- 39. Seja G um grupo não abeliano de ordem 8.
 - (a) Mostre que G tem um subgrupo H tal que |H|=4.
 - (b) Prove que $H \triangleleft G$.
- 40. Mostre que os grupos $\mathbb{Z}_{15}/\langle [5]_{15}\rangle$ e \mathbb{Z}_5 são isomorfos.
- 41. Mostre que $8\mathbb{Z}/56\mathbb{Z} \simeq \mathbb{Z}_7$.
- 42. Determine os subgrupos cíclicos de um grupo cíclico de ordem 10.
- 43. Seja $G = \langle a \rangle$ um grupo cíclico de ordem ímpar tal que $a^{47} = a^{17}$, $a^{10} \neq 1_G$ e $a^6 \neq 1_G$. Determine, justificando:
 - (a) a ordem de G;
 - (b) o número de subgrupos de *G*;
 - (c) todos os geradores distintos de G;
 - (d) o número de automorfismos de G.
- 44. Exprima como produto de ciclos disjuntos e como produto de transposições as seguintes permutações de S_6 :
 - (a) $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 1 & 2 & 5 & 6 & 4 \end{pmatrix}$; (c) $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 5 & 6 & 4 & 2 & 1 \end{pmatrix}$;
- (f) (135)(426)(356);
- (b) $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 3 & 2 & 5 & 4 & 1 \end{pmatrix}$; (a) (134), (e) (256)(345)(64);
- (d) (134);

- (g) (145)(1235)(13);
- (h) $[(145)(1235)(13)]^{-1}$.

45. Considere, em S_9 , as permutações

$$\sigma = (1\ 2\ 3\ 4)(5\ 6\ 7\ 8\ 9)$$
 e $\pi = (3\ 2)(1\ 7\ 9).$

- (a) Calcule $\pi \sigma \pi^{-1}$ e exprima-a como produto de ciclos disjuntos.
- (b) Determine $\alpha \in S_9$ tal que $\sigma^{16}\alpha = \pi$.
- (c) Qual a ordem do subgrupo $\langle \pi \rangle$ de S_9 ? Porquê?
- (d) Identifique os elementos de $\langle \pi \rangle$. Justifique.
- 46. Indique, justificando:
 - (a) um elemento de S_9 que não seja um ciclo e que tenha ordem 6;
 - (b) um ciclo ímpar de S_9 ;
 - (c) uma permutação de S_9 que não seja um ciclo;
 - (d) uma permutação par de S_9 , diferente da identidade.
- 47. Considere, em S_6 , as permutações

$$\alpha = \left(\begin{array}{ccccc} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 4 & 3 & 6 & 5 & 2 \end{array} \right) \qquad \mathsf{e} \qquad \beta = \left(2 \ 1 \ 4 \ 6 \right) \left(1 \ 3 \ 4 \ 5 \right).$$

- (a) Determine $o(\alpha)$, $o(\beta)$ e $o(\beta^2)$.
- (b) Justifique que $\langle \alpha, \beta \rangle < \mathcal{A}_6$.
- 48. Considere, em S_9 , as permutações

- (a) Determine $o(\sigma)$.
- (b) Indique os elementos de $<\tau^3>$.
- (c) Sem efetuar cálculos com composição de funções, mostre que não existe $\delta \in \mathcal{S}_9$ tal que $\delta^2 \tau = \sigma$.