VE475 Homework 6

Yiwen Yang

Ex. 1 - Application of the DLP

- 1. (a) With r, Alice can calculate α^r , which should be the same as $\gamma \mod p$.
 - With $x + r \mod (p 1)$, since $\alpha^{p-1} \equiv 1 \mod p$, then $\alpha^{x+r \mod (p-1)} \equiv \alpha^{x+r} \equiv \alpha^x \alpha^r \mod p$, which should be the same as $\beta \cdot \gamma$.
 - So r and $x + r \mod (p 1)$ are considered so that Alice can operate on it to verify the results.
 - (b) If Alice requests r, she will never know x; If Alice requests x+r, she cannot know x either without knowing r, because she only knows $\beta = \alpha^x$ and $\gamma = \alpha^r$ separately both of which is hard to solve. So Alice cannot cheat to get x by requesting r or x+r.

If Bob does not know the true x, there is no way to answer x+r, thus Bob cannot cheat either. On the other hand, if Bob can correctly answer both r and x+r, then he definitely knows x, so he can prove his identity.

- 2. (a) 128 times.
 - (b) 256 times.
- 3. Digital Signature.

Ex. 2 - Pohlig-Hellman

Let g be a generator of a cyclic group G with order n, for h in G, find $x \in \{0, ..., n-1\}$ such that $g^x = h$.

- 1. Factorize $n = \prod_{i=1}^{r} p_i^{e_i}$.
- 2. Repeat Step 3 to 5 for all $i \in \{1, \dots, r\}$.
- 3. Compute $g_i = g^{n/p_i^{e_i}}$.
- 4. Compute $h_i = h^{n/p_i^{e_i}}$.
- 5. Find $x_i \in \{0, \dots, p_i^{e_i} 1\}$ such that $g_i^{x_i} = h_i$.
- 6. Use Chinese Remainder Theorem to solve $x \equiv x_i \mod p_i^{e_i}$.

In this example, $n = 28 \times 29^2 = 2^2 \times 7 \times 29^2$, g = 3, h = 3344.

- 1. $p_0 = 2$, $e_0 = 2$, $g_0 = 10133$, $h_0 = 24388$, $x_0 = 2$.
- 2. $p_1 = 7$, $e_1 = 1$, $g_1 = 7032$, $h_1 = 4850$, $x_1 = 2$.
- 3. $p_2 = 29$, $e_2 = 2$, $g_2 = 11369$, $h_2 = 23114$, $x_2 = 260$.

Then calculate $7 \times 841 \times 3 \equiv 1 \mod 4$, $4 \times 841 \times 2 \equiv 1 \mod 7$, $4 \times 7 \times 811 \equiv 1 \mod 841$, so $x \equiv 7 \times 841 \times 3 \times 2 + 4 \times 841 \times 2 \times 2 + 4 \times 7 \times 811 \times 260 \equiv 18762 \mod 23548$.

Ex. 3 - Elgamal

1. Suppose that $X^3 + 2X^2 + 1$ is irreducible in $F_3[x]$, then

$$X^{3} + 2X^{2} + 1 = (X + A)(X^{2} + BX + C) = X^{3} + (A + B)X^{2} + (AB + C)X + AC$$

$$AC = 1$$

If A = C = 1, then B + 1 = 2, B + 1 = 0 contradicts.

If A = C = 2, then B + 2 = 2, 2B + 2 = 0 also contradicts.

So $X^3 + 2X^2 + 1$ is irreducible in $F_3[x]$ with degree 3, and we can conclude that F_{3^3} is a finite field with $3^3 = 27$ elements.

- 2. X is a generator of F_{3^3} . First let $a=1,b=2,\ldots,z=26$, then the map can be defined as $c \to f(c): f(c) = X^c \mod (X^3 + 2X^2 + 1)$.
- 3. The order is 26.
- 4. $X^{11} \equiv X + 2 \mod (X^3 + 2X^2 + 1)$, then public key is X + 2.
- 5. First convert "goodmorning" into F_{3^3} , yielding $\{1+X^2, 2X^2, 2X^2, 2+2X+X^2, 2, 2X^2, 1+X, 2X, 2+2X+2X^2, 2X, 1+X^2\}$.

Randomly pick $k=23, r\equiv X^{23}\equiv (2+X+2X^2) \mod (X^3+2X^2+1), t\equiv (X+2)^{23}m\equiv (X+X^2)m \mod (X^3+2X^2+1).$ Then the cipher text is $\{1,2+X+X^2,2+X+X^2,2+X+X^2,2+X+X^2,2+X+X^2,1+X^2,1\}$, mapping to "zhhwfhkgbgz".

To decrypt, calculate $r^{-1} = 2 + X^2$, $tr^{-x} \equiv t(2 + X^2)^{11} \equiv 1 + X^2 \mod (X^3 + 2X^2 + 1)$. The result plain text is $\{1 + X^2, 2X^2, 2X^2, 2 + 2X + X^2, 2, 2X^2, 1 + X, 2X, 2 + 2X + 2X^2, 2X, 1 + X^2\}$, mapping to "goodmorning", which is correct.

Ex. 4 - Simple Questions

- 1. (a) h is pre-image resistant. To reversely find x is to solve Quadratic Residuosity Problem, which is very difficult with large primes p and q.
 - (b) h is not second pre-image resistant. Given x, h(-x) = h(x).
 - (c) h is not collision resistant. For every x, h(-x) = h(x).
- 2. (a) h can be efficiently computed for any input.
 - (b) h is not pre-image resistant. To reversely find m, simply calculate h(h(m)).
 - (c) h is not second pre-image resistant. Given m, let $n = m \parallel \{160'b0\}$, then h(m) = h(n).
 - (d) h is not collision resistant. For every m, let $n = m \parallel \{160'b0\}$, then h(m) = h(n).

Ex. 5 - Merkle-Damgård Construction

See in H7.

Ex. 6 - Programming

See in folder **ex6**.