TD 1

Base TC200 Tecdron - Sujet

Mise en situation

Dans l'industrie, il est désormais possible d'associer des tâches robotisées et des tâches manuelles. Après l'essor des robots collaboratifs, Tecdron, entreprise Française basée à La Rochelle, propose une base mobile nommée TC200, capable de recevoir différents types de bras robotisés – dont des bras collaboratifs – mais aussi de se déplacer de manière autonome dans un environnement industriel complexe composé de robots et d'humains.

Les figures ci-après donnent la structure du robot étudié.

Validation de l'asservissement du moteur

Objectif

Valider l'asservissement de vitesse mis en place pour que la base TC200 se déplace suivant la trajectoire de consigne souhaitée.

Vérifier les exigences de la boucle de vitesse en termes de stabilité, précision et rapidité.

La boucle de courant étant supposée parfaite, le schéma-blocs de la figure suivante correspond à l'asservissement de vitesse d'une des motorisations. Le modèle est considéré pour le moment non perturbé, c'est-à-dire $C_f(p) = 0$.

Fonction de transfert	Expression	Valeur
Codeur et sa carte de traitement	K_{cod}	0,2 V s rad ⁻¹
Constante de couple	K_t	$0.09\mathrm{N}\mathrm{m}\mathrm{A}^{-1}$
Correteur de type proportionnel	$C_2(p) = K_2$	
Dynamique de la motorisation	$H_2(p) = \frac{1}{J_{\text{eq}}p}$	$J_{\rm eq} = 1,5 \times 10^{-2} \text{kg m}^2$

Centrale Supelec TSI 2021.

C2-03

Exigence	Critère	Performance attendue
Précision	Erreur relative en régime permanent $\mu_{v\infty}$ pour une consigne en échelon	$\mu_{v\infty} < 1\%$
riecision	d'amplitude ω_{mc0}	
	Erreur en vitesse en régime permanent $\Delta\omega_{\infty}$ pour une consigne en rampe	$\leq 100 \mathrm{rad s^{-1}}$ pour une
	telle que $\omega_{mc}(t) = at$	pente de $1800 \mathrm{rad} \mathrm{s}^{-1}$
Rapidité	Temps de réponse à 5 %	$t_{5\%} < 180 \text{ms}$
Stabilité	Dépassement maximal	≤ 10 %
	Marge de phase	≥ 60°

Question 1 Déterminer la fonction de transfert en boucle fermée $H_{BF}(p) = \frac{\Omega_m(p)}{\Omega_{mc}(p)}$ pour $C_f(p) = 0$.

Question 2 Justifier que cet asservissement est stable et donner la valeur de la marge de phase.

Question 3 Déterminer la condition sur K_2 afin de satisfaire l'exigence de rapidité.

Question 4 Calculer l'erreur relative en régime permanent $\mu_{v\infty}$ pour une consigne de vitesse en échelon de valeur ω_{mc0} .

On donne les diagrammes de Bode de la FTBO.

Question 5 Identifier la valeur de K_2 qui a été réellement choisie par le constructeur.

Question 6 À partir de cette valeur, calculer l'erreur en vitesse en régime permanent $\Delta\omega_{\infty}$ pour une consigne de vitesse en rampe de pente a et valider le critère de précision des exigences.

TD 1

Base TC200 Tecdron - Corrigé

Mise en situation

Dans l'industrie, il est désormais possible d'associer des tâches robotisées et des tâches manuelles. Après l'essor des robots collaboratifs, Tecdron, entreprise Française basée à La Rochelle, propose une base mobile nommée TC200, capable de recevoir différents types de bras robotisés – dont des bras collaboratifs – mais aussi de se déplacer de manière autonome dans un environnement industriel complexe composé de robots et d'humains.

Les figures ci-après donnent la structure du robot étudié.

Validation de l'asservissement du moteur

Objectif

Valider l'asservissement de vitesse mis en place pour que la base TC200 se déplace suivant la trajectoire de consigne souhaitée.

Vérifier les exigences de la boucle de vitesse en termes de stabilité, précision et rapidité.

La boucle de courant étant supposée parfaite, le schéma-blocs de la figure suivante correspond à l'asservissement de vitesse d'une des motorisations. Le modèle est considéré pour le moment non perturbé, c'est-à-dire $C_f(p) = 0$.

Fonction de transfert	Expression	Valeur
Codeur et sa carte de traitement	K_{cod}	0,2 V s rad ⁻¹
Constante de couple	K_t	$0.09\mathrm{N}\mathrm{m}\mathrm{A}^{-1}$
Correteur de type proportionnel	$C_2(p) = K_2$	
Dynamique de la motorisation	$H_2(p) = \frac{1}{J_{\rm eq}p}$	$J_{\rm eq} = 1,5 \times 10^{-2} \text{kg m}^2$

Centrale Supelec TSI 2021.

C2-03

Exigence	Critère	Performance attendue
Précision	Erreur relative en régime permanent $\mu_{v\infty}$ pour une consigne en échelon	$\mu_{v\infty} < 1\%$
1 Tecision	d'amplitude ω_{mc0}	
	Erreur en vitesse en régime permanent $\Delta\omega_{\infty}$ pour une consigne en rampe	$\leq 100 \mathrm{rad s^{-1}}$ pour une
	telle que $\omega_{mc}(t) = at$	pente de $1800\mathrm{rad}\mathrm{s}^{-1}$
Rapidité	Temps de réponse à 5 %	$t_{5\%} < 180 \mathrm{ms}$
Stabilité	Dépassement maximal	≤ 10 %
	Marge de phase	≥ 60°

Question 1 Déterminer la fonction de transfert en boucle fermée $H_{BF}(p) = \frac{\Omega_m(p)}{\Omega_{mc}(p)}$ pour $C_f(p) = 0$.

Correction

Question 2 Justifier que cet asservissement est stable et donner la valeur de la marge de phase.

Correction

Question 3 Déterminer la condition sur K_2 afin de satisfaire l'exigence de rapidité.

Correction

Question 4 Calculer l'erreur relative en régime permanent $\mu_{v\infty}$ pour une consigne de vitesse en échelon de valeur ω_{mc0} .

Correction

On donne les diagrammes de Bode de la FTBO.

Question 5 Identifier la valeur de K_2 qui a été réellement choisie par le constructeur.

Correction

Question 6 À partir de cette valeur, calculer l'erreur en vitesse en régime permanent $\Delta\omega_{\infty}$ pour une consigne de vitesse en rampe de pente a et valider le critère de précision des exigences.

Correction

