DOKUMENTACJA TECHNICZNA

LABORATORIUM INTERFEJSÓW OBIEKTOWYCH

Amperomierz

AUTORZY:

Tomasz **Masłoń** Kamil **Nawrot**

OPIEKUN:

mgr inż. Paweł **Dobrowolski**

Wrocław, 2019

Spis treści

1	Ogó	olny opis układu	2
2	Zało 2.1 2.2 2.3	zienia projektowe Zasilanie	2 2 2 2
3	3.1 3.2 3.3	Sygnał napięciowy 0 10V	3 3 3
4	Rea 4.1 4.2 4.3	dizacja zasilania i jego zabezpieczenia Główne zasilanie układu	3 3 4 4
5	Test 5.1 5.2 5.3	ty układu Badanie dokładności pomiarów na wyjściu napięciowym	5 5 5
6	Z ast 6.1 6.2	tosowane elementy i układy elektroniczne Układy scalone	8 8 8
\mathbf{S}_{1}^{2}	pis	rysunków	
	1 2 3 4 5 6 7	Ideowy schemat realizacji głównego zasilania układu	4 4 5 6 7 8 8
\mathbf{S}_{1}^{2}	pis	tabel	
	1 2	Wyniki pomiarów dla wyjścia napięciowego	5

1 Ogólny opis układu

Realizowany układ elektroniczny miał za zadanie działać jako miernik natężenia prądu stałego z zakresu **0.1 - 2A**, przetwarzając podawany mu prąd na dwa standardy najczęściej stosowane w przemyśle:

- sygnał napięciowy 0...10V
- sygnał prądowy 4...20mA

Oprócz tego, z wykorzystaniem przetwornika analogowo-cyfrowego **ICL7107**, zaimplementowano możliwość wyświetlania mierzonej wartości na trzech wyświetlaczach siedmiosegmentowych. Układ oparty został przede wszystkim na wzmacniaczach operacyjnych, które, skalując i przesuwając, przetwarzały sygnał wejściowy do odpowiednich wartości.

2 Założenia projektowe

2.1 Zasilanie

Układ należało zasilić symetrycznym napięciem $\pm 12V$, ponieważ zastosowane wzmacniacze operacyjne również wymagają tego typu zasilenia. Konieczne było wyprowadzenie z generatorów trzech sygnałów: napięcia dodatniego, ujemnego oraz odniesienia (0V).

2.2 Przetwarzanie wartości mierzonej

Sygnał mierzony musi być podawany na rezystor pomiarowy 0.1Ω , aby uzyskać znany spadek napięcia, na którym mogą pracować kolejne elementy układu. Konieczna jest odpowiednia polaryzacja. Napięcie z rezystora podawane jest na kolejne wzmacniacze operacyjne, które działają w konfiguracji wzmacniacza nieodwracającego (przeskalowywanie sygnału) lub sumującego albo odejmującego (przesuwanie sygnału o stałą wartość).

2.3 Dokładność

W całym urządzeniu stosowano rezystory z szeregu E24, które charakteryzują się tolerancją rzędu $\pm 5\%$. Ich wartości bezpośrednio wpływają na parametr wzmocnienia każdego wzmacniacza oraz mnożniki dzielników napięciowych, w związku z czym w układzie mogą pojawiać się zauważalne różnice pomiędzy wartościami rzeczywistymi a przetworzonymi. W celu redukcji tych błędów, w koniecznych miejscach zastosowano precyzyjne potencjometry, które pozwalają na doregulowanie wartości napięcia. Przy takim rozwiązaniu powinno być możliwe uzyskanie dokładności pomiarów na poziomie 2%.

3 Koncepcja działania

3.1 Sygnał napięciowy 0... 10V

Mierzony prąd podawany jest na opornik pomiarowy. Spadek napięcia na nim może wynosić od 0.01V do 0.2V. Napięcie to kierowane jest na wzmacniacz różnicowy o pięćdziesięciokrotnym wzmocnieniu, zatem na jego wyjściu uzyskuje się napięcie **0.5-10V**. Kolejnym krokiem jest przesunięcie napięcia w dół o 0.5V z jednoczesnym wzmocnieniem, tak aby uzyskać zakres **0-10V**. Wzmacniacz realizujący tę operację pracuje w konfiguracji wzmacniacza odejmującego. Stałe napięcie 0.5V pobierane jest ze stabilizowanego zasilania sterownika **ICL7107** (opisanego w dalszej cześci dokumentacji). Wzmocnienie wynosi około 1.06, tak aby podnieść górną granicę zakresu z 9.5 na 10V. Tak przetworzony sygnał wyprowadzony jest na złącze, które umożliwia jego pomiar.

3.2 Sygnał prądowy 4... 20mA

Napięcie uzyskane na poprzednim wzmacniaczu (0-10V) jest wykorzystywane w celu dalszego przetworzenia. Najpierw, za pomocą dzielnika napięciowego obniża się jego wartość do zakresu **0-4V**. Analogicznie jak 0.5V uzyskuje się napięcie 1V, które następnie jest dodawane za pomocą wzmacniacza sumującego o wzmocnieniu 1 do sygnału z poprzedniego wzmacniacza operacyjnego. W ten sposób uzyskuje się wyjściowe napięcie o zakresie **1-5V**.

3.3 Wyświetlacze siedmiosegmentowe

Sygnał uzyskany za pierwszym wzmacniaczem operacyjnym układu (omówionym w punkcie 3.1) jest kierowany na kolejny wzmacniacz o odwrotnym wzmocnieniu, który sprowadza sygnał ponownie do zakresu 0.01 - 0.2V. Takie napięcie kierowane jest na sterownik wyświetlacza (V_{in}) . Wymaga on także napięcia odniesienia V_{ref} o wartości 1V, które także zostało uzyskane już wcześniej (punkt 3.2). ICL7107 wyświetla wartość napięcia uzyskaną ze wzoru:

$$V_{disp} = 1000 \cdot \frac{V_{in}}{V_{ref}},$$

czyli wartości z zakresu **010 - 200**. Koncepcję działania układu przedstawia także schemat blokowy, Załącznik do dokumentacji.

4 Realizacja zasilania i jego zabezpieczenia

4.1 Główne zasilanie układu

Cały układ zasilany jest stałym napięciem symetrycznym ± 12 V. Układ połączenia zasilaczy (rys) generuje potencjał odniesienia oraz dwie linie o potencjałach +12V i -12V względem masy. Na układ wyprowadzone są więc trzy osobne linie. Szeregowo z napięciem dodatnim połączona jest dioda Schottky'ego **BAT42**, która zabezpiecza układ przed odwrotnym podłączeniem zasilania. Działa ona analogicznie do zwykłej diody prostowniczej, jednak spadek napięcia na samym elemencie jest dużo niższy (około 0.3V).

Rysunek 1: Ideowy schemat realizacji głównego zasilania układu

4.2 Zasilanie przetwornika ICL7107

Sterownik do obsługi wyświetlaczy wymaga zasilania symetrycznego o napięciu 5V. Uzyskuje się je z zasilania głównego z wykorzystaniem diód Zenera o napięciu przebicia równym 5.1V (rys). Uzyskiwany w ten sposób spadek napięcia jest stabilny i niezależny od zmian wartości zasilania głównego. Fakt ten wykorzystuje się, używając napięcie zasilające ICL7107 także do uzyskiwania wartości 0.5V i 1V, które potrzebne są przy przesuwaniu zakresów napięcia na wzmacniaczach operacyjnych. Sygnał zasilający jest dodatkowo odfiltrowywany przez kondensatory elektrolityczne $10\mu F$.

Rysunek 2: Ideowy schemat realizacji zasilania układu ICL7107

4.3 Zasilanie diód wyświelaczy

Przyjęto pobór prądu dla każdej czerwonej diody na poziomie 3-4mA. Realizację układu zasilającego przeprowadzono analogicznie jak przy sterowniku (rys). Osobne zasilanie zapewnia stabilność zasilania ICL7107 oraz wyjść wtórników napięciowych utrzymujących napięcia 0.5V i 1V, ponieważ pobór prądu przy dużej ilości zapalonych segmentów może być znaczny i mógłby wpływać na inne elementy układu, gdyby zostało wykonane wspólne zasilanie.

5 Testy układu

5.1 Badanie dokładności pomiarów na wyjściu napięciowym

Przeprowadzono testy pomiarowe wyjścia napięciowego, podając mu wartości natężenia mierzone multimetrem **MXD-4660A**. Wykreślono także charakterystykę w celu sprawdzenia liniowości uzyskiwanych wyników.

I[A]	$U_{pom}[V]$
0.100	0.012
0.234	0.711
0.388	1.505
0.484	2.006
0.589	2.556
0.714	3.207
0.829	3.802
0.923	4.289
1.049	4.952
1.143	5.442
1.291	6.211
1.408	6.884
1.500	7.308
1.654	8.120
1.728	8.511
1.855	9.204
1.999	9.983

Rysunek 3: Wykres zależności wyjścia napięciowego od prądu mierzonego

Tabela 1: Wyniki pomiarów dla wyjścia napięciowego

Maksymalne błędy uzyskanych w pomiarach wartości oscylują w granicach 2-2.5%. Uzyskana charakterystyka jest, zgodnie z założeniami, niemal idealnie liniowa.

5.2 Badanie dokładności pomiarów na wyjściu prądowym

Analogicznie zbadano wyjście prądowe 4-20mA i wykreślono charakterystykę zależności prądu mierzonego i wyjściowego. Błędu względne rzadko i nieznacznie przekraczały 1%, natomiast kształt uzyskanej charakterystyki także był liniowy.

I[A]	$I_{pom}[mA]$
0.103	4.023
0.211	4.921
0.335	5.979
0.406	6.579
0.514	7.509
0.613	8.349
0.710	9.176
0.810	10.029
0.935	11.096
1.053	12.113
1.107	12.575
1.195	13.328
1.329	14.461
1.429	15.341
1.502	15.976
1.619	16.991
1.714	17.812
1.853	19.025
2.000	20.230

Rysunek 4: Wykres zależności wyjścia prądowego od prądu mierzonego

Tabela 2: Wyniki pomiarów dla wyjścia prądowego

5.3 Sprawdzanie obciążności wyjścia prądowego

Zbadano także parametr obciążności wyjścia prądowego poprzez podłączenie opornicy dekadowej szeregowo z wyjściem. Następnie stopniowo zwiększano rezystancję, obserwując stabilność prądu na wyjściu. Wyznaczono rezystancję graniczną, przy której prąd zaczyna znacząco spadać dla pomiaru 0.1A, 1.05A i 2.0A.

$$R_{gran(0.10A)} = 2600\Omega$$

$$R_{gran(1.05A)} = 740\Omega$$

$$R_{gran(2.00A)} = 345\Omega$$

Minimalna obciążność dla maksymalnego natężenia prądu mierzonego spełniła założenia projektowe i oczekiwania względem tego parametru..

Rysunek 5: Pomiar obciążności dla trzech różnych wartości natężenia mierzonego

6 Zastosowane elementy i układy elektroniczne

6.1 Układy scalone

 \bullet wzmacniacz operacyjny **TL081CP** (x8) - przetwarzanie zakresów napięcia, wtórniki napięciowe

Rysunek 6: Konfiguracja pinów wzmacniacza operacyjnego TL081

• przetwornik analogowo-cyfrowy ICL7107 - przetwarzanie analogowego sygnału napięciowego na cyfrowe sterowanie trzema wyświetlaczami siedmiosegmentowymi

Rysunek 7: Konfiguracja pinów przetwornika A/C ICL7107

6.2 Elementy półprzewodnikowe

- tranzystor bipolarny typu NPN BD139
- dioda Schottky'ego **BAT42** zabezpieczenie głównego zasilania przed odwrotną polaryzacją

- \bullet dioda Zenera 5V1 (x2) stabilizator napięcia zasilającego przetwornik ICL7107
- dioda Zenera 5V6 stabilizator napięcia zasilającego wyświetlacze

Wymieniono tylko układy i elementy o większym znaczeniu i bardziej skomplikowanym działaniu. Wykaz wszystkich użytych w projekcie elementów, wraz z podstawowymi parametrami, znajduje się w Załączniku dołączonym do dokumentacji.

ZAŁĄCZNIK 1

Koncepcyjny schemat blokowy urządzenia

ZAŁĄCZNIK 2 Schemat symulacyjny układu

ZAŁĄCZNIK 3 Wykaz elementów i układów wykorzystanych w projekcie

element	wartość	opis
C1	$10\mu F$	kondensator elektrolityczny
C2	$10\mu F$	kondensator elektrolityczny
C3	100pF	kondensator ceramiczny
C4	$0.1 \mu F$	kondensator ceramiczny
C5	$0.047 \mu F$	kondensator ceramiczny
C6	$0.22 \mu F$	kondensator ceramiczny
C7	$0.01 \mu F$	kondensator ceramiczny
C8	$10\mu F$	kondensator ceramiczny
D1	5V1	dioda Zenera
D2	5V1	dioda Zenera
D3	BAT42	dioda Schottky'ego 200mA/30V
D4	5V6	dioda Zenera
DIS1	7SEG-CA	wyświetlacz 7-segmentowy FJ5161BH
DIS2	7SEG-CA	wyświetlacz 7-segmentowy FJ5161BH
DIS3	7SEG-CA	wyświetlacz 7-segmentowy FJ5161BH
G1	12V	bateria/zasilacz
G2	12V	bateria/zasilacz
IC1	TL081P	wzmacniacz operacyjny
IC2	TL081P	wzmacniacz operacyjny
IC3	ICL7107	przetwornik A/C
IC4	TL081P	wzmacniacz operacyjny
IC5	TL081P	wzmacniacz operacyjny
IC6	TL081P	wzmacniacz operacyjny
IC7	TL081P	wzmacniacz operacyjny
IC8	TL081P	wzmacniacz operacyjny
IC9	TL081P	wzmacniacz operacyjny
R1	270	rezystor 250mW
R2	270	rezystor 250mW
R3	100	rezystor 250mW
R4	50k	potencjometr precyzyjny 3296X
R5	4k7	rezystor 250mW
R6	270	rezystor 250mW
R7	270	rezystor 250mW
R8	270	rezystor 250mW
R9	1M	rezystor 250mW
R10	270	rezystor 250mW
R11	100	rezystor 250mW
R12	270	rezystor 250mW
R13	100	rezystor 250mW
R14	270	rezystor 250mW
R15	4k7	rezystor 250mW
R16	270	rezystor 250mW

element	wartość	opis
R17	100k	potencjometr precyzyjny 3296X
R18	20k	rezystor 250mW
R19	100k	rezystor 250mW
R20	470k	rezystor 250mW
R21	270	rezystor 250mW
R22	270	rezystor 250mW
R23	1M	rezystor 250mW
R24	270	rezystor 250mW
R25	270	rezystor 250mW
R26	270	rezystor 250mW
B27	270	rezystor 250mW
R28	270	rezystor 250mW
R29	270	rezystor 250mW
R30	270	rezystor 250mW
R31	110	rezystor 1W
R32	270	rezystor 250mW
R33	1M	rezystor 250mW
R34	15k	rezystor 250mW
R35	10k	rezystor 250mW
R36	1M	rezystor 250mW
R37	0.1	rezystor 5W
R38	300	rezystor 250mW
R39	300	rezystor 250mW
R40	560	rezystor 250mW
R41	560	rezystor 250mW
R42	560	rezystor 250mW
R43	15k	rezystor 250mW
R44	15k	rezystor 250mW
R45	560	rezystor 250mW
B46	15k	rezystor 250mW
R47	15k	rezystor 250mW
R48	15k	rezystor 250mW
R49	15k	rezystor 250mW
R50	5k	potencjometr precyzyjny 3296X
R51	16k	rezystor 250mW
R52	20k	potencjometr precyzyjny 3296X
R53	300	rezystor 250mW
R54	2k	potencjometr precyzyjny 3296X
R55	500	potencjometr precyzyjny 3296X
SJ1	500	zwora
T1	BD139	tranzystor typu NPN
11	DD139	tranzystor typu NTN
	l	<u> </u>