 \\ [0;2] & 500 & 0.1241 & 0.1153 & 0.0981 & 0.0944 & 0.5205 & 0.3457 & 0.4218 & 0.2875 & 0.0481 & 0.0430 & 0.1782 & 0.1118 & 0.0463 & 0.0316 \\ [0;2] & 500 & 0.1241 &$	0.7	[-1; 3]															
$ \begin{bmatrix} [0;2] \\ [0;2] \\ [0;3] \end{bmatrix} = \begin{bmatrix} 50 \\ 0.2018 \ 0.1764 \ 0.1724 \ 0.1560 \ 0.4145 \ 0.2835 \ 0.3184 \ 0.2416 \ 0.0869 \ 0.0663 \ 0.1636 \ 0.1042 \ 0.0904 \ 0.0730 \\ 0.1630 \ 0.1475 \ 0.1323 \ 0.1221 \ 0.2961 \ 0.1954 \ 0.2014 \ 0.1681 \ 0.0622 \ 0.0478 \ 0.1164 \ 0.0689 \ 0.0653 \ 0.0512 \\ 0.0587 \ 0.0591 \ 0.0487 \ 0.0999 \ 0.0946 \ 0.0783 \ 0.0750 \ 0.0264 \ 0.0244 \ 0.01415 \ 0.0320 \ 0.0226 \\ 0.088 \\ [-1;3] \end{bmatrix} = \begin{bmatrix} 50 \\ 0.1282 \ 0.1094 \ 0.0786 \ 0.0786 \ 0.0733 \ 0.3549 \ 0.2414 \ 0.2176 \ 0.1641 \ 0.0734 \ 0.0624 \ 0.1574 \ 0.1077 \ 0.0709 \ 0.0578 \\ 100 \\ 0.0853 \ 0.0768 \ 0.0560 \ 0.0548 \ 0.2546 \ 0.1644 \ 0.1518 \ 0.1084 \ 0.0540 \ 0.0444 \ 0.1272 \ 0.0748 \ 0.0531 \ 0.0440 \\ 0.0361 \ 0.0366 \ 0.0224 \ 0.0224 \ 0.0844 \ 0.0755 \ 0.0504 \ 0.0460 \ 0.0205 \ 0.0202 \ 0.0504 \ 0.0353 \ 0.0186 \ 0.0175 \\ [0;2] \\ 50 \\ 0.1845 \ 0.1642 \ 0.1832 \ 0.1478 \ 0.5600 \ 0.3656 \ 0.4514 \ 0.3275 \ 0.0820 \ 0.0635 \ 0.1853 \ 0.1183 \ 0.0779 \ 0.0537 \\ [0;2] \\ 50 \\ 0.1261 \ 0.1178 \ 0.1084 \ 0.1056 \ 0.3381 \ 0.2423 \ 0.2517 \ 0.1992 \ 0.0511 \ 0.0421 \ 0.1329 \ 0.0851 \ 0.0524 \ 0.0450 \\ 500 \\ 0.0629 \ 0.0619 \ 0.0480 \ 0.0477 \ 0.1177 \ 0.1059 \ 0.0980 \ 0.0876 \ 0.0225 \ 0.0229 \ 0.0504 \ 0.0367 \ 0.0217 \ 0.0217 \\ 0.098 \\ [0;2] \\ 500 \\ 0.0340 \ 0.0335 \ 0.0223 \ 0.0224 \ 0.1221 \ 0.0989 \ 0.0746 \ 0.0611 \ 0.0194 \ 0.0196 \ 0.0743 \ 0.0497 \ 0.0171 \ 0.0156 \\ [0;2] \\ 500 \\ 0.1758 \ 0.1549 \ 0.2068 \ 0.1367 \ 0.7370 \ 0.5345 \ 0.4218 \ 0.28875 \ 0.0481 \ 0.0430 \ 0.1782 \ 0.1188 \ 0.0436 \ 0.0316 \\ 0.1241 \ 0.1153 \ 0.0981 \ 0.0944 \ 0.5205 \ 0.3457 \ 0.4218 \ 0.28875 \ 0.0481 \ 0.0430 \ 0.1782 \ 0.1188 \ 0.0436 \ 0.0316 \\ 0.1241 \ 0.1153 \ 0.0981 \ 0.0944 \ 0.5205 \ 0.3457 \ 0.4218 \ 0.28875 \ 0.0481 \ 0.0430 \ 0.1782 \ 0.1118 \ 0.0463 \ 0.0316 \\ 0.1241 \ 0.1153 \ 0.0981 \ 0.0944 \ 0.5205 \ 0.3457 \ 0.4218 \ 0.28875 \ 0.0481 \ 0.0430 \ 0.1782 \ 0.1188 \ 0.0433 \ 0.0316 \\ 0.1241 \ 0.1153 \ 0.0981 \ 0.0944 \ 0.5205 \ 0.3457 \ 0.4218 \ 0.28875 \ 0.0481 \ 0.0430 \ 0.1782 \ 0.1118 \ 0.0463 \ 0.0316 \\ 0.1241 \ 0.1153 \ 0.0$																	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		fo. 01															
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		[0; 2]															
$ \begin{bmatrix} -1;3 \\ 0.8 \\ [-1;3] \end{bmatrix} \begin{bmatrix} 50 \\ 0.1282 \\ 0.1094 \\ 0.0786 \\ 0.0736 \\ 0.0619 \\ 0.0853 \\ 0.0768 \\ 0.0560 \\ 0.0560 \\ 0.0540 \\ 0.0560 \\ 0.0524 \\ 0.0524 \\ 0.0924 \\ 0.0224 \\ 0.0224 \\ 0.0224 \\ 0.0224 \\ 0.0844 \\ 0.0755 \\ 0.0504 \\ 0.0360 \\ 0.0360 \\ 0.0360 \\ 0.0360 \\ 0.0360 \\ 0.0224 \\ 0.0224 \\ 0.0224 \\ 0.0224 \\ 0.0844 \\ 0.0755 \\ 0.0504 \\ 0.0360 \\ 0.0476 \\ 0.0450 \\ 0.0450 \\ 0.0450 \\ 0.0450 \\ 0.0560 \\ 0.0629 \\ 0.0619 \\ 0.0619 \\ 0.0480 \\ 0.0477 \\ 0.177 \\ 0.1050 \\ 0.0421 \\ 0.0820 \\ 0.0820 \\ 0.0757 \\ 0.0820 \\ 0.0820 \\ 0.0820 \\ 0.0757 \\ 0.0530 \\ 0.0921 \\ 0.0820 \\ 0.0757 \\ 0.0530 \\ 0.0921 \\ 0.0820 \\ 0.0757 \\ 0.0530 \\ 0.0921 \\ 0.0820 \\ 0.0757 \\ 0.0530 \\ 0.0921$																	
$ \begin{bmatrix} 0, 2 \\ 0, 3 \\ 0, 3 \\ 0, 0, 0, 3 \\ 0, 0, 0, 3 \\ 0, 0, 0, 3 \\ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, $																	
$ \begin{bmatrix} [0;2] & 500 & 0.0361 & 0.0356 & 0.0224 & 0.0224 & 0.0844 & 0.0755 & 0.0504 & 0.0460 & 0.0205 & 0.0202 & 0.0504 & 0.0353 & 0.0186 & 0.0175 \\ 0.1845 & 0.1642 & 0.1832 & 0.1478 & 0.5600 & 0.3656 & 0.4514 & 0.3275 & 0.0820 & 0.0635 & 0.1853 & 0.1113 & 0.0779 & 0.0537 \\ 100 & 0.1261 & 0.1178 & 0.1084 & 0.1056 & 0.3381 & 0.2423 & 0.2517 & 0.1992 & 0.0511 & 0.0421 & 0.1329 & 0.0851 & 0.0524 & 0.0450 \\ 500 & 0.0629 & 0.0619 & 0.0480 & 0.0477 & 0.1177 & 0.1059 & 0.0980 & 0.0876 & 0.0225 & 0.0229 & 0.0504 & 0.0367 & 0.0214 \\ \hline 0.9 & [-1;3] & 50 & 0.1073 & 0.0981 & 0.1081 & 0.0720 & 0.5034 & 0.3992 & 0.3123 & 0.2567 & 0.0630 & 0.0527 & 0.1853 & 0.1289 & 0.0773 & 0.0334 \\ 100 & 0.0820 & 0.0757 & 0.0530 & 0.0515 & 0.3621 & 0.2337 & 0.2326 & 0.1637 & 0.0522 & 0.0419 & 0.1732 & 0.1033 & 0.0490 & 0.0323 \\ 500 & 0.0340 & 0.0335 & 0.0223 & 0.0224 & 0.1221 & 0.0989 & 0.0746 & 0.0611 & 0.0194 & 0.0196 & 0.0743 & 0.0497 & 0.0171 & 0.0156 \\ [0;2] & 50 & 0.1758 & 0.1549 & 0.2068 & 0.1367 & 0.7370 & 0.5410 & 0.6321 & 0.4865 & 0.0800 & 0.0584 & 0.1786 & 0.1187 & 0.1084 & 0.0391 \\ 100 & 0.1241 & 0.1153 & 0.0981 & 0.0944 & 0.5205 & 0.3457 & 0.4218 & 0.2875 & 0.0481 & 0.0430 & 0.1782 & 0.1118 & 0.0463 & 0.0316 \\ \hline \end{tabular}$	0.8	[-1; 3]															
$ \begin{bmatrix} [0;2] & 50 & 0.1845 & 0.1642 & 0.1832 & 0.1478 & 0.5600 & 0.3656 & 0.4514 & 0.3275 & 0.0820 & 0.0635 & 0.1853 & 0.1113 & 0.0779 & 0.0537 \\ 100 & 0.1261 & 0.1178 & 0.1084 & 0.1056 & 0.3881 & 0.2423 & 0.2517 & 0.1992 & 0.0511 & 0.0421 & 0.1329 & 0.0851 & 0.0524 & 0.0455 \\ 500 & 0.0629 & 0.0619 & 0.0480 & 0.0477 & 0.1177 & 0.1059 & 0.0980 & 0.0876 & 0.0225 & 0.0229 & 0.0504 & 0.0367 & 0.0214 \\ \hline 0.9 & [-1;3] & 50 & 0.1073 & 0.0981 & 0.1081 & 0.0720 & 0.5034 & 0.3992 & 0.3123 & 0.2567 & 0.0630 & 0.0527 & 0.1853 & 0.1289 & 0.0773 & 0.0334 \\ 100 & 0.0820 & 0.0757 & 0.0530 & 0.0515 & 0.3621 & 0.2337 & 0.2326 & 0.1637 & 0.0522 & 0.0419 & 0.1732 & 0.1033 & 0.0490 & 0.0323 \\ 500 & 0.0340 & 0.0335 & 0.0223 & 0.0224 & 0.1221 & 0.0989 & 0.0746 & 0.0611 & 0.194 & 0.0196 & 0.0743 & 0.0497 & 0.0171 & 0.0156 \\ [0;2] & 50 & 0.1758 & 0.1549 & 0.2068 & 0.1367 & 0.7370 & 0.5410 & 0.6321 & 0.4865 & 0.0800 & 0.0584 & 0.1786 & 0.1187 & 0.1084 & 0.0391 \\ 100 & 0.1241 & 0.1153 & 0.0981 & 0.0944 & 0.5205 & 0.3457 & 0.4218 & 0.2875 & 0.0481 & 0.0430 & 0.1782 & 0.1118 & 0.0463 & 0.0316 \\ \hline \end{tabular}$																	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		[0.0]															
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		[0; 2]															
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$																	
$ \begin{bmatrix} 100 & 0.0820 & 0.0757 & 0.0530 & 0.0515 & 0.3621 & 0.2337 & 0.2326 & 0.1637 & 0.0522 & 0.0419 & 0.1732 & 0.1033 & 0.0490 & 0.0323 \\ 500 & 0.0340 & 0.0335 & 0.0223 & 0.0224 & 0.1221 & 0.0989 & 0.0746 & 0.0611 & 0.0194 & 0.0196 & 0.0743 & 0.0497 & 0.0171 & 0.0156 \\ [0;2] & 50 & 0.1758 & 0.1549 & 0.2068 & 0.1367 & 0.7370 & 0.5410 & 0.6321 & 0.4865 & 0.0800 & 0.0584 & 0.1786 & 0.1187 & 0.1084 & 0.0391 \\ 100 & 0.1241 & 0.1153 & 0.0981 & 0.0944 & 0.5205 & 0.3457 & 0.4218 & 0.2875 & 0.0481 & 0.0430 & 0.1782 & 0.1118 & 0.0463 & 0.0316 \\ \end{bmatrix} $		[1 0]															
$ \begin{bmatrix} 500 \\ [0;2] \end{bmatrix} & 0.0340 \ 0.0335 \ 0.0223 \ 0.0224 \ 0.1221 \ 0.0989 \ 0.0746 \ 0.0611 \ 0.0194 \ 0.0196 \ 0.0743 \ 0.0497 \ 0.0171 \ 0.0156 \\ 0.1758 \ 0.1549 \ 0.2068 \ 0.1367 \ 0.7370 \ 0.5410 \ 0.6321 \ 0.4865 \ 0.0800 \ 0.0584 \ 0.1786 \ 0.1187 \ 0.1084 \ 0.0391 \\ 100 \ 0.1241 \ 0.1153 \ 0.0981 \ 0.0944 \ 0.5205 \ 0.3457 \ 0.4218 \ 0.2875 \ 0.0481 \ 0.0430 \ 0.1782 \ 0.1118 \ 0.0463 \ 0.0316 \\ \end{bmatrix}$	0.9	[-1; 3]															
$ \begin{bmatrix} 0;2 \end{bmatrix} & 50 & 0.1758 \ 0.1549 \ 0.2068 \ 0.1367 \ 0.7370 \ 0.5410 \ 0.6321 \ 0.4865 \ 0.0800 \ 0.0584 \ 0.1786 \ 0.1187 \ 0.1084 \ 0.0391 \\ 100 & 0.1241 \ 0.1153 \ 0.0981 \ 0.0944 \ 0.5205 \ 0.3457 \ 0.4218 \ 0.2875 \ 0.0481 \ 0.0430 \ 0.1782 \ 0.1118 \ 0.0463 \ 0.0316 \\ \end{bmatrix} $																	
$100 \qquad 0.1241 \ 0.1153 \ 0.0981 \ 0.0944 \ 0.5205 \ 0.3457 \ 0.4218 \ 0.2875 \ 0.0481 \ 0.0430 \ 0.1782 \ 0.1118 \ 0.0463 \ 0.0316$		[O 0]															
		[0; 2]															
0.0033 0.0520 0.0407 0.0407 0.2139 0.1645 0.1713 0.1414 0.0206 0.0189 0.0947 0.0524 0.0185 0.0146																	
			500	0.0533	0.0520	0.0407	0.0407	0.2139	U.1645	0.1713	0.1414	0.0206	0.0189	0.0947	0.0524	0.0185	0.0146

Tabela D.16: Estimativas do desvio padrão dos parâmetros da mistura de duas regressões lineares no caso PVI

			α_1	α_1	β_1	β_1	α_2	α_2	β_2	β_2	σ_1	σ_1	σ_2	σ_2	π_1	π_1
π_1	x	n	EM	CEM	EM	CEM	EM	CEM	EM	CEM	EM	CEM	EM	CEM	EM	CEM
0.1	[-1; 3]	50													0.0363	
		100													0.0335	
		500													0.0137	
	[0; 2]	50													0.0638	
		100													0.0287	
		500													0.0138	
0.2	[-1; 3]	50													0.0544	
		100													0.0432	
		500													0.0177	
	[0; 2]	50													0.0578	
		100													0.0406	
		500													0.0172	
0.3	[-1; 3]	50													0.0637	
		100													0.0454	
		500													0.0202	
	[0; 2]	50													0.0612	
		100													0.0474	
		500													0.0215	
0.4	[-1; 3]	50	0.0889	0.0889	0.0606	0.0606	0.0763	0.0763	0.0520	0.0520	0.0479	0.0479	0.0386	0.0386	0.0656	0.0656
		100													0.0489	
		500													0.0221	
	[0; 2]	50													0.0715	
		100													0.0509	
		500													0.0202	
0.5	[-1; 3]	50													0.0699	
		100	0.0537	0.0537	0.0372	0.0372	0.0563	0.0563	0.0368	0.0368	0.0301	0.0301	0.0288	0.0288	0.0502	0.0502
		500													0.0221	
	[0; 2]	50	0.1170	0.1170	0.1023	0.1023	0.1260	0.1260	0.1048	0.1048	0.0450	0.0450	0.0395	0.0395	0.0666	0.0666
		100	0.0904	0.0904	0.0806	0.0806	0.0917	0.0917	0.0833	0.0833	0.0308	0.0308	0.0283	0.0283	0.0466	0.0466
		500													0.0241	
0.6	[-1; 3]	50													0.0698	
		100	0.0530	0.0530	0.0376	0.0376	0.0663	0.0663	0.0406	0.0406	0.0274	0.0274	0.0331	0.0331	0.0506	0.0506
		500													0.0222	
	[0; 2]	50													0.0731	
		100													0.0523	
		500													0.0224	
0.7	[-1; 3]	50													0.0702	
		100													0.0426	
		500													0.0206	
	[0; 2]	50													0.0620	
		100													0.0443	
		500													0.0205	
0.8	[-1; 3]	50													0.0575	
		100													0.0389	
		500													0.0168	
	[0; 2]	50													0.0527	
		100													0.0371	
		500													0.0185	
0.9	[-1; 3]	50													0.0334	
		100													0.0312	
		500													0.0136	
	[0; 2]	50													0.0323	
		100													0.0290	
	_	500	0.0282	0.0282	0.0251	0.0251	0.0997	0.0997	0.0847	0.0847	0.0106	0.0106	0.0293	0.0293	0.0126	0.0126

Tabela D.17: Estimativas do desvio padrão dos parâmetros da mistura de duas regressões lineares no caso PVII

					0	0			0	0						
TT-4	œ	n	$^{lpha_1}_{ m EM}$	α_1 CEM	β_1 EM	β_1 CEM	α_2 EM	α_2 CEM	β_2 EM	β_2 CEM	σ_1 EM	σ_1 CEM	σ_2 EM	σ_2 CEM	$_{\mathrm{EM}}^{\pi_{1}}$	$_{ ext{CEM}}^{\pi_1}$
$\frac{\pi_1}{0.1}$	[-1; 3]	50												0.0522		
0.1	[-1; 3]	100												0.0322 0.0364		
		500												0.0304 0.0172		
	[0; 2]	50												0.0540		
	[0, 2]	100												0.0340		
		500												0.0172		
0.2	[-1; 3]	50												0.0564		
0.2	[1,0]	100												0.0402		
		500												0.0176		
	[0; 2]	50												0.0545		
	[-, -]	100												0.0403		
		500												0.0196		
0.3	[-1; 3]	50												0.0670		
	[-, -]	100												0.0416		
		500												0.0193		
	[0; 2]	50												0.0571		
	L-7 1	100												0.0454		
		500												0.0201		
0.4	[-1; 3]	50	0.1732	0.1701	0.1106	0.1079	0.1263	0.1254	0.0851	0.0838	0.0835	0.0769	0.0728	0.0678	0.0722	0.0724
	. , ,	100	0.1210	0.1177	0.0774	0.0762	0.0904	0.0891	0.0564	0.0559	0.0591	0.0559	0.0517	0.0500	0.0494	0.0492
		500	0.0502	0.0499	0.0341	0.0338	0.0366	0.0363	0.0250	0.0250	0.0281	0.0268	0.0229	0.0224	0.0232	0.0232
	[0; 2]	50	0.2347	0.2273	0.2110	0.2054	0.1972	0.1954	0.1798	0.1775	0.0851	0.0794	0.0778	0.0749	0.0644	0.0652
		100	0.1791	0.1778	0.1478	0.1458	0.1488	0.1479	0.1176	0.1172	0.0595	0.0553	0.0440	0.0418	0.0487	0.0487
		500	0.0688	0.0682	0.0593	0.0592	0.0558	0.0553	0.0499	0.0495	0.0260	0.0248	0.0212	0.0209	0.0217	0.0218
0.5	[-1; 3]	50	0.1330	0.1301	0.0900	0.0888	0.1437	0.1420	0.0893	0.0884	0.0772	0.0734	0.0783	0.0744	0.0678	0.0677
	-	100	0.0950	0.0910	0.0612	0.0603	0.0959	0.0952	0.0605	0.0603	0.0609	0.0581	0.0507	0.0487	0.0516	0.0513
		500	0.0430	0.0425	0.0299	0.0295	0.0368	0.0365	0.0267	0.0265	0.0257	0.0249	0.0249	0.0243	0.0216	0.0215
	[0; 2]	50	0.2220	0.2168	0.1883	0.1845	0.2081	0.2039	0.1849	0.1824	0.0782	0.0738	0.0796	0.0773	0.0723	0.0724
		100												0.0491		
		500												0.0232		
0.6	[-1; 3]	50												0.0864		
		100												0.0574		
		500												0.0254		
	[0; 2]	50												0.0776		
		100												0.0586		
		500												0.0277		
0.7	[-1; 3]	50												0.0905		
		100												0.0687		
	[0.0]	500												0.0284		
	[0; 2]	50												0.0919		
		100 500												0.0692		
-0.0	[1 0]													0.0293		
0.8	[-1; 3]	50												0.1250		
		100 500												0.0801 0.0328		
	[0; 2]	500												0.0328 0.1108		
	[0, 2]	100												0.1108		
		500												0.0741		
0.9	[-1; 3]	50												0.0555		
0.9	[-1, 3]	100												0.1363 0.1263		
		500												0.1203		
	[0; 2]	50												0.0343 0.1448		
	[0, 4]	100												0.1448 0.1279		
		500												0.1273		
		000	5.0401	0.0401	0.0410	5.0410	U.1.441	0.1401	0.1200	0.1220	0.0100	0.0101	0.0010	0.0401	0.0142	0.0141

Tabela D.18: Estimativas do desvio padrão dos parâmetros da mistura de duas regressões lineares no caso PVIII

			α_1	α_1	β_1	β_1	α_2	α_2	β_2	β_2	σ_1	σ_1	σ_2	σ_2	π_1	π_1
π_1	x	n	EM	CEM	EM	CEM	EM	CEM	EM	CEM	EM	CEM	EM	CEM	EM	CEM
0.1	[-1; 3]	50													0.0786	
		100													0.0361	
	[0.0]	500													0.0146	
	[0; 2]	50													0.0827	
		100													0.0394	
- 0.0	[1 0]	500													0.0159 0.0785	
0.2	[-1; 3]	50														
		100 500													0.0461 0.0182	
	[0. 0]	500 50													0.0182 0.0697	
	[0; 2]	100													0.0697	
		500													0.0410	
0.3	[-1; 3]	50													0.0188	
0.5	[-1, 3]	100													0.0078	
		500													0.0242	
	[0; 2]	50													0.0708	
	[0, 2]	100													0.0451	
		500													0.0222	
0.4	[-1; 3]	50													0.0730	
0.1	[1,0]	100													0.0550	
		500													0.0217	
	[0; 2]	50													0.0767	
		100	0.1906	0.1863	0.1754	0.1708	0.2181	0.2090	0.1854	0.1810	0.0683	0.0574	0.0807	0.0684	0.0499	0.0489
		500	0.0742	0.0724	0.0653	0.0644	0.1000	0.0955	0.0886	0.0856	0.0307	0.0276	0.0372	0.0321	0.0223	0.0228
0.5	[-1; 3]	50	0.1665	0.1444	0.1058	0.0941	0.2340	0.2103	0.1628	0.1425	0.1042	0.0783	0.1508	0.1155	0.0791	0.0760
		100	0.1093	0.1022	0.0716	0.0708	0.1712	0.1603	0.1129	0.1070	0.0610	0.0530	0.0975	0.0793	0.0492	0.0469
		500	0.0441	0.0435	0.0299	0.0295	0.0711	0.0669	0.0460	0.0440	0.0250	0.0230	0.0384	0.0325	0.0216	0.0217
	[0; 2]	50	0.2230	0.2037	0.1927	0.1842	0.3771	0.3080	0.3150	0.2750	0.0888	0.0747	0.1686	0.1202	0.0785	0.0716
		100													0.0480	
		500													0.0234	
0.6	[-1; 3]	50													0.0706	
		100													0.0528	
		500													0.0241	
	[0; 2]	50													0.0802	
		100													0.0487	
	F 4 01	500													0.0238	
0.7	[-1; 3]	50													0.0726	
		100 500													0.0467	
	[0.0]														0.0201	
	[0; 2]	$\frac{50}{100}$													$0.0716 \\ 0.0516$	
		500													0.0310	
0.8	[-1; 3]	50													0.0213	
0.0	[-1, 3]	100													0.0054	
		500													0.0188	
	[0; 2]	50													0.0607	
	[0, 2]	100													0.0452	
		500													0.0181	
0.9	[-1; 3]	50													0.0476	
	. / -1	100													0.0334	
		500													0.0138	
	[0; 2]	50													0.0760	
		100	0.1106	0.1068	0.2011	0.1967	0.7728	0.5901	0.6175	0.4900	0.0424	0.0411	0.2529	0.1803	0.0686	0.0678
		500	0.0456	0.0456	0.0375	0.0378	0.2563	0.2228	0.2237	0.1984	0.0161	0.0163	0.1098	0.0753	0.0140	0.0134

Tabela D.19: Estimativas do desvio padrão dos parâmetros da mistura de duas regressões lineares no caso PIX

1. 1; 3 50							β_1										
	$\frac{\pi_1}{2}$	x															
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	0.1	[-1; 3]															
[0; 2] 50 0.7244 0.5116 0.6153 0.4961 0.3599 0.3355 0.3247 0.2881 0.2233 0.1421 0.1386 0.1083 0.0870 0.0382 0.5524 0.0940 0.0522 0.3679 0.2336 0.2224 0.1994 0.1929 0.1932 0.1252 0.0988 0.0863 0.0414 0.0186 0.0175 0.2246 0.1753 0.1737 0.1533 0.0952 0.0944 0.0895 0.0879 0.0848 0.0570 0.0439 0.0414 0.0186 0.0175 0.0249 0.0246 0.0175 0.0395 0.0414 0.0186 0.0175 0.0249 0.0246 0.0192 0.1387 0.1167 0.1826 0.1598 0.1028 0.0963 0.1399 0.0911 0.1124 0.0858 0.0511 0.0441 0.0256 0.0246 0.0471 0.0389 0.0854 0.0450 0.0480 0.04																	
1.		[0.0]															
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		[0; 2]															
O. 2																	
	0.2	[1.9]															
	0.2	[-1, 3]															
[0;2] 50																	
100 0.3563 0.2997 0.2757 0.2356 0.2592 0.2327 0.2135 0.1952 0.1309 0.0852 0.1038 0.0739 0.0526 0.0419		[0.2]															
1. 1. 1. 1. 1. 1. 1. 1.		[0, 2]															
0.3																	
100	0.3	[=1:3]															
Fig. 10	0.0	[1,0]															
Page 1																	
100		[0.2]															
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		[0, 2]															
Column C																	
100	0.4	[-1:3]															
$ \begin{bmatrix} [0;2] & 500 & 0.0576 & 0.0547 & 0.0357 & 0.0352 & 0.0998 & 0.0889 & 0.0553 & 0.0516 & 0.0330 & 0.0299 & 0.0553 & 0.0431 & 0.0245 & 0.0240 \\ [0;2] & 500 & 0.2855 & 0.2610 & 0.2435 & 0.2219 & 0.4416 & 0.3764 & 0.3632 & 0.3231 & 0.1166 & 0.0936 & 0.1797 & 0.1411 & 0.0869 & 0.0771 \\ [0;3] & 500 & 0.0789 & 0.0785 & 0.0673 & 0.0673 & 0.1647 & 0.2552 & 0.2338 & 0.0753 & 0.0602 & 0.1219 & 0.0877 & 0.0586 & 0.0541 \\ [0;4] & 500 & 0.1629 & 0.1629 & 0.0185 & 0.0949 & 0.0345 & 0.2767 & 0.2808 & 0.1683 & 0.0997 & 0.0737 & 0.1860 & 0.1264 & 0.0836 & 0.0769 \\ [0;2] & 500 & 0.0465 & 0.0469 & 0.0291 & 0.0284 & 0.1143 & 0.0964 & 0.0539 & 0.0288 & 0.0281 & 0.0638 & 0.0460 & 0.0227 \\ [0;2] & 500 & 0.0465 & 0.0469 & 0.0291 & 0.0284 & 0.1143 & 0.0964 & 0.0539 & 0.0288 & 0.0281 & 0.0638 & 0.0460 & 0.0224 \\ [0;2] & 500 & 0.0455 & 0.0469 & 0.0291 & 0.0284 & 0.1143 & 0.0964 & 0.0539 & 0.0288 & 0.0281 & 0.0638 & 0.0460 & 0.0234 \\ [0;2] & 500 & 0.0405 & 0.0469 & 0.0291 & 0.0284 & 0.1433 & 0.3921 & 0.3322 & 0.0985 & 0.0788 & 0.2014 & 0.1418 & 0.0800 & 0.0722 \\ [0;2] & 500 & 0.0700 & 0.0705 & 0.0539 & 0.0547 & 0.1392 & 0.1253 & 0.1165 & 0.0263 & 0.0246 & 0.0616 & 0.0468 & 0.0563 & 0.0568 \\ [0;2] & 500 & 0.0404 & 0.0414 & 0.04291 & 0.0289 & 0.1882 & 0.0990 & 0.3559 & 0.1890 & 0.0902 & 0.0753 & 0.2064 & 0.1447 & 0.0787 & 0.0739 \\ [0;2] & 500 & 0.0244 & 0.0444 & 0.0291 & 0.0289 & 0.1082 & 0.0901 & 0.0732 & 0.0644 & 0.0237 & 0.0234 & 0.0696 & 0.0513 & 0.0229 & 0.0214 \\ [0;2] & 500 & 0.0340 & 0.0296 & 0.0838 & 0.0283 & 0.0549 & 0.0339 & 0.0171 & 0.2482 & 0.1618 & 0.0866 & 0.0739 \\ [0;2] & 500 & 0.0340 & 0.0269 & 0.0883 & 0.0843 & 0.0389 & 0.0383 & 0.0717 & 0.2482 & 0.1618 & 0.0866 & 0.0739 \\ [0;2] & 500 & 0.0344 & 0.0259 & 0.0283 & 0.0383 & 0.03170 & 0.0258 & 0.0384 & 0.0648 & 0.0463 & 0.0244 & 0.0235 \\ [0;2] & 500 & 0.0344 & 0.0359 & 0.0583 & 0.0549 & 0.1484 & 0.0485 & 0.0585 & 0.0244 & 0.0585 & 0.0244 & 0.0585 & 0.0244 & 0.0585 \\ [0;2] & 500 & 0.0344 & 0.0349 & 0.0385 & 0.0383 & 0.0313 & 0.0311 & 0.0229 & 0.0246 & 0.0667 & 0.0584 & 0.0564$		[-, -]															
$ \begin{bmatrix} 0;2 \\ 0;2 \\ 0;0 \\ 0$																	
100		[0: 2]															
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		[-,-]															
$ \begin{bmatrix} -1;3 \\ -1;4 \\ -1;4 \\ -1;4 \\ -1;4 \\ -1;4 \\ -1;4 \\ -1;4 \\ -1;4 \\ -1;4 \\ -1;4 \\ -1;5$																	
$ \begin{bmatrix} & & & & & & & & & $	0.5	[-1:3]	50														
$ \begin{bmatrix} [0;2] \\ [0;3] \\ [0;3] \\ [0;3] \\ [0;3] \\ [0;4] \\ [0;4] \\ [0;5] \\ [$. , - 1															
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			500	0.0465	0.0469	0.0291	0.0284	0.1143	0.0964	0.0594	0.0539	0.0288	0.0281	0.0638	0.0460	0.0234	0.0227
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		[0; 2]	50	0.2300	0.2201	0.1969	0.1870	0.4923	0.4123	0.3921	0.3322	0.0985	0.0798	0.2014	0.1418	0.0800	0.0726
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			100	0.1850	0.1779	0.1525	0.1493	0.3255	0.2831	0.2722	0.2454	0.0658	0.0586	0.1355	0.0980	0.0541	0.0500
$ \begin{bmatrix} 100 \\ 500 \\ 500 \\ 0.0441 & 0.0441 & 0.0291 & 0.0289 & 0.1082 & 0.9901 & 0.732 & 0.6644 & 0.0237 & 0.0234 & 0.0696 & 0.0513 & 0.0229 & 0.0216 \\ [0;2] \\ 50 \\ 500 \\ 2038 & 0.2190 & 0.1926 & 0.1732 & 0.5745 & 0.4540 & 0.4966 & 0.3985 & 0.0933 & 0.0717 & 0.2482 & 0.1618 & 0.0866 & 0.0739 \\ 100 \\ 50 \\ 100 \\ 10134 & 0.1299 & 0.1193 & 0.1168 & 0.3805 & 0.3293 & 0.3197 & 0.2825 & 0.0604 & 0.0538 & 0.1512 & 0.1063 & 0.0514 & 0.0483 \\ 500 \\ 101324 & 0.1269 & 0.0883 & 0.0853 & 0.4543 & 0.3389 & 0.1257 & 0.0256 & 0.0248 & 0.0648 & 0.0463 & 0.0244 & 0.0235 \\ 100 \\ 101324 & 0.1269 & 0.0883 & 0.0853 & 0.4543 & 0.3389 & 0.1311 & 0.2379 & 0.0748 & 0.0648 & 0.0463 & 0.0244 & 0.0235 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 101 \\ 100 \\ 101 \\ 100 \\ 101 \\ 100 \\ 101 \\ 100 \\ 101 \\ 101 \\ 100 \\ 101 \\$			500	0.0700	0.0705	0.0539	0.0547	0.1392	0.1253	0.1165	0.1025	0.0263	0.0246	0.0616	0.0468	0.0263	0.0250
$ \begin{bmatrix} [0;2] & 500 & 0.0441 & 0.0441 & 0.0291 & 0.0289 & 0.1082 & 0.0901 & 0.0732 & 0.0644 & 0.0237 & 0.0234 & 0.0696 & 0.0513 & 0.0229 & 0.0216 \\ 0.2308 & 0.2109 & 0.1926 & 0.1732 & 0.5745 & 0.4540 & 0.4966 & 0.3985 & 0.0393 & 0.0717 & 0.2482 & 0.1618 & 0.0866 & 0.0739 \\ 0.0638 & 0.0638 & 0.0643 & 0.0581 & 0.0579 & 0.1648 & 0.1478 & 0.1389 & 0.1257 & 0.0256 & 0.0248 & 0.0648 & 0.0463 & 0.0244 & 0.0235 \\ 0.7 & [-1;3] & 50 & 0.1324 & 0.1269 & 0.0883 & 0.0853 & 0.4543 & 0.3389 & 0.3131 & 0.2379 & 0.0748 & 0.0657 & 0.2540 & 0.1798 & 0.0761 & 0.0671 \\ 0.0905 & 0.0852 & 0.0604 & 0.0589 & 0.3570 & 0.2518 & 0.2181 & 0.1861 & 0.0535 & 0.0486 & 0.1874 & 0.1210 & 0.0523 & 0.0486 \\ 500 & 0.0407 & 0.0412 & 0.0250 & 0.0253 & 0.1330 & 0.1145 & 0.0781 & 0.0683 & 0.0233 & 0.0227 & 0.0786 & 0.0554 & 0.0245 & 0.0241 \\ [0;2] & 50 & 0.1942 & 0.1870 & 0.1769 & 0.1725 & 0.7836 & 0.5744 & 0.6504 & 0.4875 & 0.0760 & 0.0670 & 0.2448 & 0.1766 & 0.0774 & 0.0721 \\ 100 & 0.1334 & 0.1301 & 0.1139 & 0.1112 & 0.5043 & 0.4018 & 0.4255 & 0.3507 & 0.0553 & 0.0456 & 0.0242 & 0.0213 \\ 0.8 & [-1;3] & 50 & 0.1064 & 0.1011 & 0.1107 & 0.0695 & 0.6643 & 0.4760 & 0.4267 & 0.3291 & 0.0655 & 0.0605 & 0.2992 & 0.2166 & 0.0744 & 0.0510 \\ 100 & 0.0755 & 0.0745 & 0.0509 & 0.0498 & 0.4373 & 0.3091 & 0.2662 & 0.2097 & 0.0473 & 0.0468 & 0.2283 & 0.1481 & 0.0502 & 0.0442 \\ 100 & 0.0755 & 0.0745 & 0.0509 & 0.0498 & 0.4873 & 0.3091 & 0.2655 & 0.0605 & 0.2992 & 0.2166 & 0.0744 & 0.0510 \\ 100 & 0.1213 & 0.1184 & 0.1080 & 0.1069 & 0.6632 & 0.4857 & 0.5096 & 0.4128 & 0.0441 & 0.0241 & 0.0414 & 0.0249 & 0.0243 & 0.0244 & 0.0199 & 0.0188 \\ 0.9 & [-1;3] & 50 & 0.1205 & 0.1147 & 0.0697 & 0.0662 & 0.8602 & 0.6735 & 0.0566 & 0.0442 & 0.0404 & 0.2938 & 0.1481 & 0.0188 \\ 0.9 & [-1;3] & 50 & 0.1205 & 0.1147 & 0.0697 & 0.0662 & 0.8602 & 0.6735 & 0.0566 & 0.0442 & 0.0404 & 0.2938 & 0.1460 & 0.0376 & 0.0297 \\ 0.0935 & 0.0331 & 0.0212 & 0.0213 & 0.2726 & 0.1678 & 0.1655 & 0.1733 & 0.0204 & 0.0205 & 0.1038 & 0.0644 & 0.0188 \\ 0.9 & [-1;3] & 50 & 0.1205 & 0.1147 & 0.0697 & 0.0662 & 0.8$	0.6	[-1; 3]	50	0.1406	0.1362	0.0968	0.0909	0.3782	0.2990	0.2359	0.1890	0.0902	0.0753	0.2064	0.1447	0.0787	0.0739
$ \begin{bmatrix} [0;2] \\ [0;2] \\ [0;3] \\ [0;3] \end{bmatrix} = \begin{bmatrix} 50 \\ 0.2308 & 0.2109 & 0.1926 & 0.1732 & 0.5745 & 0.4540 & 0.4966 & 0.3985 & 0.0933 & 0.0717 & 0.2482 & 0.1618 & 0.0866 & 0.0739 \\ 0.1334 & 0.1299 & 0.1193 & 0.1168 & 0.3805 & 0.3293 & 0.3197 & 0.2825 & 0.0644 & 0.0538 & 0.1512 & 0.1063 & 0.0514 & 0.0483 \\ 0.0638 & 0.0643 & 0.0581 & 0.0579 & 0.1648 & 0.1478 & 0.1389 & 0.1257 & 0.0256 & 0.0248 & 0.0643 & 0.0463 & 0.0244 \\ 0.0838 & 0.0643 & 0.0581 & 0.0579 & 0.1648 & 0.1478 & 0.1389 & 0.1257 & 0.0256 & 0.0248 & 0.0643 & 0.0463 & 0.0244 \\ 0.0905 & 0.0852 & 0.0604 & 0.0589 & 0.3570 & 0.2518 & 0.2181 & 0.1861 & 0.0535 & 0.0486 & 0.1874 & 0.1210 & 0.0523 & 0.0486 \\ 0.0407 & 0.0412 & 0.0250 & 0.0253 & 0.1330 & 0.1145 & 0.0781 & 0.0683 & 0.0233 & 0.0227 & 0.0786 & 0.0554 & 0.0245 & 0.0241 \\ 0.0916 & 0.0407 & 0.0412 & 0.0250 & 0.0253 & 0.1330 & 0.1145 & 0.0781 & 0.0683 & 0.0233 & 0.0227 & 0.0786 & 0.0554 & 0.0245 & 0.0241 \\ 0.0917 & 0.0917 & 0.0412 & 0.0250 & 0.0253 & 0.1330 & 0.1145 & 0.0781 & 0.0683 & 0.0233 & 0.0227 & 0.0786 & 0.0554 & 0.0245 & 0.0241 \\ 0.0018 & 0.0018 & 0.0018 & 0.0018 & 0.01142 & 0.0250 & 0.0253 & 0.1330 & 0.0781 & 0.0683 & 0.0233 & 0.0227 & 0.0786 & 0.0554 & 0.0245 & 0.0241 \\ 0.0018 & 0.0018 & 0.0018 & 0.01119 & 0.01120 & 0.01144 & 0.0504 & 0.04875 & 0.0503 & 0.0456 & 0.0244 & 0.0176 & 0.0747 \\ 0.0018 & 0.0018 & 0.0018 & 0.0018 & 0.0111 & 0.1107 & 0.0695 & 0.6643 & 0.4760 & 0.4267 & 0.3291 & 0.0655 & 0.0665 & 0.2992 & 0.2166 & 0.0744 & 0.0510 \\ 0.0018 & 0.0018$			100	0.1208	0.1157	0.0693	0.0682	0.2767	0.2361	0.1780	0.1602	0.0577	0.0527	0.1702	0.1128	0.0538	0.0503
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			500	0.0441	0.0441	0.0291	0.0289	0.1082	0.0901	0.0732	0.0644	0.0237	0.0234	0.0696	0.0513	0.0229	0.0216
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		[0; 2]	50	0.2308	0.2109	0.1926	0.1732	0.5745	0.4540	0.4966	0.3985	0.0933	0.0717	0.2482	0.1618	0.0866	0.0739
$ \begin{bmatrix} -1;3 \\ 0.7 \\ -1;3 \\ 0.995 \\ 0.0852 \\ 0.0852 \\ 0.0852 \\ 0.0852 \\ 0.0853 \\ 0.0853 \\ 0.0853 \\ 0.0853 \\ 0.0853 \\ 0.0853 \\ 0.0853 \\ 0.0853 \\ 0.0853 \\ 0.0853 \\ 0.0853 \\ 0.0853 \\ 0.0853 \\ 0.0853 \\ 0.0853 \\ 0.0853 \\ 0.0853 \\ 0.0853 \\ 0.0853 \\ 0.0818 \\ 0.0813 \\ 0.0811 \\ 0.0918 \\ 0.0018$																	
$ \begin{bmatrix} 100 & 0.0905 & 0.0852 & 0.0604 & 0.0589 & 0.3570 & 0.2518 & 0.2181 & 0.1861 & 0.0535 & 0.0486 & 0.1874 & 0.1210 & 0.0523 & 0.0486 \\ 500 & 0.0407 & 0.0412 & 0.0250 & 0.0253 & 0.1330 & 0.1145 & 0.0781 & 0.0683 & 0.0227 & 0.0786 & 0.0544 & 0.0245 & 0.0241 \\ [0; 2] & 50 & 0.1942 & 0.1870 & 0.1725 & 0.7836 & 0.5744 & 0.6504 & 0.4875 & 0.0760 & 0.0670 & 0.248 & 0.1766 & 0.0747 & 0.0721 \\ 100 & 0.1334 & 0.1301 & 0.1139 & 0.1112 & 0.5043 & 0.4018 & 0.4255 & 0.3507 & 0.0503 & 0.0456 & 0.2024 & 0.1258 & 0.0517 & 0.0471 \\ 500 & 0.0554 & 0.0546 & 0.0473 & 0.0471 & 0.1868 & 0.1597 & 0.1673 & 0.1455 & 0.0243 & 0.0243 & 0.0832 & 0.0563 & 0.0221 & 0.0213 \\ 0.8 & [-1; 3] & 50 & 0.1064 & 0.1011 & 0.1107 & 0.0695 & 0.6643 & 0.4760 & 0.4267 & 0.3291 & 0.0655 & 0.0655 & 0.0566 & 0.0221 & 0.0213 \\ 100 & 0.0755 & 0.0745 & 0.0509 & 0.0498 & 0.4373 & 0.3091 & 0.2662 & 0.2097 & 0.0473 & 0.0468 & 0.2283 & 0.1481 & 0.0502 & 0.0442 \\ 500 & 0.0348 & 0.0348 & 0.0220 & 0.0220 & 0.1643 & 0.1332 & 0.1046 & 0.0889 & 0.0211 & 0.0201 & 0.1019 & 0.0658 & 0.0209 & 0.0195 \\ [0; 2] & 50 & 0.1870 & 0.1713 & 0.2768 & 0.1601 & 0.9302 & 0.7257 & 0.7662 & 0.6631 & 0.4765 & 0.0550 & 0.2811 & 0.1937 & 0.8300 & 0.0604 \\ 100 & 0.1213 & 0.1184 & 0.1080 & 0.1699 & 0.6632 & 0.4857 & 0.5096 & 0.4128 & 0.0451 & 0.0411 & 0.2440 & 0.1490 & 0.0478 & 0.0399 \\ 500 & 0.0504 & 0.0500 & 0.0442 & 0.0441 & 0.2629 & 0.2008 & 0.2165 & 0.1733 & 0.0204 & 0.0205 & 0.1038 & 0.0644 & 0.0198 & 0.0188 \\ 0.9 & [-1; 3] & 50 & 0.1205 & 0.1147 & 0.0697 & 0.0662 & 0.8602 & 0.6735 & 0.5651 & 0.4860 & 0.0560 & 0.5899 & 0.3358 & 0.2722 & 0.0566 & 0.0376 \\ 0.0747 & 0.0731 & 0.0464 & 0.0456 & 0.6462 & 0.4849 & 0.4629 & 0.3656 & 0.0442 & 0.0404 & 0.2938 & 0.2146 & 0.0376 & 0.0297 \\ 500 & 0.0335 & 0.0331 & 0.0212 & 0.0213 & 0.2760 & 0.1978 & 0.1623 & 0.1733 & 0.0770 & 0.0603 & 0.3126 & 0.2595 & 0.1299 & 0.0850 \\ 100 & 0.1184 & 0.1026 & 0.3002 & 0.0876 & 0.9999 & 0.7268 & 0.8716 & 0.6616 & 0.1004 & 0.0425 & 0.3100 & 0.2214 & 0.1015 & 0.0292 \\ 100 & 0.1184 & 0.1026 & 0.3002 & 0.0876 & 0.9999 $			500														
$ \begin{bmatrix} [0;2] & 500 & 0.0407 & 0.0412 & 0.0250 & 0.0253 & 0.1330 & 0.1145 & 0.0781 & 0.0683 & 0.0233 & 0.0227 & 0.0786 & 0.0554 & 0.0245 & 0.0241 \\ [0;2] & 50 & 0.1942 & 0.1870 & 0.1769 & 0.1725 & 0.7836 & 0.5744 & 0.6504 & 0.4875 & 0.0760 & 0.0670 & 0.2448 & 0.1766 & 0.0774 & 0.0721 \\ [0;0] & 0.1334 & 0.1301 & 0.1139 & 0.1112 & 0.5043 & 0.4018 & 0.4255 & 0.3507 & 0.0503 & 0.0456 & 0.0224 & 0.1258 & 0.0517 & 0.0471 \\ [0;0] & 0.0554 & 0.0546 & 0.0473 & 0.0471 & 0.1868 & 0.1597 & 0.1673 & 0.1455 & 0.0243 & 0.0243 & 0.0832 & 0.0563 & 0.0221 & 0.0213 \\ [0;0] & 50 & 0.1064 & 0.1011 & 0.1107 & 0.0695 & 0.6643 & 0.4760 & 0.4267 & 0.3291 & 0.0655 & 0.0605 & 0.2992 & 0.2166 & 0.0744 & 0.0510 \\ [0;0] & 50 & 0.0348 & 0.0348 & 0.0220 & 0.0220 & 0.1643 & 0.1332 & 0.1046 & 0.2087 & 0.0473 & 0.0468 & 0.2283 & 0.1481 & 0.0502 & 0.0442 \\ [0;0] & 50 & 0.1870 & 0.1713 & 0.2768 & 0.1601 & 0.9302 & 0.7257 & 0.7662 & 0.6314 & 0.0765 & 0.0550 & 0.2811 & 0.1937 & 0.0830 & 0.0604 \\ [0;0] & 50 & 0.1203 & 0.1184 & 0.1080 & 0.1069 & 0.6632 & 0.4857 & 0.5096 & 0.4128 & 0.0451 & 0.0411 & 0.2440 & 0.1490 & 0.0478 & 0.0399 \\ [0;0] & 50 & 0.1205 & 0.1147 & 0.0697 & 0.0662 & 0.8602 & 0.6735 & 0.5651 & 0.4860 & 0.0660 & 0.0588 & 0.3358 & 0.2722 & 0.0566 & 0.0376 \\ [0;0] & 50 & 0.0747 & 0.0731 & 0.0464 & 0.0456 & 0.6462 & 0.4849 & 0.4629 & 0.3656 & 0.0442 & 0.0404 & 0.2938 & 0.2146 & 0.0376 & 0.0297 \\ [0;0] & 50 & 0.0335 & 0.0331 & 0.0212 & 0.0213 & 0.1978 & 0.1623 & 0.1233 & 0.0170 & 0.0161 & 0.1548 & 0.0864 & 0.0164 & 0.0137 \\ [0;2] & 50 & 0.02020 & 0.1854 & 0.4496 & 0.2673 & 1.4323 & 1.2801 & 1.1539 & 1.0763 & 0.0970 & 0.0603 & 0.3126 & 0.2595 & 0.1299 & 0.0850 \\ [0;2] & 50 & 0.02020 & 0.1854 & 0.4496 & 0.2673 & 1.4323 & 1.2801 & 1.1539 & 1.0763 & 0.0970 & 0.0603 & 0.3126 & 0.2595 & 0.1299 & 0.0850 \\ [0;2] & 50 & 0.02020 & 0.1854 & 0.4496 & 0.2673 & 1.4323 & 1.2801 & 1.1539 & 1.0763 & 0.0970 & 0.0603 & 0.3126 & 0.2595 & 0.1299 & 0.0850 \\ [0;2] & 50 & 0.02020 & 0.1854 & 0.4496 & 0.2673 & 1.4323 & 1.2801 & 1.1539 & 1.0763 & 0.0970 & 0.0603 & 0.3126$	0.7	[-1; 3]	50														
$ \begin{bmatrix} [0;2] \\ [0;2] \\ [0;3] \\ [0;3] \\ [0;4] \end{bmatrix} = \begin{bmatrix} 50 \\ 0.1942 \ 0.1870 \ 0.1769 \ 0.1725 \ 0.7836 \ 0.5744 \ 0.6504 \ 0.4875 \ 0.0760 \ 0.0670 \ 0.2448 \ 0.1766 \ 0.0774 \ 0.0721 \\ 0.1334 \ 0.1301 \ 0.1139 \ 0.1112 \ 0.5043 \ 0.4018 \ 0.4255 \ 0.3507 \ 0.1673 \ 0.1455 \ 0.0243 \ 0.0832 \ 0.0563 \ 0.0221 \ 0.0213 \\ 0.0554 \ 0.0546 \ 0.0473 \ 0.0471 \ 0.1868 \ 0.1597 \ 0.1673 \ 0.1455 \ 0.0243 \ 0.0243 \ 0.0832 \ 0.0563 \ 0.0221 \ 0.0213 \\ 0.08 \\ [-1;3] \\ [0;2] \\ [0;2] \\ [0;2] \\ [0;2] \\ [0;2] \\ [0;3] \\ [0;3] \\ [0;3] \\ [0;4] \\ [0;5]$																	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$																	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		[0; 2]															
$ \begin{bmatrix} -1;3 \\ 0.8 \\ -1;3 \\ 100 \\ 0.0755 \\ 0.0745 \\ 0.0745 \\ 0.0755 \\ 0.0745 \\ 0.0599 \\ 0.0498 \\ 0.0428 \\ 0.0220 \\ 0.0488 \\ 0.0399 \\ 0.0599 \\ 0.0498 \\ 0.0441 \\ 0.0202 \\ 0.0443 \\ 0.0461 \\ 0.0437 \\ 0.0473 \\ 0.0473 \\ 0.0468 \\ 0.2292 \\ 0.2166 \\ 0.00473 \\ 0.0468 \\ 0.0297 \\ 0.0473 \\ 0.0468 \\ 0.0297 \\ 0.0473 \\ 0.0468 \\ 0.0293 \\ 0.0481 \\ 0.0220 \\ 0.0210 \\ 0.0210 \\ 0.0210 \\ 0.0113 \\ 0.0210 $																	
$ \begin{bmatrix} 100 & 0.0755 & 0.0745 & 0.0509 & 0.0498 & 0.4373 & 0.3091 & 0.2662 & 0.2097 & 0.0473 & 0.0468 & 0.2283 & 0.1481 & 0.0502 & 0.0442 \\ 500 & 0.0348 & 0.0348 & 0.0220 & 0.0220 & 0.1643 & 0.1332 & 0.1046 & 0.889 & 0.0211 & 0.0201 & 0.1019 & 0.0658 & 0.0209 & 0.0195 \\ 500 & 10070 & 1.0213 & 0.2768 & 0.1601 & 0.9302 & 0.7257 & 0.7662 & 0.6314 & 0.0765 & 0.0550 & 0.2811 & 0.1937 & 0.0830 & 0.0604 \\ 100 & 0.1213 & 0.1184 & 0.1080 & 0.169 & 0.6632 & 0.4857 & 0.5096 & 0.4128 & 0.0451 & 0.0411 & 0.2440 & 0.1490 & 0.0478 & 0.0399 \\ 500 & 0.0504 & 0.0500 & 0.0442 & 0.0441 & 0.2629 & 0.2008 & 0.2165 & 0.1733 & 0.0204 & 0.0205 & 0.1038 & 0.0644 & 0.0198 & 0.0188 \\ \hline 0.9 & [-1;3] & 50 & 0.1205 & 0.1147 & 0.0697 & 0.0662 & 0.8602 & 0.6735 & 0.5651 & 0.4860 & 0.0660 & 0.0589 & 0.3358 & 0.2722 & 0.0506 & 0.0376 \\ 100 & 0.0747 & 0.0731 & 0.0464 & 0.0456 & 0.6462 & 0.4849 & 0.4629 & 0.3656 & 0.0442 & 0.0404 & 0.2938 & 0.2146 & 0.0376 & 0.0297 \\ 500 & 0.0335 & 0.0331 & 0.0212 & 0.0213 & 0.2760 & 0.1978 & 0.1623 & 0.1233 & 0.0170 & 0.0161 & 0.1548 & 0.0864 & 0.0164 & 0.0137 \\ [0;2] & 50 & 0.2020 & 0.1854 & 0.4496 & 0.2673 & 1.4323 & 1.2801 & 1.1539 & 1.0763 & 0.0970 & 0.6033 & 0.3126 & 0.2595 & 0.1299 & 0.8550 \\ 100 & 0.1184 & 0.1026 & 0.3002 & 0.0876 & 0.9999 & 0.7268 & 0.8716 & 0.6616 & 0.1004 & 0.0425 & 0.3100 & 0.2214 & 0.1015 & 0.0292 \\ \hline \end{tabular}$																	
$ \begin{bmatrix} [0;2] & 500 & 0.0348 & 0.0348 & 0.0220 & 0.0220 & 0.1643 & 0.1332 & 0.1046 & 0.0889 & 0.0211 & 0.0201 & 0.1019 & 0.0658 & 0.0209 & 0.0195 \\ 0.1870 & 0.1713 & 0.2768 & 0.1601 & 0.9302 & 0.7257 & 0.7662 & 0.6314 & 0.0765 & 0.0550 & 0.2811 & 0.1937 & 0.0830 & 0.0604 \\ 100 & 0.1213 & 0.1184 & 0.1080 & 0.1669 & 0.6632 & 0.4857 & 0.5096 & 0.4128 & 0.0451 & 0.0411 & 0.2440 & 0.1490 & 0.0478 & 0.0399 \\ 500 & 0.0504 & 0.0500 & 0.0442 & 0.0441 & 0.2629 & 0.2008 & 0.2165 & 0.1733 & 0.0204 & 0.0205 & 0.1038 & 0.0644 & 0.0188 \\ \hline 0.9 & [-1;3] & 50 & 0.1205 & 0.1147 & 0.0697 & 0.0662 & 0.8602 & 0.6735 & 0.5651 & 0.4860 & 0.0660 & 0.0589 & 0.3358 & 0.2722 & 0.0506 & 0.0376 \\ & & & & & & & & & & & & & & & & & & $	0.8	[-1; 3]															
$ \begin{bmatrix} [0;2] & 50 & 0.1870 & 0.1713 & 0.2768 & 0.1601 & 0.9302 & 0.7257 & 0.7662 & 0.6314 & 0.0765 & 0.0550 & 0.2811 & 0.1937 & 0.0830 & 0.0604 \\ 100 & 0.1213 & 0.1184 & 0.1080 & 0.1699 & 0.6632 & 0.4857 & 0.5096 & 0.4128 & 0.0451 & 0.0411 & 0.2440 & 0.1490 & 0.0478 & 0.0399 \\ 500 & 0.0504 & 0.0500 & 0.0442 & 0.0441 & 0.2629 & 0.2008 & 0.2165 & 0.1733 & 0.0204 & 0.0205 & 0.1038 & 0.0644 & 0.0188 \\ 0.9 & [-1;3] & 50 & 0.1205 & 0.1147 & 0.0697 & 0.0662 & 0.8602 & 0.6735 & 0.5651 & 0.4860 & 0.0660 & 0.0589 & 0.3358 & 0.2722 & 0.0506 & 0.0376 \\ 100 & 0.0747 & 0.0731 & 0.0464 & 0.0456 & 0.6462 & 0.4849 & 0.4629 & 0.3656 & 0.0442 & 0.0404 & 0.2938 & 0.2146 & 0.0376 & 0.0297 \\ 500 & 0.0335 & 0.0331 & 0.0212 & 0.0213 & 0.2760 & 0.1978 & 0.1623 & 0.1233 & 0.0170 & 0.0161 & 0.1548 & 0.0864 & 0.0164 & 0.0137 \\ [0;2] & 50 & 0.2020 & 0.1854 & 0.4496 & 0.2673 & 1.4323 & 1.2801 & 1.1539 & 1.0763 & 0.0970 & 0.0603 & 0.3126 & 0.2595 & 0.1299 & 0.0850 \\ [0;2] & 50 & 0.2020 & 0.1854 & 0.4496 & 0.2673 & 1.4323 & 1.2801 & 1.1539 & 1.0763 & 0.0970 & 0.0603 & 0.3126 & 0.2595 & 0.1299 & 0.0850 \\ [0;2] & 50 & 0.2020 & 0.1854 & 0.4496 & 0.2673 & 1.4323 & 1.2801 & 1.1539 & 1.0763 & 0.0970 & 0.0603 & 0.3126 & 0.2595 & 0.1299 & 0.0850 \\ [0;2] & 50 & 0.2020 & 0.1854 & 0.4496 & 0.20999 & 0.7268 & 0.8716 & 0.6616 & 0.1004 & 0.0425 & 0.3100 & 0.2214 & 0.1015 & 0.0292 \\ [0;2] & 50 & 0.000000000000000000000000000000$																	
$ \begin{bmatrix} 100 \\ 0.1213 \ 0.1184 \ 0.1080 \ 0.1069 \ 0.6632 \ 0.4857 \ 0.5096 \ 0.4128 \ 0.0451 \ 0.0411 \ 0.2440 \ 0.1490 \ 0.0478 \ 0.0399 \\ 0.0504 \ 0.0500 \ 0.0442 \ 0.0441 \ 0.2629 \ 0.2008 \ 0.2165 \ 0.1733 \ 0.0204 \ 0.0205 \ 0.1038 \ 0.0644 \ 0.0198 \ 0.0188 \\ 0.061 \ 0.0747 \ 0.0747 \ 0.0697 \ 0.0662 \ 0.8602 \ 0.6735 \ 0.5651 \ 0.4860 \ 0.0660 \ 0.0589 \ 0.3358 \ 0.2722 \ 0.0556 \ 0.0376 \\ 0.0747 \ 0.0731 \ 0.0464 \ 0.0456 \ 0.6462 \ 0.4849 \ 0.4629 \ 0.3656 \ 0.0442 \ 0.0404 \ 0.2938 \ 0.2146 \ 0.0376 \ 0.0297 \\ 0.0335 \ 0.0331 \ 0.0212 \ 0.0213 \ 0.2760 \ 0.1978 \ 0.1623 \ 0.1233 \ 0.0170 \ 0.0161 \ 0.1548 \ 0.0864 \ 0.0164 \ 0.0137 \\ 0.2020 \ 0.1854 \ 0.4496 \ 0.2673 \ 1.4323 \ 1.2801 \ 1.1539 \ 1.0763 \ 0.0970 \ 0.0603 \ 0.3126 \ 0.2595 \ 0.1299 \ 0.850 \\ 0.0184 \ 0.1026 \ 0.3002 \ 0.0876 \ 0.9999 \ 0.7268 \ 0.8716 \ 0.6616 \ 0.1004 \ 0.0425 \ 0.3100 \ 0.2214 \ 0.1015 \ 0.0292 \\ 0.0184 \ 0.1026 \ 0.3002 \ 0.0876 \ 0.9999 \ 0.7268 \ 0.8716 \ 0.6616 \ 0.1004 \ 0.0425 \ 0.3100 \ 0.2214 \ 0.1015 \ 0.0292 \\ 0.0184 \ 0.0$																	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		[0; 2]															
$ \begin{bmatrix} -1;3 \end{bmatrix} & 50 & 0.1205 \ 0.1147 \ 0.0697 \ 0.0662 \ 0.8602 \ 0.6735 \ 0.5651 \ 0.4860 \ 0.0660 \ 0.0589 \ 0.3358 \ 0.2722 \ 0.0506 \ 0.0376 \\ 0.0747 \ 0.0731 \ 0.0464 \ 0.0456 \ 0.6462 \ 0.4849 \ 0.4629 \ 0.3656 \ 0.0442 \ 0.0404 \ 0.2938 \ 0.2146 \ 0.0376 \ 0.0297 \\ 500 & 0.0335 \ 0.0331 \ 0.0212 \ 0.0213 \ 0.2760 \ 0.1978 \ 0.1623 \ 0.1233 \ 0.0170 \ 0.0161 \ 0.1548 \ 0.0864 \ 0.0164 \ 0.0137 \\ [0;2] & 50 & 0.2020 \ 0.1854 \ 0.4496 \ 0.2673 \ 1.4323 \ 1.2801 \ 1.1539 \ 1.0763 \ 0.0970 \ 0.0603 \ 0.3126 \ 0.2595 \ 0.1299 \ 0.0850 \\ 100 & 0.1184 \ 0.1026 \ 0.3002 \ 0.0876 \ 0.9999 \ 0.7268 \ 0.8716 \ 0.6616 \ 0.1004 \ 0.0425 \ 0.3100 \ 0.2214 \ 0.1015 \ 0.0292 \\ \end{bmatrix} $																	
$ \begin{bmatrix} 100 & 0.0747 & 0.0731 & 0.0464 & 0.0456 & 0.6462 & 0.4849 & 0.4629 & 0.3656 & 0.0442 & 0.0404 & 0.2938 & 0.2146 & 0.0376 & 0.0297 \\ 500 & 0.0335 & 0.0331 & 0.0212 & 0.0213 & 0.2760 & 0.1978 & 0.1623 & 0.0233 & 0.0170 & 0.0161 & 0.1548 & 0.0864 & 0.0164 & 0.0137 \\ 50 & 0.2020 & 0.1854 & 0.4496 & 0.2673 & 1.4323 & 1.2801 & 1.1539 & 1.0763 & 0.0970 & 0.0603 & 0.3126 & 0.2595 & 0.1299 & 0.0850 \\ 100 & 0.1184 & 0.1026 & 0.3002 & 0.0876 & 0.9999 & 0.7268 & 0.8716 & 0.6616 & 0.1004 & 0.0425 & 0.3100 & 0.2214 & 0.1015 & 0.0292 \\ \end{bmatrix} $																	
$ \begin{bmatrix} 500 & 0.0335 & 0.0331 & 0.0212 & 0.0213 & 0.2760 & 0.1978 & 0.1623 & 0.1233 & 0.0170 & 0.0161 & 0.1548 & 0.0864 & 0.0164 & 0.0137 \\ 50 & 0.2020 & 0.1854 & 0.4496 & 0.2673 & 1.4323 & 1.2801 & 1.1539 & 1.0763 & 0.0970 & 0.0603 & 0.3126 & 0.2595 & 0.1299 & 0.0850 \\ 100 & 0.1184 & 0.1026 & 0.3002 & 0.0876 & 0.9999 & 0.7268 & 0.8716 & 0.6616 & 0.1004 & 0.0425 & 0.3100 & 0.2214 & 0.1015 & 0.0292 \\ \end{bmatrix} $	0.9	[-1; 3]															
$ \begin{bmatrix} 0;2 \end{bmatrix} & 50 & 0.2020 & 0.1854 & 0.4496 & 0.2673 & 1.4323 & 1.2801 & 1.1539 & 1.0763 & 0.0970 & 0.0603 & 0.3126 & 0.2595 & 0.1299 & 0.0850 \\ 100 & 0.1184 & 0.1026 & 0.3002 & 0.0876 & 0.9999 & 0.7268 & 0.8716 & 0.6616 & 0.1004 & 0.0425 & 0.3100 & 0.2214 & 0.1015 & 0.0292 \\ \end{bmatrix} $																	
100 0.1184 0.1026 0.3002 0.0876 0.9999 0.7268 0.8716 0.6616 0.1004 0.0425 0.3100 0.2214 0.1015 0.0292		[0.0]															
		[0; 2]															
$0.0522 \ 0.0523 \ 0.0442 \ 0.0443 \ 0.3861 \ 0.2899 \ 0.2961 \ 0.2424 \ 0.0179 \ 0.0173 \ 0.1584 \ 0.0928 \ 0.0153 \ 0.0140$																	
			500	0.0522	0.0523	0.0442	0.0443	0.3861	0.2899	0.2961	0.2424	0.0179	0.0173	0.1584	0.0928	0.0153	0.0140

Tabela D.20: Estimativas do desvio padrão dos parâmetros da mistura de duas regressões lineares no caso ${\rm PX}$

			α_1	α_1	β_1	β_1	α_2	α_2	β_2	β_2	σ_1	σ_1	σ_2	σ_2	π_1	π_1
π_1	x	n	$_{\rm EM}$	CEM	$_{\rm EM}$	CEM	$_{\rm EM}$	CEM	$_{\rm EM}$	CEM	$_{\rm EM}$	CEM	$_{\rm EM}$	CEM	$_{\rm EM}$	$_{\text{CEM}}$
0.1	[-1; 3]	50	0.0037	0.0037	0.0028	0.0021	0.0004	0.0004	0.0001	0.0001	0.0016	0.0016	0.0001	0.0001	0.0018	0.0018
		100	0.0028	0.0028	0.0009	0.0009	0.0002	0.0002	0.0001	0.0001	0.0007	0.0007	0.0001	0.0001	0.0008	0.0008
		500													0.0002	
	[0; 2]	50	0.0189	0.0163	0.0126	0.0113	0.0012	0.0012	0.0048	0.0047	0.0017	0.0017	0.0001	0.0001	0.0045	0.0046
	[-,-]	100													0.0010	
		500													0.0002	
0.2	[-1; 3]	50													0.0030	
0.2	[-1, 0]	100													0.0030	
		500													0.00017	
	[0.0]															
	[0; 2]	50													0.0032	
		100													0.0017	
		500													0.0003	
0.3	[-1; 3]	50													0.0045	
		100													0.0023	
		500	0.0001	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0004	0.0004
	[0; 2]	50	0.0039	0.0039	0.0028	0.0028	0.0014	0.0014	0.0011	0.0011	0.0004	0.0004	0.0001	0.0001	0.0040	0.0040
		100	0.0015	0.0015	0.0010	0.0010	0.0004	0.0004	0.0003	0.0003	0.0002	0.0002	0.0001	0.0001	0.0023	0.0023
		500	0.0002	0.0002	0.0002	0.0002	0.0001	0.0001	0.0001	0.0001	0.0000	0.0000	0.0000	0.0000	0.0005	0.0005
0.4	[-1; 3]	50	0.0011	0.0011	0.0005	0.0005	0.0006	0.0006	0.0003	0.0003	0.0003	0.0003	0.0002	0.0002	0.0044	0.0044
	L /-1	100													0.0020	
		500	0.0001	0.0001	0.0000	0.0000	0.0001	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0005	0.0005
	[0; 2]	50													0.0048	
	[0, 2]	100													0.0022	
		500													0.0005	
0.5	[-1; 3]	50													0.0049	
0.5	[-1, 3]	100													0.0049	
		500													0.0024	
	[0; 2]	50													0.0055	
	[0, 2]	100													0.0033	
		500													0.0029	
	[1 0]															
0.6	[-1; 3]	50													0.0060	
		100													0.0023	
		500													0.0005	
	[0; 2]	50													0.0052	
		100													0.0022	
		500													0.0005	
0.7	[-1; 3]	50													0.0044	
		100	0.0003	0.0003	0.0001	0.0001	0.0006	0.0006	0.0002	0.0002	0.0001	0.0001	0.0002	0.0002	0.0018	0.0018
		500	0.0001	0.0001	0.0000	0.0000	0.0001	0.0001	0.0001	0.0001	0.0000	0.0000	0.0000	0.0000	0.0004	0.0004
	[0; 2]	50	0.0012	0.0012	0.0009	0.0009	0.0034	0.0034	0.0024	0.0024	0.0002	0.0002	0.0005	0.0005	0.0040	0.0040
		100	0.0006	0.0006	0.0004	0.0004	0.0016	0.0016	0.0013	0.0013	0.0001	0.0001	0.0002	0.0002	0.0020	0.0020
		500	0.0001	0.0001	0.0001	0.0001	0.0002	0.0002	0.0002	0.0002	0.0000	0.0000	0.0000	0.0000	0.0004	0.0004
0.8	[-1; 3]	50	0.0004	0.0004	0.0002	0.0002	0.0019	0.0019	0.0007	0.0007	0.0001	0.0001	0.0009	0.0009	0.0034	0.0034
	L /-1	100	0.0002	0.0002	0.0001	0.0001	0.0010	0.0010	0.0005	0.0005	0.0001	0.0001	0.0004	0.0004	0.0018	0.0018
		500													0.0003	
	[0; 2]	50													0.0035	
	[~, ~]	100													0.0036	
		500													0.0010	
0.9	[-1; 3]	50													0.0003	
0.9	[-1;3]	100													0.0014	
	[0.0]	500													0.0002	
	[0; 2]	50													0.0046	
		100													0.0007	
		500	0.0001	0.0001	0.0001	0.0001	0.0008	0.0008	0.0005	0.0005	0.0000	0.0000	0.0001	0.0001	0.0002	0.0002

Tabela D.21: Estimativas do erro quadratico médio dos parâmetros da mistura de duas regressões lineares no caso PI

			α_1	α_1	β_1	β_1	α_2	α_2	β_2	β_2	σ_1	σ_1	σ_2	σ_2	π_1	π_1
π_1	x	n	EM	CEM	EM	CEM	EM	CEM	EM	CEM	EM	CEM	EM	CEM	EM	CEM
0.1	[-1; 3]	50													0.0013	
		100													0.0010	
		500													0.0002	
	[0; 2]	50													0.0013	
		100													0.0008	
		500													0.0002	
0.2	[-1; 3]	50													0.0034	
		100	0.0012	0.0012	0.0005	0.0005	0.0008	0.0008	0.0004	0.0004	0.0003	0.0003	0.0002	0.0002	0.0017	0.0017
		500	0.0002	0.0002	0.0001	0.0001	0.0002	0.0002	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0003	0.0003
	[0; 2]	50	0.0057	0.0055	0.0053	0.0048	0.0046	0.0045	0.0033	0.0033	0.0008	0.0008	0.0006	0.0006	0.0031	0.0031
		100	0.0022	0.0022	0.0018	0.0018	0.0020	0.0020	0.0016	0.0016	0.0003	0.0003	0.0002	0.0002	0.0016	0.0016
		500	0.0004	0.0004	0.0003	0.0003	0.0004	0.0004	0.0003	0.0003	0.0000	0.0000	0.0000	0.0000	0.0003	0.0003
0.3	[-1; 3]	50	0.0013	0.0013	0.0006	0.0006	0.0018	0.0018	0.0008	0.0008	0.0005	0.0004	0.0007	0.0006	0.0043	0.0043
		100	0.0007	0.0006	0.0003	0.0003	0.0012	0.0012	0.0004	0.0004	0.0002	0.0002	0.0003	0.0003	0.0023	0.0023
		500	0.0001	0.0001	0.0001	0.0001	0.0002	0.0002	0.0001	0.0001	0.0000	0.0000	0.0001	0.0001	0.0005	0.0005
	[0; 2]	50	0.0036	0.0036	0.0026	0.0027	0.0043	0.0042	0.0041	0.0040	0.0004	0.0004	0.0006	0.0006	0.0040	0.0040
		100	0.0013	0.0012	0.0011	0.0011	0.0019	0.0020	0.0016	0.0016	0.0002	0.0002	0.0003	0.0003	0.0021	0.0021
		500	0.0003	0.0003	0.0002	0.0002	0.0004	0.0004	0.0003	0.0003	0.0000	0.0000	0.0001	0.0001	0.0003	0.0004
0.4	[-1; 3]	50	0.0012	0.0012	0.0005	0.0005	0.0019	0.0019	0.0010	0.0010	0.0003	0.0003	0.0007	0.0006	0.0047	0.0048
		100	0.0005	0.0005	0.0002	0.0002	0.0011	0.0011	0.0005	0.0005	0.0002	0.0002	0.0004	0.0004	0.0025	0.0024
		500	0.0001	0.0001	0.0000	0.0000	0.0002	0.0002	0.0001	0.0001	0.0000	0.0000	0.0001	0.0001	0.0004	0.0004
	[0; 2]	50	0.0021	0.0021	0.0016	0.0016	0.0060	0.0058	0.0042	0.0041	0.0003	0.0003	0.0010	0.0009	0.0048	0.0048
	. , ,	100	0.0012	0.0011	0.0010	0.0010	0.0028	0.0028	0.0021	0.0021	0.0001	0.0001	0.0003	0.0003	0.0022	0.0022
		500	0.0002	0.0002	0.0002	0.0002	0.0005	0.0005	0.0004	0.0004	0.0000	0.0000	0.0001	0.0001	0.0005	0.0005
0.5	[-1; 3]	50	0.0008	0.0008	0.0003	0.0003	0.0024	0.0024	0.0010	0.0010	0.0003	0.0003	0.0009	0.0008	0.0043	0.0043
	[-, -]	100													0.0020	
		500													0.0005	
	[0; 2]	50	0.0017	0.0017	0.0015	0.0015	0.0078	0.0076	0.0060	0.0059	0.0003	0.0002	0.0009	0.0009	0.0053	0.0053
	L-7 1	100	0.0009	0.0009	0.0007	0.0007	0.0041	0.0041	0.0031	0.0031	0.0001	0.0001	0.0004	0.0004	0.0023	0.0023
		500													0.0006	
0.6	[-1; 3]	50													0.0046	
	. , - 1	100													0.0029	
		500	0.0001	0.0001	0.0000	0.0000	0.0003	0.0003	0.0001	0.0001	0.0000	0.0000	0.0001	0.0001	0.0005	0.0005
	[0; 2]	50													0.0043	
	L-7 1	100													0.0023	
		500													0.0005	
0.7	[-1; 3]	50	0.0005	0.0005	0.0002	0.0002	0.0043	0.0043	0.0023	0.0022	0.0002	0.0002	0.0017	0.0016	0.0033	0.0033
	. , - 1	100	0.0002	0.0002	0.0001	0.0001	0.0026	0.0026	0.0011	0.0011	0.0001	0.0001	0.0008	0.0008	0.0019	0.0019
		500													0.0004	
	[0; 2]	50													0.0046	
	L-7 1	100													0.0021	
		500													0.0004	
0.8	[-1; 3]	50													0.0027	
	[-, -]	100													0.0018	
		500													0.0003	
	[0; 2]	50													0.0031	
	[0, 2]	100													0.0015	
		500													0.0013	
0.9	[-1; 3]	50													0.0075	
0.3	[-1, 5]	100													0.0073	
		500													0.0003	
	[0; 2]	50													0.0002	
	[0, 2]	100													0.0017	
		500													0.0045	
		500	0.0001	5.0001	0.0001	5.0001	0.0000	0.0030	0.0027	0.0020	5.0000	5.0000	5.0003	0.0000	0.0002	0.0002

Tabela D.22: Estimativas do erro quadratico médio dos parâmetros da mistura de duas regressões lineares no caso PII

Apêndice D

			α_1	α_1	β_1	β_1	α_2	α_2	β_2	β_2	σ_1	σ_1	σ_2	σ_2	π_1	π_1
π_1	x	n	$_{\rm EM}$	CEM	$_{\rm EM}$	CEM	$_{\rm EM}$	CEM	$_{\rm EM}$	$_{\rm CEM}$	$_{\rm EM}$	CEM	$_{\rm EM}$	$_{\rm CEM}$	$_{\rm EM}$	CEM
0.1	[-1; 3]	50													0.0020	
		100													0.0013	
		500	0.0020	0.0017	0.0007	0.0006	0.0002	0.0002	0.0001	0.0001	0.0006	0.0006	0.0001	0.0001	0.0002	0.0002
	[0; 2]	50													0.0049	
		100	0.0603	0.0304	0.0330	0.0220	0.0021	0.0020	0.0046	0.0015	0.0046	0.0036	0.0006	0.0002	0.0064	0.0010
		500	0.0040	0.0034	0.0027	0.0024	0.0003	0.0003	0.0002	0.0002	0.0006	0.0007	0.0001	0.0001	0.0002	0.0002
0.2	[-1; 3]	50													0.0037	
		100	0.0065	0.0042	0.0022	0.0018	0.0010	0.0009	0.0004	0.0004	0.0017	0.0013	0.0003	0.0003	0.0015	0.0014
		500	0.0008	0.0008	0.0003	0.0003	0.0002	0.0002	0.0001	0.0001	0.0003	0.0003	0.0001	0.0001	0.0003	0.0003
	[0; 2]	50	0.0336	0.0250	0.0300	0.0183	0.0045	0.0043	0.0036	0.0033	0.0034	0.0026	0.0007	0.0007	0.0031	0.0028
		100	0.0115	0.0101	0.0080	0.0066	0.0021	0.0020	0.0017	0.0016	0.0017	0.0015	0.0004	0.0003	0.0015	0.0014
		500	0.0017	0.0015	0.0013	0.0012	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0001	0.0001	0.0003	0.0003
0.3	[-1; 3]	50	0.0083	0.0054	0.0032	0.0024	0.0023	0.0021	0.0008	0.0008	0.0028	0.0017	0.0010	0.0008	0.0043	0.0037
	-	100	0.0031	0.0025	0.0012	0.0011	0.0013	0.0013	0.0005	0.0005	0.0010	0.0007	0.0004	0.0004	0.0021	0.0022
		500	0.0006	0.0005	0.0003	0.0003	0.0002	0.0003	0.0001	0.0001	0.0002	0.0002	0.0001	0.0001	0.0004	0.0004
	[0; 2]	50	0.0147	0.0123	0.0114	0.0096	0.0048	0.0045	0.0039	0.0038	0.0020	0.0019	0.0009	0.0007	0.0037	0.0036
		100	0.0076	0.0066	0.0061	0.0052	0.0023	0.0023	0.0017	0.0017	0.0013	0.0011	0.0004	0.0003	0.0023	0.0022
		500	0.0014	0.0013	0.0008	0.0008	0.0005	0.0005	0.0004	0.0004	0.0002	0.0002	0.0001	0.0001	0.0004	0.0004
0.4	[-1; 3]	50	0.0044	0.0036	0.0022	0.0020	0.0028	0.0025	0.0011	0.0010	0.0019	0.0015	0.0010	0.0009	0.0056	0.0053
		100	0.0023	0.0022	0.0010	0.0009	0.0016	0.0015	0.0006	0.0005	0.0007	0.0006	0.0005	0.0005	0.0026	0.0026
		500	0.0004	0.0004	0.0002	0.0002	0.0003	0.0003	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0005	0.0006
	[0; 2]	50	0.0129	0.0104	0.0087	0.0075	0.0071	0.0058	0.0052	0.0045	0.0017	0.0013	0.0012	0.0010	0.0056	0.0053
		100	0.0042	0.0039	0.0034	0.0032	0.0027	0.0027	0.0020	0.0020	0.0007	0.0006	0.0004	0.0004	0.0028	0.0027
		500	0.0010	0.0010	0.0008	0.0007	0.0007	0.0007	0.0005	0.0005	0.0002	0.0002	0.0001	0.0001	0.0005	0.0005
0.5	[-1; 3]	50	0.0038	0.0034	0.0015	0.0014	0.0041	0.0033	0.0015	0.0013	0.0016	0.0013	0.0013	0.0010	0.0054	0.0051
	. , ,	100	0.0019	0.0018	0.0008	0.0008	0.0019	0.0016	0.0008	0.0007	0.0006	0.0006	0.0006	0.0005	0.0029	0.0029
		500	0.0003	0.0003	0.0002	0.0001	0.0003	0.0004	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0005	0.0005
	[0; 2]	50	0.0079	0.0074	0.0053	0.0049	0.0091	0.0082	0.0067	0.0059	0.0015	0.0012	0.0015	0.0011	0.0056	0.0057
		100	0.0035	0.0034	0.0028	0.0027	0.0039	0.0036	0.0030	0.0029	0.0006	0.0005	0.0006	0.0006	0.0024	0.0023
		500	0.0008	0.0008	0.0006	0.0006	0.0008	0.0008	0.0006	0.0005	0.0001	0.0001	0.0001	0.0001	0.0005	0.0005
0.6	[-1; 3]	50	0.0035	0.0032	0.0014	0.0013	0.0058	0.0046	0.0022	0.0019	0.0012	0.0010	0.0016	0.0013	0.0047	0.0044
	-	100	0.0012	0.0012	0.0006	0.0006	0.0023	0.0021	0.0009	0.0008	0.0004	0.0004	0.0007	0.0006	0.0025	0.0025
		500	0.0003	0.0003	0.0001	0.0001	0.0003	0.0003	0.0001	0.0001	0.0001	0.0001	0.0002	0.0002	0.0004	0.0004
	[0; 2]	50	0.0066	0.0057	0.0053	0.0046	0.0131	0.0084	0.0088	0.0066	0.0012	0.0008	0.0022	0.0013	0.0065	0.0056
		100	0.0028	0.0027	0.0023	0.0022	0.0061	0.0053	0.0050	0.0043	0.0005	0.0004	0.0009	0.0007	0.0026	0.0026
		500	0.0006	0.0006	0.0004	0.0004	0.0008	0.0008	0.0006	0.0006	0.0001	0.0001	0.0001	0.0002	0.0005	0.0006
0.7	[-1; 3]	50	0.0025	0.0022	0.0011	0.0010	0.0098	0.0057	0.0031	0.0022	0.0009	0.0007	0.0032	0.0021	0.0045	0.0038
		100	0.0013	0.0012	0.0005	0.0005	0.0028	0.0024	0.0013	0.0011	0.0004	0.0004	0.0011	0.0010	0.0022	0.0022
		500	0.0002	0.0002	0.0001	0.0001	0.0005	0.0005	0.0002	0.0002	0.0001	0.0001	0.0002	0.0002	0.0004	0.0004
	[0; 2]	50	0.0049	0.0047	0.0035	0.0033	0.0161	0.0125	0.0122	0.0099	0.0007	0.0006	0.0025	0.0020	0.0044	0.0044
		100	0.0029	0.0029	0.0023	0.0022	0.0068	0.0062	0.0049	0.0044	0.0004	0.0004	0.0010	0.0010	0.0020	0.0021
		500	0.0005	0.0005	0.0003	0.0003	0.0011	0.0010	0.0009	0.0008	0.0001	0.0001	0.0002	0.0002	0.0005	0.0005
0.8	[-1; 3]	50	0.0019	0.0017	0.0008	0.0007	0.0163	0.0105	0.0066	0.0039	0.0007	0.0006	0.0045	0.0033	0.0039	0.0034
	-	100	0.0011	0.0011	0.0004	0.0004	0.0062	0.0045	0.0022	0.0018	0.0003	0.0003	0.0017	0.0014	0.0015	0.0014
		500	0.0002	0.0002	0.0001	0.0001	0.0009	0.0009	0.0003	0.0003	0.0001	0.0001	0.0003	0.0004	0.0004	0.0004
	[0; 2]	50	0.0063	0.0054	0.0079	0.0073	0.0420	0.0286	0.0288	0.0193	0.0007	0.0006	0.0043	0.0036	0.0049	0.0053
		100	0.0020	0.0020	0.0017	0.0016	0.0112	0.0102	0.0082	0.0075	0.0003	0.0003	0.0017	0.0015	0.0015	0.0015
		500	0.0004	0.0004	0.0003	0.0003	0.0016	0.0015	0.0013	0.0011	0.0001	0.0001	0.0003	0.0003	0.0003	0.0003
0.9	[-1; 3]	50	0.0019	0.0018	0.0006	0.0006	0.0416	0.0234	0.0162	0.0093	0.0006	0.0005	0.0082	0.0076	0.0019	0.0012
		100	0.0009	0.0008	0.0004	0.0004	0.0228	0.0086	0.0073	0.0044	0.0003	0.0002	0.0047	0.0038	0.0012	0.0008
		500	0.0002	0.0002	0.0001	0.0001	0.0023	0.0019	0.0008	0.0007	0.0001	0.0001	0.0006	0.0006	0.0002	0.0002
	[0; 2]	50	0.0044	0.0038	0.0107	0.0028	0.0760	0.0463	0.0542	0.0372	0.0008	0.0006	0.0074	0.0065	0.0079	0.0017
		100													0.0055	
		500													0.0002	

Tabela D.23: Estimativas do erro quadratico médio dos parâmetros da mistura de duas regressões lineares no caso PIII

			α_1 EM	α_1	β_1	β_1	α_2	α_2	β_2	β_2	σ_1	σ_1	σ_2	σ_2	$_{\mathrm{EM}}^{\pi_{1}}$	$_{ ext{CEM}}^{\pi_1}$
-π ₁	[1 0]	50		CEM	EM	CEM	EM	CEM	EM	CEM	EM	CEM	EM	CEM	0.0012	
0.1	[-1; 3]	100													0.0012 0.0009	
		500													0.0009	
	[0; 2]	50													0.0001	
	[0; 2]	100													0.0011	
		500													0.0010	
0.2	[-1; 3]	50													0.0001	
0.2	[-1, 3]	100													0.0031	
		500													0.0010	
	[0; 2]	50													0.0004 0.0027	
	[0, 2]	100													0.0027	
		500													0.00017	
0.3	[-1; 3]	50														0.0043
0.5	[-1, 0]	100													0.0043	
		500													0.0013	
	[0; 2]	50													0.0030	
	[0, 2]	100													0.0022	
		500													0.0004	
0.4	[-1; 3]	50													0.0049	
0.1	[1,0]	100													0.0025	
		500													0.0004	
	[0; 2]	50													0.0046	
	L-7 1	100	0.0042	0.0042	0.0030	0.0030	0.0024	0.0024	0.0019	0.0019	0.0005	0.0005	0.0003	0.0003	0.0026	0.0026
		500	0.0008	0.0008	0.0006	0.0006	0.0006	0.0006	0.0004	0.0004	0.0001	0.0001	0.0001	0.0001	0.0004	0.0004
0.5	[-1; 3]	50	0.0030	0.0030	0.0011	0.0011	0.0030	0.0030	0.0013	0.0013	0.0011	0.0011	0.0010	0.0010	0.0043	0.0043
	. , ,	100	0.0016	0.0016	0.0007	0.0007	0.0016	0.0016	0.0007	0.0007	0.0004	0.0004	0.0004	0.0004	0.0023	0.0023
		500	0.0003	0.0003	0.0001	0.0001	0.0003	0.0003	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0004	0.0004
	[0; 2]	50	0.0065	0.0065	0.0050	0.0050	0.0070	0.0070	0.0063	0.0063	0.0010	0.0010	0.0009	0.0009	0.0063	0.0063
		100	0.0032	0.0032	0.0023	0.0023	0.0036	0.0036	0.0029	0.0029	0.0004	0.0004	0.0004	0.0004	0.0026	0.0026
		500	0.0006	0.0006	0.0005	0.0005	0.0006	0.0006	0.0005	0.0005	0.0001	0.0001	0.0001	0.0001	0.0005	0.0005
0.6	[-1; 3]	50													0.0050	
		100													0.0023	
		500													0.0004	
	[0; 2]	50													0.0048	
		100													0.0023	
		500													0.0004	
0.7	[-1; 3]	50													0.0040	
		100													0.0018	
	fo. 01	500													0.0005	
	[0; 2]	50													0.0045	
		100													0.0019	
	[4 0]	500													0.0004	
0.8	[-1; 3]	50														0.0032
		100													0.0017 0.0003	
	[0.0]	500													0.0003	
	[0; 2]	50 100													0.0029 0.0016	
		500													0.0016	
0.9	[-1; 3]	500													0.0003	
0.9	[-1, 3]	100													0.0018	
		500													0.0003	
	[0; 2]	50													0.0002	
	[0, 2]	100													0.0016	
		500													0.0043	
		000	5.0000	0.0000	0.0000	0.0000	0.0001	0.0001	0.0020	0.0020	0.0000	5.0000	5.0004	0.0004	5.0002	0.0002

Tabela D.24: Estimativas do erro quadratico médio dos parâmetros da mistura de duas regressões lineares no caso PIV

 $190 \hspace{3.1em} Ap \hat{\mathbf{e}} \mathbf{n} \mathbf{d} i \mathbf{c} \mathbf{e} \hspace{1.1em} D$

		20	$_{ m EM}^{lpha_1}$	α_1 CEM	β_1 EM	β_1 CEM	α_2 EM	α_2 CEM	β_2 EM	β_2 CEM	σ_1 EM	σ_1 CEM	σ_2 EM	σ_2 CEM	π_1 EM	$_{ ext{CEM}}^{\pi_1}$
$\frac{\pi_1}{0.1}$	[-1; 3]	50													0.0020	
0.1	[-1, 0]	100													0.0020	
		500													0.0002	
	[0; 2]	50													0.0032	
	[0, 2]	100													0.0012	
		500													0.0002	
0.2	[-1; 3]	50													0.0032	
	. , -1	100	0.0098	0.0090	0.0050	0.0040	0.0055	0.0052	0.0021	0.0020	0.0042	0.0035	0.0022	0.0020	0.0017	0.0017
		500	0.0018	0.0016	0.0008	0.0007	0.0010	0.0010	0.0004	0.0004	0.0006	0.0007	0.0003	0.0003	0.0004	0.0004
	[0; 2]	50	0.1246	0.0783	0.0764	0.0500	0.0249	0.0233	0.0195	0.0185	0.0095	0.0082	0.0052	0.0041	0.0034	0.0032
		100	0.0233	0.0209	0.0187	0.0166	0.0133	0.0127	0.0092	0.0087	0.0043	0.0031	0.0023	0.0021	0.0014	0.0014
		500	0.0040	0.0038	0.0030	0.0028	0.0028	0.0027	0.0018	0.0017	0.0008	0.0008	0.0003	0.0004	0.0004	0.0004
0.3	[-1; 3]	50	0.0322	0.0151	0.0108	0.0066	0.0179	0.0152	0.0065	0.0059	0.0062	0.0043	0.0049	0.0041	0.0045	0.0046
		100	0.0067	0.0063	0.0036	0.0034	0.0085	0.0081	0.0035	0.0034	0.0022	0.0021	0.0020	0.0019	0.0025	0.0026
		500													0.0004	
	[0; 2]	50													0.0041	
		100													0.0026	
		500													0.0005	
0.4	[-1; 3]	50													0.0052	
		100													0.0025	
	[0.0]	500													0.0005	
	[0; 2]	50													0.0045	
		100 500													$0.0026 \\ 0.0005$	
0.5	[-1; 3]	500													0.0003	
0.5	[-1; 3]	100													0.0047	
		500													0.0025	
	[0; 2]	50													0.0055	
	[0, 2]	100													0.0023	
		500													0.0005	
0.6	[-1; 3]	50													0.0049	
	. , ,	100	0.0030	0.0029	0.0012	0.0011	0.0147	0.0130	0.0060	0.0055	0.0009	0.0008	0.0038	0.0032	0.0024	0.0024
		500	0.0006	0.0006	0.0003	0.0003	0.0022	0.0024	0.0009	0.0009	0.0002	0.0002	0.0008	0.0009	0.0005	0.0005
	[0; 2]	50	0.0156	0.0141	0.0134	0.0122	0.0580	0.0530	0.0480	0.0417	0.0020	0.0017	0.0107	0.0097	0.0052	0.0049
		100													0.0024	
		500	0.0015	0.0014	0.0010	0.0010	0.0058	0.0055	0.0043	0.0040	0.0002	0.0002	0.0008	0.0009	0.0005	0.0005
0.7	[-1; 3]	50													0.0042	
		100													0.0023	
		500													0.0004	
	[0; 2]	50													0.0051	
		100													0.0020	
	[1 0]	500													0.0004	
0.8	[-1; 3]	$\frac{50}{100}$													$0.0036 \\ 0.0017$	
		500													0.0017	
	[0; 2]	500 50													0.0004 0.0111	
	[0, 2]	100													0.0011	
		500													0.0013	
0.9	[-1; 3]	50													0.0004	
0.3	[-1, 0]	100													0.0018	
		500													0.0003	
	[0; 2]	50													0.0078	
	[~, -]	100													0.0009	
		500													0.0002	
-																

Tabela D.25: Estimativas do erro quadratico médio dos parâmetros da mistura de duas regressões lineares no caso ${\rm PV}$

$\begin{array}{c c c c c c c c c c c c c c c c c c c $																
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			α_1	α_1	β_1	β_1	α_2	α_2	β_2	β_2	σ_1	σ_1	σ_2	σ_2	π_1	π_1
$ \begin{bmatrix} 100 \\ 500 \\ 0.2081 \\ 0.838 \\ 0.0238 \\ 0.0248 \\ 0.0238 \\ 0.0024 \\ 0.0238 \\ 0.0021 \\ 0.00248 \\ 0.0238 \\ 0.0021 \\ 0.00248 \\ 0.0238 \\ 0.0021 \\ 0.00248 \\ 0.0238 \\ 0.0021 \\ 0.00248 \\ 0.0028 \\ 0.0028 \\ 0.0028 \\ 0.0028 \\ 0.0028 \\ 0.0021 \\ 0.0028 \\ 0.0027 \\ 0$	π_1 x															
$ \begin{bmatrix} [6;2] \\ [7] \\ [7] \\ [7] \\ [8] \\ [8] \\ [9] \\$	0.1 [-1; 3]															
$ \begin{bmatrix} [0;2] \\ [0;2] \\ [0;3] \\ [0;4] \\ [0;5] \\ [0;6] \\ [0;6] \\ [0;7] \\ [$																
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $																
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	[0; 2]															
$ \begin{bmatrix} -1;3 \\ 0.2 \\ -1;3 \\ 0.0 \end{bmatrix} = \begin{bmatrix} 0.1734 & 0.0657 & 0.0529 & 0.0262 & 0.0197 & 0.0147 & 0.0061 & 0.0055 & 0.0333 & 0.0276 & 0.0058 & 0.0040 & 0.0063 & 0.0026 \\ 0.0780 & 0.0302 & 0.0224 & 0.0112 & 0.0087 & 0.0066 & 0.0038 & 0.0024 & 0.0140 & 0.0038 & 0.0024 & 0.0036 & 0.0036 \\ 0.0071 & 0.0085 & 0.0024 & 0.0119 & 0.0013 & 0.0014 & 0.0004 & 0.0025 & 0.0061 & 0.0005 & 0.0004 & 0.0004 \\ 0.0071 & 0.0085 & 0.0024 & 0.0199 & 0.0133 & 0.0014 & 0.0004 & 0.0025 & 0.0061 & 0.0005 & 0.0004 & 0.0004 \\ 0.0071 & 0.0085 & 0.0024 & 0.0199 & 0.0155 & 0.0326 & 0.0388 & 0.0252 & 0.0427 & 0.0323 & 0.0094 & 0.0038 & 0.0087 & 0.0038 \\ 0.0161 & 0.0166 & 0.0099 & 0.0083 & 0.0028 & 0.0022 & 0.0023 & 0.0026 & 0.0056 & 0.0005 & 0.0004 & 0.0028 \\ 0.038 & -133 & 50 & 0.0707 & 0.0404 & 0.0246 & 0.0156 & 0.0194 & 0.0157 & 0.0065 & 0.0057 & 0.0264 & 0.0204 & 0.0066 & 0.0054 & 0.0079 & 0.0038 \\ 0.0010 & 0.0310 & 0.0167 & 0.0082 & 0.0063 & 0.0105 & 0.0035 & 0.0031 & 0.0107 & 0.0095 & 0.0034 & 0.0025 & 0.0036 & 0.005 \\ 0.0043 & 0.0060 & 0.0018 & 0.0015 & 0.0015 & 0.0016 & 0.0006 & 0.0016 & 0.0035 & 0.0006 & 0.0008 & 0.0007 & 0.0008 \\ 0.028 & 0.0599 & 0.0433 & 0.0457 & 0.0333 & 0.0167 & 0.0053 & 0.0024 & 0.0066 & 0.0082 & 0.0035 & 0.0035 \\ 0.0093 & 0.0094 & 0.0059 & 0.0055 & 0.0034 & 0.0033 & 0.0027 & 0.0015 & 0.0031 & 0.0066 & 0.0088 & 0.0023 & 0.0035 & 0.003 \\ 0.044 & [-1;3] & 50 & 0.0410 & 0.0305 & 0.0149 & 0.0122 & 0.0232 & 0.0182 & 0.0080 & 0.0064 & 0.0138 & 0.0131 & 0.0075 & 0.0057 & 0.0063 & 0.005 \\ 0.055 & 0.0809 & 0.0661 & 0.0091 & 0.0014 & 0.0037 & 0.0091 & 0.0064 & 0.0039 & 0.0035 & 0.0034 & 0.0035 & 0.0035 & 0.0034 & 0.0035 & 0.0034 & 0.0035 & 0.0034 & 0.0035 & 0.0$																
$ \begin{bmatrix} $																
$ \begin{bmatrix} [5;2] & 500 & 0.0071 & 0.0085 & 0.0024 & 0.0019 & 0.0013 & 0.0014 & 0.0004 & 0.0004 & 0.0005 & 0.0061 & 0.0005 & 0.0005 & 0.0004 & 0.0006 \\ [5;2] & 500 & 0.2875 & 0.1300 & 0.1990 & 0.1054 & 0.0345 & 0.0326 & 0.0328 & 0.0252 & 0.0427 & 0.0323 & 0.0094 & 0.0038 & 0.0028 & 0.0028 \\ [5;0] & 500 & 0.0161 & 0.0166 & 0.0099 & 0.0083 & 0.0028 & 0.0022 & 0.0023 & 0.0026 & 0.0056 & 0.0005 & 0.0005 & 0.0004 & 0.0006 \\ [5;0] & 500 & 0.0161 & 0.0166 & 0.0099 & 0.0083 & 0.0028 & 0.0022 & 0.0023 & 0.0026 & 0.0056 & 0.0005 & 0.0005 & 0.0004 & 0.0006 \\ [5;0] & 500 & 0.00310 & 0.0167 & 0.0082 & 0.0063 & 0.0105 & 0.0085 & 0.0057 & 0.0264 & 0.0204 & 0.0066 & 0.0054 & 0.0079 & 0.008 \\ [5;0] & 500 & 0.0043 & 0.0060 & 0.0018 & 0.0015 & 0.0081 & 0.0035 & 0.0031 & 0.0107 & 0.0095 & 0.0034 & 0.0025 & 0.0036 & 0.0006 \\ [5;2] & 500 & 0.1508 & 0.0930 & 0.1215 & 0.0746 & 0.0511 & 0.0420 & 0.0334 & 0.0264 & 0.0211 & 0.0159 & 0.0085 & 0.0053 & 0.0082 & 0.005 \\ [5;0] & 500 & 0.0591 & 0.0403 & 0.0457 & 0.0330 & 0.0167 & 0.0153 & 0.0139 & 0.0129 & 0.0087 & 0.0035 & 0.0035 & 0.0035 & 0.003 & 0.0035 & 0.0036 & 0.0006 & 0.0093 & 0.0094 & 0.0059 & 0.0055 & 0.0034 & 0.0033 & 0.0028 & 0.0027 & 0.0015 & 0.0031 & 0.0006 & 0.0008 & 0.0005 & 0.0006 & 0.0008 & 0.0005 & 0.0006 & 0.0008 & 0.0005 & 0.0006 & 0.0008 & 0.0005 & 0.0006 & 0.0008 & 0.0005 & 0.0006 & 0.0008 & 0.0005 & 0.0006 & 0.0008 & 0.0005 & 0.0006 & 0.0008 & 0.0005 & 0.0006 & 0.0008 & 0.0005 & 0.0006 & 0.0008 & 0.0005 & 0.0006 & 0.0008 & 0.0005 & 0.0006 & 0.0008 & 0.0005 & 0.0006 & 0.0008 & 0.0005 & 0.0006 & 0.0008 & 0.0005 & 0.0006 & 0.0008 & 0.0005 & 0.0006 & 0.0008 & 0.0006 & 0.0008 & 0.0005 & 0.0006 & 0.000$	0.2 [-1; 3]															
$ \begin{bmatrix} [0;2] \\ [0] \\$																
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$																
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	[0; 2]															
$ \begin{bmatrix} -1;3 \\ 0.3 \\ -1;3 \\ 0.0 \end{bmatrix} \begin{bmatrix} 50 \\ 0.0707 & 0.0404 & 0.0246 & 0.0156 & 0.0194 & 0.0157 & 0.0065 & 0.0057 & 0.0264 & 0.0204 & 0.0066 & 0.0054 & 0.0079 & 0.0055 \\ 0.0310 & 0.0167 & 0.0082 & 0.0063 & 0.0105 & 0.0080 & 0.0035 & 0.0031 & 0.0107 & 0.0095 & 0.0034 & 0.0025 & 0.0036 & 0.002 \\ 0.0043 & 0.0060 & 0.0018 & 0.0015 & 0.0016 & 0.0066 & 0.0066 & 0.0066 & 0.0035 & 0.0006 & 0.0008 & 0.0007 & 0.006 \\ 0.00591 & 0.403 & 0.0457 & 0.0330 & 0.0167 & 0.0153 & 0.0139 & 0.0129 & 0.0104 & 0.0087 & 0.0035 & 0.0028 \\ 0.0093 & 0.0094 & 0.0055 & 0.0034 & 0.0033 & 0.0022 & 0.0012 & 0.0014 & 0.0087 & 0.0035 & 0.0028 \\ 0.0093 & 0.0094 & 0.0055 & 0.0034 & 0.0033 & 0.0022 & 0.0015 & 0.0031 & 0.0006 & 0.0008 & 0.0005 & 0.0006 \\ 0.0410 & 0.0305 & 0.0149 & 0.0122 & 0.0232 & 0.0182 & 0.0080 & 0.0064 & 0.0158 & 0.0131 & 0.0075 & 0.0057 & 0.0063 & 0.0028 \\ 0.0030 & 0.0032 & 0.0012 & 0.0010 & 0.0019 & 0.0024 & 0.0097 & 0.0015 & 0.0031 & 0.0007 & 0.0057 & 0.0063 & 0.0028 \\ 0.0030 & 0.0032 & 0.0012 & 0.0010 & 0.0019 & 0.0024 & 0.0015 & 0.0013 & 0.0006 & 0.0007 & 0.0005 & 0.0006 \\ 0.0300 & 0.0032 & 0.0012 & 0.0010 & 0.0019 & 0.0024 & 0.0019 & 0.0023 & 0.0006 & 0.0001 & 0.0003 & 0.0003 & 0.0034 & 0.0009 \\ 0.0256 & 0.0166 & 0.0691 & 0.0453 & 0.0516 & 0.0451 & 0.0366 & 0.0929 & 0.0160 & 0.0122 & 0.0099 & 0.0073 & 0.0089 & 0.0009 \\ 0.0300 & 0.0032 & 0.0012 & 0.0010 & 0.0019 & 0.0024 & 0.0014 & 0.0033 & 0.0034 & 0.0009 \\ 0.0075 & 0.0075 & 0.0075 & 0.0053 & 0.0049 & 0.0041 & 0.00147 & 0.0131 & 0.0076 & 0.0058 & 0.0039 & 0.0039 & 0.0039 & 0.0039 \\ 0.055 & [-1;3] & 50 & 0.0450 & 0.0244 & 0.0152 & 0.0107 & 0.0378 & 0.0223 & 0.0119 & 0.0044 & 0.0140 & 0.0089 & 0.0044 & 0.0041 \\ 0.0120 & 0.0113 & 0.0041 & 0.0035 & 0.0126 & 0.0107 & 0.0050 & 0.0044 & 0.0140 & 0.0016 & 0.0066 & 0.0066 \\ 0.025 & 0.0025 & 0.0028 & 0.0009 & 0.0028 & 0.0028 & 0.0008 & 0.0011 & 0.0014 & 0.0016 & 0.0066 & 0.0066 \\ 0.025 & 0.0025 & 0.0028 & 0.0009 & 0.0028 & 0.0028 & 0.0008 & 0.0014 & 0.0012 & 0.0014 & 0.0016 & 0.0066 & 0.0066 & 0.0066 & 0.0066 & 0.0066 & 0.0066 & 0.0066 & $																
$\begin{bmatrix} 100 \\ 500 \\ 0.04310 & 0.0167 & 0.0082 & 0.0063 & 0.0105 & 0.0080 & 0.0035 & 0.0031 & 0.0107 & 0.0095 & 0.0034 & 0.0025 & 0.0036 & 0.0025 \\ 0.0043 & 0.0060 & 0.0018 & 0.0015 & 0.0016 & 0.0006 & 0.0006 & 0.0035 & 0.0006 & 0.0008 & 0.0007 & 0.0006 \\ 100 \\ 0.0591 & 0.0403 & 0.0457 & 0.0330 & 0.0167 & 0.0153 & 0.0139 & 0.0129 & 0.0104 & 0.0087 & 0.0035 & 0.0082 & 0.0035 \\ 0.0093 & 0.0094 & 0.0059 & 0.0055 & 0.0034 & 0.0033 & 0.0028 & 0.0027 & 0.0015 & 0.0031 & 0.0006 & 0.0008 & 0.0005 & 0.0005 \\ 0.04 \\ -1;3 \\ 0 0 & 0.0256 & 0.0166 & 0.0072 & 0.0055 & 0.0034 & 0.0033 & 0.0028 & 0.0027 & 0.0015 & 0.0031 & 0.0006 & 0.0008 & 0.0005 \\ 0.0256 & 0.0166 & 0.0072 & 0.0059 & 0.0131 & 0.0106 & 0.0044 & 0.0158 & 0.0131 & 0.0075 & 0.0057 & 0.0063 & 0.0028 \\ 0.030 & 0.0032 & 0.0012 & 0.0019 & 0.0022 & 0.0080 & 0.0004 & 0.0158 & 0.0131 & 0.0075 & 0.0053 & 0.0044 \\ 0.0256 & 0.0166 & 0.0072 & 0.0059 & 0.0131 & 0.0106 & 0.0041 & 0.0037 & 0.0091 & 0.0064 & 0.0039 & 0.0035 & 0.0044 \\ 0.030 & 0.0030 & 0.0032 & 0.0012 & 0.0019 & 0.0020 & 0.0008 & 0.0007 & 0.0010 & 0.0023 & 0.0006 & 0.0011 & 0.0005 & 0.004 \\ 0.055 & 0.0089 & 0.0661 & 0.0659 & 0.0131 & 0.0166 & 0.0029 & 0.0160 & 0.0122 & 0.0099 & 0.0073 & 0.0089 & 0.006 \\ 0.0423 & 0.0339 & 0.0419 & 0.0228 & 0.0451 & 0.0366 & 0.0292 & 0.0160 & 0.0122 & 0.0099 & 0.0073 & 0.0089 & 0.006 \\ 0.0423 & 0.0339 & 0.0419 & 0.0281 & 0.0218 & 0.0191 & 0.0147 & 0.0131 & 0.0076 & 0.0058 & 0.0039 & 0.0039 & 0.0039 & 0.003 \\ 0.055 & 0.0075 & 0.0075 & 0.0053 & 0.0049 & 0.0041 & 0.0043 & 0.0029 & 0.0028 & 0.0012 & 0.0008 & 0.0010 & 0.0005 & 0.006 \\ 0.055 & 0.0025 & 0.0028 & 0.0009 & 0.0008 & 0.0025 & 0.0228 & 0.0012 & 0.0014 & 0.0010 & 0.0064 & 0.0066 & 0.006 \\ 0.055 & 0.0025 & 0.0028 & 0.0009 & 0.0008 & 0.0025 & 0.0228 & 0.0008 & 0.0007 & 0.0008 & 0.0014 & 0.0010 & 0.0064 & 0.0066 & 0.0064 \\ 0.055 & 0.0025 & 0.0028 & 0.0009 & 0.0008 & 0.0025 & 0.0028 & 0.0008 & 0.0007 & 0.0008 & 0.0014 & 0.0016 & 0.0066 & 0.0064 & 0.0066 & 0.0064 & 0.0066 & 0.0064 & 0.0066 & 0.0064 & 0.0066 & 0.0064 & 0.0066 & 0.0064 & $																
$ \begin{bmatrix} [0;2] & 500 & 0.0043 & 0.0060 & 0.0018 & 0.0015 & 0.0015 & 0.0016 & 0.0006 & 0.0016 & 0.0035 & 0.0006 & 0.0008 & 0.0007 & 0.0016 \\ [0;2] & 50 & 0.1508 & 0.0930 & 0.1215 & 0.0746 & 0.0511 & 0.0420 & 0.0334 & 0.0264 & 0.0211 & 0.0159 & 0.0085 & 0.0053 & 0.0028 & 0.0035 \\ [0;2] & 500 & 0.0591 & 0.0403 & 0.0457 & 0.0330 & 0.0167 & 0.0153 & 0.0129 & 0.0104 & 0.0087 & 0.0035 & 0.0028 & 0.0035 \\ [0;0] & 0.0093 & 0.0094 & 0.0059 & 0.0055 & 0.0034 & 0.0033 & 0.0028 & 0.0027 & 0.0015 & 0.0031 & 0.0066 & 0.0008 & 0.0005 & 0.006 \\ [0;4] & 500 & 0.0410 & 0.0335 & 0.0149 & 0.0122 & 0.0232 & 0.0182 & 0.0080 & 0.0064 & 0.0158 & 0.0131 & 0.0075 & 0.0057 & 0.0057 \\ [0;2] & 500 & 0.0030 & 0.0032 & 0.0012 & 0.0010 & 0.0019 & 0.0020 & 0.0008 & 0.0007 & 0.0010 & 0.0023 & 0.0006 & 0.0011 & 0.0005 & 0.006 \\ [0;2] & 500 & 0.0809 & 0.0661 & 0.0661 & 0.0453 & 0.0516 & 0.0451 & 0.0366 & 0.0292 & 0.0160 & 0.0122 & 0.0099 & 0.0073 & 0.0089 & 0.006 \\ [0;2] & 500 & 0.0809 & 0.0661 & 0.0691 & 0.0453 & 0.0516 & 0.0451 & 0.0366 & 0.0292 & 0.0160 & 0.0122 & 0.0099 & 0.0073 & 0.0089 & 0.006 \\ [0;2] & 500 & 0.0075 & 0.0075 & 0.0053 & 0.0049 & 0.0041 & 0.0043 & 0.0029 & 0.0028 & 0.0012 & 0.0008 & 0.0010 & 0.0005 & 0.006 \\ [0;5] & 500 & 0.0450 & 0.0244 & 0.0152 & 0.0107 & 0.0378 & 0.0223 & 0.0119 & 0.0084 & 0.0146 & 0.0092 & 0.0140 & 0.0089 & 0.0084 & 0.006 \\ [0;5] & 500 & 0.0450 & 0.0244 & 0.0152 & 0.0107 & 0.0378 & 0.0233 & 0.0119 & 0.0084 & 0.0014 & 0.0010 & 0.0016 & 0.0064 & 0.006 & 0$	0.3 [-1; 3]															
$ \begin{bmatrix} [0;2] \\ [0] \\$																
$ \begin{bmatrix} 100 & 0.0591 & 0.0403 & 0.0457 & 0.0330 & 0.0167 & 0.0153 & 0.0139 & 0.0129 & 0.0104 & 0.0087 & 0.0035 & 0.0028 & 0.0035 & 0.002 \\ 0.0093 & 0.0094 & 0.0059 & 0.0055 & 0.0034 & 0.0033 & 0.0028 & 0.0027 & 0.0015 & 0.0031 & 0.0006 & 0.0008 & 0.0005 & 0.000 \\ 0.04 & [-1;3] & 50 & 0.0410 & 0.0335 & 0.0149 & 0.0122 & 0.0232 & 0.0182 & 0.0080 & 0.0064 & 0.0158 & 0.0131 & 0.0075 & 0.0057 & 0.0063 & 0.002 \\ 0.0256 & 0.0166 & 0.0072 & 0.0059 & 0.0131 & 0.0106 & 0.0041 & 0.0037 & 0.0091 & 0.0064 & 0.0039 & 0.0035 & 0.0034 & 0.003 \\ 0.0030 & 0.0032 & 0.0012 & 0.0010 & 0.0019 & 0.0020 & 0.0008 & 0.0007 & 0.0010 & 0.0023 & 0.0006 & 0.0011 & 0.0005 & 0.000 \\ 0.0256 & 0.0809 & 0.0661 & 0.0691 & 0.0453 & 0.0516 & 0.0451 & 0.0366 & 0.0292 & 0.0160 & 0.0122 & 0.0099 & 0.0073 & 0.0089 & 0.000 \\ 0.0030 & 0.0032 & 0.0012 & 0.0010 & 0.0019 & 0.0020 & 0.0008 & 0.0007 & 0.0010 & 0.0023 & 0.0003 & 0.0039 & 0.003 \\ 0.0423 & 0.0339 & 0.0419 & 0.0281 & 0.0218 & 0.0191 & 0.0147 & 0.0131 & 0.0076 & 0.0058 & 0.0039 & 0.0030 & 0.0039 & 0.003 \\ 0.0075 & 0.0075 & 0.0075 & 0.0053 & 0.0049 & 0.0041 & 0.0043 & 0.0029 & 0.0012 & 0.0012 & 0.0008 & 0.0010 & 0.0005 & 0.000 \\ 0.05 & [-1;3] & 50 & 0.0450 & 0.0244 & 0.0152 & 0.0107 & 0.0378 & 0.0223 & 0.0119 & 0.0084 & 0.0146 & 0.0092 & 0.0140 & 0.0089 & 0.0088 & 0.004 \\ 0.0120 & 0.0113 & 0.0041 & 0.0035 & 0.0126 & 0.0107 & 0.0055 & 0.0044 & 0.0015 & 0.0052 & 0.0048 & 0.0068 & 0.006 & 0.0064 & 0.0056 & 0.0044 & 0.0016 & 0.0066 & 0.006 $																
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	[0; 2]															
$ \begin{bmatrix} 0.4 & [-1;3] & 50 & 0.0410 & 0.035 & 0.0149 & 0.0122 & 0.0232 & 0.0182 & 0.0080 & 0.0064 & 0.0158 & 0.0131 & 0.0075 & 0.0057 & 0.0063 & 0.0089 \\ 100 & 0.0256 & 0.0166 & 0.0072 & 0.0059 & 0.0131 & 0.0106 & 0.0041 & 0.0037 & 0.0091 & 0.0064 & 0.0039 & 0.0035 & 0.0034 & 0.003 \\ 500 & 0.0030 & 0.0032 & 0.0012 & 0.0010 & 0.0019 & 0.0020 & 0.0008 & 0.0007 & 0.0010 & 0.0023 & 0.0006 & 0.0011 & 0.0005 & 0.000 \\ 100 & 0.0809 & 0.0661 & 0.0691 & 0.0453 & 0.0516 & 0.0451 & 0.0366 & 0.0292 & 0.0160 & 0.0122 & 0.0099 & 0.0073 & 0.0089 & 0.006 \\ 100 & 0.0423 & 0.0339 & 0.0419 & 0.0281 & 0.0218 & 0.0191 & 0.0147 & 0.0131 & 0.0076 & 0.0058 & 0.0039 & 0.0030 & 0.0039 & 0.003 \\ 500 & 0.0075 & 0.0075 & 0.0053 & 0.0049 & 0.0041 & 0.0043 & 0.0029 & 0.0028 & 0.0012 & 0.0008 & 0.0010 & 0.0005 & 0.000 \\ 0.5 & [-1;3] & 50 & 0.0450 & 0.0244 & 0.0152 & 0.0107 & 0.0378 & 0.0223 & 0.0119 & 0.0084 & 0.0146 & 0.0092 & 0.0140 & 0.0089 & 0.0084 & 0.004 \\ 0.05 & [-1;3] & 50 & 0.0450 & 0.0244 & 0.0152 & 0.0107 & 0.0378 & 0.0223 & 0.0119 & 0.0084 & 0.0146 & 0.0092 & 0.0140 & 0.0089 & 0.0084 & 0.004 \\ 0.05 & [-1;3] & 50 & 0.0630 & 0.0525 & 0.00441 & 0.0035 & 0.0126 & 0.0107 & 0.0050 & 0.0043 & 0.0051 & 0.0052 & 0.0043 & 0.0033 & 0.005 \\ 0.025 & 0.0028 & 0.0009 & 0.0008 & 0.0025 & 0.0028 & 0.0008 & 0.0001 & 0.0005 & 0.0044 & 0.0010 & 0.0016 & 0.0006 & 0.0006 \\ 0.05 & [0;2] & 50 & 0.0630 & 0.0525 & 0.0441 & 0.0403 & 0.0768 & 0.0636 & 0.0542 & 0.0440 & 0.0112 & 0.0078 & 0.0136 & 0.0096 & 0.0066 & 0.0049 \\ 0.06 & [-1;3] & 50 & 0.0267 & 0.0183 & 0.0096 & 0.0075 & 0.0532 & 0.0295 & 0.0150 & 0.0107 & 0.0095 & 0.0066 & 0.0044 & 0.0041 & 0.0010 & 0.0014 & 0.0010 & 0.0014 & 0.0010 & 0.0014 & 0.0010 & 0.0014 & 0.0010 & 0.0014 & 0.0010 & 0.0014 & 0.0010 & 0.0014 & 0.0010 & 0.0014 & 0.0010 & 0.0014 & 0.0010 & 0.0014 & 0.0015 & 0.0014 & 0.0015 & 0.0014 & 0.0015 & 0.0014 & 0.0015 & 0.0014 & 0.0015 & 0.0014 & 0.0015 & 0.0014 & 0.0015 & 0.0014 & 0.0015 & 0.0014 & 0.0015 & 0.0015 & 0.0025 & 0.0010 & 0.0014 & 0.0014 & 0.0026 & 0.0006 & 0.0014 & 0.0014 & 0.0014 $																
$\begin{bmatrix} 100 & 0.0256 & 0.0166 & 0.0072 & 0.0059 & 0.0131 & 0.0106 & 0.0041 & 0.0037 & 0.0091 & 0.0064 & 0.0039 & 0.0035 & 0.0034 & 0.0035 \\ 500 & 0.0030 & 0.0032 & 0.0012 & 0.0010 & 0.0020 & 0.0008 & 0.0007 & 0.0010 & 0.0023 & 0.0006 & 0.0011 & 0.0005 & 0.000 \\ 105 & 50 & 0.0809 & 0.0661 & 0.0691 & 0.0615 & 0.0451 & 0.0366 & 0.0292 & 0.0160 & 0.0122 & 0.0099 & 0.0073 & 0.0089 & 0.006 \\ 500 & 0.0423 & 0.0339 & 0.0419 & 0.0281 & 0.0218 & 0.0191 & 0.0147 & 0.0131 & 0.0076 & 0.0058 & 0.0039 & 0.0030 & 0.0039 & 0.003 \\ 500 & 0.0075 & 0.0075 & 0.0053 & 0.0049 & 0.0041 & 0.0043 & 0.0029 & 0.0028 & 0.0012 & 0.0021 & 0.0008 & 0.0010 & 0.0005 & 0.000 \\ 500 & 0.00420 & 0.0244 & 0.0152 & 0.0107 & 0.0378 & 0.0223 & 0.0119 & 0.0084 & 0.0146 & 0.0092 & 0.0140 & 0.0089 & 0.0084 & 0.004 \\ 500 & 0.0120 & 0.0113 & 0.0041 & 0.0035 & 0.0126 & 0.0107 & 0.0050 & 0.0043 & 0.0051 & 0.0051 & 0.0052 & 0.0043 & 0.0033 & 0.003 \\ 500 & 0.0025 & 0.0028 & 0.0009 & 0.0008 & 0.0025 & 0.0028 & 0.0008 & 0.0007 & 0.0008 & 0.0011 & 0.0016 & 0.0006 & 0.004 \\ 500 & 0.0030 & 0.0252 & 0.0180 & 0.0157 & 0.0359 & 0.0282 & 0.0234 & 0.0186 & 0.0052 & 0.0044 & 0.0014 & 0.0016 & 0.006 & 0.004 \\ 500 & 0.0049 & 0.0051 & 0.0037 & 0.0033 & 0.0061 & 0.0058 & 0.0042 & 0.0038 & 0.0009 & 0.0018 & 0.0008 & 0.0044 & 0.0016 & 0.0006 & 0.004 \\ 500 & 0.0022 & 0.0021 & 0.0008 & 0.0008 & 0.0033 & 0.0041 & 0.0013 & 0.0044 & 0.0018 & 0.0088 & 0.0044 & 0.0038 & 0.0044 & 0.0038 & 0.0084 & 0.0066 & 0.0032 & 0.004 \\ 500 & 0.0022 & 0.0021 & 0.0008 & 0.0008 & 0.0033 & 0.0041 & 0.0012 & 0.0011 & 0.0007 & 0.0014 & 0.0026 & 0.0006 & 0.00$																
$ \begin{bmatrix} [0;2] & 50 & 0.0030 & 0.0032 & 0.0012 & 0.0010 & 0.0019 & 0.0020 & 0.0008 & 0.0007 & 0.0010 & 0.0023 & 0.0006 & 0.0011 & 0.0005 & 0.0006 \\ [0;2] & 50 & 0.0809 & 0.0661 & 0.0691 & 0.0453 & 0.0516 & 0.0451 & 0.0366 & 0.0292 & 0.0160 & 0.0122 & 0.0099 & 0.0073 & 0.0089 & 0.0065 \\ [0;2] & 50 & 0.0423 & 0.0339 & 0.0419 & 0.0218 & 0.0191 & 0.0147 & 0.0131 & 0.0076 & 0.058 & 0.0039 & 0.0033 & 0.0039 & 0.0035 \\ [0;3] & 50 & 0.0075 & 0.0075 & 0.0053 & 0.0049 & 0.0041 & 0.0043 & 0.0029 & 0.0028 & 0.0012 & 0.0021 & 0.0008 & 0.0010 & 0.0005 & 0.0006 \\ [0;4] & 50 & 0.0450 & 0.0244 & 0.0152 & 0.0107 & 0.0378 & 0.0223 & 0.0119 & 0.0044 & 0.0146 & 0.0092 & 0.0140 & 0.0089 & 0.0084 & 0.006 \\ [0;2] & 50 & 0.0025 & 0.0028 & 0.0009 & 0.0008 & 0.0025 & 0.0028 & 0.0008 & 0.0007 & 0.0008 & 0.0014 & 0.0010 & 0.0016 & 0.0066 & 0.006 \\ [0;2] & 50 & 0.0630 & 0.0525 & 0.0441 & 0.0403 & 0.0768 & 0.0636 & 0.0562 & 0.0440 & 0.0112 & 0.0078 & 0.0136 & 0.0066 & 0.0068 & 0.006 \\ [0;2] & 50 & 0.0630 & 0.0525 & 0.0441 & 0.0403 & 0.0768 & 0.0636 & 0.0562 & 0.0440 & 0.0112 & 0.0078 & 0.0136 & 0.0066 & 0.0068 & 0.006 \\ [0;3] & 50 & 0.0049 & 0.0051 & 0.0037 & 0.0033 & 0.0061 & 0.0058 & 0.0042 & 0.0038 & 0.0009 & 0.0018 & 0.0008 & 0.0014 & 0.0006 & 0.006 \\ [0;4] & 50 & 0.0267 & 0.0183 & 0.0096 & 0.0075 & 0.0532 & 0.0242 & 0.0038 & 0.0009 & 0.0018 & 0.0008 & 0.0014 & 0.0016 & 0.0066 & 0.0032 & 0.0066 & 0.0042 & 0.0018 & 0.0066 & 0.0032 & 0.0066 & 0.0042 & 0.0044 & 0.0044 & 0.0044 & 0.0048 & 0.0066 & 0.0032 & 0.0066 & $	0.4 [-1; 3]															
$ \begin{bmatrix} [0;2] \\ [0;2] \\ [0;2] \\ [0;3] \end{bmatrix} = \begin{bmatrix} 50 \\ 0.0809 \ 0.0661 \ 0.0691 \ 0.0453 \ 0.0516 \ 0.0451 \ 0.0366 \ 0.0292 \ 0.0160 \ 0.0122 \ 0.0099 \ 0.0073 \ 0.0089 \ 0.0066 \\ 0.0423 \ 0.0339 \ 0.0419 \ 0.0228 \ 0.0218 \ 0.0191 \ 0.0147 \ 0.0131 \ 0.0076 \ 0.0058 \ 0.0039 \ 0.0030 \ 0.0039 \ 0.0030 \\ 0.0075 \ 0.0075 \ 0.0075 \ 0.0053 \ 0.0049 \ 0.0041 \ 0.0043 \ 0.0029 \ 0.0028 \ 0.0012 \ 0.0021 \ 0.0008 \ 0.0010 \ 0.0008 \ 0.0010 \ 0.0008 \ 0.0010 \ 0.0008 \ 0.0010 \ 0.0008 \ 0.0010 \ 0.0008 \ 0.0010 \ 0.0008 \ 0.0010 \ 0.0008 \ 0.0010 \ 0.0008 \ 0.0010 \ 0.0051 \ 0.0051 \ 0.0052 \ 0.0043 \ 0.0033 \ 0.0051 \\ 0.0025 \ 0.0028 \ 0.0009 \ 0.0008 \ 0.0025 \ 0.0028 \ 0.0009 \ 0.0008 \ 0.0007 \ 0.0080 \ 0.0007 \ 0.0080 \ 0.0014 \ 0.0011 \ 0.0010 \ 0.0110 \ 0.0110 \ 0.0110 \ 0.0110 \ 0.0110 \ 0.0110 \ 0.0110 \ 0.0110 \ 0.0110 \ 0.0110 \ 0.0110 \ 0.0110 \ 0.0110 \ 0.0037 \ 0.0033 \ 0.0051 \ 0.0052 \ 0.0044 \ 0.00112 \ 0.0078 \ 0.0066 \ 0.0044 \ 0.0041 \ 0.00110 \ 0.0016 \ 0.0068 \ 0.0066 \ 0.0089 \ 0.0014 \ 0.0010 \ $																
$ \begin{bmatrix} 100 \\ 500 \end{bmatrix} 0.0423 \ 0.0339 \ 0.0419 \ 0.0281 \ 0.0218 \ 0.0191 \ 0.0147 \ 0.0131 \ 0.0076 \ 0.0058 \ 0.0039 \ 0.0030 \ 0.0039 \ 0.003 \\ 0.0075 \ 0.0075 \ 0.0053 \ 0.0049 \ 0.0041 \ 0.0043 \ 0.0029 \ 0.0028 \ 0.0012 \ 0.0021 \ 0.0008 \ 0.0010 \ 0.0005 \ 0.000 \\ 0.05 \ [-1;3] \ 50 \ 0.0450 \ 0.0244 \ 0.0152 \ 0.0107 \ 0.0378 \ 0.0223 \ 0.0219 \ 0.0044 \ 0.0164 \ 0.0092 \ 0.0140 \ 0.0089 \ 0.0084 \ 0.006 \\ 0.0120 \ 0.013 \ 0.0041 \ 0.0035 \ 0.0126 \ 0.0107 \ 0.0050 \ 0.0043 \ 0.0051 \ 0.0051 \ 0.0052 \ 0.0043 \ 0.0033 \ 0.003 \\ 0.0025 \ 0.0028 \ 0.0009 \ 0.0008 \ 0.0025 \ 0.0028 \ 0.0008 \ 0.0007 \ 0.0080 \ 0.0040 \ 0.0014 \ 0.0010 \ 0.0010 \ 0.0036 \ 0.0066 \ 0.0040 \\ 0.0300 \ 0.0525 \ 0.0441 \ 0.0403 \ 0.0768 \ 0.0636 \ 0.0562 \ 0.0440 \ 0.0112 \ 0.0078 \ 0.0136 \ 0.0096 \ 0.0068 \ 0.0068 \\ 0.0049 \ 0.0051 \ 0.0037 \ 0.0033 \ 0.0061 \ 0.0052 \ 0.0340 \ 0.0180 \ 0.0197 \ 0.0052 \\ 0.0049 \ 0.0051 \ 0.0037 \ 0.0033 \ 0.0061 \ 0.0058 \ 0.0042 \ 0.0038 \ 0.0009 \ 0.0018 \ 0.0080 \ 0.014 \ 0.0066 \ 0.0066 \\ 0.0040 \ 0.0088 \ 0.0041 \ 0.0036 \ 0.0041 \ 0.0017 \ 0.0053 \ 0.0044 \ 0.0038 \ 0.0081 \ 0.0096 \ 0.0066 \ 0.0066 \\ 0.0040 \ 0.0022 \ 0.0021 \ 0.0008 \ 0.0008 \ 0.0033 \ 0.0041 \ 0.0012 \ 0.0011 \ 0.0007 \ 0.0010 \ 0.0014 \ 0.0026 \ 0.0066 \ 0.0066 \\ 0.0040 \ 0.0024 \ 0.0244 \ 0.0124 \ 0.0178 \ 0.0152 \ 0.0257 \ 0.0207 \ 0.0049 \ 0.0049 \ 0.0069 \ 0.0053 \ 0.0006 \ 0.0007 \\ 0.0049 \ 0.0049 \ 0.0049 \ 0.0036 \ 0.0037 \ 0.0037 \ 0.0055 \ 0.0056 \ 0.0056 \ 0.0050 \ 0.0008 \ 0.0012 \ 0.0013 \ 0.0025 \ 0.0056 \ 0.0056 \ 0.0050 \ 0.0008 \ 0.0012 \ 0.00013 \ 0.0025 \ 0.0005 \ 0.0006$																
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	[0; 2]	50														
$ \begin{bmatrix} -1;3 \\ 0.5 \\ -1;3 \\ \end{bmatrix} \begin{bmatrix} 50 \\ 0.0450 & 0.0244 & 0.0152 & 0.0107 & 0.0378 & 0.0223 & 0.0119 & 0.0084 & 0.0146 & 0.0092 & 0.0140 & 0.0089 & 0.0084 & 0.0068 \\ 0.0120 & 0.0113 & 0.0041 & 0.0035 & 0.0126 & 0.0107 & 0.0050 & 0.0043 & 0.0051 & 0.0051 & 0.0052 & 0.0043 & 0.0033 & 0.003 \\ 0.0025 & 0.0028 & 0.0009 & 0.0008 & 0.0025 & 0.0028 & 0.0009 & 0.0008 & 0.0007 & 0.0008 & 0.0014 & 0.0010 & 0.0016 & 0.0066 & 0.006 \\ 0.0630 & 0.0525 & 0.0441 & 0.0403 & 0.0768 & 0.0636 & 0.0562 & 0.0440 & 0.0112 & 0.0078 & 0.0136 & 0.0068 & 0.008 \\ 0.0300 & 0.0252 & 0.0180 & 0.0157 & 0.0359 & 0.0282 & 0.0234 & 0.0186 & 0.0052 & 0.0046 & 0.0056 & 0.0044 & 0.0041 & 0.003 \\ 0.0640 & 0.0049 & 0.0051 & 0.0037 & 0.0033 & 0.0061 & 0.0058 & 0.0042 & 0.0038 & 0.0009 & 0.0018 & 0.0008 & 0.0014 & 0.0005 & 0.006 \\ 0.061 & [-1;3] & 50 & 0.0267 & 0.0183 & 0.0096 & 0.0075 & 0.0532 & 0.0295 & 0.0150 & 0.0107 & 0.0095 & 0.0066 & 0.0180 & 0.0109 & 0.0084 & 0.006 \\ 0.0108 & 0.0088 & 0.0041 & 0.0036 & 0.0194 & 0.0145 & 0.0071 & 0.0653 & 0.0044 & 0.0038 & 0.0084 & 0.0066 & 0.0032 & 0.003 \\ 0.022 & 0.0021 & 0.0008 & 0.0008 & 0.0033 & 0.0041 & 0.0012 & 0.0011 & 0.0007 & 0.0010 & 0.0014 & 0.0026 & 0.0006 & 0.0006 \\ 0.0514 & 0.0407 & 0.0327 & 0.0287 & 0.0832 & 0.0634 & 0.0521 & 0.0420 & 0.0096 & 0.0096 & 0.0053 & 0.0034 & 0.0025 \\ 0.0049 & 0.0049 & 0.0036 & 0.0034 & 0.0075 & 0.0056 & 0.0050 & 0.0008 & 0.0012 & 0.0013 & 0.0025 & 0.0005 & 0.0006 \\ 0.0049 & 0.0049 & 0.0036 & 0.0034 & 0.0075 & 0.0056 & 0.0050 & 0.0008 & 0.0012 & 0.0013 & 0.0025 & 0.0005 & 0.0006 \\ 0.0049 & 0.0049 & 0.0036 & 0.0034 & 0.0075 & 0.0056 & 0.0050 & 0.0008 & 0.0013 & 0.0025 & 0.0005 & 0.0006 \\ 0.0049 & 0.0049 & 0.0036 & 0.0034 & 0.0075 & 0.0056 & 0.0050 & 0.0008 & 0.0012 & 0.0013 & 0.0025 & 0.0005 & 0.0006 \\ 0.0049 & 0.0049 & 0.0036 & 0.0034 & 0.0075 & 0.0056 & 0.0050 & 0.0008 & 0.0012 & 0.0013 & 0.0025 & 0.0005 & 0.0006 \\ 0.0049 & 0.0049 & 0.0036 & 0.0034 & 0.0075 & 0.0056 & 0.0050 & 0.0008 & 0.0012 & 0.0013 & 0.0025 & 0.0005 & 0.0006 \\ 0.0049 & 0.0049 & 0.0036 & 0.0034 & 0.0075 & $																
$ \begin{bmatrix} 100 \\ 0.0120 & 0.0113 & 0.0041 & 0.0035 & 0.0126 & 0.0107 & 0.0050 & 0.0043 & 0.0051 & 0.0052 & 0.0043 & 0.0033 & 0.0033 \\ 0.0025 & 0.0028 & 0.0009 & 0.0008 & 0.0025 & 0.0028 & 0.0008 & 0.0007 & 0.0008 & 0.0014 & 0.0010 & 0.0016 & 0.0006 & 0.0016 \\ 0[0;2] & 50 & 0.0630 & 0.0525 & 0.0441 & 0.0403 & 0.0768 & 0.0636 & 0.0562 & 0.0440 & 0.0112 & 0.0078 & 0.0136 & 0.0096 & 0.0068 & 0.0028 \\ 0.0300 & 0.0252 & 0.0180 & 0.0157 & 0.0359 & 0.0282 & 0.0234 & 0.0186 & 0.0052 & 0.0046 & 0.0056 & 0.0044 & 0.0041 & 0.005 \\ 0.0049 & 0.0051 & 0.0037 & 0.0033 & 0.0061 & 0.0058 & 0.0042 & 0.0038 & 0.0009 & 0.0018 & 0.0008 & 0.0014 & 0.0005 & 0.006 \\ 0.6 & [-1;3] & 50 & 0.0267 & 0.0183 & 0.0096 & 0.0075 & 0.0532 & 0.0295 & 0.0150 & 0.0107 & 0.0095 & 0.0066 & 0.0180 & 0.0109 & 0.0088 & 0.004 \\ 0.0108 & 0.0088 & 0.0041 & 0.0036 & 0.0194 & 0.0145 & 0.0071 & 0.0053 & 0.0044 & 0.0038 & 0.0084 & 0.0066 & 0.0032 & 0.003 \\ 0.0022 & 0.0021 & 0.0008 & 0.0008 & 0.0033 & 0.0041 & 0.0012 & 0.0011 & 0.0007 & 0.0010 & 0.0014 & 0.0026 & 0.0006 & 0.0006 \\ 0.0108 & 0.0084 & 0.0041 & 0.0038 & 0.0033 & 0.0041 & 0.0012 & 0.0011 & 0.0007 & 0.0010 & 0.0014 & 0.0026 & 0.0006 & 0.0006 \\ 0.0108 & 0.0022 & 0.0021 & 0.0008 & 0.0038 & 0.0034 & 0.0521 & 0.0420 & 0.0096 & 0.0069 & 0.0173 & 0.0132 & 0.0074 & 0.003 \\ 0.0024 & 0.0244 & 0.0214 & 0.0178 & 0.0156 & 0.0372 & 0.0289 & 0.0257 & 0.0207 & 0.0049 & 0.0042 & 0.0099 & 0.0053 & 0.0034 & 0.002 & 0.0005 & 0.0005 & 0.0008 & 0.0012 & 0.0013 & 0.0025 & 0.0005 & 0.0005 \\ 0.0049 & 0.0049 & 0.0036 & 0.0034 & 0.0073 & 0.0075 & 0.0056 & 0.0050 & 0.0088 & 0.0012 & 0.0013 & 0.0025 & 0.0005 & 0.0005 \\ 0.0049 & 0.0049 & 0.0036 & 0.0034 & 0.0073 & 0.0075 & 0.0056 & 0.0050 & 0.0088 & 0.0012 & 0.0013 & 0.0025 & 0.0005 & 0.0005 \\ 0.0049 & 0.0049 & 0.0036 & 0.0034 & 0.0073 & 0.0075 & 0.0056 & 0.0050 & 0.0088 & 0.0012 & 0.0013 & 0.0025 & 0.0005 & 0.0006 \\ 0.0049 & 0.0049 & 0.0049 & 0.0036 & 0.0034 & 0.0073 & 0.0075 & 0.0056 & 0.0050 & 0.0088 & 0.0012 & 0.0013 & 0.0025 & 0.0005 & 0.0006 \\ 0.0049 & 0.0049 & 0.0049 & 0.0036 & $		500														
$ \begin{bmatrix} [0;2] & 50 & 0.0025 & 0.0028 & 0.0009 & 0.0008 & 0.0025 & 0.0028 & 0.0008 & 0.0007 & 0.0008 & 0.0014 & 0.0010 & 0.0016 & 0.0006 & 0.0006 \\ [0;2] & 50 & 0.0630 & 0.0525 & 0.0441 & 0.0403 & 0.0768 & 0.0636 & 0.0562 & 0.0440 & 0.0112 & 0.0078 & 0.0136 & 0.0096 & 0.0068 & 0.0068 \\ [0;2] & 50 & 0.0630 & 0.0525 & 0.0180 & 0.0157 & 0.0359 & 0.0282 & 0.0234 & 0.0186 & 0.0052 & 0.0046 & 0.0056 & 0.0044 & 0.0014 & 0.0016 \\ [0;3] & 50 & 0.0049 & 0.0051 & 0.0037 & 0.0033 & 0.0061 & 0.0058 & 0.0042 & 0.0038 & 0.0009 & 0.0018 & 0.0008 & 0.0014 & 0.0005 & 0.0006 \\ [0;4] & 50 & 0.0267 & 0.0183 & 0.0096 & 0.0075 & 0.0532 & 0.0295 & 0.0150 & 0.0107 & 0.095 & 0.0066 & 0.0180 & 0.0014 & 0.0038 & 0.0041 & 0.0015 & 0.0014 & 0.0038 & 0.0044 & 0.0038 & 0.0034 & 0.0052 & 0.0049 & 0.0049 & 0.0049 & 0.0036 & 0.0034 & 0.0075 & 0.0056 & 0.0050 & 0.0008 & 0.0013 & 0.0025 & 0.0005 & 0.0006 & 0.0008 & 0.0012 & 0.0013 & 0.0025 & 0.0005 & 0.0006 & 0.0008 & 0.0012 & 0.0013 & 0.0025 & 0.0005 & 0.0006 & 0.0008 & 0.0012 & 0.0013 & 0.0025 & 0.0005 & 0.0006 & 0.0008 & 0.0012 & 0.0013 & 0.0025 & 0.0005 & 0.0006 & 0.0008 & 0.0012 & 0.0013 & 0.0025 & 0.0005 & 0.0006 & 0.0008 & 0.0012 & 0.0013 & 0.0025 & 0.0005 & 0.0006 & 0.0008 & 0.0012 & 0.0013 & 0.0025 & 0.0005 & 0.0006 & 0.0008 & 0.0012 & 0.0013 & 0.0025 & 0.0005 & 0.0006 & 0.0008 & 0.0012 & 0.0013 & 0.0025 & 0.0006 & 0.0006$	0.5 [-1; 3]															
$ \begin{bmatrix} [0;2] \\ [0;2] \\ [0;2] \\ [0;3] \end{bmatrix} = \begin{bmatrix} 50 \\ 0.0630 & 0.0525 & 0.0441 & 0.0403 & 0.0768 & 0.0636 & 0.0562 & 0.0440 & 0.0112 & 0.0078 & 0.0136 & 0.0096 & 0.0068 & 0.0088 \\ 0.0300 & 0.0252 & 0.0180 & 0.0157 & 0.0359 & 0.0282 & 0.0234 & 0.0186 & 0.0052 & 0.0046 & 0.0056 & 0.0044 & 0.0041 & 0.0038 \\ 0.0049 & 0.0051 & 0.0037 & 0.0033 & 0.0061 & 0.0058 & 0.0042 & 0.0038 & 0.0009 & 0.0018 & 0.0008 & 0.0014 & 0.0055 & 0.0049 \\ 0.06 & [-1;3] & 50 & 0.0267 & 0.0183 & 0.0096 & 0.0075 & 0.0532 & 0.0295 & 0.0150 & 0.0107 & 0.0095 & 0.0066 & 0.0180 & 0.0109 & 0.0084 & 0.0069 \\ 100 & 0.0108 & 0.0088 & 0.0041 & 0.0036 & 0.0194 & 0.0145 & 0.0071 & 0.0053 & 0.0044 & 0.0038 & 0.0084 & 0.0066 & 0.0032 & 0.0038 \\ 500 & 0.0022 & 0.0021 & 0.0008 & 0.0033 & 0.0041 & 0.0012 & 0.0011 & 0.0007 & 0.0010 & 0.0014 & 0.0026 & 0.0006 & 0.0069 \\ [0;2] & 50 & 0.0514 & 0.0407 & 0.0327 & 0.0287 & 0.0832 & 0.0634 & 0.0521 & 0.0420 & 0.0096 & 0.0069 & 0.0173 & 0.0132 & 0.0074 & 0.0036 \\ [0;2] & 50 & 0.0524 & 0.0214 & 0.0178 & 0.0156 & 0.0372 & 0.0289 & 0.0257 & 0.0207 & 0.0049 & 0.0042 & 0.0069 & 0.0053 & 0.0034 & 0.0025 \\ [0;2] & 50 & 0.0049 & 0.0049 & 0.0036 & 0.0034 & 0.0075 & 0.0056 & 0.0050 & 0.0008 & 0.0012 & 0.0013 & 0.0025 & 0.0005 & 0.0006 \\ [0;2] & 50 & 0.0049 & 0.0049 & 0.0036 & 0.0034 & 0.0075 & 0.0056 & 0.0050 & 0.0008 & 0.0012 & 0.0013 & 0.0025 & 0.0005 & 0.0006 \\ [0;2] & 50 & 0.0049 & 0.0049 & 0.0036 & 0.0034 & 0.0075 & 0.0056 & 0.0050 & 0.0008 & 0.0012 & 0.0013 & 0.0025 & 0.0005 & 0.0006 \\ [0;2] & 50 & 0.0049 & 0.0049 & 0.0036 & 0.0034 & 0.0075 & 0.0056 & 0.0050 & 0.0008 & 0.0012 & 0.0013 & 0.0025 & 0.0005 & 0.0006 \\ [0;2] & 50 & 0.0049 & 0.0049 & 0.0036 & 0.0034 & 0.0075 & 0.0056 & 0.0050 & 0.0008 & 0.0012 & 0.0013 & 0.0025 & 0.0005 & 0.0006 \\ [0;2] & 50 & 0.0049 & 0.0049 & 0.0036 & 0.0034 & 0.0075 & 0.0056 & 0.0050 & 0.0008 & 0.0012 & 0.0013 & 0.0025 & 0.0005 & 0.0006 \\ [0;2] & 50 & 0.0049 & 0.0049 & 0.0036 & 0.0034 & 0.0075 & 0.0056 & 0.0050 & 0.0008 & 0.0012 & 0.0013 & 0.0025 & 0.0005 & 0.0006 & 0.0006 & 0.0006 & 0.0006 & 0.000$																
$ \begin{bmatrix} 100 & 0.0300 & 0.0252 & 0.0180 & 0.0157 & 0.0359 & 0.0282 & 0.0234 & 0.0186 & 0.0052 & 0.0046 & 0.0056 & 0.0044 & 0.0041 & 0.0056 \\ 0.0049 & 0.0051 & 0.0037 & 0.0033 & 0.0061 & 0.0058 & 0.0042 & 0.0038 & 0.0009 & 0.0018 & 0.0008 & 0.0014 & 0.0005 & 0.0066 \\ 0.6 & [-1;3] & 50 & 0.0267 & 0.0183 & 0.0096 & 0.0075 & 0.0532 & 0.0295 & 0.0150 & 0.0107 & 0.0095 & 0.0066 & 0.0180 & 0.0109 & 0.0084 & 0.0066 \\ 100 & 0.0108 & 0.0088 & 0.0041 & 0.0036 & 0.0194 & 0.0145 & 0.0071 & 0.0053 & 0.0044 & 0.0038 & 0.0084 & 0.0066 & 0.0032 & 0.005 \\ 500 & 0.0022 & 0.0021 & 0.0008 & 0.0008 & 0.0033 & 0.0041 & 0.0012 & 0.0011 & 0.0017 & 0.0014 & 0.0026 & 0.0006 & 0.0006 \\ [0;2] & 50 & 0.0514 & 0.0477 & 0.0327 & 0.0287 & 0.0832 & 0.0634 & 0.0521 & 0.0420 & 0.0096 & 0.0096 & 0.0173 & 0.0132 & 0.0074 & 0.0056 \\ 0.00244 & 0.0214 & 0.0178 & 0.0156 & 0.0372 & 0.0289 & 0.0257 & 0.0207 & 0.0049 & 0.0042 & 0.0069 & 0.0053 & 0.0034 & 0.0056 \\ 0.0049 & 0.0049 & 0.0036 & 0.0034 & 0.0075 & 0.0056 & 0.0050 & 0.0008 & 0.0012 & 0.0013 & 0.0025 & 0.0005 \\ 0.0049 & 0.0049 & 0.0036 & 0.0034 & 0.0075 & 0.0056 & 0.0050 & 0.0008 & 0.0012 & 0.0013 & 0.0025 & 0.0005 \\ 0.0049 & 0.0049 & 0.0036 & 0.0034 & 0.0075 & 0.0056 & 0.0050 & 0.0008 & 0.0012 & 0.0013 & 0.0025 & 0.0005 \\ 0.0049 & 0.0049 & 0.0036 & 0.0034 & 0.0075 & 0.0056 & 0.0050 & 0.0008 & 0.0012 & 0.0013 & 0.0025 & 0.0005 \\ 0.0049 & 0.0049 & 0.0036 & 0.0034 & 0.0075 & 0.0056 & 0.0050 & 0.0008 & 0.0012 & 0.0013 & 0.0025 & 0.0005 \\ 0.0049 & 0.0049 & 0.0036 & 0.0034 & 0.0075 & 0.0056 & 0.0050 & 0.0008 & 0.0012 & 0.0013 & 0.0025 & 0.0005 \\ 0.0049 & 0.0049 & 0.0036 & 0.0034 & 0.0075 & 0.0056 & 0.0050 & 0.0008 & 0.0012 & 0.0013 & 0.0025 & 0.0005 \\ 0.0049 & 0.0049 & 0.0036 & 0.0034 & 0.0075 & 0.0056 & 0.0050 & 0.0008 & 0.0012 & 0.0013 & 0.0025 & 0.0005 \\ 0.0049 & 0.0049 & 0.0036 & 0.0034 & 0.0075 & 0.0056 & 0.0050 & 0.0008 & 0.0012 & 0.0013 & 0.0025 & 0.0005 \\ 0.0049 & 0.0049 & 0.0036 & 0.0034 & 0.0075 & 0.0056 & 0.0050 & 0.0008 & 0.0012 & 0.0013 & 0.0025 & 0.0056 \\ 0.0049 & 0.0049 & 0.0036 & 0.0034 & 0$																
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	[0; 2]															
$ \begin{bmatrix} 0.6 & [-1;3] & 50 & 0.0267 & 0.0183 & 0.0096 & 0.0075 & 0.0532 & 0.0295 & 0.0150 & 0.0107 & 0.0095 & 0.0066 & 0.0180 & 0.0109 & 0.0084 & 0.0066 \\ 100 & 0.0108 & 0.0088 & 0.0041 & 0.0036 & 0.0194 & 0.0145 & 0.0071 & 0.0053 & 0.0044 & 0.0038 & 0.0084 & 0.0066 & 0.0032 & 0.003 \\ 500 & 0.0022 & 0.0021 & 0.0008 & 0.0008 & 0.00033 & 0.0041 & 0.0012 & 0.0011 & 0.0007 & 0.0010 & 0.0014 & 0.0026 & 0.0006 & 0.006 \\ [0;2] & 50 & 0.0514 & 0.0407 & 0.0327 & 0.0287 & 0.0832 & 0.0634 & 0.0521 & 0.0420 & 0.0096 & 0.0069 & 0.0173 & 0.0132 & 0.0074 & 0.005 \\ 100 & 0.0244 & 0.0214 & 0.0178 & 0.0156 & 0.0372 & 0.0289 & 0.0257 & 0.0207 & 0.0049 & 0.0042 & 0.0069 & 0.0053 & 0.0034 & 0.005 \\ 500 & 0.0049 & 0.0049 & 0.0036 & 0.0034 & 0.0073 & 0.0075 & 0.0056 & 0.0050 & 0.0008 & 0.0012 & 0.0013 & 0.0025 & 0.0005 & 0.0006 \\ \end{bmatrix} $																
$ \begin{bmatrix} 0 & 0.0108 & 0.0088 & 0.0041 & 0.0036 & 0.0194 & 0.0145 & 0.0071 & 0.0053 & 0.0044 & 0.0038 & 0.0084 & 0.0066 & 0.0032 & 0.0033 \\ 0 & 0.0022 & 0.0021 & 0.0008 & 0.0003 & 0.0041 & 0.0012 & 0.0011 & 0.0007 & 0.0010 & 0.0014 & 0.0026 & 0.0006 & 0.0006 \\ 0 & 0.0514 & 0.0407 & 0.0327 & 0.0287 & 0.0832 & 0.0634 & 0.0521 & 0.0420 & 0.0096 & 0.0069 & 0.0173 & 0.0132 & 0.0074 & 0.0033 \\ 0 & 0.0244 & 0.0214 & 0.0178 & 0.0156 & 0.0372 & 0.0289 & 0.0257 & 0.0207 & 0.0049 & 0.0042 & 0.0069 & 0.0053 & 0.0034 & 0.0035 \\ 0 & 0.0049 & 0.0049 & 0.0036 & 0.0034 & 0.0073 & 0.0075 & 0.0056 & 0.0050 & 0.0008 & 0.0012 & 0.0013 & 0.0025 & 0.0005 \\ 0 & 0.0049 & 0.0049 & 0.0036 & 0.0034 & 0.0073 & 0.0075 & 0.0056 & 0.0050 & 0.0008 & 0.0012 & 0.0013 & 0.0025 & 0.0005 \\ 0 & 0.0049 & 0.0049 & 0.0036 & 0.0034 & 0.0073 & 0.0075 & 0.0056 & 0.0050 & 0.0008 & 0.0012 & 0.0013 & 0.0025 & 0.0005 \\ 0 & 0.0049 & 0.0049 & 0.0036 & 0.0034 & 0.0073 & 0.0075 & 0.0056 & 0.0050 & 0.0008 & 0.0012 & 0.0013 & 0.0025 & 0.0005 \\ 0 & 0.0049 & 0.0049 & 0.0036 & 0.0034 & 0.0073 & 0.0075 & 0.0056 & 0.0050 & 0.0008 & 0.0012 & 0.0013 & 0.0025 & 0.0005 \\ 0 & 0.0049 & 0.0049 & 0.0036 & 0.0034 & 0.0073 & 0.0075 & 0.0056 & 0.0050 & 0.0008 & 0.0012 & 0.0013 & 0.0025 & 0.0005 \\ 0 & 0.0049 & 0.0049 & 0.0036 & 0.0034 & 0.0073 & 0.0075 & 0.0056 & 0.0050 & 0.0008 & 0.0012 & 0.0013 & 0.0025 & 0.0005 \\ 0 & 0.0049 & 0.0049 & 0.0049 & 0.0036 & 0.0034 & 0.0073 & 0.0075 & 0.0056 & 0.0050 & 0.0008 & 0.0012 & 0.0013 & 0.0025 & 0.0005 \\ 0 & 0.0049 & 0.0049 & 0.0049 & 0.0036 & 0.0034 & 0.0073 & 0.0075 & 0.0056 & 0.0050 & 0.0008 & 0.0012 & 0.0013 & 0.0025 & 0.0005 \\ 0 & 0.0049 & 0.004$																
$ \begin{bmatrix} 500 & 0.0022 & 0.0021 & 0.0008 & 0.0008 & 0.0033 & 0.0041 & 0.0012 & 0.0011 & 0.0007 & 0.0010 & 0.0014 & 0.0026 & 0.0006 & 0.0006 \\ 50 & 0.0514 & 0.0407 & 0.0327 & 0.0287 & 0.0832 & 0.0634 & 0.0521 & 0.0420 & 0.0096 & 0.0098 & 0.0173 & 0.0132 & 0.0074 & 0.0099 \\ 100 & 0.0244 & 0.0214 & 0.0178 & 0.0372 & 0.0289 & 0.0257 & 0.0207 & 0.0049 & 0.0042 & 0.0699 & 0.0053 & 0.0034 & 0.0025 \\ 500 & 0.0049 & 0.0049 & 0.0036 & 0.0034 & 0.0073 & 0.0075 & 0.0056 & 0.0050 & 0.0008 & 0.0012 & 0.0013 & 0.0025 & 0.0005 \\ \end{bmatrix} $	0.6 [-1; 3]															
$ \begin{bmatrix} 0;2 \end{bmatrix} & 50 & 0.0514 & 0.0407 & 0.0327 & 0.0287 & 0.0832 & 0.0634 & 0.0521 & 0.0420 & 0.0096 & 0.0069 & 0.0173 & 0.0132 & 0.0074 & 0.0088 \\ 100 & 0.0244 & 0.0214 & 0.0178 & 0.0156 & 0.0372 & 0.0289 & 0.0257 & 0.0207 & 0.0049 & 0.0042 & 0.0069 & 0.0053 & 0.0034 & 0.0025 \\ 500 & 0.0049 & 0.0036 & 0.0034 & 0.0073 & 0.0075 & 0.0056 & 0.0050 & 0.0008 & 0.0012 & 0.0013 & 0.0025 & 0.0005 & 0.0008 \\ \end{bmatrix} $																
100 0.0244 0.0214 0.0178 0.0156 0.0372 0.0289 0.0257 0.0207 0.0049 0.0042 0.0069 0.0053 0.0034 0.002 500 0.0049 0.0049 0.0036 0.0034 0.0073 0.0075 0.0056 0.0050 0.0008 0.0012 0.0013 0.0025 0.0005 0.000																
500 0.0049 0.0049 0.0036 0.0034 0.0073 0.0075 0.0056 0.0050 0.0008 0.0012 0.0013 0.0025 0.0005 0.000	[0; 2]															
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.7 [-1; 3]															
100 0.0094 0.0082 0.0038 0.0035 0.0278 0.0198 0.0107 0.0078 0.0032 0.0024 0.0117 0.0096 0.0031 0.002																
500 0.0018 0.0019 0.0007 0.0007 0.0052 0.0066 0.0016 0.0014 0.0006 0.0008 0.0019 0.0043 0.0007 0.000																
$[0;2] \hspace{0.5cm} 50 \hspace{0.5cm} 0.0410 \hspace{0.08cm} 0.0313 \hspace{0.08cm} 0.0296 \hspace{0.08cm} 0.0242 \hspace{0.08cm} 0.1711 \hspace{0.08cm} 0.0885 \hspace{0.08cm} 0.1015 \hspace{0.08cm} 0.0589 \hspace{0.08cm} 0.0088 \hspace{0.08cm} 0.0057 \hspace{0.08cm} 0.0273 \hspace{0.08cm} 0.0172 \hspace{0.08cm} 0.0082 \hspace{0.08cm} 0.0088 0.$	[0; 2]															
$100 0.0266 \ 0.0218 \ 0.0175 \ 0.0148 \ 0.0882 \ 0.0405 \ 0.0281 \ 0.0040 \ 0.0027 \ 0.0136 \ 0.0087 \ 0.0043 \ 0.0027 \ 0.00136 \ 0.0087 \ 0.0043 \ 0.0027 \ 0.0043 \ 0.0047 \ 0.0$																
500 0.0035 0.0037 0.0023 0.0024 0.0100 0.0106 0.0061 0.0056 0.0007 0.0009 0.0017 0.0034 0.0005 0.000																
$0.8 [-1;3] 50 0.0165 \ 0.0119 \ 0.0061 \ 0.0052 \ 0.1271 \ 0.0608 \ 0.0471 \ 0.0268 \ 0.0060 \ 0.0045 \ 0.0343 \ 0.0330 \ 0.0052 \ 0.0061 \$	0.8 [-1; 3]															
100 0.0073 0.0059 0.0032 0.0030 0.0646 0.0319 0.0229 0.0117 0.0029 0.0020 0.0177 0.0147 0.0029 0.001																
500 0.0013 0.0013 0.0005 0.0005 0.0072 0.0093 0.0026 0.0022 0.0004 0.0005 0.0025 0.0048 0.0003 0.000	fo. e1															
$[0;2] \hspace{0.5cm} 50 \hspace{0.5cm} 0.0353 \hspace{0.08cm} 0.0273 \hspace{0.08cm} 0.0341 \hspace{0.08cm} 0.0220 \hspace{0.08cm} 0.3160 \hspace{0.08cm} 0.1379 \hspace{0.08cm} 0.2028 \hspace{0.08cm} 0.1067 \hspace{0.08cm} 0.0072 \hspace{0.08cm} 0.0044 \hspace{0.08cm} 0.0388 \hspace{0.08cm} 0.0287 \hspace{0.08cm} 0.0064 \hspace{0.08cm} 0.0072 \hspace{0.08cm} 0.0087 0.$	[0; 2]															
$100 \qquad 0.0158 \ 0.0138 \ 0.0117 \ 0.0111 \ 0.1141 \ 0.0630 \ 0.0630 \ 0.0396 \ 0.0028 \ 0.0021 \ 0.0198 \ 0.0170 \ 0.0027 \ 0.002$																
500 0.0039 0.0038 0.0023 0.0023 0.0138 0.0161 0.0096 0.0076 0.0005 0.0006 0.0027 0.0062 0.0005 0.000	0.0 [1.7]															
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	[-1; 3]															
$100 0.0067 \ 0.0057 \ 0.0028 \ 0.0026 \ 0.1306 \ 0.0621 \ 0.0548 \ 0.0268 \ 0.0027 \ 0.0018 \ 0.0388 \ 0.0346 \ 0.0025 \ 0.001$																
500 0.0012 0.0011 0.0005 0.0014 0.0188 0.0055 0.0037 0.0004 0.0004 0.0000 0.0120 0.0003 0.000	[O 01															
[0;2] 50 0.0313 0.0240 0.0435 0.0187 0.5434 0.2930 0.3978 0.2360 0.0065 0.0035 0.0612 0.0594 0.0140 0.001	[0; 2]															
$100 0.0157 \ 0.0133 \ 0.0097 \ 0.0089 \ 0.2703 \ 0.1286 \ 0.1776 \ 0.0822 \ 0.0024 \ 0.0019 \ 0.0373 \ 0.0354 \ 0.0022 \ 0.0019 \ 0.00$																
500 0.0028 0.0027 0.0017 0.0016 0.0456 0.0386 0.0293 0.0200 0.0004 0.0004 0.0091 0.0119 0.0003 0.000		500	0.0028	0.0027	0.0017	0.0016	0.0456	0.0386	0.0293	0.0200	0.0004	0.0004	0.0091	0.0119	0.0003	0.0002

Tabela D.26: Estimativas do erro quadratico médio dos parâmetros da mistura de duas regressões lineares no caso ${\rm PVI}$

 $Ap \hat{e}ndice~D$

$\begin{array}{c c c c c c c c c c c c c c c c c c c $		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$_{ ext{CEM}}^{\pi_1}$
$ \begin{bmatrix} 100 & 0.0313 & 0.0310 & 0.0137 & 0.0136 & 0.0016 & 0.0016 & 0.0007 & 0.0067 & 0.0067 & 0.005 & 0.006 \\ 500 & 0.0030 & 0.0030 & 0.0013 & 0.0013 & 0.0004 & 0.0002 & 0.0002 & 0.0009 & 0.0009 & 0.0001 & 0.001 \\ 500 & 0.0522 & 0.0136 & 0.0548 & 0.0415 & 0.0044 & 0.0044 & 0.0033 & 0.0033 & 0.0064 & 0.0064 & 0.0044 & 0.002 \\ 500 & 0.0077 & 0.0077 & 0.0059 & 0.0009 & 0.0009 & 0.0009 & 0.0007 & 0.0010 & 0.0011 & 0.001 & 0.001 \\ 500 & 0.0023 & 0.0203 & 0.0100 & 0.0059 & 0.0009 & 0.0009 & 0.0007 & 0.0010 & 0.0010 & 0.0011 & 0.001 & 0.$		
$ \begin{bmatrix} [0;2] & 500 & 0.0030 & 0.0030 & 0.0013 & 0.0013 & 0.0004 & 0.0004 & 0.0002 & 0.0002 & 0.0009 & 0.0009 & 0.0010 & 0.002 \\ [0;2] & 500 & 0.1615 & 0.1552 & 0.1136 & 0.2174 & 0.0099 & 0.0093 & 0.1427 & 0.0070 & 0.0143 & 0.0145 & 0.0012 & 0.002 \\ [0;2] & 500 & 0.0027 & 0.0027 & 0.0059 & 0.0059 & 0.0009 & 0.0009 & 0.0007 & 0.0007 & 0.0010 & 0.0010 & 0.001 \\ [0;2] & 500 & 0.0203 & 0.203 & 0.0100 & 0.0100 & 0.0039 & 0.0038 & 0.0018 & 0.0061 & 0.0061 & 0.0061 \\ [0;2] & 500 & 0.0018 & 0.0018 & 0.0009 & 0.0009 & 0.0002 & 0.0002 & 0.0002 & 0.0004 & 0.0004 & 0.0004 \\ [0;2] & 500 & 0.0412 & 0.0412 & 0.0311 & 0.0311 & 0.0091 & 0.0067 & 0.0067 & 0.0068 & 0.0068 & 0.0012 & 0.0002 \\ [0;2] & 500 & 0.0412 & 0.0412 & 0.0311 & 0.0031 & 0.0091 & 0.0067 & 0.0068 & 0.0068 & 0.0012 & 0.0002 \\ [0;2] & 500 & 0.0412 & 0.0412 & 0.0311 & 0.0031 & 0.0091 & 0.0067 & 0.0068 & 0.0068 & 0.0012 & 0.0002 \\ [0;2] & 500 & 0.0035 & 0.00228 & 0.0028 & 0.0009 & 0.0009 & 0.0006 & 0.0004 & 0.0004 & 0.0004 & 0.0004 \\ [0;2] & 500 & 0.0035 & 0.00228 & 0.0028 & 0.0009 & 0.0009 & 0.0006 & 0.0006 & 0.0004 & 0.0004 & 0.0004 \\ [0;2] & 500 & 0.0032 & 0.0028 & 0.0028 & 0.0009 & 0.0009 & 0.0006 & 0.0004 & 0.0004 & 0.0004 & 0.0004 \\ [0;2] & 500 & 0.0010 & 0.0010 & 0.0005 & 0.0005 & 0.0004 & 0.0004 & 0.0002 & 0.0003 & 0.0003 & 0.0003 & 0.0003 & 0.0003 \\ [0;2] & 500 & 0.0251 & 0.0251 & 0.0204 & 0.0204 & 0.0106 & 0.0078 & 0.0078 & 0.0041 & 0.0004 $		
$ \begin{bmatrix} [0;2] & 50 & 0.1615 & 0.1552 & 0.1136 & 0.2174 & 0.0099 & 0.0093 & 0.1427 & 0.0070 & 0.0143 & 0.0145 & 0.0012 & 0.0020 & 0.0052 & 0.0485 & 0.04415 & 0.0044 & 0.0044 & 0.0033 & 0.0033 & 0.0036 & 0.0064 & 0.0004 & 0.0004 & 0.0003 & 0.0003 & 0.0003 & 0.0003 & 0.0003 & 0.0007 & 0.0017 & 0.0017 & 0.0077 & 0.0059 & 0.0009 & 0.0009 & 0.0001 & 0.0010 & 0.0010 & 0.0010 & 0.0010 & 0.0001 & 0.0010 & 0.0010 & 0.0003 & 0.0003 & 0.0003 & 0.0023 & 0.0023 & 0.0006 & 0.0003 & 0.$		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		
$ \begin{bmatrix} -1;3 \\ 0.2 \\ -1;3 \\ 100 \\ 0.0090 & 0.0090 & 0.0041 & 0.0041 & 0.0020 & 0.0020 & 0.0008 & 0.0081 & 0.0061 & 0.0061 & 0.0013 & 0.0061 \\ 0.0090 & 0.0090 & 0.0041 & 0.0041 & 0.0020 & 0.0020 & 0.0008 & 0.0008 & 0.0023 & 0.0023 & 0.0006 & 0.0061 \\ 0.0018 & 0.0018 & 0.0019 & 0.0009 & 0.0005 & 0.0005 & 0.0002 & 0.0002 & 0.0004 & 0.0004 & 0.0004 & 0.0004 \\ 0.0018 & 0.0018 & 0.0018 & 0.0009 & 0.0005 & 0.0005 & 0.0002 & 0.0006 & 0.0008 & 0.0008 & 0.0008 & 0.0008 \\ 0.0018 & 0.0112 & 0.0412 & 0.0311 & 0.0311 & 0.0091 & 0.0067 & 0.0067 & 0.0068 & 0.0068 & 0.0012 & 0.006 \\ 0.00228 & 0.0228 & 0.0158 & 0.0158 & 0.0049 & 0.0049 & 0.0039 & 0.0039 & 0.0030 & 0.0030 & 0.0006 & 0.0004 \\ 0.0035 & 0.0035 & 0.0028 & 0.0028 & 0.0009 & 0.0009 & 0.0009 & 0.0006 & 0.0004 & 0.0002 & 0.0003 & 0.0005 & 0.0005 & 0.0005 & 0.0004 & 0.0004 & 0.0002 & 0.0003 & 0.0003 & 0.0005 & 0.0005 & 0.0005 & 0.0004 & 0.0004 & 0.0002 & 0.0003 & 0.0003 & 0.0002 & 0.0005 &$		
$ \begin{bmatrix} 100 & 0.0090 & 0.0090 & 0.0041 & 0.0041 & 0.0020 & 0.0020 & 0.0008 & 0.0023 & 0.0023 & 0.0006 & 0.006 \\ 500 & 0.0018 & 0.0018 & 0.0009 & 0.0005 & 0.0005 & 0.0005 & 0.0002 & 0.0004 & 0.0004 & 0.0001 & 0.006 \\ 100 & 0.0018 & 0.0018 & 0.0019 & 0.0091 & 0.0091 & 0.0067 & 0.0066 & 0.0068 & 0.0068 & 0.0012 & 0.001 \\ 100 & 0.0228 & 0.0228 & 0.0158 & 0.0149 & 0.0049 & 0.0039 & 0.0030 & 0.0030 & 0.0006 & 0.006 \\ 500 & 0.0035 & 0.0035 & 0.0028 & 0.0028 & 0.0009 & 0.0009 & 0.0006 & 0.0006 & 0.0004 & 0.0004 & 0.0001 & 0.0006 \\ 500 & 0.0035 & 0.0035 & 0.0028 & 0.0028 & 0.0009 & 0.0009 & 0.0006 & 0.0006 & 0.0004 & 0.0004 & 0.0001 & 0.0006 \\ 500 & 0.0049 & 0.0049 & 0.0021 & 0.0021 & 0.0020 & 0.0002 & 0.0002 & 0.0001 & 0.0015 & 0.0006 & 0.006 \\ 500 & 0.0010 & 0.0010 & 0.0005 & 0.0004 & 0.0004 & 0.0002 & 0.0003 & 0.0003 & 0.0002 & 0.0006 \\ 500 & 0.0010 & 0.0010 & 0.0005 & 0.0004 & 0.0004 & 0.0002 & 0.0003 & 0.0003 & 0.0002 & 0.0003 \\ 500 & 0.0251 & 0.0225 & 0.0225 & 0.0224 & 0.0166 & 0.0166 & 0.0078 & 0.0078 & 0.0041 & 0.0014$		
$ \begin{bmatrix} [0;2] & 500 & 0.0018 & 0.0018 & 0.0009 & 0.0009 & 0.0005 & 0.0002 & 0.0002 & 0.0004 & 0.0004 & 0.0001 & 0.0001 \\ [0;2] & 50 & 0.0412 & 0.0412 & 0.0311 & 0.0311 & 0.0091 & 0.0006 & 0.0006 & 0.0008 & 0.00068 & 0.0012 & 0.0002 \\ [0;2] & 50 & 0.0228 & 0.0128 & 0.0158 & 0.0049 & 0.0049 & 0.0039 & 0.0039 & 0.0030 & 0.0030 & 0.0030 & 0.0030 \\ [0;2] & 50 & 0.0035 & 0.0028 & 0.0028 & 0.0009 & 0.0009 & 0.0006 & 0.0004 & 0.0004 & 0.0004 & 0.0011 & 0.0002 \\ [0;2] & 50 & 0.0132 & 0.0132 & 0.0050 & 0.0050 & 0.0047 & 0.0022 & 0.0022 & 0.0041 & 0.0041 & 0.0015 & 0.0002 \\ [0;2] & 50 & 0.0251 & 0.0251 & 0.0021 & 0.0020 & 0.0002 & 0.0008 & 0.0003 & 0.0003 & 0.0003 & 0.0003 & 0.0003 \\ [0;2] & 50 & 0.0251 & 0.0251 & 0.0204 & 0.0044 & 0.0016 & 0.0078 & 0.0078 & 0.0041 & 0.0041 & 0.0014 & 0.002 \\ [0;2] & 50 & 0.0028 & 0.0028 & 0.0018 & 0.0018 & 0.0009 & 0.0009 & 0.0007 & 0.0003 & 0.0003 & 0.0003 & 0.0002 & 0.0002 \\ [0;2] & 50 & 0.0028 & 0.0028 & 0.0018 & 0.0018 & 0.0004 & 0.00042 & 0.0042 & 0.0016 & 0.0012 & 0.0012 & 0.0012 & 0.0017 & 0.0016 & 0.0016 & 0.0016 & 0.0016 & 0.0016 & 0.0012 & 0.0012 & 0.0012 & 0.0017 & 0.0016 & 0.0016 & 0.0016 & 0.0016 & 0.0016 & 0.0016 & 0.0016 & 0.0016 & 0.0012 & 0.0012 & 0.0012 & 0.0017 & 0.0016 & 0.0016 & 0.0016 & 0.0016 & 0.0016 & 0.0016 & 0.0016 & 0.0012 & 0.0012 & 0.0012 & 0.0017 & 0.0016 & 0.0016 & 0.0016 & 0.0016 & 0.0016 & 0.0016 & 0.0016 & 0.0012 & 0.001$		
$ \begin{bmatrix} [0;2] & 50 & 0.0412 & 0.0412 & 0.0311 & 0.0311 & 0.0091 & 0.0067 & 0.0067 & 0.0068 & 0.0068 & 0.0012 & 0.0068 \\ 100 & 0.0228 & 0.0228 & 0.0158 & 0.0158 & 0.0049 & 0.0049 & 0.0039 & 0.0039 & 0.0030 & 0.0030 & 0.0006 & 0.006 \\ 500 & 0.0035 & 0.0035 & 0.0028 & 0.0028 & 0.0099 & 0.0009 & 0.0006 & 0.0006 & 0.0006 & 0.0006 & 0.0006 \\ 100 & 0.0035 & 0.0035 & 0.0028 & 0.0028 & 0.0009 & 0.0009 & 0.0009 & 0.0000 & 0.00004 & 0.0004 & 0.0004 & 0.0004 & 0.0001 & 0.006 \\ 100 & 0.0049 & 0.0049 & 0.0021 & 0.0021 & 0.0020 & 0.0022 & 0.0022 & 0.0041 & 0.0041 & 0.0015 & 0.006 \\ 100 & 0.0010 & 0.0010 & 0.0005 & 0.0005 & 0.0004 & 0.0004 & 0.0002 & 0.0003 & 0.0003 & 0.0002 & 0.002 \\ 100 & 0.0251 & 0.0251 & 0.0204 & 0.0204 & 0.0106 & 0.0106 & 0.0078 & 0.0041 & 0.0041 & 0.0014 & 0.004 \\ 100 & 0.0123 & 0.0123 & 0.0087 & 0.0087 & 0.0049 & 0.0042 & 0.0042 & 0.0016 & 0.0016 & 0.0018 & 0.006 \\ 500 & 0.0028 & 0.0028 & 0.0018 & 0.0018 & 0.0009 & 0.0007 & 0.0007 & 0.0003 & 0.0003 & 0.0001 & 0.006 \\ 100 & 0.0035 & 0.0035 & 0.0037 & 0.0037 & 0.0058 & 0.0027 & 0.0027 & 0.0028 & 0.0028 & 0.0017 & 0.006 \\ 100 & 0.0035 & 0.0035 & 0.0037 & 0.0037 & 0.0058 & 0.0027 & 0.0027 & 0.0028 & 0.0012 & 0.0017 & 0.006 \\ 100 & 0.0035 & 0.0035 & 0.0016 & 0.0016 & 0.0026 & 0.0010 & 0.0010 & 0.0012 & 0.0012 & 0.0017 & 0.006 \\ 100 & 0.0090 & 0.0090 & 0.0065 & 0.0065 & 0.0065 & 0.0005 & 0.0003 & 0.0003 & 0.0002 & 0.0002 & 0.0001 & 0.0010 \\ 100 & 0.0029 & 0.0029 & 0.0014 & 0.0014 & 0.0012 & 0.0012 & 0.0012 & 0.0002$		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
$ \begin{bmatrix} -1;3 \\ 0.3 \\ -1;3 \\ 0.0 \end{bmatrix} = \begin{bmatrix} 50 \\ 0.0132 \\ 0.0132 \\ 0.0132 \\ 0.0025 \\ 0.0049 \\ 0.0021 \\ 0.0021 \\ 0.0021 \\ 0.0020 \\ 0.00021 \\ 0.0020 \\ 0.0004 \\ 0.0021 \\ 0.0020 \\ 0.0004 \\ 0.0021 \\ 0.0021 \\ 0.0020 \\ 0.0004 \\ 0.0021 \\ 0.0020 \\ 0.0002 $		
$ \begin{bmatrix} 100 \\ 500 \\ 0.0049 & 0.0049 & 0.0021 & 0.0021 & 0.0020 & 0.0020 & 0.0008 & 0.0008 & 0.0015 & 0.0015 & 0.0006 & 0.006 \\ 0.0010 & 0.0010 & 0.0005 & 0.0004 & 0.0004 & 0.0002 & 0.0002 & 0.0003 & 0.0003 & 0.0002 & 0.0002 \\ 100 & 0.0251 & 0.0251 & 0.0224 & 0.0204 & 0.016 & 0.0106 & 0.016 & 0.0078 & 0.0041 & 0.0041 & 0.004 \\ 100 & 0.0123 & 0.0123 & 0.0087 & 0.0087 & 0.0049 & 0.0042 & 0.0042 & 0.0016 & 0.0016 & 0.0008 & 0.006 \\ 500 & 0.0028 & 0.0028 & 0.0018 & 0.0018 & 0.0009 & 0.0007 & 0.0007 & 0.0003 & 0.0003 & 0.0001 & 0.000 \\ 0.04 & [-1;3] & 50 & 0.0079 & 0.0079 & 0.0037 & 0.0037 & 0.0058 & 0.0058 & 0.0027 & 0.0022 & 0.0028 & 0.00110 & 0.00 \\ 500 & 0.0035 & 0.0035 & 0.0016 & 0.0016 & 0.0026 & 0.0026 & 0.0010 & 0.0010 & 0.0012 & 0.$		
$ \begin{bmatrix} [0;2] & 500 & 0.0010 & 0.0010 & 0.0005 & 0.0005 & 0.0004 & 0.0002 & 0.0002 & 0.0003 & 0.0003 & 0.0002 & 0.0002 \\ 0.0251 & 0.0251 & 0.0204 & 0.0204 & 0.0106 & 0.0106 & 0.0078 & 0.0078 & 0.0041 & 0.0041 & 0.0014 & 0.0014 \\ 0.00123 & 0.0123 & 0.0087 & 0.0087 & 0.0049 & 0.0049 & 0.00042 & 0.0016 & 0.0016 & 0.0016 & 0.0016 \\ 0.0028 & 0.0028 & 0.0018 & 0.0018 & 0.0009 & 0.0009 & 0.0007 & 0.0003 & 0.0003 & 0.0001 & 0.0016 \\ 0.0028 & 0.0028 & 0.0018 & 0.0018 & 0.0009 & 0.0007 & 0.0007 & 0.0003 & 0.0003 & 0.0001 & 0.0016 \\ 0.004 & [-1;3] & 50 & 0.0079 & 0.0079 & 0.0037 & 0.0037 & 0.0058 & 0.0058 & 0.0027 & 0.0027 & 0.0028 & 0.0028 & 0.0017 & 0.0016 \\ 0.005 & 500 & 0.0005 & 0.0005 & 0.0005 & 0.0005 & 0.00027 & 0.0028 & 0.0012 & 0.00017 & 0.0016 \\ 0.0007 & 0.0007 & 0.0003 & 0.0003 & 0.0003 & 0.0003 & 0.0003 & 0.0002 & 0.0001 & 0.0016 \\ 0.0016 & 0.0016 & 0.0016 & 0.0016 & 0.0016 & 0.0016 & 0.0016 & 0.0016 & 0.0012 & 0.0012 & 0.0001 & 0.0016 \\ 0.0017 & 0.0007 & 0.0007 & 0.0003 & 0.0003 & 0.0003 & 0.0003 & 0.0002 & 0.0001 & 0.0016 \\ 0.0019 & 0.0019 & 0.0014 & 0.0164 & 0.0133 & 0.0133 & 0.0097 & 0.0026 & 0.0012 & 0.0002 & 0.0026 \\ 0.05 & [-1;3] & 50 & 0.0062 & 0.0062 & 0.0028 & 0.0028 & 0.0075 & 0.0033 & 0.0033 & 0.0018 & 0.0018 & 0.0018 & 0.0018 \\ 0.0029 & 0.0029 & 0.0014 & 0.0014 & 0.0032 & 0.0032 & 0.0014 & 0.0014 & 0.0010 & 0.0010 & 0.0008 & 0.0066 \\ 0.0006 & 0.0006 & 0.0003 & 0.0003 & 0.0006 & 0.0003 & 0.0003 & 0.0002 & 0.0002 & 0.002 $		
$ \begin{bmatrix} [0;2] & 50 & 0.0251 & 0.0251 & 0.0204 & 0.0204 & 0.0106 & 0.0106 & 0.0078 & 0.0078 & 0.0041 & 0.0041 & 0.0014 & 0.0014 \\ 100 & 0.0123 & 0.0123 & 0.0087 & 0.0087 & 0.0049 & 0.0042 & 0.0042 & 0.0016 & 0.0016 & 0.0018 & 0.0028 \\ 500 & 0.0028 & 0.0018 & 0.0018 & 0.0018 & 0.0009 & 0.0009 & 0.0007 & 0.0003 & 0.0003 & 0.0001 & 0.0001 \\ 0.04 & [-1;3] & 50 & 0.0079 & 0.0079 & 0.0037 & 0.0037 & 0.0058 & 0.0028 & 0.0027 & 0.0027 & 0.0028 & 0.0028 & 0.0011 & 0.0018 \\ 100 & 0.0035 & 0.0035 & 0.0016 & 0.0016 & 0.0026 & 0.0016 & 0.0012 & 0.0012 & 0.0012 & 0.0007 & 0.0028 \\ 100 & 0.0007 & 0.0007 & 0.0003 & 0.0003 & 0.0005 & 0.0003 & 0.0003 & 0.0002 & 0.00012 & 0.0001 & 0.0012 \\ 100 & 0.0090 & 0.0090 & 0.0065 & 0.0065 & 0.0064 & 0.0042 & 0.0042 & 0.0012 & 0.0012 & 0.0012 & 0.0012 \\ 100 & 0.0090 & 0.0091 & 0.0014 & 0.0014 & 0.0012 & 0.0012 & 0.0009 & 0.0002 & 0.0002 & 0.002 \\ 100 & 0.0029 & 0.0029 & 0.0028 & 0.0028 & 0.0075 & 0.0033 & 0.0033 & 0.0018 & 0.0018 & 0.0024 & 0.004 \\ 100 & 0.0029 & 0.0029 & 0.0014 & 0.0014 & 0.0032 & 0.0032 & 0.0014 $		
$ \begin{bmatrix} 100 & 0.0123 & 0.0123 & 0.0087 & 0.0087 & 0.0049 & 0.0042 & 0.0042 & 0.0016 & 0.0016 & 0.0008 & 0.008 \\ 0.0028 & 0.0028 & 0.0018 & 0.0018 & 0.0009 & 0.0007 & 0.0007 & 0.0003 & 0.0003 & 0.0001 & 0.0009 \\ 0.0028 & 0.0028 & 0.0028 & 0.0018 & 0.0018 & 0.0009 & 0.0007 & 0.0007 & 0.0003 & 0.0003 & 0.0001 & 0.000 \\ 0.0035 & 0.0079 & 0.0037 & 0.0037 & 0.0058 & 0.0028 & 0.0027 & 0.0022 & 0.0028 & 0.0012 & 0.0012 \\ 0.0035 & 0.0035 & 0.0016 & 0.0016 & 0.0026 & 0.0026 & 0.0010 & 0.0012 & 0.0012 & 0.0007 & 0.002 \\ 0.0007 & 0.0007 & 0.0003 & 0.0003 & 0.0005 & 0.0003 & 0.0003 & 0.0002 & 0.0002 & 0.0001 & 0.001 \\ 0.00212 & 0.0212 & 0.0164 & 0.0164 & 0.0133 & 0.0133 & 0.0033 & 0.0003 & 0.0002 & 0.0002 & 0.0011 & 0.001 \\ 0.0090 & 0.0090 & 0.0095 & 0.0065 & 0.0064 & 0.0064 & 0.0042 & 0.0042 & 0.0012 & 0.0012 & 0.0007 & 0.002 \\ 0.0019 & 0.0019 & 0.0014 & 0.0014 & 0.0012 & 0.0012 & 0.0009 & 0.0002 & 0.0002 & 0.0002 & 0.001 \\ 0.0029 & 0.0029 & 0.0014 & 0.0014 & 0.0032 & 0.0033 & 0.0033 & 0.0018 & 0.0018 & 0.0024 & 0.001 \\ 0.0029 & 0.0029 & 0.0014 & 0.0014 & 0.0032 & 0.0032 & 0.0014 & 0.0014 & 0.0010 & 0.0010 & 0.0008 & 0.002 \\ 0.0066 & 0.0006 & 0.0003 & 0.0003 & 0.0006 & 0.0003 & 0.0003 & 0.0002 & 0.0002 & 0.0002 & 0.0002 \\ 0.0017 & 0.0017 & 0.0017 & 0.00158 & 0.0158 & 0.0110 & 0.0014 & 0.0024 & 0.0024 & 0.0020 & 0.002 \\ 0.0018 & 0.0081 & 0.0081 & 0.0065 & 0.0064 & 0.0084 & 0.0069 & 0.0069 & 0.0010 & 0.0010 & 0.0009 & 0.0002 \\ 0.00018 & 0.0081 & 0.0085 & 0.0065 & 0.0084 & 0.0084 & 0.0069 & 0.0010 & 0.0010 & 0.0000 & 0.0000 \\ 0.00018 & 0.0081 & 0.0085 & 0.0065 & 0.0084 & 0.0084 & 0.0069 & 0.0010 & 0.0010 & 0.0000 & 0.0000 \\ 0.00018 & 0.0081 & 0.0085 & 0.0065 & 0.0084 & 0.0084 & 0.0069 & 0.0010 & 0.0010 & 0.0000 & 0.0000 \\ 0.00018 & 0.0081 & 0.0085 & 0.0065 & 0.0084 & 0.0084 & 0.0069 & 0.0010 & 0.0010 & 0.0010 & 0.0010 \\ 0.00018 & 0.0081 & 0.0085 & 0.0065 & 0.0084 & 0.0084 & 0.0069 & 0.0010 & 0.0010 & 0.0010 & 0.0010 \\ 0.0018 & 0.0081 & 0.0085 & 0.0065 & 0.0084 & 0.0084 & 0.0069 & 0.0010 & 0.0010 & 0.0010 & 0.0010 \\ 0.0018 & 0.00$		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		
$ \begin{bmatrix} 0.4 & [-1;3] & 50 & 0.0079 & 0.0079 & 0.0037 & 0.0037 & 0.0058 & 0.0027 & 0.0027 & 0.0028 & 0.0028 & 0.0017 & 0.0028 \\ 100 & 0.0035 & 0.0016 & 0.0016 & 0.0026 & 0.0026 & 0.0010 & 0.0012 & 0.0012 & 0.0007 & 0.0028 \\ 500 & 0.0007 & 0.0003 & 0.0003 & 0.0005 & 0.0005 & 0.0003 & 0.0003 & 0.0002 & 0.0001 & 0.002 \\ [0;2] & 50 & 0.0212 & 0.0164 & 0.0164 & 0.0133 & 0.0133 & 0.0097 & 0.0096 & 0.0026 & 0.0026 & 0.0018 & 0.002 \\ 100 & 0.0090 & 0.0090 & 0.0065 & 0.0065 & 0.0064 & 0.0042 & 0.0042 & 0.0012 & 0.0012 & 0.0007 & 0.002 \\ 500 & 0.0019 & 0.0019 & 0.0014 & 0.0014 & 0.0012 & 0.0012 & 0.0009 & 0.0002 & 0.0002 & 0.002 \\ 0.5 & [-1;3] & 50 & 0.0062 & 0.0062 & 0.0028 & 0.0028 & 0.0075 & 0.0033 & 0.0018 & 0.0018 & 0.0018 & 0.0024 & 0.002 \\ 100 & 0.0029 & 0.0029 & 0.0014 & 0.0014 & 0.0032 & 0.0032 & 0.0014 & 0.0014 & 0.0014 & 0.0014 & 0.0014 & 0.0014 & 0.0014 & 0.0014 & 0.0014 & 0.0014 & 0.0012 & 0.0024 & 0.002 \\ [0;2] & 50 & 0.0137 & 0.0137 & 0.0105 & 0.0105 & 0.0158 & 0.0158 & 0.0110 & 0.0110 & 0.0024 $		
$ \begin{bmatrix} 100 \\ 500 \\ 0.0035 \ 0.0035 \ 0.0016 \ 0.0016 \ 0.0026 \ 0.0026 \ 0.0010 \ 0.0010 \ 0.0012 \ 0.0012 \ 0.0007 \ 0.007 \\ 0.0007 \ 0.0007 \ 0.0003 \ 0.0003 \ 0.0005 \ 0.0005 \ 0.0003 \ 0.0003 \ 0.0002 \ 0.0002 \ 0.0001 \ 0.0002 \\ 0.00212 \ 0.0212 \ 0.0164 \ 0.0164 \ 0.0163 \ 0.0133 \ 0.0133 \ 0.0133 \ 0.0037 \ 0.0097 \ 0.0097 \ 0.0092 \ 0.0002 \ 0.0001 \ 0.0007 \ 0.007 \\ 0.0090 \ 0.0090 \ 0.0095 \ 0.0065 \ 0.0065 \ 0.0064 \ 0.0064 \ 0.0042 \ 0.0042 \ 0.0012 \ 0.0012 \ 0.0012 \ 0.0007 \ 0.007 \\ 0.0019 \ 0.0019 \ 0.0014 \ 0.0014 \ 0.0012 \ 0.0012 \ 0.0009 \ 0.0009 \ 0.0002 \ 0.0002 \ 0.0002 \ 0.0002 \\ 0.0029 \ 0.0029 \ 0.0014 \ 0.0014 \ 0.0032 \ 0.0033 \ 0.0013 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0018 \\ 0.0029 \ 0.0029 \ 0.0014 \ 0.0014 \ 0.0032 \ 0.0032 \ 0.0014$		
$ \begin{bmatrix} [0;2] & 500 & 0.0007 & 0.0007 & 0.0003 & 0.0005 & 0.0005 & 0.0003 & 0.0003 & 0.0002 & 0.0002 & 0.0001 & 0.002 \\ 500 & 0.0212 & 0.0212 & 0.0164 & 0.0164 & 0.0133 & 0.0133 & 0.0097 & 0.0097 & 0.0026 & 0.0026 & 0.0018 & 0.002 \\ 500 & 0.0090 & 0.0095 & 0.0065 & 0.0064 & 0.0064 & 0.0042 & 0.0042 & 0.0012 & 0.0007 & 0.002 \\ 500 & 0.0019 & 0.0019 & 0.0014 & 0.0012 & 0.0012 & 0.0009 & 0.0009 & 0.0002 & 0.0002 & 0.0002 \\ 0.5 & [-1;3] & 50 & 0.0062 & 0.0062 & 0.0028 & 0.0028 & 0.0075 & 0.0033 & 0.0033 & 0.0018 & 0.0018 & 0.0024 & 0.002 \\ 100 & 0.0029 & 0.0029 & 0.0014 & 0.0014 & 0.0032 & 0.0032 & 0.0014 & 0.0014 & 0.0010 & 0.0010 & 0.0008 & 0.002 \\ 500 & 0.0006 & 0.0006 & 0.0003 & 0.0003 & 0.0006 & 0.0003 & 0.0003 & 0.0002 & 0.0002 & 0.002 \\ [0;2] & 50 & 0.0137 & 0.0137 & 0.0105 & 0.0158 & 0.0158 & 0.0110 & 0.0110 & 0.0024 & 0.0024 & 0.0020 & 0.002 \\ 100 & 0.0081 & 0.0081 & 0.0065 & 0.0065 & 0.0084 & 0.0084 & 0.0069 & 0.0010 & 0.0010 & 0.0009 & 0.0002 \\ \end{bmatrix}$		
$ \begin{bmatrix} [0;2] & 50 & 0.0212 \ 0.0212 \ 0.0164 \ 0.0164 \ 0.0133 \ 0.0133 \ 0.0097 \ 0.0097 \ 0.0026 \ 0.0026 \ 0.0018 \ 0.006 \\ & 100 & 0.0090 \ 0.0099 \ 0.0065 \ 0.0065 \ 0.0064 \ 0.0064 \ 0.0042 \ 0.0042 \ 0.0012 \ 0.0012 \ 0.0012 \ 0.0007 \ 0.006 \\ & 500 & 0.0019 \ 0.0019 \ 0.0014 \ 0.0014 \ 0.0012 \ 0.0012 \ 0.0009 \ 0.0009 \ 0.0009 \ 0.0002 \ 0.0002 \ 0.002 \\ & 0.0062 \ 0.0062 \ 0.0028 \ 0.0028 \ 0.0075 \ 0.0033 \ 0.0033 \ 0.0033 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0024 \ 0.00 \\ & 500 & 0.0029 \ 0.0029 \ 0.0014 \ 0.0014 \ 0.0032 \ 0.0032 \ 0.0014 \ 0.0014 \ 0.0014 \ 0.0014 \ 0.0014 \ 0.0010 \ 0.0010 \ 0.0001 \ 0.0008 \ 0.0000 \\ & 500 & 0.0066 \ 0.0006 \ 0.0003 \ 0.0003 \ 0.0006 \ 0.0006 \ 0.0003 \ 0.0003 \ 0.0002 \ 0.0002 \ 0.0002 \ 0.0002 \ 0.0002 \\ & [0;2] & 50 & 0.0137 \ 0.0137 \ 0.0105 \ 0.0158 \ 0.0158 \ 0.0110 \ 0.0110 \ 0.0010 \ 0.0010 \ 0.0001 \ 0.0009 \ 0.000 \\ & 0.0081 \ 0.0081 \ 0.0085 \ 0.0084 \ 0.0084 \ 0.0084 \ 0.0069 \ 0.0069 \ 0.0010 \ 0.0010 \ 0.0009 \ 0.0009 \\ & 0.0010 \ 0.00010 \ 0.0009 \ 0.0009 \\ & 0.0010 \ 0.00010 \ 0.0009 \ 0.0009 \\ & 0.0010 \ 0.00010 \ 0.0009 \ 0.0009 \\ & 0.0010 \ 0.00010 \ 0.0009 \ 0.0009 \\ & 0.0010 \ 0.00010 \ 0.0009 \ 0.00010 \\ & 0.0081 \ 0.0081 \ 0.0085 \ 0.0084 \ 0.0084 \ 0.0084 \ 0.0069 \ 0.0069 \ 0.0010 \ 0.0010 \ 0.0009 \ 0.0001 \\ & 0.0081 \ 0.0081 \ 0.0085 \ 0.0084 \ 0.0084 \ 0.0084 \ 0.0069 \ 0.0069 \ 0.0010 \ 0.0010 \ 0.0009 \ 0.0001 \\ & 0.0081 \ 0.0081 \ 0.0085 \ 0.0084 \ 0.0084 \ 0.0084 \ 0.0089 \ 0.0099 \ 0.0010 \ 0.0010 \ 0.0009 \ 0.0010 \\ & 0.0081 \ 0.0081$		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		
$ \begin{bmatrix} -1;3 \\ 0.5 \\ 0.65 \\ 0.73 \\ 0.75 $		
$ \begin{bmatrix} -1;3 \\ 0.5 \\ [-1;3] \end{bmatrix} \begin{array}{c} 50 \\ 0.0062 \ 0.0062 \ 0.0028 \ 0.0028 \ 0.0075 \ 0.0075 \ 0.0033 \ 0.0033 \ 0.0018 \ 0.0018 \ 0.0014 \ 0.0024 \ 0.0026 \\ 0.0029 \ 0.0029 \ 0.0014 \ 0.0014 \ 0.0032 \ 0.0032 \ 0.0014 \ 0.0014 \ 0.0014 \ 0.0010 \ 0.0010 \ 0.0008 \ 0.006 \\ 0.0006 \ 0.0006 \ 0.0003 \ 0.0003 \ 0.0006 \ 0.0006 \ 0.0006 \ 0.0003 \ 0.0003 \ 0.0003 \ 0.0003 \ 0.0003 \ 0.0002 \ 0.0002 \ 0.0002 \\ 0.0137 \ 0.0137 \ 0.0105 \ 0.0158 \ 0.0158 \ 0.0110 \ 0.0110 \ 0.0110 \ 0.0010 \ 0.0009 \ 0.006 \\ 0.0081 \ 0.0081 \ 0.0065 \ 0.0065 \ 0.0084 \ 0.0084 \ 0.0069 \ 0.0069 \ 0.0010 \ 0.0010 \ 0.0010 \ 0.0099 \ 0.006 \\ \end{array} $		
$ \begin{bmatrix} 100 & 0.0029 \ 0.0029 \ 0.0014 \ 0.0014 \ 0.0032 \ 0.0032 \ 0.0014 \ 0.0014 \ 0.0010 \ 0.0010 \ 0.0008 \ 0.000 \\ 0.0006 \ 0.0006 \ 0.0003 \ 0.0003 \ 0.0006 \ 0.0003 \ 0.0003 \ 0.0002 \ 0.0002 \ 0.0002 \ 0.0002 \\ 0.0137 \ 0.0137 \ 0.0105 \ 0.0158 \ 0.0158 \ 0.0158 \ 0.0110 \ 0.0110 \ 0.0024 \ 0.0024 \ 0.0024 \ 0.0020 \ 0.001 \\ 0.0081 \ 0.0081 \ 0.0065 \ 0.0064 \ 0.0084 \ 0.0084 \ 0.0069 \ 0.0069 \ 0.0010 \ 0.0010 \ 0.0010 \ 0.0010 \ 0.0009 \ 0.006 \\ \end{bmatrix} $		
$ \begin{bmatrix} 0;2 \end{bmatrix} & 500 & 0.0006 \ 0.0006 \ 0.0003 \ 0.0003 \ 0.0006 \ 0.0006 \ 0.0006 \ 0.0003 \ 0.0003 \ 0.0002 \ 0.0002 \ 0.0002 \ 0.002 \\ 0.0137 \ 0.0137 \ 0.0105 \ 0.0105 \ 0.0158 \ 0.0158 \ 0.0110 \ 0.0110 \ 0.0024 \ 0.0024 \ 0.0024 \ 0.0020 \ 0.006 \\ 0.0081 \ 0.0081 \ 0.0065 \ 0.0065 \ 0.0084 \ 0.0084 \ 0.0069 \ 0.0069 \ 0.0010 \ 0.0010 \ 0.0010 \ 0.0009 \ 0.006 \\ 0.0081 \ 0.008$		
$ \begin{bmatrix} 0;2 \end{bmatrix} \qquad 50 \qquad 0.0137 \ 0.0137 \ 0.0105 \ 0.0105 \ 0.0158 \ 0.0158 \ 0.0110 \ 0.0110 \ 0.00110 \ 0.0024 \ 0.0024 \ 0.0020 \ 0.006 \\ 0.0081 \ 0.0081 \ 0.0065 \ 0.0065 \ 0.0084 \ 0.0084 \ 0.0069 \ 0.0069 \ 0.0010 \ 0.0010 \ 0.0010 \ 0.0009 \ 0.006 \\ 0.0081 \ 0.00$		
100 0.0081 0.0081 0.0065 0.0065 0.0084 0.0084 0.0069 0.0069 0.0010 0.0010 0.0009 0.00		
500 - 0.0015 - 0.0015 - 0.0011 - 0.0011 - 0.0013 - 0.0013 - 0.0009 - 0.0009 - 0.0002 - 0.00000000 - 0.00000 - 0.0000000000		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
100 0.0028 0.0028 0.0014 0.0014 0.0044 0.0044 0.0016 0.0016 0.0008 0.0008 0.0013 0.00		
500 0.0005 0.0005 0.0002 0.0009 0.0009 0.0003 0.0003 0.0001 0.0001 0.0002 0.00		
$[0;2] \hspace{0.5cm} 50 \hspace{0.5cm} 0.0146 \hspace{0.08cm} 0.0146 \hspace{0.08cm} 0.0093 \hspace{0.08cm} 0.0093 \hspace{0.08cm} 0.0192 \hspace{0.08cm} 0.0151 \hspace{0.08cm} 0.0151 \hspace{0.08cm} 0.0151 \hspace{0.08cm} 0.0016 \hspace{0.08cm} 0.0025 0.$		
$100 \qquad 0.0066 \ 0.0066 \ 0.0048 \ 0.0048 \ 0.0109 \ 0.0109 \ 0.0079 \ 0.0079 \ 0.0007 \ 0.0001 \ 0.0010 \ 0.00$		
500 0.0012 0.0012 0.0010 0.0010 0.0017 0.0017 0.0013 0.0013 0.0001 0.0001 0.0003 0.00		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
$100 \qquad 0.0025 \ 0.0025 \ 0.0010 \ 0.0010 \ 0.0055 \ 0.0055 \ 0.0023 \ 0.0023 \ 0.0008 \ 0.0015 \ 0.005$		
500 0.0004 0.0004 0.0002 0.0002 0.0010 0.0010 0.0005 0.0005 0.0001 0.0001 0.0003 0.00		
$[0;2] \hspace{0.5cm} 50 \hspace{0.5cm} 0.0106 \hspace{0.08cm} 0.0106 \hspace{0.08cm} 0.0080 \hspace{0.08cm} 0.0276 \hspace{0.08cm} 0.0276 \hspace{0.08cm} 0.0210 \hspace{0.08cm} 0.0210 \hspace{0.08cm} 0.0012 \hspace{0.08cm} 0.0012 \hspace{0.08cm} 0.0043 \hspace{0.08cm} 0.0012 0.$		
100 0.0047 0.0047 0.0034 0.0035 0.0125 0.0116 0.0095 0.0088 0.0008 0.0008 0.0016 0.00		
500 0.0012 0.0012 0.0008 0.0008 0.0022 0.0016 0.0016 0.0001 0.0001 0.0003 0.00		
$0.8 [-1;3] 50 0.0042 \ 0.0042 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0365 \ 0.0159 \ 0.0159 \ 0.0159 \ 0.0012 \ 0.0012 \ 0.0074 \ 0.0012 \$		
$100 \qquad 0.0019 \ 0.0019 \ 0.0008 \ 0.0008 \ 0.0095 \ 0.0095 \ 0.0042 \ 0.0042 \ 0.0004 \ 0.0004 \ 0.0029 \ 0.0069 \ 0.00$		
500 0.0005 0.0005 0.0002 0.0002 0.0018 0.0018 0.0007 0.0007 0.0001 0.0001 0.0004 0.00		
$[0;2] \hspace{0.5cm} 50 \hspace{0.5cm} 0.0084 \hspace{0.084} \hspace{0.084} 0.0084 \hspace{0.084} 0.0062 \hspace{0.084} 0.0062 \hspace{0.084} 0.0598 \hspace{0.085} 0.0598 \hspace{0.085} 0.0535 \hspace{0.0855} 0.0535 \hspace{0.08555} 0.0012 \hspace{0.0855555} 0.0012 \hspace{0.0855555555} 0.0012 0.0855555555555555555555555555555555555$		
100 0.0043 0.0043 0.0037 0.0037 0.0252 0.0252 0.0178 0.0178 0.0005 0.0005 0.0025 0.00		
500 0.0010 0.0010 0.0007 0.0040 0.0040 0.0029 0.0029 0.0001 0.0001 0.0004 0.00		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
100 0.0017 0.0017 0.0007 0.0007 0.0227 0.0227 0.0101 0.0101 0.0005 0.0005 0.0073 0.00		
500 0.0004 0.0004 0.0001 0.0003 0.0033 0.0037 0.0017 0.0011 0.0001 0.0009 0.00		
[0;2] 50 0.0104 0.0104 0.0073 0.1682 0.1566 0.1824 0.1598 0.0013 0.0013 0.0139 0.01		
100 0.0041 0.0041 0.0026 0.0026 0.0586 0.0586 0.0436 0.0436 0.0005 0.0005 0.0064 0.00		
500 0.0008 0.0008 0.0006 0.0006 0.0099 0.0099 0.0072 0.0072 0.0001 0.0001 0.0009 0.00	0.0002	0.0002

Tabela D.27: Estimativas do erro quadratico médio dos parâmetros da mistura de duas regressões lineares no caso ${\rm PVII}$

						_										
			α_1 EM	α_1	β_1	β_1	α_2	α_2	β_2	β_2	σ_1	σ_1	σ_2	σ_2	$\frac{\pi_1}{\mathrm{EM}}$	$\frac{\pi_1}{\text{CEM}}$
<u>π1</u>	x [1 0]	n		CEM	EM	CEM	EM	CEM	EM	CEM	EM	CEM	EM	CEM		
0.1	[-1; 3]	50 100													0.0044 0.0009	
		500													0.0009	
	[0; 2]	50													0.0053	
	[0, 2]	100													0.0033	
		500													0.0010	
0.2	[-1; 3]	50													0.0002	
0.2	[-1, 3]	100													0.0036	
		500													0.0010	
	[0; 2]	50													0.0003	
	[0, 2]	100													0.0043	
		500													0.00017	
0.3	[-1; 3]	50													0.0047	
0.0	[1,0]	100													0.0021	
		500													0.0004	
	[0; 2]	50													0.0042	
	[0, 2]	100													0.0023	
		500													0.0006	
0.4	[-1; 3]	50													0.0053	
0.1	[1,0]	100													0.0024	
		500													0.0005	
	[0; 2]	50													0.0042	
	[-, -]	100													0.0024	
		500													0.0005	
0.5	[-1; 3]	50													0.0046	
	. , - 1	100	0.0090	0.0082	0.0037	0.0036	0.0092	0.0091	0.0036	0.0036	0.0038	0.0035	0.0029	0.0028	0.0027	0.0026
		500	0.0018	0.0018	0.0009	0.0009	0.0014	0.0013	0.0007	0.0007	0.0007	0.0006	0.0007	0.0007	0.0005	0.0005
	[0; 2]	50	0.0490	0.0468	0.0353	0.0339	0.0433	0.0416	0.0341	0.0332	0.0069	0.0065	0.0071	0.0068	0.0052	0.0052
		100	0.0212	0.0209	0.0161	0.0158	0.0186	0.0183	0.0142	0.0138	0.0029	0.0028	0.0027	0.0026	0.0026	0.0025
		500	0.0043	0.0042	0.0030	0.0030	0.0049	0.0048	0.0036	0.0035	0.0006	0.0006	0.0006	0.0006	0.0004	0.0004
0.6	[-1; 3]	50	0.0131	0.0125	0.0066	0.0064	0.0262	0.0253	0.0119	0.0114	0.0040	0.0036	0.0100	0.0093	0.0057	0.0057
		100													0.0025	
		500													0.0005	
	[0; 2]	50													0.0049	
		100													0.0027	
		500													0.0004	
0.7	[-1; 3]	50													0.0042	
		100													0.0020	
		500													0.0004	
	[0; 2]	50													0.0041	
		100													0.0019	
		500													0.0004	
0.8	[-1; 3]	50													0.0032	
		100													0.0015	
		500													0.0003	
	[0; 2]	50													0.0033	
		100													0.0015	
		500													0.0003	
0.9	[-1; 3]	50													0.0020	
		100													0.0008	
	[0, 0]	500													0.0002	
	[0; 2]	50													0.0021	
		100													0.0009	
		500	0.0022	0.0022	0.0017	0.0017	0.0208	0.0196	0.0157	0.0150	0.0003	0.0003	0.0028	0.0025	0.0002	0.0002

Tabela D.28: Estimativas do erro quadratico médio dos parâmetros da mistura de duas regressões lineares no caso ${\rm PVIII}$

Apêndice D

1	_	_															
1.0 1.0 0.1080 0.0678 0.0485 0.0273 0.0129 0.0122 0.0056 0.0054 0.0357 0.0302 0.0053 0.0041 0.0013 0.0009 1.0	π ₁	x [1.9]															
Fig. 50	0.1	[-1; 3]															
[9, 2] 50 0.5069 0.3549 0.3440 0.2410 0.0769 0.0734 0.0831 0.0624 0.0486 0.0144 0.0095 0.0077 0.0055 0.0050 0.0297 0.0252 0.0295 0.0295 0.0297 0.0296 0.0291 0.0295																	
1.0 0.1880 0.1270 0.1464 0.1122 0.0297 0.0263 0.0202 0.0188 0.0364 0.0275 0.0057 0.0053 0.0017 0.0010		[0, 2]															
1. 1. 1. 1. 1. 1. 1. 1.		[0, 2]															
Column C																	
1	0.2	[1.9]															
	0.2	[-1, 3]															
[0; 2] 50 0.2245 0.1361 0.1377 0.0905 0.0907 0.0738 0.0626 0.0556 0.0316 0.0220 0.0138 0.0138 0.0048 0.0036 0.0050 0.00894 0.0666 0.0695 0.0507 0.0414 0.0393 0.0334 0.0294 0.0166 0.0211 0.0076 0.0062 0.0017 0.0015 0.0345 0.0346 0.037 0.0145 0.0310 0.0200 0.0029 0.0010 0.0011 0.0004																	
100 0.0894 0.0696 0.0695 0.0507 0.0414 0.0393 0.0324 0.0294 0.0166 0.0111 0.0076 0.0602 0.0017 0.0016 100		[0.9]															
1. 1. 1. 1. 1. 1. 1. 1.		[0, 2]															
1.3																	
100	0.3	[=1:3]															
$ \begin{bmatrix} [0;2] \\ [0;3] \\ [0;4] \\ [0;5] \\ [0;6] \\ [0;6] \\ [0;6] \\ [0;6] \\ [0;6] \\ [0;6] \\ [0;6] \\ [0;6] \\ [0;6] \\ [0;6] \\ [0;6] \\ [0;6] \\ [0;6] \\ [0;7] \\ [0;6] \\ [0;7] \\ [0;6] \\ [0;7] \\ [0;6] \\ [0;7] \\ [$	0.0	[1,0]															
Part																	
100		[0. 2]															
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		[0, 2]															
$ \begin{bmatrix} -1;3 \\ -1;3 \\ -100 \\ -10165 & 0.0165 & 0.0164 & 0.0120 & 0.0591 & 0.0440 & 0.0212 & 0.0164 & 0.0161 & 0.0097 & 0.0197 & 0.0143 & 0.0053 & 0.0053 \\ -100 & 0.0165 & 0.0164 & 0.0064 & 0.0060 & 0.0233 & 0.00215 & 0.0093 & 0.0082 & 0.0043 & 0.0039 & 0.0082 & 0.0086 & 0.0030 & 0.0005 \\ -100 & 0.0029 & 0.0030 & 0.0011 & 0.0011 & 0.0050 & 0.0050 & 0.0020 & 0.0019 & 0.0009 & 0.0011 & 0.0015 & 0.0005 & 0.0005 \\ -100 & 0.0363 & 0.0487 & 0.1221 & 0.1027 & 0.0822 & 0.0717 & 0.0161 & 0.0122 & 0.0205 & 0.0142 & 0.0059 & 0.0055 \\ -500 & 0.0055 & 0.0053 & 0.0042 & 0.0041 & 0.0100 & 0.0109 & 0.0073 & 0.0010 & 0.0011 & 0.0014 & 0.0020 & 0.0065 & 0.0055 \\ -100 & 0.0276 & 0.0208 & 0.0111 & 0.0088 & 0.0546 & 0.0441 & 0.0265 & 0.0203 & 0.0118 & 0.0079 & 0.0252 & 0.0188 & 0.0063 & 0.0058 \\ -100 & 0.0120 & 0.0108 & 0.0051 & 0.0050 & 0.0292 & 0.0266 & 0.0127 & 0.0114 & 0.0039 & 0.0034 & 0.0095 & 0.0052 & 0.0022 \\ -100 & 0.0020 & 0.0020 & 0.0009 & 0.0009 & 0.0050 & 0.0052 & 0.0021 & 0.0019 & 0.0006 & 0.0007 & 0.0025 & 0.0022 \\ -100 & 0.0522 & 0.0246 & 0.0215 & 0.0195 & 0.0665 & 0.0870 & 0.00485 & 0.0041 & 0.0033 & 0.0096 & 0.0083 & 0.0023 & 0.0023 \\ -100 & 0.0262 & 0.0246 & 0.0215 & 0.0195 & 0.0665 & 0.0870 & 0.0483 & 0.0435 & 0.0041 & 0.0033 & 0.0096 & 0.0083 & 0.0023 & 0.0023 \\ -100 & 0.0044 & 0.0046 & 0.0034 & 0.0034 & 0.0120 & 0.0114 & 0.0084 & 0.0785 & 0.0055 & 0.00$																	
100	0.4	[=1:3]															
$ \begin{bmatrix} [0;2] \\ [$	0.4	[1,0]															
$ \begin{bmatrix} [6]2 \\ [0]2 \\ [0]3 \\ [0]4 \\ [0]5$																	
100		[0.2]															
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		[0, 2]															
$ \begin{bmatrix} -1;3 \\ -1;3$																	
$ \begin{bmatrix} 100 \\ 500 \\ 0.0020 & 0.0120 & 0.0180 & 0.0051 & 0.0050 & 0.0292 & 0.0266 & 0.0127 & 0.0114 & 0.0039 & 0.0034 & 0.0095 & 0.0075 & 0.0025 & 0.0022 \\ 500 & 0.0050 & 0.0020 & 0.0009 & 0.0009 & 0.0050 & 0.0052 & 0.0021 & 0.0019 & 0.0006 & 0.0007 & 0.0025 & 0.0025 \\ 100 & 0.0502 & 0.0418 & 0.0372 & 0.0340 & 0.1427 & 0.0990 & 0.1003 & 0.0764 & 0.0089 & 0.0067 & 0.0299 & 0.0196 & 0.0061 & 0.0051 \\ 100 & 0.0262 & 0.0246 & 0.0215 & 0.0195 & 0.0665 & 0.0570 & 0.0483 & 0.0435 & 0.0041 & 0.0033 & 0.0096 & 0.0083 & 0.0023 & 0.0023 \\ 500 & 0.0044 & 0.0046 & 0.0034 & 0.0034 & 0.0120 & 0.0114 & 0.0084 & 0.0078 & 0.0099 & 0.0010 & 0.0017 & 0.0024 & 0.0005 & 0.0066 \\ 0.6 & [-1;3] & 50 & 0.0172 & 0.0171 & 0.0082 & 0.0076 & 0.0715 & 0.0583 & 0.0025 & 0.0055 & 0.0055 & 0.0031 & 0.0271 & 0.0055 & 0.0066 & 0.0061 & 0.0061 & 0.0018 & 0.0089 & 0.0039 & 0.0038 & 0.0392 & 0.0274 & 0.0142 & 0.0112 & 0.0029 & 0.0026 & 0.0147 & 0.0119 & 0.0028 & 0.0026 & 0.0018 & 0.0018 & 0.0008 & 0.0059 & 0.0062 & 0.0031 & 0.0028 & 0.0007 & 0.0007 & 0.0025 & 0.0035 & 0.0006 & 0.0066 & 0.0066 & 0.0066 & 0.0066 & 0.0064 & 0.0061 & 0.0061 & 0.0064 & 0.0061 & 0.0061 & 0.0064 & 0.0061 & 0.0061 & 0.0064 & 0.0061 & 0.0064 & 0.0061 & 0.0064 & 0.0061 & 0.0064 & 0.0061 & 0.0064 & 0.0061 & 0.0064 & 0.0061 & 0.0064 & 0.006$	0.5	[-1:3]															
$ \begin{bmatrix} [0;2] & 500 & 0.0020 & 0.0020 & 0.0009 & 0.0009 & 0.0052 & 0.0021 & 0.0019 & 0.0006 & 0.0007 & 0.0015 & 0.0021 & 0.0005 & 0.0005 \\ 0.0502 & 0.0418 & 0.0372 & 0.0340 & 0.1427 & 0.0990 & 0.1003 & 0.0764 & 0.0089 & 0.0067 & 0.0096 & 0.0061 & 0.0061 \\ 0.0262 & 0.0246 & 0.0215 & 0.0195 & 0.0665 & 0.0570 & 0.0483 & 0.0435 & 0.0041 & 0.0033 & 0.0096 & 0.0083 & 0.0023 & 0.0023 \\ 0.0044 & 0.0046 & 0.0034 & 0.0034 & 0.0120 & 0.0114 & 0.0084 & 0.0078 & 0.0009 & 0.0010 & 0.0017 & 0.0024 & 0.0005 & 0.0066 \\ 0.0172 & 0.0171 & 0.0082 & 0.0076 & 0.0715 & 0.0593 & 0.0323 & 0.0235 & 0.0055 & 0.0055 & 0.0331 & 0.0271 & 0.0050 & 0.0046 \\ 0.0018 & 0.0018 & 0.0018 & 0.0008 & 0.0059 & 0.0062 & 0.0031 & 0.0028 & 0.0007 & 0.0007 & 0.0014 & 0.0018 & 0.0008 \\ 0.0266 & 0.0192 & 0.0136 & 0.0188 & 0.0095 & 0.0062 & 0.0031 & 0.0028 & 0.0007 & 0.0007 & 0.0025 & 0.0035 & 0.0006 & 0.0006 \\ 0.0266 & 0.0192 & 0.0136 & 0.0128 & 0.0930 & 0.0799 & 0.0665 & 0.0581 & 0.0037 & 0.0036 & 0.0130 & 0.0112 & 0.0024 & 0.0023 \\ 0.0035 & 0.0035 & 0.0024 & 0.0025 & 0.0142 & 0.0138 & 0.0101 & 0.0092 & 0.0005 & 0.0003 & 0.0040 & 0.0006 & 0.0066 \\ 0.0035 & 0.0035 & 0.0035 & 0.0024 & 0.0025 & 0.0142 & 0.0138 & 0.0101 & 0.0092 & 0.0005 & 0.0003 & 0.0040 & 0.0006 & 0.0066 \\ 0.0035 & 0.0035 & 0.0035 & 0.0024 & 0.0025 & 0.0142 & 0.0138 & 0.0101 & 0.0092 & 0.0005 & 0.0003 & 0.0043 & 0.0040 & 0.0006 \\ 0.0035 & 0.0035 & 0.0035 & 0.0024 & 0.0025 & 0.0142 & 0.0138 & 0.0101 & 0.0092 & 0.0005 & 0.0003 & 0.0040 & 0.0006 & 0.0066 \\ 0.0035 & 0.0035 & 0.0035 & 0.0024 & 0.0025 & 0.0142 & 0.0138 & 0.0101 & 0.0092 & 0.0005 & 0.0005 & 0.0023 & 0.0040 & 0.0006 & 0.0066 \\ 0.0035 & 0.0035 & 0.0035 & 0.0034 & 0.00743 & 0.0466 & 0.0259 & 0.0193 & 0.0007 & 0.0024 & 0.0238 & 0.0185 & 0.0024 & 0.0238 & 0.0024 & 0.0024 & 0.0238 & 0.0034 & 0.0044 & 0$		[-, -]															
$ \begin{bmatrix} [0;2] \\ [0;2] \\ [0;2] \\ [0;3] \\ [0;4] \\ [0;5] \\ [0;6] \\ [0;6] \\ [0;7] \\ [$			500														
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		[0: 2]	50														
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1-7 1															
$ \begin{bmatrix} 100 \\ 500 \\ 0.0018 & 0.0039 & 0.0039 & 0.0038 & 0.0392 & 0.0274 & 0.0142 & 0.0112 & 0.0029 & 0.0026 & 0.0147 & 0.0119 & 0.0028 & 0.0026 \\ 500 \\ 0.0018 & 0.0018 & 0.0008 & 0.0008 & 0.0065 & 0.0062 & 0.0031 & 0.0007 & 0.0007 & 0.0007 & 0.0025 & 0.0035 & 0.0006 & 0.0006 \\ 0.0018 & 0.0018 & 0.0018 & 0.0028 & 0.0055 & 0.1055 & 0.1275 & 0.1033 & 0.0067 & 0.0046 & 0.0355 & 0.0253 & 0.0064 & 0.0061 \\ 100 & 0.0206 & 0.0192 & 0.0136 & 0.0128 & 0.0930 & 0.0799 & 0.0665 & 0.0581 & 0.0037 & 0.0036 & 0.0130 & 0.0112 & 0.0024 & 0.0023 \\ 500 & 0.0035 & 0.0035 & 0.0024 & 0.0025 & 0.0142 & 0.0138 & 0.0101 & 0.0092 & 0.0005 & 0.0005 & 0.0003 & 0.0040 & 0.0006 & 0.0006 \\ 0.07 & [-1;3] & 50 & 0.0155 & 0.0144 & 0.0028 & 0.0063 & 0.1273 & 0.0926 & 0.0588 & 0.0417 & 0.0062 & 0.0048 & 0.0410 & 0.0349 & 0.0053 & 0.0048 \\ 100 & 0.0079 & 0.0070 & 0.0036 & 0.0034 & 0.0743 & 0.0446 & 0.0259 & 0.0193 & 0.0027 & 0.0024 & 0.0238 & 0.0185 & 0.0022 & 0.0021 \\ 500 & 0.00324 & 0.0038 & 0.0264 & 0.0056 & 0.0088 & 0.0382 & 0.0028 & 0.0044 & 0.0044 & 0.0047 & 0.0004 & 0.0004 \\ 100 & 0.0153 & 0.0144 & 0.0123 & 0.0120 & 0.1018 & 0.0828 & 0.0777 & 0.0659 & 0.0026 & 0.0025 & 0.0047 & 0.0005 & 0.0005 \\ 500 & 0.0026 & 0.0026 & 0.0021 & 0.0211 & 0.0207 & 0.0152 & 0.0139 & 0.0005 & 0.0032 & 0.0047 & 0.0005 & 0.0005 \\ 0.08 & [-1;3] & 50 & 0.0155 & 0.0138 & 0.0054 & 0.0031 & 0.0207 & 0.0153 & 0.0148 & 0.0373 & 0.0648 & 0.0337 & 0.0041 & 0.0027 & 0.0025 \\ 500 & 0.0026 & 0.0026 & 0.0021 & 0.0021 & 0.0211 & 0.0207 & 0.0152 & 0.0139 & 0.0005 & 0.0032 & 0.0047 & 0.0005 & 0.0005 \\ 0.08 & [-1;3] & 50 & 0.0155 & 0.0138 & 0.0056 & 0.1385 & 0.1068 & 0.0149 & 0.0051 & 0.0041 & 0.0682 & 0.0565 & 0.0042 & 0.0034 \\ 100 & 0.00515 & 0.0138 & 0.0057 & 0.0056 & 0.1385 & 0.1068 & 0.0049 & 0.0051 & 0.0041 & 0.0065 & 0.0045 & 0.0045 \\ 0.0013 & 0.0013 & 0.0004 & 0.0004 & 0.0148 & 0.0057 & 0.0047 & 0.0003 & 0.0033 & 0.0065 & 0.0004 & 0.0004 \\ 100 & 0.0138 & 0.0013 & 0.0004 & 0.0004 & 0.0148 & 0.0357 & 0.0047 & 0.0003 & 0.0003 & 0.0003 & 0.0003 & 0.0003 & 0.0003 & 0.0003 \\ 0.09 $			500														
$ \begin{bmatrix} 100 \\ 500 \\ 0.0018 & 0.0039 & 0.0039 & 0.0038 & 0.0392 & 0.0274 & 0.0142 & 0.0112 & 0.0029 & 0.0026 & 0.0147 & 0.0119 & 0.0028 & 0.0026 \\ 500 \\ 0.0018 & 0.0018 & 0.0008 & 0.0008 & 0.0065 & 0.0062 & 0.0031 & 0.0007 & 0.0007 & 0.0007 & 0.0025 & 0.0035 & 0.0006 & 0.0006 \\ 0.0018 & 0.0018 & 0.0018 & 0.0028 & 0.0055 & 0.1055 & 0.1275 & 0.1033 & 0.0067 & 0.0046 & 0.0355 & 0.0253 & 0.0064 & 0.0061 \\ 100 & 0.0206 & 0.0192 & 0.0136 & 0.0128 & 0.0930 & 0.0799 & 0.0665 & 0.0581 & 0.0037 & 0.0036 & 0.0130 & 0.0112 & 0.0024 & 0.0023 \\ 500 & 0.0035 & 0.0035 & 0.0024 & 0.0025 & 0.0142 & 0.0138 & 0.0101 & 0.0092 & 0.0005 & 0.0005 & 0.0003 & 0.0040 & 0.0006 & 0.0006 \\ 0.07 & [-1;3] & 50 & 0.0155 & 0.0144 & 0.0028 & 0.0063 & 0.1273 & 0.0926 & 0.0588 & 0.0417 & 0.0062 & 0.0048 & 0.0410 & 0.0349 & 0.0053 & 0.0048 \\ 100 & 0.0079 & 0.0070 & 0.0036 & 0.0034 & 0.0743 & 0.0446 & 0.0259 & 0.0193 & 0.0027 & 0.0024 & 0.0238 & 0.0185 & 0.0022 & 0.0021 \\ 500 & 0.00324 & 0.0038 & 0.0264 & 0.0056 & 0.0088 & 0.0382 & 0.0028 & 0.0044 & 0.0044 & 0.0047 & 0.0004 & 0.0004 \\ 100 & 0.0153 & 0.0144 & 0.0123 & 0.0120 & 0.1018 & 0.0828 & 0.0777 & 0.0659 & 0.0026 & 0.0025 & 0.0047 & 0.0005 & 0.0005 \\ 500 & 0.0026 & 0.0026 & 0.0021 & 0.0211 & 0.0207 & 0.0152 & 0.0139 & 0.0005 & 0.0032 & 0.0047 & 0.0005 & 0.0005 \\ 0.08 & [-1;3] & 50 & 0.0155 & 0.0138 & 0.0054 & 0.0031 & 0.0207 & 0.0153 & 0.0148 & 0.0373 & 0.0648 & 0.0337 & 0.0041 & 0.0027 & 0.0025 \\ 500 & 0.0026 & 0.0026 & 0.0021 & 0.0021 & 0.0211 & 0.0207 & 0.0152 & 0.0139 & 0.0005 & 0.0032 & 0.0047 & 0.0005 & 0.0005 \\ 0.08 & [-1;3] & 50 & 0.0155 & 0.0138 & 0.0056 & 0.1385 & 0.1068 & 0.0149 & 0.0051 & 0.0041 & 0.0682 & 0.0565 & 0.0042 & 0.0034 \\ 100 & 0.00515 & 0.0138 & 0.0057 & 0.0056 & 0.1385 & 0.1068 & 0.0049 & 0.0051 & 0.0041 & 0.0065 & 0.0045 & 0.0045 \\ 0.0013 & 0.0013 & 0.0004 & 0.0004 & 0.0148 & 0.0057 & 0.0047 & 0.0003 & 0.0033 & 0.0065 & 0.0004 & 0.0004 \\ 100 & 0.0138 & 0.0013 & 0.0004 & 0.0004 & 0.0148 & 0.0357 & 0.0047 & 0.0003 & 0.0003 & 0.0003 & 0.0003 & 0.0003 & 0.0003 & 0.0003 \\ 0.09 $	0.6	[-1; 3]	50	0.0172	0.0171	0.0082	0.0076	0.0715	0.0593	0.0323	0.0235	0.0055	0.0050	0.0331	0.0271	0.0050	0.0046
$ \begin{bmatrix} [0;2] \\ [0;2] \\ [0;3] \\ [0;4] \\ [0;5] \\ [0;6] \\ [0;7] \\ [$			100	0.0097	0.0089	0.0039	0.0038	0.0392	0.0274	0.0142	0.0112	0.0029	0.0026	0.0147	0.0119	0.0028	0.0026
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			500	0.0018	0.0018	0.0008	0.0008	0.0059	0.0062	0.0031	0.0028	0.0007	0.0007	0.0025	0.0035	0.0006	0.0006
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		[0; 2]	50	0.0436	0.0370	0.0289	0.0258	0.1905	0.1452	0.1275	0.1033	0.0067	0.0046	0.0355	0.0253	0.0064	0.0061
$ \begin{bmatrix} -1;3 \\ 0.7 \\ -1;3 \\ 0.0 \end{bmatrix} $			100	0.0206	0.0192	0.0136	0.0128	0.0930	0.0799	0.0665	0.0581	0.0037	0.0036	0.0130	0.0112	0.0024	0.0023
$ \begin{bmatrix} 100 & 0.0079 & 0.0070 & 0.0036 & 0.0034 & 0.0743 & 0.0446 & 0.0259 & 0.0193 & 0.0027 & 0.0024 & 0.0238 & 0.0185 & 0.0022 & 0.0021 \\ 500 & 0.0013 & 0.0013 & 0.0006 & 0.0066 & 0.0088 & 0.0038 & 0.0028 & 0.0004 & 0.0004 & 0.0034 & 0.0047 & 0.0004 \\ 100 & 0.0324 & 0.0308 & 0.0254 & 0.0344 & 0.2134 & 0.21348 & 0.1563 & 0.0056 & 0.0045 & 0.0458 & 0.0337 & 0.0052 & 0.0042 \\ 100 & 0.0153 & 0.0144 & 0.0123 & 0.0120 & 0.1018 & 0.0828 & 0.0777 & 0.0659 & 0.0026 & 0.0023 & 0.0162 & 0.0141 & 0.0027 & 0.0025 \\ 500 & 0.0026 & 0.0026 & 0.0021 & 0.0021 & 0.0211 & 0.0207 & 0.0152 & 0.0139 & 0.0005 & 0.0032 & 0.0047 & 0.0005 & 0.0005 \\ 0.08 & [-1;3] & 50 & 0.0155 & 0.0138 & 0.0057 & 0.0056 & 0.1385 & 0.1068 & 0.0696 & 0.0499 & 0.0051 & 0.0041 & 0.0682 & 0.0565 & 0.0042 & 0.0034 \\ 100 & 0.0071 & 0.0066 & 0.0031 & 0.0029 & 0.1050 & 0.0619 & 0.0389 & 0.0272 & 0.0022 & 0.0018 & 0.0369 & 0.0290 & 0.0021 & 0.0019 \\ 500 & 0.0013 & 0.0013 & 0.0004 & 0.0004 & 0.0160 & 0.0148 & 0.0657 & 0.0047 & 0.0003 & 0.0053 & 0.0065 & 0.0040 & 0.0004 \\ [0;2] & 50 & 0.0344 & 0.0311 & 0.0261 & 0.0246 & 0.5381 & 0.3330 & 0.4055 & 0.2584 & 0.0044 & 0.0037 & 0.0738 & 0.0643 & 0.0038 \\ 0.09 & [-1;3] & 50 & 0.0115 & 0.0098 & 0.0095 & 0.3278 & 0.1714 & 0.1979 & 0.1223 & 0.0026 & 0.0022 & 0.0421 & 0.0268 & 0.0021 & 0.0017 \\ 0.0027 & 0.0027 & 0.0018 & 0.0018 & 0.0312 & 0.0298 & 0.0230 & 0.0205 & 0.0004 & 0.0052 & 0.0067 & 0.0003 & 0.0003 \\ 0.09 & [-1;3] & 50 & 0.0115 & 0.0107 & 0.051 & 0.0550 & 0.5523 & 0.3850 & 0.3538 & 0.3856 & 0.0043 & 0.0036 & 0.1179 & 0.1132 & 0.0029 & 0.0015 \\ 0.0060 & 0.0660 & 0.0064 & 0.0024 & 0.0233 & 0.2964 & 0.1271 & 0.1228 & 0.0644 & 0.018 & 0.0016 & 0.0779 & 0.0721 & 0.0011 & 0.0009 \\ 0.009 & 0.0010 & 0.0004 & 0.0004 & 0.0318 & 0.0291 & 0.0134 & 0.0108 & 0.0008 & 0.1352 & 0.1223 & 0.0065 & 0.0015 \\ 0.0015 & 0.0115 & 0.0114 & 0.0403 & 0.0386 & 0.6205 & 0.3467 & 0.3862 & 0.2427 & 0.0020 & 0.0018 & 0.0737 & 0.0631 & 0.0048 & 0.0046 \\ 0.0122 & 0.0114 & 0.0403 & 0.0386 & 0.6205 & 0.3467 & 0.3862 & 0.2427 & 0.0020 & 0.0018 & 0.0737 &$			500	0.0035	0.0035	0.0024	0.0025	0.0142	0.0138	0.0101	0.0092	0.0005	0.0005	0.0023	0.0040	0.0006	0.0006
$ \begin{bmatrix} [0;2] & 500 & 0.0013 & 0.0013 & 0.0006 & 0.0006 & 0.0096 & 0.0088 & 0.0032 & 0.0028 & 0.0004 & 0.0004 & 0.0034 & 0.0047 & 0.0004 & 0.0004 \\ 0.0324 & 0.0308 & 0.0264 & 0.0254 & 0.3440 & 0.2134 & 0.2348 & 0.1563 & 0.0056 & 0.0045 & 0.0458 & 0.0337 & 0.0052 & 0.0042 \\ 100 & 0.0153 & 0.0144 & 0.0123 & 0.0120 & 0.1018 & 0.0828 & 0.0777 & 0.0659 & 0.0026 & 0.0023 & 0.0162 & 0.0141 & 0.0027 & 0.0025 \\ 0.0026 & 0.0026 & 0.0021 & 0.0021 & 0.0211 & 0.0207 & 0.0152 & 0.0139 & 0.0005 & 0.0005 & 0.0032 & 0.0047 & 0.0005 & 0.0005 \\ 0.008 & [-1;3] & 50 & 0.0155 & 0.0138 & 0.0057 & 0.0056 & 0.1835 & 0.1068 & 0.0696 & 0.0499 & 0.0051 & 0.0041 & 0.0682 & 0.0565 & 0.0042 & 0.0034 \\ 0.0071 & 0.0066 & 0.0031 & 0.0009 & 0.0169 & 0.0619 & 0.0389 & 0.0272 & 0.0022 & 0.0018 & 0.0366 & 0.0004 & 0.0004 \\ 0.024 & 50 & 0.0013 & 0.0013 & 0.0004 & 0.0004 & 0.0169 & 0.0189 & 0.0272 & 0.0022 & 0.0018 & 0.0365 & 0.0004 & 0.0004 \\ 0.025 & 50 & 0.0344 & 0.0311 & 0.0261 & 0.0246 & 0.5381 & 0.3330 & 0.4055 & 0.2584 & 0.0044 & 0.0037 & 0.0738 & 0.0643 & 0.0038 & 0.0033 \\ 0.00118 & 0.0115 & 0.0098 & 0.0095 & 0.3278 & 0.1714 & 0.1979 & 0.1223 & 0.0026 & 0.0022 & 0.0421 & 0.0268 & 0.0021 & 0.0017 \\ 0.0027 & 0.0027 & 0.0018 & 0.0018 & 0.0312 & 0.0298 & 0.0235 & 0.0004 & 0.0004 & 0.0052 & 0.0067 & 0.0003 & 0.0003 \\ 0.09 & [-1;3] & 50 & 0.0115 & 0.0107 & 0.0051 & 0.0055 & 0.5523 & 0.3850 & 0.3538 & 0.3856 & 0.0043 & 0.0036 & 0.1179 & 0.1132 & 0.0029 & 0.0015 \\ 100 & 0.0060 & 0.0060 & 0.0024 & 0.0023 & 0.2964 & 0.1271 & 0.1228 & 0.0644 & 0.0018 & 0.0016 & 0.0779 & 0.0721 & 0.0011 & 0.0009 \\ 100 & 0.0015 & 0.0107 & 0.0051 & 0.0055 & 0.5523 & 0.3850 & 0.0344 & 0.0018 & 0.0016 & 0.0779 & 0.0721 & 0.0011 & 0.0009 \\ 100 & 0.0060 & 0.0060 & 0.0024 & 0.0023 & 0.2964 & 0.1271 & 0.1228 & 0.0644 & 0.0018 & 0.0016 & 0.0779 & 0.0721 & 0.0011 & 0.0009 \\ 100 & 0.0015 & 0.0115 & 0.0107 & 0.0051 & 0.0055 & 0.3467 & 0.3862 & 0.2427 & 0.0020 & 0.0018 & 0.0737 & 0.0631 & 0.0048 & 0.0046 \\ 100 & 0.0122 & 0.0114 & 0.0403 & 0.0386 & 0.6205 & 0.3467 & 0.3862 & 0.2427 & 0.00$	0.7	[-1; 3]	50	0.0155	0.0140	0.0068	0.0063	0.1273	0.0926	0.0588	0.0417	0.0062	0.0048	0.0410	0.0349	0.0053	0.0048
$ \begin{bmatrix} [0;2] & 50 & 0.0324 & 0.0308 & 0.0264 & 0.0254 & 0.3440 & 0.2134 & 0.2348 & 0.1563 & 0.0056 & 0.0045 & 0.0458 & 0.0337 & 0.0052 & 0.0042 \\ 100 & 0.0153 & 0.0144 & 0.0123 & 0.0120 & 0.1018 & 0.0828 & 0.0777 & 0.0659 & 0.0026 & 0.0023 & 0.0162 & 0.0141 & 0.0027 & 0.0025 \\ 500 & 0.0026 & 0.0026 & 0.0021 & 0.0211 & 0.0207 & 0.0152 & 0.0139 & 0.0005 & 0.0032 & 0.0047 & 0.0005 & 0.0005 \\ 0.8 & [-1;3] & 50 & 0.0155 & 0.0138 & 0.0057 & 0.0056 & 0.1835 & 0.1068 & 0.0696 & 0.0499 & 0.0051 & 0.0041 & 0.0682 & 0.0565 & 0.0042 & 0.0034 \\ 100 & 0.0071 & 0.0066 & 0.0031 & 0.0029 & 0.1050 & 0.0619 & 0.0389 & 0.0272 & 0.0022 & 0.0018 & 0.0369 & 0.0290 & 0.0021 & 0.0019 \\ 500 & 0.0013 & 0.0013 & 0.0004 & 0.0004 & 0.0169 & 0.0389 & 0.0272 & 0.0022 & 0.0018 & 0.0369 & 0.0094 & 0.0004 \\ [0;2] & 50 & 0.0344 & 0.0311 & 0.0261 & 0.0246 & 0.5381 & 0.3330 & 0.4055 & 0.2584 & 0.0044 & 0.0037 & 0.0738 & 0.0643 & 0.0038 & 0.0330 \\ 100 & 0.0118 & 0.0115 & 0.0098 & 0.0095 & 0.3278 & 0.1714 & 0.1979 & 0.1223 & 0.0026 & 0.0022 & 0.0421 & 0.0268 & 0.0021 & 0.0017 \\ 500 & 0.0027 & 0.0027 & 0.0018 & 0.0018 & 0.0312 & 0.0298 & 0.0230 & 0.0205 & 0.0004 & 0.0004 & 0.0052 & 0.0067 & 0.0003 & 0.0003 \\ 0.9 & [-1;3] & 50 & 0.0115 & 0.0107 & 0.0051 & 0.0055 & 0.5523 & 0.3850 & 0.3538 & 0.3856 & 0.0043 & 0.0036 & 0.1179 & 0.1132 & 0.0029 & 0.0015 \\ 100 & 0.0060 & 0.0060 & 0.0024 & 0.0023 & 0.2964 & 0.1271 & 0.1228 & 0.0644 & 0.0018 & 0.0016 & 0.0779 & 0.0721 & 0.0011 & 0.0099 \\ 500 & 0.0009 & 0.0010 & 0.0004 & 0.0004 & 0.0318 & 0.0291 & 0.0134 & 0.0108 & 0.0003 & 0.0003 & 0.0013 & 0.0111 & 0.0126 & 0.0002 & 0.0002 \\ [0;2] & 50 & 0.0415 & 0.0217 & 0.0879 & 0.0156 & 1.2841 & 0.9592 & 0.9432 & 0.8028 & 0.0040 & 0.0028 & 0.1352 & 0.1223 & 0.0065 & 0.0015 \\ [0;2] & 50 & 0.0415 & 0.0217 & 0.0879 & 0.0156 & 1.2841 & 0.9592 & 0.9432 & 0.8028 & 0.0040 & 0.0028 & 0.1352 & 0.1223 & 0.0065 & 0.0015 \\ [0;2] & 50 & 0.0415 & 0.0217 & 0.0879 & 0.0156 & 1.2841 & 0.9592 & 0.9432 & 0.8028 & 0.0040 & 0.0028 & 0.1352 & 0.1223 & 0.0065 & 0.0015 \\ [0;2] & 50 & 0.0415 & 0.0$			100	0.0079	0.0070	0.0036	0.0034	0.0743	0.0446	0.0259	0.0193	0.0027	0.0024	0.0238	0.0185	0.0022	0.0021
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			500	0.0013	0.0013	0.0006	0.0006	0.0096	0.0088	0.0032	0.0028	0.0004	0.0004	0.0034	0.0047	0.0004	0.0004
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		[0; 2]	50	0.0324	0.0308	0.0264	0.0254	0.3440	0.2134	0.2348	0.1563	0.0056	0.0045	0.0458	0.0337	0.0052	0.0042
$ \begin{bmatrix} -1;3 \\ 0.8 \\ -1;3 \\ 0.0 \end{bmatrix} $			100	0.0153	0.0144	0.0123	0.0120	0.1018	0.0828	0.0777	0.0659	0.0026	0.0023	0.0162	0.0141	0.0027	0.0025
$ \begin{bmatrix} 100 & 0.0071 & 0.0066 & 0.0031 & 0.0029 & 0.1050 & 0.0619 & 0.0389 & 0.0272 & 0.0022 & 0.0018 & 0.0369 & 0.0290 & 0.0021 & 0.0019 \\ 500 & 0.0013 & 0.0013 & 0.0004 & 0.0004 & 0.0160 & 0.0148 & 0.0057 & 0.0047 & 0.0003 & 0.0003 & 0.0053 & 0.0065 & 0.0004 & 0.0004 \\ 500 & 0.0344 & 0.0311 & 0.0261 & 0.0246 & 0.5381 & 0.3330 & 0.4055 & 0.2584 & 0.0044 & 0.0037 & 0.0738 & 0.0643 & 0.0038 & 0.0038 \\ 100 & 0.0118 & 0.0115 & 0.0098 & 0.0095 & 0.3278 & 0.1714 & 0.1979 & 0.1223 & 0.0026 & 0.0022 & 0.0421 & 0.0268 & 0.0021 & 0.0017 \\ 500 & 0.0027 & 0.0027 & 0.0018 & 0.0018 & 0.0312 & 0.0298 & 0.0230 & 0.0205 & 0.0004 & 0.0052 & 0.0667 & 0.0003 & 0.0003 \\ \hline 0.9 & [-1;3] & 50 & 0.0115 & 0.0107 & 0.0051 & 0.0050 & 0.5523 & 0.3850 & 0.3538 & 0.3556 & 0.0043 & 0.0036 & 0.1179 & 0.1132 & 0.0029 & 0.015 \\ 100 & 0.0060 & 0.0060 & 0.0024 & 0.0023 & 0.2964 & 0.1271 & 0.1228 & 0.6644 & 0.0018 & 0.0016 & 0.0779 & 0.0721 & 0.0011 & 0.0099 \\ 500 & 0.0009 & 0.0010 & 0.0004 & 0.0004 & 0.0318 & 0.0291 & 0.0134 & 0.0109 & 0.0003 & 0.0013 & 0.0111 & 0.0126 & 0.0002 & 0.0002 \\ [0;2] & 50 & 0.0415 & 0.0217 & 0.0879 & 0.0156 & 1.2841 & 0.9529 & 0.9432 & 0.8028 & 0.0040 & 0.0028 & 0.1352 & 0.1223 & 0.0065 & 0.0015 \\ 100 & 0.0122 & 0.0114 & 0.0403 & 0.0386 & 0.6205 & 0.3467 & 0.3862 & 0.2427 & 0.0020 & 0.0018 & 0.0737 & 0.0631 & 0.0048 & 0.0046 \\ \hline \end{tabular}$			500	0.0026	0.0026	0.0021	0.0021	0.0211	0.0207	0.0152	0.0139	0.0005	0.0005	0.0032	0.0047	0.0005	0.0005
$ \begin{bmatrix} [0;2] & 500 & 0.0013 & 0.0013 & 0.0004 & 0.0004 & 0.0160 & 0.0148 & 0.0057 & 0.0047 & 0.0003 & 0.0003 & 0.0065 & 0.0004 & 0.0004 \\ 0.0344 & 0.0311 & 0.0261 & 0.0246 & 0.5381 & 0.3330 & 0.4055 & 0.2584 & 0.0044 & 0.0037 & 0.0738 & 0.0643 & 0.0038 & 0.0030 \\ 0.0118 & 0.0115 & 0.0098 & 0.0095 & 0.3278 & 0.1714 & 0.1979 & 0.1223 & 0.0026 & 0.0022 & 0.0421 & 0.0268 & 0.0021 & 0.0017 \\ 500 & 0.0027 & 0.0018 & 0.0312 & 0.0298 & 0.0230 & 0.0205 & 0.0004 & 0.0004 & 0.0052 & 0.0067 & 0.0003 & 0.0003 \\ 0.09 & [-1;3] & 50 & 0.0115 & 0.0107 & 0.0051 & 0.0050 & 0.5523 & 0.3850 & 0.3538 & 0.3856 & 0.0043 & 0.0036 & 0.1179 & 0.1132 & 0.0029 & 0.0015 \\ 0.006 & 0.0060 & 0.0064 & 0.0023 & 0.2964 & 0.1271 & 0.1228 & 0.0644 & 0.0018 & 0.0016 & 0.0779 & 0.0721 & 0.0011 & 0.0009 \\ 0.0009 & 0.0010 & 0.0004 & 0.0004 & 0.0318 & 0.0291 & 0.0134 & 0.0109 & 0.0003 & 0.0003 & 0.0111 & 0.1266 & 0.0002 & 0.0005 \\ 0.0415 & 0.0217 & 0.0879 & 0.0156 & 1.2841 & 0.9592 & 0.9432 & 0.8028 & 0.0040 & 0.0028 & 0.1352 & 0.1223 & 0.0065 & 0.0015 \\ 0.00122 & 0.0114 & 0.0403 & 0.0386 & 0.6205 & 0.3467 & 0.3862 & 0.2427 & 0.0020 & 0.0018 & 0.0737 & 0.0631 & 0.0048 & 0.0046 \\ 0.00122 & 0.0114 & 0.0403 & 0.0386 & 0.6205 & 0.3467 & 0.3862 & 0.2427 & 0.0020 & 0.0018 & 0.0737 & 0.0631 & 0.0048 & 0.0046 \\ 0.00122 & 0.0114 & 0.0403 & 0.0386 & 0.6205 & 0.3467 & 0.3862 & 0.2427 & 0.0020 & 0.0018 & 0.0737 & 0.0631 & 0.0048 & 0.0046 \\ 0.00122 & 0.0114 & 0.0403 & 0.0386 & 0.6205 & 0.3467 & 0.3862 & 0.2427 & 0.0020 & 0.0018 & 0.0737 & 0.0631 & 0.0048 & 0.0046 \\ 0.00122 & 0.0114 & 0.0403 & 0.0386 & 0.6205 & 0.3467 & 0.3862 & 0.2427 & 0.0020 & 0.0018 & 0.0737 & 0.0631 & 0.0048 & 0.0046 \\ 0.00122 & 0.0114 & 0.0403 & 0.0386 & 0.6205 & 0.3467 & 0.3862 & 0.2427 & 0.0020 & 0.0018 & 0.0737 & 0.0631 & 0.0048 & 0.0046 \\ 0.00122 & 0.0114 & 0.0403 & 0.0386 & 0.6205 & 0.3467 & 0.3862 & 0.2427 & 0.0020 & 0.0018 & 0.0737 & 0.0631 & 0.0048 & 0.0046 \\ 0.00122 & 0.0114 & 0.0403 & 0.0386 & 0.6205 & 0.3467 & 0.3862 & 0.2427 & 0.0020 & 0.0018 & 0.0737 & 0.0631 & 0.0048 & 0.0046 \\ 0.00$	0.8	[-1; 3]	50	0.0155	0.0138	0.0057	0.0056	0.1835	0.1068	0.0696	0.0499	0.0051	0.0041	0.0682	0.0565	0.0042	0.0034
$ \begin{bmatrix} [0;2] \\ [0;2] \\ [0;2] \\ [0;2] \\ [0;2] \end{bmatrix} = \begin{bmatrix} 50 \\ 0.0344 \\ 0.0311 \\ 0.0261 \\ 0.027 \\ 0.0027 \\ 0.0028 \\ 0.0098 \\ 0.0095 \\ 0.0098 \\ 0.0095 \\ 0.0027 \\ 0.0018 \\ 0.0018 \\ 0.0018 \\ 0.0018 \\ 0.0018 \\ 0.0018 \\ 0.0018 \\ 0.0018 \\ 0.0018 \\ 0.0018 \\ 0.0018 \\ 0.0018 \\ 0.0018 \\ 0.0029 \\ 0.0209 \\ 0.0209 \\ 0.0209 \\ 0.0209 \\ 0.0205 \\ 0.00004 \\ 0.0006 \\ 0.0006 \\ 0.0006 \\ 0.0006 \\ 0.0006 \\ 0.0004 \\ 0.0004 \\ 0.0004 \\ 0.0004 \\ 0.0004 \\ 0.0008 \\ 0.0008 \\ 0.0009 \\ 0.0010 \\ 0.0004 \\ 0.0004 \\ 0.0004 \\ 0.0004 \\ 0.0004 \\ 0.0004 \\ 0.0004 \\ 0.0008 \\ 0.0009 \\ 0.0015 \\ 0.0009 \\ 0.0015 \\ 0.0009 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0015 \\ 0.0018 \\ 0.0$																	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$																	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		[0; 2]															
$ \begin{bmatrix} -1;3 \\ 0.9 \\ -1;3 \\ 0.00 \end{bmatrix} $																	
$ \begin{bmatrix} 100 & 0.0060 & 0.0060 & 0.0024 & 0.0023 & 0.2964 & 0.1271 & 0.1228 & 0.0644 & 0.0018 & 0.0016 & 0.0779 & 0.0721 & 0.0011 & 0.0009 \\ 500 & 0.0009 & 0.0010 & 0.0004 & 0.0004 & 0.0318 & 0.0291 & 0.0134 & 0.0109 & 0.0003 & 0.0013 & 0.0111 & 0.0126 & 0.0002 & 0.0002 \\ [0; 2] & 50 & 0.0415 & 0.0217 & 0.0879 & 0.0156 & 1.2841 & 0.9592 & 0.9432 & 0.8028 & 0.0040 & 0.0028 & 0.1352 & 0.1223 & 0.0065 & 0.0015 \\ 100 & 0.0122 & 0.0114 & 0.0403 & 0.0386 & 0.6205 & 0.3467 & 0.3862 & 0.2427 & 0.0020 & 0.0018 & 0.0737 & 0.0631 & 0.0048 & 0.0046 \\ \end{bmatrix} $																	
$ \begin{bmatrix} 500 & 0.0009 & 0.0010 & 0.0004 & 0.0004 & 0.0318 & 0.0291 & 0.0134 & 0.0109 & 0.0003 & 0.0003 & 0.0111 & 0.0126 & 0.0002 & 0.0002 \\ 50 & 0.0415 & 0.0217 & 0.0879 & 0.0156 & 1.2841 & 0.9592 & 0.9432 & 0.8028 & 0.0040 & 0.0028 & 0.1352 & 0.1223 & 0.0065 & 0.0015 \\ 100 & 0.0122 & 0.0114 & 0.0403 & 0.0386 & 0.6205 & 0.3467 & 0.3862 & 0.2427 & 0.0020 & 0.0018 & 0.0737 & 0.0631 & 0.0048 & 0.0046 \\ \end{bmatrix} $	0.9	[-1; 3]	50														
$100 \qquad 0.0122 \ 0.0114 \ 0.0403 \ 0.0386 \ 0.6205 \ 0.3467 \ 0.3862 \ 0.2427 \ 0.0020 \ 0.0018 \ 0.0737 \ 0.0631 \ 0.0048 \ 0.0046$																	
		[0; 2]															
500 0.0021 0.0021 0.0014 0.0014 0.0657 0.0522 0.0498 0.0393 0.0003 0.0003 0.0121 0.0120 0.0002 0.0002																	
			500	0.0021	0.0021	0.0014	0.0014	0.0657	0.0522	0.0498	0.0393	0.0003	0.0003	0.0121	0.0120	0.0002	0.0002

Tabela D.29: Estimativas do erro quadratico médio dos parâmetros da mistura de duas regressões lineares no caso PIX

					0	-			0	0						
			α_1	α_1	β_1	β_1	α_2	α_2	β_2	β_2	σ_1	σ_1	σ_2	σ_2	π_1	π_1
$\frac{\pi_1}{2}$	x	n	EM	CEM	EM	CEM	EM	CEM	EM	CEM	EM	CEM	EM	CEM	EM	CEM
0.1	[-1; 3]	50													0.0130	
		100													0.0033	
	[0.0]	500													0.0004	
	[0; 2]	50													0.0089	
		100													0.0022	
		500													0.0003	
0.2	[-1; 3]	50													0.0066	
		100													0.0026	
		500													0.0004	
	[0; 2]	50													0.0050	
		100													0.0028	
		500													0.0004	
0.3	[-1; 3]	50													0.0060	
		100	0.0234	0.0210	0.0093	0.0088	0.0337	0.0286	0.0117	0.0103	0.0101	0.0087	0.0130	0.0123	0.0037	0.0030
		500													0.0005	
	[0; 2]	50													0.0070	
		100													0.0030	
		500													0.0005	
0.4	[-1; 3]	50													0.0069	
		100													0.0035	
		500	0.0033	0.0030	0.0013	0.0012	0.0099	0.0121	0.0031	0.0027	0.0011	0.0014	0.0031	0.0066	0.0006	0.0007
	[0; 2]	50	0.0811	0.0681	0.0590	0.0490	0.1941	0.1420	0.1318	0.1049	0.0160	0.0128	0.0356	0.0306	0.0075	0.0060
		100	0.0404	0.0340	0.0295	0.0271	0.0907	0.0706	0.0653	0.0548	0.0058	0.0046	0.0162	0.0165	0.0034	0.0030
		500	0.0062	0.0062	0.0045	0.0045	0.0182	0.0207	0.0115	0.0099	0.0009	0.0012	0.0028	0.0061	0.0006	0.0006
0.5	[-1; 3]	50	0.0264	0.0216	0.0107	0.0090	0.1186	0.0816	0.0431	0.0282	0.0093	0.0072	0.0372	0.0291	0.0070	0.0060
	-	100	0.0138	0.0113	0.0055	0.0051	0.0499	0.0397	0.0212	0.0173	0.0057	0.0046	0.0229	0.0176	0.0037	0.0031
		500	0.0022	0.0022	0.0009	0.0008	0.0130	0.0155	0.0036	0.0029	0.0008	0.0010	0.0041	0.0076	0.0006	0.0006
	[0; 2]	50	0.0527	0.0482	0.0386	0.0348	0.2425	0.1806	0.1559	0.1116	0.0110	0.0082	0.0455	0.0382	0.0064	0.0054
		100	0.0341	0.0316	0.0232	0.0222	0.1059	0.0832	0.0741	0.0601	0.0047	0.0044	0.0188	0.0181	0.0029	0.0026
		500	0.0049	0.0050	0.0029	0.0030	0.0195	0.0232	0.0137	0.0106	0.0007	0.0009	0.0039	0.0092	0.0007	0.0007
0.6	[-1; 3]	50	0.0197	0.0186	0.0094	0.0082	0.1423	0.0963	0.0556	0.0356	0.0087	0.0066	0.0485	0.0426	0.0062	0.0055
		100	0.0147	0.0134	0.0048	0.0046	0.0763	0.0627	0.0315	0.0255	0.0033	0.0029	0.0305	0.0273	0.0029	0.0026
		500	0.0019	0.0019	0.0008	0.0008	0.0117	0.0155	0.0053	0.0041	0.0006	0.0006	0.0048	0.0103	0.0005	0.0006
	[0; 2]	50	0.0531	0.0442	0.0370	0.0299	0.3292	0.2132	0.2458	0.1583	0.0097	0.0061	0.0644	0.0460	0.0075	0.0057
		100	0.0177	0.0168	0.0142	0.0136	0.1454	0.1114	0.1033	0.0800	0.0039	0.0035	0.0245	0.0242	0.0026	0.0025
		500	0.0041	0.0041	0.0034	0.0033	0.0275	0.0264	0.0198	0.0162	0.0007	0.0007	0.0042	0.0107	0.0006	0.0007
0.7	[-1; 3]	50	0.0177	0.0163	0.0078	0.0073	0.2057	0.1230	0.0980	0.0567	0.0057	0.0044	0.0775	0.0688	0.0058	0.0046
		100	0.0082	0.0072	0.0036	0.0034	0.1310	0.0662	0.0482	0.0350	0.0029	0.0025	0.0380	0.0357	0.0027	0.0024
		500	0.0017	0.0017	0.0006	0.0006	0.0176	0.0246	0.0061	0.0046	0.0006	0.0006	0.0062	0.0130	0.0006	0.0006
	[0; 2]	50	0.0377	0.0350	0.0313	0.0298	0.6128	0.3388	0.4210	0.2368	0.0067	0.0055	0.0675	0.0589	0.0060	0.0052
		100	0.0177	0.0168	0.0129	0.0123	0.2532	0.1717	0.1804	0.1228	0.0027	0.0022	0.0427	0.0352	0.0027	0.0025
		500	0.0031	0.0030	0.0022	0.0022	0.0347	0.0366	0.0280	0.0211	0.0006	0.0006	0.0070	0.0147	0.0005	0.0006
0.8	[-1; 3]	50	0.0113	0.0102	0.0122	0.0048	0.4414	0.2397	0.1812	0.1079	0.0044	0.0037	0.1144	0.1042	0.0055	0.0029
		100	0.0057	0.0055	0.0026	0.0025	0.1903	0.1193	0.0709	0.0441	0.0023	0.0022	0.0561	0.0520	0.0026	0.0020
		500	0.0012	0.0012	0.0005	0.0005	0.0269	0.0341	0.0110	0.0079	0.0005	0.0004	0.0104	0.0183	0.0004	0.0004
	[0; 2]	50	0.0348	0.0292	0.0770	0.0256	0.8613	0.5307	0.5861	0.3969	0.0063	0.0036	0.1119	0.1020	0.0072	0.0036
		100	0.0147	0.0140	0.0116	0.0114	0.4377	0.2513	0.2610	0.1709	0.0022	0.0019	0.0658	0.0524	0.0023	0.0017
		500													0.0004	
0.9	[-1; 3]	50													0.0034	
	. , - 1	100													0.0014	
		500													0.0003	
	[0; 2]	50													0.0185	
	[- / -]	100													0.0107	
		500													0.0002	
		000	3.0021	5.0021	2.0010	5.0010	100		5.00.0	2.0001		2.0000	5.0201	5.0021	5.0002	2.0002

Tabela D.30: Estimativas do erro quadratico médio dos parâmetros da mistura de duas regressões lineares no caso ${\rm PX}$

 $Ap \hat{e}ndice~D$

			$_{\mathrm{EM}}^{lpha_{1}}$	α_1 CEM	β_1 EM	β_1 CEM	α_2 EM	α_2 CEM	β_2 EM	β_2 CEM	σ_1 EM	σ_1 CEM	σ_2 EM	σ_2 CEM	π_1 EM	$_{ ext{CEM}}^{\pi_1}$
0.1	[-1; 3]	50													0.0259	
0.1	[-1, 3]	100													0.0239	
		500													0.0007	
	[0; 2]	50													0.0003	
	[0, 2]	100													0.0062	
		500													0.0062 0.0011	
0.2	[1.9]	500													0.0011	
0.2	[-1; 3]	100													0.0001	
		500													0.0002	
	[0.0]															
	[0; 2]	50 100													0.0103 0.0025	
	[1 0]	500													0.0015	
0.3	[-1; 3]	50													0.0019	
		100													0.0019	
	[0.0]	500													0.0002	
	[0; 2]	50													0.0027	
		100													0.0020	
	F 4 01	500													0.0027	
0.4	[-1; 3]	50													0.0037	
		100													0.0004	
	fo. 01	500													0.0030	
	[0; 2]	50													0.0117	
		100													0.0046	
		500													0.0006	
0.5	[-1; 3]	50													0.0132	
		100													0.0018	
		500													0.0037	
	[0; 2]	50													0.0122	
		100													0.0097	
	F = 01	500													0.0028	
0.6	[-1; 3]	50														0.0224
		100													0.0006	
		500													0.0003	
	[0; 2]	50													0.0134	
		100													0.0050	
		500													0.0005	
0.7	[-1; 3]	50													0.0017	
		100													0.0014	
		500													0.0018	
	[0; 2]	50													0.0057	
		100													0.0003	
		500													0.0002	
0.8	[-1; 3]	50													0.0027	
		100													0.0062	
		500													0.0031	
	[0; 2]	50													0.0149	
		100													0.0012	
		500													0.0022	
0.9	[-1; 3]	50													0.0278	
		100													0.0025	
		500													0.0006	
	[0; 2]	50													0.0407	
		100													0.0016	
		500	0.0018	0.0010	0.0029	0.0019	0.0026	0.0728	0.0000	0.0709	0.0010	0.0021	0.0107	0.0320	0.0011	0.0347

Tabela D.31: Estimativas do valor absoluto do enviesamento médio dos parâmetros da mistura de duas regressões lineares no caso ${\rm EI}$

The color The																	
1				α_1	α_1	β_1	β_1	α_2	α_2	β_2	β_2	σ_1	σ_1	σ_2	σ_2	π_1	π_1
100	π_1	x															
	0.1	[-1; 3]															
[0; 2] 50																	
100																	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		[0; 2]															
Color																	
10	0.2	[-1; 3]															
[0; 2] 50																	
100																	
1.03		[0; 2]															
1-13 50																	
100																	
$ \begin{bmatrix} [0;2] \\ 500 \\ 0.0083 \ 0.2776 \ 0.0468 \ 0.2858 \ 0.0261 \ 0.0104 \ 0.0192 \ 0.0058 \ 0.0079 \ 0.0288 \ 0.0010 \ 0.0209 \ 0.0003 \ 0.0470 \\ 100 \\ 0.0128 \ 0.2444 \ 0.0125 \ 0.2649 \ 0.0203 \ 0.0087 \ 0.0113 \ 0.0144 \ 0.0562 \ 0.1407 \ 0.0189 \ 0.0245 \ 0.0094 \ 0.0118 \\ 100 \\ 0.0127 \ 0.3716 \ 0.0160 \ 0.3756 \ 0.0028 \ 0.0853 \ 0.0055 \ 0.0890 \ 0.0136 \ 0.1355 \ 0.0012 \ 0.0124 \ 0.0094 \ 0.1188 \\ 100 \\ 0.0124 \ 0.0385 \ 0.0024 \ 0.0207 \ 0.0294 \ 0.0180 \ 0.0151 \ 0.0040 \ 0.0431 \ 0.0555 \ 0.0274 \ 0.0488 \ 0.0049 \ 0.0299 \\ 100 \\ 0.0124 \ 0.0388 \ 0.0024 \ 0.0248 \ 0.0034 \ 0.0154 \ 0.0040 \ 0.0155 \ 0.0282 \ 0.0517 \ 0.0104 \ 0.0388 \ 0.0005 \ 0.0351 \\ 100 \\ 0.0037 \ 0.0202 \ 0.0019 \ 0.0250 \ 0.0099 \ 0.0126 \ 0.0006 \ 0.0123 \ 0.0055 \ 0.00517 \ 0.0104 \ 0.0388 \ 0.0005 \ 0.0351 \\ 100 \\ 0.0048 \ 0.1783 \ 0.0660 \ 0.1888 \ 0.0124 \ 0.0391 \ 0.0038 \ 0.0053 \ 0.0053 \ 0.0057 \ 0.0093 \ 0.0056 \ 0.0093 \\ 100 \\ 0.0048 \ 0.1783 \ 0.0660 \ 0.1888 \ 0.0124 \ 0.0391 \ 0.0038 \ 0.0303 \ 0.0899 \ 0.0054 \ 0.0318 \ 0.0044 \ 0.1233 \\ 100 \\ 0.0070 \ 0.0096 \ 0.0266 \ 0.0039 \ 0.0166 \ 0.0160 \ 0.0008 \ 0.0038 \ 0.0049 \ 0.0025 \ 0.0093 \ 0.0066 \ 0.0015 \\ 100 \\ 0.0070 \ 0.0096 \ 0.0039 \ 0.0166 \ 0.0016 \ 0.0108 \ 0.0038 \ 0.0049 \ 0.0025 \ 0.0093 \ 0.0066 \ 0.0015 \\ 100 \\ 0.0070 \ 0.0096 \ 0.00$	0.3	[-1; 3]															
[0; 2] 50 0.0483 0.2769 0.0466 0.2858 0.0261 0.0104 0.0192 0.0058 0.1182 0.0432 0.0378 0.0168 0.0924 1.0108																	
100																	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		[0; 2]															
$ \begin{bmatrix} 0.4 & [-1;3] & 50 & 0.0007 & 0.0195 & 0.0000 & 0.0207 & 0.0294 & 0.0180 & 0.0151 & 0.0040 & 0.0431 & 0.0658 & 0.0274 & 0.0488 & 0.0044 & 0.0299 \\ 100 & 0.0124 & 0.0388 & 0.0024 & 0.0248 & 0.0034 & 0.0154 & 0.0040 & 0.0155 & 0.0282 & 0.0517 & 0.0104 & 0.0358 & 0.0005 & 0.0351 \\ 100 & 0.0049 & 0.2232 & 0.0409 & 0.0126 & 0.0006 & 0.0123 & 0.0053 & 0.0279 & 0.0030 & 0.0305 & 0.0000 & 0.0422 \\ 100 & 0.0048 & 0.1783 & 0.0066 & 0.1888 & 0.0124 & 0.0391 & 0.0083 & 0.0340 & 0.0499 & 0.0111 & 0.0566 & 0.0693 & 0.0066 & 0.0877 \\ 500 & 0.0014 & 0.2555 & 0.0013 & 0.2551 & 0.0027 & 0.0079 & 0.0014 & 0.0282 & 0.0533 & 0.0869 & 0.054 & 0.0318 & 0.0044 & 0.1273 \\ \hline 0.5 & [-1;3] & 50 & 0.0069 & 0.0266 & 0.0039 & 0.0166 & 0.0016 & 0.0108 & 0.0038 & 0.0104 & 0.0282 & 0.0529 & 0.0360 & 0.0586 & 0.0013 & 0.0077 \\ 100 & 0.00070 & 0.0096 & 0.0016 & 0.0166 & 0.0016 & 0.0018 & 0.0055 & 0.0135 & 0.0168 & 0.0401 & 0.0183 & 0.0464 & 0.0088 & 0.0017 & 0.00077 \\ 100 & 0.0011 & 0.0178 & 0.0005 & 0.0183 & 0.0018 & 0.0038 & 0.0151 & 0.0057 & 0.0342 & 0.0001 & 0.0279 & 0.0015 & 0.0006 \\ [0;2] & 50 & 0.0112 & 0.1003 & 0.0012 & 0.183 & 0.0018 & 0.0183 & 0.0183 & 0.0183 & 0.0410 & 0.0183 & 0.0401 & 0.0183 & 0.0401 & 0.0183 & 0.0401 & 0.0183 & 0.0401 & 0.0289 & 0.0209 & 0.02079 & 0.0015 & 0.0006 & 0.0015 & 0.0365 & 0.0015 & 0.0015 & 0.0015 & 0.0015 & 0.0015 & 0.0015 & 0.0015 & 0.0015 & 0.0015 & 0.0015 & 0.0015 & 0.0015 & 0.0015 & 0.0015 & 0.0015 & 0.0015 & 0.0015 & 0.0015 & 0.0016 & 0.0183 & 0.0018 & 0.0033 & 0.0181 & 0.0027 & 0.0038 & 0.0036 & 0.0070 & 0.0857 & 0.0038 & 0.0036 & 0.0070 & 0.0057 & 0.0029 & 0.0025 & 0.0025 & 0.0038 & 0.0036 & 0.0057 & 0.0055 & 0.002$																	
100																	
$ \begin{bmatrix} [0;2] & 50 & 0.0037 & 0.0202 & 0.0109 & 0.0250 & 0.0009 & 0.0126 & 0.0006 & 0.0123 & 0.0053 & 0.0279 & 0.0030 & 0.0305 & 0.0006 & 0.0422 \\ 50 & 0.0494 & 0.2323 & 0.0463 & 0.2228 & 0.0175 & 0.0412 & 0.0110 & 0.0396 & 0.0917 & 0.1451 & 0.0506 & 0.0693 & 0.0066 & 0.0877 \\ 500 & 0.0048 & 0.1783 & 0.0060 & 0.1888 & 0.0124 & 0.0391 & 0.0083 & 0.0340 & 0.0499 & 0.1112 & 0.0267 & 0.0539 & 0.0031 & 0.0974 \\ 500 & 0.0014 & 0.2555 & 0.0013 & 0.2551 & 0.0027 & 0.0079 & 0.0014 & 0.0028 & 0.0552 & 0.0552 & 0.0318 & 0.0044 & 0.1273 \\ 100 & 0.0070 & 0.0096 & 0.0061 & 0.0016 & 0.0016 & 0.0018 & 0.0033 & 0.0166 & 0.0401 & 0.0183 & 0.0444 & 0.0007 \\ 100 & 0.0070 & 0.0096 & 0.0011 & 0.0163 & 0.0010 & 0.0168 & 0.0050 & 0.0135 & 0.0168 & 0.0401 & 0.0183 & 0.0444 & 0.0008 & 0.0011 \\ 100 & 0.0011 & 0.0178 & 0.0005 & 0.0183 & 0.0018 & 0.0183 & 0.0030 & 0.0151 & 0.0057 & 0.0342 & 0.0001 & 0.0279 & 0.0015 & 0.0006 \\ 100 & 0.0011 & 0.0178 & 0.0005 & 0.0183 & 0.0018 & 0.0183 & 0.0030 & 0.0151 & 0.0057 & 0.0342 & 0.0001 & 0.0077 & 0.0005 & 0.0018 & 0.0018 & 0.0018 & 0.0018 & 0.0044 & 0.0068 & 0.0077 & 0.0005 & 0.0018 $	0.4	[-1; 3]															
$ \begin{bmatrix} [0;2] \\ 50 \\ 0.0048 \\ 0.175 \\ 0.0048 \\ 0.175 \\ 0.0048 \\ 0.175 \\ 0.0048 \\ 0.175 \\ 0.0048 \\ 0.175 \\ 0.0048 \\ 0.175 \\ 0.0048 \\ 0.175 \\ 0.0048 \\ 0.175 \\ 0.0048 \\ 0.175 \\ 0.0048 \\ 0.175 \\ 0.0048 \\ 0.175 \\ 0.0048 \\ 0.175 \\ 0.0048 \\ 0.175 \\ 0.0048 $																	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $																	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		[0; 2]															
$ \begin{bmatrix} -1;3 \\ 0.5 \\ -1;3 \\ 100 \\ 0.0070 0.0096 0.0266 0.0039 0.0166 0.0016 0.0108 0.0038 0.0104 0.0262 0.0529 0.0360 0.0586 0.0013 0.0077 \\ 0.0070 0.0096 0.0001 0.0163 0.0010 0.0168 0.0050 0.0135 0.0168 0.0401 0.0183 0.0018 0.0057 0.0342 0.0001 0.0279 0.0015 0.0006 \\ 0.0011 0.0178 0.0005 0.0183 0.0018 0.0183 0.0030 0.0151 0.0057 0.0342 0.0001 0.0279 0.0015 0.0006 \\ 0.0012 0.0016 0.1195 0.0007 0.1202 0.0251 0.1291 0.0313 0.1381 0.0142 0.0688 0.0400 0.0895 0.0124 0.0016 0.0017 0.0016 0.0017 0.0016 0.0017 0.0016 0.0017 0.0016 0.0017 0.0016 0.0017 0.0016 0.0017 0.0016 0.0017 $																	
$ \begin{bmatrix} 100 & 0.0070 & 0.0096 & 0.0001 & 0.0163 & 0.0010 & 0.0168 & 0.0050 & 0.0135 & 0.0168 & 0.0401 & 0.0183 & 0.0464 & 0.0008 & 0.0010 \\ 500 & 0.0011 & 0.0178 & 0.0005 & 0.0183 & 0.0030 & 0.0151 & 0.0057 & 0.0342 & 0.0001 & 0.0279 & 0.0015 & 0.0006 \\ 100 & 0.0016 & 0.1195 & 0.0007 & 0.1202 & 0.0251 & 0.1291 & 0.0313 & 0.1381 & 0.0142 & 0.0668 & 0.0400 & 0.0895 & 0.0124 & 0.0016 \\ 500 & 0.0015 & 0.1365 & 0.0040 & 0.0891 & 0.0047 & 0.0031 & 0.0133 & 0.0138 & 0.0142 & 0.0668 & 0.0400 & 0.0895 & 0.0124 & 0.0016 \\ 500 & 0.0015 & 0.1365 & 0.0040 & 0.0081 & 0.0047 & 0.0133 & 0.0010 & 0.0188 & 0.0638 & 0.0070 & 0.0657 & 0.0005 & 0.0139 \\ 0.6 & [-1;3] & 50 & 0.0057 & 0.0052 & 0.0042 & 0.0081 & 0.0047 & 0.0133 & 0.0010 & 0.0188 & 0.0538 & 0.0070 & 0.0657 & 0.0005 & 0.0139 \\ 0.0044 & 0.0183 & 0.0014 & 0.0136 & 0.0013 & 0.0202 & 0.0228 & 0.0257 & 0.0029 & 0.0308 & 0.0036 & 0.0253 & 0.0015 & 0.0405 \\ 0.0044 & 0.0183 & 0.0014 & 0.0136 & 0.0013 & 0.0202 & 0.0028 & 0.0257 & 0.0029 & 0.0308 & 0.0036 & 0.0253 & 0.0015 & 0.0405 \\ 0.0054 & 0.0004 & 0.0160 & 0.0003 & 0.0015 & 0.0140 & 0.0287 & 0.018 & 0.0257 & 0.0029 & 0.0308 & 0.0036 & 0.0253 & 0.0015 & 0.0405 \\ 0.0074 & 0.0094 & 0.0160 & 0.0083 & 0.0158 & 0.0140 & 0.2087 & 0.0118 & 0.2076 & 0.0200 & 0.0516 & 0.0477 & 0.1167 & 0.0000 & 0.0931 \\ 0.0094 & 0.0160 & 0.0003 & 0.0077 & 0.0232 & 0.0057 & 0.0049 & 0.0193 & 0.0368 & 0.0705 & 0.0940 & 0.0057 & 0.0328 \\ 0.0053 & 0.0124 & 0.0018 & 0.00077 & 0.0232 & 0.0057 & 0.0049 & 0.0193 & 0.0368 & 0.0705 & 0.0944 & 0.0057 & 0.0328 \\ 0.0053 & 0.0124 & 0.0019 & 0.0089 & 0.0011 & 0.0273 & 0.0006 & 0.0288 & 0.00256 & 0.0456 & 0.0044 & 0.0482 \\ 0.024 & 0.0078 & 0.0366 & 0.0054 & 0.0054 & 0.0054 & 0.0054 & 0.0054 & 0.0057 & 0.0240 & 0.0057 & 0.0246 & 0.0044 & 0.0058 & 0.0057 & 0.0246 & 0.0044 & 0.0058 & 0.0257 & 0.0246 & 0.0044 & 0.0057 & 0.0246 & 0.0044 & 0.0057 & 0.0246 & 0.0007 & 0.0181 & 0.0478 & 0.0111 & 0.0478 & 0.0117 & 0.0050 & 0.0066 & 0.0058 & 0.0057 & 0.0246 & 0.0057 & 0.0246 & 0.0007 & 0.0057 & 0.0246 & 0.0057 & 0.0246 & 0.0057 & 0.$			500														
$ \begin{bmatrix} 500 \\ [0;2] \\ 50 \\ 0.0112 \\ 0.1033 \\ 0.0012 \\ 0.1012 \\ 0.1003 \\ 0.0012 \\ 0.1012 \\ 0.1003 \\ 0.0012 \\ 0.1020 \\ 0.0012 \\ 0.1020 \\ 0.0012 \\ 0.1020 \\ 0.0012 \\ 0.1020 \\ 0.0012 \\ 0.1020 \\ 0.0012 \\ 0.1020 \\ 0.0013 \\ 0.0012 \\ 0.1020 \\ 0.0015 \\ 0.1365 \\ 0.0040 \\ 0.0015 \\ 0.1365 \\ 0.0040 \\ 0.0015 \\ 0.0057 \\ 0.0040 \\ 0.0015 \\ 0.0057 \\ 0.0040 \\ 0.0015 \\ 0.0057 \\ 0.0040 \\ 0.0015 \\ 0.0057 \\ 0.0040 \\ 0.0015 \\ 0.0040 \\ 0.0040 \\ 0.0040 \\ 0.0040 \\ 0.0040 \\ 0.0040 \\ 0.0040 \\ 0.0050 \\ 0.0050 \\ 0.0040 \\ 0.0050 \\ 0.0040 \\ 0.0050 \\ 0.0040 \\ 0.0050 \\ 0.0050 \\ 0.0040 \\ 0.0050 \\ 0.0050 \\ 0.0040 \\ 0.0050$	0.5	[-1; 3]															
$ \begin{bmatrix} [0;2] & 50 & 0.0112 \ 0.1003 \ 0.0012 \ 0.1023 \ 0.0390 \ 0.1651 \ 0.0175 \ 0.1445 \ 0.0672 \ 0.0981 \ 0.0669 \ 0.1077 \ 0.00070 \ 0.0091 \ 0.0016 \ 0.1195 \ 0.00070 \ 0.1202 \ 0.0251 \ 0.1291 \ 0.0313 \ 0.1381 \ 0.0142 \ 0.0668 \ 0.0400 \ 0.0895 \ 0.0124 \ 0.0016 \ 0.0016 \ 0.0015 \ 0.1365 \ 0.0040 \ 0.1387 \ 0.0001 \ 0.1131 \ 0.0034 \ 0.1093 \ 0.0018 \ 0.0638 \ 0.0070 \ 0.0657 \ 0.0055 \ 0.0042 \ 0.0081 \ 0.0047 \ 0.0153 \ 0.0010 \ 0.0188 \ 0.0288 \ 0.0515 \ 0.0483 \ 0.0666 \ 0.0657 \ 0.0035 \ 0.0359 \ 0.0040 \ 0.0088 \ 0.0167 \ 0.0090 \ 0.0121 \ 0.0100 \ 0.0119 \ 0.0061 \ 0.0163 \ 0.0187 \ 0.0428 \ 0.0199 \ 0.0425 \ 0.0002 \ 0.0356 \ 0.0041 \ 0.0183 \ 0.0014 \ 0.0183 \ 0.0014 \ 0.0180 \ 0.0013 \ 0.0025 \ 0.0028 \ 0.0257 \ 0.0029 \ 0.0308 \ 0.0036 \ 0.0253 \ 0.0015 \ 0.0405 \ 0.0044 \ 0.0183 \ 0.0014 \ 0.0183 \ 0.0013 \ 0.0020 \ 0.0028 \ 0.0257 \ 0.0029 \ 0.0308 \ 0.0036 \ 0.0253 \ 0.0015 \ 0.0405 \ 0.0019 \ 0.0001 \ 0$																	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $																	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		[0; 2]															
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$																	
$ \begin{bmatrix} 100 & 0.0068 & 0.0167 & 0.0009 & 0.0121 & 0.0100 & 0.0119 & 0.0061 & 0.0163 & 0.0187 & 0.0428 & 0.0199 & 0.0425 & 0.0002 & 0.0356 \\ 500 & 0.0044 & 0.0183 & 0.0014 & 0.0136 & 0.0013 & 0.0202 & 0.0028 & 0.0257 & 0.0029 & 0.0308 & 0.0036 & 0.0253 & 0.0015 & 0.0405 \\ 500 & 0.0042 & 0.0160 & 0.0609 & 0.0012 & 0.1706 & 0.0035 & 0.1793 & 0.0566 & 0.0770 & 0.0852 & 0.1376 & 0.0155 & 0.0610 \\ 100 & 0.0094 & 0.0160 & 0.0083 & 0.0158 & 0.0140 & 0.2087 & 0.0118 & 0.2076 & 0.0200 & 0.0516 & 0.0477 & 0.1167 & 0.0000 & 0.0931 \\ 500 & 0.0039 & 0.0143 & 0.0043 & 0.0033 & 0.0000 & 0.2669 & 0.0050 & 0.2606 & 0.0054 & 0.0272 & 0.0019 & 0.0907 & 0.0050 & 0.1318 \\ \hline 0.7 & [-1;3] & 50 & 0.0012 & 0.0061 & 0.0003 & 0.0077 & 0.0223 & 0.0075 & 0.0049 & 0.0193 & 0.0193 & 0.0368 & 0.0705 & 0.0904 & 0.0057 & 0.0303 \\ \hline 0.0080 & 0.0016 & 0.0014 & 0.0011 & 0.0002 & 0.0240 & 0.0036 & 0.0296 & 0.0094 & 0.0269 & 0.0256 & 0.0456 & 0.0004 & 0.0452 \\ \hline 500 & 0.0053 & 0.0124 & 0.0019 & 0.0089 & 0.0011 & 0.0273 & 0.0006 & 0.0283 & 0.0019 & 0.0207 & 0.0025 & 0.0246 & 0.0004 & 0.0452 \\ \hline 100 & 0.0193 & 0.0363 & 0.0230 & 0.0246 & 0.0126 & 0.2198 & 0.0243 & 0.2036 & 0.0541 & 0.0599 & 0.1139 & 0.1947 & 0.0218 & 0.0904 \\ \hline 100 & 0.0193 & 0.0363 & 0.0230 & 0.0328 & 0.0211 & 0.3197 & 0.0030 & 0.3173 & 0.0221 & 0.0179 & 0.0522 & 0.1548 & 0.0157 & 0.1179 \\ \hline 0.8 & [-1;3] & 50 & 0.0138 & 0.0180 & 0.0065 & 0.0028 & 0.0051 & 0.0357 & 0.0096 & 0.0097 & 0.0112 & 0.0134 & 0.0084 & 0.0294 & 0.0046 \\ \hline 0.0017 & 0.0050 & 0.0006 & 0.0030 & 0.0098 & 0.0219 & 0.0057 & 0.0266 & 0.0097 & 0.0182 & 0.0145 & 0.0045 \\ \hline 0.0017 & 0.0050 & 0.0006 & 0.0030 & 0.0098 & 0.0219 & 0.0057 & 0.0266 & 0.0097 & 0.0182 & 0.0145 & 0.0045 \\ \hline 0.0017 & 0.0050 & 0.0006 & 0.0030 & 0.0098 & 0.0219 & 0.0057 & 0.0266 & 0.0097 & 0.0184 & 0.0044 & 0.0045 & $																	
$ \begin{bmatrix} [0;2] & 500 & 0.0044 & 0.0183 & 0.0014 & 0.0136 & 0.0013 & 0.0202 & 0.0028 & 0.0257 & 0.0029 & 0.0308 & 0.0036 & 0.0253 & 0.0015 & 0.0405 \\ [0;2] & 50 & 0.0102 & 0.0717 & 0.0120 & 0.0609 & 0.0012 & 0.1706 & 0.0035 & 0.1793 & 0.0560 & 0.0770 & 0.0852 & 0.1376 & 0.0155 & 0.0610 \\ [0;2] & 500 & 0.0094 & 0.0160 & 0.0083 & 0.0158 & 0.0140 & 0.0287 & 0.0118 & 0.2076 & 0.0200 & 0.0516 & 0.0477 & 0.1167 & 0.0000 & 0.0931 \\ [0;2] & 500 & 0.0039 & 0.0143 & 0.0043 & 0.0133 & 0.0000 & 0.2669 & 0.0050 & 0.2606 & 0.0054 & 0.0272 & 0.0019 & 0.0907 & 0.0050 & 0.1318 \\ [0;2] & 500 & 0.0012 & 0.0061 & 0.0003 & 0.0077 & 0.0223 & 0.0075 & 0.0049 & 0.0193 & 0.0388 & 0.0705 & 0.0904 & 0.0057 & 0.0333 \\ [0;2] & 500 & 0.0053 & 0.0124 & 0.0019 & 0.0089 & 0.0011 & 0.0273 & 0.0006 & 0.0298 & 0.0094 & 0.0256 & 0.0456 & 0.0004 & 0.0452 \\ [0;2] & 500 & 0.0597 & 0.0360 & 0.0573 & 0.0246 & 0.0126 & 0.2198 & 0.0243 & 0.2036 & 0.0541 & 0.0509 & 0.1139 & 0.1947 & 0.0218 & 0.0904 \\ [0;2] & 500 & 0.0053 & 0.0123 & 0.0038 & 0.0211 & 0.3197 & 0.0036 & 0.0211 & 0.0179 & 0.0522 & 0.1548 & 0.0157 & 0.1179 \\ [0;2] & 500 & 0.0011 & 0.0837 & 0.0008 & 0.0811 & 0.0027 & 0.3092 & 0.0001 & 0.3758 & 0.0052 & 0.0070 & 0.0061 & 0.1242 & 0.0026 & 0.0034 & 0.0241 & 0.0038 & 0.0254 \\ [0;2] & 500 & 0.0013 & 0.0180 & 0.0065 & 0.0028 & 0.0051 & 0.0357 & 0.0097 & 0.0112 & 0.0230 & 0.0308 & 0.1122 & 0.1343 & 0.0080 & 0.0254 \\ [0;2] & 500 & 0.0042 & 0.0078 & 0.0011 & 0.0046 & 0.0016 & 0.0293 & 0.0002 & 0.0390 & 0.0025 & 0.0134 & 0.0084 & 0.0299 & 0.0044 & 0.0414 \\ [0;2] & 500 & 0.0042 & 0.0078 & 0.0011 & 0.0046 & 0.0016 & 0.0293 & 0.0002 & 0.0390 & 0.0025 & 0.0134 & 0.0084 & 0.0299 & 0.0044 & 0.0133 & 0.01019 & 0.0159 & 0.0643 & 0.2305 & 0.0470 & 0.0241 & 0.0028 & 0.0755 & 0.0267 & 0.0041 & 0.0079 & 0.0159 & 0.0643 & 0.2305 & 0.0470 & 0.0241 & 0.0028 & 0.0755 & 0.0266 & 0.0041 & 0.0046 & 0.0046 & 0.0046 & 0.0048 & 0.4519 & 0.0020 & 0.0333 & 0.0080 & 0.1418 & 0.0012 & 0.0306 & 0.0041 & 0.0046 & 0.0046 & 0.0046 & 0.0048 & 0.4519 & 0.0020 & 0.0333 & 0.0080 & 0.1418 & 0$	0.6	[-1; 3]															
$ \begin{bmatrix} [0;2] \\ [0;2] \\ [0;0] \\ [$																	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$																	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		[0; 2]															
$ \begin{bmatrix} -1;3 \\ 0.7 \\ -1;3 \\ 0.0085 \\ 0.0012 \\ 0.0080 \\ 0.0012 \\ 0.0080 \\ 0.0016 \\ 0.0014 \\ 0.0081 \\ 0.0080 \\ 0.0016 \\ 0.0014 \\ 0.0081 \\ 0.0080 \\ 0.0016 \\ 0.0080 \\ 0.0016 \\ 0.0080 \\ 0.0014 \\ 0.0081 \\ 0.0080 \\ 0.0014 \\ 0.0081 \\ 0.0080 \\ 0.0014 \\ 0.0081 \\ 0.0080 \\ 0.0014 \\ 0.0081 \\ 0.0080 \\ 0.0014 \\ 0.0081 \\ 0.0080 \\ 0.0014 \\ 0.0081 \\ 0.0083 \\ 0.0014 \\ 0.0081 \\ 0.0083 \\ 0.0012 \\ 0.0080 \\ 0.0081 \\ 0.0053 \\ 0.0012 \\ 0.0057 \\ 0.0080 \\ 0.0053 \\ 0.0024 \\ 0.0023 \\ 0.0024 \\ 0.0024 \\ 0.0024 \\ 0.0024 \\ 0.0024 \\ 0.0024 \\ 0.0025 \\ 0.0024 \\ 0.0026 \\ 0.0024 \\ 0.0026 \\ 0.0024 \\ 0.0026 \\ 0.0024 \\ 0.0026 \\ 0.0026 \\ 0.0026 \\ 0.0026 \\ 0.0026 \\ 0.0026 \\ 0.0026 \\ 0.0026 \\ 0.0026 \\ 0.0026 \\ 0.0026 \\ 0.0026 \\ 0.0026 \\ 0.0026 \\ 0.0026 \\ 0.0026 \\ 0.0026 \\ 0.0008 \\ 0.0008 \\ 0.0008 \\ 0.0008 \\ 0.0000 \\ 0.0008 \\ 0.000$																	
$\begin{bmatrix} 100 & 0.0080 & 0.0016 & 0.0014 & 0.0081 & 0.0002 & 0.0240 & 0.0036 & 0.0296 & 0.0094 & 0.0256 & 0.0456 & 0.0004 & 0.0452 \\ 500 & 0.0053 & 0.0124 & 0.0019 & 0.0089 & 0.0011 & 0.0273 & 0.0006 & 0.0283 & 0.0019 & 0.0207 & 0.0025 & 0.0246 & 0.0004 & 0.0482 \\ [0;2] & 50 & 0.0597 & 0.0360 & 0.0573 & 0.0246 & 0.0126 & 0.2198 & 0.0243 & 0.2036 & 0.0541 & 0.0509 & 0.1139 & 0.1947 & 0.0218 & 0.0904 \\ 100 & 0.0193 & 0.0363 & 0.0230 & 0.0238 & 0.0211 & 0.3197 & 0.0030 & 0.3173 & 0.0221 & 0.0179 & 0.0522 & 0.1548 & 0.0157 & 0.1179 \\ 500 & 0.0001 & 0.0837 & 0.0008 & 0.0811 & 0.0027 & 0.3892 & 0.0001 & 0.3758 & 0.0052 & 0.0070 & 0.0061 & 0.1242 & 0.0026 & 0.1489 \\ \hline 0.8 & [-1;3] & 50 & 0.0138 & 0.0180 & 0.0025 & 0.0028 & 0.0051 & 0.0357 & 0.0097 & 0.0112 & 0.0233 & 0.0308 & 0.1122 & 0.1343 & 0.0080 & 0.0254 \\ \hline 100 & 0.0017 & 0.0050 & 0.0006 & 0.0030 & 0.0098 & 0.0219 & 0.0057 & 0.0266 & 0.0097 & 0.0181 & 0.0478 & 0.0711 & 0.0001 & 0.0405 \\ \hline 500 & 0.0042 & 0.0078 & 0.0011 & 0.0046 & 0.0016 & 0.0293 & 0.0002 & 0.0309 & 0.0124 & 0.0084 & 0.0299 & 0.0004 & 0.0414 \\ \hline [0;2] & 50 & 0.0241 & 0.0079 & 0.0159 & 0.0643 & 0.2305 & 0.0470 & 0.2242 & 0.0403 & 0.0391 & 0.1743 & 0.2333 & 0.0358 & 0.0507 \\ \hline 100 & 0.0126 & 0.0256 & 0.0067 & 0.0246 & 0.0082 & 0.2782 & 0.0048 & 0.2935 & 0.0194 & 0.0133 & 0.1019 & 0.1941 & 0.0145 & 0.0878 \\ \hline 500 & 0.0038 & 0.0820 & 0.0019 & 0.0845 & 0.0034 & 0.4576 & 0.0048 & 0.4519 & 0.0020 & 0.0233 & 0.0080 & 0.1418 & 0.0012 & 0.1228 \\ \hline 0.9 & [-1;3] & 50 & 0.0075 & 0.0119 & 0.0088 & 0.0304 & 0.0711 & 0.0162 & 0.0341 & 0.0088 & 0.1775 & 0.2287 & 0.0370 & 0.0109 \\ \hline 0.00 & 0.0038 & 0.0363 & 0.0088 & 0.0304 & 0.0711 & 0.0162 & 0.0341 & 0.0088 & 0.1175 & 0.2288 & 0.1795 & 0.2287 & 0.0370 & 0.0109 \\ \hline 0.00 & 0.0038 & 0.0363 & 0.0038 & 0.0304 & 0.0711 & 0.0162 & 0.0341 & 0.0088 & 0.0107 & 0.1261 & 0.1515 & 0.0079 & 0.0266 \\ \hline 0.00 & 0.0036 & 0.0017 & 0.0008 & 0.0004 & 0.0711 & 0.0162 & 0.0341 & 0.0068 & 0.0107 & 0.1261 & 0.1515 & 0.0079 & 0.0266 \\ \hline 0.00 & 0.0036 & 0.0037 & 0.00445 & 0.2591 & 0.0104 & 0.218$																	
$ \begin{bmatrix} [0;2] & 500 & 0.0053 & 0.0124 & 0.0019 & 0.0089 & 0.0011 & 0.0273 & 0.0006 & 0.0283 & 0.0019 & 0.0207 & 0.0025 & 0.0246 & 0.0004 & 0.0482 \\ [0;2] & 50 & 0.0597 & 0.0360 & 0.0573 & 0.0246 & 0.0126 & 0.2198 & 0.0243 & 0.2036 & 0.0541 & 0.0509 & 0.1139 & 0.1947 & 0.0218 & 0.0904 \\ [0;0] & 0.0193 & 0.0363 & 0.0203 & 0.0328 & 0.0211 & 0.3197 & 0.0030 & 0.3173 & 0.0221 & 0.0179 & 0.0522 & 0.1548 & 0.0157 & 0.1179 \\ [0;0] & 0.0001 & 0.0837 & 0.0008 & 0.0811 & 0.0027 & 0.3892 & 0.0001 & 0.3758 & 0.0052 & 0.0070 & 0.0061 & 0.1242 & 0.0026 & 0.1489 \\ [0;0] & 500 & 0.0138 & 0.0180 & 0.0065 & 0.0028 & 0.0511 & 0.0357 & 0.0097 & 0.0112 & 0.0230 & 0.0380 & 0.1122 & 0.1343 & 0.0080 & 0.0254 \\ [0;0] & 500 & 0.0042 & 0.0078 & 0.0011 & 0.0046 & 0.0016 & 0.0293 & 0.0002 & 0.0309 & 0.0025 & 0.0134 & 0.0084 & 0.0299 & 0.0044 \\ [0;2] & 500 & 0.0241 & 0.0079 & 0.0159 & 0.0643 & 0.2305 & 0.0470 & 0.2242 & 0.0403 & 0.0391 & 0.1743 & 0.2323 & 0.0358 & 0.0577 \\ [0;0] & 500 & 0.0241 & 0.0079 & 0.0159 & 0.0643 & 0.2305 & 0.0470 & 0.2242 & 0.0403 & 0.0391 & 0.1743 & 0.2323 & 0.0358 & 0.0507 \\ [0;0] & 500 & 0.0038 & 0.0820 & 0.0019 & 0.0845 & 0.0034 & 0.4576 & 0.0048 & 0.2593 & 0.0194 & 0.0133 & 0.1019 & 0.1941 & 0.0145 & 0.0878 \\ [0;0] & 500 & 0.0075 & 0.0119 & 0.0088 & 0.0130 & 0.0617 & 0.0312 & 0.0448 & 0.0031 & 0.0241 & 0.0228 & 0.1795 & 0.2087 & 0.0370 & 0.0109 \\ [0;0] & 500 & 0.0075 & 0.0119 & 0.0088 & 0.0304 & 0.0711 & 0.0162 & 0.0341 & 0.0068 & 0.0107 & 0.1261 & 0.1515 & 0.0079 & 0.0266 \\ [0;2] & 500 & 0.0376 & 0.0690 & 0.0333 & 0.0370 & 0.0445 & 0.2591 & 0.0104 & 0.2133 & 0.0320 & 0.0220 & 0.0233 & 0.0883 & 0.0812 \\ [0;2] & 500 & 0.0376 & 0.0690 & 0.0333 & 0.0370 & 0.0445 & 0.2591 & 0.0104 & 0.2133 & 0.0320 & 0.0220 & 0.2233 & 0.0308 & 0.8812 \\ [0;2] & 500 & 0.0376 & 0.0690 & 0.0333 & 0.0370 & 0.0445 & 0.2591 & 0.0104 & 0.2153 & 0.0330 & 0.0220 & 0.2233 & 0.0308 & 0.0812 \\ [0;2] & 500 & 0.0376 & 0.0690 & 0.0333 & 0.0370 & 0.0445 & 0.2591 & 0.0104 & 0.2153 & 0.0330 & 0.0220 & 0.2233 & 0.0308 & 0.0812 \\ [0;2] & 500 & 0.0376 & 0.0$	0.7	[-1; 3]															
$ \begin{bmatrix} [0;2] & 50 & 0.0597 & 0.0360 & 0.0573 & 0.0246 & 0.0126 & 0.2198 & 0.0243 & 0.2036 & 0.0541 & 0.0599 & 0.1139 & 0.1947 & 0.0218 & 0.0904 \\ 100 & 0.0193 & 0.0363 & 0.0203 & 0.0328 & 0.0211 & 0.3197 & 0.0030 & 0.3173 & 0.0221 & 0.0179 & 0.0522 & 0.1548 & 0.0157 & 0.1179 \\ 500 & 0.0001 & 0.0837 & 0.0088 & 0.0811 & 0.0027 & 0.3892 & 0.0001 & 0.3378 & 0.0052 & 0.0070 & 0.0061 & 0.1242 & 0.0026 & 0.1489 \\ \hline 0.8 & [-1;3] & 50 & 0.0138 & 0.0180 & 0.0065 & 0.0028 & 0.0051 & 0.0357 & 0.0097 & 0.0112 & 0.0230 & 0.0308 & 0.1122 & 0.1343 & 0.0080 & 0.0254 \\ 100 & 0.0017 & 0.0050 & 0.0006 & 0.0030 & 0.0098 & 0.0219 & 0.0057 & 0.0266 & 0.0097 & 0.0181 & 0.0478 & 0.0711 & 0.0001 & 0.0405 \\ 500 & 0.0042 & 0.0078 & 0.0011 & 0.0046 & 0.0016 & 0.0293 & 0.0002 & 0.0309 & 0.0025 & 0.0134 & 0.0084 & 0.0299 & 0.0004 & 0.0414 \\ [0;2] & 50 & 0.0241 & 0.0079 & 0.0159 & 0.0643 & 0.2305 & 0.0470 & 0.2242 & 0.0403 & 0.391 & 0.1743 & 0.2323 & 0.0358 & 0.0577 \\ 100 & 0.0126 & 0.0256 & 0.0067 & 0.0246 & 0.0082 & 0.2782 & 0.0048 & 0.2935 & 0.0194 & 0.0133 & 0.1019 & 0.1941 & 0.0145 & 0.0878 \\ 500 & 0.0038 & 0.0820 & 0.0019 & 0.0845 & 0.0034 & 0.4576 & 0.0048 & 0.4519 & 0.0020 & 0.0233 & 0.0080 & 0.1418 & 0.0012 & 0.1228 \\ 0.9 & [-1;3] & 50 & 0.0075 & 0.0119 & 0.0088 & 0.0130 & 0.0617 & 0.0312 & 0.0448 & 0.0031 & 0.0241 & 0.0228 & 0.1795 & 0.2087 & 0.0370 & 0.0109 \\ 100 & 0.0009 & 0.0018 & 0.0053 & 0.0088 & 0.0304 & 0.0711 & 0.0162 & 0.0341 & 0.0068 & 0.0107 & 0.1261 & 0.1515 & 0.0079 & 0.0266 \\ 500 & 0.0026 & 0.0017 & 0.0008 & 0.0000 & 0.0144 & 0.0194 & 0.0070 & 0.277 & 0.0016 & 0.0255 & 0.0261 & 0.0477 & 0.0013 & 0.0258 \\ [0;2] & 50 & 0.0376 & 0.0690 & 0.0333 & 0.0370 & 0.0445 & 0.2591 & 0.0104 & 0.2128 & 0.0336 & 0.0220 & 0.2283 & 0.3088 & 0.0812 & 0.0103 \\ 100 & 0.0388 & 0.0354 & 0.0304 & 0.0002 & 0.0256 & 0.3312 & 0.0010 & 0.2577 & 0.0230 & 0.0122 & 0.1759 & 0.2711 & 0.0400 & 0.0312 \\ 100 & 0.0388 & 0.0354 & 0.0304 & 0.0002 & 0.0256 & 0.3312 & 0.0010 & 0.2577 & 0.0230 & 0.0122 & 0.1759 & 0.2711 & 0.0400 & 0.0312 \\ 100 & 0.0388 & 0.0354$																	
$ \begin{bmatrix} 100 \\ 0.0193 \ 0.0363 \ 0.0223 \ 0.0328 \ 0.0211 \ 0.3197 \ 0.0303 \ 0.3173 \ 0.0221 \ 0.0179 \ 0.0522 \ 0.1548 \ 0.0157 \ 0.1179 \\ 0.0001 \ 0.0837 \ 0.0008 \ 0.0811 \ 0.0027 \ 0.3892 \ 0.0001 \ 0.3758 \ 0.0052 \ 0.0070 \ 0.0061 \ 0.1242 \ 0.0026 \ 0.1489 \\ 0.08 \ \begin{bmatrix} -1;3 \end{bmatrix} \ \ & 50 \ & 0.0138 \ 0.0180 \ 0.0065 \ 0.0028 \ 0.0051 \ 0.0357 \ 0.0097 \ 0.0112 \ 0.0233 \ 0.0308 \ 0.1122 \ 0.1343 \ 0.0080 \ 0.0254 \\ 100 \ & 0.0017 \ 0.0050 \ 0.0006 \ 0.0030 \ 0.0098 \ 0.0219 \ 0.0057 \ 0.0266 \ 0.0097 \ 0.0181 \ 0.0478 \ 0.0711 \ 0.0001 \ 0.0405 \\ 500 \ & 0.0042 \ 0.0078 \ 0.0011 \ 0.0046 \ 0.0016 \ 0.0293 \ 0.0070 \ 0.0390 \ 0.0025 \ 0.0134 \ 0.0084 \ 0.0299 \ 0.0004 \ 0.0414 \\ \begin{bmatrix} 0;2 \end{bmatrix} \ \ & 50 \ & 0.0241 \ 0.0079 \ 0.0159 \ 0.0643 \ 0.2305 \ 0.0470 \ 0.2242 \ 0.0403 \ 0.0391 \ 0.03714 \ 0.0383 \ 0.0557 \\ 100 \ & 0.0126 \ 0.0256 \ 0.0067 \ 0.0246 \ 0.0082 \ 0.2782 \ 0.0048 \ 0.2935 \ 0.0194 \ 0.0133 \ 0.0119 \ 0.1941 \ 0.0145 \ 0.0878 \\ 500 \ & 0.0038 \ 0.0820 \ 0.0019 \ 0.0845 \ 0.0034 \ 0.4576 \ 0.0048 \ 0.4576 \ 0.0048 \ 0.4510 \ 0.0020 \ 0.0233 \ 0.0080 \ 0.1418 \ 0.0012 \ 0.1228 \\ 0.09 \ \ \ \ \ \ \ \ \ \ \ \ \ $																	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		[0; 2]															
$ \begin{bmatrix} -1;3 \\ 0.8 \\ [-1;3] \end{bmatrix} \begin{bmatrix} 50 \\ 0.0138 & 0.0180 & 0.0065 & 0.0028 & 0.0051 & 0.0357 & 0.0097 & 0.0112 & 0.0230 & 0.0308 & 0.1122 & 0.1343 & 0.0080 & 0.0254 \\ 0.0017 & 0.0050 & 0.00066 & 0.0030 & 0.0098 & 0.0219 & 0.0057 & 0.0266 & 0.0097 & 0.0181 & 0.0478 & 0.0711 & 0.0001 & 0.0405 \\ 0.0042 & 0.0078 & 0.0011 & 0.0046 & 0.0016 & 0.0293 & 0.0002 & 0.0309 & 0.0025 & 0.0134 & 0.0084 & 0.0299 & 0.0004 & 0.0414 \\ [0;2] \\ 50 & 0.0241 & 0.0079 & 0.0159 & 0.0159 & 0.0643 & 0.2305 & 0.0470 & 0.2242 & 0.0403 & 0.0391 & 0.1743 & 0.2323 & 0.0358 & 0.0557 \\ 100 & 0.0126 & 0.0256 & 0.0067 & 0.0246 & 0.0082 & 0.2782 & 0.0048 & 0.2935 & 0.0194 & 0.0133 & 0.1019 & 0.1941 & 0.0145 & 0.0878 \\ 500 & 0.0038 & 0.0820 & 0.0019 & 0.0845 & 0.0034 & 0.4576 & 0.0048 & 0.4519 & 0.0020 & 0.0233 & 0.0080 & 0.1418 & 0.0012 & 0.1228 \\ 0.9 \\ [-1;3] \\ 50 & 0.0075 & 0.0119 & 0.0088 & 0.0130 & 0.0617 & 0.0312 & 0.0448 & 0.0031 & 0.0241 & 0.0228 & 0.1795 & 0.2087 & 0.370 & 0.109 \\ 100 & 0.0009 & 0.0018 & 0.0053 & 0.0008 & 0.0304 & 0.0711 & 0.0162 & 0.0341 & 0.0068 & 0.0107 & 0.1261 & 0.1515 & 0.0079 & 0.0266 \\ 500 & 0.0026 & 0.0017 & 0.0008 & 0.0000 & 0.0144 & 0.0194 & 0.0070 & 0.0277 & 0.0016 & 0.0055 & 0.0261 & 0.0477 & 0.0013 & 0.0258 \\ [0;2] \\ 50 & 0.0376 & 0.0690 & 0.0333 & 0.0370 & 0.0445 & 0.2591 & 0.0104 & 0.2183 & 0.0336 & 0.0220 & 0.2283 & 0.3088 & 0.0812 & 0.0103 \\ 100 & 0.0388 & 0.0354 & 0.0304 & 0.0022 & 0.0256 & 0.3312 & 0.0010 & 0.2577 & 0.0230 & 0.0122 & 0.1759 & 0.2711 & 0.0400 & 0.0312 \\ \hline \end{tabular}$																	
$ \begin{bmatrix} 100 & 0.0017 & 0.0050 & 0.0006 & 0.0030 & 0.0098 & 0.0219 & 0.0057 & 0.0266 & 0.0097 & 0.0181 & 0.0478 & 0.0711 & 0.0001 & 0.0405 \\ 0.0042 & 0.0078 & 0.0011 & 0.0046 & 0.0016 & 0.0293 & 0.00025 & 0.0309 & 0.0025 & 0.0134 & 0.0084 & 0.0299 & 0.0004 & 0.0414 \\ 0.0126 & 0.0241 & 0.0079 & 0.0159 & 0.0643 & 0.2305 & 0.0470 & 0.2242 & 0.0403 & 0.0391 & 0.1743 & 0.2323 & 0.0358 & 0.0507 \\ 100 & 0.0126 & 0.0256 & 0.0067 & 0.0246 & 0.0082 & 0.2782 & 0.0048 & 0.2935 & 0.0194 & 0.0133 & 0.1019 & 0.1941 & 0.0145 & 0.0878 \\ 500 & 0.0038 & 0.0820 & 0.0019 & 0.0845 & 0.0034 & 0.4576 & 0.0048 & 0.4519 & 0.0020 & 0.0233 & 0.0080 & 0.1418 & 0.0012 & 0.1228 \\ \hline 0.9 & [-1;3] & 50 & 0.0075 & 0.0119 & 0.0088 & 0.0130 & 0.0617 & 0.0312 & 0.0448 & 0.0031 & 0.0241 & 0.0228 & 0.1795 & 0.2087 & 0.0370 & 0.0109 \\ 100 & 0.0009 & 0.0018 & 0.0053 & 0.0008 & 0.0304 & 0.0711 & 0.0162 & 0.0341 & 0.0068 & 0.0107 & 0.1261 & 0.1515 & 0.0079 & 0.0206 \\ 500 & 0.0026 & 0.0017 & 0.0008 & 0.0000 & 0.0144 & 0.0194 & 0.0070 & 0.0277 & 0.0016 & 0.0055 & 0.0261 & 0.0477 & 0.0013 & 0.0258 \\ [0;2] & 50 & 0.0376 & 0.0690 & 0.0333 & 0.0370 & 0.0445 & 0.2591 & 0.0104 & 0.2183 & 0.0336 & 0.0220 & 0.2283 & 0.3038 & 0.0812 & 0.0103 \\ 100 & 0.0388 & 0.0354 & 0.0304 & 0.0002 & 0.0256 & 0.3312 & 0.0010 & 0.2577 & 0.0230 & 0.0122 & 0.1759 & 0.2711 & 0.0400 & 0.0312 \\ \hline \end{tabular}$																	
$ \begin{bmatrix} [0;2] & 500 & 0.0042 & 0.0078 & 0.0011 & 0.0046 & 0.0016 & 0.0293 & 0.0002 & 0.0309 & 0.0025 & 0.0134 & 0.0084 & 0.0299 & 0.0004 & 0.0414 \\ 0.0241 & 0.0079 & 0.0159 & 0.0159 & 0.0643 & 0.2305 & 0.0470 & 0.2242 & 0.0403 & 0.0391 & 0.1743 & 0.2323 & 0.0358 & 0.0507 \\ 100 & 0.0126 & 0.0256 & 0.0067 & 0.0246 & 0.0082 & 0.2782 & 0.0048 & 0.2935 & 0.0194 & 0.0133 & 0.1019 & 0.1941 & 0.0145 & 0.0878 \\ 500 & 0.0038 & 0.0820 & 0.0019 & 0.0845 & 0.0034 & 0.4576 & 0.0048 & 0.4519 & 0.0020 & 0.0233 & 0.0080 & 0.1418 & 0.0012 & 0.1228 \\ \hline 0.9 & [-1;3] & 50 & 0.0075 & 0.0119 & 0.0088 & 0.0130 & 0.0617 & 0.0312 & 0.0448 & 0.0031 & 0.0241 & 0.0228 & 0.1795 & 0.2087 & 0.0370 & 0.0109 \\ 100 & 0.0009 & 0.0018 & 0.0053 & 0.0008 & 0.0304 & 0.0711 & 0.0162 & 0.0341 & 0.0068 & 0.0107 & 0.1261 & 0.1515 & 0.0079 & 0.0266 \\ 500 & 0.0026 & 0.0017 & 0.0008 & 0.0000 & 0.0144 & 0.0194 & 0.0070 & 0.0277 & 0.0016 & 0.0055 & 0.0261 & 0.0477 & 0.0013 & 0.0258 \\ [0;2] & 50 & 0.0376 & 0.0690 & 0.0333 & 0.0370 & 0.0445 & 0.2591 & 0.0104 & 0.2183 & 0.0336 & 0.0220 & 0.2283 & 0.3038 & 0.0812 & 0.0103 \\ 100 & 0.0388 & 0.0354 & 0.0304 & 0.0002 & 0.0256 & 0.3312 & 0.0010 & 0.2577 & 0.0230 & 0.0122 & 0.1759 & 0.2711 & 0.0400 & 0.0312 \\ \hline \end{tabular}$	0.8	[-1; 3]															
$ \begin{bmatrix} [0;2] & 50 & 0.0241 & 0.0079 & 0.0159 & 0.0159 & 0.0643 & 0.2305 & 0.0470 & 0.2242 & 0.0403 & 0.0391 & 0.1743 & 0.2323 & 0.0358 & 0.0507 \\ 100 & 0.0126 & 0.0256 & 0.0067 & 0.0246 & 0.0082 & 0.2782 & 0.0048 & 0.2935 & 0.0194 & 0.0133 & 0.1019 & 0.1941 & 0.0145 & 0.0878 \\ 500 & 0.0038 & 0.0820 & 0.0019 & 0.0845 & 0.0034 & 0.4576 & 0.0048 & 0.4519 & 0.0020 & 0.0233 & 0.0808 & 0.1418 & 0.0012 & 0.1228 \\ 0.9 & [-1;3] & 50 & 0.0075 & 0.0119 & 0.0088 & 0.0130 & 0.0617 & 0.0312 & 0.0448 & 0.0031 & 0.0241 & 0.0228 & 0.1795 & 0.2087 & 0.0370 & 0.0109 \\ 100 & 0.0009 & 0.0018 & 0.0053 & 0.0008 & 0.0304 & 0.0711 & 0.0162 & 0.0341 & 0.0068 & 0.0107 & 0.1261 & 0.1515 & 0.0079 & 0.0266 \\ 500 & 0.0026 & 0.0017 & 0.0008 & 0.0000 & 0.0144 & 0.0194 & 0.0070 & 0.0277 & 0.0016 & 0.0055 & 0.0261 & 0.0477 & 0.0013 & 0.0258 \\ [0;2] & 50 & 0.0376 & 0.0690 & 0.0333 & 0.0370 & 0.0445 & 0.2591 & 0.0104 & 0.2183 & 0.0336 & 0.0220 & 0.2283 & 0.3038 & 0.0812 & 0.0103 \\ 100 & 0.0388 & 0.0354 & 0.0304 & 0.0002 & 0.0256 & 0.3312 & 0.0010 & 0.2577 & 0.0230 & 0.0122 & 0.1759 & 0.2711 & 0.0400 & 0.0312 \\ \end{bmatrix}$																	
$ \begin{bmatrix} 100 & 0.0126 & 0.0256 & 0.0067 & 0.0246 & 0.0082 & 0.2782 & 0.0048 & 0.2935 & 0.0194 & 0.0133 & 0.1019 & 0.1941 & 0.0145 & 0.0878 \\ \hline 0.09 & [-1;3] & 50 & 0.0075 & 0.0119 & 0.0082 & 0.130 & 0.0617 & 0.0312 & 0.0448 & 0.0031 & 0.0241 & 0.0228 & 0.1795 & 0.2087 & 0.0370 & 0.0199 \\ \hline 0.09 & [0.008] & 100 & 0.0009 & 0.018 & 0.0130 & 0.0617 & 0.0312 & 0.0448 & 0.0031 & 0.0241 & 0.0228 & 0.1795 & 0.2087 & 0.0370 & 0.0109 \\ \hline 0.0009 & 0.0018 & 0.0053 & 0.0008 & 0.0304 & 0.0711 & 0.0162 & 0.0341 & 0.0068 & 0.0107 & 0.1261 & 0.1515 & 0.0079 & 0.0206 \\ \hline 0.0026 & 0.0017 & 0.0008 & 0.0000 & 0.0144 & 0.0194 & 0.0070 & 0.0277 & 0.0016 & 0.0055 & 0.0261 & 0.0477 & 0.0013 & 0.0258 \\ \hline 0.021 & 50 & 0.0376 & 0.0690 & 0.0333 & 0.0370 & 0.0445 & 0.2591 & 0.0104 & 0.2183 & 0.0336 & 0.0220 & 0.2283 & 0.3038 & 0.0812 & 0.0103 \\ \hline 0.0388 & 0.0354 & 0.0304 & 0.0002 & 0.0256 & 0.3312 & 0.0010 & 0.2577 & 0.0230 & 0.0122 & 0.1759 & 0.2711 & 0.0400 & 0.0312 \\ \hline 0.000000000000000000000000000000000$		fo. o1															
$ \begin{bmatrix} 500 & 0.0038 & 0.0820 & 0.0019 & 0.0845 & 0.0034 & 0.4576 & 0.0048 & 0.4519 & 0.0020 & 0.0233 & 0.0080 & 0.1418 & 0.0012 & 0.1228 \\ \hline 0.9 & [-1;3] & 50 & 0.0075 & 0.0119 & 0.0088 & 0.0130 & 0.0617 & 0.0312 & 0.0448 & 0.0031 & 0.0241 & 0.0228 & 0.1795 & 0.2087 & 0.0370 & 0.0109 \\ 100 & 0.0009 & 0.0018 & 0.0053 & 0.0008 & 0.304 & 0.0711 & 0.0162 & 0.0341 & 0.0068 & 0.0107 & 0.1261 & 0.1515 & 0.0079 & 0.0206 \\ 500 & 0.0026 & 0.0017 & 0.0008 & 0.0000 & 0.0144 & 0.0194 & 0.0077 & 0.0216 & 0.0055 & 0.0261 & 0.0477 & 0.0013 & 0.0258 \\ [0;2] & 50 & 0.0376 & 0.0690 & 0.0333 & 0.0370 & 0.0445 & 0.2591 & 0.0104 & 0.2183 & 0.0336 & 0.0220 & 0.2283 & 0.3038 & 0.0812 & 0.0103 \\ 100 & 0.0388 & 0.0354 & 0.0304 & 0.0002 & 0.0256 & 0.3312 & 0.0010 & 0.2577 & 0.0230 & 0.0122 & 0.1759 & 0.2711 & 0.0400 & 0.0312 \\ \hline \end{tabular}$		[0; 2]															
$ \begin{bmatrix} 0.9 & [-1;3] & 50 & 0.0075 & 0.0119 & 0.0088 & 0.0130 & 0.0617 & 0.0312 & 0.0448 & 0.0031 & 0.0241 & 0.0228 & 0.1795 & 0.2087 & 0.0370 & 0.0109 \\ 100 & 0.0009 & 0.0018 & 0.0053 & 0.0008 & 0.0304 & 0.0711 & 0.0162 & 0.0341 & 0.0068 & 0.0107 & 0.1261 & 0.1515 & 0.0079 & 0.0206 \\ 500 & 0.0026 & 0.0017 & 0.0008 & 0.0000 & 0.0144 & 0.0194 & 0.0070 & 0.0277 & 0.0016 & 0.0055 & 0.0261 & 0.0477 & 0.0013 & 0.0258 \\ [0;2] & 50 & 0.0376 & 0.0690 & 0.0333 & 0.0370 & 0.0445 & 0.2591 & 0.0104 & 0.2183 & 0.0336 & 0.0220 & 0.2283 & 0.3038 & 0.0812 & 0.0103 \\ 100 & 0.0388 & 0.0354 & 0.0304 & 0.0002 & 0.0256 & 0.3312 & 0.0010 & 0.2577 & 0.0230 & 0.0122 & 0.1759 & 0.2711 & 0.0400 & 0.0312 \\ \end{bmatrix} $																	
$ \begin{bmatrix} 100 & 0.0009 & 0.0018 & 0.0053 & 0.0008 & 0.0304 & 0.0711 & 0.0162 & 0.0341 & 0.0068 & 0.0107 & 0.1261 & 0.1515 & 0.0079 & 0.0206 \\ 500 & 0.0026 & 0.0017 & 0.0008 & 0.0000 & 0.0144 & 0.0194 & 0.0070 & 0.0277 & 0.0016 & 0.0055 & 0.0261 & 0.0477 & 0.0013 & 0.0258 \\ [0;2] & 50 & 0.0376 & 0.0690 & 0.0333 & 0.0370 & 0.0445 & 0.2591 & 0.0104 & 0.2183 & 0.0336 & 0.0220 & 0.2283 & 0.3038 & 0.0812 & 0.0103 \\ 100 & 0.0388 & 0.0354 & 0.0304 & 0.0002 & 0.0256 & 0.3312 & 0.0010 & 0.2577 & 0.0230 & 0.0122 & 0.1759 & 0.2711 & 0.0400 & 0.0312 \\ \end{bmatrix} $		[4 0]															
$ \begin{bmatrix} 500 \\ [0;2] \end{bmatrix} & 0.0026 \ 0.0017 \ 0.0008 \ 0.0000 \ 0.0144 \ 0.0194 \ 0.0070 \ 0.0277 \ 0.0016 \ 0.0055 \ 0.0261 \ 0.0477 \ 0.0013 \ 0.0258 \\ 0.0376 \ 0.0690 \ 0.0333 \ 0.0370 \ 0.0445 \ 0.2591 \ 0.0104 \ 0.2183 \ 0.0336 \ 0.0220 \ 0.2283 \ 0.3038 \ 0.0812 \ 0.0103 \\ 100 \ 0.0388 \ 0.0354 \ 0.0304 \ 0.0002 \ 0.0256 \ 0.3312 \ 0.0010 \ 0.2577 \ 0.0230 \ 0.0122 \ 0.1759 \ 0.2711 \ 0.0400 \ 0.0312 \\ \end{bmatrix}$	0.9	[-1; 3]															
$ \begin{bmatrix} 0;2 \end{bmatrix} & 50 & 0.0376 \ 0.0690 \ 0.0333 \ 0.0370 \ 0.0445 \ 0.2591 \ 0.0104 \ 0.2183 \ 0.0336 \ 0.0220 \ 0.2283 \ 0.3038 \ 0.0812 \ 0.0103 \\ 0.0388 \ 0.0354 \ 0.0304 \ 0.0002 \ 0.0256 \ 0.3312 \ 0.0010 \ 0.2577 \ 0.0230 \ 0.0122 \ 0.1759 \ 0.2711 \ 0.0400 \ 0.0312 \\ \end{bmatrix} $																	
$100 \qquad 0.0388 \ 0.0354 \ 0.0304 \ 0.0002 \ 0.0256 \ 0.3312 \ 0.0010 \ 0.2577 \ 0.0230 \ 0.0122 \ 0.1759 \ 0.2711 \ 0.0400 \ 0.0312$		[0.0]															
		[0; 2]															
500 0.0075 0.0525 0.0073 0.0520 0.0022 0.5063 0.0043 0.5015 0.0012 0.0221 0.0320 0.2041 0.0034 0.0692																	
			500	0.0075	0.0525	0.0073	0.0520	0.0022	0.5063	0.0043	0.5015	0.0012	0.0221	0.0320	0.2041	0.0034	0.0692

Tabela D.32: Estimativas do valor absoluto do enviesamento médio dos parâmetros da mistura de duas regressões lineares no caso ${\rm EII}$

 $Ap \hat{e}ndice~D$

1.	_	_															
1.	π ₁	x [1 0]															
Fig.	0.1	[-1; 3]															
[9,2] 50 0.0616 0.2876 0.0466 0.1412 0.1733 0.2035 0.1438 0.1107 0.2036 6.3472 0.1069 0.0798 0.1367 0.0294 100 0.0063 0.2806 0.0521 0.1756 0.0894 0.1322 0.0846 0.0635 0.2358 0.2358 0.2350 0.0757 0.0576 0.0627 0.0095 0.0633 0.0030 0.0648 0.0083 0.0128 0.0345 0.0055 0.1276 0.1809 0.0311 0.4448 0.0117 0.0199 0.0024 0.0752 0.0056 0.0834 0.0055 0.1276 0.1809 0.0316 0.0404 0.0108 0.0349 0.0056 0.0056 0.0058 0.0058 0.0063 0.0048 0.0096 0.0112 0.0037 0.0065 0.1277 0.1293 0.00316 0.0040 0.0056 0.0555 0.0056 0.0550 0.0052 0.0154 0.0091 0.0066 0.0510 0.1274 0.0217 0.0233 0.0075 0.0557 0.0056 0.0062 0.0059 0.0058 0.0058 0.0056 0.0067 0.0140 0.0060 0.0057 0.0058 0.																	
1.0 0.0003 0.2806 0.0521 0.1776 0.0894 0.1322 0.0846 0.0635 0.2358 0.3822 0.0507 0.0576 0.0927 0.0099 0.1275 0.6330 0.00128 0.0752 0.0056 0.0834 0.0058 0.1280 0.1371 0.1448 0.0117 0.0119 0.0024 0.0752 0.1576 0.0819 0.0056 0.0525 0.0056 0.0834 0.0058 0.0056 0.0154 0.0091 0.0066 0.0510 0.1274 0.0217 0.0293 0.0058 0.0056 0.0514 0.0091 0.0066 0.0510 0.1274 0.0217 0.0293 0.0058 0.0558 0.0052 0.0154 0.0091 0.0066 0.0516 0.0525 0.0094 0.0784 0.00578 0.0557 0.0056 0.0559 0.0056 0.0558 0.0056 0.0514 0.0026 0.0487 0.1383 0.0737 0.1525 0.0199 0.1835 0.3225 0.0949 0.0784 0.0676 0.0416 0.0056 0.0559 0.0056 0.0558 0.0056 0.0558 0.0056 0.0558 0.0056 0.0558 0.0056 0.0058 0.0056 0.0058 0.0056 0.0058 0.0052 0.0058 0.0056 0.0058 0.0056 0.0058 0.0056 0.0058 0.0058 0.0056 0.0058 0.0058 0.0056 0.0058 0.0058 0.0056 0.0058 0.0058 0.0056 0.0058 0.0058 0.0056 0.0058 0.0058 0.0056 0.0058 0.0058 0.0058 0.0056 0.0058 0.0058 0.0056 0.0058 0.0058 0.0056 0.0058 0.0058 0.0056 0.0058 0.0058 0.0056 0.0058 0.0058 0.0056 0.0058 0.0058 0.0058 0.0056 0.0058 0.0058 0.0058 0.0056 0.0058 0.0058 0.0058 0.0056 0.0058 0.0058 0.0056 0.0058 0.005		[0, 0]															
1. 1. 1. 1. 1. 1. 1. 1.		[0, 2]															
Color																	
1	0.2	[1.9]															
	0.2	[-1, 3]															
[0; 2] 50																	
100		[0.0]															
1. 1. 1. 1. 1. 1. 1. 1.		[0, 2]															
1.3																	
100	0.3	[-1:3]															
Part	0.0	[1,0]															
Part																	
100		[0.2]															
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		[0, 2]															
Column C																	
100	0.4	[-1:3]															
$ \begin{bmatrix} [0;2] \\ [$	0.4	[1,0]															
$ \begin{bmatrix} [6]_{1} \\ [6]_{2} \\ [0]_{3} \\ [0]_{4} \end{bmatrix} = \begin{bmatrix} 50 \\ 0.0022 \ 0.1545 \ 0.1088 \ 0.1481 \ 0.1333 \ 0.2302 \ 0.1015 \ 0.2118 \ 0.1000 \ 0.1824 \ 0.1087 \ 0.10342 \ 0.0107 \\ -100 \\ 0.0023 \ 0.2244 \ 0.0008 \ 0.2069 \ 0.10160 \ 0.1812 \ 0.1205 \ 0.1803 \ 0.0454 \ 0.0854 \ 0.0532 \ 0.0079 \ 0.03342 \ 0.0103 \\ -100 \ 0.0023 \ 0.2244 \ 0.0008 \ 0.2069 \ 0.0106 \ 0.0959 \ 0.0215 \ 0.0951 \ 0.0123 \ 0.2006 \ 0.0073 \ 0.0339 \ 0.0061 \ 0.0093 \\ -100 \ 0.0092 \ 0.0278 \ 0.0006 \ 0.0197 \ 0.0147 \ 0.0460 \ 0.0031 \ 0.0519 \ 0.0184 \ 0.0650 \ 0.0240 \ 0.0575 \ 0.0037 \ 0.0452 \\ -100 \ 0.0086 \ 0.0268 \ 0.0027 \ 0.0217 \ 0.0045 \ 0.0645 \ 0.0017 \ 0.0564 \ 0.0003 \ 0.0476 \ 0.0065 \ 0.0405 \ 0.0007 \ 0.0577 \\ -100 \ 0.0010 \ 0.0031 \ 0.0013 \ 0.0013 \ 0.0046 \ 0.0031 \ 0.0037 \ 0.0005 \ 0.0014 \ 0.0031 \ 0.0056 \ 0.0005 \ 0.0040 \ 0.0075 \ 0.0044 \ 0.0033 \ 0.0047 \ 0.0055 \ 0.0110 \ 0.0055 \ 0.0110 \ 0.0055 \ 0.0005 \ 0$																	
100		[0.2]															
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		[0, 2]															
$ \begin{bmatrix} -1;3 \\ -1;3$																	
100	0.5	[-1:3]															
$ \begin{bmatrix} [0;2] & 500 & 0.0086 & 0.0268 & 0.0027 & 0.0217 & 0.0045 & 0.0645 & 0.0017 & 0.0564 & 0.0003 & 0.0476 & 0.0065 & 0.0405 & 0.0007 & 0.0577 \\ [0;2] & 500 & 0.0222 & 0.1341 & 0.0113 & 0.1051 & 0.1331 & 0.3772 & 0.1361 & 0.3778 & 0.0552 & 0.1101 & 0.1555 & 0.1826 & 0.0208 & 0.0872 \\ [0;2] & 500 & 0.0043 & 0.0106 & 0.0039 & 0.0114 & 0.0028 & 0.3879 & 0.0413 & 0.0459 & 0.00963 & 0.0532 & 0.1172 & 0.0045 & 0.1116 \\ [0;0] & 500 & 0.0043 & 0.0106 & 0.0039 & 0.0114 & 0.0028 & 0.5465 & 0.0026 & 0.5383 & 0.0018 & 0.0391 & 0.0135 & 0.1154 & 0.0021 & 0.1695 \\ [0;0] & 500 & 0.0101 & 0.0153 & 0.0004 & 0.0127 & 0.0189 & 0.0417 & 0.0224 & 0.0629 & 0.0179 & 0.0513 & 0.0290 & 0.0584 & 0.0006 & 0.0571 \\ [0;0] & 500 & 0.0002 & 0.0120 & 0.0002 & 0.0118 & 0.0001 & 0.0681 & 0.0006 & 0.0682 & 0.0006 & 0.0334 & 0.0043 & 0.0379 & 0.0013 & 0.0615 \\ [0;2] & 500 & 0.0025 & 0.0372 & 0.0269 & 0.0400 & 0.1408 & 0.5200 & 0.1332 & 0.5349 & 0.0783 & 0.0859 & 0.1638 & 0.2106 & 0.0158 & 0.1550 \\ [0;2] & 500 & 0.0033 & 0.0145 & 0.0070 & 0.0180 & 0.0787 & 0.5767 & 0.0684 & 0.5763 & 0.0376 & 0.0442 & 0.0888 & 0.1710 & 0.0152 & 0.1374 \\ [0;2] & 500 & 0.0049 & 0.1096 & 0.0016 & 0.1115 & 0.0095 & 0.7411 & 0.0107 & 0.7499 & 0.0093 & 0.0203 & 0.0078 & 0.1497 & 0.0054 & 0.2055 \\ [0;2] & 500 & 0.0112 & 0.0072 & 0.0150 & 0.0038 & 0.0032 & 0.0721 & 0.0104 & 0.0650 & 0.0230 & 0.0408 & 0.1151 & 0.1490 & 0.0060 & 0.0510 \\ [0;2] & 500 & 0.0044 & 0.0055 & 0.0012 & 0.0049 & 0.0119 & 0.0882 & 0.0021 & 0.0781 & 0.0022 & 0.0580 & 0.0043 & 0.0022 & 0.0569 \\ [0;2] & 500 & 0.0053 & 0.0106 & 0.0192 & 0.0063 & 0.1395 & 0.5988 & 0.1335 & 0.5910 & 0.0392 & 0.0377 & 0.2115 & 0.2632 & 0.0198 & 0.1031 \\ [0;2] & 500 & 0.0055 & 0.0139 & 0.0007 & 0.0031 & 0.0643 & 0.0044 & 0.0088 & 0.0161 & 0.1165 & 0.0226 & 0.0464 \\ [0;2] & 500 & 0.0034 & 0.0016 & 0.0164 & 0.0155 & 0.0788 & 0.0023 & 0.0844 & 0.0029 & 0.0384 & 0.0244 & 0.1664 & 0.0022 \\ [0;2] & 500 & 0.0034 & 0.0169 & 0.0143 & 0.0323 & 0.0466 & 0.0233 & 0.0444 & 0.0230 & 0.0114 & 0.1664 & 0.0022 & 0.0485 \\ [0;2] & 500 & 0.0058 $		[-, -]															
$ \begin{bmatrix} [0;2] \\ [0;2] \\ [0;2] \\ [0;3] \\ [0;4] \\ [0;5] \\ [0;6] \\ [0;7] \\ [$			500														
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		[0: 2]	50														
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			100	0.0110	0.0731	0.0075	0.0544	0.0236	0.3879	0.0387	0.4113	0.0459	0.0963	0.0532	0.1172	0.0045	0.1116
$ \begin{bmatrix} 100 & 0.0011 & 0.0153 & 0.0004 & 0.0127 & 0.0189 & 0.0417 & 0.0024 & 0.0629 & 0.0179 & 0.0513 & 0.0290 & 0.0584 & 0.0006 & 0.0571 \\ 500 & 0.0020 & 0.0120 & 0.0002 & 0.0118 & 0.0001 & 0.0681 & 0.0006 & 0.0682 & 0.0006 & 0.0334 & 0.0043 & 0.0379 & 0.0013 & 0.0615 \\ 500 & 0.0250 & 0.0372 & 0.0269 & 0.0400 & 0.1408 & 0.5200 & 0.1332 & 0.5349 & 0.0783 & 0.0859 & 0.1638 & 0.2106 & 0.0158 & 0.1050 \\ 100 & 0.0003 & 0.0145 & 0.0070 & 0.0180 & 0.0787 & 0.5767 & 0.0684 & 0.5763 & 0.0376 & 0.0442 & 0.0888 & 0.1710 & 0.0152 & 0.1374 \\ 500 & 0.0049 & 0.1096 & 0.0016 & 0.1115 & 0.0095 & 0.7411 & 0.0107 & 0.7499 & 0.093 & 0.0203 & 0.0078 & 0.1497 & 0.0054 & 0.2055 \\ 0.7 & [-1;3] & 50 & 0.0112 & 0.0072 & 0.0150 & 0.0033 & 0.0032 & 0.0721 & 0.0104 & 0.0655 & 0.0233 & 0.0048 & 0.1151 & 0.1499 & 0.0060 & 0.0510 \\ 100 & 0.0040 & 0.0001 & 0.0051 & 0.0011 & 0.0165 & 0.0887 & 0.0047 & 0.0823 & 0.0078 & 0.0256 & 0.643 & 0.1032 & 0.0002 & 0.0569 \\ 500 & 0.0004 & 0.0055 & 0.0012 & 0.0049 & 0.0119 & 0.0882 & 0.0021 & 0.0781 & 0.0027 & 0.0228 & 0.0150 & 0.0508 & 0.0002 & 0.0595 \\ [0; 2] & 50 & 0.0053 & 0.0106 & 0.0192 & 0.0063 & 0.1305 & 0.5888 & 0.1335 & 0.5910 & 0.0392 & 0.0377 & 0.2115 & 0.2632 & 0.0198 & 0.1036 \\ 100 & 0.0056 & 0.0363 & 0.0093 & 0.0396 & 0.0910 & 0.6489 & 0.0686 & 0.6444 & 0.0230 & 0.0161 & 0.1165 & 0.2294 & 0.0126 & 0.1271 \\ 500 & 0.0051 & 0.1116 & 0.0016 & 0.1156 & 0.0175 & 0.8520 & 0.0148 & 0.8424 & 0.0029 & 0.0384 & 0.0244 & 0.0416 & 0.0042 & 0.785 \\ [0; 2] & 50 & 0.0052 & 0.0139 & 0.0007 & 0.0097 & 0.0132 & 0.0643 & 0.0851 & 0.0031 & 0.0120 & 0.0174 & 0.0575 & 0.0023 & 0.0488 \\ [0; 2] & 50 & 0.0348 & 0.0169 & 0.0143 & 0.0323 & 0.1861 & 0.6663 & 0.0205 & 0.0425 & 0.0440 & 0.0144 & 0.0411 & 0.0339 & 0.0311 & 0.1754 & 0.0004 & 0.1303 \\ [0; 2] & 50 & 0.0348 & 0.0169 & 0.0143 & 0.0233 & 0.0861 & 0.0235 & 0.0265 & 0.0472 & 0.0302 & 0.2840 & 0.3440 & 0.0456 & 0.0533 \\ [0; 2] & 50 & 0.0348 & 0.0169 & 0.0143 & 0.0233 & 0.1661 & 0.6663 & 0.0205 & 0.0424 & 0.0114 & 0.0184 & 0.0555 & 0.0427 & 0.0005 & 0.0265 & 0.0427 & 0$			500														
$ \begin{bmatrix} [0;2] & 500 & 0.0002 & 0.0120 & 0.0002 & 0.0118 & 0.0001 & 0.0681 & 0.0006 & 0.0682 & 0.0006 & 0.0334 & 0.0043 & 0.0379 & 0.0013 & 0.0615 \\ 0.0250 & 0.0372 & 0.0269 & 0.0400 & 0.1408 & 0.5200 & 0.1332 & 0.5349 & 0.0783 & 0.0859 & 0.1638 & 0.2106 & 0.0158 & 0.1050 \\ 0.0003 & 0.0145 & 0.0070 & 0.0180 & 0.0787 & 0.5767 & 0.0684 & 0.5763 & 0.0376 & 0.0442 & 0.0888 & 0.1710 & 0.0152 & 0.1374 \\ 500 & 0.0049 & 0.1096 & 0.0016 & 0.1115 & 0.0095 & 0.7411 & 0.0107 & 0.7499 & 0.0093 & 0.0203 & 0.0078 & 0.1497 & 0.0054 & 0.2555 \\ 0.7 & [-1;3] & 50 & 0.0112 & 0.0072 & 0.0150 & 0.0038 & 0.0032 & 0.0721 & 0.0104 & 0.0650 & 0.0230 & 0.0408 & 0.1151 & 0.1490 & 0.0066 & 0.0510 \\ 0.0040 & 0.0004 & 0.0055 & 0.0012 & 0.0049 & 0.0119 & 0.0882 & 0.0021 & 0.0781 & 0.0027 & 0.0228 & 0.0150 & 0.0508 & 0.0002 & 0.0569 \\ 500 & 0.0004 & 0.0055 & 0.0012 & 0.0049 & 0.0119 & 0.0882 & 0.0021 & 0.0781 & 0.0027 & 0.0228 & 0.0150 & 0.0508 & 0.0002 & 0.0569 \\ 500 & 0.0055 & 0.0102 & 0.0049 & 0.0119 & 0.0882 & 0.0021 & 0.0781 & 0.0027 & 0.0228 & 0.0150 & 0.0508 & 0.0002 & 0.0569 \\ 500 & 0.0055 & 0.0102 & 0.0063 & 0.1305 & 0.5988 & 0.1335 & 0.5910 & 0.0392 & 0.0377 & 0.2115 & 0.2632 & 0.0198 & 0.1036 \\ 100 & 0.0056 & 0.0363 & 0.0093 & 0.0396 & 0.0910 & 0.6489 & 0.0686 & 0.6444 & 0.0323 & 0.0161 & 0.1165 & 0.2294 & 0.0126 & 0.1271 \\ 100 & 0.0051 & 0.1161 & 0.0016 & 0.1156 & 0.0175 & 0.8520 & 0.0148 & 0.8424 & 0.0029 & 0.0384 & 0.0244 & 0.1646 & 0.0042 & 0.1785 \\ 100 & 0.0052 & 0.0139 & 0.0007 & 0.0007 & 0.0312 & 0.0643 & 0.0424 & 0.0411 & 0.0339 & 0.0371 & 0.1805 & 0.2165 & 0.0226 & 0.0265 \\ 100 & 0.0031 & 0.0014 & 0.0026 & 0.0040 & 0.0169 & 0.0717 & 0.0043 & 0.0851 & 0.0031 & 0.0120 & 0.0174 & 0.0575 & 0.0023 \\ 100 & 0.0008 & 0.0016 & 0.0026 & 0.0040 & 0.0169 & 0.0717 & 0.0043 & 0.0851 & 0.0032 & 0.0840 & 0.3440 & 0.0456 & 0.0533 \\ 100 & 0.0070 & 0.0221 & 0.0164 & 0.0522 & 0.0774 & 0.6923 & 0.0955 & 0.6887 & 0.0200 & 0.0348 & 0.0311 & 0.1754 & 0.0004 & 0.0363 \\ 100 & 0.0008 & 0.0016 & 0.0017 & 0.0025 & 0.0150 & 0.0933 & 0.0026 & 0.0042 & 0.0275$	0.6	[-1; 3]	50	0.0100	0.0031	0.0087	0.0000	0.0243	0.0967	0.0143	0.0817	0.0362	0.0603	0.0816	0.1174	0.0089	0.0605
$ \begin{bmatrix} [0;2] \\ [0;2] \\ [0;3] \\ [0;4] \\ [0;5] \\ [0;6] \\ [0;7] \\ [$			100	0.0011	0.0153	0.0004	0.0127	0.0189	0.0417	0.0024	0.0629	0.0179	0.0513	0.0290	0.0584	0.0006	0.0571
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			500	0.0002	0.0120	0.0002	0.0118	0.0001	0.0681	0.0006	0.0682	0.0006	0.0334	0.0043	0.0379	0.0013	0.0615
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		[0; 2]	50	0.0250	0.0372	0.0269	0.0400	0.1408	0.5200	0.1332	0.5349	0.0783	0.0859	0.1638	0.2106	0.0158	0.1050
$ \begin{bmatrix} -1;3 \\ 0.7 \\ -1;3 \\ 0.0 \end{bmatrix} $			100	0.0003	0.0145	0.0070	0.0180	0.0787	0.5767	0.0684	0.5763	0.0376	0.0442	0.0888	0.1710	0.0152	0.1374
$\begin{bmatrix} 100 & 0.0040 & 0.001 & 0.0051 & 0.0011 & 0.0165 & 0.0887 & 0.0047 & 0.0823 & 0.0078 & 0.0256 & 0.0643 & 0.1032 & 0.0002 & 0.0569 \\ 500 & 0.0004 & 0.0055 & 0.0012 & 0.0049 & 0.0119 & 0.0882 & 0.0021 & 0.0781 & 0.0027 & 0.0228 & 0.0150 & 0.0508 & 0.0002 & 0.0595 \\ 500 & 0.0053 & 0.0106 & 0.0192 & 0.0063 & 0.1305 & 0.5988 & 0.1335 & 0.5910 & 0.0392 & 0.0377 & 0.2115 & 0.2632 & 0.0198 & 0.1036 \\ 100 & 0.0056 & 0.0363 & 0.0093 & 0.0396 & 0.0910 & 0.6489 & 0.0686 & 0.6444 & 0.0230 & 0.0161 & 0.1165 & 0.2294 & 0.0126 & 0.1271 \\ 500 & 0.0051 & 0.1116 & 0.0016 & 0.1156 & 0.0175 & 0.8520 & 0.0148 & 0.8424 & 0.0029 & 0.0384 & 0.0244 & 0.1664 & 0.0042 & 0.1785 \\ 0.8 & [-1;3] & 50 & 0.0052 & 0.0139 & 0.0007 & 0.0007 & 0.0312 & 0.0643 & 0.0424 & 0.0411 & 0.0339 & 0.0371 & 0.1865 & 0.2165 & 0.0265 \\ 100 & 0.0031 & 0.0014 & 0.0050 & 0.0062 & 0.0095 & 0.0708 & 0.0023 & 0.0814 & 0.0088 & 0.0161 & 0.1140 & 0.1464 & 0.0029 & 0.0497 \\ 500 & 0.0038 & 0.0166 & 0.0026 & 0.0040 & 0.0169 & 0.0717 & 0.0043 & 0.0851 & 0.0031 & 0.0120 & 0.0174 & 0.0575 & 0.0023 & 0.0480 \\ [0;2] & 50 & 0.0348 & 0.0169 & 0.0143 & 0.0323 & 0.1861 & 0.6663 & 0.2055 & 0.6265 & 0.0472 & 0.0302 & 0.2840 & 0.3440 & 0.0456 & 0.0533 \\ 100 & 0.0070 & 0.0221 & 0.0164 & 0.0522 & 0.0774 & 0.6923 & 0.0950 & 0.6887 & 0.0200 & 0.0025 & 0.1826 & 0.2932 & 0.0252 & 0.0843 \\ 500 & 0.0058 & 0.0927 & 0.0042 & 0.0903 & 0.0457 & 0.9206 & 0.0320 & 0.9213 & 0.0020 & 0.0348 & 0.0311 & 0.1754 & 0.0004 & 0.1303 \\ 500 & 0.0099 & 0.0051 & 0.0136 & 0.0095 & 0.0554 & 0.0534 & 0.0553 & 0.0120 & 0.2965 & 0.3185 & 0.0468 & 0.0039 \\ 100 & 0.0009 & 0.0051 & 0.0136 & 0.0097 & 0.0561 & 0.0235 & 0.0042 & 0.1013 & 0.0112 & 0.0144 & 0.1689 & 0.2118 & 0.0108 & 0.0234 \\ 500 & 0.0009 & 0.0051 & 0.0136 & 0.0097 & 0.0561 & 0.0235 & 0.0042 & 0.1013 & 0.0112 & 0.0144 & 0.1689 & 0.2118 & 0.0108 & 0.0234 \\ 500 & 0.0009 & 0.0051 & 0.0136 & 0.0097 & 0.0561 & 0.0235 & 0.0042 & 0.1013 & 0.0112 & 0.0144 & 0.1689 & 0.2118 & 0.0108 & 0.0234 \\ 500 & 0.0006 & 0.0016 & 0.0017 & 0.0225 & 0.0150 & 0.0973 & 0.0100 & $			500	0.0049	0.1096	0.0016	0.1115	0.0095	0.7411	0.0107	0.7499	0.0093	0.0203	0.0078	0.1497	0.0054	0.2055
$ \begin{bmatrix} [0;2] & 500 & 0.0004 & 0.0055 & 0.0012 & 0.0049 & 0.0119 & 0.0882 & 0.0021 & 0.0781 & 0.0027 & 0.0228 & 0.0150 & 0.0508 & 0.0002 & 0.0595 \\ 0.0053 & 0.0106 & 0.0192 & 0.0063 & 0.1305 & 0.5988 & 0.1335 & 0.5910 & 0.0932 & 0.0377 & 0.2115 & 0.2632 & 0.0198 & 0.1036 \\ 100 & 0.0056 & 0.0363 & 0.0093 & 0.0396 & 0.0910 & 0.6489 & 0.0686 & 0.6444 & 0.0230 & 0.0161 & 0.1165 & 0.2294 & 0.0126 & 0.1271 \\ 500 & 0.0051 & 0.1116 & 0.0016 & 0.1156 & 0.0175 & 0.8520 & 0.0148 & 0.8424 & 0.0029 & 0.0384 & 0.0244 & 0.1664 & 0.0042 & 0.1785 \\ 100 & 0.0031 & 0.0014 & 0.0050 & 0.0067 & 0.0047 & 0.0643 & 0.0424 & 0.0411 & 0.0339 & 0.0371 & 0.1805 & 0.2165 & 0.0226 & 0.0265 \\ 100 & 0.0031 & 0.0014 & 0.0050 & 0.0062 & 0.0098 & 0.0023 & 0.0814 & 0.0088 & 0.0161 & 0.1140 & 0.0165 & 0.0226 & 0.0265 \\ 100 & 0.0008 & 0.0016 & 0.0026 & 0.0040 & 0.0169 & 0.0717 & 0.0043 & 0.0851 & 0.0031 & 0.0120 & 0.0174 & 0.0575 & 0.0023 & 0.0480 \\ [0;2] & 50 & 0.0348 & 0.0169 & 0.0143 & 0.0323 & 0.1861 & 0.6663 & 0.2055 & 0.6265 & 0.0472 & 0.0302 & 0.2804 & 0.3440 & 0.0456 & 0.0533 \\ 100 & 0.0070 & 0.0221 & 0.0164 & 0.0522 & 0.0774 & 0.6923 & 0.0955 & 0.6265 & 0.0472 & 0.0302 & 0.2804 & 0.3440 & 0.0456 & 0.0533 \\ 0.09 & [-1;3] & 50 & 0.0109 & 0.0133 & 0.0168 & 0.0055 & 0.0534 & 0.04533 & 0.0553 & 0.0053 & 0.0120 & 0.2965 & 0.3185 & 0.0468 & 0.0393 \\ 100 & 0.0009 & 0.0051 & 0.0136 & 0.0097 & 0.0546 & 0.0235 & 0.0042 & 0.1013 & 0.0112 & 0.0114 & 0.1689 & 0.2118 & 0.0108 & 0.0234 \\ 500 & 0.0066 & 0.0016 & 0.0017 & 0.0025 & 0.0150 & 0.0973 & 0.0100 & 0.0963 & 0.0026 & 0.0042 & 0.0275 & 0.0734 & 0.0010 & 0.0294 \\ [0;2] & 50 & 0.0673 & 0.0895 & 0.0515 & 0.0101 & 0.0886 & 0.5913 & 0.0392 & 0.4902 & 0.0622 & 0.0328 & 0.3464 & 0.4350 & 0.1144 & 0.0188 \\ [0;2] & 50 & 0.0673 & 0.0895 & 0.0515 & 0.0101 & 0.0886 & 0.5913 & 0.0392 & 0.4902 & 0.0622 & 0.0328 & 0.3464 & 0.4350 & 0.1144 & 0.0188 \\ [0;2] & 50 & 0.0673 & 0.0895 & 0.0515 & 0.0101 & 0.0886 & 0.5913 & 0.0392 & 0.4902 & 0.0622 & 0.0328 & 0.3464 & 0.4350 & 0.1144 & 0.0188 \\ [0;2] & 50 & 0.0673 & 0.0895 & 0.$	0.7	[-1; 3]	50	0.0112	0.0072	0.0150	0.0038	0.0032	0.0721	0.0104	0.0650	0.0230	0.0408	0.1151	0.1490	0.0060	0.0510
$ \begin{bmatrix} [0;2] & 50 & 0.0053 & 0.0106 & 0.0192 & 0.0063 & 0.1305 & 0.5988 & 0.1335 & 0.5910 & 0.0392 & 0.0377 & 0.2115 & 0.2632 & 0.0198 & 0.1036 \\ 0.0056 & 0.0363 & 0.0093 & 0.0396 & 0.0910 & 0.6489 & 0.0686 & 0.6444 & 0.0230 & 0.0161 & 0.1165 & 0.2294 & 0.0126 & 0.1271 \\ 0.0051 & 0.0105 & 0.01156 & 0.0175 & 0.8520 & 0.0148 & 0.8424 & 0.0029 & 0.0384 & 0.0244 & 0.1646 & 0.0042 & 0.1785 \\ 0.8 & [-1;3] & 50 & 0.0052 & 0.0139 & 0.0007 & 0.0007 & 0.0312 & 0.0643 & 0.0424 & 0.0411 & 0.0339 & 0.0371 & 0.1805 & 0.2165 & 0.0226 & 0.0265 \\ 0.0031 & 0.0014 & 0.0050 & 0.0062 & 0.0095 & 0.0708 & 0.0023 & 0.0814 & 0.0088 & 0.0161 & 0.1464 & 0.0029 & 0.0497 \\ 0.0038 & 0.016 & 0.0026 & 0.0040 & 0.0169 & 0.0717 & 0.0043 & 0.0851 & 0.0031 & 0.0120 & 0.0174 & 0.0575 & 0.0023 & 0.0480 \\ 0[0;2] & 50 & 0.0348 & 0.0169 & 0.0143 & 0.0323 & 0.1861 & 0.6663 & 0.2055 & 0.6265 & 0.0472 & 0.0302 & 0.2804 & 0.3440 & 0.0456 & 0.0533 \\ 0.00 & 0.0070 & 0.0221 & 0.0164 & 0.0522 & 0.0774 & 0.6923 & 0.0950 & 0.6887 & 0.0200 & 0.0025 & 0.1826 & 0.2932 & 0.0252 & 0.0843 \\ 0.00 & 0.0058 & 0.0927 & 0.0042 & 0.0903 & 0.0457 & 0.9206 & 0.0320 & 0.9213 & 0.0020 & 0.0348 & 0.0311 & 0.1754 & 0.0004 & 0.1303 \\ 0.9 & [-1;3] & 50 & 0.0109 & 0.0133 & 0.0168 & 0.0055 & 0.0534 & 0.0440 & 0.0553 & 0.0053 & 0.0120 & 0.2965 & 0.3185 & 0.0468 & 0.0393 \\ 100 & 0.0009 & 0.0051 & 0.0136 & 0.0097 & 0.0561 & 0.0235 & 0.0042 & 0.1013 & 0.0112 & 0.0114 & 0.1689 & 0.2118 & 0.0108 & 0.0234 \\ 500 & 0.0060 & 0.0016 & 0.0017 & 0.0025 & 0.0150 & 0.0973 & 0.0100 & 0.0963 & 0.0026 & 0.0042 & 0.0275 & 0.0734 & 0.0010 & 0.0294 \\ 500 & 0.0673 & 0.0895 & 0.0515 & 0.0101 & 0.0886 & 0.5913 & 0.0392 & 0.4902 & 0.0632 & 0.328 & 0.3464 & 0.4350 & 0.1144 & 0.188 \\ 500 & 0.0673 & 0.0895 & 0.0515 & 0.0101 & 0.0886 & 0.5913 & 0.0392 & 0.4902 & 0.0632 & 0.328 & 0.3464 & 0.4350 & 0.1144 & 0.188 \\ 500 & 0.0673 & 0.0895 & 0.0515 & 0.0101 & 0.0886 & 0.5913 & 0.0392 & 0.4902 & 0.0632 & 0.328 & 0.3464 & 0.4350 & 0.1144 & 0.188 \\ 500 & 0.0673 & 0.0895 & 0.0515 & 0.0101 & 0.0886 & 0.5913 & 0.0392 & 0.49$																	
$ \begin{bmatrix} 100 \\ 5$			500														
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		[0; 2]	50	0.0053	0.0106	0.0192	0.0063	0.1305	0.5988	0.1335	0.5910	0.0392	0.0377	0.2115	0.2632	0.0198	0.1036
$ \begin{bmatrix} -1;3 \\ 0.8 \\ -1;3 \\ 0.0052 \\ 0.0031 \\ 0.0014 \\ 0.0052 \\ 0.0031 \\ 0.0014 \\ 0.0050 \\ 0.0062 \\ 0.006$			100	0.0056	0.0363	0.0093	0.0396	0.0910	0.6489	0.0686	0.6444	0.0230	0.0161	0.1165	0.2294	0.0126	0.1271
$ \begin{bmatrix} 100 & 0.0031 & 0.0014 & 0.0050 & 0.0062 & 0.0095 & 0.0708 & 0.0023 & 0.0814 & 0.0088 & 0.0161 & 0.1140 & 0.1464 & 0.0029 & 0.0497 \\ 500 & 0.0008 & 0.0016 & 0.0026 & 0.0040 & 0.0169 & 0.0717 & 0.0043 & 0.0851 & 0.0031 & 0.0120 & 0.0174 & 0.0575 & 0.0023 & 0.0480 \\ 500 & 0.0348 & 0.0169 & 0.0143 & 0.0323 & 0.1861 & 0.6663 & 0.2055 & 0.6265 & 0.0472 & 0.0302 & 0.2804 & 0.3440 & 0.0456 & 0.0533 \\ 100 & 0.0070 & 0.0221 & 0.0164 & 0.0522 & 0.0774 & 0.6923 & 0.0950 & 0.6887 & 0.0200 & 0.0025 & 0.1826 & 0.2932 & 0.0252 & 0.0843 \\ 500 & 0.0058 & 0.0927 & 0.0042 & 0.0903 & 0.0457 & 0.9206 & 0.0320 & 0.9213 & 0.0020 & 0.0348 & 0.0311 & 0.1754 & 0.0004 & 0.1303 \\ \hline 0.9 & [-1;3] & 50 & 0.0109 & 0.0133 & 0.0168 & 0.0055 & 0.0534 & 0.0404 & 0.0534 & 0.0533 & 0.0120 & 0.2965 & 0.3185 & 0.0468 & 0.0039 \\ \hline 0.009 & 0.051 & 0.0136 & 0.0097 & 0.0561 & 0.0235 & 0.0042 & 0.1013 & 0.0112 & 0.0114 & 0.1689 & 0.2118 & 0.0108 & 0.0234 \\ \hline 500 & 0.0006 & 0.0016 & 0.0017 & 0.0025 & 0.0150 & 0.0973 & 0.0100 & 0.9963 & 0.026 & 0.0042 & 0.0275 & 0.0734 & 0.0010 & 0.0294 \\ \hline 501 & 501 & 0.0673 & 0.0895 & 0.0515 & 0.0101 & 0.0886 & 0.5913 & 0.0392 & 0.4902 & 0.6632 & 0.0328 & 0.3464 & 0.4350 & 0.1144 & 0.0183 \\ \hline 500 & 0.0282 & 0.0491 & 0.0055 & 0.0312 & 0.1107 & 0.6620 & 0.0522 & 0.5556 & 0.0227 & 0.0171 & 0.3203 & 0.4167 & 0.0574 & 0.0106 \\ \hline 501 & 0.0282 & 0.0491 & 0.0055 & 0.0312 & 0.1107 & 0.6620 & 0.0522 & 0.5556 & 0.0227 & 0.0171 & 0.3203 & 0.4167 & 0.0574 & 0.0106 \\ \hline 501 & 0.0282 & 0.0491 & 0.0055 & 0.0312 & 0.1107 & 0.6620 & 0.0522 & 0.5556 & 0.0227 & 0.0171 & 0.3203 & 0.4167 & 0.0574 & 0.0106 \\ \hline 501 & 0.0282 & 0.0491 & 0.0055 & 0.0312 & 0.1107 & 0.6620 & 0.0522 & 0.5556 & 0.0227 & 0.0171 & 0.3203 & 0.4167 & 0.0574 & 0.0106 \\ \hline 501 & 0.0282 & 0.0491 & 0.0055 & 0.0312 & 0.1107 & 0.6620 & 0.0522 & 0.5556 & 0.0227 & 0.0171 & 0.3203 & 0.4167 & 0.0574 & 0.0106 \\ \hline 501 & 0.0282 & 0.0491 & 0.0055 & 0.0312 & 0.1107 & 0.6620 & 0.0522 & 0.5556 & 0.0227 & 0.0171 & 0.3203 & 0.4167 & 0.0574 & 0.0166 \\ \hline 501 & 0.0282 & 0.0491 & 0.0055 & 0.03$			500	0.0051	0.1116	0.0016	0.1156	0.0175	0.8520	0.0148	0.8424	0.0029	0.0384	0.0244	0.1664	0.0042	0.1785
$ \begin{bmatrix} [0;2] & 50 \\ [0;2] & 50 \\ [0,008] & 0.0016 & 0.0026 & 0.0040 & 0.0169 & 0.0717 & 0.0043 & 0.0851 & 0.0031 & 0.0120 & 0.0174 & 0.0575 & 0.0023 & 0.0480 \\ [0,008] & 0.0348 & 0.0169 & 0.0143 & 0.0323 & 0.1861 & 0.6663 & 0.2055 & 0.6265 & 0.0472 & 0.0302 & 0.2804 & 0.3440 & 0.0456 & 0.0533 \\ [0,007] & 0.0070 & 0.0221 & 0.0164 & 0.0522 & 0.0774 & 0.6923 & 0.0950 & 0.6887 & 0.0200 & 0.0025 & 0.1826 & 0.2932 & 0.0252 & 0.0843 \\ [0,0058] & 0.0058 & 0.0927 & 0.0042 & 0.0903 & 0.0457 & 0.9206 & 0.0320 & 0.9213 & 0.0020 & 0.0348 & 0.0311 & 0.1754 & 0.0004 & 0.1303 \\ [0,008] & [-1;3] & 50 & 0.0109 & 0.0133 & 0.0168 & 0.0055 & 0.0534 & 0.0440 & 0.0534 & 0.0553 & 0.0023 & 0.0120 & 0.2965 & 0.3185 & 0.0468 & 0.0039 \\ [0,009] & 0.0090 & 0.0051 & 0.0136 & 0.0097 & 0.0561 & 0.0235 & 0.0042 & 0.1013 & 0.0112 & 0.0114 & 0.1689 & 0.2118 & 0.0108 & 0.0234 \\ [0,008] & 0.0006 & 0.0016 & 0.0017 & 0.0025 & 0.0150 & 0.0973 & 0.0100 & 0.0963 & 0.0042 & 0.0275 & 0.0734 & 0.0010 & 0.0984 \\ [0,008] & [0,008] & 0.0673 & 0.0895 & 0.0515 & 0.0101 & 0.0886 & 0.5913 & 0.0392 & 0.4902 & 0.0632 & 0.328 & 0.3464 & 0.4350 & 0.1144 & 0.0183 \\ [0,008] & 0.0282 & 0.0491 & 0.0055 & 0.0312 & 0.1107 & 0.6620 & 0.0522 & 0.5556 & 0.0227 & 0.0171 & 0.3203 & 0.4167 & 0.0574 & 0.0106 \\ [0,008] & 0.0082 & 0.0491 & 0.0055 & 0.0312 & 0.1107 & 0.6620 & 0.0522 & 0.5556 & 0.0227 & 0.0171 & 0.3203 & 0.4167 & 0.0574 & 0.0106 \\ [0,008] & 0.0082 & 0.0491 & 0.0055 & 0.0312 & 0.1107 & 0.6620 & 0.0522 & 0.5556 & 0.0227 & 0.0171 & 0.3203 & 0.4167 & 0.0574 & 0.0106 \\ [0,008] & 0.0082 & 0.0491 & 0.0055 & 0.0312 & 0.1107 & 0.6620 & 0.0522 & 0.5556 & 0.0227 & 0.0171 & 0.3203 & 0.4167 & 0.0574 & 0.0106 \\ [0,008] & 0.0082 & 0.0491 & 0.0055 & 0.0312 & 0.1107 & 0.6620 & 0.0522 & 0.5556 & 0.0227 & 0.0171 & 0.3203 & 0.4167 & 0.0574 & 0.0106 \\ [0,008] & 0.0082 & 0.0491 & 0.0055 & 0.0312 & 0.1107 & 0.6620 & 0.0522 & 0.5556 & 0.0227 & 0.0171 & 0.3203 & 0.4167 & 0.0574 & 0.0106 \\ [0,008] & 0.0083 & 0.0083 & 0.00842 & 0.00842 & 0.0275 & 0.0171 & 0.3203 & 0.4167 & 0.0574 & 0.0106 \\ [0,$	0.8	[-1; 3]															
$ \begin{bmatrix} [0;2] \\ [0;2] \\ [0;2] \\ [0;2] \\ [0;2] \end{bmatrix} = \begin{bmatrix} 50 \\ 0.0348 & 0.0169 & 0.0143 & 0.0323 & 0.1861 & 0.6663 & 0.2055 & 0.6265 & 0.0472 & 0.0302 & 0.2804 & 0.3440 & 0.0456 & 0.0533 \\ 0.0070 & 0.0221 & 0.0164 & 0.0522 & 0.0774 & 0.6923 & 0.0955 & 0.6887 & 0.0200 & 0.0025 & 0.1826 & 0.2932 & 0.0252 & 0.0843 \\ 500 & 0.0058 & 0.0927 & 0.0042 & 0.0903 & 0.0457 & 0.9206 & 0.0320 & 0.9213 & 0.0020 & 0.0348 & 0.0311 & 0.1754 & 0.0004 & 0.1303 \\ 0.008 & 0.0109 & 0.0133 & 0.0168 & 0.0055 & 0.0534 & 0.0453 & 0.0553 & 0.0053 & 0.0120 & 0.2965 & 0.3185 & 0.0468 & 0.0399 \\ 100 & 0.0009 & 0.0051 & 0.0136 & 0.0097 & 0.0561 & 0.0235 & 0.0042 & 0.1013 & 0.0112 & 0.0114 & 0.1689 & 0.2118 & 0.0108 & 0.0234 \\ 500 & 0.0060 & 0.0016 & 0.0017 & 0.0025 & 0.0150 & 0.0973 & 0.0100 & 0.0963 & 0.0266 & 0.0042 & 0.0275 & 0.0734 & 0.0010 & 0.0294 \\ [0;2] & 50 & 0.0673 & 0.0895 & 0.0515 & 0.0101 & 0.0886 & 0.5913 & 0.0392 & 0.4990 & 0.0632 & 0.0328 & 0.3464 & 0.4350 & 0.1144 & 0.188 \\ [0;2] & 50 & 0.0673 & 0.0895 & 0.0515 & 0.0101 & 0.0886 & 0.5913 & 0.0392 & 0.4990 & 0.0632 & 0.0328 & 0.3464 & 0.4350 & 0.1144 & 0.0188 \\ [0;2] & 50 & 0.0282 & 0.0491 & 0.0055 & 0.0312 & 0.1107 & 0.6620 & 0.0522 & 0.5556 & 0.0227 & 0.0171 & 0.3203 & 0.4167 & 0.0574 & 0.0106 \\ [0;2] & 50 & 0.0282 & 0.0491 & 0.0055 & 0.0312 & 0.1107 & 0.6620 & 0.0522 & 0.5556 & 0.0227 & 0.0171 & 0.3203 & 0.4167 & 0.0574 & 0.0106 \\ [0;2] & 50 & 0.0282 & 0.0491 & 0.0055 & 0.0312 & 0.1107 & 0.6620 & 0.0522 & 0.5556 & 0.0227 & 0.0171 & 0.3203 & 0.4167 & 0.0574 & 0.0106 \\ [0;2] & 50 & 0.0282 & 0.0491 & 0.0055 & 0.0312 & 0.1107 & 0.6620 & 0.0522 & 0.5556 & 0.0227 & 0.0171 & 0.3203 & 0.4167 & 0.0574 & 0.0106 \\ [0;2] & 50 & 0.0282 & 0.0491 & 0.0055 & 0.0312 & 0.1107 & 0.6620 & 0.0522 & 0.5556 & 0.0227 & 0.0171 & 0.3203 & 0.4167 & 0.0574 & 0.0106 \\ [0;2] & 50 & 0.0282 & 0.0491 & 0.0055 & 0.0312 & 0.1107 & 0.6620 & 0.0522 & 0.5556 & 0.0227 & 0.0171 & 0.3203 & 0.4167 & 0.0574 & 0.0106 \\ [0;2] & 50 & 0.0282 & 0.0491 & 0.0055 & 0.0312 & 0.1107 & 0.6620 & 0.0522 & 0.5556 & 0.0227 & 0.0171 & 0.320$																	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$																	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		[0; 2]															
$ \begin{bmatrix} -1;3 \end{bmatrix} & 50 & 0.0109 & 0.0133 & 0.0168 & 0.0055 & 0.0534 & 0.0440 & 0.0534 & 0.0553 & 0.0053 & 0.0120 & 0.2965 & 0.3185 & 0.0468 & 0.0039 \\ 100 & 0.0009 & 0.0051 & 0.0136 & 0.0097 & 0.0561 & 0.0235 & 0.0042 & 0.1013 & 0.0112 & 0.0114 & 0.1689 & 0.2118 & 0.0108 & 0.0234 \\ 500 & 0.0006 & 0.0016 & 0.0017 & 0.0025 & 0.0150 & 0.0973 & 0.0100 & 0.0963 & 0.0042 & 0.0275 & 0.0734 & 0.0010 & 0.0294 \\ [0;2] & 50 & 0.0673 & 0.0895 & 0.0515 & 0.0101 & 0.0886 & 0.5913 & 0.0392 & 0.4902 & 0.0632 & 0.0328 & 0.3464 & 0.4350 & 0.1144 & 0.0183 \\ 100 & 0.0282 & 0.0491 & 0.0055 & 0.0312 & 0.1107 & 0.6620 & 0.0522 & 0.5556 & 0.0227 & 0.0171 & 0.3203 & 0.4167 & 0.0574 & 0.0106 \\ \end{bmatrix} $																	
$ \begin{bmatrix} 100 & 0.0009 & 0.0051 & 0.0136 & 0.0097 & 0.0561 & 0.0235 & 0.0042 & 0.1013 & 0.0112 & 0.0114 & 0.1689 & 0.2118 & 0.0108 & 0.0234 \\ 500 & 0.0006 & 0.0016 & 0.0017 & 0.0025 & 0.0150 & 0.0973 & 0.0100 & 0.0963 & 0.0026 & 0.0042 & 0.0275 & 0.0734 & 0.0010 & 0.0294 \\ 50 & 0.0673 & 0.0895 & 0.0515 & 0.0101 & 0.0886 & 0.5913 & 0.0392 & 0.4902 & 0.0632 & 0.0328 & 0.3464 & 0.4350 & 0.1144 & 0.188 \\ 100 & 0.0282 & 0.0491 & 0.0055 & 0.0312 & 0.1107 & 0.6620 & 0.0522 & 0.5556 & 0.0227 & 0.0171 & 0.3203 & 0.4167 & 0.0574 & 0.0106 \\ \end{bmatrix} $																	
$ \begin{bmatrix} 500 & 0.0006 & 0.0016 & 0.0017 & 0.0025 & 0.0150 & 0.0973 & 0.0100 & 0.0963 & 0.0026 & 0.0042 & 0.0275 & 0.0734 & 0.0010 & 0.0294 \\ 50 & 0.0673 & 0.0895 & 0.0515 & 0.0101 & 0.0886 & 0.5913 & 0.0392 & 0.4902 & 0.0632 & 0.0328 & 0.3464 & 0.4350 & 0.1144 & 0.0183 \\ 100 & 0.0282 & 0.0491 & 0.0055 & 0.0312 & 0.1107 & 0.6620 & 0.0522 & 0.5556 & 0.0227 & 0.0171 & 0.3203 & 0.4167 & 0.0574 & 0.0106 \\ \end{bmatrix} $	0.9	[-1; 3]	50														
$100 \qquad 0.0282 \ 0.0491 \ 0.0055 \ 0.0312 \ 0.1107 \ 0.6620 \ 0.0522 \ 0.5556 \ 0.0227 \ 0.0171 \ 0.3203 \ 0.4167 \ 0.0574 \ 0.0106$																	
		[0; 2]															
500 0.0028 0.0473 0.0025 0.0490 0.0172 0.9338 0.0222 0.9502 0.0038 0.0226 0.0863 0.2652 0.0049 0.0695																	
			500	0.0028	0.0473	0.0025	0.0490	0.0172	0.9338	0.0222	0.9502	0.0038	0.0226	0.0863	0.2652	0.0049	0.0695

Tabela D.33: Estimativas do valor absoluto do enviesamento médio dos parâmetros da mistura de duas regressões lineares no caso EIII

					0	0			0	0						
			$_{\mathrm{EM}}^{lpha_{1}}$	α_1 CEM	β_1 EM	β_1 CEM	α_2 EM	α_2 CEM	β_2 EM	β_2 CEM	σ_1 EM	$_{ ext{CEM}}^{\sigma_1}$	σ_2 EM	σ_2 CEM	π_1 EM	$_{ ext{CEM}}^{\pi_1}$
$\frac{\pi_1}{0.1}$	[1.9]	50					0.0399									
0.1	[-1; 3]	100					0.0399 0.0265									
		500					0.0263									
	[0; 2]	50														0.0331
	[0, 2]	100					0.1943									
		500														0.0200
0.2	[-1; 3]	50														0.0324
0.2	[1,0]	100					0.0019									
		500					0.0033									
	[0; 2]	50					0.2072									
	[0, 2]	100														0.1190
		500														0.1765
0.3	[-1; 3]	50														0.0180
	. /-1	100					0.0260									
		500														0.0412
	[0; 2]	50	0.0836	0.2098	0.1056	0.2304	0.2778	0.1279	0.2534	0.1152	0.1025	0.3074	0.1433	0.1040	0.0788	0.0424
		100	0.0057	0.3468	0.0151	0.3291	0.1060	0.0583	0.0947	0.0786	0.0992	0.3461	0.0352	0.0461	0.0188	0.1134
		500	0.0045	0.4504	0.0056	0.3734	0.0093	0.4859	0.0102	0.5070	0.0394	0.4678	0.0011	0.0082	0.0053	0.2502
0.4	[-1; 3]	50	0.0171	0.0402	0.0149	0.0431	0.0084	0.0452	0.0082	0.0638	0.0588	0.1135	0.0838	0.1145	0.0046	0.0267
		100	0.0004	0.0298	0.0003	0.0314	0.0263	0.0400	0.0024	0.0604	0.0180	0.0890	0.0346	0.0648	0.0039	0.0436
		500	0.0037	0.0310	0.0008	0.0308	0.0001	0.0757	0.0022	0.0765	0.0061	0.0788	0.0039	0.0384	0.0002	0.0523
	[0; 2]	50	0.0264	0.1607	0.0324	0.1600	0.1977	0.3262	0.1910	0.3275	0.0996	0.2098	0.1318	0.1135	0.0356	0.0466
		100	0.0032	0.2192	0.0231	0.2100	0.1279	0.2382	0.1195	0.2349	0.0533	0.2139	0.0750	0.0709	0.0109	0.0083
		500														0.0395
0.5	[-1; 3]	50														0.0502
		100														0.0662
		500					0.0156									
	[0; 2]	50														0.0776
		100														0.1346
		500														0.1826
0.6	[-1; 3]	50														0.0492
		100					0.0053									
	[0.0]	500														0.0703
	[0; 2]	50					0.1785									
		100 500					0.1976									0.1656 0.2108
0.7	[-1; 3]	50														0.2108
0.7	[-1; 3]	100					0.0085									
		500														0.0668
	[0; 2]	50														0.1113
	[0, 2]	100					0.1260									
		500														0.1725
0.8	[-1; 3]	50														0.0473
0.0	[1,0]	100					0.0061									
		500														0.0523
	[0; 2]	50														0.0368
	[0, 2]	100														0.0932
		500														0.1257
0.9	[-1; 3]	50														0.0148
0.0	, -]	100														0.0093
		500														0.0327
	[0; 2]	50														0.0534
		100	0.0506	0.0729	0.0342	0.0190	0.1422	0.9291	0.1626	0.8783	0.0237	0.0012	0.3971	0.5042	0.0538	0.0103
		500	0.0062	0.0432	0.0086	0.0450	0.0543	1.2255	0.0500	1.2523	0.0008	0.0229	0.0581	0.1980	0.0022	0.0665

Tabela D.34: Estimativas do valor absoluto do enviesamento médio dos parâmetros da mistura de duas regressões lineares no caso EIV

 $200 \hspace{3cm} Ap \hat{\mathbf{e}} \mathbf{n} \mathbf{d} \mathbf{i} \mathbf{c} \mathbf{e} \hspace{1mm} D$

			α_1	α_1	β_1	β_1	α_2	α_2	β_2	β_2	σ_1	σ_1	σ_2	σ_2	π_1	π_1
$\frac{\pi_1}{2}$	x	n	EM	CEM	EM	CEM	EM	CEM	EM	CEM	EM	CEM	EM	CEM	EM	CEM
0.1	[-1; 3]	50													0.0233	
		100 500													0.0015 0.0002	
	[0; 2]	500 50													0.0002	
	[0, 2]	100													0.0233	
		500													0.0048	
0.2	[-1; 3]	50													0.0003	
0.2	[-1, 3]	100													0.0002	
		500													0.00013	
	[0; 2]	50													0.0005	
	[0, 2]	100													0.0008	
		500													0.0019	
0.3	[-1; 3]	50													0.0041	
0.0	[1,0]	100													0.0006	
		500													0.0008	
	[0; 2]	50													0.0083	
		100	0.0015	0.0464	0.0025	0.0869	0.0075	0.0066	0.0006	0.0239	0.0160	0.0271	0.0090	0.0170	0.0044	0.0154
		500	0.0019	0.0541	0.0045	0.0981	0.0025	0.0125	0.0045	0.0211	0.0038	0.0152	0.0023	0.0110	0.0029	0.0239
0.4	[-1; 3]	50	0.0027	0.0012	0.0045	0.0024	0.0029	0.0004	0.0023	0.0008	0.0221	0.0308	0.0180	0.0257	0.0011	0.0167
	. , ,	100	0.0018	0.0060	0.0022	0.0069	0.0034	0.0007	0.0027	0.0003	0.0073	0.0149	0.0087	0.0176	0.0004	0.0203
		500	0.0031	0.0077	0.0015	0.0067	0.0014	0.0042	0.0007	0.0022	0.0024	0.0094	0.0018	0.0115	0.0004	0.0241
	[0; 2]	50	0.0061	0.0322	0.0002	0.0658	0.0072	0.0194	0.0064	0.0405	0.0219	0.0304	0.0134	0.0236	0.0032	0.0058
		100	0.0083	0.0378	0.0080	0.0736	0.0024	0.0241	0.0069	0.0380	0.0110	0.0225	0.0081	0.0195	0.0016	0.0132
		500	0.0041	0.0437	0.0052	0.0791	0.0020	0.0245	0.0014	0.0442	0.0009	0.0136	0.0021	0.0138	0.0011	0.0128
0.5	[-1; 3]	50	0.0083	0.0119	0.0064	0.0084	0.0067	0.0034	0.0038	0.0008	0.0173	0.0253	0.0199	0.0284	0.0034	0.0001
		100	0.0025	0.0011	0.0004	0.0041	0.0062	0.0025	0.0067	0.0026	0.0119	0.0210	0.0086	0.0172	0.0030	0.0025
		500													0.0036	
	[0; 2]	50													0.0004	
		100													0.0001	
		500													0.0022	
0.6	[-1; 3]	50														0.0210
		100													0.0022	
	fo. 01	500													0.0000	
	[0; 2]	50													0.0016	
		100													0.0051	
	[1 0]	500													0.0012	
0.7	[-1; 3]	50													0.0052	
		100 500													0.0003 0.0007	
	[0.0]														0.0007	
	[0; 2]	50 100													0.0000	
		500													0.0033	
0.8	[-1; 3]	50													0.0046	
0.8	[-1, 3]	100													0.0020	
		500													0.0049	
	[0; 2]	50													0.0023	
	[0, 2]	100													0.00012	
		500													0.0001	
0.9	[-1; 3]	50													0.0010	
0.9	[1,0]	100													0.0199	
		500													0.0021	
	[0; 2]	50													0.0016	
	[~, ~]	100													0.0032	
		500													0.0022	
		000	5.0010	5.0040	0.0010	J.0043	0.0102	0.0111	0.0141	U.11UI	0.0014	0.0001	0.0000	0.0132	0.0022	0.0100

Tabela D.35: Estimativas do valor absoluto do enviesamento médio dos parâmetros da mistura de duas regressões lineares no caso ${\rm EV}$

					0	0			0	0						
- .			$_{\mathrm{EM}}^{lpha_{1}}$	α_1 CEM	β_1 EM	β_1 CEM	α_2 EM	α_2 CEM	β_2 EM	β_2 CEM	σ_1 EM	$_{ ext{CEM}}^{\sigma_1}$	σ_2 EM	σ_2 CEM	$_{\mathrm{EM}}^{\pi_{1}}$	$_{ ext{CEM}}^{\pi_1}$
$\frac{\pi_1}{0.1}$	[-1; 3]	50					0.0022									
0.1	[-1, 3]	100					0.0022									
		500					0.0007									
	[0; 2]	50					0.0054									
	[0, 2]	100					0.0004									
		500					0.0028									
0.2	[-1; 3]	50					0.0040									
0.2	[1,0]	100					0.0034									
		500					0.0002									
	[0; 2]	50					0.0034									
	L-7 J	100					0.0002									
		500	0.0086	0.1412	0.0026	0.3137	0.0029	0.0215	0.0018	0.0310	0.0074	0.0557	0.0043	0.0186	0.0016	0.0356
0.3	[-1; 3]	50	0.0158	0.0303	0.0120	0.0151	0.0056	0.0117	0.0015	0.0095	0.0744	0.0904	0.0178	0.0338	0.0003	0.0374
	-	100	0.0052	0.0149	0.0082	0.0255	0.0057	0.0014	0.0041	0.0033	0.0279	0.0462	0.0027	0.0208	0.0018	0.0437
		500	0.0037	0.0188	0.0055	0.0250	0.0026	0.0095	0.0006	0.0084	0.0056	0.0235	0.0017	0.0207	0.0014	0.0460
	[0; 2]	50					0.0202									
		100					0.0007									
		500					0.0012									
0.4	[-1; 3]	50					0.0110									
		100					0.0064									
		500					0.0038									
	[0; 2]	50					0.0099									
		100					0.0098									
		500					0.0025									
0.5	[-1; 3]	50					0.0091									
		100 500					0.0051									
	[0.0]	500 50					$0.0020 \\ 0.0016$									
	[0; 2]	100					0.0016									
		500					0.0007									
0.6	[-1; 3]	50														0.0198
0.0	[1,0]	100					0.0170									
		500					0.0049									
	[0; 2]	50					0.0255									
		100					0.0210									
		500	0.0010	0.0563	0.0027	0.1062	0.0008	0.1091	0.0001	0.2243	0.0055	0.0414	0.0022	0.0488	0.0012	0.0208
0.7	[-1; 3]	50	0.0017	0.0046	0.0057	0.0035	0.0042	0.0147	0.0216	0.0041	0.0103	0.0246	0.0688	0.0886	0.0051	0.0345
		100	0.0107	0.0043	0.0049	0.0025	0.0083	0.0094	0.0129	0.0185	0.0094	0.0269	0.0334	0.0480	0.0026	0.0431
		500					0.0032									
	[0; 2]	50					0.0109									
		100					0.0143									
		500					0.0064									
0.8	[-1; 3]	50					0.0089									
		100					0.0071									
	fo. 01	500					0.0006									
	[0; 2]	50					0.0518									
		100					0.0179									
	[1 0]	500					0.0110									
0.9	[-1; 3]	50					0.0144									
		100 500					0.0058 0.0020									
	[0; 2]	500 50					0.0020 0.0374									
	[0, 2]	100					0.0374									
		500					0.0079									
		500	0.0000	0.0070	0.0009	0.0007	0.0090	0.1210	0.0082	0.3240	0.0030	0.0009	0.0209	0.0700	0.0010	0.0202

Tabela D.36: Estimativas do valor absoluto do enviesamento médio dos parâmetros da mistura de duas regressões lineares no caso EVI

 $202 \hspace{3.1em} Ap \hat{e}ndice \hspace{1mm} D$

1																	
1. 1, 3 50																	
1	$\frac{\pi_1}{2}$	x															
1.0 1.0	0.1	[-1; 3]															
[9,2] 50 0.0028 0.0654 0.0186 0.2965 0.0212 0.0129 0.0227 0.0257 0.1844 0.277 0.0764 0.0726 0.0682 0.0035 0.0035 0.0056 0.0005 0.0191 0.0087 0.3755 0.0001 0.0482 0.0252 0.0126 0.1350 0.2518 0.0238 0.0312 0.0305 0.0275 0.0026 0.0035 0.0338 0.0312 0.0135 0.0193 0.0126 0.0036 0.0018 0.0031 0.0489 0.0035 0.0275 0.0038 0.0215 0.0193 0.1626 0.0036 0.0018 0.0031 0.0489 0.0035 0.0275 0.0034 0.0016 0.1152 0.1747 0.0579 0.0734 0.0213 0.0246 0.0056 0.0056 0.0036 0.0038 0.0218 0.0033 0.0241 0.0032 0.0032 0.0039 0.0058 0.0038 0.0018 0.0031 0.0035 0.0057 0.0084 0.0074 0.0038 0.0218 0.0046 0.0055 0.0057 0.0084 0.0075 0.0088 0.0218 0.0044 0.0018 0.0038 0.0218 0.0044 0.0018 0.0038 0.0031 0.0048 0.0038 0.																	
1.0 0.0005 0.0191 0.0087 0.3755 0.0001 0.0482 0.0252 0.0446 0.1350 0.2518 0.0328 0.0312 0.0305 0.0275		[0.0]															
1		[0; 2]															
Color																	
100 0.0083 0.0408 0.0205 0.0322 0.0159 0.0188 0.0111 0.0130 0.0541 0.1123 0.0325 0.0514 0.0040 0.0555	0.2	[1.9]															
1	0.2	[-1; 3]															
[0; 2] 50 0.0266 0.0691 0.0118 0.2651 0.0342 0.0013 0.0035 0.0331 0.1474 0.2276 0.0632 0.0799 0.0249 0.0282 0.0393 0.0484 0.0246 0.0246 0.0326 0.0799 0.0249 0.0283 0.0484 0.0246 0.0246 0.0246 0.0326 0.0799 0.0240 0.0283 0.0484 0.0246 0.0246 0.0326 0.0320 0.0057 0.0494 0.0133 0.1154 0.0078 0.0543 0.0002 0.0887 0.0310 0.00575 0.0240 0.0433 0.0763 0.1888 0.0417 0.0662 0.00660 0.0111 0.0247 0.0016 0.0399 0.024 0.0243 0.0495 0.0499 0.0231 0.0525 0.0011 0.0287 0.0260 0.0280 0.0280 0.0281 0.0245 0.0245 0.0245 0.0499 0.0231 0.0525 0.0011 0.0287 0.0260 0.0280 0.0280 0.0280 0.0244 0.0243 0.0045 0.0591 0.0150 0.0463 0.0046 0.0040 0.0489 0.0264 0.0245 0.0046 0.0393 0.0225 0.0377 0.0131 0.0488 0.0051 0.1246 0.0893 0.1625 0.0678 0.1205 0.0068 0.0128 0.0088 0.0247 0.0252 0.0377 0.0131 0.0488 0.0051 0.1246 0.0893 0.1625 0.0678 0.1205 0.0068 0.0345 0.0174 0.3155 0.0119 0.0499 0.0090 0.003 0.1579 0.0341 0.1181 0.0236 0.0949 0.0040 0.0098 0.0094 0.0094 0.0225 0.0378 0.0025 0.0643 0.0024 0.0235 0.0644 0.0024 0.1855 0.00666 0.0845 0.0071 0.0666 0.0015 0.0042 0.0048 0.0061 0.0049 0.0040 0.0030 0.0049 0.0030 0.0599 0.0094 0.0030 0.0599 0.0094 0.0030 0.0599 0.0094 0.0040 0.0094																	
100		[0, 2]															
1.0 1.0		[0; 2]															
10.3																	
100	0.3	[_1.3]															
	0.0	[1,0]															
$ \begin{bmatrix} [0;2] \\ [0;2] \\ [0;0] \\ [$																	
100		[0.2]															
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		[0, 2]															
$ \begin{bmatrix} 0.4 & \left[-1; 3 \right] & 50 & 0.0063 & 0.0290 & 0.0216 & 0.0028 & 0.0104 & 0.0336 & 0.0221 & 0.0208 & 0.0510 & 0.1029 & 0.0533 & 0.6695 & 0.0124 & 0.0153 \\ 500 & 0.0024 & 0.0212 & 0.0007 & 0.0228 & 0.0003 & 0.0598 & 0.0023 & 0.0526 & 0.0025 & 0.0683 & 0.0076 & 0.0251 & 0.0002 & 0.0488 \\ \left[0; 2 \right] & 50 & 0.0084 & 0.0691 & 0.0017 & 0.1725 & 0.0081 & 0.1030 & 0.0279 & 0.3015 & 0.0631 & 0.119 & 0.0610 & 0.1386 & 0.0089 & 0.0400 \\ 0.0048 & 0.0691 & 0.0017 & 0.1725 & 0.0081 & 0.1030 & 0.0279 & 0.3015 & 0.0631 & 0.119 & 0.1690 & 0.1386 & 0.0089 & 0.0400 \\ 0.0048 & 0.0875 & 0.0076 & 0.1984 & 0.0290 & 0.0530 & 0.0275 & 0.26610 & 0.0302 & 0.0820 & 0.0419 & 0.1369 & 0.0014 & 0.0545 \\ 0.00122 & 0.0978 & 0.0086 & 0.2241 & 0.0256 & 0.0996 & 0.0166 & 0.3404 & 0.0068 & 0.0498 & 0.059 & 0.1417 & 0.0003 & 0.0523 \\ 0.5 & \left[-1; 3 \right] & 50 & 0.0022 & 0.0131 & 0.0056 & 0.0233 & 0.0433 & 0.0087 & 0.0229 & 0.0300 & 0.0435 & 0.0860 & 0.0965 & 0.1622 & 0.0014 & 0.0514 \\ 0.0040 & 0.0191 & 0.0047 & 0.0114 & 0.0041 & 0.0589 & 0.0051 & 0.0581 & 0.0220 & 0.0664 & 0.0571 & 0.0712 & 0.0005 & 0.0591 \\ 0.0072 & 0.0089 & 0.0031 & 0.0141 & 0.0052 & 0.0795 & 0.0067 & 0.0669 & 0.0016 & 0.0454 & 0.0143 & 0.0035 & 0.0055 \\ 0.0035 & 0.0723 & 0.0093 & 0.1068 & 0.0687 & 0.0315 & 0.0057 & 0.3140 & 0.0348 & 0.0646 & 0.1550 & 0.0202 & 0.0262 & 0.0813 \\ 0.0035 & 0.0035 & 0.0994 & 0.1493 & 0.0084 & 0.0888 & 0.0051 & 0.4438 & 0.0054 & 0.0333 & 0.1533 & 0.0058 & 0.0751 \\ 0.0035 & 0.0036 & 0.0855 & 0.0094 & 0.1493 & 0.0084 & 0.0888 & 0.0051 & 0.4438 & 0.0054 & 0.0442 & 0.0590 & 0.0136 & 0.0058 \\ 0.0035 & 0.0035 & 0.0094 & 0.1493 & 0.0084 & 0.0888 & 0.0051 & 0.4438 & 0.0054 & 0.0442 & 0.0590 & 0.0136 & 0.0058$																	
100	0.4	[-1:3]	50														
$ \begin{bmatrix} [0;2] \\ [$. /-1	100														
100			500														
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		[0; 2]	50	0.0084	0.0691	0.0017	0.1725	0.0081	0.1030	0.0279	0.3015	0.0631	0.1119	0.0610	0.1386	0.0089	0.0400
$ \begin{bmatrix} -1;3 \\ -1;3 \\ -1;5$			100	0.0048	0.0875	0.0076	0.1984	0.0290	0.0530	0.0275	0.2610	0.0302	0.0820	0.0419	0.1369	0.0014	0.0450
$ \begin{bmatrix} & & & & & & & & & $			500	0.0122	0.0978	0.0086	0.2241	0.0256	0.0996	0.0166	0.3404	0.0068	0.0498	0.0059	0.1417	0.0003	0.0523
$ \begin{bmatrix} [0;2] & 500 & 0.0072 & 0.0089 & 0.0031 & 0.0141 & 0.0052 & 0.0795 & 0.0027 & 0.0669 & 0.0016 & 0.0454 & 0.0143 & 0.0305 & 0.0005 & 0.0657 \\ 0.0305 & 0.0723 & 0.0093 & 0.1068 & 0.0637 & 0.0315 & 0.0057 & 0.3140 & 0.0348 & 0.0646 & 0.1150 & 0.2002 & 0.0262 & 0.0813 \\ 0.0037 & 0.0644 & 0.0045 & 0.1159 & 0.0197 & 0.1080 & 0.0283 & 0.4101 & 0.0276 & 0.0545 & 0.0333 & 0.0538 & 0.0058 & 0.0751 \\ 0.0063 & 0.0895 & 0.0094 & 0.1493 & 0.0084 & 0.0888 & 0.0051 & 0.4438 & 0.0054 & 0.0212 & 0.0062 & 0.1619 & 0.0024 & 0.0835 \\ 0.0019 & 0.0118 & 0.0005 & 0.0081 & 0.0073 & 0.0813 & 0.0045 & 0.0569 & 0.0256 & 0.0557 & 0.0741 & 0.0919 & 0.0023 & 0.0532 \\ 0.0024 & 0.0108 & 0.0065 & 0.0067 & 0.0138 & 0.0908 & 0.0043 & 0.0586 & 0.0171 & 0.0461 & 0.0424 & 0.0599 & 0.0013 & 0.0649 \\ 0.0056 & 0.0155 & 0.0014 & 0.0121 & 0.0040 & 0.0860 & 0.0030 & 0.0763 & 0.0005 & 0.0316 & 0.0098 & 0.0248 & 0.0013 & 0.0683 \\ 0.0031 & 0.0339 & 0.0019 & 0.0713 & 0.0341 & 0.1158 & 0.1216 & 0.4884 & 0.0231 & 0.0403 & 0.1116 & 0.2140 & 0.0228 & 0.0813 \\ 0.0031 & 0.0735 & 0.0019 & 0.0735 & 0.0019 & 0.0341 & 0.1400 & 0.0164 & 0.0311 & 0.0587 & 0.1839 & 0.0045 & 0.0739 \\ 0.0031 & 0.0735 & 0.0019 & 0.0032 & 0.0135 & 0.0106 & 0.0364 & 0.0164 & 0.0311 & 0.0587 & 0.1839 & 0.0045 & 0.0739 \\ 0.0031 & 0.0735 & 0.0019 & 0.0025 & 0.0119 & 0.0889 & 0.0077 & 0.0477 & 0.0120 & 0.0366 & 0.1550 & 0.1699 & 0.0024 & 0.0560 \\ 0.0046 & 0.0032 & 0.0032 & 0.0025 & 0.0119 & 0.0889 & 0.0077 & 0.0477 & 0.0120 & 0.0366 & 0.1550 & 0.1699 & 0.0024 & 0.0560 \\ 0.0046 & 0.0032 & 0.0032 & 0.0025 & 0.0019 & 0.0827 & 0.0025 & 0.0815 & 0.0053 & 0.0312 & 0.0498 & 0.0084 & 0.0084 \\ 0.0047 & 0.0047 & 0.0047 & 0.0040 & 0.0860 & 0.0563 & 0.0152 & 0.0312 & 0.0498 & 0.0684 & 0.0028 \\ 0.0047 & 0.0048 & 0.0048 & 0.0088 & 0.0048 & 0.0924 & 0.0461 & 0.5312 & 0.0077 & 0.0113 & 0.0793 & 0.0044 & 0.0642 \\ 0.0058 & 0.0390 & 0.0038 & 0.0528 & 0.0030 & 0.1104 & 0.0991 & 0.5673 & 0.0021 & 0.0011 & 0.0017 & 0.0196 & 0.0044 & 0.0850 \\ 0.0045 & 0.0161 & 0.0121 & 0.0124 & 0.1691 & 0.0564 & 0.0346 & 0.0266 & 0.$	0.5	[-1; 3]	50	0.0022	0.0131	0.0056	0.0233	0.0443	0.0087	0.0229	0.0300	0.0435	0.0860	0.0965	0.1062	0.0014	0.0514
$ \begin{bmatrix} [0;2] \\ [0;2] \\ [0;3] \\ [0;4] \\ [0;5] \\ [0;6] \\ [0;6] \\ [0;6] \\ [0;7] \\ [0;6] \\ [0;7] \\ [$			100	0.0040	0.0191	0.0047	0.0114	0.0041	0.0589	0.0051	0.0581	0.0220	0.0664	0.0571	0.0712	0.0005	0.0591
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			500														
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		[0; 2]															
$ \begin{bmatrix} -1;3 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $																	
100																	
$ \begin{bmatrix} [0;2] & 500 & 0.0056 & 0.0155 & 0.0014 & 0.0121 & 0.0040 & 0.0860 & 0.0030 & 0.0763 & 0.0005 & 0.0316 & 0.0098 & 0.0248 & 0.0013 & 0.0683 \\ [0;2] & 500 & 0.0003 & 0.0389 & 0.0019 & 0.0713 & 0.0341 & 0.1158 & 0.1216 & 0.4884 & 0.0231 & 0.0403 & 0.1116 & 0.2140 & 0.0228 & 0.0813 \\ [0;2] & 500 & 0.00141 & 0.0629 & 0.0119 & 0.0874 & 0.0135 & 0.0910 & 0.0341 & 0.4400 & 0.0164 & 0.0311 & 0.0587 & 0.1839 & 0.0045 & 0.0739 \\ [0;2] & 500 & 0.0031 & 0.0735 & 0.0019 & 0.1002 & 0.0136 & 0.1016 & 0.0106 & 0.5249 & 0.0016 & 0.0018 & 0.0100 & 0.1837 & 0.0005 & 0.0869 \\ [0;2] & 500 & 0.0064 & 0.0032 & 0.0025 & 0.0119 & 0.0889 & 0.0077 & 0.0477 & 0.0120 & 0.0306 & 0.1550 & 0.1699 & 0.0024 & 0.0564 \\ [0;2] & 500 & 0.0017 & 0.0039 & 0.0011 & 0.0090 & 0.0827 & 0.0025 & 0.0815 & 0.00312 & 0.0498 & 0.0684 & 0.0023 & 0.0564 \\ [0;2] & 500 & 0.0149 & 0.0237 & 0.0279 & 0.0352 & 0.0853 & 0.1216 & 0.1348 & 0.4916 & 0.0318 & 0.0358 & 0.1708 & 0.2721 & 0.0044 & 0.0642 \\ [0;2] & 500 & 0.00149 & 0.0237 & 0.0279 & 0.0352 & 0.0853 & 0.1216 & 0.1348 & 0.4916 & 0.318 & 0.0358 & 0.1708 & 0.2721 & 0.0044 & 0.0642 \\ [0;2] & 500 & 0.0058 & 0.0390 & 0.0038 & 0.0528 & 0.0030 & 0.1104 & 0.0991 & 0.5673 & 0.0021 & 0.0001 & 0.217 & 0.1916 & 0.0014 & 0.0747 \\ [0;2] & 500 & 0.0031 & 0.0012 & 0.0013 & 0.0034 & 0.0187 & 0.0658 & 0.0372 & 0.0063 & 0.0226 & 0.0267 & 0.2592 & 0.2803 & 0.0023 & 0.0443 \\ [0;2] & 500 & 0.0025 & 0.0023 & 0.0009 & 0.0079 & 0.0298 & 0.1177 & 0.0164 & 0.0364 & 0.0346 & 0.0102 & 0.0169 & 0.1000 & 0.1173 & 0.0525 & 0.0503 \\ [0;2] & 500 & 0.0029 & 0.0161 & 0.0121 & 0.0124 & 0.1691 & 0.0564 & 0.0346 & 0.3960 & 0.0225 & 0.0263 & 0.2395 & 0.3402 & 0.0081 & 0.0578 \\ [0;2] & 500 & 0.0099 & 0.0072 & 0.0066 & 0.0086 & 0.0168 & 0.0346 & 0.0326 & 0.0225 & 0.0023 & 0.0028 & 0.0023 & 0.0028 & 0.0025 & 0.0023 & 0.0009 & 0.0018 & 0.0564 & 0.0346 & 0.0366 & 0.0025 & 0.0023 & 0.0009 & 0.0018 & 0.0564 & 0.0346 & 0.0366 & 0.0025 & 0.0023 & 0.0008 & 0.0025 & 0.0023 & 0.0008 & 0.0025 & 0.0023 & 0.0008 & 0.0025 & 0.0023 & 0.0009 & 0.0018 & 0.0564 & 0.03$	0.6	[-1; 3]															
$ \begin{bmatrix} [0;2] \\ [0;3] \\ [0;4] \\ [0;5] \\ [0;6] \\ [0;7] \\ [0;7] \\ [0;7] \\ [0;8] \\ [$																	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		[0.0]															
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		[0; 2]															
$ \begin{bmatrix} 0.7 & [-1;3] & 50 & 0.0064 & 0.0032 & 0.0032 & 0.0025 & 0.0119 & 0.0889 & 0.0077 & 0.0477 & 0.0120 & 0.0366 & 0.1550 & 0.1699 & 0.0024 & 0.0560 \\ 100 & 0.0083 & 0.0127 & 0.0023 & 0.0016 & 0.0007 & 0.0935 & 0.0206 & 0.0563 & 0.0312 & 0.0498 & 0.0684 & 0.0023 & 0.0564 \\ 500 & 0.0017 & 0.0039 & 0.0011 & 0.0050 & 0.0099 & 0.0827 & 0.0025 & 0.0815 & 0.0533 & 0.0257 & 0.0229 & 0.0337 & 0.0014 & 0.0588 \\ [0;2] & 50 & 0.0149 & 0.0237 & 0.0279 & 0.0352 & 0.0853 & 0.1216 & 0.1348 & 0.4916 & 0.0318 & 0.0358 & 0.1708 & 0.2721 & 0.0044 & 0.0642 \\ 100 & 0.0065 & 0.0415 & 0.0006 & 0.0498 & 0.0088 & 0.0924 & 0.0461 & 0.5312 & 0.0077 & 0.0113 & 0.0793 & 0.2085 & 0.0090 & 0.0710 \\ 0.008 & [-1;3] & 50 & 0.0031 & 0.0012 & 0.0013 & 0.0034 & 0.0187 & 0.0658 & 0.0372 & 0.0063 & 0.0226 & 0.0267 & 0.2592 & 0.2803 & 0.0023 & 0.0443 \\ 100 & 0.0025 & 0.0023 & 0.0099 & 0.0079 & 0.0298 & 0.1177 & 0.0164 & 0.0364 & 0.102 & 0.0169 & 0.1000 & 0.1173 & 0.0052 & 0.0590 \\ [0;2] & 50 & 0.0029 & 0.0161 & 0.0121 & 0.0124 & 0.1691 & 0.0564 & 0.0346 & 0.3960 & 0.0285 & 0.0263 & 0.2395 & 0.3402 & 0.0081 & 0.0578 \\ [0;2] & 50 & 0.0099 & 0.0255 & 0.0026 & 0.0263 & 0.0668 & 0.0466 & 0.0326 & 0.0026 & 0.0026 & 0.0045 & 0.0038 \\ [0;2] & 50 & 0.0099 & 0.0072 & 0.0066 & 0.0688 & 0.0463 & 0.1529 & 0.0114 & 0.0846 & 0.0221 & 0.0340 & 0.2024 & 0.0031 & 0.0578 \\ [0;2] & 50 & 0.0098 & 0.0072 & 0.0066 & 0.0068 & 0.0463 & 0.1529 & 0.0114 & 0.0846 & 0.0221 & 0.3374 & 0.3630 & 0.0273 & 0.0028 \\ [0;2] & 50 & 0.0098 & 0.0072 & 0.0066 & 0.0068 & 0.0463 & 0.1529 & 0.0114 & 0.0846 & 0.0221 & 0.0324 & 0.0235 & 0.0223 & 0.0028 \\ [0;2] & 50 & 0.0003 & 0.0003 & 0.0003 & 0.0000 & 0.0144 & 0.0856 & 0.0016 & 0.0022 & 0.0235 & 0.0223 & 0.0026 & 0.0336 & 0.0235 & 0.0263 & 0.03374 & 0.3630 & 0.0273 & 0.0028 \\ [0;2] & 50 & 0.0009 & 0.0022 & 0.0066 & 0.0068 & 0.0463 & 0.1529 & 0.0114 & 0.0846 & 0.0221 & 0.03374 & 0.3630 & 0.0273 & 0.0028 \\ [0;2] & 50 & 0.0029 & 0.0066 & 0.0359 & 0.0028 & 0.0018 & 0.0137 & 0.05674 & 0.0249 & 0.0165 & 0.3960 & 0.4935 & 0.0331 & 0.0009 \\ [0;2] & 50 $																	
$ \begin{bmatrix} 100 \\ 500 \\ 0.0083 \ 0.0127 \ 0.0023 \ 0.0016 \ 0.0007 \ 0.0935 \ 0.0206 \ 0.0563 \ 0.0152 \ 0.0312 \ 0.0498 \ 0.0684 \ 0.0023 \ 0.0564 \\ 500 \\ 0.0017 \ 0.0039 \ 0.0011 \ 0.0050 \ 0.0090 \ 0.0827 \ 0.0025 \ 0.0815 \ 0.0053 \ 0.0257 \ 0.0229 \ 0.0337 \ 0.0014 \ 0.0588 \\ [0;2] \\ 500 \\ 0.0149 \ 0.0237 \ 0.0279 \ 0.0352 \ 0.0853 \ 0.1216 \ 0.1348 \ 0.4916 \ 0.0318 \ 0.0358 \ 0.1708 \ 0.2721 \ 0.0044 \ 0.0642 \\ 100 \\ 0.0065 \ 0.0415 \ 0.0006 \ 0.0498 \ 0.0088 \ 0.0924 \ 0.0461 \ 0.5312 \ 0.0077 \ 0.0113 \ 0.0793 \ 0.2085 \ 0.0090 \ 0.0710 \\ 500 \\ 0.0058 \ 0.0390 \ 0.0038 \ 0.0528 \ 0.0030 \ 0.1104 \ 0.0991 \ 0.5673 \ 0.0021 \ 0.0001 \ 0.0217 \ 0.1916 \ 0.0014 \ 0.0747 \\ \hline 0.8 \\ [-1;3] \\ 50 \\ 0.0021 \ 0.0023 \ 0.0092 \ 0.0079 \ 0.0298 \ 0.1117 \ 0.0164 \ 0.0364 \ 0.0102 \ 0.0169 \ 0.1000 \ 0.1173 \ 0.0052 \ 0.0599 \\ [-1;3] \\ 50 \\ 0.0029 \ 0.0161 \ 0.0121 \ 0.0124 \ 0.1691 \ 0.0564 \ 0.0346 \ 0.3960 \ 0.0285 \ 0.0263 \ 0.2395 \ 0.3402 \ 0.0081 \ 0.0537 \\ [-1;3] \\ 50 \\ 0.0009 \ 0.0255 \ 0.0026 \ 0.0253 \ 0.0653 \ 0.0663 \ 0.0663 \ 0.0625 \ 0.0023 \ 0.0026 \ 0.0340 \ 0.0224 \ 0.0031 \ 0.0578 \\ [-1;3] \\ 50 \\ 0.0009 \ 0.0255 \ 0.0026 \ 0.0058 \ 0.0463 \ 0.1529 \ 0.0114 \ 0.0846 \ 0.0221 \ 0.0221 \ 0.0340 \ 0.0277 \ 0.0041 \ 0.0246 \\ [-1;3] \\ 50 \\ 0.0009 \ 0.0025 \ 0.0006 \ 0.0008 \ 0.0044 \ 0.0850 \ 0.0126 \ 0.0025 \ 0.0023 \ 0.0024 \ 0.0340 \ 0.0277 \ 0.0041 \ 0.0246 \\ [-1;3] \\ 50 \\ 0.0009 \ 0.0025 \ 0.0026 \ 0.0008 \ 0.0044 \ 0.0102 \ 0.0114 \ 0.0846 \ 0.0221 \ 0.0221 \ 0.0340 \ 0.0277 \ 0.0041 \ 0.0246 \\ [-1;3] \\ 50 \\ 0.0009 \ 0.0025 \ 0.0009 \ 0.0018 \ 0.0008 \ 0.0044 \ 0.0019 \ 0.0114 \ 0.0846 \ 0.0121 \ 0.0121 \ 0.0121 \ 0.0340 \ 0.0224 \ 0.0031 \ 0.0008 \ 0.0008 \ 0.0008 \ 0.0008 \ 0.0008 \ 0.00009 \ 0.0008 \ 0.0009 \ 0.0008 \ 0.0008 \ 0.0008 \ 0.0009 \ 0.0008 \ 0.0009 \ 0.0008 \ 0.0009 \ 0.0008 \ 0.0008 \ 0.0008 \ 0.0009 \ 0.0008 \ 0.0008 \ 0.0009 \ 0.0008 \ 0.0009 \ 0.0008 \ 0.0009 \ 0.0008 \ 0.0008 \ 0.0008 \ 0.0008 \ 0.00009 \ 0.0008 \ 0.0008 \ 0.0008 \ 0.0008 \ 0.0009 \ 0.0008 \ 0.0009 \ 0.0008 \ 0.0009 \$	0.7	[1.9]															
$ \begin{bmatrix} [0;2] & 500 & 0.0017 & 0.0039 & 0.0011 & 0.0050 & 0.0090 & 0.0827 & 0.0025 & 0.0815 & 0.0053 & 0.0257 & 0.0229 & 0.0337 & 0.0014 & 0.0588 \\ [0;2] & 50 & 0.0149 & 0.0237 & 0.0279 & 0.0352 & 0.0853 & 0.1216 & 0.1348 & 0.4916 & 0.0318 & 0.0358 & 0.1708 & 0.2721 & 0.0044 & 0.0642 \\ [0;2] & 500 & 0.0056 & 0.0415 & 0.0066 & 0.0498 & 0.0088 & 0.0924 & 0.0461 & 0.5312 & 0.0077 & 0.0113 & 0.0793 & 0.2085 & 0.0909 & 0.0710 \\ [0;2] & 500 & 0.0058 & 0.0390 & 0.0038 & 0.0528 & 0.0030 & 0.1104 & 0.0091 & 0.5673 & 0.0021 & 0.0001 & 0.0217 & 0.1916 & 0.0014 & 0.0747 \\ [0;3] & 500 & 0.0031 & 0.0012 & 0.0013 & 0.0034 & 0.0187 & 0.0658 & 0.0372 & 0.0063 & 0.0226 & 0.0267 & 0.2592 & 0.2803 & 0.0023 & 0.0443 \\ [0;4] & 500 & 0.0025 & 0.0023 & 0.0092 & 0.0079 & 0.0298 & 0.1177 & 0.0164 & 0.0364 & 0.0102 & 0.0169 & 0.1000 & 0.1173 & 0.0052 & 0.0509 \\ [0;5] & 500 & 0.0015 & 0.0006 & 0.0032 & 0.0006 & 0.0086 & 0.1106 & 0.0044 & 0.0850 & 0.0002 & 0.0095 & 0.0177 & 0.0239 & 0.0018 & 0.0500 \\ [0;5] & 500 & 0.0029 & 0.0161 & 0.0121 & 0.0124 & 0.1691 & 0.0564 & 0.0346 & 0.3960 & 0.285 & 0.0263 & 0.2395 & 0.3402 & 0.0081 & 0.0537 \\ [0;5] & 500 & 0.0009 & 0.0255 & 0.0026 & 0.0253 & 0.0663 & 0.0663 & 0.0625 & 0.0023 & 0.0026 & 0.0340 & 0.2024 & 0.0031 & 0.0578 \\ [0;5] & 500 & 0.0099 & 0.0072 & 0.0060 & 0.0068 & 0.0463 & 0.1529 & 0.0114 & 0.0846 & 0.0221 & 0.0221 & 0.3374 & 0.3630 & 0.0273 & 0.0028 \\ [0;5] & 500 & 0.0003 & 0.0003 & 0.0003 & 0.0003 & 0.0018 & 0.0978 & 0.1137 & 0.05674 & 0.0249 & 0.0165 & 0.3960 & 0.4935 & 0.0331 & 0.0009 \\ [0;5] & 500 & 0.0222 & 0.0066 & 0.0359 & 0.0220 & 0.0018 & 0.0978 & 0.1137 & 0.5674 & 0.0249 & 0.0165 & 0.3960 & 0.4935 & 0.331 & 0.0009 \\ [0;5] & 500 & 0.0222 & 0.0066 & 0.0359 & 0.0220 & 0.0018 & 0.0978 & 0.1137 & 0.5674 & 0.0249 & 0.0165 & 0.3960 & 0.4935 & 0.331 & 0.0009 \\ [0;5] & 500 & 0.0222 & 0.0066 & 0.0359 & 0.0220 & 0.0018 & 0.0978 & 0.1137 & 0.5674 & 0.0249 & 0.0165 & 0.3960 & 0.4935 & 0.331 & 0.0009 \\ [0;5] & 500 & 0.0222 & 0.0066 & 0.0359 & 0.0220 & 0.0018 & 0.0978 & 0.1137 & 0.5674 & 0.0249 &$	0.7	[-1; 3]															
$ \begin{bmatrix} [0;2] & 50 & 0.0149 \ 0.0237 \ 0.0279 \ 0.0352 \ 0.0853 \ 0.1216 \ 0.1348 \ 0.4916 \ 0.0318 \ 0.0358 \ 0.1708 \ 0.2721 \ 0.0044 \ 0.0642 \\ 0.0065 \ 0.0415 \ 0.0006 \ 0.0498 \ 0.0088 \ 0.0934 \ 0.0084 \ 0.0924 \ 0.0461 \ 0.5312 \ 0.0077 \ 0.0113 \ 0.0793 \ 0.2085 \ 0.0090 \ 0.0710 \\ 0.0085 \ 0.0390 \ 0.0038 \ 0.0390 \ 0.0380 \ 0.0340 \ 0.0104 \ 0.0091 \ 0.5673 \ 0.0021 \ 0.0001 \ 0.00217 \ 0.1916 \ 0.0014 \ 0.0071 \\ 0.0025 \ 0.0023 \ 0.0092 \ 0.0079 \ 0.0298 \ 0.1177 \ 0.0164 \ 0.0364 \ 0.0102 \ 0.0169 \ 0.1000 \ 0.1173 \ 0.0052 \ 0.0509 \\ 0.0025 \ 0.0023 \ 0.0099 \ 0.0079 \ 0.0298 \ 0.1177 \ 0.0164 \ 0.0364 \ 0.0102 \ 0.0169 \ 0.1000 \ 0.1173 \ 0.0052 \ 0.0509 \\ 0.0025 \ 0.0023 \ 0.0096 \ 0.0086 \ 0.1178 \ 0.0068 \ 0.1178 \ 0.0364 \ 0.0024 \ 0.0095 \ 0.0095 \ 0.00177 \ 0.0239 \ 0.0018 \ 0.0000 \\ 0.0025 \ 0.0060 \ 0.0086 \ 0.1169 \ 0.0340 \ 0.0346 \ 0.0346 \ 0.0346 \ 0.0346 \ 0.0346 \ 0.0095 \ 0.0095 \ 0.0095 \ 0.00177 \ 0.0239 \ 0.0018 \ 0.0000 \ 0.00000 \ 0.00000 \ 0.00000 \ 0.00000 \ 0.00000 \ 0.000000 \ 0.00000 \ 0.00000 \ 0.00000 \ 0.00000 \ 0.00000 \ 0.00000 \ 0.00000 \ 0.00000 \ 0.00000 \ 0.00000 \ 0.00000 \ 0.00000 \ 0.00000 \ 0.00000 \ 0.00000 \ 0.00000 \ 0.00000 \ 0.00000 \ 0.0000000 \ 0.00000 \ 0.00000 \ 0.00000 \ 0.00000 \ 0.00000 \ 0.00000 \ 0.00000 \ 0.00000 \ 0.00000 \ 0.00000 \ 0.00000 \ 0.00000 \ 0.00000 \ 0.00000 \ 0.00000 \ 0.00000 \ 0.00000 \ 0.00000 \ 0.00000000$																	
$ \begin{bmatrix} 100 \\ 500 \end{bmatrix} 0.0065 \ 0.0415 \ 0.0006 \ 0.0498 \ 0.0088 \ 0.0924 \ 0.0461 \ 0.5312 \ 0.0077 \ 0.0113 \ 0.0793 \ 0.2085 \ 0.0090 \ 0.0710 \\ 0.0058 \ 0.0390 \ 0.0038 \ 0.0528 \ 0.0300 \ 0.1104 \ 0.0091 \ 0.5673 \ 0.0021 \ 0.0001 \ 0.0011 \ 0.0217 \ 0.1916 \ 0.0014 \ 0.0747 \\ 0.0013 \ 0.0025 \ 0.0023 \ 0.0092 \ 0.0079 \ 0.0298 \ 0.1177 \ 0.0658 \ 0.0372 \ 0.0063 \ 0.0226 \ 0.0267 \ 0.2592 \ 0.2803 \ 0.0023 \ 0.0092 \\ 0.0025 \ 0.0023 \ 0.0092 \ 0.0079 \ 0.0298 \ 0.1177 \ 0.0164 \ 0.0364 \ 0.0102 \ 0.0169 \ 0.1000 \ 0.1173 \ 0.0529 \ 0.0509 \\ 0.0015 \ 0.0006 \ 0.0032 \ 0.0006 \ 0.0086 \ 0.1160 \ 0.0044 \ 0.0850 \ 0.0002 \ 0.0095 \ 0.0177 \ 0.0239 \ 0.0118 \ 0.0530 \\ 0.0029 \ 0.0161 \ 0.0121 \ 0.0124 \ 0.1691 \ 0.0564 \ 0.0346 \ 0.360 \ 0.0285 \ 0.0263 \ 0.2395 \ 0.3402 \ 0.0081 \ 0.0537 \\ 0.0009 \ 0.0255 \ 0.0026 \ 0.0253 \ 0.0653 \ 0.0696 \ 0.0126 \ 0.0625 \ 0.0023 \ 0.0026 \ 0.0340 \ 0.0224 \ 0.0031 \ 0.0578 \\ 0.0009 \ 0.0025 \ 0.0026 \ 0.0068 \ 0.0463 \ 0.1529 \ 0.0114 \ 0.0846 \ 0.0221 \ 0.0221 \ 0.0374 \ 0.3630 \ 0.2772 \ 0.0041 \ 0.0246 \\ 0.0009 \ 0.0022 \ 0.0009 \ 0.0014 \ 0.0144 \ 0.1009 \ 0.0022 \ 0.0886 \ 0.0016 \ 0.0221 \ 0.0225 \ 0.0023 \ 0.00298 \ 0.0009 \\ 0.0222 \ 0.0066 \ 0.0359 \ 0.0220 \ 0.0018 \ 0.0978 \ 0.1137 \ 0.5674 \ 0.0249 \ 0.0165 \ 0.3960 \ 0.4935 \ 0.0331 \ 0.0009 \\ 0.0021 \ 0.0018 \ 0.00$		[0.2]															
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		[0, 2]															
$ \begin{bmatrix} 0.8 & [-1;3] & 50 & 0.0031 & 0.0012 & 0.0013 & 0.0034 & 0.0187 & 0.0658 & 0.0372 & 0.0063 & 0.0226 & 0.0267 & 0.2592 & 0.2803 & 0.0023 & 0.0443 \\ 100 & 0.0025 & 0.0023 & 0.0099 & 0.0079 & 0.0298 & 0.1177 & 0.0164 & 0.0364 & 0.0102 & 0.0169 & 0.1000 & 0.1173 & 0.0052 & 0.0509 \\ 500 & 0.0015 & 0.0006 & 0.0032 & 0.0096 & 0.0186 & 0.1104 & 0.0869 & 0.0002 & 0.0095 & 0.0177 & 0.0239 & 0.0180 & 0.0500 \\ [0;2] & 50 & 0.0029 & 0.0161 & 0.0121 & 0.0124 & 0.1691 & 0.0564 & 0.0346 & 0.3960 & 0.0285 & 0.0263 & 0.2395 & 0.3402 & 0.0081 & 0.0573 \\ 100 & 0.0045 & 0.0181 & 0.0086 & 0.0178 & 0.0207 & 0.1128 & 0.0518 & 0.6027 & 0.0000 & 0.0009 & 0.1331 & 0.2609 & 0.0045 & 0.0526 \\ 500 & 0.0009 & 0.0255 & 0.0026 & 0.0253 & 0.0653 & 0.0696 & 0.0126 & 0.6025 & 0.0023 & 0.0026 & 0.0340 & 0.2024 & 0.0031 & 0.0578 \\ \hline 0.9 & [-1;3] & 50 & 0.0098 & 0.0072 & 0.0060 & 0.0068 & 0.0463 & 0.1529 & 0.0114 & 0.0846 & 0.0221 & 0.0324 & 0.3374 & 0.3630 & 0.0273 & 0.0028 \\ 100 & 0.0000 & 0.0022 & 0.0009 & 0.0018 & 0.0285 & 0.9915 & 0.0139 & 0.0162 & 0.0121 & 0.0112 & 0.2409 & 0.2772 & 0.0041 & 0.0246 \\ 500 & 0.0003 & 0.0003 & 0.0003 & 0.0000 & 0.0144 & 0.1009 & 0.0022 & 0.0886 & 0.0016 & 0.0028 & 0.0235 & 0.0296 & 0.00298 \\ [0;2] & 50 & 0.0222 & 0.0066 & 0.0359 & 0.0220 & 0.0018 & 0.0978 & 0.1137 & 0.5674 & 0.0249 & 0.0165 & 0.3960 & 0.4935 & 0.331 & 0.0009 \\ \hline \end{tabular}$																	
$ \begin{bmatrix} 100 & 0.0025 & 0.0023 & 0.0092 & 0.0079 & 0.0298 & 0.1177 & 0.0164 & 0.0364 & 0.0102 & 0.0169 & 0.1000 & 0.1173 & 0.0052 & 0.0509 \\ 500 & 0.0015 & 0.0006 & 0.0032 & 0.0006 & 0.0086 & 0.1106 & 0.0044 & 0.0850 & 0.0002 & 0.0095 & 0.0177 & 0.0239 & 0.0018 & 0.0500 \\ [0;2] & 50 & 0.0029 & 0.0161 & 0.0121 & 0.0124 & 0.1691 & 0.0564 & 0.0346 & 0.3960 & 0.0285 & 0.0263 & 0.2395 & 0.3402 & 0.0081 & 0.0537 \\ 100 & 0.0045 & 0.0181 & 0.0086 & 0.0178 & 0.0207 & 0.1128 & 0.0518 & 0.6027 & 0.0000 & 0.0099 & 0.1331 & 0.2609 & 0.0045 & 0.0526 \\ 500 & 0.0009 & 0.0255 & 0.0026 & 0.0253 & 0.0653 & 0.0696 & 0.0126 & 0.6025 & 0.0023 & 0.0026 & 0.0340 & 0.2024 & 0.0031 & 0.0578 \\ \hline 0.9 & [-1;3] & 50 & 0.0098 & 0.0072 & 0.0060 & 0.0068 & 0.0463 & 0.1529 & 0.0114 & 0.0846 & 0.0221 & 0.0374 & 0.3630 & 0.0273 & 0.0028 \\ 100 & 0.0000 & 0.0022 & 0.0009 & 0.0018 & 0.0285 & 0.0915 & 0.0139 & 0.0162 & 0.0112 & 0.0112 & 0.2409 & 0.2772 & 0.0041 & 0.0246 \\ 500 & 0.0003 & 0.0003 & 0.0003 & 0.0000 & 0.0144 & 0.1009 & 0.0020 & 0.0886 & 0.0016 & 0.0288 & 0.235 & 0.0296 & 0.0002 & 0.0298 \\ [0;2] & 50 & 0.0222 & 0.0066 & 0.0359 & 0.0220 & 0.0018 & 0.0978 & 0.1137 & 0.5674 & 0.0249 & 0.0165 & 0.3960 & 0.4935 & 0.0331 & 0.0009 \\ \hline \end{tabular}$	0.8	[-1:3]															
$ \begin{bmatrix} [0;2] & 50 & 0.0015 & 0.0006 & 0.0032 & 0.0006 & 0.0086 & 0.1106 & 0.0044 & 0.0850 & 0.0002 & 0.0095 & 0.0177 & 0.0239 & 0.0018 & 0.0500 \\ 0.0029 & 0.0161 & 0.0121 & 0.0124 & 0.1691 & 0.0564 & 0.0346 & 0.360 & 0.2985 & 0.0263 & 0.2395 & 0.3402 & 0.0081 & 0.0537 \\ 100 & 0.0045 & 0.0181 & 0.0086 & 0.0178 & 0.0207 & 0.1128 & 0.0518 & 0.6027 & 0.0000 & 0.0009 & 0.1331 & 0.2609 & 0.0045 & 0.0526 \\ 500 & 0.0009 & 0.0255 & 0.0026 & 0.0253 & 0.0653 & 0.0696 & 0.0126 & 0.6025 & 0.0023 & 0.0026 & 0.0340 & 0.2024 & 0.0031 & 0.0578 \\ \hline 0.000 & [-1;3] & 50 & 0.0098 & 0.0072 & 0.0060 & 0.0068 & 0.0463 & 0.1529 & 0.0114 & 0.0846 & 0.0221 & 0.0221 & 0.3374 & 0.3630 & 0.0273 & 0.0028 \\ 100 & 0.0000 & 0.0022 & 0.0009 & 0.0018 & 0.0285 & 0.0915 & 0.0139 & 0.0162 & 0.0121 & 0.0112 & 0.2409 & 0.2772 & 0.0041 & 0.0246 \\ 500 & 0.0003 & 0.0003 & 0.0003 & 0.0003 & 0.0004 & 0.0144 & 0.1009 & 0.0022 & 0.0886 & 0.0016 & 0.0288 & 0.0235 & 0.0296 & 0.0002 & 0.0298 \\ [0;2] & 50 & 0.0222 & 0.0066 & 0.0359 & 0.0220 & 0.0018 & 0.0978 & 0.1137 & 0.5674 & 0.0249 & 0.0165 & 0.3960 & 0.4935 & 0.0331 & 0.0009 \\ \hline \end{tabular}$		[-, -]															
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			500														
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		[0; 2]	50														
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			100	0.0045	0.0181	0.0086	0.0178	0.0207	0.1128	0.0518	0.6027	0.0000	0.0009	0.1331	0.2609	0.0045	0.0526
$ \begin{bmatrix} 100 & 0.0000 & 0.0022 & 0.0009 & 0.0018 & 0.0285 & 0.0915 & 0.0139 & 0.0162 & 0.0121 & 0.0112 & 0.2409 & 0.2772 & 0.0041 & 0.0246 \\ 500 & 0.0003 & 0.0003 & 0.0003 & 0.0000 & 0.0144 & 0.1009 & 0.0020 & 0.0886 & 0.0016 & 0.0028 & 0.0235 & 0.0296 & 0.0002 & 0.0298 \\ [0;2] & 50 & 0.0222 & 0.0066 & 0.0359 & 0.0220 & 0.0018 & 0.0978 & 0.1137 & 0.5674 & 0.0249 & 0.0165 & 0.3960 & 0.4935 & 0.0331 & 0.0009 \\ \end{bmatrix} $			500														
$ \begin{bmatrix} 500 & 0.0003 & 0.0003 & 0.0003 & 0.0000 & 0.0144 & 0.1009 & 0.0020 & 0.0886 & 0.0016 & 0.0028 & 0.0235 & 0.0296 & 0.0002 & 0.0298 \\ 0.0222 & 0.0066 & 0.0359 & 0.0220 & 0.0018 & 0.0978 & 0.1137 & 0.5674 & 0.0249 & 0.0165 & 0.3960 & 0.4935 & 0.0331 & 0.0009 \\ \end{bmatrix} $	0.9	[-1; 3]	50	0.0098	0.0072	0.0060	0.0068	0.0463	0.1529	0.0114	0.0846	0.0221	0.0221	0.3374	0.3630	0.0273	0.0028
$[0;2] \hspace{0.5cm} 50 \hspace{0.5cm} 0.0222 \hspace{0.0066} \hspace{0.08cm} 0.0359 \hspace{0.08cm} 0.0220 \hspace{0.08cm} 0.0018 \hspace{0.08cm} 0.0978 \hspace{0.08cm} 0.1137 \hspace{0.08cm} 0.5674 \hspace{0.08cm} 0.0249 \hspace{0.08cm} 0.0165 \hspace{0.08cm} 0.3960 \hspace{0.08cm} 0.4935 \hspace{0.08cm} 0.0331 \hspace{0.08cm} 0.0009 \hspace{0.0009} 0.0009 \hspace{0.08cm} 0$			100	0.0000	0.0022	0.0009	0.0018	0.0285	0.0915	0.0139	0.0162	0.0121	0.0112	0.2409	0.2772	0.0041	0.0246
100 $-$ 0.0015 0.0120 0.0002 0.0089 0.0501 0.1164 0.1715 0.5888 0.0054 0.0024 0.3123 0.4163 0.0031 0.0297		[0; 2]															
			100														
500 0.0002 0.0133 0.0006 0.0111 0.0291 0.1407 0.0663 0.7307 0.0005 0.0053 0.0421 0.2279 0.0017 0.0330			500	0.0002	0.0133	0.0006	0.0111	0.0291	0.1407	0.0663	0.7307	0.0005	0.0053	0.0421	0.2279	0.0017	0.0330

Tabela D.37: Estimativas do valor absoluto do enviesamento médio dos parâmetros da mistura de duas regressões lineares no caso EVII

					0	0			0	0						
<i>T</i> -4	œ		$_{ m EM}^{lpha_1}$	α_1 CEM	β_1 EM	β_1 CEM	α_2 EM	α_2 CEM	β_2 EM	β_2 CEM	σ_1 EM	$_{ ext{CEM}}^{\sigma_1}$	σ_2 EM	σ_2 CEM	$_{\mathrm{EM}}^{\pi_{1}}$	$_{ ext{CEM}}^{\pi_1}$
$\frac{\pi_1}{0.1}$	[-1; 3]	50					0.0063									
0.1	[-1, 0]	100					0.0003									
		500					0.0031									
	[0; 2]	50					0.0069									
	[-, -]	100					0.0090									
		500	0.0050	0.0075	0.0048	0.0162	0.0023	0.0015	0.0009	0.0005	0.0153	0.0229	0.0016	0.0025	0.0006	0.0003
0.2	[-1; 3]	50	0.0156	0.0089	0.0169	0.0627	0.0093	0.0107	0.0086	0.0159	0.1072	0.1160	0.0199	0.0249	0.0036	0.0176
		100	0.0040	0.0067	0.0138	0.0519	0.0101	0.0117	0.0025	0.0110	0.0368	0.0503	0.0059	0.0123	0.0007	0.0196
		500	0.0033	0.0114	0.0009	0.0652	0.0017	0.0001	0.0004	0.0093	0.0120	0.0257	0.0018	0.0097	0.0010	0.0166
	[0; 2]	50					0.0025									
		100					0.0038									
		500					0.0033									
0.3	[-1; 3]	50					0.0000									
		100					0.0001									
	[0.0]	500					0.0001									
	[0; 2]	50					0.0120									
		100 500					$0.0068 \\ 0.0005$									
0.4	[-1; 3]	50					0.0003									
0.4	[-1, 3]	100					0.0054									
		500					0.0034									
	[0; 2]	50					0.0139									
	[0, 2]	100					0.0041									
		500					0.0030									
0.5	[-1; 3]	50	0.0073	0.0038	0.0105	0.0343	0.0005	0.0099	0.0022	0.0476	0.0350	0.0493	0.0279	0.0426	0.0050	0.0044
		100	0.0193	0.0109	0.0120	0.0303	0.0025	0.0116	0.0013	0.0446	0.0144	0.0288	0.0214	0.0373	0.0020	0.0035
		500	0.0048	0.0043	0.0005	0.0467	0.0003	0.0090	0.0005	0.0464	0.0024	0.0190	0.0037	0.0213	0.0008	0.0003
	[0; 2]	50					0.0077									
		100					0.0028									
		500					0.0032									
0.6	[-1; 3]	50														0.0003
		100					0.0015									
	[0; 2]	500 50					$0.0008 \\ 0.0217$									
	[0; 2]	100					0.0217									
		500					0.0138									
0.7	[-1; 3]	50					0.0083									
0.1	[1,0]	100					0.0089									
		500					0.0030									
	[0; 2]	50					0.0162									
		100	0.0048	0.0075	0.0070	0.0114	0.0208	0.0255	0.0204	0.0283	0.0100	0.0122	0.0191	0.0224	0.0059	0.0060
		500	0.0038	0.0060	0.0055	0.0093	0.0010	0.0053	0.0060	0.0047	0.0026	0.0047	0.0024	0.0073	0.0009	0.0007
0.8	[-1; 3]	50	0.0031	0.0016	0.0019	0.0094	0.0473	0.0653	0.0061	0.0692	0.0238	0.0279	0.0891	0.0995	0.0023	0.0180
		100					0.0041									
		500					0.0017									
	[0; 2]	50					0.0123									
		100					0.0261									
	[4 0]	500					0.0213									
0.9	[-1; 3]	50														0.0112
		100					0.0243									
	[0; 2]	500 50					$0.0151 \\ 0.0244$									
	[0, 2]	100					0.0244									
		500					0.0062									
		500	0.0027	0.0019	0.0016	0.0004	0.0002	0.0000	0.0034	0.0110	0.0012	0.0020	0.0140	0.0222	0.0000	0.0003

Tabela D.38: Estimativas do valor absoluto do enviesamento médio dos parâmetros da mistura de duas regressões lineares no caso EVIII

 $204 \hspace{3.1em} \textit{Apêndice D}$

1.1 1.3 1.5	_	_															
1	π ₁	[1.9]															
Part	0.1	[-1; 3]															
[9,2] 50																	
1. 1. 1. 1. 1. 1. 1. 1.		[0, 0]															
1. 1. 1. 1. 1. 1. 1. 1.		[0, 2]															
Color																	
1	0.2	[1.9]															
	0.2	[-1, 3]															
[0; 2] 50 0.0228 0.0007 0.0229 0.0238 0.0021 0.0044 0.0163 0.0255 0.0630 0.0749 0.0360 0.0337 0.0092 0.0032 0.0035 0.0036 0.0148 0.0033 0.0240 0.0366 0.0499 0.0196 0.0292 0.0032 0.0039 0.0036 0.0260 0.0036 0.0248 0.0053 0.0240 0.0366 0.0499 0.0196 0.0292 0.0032 0.0039 0.0036 0.0036 0.0036 0.0036 0.0036 0.0036 0.0230 0.0031 0.0034 0.0541 0.0775 0.0279 0.0492 0.0140 0.018 0.0036 0.0036 0.0036 0.0036 0.0036 0.0036 0.0036 0.0036 0.0036 0.0039 0.0036 0																	
1.0		[0.9]															
1		[0, 2]															
1. 1. 1. 1. 1. 1. 1. 1.																	
100	0.3	[_1.3]															
$ \begin{bmatrix} [0;2] \\ [0;3] \\ [0;4] \\ [0;5] \\ [0;6] \\ [0;6] \\ [0;7] \\ [0;6] \\ [0;7] \\ [$	0.0	[1,0]															
Part																	
100		[0.2]															
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		[0, 2]															
$ \begin{bmatrix} -1;3 \\ -1;3 \\ -1;3 \\ -1;3 \\ -1;5$																	
100	0.4	[-1:3]															
$ \begin{bmatrix} [0;2] \\ [$	0.4	[1,0]															
$ \begin{bmatrix} [6]_{1} \\ [6]_{2} \\ [0]_{3} \\ [0]_{4} \end{bmatrix} = \begin{bmatrix} 50 \\ 0.0097 \ 0.0148 \ 0.0045 \ 0.0071 \ 0.0109 \ 0.0178 \ 0.0338 \ 0.0055 \ 0.0230 \ 0.0027 \ 0.03377 \ 0.0245 \ 0.0327 \ 0.0224 \ 0.0355 \ 0.0008 \ 0.0012 \\ 0.0077 \ 0.0035 \ 0.0065 \ 0.0140 \ 0.0026 \ 0.0165 \ 0.0024 \ 0.0330 \ 0.0074 \ 0.0174 \ 0.0019 \ 0.0184 \ 0.0008 \ 0.0012 \\ 0.0077 \ 0.0035 \ 0.0065 \ 0.0140 \ 0.0026 \ 0.0165 \ 0.0024 \ 0.0330 \ 0.0074 \ 0.0174 \ 0.0019 \ 0.0184 \ 0.0008 \ 0.0012 \\ 0.0017 \ 0.0033 \ 0.0084 \ 0.0022 \ 0.0338 \ 0.0182 \ 0.0043 \ 0.0027 \ 0.0831 \ 0.0386 \ 0.0355 \ 0.0366 \ 0.0345 \ 0.03475 \ 0.0766 \ 0.0018 \ 0.0360 \ 0.0360 \ 0.0360 \ 0.0360 \ 0.0361 \ 0.0360 \ 0.0360 \ 0.0360 \ 0.0360 \ 0.0361 \ 0.0361 \ 0.0360 \ 0.0063 \ 0.0060 \ 0.0072 \ 0.0055 \ 0.0045 \ 0.0284 \ 0.0008 \ 0.0435 \ 0.0048 \ 0.0117 \ 0.00710 \ 0.0266 \ 0.0053 \ 0.0055 \ 0.0045 \ 0.0087 \ 0.0057 \ 0.0087 \ 0.0091 \ 0.0091 \ 0.0091 \ 0.0091 \ 0.0091 \ 0.0091 \ 0.0091 \ 0.0091 \ 0.0091 \ 0.0091 \ 0.0091 \ 0.0091 \ 0.0091 \ 0.0091 \ 0.0091 \ 0.0091000000000000000000000000000000000$																	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		[0.2]															
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		[0, 2]															
$ \begin{bmatrix} -1;3 \\ -1;3$																	
$ \begin{bmatrix} 100 \\ 500 \\ 0.0008 \\ 0.0009 \\ 0.0008 \\ 0.0009 \\ 0.00$	0.5	[-1:3]															
$ \begin{bmatrix} [0;2] & 500 & 0.0008 & 0.0078 & 0.0028 & 0.0438 & 0.0002 & 0.0108 & 0.0041 & 0.1062 & 0.0097 & 0.0288 & 0.0069 & 0.0420 & 0.0058 & 0.0186 \\ [0;2] & 500 & 0.0072 & 0.0172 & 0.0108 & 0.0247 & 0.0204 & 0.0219 & 0.0295 & 0.0323 & 0.0399 & 0.0666 & 0.0011 & 0.0058 \\ [0;0] & 0.0069 & 0.0134 & 0.0030 & 0.0090 & 0.0266 & 0.0537 & 0.0258 & 0.0751 & 0.0111 & 0.0176 & 0.0101 & 0.0298 & 0.0062 & 0.0095 \\ [0;0] & 0.0063 & 0.0006 & 0.0072 & 0.0055 & 0.0045 & 0.0284 & 0.0008 & 0.0435 & 0.0048 & 0.0117 & 0.0071 & 0.0266 & 0.0009 & 0.0038 \\ [0;0] & 500 & 0.0148 & 0.0103 & 0.0062 & 0.0167 & 0.0051 & 0.0191 & 0.0087 & 0.1091 & 0.0214 & 0.0346 & 0.0558 & 0.0793 & 0.0021 & 0.0226 \\ [0;0] & 500 & 0.0021 & 0.0071 & 0.0030 & 0.0293 & 0.0053 & 0.0052 & 0.0000 & 0.1187 & 0.0032 & 0.0172 & 0.0016 & 0.0377 & 0.0017 & 0.0304 \\ [0;2] & 500 & 0.0021 & 0.0071 & 0.0038 & 0.0095 & 0.0365 & 0.0155 & 0.0655 & 0.0117 & 0.0166 & 0.0367 & 0.0071 \\ [0;2] & 500 & 0.0007 & 0.0053 & 0.0087 & 0.0001 & 0.0160 & 0.0059 & 0.0459 & 0.0252 & 0.0303 & 0.0531 & 0.0693 & 0.0045 \\ [0;2] & 500 & 0.00027 & 0.0080 & 0.0010 & 0.0166 & 0.0107 & 0.0379 & 0.0090 & 0.0596 & 0.0049 & 0.0103 & 0.0241 & 0.0016 \\ [0;2] & 500 & 0.0027 & 0.0080 & 0.0011 & 0.0166 & 0.0107 & 0.0379 & 0.0090 & 0.0596 & 0.0049 & 0.0103 & 0.0221 & 0.0236 & 0.0026 \\ [0;2] & 500 & 0.00626 & 0.00625 & 0.0159 & 0.0012 & 0.0155 & 0.0155 & 0.0155 & 0.0155 & 0.0225 & 0.0233 & 0.0122 & 0.0236 \\ [0;2] & 500 & 0.0052 & 0.0016 & 0.0037 & 0.0133 & 0.0003 & 0.0086 & 0.0085 & 0.1243 & 0.0222 & 0.0274 & 0.0923 & 0.1223 & 0.0124 & 0.0353 \\ [0;2] & 500 & 0.0052 & 0.0016 & 0.0037 & 0.0133 & 0.0012 & 0.0155 & 0.0057 & 0.0044 & 0.0059 & 0.0042 & 0.0062 & 0.0062 & 0.0062 & 0.0064 & 0.0010 & 0.0064 & 0.0100 & 0.0273 & 0.0505 & 0.0018 & 0.0016 \\ [0;2] & 500 & 0.0044 & 0.0005 & 0.0025 & 0.0029 & 0.0074 & 0.0278 & 0.0138 & 0.0524 & 0.0001 & 0.0355 & 0.0044 & 0.0035 & 0.0035 & 0.0135 & 0.0218 & 0.0020 & 0.0042 & 0.00677 & 0.0086 & 0.0033 & 0.0132 & 0.0163 & 0.00977 & 0.0266 & 0.0039 & 0.0042 & 0.00777 & 0.0566 & 0.0234$		[-, -]															
$ \begin{bmatrix} [0;2] \\ [0;2] \\ [0;2] \\ [0;3] \\ [0;4] \\ [0;5] \\ [0;6] \\ [0;6] \\ [0;7] \\ [$			500														
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		[0: 2]	50														
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1-71															
$ \begin{bmatrix} 100 \\ 500 \\ 0.0021 \\ 0.0022 \\ 0.0021 \\ 0.0022 \\ 0.0021 \\ 0.0022 \\ 0.00$			500														
$ \begin{bmatrix} 100 \\ 500 \\ 0.0021 \\ 0.0022 \\ 0.0021 \\ 0.0022 \\ 0.0021 \\ 0.0022 \\ 0.00$	0.6	[-1; 3]	50	0.0148	0.0103	0.0062	0.0167	0.0051	0.0191	0.0087	0.1091	0.0214	0.0346	0.0558	0.0793	0.0021	0.0226
$ \begin{bmatrix} [0;2] \\ [0;2] \\ [0;3] \\ [0;4] \\ [0;5] \\ [0;6] \\ [0;7] \\ [$			100	0.0009	0.0035	0.0015	0.0241	0.0119	0.0029	0.0102	0.0944	0.0101	0.0257	0.0200	0.0478	0.0013	0.0261
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			500	0.0021	0.0071	0.0030	0.0293	0.0053	0.0052	0.0000	0.1187	0.0032	0.0172	0.0016	0.0377	0.0017	0.0304
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		[0; 2]	50	0.0007	0.0053	0.0087	0.0001	0.0135	0.0160	0.0059	0.0459	0.0252	0.0303	0.0531	0.0693	0.0045	0.0077
$ \begin{bmatrix} -1; 3 \\ 0.7 \\$			100	0.0093	0.0043	0.0121	0.0032	0.0095	0.0365	0.0155	0.0655	0.0117	0.0165	0.0260	0.0466	0.0024	0.0005
$ \begin{bmatrix} 100 & 0.0026 & 0.0025 & 0.0159 & 0.0012 & 0.0105 & 0.0035 & 0.1116 & 0.0126 & 0.0235 & 0.0352 & 0.0627 & 0.0019 & 0.0252 \\ 500 & 0.0052 & 0.0016 & 0.0037 & 0.0133 & 0.0000 & 0.0086 & 0.0085 & 0.1206 & 0.019 & 0.0114 & 0.0059 & 0.0408 & 0.0020 & 0.0263 \\ [0; 2] & 50 & 0.0150 & 0.0193 & 0.0032 & 0.0043 & 0.0115 & 0.0391 & 0.0119 & 0.0577 & 0.0240 & 0.0281 & 0.0850 & 0.0972 & 0.0010 & 0.0066 \\ 100 & 0.0022 & 0.0016 & 0.0036 & 0.0027 & 0.0116 & 0.0464 & 0.0001 & 0.0650 & 0.0064 & 0.0100 & 0.0273 & 0.0505 & 0.0018 & 0.0016 \\ 500 & 0.0026 & 0.0005 & 0.0025 & 0.0029 & 0.0074 & 0.0278 & 0.0138 & 0.0524 & 0.0001 & 0.0035 & 0.0040 & 0.0013 & 0.0047 \\ \hline 0.8 & [-1; 3] & 50 & 0.0041 & 0.0015 & 0.0074 & 0.0278 & 0.0138 & 0.0524 & 0.0001 & 0.0035 & 0.0040 & 0.0300 & 0.0013 & 0.0047 \\ \hline 0.00 & 0.0042 & 0.0062 & 0.0009 & 0.0082 & 0.0243 & 0.0307 & 0.0056 & 0.1301 & 0.0102 & 0.0160 & 0.613 & 0.0904 & 0.0013 & 0.0222 \\ \hline 0.00 & 0.0014 & 0.0010 & 0.0007 & 0.0086 & 0.0135 & 0.0218 & 0.0020 & 0.1440 & 0.036 & 0.0089 & 0.0140 & 0.0501 & 0.0008 & 0.0221 \\ \hline [0; 2] & 50 & 0.0014 & 0.0002 & 0.0012 & 0.0533 & 0.0112 & 0.0485 & 0.0080 & 0.0791 & 0.0162 & 0.0142 & 0.0044 & 0.0039 \\ \hline 0.09 & [-1; 3] & 50 & 0.0014 & 0.0005 & 0.0036 & 0.0033 & 0.0112 & 0.0485 & 0.0080 & 0.0799 & 0.0025 & 0.0048 & 0.0132 & 0.0412 & 0.0040 \\ \hline 0.09 & [-1; 3] & 50 & 0.0014 & 0.0005 & 0.0036 & 0.0013 & 0.0350 & 0.0548 & 0.0318 & 0.1629 & 0.0197 & 0.1182 & 0.2462 & 0.2654 & 0.0190 & 0.0401 \\ \hline 0.0050 & 0.0040 & 0.0002 & 0.0023 & 0.0125 & 0.0066 & 0.1487 & 0.0017 & 0.0038 & 0.0322 & 0.0626 & 0.0003 & 0.0140 \\ \hline 0.0050 & 0.0047 & 0.0080 & 0.0027 & 0.0056 & 0.1025 & 0.0066 & 0.1487 & 0.0017 & 0.0038 & 0.0322 & 0.0626 & 0.0003 & 0.0140 \\ \hline 0.0048 & 0.0057 & 0.0057 & 0.0057 & 0.0056 & 0.0166 & 0.0103 & 0.0952 & 0.0245 & 0.0080 & 0.0080 & 0.1265 & 0.1568 & 0.0040 & 0.0032 \\ \hline 0.0048 & 0.0057 & 0.0057 & 0.0056 & 0.0166 & 0.0103 & 0.0952 & 0.0245 & 0.0080 & 0.0080 & 0.1265 & 0.1568 & 0.0040 & 0.0033 \\ \hline 0.0048 & 0.0057 & 0.0057 & 0.0056 & 0.0166 & 0.0103 & 0.1095 & 0$			500	0.0027	0.0080	0.0010	0.0106	0.0107	0.0379	0.0090	0.0596	0.0049	0.0103	0.0021	0.0236	0.0026	0.0001
$ \begin{bmatrix} [0;2] & 500 & 0.0052 & 0.0016 & 0.0037 & 0.0133 & 0.0000 & 0.0086 & 0.0085 & 0.1206 & 0.0019 & 0.0114 & 0.0059 & 0.0408 & 0.0020 & 0.0263 \\ 0.0150 & 0.0193 & 0.0032 & 0.0043 & 0.0115 & 0.0391 & 0.0119 & 0.0577 & 0.0240 & 0.0281 & 0.0850 & 0.0972 & 0.0010 & 0.0006 \\ 100 & 0.0022 & 0.0016 & 0.0036 & 0.0027 & 0.0116 & 0.0464 & 0.0001 & 0.0650 & 0.0064 & 0.0100 & 0.0273 & 0.0505 & 0.0018 & 0.0016 \\ 500 & 0.0026 & 0.0005 & 0.0025 & 0.0029 & 0.0074 & 0.0278 & 0.0138 & 0.0524 & 0.0001 & 0.0035 & 0.0040 & 0.0300 & 0.0013 & 0.0047 \\ \hline 0.8 & [-1;3] & 50 & 0.0041 & 0.0015 & 0.0074 & 0.0086 & 0.0204 & 0.0121 & 0.0000 & 0.1063 & 0.217 & 0.0288 & 0.1157 & 0.1408 & 0.0057 & 0.0168 \\ 100 & 0.0042 & 0.0062 & 0.0009 & 0.0082 & 0.0243 & 0.0307 & 0.0056 & 0.1301 & 0.0102 & 0.0160 & 0.0613 & 0.0904 & 0.0018 & 0.0221 \\ [0;2] & 50 & 0.0014 & 0.0002 & 0.0012 & 0.0032 & 0.0122 & 0.0543 & 0.0008 & 0.0791 & 0.0162 & 0.0172 & 0.1201 & 0.1401 & 0.0050 & 0.0087 \\ 100 & 0.0116 & 0.0100 & 0.0077 & 0.0056 & 0.0607 & 0.0934 & 0.0566 & 0.1222 & 0.0029 & 0.0042 & 0.0777 & 0.1017 & 0.0015 & 0.0039 \\ 500 & 0.0024 & 0.0043 & 0.0021 & 0.0053 & 0.0112 & 0.0485 & 0.0080 & 0.0790 & 0.0025 & 0.0048 & 0.0132 & 0.0412 & 0.0030 \\ \hline 0.9 & [-1;3] & 50 & 0.0014 & 0.0005 & 0.0036 & 0.0013 & 0.0350 & 0.0548 & 0.0318 & 0.1629 & 0.0197 & 0.0182 & 0.2402 & 0.2654 & 0.0190 & 0.0040 \\ 100 & 0.0050 & 0.0040 & 0.0002 & 0.0029 & 0.0213 & 0.0120 & 0.0260 & 0.1194 & 0.0099 & 0.0112 & 0.1385 & 0.1684 & 0.0014 & 0.0115 \\ 500 & 0.0047 & 0.0080 & 0.0027 & 0.0007 & 0.0556 & 0.1066 & 0.0103 & 0.1095 & 0.0277 & 0.0274 & 0.2403 & 0.2581 & 0.0267 & 0.0232 \\ 100 & 0.0048 & 0.0057 & 0.0054 & 0.0059 & 0.0654 & 0.018 & 0.0982 & 0.0245 & 0.0080 & 0.1265 & 0.1568 & 0.0040 & 0.0038 \\ \hline 0.0048 & 0.0057 & 0.0054 & 0.0059 & 0.0654 & 0.0018 & 0.0982 & 0.0245 & 0.0080 & 0.0800 & 0.1265 & 0.1568 & 0.0040 & 0.0033 \\ \hline 0.0048 & 0.0057 & 0.0054 & 0.0059 & 0.0654 & 0.0018 & 0.0982 & 0.0245 & 0.0080 & 0.0800 & 0.1265 & 0.1568 & 0.0040 & 0.0033 \\ \hline 0.0048 & 0.0057 & 0.0054 & 0.0059 & 0.0654 & 0$	0.7	[-1; 3]	50	0.0080	0.0118	0.0051	0.0181	0.0284	0.0395	0.0125	0.1243	0.0222	0.0274	0.0923	0.1233	0.0124	0.0353
$ \begin{bmatrix} [0;2] & 50 & 0.0150 & 0.0193 & 0.0032 & 0.0043 & 0.0115 & 0.0391 & 0.0119 & 0.0577 & 0.0240 & 0.0281 & 0.0850 & 0.0972 & 0.0010 & 0.0006 \\ 100 & 0.0022 & 0.0016 & 0.0036 & 0.0027 & 0.0116 & 0.0464 & 0.0010 & 0.0650 & 0.0064 & 0.0100 & 0.0273 & 0.0505 & 0.0018 & 0.0016 \\ 500 & 0.0026 & 0.0005 & 0.0025 & 0.0029 & 0.0074 & 0.0278 & 0.0138 & 0.0524 & 0.0001 & 0.0035 & 0.0040 & 0.0300 & 0.0013 & 0.0047 \\ 0.8 & [-1;3] & 50 & 0.0041 & 0.0015 & 0.0074 & 0.0086 & 0.0204 & 0.0121 & 0.0000 & 0.1663 & 0.0217 & 0.0288 & 0.1157 & 0.1408 & 0.0057 & 0.0168 \\ 100 & 0.0042 & 0.0062 & 0.0009 & 0.0082 & 0.0243 & 0.0307 & 0.0056 & 0.1301 & 0.0102 & 0.0160 & 0.6613 & 0.0904 & 0.0018 & 0.0220 \\ 500 & 0.0014 & 0.0010 & 0.0007 & 0.0086 & 0.0135 & 0.0218 & 0.0020 & 0.1440 & 0.0036 & 0.0089 & 0.0140 & 0.0501 & 0.0088 \\ [0;2] & 50 & 0.0014 & 0.0002 & 0.0012 & 0.0032 & 0.0128 & 0.0020 & 0.1440 & 0.0036 & 0.0089 & 0.0140 & 0.0501 & 0.0088 \\ [0;2] & 50 & 0.0014 & 0.0002 & 0.0012 & 0.0032 & 0.0128 & 0.0020 & 0.1440 & 0.0036 & 0.0029 & 0.00412 & 0.00777 & 0.1017 & 0.0015 & 0.0038 \\ [0;2] & 50 & 0.0014 & 0.0003 & 0.0021 & 0.0053 & 0.0112 & 0.0485 & 0.0080 & 0.0790 & 0.0022 & 0.00442 & 0.02777 & 0.1017 & 0.0015 & 0.0308 \\ [0;2] & 50 & 0.0014 & 0.0005 & 0.0036 & 0.0013 & 0.0350 & 0.0548 & 0.0318 & 0.1629 & 0.0197 & 0.0182 & 0.2402 & 0.2654 & 0.0190 & 0.0040 \\ [0;2] & 50 & 0.0047 & 0.0080 & 0.0027 & 0.0007 & 0.0550 & 0.1066 & 0.1184 & 0.0099 & 0.0112 & 0.1385 & 0.1684 & 0.0014 & 0.0115 \\ [0;2] & 50 & 0.0047 & 0.0080 & 0.0027 & 0.0007 & 0.0550 & 0.1066 & 0.0103 & 0.1095 & 0.0277 & 0.0274 & 0.2403 & 0.2581 & 0.0267 & 0.0232 \\ [0;2] & 50 & 0.0047 & 0.0080 & 0.0027 & 0.0007 & 0.0550 & 0.1066 & 0.0103 & 0.1095 & 0.0277 & 0.0274 & 0.2403 & 0.2581 & 0.0267 & 0.0232 \\ [0;2] & 50 & 0.0047 & 0.0080 & 0.0027 & 0.0007 & 0.0550 & 0.1066 & 0.0103 & 0.1095 & 0.0277 & 0.0274 & 0.2403 & 0.2581 & 0.0267 & 0.0232 \\ [0;2] & 50 & 0.0047 & 0.0080 & 0.0027 & 0.0007 & 0.0550 & 0.1066 & 0.0103 & 0.1095 & 0.0277 & 0.0274 & 0.2403 & 0.2581 & 0.0267 & 0.0232 \\ [0;2] & 5$			100	0.0026	0.0062	0.0025	0.0159	0.0012	0.0105	0.0035	0.1116	0.0126	0.0235	0.0352	0.0627	0.0019	0.0252
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			500	0.0052	0.0016	0.0037	0.0133	0.0000	0.0086	0.0085	0.1206	0.0019	0.0114	0.0059	0.0408	0.0020	0.0263
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		[0; 2]	50	0.0150	0.0193	0.0032	0.0043	0.0115	0.0391	0.0119	0.0577	0.0240	0.0281	0.0850	0.0972	0.0010	0.0006
$ \begin{bmatrix} -1; 3 \\ 0.8 \\ 0.8 \\ 0.0 \end{bmatrix} \begin{bmatrix} 50 \\ 0.0041 \\ 0.0015 \\ 0.0062 \\ 0.0062 \\ 0.0062 \\ 0.0062 \\ 0.0062 \\ 0.0062 \\ 0.0062 \\ 0.0062 \\ 0.0062 \\ 0.0062 \\ 0.0062 \\ 0.0062 \\ 0.0062 \\ 0.0062 \\ 0.0062 \\ 0.0068 \\ 0.0069 \\ 0.0068 \\ 0.0068 \\ 0.0068 \\ 0.0068 \\ 0.0068 \\ 0.0068 \\ 0.0069 \\ 0.0068 \\ 0.0068 \\ 0.0068 \\ 0.0068 \\ 0.0068 \\ 0.0068 \\ 0.0069 \\ 0.0068 \\ 0.0069 \\ 0$			100	0.0022	0.0016	0.0036	0.0027	0.0116	0.0464	0.0001	0.0650	0.0064	0.0100	0.0273	0.0505	0.0018	0.0016
$ \begin{bmatrix} 100 & 0.0042 & 0.0062 & 0.0009 & 0.0082 & 0.0243 & 0.0307 & 0.0056 & 0.1301 & 0.0102 & 0.0160 & 0.0613 & 0.0904 & 0.0018 & 0.0220 \\ 500 & 0.0014 & 0.0010 & 0.0007 & 0.0086 & 0.0135 & 0.0218 & 0.0020 & 0.1440 & 0.0366 & 0.0089 & 0.0140 & 0.0501 & 0.0008 & 0.0221 \\ [0; 2] & 50 & 0.0014 & 0.0002 & 0.0012 & 0.0032 & 0.0122 & 0.0543 & 0.0008 & 0.0791 & 0.0162 & 0.0172 & 0.1201 & 0.1401 & 0.0050 & 0.0087 \\ 100 & 0.0116 & 0.0100 & 0.0077 & 0.0056 & 0.0607 & 0.0934 & 0.0566 & 0.1222 & 0.0029 & 0.0042 & 0.0777 & 0.1017 & 0.0015 & 0.0039 \\ 500 & 0.0014 & 0.0003 & 0.0021 & 0.0053 & 0.0112 & 0.0485 & 0.0380 & 0.0790 & 0.0025 & 0.0048 & 0.0132 & 0.0412 & 0.0004 & 0.0039 \\ \hline 0.9 & [-1; 3] & 50 & 0.0014 & 0.0005 & 0.0036 & 0.0133 & 0.0350 & 0.0548 & 0.0318 & 0.1629 & 0.0197 & 0.0182 & 0.2402 & 0.2654 & 0.0199 & 0.0040 \\ \hline 0.0050 & 0.0040 & 0.0002 & 0.0029 & 0.0213 & 0.0120 & 0.0260 & 0.1194 & 0.0099 & 0.0112 & 0.1385 & 0.1684 & 0.0014 & 0.0115 \\ \hline 500 & 0.0036 & 0.0025 & 0.0011 & 0.0022 & 0.0050 & 0.0125 & 0.0066 & 0.1487 & 0.0017 & 0.0038 & 0.302 & 0.0626 & 0.0003 & 0.0140 \\ \hline 0; 2] & 50 & 0.0047 & 0.0080 & 0.0027 & 0.0057 & 0.0056 & 0.1066 & 0.0103 & 0.1095 & 0.0277 & 0.274 & 0.2403 & 0.2581 & 0.0267 & 0.232 \\ \hline 100 & 0.0048 & 0.0057 & 0.0054 & 0.0059 & 0.0654 & 0.0018 & 0.0982 & 0.0245 & 0.0080 & 0.080 & 0.1265 & 0.1568 & 0.0040 & 0.0033 \\ \hline \end{tabular}$			500	0.0026	0.0005	0.0025	0.0029	0.0074	0.0278	0.0138	0.0524	0.0001	0.0035	0.0040	0.0300	0.0013	0.0047
$ \begin{bmatrix} [0;2] & 500 & 0.0014 & 0.0010 & 0.0007 & 0.0086 & 0.0135 & 0.0218 & 0.0020 & 0.1440 & 0.0036 & 0.0089 & 0.0140 & 0.0501 & 0.0008 & 0.0221 \\ 0.0014 & 0.0002 & 0.0012 & 0.0032 & 0.0122 & 0.0543 & 0.0008 & 0.0791 & 0.0162 & 0.0172 & 0.1201 & 0.1401 & 0.0050 & 0.0087 \\ 100 & 0.0016 & 0.0100 & 0.0077 & 0.0056 & 0.0607 & 0.0934 & 0.0566 & 0.1222 & 0.0029 & 0.0042 & 0.0777 & 0.1017 & 0.0015 & 0.0039 \\ 500 & 0.0024 & 0.0043 & 0.0021 & 0.0053 & 0.0112 & 0.0485 & 0.0080 & 0.0790 & 0.0025 & 0.0048 & 0.0132 & 0.0412 & 0.0004 \\ 0.09 & [-1;3] & 50 & 0.0014 & 0.0005 & 0.0036 & 0.0013 & 0.0350 & 0.0548 & 0.0318 & 0.1629 & 0.0197 & 0.0182 & 0.2402 & 0.2654 & 0.0190 & 0.0040 \\ 100 & 0.0050 & 0.0040 & 0.0002 & 0.0029 & 0.0213 & 0.0120 & 0.0260 & 0.1194 & 0.0099 & 0.0112 & 0.1385 & 0.1684 & 0.0014 & 0.0115 \\ 500 & 0.0036 & 0.0025 & 0.0011 & 0.0022 & 0.0050 & 0.0125 & 0.0006 & 0.1487 & 0.0017 & 0.0038 & 0.0302 & 0.0626 & 0.0003 & 0.140 \\ [0;2] & 50 & 0.0047 & 0.0080 & 0.0027 & 0.0056 & 0.1066 & 0.0103 & 0.1095 & 0.0277 & 0.0274 & 0.2403 & 0.2581 & 0.0267 & 0.0232 \\ 100 & 0.0048 & 0.0057 & 0.0059 & 0.0654 & 0.0018 & 0.0982 & 0.0245 & 0.0080 & 0.0808 & 0.1265 & 0.1568 & 0.0040 & 0.0003 \\ \end{bmatrix}$	0.8	[-1; 3]	50	0.0041	0.0015	0.0074	0.0086	0.0204	0.0121	0.0000	0.1063	0.0217	0.0288	0.1157	0.1408	0.0057	0.0168
$ \begin{bmatrix} [0;2] & 50 & 0.0014 & 0.0002 & 0.0012 & 0.0032 & 0.0122 & 0.0543 & 0.0008 & 0.0791 & 0.0162 & 0.0172 & 0.1201 & 0.1401 & 0.0050 & 0.0087 \\ 100 & 0.0116 & 0.0100 & 0.0077 & 0.0056 & 0.0607 & 0.0934 & 0.0566 & 0.1222 & 0.0029 & 0.0042 & 0.0777 & 0.1017 & 0.0015 & 0.0039 \\ 500 & 0.0024 & 0.0043 & 0.0021 & 0.0053 & 0.0112 & 0.0485 & 0.0080 & 0.0790 & 0.0025 & 0.0048 & 0.0132 & 0.0412 & 0.0004 & 0.0030 \\ 0.9 & [-1;3] & 50 & 0.0014 & 0.0005 & 0.0036 & 0.0013 & 0.0350 & 0.0548 & 0.0318 & 0.1629 & 0.0197 & 0.0182 & 0.2402 & 0.2654 & 0.0190 & 0.0040 \\ 100 & 0.0050 & 0.0040 & 0.0002 & 0.0029 & 0.0213 & 0.0120 & 0.0260 & 0.1194 & 0.0099 & 0.0112 & 0.1385 & 0.1684 & 0.0014 & 0.0115 \\ 500 & 0.0036 & 0.0025 & 0.0011 & 0.0022 & 0.0050 & 0.0125 & 0.0006 & 0.1487 & 0.0017 & 0.0038 & 0.0302 & 0.0626 & 0.0003 & 0.140 \\ [0;2] & 50 & 0.0047 & 0.0080 & 0.0027 & 0.0007 & 0.0556 & 0.1066 & 0.0103 & 0.1095 & 0.0277 & 0.0274 & 0.2403 & 0.2581 & 0.0267 & 0.0232 \\ 100 & 0.0048 & 0.0057 & 0.0054 & 0.0059 & 0.0654 & 0.0018 & 0.0982 & 0.0245 & 0.0080 & 0.0800 & 0.1265 & 0.1568 & 0.0040 & 0.0003 \\ \end{bmatrix}$																	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$																	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		[0; 2]															
$ \begin{bmatrix} -1;3 \end{bmatrix} & 50 & 0.0014 & 0.0005 & 0.0036 & 0.0013 & 0.0350 & 0.0548 & 0.0318 & 0.1629 & 0.0197 & 0.0182 & 0.2402 & 0.2654 & 0.0190 & 0.0040 \\ 100 & 0.0050 & 0.0040 & 0.0002 & 0.0029 & 0.0213 & 0.0120 & 0.0260 & 0.1194 & 0.0099 & 0.0112 & 0.1385 & 0.1684 & 0.0014 & 0.0115 \\ 500 & 0.0036 & 0.0025 & 0.0011 & 0.0022 & 0.0050 & 0.0125 & 0.0006 & 0.1487 & 0.0017 & 0.0038 & 0.0302 & 0.0626 & 0.0003 & 0.0140 \\ 50 & 0.0047 & 0.0080 & 0.0027 & 0.0077 & 0.0556 & 0.1066 & 0.0103 & 0.1095 & 0.0277 & 0.0274 & 0.2403 & 0.2581 & 0.0267 & 0.0232 \\ 100 & 0.0048 & 0.0057 & 0.0059 & 0.0654 & 0.0018 & 0.0982 & 0.0245 & 0.0080 & 0.0800 & 0.1265 & 0.1568 & 0.0040 & 0.0003 \\ \end{bmatrix} $																	
$ \begin{bmatrix} 100 & 0.0050 & 0.0040 & 0.0002 & 0.0029 & 0.0213 & 0.0120 & 0.0260 & 0.1194 & 0.0099 & 0.0112 & 0.1385 & 0.1684 & 0.0014 & 0.0115 \\ 500 & 0.0036 & 0.0025 & 0.0011 & 0.0022 & 0.0050 & 0.0125 & 0.0006 & 0.1487 & 0.0017 & 0.0038 & 0.0302 & 0.0626 & 0.0003 & 0.0140 \\ [0; 2] & 50 & 0.0047 & 0.0080 & 0.0027 & 0.0056 & 0.1066 & 0.0103 & 0.1095 & 0.0277 & 0.0274 & 0.2403 & 0.2581 & 0.0267 & 0.0232 \\ 100 & 0.0048 & 0.0057 & 0.0054 & 0.0059 & 0.0654 & 0.0018 & 0.0982 & 0.0245 & 0.0080 & 0.0808 & 0.1265 & 0.1568 & 0.0040 & 0.0003 \\ \end{bmatrix} $																	
$ \begin{bmatrix} 500 \\ [0;2] \end{bmatrix} & 0.0036 \ 0.0025 \ 0.0011 \ 0.0022 \ 0.0050 \ 0.0125 \ 0.0006 \ 0.1487 \ 0.0017 \ 0.0038 \ 0.0302 \ 0.0626 \ 0.0003 \ 0.0140 \\ 0.0047 \ 0.0080 \ 0.0027 \ 0.0007 \ 0.0556 \ 0.1066 \ 0.0103 \ 0.1095 \ 0.0277 \ 0.0274 \ 0.2403 \ 0.2581 \ 0.0267 \ 0.0232 \\ 100 & 0.0048 \ 0.0057 \ 0.0054 \ 0.0059 \ 0.0654 \ 0.0018 \ 0.0982 \ 0.0245 \ 0.0080 \ 0.0800 \ 0.1265 \ 0.1568 \ 0.0040 \ 0.0003 \\ \end{bmatrix}$	0.9	[-1; 3]	50														
$ \begin{bmatrix} 0;2 \end{bmatrix} & 50 & 0.0047 & 0.0080 & 0.0027 & 0.0007 & 0.0556 & 0.1066 & 0.0103 & 0.1095 & 0.0277 & 0.0274 & 0.2403 & 0.2581 & 0.0267 & 0.0232 \\ 100 & 0.0048 & 0.0057 & 0.0054 & 0.0059 & 0.0654 & 0.0018 & 0.0982 & 0.0245 & 0.0080 & 0.0080 & 0.1265 & 0.1568 & 0.0040 & 0.0003 \\ \end{bmatrix} $																	
$100 \qquad 0.0048 \ 0.0057 \ 0.0054 \ 0.0059 \ 0.0654 \ 0.0018 \ 0.0982 \ 0.0245 \ 0.0080 \ 0.0080 \ 0.1265 \ 0.1568 \ 0.0040 \ 0.0003$																	
		[0; 2]															
500 0.0037 0.0044 0.0021 0.0031 0.0123 0.0392 0.0144 0.0837 0.0006 0.0015 0.0230 0.0564 0.0010 0.0031																	
			500	0.0037	0.0044	0.0021	0.0031	0.0123	0.0392	0.0144	0.0837	0.0006	0.0015	0.0230	0.0564	0.0010	0.0031

Tabela D.39: Estimativas do valor absoluto do enviesamento médio dos parâmetros da mistura de duas regressões lineares no caso EIX

					0	0			0	0						
<i>T</i> -4	œ	n	$_{ m EM}^{lpha_1}$	α_1 CEM	β_1 EM	β_1 CEM	α_2 EM	α_2 CEM	β_2 EM	β_2 CEM	σ_1 EM	σ_1 CEM	σ_2 EM	σ_2 CEM	π_1 EM	$_{ ext{CEM}}^{\pi_1}$
$\frac{\pi_1}{0.1}$	[-1; 3]	50					0.0012									
0.1	[-1, 0]	100					0.0078									
		500					0.0013									
	[0; 2]	50					0.0057									
	[-,-]	100					0.0024									
		500	0.0070	0.1278	0.0037	0.4308	0.0044	0.0067	0.0004	0.0040	0.0364	0.1923	0.0026	0.0052	0.0005	0.0126
0.2	[-1; 3]	50	0.0056	0.0078	0.0186	0.2376	0.0003	0.0068	0.0024	0.0227	0.2355	0.2905	0.0478	0.0633	0.0015	0.0371
	. , ,	100	0.0003	0.0443	0.0072	0.2867	0.0051	0.0143	0.0013	0.0282	0.0963	0.1888	0.0154	0.0358	0.0021	0.0344
		500	0.0119	0.0357	0.0100	0.3148	0.0015	0.0113	0.0004	0.0305	0.0181	0.1181	0.0062	0.0341	0.0007	0.0382
	[0; 2]	50	0.0248	0.1335	0.0203	0.3561	0.0063	0.0327	0.0064	0.0247	0.1816	0.2850	0.0498	0.0642	0.0177	0.0006
		100					0.0097									
		500					0.0030									
0.3	[-1; 3]	50					0.0352									
		100					0.0132									
	fo. 01	500					0.0023									
	[0; 2]	50					0.0155									
		100					0.0112									
0.4	[1 0]	500					0.0012									0.0136
0.4	[-1; 3]	50 100					0.0004 0.0143									
		500					0.0143									
	[0; 2]	50					0.0003									
	[0, 2]	100					0.0051									
		500					0.0015									
0.5	[-1; 3]	50														0.0046
	. , - 1	100					0.0094									
		500					0.0029									
	[0; 2]	50	0.0009	0.0537	0.0020	0.1485	0.0510	0.0187	0.0881	0.0665	0.0759	0.1417	0.0459	0.1067	0.0033	0.0044
		100	0.0067	0.0428	0.0098	0.1252	0.0117	0.0617	0.0044	0.1189	0.0187	0.0908	0.0433	0.1011	0.0079	0.0045
		500					0.0015									
0.6	[-1; 3]	50														0.0196
		100					0.0117									
	[0 0]	500					0.0018									
	[0; 2]	50					0.0983									
		100 500					$0.0240 \\ 0.0032$									
0.7	[-1; 3]	50					0.0032									
0.7	[-1, 3]	100					0.0136									
		500					0.0016									
	[0; 2]	50					0.0130									
	[-,-]	100					0.0076									
		500					0.0101									
0.8	[-1; 3]	50	0.0320	0.0207	0.0221	0.0140	0.0235	0.0246	0.0295	0.2297	0.0499	0.0631	0.2401	0.3044	0.0032	0.0354
		100	0.0078	0.0164	0.0055	0.0227	0.0220	0.0581	0.0175	0.2800	0.0100	0.0312	0.0718	0.1657	0.0040	0.0392
		500	0.0000	0.0076	0.0035	0.0248	0.0058	0.0496	0.0083	0.3236	0.0040	0.0320	0.0092	0.1068	0.0008	0.0370
	[0; 2]	50	0.0296	0.0014	0.0051	0.0272	0.0301	0.1141	0.0449	0.3243	0.0392	0.0501	0.1708	0.2622	0.0149	0.0010
		100					0.0461									
		500					0.0058									
0.9	[-1; 3]	50					0.0534									
		100					0.0665									
	[0.0]	500					0.0068									
	[0; 2]	50														0.0069
		100 500					0.0846									0.0096 0.0122
		500	0.0143	0.0119	0.0084	0.0121	0.0021	0.1180	0.0206	0.4099	0.0022	0.0012	0.0309	0.1903	0.0010	0.0122

Tabela D.40: Estimativas do valor absoluto do enviesamento médio dos parâmetros da mistura de duas regressões lineares no caso $\rm EX$

 $206 \hspace{3cm} Ap \hat{\mathbf{e}} \mathbf{n} \mathbf{d} \mathbf{i} \mathbf{c} \mathbf{e} \hspace{1mm} D$

			α_1	α_1	β_1	β_1	α_2	α_2	β_2	β_2	σ_1	σ_1	σ_2	σ_2	π_1	π_1
π_1	x	n	EM	CEM	EM	CEM	EM	CEM	EM	CEM	EM	CEM	EM	CEM	EM	CEM
0.1	[-1; 3]	50													0.0438	
		100													0.0350	
		500													0.0153	
	[0; 2]	50													0.0699	
		100													0.0690	
		500													0.0177	
0.2	[-1; 3]	50													0.0632	
		100	0.1010	0.1028	0.0624	0.0621	0.0467	0.0467	0.0299	0.0298	0.0571	0.0550	0.0243	0.0238	0.0433	0.0417
		500	0.0429	0.0425	0.0253	0.0250	0.0204	0.0204	0.0131	0.0131	0.0228	0.0226	0.0119	0.0118	0.0185	0.0183
	[0; 2]	50	0.3556	0.3044	0.3427	0.3011	0.1096	0.1083	0.1086	0.1037	0.0940	0.0863	0.0447	0.0444	0.0813	0.0779
		100	0.1986	0.1775	0.1758	0.1520	0.0721	0.0716	0.0631	0.0614	0.0654	0.0583	0.0294	0.0275	0.0519	0.0454
		500	0.0732	0.0729	0.0613	0.0575	0.0295	0.0296	0.0258	0.0259	0.0307	0.0295	0.0112	0.0111	0.0214	0.0195
0.3	[-1; 3]	50	0.1260	0.1256	0.0812	0.0804	0.0750	0.0749	0.0467	0.0469	0.0626	0.0604	0.0366	0.0354	0.0739	0.0748
	-	100	0.0767	0.0778	0.0520	0.0523	0.0493	0.0492	0.0344	0.0343	0.0440	0.0439	0.0269	0.0266	0.0452	0.0465
		500	0.0335	0.0341	0.0230	0.0229	0.0217	0.0219	0.0139	0.0139	0.0187	0.0187	0.0127	0.0121	0.0230	0.0234
	[0; 2]	50	0.2170	0.1907	0.1995	0.1943	0.1151	0.1115	0.0967	0.0953	0.0775	0.0690	0.0437	0.0390	0.0869	0.0867
		100	0.1389	0.1290	0.1206	0.1113	0.0760	0.0756	0.0650	0.0639	0.0526	0.0507	0.0296	0.0277	0.0569	0.0573
		500	0.0563	0.0535	0.0470	0.0445	0.0344	0.0346	0.0285	0.0289	0.0239	0.0229	0.0136	0.0130	0.0240	0.0255
0.4	[-1; 3]	50	0.1074	0.1043	0.0642	0.0622	0.0715	0.0723	0.0470	0.0474	0.0573	0.0547	0.0404	0.0407	0.0728	0.0831
		100	0.0681	0.0678	0.0455	0.0452	0.0499	0.0493	0.0330	0.0329	0.0365	0.0360	0.0322	0.0311	0.0594	0.0691
		500	0.0280	0.0281	0.0178	0.0177	0.0263	0.0268	0.0166	0.0165	0.0148	0.0147	0.0135	0.0129	0.0240	0.0266
	[0; 2]	50	0.1682	0.1612	0.1321	0.1251	0.1338	0.1276	0.1151	0.1090	0.0572	0.0532	0.0519	0.0482	0.0937	0.1070
	1-7 1	100													0.0659	
		500	0.0427	0.0424	0.0365	0.0359	0.0390	0.0392	0.0313	0.0314	0.0195	0.0194	0.0147	0.0141	0.0259	0.0324
0.5	[-1; 3]	50													0.0801	
	[-, -]	100													0.0551	
		500													0.0252	
	[0; 2]	50													0.0985	
		100	0.0963	0.0930	0.0836	0.0798	0.0999	0.0965	0.0842	0.0813	0.0385	0.0379	0.0380	0.0374	0.0667	0.0981
		500													0.0306	
0.6	[-1; 3]	50													0.0773	
	[-, -]	100													0.0531	
		500													0.0237	
	[0; 2]	50													0.0920	
	1-7 1	100													0.0602	
		500													0.0285	
0.7	[-1; 3]	50													0.0695	
	[-, -]	100													0.0495	
		500													0.0225	
	[0; 2]	50													0.0926	
	[0, 2]	100													0.0592	
		500													0.0255	
0.8	[-1; 3]	50													0.0613	
0.0	[1,0]	100													0.0421	
		500													0.0189	
	[0; 2]	50													0.0728	
	[0, 2]	100													0.0500	
		500													0.0219	
0.9	[-1; 3]	50													0.0213	
0.0	[-1, 3]	100													0.0351	
		500													0.0331	
	[0; 2]	50													0.0149	
	[0, 2]	100													0.0893 0.0372	
		500													0.0372 0.0174	
		500	0.0212	0.0273	0.0244	0.0247	0.1100	0.1092	0.1010	0.0921	0.0113	0.0114	0.0440	0.0437	0.0174	0.0133

Tabela D.41: Estimativas do desvio padrão dos parâmetros da mistura de duas regressões lineares no caso ${\rm EI}$

			α_1	α_1	β_1	β_1	α_2	α_2	β_2	β_2	σ_1	σ_1	σ_2	σ_2	π_1	π_1
π_1	x	n	EM	CEM	EM	CEM	$_{\rm EM}$	CEM	EM	CEM	EM	CEM	$_{\rm EM}$	$_{\rm CEM}$	EM	CEM
0.1	[-1; 3]	50													0.0876	
		100													0.0853	
		500													0.0151	
	[0; 2]	50													0.1328	
		100													0.1053	
		500													0.0455	
0.2	[-1; 3]	50													0.0677	
		100													0.0502	
		500													0.0200	
	[0; 2]	50													0.1381	
		100													0.1091	
		500													0.0396	
0.3	[-1; 3]	50													0.0896	
		100													0.0477	
		500													0.0223	
	[0; 2]	50													0.1464	
		100													0.1111	
		500													0.0417	
0.4	[-1; 3]	50													0.0849	
		100													0.0573	
		500													0.0253	
	[0; 2]	50													0.1467	
		100													0.1216	
		500													0.0435	
0.5	[-1; 3]	50													0.0811	
		100													0.0620	
		500													0.0260	
	[0; 2]	50													0.1493	
		100													0.1059	
		500													0.0440	
0.6	[-1; 3]	50													0.0745	
		100													0.0564	
		500													0.0269	
	[0; 2]	50													0.1656	
		100													0.1150	
		500													0.0498	
0.7	[-1; 3]	50													0.0815	
		100													0.0576	
	FO 01	500													0.0233	
	[0; 2]	50													0.1452	
		100													0.1151	
	[4 0]	500													0.0397	
0.8	[-1; 3]	50													0.0645	
		100													0.0505	
	[0.0]	500													0.0234	
	[0; 2]	50													0.1298	
		100													0.0979	
	[1 0]	500													0.0403	
0.9	[-1; 3]	50													0.0873	
		100													0.0668	
	[0.0]	500													0.0160	
	[0; 2]	50													0.1249	
		100													0.1070	
		500	0.0575	0.0636	0.0536	0.0620	0.3255	0.3120	0.3118	0.2514	0.0238	0.0269	0.1212	0.1161	0.0387	0.0152

Tabela D.42: Estimativas do desvio padrão dos parâmetros da mistura de duas regressões lineares no caso ${\rm EII}$

 $208 \hspace{3cm} Ap \hat{\mathbf{e}} \mathbf{n} \mathbf{d} \mathbf{i} \mathbf{c} \mathbf{e} \hspace{1mm} D$

The part																	
1						β_1	β_1			β_2	β_2						
100	π_1																
10	0.1	[-1; 3]															
[67] 50 0.6193 0.7246 0.5828 1.0795 0.3785 1.2043 0.3687 0.7268 0.2161 0.1602 0.1608 0.1691 0.1704 0.1787 100 0.5650 0.6688 0.5475 0.9529 0.2713 1.2947 0.2807 1.0956 0.2140 0.1762 0.1608 0.1691 0.1704 0.1787 100 0.2560 0.6886 0.8672 0.8292 0.2131 0.2947 0.2806 0.2140 0.1762 0.0144 0.1765 0.0990 0.0155 0.0965 0.0874 100 0.3212 0.2288 0.1491 0.1185 0.1298 0.1372 0.0886 0.0951 0.1423 0.1167 0.0789 0.0723 0.0548 0.0510 0.2312 0.2238 0.1491 0.1185 0.1298 0.1372 0.0886 0.0951 0.1423 0.1167 0.0789 0.0723 0.0548 0.0510 0.0803 0.0882 0.0486 0.0461 0.0551 0.0571 0.0377 0.0398 0.0515 0.0423 0.1040 0.0071 0.0997 0.1671 0.0975 0.0893 0.0884 0.0891 0.0551 0.0423 0.1167 0.0789 0.0723 0.0548 0.0510 0.0831 0.0882 0.0852 0.0848 0.0461 0.0451 0.0551 0.0571 0.0377 0.0398 0.0515 0.0423 0.1040 0.0717 0.0997 0.1478 0.0485 0.0510 0.0512 0.0529 0.0541 0.0239 0.0846 0.3739 0.3990 0.2741 0.3007 0.0255 0.2042 0.1406 0.0717 0.0997 0.1478 0.0455 0.00512 0.0541 0.0329 0																	
100																	
1.0 0.2 1.3 50 0.4215 0.5685 0.3672 0.6896 0.1240 0.5267 0.1520 0.1636 0.1746 0.1076 0.0434 0.1009 0.0817 0.1199		[0; 2]															
Color																	
100																	
10	0.2	[-1; 3]															
[0; 2] 50 0.5803 0.5950 0.5173 0.5864 0.4189 0.6310 0.4056 0.3523 0.2184 0.1638 0.1507 0.1479 0.1601 0.1577 0.0410 0.5412 0.4229 0.4346 0.3793 0.3090 0.2274 10.3007 0.2055 0.2042 0.1406 0.1077 0.0997 0.1478 0.0845 0.2641 0.5214 0.2303 0.4475 0.1319 0.7598 0.1232 0.2795 0.1056 0.1089 0.0359 0.1054 0.0662 0.1200 0.2561 0.9395 0.1395 0.1395 0.1395 0.1225 0.2795 0.1056 0.1089 0.0359 0.1054 0.0662 0.1200 0.1599 0.1527 0.1022 0.0925 0.1280 0.1252 0.0856 0.0832 0.1011 0.0884 0.0830 0.0769 0.0644 0.0777 0.0647 0.0472 0.0404 0.0408 0.0625 0.0830 0.0401 0.0410 0.0413 0.0367 0.0391 0.0278 0.0352 0.0562 0.0856 0.3390 0.0401 0.0410 0.0413 0.0367 0.0391 0.0278 0.0352 0.0562 0.0866 0.3367 0.2000 0.1532 0.1810 0.1202 0.1808 0.1374 0.0416 0.3596 0.4307 0.4553 0.3419 0.3314 0.3612 0.3196 0.1633 0.1444 0.1181 0.0995 0.1580 0.1347 0.0410 0.0416 0.3596 0.4307 0.4553 0.3419 0.3314 0.3612 0.3196 0.1633 0.1444 0.1181 0.0995 0.1580 0.1347 0.0410 0.0416 0.0596 0.4007 0.0410 0.0995 0.0595 0.0595 0.0595 0.0595 0.0597 0.0595 0.059																	
100																	
1.00		[0; 2]															
1-13 50																	
100																	
$ \begin{bmatrix} [0;2] & 500 & 0.0677 & 0.0712 & 0.0404 & 0.0408 & 0.0625 & 0.0635 & 0.0390 & 0.0401 & 0.0413 & 0.0367 & 0.0391 & 0.0278 & 0.03374 \\ 100 & 0.4476 & 0.3596 & 0.4307 & 0.4553 & 0.3419 & 0.3314 & 0.3612 & 0.3196 & 0.1633 & 0.1434 & 0.1181 & 0.1995 & 0.1580 & 0.1347 \\ 500 & 0.1578 & 0.4088 & 0.1498 & 0.5711 & 0.1607 & 0.2145 & 0.1498 & 0.2134 & 0.0717 & 0.1210 & 0.0996 & 0.0623 & 0.1134 \\ \hline 0.4 & [-1;3] & 50 & 0.1592 & 0.1791 & 0.2121 & 0.110 & 0.1275 & 0.2141 & 0.1583 & 0.1456 & 0.1235 & 0.1118 & 0.1300 & 0.1228 & 0.0922 & 0.1174 \\ 500 & 0.0595 & 0.0605 & 0.0332 & 0.0676 & 0.0680 & 0.0451 & 0.0442 & 0.0240 & 0.0451 & 0.0442 & 0.0240 & 0.0410 & 0.0431 & 0.0283 & 0.0500 \\ [0;2] & 50 & 0.4418 & 0.3686 & 0.4896 & 0.3851 & 0.6289 & 0.4700 & 0.6019 & 0.4072 & 0.2047 & 0.1455 & 0.2000 & 0.1397 & 0.1919 & 0.1712 \\ 100 & 0.3374 & 0.3441 & 0.3121 & 0.318 & 0.4535 & 0.4516 & 0.4422 & 0.4204 & 0.0449 & 0.1480 & 0.1232 & 0.1241 & 0.1576 & 0.0249 \\ 0.5 & [-1;3] & 50 & 0.1584 & 0.1512 & 0.1213 & 0.1075 & 0.2704 & 0.1820 & 0.1603 & 0.0999 & 0.0829 & 0.1499 & 0.1379 & 0.1035 & 0.1068 \\ 100 & 0.1080 & 0.1066 & 0.0728 & 0.0704 & 0.2992 & 0.1944 & 0.1272 & 0.1141 & 0.0730 & 0.0659 & 0.1044 & 0.0380 & 0.0733 \\ [0;2] & 50 & 0.3401 & 0.2960 & 0.3324 & 0.0252 & 0.5692 & 0.5230 & 0.0338 & 0.0461 & 0.0248 & 0.0278 & 0.0269 & 0.0422 & 0.0404 & 0.0366 & 0.0378 \\ [0;2] & 50 & 0.3401 & 0.2960 & 0.3324 & 0.0282 & 0.5230 & 0.5338 & 0.0413 & 0.1446 & 0.1164 & 0.2254 & 0.1833 & 0.0756 & 0.1520 & 0.0278 & 0.0279 & 0.0279 & 0.0277 & 0.0859 & 0.0832 & 0.0462 & 0.0278 & 0.0269 & 0.0422 & 0.0404 & 0.0306 & 0.0378 & 0.0006 & 0.0374 & 0.0006 & 0.0374 & 0.0006 & 0.0374 & 0.0006 & 0.0374 & 0.0006 & 0.0374 & 0.0006 & 0.0374 & 0.0006 & $	0.3	[-1; 3]															
$ \begin{bmatrix} [0;2] & 50 & 0.5153 & 0.4035 & 0.5463 & 0.3888 & 0.4930 & 0.4378 & 0.4826 & 0.3367 & 0.2000 & 0.1532 & 0.1810 & 0.1202 & 0.1898 & 0.1374 \\ \hline 0.0 & 0.4476 & 0.3596 & 0.4397 & 0.4553 & 0.4319 & 0.3314 & 0.3612 & 0.3196 & 0.1633 & 0.1434 & 0.1181 & 0.0995 & 0.1580 & 0.1313 \\ \hline 0.4 & [-1;3] & 50 & 0.1578 & 0.4088 & 0.1498 & 0.5711 & 0.1607 & 0.2145 & 0.1498 & 0.2134 & 0.0717 & 0.1270 & 0.0410 & 0.0996 & 0.0623 & 0.1131 \\ \hline 0.0 & 0.1149 & 0.1147 & 0.1211 & 0.1108 & 0.2275 & 0.2141 & 0.1583 & 0.1456 & 0.1235 & 0.1118 & 0.1300 & 0.1228 & 0.0922 & 0.1174 \\ \hline 0.0 & 0.1449 & 0.1157 & 0.0822 & 0.0779 & 0.1627 & 0.1580 & 0.1042 & 0.0050 & 0.0835 & 0.0770 & 0.0931 & 0.0996 & 0.0702 & 0.0951 \\ \hline 0.0 & 0.0595 & 0.0605 & 0.0332 & 0.0332 & 0.0676 & 0.0680 & 0.0451 & 0.0442 & 0.0361 & 0.0344 & 0.0410 & 0.0431 & 0.0283 & 0.0500 \\ \hline 0.0 & 0.3374 & 0.3441 & 0.3121 & 0.3118 & 0.4535 & 0.4516 & 0.4422 & 0.4204 & 0.1490 & 0.1480 & 0.1232 & 0.1241 & 0.1576 & 0.1939 \\ \hline 0.0 & 0.1373 & 0.3095 & 0.1194 & 0.3816 & 0.1738 & 0.5146 & 0.1652 & 0.5227 & 0.0588 & 0.1770 & 0.0456 & 0.1077 & 0.0657 & 0.2249 \\ \hline 0.5 & [-1;3] & 50 & 0.1584 & 0.1512 & 0.1213 & 0.1075 & 0.2704 & 0.2494 & 0.1820 & 0.1603 & 0.0999 & 0.0829 & 0.1499 & 0.1379 & 0.1035 & 0.1066 \\ \hline 0.100 & 0.1080 & 0.1066 & 0.0728 & 0.0704 & 0.2092 & 0.1449 & 0.1820 & 0.1603 & 0.0999 & 0.0829 & 0.1499 & 0.1379 & 0.1035 & 0.1066 \\ \hline 0.100 & 0.0490 & 0.0489 & 0.0325 & 0.0322 & 0.0702 & 0.0692 & 0.0488 & 0.0462 & 0.0278 & 0.0269 & 0.0422 & 0.0444 & 0.0366 & 0.0375 \\ \hline 0.0 & 0.3401 & 0.2960 & 0.3324 & 0.2525 & 0.5692 & 0.5230 & 0.5338 & 0.0413 & 0.1464 & 0.1164 & 0.2254 & 0.1833 & 0.1756 & 0.1526 \\ \hline 0.0 & 0.100 & 0.0797 & 0.0595 & 0.0896 & 0.3164 & 0.3041 & 0.1191 & 0.1894 & 0.0901 & 0.0757 & 0.1752 & 0.1605 & 0.0947 & 0.0926 \\ \hline 0.0 & 0.1565 & 0.1474 & 0.0895 & 0.0896 & 0.3164 & 0.0341 & 0.3041 & 0.0914 & 0.0914 & 0.0254 & 0.0229 & 0.0422 & 0.0444 & 0.0366 & 0.0546 & 0.0454 & 0.0245 & 0.0229 & 0.0411 & 0.0461 & 0.0245 & 0.0249 & 0.0425 & 0.0249 & 0.0477 & 0.0747 & 0.0747 & 0.0747 & 0.0$																	
100																	
$ \begin{bmatrix} 500 & 0.1578 & 0.4088 & 0.1498 & 0.5711 & 0.1607 & 0.2145 & 0.1498 & 0.2134 & 0.0717 & 0.1270 & 0.0410 & 0.0996 & 0.6623 & 0.1131 \\ 0.4 & [-1; 3] & 50 & 0.1992 & 0.1971 & 0.1211 & 0.1108 & 0.2275 & 0.2141 & 0.1583 & 0.1456 & 0.1235 & 0.1118 & 0.1300 & 0.1228 & 0.0992 & 0.1174 \\ 0.0 & 0.1149 & 0.1157 & 0.0822 & 0.0779 & 0.1627 & 0.1580 & 0.1042 & 0.1005 & 0.0835 & 0.0770 & 0.0931 & 0.0996 & 0.0702 & 0.0951 \\ 0.0 & 0.0595 & 0.0605 & 0.0332 & 0.0332 & 0.0676 & 0.0680 & 0.0451 & 0.0442 & 0.0361 & 0.0344 & 0.0441 & 0.04$		[0; 2]															
$ \begin{bmatrix} 0.4 & [-1;3] & 50 & 0.1992 & 0.1971 & 0.1211 & 0.1108 & 0.2275 & 0.2141 & 0.1583 & 0.1456 & 0.1235 & 0.1118 & 0.1300 & 0.1228 & 0.0922 & 0.1774 \\ 100 & 0.1149 & 0.1157 & 0.0822 & 0.0779 & 0.1627 & 0.1580 & 0.1042 & 0.1005 & 0.0835 & 0.0770 & 0.0931 & 0.0906 & 0.0705 & 0.0605 & 0.0332 & 0.0332 & 0.0676 & 0.0680 & 0.0451 & 0.0442 & 0.0361 & 0.0344 & 0.0410 & 0.0431 & 0.0283 & 0.0505 & 0.0605 & 0.0332 & 0.0332 & 0.0676 & 0.0680 & 0.0451 & 0.0442 & 0.0361 & 0.0344 & 0.0410 & 0.0431 & 0.0283 & 0.0500 & 0.0283 & 0.0410 & 0.0442 & 0.0472 & 0.0204 & 0.1450 & 0.1480 & 0.1232 & 0.1241 & 0.1576 & 0.1939 & 0.0470 & 0.6019 & 0.0472 & 0.0204 & 0.1490 & 0.1480 & 0.1232 & 0.1241 & 0.1576 & 0.1939 & 0.0420 & 0.1480 & 0.0232 & 0.1241 & 0.1576 & 0.1939 & 0.0422 & 0.0440 & 0.0480 & 0.0480 & 0.0480 & 0.0481 & 0.0482 & 0.0460 & 0.0480 & 0.0480 & 0.0481 & 0.0482 & 0.0440 & 0.0440 & 0.0440 & 0.0466 & 0.1077 & 0.0657 & 0.2249 & 0.0440 & 0.0469 & 0.0489 & 0.0325 & 0.0322 & 0.0702 & 0.0692 & 0.0488 & 0.0462 & 0.0278 & 0.0269 & 0.0422 & 0.0404 & 0.0366 & 0.0375 & 0.0469 & 0.0489 & 0.0325 & 0.0322 & 0.0702 & 0.0692 & 0.0488 & 0.0462 & 0.0278 & 0.0269 & 0.0422 & 0.0404 & 0.0366 & 0.0375 & 0.0469 & 0.0489 & 0.0325 & 0.0322 & 0.0702 & 0.0692 & 0.0488 & 0.0462 & 0.0278 & 0.0269 & 0.0422 & 0.0404 & 0.0366 & 0.0375 & 0.0469 & 0.0489 & 0.0323 & 0.0532 & 0.0702 & 0.0692 & 0.0488 & 0.0462 & 0.0278 & 0.0269 & 0.0422 & 0.0404 & 0.0366 & 0.0375 & 0.0469 & 0.0469 & 0.0323 & 0.0532 & 0.0432 & 0.0445 & 0.0245 & 0.0341 & 0.0425 & 0.0466 & 0.0425 & 0.0278 & 0.0466 & 0.0460 & 0.0460 & 0.0460 & 0.0460 & 0.0483 & 0.0464 & 0.0473 & 0.0425 & 0.0466 & 0.0445 & 0.0278 & 0.0462 & 0.0464 & 0.0485 & 0.0454 & 0.0413 & 0.0454 & 0.0413 & 0.0454 & 0.0414 & 0.0464 &$																	
100																	
$ \begin{bmatrix} [0;2] & 50 & 0.0595 & 0.0605 & 0.0332 & 0.0332 & 0.0676 & 0.0880 & 0.451 & 0.0442 & 0.0361 & 0.0344 & 0.0410 & 0.0431 & 0.0283 & 0.0500 \\ [0;2] & 50 & 0.4418 & 0.3686 & 0.4896 & 0.3851 & 0.6289 & 0.4700 & 0.6019 & 0.4072 & 0.2047 & 0.1455 & 0.2000 & 0.1373 & 0.1991 & 0.1712 \\ [0;3] & 50 & 0.1534 & 0.3441 & 0.3121 & 0.3118 & 0.4535 & 0.4516 & 0.4422 & 0.1420 & 0.1430 & 0.1232 & 0.1241 & 0.1576 & 0.1939 \\ [0;5] & 50 & 0.1534 & 0.1512 & 0.1213 & 0.1075 & 0.2704 & 0.1420 & 0.1620 & 0.0588 & 0.1770 & 0.0456 & 0.1077 & 0.0657 & 0.2249 \\ [0;6] & 50 & 0.0469 & 0.0489 & 0.0325 & 0.0704 & 0.2092 & 0.1944 & 0.1820 & 0.1603 & 0.0999 & 0.0829 & 0.1499 & 0.1379 & 0.1035 & 0.1068 \\ [0;7] & 50 & 0.0469 & 0.0489 & 0.0325 & 0.0322 & 0.0702 & 0.0692 & 0.0488 & 0.0462 & 0.0278 & 0.0269 & 0.0442 & 0.0404 & 0.0306 & 0.0375 \\ [0;7] & 50 & 0.0469 & 0.0489 & 0.0325 & 0.0522 & 0.0702 & 0.0692 & 0.0488 & 0.0462 & 0.0278 & 0.0269 & 0.0422 & 0.0404 & 0.0306 & 0.0375 \\ [0;7] & 50 & 0.0469 & 0.0489 & 0.0325 & 0.0522 & 0.5230 & 0.5338 & 0.4013 & 0.1446 & 0.1164 & 0.2254 & 0.1833 & 0.1756 & 0.1520 \\ [0;7] & 50 & 0.1078 & 0.2392 & 0.0950 & 0.2317 & 0.1892 & 0.0404 & 0.1730 & 0.1132 & 0.1271 & 0.1450 & 0.1399 & 0.1496 \\ [0;7] & 50 & 0.1078 & 0.0953 & 0.0673 & 0.0641 & 0.2343 & 0.2099 & 0.1411 & 0.1119 & 0.0609 & 0.0527 & 0.1133 & 0.0616 & 0.1216 \\ [0;7] & 50 & 0.0462 & 0.0472 & 0.0277 & 0.0859 & 0.0832 & 0.0592 & 0.0544 & 0.0229 & 0.0471 & 0.0461 & 0.02271 & 0.0282 \\ [0;7] & 50 & 0.02977 & 0.2321 & 0.2939 & 0.0384 & 0.6618 & 0.5959 & 0.5417 & 0.1403 & 0.1054 & 0.1399 & 0.1540 & 0.0427 & 0.0256 \\ [0;7] & 50 & 0.02840 & 0.1848 & 0.0827 & 0.3345 & 0.3314 & 0.2864 & 0.2433 & 0.0818 & 0.0784 & 0.2038 & 0.1542 & 0.1155 \\ [0;8] & 50 & 0.02430 & 0.0858 & 0.0554 & 0.0324 & 0.0383 & 0.0345 & 0.0258 & 0.0259 & 0.0233 & 0.0299 & 0.0586 & 0.0559 & 0.0232 & 0.0236 \\ [0;7] & 50 & 0.02430 & 0.0243 & 0.0263 & 0.7870 & 0.6540 & 0.7292 & 0.0389 & 0.0784 & 0.0285 & 0.0285 & 0.0265 & 0.0499 \\ [0;8] & 50 & 0.1788 & 0.1844 & 0.1118 & 0.0817 & 0.5212 & 0.4733 & 0.$	0.4	[-1; 3]	50														
$ \begin{bmatrix} [0;2] \\ 50 \\ 0.3374 \ 0.3441 \ 0.3341 \ 0.3121 \ 0.3118 \ 0.6289 \ 0.4700 \ 0.6019 \ 0.4072 \ 0.2047 \ 0.1455 \ 0.2000 \ 0.1397 \ 0.1991 \ 0.1712 \\ 0.3374 \ 0.3441 \ 0.3121 \ 0.3118 \ 0.4535 \ 0.4516 \ 0.44422 \ 0.4204 \ 0.1409 \ 0.1480 \ 0.1232 \ 0.1241 \ 0.1576 \ 0.1939 \\ 0.1273 \ 0.3095 \ 0.1194 \ 0.3816 \ 0.1738 \ 0.5416 \ 0.1652 \ 0.5227 \ 0.0588 \ 0.1770 \ 0.0456 \ 0.1077 \ 0.0657 \ 0.2249 \\ 0.5 \\ [-1;3] \\ 50 \\ 0.0469 \ 0.0469 \ 0.0469 \ 0.0728 \ 0.0704 \ 0.2092 \ 0.1944 \ 0.1272 \ 0.1603 \ 0.0999 \ 0.0829 \ 0.1499 \ 0.1379 \ 0.1035 \ 0.1066 \\ 100 \\ 0.0469 \ 0.0489 \ 0.0325 \ 0.0322 \ 0.0702 \ 0.0692 \ 0.0488 \ 0.0462 \ 0.0278 \ 0.0269 \ 0.0422 \ 0.0404 \ 0.0360 \ 0.0735 \\ [0;2] \\ 50 \\ 0.3401 \ 0.2960 \ 0.3324 \ 0.2525 \ 0.5599 \ 0.5230 \ 0.5538 \ 0.4013 \ 0.1446 \ 0.1164 \ 0.2254 \ 0.1833 \ 0.1756 \ 0.1520 \\ 0.0790 \ 0.3501 \ 0.2301 \ 0.2346 \ 0.4853 \ 0.4734 \ 0.4425 \ 0.4406 \ 0.1173 \ 0.1132 \ 0.1271 \ 0.1450 \ 0.1399 \ 0.1496 \\ 0.0978 \ 0.0953 \ 0.0630 \ 0.2317 \ 0.1892 \ 0.4094 \ 0.1723 \ 0.3786 \ 0.0454 \ 0.1031 \ 0.0577 \ 0.1135 \ 0.0616 \ 0.1216 \\ 0.6 \\ [-1;3] \\ 50 \\ 0.0462 \ 0.0472 \ 0.0279 \ 0.0896 \ 0.3164 \ 0.3041 \ 0.2119 \ 0.1894 \ 0.0991 \ 0.0757 \ 0.1752 \ 0.1605 \ 0.0947 \ 0.0926 \\ [-1;3] \\ 50 \\ 0.0462 \ 0.0472 \ 0.0279 \ 0.0277 \ 0.0859 \ 0.0832 \ 0.0592 \ 0.0564 \ 0.0245 \ 0.0229 \ 0.0471 \ 0.0461 \ 0.0271 \ 0.0282 \\ [-1;2] \\ 50 \\ 0.0462 \ 0.0472 \ 0.0279 \ 0.0277 \ 0.0859 \ 0.0832 \ 0.0592 \ 0.0564 \ 0.0245 \ 0.0292 \ 0.0471 \ 0.0461 \ 0.0271 \ 0.0282 \\ [-1;3] \\ 50 \\ 0.0462 \ 0.0472 \ 0.0279 \ 0.0589 \ 0.0583 \ 0.0593 \ 0.0541 \ 0.0405 \ 0.0091 \ 0.05410 \ 0.0595 \ 0.0884 \ 0.1814 \ 0.0840 \ 0.0454 \ 0.0343 \ 0.0545 \ 0.0091 \ 0.0545 \ 0.0091 \ 0.0545 \ 0.0091 \ 0.0091 \ 0.0091 \ 0.0091 \ 0.0091 \ 0.0091 \ 0.0091 \ 0.0091 \ 0.0091 \ 0.0091 \ 0.0091 \ 0.0091 \ 0.0091 \ 0.0091 \ 0.0091 \ 0.0000000000000000000000000000000000$																	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $																	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		[0; 2]															
$ \begin{bmatrix} -1;3 \\ 0.5 \\ -1;3 \\ 0.0 \end{bmatrix} $																	
$ \begin{bmatrix} 100 \\ 500 \\ 0.0469 \\ 0.0489 \\ 0.0325 \\ 0.0325 \\ 0.0325 \\ 0.0325 \\ 0.0322 \\ 0.0702 \\ 0.0699 \\ 0.0488 \\ 0.0325 \\ 0.0702 \\ 0.0699 \\ 0.0488 \\ 0.0325 \\ 0.0702 \\ 0.0699 \\ 0.0488 \\ 0.0325 \\ 0.0702 \\ 0.0699 \\ 0.0488 \\ 0.0325 \\ 0.0702 \\ 0.0699 \\ 0.0488 \\ 0.0322 \\ 0.0702 \\ 0.0699 \\ 0.0538 \\ 0.0406 \\ 0.0538 \\ 0.0413 \\ 0.0146 \\ 0.0146 \\ 0.0146 \\ 0.0147 \\ 0.0279 \\ 0.3501 \\ 0.2301 \\ 0.2317 \\ 0.1892 \\ 0.4994 \\ 0.4734 \\ 0.4425 \\ 0.4406 \\ 0.1173 \\ 0.1132 \\ 0.1132 \\ 0.1271 \\ 0.1450 \\ 0.1075 \\ 0.1135 \\ 0.1271 \\ 0.1450 \\ 0.1399 \\ 0.1496 \\ 0.1216 \\ 0.0978 \\ 0.0931 \\ 0.0612 \\ 0.0978 \\ 0.0932 \\ 0.0953 \\ 0.0641 \\ 0.0937 \\ 0.0641 \\ 0.0277 \\ 0.0895 \\ 0.0842 \\ 0.0647 \\ 0.0277 \\ 0.0859 \\ 0.0838 \\ 0.0540 \\ 0.0277 \\ 0.0839 \\ 0.0838 \\ 0.0540 \\ 0.0842 \\ 0.0843 \\ 0.0842 \\ 0.08$																	
$ \begin{bmatrix} [0;2] \\ [0;2] \\ [0;2] \\ [0;2] \\ [0;2] \\ [0;3] \\ [0;3] \\ [0;4] \\ [0;5] \\ [0;5] \\ [0;6] \\ [0;6] \\ [0;7] \\ [$	0.5	[-1; 3]															
$ \begin{bmatrix} [0;2] \\ [0;2] \\ [0;2] \\ [0;2] \\ [0;2] \\ [0;2] \\ [0;2] \\ [0;2] \\ [0;2] \\ [0;3] \\ [0;3] \\ [0;3] \\ [0;3] \\ [0;3] \\ [0;4] \\ [0;2] \\ [0;2] \\ [0;2] \\ [0;2] \\ [0;3] \\ [0;3] \\ [0;3] \\ [0;4] \\ [0;4] \\ [0;4] \\ [0;4] \\ [0;4] \\ [0;5] \\ [$																	
$ \begin{array}{c} 100 \\ 500 $																	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		[0; 2]															
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$																	
$ \begin{bmatrix} 100 & 0.0978 & 0.0953 & 0.0673 & 0.0641 & 0.2343 & 0.2099 & 0.1411 & 0.1119 & 0.0609 & 0.0527 & 0.1193 & 0.1079 & 0.0611 & 0.0606 \\ 500 & 0.0462 & 0.0472 & 0.0277 & 0.0859 & 0.0832 & 0.0592 & 0.0564 & 0.0245 & 0.0229 & 0.0471 & 0.0461 & 0.0271 & 0.0282 \\ 500 & 0.02977 & 0.2321 & 0.2939 & 0.0634 & 0.5618 & 0.5959 & 0.5417 & 0.1403 & 0.1054 & 0.2159 & 0.2011 & 0.1777 & 0.1757 \\ 100 & 0.2373 & 0.2235 & 0.2103 & 0.1996 & 0.5643 & 0.4578 & 0.5431 & 0.4250 & 0.1093 & 0.0914 & 0.1655 & 0.1736 & 0.1542 & 0.1150 \\ 500 & 0.0884 & 0.1814 & 0.0820 & 0.1825 & 0.2179 & 0.3208 & 0.2206 & 0.3218 & 0.0391 & 0.0839 & 0.0645 & 0.1281 & 0.0600 & 0.0756 \\ \hline 0.7 & [-1;3] & 50 & 0.1246 & 0.1197 & 0.1176 & 0.0827 & 0.3945 & 0.3814 & 0.2864 & 0.2433 & 0.0818 & 0.0784 & 0.2038 & 0.1927 & 0.0870 & 0.0763 \\ \hline 0.0 & 0.0842 & 0.0838 & 0.0560 & 0.0549 & 0.2302 & 0.2274 & 0.1583 & 0.1354 & 0.0535 & 0.0514 & 0.1308 & 0.1198 & 0.0541 & 0.0529 \\ \hline 500 & 0.0406 & 0.0406 & 0.0247 & 0.0251 & 0.1052 & 0.1035 & 0.0646 & 0.0589 & 0.0203 & 0.0209 & 0.0586 & 0.0559 & 0.0232 & 0.0236 \\ \hline [0;2] & 50 & 0.2590 & 0.2423 & 0.2463 & 0.2088 & 0.7870 & 0.6504 & 0.7292 & 0.6308 & 0.1207 & 0.0839 & 0.2716 & 0.2572 & 0.1582 & 0.1016 \\ \hline 100 & 0.1735 & 0.1975 & 0.1617 & 0.1726 & 0.5954 & 0.5401 & 0.5511 & 0.4903 & 0.0781 & 0.0839 & 0.1706 & 0.1929 & 0.1206 & 0.1009 \\ \hline 500 & 0.0831 & 0.1325 & 0.0716 & 0.1247 & 0.2510 & 0.3249 & 0.2357 & 0.2800 & 0.0329 & 0.0583 & 0.0745 & 0.1159 & 0.0562 & 0.0479 \\ \hline 0.8 & [-1;3] & 50 & 0.1178 & 0.1844 & 0.1118 & 0.0817 & 0.5212 & 0.4733 & 0.4094 & 0.3985 & 0.0742 & 0.0670 & 0.2358 & 0.2858 & 0.0869 & 0.0803 \\ \hline 0.0 & 0.0835 & 0.0808 & 0.0572 & 0.0544 & 0.3960 & 0.3483 & 0.2480 & 0.1976 & 0.0500 & 0.0458 & 0.1702 & 0.1540 & 0.0485 & 0.395 \\ \hline 0.0 & 0.0338 & 0.0340 & 0.0207 & 0.0211 & 0.1241 & 0.1238 & 0.0796 & 0.0712 & 0.0213 & 0.0216 & 0.6672 & 0.0642 & 0.0235 & 0.0202 \\ \hline 0.0 & [-1;3] & 50 & 0.1073 & 0.1480 & 0.1724 & 0.1099 & 0.6967 & 0.6888 & 0.4939 & 0.5179 & 0.1036 & 0.0557 & 0.2917 & 0.2859 & 0.1123 & 0.0894 \\ \hline 0.0 & 0.$																	
$ \begin{bmatrix} [0;2] & 500 & 0.0462 & 0.0472 & 0.0279 & 0.0277 & 0.0859 & 0.0832 & 0.0592 & 0.0564 & 0.0245 & 0.0229 & 0.0471 & 0.0461 & 0.0271 & 0.0282 \\ [0;2] & 50 & 0.2977 & 0.2321 & 0.2939 & 0.2038 & 0.6634 & 0.5618 & 0.5959 & 0.5417 & 0.1403 & 0.1054 & 0.2159 & 0.2011 & 0.1777 & 0.1275 \\ [0;2] & 500 & 0.2373 & 0.2235 & 0.2103 & 0.1996 & 0.5643 & 0.4578 & 0.5431 & 0.4250 & 0.1093 & 0.0914 & 0.1655 & 0.1736 & 0.1542 & 0.1150 \\ [0;2] & 500 & 0.0884 & 0.1814 & 0.0820 & 0.1825 & 0.2179 & 0.3208 & 0.2206 & 0.3218 & 0.0391 & 0.0839 & 0.0645 & 0.1281 & 0.0600 & 0.0756 \\ [0;2] & 500 & 0.0406 & 0.0147 & 0.0827 & 0.3945 & 0.3814 & 0.2864 & 0.2433 & 0.0818 & 0.0784 & 0.2038 & 0.1927 & 0.0870 & 0.0763 \\ [0;2] & 500 & 0.0406 & 0.0407 & 0.0251 & 0.1052 & 0.1035 & 0.0646 & 0.0589 & 0.0203 & 0.0209 & 0.0586 & 0.0559 & 0.0232 & 0.0236 \\ [0;2] & 500 & 0.2590 & 0.2423 & 0.2463 & 0.2088 & 0.7870 & 0.6504 & 0.7292 & 0.6308 & 0.1207 & 0.0839 & 0.2716 & 0.2572 & 0.1582 & 0.1016 \\ [0;0] & 0.01735 & 0.1975 & 0.1617 & 0.1726 & 0.5954 & 0.5401 & 0.5511 & 0.4903 & 0.0781 & 0.0839 & 0.7766 & 0.1929 & 0.1206 & 0.1009 \\ [0;0] & 500 & 0.0831 & 0.1325 & 0.0716 & 0.1247 & 0.2510 & 0.3249 & 0.2357 & 0.2800 & 0.0329 & 0.0583 & 0.0745 & 0.1159 & 0.0562 & 0.0479 \\ [0;2] & 500 & 0.0835 & 0.0808 & 0.0572 & 0.0544 & 0.3960 & 0.3483 & 0.2486 & 0.1976 & 0.0500 & 0.0458 & 0.1702 & 0.1540 & 0.0485 & 0.3995 \\ [0;2] & 500 & 0.0338 & 0.0340 & 0.0207 & 0.0211 & 0.1243 & 0.0796 & 0.0712 & 0.0213 & 0.0216 & 0.0642 & 0.0235 & 0.0202 \\ [0;2] & 500 & 0.2409 & 0.2496 & 0.2178 & 0.2086 & 0.8533 & 0.8819 & 0.8975 & 0.7102 & 0.0769 & 0.0784 & 0.2259 & 0.2467 & 0.1512 & 0.1374 \\ [0;2] & 500 & 0.0631 & 0.0782 & 0.0588 & 0.0751 & 0.3343 & 0.3088 & 0.3272 & 0.3206 & 0.0291 & 0.0398 & 0.0918 & 0.1294 & 0.0471 & 0.0253 \\ [0;2] & 500 & 0.0633 & 0.0340 & 0.0782 & 0.0588 & 0.0751 & 0.3431 & 0.3088 & 0.3272 & 0.3206 & 0.0291 & 0.0398 & 0.9918 & 0.1294 & 0.0471 & 0.0253 \\ [0;2] & 500 & 0.0633 & 0.0340 & 0.0782 & 0.0588 & 0.0751 & 0.3431 & 0.3088 & 0.3272 & 0.3066 & 0.2857 & 0.2917 & 0$	0.6	[-1; 3]															
$ \begin{bmatrix} [0;2] \\ [$																	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$																	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		[0; 2]															
$ \begin{bmatrix} -1;3 \\ 0.7 \\ [-1;3] \\ 0.0 \\ 0.0842 \\ 0.0838 \\ 0.0560 \\ 0.0546 \\ 0.0251 \\ 0.0251 \\ 0.0251 \\ 0.0251 \\ 0.0251 \\ 0.0251 \\ 0.0251 \\ 0.0251 \\ 0.0251 \\ 0.0251 \\ 0.0251 \\ 0.0251 \\ 0.0251 \\ 0.0252 \\ 0.0246 \\ 0.0251 \\ 0.0252 \\ 0.0251 \\ 0.0252 \\ 0.02423 \\ 0.2463 \\ 0.2088 \\ 0.7870 \\ 0.0524 \\ 0.0524 \\ 0.0524 \\ 0.0524 \\ 0.0251 \\ 0.0252 \\ 0.02423 \\ 0.2463 \\ 0.2088 \\ 0.7870 \\ 0.0524 \\ 0.0524 \\ 0.0524 \\ 0.0324 \\ 0.0325 \\ 0.0325 \\ 0.0328 \\ 0.0325 \\ 0.0328 \\ 0.0325 \\ 0.0328 \\ 0.0325 \\ 0.0328 \\ 0.0321 \\ 0.0251 \\ 0.02$																	
$ \begin{bmatrix} 100 & 0.0842 & 0.0838 & 0.0560 & 0.0549 & 0.2302 & 0.2274 & 0.1583 & 0.1354 & 0.0535 & 0.0514 & 0.1308 & 0.1198 & 0.0541 & 0.0529 \\ 0.0406 & 0.0406 & 0.0247 & 0.0251 & 0.1052 & 0.1035 & 0.0646 & 0.0589 & 0.0233 & 0.0209 & 0.0586 & 0.0559 & 0.0232 & 0.0236 \\ 0.02590 & 0.2423 & 0.2463 & 0.2088 & 0.7870 & 0.6504 & 0.7292 & 0.6308 & 0.1207 & 0.0839 & 0.2716 & 0.2572 & 0.1582 & 0.1016 \\ 100 & 0.1735 & 0.1975 & 0.1617 & 0.1726 & 0.5954 & 0.5401 & 0.5511 & 0.4903 & 0.0781 & 0.0839 & 0.1706 & 0.1929 & 0.1206 & 0.1009 \\ 500 & 0.0831 & 0.1325 & 0.0716 & 0.1247 & 0.2510 & 0.3249 & 0.2357 & 0.2800 & 0.0329 & 0.0583 & 0.0745 & 0.1159 & 0.0562 & 0.0479 \\ \hline 0.8 & [-1;3] & 50 & 0.1178 & 0.1844 & 0.1118 & 0.0817 & 0.5212 & 0.4733 & 0.4094 & 0.3985 & 0.0742 & 0.0670 & 0.2358 & 0.2285 & 0.0869 & 0.0803 \\ 100 & 0.0835 & 0.0808 & 0.0572 & 0.0544 & 0.3960 & 0.3483 & 0.2480 & 0.1976 & 0.0500 & 0.0458 & 0.1702 & 0.1540 & 0.0485 & 0.0395 \\ 500 & 0.0338 & 0.0340 & 0.0207 & 0.0211 & 0.1241 & 0.1238 & 0.0796 & 0.0712 & 0.0213 & 0.0216 & 0.0672 & 0.0642 & 0.0235 & 0.0202 \\ [0;2] & 50 & 0.2499 & 0.2496 & 0.2178 & 0.2086 & 0.8533 & 0.8819 & 0.8070 & 0.7837 & 0.0992 & 0.0866 & 0.2817 & 0.2740 & 0.1532 & 0.1407 \\ 100 & 0.1519 & 0.1906 & 0.2196 & 0.1645 & 0.8071 & 0.8319 & 0.6975 & 0.7102 & 0.0769 & 0.0784 & 0.2259 & 0.2467 & 0.1512 & 0.1374 \\ 500 & 0.0631 & 0.0782 & 0.0588 & 0.0751 & 0.3431 & 0.3088 & 0.3272 & 0.3206 & 0.0292 & 0.0398 & 0.0918 & 0.1294 & 0.0471 & 0.0253 \\ 0.9 & [-1;3] & 50 & 0.1073 & 0.1480 & 0.1724 & 0.1099 & 0.6967 & 0.6888 & 0.4939 & 0.5179 & 0.1036 & 0.0557 & 0.2917 & 0.2859 & 0.1123 & 0.0894 \\ 100 & 0.0774 & 0.0747 & 0.1321 & 0.1047 & 0.5337 & 0.5173 & 0.3793 & 0.3219 & 0.0460 & 0.0414 & 0.2642 & 0.2395 & 0.0868 & 0.6672 \\ 500 & 0.0333 & 0.0338 & 0.0217 & 0.0222 & 0.2047 & 0.1983 & 0.1205 & 0.1030 & 0.0199 & 0.0198 & 0.1043 & 0.0965 & 0.1669 & 0.0134 \\ [0;2] & 50 & 0.02090 & 0.5219 & 0.2289 & 0.1975 & 0.8969 & 1.1346 & 0.8481 & 1.3390 & 0.1074 & 0.0781 & 0.2667 & 0.1622 & 0.1689 \\ [0;2] & 50 & 0.02090 & 0.5219 & 0.22$																	
$ \begin{bmatrix} [0;2] & 500 & 0.0406 & 0.0406 & 0.0247 & 0.0251 & 0.1052 & 0.1035 & 0.0646 & 0.0589 & 0.0203 & 0.0209 & 0.0586 & 0.0559 & 0.0232 & 0.0236 \\ [0;2] & 50 & 0.2590 & 0.2423 & 0.2463 & 0.2088 & 0.7870 & 0.6504 & 0.7292 & 0.6308 & 0.1207 & 0.0839 & 0.2716 & 0.2572 & 0.1582 & 0.1016 \\ [0;0] & 500 & 0.0831 & 0.1325 & 0.0716 & 0.1247 & 0.2510 & 0.3249 & 0.2357 & 0.2800 & 0.0329 & 0.0583 & 0.0745 & 0.1129 & 0.0562 & 0.0479 \\ [0;0] & 500 & 0.0831 & 0.1325 & 0.0716 & 0.1247 & 0.2510 & 0.3249 & 0.2357 & 0.2800 & 0.0329 & 0.0583 & 0.0745 & 0.1129 & 0.0562 & 0.0479 \\ [0;0] & 500 & 0.0178 & 0.1844 & 0.1118 & 0.0817 & 0.5212 & 0.4733 & 0.4094 & 0.3985 & 0.0742 & 0.0670 & 0.2358 & 0.2285 & 0.0869 & 0.0803 \\ [0;0] & 500 & 0.0338 & 0.0340 & 0.0207 & 0.0544 & 0.3960 & 0.3483 & 0.2486 & 0.1976 & 0.0500 & 0.0458 & 0.1702 & 0.1540 & 0.0485 & 0.0395 \\ [0;2] & 500 & 0.0338 & 0.0340 & 0.0207 & 0.0211 & 0.1241 & 0.1238 & 0.0796 & 0.0712 & 0.0213 & 0.0216 & 0.0672 & 0.0642 & 0.0235 & 0.0202 \\ [0;2] & 500 & 0.2409 & 0.2496 & 0.2178 & 0.2086 & 0.8533 & 0.8819 & 0.8070 & 0.7837 & 0.0992 & 0.0866 & 0.2817 & 0.2740 & 0.1532 & 0.1407 \\ [0;0] & 100 & 0.1519 & 0.1906 & 0.2196 & 0.1645 & 0.8071 & 0.8319 & 0.6975 & 0.7102 & 0.0769 & 0.0784 & 0.2259 & 0.2467 & 0.1512 & 0.1374 \\ [0;0] & 500 & 0.0631 & 0.0782 & 0.0588 & 0.0751 & 0.3431 & 0.3088 & 0.3272 & 0.3206 & 0.0292 & 0.0398 & 0.0918 & 0.1294 & 0.0471 & 0.0253 \\ [0;0] & 500 & 0.0733 & 0.1480 & 0.1724 & 0.1099 & 0.6967 & 0.6888 & 0.4939 & 0.5179 & 0.1036 & 0.0557 & 0.2917 & 0.2859 & 0.1123 & 0.0894 \\ [0;0] & 500 & 0.0333 & 0.0338 & 0.0217 & 0.0222 & 0.2047 & 0.1983 & 0.1205 & 0.1030 & 0.0190 & 0.0198 & 0.1043 & 0.0965 & 0.1669 & 0.1344 \\ [0;2] & 500 & 0.0631 & 0.0782 & 0.0219 & 0.0229 & 0.0470 & 0.1983 & 0.1205 & 0.1030 & 0.0190 & 0.0198 & 0.1043 & 0.0965 & 0.1669 & 0.1344 \\ [0;2] & 500 & 0.0631 & 0.0782 & 0.0219 & 0.0229 & 0.0447 & 0.1830 & 0.1074 & 0.0781 & 0.2661 & 0.2687 & 0.1622 & 0.1689 \\ [0;2] & 500 & 0.0633 & 0.0338 & 0.0217 & 0.0222 & 0.2047 & 0.1983 & 0.1205 & 0.1030 & 0.0190 & 0.019$	0.7	[-1; 3]															
$ \begin{bmatrix} [0;2] & 50 & 0.2590 & 0.2423 & 0.2463 & 0.2088 & 0.7870 & 0.6504 & 0.7292 & 0.6308 & 0.1207 & 0.0839 & 0.2716 & 0.2572 & 0.1582 & 0.1016 \\ 0.0735 & 0.1975 & 0.1617 & 0.1726 & 0.5954 & 0.5401 & 0.5511 & 0.4903 & 0.0781 & 0.0839 & 0.1706 & 0.1929 & 0.1206 & 0.1009 \\ 0.0831 & 0.1325 & 0.0716 & 0.1247 & 0.2510 & 0.3249 & 0.2357 & 0.2800 & 0.0329 & 0.0583 & 0.0745 & 0.1159 & 0.0562 & 0.0479 \\ 0.8 & [-1;3] & 50 & 0.1178 & 0.1844 & 0.1118 & 0.0817 & 0.5212 & 0.4733 & 0.4094 & 0.3985 & 0.0742 & 0.0670 & 0.2358 & 0.2285 & 0.0869 & 0.0803 \\ 100 & 0.0835 & 0.0808 & 0.0572 & 0.0544 & 0.3960 & 0.3483 & 0.2480 & 0.1976 & 0.0500 & 0.0458 & 0.1702 & 0.1540 & 0.0485 & 0.0395 \\ 500 & 0.0338 & 0.0340 & 0.0207 & 0.0211 & 0.1243 & 0.0796 & 0.0712 & 0.0213 & 0.0216 & 0.0642 & 0.0235 & 0.02202 \\ [0;2] & 50 & 0.2409 & 0.2496 & 0.2178 & 0.2086 & 0.8533 & 0.8819 & 0.8970 & 0.7837 & 0.0992 & 0.0806 & 0.2817 & 0.2740 & 0.1532 & 0.1407 \\ 100 & 0.1519 & 0.1906 & 0.2196 & 0.1645 & 0.8071 & 0.8319 & 0.6975 & 0.7102 & 0.0769 & 0.0784 & 0.2259 & 0.2467 & 0.1512 & 0.1374 \\ 500 & 0.0631 & 0.0782 & 0.0588 & 0.0751 & 0.3431 & 0.3088 & 0.3272 & 0.3206 & 0.0292 & 0.0398 & 0.0918 & 0.1294 & 0.0471 & 0.0253 \\ 0.9 & [-1;3] & 50 & 0.1073 & 0.1480 & 0.1724 & 0.1099 & 0.6967 & 0.6888 & 0.4939 & 0.51179 & 0.1036 & 0.0557 & 0.2917 & 0.2859 & 0.1123 & 0.0894 \\ 100 & 0.0774 & 0.0747 & 0.1321 & 0.1047 & 0.5337 & 0.5173 & 0.3793 & 0.3219 & 0.0460 & 0.0414 & 0.2642 & 0.2395 & 0.0868 & 0.0672 \\ 500 & 0.0333 & 0.0338 & 0.0217 & 0.0222 & 0.2047 & 0.1983 & 0.1205 & 0.1030 & 0.0199 & 0.1048 & 0.2746 & 0.2510 & 0.1523 & 0.1797 \\ 100 & 0.1681 & 0.4252 & 0.2054 & 0.1838 & 0.9633 & 1.1298 & 0.8774 & 1.2386 & 0.0931 & 0.0784 & 0.2746 & 0.2510 & 0.1523 & 0.1797 \\ 100 & 0.1681 & 0.4252 & 0.2054 & 0.1838 & 0.9633 & 1.1298 & 0.8774 & 1.2386 & 0.0931 & 0.0784 & 0.2746 & 0.2510 & 0.1523 & 0.1797 \\ 100 & 0.1681 & 0.4252 & 0.2054 & 0.1838 & 0.9633 & 1.1298 & 0.8774 & 1.2386 & 0.0931 & 0.0784 & 0.2746 & 0.2510 & 0.1523 & 0.1797 \\ 100 & 0.1681 & 0.4252 & 0.2054 & 0.1838 & 0.963$																	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$																	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		[0; 2]															
$ \begin{bmatrix} -1;3 \\ 0.8 \\ [-1;3] \\ 100 \\ 0.0835 \ 0.0808 \ 0.0572 \ 0.0544 \ 0.3960 \ 0.3483 \ 0.2486 \ 0.1976 \ 0.0500 \ 0.0458 \ 0.1702 \ 0.1540 \ 0.0485 \ 0.0395 \\ 0.0338 \ 0.0340 \ 0.0207 \ 0.0211 \ 0.1241 \ 0.1238 \ 0.0796 \ 0.0712 \ 0.0213 \ 0.0216 \ 0.0672 \ 0.0642 \ 0.0235 \ 0.0202 \\ [0;2] \ 50 \ 0.2409 \ 0.2496 \ 0.2178 \ 0.2086 \ 0.8533 \ 0.8819 \ 0.8070 \ 0.8712 \ 0.0787 \ 0.0992 \ 0.0806 \ 0.2817 \ 0.2740 \ 0.1532 \ 0.1407 \\ 100 \ 0.1519 \ 0.1906 \ 0.2196 \ 0.1645 \ 0.8071 \ 0.8319 \ 0.6975 \ 0.7102 \ 0.0769 \ 0.0784 \ 0.2259 \ 0.2467 \ 0.1512 \ 0.1374 \\ 500 \ 0.0631 \ 0.0782 \ 0.0588 \ 0.0751 \ 0.3431 \ 0.3088 \ 0.3272 \ 0.3206 \ 0.0292 \ 0.0398 \ 0.0918 \ 0.1294 \ 0.0471 \ 0.0253 \\ \hline 0.9 \ [-1;3] \ 50 \ 0.1073 \ 0.1480 \ 0.1724 \ 0.1099 \ 0.6967 \ 0.6888 \ 0.4939 \ 0.5179 \ 0.1036 \ 0.0557 \ 0.2917 \ 0.2859 \ 0.1123 \ 0.0894 \\ \hline 100 \ 0.0774 \ 0.0747 \ 0.1321 \ 0.1047 \ 0.5337 \ 0.5173 \ 0.3793 \ 0.3219 \ 0.0460 \ 0.0414 \ 0.2642 \ 0.2395 \ 0.0868 \ 0.0672 \\ \hline 500 \ 0.0333 \ 0.0338 \ 0.0217 \ 0.0222 \ 0.2047 \ 0.1983 \ 0.1205 \ 0.1030 \ 0.0190 \ 0.0198 \ 0.1043 \ 0.0965 \ 0.1622 \ 0.1689 \\ \hline [0;2] \ 50 \ 0.2090 \ 0.5219 \ 0.2289 \ 0.1975 \ 0.8969 \ 1.1346 \ 0.8481 \ 1.3390 \ 0.0914 \ 0.0784 \ 0.2746 \ 0.2510 \ 0.1523 \ 0.1797 \\ \hline \end{tabular}$																	
$ \begin{bmatrix} 100 & 0.0835 & 0.0808 & 0.0572 & 0.0544 & 0.3960 & 0.3483 & 0.2480 & 0.1976 & 0.0500 & 0.0458 & 0.1702 & 0.1540 & 0.0485 & 0.0395 \\ 500 & 0.0338 & 0.0340 & 0.0207 & 0.0211 & 0.1241 & 0.1238 & 0.0796 & 0.0712 & 0.0213 & 0.0216 & 0.0672 & 0.0642 & 0.0235 & 0.0202 \\ 500 & 2.0490 & 0.2496 & 0.2178 & 0.2086 & 0.8533 & 0.8819 & 0.8070 & 0.7837 & 0.0992 & 0.0866 & 0.2817 & 0.2740 & 0.1532 & 0.1407 \\ 100 & 0.1519 & 0.1906 & 0.2196 & 0.1645 & 0.8071 & 0.8319 & 0.6975 & 0.7102 & 0.0769 & 0.0784 & 0.2259 & 0.2467 & 0.1512 & 0.1374 \\ 500 & 0.0631 & 0.0782 & 0.0588 & 0.0751 & 0.3431 & 0.3088 & 0.3272 & 0.3206 & 0.0292 & 0.0398 & 0.0918 & 0.1294 & 0.0471 & 0.0253 \\ \hline 0.9 & [-1;3] & 50 & 0.1073 & 0.1480 & 0.1724 & 0.1099 & 0.6967 & 0.6888 & 0.4939 & 0.5179 & 0.1036 & 0.0557 & 0.2917 & 0.2859 & 0.1123 & 0.0894 \\ 100 & 0.0774 & 0.0747 & 0.1321 & 0.1047 & 0.5337 & 0.5173 & 0.3793 & 0.3219 & 0.0460 & 0.0414 & 0.2642 & 0.2395 & 0.0868 & 0.0672 \\ 500 & 0.0333 & 0.0338 & 0.0217 & 0.0222 & 0.2047 & 0.1983 & 0.1205 & 0.1030 & 0.0199 & 0.0198 & 0.1043 & 0.0965 & 0.1669 & 0.0134 \\ [0;2] & 50 & 0.2090 & 0.5219 & 0.2289 & 0.1975 & 0.8969 & 1.1346 & 0.8481 & 1.3390 & 0.1074 & 0.781 & 0.2667 & 0.1622 & 0.1689 \\ 100 & 0.1681 & 0.4252 & 0.2054 & 0.1838 & 0.9633 & 1.1298 & 0.8774 & 1.2386 & 0.0931 & 0.0784 & 0.2746 & 0.2510 & 0.1523 & 0.1797 \\ \hline \end{tabular}$																	
$ \begin{bmatrix} [0;2] & 500 & 0.0338 & 0.0340 & 0.0207 & 0.0211 & 0.1241 & 0.1238 & 0.0796 & 0.0712 & 0.0213 & 0.0216 & 0.0672 & 0.0642 & 0.0235 & 0.0202 \\ 0.2409 & 0.2496 & 0.2178 & 0.2086 & 0.8533 & 0.8819 & 0.8070 & 0.7837 & 0.0992 & 0.0806 & 0.2817 & 0.2740 & 0.1532 & 0.1407 \\ 100 & 0.1519 & 0.1906 & 0.2196 & 0.1645 & 0.8071 & 0.8319 & 0.6975 & 0.7102 & 0.0769 & 0.0784 & 0.2259 & 0.2467 & 0.1512 & 0.1374 \\ 500 & 0.0631 & 0.0782 & 0.0588 & 0.0751 & 0.3431 & 0.3088 & 0.3272 & 0.3206 & 0.0292 & 0.0398 & 0.0918 & 0.1294 & 0.0471 & 0.0253 \\ \hline 0.9 & [-1;3] & 50 & 0.1073 & 0.1480 & 0.1724 & 0.1099 & 0.6967 & 0.6888 & 0.4939 & 0.5179 & 0.1036 & 0.0557 & 0.2917 & 0.2859 & 0.1123 & 0.0894 \\ 100 & 0.0774 & 0.0747 & 0.1321 & 0.1047 & 0.5337 & 0.5173 & 0.3793 & 0.3219 & 0.0460 & 0.0414 & 0.2642 & 0.2395 & 0.0868 & 0.0672 \\ 500 & 0.0333 & 0.0338 & 0.0217 & 0.0222 & 0.2047 & 0.1983 & 0.1205 & 0.1030 & 0.0199 & 0.0198 & 0.1043 & 0.0965 & 0.0169 & 0.0134 \\ [0;2] & 50 & 0.2090 & 0.5219 & 0.2289 & 0.1975 & 0.8969 & 1.1346 & 0.8481 & 1.3390 & 0.1074 & 0.0781 & 0.2661 & 0.2687 & 0.1622 & 0.1689 \\ 100 & 0.1681 & 0.4252 & 0.2054 & 0.1838 & 0.9633 & 1.1298 & 0.8774 & 1.2386 & 0.0931 & 0.0784 & 0.2746 & 0.2510 & 0.1523 & 0.1797 \\ \hline \end{tabular}$	0.8	[-1; 3]															
$ \begin{bmatrix} [0;2] & 50 & 0.2409 & 0.2496 & 0.2178 & 0.2086 & 0.8533 & 0.8819 & 0.8070 & 0.7837 & 0.0992 & 0.0806 & 0.2817 & 0.2740 & 0.1532 & 0.1407 \\ 100 & 0.1519 & 0.1906 & 0.2196 & 0.1645 & 0.8071 & 0.8319 & 0.6975 & 0.7102 & 0.0769 & 0.0784 & 0.2259 & 0.2467 & 0.1512 & 0.1374 \\ 500 & 0.0631 & 0.0782 & 0.0588 & 0.0751 & 0.3431 & 0.3088 & 0.3272 & 0.3206 & 0.0292 & 0.0398 & 0.0918 & 0.1294 & 0.0471 & 0.0253 \\ \hline 0.9 & [-1;3] & 50 & 0.1073 & 0.1480 & 0.1724 & 0.1099 & 0.6967 & 0.6888 & 0.4939 & 0.5179 & 0.1036 & 0.0557 & 0.2917 & 0.2859 & 0.1123 & 0.0894 \\ 100 & 0.0774 & 0.0747 & 0.1321 & 0.1047 & 0.5337 & 0.5173 & 0.3793 & 0.3219 & 0.0460 & 0.0414 & 0.2642 & 0.2395 & 0.0868 & 0.0672 \\ 500 & 0.0333 & 0.0338 & 0.0217 & 0.0222 & 0.2047 & 0.1983 & 0.1205 & 0.1030 & 0.0190 & 0.0198 & 0.1043 & 0.0965 & 0.0169 & 0.0134 \\ [0;2] & 50 & 0.2090 & 0.5219 & 0.2289 & 0.1975 & 0.8969 & 1.1346 & 0.8481 & 1.3390 & 0.1074 & 0.0781 & 0.2661 & 0.2687 & 0.1622 & 0.1689 \\ 100 & 0.1681 & 0.4252 & 0.2054 & 0.1838 & 0.9633 & 1.1298 & 0.8774 & 1.2386 & 0.0931 & 0.0784 & 0.2746 & 0.2510 & 0.1523 & 0.1797 \\ \hline \end{tabular}$																	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		fo. 01															
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		[0; 2]															
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$																	
$ \begin{bmatrix} 100 & 0.0774 & 0.0747 & 0.1321 & 0.1047 & 0.5337 & 0.5173 & 0.3793 & 0.3219 & 0.0460 & 0.0414 & 0.2642 & 0.2395 & 0.0868 & 0.0672 \\ 500 & 0.0333 & 0.0338 & 0.0217 & 0.0222 & 0.2047 & 0.1983 & 0.1205 & 0.1030 & 0.0190 & 0.0198 & 0.1043 & 0.0965 & 0.0169 & 0.0134 \\ [0;2] & 50 & 0.2090 & 0.5219 & 0.2289 & 0.1975 & 0.8969 & 1.1346 & 0.8481 & 1.3390 & 0.1074 & 0.0781 & 0.2661 & 0.2687 & 0.1622 & 0.1689 \\ 100 & 0.1681 & 0.4252 & 0.2054 & 0.1838 & 0.9633 & 1.1298 & 0.8774 & 1.2386 & 0.0931 & 0.0784 & 0.2746 & 0.2510 & 0.1523 & 0.1797 \\ \end{bmatrix} $																	
$ \begin{bmatrix} 500 & 0.0333 & 0.0338 & 0.0217 & 0.0222 & 0.2047 & 0.1983 & 0.1205 & 0.1030 & 0.0190 & 0.0198 & 0.1043 & 0.0965 & 0.0169 & 0.0134 \\ [0;2] & 50 & 0.2090 & 0.5219 & 0.2289 & 0.1975 & 0.8969 & 1.1346 & 0.8481 & 1.3390 & 0.1074 & 0.0781 & 0.2661 & 0.2687 & 0.1622 & 0.1689 \\ [0;2] & 100 & 0.1681 & 0.4252 & 0.2054 & 0.1838 & 0.9633 & 1.1298 & 0.8774 & 1.2386 & 0.0931 & 0.0784 & 0.2746 & 0.2510 & 0.1523 & 0.1797 \\ [0;2] & 100 & 0.0181 & 0.4252 & 0.2054 & 0.1838 & 0.9633 & 1.1298 & 0.8774 & 1.2386 & 0.0931 & 0.0784 & 0.2746 & 0.2510 & 0.1523 & 0.1797 \\ [0;2] & 100 & 0.0181 & 0.4252 & 0.2054 & 0.1838 & 0.9633 & 1.1298 & 0.8774 & 1.2386 & 0.0931 & 0.0784 & 0.2746 & 0.2510 & 0.1523 & 0.1797 \\ [0;2] & 100 & 0.0198 & 0.01$	0.9	[-1; 3]															
$ \begin{bmatrix} 0;2 \end{bmatrix} & 50 & 0.2090 & 0.5219 & 0.2289 & 0.1975 & 0.8969 & 1.1346 & 0.8481 & 1.3390 & 0.1074 & 0.0781 & 0.2661 & 0.2687 & 0.1622 & 0.1689 \\ 100 & 0.1681 & 0.4252 & 0.2054 & 0.1838 & 0.9633 & 1.1298 & 0.8774 & 1.2386 & 0.0931 & 0.0784 & 0.2746 & 0.2510 & 0.1523 & 0.1797 \\ \end{bmatrix} $																	
$100 0.1681 \ 0.4252 \ 0.2054 \ 0.1838 \ 0.9633 \ 1.1298 \ 0.8774 \ 1.2386 \ 0.0931 \ 0.0784 \ 0.2746 \ 0.2510 \ 0.1523 \ 0.1797$																	
		[0; 2]															
500 0.0554 0.0602 0.0494 0.0552 0.5407 0.4729 0.4924 0.3980 0.0273 0.0279 0.1437 0.1893 0.0465 0.0133																	
			500	0.0554	0.0602	0.0494	0.0552	0.5407	0.4729	0.4924	0.3980	0.0273	0.0279	0.1437	0.1893	0.0465	0.0133

Tabela D.43: Estimativas do desvio padrão dos parâmetros da mistura de duas regressões lineares no caso EIII

					0	0			0	0						
_	x	n	α_1 EM	α_1 CEM	β_1 EM	β_1 CEM	α_2 EM	α_2 CEM	β_2 EM	β_2 CEM	σ_1 EM	σ_1 CEM	σ_2 EM	σ_2 CEM	$\frac{\pi_1}{\mathrm{EM}}$	$_{ ext{CEM}}^{\pi_1}$
<u>π1</u>		50														
0.1	[-1; 3]														0.1031	
		100													0.0737	
	[0.0]	500													0.0220	
	[0; 2]	50 100													0.1541	
															0.1195	
	[1 0]	500													0.1028	
0.2	[-1; 3]	50													0.0873	
		100													0.0689	
	[0.0]	500													0.0274	
	[0; 2]	50													0.1774	
		100													0.1743	
	f 4 01	500													0.0693	
0.3	[-1; 3]	50													0.0953	
		100													0.0692	
	[0 0]	500													0.0305	
	[0; 2]	50													0.1955	
		100													0.1568	
- 0.4	[1 0]	500													0.0676	
0.4	[-1; 3]	50													0.0944 0.0700	
		100 500													0.0766	
	[0.0]	50													0.0266	
	[0; 2]	100													0.1910 0.1664	
		500													0.1664	
0.5	[-1; 3]	50													0.0085	
0.5	[-1; 3]	100													0.0664	
		500													0.0004	
	[0; 2]	50													0.0311 0.1792	
	[0, 2]	100													0.1496	
		500													0.0582	
0.6	[-1; 3]	50													0.0990	
0.0	[1,0]	100													0.0627	
		500													0.0292	
	[0; 2]	50													0.1632	
	[-,-]	100													0.1372	
		500													0.0595	
0.7	[-1; 3]	50													0.1041	
• • •	[-, -,	100													0.0648	
		500													0.0253	
	[0; 2]	50													0.1702	
	L-7 J	100													0.1194	
		500													0.0556	
0.8	[-1; 3]	50													0.1096	
	. /-1	100	0.0760	0.0738	0.0496	0.0482	0.4492	0.4114	0.2797	0.2286	0.0491	0.0482	0.2046	0.1879	0.0544	0.0464
		500													0.0211	
	[0; 2]	50	0.2411	0.5439	0.2394	0.2903	1.1082	5.1924	1.0150	2.8153	0.1260	0.1318	0.3474	0.3549	0.1612	0.1863
		100													0.1220	
		500													0.0466	
0.9	[-1; 3]	50													0.0935	
		100	0.0819	0.1628	0.1060	0.1237	0.6189	0.6158	0.4381	0.4851	0.0489	0.0522	0.3036	0.2892	0.0879	0.1104
		500	0.0317	0.0317	0.0211	0.0216	0.2404	0.2252	0.1612	0.1343	0.0183	0.0189	0.1425	0.1382	0.0170	0.0130
	[0; 2]	50													0.1745	
		100													0.1305	
		500	0.0533	0.0543	0.0487	0.0495	0.5615	0.5434	0.5472	0.4140	0.0235	0.0254	0.1767	0.2741	0.0381	0.0123

Tabela D.44: Estimativas do desvio padrão dos parâmetros da mistura de duas regressões lineares no caso ${\rm EIV}$

 $210 \hspace{3.1em} Ap \hat{e}ndice \hspace{1mm} D$

			α_1	α_1	β_1	β_1	α_2	α_2	β_2	β_2	σ_1	σ_1	σ_2	σ_2	π_1	π_1
π_1	x	n	EM	CEM	EM	CEM	EM	CEM	EM	CEM	EM	CEM	EM	CEM	EM	CEM
0.1	[-1; 3]	50													0.0387	
		100													0.0359	
	[0.0]	500													0.0151	
	[0; 2]	50													0.0418	
		100													0.0341	
	[1 0]	500													0.0159	
0.2	[-1; 3]	50													0.0616	
		100													0.0468	
	[0.0]	500													0.0200	
	[0; 2]	50													0.0637	
		100													0.0457	
0.0	[1 0]	500													0.0201	
0.3	[-1; 3]	50													0.0706	
		100													0.0515	
	[0.0]	500													0.0226	
	[0; 2]	50													0.0746	
		100													0.0494	
	[1 0]	500													0.0225	
0.4	[-1; 3]	50													0.0780	
		100 500													0.0575	
	[0.0]	500 50													0.0228 0.0780	
	[0; 2]	100													0.0780	
		500													0.0398	
0.5	[1 0]															
0.5	[-1; 3]	50 100													0.0846 0.0590	
		500													0.0390	
	[0, 2]	500 50													0.0233	
	[0; 2]	100													0.0544	
		500													0.0344	
0.6	[-1; 3]	50													0.0230	
0.0	[-1, 3]	100													0.0794	
		500													0.0340	
	[0; 2]	50													0.0248	
	[0, 2]	100													0.0531	
		500													0.0331 0.0229	
0.7	[-1; 3]	50													0.0721	
0.,	[1,0]	100													0.0488	
		500													0.0433	
	[0; 2]	50													0.0202	
	[0, 2]	100													0.0530	
		500													0.0230	
0.8	[-1; 3]	50													0.0587	
0.0	[1,0]	100													0.0445	
		500													0.0205	
	[0; 2]	50													0.0645	
	1-7 1	100													0.0485	
		500													0.0186	
0.9	[-1; 3]	50													0.0360	
	. / -1	100													0.0336	
		500													0.0148	
	[0; 2]	50													0.0398	
		100													0.0358	
		500													0.0152	
											- 79					

Tabela D.45: Estimativas do desvio padrão dos parâmetros da mistura de duas regressões lineares no caso EV

α_1 α_1 β_1 β_1 α_2 α	2 2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	065 0.0708 0.0676 0.1562 0.1514 0.0653 0.0619 0.0408 0.0313
	326 0.0474 0.0469 0.1518 0.1547 0.0391 0.0386 0.0339 0.0280
	291 0.0189 0.0190 0.0602 0.0622 0.0155 0.0161 0.0183 0.0147
	373 0.1457 0.1384 0.1683 0.1512 0.0577 0.0546 0.0493 0.0391
	003 0.0976 0.0901 0.1503 0.1307 0.0421 0.0411 0.0330 0.0255
	484 0.0450 0.0441 0.0749 0.0624 0.0177 0.0174 0.0170 0.0138
	093 0.0742 0.0734 0.1525 0.1457 0.0646 0.0627 0.0650 0.0597
	753 0.0556 0.0541 0.1047 0.1026 0.0464 0.0454 0.0534 0.0487
	341 0.0247 0.0251 0.0399 0.0403 0.0203 0.0203 0.0205 0.0194
	735 0.1652 0.1632 0.1530 0.1348 0.0612 0.0552 0.0713 0.0637
	85 0.1117 0.1101 0.1072 0.0953 0.0448 0.0437 0.0506 0.0490
	186 0.0480 0.0473 0.0459 0.0402 0.0180 0.0182 0.0222 0.0231
	11 0.0928 0.0887 0.1238 0.1177 0.0683 0.0633 0.0810 0.0795
	336 0.0578 0.0564 0.0799 0.0805 0.0517 0.0490 0.0553 0.0558
500 0.0576 0.0581 0.0461 0.0469 0.0358 0.03	$360\ 0.0272\ 0.0278\ 0.0344\ 0.0347\ 0.0223\ 0.0211\ 0.0244\ 0.0254$
[0; 2] 50 0.3184 0.3427 0.3505 0.3777 0.1653 0.16	679 0.1639 0.1589 0.1317 0.1107 0.0769 0.0670 0.0952 0.0937
	274 0.1184 0.1263 0.0908 0.0744 0.0513 0.0480 0.0597 0.0659
	661 0.0536 0.0544 0.0380 0.0335 0.0214 0.0201 0.0250 0.0301
	295 0.0942 0.0891 0.0946 0.0900 0.0791 0.0727 0.0830 0.0956
	893 0.0680 0.0707 0.0655 0.0676 0.0537 0.0530 0.0552 0.0672
	396 0.0265 0.0275 0.0297 0.0296 0.0229 0.0217 0.0231 0.0300
[0; 2] 50 0.2564 0.2648 0.2562 0.2777 0.1973 0.19	961 0.2024 0.1950 0.1049 0.0878 0.0739 0.0656 0.0815 0.0943
	510 0.1462 0.1456 0.0696 0.0634 0.0537 0.0463 0.0678 0.0788
500 0.0771 0.0733 0.0842 0.0758 0.0611 0.06	326 0.0585 0.0626 0.0318 0.0268 0.0253 0.0230 0.0279 0.0378
0.5 [-1;3] 50 0.1457 0.1448 0.1100 0.1096 0.1374 0.13	369 0.1045 0.1015 0.0758 0.0741 0.0909 0.0875 0.0848 0.1087
	997 0.0706 0.0690 0.0531 0.0538 0.0596 0.0605 0.0490 0.0765
500 0.0434 0.0435 0.0308 0.0317 0.0447 0.04	450 0.0331 0.0336 0.0236 0.0250 0.0268 0.0276 0.0264 0.0499
[0; 2] 50 0.2306 0.2193 0.2371 0.2060 0.2338 0.23	227 0.2422 0.2219 0.0865 0.0752 0.0841 0.0702 0.0900 0.0990
100 0.1527 0.1480 0.1595 0.1490 0.1593 0.13	515 0.1613 0.1467 0.0624 0.0528 0.0680 0.0547 0.0616 0.0785
500 0.0665 0.0668 0.0674 0.0675 0.0650 0.06	324 0.0666 0.0664 0.0259 0.0240 0.0255 0.0224 0.0279 0.0377
$0.6 [-1;3] 50 0.1288 \; 0.1291 \; 0.1022 \; 0.1082 \; 0.1658 \; 0.1081 \; 0.1082 \;$	554 0.1236 0.1188 0.0768 0.0724 0.0908 0.0914 0.0881 0.1044
	067 0.0849 0.0866 0.0539 0.0514 0.0730 0.0716 0.0582 0.0675
	474 0.0343 0.0359 0.0232 0.0226 0.0318 0.0323 0.0266 0.0322
	517 0.2783 0.2485 0.0803 0.0658 0.0934 0.0806 0.0871 0.0940
	740 0.1863 0.1728 0.0576 0.0508 0.0683 0.0609 0.0603 0.0739
	714 0.0823 0.0729 0.0249 0.0229 0.0325 0.0293 0.0274 0.0353
	862 0.1523 0.1665 0.0706 0.0669 0.1222 0.1157 0.0812 0.0848
	67 0.1010 0.1098 0.0501 0.0466 0.0732 0.0735 0.0541 0.0551
	578 0.0453 0.0450 0.0224 0.0215 0.0385 0.0384 0.0232 0.0244
	586 0.3643 0.3753 0.0747 0.0650 0.1296 0.1054 0.0845 0.0861
	016 0.2102 0.2071 0.0519 0.0440 0.0802 0.0648 0.0513 0.0557
	888 0.0853 0.0841 0.0236 0.0221 0.0393 0.0334 0.0257 0.0312
	179 0.2073 0.2110 0.0639 0.0584 0.1443 0.1394 0.0684 0.0597
	190 0.1434 0.1475 0.0461 0.0454 0.1019 0.0977 0.0446 0.0420
	681 0.0515 0.0517 0.0200 0.0200 0.0448 0.0445 0.0214 0.0195
1 / 1	041 0.5230 0.6354 0.0667 0.0603 0.1535 0.1350 0.0800 0.0706
	555 0.2685 0.2864 0.0458 0.0435 0.0970 0.0824 0.0510 0.0505
	174 0.1310 0.1236 0.0205 0.0204 0.0493 0.0416 0.0236 0.0223
	346 0.2725 0.4242 0.0604 0.0658 0.1617 0.1544 0.0459 0.0700
	528 0.2503 0.3747 0.0418 0.0404 0.1528 0.1457 0.0366 0.0291
	026 0.0861 0.1009 0.0171 0.0176 0.0546 0.0588 0.0184 0.0160
	266 0.6578 0.9340 0.0639 0.0590 0.1801 0.1545 0.0489 0.0698
	720 0.4663 0.6437 0.0396 0.0386 0.1488 0.1260 0.0373 0.0283
500 0.0466 0.0464 0.0410 0.0409 0.1740 0.18	343 0.2018 0.2119 0.0169 0.0176 0.0720 0.0616 0.0165 0.0137

Tabela D.46: Estimativas do desvio padrão dos parâmetros da mistura de duas regressões lineares no caso EVI

 $212 \hspace{3.1em} Ap \hat{\mathbf{e}} \mathbf{n} \mathbf{d} \mathbf{i} \mathbf{c} \mathbf{e} \hspace{1.1em} D$

			α_1	α_1	β_1	β_1	α_2	α_2	β_2	β_2	σ_1	σ_1	σ_2	σ_2	π_1	π_1
π_1	x	n	EM	CEM	EM	CEM	$_{\rm EM}$	CEM	$_{\rm EM}$	CEM	$_{\rm EM}$	CEM	$_{\rm EM}$	CEM	$_{\rm EM}$	CEM
0.1	[-1; 3]	50													0.0456	
		100													0.0419	
		500	0.1037	0.1232	0.1104	0.2595	0.0617	0.0637	0.0407	0.0447	0.0749	0.0810	0.0332	0.0352	0.0194	0.0138
	[0; 2]	50	0.5849	0.7395	0.6553	1.1763	0.3405	0.3184	0.3015	0.2813	0.2098	0.1361	0.1362	0.1153	0.0766	0.0438
		100	0.5240	0.5101	0.5757	0.9384	0.2478	0.2258	0.2122	0.1937	0.1917	0.1391	0.0874	0.0809	0.0658	0.0347
		500	0.2235	0.2462	0.3037	0.4197	0.0978	0.1076	0.0877	0.0878	0.0964	0.0792	0.0397	0.0448	0.0213	0.0189
0.2	[-1; 3]	50	0.3671	0.2635	0.2636	0.3291	0.2355	0.2200	0.1499	0.1550	0.1713	0.1485	0.1274	0.1110	0.0814	0.0838
		100	0.1739	0.1702	0.1743	0.2764	0.1540	0.1580	0.1106	0.1126	0.1227	0.1214	0.0902	0.0882	0.0567	0.0558
		500	0.0706	0.0730	0.0654	0.1801	0.0693	0.0739	0.0449	0.0583	0.0518	0.0557	0.0382	0.0399	0.0238	0.0257
	[0; 2]	50	0.5436	0.4976	0.5711	0.7427	0.3408	0.3515	0.2854	0.2842	0.1892	0.1409	0.1513	0.1336	0.0927	0.0797
		100	0.3647	0.3494	0.3972	0.5229	0.2371	0.2385	0.2129	0.2193	0.1435	0.1187	0.1029	0.1020	0.0647	0.0750
		500													0.0265	
0.3	[-1; 3]	50													0.0902	
	[-, -]	100													0.0596	
		500													0.0275	
	[0; 2]	50													0.1033	
	[0, 2]	100													0.0713	
		500													0.0302	
0.4	[1.9]	50													0.0302	
0.4	[-1; 3]	100													0.0598	
		500													0.0398 0.0295	
	[0.0]															
	[0; 2]	50													0.1003	
		100													0.0723	
		500													0.0336	
0.5	[-1; 3]	50													0.0901	
		100													0.0632	
		500													0.0267	
	[0; 2]	50													0.1050	
		100													0.0761	
		500													0.0284	
0.6	[-1; 3]	50													0.0815	
		100													0.0633	
		500													0.0279	
	[0; 2]	50	0.2156	0.2026	0.2027	0.1873	0.6688	0.5256	0.6209	0.5560	0.1019	0.0742	0.2213	0.2012	0.1063	0.0846
		100	0.1447	0.1515	0.1407	0.1460	0.4117	0.3908	0.3588	0.4116	0.0621	0.0637	0.1596	0.1600	0.0684	0.0647
		500	0.0681	0.0711	0.0641	0.0648	0.1692	0.1580	0.1439	0.1739	0.0267	0.0345	0.0610	0.0659	0.0311	0.0346
0.7	[-1; 3]	50	0.1293	0.1274	0.0886	0.0869	0.3847	0.3861	0.2932	0.3808	0.0722	0.0679	0.2408	0.2447	0.0757	0.0728
	-	100	0.0738	0.0738	0.0586	0.0580	0.2775	0.2601	0.1921	0.2208	0.0541	0.0527	0.1589	0.1636	0.0581	0.0553
		500	0.0375	0.0380	0.0264	0.0273	0.1134	0.1081	0.0766	0.0889	0.0225	0.0233	0.0734	0.0765	0.0260	0.0247
	[0; 2]	50	0.2192	0.2080	0.2568	0.1854	0.7791	0.6462	0.7080	0.7257	0.0832	0.0749	0.2540	0.2203	0.0995	0.0726
		100	0.1337	0.1362	0.1203	0.1212	0.4109	0.3779	0.4235	0.4793	0.0566	0.0526	0.1825	0.1622	0.0662	0.0585
		500	0.0567	0.0579	0.0552	0.0527	0.1841	0.1764	0.1663	0.1874	0.0227	0.0261	0.0760	0.0806	0.0277	0.0253
0.8	[-1; 3]	50	0.1122	0.1125	0.0794	0.0773	0.5604	0.5630	0.5195	0.6598	0.0698	0.0641	0.2862	0.2813	0.0741	0.0549
	[-, -]	100													0.0453	
		500													0.0206	
	[0; 2]	50													0.0748	
	[-,-]	100													0.0601	
		500													0.0249	
0.9	[-1; 3]	50													0.0382	
0.5	[1,0]	100													0.0399	
		500													0.0399	
	[0; 2]	500 50													0.0171	
	[0, 2]	100													0.0739	
		500													0.0410 0.0192	
		500	0.0517	0.0521	0.0451	0.0436	0.3036	0.3228	0.3443	0.3316	0.0195	0.0203	0.1005	0.1202	0.0192	0.0128

Tabela D.47: Estimativas do desvio padrão dos parâmetros da mistura de duas regressões lineares no caso EVII

The part																	
1					α_1	β_1	β_1			β_2	β_2	σ_1	σ_1		σ_2	π_1	π_1
100 0.2523 0.2550 0.2308 0.2527 0.0737 0.0736 0.0487 0.0478 0.1347 0.1249 0.0403 0.0396 0.0299 0.0268 500	$_{-}\pi_{1}$																
100 1,000	0.1	[-1; 3]															
[07.2] 50 0 0.5351 0.5238 0.5451 0.5134 0.1556 0.1558 0.1556 0.1336 0.1448 0.1384 0.0515 0.0350 0.0304 1 0.043 0.4737 0.4510 0.4141 0.1099 0.1099 0.0996 0.0999 0.1319 0.1235 0.0364 0.0364 0.0280 0.0282 0.0217 0.28 0.171 0.1688 0.1470 0.1418 0.0494 0.0491 0.0421 0.0421 0.0510 1.0474 0.0166 0.0123 0.0125 0.0127 0.0243 0.2475 0.2290 0.2284 0.0995 0.0992 0.0708 0.0696 0.1324 0.1298 0.0632 0.0615 0.0123 0.0127 0.0806 0.1819 0.1360 0.1367 0.0808 0.0806 0.0518 0.0510 0.0971 0.0925 0.0445 0.0441 0.0426 0.0410 0.0632 0.0636 0.0538 0.0538 0.0334 0.0334 0.0334 0.0338 0.0338 0.0335 0.0358 0.0536 0.0180 0.0177 0.0198 0.0199 0.0945 0.0445 0.0425 0.0410 0.0426 0.0411 0.0426 0.0410 0.0426 0.0410 0.0426 0.0410 0.0426 0.0411 0.0426 0.0410 0.0426 0.0411 0.0426 0.0410 0.0426 0.0411 0.0426 0.0410 0.0426 0.0411 0.0426 0.0410 0.0400 0.0400 0.0426 0.0411 0.0426 0.0411 0.0426 0.0411 0.0426 0.0410 0.0400																	
100																	
1.0		[0; 2]															
Color																	
100																	
10	0.2	[-1; 3]															
10																	
100																	
1.0.3 5.00 0.1127 0.1122 0.0965 0.0953 0.0518 0.0520 0.0461 0.0463 0.0358 0.0354 0.0152 0.0178 0.0178 0.0178 0.0178		[0; 2]															
1-13 50																	
100																	
$ \begin{bmatrix} [0;2] & 500 & 0.0526 & 0.0538 & 0.0425 & 0.0433 & 0.0347 & 0.0347 & 0.0248 & 0.0279 & 0.0303 & 0.0295 & 0.0295 & 0.0295 & 0.0295 \\ [0;2] & 500 & 0.3138 & 0.3075 & 0.2734 & 0.1273 & 0.1549 & 0.1493 & 0.1011 & 0.0968 & 0.0613 & 0.0610 & 0.0648 & 0.0746 & 0.0723 & 0.0550 & 0.0464 & 0.0460 & 0.0288 & 0.0276 & 0.0200 & 0.0195 & 0.0202 & 0.0202 \\ [0;2] & 50 & 0.6613 & 0.1605 & 0.1276 & 0.1249 & 0.1345 & 0.1344 & 0.0978 & 0.1003 & 0.0965 & 0.0877 & 0.0710 & 0.0694 & 0.0787 & 0.0810 \\ [0;2] & 50 & 0.0456 & 0.0467 & 0.0380 & 0.0366 & 0.0357 & 0.0559 & 0.0563 & 0.0668 & 0.0625 & 0.0496 & 0.0437 & 0.0541 \\ [0;2] & 50 & 0.2514 & 0.2499 & 0.2225 & 0.2115 & 0.1711 & 0.1695 & 0.1705 & 0.1676 & 0.0789 & 0.0573 & 0.0659 & 0.0647 & 0.0450 & 0.0456 \\ [0;2] & 50 & 0.0726 & 0.0723 & 0.0611 & 0.0693 & 0.0457 & 0.0592 & 0.0733 & 0.0628 & 0.0264 & 0.0262 & 0.0491 & 0.0494 & 0.0431 \\ [0;2] & 50 & 0.0726 & 0.0723 & 0.0611 & 0.0693 & 0.0577 & 0.0519 & 0.0514 & 0.0243 & 0.0233 & 0.0253 & 0.0254 & 0.0447 & 0.0480 & 0.0447 & 0.0480 & 0.0584 & 0.0441 & 0.0489 & 0.0584 & 0.0584 & 0.0584 & 0.0584 & 0.0584 & 0.0264 & 0.0262 & 0.0266 & 0.0264 & 0.0262 & 0.0264 & 0.0262 & 0.0264 & 0.0262 & 0.0266 & 0.0264 & 0.0262 & 0.0264 & 0.0262 & 0.0266 & 0.0264 & 0.0262 & 0.0264 & 0.0262 & 0.0266 & 0.0264 & 0.02$	0.3	[-1; 3]															
$ \begin{bmatrix} [0;2] \\ 100 \\ 0.1948 \\ 0.1917 \\ 0.1737 \\ 0.1860 \\ 1.096 \\ 0.0861 \\ 0.0854 \\ 0.0861 \\ 0.0854 \\ 0.0861 \\ 0.0854 \\ 0.0861 \\ 0.0854 \\ 0.0861 \\ 0.0854 \\ 0.0861 \\ 0.0854 \\ 0.0861 \\ 0.0854 \\ 0.0861 \\ 0.0854 \\ 0.0861 \\ 0.0854 \\ 0.0746 \\ 0.0821 \\ 0.0861 \\ 0.0854 \\ 0.0861 \\ 0.0854 \\ 0.0861 \\ 0.0854 \\ 0.0861 \\ 0.0854 \\ 0.0861 \\ 0.0854 \\ 0.0861 \\ 0.0854 \\ 0.0861 \\ 0.0854 \\ 0.0861 \\ 0.0854 \\ 0.0861 \\ 0.0854 \\ 0.0861 \\ 0.0854 \\ 0.0861 \\ 0.0854 \\ 0.0861 \\ 0.0854 \\ 0.0861 \\ 0.0854 \\ 0.0861 \\ 0.0854 \\ 0.0861 \\ 0.0854 \\ 0.0861 \\ 0.0854 \\ 0.0861 \\ 0.0854 \\ 0.0861 \\ 0.0854 \\ 0.0856 \\ 0.0$																	
100			500														
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		[0; 2]															
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$																	
100			500	0.0861	0.0854	0.0746	0.0723	0.0552	0.0550	0.0464	0.0460	0.0288	0.0276	0.0200	0.0195	0.0202	0.0202
$ \begin{bmatrix} [0;2] \\ 50 \\ 0.0456 & 0.0457 & 0.0380 & 0.0366 & 0.0387 & 0.0383 & 0.0278 & 0.0264 & 0.0262 & 0.0211 & 0.0196 & 0.0231 & 0.0263 \\ 100 \\ 0.1696 & 0.1685 & 0.1533 & 0.1494 & 0.1401 & 0.1389 & 0.1247 & 0.0592 & 0.0573 & 0.0459 & 0.0447 & 0.0480 & 0.0481 \\ 500 \\ 0.0726 & 0.0723 & 0.0611 & 0.0603 & 0.0578 & 0.0577 & 0.0519 & 0.0514 & 0.0243 & 0.0236 & 0.0210 & 0.0205 & 0.0230 & 0.0231 \\ 0.5 \\ -[-1;3] \\ 50 \\ 0.0874 & 0.0874 & 0.0871 & 0.0699 & 0.0661 & 0.0950 & 0.0945 & 0.0680 & 0.0658 & 0.0552 & 0.0541 & 0.0520 & 0.0505 & 0.0533 & 0.0620 \\ 0.0874 & 0.0871 & 0.0699 & 0.0661 & 0.0950 & 0.0945 & 0.0680 & 0.0658 & 0.0552 & 0.0541 & 0.0520 & 0.0505 & 0.0533 & 0.0620 \\ 0.0447 & 0.0443 & 0.0342 & 0.0329 & 0.0434 & 0.0434 & 0.0317 & 0.0304 & 0.0265 & 0.0257 & 0.0222 & 0.0217 & 0.0242 & 0.0273 \\ 0.0447 & 0.0443 & 0.0342 & 0.0329 & 0.0434 & 0.0434 & 0.0317 & 0.0306 & 0.0552 & 0.0552 & 0.05257 & 0.0222 & 0.0217 & 0.0242 & 0.0273 \\ 0.0447 & 0.0443 & 0.0342 & 0.0329 & 0.0434 & 0.0434 & 0.0317 & 0.0306 & 0.0552 & 0.0552 & 0.0525 & 0.05257 & 0.0222 & 0.0217 & 0.0242 & 0.0273 \\ 0.0447 & 0.0443 & 0.0342 & 0.0329 & 0.0434 & 0.0434 & 0.0317 & 0.0306 & 0.0552 & 0.0552 & 0.05257 & 0.0222 & 0.0217 & 0.0242 & 0.0273 \\ 0.0447 & 0.0443 & 0.0342 & 0.0329 & 0.0434 & 0.0434 & 0.0317 & 0.0306 & 0.0552 & 0.0552 & 0.0525 & 0.0525 & 0.0220 & 0.0217 & 0.0242 & 0.0273 \\ 0.0447 & 0.0443 & 0.0342 & 0.0329 & 0.0434 & 0.0434 & 0.0317 & 0.0306 & 0.0534 & 0.0546 & 0.0549 & 0.0522 & 0.0509 & 0.0490 & 0.0488 \\ 0.0447 & 0.0443 & 0.0342 & 0.0444 & 0.0347 & 0.0459 & 0.0683 & 0.0522 & 0.0599 & 0.0402 & 0.0247 & 0.0247 & 0.0247 & 0.0389 & 0.0283 & 0.0283 & 0.0283 & 0.0283 & 0.0283 & 0.0283 & 0.0283 & 0.0283 & 0.0283 & 0.0283 & 0.0283 & 0.0283 & 0.0284 & 0.0545 & 0.0545 & 0.0545 & 0.0545 & 0.0645 & 0.0$	0.4	[-1; 3]	50	0.1613	0.1605	0.1276	0.1249	0.1345	0.1344	0.0978	0.1003	0.0965	0.0877	0.0710	0.0694	0.0787	0.0810
$ \begin{bmatrix} [0;2] \\ [0;0] \\ [$																	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $																	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		[0; 2]															
$ \begin{bmatrix} -1;3 \\ 0.5 \\ -1;3 \\ 100 \\ 0.0874 \ 0.0871 \ 0.0690 \ 0.0661 \ 0.0950 \ 0.0945 \ 0.0680 \ 0.0685 \ 0.0552 \ 0.0541 \ 0.0520 \ 0.0595 \ 0.0533 \ 0.0620 \\ 0.0447 \ 0.0443 \ 0.0342 \ 0.0329 \ 0.0344 \ 0.0434 \ 0.0317 \ 0.0304 \ 0.0265 \ 0.0257 \ 0.0222 \ 0.0217 \ 0.0242 \ 0.0273 \\ 0.230 \ 0.2218 \ 0.1983 \ 0.1919 \ 0.2147 \ 0.2128 \ 0.1802 \ 0.1749 \ 0.0800 \ 0.0762 \ 0.0718 \ 0.0693 \ 0.0733 \ 0.0749 \\ 100 \ 0.1479 \ 0.1473 \ 0.1324 \ 0.1306 \ 0.1452 \ 0.1446 \ 0.1308 \ 0.1291 \ 0.0534 \ 0.0514 \ 0.0522 \ 0.0509 \ 0.0490 \ 0.0488 \\ 500 \ 0.0646 \ 0.0643 \ 0.0571 \ 0.0565 \ 0.0653 \ 0.0652 \ 0.0562 \ 0.0566 \ 0.0230 \ 0.0225 \ 0.0221 \ 0.0217 \ 0.0227 \ 0.0227 \\ 0.0217 \ 0.0227 \ 0.0227 \ 0.0227 \ 0.0227 \\ 0.0871 \ 0.0871 \ 0.0870 \ 0.0844 \ 0.0652 \ 0.0563 \ 0.0652 \ 0.0562 \ 0.0566 \ 0.0230 \ 0.0225 \ 0.0221 \ 0.0217 \ 0.0227 \ 0.0227 \\ 0.0871 \ 0.0871 \ 0.0870 \ 0.0844 \ 0.0622 \ 0.1136 \ 0.0850 \ 0.0831 \ 0.0515 \ 0.0478 \ 0.0612 \ 0.0596 \ 0.0554 \ 0.0561 \\ 0.0399 \ 0.0402 \ 0.0275 \ 0.0288 \ 0.0480 \ 0.0484 \ 0.0381 \ 0.0289 \ 0.0285 \ 0.0288 \ 0.0289 \ 0.0285 \ 0.0280 \ 0.0285 \ 0.0280 \ 0.0285 \ 0.0280 \ 0.0285 \ 0.0280 \ 0.0285$																	
$ \begin{bmatrix} 100 \\ 500 \\ 0.0874 & 0.0871 & 0.0690 & 0.0661 & 0.0950 & 0.0945 & 0.0680 & 0.0552 & 0.0541 & 0.0520 & 0.0535 & 0.0533 & 0.0620 \\ 0.0447 & 0.0443 & 0.0329 & 0.0434 & 0.0347 & 0.0304 & 0.0265 & 0.0257 & 0.0222 & 0.0217 & 0.0242 & 0.0273 \\ 0.0230 & 0.2218 & 0.1983 & 0.1919 & 0.2147 & 0.2128 & 0.1802 & 0.1749 & 0.0800 & 0.0762 & 0.0718 & 0.0693 & 0.0753 & 0.0749 \\ 100 & 0.1479 & 0.1473 & 0.1324 & 0.1306 & 0.1452 & 0.1446 & 0.1308 & 0.1291 & 0.0534 & 0.0514 & 0.0522 & 0.0509 & 0.0490 & 0.0488 \\ 500 & 0.0646 & 0.0643 & 0.0551 & 0.0655 & 0.0653 & 0.0562 & 0.0556 & 0.0230 & 0.0225 & 0.0221 & 0.0217 & 0.0227 \\ 0.6 & [-1;3] & 50 & 0.1310 & 0.1301 & 0.0891 & 0.0834 & 0.1611 & 0.1622 & 0.1207 & 0.1196 & 0.0722 & 0.0665 & 0.0894 & 0.0828 & 0.0816 & 0.0860 \\ 100 & 0.0871 & 0.0870 & 0.0624 & 0.0622 & 0.1126 & 0.1136 & 0.0850 & 0.0831 & 0.0515 & 0.0478 & 0.0612 & 0.0596 & 0.0554 & 0.0613 \\ 500 & 0.0899 & 0.0402 & 0.0275 & 0.0228 & 0.0480 & 0.0484 & 0.0377 & 0.0359 & 0.0226 & 0.0218 & 0.0289 & 0.0283 & 0.0284 \\ 100 & 0.1341 & 0.1331 & 0.1166 & 0.1145 & 0.1623 & 0.1622 & 0.1399 & 0.1378 & 0.0470 & 0.0459 & 0.0634 & 0.0596 & 0.0505 & 0.0504 \\ 100 & 0.1341 & 0.1331 & 0.1166 & 0.1145 & 0.1623 & 0.1622 & 0.1399 & 0.1378 & 0.0470 & 0.0459 & 0.0634 & 0.0596 & 0.0505 & 0.0504 \\ 100 & 0.0868 & 0.0627 & 0.0592 & 0.0599 & 0.0740 & 0.0738 & 0.0625 & 0.0621 & 0.0219 & 0.0213 & 0.0269 & 0.0261 & 0.0233 & 0.0233 \\ 107 & [-1;3] & 50 & 0.1231 & 0.1235 & 0.0898 & 0.0921 & 0.2131 & 0.2157 & 0.1619 & 0.1714 & 0.0725 & 0.0699 & 0.1135 & 0.1065 & 0.0750 & 0.0767 \\ 100 & 0.0855 & 0.0862 & 0.0548 & 0.0572 & 0.1552 & 0.1552 & 0.0545 & 0.0852 & 0.0418 & 0.0700 & 0.0659 & 0.0547 & 0.0569 & 0.0567 & 0.0566 & 0.0477 & 0.0256 & 0.0553 & 0.0529 & 0.0384 & 0.0383 & 0.0209 & 0.0205 & 0.0311 & 0.0312 & 0.0212 & 0.0229 & 0.0577 & 0.0551 & 0.1066 & 0.1068 & 0.0786 & 0.0776 & 0.2844 & 0.2751 & 0.2443 & 0.2992 & 0.0577 & 0.0551 & 0.130 & 0.1252 & 0.0575 & 0.0556 & 0.0567 & 0.0566 & 0.0477 & 0.0475 & 0.0850 & 0.0381 & 0.0188 & 0.0186 & 0.0363 & 0.0352 & 0.0203 $			500														
$ \begin{bmatrix} [0;2] & 500 & 0.0447 & 0.0443 & 0.0342 & 0.0329 & 0.0434 & 0.0434 & 0.0317 & 0.0304 & 0.0265 & 0.0257 & 0.0222 & 0.0217 & 0.0242 & 0.0273 \\ 0.233 & 0.2218 & 0.1983 & 0.1919 & 0.2147 & 0.2128 & 0.1802 & 0.1749 & 0.0800 & 0.0762 & 0.0718 & 0.0693 & 0.0753 & 0.0749 \\ 0.041479 & 0.1473 & 0.1324 & 0.1306 & 0.1452 & 0.1446 & 0.1308 & 0.1291 & 0.0534 & 0.0514 & 0.0522 & 0.0509 & 0.0490 & 0.0488 \\ 0.0646 & 0.0643 & 0.0571 & 0.0565 & 0.0653 & 0.0652 & 0.0556 & 0.0230 & 0.0225 & 0.0221 & 0.0217 & 0.0227 & 0.0227 \\ 0.6 & [-1;3] & 50 & 0.1310 & 0.1301 & 0.0891 & 0.0834 & 0.1611 & 0.1622 & 0.1207 & 0.1196 & 0.0722 & 0.0665 & 0.0894 & 0.0828 & 0.0816 & 0.0860 \\ & 500 & 0.0871 & 0.0870 & 0.0624 & 0.0622 & 0.1126 & 0.1136 & 0.0850 & 0.0831 & 0.0515 & 0.0478 & 0.0612 & 0.0594 & 0.0613 \\ & 500 & 0.0399 & 0.0402 & 0.0275 & 0.0288 & 0.0480 & 0.0484 & 0.0377 & 0.0359 & 0.0226 & 0.0218 & 0.0289 & 0.0283 & 0.0251 & 0.0299 \\ & [0;2] & 50 & 0.1879 & 0.1872 & 0.1595 & 0.1578 & 0.2406 & 0.2403 & 0.2081 & 0.2033 & 0.0669 & 0.0834 & 0.0812 & 0.0692 & 0.0684 \\ & 500 & 0.0628 & 0.0627 & 0.0592 & 0.0590 & 0.0740 & 0.0738 & 0.0625 & 0.0621 & 0.0219 & 0.0213 & 0.0269 & 0.0261 & 0.0233 & 0.0233 \\ \hline 0.7 & [-1;3] & 50 & 0.1231 & 0.1235 & 0.0898 & 0.0921 & 0.2131 & 0.2157 & 0.1619 & 0.1714 & 0.0725 & 0.0699 & 0.1135 & 0.1665 & 0.0750 & 0.0767 \\ & 500 & 0.0831 & 0.0312 & 0.0247 & 0.0256 & 0.0523 & 0.0529 & 0.0384 & 0.0383 & 0.0290 & 0.0205 & 0.0311 & 0.0287 & 0.0212 & 0.0229 \\ & [0;2] & 50 & 0.1707 & 0.1704 & 0.1562 & 0.1514 & 0.3000 & 0.2980 & 0.2685 & 0.2616 & 0.0623 & 0.0569 & 0.1012 & 0.0912 & 0.0630 & 0.0632 \\ & [0;2] & 50 & 0.1707 & 0.1704 & 0.1562 & 0.1514 & 0.3000 & 0.2980 & 0.0732 & 0.0181 & 0.0177 & 0.0301 & 0.0290 & 0.0194 & 0.0194 \\ \hline 0.8 & [-1;3] & 50 & 0.1666 & 0.1068 & 0.0786 & 0.0776 & 0.2844 & 0.2751 & 0.2443 & 0.2092 & 0.0557 & 0.0551 & 0.1300 & 0.1252 & 0.0575 & 0.0556 \\ \hline 0.0 & 0.0567 & 0.0566 & 0.0477 & 0.0457 & 0.0564 & 0.1587 & 0.1607 & 0.1208 & 0.111 & 0.0401 & 0.0995 & 0.0955 & 0.0466 & 0.0476 \\ \hline 0.0 & 0.0560 & 0.0305 $	0.5	[-1; 3]															
$ \begin{bmatrix} [0;2] \\ [0;2] \\ [0;2] \\ [0;2] \\ [0;2] \\ [0;2] \\ [0;2] \\ [0;2] \\ [0;2] \\ [0;3] \\ [0;2] \\ [0;2] \\ [0;3] \\ [0;2] \\ [0;3] \\ [0;2] \\ [0;3] \\ [0;2] \\ [0;3] \\ [0;2] \\ [0;2] \\ [0;3] \\ [0;3] \\ [0;2] \\ [0;3] \\ [0;3] \\ [0;4] \\ [0;4] \\ [0;4] \\ [0;4] \\ [0;5] \\ [$																	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$																	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		[0; 2]															
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$																	
$ \begin{bmatrix} 100 \\ 500 \\ 0.0871 \ 0.0870 \ 0.0624 \ 0.0622 \ 0.1126 \ 0.1136 \ 0.0850 \ 0.0831 \ 0.0515 \ 0.0478 \ 0.0612 \ 0.0596 \ 0.0554 \ 0.0613 \\ 0.0399 \ 0.0402 \ 0.0275 \ 0.0288 \ 0.0480 \ 0.0484 \ 0.0377 \ 0.0359 \ 0.0226 \ 0.0218 \ 0.0289 \ 0.0283 \ 0.0251 \ 0.0290 \\ 100 \ 0.1341 \ 0.1331 \ 0.1166 \ 0.1145 \ 0.1623 \ 0.1622 \ 0.1399 \ 0.1378 \ 0.0470 \ 0.0459 \ 0.0634 \ 0.0596 \ 0.0505 \ 0.0504 \\ 500 \ 0.0628 \ 0.0627 \ 0.0592 \ 0.0590 \ 0.0740 \ 0.0738 \ 0.0625 \ 0.0621 \ 0.0219 \ 0.0213 \ 0.0269 \ 0.0261 \ 0.0233 \ 0.0233 \\ 0.7 \ \ [-1;3] \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$																	
$ \begin{bmatrix} [0;2] & 500 & 0.0399 & 0.0402 & 0.0275 & 0.0288 & 0.0480 & 0.0484 & 0.0377 & 0.0359 & 0.0226 & 0.0218 & 0.0289 & 0.0283 & 0.0251 & 0.0290 \\ 0.1879 & 0.1872 & 0.1595 & 0.1578 & 0.2406 & 0.2403 & 0.2081 & 0.2033 & 0.0690 & 0.0685 & 0.0837 & 0.0812 & 0.0692 & 0.0686 \\ 0.00 & 0.0341 & 0.1331 & 0.1166 & 0.1145 & 0.1623 & 0.1622 & 0.1399 & 0.1378 & 0.0470 & 0.0459 & 0.0634 & 0.0596 & 0.0505 & 0.0504 \\ 0.00 & 0.0628 & 0.0627 & 0.0592 & 0.0590 & 0.0740 & 0.0738 & 0.0625 & 0.0621 & 0.0219 & 0.0213 & 0.0269 & 0.0261 & 0.0233 & 0.0233 \\ 0.7 & [-1;3] & 50 & 0.1231 & 0.1235 & 0.0898 & 0.0921 & 0.2131 & 0.2157 & 0.1619 & 0.1714 & 0.0725 & 0.0699 & 0.1135 & 0.1065 & 0.0750 & 0.0767 \\ 100 & 0.0855 & 0.0862 & 0.0548 & 0.0572 & 0.1152 & 0.0960 & 0.0895 & 0.0452 & 0.0418 & 0.0700 & 0.0659 & 0.0519 & 0.0561 \\ 0.0311 & 0.0312 & 0.0247 & 0.0256 & 0.0523 & 0.0529 & 0.0384 & 0.0383 & 0.0299 & 0.0205 & 0.0311 & 0.0287 & 0.0212 & 0.0229 \\ [0;2] & 50 & 0.1707 & 0.1704 & 0.1562 & 0.1514 & 0.3000 & 0.2980 & 0.2685 & 0.2616 & 0.0623 & 0.0596 & 0.1012 & 0.0912 & 0.0630 & 0.0632 \\ 100 & 0.1141 & 0.1137 & 0.1404 & 0.1021 & 0.2016 & 0.1998 & 0.1715 & 0.1669 & 0.0416 & 0.0405 & 0.0685 & 0.0659 & 0.0467 & 0.0467 \\ 0.08567 & 0.0566 & 0.0477 & 0.0475 & 0.8829 & 0.0821 & 0.0750 & 0.0732 & 0.0181 & 0.0177 & 0.0301 & 0.0299 & 0.0194 & 0.0194 \\ 0.8 & [-1;3] & 50 & 0.1066 & 0.1068 & 0.0786 & 0.0766 & 0.2844 & 0.2751 & 0.2443 & 0.2092 & 0.0577 & 0.0551 & 0.1300 & 0.1252 & 0.0575 & 0.0556 \\ 0.0820 & 0.0824 & 0.0547 & 0.0564 & 0.1587 & 0.1607 & 0.1208 & 0.1211 & 0.0421 & 0.0401 & 0.0995 & 0.0955 & 0.0466 & 0.0476 \\ 0.0980 & 0.0305 & 0.0232 & 0.0237 & 0.0654 & 0.0663 & 0.0567 & 0.0580 & 0.0188 & 0.0186 & 0.0363 & 0.0352 & 0.0208 \\ 0.0577 & 0.0555 & 0.0437 & 0.0434 & 0.0988 & 0.0986 & 0.0907 & 0.0890 & 0.0174 & 0.0172 & 0.0348 & 0.0333 & 0.0178 & 0.0179 \\ 0.0980 & 0.0399 & 0.0349 & 0.0245 & 0.0248 & 0.0856 & 0.0575 & 0.1569 & 0.1569 & 0.1563 & 0.0316 & 0.0318 \\ 0.0990 & 0.0999 & 0.0939 & 0.0344 & 0.0948 & 0.0956 & 0.0958 & 0.0848 & 0.0852 & 0.0172 & 0.0$	0.6	[-1; 3]															
$ \begin{bmatrix} [0;2] \\ [$																	
$ \begin{bmatrix} 100 \\ 500 \end{bmatrix} 0.1341 \ 0.1331 \ 0.1166 \ 0.1145 \ 0.1623 \ 0.1622 \ 0.1399 \ 0.1378 \ 0.0470 \ 0.0459 \ 0.0634 \ 0.0596 \ 0.0505 \ 0.0503 \ 0.0503 \ 0.0523 \ 0.0628 \ 0.0627 \ 0.0592 \ 0.0590 \ 0.0740 \ 0.0738 \ 0.0625 \ 0.0621 \ 0.0219 \ 0.0213 \ 0.0269 \ 0.0261 \ 0.0233 \ 0.0235 \ 0.0825 \ 0.0862 \ 0.0855 \ 0.0862 \ 0.0548 \ 0.0572 \ 0.1152 \ 0.1152 \ 0.0960 \ 0.0895 \ 0.0452 \ 0.0418 \ 0.0700 \ 0.0659 \ 0.0519 \ 0.0561 \ 0.0311 \ 0.0312 \ 0.0247 \ 0.0256 \ 0.0523 \ 0.0529 \ 0.0384 \ 0.0383 \ 0.0209 \ 0.0205 \ 0.0311 \ 0.0287 \ 0.0212 \ 0.0229 \ 0.0384 \ 0.0383 \ 0.0209 \ 0.0205 \ 0.0311 \ 0.0287 \ 0.0212 \ 0.0229 \ 0.0384 \ 0.0383 \ 0.0209 \ 0.0265 \ 0.0311 \ 0.0287 \ 0.0632 \ 0.0632 \ 0.0669 \ 0.0669 \ 0.0418 \ 0.0700 \ 0.0685 \ 0.06610 \ 0.0685 \ 0.0616 \ 0.0685 \ 0.0616 \ 0.0685 \ 0.0616 \ 0.0685 \ 0.0616 \ 0.0685 \ 0.0616 \ 0.0685 \ 0.0616 \ 0.0685 \ 0.0616 \ 0.0685 \ 0.0616 \ 0.0685 \ 0.0616 \ 0.0685 \ 0.0616 \ 0.0618 \ 0.0$																	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		[0; 2]															
$ \begin{bmatrix} -1;3 \\ 0.7 \\ -1;3 \\ 0.0 \\ 0.0855 \ 0.0862 \ 0.0548 \ 0.0572 \ 0.1152 \ 0.1152 \ 0.1619 \ 0.1714 \ 0.0725 \ 0.0699 \ 0.1135 \ 0.1065 \ 0.0750 \ 0.0767 \\ 0.0855 \ 0.0862 \ 0.0548 \ 0.0572 \ 0.1152 \ 0.1152 \ 0.0960 \ 0.0895 \ 0.0452 \ 0.0418 \ 0.0700 \ 0.0659 \ 0.0519 \ 0.0561 \\ 0.0311 \ 0.0312 \ 0.0247 \ 0.0256 \ 0.0563 \ 0.0529 \ 0.0384 \ 0.0383 \ 0.0209 \ 0.0205 \ 0.0311 \ 0.0287 \ 0.0212 \ 0.0229 \\ 0.0311 \ 0.0312 \ 0.0247 \ 0.0256 \ 0.0552 \ 0.0529 \ 0.0384 \ 0.0383 \ 0.0209 \ 0.0205 \ 0.0311 \ 0.0287 \ 0.0212 \ 0.0229 \\ 0.0707 \ 0.1704 \ 0.1562 \ 0.1514 \ 0.3000 \ 0.2980 \ 0.2685 \ 0.2616 \ 0.0623 \ 0.0596 \ 0.1012 \ 0.0912 \ 0.0630 \ 0.0632 \\ 100 \ 0.1141 \ 0.1137 \ 0.1040 \ 0.1021 \ 0.2016 \ 0.1998 \ 0.1715 \ 0.1669 \ 0.0416 \ 0.0405 \ 0.0859 \ 0.0685 \ 0.0659 \ 0.0467 \ 0.0467 \\ 0.0567 \ 0.0566 \ 0.0477 \ 0.0475 \ 0.0829 \ 0.0821 \ 0.0750 \ 0.0732 \ 0.0181 \ 0.0177 \ 0.0301 \ 0.0290 \ 0.0194 \ 0.0194 \\ 0.8 \ \ [-1;3] \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$																	
$ \begin{bmatrix} 100 & 0.0855 & 0.0862 & 0.0548 & 0.0572 & 0.1152 & 0.1152 & 0.0960 & 0.0895 & 0.0452 & 0.0418 & 0.0700 & 0.0659 & 0.0519 & 0.0561 \\ 500 & 0.0311 & 0.0312 & 0.0247 & 0.0256 & 0.0523 & 0.0529 & 0.0384 & 0.0383 & 0.0299 & 0.0205 & 0.0311 & 0.0287 & 0.0212 & 0.0229 \\ 500 & 1.0770 & 0.1704 & 0.1562 & 0.1514 & 0.3000 & 0.2986 & 0.2616 & 0.0623 & 0.0596 & 0.1012 & 0.0912 & 0.0632 \\ 100 & 0.1141 & 0.1137 & 0.1040 & 0.1021 & 0.2016 & 0.1998 & 0.1715 & 0.1669 & 0.0416 & 0.0405 & 0.0685 & 0.0659 & 0.0467 & 0.0467 \\ 500 & 0.0567 & 0.0566 & 0.0477 & 0.0475 & 0.0829 & 0.0821 & 0.0750 & 0.0732 & 0.0181 & 0.0177 & 0.0301 & 0.0290 & 0.0194 & 0.0194 \\ \hline 0.8 & [-1;3] & 50 & 0.1066 & 0.1068 & 0.0786 & 0.0786 & 0.8244 & 0.2751 & 0.2443 & 0.2092 & 0.0577 & 0.0551 & 0.0556 & 0.0565 & 0.0566 & 0.0567 & 0.0566 & 0.0786 & 0.0547 & 0.05484 & 0.2751 & 0.2443 & 0.2092 & 0.0577 & 0.0551 & 0.1300 & 0.1252 & 0.0556 & 0.0566 & 0.0567 & 0.0566 & 0.0567 & 0.0564 & 0.1587 & 0.1607 & 0.1208 & 0.1211 & 0.0421 & 0.0401 & 0.0995 & 0.0955 & 0.0466 & 0.0476 & 0.0566 & 0.0567 & 0.0580 & 0.0532 & 0.0232 & 0.0237 & 0.0654 & 0.0663 & 0.0567 & 0.0588 & 0.0186 & 0.0363 & 0.0352 & 0.0203 & 0.0208 & 0.0567 & 0.0561 & 0.1551 & 0.1483 & 0.1457 & 0.3773 & 0.3774 & 0.3410 & 0.3319 & 0.0629 & 0.0616 & 0.1255 & 0.1414 & 0.0609 & 0.0598 & 0.0947 & 0.0544 & 0.0438 & 0.0859 & 0.0790 & 0.0434 & 0.0428 & 0.0567 & 0.0567 & 0.0505 & 0.0437 & 0.0434 & 0.0988 & 0.0986 & 0.0907 & 0.0890 & 0.0174 & 0.0172 & 0.0348 & 0.0333 & 0.0178 & 0.0179 & 0.0713 & 0.0716 & 0.0478 & 0.0494 & 0.2242 & 0.2282 & 0.2069 & 0.2707 & 0.0383 & 0.0381 & 0.1313 & 0.1300 & 0.0316 & 0.0316 & 0.0316 & 0.0399 & 0.0399 & 0.0399 & 0.0215 & 0.0218 & 0.0926 & 0.0958 & 0.0848 & 0.0852 & 0.0172 & 0.0172 & 0.0613 & 0.0515 &$																	
$ \begin{bmatrix} 500 & 0.0311 & 0.0312 & 0.0247 & 0.0256 & 0.0523 & 0.0529 & 0.0384 & 0.0383 & 0.0209 & 0.0205 & 0.0311 & 0.0287 & 0.0212 & 0.0229 \\ 50 & 0.1707 & 0.1704 & 0.1562 & 0.1514 & 0.3000 & 0.2980 & 0.2685 & 0.2616 & 0.0623 & 0.0596 & 0.1012 & 0.0912 & 0.0630 & 0.0632 \\ 500 & 0.0567 & 0.0566 & 0.0477 & 0.0475 & 0.0829 & 0.0811 & 0.0750 & 0.0732 & 0.0181 & 0.0177 & 0.0301 & 0.0299 & 0.0194 & 0.0194 \\ \hline 0.8 & [-1;3] & 50 & 0.1066 & 0.0477 & 0.0475 & 0.0829 & 0.0821 & 0.0750 & 0.0732 & 0.0181 & 0.0177 & 0.0301 & 0.0290 & 0.0194 & 0.0194 \\ \hline 0.8 & [-1;3] & 50 & 0.1066 & 0.1068 & 0.0786 & 0.0776 & 0.2844 & 0.2751 & 0.2443 & 0.2092 & 0.0577 & 0.0551 & 0.1300 & 0.1252 & 0.0575 & 0.0556 \\ \hline 100 & 0.0820 & 0.0824 & 0.0547 & 0.0564 & 0.1587 & 0.1607 & 0.1208 & 0.1211 & 0.0421 & 0.0401 & 0.0995 & 0.0955 & 0.0466 & 0.0766 \\ \hline 0.0 & 0.0306 & 0.0305 & 0.0232 & 0.0237 & 0.0654 & 0.0663 & 0.0567 & 0.0580 & 0.0188 & 0.0186 & 0.0363 & 0.0352 & 0.0203 & 0.0208 \\ \hline [0;2] & 50 & 0.1561 & 0.1551 & 0.1483 & 0.1457 & 0.3773 & 0.3774 & 0.3410 & 0.3319 & 0.0629 & 0.0616 & 0.1205 & 0.1141 & 0.0600 & 0.0598 \\ \hline 100 & 0.1066 & 0.1059 & 0.1015 & 0.1000 & 0.2604 & 0.2547 & 0.2414 & 0.2281 & 0.0444 & 0.0438 & 0.0859 & 0.0790 & 0.0434 & 0.0428 \\ \hline 0.9 & [-1;3] & 50 & 0.1085 & 0.1084 & 0.0713 & 0.0692 & 0.3299 & 0.3410 & 0.2902 & 0.3291 & 0.0586 & 0.0575 & 0.1569 & 0.1483 & 0.0380 & 0.0348 \\ \hline 0.9 & [-1;3] & 50 & 0.1085 & 0.1084 & 0.0713 & 0.0692 & 0.3299 & 0.3410 & 0.2902 & 0.3291 & 0.0586 & 0.0575 & 0.1569 & 0.1483 & 0.0380 & 0.0348 \\ \hline 0.9 & [-1;3] & 50 & 0.1085 & 0.1084 & 0.0713 & 0.0692 & 0.3299 & 0.3410 & 0.2902 & 0.3291 & 0.0586 & 0.0575 & 0.1569 & 0.1483 & 0.0380 & 0.0348 \\ \hline 0.9 & [-1;3] & 50 & 0.1085 & 0.1084 & 0.0713 & 0.0692 & 0.3299 & 0.3410 & 0.2902 & 0.3291 & 0.0586 & 0.0575 & 0.1569 & 0.1483 & 0.0380 & 0.0348 \\ \hline 0.9 & [-1;3] & 50 & 0.1085 & 0.1084 & 0.0713 & 0.0692 & 0.3299 & 0.3410 & 0.2902 & 0.3291 & 0.0586 & 0.0575 & 0.1569 & 0.1483 & 0.0380 & 0.0348 \\ \hline 0.9 & [-1;3] & 50 & 0.00500 & 0.00500 & 0.00500 & 0.00500 & 0.00500 & 0.00$	0.7	[-1; 3]															
$ \begin{bmatrix} [0;2] \\ [$																	
$ \begin{bmatrix} 100 \\ 500 \\ 0.0141 & 0.1137 \\ 0.1040 & 0.1021 \\ 0.2016 & 0.1998 \\ 0.1715 & 0.1669 \\ 0.0416 & 0.0416 \\ 0.0416 & 0.0465 \\ 0.0685 \\ 0.0685 \\ 0.0685 \\ 0.0685 \\ 0.0685 \\ 0.0667 \\ 0.0566 \\ 0.0477 \\ 0.0475 \\ 0.0475 \\ 0.0475 \\ 0.0475 \\ 0.0821 \\ 0.0786 \\ 0.0776 \\ 0.2844 \\ 0.2751 \\ 0.2443 \\ 0.2092 \\ 0.0577 \\ 0.0581 \\ 0.0713 \\ 0.0713 \\ 0.0713 \\ 0.0664 \\ 0.0366 \\ 0.0382 \\ 0.0232 \\ 0.0237 \\ 0.0654 \\ 0.0634 \\ 0.0634 \\ 0.0654 \\ 0.0634 \\ 0.0654 \\ 0.0634 \\ 0.0634 \\ 0.0646 \\ 0.0647 \\ 0.0396 \\ 0.0395 \\ 0.0395 \\ 0.0397 \\ 0.0396 \\ 0.0397 \\ 0.0437 \\ 0.0437 \\ 0.0437 \\ 0.0437 \\ 0.0437 \\ 0.0437 \\ 0.0438 \\ 0.0986 \\ 0.0936 \\ 0.0348 \\ 0.0336 \\ 0.0316 \\ 0.0312 \\ 0.0444 \\ 0.0438 \\ 0.0438 \\ 0.0381 \\ 0.0312 \\ 0.04126 \\ 0.0478 \\ 0.0444 \\ 0.0438 \\ 0.0438 \\ 0.0386 \\ 0.0388 \\ 0.0388 \\ 0.0348 \\ 0.0$																	
$ \begin{bmatrix} -1;3 \\ 0.8 \\ [-1;3] \end{bmatrix} & 50 & 0.0567 & 0.0566 & 0.0477 & 0.0475 & 0.0829 & 0.0821 & 0.0750 & 0.0732 & 0.0181 & 0.0177 & 0.0301 & 0.0290 & 0.0194 & 0.0194 \\ 0.8 \\ [-1;3] \\ 50 & 0.1066 & 0.1068 & 0.0786 & 0.0766 & 0.2844 & 0.2751 & 0.2443 & 0.2092 & 0.0577 & 0.0551 & 0.1300 & 0.1252 & 0.0575 & 0.0556 \\ 100 & 0.0820 & 0.0824 & 0.0547 & 0.0564 & 0.1587 & 0.1607 & 0.1208 & 0.1211 & 0.0421 & 0.0401 & 0.0995 & 0.0955 & 0.0466 & 0.0476 \\ 500 & 0.0306 & 0.0305 & 0.0232 & 0.0237 & 0.0654 & 0.0663 & 0.0567 & 0.0580 & 0.0188 & 0.0186 & 0.0363 & 0.0352 & 0.0203 & 0.0208 \\ [0;2] \\ 50 & 0.1561 & 0.1551 & 0.1483 & 0.1457 & 0.3773 & 0.3774 & 0.3410 & 0.3319 & 0.0629 & 0.0616 & 0.1205 & 0.1141 & 0.0600 & 0.0598 \\ 100 & 0.1066 & 0.1059 & 0.1015 & 0.1000 & 0.2604 & 0.2547 & 0.2414 & 0.2281 & 0.0444 & 0.0438 & 0.0859 & 0.0790 & 0.0434 & 0.0428 \\ 500 & 0.0507 & 0.0505 & 0.0437 & 0.0434 & 0.0988 & 0.0997 & 0.0890 & 0.0174 & 0.0172 & 0.0348 & 0.0333 & 0.0178 \\ 0.9 & [-1;3] & 50 & 0.1085 & 0.1084 & 0.0713 & 0.0692 & 0.3299 & 0.3410 & 0.2902 & 0.3291 & 0.0586 & 0.0575 & 0.1569 & 0.1483 & 0.0380 & 0.0348 \\ 100 & 0.0713 & 0.0716 & 0.0478 & 0.0494 & 0.2242 & 0.2282 & 0.2669 & 0.2707 & 0.0383 & 0.0381 & 0.1313 & 0.1300 & 0.0316 & 0.0288 \\ 500 & 0.0309 & 0.0309 & 0.0215 & 0.0218 & 0.0926 & 0.0958 & 0.0848 & 0.0852 & 0.0172 & 0.0172 & 0.0613 & 0.0591 & 0.0154 & 0.0143 \\ [0;2] & 50 & 0.1464 & 0.1462 & 0.1236 & 0.1225 & 0.6715 & 0.6373 & 0.5566 & 0.5240 & 0.0515 & 0.0517 & 0.1560 & 0.1550 & 0.0310 \\ 100 & 0.0990 & 0.0989 & 0.0934 & 0.0930 & 0.4481 & 0.4407 & 0.3819 & 0.3650 & 0.0372 & 0.3667 & 0.1368 & 0.1286 & 0.0315 & 0.0312 \\ \end{bmatrix}$		[0; 2]															
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$																	
$ \begin{bmatrix} 100 & 0.0820 & 0.0824 & 0.0547 & 0.0564 & 0.1587 & 0.1607 & 0.1208 & 0.1211 & 0.0421 & 0.0401 & 0.0995 & 0.0955 & 0.0466 & 0.0476 \\ 500 & 0.0306 & 0.0305 & 0.0232 & 0.0237 & 0.0654 & 0.0663 & 0.0567 & 0.0580 & 0.0188 & 0.0186 & 0.0363 & 0.0352 & 0.0203 & 0.0208 \\ 500 & 1.0561 & 0.1551 & 0.1483 & 0.1457 & 0.3773 & 0.3774 & 0.3410 & 0.3319 & 0.0629 & 0.0616 & 0.1205 & 0.1141 & 0.0600 & 0.0598 \\ 100 & 0.1066 & 0.1059 & 0.1015 & 0.1000 & 0.2604 & 0.2547 & 0.2414 & 0.2281 & 0.0444 & 0.0438 & 0.0859 & 0.0790 & 0.0434 & 0.0428 \\ 500 & 0.0507 & 0.0505 & 0.0437 & 0.0434 & 0.0988 & 0.0986 & 0.0907 & 0.0890 & 0.0174 & 0.0172 & 0.0348 & 0.0333 & 0.0178 & 0.0179 \\ 0.9 & [-1;3] & 50 & 0.1085 & 0.1084 & 0.0713 & 0.0692 & 0.3299 & 0.3410 & 0.2902 & 0.3291 & 0.0586 & 0.0575 & 0.1569 & 0.1483 & 0.0380 & 0.0348 \\ 100 & 0.0713 & 0.0716 & 0.0478 & 0.0494 & 0.2242 & 0.2282 & 0.2069 & 0.2777 & 0.0383 & 0.0381 & 0.1313 & 0.1300 & 0.0316 & 0.0288 \\ 500 & 0.0309 & 0.0309 & 0.0215 & 0.0218 & 0.0926 & 0.0958 & 0.0848 & 0.0852 & 0.0172 & 0.0172 & 0.0613 & 0.0591 & 0.0154 & 0.0143 \\ [0;2] & 50 & 0.1464 & 0.1462 & 0.12236 & 0.1225 & 0.6715 & 0.6373 & 0.5566 & 0.5240 & 0.0515 & 0.0517 & 0.1553 & 0.0316 & 0.0310 \\ 100 & 0.0990 & 0.0999 & 0.0938 & 0.0934 & 0.0930 & 0.4481 & 0.4407 & 0.3819 & 0.3650 & 0.0372 & 0.3667 & 0.1368 & 0.1286 & 0.0315 & 0.0312 \\ \hline \end{tabular}$																	
$ \begin{bmatrix} [0;2] & 500 & 0.0306 & 0.0305 & 0.0232 & 0.0237 & 0.0654 & 0.0663 & 0.0567 & 0.0580 & 0.0188 & 0.0186 & 0.0363 & 0.0352 & 0.0203 & 0.0208 \\ 0.1561 & 0.1551 & 0.1483 & 0.1457 & 0.3773 & 0.3774 & 0.3410 & 0.3319 & 0.0629 & 0.0616 & 0.1205 & 0.1141 & 0.0600 & 0.0598 \\ 100 & 0.1066 & 0.1059 & 0.1015 & 0.1000 & 0.2604 & 0.2547 & 0.2414 & 0.2281 & 0.0444 & 0.0438 & 0.0859 & 0.0790 & 0.0434 & 0.0428 \\ 0.0507 & 0.0505 & 0.0437 & 0.0434 & 0.0988 & 0.0986 & 0.0907 & 0.0890 & 0.0174 & 0.0172 & 0.0348 & 0.0333 & 0.0178 & 0.0179 \\ 0.9 & [-1;3] & 50 & 0.1085 & 0.1084 & 0.0713 & 0.0692 & 0.3299 & 0.3410 & 0.2902 & 0.3291 & 0.0586 & 0.0575 & 0.1569 & 0.1483 & 0.0338 & 0.0348 \\ 100 & 0.0713 & 0.0716 & 0.0478 & 0.0494 & 0.2242 & 0.2282 & 0.2069 & 0.2707 & 0.0383 & 0.0381 & 0.1313 & 0.1300 & 0.0316 & 0.0288 \\ 500 & 0.0309 & 0.0309 & 0.0215 & 0.0218 & 0.0926 & 0.0958 & 0.0848 & 0.0852 & 0.0172 & 0.0172 & 0.0613 & 0.0591 & 0.0144 & 0.0143 \\ [0;2] & 50 & 0.1464 & 0.1462 & 0.1236 & 0.1225 & 0.6715 & 0.6373 & 0.5566 & 0.5240 & 0.0515 & 0.0517 & 0.1596 & 0.1553 & 0.0316 & 0.0310 \\ 100 & 0.0990 & 0.0989 & 0.0934 & 0.0930 & 0.4481 & 0.4407 & 0.3819 & 0.3650 & 0.0372 & 0.0367 & 0.1368 & 0.1286 & 0.0315 & 0.0312 \\ \end{bmatrix}$	0.8	[-1; 3]															
$ \begin{bmatrix} [0;2] \\ [0;3] \\ [0;2] \\ [0;3] \\ [0;3] \\ [0;4] \\ [0;4] \\ [0;5] \\ [$																	
$ \begin{bmatrix} 100 \\ 0.1066 \ 0.1059 \ 0.1015 \ 0.1000 \ 0.2604 \ 0.2547 \ 0.2414 \ 0.2281 \ 0.0444 \ 0.0438 \ 0.0859 \ 0.0790 \ 0.0434 \ 0.0428 \\ 0.0507 \ 0.0505 \ 0.0437 \ 0.0434 \ 0.0988 \ 0.0986 \ 0.0997 \ 0.0890 \ 0.0174 \ 0.0172 \ 0.0348 \ 0.0333 \ 0.0178 \ 0.0179 \\ 0.1085 \ 0.1085 \ 0.1084 \ 0.0713 \ 0.0692 \ 0.3299 \ 0.3410 \ 0.2902 \ 0.3291 \ 0.0586 \ 0.0575 \ 0.1559 \ 0.1483 \ 0.0338 \ 0.0348 \\ 100 \ 0.0713 \ 0.0716 \ 0.0478 \ 0.0494 \ 0.2242 \ 0.2282 \ 0.2069 \ 0.2707 \ 0.0383 \ 0.0381 \ 0.1313 \ 0.1300 \ 0.0316 \ 0.0288 \\ 500 \ 0.0309 \ 0.0309 \ 0.0215 \ 0.0218 \ 0.0958 \ 0.0988 \ 0.0848 \ 0.0852 \ 0.0172 \ 0.0172 \ 0.0613 \ 0.0591 \ 0.0154 \ 0.0143 \\ 0.1464 \ 0.1462 \ 0.1236 \ 0.1225 \ 0.6715 \ 0.6373 \ 0.5566 \ 0.5240 \ 0.0515 \ 0.0517 \ 0.1566 \ 0.1563 \ 0.0316 \ 0.0312 \\ 0.0990 \ 0.0998 \ 0.0934 \ 0.0930 \ 0.4481 \ 0.4407 \ 0.3819 \ 0.3650 \ 0.0372 \ 0.0367 \ 0.1368 \ 0.1286 \ 0.0315 \ 0.0312 \\ 0.0990 \ 0.0998 \ 0.0934 \ 0.0930 \ 0.4481 \ 0.4407 \ 0.3819 \ 0.3650 \ 0.0372 \ 0.0367 \ 0.1368 \ 0.1286 \ 0.0315 \ 0.0312 \\ 0.0000000000000000000000000000000000$		fo. 01															
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		[0; 2]															
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$																	
$ \begin{bmatrix} 100 & 0.0713 & 0.0716 & 0.0478 & 0.0494 & 0.2242 & 0.2282 & 0.2069 & 0.2707 & 0.0383 & 0.0381 & 0.1313 & 0.1300 & 0.0316 & 0.0288 \\ 500 & 0.0309 & 0.0309 & 0.0215 & 0.0218 & 0.0926 & 0.0958 & 0.0848 & 0.0852 & 0.0172 & 0.0172 & 0.0613 & 0.0591 & 0.0154 & 0.0143 \\ 500 & 0.1464 & 0.1462 & 0.1236 & 0.1225 & 0.6715 & 0.6373 & 0.5566 & 0.5240 & 0.0515 & 0.0517 & 0.1553 & 0.0316 & 0.0310 \\ 100 & 0.0990 & 0.0989 & 0.0934 & 0.0930 & 0.4481 & 0.4407 & 0.3819 & 0.3650 & 0.0372 & 0.0367 & 0.1368 & 0.1286 & 0.0315 & 0.0312 \\ \end{bmatrix} $																	
$ \begin{bmatrix} 500 & 0.0309 \ 0.0309 \ 0.0215 \ 0.0218 \ 0.0926 \ 0.0958 \ 0.0848 \ 0.0852 \ 0.0172 \ 0.0172 \ 0.0613 \ 0.0591 \ 0.0154 \ 0.0143 \\ 50 & 0.1464 \ 0.1462 \ 0.1236 \ 0.1225 \ 0.6715 \ 0.6373 \ 0.5566 \ 0.5240 \ 0.0515 \ 0.0517 \ 0.1596 \ 0.1553 \ 0.0316 \ 0.0310 \\ 100 & 0.0990 \ 0.0989 \ 0.0934 \ 0.0930 \ 0.4481 \ 0.4407 \ 0.3819 \ 0.3650 \ 0.0372 \ 0.0367 \ 0.1368 \ 0.1286 \ 0.0315 \ 0.0312 \\ \end{bmatrix} $	0.9	[-1; 3]															
$ \begin{bmatrix} 0;2 \end{bmatrix} \qquad 50 \qquad 0.1464 \ 0.1462 \ 0.1236 \ 0.1225 \ 0.6715 \ 0.6373 \ 0.5566 \ 0.5240 \ 0.0515 \ 0.0517 \ 0.1596 \ 0.1553 \ 0.0316 \ 0.0310 \\ 0.0990 \ 0.0989 \ 0.0934 \ 0.0930 \ 0.4481 \ 0.4407 \ 0.3819 \ 0.3650 \ 0.0372 \ 0.0367 \ 0.1368 \ 0.1286 \ 0.0315 \ 0.0312 \\ 0.0310 \ 0.0$																	
$100 0.0990 \ 0.0989 \ 0.0934 \ 0.0930 \ 0.4481 \ 0.4407 \ 0.3819 \ 0.3650 \ 0.0372 \ 0.0367 \ 0.1368 \ 0.1286 \ 0.0315 \ 0.0312$		[0.0]															
		[0; 2]															
500 0.0492 0.0491 0.0453 0.0453 0.1547 0.1526 0.1422 0.1359 0.0162 0.0161 0.0449 0.0434 0.0140 0.0140																	
			500	0.0492	0.0491	0.0453	0.0453	0.1547	0.1526	0.1422	0.1359	0.0162	0.0161	0.0449	0.0434	0.0140	0.0140

Tabela D.48: Estimativas do desvio padrão dos parâmetros da mistura de duas regressões lineares no caso EVIII

 $214 \hspace{3.1em} \textit{Apêndice D}$

			α_1	α_1	β_1	β_1	α_2	α_2	β_2	β_2	σ_1	σ_1	σ_2	σ_2	π_1	π_1
π_1	x	n	$_{\rm EM}$	CEM	$_{\rm EM}$	CEM	$_{\rm EM}$	CEM	$_{\rm EM}$	CEM	$_{\rm EM}$	CEM	EM	$_{\rm CEM}$	EM	CEM
0.1	[-1; 3]	50													0.0413	
		100													0.0340	
		500													0.0157	
	[0; 2]	50													0.0336	
		100													0.0293	
		500													0.0137	
0.2	[-1; 3]	50													0.0713	
		100													0.0450	
		500													0.0200	
	[0; 2]	50	0.3756	0.3495	0.3633	0.3168	0.2687	0.2660	0.2300	0.2220	0.1234	0.1057	0.0914	0.0875	0.0542	0.0520
		100	0.2302	0.2223	0.2072	0.1839	0.1877	0.1873	0.1632	0.1600	0.0773	0.0708	0.0684	0.0648	0.0462	0.0460
		500	0.1011	0.1001	0.0951	0.0924	0.0768	0.0773	0.0674	0.0682	0.0404	0.0380	0.0309	0.0301	0.0175	0.0177
0.3	[-1; 3]	50	0.1836	0.1829	0.1577	0.1634	0.2034	0.2052	0.1406	0.1403	0.1240	0.1114	0.1154	0.1116	0.0852	0.0907
		100	0.1252	0.1296	0.1126	0.1164	0.1195	0.1198	0.0900	0.0913	0.0810	0.0736	0.0682	0.0655	0.0541	0.0610
		500	0.0551	0.0554	0.0447	0.0468	0.0542	0.0546	0.0415	0.0469	0.0377	0.0365	0.0327	0.0325	0.0229	0.0320
	[0; 2]	50	0.2933	0.2708	0.2979	0.2575	0.2966	0.2904	0.2684	0.2545	0.1055	0.0916	0.1041	0.0977	0.0681	0.0672
		100	0.1968	0.1889	0.1918	0.1766	0.1866	0.1847	0.1685	0.1628	0.0764	0.0679	0.0769	0.0727	0.0470	0.0478
		500	0.0857	0.0851	0.0790	0.0761	0.0915	0.0905	0.0823	0.0799	0.0306	0.0291	0.0317	0.0301	0.0216	0.0218
0.4	[-1; 3]	50	0.1639	0.1637	0.1340	0.1185	0.1983	0.2024	0.1443	0.1536	0.1053	0.0965	0.1097	0.1027	0.0833	0.0965
	-	100	0.1111	0.1113	0.0923	0.0939	0.1584	0.1572	0.1039	0.1024	0.0651	0.0598	0.0874	0.0836	0.0540	0.0617
		500	0.0423	0.0422	0.0351	0.0354	0.0654	0.0656	0.0436	0.0477	0.0292	0.0283	0.0370	0.0359	0.0234	0.0291
	[0; 2]	50	0.2368	0.2350	0.2017	0.1919	0.2965	0.2897	0.2927	0.2703	0.0923	0.0829	0.1188	0.1053	0.0698	0.0679
		100	0.1630	0.1620	0.1444	0.1406	0.2094	0.2059	0.1943	0.1818	0.0552	0.0516	0.0796	0.0726	0.0527	0.0532
		500	0.0701	0.0696	0.0659	0.0644	0.0937	0.0924	0.0835	0.0800	0.0275	0.0256	0.0363	0.0341	0.0227	0.0228
0.5	[-1; 3]	50	0.1373	0.1360	0.1133	0.1063	0.2205	0.2231	0.1631	0.1717	0.0797	0.0743	0.1270	0.1208	0.0778	0.0799
		100	0.0915	0.0915	0.0718	0.0704	0.1544	0.1543	0.1168	0.1179	0.0583	0.0536	0.0863	0.0832	0.0590	0.0628
		500	0.0424	0.0428	0.0302	0.0315	0.0665	0.0670	0.0473	0.0503	0.0250	0.0233	0.0372	0.0366	0.0249	0.0295
	[0; 2]	50	0.2235	0.2215	0.1933	0.1859	0.3407	0.3252	0.3381	0.2958	0.0741	0.0708	0.1339	0.1141	0.0791	0.0772
		100	0.1365	0.1348	0.1285	0.1226	0.2440	0.2400	0.2178	0.2045	0.0553	0.0521	0.0837	0.0743	0.0542	0.0536
		500	0.0667	0.0661	0.0599	0.0581	0.1040	0.1027	0.0920	0.0886	0.0249	0.0239	0.0403	0.0368	0.0225	0.0225
0.6	[-1; 3]	50	0.1229	0.1237	0.0924	0.0878	0.2299	0.2300	0.1905	0.1982	0.0659	0.0636	0.1366	0.1325	0.0715	0.0723
		100	0.0888	0.0885	0.0642	0.0640	0.1809	0.1818	0.1315	0.1386	0.0577	0.0546	0.1046	0.0998	0.0558	0.0541
		500	0.0386	0.0388	0.0260	0.0265	0.0769	0.0771	0.0500	0.0508	0.0220	0.0208	0.0406	0.0409	0.0227	0.0237
	[0; 2]	50	0.2030	0.2005	0.1901	0.1796	0.3941	0.3798	0.3805	0.3402	0.0671	0.0639	0.1525	0.1379	0.0726	0.0702
		100	0.1368	0.1353	0.1171	0.1144	0.2755	0.2716	0.2521	0.2379	0.0456	0.0439	0.0967	0.0890	0.0494	0.0496
		500	0.0585	0.0581	0.0534	0.0523	0.1146	0.1122	0.1088	0.1028	0.0216	0.0207	0.0446	0.0408	0.0245	0.0243
0.7	[-1; 3]	50	0.1194	0.1180	0.0824	0.0818	0.2944	0.2895	0.2562	0.2492	0.0682	0.0654	0.1796	0.1646	0.0710	0.0700
		100	0.0829	0.0827	0.0630	0.0640	0.2043	0.2055	0.1660	0.1641	0.0474	0.0465	0.1132	0.1105	0.0542	0.0533
		500	0.0416	0.0418	0.0271	0.0280	0.0758	0.0777	0.0650	0.0667	0.0233	0.0227	0.0486	0.0464	0.0223	0.0226
	[0; 2]	50	0.1681	0.1671	0.1519	0.1476	0.4419	0.4387	0.3721	0.3476	0.0660	0.0621	0.1581	0.1399	0.0677	0.0660
		100	0.1233	0.1226	0.1166	0.1148	0.3170	0.3043	0.3062	0.2720	0.0447	0.0426	0.1183	0.1046	0.0450	0.0448
		500	0.0528	0.0524	0.0470	0.0466	0.1295	0.1251	0.1308	0.1198	0.0203	0.0201	0.0534	0.0472	0.0218	0.0218
0.8	[-1; 3]	50	0.1167	0.1161	0.1025	0.0763	0.6119	0.4748	0.3791	0.3572	0.0746	0.0634	0.2207	0.2056	0.0795	0.0613
	-	100	0.0747	0.0748	0.0522	0.0509	0.2700	0.2654	0.2099	0.2083	0.0438	0.0415	0.1428	0.1382	0.0434	0.0398
		500	0.0320	0.0321	0.0214	0.0216	0.1172	0.1177	0.0831	0.0878	0.0195	0.0196	0.0709	0.0654	0.0210	0.0193
	[0; 2]	50	0.1696	0.1678	0.1551	0.1511	0.6489	0.6221	0.6008	0.5400	0.0615	0.0593	0.2172	0.1903	0.0549	0.0529
		100	0.1173	0.1170	0.1065	0.1058	0.4245	0.4127	0.3945	0.3604	0.0433	0.0427	0.1499	0.1333	0.0409	0.0403
		500	0.0461	0.0466	0.0417	0.0425	0.1689	0.1646	0.1572	0.1436	0.0180	0.0179	0.0597	0.0532	0.0177	0.0175
0.9	[-1; 3]	50	0.1091	0.1092	0.0764	0.0774	0.5431	0.6046	0.5189	0.5655	0.0628	0.0592	0.2553	0.2419	0.0390	0.0336
		100	0.0747	0.0749	0.0463	0.0461	0.3799	0.4386	0.3304	0.4346	0.0401	0.0395	0.2237	0.2073	0.0315	0.0288
		500	0.0301	0.0301	0.0242	0.0243	0.1623	0.1621	0.1173	0.1198	0.0176	0.0174	0.0866	0.0820	0.0157	0.0136
	[0; 2]	50	0.3543	0.3251	0.3346	0.3155	1.0536	1.0134	0.8848	0.7883	0.0573	0.0565	0.2577	0.2356	0.0649	0.0664
		100	0.1035	0.1033	0.0936	0.0926	0.6510	0.6050	0.7200	0.6278	0.0368	0.0358	0.2081	0.1762	0.0311	0.0308
		500	0.0485	0.0487	0.0446	0.0450	0.2416	0.2336	0.2313	0.2072	0.0177	0.0179	0.0859	0.0763	0.0131	0.0129

Tabela D.49: Estimativas do desvio padrão dos parâmetros da mistura de duas regressões lineares no caso EIX

This																	
1						β_1	β_1			β_2	β_2					π_1	π_1
1.	$\frac{\pi_1}{\pi_1}$	x															
1. 1. 1. 1. 1. 1. 1. 1.	0.1	[-1; 3]															
[0, 2] 50																	
1.		[0.0]															
1. 1. 1. 1. 1. 1. 1. 1.		[0; 2]															
1.0																	
1	0.2	[1.9]															
	0.2	[-1, 3]															
[0; 2] 50																	
1.0 0.5300 0.4789 0.5293 0.4362 0.2300 0.2273 0.2200 0.2305 0.1609 0.1085 0.0975 0.0494 0.0455 1.0 0.2221 0.2035 0.22280 0.1381 0.1020 0.1038 0.0988 0.0989 0.0982 0.0904 0.0445 0.0425 0.0207 0.2007 1.0 0.3257 0.4060 0.3648 0.3454 0.2451 0.2480 0.1844 0.1766 0.2633 0.2067 0.1517 0.1261 0.0826 0.0816 1.0 0.2441 0.2426 0.2156 0.2006 0.1844 0.1797 0.1179 0.1128 0.1669 0.1447 0.0976 0.0876 0.0578 0.0613 1.0 0.2441 0.2426 0.2156 0.2006 0.1840 0.1797 0.1179 0.1128 0.1669 0.1447 0.0976 0.0876 0.0578 0.0613 1.0 0.2441 0.2426 0.2156 0.2006 0.1840 0.1797 0.1179 0.1128 0.1669 0.1447 0.0976 0.0868 0.0828 0.0828 0.0228 0.1476 0.0888 0.0849 0.0477 0.0466 0.0268 0.0328 0.0268 0.0477 0.0466 0.0268 0.0328 0.0268 0.0477 0.0466 0.0268 0.0328 0.0289 0.0289 0.0287 0.0289 0.0884 0.0722 0.0736 0.0533 0.0535 0.0847 0.0269 0.0283 0.0268 0.0477 0.0368 0.0388 0.2329 0.2261 0.1796 0.1325 0.0988 0.0869 0.0553 0.0539 0.0477 0.0368 0.0477 0.0368 0.0388 0.2328 0.2274 0.2589 0.1893 0.1052 0.0722 0.0633 0.0530 0.0487 0.0256 0.0268 0.0269 0.0276 0.1888 0.1825 0.1829 0.1838 0.1384 0.1384 0.1384 0.1386 0.1290 0.0983 0.0964 0.0844 0.0274 0.0363 0.0369 0.0354 0.0368		[0.2]															
1. 1. 1. 1. 1. 1. 1. 1.		[0, 2]															
1.3																	
100	0.3	[=1:3]															
Part	0.0	[1,0]															
Page																	
100		[0.2]															
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		[0, 2]															
Column C																	
100	0.4	[-1:3]															
500		[-, -]															
Part																	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		[0: 2]															
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		[-,-]															
$ \begin{bmatrix} -1;3 \\ -1;3$																	
$ \begin{bmatrix} & & & & & & & & & $	0.5	[-1:3]	50														
$ \begin{bmatrix} [0;2] \\ [0;2] \\ [0;2] \\ [0;3] \\ [0;4] \end{bmatrix} = \begin{bmatrix} 50 \\ 0.2876 \ 0.2828 \ 0.2999 \ 0.2875 \ 0.2935 \ 0.2957 \ 0.2768 \ 0.2772 \ 0.1242 \ 0.1340 \ 0.1344 \ 0.1115 \ 0.0571 \ 0.0554 \\ 0.2876 \ 0.2828 \ 0.2999 \ 0.2875 \ 0.2935 \ 0.2957 \ 0.2768 \ 0.2772 \ 0.1242 \ 0.1520 \ 0.1544 \ 0.1344 \ 0.1115 \ 0.0571 \ 0.0544 \\ 0.0283 \ 0.0293 \ 0.2410 \ 0.1409 \ 0.1412 \ 0.1321 \ 0.1301 \ 0.1341 \ 0.1321 \ 0.1301 \ 0.1241 \ 0.1221 \ 0.0599 \ 0.0521 \ 0.0621 \ 0.0564 \ 0.0233 \ 0.0293 \\ 0.0843 \ 0.0861 \ 0.0544 \ 0.0283 \ 0.2972 \ 0.2694 \ 0.1760 \ 0.1509 \ 0.1957 \ 0.1691 \ 0.0873 \ 0.0917 \\ 100 0.1826 \ 0.1860 \ 0.1486 \ 0.1285 \ 0.1982 \ 0.1987 \ 0.1847 \ 0.1537 \ 0.1088 \ 0.0914 \ 0.1463 \ 0.1225 \ 0.0571 \ 0.0709 \\ 100 0.2830 \ 0.3868 \ 0.3723 \ 0.3627 \ 0.5361 \ 0.5146 \ 0.5320 \ 0.4883 \ 0.1696 \ 0.1429 \ 0.2238 \ 0.1675 \ 0.0791 \ 0.0730 \\ 100 0.2832 \ 0.2733 \ 0.2667 \ 0.2577 \ 0.3710 \ 0.3512 \ 0.3383 \ 0.3190 \ 0.1115 \ 0.0966 \ 0.1494 \ 0.1140 \ 0.0618 \ 0.0597 \\ 100 0.2833 \ 0.2325 \ 0.1782 \ 0.1693 \ 0.1535 \ 0.1509 \ 0.1597 \ 0.1483 \ 0.0444 \ 0.0401 \ 0.0708 \ 0.0875 \ 0.0237 \ 0.0244 \\ 0.7 [-1;3] 50 0.2393 \ 0.2325 \ 0.1782 \ 0.1693 \ 0.3877 \ 0.3839 \ 0.3987 \ 0.3674 \ 0.1392 \ 0.1342 \ 0.2304 \ 0.2080 \ 0.0856 \ 0.0838 \\ 100 0.1641 \ 0.1612 \ 0.1266 \ 0.1194 \ 0.2842 \ 0.2870 \ 0.2583 \ 0.2386 \ 0.0903 \ 0.0851 \ 0.1760 \ 0.1524 \ 0.0574 \ 0.0612 \\ 0.0754 \ 0.0757 \ 0.0515 \ 0.0521 \ 0.1036 \ 0.1020 \ 0.0951 \ 0.0841 \ 0.0407 \ 0.0391 \ 0.0750 \ 0.0599 \ 0.0256 \ 0.0299 \\ 0.08 [-1;3] 50 0.2112 \ 0.2108 \ 0.1462 \ 0.1402 \ 0.6649 \ 0.5981 \ 0.5663 \ 0.3580 \ 0.1330 \ 0.1177 \ 0.3258 \ 0.2755 \ 0.1971 \ 0.0832 \ 0.0466 \ 0.1444 \ 0.4280 \ 0.3923 \ 0.1663 \ 0.1646 \ 0.1395 \ 0.2275 \ 0.1971 \ 0.0832 \ 0.0754 \ 0.0675 \ 0.0632 \ 0.0466 \ 0.1566 \ 0.1705 \ 0.1669 \ 0.1739 \ 0.1683 \ 0.0470 \ 0.0464 \ 0.0810 \ 0.0677 \ 0.0248 \ 0.06649 \ 0.5981 \ 0.5580 \ 0.1330 \ 0.11770 \ 0.2246 \ 0.0285 \ 0.0486 \ 0.0468 \ 0.1308 \ 0.1308 \ 0.1308 \ 0.1309 \ 0.1245 \ 0.11570 \ 0.0592 \ 0.02236 \ 0.0485 \ $. , - 1															
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			500	0.0849	0.0853	0.0684	0.0684	0.0925	0.0929	0.0676	0.0739	0.0513	0.0441	0.0477	0.0433	0.0270	0.0374
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		[0; 2]	50	0.4731	0.4594	0.4871	0.4135	0.4793	0.4544	0.4549	0.4096	0.2150	0.1453	0.2095	0.1613	0.0824	0.0791
$ \begin{bmatrix} -1;3 \\ -1;4 \\ -1;4$			100	0.2876	0.2828	0.2909	0.2875	0.2935	0.2957	0.2768	0.2772	0.1424	0.1154	0.1344	0.1115	0.0571	0.0544
$ \begin{bmatrix} 100 \\ 500 \\ 0.0843 \\ 0.0861 \\ 0.0654 \\ 0.0678 \\ 0.0843 \\ 0.0861 \\ 0.0654 \\ 0.0678 \\ 0.087 \\ 0.0843 \\ 0.0861 \\ 0.0678 \\ 0.0843 \\ 0.0861 \\ 0.0654 \\ 0.0678 \\ 0.0843 \\ 0.0861 \\ 0.0654 \\ 0.0678 \\ 0.0878 \\ 0.0813 \\ 0.0861 \\ 0.0678 \\ 0.0843 \\ 0.0861 \\ 0.0654 \\ 0.0678 \\ 0.0843 \\ 0.0861 \\ 0.0654 \\ 0.0678 \\ 0.0835 \\ 0.0865 \\ 0.0887 \\ 0.0887 \\ 0.0887 \\ 0.0887 \\ 0.0887 \\ 0.0887 \\ 0.0887 \\ 0.0883 \\ 0.0483 \\ 0.0487 \\ 0.0443 \\ 0.0483 \\ 0.0667 \\ 0.0257 \\ 0.075 \\ 0.0162 \\ 0.1169 \\ 0.1169 \\ 0.1169 \\ 0.1199 \\ 0.1109 \\ 0.1162 \\ 0.1169 \\ 0.1199 \\ 0.1199 \\ 0.1199 \\ 0.1199 \\ 0.1199 \\ 0.1199 \\ 0.1199 \\ 0.1199 \\ 0.1199 \\ 0.1199 \\ 0.1199 \\ 0.1199 \\ 0.1199 \\ 0.1199 \\ 0.1199 \\ 0.1199 \\ 0.1199 \\ 0.1199 \\ 0.1199 \\ 0.1119 \\ 0.1199 \\ 0.1199 \\ 0.1119 \\ 0.1199 \\ 0.1119 \\ 0.1199 \\ 0.1119 \\ 0.1199 \\ 0.1119 \\ 0.1199 \\ 0.1119 \\ 0.1199 \\ 0.1119 \\ 0.1199 \\ 0.1119 \\ 0.1199 \\ 0.1119 \\ 0.1199 \\ 0.1119 \\ 0.1199 \\ 0.11119 \\ 0.111119 \\ 0.111119 \\ 0.111119 \\ 0.111119 \\ 0.111119 \\ 0.111119 \\ 0.111119 \\ 0.111119 \\ 0.111119 \\ 0.11111$			500	0.1409	0.1412	0.1331	0.1347	0.1321	0.1301	0.1241	0.1221	0.0599	0.0521	0.0621	0.0544	0.0283	0.0293
$ \begin{bmatrix} [0;2] & 500 & 0.0843 & 0.0861 & 0.0654 & 0.0678 & 0.0895 & 0.0887 & 0.0813 & 0.0739 & 0.0487 & 0.0443 & 0.0596 & 0.0510 & 0.0285 & 0.0383 \\ 0.3910 & 0.3868 & 0.3723 & 0.3627 & 0.5361 & 0.5146 & 0.5320 & 0.4883 & 0.1696 & 0.1429 & 0.2238 & 0.1675 & 0.0791 & 0.0730 \\ 0.00 & 0.2832 & 0.2733 & 0.2667 & 0.2577 & 0.3710 & 0.3512 & 0.3383 & 0.3190 & 0.1115 & 0.0966 & 0.1494 & 0.1440 & 0.0618 & 0.0597 \\ 500 & 0.1162 & 0.1169 & 0.1095 & 0.1126 & 0.1535 & 0.1509 & 0.1597 & 0.1483 & 0.0444 & 0.0401 & 0.0708 & 0.0575 & 0.0237 & 0.0244 \\ 0.7 & [-1;3] & 50 & 0.2393 & 0.2325 & 0.1782 & 0.1693 & 0.3877 & 0.3839 & 0.3987 & 0.3674 & 0.1392 & 0.1342 & 0.2304 & 0.2080 & 0.0856 & 0.0838 \\ 100 & 0.1641 & 0.1612 & 0.1206 & 0.1194 & 0.2842 & 0.2870 & 0.2583 & 0.2386 & 0.0903 & 0.0851 & 0.1760 & 0.1524 & 0.0574 & 0.0612 \\ 500 & 0.0754 & 0.0757 & 0.0515 & 0.0521 & 0.1036 & 0.1020 & 0.0951 & 0.0841 & 0.0407 & 0.0391 & 0.0705 & 0.0599 & 0.0256 & 0.0299 \\ [0;2] & 50 & 0.3692 & 0.3657 & 0.3389 & 0.3305 & 0.7300 & 0.6606 & 0.6990 & 0.6106 & 0.1646 & 0.1395 & 0.2725 & 0.1971 & 0.0832 & 0.0779 \\ 100 & 0.2707 & 0.2724 & 0.2523 & 0.2456 & 0.4561 & 0.4241 & 0.4280 & 0.3923 & 0.1169 & 0.1027 & 0.2024 & 0.1483 & 0.0611 & 0.0571 \\ 500 & 0.1018 & 0.1016 & 0.1012 & 0.1056 & 0.1705 & 0.1669 & 0.1739 & 0.1683 & 0.0470 & 0.0464 & 0.0810 & 0.0677 & 0.0248 & 0.0256 \\ \hline 0.8 & [-1;3] & 50 & 0.2112 & 0.2108 & 0.1462 & 0.1402 & 0.6649 & 0.5981 & 0.5663 & 0.5580 & 0.1330 & 0.1177 & 0.3258 & 0.2764 & 0.0766 & 0.0722 \\ 100 & 0.1567 & 0.1548 & 0.1119 & 0.1075 & 0.3382 & 0.3367 & 0.2985 & 0.1330 & 0.1177 & 0.3258 & 0.2764 & 0.0766 & 0.0722 \\ 100 & 0.1567 & 0.1548 & 0.1119 & 0.1075 & 0.3382 & 0.3367 & 0.2985 & 0.0993 & 0.0952 & 0.2236 & 0.2005 & 0.0485 & 0.0468 \\ 100 & 0.1426 & 0.1447 & 0.0950 & 0.0948 & 0.1309 & 0.1245 & 0.1157 & 0.0392 & 0.0374 & 0.0397 & 0.0241 & 0.0550 \\ 100 & 0.2288 & 0.2302 & 0.2184 & 0.2174 & 0.5533 & 0.5641 & 0.5534 & 0.4555 & 0.0932 & 0.0922 & 0.2277 & 0.1576 & 0.0494 & 0.0470 & 0.0455 & 0.05650 & 0.0545 & 0.05669 & 0.5082 & 0.7264 & 0$	0.6	[-1; 3]	50	0.2453	0.2410	0.1957	0.1900	0.3196	0.3179	0.2972	0.2694	0.1760	0.1509	0.1957	0.1691	0.0873	0.0917
$ \begin{bmatrix} [0;2] \\ [0;2] \\ [0;3] \\ [0;4] \\ [0;5] \\ [0;6] \\ [0;7] \\ [$			100	0.1826	0.1860	0.1486	0.1285	0.1982	0.1987	0.1847	0.1537	0.1088	0.0914	0.1463	0.1225	0.0571	0.0709
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			500	0.0843	0.0861	0.0654	0.0678	0.0895	0.0887	0.0813	0.0739	0.0487	0.0443	0.0596	0.0510	0.0285	0.0383
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		[0; 2]	50	0.3910	0.3868	0.3723	0.3627	0.5361	0.5146	0.5320	0.4883	0.1696	0.1429	0.2238	0.1675	0.0791	0.0730
$ \begin{bmatrix} -1;3 \\ 0.7 \\ -1;3 \\ 0.8 \\ 0.1641 \\ 0.1612 \\ 0.1293 \\ 0.2325 \\ 0.1782 \\ 0.1693 \\ 0.3877 \\ 0.3839 \\ 0.3877 \\ 0.3839 \\ 0.3987 \\ 0.3687 \\ 0.3883 \\ 0.3986 \\ 0.0993 \\ 0.0851 \\ 0.1054 \\ 0.0754 \\ 0.0757 \\ 0.0915 \\ 0.0524 \\ 0.0156 \\ 0.0524 \\ 0.0136 \\ 0.0182 \\$																	
$ \begin{bmatrix} 100 & 0.1641 & 0.1612 & 0.1206 & 0.1194 & 0.2842 & 0.2870 & 0.2583 & 0.2386 & 0.0903 & 0.0851 & 0.1760 & 0.1524 & 0.0574 & 0.0612 \\ 500 & 0.0754 & 0.0757 & 0.0515 & 0.0521 & 0.1036 & 0.1020 & 0.0951 & 0.0841 & 0.0407 & 0.0391 & 0.0705 & 0.0599 & 0.0256 & 0.0299 \\ [0; 2] & 50 & 0.3692 & 0.3657 & 0.3389 & 0.3305 & 0.7300 & 0.6606 & 0.6990 & 0.6106 & 0.1646 & 0.1395 & 0.2725 & 0.1971 & 0.0832 & 0.0779 \\ 100 & 0.2707 & 0.2724 & 0.2523 & 0.2456 & 0.4561 & 0.4241 & 0.4280 & 0.3923 & 0.1169 & 0.1027 & 0.2024 & 0.1483 & 0.0611 & 0.0571 \\ 500 & 0.1018 & 0.1016 & 0.1012 & 0.1056 & 0.1705 & 0.1669 & 0.1739 & 0.1683 & 0.0470 & 0.0464 & 0.0810 & 0.0677 & 0.0248 & 0.0256 \\ \hline 0.8 & [-1; 3] & 50 & 0.2112 & 0.2108 & 0.1462 & 0.6469 & 0.5981 & 0.5663 & 0.5580 & 0.1330 & 0.1177 & 0.3258 & 0.2764 & 0.0766 & 0.0722 \\ 100 & 0.1567 & 0.1548 & 0.1119 & 0.1075 & 0.3382 & 0.3367 & 0.2980 & 0.3395 & 0.0993 & 0.0952 & 0.2236 & 0.2005 & 0.0485 & 0.0468 \\ 500 & 0.0627 & 0.0632 & 0.0461 & 0.0468 & 0.1308 & 0.1309 & 0.1245 & 0.1157 & 0.0392 & 0.0374 & 0.0990 & 0.0840 & 0.0225 & 0.0231 \\ [0; 2] & 50 & 0.3456 & 0.3393 & 0.3315 & 0.7866 & 0.7132 & 0.7552 & 0.6615 & 0.1665 & 0.1322 & 0.3277 & 0.2371 & 0.0751 & 0.0550 \\ 100 & 0.2288 & 0.2302 & 0.2184 & 0.2174 & 0.5533 & 0.5041 & 0.5534 & 0.4555 & 0.0932 & 0.0922 & 0.2277 & 0.1576 & 0.0494 & 0.0470 \\ 500 & 0.0967 & 0.0973 & 0.0921 & 0.0961 & 0.2282 & 0.2151 & 0.2336 & 0.1941 & 0.0437 & 0.0449 & 0.1045 & 0.0753 & 0.0201 & 0.0200 \\ 0.9 & [-1; 3] & 50 & 0.2052 & 0.2028 & 0.1422 & 0.1368 & 0.6945 & 0.7567 & 0.1262 & 0.1092 & 0.3367 & 0.2882 & 0.4468 & 0.367 \\ 100 & 0.1426 & 0.1447 & 0.0950 & 0.0928 & 0.5069 & 0.5669 & 0.5082 & 0.7264 & 0.0874 & 0.0885 & 0.2975 & 0.2708 & 0.0351 & 0.0285 \\ 500 & 0.0635 & 0.0637 & 0.0448 & 0.0445 & 0.1865 & 0.1837 & 0.1932 & 0.1883 & 0.0347 & 0.0359 & 0.1290 & 0.1140 & 0.0172 & 0.0145 \\ 500 & 0.2290 & 0.2228 & 0.2466 & 0.1845 & 0.1865 & 0.1837 & 0.1933 & 0.1883 & 0.0834 & 0.0351 & 0.0494 & 0.0452 \\ 500 & 0.2290 & 0.2228 & 0.2046 & 0.1884 & 0.0445 & 0.1865 & 0.1837 &$			500														
$ \begin{bmatrix} [6] \\ [$	0.7	[-1; 3]	50														
$ \begin{bmatrix} [0;2] & 50 & 0.3692 & 0.3657 & 0.3389 & 0.3305 & 0.7300 & 0.6606 & 0.6990 & 0.6106 & 0.1646 & 0.1395 & 0.2725 & 0.1971 & 0.0832 & 0.0779 \\ 0.2707 & 0.2724 & 0.2523 & 0.2456 & 0.4561 & 0.4241 & 0.4280 & 0.3923 & 0.1169 & 0.1027 & 0.2024 & 0.1483 & 0.0611 & 0.0571 \\ 500 & 0.1018 & 0.1016 & 0.1012 & 0.1055 & 0.1705 & 0.1669 & 0.1739 & 0.1683 & 0.0470 & 0.0464 & 0.0810 & 0.0677 & 0.0248 & 0.0256 \\ \hline 0.8 & [-1;3] & 50 & 0.2112 & 0.2108 & 0.1462 & 0.1402 & 0.6649 & 0.5981 & 0.5663 & 0.5580 & 0.1330 & 0.1177 & 0.3258 & 0.2764 & 0.0766 & 0.0722 \\ 100 & 0.1567 & 0.1548 & 0.1119 & 0.1075 & 0.3382 & 0.3367 & 0.2980 & 0.3395 & 0.0993 & 0.0952 & 0.2236 & 0.2005 & 0.0485 & 0.0468 \\ 500 & 0.0627 & 0.0632 & 0.0461 & 0.0468 & 0.1308 & 0.1309 & 0.1245 & 0.1157 & 0.0392 & 0.0374 & 0.0990 & 0.0840 & 0.0225 & 0.0231 \\ [0;2] & 50 & 0.3456 & 0.3393 & 0.3315 & 0.3115 & 0.7806 & 0.7132 & 0.7752 & 0.6615 & 0.1665 & 0.1322 & 0.3277 & 0.2371 & 0.0751 & 0.0550 \\ [0;2] & 50 & 0.2288 & 0.2302 & 0.2184 & 0.2174 & 0.5533 & 0.5041 & 0.5534 & 0.4555 & 0.0932 & 0.0922 & 0.2277 & 0.1576 & 0.0494 & 0.0470 \\ [0;2] & 50 & 0.2052 & 0.2028 & 0.1422 & 0.1368 & 0.6945 & 0.7267 & 0.6285 & 0.7567 & 0.1202 & 0.1092 & 0.3367 & 0.2882 & 0.0468 & 0.3667 \\ [0;2] & 50 & 0.2052 & 0.2028 & 0.1422 & 0.1368 & 0.6945 & 0.7267 & 0.6285 & 0.7567 & 0.1202 & 0.1092 & 0.3367 & 0.2882 & 0.0468 & 0.3667 \\ [0;2] & 50 & 0.2639 & 0.6637 & 0.0448 & 0.0445 & 0.1865 & 0.1837 & 0.1938 & 0.0894 & 0.0355 & 0.02975 & 0.2708 & 0.0351 & 0.0285 \\ [0;2] & 50 & 0.2899 & 0.2228 & 0.2466 & 0.2933 & 1.4239 & 1.1507 & 1.3043 & 1.1573 & 0.1306 & 0.1154 & 0.4402 & 0.3050 & 0.0648 & 0.0367 \\ [0;2] & 50 & 0.2899 & 0.2228 & 0.2046 & 0.1984 & 0.9809 & 0.8087 & 0.9919 & 0.8386 & 0.0898 & 0.0834 & 0.3221 & 0.2260 & 0.0428 & 0.0323 \\ [0;2] & 50 & 0.2899 & 0.2228 & 0.2046 & 0.1984 & 0.9809 & 0.8087 & 0.9919 & 0.8386 & 0.0898 & 0.0834 & 0.3221 & 0.2260 & 0.0428 & 0.0323 \\ [0;2] & 50 & 0.2299 & 0.2228 & 0.2046 & 0.1984 & 0.9809 & 0.8087 & 0.9919 & 0.8386 & 0.0898 & 0.8084 & 0.3221 & 0.2260 & 0.0428 $																	
$ \begin{bmatrix} 100 & 0.2707 \ 0.2724 \ 0.2523 \ 0.2456 \ 0.4561 \ 0.4241 \ 0.4280 \ 0.3923 \ 0.1169 \ 0.1027 \ 0.2024 \ 0.1483 \ 0.0611 \ 0.0571 \ 0.0118 \ 0.1016 \ 0.1016 \ 0.1015 \ 0.1056 \ 0.1705 \ 0.1669 \ 0.1739 \ 0.1683 \ 0.0470 \ 0.0464 \ 0.0810 \ 0.0677 \ 0.0248 \ 0.0256 \ 0.081 \ 0.0817 \ 0.0818 \ 0.0910 \ 0.0639 \ 0.0830 \ 0.1330 \ 0.1177 \ 0.3258 \ 0.2764 \ 0.0766 \ 0.0722 \ 0.0818 \ 0.0910 \ 0.0817 \ 0.0818 \ 0.0910 \ 0.0817 \ 0.0825 \ 0.0825 \ 0.0825 \ 0.0830 \ 0.0835 \ 0.0930 \ 0.0930 \ 0.0952 \ 0.2236 \ 0.2005 \ 0.0485 \ 0.0468 \ 0.0627 \ 0.0632 \ 0.0461 \ 0.0468 \ 0.1309 \ 0.1245 \ 0.1157 \ 0.0392 \ 0.0374 \ 0.0990 \ 0.0840 \ 0.0225 \ 0.0231 \ 0.0627 \ 0.0632 \ 0.0461 \ 0.0468 \ 0.1309 \ 0.1245 \ 0.1157 \ 0.0392 \ 0.0374 \ 0.0990 \ 0.0840 \ 0.0225 \ 0.0231 \ 0.0550 \ 0.0288 \ 0.2302 \ 0.2184 \ 0.2174 \ 0.5533 \ 0.5041 \ 0.5534 \ 0.4555 \ 0.0932 \ 0.0922 \ 0.2277 \ 0.1576 \ 0.0494 \ 0.0470 \ 0.0967 \ 0.0973 \ 0.0921 \ 0.0961 \ 0.2282 \ 0.2151 \ 0.2336 \ 0.1941 \ 0.0437 \ 0.0449 \ 0.1045 \ 0.0753 \ 0.0201 \ 0.0200 \ 0.$																	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		[0; 2]															
$ \begin{bmatrix} -1;3 \\ 0.8 \\ -1;3 \\ 100 \\ 0.1567 \\ 0.1548 \\ 0.1567 \\ 0.1548 \\ 0.1119 \\ 0.1075 \\ 0.3382 \\ 0.3327 \\ 0.3327 \\ 0.3237 \\ 0.2336 \\ 0.2990 \\ 0.2228 \\$																	
$ \begin{bmatrix} 100 & 0.1567 & 0.1548 & 0.1119 & 0.1075 & 0.3382 & 0.3367 & 0.2980 & 0.3395 & 0.0993 & 0.0952 & 0.2236 & 0.2005 & 0.0485 & 0.0468 \\ 500 & 0.0627 & 0.0632 & 0.0461 & 0.0468 & 0.1309 & 0.1245 & 0.1157 & 0.0392 & 0.0374 & 0.0990 & 0.0840 & 0.0225 & 0.0231 \\ [0; 2] & 50 & 0.3456 & 0.3393 & 0.3315 & 0.7866 & 0.7132 & 0.7752 & 0.6615 & 0.1665 & 0.1626 & 0.1322 & 0.3277 & 0.2371 & 0.0751 & 0.0550 \\ 100 & 0.2288 & 0.2302 & 0.2184 & 0.2174 & 0.5533 & 0.5041 & 0.5534 & 0.4555 & 0.0932 & 0.0922 & 0.2277 & 0.1576 & 0.0494 & 0.0470 \\ 500 & 0.0967 & 0.0973 & 0.0921 & 0.0961 & 0.2282 & 0.2151 & 0.2336 & 0.1941 & 0.0437 & 0.0449 & 0.1045 & 0.0753 & 0.0201 & 0.0200 \\ \hline 0.9 & [-1; 3] & 50 & 0.0252 & 0.0292 & 0.1422 & 0.1368 & 0.0945 & 0.7267 & 0.1202 & 0.1092 & 0.3367 & 0.2882 & 0.0468 & 0.367 \\ 100 & 0.1426 & 0.1447 & 0.0950 & 0.0928 & 0.5069 & 0.5669 & 0.5082 & 0.7264 & 0.0874 & 0.0885 & 0.2975 & 0.2708 & 0.0351 & 0.0285 \\ 500 & 0.0635 & 0.0637 & 0.0448 & 0.0445 & 0.1865 & 0.1837 & 0.1923 & 0.1883 & 0.0347 & 0.0359 & 0.1290 & 0.1140 & 0.0172 & 0.0145 \\ [0; 2] & 50 & 0.2839 & 0.2623 & 0.4126 & 0.2393 & 1.4239 & 1.1500 & 1.3043 & 1.1573 & 0.1306 & 0.1154 & 0.4402 & 0.3050 & 0.0694 & 0.0355 \\ 100 & 0.2290 & 0.2228 & 0.2046 & 0.1984 & 0.9809 & 0.8087 & 0.9919 & 0.8386 & 0.0898 & 0.0834 & 0.3221 & 0.2260 & 0.4428 & 0.0323 \\ \hline \end{tabular}$																	
$ \begin{bmatrix} [0;2] & 500 & 0.0627 & 0.0632 & 0.0461 & 0.0468 & 0.1308 & 0.1309 & 0.1245 & 0.1157 & 0.0392 & 0.0374 & 0.0990 & 0.0840 & 0.0225 & 0.0231 \\ 0.3456 & 0.3393 & 0.3315 & 0.3115 & 0.7806 & 0.7132 & 0.7752 & 0.6615 & 0.1665 & 0.1322 & 0.3277 & 0.2371 & 0.0751 & 0.0550 \\ 0.0288 & 0.2302 & 0.2184 & 0.2174 & 0.5533 & 0.5041 & 0.5534 & 0.4555 & 0.0932 & 0.0922 & 0.2277 & 0.1576 & 0.0494 & 0.0470 \\ 500 & 0.0967 & 0.0973 & 0.0921 & 0.0961 & 0.2282 & 0.2151 & 0.2336 & 0.1941 & 0.0437 & 0.0449 & 0.1045 & 0.0753 & 0.0201 & 0.0200 \\ \hline 0.9 & [-1;3] & 50 & 0.2052 & 0.2028 & 0.1422 & 0.1368 & 0.6945 & 0.7267 & 0.6285 & 0.7567 & 0.1202 & 0.1092 & 0.3367 & 0.2882 & 0.0468 & 0.0367 \\ 100 & 0.1426 & 0.1447 & 0.0950 & 0.0928 & 0.5669 & 0.5669 & 0.5682 & 0.7264 & 0.0874 & 0.0885 & 0.2975 & 0.2708 & 0.0351 & 0.0285 \\ 500 & 0.0635 & 0.0637 & 0.0448 & 0.0445 & 0.1865 & 0.1837 & 0.1932 & 0.1883 & 0.0347 & 0.0359 & 0.1290 & 0.1140 & 0.0172 & 0.0145 \\ [0;2] & 50 & 0.2839 & 0.2623 & 0.4126 & 0.2393 & 1.4239 & 1.1500 & 1.3043 & 1.1573 & 0.1306 & 0.1154 & 0.4402 & 0.3050 & 0.0694 & 0.0355 \\ [0;2] & 50 & 0.2290 & 0.2228 & 0.2046 & 0.1984 & 0.9809 & 0.8087 & 0.9919 & 0.8386 & 0.0898 & 0.0834 & 0.3221 & 0.2260 & 0.0428 & 0.0323 \\ [0;2] & 50 & 0.2290 & 0.2228 & 0.2046 & 0.1984 & 0.9809 & 0.8087 & 0.9919 & 0.8386 & 0.0898 & 0.0834 & 0.3221 & 0.2260 & 0.0428 & 0.0323 \\ [0;2] & 50 & 0.2290 & 0.2228 & 0.2046 & 0.1984 & 0.9809 & 0.8087 & 0.9919 & 0.8386 & 0.0898 & 0.0834 & 0.3221 & 0.2260 & 0.0428 & 0.0323 \\ [0;2] & 50 & 0.2290 & 0.2228 & 0.2046 & 0.1984 & 0.9809 & 0.8087 & 0.9919 & 0.8386 & 0.0898 & 0.0834 & 0.3221 & 0.2260 & 0.0428 & 0.0323 \\ [0;2] & 50 & 0.2290 & 0.2228 & 0.2046 & 0.1984 & 0.9809 & 0.8087 & 0.9919 & 0.8386 & 0.0898 & 0.0834 & 0.3221 & 0.2260 & 0.0428 & 0.0323 \\ [0;2] & 50 & 0.2290 & 0.2228 & 0.2046 & 0.1984 & 0.9809 & 0.8087 & 0.9919 & 0.8386 & 0.0898 & 0.0834 & 0.3221 & 0.2260 & 0.0428 & 0.0323 \\ [0;2] & 50 & 0.2290 & 0.2228 & 0.2046 & 0.1984 & 0.9809 & 0.8087 & 0.9919 & 0.8386 & 0.0898 & 0.0834 & 0.3221 & 0.2260 & 0.0428 & 0.$	0.8	[-1; 3]															
$ \begin{bmatrix} [0;2] & 50 & 0.3456 & 0.3393 & 0.3315 & 0.3115 & 0.7806 & 0.7132 & 0.7752 & 0.6615 & 0.1665 & 0.1322 & 0.3277 & 0.2371 & 0.0751 & 0.0550 \\ 100 & 0.2288 & 0.2302 & 0.2184 & 0.2174 & 0.5533 & 0.5041 & 0.5534 & 0.4555 & 0.0932 & 0.0922 & 0.2277 & 0.1576 & 0.0494 & 0.0470 \\ 500 & 0.0967 & 0.0973 & 0.0921 & 0.0961 & 0.2282 & 0.2151 & 0.2336 & 0.1941 & 0.0447 & 0.0449 & 0.1045 & 0.0753 & 0.0201 & 0.0200 \\ 0.9 & [-1;3] & 50 & 0.2052 & 0.2028 & 0.1422 & 0.1368 & 0.6945 & 0.7267 & 0.6285 & 0.7567 & 0.1202 & 0.1092 & 0.3367 & 0.2882 & 0.0468 & 0.0367 \\ 100 & 0.1426 & 0.1447 & 0.0950 & 0.0928 & 0.5669 & 0.5082 & 0.7264 & 0.0874 & 0.0885 & 0.2975 & 0.2708 & 0.0351 & 0.0285 \\ 500 & 0.0635 & 0.0637 & 0.0448 & 0.0445 & 0.1865 & 0.1837 & 0.1923 & 0.1838 & 0.0347 & 0.0359 & 0.1290 & 0.1140 & 0.0172 & 0.0145 \\ [0;2] & 50 & 0.2839 & 0.2623 & 0.4126 & 0.2393 & 1.4239 & 1.1500 & 1.3043 & 1.1573 & 0.1306 & 0.154 & 0.4402 & 0.3050 & 0.0694 & 0.0355 \\ [0;2] & 50 & 0.2229 & 0.2228 & 0.2046 & 0.1984 & 0.9809 & 0.8087 & 0.9919 & 0.8386 & 0.0898 & 0.0834 & 0.3221 & 0.2260 & 0.0428 & 0.0323 \\ [0;2] & 50 & 0.2229 & 0.2228 & 0.2046 & 0.1984 & 0.9809 & 0.8087 & 0.9919 & 0.8386 & 0.0898 & 0.0834 & 0.3221 & 0.2260 & 0.0428 & 0.0323 \\ [0;2] & 50 & 0.2229 & 0.2228 & 0.2046 & 0.1984 & 0.9809 & 0.8087 & 0.9919 & 0.8386 & 0.0898 & 0.0834 & 0.3221 & 0.2260 & 0.0428 & 0.0323 \\ [0;2] & 50 & 0.2228 & 0.2046 & 0.1984 & 0.9809 & 0.8087 & 0.9919 & 0.8386 & 0.0898 & 0.0834 & 0.3221 & 0.2260 & 0.0428 & 0.0323 \\ [0;2] & 50 & 0.2228 & 0.2046 & 0.1984 & 0.9809 & 0.8087 & 0.9919 & 0.8386 & 0.0898 & 0.0834 & 0.3221 & 0.2260 & 0.0428 & 0.0323 \\ [0;2] & 50 & 0.2228 & 0.2046 & 0.1984 & 0.9809 & 0.8087 & 0.9919 & 0.8386 & 0.0898 & 0.0834 & 0.3221 & 0.2260 & 0.0428 & 0.0323 \\ [0;2] & 50 & 0.0229 & 0.2228 & 0.2046 & 0.1984 & 0.9809 & 0.8087 & 0.9919 & 0.8386 & 0.0898 & 0.0834 & 0.3221 & 0.2260 & 0.0428 & 0.0323 \\ [0;2] & 50 & 0.0229 & 0.2228 & 0.2046 & 0.1984 & 0.9809 & 0.8087 & 0.9919 & 0.8386 & 0.0898 & 0.0834 & 0.3221 & 0.2260 & 0.0428 & 0.0323 \\ [0;2] & 50 & 0$																	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$																	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		[0; 2]															
$ \begin{bmatrix} 0.9 & [-1;3] & 50 & 0.2052 \ 0.2028 \ 0.1422 \ 0.1368 \ 0.6945 \ 0.7267 \ 0.6285 \ 0.7567 \ 0.1202 \ 0.1092 \ 0.3367 \ 0.2882 \ 0.0468 \ 0.0367 \\ 100 & 0.1426 \ 0.1447 \ 0.0950 \ 0.0928 \ 0.5669 \ 0.5669 \ 0.5682 \ 0.7264 \ 0.0874 \ 0.0885 \ 0.2975 \ 0.2708 \ 0.0351 \ 0.0285 \\ 500 & 0.0635 \ 0.0637 \ 0.0448 \ 0.0445 \ 0.1865 \ 0.1837 \ 0.1923 \ 0.1883 \ 0.0347 \ 0.0359 \ 0.1290 \ 0.1140 \ 0.0172 \ 0.0145 \\ 50 & 0.2839 \ 0.2623 \ 0.4126 \ 0.2393 \ 1.4239 \ 1.1500 \ 1.3043 \ 1.1573 \ 0.1306 \ 0.1154 \ 0.4402 \ 0.3050 \ 0.0694 \ 0.0355 \\ 100 & 0.2290 \ 0.2228 \ 0.2046 \ 0.1984 \ 0.9809 \ 0.8087 \ 0.9919 \ 0.8386 \ 0.0898 \ 0.0834 \ 0.3221 \ 0.2260 \ 0.0428 \ 0.0323 \\ \end{bmatrix} $																	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$																	
$ \begin{bmatrix} 500 \\ [0;2] \end{bmatrix} & 0.0635 \ 0.0637 \ 0.0448 \ 0.0445 \ 0.1865 \ 0.1837 \ 0.1923 \ 0.1883 \ 0.0347 \ 0.0359 \ 0.1290 \ 0.1140 \ 0.0172 \ 0.0145 \\ 0.2839 \ 0.2623 \ 0.4126 \ 0.2393 \ 1.4239 \ 1.1500 \ 1.3043 \ 1.1573 \ 0.1306 \ 0.1154 \ 0.4402 \ 0.3050 \ 0.0694 \ 0.0355 \\ 100 & 0.2290 \ 0.2228 \ 0.2046 \ 0.1984 \ 0.9809 \ 0.8087 \ 0.9919 \ 0.8386 \ 0.0898 \ 0.0834 \ 0.3221 \ 0.2260 \ 0.0428 \ 0.0323 \\ \end{bmatrix} $	0.9	[-1; 3]															
$ \begin{bmatrix} 0;2 \end{bmatrix} & 50 & 0.2839 & 0.2623 & 0.4126 & 0.2393 & 1.4239 & 1.1500 & 1.3043 & 1.1573 & 0.1306 & 0.1154 & 0.4402 & 0.3050 & 0.0694 & 0.0355 \\ 100 & 0.2290 & 0.2228 & 0.2046 & 0.1984 & 0.9809 & 0.8087 & 0.9919 & 0.8386 & 0.0898 & 0.0834 & 0.3221 & 0.2260 & 0.0428 & 0.0323 \\ \end{bmatrix} $																	
$100 \qquad 0.2290 \ 0.2228 \ 0.2046 \ 0.1984 \ 0.9809 \ 0.8087 \ 0.9919 \ 0.8386 \ 0.0898 \ 0.0834 \ 0.3221 \ 0.2260 \ 0.0428 \ 0.0323$		[0.0]															
		[0; 2]															
$500 - 0.0996 \ 0.0992 \ 0.0920 \ 0.0950 \ 0.3350 \ 0.3059 \ 0.3490 \ 0.2726 \ 0.0371 \ 0.0392 \ 0.1358 \ 0.1050 \ 0.0173 \ 0.0167$																	
			500	0.0996	0.0992	0.0920	0.0950	0.3350	0.3059	0.3490	0.2726	0.0371	0.0392	0.1358	0.1050	0.0173	0.0167

Tabela D.50: Estimativas do desvio padrão dos parâmetros da mistura de duas regressões lineares no caso EX

 $216 \hspace{3.1em} Ap \hat{\mathbf{e}} \mathbf{n} \mathbf{d} \mathbf{i} \mathbf{c} \mathbf{e} \, D$

			α_1	α_1	β_1	β_1	α_2	α_2	β_2	β_2	σ_1	σ_1	σ_2	σ_2	π_1	π_1
$\frac{\pi_1}{2}$	x	n	EM	CEM	EM	CEM	EM	CEM	EM	CEM	EM	CEM	EM	CEM	EM	CEM
0.1	[-1; 3]	50													0.0026	
		100 500													0.0012	
	[0.0]	50													0.0002 0.0066	
	[0; 2]	100													0.0048	
		500													0.0048	
0.2	[-1; 3]	50													0.0003	
0.2	[-1; 3]	100													0.0040	
		500													0.0019	
	[0; 2]	50													0.0067	
	[0; 2]	100													0.0007	
		500													0.0027	
0.3	[-1; 3]	50													0.0054	
0.5	[-1, 3]	100													0.0034	
		500													0.0020	
	[0; 2]	50													0.0075	
	[0, 2]	100													0.0032	
		500													0.0006	
0.4	[-1; 3]	50													0.0053	
0.4	[1,0]	100													0.0035	
		500													0.0006	
	[0; 2]	50													0.0089	
	[0, 2]	100													0.0043	
		500													0.0007	
0.5	[-1; 3]	50													0.0066	
	[-, -]	100													0.0030	
		500													0.0006	
	[0; 2]	50	0.0225	0.0253	0.0161	0.0169	0.0184	0.0168	0.0139	0.0110	0.0045	0.0052	0.0036	0.0040	0.0098	0.0162
	1-71	100	0.0092	0.0096	0.0070	0.0070	0.0100	0.0097	0.0071	0.0074	0.0015	0.0022	0.0015	0.0021	0.0045	0.0098
		500	0.0017	0.0028	0.0013	0.0023	0.0018	0.0027	0.0013	0.0023	0.0003	0.0008	0.0003	0.0008	0.0009	0.0040
0.6	[-1; 3]	50	0.0060	0.0059	0.0022	0.0022	0.0091	0.0090	0.0040	0.0040	0.0020	0.0022	0.0031	0.0034	0.0060	0.0072
		100	0.0028	0.0029	0.0011	0.0011	0.0049	0.0050	0.0019	0.0019	0.0010	0.0011	0.0015	0.0017	0.0028	0.0043
		500	0.0006	0.0006	0.0002	0.0003	0.0007	0.0007	0.0003	0.0003	0.0001	0.0002	0.0003	0.0004	0.0006	0.0013
	[0; 2]	50	0.0127	0.0132	0.0093	0.0102	0.0292	0.0291	0.0238	0.0218	0.0029	0.0035	0.0048	0.0061	0.0086	0.0150
		100	0.0064	0.0067	0.0051	0.0053	0.0120	0.0125	0.0095	0.0095	0.0012	0.0017	0.0021	0.0026	0.0036	0.0078
		500													0.0008	
0.7	[-1; 3]	50													0.0048	
		100													0.0024	
		500													0.0005	
	[0; 2]	50													0.0086	
		100													0.0035	
		500													0.0006	
0.8	[-1; 3]	50													0.0037	
		100													0.0018	
		500													0.0004	
	[0; 2]	50													0.0055	
		100													0.0025	
		500													0.0005	
0.9	[-1; 3]	50													0.0081	
		100													0.0012	
	[0 0]	500													0.0002	
	[0; 2]	50													0.0096	
		100													0.0014	
		500	0.0007	0.0007	0.0006	0.0006	0.0135	0.0172	0.0101	0.0135	0.0001	0.0001	0.0020	0.0029	0.0003	0.0014

Tabela D.51: Estimativas do erro quadratico médio dos parâmetros da mistura de duas regressões lineares no caso EI

_	_		$_{ m EM}^{lpha_1}$	α_1 CEM	β_1 EM	β_1 CEM	α_2 EM	α_2 CEM	β_2 EM	β_2 CEM	σ_1 EM	σ_1 CEM	σ_2 EM	σ_2 CEM	π_1 EM	$_{ ext{CEM}}^{\pi_1}$
- T1	[-1; 3]	50													0.0086	
0.1	[-1; 3]	100													0.0086 0.0074	
		500													0.0074	
	[0; 2]	50													0.0002	
	[0, 2]	100													0.0201	
		500													0.0122 0.0021	
0.2	[1.9]	50													0.0021	
0.2	[-1; 3]	100													0.0046 0.0025	
		500													0.0023	
	[0.0]	500													0.0004 0.0225	
	[0; 2]	100													0.0225 0.0126	
		500													0.0120	
0.3	[-1; 3]	50													0.0016	
0.3	[-1; 3]	100													0.0080	
		500													0.0023	
	[0.0]	500 50													0.0005 0.0216	
	[0; 2]	100													0.0216 0.0124	
		500													0.0124 0.0018	
0.4	[-1; 3]	50													0.0018	
0.4	[-1; 3]	100													0.0072	
		500													0.0006	
	[0; 2]	50													0.0000	
	[0, 2]	100													0.0214 0.0147	
		500													0.00147	
0.5	[-1; 3]	50													0.0013	
0.5	[-1, 3]	100													0.0003	
		500													0.0007	
	[0; 2]	50													0.0007	
	[0, 2]	100													0.0222	
		500													0.0019	
0.6	[-1; 3]	50													0.0056	
0.0	[1,0]	100													0.0032	
		500													0.0002	
	[0; 2]	50													0.0275	
	[-,-]	100													0.0132	
		500													0.0025	
0.7	[-1; 3]	50													0.0066	
	[-, -]	100													0.0033	
		500													0.0005	
	[0; 2]	50													0.0215	
	1-7 1	100													0.0134	
		500	0.0055	0.0300	0.0041	0.0282	0.0193	0.2064	0.0159	0.1840	0.0008	0.0034	0.0024	0.0231	0.0016	0.0256
0.8	[-1; 3]	50	0.0112	0.0123	0.0058	0.0119	0.0834	0.0784	0.0345	0.0488	0.0042	0.0045	0.0336	0.0353	0.0042	0.0070
	. , - 1	100													0.0025	
		500	0.0014	0.0014	0.0005	0.0006	0.0065	0.0075	0.0022	0.0031	0.0005	0.0007	0.0019	0.0026	0.0005	0.0022
	[0; 2]	50	0.0613	0.0534	0.0423	0.0358	0.3613	0.3456	0.3156	0.3637	0.0099	0.0081	0.0662	0.0799	0.0180	0.0166
	1-7 1	100													0.0098	
		500													0.0016	
0.9	[-1; 3]	50	0.0136	0.0202	0.0155	0.0160	0.2464	0.8638	0.1315	0.2668	0.0050	0.0051	0.0710	0.0740	0.0090	0.0115
	. / -1	100													0.0045	
		500													0.0003	
	[0; 2]	50	0.0469	1.0137	0.0390	0.2993	0.3660	0.5830	0.2926	0.4666	0.0084	0.0064	0.0872	0.1133	0.0221	0.0182
		100													0.0130	
		500													0.0015	

Tabela D.52: Estimativas do erro quadratico médio dos parâmetros da mistura de duas regressões lineares no caso ${\rm EII}$

 $218 \hspace{3.1in} Ap \hat{\mathbf{e}} \mathbf{n} \mathbf{d} \mathbf{i} \mathbf{c} \mathbf{e} \, D$

			α_1	α_1	β_1	β_1	α_2	α_2	β_2	β_2	σ_1	σ_1	σ_2	σ_2 CEM	π_1	π_1
$\frac{\pi_1}{2}$	x [1 2]	n	EM	CEM	EM	CEM	EM	CEM	EM	CEM	EM	CEM	EM		EM	CEM
0.1	[-1; 3]	50													0.0057 0.0053	
		100 500													0.0003	
	[0. 0]	500 50													0.0476	
	[0; 2]	100													0.0267	
		500													0.0267	
0.2	[-1; 3]	50													0.0083	
0.2	[-1, 3]	100													0.0030	
		500													0.0005	
	[0; 2]	50													0.0301	
	[0, 2]	100													0.0301	
		500													0.0231	
0.3	[-1; 3]	50													0.0044	
0.5	[-1, 3]	100													0.0010	
		500													0.0041	
	[0; 2]	50													0.0395	
	[0, 2]	100													0.0258	
		500													0.0039	
0.4	[-1; 3]	50													0.0085	
0.1	[1,0]	100													0.0051	
		500													0.0008	
	[0; 2]	50													0.0397	
	[-,-]	100													0.0259	
		500													0.0043	
0.5	[-1; 3]	50	0.0250	0.0234	0.0147	0.0120	0.0730	0.0629	0.0330	0.0285	0.0129	0.0153	0.0252	0.0253	0.0107	0.0132
		100	0.0117	0.0121	0.0053	0.0053	0.0438	0.0397	0.0161	0.0156	0.0056	0.0085	0.0126	0.0142	0.0047	0.0081
		500	0.0023	0.0031	0.0011	0.0015	0.0049	0.0089	0.0024	0.0053	0.0008	0.0030	0.0018	0.0033	0.0009	0.0047
	[0; 2]	50	0.1156	0.1052	0.1101	0.0745	0.3401	0.4144	0.3021	0.3030	0.0239	0.0256	0.0747	0.0668	0.0311	0.0306
		100	0.0731	0.1273	0.0528	0.0577	0.2349	0.3735	0.1963	0.3624	0.0158	0.0220	0.0189	0.0347	0.0195	0.0347
		500	0.0116	0.0570	0.0090	0.0535	0.0356	0.4655	0.0295	0.4323	0.0021	0.0121	0.0035	0.0261	0.0038	0.0434
0.6	[-1; 3]	50													0.0090	
		100													0.0037	
		500													0.0007	
	[0; 2]	50													0.0317	
		100													0.0239	
		500													0.0036	
0.7	[-1; 3]	50													0.0076	
		100													0.0029	
		500													0.0005	
	[0; 2]	50													0.0253	
		100													0.0146	
	T 4 01	500													0.0032	
0.8	[-1; 3]	50													0.0080	
		100													0.0023	
	[0.0]	500													0.0006	
	[0; 2]	50													0.0254	
		100													0.0234	
	[1 0]	500													0.0022	
0.9	[-1; 3]	50 100													0.0147	
		500													0.0076 0.0003	
	[0, 0]	500 50													0.0003	
	[0; 2]	100													0.0393	
		500													0.0264	
		500	0.0031	0.0038	0.0024	0.0034	0.2912	1.0945	0.2417	1.0000	0.0008	0.0013	0.0280	0.1000	0.0022	0.0000

Tabela D.53: Estimativas do erro quadratico médio dos parâmetros da mistura de duas regressões lineares no caso EIII

			α_1	α_1	β_1	β_1	α_2	α_2	β_2	β_2	σ_1	σ_1	σ_2	σ_2	π_1	π_1
π_1	x	n	EM	CEM	EM	CEM	EM	CEM	EM	CEM	EM	CEM	EM	CEM	EM	CEM
0.1	[-1; 3]	50					0.0557	0.1284								
		100						0.2547								
		500						0.0060								
	[0; 2]	50						2.5625								
		100						3.4092								
		500						0.3100								
0.2	[-1; 3]	50						0.0444								
		100						0.0597								
		500						0.0063								
	[0; 2]	50						0.1523								
		100						0.0885								
		500						0.1551								
0.3	[-1; 3]	50						0.0723								
		100						0.0347								
		500						0.0099								
	[0; 2]	50						0.2316								
		100						0.2169								
		500						0.3329								
0.4	[-1; 3]	50						0.0720								
		100						0.0374								
	[0.0]	500						0.0125								
	[0; 2]	50						0.4563								
		100						0.3132								
	[1 0]	500						0.4168								
0.5	[-1; 3]	50						0.1051								
		100 500						0.0500								
	[0.0]	500						0.0218 0.5948								
	[0; 2]	100						0.3948 0.7144								
		500						0.8511								
0.6	[-1; 3]	50						0.1436								
0.0	[1,0]	100						0.0750								
		500						0.0274								
	[0; 2]	50						1.0317								
	[-, -]	100						1.1217								
		500						1.2286								
0.7	[-1; 3]	50						0.2248								
	. , ,	100	0.0072	0.0073	0.0031	0.0028	0.0891	0.0847	0.0414	0.0424	0.0029	0.0029	0.0337	0.0375	0.0042	0.0069
		500	0.0017	0.0018	0.0007	0.0007	0.0187	0.0378	0.0082	0.0247	0.0006	0.0010	0.0056	0.0092	0.0006	0.0051
	[0; 2]	50						1.3766								
	. , ,	100	0.0291	0.0334	0.0310	0.0347	0.5565	1.1810	0.4765	1.0626	0.0081	0.0075	0.0766	0.1303	0.0142	0.0255
		500	0.0058	0.0153	0.0043	0.0134	0.1162	1.2123	0.1044	1.2187	0.0013	0.0035	0.0081	0.0355	0.0031	0.0310
0.8	[-1; 3]	50	0.0171	0.0151	0.0208	0.0062	0.4681	0.4342	0.2445	0.1768	0.0108	0.0055	0.1643	0.1683	0.0121	0.0056
		100	0.0057	0.0054	0.0025	0.0023	0.2008	0.1905	0.0781	0.0775	0.0025	0.0027	0.0566	0.0639	0.0030	0.0042
		500	0.0013	0.0013	0.0004	0.0005	0.0283	0.0426	0.0118	0.0299	0.0004	0.0006	0.0102	0.0138	0.0004	0.0031
	[0; 2]	50	0.0590	0.3019	0.0570	0.0842	1.2387	28.1462	1.0506	8.7973	0.0178	0.0181	0.2397	0.2923	0.0284	0.0359
		100	0.0247	0.0829	0.0187	0.0172	1.0304	1.6399	0.8531	1.5205	0.0066	0.0047	0.1296	0.1895	0.0151	0.0178
		500	0.0036	0.0087	0.0027	0.0080	0.1660	1.4470	0.1422	1.4002	0.0008	0.0022	0.0152	0.0548	0.0022	0.0162
0.9	[-1; 3]	50	0.0189	0.1988	0.0160	0.0408	0.5442	0.6000	0.3318	0.4262	0.0061	0.0061	0.3180	0.3286	0.0107	0.0152
		100	0.0067	0.0266	0.0112	0.0154	0.3838	0.4175	0.1912	0.2546	0.0024	0.0028	0.1404	0.1571	0.0080	0.0122
		500	0.0010	0.0010	0.0004	0.0005	0.0579	0.0860	0.0260	0.0530	0.0003	0.0004	0.0212	0.0269	0.0003	0.0012
	[0; 2]	50	0.0447	1.4979	0.0770	0.2394	1.4939	2.4115	1.3433	2.4439	0.0117	0.0106	0.3316	0.4002	0.0423	0.0556
		100	0.0211	0.1408	0.0200	0.0303	1.4812	2.4069	1.1893	2.7035	0.0051	0.0038	0.2733	0.3795	0.0198	0.0322
		500	0.0029	0.0048	0.0024	0.0045	0.3166	1.7956	0.3005	1.7387	0.0005	0.0012	0.0344	0.1139	0.0015	0.0046

Tabela D.54: Estimativas do erro quadratico médio dos parâmetros da mistura de duas regressões lineares no caso EIV

 $220 \hspace{3.1em} Ap \hat{\mathbf{e}} \mathbf{n} \mathbf{d} \mathbf{i} \mathbf{c} \mathbf{e} \hspace{1.1em} D$

			α_1	α_1	β_1	β_1	α_2	α_2	β_2	β_2	σ_1	σ_1	σ_2	σ_2	π_1	π_1
π_1	x	n	$_{\rm EM}$	CEM	$_{\rm EM}$	CEM	$_{\rm EM}$	CEM	$_{\rm EM}$	$_{\rm CEM}$	$_{\rm EM}$	CEM	$_{\rm EM}$	$_{\rm CEM}$	$_{\rm EM}$	CEM
0.1	[-1; 3]	50	0.0481	0.0568	0.0344	0.0452	0.0038	0.0038	0.0018	0.0018	0.0182	0.0189	0.0013	0.0012	0.0020	0.0013
		100													0.0013	
		500	0.0040	0.0041	0.0020	0.0021	0.0003	0.0003	0.0001	0.0001	0.0014	0.0016	0.0001	0.0001	0.0002	0.0004
	[0; 2]	50	0.1396	0.1446	0.1544	0.1655	0.0092	0.0092	0.0072	0.0069	0.0179	0.0185	0.0014	0.0013	0.0023	0.0013
		100	0.0746	0.0824	0.0816	0.0881	0.0040	0.0040	0.0030	0.0030	0.0083	0.0086	0.0006	0.0006	0.0012	0.0011
		500	0.0090	0.0131	0.0106	0.0233	0.0009	0.0009	0.0007	0.0007	0.0014	0.0016	0.0001	0.0001	0.0003	0.0004
0.2	[-1; 3]	50	0.0225	0.0228	0.0123	0.0129	0.0045	0.0045	0.0024	0.0024	0.0094	0.0096	0.0016	0.0017	0.0038	0.0040
		100	0.0124	0.0123	0.0060	0.0064	0.0020	0.0021	0.0010	0.0010	0.0033	0.0035	0.0007	0.0007	0.0022	0.0025
		500	0.0017	0.0017	0.0009	0.0010	0.0004	0.0004	0.0002	0.0002	0.0006	0.0007	0.0001	0.0002	0.0004	0.0009
	[0; 2]	50	0.0582	0.0612	0.0607	0.0685	0.0094	0.0094	0.0091	0.0087	0.0096	0.0088	0.0012	0.0013	0.0040	0.0039
	. , ,	100	0.0199	0.0224	0.0258	0.0326	0.0034	0.0036	0.0033	0.0037	0.0039	0.0042	0.0007	0.0007	0.0021	0.0023
		500	0.0043	0.0082	0.0050	0.0155	0.0009	0.0011	0.0008	0.0011	0.0005	0.0007	0.0001	0.0002	0.0004	0.0010
0.3	[-1; 3]	50	0.0148	0.0143	0.0087	0.0086	0.0046	0.0046	0.0023	0.0024	0.0048	0.0050	0.0019	0.0019	0.0050	0.0053
	. , ,	100	0.0055	0.0055	0.0028	0.0029	0.0024	0.0024	0.0012	0.0012	0.0021	0.0021	0.0008	0.0009	0.0026	0.0034
		500													0.0005	
	[0; 2]	50	0.0346	0.0371	0.0357	0.0385	0.0127	0.0127	0.0108	0.0112	0.0058	0.0058	0.0018	0.0018	0.0056	0.0055
	L-7 1	100													0.0024	
		500													0.0005	
0.4	[-1; 3]	50	0.0092	0.0090	0.0053	0.0054	0.0062	0.0062	0.0026	0.0026	0.0031	0.0033	0.0021	0.0023	0.0061	0.0075
	[-, -]	100													0.0033	
		500													0.0005	
	[0; 2]	50													0.0061	
	[-,-]	100													0.0036	
		500													0.0007	
0.5	[-1; 3]	50													0.0071	
0.0	[1,0]	100													0.0035	
		500													0.0006	
	[0; 2]	50													0.0065	
	[0, 2]	100													0.0029	
		500													0.0006	
0.6	[-1; 3]	50													0.0063	
	[-, -]	100													0.0029	
		500													0.0006	
	[0; 2]	50													0.0064	
	[0, 2]	100													0.0028	
		500													0.0005	
0.7	[-1; 3]	50													0.0052	
0	[1,0]	100													0.0024	
		500													0.0005	
	[0; 2]	50													0.0046	
	[0, 2]	100													0.0028	
		500													0.0005	
0.8	[-1; 3]	50													0.0034	
0.0	[1,0]	100													0.0020	
		500													0.0004	
	[0; 2]	50													0.0041	
	[0, 2]	100													0.0023	
		500													0.0003	
0.9	[-1; 3]	50													0.0003	
0.9	[-1, 3]	100													0.0017	
		500													0.0011	
	[0, 2]	500 50													0.0002	
	[0; 2]	100													0.0023	
		500	0.0008	0.0008	0.0007	0.0007	0.0108	U.U171	0.0111	0.0265	0.0001	0.0001	0.0013	0.0014	0.0002	0.0005

Tabela D.55: Estimativas do erro quadratico médio dos parâmetros da mistura de duas regressões lineares no caso ${\rm EV}$

			α_1	α_1	β_1	β_1	α_2	α_2	β_2	β_2	σ_1	σ_1	σ_2	σ_2	π_1	π_1
π_1	x	n	EM	CEM	EM	CEM	EM	CEM	EM	CEM	EM	CEM	EM	CEM	EM	CEM
0.1	[-1; 3]	50													0.0026	
		100													0.0012	
		500													0.0003	
	[0; 2]	50													0.0036	
		100													0.0011	
		500													0.0003	
0.2	[-1; 3]	50													0.0042	
		100													0.0029	
		500													0.0004	
	[0; 2]	50													0.0051	
		100													0.0026	
		500													0.0005	
0.3	[-1; 3]	50													0.0065	
		100													0.0030	
		500													0.0006	
	[0; 2]	50													0.0091	
		100													0.0035	
		500													0.0006	
0.4	[-1; 3]	50													0.0069	
		100													0.0030	
		500													0.0005	
	[0; 2]	50													0.0067	
		100													0.0046	
		500													0.0008	
0.5	[-1; 3]	50													0.0072	
		100													0.0024	
		500													0.0007	
	[0; 2]	50													0.0081	
		100													0.0038	
		500													0.0008	
0.6	[-1; 3]	50													0.0078	
		100													0.0034	
		500													0.0007	
	[0; 2]	50													0.0076	
		100													0.0036	
		500													0.0007	
0.7	[-1; 3]	50													0.0066	
		100													0.0029	
		500													0.0005	
	[0; 2]	50													0.0071	
		100													0.0026	
		500													0.0007	
0.8	[-1; 3]	50													0.0047	
		100													0.0020	
		500													0.0005	
	[0; 2]	50													0.0064	
		100													0.0026	
		500													0.0006	
0.9	[-1; 3]	50													0.0034	
		100													0.0013	
	[0 0]	500													0.0003	
	[0; 2]	50													0.0030	
		100													0.0014	
		500	0.0022	0.0022	0.0017	0.0017	0.0302	0.0484	0.0406	0.1501	0.0003	0.0004	0.0059	0.0096	0.0003	0.0008

Tabela D.56: Estimativas do erro quadratico médio dos parâmetros da mistura de duas regressões lineares no caso EVI

 $222 \hspace{3.1em} Ap \hat{\mathbf{e}} \mathbf{n} \mathbf{d} \mathbf{i} \mathbf{c} \mathbf{e} \hspace{1.1em} D$

			α_1	α_1	β_1	β_1	α_2	α_2	β_2	β_2	σ_1	σ_1	σ_2	σ_2	π_1	π_1
$\frac{\pi_1}{2}$	x	n	EM	CEM	EM	CEM	EM	CEM	EM	CEM	EM	CEM	EM	CEM	EM	CEM
0.1	[-1; 3]	50													0.0040	
		100													0.0020	
	[0.0]	500													0.0004	
	[0; 2]	50													0.0105	
		100													0.0052	
	[4 0]	500													0.0005	
0.2	[-1; 3]	50													0.0070	
		100													0.0032	
	[0.0]	500													0.0006	
	[0; 2]	50													0.0092	
		100													0.0042	
	f 4 01	500													0.0007	
0.3	[-1; 3]	50													0.0081	
		100													0.0035	
	fo. e1	500													0.0008	
	[0; 2]	50													0.0107	
		100													0.0051	
	[4 0]	500													0.0009	
0.4	[-1; 3]	50													0.0077	
		100													0.0036	
	[0.0]	500													0.0009	
	[0; 2]	50													0.0101	
		100													0.0052	
	[1 0]	500													0.0011	
0.5	[-1; 3]	50													0.0081	
		100													0.0040	
	[0.0]	500													0.0007	
	[0; 2]	50 100													0.0116	
		500													0.0058 0.0008	
0.6	[-1; 3]	50													0.0066	
0.0	[-1; 3]	100													0.0040	
		500													0.0040	
	[0; 2]	50													0.0008	
	[0, 2]	100													0.0017	
		500													0.0047	
0.7	[-1; 3]	50													0.0010	
0.7	[-1, 3]	100													0.0034	
		500													0.0034 0.0007	
	[0; 2]	50													0.0007	
	[0, 2]	100													0.0033	
		500													0.00044	
0.8	[-1; 3]	50													0.0055	
0.0	[-1, 3]	100													0.0033	
		500													0.0004	
	[0; 2]	50													0.0056	
	[0, 2]	100													0.0036	
		500													0.0006	
0.9	[-1; 3]	50													0.0022	
0.5	[1,0]	100													0.0022	
		500													0.0003	
	[0; 2]	50													0.0068	
	[~, ~]	100													0.0017	
		500													0.00017	
-		000	5.0021	5.0023	0.0020	0.0020	U.1024	J.1200	U.1220	5.0070	5.0004	5.0004	0.0240	0.0010	5.0004	0.0012

Tabela D.57: Estimativas do erro quadratico médio dos parâmetros da mistura de duas regressões lineares no caso ${\rm EVII}$

						-										
π_1	r	n	$_{\mathrm{EM}}^{lpha_{1}}$	α_1 CEM	β_1 EM	β_1 CEM	α_2 EM	α_2 CEM	β_2 EM	β_2 CEM	σ_1 EM	σ_1 CEM	σ_2 EM	σ_2 CEM	$_{\mathrm{EM}}^{\pi_{1}}$	$_{ ext{CEM}}^{\pi_1}$
0.1	[-1; 3]	50													0.0014	
0.1	[1,0]	100													0.0009	
		500													0.0002	
	[0; 2]	50													0.0016	
	1-71	100													0.0008	
		500	0.0291	0.0284	0.0215	0.0203	0.0024	0.0024	0.0018	0.0018	0.0027	0.0028	0.0003	0.0003	0.0002	0.0002
0.2	[-1; 3]	50	0.0595	0.0610	0.0484	0.0558	0.0099	0.0099	0.0051	0.0051	0.0289	0.0302	0.0044	0.0044	0.0038	0.0038
		100	0.0323	0.0330	0.0182	0.0213	0.0066	0.0066	0.0027	0.0027	0.0107	0.0110	0.0020	0.0021	0.0018	0.0021
		500	0.0040	0.0042	0.0028	0.0071	0.0011	0.0011	0.0005	0.0006	0.0015	0.0019	0.0003	0.0004	0.0004	0.0007
	[0; 2]	50	0.1634	0.1491	0.1655	0.1185	0.0305	0.0303	0.0224	0.0223	0.0225	0.0216	0.0035	0.0033	0.0028	0.0029
		100	0.0669	0.0645	0.0639	0.0565	0.0125	0.0124	0.0093	0.0092	0.0088	0.0086	0.0018	0.0018	0.0014	0.0015
		500													0.0003	
0.3	[-1; 3]	50													0.0046	
		100													0.0024	
		500													0.0005	
	[0; 2]	50													0.0043	
		100													0.0020	
		500													0.0004	
0.4	[-1; 3]	50													0.0062	
		100													0.0029	
	[0.0]	500													0.0005	
	[0; 2]	50													0.0046	
		100													0.0023	
	[1 0]	500													0.0005	
0.5	[-1; 3]	50 100													0.0931 0.0028	
		500													0.0028	
	[0; 2]	50													0.0057	
	[0, 2]	100													0.0034	
		500													0.0005	
0.6	[-1; 3]	50														0.0074
	[-, -]	100													0.0031	
		500													0.0006	
	[0; 2]	50	0.0352	0.0349	0.0254	0.0249	0.0581	0.0582	0.0434	0.0419	0.0055	0.0054	0.0082	0.0080	0.0049	0.0048
	. , ,	100	0.0179	0.0176	0.0135	0.0131	0.0264	0.0265	0.0195	0.0191	0.0023	0.0023	0.0042	0.0039	0.0026	0.0025
		500	0.0039	0.0039	0.0035	0.0035	0.0055	0.0054	0.0039	0.0039	0.0005	0.0005	0.0007	0.0007	0.0005	0.0005
0.7	[-1; 3]	50	0.0152	0.0152	0.0082	0.0084	0.0453	0.0463	0.0264	0.0305	0.0056	0.0055	0.0174	0.0180	0.0057	0.0068
		100	0.0073	0.0074	0.0030	0.0036	0.0133	0.0132	0.0092	0.0108	0.0020	0.0019	0.0060	0.0066	0.0027	0.0033
		500	0.0010	0.0010	0.0006	0.0010	0.0027	0.0029	0.0015	0.0057	0.0004	0.0006	0.0010	0.0011	0.0004	0.0008
	[0; 2]	50													0.0040	
		100													0.0022	
		500													0.0004	
0.8	[-1; 3]	50													0.0033	
		100													0.0022	
		500													0.0004	
	[0; 2]	50													0.0036	
		100													0.0019	
	[1 0]	500													0.0003	
0.9	[-1; 3]	50													0.0021	
		100													0.0010	
	[0, 0]	500													0.0002	
	[0; 2]	50 100													0.0012 0.0010	
		500													0.0010 0.0002	
		300	0.0024	0.0024	0.0020	0.0020	0.0239	0.0232	0.0201	0.0187	0.0003	0.0003	0.0022	0.0024	0.0002	0.0002

Tabela D.58: Estimativas do erro quadratico médio dos parâmetros da mistura de duas regressões lineares no caso EVIII

 $224 \hspace{3.1em} \textit{Apêndice D}$

			α_1	α_1	β_1	β_1	α_2	α_2	β_2	β_2	σ_1	σ_1	σ_2	σ_2	π_1	π_1
π1	[1 0]	50	EM	CEM	EM	CEM	EM	CEM	EM	CEM	EM	CEM	EM	CEM	EM 0.0025	CEM
0.1	[-1; 3]	100													0.0025 0.0012	
		500													0.0012 0.0002	
	[0; 2]	50													0.0002	
	[0, 2]	100													0.0014	
		500													0.0002	
0.2	[-1; 3]	50														0.0053
0.2	[1,0]	100													0.0020	
		500													0.0004	
	[0; 2]	50													0.0030	
		100	0.0529	0.0503	0.0427	0.0352	0.0353	0.0355	0.0265	0.0261	0.0073	0.0075	0.0050	0.0050	0.0021	0.0021
		500	0.0102	0.0104	0.0091	0.0106	0.0060	0.0065	0.0046	0.0055	0.0018	0.0022	0.0010	0.0011	0.0003	0.0003
0.3	[-1; 3]	50	0.0336	0.0334	0.0249	0.0297	0.0412	0.0419	0.0197	0.0208	0.0182	0.0183	0.0140	0.0148	0.0074	0.0082
		100	0.0157	0.0171	0.0126	0.0189	0.0142	0.0144	0.0081	0.0108	0.0072	0.0079	0.0050	0.0063	0.0029	0.0039
		500													0.0005	
	[0; 2]	50													0.0046	
		100													0.0022	
		500													0.0005	
0.4	[-1; 3]	50													0.0069	
		100													0.0029	
	fo. 01	500													0.0005	
	[0; 2]	50													0.0049	
		100 500													0.0028 0.0005	
0.5	[1.9]	50													0.0060	
0.5	[-1; 3]	100													0.0035	
		500													0.0006	
	[0; 2]	50													0.0062	
	[0, 2]	100													0.0030	
		500													0.0005	
0.6	[-1; 3]	50														0.0057
	. , ,	100	0.0078	0.0078	0.0041	0.0047	0.0327	0.0329	0.0173	0.0280	0.0034	0.0036	0.0113	0.0122	0.0031	0.0036
		500	0.0015	0.0015	0.0007	0.0016	0.0059	0.0059	0.0025	0.0166	0.0005	0.0007	0.0016	0.0031	0.0005	0.0015
	[0; 2]	50	0.0410	0.0400	0.0360	0.0321	0.1547	0.1438	0.1441	0.1173	0.0051	0.0050	0.0260	0.0237	0.0053	0.0050
		100													0.0024	
		500	0.0034	0.0034	0.0028	0.0028	0.0132	0.0140	0.0119	0.0141	0.0005	0.0005	0.0020	0.0022	0.0006	0.0006
0.7	[-1; 3]	50													0.0052	
		100													0.0029	
		500													0.0005	
	[0; 2]	50													0.0046	
		100													0.0020	
	[1 0]	500													0.0005	
0.8	[-1; 3]	50													0.0063 0.0019	
		100 500													0.0019	
	[0; 2]	50													0.0004	
	[0, 2]	100													0.0030	
		500													0.00017	
0.9	[-1; 3]	50													0.0003	
0.5	[1,0]	100													0.0013	
		500													0.0002	
	[0; 2]	50													0.0049	
	L-7 J	100													0.0010	
		500	0.0024	0.0024	0.0020	0.0020	0.0582	0.0558	0.0534	0.0497	0.0003	0.0003	0.0079	0.0090	0.0002	0.0002

Tabela D.59: Estimativas do erro quadratico médio dos parâmetros da mistura de duas regressões lineares no caso EIX

						-			_							
			α_1 EM	α_1	β_1	β_1	α_2	α_2	β_2	β_2	σ_1	σ_1	σ_2	σ_2	π_1	π_1
π ₁	x [1 2]	n		CEM	EM	CEM	EM	CEM	EM	CEM	EM	CEM	EM	CEM	EM	CEM
0.1	[-1; 3]	50 100													0.0027 0.0013	
		500													0.0013	
	[0. 2]	50													0.0067	
	[0; 2]	100													0.0007	
		500													0.0021	
0.2	[-1; 3]	50													0.0003	
0.2	[-1, 3]	100													0.0048	
		500													0.0005	
	[0; 2]	50													0.0057	
	[0, 2]	100													0.0034	
		500													0.0024	
0.3	[-1; 3]	50													0.0070	
0.0	[1,0]	100													0.0033	
		500													0.0007	
	[0; 2]	50													0.0071	
	[0, 2]	100													0.0031	
		500													0.0007	
0.4	[-1; 3]	50													0.0072	
0.1	[1,0]	100													0.0035	
		500													0.0008	
	[0; 2]	50													0.0082	
	1-71	100													0.0031	
		500	0.0233	0.0255	0.0254	0.0541	0.0142	0.0160	0.0131	0.0205	0.0042	0.0126	0.0029	0.0053	0.0008	0.0009
0.5	[-1; 3]	50	0.0959	0.0955	0.0509	0.0724	0.0740	0.0683	0.0498	0.0636	0.0335	0.0375	0.0402	0.0479	0.0091	0.0104
	. , ,	100	0.0431	0.0403	0.0254	0.0466	0.0409	0.0391	0.0255	0.0491	0.0177	0.0257	0.0159	0.0231	0.0036	0.0049
		500	0.0072	0.0073	0.0047	0.0335	0.0085	0.0086	0.0046	0.0298	0.0026	0.0104	0.0024	0.0113	0.0007	0.0014
	[0; 2]	50	0.2227	0.2129	0.2361	0.1921	0.2312	0.2058	0.2136	0.1714	0.0518	0.0411	0.0458	0.0373	0.0068	0.0063
		100	0.0823	0.0814	0.0843	0.0980	0.0858	0.0908	0.0762	0.0906	0.0205	0.0215	0.0199	0.0226	0.0033	0.0030
		500	0.0198	0.0226	0.0177	0.0348	0.0174	0.0187	0.0154	0.0270	0.0038	0.0098	0.0039	0.0084	0.0008	0.0009
0.6	[-1; 3]	50													0.0076	
		100													0.0032	
		500													0.0008	
	[0; 2]	50													0.0062	
		100													0.0038	
		500													0.0006	
0.7	[-1; 3]	50													0.0073	
		100													0.0033	
		500													0.0007	
	[0; 2]	50													0.0069	
		100													0.0037	
		500													0.0006	
0.8	[-1; 3]	50													0.0058	
		100													0.0024	
	FO 01	500													0.0005	
	[0; 2]	50													0.0058	
		100													0.0024	
	[1 0]	500													0.0004	
0.9	[-1; 3]	50													0.0034	
		100													0.0012	
	[0.0]	500													0.0003	
	[0; 2]	50													0.0056	
		100													0.0018	
		500	0.0101	0.0099	0.0085	0.0091	0.1111	0.1070	0.1210	0.2420	0.0014	0.0015	0.0197	0.0472	0.0003	0.0004

Tabela D.60: Estimativas do erro quadratico médio dos parâmetros da mistura de duas regressões lineares no caso ${\rm EX}$

			α_1	α_1	β_1	β_1	α_2	α_2	β_2	β_2	σ_1	σ_1	σ_2	σ_2	π_1	π_1
$\frac{\pi_1}{2}$	x	n	EM	CEM	EM	CEM	EM	CEM	EM	CEM	EM	CEM	EM	CEM	EM	CEM
0.1	[-1; 3]	50													0.0341	
		100													0.0017	
	[0.0]	500													0.0001	
	[0; 2]	50													0.0461	
		100													0.0144	
	[4 0]	500													0.0002	
0.2	[-1; 3]	50													0.0034	
		100													0.0045	
	fo. 01	500													0.0004	
	[0; 2]	50													0.0120	
		100													0.0022	
	F 4 01	500													0.0018	
0.3	[-1; 3]	50													0.0065	
		100													0.0024	
	fo. 01	500													0.0002	
	[0; 2]	50													0.0006	
		100													0.0034	
	F 4 01	500													0.0017	
0.4	[-1; 3]	50													0.0022	
		100													0.0042	
	[0.0]	500													0.0013	
	[0; 2]	50													0.0012	
		100													0.0030	
	[1 0]	500													0.0015	
0.5	[-1; 3]	50													0.0105	
		100													0.0070	
	[0.0]	500													0.0002	
	[0; 2]	50 100													0.0043	
		500													0.0039 0.0015	
0.6	[-1; 3]	500													0.0013	
0.0	[-1,3]	100													0.0003	
		500													0.0023	
	[0; 2]	50													0.0010	
	[0, 2]	100													0.0010	
		500													0.0013	
0.7	[-1; 3]	50													0.0001	
0.1	[-1, 0]	100													0.0014	
		500													0.0003	
	[0; 2]	50													0.0018	
	[0, 2]	100													0.0005	
		500													0.0004	
0.8	[-1; 3]	50													0.0008	
0.0	[1,0]	100													0.0018	
		500													0.0009	
	[0; 2]	50													0.0031	
	[0, 2]	100													0.0013	
		500													0.0022	
0.9	[-1; 3]	50													0.0339	
	, -,	100													0.0023	
		500													0.0009	
	[0; 2]	50													0.0442	
		100													0.0065	
		500													0.0010	
			2.0020													

Tabela D.61: Estimativas do valor absoluto do enviesamento médio dos parâmetros da mistura de duas regressões lineares no caso ${\rm CI}$

										-						
_	_		α_1	α_1	β_1	β_1	α_2	α_2	β_2	β_2	σ_1	σ_1	σ_2	σ_2	π_1	π_1
π ₁	[1 0]	50	EM	CEM	EM	CEM	EM 0.0048	CEM	EM	CEM	EM	CEM	EM	CEM	EM	CEM
0.1	[-1; 3]	100					0.0048									
		500					0.0018									
	[0; 2]	50					0.0508									
	[0, 2]	100					0.0303									
		500					0.0048									
0.2	[-1; 3]	50					0.0060									
0.2	[1,0]	100					0.0153									
		500					0.0001									
	[0; 2]	50					0.0369									
	[0, 2]	100					0.0088									
		500					0.0045									
0.3	[-1; 3]	50					0.0109									
	[-, -]	100					0.0110									
		500					0.0038									
	[0; 2]	50					0.0160									
	[-, -]	100					0.0565									
		500					0.0080									
0.4	[-1; 3]	50					0.0186									
	. /-1	100					0.0162									
		500					0.0003									
	[0; 2]	50	0.0674	0.5682	0.0302	0.3184	0.0166	0.1696	0.0289	0.1127	0.0955	0.1670	0.0603	0.1014	0.0043	0.0465
		100	0.0004	0.6237	0.0119	0.3089	0.0082	0.1728	0.0100	0.1213	0.0556	0.1688	0.0232	0.0655	0.0065	0.0841
		500	0.0027	0.6206	0.0012	0.3096	0.0102	0.1639	0.0055	0.1202	0.0093	0.1427	0.0065	0.0585	0.0020	0.0906
0.5	[-1; 3]	50	0.0138	0.0040	0.0084	0.0178	0.0264	0.0249	0.0027	0.0155	0.0395	0.0754	0.0481	0.0798	0.0020	0.0012
	. , ,	100	0.0017	0.0054	0.0028	0.0152	0.0068	0.0047	0.0069	0.0225	0.0284	0.0676	0.0095	0.0544	0.0027	0.0113
		500	0.0039	0.0606	0.0013	0.0507	0.0003	0.0483	0.0035	0.0422	0.0028	0.0479	0.0064	0.0493	0.0005	0.0049
	[0; 2]	50	0.0393	0.3413	0.0325	0.1942	0.0218	0.3925	0.0288	0.2298	0.0648	0.1269	0.0826	0.1338	0.0055	0.0051
		100	0.0153	0.3522	0.0074	0.2036	0.0179	0.3994	0.0026	0.2258	0.0356	0.1155	0.0433	0.1222	0.0147	0.0138
		500	0.0015	0.3598	0.0030	0.2051	0.0013	0.3694	0.0053	0.2030	0.0044	0.1016	0.0125	0.1096	0.0006	0.0034
0.6	[-1; 3]	50	0.0313	0.0226	0.0105	0.0061	0.0587	0.0995	0.0250	0.0271	0.0390	0.0654	0.0600	0.1030	0.0026	0.0598
		100					0.0246									
		500					0.0092									
	[0; 2]	50					0.0163									
		100					0.0201									
		500					0.0100									
0.7	[-1; 3]	50					0.0899									
		100					0.0315									
	fo. 01	500					0.0156									
	[0; 2]	50					0.0539									
		100					0.0381									
		500					0.0206									
0.8	[-1; 3]	50					0.0657									
		100					0.0071									
	[0.0]	500					0.0002									
	[0; 2]	50					0.0051									
		100					0.0028									
	[1 0]	500					0.0104									
0.9	[-1; 3]	50 100					0.0631									
							0.0871									
	[0, 2]	500					$0.0453 \\ 0.0218$									
	[0; 2]	50					0.0218 0.0053									
		100 500					0.0053									
		500	0.0044	0.0931	0.0043	0.0130	0.0076	1.1260	0.0079	0.0163	0.0044	0.0040	0.0414	0.2275	0.0000	0.0291

Tabela D.62: Estimativas do valor absoluto do enviesamento médio dos parâmetros da mistura de duas regressões lineares no caso CII

			α_1	α_1	β_1	β_1	α_2	α_2	β_2	β_2	σ_1	σ_1	σ_2	σ_2	π_1	π_1
$\frac{\pi_1}{2}$	x	n	EM	CEM	EM	CEM	EM	CEM	EM	CEM	EM	CEM	EM	CEM	EM	CEM
0.1	[-1; 3]	50													0.0922	
		100 500													0.0460	
	[0.0]	500 50													0.0024 0.1327	
	[0; 2]	100														
		500													0.0855	
- 0.0	[1 0]														0.0198	
0.2	[-1; 3]	50													0.0531	
		100													0.0143	
	[0.0]	500													0.0016	
	[0; 2]	50													0.1127	
		100													0.0461	
- 0.0	[1 0]	500													0.0177	
0.3	[-1; 3]	50													0.0459	
		100													0.0043	
	fo. e1	500													0.0000	
	[0; 2]	50													0.0484	
		100													0.0541	
		500													0.0148	
0.4	[-1; 3]	50													0.0115	
		100													0.0103	
		500													0.0000	
	[0; 2]	50													0.0486	
		100													0.0458	
		500													0.0155	
0.5	[-1; 3]	50													0.0029	
		100													0.0062	
		500													0.0020	
	[0; 2]	50													0.0456	
		100													0.0192	
		500													0.0109	
0.6	[-1; 3]	50													0.0016	
		100													0.0054	
	fo. 01	500													0.0012	
	[0; 2]	50													0.0019	
		100													0.0161	
	[4 0]	500													0.0029	
0.7	[-1; 3]	50													0.0053	
		100													0.0049	
	fo. e1	500													0.0005	
	[0; 2]	50													0.0578	
		100													0.0028	
	[4 0]	500													0.0035	
0.8	[-1; 3]	50													0.0225	
		100													0.0038	
	fo. 01	500													0.0015	
	[0; 2]	50													0.0621	
		100													0.0098	
	f 4 01	500													0.0047	
0.9	[-1; 3]	50													0.0795	
		100													0.0204	
	fo. 01	500													0.0027	
	[0; 2]	50													0.1710	
		100													0.0732	
		500	0.0043	0.2973	0.0017	0.0002	0.0528	1.2290	0.0388	0.4903	0.0037	0.0011	0.0719	0.3495	0.0045	0.0462

Tabela D.63: Estimativas do valor absoluto do enviesamento médio dos parâmetros da mistura de duas regressões lineares no caso CIII

			α_1 EM	α_1 CEM	β_1 EM	β_1 CEM	α_2 EM	α_2	β_2	β_2 CEM	σ_1	$_{ ext{CEM}}^{\sigma_1}$	σ_2 EM	σ_2 CEM	$_{\mathrm{EM}}^{\pi_{1}}$	$_{ ext{CEM}}^{\pi_1}$
$\frac{\pi_1}{2}$	x	50						CEM	EM		EM					
0.1	[-1; 3]						0.0025									
		100 500					$0.0025 \\ 0.0019$									
	[0.0]	50					0.0019									
	[0; 2]	100					0.0113									
		500					0.0201									
-0.0	[1 0]	500					0.00110									
0.2	[-1; 3]	100					0.0001									
		500					0.0036									
	[0.0]	500 50					0.0008 0.0195									
	[0; 2]	100					0.0195 0.0070									
-0.2	[1 0]	500					0.0066									
0.3	[-1; 3]	50					0.0015									
		100					0.0053									
	[0.0]	500					0.0018									
	[0; 2]	50					0.0171									
		100 500					0.0202									
-0.4	[1 0]						0.0064									
0.4	[-1; 3]	50					0.0102									
		100 500					$0.0026 \\ 0.0042$									
	[0; 2]	500 50					0.0042 0.0241									
	[0; 2]	100					0.0241 0.0171									
		500					0.00171									
0.5	[-1; 3]	50					0.0017									
0.5	[-1; 3]	100					0.0222									
		500					0.0003									
	[0; 2]	50					0.0010									
	[0, 2]	100					0.0373									
		500					0.0103									
0.6	[-1; 3]	50					0.0037									
0.0	[1,0]	100					0.0129									
		500					0.0089									
	[0; 2]	50					0.0003									
	[0, 2]	100					0.0311									
		500					0.0046									
0.7	[-1; 3]	50					0.0072									
0	[1,0]	100					0.0214									
		500					0.0083									
	[0; 2]	50					0.0340									
	[-, -]	100					0.0044									
		500					0.0052									
0.8	[-1; 3]	50					0.0144									
	[-, -]	100					0.0357									
		500					0.0013									
	[0; 2]	50					0.0294									
	L-7 1	100					0.0038									
		500					0.0244									
0.9	[-1; 3]	50					0.0032									
	,-]	100					0.0185									
		500					0.0058									
	[0; 2]	50					0.0053									
	E-7 3	100					0.0322									
		500					0.0125									
						- /-										

Tabela D.64: Estimativas do valor absoluto do enviesamento médio dos parâmetros da mistura de duas regressões lineares no caso ${\rm CIV}$

1.	_	_															
1.	$\frac{\pi_1}{2}$	x [1 2]															
Part	0.1	[-1; 3]															
[9, 2] 50 0.0186 0.0642 0.0933 0.2727 0.0648 0.0076 0.0330 0.0145 0.2273 0.3420 0.0521 0.0247 0.0892 0.0143 100 100 0.0348 0.0057 0.0027 0.0169 0.0299 0.0257 0.0072 0.0159 0.1704 0.3118 0.0285 0.0107 0.0037 0.0429 100 100 0.0160 0.0635 0.0086 0.0483 0.0055 0.0204 0.0364 0.2351 0.0058 0.0171 0.0041 0.0635 100 0.0160 0.0156 0.0693 0.0028 0.0074 0.0036 0.0165 0.0163 0.0160 0.0160 0.0160 0.0160 0.0039 0.0016 0.0140 0.0331 0.01572 0.2004 0.0344 0.0310 0.0326 0.0385 0.0058 0.0086 0.0141 0.0310 0.0552 0.0086 0.0086 0.0120 0.0088 0.0034 0.0060 0.0140 0.0039 0.0160 0.0120 0.0088 0.0034 0.0060 0.0140 0.0039 0.0160 0.0120 0.0088 0.0034 0.0060 0.0140 0.0039 0.0160 0.0160 0.0039 0.0066 0.0101 0.0700 0.0367 0.0388 0.0324 0.0286 0.1110 0.2420 0.0290 0.0094 0.0164 0.0141 0.0039 0.0035 0.0038 0.0324 0.0286 0.1110 0.2420 0.0290 0.0163 0.0240 0.0036 0.0339 0.0038 0.0324 0.0286 0.1110 0.2447 0.0086 0.0029 0.0179 0.0035 0.0388 0.0324 0.0286 0.0335 0.0035 0.0340 0.0037 0.0384 0.0345 0.0036 0.0033 0.0038 0.0341 0.0047 0.0120 0.0141 0.0173 0.0339 0.0471 0.0088 0.0020 0.0179 0.0035 0.0038 0.0038 0.0038 0.0039 0.0038 0.0038 0.0039 0.0039 0.00																	
1. 1. 1. 1. 1. 1. 1. 1.		[0.9]															
1.1 1.2 1.3 1.5 1.0		[0, 2]															
Column C																	
1	0.2	[1.9]															
	0.2	[-1, 3]															
[0; 2] 50 0.0593 0.0564 0.0713 0.4218 0.0350 0.0327 0.0158 0.0315 0.1595 0.2709 0.0666 0.0421 0.0506 0.0590 0.0290 0.0146 0.0814 0.0814 0.0290 0.0244 0.0229 0.0146 0.0814 0.0814 0.0290 0.0244 0.0229 0.0290 0.0146 0.0814 0.0290 0.0384 0.1175 0.0081 0.0388 0.0729 0.0085 0.0414 0.0129 0.1941 0.0172 0.0668 0.0020 0.1079 0.0814 0.0390 0.0886 0.0820 0.0170 0.0087 0.0885 0.0086 0.0330 0.0080 0.0081 0.0474 0.0945 0.0168 0.0355 0.0085 0.0858 0.0085 0.0085 0.0085 0.0085 0.0085 0.0085 0.0085 0.0085 0.0085 0.0080 0.0081 0.0474 0.0945 0.0168 0.0355 0.0085 0.0055 0.0085 0.0085 0.0085 0.0085 0.0085 0.0080 0.0081 0.0474 0.0945 0.0168 0.0355 0.0085																	
100 0.0290 0.0254 0.0101 0.4700 0.0387 0.0388 0.0324 0.0286 0.1110 0.2442 0.0299 0.0209 0.0146 0.0814		[0.9]															
1. 1. 1. 1. 1. 1. 1. 1.		[0, 2]															
1.3																	
100	0.3	[=1:3]															
Part	0.0	[1,0]															
Part																	
100		[0. 2]															
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		[0, 2]															
$ \begin{bmatrix} -1;3 \\ -1;3 \\ -100 \\ -10049 \\ -100$																	
100	0.4	[-1:3]															
$ \begin{bmatrix} [0;2] \\ [$	0.1	[1,0]															
$ \begin{bmatrix} [6] \\ [6] \\ [0] \\ [$																	
100		[0.2]															
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		[0, 2]															
$ \begin{bmatrix} -1;3 \\ -1;3$																	
$ \begin{bmatrix} 100 \\ 500 \\ 0.0029 & 0.0406 & 0.0042 & 0.0260 & 0.0039 & 0.304 & 0.0073 & 0.0122 & 0.0190 & 0.0637 & 0.0286 & 0.0701 & 0.0076 & 0.0003 \\ 500 & 0.0076 & 0.0507 & 0.0030 & 0.0464 & 0.0014 & 0.0456 & 0.0002 & 0.0488 & 0.0199 & 0.0570 & 0.0021 & 0.0385 & 0.0014 & 0.0080 \\ 100 & 0.0104 & 0.0628 & 0.0022 & 0.2209 & 0.0333 & 0.0375 & 0.0152 & 0.2039 & 0.0398 & 0.1169 & 0.0361 & 0.1216 & 0.0031 & 0.0075 \\ 500 & 0.0008 & 0.0393 & 0.0014 & 0.2118 & 0.0107 & 0.0436 & 0.062 & 0.1997 & 0.0047 & 0.1073 & 0.0048 & 0.1002 & 0.0043 & 0.0067 \\ \hline 0.6 & [-1;3] & 50 & 0.0068 & 0.0187 & 0.0031 & 0.0124 & 0.0238 & 0.0865 & 0.0045 & 0.0119 & 0.0337 & 0.0633 & 0.0668 & 0.1110 & 0.0005 & 0.0635 \\ 100 & 0.0006 & 0.0104 & 0.0110 & 0.0055 & 0.0025 & 0.0658 & 0.0131 & 0.0069 & 0.0115 & 0.0483 & 0.0337 & 0.0788 & 0.0065 & 0.0896 \\ 500 & 0.00367 & 0.0529 & 0.0352 & 0.1175 & 0.0339 & 0.0221 & 0.0121 & 0.3100 & 0.0543 & 0.0843 & 0.0933 & 0.0417 & 0.0021 & 0.0348 & 0.0033 & 0.0417 & 0.0075 & 0.0431 & 0.0021 & 0.0348 & 0.0033 & 0.0417 & 0.0075 & 0.0431 & 0.0048 & 0.0031 & 0.0484 & 0.0933 & 0.0418 & 0.0038 & 0.0038 & 0.0037 & 0.0754 & 0.0021 & 0.0348 & 0.0033 & 0.0417 & 0.0075 & 0.0431 & 0.0048 $	0.5	[-1:3]															
[0; 2] 500 0.0076 0.0507 0.0030 0.0464 0.0014 0.0456 0.0002 0.0480 0.0109 0.0570 0.0021 0.0385 0.0014 0.0080 1.0081		[-, -]															
$ \begin{bmatrix} [0;2] \\ [0;3] \\ [0;2] \\ [0;3] \\ [0;3] \\ [0;3] \\ [0;4] \\ [0;4] \\ [0;5] \\ [$			500														
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		[0: 2]	50														
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			100	0.0104	0.0628	0.0022	0.2209	0.0333	0.0275	0.0152	0.2039	0.0398	0.1169	0.0361	0.1216	0.0031	0.0075
$ \begin{bmatrix} 100 & 0.0006 & 0.0104 & 0.0110 & 0.0055 & 0.0025 & 0.0658 & 0.0131 & 0.0069 & 0.0115 & 0.0483 & 0.0357 & 0.0788 & 0.0065 & 0.0896 \\ 500 & 0.0002 & 0.0143 & 0.0012 & 0.0085 & 0.0037 & 0.0754 & 0.0021 & 0.0348 & 0.0033 & 0.0417 & 0.0075 & 0.0431 & 0.0021 & 0.1075 \\ 500 & 0.0367 & 0.0529 & 0.0352 & 0.1175 & 0.0339 & 0.0221 & 0.0121 & 0.3140 & 0.0543 & 0.0843 & 0.0963 & 0.1813 & 0.0008 & 0.0662 \\ 100 & 0.0215 & 0.0858 & 0.0224 & 0.1340 & 0.0024 & 0.0004 & 0.0195 & 0.3034 & 0.0369 & 0.0721 & 0.0364 & 0.1639 & 0.0069 & 0.0806 \\ 500 & 0.0113 & 0.0701 & 0.0130 & 0.1157 & 0.0025 & 0.0044 & 0.0057 & 0.3158 & 0.0059 & 0.0585 & 0.0046 & 0.1424 & 0.0020 & 0.0873 \\ 0.7 & [-1;3] & 50 & 0.0120 & 0.0076 & 0.0026 & 0.0017 & 0.0015 & 0.0878 & 0.0029 & 0.0063 & 0.0316 & 0.0445 & 0.0821 & 0.1277 & 0.0053 & 0.0854 \\ 100 & 0.0074 & 0.0159 & 0.0082 & 0.0147 & 0.0087 & 0.1022 & 0.0170 & 0.0332 & 0.0142 & 0.0303 & 0.0436 & 0.0968 & 0.0001 & 0.0993 \\ 500 & 0.0014 & 0.0107 & 0.0008 & 0.0149 & 0.0002 & 0.1044 & 0.0033 & 0.0142 & 0.0303 & 0.0436 & 0.0968 & 0.0001 & 0.0993 \\ 500 & 0.0349 & 0.0491 & 0.0174 & 0.0824 & 0.0317 & 0.0300 & 0.0104 & 0.0333 & 0.0456 & 0.0968 & 0.0001 & 0.0193 \\ 100 & 0.0094 & 0.0669 & 0.0013 & 0.0765 & 0.0249 & 0.0138 & 0.0126 & 0.3885 & 0.0232 & 0.0411 & 0.0691 & 0.1944 & 0.0053 & 0.0897 \\ 500 & 0.0096 & 0.0839 & 0.0086 & 0.0602 & 0.0203 & 0.0584 & 0.0137 & 0.0482 & 0.0069 & 0.0189 & 0.0111 & 0.1684 & 0.0030 & 0.1270 \\ 0.8 & [-1;3] & 50 & 0.0077 & 0.0027 & 0.0043 & 0.0020 & 0.0341 & 0.1197 & 0.0488 & 0.0417 & 0.0312 & 0.0345 & 0.1550 & 0.02025 & 0.0135 & 0.0622 \\ 0.007 & 0.0062 & 0.0018 & 0.0075 & 0.0121 & 0.1135 & 0.0162 & 0.0556 & 0.0140 & 0.0169 & 0.0952 & 0.1488 & 0.0036 & 0.0821 \\ 0.007 & 0.0077 & 0.0077 & 0.0043 & 0.0046 & 0.0516 & 0.0196 & 0.0166 & 0.0016 & 0.0040 & 0.0101 & 0.0704 & 0.0013 & 0.0921 \\ 0.007 & 0.0085 & 0.0029 & 0.0023 & 0.0247 & 0.0117 & 0.1156 & 0.0066 & 0.0166 & 0.0040 & 0.0101 & 0.0704 & 0.0013 & 0.0921 \\ 0.007 & 0.0085 & 0.0029 & 0.0023 & 0.0247 & 0.0117 & 0.0156 & 0.0045 & 0.0023 & $			500														
$ \begin{bmatrix} [0;2] & 500 & 0.0002 & 0.0143 & 0.0012 & 0.0085 & 0.0037 & 0.0754 & 0.0021 & 0.0348 & 0.0033 & 0.0417 & 0.0075 & 0.0431 & 0.0021 & 0.1075 \\ 0.0367 & 0.0529 & 0.0352 & 0.1175 & 0.0339 & 0.0221 & 0.0121 & 0.0100 & 0.0543 & 0.0843 & 0.0963 & 0.1813 & 0.0008 & 0.0662 \\ 0.0215 & 0.0858 & 0.0224 & 0.1340 & 0.0024 & 0.0004 & 0.0195 & 0.3034 & 0.0369 & 0.0721 & 0.0364 & 0.1639 & 0.0086 \\ 500 & 0.0113 & 0.0701 & 0.0130 & 0.1157 & 0.0025 & 0.0044 & 0.0057 & 0.3158 & 0.0059 & 0.0585 & 0.0046 & 0.1424 & 0.0020 & 0.0873 \\ 0.07 & [-1;3] & 50 & 0.0120 & 0.0076 & 0.0026 & 0.0017 & 0.0015 & 0.0878 & 0.0029 & 0.0063 & 0.0316 & 0.0445 & 0.0821 & 0.1277 & 0.0053 & 0.0854 \\ 100 & 0.0074 & 0.0159 & 0.0082 & 0.0147 & 0.0087 & 0.1022 & 0.0170 & 0.0332 & 0.0142 & 0.0303 & 0.0436 & 0.0968 & 0.0001 & 0.0935 \\ 0.0014 & 0.0107 & 0.0008 & 0.0149 & 0.0002 & 0.1044 & 0.0003 & 0.0109 & 0.0010 & 0.0162 & 0.0085 & 0.0571 & 0.0013 & 0.1133 \\ 0[0;2] & 50 & 0.0349 & 0.0491 & 0.0174 & 0.0824 & 0.0317 & 0.0300 & 0.0044 & 0.3833 & 0.0557 & 0.0660 & 0.1243 & 0.2222 & 0.0188 & 0.0684 \\ 100 & 0.0094 & 0.0669 & 0.0013 & 0.0765 & 0.0249 & 0.0138 & 0.0123 & 0.0485 & 0.0557 & 0.0660 & 0.1243 & 0.2222 & 0.0188 & 0.0684 \\ 100 & 0.00956 & 0.0839 & 0.0086 & 0.0602 & 0.0023 & 0.0584 & 0.0137 & 0.4082 & 0.0069 & 0.0189 & 0.0111 & 0.1684 & 0.0030 & 0.1270 \\ 0.8 & [-1;3] & 50 & 0.0077 & 0.0027 & 0.0043 & 0.0020 & 0.0341 & 0.1197 & 0.0048 & 0.0417 & 0.0312 & 0.0345 & 0.1505 & 0.2025 & 0.0135 & 0.0622 \\ 100 & 0.0071 & 0.0062 & 0.0018 & 0.0075 & 0.0121 & 0.1135 & 0.0162 & 0.0556 & 0.0140 & 0.0169 & 0.0952 & 0.1488 & 0.0036 & 0.0821 \\ 100 & 0.0351 & 0.0416 & 0.0199 & 0.0329 & 0.0409 & 0.0729 & 0.0266 & 0.4089 & 0.0293 & 0.0214 & 0.1026 & 0.2328 & 0.0201 & 0.0829 \\ 500 & 0.0300 & 0.0419 & 0.0075 & 0.0046 & 0.0516 & 0.0196 & 0.0452 & 0.3346 & 0.0600 & 0.0447 & 0.1700 & 0.2765 & 0.4423 & 0.0587 \\ 100 & 0.0351 & 0.0416 & 0.0199 & 0.0329 & 0.0326 & 0.1089 & 0.0252 & 0.4654 & 0.0022 & 0.0053 & 0.0267 & 0.0204 & 0.0188 & 0.0348 \\ 100 & 0.0198 & 0.0078 & 0.0042 & 0.0027 & $	0.6	[-1; 3]	50	0.0068	0.0187	0.0031	0.0124	0.0238	0.0865	0.0045	0.0119	0.0377	0.0633	0.0668	0.1110	0.0005	0.0635
$ \begin{bmatrix} [0;2] \\ [0;2] \\ [0;2] \\ [0;3] \\ [0;4] \\ [0;5] \\ [0;6] \\ [0;7] \\ [$			100	0.0006	0.0104	0.0110	0.0055	0.0025	0.0658	0.0131	0.0069	0.0115	0.0483	0.0357	0.0788	0.0065	0.0896
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			500	0.0002	0.0143	0.0012	0.0085	0.0037	0.0754	0.0021	0.0348	0.0033	0.0417	0.0075	0.0431	0.0021	0.1075
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		[0; 2]	50	0.0367	0.0529	0.0352	0.1175	0.0339	0.0221	0.0121	0.3100	0.0543	0.0843	0.0963	0.1813	0.0008	0.0662
$ \begin{bmatrix} -1;3 \\ 0.7 \\ -1;3 \\ 0.0074 \\ 0.0120 \\ 0.0076 \\ 0.0026 \\ 0.0014 \\ 0.0159 \\ 0.0082 \\ 0.0147 \\ 0.0082 \\ 0.0147 \\ 0.0087 \\ 0.0027 \\ 0.0082 \\ 0.0147 \\ 0.0087 \\ 0.0022 \\ 0.0014 \\ 0.0107 \\ 0.0008 \\ 0.0144 \\ 0.0107 \\ 0.0088 \\ 0.0149 \\ 0.0014 \\ 0.0107 \\ 0.0088 \\ 0.0149 \\ 0.0017 \\ 0.0088 \\ 0.0144 \\ 0.0002 \\ 0.0014 \\ 0.0107 \\ 0.0088 \\ 0.0149 \\ 0.0017 \\ 0.0088 \\ 0.0014 \\ 0.0107 \\ 0.0088 \\ 0.0149 \\ 0.0017 \\ 0.0088 \\ 0.0014 \\ 0.0107 \\ 0.0088 \\ 0.0014 \\ 0.0107 \\ 0.0088 \\ 0.0014 \\ 0.0107 \\ 0.0088 \\ 0.0013 \\ 0.0081 \\ 0.0094 \\ 0.0669 \\ 0.0013 \\ 0.0085 \\ 0.0089 \\ 0.0088 \\ 0.0082 \\ 0.0008 \\ 0.0088 \\ 0.0082 \\ 0.0008 \\ 0.0088 \\ 0.0082 \\ 0.0008 \\ 0.0081 \\ 0.0088 \\ 0.0082 \\ 0.0008 \\ 0.0081 \\ 0.0088 \\ 0.0081 \\ 0.0088 \\ 0.0081 \\ 0.0088 \\ 0.0081 \\ 0.0088 \\ 0.0081 \\ 0.0088 \\ 0.0081 \\ 0.0088 \\ 0.0081 \\ 0.0088 \\ 0.008$			100	0.0215	0.0858	0.0224	0.1340	0.0024	0.0004	0.0195	0.3034	0.0369	0.0721	0.0364	0.1639	0.0069	0.0806
$\begin{bmatrix} 100 & 0.0074 & 0.0159 & 0.0082 & 0.0147 & 0.0087 & 0.1022 & 0.0170 & 0.0332 & 0.0142 & 0.0303 & 0.0436 & 0.0968 & 0.0001 & 0.0993 \\ 500 & 0.0014 & 0.0107 & 0.0008 & 0.0149 & 0.0002 & 0.1044 & 0.0003 & 0.0109 & 0.0102 & 0.0012 & 0.0085 & 0.0571 & 0.0013 & 0.1133 \\ 100 & 0.0349 & 0.0491 & 0.0174 & 0.0824 & 0.0317 & 0.0300 & 0.0044 & 0.3833 & 0.0557 & 0.6660 & 0.1243 & 0.2222 & 0.0188 & 0.0684 \\ 100 & 0.0094 & 0.0669 & 0.0013 & 0.0765 & 0.0249 & 0.0138 & 0.0126 & 0.3885 & 0.0232 & 0.0411 & 0.0691 & 0.1944 & 0.0053 & 0.0897 \\ 500 & 0.0056 & 0.0839 & 0.0086 & 0.0602 & 0.0203 & 0.0584 & 0.0137 & 0.4082 & 0.0069 & 0.189 & 0.0111 & 0.1684 & 0.0030 & 0.1270 \\ 0.8 & [-1;3] & 50 & 0.0077 & 0.0027 & 0.0043 & 0.0020 & 0.0341 & 0.1197 & 0.0488 & 0.0417 & 0.0312 & 0.0345 & 0.1550 & 0.02025 & 0.0135 & 0.0622 \\ 100 & 0.0071 & 0.0062 & 0.0018 & 0.0075 & 0.0121 & 0.1135 & 0.0162 & 0.0556 & 0.0140 & 0.0169 & 0.0952 & 0.1488 & 0.0036 & 0.0821 \\ 500 & 0.0007 & 0.0179 & 0.0025 & 0.0247 & 0.0117 & 0.1516 & 0.0006 & 0.1066 & 0.0040 & 0.0101 & 0.0704 & 0.0013 & 0.0921 \\ [0;2] & 50 & 0.0300 & 0.0419 & 0.0075 & 0.0464 & 0.0516 & 0.0196 & 0.0452 & 0.3346 & 0.0600 & 0.0447 & 0.1700 & 0.2765 & 0.0423 & 0.0587 \\ 100 & 0.0351 & 0.0416 & 0.0199 & 0.0329 & 0.0409 & 0.0729 & 0.0266 & 0.4089 & 0.0293 & 0.0214 & 0.1026 & 0.2328 & 0.0201 & 0.0829 \\ 500 & 0.0002 & 0.0803 & 0.0033 & 0.0420 & 0.0326 & 0.1089 & 0.0252 & 0.4654 & 0.0022 & 0.0053 & 0.0267 & 0.2004 & 0.0018 & 0.1068 \\ 0.9 & [-1;3] & 50 & 0.0085 & 0.0029 & 0.0023 & 0.0224 & 0.0588 & 0.0833 & 0.0331 & 0.0070 & 0.0263 & 0.0212 & 0.1895 & 0.2369 & 0.0514 & 0.0034 \\ 100 & 0.0198 & 0.0078 & 0.0042 & 0.0027 & 0.0620 & 0.1578 & 0.0209 & 0.0974 & 0.0171 & 0.0124 & 0.1720 & 0.2329 & 0.061 & 0.0475 \\ 100 & 0.0281 & 0.0236 & 0.0122 & 0.0051 & 0.1790 & 0.0185 & 0.1813 & 0.0013 & 0.0244 & 0.2287 & 0.3257 & 0.0801 & 0.0075 \\ 100 & 0.0281 & 0.0236 & 0.0122 & 0.0077 & 0.0106 & 0.0044 & 0.0354 & 0.4205 & 0.0249 & 0.2247 & 0.3327 & 0.0810 & 0.075 \\ 100 & 0.0281 & 0.0236 & 0.0122 & 0.0077 & 0.0106 & 0.004$			500	0.0113	0.0701	0.0130	0.1157	0.0025	0.0044	0.0057	0.3158	0.0059	0.0585	0.0046	0.1424	0.0020	0.0873
$ \begin{bmatrix} [0;2] & 500 & 0.0014 & 0.0107 & 0.0008 & 0.0149 & 0.0002 & 0.1044 & 0.0003 & 0.0109 & 0.0010 & 0.0162 & 0.0085 & 0.0571 & 0.0013 & 0.1133 \\ 0.0349 & 0.0491 & 0.0174 & 0.0824 & 0.0317 & 0.0300 & 0.0044 & 0.3833 & 0.0557 & 0.0660 & 0.1243 & 0.2222 & 0.0188 & 0.0684 \\ 100 & 0.0094 & 0.0669 & 0.0013 & 0.0765 & 0.0249 & 0.0138 & 0.0126 & 0.3885 & 0.0232 & 0.0411 & 0.0691 & 0.1944 & 0.0053 & 0.0897 \\ 500 & 0.0056 & 0.0839 & 0.0086 & 0.0602 & 0.0203 & 0.0584 & 0.0137 & 0.4082 & 0.0669 & 0.0119 & 0.0111 & 0.1684 & 0.0030 & 0.1270 \\ 0.8 & [-1;3] & 50 & 0.0077 & 0.0027 & 0.0043 & 0.0020 & 0.0341 & 0.1197 & 0.0048 & 0.0417 & 0.0312 & 0.0345 & 0.1505 & 0.2025 & 0.0135 & 0.0622 \\ 100 & 0.0071 & 0.0062 & 0.0018 & 0.0075 & 0.0121 & 0.1135 & 0.0162 & 0.0556 & 0.0140 & 0.0169 & 0.0955 & 0.2025 & 0.1488 & 0.0036 & 0.0821 \\ 500 & 0.0007 & 0.0179 & 0.0025 & 0.0247 & 0.0117 & 0.1516 & 0.0006 & 0.1066 & 0.0016 & 0.0040 & 0.0101 & 0.0704 & 0.0013 & 0.0921 \\ [0;2] & 50 & 0.0300 & 0.0419 & 0.0075 & 0.0046 & 0.0516 & 0.0196 & 0.0452 & 0.3346 & 0.0600 & 0.0447 & 0.1700 & 0.2765 & 0.0423 & 0.0587 \\ 100 & 0.0351 & 0.0416 & 0.0199 & 0.0329 & 0.0409 & 0.0729 & 0.0266 & 0.4089 & 0.0293 & 0.0214 & 0.1026 & 0.2328 & 0.0201 & 0.0829 \\ 500 & 0.0002 & 0.0803 & 0.0033 & 0.0420 & 0.0326 & 0.1089 & 0.0252 & 0.4654 & 0.0022 & 0.0053 & 0.0267 & 0.2004 & 0.0018 & 0.1068 \\ \hline 0.9 & [-1;3] & 50 & 0.0085 & 0.0029 & 0.0023 & 0.0224 & 0.0588 & 0.0833 & 0.0331 & 0.0070 & 0.0263 & 0.0212 & 0.1895 & 0.2369 & 0.514 & 0.0034 \\ \hline 0.0 & 0.198 & 0.0078 & 0.0042 & 0.0058 & 0.0838 & 0.0233 & 0.0371 & 0.0171 & 0.0124 & 0.1720 & 0.2329 & 0.0061 & 0.0431 \\ \hline 0.0 & 0.198 & 0.0078 & 0.0042 & 0.0027 & 0.0620 & 0.1578 & 0.0209 & 0.0974 & 0.0171 & 0.0124 & 0.1720 & 0.2329 & 0.0061 & 0.0431 \\ \hline 0.0 & 0.0281 & 0.0236 & 0.0122 & 0.0057 & 0.0108 & 0.0132 & 0.0324 & 0.02287 & 0.3257 & 0.0430 & 0.0249 & 0.2287 & 0.3257 & 0.0801 & 0.0075 \\ \hline 0.0 & 0.0281 & 0.0236 & 0.0122 & 0.0077 & 0.0106 & 0.0004 & 0.0354 & 0.4205 & 0.0260 & 0.0132 & 0.1943 & 0.3297 & 0.0342 & 0.0382 \\ \hline 0.0 &$	0.7	[-1; 3]	50	0.0120	0.0076	0.0026	0.0017	0.0015	0.0878	0.0029	0.0063	0.0316	0.0445	0.0821	0.1277	0.0053	0.0854
$ \begin{bmatrix} [0;2] & 50 & 0.0349 & 0.0491 & 0.0174 & 0.0824 & 0.0317 & 0.0300 & 0.0044 & 0.3833 & 0.0557 & 0.0660 & 0.1243 & 0.2222 & 0.0188 & 0.0684 \\ 100 & 0.0094 & 0.0669 & 0.0013 & 0.0765 & 0.0249 & 0.0138 & 0.0126 & 0.3885 & 0.0322 & 0.0411 & 0.0691 & 0.1944 & 0.0053 & 0.0897 \\ 500 & 0.0056 & 0.0839 & 0.0086 & 0.0602 & 0.0203 & 0.0584 & 0.0137 & 0.4082 & 0.0699 & 0.0189 & 0.0111 & 0.1684 & 0.0030 & 0.1270 \\ 0.8 & [-1;3] & 50 & 0.0077 & 0.0027 & 0.0043 & 0.0020 & 0.0341 & 0.1197 & 0.0048 & 0.0417 & 0.0312 & 0.0345 & 0.1505 & 0.2025 & 0.0135 & 0.0622 \\ 100 & 0.0071 & 0.0062 & 0.0018 & 0.0075 & 0.0121 & 0.1135 & 0.0162 & 0.0556 & 0.0140 & 0.0169 & 0.0952 & 0.1488 & 0.0036 & 0.0821 \\ 500 & 0.0007 & 0.0179 & 0.0025 & 0.0247 & 0.0117 & 0.1516 & 0.0006 & 0.1066 & 0.0040 & 0.0101 & 0.0704 & 0.0013 & 0.0921 \\ [0;2] & 50 & 0.0300 & 0.0419 & 0.0075 & 0.0046 & 0.0516 & 0.0196 & 0.0452 & 0.3346 & 0.0600 & 0.0447 & 0.1700 & 0.2765 & 0.0423 & 0.0587 \\ [0;2] & 50 & 0.0305 & 0.0416 & 0.0199 & 0.0329 & 0.0409 & 0.0729 & 0.0266 & 0.4089 & 0.0293 & 0.0214 & 0.1026 & 0.2328 & 0.0201 & 0.0892 \\ [0;2] & 50 & 0.0085 & 0.0029 & 0.0023 & 0.0224 & 0.0588 & 0.0833 & 0.0331 & 0.0070 & 0.0263 & 0.0212 & 0.1895 & 0.2369 & 0.0514 & 0.0034 \\ [0;2] & 50 & 0.0085 & 0.0029 & 0.0023 & 0.0224 & 0.0588 & 0.0833 & 0.0331 & 0.0070 & 0.0263 & 0.0212 & 0.1895 & 0.2369 & 0.0514 & 0.0034 \\ [0;2] & 50 & 0.0316 & 0.0176 & 0.0038 & 0.0228 & 0.0270 & 0.0185 & 0.1813 & 0.0013 & 0.0244 & 0.2287 & 0.3257 & 0.0801 & 0.075 \\ [0;2] & 50 & 0.0316 & 0.0176 & 0.0038 & 0.0228 & 0.0270 & 0.0109 & 0.0324 & 0.3225 & 0.0249 & 0.2287 & 0.3257 & 0.0801 & 0.075 \\ [0;2] & 50 & 0.0316 & 0.0176 & 0.0038 & 0.0228 & 0.0270 & 0.0109 & 0.0324 & 0.7325 & 0.0430 & 0.0249 & 0.2287 & 0.3257 & 0.0801 & 0.075 \\ [0;2] & 50 & 0.0316 & 0.0176 & 0.0038 & 0.0228 & 0.0270 & 0.0109 & 0.0324 & 0.7325 & 0.0430 & 0.0249 & 0.2287 & 0.3257 & 0.0801 & 0.075 \\ [0;2] & 50 & 0.0316 & 0.0176 & 0.0038 & 0.0228 & 0.0270 & 0.0109 & 0.0324 & 0.7225 & 0.0260 & 0.1332 & 0.1943 & 0.3297 & 0.0342 & 0.3282 \\ [0;2] & $																	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			500	0.0014	0.0107	0.0008	0.0149	0.0002	0.1044	0.0003	0.0109	0.0010	0.0162	0.0085	0.0571	0.0013	0.1133
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		[0; 2]	50	0.0349	0.0491	0.0174	0.0824	0.0317	0.0300	0.0044	0.3833	0.0557	0.0660	0.1243	0.2222	0.0188	0.0684
$ \begin{bmatrix} -1;3 \\ 0.8 \\ -1;3 \\ 0.0077 \\ 0.0027 \\ 0.0027 \\ 0.0027 \\ 0.0027 \\ 0.0021 \\ 0.002$			100	0.0094	0.0669	0.0013	0.0765	0.0249	0.0138	0.0126	0.3885	0.0232	0.0411	0.0691	0.1944	0.0053	0.0897
$ \begin{bmatrix} 100 & 0.0071 & 0.0062 & 0.0018 & 0.0075 & 0.0121 & 0.1135 & 0.0162 & 0.0556 & 0.0140 & 0.0169 & 0.0952 & 0.1488 & 0.0036 & 0.0821 \\ 500 & 0.0007 & 0.0179 & 0.0025 & 0.0247 & 0.0117 & 0.1516 & 0.0006 & 0.1066 & 0.0160 & 0.0040 & 0.0101 & 0.0704 & 0.0013 & 0.0921 \\ 500 & 0.0300 & 0.0419 & 0.0075 & 0.0464 & 0.0516 & 0.0196 & 0.0452 & 0.3346 & 0.0600 & 0.0447 & 0.1700 & 0.2765 & 0.0423 & 0.0587 \\ 100 & 0.0351 & 0.0416 & 0.0199 & 0.0329 & 0.0409 & 0.0729 & 0.0266 & 0.4089 & 0.0293 & 0.0214 & 0.1026 & 0.2328 & 0.0201 & 0.0829 \\ 500 & 0.0002 & 0.0803 & 0.0033 & 0.0420 & 0.0326 & 0.1089 & 0.0252 & 0.4654 & 0.0022 & 0.0053 & 0.0267 & 0.2004 & 0.0018 & 0.1068 \\ \hline 0.9 & [-1;3] & 50 & 0.0085 & 0.0029 & 0.0023 & 0.0224 & 0.0588 & 0.0833 & 0.331 & 0.0070 & 0.0263 & 0.0212 & 0.1895 & 0.2369 & 0.0514 & 0.0034 \\ \hline 100 & 0.0085 & 0.0029 & 0.0023 & 0.0224 & 0.0588 & 0.0833 & 0.3031 & 0.0070 & 0.0263 & 0.0212 & 0.1895 & 0.2369 & 0.0514 & 0.0034 \\ \hline 100 & 0.0198 & 0.0078 & 0.0042 & 0.0027 & 0.0620 & 0.1578 & 0.0209 & 0.0974 & 0.0171 & 0.0124 & 0.1720 & 0.2329 & 0.0061 & 0.0431 \\ \hline 500 & 0.0018 & 0.0152 & 0.0002 & 0.0152 & 0.0051 & 0.1790 & 0.0185 & 0.1813 & 0.0013 & 0.0044 & 0.0285 & 0.1091 & 0.0075 \\ \hline 500 & 0.0316 & 0.0176 & 0.0038 & 0.0228 & 0.0270 & 0.0109 & 0.0324 & 0.3725 & 0.0430 & 0.0249 & 0.2287 & 0.3257 & 0.0801 & 0.075 \\ \hline 500 & 0.0281 & 0.0236 & 0.0122 & 0.0077 & 0.0106 & 0.0004 & 0.0354 & 0.4205 & 0.0260 & 0.0132 & 0.1943 & 0.3297 & 0.0342 & 0.0382 \\ \hline \end{array}$			500	0.0056	0.0839	0.0086	0.0602	0.0203	0.0584	0.0137	0.4082	0.0069	0.0189	0.0111	0.1684	0.0030	0.1270
$ \begin{bmatrix} [0;2] & 500 & 0.0007 & 0.0179 & 0.0025 & 0.0247 & 0.0117 & 0.1516 & 0.0006 & 0.1066 & 0.0016 & 0.0040 & 0.0101 & 0.0744 & 0.0013 & 0.0921 \\ 0.0300 & 0.0419 & 0.0075 & 0.0046 & 0.0156 & 0.0196 & 0.0452 & 0.3346 & 0.0600 & 0.0447 & 0.1700 & 0.2765 & 0.0423 & 0.0587 \\ 100 & 0.0351 & 0.0416 & 0.0199 & 0.0329 & 0.0409 & 0.0729 & 0.0266 & 0.4089 & 0.0293 & 0.0214 & 0.1026 & 0.2328 & 0.0201 & 0.0829 \\ 500 & 0.0002 & 0.0803 & 0.0033 & 0.0420 & 0.0326 & 0.1089 & 0.0252 & 0.4654 & 0.0022 & 0.0053 & 0.0267 & 0.2004 & 0.0018 & 0.1068 \\ \hline 0.9 & [-1;3] & 50 & 0.0085 & 0.0029 & 0.0023 & 0.0224 & 0.0588 & 0.0833 & 0.0331 & 0.0070 & 0.0263 & 0.0212 & 0.1895 & 0.2369 & 0.0514 & 0.0034 \\ 100 & 0.0198 & 0.0078 & 0.0042 & 0.0027 & 0.0620 & 0.1578 & 0.0209 & 0.0974 & 0.171 & 0.0124 & 0.1720 & 0.2329 & 0.0661 & 0.0431 \\ 500 & 0.0018 & 0.0152 & 0.0002 & 0.0152 & 0.0051 & 0.1790 & 0.0185 & 0.1813 & 0.0013 & 0.0044 & 0.0285 & 0.1091 & 0.0075 \\ 500 & 0.0316 & 0.0176 & 0.0038 & 0.0228 & 0.0270 & 0.0109 & 0.0324 & 0.3725 & 0.0430 & 0.0249 & 0.2287 & 0.3257 & 0.0801 & 0.0075 \\ 100 & 0.0281 & 0.0236 & 0.0122 & 0.0077 & 0.0106 & 0.0004 & 0.0354 & 0.4205 & 0.0260 & 0.0132 & 0.1943 & 0.3297 & 0.0342 & 0.0382 \\ \hline \end{tabular}$	0.8	[-1; 3]															
$ \begin{bmatrix} [0;2] \\ [0;2] \\ [0;2] \\ [0;2] \\ [0;2] \\ [0;2] \\ [0;3] \end{bmatrix} \begin{bmatrix} 50 \\ 0.0300 & 0.0419 & 0.0075 & 0.0046 & 0.0516 & 0.0196 & 0.0452 & 0.3346 & 0.0600 & 0.0447 & 0.1700 & 0.2765 & 0.0423 & 0.0587 \\ 0.0351 & 0.0416 & 0.0199 & 0.0329 & 0.0409 & 0.0729 & 0.0266 & 0.4089 & 0.0293 & 0.0214 & 0.1026 & 0.2328 & 0.0201 & 0.0829 \\ 0.0002 & 0.0803 & 0.0033 & 0.0420 & 0.0326 & 0.1089 & 0.0252 & 0.4654 & 0.0022 & 0.0053 & 0.0267 & 0.2004 & 0.0018 & 0.1068 \\ 0.09 \\ [-1;3] \\ 50 \\ 0.0085 & 0.0029 & 0.0023 & 0.0224 & 0.0588 & 0.0833 & 0.0331 & 0.0070 & 0.0263 & 0.0212 & 0.1895 & 0.2369 & 0.0514 & 0.0034 \\ 100 \\ 0.0198 & 0.0078 & 0.0042 & 0.0027 & 0.0620 & 0.1578 & 0.0209 & 0.0974 & 0.0171 & 0.0124 & 0.1720 & 0.2329 & 0.0061 & 0.0431 \\ 500 \\ 0.018 & 0.0152 & 0.0002 & 0.0152 & 0.0051 & 0.1790 & 0.0185 & 0.1813 & 0.0013 & 0.0044 & 0.0285 & 0.1091 & 0.0075 \\ [0;2] \\ 50 \\ 0.0281 & 0.0281 & 0.0236 & 0.0122 & 0.0077 & 0.0106 & 0.0004 & 0.0354 & 0.4205 & 0.0260 & 0.0132 & 0.1943 & 0.3297 & 0.0342 & 0.0382 \\ [0;2] \\ 50 \\ 0.0281 & 0.0281 & 0.0236 & 0.0122 & 0.0077 & 0.0106 & 0.0004 & 0.0354 & 0.4205 & 0.0260 & 0.0132 & 0.1943 & 0.3297 & 0.0342 & 0.0382 \\ [0;2] \\ 50 \\ 0.0281 & 0.0236 & 0.0122 & 0.0077 & 0.0106 & 0.0004 & 0.0354 & 0.4205 & 0.0260 & 0.0132 & 0.1943 & 0.3297 & 0.0342 & 0.0382 \\ [0;2] \\ 50 \\ 0.0281 & 0.0236 & 0.0122 & 0.0077 & 0.0106 & 0.0004 & 0.0354 & 0.4205 & 0.0260 & 0.0132 & 0.1943 & 0.3297 & 0.0342 & 0.0382 \\ [0;2] \\ 50 \\ 0.0281 & 0.0281 & 0.0236 & 0.0122 & 0.0077 & 0.0106 & 0.0004 & 0.0354 & 0.4205 & 0.0260 & 0.0132 & 0.1943 & 0.3297 & 0.0342 & 0.0382 \\ [0;2] \\ 50 \\ 0.0281 & 0.0281 & 0.0236 & 0.0122 & 0.0077 & 0.0106 & 0.0004 & 0.0354 & 0.4205 & 0.0260 & 0.0132 & 0.1943 & 0.3297 & 0.0342 & 0.0382 \\ [0;2] \\ 50 \\ 0.0281 & 0.0281 & 0.0236 & 0.0122 & 0.0077 & 0.0106 & 0.0004 & 0.0354 & 0.4205 & 0.0260 & 0.0132 & 0.1943 & 0.3297 & 0.0342 & 0.0382 \\ [0;2] \\ 50 \\ 0.0281 & 0.0281 & 0.0236 & 0.0122 & 0.0077 & 0.0106 & 0.0004 & 0.0354 & 0.4205 & 0.0260 & 0.0132 & 0.1943 & 0.3297 & 0.0342 & 0.0382 \\ [0;2] \\ 50 \\ 0.0281 & 0.0281 & 0.$																	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$																	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		[0; 2]															
$ \begin{bmatrix} -1;3 \end{bmatrix} & 50 & 0.0085 & 0.0029 & 0.0023 & 0.0224 & 0.0588 & 0.0833 & 0.0331 & 0.0070 & 0.0263 & 0.0212 & 0.1895 & 0.2369 & 0.0514 & 0.0034 \\ 100 & 0.0198 & 0.0078 & 0.0042 & 0.0027 & 0.0620 & 0.1578 & 0.0209 & 0.0974 & 0.0171 & 0.0124 & 0.1720 & 0.2329 & 0.0061 & 0.0431 \\ 500 & 0.0018 & 0.0152 & 0.0002 & 0.0152 & 0.0051 & 0.1790 & 0.0185 & 0.1813 & 0.0013 & 0.0044 & 0.0285 & 0.1091 & 0.0036 \\ [0;2] & 50 & 0.0316 & 0.0176 & 0.0038 & 0.0228 & 0.0270 & 0.0109 & 0.0324 & 0.3725 & 0.0430 & 0.0249 & 0.2287 & 0.3257 & 0.0801 & 0.0075 \\ 100 & 0.0281 & 0.0236 & 0.0122 & 0.0077 & 0.0106 & 0.0004 & 0.0354 & 0.4205 & 0.0260 & 0.0132 & 0.1943 & 0.3297 & 0.0342 & 0.0382 \\ \end{bmatrix} $																	
$ \begin{bmatrix} 100 & 0.0198 & 0.0078 & 0.0042 & 0.0027 & 0.0620 & 0.1578 & 0.0209 & 0.0974 & 0.0171 & 0.0124 & 0.1720 & 0.2329 & 0.0061 & 0.0431 \\ 500 & 0.0018 & 0.0152 & 0.0002 & 0.0152 & 0.0051 & 0.1790 & 0.0185 & 0.1813 & 0.0013 & 0.0044 & 0.0285 & 0.1091 & 0.0003 & 0.0536 \\ [0; 2] & 50 & 0.0316 & 0.0176 & 0.0038 & 0.0228 & 0.0270 & 0.0109 & 0.0324 & 0.3725 & 0.0430 & 0.0249 & 0.2287 & 0.3257 & 0.0801 & 0.0075 \\ 100 & 0.0281 & 0.0236 & 0.0122 & 0.0077 & 0.0106 & 0.0004 & 0.0354 & 0.4205 & 0.0260 & 0.0132 & 0.1943 & 0.3297 & 0.0342 & 0.0382 \\ \end{bmatrix} $																	
$ \begin{bmatrix} 500 & 0.0018 \ 0.0152 \ 0.0002 \ 0.0152 \ 0.0051 \ 0.1790 \ 0.0185 \ 0.1813 \ 0.0013 \ 0.0044 \ 0.0285 \ 0.1091 \ 0.0003 \ 0.0536 \\ 0.0316 \ 0.0176 \ 0.0038 \ 0.0228 \ 0.0270 \ 0.0109 \ 0.0324 \ 0.3725 \ 0.0430 \ 0.0249 \ 0.2287 \ 0.3257 \ 0.0801 \ 0.0075 \\ 100 & 0.0281 \ 0.0236 \ 0.0122 \ 0.0077 \ 0.0106 \ 0.0004 \ 0.0354 \ 0.4205 \ 0.0260 \ 0.0132 \ 0.1943 \ 0.3297 \ 0.0342 \ 0.0382 \\ \end{bmatrix} $	0.9	[-1; 3]	50														
$100 \qquad 0.0281 \ 0.0236 \ 0.0122 \ 0.0077 \ 0.0106 \ 0.0004 \ 0.0354 \ 0.4205 \ 0.0260 \ 0.0132 \ 0.1943 \ 0.3297 \ 0.0342 \ 0.0382$																	
		[0; 2]															
$500 \qquad 0.0106 \ 0.0453 \ 0.0083 \ 0.0196 \ 0.0027 \ 0.1439 \ 0.0101 \ 0.5135 \ 0.0083 \ 0.0069 \ 0.0402 \ 0.2249 \ 0.0073 \ 0.0611$																	
			500	0.0106	0.0453	0.0083	0.0196	0.0027	0.1439	0.0101	0.5135	0.0083	0.0069	0.0402	0.2249	0.0073	0.0611

Tabela D.65: Estimativas do valor absoluto do enviesamento médio dos parâmetros da mistura de duas regressões lineares no caso ${\rm CV}$

			α_1	α_1	β_1	β_1	α_2	α_2	β_2	β_2	σ_1	σ_1	σ_2	σ_2	π_1	π_1
$_{-\pi_{1}}$	x	n	EM	CEM	EM	CEM	EM	CEM	EM	CEM	EM	CEM	EM	CEM	EM	CEM
0.1	[-1; 3]	50													0.0671	
		100													0.0275	
		500													0.0039	
	[0; 2]	50													0.0994	
		100													0.0409	
		500													0.0083	
0.2	[-1; 3]	50													0.0179	
		100													0.0134	
		500													0.0034	
	[0; 2]	50													0.0439	
		100													0.0361	
		500													0.0065	
0.3	[-1; 3]	50														0.0182
		100													0.0003	
		500													0.0014	
	[0; 2]	50													0.0415	
		100													0.0220	
		500													0.0082	
0.4	[-1; 3]	50													0.0087	
		100													0.0025	
		500													0.0022	
	[0; 2]	50													0.0345	
		100													0.0204	
		500													0.0044	
0.5	[-1; 3]	50													0.0094	
		100													0.0056	
		500													0.0020	
	[0; 2]	50													0.0073	
		100													0.0090	
		500													0.0000	
0.6	[-1; 3]	50														0.0827
		100													0.0009	
		500													0.0029	
	[0; 2]	50													0.0006	
		100													0.0190	
		500													0.0023	
0.7	[-1; 3]	50													0.0118	
		100													0.0007	
		500													0.0017	
	[0; 2]	50													0.0007	
		100													0.0038	
		500													0.0036	
0.8	[-1; 3]	50													0.0021	
		100													0.0045	
	fo. 01	500													0.0009	
	[0; 2]	50													0.0085	
		100													0.0072	
	[4 0]	500													0.0022	
0.9	[-1; 3]	50													0.0342	
		100													0.0095	
	[0 0]	500													0.0003	
	[0; 2]	50													0.0538	
		100													0.0065	
		500	0.0008	0.0126	0.0015	0.0107	0.0300	0.2063	0.0066	0.3173	0.0008	0.0086	0.0487	0.1985	0.0012	0.0419

Tabela D.66: Estimativas do valor absoluto do enviesamento médio dos parâmetros da mistura de duas regressões lineares no caso ${\rm CVI}$

 $232 \hspace{3.1em} Ap \hat{\rm e} n dice \; D$

			α_1	α_1	β_1	β_1	α_2	α_2	β_2	β_2	σ_1	σ_1	σ_2	σ_2	π_1	π_1
π_1	x	n	EM	CEM	$_{\rm EM}$	CEM	$_{\rm EM}$	CEM	$_{\rm EM}$	CEM	$_{\rm EM}$	CEM	$_{\rm EM}$	CEM	EM	CEM
0.1	[-1; 3]	50													0.0461	
		100													0.0350	
		500													0.0178	
	[0; 2]	50	0.4983	0.6470	0.4237	0.5412	0.1897	0.3908	0.1011	0.1480	0.1124	0.0958	0.0430	0.0538	0.1102	0.1933
		100													0.0934	
		500													0.0181	
0.2	[-1; 3]	50	0.2262	0.2888	0.1266	0.1593	0.0753	0.0724	0.0448	0.0440	0.0944	0.0930	0.0389	0.0371	0.0654	0.0587
		100	0.1510	0.2248	0.0857	0.1065	0.0527	0.0519	0.0332	0.0333	0.0660	0.0639	0.0263	0.0259	0.0484	0.0440
		500	0.0556	0.0727	0.0324	0.0384	0.0229	0.0239	0.0148	0.0153	0.0255	0.0263	0.0109	0.0110	0.0221	0.0208
	[0; 2]	50	0.3870	0.4836	0.2656	0.3453	0.1128	0.1439	0.0908	0.0882	0.0954	0.0773	0.0389	0.0347	0.0790	0.0874
		100	0.2521	0.2906	0.1988	0.2262	0.0896	0.0903	0.0731	0.0721	0.0712	0.0584	0.0311	0.0298	0.0520	0.0513
		500	0.1125	0.1060	0.0816	0.0809	0.0367	0.0398	0.0303	0.0309	0.0301	0.0248	0.0117	0.0124	0.0241	0.0251
0.3	[-1; 3]	50	0.1492	0.1752	0.0908	0.1013	0.0801	0.0792	0.0494	0.0496	0.0738	0.0729	0.0440	0.0425	0.0780	0.0758
	-	100	0.1256	0.1462	0.0703	0.0790	0.0602	0.0609	0.0347	0.0348	0.0511	0.0503	0.0305	0.0288	0.0556	0.0570
		500	0.0481	0.0548	0.0253	0.0274	0.0242	0.0250	0.0135	0.0139	0.0196	0.0189	0.0135	0.0132	0.0251	0.0270
	[0; 2]	50	0.2518	0.2592	0.2114	0.2140	0.1367	0.1367	0.1044	0.1040	0.0741	0.0610	0.0480	0.0406	0.0828	0.0880
		100	0.1981	0.1628	0.1446	0.1224	0.0973	0.0929	0.0745	0.0707	0.0553	0.0446	0.0300	0.0276	0.0603	0.0649
		500	0.0848	0.0738	0.0631	0.0530	0.0429	0.0466	0.0328	0.0350	0.0261	0.0200	0.0154	0.0140	0.0237	0.0339
0.4	[-1; 3]	50	0.1533	0.1748	0.0944	0.1044	0.1076	0.1190	0.0624	0.0669	0.0616	0.0610	0.0537	0.0514	0.0873	0.1058
		100	0.0938	0.1102	0.0558	0.0609	0.0684	0.0699	0.0420	0.0421	0.0457	0.0451	0.0363	0.0355	0.0603	0.0756
		500	0.0388	0.0432	0.0211	0.0224	0.0272	0.0280	0.0176	0.0179	0.0168	0.0172	0.0130	0.0124	0.0267	0.0316
	[0; 2]	50	0.2344	0.2183	0.1695	0.1649	0.1638	0.1549	0.1269	0.1215	0.0661	0.0526	0.0580	0.0476	0.0928	0.1061
		100	0.1772	0.1413	0.1292	0.1073	0.1157	0.0994	0.0913	0.0797	0.0477	0.0349	0.0343	0.0316	0.0641	0.0732
		500	0.0675	0.0675	0.0502	0.0498	0.0491	0.0507	0.0385	0.0377	0.0196	0.0169	0.0162	0.0149	0.0319	0.0410
0.5	[-1; 3]	50	0.1266	0.1295	0.0730	0.0746	0.1173	0.1207	0.0686	0.0701	0.0554	0.0543	0.0559	0.0549	0.0895	0.1157
		100	0.0774	0.0797	0.0442	0.0435	0.0838	0.0879	0.0465	0.0483	0.0346	0.0348	0.0379	0.0384	0.0601	0.0880
		500	0.0296	0.0330	0.0183	0.0192	0.0303	0.0336	0.0184	0.0193	0.0146	0.0161	0.0151	0.0160	0.0259	0.0584
	[0; 2]	50	0.1759	0.1838	0.1402	0.1410	0.1744	0.1611	0.1308	0.1286	0.0619	0.0481	0.0582	0.0484	0.0929	0.1025
		100	0.1258	0.1126	0.0922	0.0831	0.1338	0.1289	0.1033	0.0939	0.0439	0.0315	0.0376	0.0328	0.0648	0.0855
		500	0.0543	0.0617	0.0403	0.0438	0.0554	0.0600	0.0437	0.0442	0.0182	0.0145	0.0161	0.0137	0.0304	0.0468
0.6	[-1; 3]	50	0.0905	0.0923	0.0581	0.0586	0.1587	0.1468	0.0902	0.0852	0.0457	0.0423	0.0673	0.0638	0.0858	0.0999
		100	0.0667	0.0663	0.0421	0.0414	0.0896	0.1011	0.0503	0.0521	0.0308	0.0290	0.0401	0.0392	0.0610	0.0802
		500	0.0284	0.0299	0.0176	0.0181	0.0342	0.0367	0.0208	0.0216	0.0141	0.0139	0.0183	0.0187	0.0247	0.0308
	[0; 2]	50	0.1697	0.1946	0.1300	0.1199	0.2258	0.2262	0.1813	0.1905	0.0537	0.0430	0.0654	0.0506	0.0939	0.1061
		100	0.1112	0.1071	0.0838	0.0817	0.1602	0.1414	0.1132	0.1026	0.0328	0.0303	0.0462	0.0362	0.0628	0.0746
		500	0.0473	0.0559	0.0372	0.0397	0.0674	0.0664	0.0491	0.0470	0.0150	0.0137	0.0206	0.0163	0.0289	0.0411
0.7	[-1; 3]	50	0.0878	0.0857	0.0538	0.0512	0.1911	0.2694	0.1048	0.1298	0.0415	0.0390	0.0752	0.0723	0.0795	0.0837
		100	0.0536	0.0546	0.0317	0.0320	0.1216	0.1572	0.0658	0.0800	0.0284	0.0276	0.0544	0.0538	0.0608	0.0615
		500	0.0242	0.0252	0.0148	0.0153	0.0448	0.0534	0.0243	0.0280	0.0122	0.0122	0.0209	0.0215	0.0244	0.0275
	[0; 2]	50													0.0843	
		100	0.0924	0.0976	0.0744	0.0770	0.2053	0.1740	0.1500	0.1325	0.0339	0.0290	0.0579	0.0461	0.0609	0.0631
		500	0.0415	0.0471	0.0341	0.0356	0.0846	0.0753	0.0613	0.0543	0.0136	0.0133	0.0249	0.0210	0.0289	0.0361
0.8	[-1; 3]	50	0.0785	0.0773	0.0477	0.0471	0.2194	0.2922	0.1347	0.1593	0.0364	0.0338	0.0868	0.0798	0.0637	0.0537
	. , - 1	100	0.0495	0.0515	0.0308	0.0317	0.1548	0.2053	0.0863	0.1077	0.0262	0.0268	0.0632	0.0623	0.0513	0.0465
		500	0.0230	0.0236	0.0153	0.0157	0.0594	0.0715	0.0332	0.0383	0.0116	0.0114	0.0254	0.0264	0.0222	0.0200
	[0; 2]	50													0.0734	
	1-7 1	100													0.0522	
		500													0.0260	
0.9	[-1; 3]	50													0.0483	
	, -,	100													0.0348	
		500													0.0173	
	[0; 2]	50													0.0745	
	[~, ~]	100													0.0623	
		500													0.0023	
		550	0.0040	5.5540	5.5233	5.0434	5.1103	5.1100	5.1250	J.124J	5.0100	5.5106	5.0409	5.0019	0.0104	0.0140

Tabela D.67: Estimativas do desvio padrão dos parâmetros da mistura de duas regressões lineares no caso CI

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	π_1 x
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	n_1 x
$ \begin{bmatrix} 100 & 0.4145 & 1.0175 & 0.2261 & 0.5120 & 0.0805 & 0.7180 & 0.0539 & 0.1772 & 0.1556 & 0.1515 & 0.0440 & 0.0772 & 0.0393 & 0.166 \\ 0.2111 & 0.6794 & 0.1123 & 0.3141 & 0.0344 & 0.0379 & 0.0230 & 0.0250 & 0.0919 & 0.0917 & 0.0180 & 0.0200 & 0.0203 & 0.011 \\ 0.596 & 0.9281 & 0.4892 & 0.6896 & 0.4861 & 1.4962 & 0.2299 & 0.6160 & 0.1755 & 0.1672 & 0.1043 & 0.1574 & 0.1800 & 0.355 \\ 0.6004 & 0.6185 & 0.4973 & 0.4694 & 0.2655 & 1.0631 & 0.1176 & 0.3569 & 0.1701 & 0.1563 & 0.0786 & 0.1381 & 0.1557 & 0.338 \\ 0.02 & [-1;3] & 50 & 0.3801 & 0.6637 & 0.2096 & 0.3559 & 0.1453 & 0.3928 & 0.0846 & 0.0886 & 0.1717 & 0.1683 & 0.0756 & 0.0748 & 0.0862 & 0.144 \\ 100 & 0.3571 & 0.6656 & 0.1952 & 0.3186 & 0.0943 & 0.1014 & 0.0550 & 0.1567 & 0.1325 & 0.0503 & 0.0491 & 0.0608 & 0.048 \\ 500 & 0.1184 & 0.5291 & 0.0624 & 0.2388 & 0.0394 & 0.0577 & 0.0249 & 0.0367 & 0.0548 & 0.0653 & 0.0204 & 0.0251 & 0.0296 & 0.028 \\ [0;2] & 50 & 0.5533 & 0.6402 & 0.4831 & 0.4848 & 0.3302 & 1.0590 & 0.1789 & 0.4058 & 0.1828 & 0.1465 & 0.1024 & 0.1072 & 0.1589 & 0.248 \\ \end{bmatrix}$	0.1 [1.
$ \begin{bmatrix} [0;2] & 500 & 0.2111 & 0.6794 & 0.1123 & 0.3141 & 0.0344 & 0.0379 & 0.0230 & 0.0250 & 0.0919 & 0.0917 & 0.0180 & 0.0200 & 0.0203 & 0.0180 \\ 500 & 0.5906 & 0.9281 & 0.4892 & 0.6896 & 0.4861 & 1.4962 & 0.2299 & 0.6160 & 0.1755 & 0.1672 & 0.1043 & 0.1574 & 0.1800 & 0.358 \\ 500 & 0.6004 & 0.6185 & 0.4973 & 0.4694 & 0.2655 & 1.0631 & 0.1176 & 0.3569 & 0.1701 & 0.1563 & 0.0786 & 0.1381 & 0.1557 & 0.338 \\ \hline 0.2 & [-1;3] & 50 & 0.3801 & 0.6637 & 0.2096 & 0.3559 & 0.1453 & 0.3928 & 0.0846 & 0.0886 & 0.1717 & 0.1683 & 0.0756 & 0.0748 & 0.0862 & 0.144 \\ 100 & 0.3571 & 0.6656 & 0.1952 & 0.3186 & 0.0943 & 0.1014 & 0.0550 & 0.0596 & 0.1367 & 0.1325 & 0.5033 & 0.0491 & 0.0608 & 0.048 \\ 500 & 0.1184 & 0.5291 & 0.0624 & 0.2388 & 0.0394 & 0.0577 & 0.0249 & 0.0367 & 0.0548 & 0.0653 & 0.0244 & 0.0251 & 0.0296 & 0.024 \\ [0;2] & 50 & 0.5533 & 0.6402 & 0.4831 & 0.4848 & 0.3302 & 1.0590 & 0.1789 & 0.4058 & 0.1828 & 0.1465 & 0.1024 & 0.1072 & 0.1589 & 0.248 \\ \hline \end{tabular}$	0.1 [-1;
$ \begin{bmatrix} [0;2] & 50 & 0.5906 \ 0.9281 \ 0.4892 \ 0.6896 \ 0.4861 \ 1.4962 \ 0.2299 \ 0.6160 \ 0.1755 \ 0.1672 \ 0.1043 \ 0.1574 \ 0.1800 \ 0.35 \\ 0.6004 \ 0.6185 \ 0.4973 \ 0.4694 \ 0.2655 \ 1.0631 \ 0.1176 \ 0.3569 \ 0.1701 \ 0.1563 \ 0.0786 \ 0.1381 \ 0.1357 \ 0.33 \\ 0.4052 \ 0.4319 \ 0.2684 \ 0.2550 \ 0.0574 \ 0.5353 \ 0.0495 \ 0.0822 \ 0.1177 \ 0.0970 \ 0.0215 \ 0.0681 \ 0.0345 \ 0.0345 \\ 0.2 & [-1;3] & 50 & 0.3801 \ 0.6637 \ 0.2096 \ 0.3559 \ 0.1453 \ 0.3928 \ 0.0846 \ 0.0886 \ 0.1717 \ 0.1683 \ 0.0756 \ 0.0748 \ 0.0862 \ 0.148 \\ 0.3571 \ 0.6656 \ 0.1952 \ 0.3186 \ 0.0943 \ 0.1014 \ 0.0550 \ 0.0596 \ 0.1367 \ 0.1325 \ 0.0503 \ 0.0491 \ 0.0608 \ 0.04 \\ 0.1184 \ 0.5291 \ 0.0624 \ 0.2388 \ 0.0394 \ 0.0577 \ 0.0249 \ 0.0367 \ 0.0548 \ 0.0653 \ 0.0204 \ 0.0251 \ 0.0296 \ 0.025 \\ 0.5533 \ 0.6402 \ 0.4831 \ 0.4848 \ 0.3302 \ 1.0590 \ 0.1789 \ 0.4058 \ 0.1828 \ 0.1465 \ 0.1024 \ 0.1072 \ 0.1589 \ 0.248 \\ 0.2465 \ 0.1024 \ 0.1072 \ 0.1589 \ 0.248 \\ 0.2465 \ 0.1024 \ 0.1072 \ 0.1589 \ 0.248 \\ 0.2465 \ 0.1024 \ 0.1072 \ 0.1589 \ 0.248 \\ 0.2465 \ 0.1024 \ 0.1072 \ 0.1589 \ 0.248 \\ 0.2465 \ 0.1024 \ 0.1072 \ 0.1589 \ 0.248 \\ 0.2465 \ 0.1024 \ 0.1072 \ 0.1589 \ 0.248 \\ 0.2465 \ 0.1024 \ 0.1072 \ 0.1589 \ 0.248 \\ 0.2465 \ 0.1024 \ 0.1072 \ 0.1589 \ 0.248 \\ 0.2465 \ 0.1024 \ 0.1072 \ 0.1589 \ 0.248 \\ 0.2465 \ 0.1024 \ 0.1072 \ 0.1589 \ 0.248 \\ 0.2465 \ 0.1024 \ 0.1072 \ 0.1589 \ 0.248 \\ 0.2465 \ 0.1024 \ 0.1072 \ 0.1589 \ 0.248 \\ 0.2465 \ 0.1024 \ 0.1072 \ 0.1589 \ 0.248 \\ 0.2465 \ 0.1024 \ 0.1072 \ 0.1589 \ 0.248 \\ 0.2465 \ 0.1024 \ 0.1072 \ 0.1589 \ 0.1024 \\ 0.2465 \ 0.1024 \ 0.1072 \ 0.1589 \ 0.1024 \\ 0.2465 \ 0.1024 \ 0.1072 \ 0.1589 \ 0.1024 \\ 0.2465 \ 0.1024 \ 0.1072 \ 0.1589 \ 0.1024 \\ 0.2465 \ 0.1024 \ 0.1072 \ 0.1589 \ 0.1024 \ 0.1024 \ 0.1072 \ 0.1589 \ 0.1024$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	10.4
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	[0;
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0 [1
$ \begin{bmatrix} 500 & 0.1184 \ 0.5291 \ 0.0624 \ 0.2388 \ 0.0394 \ 0.0577 \ 0.0249 \ 0.0367 \ 0.0548 \ 0.0653 \ 0.0204 \ 0.0251 \ 0.0296 \ 0.026 \\ \hline [0;2] & 50 & 0.5533 \ 0.6402 \ 0.4831 \ 0.4848 \ 0.3302 \ 1.0590 \ 0.1789 \ 0.4058 \ 0.1828 \ 0.1465 \ 0.1024 \ 0.1072 \ 0.1589 \ 0.248 \\ \hline \end{bmatrix} $	0.2 [-1;
$[0;2] \hspace{1.5cm} 50 \hspace{0.5cm} 0.5533 \hspace{0.1cm} 0.6402 \hspace{0.1cm} 0.4848 \hspace{0.1cm} 0.3302 \hspace{0.1cm} 1.0590 \hspace{0.1cm} 0.1789 \hspace{0.1cm} 0.4058 \hspace{0.1cm} 0.1828 \hspace{0.1465} \hspace{0.1465} \hspace{0.1cm} 0.1024 \hspace{0.1cm} 0.1072 \hspace{0.1cm} 0.1589 \hspace{0.1cm} 0.24 \hspace{0.1cm} 0$	
	FO .
100 0.4399 0.4406 0.3554 0.3302 0.1561 0.7122 0.1402 0.2040 0.1568 0.1136 0.0649 0.0914 0.1034 0.19	[0;
500 0.2465 0.2952 0.1636 0.1669 0.0705 0.3359 0.0602 0.0518 0.0760 0.0648 0.0265 0.0524 0.0403 0.13	0.0 [1
$\begin{bmatrix} 0.3 & [-1;3] & 50 & 0.3742 & 0.6315 & 0.2136 & 0.3162 & 0.1641 & 0.1971 & 0.1029 & 0.1044 & 0.1513 & 0.1402 & 0.0795 & 0.0846 & 0.1017 & 0.1029 & 0.1044 & 0.1513 & 0.1402 & 0.0795 & 0.1044 & 0.1017 & 0.1029 & 0.1044 & 0.1513 & 0.1402 & 0.0795 & 0.1044 & 0.1017 & 0.1029$	0.3 [-1;
100 0.2349 0.4713 0.1288 0.2248 0.1153 0.1328 0.0682 0.0783 0.0981 0.1075 0.0519 0.0524 0.0717 0.06	
500 0.0915 0.4339 0.0486 0.1993 0.0430 0.0840 0.0250 0.0528 0.0394 0.0506 0.0231 0.0260 0.0308 0.03	FO .
$[0;2] \hspace{0.5cm} 50 \hspace{0.5cm} 0.4969 \hspace{0.05cm} 0.5648 \hspace{0.05cm} 0.3807 \hspace{0.05cm} 0.4284 \hspace{0.05cm} 0.2977 \hspace{0.05cm} 0.6393 \hspace{0.05cm} 0.1888 \hspace{0.05cm} 0.2256 \hspace{0.05cm} 0.1490 \hspace{0.05cm} 0.1141 \hspace{0.05cm} 0.0894 \hspace{0.05cm} 0.0891 \hspace{0.05cm} 0.1368 \hspace{0.05cm} 0.170 \hspace{0.05cm} 0.17$	[0;
$100 \qquad 0.3741 \ 0.3713 \ 0.3032 \ 0.2646 \ 0.2478 \ 0.3640 \ 0.1591 \ 0.1357 \ 0.1236 \ 0.0921 \ 0.0759 \ 0.0680 \ 0.1112 \ 0.125 \ 0.1236 \ 0.0921 \ 0.0759 \ 0.0680 \ 0.1112 \ 0.125 \ 0.125 \ 0.0921 $	
500 0.1859 0.2487 0.1337 0.1126 0.0853 0.0853 0.0680 0.0558 0.0576 0.0489 0.0282 0.0470 0.0406 0.06	
0.4 [-1;3] 50 0.2717 0.4530 0.1585 0.2336 0.2024 0.2285 0.1113 0.1266 0.1268 0.1175 0.0848 0.0778 0.1040 0.1269 0.1175 0.0848 0.0000000000000000000000000000000000	0.4 [-1;
100 0.1861 0.4145 0.1056 0.1958 0.1273 0.1557 0.0761 0.0945 0.0829 0.0871 0.0632 0.0658 0.0734 0.10	
500 0.0794 0.2745 0.0432 0.1317 0.0539 0.1021 0.0321 0.0599 0.0349 0.0417 0.0278 0.0292 0.0308 0.04	
$ \begin{bmatrix} 0;2 \end{bmatrix} 50 0.4686 \; 0.3322 \; 0.3452 \; 0.2580 \; 0.2922 \; 0.3669 \; 0.2251 \; 0.1930 \; 0.1411 \; 0.0873 \; 0.1090 \; 0.0740 \; 0.1510 \; 0.122 \; 0.10000 \; 0.10000 \; 0.10000 \; 0.10000 \; 0.10000 \; 0.10000 \; 0.10000 \; 0.10000 \; 0.10000 \; 0.10$	[0;
$100 \qquad 0.3066 \ 0.3127 \ 0.2312 \ 0.1998 \ 0.2028 \ 0.2010 \ 0.1712 \ 0.1443 \ 0.1137 \ 0.0742 \ 0.0843 \ 0.0644 \ 0.1145 \ 0.11$	
500 0.1386 0.1648 0.1087 0.0843 0.0888 0.1051 0.0735 0.0604 0.0478 0.0396 0.0366 0.0402 0.0520 0.07	
$0.5 [-1;3] 50 0.2079 \ 0.2715 \ 0.1275 \ 0.1446 \ 0.2262 \ 0.2984 \ 0.1377 \ 0.1615 \ 0.1054 \ 0.1015 \ 0.1031 \ 0.0964 \ 0.1066 \ 0.144 \ 0.1015 \ $	0.5 [-1;
$100 \qquad 0.1468 \ 0.2409 \ 0.0867 \ 0.1281 \ 0.1370 \ 0.2524 \ 0.0786 \ 0.1288 \ 0.0707 \ 0.0739 \ 0.0770 \ 0.0775 \ 0.0759 \ 0.1380 \ 0.000000000000000000000000000000000$	
500 0.0609 0.1089 0.0351 0.0567 0.0592 0.1174 0.0323 0.0575 0.0300 0.0356 0.0313 0.0376 0.0330 0.10	FO .
[0;2] 50 0.3964 0.2954 0.2829 0.2076 0.3872 0.2903 0.3071 0.2229 0.1309 0.0776 0.1429 0.0829 0.1656 0.13	[0;
100 0.2503 0.2548 0.1861 0.1663 0.2882 0.2514 0.2249 0.1746 0.0946 0.0634 0.1075 0.0694 0.1232 0.11	
500 0.1087 0.1669 0.0860 0.0828 0.1143 0.1634 0.0827 0.0798 0.0347 0.0356 0.0382 0.0336 0.0409 0.09	0.0 [1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.6 [-1;
100 0.1286 0.1719 0.0730 0.0976 0.1795 0.3767 0.1033 0.1772 0.0631 0.0620 0.0814 0.0889 0.0709 0.09	
500 0.0532 0.1143 0.0321 0.0691 0.0758 0.3197 0.0408 0.1477 0.0242 0.0257 0.0350 0.0411 0.0287 0.04	FO .
[0;2] 50 0.3300 0.2419 0.2511 0.1900 0.4205 0.3720 0.3005 0.2466 0.1201 0.0780 0.1371 0.0849 0.1544 0.13	[0; 2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
500 0.0992 0.1253 0.0756 0.0720 0.1507 0.2080 0.1076 0.0986 0.0306 0.0435 0.0390 0.0394 0.0388 0.08	0 = [1
$\begin{bmatrix} -1; 3 \end{bmatrix} 50 0.1529 0.3501 0.0926 0.0975 0.3216 0.5235 0.1910 0.2923 0.0850 0.0708 0.1670 0.1402 0.1021 0.$	0.7 [-1;
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	10.4
$ \begin{bmatrix} 0;2 \end{bmatrix} \qquad 50 \qquad 0.2661 \ 0.4154 \ 0.2129 \ 0.1766 \ 0.4652 \ 0.5253 \ 0.3830 \ 0.3573 \ 0.0984 \ 0.0917 \ 0.1665 \ 0.1231 \ 0.1327 \ 0.166 \\ 0.1712 \ 0.3618 \ 0.1437 \ 0.1338 \ 0.3647 \ 0.3884 \ 0.2872 \ 0.2952 \ 0.0698 \ 0.0740 \ 0.1320 \ 0.0895 \ 0.1079 \ 0.13 \\ 0.1712 \ 0.3618 \ 0.1437 \ 0.1338 \ 0.3647 \ 0.3884 \ 0.2872 \ 0.2952 \ 0.0698 \ 0.0740 \ 0.1320 \ 0.0895 \ 0.1079 \ 0.13 \\ 0.1712 \ 0.3618 \ 0.1437 \ 0.1338 \ 0.3647 \ 0.3884 \ 0.2872 \ 0.2952 \ 0.0698 \ 0.0740 \ 0.1320 \ 0.0895 \ 0.1079 \ 0.13 \\ 0.1712 \ 0.3618 \ 0.1437 \ 0.1338 \ 0.3647 \ 0.3884 \ 0.2872 \ 0.2952 \ 0.0698 \ 0.0740 \ 0.1320 \ 0.0895 \ 0.1079 \ 0.13 \\ 0.1712 \ 0.3618 \ 0.1437 \ 0.1338 \ 0.3647 \ 0.3884 \ 0.2872 \ 0.2952 \ 0.0698 \ 0.0740 \ 0.1320 \ 0.0895 \ 0.1079 \ 0.13 \\ 0.1712 \ 0.3618 \ 0.1437 \ 0.1338 \ 0.3647 \ 0.3884 \ 0.2872 \ 0.2952 \ 0.0698 \ 0.0740 \ 0.1320 \ 0.0895 \ 0.1079 \ 0.13 \\ 0.1712 \ 0.1321 $	[0; 2
	0.0 [1
	0.8 [-1;
$\begin{array}{llllllllllllllllllllllllllllllllllll$	
$ \begin{bmatrix} 0;2 \end{bmatrix} \begin{array}{ccccccccccccccccccccccccccccccccccc$	[0.4
	[0; .
100 0.1597 0.6124 0.1447 0.1654 0.4640 0.4677 0.3329 0.3185 0.0641 0.0784 0.1650 0.1185 0.0949 0.19 500 0.0736 0.3329 0.0593 0.0519 0.2348 0.2788 0.1611 0.1449 0.0242 0.0600 0.0734 0.0704 0.0400 0.12	
	0.0 [1.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.9 [-1;
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	FO 4
[0;2] 50 0.3887 1.0360 0.1748 0.3839 0.6159 1.9546 0.4798 1.2365 0.0991 0.1424 0.1847 0.1695 0.1725 0.317	[0;
100 0.1853 1.1686 0.1202 0.4088 0.5730 0.7574 0.4494 0.6060 0.0608 0.1358 0.1825 0.1615 0.1120 0.31- 500 0.0598 0.4979 0.0492 0.0977 0.4412 0.4266 0.2946 0.2577 0.0235 0.0471 0.1223 0.0931 0.0387 0.17-	
500 0.0598 0.4979 0.0492 0.0977 0.4412 0.4266 0.2946 0.2577 0.0235 0.0471 0.1223 0.0931 0.0387 0.17	

Tabela D.68: Estimativas do desvio padrão dos parâmetros da mistura de duas regressões lineares no caso CII

 $234 \hspace{3.1em} \textit{Apêndice D}$

	x	n	$_{\mathrm{EM}}^{lpha_{1}}$	α_1 CEM	$_{\mathrm{EM}}^{eta_{1}}$	β_1 CEM	α_2 EM	α_2 CEM	β_2 EM	β_2 CEM	σ_1 EM	σ_1 CEM	$\frac{\sigma_2}{\mathrm{EM}}$	σ_2 CEM	$_{\mathrm{EM}}^{\pi_{1}}$	$_{ ext{CEM}}^{\pi_1}$
$\frac{\pi_1}{0.1}$	[-1; 3]	50													0.0907	
0.1	[-1, 3]	100													0.0907	
		500													0.0351	
	[0; 2]	50													0.1496	
	[0, 2]	100													0.1746	
		500													0.0774	
0.2	[-1; 3]	50													0.1325	
0.2	[1,0]	100													0.0764	
		500													0.0347	
	[0; 2]	50	0.6265	0.8914	0.4788	0.6128	0.5172	1.2705	0.3197	0.4955	0.2083	0.2579	0.1717	0.2453	0.1942	0.3085
	. , ,	100													0.1679	
		500													0.0832	
0.3	[-1; 3]	50													0.1372	
		100	0.2698	1.0227	0.1416	0.4380	0.1756	0.2648	0.1123	0.1311	0.1384	0.1270	0.0934	0.0988	0.0915	0.1239
		500	0.1085	0.7008	0.0602	0.2906	0.0719	0.3131	0.0496	0.0849	0.0487	0.1064	0.0397	0.0955	0.0359	0.1047
	[0; 2]	50	0.5968	0.6009	0.4605	0.4140	0.4668	0.6189	0.3640	0.2956	0.2042	0.1810	0.1968	0.1732	0.1895	0.1882
		100	0.4747	0.6251	0.3695	0.4256	0.3818	0.7618	0.2798	0.2826	0.1486	0.1656	0.1155	0.1586	0.1563	0.2122
		500	0.2159	0.5389	0.1689	0.1931	0.1558	0.8868	0.1100	0.2020	0.0747	0.2712	0.0558	0.2657	0.0792	0.3072
0.4	[-1; 3]	50	0.2885	0.4106	0.1756	0.2250	0.2993	0.4203	0.1825	0.1910	0.1509	0.1171	0.1640	0.1579	0.1415	0.1631
		100													0.0846	
		500													0.0379	
	[0; 2]	50													0.1937	
		100													0.1467	
		500													0.0718	
0.5	[-1; 3]	50													0.1274	
		100													0.0995	
	fo. 01	500													0.0399	
	[0; 2]	50													0.1752	
		100													0.1443	
0.0	[1 0]	500													0.0648	
0.6	[-1; 3]	50 100													0.1234	
		500													0.0939 0.0385	
	[0; 2]	50													0.0385 0.1794	
	[0, 2]	100													0.1794	
		500													0.0614	
0.7	[-1; 3]	50													0.1172	
0.1	[1,0]	100													0.0810	
		500													0.0326	
	[0; 2]	50													0.2003	
	L-7 J	100													0.1517	
		500													0.0525	
0.8	[-1; 3]	50	0.1342	0.9328	0.0873	0.1871	0.5944	0.9842	0.3475	0.5274	0.0742	0.0958	0.2691	0.2380	0.1026	0.2121
	. , ,	100	0.0948	0.5414	0.0596	0.1073	0.4914	0.9437	0.2827	0.4764	0.0566	0.0682	0.2137	0.2062	0.0727	0.1385
		500	0.0459	0.0606	0.0252	0.0378	0.1749	0.7752	0.0969	0.3400	0.0241	0.0330	0.0758	0.1240	0.0303	0.0251
	[0; 2]	50	0.5299	1.2925	0.2357	0.4088	0.8768	0.8742	0.6615	0.6485	0.1038	0.1218	0.2570	0.1922	0.2033	0.3274
		100	0.3958	1.1132	0.1591	0.3275	0.7346	1.1122	0.5334	0.7636	0.0772	0.1075	0.2420	0.2121	0.1635	0.3161
		500													0.0492	
0.9	[-1; 3]	50													0.1290	
		100													0.0886	
		500													0.0240	
	[0; 2]	50													0.2665	
		100													0.2036	
		500	0.0581	0.8181	0.0515	0.0977	0.4808	0.7684	0.3445	0.4366	0.0239	0.0657	0.1747	0.1538	0.0378	0.3057

Tabela D.69: Estimativas do desvio padrão dos parâmetros da mistura de duas regressões lineares no caso CIII

			α_1	α_1	β_1	β_1	α_2	α_2	β_2	β_2	σ_1	σ_1	σ_2	σ_2	π_1	π_1
$\frac{\pi_1}{\pi_1}$	x	n	EM	CEM	EM	CEM	EM	CEM	EM	CEM	EM	CEM	EM	CEM	EM	CEM
0.1	[-1; 3]	50													0.0520	
		100 500													0.0401	
	[0. 0]	500 50													0.0192 0.0687	
	[0; 2]	100													0.0642	
		500													0.0042 0.0254	
0.2	[-1; 3]	50													0.0234	
0.2	[-1; 5]	100													0.0763	
		500													0.0323 0.0257	
	[0; 2]	50													0.0237	
	[0, 2]	100													0.0652	
		500													0.0306	
0.3	[-1; 3]	50													0.0368	
0.5	[-1, 3]	100													0.0555	
		500													0.0333 0.0241	
	[0; 2]	50													0.0241	
	[0, 2]	100													0.1114	
		500													0.0704	
0.4	[-1; 3]	50													0.1004	
0.4	[-1; 5]	100													0.1004 0.0649	
		500													0.0649 0.0276	
	[0. 0]	50													0.0276	
	[0; 2]	100													0.1133	
		500													0.0311	
0.5	[1.9]	50													0.0289	
0.5	[-1; 3]	100													0.0913 0.0654	
		500													0.0034 0.0271	
	[0; 2]	50													0.0271	
	[0, 2]	100													0.1193	
		500													0.0335	
0.6	[-1; 3]	50													0.0333	
0.0	[-1, 3]	100													0.0664	
		500													0.0302	
	[0; 2]	50													0.0302	
	[0, 2]	100													0.1048	
		500													0.0733	
0.7	[-1; 3]	50													0.0941	
0.7	[-1, 3]	100													0.0550	
		500													0.0330	
	[0; 2]	50													0.1013	
	[0, 2]	100													0.0732	
		500													0.0323	
0.8	[-1; 3]	50													0.0812	
0.0	[-1, 3]	100													0.0512	
		500													0.0206	
	[0; 2]	50													0.1056	
	[0, 2]	100													0.0633	
		500													0.0033	
0.9	[-1; 3]	50													0.0292	
0.3	[-1, 0]	100													0.0419	
		500													0.0349	
	[0; 2]	50													0.0100	
	[0, 2]	100													0.0342 0.0462	
		500													0.0402	
		500	0.0232	0.0230	0.0271	0.0204	0.1330	0.1031	0.1071	0.1304	0.0102	0.0122	0.0100	0.0013	0.0200	0.0140

Tabela D.70: Estimativas do desvio padrão dos parâmetros da mistura de duas regressões lineares no caso CIV

			α_1	α_1	β_1	β_1	α_2	α_2	β_2	β_2	σ_1	σ_1	σ_2	σ_2	π_1	π_1
π_1	x	n	EM	CEM	EM	CEM	EM	CEM	EM	CEM	EM	CEM	EM	CEM	EM	CEM
0.1	[-1; 3]	50													0.0094	
		100													0.0030	
		500													0.0005	
	[0; 2]	50													0.0168	
		100													0.0119	
		500													0.0014	
0.2	[-1; 3]	50													0.0069	
		100													0.0040	
		500	0.0063	0.0294	0.0038	0.0708	0.0013	0.0020	0.0006	0.0018	0.0028	0.0092	0.0004	0.0007	0.0007	0.0086
	[0; 2]	50	0.2465	0.1913	0.2354	0.5418	0.0450	0.0319	0.0386	0.0209	0.0607	0.0887	0.0112	0.0057	0.0200	0.0082
		100	0.1555	0.0845	0.1256	0.4972	0.0293	0.0170	0.0200	0.0121	0.0403	0.0707	0.0052	0.0035	0.0120	0.0093
		500	0.0304	0.0413	0.0276	0.2385	0.0040	0.0124	0.0035	0.0046	0.0059	0.0402	0.0005	0.0011	0.0015	0.0127
0.3	[-1; 3]	50	0.0595	0.0612	0.0407	0.0955	0.0212	0.0182	0.0101	0.0095	0.0311	0.0369	0.0078	0.0072	0.0106	0.0149
	-	100	0.0231	0.0287	0.0160	0.0609	0.0071	0.0076	0.0038	0.0053	0.0154	0.0208	0.0030	0.0044	0.0047	0.0139
		500	0.0042	0.0138	0.0026	0.0430	0.0014	0.0021	0.0008	0.0039	0.0018	0.0049	0.0007	0.0014	0.0010	0.0117
	[0; 2]	50	0.2280	0.1315	0.1720	0.3732	0.0572	0.0382	0.0529	0.0295	0.0444	0.0615	0.0140	0.0087	0.0217	0.0156
		100	0.1178	0.0656	0.0847	0.2415	0.0344	0.0352	0.0239	0.0257	0.0179	0.0461	0.0048	0.0044	0.0114	0.0166
		500	0.0185	0.0168	0.0154	0.1673	0.0059	0.0141	0.0041	0.0076	0.0026	0.0296	0.0009	0.0019	0.0022	0.0169
0.4	[-1; 3]	50	0.0366	0.0399	0.0231	0.0419	0.0251	0.0247	0.0129	0.0138	0.0205	0.0257	0.0111	0.0127	0.0127	0.0198
		100	0.0173	0.0200	0.0100	0.0323	0.0130	0.0137	0.0068	0.0100	0.0091	0.0141	0.0051	0.0066	0.0065	0.0167
		500	0.0028	0.0092	0.0015	0.0150	0.0019	0.0026	0.0009	0.0030	0.0013	0.0036	0.0006	0.0023	0.0010	0.0138
	[0; 2]	50	0.1479	0.0839	0.1167	0.1642	0.0723	0.0545	0.0636	0.0597	0.0293	0.0397	0.0153	0.0119	0.0203	0.0202
	1-7 1	100													0.0125	
		500	0.0134	0.0112	0.0104	0.1054	0.0080	0.0168	0.0062	0.0200	0.0024	0.0233	0.0011	0.0047	0.0023	0.0147
0.5	[-1; 3]	50													0.0113	
	[-, -]	100													0.0059	
		500													0.0011	
	[0; 2]	50													0.0235	
		100	0.0458	0.0322	0.0361	0.0730	0.0470	0.0316	0.0336	0.0660	0.0084	0.0173	0.0092	0.0189	0.0124	0.0160
		500													0.0024	
0.6	[-1; 3]	50													0.0108	
	[-, -]	100													0.0052	
		500													0.0011	
	[0; 2]	50													0.0222	
	[-,-]	100													0.0105	
		500													0.0017	
0.7	[-1; 3]	50													0.0101	
	[-, -]	100													0.0039	
		500													0.0011	
	[0; 2]	50													0.0201	
	[0, 2]	100													0.0102	
		500													0.0016	
0.8	[-1; 3]	50													0.0061	
0.0	[1,0]	100													0.0040	
		500													0.0007	
	[0; 2]	50													0.0184	
	[0, 2]	100													0.0134	
		500													0.0017	
0.9	[-1; 3]	50													0.0061	
0.9	[-1, 3]	100													0.0001	
		500													0.0021 0.0004	
	[0; 2]	500 50													0.0004	
	[0, 2]	100													0.0193	
		500													0.0099 0.0015	
		500	0.0038	0.0047	0.0028	0.0019	0.0629	0.0731	0.0759	0.3631	0.0006	0.0008	0.0127	0.0559	0.0015	0.0041

Tabela D.71: Estimativas do desvio padrão dos parâmetros da mistura de duas regressões lineares no caso ${\rm CV}$

			α_1	α_1	β_1	β_1	α_2	α_2	β_2	β_2	σ_1	σ_1	σ_2	σ_2	π_1	π_1
$\frac{\pi_1}{\pi_1}$	x	n	EM	CEM	EM	CEM	EM	CEM	EM	CEM	EM	CEM	EM	CEM	EM	CEM
0.1	[-1; 3]	50													0.0646	
		100													0.0624	
	[0.0]	500													0.0243	
	[0; 2]	50													0.1157	
		100													0.0834	
	[1 0]	500													0.0415	
0.2	[-1; 3]	50													0.0817	
		100													0.0591	
	[0.0]	500													0.0279	
	[0; 2]	50													0.1219	
		100													0.1099	
	[1 0]	500													0.0416	
0.3	[-1; 3]	50													0.1076	
		100													0.0682	
	[0.0]	500													0.0311	
	[0; 2]	50													0.1339	
		100 500													0.1061	
-0.4	[1 0]														0.0410	
0.4	[-1; 3]	50													0.1023	
		100 500													$0.0720 \\ 0.0302$	
	[0.0]	500 50													0.0302 0.1359	
	[0; 2]	100													0.1359 0.0961	
		500													0.0403	
-0.5	[1 0]	500													0.1007	
0.5	[-1; 3]	100													0.1007	
		500													0.0701	
	[0; 2]	50													0.0307	
	[0, 2]	100													0.0995	
		500													0.0384	
0.6	[-1; 3]	50													0.0966	
0.0	[1,0]	100													0.0668	
		500													0.0286	
	[0; 2]	50													0.1286	
	[0, 2]	100													0.0874	
		500													0.0361	
0.7	[-1; 3]	50													0.0818	
	[-, -]	100													0.0639	
		500													0.0259	
	[0; 2]	50													0.1314	
	[-, -]	100													0.0840	
		500													0.0351	
0.8	[-1; 3]	50													0.0809	
	. , - 1	100	0.0502	0.0504	0.0374	0.0371	0.3325	0.2816	0.2270	0.3121	0.0291	0.0294	0.1644	0.1825	0.0598	0.0458
		500	0.0205	0.0208	0.0132	0.0141	0.1144	0.1041	0.0878	0.1322	0.0133	0.0142	0.0671	0.0759	0.0212	0.0181
	[0; 2]	50													0.1116	
	. , ,	100	0.0749	0.0735	0.1458	0.0652	0.5911	0.5255	0.5101	0.6048	0.0343	0.0320	0.1914	0.2174	0.0834	0.0426
		500													0.0296	
0.9	[-1; 3]	50													0.0578	
	. , 1	100													0.0408	
		500													0.0170	
	[0; 2]	50													0.1285	
		100													0.0853	
		500	0.0312	0.0322	0.0268	0.0274	0.3037	0.2538	0.2386	0.3584	0.0127	0.0139	0.1124	0.1603	0.0220	0.0132

Tabela D.72: Estimativas do desvio padrão dos parâmetros da mistura de duas regressões lineares no caso ${
m CVI}$

 $238 \hspace{3.1em} Ap \hat{\mathrm{e}} \mathrm{n} \mathrm{d} \mathrm{i} \mathrm{ce} \; D$

The part						-											
Column C	_	_															
10		x [1.2]															
1. 1. 1. 1. 1. 1. 1. 1.	0.1	[-1; 3]															
[0; 2] 50																	
1.0		[0, 0]															
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		[0, 2]															
Column C																	
	0.2	[1, 9]															
10	0.2	[-1, 0]															
[9; 2] 50 0.1498 0.2851 0.0708 0.1393 0.0236 0.0085 0.0077 0.0152 0.0166 0.0018 0.0017 0.0064 0.0085 0.0018 0.0018 0.0017 0.0044 0.0085 0.0018 0.0016 0.0085 0.0011 0.0012 0.0027 0.0043 0.0018 0.0018 0.0016 0.0018																	
100		[0.2]															
Column C		[0, 2]															
1-13 50																	
100	0.3	[-1:3]															
$ \begin{bmatrix} [0;2] \\ [$	0.0	[1,0]															
[0; 2] 50																	
100		[0: 2]															
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		[-, -]															
$ \begin{bmatrix} 0.4 & [-1;3] & 50 & 0.0236 & 0.0304 & 0.0091 & 0.0108 & 0.0117 & 0.0141 & 0.0039 & 0.0045 & 0.0055 & 0.0059 & 0.0033 & 0.0038 & 0.0076 & 0.0121 \\ 100 & 0.00088 & 0.0123 & 0.0031 & 0.0039 & 0.0047 & 0.0049 & 0.0018 & 0.0023 & 0.0029 & 0.0014 & 0.0019 & 0.0036 & 0.0082 \\ 100 & 0.0015 & 0.0028 & 0.0004 & 0.0010 & 0.0007 & 0.0009 & 0.0003 & 0.0005 & 0.0002 & 0.0006 & 0.0007 & 0.0039 \\ 100 & 0.0313 & 0.0228 & 0.0506 & 0.0271 & 0.0326 & 0.0162 & 0.0188 & 0.0053 & 0.0064 & 0.0036 & 0.0035 & 0.0086 & 0.0118 \\ 100 & 0.0313 & 0.0724 & 0.0166 & 0.0333 & 0.0333 & 0.0222 & 0.0083 & 0.0118 & 0.0025 & 0.0037 & 0.0013 & 0.0021 & 0.0014 & 0.0055 \\ 500 & 0.0046 & 0.0651 & 0.0025 & 0.0225 & 0.0024 & 0.0126 & 0.0015 & 0.0060 & 0.0004 & 0.0018 & 0.0033 & 0.0088 & 0.0010 & 0.0028 \\ 100 & 0.0060 & 0.0067 & 0.0020 & 0.0022 & 0.0070 & 0.0084 & 0.0022 & 0.0027 & 0.0013 & 0.0020 & 0.0015 & 0.0020 & 0.0036 & 0.0077 \\ 100 & 0.0060 & 0.0067 & 0.0020 & 0.0025 & 0.0024 & 0.0027 & 0.0013 & 0.0002 & 0.0016 & 0.0002 & 0.0006 & 0.0007 & 0.0034 \\ 100 & 0.0158 & 0.0428 & 0.0085 & 0.0199 & 0.013 & 0.0003 & 0.0005 & 0.0002 & 0.006 & 0.0007 & 0.0034 \\ 100 & 0.0158 & 0.0428 & 0.0085 & 0.0199 & 0.0181 & 0.0441 & 0.0107 & 0.0211 & 0.0021 & 0.0028 & 0.0015 & 0.0029 & 0.0042 \\ 0.0029 & 0.0308 & 0.0016 & 0.0131 & 0.030 & 0.0337 & 0.0018 & 0.0027 & 0.0018 & 0.00041 & 0.0003 & 0.0014 & 0.0003 & 0.0014 & 0.0003 \\ 100 & 0.0044 & 0.0046 & 0.0018 & 0.0080 & 0.0109 & 0.0022 & 0.0032 & 0.0017 & 0.0022 & 0.0032 & 0.0015 & 0.0029 & 0.0022 & 0.0038 \\ 100 & 0.0044 & 0.0046 & 0.0018 & 0.0080 & 0.0109 & 0.0022 & 0.0030 & 0.0014 & 0.0003 & 0.0004 & 0.0004 & 0.0014 & 0.0017 & 0.0022 & 0.0030 & 0.0004 & 0.0014 & 0.0014 & 0.0017 & 0.0022 & 0.0030 & 0.0004 & 0.0004 & 0.0014 & 0.0017 & 0.0022 & 0.0004 & 0.0004 & 0.0014 & 0.0017 & 0.0022 & 0.0003 & 0.0004 & 0.0004 & 0.0014 & 0.0017 & 0.0022 & 0.0004 & 0.0004 & 0.0014 & 0.0017 & 0.0022 & 0.0003 & 0.0004 & 0.0004 & 0.0004 & 0.0004 & 0.0004 & 0.0004 & 0.0004 & 0.0004 & 0.0004 & 0.0004 & 0.0004 & 0.0004 & 0.0004 & 0.0004 & 0.0$																	
100	0.4	[-1:3]															
$ \begin{bmatrix} [0;2] & 50 & 0.0015 & 0.0028 & 0.0004 & 0.0010 & 0.0007 & 0.0009 & 0.0003 & 0.0004 & 0.0003 & 0.0006 & 0.0007 & 0.0008 & 0.0018 \\ 100 & 0.0313 & 0.0724 & 0.0166 & 0.0333 & 0.0133 & 0.0222 & 0.0083 & 0.0118 & 0.0025 & 0.0037 & 0.0013 & 0.0021 & 0.0041 & 0.0058 \\ 500 & 0.0046 & 0.0651 & 0.0025 & 0.0265 & 0.0024 & 0.0126 & 0.0015 & 0.0060 & 0.0004 & 0.0018 & 0.0003 & 0.0008 & 0.0010 & 0.0028 \\ 0.5 & [-1;3] & 50 & 0.0163 & 0.0167 & 0.0056 & 0.0026 & 0.0148 & 0.0047 & 0.0051 & 0.0060 & 0.0004 & 0.0018 & 0.0033 & 0.0038 & 0.0081 & 0.0134 \\ 100 & 0.0060 & 0.0067 & 0.0020 & 0.0022 & 0.0070 & 0.0084 & 0.0022 & 0.0027 & 0.0013 & 0.0020 & 0.0015 & 0.0020 & 0.0035 & 0.0029 \\ 500 & 0.0030 & 0.0064 & 0.0166 & 0.0339 & 0.0333 & 0.0526 & 0.0170 & 0.0277 & 0.0043 & 0.0046 & 0.0041 & 0.0049 & 0.0088 & 0.0105 \\ 100 & 0.0158 & 0.0428 & 0.0085 & 0.0199 & 0.0181 & 0.0441 & 0.0107 & 0.0211 & 0.0022 & 0.0015 & 0.0029 & 0.0042 & 0.0073 \\ 500 & 0.0029 & 0.0308 & 0.0016 & 0.0131 & 0.0034 & 0.0337 & 0.0019 & 0.0147 & 0.0003 & 0.0014 & 0.0003 & 0.0014 & 0.0004 & 0.0015 \\ 500 & 0.0029 & 0.0308 & 0.0018 & 0.0038 & 0.0254 & 0.0216 & 0.0082 & 0.0073 & 0.0023 & 0.0027 & 0.0056 & 0.0059 & 0.0073 & 0.0112 \\ 500 & 0.0044 & 0.0046 & 0.0018 & 0.0080 & 0.0119 & 0.0025 & 0.0032 & 0.0017 & 0.0056 & 0.0059 & 0.0073 & 0.0112 \\ 100 & 0.0044 & 0.0046 & 0.0188 & 0.0080 & 0.0109 & 0.0025 & 0.0033 & 0.0021 & 0.0014 & 0.0017 & 0.0028 & 0.0014 \\ 100 & 0.0126 & 0.0029 & 0.0044 & 0.0018 & 0.0080 & 0.0109 & 0.0022 & 0.0014 & 0.0017 & 0.0022 & 0.0038 & 0.0012 & 0.0014 & 0.0014 & 0.0017 & 0.0022 & 0.0038 & 0.0012 & 0.0014 & 0.0014 & 0.0017 & 0.0022 & 0.0038 & 0.0022 & 0.0016 & 0.0033 & 0.0034 & 0.0022 & 0.0016 & 0.0034 & 0.0022 & 0.0016 & 0.0034 & 0.0022 & 0.0016 & 0.0034 & 0.0022 & 0.0016 & 0.0034 & 0.0022 & 0.0016 & 0.0034 & 0.0022 & 0.0016 & 0.0034 & 0.0022 & 0.0016 & 0.0034 & 0.0022 & 0.0016 & 0.0034 & 0.0022 & 0.0016 & 0.0034 & 0.0022 & 0.0016 & 0.0034 & 0.0022 & 0.0016 & 0.0034 & 0.0022 & 0.0016 & 0.0016 & 0.0016 & 0.0016 & 0.0016 & 0.0016 & 0.0016 & 0.00$		[-, -,															
$ \begin{bmatrix} [0;2] \\ 50 \\ 0.0548 \\ 0.1013 \\ 0.0724 \\ 0.0166 \\ 0.0313 \\ 0.0724 \\ 0.0166 \\ 0.0333 \\ 0.0133 \\ 0.0225 \\ 0.0025 \\ 0.0024 \\ 0.0126 \\ 0.0013 \\ 0.0025 \\ 0.0025 \\ 0.00083 \\ 0.0118 \\ 0.0025 \\ 0.0004 \\ 0.0001 \\ 0.0004 \\ 0.0005 \\ 0.0024 \\ 0.0126 \\ 0.0015 \\ 0.0004 \\ 0.0005 \\ 0.0004 \\ 0.0005 \\ 0.0004 \\ 0.0005 \\ 0.0009 \\ 0.0015 \\ 0.0009 \\ 0.0015 \\ 0.0009 \\ 0.0015 \\ 0.0009 \\ 0.0015 \\ 0.0009 \\ 0.0015 \\ 0.0009 \\ 0.0015 \\ 0.0009 \\ 0.0015 \\ 0.0009 \\ 0.0015 \\ 0.0009 \\ 0.0015 \\ 0.0009 \\ 0.0009 \\ 0.0015 \\ 0.0009 \\ 0.00009 \\ 0.0009 \\ 0$																	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		[0: 2]	50														
$ \begin{bmatrix} -1;3 \\ 100 \\ 0.0660 & 0.0163 & 0.0167 & 0.0054 & 0.0056 & 0.0137 & 0.0148 & 0.0047 & 0.0050 & 0.0044 & 0.0033 & 0.0038 & 0.0081 & 0.0134 \\ 100 & 0.0660 & 0.0067 & 0.0022 & 0.0070 & 0.0084 & 0.0022 & 0.0027 & 0.0013 & 0.0020 & 0.0006 & 0.0009 & 0.0015 & 0.0020 & 0.0036 & 0.0079 \\ 0.0090 & 0.0015 & 0.0003 & 0.0060 & 0.0009 & 0.0013 & 0.0003 & 0.0005 & 0.0002 & 0.0006 & 0.0002 & 0.0006 & 0.0007 & 0.0034 \\ 0.022 & 50 & 0.0308 & 0.0634 & 0.0196 & 0.0339 & 0.0333 & 0.0526 & 0.0170 & 0.0217 & 0.0043 & 0.0046 & 0.0041 & 0.0049 & 0.0086 & 0.0105 \\ 100 & 0.0158 & 0.0428 & 0.0085 & 0.0199 & 0.0181 & 0.0441 & 0.0107 & 0.0211 & 0.0021 & 0.0028 & 0.0015 & 0.0029 & 0.0042 & 0.0073 \\ 500 & 0.0029 & 0.0308 & 0.0016 & 0.0131 & 0.0030 & 0.0337 & 0.0019 & 0.0147 & 0.0003 & 0.0014 & 0.0003 & 0.0014 & 0.0009 & 0.0022 \\ 0.6 & [-1;3] & 50 & 0.0081 & 0.0085 & 0.0034 & 0.0035 & 0.0254 & 0.0216 & 0.0082 & 0.0073 & 0.0023 & 0.0014 & 0.0003 & 0.0014 & 0.0009 & 0.0022 \\ 0.0044 & 0.0046 & 0.0018 & 0.0018 & 0.0018 & 0.0109 & 0.0025 & 0.0032 & 0.0010 & 0.0014 & 0.0017 & 0.0022 & 0.0037 & 0.0085 \\ 500 & 0.0088 & 0.0011 & 0.0003 & 0.0004 & 0.0012 & 0.0025 & 0.0032 & 0.0010 & 0.0014 & 0.0017 & 0.0026 & 0.0038 \\ [0;2] & 50 & 0.0287 & 0.0470 & 0.0168 & 0.0188 & 0.0507 & 0.1077 & 0.0327 & 0.0587 & 0.0033 & 0.0034 & 0.0048 & 0.0057 & 0.0088 & 0.120 \\ 100 & 0.0126 & 0.0209 & 0.0072 & 0.0107 & 0.0260 & 0.0779 & 0.0131 & 0.0330 & 0.0011 & 0.0018 & 0.0023 & 0.0037 & 0.0088 \\ 500 & 0.0022 & 0.0142 & 0.0014 & 0.0071 & 0.0045 & 0.6639 & 0.0024 & 0.0258 & 0.0002 & 0.0016 & 0.0004 & 0.0019 & 0.0025 \\ 500 & 0.0048 & 0.0017 & 0.0022 & 0.0030 & 0.0035 & 0.0066 & 0.0013 & 0.0092 & 0.0014 & 0.0037 & 0.0068 \\ 500 & 0.0048 & 0.0037 & 0.0062 & 0.0037 & 0.0068 & 0.0044 & 0.0044 & 0.0044 & 0.0046 & 0.0046 \\ 500 & 0.0048 & 0.0057 & 0.00072 & 0.0035 & 0.0066 & 0.0013 & 0.0022 & 0.0004 & 0.0006 & 0.0066 & 0.0042 \\ 500 & 0.0048 & 0.0058 & 0.0012 & 0.0072 & 0.0035 & 0.0066 & 0.0012 & 0.0005 & 0.0066 & 0.0024 & 0.0026 & 0.0026 & 0.0033 & 0.0026 & 0.0035 & 0.0066 & 0.002$		L-7 1	100														
$ \begin{bmatrix} 100 \\ 500 \\ 0.0060 & 0.0067 & 0.0022 & 0.0070 & 0.0084 & 0.0022 & 0.0013 & 0.0020 & 0.0015 & 0.0020 & 0.0036 & 0.0079 \\ 500 \\ 0.0009 & 0.0015 & 0.0003 & 0.0006 & 0.0009 & 0.0013 & 0.0003 & 0.0005 & 0.0002 & 0.0006 & 0.0007 & 0.0034 \\ 100 \\ 0.0158 & 0.0428 & 0.0085 & 0.0199 & 0.0181 & 0.0441 & 0.0177 & 0.0211 & 0.0021 & 0.0028 & 0.0015 & 0.0029 & 0.0042 & 0.0073 \\ 500 & 0.0029 & 0.0308 & 0.0016 & 0.0131 & 0.0030 & 0.0337 & 0.0019 & 0.0147 & 0.0003 & 0.0014 & 0.0003 & 0.0014 & 0.0009 & 0.0022 \\ 0.6 \\ [-1;3] \\ 50 & 0.0081 & 0.0085 & 0.0034 & 0.0035 & 0.0254 & 0.0216 & 0.0082 & 0.0073 & 0.0023 & 0.0027 & 0.0056 & 0.0059 & 0.0073 & 0.0112 \\ 100 & 0.0044 & 0.0046 & 0.0018 & 0.0018 & 0.0080 & 0.0109 & 0.0025 & 0.0032 & 0.0010 & 0.0014 & 0.0017 & 0.0022 & 0.0037 & 0.0085 \\ 500 & 0.0088 & 0.0011 & 0.0003 & 0.0004 & 0.0012 & 0.0020 & 0.0004 & 0.0009 & 0.0002 & 0.0006 & 0.0003 & 0.0006 & 0.0003 & 0.0004 \\ [0;2] & 50 & 0.0287 & 0.0470 & 0.0168 & 0.0188 & 0.0507 & 0.0131 & 0.0330 & 0.0011 & 0.0014 & 0.0017 & 0.0022 & 0.0032 & 0.0010 & 0.0014 & 0.0017 & 0.0022 & 0.0046 & 0.0009 & 0.0022 & 0.0042 & 0.0025 & 0.0022 & 0.0040 & 0.0004 & 0.00$			500	0.0046	0.0651	0.0025	0.0265	0.0024	0.0126	0.0015	0.0060	0.0004	0.0018	0.0003	0.0008	0.0010	0.0028
$ \begin{bmatrix} 100 \\ 500 \\ 0.0060 & 0.0067 & 0.0022 & 0.0070 & 0.0084 & 0.0022 & 0.0013 & 0.0020 & 0.0015 & 0.0020 & 0.0036 & 0.0079 \\ 500 \\ 0.0009 & 0.0015 & 0.0003 & 0.0006 & 0.0009 & 0.0013 & 0.0003 & 0.0005 & 0.0002 & 0.0006 & 0.0007 & 0.0034 \\ 100 \\ 0.0158 & 0.0428 & 0.0085 & 0.0199 & 0.0181 & 0.0441 & 0.0177 & 0.0211 & 0.0021 & 0.0028 & 0.0015 & 0.0029 & 0.0042 & 0.0073 \\ 500 & 0.0029 & 0.0308 & 0.0016 & 0.0131 & 0.0030 & 0.0337 & 0.0019 & 0.0147 & 0.0003 & 0.0014 & 0.0003 & 0.0014 & 0.0009 & 0.0022 \\ 0.6 \\ [-1;3] \\ 50 & 0.0081 & 0.0085 & 0.0034 & 0.0035 & 0.0254 & 0.0216 & 0.0082 & 0.0073 & 0.0023 & 0.0027 & 0.0056 & 0.0059 & 0.0073 & 0.0112 \\ 100 & 0.0044 & 0.0046 & 0.0018 & 0.0018 & 0.0080 & 0.0109 & 0.0025 & 0.0032 & 0.0010 & 0.0014 & 0.0017 & 0.0022 & 0.0037 & 0.0085 \\ 500 & 0.0088 & 0.0011 & 0.0003 & 0.0004 & 0.0012 & 0.0020 & 0.0004 & 0.0009 & 0.0002 & 0.0006 & 0.0003 & 0.0006 & 0.0003 & 0.0004 \\ [0;2] & 50 & 0.0287 & 0.0470 & 0.0168 & 0.0188 & 0.0507 & 0.0131 & 0.0330 & 0.0011 & 0.0014 & 0.0017 & 0.0022 & 0.0032 & 0.0010 & 0.0014 & 0.0017 & 0.0022 & 0.0046 & 0.0009 & 0.0022 & 0.0042 & 0.0025 & 0.0022 & 0.0040 & 0.0004 & 0.00$	0.5	[-1:3]	50	0.0163	0.0167	0.0054	0.0056	0.0137	0.0148	0.0047	0.0050	0.0040	0.0048	0.0033	0.0038	0.0081	0.0134
$ \begin{bmatrix} [0;2] \\ [0;2] \\ [0;0] \\ [$. , -1	100														
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			500	0.0009	0.0015	0.0003	0.0006	0.0009	0.0013	0.0003	0.0005	0.0002	0.0006	0.0002	0.0006	0.0007	0.0034
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		[0; 2]	50	0.0308	0.0634	0.0196	0.0339	0.0303	0.0526	0.0170	0.0277	0.0043	0.0046	0.0041	0.0049	0.0086	0.0105
$ \begin{bmatrix} -1;3 \\ 0.6 \\ -1;3 \\ 100 \\ 0.0081 & 0.0085 & 0.0034 & 0.0035 & 0.0254 & 0.0216 & 0.0082 & 0.0073 & 0.0023 & 0.0027 & 0.0056 & 0.0059 & 0.0073 & 0.0112 \\ 0.0044 & 0.0046 & 0.0018 & 0.0018 & 0.0080 & 0.0109 & 0.0023 & 0.0010 & 0.0014 & 0.0017 & 0.0022 & 0.0037 & 0.0085 \\ 0.0008 & 0.0011 & 0.0003 & 0.0004 & 0.0012 & 0.0020 & 0.0004 & 0.0009 & 0.0002 & 0.0003 & 0.0006 & 0.0006 & 0.0003 & 0.0006 \\ 0.0008 & 0.0011 & 0.0003 & 0.0004 & 0.0012 & 0.0022 & 0.0044 & 0.0003 & 0.0004 & 0.0003 & 0.0006 & 0.0003 & 0.0006 & 0.0006 & 0.0006 \\ 0.00287 & 0.0470 & 0.0168 & 0.0188 & 0.0577 & 0.1077 & 0.0327 & 0.0587 & 0.0033 & 0.0034 & 0.0048 & 0.0057 & 0.0088 & 0.0120 \\ 0.0126 & 0.0209 & 0.0072 & 0.0107 & 0.0260 & 0.0779 & 0.0131 & 0.0330 & 0.0011 & 0.0018 & 0.0023 & 0.0037 & 0.0039 & 0.0064 \\ 0.0022 & 0.0142 & 0.0014 & 0.0071 & 0.0045 & 0.0639 & 0.0024 & 0.0258 & 0.0002 & 0.0010 & 0.0004 & 0.0019 & 0.00025 \\ 0.7 & [-1;3] & 50 & 0.0077 & 0.0073 & 0.0029 & 0.0026 & 0.0367 & 0.0722 & 0.0112 & 0.0168 & 0.0019 & 0.0022 & 0.0076 & 0.0082 & 0.0063 & 0.0099 \\ 100 & 0.0029 & 0.0030 & 0.0010 & 0.0011 & 0.0148 & 0.0247 & 0.0043 & 0.0067 & 0.0009 & 0.0011 & 0.0035 & 0.0046 & 0.0003 \\ 500 & 0.00184 & 0.0388 & 0.0121 & 0.0126 & 0.0710 & 0.1508 & 0.0427 & 0.0847 & 0.0022 & 0.0092 & 0.0090 & 0.0111 & 0.0071 & 0.0099 \\ 100 & 0.0085 & 0.0123 & 0.0056 & 0.0072 & 0.0094 & 0.0038 & 0.0385 & 0.0002 & 0.0005 & 0.0006 & 0.0004 & 0.0006 \\ 500 & 0.0017 & 0.0051 & 0.0012 & 0.0027 & 0.0094 & 0.0038 & 0.0385 & 0.0002 & 0.0005 & 0.0006 & 0.0024 & 0.0008 & 0.0033 \\ 0.8 & [-1;3] & 50 & 0.0662 & 0.0066 & 0.0022 & 0.0486 & 0.0855 & 0.0182 & 0.0253 & 0.0015 & 0.0014 & 0.0128 & 0.0136 & 0.0044 \\ 500 & 0.0005 & 0.0006 & 0.00022 & 0.0486 & 0.0855 & 0.0182 & 0.0253 & 0.0015 & 0.0004 & 0.0044 & 0.0047 \\ 100 & 0.0024 & 0.0026 & 0.0003 & 0.0035 & 0.0066 & 0.0011 & 0.0021 & 0.0007 & 0.0008 & 0.0035 & 0.0066 \\ 500 & 0.0014 & 0.0039 & 0.0030 & 0.0035 & 0.0066 & 0.0011 & 0.0021 & 0.0007 & 0.0008 & 0.0007 & 0.0008 & 0.0024 & 0.0045 \\ 500 & 0.0005 & 0.0006 & 0.0002 & 0.0003$			100	0.0158	0.0428	0.0085	0.0199	0.0181	0.0441	0.0107	0.0211	0.0021	0.0028	0.0015	0.0029	0.0042	0.0073
$ \begin{bmatrix} 100 & 0.0044 & 0.0046 & 0.0018 & 0.0018 & 0.0080 & 0.0109 & 0.0025 & 0.0032 & 0.0010 & 0.0014 & 0.0017 & 0.0022 & 0.0037 & 0.0085 \\ 500 & 0.0008 & 0.0011 & 0.0003 & 0.0004 & 0.0012 & 0.0020 & 0.0004 & 0.0002 & 0.0006 & 0.0003 & 0.0006 & 0.0034 \\ [0;2] & 50 & 0.0287 & 0.0470 & 0.0168 & 0.0188 & 0.0557 & 0.1037 & 0.0587 & 0.0033 & 0.0034 & 0.0048 & 0.0057 & 0.0087 \\ 100 & 0.0126 & 0.0209 & 0.0072 & 0.0107 & 0.0260 & 0.0779 & 0.0131 & 0.0330 & 0.0011 & 0.0018 & 0.0023 & 0.0037 & 0.0039 & 0.0064 \\ 500 & 0.0022 & 0.0142 & 0.0014 & 0.0071 & 0.0045 & 0.06639 & 0.0024 & 0.0258 & 0.0002 & 0.0010 & 0.0004 & 0.0019 & 0.0008 & 0.0025 \\ 0.7 & [-1;3] & 50 & 0.0077 & 0.0073 & 0.0029 & 0.0036 & 0.0367 & 0.0722 & 0.0112 & 0.0168 & 0.0019 & 0.0022 & 0.0063 & 0.0092 \\ 100 & 0.0029 & 0.0030 & 0.0010 & 0.0014 & 0.0247 & 0.0043 & 0.0067 & 0.0009 & 0.0011 & 0.0035 & 0.0040 & 0.0037 & 0.0088 \\ 500 & 0.0006 & 0.0007 & 0.0002 & 0.0003 & 0.0020 & 0.0035 & 0.0006 & 0.0013 & 0.0002 & 0.0004 & 0.0004 & 0.0006 & 0.0004 \\ [0;2] & 50 & 0.0184 & 0.0388 & 0.0121 & 0.0126 & 0.0710 & 0.1508 & 0.0427 & 0.0847 & 0.0022 & 0.0022 & 0.0090 & 0.0111 & 0.0071 & 0.0099 \\ 100 & 0.0085 & 0.0123 & 0.0056 & 0.0072 & 0.0422 & 0.1087 & 0.0226 & 0.0470 & 0.0012 & 0.0014 & 0.0039 & 0.052 & 0.0037 & 0.0060 \\ 500 & 0.0017 & 0.0051 & 0.0012 & 0.0027 & 0.0042 & 0.0258 & 0.0042 & 0.0006 & 0.0004 & 0.0006 & 0.0024 & 0.0006 \\ 500 & 0.0017 & 0.0051 & 0.0012 & 0.0027 & 0.0048 & 0.0855 & 0.0182 & 0.0253 & 0.0015 & 0.0014 & 0.0128 & 0.0136 & 0.0040 & 0.0042 \\ 500 & 0.0062 & 0.0060 & 0.0002 & 0.0003 & 0.0024 & 0.0419 & 0.0074 & 0.0117 & 0.0007 & 0.0008 & 0.0033 & 0.0063 & 0.0026 & 0.0042 \\ 500 & 0.0062 & 0.0066 & 0.0002 & 0.0003 & 0.0063 & 0.0061 & 0.0011 & 0.0002 & 0.0007 & 0.0010 & 0.0005 & 0.0029 \\ [0;2] & 50 & 0.0141 & 0.0381 & 0.0091 & 0.0044 & 0.0419 & 0.0074 & 0.0117 & 0.0066 & 0.0089 & 0.0027 & 0.0045 \\ 500 & 0.0006 & 0.0066 & 0.0042 & 0.0039 & 0.0638 & 0.2051 & 0.0341 & 0.0867 & 0.0096 & 0.0095 & 0.0005 & 0.0005 & 0.0005 & 0.0005 & 0.0005 & 0.0005 & 0.0005 & 0.$			500	0.0029	0.0308	0.0016	0.0131	0.0030	0.0337	0.0019	0.0147	0.0003	0.0014	0.0003	0.0014	0.0009	0.0022
$ \begin{bmatrix} [0;2] & 500 & 0.0008 & 0.0011 & 0.0003 & 0.0004 & 0.0012 & 0.0020 & 0.0004 & 0.0009 & 0.0002 & 0.0006 & 0.0003 & 0.0006 & 0.0006 & 0.0034 \\ [0;2] & 50 & 0.0287 & 0.0470 & 0.0168 & 0.0188 & 0.0577 & 0.1077 & 0.0327 & 0.0587 & 0.0033 & 0.0034 & 0.0048 & 0.0057 & 0.0088 & 0.0120 \\ [0;2] & 500 & 0.0022 & 0.0142 & 0.0014 & 0.0071 & 0.0045 & 0.0639 & 0.0024 & 0.0258 & 0.0002 & 0.0010 & 0.0004 & 0.0019 & 0.0008 & 0.0025 \\ [0;7] & 500 & 0.0077 & 0.0073 & 0.0029 & 0.0026 & 0.0367 & 0.0722 & 0.0112 & 0.0168 & 0.0019 & 0.0022 & 0.0076 & 0.0082 & 0.0063 & 0.0099 \\ [0;0] & 500 & 0.0006 & 0.0007 & 0.0002 & 0.0036 & 0.0024 & 0.0247 & 0.0043 & 0.0067 & 0.0009 & 0.0011 & 0.0035 & 0.0046 & 0.0006 \\ [0;2] & 500 & 0.0184 & 0.0388 & 0.0121 & 0.0126 & 0.0710 & 0.1508 & 0.0427 & 0.0847 & 0.0022 & 0.0022 & 0.0004 & 0.0006 & 0.0006 & 0.0006 \\ [0;2] & 500 & 0.0184 & 0.0388 & 0.0121 & 0.0126 & 0.0710 & 0.1508 & 0.0427 & 0.0847 & 0.0022 & 0.0022 & 0.0009 & 0.0111 & 0.0071 & 0.0099 \\ [0;2] & 500 & 0.0184 & 0.0388 & 0.0121 & 0.0126 & 0.0710 & 0.1508 & 0.0427 & 0.0847 & 0.0022 & 0.0022 & 0.0009 & 0.0111 & 0.0071 & 0.0099 \\ [0;3] & 500 & 0.0017 & 0.0051 & 0.0012 & 0.0042 & 0.0028 & 0.0047 & 0.0043 & 0.0062 & 0.0006 & 0.0024 & 0.0008 & 0.0033 \\ [0;4] & 500 & 0.0062 & 0.0060 & 0.0022 & 0.0048 & 0.0855 & 0.0182 & 0.0253 & 0.0015 & 0.0014 & 0.0128 & 0.0136 & 0.0040 & 0.0047 \\ [0;2] & 500 & 0.0141 & 0.0831 & 0.0091 & 0.0156 & 0.1213 & 0.2299 & 0.0776 & 0.1194 & 0.0020 & 0.0009 & 0.0016 & 0.0024 & 0.0026 \\ [0;2] & 500 & 0.0141 & 0.0831 & 0.0091 & 0.0156 & 0.1213 & 0.2299 & 0.0776 & 0.1194 & 0.0020 & 0.0006 & 0.0028 & 0.0007 & 0.0012 \\ [0;2] & 500 & 0.0141 & 0.0831 & 0.0091 & 0.0156 & 0.1213 & 0.2299 & 0.0776 & 0.1194 & 0.0020 & 0.0009 & 0.0028 & 0.0007 & 0.0025 \\ [0;2] & 500 & 0.0141 & 0.0831 & 0.0091 & 0.0156 & 0.1213 & 0.2299 & 0.0776 & 0.1194 & 0.0020 & 0.0009 & 0.0028 & 0.0007 & 0.0025 \\ [0;2] & 500 & 0.0043 & 0.0852 & 0.0018 & 0.0038 & 0.1145 & 0.2429 & 0.0385 & 0.0906 & 0.0014 & 0.0196 & 0.0285 & 0.0005 & 0.0015 & 0.0005 & 0.0005 & 0.000$	0.6	[-1; 3]	50	0.0081	0.0085	0.0034	0.0035	0.0254	0.0216	0.0082	0.0073	0.0023	0.0027	0.0056	0.0059	0.0073	0.0112
$ \begin{bmatrix} [0;2] \\ [0;2] \\ [0;2] \\ [0;2] \\ [0;2] \\ [0;3] \\ [0;3] \\ [0;4] \\ [0;4] \\ [0;5] \\ [0;5] \\ [0;2] \\ [0;2] \\ [0;2] \\ [0;2] \\ [0;2] \\ [0;2] \\ [0;2] \\ [0;2] \\ [0;3] \\ [0;3] \\ [0;4] \\ [0;4] \\ [0;4] \\ [0;5] \\ [0;5] \\ [0;5] \\ [0;5] \\ [0;5] \\ [0;5] \\ [0;5] \\ [0;6] \\ [0;6] \\ [0;6] \\ [0;6] \\ [0;7] \\ [0;6] \\ [0;7] \\ [0;6] \\ [0;7] \\ [$			100	0.0044	0.0046	0.0018	0.0018	0.0080	0.0109	0.0025	0.0032	0.0010	0.0014	0.0017	0.0022	0.0037	0.0085
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			500	0.0008	0.0011	0.0003	0.0004	0.0012	0.0020	0.0004	0.0009	0.0002	0.0006	0.0003	0.0006	0.0006	0.0034
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		[0; 2]	50	0.0287	0.0470	0.0168	0.0188	0.0507	0.1077	0.0327	0.0587	0.0033	0.0034	0.0048	0.0057	0.0088	0.0120
$ \begin{bmatrix} -1;3 \\ 0.7 \\ -1;3 \\ 100 \\ 0.0029 \\ 0.0030 \\ 0.0017 \\ 0.0029 \\ 0.0030 \\ 0.0010 \\ 0.0010 \\ 0.0029 \\ 0.0030 \\ 0.0010 \\ 0.0010 \\ 0.0021 \\ 0.0029 \\ 0.0030 \\ 0.0011 \\ 0.0029 \\ 0.0030 \\ 0.0010 \\ 0.0010 \\ 0.0029 \\ 0.0030 \\ 0.0010 \\ 0.0010 \\ 0.0029 \\ 0.0030 \\ 0.0010 \\ 0.0010 \\ 0.0029 \\ 0.0030 \\ 0.0010 \\ 0.0010 \\ 0.0020 \\ 0.0030 \\ 0.0010 \\ 0.0020 \\ 0.0030 \\ 0.0010 \\ 0.0020 \\ 0.0030 \\ 0.0010 \\ 0.0020 \\ 0.000200020 \\ 0.000200020 \\ 0.000200020 \\ 0.0002000200020 \\ 0.00020020020 \\ 0.000200200020002000$																	
$\begin{bmatrix} 100 & 0.0029 & 0.0030 & 0.0010 & 0.0014 & 0.0247 & 0.0043 & 0.0067 & 0.0009 & 0.0011 & 0.0035 & 0.0040 & 0.0037 & 0.0068 \\ 500 & 0.0006 & 0.0007 & 0.0002 & 0.0003 & 0.0020 & 0.0035 & 0.0006 & 0.0013 & 0.0002 & 0.0004 & 0.0004 & 0.0006 & 0.0006 & 0.0040 \\ 500 & 0.0184 & 0.0388 & 0.0121 & 0.0126 & 0.0710 & 0.1508 & 0.0427 & 0.0847 & 0.0022 & 0.0022 & 0.0090 & 0.0111 & 0.0071 & 0.0099 \\ 100 & 0.0085 & 0.0123 & 0.0056 & 0.0072 & 0.0422 & 0.1087 & 0.0226 & 0.0470 & 0.0012 & 0.0014 & 0.0039 & 0.0052 & 0.0037 & 0.0060 \\ 500 & 0.0017 & 0.0051 & 0.0012 & 0.0027 & 0.0072 & 0.0994 & 0.0038 & 0.0385 & 0.0002 & 0.0006 & 0.0024 & 0.0008 & 0.0033 \\ \hline 0.8 & [-1;3] & 50 & 0.0062 & 0.0060 & 0.0023 & 0.0022 & 0.0486 & 0.0855 & 0.0182 & 0.0253 & 0.0015 & 0.0014 & 0.0128 & 0.0136 & 0.0044 \\ & 100 & 0.0024 & 0.0026 & 0.0009 & 0.0010 & 0.0240 & 0.0419 & 0.0074 & 0.0117 & 0.0007 & 0.0008 & 0.0053 & 0.0063 & 0.0026 & 0.0042 \\ & 500 & 0.0005 & 0.0006 & 0.0002 & 0.0003 & 0.0035 & 0.0062 & 0.0011 & 0.0027 & 0.0010 & 0.0005 & 0.0009 \\ & [0;2] & 50 & 0.0141 & 0.0831 & 0.0091 & 0.0156 & 0.1213 & 0.2299 & 0.0776 & 0.1194 & 0.0020 & 0.0097 & 0.0010 & 0.0005 & 0.0029 \\ & [0;2] & 50 & 0.0141 & 0.0831 & 0.0091 & 0.0156 & 0.1213 & 0.2299 & 0.0776 & 0.1194 & 0.0020 & 0.0017 & 0.0187 & 0.0054 & 0.0055 \\ & [0;2] & 50 & 0.0069 & 0.0066 & 0.0042 & 0.0039 & 0.0638 & 0.2051 & 0.0341 & 0.0867 & 0.0008 & 0.0010 & 0.0066 & 0.0089 & 0.0027 & 0.0045 \\ & [0;2] & 50 & 0.0043 & 0.0852 & 0.0018 & 0.0038 & 0.1145 & 0.2429 & 0.0385 & 0.0035 & 0.0066 & 0.0042 & 0.0025 & 0.0055 & 0.0147 \\ & [0;2] & 50 & 0.0043 & 0.0052 & 0.0009 & 0.00038 & 0.1145 & 0.2429 & 0.0385 & 0.00016 & 0.0016 & 0.0024 & 0.0025 & 0.0015 \\ & [0;2] & 50 & 0.0075 & 0.0744 & 0.0841 & 0.2312 & 0.4833 & 0.1372 & 0.2550 & 0.0016 & 0.0016 & 0.0226 & 0.0256 & 0.0075 & 0.0174 \\ & [0;2] & 50 & 0.0175 & 0.2567 & 0.0074 & 0.0841 & 0.2312 & 0.4833 & 0.1372 & 0.2550 & 0.0016 & 0.0016 & 0.0186 & 0.0075 & 0.0174 \\ & [0;2] & 50 & 0.0175 & 0.2567 & 0.0074 & 0.0841 & 0.2312 & 0.4833 & 0.1372 & 0.2550 & 0.0016 $																	
$ \begin{bmatrix} [0;2] & 500 & 0.0006 & 0.0007 & 0.0002 & 0.0003 & 0.0020 & 0.0035 & 0.0006 & 0.0013 & 0.0002 & 0.0004 & 0.0004 & 0.0006 & 0.0006 & 0.0040 \\ 0.0184 & 0.0388 & 0.0121 & 0.0126 & 0.0710 & 0.1508 & 0.0427 & 0.0847 & 0.0022 & 0.0092 & 0.0090 & 0.0111 & 0.0071 & 0.0099 \\ 100 & 0.0085 & 0.0123 & 0.0056 & 0.0072 & 0.0422 & 0.1087 & 0.0226 & 0.0470 & 0.0012 & 0.0014 & 0.0039 & 0.0052 & 0.0037 & 0.0060 \\ 500 & 0.0017 & 0.0051 & 0.0012 & 0.0027 & 0.0094 & 0.0038 & 0.0385 & 0.0002 & 0.0005 & 0.0006 & 0.0024 & 0.0088 & 0.0033 \\ \hline 0.8 & [-1;3] & 50 & 0.0062 & 0.0060 & 0.0023 & 0.0022 & 0.0486 & 0.0855 & 0.0182 & 0.0253 & 0.0015 & 0.0014 & 0.0128 & 0.0136 & 0.0040 & 0.0047 \\ 100 & 0.0024 & 0.0026 & 0.0009 & 0.0101 & 0.0240 & 0.0419 & 0.0074 & 0.0117 & 0.0007 & 0.0008 & 0.0053 & 0.0062 & 0.0042 \\ 500 & 0.0005 & 0.0006 & 0.0002 & 0.0003 & 0.0035 & 0.0062 & 0.0011 & 0.0021 & 0.0001 & 0.0002 & 0.0007 & 0.0010 & 0.0025 \\ 100 & 0.0069 & 0.0066 & 0.0002 & 0.003 & 0.0035 & 0.0062 & 0.0011 & 0.0021 & 0.0001 & 0.0002 & 0.0007 & 0.0015 \\ 100 & 0.0069 & 0.0066 & 0.0042 & 0.0039 & 0.0638 & 0.2051 & 0.0341 & 0.0867 & 0.0008 & 0.0017 & 0.0187 & 0.0054 & 0.0105 \\ 100 & 0.0069 & 0.0066 & 0.0011 & 0.0126 & 0.1460 & 0.0068 & 0.0553 & 0.0002 & 0.0003 & 0.0009 & 0.0027 & 0.0045 \\ 100 & 0.0022 & 0.0022 & 0.0009 & 0.0003 & 0.0145 & 0.2429 & 0.0385 & 0.0906 & 0.0014 & 0.0019 & 0.0242 & 0.0259 & 0.0035 & 0.0148 \\ 100 & 0.0022 & 0.0022 & 0.0009 & 0.0009 & 0.0633 & 0.1253 & 0.0231 & 0.0373 & 0.0005 & 0.0147 & 0.0163 & 0.0012 & 0.0015 \\ 100 & 0.0069 & 0.0248 & 0.0038 & 0.0440 & 0.3413 & 0.3436 & 0.0770 & 0.1625 & 0.0008 & 0.0007 & 0.0162 & 0.0187 & 0.0039 & 0.0052 \\ 100 & 0.0069 & 0.0248 & 0.0038 & 0.0400 & 0.1413 & 0.3436 & 0.0770 & 0.1625 & 0.0008 & 0.0007 & 0.0162 & 0.0187 & 0.0039 & 0.0052 \\ 100 & 0.0069 & 0.0248 & 0.0038 & 0.0400 & 0.0143 & 0.3436 & 0.0770 & 0.1625 & 0.0008 & 0.0007 & 0.0162 & 0.0187 & 0.0039 & 0.0052 \\ 100 & 0.0069 & 0.0248 & 0.0038 & 0.0040 & 0.1413 & 0.3436 & 0.0770 & 0.1625 & 0.00080 & 0.0007 & 0.0162 & 0.0187 & 0.0039 & 0$	0.7	[-1; 3]	50														
$ \begin{bmatrix} [0;2] \\ [$																	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$																	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		[0; 2]															
$ \begin{bmatrix} -1;3 \\ 0.8 \\ [-1;3] \end{bmatrix} \begin{bmatrix} 50 \\ 0.0062 \\ 0.0062 \\ 0.0024 \\ 0.0026 \\ 0.0005 \\ 0.0006 \\ 0.0009 \\ 0.0009 \\ 0.00000 \\ 0.0000 \\ 0.0000 \\ 0.0000 \\ 0.0000 \\ 0.0000 \\ 0.0000 \\ 0.00000 \\ 0.0000 \\ 0.0000 \\ 0.0000 \\ 0.0000 \\ 0.0000 \\ 0.0000 \\ 0.00000 \\ 0.00000 \\ 0.00000 \\ 0.0000 \\ 0.0000 \\ 0.0000 \\ 0.0000 \\ 0.0000 \\ 0.0000 \\ 0.0000 \\ $																	
$ \begin{bmatrix} 0 & 0.0024 & 0.0026 & 0.0009 & 0.0010 & 0.0240 & 0.0419 & 0.0074 & 0.0117 & 0.0007 & 0.0008 & 0.0053 & 0.0063 & 0.0026 & 0.0042 \\ 0.0005 & 0.0006 & 0.0006 & 0.0002 & 0.0003 & 0.0062 & 0.0011 & 0.0021 & 0.0001 & 0.0002 & 0.0007 & 0.0010 & 0.0005 & 0.0029 \\ 0.0014 & 0.0031 & 0.0019 & 0.0156 & 0.1213 & 0.2299 & 0.0776 & 0.1194 & 0.0020 & 0.0019 & 0.0171 & 0.0187 & 0.0054 & 0.0105 \\ 100 & 0.0069 & 0.0066 & 0.0042 & 0.0039 & 0.0638 & 0.2051 & 0.0341 & 0.0867 & 0.0008 & 0.0010 & 0.0066 & 0.0089 & 0.0027 & 0.0045 \\ 500 & 0.0013 & 0.0017 & 0.0008 & 0.0011 & 0.0126 & 0.1460 & 0.0068 & 0.0553 & 0.0002 & 0.0003 & 0.0099 & 0.0028 & 0.0007 & 0.0027 \\ 0.9 & [-1;3] & 50 & 0.0043 & 0.0852 & 0.0018 & 0.0038 & 0.1145 & 0.2429 & 0.0385 & 0.0950 & 0.0014 & 0.0019 & 0.0242 & 0.0259 & 0.0035 & 0.0148 \\ 100 & 0.0022 & 0.0022 & 0.0009 & 0.0009 & 0.0633 & 0.1253 & 0.0231 & 0.0373 & 0.0005 & 0.0047 & 0.0163 & 0.0012 & 0.0015 \\ 500 & 0.0004 & 0.0004 & 0.0002 & 0.0003 & 0.0185 & 0.0022 & 0.0049 & 0.0001 & 0.0016 & 0.0018 & 0.0003 & 0.0012 \\ [0;2] & 50 & 0.0175 & 0.2567 & 0.0074 & 0.0841 & 0.2312 & 0.4833 & 0.1372 & 0.2550 & 0.0016 & 0.0016 & 0.0226 & 0.0256 & 0.0075 & 0.0174 \\ 100 & 0.0069 & 0.0248 & 0.0038 & 0.0440 & 0.1413 & 0.3436 & 0.0770 & 0.1625 & 0.0008 & 0.0007 & 0.0162 & 0.0187 & 0.0039 & 0.0052 \\ \hline \end{tabular}$																	
$ \begin{bmatrix} [0;2] & 500 & 0.0005 & 0.0006 & 0.0002 & 0.0003 & 0.0035 & 0.0062 & 0.0011 & 0.0021 & 0.0001 & 0.0002 & 0.0007 & 0.0010 & 0.0005 & 0.0029 \\ 0.0141 & 0.0831 & 0.0091 & 0.0156 & 0.1213 & 0.2299 & 0.0776 & 0.1194 & 0.0020 & 0.0019 & 0.0171 & 0.0187 & 0.0054 & 0.0105 \\ 100 & 0.0069 & 0.0066 & 0.0042 & 0.0039 & 0.0638 & 0.2051 & 0.0341 & 0.0867 & 0.0008 & 0.0010 & 0.0066 & 0.0089 & 0.0027 & 0.0045 \\ 500 & 0.0013 & 0.0017 & 0.0008 & 0.0011 & 0.0126 & 0.1460 & 0.0068 & 0.0553 & 0.0002 & 0.0003 & 0.0009 & 0.0028 & 0.0007 & 0.0027 \\ \hline 0.9 & [-1;3] & 50 & 0.0043 & 0.0852 & 0.0018 & 0.0038 & 0.1145 & 0.2429 & 0.0385 & 0.0906 & 0.0014 & 0.0019 & 0.0242 & 0.0259 & 0.0035 & 0.0148 \\ 100 & 0.0022 & 0.0022 & 0.0009 & 0.0009 & 0.0633 & 0.1253 & 0.0231 & 0.0373 & 0.0005 & 0.0147 & 0.0163 & 0.0012 & 0.0015 \\ 500 & 0.0004 & 0.0004 & 0.0002 & 0.0002 & 0.0083 & 0.0185 & 0.0022 & 0.0049 & 0.0001 & 0.0016 & 0.0016 & 0.0018 & 0.0003 & 0.0012 \\ [0;2] & 50 & 0.0175 & 0.2567 & 0.0074 & 0.0841 & 0.2312 & 0.4833 & 0.1372 & 0.2550 & 0.0016 & 0.0016 & 0.0226 & 0.0256 & 0.0075 & 0.0174 \\ 100 & 0.0069 & 0.0248 & 0.0038 & 0.0040 & 0.1413 & 0.3436 & 0.0770 & 0.1625 & 0.0008 & 0.0007 & 0.0162 & 0.0187 & 0.0039 & 0.0052 \\ \hline \end{tabular}$	0.8	[-1; 3]															
$ \begin{bmatrix} [0;2] \\ [0;3] \\ [0;4] \\ [0;5] \\ [0;6] \end{bmatrix} = \begin{bmatrix} 50 \\ 0.0141 \ 0.0831 \ 0.0091 \ 0.0156 \ 0.1213 \ 0.2299 \ 0.0776 \ 0.1194 \ 0.0020 \ 0.0019 \ 0.0171 \ 0.0187 \ 0.0054 \ 0.0105 \\ 0.0069 \ 0.0066 \ 0.0042 \ 0.0039 \ 0.0638 \ 0.2051 \ 0.0341 \ 0.0867 \ 0.0008 \ 0.0010 \ 0.0066 \ 0.0089 \ 0.0027 \ 0.0045 \\ 0.0013 \ 0.0017 \ 0.0008 \ 0.0011 \ 0.0126 \ 0.1460 \ 0.0068 \ 0.0553 \ 0.0002 \ 0.0003 \ 0.0009 \ 0.0009 \ 0.0027 \ 0.0027 \\ 0.09 \\ [-1;3] \\ 50 \\ 0.0043 \ 0.0852 \ 0.0018 \ 0.0038 \ 0.1145 \ 0.2429 \ 0.0385 \ 0.0906 \ 0.0014 \ 0.0019 \ 0.0242 \ 0.0259 \ 0.0035 \ 0.0148 \\ 100 \\ 0.0022 \ 0.0022 \ 0.0009 \ 0.0009 \ 0.0633 \ 0.1253 \ 0.0231 \ 0.0373 \ 0.0005 \ 0.0005 \ 0.00147 \ 0.0163 \ 0.0012 \ 0.0015 \\ 500 \\ 0.0004 \ 0.0004 \ 0.0002 \ 0.0002 \ 0.0008 \ 0.0185 \ 0.0022 \ 0.0049 \ 0.0001 \ 0.0016 \ 0.0016 \ 0.0018 \ 0.003 \ 0.0012 \\ [0;2] \\ 50 \\ 0.0175 \ 0.2567 \ 0.0074 \ 0.0841 \ 0.2312 \ 0.4833 \ 0.1372 \ 0.2550 \ 0.0016 \ 0.0016 \ 0.0016 \ 0.0226 \ 0.0256 \ 0.0075 \ 0.0174 \\ 100 \\ 0.0069 \ 0.0248 \ 0.0038 \ 0.0040 \ 0.1413 \ 0.3436 \ 0.0770 \ 0.1625 \ 0.0008 \ 0.0007 \ 0.0162 \ 0.0187 \ 0.0039 \ 0.0052 \\ \end{bmatrix}$																	
$ \begin{bmatrix} 100 & 0.0069 & 0.0066 & 0.0042 & 0.0039 & 0.0638 & 0.2051 & 0.0341 & 0.0867 & 0.0008 & 0.0010 & 0.0066 & 0.0089 & 0.0027 & 0.0045 \\ \hline 0.9 & [-1;3] & 50 & 0.0043 & 0.0852 & 0.0018 & 0.0038 & 0.1145 & 0.2429 & 0.0385 & 0.0996 & 0.0014 & 0.0019 & 0.0242 & 0.0259 & 0.0013 & 0.0019 \\ \hline 0.9 & [-1;3] & 50 & 0.0043 & 0.0852 & 0.0018 & 0.0388 & 0.1145 & 0.2429 & 0.0385 & 0.0996 & 0.0014 & 0.0019 & 0.0242 & 0.0259 & 0.0035 & 0.0148 \\ \hline 0.0022 & 0.0022 & 0.0009 & 0.0009 & 0.0633 & 0.1253 & 0.0231 & 0.0373 & 0.0005 & 0.00147 & 0.0163 & 0.0012 & 0.0015 \\ \hline 500 & 0.0004 & 0.0004 & 0.0002 & 0.0002 & 0.0083 & 0.185 & 0.0022 & 0.0049 & 0.0001 & 0.0016 & 0.0018 & 0.0003 & 0.0012 \\ \hline [0;2] & 50 & 0.0175 & 0.2567 & 0.0074 & 0.0841 & 0.2312 & 0.4833 & 0.1372 & 0.2550 & 0.0016 & 0.0016 & 0.0226 & 0.0256 & 0.0075 & 0.0174 \\ \hline 100 & 0.0069 & 0.0248 & 0.0038 & 0.0040 & 0.1413 & 0.3436 & 0.0770 & 0.1625 & 0.0008 & 0.0007 & 0.0162 & 0.0187 & 0.0039 & 0.0052 \\ \hline \end{tabular}$																	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		[0; 2]															
$ \begin{bmatrix} -1;3 \end{bmatrix} & 50 & 0.0043 & 0.0852 & 0.0018 & 0.0038 & 0.1145 & 0.2429 & 0.0385 & 0.0906 & 0.0014 & 0.0019 & 0.0242 & 0.0259 & 0.0035 & 0.0148 \\ 100 & 0.0022 & 0.00022 & 0.0009 & 0.0009 & 0.0633 & 0.1253 & 0.0231 & 0.0373 & 0.0005 & 0.0015 & 0.0147 & 0.0163 & 0.0012 & 0.0015 \\ 500 & 0.0004 & 0.0004 & 0.0002 & 0.0002 & 0.0083 & 0.0185 & 0.0022 & 0.0049 & 0.0001 & 0.0016 & 0.0018 & 0.0003 & 0.0012 \\ [0;2] & 50 & 0.0175 & 0.2567 & 0.0074 & 0.0841 & 0.2312 & 0.4833 & 0.1372 & 0.2550 & 0.0016 & 0.0026 & 0.0256 & 0.0075 & 0.0174 \\ 100 & 0.0069 & 0.0248 & 0.0038 & 0.0040 & 0.1413 & 0.3436 & 0.0770 & 0.1625 & 0.0008 & 0.0007 & 0.0162 & 0.0187 & 0.0039 & 0.0052 \\ \end{bmatrix} $																	
$ \begin{bmatrix} 100 & 0.0022 & 0.0022 & 0.0009 & 0.0009 & 0.0633 & 0.1253 & 0.0231 & 0.0373 & 0.0005 & 0.0147 & 0.0163 & 0.0012 & 0.0015 \\ 500 & 0.0004 & 0.0002 & 0.0002 & 0.0002 & 0.0083 & 0.0185 & 0.0022 & 0.0049 & 0.0001 & 0.0016 & 0.0018 & 0.0003 & 0.0012 \\ [0;2] & 50 & 0.0175 & 0.2567 & 0.0074 & 0.0841 & 0.2312 & 0.4833 & 0.1372 & 0.2550 & 0.0016 & 0.0016 & 0.0266 & 0.0256 & 0.0075 & 0.0174 \\ 100 & 0.0069 & 0.0248 & 0.0038 & 0.0040 & 0.1413 & 0.3436 & 0.0770 & 0.1625 & 0.0008 & 0.0007 & 0.0162 & 0.0187 & 0.0039 & 0.0052 \\ \end{bmatrix} $		[1 0]															
$ \begin{bmatrix} 600000000000000000000000000000000000$	0.9	[-1; 3]															
$ \begin{bmatrix} 0;2 \end{bmatrix} & 50 & 0.0175 \ 0.2567 \ 0.0074 \ 0.0841 \ 0.2312 \ 0.4833 \ 0.1372 \ 0.2550 \ 0.0016 \ 0.0016 \ 0.0226 \ 0.0256 \ 0.0075 \ 0.0174 \\ 100 & 0.0069 \ 0.0248 \ 0.0038 \ 0.0040 \ 0.1413 \ 0.3436 \ 0.0770 \ 0.1625 \ 0.0008 \ 0.0007 \ 0.0162 \ 0.0187 \ 0.0039 \ 0.0052 \\ \end{bmatrix} $																	
100 0.0069 0.0248 0.0038 0.0040 0.1413 0.3436 0.0770 0.1625 0.0008 0.0007 0.0162 0.0187 0.0039 0.0052		[0.0]															
		[0; 2]															
$500 - 0.0012 \ 0.0012 \ 0.0009 \ 0.0009 \ 0.0301 \ 0.2271 \ 0.0151 \ 0.0846 \ 0.0001 \ 0.0001 \ 0.0023 \ 0.0045 \ 0.0003 \ 0.0012$																	
			500	0.0012	0.0012	0.0009	0.0009	0.0301	0.2271	0.0151	0.0846	0.0001	0.0001	0.0023	0.0045	0.0003	0.0012

Tabela D.73: Estimativas do erro quadrático médio dos parâmetros da mistura de duas regressões lineares no caso CI

			α_1 EM	α_1 CEM	β_1 EM	β_1 CEM	α_2 EM	α_2	β_2	β_2 CEM	σ_1	$_{ ext{CEM}}^{\sigma_1}$	$\frac{\sigma_2}{\mathrm{EM}}$	σ_2 CEM	$_{\mathrm{EM}}^{\pi_{1}}$	$_{ ext{CEM}}^{\pi_1}$
$\frac{\pi_1}{2}$	x	50						CEM	EM		EM					
0.1	[-1; 3]						0.0130									
		100 500					$0.0065 \\ 0.0012$									
	[0.0]	50					0.0012 0.2377									
	[0; 2]	100					0.2377									
		500														
-0.0	[1 0]						0.0033									
0.2	[-1; 3]	50 100					$0.0210 \\ 0.0091$									
		500														
	[0.0]						0.0015									
	[0; 2]	50 100					0.1098 0.0243									
		500														
-0.2	[1 0]						0.0050									
0.3	[-1; 3]	50					0.0269									
		100					0.0133									
	[0.0]	500 50					0.0019									
	[0; 2]	100					0.0884 0.0643									
		500					0.0043 0.0073									
0.4	[-1; 3]	50					0.0073									
0.4	[-1; 3]	100					0.0411 0.0164									
		500					0.0164 0.0029									
	[0; 2]	50					0.0029									
	[0, 2]	100					0.0332									
		500					0.0410									
0.5	[-1; 3]	50					0.0516									
0.5	[-1, 0]	100					0.0310									
		500					0.0035									
	[0; 2]	50					0.1496									
	[0, 2]	100					0.0830									
		500					0.0130									
0.6	[-1; 3]	50					0.0741									
	. /-1	100					0.0327									
		500					0.0058									
	[0; 2]	50					0.1762									
		100					0.1094									
		500	0.0098	0.0399	0.0057	0.0183	0.0227	0.4423	0.0115	0.1101	0.0010	0.0053	0.0017	0.0225	0.0015	0.0146
0.7	[-1; 3]	50	0.0235	0.1224	0.0085	0.0095	0.1110	0.2870	0.0372	0.0853	0.0087	0.0078	0.0359	0.0358	0.0105	0.0150
		100	0.0132	0.0177	0.0040	0.0056	0.0496	0.2878	0.0156	0.0600	0.0030	0.0038	0.0105	0.0192	0.0043	0.0138
		500	0.0018	0.0066	0.0007	0.0030	0.0076	0.1952	0.0024	0.0383	0.0006	0.0012	0.0016	0.0051	0.0009	0.0132
	[0; 2]	50	0.0705	0.1718	0.0455	0.0338	0.2182	0.6161	0.1477	0.2331	0.0121	0.0132	0.0400	0.0568	0.0181	0.0288
		100	0.0292	0.1319	0.0206	0.0223	0.1338	0.6568	0.0822	0.2211	0.0059	0.0086	0.0223	0.0431	0.0117	0.0221
		500	0.0077	0.0311	0.0048	0.0086	0.0271	0.7272	0.0148	0.1657	0.0009	0.0027	0.0029	0.0320	0.0020	0.0193
0.8	[-1; 3]	50	0.0187	0.3104	0.0060	0.0126	0.2309	0.5671	0.0829	0.1650	0.0065	0.0073	0.0554	0.0658	0.0080	0.0204
	-	100	0.0076	0.0684	0.0035	0.0046	0.0896	0.4141	0.0306	0.1038	0.0024	0.0024	0.0208	0.0332	0.0043	0.0136
		500	0.0015	0.0042	0.0006	0.0017	0.0179	0.3584	0.0046	0.0643	0.0004	0.0005	0.0029	0.0085	0.0007	0.0089
	[0; 2]	50	0.0740	0.4819	0.0334	0.0450	0.3689	0.7350	0.2175	0.3765	0.0100	0.0133	0.0635	0.0820	0.0242	0.0562
		100	0.0255	0.3873	0.0212	0.0273	0.2142	0.7977	0.1104	0.2673	0.0046	0.0074	0.0377	0.0648	0.0091	0.0405
		500	0.0054	0.1118	0.0035	0.0045	0.0550	1.0742	0.0259	0.2356	0.0006	0.0036	0.0059	0.0422	0.0016	0.0237
0.9	[-1; 3]	50					0.2025									
		100	0.0066	0.4448	0.0026	0.0249	0.2142	0.7659	0.0688	0.1978	0.0023	0.0038	0.0521	0.0678	0.0034	0.0240
		500					0.0494									
	[0; 2]	50					0.3779									
		100	0.0343	1.5258	0.0148	0.1738	0.3267	0.8748	0.2010	0.4914	0.0047	0.0226	0.0669	0.1029	0.0141	0.1053
		500	0.0036	0.2553	0.0024	0.0097	0.1938	1.4535	0.0864	0.3348	0.0006	0.0022	0.0166	0.0604	0.0015	0.0309

Tabela D.74: Estimativas do erro quadrático médio dos parâmetros da mistura de duas regressões lineares no caso CII

			α_1	α_1	β_1	β_1	α_2	α_2	β_2	β_2	σ_1	σ_1	σ_2	σ_2	π_1	π_1
$\frac{\pi_1}{2}$	[1 0]	n	EM	CEM	EM	CEM	EM	CEM	EM	CEM	EM	CEM	EM	CEM	EM	CEM
0.1	[-1; 3]	50 100					0.0495 0.0253									
		500					0.0253 0.0044									
	[0; 2]	50					0.0044									
	[0, 2]	100					0.1308									
		500					0.0377									
0.2	[-1; 3]	50					0.0716									
0.2	[1,0]	100					0.0253									
		500					0.0047									
	[0; 2]	50					0.2696									
	[-,-]	100					0.1021									
		500					0.0152									
0.3	[-1; 3]	50	0.1218	0.5469	0.0469	0.1378	0.0922	1.0374	0.0270	0.1040	0.0377	0.0636	0.0295	0.0380	0.0208	0.0327
	. , ,	100	0.0726	1.1593	0.0200	0.1971	0.0310	0.0719	0.0126	0.0195	0.0221	0.0536	0.0095	0.0122	0.0084	0.0278
		500	0.0117	1.3905	0.0036	0.1795	0.0052	0.1008	0.0025	0.0181	0.0024	0.0389	0.0017	0.0102	0.0013	0.0372
	[0; 2]	50	0.3580	0.6246	0.2114	0.2452	0.2168	0.3811	0.1322	0.0916	0.0624	0.0892	0.0522	0.0566	0.0381	0.0354
		100	0.2302	0.8943	0.1364	0.2963	0.1478	0.5826	0.0840	0.0824	0.0257	0.0765	0.0189	0.0454	0.0272	0.0473
		500	0.0464	1.3227	0.0286	0.2667	0.0248	0.8225	0.0121	0.0692	0.0058	0.1299	0.0035	0.0864	0.0065	0.0983
0.4	[-1; 3]	50					0.0894									
		100					0.0393									
		500					0.0068									
	[0; 2]	50					0.2658									
		100					0.1362									
		500					0.0213									
0.5	[-1; 3]	50					0.1128									
		100					0.0508									
	[0.0]	500					0.0091									
	[0; 2]	50					0.3033									
		100 500					$0.1496 \\ 0.0244$									
0.6	[-1; 3]	50					0.0244									
0.0	[-1, 3]	100					0.1309 0.0754									
		500					0.0111									
	[0; 2]	50					0.3981									
	[0, 2]	100					0.2702									
		500					0.0346									
0.7	[-1; 3]	50					0.4688									
	. , - 1	100	0.0120	0.0168	0.0050	0.0069	0.1395	0.6770	0.0421	0.1512	0.0041	0.0047	0.0357	0.0590	0.0065	0.0171
		500	0.0021	0.0056	0.0008	0.0026	0.0134	0.3744	0.0062	0.0764	0.0006	0.0015	0.0044	0.0193	0.0011	0.0176
	[0; 2]	50	0.2775	1.1562	0.0527	0.1231	0.5018	1.0357	0.3616	0.4718	0.0209	0.0161	0.1065	0.1626	0.0433	0.0692
		100	0.0833	0.3564	0.0268	0.0275	0.3840	1.3404	0.2108	0.3768	0.0066	0.0063	0.0650	0.1453	0.0229	0.0434
		500	0.0067	0.1351	0.0049	0.0137	0.0525	1.8836	0.0246	0.2693	0.0010	0.0031	0.0081	0.1193	0.0028	0.0365
0.8	[-1; 3]	50	0.0180	0.9177	0.0076	0.0354	0.3631	1.0223	0.1217	0.2818	0.0068	0.0109	0.1244	0.1475	0.0110	0.0449
		100	0.0090	0.2981	0.0035	0.0115	0.2403	0.9350	0.0804	0.2258	0.0033	0.0047	0.0685	0.0979	0.0053	0.0235
		500					0.0304									
	[0; 2]	50					0.7657									
		100					0.5703									
		500					0.0963									
0.9	[-1; 3]	50					0.4513									
		100					0.4368									
	[0.0]	500					0.0703									
	[0; 2]	50					0.6272									
		100					0.7261									
		500	0.0034	0.7542	0.0026	0.0095	0.2328	2.0980	0.1196	0.4300	0.0006	0.0043	0.0355	0.1457	0.0014	0.0951

Tabela D.75: Estimativas do erro quadrático médio dos parâmetros da mistura de duas regressões lineares no caso CIII

			α_1 EM	α_1	β_1	β_1	α_2	α_2	β_2	β_2	σ_1	σ_1	σ_2	σ_2	$\frac{\pi_1}{\mathrm{EM}}$	$_{ ext{CEM}}^{\pi_1}$
-π ₁	x [1 0]	50		CEM	EM	CEM	EM	CEM	EM	CEM	EM	CEM	EM	CEM		
0.1	[-1; 3]	100													$0.0055 \\ 0.0017$	
		500													0.0017	
	[0; 2]	50													0.0004	
	[0; 2]	100													0.0083 0.0047	
		500													0.0047 0.0007	
0.0	[1 0]	500													0.0060	
0.2	[-1; 3]	100													0.0060 0.0027	
		500														
	[0.0]														0.0007 0.0144	
	[0; 2]	50 100													0.0144 0.0043	
		500													0.0043	
0.2	[1.9]	500													0.0009	
0.3	[-1; 3]	100														
															0.0031 0.0006	
	[0.0]	500 50													0.0006	
	[0; 2]														0.0125 0.0059	
		100 500													0.0009	
0.4	[1.9]	50													0.0003	
0.4	[-1; 3]	100													0.0101	
		500													0.0042	
	[0; 2]	50													0.0008	
	[0, 2]	100													0.0133	
		500													0.0008	
0.5	[-1; 3]	50													0.0008	
0.5	[-1, 3]	100													0.0034	
		500													0.0007	
	[0; 2]	50													0.0144	
	[0, 2]	100													0.0071	
		500													0.0011	
0.6	[-1; 3]	50													0.0092	
	. , ,	100	0.0027	0.0027	0.0016	0.0018	0.0154	0.0179	0.0063	0.0102	0.0014	0.0020	0.0053	0.0067	0.0044	0.0094
		500	0.0006	0.0007	0.0003	0.0004	0.0032	0.0044	0.0011	0.0031	0.0002	0.0009	0.0010	0.0013	0.0009	0.0064
	[0; 2]	50	0.0209	0.0159	0.0205	0.0193	0.0892	0.0646	0.0670	0.1357	0.0040	0.0031	0.0198	0.0283	0.0111	0.0151
		100	0.0090	0.0090	0.0085	0.0096	0.0445	0.0319	0.0380	0.0884	0.0017	0.0016	0.0084	0.0171	0.0057	0.0120
		500	0.0015	0.0035	0.0016	0.0044	0.0057	0.0070	0.0053	0.0918	0.0003	0.0004	0.0012	0.0125	0.0011	0.0111
0.7	[-1; 3]	50	0.0052	0.0052	0.0029	0.0026	0.0432	0.0398	0.0243	0.0413	0.0025	0.0022	0.0227	0.0249	0.0088	0.0103
		100	0.0024	0.0024	0.0013	0.0015	0.0181	0.0204	0.0096	0.0190	0.0011	0.0013	0.0091	0.0104	0.0030	0.0070
		500	0.0005	0.0005	0.0002	0.0002	0.0031	0.0065	0.0017	0.0055	0.0002	0.0004	0.0011	0.0015	0.0008	0.0056
	[0; 2]	50	0.0145	0.0144	0.0118	0.0112	0.1261	0.1302	0.1141	0.2150	0.0028	0.0025	0.0277	0.0370	0.0102	0.0121
		100	0.0070	0.0077	0.0068	0.0075	0.0555	0.0478	0.0476	0.1453	0.0014	0.0014	0.0138	0.0254	0.0054	0.0094
		500	0.0014	0.0024	0.0013	0.0025	0.0106	0.0111	0.0083	0.1177	0.0002	0.0003	0.0016	0.0132	0.0010	0.0080
0.8	[-1; 3]	50	0.0048	0.0048	0.0021	0.1722	0.0886	0.1035	0.0599	0.1129	0.0021	0.0021	0.0345	0.0382	0.0060	0.0086
		100	0.0024	0.0023	0.0011	0.0011	0.0335	0.0367	0.0176	0.0327	0.0008	0.0009	0.0163	0.0189	0.0028	0.0049
		500	0.0003	0.0004	0.0002	0.0002	0.0048	0.0077	0.0032	0.0089	0.0002	0.0002	0.0018	0.0023	0.0004	0.0037
	[0; 2]	50	0.0148	0.0115	0.0195	0.0100	0.2695	0.2225	0.2293	0.4878	0.0030	0.0018	0.0403	0.0587	0.0114	0.0065
		100	0.0066	0.0063	0.0060	0.0055	0.0963	0.0728	0.0980	0.2139	0.0011	0.0009	0.0208	0.0341	0.0040	0.0054
		500	0.0011	0.0017	0.0010	0.0013	0.0142	0.0113	0.0106	0.1284	0.0002	0.0002	0.0032	0.0174	0.0009	0.0050
0.9	[-1; 3]	50													0.0034	
		100													0.0012	
		500													0.0003	
	[0; 2]	50													0.0091	
		100													0.0021	
		500	0.0009	0.0011	0.0007	0.0008	0.0374	0.0269	0.0350	0.1802	0.0001	0.0002	0.0069	0.0227	0.0004	0.0016

Tabela D.76: Estimativas do erro quadrático médio dos parâmetros da mistura de duas regressões lineares no caso CIV

1																	
1.																	
Part	$\frac{\pi_1}{2}$	x															
Fig.	0.1	[-1; 3]															
[9, 2] 50 0.5471 0.5497 0.5647 1.0624 0.1849 0.1523 0.1718 0.1365 0.1648 0.1143 0.0779 0.0617 0.1022 0.0314 100 0.5035 0.4293 0.4894 0.1739 0.1524 0.1125 0.1339 0.0887 0.1833 0.1195 0.0919 0.0391 0.0391 0.1016 0.0243 0.2687 0.2108 0.2514 0.3507 0.0552 0.0518 0.0478 0.0407 0.1129 0.0842 0.0242 0.0242 0.0268 0.0371 0.0167 0.0289 0.2444 0.0747 0.2528 0.0839 0.0839 0.0830 0.0807 0.0633 0.1300 0.1201 0.0513 0.0695 0.0648 0.0252 0.0814 0.0747 0.0252 0.0619 0.2539 0.0333 0.0880 0.0251 0.0389 0.0512 0.0660 0.0204 0.0258 0.0423 0.0483 0.0290 0.0619 0.2539 0.0330 0.0351 0.0329 0.0350 0.0512 0.0660 0.0204 0.0258 0.0622 0.0327 0.0253 0.0991 0.0619 0.0539 0.0619 0.0539 0.0612 0.0539 0.0512 0.0660 0.0204 0.0258 0.0632 0.1324 0.0687 0.0294 0.0294 0.0355 0.0529 0.1735 0.0619 0.0539 0.0770 0.0760 0.1964 0.1414 0.1838 0.1240 0.0895 0.0632 0.1324 0.0687 0.0294 0.0295 0.0202																	
1.0		[0.0]															
1.1 1.2 1.2 1.3 1.5 1.2		[0, 2]															
Column C																	
1	0.2	[1.9]															
	0.2	[-1, 3]															
[0; 2] 50 0.4941 0.4348 0.4811 0.6048 0.2097 0.1760 0.1944 0.1414 0.1833 0.1240 0.0895 0.0632 0.1324 0.0857 1009 0.3942 0.2940 0.3551 0.5259 0.1677 0.1248 0.1378 0.1064 0.1677 0.1054 0.0686 0.0551 0.1091 0.0519 0.0519 0.0519 0.05119 0.0519 0.0519 0.0519 0.0519 0.0519 0.0519 0.0519 0.0519 0.05119 0.0519 0.0519 0.0519 0.0519 0.0519 0.0519 0.0519 0.0519 0.05119 0.0519																	
1.0 0.3942 0.2904 0.3551 0.5269 0.1677 0.1248 0.1378 0.1064 0.1677 0.1050 0.0820 0.0332 0		[0.0]															
1. 1. 1. 1. 1. 1. 1. 1.		[0, 2]															
1.3																	
100	0.3	[-1:3]															
$ \begin{bmatrix} [0;2] \\ [0;3] \\ [0;4] \\ [0;5] \\ [0;6] \\ [0;6] \\ [0;6] \\ [0;6] \\ [0;6] \\ [0;7] \\ [0;6] \\ [0;7] \\ [$	0.0	[1,0]															
[0;2] 50																	
100		[0.2]															
Color		[0, 2]															
$ \begin{bmatrix} -1; 3 \\ -$																	
100	0.4	[-1.3]															
500	0.1	[1,0]															
10																	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		[0.2]															
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		[0, 2]															
$ \begin{bmatrix} -1;3 \\ -1;3$																	
$ \begin{bmatrix} 100 \\ 500 \\ 0.0436 \\ 0.0477 \\ 0.0339 \\ 0.0646 \\ 0.0447 \\ 0.0339 \\ 0.0646 \\ 0.0494 \\ 0.0525 \\ 0.3487 \\ 0.0322 \\ 0.0615 \\ 0.0261 \\ 0.0284 \\ 0.0359 \\ 0.0287 \\ 0.0380 \\ 0.0380 \\ 0.0380 \\ 0.0340 \\ 0.0247 \\ 0.0339 \\ 0.0646 \\ 0.0494 \\ 0.0525 \\ 0.3487 \\ 0.0322 \\ 0.0615 \\ 0.0261 \\ 0.02284 \\ 0.0359 \\ 0.0287 \\ 0.0287 \\ 0.0380 \\ 0.0381 \\ 0.0903 \\ 0.0909 \\ 0.0853 \\ 0.0903 \\ 0.0990 \\ 0.0833 \\ 0.0903 \\ 0.0990 \\ 0.0833 \\ 0.0903 \\ 0.0990 \\ 0.0833 \\ 0.0903 \\ 0.0990 \\ 0.0833 \\ 0.0903 \\ 0.0990 \\ 0.0833 \\ 0.0903 \\ 0.0990 \\ 0.0833 \\ 0.0903 \\ 0.0990 \\ 0.0833 \\ 0.0903 \\ 0.0990 \\ 0.0833 \\ 0.0990 \\ 0.0833 \\ 0.0903 \\ 0.0990 \\ 0.0833 \\ 0.0993 \\ 0.0831 \\ 0.0946 \\ 0.0993 \\ 0.0940 \\ 0.0946 \\ 0.0940 \\ 0.0946 \\ 0.0940 \\ 0.0946 \\ 0.0940 \\ 0.0946 \\ 0.0291 \\ 0.0946 \\ 0.02031 \\ 0.1980 \\ 0.0400 \\ 0.0460 \\ 0.0290 \\ 0.0586 \\ 0.0516 \\ 0.0616 \\ 0.0516 \\ 0.$	0.5	[-1:3]															
$ \begin{bmatrix} [0;2] & 500 & 0.0436 & 0.0477 & 0.0339 & 0.0646 & 0.0494 & 0.0520 & 0.0322 & 0.0615 & 0.0284 & 0.0359 & 0.0287 & 0.0380 & 0.0334 & 0.1033 \\ [0;2] & 500 & 0.3067 & 0.2281 & 0.2264 & 0.2255 & 0.3187 & 0.3343 & 0.2967 & 0.2708 & 0.1253 & 0.0835 & 0.1301 & 0.0886 & 0.1523 & 0.1476 \\ [0;0] & 0.2143 & 0.1685 & 0.1995 & 0.1560 & 0.2148 & 0.1762 & 0.1830 & 0.1569 & 0.0827 & 0.0602 & 0.0899 & 0.0640 & 0.1116 & 0.1266 \\ [0;0] & 0.0903 & 0.0990 & 0.0853 & 0.0903 & 0.0935 & 0.0816 & 0.0760 & 0.0351 & 0.0372 & 0.0345 & 0.0389 & 0.0490 & 0.0993 \\ [0;0] & 500 & 0.1477 & 0.1521 & 0.1031 & 0.1323 & 0.1946 & 0.2001 & 0.1505 & 0.2368 & 0.0830 & 0.0792 & 0.1252 & 0.1065 & 0.1041 & 0.1350 \\ [0;0] & 500 & 0.0400 & 0.0460 & 0.0290 & 0.0586 & 0.0516 & 0.0542 & 0.0381 & 0.1303 & 0.0267 & 0.0283 & 0.0317 & 0.0398 & 0.0332 & 0.0440 \\ [0;2] & 500 & 0.0400 & 0.0460 & 0.0290 & 0.0586 & 0.0516 & 0.0542 & 0.0381 & 0.1303 & 0.0267 & 0.0283 & 0.0317 & 0.0398 & 0.0332 & 0.0440 \\ [0;2] & 500 & 0.0261 & 0.12122 & 0.2312 & 0.1876 & 0.3646 & 0.2768 & 0.3454 & 0.2864 & 0.1109 & 0.0681 & 0.1496 & 0.0950 & 0.1493 & 0.1328 \\ [0;0] & 500 & 0.0764 & 0.0867 & 0.0719 & 0.0708 & 0.1092 & 0.0999 & 0.1061 & 0.1109 & 0.0327 & 0.0465 & 0.0470 & 0.0359 & 0.0418 & 0.0817 \\ [0;0] & 500 & 0.0414 & 0.0518 & 0.0931 & 0.0960 & 0.2462 & 0.2178 & 0.1891 & 0.2921 & 0.0817 & 0.0682 & 0.1476 & 0.1366 & 0.0076 & 0.0826 & 0.00764 & 0.0867 & 0.0785 & 0.1533 & 0.1481 & 0.1295 & 0.2611 & 0.0580 & 0.0535 & 0.1007 & 0.1002 & 0.0623 & 0.0600 & 0.0414 & 0.0518 & 0.0286 & 0.0553 & 0.0619 & 0.0755 & 0.0493 & 0.1979 & 0.0252 & 0.0321 & 0.0450 & 0.0567 & 0.0333 & 0.0363 & 0.0400 & 0.0521 & 0.0456 & 0.02162 & 0.2213 & 0.1889 & 0.04241 & 0.3270 & 0.3960 & 0.0580 & 0.0686 & 0.0612 & 0.1145 & 0.0873 & 0.0141 & 0.0882 & 0.0565 & 0.0141 & 0.0518 & 0.0844 & 0.0266 & 0.01291 & 0.0295 & 0.0465 & 0.0647 & 0.0380 & 0.0400 & 0.0521 & 0.0667 & 0.0688 & 0.0684 & 0.0844 & 0.0266 & 0.0686 & 0.0612 & 0.1145 & 0.0873 & 0.01414 & 0.0882 & 0.0667 & 0.0688 & 0.0688 & 0.0688 & 0.0584 & 0.0594 & 0.2263 &$		[-, -]															
$ \begin{bmatrix} [0;2] \\ [0;2] \\ [0;2] \\ [0;2] \\ [0;3] \\ [0;4] \\ [0;5] \\ [0;6] \\ [0;6] \\ [0;7] \\ [0;6] \\ [0;7] \\ [$			500														
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		[0: 2]	50														
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1-7 1															
$ \begin{bmatrix} 100 \\ 5$			500														
$ \begin{bmatrix} 100 \\ 500 \\ 500 \\ 500 \\ 60000 \\ 60000 \\ 60000 \\ 60000 \\ 60000 \\ 60000 \\ 60000 \\ 60000 \\ 600000 \\ 600000 \\ 600000 \\ 600000000$	0.6	[-1; 3]	50	0.1477	0.1521	0.1031	0.1323	0.1946	0.2001	0.1505	0.2368	0.0830	0.0792	0.1252	0.1065	0.1041	0.1350
$ \begin{bmatrix} [0;2] \\ [0;2] \\ [0;2] \\ [0;3] \\ [0;4] \\ [0;5] \\ [0;6] \\ [0;7] \\ [$			100	0.1093	0.1205	0.0731	0.0945	0.1217	0.1218	0.1065	0.2006	0.0622	0.0637	0.0768	0.0872	0.0721	0.0955
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			500	0.0400	0.0460	0.0290	0.0586	0.0516	0.0542	0.0381	0.1303	0.0267	0.0283	0.0317	0.0398	0.0332	0.0440
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		[0; 2]	50	0.2631	0.2122	0.2312	0.1876	0.3646	0.2768	0.3454	0.2864	0.1109	0.0681	0.1406	0.0950	0.1493	0.1328
$ \begin{bmatrix} -1;3 \\ 0.7 \\ -1;3 \\ 0.9 \\ 0.1411 \ 0.1335 \ 0.0931 \ 0.0960 \ 0.2462 \ 0.2178 \ 0.1891 \ 0.2921 \ 0.0817 \ 0.0682 \ 0.1476 \ 0.1306 \ 0.1007 \ 0.0826 \\ 0.0921 \ 0.0976 \ 0.0644 \ 0.0785 \ 0.1533 \ 0.1481 \ 0.1295 \ 0.2611 \ 0.0580 \ 0.0535 \ 0.1007 \ 0.1002 \ 0.0623 \ 0.0600 \\ 0.0414 \ 0.0518 \ 0.0286 \ 0.0553 \ 0.0619 \ 0.0755 \ 0.0493 \ 0.1979 \ 0.0252 \ 0.0321 \ 0.0450 \ 0.0567 \ 0.0333 \ 0.0363 \\ 0.2456 \ 0.2162 \ 0.2213 \ 0.1889 \ 0.4241 \ 0.3270 \ 0.3960 \ 0.3502 \ 0.1026 \ 0.0780 \ 0.1605 \ 0.1152 \ 0.1407 \ 0.1085 \\ 100 \ 0.1671 \ 0.1442 \ 0.1479 \ 0.1144 \ 0.2959 \ 0.2491 \ 0.2819 \ 0.2920 \ 0.0686 \ 0.0612 \ 0.145 \ 0.0873 \ 0.0404 \ 0.0855 \\ 0.0638 \ 0.0817 \ 0.0642 \ 0.0559 \ 0.1199 \ 0.1291 \ 0.1235 \ 0.1124 \ 0.0295 \ 0.0405 \ 0.0547 \ 0.0380 \ 0.0400 \ 0.0521 \\ 0.0796 \ 0.0818 \ 0.0584 \ 0.0594 \ 0.2263 \ 0.2051 \ 0.1807 \ 0.3465 \ 0.0517 \ 0.0527 \ 0.1335 \ 0.1223 \ 0.0631 \ 0.0471 \\ 0.0391 \ 0.0465 \ 0.0267 \ 0.0399 \ 0.0817 \ 0.0964 \ 0.0681 \ 0.2620 \ 0.0191 \ 0.0230 \ 0.0516 \ 0.0666 \ 0.0666 \ 0.02626 \ 0.0230 \\ 0.1692 \ 0.1336 \ 0.1375 \ 0.1135 \ 0.4337 \ 0.3398 \ 0.3972 \ 0.4729 \ 0.0667 \ 0.0536 \ 0.1615 \ 0.1144 \ 0.1162 \ 0.0576 \\ 0.0670 \ 0.0721 \ 0.0660 \ 0.0523 \ 0.1746 \ 0.1549 \ 0.1673 \ 0.1488 \ 0.0643 \ 0.0640 \ 0.0640 \ 0.0645 \ 0.0912 \\ 0.0687 \ 0.0688 \ 0.0483 \ 0.0476 \ 0.2863 \ 0.2784 \ 0.2450 \ 0.4080 \ 0.0434 \ 0.0403 \ 0.1655 \ 0.1438 \ 0.0460 \ 0.0225 \\ 0.0309 \ 0.0332 \ 0.0225 \ 0.0254 \ 0.1227 \ 0.1411 \ 0.1092 \ 0.3686 \ 0.06183 \ 0.0197 \ 0.0863 \ 0.0914 \ 0.0209 \ 0.0124 \\ 0.1504 \ 0.1554 \ 0.1568 \ 0.1714 \ 0.1394 \ 0.5965 \ 0.4810 \ 0.4841 \ 0.4841 \ 0.0512 \ 0.0536 \ 0.0750 \ 0.1721 \ 0.1204 \ 0.1136 \ 0.0356 \\ 0.1504 \ 0.1538 \ 0.1168 \ 0.3371 \ 0.4867 \ 0.4814 \ 0.4804 \ 0.4841 \ 0.0512 \ 0.0536 \ 0.0742 \ 0.1086 \ 0.0936 \ 0.0755 \\ 0.1504 \ 0.1538 \ 0.1168 \ 0.3371 \ 0.4867 \ 0.4814 \ 0.4804 \ 0.4841 \ 0.0512 \ 0.0536 \ 0.0742 \ 0.1086 \ 0.0936 \ 0.0755 \\ 0.1504 \ 0.1538 \ 0.1168 \ 0.0527 \ 0.0566 \ 0.0538 \ 0.0750 \ 0.0357 \ 0.0566 \ 0.0588 \ 0.0595 \ 0$			100	0.2031	0.1918	0.1756	0.1502	0.2696	0.2122	0.2463	0.1957	0.0782	0.0680	0.1068	0.0752	0.1024	0.1116
$ \begin{bmatrix} 100 & 0.0921 & 0.0976 & 0.0644 & 0.0785 & 0.1533 & 0.1481 & 0.1295 & 0.2611 & 0.0580 & 0.0535 & 0.1007 & 0.1002 & 0.0623 & 0.0600 \\ 500 & 0.0414 & 0.0518 & 0.0286 & 0.0553 & 0.0619 & 0.0755 & 0.0493 & 0.1979 & 0.0252 & 0.0321 & 0.0450 & 0.0567 & 0.0333 & 0.0363 \\ 500 & 0.2456 & 0.2162 & 0.2213 & 0.1889 & 0.4241 & 0.3270 & 0.3960 & 0.3550 & 0.1026 & 0.0780 & 0.1605 & 0.1152 & 0.1407 & 0.1085 \\ 100 & 0.1671 & 0.1442 & 0.1479 & 0.1144 & 0.2959 & 0.2491 & 0.2819 & 0.2920 & 0.0686 & 0.0612 & 0.1145 & 0.0873 & 0.1014 & 0.0882 \\ 500 & 0.0638 & 0.0817 & 0.0642 & 0.0559 & 0.1199 & 0.1291 & 0.1235 & 0.1124 & 0.0295 & 0.0405 & 0.0547 & 0.0380 & 0.0400 & 0.0521 \\ 0.8 & [-1;3] & 50 & 0.1071 & 0.1084 & 0.0845 & 0.0844 & 0.2616 & 0.2624 & 0.3339 & 0.4136 & 0.0665 & 0.0616 & 0.1723 & 0.1537 & 0.0768 & 0.0563 \\ 100 & 0.0796 & 0.0818 & 0.0584 & 0.0594 & 0.2263 & 0.2051 & 0.1807 & 0.3465 & 0.0517 & 0.0527 & 0.1335 & 0.1223 & 0.0631 & 0.0471 \\ 500 & 0.0391 & 0.0465 & 0.0267 & 0.0399 & 0.0817 & 0.0964 & 0.0681 & 0.2620 & 0.0191 & 0.0230 & 0.0516 & 0.0646 & 0.0265 & 0.0230 \\ [0;2] & 50 & 0.2158 & 0.2039 & 0.1951 & 0.4287 & 0.5242 & 0.4953 & 0.5037 & 0.6346 & 0.0832 & 0.0669 & 0.1801 & 0.1250 & 0.1293 & 0.1375 & 0.1135 & 0.4337 & 0.3398 & 0.3972 & 0.4729 & 0.0667 & 0.0536 & 0.1615 & 0.1144 & 0.1162 & 0.0576 \\ 500 & 0.0670 & 0.0721 & 0.0606 & 0.0523 & 0.1746 & 0.1549 & 0.1673 & 0.1488 & 0.0272 & 0.0367 & 0.0765 & 0.0627 & 0.0408 & 0.0345 \\ [0;2] & 50 & 0.1156 & 0.1298 & 0.0799 & 0.3573 & 0.3748 & 0.3913 & 0.2818 & 0.7382 & 0.0634 & 0.0604 & 0.1963 & 0.1735 & 0.0586 & 0.0912 \\ [0;2] & 50 & 0.0399 & 0.0332 & 0.0225 & 0.0254 & 0.1227 & 0.1411 & 0.1092 & 0.3668 & 0.0183 & 0.0197 & 0.0863 & 0.0914 & 0.0209 & 0.0124 \\ [0;2] & 50 & 0.1999 & 0.1568 & 0.1714 & 0.1394 & 0.5965 & 0.5883 & 0.5959 & 1.3636 & 0.0789 & 0.0507 & 0.1721 & 0.1204 & 0.1136 & 0.0359 \\ [0;2] & 50 & 0.1999 & 0.1568 & 0.1714 & 0.1394 & 0.5965 & 0.5883 & 0.5959 & 1.3636 & 0.0789 & 0.0576 & 0.1724 & 0.1086 & 0.0936 & 0.0705 \\ [0;2] & 50 & 0.1504 & 0.1238 & 0.1168 & 0.337$			500	0.0764	0.0867	0.0719	0.0708	0.1092	0.0999	0.1061	0.1109	0.0327	0.0405	0.0470	0.0359	0.0418	0.0817
$ \begin{bmatrix} [0;2] & 500 & 0.0414 & 0.0518 & 0.0286 & 0.0553 & 0.0619 & 0.0755 & 0.0493 & 0.1979 & 0.0252 & 0.0321 & 0.0450 & 0.0567 & 0.0333 & 0.0363 \\ [0;2] & 50 & 0.2456 & 0.2162 & 0.2213 & 0.1889 & 0.4241 & 0.3270 & 0.3960 & 0.0502 & 0.1026 & 0.0780 & 0.1605 & 0.1152 & 0.1407 & 0.1085 \\ [0;0] & 0.1671 & 0.1442 & 0.1479 & 0.1144 & 0.2959 & 0.2491 & 0.2819 & 0.2202 & 0.0686 & 0.0612 & 0.1145 & 0.0873 & 0.0144 & 0.0882 \\ [0;0] & 0.0638 & 0.0817 & 0.0642 & 0.0559 & 0.1199 & 0.1291 & 0.1235 & 0.1124 & 0.0295 & 0.0405 & 0.0547 & 0.0380 & 0.0400 & 0.0521 \\ [0;0] & 50 & 0.1071 & 0.1084 & 0.0845 & 0.0844 & 0.2616 & 0.2624 & 0.2339 & 0.4136 & 0.0665 & 0.0616 & 0.1723 & 0.1537 & 0.0768 & 0.0563 \\ [0;0] & 50 & 0.0391 & 0.0465 & 0.0584 & 0.0594 & 0.2263 & 0.2051 & 0.1807 & 0.3465 & 0.0517 & 0.0527 & 0.1335 & 0.1233 & 0.0631 & 0.0471 \\ [0;0] & 50 & 0.0391 & 0.0465 & 0.0267 & 0.0399 & 0.0817 & 0.0964 & 0.0681 & 0.0620 & 0.0191 & 0.0230 & 0.0516 & 0.0646 & 0.0265 & 0.0230 \\ [0;0] & 50 & 0.2158 & 0.2039 & 0.1951 & 0.4287 & 0.5242 & 0.4953 & 0.5037 & 0.6346 & 0.0832 & 0.0669 & 0.1801 & 0.1250 & 0.1293 & 0.1019 \\ [0;0] & 50 & 0.1592 & 0.1336 & 0.1375 & 0.1135 & 0.4337 & 0.3398 & 0.3972 & 0.4729 & 0.0667 & 0.0536 & 0.1615 & 0.1144 & 0.1162 & 0.0576 \\ [0;0] & 50 & 0.1566 & 0.1298 & 0.0790 & 0.3573 & 0.3748 & 0.3913 & 0.2418 & 0.0272 & 0.0367 & 0.0765 & 0.0627 & 0.0408 & 0.0434 \\ [0;0] & 50 & 0.0687 & 0.0688 & 0.0483 & 0.0476 & 0.2863 & 0.2784 & 0.2450 & 0.4080 & 0.0434 & 0.0403 & 0.1655 & 0.1438 & 0.0460 & 0.0225 \\ [0;0] & 50 & 0.03099 & 0.0352 & 0.0225 & 0.0254 & 0.1227 & 0.1411 & 0.1092 & 0.0567 & 0.0772 & 0.1086 & 0.0936 & 0.0789 \\ [0;0] & 50 & 0.1504 & 0.1238 & 0.1168 & 0.3371 & 0.4867 & 0.4914 & 0.4804 & 0.8481 & 0.0512 & 0.0536 & 0.1742 & 0.1086 & 0.0936 & 0.0705 \\ [0;0] & 50 & 0.1504 & 0.1238 & 0.1168 & 0.3371 & 0.4867 & 0.4914 & 0.4804 & 0.8481 & 0.0512 & 0.0536 & 0.1742 & 0.1086 & 0.0936 & 0.0705 \\ [0;0] & 50 & 0.1504 & 0.1238 & 0.1168 & 0.3371 & 0.4867 & 0.4914 & 0.4804 & 0.8481 & 0.0512 & 0.0536 & 0.1742 & 0.1086 & 0.0936 & $	0.7	[-1; 3]	50	0.1411	0.1335	0.0931	0.0960	0.2462	0.2178	0.1891	0.2921	0.0817	0.0682	0.1476	0.1306	0.1007	0.0826
$ \begin{bmatrix} [0;2] & 50 & 0.2456 & 0.2162 & 0.2213 & 0.1889 & 0.4241 & 0.3270 & 0.3960 & 0.3502 & 0.1026 & 0.0780 & 0.1605 & 0.1152 & 0.1407 & 0.1085 \\ 100 & 0.1671 & 0.1442 & 0.1479 & 0.1144 & 0.2959 & 0.2491 & 0.2819 & 0.2920 & 0.0686 & 0.0612 & 0.1145 & 0.0873 & 0.1014 & 0.0882 \\ 500 & 0.0638 & 0.0817 & 0.0642 & 0.0559 & 0.1199 & 0.1291 & 0.1235 & 0.1124 & 0.0295 & 0.0405 & 0.0647 & 0.0380 & 0.0400 & 0.0521 \\ \hline 0.8 & [-1;3] & 50 & 0.1071 & 0.1084 & 0.0845 & 0.0844 & 0.2616 & 0.2624 & 0.2339 & 0.4136 & 0.0665 & 0.0616 & 0.1723 & 0.1537 & 0.0768 & 0.0563 \\ 100 & 0.0796 & 0.0818 & 0.0584 & 0.0594 & 0.2263 & 0.2051 & 0.1807 & 0.3465 & 0.0517 & 0.0527 & 0.1335 & 0.1223 & 0.0631 & 0.0471 \\ 500 & 0.0391 & 0.0465 & 0.0267 & 0.0399 & 0.0817 & 0.0964 & 0.0681 & 0.2620 & 0.0191 & 0.0230 & 0.0516 & 0.0646 & 0.0265 & 0.0230 \\ 100 & 0.1592 & 0.1336 & 0.1375 & 0.1135 & 0.4337 & 0.3398 & 0.3972 & 0.4729 & 0.0667 & 0.0536 & 0.1615 & 0.1144 & 0.1162 & 0.0576 \\ 500 & 0.0670 & 0.0721 & 0.0606 & 0.0523 & 0.1746 & 0.1549 & 0.1673 & 0.1488 & 0.0272 & 0.0367 & 0.0627 & 0.0408 & 0.0345 \\ \hline 0.9 & [-1;3] & 50 & 0.1156 & 0.1298 & 0.0790 & 0.3573 & 0.3748 & 0.3913 & 0.2818 & 0.7382 & 0.0636 & 0.6604 & 0.1963 & 0.1735 & 0.0586 & 0.0912 \\ \hline 100 & 0.0687 & 0.0688 & 0.0483 & 0.0476 & 0.2863 & 0.2784 & 0.2450 & 0.4080 & 0.0434 & 0.0403 & 0.1655 & 0.1438 & 0.0460 & 0.0225 \\ \hline 500 & 0.0399 & 0.0332 & 0.0225 & 0.0254 & 0.1227 & 0.1411 & 0.1092 & 0.3068 & 0.0183 & 0.0197 & 0.0863 & 0.0914 & 0.0209 & 0.0124 \\ \hline 100 & 0.1504 & 0.1238 & 0.1168 & 0.3371 & 0.4867 & 0.4914 & 0.4804 & 0.8481 & 0.0512 & 0.0536 & 0.1742 & 0.1086 & 0.0936 & 0.0705 \\ \hline 100 & 0.1504 & 0.1238 & 0.1168 & 0.3371 & 0.4867 & 0.4914 & 0.4804 & 0.8481 & 0.0512 & 0.0536 & 0.1742 & 0.1086 & 0.0936 & 0.0705 \\ \hline 100 & 0.1504 & 0.1238 & 0.1168 & 0.3371 & 0.4867 & 0.4914 & 0.4804 & 0.8481 & 0.0512 & 0.0536 & 0.1742 & 0.1086 & 0.0936 & 0.0705 \\ \hline 100 & 0.1504 & 0.1238 & 0.1168 & 0.3371 & 0.4867 & 0.4914 & 0.4804 & 0.8481 & 0.0512 & 0.0536 & 0.1742 & 0.1086 & 0.0936 & 0.0705 \\ \hline 100 & 0.1504 & 0.$			100	0.0921	0.0976	0.0644	0.0785	0.1533	0.1481	0.1295	0.2611	0.0580	0.0535	0.1007	0.1002	0.0623	0.0600
$ \begin{bmatrix} 100 \\ 500 \\ 500 \\ 500 \\ 500 \\ 60088 \\ 60.0638 \\ 60.0817 \\ 60.0638 \\ 60.0817 \\ 60.0638 \\ 60.0817 \\ 60.0659 \\ 60.0638 \\ 60.0817 \\ 60.0659 \\ 60.0199 \\ 60.1291 \\ 60.$			500	0.0414	0.0518	0.0286	0.0553	0.0619	0.0755	0.0493	0.1979	0.0252	0.0321	0.0450	0.0567	0.0333	0.0363
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		[0; 2]	50	0.2456	0.2162	0.2213	0.1889	0.4241	0.3270	0.3960	0.3502	0.1026	0.0780	0.1605	0.1152	0.1407	0.1085
$ \begin{bmatrix} -1;3 \\ 0.8 \\ -1;3 \\ \end{bmatrix} \begin{bmatrix} 50 \\ 0.1071 \\ 0.1084 \\ 0.0845 \\ 0.0845 \\ 0.0844 \\ 0.0845 \\ 0.0844 \\ 0.0845 \\ 0.0844 \\ 0.2616 \\ 0.2624 \\ 0.2239 \\ 0.2051 \\ 0.1807 \\ 0.339 \\ 0.4136 \\ 0.0665 \\ 0.0665 \\ 0.0665 \\ 0.0665 \\ 0.0666 \\ 0.0665 \\ 0.0666 \\ 0.0610 \\ 0.0818 \\ 0.0839 \\ 0.0817 \\ 0.099 \\ 0.1592 \\ 0.0339 \\ 0.0817 \\ 0.099 \\ 0.1592 \\ 0.0870 \\ 0.0721 \\ 0.0867 \\ 0.0870 \\ 0.0880 \\ 0.0880 \\ 0.0880 \\ 0.0883 \\ 0.0476 \\ 0.2863 \\ 0.2784 \\ 0.2450 \\ 0.4880 \\ 0.4880 \\ 0.0480 \\ 0.0484 \\ 0.0403 \\ 0.0403 \\ 0.0465 \\ 0.0403 \\ 0.0465 \\ 0.0480 \\ 0.0434 \\ 0.0403 \\ 0.1655 \\ 0.1438 \\ 0.0460 \\ 0.0225 \\ 0.0309 \\ 0.0322 \\ 0.0225 \\ 0.0254 \\ 0.1227 \\ 0.1411 \\ 0.1092 \\ 0.0868 \\ 0.0484 \\ 0.0812 \\ 0.0880 \\ 0.0830 \\ 0.0870 \\ 0.0868 \\ 0.0183 \\ 0.0197 \\ 0.0863 \\ 0.0914 \\ 0.0209 \\ 0.0124 \\ 0.0359 \\ 0.0350 \\ 0.0750 \\ 0.0350 \\$			100	0.1671	0.1442	0.1479	0.1144	0.2959	0.2491	0.2819	0.2920	0.0686	0.0612	0.1145	0.0873	0.1014	0.0882
$ \begin{bmatrix} 100 & 0.0796 & 0.0818 & 0.0584 & 0.0594 & 0.2263 & 0.2051 & 0.1807 & 0.3465 & 0.0517 & 0.0527 & 0.1335 & 0.1223 & 0.0631 & 0.0471 \\ 500 & 0.0391 & 0.0465 & 0.0267 & 0.0399 & 0.0817 & 0.0964 & 0.0681 & 0.2620 & 0.0191 & 0.0230 & 0.0516 & 0.0646 & 0.0265 & 0.0230 \\ 500 & 0.2158 & 0.2039 & 0.1951 & 0.4287 & 0.5242 & 0.4953 & 0.5037 & 0.6346 & 0.0832 & 0.0669 & 0.1801 & 0.1250 & 0.1293 & 0.1019 \\ 100 & 0.1592 & 0.1336 & 0.1375 & 0.1135 & 0.4337 & 0.3398 & 0.3972 & 0.4729 & 0.0667 & 0.0536 & 0.1615 & 0.1144 & 0.1162 & 0.0576 \\ 500 & 0.0670 & 0.0721 & 0.0606 & 0.0523 & 0.1746 & 0.1549 & 0.1673 & 0.1488 & 0.0272 & 0.0367 & 0.0765 & 0.0627 & 0.0408 & 0.0345 \\ \hline 0.9 & [-1;3] & 50 & 0.1156 & 0.1298 & 0.0799 & 0.3573 & 0.3748 & 0.3913 & 0.2818 & 0.7382 & 0.0636 & 0.0604 & 0.1963 & 0.1735 & 0.0586 & 0.0912 \\ \hline 100 & 0.0687 & 0.0688 & 0.0483 & 0.0476 & 0.2863 & 0.2784 & 0.2450 & 0.4080 & 0.0434 & 0.0403 & 0.1655 & 0.1438 & 0.0460 & 0.0225 \\ \hline 500 & 0.0309 & 0.0332 & 0.0225 & 0.0254 & 0.1227 & 0.1411 & 0.1092 & 0.3068 & 0.0183 & 0.0197 & 0.0863 & 0.0914 & 0.0209 & 0.0124 \\ \hline [0;2] & 50 & 0.1999 & 0.1568 & 0.1714 & 0.1394 & 0.5965 & 0.5883 & 0.5959 & 1.3636 & 0.0789 & 0.0507 & 0.1721 & 0.1204 & 0.1136 & 0.0359 \\ \hline 100 & 0.1504 & 0.1238 & 0.1168 & 0.3371 & 0.4867 & 0.4914 & 0.4804 & 0.8481 & 0.0512 & 0.0536 & 0.1742 & 0.1086 & 0.0936 & 0.0705 \\ \hline \end{array}$			500	0.0638	0.0817	0.0642	0.0559	0.1199	0.1291	0.1235	0.1124	0.0295	0.0405	0.0547	0.0380	0.0400	0.0521
$ \begin{bmatrix} [0;2] & 50 & 0.0391 & 0.0465 & 0.0267 & 0.0399 & 0.0817 & 0.0964 & 0.0681 & 0.2620 & 0.0191 & 0.0230 & 0.0516 & 0.0646 & 0.0265 & 0.0230 \\ 0.2158 & 0.2039 & 0.1951 & 0.4287 & 0.5242 & 0.4953 & 0.5037 & 0.6346 & 0.0832 & 0.0669 & 0.1801 & 0.1250 & 0.1293 & 0.1019 \\ 0.01592 & 0.1336 & 0.1375 & 0.1135 & 0.4337 & 0.3398 & 0.3972 & 0.4729 & 0.0667 & 0.0536 & 0.1615 & 0.1144 & 0.1162 & 0.0576 \\ 500 & 0.0670 & 0.0721 & 0.0606 & 0.0523 & 0.1746 & 0.1549 & 0.1673 & 0.1488 & 0.0272 & 0.0367 & 0.0765 & 0.0627 & 0.0408 & 0.0345 \\ \hline 0.9 & [-1;3] & 50 & 0.1156 & 0.1298 & 0.0790 & 0.3573 & 0.3748 & 0.3913 & 0.2818 & 0.7382 & 0.0636 & 0.0604 & 0.1963 & 0.1735 & 0.0586 & 0.0912 \\ \hline 0.0687 & 0.0688 & 0.0483 & 0.0476 & 0.2863 & 0.2784 & 0.2450 & 0.4080 & 0.0434 & 0.0403 & 0.1655 & 0.1438 & 0.0460 & 0.0225 \\ \hline 0.0309 & 0.0332 & 0.0225 & 0.0254 & 0.1227 & 0.1411 & 0.1092 & 0.3068 & 0.0187 & 0.0914 & 0.0299 & 0.124 \\ \hline 0;2] & 50 & 0.1999 & 0.1568 & 0.1714 & 0.1394 & 0.5965 & 0.5883 & 0.5959 & 1.3636 & 0.0789 & 0.0507 & 0.1721 & 0.1204 & 0.1136 & 0.0359 \\ \hline 0.0504 & 0.1238 & 0.1168 & 0.3371 & 0.4867 & 0.4914 & 0.4804 & 0.8481 & 0.0512 & 0.0536 & 0.1742 & 0.1086 & 0.0936 & 0.0705 \\ \hline 0.0504 & 0.1238 & 0.1168 & 0.3371 & 0.4867 & 0.4914 & 0.4804 & 0.8481 & 0.0512 & 0.0536 & 0.1742 & 0.1086 & 0.0936 & 0.0705 \\ \hline 0.0504 & 0.1238 & 0.1168 & 0.3371 & 0.4867 & 0.4914 & 0.4804 & 0.8481 & 0.0512 & 0.0536 & 0.1742 & 0.1086 & 0.0936 & 0.0705 \\ \hline 0.0504 & 0.1238 & 0.1168 & 0.3371 & 0.4867 & 0.4914 & 0.4804 & 0.8481 & 0.0512 & 0.0536 & 0.1742 & 0.1086 & 0.0936 & 0.0705 \\ \hline 0.0504 & 0.1238 & 0.1168 & 0.3371 & 0.4867 & 0.4914 & 0.4804 & 0.8481 & 0.0512 & 0.0536 & 0.1742 & 0.1086 & 0.0936 & 0.0705 \\ \hline 0.0504 & 0.1238 & 0.1168 & 0.3371 & 0.4867 & 0.4914 & 0.4804 & 0.8481 & 0.0512 & 0.0536 & 0.1742 & 0.1086 & 0.0936 & 0.0705 \\ \hline 0.0504 & 0.1238 & 0.1168 & 0.3371 & 0.4867 & 0.4914 & 0.4804 & 0.8481 & 0.0512 & 0.0536 & 0.1742 & 0.1086 & 0.0936 & 0.0705 \\ \hline 0.0504 & 0.1238 & 0.1168 & 0.3371 & 0.4867 & 0.4914 & 0.4804 & 0.8481 & 0.0512 & 0.0536 & 0.17$	0.8	[-1; 3]	50	0.1071	0.1084	0.0845	0.0844	0.2616	0.2624	0.2339	0.4136	0.0665	0.0616	0.1723	0.1537	0.0768	0.0563
$ \begin{bmatrix} [0;2] \\ [0;2] \\ [0;2] \\ [0;2] \\ [0;2] \end{bmatrix} = \begin{bmatrix} 50 \\ 0.2158 & 0.2039 & 0.1951 & 0.4287 & 0.5242 & 0.4953 & 0.5037 & 0.6346 & 0.0832 & 0.0669 & 0.1801 & 0.1250 & 0.1293 & 0.1019 \\ 0.1592 & 0.1336 & 0.1375 & 0.1135 & 0.4337 & 0.3398 & 0.3972 & 0.4729 & 0.0667 & 0.0536 & 0.1615 & 0.1144 & 0.1162 & 0.0576 \\ 500 & 0.0670 & 0.0721 & 0.0606 & 0.0523 & 0.1746 & 0.1549 & 0.1673 & 0.1488 & 0.0272 & 0.0367 & 0.0765 & 0.0627 & 0.0408 & 0.0345 \\ \hline 0.9 & [-1;3] & 50 & 0.1156 & 0.1298 & 0.0790 & 0.3573 & 0.3748 & 0.3913 & 0.2818 & 0.7382 & 0.0636 & 0.0604 & 0.1963 & 0.1735 & 0.0586 & 0.0912 \\ 100 & 0.0687 & 0.0688 & 0.0483 & 0.0476 & 0.2863 & 0.2784 & 0.2450 & 0.4080 & 0.0434 & 0.0403 & 0.1655 & 0.1438 & 0.0460 & 0.0225 \\ 500 & 0.0309 & 0.0332 & 0.0225 & 0.0254 & 0.1227 & 0.1411 & 0.1092 & 0.3068 & 0.0183 & 0.0197 & 0.0863 & 0.0914 & 0.0209 & 0.0124 \\ [0;2] & 50 & 0.1999 & 0.1568 & 0.1714 & 0.1394 & 0.5965 & 0.5883 & 0.5959 & 1.3663 & 0.0789 & 0.0507 & 0.1721 & 0.1204 & 0.1136 & 0.0359 \\ 100 & 0.1504 & 0.1238 & 0.1168 & 0.3371 & 0.4867 & 0.4914 & 0.4804 & 0.8481 & 0.0512 & 0.0536 & 0.1742 & 0.1086 & 0.0936 & 0.0795 \\ \hline \end{tabular}$																	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$																	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		[0; 2]															
$ \begin{bmatrix} -1;3 \end{bmatrix} & 50 & 0.1156 \ 0.1298 \ 0.0790 \ 0.3573 \ 0.3748 \ 0.3913 \ 0.2818 \ 0.7382 \ 0.0636 \ 0.0604 \ 0.1963 \ 0.1735 \ 0.0586 \ 0.0912 \\ 0.0687 \ 0.0688 \ 0.0483 \ 0.0476 \ 0.2863 \ 0.2784 \ 0.2450 \ 0.4080 \ 0.0434 \ 0.0403 \ 0.1655 \ 0.1438 \ 0.0460 \ 0.0225 \\ 500 & 0.0309 \ 0.0332 \ 0.0225 \ 0.0254 \ 0.1227 \ 0.1411 \ 0.1092 \ 0.3068 \ 0.0183 \ 0.0197 \ 0.0863 \ 0.0914 \ 0.0209 \ 0.0124 \\ 50 & 0.1999 \ 0.1568 \ 0.1714 \ 0.1394 \ 0.5965 \ 0.5883 \ 0.5959 \ 1.3636 \ 0.0789 \ 0.0507 \ 0.1721 \ 0.1204 \ 0.1136 \ 0.0359 \\ 100 & 0.1504 \ 0.1238 \ 0.1168 \ 0.3371 \ 0.4867 \ 0.4914 \ 0.4804 \ 0.8481 \ 0.0512 \ 0.0536 \ 0.1742 \ 0.1086 \ 0.0936 \ 0.0705 \\ \end{bmatrix} $																	
100 0.0687 0.0688 0.0483 0.0476 0.2863 0.2784 0.2450 0.4080 0.0434 0.0403 0.1655 0.1438 0.0460 0.0225 500 0.0309 0.0332 0.0225 0.0254 0.1227 0.1411 0.1092 0.3068 0.0183 0.0197 0.0863 0.0914 0.0209 0.0124 50 0.1999 0.1568 0.1714 0.1394 0.5965 0.5883 0.5959 1.3636 0.0789 0.0507 0.1721 0.1204 0.1136 0.0359 100 0.1504 0.1238 0.1168 0.3371 0.4867 0.4914 0.4804 0.8481 0.0512 0.0536 0.1742 0.1086 0.0936 0.0705																	
$ \begin{bmatrix} 500 & 0.0309 & 0.0332 & 0.0225 & 0.0254 & 0.1227 & 0.1411 & 0.1092 & 0.3068 & 0.0183 & 0.0197 & 0.0863 & 0.0914 & 0.0209 & 0.0124 \\ 50 & 0.1999 & 0.1568 & 0.1714 & 0.1394 & 0.5965 & 0.5883 & 0.5959 & 1.3636 & 0.0789 & 0.0507 & 0.1721 & 0.1204 & 0.1136 & 0.0359 \\ 100 & 0.1504 & 0.1238 & 0.1168 & 0.3371 & 0.4867 & 0.4914 & 0.4804 & 0.8481 & 0.0512 & 0.0536 & 0.1742 & 0.1086 & 0.0936 & 0.0705 \\ \end{bmatrix} $	0.9	[-1; 3]															
$100 \qquad 0.1504 \ 0.1238 \ 0.1168 \ 0.3371 \ 0.4867 \ 0.4914 \ 0.4804 \ 0.8481 \ 0.0512 \ 0.0536 \ 0.1742 \ 0.1086 \ 0.0936 \ 0.0705$																	
		[0; 2]															
$500 \qquad 0.0611 \ 0.0514 \ 0.0522 \ 0.0397 \ 0.2886 \ 0.2338 \ 0.2759 \ 0.3464 \ 0.0230 \ 0.0272 \ 0.1055 \ 0.0733 \ 0.0384 \ 0.0183$			100														
			500	0.0611	0.0514	0.0522	0.0397	0.2886	0.2338	0.2759	0.3464	0.0230	0.0272	0.1055	0.0733	0.0384	0.0183

Tabela D.77: Estimativas do erro quadrático médio dos parâmetros da mistura de duas regressões lineares no caso ${\rm CV}$

1-1; 3 50																	
1.	$\frac{\pi_1}{2}$	x [1 2]															
Part	0.1	[-1; 3]															
[9; 2] 50 0.0935 0.1465 0.0888 0.8166 0.1129 0.0651 0.0749 0.0526 0.0320 0.0526 0.0197 0.0113 0.0232 0.0018																	
1.10		[0.0]															
1.1 1.2 1.2 1.3 1.5 1.0		[0, 2]															
$ \begin{bmatrix} -1; 3 \\ -1; 3 \\ -1; 3 \\ -1; 3 \\ -1; 5 \\ -$																	
100 0.0166 0.0290 0.0188 0.1372 0.0189 0.0212 0.0074 0.0080 0.0084 0.0208 0.0069 0.0069 0.0087 0.0087 0.0087	0.2	[_1.3]															
Part	0.2	[-1, 0]															
[0;2] 50																	
100		[0.2]															
Section		[0, 2]															
0.3																	
100	0.3	[-1;3]	50														
$ \begin{bmatrix} [0;2] \\ [0;3] \\ [0;4] \\ [0;5] \\ [0;6] \\ [0;6] \\ [0;6] \\ [0;6] \\ [0;7] \\ [0;7] \\ [0;7] \\ [0;7] \\ [0;8] \\ [0;7] \\ [0;8] \\ [0;8] \\ [0;9] \\ [$. /-1	100														
Part			500														
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		[0; 2]	50	0.0871	0.0486	0.0916	0.0528	0.1577	0.1183	0.1003	0.0948	0.0168	0.0252	0.0278	0.0220	0.0196	0.0156
$ \begin{bmatrix} -1;3 \\ -1;3$			100	0.0384	0.0295	0.0318	0.0372	0.0834	0.0732	0.0477	0.0480	0.0093	0.0207	0.0097	0.0157	0.0117	0.0130
100			500	0.0054	0.0186	0.0050	0.0393	0.0133	0.0700	0.0071	0.0289	0.0014	0.0246	0.0014	0.0127	0.0017	0.0206
$ \begin{bmatrix} [0;2] & 50 \\ $	0.4	[-1; 3]	50	0.0129	0.0121	0.0074	0.0062	0.0682	0.0589	0.0214	0.0292	0.0082	0.0102	0.0199	0.0203	0.0105	0.0137
$ \begin{bmatrix} [6] 2 \\ [0] 2 \\ [0] 3 \\ [0] 0 \\ [0.029] 0.0233 0.0174 0.0262 0.0956 0.0790 0.0539 0.0723 0.0633 0.0031 0.0334 0.0916 0.0222 \\ [0.023] 0.0093 0.0233 0.0174 0.0262 0.0956 0.0790 0.0539 0.0723 0.0663 0.0093 0.0113 0.0320 0.0096 0.0222 \\ [0.023] 0.0093 0.0031 0.0099 0.0027 0.0155 0.0160 0.0328 0.0099 0.0492 0.0008 0.0062 0.0017 0.0211 0.0016 0.0196 \\ [0.15] 0 0.0011 0.0083 0.0065 0.0053 0.0735 0.0768 0.0295 0.0442 0.0052 0.0061 0.0262 0.0266 0.0102 0.0159 \\ [0.15] 0 0.0047 0.0049 0.0022 0.0024 0.0350 0.0410 0.0141 0.0210 0.0023 0.0039 0.0077 0.0089 0.0049 0.0101 \\ [0.15] 0 0.0047 0.0010 0.0005 0.0007 0.0053 0.0164 0.0026 0.0083 0.0003 0.0018 0.0015 0.0017 0.0009 0.0081 \\ [0.15] 0 0.0267 0.0223 0.0268 0.0262 0.1853 0.1664 0.1239 0.1842 0.0075 0.0071 0.0309 0.0443 0.0149 0.0189 \\ [0.15] 0 0.0149 0.0151 0.0110 0.01137 0.1022 0.0804 0.0572 0.1150 0.0040 0.0048 0.0151 0.0375 0.0099 0.0200 \\ [0.15] 0 0.0022 0.0076 0.0020 0.0097 0.0190 0.0312 0.0108 0.0832 0.0005 0.0024 0.0019 0.0298 0.0015 0.0199 \\ [0.15] 0 0.0038 0.0041 0.0018 0.0021 0.0435 0.0484 0.0176 0.0379 0.0015 0.0024 0.0142 0.0179 0.0044 0.0115 \\ [0.15] 0 0.0038 0.0041 0.0018 0.0021 0.0435 0.0484 0.0176 0.0379 0.0015 0.0024 0.0142 0.0179 0.0044 0.0115 \\ [0.15] 0 0.0018 0.0025 0.0005 0.0006 0.0003 0.0004 0.0081 0.0226 0.0036 0.0113 0.0003 0.0010 0.0022 0.0027 0.0008 0.0073 \\ [0.15] 0 0.0018 0.0018 0.0019 0.0015 0.0054 0.1014 0.0819 0.0254 0.0681 0.0044 0.0038 0.0392 0.0414 0.0018 0.0025 0.0031 0.0208 0.0558 0.0088 0.0197 \\ [0.15] 0 0.0018 0.0019 0.0015 0.0057 0.0195 0.0449 0.0131 0.1083 0.0004 0.0018 0.0022 0.0027 0.0008 0.0073 0.0016 0.0226 0.0036 0.0113 0.0033 0.0014 0.0022 0.0027 0.0008 0.0015 0.00$		-	100	0.0051	0.0056	0.0042	0.0060	0.0241	0.0318	0.0108	0.0173	0.0035	0.0074	0.0079	0.0090	0.0052	0.0107
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			500	0.0010	0.0018	0.0007	0.0011	0.0050	0.0108	0.0023	0.0049	0.0006	0.0045	0.0013	0.0015	0.0009	0.0057
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		[0; 2]	50	0.0481	0.0308	0.0494	0.0346	0.2007	0.1357	0.1195	0.1374	0.0096	0.0123	0.0315	0.0348	0.0196	0.0236
$ \begin{bmatrix} -1;3 \\ 100 \\ 0.0047 & 0.0049 & 0.0022 & 0.0024 & 0.0350 & 0.0410 & 0.0141 & 0.0210 & 0.0023 & 0.0039 & 0.0077 & 0.0089 & 0.0049 & 0.0018 \\ 0.0047 & 0.0049 & 0.0022 & 0.0024 & 0.0350 & 0.0140 & 0.0141 & 0.0210 & 0.0023 & 0.0039 & 0.0077 & 0.0089 & 0.0049 & 0.0018 \\ 0.0047 & 0.0007 & 0.0010 & 0.0005 & 0.0010 & 0.0160 & 0.0083 & 0.0003 & 0.0018 & 0.0015 & 0.0017 & 0.0099 & 0.0081 \\ 0.0149 & 0.0151 & 0.0111 & 0.0137 & 0.1022 & 0.0804 & 0.0572 & 0.1150 & 0.0071 & 0.0309 & 0.0443 & 0.0149 & 0.0189 \\ 0.0022 & 0.0076 & 0.0020 & 0.0097 & 0.0199 & 0.0312 & 0.0188 & 0.0832 & 0.0005 & 0.0024 & 0.0019 & 0.0298 & 0.0015 & 0.0199 \\ 0.0083 & 0.0070 & 0.0020 & 0.0097 & 0.0199 & 0.0312 & 0.0188 & 0.0832 & 0.0005 & 0.0024 & 0.0019 & 0.0298 & 0.0015 & 0.0199 \\ 0.0083 & 0.0070 & 0.0083 & 0.0070 & 0.0050 & 0.0500 & 0.1014 & 0.0891 & 0.0624 & 0.0681 & 0.0044 & 0.0038 & 0.0392 & 0.0414 & 0.0096 & 0.0145 \\ 0.0038 & 0.0041 & 0.0018 & 0.0021 & 0.0435 & 0.0484 & 0.0176 & 0.0379 & 0.0015 & 0.0024 & 0.0149 & 0.01179 & 0.0044 & 0.0112 \\ 0.0038 & 0.0018 & 0.0005 & 0.0006 & 0.0003 & 0.0044 & 0.0081 & 0.0226 & 0.0379 & 0.0015 & 0.0024 & 0.0142 & 0.0179 & 0.0044 & 0.0112 \\ 0.0038 & 0.0178 & 0.0180 & 0.0172 & 0.0167 & 0.2584 & 0.1993 & 0.2301 & 0.3154 & 0.0067 & 0.0051 & 0.0482 & 0.0712 & 0.0165 & 0.0175 \\ 0.0018 & 0.0018 & 0.0057 & 0.0037 & 0.0037 & 0.0195 & 0.0449 & 0.0131 & 0.1083 & 0.0004 & 0.0018 & 0.0258 & 0.0080 & 0.0197 \\ 0.0028 & 0.0057 & 0.0057 & 0.0033 & 0.0029 & 0.01277 & 0.1196 & 0.0604 & 0.1114 & 0.0032 & 0.0029 & 0.5494 & 0.0581 & 0.0688 & 0.0100 \\ 0.0028 & 0.0057 & 0.0057 & 0.0037 & 0.0075 & 0.0616 & 0.0298 & 0.0424 & 0.0131 & 0.0002 & 0.0044 & 0.0037 & 0.0044 & 0.0018 \\ 0.0028 & 0.0057 & 0.0057 & 0.0037 & 0.0616 & 0.0298 & 0.0424 & 0.0131 & 0.0002 & 0.0044 & 0.0337 & 0.0666 & 0.0070 & 0.0162 \\ 0.0038 & 0.0057 & 0.0057 & 0.0002 & 0.0003 & 0.0166 & 0.0298 & 0.0424 & 0.0131 & 0.0002 & 0.0044 & 0.0337 & 0.0666 & 0.0070 & 0.0162 \\ 0.0038 & 0.0058 & 0.0057 & 0.00615 & 0.0067 & 0.0658 & 0.0260 & 0.0260 & 0.0260 & 0.0260 & 0.0260 & $																	
$ \begin{bmatrix} 100 & 0.0047 & 0.0049 & 0.0022 & 0.0024 & 0.0350 & 0.0410 & 0.0141 & 0.0210 & 0.0023 & 0.0039 & 0.0077 & 0.0089 & 0.0049 & 0.0101 \\ 500 & 0.0007 & 0.0010 & 0.0005 & 0.0007 & 0.0053 & 0.0164 & 0.0026 & 0.0083 & 0.0003 & 0.0018 & 0.0015 & 0.0017 & 0.0009 & 0.0081 \\ 100 & 0.0149 & 0.0151 & 0.0110 & 0.0137 & 0.1022 & 0.0804 & 0.0572 & 0.1150 & 0.0040 & 0.0048 & 0.0151 & 0.0375 & 0.0099 & 0.0200 \\ 500 & 0.0022 & 0.0076 & 0.0020 & 0.0097 & 0.0190 & 0.0312 & 0.0108 & 0.0832 & 0.0005 & 0.0024 & 0.0019 & 0.0298 & 0.0015 & 0.0199 \\ 0.06 & [-1;3] & 50 & 0.0083 & 0.0071 & 0.0050 & 0.0141 & 0.0891 & 0.0624 & 0.0681 & 0.0044 & 0.0038 & 0.0392 & 0.0414 & 0.0096 & 0.0145 \\ 100 & 0.0038 & 0.0041 & 0.0018 & 0.0021 & 0.0435 & 0.0484 & 0.0176 & 0.0379 & 0.0015 & 0.0024 & 0.0119 & 0.0044 & 0.0112 \\ 500 & 0.0005 & 0.0006 & 0.0003 & 0.0004 & 0.0081 & 0.0226 & 0.0036 & 0.0113 & 0.0003 & 0.0014 & 0.0022 & 0.0027 & 0.0008 & 0.0073 \\ 100 & 0.0100 & 0.0120 & 0.0079 & 0.0096 & 0.1262 & 0.1686 & 0.0802 & 0.1950 & 0.0025 & 0.0031 & 0.0208 & 0.0382 & 0.0013 \\ 100 & 0.0100 & 0.0120 & 0.0079 & 0.0096 & 0.1262 & 0.1168 & 0.0802 & 0.1950 & 0.0025 & 0.0031 & 0.0208 & 0.0382 & 0.0013 \\ 100 & 0.0028 & 0.0055 & 0.0005 & 0.0015 & 0.0057 & 0.0195 & 0.0449 & 0.0131 & 0.1083 & 0.0004 & 0.0018 & 0.0028 & 0.0015 & 0.0015 \\ 100 & 0.0028 & 0.0057 & 0.0033 & 0.0029 & 0.0177 & 0.1196 & 0.0604 & 0.1114 & 0.0032 & 0.0029 & 0.0581 & 0.0068 & 0.1009 \\ 100 & 0.0028 & 0.0055 & 0.0005 & 0.0005 & 0.0002 & 0.0030 & 0.0140 & 0.0131 & 0.0002 & 0.0004 & 0.0032 & 0.0037 & 0.0007 & 0.0660 \\ 100 & 0.0028 & 0.0055 & 0.0005 & 0.0002 & 0.0030 & 0.0140 & 0.0131 & 0.0002 & 0.0004 & 0.0032 & 0.0037 & 0.0007 & 0.0660 \\ 100 & 0.0028 & 0.0055 & 0.0005 & 0.0002 & 0.0037 & 0.0561 & 0.0232 & 0.1545 & 0.0002 & 0.0034 & 0.0334 & 0.0441 & 0.0016 \\ 100 & 0.0025 & 0.0025 & 0.0014 & 0.0017 & 0.0448 & 0.0026 & 0.0024 & 0.0027 & 0.0022 & 0.0114 & 0.0065 & 0.0564 \\ 100 & 0.0055 & 0.0005 & 0.0002 & 0.0024 & 0.2701 & 0.2191 & 0.1230 & 0.0004 & 0.0034 & 0.0034 & 0.0014 & 0.0016 \\ 100 & 0.0055 $			500														
$ \begin{bmatrix} [0;2] & 500 & 0.0007 & 0.0010 & 0.0005 & 0.0007 & 0.0053 & 0.0164 & 0.0026 & 0.0083 & 0.0003 & 0.0018 & 0.0015 & 0.0017 & 0.0009 & 0.0081 \\ 0.0267 & 0.0223 & 0.0268 & 0.0262 & 0.1853 & 0.1664 & 0.1239 & 0.1842 & 0.0075 & 0.0071 & 0.0309 & 0.0443 & 0.0149 & 0.0189 \\ 0.0049 & 0.0151 & 0.0110 & 0.0137 & 0.1022 & 0.0804 & 0.0572 & 0.1150 & 0.0044 & 0.0048 & 0.0151 & 0.0375 & 0.0099 \\ 0.0022 & 0.0076 & 0.0020 & 0.0097 & 0.0190 & 0.0312 & 0.0108 & 0.0832 & 0.0005 & 0.0024 & 0.0019 & 0.0298 & 0.0015 & 0.0199 \\ 0.0083 & 0.0070 & 0.0050 & 0.0050 & 0.00144 & 0.0881 & 0.0044 & 0.0038 & 0.0332 & 0.0414 & 0.0096 & 0.0145 \\ 0.0083 & 0.0041 & 0.0018 & 0.0021 & 0.0435 & 0.0484 & 0.0176 & 0.0379 & 0.0015 & 0.0024 & 0.0142 & 0.0179 & 0.0044 \\ 0.0038 & 0.0041 & 0.0018 & 0.0021 & 0.0435 & 0.0484 & 0.0176 & 0.0379 & 0.0015 & 0.0024 & 0.0142 & 0.0179 & 0.0044 \\ 0.0038 & 0.0041 & 0.0018 & 0.0021 & 0.0435 & 0.0484 & 0.0176 & 0.0387 & 0.0015 & 0.0024 & 0.0142 & 0.0179 & 0.0044 \\ 0.0038 & 0.0005 & 0.0006 & 0.0003 & 0.0044 & 0.0038 & 0.0013 & 0.0003 & 0.0010 & 0.0022 & 0.0027 & 0.0008 & 0.0073 \\ 0.0178 & 0.1080 & 0.0172 & 0.0167 & 0.2584 & 0.1993 & 0.2301 & 0.3154 & 0.0067 & 0.0051 & 0.0482 & 0.0712 & 0.0165 & 0.0175 \\ 0.0100 & 0.0120 & 0.0079 & 0.0096 & 0.1262 & 0.1168 & 0.0802 & 0.1950 & 0.0025 & 0.0031 & 0.0208 & 0.0585 & 0.0080 & 0.0197 \\ 0.0018 & 0.0057 & 0.0057 & 0.0033 & 0.0029 & 0.1277 & 0.1196 & 0.0604 & 0.1114 & 0.0032 & 0.0028 & 0.0382 & 0.0013 & 0.0188 \\ 0.0177 & 0.0150 & 0.00420 & 0.0015 & 0.0617 & 0.0596 & 0.0047 & 0.0013 & 0.0014 & 0.0021 & 0.0034 & 0.0014 & 0.0014 & 0.0014 & 0.0014 & 0.0014 & 0.0014 & 0.0022 & 0.0012 & 0.0034 & 0.0454 & 0.0012 & 0.0144 \\ 0.0018 & 0.0028 & 0.0028 & 0.0015 & 0.0017 & 0.0148 & 0.16064 & 0.1114 & 0.0032 & 0.0024 & 0.0837 & 0.1048 & 0.0172 & 0.0162 & 0.0164 & 0.0032 & 0.0037 & 0.0068 & 0.0104 & 0.0014 &$	0.5	[-1; 3]															
$ \begin{bmatrix} [0;2] \\ [0;2] \\ [0;3] \\ [0;4] \\ [0;5] \\ [0;6] \\ [0;7] \\ [$																	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $																	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		[0; 2]															
$ \begin{bmatrix} -1;3 \\ 0.0 \\ 0.0083 \\ 0.0070 \\ 0.0038 \\ 0.0041 \\ 0.0018 \\ 0.0021 \\ 0.0038 \\ 0.0041 \\ 0.0018 \\ 0.0021 \\ 0.0038 \\ 0.0041 \\ 0.0018 \\ 0.0021 \\ 0.0038 \\ 0.0041 \\ 0.0018 \\ 0.0021 \\ 0.0038 \\ 0.0041 \\ 0.0018 \\ 0.0021 \\ 0.0005 \\ 0.0005 \\ 0.0005 \\ 0.0006 \\ 0.0$																	
$ \begin{bmatrix} 100 \\ 5$																	
$ \begin{bmatrix} [0;2] & 500 & 0.0005 & 0.0006 & 0.0003 & 0.0004 & 0.0081 & 0.0226 & 0.0036 & 0.0113 & 0.0003 & 0.0010 & 0.0022 & 0.0027 & 0.0008 & 0.0073 \\ 0.0178 & 0.0180 & 0.0172 & 0.0167 & 0.2584 & 0.1993 & 0.2301 & 0.3154 & 0.0067 & 0.0051 & 0.0482 & 0.0712 & 0.0165 & 0.0175 \\ 500 & 0.0010 & 0.0120 & 0.0079 & 0.0096 & 0.1262 & 0.1168 & 0.0802 & 0.1950 & 0.0025 & 0.0031 & 0.0228 & 0.0585 & 0.0080 & 0.0197 \\ 500 & 0.0018 & 0.0059 & 0.0015 & 0.0057 & 0.0195 & 0.0449 & 0.0131 & 0.1083 & 0.0004 & 0.0018 & 0.0028 & 0.0382 & 0.0013 & 0.0188 \\ \hline 0.7 & [-1;3] & 50 & 0.0057 & 0.0057 & 0.0033 & 0.0029 & 0.1277 & 0.1196 & 0.0604 & 0.1114 & 0.0032 & 0.0029 & 0.0581 & 0.0068 & 0.0100 \\ \hline 0.7 & [0;2] & 50 & 0.0057 & 0.0033 & 0.0029 & 0.1277 & 0.1196 & 0.0604 & 0.1114 & 0.0032 & 0.0029 & 0.0581 & 0.0068 & 0.0100 \\ \hline 0.7 & [0;2] & 50 & 0.00177 & 0.0150 & 0.0420 & 0.0037 & 0.05798 & 0.4282 & 0.4240 & 0.4621 & 0.0043 & 0.0024 & 0.0837 & 0.1048 & 0.0114 \\ \hline 0.7 & 0.0085 & 0.0095 & 0.00072 & 0.0077 & 0.1948 & 0.1660 & 0.1218 & 0.2050 & 0.0019 & 0.0014 & 0.0331 & 0.0666 & 0.0070 & 0.0114 \\ \hline 0.7 & 0.0013 & 0.0034 & 0.0010 & 0.0029 & 0.0452 & 0.0561 & 0.0232 & 0.1545 & 0.0002 & 0.0012 & 0.0034 & 0.0454 & 0.0012 & 0.0134 \\ \hline 0.8 & [-1;3] & 50 & 0.0053 & 0.0055 & 0.0024 & 0.0024 & 0.2701 & 0.2191 & 0.1230 & 0.2064 & 0.0027 & 0.0022 & 0.1137 & 0.1104 & 0.0065 & 0.0054 \\ \hline 0.7 & [-1;3] & 50 & 0.0053 & 0.0055 & 0.0014 & 0.014 & 0.1100 & 0.1032 & 0.0551 & 0.0970 & 0.0009 & 0.0010 & 0.0344 & 0.0036 & 0.0056 \\ \hline 0.7 & [-1;3] & 50 & 0.0014 & 0.0004 & 0.0014 & 0.1014 & 0.1100 & 0.1032 & 0.0551 & 0.0970 & 0.0009 & 0.0010 & 0.0344 & 0.0036 & 0.0056 \\ \hline 0.7 & [-1;3] & 50 & 0.0014 & 0.0014 & 0.0104 & 0.1039 & 0.0551 & 0.0970 & 0.0009 & 0.0010 & 0.0344 & 0.0036 & 0.0056 \\ \hline 0.9 & [-1;3] & 50 & 0.0014 & 0.0019 & 0.0010 & 0.0138 & 0.0584 & 0.2268 & 0.2013 & 0.0003 & 0.0066 & 0.0556 & 0.0536 & 0.0009 & 0.0016 \\ \hline 0.9 & [-1;3] & 50 & 0.00044 & 0.0039 & 0.0002 & 0.0018 & 0.3323 & 0.2881 & 0.2226 & 0.3532 & 0.0015 & 0.0013 & 0.0176 & 0.0003 & 0.0001 \\ \hline 0.0 & 0$	0.6	[-1; 3]															
$ \begin{bmatrix} [0;2] \\ [0;2] \\ [0;3] \\ [0;4] \\ [0;5] \\ [0;6] \\ [0;7] \\ [0;7] \\ [0;8] \\ [$																	
$ \begin{bmatrix} 100 \\ 500 \end{bmatrix} 0.0100 \ 0.0120 \ 0.0079 \ 0.0096 \ 0.1262 \ 0.1168 \ 0.0802 \ 0.1950 \ 0.0025 \ 0.0031 \ 0.0208 \ 0.0558 \ 0.0080 \ 0.0197 \\ 500 \end{bmatrix} 0.0018 \ 0.0059 \ 0.0015 \ 0.0057 \ 0.0195 \ 0.0449 \ 0.0131 \ 0.1083 \ 0.0004 \ 0.0018 \ 0.0028 \ 0.0382 \ 0.0013 \ 0.0188 \\ 0.0059 \ 0.0015 \ 0.0057 \ 0.0035 \ 0.0049 \ 0.0181 \ 0.06040 \ 0.1114 \ 0.0032 \ 0.0029 \ 0.0549 \ 0.0581 \ 0.0068 \ 0.0100 \\ 0.0028 \ 0.0028 \ 0.0028 \ 0.0015 \ 0.0015 \ 0.0015 \ 0.0015 \ 0.0017 \ 0.0596 \ 0.0260 \ 0.0470 \ 0.0013 \ 0.0014 \ 0.0217 \ 0.0249 \ 0.0041 \ 0.0018 \\ 0.0005 \ 0.0005 \ 0.0005 \ 0.0002 \ 0.0003 \ 0.0106 \ 0.0298 \ 0.0042 \ 0.0131 \ 0.0002 \ 0.0004 \ 0.0032 \ 0.0037 \ 0.0007 \ 0.0606 \\ 0.0077 \ 0.0150 \ 0.0420 \ 0.0370 \ 0.5798 \ 0.4282 \ 0.4240 \ 0.4621 \ 0.0043 \ 0.0024 \ 0.0333 \ 0.0666 \ 0.0070 \ 0.0114 \\ 0.0085 \ 0.0095 \ 0.0072 \ 0.0077 \ 0.1948 \ 0.1606 \ 0.1218 \ 0.2050 \ 0.0019 \ 0.0016 \ 0.0333 \ 0.0666 \ 0.0070 \ 0.0114 \\ 0.0013 \ 0.0034 \ 0.0010 \ 0.0029 \ 0.0452 \ 0.0561 \ 0.0232 \ 0.1545 \ 0.0002 \ 0.0012 \ 0.0034 \ 0.0454 \ 0.0012 \ 0.0134 \\ 0.0025 \ 0.0025 \ 0.0014 \ 0.0014 \ 0.0104 \ 0.01032 \ 0.0561 \ 0.0232 \ 0.1545 \ 0.0002 \ 0.0012 \ 0.0034 \ 0.0454 \ 0.0012 \ 0.0134 \\ 0.0025 \ 0.0025 \ 0.0014 \ 0.0014 \ 0.0104 \ 0.1100 \ 0.1032 \ 0.0521 \ 0.0970 \ 0.0009 \ 0.0010 \ 0.0334 \ 0.0434 \ 0.0036 \ 0.0056 \\ 0.0035 \ 0.0057 \ 0.0061 \ 0.0138 \ 0.5735 \ 0.6747 \ 0.4999 \ 0.7599 \ 0.0590 \ 0.0036 \ 0.0038 \ 0.131 \ 0.1648 \ 0.0125 \ 0.0117 \\ 0.0077 \ 0.0071 \ 0.0000000000000000000000000000000000$		[0.0]															
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		[0; 2]															
$ \begin{bmatrix} -1; 3 \\ 0.0 \end{bmatrix} \begin{bmatrix} 50 \\ 0.0057 \\ 0.0057 \\ 0.0058 \\ 0.0028 \\ 0.0028 \\ 0.0015 \\ 0.0007 \\ 0.0077 \\ 0.1948 \\ 0.1606 \\ 0.1218 \\ 0.2050 \\ 0.0018 \\ 0.0018 \\ 0.0019 \\ 0.0019 \\ 0.0019 \\ 0.0019 \\ 0.0010 \\ 0.0033 \\ 0.0056 \\ 0.0034 \\ 0.0010 \\ 0.0025 \\ 0.0025 \\ 0.0025 \\ 0.0014 \\ 0.0010 \\ 0.0025 \\ 0.0025 \\ 0.0025 \\ 0.0014 \\ 0.0010 \\ 0.0025 \\ 0.0025 \\ 0.0014 \\ 0.0010 \\ 0.0025 \\ 0.0025 \\ 0.0014 \\ 0.0010 \\ 0.0025 \\ 0.0025 \\ 0.0014 \\ 0.0010 \\ 0.0025 \\ 0.0025 \\ 0.0025 \\ 0.0014 \\ 0.0010 \\ 0.0010 \\ 0.0025 \\ 0.00025 \\ 0$																	
$ \begin{bmatrix} 1 & 0 & 0.0028 & 0.0028 & 0.0015 & 0.0015 & 0.0617 & 0.0596 & 0.0260 & 0.0470 & 0.0013 & 0.0014 & 0.0217 & 0.0249 & 0.0041 & 0.0081 \\ 500 & 0.0005 & 0.0005 & 0.0002 & 0.0003 & 0.0166 & 0.0298 & 0.0042 & 0.0131 & 0.0002 & 0.0004 & 0.0032 & 0.0037 & 0.0007 & 0.0066 \\ 100 & 0.0085 & 0.0095 & 0.0072 & 0.0077 & 0.1948 & 0.1606 & 0.1218 & 0.2050 & 0.0019 & 0.0016 & 0.0333 & 0.0666 & 0.0070 & 0.0114 \\ 500 & 0.0085 & 0.0095 & 0.0072 & 0.0077 & 0.1948 & 0.1606 & 0.1218 & 0.2050 & 0.0019 & 0.0016 & 0.0333 & 0.0666 & 0.0070 & 0.0114 \\ 500 & 0.0013 & 0.0034 & 0.0010 & 0.0029 & 0.0452 & 0.0561 & 0.0232 & 0.1545 & 0.0002 & 0.0012 & 0.0034 & 0.0454 & 0.0012 & 0.0134 \\ 0.8 & [-1;3] & 50 & 0.0053 & 0.0050 & 0.0026 & 0.0024 & 0.2701 & 0.2191 & 0.1230 & 0.2064 & 0.0027 & 0.0022 & 0.1137 & 0.1104 & 0.0065 & 0.0054 \\ 100 & 0.0025 & 0.0025 & 0.0014 & 0.0014 & 0.1100 & 0.1032 & 0.0521 & 0.0970 & 0.0009 & 0.0010 & 0.0334 & 0.0434 & 0.0036 & 0.0550 \\ 500 & 0.0004 & 0.0004 & 0.0002 & 0.0002 & 0.0131 & 0.0391 & 0.0077 & 0.0254 & 0.0002 & 0.0047 & 0.0060 & 0.0044 & 0.0038 \\ [0;2] & 500 & 0.0136 & 0.0120 & 0.0160 & 0.0138 & 0.5735 & 0.6747 & 0.4999 & 0.7599 & 0.0036 & 0.0038 & 0.1431 & 0.1648 & 0.0125 & 0.0117 \\ 500 & 0.0057 & 0.0061 & 0.0212 & 0.0047 & 0.3519 & 0.3154 & 0.2594 & 0.4224 & 0.0012 & 0.0016 & 0.0522 & 0.1013 & 0.0077 & 0.0071 \\ 500 & 0.0011 & 0.0019 & 0.0010 & 0.0017 & 0.0493 & 0.0684 & 0.0268 & 0.2013 & 0.0003 & 0.0066 & 0.0536 & 0.0009 & 0.0068 \\ \hline{0.9} & [-1;3] & 50 & 0.0044 & 0.0039 & 0.0020 & 0.0018 & 0.3323 & 0.2881 & 0.2226 & 0.3532 & 0.0015 & 0.0013 & 0.1748 & 0.1890 & 0.0045 & 0.0011 \\ \hline{0.00} & 0.0020 & 0.0020 & 0.00018 & 0.0372 & 0.0572 & 0.0155 & 0.2005 & 0.0007 & 0.0883 & 0.1002 & 0.0013 & 0.0013 \\ \hline{0.00} & 0.0003 & 0.0003 & 0.0002 & 0.0002 & 0.0077 & 0.0438 & 0.0001 & 0.0002 & 0.0130 & 0.0176 & 0.0003 & 0.0001 \\ \hline{0.00} & 0.0003 & 0.0003 & 0.0002 & 0.0002 & 0.0077 & 0.0438 & 0.0001 & 0.0002 & 0.0130 & 0.0176 & 0.0003 & 0.0001 \\ \hline{0.00} & 0.0003 & 0.0003 & 0.0002 & 0.0002 & 0.0077 & 0.0438 & 0.0001 & 0.0002$	0.7	[1.9]															
$ \begin{bmatrix} 6,2 \\ [0;2] \end{bmatrix} \begin{bmatrix} 50 \\ 0.0005 & 0.0005 & 0.0002 & 0.0003 & 0.0166 & 0.0298 & 0.042 & 0.0131 & 0.0002 & 0.0004 & 0.0032 & 0.0037 & 0.0007 & 0.0060 \\ 0.0177 & 0.0150 & 0.0420 & 0.0370 & 0.5798 & 0.4282 & 0.4240 & 0.4621 & 0.0043 & 0.0024 & 0.0837 & 0.1048 & 0.0112 & 0.0162 \\ 0.0085 & 0.0095 & 0.0097 & 0.0077 & 0.1948 & 0.1606 & 0.1218 & 0.2050 & 0.0019 & 0.0016 & 0.0333 & 0.0666 & 0.0070 & 0.0114 \\ 0.00 \\ 0.0013 & 0.0034 & 0.0010 & 0.0029 & 0.0452 & 0.0561 & 0.0232 & 0.1545 & 0.0002 & 0.0012 & 0.0034 & 0.0454 & 0.0012 & 0.0134 \\ 0.0013 & 0.0053 & 0.0050 & 0.0026 & 0.0024 & 0.2701 & 0.2191 & 0.1230 & 0.2064 & 0.0027 & 0.0022 & 0.1137 & 0.1104 & 0.0065 & 0.0554 \\ 0.0025 & 0.0025 & 0.0012 & 0.0014 & 0.1100 & 0.1032 & 0.0521 & 0.0970 & 0.0009 & 0.0010 & 0.0334 & 0.0434 & 0.0036 & 0.0556 \\ 0.0004 & 0.0004 & 0.0002 & 0.0002 & 0.0131 & 0.0391 & 0.0077 & 0.0254 & 0.0002 & 0.0047 & 0.0660 & 0.0004 & 0.0038 \\ 0.0013 & 0.0136 & 0.0120 & 0.0160 & 0.0138 & 0.5735 & 0.6747 & 0.4999 & 0.7599 & 0.0036 & 0.0038 & 0.1431 & 0.1648 & 0.0125 & 0.0117 \\ 0.0057 & 0.0061 & 0.0212 & 0.0047 & 0.3519 & 0.3154 & 0.2594 & 0.4224 & 0.0012 & 0.0052 & 0.0133 & 0.0076 & 0.0071 \\ 0.0011 & 0.0019 & 0.0010 & 0.0017 & 0.0493 & 0.0684 & 0.268 & 0.2013 & 0.0003 & 0.0066 & 0.0536 & 0.0009 & 0.0068 \\ 0.0038 & 0.0038 & 0.0002 & 0.0009 & 0.0010 & 0.2066 & 0.2842 & 0.1155 & 0.2205 & 0.0008 & 0.0007 & 0.0883 & 0.1002 & 0.0017 & 0.0013 \\ 0.0020 & 0.0003 & 0.0002 & 0.0002 & 0.0372 & 0.0575 & 0.0170 & 0.0438 & 0.0001 & 0.0002 & 0.0130 & 0.0176 & 0.0003 & 0.0003 \\ 0.0003 & 0.0003 & 0.0003 & 0.0002 & 0.0002 & 0.0372 & 0.0575 & 0.0170 & 0.0438 & 0.0001 & 0.0002 & 0.0130 & 0.0176 & 0.0003 & 0.0002 \\ 0.0003 & 0.0003 & 0.0002 & 0.0002 & 0.0077 & 0.0572 & 0.01570 & 0.0438 & 0.0001 & 0.0002 & 0.0130 & 0.0176 & 0.0003 & 0.0002 \\ 0.0003 & 0.0003 & 0.0002 & 0.0002 & 0.0072 & 0.0372 & 0.0575 & 0.0170 & 0.0438 & 0.0001 & 0.0002 & 0.0130 & 0.0176 & 0.0003 & 0.0002 \\ 0.0003 & 0.0003 & 0.0003 & 0.0002 & 0.0072 & 0.0372 & 0.0575 & 0.0170 & 0.0438 & 0.0001 & 0.0002 & 0.0130 $	0.7	[-1, 0]															
$ \begin{bmatrix} [0;2] & 50 & 0.0177 \ 0.0150 \ 0.0420 \ 0.0370 \ 0.5798 \ 0.4282 \ 0.4240 \ 0.4621 \ 0.0043 \ 0.0024 \ 0.0837 \ 0.1048 \ 0.0172 \ 0.0162 \\ [0;0] & 0.0085 \ 0.0095 \ 0.0077 \ 0.1048 \ 0.1606 \ 0.1218 \ 0.2050 \ 0.0019 \ 0.0019 \ 0.0016 \ 0.0333 \ 0.0666 \ 0.0070 \ 0.0114 \\ [0;0] & 0.0013 \ 0.0033 \ 0.0050 \ 0.0029 \ 0.0452 \ 0.0561 \ 0.0232 \ 0.1545 \ 0.0002 \ 0.0012 \ 0.0034 \ 0.0454 \ 0.0012 \ 0.0134 \\ [0;0] & 50 & 0.0053 \ 0.0050 \ 0.0026 \ 0.0024 \ 0.2701 \ 0.2191 \ 0.1230 \ 0.2064 \ 0.0027 \ 0.0022 \ 0.1137 \ 0.1104 \ 0.0065 \ 0.0565 \\ [0;0] & 50 & 0.0025 \ 0.0025 \ 0.0014 \ 0.0014 \ 0.1100 \ 0.1032 \ 0.0521 \ 0.0970 \ 0.0009 \ 0.0010 \ 0.0334 \ 0.0434 \ 0.0036 \ 0.0055 \\ [0;2] & 50 & 0.0136 \ 0.0120 \ 0.0160 \ 0.0138 \ 0.5735 \ 0.6747 \ 0.4999 \ 0.7599 \ 0.0036 \ 0.0038 \ 0.1431 \ 0.1648 \ 0.0125 \ 0.0117 \\ [0;0] & 50 & 0.0011 \ 0.0019 \ 0.0010 \ 0.0017 \ 0.0493 \ 0.0684 \ 0.0268 \ 0.2013 \ 0.0003 \ 0.0006 \ 0.0552 \ 0.0536 \ 0.0009 \ 0.0008 \\ [0;0] & 50 & 0.0044 \ 0.0039 \ 0.0020 \ 0.0018 \ 0.3323 \ 0.2881 \ 0.2226 \ 0.3532 \ 0.0015 \ 0.0013 \ 0.1748 \ 0.1890 \ 0.0045 \ 0.0013 \\ [0;0] & 50 & 0.0020 \ 0.0009 \ 0.00010 \ 0.0016 \ 0.2881 \ 0.0015 \ 0.00155 \ 0.0008 \ 0.0007 \ 0.0883 \ 0.1007 \ 0.0013 \\ [0;0] & 50 & 0.0003 \ 0.0003 \ 0.0000 \ 0.00010 \ 0.0010 \ 0.0015 \ 0.0013 \ 0.0015 \ 0.0013 \ 0.0015 \ 0.0013 \ 0.0015 \ 0.0013 \\ [0;0] & 50 & 0.0003 \ 0.0003 \ 0.0001 \ 0.0010 \ 0.0010 \ 0.0016 \ 0.2842 \ 0.0155 \ 0.0003 \ 0.0001 \ 0.0008 \ 0.0007 \ 0.0883 \ 0.1002 \ 0.0017 \ 0.0013 \\ [0;0] & 50 & 0.0003 \ 0.0003 \ 0.0002 \ 0.00010 \ 0.0016 \ 0.2881 \ 0.22250 \ 0.0053 \ 0.0007 \ 0.0883 \ 0.1007 \ 0.0013 \ 0.0015 \ 0.0013 \\ [0;0] & 50 & 0.0003 \ 0.0003 \ 0.0002 \ 0.00010 \ 0.0002 \ 0.0002 \ 0.0003 \ 0.0003 \ 0.0003 \ 0.0001 \ 0.0003 \ 0.00$																	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		[0.2]															
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		[0, 2]															
$ \begin{bmatrix} -1; 3 \\ 0.08 \\ 0.08 \\ 0.0053 \\ 0.0053 \\ 0.0053 \\ 0.0025 \\ 0.0025 \\ 0.0025 \\ 0.0025 \\ 0.0025 \\ 0.0025 \\ 0.0025 \\ 0.0024 \\ 0.0002 \\ 0.0004 \\ 0.0002 \\ 0.0002 \\ 0.0002 \\ 0.0001 \\ 0.0002 \\ 0.0002 \\ 0.0002 \\ 0.0002 \\ 0.0002 \\ 0.0002 \\ 0.0003 \\ 0.0003 \\ 0.0002 \\ 0.0002 \\ 0.0003 \\ 0.0003 \\ 0.0003 \\ 0.0003 \\ 0.0003 \\ 0.0004 \\ 0.0002 \\ 0.0002 \\ 0.0002 \\ 0.0003 \\ 0.0003 \\ 0.0003 \\ 0.0004 \\ 0.0002 \\ 0.0002 \\ 0.0002 \\ 0.0002 \\ 0.0002 \\ 0.0003 \\ 0.0004 \\ 0.0003 \\ 0.0004 \\ 0.0003 \\ 0.0004 \\ 0.0005 \\ 0.0011 \\ 0.0010 \\ 0.0017 \\ 0.0047 \\ 0.0017 \\ 0.0047 \\ 0.0017 \\ 0.0047 \\ 0.0$																	
$ \begin{bmatrix} 100 & 0.0025 & 0.0025 & 0.0014 & 0.0014 & 0.1100 & 0.1032 & 0.0521 & 0.0970 & 0.0009 & 0.0010 & 0.0334 & 0.0434 & 0.0036 & 0.0050 \\ 500 & 0.0004 & 0.0004 & 0.0002 & 0.0002 & 0.0311 & 0.0391 & 0.0077 & 0.0254 & 0.0002 & 0.0002 & 0.0047 & 0.0060 & 0.0004 & 0.0038 \\ [0;2] & 50 & 0.0136 & 0.0120 & 0.0160 & 0.0138 & 0.5735 & 0.6747 & 0.4999 & 0.7599 & 0.0036 & 0.0038 & 0.1431 & 0.1648 & 0.0125 & 0.0117 \\ 100 & 0.0057 & 0.0061 & 0.0212 & 0.0047 & 0.3519 & 0.3154 & 0.2594 & 0.4224 & 0.0012 & 0.0010 & 0.0522 & 0.1013 & 0.0070 & 0.0071 \\ 500 & 0.0011 & 0.0019 & 0.0010 & 0.0017 & 0.0493 & 0.0684 & 0.0268 & 0.2013 & 0.0003 & 0.0066 & 0.0536 & 0.0009 & 0.0068 \\ \hline 0.9 & [-1;3] & 50 & 0.0044 & 0.0039 & 0.0020 & 0.0018 & 0.3323 & 0.2881 & 0.2226 & 0.3532 & 0.0015 & 0.0013 & 0.1748 & 0.1890 & 0.0045 & 0.0011 \\ 100 & 0.0020 & 0.0020 & 0.0009 & 0.0010 & 0.2066 & 0.2842 & 0.0015 & 0.0008 & 0.0007 & 0.0883 & 0.1002 & 0.0017 & 0.013 \\ 500 & 0.0003 & 0.0003 & 0.0002 & 0.0002 & 0.0072 & 0.0557 & 0.0170 & 0.0438 & 0.0001 & 0.0002 & 0.0130 & 0.0176 & 0.0003 & 0.0013 \\ \hline \end{tabular}$	0.8	[-1:3]	50														
$ \begin{bmatrix} 6,2 \\ 6,2 \\ 7,2 \\ 8,0 \\ 8,0 \end{bmatrix} = \begin{bmatrix} 6,0 \\ 7,2 \\ 8,0 \\ 8,0 \end{bmatrix} = \begin{bmatrix} 6,0 \\ 7,2 \\ 8,0 \\ 8,0 \end{bmatrix} = \begin{bmatrix} 6,0 \\ 7,2 \\ 8,0 \\ 8,0 \end{bmatrix} = \begin{bmatrix} 6,0 \\ 7,2 \\ 8,0 \\ 8,0 \end{bmatrix} = \begin{bmatrix} 6,0 \\ 7,2 \\ 8,0 \end{bmatrix} = \begin{bmatrix} 6,0$		[-, -]															
100 0.0057 0.0061 0.0212 0.0047 0.3519 0.3154 0.2594 0.4224 0.0012 0.0010 0.0522 0.1013 0.0070 0.0071 500 0.0011 0.0019 0.0010 0.0017 0.0493 0.0684 0.0268 0.2013 0.0003 0.0006 0.0056 0.0536 0.0009 0.0068			500														
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		[0; 2]	50														
$ \begin{bmatrix} -1;3 \end{bmatrix} & 50 & 0.0044 & 0.0039 & 0.0020 & 0.0018 & 0.3323 & 0.2881 & 0.2226 & 0.3532 & 0.0015 & 0.0013 & 0.1748 & 0.1890 & 0.0045 & 0.0011 \\ 100 & 0.0020 & 0.0020 & 0.0009 & 0.0010 & 0.2066 & 0.2842 & 0.1155 & 0.2205 & 0.0008 & 0.0007 & 0.0883 & 0.1002 & 0.0017 & 0.0013 \\ 500 & 0.0003 & 0.0003 & 0.0002 & 0.0002 & 0.0372 & 0.0557 & 0.0170 & 0.0438 & 0.0001 & 0.0002 & 0.0130 & 0.0176 & 0.0003 & 0.0013 \\ \end{bmatrix} $			100	0.0057	0.0061	0.0212	0.0047	0.3519	0.3154	0.2594	0.4224	0.0012	0.0010	0.0522	0.1013	0.0070	0.0071
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			500														
$500 \qquad 0.0003 \ 0.0003 \ 0.0002 \ 0.0002 \ 0.0002 \ 0.0372 \ 0.0557 \ 0.0170 \ 0.0438 \ 0.0001 \ 0.0002 \ 0.0130 \ 0.0176 \ 0.0003 \ 0.0013$	0.9	[-1; 3]	50	0.0044	0.0039	0.0020	0.0018	0.3323	0.2881	0.2226	0.3532	0.0015	0.0013	0.1748	0.1890	0.0045	0.0011
			100	0.0020	0.0020	0.0009	0.0010	0.2066	0.2842	0.1155	0.2205	0.0008	0.0007	0.0883	0.1002	0.0017	0.0013
$[0;2] \hspace{0.5cm} 50 \hspace{0.5cm} 0.0123 \hspace{0.05cm} 0.0145 \hspace{0.05cm} 0.0514 \hspace{0.05cm} 0.1168 \hspace{0.05cm} 0.9310 \hspace{0.05cm} 0.8225 \hspace{0.05cm} 0.8201 \hspace{0.05cm} 1.2076 \hspace{0.05cm} 0.0027 \hspace{0.05cm} 0.0023 \hspace{0.05cm} 0.2140 \hspace{0.05cm} 0.2545 \hspace{0.05cm} 0.0193 \hspace{0.05cm} 0.0180$			500	0.0003	0.0003	0.0002	0.0002	0.0372	0.0557	0.0170	0.0438	0.0001	0.0002	0.0130	0.0176	0.0003	0.0013
		[0; 2]															
$100 \qquad 0.0051 \ 0.0244 \ 0.0054 \ 0.0407 \ 0.5540 \ 0.4664 \ 0.4330 \ 0.8959 \ 0.0015 \ 0.0010 \ 0.1420 \ 0.2005 \ 0.0073 \ 0.0094$																	
500 0.0010 0.0012 0.0007 0.0009 0.0927 0.1066 0.0567 0.2285 0.0002 0.0003 0.0149 0.0650 0.0005 0.0019			500	0.0010	0.0012	0.0007	0.0009	0.0927	0.1066	0.0567	0.2285	0.0002	0.0003	0.0149	0.0650	0.0005	0.0019

Tabela D.78: Estimativas do erro quadrático médio dos parâmetros da mistura de duas regressões lineares no caso ${\rm CVI}$

Tabela D.79: Estimativas do valor absoluto do enviesamento médio dos parâmetros da mistura de três regressões lineares no caso I

$\frac{\pi_3}{\text{CEM}}$ 0.0015 0.0016 0.0012					0.0006 0.0005 0.00042 0.0009 0.0006 0.0030 0.0020	0.0060 0.0019 0.0024 0.0012 0.0056 0.0056 0.0056	
π3 EM 0.0003 0.0002 0.0003 0.0001					0.0007 0.0003 0.0003 0.0008 0.00026 0.00017	0.0038 0.0018 0.0006 0.0034 0.0038 0.0032 0.0016 0.0001 0.0021 0.0043 0.0021 0.0051 0.0021 0.0051	0.0024 0.0024 0.0035 0.0006 0.0047 0.0027 0.0033
$\begin{array}{c} \pi_2 \\ \text{CEM} \\ 0.0041 \\ 0.0007 \\ 0.0012 \\ 0.0012 \\ 0.0012 \\ \end{array}$	I				0.0007 0.0007 0.0014 0.0018 0.0006 0.0038		0.0011 0.0008 0.0026 0.0021 0.0042 0.0001 0.0049
$\begin{array}{c} \pi_2 \\ EM \\ 0.0072 \\ 0.0013 \\ 0.00018 \\ 0.0007 \\ 0.0007 \\ 0.0003 \\ \end{array}$					0.0024 0.0006 0.0003 0.0010 0.0002 0.0012 0.0016	0.0015 0.0014 0.0008 0.0009 0.0021 0.0021 0.0000	0.0006 0.0002 0.0038 0.0016 0.0057 0.0034 0.0034
r_1 CEM 0.0027 0.0023 0.0008					0.0013 0.0003 0.0003 0.0005 0.0005 0.0001 0.0008	0.0013 0.0014 0.0004 0.0034 0.0038 0.0038 0.0038	
π_1 EM 0.0019 0.0015 0.00018				0.0021 0.0021 0.0003 0.0006 0.0007 0.00043 0.0018	0.0017 0.0001 0.00042 0.00028 0.00028 0.00053 0.00023	0.0238 0.0003 0.0172 0.0020 0.0235 0.0041 0.3176 0.0009 0.0186 0.0021 0.0111 0.0012 0.0171 0.0030	0.0018 0.00026 0.0003 0.0009 0.00022 0.00066 0.00031
$\frac{\sigma_3}{\text{CEM}}$ CEM 3 0.0073 7 0.0050 5 0.0096 6 0.3054			0.0001 0.0069 0.0006 0.0056 0.0068 0.0098 0.3013 0.3072 0.0017 0.0112 0.0008 0.0088 0.0080 0.0137	0.0082 0.0174 0.0027 0.0131 0.0067 0.0185 0.3027 0.3128 0.0109 0.0259 0.0030 0.0165 0.0090 0.0233	0.0077 0.0125 0.0001 0.0079 0.0091 0.0157 0.3019 0.3090 0.0041 0.0181 0.0049 0.0174 0.3011 0.3114	5 0.0238 5 0.0172 1 0.0235 2 0.3176 5 0.0186 0.0111 8 0.0171 8 0.0171	0.0125 0.0264 0.0009 0.0137 0.0112 0.0260 0.3024 0.3165 0.0049 0.0226 0.0010 0.0142 0.0063 0.0212 0.3030 0.3160
$\frac{\sigma_3}{\text{EM}}$ $\frac{EM}{1000046}$ $\frac{1}{1000075}$ $\frac{1}{1000075}$							
σ2 σ2 EM CEM 0.0110 0.0202 0.0031 0.0104 0.0089 0.0177 0.3031 0.3101 0.0096 0.01401	0.0072 0.0072 0.3065 0.0081 0.0081 0.0093	0.0196 0.0031 0.0055 0.0180 0.0051 0.0055 0.0180 0.0051 0.0071 0.0180 0.0050 0.0052 0.0145 0.0050 0.0052 0.0156 0.0034 0.0052 0.0156 0.0034 0.0047 0.0156 0.0034 0.0047	0.0204 0.0204 0.0228 0.3092 0.0126 0.0057 0.0057	0.0042 0.0072 0.0022 0.0050 0.0105 0.0118 0.3010 0.3040 0.0058 0.0066 0.0087 0.0091 0.3006 0.3025	0.0097 0.0141 0.0211 0.0057 0.0028 0.0081 0.0065 0.0145 0.0198 0.3059 0.3032 0.3088 0.0080 0.0122 0.0135 0.0043 0.0032 0.0063 0.0108 0.0083 0.0089 0.3026 0.3029 0.3089	0.0102 0.0034 0.0075 0.3013 0.0143 0.0067 0.0067	0.0064 0.0088 0.0099 0.0041 0.0017 0.0041 0.0062 0.0075 0.0092 0.3026 0.2996 0.3023 0.0072 0.0137 0.0151 0.0028 0.0047 0.0076 0.0057 0.0194 0.0166 0.3033 0.3035 0.3065
	0.0207 0.0030 0.0089 0.0013 0.0205 0.00113 0.0215 0.0043 0.0081 0.0063 0.0117 0.0063	0.0196 0.0030 0.0198 0.0031 0.0180 0.0051 0.3059 0.3016 0.0145 0.0050 0.0056 0.0034 0.0154 0.0034	0.0125 0.0147 0.0055 0.0024 0.0146 0.0165 0.3080 0.3033 0.0122 0.0104 0.0065 0.0015 0.0117 0.0082	0.0162 0.0042 0.0053 0.0022 0.0108 0.0105 0.3037 0.3010 0.0141 0.0058 0.0050 0.0008 0.00123 0.0087 0.3046 0.3006	0.0097 0.0141 0.0057 0.0028 0.0065 0.0145 0.3059 0.3032 0.0080 0.0122 0.0043 0.0033 0.3040 0.3025	0.0101 0.0097 0.0033 0.0014 0.0128 0.0078 0.3028 0.2992 0.0081 0.0106 0.0045 0.0178 0.3048 0.3013	0.0064 0.0088 0.0041 0.0017 0.0062 0.0075 0.3026 0.2996 0.0072 0.0137 0.0028 0.0047 0.0057 0.0154
		0.0196 0.0196 0.0180 0.3059 0.0145 0.0056 0.0056		0.0143 0.0162 0.0042 0.0099 0.0053 0.0022 0.0090 0.0108 0.0105 0.3000 0.3037 0.3010 0.0130 0.0141 0.0058 0.0025 0.0050 0.0008 0.0111 0.0123 0.0087 0.3046 0.3046 0.3006		\$ 0.0101 \$ 0.0033 \$ 0.0128 \$ 0.3028 \$ 0.0081 \$ 0.0038 \$ 0.0045	0.0053 0.0064 0.0088 0.0024 0.0041 0.0017 0.0055 0.0062 0.0075 0.3006 0.3026 0.2996 0.0070 0.0072 0.0137 0.0011 0.0028 0.0047 0.0047 0.0057 0.0154 0.3016 0.3033 0.3035
$\begin{array}{c} \sigma_1 \\ \text{EM} \\ 0.00152 \\ 0.0011 \\ 0.00170 \\ 0.0170 \\ 0.0151 \\ \end{array}$	0.0025 0.0025 0.0038 0.0038 0.0025 0.0025	0.0001 0.0000 0.0002 0.0018 0.0178 0.0196 0.0031 0.0055 0.0001 0.0000 0.0002 0.0018 0.0178 0.0196 0.0031 0.0055 0.0001 0.0000 0.0002 0.0010 0.0015 0.0015 0.0058 0.0011 0.0037 0.0000 0.0034 0.0024 0.0016 0.0135 0.0186 0.0051 0.0071 0.0071 0.0001 0.0015 0.0026 0.0016 0.0135 0.0186 0.0051 0.0071 0.0071 0.00015 0.0005 0.0019 0.0144 0.0145 0.0050 0.0052 0	0.0020 0.0095 0.0003 0.0009 0.0025 0.0089 0.0025 0.3028 0.0014 0.0084 0.0031 0.0070	$\begin{array}{c} 0.0008 \ 0.0010 \ 0.0036 \ 0.0023 \ 0.0019 \ 0.0052 \ 0.0052 \ 0.0052 \ 0.0017 \ 0.0019 \ 0.0053 \ 0.0052 \ 0.0015 \ 0.0017 \ 0.0016 \ 0.0019 \ 0.0058 \ 0.0105 \ 0.0015 \ 0.0019 \ 0.0019 \ 0.00108 \ 0.0105 \ 0.0118 \ 0.0010 \ 0.0001 \ 0.00000 \ 0.0019 \ 0.0010 \ 0.0001 \ 0.0001 \ 0.0001 \ 0.0001 \ 0.0001 \ 0.0002 \ 0.0010 \ 0.0010 \ 0.0001 \ 0.0$	0.0078 0.0040 0.0018 0.0015 0.0066 0.0009 0.0021 0.0008 0.0006 0.0018 0.0043 0.0051 0.0060 0.0049 0.0032 0.0031 0.0018 0.0024 0.0028 0.3022 0.0030 0.0040 0.0025 0.0025 0.0073 0.0013 0.0019 0.0007 0.0005 0.0012 0.0015 0.0019 0.0065 0.0038 0.0091 0.0015 0.0016 0.0005 0.0000 0.3010	0.0041 0.0020 0.0009 0.0093 0.0031 0.0027 0.0024 0.0013 0.0069 0.0024 0.0024 0.0128 0.0060 0.0063 0.0054 0.0056 0.0061 0.0020 0.0016 0.0066 0.0042 0.0000 0.0010 0.0042 0.0000 0.0011 0.0059 0.0004 0.0012 0.0017	0.0046 0.0030 0.0044 0.0053 0.0053 0.0026 0.0022 0.0053 0.0005 0.0055 0.0023 0.0005 0.0005 0.0054 0.0056 0.0005 0.0013 0.0003 0.0002 0.0010 0.0014 0.0018 0.0094 0.0047 0.0018 0.0024 0.0012 0.0011
β_3 CEM 0.00000 7.0.0006 2.0.0017 8.0.0014		2 0.0018 2 0.0018 3 0.0020 7 0.0019 9 0.0029 5 0.0029		5 0.0023 7 0.0016 5 0.0006 9 0.0003 1 0.0024 7 0.0007 5 0.0059 8 0.0051	3 0.0015 3 0.0006 3 0.0004 1 0.0028 5 0.0025 7 0.0005 5 0.0038	0.0009 7 0.0024 1 0.0024 3 0.0054 0 0.0016 0 0.0000 1 0.0012 7 0.0020	0.0044 0.00022 0.00023 0.00069 0.00020 0.00020 0.00024 0.00024
CEM EM CO0010 0.00019 0.0013	1 0.0001 1 0.0001 2 0.0029 1 0.0000 1 0.0004 1 0.0012	0.0000 0.0013 0.0001 0.0002 0.00034 0.0024 0.0015 0.0026 0.0015 0.0007 0.0068 0.0029 0.0117 0.0136		0.0010 0.0036 0.0021 0.0017 0.0052 0.0015 0.0011 0.0000 0.0051 0.0010 0.0054 0.0007 0.00054 0.0007	0.0040 0.0018 0.0021 0.0008 0.0051 0.0060 0.0018 0.0024 0.0019 0.0027 0.0019 0.0007 0.0019 0.0065	0.0041 0.0020 0.0031 0.0027 0.0069 0.0024 0.0060 0.0063 0.0051 0.0020 0.0042 0.0000 0.0059 0.0004 0.0019 0.0017	5 0.0030 9 0.0026 9 0.0040 1 0.0005 1 0.0026 1 0.0118 1 0.0118
		7 0.0000 7 0.0000 7 0.00034 9 0.0015 9 0.0015 2 0.0068	0.0055 0.0059 0.0012 0.0020 0.0036 0.0023 0.0027 0.0032 0.0076 0.0072 0.0016 0.0014 0.0046 0.0039	0.0008 0.0010 0.0018 0.0021 0.0059 0.0052 0.0000 0.0011 0.0046 0.0051 0.0016 0.0034 0.0045 0.0065 0.0026 0.0005	\$ 0.0040 \$ 0.0021 \$ 0.0051 1 0.0018 0 0.0040 \$ 0.0019 0 0.0016	1 0.0041 5 0.0031 1 0.0069 2 0.0060 5 0.0051 3 0.0042 9 0.0059	1 0.0046 0.0033 3 0.0059 3 0.0023 3 0.0024 8 0.0013 9 0.0154 2 0.0003
$\begin{array}{c} \alpha_3 \\ EM \\ \hline 5 & 0.0021 \\ 0 & 0.0010 \\ 1 & 0.0018 \\ \hline 1 & 0.0018 \\ \hline \end{array}$			\$ 0.0055 \$ 0.0055 \$ 0.0036 \$ 0.0027 \$ 0.0076 \$ 0.0016	1 0.0008 3 0.0018 7 0.0059 8 0.0000 5 0.0046 5 0.0016 9 0.0045		0.0061 7 0.0035 7 0.0035 7 0.0072 4 0.0075 8 0.0023 9 0.0029 1 0.0039	
$\begin{array}{c} \beta_2 \\ \text{CEM} \\ 7 \ 0.0005 \\ 9 \ 0.0010 \\ 9 \ 0.0024 \\ 1 \ 0.0014 \\ \end{array}$			0 0.0055 0 0.0055 0 0.0056 0 0.0006 0 0.0018 9 0.0010 4 0.0090		0.0013 0.0025 0.0006 0.0006 0.0037 0.0021 0.0006 0.0000 0.0033 0.0033 0.0031 0.0031 0.0031 0.0031 0.0031 0.0031	3 0.0000 8 0.0007 9 0.0040 7 0.0017 2 0.0014 1 0.0028 5 0.0050 7 0.0004	3 0.0021 9 0.0017 0 0.0008 0 0.0051 6 0.0000 7 0.0008 2 0.0034 9 0.0016
$\begin{array}{c} \alpha_2 \\ \text{CEM} \\ \text{CEM} \\ \text{EM} \\ 0.0018 \\ 0.0057 \\ 0.0057 \\ 0.0096 \\ 0.0119 \\ 0.0011 \\ $	0.0011 0.0011 0.0024 0.0005 0.0042 0.0063 0.0040 0.0002 0.0046 0.00074 0.0088 0.0077	0.0021 0.0001 0.0021 0.0001 0.0014 0.0001 0.0056 0.0035 0.0051 0.0019 0.0010 0.0019 0.0019 0.0026	0.0049 0.0050 0.0034 0.0055 0.0198 0.0146 0.0075 0.0006 0.0049 0.0030 0.0049 0.0104 0.0032 0.0104	0.0008 0.0033 0.0006 0.0004 0.0044 0.0019 0.0037 0.0031 0.0026 0.0005 0.0017 0.0046 0.0001 0.0046		0.0002 0.0003 0.0022 0.0008 0.0038 0.0049 0.0007 0.0017 0.0017 0.0022 0.0018 0.0031 0.00125 0.0055	
α2 EM 6 0.008 0 0.000 5 0.005 5 0.001	0.0012 0.0012 0.0018 0.0024 0.0012 0.0013 0.0013 0.0023 0.0003 0.0013 0.0013 0.0013 0.0013 0.0013 0.0013 0.0013 0.0013 0.0013 0.0013 0.0016 0.0012 0.0016 0.	0.0012 0.0017 0.0005 0.0011 0.0012 0.0004 0.0079 0.0084 0.0047 0.0035 0.0034 0.0036 0.0007 0.0012 0.0006 0.0010 0.0009 0.0018 0.0036 0.0022 0.0023	0.0014 0.0016 0.0004 0.0002 0.0004 0.0024 0.0008 0.0005 0.0163 0.0008 0.0005 0.0026 0.0054 0.0059 0.0026 0.0007 0.0005 0.0018 0.0007 0.0005 0.0018	0.0023 0.0020 0.0009 0.0000 0.0001 0.0012 0.0037 0.0030 0.0041 0.0041 0.0041 0.0013 0.0008 0.0003 0.0027 0.0008 0.0009 0.0020 0.0034 0.0024 0.0014	0.0016 0.0010 0.0057 0.0016 0.0015 0.0010 0.0045 0.0049 0.0079 0.0006 0.0003 0.0033 0.0001 0.0017 0.0048 0.0001 0.0011 0.0039 0.0030 0.0017 0.0034	0.0014 0.0011 0.0002 0.0001 0.0001 0.0010 0.0023 0.0023 0.0058 0.0006 0.0007 0.0021 0.0014 0.0013 0.0013 0.0006 0.0006 0.0015 0.0004 0.0014 0.0087 0.0010 0.0011 0.0004	0.0052 0.0047 0.0045 0.0004 0.0005 0.0049 0.0042 0.0038 0.0031 0.0011 0.0011 0.0033 0.0004 0.0004 0.0030 0.0004 0.0004 0.0030 0.0001 0.0017 0.0003 0.0008 0.0008 0.0021
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.0012 0.0043 0.0040 0.0010 0.0012 0.000 0.0004 0.0073 0.00 0.0018 0.0022 0.00 0.0047 0.0037 0.00 0.0017 0.0016 0.00 0.0011 0.00 0.0002 0.000	0.0042 0.0037 0.00 0.0042 0.0037 0.00 0.0011 0.0012 0.00 0.0035 0.0034 0.00 0.0007 0.0012 0.00 0.0010 0.0009 0.00 0.0030 0.0022 0.00	4 0.000 8 0.000 8 0.000 7 0.000 7 0.000 7 0.000 8 0.000 9 0.000 9 0.000 9 0.000	0.0023 0.0020 0.000 0.0007 0.0001 0.001 0.0037 0.0030 0.002 0.0041 0.0041 0.007 0.0006 0.0013 0.002 0.0008 0.0009 0.000 0.0038 0.0028 0.002	0.0016 0.0010 0.00 0.0045 0.0049 0.00 0.0045 0.0049 0.00 0.0006 0.0009 0.00 0.0001 0.0001 0.00 0.0001 0.0011 0.00 0.0001 0.0011 0.00	0.0014 0.0011 0.00 0.0023 0.0023 0.00 0.0023 0.0023 0.00 0.0006 0.0007 0.00 0.0014 0.0013 0.00 0.0006 0.0006 0.00 0.0004 0.0041 0.00 0.00010 0.0011 0.00	2 0.004 4 0.000 2 0.003 1 0.001 6 0.002 4 0.000 1 0.001 8 0.000
β ₁ EM 6 0.000 2 0.000 4 0.004 7 0.001	9 0.001 6 0.0001 8 0.0001 3 0.0001 1 0.001 8 0.000	7 0.004 1 0.004 1 0.007 9 0.003 8 0.000 1 0.001 1 0.001 2 0.003 3 0.003	8 0.005 2 0.000 3 0.000 5 0.000 6 0.000 7 0.000 8 0.005 9 0.006 1 0.000	1 0.002 2 0.000 2 0.003 4 0.004 7 0.000 4 0.000 3 0.003 6 0.002	7 0.001 7 0.001 1 0.004 4 0.000 0 0.004 2 0.000 5 0.003 9 0.001	2 0.001 8 0.000 9 0.002; 7 0.000 3 0.001 6 0.000 7 0.004	2 0.005 1 0.004 1 0.004 2 0.001 9 0.002 3 0.000 1 0.000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0005 0.0049 0.0043 0.0043 0.0050 0.0051	0.0044 0.0057 0.0002 0.0003 0.0003 0.0004 0.0004 0.0004 0.0005 0.0001 0.0004 0.0005 0.0001 0.0005 0.0004 0.0005 0.0001 0.0005 0.0004 0.0005 0.0002 0.0005 0.	0.0017 0.0007 0.0014 0.0016 0.0004 0.00017 0.0004 0.0002 0.0004 0.0006 0.0004 0.0005 0.0004 0.0005 0.0004 0.0005 0	0.0015 0.0031 0.0023 0.0020 0.0009 0.0004 0.0022 0.0000 0.0001 0.0012 0.0067 0.0072 0.0037 0.0030 0.0041 0.0051 0.0024 0.0041 0.0041 0.0019 0.0007 0.0007 0.0006 0.0013 0.0027 0.0011 0.0004 0.0008 0.0009 0.0007 0.0011 0.0004 0.0008 0.0009 0.0020 0.0014 0.0006 0.0028 0.0024 0.0014	0.0019 0.0037 0.0016 0.0010 0.0057 0.0022 0.0007 0.0016 0.0015 0.0010 0.0041 0.0021 0.0045 0.0049 0.0079 0.0014 0.0044 0.0006 0.0003 0.0033 0.0054 0.0050 0.0040 0.0037 0.0048 0.0019 0.0002 0.0001 0.0010 0.0033 0.0019 0.0002 0.0010 0.0010 0.0034 0.0015 0.0002 0.0010 0.0010 0.0034	0.0031 0.0032 0.0014 0.0011 0.0002 0.0004 0.0008 0.0023 0.0023 0.0023 0.0024 0.0039 0.0023 0.0023 0.0058 0.0022 0.0007 0.0001 0.0013 0.0013 0.0007 0.0005 0.0014 0.0013 0.0013 0.0007 0.0026 0.0006 0.0006 0.0015 0.0007 0.0026 0.0006 0.0017 0.0013 0.0005 0.0026 0.0010 0.0011 0.0094	0.0062 0.0062 0.0052 0.0047 0.0045 0.0045 0.0045 0.0045 0.0045 0.0045 0.0045 0.0045 0.0045 0.0045 0.0045 0.0045 0.0039 0.0026 0.0031 0.0040 0.0039 0.0026 0.0028 0.0028 0.0029 0.0028 0.0023 0.0023 0.0023 0.0021 0.0011 0.0031 0.0034 0.0021 0.0011 0.0031 0.0031 0.0011 0.0031 0.
$\begin{array}{c} \alpha_1 \\ EM \\ 0.0017 \\ 0.0007 \\ 0.0067 \\ 0.0001 \\ \end{array}$	0.0005 0.0005 0.0009 0.0009 0.0009	0.003 0.004 0.005 0.005 0.005 0.003	0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.000 0.000 0.006 0.005 0.000 0.001 0.003	0.0019 0.0022 0.0041 0.0014 0.0054 0.0019 0.0045	0.003 0.004 0.002 0.002 0.000 0.000 0.004	0.006 0.001 0.004 0.001 0.000 0.000 0.002 0.001
$n \\ 100 \\ 500 \\ 100 \\ 500 \\ 100 \\ 100 $	100 100 100 100 100 100	100 100 100 500 100 500 100 500	100 100 100 500 100 500 100 500	100 500 100 500 100 500 500	100 500 100 500 100 500 100 500	100 500 100 500 100 500 100 500	100 500 100 500 100 500 100 500
$\begin{bmatrix} x \\ [-1;3] \\ [0;2] \end{bmatrix}$	[0; 2] [-1; 3] [0; 2]	[0; 2] [0; 2] [-1; 3]	[0; 2] $[-1; 3]$ $[-1; 3]$ $[0; 2]$	[0; 2] [0; 2] [-1; 3] [0; 2]	[0; 2] [0; 2] [-1; 3] [0; 2]	[0; 2] [0; 2] [-1; 3] [0; 2]	[0; 2] [0; 2] [-1; 3] [0; 2]
$\begin{array}{c} \pi_2 \\ 0.2 \\ 0.3 \\ \end{array}$	5.0	0.6	0.3	4.0 5.0	0.3	0.4	0.3
$\begin{array}{c} \pi_1 \\ 0.2 \\ 0.2 \\ \end{array}$	0.2	0.2	0.3	0.3	0.4	0.4	0.5

Tabela D.80: Estimativas do valor absoluto do enviesamento médio dos parâmetros da mistura de três regressões lineares no caso II

0.2 0.2 0.6 0.3 0.2 [-1; 3][-1; 3][-1; 3][-1; 3][-1; 3][-1; 3][-1; 3][-1; 3][-1; 3][-1; 3][-1; 3][-1; 3][-1; 3][0; 2][0; 2]-1;3[0; 2][0; 2][0; 2][0; 2][0; 2][0; 2][0; 2][0; 2][0; 2][0; 2]500 500 500 500 500 500 500 500 $\frac{100}{500}$ 500 $100 \\ 500$ 500 500 500 500 500 500 500 500 500 500 500 500 500 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 00 00 $0.0002\ 0.0030\ 0.0005\ 0.0013\ 0.0071\ 0.2238\ 0.0013\ 0.2298\ 0.0013\ 0.0219\ 0.0019\ 0.0011\ 0.0003\ 0.0006\ 0.0042\ 0.0283\ 0.0845\ 0.0029\ 0.0065\ 0.0034\ 0.0521\ 0.0018\ 0.0777\ 0.0015\ 0.0276\ 0.0044\ 0.0327\ 0.0081\ 0.0242\ 0.0921\ 0.4790\ 0.1197\ 0.6947\ 0.0151\ 0.0144\ 0.0092\ 0.0107\ 0.0205\ 0.0145\ 0.145\ 0.1958\ 0.3891\ 0.0129\ 0.0177\ 0.0092\ 0.0524\ 0.0137\ 0.0793\ 0.0045\ 0.0270$ $0.0056\ 0.0094\ 0.0147\ 0.0247\ 0.0337\ 0.1705\ 0.0147\ 0.1521\ 0.0180\ 0.0038\ 0.0110\ 0.0025\ 0.0249\ 0.0467\ 0.1036\ 0.1339\ 0.0109\ 0.0258\ 0.0024\ 0.0507\ 0.0055\ 0.0839\ 0.0031\ 0.0332\ 0.0071\ 0.0037\ 0.0040\ 0.0050\ 0.0050\ 0.0034\ 0.1769\ 0.0022\ 0.1893\ 0.0013\ 0.0066\ 0.0007\ 0.0038\ 0.0049\ 0.0274\ 0.0041\ 0.0547\ 0.0037\ 0.0144\ 0.0000\ 0.0566\ 0.0007\ 0.0940\ 0.0989\ 0.0037\ 0.0077$ $0.0009\ 0.0499\ 0.0107\ 0.1461\ 0.0361\ 0.4914\ 0.0379\ 0.5679\ 0.0366\ 0.0615\ 0.0222\ 0.0352\ 0.0366\ 0.0803\ 0.0897\ 0.2480\ 0.0084\ 0.0283\ 0.0070\ 0.0426\ 0.0083\ 0.0764\ 0.0012\ 0.0338\ 0.0031\ 0.1001\ 0.0130\ 0.1808\ 0.0166\ 0.5725\ 0.0059\ 0.7100\ 0.0005\ 0.0961\ 0.0011\ 0.0636\ 0.0036\ 0.0209\ 0.0185\ 0.2833\ 0.0034\ 0.0065\ 0.0036\ 0.0614\ 0.0038\ 0.1069\ 0.0002\ 0.0455$ $0.0198\ 0.0649\ 0.0154\ 0.1150\ 0.0964\ 0.5801\ 0.1175\ 0.6909\ 0.0059\ 0.0433\ 0.0086\ 0.0338\ 0.0317\ 0.0577\ 0.1356\ 0.3104\ 0.0114\ 0.0183\ 0.0069\ 0.0422\ 0.0149\ 0.0836\ 0.0080\ 0.0414\ 0.0048\ 0.0854\ 0.0018\ 0.1125\ 0.0318\ 0.6820\ 0.0262\ 0.8331\ 0.0025\ 0.0419\ 0.0009\ 0.0333\ 0.0039\ 0.0053\ 0.0273\ 0.3199\ 0.0017\ 0.0056\ 0.0015\ 0.0603\ 0.0015\ 0.0603\ 0.0015\ 0.1072\ 0.0000\ 0.0469$ $0.0035\ 0.0035\ 0.0026\ 0.0040\ 0.0040\ 0.2130\ 0.0154\ 0.1969\ 0.0040\ 0.0015\ 0.0016\ 0.0010\ 0.0120\ 0.0282\ 0.0171\ 0.0674\ 0.0024\ 0.0040\ 0.0040\ 0.0044\ 0.0360\ 0.0026\ 0.0709\ 0.0018\ 0.0124\ 0.0120\ 0.0120\ 0.0120\ 0.0121\ 0.0896\ 0.0085\ 0.0085\ 0.00110\ 0.0399\ 0.0111\ 0.0678\ 0.0008\ 0.0279$ $0.0009\ 0.0371\ 0.0049\ 0.0198\ 0.0002\ 0.0457\ 0.0003\ 0.0461\ 0.0013\ 0.0159\ 0.0003\ 0.0126\ 0.0165\ 0.0165\ 0.0167\ 0.0087\ 0.0629\ 0.0029\ 0.0411\ 0.0004\ 0.0496\ 0.0013\ 0.0521\ 0.0009\ 0.0024\ 0.0084\ 0.0167\ 0.1581\ 0.0216\ 0.0674\ 0.0101\ 0.0084\ 0.0237\ 0.0079\ 0.0136\ 0.0162\ 0.0162\ 0.0162\ 0.0162\ 0.0167\ 0.0162\ 0.0167\ 0.0162\ 0.0167\ 0.0162\ 0.0167\ 0.01$ $0.0001\ 0.0376\ 0.0131\ 0.0571\ 0.0092\ 0.3992\ 0.0179\ 0.6083\ 0.0187\ 0.0754\ 0.0061\ 0.0594\ 0.0107\ 0.0224\ 0.1524\ 0.3120\ 0.0261\ 0.0417\ 0.0094\ 0.0632\ 0.0137\ 0.0881\ 0.0043\ 0.0249$ $0.0049\ 0.0023\ 0.0046\ 0.0032\ 0.0075\ 0.1634\ 0.0026\ 0.1818\ 0.0028\ 0.0118\ 0.0008\ 0.0064\ 0.0035\ 0.0223\ 0.0113\ 0.0582\ 0.0048\ 0.0234\ 0.0014\ 0.0590\ 0.0007\ 0.0916\ 0.0021\ 0.0326$ $0.0111\ 0.0700\ 0.0045\ 0.1173\ 0.0597\ 0.4318\ 0.0495\ 0.5942\ 0.0011\ 0.0953\ 0.0031\ 0.0596\ 0.0166\ 0.0439\ 0.1163\ 0.2822\ 0.0221\ 0.0492\ 0.0102\ 0.0627\ 0.0223\ 0.0970\ 0.0121\ 0.0343$ $0.0000\ 0.0100\ 0.0026\ 0.0123\ 0.0079\ 0.1450\ 0.0040\ 0.1525\ 0.0008\ 0.0105\ 0.0007\ 0.0073\ 0.0056\ 0.0426\ 0.0140\ 0.0586\ 0.0040\ 0.0325\ 0.0013\ 0.0617$ 0.0132 $0.0143\ 0.0395\ 0.0086\ 0.0403\ 0.0055\ 0.4752\ 0.0319\ 0.6104\ 0.0035\ 0.0093\ 0.0014\ 0.0116\ 0.0111\ 0.0158\ 0.2619\ 0.4233\ 0.0114\ 0.0115\ 0.0082\ 0.0459\ 0.0181\ 0.0807\ 0.0099\ 0.0349$ $0.0021\ 0.0037\ 0.0005\ 0.0036\ 0.0106\ 0.2179\ 0.0158\ 0.2342\ 0.0016\ 0.0010\ 0.0009\ 0.0001\ 0.0042\ 0.0140\ 0.0377\ 0.0962\ 0.0028\ 0.0044\ 0.0006\ 0.0442\ 0.0020\ 0.0741\ 0.0014\ 0.0299$ $0.0291\ 0.0713\ 0.0215\ 0.2009\ 0.0566\ 0.3224\ 0.0519\ 0.4206\ 0.0094\ 0.1448\ 0.0126\ 0.0894\ 0.0340\ 0.0897\ 0.0830\ 0.2034\ 0.0305\ 0.0698\ 0.0038\ 0.0270\ 0.0105\ 0.0474\ 0.0067\ 0.0204$ $0.0012\ 0.0190\ 0.0044\ 0.0239\ 0.0044\ 0.1192\ 0.0041\ 0.1170\ 0.0050\ 0.0113\ 0.0018\ 0.0081\ 0.0054\ 0.0631\ 0.0081\ 0.0507\ 0.0058\ 0.0420\ 0.0047\ 0.0509\ 0.0051\ 0.0812\ 0.0004\ 0.0302$ $0.0029\ 0.0094\ 0.0039\ 0.0184\ 0.0094\ 0.1539\ 0.0064\ 0.1592\ 0.0021\ 0.0066\ 0.0008\ 0.0064\ 0.0023\ 0.0501\ 0.0084\ 0.0532\ 0.0014\ 0.0211\ 0.0014\ 0.0531\ 0.0019\ 0.0902\ 0.0033\ 0.0370$ $0.0003\ 0.0058\ 0.0011\ 0.0128\ 0.0126\ 0.1562\ 0.0047\ 0.1741\ 0.0031\ 0.0021\ 0.0018\ 0.0048\ 0.0104\ 0.0442\ 0.0171\ 0.0628\ 0.0021\ 0.0111\ 0.0027\ 0.0454\ 0.0010\ 0.0859\ 0.0017\ 0.0405$ $0.0058\ 0.0152\ 0.0087\ 0.0118\ 0.0141\ 0.1509\ 0.0035\ 0.1375\ 0.0006\ 0.0040\ 0.0001\ 0.0025\ 0.0207\ 0.0550\ 0.0806\ 0.1166\ 0.0113\ 0.0213\ 0.0041\ 0.0432\ 0.0047\ 0.0789\ 0.0060\ 0.0357$ $0.0009\ 0.0550\ 0.0064\ 0.0560\ 0.0236\ 0.8103\ 0.0152\ 0.9769\ 0.0072\ 0.0145\ 0.0145\ 0.0130\ 0.0005\ 0.0084\ 0.0412\ 0.3620\ 0.0014\ 0.0101\ 0.0002\ 0.0489\ 0.0002\ 0.0875\ 0.0001\ 0.0386$ $0.0003\ 0.1249\ 0.0000\ 0.3870\ 0.0021\ 0.4534\ 0.0006\ 0.4248\ 0.0057\ 0.1191\ 0.0028\ 0.0776\ 0.0074\ 0.0889\ 0.0122\ 0.1854\ 0.0021\ 0.0176\ 0.0017\ 0.0014\ 0.0032\ 0.0454\ 0.0049\ 0.0468$ 0.0077 $0.0010\ 0.0267\ 0.0018\ 0.0400\ 0.0075\ 0.0837\ 0.0080\ 0.0863\ 0.0066\ 0.0048\ 0.0018\ 0.0070\ 0.0134\ 0.0660\ 0.0053\ 0.0631\ 0.0005\ 0.0319\ 0.0015\ 0.0172$ 0.0033 $0.0066\ 0.0830\ 0.0092\ 0.2263\ 0.0609\ 0.5261\ 0.0432\ 0.4932\ 0.0077\ 0.0486\ 0.0909\ 0.0266\ 0.0611\ 0.1188\ 0.0651\ 0.2112\ 0.0094\ 0.0243\ 0.0041\ 0.0189\ 0.0014\ 0.0145\ 0.0027\ 0.0356$ $0.0021\ 0.0209\ 0.0006\ 0.0343\ 0.0019\ 0.1263\ 0.0050\ 0.1387\ 0.0037\ 0.0027\ 0.0033\ 0.0012\ 0.0072\ 0.0659\ 0.0111\ 0.0610\ 0.0017\ 0.0180\ 0.0016\ 0.0246\ 0.0016\ 0.0686\ 0.0010\ 0.0440$ $0.0367\ 0.0876\ 0.0144\ 0.1468\ 0.1183\ 0.6712\ 0.1089\ 0.6593\ 0.0073\ 0.0168\ 0.0079\ 0.0089\ 0.0655\ 0.1019\ 0.1361\ 0.3000\ 0.0064\ 0.0076\ 0.0069\ 0.0303\ 0.0130\ 0.0738\ 0.0062\ 0.04356$ $0.0078\ 0.0039\ 0.0015\ 0.0247\ 0.0058\ 0.1598\ 0.0019\ 0.1641\ 0.0002\ 0.0028\ 0.0006\ 0.0023\ 0.0138\ 0.0639\ 0.0109\ 0.0554\ 0.0018\ 0.0098\ 0.0004\ 0.0348\ 0.0003\ 0.0767\ 0.0007\ 0.0420$ $0.0059\ 0.0574\ 0.0390\ 0.0616\ 0.1407\ 0.6265\ 0.1255\ 0.6249\ 0.0014\ 0.0115\ 0.0051\ 0.0146\ 0.0491\ 0.0691\ 0.2066\ 0.3498\ 0.0090\ 0.0075\ 0.0055\ 0.0295\ 0.0111\ 0.0632\ 0.0056\ 0.0337$ $0.0045 \ 0.0024 \ 0.0021 \ 0.0043 \ 0.0237 \ 0.2246 \ 0.0102 \ 0.2153 \ 0.0035 \ 0.0077 \ 0.0003 \ 0.0025 \ 0.0041 \ 0.0084 \ 0.0304 \ 0.0763 \ 0.0032 \ 0.0120 \ 0.0022 \ 0.0516 \ 0.0024 \ 0.0771 \ 0.0002 \ 0.0255 \ 0.0025 \ 0$ $0.0102\ 0.0633\ 0.0130\ 0.0736\ 0.0112\ 0.6485\ 0.0132\ 0.8914\ 0.0037\ 0.0911\ 0.0021\ 0.0666\ 0.0041\ 0.0046\ 0.0257\ 0.3293\ 0.0055\ 0.0020\ 0.0024\ 0.0749\ 0.0033\ 0.1121\ 0.0009\ 0.0375$ $0.0075\ 0.0031\ 0.0058\ 0.0013\ 0.0206\ 0.1642\ 0.0322\ 0.1778\ 0.0001\ 0.0032\ 0.0005\ 0.0037\ 0.0180\ 0.0365\ 0.0940\ 0.1304\ 0.0249\ 0.0426\ 0.0055\ 0.0579\ 0.0097\ 0.0866\ 0.0043\ 0.0287$ $0.0005\ 0.0364\ 0.0004\ 0.0319\ 0.0064\ 0.7428\ 0.0001\ 0.9919\ 0.0002\ 0.0338\ 0.0024\ 0.0222\ 0.0024\ 0.0123\ 0.0308\ 0.3486\ 0.0026\ 0.0070\ 0.0016\ 0.0580\ 0.0017\ 0.0911\ 0.0901\ 0.0333$ $0.0063\ 0.0062\ 0.0079\ 0.0021\ 0.0398\ 0.2054\ 0.0247\ 0.1508\ 0.0048\ 0.0019\ 0.0005\ 0.0014\ 0.0154\ 0.0235\ 0.1484\ 0.1986\ 0.0136\ 0.0201\ 0.0037\ 0.0444\ 0.0022\ 0.0670\ 0.0015\ 0.0226$ $0.0091\ 0.0026\ 0.0066\ 0.0082\ 0.0203\ 0.1349\ 0.0108\ 0.1210\ 0.0145\ 0.0141\ 0.0039\ 0.0069\ 0.0211\ 0.0567$ 0.0103 $0.0028\ 0.0464\ 0.0028\ 0.0466\ 0.0134\ 0.8010\ 0.0153\ 1.0020\ 0.0013\ 0.0244\ 0.0004\ 0.0187\ 0.0024\ 0.0095\ 0.0265\ 0.3586\ 0.0020\ 0.0085\ 0.0004\ 0.0523\ 0.0021\ 0.0896\ 0.0017\ 0.0373$ 0.0091 $0.0026\ 0.0212\ 0.0131\ 0.0404\ 0.0143\ 0.0938\ 0.0321\ 0.1189\ 0.0001\ 0.0127\ 0.0020\ 0.0990\ 0.0292\ 0.0814\ 0.0654\ 0.1018\ 0.0240\ 0.0600\ 0.0011\ 0.0262\ 0.0082\ 0.0497\ 0.0071\ 0.0236$ $0.0073\ 0.0080\ 0.0102\ 0.0144\ 0.0047\ 0.1258\ 0.0083\ 0.1301\ 0.0082\ 0.0052\ 0.0052\ 0.0055\ 0.0037\ 0.0192\ 0.0704\ 0.0673\ 0.1012\ 0.0134\ 0.0339\ 0.0050\ 0.0408\ 0.0102\ 0.0792\ 0.053\ 0.0384$ $0.0055\ 0.0038\ 0.0093\ 0.0022\ 0.0621\ 0.2014\ 0.0405\ 0.1900\ 0.0009\ 0.0020\ 0.0014\ 0.0007\ 0.0297\ 0.0463\ 0.1499\ 0.1925\ 0.0102\ 0.0128\ 0.0009\ 0.0312\ 0.0080\ 0.0681\ 0.0089\ 0.0369$ $0.0024\ 0.1278\ 0.0040\ 0.4433\ 0.0112\ 0.2503\ 0.0086\ 0.2307\ 0.0047\ 0.2092\ 0.0038\ 0.1259\ 0.0139\ 0.1051\ 0.0094\ 0.1371\ 0.0046\ 0.0465\ 0.0033\ 0.0255\ 0.0045\ 0.0127\ 0.0012\ 0.0128$ LT00.0 0.0025 $0.0002\ 0.0039\ 0.0043\ 0.0090\ 0.0002\ 0.1863\ 0.0053\ 0.2079\ 0.0015\ 0.0031\ 0.0000\ 0.0005\ 0.0025\ 0.0321\ 0.0234\ 0.0747\ 0.0008\ 0.0023\ 0.0016\ 0.0352\ 0.0023\ 0.00684\ 0.0007\ 0.0332$ $0.0118\ 0.0130\ 0.0000\ 0.0028\ 0.0887\ 0.2280\ 0.0472\ 0.2110\ 0.0168\ 0.0095\ 0.0074\ 0.0036\ 0.0134\ 0.0205\ 0.1792\ 0.2159\ 0.0268\ 0.0343\ 0.0015\ 0.0468\ 0.0008\ 0.0655\ 0.0022\ 0.0187$ $0.0070\ 0.0030\ 0.0125\ 0.0093\ 0.0075\ 0.1198\ 0.0023\ 0.1299\ 0.0005\ 0.0047\ 0.0030\ 0.0058\ 0.0475\ 0.0908\ 0.0963\ 0.1338\ 0.0062\ 0.0150\ 0.0010\ 0.0245\ 0.0035\ 0.0660\ 0.0045\ 0.0415\ 0.0030\ 0.0060\ 0.00$ 0.000 $0.0818\ 0.0038\ 0.1305\ 0.0210\ 0.5247\ 0.0058\ 0.7230\ 0.0133\ 0.1543\ 0.0083\ 0.1009\ 0.0037\ 0.0086\ 0.0150\ 0.2885\ 0.0061\ 0.0178\ 0.0013\ 0.0730\ 0.0002\ 0.1086\ 0.0011\ 0.0356$ $0.0564\ 0.0024\ 0.0797\ 0.0173\ 0.7475\ 0.0115\ 0.9301\ 0.0004\ 0.0583\ 0.0015\ 0.0438\ 0.0066\ 0.0028\ 0.0181\ 0.3430\ 0.0035\ 0.0068\ 0.0013\ 0.0675$ $0.0319\ 0.0160\ 0.0637\ 0.1462\ 0.5996\ 0.1510\ 0.7237\ 0.0158\ 0.0225\ 0.0058\ 0.0211\ 0.0242\ 0.0381\ 0.1281\ 0.3183\ 0.0124\ 0.0179\ 0.0089\ 0.0542\ 0.0174\ 0.0939\ 0.0085\ 0.0397$ $0.1046\ 0.0096\ 0.2500\ 0.0006\ 0.3719\ 0.0040\ 0.4788\ 0.0088\ 0.2093\ 0.0052\ 0.1302\ 0.0064\ 0.0544\ 0.0122\ 0.2139\ 0.0026\ 0.0332\ 0.0006\ 0.0340$ $0.0232\ 0.0145\ 0.0312\ 0.0315\ 0.0867\ 0.0236\ 0.0682\ 0.0242\ 0.0065\ 0.0116\ 0.0082\ 0.0577$ $0.0776\ 0.0364\ 0.2459\ 0.0156\ 0.3999\ 0.0076\ 0.3623\ 0.0084\ 0.0950\ 0.0080\ 0.0624\ 0.0598\ 0.1401\ 0.0601\ 0.1819\ 0.0189\ 0.0424\ 0.0094\ 0.0001\ 0.0118\ 0.0368\ 0.0024\ 0.0369$ $0.0263\ 0.0078\ 0.0053\ 0.0064\ 0.0518\ 0.0008\ 0.0687$ $0.1223\ 0.0010\ 0.3038\ 0.0183\ 0.5829\ 0.0169\ 0.5761\ 0.0054\ 0.0771\ 0.0034\ 0.0520\ 0.0030\ 0.0635\ 0.0179\ 0.2362\ 0.0015\ 0.0068\ 0.0021\ 0.0209\ 0.0035\ 0.0699\ 0.0013\ 0.0491$ $0.0216\ 0.0034\ 0.0239\ 0.0404\ 0.1354\ 0.0240\ 0.1244\ 0.0019\ 0.0078\ 0.0011\ 0.0035\ 0.0530\ 0.0982\ 0.0649\ 0.1134\ 0.0135\ 0.0310\ 0.0034\ 0.0151$ $0.1035\ 0.0012\ 0.2086\ 0.0124\ 0.6928\ 0.0071\ 0.7143\ 0.0045\ 0.0367\ 0.0022\ 0.0278\ 0.0080\ 0.0468\ 0.0208\ 0.2757\ 0.0011$ $0.0586\ 0.0089\ 0.0829\ 0.0281\ 0.8863\ 0.0330\ 0.9769\ 0.0011\ 0.0168\ 0.0009\ 0.0142\ 0.0162\ 0.0133\ 0.0298\ 0.3610\ 0.0014\ 0.0090\ 0.0035\ 0.0433\ 0.0009\ 0.0795\ 0.0026\ 0.0362$ 0.0087 0.0140 0.0057 $_{\rm CEM}^{\beta_1}$ $0.0936 \ 0.2308 \ 0.0352$ EM $_{\rm CEM}^{lpha_2}$ EM $0.1876\ 0.0004$ CEM 0.0003 0.0150 0.0027 EM 0.0040 0.0004 0.0021 0.0423 0.0673 CEM $E_{\rm M}^{\beta_3}$ $0.0133 \ 0.0622$ CEM ΕM $0.1046\ 0.0390\ 0.0821\ 0.0252\ 0.0626\ 0.0072\ 0.0238\ 0.0111\ 0.0168\ 0.0039\ 0.0069$ $0.1145\ 0.0432\ 0.0814\ 0.0146\ 0.0462\ 0.0043\ 0.0090$ CEM $0.0690\ 0.1073\ 0.0291\ 0.0559\ 0.0072\ 0.0590\ 0.0027$ $0.1341\ 0.1756\ 0.0054\ 0.0083\ 0.0013\ 0.0249$ EM EM CEM EM²1 0.0003 0.1131 0.0016 0.0457 $0.0052\ 0.0519\ 0.0018\ 0.0368$ 0.0002 0.0917 0.0015 0.0301 0.0016 0.0591 0.0010 0.0252 0.0006 0.0633 0.0045 0.0217 $0.0006 \ 0.0176 \ 0.0021 \ 0.0348$ 0.0769 0.0045 0.0179 Ε<u>Υ</u>3

Tabela D.81: Estimativas do valor absoluto do enviesamento médio dos parâmetros da mistura de três regressões lineares no caso III

$\frac{\pi_3}{\text{CEM}}$ 0.0537 0.0601 0.0378	0.0542 0.0649 0.0405 0.0392 0.0590 0.0611	0.0416 0.0350 0.0431 0.0414 0.0156 0.0080 0.0283	0.0594 0.0577 0.0318 0.0312 0.0500 0.0500 0.0309	0.0507 0.0500 0.0309 0.0395 0.0005 0.0288 0.0315	0.0444 0.0521 0.0311 0.0339 0.0442 0.0216	0.0259 0.0263 0.0263 0.0365 0.0250	0.0234 0.0130 0.0239 0.0217 0.0041 0.0023 0.0210
π3 EM 0.0052 0.0018 0.0203 0.0203	0.0018 0.0014 0.0009 0.0009 0.00113	0.0015 0.0025 0.0002 0.0009 0.0006 0.0015 0.0040	0.0056 0.0011 0.0011 0.0071 0.0071 0.0071	0.0071 0.0071 0.0064 0.0021 0.0078 0.0017 0.00142	0.0072 0.0006 0.0009 0.0013 0.0089 0.0039 0.0022	0.0083 0.0083 0.0165 0.0047 0.0105 0.0026 0.0021	0.0012 0.0109 0.0145 0.00145 0.00123 0.0029 0.0070
$\frac{\pi_2}{\text{CEM}}$ 0.0297 0.0345 0.0292						0.0188 0.0188 0.0268 0.0269 0.0178 0.0190	
$^{\pi_2}_{\rm EM}$ $^{0.0087}_{0.0015}$ $^{0.0237}_{0.008}$		0.0010 0.0007 0.0018 0.0018 0.0012 0.0007 0.0033 0.0337			0.0097 0.0007 0.0002 0.0036 0.0038 0.0049		
$\frac{\pi_1}{\text{CEM}}$ 0.0240 0.0256 0.0087		0.00037 0.0137 0.0009 0.0009 0.00062 0.0009 0.0009	0.0284 0.0284 0.0278 0.0087 0.0061 0.0206 0.0160 0.0003		0.0235 0.0252 0.0065 0.0056 0.0109 0.0176 0.0036		
$\frac{\pi_1}{\text{EM}}$ 0.0035 0.0035 0.0035	0.0016 0.0005 0.00065 0.00001 0.0006	0.0026 0.0032 0.0016 0.0015 0.0022 0.0008 0.0008		0.0683 0.0062 0.0529 0.0030 0.0363 0.0003 0.0194 0.0004 0.11190 0.0039 0.0749 0.0006 0.0742 0.0006	0.0025 0.0013 0.0026 0.0015 0.0053 0.0036 0.0037		0.0026 0.0026 0.0025 0.00017 0.0009 0.0006 0.0006 0.0024
σ3 σ3 EM CEM 0.0139 0.0146 0.0001 0.0062 0.0613 0.0081		0.0099 0.0723 0.0555 0.0379 0.0224 0.1196 0.1018	0.0024 0.0131 0.0026 0.0191 0.0024 0.0089 0.0024 0.0069 0.0299 0.0683 0.0029 0.0529 0.0022 0.0363	0.0683 0.0683 0.0363 0.0194 0.1190 0.1107 0.0749	0.0062 0.0255 0.0043 0.0262 0.0245 0.0221 0.0004 0.009 0.0106 0.0649 0.0044 0.0499 0.0386 0.0353	0.1140 0.1140 0.0583 0.0422 0.0421 0.0491 0.0380	0.0058 0.1007 0.0058 0.0058 0.0058 0.0058 0.0055 0.0025 0.0025 0.0025 0.0050 0.0050 0.0051 0.00551 0.0051 0
		$\begin{array}{c} 0.0022 \\ 0.0120 \\ 0.0037 \\ 0.0065 \\ 0.0031 \\ 0.0467 \\ 0.0022 \\ 0.0045 \\ 0.0045 \\ 0.0045 \\ \end{array}$	0.0059 0.00540 0.00540 0.0024 0.0029 0.0029	0.0299 0.0029 0.0020 0.0020 0.0395 0.0081 0.0221			0.0020 0.0042 0.0020 0.0089 0.0089 0.0060 0.0041 0.0458
σ2 CEM 0.1551 0.1064 0.2347 0.1735		0.0301 0.0116 0.1534 0.0614 0.0328 0.0710 0.0365 0.0111 0.0632 0.0476 0.0672 0.1497 0.0282 0.0018 0.1297 0.0596 0.0388 0.0606 0.0362 0.0086 0.0448 0.0545 0.0720 0.1104	0.0566 0.1064 0.1700 0.0566 0.1064 0.1700 0.0326 0.0168 0.0979 0.0486 0.1597 0.2299 0.0495 0.0315 0.0802 0.0495 0.0031 0.0601 0.0463 0.0595 0.1506	0.0495 0.0315 0.0802 0.0435 0.0031 0.0601 0.0463 0.0595 0.1506 0.0207 0.0106 0.1433 0.0484 0.0418 0.0789 0.0254 0.0094 0.0490 0.0376 0.0409 0.1118 0.0378 0.0090 0.118	0.0459 0.1208 0.1743 0.0314 0.0102 0.0904 0.0343 0.1492 0.2253 0.0270 0.0328 0.1781 0.0421 0.0616 0.1144 0.0284 0.0990 0.0721 0.0312 0.1318 0.1814 0.0315 0.1418 0.1814	0.0926 0.0926 0.1490 0.1270 0.1603 0.0949 0.2058	0.0249 0.0770 0.0031 0.0228 0.0053 0.0673 0.0251 0.1052 0.1688 0.0153 0.0153 0.1351 0.025 0.1527 0.1707 0.0197 0.0197 0.0912 0.0237 0.1722 0.2153
α1 σ2 CEM EM 0.0743 0.1028 0.0372 0.0251 0.0653 0.1832 0.0346 0.00632	0.0615 0.0706 0.0459 0.0100 0.0770 0.0867 0.0367 0.0161 0.0689 0.0432 0.0379 0.0046	0.0301 0.011b 0.0614 0.0328 0.0365 0.0111 0.0476 0.0672 0.0282 0.0018 0.0596 0.0388 0.0545 0.0720 0.0545 0.0720	0.0566 0.1064 0.0566 0.1064 0.0326 0.0168 0.0486 0.1597 0.0270 0.0228 0.0495 0.0315 0.0463 0.0595 0.0463 0.0595	0.0495 0.0315 0.0335 0.0031 0.0463 0.0595 0.0207 0.0106 0.0484 0.0418 0.0254 0.0094 0.0376 0.0409	0.0459 0.1208 0.0314 0.0102 0.0343 0.1492 0.0270 0.0328 0.0421 0.0616 0.0324 0.090 0.0312 0.1318	0.0396 0.0558 0.0244 0.0057 0.0284 0.0783 0.0159 0.0138 0.0404 0.1092 0.0288 0.0174 0.0218 0.1566	0.0294 0.0770 0.0294 0.0770 0.0228 0.0053 0.0251 0.1052 0.0153 0.0153 0.0236 0.1527 0.0197 0.0197 0.0237 0.1722
		0.0301 0.0614 0.0365 0.0476 0.0282 0.0596 0.0362		0.0495 0.0335 0.0463 0.0207 0.0484 0.0254 0.0376 0.0376	0.0459 0.0314 0.0343 0.0270 0.0421 0.0284 0.0284	0.0396 0.0244 0.0284 0.0159 0.0159 0.0404 0.0288	0.0234 0.0238 0.0251 0.0251 0.0236 0.0197 0.0237
$\begin{array}{c} \sigma_1 \\ EM \\ 0.0571 \\ 0.0087 \\ 0.0449 \\ 0.0080 \end{array}$	0.0468 0.0171 0.0613 0.0127 0.0472 0.0090 0.00332	0.0036 0.0735 0.0029 0.0039 0.0039 0.0030 0.0116 0.011534 0.0038 0.0038 0.07735 0.0027 0.0517 0.0392 0.0614 0.0328 0.0711 0.0032 0.0058 0.0735 0.0048 0.0593 0.0084 0.0365 0.0111 0.0632 0.0043 0.0838 0.0315 0.0596 0.0387 0.0476 0.0672 0.1497 0.0030 0.0640 0.0005 0.0512 0.0100 0.0222 0.0018 0.1297 0.0036 0.1018 0.0008 0.0700 0.0407 0.0596 0.0338 0.0606 0.0039 0.0704 0.0913 0.0443 0.0345 0.0008 0.0704 0.0031 0.0443 0.0345 0.0704 0.01104 0.0056 0.0704 0.0031 0.0443 0.0445 0.0704 0.0704 0.0031 0.0443 0.0445 0.0704 0.0031 0.0443 0.0445 0.0704 0.0031 0.0448 0.0456 0.0704 0.0004 0.0046 0.0046 0.0046	0.0189	0.0462 0.0272 0.0495 0.0315 0.0802 0.0579 0.0079 0.0335 0.0031 0.0601 0.0566 0.0334 0.0463 0.0595 0.1506 0.0468 0.0018 0.0207 0.0106 0.1438 0.0999 0.0345 0.0484 0.0418 0.0789 0.1114 0.0062 0.0254 0.0094 0.0490 0.0700 0.0277 0.0376 0.0409 0.1118	0.1076 0.0019 0.0142 0.0439 0.0446 0.0243 0.0459 0.1208 0.1478 0.0003 0.0269 0.0006 0.0411 0.0029 0.0314 0.0102 0.2314 0.0102 0.0315 0.0165 0.0704 0.0223 0.0156 0.0343 0.1492 0.1305 0.0059 0.0150 0.035 0.0228 0.0056 0.0270 0.037 0.0239 0.0150 0.0035 0.0035 0.0228 0.0066 0.0270 0.035 0.0059 0.0150 0.0035 0.0250 0.0260 0.0270 0.0325 0.0059 0.0150 0.035 0.0059 0.0059 0.0050 0.0350 0.0350 0.0370 0.0310 0.0310 0.0310 0.0311 0.0444 0.0043 0.0316 0.0316 0.0316 0.0431 0.0444 0.0431 0.0316	0.0014 0.0039 0.0037 0.0785 0.0274 0.0396 0.0558 0.0956 0.0059 0.1239 0.0037 0.0785 0.0274 0.0396 0.0558 0.0958 0.0058 0.0038 0.0038 0.0037 0.1167 0.0054 0.0244 0.0097 0.0585 0.0368 0.0933 0.0248 0.0063 0.0209 0.0284 0.0783 0.1440 0.0038 0.0932 0.0151 0.0816 0.0049 0.0159 0.0159 0.0120 0.1270 0.0033 0.0432 0.0087 0.0555 0.0235 0.0440 0.1092 0.1603 0.0033 0.0432 0.0007 0.0674 0.0023 0.0288 0.0174 0.0949 0.0003 0.0258 0.0144 0.0258 0.0156 0.2058	0.0298 0.0814 0.0000 0.0248 0.0814 0.0150 0.0011 0.1110 0.0061 0.0103 0.0721 0.053 0.0159 0.0752 0.0120 0.0003 0.1026 0.0029 0.1741 0.0799 0.0151 0.0006 0.0672 0.0039
$\begin{array}{c} \beta_3 \\ \text{CEM} \\ 0.0123 \\ 0.0149 \\ 0.0021 \\ 0.0102 \end{array}$		0.0259 0.0517 0.0593 0.0596 0.0596 0.0512 0.0700 0.0989 0.0913	0.0259 0.0279 0.0279 0.0206 0.0462 0.0579 0.0579	0.0462 0.0579 0.0506 0.0468 0.0999 0.1114 0.0700	0.0446 0.0223 0.0226 0.0593 0.0592 0.0592	0.0785 0.0963 0.0816 0.0555 0.0674 0.06745	0.0814 0.0814 0.0110 0.0508 0.0752 0.1026 0.0759 0.0759
$\begin{array}{c} \beta_3 \\ EM \\ 0.0231 \\ 0.0010 \\ 0.1423 \\ 0.0004 \end{array}$	0.0029 0.0029 0.0357 0.0011 0.0020 0.0003	0.0027 0.0027 0.0048 0.00315 0.0005 0.0008 0.0047 0.0704		0.0083 0.0487 0.0011 0.0031 0.0539 0.0004 0.0146 0.0520 0.0275 0.007 0.0524 0.0002 0.0135 0.1127 0.0094 0.0029 0.1348 0.0024 0.0072 0.0918 0.0277 0.0079 0.0995 0.0066	0.0142 0.0439 0.0269 0.0006 0.0165 0.0704 0.0150 0.0035 0.0384 0.0040 0.0507 0.0029 0.0376 0.0993	0.0114 0.0788 0.0087 0.0059 0.1239 0.0037 0.0368 0.0933 0.0248 0.0189 0.0928 0.0151 0.0025 0.0319 0.0380 0.0033 0.0432 0.0007 0.0105 0.0256 0.344	0.0003 0.0011 0.0197 0.0003 0.0003 0.1741 0.0006
α3 α3 EM CEM 0.0052 0.0144 0.0014 0.0137 0.0031 0.0033	0.0285 0.0285 0.0183 0.0155 0.0377 0.0405	0.0331 0.0735 0.0787 0.0838 0.0640 0.1018 0.1199	0.0045 0.1123 0.0045 0.0105 0.0026 0.0006 0.0030 0.0162 0.0083 0.0487 0.0031 0.0639 0.0146 0.0520	0.0083 0.0487 0.0031 0.0639 0.0146 0.0520 0.0007 0.0524 0.0135 0.1127 0.0072 0.0918 0.0072 0.0918	0.0142 0.0269 0.0165 0.0150 0.0384 0.0376	0.0114 0.0788 0.0059 0.1239 0.0368 0.0933 0.0189 0.0928 0.0025 0.0319 0.0033 0.0432 0.0105 0.0226	0.0029 0.0939 0.0029 0.0914 0.0460 0.0448 0.0029 0.0704 0.0035 0.0704 0.0035 0.0673 0.0248 0.0527 0.0035 0.0673
			0.1544 0.0045 0.1524 0.0045 0.2537 0.0030 0.2537 0.0030 0.0800 0.0083 0.0908 0.0031 0.0908 0.0031 0.1945 0.0146	0.0083 0.0031 0.0146 0.0007 0.0029 0.0029 0.0072	0.0013 0.0003 0.0059 0.0059 0.0106 0.0016	0.0059 0.0059 0.0058 0.0189 0.0025 0.0033	
β_2 CEM 0.1414 0.1613 0.2677		0.0078 0.2250 0.0024 0.0606 0.0034 0.0435 0.0437 0.1435 0.0032 0.1805 0.0158 0.0488 0.0018 0.0451 0.0798 0.1006		0.0800 0.0908 0.1475 0.1999 0.0648 1.0.0382 5.0.1150	3 0.1076 0.1478 1 0.2317 3 0.2395 3 0.0944 9 0.0959 1 0.1946	0.0088 0.0571 0.0028 0.0571 0.0064 0.1314 0.0042 0.1456 0.0692 0.1270 0.0056 0.1295 0.0056 0.1295	0.0547 0.0547 0.0547 0.01587 0.01717 0.01129 0.02682 0.02032
$\begin{array}{c c} \alpha_2 & \beta_2 \\ \text{CEM} & \text{EM} \\ 0.3742 & 0.0231 \\ 0.4257 & 0.0024 \\ 0.4687 & 0.1494 \\ 0.5416 & 0.0044 \end{array}$	0.3523 0.0143 0.3650 0.0116 0.4802 0.0898 0.4969 0.0069 0.2779 0.0166 0.2961 0.0022 0.3878 0.0601	0.4411 0.0078 0.1716 0.0024 0.2180 0.0032 0.3033 0.0437 0.3647 0.0032 0.1307 0.0158 0.1126 0.0018 0.1986 0.0798	0.3898 0.0348 0.4121 0.0037 0.5236 0.2093 0.5081 0.0063 0.2248 0.0029 0.2374 0.0001 0.3149 0.0351	0.2248 0.0029 0.2374 0.0001 0.3149 0.0351 0.4070 0.0011 0.1405 0.0229 0.1079 0.0054 0.2353 0.0526	0.2807 0.0373 0.3673 0.0101 0.4872 0.1194 0.4872 0.0123 0.2557 0.0198 0.2566 0.0069 0.4407 0.0158	0.1597 0.0088 0.1368 0.0028 0.2670 0.0664 0.2964 0.0042 0.3273 0.0692 0.3355 0.0056 0.3767 0.1432	
α2 EM 3 0.0113 5 0.0127 5 0.0334	7 0.0078 9 0.0683 3 0.0100 7 0.0229 9 0.0006	2 0.0093 2 0.0134 3 0.0070 1 0.0070 3 0.0032 3 0.0295 1 0.0071	2 0.0033 2 0.0583 2 0.0103 2 0.1158 3 0.0130 3 0.0019 5 0.0132	\$ 0.0044 \$ 0.0019 \$ 0.0132 \$ 0.0146 \$ 0.0295 \$ 0.0007 \$ 0.0273	0.0035 0.0660 0.0083 0.0018 0.0759 0.0090 0.0058 0.0496 0.1121 0.0054 0.0472 0.0338 0.0019 0.0556 0.0373 0.0017 0.0385 0.0384 0.0017 0.0385 0.0384	0.0010 0.0278 0.0342 0.0027 0.0374 0.036 0.0140 0.0379 0.0421 0.0066 0.0358 0.0056 0.0045 0.0538 0.0058 0.0018 0.0606 0.0179 0.0038 0.0603 0.0109	7 0.0106 7 0.0106 5 0.0730 1 0.0162 8 0.0902 2 0.0073 9 0.1099
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.0011 0.0847 0.00 0.0040 0.1040 0.00 0.0102 0.0879 0.06 0.0115 0.0703 0.01 0.0105 0.0817 0.02 0.0046 0.0980 0.00	0.0862 1 0.0893 3 0.0893 3 0.0571 9 0.0546 1 0.0494 7 0.0388	3 0.0806 3 0.0806 3 0.0402 3 0.0673 3 0.0668 1 0.0560	0.0008 0.0668 0.00 0.0010 0.0766 0.00 0.0131 0.0560 0.01 0.0096 0.0455 0.01 0.0004 0.0356 0.00 0.0030 0.0275 0.02 0.0033 0.0450 0.02	0.0035 0.0660 0.000 0.0018 0.0789 0.000 0.0058 0.0496 0.11; 0.0054 0.0472 0.03; 0.0014 0.0513 0.03; 0.0017 0.0385 0.03; 0.0017 0.0385 0.03	0.0010 0.0278 0.03 0.0027 0.0374 0.00 0.0140 0.0379 0.04 0.0066 0.0358 0.06 0.0045 0.0538 0.06 0.0018 0.0606 0.01 0.0038 0.0403 0.01	0.0078 0.0373 0.01 0.0078 0.0237 0.01 0.0249 0.0055 0.07 0.0003 0.0291 0.01 0.0015 0.0258 0.09 0.0013 0.0258 0.09 0.0013 0.0279 0.10
β ₁ EM 3 0.0104 1 0.0035 3 0.0539 0.0047	0.0011 0.0102 0.0102 0.0115 0.0105 0.0046	0.0135 0.0184 1.0.0028 3.0.0076 5.0.0069 0.00076 0.00047	0.0048 0.0048 0.0008 0.0008 0.0008 0.0008 0.0010	\$ 0.0008 \$ 0.0010 \$ 0.0036 \$ 0.0096 \$ 0.0097 \$ 0.0004	0.0035 0.0058 0.0058 0.0054 0.0014 0.0017	0.0010 0.00140 0.00466 0.00466 0.00466 0.0048	0.0033 0.0003 0.0003 0.0003 0.0003 0.0003
α1 α1 β1 β1 α2 EM CEM EM CEM EM 0.0191 0.0283 0.0104 0.1033 0.0113 0.0006 0.0044 0.0389 0.0415 0.0334 0.0888 0.0071 0.0477 0.0477 0.0784	0.0133 0.0037 0.0011 0.0847 0.0078 0.0024 0.0096 0.0040 0.1040 0.0003 0.0041 0.0340 0.0102 0.0879 0.0683 0.0085 0.0389 0.0115 0.0703 0.0100 0.0140 0.0230 0.0105 0.0817 0.0229 0.0066 0.0133 0.0046 0.0980 0.0006	0.0063 0.0099 0.0184 0.0592 0.0934 0.0063 0.0063 0.0094 0.0028 0.0893 0.0770 0.0053 0.0051 0.0052 0.0052 0.0051 0.0053 0.0070 0.0053 0.0054 0.0059 0.0056 0.0054 0.0059 0.0056 0.0054 0.0059 0.0060 0.0013 0.0059 0.0076 0.0549 0.0971 0.0014 0.0043 0.0047 0.0389 0.0295 0.0060 0.0014 0.0043 0.0047 0.0389 0.0296 0.0294 0.0071 0.0041 0.0043 0.0047 0.0389 0.0296	0.0145 0.0074 0.0024 0.0005 0.0005 0.0005 0.00145 0.0074 0.0048 0.0080 0.0086 0.0083 0.0084 0.0092 0.0103 0.0084 0.0092 0.0103 0.0092 0.0003 0.0005 0.01158 0.0005 0.0103 0.0008 0.0068 0.0064 0.0087 0.0008 0.0010 0.0706 0.0103 0.0008 0.0010 0.0706 0.0103 0.0008 0.0109 0.0109 0.0109 0.0109 0.0109 0.0109 0.0109 0.0109 0.0109 0.0109 0.0109 0.0109 0.0009 0.0109 0.0109 0.0109 0.0009 0.0109 0.0109 0.0109 0.0009 0.0109 0.0009 0.0109 0.0009 0.0109 0.0009 0.0109 0.0009 0.0109 0.0009 0.0109 0.0009 0.0109 0.0009 0.0109 0.0009 0.0109 0.0009 0.0109 0.0009 0.0109 0.0009 0.0109 0.0009	0.0050 0.0103 0.0008 0.0668 0.0044 0.0087 0.0008 0.0010 0.0706 0.0019 0.0180 0.0445 0.0131 0.0560 0.0132 0.0060 0.0292 0.0096 0.0485 0.0146 0.0033 0.0036 0.0096 0.0451 0.0295 0.0011 0.0071 0.0004 0.0356 0.0007 0.0011 0.0071 0.0004 0.0356 0.0007 0.0015 0.0172 0.0030 0.0275 0.0270 0.0033 0.0271 0.0093 0.0450 0.0276	0.0092 0.0146 0.0035 0.0660 0.0083 0.0003 0.0061 0.0018 0.0789 0.0090 0.0002 0.0318 0.0058 0.0496 0.1121 0.0064 0.0220 0.0054 0.0472 0.0338 0.0031 0.0092 0.0014 0.0513 0.0373 0.0027 0.0094 0.0019 0.0656 0.0874 0.0001 0.0281 0.0017 0.0385 0.0384	0.0029 0.0016 0.0010 0.0278 0.0342 0.0025 0.0016 0.0010 0.0278 0.0342 0.0075 0.0266 0.0140 0.0379 0.0421 0.0074 0.0273 0.0066 0.0358 0.0056 0.0074 0.0273 0.0066 0.0358 0.0056 0.0034 0.0033 0.0045 0.0536 0.0638 0.0007 0.0068 0.0018 0.0606 0.0179 0.0054 0.0228 0.0038 0.0403 0.0109	0.0076 0.0018 0.0024 0.0034 0.0036 0.0000 0.0000 0.0000 0.00000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.000
$\begin{array}{c} \alpha_1 \\ EM \\ 0.0191 \\ 0.0066 \\ 0.0588 \\ 0.0085 \end{array}$	0.0024 0.0024 0.0141 0.0085 0.0085 0.0066 0.0066	0.0100 0.0065 0.0055 0.0103 0.0134 0.0147	0.0034 0.0034 0.0034 0.0035 0.0057 0.0087	0.0056 0.0087 0.0087 0.0066 0.0013 0.00145 0.0045	0.0093 0.0003 0.0004 0.0064 0.0031 0.0027 0.0001	0.0028 0.0028 0.0078 0.0074 0.0034 0.0007	0.0036 0.0036 0.0036 0.0037 0.0041 0.0046 0.0046
$n \\ 100 \\ 500 \\ 100 \\ 500$	100 500 100 500 100 100 100	200 100 100 200 100 100 100	100 100 100 100 500 100 100	100 500 100 500 100 500 500	100 100 100 100 500 100 100 100	100 100 500 100 500 100 100	100 500 100 500 100 500 100 500 100
$\begin{bmatrix} x \\ [-1;3] \\ [0;2] \end{bmatrix}$	[0; 2] [0; 2] [-1; 3] [0; 2]	[-1; 3] [0; 2] [-1; 3] [0; 2]	[0; 2] [0; 2] [-1; 3] [0; 2]	[-1;3] $[0;2]$ $[-1;3]$ $[0;2]$	[0; 2] [0; 2] [-1; 3] [0; 2]	[0; 2] [0; 2] [-1; 3] [0; 2]	[0; 2] [0; 2] [-1; 3] [0; 2]
$\frac{\pi_2}{0.2}$	0.3	0.6	0.3	0.4	0.3	0.4	0.3
$\frac{\pi_1}{0.2}$	0.5	0.2	0.3	0.3	0.4	0.4	0.0

Tabela D.82: Estimativas do valor absoluto do enviesamento médio dos parâmetros da mistura de três regressões lineares no caso IV

0.2 0.4 ر د: 0.2 ر د.ن 0.6 0.3 0.2 [-1; 3][-1; 3][-1; 3][-1; 3][-1; 3][-1; 3][-1; 3][-1; 3][-1; 3][-1; 3][-1; 3][-1; 3][-1; 3][0; 2][0; 2]-1;3[0; 2][0; 2][0; 2][0; 2][0; 2][0; 2][0; 2][0; 2][0; 2][0; 2]500 500 500 500 500 500 500 500 $\frac{100}{500}$ 500 $100 \\ 500$ 500 500 500 500 500 500 500 500 500 500 500 500 500 500 100 100 100 100 100 100 100 100 100 100 100 100 100 00 9 00 90 00 9 001 00 9 00 $0.0038\ 0.0038\ 0.0010\ 0.0414\ 0.0335\ 0.2502\ 0.0233\ 0.2190\ 0.0011\ 0.0164\ 0.0012\ 0.0785\ 0.0037\ 0.0388\ 0.0200\ 0.0397\ 0.0036\ 0.0769\ 0.0005\ 0.0582\ 0.0078\ 0.1020\ 0.0073\ 0.0438$ $0.0153\ 0.0489\ 0.0015\ 0.0666\ 0.2595\ 0.3819\ 0.0827\ 0.3251\ 0.0169\ 0.0493\ 0.0399\ 0.0476\ 0.0018\ 0.0005\ 0.2547\ 0.3538\ 0.0072\ 0.0695\ 0.0074\ 0.0704\ 0.0704\ 0.0338\ 0.1335\ 0.0264\ 0.0632$ $0.0058\ 0.1040\ 0.0037\ 0.1025\ 0.0532\ 0.6180\ 0.0287\ 0.6372\ 0.0028\ 0.0204\ 0.0018\ 0.0220\ 0.0042\ 0.0156\ 0.0282\ 0.4656\ 0.0092\ 0.0119\ 0.0034\ 0.0768\ 0.0062\ 0.2056\ 0.0028$ $0.0008\ 0.0075\ 0.0006\ 0.0781\ 0.0201\ 0.4184\ 0.0055\ 0.2904\ 0.0010\ 0.0013\ 0.0039\ 0.0413\ 0.0011\ 0.0260\ 0.0197\ 0.0521\ 0.0063\ 0.0207\ 0.0023\ 0.0242\ 0.0004\ 0.0998\ 0.0027\ 0.0755\ 0.0019\ 0.0580\ 0.0012\ 0.0607\ 0.3130\ 0.6191\ 0.0767\ 0.4013\ 0.0420\ 0.0134\ 0.0788\ 0.0144\ 0.0120\ 0.3037\ 0.5222\ 0.0105\ 0.0019\ 0.0055\ 0.0405\ 0.0405\ 0.0068\ 0.1174\ 0.0013\ 0.0769$ $0.0159\ 0.0893\ 0.0158\ 0.2357\ 0.1638\ 0.1105\ 0.0877\ 0.2530\ 0.0030\ 0.0820\ 0.0220\ 0.0722\ 0.0398\ 0.1030\ 0.1290\ 0.1683\ 0.0468\ 0.2335\ 0.0008\ 0.0104\ 0.0320\ 0.0511\ 0.0312\ 0.0615\\ 0.0008\ 0.1364\ 0.0027\ 0.3433\ 0.0526\ 0.2817\ 0.0272\ 0.4146\ 0.0024\ 0.0956\ 0.0042\ 0.0792\ 0.0004\ 0.0581\ 0.0210\ 0.2111\ 0.0231\ 0.2918\ 0.0013\ 0.0013\ 0.0054\ 0.0009\ 0.1681\ 0.0900\ 0.0021\ 0.0754\\ 0.0197\ 0.0247\ 0.0061\ 0.0946\ 0.1240\ 0.4639\ 0.0165\ 0.1852\ 0.0062\ 0.0064\ 0.0181\ 0.0221\ 0.0263\ 0.0547\ 0.1942\ 0.2278\ 0.0069\ 0.0290\ 0.0003\ 0.0146\ 0.0018\ 0.0900\ 0.0921\ 0.0754$ $0.0129\ 0.0781\ 0.0242\ 0.0887\ 0.2620\ 0.7112\ 0.0897\ 0.0871\ 0.0156\ 0.0158\ 0.0116\ 0.0195\ 0.0476\ 0.0499\ 0.2123\ 0.3705\ 0.0019\ 0.0019\ 0.0012\ 0.0013\ 0.0488\ 0.0877\ 0.1723\ 0.0075\ 0.1235\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.0112\ 0.01$ $0.0047\ 0.0013\ 0.0017\ 0.1271\ 0.0301\ 0.4564\ 0.0154\ 0.3096\ 0.0301\ 0.0010\ 0.0011\ 0.0011\ 0.0071\ 0.0372\ 0.0388\ 0.0882\ 0.0028\ 0.0001\ 0.0002\ 0.0064\ 0.0001\ 0.0001\ 0.1050\ 0.0001\ 0.0987$ $0.0069\ 0.0783\ 0.0038\ 0.0936\ 0.0082\ 0.1728\ 0.0079\ 0.1677\ 0.0109\ 0.0737\ 0.0123\ 0.0699\ 0.0121\ 0.0691\ 0.0108\ 0.0213\ 0.0030\ 0.2624\ 0.0002\ 0.0753\ 0.0086\ 0.2070\ 0.0089\ 0.1318\ 0.0971\ 0.1583\ 0.1085\ 0.3968\ 0.1939\ 0.1184\ 0.1068\ 0.1838\ 0.0332\ 0.1285\ 0.0084\ 0.1170\ 0.0918\ 0.1742\ 0.0709\ 0.1164\ 0.0640\ 0.2683\ 0.0038\ 0.0244\ 0.0460\ 0.1220\ 0.0422\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.0976\ 0.09$ $0.0162\ 0.0803\ 0.0174\ 0.1156\ 0.2977\ 0.1430\ 0.1595\ 0.2867\ 0.0118\ 0.0644\ 0.0298\ 0.0558\ 0.0280\ 0.0446\ 0.1518\ 0.2026\ 0.0133\ 0.1604\ 0.0078\ 0.0658\ 0.0461\ 0.0843\ 0.0383\ 0.0186$ $0.0023\ 0.0088\ 0.0012\ 0.0242\ 0.0173\ 0.1383\ 0.0041\ 0.1302\ 0.0079\ 0.0202\ 0.0061\ 0.0798\ 0.0034\ 0.0584\ 0.0195\ 0.0324\ 0.0083\ 0.1269\ 0.0019\ 0.0612$ 0.0082 0.0282 $0.0074\ 0.0071\ 0.0050\ 0.0778\ 0.0216\ 0.3302\ 0.0180\ 0.2815\ 0.0041\ 0.0018\ 0.0032\ 0.0419\ 0.0078\ 0.0498\ 0.0145\ 0.0443\ 0.0029\ 0.0317\ 0.0014\ 0.0369\ 0.0032\ 0.1231\ 0.0018\ 0.0863$ $0.0010\ 0.0665\ 0.0012\ 0.0765\ 0.2206\ 0.8045\ 0.0227\ 0.0399\ 0.0411\ 0.0246\ 0.0215\ 0.0077\ 0.0265\ 0.0286\ 0.3321\ 0.5085\ 0.0192\ 0.0032\ 0.0047\ 0.0427\ 0.0222\ 0.1187\ 0.0269\ 0.0760$ $0.0032\ 0.0049\ 0.0017\ 0.1051\ 0.0246\ 0.4514\ 0.0105\ 0.3023\ 0.0013\ 0.0024\ 0.0017\ 0.0238\ 0.0049\ 0.0334\ 0.0432\ 0.0912\ 0.0031\ 0.0058\ 0.0008\ 0.0138\ 0.0008\ 0.1055\ 0.0000\ 0.0917$ $0.0029\ 0.0226\ 0.0021\ 0.0159\ 0.0116\ 0.0249\ 0.0098\ 0.0406\ 0.0016\ 0.0456\ 0.0041\ 0.0941\ 0.0058\ 0.0809\ 0.0159\ 0.0372\ 0.0104\ 0.1780\ 0.0007\ 0.0253\ 0.0003\ 0.0097\ 0.0010\ 0.0350$ 0.00080.0021 $0.0056\ 0.0099\ 0.0038\ 0.0883\ 0.0140\ 0.2467\ 0.0113\ 0.2240\ 0.0025\ 0.0128\ 0.0018\ 0.0423\ 0.0046\ 0.0729\ 0.0184\ 0.0424\ 0.0039\ 0.0547\ 0.0009\ 0.0346\ 0.0013\ 0.1153\ 0.0004\ 0.0807$ $0.0028\ 0.0051\ 0.0004\ 0.1171\ 0.0053\ 0.3668\ 0.0069\ 0.2940\ 0.0013\ 0.0025\ 0.0004\ 0.0222\ 0.0083\ 0.0558\ 0.0142\ 0.0479\ 0.0043\ 0.0098\ 0.0012\ 0.0223\ 0.0013\ 0.1347\ 0.0000\ 0.1125$ $0.0135\ 0.0123\ 0.0185\ 0.0964\ 0.0335\ 0.3065\ 0.0218\ 0.2086\ 0.0006\ 0.0097\ 0.0040\ 0.0270\ 0.0404\ 0.0772\ 0.0872\ 0.1018\ 0.0206\ 0.0432\ 0.0012\ 0.0233\ 0.0034\ 0.1092\ 0.0022\ 0.0860$ $0.0040\ 0.1079\ 0.0007\ 0.1327\ 0.0575\ 0.8803\ 0.0106\ 0.5197\ 0.0011\ 0.0342\ 0.0066\ 0.0330\ 0.0060\ 0.0031\ 0.0528\ 0.4974\ 0.0055\ 0.0268\ 0.0023\ 0.0367\ 0.0032\ 0.1555\ 0.0009\ 0.1188$ $0.0028\ 0.1514\ 0.0044\ 0.4341\ 0.0197\ 0.1921\ 0.0129\ 0.3747\ 0.0055\ 0.0903\ 0.0010\ 0.0674\ 0.0192\ 0.0954\ 0.0045\ 0.1932\ 0.0076\ 0.2352\ 0.0045\ 0.0152\ 0.0009\ 0.1880\ 0.0036\ 0.1729$ $0.0295\ 0.0593\ 0.0300\ 0.2287\ 0.2001\ 0.1216\ 0.0904\ 0.0780\ 0.0139\ 0.0866\ 0.0251\ 0.0610\ 0.0607\ 0.1269\ 0.1330\ 0.1571\ 0.0099\ 0.1531\ 0.0140\ 0.0101\ 0.0512\ 0.0099\ 0.0372\ 0.0002$ $0.0084\ 0.0429\ 0.0098\ 0.1134\ 0.0238\ 0.0936\ 0.0141\ 0.0830\ 0.0006\ 0.0367\ 0.0006\ 0.0450\ 0.0095\ 0.0724\ 0.0148\ 0.0575\ 0.0060\ 0.1138\ 0.0022\ 0.0321\ 0.0021\ 0.0191\ 0.0001\ 0.0130$ 0.0012 $0.0393\ 0.0521\ 0.0158\ 0.1603\ 0.3108\ 0.6290\ 0.1820\ 0.1960\ 0.0169\ 0.0191\ 0.0018\ 0.0011\ 0.0789\ 0.1215\ 0.1443\ 0.1837\ 0.0090\ 0.0515\ 0.0068\ 0.0310\ 0.0098\ 0.1366\ 0.0030\ 0.1056$ $0.0067\ 0.0154\ 0.0170\ 0.1316\ 0.0175\ 0.3032\ 0.0193\ 0.2867\ 0.0021\ 0.0039\ 0.0032\ 0.0158\ 0.0099\ 0.0805\ 0.0151\ 0.0594\ 0.0006\ 0.0218\ 0.0036\ 0.0099\ 0.0059\ 0.1296\ 0.0095\ 0.1197$ $0.0321\ 0.1075\ 0.0267\ 0.1065\ 0.3316\ 0.8565\ 0.1157\ 0.0367\ 0.0277\ 0.0028\ 0.0093\ 0.0008\ 0.0619\ 0.0784\ 0.2493\ 0.4173\ 0.0032\ 0.0180\ 0.0133\ 0.0507\ 0.0012\ 0.1834\ 0.0121\ 0.1327\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.00$ $0.0003\ 0.0074\ 0.0066\ 0.1459\ 0.0100\ 0.3956\ 0.0135\ 0.3295\ 0.0013\ 0.0034\ 0.0020\ 0.0057\ 0.0069\ 0.0632\ 0.0180\ 0.0667\ 0.0021\ 0.0002\ 0.0000\ 0.0177$ 0.0327 0.0747 0.0591 0.0893 0.4230 0.9972 0.2401 0.2131 0.0241 0.0219 0.0233 0.0399 0.0593 0.0631 0.3138 0.4819 0.0094 0.0214 0.0001 0.0277 0.0323 0.1115 0.0324 0.0838 $0.0069\ 0.0116\ 0.0031\ 0.0429\ 0.0507\ 0.3542\ 0.0371\ 0.2755\ 0.0022\ 0.0050\ 0.0018\ 0.0757\ 0.0056\ 0.0280\ 0.0404\ 0.0740\ 0.0022\ 0.0405\ 0.0009\ 0.0529\ 0.0034\ 0.0889\ 0.0025\ 0.0360$ $0.0152\ 0.0209\ 0.0045\ 0.0645\ 0.1706\ 0.4138\ 0.0783\ 0.1860\ 0.0068\ 0.0015\ 0.0127\ 0.0342\ 0.0160\ 0.0396\ 0.2134\ 0.2393\ 0.0248\ 0.0418\ 0.0019\ 0.0330\ 0.0330\ 0.036\ 0.0867\ 0.0017\ 0.0537$ 0.0074 $0.0040\ 0.0049\ 0.0025\ 0.0611\ 0.1067\ 0.3087\ 0.0696\ 0.2219\ 0.0104\ 0.0032\ 0.0112\ 0.0386\ 0.0286\ 0.0286\ 0.0649\ 0.1237$ 0.0004 $0.0027\ 0.0303\ 0.0070\ 0.0332\ 0.0687\ 0.1053\ 0.0584\ 0.0979\ 0.0134\ 0.0350\ 0.0013\ 0.0714\ 0.0440\ 0.0170\ 0.0712\ 0.0712\ 0.0760\ 0.0510\ 0.1666\ 0.0036\ 0.0184\ 0.0127\ 0.0269\ 0.0163\ 0.0085$ $0.0036\ 0.0154\ 0.0219\ 0.0708\ 0.1468\ 0.2645\ 0.0995\ 0.2102\ 0.0043\ 0.0312\ 0.0183\ 0.0347\ 0.0360\ 0.0896\ 0.1137\ 0.0995\ 0.0173\ 0.0774\ 0.0044\ 0.0212\ 0.0213\ 0.0990\ 0.0257\ 0.0778$ $0.0002\ 0.0073\ 0.0173\ 0.1163\ 0.0948\ 0.4879\ 0.0282\ 0.1704\ 0.0113\ 0.0071\ 0.0149\ 0.0149\ 0.0100\ 0.0269\ 0.0575\ 0.2036\ 0.2593\ 0.0011\ 0.0113\ 0.0000\ 0.0066\ 0.0027\ 0.0931\ 0.0027\ 0.0865$ $0.0159\ 0.1354\ 0.0291\ 0.4965\ 0.0112\ 0.2887\ 0.0129\ 0.3129\ 0.0241\ 0.0887\ 0.0291\ 0.0863\ 0.0195\ 0.1141\ 0.0107\ 0.1477\ 0.0014\ 0.2964\ 0.0008\ 0.0366\ 0.0176\ 0.2185\ 0.0168\ 0.1819$ $0.0104\ 0.0355\ 0.0358\ 0.1050\ 0.0805\ 0.0258\ 0.0427\ 0.0127\ 0.0181\ 0.0451\ 0.0430\ 0.0448\ 0.0705\ 0.1284\ 0.0790\ 0.0823\ 0.0322\ 0.1889\ 0.0023\ 0.0398\ 0.0456\ 0.0492\ 0.0433\ 0.0094$ 0.0024 $0.0046\ 0.0007\ 0.0022\ 0.1508\ 0.0064\ 0.4852\ 0.0014\ 0.3186\ 0.0005\ 0.0048\ 0.0018\ 0.0018\ 0.0047\ 0.0400\ 0.0242\ 0.0797\ 0.0019\ 0.0064\ 0.0000\ 0.0074\ 0.0009\ 0.1069\ 0.0010\ 0.0994$ $0.0139\ 0.0220\ 0.0063\ 0.0424\ 0.1611\ 0.3657\ 0.0774\ 0.1790\ 0.0068\ 0.0094\ 0.0284\ 0.0463\ 0.0052\ 0.0220\ 0.2069\ 0.1966\ 0.0285\ 0.0758\ 0.0028\ 0.0496\ 0.0132\ 0.0825\ 0.0160\ 0.0330$ $0.0006\ 0.0015\ 0.0023\ 0.0315\ 0.1629\ 0.3155\ 0.0820\ 0.1916\ 0.0083\ 0.0184\ 0.0191\ 0.0636\ 0.0102\ 0.0391\ 0.1181\ 0.1358\ 0.0487\ 0.1028\ 0.0019\ 0.0591\ 0.0171\ 0.0963\ 0.0152\ 0.0372$ $0.0110\ 0.0112\ 0.0322\ 0.1152\ 0.0533\ 0.3449\ 0.0409\ 0.2471\ 0.0135\ 0.0058\ 0.0047\ 0.0087\ 0.0734\ 0.1095\ 0.1205\ 0.1598\ 0.0040\ 0.0113\ 0.0034\ 0.0130$ $\begin{smallmatrix} 0.1045 \ 0.0330 \ 0.1049 \ 0.3376 \ 0.5769 \ 0.1312 \ 0.3587 \ 0.0001 \ 0.0112 \ 0.0179 \ 0.0077 \ 0.0155 \ 0.0104 \ 0.2250 \ 0.4031 \ 0.0050 \ 0.0316 \ 0.0125 \ 0.0687 \ 0.0290 \ 0.1675 \ 0.0165 \ 0.0988 \ 0.01119 \ 0.0107 \ 0.1281 \ 0.1065 \ 0.8023 \ 0.0592 \ 0.5566 \ 0.0074 \ 0.0357 \ 0.0002 \ 0.0421 \ 0.0011 \ 0.0061 \ 0.0329 \ 0.4505 \ 0.0028 \ 0.0376 \ 0.0002 \ 0.0609 \ 0.0088 \ 0.2215 \ 0.0086 \ 0.1606 \ 0.0011 \ 0.0011 \ 0.0011 \ 0.0011 \ 0.0011 \ 0.0011 \ 0.0011 \ 0.0011 \ 0.0011 \ 0.0011 \ 0.0011 \ 0.0011 \ 0.0011 \ 0.0011 \ 0.0011 \ 0.0011 \ 0.0011 \ 0.0011 \ 0.0011 \ 0.0011 \ 0.0011 \ 0.0011 \ 0.0011 \ 0.0011 \ 0.0011 \ 0.0011 \ 0.0011 \ 0.0011 \ 0.0011 \ 0.0011 \ 0.0011 \ 0.0011 \ 0.0011 \ 0.0011 \ 0.0011 \ 0.0011 \ 0.0011 \ 0.0011 \ 0.0011 \ 0.0011 \ 0.0011 \ 0.0011 \ 0.0011 \ 0.0011 \ 0.0011 \ 0.0011 \ 0.0011 \ 0.0011 \ 0.0011 \ 0.0011 \ 0.0011 \ 0.0011 \ 0.0011 \ 0.0011 \ 0.0011 \ 0.0011 \ 0.0011 \ 0.0011 \ 0.0011 \ 0.0011 \ 0.0011 \ 0.0011 \ 0.0011 \ 0.0011 \ 0.0011 \ 0.0011 \ 0.0011 \ 0.0011 \ 0.0011 \ 0.0011 \ 0.0011 \ 0.0011 \ 0.0011 \ 0.0011 \ 0.0011 \ 0.0011 \ 0.0011 \ 0.0011 \ 0.0011 \ 0.0011 \ 0.0011 \ 0.0011 \ 0.0011 \ 0.0011 \ 0.0011 \ 0.0011 \ 0.0011 \ 0.0011 \ 0.0011 \ 0.0011 \ 0.0011 \ 0.0011 \ 0.0011 \ 0.0011 \ 0.0011 \ 0.0011 \ 0.0011 \ 0.0011 \ 0.0011 \ 0.0011 \ 0.0011 \ 0.0011 \ 0.0011 \ 0.0011 \ 0.0011 \ 0.0011 \ 0.0011 \ 0.0011 \ 0.0011 \ 0.0011 \ 0.0011 \ 0.0011 \ 0.0011 \ 0.0011 \ 0.0011 \ 0.0011 \ 0.0011 \ 0.0011 \ 0.0011 \ 0.0011 \ 0.0011 \ 0.0011 \ 0.0011 \ 0.0011 \ 0.0011 \ 0.0011 \ 0.0011 \ 0.0011 \ 0.0011 \ 0.0011 \ 0.0011 \ 0.0011 \ 0.0011 \ 0.0011 \ 0.0011 \ 0.0011 \ 0.0011 \ 0.0011 \ 0.0011 \ 0.0011 \ 0.0011 \ 0.0011 \ 0.0011 \ 0.0011 \ 0.0011 \ 0.0011 \ 0.0011 \ 0.0011 \ 0.0011 \ 0.0011 \ 0.0011 \ 0.0011 \ 0.0011 \ 0.0011 \ 0.0011 \ 0.0011 \ 0.0011 \ 0.0011 \ 0.0011 \ 0.0011 \ 0.0011 \ 0.0011 \ 0.0011 \ 0.0011 \ 0.0011 \ 0.0011 \ 0.0011 \ 0.0011 \ 0.0011 \ 0.0011 \ 0.0011 \ 0.0011 \ 0.0011 \ 0.0011 \ 0.0011 \ 0.0011 \ 0.0011 \ 0.0011 \ 0.0011 \ 0.0011 \ 0.00110$ $0.0849\ 0.0058\ 0.1244\ 0.2768\ 0.4399\ 0.1097\ 0.1752\ 0.0114\ 0.0346\ 0.0219\ 0.0426\ 0.0415\ 0.0571\ 0.1713\ 0.2767\ 0.0002\ 0.0546\ 0.0100\ 0.0642\ 0.0378\ 0.1459\ 0.0278\ 0.0818$ $0.0772\ 0.0047\ 0.0861\ 0.0763\ 0.8151\ 0.0272\ 0.5523\ 0.0023\ 0.0268\ 0.0013\ 0.0149\ 0.0013\ 0.0013\ 0.0013\ 0.0013\ 0.0051\ 0.0265\ 0.0034\ 0.0482\ 0.0008\ 0.1504\ 0.0043\ 0.1022$ $0.1142\ 0.0012\ 0.1754\ 0.0239\ 0.1193\ 0.0177\ 0.5469\ 0.0168\ 0.0990\ 0.0088\ 0.0553\ 0.0111\ 0.0089\ 0.0095\ 0.3099\ 0.0153\ 0.1471\ 0.0043\ 0.0600\ 0.0054\ 0.0586\ 0.0012\ 0.0014$ $0.0047\ 0.0071\ 0.0320\ 0.0767\ 0.1546\ 0.0596\ 0.1352\ 0.0121\ 0.0320\ 0.0221\ 0.0645\ 0.0295\ 0.0748\ 0.0934\ 0.0765\ 0.0261$ $0.0788 \ 0.0033 \ 0.1008 \ 0.1123 \ 0.8831 \ 0.0384 \ 0.4252 \ 0.0027 \ 0.0289 \ 0.0043 \ 0.0245 \ 0.0034 \ 0.0056 \ 0.0671 \ 0.0788 \ 0.0034 \ 0.0056 \ 0.0071 \ 0.0056 \ 0.0071 \ 0.0056 \ 0.0071 \ 0.0056 \ 0.0071 \ 0.0056 \ 0.0071 \ 0.0056 \ 0.0071 \ 0.0056 \ 0.0071 \ 0.0056 \ 0.0071 \ 0.0056 \ 0.0071 \ 0.0056 \ 0.0071 \ 0.0056 \ 0.0071 \ 0.0056 \ 0.0071 \ 0.0056 \ 0.0071 \ 0.0056 \ 0.0071 \ 0.0056 \ 0.0071 \ 0.0056 \ 0.0071 \ 0.0056 \ 0.0071 \ 0.0056 \ 0.0071 \ 0.0056 \ 0.0071 \ 0.0056 \ 0.0071 \ 0.0056 \ 0.0071 \ 0.0056 \ 0.0071 \ 0.0056 \ 0.0071 \ 0.0056 \ 0.0071 \ 0.0056 \ 0.0071 \ 0.0056 \ 0.0071 \ 0.0056 \ 0.0071 \ 0.0056 \ 0.0071 \ 0.0056 \ 0.0071 \ 0.0056 \ 0.0056 \ 0.0056 \ 0.0056 \ 0.0056 \ 0.0056 \ 0.0056 \ 0.0056 \ 0.0056 \ 0.0056 \ 0.0056 \ 0.0056 \ 0.0056 \ 0.0056 \ 0.0056 \ 0.0056 \ 0.0056 \ 0.0056 \ 0.0056 \ 0.0056 \ 0.0056 \ 0.0056 \ 0.0056 \ 0.0056 \ 0.0056 \ 0.0056 \ 0.0056 \ 0.0056 \ 0.0056 \ 0.0056 \ 0.0056 \ 0.0056 \ 0.0056 \ 0.0056 \ 0.0056 \ 0.0056 \ 0.0056 \ 0.0056 \ 0.0056 \ 0.0056 \ 0.0056 \ 0.0056 \ 0.0056 \ 0.0056 \ 0.0056 \ 0.0056 \ 0.0056 \ 0.0056 \ 0.0056 \ 0.0056 \ 0.0056 \ 0.0056 \ 0.0056 \ 0.0056 \ 0.0056 \ 0.0056 \ 0.0056 \ 0.0056 \ 0.0056 \ 0.0056 \ 0.0056 \ 0.0056 \ 0.0056 \ 0.0056 \ 0.0056 \ 0.0056 \ 0.0056 \ 0.0056 \ 0.0056 \ 0.0056 \ 0.0056 \ 0.0056 \ 0.0056 \ 0.0056 \ 0.0056 \ 0.0056 \ 0.0056 \ 0.0056 \ 0.0056 \ 0.0056 \ 0.0056 \ 0.0056 \ 0.0056 \ 0.0056 \ 0.0056 \ 0.0056 \ 0.0056 \ 0.0056 \ 0.0056 \ 0.0056 \ 0.0056 \ 0.0056 \ 0.0056 \ 0.0056 \ 0.0056 \ 0.0056 \ 0.0056 \ 0.0056 \ 0.0056 \ 0.0056 \ 0.0056 \ 0.0056 \ 0.0056 \ 0.0056 \ 0.0056 \ 0.0056 \ 0.0056 \ 0.0056 \ 0.0056 \ 0.0056 \ 0.0056 \ 0.0056 \ 0.0056 \ 0.0056 \ 0.0056 \ 0.0056 \ 0.0056 \ 0.0056 \ 0.0056 \ 0.0056 \ 0.0056 \ 0.0056 \ 0.0056 \ 0.0056 \ 0.0056 \ 0.0056 \ 0.0056 \ 0.0056 \ 0.0056 \ 0.0056 \ 0.0056 \ 0.0056 \ 0.0056 \ 0.0056 \ 0.0056 \ 0.0056 \ 0.0056 \ 0.0056 \ 0.0056 \ 0.0056 \ 0.0056 \ 0.0056 \ 0.0056 \ 0.0056 \ 0.0056 \ 0.0056 \ 0.0056 \ 0.0056 \ 0.0056 \ 0.0056 \ 0.0056 \ 0.0056 \ 0.0056 \ 0$ $0.0416\ 0.0199\ 0.0688\ 0.0618\ 0.1552\ 0.0341\ 0.1292\ 0.0171\ 0.0154\ 0.0165\ 0.0258\ 0.0764\ 0.1287$ $0.1673\ 0.0241\ 0.2356\ 0.0062\ 0.7326\ 0.0158\ 0.2909\ 0.0023\ 0.0338\ 0.0020\ 0.0446\ 0.0099\ 0.0162\ 0.0254\ 0.3251\ 0.0076\ 0.0192\ 0.0003\ 0.0568\ 0.0064\ 0.2297\ 0.0061\ 0.1729$ $0.0127\ 0.0136\ 0.0709\ 0.0866\ 0.2976\ 0.0626\ 0.2075\ 0.0019\ 0.0156\ 0.0130\ 0.0129\ 0.0654\ 0.1191\ 0.0754\ 0.1031\ 0.0112\ 0.0459\ 0.0053\ 0.0085\ 0.0167$ $0.1802\ 0.0062\ 0.1941\ 0.0345\ 0.9270\ 0.0072\ 0.3415\ 0.0049\ 0.0378\ 0.0091$ $0.0094\ 0.0171$ 0.0488 0.4404 0.6316 0.1639 0.0725 0.0927 0.7413 0.0181 $0.1088 \ 0.0966 \ 0.4253 \ 0.0456 \ 0.2489 \ 0.0005$ CEM EM 22 $_{\rm CEM}^{lpha_2}$ EM CEM 0.0311 0.0471 0.0269 0.1883 0.0098 0.0071 0.0097 0.0027 0.0027 0.0013 EM S $0.0019\ 0.0066\ 0.0062\ 0.0561\ 0.0855\ 0.2045\ 0.2495\ 0.0007\ 0.0095\ 0.0003\ 0.0041\ 0.0022\ 0.0858\ 0.0019\ 0.0817$ CEM EM 0.0351CEM $0.0018 \ 0.0002 \ 0.0267 \ 0.4060 \ 0.0005 \ 0.0488$ EΜ 0.0514 0.0738 0.0243 0.1062 EM $0.4617\ 0.0002\ 0.0296\ 0.0008\ 0.0368\ 0.0019\ 0.1523\ 0.0027\ 0.1155$ $0.1469\ 0.0214\ 0.0636\ 0.0031\ 0.0318$ 0.0008 0.0359 0.0039 0.0528 0.0073 0.0097 0.0084 0.0562 EM 0.1441 CEM $0.0015 \ 0.0505$ EM²1 $0.0037 \ 0.0743 \ 0.0018 \ 0.0131$ 0.0114 0.1107 0.0080 0.0977 $0.0008 \ 0.1356 \ 0.0007 \ 0.1178$ 0.1015 0.0113 0.0930 $0.0194\ 0.0518$ Ε<u>Υ</u>3

Tabela D.83: Estimativas do valor absoluto do enviesamento médio dos parâmetros da mistura de três regressões lineares no caso V

$\frac{\pi_3}{\text{CEM}}$ 0.0475 0.0222 0.0447 0.0213	$\begin{array}{c} 0.0501 \\ 0.0210 \\ 0.0494 \\ 0.0227 \\ \hline 0.0539 \\ 0.0213 \\ 0.0479 \\ 0.0479 \\ \end{array}$	0.0213 0.0428 0.0209 0.0198 0.0180 0.0402	0.0527 0.0527 0.0474 0.0248 0.0477 0.0522	0.0440 0.0192 0.0450 0.0207 0.0411 0.0402 0.0168	0.0533 0.0217 0.0516 0.0220 0.0471 0.0207 0.0435	0.0394 0.0178 0.0383 0.0176 0.0488 0.0202 0.0464	0.0432 0.0191 0.0401 0.0172 0.0397 0.0168 0.0395
π3 EM 0.0475 0.0222 0.0447 0.0213	0.0501 0.0210 0.0495 0.0227 0.0539 0.0539 0.0213 0.0479	0.0427 0.0420 0.0440 0.0198 0.0427 0.0180 0.0402	0.0527 0.0527 0.0474 0.0248 0.0248 0.0477 0.0477 0.0522	0.0439 0.0192 0.0451 0.0207 0.0411 0.0402 0.0402	0.0533 0.0217 0.0516 0.0220 0.0471 0.0207 0.0435	0.0394 0.0178 0.0384 0.0176 0.0488 0.0202 0.0464	0.0433 0.0191 0.0400 0.0172 0.0397 0.0168 0.0395
	0.0450 0.0215 0.0215 0.0435 0.0435 0.0526 0.0526 0.0492			0.0477 0.0216 0.0233 0.0233 0.0474 0.0204 0.0515	0.0401 0.0181 0.0383 0.0180 0.0466 0.0188 0.0457 0.0200	0.0482 0.0205 0.0533 0.0216 0.0423 0.0184 0.0184	
	0.0450 0.0450 0.0215 0.0237 0.0525 0.0525 0.0219 0.0219			0.0477 0.0216 0.0233 0.0233 0.0474 0.0204 0.0514	0.0401 0.0181 0.0383 0.0179 0.0466 0.0188 0.0457		
	0.0415 0.0163 0.0400 0.0175 0.0424 0.0180 0.0401				0.0493 0.0209 0.0501 0.0212 0.0548 0.0548 0.0487		
	0.0415 0.0163 0.0163 0.0175 0.0424 0.0400				0.0493 0.0209 0.0501 0.0512 0.0547 0.0547 0.0487		
$\frac{\sigma_3}{\text{CEM}}$ 0.0478 0.0199 0.0416 0.0219	0.0500 0.0221 0.0221 0.0208 0.0596 0.0267 0.0554	0.0282 0.0290 0.0290 0.0282 0.0800 0.0365	0.0527 0.0527 0.0518 0.0235 0.0582 0.0584 0.0584	0.0310 0.0310 0.0279 0.0807 0.0362 0.0362 0.0780	0.0564 0.0258 0.0258 0.0238 0.0646 0.0262 0.0661		
	0.0501 0.0223 0.0223 0.0208 0.0208 0.0594 0.0268				0.0578 0.0258 0.0589 0.0589 0.0566 0.0661 0.0661		
	0.0608 0.0275 0.0608 0.0272 0.0272 0.0594 0.0252	0.0210 0.0210 0.0222 0.0222 0.0222 0.0228 0.0464			0.0773 0.0349 0.0354 0.0354 0.0617 0.0641	0.0526 0.0526 0.0526 0.0526 0.0791 0.0848	0.0576 0.0289 0.0607 0.0303 0.0361 0.0826 0.0826
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$0.0796\ 0.0608$ $0.0378\ 0.0277$ $0.0351\ 0.0273$ $0.0351\ 0.0273$ $0.0742\ 0.0594$ $0.0854\ 0.0585$ $0.0854\ 0.0585$	$\frac{0.0351}{0.0842}$ 0.0242 0.0244 0.0341 0.0211 0.0210 0.0312 0.0474 0.0474 0.0330 0.0222 0.0222 0.0339 0.0463 0.0464 0.0361 0.0218 0.0218 0.0721 0.0473 0.0473 0.0723 0.0473 0.0473	0.0682 0.0845 0.0852 0.0295 0.0349 0.0349 0.0682 0.0784 0.0783 0.0680 0.0784 0.0783 0.0660 0.0663 0.0662 0.0296 0.0285 0.0284 0.0296 0.0385 0.0284 0.0518 0.0389 0.0388	0.0704 0.0517 0.0340 0.0248 0.0722 0.0592 0.0305 0.0261 0.0664 0.0462 0.0299 0.0237 0.0651 0.0505 0.0651 0.0505	0.0566 0.0773 0.0773 0.0773 0.0249 0.0349 0.0349 0.0349 0.0349 0.0359 0.0552 0.0553 0.0553 0.0653 0.0617 0.0242 0.0308 0.0345 0.0558 0.0643 0.0643 0.0558 0.0643 0.0558 0.0318 0.0558 0.0318 0.	0.0580 0.0604 0.0603 0.0238 0.0239 0.0239 0.0554 0.0526 0.0526 0.0231 0.0260 0.0259 0.0504 0.0791 0.0791 0.0232 0.0391 0.0389 0.0514 0.0850 0.0848	0.0493 0.0575 0.0576 0.0245 0.0290 0.0289 0.0550 0.0300 0.0600 0.0211 0.0303 0.0803 0.0471 0.0794 0.0793 0.0215 0.0361 0.0361 0.0471 0.0826 0.0826 0.0198 0.0348 0.0348
		1 0.0825 1 0.0825 1 0.0841 1 0.0812 0 0.0330 3 0.0839 1 0.0839 1 0.0851 1 0.0351		3 0.0704 0.0340 0.0722 5 0.0305 1 0.0664 0.0299 0.0299 0.0312		0.0580 3 0.0238 3 0.0544 2 0.0231 5 0.0504 2 0.0532 1 0.0514	
σ_1 EM 0.0755 0.0377 0.0813 0.0323	0.0797 0.0381 0.0855 0.0350 0.0758 0.0374 0.0374	$\begin{array}{c} 0.0144 \ 0.01450 \ 0.0775 \ 0.0775 \ 0.0775 \ 0.0834 \ 0.0835 \ 0.0494 \\ 0.0547 \ 0.0547 \ 0.0547 \ 0.0347 \ 0.0347 \ 0.0341 \ 0.0341 \ 0.0311 \ 0.0321 \\ 0.0842 \ 0.0842 \ 0.0721 \ 0.0721 \ 0.0721 \ 0.0330 \ 0.0330 \ 0.0222 \\ 0.0842 \ 0.0842 \ 0.0721 \ 0.0721 \ 0.0330 \ 0.0330 \ 0.0222 \\ 0.0850 \ 0.1666 \ 0.0996 \ 0.0991 \ 0.0843 \ 0.0839 \ 0.0463 \\ 0.0594 \ 0.0593 \ 0.0405 \ 0.0404 \ 0.0361 \ 0.0721 \ 0.0721 \ 0.0721 \ 0.0721 \\ 0.0215 \ 0.0916 \ 0.0721 \ 0.0721 \ 0.0721 \ 0.0473 \\ 0.0915 \ 0.0916 \ 0.0781 \ 0.0721 \ 0.0721 \ 0.0473 \\ 0.0915 \ 0.0916 \ 0.0781 \ 0.0731 \ 0.0473 \\ 0.0915 \ 0.0916 \ 0.0781 \ 0.0731 \ 0.0731 \ 0.0731 \ 0.0731 \\ 0.0915 \ 0.0916 \ 0.0781 \ 0.0731 \ 0.07$	0.0590 0.0692 0.0682 0.0875 0.0267 0.0296 0.0295 0.0349 0.1325 0.0682 0.0682 0.0784 0.0560 0.0288 0.0288 0.0328 0.0712 0.0663 0.0660 0.0663 0.0300 0.0295 0.0296 0.0285 0.1522 0.0629 0.0619 0.0639 0.1532 0.0629 0.0619 0.0639	0.0811 0.0706 0.0363 0.0341 0.1768 0.0720 0.0714 0.0306 0.1064 0.0664 0.2018 0.0651 0.2018 0.0651	0.0661 0.0570 0.0323 0.0242 0.1376 0.0574 0.0638 0.0260 0.0878 0.0553 0.0361 0.0242 0.1611 0.0562	0.0953 0.0952 0.0581 0.0433 0.0433 0.0238 0.2111 0.2108 0.0548 0.0815 0.0814 0.0232 0.0875 0.0875 0.0505 0.0365 0.0552 0.0512 0.0574 0.0673 0.0514	0.1001 0.0459 0.0459 0.0247 0.2245 0.0530 0.0892 0.0211 0.1108 0.0471 0.0437 0.0215 0.2038 0.0471 0.0958 0.0199
	5 0.0605 7 0.0286 7 0.1394 9 0.0561 9 0.0700 1 0.0301 5 0.1616	0.0042 0.00775 0.00747 0.00721 0.00721 0.00404 0.00404	1 0.0590 2 0.0267 5 0.1325 1 0.0560 3 0.0712 9 0.0300 2 0.1522 5 0.0636	1 0.0811 3 0.0363 7 0.1768 1 0.0714 5 0.1064 8 0.0437 5 0.2018	2 0.0661 1 0.0323 3 0.1376 9 0.0638 3 0.0878 1 0.0361 1 0.1611	3 0.0952 3 0.0433 1 0.2108 5 0.0814 5 0.0875 5 0.0365 2 0.1512	
	2 0.0605 9 0.0287 9 0.1387 5 0.0560 3 0.0699 9 0.0301 2 0.1615	5 0.0775 5 0.0775 7 0.0347 1 0.1582 2 0.0721 5 0.0996 3 0.0405 5 0.2186	0.0924 0.0914 0.0591 0.0416 0.0415 0.0268 0.1520 0.1519 0.1325 0.0632 0.0631 0.0561 0.1111 0.1110 0.0713 0.0473 0.0474 0.0300 0.1766 0.1766 0.1766 0.1766	0.1207 0.0811 0.0522 0.0363 0.2062 0.1767 0.0819 0.0714 0.1614 0.1065 0.0691 0.0438 0.02441 0.2026 0.0946 0.0807	1 0.0662 1 0.0324 3 0.1376 3 0.0639 2 0.0878 1 0.0361 2 0.1611	0.1525 0.0953 0.0607 0.0433 0.2519 0.2111 0.1011 0.0815 0.1253 0.0875 0.0546 0.0365 0.1741 0.1512	
	2 0.0902 9 0.0449 5 0.1549 5 0.0645 1 0.1123 9 0.0519 2 0.1852	5 0.1406 7 0.0547 7 0.0842 2 0.0842 0 0.1666 1 0.0593 7 0.2596	0.0924 0.0914 0.0416 0.0915 0.0520 0.1519 0.0632 0.0631 0.1111 0.1110 0.0473 0.0474 0.0724 0.0724	0.1208 0.1207 0.0523 0.0522 0.2063 0.2062 0.0821 0.0819 0.1621 0.1614 0.0694 0.0694 0.0245 0.2441 0.0947 0.0946	0.1031 5 0.0484 8 0.1588 8 0.0748 2 0.1382 5 0.0554 3 0.0554 1 0.0811	0.1526 0.1525 0.0606 0.0607 0.2522 0.2519 0.1013 0.1011 0.1254 0.1253 0.0546 0.0546 0.1741 0.1741	9 0.1647 7 0.2519 8 0.1043 5 0.1586 7 0.0598 7 0.2367 7 0.2367
	7 0.0902 5 0.0449 0 0.1546 1 0.0645 5 0.1124 1 0.0519 3 0.1852		3 0.0924 1 0.0924 7 0.1520 0 0.0632 3 0.1111 5 0.0473 3 0.1766	10.1208 20.0523 10.0631 10.0821 90.1621 90.0694 10.2456 50.0947	\$ 0.1031 5 0.0485 5 0.0485 5 0.0748 5 0.0748 9 0.1382 9 0.0556 8 0.1803 3 0.0811	3 0.1526 1 0.0606 1 0.2522 2 0.1013 7 0.1254 9 0.1741	
	7 0.0927 5 0.0335 1 0.1760 2 0.0691 6 0.0716 3 0.0304 5 0.1443			4 0.0734 2 0.0322 4 0.1354 1 0.0651 8 0.0589 9 0.0269 5 0.1291 7 0.0506	0.0999 0.0998 0.0465 0.0465 0.2056 0.2056 0.0925 0.0925 0.0766 0.0749 0.0349 0.0349 0.1617 0.1618		
$\begin{array}{c} \alpha_2 & \beta_2 \\ \text{CEM} & \text{EM} \\ 0.1549 & 0.1006 \\ 0.0732 & 0.0435 \\ 0.2442 & 0.2159 \\ 0.1050 & 0.0963 \\ \end{array}$	0.1307 0.0927 0.0927 0.0493 0.0335 0.0335 0.0331 0.0811 0.0692 0.0994 0.0716 0.0470 0.01659 0.1659 0.1440 0.0632 0.0740 0.0632 0.0740 0.0632 0.0740 0.0632 0.0740 0.0632 0.0740 0.0632 0.0740 0.0632 0.0740 0.0632 0.00432 0.00432 0.00433 0.00434 0.00434 0.00434 0.00434 0.00434 0.00434 0.00434 0.00434 0.00434 0.00434 0.00434 0.00434 0.00434 0.00434 0.00434 0.0044 0.		0.1564 0.1043 0.0662 0.0441 0.2389 0.2067 0.0975 0.0830 0.1254 0.0773 0.0817 0.0345 0.01814 0.1543	0.1046 0.0734 0.0466 0.0322 0.1639 0.1354 0.0720 0.0651 0.0996 0.0588 0.0425 0.0258 0.0433 0.1295 0.0577 0.0507		0.1014 0.0667 0.0474 0.0301 0.1563 0.1291 0.0768 0.0649 0.1432 0.0967 0.0641 0.0399 0.2560 0.2380	0.1266 0.0805 0.0545 0.0357 0.2013 0.1787 0.0813 0.0694 0.1617 0.0995 0.0628 0.0449 0.2411 0.2100 0.1046 0.0872
$\frac{\alpha_2}{\text{EM}}$ 1 0.155 7 0.073 1 0.244:	60.130 90.049 90.049 90.081 00.081 00.099 00.047 00.166	2 0.097 2 0.097 3 0.046 0 0.144 0 0.065 5 0.085 5 0.035 7 0.062	\$ 0.0565 \$ 0.0565 \$ 0.0396 \$ 0.0974 \$ 0.0517 \$ 0.1814 \$ 0.0859	3 0.1046 8 0.0467 9 0.1640 9 0.0720 3 0.0996 1 0.0425 8 0.1442 2 0.0577	0.0700 0.0700 0.1504 0.0301 0.0301 0.0648 0.1449 0.1449 0.2242 0.0621 0.0621 0.1075 0.0734 0.0734 0.1135 0.0309 0.0309 0.0527 0.1450 0.1450 0.1994 0.0614 0.0614 0.0614	0.0697 0.0697 0.1014 0.0294 0.0295 0.0474 0.1459 0.1460 0.1563 0.0584 0.0584 0.0768 0.0626 0.0626 0.1432 0.0300 0.0300 0.0540 0.1209 0.1209 0.2562 0.0526 0.0556 0.0640	0.0603 0.0601 0.1270 0.0276 0.0276 0.0945 0.053 0.053 0.0813 0.0570 0.0570 0.1617 0.0563 0.053 0.0629 0.0263 0.0620 0.0620 0.0166 0.1166 0.2411 0.0474 0.0474 0.1046
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.0966 0.0966 0.13 0.00419 0.0419 0.04 0.2103 0.2021 0.20 0.0950 0.0949 0.08 0.1092 0.1090 0.09 0.0444 0.044 0.0447 0.2156 0.15 0.8277 0.866 0.016	2 0.102 2 0.102 3 0.046 0 0.209 1 0.087 1 0.102 6 0.047 7 0.092	9 0.076 8 0.035 3 0.175 9 0.072 5 0.078 5 0.036 1 0.176	0.0834 0.0833 0.10 0.0387 0.0388 0.04 0.1647 0.1639 0.16 0.0700 0.0699 0.07 0.0814 0.0813 0.09 0.0351 0.0351 0.04 0.1708 0.1708 0.14	0 0.070 1 0.030 9 0.144 1 0.062 4 0.073 9 0.030 0 0.145 4 0.061	0.0697 0.0697 0.10 0.0294 0.0295 0.04 0.1459 0.1460 0.15 0.0584 0.0584 0.07 0.0626 0.0626 0.14 0.0300 0.030 0.06 0.1209 0.1209 0.25	3 0.060 6 0.027 7 0.125 3 0.053 0 0.057 8 0.026 6 0.115
β_1 EM 1 0.100 2 0.0438 6 0.20418 8 0.097	2 0.096 7 0.041 9 0.210 2 0.095 0 0.109 1 0.044 1 0.217 5 0.89	2 0.102 2 0.102 2 0.102 0 0.209 6 0.087 6 0.101 2 0.047 7 0.092	8 0.075 2 0.035 2 0.035 9 0.175 6 0.071 7 0.078 0 0.036 0 0.176	1 0.083 0 0.038 0 0.164 6 0.070 0 0.081 7 0.035 1 0.170 0 0.074	7 0.070 1 0.030 7 0.144 5 0.062 0 0.073 7 0.030 7 0.030 6 0.061	8 0.029 8 0.029 0 0.145 5 0.058 1 0.062 1 0.030 0 0.120	5 0.060 5 0.027 1 0.125 7 0.053 4 0.057 6 0.026 0 0.115
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10.822 0.1382 0.0966 0.0966 0.1308 0.0627 0.0627 0.0419 0.0419 0.0494 0.2360 0.2309 0.2103 0.2021 0.2015 0.0920 0.1092 0.0950 0.0949 0.0811 0.1644 0.1630 0.1092 0.1090 0.0994 0.0711 0.0711 0.0444 0.0444 0.0470 0.2547 0.2501 0.2175 0.2156 0.1662 0.1006 0.1005 0.0887 0.0316 0.1662	0.1607 0.1602 0.1032 0.1043 0.1607 0.1602 0.1022 0.1022 0.0973 0.0678 0.0678 0.0463 0.0463 0.0451 0.1056 0.1056 0.1057 0.0870 0.1448 0.1056 0.1056 0.1057 0.0870 0.0655 0.1069 0.1616 0.1011 0.1021 0.0851 0.0732 0.0732 0.0476 0.0475 0.0535 0.1087 0.1087 0.1087 0.1083	0.1259 0.1258 0.0759 0.0764 0.0532 0.0532 0.0358 0.0764 0.1055 0.0532 0.0532 0.0358 0.0358 0.0662 0.0895 0.0396 0.0719 0.0732 0.0394 0.1218 0.1217 0.0785 0.0785 0.1255 0.0541 0.0540 0.0364 0.017 0.0541 0.0540 0.0176 0.0176 0.0177 0.0541 0.0847 0.0741 0.0742 0.0849	0.1281 0.1281 0.0834 0.0833 0.1046 0.0560 0.0560 0.0387 0.0388 0.0467 0.1821 0.1820 0.1647 0.1639 0.1640 0.0855 0.0856 0.0700 0.0699 0.0720 0.1250 0.1250 0.0814 0.0893 0.0926 0.0477 0.0477 0.0351 0.0351 0.0425 0.0447 0.1941 0.1708 0.1708 0.1442 0.0861 0.0860 0.0742 0.0742 0.0577	0.1049 0.1047 0.0700 0.0700 0.1504 0.0471 0.0471 0.0301 0.0048 0.1747 0.1749 0.1449 0.2442 0.0735 0.0735 0.0621 0.0621 0.1075 0.1100 0.1100 0.0734 0.0734 0.1135 0.10467 0.0467 0.0309 0.0309 0.1614 0.1614 0.1614 0.1614 0.0614 0.0614	0.1084 0.1084 0.0697 0.0697 0.1014 0.0497 0.0498 0.0294 0.0295 0.1047 0.1700 0.1700 0.1459 0.1460 0.1563 0.0695 0.0695 0.0584 0.0584 0.0768 0.0951 0.0951 0.0626 0.0626 0.1432 0.0431 0.0431 0.090 0.1209 0.2562 0.1441 0.1441 0.1209 0.1209 0.2565 0.0580 0.0580 0.0580 0.0560	0.0960 0.0955 0.06603 0.0601 0.1270 0.0425 0.0425 0.0276 0.0276 0.0455 0.1461 0.1461 0.1257 0.1257 0.2023 0.0647 0.0647 0.0533 0.0533 0.0813 0.0894 0.0894 0.0570 0.0570 0.1617 0.0446 0.0446 0.0466 0.0263 0.0629 0.1300 0.1300 0.1156 0.1156 0.1161 0.0578 0.0579 0.0474 0.0474 0.1046
$\begin{array}{c} \alpha_1 \\ EM \\ 0.157 \\ 0.0641 \\ 0.109 \end{array}$	0.1582 0.0627 0.2360 0.1092 0.1644 0.0711 0.2547	0.100 0.067 0.067 0.241 0.105 0.073 0.243 0.243	0.125 0.053 0.053 0.089 0.089 0.054 0.054	0.1281 0.0560 0.1821 0.0855 0.1250 0.0477 0.1941 0.0861	0.1049 0.0471 0.1747 0.0735 0.1100 0.0467 0.1614 0.0666	0.1084 0.0497 0.1700 0.0695 0.0951 0.0431 0.1441	0.0960 0.0425 0.1461 0.0647 0.0894 0.0894 0.1300 0.1300
100 500 100 500 500	200 200 200 200 200 200 200 200	100 100 100 100 100 100 100 100	100 100 100 100 500 100 100	100 100 100 100 100 100 500 500	100 100 100 500 100 100 500	100 100 100 500 100 500 100 100	100 100 100 100 100 100 500 100
$\begin{bmatrix} x \\ [-1;3] \\ [0;2] \end{bmatrix}$	$\begin{bmatrix} -1; 3 \end{bmatrix}$ $\begin{bmatrix} 0; 2 \end{bmatrix}$ $\begin{bmatrix} -1; 3 \end{bmatrix}$ $\begin{bmatrix} 0; 2 \end{bmatrix}$ $\begin{bmatrix} 0; 2 \end{bmatrix}$	[0; 2] [0; 2] [0; 2]	[0; 2] $[-1; 3]$ $[-1; 3]$ $[0; 2]$	[0; 2] [-1; 3] [-1; 3]	[0; 2] [0; 2] [-1; 3] [0; 2]	[0; 2] [0; 2] [-1; 3] [0; 2]	[-1; 3] [0; 2] [-1; 3] [0; 2]
π ₂ 0.2	0.3	0.6	0.3	0.5	0.2	0.4	0.3
$\frac{\pi_1}{0.2}$	0.5	0.2	0.3	0.3	0.4	0.4	0.5

Tabela D.84: Estimativas do desvio padrão dos parâmetros da mistura de três regressões lineares no caso I

	0.6 0.2 [0.5 0.3 [0.5 0.2			0 4		0.4 0.3		0.4 0.2 [0.3 0.5			0.3 0.4		0.3 0.3		0.5	3		0.2 0.6		0.2 0.5		0.2 0.4			0.2 0.3		0.2 0.2 [π2
[0:9]	[-1; 3]	[0; 2]	[-1; 3]	[0; 2]	-1; 3]	[0; 2]	5 [1.0	[0· 2]	[-1; 3]	[0; 2]	-1; 3]	[0; 2]	-1; 3	[0]	[0· 9]	[-1; 3]	[0; 2]	[-1; 3]	[0; 2]	[-1; 5]	. 2	[0; 2]	[-1; 3]	[0; 2]	[-1; 3]	[0; 2]	1;3]	[0, 1]	[n. 9]	[-1; 3]	[0; 2]	[-1; 3]	x
100	100	100 500	100 500	100 500	100 500	500	500	500	500	100	100	100	100 500	100 500	500	500	100	100	100	100 500	500	500	100	100	100	100 500	100 500	500	500	500	100	100	100 500	n
0.0130	0.0374	$0.0622 \\ 0.0267$	$0.0400 \\ 0.0168$	$0.0556 \\ 0.0260$	0.0408 0.0191	0.0677	0.0191	0.0316	0.0202	0.0274 0.0536	0.0720	0.0491	0.0781 0.0363	0.0626 0.0236	0.0356	0.0214	0.0494	0.0810	0.0550 0.0245	0.0775 0.0355	0.0219	0.0422	0.0267 0.1199	0.0680	0.1143	0.0667 0.0289	$0.1071 \\ 0.0402$	0.0778 0.0299	0.0488	0.0279	0.0453	0.1005	0.0694	ΕM
0.0130 0.0149 0.0104	$0.0374\ 0.0362\ 0.0230\ 0.0224\ 0.0678\ 0.0633\ 0.0439\ 0.0413\ 0.0906\ 0.0669\ 0.0522\ 0.0410\ 0.0195$	0.0622 0.0606 0.0538 0.0267 0.0265 0.0234	$0.0400\ 0.0394\ 0.0250\ 0.0244\ 0.0513\ 0.0476\ 0.0344\ 0.0328\ 0.0737\ 0.0618\ 0.0546\ 0.0424\ 0.0236\ 0.0219\\ 0.0168\ 0.0164\ 0.0109\ 0.0107\ 0.0225\ 0.0218\ 0.0153\ 0.0150\ 0.0285\ 0.0265\ 0.0196\ 0.0177\ 0.0101\ 0.0098$	$0.0556\ 0.0539\ 0.0468\ 0.0450\ 0.1061\ 0.1017\ 0.0956\ 0.0871\ 0.0944\ 0.0814\ 0.0800\ 0.0687\ 0.0236\ 0.0250\ 0.0259\ 0.0232\ 0.0230\ 0.0423\ 0.0405\ 0.0372\ 0.0362\ 0.0351\ 0.0333\ 0.0296\ 0.0286\ 0.0112$	$0.0408\ 0.0396\ 0.0278\ 0.0270\ 0.0678\ 0.0597\ 0.0452\ 0.0404\ 0.0592\ 0.0537\ 0.0387\ 0.0387\ 0.0222$ $0.0191\ 0.0189\ 0.0117\ 0.0116\ 0.0275\ 0.0267\ 0.0172\ 0.0167\ 0.0261\ 0.0249\ 0.0151\ 0.0144\ 0.0098$	0.0287 0.0283 0.0245 0.0244 0.0297 0.0295 0.0265 0.0264 0.0473 0.0436 0.0405 0.0369 0.0120 0.0112	0.0191 0.0188 0.0133 0.0130 0.0188 0.0187 0.0119 0.0265 0.0265 0.0198 0.0186 0.0115	0.0316	0.0202 0.0199 0.0132	0.0274 0.0271 0.0239 0.0237 0.0468 0.0455 0.0383 0.0370 0.0296 0.0292 0.0264 0.0259 0.0109 0.0103 0.0536 0.0506 0.0317 0.0309 0.0527 0.0494 0.0345 0.0328 0.0700 0.0586 0.0427 0.0374 0.0268 0.0232	0.0720 0.0681 0.0601	$0.0491\ 0.0453\ 0.0308\ 0.0292\ 0.0748\ 0.0686\ 0.0443\ 0.0408\ 0.0505\ 0.0447\ 0.0328\ 0.0292\ 0.0274\ 0.0238$	$0.0781\ 0.0737\ 0.0676\ 0.0636\ 0.0618\ 0.0597\ 0.0546\ 0.0528\ 0.1240\ 0.0898\ 0.1200\ 0.0914\ 0.0295\ 0.0259\\ 0.0363\ 0.0355\ 0.0309\ 0.0302\ 0.0259\ 0.0255\ 0.0228\ 0.0226\ 0.0428\ 0.0400\ 0.0346\ 0.0323\ 0.0136\ 0.0128$	0.0626 0.0526 0.0354 0.0336 0.0386 0.0379 0.0253 0.0246 0.0878 0.0666 0.0679 0.0448 0.0307 0.0238 0.0236 0.0232 0.0146 0.0144 0.0162 0.0161 0.0115 0.0113 0.0320 0.0299 0.0205 0.0193 0.0129 0.0122	0.0349	$0.0214\ 0.0210\ 0.0140\ 0.0136\ 0.0183\ 0.0181\ 0.0117\ 0.0115\ 0.0234\ 0.0224\ 0.0153\ 0.0145\ 0.0122$	0.0468	$0.0810\ 0.0768\ 0.0661\ 0.0627\ 0.0781\ 0.0725\ 0.0747\ 0.0678\ 0.0708\ 0.0642\ 0.0678\ 0.0581\ 0.0342$	0.0550 0.0509 0.0331 0.0315 0.0504 0.0489 0.0366 0.0364 0.0513 0.0431 0.0341 0.0276 0.0318 0.0245 0.0233 0.0139 0.0135 0.0217 0.0210 0.0151 0.0147 0.0188 0.0181 0.0117 0.0113 0.0146	0.0775 0.0728 0.0663 0.0355 0.0339 0.0295	0.0219 0.0216 0.0150 0.0147 0.0290 0.0283 0.0179 0.0176 0.0201 0.0194 0.0127 0.0123 0.0135	0.0418	0.11267 0.10262 0.0171 0.0169 0.0169 0.0168 0.0108 0.0107 0.0291 0.0267 0.0180 0.0171 0.0162 0.0148 0.1199 0.1141 0.1089 0.1005 0.0584 0.0574 0.0478 0.0470 0.1253 0.0926 0.1182 0.0835 0.0408 0.0328	0.0648	0.1103	$\begin{array}{c} 0.0667\ 0.0631\ 0.0448\ 0.0416\ 0.0403\ 0.0372\ 0.0275\ 0.0261\ 0.0583\ 0.0509\ 0.0401\\ 0.0289\ 0.0280\ 0.0176\ 0.0171\ 0.0171\ 0.0169\ 0.0116\ 0.0113\ 0.0237\ 0.0229\ 0.0156 \end{array}$	$0.1071 \ 0.0996 \ 0.0866$ $0.0402 \ 0.0387 \ 0.0369$	0.0778 0.0712 0.0445 0.0423 0.0430 0.0413 0.0288 0.0277 0.0493 0.0464 0.0324 0.0301 0.0366 0.0289 0.0299 0.0293 0.0195 0.0193 0.0191 0.0192 0.0122 0.0120 0.0207 0.0206 0.0132 0.0128 0.0162 0.0146	0.0469	0.0279 0.0263 0.0178 0.0173 0.0215 0.0213 0.0149 0.0146 0.0172 0.0166 0.0114 0.0111 0.0155 0.0133 0.0004 0.0012 0.0847 0.0767 0.0809 0.0827 0.0739 0.0686 0.0678 0.0651 0.0651 0.0521 0.0521 0.0361 0.0205	0.0854 0.0750 0.0587	0.1005 0.0203 0.0134 0.0164 0.0274 0.11005 0.0938 0.0886 0.0811 0.0975	$0.0694 \ 0.0610 \ 0.0478$	CEM
0.0104	0.0230	$\begin{array}{c} 0.0538\ 0.0527\ 0.0799\ 0.0746\ 0.0661\ 0.0634\ 0.1147\ 0.0961\ 0.1028\ 0.0827\ 0.0254 \\ 0.0234\ 0.0231\ 0.0349\ 0.0346\ 0.0298\ 0.0298\ 0.0454\ 0.0422\ 0.0391\ 0.0359\ 0.0102 \end{array}$	$0.0250 \\ 0.0109$	$0.0468 \\ 0.0232$	0.0278 0.0117	0.0245	0.0133	0.0275	0.0132	0.0239	0.0601	0.0308	0.0676 0.0309	0.0354 0.0146	0.0305	0.0140	0.0341	0.0661	0.0331	0.0663 0.0295	0.0150	0.0359	0.0171 0.1089	0.0448	0.0959	0.0448 0.0176	$0.0866 \\ 0.0369$	0.0445 0.0195	0.0442	0.0178	0.0587	0.0886		
0.0102	0.0224	$0.0527 \\ 0.0231$	$0.0244 \ 0.0513$ $0.0107 \ 0.0225$	$0.0450 \\ 0.0230$	0.0270 0.0116	0.0596 0.0244	0.0130	0.0272	0.0131	0.0237	0.0572 0.1266 0.116 0.0973 0.0855	0.0292	$0.0636 \\ 0.0302$	0.0336 0.0144	0.0298	0.0136	0.0328	0.0627	0.0315	$0.0617 \\ 0.0287$	0.0147	0.0358	0.0169 0.1005	0.0429	0.0896	0.0416 0.0171	0.0807 0.0356	0.0423 0.0193	0.0427	0.0173	0.0522	0.0357	$0.0450\ 0.0767$	CEMI
	0.0678	0.0799 (0.0349 (0.0513 0.0225	0.1061 (0.0423 (0.0678 (0.0275 (0.0746	0.0188	0.0342	0.0229	0.0468	0.1266	0.0748	0.0618 (0.0259 (0.0386	0.0299	0.0183	0.0434	0.0781	0.0504 (0.0217 (0.1084 (0.0407 (0.0290	0.0235	0.0169	0.0395	0.0626	0.0403	0.0692 (0.0302 (0.0430	0.0343	0.0215 (0.0550 0.0517	0.0975	0.0767	EAM
0.0270	0.0633	0.0746 (0.0346 (0.0476 (0.0218 (0.1017 (0.0405 (0.0597 (0.0267 (0.0718	0.0187	0.0334	0.0225 (0.0455 (0.0494 (0.0494	0.1016	0.0686	0.0597 (0.0255 (0.0379	0.0297	0.0181	0.0419	0.0725 (0.0489 (0.0210 (0.1047 (0.0392)	0.0283	0.0234 (0.0168 (0.0574 (0.0380	0.0617	0.0372	0.0669 (0.0298 (0.0413 (0.0192 (0.0330	0.0213 (0.0517	0.0926	0.0606 (CENTAI
J.OTOI	0.0439 ().0661 ().0298 ().0344 ().0153 ().0956 ().0372 ().0452 ().0172 (0.0265	0.0119	0.0303	0.0146 (0.0383	0.0973	0.0443 ().0546 ().0228 (0.0253 (0.0247	0.0117 (0.0277	0.0747 ().0366 ().0151 (0.0981 ($0.0342 ($	0.0179	0.0202	0.0478	0.0239	0.0539 (0.0275(0.0616 (0.0254 (0.0288	0.0303	0.0149 (0.0368	0.1014	0.0471 (TATE
0.0119	0.0413 0).0634 0).0298 0	0.03280).0871 0).0362 0).0404 0).0167 0	0.0595 0	0.0118 0	0.0299 0	0.01420	0.03700	0.0855 0	0.0408 0).0528 0).0226 0	0.02460 0.01130	0.0247 0	0.0115 0	0.0269 0	0.0678).0364 0).0147 0).0932 0).0337 0	0.0423	0.0200 0	0.0107 0	0.0231 0	0.05340	0.0261 0 $0.0113 0$).0602 0).0249 0	0.02770	0.0292 0	0.0146	0.0351 0	0.0825 0	0.04200	CENT
.02090	0.0906 0).1147 0).0454 0	0.07370	0.0944 0 0.0351 0).0592 0).0261 0	0.1384 0	0.0285 0	0.0336 0	0.0249 0	0.0296	0.0722 0	0.0505 0	0.12400	0.08780	0.0348 0	0.02340	0.0527 0	0.0708 0	0.05130	$0.0704 \ 0.0290 \ 0$	0.0423	0.0416 0	0.02910	0.0702 0	0.0871 0	0.05830	0.07590 0.02840	0.04930	0.0285 0	0.01720	.0431 0	0.0609 0	0.03970	TATEL
.02000	0669 0	$0.0527\ 0.0799\ 0.0746\ 0.0661\ 0.0634\ 0.1147\ 0.0961\ 0.1028\ 0.0827\ 0.0254\ 0.0228$ $0.0231\ 0.0349\ 0.0346\ 0.0298\ 0.0298\ 0.0454\ 0.0422\ 0.0391\ 0.0359\ 0.0102\ 0.0098$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 0.0450\ 0.1061\ 0.1017\ 0.0956\ 0.0871\ 0.0944\ 0.0814\ 0.0800\ 0.0687\\ 0.0230\ 0.0423\ 0.0405\ 0.0372\ 0.0362\ 0.0351\ 0.0333\ 0.0296\ 0.0286 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$.0436 0	0.0130 0.0188 0.0187 0.0119 0.0118 0.0265 0.0265 0.0198	.0321 0	$0.0131\ 0.0229\ 0.0225\ 0.0146\ 0.0142\ 0.0249\ 0.0243\ 0.0155\ 0.0148\ 0.0117$.0292 0	0.0522 0.0566 0.1016 0.073 0.0855 0.0722 0.0660 0.0626 0.0560 0.0258 0.0220	.0447 0	$\begin{array}{c} 0.0636\ 0.0618\ 0.0597\ 0.0546\ 0.0528\ 0.1240\ 0.0898\ 0.1200\ 0.0914\ 0.0295\\ 0.0302\ 0.0259\ 0.0255\ 0.0228\ 0.0226\ 0.0428\ 0.0400\ 0.0346\ 0.0323\ 0.0136 \end{array}$	$0.0379\ 0.0253\ 0.0246\ 0.0878\ 0.0666\ 0.0679\ 0.0448\ 0.0307$ $0.0161\ 0.0115\ 0.0113\ 0.0320\ 0.0299\ 0.0205\ 0.0193\ 0.0129$.0327 0	02240	.0489 0	.0642 0	.04310 $.01810$	$\begin{array}{c} 0.0617\ 0.1084\ 0.1047\ 0.0981\ 0.0932\ 0.0704\ 0.0619\ 0.0607\ 0.0533\ 0.0343\\ 0.0287\ 0.0407\ 0.0392\ 0.0342\ 0.0337\ 0.0290\ 0.0282\ 0.0259\ 0.0253\ 0.0144 \end{array}$	0.0147 0.0290 0.0283 0.0179 0.0176 0.0201 0.0194 0.0127 0.0123 0.0135	.0396 0	0.0169 0.0169 0.0168 0.0108 0.0107 0.0291 0.0267 0.0180 0.0171 0.0162 0.1005 0.0584 0.0574 0.0478 0.0470 0.1253 0.0926 0.1182 0.0835 0.0408	.0560 0	.0766 0	.0509 0 .0229 0	0.0807 0.0692 0.0669 0.0616 0.0602 0.0759 0.0696 0.0664 0.0595 0.0433 0.0358 0.0356 0.0302 0.0298 0.0254 0.0249 0.0284 0.0276 0.0267 0.0258 0.0161 0.0145	0.0423 0.0430 0.0413 0.0288 0.0277 0.0493 0.0464 0.0324 0.0301 0.0366 0.0193 0.0191 0.0192 0.0122 0.0120 0.0207 0.0206 0.0132 0.0128 0.0162	.0279 0	$0.0173\ 0.0215\ 0.0213\ 0.0149\ 0.0146\ 0.0172\ 0.0166\ 0.0114\ 0.0111\ 0.0155$	0.0517 0.0368 0.0351 0.0431 0.0406 0.0256 0.0244 0.0406	0.0811 0.0975 0.0926 0.1014 0.0825 0.0509 0.0584 0.0496 0.0475 0.0392 0.0811 0.0975 0.0926 0.1014 0.0825 0.0909 0.0984 0.0496 0.0475 0.0392 0.0817 0.01680	$0.0606 \ 0.0471 \ 0.0420 \ 0.0397 \ 0.0368 \ 0.0273 \ 0.0263 \ 0.0455$	CEIVI
.01040	.0522 0	.1028 0 $.0391 0$.0546 0 .0196 0	080000 02960	.0387 0 .0151 0	.0405 0	.0198 0	.0304 0	.0155 0	.0264 0 .0427 0	.0626 0	.0328 0	.1200 0 .0346 0	.0679 0 .0205 0	.0307 0	.0153 0	.0385 0	.0678 0	03410	.0607 0 .0259 0	.0127 0	.0350 0	$.0180\ 0$ $.1182\ 0$.0532 0	.0736 0	.0401 0 .0156 0	.0664 0 .0267 0	.0324 0 $.0132 0$.0256 0	0.01140	.0256 0	0.04960	0.02730	TATE
.O 1 / 2 O	.0410 0.	.0827 0. .0359 0.	$0.0424 \ 0.0236$ $0.0177 \ 0.0101$.0687 0. .0286 0.	.0328 0. .0144 0.	.0369 0.	.0186 0.	0.0293 0.0108	.0148 0. 0707 0	.0259 0.	.0560 0.	.0292 0.	.0914 0. .0323 0.	.0448 0. .0193 0.	.0289 0	.0145 O.	.0346 0.	.0581 O.	.0276 0. .0113 0.	.0533 0. .0253 0.	.0123 0.	.0332 0	.0171 0.	.0431 0.	.0650 O.	$0.0346 \ 0.0358$ $0.0149 \ 0.0158$.0595 0. .0258 0.	.0301 0. .0128 0.	.0252 0.	.0111 0. 0521 0	.0244 0.	0.0475 0.0392	0.02630	CETAT
0090 0.	0195 0.	0254 0. $0102 0.$	0236 O. 0101 O.	$0.0236 0. \\ 0.0112 0.$	$0222\ 0.098\ 0.098$	0120 0.	0115 0.	0108 0.	0117 0. 0249 0	0109 0.	0258 0.	0274 0.	02950. $01360.$	0307 0. $0129 0.$	0128 0.	0122 0. 0306 0	0285 0.	03420.	03180.	$0343 \ 0.$ $0144 \ 0.$		0175 0.	0408 O.	0391 0.	0403 0. 0170 0	03580. $01580.$	0433 0. 0161 0.	0366 0. 0162 0.	0175 0.	0155 O.		03920.	04550	TATA
OUST O.	0175 0.	$0.0228 \ 0.0098 \ 0.$		$0.0211 \ 0.0108 \ 0.$	0.0202 0.	0233 0.	0.0108 0.	0100 0.	0.0109 0.	$0103 \ 0.$ $0232 \ 0.$	0.0220 0.	0238 0.	0.02590. $0.01280.$	0.02380. $0.01220.$	0119 0.	0.0111 0.	0255 0.	0285 0.	$0.0268 \ 0.0133 \ 0.0133 \ 0.0133 \ 0.0133 \ 0.000000000000000000000000000000000$	$0283 \ 0.$ $0124 \ 0.$	0121 0.	0162 0.	0.01480. $0.03280.$	0345 0.	03570.	0.03090. 0.01390 .	0358 0. $0145 0.$	$0.0289\ 0.0146\ 0.0146$	0152 0.	0.01330.	0.0323 0.		0.03470.	
OLOG O.	0393 0.	0313 0. 0148 0.	0380 0.0	0430 0. 0166 0.	0371 0. 0158 0.	0103 0.	0117 0.	0137 0.	0126 O.	0154 0. 0291 0.	0420 0.	0399 0.	0226 0. _' 0103 0. _'	0262 0.0 0105 0.0	0122 0.	0123 0.	0231 0.	0304 0.	0315 0. _' 0132 0.'	$0405 \ 0.000 \ 0.00000 \ 0.0000 \ 0.0000 \ 0.0000 \ 0.0000 \ 0.0000 \ 0.0000 \ 0.00000 \ 0.0000 \ 0.0000 \ 0.0000 \ 0.0000 \ 0.0000 \ 0.0000 \ 0.00000 \ 0.0000 \ 0.0000 \ 0.0000 \ 0.0000 \ 0.0000 \ 0.0000 \ 0.00000 \ 0.00000 \ 0.00000 \ 0.00000 \ 0.00000 \ 0.00000 \ 0.00000 \ 0.000000 \ 0.000000 \ 0.00000 \ 0.00000 \ 0.00000 \ 0.000$	0171 0.	0086 0.	0092 0.0	0201 0.	0240 0.	0239 O. 0102 O.	0255 0. 0119 0.	0236 0.0	0132 0.	0144 0.	0.0286 0.	0492 0.0	0491 0.	TATAL
0.0	0.0318	0269 0.0 0138 0.0	0.0 0.122	0.0 0.1 0.1 0.1)318 0.0)140 0.0	0.099 0.0	0.0	0128 0.0	0.07 0.0	$0.0246 \ 0$	0321 0.0	0.0298)216 0.0)099 0.0	0100 0.0	0.0	0.0	0.0207 0.0	0253 0.0	0.0 0.0 0.0 0.0	0330 0.0 0157 0.0	0.00	0.084	0.089 0.0	0189 0.0	0.0	$0.0212 \ 0.0000$)229 0.0)110 0.0	0100 0.0	0120 0.0	0130 0.0	0.00	0354 0.0	0363 0.0	CENT
0.0	0.654 0.0)589 0.0)203 0.0)616 0.0)192 0.0)387 0.0)155 0.0)377 0.()147 0.(0200 0.0	0185 0.0	0165 0.0	0.001)455 0.0	0.0331 0.0)325 0.0)531 0.0)197 0.0)602 0.0	0162 0.0	0.0	372 0.0)330 0.0	$0.0373 \ 0.00128 \ 0.001$	$0.281 \ 0.0$	0121 0.0	0.0 194)521 0.0	0565 0.0	355 0.0	$0.0398 \ 0.0000000000000000000000000000000000$)333 0.0)131 0.0	0.0332 0.0	0101 0.0	0.07 0.0)287 0.0)237 0.0)286 0.0	EWI
0.0	341 0.0)328 0.0)154 0.0)322 0.0)137 0.0)261 0.0)128 0.0)269 0.()120 0.()150 0.0	0.0	0129 0.0)126 0.0)267 0.0)242 0.0)248 0.0)330 0.()151 0.()310 0.0)160 0.0)133 0.0	129 0.0	266 0.0	$0.0247 \ 0.0$)255 0.C)219 0.0)098 0.0	0.02)143 0.0)317 0.0	307 0.0)272 0.0)264 0.0)115 0.0)251 0.0)113 0.0)117 0.0	0092 0.0)091 0.0)212 0.0)203 0.0)225 0.0	CEMI
0.00)524 0.0)544 0.0)216 0.0)465 0.0)215 0.0)472 0.0)235 0.0)514 0.()225 0.()227 0.0)213 0.0)216 0.0)216 O.C)478 0.0	0.0522)493 0.0)471 0.0)183 0.0)475 0.0)195 0.0)216 0.0)222 0.0)490 O.C)458 0.0)464 0.()206 0.($0.493 \ 0.0$ $0.0219 \ 0.0$)229 0.0)172 0.0)415 0.0	0412 0.0)360 0.0)410 0.0)192 0.0)406 0.0)168 0.0)175 0.0	0.0)187 0.0)404 0.0)430 0.0)420 0.0	EM
).0 ±220)502 O.C)517 O.C)466 O.C)473 O.C)235 O.O)503 O.C)229 O.O)226 0.0)213 0.6)216 O.C)215 O.C	1470 0.0)516 0.0)489 O.C)455 O.C)183 O.O)458 O.C)196 O.O)219 0.6)223 0.0	1484 0.0)451 O.C	$)455\ 0.0$)470 0.0)229 0.0)171 O.C	397 0.0)405 0.6)364 O.C)407 O.C)397 O.C)175 0.0	176 0.0)186 O.C)402 0.0)426 O.C)404 O.C	CEMI E
J.0 66T	370 0.6)488 O.C)476 O.C)408 O.C)388 O.C)176 O.O	216 0.0)216 0.0)213 0.0)210 O.C	1460 0.0	1403 0.0)414 O.C)529 O.C)227 O.O)522 O.C	211 0.0)223 O.C	1540 0.0)474 0.6)466 O.C)211 O.O	183 0.0	1193 0.0)221 0.6	1454 0.0)524 0.0)518 O.C)479 O.C)468 O.C	1220 0.0	1204 0.0)209 O.C	1445 0.0)447 0.0	$)457 \ 0.0$	EMI CI
	360 0.0)488 0.0)204 0.0)440 0.0)196 0.0)416 0.0)185 0.0)390 0.0)176 0.0	217 0.0)218 0.0	1212 0.0)211 0.0	1456 0.0	399 0.0	185 0.0)519 0.0)227 0.0)504 0.6)224 0.0	211 0.0)224 0.0	1536 0.0)475 0.0)470 0.0)210 0.0)386 O.C	1193 0.0)217 0.0	1459 0.0	508 0.0)514 0.0)471 0.0)222 0.0)461 0.0)207 0.0	1222 0.0	204 0.0)209 0.0	1443 0.0	1404 0.0)406 0.0	CEMI
6810.0 0810.0 0810.0 0820.0 6820.0 0810.0 6810.0 6810.0 6810.0 6810.0 0810.0 6810.0 08	$0.0175\ 0.0393\ 0.0318\ 0.0654\ 0.0341\ 0.0524\ 0.0502\ 0.0370\ 0.0360\ 0.0468\ 0.0404$	$\begin{array}{c} 0.0313 \ 0.0269 \ 0.0589 \ 0.0328 \ 0.0544 \ 0.0517 \ 0.0488 \ 0.0488 \ 0.0452 \ 0.0410 \\ 0.0148 \ 0.0138 \ 0.0203 \ 0.0154 \ 0.0216 \ 0.0216 \ 0.0205 \ 0.0204 \ 0.0185 \ 0.0182 \end{array}$	$\begin{array}{c} 0.0380\ 0.0311\ 0.0616\ 0.0322\ 0.0465\ 0.0466\ 0.0476\ 0.0440\ 0.0461\ 0.0433\\ 0.0130\ 0.0122\ 0.0192\ 0.0137\ 0.0215\ 0.0213\ 0.0195\ 0.0196\ 0.0197\ 0.0193 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0103 0.0099 0.0200 0.0150 0.0227 0.0226 0.0216 0.0217 0.0181 0.0181	0.0117 0.0110 0.0185 0.0140 0.0213 0.0213 0.0216 0.0216 0.0182 0.0186	0.0100 0.0137 0.0128 0.0165 0.0129 0.0106 0.0216 0.0213 0.0120 0.0220 0.	0.0126 0.0117 0.0156 0.0126 0.0216 0.0215 0.0210 0.0211 0.0207 0.0209	$0.0274\ 0.0271\ 0.0239\ 0.0237\ 0.0468\ 0.0456\ 0.0383\ 0.0370\ 0.0296\ 0.0292\ 0.0264\ 0.0259\ 0.0109\ 0.0103\ 0.0154\ 0.0136\ 0.0135\ 0.0113\ 0.0222\ 0.0222\ 0.0422\ 0.0422\ 0.0425\ 0.0407$	0.0420 0.0321 0.0321 0.0222 0.0522 0.0403 0.0329 0.0526 0.0526	$0.0399 \ 0.0298 \ 0.0325 \ 0.0248 \ 0.0493 \ 0.0489 \ 0.0414 \ 0.0405 \ 0.0498 \ 0.0489$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$0.0356\ 0.0349\ 0.0305\ 0.0298\ 0.0299\ 0.0297\ 0.0247\ 0.0247\ 0.0348\ 0.0327\ 0.0307\ 0.0289\ 0.0128\ 0.0119\ 0.0122\ 0.0116\ 0.0162\ 0.0133\ 0.0216\ 0.0219\ 0.0211\ 0.0211\ 0.0204\ 0.0207$	0.0111 0.0123 0.0116 0.0161 0.0129 0.0222 0.0223 0.0223 0.0224 0.0226 0.0231	0.0240 0.0341 0.0348 0.0341 0.0328 0.0343 0.0419 0.0222 0.00222 0.00222 0.00222 0.00223 0.00221 0.00223	0.0285 0.0304 0.0253 0.0330 0.0247 0.0458 0.0451 0.0474 0.0475 0.0496 0.0482	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0775 0.0728 0.0663 0.0617 0.1084 0.1047 0.0981 0.0932 0.0704 0.0619 0.0607 0.0533 0.0343 0.0283 0.0405 0.0330 0.0281 0.0219 0.0493 0.0470 0.0387 0.0386 0.0525 0.0509 0.0355 0.0339 0.0295 0.0287 0.0407 0.0392 0.0342 0.0337 0.0290 0.0282 0.0259 0.0259 0.0253 0.0144 0.0124 0.0179 0.0157 0.01098 0.0219 0.0220 0.0183 0.0181 0.0239 0.0235	0.0121 0.0171 0.0148 0.0121 0.0102 0.0229 0.0229 0.0193 0.0193 0.0233 0.0233	$0.0422\ 0.0418\ 0.0359\ 0.0358\ 0.0235\ 0.0234\ 0.0202\ 0.0200\ 0.0416\ 0.0396\ 0.0350\ 0.0332\ 0.0175\ 0.0162\ 0.0086\ 0.0084\ 0.0194\ 0.0143\ 0.0172\ 0.0171\ 0.0221\ 0.0217\ 0.0217\ 0.0217\ 0.0179\ 0.0176$	0.0092 0.0089 0.0195 0.0148 0.0201 0.0200 0.0224 0.0225 0.0186 0.0187 0.0212 0.0197 0.0521 0.0317 0.0415 0.0397 0.0454 0.0459 0.0413 0.0391	0.0680 0.0648 0.0448 0.0429 0.0395 0.0380 0.0239 0.0231 0.0702 0.0550 0.0532 0.0431 0.0391 0.0345 0.0201 0.0189 0.0565 0.0307 0.0412 0.0405 0.0524 0.0508 0.0431 0.0397	$0.1143\ 0.1103\ 0.0959\ 0.0896\ 0.0626\ 0.0617\ 0.0539\ 0.0534\ 0.0871\ 0.0766\ 0.0736\ 0.0650\ 0.0403\ 0.0357\ 0.0240\ 0.0216\ 0.0355\ 0.0272\ 0.0360\ 0.0364\ 0.0518\ 0.0514\ 0.0460\ 0.0456$	$0.0667\ 0.0631\ 0.0448\ 0.0416\ 0.0403\ 0.0372\ 0.0275\ 0.0261\ 0.0583\ 0.0509\ 0.0401\ 0.0346\ 0.0358\ 0.0309\ 0.0239\ 0.0212\ 0.0398\ 0.0264\ 0.0410\ 0.0407\ 0.0470\ 0.0471\ 0.0498\ 0.0482\ 0.0289\ 0.0289\ 0.0171\ 0.0171\ 0.0171\ 0.0169\ 0.0113\ 0.0217\ 0.0222\ 0.0198\ 0.0149\ 0.0158\ 0.0139\ 0.0102\ 0.0199\ 0.0144\ 0.0115\ 0.0191\ 0.0191\ 0.0217\ 0.0222\ 0.0198\ 0.0198$	$0.1071\ 0.0996\ 0.0866\ 0.0807\ 0.0692\ 0.0669\ 0.0616\ 0.0602\ 0.0759\ 0.0696\ 0.0664\ 0.0595\ 0.0433\ 0.0358\ 0.0255\ 0.0229\ 0.0333\ 0.0251\ 0.0406\ 0.0397\ 0.0468\ 0.0461\ 0.0510\ 0.0505\ 0.0402\ 0.0387\ 0.0387\ 0.0356\ 0.0356\ 0.0356\ 0.0302\ 0.0298\ 0.0254\ 0.0249\ 0.0284\ 0.0276\ 0.0267\ 0.0258\ 0.0161\ 0.0145\ 0.0119\ 0.0110\ 0.0131\ 0.0113\ 0.0168\ 0.0169\ 0.0265\ 0.0205\ 0.0207\ 0.0222\ 0.0222$	0.0236 0.0203 0.0332 0.0262 0.0381 0.0382 0.0472 0.0469 0.0471 0.0463 0.0107 0.0100 0.0132 0.0117 0.0175 0.0175 0.0220 0.0222 0.0233 0.0236	0.0488 0.0469 0.0442 0.0427 0.0343 0.0330 0.0333 0.0292 0.0285 0.0279 0.0256 0.0252 0.0175 0.0152 0.0132 0.0120 0.0101 0.0092 0.0174 0.0176 0.0204 0.0204 0.0234 0.0235	0.0144 0.0130 0.0107 0.0091 0.0187 0.0186 0.0209 0.0209 0.0235 0.0236 0.0305 0.0264 0.0273 0.0210 0.0410 0.0406 0.0400 0.0488 0.0573 0.0554	0.0286 0.0251 0.0287 0.0212 0.0404 0.0402 0.0445 0.0443 0.0526 0.0519	0.0492 0.0354 0.0237 0.0203 0.0430 0.0426 0.0447 0.0447 0.0587 0.0587 0.0551	0.0491 0.0363 0.0286 0.0225 0.0420 0.0404 0.0457 0.0406 0.0580 0.0517	EMI CE
SET.	1004	182	193)452 212)440 204	181	186	1224	1209	407	526	1489	1397 167	179	207	1231	1495)482)34	1468 217	235	233	176	391	397	199	198)505 222	236	1235	я я я я я	519	3551	517	CEM

Tabela D.85: Estimativas do desvio padrão dos parâmetros da mistura de três regressões lineares no caso II

π3 CEM 0.0567 0.0229 0.0540 0.0539 0.0267 0.0267 0.0267 0.0267 0.0267 0.0267 0.0267	$\begin{array}{c} 0.0664 \\ 0.0288 \\ 0.0613 \\ \hline 0.0327 \\ \hline 0.0684 \\ 0.0418 \\ 0.0710 \\ 0.0397 \end{array}$	0.0536 0.0235 0.0241 0.0247 0.0247 0.0593	0.0597 0.0261 0.0618 0.0362 0.0578 0.0267 0.0621 0.06394	0.0500 0.0240 0.0540 0.0269 0.0583 0.0237 0.0519	0.0260 0.0607 0.0865 0.0499 0.0224 0.0513	0.0237 0.0494 0.0237 0.0520 0.0316 0.0453 0.0216 0.0456
11 1 1 1 1						
$\begin{array}{c} \pi_2 \\ \text{CE}_2 \\ 0.0518 \\ 0.0241 \\ 0.0514 \\ 0.0514 \\ 0.0631 \\ 0.0631 \\ 0.0471 \\ 0.0807 \\ 0.0489 \\ 0.0618 $	0.1080 0.0575 0.0964 0.0680 0.1090 0.0600 0.1134 0.0692	0.0443 0.0228 0.0503 0.0277 0.0616 0.0309 0.0703 0.0492	0.0819 0.0370 0.0901 0.0642 0.1018 0.0450 0.1079 0.0696	0.0449 0.0239 0.0453 0.0275 0.0629 0.0295 0.0694	0.0747 0.0373 0.0839 0.0572 0.0468 0.0234 0.0459	0.0220 0.0588 0.0584 0.0554 0.0399 0.0480 0.0218 0.0438
$\begin{array}{c} \pi_2 \\ \pm \pi_2 \\ \pm 0.00586 \\ 0.0258 \\ 0.02649 \\ 0.0280 \\ 0.0280 \\ 0.0280 \\ 0.0280 \\ 0.0280 \\ 0.0280 \\ 0.0343 \\ 0.034 \\ 0.0343 \\ 0.034 \\ 0.0343 \\ 0.034 \\ 0.0343 \\ 0.0343 \\ 0.0343 \\ 0.0343 \\ 0.0343 \\ 0.0343 \\ 0.0343 \\$	0.0788 0.0292 0.0832 0.0336 0.0749 0.0275 0.0808	0.0254 0.0254 0.0264 0.0266 0.0263 0.0293 0.0736	0.0354 0.0306 0.0832 0.0327 0.0767 0.0306 0.0782	0.0575 0.0255 0.0619 0.0289 0.0673 0.0673 0.0808	0.0692 0.0309 0.0863 0.0322 0.0589 0.0589 0.0692	0.0254 0.0666 0.0274 0.0762 0.0315 0.0644 0.0255 0.0620
	$\begin{array}{c} 0.0751 \\ 0.0482 \\ 0.0729 \\ 0.0527 \\ \hline 0.0712 \\ 0.0712 \\ 0.0903 \\ 0.0498 \end{array}$	0.0535 0.0259 0.0280 0.0280 0.0586 0.0297 0.0656	0.0733 0.0754 0.0306 0.0306 0.0723 0.0832 0.0485 0.0327 0.0822 0.0767 0.0857 0.0306 0.0859 0.0782	0.0538 0.0259 0.0257 0.0277 0.0624 0.0307 0.0663		
	\$ 0.0522 \$ 0.0214 \$ 0.0644 \$ 0.0256 \$ 0.0538 \$ 0.0538 \$ 0.0630		$\begin{array}{c} 0.2762\ 0.1876\ 0.1921\ 0.1205\ 0.0961\ 0.0669\ 0.0556\ 0.0908\ 0.0787\ 0.1440\ 0.1417\ 0.0545\ 0.0455\ 0.0218\ 0.0264\\ 0.02762\ 0.1876\ 0.0752\ 0.0825\ 0.0823\ 0.0293\ 0.0243\ 0.0249\ 0.0409\ 0.0612\ 0.0619\ 0.0612\ 0.0719\ 0.0556\ 0.0218\ 0.0264\\ 0.05476\ 0.0453\ 0.04976\ 0.0233\ 0.1895\ 0.1628\ 0.1478\ 0.04025\ 0.0843\ 0.0785\ 0.1689\ 0.0244\ 0.0556\ 0.0257\\ 0.05571\ 0.1570\ 0.1680\ 0.1752\ 0.1477\ 0.0946\ 0.0775\ 0.0960\ 0.0876\ 0.0876\ 0.0856\ 0.1849\ 0.0544\ 0.0868\ 0.0557\ 0.0878\\ 0.0819\ 0.0879\ 0.0879\ 0.0879\ 0.0879\ 0.0879\ 0.0879\ 0.0879\ 0.0879\ 0.0879\ 0.0879\ 0.0879\ 0.0879\ 0.0880\ 0.1765\ 0.0880\ 0.0542\ 0.0689\ 0.0880\ 0.0890\ 0.$	0.0465 0.0422 0.0567 0.0185 0.0200 0.0251 0.0411 0.0439 0.0209 0.0552 0.0462 0.0603 0.0552 0.0462 0.0603 0.0537 0.0574 0.0282 0.0593 0.0677 0.0570	0.00564 0.00564 0.00265 0.00282 0.00545 0.00545 0.00565	
$\begin{array}{c} \sigma_3 \\ -\sigma_3 \\ 0.0338 \\ 0.0148 \\ 0.02316 \\ 0.02319 \\ 0.0459 \\ 0.0281 \\ 0.0452 \\ 0.0452 \\ 0.0452 \\ 0.0452 \\ 0.0452 \\ 0.0332 \\ 0.0452 \\ 0.0332 \\$	0.0466 0.0213 0.0573 0.0573 0.0603 0.0603 0.0690	0.0338 0.0422 0.0422 0.0270 0.0399 0.0184 0.0479	0.0453 0.0218 0.0551 0.0495 0.0565 0.0270 0.0676	0.0422 0.0200 0.0439 0.0304 0.0462 0.0244 0.0627	0.0252 0.0590 0.0589 0.0563 0.0563 0.0456	
σ3 σ3 EM CEM 0.0362 0.0382 0.0134 0.0138 0.0135 0.0318 0.0136 0.0310 0.0138 0.0379 0.016 0.0169 0.016 0.0169 0.016 0.0167 0.016 0.043 0.016 0.0167 0.016 0.0167 0.0215 0.0315 0.0215 0.0325 0.0215 0.0321 0.0315 0.0322	0.0549 0.0466 0.0218 0.0213 0.0574 0.0573 0.0232 0.0366 0.0685 0.0603 0.0301 0.0323 0.0874 0.0690	0.2421 0.0347 0.0338 0.1170 0.0168 0.0181 0.2786 0.0419 0.0202 0.2235 0.0174 0.0270 0.1887 0.0439 0.0399 0.0804 0.0181 0.0184 0.2574 0.0477 0.0471 0.2076 0.0209 0.0381	0.0545 0.0453 0.0226 0.0218 0.0568 0.0551 0.0244 0.0495 0.0688 0.0565 0.0739 0.0676 0.0779 0.0676	0.2526 0.0465 0.0422 0.1265 0.0185 0.0200 0.2839 0.0411 0.0439 0.2300 0.0181 0.0304 0.1925 0.0552 0.0462 0.0870 0.0537 0.0244 0.2588 0.0592 0.0627 0.1288 0.0592 0.0627	0.0698 0.0590 0.0268 0.0252 0.0736 0.0689 0.0302 0.0563 0.0477 0.0456 0.0198 0.0458	0.222 0.0677 0.0590 0.2022 0.0677 0.0590 0.0866 0.0269 0.0263 0.2376 0.0733 0.0720 0.1857 0.0297 0.0578 0.2366 0.0650 0.0543 0.1156 0.0269 0.0268 0.2680 0.0687 0.0615
$\begin{array}{c} \sigma_2 \\ \text{CEM} \\ 0.2617 \\ 0.1193 \\ 0.2872 \\ 0.2872 \\ 0.0825 \\ 0.0825 \\ 0.0825 \\ 0.0825 \\ 0.0825 \\ 0.09825 \\ 0.0$	0.1279 0.0656 0.1891 0.1135 0.1085 0.0555 0.0335	0.2421 0.1170 0.2786 0.2235 0.1887 0.0804 0.2574 0.2576	0.1417 0.0719 0.2041 0.1689 0.1517 0.0628 0.1679 0.1679			
EM CEM EM CEM 0.1129 0.1010 0.2603 0.2617 0.0460 0.0481 0.1099 0.1193 0.0460 0.0481 0.0199 0.1193 0.0481 0.0731 0.1060 0.2896 0.1277 0.0450 0.0718 0.0825 0.0477 0.0450 0.0718 0.0825 0.0477 0.0450 0.0718 0.0825 0.0477 0.0450 0.0718 0.0825 0.0452 0.073 0.0320 0.0558 0.0738 0.0383 0.0558 0.0743 0.0832 0.1763 0.1144 0.0899 0.1466 0.1157 0.0501 0.0523 0.0563 0.0756 0.1387 0.1130 0.1778 0.1388	$0.1673\ 0.1830\ 0.1193\ 0.1087\ 0.0684\ 0.0682\ 0.1165\ 0.11990\ 0.1238\ 0.1279\ 0.05549\ 0.0549$ 0.0466 0.0693\ 0.0833\ 0.0487\ 0.0568\ 0.0272\ 0.0372\ 0.0372\ 0.0576\ 0.0656\ 0.0218\ 0.0218\ 0.03710\ 0.1275\ 0.1275\ 0.1247\ 0.1565\ 0.1265\ 0.1596\ 0.1891\ 0.0574\ 0.0532\ 0.0366\ 0.1596\ 0.1891\ 0.0574\ 0.0693\ 0.0555\ 0.0637\ 0.0637\ 0.0532\ 0.1135\ 0.0532\ 0.0366\ 0.1465\ 0.1586\ 0.1681\ 0.1898\ 0.0919\ 0.0911\ 0.1243\ 0.1151\ 0.1086\ 0.1085\ 0.0685\ 0.0603\ 0.0618\ 0.0846\ 0.0896\ 0.0324\ 0.0447\ 0.0485\ 0.0549\ 0.0555\ 0.0301\ 0.0323\ 0.3145\ 0.3479\ 0.2935\ 0.2928\ 0.2119\ 0.1233\ 0.1207\ 0.1436\ 0.1436\ 0.1515\ 0.0874\ 0.0690\ 0.1074\ 0.1844\ 0.1019\ 0.1566\ 0.0765\ 0.1340\ 0.0566\ 0.0645\ 0.0595\ 0.0395\ 0.0302\ 0.0301	$\begin{array}{c} 0.2911 \ 0.0574 \ 0.0548 \ 0.0370 \ 0.0358 \ 0.0953 \ 0.0879 \ 0.2426 \ 0.2421 \ 0.0347 \\ 0.1342 \ 0.0262 \ 0.0267 \ 0.0166 \ 0.0168 \ 0.0360 \ 0.0382 \ 0.1018 \ 0.1170 \ 0.0168 \\ 0.0370 \ 0.0994 \ 0.0950 \ 0.0977 \ 0.0769 \ 0.0991 \ 0.0799 \ 0.2749 \ 0.2786 \ 0.0419 \\ 0.2550 \ 0.0765 \ 0.0760 \ 0.0488 \ 0.0478 \ 0.0872 \ 0.0804 \ 0.1779 \ 0.1887 \ 0.0439 \\ 0.0976 \ 0.0330 \ 0.0342 \ 0.0197 \ 0.0290 \ 0.0872 \ 0.0411 \ 0.0661 \ 0.0861 \ 0.0892 \ 0.0181 \\ 0.0186 \ 0.1319 \ 0.1300 \ 0.1090 \ 0.0998 \ 0.1099 \ 0.0871 \ 0.2386 \ 0.0274 \ 0.0478 \\ 0.04039 \ 0.0555 \ 0.0752 \ 0.0458 \ 0.0438 \ 0.0689 \ 0.0613 \ 0.2076 \ 0.0277 \\ 0.04039 \ 0.0563 \ 0.0574 \ 0.0478 \ 0.0479 \end{array}$	0.0556 0.0908 0.0787 0.1440 0.0249 0.0409 0.0380 0.0612 0.0753 0.0425 0.0581 0.0785 0.0755 0.0906 0.0581 0.0785 0.0775 0.0908 0.0379 0.0541 0.0351 0.0398 0.0379 0.0541 0.1119 0.0438 0.0542 0.0588	0.2329 0.1038 0.2661 0.1041 0.1950 0.0728 0.2367	0.0893 0.0773 0.0690 0.1587 0.00893 0.0773 0.0690 0.1587 0.0598 0.0579 0.0598 0.0558 0.0556 0.0598 0.0558 0.0556 0.0540 0.240 0.0588 0.0556 0.0540 0.0592 0.	0.0259 0.1128 0.0215 0.1986 0.0292 0.0746 0.0659 0.2233 0.0401 0.0906 0.0584 0.2416 0.0274 0.0973 0.0254 0.2735
$\begin{array}{c} \sigma_1 \\ \sigma_1 \\ CEM \\ 0.1010 \\ 0.0481 \\ 0.0481 \\ 0.0731 \\ 0.0732 \\ 0.0132 \\ 0.0450 \\ 0.0157 \\ 0.0989 \\ 0.0989 \\ 0.00566 \\ 0.0066 \\ 0.00666 \\ 0.00666 \\ 0.00666 \\ 0.00666 \\ 0.00666 \\ 0.00666 \\ 0.$	0.1090 0.0523 0.1265 0.0637 0.1151 0.0544 0.1207	0.0879 0.0382 0.0799 0.0547 0.0804 0.0401 0.0871	0.0787 0.0380 0.0843 0.0581 0.0856 0.0379 0.0895	0.0699 0.0341 0.0659 0.0405 0.0687 0.0687 0.0340 0.0759	0.0640 0.0308 0.0791 0.0500 0.0640 0.0305	0.0559 0.0615 0.0659 0.0401 0.0584 0.0274 0.0584
β3 σ1 CEM EM CEM EM 0.00348 0.1129 0.0168 0.0460 0.0723 0.1272 0.0389 0.1222 0.0198 0.0477 0.0918 0.0377 0.0439 0.0558 0.0488 0.1144 0.0248 0.0149 0.048 0.0518 0.048 0.0518 0.048 0.0538 0.048 0.0538 0.048 0.0538 0.048 0.0538 0.048 0.0538 0.048 0.0538 0.048 0.0538	$\begin{array}{c} 0.1165 \\ 0.0474 \\ 0.1565 \\ 0.0555 \\ \hline 0.1243 \\ 0.0485 \\ 0.1330 \\ 0.0560 \end{array}$	0.0358 0.0953 0.0168 0.0360 0.0769 0.0921 0.0395 0.0414 0.0478 0.0872 0.0200 0.0373 0.098 0.1090 0.0486 0.0433	0.0556 0.0908 0.0249 0.0409 0.1478 0.1042 0.0753 0.0425 0.0775 0.0906 0.0351 0.0398 0.1119 0.0438	0.0473 0.0707 0.0215 0.0313 0.0977 0.0775 0.0405 0.0323 0.0638 0.0731 0.0236 0.0330 0.1154 0.0805	0.0893 0.0773 0.0320 0.0309 0.1623 0.0879 0.0988 0.0357 0.0538 0.0656 0.0246 0.0280 0.1246 0.0280	
β3 CBM 0.0348 0.0168 0.0723 0.0354 0.0389 0.0198 0.0439 0.0488 0.0219 0.0483	$\begin{array}{c} 0.0622 \\ 0.0302 \\ 0.1247 \\ 0.0693 \\ 0.0911 \\ 0.0447 \\ 0.2123 \\ 0.1134 \end{array}$	0.0358 0.0168 0.0769 0.0395 0.0478 0.0200 0.0998	0.0669 0.0556 0.0908 0.0243 0.0249 0.0409 0.1628 0.1478 0.1042 0.0624 0.0753 0.0425 0.0946 0.0755 0.0906 0.0341 0.0351 0.0398 0.1988 0.1765 0.1083 0.0781 0.1119 0.0438	0.0833 0.0770 0.0503 0.0473 0.0707 0.0358 0.0357 0.0215 0.0215 0.0313 0.1219 0.1208 0.0979 0.0977 0.0775 0.0483 0.0505 0.0887 0.0405 0.0323 0.1150 0.1048 0.0683 0.0638 0.0731 0.0379 0.0407 0.0227 0.0236 0.0330 0.0459 0.1450 0.1154 0.1154 0.0805	0.0893 0.0893 0.0320 0.0988 0.0988 0.0538 0.0246	
	0.0684 0.0272 0.1275 0.0549 0.0919 0.0324 0.2119	0.2911 0.0574 0.0548 0.0370 0.1342 0.0262 0.0257 0.0166 0.67702 0.0994 0.0950 0.0797 0.4374 0.0446 0.0490 0.0399 0.2550 0.0765 0.0760 0.0348 0.0976 0.0330 0.0342 0.0197 0.6186 0.1319 0.0300 0.0020	0.0961 0.0669 0.0423 0.0243 0.1895 0.1628 0.0935 0.0624 0.1477 0.0946 0.0660 0.0341 0.2446 0.1988 0.1559 0.0781	0.3290 0.0833 0.0770 0.0503 0.1292 0.0358 0.0357 0.0215 1.077 0.1219 0.1208 0.0979 0.4617 0.0483 0.0505 0.0979 0.2406 0.1150 0.1048 0.0683 0.1129 0.0379 0.0407 0.0227 0.6078 0.1450 0.1191	0.0893 0.0893 0.1862 0.0764 0.0573 0.0242	
	0.1193 0.1087 $0.0487 0.0568$ $0.0710 0.0882$ $0.0710 0.0882$ $0.1681 0.1898$ $0.0580 0.0890$ $0.0580 0.0890$ $0.01090 0.1566$	0.0574 0.0548 0.0262 0.0267 0.0994 0.0950 0.0446 0.0490 0.0765 0.0760 0.0330 0.0342 0.0319 0.1300 0.0535 0.0572	0.1205 0.0961 0.0399 0.0423 0.2233 0.1895 0.0766 0.0935 0.1752 0.1477 0.02874 0.2446 0.1048 0.1559	0.0833 0.0770 0.0358 0.0357 0.1219 0.1208 0.0483 0.0505 0.1150 0.1048 0.0379 0.0407 0.1469 0.1420	0.1586 0.1543 0.0627 0.0619 0.0523 0.2208 0.0978 0.1317 0.0930 0.0849 0.0403 0.0411 0.0403 0.0411 0.0403 0.0411	0.1225 0.1225 0.1225 0.2024 0.1072 0.1072 0.0507 0.1823
	0.1193 0.0487 0.1725 0.0710 0.0580 0.2935 0.1019	0.0574 0.09574 0.0994 0.0446 0.0765 0.0330 0.1319 0.0535	0.1921 0.1205 0.0961 0.0825 0.0399 0.0423 0.4976 0.2233 0.1895 0.3211 0.0766 0.0935 0.1680 0.1752 0.1477 0.0724 0.0629 0.0660 0.4317 0.2874 0.2446 0.2579 0.1048 0.1559	0.3290 0.0833 0.0770 0.1292 0.0358 0.0357 1.0717 0.1219 0.1208 0.4617 0.0483 0.0505 0.2406 0.1150 0.1048 0.1129 0.0379 0.0407 0.0078 0.1450 0.1420	0.1887 0.1586 0.0766 0.0627 0.5451 0.2533 0.3120 0.0978 0.3695 0.0930 0.1421 0.0403 0.0420 0.0403	0.2458 0.1436 0.1259 0.2682 0.1436 0.1255 0.0970 0.0519 0.0503 0.5125 0.3835 0.2024 0.3604 0.0929 0.1072 0.3190 0.1427 0.1299 0.1388 0.0515 0.0507 0.8661 0.2145 0.1853
	0.1830 0.0833 0.3710 0.2238 0.1586 0.0846 0.3479	0.2911 0.1342 0.8702 0.4374 0.2550 0.0976 0.0976 0.4039	0.1876 0.1921 0.1205 0.0961 0.0732 0.0825 0.0399 0.0423 0.3763 0.4976 0.2233 0.1895 0.1424 0.3211 0.0766 0.0935 0.1570 0.1680 0.1752 0.1477 0.0634 0.0724 0.0629 0.0660 0.3525 0.4317 0.2874 0.2446 0.1372 0.2579 0.1048 0.1559	0.3247 0.3290 0.1191 0.1292 0.6747 1.0717 0.2415 0.4617 0.2231 0.2406 0.1001 0.1129 0.5579 0.6078		
	0.2541 0.1673 0.1167 0.0693 0.4167 0.3182 0.2647 0.1166 0.2259 0.1465 0.1067 0.0615 0.4696 0.3145 0.2114 0.1074	0.5063 0.2898 0.1827 0.1275 0.9276 0.7122 0.4525 0.2295 0.4010 0.2234 0.6744 0.0903 0.6714 0.5460	0.2762 0.1876 0.1237 0.0732 0.5445 0.3763 0.3507 0.1424 0.2571 0.1570 0.1031 0.0634 0.4699 0.3525 0.2811 0.1372	0.4793 0.3247 0.1958 0.1191 1.0842 0.6747 0.4948 0.2415 0.3234 0.2231 0.1423 0.1001 0.6676 0.5579	0.2536 0.1777 0.1203 0.0729 0.5864 0.4415 0.3380 0.1575 0.4869 0.3087 0.1757 0.1180	
	0.2541 0.1167 0.4167 0.2647 0.2259 0.1067 0.4696		0.2762 0.1237 0.5445 0.3507 0.1031 0.4699 0.2811			
\beta_1 \beta_1 \text{a}_2 \text{c}_2 \text{EM} \t	0.1497 0.2009 0.2382 0.0583 0.0820 0.1045 0.3979 0.4030 0.3462 0.1444 0.1767 0.1485 0.0650 0.1933 0.2093 0.0650 0.1246 0.0873 0.3939 0.4089 0.3858 0.1604 0.1962 0.1335	0.1144 0.1080 0.4827 0.0445 0.0453 0.1701 0.2438 0.2024 0.7489 0.0846 0.0838 0.2795 0.1015 0.0973 0.3239 0.0446 0.0439 0.1356 0.2484 0.2337 0.6555 0.0922 0.1032 0.2080	0.0120 0.0981 0.2664 0.0447 0.0159 0.2346 0.3346 0.3346 0.1025 0.1146 0.1885 0.1144 0.1216 0.2504 0.0448 0.0497 0.0971 0.0320 0.2756 0.4598 0.0994 0.1281 0.1608	0.0836 0.0801 0.4881 0.0376 0.0384 0.1664 0.1836 0.1694 0.8121 0.0724 0.0809 0.2783 0.0840 0.0843 0.3127 0.0384 0.0391 0.1310 0.1881 0.1679 0.6143	0.0368 0.0371 0.1106 0.0368 0.0371 0.1106 0.2064 0.1856 0.5245 0.0748 0.0828 0.1828 0.0759 0.0741 0.4059 0.0759 0.01537 0.8453	0.0070 0.081 0.3842 0.0657 0.0851 0.3177 0.0350 0.0355 0.1287 0.2360 0.1577 0.5282 0.0681 0.0687 0.2202 0.0574 0.0570 0.4221 0.0283 0.0290 0.1713 0.1259 0.1255 0.7598
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 0.2009 \\ 0.0820 \\ 0.4030 \\ 0.1767 \\ \hline 0.1933 \\ 0.4089 \\ 0.1962 \\ \end{array}$	0.1144 0.1080 0.482 0.0445 0.0453 0.170 0.2438 0.2024 0.748 0.0846 0.0838 0.279 0.1015 0.0973 0.323 0.0446 0.0439 0.135 0.2484 0.2337 0.655 0.0922 0.1032 0.208	0.0981 0.0440 0.2346 0.1146 0.1216 0.0497 0.2756	0.0801 0.0384 0.1694 0.0809 0.0843 0.0391 0.1679	0.0869 0.0871 0.0828 0.0828 0.0741 0.0299	0.070 0.0071 0.280 0.0077 0.280 0.0070 0.0670 0.0681 0.317 0.0530 0.157 0.532 0.0581 0.0087 0.0054 0.0057 0.0057 0.0057 0.0057 0.0057 0.0057 0.0057 0.0057 0.0057 0.0057 0.0057 0.0058 0.0059 0.171 0.125 0.759 0.0589 0.0595 0.289
$\begin{array}{c} \beta_1 \\ EM \\ EM \\ CM \\ CM \\ CM \\ CM \\ CM \\ CM$	0.1497 0.0583 0.3979 0.1444 0.1650 0.0650 0.3939	0.0445 0.0445 0.0446 0.0846 0.0846 0.1015 0.0446 0.2484 0.0922	0.1120 0.0447 0.2430 0.1025 0.1144 0.0448 0.3205 0.0994	0.0836 0.0376 0.1836 0.0724 0.0840 0.0384 0.1881	0.0849 0.0849 0.0368 0.2064 0.0748 0.0759 0.0296	0.0589 0.0580 0.0850 0.0881 0.0681 0.0574 0.0283 0.0283
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.1931 0.1902 0.1497 0.2382 0.0748 0.0787 0.0583 0.0820 0.1045 0.347 0.3217 0.3599 0.4030 0.3462 0.1298 0.1437 0.1444 0.1767 0.1485 0.1921 0.1891 0.1650 0.1933 0.2093 0.4266 0.4824 0.3939 0.4089 0.3858 0.4266 0.4824 0.3939 0.4089 0.3858 0.1552 0.1637 0.1664 0.1962 0.1355	0.1408 0.1407 0.1144 0.1080 0.4827 0.0575 0.0588 0.0445 0.0453 0.1701 0.2324 0.2030 0.2438 0.2024 0.7895 0.0906 0.0929 0.0846 0.0838 0.2795 0.1552 0.0553 0.0416 0.0937 0.3239 0.0552 0.0553 0.0446 0.0439 0.1356 0.2588 0.2394 0.2444 0.2337 0.6555 0.0917 0.1029 0.0922 0.1032 0.2050	0.1320 0.1286 0.1120 0.0981 0.2664 0.0563 0.0574 0.0447 0.0440 0.1154 0.2240 0.2110 0.2430 0.2346 0.4371 0.1027 0.1076 0.1025 0.1146 0.1685 0.1462 0.1461 0.1144 0.1216 0.2504 0.0630 0.0643 0.0448 0.0971 0.4650 0.2704 0.3205 0.2756 0.4593 0.0356 0.1082 0.0984 0.1281 0.1608	0.1133 0.1147 0.0836 0.0801 0.4881 0.0496 0.0509 0.0376 0.0384 0.1664 0.1891 0.1806 0.1836 0.1694 0.8121 0.0753 0.0842 0.0724 0.0809 0.2783 0.1143 0.1162 0.0840 0.0843 0.3127 0.0546 0.0556 0.0884 0.0391 0.1310 0.0548 0.0555 0.1881 0.1679 0.6143	0.0989 0.1015 0.0549 0.0869 0.2701 0.0525 0.0531 0.0368 0.0869 0.2711 0.02017 0.1904 0.2064 0.1856 0.5245 0.0788 0.0910 0.0748 0.0828 0.1828 0.0966 0.1006 0.0759 0.0741 0.4059 0.0409 0.0418 0.0296 0.0537 0.0453 0.0721 0.1614 0.1677 0.1537 0.8453	0.1129 0.1139 0.0070 0.0087 0.2802 0.1120 0.1130 0.0670 0.0681 0.3177 0.0484 0.0483 0.0350 0.0355 0.1287 0.0691 0.0711 0.0681 0.0687 0.2202 0.0691 0.0711 0.0681 0.0687 0.2202 0.0870 0.0875 0.0574 0.0570 0.4201 0.0412 0.0416 0.0283 0.0290 0.1713 0.1420 0.1422 0.1259 0.1255 0.7598 0.0659 0.0642 0.0589 0.0595 0.2894
at EM (1767	$\begin{array}{c} 0.1931 \\ 0.0748 \\ 0.3447 \\ 0.1298 \\ \hline 0.1921 \\ 0.0708 \\ 0.4266 \\ 0.1252 \end{array}$	0.1408 0.0575 0.2324 0.0906 0.1330 0.0552 0.2588	$\begin{array}{c} 0.1320 \\ 0.0563 \\ 0.2240 \\ 0.1027 \\ \hline 0.1462 \\ 0.0630 \\ 0.4506 \\ 0.0936 \end{array}$	0.1133 0.0496 0.1891 0.0753 0.1143 0.0546 0.1863	0.0989 0.0525 0.2017 0.0788 0.0996 0.0409 0.1721	0.0734 0.1120 0.0484 0.1733 0.0691 0.0870 0.0412 0.1420 0.0659
100 500 100 500 100 500 100 500 100 500 5	100 500 100 100 500 100 500	100 500 100 500 100 500 500	100 100 500 100 500 100 500	100 500 100 500 100 500 100	100 100 100 500 100 100 100	100 100 100 100 100 100 100 200
$\begin{bmatrix} x \\ [-1;3] \\ [0;2] \\ [-1;3] \\ [0;2] \\ [0;2] \\ [0;2] \\ [0;2] \\ \end{bmatrix}$	[-1;3] $[0;2]$ $[-1;3]$ $[0;2]$	[-1; 3] [0; 2] [-1; 3] [0; 2]	[-1;3] [0;2] [-1;3] [0;2]	[-1;3] [0;2] [-1;3] [0;2]	[-1; 3] [0; 2] [-1; 3] [0; 2]	[-1; 3] [0; 2] [-1; 3] [0; 2]
	0.5	0.3	6.0	0.2	0.4	0.3
$\frac{\pi}{0.2}$ 0.2 0.2	0.2	0.3	0.3	0.4	0.4	0.6

Tabela D.86: Estimativas do desvio padrão dos parâmetros da mistura de três regressões lineares no caso III

	0.6 0.2		0.5 0.3		0.5 0.2		0.4 0.4			0.4		0 4 0 9		0.3 0.5		0.3 0.4		0.3 0.3		0.3 0.2		0.2 0.6		0.2 0.5		0.2 0.4		0.2 0.3		
[0; 2]	[-1; 3]	[0; 2]	[-1; 3]	[0; 2]	[-1; 3]	[0; 2]	[-1;3]	[0, 1]	[0. 5]	1.2	[0.9]	1.3	[0; 2]	[-1; 3]	[0; 2]	[-1; 3]	[0; 2]	[-1; 3]	[0; 2]	[-1; 3]	[0; 2]	[-1; 3]	[0; 2]	[-1; 3]	[0; 2]	[-1; 3]	[0; 2]	-1; 3	[0; 2]	1, 1,
100	100 500	$\frac{100}{500}$	100 500	100 500	100 500	500	500	500	500	500	500	500	500 100	100	100	100	100 500	100 500	100 500	100 500	$\begin{array}{c} 100 \\ 500 \end{array}$	100 500	100 500	100 500	$\frac{100}{500}$	100 500	100 500	100 500	100 500	500
0.1431 0.1396 0.1345	0.0907 0.0373	0.1499 0.0640	0.1068	$0.1476 \\ 0.0653$	0.0939 0.0419	0.1662	0.0510	0.0781	0.0493	0.0782	0.0476	0.0832	0.0591 0.2134	0.0903	0.1975	0.1322	0.1975 0.0903	0.1322 0.0512	0.1905 0.0828	0.1260 0.0543	0.2883 0.1103	0.2805 0.0728	0.2999	0.1798 0.0688	$0.2804 \\ 0.1159$	0.1772	0.2535 0.1080	$0.1588 \\ 0.0721$	0.2697 0.1046	0.0718
0.0010	0.0925 0.0375	$0.1460 \\ 0.0650$	0.1022 0.0429	$0.1448 \\ 0.0675$	$0.0939 \ 0.0932 \ 0.0653 \ 0.0419 \ 0.0428 \ 0.0307$	0.1600 0.0827	0.1103 0.1087 0.0867	0.0755	0.0493 0.0497 0.0337	0.0766	0.0482	0.0832 0.0807	0.0604 0.2078	0.0898	0.1948	0.1318	0.1948 0.0898	0.1318 0.0517	$0.1800 \\ 0.0831$	0.1275 0.0541	$0.2581 \\ 0.1106$	0.1916 0.0726	0.2805 0.1102	0.1613 0.0696	$0.2730 \\ 0.1133$	0.1675 0.0690	0.2535 0.2459 0.2657 0.1080 0.1042 0.1001	0.1573 0.0733	0.2364 0.1046	0.0708
0.01000	0.0621 0.0263	0.1499 0.1460 0.1412 0.0640 0.0650 0.0597	$0.1068 \ 0.1022 \ 0.0731$ $0.0427 \ 0.0429 \ 0.0318$	$0.1476 \ 0.1448 \ 0.1380 \ 0.0653 \ 0.0675 \ 0.0608$	0.0653 0.0307	0.1603 0.0725	0.0365	0.0781 0.0755 0.0719	0.0337	0.0744	$0.0476 \ 0.0482 \ 0.0319$	0.0782	$0.0591 \ 0.0604 \ 0.0434$ $0.2134 \ 0.2078 \ 0.1949$	$\begin{array}{c} 0.0903 \ 0.0898 \ 0.0840 \ 0.0784 \\ \hline 0.1324 \ 0.1276 \ 0.0989 \ 0.0976 \end{array}$	0.0414	0.1094	$0.1868 \\ 0.0840$	0.1094 0.0414	$\begin{array}{c} 0.1905 \ 0.1800 \ 0.1882 \\ 0.0828 \ 0.0831 \ 0.0777 \end{array}$	$0.1125 \\ 0.0412$	$0.2814 \\ 0.1027$	0.1657 0.0486	0.2999 0.2805 0.2698 0.2267 0.4125 0.1110 0.1102 0.1076 0.0995 0.1655	$0.1321 \\ 0.0566$	$0.2804 \ 0.2730 \ 0.2510$ $0.1159 \ 0.1133 \ 0.1002$	$0.1772 \ 0.1675 \ 0.1467$ $0.0683 \ 0.0690 \ 0.0503$	0.2657 0.1001	$\begin{array}{c} 0.1573 \ 0.1265 \\ 0.0733 \ 0.0577 \end{array}$	0.2697 0.2364 0.2658 0.1046 0.1046 0.0971	$0.0718\ 0.0708\ 0.0492$
0.0011	0.0682 0.0311	$\begin{array}{c} 0.1318 \\ 0.0602 \end{array}$	$0.0734 \ 0.3412$ $0.0371 \ 0.1386$	$0.1248 \\ 0.0610$	0.0717 0.0340	0.1462 0.0713	0.0437	0.0682	0.0390	0.0703	0.0340	0.0738	0.0514 0.1792	0.0784 0.0976	0.1668	0.1048	0.1668 0.0784	$0.1048 \\ 0.0460$	$0.1686 \\ 0.0729$	$0.1121 \\ 0.0411$	$0.2370 \\ 0.0970$	0.1377 0.0569	0.2267 0.0995	$0.1295 \\ 0.0603$	$0.2250 \\ 0.0925$	0.1325 0.0515	0.2198 0.0895	0.1331 0.0593	0.2060 0.0895	
	0.4594 0.1750	$0.4779 \\ 0.2339$	0.3412 0.1386	$0.6160 \\ 0.2661$	0.4477 0.1762	0.4395 0.1859	0.2760	0.2171	0.1386	0.2685	0.1652	0.1713	$0.1075 \\ 0.3717$	0.1936 0.2365	0.4213	0.2631	0.4213 0.1936	0.2631 0.1164	0.6979 0.2871	0.4497 0.1664	$0.3342 \\ 0.1468$	0.1933 0.0971	0.4125 0.1655	$0.2290 \\ 0.1036$	$0.4371 \\ 0.1931$	0.3103 0.1223	$0.5186 \\ 0.2314$	$0.3130 \\ 0.1378$	$0.6741 \\ 0.3019$	0.1765
ο π H	0.4425 0.2177	$0.4064 \\ 0.2219$	$0.3250\ 0.2776$ $0.1906\ 0.0819$	$0.4966 \\ 0.4877$	0.4533 0.2015	0.3777 0.1878	0.1528	0.1892	0.1838	0.2047	0.2025 0.4638	0.1754	$0.1444 \\ 0.3389$	0.1565 0.2584	0.3903	0.2847	0.3903 0.1565	0.2847 0.1573	$0.5262 \\ 0.2078$	0.4739 0.2134	$0.3350 \\ 0.1581$	$0.2151 \\ 0.1321$	0.3405 0.1611	0.2677 0.1398	$0.3446 \\ 0.1667$	0.3390 0.1622	$0.4188 \\ 0.1710$	0.3633 0.1859	$0.5045 \\ 0.2115$	0.2203
0.1011	0.0907 0.0925 0.0621 0.0682 0.4594 0.4425 0.3053 0.2452 0.1440 0.1401 0.2426 0.1181 0.0569 0.0533 0.0373 0.0375 0.0263 0.0311 0.1750 0.2177 0.1077 0.1242 0.0587 0.0797 0.0457 0.0629 0.0208 0.0219	$\begin{array}{c} 0.1318\ 0.4779\ 0.4064\ 0.4531\ 0.3268\ 0.2494\ 0.1916\ 0.3468\ 0.1643\ 0.0608\\ 0.0602\ 0.2339\ 0.2219\ 0.1758\ 0.1686\ 0.0862\ 0.0884\ 0.0734\ 0.0738\ 0.0278 \end{array}$	$\begin{array}{c} 0.1068 \ 0.1022 \ 0.0731 \ 0.0734 \ 0.3412 \ 0.3250 \ 0.2776 \ 0.1932 \\ 0.0427 \ 0.0429 \ 0.0318 \ 0.0371 \ 0.1386 \ 0.1906 \ 0.0819 \ 0.0965 \end{array}$	$0.1476\ 0.1448\ 0.1380\ 0.1248\ 0.6160\ 0.4966\ 0.5226\ 0.4069\ 0.1932\ 0.1387\ 0.5258\ 0.1530\ 0.0613\ 0.0522\\ 0.0653\ 0.0675\ 0.0608\ 0.0610\ 0.2661\ 0.4877\ 0.2377\ 0.4596\ 0.0612\ 0.0630\ 0.0500\ 0.0513\ 0.0274\ 0.0389$	0.0939 0.0932 0.0653 0.0717 0.4477 0.4533 0.2898 0.2606 0.0995 0.0936 0.2371 0.0642 0.0583 0.0554 0.0419 0.0428 0.0307 0.0340 0.1762 0.2015 0.1033 0.1168 0.0356 0.0423 0.0302 0.0331 0.0248 0.0259	0.3919	0.0510 0.0515 0.0365 0.0437 0.1183 0.1528 0.0566 0.0727 0.0683 0.1229 0.0505 0.0815 0.0286	0.0781 0.0755 0.0719 0.0062 0.2171 0.1892 0.1580 0.1474 0.0682 0.0713 0.0598 0.0608 0.0315	0.0390 0.1386 0.1838 0.0781 0.0976 0.0428 0.0495 0.0332 0.0404 0.0308 0.0313	0.0782 0.0766 0.0744 0.0703 0.2685 0.2047 0.2009 0.1734 0.0514 0.0538 0.0456 0.0485 0.0308 0.0268	0.0340 0.1652 0.2025 0.0900 0.1067	0.0782 0.0738 0.1713 0.1754 0.1233 0.1209 0.0870 0.0921 0.0730 0.0780 0.0371 0.0348	$0.0591\ 0.0604\ 0.0434\ 0.0514\ 0.1075\ 0.1444\ 0.0596\ 0.0714\ 0.0753\ 0.1108\ 0.0484\ 0.0771\ 0.0337\ 0.2134\ 0.2078\ 0.1921\ 0.2830\ 0.1485\ 0.0897$	$\begin{array}{c} 0.1565\ 0.1476\ 0.1300\ 0.0673\ 0.0686 \\ 0.2584\ 0.1453\ 0.1489\ 0.2017\ 0.2017 \end{array}$	0.1975 0.1948 0.1868 0.1668 0.4213 0.3903 0.3685 0.3215 0.1885 0.1555 0.3455 0.1786 0.0790 0.0653	0.1705	$0.1975\ 0.1948\ 0.1868\ 0.1668\ 0.4213\ 0.3903\ 0.3685\ 0.3215\ 0.1885\ 0.1555\ 0.3455\ 0.1786\ 0.0790\\ 0.0903\ 0.0898\ 0.0840\ 0.0784\ 0.1936\ 0.1565\ 0.1476\ 0.1300\ 0.0673\ 0.0686\ 0.0584\ 0.0591\ 0.0360$	0.1322 0.1318 0.1094 0.1048 0.2631 0.2847 0.1705 0.1464 0.1285 0.1133 0.1118 0.0729 0.0926 0.0512 0.0517 0.0414 0.0460 0.1164 0.1573 0.0692 0.0843 0.0439 0.0630 0.0324 0.0446 0.0332	$\begin{array}{c} 0.1686\ 0.6979\ 0.5262\ 0.6081\ 0.4695\ 0.1304\ 0.0988\ 0.4950\ 0.1657\ 0.0725\\ 0.0729\ 0.2871\ 0.2078\ 0.2165\ 0.1750\ 0.0413\ 0.0412\ 0.0386\ 0.0381\ 0.0368 \end{array}$	0.1260 0.1275 0.1125 0.1121 0.4497 0.4739 0.2659 0.2890 0.0675 0.0725 0.0502 0.0490 0.0770 0.0741 0.0543 0.0541 0.0412 0.0411 0.1664 0.2134 0.1005 0.1243 0.0284 0.0294 0.0211 0.0211 0.0353 0.0342	$0.2883\ 0.2581\ 0.2814\ 0.2370\ 0.3342\ 0.3350\ 0.3751\ 0.2701\ 0.2577\ 0.1791\ 0.3852\ 0.1906\ 0.1951\ 0.0857\ 0.1103\ 0.1106\ 0.1027\ 0.0970\ 0.1468\ 0.1581\ 0.1139\ 0.1127\ 0.0937\ 0.0942\ 0.0789\ 0.0790\ 0.0428\ 0.0380$	0.1516	0.3759	0.1798 0.1613 0.1321 0.1295 0.2290 0.2677 0.1570 0.1713 0.1388 0.1264 0.0944 0.0831 0.1178 0.0688 0.0696 0.0566 0.0603 0.1036 0.1398 0.0597 0.0736 0.0492 0.0659 0.0340 0.0424 0.0485	$\begin{array}{c} 0.2250\ 0.4371\ 0.3446\ 0.3702\ 0.2923\ 0.1365\ 0.1275\ 0.2688\ 0.1103\ 0.1146\\ 0.0925\ 0.1931\ 0.1667\ 0.1526\ 0.1365\ 0.0582\ 0.0600\ 0.0495\ 0.0506\ 0.0422 \end{array}$	$\begin{array}{c} 0.1325\ 0.3103\ 0.3390\ 0.1828\ 0.1928\ 0.0974\ 0.0939\ 0.1164\ 0.0629\ 0.1131\\ 0.0515\ 0.1223\ 0.1622\ 0.0681\ 0.0880\ 0.0372\ 0.0427\ 0.0237\ 0.0267\ 0.0446 \end{array}$	0.2198 0.5186 0.4188 0.3991 0.3351 0.1286 0.1132 0.2794 0.0912 0.0895 0.2314 0.1710 0.1704 0.1466 0.0403 0.0391 0.0363 0.0356	0.1588 0.1573 0.1265 0.1331 0.3130 0.3633 0.1731 0.2070 0.0776 0.0737 0.0492 0.0477 0.1051 0.0928 0.0721 0.0733 0.0577 0.0593 0.1378 0.1859 0.0825 0.1040 0.0336 0.0351 0.0209 0.0223 0.0407 0.0379	0.2697 0.2364 0.2658 0.2060 0.6741 0.5045 0.5608 0.4305 0.1965 0.0888 0.5324 0.0745 0.0998 0.0821 0.1046 0.1046 0.0971 0.0895 0.3019 0.2115 0.2224 0.1804 0.0379 0.0382 0.0334 0.0337 0.0414 0.0345	$0.0520\ 0.1765\ 0.2203\ 0.1029\ 0.1199\ 0.0249\ 0.0261\ 0.0180\ 0.0183\ 0.0415$
0.1686	0.2452 (0.1242 (0.3268 (0.1686 (0.1932	0.4069 (0.4596 (0.2606 (0.1168 (0.2930 (0.0727	0.1474	0.0976	0.1734	0.1067	0.1209	0.0714 (0.2645 (0.1300	0.3215	0.1464	0.3215 (0.1300 (0.1464 (0.0843 (0.4695 (0.1750 (0.2890 (0.1243 (0.2701 (0.1127)	0.1246 (0.0596 (0.2737 (0.1713 (0.2923 (0.1365 (0.1928	0.3351 (0.1466 (0.2070 (0.4305 (0.1199 (
0.3048	0.1440 (0.0587 (0.2494 (0.0862)	0.1846 (0.1932 (0.0612 (0.0995 (0.0356 (0.2523 (0.0683	0.0682	0.0428	0.0514	0.0362	0.0870	0.0753 (0.2334 (0.0673	0.1885	0.1285	0.1885 (0.0673 (0.1285(0.1304 (0.0413 (0.0675 (0.0284)	0.2577 (0.0937 (0.1802 (0.0809 (0.1992 (0.1388 (0.0492 (0.1365 (0.0582 (0.0974 (0.0372 (0.1286 (0.0403 (0.0776 (0.1965 ($0.0249\ 0.0261$
0.1248 0.6985 0.5343 0.6089 0.4586 0.3048 0.1780 0.5914 0.2142 0.0580 0.0512	0.1401 (0.1916 (0.0884 ().1551 (0.1387 ().0936 ().0423 (0.1940 (0.1229	0.0713	0.0495	0.0538	0.0378	0.0921).1108 ().1921 (0.2017	0.1555	0.1133 ().1555 ().0686 ().1133 ().0630 (0.0988 ().0725 ().0294 ().1791 ().0942 ().1427 ().1208 (0.1485 (0.1264 (0.1275 (0.0600 (0.0939 (0.0427 (0.1132 ($\begin{array}{c} 0.0737 \ 0.0492 \\ 0.0351 \ 0.0209 \end{array}$	0.0888 (0.0261 (
5914	0.2426 (0.0457 ($\begin{array}{c} 0.2494 \ 0.1916 \ 0.3468 \ 0.1643 \ 0.0608 \\ 0.0862 \ 0.0884 \ 0.0734 \ 0.0738 \ 0.0278 \end{array}$	$0.1846\ 0.1551\ 0.2134\ 0.1077\ 0.0624\ 0.0557 \ 0.0562\ 0.0899\ 0.0410\ 0.0665\ 0.0250\ 0.0259$	$\begin{array}{c} 0.1387 \ 0.5258 \ 0.1530 \ 0.0613 \\ 0.0630 \ 0.0500 \ 0.0513 \ 0.0274 \end{array}$).2371 ().0302 (0.3180 (0.0505	0.0598	0.0332	0.0456	0.0362 0.0378 0.0253 0.0274 0.0313	0.0730).0484 ().2830 (0.0584 (0.3455	0.1118 ().3455 ().0584 (0.11118 ($0.0324 ($	0.4950 ().0502 ().0211 ().3852 ().0789 ().1469 ().0496 (0.2762 (0.0944 ().2688 ().0495 (0.1164 ($0.0237 ($	0.2794 (0.0492 (0.5324 (0.0180 (
2142	0.1181(0.1643 (0.0738 (0.1077	0.1530 ().0642 ().0331 (0.2031 (0.1033 0.0680 0.0636 0.0815 0.0286 0.0287	0.0608	0.0404	0.0485	0.0274	0.0780).0771 ().1485 (0.0591 0.0360 0.1200 0.0823	0.1786	0.0729).1786 ().0591 ().0729 ().0446 (0.1657 ().0490 ().0211 (0.1906 (0.0790 (0.0977 (0.0711 (0.1236 (0.0831 ().1103 ().0506 (0.0629 (0.0267 (0.0912 (0.0477 (0.0745 (0.0183 (
0580 ().0569 ().0208 ().0608 ().0278 ($0.0624 \ 0.0557$ $0.0250 \ 0.0259$	0.0613 (0.0274 ().0583 ().0248 (0.0689 (0.0286	0.0315	0.0308	0.0308	0.0313	0.0371).0337 ().0897 (0.0360	0.0790	0.0926).0790 ().0360 ().0926 ().0332 (0.0725 ().0770 ().0353 ().1051 ().0428 ().1110 ().0426 (0.1181 ().1178 ().0485 ().1146 ().0422 ().1131 ().0446 (0.1077 ($\begin{array}{c} 0.1051 \ 0.0928 \\ 0.0407 \ 0.0379 \end{array}$	0.0998 (0.0183 0.0415 (
0519).0533 ().0219 (0.0538 (0.0256 ().0557 ().0259 (0.0522 (0.0389 (0.0554 (0.0597 (0.0287	0.0286 0.08	0.0313	0.0268	0.0299	0.0348 ().0342 ().0701 (0.0310 (0.0653	0.0843).0653 ().0310 (0.0843 (0.0586 (0.0313 ().0741 ().0342 ().0857 ().0380 ().0857 ().0395 (0.0879 ().0924 ().0439 ().0864 ().0374 (0.0957 (0.0427 (0.0859 (0.0928 (0.0821 (0.0345 (0.0374 (
2000).2105 ().0930 ().2265 ().0784 ().1901 ().0744 ($\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.2496 (0.2083 (0.1449	0.0875	0.0726	0.1053	0.0965	0.0675 ().0556 ().1617 ($\begin{array}{c} 0.0717 \ 0.0521 \\ 0.1320 \ 0.1202 \end{array}$	0.1882	0.1336 ().1882 ().0717 ().1336 ().0628 ().2722 ().1028 ().2323 ().0908 ().1865 ().0580 ().1123 ().0509 (0.2013 ().1313 ().0576 ().1947 ().0757 ().1603 ().0621 ().2103 ().0838 ($\begin{array}{c} 0.1643 \ 0.1467 \\ 0.0723 \ 0.0775 \end{array}$	0.2643 (0.1073 (0.0374 0.0901 0
1602	.1560 C).1334 C).1410 C).1573 C	96 0.1869 0.1448 0.0538 77 0.0867 0.0285 0.0298	0.1343 C	0.0678	0.0614	1574	1520	1580	0.0550 C).0594 C	0.0521 C	1.1292	0.1158 C).1292 ().0521 ().1158 C).0646 C).1618 C	.1973 C).1144 C).0510 C	0.0986 C	0.1131 C	0.1186 C).1262 C).1294 C).0659 C	0.1349 C 0.0564 C	0.1467 C	0.1471 C	0.0938 C
27070	.18300	.1871 0 .0389 0	.1493 0 .0428 0	0.24350 0.02150	.14480 $.02850$.1870 0	.0448 0	.0307 0	0337 0	.0213 0	0209 0	.0445 0	.0430 0 .1552 0	.1107 0	.1501 0	.0831 0	.1501 0 .0272 0	.0831 0 .0278 0	.2227 0	.0466 0 .0199 0	.2021 0 .0451 0	.1095 0 .0446 0	.1535 0	.0866 0	.1715 0 .0242 0	.0820 0	.1726 0	.0536 0	.2298 0	.0169 0
0000	.0720 0 .0447 0	.0609 0 .0339 0	.0670 0 .0481 0	0.06360 0.03690	.05380 $.02980$.0866 0	.07160 $.04340$.0279 0	.0356 0	.0199 0	.0245 0	.0400 0	.0473 0 .0625 0	.0247 0	.0749 0	.0564 0	.0749 0 .0247 0	.0564 0 .0333 0	.0405 0 .0188 0	.0444 0 .0216 0	.08040 $.03810$.06550 $.04470$.0307 0	.0612 0 $.0331 0$.0480 0 $.0251 0$.04750 $.02520$.0379 0 .0202 0	.0481 0 .0241 0	.0334 0 .0179 0	.0201 0
0.0000 0.0000 0.0121 0.0111 0.0200 0.0010 0.0222 0.0200 0.0201 0.0000 0.0000 0.1603 0.2507 0.0823 0.0558 0.0543 0.0546 0.0403 0.0580 0.0485	.05850	.0552 0 .0231 0	.0570 0 .0270 0	.0516 0 .0272 0	.0555 0 .0247 0	$.0562 \ 0$ $.0233 \ 0$.0228 0	.0232 0	.02440	.0223 0	0.0234 0	.0209 0	.0238 0 .0455 0	.0192 0 $.0541 0$.0498 0	.0534 0	.0498 0 .0192 0	.0534 0 .0235 0	.0516 0 .0222 0	.0493 0 .0250 0	.0447 0 .0184 0	.0507 0 .0200 0	.0460 0	.0462 0 .0206 0	.0454 0 .0202 0	.0459 0 .0195 0	.0416 0 .0183 0	.0458 0 .0207 0	.0430 0 .0190 0	.0206 0
0849 0	.0648 0 $.0316 0$.0532 0 .0231 0.	.0632 0.	0.04880 0.02570	06150 02910	.0542 0	.0285 0.	.0235 0.	.0280 0.	.0225 0.	.0269 0.	.0213 0.	.0297 0 .0431 0.	0563 0.	.0480 0.	.0548 0.	.04800	05480 02840	.0514 0 .0221 0.	04700 02470	.0439 0 .0192 0.	.0478 0 .0239 0.	.0421 0	.0453 0 .0233 0.	.0421 0 .0206 0.	.0463 0 .0195 0.	.0393 0	.0431 0	.0417 0 .0191 0.	.0192 0.
0 0 0 0 0 0	$0464 \ 0.0222 \ 0.0222 \ 0.00000000000000000$.0646 0 0258 0.	.0569 0. 0269 0.	.0532 0. 0265 0.	$0561\ 0.0220\ 0.0220$	0763 0	0254 0.	0263 0.	.0238 0.	0223 0.	0195 0.	0304 0.	02590.	0628 0.	.0667 0.	0582 0.	.0667 0. 0276 0.	.0582 0. 0265 0.	.0880 0. .0222 0.	.0545 0. 0202 0.	.1051 0 0299 0.	.0666 0. 0266 0.	0828 0.	.0657 0 0268 0.	.0600 0 0293 0.	.0580 0. 0270 0.	.0654 0 .0280 0.	.0644 0. .0246 0.	.1129 0 .0234 0	0220 0.
	$0438\ 0.$ $0265\ 0.$.0544 0. 0257 0.	0569 0. 0323 0.	0396 0. 0262 0.	$0471 \ 0.0227 \ 0.0227 \ 0.0000000000000000000000000000000000$	0583 0.	0340 0.	0233 0.	0267 0.	0185 0.	01890.	0325 0.	.0368 0. 0570 0.	0648 0.	0553 0.	0582 0.	05530. $02540.$	$0582\ 0.$ $0323\ 0.$	0452 0. 0177 0.	.0467 0. 0195 0.	.0675 0. 0333 0.	0388 0.	0604 0.	0336 0.	0513 0. 0274 0.	0.1603 0.1294 0.0820 0.0475 0.0459 0.0463 0.0580 0.0599 0.0688 0.0621 0.0659 0.0234 0.0252 0.0195 0.0195 0.0270 0.0300 0.0277	0480 0. 0224 0.	0584 0. 0242 0.	0401 0. 0191 0.	0200 0.
0100	$0.2105 \ 0.1560 \ 0.1830 \ 0.0720 \ 0.0585 \ 0.0648 \ 0.0464 \ 0.0438 \ 0.0633 \ 0.0656 \ 0.0930 \ 0.0853 \ 0.0421 \ 0.0447 \ 0.0255 \ 0.0316 \ 0.0222 \ 0.0265 \ 0.0264 \ 0.0380$	$\begin{array}{c} 0.2265\ 0.1334\ 0.1871\ 0.0609\ 0.0552\ 0.0532\ 0.0646\ 0.0544\ 0.0647\ 0.0509\\ 0.0784\ 0.0601\ 0.0389\ 0.0339\ 0.0231\ 0.0231\ 0.0258\ 0.0257\ 0.0267\ 0.0281 \end{array}$	$\begin{array}{c} 0.1901 \ 0.1410 \ 0.1493 \ 0.0670 \ 0.0570 \ 0.0632 \ 0.0569 \ 0.0569 \ 0.0586 \ 0.0664 \\ 0.0744 \ 0.0750 \ 0.0428 \ 0.0481 \ 0.0270 \ 0.0331 \ 0.0269 \ 0.0323 \ 0.0261 \ 0.0418 \end{array}$	$\begin{array}{c} 0.2834 \ 0.1573 \ 0.2435 \ 0.0636 \ 0.0516 \ 0.0488 \ 0.0532 \ 0.0396 \ 0.0623 \ 0.0515 \\ 0.1118 \ 0.2336 \ 0.0215 \ 0.0369 \ 0.0272 \ 0.0257 \ 0.0265 \ 0.0262 \ 0.0232 \ 0.0257 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$0.1662\ 0.1600\ 0.1603\ 0.1462\ 0.4395\ 0.3777\ 0.3919\ 0.2930\ 0.2523\ 0.1940\ 0.3180\ 0.2031\ 0.0689\ 0.0597\ 0.2083\ 0.1343\ 0.1870\ 0.0866\ 0.0562\ 0.0542\ 0.0542\ 0.0763\ 0.0827\ 0.0827\ 0.0827\ 0.0715\ 0.0715\ 0.0710\ 0.0581\ 0.0425\ 0.0356\ 0.0233\ 0.0234\ 0.0272\ 0.0271\ 0.0254\ 0.0271$	0.0656 0.0678 0.0448 0.0434 0.0228 0.0285 0.0254 0.0340 0.0266 0.0463	0.0682 0.2170 0.3022 0.7012 0.7000 0.	0.0726 0.0726 0.0337 0.0356 0.0244 0.0280 0.0238 0.0267 0.0300 0.0392	0.0782 0.0766 0.0744 0.0703 0.2685 0.2047 0.2009 0.1734 0.0514 0.0538 0.0456 0.0485 0.0308 0.0268 0.1053 0.0702 0.0213 0.0199 0.0223 0.0225 0.0223 0.0185 0.0276 0.0266 0.133 0.1107 0.0766 0.0744 0.0703 0.381 0.3803 0.398 0.3119 0.1044 0.061 0.1314 0.0708 0.0732 0.0675 0.1068 0.1530 0.0834 0.0837 0.0567 0.0567 0.0568 0.0677 0.0778	0.0340 0.1652 0.2025 0.0900 0.1067 0.0362 0.0378 0.0253 0.0274 0.0313 0.0299 0.0965 0.0929 0.0209 0.0245 0.0234 0.0269 0.0195 0.0189 0.0268 0.0330 0.1385 0.6059 0.4638 0.5375 0.4095 0.1180 0.3638 0.0654 0.0568 0.0330 0.1580 0.4638 0.4638 0.4639 0.0606 0.0410 0.0733 0.0552	$0.0832\ 0.0807\ 0.0782\ 0.0738\ 0.1713\ 0.1754\ 0.1233\ 0.1209\ 0.0870\ 0.0921\ 0.0730\ 0.0780\ 0.0311\ 0.0348\ 0.0675\ 0.0550\ 0.0445\ 0.0400\ 0.0229\ 0.0213\ 0.0304\ 0.0325\ 0.0298\ 0.0329$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$0.0903\ 0.0898\ 0.0840\ 0.0784\ 0.1936\ 0.1565\ 0.1476\ 0.1300\ 0.0673\ 0.0686\ 0.0584\ 0.0591\ 0.0360\ 0.0310\ 0.0717\ 0.0521\ 0.0272\ 0.0247\ 0.0192\ 0.0192\ 0.0198\ 0.0276\ 0.0254\ 0.0254\ 0.0292\ 0.0291$	0.0653 0.1882 0.1292 0.1501 0.0749 0.0498 0.0480 0.0667 0.0553 0.0739 0.0624	0.1322 0.1318 0.1094 0.1048 0.2631 0.2847 0.1705 0.1464 0.1285 0.1133 0.1118 0.0729 0.0926 0.0843 0.1336 0.1158 0.0831 0.0564 0.0534 0.0548 0.0582 0.0582 0.0582 0.0710 0.	$0.1975\ 0.1948\ 0.1868\ 0.1668\ 0.4213\ 0.3903\ 0.3685\ 0.3215\ 0.1885\ 0.1555\ 0.3455\ 0.1786\ 0.0790\ 0.0653\ 0.1882\ 0.1292\ 0.1501\ 0.0749\ 0.0498\ 0.0480\ 0.0480\ 0.0667\ 0.0553\ 0.0739\ 0.0624$	$\begin{array}{c} 0.0843 \ 0.1336 \ 0.1158 \ 0.0831 \ 0.0564 \ 0.0534 \ 0.0548 \ 0.0582 \ 0.0582 \ 0.0636 \ 0.0710 \\ 0.0341 \ 0.0628 \ 0.0646 \ 0.0278 \ 0.0333 \ 0.0235 \ 0.0284 \ 0.0265 \ 0.0323 \ 0.0276 \ 0.0428 \end{array}$	$0.1905\ 0.1800\ 0.1882\ 0.1686\ 0.6979\ 0.5262\ 0.6081\ 0.4695\ 0.1304\ 0.0988\ 0.4950\ 0.1657\ 0.0725\ 0.0586\ 0.2722\ 0.1618\ 0.2227\ 0.0405\ 0.0516\ 0.0514\ 0.0880\ 0.0452\ 0.0925\ 0.0583\\ 0.0828\ 0.0831\ 0.0777\ 0.0729\ 0.2871\ 0.2078\ 0.2165\ 0.1750\ 0.0413\ 0.0412\ 0.0386\ 0.0381\ 0.0368\ 0.0313\ 0.1028\ 0.0680\ 0.0196\ 0.0188\ 0.0222\ 0.0221\ 0.0222\ 0.0177\ 0.0299\ 0.0272$	$0.1260\ 0.1275\ 0.1125\ 0.1121\ 0.4497\ 0.4739\ 0.2659\ 0.2890\ 0.0675\ 0.0725\ 0.0502\ 0.0490\ 0.0770\ 0.0741\ 0.2323\ 0.1973\ 0.0466\ 0.0444\ 0.0493\ 0.0470\ 0.0545\ 0.0467\ 0.0662\ 0.0615$	0.2883 0.2581 0.2814 0.2370 0.3342 0.3350 0.3751 0.2701 0.2577 0.1791 0.3852 0.1906 0.1051 0.0857 0.1865 0.1144 0.2021 0.0804 0.0447 0.0439 0.1051 0.0675 0.1045 0.0633 0.1103 0.1106 0.1027 0.0970 0.1468 0.1581 0.1139 0.1127 0.0937 0.0942 0.0789 0.0790 0.0428 0.0380 0.0580 0.0510 0.0451 0.0381 0.0184 0.0192 0.0299 0.0333 0.0280 0.0331	0.2805 0.1916 0.1657 0.1377 0.1933 0.2151 0.1516 0.1246 0.1802 0.1427 0.1469 0.0977 0.1110 0.0857 0.1123 0.0986 0.1095 0.0655 0.0507 0.0478 0.0666 0.0688 0.0630 0.0676 0.0728 0.0726 0.0486 0.0569 0.0569 0.0971 0.1208 0.0496 0.0711 0.0426 0.0395 0.0539 0.0446 0.0447 0.0200 0.0239 0.0266 0.0388 0.0264 0.0475	$0.2999\ 0.2805\ 0.26280\ 0.2267\ 0.4125\ 0.3405\ 0.3759\ 0.2737\ 0.1992\ 0.1485\ 0.2762\ 0.1136\ 0.1181\ 0.0879\ 0.2013\ 0.1131\ 0.1535\ 0.0531\ 0.0460\ 0.0421\ 0.0828\ 0.0604\ 0.0814\ 0.0616\ 0.1110\ 0.1102\ 0.1076\ 0.0995\ 0.1655\ 0.1611\ 0.1260\ 0.1234\ 0.0683\ 0.0708\ 0.0569\ 0.0614\ 0.0439\ 0.0398\ 0.0607\ 0.0509\ 0.0297\ 0.0307\ 0.0183\ 0.0180\ 0.0296\ 0.0298\ 0.0305\ 0.0305\ 0.0607\ 0.0509\ 0.0297\ 0.0307\ 0.0183\ 0.0180\ 0.0296\ 0.0293\ 0.0305\ 0.0305\ 0.0305\ 0.0509\ 0.0$	0.1798 0.1613 0.1321 0.1295 0.2290 0.2677 0.1570 0.1713 0.1388 0.1264 0.0944 0.0831 0.1178 0.0924 0.1313 0.1186 0.0866 0.0612 0.0462 0.0453 0.0657 0.0657 0.0663 0.0676 0.0749 0.0688 0.0696 0.0696 0.0578 0.0578 0.0317 0.0331 0.0206 0.0233 0.0268 0.0336 0.0281 0.0403	0.2804 0.2730 0.2510 0.2250 0.4371 0.3446 0.3702 0.2923 0.1365 0.1275 0.2688 0.1103 0.1146 0.0864 0.1947 0.1262 0.1715 0.0480 0.0454 0.0421 0.0600 0.0513 0.0686 0.0611 0.1159 0.1133 0.1002 0.0925 0.1931 0.1667 0.1526 0.1365 0.0582 0.0600 0.0495 0.0506 0.0422 0.0374 0.0757 0.0560 0.0242 0.0251 0.0202 0.0206 0.0293 0.0274 0.0316 0.0300	$0.1772\ 0.1675\ 0.1467\ 0.1325\ 0.3103\ 0.3390\ 0.1828\ 0.1928\ 0.0974\ 0.0939\ 0.1164\ 0.0629\ 0.1131\ 0.0957\ 0.1603\ 0.1294\ 0.0820\ 0.0475\ 0.0459\ 0.0459\ 0.0463\ 0.0580\ 0.0599\ 0.0880\ 0.0727\ 0.0683\ 0.0690\ 0.0503\ 0.0515\ 0.0515\ 0.1223\ 0.1622\ 0.0681\ 0.0880\ 0.0372\ 0.0427\ 0.0237\ 0.0267\ 0.0446\ 0.0427\ 0.0621\ 0.0659\ 0.0234\ 0.0252\ 0.0195\ 0.0195\ 0.0195\ 0.0270\ 0.0300\ 0.0277\ 0.0312$	$0.2535\ 0.2459\ 0.2657\ 0.2198\ 0.5186\ 0.4188\ 0.3991\ 0.3351\ 0.1286\ 0.1132\ 0.2794\ 0.0912\ 0.1077\ 0.0859\ 0.2103\ 0.1349\ 0.1726\ 0.0379\ 0.0416\ 0.0393\ 0.0654\ 0.0480\ 0.0692\ 0.0552\ 0.1080\ 0.1042\ 0.1001\ 0.0895\ 0.2314\ 0.1710\ 0.1704\ 0.1466\ 0.0403\ 0.0391\ 0.0363\ 0.0356\ 0.0410\ 0.0364\ 0.0838\ 0.0564\ 0.0207\ 0.0202\ 0.0183\ 0.0183\ 0.0280\ 0.0224\ 0.0312\ 0.0267$	$\begin{array}{c} 0.1643 \ 0.1467 \ 0.0536 \ 0.0481 \ 0.0458 \ 0.0431 \ 0.0644 \ 0.0584 \ 0.0656 \ 0.0654 \\ 0.0723 \ 0.0775 \ 0.0209 \ 0.0241 \ 0.0207 \ 0.0194 \ 0.0246 \ 0.0242 \ 0.0305 \ 0.0312 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0374 0.0901 0.0938 0.0169 0.0201 0.0206 0.0192 0.0220 0.0200 0.0288 0.0280
2482	0656	$0509 \\ 0281$	0664 0418	0515 0257	0647 0317	0593 0271	0463	0276	0392	0266	0330	0329	$0488 \\ 0527$	0710	0624	0710	$0624 \\ 0291$	0710 0428	$0583 \\ 0272$	$0615 \\ 0298$	0633 0331	$0676 \\ 0475$	0616	$0749 \\ 0403$	0611 0300	0.0727 0.0312	0552	$0654 \\ 0312$	0547 0224	0280

Tabela D.87: Estimativas do desvio padrão dos parâmetros da mistura de três regressões lineares no caso IV

u u	Q EI	$ \begin{array}{ccc} \alpha_1 & \alpha_1 \\ \text{EM} & \text{CEM} \\ 1767 & 1677 \end{array} $		1 $^{eta_{1}}$ $^{eta_{1}}$ GEM	$\begin{array}{ccc} \beta_1 & \beta_1 & \alpha_2 \\ \text{EM} & \text{CEM} & \text{EM} \\ 0.1670 & 0.1586 & 0.406 \end{array}$	α^2 α^2 α CEM	$ \begin{array}{ccc} \beta_2 \\ M & EM \\ 26.0.3688 \end{array} $	$A = \frac{\beta_2}{\text{CEM}}$	2 α3 M EM		$ \frac{\alpha_3}{\text{CEM}} \beta_3 $	$\begin{array}{ccc} \beta_3 & \beta_3 \\ EM & CEM \end{array}$	3 σ_{1} 2 3 3 4 2		σ ₁ CEM E	σ ₂ EM C	σ ₂ CEM 1	$\frac{\sigma_3}{\text{EM}}$	σ_3 CEM	$^{\pi_1}$ EM $^{\circ}$	CEM	π ₂ EM	CEM CEM	π3 EM	$^{\pi_3}_{\text{CEM}}$
0.1767 0.1677 0.0624 0.0667 0.2505 0.2483 0.1273 0.1195	624 0.0667 0.1 624 0.0667 0.0 505 0.2483 0.2 273 0.1195 0.1	367 0.0 367 0.0 183 0.2 95 0.1	()	346 0.07 723 0.18 351 0.11	$0.1670\ 0.1383\ 0.495$ $0.0646\ 0.0767\ 0.207$ $0.2723\ 0.1113\ 0.406$							0.0734 0.0339 0.0189 0.0200 0.1798 0.3039 0.0372 0.0396	399 0.1121 200 0.0487 399 0.1267 396 0.0495	487 0.0 267 0.0 495 0.0						-0000					0.0378 0.0294 0.1207 0.0295
	693 0.1766 0.10 752 0.0772 0.00 715 0.2831 0.30	766 0.10 772 0.00 331 0.30		0.1697 0.2017 0.0680 0.0747 0.3060 0.2200	0.1697 0.2017 0.366 0.0680 0.0747 0.157 0.3060 0.2200 0.845	365 0.3485 579 0.1578 191 0.8061	0000	0 0 1	.3228 0.0776 .1344 0.0292 .1510 0.1405		0.0794 0.0701 0.0314 0.0195 0.1197 0.1342	0.0701 0.0657 0.0195 0.0211 0.1342 0.1208	557 0.1164 211 0.0543 208 0.1284 310 0.0634		0.1009 0.1956 0.0520 0.0764 0.0993 0.2677	0000	0.2200 0.1080 0.1080 0.03571 0.03563 0.00	0.0892 0.00223 0.001180 0.00220 0.000000000000000000000000000		0.0560 0 0.0228 0 0.0564 0	0.0639 (0.0252 (0.0574	0.0925 (0.0389 (0.1446 (0.0534	0.0856 (0.0377 (0.0776 (0.0776 (0.0776 (0.0776 (0.0776 (0.0776 (0.0767 (0.0757 (0.0757 (0.0757 (0.0757 (0.0757 (0.0757 (0.0757 (0.0757 (0.0757 (0.0757	0.0864 (0.0378 (0.1320 (0.1449 (0.0814 0.0356 0.0891
0.1754 0.1726 0.0768 0.0807 0.3259 0.3194	754 0.1726 0.1 768 0.0807 0.0 259 0.3194 0.3	307 0.0 94 0.3		0.1834 0.22 0.0693 0.08 0.3657 0.31	0.1834 0.2266 0.355 0.0693 0.0884 0.135 0.3657 0.3158 0.697		0000	72 0.2632 60 0.1173 38 0.8230			0.0998 0.0667 0.0423 0.0278 0.1233 0.1459	0.0998 0.0667 0.0605 0.0423 0.0278 0.0301 0.1233 0.1459 0.1146	305 0.1374 301 0.0565 146 0.1345	0.1374 0.1187 0.0565 0.0565 0.1345 0.1218	0000			0.0764 0. 0.0294 0. 0.1588 0.					1		0.0929 0.0491 0.1399
0.1620 0.1628 0.1620 0.1628 0.0701 0.0758 0.3295 0.3415	620 0.1628 0.15 701 0.0758 0.07 295 0.3415 0.36	528 0.19 528 0.19 758 0.07 115 0.36		06 0.2541 06 0.2541 01 0.1372 175 0.3804	0.1906 0.2541 0.2764 0.0701 0.1372 0.1229 0.3675 0.3804 0.6533			0000	2324 0.1263 2215 0.0473 5911 0.2280	263 0.1 263 0.1 173 0.0 280 0.2	0.1150 0.0907 0.0690 0.0315 0.2013 0.2601	0.1105 0.0907 0.0775 0.1255 0.1233 0.1531 0.1450 0.0690 0.0817 0.0775 0.1255 0.1233 0.1531 0.1450 0.0690 0.0815 0.0417 0.0587 0.0702 0.0590 0.0779 0.2019 0.1719 0.1256 0.1247 0.02317 0.2261 0.1719 0.1256 0.1247 0.0570 0.0571 0.1401 0.1256 0.1247 0.0571 0.1401 0.1250 0.0721 0.1401 0	0.0775 0.1255 0.0417 0.0587 0.1710 0.1256	255 0.1 258 0.0 256 0.1	0.1233 0.1531 0.0702 0.0590 0.1234 0.2317	0.1531 0. 0.0590 0. 0.2317 0.	0.1450 0. 0.0779 0. 0.2261 0.	0.1076 0. 0.0384 0. 0.1857 0.	0.0983 0.0566 0.0892 0.0236 0.1440 0.0685			0.1011 0.0392 0.1631			0.1187 0.1349 0.1767 0.1025
	835 0.1941 0.18 717 0.0865 0.07 626 0.3766 0.43 326 0.1653 0.15	365 0.07 766 0.43		0.1828 0.3731 0.0717 0.2086 0.4331 0.5180	$0.1828 \ 0.3731 \ 0.275 \ 0.0717 \ 0.2086 \ 0.095 \ 0.4331 \ 0.5180 \ 0.600 \ 0.1544 \ 0.2064 \ 0.193 \ 0.1544 \ 0.2064 \ 0.193 \ 0.1544 \ 0.2064 \ 0.193 \ 0.1544 \ 0.2064 \ 0.193 $	758 0.2365 988 0.1462 900 0.2922		2170 0.1948 2170 0.1948 0751 0.1396 4728 0.2865 1690 0.0980	396 0.0677 385 0.3101 380 0.1342	377 0.12 101 0.18	0.1475 0.1598 0.1172 0.0521 0.1866 0.2556	0.1475 0.1598 0.0865 0.1475 0.0598 0.0865 0.1172 0.0551 0.0798 0.1866 0.2556 0.1499 0.1078 0.1264 0.0572	365 0.1306 798 0.0499 199 0.1694	306 0.1 499 0.0 594 0.1	0.1241 0.1444 0.0531 0.0487 0.1187 0.1877	0.1444 0. 0.1444 0. 0.0487 0. 0.1877 0.	0.1158 0. 0.0429 0. 0.1174 0.	0.1511 0. 0.0663 0. 0.1834 0.	0.0741 0.0576 0.0558 0.0241 0.0339 0.0716			0.1249 (0.0493 (0.1542 (0.0839			0.0960 0.0766 0.0657
0.1320 0.1338 0.0563 0.0580 0.2335 0.2151 0.0881 0.0883	320 0.1338 0.13 563 0.0580 0.0 335 0.2151 0.2 881 0.0883 0.09	338 0.1; 580 0.0; 51 0.2; 83 0.09		311 0.15 179 0.08 138 0.18	0.0479 0.0560 0.200 0.2438 0.1800 0.869 0.0980 0.0823 0.378		0.5219 0.3628 0.5153 0.1014 0.2022 0.1307 0.1751 0.0288 0.3823 0.2925 0.6038 0.0588 0.2042	28 0.5153 07 0.1751 87 1.4568 25 0.6036	.53 0.1014 .51 0.0288 .68 0.2042 .36 0.0586		0.0686 0.0903 0.0297 0.0220 0.1853 0.1326 0.0482 0.0459	$\begin{array}{c} 0.5219 \ 0.3628 \ 0.5153 \ 0.1014 \ 0.0086 \ 0.903 \ 0.0476 \ 0.0943 \ 0.0823 \ 0.2793 \ 0.3285 \ 0.1034 \ 0.0479 \ 0.0051 \ 0.0000000000000000000000000000000000$	176 0.0943 229 0.0387 222 0.0946 142 0.0431	387 0.0 946 0.0	0.0823 0.2793 0.0422 0.1013 0.0759 0.3302 0.0358 0.1553	0.2793 0. 0.2793 0. 0.1013 0. 0.3302 0. 0.1553 0.	0.0943 0.0823 0.2793 0.3285 0.1034 0.0479 0.0387 0.0422 0.1013 0.1141 0.0242 0.0773 0.00946 0.0759 0.3302 0.3505 0.1424 0.0898 0.0431 0.0358 0.1553 0.1923 0.0983 0.0987	0.1034 0. 0.0242 0. 0.1424 0. 0.0983 0.	0.0479 0 0.0273 0 0.0898 0 0.0277 0						0.0645 0.0334 0.0997 0.0303
	346 0.1326 0.11 609 0.0635 0.05 302 0.2233 0.26 961 0.1051 0.08	326 0.11 335 0.08 333 0.26		136 0.1 509 0.0 579 0.20	0.1136 0.1132 0.418 0.0509 0.0577 0.156 0.2679 0.2019 0.710		33 0.2797 20 0.1116 32 0.6526 48 0.2348	0.2797 0.3067 0.1116 0.1489 0.6526 1.0176 0.2348 0.6467	067 0.0879 189 0.0367 76 0.1834 167 0.0642	879 0.08 367 0.08 334 0.20	0.0849 0.0667 0.0405 0.0264 0.2072 0.1577 0.0740 0.0557	0.0849 0.0667 0.0641 0.0405 0.0264 0.0313 0.2072 0.1577 0.3091 0.0740 0.0557 0.0615	341 0.0880 313 0.0397 391 0.1067 315 0.0435	0.0880 0.0785 0.0397 0.0425 0.1067 0.0928 0.0435 0.0397	0.0785 0.2085 0.0425 0.0798 0.0928 0.2904 0.0397 0.1009	0.2085 0. 0.0798 0. 0.2904 0.	0.0785 0.2085 0.2520 0.0730 0.0425 0.0798 0.1095 0.0291 0.0928 0.2904 0.3483 0.1706 0.0397 0.1009 0.1973 0.0315	0.0730 0. 0.0291 0. 0.1706 0.	0.0555 0.0578 0.0377 0.0263 0.1216 0.0677 0.0406 0.0343			0.0911 (0.0403 (0.1383 (0.0560 (0.0812 0.0452 0.0888 0.0361
0.1380 0.1322 0.0584 0.0615 0.2294 0.2294 0.0915 0.1369	380 0.1322 0.133 584 0.0615 0.045 294 0.2294 0.238 915 0.1196 0.095	322 0.133 315 0.049 394 0.238 36 0.095	155 54 56 55 15	87 0.1 84 0.2 88 0.10	0.1337 0.1196 0.3836 0.0498 0.0655 0.1324 0.2384 0.2175 0.8065 0.0958 0.1034 0.2441		0.3168 0.2740 0.1768 0.0931 0.6659 0.6474 0.4820 0.1908	0.2740 0.2177 0.0931 0.1288 0.6474 0.8171 0.1908 0.4582	77 0.1191 288 0.0440 71 0.1999 582 0.0832		0.1005 0.0926 0.0468 0.0342 0.2000 0.1897 0.0997 0.0687	0.0926 0.0700 0.0342 0.0408 0.1897 0.3184 0.0687 0.1022		0.0954 0.0 0.0382 0.0 0.1055 0.0 0.0424 0.0	0.0842 0.1 0.0397 0.0 0.0971 0.2 0.0626 0.0	0.1887 0. 0.0727 0. 0.2842 0. 0.0864 0.	0.1868 0. 0.0977 0. 0.3130 0. 0.2407 0.		0.0670 0.0570 0.0568 0.0263 0.1636 0.0680 0.1111 0.0279			0.1037 (0.0434 (0.1532 (0.0657 (0.1532			0.0925 0.0725 0.1358 0.1475
	$\frac{235}{618}$ 0.11302 0.1106 618 0.0640 0.054 492 0.275 0.275 0.84 0.1203 0.124 129 0.1120 0.092	340 0.110 340 0.054 135 0.275 203 0.124 20 0.092	3 2 5 2 12 5	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.1104 0.1314 0.202 0.0543 0.0938 0.118 0.2752 0.2814 0.548 0.1245 0.1713 0.277 0.0927 0.0913 0.518			0.1849 0.1740 0.0816 0.1627 0.4526 0.3509 0.1922 0.1473 0.3596 0.5305	0.1627 0.0611 0.3509 0.2821 0.1473 0.1242 0.5305 0.0804		0.0986 0.0511 0.1903 0.3200 0.1478 0.1229 0.0777 0.0912	0.19411 0.1352 0.0354 0.0986 0.0511 0.0702 0.1903 0.3200 0.1675 0.1478 0.1229 0.1258 0.0777 0.0912 0.0607	702 0.0399 702 0.0399 375 0.1083 258 0.0459 507 0.0731		0.0405 0.0569 0.0405 0.0569 0.0996 0.2225 0.0496 0.0802 0.0702 0.2674	0.1589 0. 0.0569 0. 0.2225 0. 0.0802 0. 0.2674 0.	0.1441 0. 0.0664 0. 0.1689 0. 0.0658 0. 0.2977 0.	0.1239 0. 0.0531 0. 0.1910 0. 0.0804 0. 0.1174 0.	$0.0539 \ 0.0710 \ 0.0530 \ 0.0710 \ 0.0240 \ 0.0910 \ 0.1023 \ 0.0657 \ 0.0804 \ 0.0210 \ 0.0307 \ 0.01174 \ 0.0493 \ 0.0611 \ 0.0903 \ 0.0611 \ 0.0903 \ $		0.0578 0.0578 0.0892 0.0506 0.0654	0.0422 0.1372 0.0422 0.1372 0.1595 0.1378 0.0755 0.0674 0.0820 0.0481		0.0395 0.0395 0.1408 0.0640 0.0901	0.1026 0.1026 0.0889 0.0363 0.0746
0.0453 0.0793 0.01473 0.0473 0.0906	403 0.1865 0.1943 0.1041 0.1045 0.1041 0.1053 0.1053 0.1054 0.1047 0.1040 0.1047 0.1040 0.1041 0.104	365 0.193 365 0.193 793 0.082 143 0.093 173 0.040 306 0.191	33 23 33 33 33 33 33 33 33 33 33 33 33 3	3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0933 0.1560 0.8464 0.0829 0.0718 0.4862 0.0930 0.0980 0.4192 0.0046 0.0508 0.1590 0.1915 0.1544 0.7263	164 0.8768 164 0.8768 162 0.4343 192 0.3692 190 0.1870 263 0.6514	0.8768 0.8023 1.3886 0.4343 0.4032 0.7356 0.3692 0.2942 0.3039 0.1870 0.1122 0.1258 0.3140 0.9206	0.8023 1.3886 0.25029 0.4032 0.7356 0.0565 0.2942 0.3039 0.1087 0.1122 0.1258 0.0450 0.6125 0.9206 0.2029			0.0253 0.0200 0.0273 0.0207 0.0962 0.0527 0.0493 0.0363 0.1835 0.1918	0.2773 0.2207 0.3322 0.0635 0.0527 0.0551 0.0962 0.0832 0.0763 0.0493 0.0363 0.0379 0.1835 0.1918 0.1902	322 0.0843 322 0.0843 551 0.0327 763 0.0783 379 0.0313 902 0.0890		0.0253 0.1505 0.0253 0.1505 0.0754 0.1934 0.0345 0.0769 0.0815 0.3001	0.3098 0. 0.3098 0. 0.1505 0. 0.1934 0. 0.0769 0.		0.2071 0.02071 0.00330 0.00335 0.00335 0.00361	0.2071 0.0796 0.0661 0.0330 0.0313 0.0280 0.0935 0.0686 0.0571 0.0361 0.0460 0.0247 0.1684 0.0931 0.0700						0.0924 0.0924 0.0872 0.0530 0.0881
0.0119 0.0520 0.1894 0.0795 0.1036 0.0418	19 0.113 0.005 120 0.0545 0.095 894 0.1941 0.205 795 0.0948 0.085 036 0.1040 0.081 418 0.0422 0.035 740 0.1599 0.166	113 0.092 545 0.040 941 0.209 948 0.088 940 0.081 122 0.033	5182 # 53 88 B2 88 95	26 0.00 20 0.00 22 0.01 22 0.16 30 0.06 37 0.06	0.0926 0.0948 0.325 0.0402 0.0951 0.140 0.2092 0.1994 0.755 0.0882 0.1031 0.200 0.0337 0.0431 0.200 0.0337 0.0431 0.200 0.1668 0.1369 0.831	16.20.25	0.2667 0.2257 0.1973 0.1140 0.1790 0.1100 0.1475 0.0683 0.5539 0.6661 0.6465 0.3303 0.4013 0.3344 0.4390 0.1001 0.2015 0.1254 0.1531 0.0401 0.7840 0.7419 1.2857 0.2426	0.2257 0.1973 0.2257 0.1973 0.1100 0.1475 0.6061 0.6465 0.1774 0.2140 0.3344 0.4390 0.1254 0.1531 0.7419 1.2857	0.1475 0.1747 0.1475 0.1740 0.1475 0.1740 0.6465 0.3303 0.2140 0.1099 0.4390 0.1001 0.1531 0.0401 1.2857 0.2426		0.1276 0.1594 0.0817 0.0554 0.2036 0.3007 0.1913 0.0975 0.0976 0.0900 0.0396 0.0301 0.1970 0.1851	0.1276 0.1594 0.0927 0.0817 0.0554 0.0958 0.2036 0.3007 0.1841 0.1913 0.0975 0.1547 0.0976 0.0900 0.0938 0.0396 0.0301 0.0298 0.1970 0.1851 0.6034	327 0.0821 583 0.0283 5841 0.0903 547 0.0411 933 0.0668 298 0.0276	0.0821 0.0734 0.1987 0.0823 0.0283 0.0281 0.0730 0.0903 0.0807 0.2799 0.0411 0.0656 0.0753 0.0660 0.2598 0.0289 0.1086 0.0727 0.0578 0.2940	0.0224 0.1987 0.0284 0.1987 0.0287 0.2799 0.0807 0.2799 0.0656 0.0753 0.0660 0.2598 0.0289 0.1086 0.0578 0.2940			0.0297 0.0207 0.0207 0.0207 0.0297 0.0207 0.0207 0.0207 0.0207 0.0207 0.0207 0.0207 0.0207 0.	0.1531 0.0745 0.0627 0.0635 0.0689 0.0301 0.2136 0.1110 0.0667 0.0669 0.1457 0.0287 0.0920 0.0815 0.0602 0.0297 0.0355 0.0664 0.2190 0.1169 0.0650						0.0878 0.0750 0.1107 0.1679 0.0751 0.0384
500 0.0757 0.0717 0.0666 0.0593 0.3894 100 0.0939 0.0952 0.0769 0.0872 0.3790 500 0.0415 0.0420 0.0320 0.0431 0.1517 100 0.1786 0.1626 0.1903 0.1470 0.7269 500 0.0714 0.0754 0.0683 0.0886 0.3328 100 0.057 0.0956 0.0956 0.5850	757 0.0717 0.06 939 0.0952 0.07 415 0.0420 0.03 786 0.1626 0.19 714 0.0754 0.06 957 0.0956 0.07	717 0.06 352 0.07 120 0.03 326 0.19 754 0.06	@ IF & @ @ (6) 16	66 0.0.	$\begin{array}{c} 0.0666 \ 0.0593 \ 0.337 \\ \hline 0.0769 \ 0.0872 \ 0.377 \\ 0.0320 \ 0.0431 \ 0.155 \\ 0.1903 \ 0.1470 \ 0.726 \\ 0.0683 \ 0.0686 \ 0.327 \\ 0.0683 \ 0.0846 \ 0.532 \\ \hline \end{array}$	64 90 17 69 89	0 0 0 0 0	2434 0.6420 2631 0.2956 1096 0.1365 6877 0.7802 2249 0.2797	$\begin{array}{c} .6420 \ 0.0824 \\ .2956 \ 0.1289 \\ .1365 \ 0.0575 \\ .7802 \ 0.3400 \\ .2797 \ 0.1032 \\ .4373 \ 0.1456 \end{array}$		0.0739 0.0743 0.1146 0.1278 0.0616 0.0427 0.2089 0.3039 0.1046 0.1076	0.0739 0.0743 0.0602 0.1146 0.1278 0.1005 0.0616 0.0427 0.0485 0.2089 0.3039 0.2713 0.1046 0.1076 0.0949		0.0265 0.0 0.0585 0.0 0.0287 0.0 0.0666 0.0 0.0302 0.0	0.0286 0.1384 0.0567 0.2200 0.0293 0.0761 0.0660 0.3109 0.0376 0.0953	0.1384 0. 0.2200 0. 0.0761 0. 0.3109 0. 0.0953 0.	0.1699 0. 0.2178 0. 0.0970 0. 0.3181 0. 0.1789 0.	0.0438 0. 0.1201 0. 0.0529 0. 0.2509 0. 0.0562 0.	0.0411 0.0272 0.0750 0.0652 0.0563 0.0289 0.1334 0.0643 0.0750 0.0294		0.0255 C 0.0714 C 0.0338 C 0.0561 C 0.0291 C	0.0543 (0.0892 (0.0892 (0.0358 (0.01182 (0.0554 (0.055	0.0170 (0.0687 (0.0487 (0.0928 (0.0470 (0.0428 (0.0770 (0.0340 (0.1058 (0.0454 (0.0322 0.0770 0.0545 0.0871 0.0548
0.0394 0.1442 0.0584	394 0.0412 0.03 442 0.1496 0.14 584 0.0556 0.06	112 0.03 196 0.14 156 0.06	. m +1 m l	23 0.03 23 0.13 17 0.08	0.0532 0.46C	00 9 1			.1668 0.0583 .1582 0.3603 .6018 0.0925		000	0.0429 0.0446 0.2892 1.9875 0.0861 0.0635	.0635 0.0271		0.0247 0.1 0.0556 0.3 0.0284 0.1										0.0364 0.0682 0.0317

 $Tabela\ D.88:\ Estimativas\ do\ desvio\ padrão\ dos\ parâmetros\ da\ mistura\ de\ três\ regressões\ lineares\ no\ caso\ V$

0.2 0.2 ر د.ن 0.6 0.2 0.3 [-1; 3][-1; 3][-1; 3][-1; 3][-1; 3][-1; 3][-1; 3][-1; 3][-1; 3][-1; 3][-1; 3][-1; 3][0; 2][0; 2][0; 2][0; 2][0; 2][0; 2][0; 2][0; 2][0; 2][0; 2][0; 2]500 500 500 500 500 500 500 $\frac{100}{500}$ 500 $100 \\ 500$ 500 500 500 500 500 500 500 500 500 500 500 500 100 100 100 100 100 100 100 100 100 100 100 100 9 00 90 00 0 001 $0.0120\ 0.0120\ 0.0054\ 0.0054\ 0.0054\ 0.00130\ 0.00130\ 0.00130\ 0.0056\ 0.0190\ 0.0190\ 0.00190\ 0.0077\ 0.0077\ 0.0034\ 0.0034\ 0.0045\ 0.0043\ 0.0043\ 0.0048\ 0.0046\ 0.0030\ 0.0030\ 0.0030\ 0.0030\ 0.0030\ 0.0030\ 0.0030\ 0.0030\ 0.0007\ 0.0007\ 0.0007\ 0.0004\ 0.0004\ 0.0004\ 0.0004\ 0.0004\ 0.0004\ 0.0004\ 0.0004\ 0.0004\ 0.0004\ 0.0004\ 0.0004$ 0.0055 $0.0330\ 0.0330\ 0.0271\ 0.0268\ 0.0270\ 0.0270\ 0.0270\ 0.0185\ 0.0185\ 0.0185\ 0.0424\ 0.0423\ 0.0311\ 0.0312\ 0.0056\ 0.0056\ 0.0058\ 0.0038\ 0.0054\ 0.0053\ 0.0053\ 0.0051\ 0.0052\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.0055\ 0.00$ $0.0422\ 0.0422\ 0.0309\ 0.0309\ 0.0328\ 0.0328\ 0.0328\ 0.0237\ 0.0237\ 0.0237\ 0.0314\ 0.0314\ 0.0233\ 0.0233\ 0.0042\ 0.0042\ 0.0045\ 0.0045\ 0.0045\ 0.0036\ 0.0036\ 0.0021\ 0.0021\ 0.0021\ 0.0023\ 0.0023\ 0.0126\ 0.0126\ 0.0072\ 0.0071\ 0.0055\ 0.0055\ 0.0055\ 0.0073\ 0.0074\ 0.0052\ 0.0052\ 0.0053\ 0.0053\ 0.0053\ 0.0041\ 0.0041\ 0.0008\ 0.0008\ 0.0010\ 0.0010\ 0.0010\ 0.0005\ 0.0005\ 0.0005\ 0.0004\ 0.0004\ 0.0004\ 0.0004\ 0.0106\ 0.0106\ 0.0106$ $0.0053\ 0.0053\ 0.0023\ 0.0023\ 0.0013\ 0.0013\ 0.0013\ 0.0005\ 0.0005\ 0.0005\ 0.0005\ 0.0016\ 0.0016\ 0.0013\ 0.0005\ 0.0005\ 0.0005\ 0.0013\ 0.0013\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0013\ 0.0013\ 0.0013\ 0.0013\ 0.0013\ 0.0013\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.00$ $0.0212\ 0.0213\ 0.0159\ 0.0159\ 0.0407\ 0.0403\ 0.0318\ 0.0318\ 0.0314\ 0.0637\ 0.0633\ 0.0506\ 0.0501\ 0.0029\ 0.0029\ 0.0029\ 0.0043\ 0.0042\ 0.0084\ 0.0083\ 0.0083\ 0.0026\ 0.0026\ 0.0022\ 0.0022\ 0.0124\ 0.0124$ $0.0018\ 0.0018\ 0.0008\ 0.0008\ 0.0008\ 0.0003\ 0.0030\ 0.0030\ 0.0013\ 0.0013\ 0.0013\ 0.0049\ 0.0049\ 0.0021\ 0.0021\ 0.0006\ 0.0006\ 0.0008\ 0.0008\ 0.0014\ 0.0014\ 0.0014\ 0.0005\ 0.0005\ 0.0005\ 0.0004\ 0.0004\ 0.0109\ 0.0109$ $0.0210\ 0.0210\ 0.0149\ 0.0149\ 0.01653\ 0.0652\ 0.0652\ 0.0564\ 0.0563\ 0.0302\ 0.0302\ 0.0228\ 0.0228\ 0.0027\ 0.0027\ 0.0088\ 0.0088\ 0.0052\ 0.0052\ 0.0052\ 0.0025\ 0.0025\ 0.0015\ 0.0015\ 0.0108\ 0.0108$ $0.0019\ 0.0019\ 0.0009\ 0.0009\ 0.00041\ 0.0041\ 0.0016\ 0.0016\ 0.0016\ 0.0030\ 0.0030\ 0.0013\ 0.0013\ 0.0005\ 0.0005\ 0.0005\ 0.0015\ 0.0015\ 0.0008\ 0.0008\ 0.0005\ 0.0005$ $0.0288 \ 0.0212 \ 0.0213 \ 0.0243 \ 0.0243 \ 0.0166 \ 0.0166 \ 0.0166 \ 0.0634 \ 0.0633 \ 0.0444 \ 0.0042 \ 0.0035 \ 0.0034 \ 0.0031 \ 0.0031 \ 0.0078 \ 0.0076 \ 0.0077 \ 0.0027 \ 0.0027 \ 0.0028 \ 0.0028 \ 0.0412 \ 0.0412 \ 0.0035 \ 0.0034 \ 0.0031 \ 0.0031 \ 0.0031 \ 0.0078 \ 0.0076 \ 0.0077 \ 0.0077 \ 0.0077 \ 0.0028 \ 0.0028 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0018 \ 0.0018 \ 0$ $0.0025\ 0.0025\ 0.0009\ 0.0009\ 0.0002\ 0.0022\ 0.0022\ 0.0002\ 0.0009\ 0.0009\ 0.0037\ 0.0037\ 0.0019\ 0.0019\ 0.0019\ 0.0006\ 0.0006\ 0.0006\ 0.0006\ 0.0006\ 0.0012\ 0.0012\ 0.0004\ 0.0004$ 0.0044 $0.0260\ 0.0260\ 0.0211\ 0.0211\ 0.0396\ 0.0397\ 0.0260\ 0.0261\ 0.0327\ 0.0327\ 0.0260\ 0.0260\ 0.0260\ 0.0033\ 0.0049\ 0.0049\ 0.0049\ 0.0050\ 0.0050\ 0.0050\ 0.0024\ 0.0024\ 0.0021\ 0.0021\ 0.0021\ 0.0021$ $0.0304\ 0.0304\ 0.0209\ 0.0209\ 0.0505\ 0.0505\ 0.0426\ 0.0426\ 0.0251\ 0.0251\ 0.0189\ 0.0189\ 0.0035\ 0.0035\ 0.0080\ 0.0080\ 0.0085\ 0.0035\ 0.0035\ 0.0025\ 0.0025\ 0.0015\ 0.0015\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.0427\ 0.04$ $0.0022\ 0.0022\ 0.0009\ 0.0009\ 0.0004\ 0.0042\ 0.0042\ 0.0022\ 0.0022\ 0.0022\ 0.0023\ 0.0023\ 0.0010\ 0.0010\ 0.0010\ 0.0006\ 0.0013\ 0.0013\ 0.0013\ 0.0007\ 0.0007\ 0.0004\ 0.0004\ 0.0004\ 0.0003\ 0.0003\ 0.0409\ 0.0409$ $0.0375\ 0.0375\ 0.0291\ 0.0291\ 0.0207\ 0.0204\ 0.0167\ 0.0166\ 0.0600\ 0.0593\ 0.0409\ 0.0405\ 0.0047\ 0.0047\ 0.0028\ 0.0028\ 0.0077\ 0.0076\ 0.0024\ 0.0024\ 0.0026\ 0.0026\ 0.0026\ 0.0904\ 0.0904$ $0.0023\ 0.0023\ 0.0012\ 0.0012\ 0.0012\ 0.0018\ 0.0018\ 0.0018\ 0.0007\ 0.0007\ 0.0048\ 0.0048\ 0.0019\ 0.0019\ 0.0009\ 0.0009\ 0.0006\ 0.0006\ 0.0013\ 0.0013\ 0.0004\ 0.0004\ 0.0004\ 0.0004\ 0.0004\ 0.0004\ 0.0004$ $0.0031\ 0.0031\ 0.0015\ 0.0015\ 0.0015\ 0.0022\ 0.0022\ 0.0022\ 0.0010\ 0.0027\ 0.0027\ 0.0027\ 0.0013\ 0.0013\ 0.0012\ 0.0012\ 0.0006\ 0.0006\ 0.0006\ 0.0010\ 0.0010\ 0.0010\ 0.0004\ 0.0004\ 0.0005\ 0.0005\ 0.0105\ 0.0105\ 0.0105$ $0.0029\ 0.0029\ 0.0013\ 0.0013\ 0.0027\ 0.0027\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0022\ 0.0009\ 0.0009\ 0.0009\ 0.0009\ 0.0008\ 0.0008\ 0.0008\ 0.0006\ 0.0006\ 0.0004\ 0.0004\ 0.0004\ 0.0004\ 0.0004\ 0.0004\ 0.0004$ $0.0149\ 0.0149\ 0.0062\ 0.0062\ 0.0158\ 0.0157\ 0.0060\ 0.0060\ 0.0123\ 0.0123\ 0.0051\ 0.0050\ 0.0047\ 0.0047\ 0.0048\ 0.0048\ 0.0048\ 0.0037\ 0.0036\ 0.0022\ 0.0022\ 0.0021\ 0.0021\ 0.0120\ 0.0120$ $0.0080\ 0.0080\ 0.0051\ 0.0052\ 0.0095\ 0.0095\ 0.0069\ 0.0069\ 0.0041\ 0.0041\ 0.0032\ 0.0032\ 0.0008\ 0.0008\ 0.0011\ 0.0011\ 0.0011\ 0.0066\ 0.0006\ 0.0005\ 0.0005\ 0.0004\ 0.0004\ 0.0892\ 0.0892$ $0.0367\ 0.0367\ 0.0306\ 0.0306\ 0.0572\ 0.0569\ 0.0427\ 0.0428\ 0.0231\ 0.0230\ 0.0175\ 0.0175\ 0.0054\ 0.0054\ 0.0077$ $0.0028\ 0.0028\ 0.0013\ 0.0013\ 0.0014\ 0.0044\ 0.0019\ 0.0019\ 0.0019\ 0.0017\ 0.0007\ 0.0007\ 0.0009\ 0.0009\ 0.0003\ 0.0013\ 0.0013\ 0.0005\ 0.0005\ 0.0005\ 0.0004\ 0.0004\ 0.0003\ 0.0003\ 0.0003\ 0.0897\ 0.0897$ $0.0578\ 0.0578\ 0.0435\ 0.0434\ 0.0209\ 0.0208\ 0.0163\ 0.0163\ 0.0325\ 0.0326\ 0.0249\ 0.0249\ 0.0078\ 0.0078\ 0.0025\ 0.0025\ 0.0040\ 0.0039\ 0.0017\ 0.0017\ 0.0025\ 0.0025\ 0.0433\ 0.0433$ $0.0046\ 0.0046\ 0.0021\ 0.0021\ 0.0021\ 0.0021\ 0.0021\ 0.0021\ 0.0008\ 0.0008\ 0.0008\ 0.0030\ 0.0030\ 0.0012\ 0.0012\ 0.0012\ 0.0012\ 0.0005\ 0.0005\ 0.0009\ 0.0009\ 0.0009\ 0.0003\ 0.0003\ 0.0005\ 0.0005\ 0.0005\ 0.0005$ $0.0652\ 0.0630\ 0.0473\ 0.0465\ 0.0275\ 0.0274\ 0.0208\ 0.0208\ 0.0243\ 0.0343\ 0.0344\ 0.0260\ 0.0260\ 0.0089\ 0.0088\ 0.0036\ 0.0036\ 0.0036\ 0.0035\ 0.0016\ 0.0016\ 0.0016\ 0.0024\ 0.0024\ 0.0024\ 0.0024$ $0.0051\ 0.0051\ 0.0020\ 0.0020\ 0.0022\ 0.0022\ 0.0022\ 0.0022\ 0.0009\ 0.0009\ 0.0027\ 0.0027\ 0.0009\ 0.0009\ 0.0015\ 0.0015\ 0.0015\ 0.0007\ 0.0007\ 0.0007\ 0.0007\ 0.0003\ 0.0003\ 0.0003\ 0.0005\ 0.0005\ 0.0005\ 0.0005$ $0.0555\ 0.0531\ 0.0440\ 0.0406\ 0.0405\ 0.0405\ 0.0405\ 0.0307\ 0.0310\ 0.0238\ 0.0239\ 0.0191\ 0.0193\ 0.0090\ 0.0088\ 0.0043\ 0.0042\ 0.0029\ 0.0029\ 0.0029\ 0.0016\ 0.0016\ 0.0019\ 0.0019\ 0.0414\ 0.0414$ $0.0040\ 0.0040\ 0.0018\ 0.0018\ 0.0018\ 0.0024\ 0.0024\ 0.0011\ 0.0011\ 0.0020\ 0.0020\ 0.0008\ 0.0008\ 0.0015\ 0.0015\ 0.0008\ 0.0008\ 0.0005\ 0.0005\ 0.0005\ 0.0003\ 0.0003\ 0.0005\ 0.0005\ 0.0005\ 0.0005$ $0.0579\ 0.0583\ 0.0414\ 0.0415\ 0.0594\ 0.0593\ 0.0464\ 0.0460\ 0.0178\ 0.0178\ 0.0123\ 0.0123\ 0.0073\ 0.0070\ 0.0080\ 0.0079\ 0.0019\ 0.0019\ 0.0018\ 0.0014\ 0.0014\ 0.0015\ 0.0015\ 0.1609\ 0.1609$ 0.0020 0.0007 0.0007 0.00040 0.0020 0.0020 0.0036 0.0036 0.0019 0.0008 0.0013 0.0013 0.0013 0.0012 0.0012 0.0002 $0.0080\ 0.0080\ 0.0032\ 0.0032\ 0.0260\ 0.0260\ 0.0260\ 0.0099\ 0.0099\ 0.0252\ 0.0251\ 0.0123\ 0.0122\ 0.0023\ 0.0023\ 0.0072\ 0.0072\ 0.0072\ 0.0082\ 0.0081\ 0.0027\ 0.0027\ 0.0019\ 0.0019\ 0.0019\ 0.0019$ $0.0042\ 0.0042\ 0.0028\ 0.0028\ 0.0066\ 0.0066\ 0.0066\ 0.0048\ 0.0048\ 0.0048\ 0.0108\ 0.0108\ 0.0079\ 0.0079\ 0.0005\ 0.0005\ 0.0009\ 0.0009\ 0.0009\ 0.0013\ 0.0013\ 0.0013\ 0.0004\ 0.0004\ 0.0004\ 0.0004\ 0.0004\ 0.0004\ 0.0104\ 0.0104$ $0.0034\ 0.0034\ 0.0028\ 0.0028\ 0.0092\ 0.0092\ 0.0092\ 0.0072\ 0.0072\ 0.0072\ 0.0065\ 0.0065\ 0.0045\ 0.0045\ 0.0005\ 0.0005\ 0.0013\ 0.0013\ 0.0013\ 0.0008\ 0.0008\ 0.0008\ 0.0005\ 0.0005\ 0.0004\ 0.0004\ 0.0104\ 0.0104$ $0.0091\ 0.0091\ 0.0039\ 0.0039\ 0.0039\ 0.0204\ 0.0204\ 0.0093\ 0.0093\ 0.0159\ 0.0159\ 0.0169\ 0.0076\ 0.0027\ 0.0027\ 0.0076\ 0.0076\ 0.0076\ 0.0050\ 0.0050\ 0.0050\ 0.0032\ 0.0032\ 0.0032\ 0.0018\ 0.0018\ 0.0121\ 0.0122$ $0.0048\ 0.0048\ 0.0034\ 0.0034\ 0.0059\ 0.0059\ 0.0042\ 0.0042\ 0.0102\ 0.0102\ 0.01066\ 0.0066\ 0.0006\ 0.0006\ 0.0007\ 0.0007\ 0.0012\ 0.0012\ 0.0005\ 0.0005\ 0.0005\ 0.0005\ 0.0005$ $0.0156\ 0.0156\ 0.0066\ 0.0066\ 0.0066\ 0.0099\ 0.0099\ 0.0034\ 0.0035\ 0.0262\ 0.0259\ 0.0114\ 0.0113\ 0.0048\ 0.0023\ 0.0023\ 0.0023\ 0.0080\ 0.0078\ 0.0023\ 0.0023\ 0.0023\ 0.0023$ $0.0117\ 0.0118\ 0.0086\ 0.0086\ 0.0086\ 0.0039\ 0.0039\ 0.0034\ 0.0034\ 0.0084\ 0.0084\ 0.0084\ 0.0063\ 0.0064\ 0.0013\ 0.0013\ 0.0004\ 0.0004\ 0.0004\ 0.0012\ 0.0012\ 0.0012\ 0.0003\ 0.0003\ 0.0005\ 0.0005\ 0.1603\ 0.1603$ $0.0041\ 0.0041\ 0.0019\ 0.0019\ 0.0053\ 0.0053\ 0.0019\ 0.0019\ 0.0013\ 0.0013\ 0.0006\ 0.0006\ 0.0014\ 0.0014\ 0.0016\ 0.0016\ 0.0016\ 0.0004\ 0.0004\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.1601\ 0.1601$ $0.0092\ 0.0091\ 0.0037\ 0.0037\ 0.0160\ 0.0159\ 0.0065\ 0.0065\ 0.0274\ 0.0270\ 0.0102\ 0.0100\ 0.0025\ 0.0025\ 0.0038\ 0.0038\ 0.0038\ 0.0079\ 0.0076\ 0.0033\ 0.0033\ 0.0020\ 0.0020\ 0.0122\ 0.0123$ 0.0074 $0.0161\ 0.0161\ 0.0058\ 0.0059\ 0.0246\ 0.0246\ 0.0109\ 0.0109\ 0.0085\ 0.0085\ 0.0085\ 0.0035\ 0.0035\ 0.0050\ 0.0048\ 0.0092\ 0.0089\ 0.0089\ 0.0029\ 0.0018\ 0.0018\ 0.0018\ 0.0018\ 0.0018\ 0.0018\ 0.0018$ $0.0269\ 0.0264\ 0.0119\ 0.0119\ 0.0098\ 0.0098\ 0.0051\ 0.0051\ 0.0127\ 0.0126\ 0.0049\ 0.0049\ 0.0049\ 0.0072\ 0.0037$ $2.0249\ 0.0249\ 0.0093\ 0.0093\ 0.0093\ 0.0170\ 0.0170\ 0.0186\ 0.0086\ 0.0081\ 0.0081\ 0.0081\ 0.0036\ 0.0075\ 0.0075\ 0.0075\ 0.0043\ 0.0043\ 0.0026\ 0.0026\ 0.0017\ 0.0017$ 0.0247 $0.0118\ 0.0049\ 0.0049\ 0.0103\ 0.0103\ 0.0103\ 0.0045\ 0.0045\ 0.0242\ 0.0242\ 0.0092\ 0.0092\ 0.0036\ 0.0036\ 0.0039\ 0.0039\ 0.0039\ 0.0079\ 0.0079\ 0.0022\ 0.0022$ $0.0044\ 0.0038\ 0.0038\ 0.0073\ 0.0072\ 0.0055\ 0.0055\ 0.0055\ 0.0065\ 0.0065\ 0.0048\ 0.0047\ 0.0007\ 0.0007\ 0.0007\ 0.0010\ 0.0010\ 0.0009\ 0.0009\ 0.0009\ 0.0004\ 0.0004\ 0.0004\ 0.0004\ 0.0004\ 0.0004$ $0.0055\ 0.0039\ 0.0013\ 0.0115\ 0.0115\ 0.0085\ 0.0085\ 0.0085\ 0.0057\ 0.0056\ 0.0042\ 0.0042\ 0.0007\ 0.0007\ 0.0013\ 0.0013\ 0.0013\ 0.0006\ 0.0005\ 0.0005\ 0.0005\ 0.0003\ 0.0003\ 0.0003\ 0.00406\ 0.0406$ $0.0074\ 0.0055\ 0.0055\ 0.0033\ 0.0033\ 0.0026\ 0.0026\ 0.0026\ 0.0090\ 0.0089\ 0.0065\ 0.0065\ 0.0010\ 0.0010\ 0.0010\ 0.0005\ 0.0005\ 0.0005\ 0.0012\ 0.0013\ 0.0024\ 0.0024$ $0.0167\ 0.0070\ 0.0070\ 0.0109\ 0.0109\ 0.0109\ 0.0054\ 0.0054\ 0.0147\ 0.0147\ 0.0166\ 0.0065\ 0.0057\ 0.0057\ 0.0029\ 0.0029\ 0.0029\ 0.0038\ 0.0018\ 0.0018\ 0.0018\ 0.0023\ 0.0023\ 0.0122\ 0.0122$ $0.0261\ 0.0102\ 0.0104\ 0.0072\ 0.0073\ 0.0033\ 0.0033\ 0.0281\ 0.0277\ 0.0099\ 0.0098\ 0.0080\ 0.0079\ 0.0022\ 0.0022\ 0.0022\ 0.0073\ 0.0071\ 0.0017$ $0.0111\ 0.0076\ 0.0076\ 0.0043\ 0.0043\ 0.0031\ 0.0031\ 0.0031\ 0.0071\ 0.0071\ 0.0052\ 0.0052\ 0.0012\ 0.0012\ 0.0012\ 0.0005\ 0.0005\ 0.0005\ 0.0008\ 0.0003\ 0.0003\ 0.0003\ 0.0004\ 0.0004\ 0.0004\ 0.0405\ 0.0405$ $0.0255\ 0.0104\ 0.0104\ 0.0094\ 0.0094\ 0.0037\ 0.0037$ $0.0103\ 0.0083\ 0.0083\ 0.0085\ 0.0055\ 0.0040\ 0.0040\ 0.0040\ 0.0055\ 0.0055\ 0.0042\ 0.0042\ 0.0012\ 0.0012\ 0.0012\ 0.0006\ 0.0006\ 0.0006\ 0.0006\ 0.0006\ 0.0006\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0006\ 0.0006$ $0.0119\ 0.0090\ 0.0090\ 0.0065\ 0.0065\ 0.0048\ 0.0048\ 0.0041\ 0.0041$ $0.0118 \ 0.0095 \ 0.0095 \ 0.0110 \ 0.0110 \ 0.0092 \ 0.0092 \ 0.0033 \ 0.0033 \ 0.0027 \ 0.0026 \ 0.0011 \ 0.0011 \ 0.0012 \ 0.0012 \ 0.0005 \ 0.0005 \ 0.0005 \ 0.0003 \ 0.0003 \ 0.0003 \ 0.0003 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0.1618 \ 0$; 0.0133 0.0133 0.0579 0.0579 0.0439 0.0439 0.0558 0.0558 0.0413 0.0413 0.0022 0.0022 0.0084 ; 0.0022 0.0022 0.0109 0.0109 0.01076 0.0076 0.0140 0.0141 0.0092 0.0092 0.0004 0.0004 0.0012 $0.0100\ 0.0100\ 0.0240\ 0.0240\ 0.0102$ EM 22 $_{\rm CEM}^{lpha_2}$ EM 0.0101 0.0074 CEM $0.0200\ 0.0200\ 0.0060\ 0.0060\ 0.0079\ 0.0078$ EM S 0.0074 0.0035 0.0035 0.0065 0.0065 0.007 CEM 0.0031 0.0031 EMCEM 0.0012 0.0012 0.0007 EΜ CEM 0.0025 0.0025EM 0.0076 0.0029 0.0029 0.0023 0.0023 0.0015 0.0015 0.0916 0.0916 $0.0037 \ 0.0038 \ 0.0038 \ 0.0018 \ 0.0018$ 0.00750.0041 0.0040 0.0015 $0.0024\ 0.0024\ 0.0014\ 0.0014$ CEM EM²1 0.0003 0.0003 0.0105 0.0105 0.0004 0.0004 0.0415 0.0415 0.0006 0.0006 0.0901 0.0901 0.0016 0.0016 0.0415 0.0415 0.0020 0.0020 0.0415 0.0415 $0.0023\ 0.0023\ 0.1625\ 0.1626$ Ε<u>Υ</u>3

l'abela D.89: Estimativas do erro quadrático médio dos parâmetros da mistura de três regressões lineares no caso l

π3 CEM 0.1583 0.1598 0.1624	0.0432 0.0433 0.0400 0.0400 0.00022 0.00022	0.0004 0.0432 0.0441 0.0408 0.1601 0.1621 0.1619	0.0903 0.0903 0.0927 0.0911 0.0118 0.0118	0.0133 0.0103 0.0131 0.0113 0.0941 0.0938 0.0938	0.0413 0.0406 0.0409 0.0409 0.0021 0.0022	0.0439 0.0439 0.0442 0.0411 0.0111 0.0113	0.0003 0.0003 0.0003 0.0004 0.0003 0.0003
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			0.0016 0.0915 0.00016 0.0915 0.00015 0.0921 0.00022 0.0910 0.00022 0.0101 0.00024 0.0104 0.00023 0.0117	0.0029 0.0027 0.0005 0.0005 0.0025 0.0005 0.0005	0.0016 0.0406 0.0003 0.0406 0.0016 0.0415 0.0003 0.0407 0.0021 0.0021 0.0004 0.0004 0.0022 0.0023	0.0024 0.0030 0.0025 0.0030 0.0005 0.0432 0.0005 0.0408 0.00015 0.0111 0.0003 0.0106 0.0003 0.0103	0.0003
$\frac{\pi_2}{\text{EM}}$ 0.0021 0.0020 0.0020		0.0023 0.0023 0.0027 0.0005 0.0028 0.0005		0.0029 0.0005 0.0005 0.0005 0.0005 0.0005 0.0008			
r_1 CEM 0.0016 0.0003 0.00018							
$\frac{\pi_1}{\text{EM}}$ 5.0.0018 6.0.0018 7.0.0018		0.0017 0.0018 0.0003 0.0003 0.00017 0.0004 0.00017	0.0024 0.0005 0.0005 0.0005 0.0005 0.00021 0.0004 0.0004	0.0010 0.0024 0.0003 0.0005 0.0012 0.0020 0.0003 0.0005 0.0016 0.0022 0.0016 0.0022 0.0016 0.0022 0.0016 0.0023	0.0008 0.0024 0.0002 0.0005 0.0008 0.0027 0.0002 0.0005 0.0010 0.0023 0.0010 0.0023 0.0010 0.0023	0.0016 0.0026 0.0005 0.0026 0.0005 0.0026 0.0005 0.0005 0.0001 0.0026 0.0003 0.0005 0.0003 0.0002	0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
CEM 8 0.0006 1 0.0001 6 0.0005		0.0002 0.0002 0.0002 0.0003 0.0003 0.0003 0.0034 0.0018 0.00034 0.0018 0.0004 0.0005 0.0004 0.0005	2 0.0004 1 0.0001 1 0.0001 1 0.0001 2 0.0002 2 0.0002 1 0.0008	4 0.0010 3 0.0003 3 0.0003 3 0.0003 7 0.0016 4 0.0005 9 0.0016	0.0011 0.0008 0.0024 0.0002 0.0002 0.0005 0.0002 0.0008 0.0027 0.0002 0.0002 0.0005 0.0001 0.0010 0.0023 0.0002 0.0003 0.0005 0.0019 0.0010 0.0018	0.0039 0.0016 0.0026 0.0004 0.0005 0.	9 0.0017 9 0.0017 4 0.0004 4 0.0005 3 0.0017 3 0.0004 6 0.0015 4 0.0005
σ3 f EM 7 0.0008 13 0.0001 16 0.0006	200000 2000000000000000000000000000000	15 0.0016 15 0.0016 11 0.0003 11 0.0003 14 0.003 11 0.0004 11 0.003 11 0.003	5 0.0002 5 0.0002 5 0.0002 6 0.0008 8 0.0001 9 0.0002 9 0.0002 9 0.0002 9 0.0002	5 0.0014 7 0.0003 11 0.0003 10 0.0037 11 0.0004 11 0.0004 11 0.0004	3 0.0011 3 0.0002 4 0.0012 3 0.0002 8 0.0021 12 0.0002 7 0.0019		
25 0.0017 0.0003 0.0003 0.0003 0.0003		00000000000000000000000000000000000000		06 0.0005 07 0.0007 07 0.0007 01 0.0001 07 0.0006 01 0.0001 06 0.0005 01 0.0001	18 0.0013 30 0.0003 20 0.0014 02 0.0003 10 0.0002 03 0.0007 03 0.0003	08 0.0007 08 0.0007 01 0.0001 01 0.0001 15 0.0012 03 0.0002 04 0.0016 05 0.0016	15 0.0001 10 0.0008 10 0.0008 12 0.0008 13 0.0003 14 0.0014 15 0.0004
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.0005 0.0009 0.0003 0.0009 0.0003 0.0001 0.0003 0.0001 0.0003 0.0006 0.0003 0.0006 0.0004 0.0007	0.0013 0.0000 0.00013 0.0000 0.00016 0.0000 0.0003 0.0001 0.0014 0.0004 0.0003 0.0001 0.0013 0.0001 0.00013 0.00003	0.0009 0.0019 0.0002 0.0003 0.0002 0.0003 0.0002 0.0003 0.0009 0.0011 0.0002 0.0002 0.0009 0.0010	0.0009 0.0006 0.0002 0.0002 0.0008 0.0007 0.0002 0.0001 0.0008 0.0007 0.0002 0.0001 0.0008 0.0006 0.0008 0.0006	0.0007 0.0018 0.0013 0.0011 0.0008 0.0024 0.0002 0.0003 0.0003 0.0002 0.0002 0.0005 0.0005 0.0020 0.0014 0.0012 0.0008 0.0027 0.0001 0.0002 0.0003 0.0002 0.0002 0.0006 0.0010 0.0008 0.0012 0.0010 0.0023 0.0001 0.0002 0.0002 0.0002 0.0003 0.0001 0.0002 0.0002 0.0003 0.0003 0.0007 0.0008 0.0017 0.0019 0.0019 0.0032	0.0006 0.0008 0.0007 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0005 0.0015 0.0012 0.0005 0.0022 0.0002 0.0005 0.0022 0.0016	0.0005 0.0015 0.0010 0.0001 0.0002 0.0002 0.0001 0.0002 0.0002 0.0001 0.0002 0.0003 0.0001 0.0003 0.0003 0.0004 0.0011 0.0013 0.0004 0.0021 0.0014 0.0001 0.0002 0.0003
		116 0.0013 100 0.0002 1003 0.0006 117 0.0014 1017 0.0014 1018 0.0003		002 0.00 002 0.00 002 0.00 002 0.00 011 0.00 002 0.00 010 0.00	008 0.0002 007 0.0005 001 0.0001 008 0.0006 001 0.0001 000 0.0001	001 0.00 001 0.00 001 0.00 001 0.00 001 0.00	000 0000000000000000000000000000000000
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0.0012 0.0003 0.0002 0.0003 0.00042 0.0003 0.0010 0.0003 0.0011 0.0003 0.0003 0.0003 0.0003 0.0003	0.0008 0.0013 0.0002 0.0012 0.0002 0.0012 0.0006 0.0002 0.0008 0.0011 0.0001 0.0002 0.0001 0.0002	0.0012 0.0010 0.0002 0.0002 0.0054 0.0010 0.0008 0.0002 0.0000 0.0011 0.0004 0.0002 0.0083 0.0010	0.0009 0.0008 0.0002 0.0002 0.0031 0.0007 0.0007 0.0001 0.0014 0.0008 0.0002 0.0001	0.0018 0.0008 0.0003 0.0008 0.0008 0.0008 0.0014 0.0001 0.0011 0.0005 0.0002 0.0006 0.0004 0.0006	0.0018 0.0006 0.0003 0.0001 0.0003 0.0001 0.0013 0.0001 0.0017 0.0004 0.0003 0.0001 0.0013 0.0001
$\begin{array}{c c} \beta_3 & \beta \\ \hline EM & CE \\ 0.0007 & 0.0 \\ 0.00025 & 0.0 \\ 0.0025 & 0.0 \\ 0.0025 & 0.0 \\ 0.0025 & 0.0 \\ 0.0025 & 0.0 \\ 0.0025 & 0.0 \\ 0.0025 & 0.0 \\ 0.0025 & 0.0 \\ 0.0025 & 0.0 \\ 0.0025 & 0.0 \\ 0.0025 & 0.0 \\ 0.0025 & 0.0 \\ 0.0025 & 0.0 \\ 0.0025 & 0.0 \\ 0.0025 & 0.0 \\ 0.00025 & 0.0 $		0.0007 0.0034 0.0026 0.00016 0.0012 0.0016 0.0013 0.0006 0.0001 0.0002 0.0002 0.0003 0.0003 0.0002 0.0003 0.0005 0.0004 0.0004 0.0001 0.00013 0.0003	0.0012 0.0 0.0001 0.0 0.00037 0.0 0.0007 0.0 0.00012 0.0 0.00010 0.0	0.0015 0.0 0.0002 0.0 0.0068 0.0 0.0009 0.0 0.0046 0.0 0.0004 0.0 0.0143 0.0	0.0011 0.0 0.0002 0.0 0.0039 0.0 0.0007 0.0 0.0018 0.0 0.0008 0.0		0.0003 0.0018 0.0006 0.0004 0.0003 0.0001 0.0015 0.0069 0.0007 0.0015 0.0013 0.0001 0.0003 0.0003 0.0001 0.0163 0.0013 0.0004 0.0163 0.0013 0.0004
CEM E 0.00013 0.0 0.00034 0.0 0.00034 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.		0.0005 0.0005 0.0005 0.0016 0.0005 0.0005 0.0014 0.0011 0.0031 0.0028 0.0008 0.0003 0.0008 0.0003	0.0017 0.0 0.0004 0.0 0.0008 0.0 0.0008 0.0 0.0019 0.0 0.0003 0.0	0.0024 0.0 0.0005 0.0 0.0011 0.0 0.0044 0.0 0.0009 0.0	0.0026 0.0020 0.0011 0.0005 0.0004 0.0002 0.0002 0.0004 0.0039 0.0009 0.0003 0.0007 0.0006 0.0008 0.0007 0.0006 0.0008 0.0008	0.0043 0.0029 0.0043 0.0029 0.0015 0.0152 0.0019 0.0017 0.0029 0.0017 0.0006 0.0004 0.0066 0.0064	
α3 EM C 0.0016 0. 0.0003 0. 0.0037 0.		0.0034 0.0036 0.0004 0.0026 0.00075 0.0059 0.0016 0.0014 0.0050 0.0031 0.0009 0.0008 0.0158 0.008	0.0018 0.0017 0.00018 0.0017 0.00049 0.00038 0.0008 0.0008 0.0027 0.0019 0.0004 0.0003 0.00009 0.0004	0.0028 0. 0.0005 0. 0.0104 0. 0.0012 0. 0.0077 0. 0.0010 0. 0.0153 0.	0.0026 0.0025 0.00025 0.00025 0.00025 0.0003 0.0003 0.00049 0.0006 0.0008 7		0.0021 0.0031 0.0008 0.0003 0.0021 0.0092 0.0022 0.0018 0.0082 0.0045 0.0088 0.0007 0.0182 0.0099 0.0022 0.0019
$\begin{array}{c} \beta_2 \\ \text{CEM} \\ 0.0018 \ 0 \\ 0.0003 \ 0 \\ 0.0068 \ 0 \\ 0.0068 \ 0 \\ \end{array}$		0.0007 0.0034 0.0001 0.0034 0.0002 0.0075 0.0005 0.0016 0.0005 0.0050 0.0001 0.0099 0.0022 0.0158	0.0018 0 0.0018 0 0.0088 0 0.0011 0 0.0013 0 0.0002 0	0.0007 0.0001 0.0003 0.0006 0.0006 0.0001 0.0028 0.00028 0.0005	0.0017 0 0.0003 0 0.0073 0 0.0014 0 0.0011 0 0.0002 0	0.0009 0.0009 0.0001 0.0007 0.0007 0.0008 0.0008	
		0.0008 0.0008 0.0008 0.0009 0.0006 0.0009 0.0003		$\begin{array}{c} 0.0017\ 0.0008\ 0.0007\ 0.0028\ 0.0024\ 0.0015\ 0.0015\ 0.0010\ 0.0009\ 0.0006\ 0.0005\ 0.0014\ 0.0010\ 0.0023\\ 0.0003\ 0.0001\ 0.0001\ 0.0005\ 0.0002\ 0.0002\ 0.0002\ 0.0002\ 0.0002\ 0.0002\ 0.0002\ 0.0002\ 0.0002\ 0.0002\ 0.00002\ 0.00003\ 0.0003\ 0.0003\ 0.0006\ 0.0006\ 0.0006\ 0.0006\ 0.0006\ 0.0007\ 0.0011\ 0.0009\ 0.0008\ 0.0002\ 0.0001\ 0.0001\ 0.0001\ 0.0003\ 0.0003\ 0.0002\ 0.0001\ 0.0001\ 0.0001\ 0.$	0.0047 0.0020 0.0017 0.0026 0.0021 0.0011 0.0009 0.0008 0.0007 0.0003 0.0003 0.0005 0.0004 0.0002 0.0002 0.0002 0.0103 0.0094 0.0073 0.0052 0.0044 0.0039 0.0031 0.0007 0.0021 0.0015 0.0014 0.0009 0.0009 0.007 0.0011 0.0007 0.0005 0.0002 0.0011 0.0049 0.0034 0.0018 0.0014 0.0008 0.0005 0.0002 0.0002 0.0006 0.0006 0.0002 0.0002 0.0001 0.0005 0.0002 0.0008 0.0008 0.0008 0.0008 0.0009 0.0007		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.00218 0.0014 0.00027 0.0014 0.0005 0.0005 0.0011 0.0009 0.0017 0.0008 0.0004 0.0001 0.0004 0.00038	0.0014 0.0008 0.00014 0.0008 0.0003 0.0001 0.0007 0.0006 0.00014 0.0006 0.0003 0.0001 0.0003 0.0001	0.0044 0.0024 0.00044 0.0024 0.0113 0.0098 0.0016 0.0012 0.0024 0.0013 0.0024 0.0013 0.0053 0.0057	0.0017 0.0008 0.0003 0.0001 0.0042 0.003 0.0009 0.0006 0.0014 0.0006 0.003 0.0001 0.0036 0.0005 0.0006 0.0005	0.0047 0.0020 0.0007 0.0003 0.0103 0.0094 0.0021 0.0015 0.0024 0.0012 0.0005 0.0002 0.0005 0.0002	0.0022 0.0010 0.0022 0.0010 0.0004 0.0001 0.00051 0.0039 0.00035 0.0020 0.0007 0.0003 0.0104 0.0091	0.0023 0.0013 0.0005 0.0012 0.0005 0.0004 0.0012 0.0009 0.0040 0.0019 0.0008 0.0003 0.0084 0.0085 0.0018 0.0015
$\frac{\alpha_2}{\text{EM}}$ 0.0059 0.0007 0.0095	0.0030 0.0030 0.0081 0.0012 0.0018 0.0004		0.0051 0.0051 0.00119 0.0017 0.0025 0.0005 0.0061				26 05 112 18 18 18
β ₁ CEM 3 0.0020 1 0.0003 3 0.0065	0.0034 0.0013 0.0013 0.0013 0.0003 0.0003 0.0003 0.0003 0.0003 0.0005 0.0001 0.0002 0.0001 0.0002 0.0013 0.0013 0.0013 0.0014 0.0004 0.	0.0020 0.0017 0.0008 0.0002 0.0017 0.0016 0.0002 0.0081 0.0003 0.0017 0.0016 0.0007 0.0002 0.0018 0.0016 0.0003 0.0003 0.0003 0.0118 0.0106 0.0034	0.0016 0.0014 0.00 0.0002 0.0002 0.00 0.0004 0.0038 0.01 0.0009 0.0008 0.00 0.0011 0.0010 0.00 0.0002 0.0002 0.00 0.0004 0.0002 0.00 0.0004 0.0009 0.00	0.0012 0.0011 0.0019 0.0002 0.0002 0.0003 0.0057 0.0003 0.0042 0.0009 0.0009 0.0009 0.0002 0.0011 0.0015 0.0002 0.0002 0.0003 0.0004 0.0002 0.003	0.0009 0.0009 0.0056 0.0002 0.0002 0.0007 0.0006 0.0003 0.0160 0.0006 0.0006 0.0028 0.0002 0.0002 0.0008 0.0002 0.0004 0.0078	3 0.0008 3 0.0008 5 0.0003 5 0.0006 8 0.0007 1 0.0001	0.0006 0.0006 0.0006 0.0001 0.0001 0.0005 0.0002 0.0002 0.0004 0.0005 0.0005 0.0012 0.0001 0.0001 0.0008 0.0001 0.0001 0.0008 0.0004 0.0024 0.0126
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0073 0.0054 0.0018 0.0013 0.0013 0.0073 0.0056 0.0034 0.0027 0.0030 0.0099 0.0083 0.0072 0.0059 0.0081 0.0024 0.0022 0.0020 0.0018 0.0012 0.0069 0.0051 0.0020 0.0018 0.0012 0.0069 0.0059 0.0012 0.0018 0.0018 0.0009 0.0009 0.0075 0.0064 0.0004 0.0014 0.0019 0.0075 0.0065 0.0018	0.0044 0.0040 0.0023 0.0013 0.0003 0.0004 0.0044 0.0040 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0004 0.0004 0.0002 0.0003 0.	0.0031 0.0029 0.0016 0.0014 0.0003 0.0031 0.0029 0.0016 0.0014 0.0051 0.0060 0.0053 0.0042 0.0003 0.0119 0.0013 0.0012 0.0009 0.0008 0.0119 0.0039 0.0026 0.0011 0.0010 0.0025 0.0006 0.0026 0.0040 0.0002 0.0005 0.0006 0.0002 0.0040 0.0001 0.00013 0.0012 0.0040 0.0040 0.0001	0.0024 0.0022 0.0012 0.0011 0.0019 0.0005 0.0004 0.0002 0.0002 0.0003 0.0072 0.0067 0.0057 0.0053 0.0042 0.0013 0.0012 0.0009 0.0009 0.0039 0.0028 0.0012 0.0009 0.0006 0.0005 0.0002 0.0003 0.0006 0.0005 0.0002 0.0003 0.0006 0.0005 0.0002 0.0003 0.0001 0.0054 0.0046 0.0003 0.0013 0.0013 0.0010 0.0009	0.0024 0.0021 0.0009 0.0056 0.0004 0.0003 0.0002 0.0002 0.0005 0.0052 0.0046 0.0036 0.0006 0.0006 0.0007 0.0008 0.0006 0.0006 0.0028 0.0007 0.0008 0.0000 0.0010 0.0010 0.0004 0.0004 0.0002 0.0038 0.0004 0.0004 0.0008 0.0034 0.0073	0.0019 0.0018 0.0008 0.0008 0.0003 0.0004 0.0018 0.0008 0.0008 0.0003 0.0004 0.0004 0.0002 0.0000 0.0004 0.0008 0.0008 0.0006 0.0006 0.0009 0.0017 0.0016 0.0008 0.0007 0.0008 0.0004 0.0004 0.0001 0.0008 0.0017 0.0016 0.0008 0.0007 0.0008	0.0016 0.0016 0.0006 0.0006 0.000 0.0013 0.0016 0.0006 0.0006 0.000 0.0003 0.0003 0.0001 0.0001 0.000 0.0007 0.0007 0.0005 0.0005 0.000 0.0014 0.0013 0.0005 0.000 0.000 0.0002 0.0002 0.0001 0.000 0.0003 0.0030 0.0024 0.000 0.0006 0.0006 0.0004 0.001
α1 CEM 8 0.0038 8 0.0008 11 0.0088	0.0024 0.0018 0.0073 0.0056 0.0008 0.0008 0.0024 0.0022 0.0060 0.0051 0.0009 0.0009 0.0114 0.0009	0.0010 0.0010 0.0004 0.00010 0.0002 0.0002 0.0024 0.0023 0.00046 0.0042 0.0007 0.0007 0.00143 0.0129	0.0013 0.0018 0.0005 0.0005 0.0005 0.0005 0.0013 0.0012 0.0006 0.0026 0.0006 0.0026	0.0024 0.0022 0.0005 0.0004 0.0072 0.0067 0.0013 0.0012 0.0039 0.0028 0.0006 0.0005 0.0001 0.0054	0.0024 0.0021 0.0004 0.0003 0.0052 0.0046 0.0007 0.0008 0.0029 0.0026 0.0004 0.0004	9 0.001 9 0.001 14 0.000 18 0.000 17 0.001 17 0.000 10 0.000 10 0.000	0.0003 0.0003 0.0003 0.0003 0.0007 0.0007 0.00014 0.0013 0.0002 0.0002 0.0003 0.0003 0.0006 0.0006
$\begin{array}{c} \alpha_1 \\ EM \\ 0.004 \\ 0.000 \\ 0.010 \\ 0.010 \\ \end{array}$	0.0020 0.0073 0.0099 0.0024 0.0060 0.0009	0.00 0.002 0.013 0.002 0.004 0.004	0.00 <u>0</u> 0.00 <u>0</u> 0.00 <u>0</u> 0.00 <u>0</u> 0.000 0.000	0.000 0.007 0.007 0.001 0.003 0.000 0.006	0.0024 0.0004 0.0052 0.0007 0.0029 0.0004	0.001 0.002 0.004 0.006 0.0001 0.003	0.000
100 500 100	100 100 100 100 100 100 100 100 100	100 100 100 100 100 100 100 100 100	100 100 100 500 100 500 100 500	100 500 100 500 100 500 500 500	100 100 500 100 100 500 100 100	100 100 100 100 100 100 100 100	100 500 100 500 100 500 100 500
$\begin{bmatrix} x \\ [-1;3] \\ [0;2] \end{bmatrix}$	[0; 2] [0; 2] [-1; 3] [0; 2]	[0; 2] [0; 2] [-1; 3] [0; 2]	[0; 2] [0; 2] [-1; 3] [0; 2]	[0; 2] [0; 2] [-1; 3] [0; 2]	[0; 2] [0; 2] [-1; 3] [0; 2]	[0; 2] [0; 2] [-1; 3] [0; 2]	[0; 2] [0; 2] [-1; 3] [0; 2]
π ₂ 0.2	0.3	0.5	0.2	0.5	0.2	0.4	0.3
π ₁ 0.2	0.2	0.2	0.3	0.3	0.4	0.5	0.5

Tabela D.90: Estimativas do erro quadrático médio dos parâmetros da mistura de três regressões lineares no caso II

ر د:

[-1; 3]

500

[0; 2]

 $0.0670\ 0.0613\ 0.0616\ 0.0675\ 0.4368\ 0.7850\ 0.3104\ 0.8582\ 0.0174\ 0.0187\ 0.0104\ 0.0111\ 0.0128\ 0.0109\ 0.0750\ 0.1622\ 0.0024\ 0.0026\ 0.0040\ 0.0061\ 0.0056\ 0.0119\ 0.0186\ 0.0386\ 0.0084\ 0.0178\ 0.0085\ 0.0233\ 0.0440\ 0.6501\ 0.0276\ 0.8563\ 0.0029\ 0.0050\ 0.0021\ 0.0035\ 0.0019\ 0.0047\ 0.0090\ 0.1452\ 0.0004\ 0.0015\ 0.0008\ 0.0054\ 0.0011\ 0.0139\ 0.0114\ 0.0453$

 $0.0030\ 0.0031\ 0.0020\ 0.0021\ 0.0185\ 0.0466\ 0.0081\ 0.0398\ 0.0011\ 0.0012\ 0.0004\ 0.0004\ 0.0015\ 0.0036\ 0.0046\ 0.0104\ 0.0003\ 0.0005\ 0.0005\ 0.0007\ 0.0029\ 0.0009\ 0.0083\ 0.0107\ 0.0355$ $0.0176\ 0.0175\ 0.0103\ 0.0096\ 0.1046\ 0.1828\ 0.0497\ 0.0836\ 0.0058\ 0.0058\ 0.0024\ 0.0023\ 0.0080\ 0.0095\ 0.0380\ 0.0490\ 0.0020\ 0.0020\ 0.0028\ 0.0053\ 0.0044\ 0.0100\ 0.0154\ 0.0358$ $0.0082\ 0.0116\ 0.0072\ 0.0101\ 0.0783\ 0.8603\ 0.0526\ 1.1447\ 0.0020\ 0.0026\ 0.0012\ 0.0017\ 0.0017\ 0.0030\ 0.0150\ 0.1807\ 0.0030\ 0.0008\ 0.0008\ 0.0006\ 0.0032\ 0.0007\ 0.0084\ 0.0988\ 0.1509$

 $0.0032\ 0.0034\ 0.0020\ 0.0023\ 0.0133\ 0.0389\ 0.0054\ 0.0321\ 0.0016\ 0.0018\ 0.0006\ 0.0007\ 0.0017\ 0.0039\ 0.0038\ 0.0080\ 0.0080\ 0.0009\ 0.0009\ 0.0007\ 0.0038\ 0.0009\ 0.0009$

 $0.0174\ 0.0165\ 0.0126\ 0.0098\ 0.0706\ 0.0917\ 0.0351\ 0.0536\ 0.0145\ 0.0092\ 0.0045\ 0.0031\ 0.0086\ 0.0111\ 0.0252\ 0.0302\ 0.0031\ 0.0032\ 0.0032\ 0.0038\ 0.0070\ 0.0058\ 0.0129\ 0.0137\ 0.0071$

 $0.0033\ 0.0034\ 0.0020\ 0.0021\ 0.0288\ 0.0786\ 0.0164\ 0.0567\ 0.0007\ 0.0007\ 0.0003\ 0.0003\ 0.0003\ 0.00014\ 0.0022\ 0.0106\ 0.0182\ 0.0003\ 0.0003\ 0.0003\ 0.0003\ 0.0006\ 0.0020\ 0.0055\ 0.0891\ 0.1381\ 0.0539\ 0.0413\ 0.0539\ 0.0418\ 0.0539\ 0.0418\ 0.0539\ 0.0428\ 0.5755\ 1.2845\ 0.5303\ 1.3169\ 0.0100\ 0.0090\ 0.0065\ 0.0059\ 0.0093\ 0.0093\ 0.0082\ 0.1223\ 0.2290\ 0.0018\ 0.0018\ 0.0018\ 0.0038\ 0.0045\ 0.0048\ 0.0071\ 0.1015\ 0.1378$

 $0.0050\ 0.0072\ 0.0042\ 0.0158\ 0.0076\ 0.0134\ 0.0038\ 0.0092\ 0.0033\ 0.0082\ 0.0010\ 0.0021\ 0.0026\ 0.0067\ 0.0025\ 0.0070\ 0.0009\ 0.0027\ 0.0005\ 0.0036\ 0.0036\ 0.0008\ 0.0063\ 0.1618\ 0.2079\ 0.1811\ 0.2405\ 0.1546\ 0.2542\ 0.1481\ 0.2674\ 0.0992\ 0.1566\ 0.0857\ 0.1198\ 0.0447\ 0.0576\ 0.0222\ 0.0341\ 0.0251\ 0.0479\ 0.0081\ 0.0093\ 0.0041\ 0.0082\ 0.0071\ 0.0129\ 0.1481\ 0.1666$

 $0.0168\ 0.0361\ 0.0207\ 0.1808\ 0.0219\ 0.2753\ 0.0135\ 0.2303\ 0.0050\ 0.0219\ 0.0030\ 0.0180\ 0.0140\ 0.0041\ 0.0472\ 0.0005\ 0.0016\ 0.0007\ 0.0028\ 0.0011\ 0.0067\ 0.0398\ 0.0285$ $0.1183\ 0.1090\ 0.1588\ 0.2220\ 0.1195\ 0.3326\ 0.1008\ 0.2682\ 0.0297\ 0.0354\ 0.0162\ 0.0194\ 0.0279\ 0.0355\ 0.0290\ 0.0687\ 0.0036\ 0.0051\ 0.0042\ 0.0053\ 0.0070\ 0.0106\ 0.0423\ 0.0359$ $0.0056\ 0.0069\ 0.0034\ 0.0083\ 0.0109\ 0.0206\ 0.0048\ 0.0143\ 0.0024\ 0.0032\ 0.0007\ 0.0010\ 0.0024\ 0.0071\ 0.0033\ 0.0083\ 0.0005\ 0.0015\ 0.0015\ 0.0005\ 0.0026\ 0.0008\ 0.0036\ 0.0406\ 0.0366$

 $0.0369\ 0.0361\ 0.0273\ 0.0381\ 0.0446\ 0.0583\ 0.0219\ 0.0227\ 0.0287\ 0.0359\ 0.0085\ 0.0083\ 0.0187\ 0.0241\ 0.0133\ 0.0185\ 0.0053\ 0.0053\ 0.0075\ 0.0029\ 0.0056\ 0.0057\ 0.0121\ 0.1568\ 0.1855\ 0.0088$

 $0.0800\ 0.1319\ 0.1015\ 0.1303\ 0.1704\ 0.5901\ 0.1246\ 0.4704\ 0.0153\ 0.0200\ 0.097\ 0.0116\ 0.0229\ 0.0268\ 0.0357\ 0.0839\ 0.0021\ 0.0026\ 0.0034\ 0.0051\ 0.0057\ 0.0098\ 0.0057\ 0.0098$ $0.0042\ 0.0050\ 0.0034\ 0.0049\ 0.0154\ 0.0328\ 0.0072\ 0.0273\ 0.0012\ 0.0013\ 0.0004\ 0.0005\ 0.0025\ 0.0071\ 0.0041\ 0.0094\ 0.0003\ 0.0006\ 0.0004\ 0.0022\ 0.0008\ 0.0071\ 0.0008\ 0.0071$

0.0032 0.0043 0.0027

0.0012 0.0087 0.0012 0.0087 $0.0119\ 0.0431\ 0.0446$

 $0.0314\ 0.0148\ 0.1164\ 0.0320\ 0.4458\ 0.0247\ 0.4248\ 0.0035\ 0.0101\ 0.0020\ 0.0050\ 0.0029\ 0.0085\ 0.0085\ 0.0058\ 0.0744\ 0.0005\ 0.0011\ 0.0006\ 0.0028$

 $0.0223\ 0.0402\ 0.0565\ 0.0669\ 0.0278\ 0.0381\ 0.0142\ 0.0120\ 0.0047\ 0.0040\ 0.0174\ 0.0249\ 0.0171$

 $0.0286\ 0.0276\ 0.0182\ 0.0180\ 0.0578\ 0.0792\ 0.0291\ 0.0472\ 0.0065\ 0.0065\ 0.0023\ 0.0024\ 0.0158\ 0.0194\ 0.0256\ 0.0357\ 0.0026\ 0.0027$

 $0.0188 \ 0.0745 \ 0.0412 \ 0.6274 \ 0.0305 \ 0.6465 \ 0.0024 \ 0.0043 \ 0.0016 \ 0.0027$

 $0.2369\ 0.2119\ 0.1536\ 0.1331\ 0.4484\ 0.9978\ 0.2952\ 0.8377\ 0.0123\ 0.0135\ 0.0080\ 0.0085\ 0.0216\ 0.0215\ 0.0675\ 0.1465\ 0.0017\ 0.0022\ 0.0030\ 0.0042\ 0.0050\ 0.0098\ 0.0502\ 0.0793$ $0.0043\ 0.0042\ 0.0027\ 0.0033\ 0.0217\ 0.0501\ 0.0093\ 0.0369\ 0.0010\ 0.0011\ 0.0004\ 0.0004\ 0.0024\ 0.0061\ 0.0052\ 0.0098\ 0.0008\ 0.0004\ 0.0004\ 0.0004\ 0.0019\ 0.0008\ 0.0410\ 0.0775$ $0.1481\ \ 0.1285\ \ 0.0992\ \ 0.0738\ \ 0.6789\ \ 1.0631\ \ 0.5076\ \ 1.0197\ \ 0.0077\ \ 0.0080\ \ 0.0052\ \ 0.0054\ \ 0.0185\ \ 0.0153\ \ 0.1261\ \ 0.2044\ \ 0.0014\ \ 0.0012\ \ 0.0033\ \ 0.0040\ \ 0.0044\ \ 0.0066\ \ 0.1732\ \ 0.2171\ \ 0.0185\ \ 0.0185\ \ 0.0185\ \ 0.0185\ \ 0.0185\ \ 0.0018\ \ 0.00$

 $0.0190\ 0.0645\ 0.9946\ 0.0548\ 1.1624\ 0.0019\ 0.0023\ 0.0012\ 0.0014\ 0.0026$

 $0.0290\ 0.0278\ 0.0185\ 0.0163\ 0.0864\ 0.1108\ 0.0524\ 0.0821\ 0.0040\ 0.0041\ 0.0016\ 0.0015\ 0.0171\ 0.0199\ 0.0406\ 0.0561\ 0.0015\ 0.0017\ 0.0017\ 0.0027\ 0.0044\ 0.0042\ 0.0083\ 0.0456\ 0.0747$

 $0.0050\ 0.0053\ 0.0025\ 0.0024\ 0.0323\ 0.0742\ 0.0116\ 0.0586\ 0.0007\ 0.0007\ 0.0003\ 0.0003\ 0.0021\ 0.0033\ 0.0107\ 0.0197\ 0.0197\ 0.0002\ 0.0002\ 0.0004\ 0.0018\ 0.0018\ 0.0007\ 0.0053\ 0.1625\ 0.2199$

0.0030 0.0013 0.0012 0.0145 0.0147

0.0854EM

0.0990 0.0013 0.0012

 $0.0025\ 0.0034\ 0.0035\ 0.0062\ 0.1692\ 0.2138$

EM²3

CEM

EM²1

 $0.0156\ 0.0430\ 0.0256\ 0.2348\ 0.0153\ 0.1071\ 0.0116\ 0.0871\ 0.0103\ 0.0682\ 0.0058\ 0.0286\ 0.0033\ 0.0152\ 0.0036\ 0.0275\ 0.0009\ 0.0035\ 0.0007\ 0.0031\ 0.0031\ 0.0011\ 0.0032\ 0.0066\ 0.0980\ 0.1374\ 0.0197\ 0.0197\ 0.0131\ 0.0116\ 0.2357\ 0.2956\ 0.0852\ 0.1204\ 0.0033\ 0.0030\ 0.0014\ 0.0013\ 0.0099\ 0.0098\ 0.0810\ 0.0954\ 0.0013\ 0.0013\ 0.0013\ 0.0027\ 0.0038\ 0.0032\ 0.0066\ 0.0980\ 0.1374$

[-1; 3]

100

500 $100 \\ 500$

[0; 2]

0.2

[-1; 3]

500

[0; 2]

500

100 100 100 100 100 100 100

0.6

[-1; 3]

500 500 500

[0; 2]

500

[-1; 3]

0.037

[0; 2]

[-1; 3]

500

[0; 2]

500

0.3

500

500

100

0.2

[-1; 3]

0.0311

 $0.0287\ 0.0211$

 $_{\mathrm{CEM}}^{eta_1}$

EM 22

 $_{\rm CEM}^{lpha_2}$

EM

CEM

EM

CEM

EM

CEM

EΜ

 σ_1 CEM

 $0.0142\ 0.2348\ 0.3238\ 0.0843\ 0.1339\ 0.0031$

[0; 2]

0.2 ر د.ن [-1; 3][-1; 3][-1; 3][-1; 3][-1; 3][-1; 3][0; 2][0; 2][-1; 3][0; 2][0; 2][0; 2]Tabela D.91: Estimativas do erro quadrático médio dos parâmetros da mistura de três regressões lineares no caso III 500 500 500 500 500 500 $\frac{100}{500}$ 500 500 500 500 100 100 100 100 100 100 100 00 00 90 001 $0.0299\ 0.0290\ 0.0556\ 0.0280\ 0.2825\ 0.5650\ 0.2416\ 0.7434\ 0.1467\ 0.0464\ 0.0354\ 0.0362\ 0.0064\ 0.0064\ 0.00728\ 0.1535\ 0.0060\ 0.0069\ 0.0069\ 0.0063\ 0.0065\ 0.0063\ 0.0065\ 0.0010\ 0.0010\ 0.0044\ 0.0090\ 0.0048\ 0.0101\ 0.0048\ 0.0101\ 0.0048\ 0.0101\ 0.0048\ 0.00101\ 0.0088\ 0.0085\ 0.0085\ 0.0085\ 0.0085\ 0.0086\ 0.0010\ 0.0088\ 0.0085\ 0.0086\ 0.0088\ 0.0086\ 0.0088\ 0.$ $0.0017\ 0.0017\ 0.0009\ 0.00238\ 0.0238\ 0.0808\ 0.0139\ 0.0729\ 0.0016\ 0.0017\ 0.0006\ 0.0008\ 0.0009\ 0.0029\ 0.0212\ 0.0004\ 0.0005\ 0.0006\ 0.0033\ 0.0007\ 0.0069\ 0.0111\ 0.0328\ 0.0295\ 0.0270\ 0.0281\ 0.0241\ 0.7194\ 1.0631\ 0.6164\ 1.3442\ 0.0199\ 0.0191\ 0.0133\ 0.0134\ 0.0055\ 0.0043\ 0.1298\ 0.2424\ 0.0026\ 0.0024\ 0.0047\ 0.0059\ 0.0059\ 0.0050\ 0.0084\ 0.0177\ 0.0342$ $0.0347\ 0.0317\ 0.0355\ 0.0321\ 0.3968\ 0.8031\ 0.3325\ 0.8913\ 0.0217\ 0.0206\ 0.0142\ 0.0137\ 0.0070\ 0.0072\ 0.0721\ 0.1680\ 0.0036\ 0.0042\ 0.0050\ 0.0073\ 0.0053\ 0.0042\ 0.0050\ 0.0055\ 0.0012\ 0.0074\ 0.1567\ 0.0005\ 0.0022\ 0.0007\ 0.0058\ 0.0099\ 0.0150\ 0.0009\ 0.0150$ $0.0130\ 0.0135\ 0.0077\ 0.0984\ 0.1331\ 0.0497\ 0.0807\ 0.0135\ 0.0135\ 0.0135\ 0.0049\ 0.0041\ 0.0059\ 0.0069\ 0.0486\ 0.0548\ 0.0032\ 0.0028\ 0.0036\ 0.0063\ 0.0041\ 0.0008\ 0.0097\ 0.0008\ 0.0097\ 0.0008\ 0.0097\ 0.0008\ 0.0097\ 0.0008\ 0.0097\ 0.0008\ 0.0011\ 0.0019\ 0.0015\ 0.0015\ 0.0015\ 0.0006\ 0.0008\ 0.0008\ 0.0041\ 0.0008\ 0.0041\ 0.0008\ 0.0097\ 0.0008\ 0.0097\ 0.0008\ 0.0097\ 0.0008\ 0.0097\ 0.0008\ 0.0097\ 0.0008\ 0.0097\ 0.0008\ 0.0097\ 0.0097\ 0.0098\ 0.0097\ 0.0098\ 0.0097\ 0.0098\ 0.0097\ 0.0098\ 0.0099\ 0.00$ $0.0039\ 0.0045\ 0.0020\ 0.0030\ 0.0094\ 0.0248\ 0.0040\ 0.0189\ 0.0040\ 0.0045\ 0.0012\ 0.0013\ 0.0016\ 0.0054\ 0.0030\ 0.0065\ 0.0010\ 0.0025\ 0.0006\ 0.0039\ 0.0010\ 0.0086\ 0.0879\ 0.0499\ 0.2029\ 0.0778\ 0.1027\ 0.1159\ 0.2131\ 0.3237\ 0.1263\ 0.3623\ 0.0823\ 0.0805\ 0.0395\ 0.0395\ 0.0390\ 0.0128\ 0.0160\ 0.0314\ 0.0694\ 0.0070\ 0.0094\ 0.0043\ 0.0081\ 0.0081\ 0.0082\ 0.0138\ 0.0899\ 0.0754\ 0.0088\ 0.0226\ 0.0099\ 0.0788\ 0.0257\ 0.2169\ 0.0188\ 0.2954\ 0.0110\ 0.0680\ 0.0061\ 0.0294\ 0.0019\ 0.0059\ 0.0041\ 0.0666\ 0.0010\ 0.0037\ 0.0008\ 0.0037\ 0.0011\ 0.0083\ 0.0911\ 0.0689$ $0.0499\ 0.0468\ 0.0589\ 0.0761\ 0.1914\ 0.5364\ 0.1423\ 0.5688\ 0.0555\ 0.0395\ 0.0269\ 0.0230\ 0.0121\ 0.0135\ 0.0382\ 0.1030\ 0.0033\ 0.0033\ 0.0038\ 0.0043\ 0.0067\ 0.0013\ 0.0013\ 0.0013\ 0.0013\ 0.0085\ 0.1087\ 0.0006\ 0.0025\ 0.0008\ 0.0061\ 0.0011\ 0.0155\ 0.0103\ 0.0041$ 0.0017 0.0010 0.0000 0.0027 0.0165 0.0165 0.0165 0.0027 0.0026 0.0026 0.0026 0.0027 0.0026 0.0027 0.0026 0.0027 0.0026 0.0027 0.0026 0.0027 $0.0024\ 0.0023\ 0.0012\ 0.0011\ 0.0165\ 0.0442\ 0.0075\ 0.0424\ 0.0027\ 0.0027\ 0.0009\ 0.0010\ 0.0008\ 0.0013\ 0.0057\ 0.0109\ 0.0007\ 0.0012\ 0.0007\ 0.0012\ 0.0007\ 0.0042\ 0.0007\ 0.0020\ 0.0009\ 0.0009$ $0.0406\ 0.0410\ 0.0424\ 0.0480\ 0.2773\ 0.5286\ 0.1964\ 0.6487\ 0.0639\ 0.0576\ 0.0345\ 0.0298\ 0.0080\ 0.0082\ 0.0501\ 0.1257\ 0.0059\ 0.0071\ 0.0053\ 0.0088\ 0.0079\ 0.0164\ 0.0390\ 0.0176$ 0.0027 $0.0358 \ 0.0340 \ 0.0336 \ 0.0302 \ 0.6562 \ 1.3954 \ 0.4540 \ 1.5154 \ 0.0148 \ 0.0146 \ 0.0095 \ 0.0096 \ 0.0061 \ 0.0046 \ 0.1390 \ 0.2594 \ 0.0018 \ 0.0021 \ 0.0042 \ 0.0052 \ 0.0041 \ 0.0086 \ 0.0514 \ 0.0808 \ 0.0018 \ 0$ $0.0025\ 0.0026\ 0.0014\ 0.0015\ 0.0276\ 0.0856\ 0.0144\ 0.0714\ 0.0013\ 0.0013\ 0.0005\ 0.0005\ 0.0010\ 0.0014\ 0.0121\ 0.0252\ 0.0003\ 0.0004\ 0.0006\ 0.0026\ 0.0026\ 0.0006\ 0.0026\ 0.0061\ 0.0398\ 0.0757$ $0.0077\ 0.0078\ 0.0033\ 0.0032\ 0.1851\ 0.2451\ 0.0902\ 0.1458\ 0.0205\ 0.0169\ 0.0069\ 0.0055\ 0.0039\ 0.0038\ 0.0902\ 0.1023\ 0.0049\ 0.0041\ 0.0034\ 0.0048\ 0.0041\ 0.0066\ 0.0041\ 0.0066$ $0.0054\ 0.0066\ 0.0049\ 0.0056\ 0.0815\ 0.7984\ 0.0588\ 1.1816\ 0.0048\ 0.0067\ 0.0031\ 0.0039\ 0.0008\ 0.0016\ 0.0136\ 0.1668\ 0.0005\ 0.0013\ 0.0013\ 0.0008\ 0.0041\ 0.0007\ 0.0089\ 0.0110\ 0.0371$ $0.0099\ 0.0101\ 0.0058\ 0.0055\ 0.1655\ 0.2781\ 0.0954\ 0.1586\ 0.0086\ 0.0072\ 0.0033\ 0.0029\ 0.0045\ 0.0046\ 0.0795\ 0.1041\ 0.0024\ 0.0025\ 0.0030\ 0.0048\ 0.0035\ 0.0067\ 0.0139\ 0.0300$ $0.0062\ 0.0149\ 0.0056\ 0.0239\ 0.0337\ 0.3889\ 0.0247\ 0.6196\ 0.0097\ 0.0411\ 0.0059\ 0.0199\ 0.0013\ 0.0026\ 0.0056\ 0.1081\ 0.0009\ 0.0035\ 0.0008\ 0.0070$ $0.0098\ 0.0102\ 0.0072\ 0.0076\ 0.0730\ 0.0873\ 0.0312\ 0.0510\ 0.0252\ 0.0239\ 0.0080\ 0.0080\ 0.0084\ 0.0079\ 0.0298\ 0.0380\ 0.0057\ 0.0066\ 0.0032\ 0.0069$ $0.0056\ 0.0092\ 0.0052\ 0.0087\ 0.0772\ 0.8852\ 0.0583\ 1.2161\ 0.0023\ 0.0031\ 0.0015\ 0.0020\ 0.0010\ 0.0017\ 0.0115\ 0.1812\ 0.0003\ 0.0010\ 0.0008\ 0.0035\ 0.0008\ 0.0088\ 0.0417\ 0.0846$ $0.0213\ 0.0217\ 0.0132\ 0.0163\ 0.0626\ 0.0746\ 0.0256\ 0.0422\ 0.0305\ 0.0219\ 0.0089\ 0.0061\ 0.0090\ 0.0139\ 0.0253\ 0.0333\ 0.0053\ 0.0068\ 0.0038\ 0.0074\ 0.0059\ 0.0128\ 0.0910\ 0.0730$ $0.0125\ 0.0127\ 0.0045\ 0.0046\ 0.1009\ 0.1213\ 0.0578\ 0.1031\ 0.0205\ 0.0149\ 0.0068\ 0.0054\ 0.0040\ 0.0051\ 0.0481\ 0.0577\ 0.0052\ 0.0052\ 0.0052\ 0.0064\ 0.0064\ 0.0045\ 0.0109\ 0.0126\ 0.0036$ $\begin{array}{c} 0.0207\ 0.0158\ 0.0159\ 0.5790\ 0.9049\ 0.4673\ 1.2659\ 0.0463\ 0.0335\ 0.0289\ 0.0235\ 0.0040\\ 0.0050\ 0.0035\ 0.0043\ 0.0833\ 0.7211\ 0.0672\ 1.1208\ 0.0066\ 0.0097\ 0.0038\ 0.0054\ 0.0054 \end{array}$ $0.0029\ 0.0014\ 0.0015\ 0.0122\ 0.0356\ 0.0053\ 0.0291\ 0.0039\ 0.0039\ 0.0011\ 0.0011\ 0.0010\ 0.0028\ 0.0048\ 0.0095\ 0.0007\ 0.0017\ 0.0007\ 0.0048\ 0.0009\ 0.0098\ 0.0410\ 0.0131$ $0.0132\ 0.0070\ 0.0064\ 0.2400\ 0.2610\ 0.1074\ 0.1450\ 0.0069\ 0.0059\ 0.0025\ 0.0022$ $0.0056\ 0.0062\ 0.0854\ 0.1075\ 0.0024\ 0.0022$ 0.0037 0.0011 0.0083 0.0901 0.0629 0.0046 0.0033 0.0060 0.0435 0.0713 $0.0010\ 0.0150\ 0.0411\ 0.0116$ 0.0047 0.0115 0.0436 0.0207

256

π3 CEM 0.1865 0.1892 0.1858 0.1824	0.0604 0.0555 0.0556 0.0055 0.0026 0.0042	0.0253 0.0258 0.0259 0.0259 0.1572 0.1558	0.1092 0.1064 0.1066 0.0083 0.0054 0.0079	0.0083 0.0054 0.0079 0.0046 0.0858 0.0898 0.0729	0.0512 0.0518 0.0521 0.0497 0.0037 0.0030 0.0030	0.0369 0.0386 0.0334 0.0307 0.0161 0.0162 0.0157	0.0002 0.0008 0.0088 0.0087 0.0066 0.0021 0.0000
	$0.0441 \ 0.04412 \ 0.0412 \ 0.0422 \ 0.0404 \ 0.00034 \ 0.0007 \ 0.00038 \ 0.00038 \ 0.00038 \ 0.00038 \ 0.00099 \$						
	0.0049 0.0025 0.0032 0.0017 0.0055 0.0026	0.0048 0.0456 0.0048 0.0444 0.0024 0.0437 0.0026 0.0404 0.0048 0.1650 0.0015 0.1581 0.0005 0.1474	0.0032 0.0954 0.0032 0.0954 0.0026 0.0879 0.0009 0.0905 0.0043 0.0132 0.0040 0.0133 0.0020 0.0039	0.0043 0.0132 0.0022 0.0099 0.0040 0.0133 0.0020 0.0103 0.0044 0.0916 0.0014 0.0913 0.0039 0.0905 0.0031 0.0889	0.0028 0.0397 0.0011 0.0401 0.0023 0.0430 0.0008 0.0404 0.0037 0.0030 0.0014 0.0006 0.00030 0.0034		0035 0035 0035 0035 00012 0002 0009
π2 EM 0.0065 0.0005 0.0005 0.0005	0.0041 0.0006 0.0008 0.0008 0.0003 0.0007 0.0003	0.0004 0.0004 0.0009 0.0009 0.0044 0.0007 0.0007	0.0003 0.0003 0.0008 0.0005 0.0003 0.0003 0.00045	0.0034 0.0007 0.0045 0.0008 0.0003 0.0007 0.00053	0.0034 0.0004 0.0037 0.0005 0.0006 0.0006 0.0006	0.0037 0.0006 0.0006 0.0007 0.0032 0.0005 0.0028	0.0003 0.0007 0.0007 0.0002 0.0005 0.0005 0.0005
	0.0021 0.0008 0.00016 0.00024 0.00024 0.0008		0.0034 0.0037 0.0027 0.0005 0.0034 0.0031 0.0023	0.0034 0.0011 0.0023 0.0004 0.0003 0.0009 0.0019 0.0005	0.0039 0.0014 0.0023 0.0005 0.0040 0.0011 0.0023		
	0.0021 0.0004 0.0003 0.0003 0.0021 0.0021			0.0029 0.0006 0.0025 0.0004 0.0029 0.0006 0.0021	0.0031 0.0005 0.0024 0.0005 0.0032 0.0006 0.0006		
	0.0029 0.0008 0.00015 0.00041 0.0014 0.0026	0.0076 0.0090 0.0076 0.0090 0.0010 0.0042 0.0035 0.0042 0.0009 0.0014 0.0141 0.0186 0.0020 0.0124 0.0406 0.0122	0.0023 0.0023 0.0007 0.0004 0.0078 0.0039 0.0069	0.0078 0.0078 0.0008 0.0039 0.0224 0.0069 0.0007 0.0010 0.0137 0.0187 0.0019 0.0145 0.0025 0.00934	0.0159 0.0013 0.0023 0.0005 0.0080 0.0038 0.0062 0.0062		
	0.0004 0.0004 0.0004 0.0008 0.0008 0.0005 0.0298	0.0076 0.0076 0.0010 0.0035 0.0009 0.0141 0.0140			0.0245 0.0005 0.0344 0.0004 0.0069 0.0686 0.0099		
σ2 CEM 0.0522 0.0201 0.0766 0.0346	0.0418 0.0418 0.0558 0.0323 0.0255 0.0088 0.0481	0.0190 0.0190 0.0351 0.0194 0.0133 0.0050 0.0252	0.0650 0.0751 0.0085 0.0168 0.0992 0.0789 0.0110 0.0367 0.0188 0.0198 0.0039 0.0078 0.0038 0.0393	0.0198 0.0078 0.0393 0.0233 0.0206 0.0059 0.0248	0.0670 0.0168 0.0756 0.0366 0.0361 0.0104 0.0576	0.0231 0.0080 0.0401 0.0195 0.0605 0.0670 0.1881	0.0304 0.0304 0.0101 0.0219 0.0534 0.0156 0.0749
$\begin{array}{cccc} \sigma_1 & \sigma_2 \\ \text{CEM} & \text{EM} \\ 0.0145 & 0.0580 \\ 0.0028 & 0.0087 \\ 0.0110 & 0.1031 \\ 0.0024 & 0.0115 \\ 0.0024 & 0.0115 \\ \end{array}$	0.0124 0.0318 0.0035 0.0053 0.0027 0.0072 0.0139 0.0274 0.0033 0.0039 0.0101 0.0477	0.0123 0.0182 0.0190 0.0033 0.0034 0.0073 0.0100 0.0448 0.0351 0.00024 0.0037 0.0193 0.0109 0.0137 0.0133 0.0029 0.0026 0.0050 0.0103 0.0388 0.0252 0.0108 0.0038 0.0252	0.0087 0.0650 0.0088 0.0952 0.0058 0.0992 0.0017 0.0110 0.0095 0.0188 0.0063 0.0038 0.0064 0.0388	0.0095 0.0188 0.0023 0.0039 0.0064 0.038 0.0014 0.0052 0.0077 0.0191 0.0018 0.0032 0.0063 0.0277 0.0063 0.0046	0.0058 0.0750 0.0670 0.0019 0.0094 0.1088 0.0044 0.0846 0.0756 0.0014 0.0121 0.0366 0.0063 0.0400 0.0361 0.0018 0.0053 0.104 0.0048 0.0775 0.0576	0.0056 0.0240 0.0231 0.0014 0.0044 0.0080 0.0044 0.0043 0.0400 0.0010 0.0052 0.0195 0.0015 0.0080 0.0165 0.0015 0.1044 0.0165 0.0032 0.1044 0.0165 0.0037 0.1044 0.0165	0.0040 0.0419 0.0804 0.0012 0.0055 0.0101 0.0035 0.0623 0.0219 0.0009 0.0063 0.0219 0.0009 0.0009 0.0054 0.0009 0.0090 0.0156 0.0003 0.1186 0.0749 0.0007 0.0122 0.0291
				0.0095 0.0064 0.0014 0.0077 0.0018 0.0063		0.0056 0.0014 0.0010 0.0010 0.0017 0.0015	
$\frac{\sigma_1}{\text{EM}}$ 0.0148 0.0018 0.0018	0.0132 0.0019 0.0018 0.0018 0.0150 0.0142	0.0095 0.0154 0.0095 0.0154 0.0053 0.0154 0.0188 0.0154 0.0064 0.0020 0.0144 0.0139 0.0148 0.0019 0.0445 0.0129	0.0027 0.0071 0.0027 0.0071 0.0012 0.0013 0.0276 0.0064 0.0019 0.0014 0.0074 0.0093 0.0033 0.0012 0.0343 0.0073	0.0074 0.0093 0.0053 0.0012 0.0343 0.0073 0.0057 0.0013 0.0243 0.0079 0.0183 0.0018 0.0268 0.0088	0.0995 0.0309 0.0053 0.0006 0.0024 0.0010 0.1367 0.0090 0.0045 0.0021 0.0029 0.0010 0.0172 0.0099 0.0059 0.0011 0.0051 0.0059 0.2033 0.0533 0.0053 0.2038 0.0053 0.0053	0.0172 0.0054 0.0202 0.0008 0.0503 0.0052 0.0134 0.0009 0.0072 0.0039 0.0055 0.0038 0.0033 0.0003	0.0452 0.0182 0.0041 0.0017 0.0167 0.0047 0.1201 0.0294 0.0039 0.054 0.0106 0.0008 0.058 0.0195 0.0034 0.0021 0.0145 0.0004 0.3783 0.0521 0.0036 0.0052 0.0092 0.0005
	0.0029 0.0029 0.0010 0.0015 0.0048 0.0018	0.0096 0.0096 0.0188 0.0064 0.0148 0.0148		0.0074 0.0053 0.0343 0.0057 0.0243 0.0183 0.0268	0.0024 0.0024 0.0029 0.0029 0.0029 0.0031 0.00533	0.0172 0.0202 0.0503 0.0134 0.0072 0.0056	0.0182 0.0294 0.0294 0.0106 0.0195 0.0145 0.0521 0.0092
	0.0024 0.0004 0.0004 0.0013 0.00135 0.0006 0.00729		0.0008 0.0053 0.0025 0.0008 0.0013 0.0026 0.0169 0.0017 0.0017 0.0015 0.0105 0.0152 0.0124 0.0019 0.0080 0.0010 0.0356 0.0058 0.10195 0.0155 0.0018 0.0058 0.0010	0.0165 0.0152 0.0124 0.0019 0.0080 0.0010 0.0356 0.0268 0.1195 0.0045 0.0074 0.0034 0.0056 0.032 0.0155 0.0056 0.033 0.0053 0.0056 0.033 0.0053 0.0056 0.0183 0.0063			\$ 0.0054 \$ 0.0054 \$ 0.1201 \$ 0.0054 \$ 0.0058 \$ 0.0021 \$ 0.0052
α3 CEM 3 0.0045 5 0.0009 1 0.0079 1 0.0015	0.0062 0.00191 0.0018 0.0018 0.00102 0.0035 0.00172	0.0192 0.0213 0.0192 0.0213 0.0024 0.0105 0.0395 0.0290 0.0046 0.0091 0.0324 0.0306 0.0066 0.0340 0.0663 0.0463	0.0046 0.0053 0.0008 0.0013 0.0169 0.0097 0.0017 0.0019 0.0165 0.0152 0.0019 0.0080 0.0356 0.0268	0.0052 0.0058 0.0268 0.0074 0.0532 0.0304 0.0451 0.0451	7 0.0063 8 0.0021 8 0.0127 7 0.0031 0 0.0107 8 0.0050 0 0.0192	7 0.0312 7 0.0304 7 0.0462 9 0.0186 9 0.0097 8 0.0036 8 0.0196	
	0.0060 0.0011 0.0016 0.0016 0.0094 0.0014 0.00186			7 0.0165 3 0.0019 3 0.00356 3 0.0045 6 0.0066 5 0.0056 3 0.0543 0.0076	0.0097 0.0013 0.00168 0.0027 0.0110 0.0018 0.0401	0.00277 0.0047 0.00647 0.0090 0.0099 0.0013 0.00373	
	0.00660 0.0346 0.0346 0.0346 0.0852 0.0852 0.0494 0.0215 0.01166		5 0.1082 1 0.0418 7 0.2971 7 0.0948 9 0.0277 8 0.0153 3 0.1246		0.0939 0.0951 0.0082 0.0332 0.3018 0.2205 0.0403 0.0872 0.0498 0.0495 0.001 0.0187 0.0214 0.1696		
$\begin{array}{c} \alpha_2 \\ \text{CEM} \\ \text{CEM} \\ \text{EM} \\ 0.2211 \\ 0.0803 \\ 0.2295 \\ 0.0105 \\ 0.4730 \\ 0.3378 \\ 0.0492 \\ 0.0924 \\ 0.0927 \\ $	0.2554 0.0300 0.1554 0.0300 0.1676 0.0069 0.4051 0.1665 0.2289 0.1139 0.0046 0.2685 0.1400 0.2685 0.1400 0.2685 0.0033		0.3754 0.0715 0.2151 0.0101 0.5497 0.4117 0.3012 0.0467 0.1312 0.0289 0.0810 0.0048 0.2507 0.1363	0.1312 0.0289 0.0810 0.0048 0.2507 0.1363 0.1901 0.0217 0.0862 0.0215 0.0324 0.0036 0.1696 0.1459 0.1673 0.0154	0.2853 0.0939 0.1757 0.0082 0.4563 0.3018 0.2791 0.0403 0.1937 0.0498 0.0995 0.0061 0.3162 0.2214	0.1040 0.0290 0.0420 0.0043 0.2132 0.1572 0.1229 0.0177 0.3116 0.0883 0.1829 0.0106 0.3828 0.2923 0.3822 0.05688	0.1299 0.0776 0.0732 0.0067 0.2657 0.2172 0.1733 0.0307 0.2540 0.1012 0.1053 0.0115 0.4524 0.4508 0.2207 0.0430
				5 0.1312 5 0.0810 7 0.2507 5 0.1901 5 0.0862 5 0.0324 2 0.1696 9 0.1273		70 0.1040 39 0.0420 40 0.2132 44 0.1229 34 0.3116 12 0.1530 76 0.3828 11 0.8212	
α_2 EM 4 0.178(6 0.031) 9 0.453(2 0.090)	8 0.097 8 0.272 9 0.053 1 0.096 2 0.014 0 0.195	0.0172 0.0202 0.0314 0.0177 0.0202 0.0544 0.0725 0.0544 0.1894 0.0116 0.0128 0.0321 0.0214 0.0219 0.0381 0.024 0.0657 0.0094 0.0788 0.0574 0.1119 0.0788 0.0574 0.0116	0 0.204 0 0.204 0 0.277 9 0.082 8 0.082 4 0.068 1 0.013 8 0.176	0.0119 0.0154 0.0689 0.0017 0.0071 0.0135 0.0308 0.1767 0.0071 0.0085 0.0375 0.0098 0.0115 0.0565 0.0019 0.0039 0.0115 0.0037 0.0327 0.1382 0.0062 0.0074 0.0299	0.0089 0.0129 0.1900 0.0010 0.0074 0.0272 0.0055 0.0072 0.3779 0.0055 0.0089 0.1151 0.0011 0.0058 0.0192 0.023 0.0020 0.2558 0.0052 0.0070 0.0474	0.0075 0.0084 0.0770 0.0013 0.0033 0.0139 0.0258 0.0227 0.1940 0.0053 0.0063 0.0344 0.0003 0.0080 0.0312 0.0009 0.0048 0.0312 0.0190 0.0171 0.3776	9 0.116 9 0.116 1 0.019 3 0.232 5 0.054 9 0.030 3 0.497 0 0.081
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.0159 0.0248 0.097 0.0033 0.0148 0.0183 0.0183 0.0183 0.0180 0.0793 0.053 0.0101 0.0129 0.053 0.0025 0.0125 0.0125 0.019	7 0.020 7 0.020 5 0.010 6 0.012 8 0.021 9 0.021 9 0.005 9 0.057	6 0.019 6 0.019 9 0.029 9 0.009 9 0.015 7 0.007 9 0.030 9 0.030	9 0.015 9 0.030 9 0.030 1 0.008 8 0.011 8 0.003 8 0.032 2 0.007	0.0089 0.0129 0.19 0.0010 0.0074 0.02 0.0254 0.0219 0.37 0.0055 0.0072 0.07 0.0058 0.0089 0.11 0.0011 0.0058 0.01 0.023 0.0052 0.25	0.0075 0.0084 0.0013 0.0033 0.0258 0.0227 0.0053 0.0063 0.0043 0.0080 0.0190 0.0171 0.0037 0.0048	4 0.005 0 0.005 5 0.017; 5 0.004; 7 0.001; 0 0.016;
β_1 FM EM 7 0.016 0 0.002 6 0.073 3 0.009	6 0.015 4 0.003 3 0.010 5 0.021 9 0.002 7 0.062	9 0.017 9 0.017 9 0.017 0 0.072 0 0.011 0 0.027 2 0.002 2 0.002 0 0.010	0.0162 0.0126 0.0190 0.204 0.033 0.0017 0.0109 0.027 0.0323 0.0359 0.0299 0.498 0.0079 0.0060 0.0098 0.082 0.0174 0.0119 0.0154 0.068 0.0027 0.0017 0.0017 0.013 0.0397 0.0349 0.0308 0.176	4 0.011 7 0.034 9 0.007 2 0.009 7 0.001 7 0.001 3 0.037 2 0.006	2 0.008 9 0.025 3 0.005 3 0.005 3 0.005 5 0.001 7 0.023	8 0.007 7 0.001: 2 0.025: 6 0.005: 6 0.004 9 0.000 4 0.019 4 0.019	4 0.005 8 0.001 2 0.020 4 0.003 5 0.003 0 0.018
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0523 0.0246 0.0159 0.0248 0.0187 0.0052 0.0054 0.0054 0.0053 0.0143 0.0189 0.0054 0.0054 0.0053 0.0143 0.0189 0.0558 0.2722 0.00541 0.0012 0.0129 0.0054 0.0034 0.0035 0.0015 0.0024 0.0055 0.0027 0.0047 0.0047 0.0055 0.0057 0.0149 0.0058 0.0057 0.0150 0.0551 0.0151 0.0131 0.0153 0.0157 0.0150 0.0551 0.0151	0.0322 0.0259 0.0177 0.0202 0.0332 0.0332 0.0259 0.0177 0.0202 0.0524 0.0047 0.0085 0.0053 0.0101 0.0107 0.0885 0.0800 0.0725 0.0544 0.1094 0.0136 0.0116 0.0128 0.0251 0.0785 0.0552 0.0254 0.0219 0.0881 0.0053 0.0052 0.0054 0.0574 0.0109 0.0891 0.0882 0.0882 0.0788 0.0574 0.1119 0.0131 0.	0.0160 0.0162 0.0126 0.0190 0.0246 0.0029 0.0030 0.0017 0.0126 0.0190 0.0277 0.0233 0.0359 0.0299 0.4980 0.0373 0.0323 0.0359 0.0299 0.4980 0.0068 0.0079 0.0060 0.0068 0.0822 0.0174 0.01179 0.0154 0.0689 0.0027 0.0174 0.0119 0.0154 0.0889 0.0021 0.037 0.0349 0.0308 0.1767 0.0081 0.	0.0174 0.0174 0.0119 0.0154 0.0689 0.0027 0.0027 0.0017 0.0015 0.0135 0.0391 0.0399 0.0349 0.1767 0.0081 0.0089 0.0071 0.0085 0.0375 0.0174 0.0162 0.0098 0.0115 0.0565 0.0035 0.0037 0.0019 0.0039 0.0115 0.0035 0.0037 0.0019 0.0039 0.0115 0.0045 0.0433 0.0378 0.0329 0.0182 0.0069 0.0072 0.0062 0.0074 0.0299	0.0118 0.0122 0.0089 0.0129 0.1900 0.0023 0.0024 0.0010 0.0074 0.0272 0.0260 0.0259 0.0254 0.0219 0.3779 0.0061 0.0063 0.0055 0.0072 0.0729 0.0024 0.0025 0.0072 0.0079 0.0024 0.0025 0.0011 0.0058 0.0192 0.0024 0.0025 0.0011 0.0058 0.0193 0.0024 0.0025 0.0070 0.0058 0.0061 0.0067 0.0052 0.0070 0.0358	0.0122 0.0118 0.0075 0.0084 0.0770 0.0026 0.0027 0.0013 0.0033 0.0139 0.0276 0.0262 0.0258 0.0227 0.1940 0.0069 0.0076 0.0053 0.0063 0.0344 0.0088 0.0086 0.0043 0.0080 0.2014 0.0017 0.0019 0.0009 0.0048 0.0312 0.0017 0.0214 0.0190 0.0171 0.3776 0.0043 0.0064 0.0043 0.0043 0.0043	0.0114 0.0104 0.0054 0.0059 0.1160 0.0018 0.0018 0.0010 0.0021 0.0194 0.0029 0.0212 0.0205 0.0173 0.2356 0.0041 0.0044 0.0035 0.0045 0.0045 0.0082 0.0085 0.0035 0.0043 0.2182 0.0014 0.0015 0.0007 0.0019 0.0305 0.0024 0.0200 0.0180 0.0163 0.4975 0.0040 0.0042 0.0032 0.0040 0.0814
α1 EM 0.0280 0.005 0.0750 0.0110	0.0253 0.0052 0.00541 0.0117 0.0314 0.0047 0.0783	0.032 0.032 0.089 0.012 0.012 0.078 0.0053	0.0029 0.0029 0.00373 0.0068 0.00174 0.0027	0.017 0.003 0.039 0.008 0.0017 0.003 0.045	0.0118 0.0023 0.0260 0.0061 0.0126 0.0024 0.00274 0.0061	0.002 0.0027 0.0027 0.006 0.008 0.0011	0.001 0.001 0.002 0.004 0.001 0.001 0.000
100 500 100 500 500	100 500 100 100 500 100 100	100 100 100 100 100 100 100	100 100 100 100 500 100 500	100 100 100 100 100 500 100 500	100 100 100 100 100 100 500	100 500 100 500 100 500 100 500	100 100 100 100 100 100 500 100
$\begin{bmatrix} x \\ [-1;3] \end{bmatrix}$ [0;2]	$\begin{bmatrix} -1; 3 \end{bmatrix}$ $\begin{bmatrix} 0; 2 \end{bmatrix}$ $\begin{bmatrix} -1; 3 \end{bmatrix}$ $\begin{bmatrix} 0; 2 \end{bmatrix}$	[-1;3] [0;2] [-1;3] [0;2]	[-1; 3] [0; 2] [-1; 3] [0; 2]	[0; 2] [-1; 3] [-1; 3]	[0; 2] [0; 2] [-1; 3] [0; 2]	[0; 2] [-1; 3] [0; 2]	[0; 2] [0; 2] [-1; 3] [0; 2]
$\frac{\pi_2}{0.2}$	0.4	0.6	0.3	0.4	0.3	0.4	0.3
$\frac{\pi_1}{0.2}$	0.2	0.2	0.3	0.3	0.4	0.4	0.0

Tabela D.92: Estimativas do erro quadrático médio dos parâmetros da mistura de três regressões lineares no caso IV

0.2 0.2 ر د.ن 0.6 0.2 0.3 [-1; 3][-1; 3][-1; 3][-1; 3][-1; 3][-1; 3][-1; 3][-1; 3][-1; 3][-1; 3][-1; 3][-1; 3][-1; 3][0; 2][0; 2]-1;3[0; 2][0; 2][0; 2][0; 2][0; 2][0; 2][0; 2][0; 2][0; 2][0; 2]500 500 500 500 500 500 500 500 $\frac{100}{500}$ 500 $100 \\ 500$ 500 500 500 500 500 500 500 500 500 500 500 500 500 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 00 00 90 001 $0.0017\ 0.0018\ 0.0011\ 0.0079\ 0.0404\ 0.2155\ 0.0157\ 0.1076\ 0.0016\ 0.0016\ 0.0009\ 0.0026\ 0.0008\ 0.0015\ 0.0012\ 0.0237\ 0.0009\ 0.0017\ 0.0007\ 0.0017\ 0.0015\ 0.0012\ 0.0136\ 0.0139\ 0.0288\ 0.0277\ 0.0223\ 0.7864\ 0.9949\ 0.5536\ 1.8057\ 0.0604\ 0.0404\ 0.0343\ 0.3685\ 0.0055\ 0.0035\ 0.1783\ 0.3665\ 0.0479\ 0.0136\ 0.0042\ 0.0043\ 0.0123\ 0.0123\ 0.0175\ 0.0210\ 0.0510$ $0.0524\ 0.0596\ 0.0566\ 0.0625\ 0.7238\ 0.6347\ 0.4291\ 0.6950\ 0.0399\ 0.0410\ 0.0363\ 0.1027\ 0.0128\ 0.0126\ 0.1027\ 0.0128\ 0.0140\ 0.0349\ 0.0296\ 0.0047\ 0.0098\ 0.0248\ 0.0461\ 0.0272\ 0.0270\ 0.0083\ 0.0357\ 0.0091\ 0.0425\ 0.0596\ 0.5634\ 0.0361\ 0.4473\ 0.0072\ 0.0101\ 0.0048\ 0.0114\ 0.0018\ 0.0039\ 0.0081\ 0.1991\ 0.0030\ 0.0123\ 0.0008\ 0.0070\ 0.0043\ 0.0766\ 0.0139\ 0.0429$ $0.0529\ 0.0557\ 0.0720\ 0.0484\ 0.5709\ 0.9304\ 0.4318\ 1.0380\ 0.0337\ 0.0430\ 0.0249\ 0.0955\ 0.0136\ 0.0111\ 0.1290\ 0.2580\ 0.0290\ 0.0147\ 0.0046\ 0.0066\ 0.0191\ 0.0371\ 0.0308\ 0.0816\ 0.0093\ 0.0312\ 0.0078\ 0.0343\ 0.0826\ 1.0280\ 0.0565\ 0.5845\ 0.0041\ 0.0087\ 0.0031\ 0.0067\ 0.0019\ 0.0016\ 0.0107\ 0.2429\ 0.0010\ 0.0045\ 0.0012\ 0.0045\ 0.0012\ 0.0033\ 0.0544\ 0.0158\ 0.1109$ $0.0032\ 0.0034\ 0.0023\ 0.0193\ 0.0410\ 0.2490\ 0.0172\ 0.1264\ 0.0008\ 0.0009\ 0.0005\ 0.0007\ 0.0015\ 0.0032\ 0.0117\ 0.0284\ 0.0006\ 0.0007\ 0.0007\ 0.0007\ 0.0007\ 0.0015\ 0.0821\ 0.0284\ 0.0006\ 0.0007\ 0.0007\ 0.0007\ 0.00081\ 0.0036\ 0.0034\ 0.0115\ 0.0230\ 0.0978\ 0.1846\ 0.0545\ 0.0497\ 0.0601\ 0.0369\ 0.8909\ 1.7659\ 0.7119\ 2.1282\ 0.0425\ 0.0345\ 0.0175\ 0.1040\ 0.0104\ 0.0076\ 0.1945\ 0.3821\ 0.0202\ 0.0081\ 0.0036\ 0.0034\ 0.0149\ 0.0230\ 0.0978\ 0.1846$ $0.0263\ 0.0281\ 0.0365\ 0.0690\ 0.0799\ 0.1024\ 0.0454\ 0.0704\ 0.0162\ 0.0134\ 0.0085\ 0.0066\ 0.0215\ 0.0317\ 0.0260\ 0.0264\ 0.0121\ 0.0209\ 0.0032\ 0.0064\ 0.0105\ 0.0267\ 0.0227\ 0.0434\ 0.0504\ 0.0050\ 0.0075\ 0.0085\ 0.0050\ 0.0050\ 0.0015\ 0.0209\ 0.0066\ 0.0015\ 0.0040\ 0.0015\ 0.0277\ 0.0407\ 0.0753$ 0.0016 0.0018 0.0030 0.0030 0.0030 0.0030 0.0030 0.0031 0.0031 0.0031 0.0031 0.0031 0.0031 0.0034 0.0034 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0 $0.0320\ 0.0287\ 0.0360\ 0.0259\ 0.5931\ 0.4759\ 0.4774\ 0.7113\ 0.1153\ 0.0459\ 0.0935\ 0.0755\ 0.0044\ 0.0043\ 0.1611\ 0.2258\ 0.0627\ 0.0225\ 0.0042\ 0.0081\ 0.0150\ 0.0264\ 0.0183\ 0.0097$ $0.0017\ 0.0018\ 0.0010\ 0.0036\ 0.0240\ 0.0980\ 0.0125\ 0.0665\ 0.0033\ 0.0041\ 0.0018\ 0.0085\ 0.0008\ 0.0024\ 0.0062\ 0.0109\ 0.0028\ 0.0091\ 0.0008\ 0.0045\ 0.0013\ 0.0128\ 0.0098\ 0.0024$ $0.0359\ 0.0439\ 0.0438\ 0.0529\ 0.6558\ 0.3257\ 0.3910\ 0.4980\ 0.1087\ 0.0454\ 0.0909\ 0.0368\ 0.0089\ 0.0085\ 0.1010\ 0.0995\ 0.0456\ 0.0380\ 0.0045\ 0.0099\ 0.0218\ 0.0283\ 0.0434\ 0.0346$ 0.00270.0063 0.0429 $0.0130\ 0.0130\ 0.0086\ 0.0133\ 0.1862\ 0.2309\ 0.0910\ 0.1411\ 0.0119\ 0.0092\ 0.0070\ 0.0073\ 0.0069\ 0.0099\ 0.0525\ 0.0667\ 0.0092\ 0.0087\ 0.0033\ 0.0060\ 0.0075\ 0.0149\ 0.0075\ 0.0149$ $0.0022\ 0.0023\ 0.0017\ 0.0086\ 0.0236\ 0.0256\ 0.1438\ 0.0129\ 0.0950\ 0.0020\ 0.0024\ 0.0013\ 0.0032\ 0.0010\ 0.0037\ 0.0061\ 0.0129\ 0.0013\ 0.0031\ 0.0066\ 0.0023\ 0.0014\ 0.0170\ 0.0014\ 0.0170$ $0.0405\ 0.0390\ 0.0372\ 0.0301\ 0.7615\ 1.4122\ 0.6411\ 1.9201\ 0.0640\ 0.0771\ 0.0489\ 0.1098\ 0.0078\ 0.0057\ 0.2058\ 0.3862\ 0.0431\ 0.0063\ 0.0044\ 0.0050\ 0.0152\ 0.0208\ 0.0463\ 0.1082$ $0.0022\ 0.0025\ 0.0017\ 0.0134\ 0.0527\ 0.2427\ 0.0232\ 0.1265\ 0.0013\ 0.0015\ 0.0007\ 0.0013\ 0.0011\ 0.0024\ 0.0129\ 0.0318\ 0.0008\ 0.0009\ 0.0009\ 0.0013\ 0.0012\ 0.0117\ 0.0416\ 0.0939$ $0.0620\ 0.0670\ 0.0756\ 0.1343\ 0.3261\ 0.1255\ 0.2115\ 0.1865\ 0.0792\ 0.0427\ 0.1024\ 0.0332\ 0.0132\ 0.0205\ 0.0659\ 0.0567\ 0.0385\ 0.0649\ 0.0043\ 0.0080\ 0.0263\ 0.0215\ 0.0972\ 0.1422$ $0.0038 \ 0.0049 \ 0.0029 \ 0.0090 \ 0.0135 \ 0.0384 \ 0.0067 \ 0.0280 \ 0.0037 \ 0.0118 \ 0.0026 \ 0.0137 \ 0.0016 \ 0.0082 \ 0.0035 \ 0.0035 \ 0.0058 \ 0.0029 \ 0.0388 \ 0.0006 \ 0.0040 \ 0.0018 \ 0.0180 \ 0.0920 \ 0.1147 \ 0.00180 \ 0.00180 \ 0.00180 \ 0.00180 \ 0.00180 \ 0.00180 \ 0.00180 \ 0.00180 \ 0.00180 \ 0.00180 \ 0.00180 \ 0.00180 \ 0.00180 \ 0.00180 \ 0.00180 \ 0.00180 \ 0.00180 \ 0.00180 \ 0.00180 \ 0.00180 \ 0.00180 \ 0.00180 \ 0.00180 \ 0.00180 \ 0.00180 \ 0.00180 \ 0.00180 \ 0.00180 \ 0.00180 \ 0.00180 \ 0.00180 \ 0.00180 \ 0.00180 \ 0.00180 \ 0.00180 \ 0.00180 \ 0.00180 \ 0.00180 \ 0.00180 \ 0.00180 \ 0.00180 \ 0.00180 \ 0.00180 \ 0.00180 \ 0.00180 \ 0.00180 \ 0.00180 \ 0.00180 \ 0.00180 \ 0.00180 \ 0.00180 \ 0.00180 \ 0.00180 \ 0.00180 \ 0.00180 \ 0.00180 \ 0.00180 \ 0.00180 \ 0.00180 \ 0.00180 \ 0.00180 \ 0.00180 \ 0.00180 \ 0.00180 \ 0.00180 \ 0.00180 \ 0.00180 \ 0.00180 \ 0.00180 \ 0.00180 \ 0.00180 \ 0.00180 \ 0.00180 \ 0.00180 \ 0.00180 \ 0.00180 \ 0.00180 \ 0.00180 \ 0.00180 \ 0.00180 \ 0.00180 \ 0.00180 \ 0.00180 \ 0.00180 \ 0.00180 \ 0.00180 \ 0.00180 \ 0.00180 \ 0.00180 \ 0.00180 \ 0.00180 \ 0.00180 \ 0.00180 \ 0.00180 \ 0.00180 \ 0.00180 \ 0.00180 \ 0.00180 \ 0.00180 \ 0.00180 \ 0.00180 \ 0.00180 \ 0.00180 \ 0.00180 \ 0.00180 \ 0.00180 \ 0.00180 \ 0.00180 \ 0.00180 \ 0.00180 \ 0.00180 \ 0.00180 \ 0.00180 \ 0.00180 \ 0.00180 \ 0.00180 \ 0.00180 \ 0.00180 \ 0.00180 \ 0.00180 \ 0.00180 \ 0.00180 \ 0.00180 \ 0.00180 \ 0.00180 \ 0.00180 \ 0.00180 \ 0.00180 \ 0.00180 \ 0.00180 \ 0.00180 \ 0.00180 \ 0.00180 \ 0.00180 \ 0.00180 \ 0.00180 \ 0.00180 \ 0.00180 \ 0.00180 \ 0.00180 \ 0.00180 \ 0.00180 \ 0.00180 \ 0.00180 \ 0.00180 \ 0.00180 \ 0.00180 \ 0.00180 \ 0.00180 \ 0.00180 \ 0.00180 \ 0.00180 \ 0.00180 \ 0.00180 \ 0.00180 \ 0.00180 \ 0.00180 \ 0.00180 \ 0.00180 \ 0.00180 \ 0.00180 \ 0.00180 \ 0.00180 \ 0.00180 \ 0.00180 \ 0.00180 \ 0.00180 \ 0.00180 \ 0.00180 \ 0.00180 \ 0.00180 \ 0.00180 \ 0.00180 \ 0.00180 \ 0.00180 \ 0.00180 \ 0.00180 \ 0.00180 \ 0.00180 \ 0.00180 \ 0.00180 \ 0.00180 \$ $0.0034\ 0.0039\ 0.0025\ 0.0121\ 0.0177\ 0.0920\ 0.0087\ 0.0667\ 0.0019\ 0.0023\ 0.0012\ 0.0034\ 0.0015\ 0.0069\ 0.0056\ 0.0113\ 0.0016\ 0.0062\ 0.0007\ 0.0023\ 0.0019\ 0.0116\ 0.0065$ $0.0037\ 0.0040\ 0.0026\ 0.0170\ 0.0244\ 0.1712\ 0.0124\ 0.1085\ 0.0013\ 0.0016\ 0.0007\ 0.0014\ 0.0016\ 0.0049\ 0.0065\ 0.0142\ 0.0009\ 0.0015\ 0.0007\ 0.0014\ 0.0016\ 0.0199\ 0.0114\ 0.0568$ $0.0182\ 0.0177\ 0.0132\ 0.0220\ 0.1750\ 0.2253\ 0.0783\ 0.1371\ 0.0077\ 0.0073\ 0.0044\ 0.0048\ 0.0093\ 0.0121\ 0.0509\ 0.0736\ 0.0057\ 0.0049\ 0.0033\ 0.0045\ 0.0083\ 0.0165\ 0.0190\ 0.0483$ 0.0077 $0.2213\ \ 0.1655\ \ 0.1975\ \ 0.4230\ \ 0.3940\ \ 0.0985\ \ 0.2327\ \ 0.1150\ \ 0.0963\ \ 0.0510\ \ 0.0648\ \ 0.0360\ \ 0.0368\ \ 0.0443\ \ 0.0399\ \ 0.0272\ \ 0.0374\ \ 0.0731\ \ 0.0051\ \ 0.0061\ \ 0.0257\ \ 0.0265\ \ 0.1488\ \ 0.2841\ \ 0.0360\ \ 0.0360\ \ 0.0360\ \ 0.0360\ \ 0.0399\ \ 0.0272\ \ 0.0374\ \ 0.0731\ \ 0.0051\ \ 0.0061\ \ 0.0257\ \ 0.0265\ \ 0.1488\ \ 0.2841\ \ 0.0360\ \ 0.0360\ \ 0.0360\ \ 0.0360\ \ 0.0360\ \ 0.0399\ \ 0.0272\ \ 0.0374\ \ 0.0731\ \ 0.0051\ \ 0.0061\ \ 0.0257\ \ 0.0265\ \ 0.0360\ \ 0.0360\ \ 0.0360\ \ 0.0360\ \ 0.0360\ \ 0.0360\ \ 0.0360\ \ 0.0360\ \ 0.0360\ \ 0.0360\ \ 0.0360\ \ 0.0360\ \ 0.0360\ \ 0.0360\ \ 0.0360\ \ 0.0360\ \ 0.0360\ \ 0.0360\ \ 0.0360\ \ 0.0360\ \ 0.0360\ \ 0.0360\ \ 0.0360\ \ 0.0360\ \ 0.0360\ \ 0.0360\ \ 0.0360\ \ 0.0360\ \ 0.0360\ \ 0.0360\ \ 0.0360\ \ 0.0360\ \ 0.0360\ \ 0.0360\ \ 0.0360\ \ 0.0360\ \ 0.0360\ \ 0.0360\ \ 0.0360\ \ 0.0360\ \ 0.0360\ \ 0.0360\ \ 0.0360\ \ 0.0360\ \ 0.0360\ \ 0.0360\ \ 0.0360\ \ 0.0360\ \ 0.0360\ \ 0.0360\ \ 0.0360\ \ 0.0360\ \ 0.0360\ \ 0.0360\ \ 0.0360\ \ 0.0360\ \ 0.0360\ \ 0.0360\ \ 0.0360\ \ 0.0360\ \ 0.0360\ \ 0.0360\ \ 0.0360\ \ 0.0360\ \ 0.0360\ \ 0.0360\ \ 0.0360\ \ 0.0360\ \ 0.0360\ \ 0.0360\ \ 0.0360\ \ 0.0360\ \ 0.0360\ \ 0.0360\ \ 0.0360\ \ 0.0360\ \ 0.0360\ \ 0.0360\ \ 0.0360\ \ 0.0360\ \ 0.0360\ \ 0.0360\ \ 0.0360\ \ 0.0360\ \ 0.0360\ \ 0.0360\ \ 0.0360\ \ 0.0360\ \ 0.0360\ \ 0.0360\ \ 0.0360\ \ 0.0360\ \ 0.0360\ \ 0.0360\ \ 0.0360\ \ 0.0360\ \ 0.0360\ \ 0.0360\ \ 0.0360\ \ 0.0360\ \ 0.0360\ \ 0.0360\ \ 0.0360\ \ 0.0360\ \ 0.0360\ \ 0.0360\ \ 0.0360\ \ 0.0360\ \ 0.0360\ \ 0.0360\ \ 0.0360\ \ 0.0360\ \ 0.0360\ \ 0.0360\ \ 0.0360\ \ 0.0360\ \ 0.0360\ \ 0.0360\ \ 0.0360\ \ 0.0360\ \ 0.0360\ \ 0.0360\ \ 0.0360\ \ 0.0360\ \ 0.0360\ \ 0.0360\ \ 0.0360\ \ 0.0360\ \ 0.0360\ \ 0.0360\ \ 0.0360\ \ 0.0360\ \ 0.0360\ \ 0.0360\ \ 0.0360\ \ 0.0360\ \ 0.0360\ \ 0.0360\ \ 0.0360\ \ 0.0360\ \ 0.0360\ \ 0.0360\ \ 0.0360\ \ 0.0360\ \ 0.0360\ \ 0.0360\ \ 0.0360\ \ 0.0360\ \ 0.0360\ \ 0.0360\ \ 0.0360\ \ 0.0360\ \ 0.0360\ \ 0.03$ 0.0052 $0.1084\ \ 0.1190\ \ 0.1346\ \ 0.1956\ \ 0.4625\ \ 0.3133\ \ 0.3508\ \ 0.3520\ \ 0.0517\ \ 0.0476\ \ 0.0676\ \ 0.0327\ \ 0.0193\ \ 0.0312\ \ 0.0708\ \ 0.0753\ \ 0.0342\ \ 0.0440\ \ 0.0048\ \ 0.0082\ \ 0.0290\ \ 0.0449\ \ 0.0485\ \ 0.0810\ \ 0.0810\ \ 0.0810\ \ 0.0810\ \ 0.0810\ \ 0.0810\ \ 0.0810\ \ 0.0810\ \ 0.0810\ \ 0.0810\ \ 0.0810\ \ 0.0810\ \ 0.0810\ \ 0.0810\ \ 0.0810\ \ 0.0810\ \ 0.0810\ \ 0.0810\ \ 0.0810\ \ 0.0810\ \ 0.0810\ \ 0.0810\ \ 0.0810\ \ 0.0810\ \ 0.0810\ \ 0.0810\ \ 0.0810\ \ 0.0810\ \ 0.0810\ \ 0.0810\ \ 0.0810\ \ 0.0810\ \ 0.0810\ \ 0.0810\ \ 0.0810\ \ 0.0810\ \ 0.0810\ \ 0.0810\ \ 0.0810\ \ 0.0810\ \ 0.0810\ \ 0.0810\ \ 0.0810\ \ 0.0810\ \ 0.0810\ \ 0.0810\ \ 0.0810\ \ 0.0810\ \ 0.0810\ \ 0.0810\ \ 0.0810\ \ 0.0810\ \ 0.0810\ \ 0.0810\ \ 0.0810\ \ 0.0810\ \ 0.0810\ \ 0.0810\ \ 0.0810\ \ 0.0810\ \ 0.0810\ \ 0.0810\ \ 0.0810\ \ 0.0810\ \ 0.0810\ \ 0.0810\ \ 0.0810\ \ 0.0810\ \ 0.0810\ \ 0.0810\ \ 0.0810\ \ 0.0810\ \ 0.0810\ \ 0.0810\ \ 0.0810\ \ 0.0810\ \ 0.0810\ \ 0.0810\ \ 0.0810\ \ 0.0810\ \ 0.0810\ \ 0.0810\ \ 0.0810\ \ 0.0810\ \ 0.0810\ \ 0.0810\ \ 0.0810\ \ 0.0810\ \ 0.0810\ \ 0.0810\ \ 0.0810\ \ 0.0810\ \ 0.0810\ \ 0.0810\ \ 0.0810\ \ 0.0810\ \ 0.0810\ \ 0.0810\ \ 0.0810\ \ 0.0810\ \ 0.0810\ \ 0.0810\ \ 0.0810\ \ 0.0810\ \ 0.0810\ \ 0.0810\ \ 0.0810\ \ 0.0810\ \ 0.0810\ \ 0.0810\ \ 0.0810\ \ 0.0810\ \ 0.0810\ \ 0.0810\ \ 0.0810\ \ 0.0810\ \ 0.0810\ \ 0.0810\ \ 0.0810\ \ 0.0810\ \ 0.0810\ \ 0.0810\ \ 0.0810\ \ 0.0810\ \ 0.0810\ \ 0.0810\ \ 0.0810\ \ 0.0810\ \ 0.0810\ \ 0.0810\ \ 0.0810\ \ 0.0810\ \ 0.0810\ \ 0.0810\ \ 0.0810\ \ 0.0810\ \ 0.0810\ \ 0.0810\ \ 0.0810\ \ 0.0810\ \ 0.0810\ \ 0.0810\ \ 0.0810\ \ 0.0810\ \ 0.0810\ \ 0.0810\ \ 0.0810\ \ 0.0810\ \ 0.0810\ \ 0.0810\ \ 0.0810\ \ 0.0810\ \ 0.0810\ \ 0.0810\ \ 0.0810\ \ 0.0810\ \ 0.0810\ \ 0.0810\ \ 0.0810\ \ 0.0810\ \ 0.0810\ \ 0.0810\ \ 0.0810\ \ 0.0810\ \ 0.0810\ \ 0.0810\ \ 0.0810\ \ 0.0810\ \ 0.0810\ \ 0.0810\ \ 0.0810\ \ 0.0810\ \ 0.0810\ \ 0.0810\ \ 0.0810\ \ 0.0810\ \ 0.0810\ \ 0.0810\ \ 0.0810\ \ 0.0810\ \ 0.0810\ \ 0.08$ $0.0138\ 0.0466\ 0.0199\ 0.0727\ 0.0474\ 0.7538\ 0.0332\ 0.4453\ 0.0051\ 0.0121\ 0.0034\ 0.0097\ 0.0037\ 0.0074\ 0.0092\ 0.2031$ $0.1067\ 0.1037\ 0.1244\ 0.5780\ 0.8705\ 0.3152\ 0.7089\ 0.0216\ 0.0154\ 0.0211\ 0.0130\ 0.0241\ 0.0294\ 0.0796\ 0.1441\ 0.0251\ 0.0124\ 0.0048\ 0.0068\ 0.0207\ 0.0469\ 0.0207\ 0.0469$ $0.0059\ 0.0067\ 0.0051\ 0.0251\ 0.0177\ 0.1159\ 0.0096\ 0.0959\ 0.0016\ 0.0018\ 0.0008\ 0.0011\ 0.0003\ 0.0097\ 0.0042\ 0.0115\ 0.0009\ 0.0019\ 0.0019\ 0.0020\ 0.0019\ 0.0212\ 0.0019\ 0.0212$ $0.0740\ 0.0909\ 0.0934\ 0.0592\ 0.8237\ 1.3769\ 0.4728\ 1.3129\ 0.0203\ 0.0142\ 0.0179\ 0.0144\ 0.0201\ 0.0159\ 0.1331\ 0.3004\ 0.0138\ 0.0081\ 0.0033\ 0.0058\ 0.0207\ 0.0396\ 0.0612\ 0.1530\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.0081\ 0.00$ $0.0056\ 0.0060\ 0.0046\ 0.0268\ 0.0249\ 0.1813\ 0.0121\ 0.1266\ 0.0008\ 0.0010\ 0.0004\ 0.0005\ 0.0030\ 0.0067\ 0.0061\ 0.0160\ 0.0065\ 0.0008\ 0.0008\ 0.0009\ 0.0009\ 0.0015\ 0.0188\ 0.1418\ 0.1140$ $0.0632\ 0.0666\ 0.0769\ 0.0475\ 1.2756\ 2.9732\ 0.7426\ 3.6346\ 0.0139\ 0.0335\ 0.0325\ 0.0930\ 0.0194\ 0.0092\ 0.1768\ 0.3636\ 0.0271\ 0.0172\ 0.0029\ 0.0029\ 0.0200\ 0.0250\ 0.1541\ 0.2742$ $0.0093\ 0.0096\ 0.0062\ 0.0089\ 0.3118\ 0.3506\ 0.1846\ 0.2223\ 0.0211\ 0.0138\ 0.0224\ 0.0304\ 0.0032\ 0.0038\ 0.1292\ 0.1258\ 0.0207\ 0.0135\ 0.0035\ 0.0068\ 0.0051\ 0.0090\ 0.0051\ 0.0090$ $0.0051\ 0.0164\ 0.0166\ 0.0152\ 0.1060\ 0.4861\ 0.0509\ 0.4834\ 0.0106\ 0.0113\ 0.0115\ 0.0094\ 0.0009\ 0.0016\ 0.0098\ 0.2484\ 0.0032\ 0.0057\ 0.0009\ 0.0067\ 0.0031\ 0.0445\ 0.0118\ 0.0138$ $0.0057\ 0.0111\ 0.0044\ 0.0109\ 0.1179\ 0.7962\ 0.0594\ 0.7130\ 0.0067\ 0.0061\ 0.0055\ 0.0038\ 0.0007\ 0.0008\ 0.0228\ 0.2716\ 0.0019\ 0.0024\ 0.0007\ 0.0030\ 0.0029\ 0.0029\ 0.0128\ 0.0630$ $0.0109\ 0.0112\ 0.0067\ 0.0114\ 0.2450\ 0.3314\ 0.1174\ 0.2263\ 0.0100\ 0.0095\ 0.0082\ 0.0098\ 0.0047\ 0.0059\ 0.1127\ 0.1453\ 0.0090\ 0.0084\ 0.0066\ 0.0061\ 0.0063\ 0.0102\ 0.0170\ 0.0375$ $0.0063\ 0.0219\ 0.0077\ 0.0413\ 0.0429\ 0.2457\ 0.0315\ 0.3444\ 0.0122\ 0.0460\ 0.0095\ 0.0268\ 0.0018\ 0.0043\ 0.0043\ 0.0057\ 0.1249\ 0.0047\ 0.0426\ 0.0008\ 0.0070$ $0.0070\ 0.0124\ 0.0068\ 0.0152\ 0.2466\ 0.9666\ 0.1624\ 0.7165\ 0.0032\ 0.0048\ 0.0028\ 0.0036\ 0.0011\ 0.0007\ 0.0269\ 0.2757\ 0.0011\ 0.0018\ 0.0008\ 0.0020\ 0.0034\ 0.0234\ 0.0442\ 0.1243$ $0.0166\ 0.0194\ 0.0135\ 0.0183\ 0.0734\ 0.0623\ 0.0373\ 0.0397\ 0.0304\ 0.0210\ 0.0174\ 0.0143\ 0.0108\ 0.0179\ 0.0302\ 0.0264\ 0.0194\ 0.0328\ 0.0034\ 0.0070\ 0.0115\ 0.0155\ 0.0940\ 0.0894$ $0.0190\ 0.0176\ 0.0183\ 0.0193\ 0.1679\ 0.1679\ 0.1698\ 0.0846\ 0.0914\ 0.0141\ 0.0110\ 0.0089\ 0.0061\ 0.0103\ 0.0151\ 0.0484\ 0.0446\ 0.0117\ 0.0105\ 0.0033\ 0.0053\ 0.0112\ 0.0180\ 0.0169\ 0.0082$ $0.0173\ 0.0179\ 0.0174\ 0.0290\ 0.2765\ 0.5091\ 0.1317\ 0.2932\ 0.0104\ 0.0047\ 0.0083\ 0.0024\ 0.0096\ 0.0100\ 0.1191\ 0.1746\ 0.0106\ 0.0024\ 0.0029\ 0.0030\ 0.0075\ 0.0110\ 0.0958\ 0.1568$ 0.03360.0306 $0.0039\ 0.0044\ 0.0042\ 0.0286\ 0.0430\ 0.2781\ 0.0164\ 0.1358\ 0.0007\ 0.0008\ 0.0004\ 0.0004\ 0.0004\ 0.0024\ 0.0041\ 0.0103\ 0.0277\ 0.0004\ 0.0006\ 0.0005\ 0.0005\ 0.0006\ 0.0009\ 0.0119\ 0.1616\ 0.2574$ $0.0088\ 0.0090\ 0.0059\ 0.0086\ 0.1695\ 0.2141\ 0.0756\ 0.1237\ 0.0166\ 0.0134\ 0.0166\ 0.0141\ 0.0035\ 0.0047\ 0.0621\ 0.0656\ 0.0167\ 0.0162\ 0.0042\ 0.0082\ 0.0082\ 0.0140\ 0.0148\ 0.0047$ $0.0286\ 0.0311\ 0.0297\ 0.0537\ 0.1365\ 0.2398\ 0.0722\ 0.1647\ 0.0062\ 0.0063\ 0.0049\ 0.0044\ 0.0189\ 0.022$ $0.0313\ 0.0281\ 0.0280\ 0.0368\ 0.2537$ $0.0030\ 0.0016\ 0.0036\ 0.0199\ 0.0510\ 0.0121\ 0.0386\ 0.0047\ 0.0071\ 0.0031\ 0.0097\ 0.0008\ 0.0042\ 0.0057\ 0.0073\ 0.0041\ 0.0208\ 0.0009\ 0.0051\ 0.0051\ 0.0020\ 0.0113\ 0.0406\ 0.0216$ $0.0123\ 0.0086\ 0.0100\ 0.1112\ 0.0947\ 0.0542\ 0.0570\ 0.0303\ 0.0172\ 0.0258\ 0.0127\ 0.0076\ 0.0110\ 0.0480\ 0.0340\ 0.0240\ 0.0263\ 0.0039\ 0.0074\ 0.0089\ 0.0139\ 0.0409\ 0.0249$ $0.0202\ 0.0055\ 0.0222\ 0.1522\ 0.7419\ 0.0897\ 0.5212\ 0.0049\ 0.0071\ 0.0044\ 0.0061\ 0.0017\ 0.0018\ 0.0134\ 0.2439\ 0.0025\ 0.0038\ 0.0009\ 0.0047\ 0.0044\ 0.0498\ 0.0044\ 0.0498$ $0.0471\ 0.0376\ 0.0379\ 0.6388\ 0.7550\ 0.3905\ 0.9719\ 0.0410\ 0.0336\ 0.0369\ 0.0360\ 0.0081\ 0.0067\ 0.1402\ 0.2675\ 0.0282\ 0.0096\ 0.0050\ 0.0085\ 0.0163\ 0.0355\ 0.0163\ 0.0355$ $0.0329\ 0.0154\ 0.1469\ 0.0751\ 0.0986\ 0.0373\ 0.1933\ 0.0153\ 0.0367\ 0.0150\ 0.0219\ 0.0021\ 0.0058\ 0.0068\ 0.0489\ 0.0069\ 0.0856\ 0.0009\ 0.0026$ $0.0194\ 0.0095\ 0.0243\ 0.1448\ 0.9048\ 0.0848\ 0.6307\ 0.0034\ 0.0035\ 0.0021\ 0.0030\ 0.0019\ 0.0013\ 0.0267\ 0.2840\ 0.0096\ 0.0015\ 0.0007\ 0.0019\ 0.0032\ 0.0243\ 0.0951\ 0.2076$ $0.0454\ 0.0244\ 0.02887\ 0.0372\ 0.0930\ 0.0285\ 0.1075\ 0.0184\ 0.0194\ 0.0167\ 0.0168\ 0.0041\ 0.0170\ 0.0079\ 0.0263\ 0.0124\ 0.0878\ 0.0008\ 0.0034\ 0.0073\ 0.0498\ 0.1532\ 0.3846$ $0.0136\ 0.0051\ 0.0520\ 0.0098\ 0.0511\ 0.0057\ 0.0475\ 0.0047\ 0.0191\ 0.0028\ 0.0112\ 0.0026\ 0.0076\ 0.0076\ 0.0025\ 0.0023\ 0.0044\ 0.0720\ 0.0006\ 0.0067$ $0.0387\ 0.0345\ 0.1495\ 0.0821\ 0.0563\ 0.0487\ 0.0379\ 0.0361\ 0.0237\ 0.0273\ 0.0094\ 0.0219\ 0.0318\ 0.0270\ 0.0201\ 0.0238\ 0.0412\ 0.0033\ 0.0066\ 0.0176\ 0.0179\ 0.1411\ 0.2172\ 0.0033\ 0.0066\ 0.0176\ 0.0179\ 0.0179\ 0.0179\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.0079\ 0.00$ $0.0460\ 0.0241\ 0.2342\ 0.0543\ 0.2078\ 0.0288\ 0.1854\ 0.0056\ 0.0345\ 0.0053\ 0.0230\ 0.0033\ 0.0137\ 0.0034\ 0.0568\ 0.0026\ 0.0695\ 0.0007\ 0.0037\ 0.0040\ 0.0898\ 0.0444\ 0.2050\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.0037\ 0.00$ $0.0298\ 0.0337\ 0.0561\ 0.1317\ 0.2077\ 0.0647\ 0.1119\ 0.0119\ 0.0102\ 0.0046\ 0.0038\ 0.0231\ 0.0282\ 0.0286\ 0.0467\ 0.0059\ 0.0062$ $0.0475\ 0.0152\ 0.0494\ 0.0941\ 1.0179\ 0.0623\ 0.7443\ 0.0029\ 0.0050\ 0.0022\ 0.0038\ 0.0040\ 0.0034\ 0.0090\ 0.2299\ 0.0008\ 0.0040$ $0.0347\ 0.0182\ 0.0448\ 0.1681\ 1.1615\ 0.0994\ 0.7931\ 0.0019\ 0.0035\ 0.0014\ 0.0027\ 0.0025$; 0.0205 0.0199 1.0189 1.0568 0.6274 1.3899 0.1302 0.0627 0.0839 3.9658 0.0043 ; 0.0038 0.0081 0.2182 0.7100 0.1191 0.6535 0.0085 0.0059 0.0074 0.0040 0.0007 $_{\rm CEM}^{\beta_1}$ EM 22 $0.4031 \ 0.1374$ $_{\rm CEM}^{lpha_2}$ EM 0.2504 0.0032 0.0031 CEM EM S CEM EM CEM 0.0016 0.0156 0.0182 0.1258 0.1694ΕM CEM 0.0526 0.0737 EM 0.0014 0.0091 0.0007 0.0057 0.0037 0.0791 0.0037 0.0791 $0.0079\ 0.0122\ 0.0031\ 0.0042\ 0.0086\ 0.0195\ 0.0532\ 0.1038$ 0.0070 0.0017 EM CEM 0.0056 0.0328 0.0951 0.2236 0.0067 0.0104 0.0460 0.0864 0.0028 0.0459 0.0450 0.06250.00250.0514 0.1556 0.3770 Ε<u>Υ</u>3

Tabela D.93: Estimativas do erro quadrático médio dos parâmetros da mistura de três regressões lineares no caso V

Apêndice E

Aplicação do Novo Teste de Alteração da Estrutura: resultados $260 \hspace{3.1em} Ap \hat{e}ndice \hspace{1.5em} E$

n	A	L	observação				Valor de π_1			
			,	0.2	0.3	0.4	0.5	0.6	0.7	0.8
50	1	1	Outlier	2.23E-14	2.19E-12	8.37E-13	1.52E-13	1.51E-12	1.11E-14	1.11E-16
		2	Outlier	0	4.44E-16	6.66E-16	0	0	0	0
		5	Outlier	0	0	0	0	0	0	0
		1	Nova	0.5254	0.3393	1.0000	0.7642	0.8232	0.9611	0.0957
		2	Nova	0.3257	0.4389	0.5052	0.4477	0.9199	0.5589	0.2685
		2	Outlier+Nova	3.14E-13	4.38E-11	5.26E-12	4.84E-13	3.35E-12	1.04E-13	2.22E-16
	2	1	Outlier	3.31E-12	2.58E-13	1.34E-13	2.91E-14	1.55E-15	2.45E-14	1.74E-13
		2	Outlier	5.55E-16	4.31E-13	0	0	0	0	0
		5	Outlier	0	0	0	0	0	0	0
		1	Nova	0.3659	0.0821	0.1805	0.7506	0.7161	0.7492	0.7689
		2	Nova	0.0946	0.0791	0.1833	0.8532	0.4702	0.2909	0.6280
		2	Outlier+Nova	1.75E-11	1.20E-12	7.05E-12	8.69E-14	1.04E-13	5.95E-14	9.87E-13
	3	1	Outlier	1.13E-11	4.57E-12	2.84E-11	3.38E-10	7.77E-16	4.83E-14	4.16E-13
	0	2	Outlier	3.33E-16	7.33E-15	5.97E-13	5.77E-15	0	0	3.33E-16
		5	Outlier	0	0	0.3712-13	0.7712-10	0	0	0
		1	Nova	0.9433	0.5365	0.8289	0.7184	0.7129	0.0875	0.9604
		2	Nova		0.3365 0.2367					
		$\frac{2}{2}$		0.3806		0.4605	0.2453	0.1608	0.2382	0.1214
100	1		Outlier+Nova	1.59E-13	1.48E-11	2.02E-12	1.79E-10	5.77E-15 0	2.86E-14	3.17E-12
100	1	1	Outlier	3.55E-15	1.67E-13	0	0		0	0
		2	Outlier	0	0	0	0	0	0	0
		5	Outlier	0	0	0	0	0	0	0
		1	Nova	0.5716	0.7798	0.1935	0.4602	0.7407	0.6436	0.9272
		2	Nova	0.8884	0.1909	0.1621	0.2515	0.7432	0.0913	0.6269
		2	Outlier+Nova	6.22E-15	4.66E-12	0	0	0	0	0
	2	1	Outlier	1.72E-12	0	1.10E-14	5.55E-16	4.61E-14	0	3.33E-15
		2	Outlier	0	0	0	0	0	0	0
		5	Outlier	0	0	0	0	0	0	0
		1	Nova	0.2127	0.0913	0.6063	0.0007	0.3792	0.8296	0.1272
		2	Nova	0.6844	0.2601	0.8615	0.1188	0.5395	0.6629	0.8422
		2	Outlier+Nova	2.41E-10	0	2.99E-14	2.22E-15	1.31E-13	0	2.75E-14
	3	1	Outlier	1.54E-12	0	0	2.98E-14	0	0	0
		2	Outlier	0	0	0	0	0	0	0
		5	Outlier	0	0	0	0	0	0	0
		1	Nova	0.0309	0.6164	0.8693	0.2519	0.7873	0.2867	1.0000
		2	Nova	0.6770	0.0860	0.4271	0.9864	0.2945	0.9628	0.7232
		2	Outlier+Nova	3.50E-13	0	0	2.56E-13	0	4.44E-16	0
500	1	1	Outlier	0	0	0	0	0	0	0
		2	Outlier	0	0	0	0	0	0	0
		5	Outlier	0	0	0	0	0	0	0
		1	Nova	0.8426	0.1688	0.1875	0.7958	0.4955	0.3101	0.3645
		2	Nova	0.1239	0.2496	0.1596	0.4195	0.5303	0.5035	0.7314
		2	Outlier+Nova	0	0	0	0	0	0	0
	2	1	Outlier	0	0	0	0	0	0	0
		2	Outlier	0	0	0	0	0	0	0
		5	Outlier	0	0	0	0	0	0	0
		1	Nova	0.3025	0.5875	0.6616	1.0000	0.4050	0.1845	0.2783
		2	Nova	0.6084	0.3526	0.9378	0.6307	0.5414	0.5824	0.2744
		2	Outlier+Nova	3.33E-16	0.5520	0.5570	0.0007	0.0414	0.0024	0.2144
	3	1	Outlier	0	0	0	0	0	0	0
	J	2	Outlier	0	0	0	0	0	0	0
		5	Outlier	0	0	0	0	0	0	0
									0.1445	
		1	Nova	0.4640	0.0736	0.5173	0.3524	0.0628		0.2514
		2	Nova	0.6770	0.2474	0.5445	0.6329	0.0396	0.9128	0.0675
		2	Outlier+Nova	0	0	0	0	0	0	0

Tabela E.1: Valores-p do teste de alteração da estrutura na mistura de duas regressões lineares no caso PIII, em que $x \in [-1;3]$

n	A	L	observação				Valor de π_1			
			,	0.2	0.3	0.4	0.5	0.6	0.7	0.8
50	1	1	Outlier	4.26E-09	4.59E-12	4.20E-11	3.00E-11	7.37E-13	3.08E-10	4.22E-15
		2	Outlier	7.80E-13	4.44E-16	5.11E-15	3.22E-15	1.11E-15	2.22E-16	0
		5	Outlier	3.77E-12	0	0	0	0	0	0
		1	Nova	0.4572	0.2137	0.7935	0.4645	0.5397	0.0614	0.4749
		2	Nova	0.1879	0.9978	0.1205	0.9341	0.1554	0.9171	0.1393
		2	Outlier+Nova	1.47E-07	7.49E-12	2.27E-10	5.65E-11	1.35E-12	2.08E-11	6.88E-15
	2	1	Outlier	6.10E-12	4.36E-09	1.94E-14	9.97E-11	5.46E-14	5.55E-16	1.11E-16
		2	Outlier	0	6.18E-12	0	3.44E-15	0	0	0
		5	Outlier	0	3.33E-16	0	0	0	0	0
		1	Nova	0.2951	0.1779	0.4739	0.8064	0.7848	0.9555	0.3018
		2	Nova	0.6382	0.2193	0.4579	0.4435	0.0509	0.0791	0.0874
		2	Outlier+Nova	1.69E-12	2.91E-08	3.52E-14	3.67E-11	4.19E-13	2.66E-15	6.66E-16
	3	1	Outlier	1.86E-11	8.88E-16	2.07E-11	6.88E-15	1.40E-14	2.56E-11	8.88E-16
	0	2	Outlier	1.20E-14	0	1.22E-14	0.002 10	0	0	0
		5	Outlier	0	0	0	0	0	0	0
		1	Nova	0.4561	0.1170	0.9679	0.1481	0.9807	0.2715	0.9116
		2	Nova	0.4301 0.4101	0.1170	0.7850	0.1431 0.3574	0.8590	0.2713 0.2587	0.9110 0.1929
		2	Outlier+Nova	5.02E-10	5.82E-14	1.11E-10	0.3374 2.12E-14	1.28E-13	6.86E-13	6.33E-15
100	1		Outlier	0	8.88E-16	7.88E-15		0	0.60E-15	0.55E-15
100	1	1	Outlier				2.33E-13			
		2		0	0	0	0	0	0	0
		5	Outlier	0	0	0	0	0	0	0
		1	Nova	0.0258	1.0000	0.8900	0.5837	0.2775	0.3136	0.1773
		2	Nova	0.0403	0.7845	1.0000	0.4418	0.0203	0.2140	0.8338
		2	Outlier+Nova	0	4.44E-16	5.51E-14	2.04E-13	3.33E-16	0	0
	2	1	Outlier	1.14E-13	7.83E-13	0	1.33E-15	0	0	0
		2	Outlier	0	0	0	0	0	0	0
		5	Outlier	0	0	0	0	0	0	0
		1	Nova	0.7183	0.6726	0.4095	0.5977	0.8994	0.2996	0.1004
		2	Nova	0.9516	0.0781	0.0734	0.7765	0.1871	0.3186	0.1833
		2	Outlier+Nova	5.55E-16	5.79E-12	1.99E-14	9.99E-16	0	0	0
	3	1	Outlier	1.11E-16	8.88E-16	0	0	0	0	0
		2	Outlier	0	0	0	0	0	0	0
		5	Outlier	0	0	0	0	0	0	0
		1	Nova	0.4070	0.6210	0.8620	0.2155	0.0598	0.2814	0.6027
		2	Nova	0.6674	0.4156	0.0438	0.7950	0.2971	0.6784	0.1715
		2	Outlier+Nova	2.22E-16	2.22E-15	0	0	3.33E-16	1.11E-16	4.44E-16
500	1	1	Outlier	0	0	0	0	0	0	0
		2	Outlier	0	0	0	0	0	0	0
		5	Outlier	0	0	0	0	0	0	0
		1	Nova	1.0000	1.0000	0.8833	0.4075	0.8851	0.2303	0.4861
		2	Nova	0.4838	0.8633	0.8647	0.2542	0.0471	0.0539	0.6255
		2	Outlier+Nova	1.11E-16	0	0	0	0	0	0
	2	1	Outlier	0	1.11E-16	0	0	0	0	0
		2	Outlier	0	0	0	0	0	0	0
		5	Outlier	0	0	0	0	0	0	0
		1	Nova	0.4314	0.3888	0.3681	0.4856	0.4886	0.1719	0.3531
		2	Nova	0.2334	0.8008	0.4003	0.1591	0.8775	0.3589	0.9066
		2	Outlier+Nova	0	1.22E-15	0	0	0	0	0
	3	1	Outlier	0	0	0	0	0	0	0
	-	2	Outlier	0	0	0	0	0	0	0
		5	Outlier	0	0	0	0	0	0	0
		1	Nova	0.0933	0.6488	0.1835	0.8983	0.8026	0.1753	0.9247
		2	Nova	0.6403	0.2006	0.6130	0.7703	0.6029	0.3723	0.3333
		2	Outlier+Nova	0.0400	0.2000	0.0100	0.7700	0.0025	0.5725	0.0000
			Junior Trova	· ·	U	· ·	0	5	· ·	

Tabela E.2: Valores-p do teste de alteração da estrutura na mistura de duas regressões lineares no caso PIII, em que $x \in [0,2]$

n	A	L	observação				Valor de π_1			
			,	0.2	0.3	0.4	0.5	0.6	0.7	0.8
50	1	1	Outlier	5.11E-07	9.17E-07	1.64E-09	4.66E-09	1.50E-10	4.67E-08	5.26E-09
		2	Outlier	1.55E-10	1.68E-09	2.82E-12	5.91E-13	3.92E-13	6.50E-11	6.26E-12
		5	Outlier	4.13E-13	2.01E-11	7.11E-15	1.11E-16	0	8.88E-16	5.55E-16
		1	Nova	0.2356	0.2553	0.6588	0.5393	0.4225	0.7675	0.4723
		2	Nova	0.9308	0.9903	0.6663	0.8095	0.4311	0.3058	0.9637
		2	Outlier+Nova	2.71E-07	1.60E-05	2.18E-08	2.57E-08	6.04E-10	1.66E-07	2.18E-08
	2	1	Outlier	1.28E-07	1.44E-09	5.48E-08	9.17E-09	1.95E-06	6.30E-07	4.19E-06
		2	Outlier	4.26E-10	1.64E-12	1.84E-11	1.71E-10	4.21E-09	2.26E-09	1.07E-08
		5	Outlier	1.59E-12	4.44E-16	2.44E-15	2.01E-13	2.34E-13	2.33E-12	1.87E-12
		1	Nova	0.3719	0.2365	0.8182	0.7460	0.7406	0.2703	0.3732
		2	Nova	0.6418	0.5994	0.2949	0.7739	0.9616	0.4193	0.8346
		2	Outlier+Nova	2.48E-07	9.12E-09	1.00E-07	4.91E-07	9.66E-06	8.83E-07	1.37E-05
	3	1	Outlier	4.98E-09	7.66E-09	2.25E-09	1.97E-07	3.13E-07	1.09E-07	1.90E-06
		2	Outlier	2.67E-09	1.34E-12	2.83E-12	3.43E-10	4.18E-08	1.43E-10	4.40E-09
		5	Outlier	1.68E-12	2.55E-15	2.22E-16	7.65E-14	8.58E-14	0	3.89E-12
		1	Nova	1.0000	0.4878	0.1729	0.4221	0.8676	0.5426	0.3784
		2	Nova	1.0000	0.2992	0.6915	0.6583	0.9771	0.6230	0.3723
		2	Outlier+Nova	3.51E-06	1.32E-06	2.08E-08	2.57E-07	2.10E-07	9.69E-07	7.56E-06
100	1	1	Outlier	3.48E-09	1.13E-10	3.13E-10	3.45E-08	1.18E-09	6.46E-10	9.26E-09
		2	Outlier	1.25E-13	1.33E-15	3.03E-14	1.76E-12	3.44E-15	1.89E-15	2.90E-13
		5	Outlier	0	0	0	0	0	0	0
		1	Nova	0.4952	0.8364	0.7243	0.3445	0.0859	0.0853	0.4202
		2	Nova	0.1255	0.1263	0.6924	0.6694	0.2496	0.3489	0.8623
		2	Outlier+Nova	8.96E-09	1.37E-09	4.20E-09	5.25E-08	3.83E-09	4.87E-09	4.70E-08
	2	1	Outlier	6.65E-09	7.80E-09	5.46E-09	1.04E-09	2.90E-08	8.54E-09	2.26E-10
	_	2	Outlier	2.89E-15	3.74E-13	1.07E-13	4.79E-13	2.12E-12	6.23E-14	2.55E-15
		5	Outlier	0	0	0	0	0	0	0
		1	Nova	0.9129	0.4796	0.1387	0.6480	0.5577	0.7876	0.3966
		2	Nova	0.5389	0.3263	0.7552	0.4512	0.3815	0.6481	0.0546
		2	Outlier+Nova	2.85E-09	4.70E-08	2.58E-09	3.17E-09	1.80E-07	1.26E-07	1.13E-09
	3	1	Outlier	9.71E-09	1.10E-08	2.20E-08	1.14E-09	1.19E-08	1.22E-09	8.64E-13
		2	Outlier	4.53E-13	2.07E-13	3.00E-12	4.86E-14	6.06E-14	7.08E-14	0
		5	Outlier	0	0	0	0	0	0	0
		1	Nova	0.5191	0.5086	0.8022	0.6682	0.3835	0.8636	0.0814
		2	Nova	0.5320	0.8408	0.7947	0.8158	0.6705	0.8562	0.0909
		2	Outlier+Nova	7.43E-09	1.03E-07	1.13E-07	1.21E-08	1.22E-07	6.43E-09	7.15E-12
500	1	1	Outlier	2.41E-12	1.10E-12	1.67E-10	1.20E-10	1.57E-11	3.65E-11	5.26E-11
		2	Outlier	0	0	0	0	0	0	0
		5	Outlier	0	0	0	0	0	0	0
		1	Nova	0.2209	0.4282	1.0000	0.2871	0.1579	0.6864	0.8838
		2	Nova	0.2349	0.6008	0.5416	0.6770	0.1073	0.8736	0.6318
		2	Outlier+Nova	1.82E-11	1.05E-11	4.98E-10	1.00E-09	3.13E-11	1.16E-10	2.76E-10
	2	1	Outlier	2.03E-10	1.38E-11	6.95E-12	7.18E-10	1.66E-11	2.85E-10	1.58E-10
		2	Outlier	0	0	0	1.11E-16	0	0	0
		5	Outlier	0	0	0	0	0	0	0
		1	Nova	0.5153	0.5718	0.4355	0.2382	0.8540	0.5453	0.8716
		2	Nova	0.3662	0.6673	0.5580	0.0789	0.1468	0.8620	0.1648
		2	Outlier+Nova	2.21E-09	9.38E-11	5.01E-11	5.45E-09	9.29E-11	1.84E-09	9.67E-10
	3	1	Outlier	1.33E-09	2.73E-10	1.03E-10	3.16E-11	1.31E-12	5.44E-12	2.30E-09
	-	2	Outlier	1.11E-16	0	0	0	0	0	1.11E-15
		5	Outlier	0	0	0	0	0	0	0
		1	Nova	0.0551	0.6939	0.5631	0.0797	0.1548	0.9807	0.8748
		2	Nova	0.2997	0.9547	0.9372	0.3359	0.4896	0.3010	0.3726
		2	Outlier+Nova	8.41E-09	1.89E-09	5.77E-10	1.16E-10	7.41E-11	4.35E-11	7.44E-09
			James 110va	O.111-00	1.001-00	5.11L-10	1.101-10	1,111-11	1.00L-11	1.1111-00

Tabela E.3: Valores-p do teste de alteração da estrutura na mistura de duas regressões lineares no caso PV, em que $x \in [-1;3]$

n	A	L	observação				Valor de π_1			
			,	0.2	0.3	0.4	0.5	0.6	0.7	0.8
50	1	1	Outlier	5.32E-10	6.05E-12	7.92E-10	2.59E-07	6.20E-08	1.03E-08	2.59E-08
		2	Outlier	6.37E-13	6.78E-14	5.21E-13	2.64E-09	3.40E-11	3.57E-12	2.27E-11
		5	Outlier	1.11E-16	0	0	9.66E-15	2.66E-15	0	9.99E-16
		1	Nova	0.8809	0.3434	0.4295	0.2923	0.1398	0.9445	0.8280
		2	Nova	0.4097	0.0788	0.1411	0.6871	0.9418	0.3429	0.3261
		2	Outlier+Nova	4.00E-09	3.11E-09	2.02E-09	7.94E-07	1.65E-07	1.15E-07	1.02E-07
	2	1	Outlier	3.09E-08	6.69E-08	1.31E-07	1.01E-09	9.42E-09	1.66E-07	2.68E-08
		2	Outlier	2.97E-10	1.45E-10	1.27E-10	3.13E-13	1.55E-12	5.15E-11	2.34E-12
		5	Outlier	8.13E-12	1.89E-14	2.58E-14	0	7.77E-16	1.94E-14	1.11E-16
		1	Nova	0.9571	0.5538	0.0150	0.0690	0.8938	0.7386	0.6768
		2	Nova	0.4643	0.8957	0.5899	0.0209	0.1602	0.0657	0.4474
		2	Outlier+Nova	7.37E-06	2.35E-07	3.92E-07	1.37E-08	1.40E-08	1.23E-07	1.74E-07
	3	1	Outlier	3.68E-08	2.27E-06	1.20E-08	1.06E-07	1.10E-06	5.62E-08	2.75E-08
		2	Outlier	2.94E-09	4.21E-11	1.75E-10	1.52E-10	4.66E-11	1.28E-10	2.71E-11
		5	Outlier	4.55E-08	1.69E-14	3.89E-15	2.55E-15	3.22E-15	5.55E-16	4.33E-15
		1	Nova	0.1424	0.9089	0.5742	0.4352	0.4237	0.9518	0.1443
		2	Nova	0.7973	0.2372	0.2494	0.7091	0.9626	0.4895	0.8174
		2	Outlier+Nova	6.68E-06	1.19E-05	6.46E-08	3.33E-07	2.21E-06	4.83E-08	1.88E-07
100	1	1	Outlier	4.98E-09	8.72E-10	4.61E-09	1.14E-11	9.82E-10	5.13E-11	6.32E-09
		2	Outlier	5.08E-13	1.93E-14	4.91E-14	2.22E-16	2.22E-16	4.44E-16	1.63E-14
		5	Outlier	0	0	0	0	0	0	0
		1	Nova	0.6844	0.3428	0.3115	0.6888	0.8518	0.4401	0.1590
		2	Nova	0.9881	0.4991	0.2691	0.9376	0.1647	0.8855	0.6006
		2	Outlier+Nova	2.96E-08	6.33E-08	1.44E-08	7.40E-11	3.47E-09	4.92E-10	1.26E-08
	2	1	Outlier	8.54E-10	2.58E-10	4.30E-09	3.40E-07	1.18E-08	7.08E-10	1.04E-08
		2	Outlier	1.57E-14	7.11E-15	3.72E-14	1.34E-11	2.75E-13	2.28E-14	2.02E-13
		5	Outlier	0	0	0	0	0	0	0
		1	Nova	0.3772	0.0530	0.2439	0.6975	0.0729	0.8354	0.3086
		2	Nova	0.3397	0.2035	0.8412	0.7235	0.2504	0.5702	0.2348
		2	Outlier+Nova	4.36E-08	2.47E-09	1.12E-08	3.94E-07	3.53E-08	3.58E-09	4.73E-08
	3	1	Outlier	4.33E-09	2.72E-10	6.21E-11	8.63E-10	1.68E-08	1.41E-10	3.05E-11
		2	Outlier	3.85E-13	5.44E-15	4.44E-16	6.66E-16	1.99E-14	8.88E-16	0
		5	Outlier	0	0	0	0	0	0	0
		1	Nova	0.7580	0.6380	0.0190	0.0932	0.1714	0.7808	0.9236
		2	Nova	0.4784	0.9412	0.5331	0.0914	0.8390	0.9324	0.1589
		2	Outlier+Nova	5.54E-09	1.10E-09	3.49E-10	4.52E-10	2.44E-09	8.05E-10	5.74E-10
500	1	1	Outlier	1.43E-09	4.19E-11	1.37E-12	5.63E-12	3.51E-13	6.29E-11	7.53E-11
		2	Outlier	1.22E-15	0	0	0	0	0	0
		5	Outlier	0	0	0	0	0	0	0
		1	Nova	0.8166	0.0519	0.9659	0.0624	0.7615	0.1653	0.9375
		2	Nova	0.3272	0.9366	0.1253	0.1810	0.7418	0.6055	0.2503
		2	Outlier+Nova	8.40E-09	2.12E-10	2.83E-11	2.15E-11	6.74E-14	2.24E-09	2.35E-10
	2	1	Outlier	3.79E-12	2.24E-11	4.91E-12	1.17E-12	8.41E-12	1.79E-11	6.95E-11
		2	Outlier	0	0	0	0	0	0	0
		5	Outlier	0	0	0	0	0	0	0
		1	Nova	0.1073	0.6157	0.0949	0.1659	0.1351	0.4429	0.8283
		2	Nova	0.5202	0.6514	0.6170	0.0907	0.4489	0.4899	0.7638
		2	Outlier+Nova	1.53E-11	2.71E-11	2.08E-11	1.42E-11	2.50E-11	6.85E-11	5.37E-10
	3	1	Outlier	1.11E-11	4.42E-12	2.04E-12	1.38E-11	7.09E-11	5.01E-11	4.67E-11
		2	Outlier	0	0	0	0	0	0	0
		5	Outlier	0	0	0	0	0	0	0
		1	Nova	0.8663	0.8855	0.2451	0.0951	0.7746	0.8206	0.7093
		2	Nova	0.6854	0.1898	0.5303	0.4291	0.6422	0.7218	0.0818
		2	Outlier+Nova	7.48E-11	3.87E-11	2.42E-11	4.25E-11	3.23E-10	1.02E-10	2.16E-10

Tabela E.4: Valores-p do teste de alteração da estrutura na mistura de duas regressões lineares no caso PV, em que $x \in [0;2]$

n	A	L	observação				Valor de π_1			
			,	0.2	0.3	0.4	0.5	0.6	0.7	0.8
50	1	1	Outlier	0.0022	4.97E-05	0.0007	0.0005	0.0001	0.0003	0.0002
		2	Outlier	0.0013	1.70E-05	3.83E-05	1.33E-05	2.21E-06	2.52E-05	2.98E-06
		5	Outlier	2.66E-05	4.07E-11	3.75E-07	5.22E-08	7.98E-09	5.12E-08	5.88E-09
		1	Nova	0.3166	0.3855	0.9289	0.7697	0.7601	0.2031	0.6293
		2	Nova	0.5230	0.3027	0.6616	0.4202	0.6455	0.6549	0.3045
		2	Outlier+Nova	0.0067	8.40E-06	0.0083	0.0004	0.0004	0.0025	0.0007
	2	1	Outlier	0.0160	0.0002	0.0002	0.0003	0.0008	3.56E-05	0.0007
		2	Outlier	4.69E-05	1.64E-06	5.49E-07	9.13E-07	1.13E-05	4.84E-07	1.07E-06
		5	Outlier	3.18E-06	1.09E-08	2.38E-09	1.50E-09	3.74E-07	6.00E-10	4.73E-09
		1	Nova	0.0663	0.1187	0.3772	0.4357	0.0405	0.2483	0.8598
		2	Nova	0.5897	0.9082	0.8657	0.0848	0.6210	0.1198	0.5341
		2	Outlier+Nova	0.0007	0.0002	0.0002	0.0003	0.0009	5.59E-05	6.33E-05
	3	1	Outlier	5.00E-05	2.89E-05	0.0002	0.0003	0.0003	4.63E-05	0.0002
		2	Outlier	3.94E-06	7.70E-07	5.97E-06	0.0001	2.63E-06	5.42E-07	1.11E-05
		5	Outlier	4.22E-09	8.05E-10	2.87E-08	2.60E-07	9.25E-09	2.26E-10	3.85E-08
		1	Nova	0.4089	0.6747	0.2167	0.5640	0.3758	0.7201	0.6909
		2	Nova	0.7317	0.0880	0.0488	0.7480	0.3670	0.0032	0.7050
		2	Outlier+Nova	9.76E-05	5.67E-05	0.0400	0.0035	0.0015	8.71E-05	0.0009
100	1	$\frac{2}{1}$	Outlier	0.0006	0.0013	0.0013	0.0005	2.33E-05	2.41E-05	1.34E-05
100	1	2	Outlier	1.74E-05	9.24E-06	3.10E-05	2.69E-06	1.50E-07	2.41E-03 2.28E-07	5.80E-08
		5	Outlier	5.60E-09	5.28E-09	1.24E-08	1.23E-09	5.52E-13	1.56E-12	2.04E-13
		1	Nova	0.2419	0.9648	0.2249	0.0109	0.9308	0.4093	0.4239
		2	Nova							
			Outlier+Nova	0.0685	0.9354	0.5438	0.6145	0.0296	0.7621	0.9849
	0	2	•	0.0009	0.0032	0.0026	0.0027	0.0002	5.82E-05	7.07E-05
	2	1	Outlier Outlier	0.0001	0.0002	0.0035	0.0001	0.0003	0.0003	0.0026
		2		1.00E-06	2.40E-06	0.0002	6.68E-07	1.79E-06	6.01E-06	4.38E-07
		5	Outlier	9.22E-10	6.03E-10	8.03E-08	3.41E-11	1.24E-09	1.17E-09	3.45E-09
		1	Nova	0.9409	0.6985	0.1343	0.7583	0.0160	0.9441	0.3720
		2	Nova	0.8671	0.9808	0.8967	0.4495	0.2474	0.8282	0.6806
		2	Outlier+Nova	0.0001	0.0004	0.0041	0.0004	0.0008	0.0011	0.0011
	3	1	Outlier	0.0022	0.0001	0.0004	5.21E-05	0.0001	2.00E-05	0.0007
		2	Outlier	3.11E-05	1.57E-06	1.06E-05	1.06E-08	1.82E-06	3.88E-07	1.66E-05
		5	Outlier	1.33E-08	6.86E-11	8.12E-09	1.09E-14	1.49E-10	2.39E-12	5.32E-11
		1	Nova	0.1932	0.6581	0.1181	0.1588	0.9304	0.2791	0.8409
		2	Nova	0.9265	0.3611	0.2369	0.8429	0.5719	0.3318	0.9042
		2	Outlier+Nova	0.0009	0.0005	0.0016	0.0011	0.0023	0.0004	0.0002
500	1	1	Outlier	2.75E-05	0.0001	4.07E-05	3.48E-05	0.0001	5.40E-05	1.30E-05
		2	Outlier	2.58E-08	7.66E-07	1.26E-07	5.21E-08	5.42E-07	1.24E-07	1.03E-08
		5	Outlier	4.44E-16	5.49E-13	1.58E-14	7.77E-16	2.03E-14	1.20E-14	0
		1	Nova	0.9802	0.3064	0.5617	0.1439	0.6414	0.9709	0.1585
		2	Nova	0.0032	0.6726	0.1979	0.5757	0.5319	0.8696	0.4769
		2	Outlier+Nova	3.19E-05	0.0007	0.0002	6.05E-05	0.0006	0.0003	5.16E-05
	2	1	Outlier	3.89E-05	3.39E-05	6.35E-05	5.71E-05	6.73E-05	0.0002	0.0002
		2	Outlier	7.95E-08	1.20E-07	1.52E-07	8.82E-08	6.82E-07	6.47E-07	1.28E-06
		5	Outlier	6.88E-15	1.02E-14	1.20E-14	5.33E-15	2.44E-13	6.14E-13	1.13E-12
		1	Nova	0.5862	0.1067	0.2308	0.0713	0.1537	0.8232	0.1883
		2	Nova	0.1351	0.2085	0.4858	0.8871	0.8357	0.5940	0.7454
		2	Outlier+Nova	0.0002	0.0002	0.0003	0.0003	0.0003	1.30E-05	0.0001
	3	1	Outlier	0.0001	5.86E-05	0.0003	5.38E-05	0.0002	0.0001	9.10E-05
		2	Outlier	4.45E-07	1.47E-07	1.26E-06	2.63E-07	1.77E-06	7.39E-07	1.79E-07
		5	Outlier	2.04E-13	3.35E-14	1.35E-11	5.33E-15	1.39E-12	4.28E-13	2.12E-14
		1	Nova	0.0709	0.7184	0.7386	0.6845	0.1190	0.6180	0.3521
		2	Nova	0.5545	0.2457	0.5546	0.9132	0.5884	0.0641	0.1020
		$\overline{2}$	Outlier+Nova	7.40E-05	0.0005	0.0011	3.62E-05	0.0010	0.0002	0.0003

Tabela E.5: Valores-p do teste de alteração da estrutura na mistura de duas regressões lineares no caso PVIII, em que $x \in [-1;3]$

n	A	L	observação				Valor de π_1			
				0.2	0.3	0.4	0.5	0.6	0.7	0.8
50	1	1	Outlier	0.0061	0.0007	0.0011	1.07E-05	0.0002	0.0003	4.28E-05
		2	Outlier	0.0020	6.91E-05	1.22E-05	9.05E-08	3.67E-06	2.87E-05	2.85E-06
		5	Outlier	0.0004	5.41E-07	6.40E-08	8.25E-11	1.25E-08	3.92E-08	6.55E-09
		1	Nova	0.5420	0.4686	0.5308	0.1018	0.6213	0.4401	0.0665
		2	Nova	0.4542	0.9085	0.4495	0.6153	0.7224	0.4163	0.0583
		2	Outlier+Nova	0.0173	0.0072	0.0032	0.0004	0.0010	0.0020	0.0002
	2	1	Outlier	7.63E-05	0.0006	0.0012	7.55E-06	2.20E-05	0.0003	0.0015
		2	Outlier	4.13E-06	0.0018	9.42E-05	1.18E-07	5.99E-07	4.57E-06	8.15E-05
		5	Outlier	4.77E-09	5.40E-06	9.65E-07	4.26E-09	2.59E-10	1.06E-08	1.06E-06
		1	Nova	0.1389	0.7760	1.0000	0.2092	0.2865	0.1986	0.1378
		2	Nova	0.7187	0.9564	0.6665	0.3683	0.7647	0.3971	0.4518
		2	Outlier+Nova	0.0003	0.0041	0.0046	2.54E-05	0.0003	0.0005	0.0048
	3	1	Outlier	0.0052	0.0015	0.0011	6.48E-06	0.0001	0.0004	4.16E-05
		$\overline{2}$	Outlier	0.0012	3.56E-05	1.24E-05	1.78E-07	4.23E-06	1.61E-05	1.72E-06
		5	Outlier	0.0003	4.49E-07	5.26E-08	2.27E-10	2.34E-08	3.82E-08	6.67E-09
		1	Nova	0.3699	0.3497	0.4668	0.0781	0.0766	0.2687	0.0730
		2	Nova	0.2129	0.3484	0.4000	0.6536	0.9497	0.4670	0.0770
		2	Outlier+Nova	0.0068	0.0036	0.0008	0.0008	0.0007	0.0012	0.0001
100	1	1	Outlier	0.0010	0.0000	0.0016	9.68E-05	0.0005	0.0012	0.0005
100	1	2	Outlier	1.91E-05	4.34E-06	5.93E-05	4.01E-07	2.32E-06	2.46E-06	2.09E-05
		5	Outlier	3.26E-08	4.34E-00 8.49E-13	2.10E-08	2.24E-11	4.33E-10	3.35E-10	3.19E-09
		1	Nova	0.6877	1.0000	0.7722	0.8603	0.0585	0.4109	0.2782
		2	Nova				0.8003 0.2709			
				0.3640	0.4776	0.0810		0.1319	0.9841	0.6664
	0	2	Outlier+Nova	0.0017	0.0024	0.0031 0.0007	0.0003 4.53E-05	0.0011	0.0005	0.0019
	2	1	Outlier	0.0009	0.0002			0.0002	0.0002	0.0005
		2	Outlier	1.79E-05	6.39E-06	3.63E-05	7.22E-06	2.30E-06	2.49E-06	2.37E-05
		5	Outlier	4.27E-08	7.47E-13	1.96E-08	1.64E-10	1.09E-09	3.15E-10	3.53E-09
		1	Nova	0.9313	0.2732	0.1267	0.9690	0.5485	0.0583	0.3696
		2	Nova	0.4888	0.8453	0.0610	0.5264	0.1098	0.9142	0.2684
		2	Outlier+Nova	0.0024	0.0008	0.0052	0.0012	0.0007	0.0004	0.0016
	3	1	Outlier	6.93E-05	6.58E-05	0.0006	0.0002	0.0001	9.15E-05	2.85E-05
		2	Outlier	8.45E-07	5.03E-07	6.03E-06	3.53E-06	1.12E-06	6.92E-07	1.91E-07
		5	Outlier	1.10E-10	1.00E-11	1.29E-09	5.25E-10	2.57E-11	2.13E-11	5.97E-12
		1	Nova	0.1054	0.8867	0.8759	0.1515	0.4068	0.2078	0.5985
		2	Nova	0.0842	0.4501	0.1708	0.8668	0.8623	0.3964	0.5792
		2	Outlier+Nova	0.0004	0.0003	0.0011	0.0004	0.0002	0.0005	0.0002
500	1	1	Outlier	0.0002	0.0001	4.66E-05	2.02E-05	5.61E-05	4.83E-05	6.65E-05
		2	Outlier	1.00E-06	2.87E-07	9.15E-08	4.59E-08	1.10E-07	1.44E-07	8.95E-08
		5	Outlier	4.34E-13	4.90E-14	7.11E-15	4.44E-16	6.99E-15	1.24E-14	3.77E-15
		1	Nova	0.2657	0.8051	0.1349	0.8411	0.5694	0.2148	0.8344
		2	Nova	0.4819	0.7930	0.7003	0.4975	0.7237	0.4979	0.5457
		2	Outlier+Nova	0.0005	0.0002	0.0003	0.0002	0.0003	0.0002	4.13E-05
	2	1	Outlier	7.29E-05	0.0001	4.57E-05	7.51E-05	9.81E-05	2.01E-05	9.20E-05
		2	Outlier	4.38E-07	1.06E-06	1.08E-07	1.16E-07	3.39E-07	1.90E-09	2.26E-07
		5	Outlier	1.30E-13	2.65E-13	3.11E-15	7.22E-15	6.15E-14	0	3.08E-14
		1	Nova	0.0856	0.3192	1.0000	0.7783	0.7045	0.9040	0.1817
		2	Nova	0.6230	0.5117	0.0842	0.3030	0.6090	0.6347	0.1785
		2	Outlier+Nova	4.27E-05	0.0001	0.0002	0.0003	0.0005	9.22E-05	0.0005
	3	1	Outlier	7.46E-05	0.0001	5.47E-05	5.02E-05	9.69E-05	1.76E-05	0.0001
		2	Outlier	2.57E-07	8.09E-07	7.45E-08	1.80E-07	4.10E-07	1.52E-08	2.26E-07
		5	Outlier	7.72E-14	3.73E-13	2.89E-15	1.37E-14	6.14E-14	0	3.42E-14
		1	Nova	0.0695	0.4597	0.0895	0.9105	0.3590	0.0862	0.2253
		2	Nova	0.0734	0.1710	0.2918	0.8769	0.9073	0.5894	0.5970
		$\overline{2}$	Outlier+Nova	0.0002	0.0006	1.03E-05	0.0003	4.62E-05	8.81E-05	0.0001

Tabela E.6: Valores-p do teste de alteração da estrutura na mistura de duas regressões lineares no caso PVIII, em que $x \in [0;2]$

n	A	L	observação				Valor de π_1			
				0.2	0.3	0.4	0.5	0.6	0.7	0.8
50	1	1	Outlier	1.07E-10	2.04E-12	1.03E-10	7.91E-08	3.33E-12	1.53E-12	1.52E-14
		2	Outlier	8.28E-12	1.44E-15	6.66E-16	2.29E-11	3.00E-15	1.11E-16	0
		5	Outlier	2.33E-15	0	0	1.31E-14	0	0	0
		1	Nova	0.4614	0.8961	0.7682	0.5373	0.0872	0.8189	0.0760
		2	Nova	0.7711	0.3416	0.7728	0.2769	0.6924	0.0233	0.0704
		2	Outlier+Nova	6.24E-11	2.04E-11	6.22E-10	4.00E-08	1.34E-11	1.88E-12	1.13E-13
	2	1	Outlier	6.78E-10	6.00E-12	3.65E-11	1.05E-12	1.57E-11	2.00E-15	1.31E-11
		2	Outlier	2.64E-10	1.94E-13	6.22E-15	3.33E-16	7.33E-15	0	8.99E-15
		5	Outlier	9.77E-15	0	0	0	0	0	0
		1	Nova	1.0000	1.0000	0.5804	0.2354	0.1764	0.1887	0.2711
		2	Nova	1.0000	1.0000	0.6826	0.9684	0.8519	0.4394	0.2977
		2	Outlier+Nova	4.69E-10	8.78E-10	1.26E-10	8.76E-12	3.35E-11	1.77E-14	6.57E-11
	3	1	Outlier	9.40E-11	1.23E-12	1.53E-11	3.26E-12	1.84E-10	1.30E-14	4.44E-14
		2	Outlier	4.28E-12	2.22E-16	2.83E-14	7.88E-15	1.15E-14	0	0
		5	Outlier	1.11E-16	0	0	0	0	0	0
		1	Nova	0.1241	1.0000	0.7461	0.7085	0.2114	0.1455	0.7651
		2	Nova	0.6165	0.4140	0.4849	0.7227	0.8385	0.2000	0.4094
		$\bar{2}$	Outlier+Nova	1.70E-11	1.10E-11	6.76E-11	3.69E-11	1.44E-10	4.80E-14	2.89E-13
100	1	1	Outlier	4.44E-16	0	0	0	0	2.22E-16	4.33E-15
100	-	2	Outlier	0	0	0	0	0	0	0
		5	Outlier	0	0	0	0	0	0	0
		1	Nova	0.4418	0.7100	0.0122	0.5279	0.1119	0.1955	0.0874
		2	Nova	0.3170	0.9838	0.7703	0.5797	0.2010	0.5793	0.3090
		2	Outlier+Nova	0.0015	0.0027	0.0067	0.0235	0.0326	0.0292	0.1441
	2	1	Outlier	0.0010	2.34E-14	5.55E-16	1.11E-15	2.00E-15	4.55E-15	0
	-	2	Outlier	0	1.11E-16	0	0	0	0	0
		5	Outlier	0	0	0	0	0	0	0
		1	Nova	0.3259	0.5187	0.5860	0.3667	0.0502	0.0694	0.8786
		2	Nova	0.0861	0.4098	0.9451	0.4019	0.5876	0.1118	0.5079
		$\overline{2}$	Outlier+Nova	0	9.89E-12	3.75E-14	2.66E-15	6.44E-15	9.21E-15	1.11E-16
	3	1	Outlier	0	0	3.33E-16	0	0	0	0
		2	Outlier	0	0	0	0	0	0	0
		5	Outlier	0	0	0	0	0	0	0
		1	Nova	0.2831	1.0000	0.6441	0.6387	0.2755	0.2912	0.2749
		2	Nova	0.9583	0.3070	0.5740	0.2790	0.3293	0.0177	0.6850
		$\overline{2}$	Outlier+Nova	0	1.11E-16	3.66E-15	2.22E-16	0	2.22E-16	0
500	1	1	Outlier	0	0	0	0	0	0	0
		2	Outlier	0	0	0	0	0	0	0
		5	Outlier	0	0	0	0	0	0	0
		1	Nova	0.8061	0.2749	0.6932	0.0084	0.2970	0.8494	0.8971
		2	Nova	0.1112	0.8251	0.2629	0.3352	0.4676	0.9632	0.3737
		2	Outlier+Nova	0.0083	0.0065	0.0156	0.0070	0.0152	0.0012	0.0068
	2	1	Outlier	0	0	0	0	0	0	0
		2	Outlier	0	0	0	0	0	0	0
		5	Outlier	0	0	0	0	0	0	0
		1	Nova	0.6555	0.4044	0.4273	0.2170	0.7963	0.4279	0.5482
		2	Nova	0.5337	0.1613	0.0305	0.3314	0.3594	0.1243	0.8795
		2	Outlier+Nova	0	0	0	0	0	0	0
	3	1	Outlier	0	0	0	0	0	0	0
	-	2	Outlier	0	0	0	0	0	0	0
		5	Outlier	0	0	0	0	0	0	0
		1	Nova	0.0868	0.3098	0.5202	0.3162	0.3324	0.8512	0.2900
		2	Nova	0.2572	0.5265	0.9307	0.0825	0.0538	0.8365	0.8252
		$\overline{2}$	Outlier+Nova	0	0	0	0	0	0	0
				-	-	-	-	-	-	

Tabela E.7: Valores-p do teste de alteração da estrutura na mistura de duas regressões lineares no caso EI, em que $x \in [-1;3]$

n	A	L	observação				Valor de π_1			
			,	0.2	0.3	0.4	0.5	0.6	0.7	0.8
50	1	1	Outlier	0	4.43E-14	2.16E-13	3.28E-13	2.55E-15	4.46E-14	1.94E-12
		2	Outlier	0	0	0	1.33E-15	0	0	2.22E-16
		5	Outlier	0	0	0	0	0	0	0
		1	Nova	0.4030	0.0274	0.1794	0.8273	0.6561	0.5537	0.9438
		2	Nova	0.6972	0.9643	0.8000	0.1508	0.1153	0.2999	0.4699
		2	Outlier+Nova	0.0000	0.0041	0.0028	0.0994	0.0026	3.08E-05	0.0066
	2	1	Outlier	4.82E-11	1.24E-11	2.91E-14	1.11E-16	2.42E-14	0	2.22E-15
		2	Outlier	1.18E-14	7.12E-14	0	0	0	0	0
		5	Outlier	1.11E-16	0	0	0	0	0	0
		1	Nova	0.8798	0.5726	0.9277	0.7745	1.0000	0.1087	0.9680
		2	Nova	0.6392	0.5200	0.5933	0.3843	1.0000	0.0980	0.3175
		2	Outlier+Nova	9.68E-11	7.76E-11	2.55E-15	0	2.74E-13	9.30E-14	1.55E-13
	3	1	Outlier	9.91E-14	1.61E-14	3.95E-14	0	2.74E-14	3.74E-14	0
		2	Outlier	0	0	0	0	0	0	0
		5	Outlier	0	0	0	0	0	0	0
		1	Nova	0.0055	0.8758	0.9848	0.5799	0.2786	0.7608	0.0547
		2	Nova	0.0436	0.7321	0.0296	1.0000	0.4850	0.7470	0.9068
		2	Outlier+Nova	1.87E-05	4.42E-05	7.81E-07	3.11E-06	2.44E-06	8.08E-05	1.69E-05
100	1	1	Outlier	5.55E-16	3.41E-13	1.11E-16	0	0	1.79E-14	0
		2	Outlier	0	0	0	0	0	0	0
		5	Outlier	0	0	0	0	0	0	0
		1	Nova	0.8900	1.0000	0.5875	0.9629	0.1826	0.1601	0.6279
		2	Nova	1.0000	0.8510	0.3164	0.6107	0.6923	1.0000	0.1600
		2	Outlier+Nova	0.0001	0.0003	0.0019	0.0008	0.0008	0.0075	0.0003
	2	1	Outlier	1.35E-12	0	3.44E-15	0	0	0	0
		2	Outlier	0	0	0	0	0	0	0
		5	Outlier	0	0	0	0	0	0	0
		1	Nova	0.1828	0.2701	0.2573	0.4778	0.6289	0.5345	0.4933
		2	Nova	0.4829	0.7015	0.1426	0.9898	0.0170	0.9729	0.0893
		2	Outlier+Nova	0.0001	1.55E-05	1.39E-05	2.23E-06	7.66E-06	2.66E-05	0.0004
	3	1	Outlier	8.88E-16	0	1.11E-16	2.22E-16	0	0	0
		2	Outlier	0	0	0	0	0	0	0
		5	Outlier	0	0	0	0	0	0	0
		1	Nova	0.1938	0.9146	0.9526	0.4764	0.1528	0.7679	0.5820
		2	Nova	0.1185	0.6839	0.3892	0.2967	0.0734	0.6793	0.3727
		2	Outlier+Nova	5.55E-16	5.55E-16	1.11E-16	5.55E-16	0	0	0
500	1	1	Outlier	0	0	0	0	0	0	0
		2	Outlier	0	0	0	0	0	0	0
		5	Outlier	0	0	0	0	0	0	0
		1	Nova	0.5189	0.8492	0.3907	0.6906	0.6173	0.8484	0.3211
		2	Nova	0.2494	0.1058	0.3533	0.4232	0.1140	0.1301	0.3515
		2	Outlier+Nova	0.0014	0.0004	2.40E-07	0.0002	0.0012	0.0009	0.0015
	2	1	Outlier	0	0	0	0	0	0	0
		2	Outlier	0	0	0	0	0	0	0
		5	Outlier	0	0	0	0	0	0	0
		1	Nova	0.0341	0.3366	0.4029	0.1467	0.9433	0.0042	0.4956
		2	Nova	0.7805	0.6713	0.8956	0.0519	0.6970	0.1941	0.7001
		2	Outlier+Nova	5.34E-10	1.22E-10	1.37E-08	6.60E-08	0.0016	1.80E-08	1.35E-06
	3	1	Outlier	0	0	0	0	0	0	0
	-	2	Outlier	0	0	0	0	0	0	0
		5	Outlier	0	0	0	0	0	0	0
		1	Nova	0.2413	0.7046	0.4089	0.6475	0.8714	0.1777	0.4583
		2	Nova	0.8882	0.7399	0.9648	0.8486	0.8078	0.2405	0.6448
		2	Outlier+Nova	0	0.1000	0	0.0100	0.0010	0	0
			Janior 110va		-		<u> </u>	J		<u> </u>

Tabela E.8: Valores-p do teste de alteração da estrutura na mistura de duas regressões lineares no caso EI, em que $x \in [0;2]$

 $268 \hspace{3.1em} Ap \hat{e}ndice \; E$

n	A	L	observação				Valor de π_1			
			,	0.2	0.3	0.4	0.5	0.6	0.7	0.8
50	1	1	Outlier	1.09E-05	1.19E-06	1.40E-08	9.24E-09	1.09E-10	1.22E-05	4.12E-10
		2	Outlier	1.46E-07	2.31E-08	4.13E-10	1.43E-11	1.13E-12	1.16E-07	8.11E-13
		5	Outlier	2.85E-09	6.79E-11	1.50E-12	2.22E-15	1.33E-15	1.90E-11	1.67E-15
		1	Nova	0.2172	0.3794	0.0335	0.1952	0.9500	0.6797	0.8070
		2	Nova	0.6499	0.1691	0.8562	0.7226	0.1339	0.7743	0.6134
		2	Outlier+Nova	1.19E-06	2.62E-05	6.69E-08	3.19E-08	3.12E-10	1.70E-05	2.44E-08
	2	1	Outlier	5.38E-12	2.13E-10	1.33E-08	6.35E-06	9.82E-09	1.47E-07	2.07E-07
		2	Outlier	1.52E-14	1.04E-11	1.89E-11	2.54E-08	2.08E-11	8.62E-09	7.10E-10
		5	Outlier	1.11E-16	1.51E-14	5.55E-16	6.12E-12	1.84E-14	2.54E-12	4.01E-14
		1	Nova	0.0619	0.5526	0.1812	0.0802	0.9873	0.6399	0.3177
		2	Nova	0.0603	0.3799	0.9602	0.1559	0.8758	0.5272	0.5900
		2	Outlier+Nova	1.21E-11	1.06E-10	4.60E-08	6.04E-07	5.09E-08	3.99E-07	1.14E-06
	3	1	Outlier	1.86E-08	2.51E-08	5.37E-07	1.48E-08	6.07E-08	5.20E-08	1.84E-07
	0	2	Outlier	8.74E-11	2.33E-10	4.92E-09	1.28E-12	5.05E-10	5.21E-10	9.73E-10
		5	Outlier	1.76E-12	1.84E-13	7.40E-12	1.11E-15	1.09E-13	1.83E-13	8.02E-13
		1	Nova	0.3763	0.7776	0.8169	0.3656	0.2768	0.1929	0.5991
		2	Nova	0.8124	0.7770	0.8109 0.9489	0.6294	0.2708	0.1929 0.2776	0.3991 0.8608
		2								
100	1		Outlier+Nova	3.25E-06	1.10E-07	2.31E-06	1.02E-07	1.85E-07	4.91E-07	7.84E-07
100	1	1	Outlier	1.10E-09	1.29E-09	2.38E-09	5.75E-10	5.77E-14	8.76E-08	8.03E-09
		2	Outlier	4.29E-14	4.57E-13	1.11E-16	5.55E-15	0	8.03E-12	1.71E-14
		5	Outlier	0	0	0	0	0	0	0
		1	Nova	0.5432	0.9255	0.5081	0.6568	0.1919	0.6579	0.6522
		2	Nova	0.7365	1.0000	0.4284	0.2093	0.9879	0.6979	0.5358
		2	Outlier+Nova	9.87E-09	6.52E-08	1.43E-08	2.38E-09	1.99E-13	4.15E-07	2.01E-08
	2	1	Outlier	4.45E-06	1.22E-07	4.12E-09	1.17E-09	7.31E-10	1.39E-10	6.41E-10
		2	Outlier	9.10E-09	4.87E-10	3.98E-13	3.89E-15	1.17E-14	1.47E-14	6.66E-16
		5	Outlier	2.06E-10	2.10E-12	0	0	0	0	0
		1	Nova	1.0000	1.0000	0.1948	0.0837	0.0863	0.8583	0.8696
		2	Nova	1.0000	0.9565	0.1915	0.0831	0.6091	0.4214	0.6453
		2	Outlier+Nova	7.32E-06	8.70E-09	2.31E-08	8.32E-09	5.60E-09	3.41E-10	1.56E-09
	3	1	Outlier	1.45E-07	3.89E-09	3.60E-09	1.35E-09	1.20E-08	1.66E-08	2.43E-06
		2	Outlier	1.73E-10	2.02E-13	1.21E-13	9.04E-13	1.01E-13	1.52E-13	3.29E-09
		5	Outlier	1.13E-14	0	0	0	0	0	2.00E-15
		1	Nova	0.0852	0.5554	0.0844	0.7484	0.1559	0.5584	0.7580
		2	Nova	1.0000	0.0165	0.5173	0.7150	0.3122	0.6101	0.9707
		2	Outlier+Nova	3.42E-08	1.28E-08	7.08E-09	1.16E-08	1.38E-07	7.09E-08	1.29E-05
500	1	1	Outlier	4.60E-09	1.56E-13	1.23E-11	1.18E-10	5.32E-10	7.89E-09	2.95E-13
		2	Outlier	2.22E-16	0	0	0	0	9.77E-15	0
		5	Outlier	0	0	0	0	0	0	0
		1	Nova	0.5880	1.0000	0.2893	0.2593	0.8957	0.4891	0.7360
		2	Nova	0.0826	0.3653	0.5390	0.5950	0.9641	0.7453	0.6588
		2	Outlier+Nova	8.06E-09	1.32E-12	3.79E-12	1.98E-09	4.11E-09	3.18E-08	1.37E-12
	2	1	Outlier	4.48E-11	3.26E-08	4.79E-11	5.22E-11	4.34E-11	2.84E-10	3.44E-09
		2	Outlier	0	2.89E-15	0	0	0	1.11E-16	1.20E-14
		5	Outlier	0	0	0	0	0	0	0
		1	Nova	0.2545	0.9851	0.0846	0.6308	0.9772	0.4369	0.6119
		2	Nova	0.4776	0.8607	0.1414	0.0821	0.2956	0.2912	0.1262
		2	Outlier+Nova	2.30E-10	2.63E-07	8.63E-11	4.63E-10	3.14E-10	8.19E-10	1.51E-08
	3	1	Outlier	3.91E-10	7.37E-11	1.56E-12	2.88E-10	9.88E-12	5.49E-12	2.00E-09
	,	2	Outlier	7.77E-16	0	0	0	0	0.4311-12	2.22E-16
		5	Outlier	0	0	0	0	0	0	0
		1	Nova	0.6125	0.6929	0.0817	0.5587	0.7732	0.9401	0.4143
		2	Nova	0.0125 0.8772	1.0000	0.0017 0.2095	0.3646	0.7732 0.0912	0.7872	1.0000
		$\frac{2}{2}$	Outlier+Nova	2.76E-09	5.22E-10	0.2095 3.15E-11	0.3040 2.13E-09	0.0912 2.78E-11	0.7872 4.27E-11	1.50E-08
			Outner+Nova	2.10E-09	0.44E-10	9.10E-11	4.13E-U9	4.10E-11	4.21E-11	1.50E-08

Tabela E.9: Valores-p do teste de alteração da estrutura na mistura de duas regressões lineares no caso EVI, em que $x \in [-1;3]$

n	A	L	observação				Valor de π_1			
			,	0.2	0.3	0.4	0.5	0.6	0.7	0.8
50	1	1	Outlier	7.13E-06	1.11E-05	3.14E-06	5.98E-09	1.31E-06	1.25E-09	3.38E-08
		2	Outlier	1.13E-07	3.63E-08	1.33E-08	2.35E-10	3.37E-09	4.14E-13	3.58E-11
		5	Outlier	4.02E-09	6.03E-08	5.99E-12	3.24E-13	1.92E-12	2.22E-16	3.44E-15
		1	Nova	0.2976	0.1444	1.0000	0.0948	0.3046	0.3505	0.6411
		2	Nova	0.0943	0.9004	1.0000	0.0923	0.6841	0.7073	0.3728
		2	Outlier+Nova	5.58E-05	2.68E-05	2.12E-05	9.36E-08	3.24E-06	8.88E-10	1.21E-07
	2	1	Outlier	4.44E-08	0.0013	3.64E-08	5.03E-10	3.86E-08	1.27E-07	1.36E-05
		2	Outlier	1.44E-10	2.71E-06	1.81E-10	5.22E-13	7.44E-11	1.11E-11	2.51E-08
		5	Outlier	5.11E-13	6.04E-07	1.78E-11	0	2.15E-14	1.09E-14	1.66E-10
		1	Nova	0.6650	0.9967	1.0000	0.0927	0.6148	0.2209	0.8513
		2	Nova	0.2068	1.0000	0.5481	0.7017	0.6823	0.3180	0.7547
		2	Outlier+Nova	4.42E-07	0.0050	5.40E-06	3.21E-10	2.92E-07	4.55E-07	1.15E-05
	3	1	Outlier	0.0031	6.20E-09	4.37E-07	1.46E-08	6.97E-08	3.81E-09	1.52E-10
	0	2	Outlier	5.91E-05	1.48E-11	1.27E-10	8.84E-11	2.37E-10	2.01E-12	3.29E-13
		5	Outlier	0.0003	7.11E-15	2.01E-13	1.67E-12	4.31E-14	1.11E-16	0
		1	Nova	0.3205	0.5124	1.0000	0.0594	0.2471	0.6328	0.1546
		2	Nova	1.0000	0.4635	0.0992	0.9523	0.3400	0.4062	0.5004
		2	Outlier+Nova	0.0022	4.13E-08	2.49E-06	6.21E-08	2.98E-07	1.51E-08	1.12E-09
100	1	1	Outlier	1.60E-06	7.39E-09	3.98E-09	1.23E-10	5.37E-10	2.18E-13	3.67E-11
100	1	2	Outlier		2.93E-13	1.51E-12	5.55E-16			1.33E-15
				5.14E-09	2.93E-13 0	1.51E-12 0		1.35E-13 0	0	
		5	Outlier	4.91E-12	-	-	0 1001	-		0
		1	Nova	1.0000	1.0000	0.7623	0.1021	0.7884	0.1808	0.7175
		2	Nova	0.6360	0.0804	0.2408	0.7997	0.4199	0.3955	0.8131
		2	Outlier+Nova	5.28E-06	5.47E-08	2.87E-08	4.24E-10	4.79E-09	1.49E-12	1.67E-10
	2	1	Outlier	5.06E-06	1.70E-07	3.91E-09	4.60E-10	6.97E-11	7.78E-08	6.23E-07
		2	Outlier	2.87E-09	1.88E-10	5.77E-13	2.32E-14	5.07E-13	2.49E-11	9.98E-13
		5	Outlier	4.76E-12	2.22E-16	0	0	0	0	0
		1	Nova	1.0000	1.0000	0.9459	0.6077	0.5758	0.5424	0.3278
		2	Nova	1.0000	1.0000	0.5240	0.9249	0.5646	0.4002	0.4716
		2	Outlier+Nova	0.0099	1.41E-06	4.27E-08	6.98E-08	5.23E-10	4.71E-07	2.30E-06
	3	1	Outlier	8.55E-12	8.90E-10	1.65E-09	1.40E-12	1.26E-08	1.26E-09	3.00E-07
		2	Outlier	1.48E-14	4.55E-15	3.28E-14	0	2.16E-12	1.67E-15	6.00E-10
		5	Outlier	0	0	0	0	0	0	6.66E-16
		1	Nova	0.6505	0.6609	0.5051	0.2664	1.0000	0.3166	0.8585
		2	Nova	0.0804	1.0000	0.0953	0.6570	0.5455	0.3052	0.5084
		2	Outlier+Nova	4.28E-10	8.17E-11	2.99E-09	3.78E-12	8.51E-08	2.54E-09	8.25E-07
500	1	1	Outlier	9.79E-11	6.27E-08	6.54E-11	9.36E-11	2.39E-13	6.90E-09	2.81E-10
		2	Outlier	1.55E-15	9.34E-14	0	0	0	1.11E-16	0
		5	Outlier	0	0	0	0	0	0	0
		1	Nova	0.5189	1.0000	0.6026	0.7868	0.6899	0.8443	0.0181
		2	Nova	1.0000	1.0000	0.6723	0.8700	0.2037	0.1002	0.1674
		2	Outlier+Nova	1.31E-08	3.93E-07	4.49E-10	1.07E-09	5.78E-13	5.10E-08	2.18E-09
	2	1	Outlier	5.49E-12	5.22E-15	9.24E-12	5.78E-12	7.83E-11	1.81E-11	3.22E-09
		2	Outlier	0	0	0	0	0	0	3.33E-16
		5	Outlier	0	0	0	0	0	0	0
		1	Nova	0.7691	0.2455	0.4267	0.4650	0.8800	0.7237	0.3390
		2	Nova	0.2621	0.3009	0.1565	0.8821	0.0815	0.1528	0.1500
		2	Outlier+Nova	3.27E-10	4.73E-14	7.23E-11	5.98E-11	5.17E-10	1.87E-10	2.74E-08
	3	1	Outlier	7.24E-12	1.21E-09	2.54E-10	6.28E-11	1.49E-10	2.81E-11	1.01E-10
		2	Outlier	0	4.44E-16	1.11E-16	0	0	0	0
		5	Outlier	0	0	0	0	0	0	0
		1	Nova	0.0181	1.0000	0.7563	0.0848	0.8157	0.0913	0.5219
		2	Nova	0.1072	0.1300	0.3249	0.0858	0.6873	0.6624	0.7982
		2	Outlier+Nova	3.80E-10	2.92E-09	1.70E-09	8.56E-10	3.69E-09	5.13E-11	5.37E-10
			Junior Triova	9.00E-10	2.02E-03	1.1011-03	0.00E-10	3.03E-03	0.1015-11	0.0111-10

Tabela E.10: Valores-p
 do teste de alteração da estrutura na mistura de duas regressões lineares no caso EVI, em que
 $x \in [0;2]$

 $270 \hspace{3.1em} Ap \hat{e}ndice \hspace{1.5em} E$

n	A	L	observação				Valor de π_1			
			3	0.2	0.3	0.4	0.5	0.6	0.7	0.8
50	1	1	Outlier	2.86E-06	2.56E-06	3.48E-07	4.88E-12	3.29E-08	2.34E-06	8.96E-05
		2	Outlier	3.12E-08	1.34E-08	1.88E-10	7.77E-16	6.61E-12	9.58E-09	2.41E-06
		5	Outlier	1.25E-09	3.48E-10	1.63E-12	0	1.78E-15	1.91E-13	9.79E-10
		1	Nova	0.9053	1.0000	0.5643	0.0810	1.0000	0.9311	0.6409
		2	Nova	0.5111	0.7923	0.0597	0.8680	0.0373	0.2128	0.9974
		2	Outlier+Nova	1.36E-05	6.90E-06	1.81E-07	1.14E-11	1.62E-07	7.83E-06	0.0005
	2	1	Outlier	1.66E-05	9.42E-10	3.31E-07	7.25E-11	6.91E-08	3.15E-07	7.76E-08
		2	Outlier	3.17E-06	4.04E-12	4.49E-09	6.47E-14	9.91E-11	9.09E-10	8.58E-11
		5	Outlier	6.13E-08	7.77E-16	1.02E-14	0	7.65E-14	1.94E-13	7.77E-16
		1	Nova	1.0000	0.5156	0.0351	0.9139	0.3565	0.8153	0.8275
		2	Nova	0.2939	0.0518	0.0412	0.0044	0.2116	0.2681	0.3039
		2	Outlier+Nova	1.80E-04	1.27E-08	5.36E-07	4.72E-10	3.70E-07	6.59E-07	3.94E-07
	3	1	Outlier	8.90E-09	4.10E-08	0.0001	3.60E-07	1.24E-06	1.47E-06	2.64E-11
		2	Outlier	1.99E-11	1.54E-10	1.33E-05	7.17E-10	8.20E-09	1.21E-08	4.67E-14
		5	Outlier	1.11E-16	1.67E-14	3.27E-06	3.39E-14	9.05E-12	6.83E-13	0
		1	Nova	0.2734	0.3762	0.8447	0.7961	0.9345	0.6926	0.6026
		2	Nova	0.5264	0.5217	0.1012	0.7806	0.7035	0.8959	0.3216
		$\overline{2}$	Outlier+Nova	1.07E-06	1.88E-07	4.71E-05	3.87E-07	2.06E-06	9.78E-06	1.45E-10
100	1	1	Outlier	3.74E-06	1.62E-07	3.34E-10	5.72E-09	4.27E-09	1.03E-08	4.29E-09
100	-	2	Outlier	2.63E-07	1.03E-09	6.66E-15	1.78E-13	1.02E-14	1.48E-12	2.09E-13
		5	Outlier	1.63E-11	0	0	0	0	0	0
		1	Nova	1.0000	0.5462	0.5866	0.7619	0.1713	0.5955	0.8638
		2	Nova	0.8361	1.0000	0.0230	0.6675	0.5688	0.9206	0.4678
		2	Outlier+Nova	7.48E-06	6.02E-07	2.25E-09	1.97E-08	2.53E-08	6.90E-08	6.15E-08
	2	1	Outlier	2.00E-07	1.45E-08	2.68E-12	1.49E-09	5.43E-11	3.98E-09	4.72E-09
	_	2	Outlier	2.00E-07 2.01E-09	7.36E-13	0	7.86E-14	1.11E-16	4.13E-13	2.64E-12
		5	Outlier	0	0	0	0	0	0	0
		1	Nova	0.3987	0.0343	0.8617	0.1195	0.4510	0.1694	0.9301
		2	Nova	0.9082	0.7546	0.0668	0.7845	0.9364	0.1001	0.7866
		2	Outlier+Nova	2.66E-07	7.58E-08	4.83E-11	1.09E-08	3.48E-10	1.18E-08	2.35E-08
	3	1	Outlier	2.14E-07	5.76E-08	0.0001	2.21E-08	1.03E-09	1.33E-07	1.48E-08
	•	2	Outlier	2.78E-11	1.39E-10	1.01E-07	5.41E-13	5.88E-15	2.91E-11	7.56E-13
		5	Outlier	1.57E-14	5.55E-16	8.17E-14	0	0	0	0
		1	Nova	1.0000	1.0000	0.7818	0.4711	0.5714	0.1736	0.9285
		2	Nova	1.0000	0.0947	1.0000	0.4850	0.1475	0.0980	0.0985
		2	Outlier+Nova	1.31E-06	4.97E-07	0.0043	1.21E-07	5.74E-09	6.45E-07	1.07E-07
500	1	1	Outlier	2.80E-10	2.83E-08	1.32E-09	2.35E-09	2.05E-10	3.47E-09	1.01E-10
000	-	$\overline{2}$	Outlier	0	3.03E-13	1.11E-16	0	0	1.11E-16	0
		5	Outlier	0	0	0	0	0	0	0
		1	Nova	0.3378	0.6117	0.9308	0.6844	0.7304	0.9222	0.9935
		$\overline{2}$	Nova	0.6983	0.6110	0.1601	0.0897	0.0926	0.0947	0.7786
		2	Outlier+Nova	1.55E-10	1.91E-07	2.34E-09	3.95E-12	3.32E-10	6.26E-09	6.96E-10
	2	1	Outlier	9.72E-09	7.56E-10	4.69E-11	7.44E-09	1.12E-09	1.75E-10	5.14E-09
	_	2	Outlier	2.22E-15	2.22E-16	0	9.55E-15	3.33E-16	0	1.11E-16
		5	Outlier	0	0	0	0.0012 10	0	0	0
		1	Nova	0.2186	0.4125	0.1848	0.5573	0.4451	0.2202	0.9689
		2	Nova	0.5569	0.7935	0.6703	0.3095	0.9548	0.8282	0.7062
		2	Outlier+Nova	5.55E-08	3.95E-10	1.03E-10	3.83E-08	3.47E-09	1.13E-09	3.20E-08
	3	1	Outlier	5.12E-11	1.09E-09	9.48E-10	5.25E-10	3.81E-09	1.13E-03 1.89E-12	3.08E-11
	9	2	Outlier	0.1215-11	1.03E-03 1.11E-15	1.11E-16	3.33E-16	4.44E-16	0	0
		5	Outlier	0	0	0	0.5512-10	0	0	0
		1	Nova	0.9433	1.0000	0.2409	0.2030	0.8992	0.9505	0.0868
		2	Nova	0.7991	1.0000	0.2409 0.7687	0.2030 0.7044	0.3513	0.9303 0.8347	0.6316
		$\frac{2}{2}$	Outlier+Nova	1.70E-07	1.44E-08	5.44E-09	3.34E-09	2.41E-08	1.75E-11	2.62E-10
			Outmet Triova	1.1011-01	1.4417-00	0.4415-09	9.94E-03	2.41D-00	1.1015-11	2.0215-10

Tabela E.11: Valores-p
 do teste de alteração da estrutura na mistura de duas regressões lineares no caso EIV, em que
 $x \in [-1;3]$

n	A	L	observação				Valor de π_1			
				0.2	0.3	0.4	0.5	0.6	0.7	0.8
50	1	1	Outlier	6.63E-06	3.17E-07	1.77E-08	2.28E-06	1.19E-07	4.03E-07	4.59E-09
		2	Outlier	5.51E-09	5.12E-10	3.50E-11	1.30E-09	2.11E-09	2.83E-09	8.29E-12
		5	Outlier	7.61E-09	6.99E-15	3.82E-14	1.47E-12	4.50E-14	6.17E-12	1.11E-16
		1	Nova	0.7088	0.8235	0.7452	0.0261	0.6906	0.2326	1.0000
		2	Nova	0.8114	0.7186	0.0595	0.9107	0.2441	0.3511	0.1310
		2	Outlier+Nova	3.93E-06	9.23E-08	1.30E-07	4.68E-06	1.23E-06	1.24E-06	3.34E-08
	2	1	Outlier	0.0002	4.30E-05	3.38E-08	5.54E-07	1.89E-08	1.68E-07	8.34E-07
		2	Outlier	0.0004	5.05E-07	2.43E-10	1.22E-09	4.67E-11	4.33E-10	2.10E-09
		5	Outlier	2.41E-05	4.82E-09	2.51E-12	2.35E-13	8.33E-15	3.60E-13	4.19E-13
		1	Nova	1.0000	0.7302	0.5051	0.1942	0.9362	0.5935	0.9180
		2	Nova	1.0000	0.7427	0.8472	0.9262	0.1799	0.1896	0.9000
		2	Outlier+Nova	0.0008	0.0002	2.65E-07	4.07E-07	2.70E-07	8.56E-07	3.47E-06
	3	1	Outlier	4.66E-07	5.31E-06	6.65E-09	3.06E-07	3.69E-07	7.67E-08	3.98E-10
		2	Outlier	2.22E-09	1.80E-07	6.82E-11	3.71E-09	1.63E-10	7.62E-11	3.22E-15
		5	Outlier	3.26E-10	5.25E-11	7.44E-15	3.17E-11	1.15E-14	5.46E-14	0
		1	Nova	0.9821	0.5934	0.2426	0.7594	0.5628	0.0852	0.0963
		2	Nova	0.6131	0.4855	0.7903	0.4510	0.2791	0.9388	0.5439
		2	Outlier+Nova	5.12E-07	2.79E-05	1.75E-08	7.44E-07	3.17E-06	3.12E-07	2.21E-09
100	1	1	Outlier	6.48E-08	2.98E-11	6.24E-08	3.80E-07	3.71E-09	1.56E-11	1.69E-09
100	-	2	Outlier	4.40E-11	1.33E-15	3.90E-12	1.20E-10	4.00E-15	2.22E-16	5.17E-14
		5	Outlier	1.11E-16	0	0	0	0	0	0
		1	Nova	0.0948	0.6665	0.8791	0.0932	0.4644	0.5862	0.7623
		2	Nova	0.5766	0.4840	0.0880	0.0332 0.8167	0.4044 0.1175	0.6592	0.4384
		2	Outlier+Nova	1.03E-06	2.34E-10	1.59E-07	1.01E-06	2.41E-08	7.78E-11	2.99E-09
	2	1	Outlier	4.25E-10	3.97E-08	7.85E-09	1.01E-00 1.08E-08	1.77E-09	2.59E-07	7.29E-10
	4	2	Outlier	3.77E-15	1.64E-12	4.16E-13	3.90E-13	7.56E-14	4.92E-11	3.11E-14
		5	Outlier	0	0	0	0 0	0	0	0
		1	Nova	0.0979	0.7423	0.8489	0.4606	0.2495	0.8927	0.0821
		2	Nova	0.0979	0.7423 0.4013	0.5383	0.4600 0.0762	0.2495 0.1516	0.8927	0.0621 0.6146
		$\frac{2}{2}$	Outlier+Nova			5.22E-08				
	3	1	Outlier + Nova	3.74E-09	1.26E-07		2.12E-08	1.09E-08	1.52E-06	3.70E-09
	3	2		1.72E-09	5.80E-09	3.78E-08	6.89E-08	4.81E-08	3.09E-08	1.75E-07
		2 5	Outlier	1.26E-13	4.32E-13	3.98E-12	1.97E-11	1.15E-11	4.00E-12	2.85E-11
			Outlier	0 0024	0 0001	0	0	0 0007	0	0
		1	Nova	0.2034	0.8691	0.2479	0.8524	0.0987	0.3794	0.8658
		2	Nova	0.3476	0.0755	0.7220	0.9811	0.1488	0.6177	0.5494
* 00		2	Outlier+Nova	1.48E-08	3.79E-08	1.77E-07	3.55E-07	3.33E-07	1.67E-07	9.73E-07
500	1	1	Outlier	2.27E-09	6.73E-10	2.78E-09	1.85E-09	1.06E-09	7.63E-09	1.63E-09
		2	Outlier	1.44E-15	1.11E-16	1.33E-15	1.11E-15	2.22E-16	6.22E-15	5.55E-16
		5	Outlier	0	0	0	0	0	0	0
		1	Nova	0.5513	0.3735	0.3054	0.4142	0.4656	0.1082	0.8341
		2	Nova	0.6896	0.1858	0.2885	0.6450	0.3352	0.9172	0.0823
	_	2	Outlier+Nova	7.59E-09	1.54E-09	1.89E-08	9.04E-09	5.41E-09	3.60E-08	1.19E-08
	2	1	Outlier	1.41E-09	1.12E-08	8.37E-09	3.40E-09	7.01E-10	4.89E-09	5.81E-09
		2	Outlier	1.33E-15	4.88E-15	3.44E-15	2.44E-15	8.88E-16	4.44E-15	7.22E-15
		5	Outlier	0	0	0	0	0	0	0
		1	Nova	0.8360	0.3306	1.0000	0.3060	0.2434	0.8006	0.0861
		2	Nova	0.7621	0.5630	0.8553	0.8225	0.2064	0.1994	0.1967
		2	Outlier+Nova	1.07E-08	6.31E-08	2.60E-08	1.60E-08	1.36E-09	3.73E-08	1.45E-08
	3	1	Outlier	5.13E-10	2.69E-08	1.24E-08	3.98E-09	4.96E-10	5.00E-09	7.92E-09
		2	Outlier	0	2.14E-13	8.77E-15	7.66E-15	0	3.33E-15	1.19E-14
		5	Outlier	0	0	0	0	0	0	0
		1	Nova	0.0905	0.4300	0.9021	0.2492	0.6932	0.7062	0.9749
			11010	0.000						
		2	Nova Outlier+Nova	0.4428	0.9617	0.4943	0.8773	0.3884	0.7025	0.4555

Tabela E.12: Valores-p
 do teste de alteração da estrutura na mistura de duas regressões lineares no caso EIV, em que
 $x \in [0;2]$

 $272 \hspace{3.1em} Ap \hat{e}ndice \hspace{1mm} E$

n	A	L	observação				Valor de π_1			
				0.2	0.3	0.4	0.5	0.6	0.7	0.8
50	1	1	Outlier	6.23E-08	1.37E-08	3.86E-08	3.67E-08	1.22E-09	1.42E-07	1.42E-06
		2	Outlier	1.84E-09	1.67E-10	3.29E-10	5.60E-10	2.07E-12	4.49E-10	1.11E-08
		5	Outlier	1.38E-10	1.37E-12	3.26E-13	3.04E-13	0	2.87E-13	8.65E-13
		1	Nova	0.1527	1.0000	0.8491	1.0000	0.7344	0.7785	0.3662
		2	Nova	0.9856	0.3207	0.0502	1.0000	0.5091	0.9683	0.6677
		2	Outlier+Nova	5.87E-06	2.06E-07	5.40E-07	4.53E-08	7.80E-09	9.36E-07	1.04E-05
	2	1	Outlier	0.05337661	8.39E-07	1.17E-09	4.13E-09	1.54E-07	1.37E-11	1.62E-06
		2	Outlier	0.08032865	5 3.28E-08	7.17E-13	7.23E-12	8.07E-12	4.44E-15	2.43E-08
		5	Outlier	0.00128296	693.52E-09	4.44E-16	1.38E-13	1.89E-15	0	2.91E-11
		1	Nova	0.9370	1.0000	0.7232	0.7011	0.7883	0.1002	0.1982
		2	Nova	1.0000	0.3756	0.7728	0.9671	0.4164	0.1933	0.5442
		2	Outlier+Nova	0.07059534	4 5.60E-06	7.89E-09	1.86E-08	7.91E-07	1.74E-11	1.78E-05
	3	1	Outlier	0.5903585	3.23E-10	2.14E-07	1.68E-10	3.41E-10	8.96E-08	2.16E-09
		2	Outlier	0.00225146	665.17E-13	5.30E-11	5.43E-14	3.31E-13	4.04E-10	2.78E-12
		5	Outlier	2.34E-05	3.66E-15	3.56E-13	0	0	1.33E-13	4.44E-16
		1	Nova	1.0000	0.2939	0.3593	0.8637	0.0728	0.5337	0.5351
		2	Nova	1.0000	0.7956	0.5003	0.5015	0.6001	0.1632	0.7910
		2	Outlier+Nova	0.1957362	1.73E-09	3.25E-07	7.61E-10	1.40E-09	3.83E-07	1.05E-08
100	1	1	Outlier	2.61E-05	1.81E-05	9.11E-09	2.47E-12	4.44E-16	7.20E-11	6.00E-09
		2	Outlier	2.21E-06	4.03E-09	2.65E-13	0	0	1.01E-14	2.29E-12
		5	Outlier	1.41E-09	4.15E-12	0	0	0	0	0
		1	Nova	0.8903	0.8952	1.0000	0.3820	0.1001	0.1660	0.9595
		2	Nova	0.3900	1.0000	0.5362	0.3058	0.8239	0.1994	0.6152
		2	Outlier+Nova		350.00014679		9.26E-12	1.67E-15	4.29E-10	4.42E-08
	2	1	Outlier	4.40E-10	6.07E-07	4.41E-08	1.25E-09	2.23E-11	3.46E-08	9.95E-08
	_	2	Outlier	3.88E-13	4.90E-09	1.73E-11	7.41E-14	9.21E-15	3.18E-12	3.69E-11
		5	Outlier	0	1.06E-11	0	0	0	0	1.11E-16
		1	Nova	0.7361	0.8660	0.3340	1.0000	0.8774	0.8003	0.2490
		2	Nova	0.0145	0.4134	1.0000	0.0380	0.1787	0.9909	0.4626
		$\overline{2}$	Outlier+Nova	7.30E-09	2.48E-06	2.83E-07	1.14E-08	1.77E-10	2.08E-07	2.34E-06
	3	1	Outlier	0.00796739		1.30E-07	3.69E-12	1.70E-11	1.23E-13	7.43E-09
	-	2	Outlier	5.47E-05	2.67E-13	1.15E-10	8.88E-16	2.44E-15	0	4.23E-13
		5	Outlier	4.89E-05	0	1.11E-16	0	0	0	0
		1	Nova	1.0000	0.9088	0.3455	0.0826	0.0630	0.6682	0.9897
		2	Nova	1.0000	0.9198	0.4296	0.9612	0.5664	0.4726	0.3331
		2	Outlier+Nova	0.00184853		1.30E-06	3.93E-11	2.16E-11	9.73E-13	2.88E-08
500	1	1	Outlier	6.00E-07	1.01E-09	7.13E-07	1.33E-15	6.73E-11	4.03E-11	7.19E-11
000	-	2	Outlier	1.04E-12	2.22E-16	9.33E-15	0	0.752 11	0	0
		5	Outlier	0	0	0	0	0	0	0
		1	Nova	1.0000	0.4858	1.0000	0.6279	0.0943	0.0943	0.3401
		2	Nova	1.0000	0.0583	0.7395	0.0972	0.2591	0.8726	0.0476
		2	Outlier+Nova	1.82E-06	1.49E-07	5.87E-06	7.22E-15	3.80E-10	1.57E-10	1.45E-10
	2	1	Outlier	3.24E-08	9.90E-08	1.11E-10	1.02E-13	1.40E-14	2.66E-14	0
	_	2	Outlier	5.08E-13	2.16E-14	0	0	0	0	0
		5	Outlier	0	0	0	0	0	0	0
		1	Nova	0.0406	0.2132	1.0000	1.0000	0.7509	0.1966	1.0000
		2	Nova	0.9692	0.9358	0.8198	0.1439	0.0917	0.0913	0.1012
		2	Outlier+Nova	6.48E-08	1.59E-06	9.62E-10	3.99E-12	1.25E-13	1.96E-13	0.1012
	3	1	Outlier	2.15E-10	6.36E-10	1.48E-08	1.13E-11	5.40E-09	0	7.77E-15
	J	2	Outlier	2.13E-10 0	1.11E-15	0	0	0.40E-09	0	0
		5	Outlier	0	1.11E-15 0	0	0	0	0	0
		1	Nova	0.4196	0.1274	0.6387	0.4218	0.7589	0.6298	0.0179
		2	Nova Nova	0.4196 0.0496	0.1274 0.5612	0.0367 0.5405	1.0000	0.7589	0.0298 0.0985	0.0179
		$\frac{2}{2}$	Outlier+Nova		0.5012 3.70E-09		5.47E-11			
			Outmer+Nova	1.18E-11	3.70E-09	8.28E-08	0.47E-11	3.87E-08	3.33E-16	7.16E-14

Tabela E.13: Valores-p do teste de alteração da estrutura na mistura de duas regressões lineares no caso CII, em que $x \in [-1;3]$

n	A	L	observação				Valor de π_1			
				0.2	0.3	0.4	0.5	0.6	0.7	0.8
50	1	1	Outlier	0.0001	2.84E-05	7.61E-07	1.98E-09	6.92E-09	4.19E-10	3.72E-09
		2	Outlier	7.12E-07	2.45E-05	7.69E-09	1.01E-11	2.74E-11	1.32E-14	4.18E-12
		5	Outlier	2.22E-08	2.06E-04	6.82E-11	3.22E-14	6.08E-14	4.17E-14	5.00E-15
		1	Nova	0.2437	1.0000	1.0000	0.3926	0.1095	0.8159	0.2625
		2	Nova	0.0898	0.2931	1.0000	0.2465	0.8964	0.3028	0.8553
		2	Outlier+Nova	1.40E-04	7.64E-05	5.63E-07	2.40E-08	3.04E-08	3.54E-07	1.31E-08
	2	1	Outlier	2.09E-10	2.33E-07	5.01E-07	2.69E-14	8.46E-09	7.27E-07	4.16E-06
		2	Outlier	2.24E-12	2.53E-07	8.51E-08	0	4.28E-11	1.91E-09	1.22E-08
		5	Outlier	1.04E-13	3.30E-08	1.41E-07	0	1.85E-13	1.36E-12	2.23E-11
		1	Nova	0.1430	0.8220	0.3714	0.3858	0.3145	0.5161	0.7831
		2	Nova	0.5148	0.2012	0.8266	0.0445	0.1595	0.9793	0.8964
		2	Outlier+Nova	1.31E-10	1.88E-05	7.16E-06	1.79E-13	5.67E-08	4.39E-06	2.21E-05
	3	1	Outlier	0.0003	9.63E-09	6.15E-09	2.02E-09	1.10E-07	2.33E-12	9.21E-11
		2	Outlier	0.0013	1.36E-11	9.03E-12	1.22E-12	7.16E-13	7.77E-16	7.29E-13
		5	Outlier	0.0042	2.33E-15	4.00E-15	1.19E-14	1.44E-15	0	1.11E-15
		1	Nova	0.3525	0.3382	0.8701	0.6222	0.8143	0.7905	0.2496
		2	Nova	0.3318	0.4298	0.3652	0.1858	0.6389	0.0726	0.9234
		2	Outlier+Nova	4.23E-05	7.71E-08	5.65E-08	2.53E-09	1.77E-07	9.84E-12	3.05E-10
100	1	1	Outlier	1.02E-10	1.27E-09	4.90E-11	2.30E-10	8.84E-12	1.31E-11	5.94E-14
		2	Outlier	4.33E-15	1.01E-13	0	3.33E-16	1.11E-16	4.22E-15	1.11E-16
		5	Outlier	0	0	0	0	0	0	0
		1	Nova	0.3564	0.1758	0.2593	1.0000	0.0588	0.3284	0.1755
		2	Nova	0.9804	0.7896	0.4318	0.4223	0.0038	0.5475	0.5467
		2	Outlier+Nova	1.44E-10	9.99E-09	4.94E-12	2.09E-10	6.81E-11	4.95E-11	2.41E-13
	2	1	Outlier	8.54E-06	4.29E-09	4.59E-10	0	4.96E-10	0	3.94E-12
		2	Outlier	3.07E-08	9.60E-13	1.11E-16	0	7.22E-15	0	2.22E-16
		5	Outlier	5.76E-12	0	1.11E-16	0	0	0	0
		1	Nova	1.0000	0.2069	0.4391	0.8163	0.6023	1.0000	1.0000
		2	Nova	0.1205	0.9282	0.4870	0.5115	0.7992	0.2447	0.1238
		2	Outlier+Nova	2.01E-05	1.33E-08	1.25E-09	1.11E-16	3.10E-09	2.22E-16	2.90E-11
	3	1	Outlier	6.85E-13	8.92E-11	3.09E-08	2.37E-12	2.40E-09	1.04E-07	7.42E-07
		2	Outlier	2.44E-15	4.44E-16	1.92E-13	0	1.39E-13	2.60E-11	4.45E-10
		5	Outlier	0	0	0	0	0	0	1.73E-14
		1	Nova	0.8139	0.7337	0.2836	0.0483	0.5575	1.0000	0.8609
		2	Nova	0.8330	0.5056	0.9595	0.4666	0.8146	1.0000	0.3919
		2	Outlier+Nova	7.00E-11	6.02E-10	1.45E-07	3.25E-12	2.50E-08	2.05E-07	1.43E-05
500	1	1	Outlier	1.72E-10	1	1.20E-11	5.75E-12	0	3.77E-09	4.44E-16
		2	Outlier	0	0	1.11E-16	0	0	0	0
		5	Outlier	0	0	0	0	0	0	0
		1	Nova	0.0146	1.0000	0.2326	0.0145	0.2605	0.7961	0.0763
		2	Nova	0.9096	0.9495	0.9307	0.9869	0.3743	0.6278	0.8702
		2	Outlier+Nova	1.02E-08	1	1.66E-11	2.42E-11	0	0	1.55E-15
	2	1	Outlier	5.00E-15	9.90E-11	1.77E-09	2.38E-14	0	0	1.99E-12
		2	Outlier	0	0	0	0	0	0	0
		5	Outlier	0	0	0	0	0	0	0
		1	Nova	0.6870	0.5526	0.4527	0.7915	0.3924	1.0000	0.6473
		2	Nova	0.8177	0.9791	0.8889	0.7690	0.0123	0.4907	0.9160
		2	Outlier+Nova	9.10E-15	1.09E-09	1.11E-09	1.01E-13	0	0	1.44E-11
	3	1	Outlier	6.18E-06	0	9.69E-13	1.11E-16	0	0	0
		2	Outlier	2.66E-15	0	0	0	0	0	0
		5	Outlier	0	0	0	0	0	0	0
		1	Nova	0.0706	1.0000	0.5556	0.6959	0.0311	0.8145	0.5135
		2	Nova	0.3127	1.0000	0.2027	0.8950	0.0814	0.2691	0.1135
		2	Outlier+Nova	8.44E-06	0	7.97E-12	9.99E-16	0	0	0
			Jumer Triova	0.44E-00	J	1.0115-14	J.JJE-10	J .	U	U

Tabela E.14: Valores-p
 do teste de alteração da estrutura na mistura de duas regressões lineares no caso CII, em que
 $x \in [0;2]$

n	A	L	observação				Valor de π_1			
				0.2	0.3	0.4	0.5	0.6	0.7	0.8
50	1	1	Outlier	1.16E-13	2.90E-14	7.77E-13	5.77E-15	1.47E-13	9.77E-15	4.10E-13
		2	Outlier	0	5.55E-16	0	0	1.11E-16	0	0
		5	Outlier	0	0	0	0	0	0	0
		1	Nova	0.1572	0.0908	0.5358	0.5212	0.6845	0.5701	0.8728
		2	Nova	0.8896	1.0000	1.0000	0.4016	0.3486	0.7877	0.1627
		2	Outlier+Nova	2.11E-15	1.65E-13	2.61E-12	1.55E-15	1.38E-12	6.20E-12	1.67E-12
	2	1	Outlier	2.20E-12	2.40E-13	0	7.11E-15	3.49E-13	0	1.11E-15
		2	Outlier	9.31E-07	1.11E-16	0	0	0	0	0.02661228
		5	Outlier	5.28E-08	0	0	0	0	0	1.11E-16
		1	Nova	0.3819	0.3075	0.1491	0.3311	0.5028	1.0000	0.8956
		2	Nova	0.0875	0.3068	0.0458	0.1925	0.1923	0.1664	0.1928
		2	Outlier+Nova	0.0006	1.21E-12	0	6.88E-15	4.86E-13	0	1.03E-14
	3	1	Outlier	1.25E-13	0	3.59E-14	6.99E-15	2.22E-16	1.12E-13	0.0046
	5	2	Outlier	0	0	0.03E-14	0.3312-13	0	1.11E-16	2.52E-06
		5	Outlier	0	0	0	0	0	2.83E-14	2.55E-15
		1	Nova	0.7222	0.0314	0.1789	0.5314	0.5844	0.4718	
										0.8958
		2	Nova	0.0880	0.1675	0.9220	0.7648	0.4814	0.9430	0.2010
100	-	2	Outlier+Nova	5.00E-13	3.89E-15	1.23E-12	9.77E-14	8.88E-16	2.14E-09	2.31E-09
100	1	1	Outlier	0	0	0	0	0	0	0
		2	Outlier	0	0	0	0	0	0	0
		5	Outlier	0	0	0	0	0	0	0
		1	Nova	0.1741	1.0000	0.1755	0.1334	0.1919	0.2424	0.0763
		2	Nova	0.0830	1.0000	0.0766	0.8378	0.0974	0.6549	0.7074
		2	Outlier+Nova	0	0	0	1.11E-13	0	0	0
	2	1	Outlier	1.11E-16	0	0	0	0	0	2.22E-16
		2	Outlier	0	0	0	0	0	0	0
		5	Outlier	0	0	0	0	0	0	0
		1	Nova	0.1746	0.3794	0.1815	0.4670	0.0310	0.6708	0.6938
		2	Nova	0.5324	0.0964	0.1823	0.4076	0.1668	0.0954	0.9123
		2	Outlier+Nova	4.00E-15	0	0	0	0	0	1.89E-15
	3	1	Outlier	2.22E-16	0	2.22E-16	0	1.11E-16	0	1.31E-13
		2	Outlier	0	0	0	0	0	0	1
		5	Outlier	0	0	0	0	0	0	0
		1	Nova	0.2346	0.6190	0.2999	0.7209	0.4353	0.6318	0.6734
		$\overline{2}$	Nova	0.7559	0.8213	0.7563	0.0850	0.6992	0.2998	0.8320
		2	Outlier+Nova	6.66E-16	1.11E-16	2.00E-15	0.0000	0.0332	0.2330	2.57E-13
500	1	1	Outlier	0.0012-10	0	0	0	0	0	0
500	1	2	Outlier	0	0	0	0	0	0	0
		5	Outlier	0	0	0	0	0	0	0
					0.7839					
		1	Nova	0.0801		0.4778	0.8792	0.9595	0.3703	0.8393
		2	Nova	0.0805	0.0733	0.7447	0.4802	0.6096	0.4923	0.7484
		2	Outlier+Nova	0	0	0	0	1.11E-16	0	0
	2	1	Outlier	2.21E-14	0	0	0	0	0	0
		2	Outlier	0	0	0	0	0	0	0
		5	Outlier	0	0	0	0	0	0	0
		1	Nova	1.0000	1.0000	0.9048	0.2560	0.6193	0.3409	0.6680
		2	Nova	0.5170	1.0000	0.4278	0.1185	0.9777	0.0012	0.3450
		2	Outlier+Nova	4.89E-12	0	0	0	0	0	0
	3	1	Outlier	0	0	0	0	0	0	0
		2	Outlier	0	0	0	0	0	0	0
		5	Outlier	0	0	0	0	0	0	0
		1	Nova	0.3245	1.0000	0.7566	0.9191	0.1993	0.3012	0.1667
		2	Nova	0.9170	1.0000	0.4428	0.0000	0.0904	0.0282	0.8473
		2	Outlier+Nova	0	0	0	0.0000	0	0	0
			Jumoi Triova	0	0	· ·	U	U	0	

Tabela E.15: Valores-p
 do teste de alteração da estrutura na mistura de duas regressões lineares no caso CIV, em que
 $x\in[-1;3]$

n	A	L	observação				Valor de π_1			
			,	0.2	0.3	0.4	0.5	0.6	0.7	0.8
50	1	1	Outlier	3.80E-13	1.33E-15	6.66E-16	4.44E-16	0	1.55E-15	0
		2	Outlier	3.33E-16	0	0	0	0	0	0
		5	Outlier	0	0	0	0	0	0	0
		1	Nova	0.0941	0.5330	0.1380	0.2063	0.6060	0.7068	0.3041
		2	Nova	0.8046	0.9874	0.1565	0.8928	0.1054	0.6507	0.9276
		2	Outlier+Nova	5.98E-12	6.77E-15	4.33E-15	3.77E-15	0	1.08E-14	0
	2	1	Outlier	8.55E-14	1.11E-16	1.65E-13	0	1.83E-14	2.35E-12	1.11E-16
		2	Outlier	0	0	0	0	0	3.33E-15	0
		5	Outlier	0	0	0	0	0	0	0
		1	Nova	0.1093	0.1585	0.5168	0.1093	0.7024	0.5563	0.9331
		2	Nova	0.7818	0.6789	0.6770	0.0908	0.5419	0.9789	0.8474
		2	Outlier+Nova	1.26E-12	4.66E-15	7.18E-13	2.22E-13	0	4.86E-12	2.22E-16
	3	1	Outlier	3.01E-13	2.33E-15	1.42E-13	3.84E-14	0	2.68E-14	4.11E-15
	9	2	Outlier	9.99E-16	0	5.55E-16	0	0	0	9.77E-15
		5	Outlier	9.99E-10 0	0	0.5512-10	0	0	7.87E-14	7.77E-16
		1	Nova	1.0000	1.0000	0.6838	0.7184	0.2355	0.3432	0.5149
		2	Nova	1.0000	0.8197	0.5839	0.0972	0.6294	0.8647	0.7664
100		2	Outlier+Nova	1.01E-12	9.99E-16	8.58E-13	4.02E-14	0	2.21E-11	4.72E-13
100	1	1	Outlier	1.49E-14	0	1.11E-16	2.22E-16	1.11E-16	0	0
		2	Outlier	0	0	0	0	0	0	0
		5	Outlier	0	0	0	0	0	0	0
		1	Nova	0.4693	0.2090	1.0000	0.4376	0.7414	0.8776	0.6427
		2	Nova	0.1034	1.0000	1.0000	0.6646	0.7539	0.3084	0.1078
		2	Outlier+Nova	5.55E-15	0	3.33E-16	6.55E-15	1.44E-15	0	0
	2	1	Outlier	0	0	0	5.55E-16	0	0	6.20E-14
		2	Outlier	0	0	0	0	0	0	0
		5	Outlier	0	0	0	0	0	0	0
		1	Nova	1.0000	0.2566	1.0000	0.8561	0.5479	0.1107	0.9287
		2	Nova	1.0000	0.5536	0.8673	0.8922	0.0000	0.0784	0.6130
		2	Outlier+Nova	0	0	0	6.66E-16	1.20E-13	0	1.78E-15
	3	1	Outlier	0	0	0	0	3.89E-15	6.66E-15	1.11E-16
		2	Outlier	0	0	0	0	0	0	0
		5	Outlier	0	0	0	0	0	0	0
		1	Nova	1.0000	0.2226	0.5933	0.7832	1.0000	1.0000	0.9588
		2	Nova	0.6920	0.7892	0.9444	0.6723	0.5398	0.3349	0.9475
		$\overline{2}$	Outlier+Nova	0	0	0	0	6.27E-14	0	0
500	1	1	Outlier	0	0	0	0	0.272.11	0	7.82E-14
000	1	2	Outlier	0	0	0	0	0	0	0
		5	Outlier	0	0	0	0	0	0	0
		1	Nova	0.5309	1.0000	0.6168	0.2438	0.0435	1.0000	0.2426
		2	Nova	1.0000	1.0000	0.3632	0.2436 0.5567	0.0435 0.5364	0.9016	0.2420 0.1515
		2		0	0	0.3032	0.5567 1.11E-16		0.9010	
	0		Outlier+Nova	0 2.22E-16				0		0
	2	1	Outlier	-	0	0	0	0	0	0
		2	Outlier	0	0	0	0	0	0	0
		5	Outlier	0	0	0	0	0	0	0
		1	Nova	0.5214	0.1867	0.3688	0.0099	0.3376	0.5137	0.1405
		2	Nova	0.0666	0.1998	0.3096	0.6732	0.3541	0.6843	0.2288
		2	Outlier+Nova	5.55E-16	0	0	0	0	0	0
	3	1	Outlier	0	0	0	0	5.95E-11	0	0
		2	Outlier	0	0	0	0	0	0	0
		5	Outlier	0	0	0	0	0	0	0
		1	Nova	0.1000	0.3917	0.4924	0.5480	1.0000	0.9069	0.1633
		2	Nova	0.3001	1.0000	0.5527	0.2296	0.0049	0.0549	0.2557
		2	Outlier+Nova	0	0	0	0	1.47E-09	0	0

Tabela E.16: Valores-p
 do teste de alteração da estrutura na mistura de duas regressões lineares no caso CIV, em que
 $x \in [0;2]$

Tabela E.17: Valores-p do teste de alteração da estrutura na mistura de três regressões lineares no caso II, em que $x \in [-1;3]$

					ω						2						500 1						3						2						100 1			n
2	2	1	Ċπ	2		2	2	1	Οī	2	1	2	2	_	Οī	2	_	2	2	_	σī	2		2	2	_	Ċπ	2	1	2	2	_	σī	2	_			י נ
Outlier+Nova	Nova	Nova	Outlier	Outlier	Outlier	Outlier+Nova	Nova	Nova	Outlier	Outlier	Outlier	Outlier+Nova	Nova	Nova	Outlier	Outlier	Outlier	Outlier+Nova	Nova	Nova	Outlier	Outlier	Outlier	Outlier+Nova	Nova	Nova	Outlier	Outlier	Outlier	Outlier+Nova	Nova	Nova	Outlier	Outlier	Outlier			Obset vadao
0	0.2100	0.2464	0	0	0	0	1.0000	0.5703	0	0	0	0	0.6961	0.0131	0	0	0	0	0.5555	0.5628	0	0	0	0	0.1382	0.2540	0	0	0	0	0.6853	0.2157	0	0	0	0.2	0.2	
0	0.6378	0.2923	0	0	0	0	0.9272	0.7042	0	0	0	0	0.6347	0.4406	0	0	0	0	0.0089	0.8715	0	0	0	0	0.8285	0.5051	0	0	0	0	0.8678	0.5633	0	0	0	0.3	0.2	
0	0.8864	0.9891	0	0	0	0	0.3780	0.1929	0	0	0	0	0.9319	0.4158	0	0	0	0	0.0211	0.2819	0	0	0	0	0.2333	0.1284	0	0	0	0	0.0500	0.1332	0	0	0	0.4	0.2	
0	0.3045	0.2033	0	0	0	0	0.6915	0.6139	0	0	0	0	0.5747	0.5460	0	0	0	0	0.5561	0.4435	0	0	0	0	0.5166	0.2497	0	0	0	0	0.7571	0.7389	0	0	0	0.5	0.2	
0	0.9334	0.2152	0	0	0	0	0.4078	0.4120	0	0	0	0	0.8997	0.6134	0	0	0	0	0.4803	0.3423	0	0	0	0	0.2450	0.0041	0	0	0	0	0.9667	0.3279	0	0	0	0.6	0.2	
0	0.0854	0.5646	0	0	0	0	0.6532	0.3097	0	0	0	0	0.6936	0.6471	0	0	0	0	0.6781	0.7807	0	0	0	0	0.4478	0.4453	0	0	0	0	0.1075	0.9234	0	0	0	0.2	0.3	
0	0.6151	0.5414	0	0	0	0	0.9207	0.2485	0	0	0	0	0.8448	0.4529	0	0	0	0	0.4129	0.4266	0	0	0	0	0.6912	0.7956	0	0	0	0	0.0290	0.3064	0	0	0	0.3	0.3	2.7
0	0.8206	0.0977	0	0	0	0	0.3796	0.9567	0	0	0	0	0.5875	0.1027	0	0	0	0	0.2489	0.1624	0	0	0	0	0.6317	0.5571	0	0	0	0	0.3713	0.2498	0	0	0	0.4	0.3	
0	0.3495	0.8258	0	0	0	0	0.1867	0.3300	0	0	0	0	0.8091	0.4285	0	0	0	0	0.7531	0.4397	0	0	0	0	0.2575	0.7611	0	0	0	0	0.0414	0.8642	0	0	0	0.5	0.3	
0	0.6992	0.8679	0	0	0	0	0.5857	0.1359	0	0	0	0	0.1071	0.4748	0	0	0	0	0.0395	0.1778	0	0	0	0	0.0513	0.8572	0	0	0	0	0.7509	1.0000	0	0	0	0.2	0.4	
0	0.7172	0.4992	0	0	0	0	0.9349	0.7702	0	0	0	0	0.2666	0.5369	0	0	0	1.85E-09	0.9544	0.6078	0	4.22E-15	2.79E-10	7.27E-09	0.8191	0.8612	0	7.22E-15	1.20E-09	6.44E-09	0.8577	0.7191	0	1.88E-14	9.97E-10	0.3	0.4	
0	0.5094	0.2161	0	0	0	0	0.5721	0.0159	0	0	0	0	0.6392	0.6861	0	0	0	2.35E-09	0.9403	0.8330	0	9.88E-15	3.73E-10	1.13E-08	0.7972	0.8274	0	1.07E-14	1.83E-09	5.84E-10	0.9240	0.7484	0	0	1.43E-10	0.4	0.4	
0	0.2999	0.4600	0	0	0	0	0.3277	0.5392	0	0	0	0	0.2165	0.7445	0	0	0	0	0.2824	0.9434	0	0	0	0	0.4386	0.3893	0	0	0	0	0.1417	0.2438	0	0	0	0.2	0.5	
0	0.5779	1.0000	0	0	0	0	0.2438	0.0690	0	0	0	0	0.1924	0.7844	0	0	0	0	0.8179	0.8396	0	0	0	0	0.7573	0.4240	0	0	0	0	0.5099	0.4070	0	0	0	0.3	0.5	
						0	0.9839	0.0917	0	0	0	0	0.5867	0.6903	0	0	0	1.93E-10	0.9109	0.8259	0	7.77E-16	2.55E-11	1.95E-09	0.9678	0.7813	0	2.00E-15	4.41E-10	7.43E-10	0.9528	0.9560	0	6.66E-16	1.01E-10	0.2	0.6	

Tabela E.18: Valores-p do teste de alteração da estrutura na mistura de três regressões lineares no caso II, em que $x \in [0;2]$

100

..33E-10

2.10E-11

observação

500 1Outlier+Nova Outlier Outlier Outlier Nova Nova Outlier+Nova Nova
Outlier+Nova
Outlier
Outlier
Outlier Outlier+Nova Outlier+Nova Outlier Outlier Outlier Nova Outlier Outlier Outlier Nova Outlier Outlier Nova Outlier Nova 0.0465 0.5607 0.5542 0.9733 3.01E-14 2.42E-09 6.31E-10 9.95E-14 0 0 0 0.5773 0.9790 0.6088 0.4841 1.46E-09 7.23E-13 6.66E-16 3.87E-14 0 0 0 0 0.3543 0.4964 0.2425 0.9065 8.88E-15 1.08E-13 0.3884 0.5099 1.0000 0.9774 3.66E-09 2.41E-07 3.77E-15 2.01E-10 0 1.11E-16 6.38E-05 7.41E-10 1.23E-08 2.32E-06 6.32E-08 9.99E-11 1.58E-12 3.52E-09 0 5.75E-14 $0.1824 \\ 0.4493$ 2.24E-12 5.78E-11 ..11E-16 3.00E-15 0 0 1.08E-07 1.71E-12 4.44E-16 2.85E-07 0.7581 $0.9587 \\ 0.0351$ 0.0061 2.35E-09 1.54E-09 0 0.0002 2.79E-07 8.24E-11 4.04E-14 1.34E-09 0 0 3.40E-14 0 2.16E-09 1.24E-05 $0.0822 \\ 0.6913$ $0.3777 \\ 0$ L.23E-06 L.27E-09 $\begin{array}{c} 1.0000 \\ 0.9925 \end{array}$ 0.33320.6397.67E-06 0.9465.0000 0.9462 5.19E-09 8.08E-11 1.0000 0.2755 1.67E-07 2.61E-11 1.07E-10 1.44E-15 0.0162 0.3249 7.19E-11 0 0 0.3889 6.61E-10 2.82E-07 8.62E-10 6.69E-11 4.75E-13 0.35470.65631.0000 1.0000 0.1905 6.97E-08 7.21E-12 0 8.86E-08 1.04E-07 1.46E-12 3.80E-08 0.2869 0.3717 5.28E-11 7.85E-10 2.22E-16 1.0000 0.1795 5.29E-09 3.81E-12 3.33E-15 1.29E-08 4.87E-07 0.5637 0.58672.40E-12 $0.0640 \\ 0.4010$ $0.1771 \\ 0.0053$ 1.00007.83E-07 2.72E-14 1.19E-09 2.85E-12 0.8688 3.30E-07 2.41E-06 6.21E-13 7.81E-08 8.45E-13 0.4935 0.8554 7.54E-05 0.99150.2584 $0.9478 \\ 0.1744$ $0.7940 \\ 0.8830$ 0.524212E-14 0.30700.53888.66E-15 0 0 2.08E-09 2.82E-12 0 0 1.04E-12 0 0.4681 2.83E-11 3.64E-109.55E-152.79E-09 2.22E-15 1.19E-11 0.6535 0.15361.40E-07 7.43E-10 0.24870.62250.69460.25471.0000 00 0.3581 2.71E-13 5.28E-14 4.69E-10 1.95E-12 1.0000 1.0000 1.11E-16 1.11E-16 6.16E-10 $0.1308 \\ 0.6719$ 0.1176 0.4719 7.47E-07 0.0840 0.4934 1.11E-16 2.86E-13 0 0.93331.0000 1.0000 0.1645 2.22E-10 5.49E-11 0 0.6735 0.0037 1.76E-08 3.71E-11 7.85E-12 5.96E-08 1.14E-12 0 0.0175 0.8239 1.63E-10 2.26E-09 0 0.86247.20E-12 $0.0454 \\ 0.0586$ 1.67E-15 $0.0832 \\ 0.9799$ 0.2995 5.32E-08 1.37E-11 0 0.9321 0.9059 1.72E-10 1.71E-12 1.55E-15 0 1.62E-11 1.20E-12 1.34E-09 1.38E-12 1.02E-13 0 4.44E-15 1.0000 0.0971 7.08E-12 $0.0686 \\ 0.3951$ $0.2228 \\ 0.2503$ 0.08550.12370.53973.01E-09 2.65E-13 6.27E-08 4.84E-10 2.40E-14 0.2202 3.04E-12 1.40E-13 0 $\begin{array}{c} 0.3690 \\ 0.3757 \\ 7.36 \text{E-} 13 \\ 1.98 \text{E-} 10 \\ 0 \\ 0 \\ 0.4053 \\ 0.5142 \\ 1.38 \text{E-} 09 \end{array}$ 0.9828 0.6012 1.94E-12 5.15E-13 $0.3102 \\ 0.2785$ 0.24880.36360.00350 1.94E-09 2.55E-15 0 0 0.7070 0.2910 2.51E-14 0 0 4.37E-10 0 0 9.15E-14 0 3.79E-09 1.67E-10 8.88E-16 4.54E-09 3.33E-15 0.8715 0.5245 1.17E-09 $0.4335 \\ 0.8422$ 0.05600.58080.43300.19844.96E-12 0 0.0785 0.9495 4.13E-07 5.01E-09 9.90E-11 8.07E-11 1.11E-09 0.9374 0.7540 4.17E-11 2.08E-09 0 3.33E-16 6.60E-08 0.8021 0.2713 3.23E-10 2.83E-14 1.29E-13 $1.0000 \\ 0.0000$ 1.44E-14 0 1.0000 0.10010.8155 3.04E-13 2.12E-14 0 0.7344 0.9210 6.88E-08 6.89E-14 0.1831 3.04E-07 4.34E-09 8.44E-15 0 0.7110 0.6810 0.7724 0.7958 9.85E-14 3.33E-15 0 4.29E-10 2.62E-08 2.04E-148.37E-13 0.06410.55390 0 0.5361 3.70E-08 8.49E-12 0 0.5830 0.9840 1.05E-08 6.61E-09 0.0069 4.72E-11 1.55E-15 0 2.41E-14 0 0.3083 0.6030 8.66E-15 8.76E-08 2.60E-09 1.27E-12 1.30E-10 1.27E-08 6.66E-16 $0.4660 \\ 0.8741$ 4.22E-15 0.89650.01910.7648

Tabela E.19: Valores-p do teste de alteração da estrutura na mistura de três regressões lineares no caso III, em que $x \in [-1;3]$

0.9308 0.3088 0.2862 0.9296 0.1603 0.2808 0.0051 0.9482 6.46E-10 4.44E-16 5.33E-15 3.06E-15 0 1.3E-06 0 0 0 0 1.17E-07 0 0.0245 0 0 0 0.0279 0.3842 0.2913 0.2123 0.2190 0.8729 0.1614 0 3.10E-08 3.72E-11 5.33E-11 0
$\begin{array}{c} 0.3088 \\ 0.2808 \\ 4.44E-16 \\ 1.13E-06 \\ 0 \\ 0 \\ 0.3842 \\ 0.8729 \\ 3.72E-11 \end{array}$
0.9308 0.1603 3.46E-10 0 0 0 0.3453 0.0279 0.2190
υ
$\begin{array}{c} 0.9354 \\ 0.9733 \\ 4.44E-09 \\ 2.11E-07 \\ 0 \\ 0 \\ 0.1303 \\ 0.4966 \\ 3.55E-15 \end{array}$
0.4751 1.0000 1.18E-11 1.80E-05 0 0 0.2139 1.0000
$\begin{array}{c} 0.6301 \\ 0.7881 \\ 0 \\ 1.44E-15 \\ 2.59E-14 \\ 0 \\ 0 \\ 0.6439 \\ 0.9898 \\ 8.55E-15 \end{array}$
0.2047 0.0714 3.49E-09 1.24E-11 0 0 0.5892 0.6705 5.50E-12
0.7997 0.4345 1.30E-11 4.64E-10 0 1.31E-10 0.5017 1.0000 6.03E-10
0.1754 0.0176 9.83E-10 2.95E-09 5.54E-10 0 0.0468 0.2979
1.0000 0.5450 1 2.84E-07 1.32E-08 0 0.3751 0.5992 5.71E-13
1.0000 0.6127 2.80E-11 7.05E-11 0 0 0.2786 0.1615 1.08E-12
0.3840 0.6935 1.93E-11 1.15E-14 0 0 0.5887 1.0000 3.66E-15
$\begin{array}{c} 0.6616 \\ 1.0000 \\ 1.09E-09 \\ 0 \\ 0 \\ 0.0027 \\ 0.8799 \\ 0.5661 \\ 0 \end{array}$
Nova Nova Outlier+Nova Outlier Outlier Outlier Nova Nova Nova
0000000000
ю

Tabela E.20: Valores-p do teste de alteração da estrutura na mistura de três regressões lineares no caso III, em que $x \in [0; 2]$

100

5.38E-08

6.35E-09

5.82E-0

6.68E-12

3.46E-10 8.17E-14

3.24E-12

3.58E-08

0.3 0.4 4.48E-1:

./0E. 1.99E-13 0

5.33E-13

8.89E-12

2.55E-15

..12E-0

.53E-08

Outlier+Nova

 $0.3666 \\ 0.2648$ 5.33E-15

Outlier Outlier Outlier Nova

9.08E-14 0 1.01E-09 2.90E-09

> 5.84E-11 6.23E-07 $0.6548 \\ 0.3829$

1.09E-08 8.15E-09

3.16E-14

2.22E-16

3.13E-12

0.6967

0.7024

0.4146 0.1113

0.39040.9102

0.3300

1.0000 1.0000

1.16E-07

6.43E-08

L.72E-06

8.71E-07 1.03E-09

7.50E-08 4.80E-11

4.02E-07 1.75E-08

3.97E-14 5.98E-09

1.60E-11 4.29E-10

4.10E-09

1.11E-16

1.48E-11 1.11E-16 8.44E-08

3.16E-10 1.11E-16 0

4.66E-15

1.67E-15

1.43E-13

0.43910.9338

0.3718

0.8765

0.84130.7167

0.18231.0000 2.96E-07

2.35E-07 5.79E-09

1.29E-09

..80E-10

3.03E-07 2.18E-09

5.75E-13 3.52E-12

 $0.8950 \\ 0.9892$ 1.11E-12

0.0951

 $0.0916 \\ 0.9457$

 $0.1733 \\ 0.2273$

 $0.7366 \\ 0.4216$

4.68E-13 0 0.1729 0.9048

0.0223 0.0090

 $0.1163 \\ 0.4226$

 $0.1193 \\ 0.1843$

 $0.8622 \\ 0.4216$ 1.92E-08

4.87E-09 2.99E-11

4.22E-06 1.34E-09

3.30E-08 2.51E-10

8.55E-08 7.43E-07

0.0509

0.09010.7460

0.9826 0.7588 2.48E-10 3.08E-09

2.15E-08 1.03E-08

5.41E-14 4.25E-09

9.12E-09 1.14E-09

1.0000 9.77E-15 1.84E-12

2.95E-07 6.22E-08

5.73E-10 7.75E-10

4.91E-08 1.26E-10

1.04E-09 2.16E-08

5.34E-09 1.12E-12

L.96E-11 L.10E-09 0.73100.7875

0.24800.7039

0.0858

0.56330.7591 Δ

۲

observação

500 Outlier+Nova Outlier Outlier Outlier Nova
Outlier+Nova
Outlier
Outlier
Outlier
Outlier
Nova Nova Outlier+Nova Outlier+Nova Outlier Outlier Outlier Nova Outlier Outlier Nova Outlier Nova Nova 0.2496 3.51E-09 5.10E-10 3.33E-16 1.11E-15 0 5.11E-15 7.28E-10 0 0 0.8683 0.1125 4.36E-09 0.1725 0.8908 1.67E-08 9.43E-10 0.1169 0.4462 2.22E-10 0.36380 0.2654 6.18E-13 8.38E-12 0.5697 0.1550 6.00E-11 3.38E-11 2.11E-15 0.5773 0.94741.13E-13 0.85332.32E-14 0.0555 4.69E-10 1.82E-10 4.51E-09 1.55E-15 0 1.93E-08 1.69E-10 0 0.4906 0.36830.42740.00971.0000 3.98E-12 0 0 0.0504 1.25E-10 3.45E-09 6.01E-10 0.1583 0.8097 1.46E-12 0.8084 0.9140 7.10E-08 1.0000 0.2786 1.14E-06 0.0517..52E-11 8.55E-15 0 0 0.0710 7.74E-11 3.66E-09 1.33E-15 0.1855 0.8559 2.03E-08 9.90E-12 9.62E-11 1.20E-11 0.2620 0.5521 2.28E-08 2.86E-14 0.7457 0.0958 1.13E-10 1.0000 8.64E-10 8.81E-11 1.11E-16 1.62E-10 2.66E-10 8.61E-13 5.18E-10 $0.3281 \\ 0.7970$ 0.45240.51530.82360.8134.23E-08 4.78E-10 5.36E-11 0 0 2.22E-15 0 0.9265 6.02E-10 7.67E-10 0 0.3115 0.9374 4.19E-09 1.26E-10 0 0 $0.5376 \\ 0.1798$ 0.03430.10250.86095.86E-06 0.0016 1.02E-11 1.0000 0.7576 0.0037 1.71E-12 0 3.38E-06 6.06E-14 1.83E-13 $0.4315 \\ 0.8753$ 0.87150.66554.88E-10 9.50E-11 0 0.2734 0.2005 5.78E-10 2.46E-09 2.22E-16 0 0.9531 0.6856 1.09E-08 0.6721 0.75505.82E-11 0.8885 1.0000 ..35E-1 2.22E-16 0 0 0.8494 5.22E-06 1.30E-06 2.46E-11 1.91E-11 1.27E-10 $0.0126 \\ 0.3270$ 0.18230.09040.92494.24E-10 1.11E-16 0 1.29E-11 7.96E-12 0 0 2.93E-12 0 0 2.84E-13 0.2320 0.3793 1.48E-09 0.2209 2.05E-11 $0.9422 \\ 0.8572$ 0.72110.04390.79736.15E-11 1.16E-10 0 1.0000 0.4284 9.66E-09 0.4490 0.2135 1.15E-09 2.71E-08 0 0.5788 0.1175 1.84E-12 7.69E-11 0.20780.02840.5674 9.57E-14 0.6213 0.2360 9.43E-08 0.5211 0.7583 5.44E-09 3.01E-143.13E-14 2.69E-10 7.17E-10 1.42E-10 4.56E-10 1.18E-14 0.0262 0.7813 1.85E-09 2.16E-11 6.66E-16 1.40E-10 5.82E-12 $0.0239 \\ 0.0672$ 0.0907 0.0054 1.15E-09 0.50470.09900 0.2825 0.6547 3.83E-09 1.89E-11 0 0.0926 9.97E-11 4.75E-12 0 2.56E-14 0.0682 0.0024 4.46E-09 5.31E-10

Tabela E.21: Valores-p do teste de alteração da estrutura mistura de três regressões lineares no caso IV, em que $x \in [-1;3]$

8	7	observescão						π ₁									
	1		0.2	0.2	0.2	0.2	0.2		0.3	0.3	0.3	0.4	0.4	0.4	5.5	5.5	0.6
			0.2	0.3	0.4	0.5	9.0	0.2	0.3	0.4	0.5	0.2	0.3	0.4	0.2	0.3	0.2
100	1	Outlier	8.38E-07	5.28E-10	3.14E-07	4.34E-08	1.19E-08	1.08E-06	2.49E-09	4.08E-10	2.78E-15	2.98E-09	1.73E-06	1.49E-09	5.67E-08	4.06E-09	1.46E-10
	7	Outlier	2.04E-11	2.14E-14	3.52E-10	3.26E-11	1.43E-12	1.40E-08	2.68E-13	1.24E-14	0	2.59E-13	2.18E-12	1.17E-13	2.47E-12	1.95E-13	4.44E-16
	IJ	Outlier	7.35E-12		8.33E-15	3.00E-15	0	1.17E-14	0	0	0	0	0	0	0	0	0
	П	Nova	0.4913	0.9618	0.6122	0.2251	0.1364	0.8138	0.1521	0.1342	0.8845	0.7779	0.2079	0.8210	0.0428	0.0050	0.7224
	2	Nova	0.0724		0.7706	0.1523	1.0000	0.5384	0.6059	0.2416	0.7932	0.3897	0.2573	0.4420	0.0009	0.0419	0.2740
	7	Outlier+Nova	4.79E-06	4	1.05E-06		9.65E-08	4.04E-06	1.51E-08	1.24E-09	4.47E-14	2.87E-08	6.99E-06	9.32E-09	8.81E-08	1.31E-08	5.78E-10
2	П	Outlier	1.29E-06	(i)	1.96E-07	(r)	2.44E-09	3.17E-09	1.65E-09	6.94E-08	1.66E-09	2.15E-07	1.68E-08	6.93E-09	0	2.41E-08	9.05E-11
	7	Outlier	7.49E-09		3.55E-10	1.24E-13	1.12E-14	3.33E-13	8.80E-14	2.34E-11	2.94E-14	7.39E-10	2.92E-12	6.54E-13	0	2.96E-12	1.11E-15
	ŭ	Outlier	8.14E-14	က	2.63E-14	0	0	0	0	2.22E-16	0	2.22E-16	0	0	0	0	0
	1	Nova	0.6410	0.7889	0.8572	0.3796	0.4684	0.1712	0.5581	0.4662	0.5203	0.2534	0.5670	0.7751	0.5551	0.3731	0.9362
	7	Nova	0.9772	1.0000	0.0792	0.0748	0.5855	0.9560	0.3125	0.8153	0.4177	0.3489	0.4978	0.4711	0.6071	0.9657	0.2822
	7	Outlier+Nova	2.24E-06		1.11E-06	CA	8.07E-09	1.46E-08	1.11E-08	4.17E-07	6.81E-09	9.02E-07	_	2.43E-08	0	1.77E-07	4.67E-10
3	П	Outlier	1.42E-05	6.48E-09	3.01E-08		4.56E-08	1.36E-05	1.18E-08	1.47E-08	2.24E-08	1.32E-09	_	3.08E-09	2.26E-07	5.47E-09	2.15E-09
	7	Outlier	5.19E-07	1.25E-12	2.22E-15	0	2.18E-11	1.38E-07	1.29E-12	5.39E-12	8.90E-13	7.46E-14	4.00E-15	9.75E-14	8.98E-11	4.72E-13	2.78E-14
	IJ	Outlier	3.38E-07	0	0		0	6.71E-11	0	0	0	0	0	0	2.22E-16	0	0
	П	Nova	0.2684	0.1576	0.7781	0.4103	0.6348	1.0000	0.2310	0.7014	0.2865	0.1778	0.4525	0.0821	0.7893	0.3196	0.4926
	7	Nova	0.0060	0.9294	0.8870	0.2298	0.4188	1.0000	0.1271	0.0879	0.8341	0.3052	0.9002	0.9095	0.4970	0.7853	0.7524
	2	Outlier+Nova	2.79E-06	3.95E-08	1.79E-07		1.13E-07	0.0001	5.13E-08	6.39E-08	3.66E-08	1.57E-08	1.02E-09	2.29E-08	1.16E-06	2.10E-08	2.86E-08
500 1	П	Outlier	2.61E-10	2.61E-10 5.46E-09	7.11E-07	1.3	3.69E-10	2.87E-09	1.44E-07	1.03E-10	5.21E-12	2.14E-09	1.80E-09	2.83E-10	4.76E-11	5.92E-10	6.05E-10
	2	Outlier	0	6.02E-13	6.99E-14		1.11E-16	5.88E-15	1.66E-13	0	0	1.22E-15	1.22E-15	1.11E-16	0	1.11E-16	2.22E-16
	IJ	Outlier	0	0	0	0	0	0	0			0	0	0	0	0	0
	П	Nova	0.7230	0.5984	1.0000	0.1346	0.2179	0.5372	0.3429	0.4949		0.6075	0.9689	0.9370	0.0885	0.8278	0.3923
	7	Nova	0.4383	0.0563	1.0000		0.4730	0.2862	0.3143			0.5107	0.8942	0.2245	0.0484	0.2796	0.5435
	2	Outlier+Nova	4.86E-10		4.25E-06		2.19E-09	1.04E-08	8.68E-07	_	2.41E-11	1.42E-08	3.13E-10	1.79E-09	5.05E-10	4.11E-09	4.55E-09
2	_	Outlier	1.68E-10	3.67E-09	4.14E-10		3.94E-10	4.32E-05	2.18E-09	_		7.11E-10	6.57E-09	2.78E-10	5.74E-10	1.49E-10	1.18E-10
	7	Outlier	0	1.91E-14	1.11E-16	1.11E-16	3.33E-16	1.06E-11	1.67E-15	8.88E-16	0	3.30E-13	2.11E-14	0	1.11E-16	0	1.11E-16
	ŭ	Outlier	0	0	0		0	0	0	0		0	0	0	0	0	0
	-	Nova	0.8392	0.7587	0.7718	0.2717	0.2695	0.1147	0.1559	1.0000	0.3323	0.7437	0.1166	1.0000	0.4509	0.1474	0.7228
	7	Nova	0.8629	0.4691	0.8176	0.0296	0.5544	0.6506	0.8866	0.2161	0.1285	0.8480	0.5738	0.2012	0.8849	0.0199	0.8147
	7	Outlier+Nova	6.30E-10	_	1.02E-09	1.21E-10	4.30E-09	6.46E-05	1.14E-08	1.06E-08	6.76E-09	2.96E-09	4.05E-08	2.36E-09	3.53E-09	6.71E-10	5.77E-10
3	П	Outlier	4.84E-11	1.64E-05	5.35E-07	2.58E-10	2.49E-10	1.29E-09	2.88E-07	2.36E-10	2.45E-10	2.68E-07	3.75E-09	2.98E-11	4.45E-10	2.43E-09	6.30E-10
	7	Outlier	0	1.42E-11	1.20E-12	0	0	9.99E-16	1.51E-12	1.11E-16	0	3.54E-13	9.75E-10	0	1.11E-16	5.55E-16	2.55E-15
	IJ	Outlier	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	П	Nova	0.8377	0.9201	0.1326	0.0622	0.8725	0.1599	0.4775	0.3539	0.8299	0.9452	0.6784	0.8619	0.7436	1.0000	0.6801
	7	Nova	0.2001	0.8712	1.0000	0.2917	0.3887	0.2457	0.9071	0.5064	0.7247	0.3543	0.4889	0.6423	0.3071	0.5269	0.6734
	7	Outlier+Nova	3.85E-10	0.0001	3.52E-06	1.65E-10	1.95E-09	7.73E-09	5.84E-07	3.26E-09	2.03E-09	1.37E-06	2.17E-08	2.47E-10	3.44E-09	1.41E-08	1.49E-09

Tabela E.22: Valores-p do teste de alteração da estrutura na mistura de três regressões lineares no caso IV, em que $x \in [0;2]$

Bibliografia

- Agha, M. and Ibrahim, M. (1984). Algorithm as 203: Maximum likelihood estimation of mixtures of distributions. *Applied Statistics*, 33:327–332.
- Aitkin, M. (1999). Meta-analysis by random effect modelling in generalized linear models. *Statistics in Medicine*, 18:2343–2351.
- Aitkin, M., Finch, S., Mendell, N., and Thode, H. (1996). A new test for the presence of a normal mixture distribution based on the posterior bayes factor. *Statistics and Computing*, 6:121–126.
- Aitkin, M. and Wilson, G. (1980). Mixture models, outliers, and the em algorithm. *Technometrics*, 22(3):325–331.
- Anderberg, M. (1973). Cluster analysis for Applications. Academic Press, New York.
- Banfield, J. and Raftery, A. (1993). Model-based gaussian and non gaussian clustering. *Biometrics*, 49:803–821.
- Basford, K. and McLachlan, G. (1985). Likelihhod estimation with normal mixture models. *Applied Statistics*, 34:282–289.
- Behboodian, J. (1970). On a mixture of normal distributions. Biometrika, 57:215–217.
- Böhning, D. (1999). Computer-Assisted Analysis of Mixtures and Applications: Metaanalysis, Disease Mapping and Others. Chapman & Hall, New York.
- Böhning, D., Dietz, E., Schaub, R., Schlattman, P., and Lindsay, B. (1994). The distribution of the likelihood ratio for mixtures of densities from the one parameter exponential family. *Annals of Institute of Mathematical Statistics*, 46:373–388.
- Böhning, D. and Seidel, W. (2003). Editorial: recent developments in mixture models. *Computational Statistics & Data Analysis*, 41:349–357.
- Biernacki, C., Celeux, G., and Govaert, G. (2003). Choosing starting values for them algorithm for getting the higest likelihood in multivatiate gaussian mixture models. *Computational Statistics & Data Analysis*, 41:561–575.
- Billor, N., Hadi, A. S., and Velleman, P. (2001). Bacon: Blocked bdaptive computationally efficient outlier nominators. *Computational Statistics & Data Analysis*, 34:279–298.
- Birkes, D. and Dodge, Y. (1993). Alternatives Methods of Regression. John Wiley & Sons, New York.

Boiteau, G., Singh, M., Singh, R., Tai, G., and T., T. (1998). Rate of spread of pvy-n by alate myzus persicae(sulzer) from infected to healthy plants under laboratory conditions. *Computational Statistics & Data Analysis*, 41:335–344.

- Bowman, K. and Shenton, L. (1973). Space of solutions for a normal mixture. *Biometrika*, 60(3):629–636.
- Bowman, K. and Shenton, L. (1975). Omnibus test contours for departures from normality based on $\sqrt{b_1}$ and b_2 . Biometrika, 62(2):243–250.
- Bryant, J. and Paulson, A. (1983). Estimation of mixing proportions via distance between characteristic functions. *Communications in Statistics Theory and Methods*, 12:1009–1029.
- Calheiros, F. and Faria, S. (2000). Sobre a assimetria e achatamento de misturas de distribuições. Actas do VIII Congresso Anual da Sociedade Portuguesa de Estatística, pages 171–178.
- Calot, G. (1969). Cours de Statistique Descriptive. Dunod.
- Campbell, J., Fraley, C., Stanford, D., Murtagh, F., and Raftery, A. (1999). Model-based methods for real-time textile fault detection. *International Journal of Imaging Systems and Technology*, 10:339–346.
- Cassie, R. (1954). Some uses of probability paper in the analysis of size frequency distributions. Australian Journal of Marine and Freshwater research, 5:513–522.
- Celeux, G. and Govaert, G. (1992). A classification em algorithm and two stochastic versions. *Computational Statistics & Data Analysis*, 14:315–332.
- Celeux, G. and Govaert, G. (1995). Gaussian parsimonious clustering models. *Pattern Recognition*, 28:781–793.
- Celeux, G. and Soromenho, G. (1996). An entropy criterion for assessing the number of clusters in a mixture model. *Journal Classification*, 13:195–212.
- Chambers, J., Cleveland, S., Kleiner, B., and Tukey, A. (1983). *Graphical Methods for Data Analysis*. Boston:Duxbury.
- Charlier, C. and Wicksell, S. (1924). On the dissection of frequency functions. *Arkiv for Mathematik Astronomi och Fysik*, 18(6).
- Chatterjee, S. and Hadi, A. (1988). Sensitivity Analysis in Linear Regression. John Wiley & Sons.
- Chatterjee, S., Hadi, A., and Price, B. (2000). Regression Analysis by Example. John Wiley & Sons, third edition.
- Chhikara, R. and Register, D. (1979). A numerical classification method for partitioning of a large dimensional mixed data set. *Technometrics*, 21:531–538.
- Chuang, R. and Mendell, N. (1997). The approximate null distribution of the likelihood ratio test for a mixture of two bivariate normal distributions with equal variances. *Communications in Statistics Simulation and Computation*, 26:631–648.

Clarke, B. and Heathcote, C. (1994). Robust estimation of k-component univariate normal mixtures. *Annals of the Institute of Statistical Mathematics*, 46:83–93.

- Cohen, A. (1967). Estimation in mixtures of two normal distributions. *Technometrics*, 9:15–28.
- Cohen, E. (1980). Inharmonic tone perception. PhD thesis, Stanford University.
- Cook, R. and Weisberg, S. (1982). Residuals and Influence in Regression. Chapman and Hall, New York.
- Cormack, R. (1971). a review of classification. *Journal of the Royal Statistical Society A*, 134:321–367.
- Cramér, H. (1946). *Mathematical Methods of Statistics*. Princeton University Press, New Jersey.
- Crawford, S. (1994). An application of the laplace method to finite mixture distributions. Journal of the American Statistical Association, 89:259–267.
- D'Agostino, R. (1986). Tests for normal distribution. In D'Agostino, R. and Stephens, M., editors, *Goodness-of-fit Techniques*, pages 367–420. New York: Marcel Dekker.
- D'Agostino, R. and Pearson, E. (1973). Tests for departure from normality. empirical results for the distributions of b_2 and $\sqrt{b_1}$. Biometrika, 60(3):613–622.
- Dasgupta, A. and Raftery, A. (1998). Detecting features in spatial point processes with clutter via model-based clustering. *Journal of the American Statistical Association*, 93:294–302.
- Day, N. (1969). Estimating the components of a mixture of normal distributions. *Biometrika*, 56:463–474.
- De Veaux, R. (1989). Mixtures of linear regressions. Computational Statistics & Data Analysis, 8:227–245.
- Deely, J. and Kruse, R. (1968). Construction of sequences estimating the mixture distribution. *Annals of Mathematical Statistics*, 39:286–288.
- Dempster, A., Laird, N., and Rubin, D. (1977). Maximum likelihood from incomplete data via the em algorithm. *Journal of the Royal Statistical Society B*, 39:1–38.
- Dias, R. and Gamerman, D. (2002). A bayesian approach to hybrid splines non-parametric regression. *Journal of Statistical Computation and Simulation*, 72(4):285–297.
- Doerge, R., Zeng, Z., and Weir, B. (1997). Statistical issues in the search for gene affecting quantitative traits in experimental populations. *Statistical Science*, 12:195–219.
- Eubank, R. (2002). NonParametric Regression and Spline Smoothing. Marcel Dekker, Inc, New York, second edition.
- Everitt, B. and Hand, D. (1981). Finite Mixture Distributions. Chapman and Hall, London.
- Everitt, B., Landau, S., and Leese, M. (2001). Cluster analysis. Arnold, fourth edition.

Faria, S. (1998). Elementos de modelação, simulação e tratamento estatístico de dados. Master's thesis, FCUP.

- Finch, S., Mendell, N., and Thode, H. (1989). Probabilistic measures of adequacy of a numerical search for a global maximum. *Journal of the American Statistical Association*, 84:1020–1023.
- Fowlkes, E. (1979). Some methods for studying the mixture of two normal distributions. Journal of the American Statistical Association, 79:561–575.
- Fraley, C. (1998). Algorithms for model-based gaussian hierarchical clustering. SIAM Journal on Scientific Computing, 20(1):270–281.
- Fraley, C. and Raftery, A. (1998). How many clusters? which clustering method? answers via model-based cluster analysis. *The Computer Journal*, 41(8):578–588.
- Fraley, C. and Raftery, A. (1999). Mclust: Software for model-based cluster analysis. Journal of Classification, 16:297–306.
- Fraley, C. and Raftery, A. (2002). Model-based clustering, discriminant analysis and density estimation. *Journal of the American Statistical Association*, 97:611–631.
- Fraley, C. and Raftery, A. (2003). Enhanced model-based clustering, density estimation and discriminant analysis software: Mclust. *Journal of Classification*, 20:263–286.
- Furman, W. and Lindsay, B. (1994). Measuring the relative effectiveness of moment estimators as starting values in maximizing likelihoods. *Computational Statistics & Data Analysis*, 17:493–508.
- Gan, L. and Jiang, J. (1999). A test for global maximum. *Journal of the American Statistical Association*, 94:847–854.
- Ganesalingam, S. and McLachlan, G. (1979). A case study of two clustering methods based on maximum likelihood. *Statistical Neerlandica*, 33:81–90.
- Ganesalingam, S. and McLachlan, G. (1980). A comparison of the mixture and classification approaches to cluster analysis. *Communications in Statistics Theory and Methods*, 9:923–933.
- Gordon, A. (1999). Classification. Chapman & Hall/CRC, 2 edition.
- Gower, J. and Legendre, P. (1986). Metric and euclidean properties of dissimilarity coefficients. *Journal of Classification*, 5:5–48.
- Grais, B. (1982). Méthodes Statistiques. Dunod.
- Hadi, A. and Simonoff, J. (1993). Procedures for the identification of multiple outliers in linear models. *Journal of the American Statistical Association*, 88(424):1264–1272.
- Hadi, A. S. (1992). A new measure of overall potential influence in linear regression. *Computational Statistics & Data Analysis*, 14:1–27.
- Hadi, A. S. and Simonoff, J. S. (1997). A more robust outlier identifier for regression data. Bulletin of the International Statistical Institute, 14:281–282.

Hasselblad, V. (1966). Estimation of parameters for a mixture of normal distributions. *Technometrics*, 8(3):431–444.

- Hasselblad, V. (1969). Estimation of finite mixtures of distributions from the exponencial family. *Journal of the American Statistical Association*, 64:1459–1471.
- Hastie, T. and Tibshirani, R. (1996). Discriminant analysis by gaussian mixtures. *Journal of the Royal Statistical Society B*, 58:155–176.
- Hathaway, R. and Bezdek, J. (1993). Switching regression models and fuzzy clustering. *IEEE Transactions on Fuzzy Systems*, 1(3):195–204.
- Hawkins, D., Allen, D., and Stomber, A. (2001). Determining the number of components in mixtures of linear models. *Computational Statistics & Data Analysis*, 38:15–48.
- Henriques, A. (1998). Aplicação de Novos Conceitos de Segurança no Dimensionamento do Betão Estrutural. PhD thesis, FEUP.
- Henriques, A. A., Calheiros, F., and Figueiras, J. (2002). Safety format for the design of concrete frames. *Engineering Computations: International Journal for Computer-Aided Engineering and Software*, 19(3):346–363.
- Henriques, L. (2000). Caos em repartições públicas. Master's thesis, U. Évora.
- Jamshidian, M. and Jennrich, R. (1997). Acceleration of the em algorithm by using quasinewton methods. *Journal of the Royal Statistical Society B*, 59(3):569–587.
- Jansen, R. (1993). Maximum likelihood in a generalized linear finite mixture model by using the em algorithm. *Biometrics*, 49:227–231.
- Jewell, N. P. (1982). Mixtures of exponencial distributions. Annals of Statistics, 10:479–484.
- Johnson, N., Kotz, S., and Balakrishnan (1994). Continous Univariate Distributions, volume 1. John Wiley & Sons.
- Johnston, J. (1991). Econometric Methods. McGraw-Hill International Editions, 3 edition.
- Jones, G., Lai, C. D., and Rayner, J. (2000). A bivariate gamma mixture distribution. Communications in Statistics Theory and Methods, 29(12):2775–2790.
- Jones, P. and McLachlan, G. (1990). Laplace-normal mixtures fitted to wind shear data. Journal of Applied Statistics, 17:271–276.
- Jones, P. and McLachlan, G. (1992). Fitting finite mixture models in a regression context. *Australian Journal of Statistics*, 34(2):233–240.
- Kao, C. and Zeng, Z. (1997). General formulas for obtaining the mles and the asymptotic variance-covariance matrix in mapping quantitative trait loci when using the emalgorithm. *Biometrics*, 53:653–665.
- Karlis, D. and Xekalaki, E. (1998). Minimum hellinger distance estimation for finite poisson mixtures. *Computational Statistics & Data Analysis*, 29:81–103.
- Karlis, D. and Xekalaki, E. (2003). Choosing initial values for the em algorithm for finite mixtures. *Computational Statistics & Data Analysis*, 41:577–590.

- Kaufman, L. and Rousseeuw, P. (1990). Finding Groups in Data. Wiley.
- Kiefer, J. and Wolfowitz, J. (1956). Consistency of the maximum likelihood estimates in the presence of infinitely many incidental parameters. *Annals of Mathematical Statistics*, 27:887–906.
- Kiefer, N. (1978). Discrete parameter variation:efficient estimation of a switching regression model. *Econometrica*, 46:427–434.
- Lange, K. (1995). A quasi newton acceleration of the em algorithm. Statistics Sinica, 5:1–18.
- Lehmann, E. (1983). Theory of Point estimation. Wiley, New York.
- Lindsay, B. (1995a). The geometry of mixture likelihood. a general theory. *Annals of Statistics*, 11:86–94.
- Lindsay, B. (1995b). *Mixture Models: Theory, Geometry and Applications*. NSF-CMBS Regional Conference Series in Probability and Statistics Volume 5, Virgina.
- Lindsay, B. and Basak, P. (1993). Multivariate normal mixtures: a fast, consistent method of moments. *Journal of the American Statistical Association*, 88:468–476.
- Lindsay, B. and Roeder, K. (1992). Residual diagnostics for mixture models. *Journal of the American Statistical Association*, 87:785–795.
- Liu, C. (1997). Ml estimation of the multivariate t distribution and the em algorithm. Journal of Multivariate Analysis, 63:296–312.
- Louis, T. (1982). Finding the observed information matrix when using the em algorithm. Journal of the Royal Statistical Society B, 44:226–233.
- Mardia, K. V. (1970). Measures of multivariate skewness and kurtosis with applications. *Biometrika*, 57(3):519–530.
- Marron, J. and Wand, M. (1992). Exact mean integrated squared error. *Annals of Statistics*, 20:712–736.
- McLachlan, G. (1987). On bootstrapping the likelihood ratio test statistic for the number of components in a normal mixture. *Applied Statistics*, 36:318–324.
- McLachlan, G. (1988). On the choice of initial values for the em algorithm in fitting mixture models. *The American Statistician*, 37:417–425.
- Mclachlan, G. (1992). Discriminant analysis and Statistical Pattern Recognition. wiley, New York.
- Mclachlan, G. and Basford, K. (1988). *Mixture Models: Inference and Applications to Clustering*. Marcel Dekker, New York.
- Mclachlan, G. and Krishnan, T. (1997). The EM algoritm and Extensions. Wiley, New York.
- McLachlan, G. and McGiffin, D. (1994). On the role of finite mixture models in survival analysis. *Statistical Methods in Medical Research*, 3:211–226.

- McLachlan, G. and Peel, D. (2000). Finite Mixture Models. John Wiley & Sons.
- Mendell, N., Finch, S., and H.C., T. (1993). Where is the likelihood ratio test powerful for detecting 2-component normal mixtures. *Biometrics*, 49:907–915.
- Müller, P., Erkanli, A., and West, M. (1996). Bayesian curve fitting using multivariate normal mixtures. *Biometrika*, 83(1):67–79.
- Mood, A., Graybill, F., and Boes, D. (1974). *Introduction to the Theory of Statistics*. McGraw-Hill International Editions, third edition.
- Murteira, B. (1992). Probabilidades e Estatística, volume I. McGraw-Hill.
- Murteira, B., Silva Ribeiro, C., Andrade e Silva, J., and Pimenta, C. (2001). *Introdução à Estatística*. McGraw-Hill.
- Narula, S., Saldiva, P., Andre, C. Elian, S., Ferreira, A., and Capelozzi, V. (1999). The minimum sum of absolute errors regression: a robust alternative to the least squares regression. *Statistics in Medicine*, 18:1401–1417.
- Nguyen, T. and Dinh, K. (1998). Characterizations of normal distributions supporting goodness-of-fit tests based on sample skewness and sample kurtosis. *Metrika*, 48:21–30.
- O'Neill, T. (1978). Normal discrimination with unclassified observations. *Journal of the American Statistical Association*, 33:218–250.
- Pearson, K. (1894). Contributions to the mathematical theory of evolution. *Philosophical Transactions*, A, 185:71–110.
- Pestana, D. and Velosa, S. (2002). *Introdução à Probabilidade e à Estatística*. Fundação Calouste Gulbenkian, Lisboa.
- Peters, B. and Walker, H. (1978). An iterative procedure for obtaining maximum-likelihood estimators of the parameters for a mixture of normal distributions. *SIAM Journal on Applied Mathematics*, 35:362–378.
- Pilla, R. and Lindsay, B. (2001). Alternative em methods for nonparametric finite mixture models. *Biometrika*, 88:535–550.
- Preston, E. (1953). A graphical method for the analysis of statistical distributions into two normal components. *Biometrika*, 40:460–464.
- Quandt, R. (1972). A new approach to estimating switching regressions. *Journal of the American Statistical Association*, 67:306–310.
- Quandt, R. and Ramsey, J. (1978). Estimating mixtures of normal distributions and switching regression. *Journal of the American Statistical Association*, 73:730–738.
- Rahmatullah Imon, A. (2003). Regression residuals, moments and their use in tests for normality. *Communications in Statistics Theory and Methods*, 32(5):1021–1034.
- Rao, C. R. (1948). The utilization of multiple measurements in problems of biological classification. *Journal of the Royal Statistical Society B*, 10:159–203.
- Redner, R. and Walker, H. (1984). Mixture densities, maximum likelihood and the em algorithm. SIAM Review, 26:195–239.

Roeder, K. (1990). Density estimation with confidence data sets exemplified by superclusters and voids in the galaxies. *Journal of the American Statistical Association*, 85:617–624.

- Roeder, K. (1994). A graphical technique for determining the number of components in a mixture of normals. *Journal of the American Statistical Association*, 89:487–495.
- Rousseeuw, P. (1984). Least median of squares regression. *Journal of the American Statistical Association*, 79:871–880.
- Rousseeuw, P. and Leroy, A. (1987). Robust regression and Outlier Detection. John Wiley & Sons, New York.
- Ruppert, D. and Carroll, R. (1980). Trimmed least squares estimation in the linear model. Journal of the American Statistical Association, 75:828–838.
- Schwarz, G. (1977). Estimating the dimension of a model. *Annals of Statistics*, 6(2):461–464.
- Scott, D. (1992). Multivariate Density Estimation. Wiley, New York.
- Silverman, B. (1986). Density Estimation for Statistics and Data analysis. Chapman and Hall, London.
- Späth, H. (1980). Cluster analysis Algorithms. Ellis Horwood, Chichester.
- Srivastava, M. and Awan, H. (1982). On the robustness of hotelling t^2 —test and distribution of linear and quadratic forms in sampling from a mixture of two multivariate normal populations. Communications in Statistics Theory and Methods, 11(1):81–107.
- Srivastava, M. and Awan, H. (1984). On the robustness of the correlation coefficient in a sampling from mixture of two bivariate normals. *Communications in Statistics Theory and Methods*, 13(3):371–382.
- Stanford, D. and Raftery, A. (2000). Finding curvilinear features in spatial point patterns: Principal curve clustering with noise. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 22(6):601–609.
- Tarter, M. and Lock, M. (1993). Model-Free Curve Estimation. Chapman & Hall, London.
- Tarter, M. and Silvers, A. (1975). Implementation and applications of bivariate gaussian mixture decomposition. *Journal of the American Statistical Association*, 70:47–55.
- Tassi, P. (1986). Méthodes Statistiques. Economica, Paris, 2ºÉdition edition.
- Teicher, H. (1963). Identifiability of finite mixtures. Annals of Mathematical Statistics, 34:1265–1269.
- Thode, H., Finch, S., and Mendell, N. (1988). Simulated percentage points for the null distribution of the likelihood ratio test for a mixture of two normals. *Biometrics*, 44:1195–1201.
- Thompson, T., Smith, P., and Boyle, J. (1998). Finite mixtures models with concomitant information: assessing diagnostic criteria for diabetes. *Applied Statistics*, 47(3):393–404.

Titterington, D. (1996). Mixture distributions(update). In Kotz, S., Johnson, N., and Banks, D., editors, *Encyclopedia of Statistical Sciences*, pages 399–407. New York: Wiley.

- Titterington, D., Smith, A., and Makov, U. (1985). Statistical Analysis of Finite Mixture Distributions. John Wiley & Sons.
- Turner, T. (2000). Estimating the propagation rate of a viral infection of potato plants via mixtures of regressions. *Applied Statistics*, 49(3):371–384.
- Viele, K. and Tong, B. (2002). Modeling with mixtures of linear regressions. *Statistics and Computing*, 12:315–330.
- Wang, P., Puterman, M., Cockburn, I., and Le, N. (1996). Mixed poisson regression models with covariate dependent rates. *Biometrics*, 52:381–400.
- Wang, S., Woodward, W., Gray, H., Wiechecki, S., and Sain, S. (1997). A new test for outlier detection from a multivariate mixture distribution. *Journal of Computational and Graphical Statistics*, 6:285–299.
- Ward, J. (1963). Hierarchical groupings to optimize an objective function. *Journal of the American Statistical Association*, 58:236–244.
- Wedel, M. and DeSarbo, W. (1995). A mixture likelihood approach for generalized linear models. *Journal of Classification*, 12:21–55.
- Withers, C. (1991). Moment estimates for mixtures with common scale. *Communications* in Statistics Theory and Methods, 20(4):1445–1461.
- Wood, G. R. (1999). Binomial mixtures: Geometric estimation of the mixing distribution. *Annals of Statistics*, 27(5):1706–1721.
- Woodward, W., Parr, W., Schucany, W., and Lindsey, H. (1984). A comparison of minimum distance and maximum likelihood estimation of a mixture proportion. *Journal of the American Statistical Association*, 79:590–598.
- Zhang, H. and Merikangas, K. (2000). A frailty model of segregation analysis: understanding the familial transmission of alcoholism. *Biometrics*, 56:815–823.
- Zhang, H. and Zhu, H. (2004). Hypothesis testing in mixture regression models. *Journal* of the Royal Statistical Society B, 66(1):3–16.