

APRENDIZAJE NO SUPERVISADO

Modelo de Hopfield

TABLA DE CONTENIDOS

O1. INTRODUCCIÓN

AUTOVALORES YAUTOVECTORES

O2. MODELO DE KOHONEN

O5. COMPONENTES PRINCIPALES

MODELO DE HOPFIELD

o6. REGLA DE OJA Y SANGER

Arquitectura de Red

MEMORIAS ASOCIATIVAS

El almacenamiento y recuperación de información por **asociación** con otras informaciones

Consiste en almacenar un conjunto de p patrones tal que

• cuando se presenta un nuevo patrón P_{in} , la red responda con el patrón almacenado P_{out} que más se parece a P_{in}

$$P_{ip}$$
 = Estímulo

$$P_{out}$$
 = Respuesta

Propuesto en 1982 por JJ. Hopfield

Red Recurrente

Existe retroalimentación entre las neuronas, están todas conectadas entre sí (a diferenca de las redes feed-forward)

- Las neuronas no están conectadas con sí mismas
- Conjunto de input y ouput permitido {-1, 1 }
 (activo o inactivo)
- Todas las neuronas están en una sola capa de entrada y salida

OBJETIVO

¿Para qué sirve?

Asociar un patrón de consulta binario (con perturbaciones) con alguno de los patrones almacenados

INPUT: patrón ruidoso OUTPUT: el más similar

$$\mathcal{E}_{2} = (-1, -1, 1, 1)$$

¿Qué patrón se le asigna al siguiente vector de consulta? = (1, -1, -1, -1)

ESTADOS

Cada neurona tiene 2 estados

- S_i = +1 (activo)
- S_i = -1 (inactivo)

Para una red de N neuronas el estado queda representado por el vector de estados

$$S = [S_1, S_2, ..., S_N]$$

PLANTEO DEL PROBLEMA

Dados los patrones almacenados ξ^{μ} , $\mu = 1, ..., p$.

Presentamos un nuevo patrón ζ

Queremos encontrar el patrón almacenado más cercano a ζ (usando redes neuronales)

PLANTEO DEL PROBLEMA

Buscamos los pesos sinápticos

$$w_{ij}$$
, $i = 1, ..., N, j = 1, ..., N$

tal que la red nos devuelva el patrón ξ^{μ} más cercano a ζ .

Es una red neuronal que cumple las siguientes características:

- Cada neurona i es un **perceptrón simple** con la función de activación **escalón** (1, -1).
- ullet Cada par de neuronas (i, j) se conectan por el peso sináptico \mathbf{w}_{ii} .

Comenzamos con una configuración $S_i = \zeta_i$, i = 1, ..., n, (patrón de consulta)

Queremos ver si hay un conjunto de pesos w_{ij} que hagan a la red alcanzar el estado S_i = $\xi_i^{\mu 0}$, donde $\xi_i^{\mu 0}$ es un patrón almacenado.

Patrón

 $\xi_i^{\ \mu 0}$, i = 1, . . . , n es el estado del patrón almacenado más parecido a ζ_i , i = 1, . . . , n.

Sea

$$h_i = \sum_{j=1}^{N} w_{ij} S_j, i \neq j$$

Donde:

- wij es el peso entre la neurona i y la neurona j
- S_i es el estado de la neurona j
- N es la cantidad de neuronas

La neurona i modifica su estado S_i de acuerdo a la regla:

$$S_i = \begin{cases} 1 & si & h_i > 0 \\ -1 & si & h_i < 0 \end{cases}$$

$$S_i = sign(h_i), h_i \neq 0$$

Si h_i = 0 entonces la neurona i permanece en el estado previo.

ESTADO ESTABLE

La red evoluciona hasta que S_i no se modifique más $\forall i = 1, ... n$.

Quiere decir que la red alcanzó un estado estable

El estado al que evoluciona se lo denomina atractor

CONVERGENCIA

Tenemos N neuronas en la red y un **único patrón** almacenado $\boldsymbol{\xi}$ Calculamos los \boldsymbol{w}_{ii}

$$w_{ij} = \frac{1}{N} \xi_i \xi_j \qquad i, j = 1, \dots N$$

$$S_i = sign(\sum_{i=1}^{N} w_{ij}\xi_j) = sign(\xi_i) = \xi_{i} \forall_i$$

debido a que $\xi_i^2 = 1 \ \forall j = 1, \dots N$

Por lo tanto, se produce la convergencia: alcanza el patrón almacenado.

MÚLTIPLES PATRONES

Sean p patrones almacenados.

Podemos elegir los pesos como:

$$\mathcal{E}^{1} = (1, 1, -1, -1)$$

$$\mathcal{E}^{2} = (-1, -1, 1, 1)$$

$$w_{ij} = \frac{1}{N} \sum_{\mu=1}^{p} \xi_i^{\mu} \xi_j^{\mu} , i \neq j$$

Esta ecuación incrementa los pesos entre dos neuronas i y j cuando ambos están activados o ambos desactivados.

Se toma también $w_{ii} = 0 y w_{ii} = w_{ij}$

03.2

ALGORITMO

ALGORITMO

- 1. **Almacenamiento:** Sean ξ_1 , ξ_2 ,..., ξ_p , patrones N-dimensionales binarios.
- 2. Pesos Sinápticos:

$$w_{ij} = \begin{cases} \frac{1}{N} \sum_{\mu=1}^{p} \xi_{i}^{\mu} \xi_{j}^{\mu} & si \quad i \neq j \\ 0 & si \quad i = j \end{cases}$$

Donde:

- w_{ij} es el peso sináptico entre la neurona i y la j.
- $\xi_1^{\mu} \in \{-1, 1\}$

ALGORITMO

3. **Inicialización.** Sea ζ un vector de consulta N-dimensional desconocido, presentado a la red.

$$S_i(0) = \zeta_i$$
 $i = 1, ... N$

- $S_i(0)$ es el estado de la neurona i en el tiempo t = 0.
- $\boldsymbol{\zeta}_{i}$ es el i-ésimo elemento del vector de consulta que queremos asociar con alguno de los patrones almacenados.

ALGORITMO

4. Iteración hasta la convergencia

Actualizar los elementos del vector de estado S(t) de acuerdo a la regla:

$$S_i(t+1) = sign(\sum_{j=1}^{N} w_{ij}S_j(t)), i \neq j$$

Repetir la iteración hasta que el vector de estados S permanezca estable.

MÚLTIPLES PATRONES

5. Output

Sea S_{fiio} el estado fijo o estable calculado al final del paso 3.

 S_{fijo} es el patrón asociado con ζ .

Observar que el vector de pesos permanece fijo y que en cada paso cambian los estados S_i .

03.3

EJEMPLO

Cantidad de patrones p = 2

$$\xi^{1} = (1, 1, -1, -1), \xi^{2} = (-1, -1, 1, 1)$$

Cantidad de patrones p = 2

$$\xi^1 = (1, 1, -1, -1)$$
, $\xi^2 = (-1, -1, 1, 1)$

Cantidad de neuronas N = 4 (porque cada patrón tiene 4 elementos)

¿Cuál es el valor de w_{12} y w_{13} ? Calcular la matriz de pesos W

$$w_{ij} = \frac{1}{N} \sum_{\mu=1}^{p} \xi_i^{\mu} \xi_j^{\mu} , i \neq j$$

Cantidad de patrones p = 2

$$\xi^1 = (1, 1, -1, -1)$$
 , $\xi^2 = (-1, -1, 1, 1)$

Cantidad de neuronas N = 4 (porque cada patrón tiene 4 elementos)

$$w_{12} = \frac{1}{4}(\xi_1^1 \xi_2^1 + \xi_1^2 \xi_2^2) = \frac{1}{4}(1+1) = 0.5$$

$$w_{13} = \frac{1}{4}(\xi_1^1 \xi_3^1 + \xi_1^2 \xi_3^2) = \frac{1}{4}(-1 - 1) = -0.5$$

Cantidad de patrones p = 2

$$\xi^1 = (1, 1, -1, -1)$$
, $\xi^2 = (-1, -1, 1, 1)$

Cantidad de neuronas N = 4 (porque cada patrón tiene 4 elementos)

$$W = \begin{pmatrix} 0 & 0.5 & -0.5 & -0.5 \\ 0.5 & 0 & -0.5 & -0.5 \\ -0.5 & -0.5 & 0 & 0.5 \\ -0.5 & -0.5 & 0.5 & 0 \end{pmatrix}$$

Para calcular la matriz de pesos W

 $K = (\xi^1 \xi^2)$ (la matriz que se obtiene de poner los patrones en columna)

Entonces

$$W = \frac{1}{N}KK^t$$

$$S(t+1) = sign(WS(t))$$

Recordar que la diagonal debe ser 0

Pregunta: ¿Qué patrón se le asigna al vector de consulta ζ = (1, -1, -1, -1)?

$$S_1 = sign(W \zeta) = sign \begin{pmatrix} 0 & 0.5 & -0.5 & -0.5 \\ 0.5 & 0 & -0.5 & -0.5 \\ -0.5 & -0.5 & 0 & 0.5 \\ -0.5 & -0.5 & 0.5 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ -1 \\ -1 \\ -1 \end{pmatrix}$$

$$= sign \begin{pmatrix} 0.5 \\ 1.5 \\ -0.5 \\ -0.5 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ -1 \\ -1 \end{pmatrix} \xrightarrow{\text{Lleg\'o al patr\'on almacenado }\xi^1} \xi^1 = (1, 1, -1, -1) \; , \; \xi^2 = (-1, -1, 1, 1)$$

$$S_2 = sign(WS_1) = sign \begin{pmatrix} 0 & 0.5 & -0.5 & -0.5 \\ 0.5 & 0 & -0.5 & -0.5 \\ -0.5 & -0.5 & 0 & 0.5 \\ -0.5 & -0.5 & 0.5 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ -1 \\ -1 \end{pmatrix}$$

$$sign \begin{pmatrix} 1 \\ 0.5 \\ -1.5 \\ -1.5 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ -1 \\ -1 \end{pmatrix} \xrightarrow{\text{Se mantiene estable}} \text{S1 = } \xi^{1} = (1, 1, -1, -1)$$

03.4

CONVERGENCIA

ESTABILIDAD

$$w_{ij} = \frac{1}{N} \sum_{\mu=1}^{p} \xi_i^{\mu} \xi_j^{\mu} , i \neq j$$

¿Se llega a un estado de Estabilidad?

Sea $\xi_i^{\ \ V}$ el elemento i del patrón de consulta $\ \ V$. La condición de estabilidad es:

$$sign(h_i^{\nu}) = \xi_i^{\nu}$$

Patrones almacenados

$$h_i^{\nu} = \sum_{j} w_{ij} \xi_j^{\nu} = \frac{1}{N} \sum_{j} \sum_{\mu} \xi_i^{\mu} \xi_j^{\mu} \xi_j^{\nu}$$

Patron de consulta

ESTABILIDAD

$$h_i^{\nu} = \frac{1}{N} \sum_{j} \sum_{\mu} \xi_i^{\mu} \xi_j^{\mu} \xi_j^{\nu}$$

$$h_i^{\nu} = \frac{1}{N} \sum_j \sum_{\mu \neq \nu} \xi_i^{\mu} \xi_j^{\mu} \xi_j^{\nu} + \frac{1}{N} \sum_j \xi_i^{\nu} \xi_j^{\nu} \xi_j^{\nu}$$

$$h_i^{\nu} = \frac{1}{N} \sum_j \sum_{\mu \neq \nu} \xi_i^{\mu} \xi_j^{\mu} \xi_j^{\nu} + \frac{1}{N} \xi_i^{\nu}$$
 crosstalk = 0
$$sign(h_i^{\nu}) = \xi_i^{\nu}$$

El sistema es estable si:

- el término de crosstalk es cero.
- Es decir, cuando los patrones son ortogonales
 Esta es una de las limitaciones de esta red.

CONVERGENCIA

Hopfield demostró que su red está asociada a una función de Energía, dada por:

$$H(w) = -\frac{1}{2} \sum_{i,j} w_{ij} S_i S_j$$

Y que los mínimos locales de esta función son los patrones almacenados.

FUNCIÓN DE ENERGÍA

Propiedad central de una Función de Energía

- Siempre decrece (o permanece constante) cuando el sistema evoluciona.
- Como los pesos sinápticos son simétricos:

$$H(w) = -\sum_{j>i} w_{ij} S_i S_j$$

Porque $w_{ij} = w_{ji}$, entonces puedo sumar solo la parte superior de la matriz y multiplicar por 2 (parte superior e inferior de la matriz W). Además w ii = 0

FUNCIÓN DE ENERGÍA

$$H(w) = -\sum_{j>i} w_{ij} S_i S_j$$

Sea
$$S_i$$
' el nuevo valor de S_i $S_i' = sign \sum_{j \neq i} w_{ij} S_j$

Si $S_i' = S_i$ la energía no se modifica

Si $S_i' = -S_i$ entonces (cambió de signo):

$$\Delta H = H' - H = -\sum_{j>i} w_{ij} S_i' S_j + \sum_{j>i} w_{ij} S_i S_j$$

$$2S_i \sum_{j>i} w_{ij} S_j < 0$$

Estamos considerando los S_i con signo contrario a S_i entonces la energía decrece cada vez que un S_i cambia.

LIMITACIONES

• El número máximo de patrones que puede almacenar es igual al 15 % del número de neuronas de la red. Es decir,

$$p \le 0.15 * N$$

donde N es la dimensión de los patrones

Los patrones deben ser "más o menos" ortogonales.

ESTADOS ESPURIOS

- Los patrones son atractores.
- La Función de Energía H puede tener otros mínimos locales que no son los patrones almacenados.

Estados Espurios

También son atractores Puede desembocar en ciclos

BIBLIOGRAFÍA

- [1] McKay D.J.C. *Hopfield Networks*. Information Theory, Inference and Learning Algorithms, Cambridge,
- [2] Anders Krogh John Hertz and Richard Palmer. *Introduction to the Theory of Neural Computation*. Addison-Wesley, 1991.