Week 4

Sampling Variability & The Central Limit Theorem

ST 314
Introduction to Statistics for Engineers

Inferential Statistics

Recall that inferential statistics use information from a Sample to estimate or test characteristics from a population of interest.

How good is the sampled statistic θ at estimating the population parameter

Things to consider:

- * Hethod of data collection * Sampling variability

 - Sample Size

Point Estimates

As part of a quality control process for computer chips, an engineer a factory randomly samples 212 chips during a week of production to test the current rate of chips with severe defects. She finds that 27 of the chips are defective.

- (a) What population is under consideration in the data set?

 HI Chips manufactured at this factory during

 the week of production.
 - (b) What is the parameter being estimated?

 P=proportion of detective chips from the pop.
 - (c) Based on the sample what is the point estimate for the parameter?

$$\hat{\rho} = \frac{27}{212} = 0.127$$

Sampling Variability

Suppose the study previously described was repeated by two other engineers in the same week. The following table gives the results from each of the three studies.

Study	Number of Chips Sampled		\hat{p}
1	212	27	0.127
2	212	19	0.090
3	212	23	0.108

Compare the point estimates from the three studies. What do you notice? Which point estimate is the "best"?

Sampling Distributions

The probability distribution of a statistic, $\hat{\theta}$, is the **Sampling Distribution**. The sampling distribution defines **the variability of \hat{\theta} and**

quantifies the chance occurrence of specific

Statistics are random variables! If N is the number of units in the population and n is the sample size, there are $\binom{N}{n}$ possible sample combinations.

Unbiased Estimators

- * Common statistics, such as \hat{p} , \bar{x} , and s^2 are unbiased.
- * The expected values of these estimators are equal to their parameters:

$$E(\hat{9}) = \theta$$

$$E(\bar{X}) = \mu \qquad pop. mean$$

$$E(\bar{X}) = \mu \qquad pop. proportion$$

$$E(\hat{p}) = p \sim pop. proportion$$

$$E(\hat{s}^2) = \sigma^2 \leftarrow pop. variance$$

$$E(\hat{s}^2) = \sigma^2 \leftarrow pop. variance$$

$$E(\hat{s}^2) = \sigma^2 \leftarrow pop. variance$$

Law of Large Numbers

The Law of Large Numbers states that as *n* increases, the statistic will approach the true population parameter.

As n=N pop. size) 0=0

More formally, $\hat{\theta}$ converges in probability to θ . This implies that $\hat{\theta}$ is a **Consistent**

estimator. X, p, and s² are all consistent

Larger sample

doesn't augrantee a closer & -

Sample Size & Sampling Variability

The variability of the sampling distribution of $\hat{\theta}$ is referred to as the **Standard evror**, denoted by $SE_{\hat{\theta}}$ or $\sigma_{\hat{\theta}}$. The standard error describes the typical error or uncertainty of the statistic. It is the standard deviation of the statistic.

Sample Size & Sampling Variability

A random variable X is simulated from a normal distribution with population parameters μ_x and σ_x .

As *n* increases, the variability of the sampling distribution **<u>CCYCOSCS</u>**

Distributions in inference

Sampling Distribution of the Sample Proportion

If n is sufficiently large, then the **Central Limit Theorem** states the sampling distribution of the statistic \hat{p} is:

Sampling Distribution of the Sample Mean

If n is sufficiently large, then the **Central Limit Theorem** states the sampling distribution of the statistic \bar{x} is:

Normal Data

 $n \geq 1$

Symmetric Data

 $n \ge 12$

Skewed Data

 $n \ge 30$

Bernoulli Data

$$n \ge \frac{10}{p}$$
 and $\frac{10}{1-p}$

Mean 0.2

Whether *n* is sufficiently large enough is determined by the population shape, excluding binary data, $n \ge 30$ is the rule of thumb.

Sampling Distributions

Sampling distributions are never observed, but we keep them in mind!