CHAPTER NINE

9.1
$$4NH_3(g) + 5O_2(g) \rightarrow 4NO(g) + 6H_2O(g)$$

 $\Delta \hat{H}_r^o = -904.7 \text{ kJ/mol}$

- **a.** When 4 g-moles of NH₃(g) and 5 g-moles of O₂(g) at 25°C and 1 atm react to form 4 g-moles of NO(g) and 6 g-moles of water vapor at 25°C and 1 atm, the change in enthalpy is -904.7 kJ.
- **b.** Exothermic at 25°C. The reactor must be cooled to keep the temperature constant. The temperature would increase under adiabatic conditions. The energy required to break the molecular bonds of the reactants is less than the energy released when the product bonds are formed.

c.
$$2NH_3(g) + \frac{5}{2}O_2(g) \rightarrow 2NO(g) + 3H_2O(g)$$

Reducing the stoichiometric coefficients of a reaction by half reduces the heat of reaction by half.

$$\Delta \hat{H}_{\rm r}^{\rm o} = -\frac{904.7}{2} = \underline{-452.4 \text{ kJ/mol}}$$

d.
$$NO(g) + \frac{3}{2}H_2O(g) \rightarrow NH_3(g) + \frac{5}{4}O_2(g)$$

Reversing the reaction reverses the sign of the heat of reaction. Also reducing the stoichiometric coefficients to one-fourth reduces the heat of reaction to one-fourth.

$$\Delta \hat{H}_{\rm r}^{\rm o} = -\frac{(-904.7)}{4} = \frac{+226.2 \text{ kJ/mol}}{}$$

e.
$$\dot{m}_{NH_3} = 340 \text{ g/s}$$

9.2

$$\dot{n}_{NH_3} = \frac{340 \text{ g}}{\text{s}} \frac{1 \text{ mol}}{17.03 \text{ g}} = 20.0 \text{ mol/s}$$

$$\dot{Q} = \Delta \dot{H} = \frac{\dot{n}_{NH_3} \Delta \hat{H}_r^o}{\nu_{NH}} = \frac{20.0 \text{ mol NH}_3}{s} \frac{-904.7 \text{ kJ}}{4 \text{ mol NH}_3} = \frac{-4.52 \times 10^3 \text{ kJ/s}}{-4.52 \times 10^3 \text{ kJ/s}}$$

The reactor pressure is low enough to have a negligible effect on enthalpy.

f. Yes. Pure water can only exist as vapor at 1 atm above 100°C, but in a mixture of gases, it can exist as vapor at lower temperatures.

$$C_9H_{20}(1) + 14O_2(g) \rightarrow 9CO_2(g) + 10H_2O(1)$$

 $\Delta \hat{H}_r^0 = -6124 \text{ kJ/mol}$

- When 1 g-mole of C₉H₂₀(1) and 14 g-moles of O₂(g) at 25°C and 1 atm react to form 9 g-moles of CO₂(g) and 10 g-moles of water vapor at 25°C and 1 atm, the change in enthalpy is -6124 kJ.
- **b.** Exothermic at 25°C. The reactor must be cooled to keep the temperature constant. The temperature would increase under adiabatic conditions. The energy required to break the molecular bonds of the reactants is less than the energy released when the product bonds are formed.

$$\dot{\mathbf{C}} = \Delta \dot{\mathbf{H}} = \frac{\dot{\mathbf{n}}_{C_9 H_{20}} \Delta \hat{\mathbf{H}}_r^0}{v_{C,H_{10}}} = \frac{25.0 \text{ mol } C_9 H_{20}}{\text{s}} = \frac{-6124 \text{ kJ}}{1 \text{ mol } C_9 H_{20}} = \frac{1 \text{ kW}}{1 \text{ kJ/s}} = \frac{-1.53 \times 10^5 \text{ kW}}{1 \text{ mol } C_9 H_{20}} = \frac{-1.53 \times 10^5 \text{ kW}}{1 \text{ kJ/s}} = \frac{-1$$

9.2 (cont'd)

Heat Output = 1.53×10^5 kW.

The reactor pressure is low enough to have a negligible effect on enthalpy.

d.
$$C_9H_{20}(g) + 14O_2(g) \rightarrow 9CO_2(g) + 10H_2O(l)$$
 (1)

$$\Delta \hat{H}_{\rm r}^{\rm o} = -6171 \, \text{kJ/mol}$$

$$C_9H_{20}(l) + 14O_2(g) \rightarrow 9CO_2(g) + 10H_2O(l)$$
 (2)

$$\Delta \hat{H}_{r}^{o} = -6124 \text{ kJ/mol}$$

$$(2)-(1) \Rightarrow C_0H_{20}(1) \rightarrow C_0H_{20}(g)$$

$$\Delta \hat{H}_{v}^{o}(C_{9}H_{20},25^{\circ}C) = -6124 \text{ kJ/mol} - (-6171 \text{ kJ/mol}) = 47 \text{ kJ/mol}$$

- **e.** Yes. Pure n-nonane can only exist as vapor at 1 atm above 150.6°C, but in a mixture of gases, it can exist as a vapor at lower temperatures.
- **9.3 a.** Exothermic. The reactor will have to be cooled to keep the temperature constant. The temperature would increase under adiabatic conditions. The energy required to break the reactant bonds is less than the energy released when the product bonds are formed.

$$\begin{aligned} & C_6 H_{14}(g) + \frac{19}{2} O_2(g) \rightarrow 6 C O_2(g) + 7 H_2 O(g) \quad (1) \quad \Delta \hat{H}_r^o = ? \\ & C_6 H_{14}(l) + \frac{19}{2} O_2(g) \rightarrow 6 C O_2(g) + 7 H_2 O(l) \quad (2) \quad \Delta \hat{H}_2 = \Delta \hat{H}_r^o = -1.791 \times 10^6 \quad \text{Btu/lb-mole} \\ & C_6 H_{14}(g) \rightarrow C_6 H_{14}(l) \quad (3) \quad \Delta \hat{H}_3 = -\left(\Delta \hat{H}_v\right)_{C_2 H_{14}} = -13,550 \quad \text{Btu/lb-mole} \\ & H_2 O(l) \rightarrow H_2 O(g) \quad (4) \quad \Delta \hat{H}_4 = \left(\Delta \hat{H}_v\right)_{H_2 O} = 18,934 \quad \text{Btu/lb-mole} \end{aligned}$$

$$(1) = (2) + (3) + 7 \times (4) \overset{\text{Hess's law}}{\Rightarrow} \Delta \hat{H}_1 = \Delta \hat{H}_2 + \Delta \hat{H}_3 + 7 \Delta \hat{H}_4 = \underline{-1.672 \times 10^6 \text{ Btu/lb-mole}}$$

c.
$$\dot{m} = 120 \text{ lb}_{\text{m}} / \text{s}$$
 $\overset{\text{M}_{\text{O}_2} = 32.0}{\Rightarrow} \dot{n} = 3.75 \text{ lb - mole / s.}$

$$\dot{Q} = \Delta \dot{H} = \frac{\dot{n}_{O_2} \Delta \hat{H}_{r}^{\circ}}{v_{O_2}} = \frac{3.75 \text{ lb-mole/s}}{9.5} \frac{-1.672 \times 10^6 \text{ Btu}}{1 \text{ lb-mole O}_2} = \frac{-6.60 \times 10^5 \text{ Btu/s (from reactor)}}{-6.60 \times 10^5 \text{ Btu/s (from reactor)}}$$

9.4
$$CaC_2(s) + 5H_2O(1) \rightarrow CaO(s) + 2CO_2(g) + 5H_2(g)$$
, $\Delta \hat{H}_r^o = 69.36$ kJ/kmol

Endothermic. The reactor will have to be heated to keep the temperature constant. The temperature would decrease under adiabatic conditions. The energy required to break the reactant bonds is more than the energy released when the product bonds are formed.

b.

$$\Delta \hat{U}_{r}^{o} = \Delta \hat{H}_{r}^{o} - RT \left[\sum_{\substack{\text{gaseous} \\ \text{products}}} v_{i} - \sum_{\substack{\text{gaseous} \\ \text{reactants}}} v_{i} \right] = 69.36 \frac{\text{kJ}}{\text{mol}} - \frac{8.314 \text{ J}}{\text{mol}} \cdot \frac{1 \text{ kJ}}{\text{I}} \cdot \frac{298 \text{ K}}{\text{J}} \cdot \frac{(7-0)}{\text{J}}$$

$$= 52.0 \text{ kJ/mol}$$

9.4 (cont'd)

 $\Delta\hat{U}_{r}^{o}$ is the change in internal energy when 1 g - mole of CaC₂(s) and 5 g - moles of H₂O(l) at 25° C and 1 atm react to form 1 g - mole of CaO(s), 2 g - moles of CO₂(g) and 5 g - moles of H₂(g) at 25° C and 1 atm.

c.
$$Q = \Delta U = \frac{n_{\text{CaC}_2} \Delta \hat{U}_{\text{r}}^{\text{o}}}{v_{\text{CaC}_2}} = \frac{150 \text{ g CaC}_2}{|64.10 \text{ g}|} = \frac{1 \text{ mol}}{|64.10 \text{ g}|} = \frac{52.0 \text{ kJ}}{|1 \text{ mol CaC}_2} = \frac{121.7 \text{ kJ}}{|100 \text{ kJ}|}$$

Heat must be transferred to the reactor.

9.5
a. Given reaction = (1) - (2)
$$\Longrightarrow \Delta \hat{H}_{r}^{o} = \Delta \hat{H}_{r1}^{o} - \Delta \hat{H}_{r2}^{o} = (1226 - 18,935)$$
 Btu/lb - mole = -17,709 Btu/lb - mole

b. Given reaction = (1) – (2)
$$\stackrel{\text{Hess's law}}{\Rightarrow} \Delta \hat{H}_{r}^{o} = \Delta \hat{H}_{r1}^{o} - \Delta \hat{H}_{r2}^{o} = (-121,740 + 104,040)$$
 Btu/lb - mole = $-17,700$ Btu/lb - mole

9.6 a. Reaction (3) =
$$0.5 \times (1) - (2) \stackrel{\text{Hess's law}}{\Rightarrow} \Delta \hat{H}_{r}^{\circ} = 0.5 \left(-326.2 \frac{\text{kJ}}{\text{mol}} \right) - \left(-285.8 \frac{\text{kJ}}{\text{mol}} \right) = \underbrace{122.7 \frac{\text{kJ}}{\text{mol}}}$$

b. Reactions (1) and (2) are easy to carry out experimentally, but it would be very hard to decompose methanol with only reaction (3) occurring.

b.
$$n - C_5 H_{12}(g) + \frac{11}{2} O_2(g) \rightarrow 5CO(g) + 6H_2O(1)$$

 $\Delta \hat{H}_r^o = 5(\Delta \hat{H}_f^o)_{CO(g)} + 6(\Delta \hat{H}_f^o)_{H_2O(1)} - (\Delta \hat{H}_f^o)_{n - C_5 H_{12}(g)}$
 $= [(5)(-110.52) + (6)(-285.84) - (-146.4)] \text{ kJ/mol} = \underline{-2121.2 \text{ kJ/mol}}$

c.
$$C_6H_{14}(l) + \frac{19}{2}O_2(g) \rightarrow 6CO_2(g) + 7H_2O(g)$$

 $\Delta \hat{H}_r^{\circ} = 6(\Delta \hat{H}_f^{\circ})_{CO_2} + 7(\Delta \hat{H}_f^{\circ})_{H_2O(g)} - (\Delta \hat{H}_f^{\circ})_{C_6H_{14}(l)}$
 $= [(6)(-393.5) + 7(-241.83) - (-198.8)] \text{ kJ/mol} = -3855 \text{ kJ/mol}$

$$\begin{aligned} \textbf{d.} & & \text{Na}_2 \text{SO}_4(1) + 4 \text{CO}(g) \rightarrow \text{Na}_2 \text{S}(1) + 4 \text{CO}_2(g) \\ & \Delta \hat{H}_{\text{r}}^{\text{o}} = \left(\Delta \hat{H}_{\text{f}}^{\text{o}}\right)_{\text{Na}_2 \text{S}(1)} + 4 \left(\Delta \hat{H}_{\text{f}}^{\text{o}}\right)_{\text{CO}_2(g)} - \left(\Delta \hat{H}_{\text{f}}^{\text{o}}\right)_{\text{Na}_2 \text{SO}_4(1)} - 4 \left(\Delta \hat{H}_{\text{f}}^{\text{o}}\right)_{\text{CO}(g)} \\ & = \left[(-373.2 + 6.7) + \left(4\right) \left(-393.5\right) - \left(-1384.5 + 24.3\right) - 4 (-110.52\right] \text{ kJ/mol} = \underline{-138.2 \text{ kJ/mol}} \end{aligned}$$

9.8 a.
$$\Delta \hat{H}_{\rm rl}^{\rm o} = \left(\Delta \hat{H}_{\rm f}^{\rm o}\right)_{\rm C_2H_2Cl_4(l)} - \left(\Delta \hat{H}_{\rm f}^{\rm o}\right)_{\rm C_2H_4(g)} \Rightarrow \left(\Delta \hat{H}_{\rm f}^{\rm o}\right)_{\rm C_2H_2Cl_4(l)} = -385.76 + 52.28 = \underbrace{-333.48 \text{ kJ/mol}}_{\rm = -276.2 - 92.31 + 333.48} = \underbrace{-35.03 \text{ kJ/mol}}_{\rm = -276.2 - 92.31 + 333.48} = \underbrace{-35.03 \text{ kJ/mol}}_{\rm = -276.2 - 92.31 + 333.48} = \underbrace{-35.03 \text{ kJ/mol}}_{\rm = -276.2 - 92.31 + 333.48} = \underbrace{-35.03 \text{ kJ/mol}}_{\rm = -276.2 - 92.31 + 333.48} = \underbrace{-35.03 \text{ kJ/mol}}_{\rm = -276.2 - 92.31 + 333.48} = \underbrace{-35.03 \text{ kJ/mol}}_{\rm = -276.2 - 92.31 + 333.48} = \underbrace{-35.03 \text{ kJ/mol}}_{\rm = -276.2 - 92.31 + 333.48} = \underbrace{-35.03 \text{ kJ/mol}}_{\rm = -276.2 - 92.31 + 333.48} = \underbrace{-35.03 \text{ kJ/mol}}_{\rm = -276.2 - 92.31 + 333.48} = \underbrace{-35.03 \text{ kJ/mol}}_{\rm = -276.2 - 92.31 + 333.48} = \underbrace{-35.03 \text{ kJ/mol}}_{\rm = -276.2 - 92.31 + 333.48} = \underbrace{-35.03 \text{ kJ/mol}}_{\rm = -276.2 - 92.31 + 333.48} = \underbrace{-35.03 \text{ kJ/mol}}_{\rm = -276.2 - 92.31 + 333.48} = \underbrace{-35.03 \text{ kJ/mol}}_{\rm = -276.2 - 92.31 + 333.48} = \underbrace{-35.03 \text{ kJ/mol}}_{\rm = -276.2 - 92.31 + 333.48} = \underbrace{-35.03 \text{ kJ/mol}}_{\rm = -276.2 - 92.31 + 333.48} = \underbrace{-35.03 \text{ kJ/mol}}_{\rm = -276.2 - 92.31 + 333.48} = \underbrace{-35.03 \text{ kJ/mol}}_{\rm = -276.2 - 92.31 + 333.48} = \underbrace{-35.03 \text{ kJ/mol}}_{\rm = -276.2 - 92.31 + 333.48} = \underbrace{-35.03 \text{ kJ/mol}}_{\rm = -276.2 - 92.31 + 333.48} = \underbrace{-35.03 \text{ kJ/mol}}_{\rm = -276.2 - 92.31 + 333.48} = \underbrace{-35.03 \text{ kJ/mol}}_{\rm = -276.2 - 92.31 + 333.48} = \underbrace{-35.03 \text{ kJ/mol}}_{\rm = -276.2 - 92.31 + 333.48} = \underbrace{-35.03 \text{ kJ/mol}}_{\rm = -276.2 - 92.31 + 333.48} = \underbrace{-35.03 \text{ kJ/mol}}_{\rm = -276.2 - 92.31 + 333.48} = \underbrace{-35.03 \text{ kJ/mol}}_{\rm = -276.2 - 92.31 + 333.48} = \underbrace{-35.03 \text{ kJ/mol}}_{\rm = -276.2 - 92.31 + 333.48} = \underbrace{-35.03 \text{ kJ/mol}}_{\rm = -276.2 - 92.31 + 333.48} = \underbrace{-35.03 \text{ kJ/mol}}_{\rm = -276.2 - 92.31 + 333.48} = \underbrace{-35.03 \text{ kJ/mol}}_{\rm = -276.2 - 92.31 + 333.48} = \underbrace{-35.03 \text{ kJ/mol}}_{\rm = -276.2 - 92.31 + 333.48} = \underbrace{-35.03 \text{ kJ/mol}}_{\rm = -276.2 - 92.31 + 333.48} = \underbrace{-35.03 \text{ kJ/mol}}_{\rm = -276.2 - 92.31 + 333.48} = \underbrace{-35.03 \text{ kJ/mol}}_{\rm = -276.2 - 92.31 + 333.48} = \underbrace{-35.03 \text{ kJ/m$$

b. Given reaction =
$$(1) + (2) \Rightarrow -385.76 - 35.03 = -420.79 \text{ kJ/mol}$$

c.
$$\dot{Q} = \Delta \dot{H} = \frac{300 \text{ mol } \text{C}_2\text{HCl}_3}{\text{h}} = \frac{-420.79 \text{ kJ}}{\text{mol}} = \frac{-1.26 \times 10^5 \text{ kJ/h}}{\text{mol}} (= -35 \text{ kW})$$

Heat is evolved.

9.9

a.
$$C_2H_2(g) + \frac{5}{2}O_2(g) \rightarrow 2CO_2(g) + H_2O(l)$$
 $\Delta \hat{H}_c^o = -1299.6 \text{ kJ/mol}$

The enthalpy change when 1 g-mole of $C_2H_2(g)$ and 2.5 g-moles of $O_2(g)$ at 25°C and 1 atm react to form 2 g-moles of $CO_2(g)$ and 1 g-mole of $H_2O(l)$ at 25°C and 1 atm is -1299.6 kJ.

b.
$$\Delta \hat{H}_{c}^{o} = 2(\Delta \hat{H}_{f}^{o})_{CO_{2}(g)} + (\Delta \hat{H}_{f}^{o})_{H_{2}O(1)} - (\Delta \hat{H}_{f}^{o})_{C_{2}H_{2}(g)}$$

$$\stackrel{\text{Table B.1}}{=} [2(-393.5) + (-285.84) - (226.75)] \frac{kJ}{mol} = \underline{-1299.6 \frac{kJ}{mol}}$$

c. (i)
$$\Delta \hat{H}_{r}^{o} = (\Delta \hat{H}_{f}^{o})_{C_{2}H_{6}(g)} - (\Delta \hat{H}_{f}^{o})_{C_{2}H_{2}(g)}$$

$$\stackrel{\text{Table B.1}}{=} [(-84.67) - (226.75)] \frac{\text{kJ}}{\text{mol}} = \underline{-311.4 \frac{\text{kJ}}{\text{mol}}}$$

(ii)
$$\Delta \hat{H}_{r}^{o} = \left(\Delta \hat{H}_{c}^{o}\right)_{C_{2}H_{2}(g)} + 2\left(\Delta \hat{H}_{c}^{o}\right)_{H_{2}(g)} - \left(\Delta \hat{H}_{c}^{o}\right)_{C_{2}H_{6}(g)}$$

$$= \left[\left(-1299.6\right) + 2\left(-285.84\right) - \left(-1559.9\right)\right] \frac{kJ}{mol} = -311.4 \frac{kJ}{mol}$$

d.
$$C_2H_2(g) + \frac{5}{2}O_2(g) \rightarrow 2CO_2(g) + H_2O(l)$$
 (1) $\Delta \hat{H}_{c1}^o = -1299.6 \text{ kJ/mol}$

$$H_2(g) + \frac{1}{2}O_2(g) \rightarrow H_2O(l)$$
 (2) $\Delta \hat{H}_{c2}^o = -285.84 \text{ kJ/mol}$

$$C_2H_6(g) + \frac{7}{2}O_2(g) \rightarrow 2CO_2(g) + 3H_2O(l)$$
 (3) $\Delta \hat{H}_{c3}^o = -1559.9 \text{ kJ/mol}$

The acetylene dehydrogenation reaction is $(1) + 2 \times (2) - (3)$

$$\stackrel{\text{Hess's law}}{\Rightarrow} \Delta \hat{H}_{r}^{o} = \Delta \hat{H}_{c1}^{o} + 2 \times \Delta \hat{H}_{c2}^{o} - \Delta \hat{H}_{c3}^{o}
= (-1299.6 + 2(-285.84) - (-1559.9)) \text{ kJ/mol} = -311.4 \text{ kJ/mol}$$

9.10 a. $C_8 H_{18}(1) + \frac{25}{2} O_2(g) \rightarrow 8CO_2(g) + 9H_2O(g) \qquad \Delta \hat{H}_r^o = -4850 \text{ kJ/mol}$

When 1 g-mole of $C_8H_{18}(1)$ and 12.5 g-moles of $O_2(g)$ at 25°C and 1 atm react to form 8 g-moles of $CO_2(g)$ and 9 g-moles of $H_2O(g)$, the change in enthalpy equals -4850 kJ.

b. Energy balance on reaction system (not including heated water):

$$\Delta E_k$$
, ΔE_p , $W = 0 \Rightarrow Q = \Delta U = n \pmod{C_8 H_{18}}$ consumed $\Delta \hat{U}_c^o(kJ/mol)$

 $(C_p)_{H,O(1)}$ from Table B.2 = 75.4 × 10⁻³ kJ / mol.° C

$$-Q = m_{\rm H_2O}(C_{\rm p})_{\rm H_2O(l)} \Delta T = \frac{1.00~{\rm kg}}{1.00~{\rm kg}} \frac{1~{\rm mol}}{18.0\times10^{-3}{\rm kg}} \frac{75.4\times10^{-3}{\rm kJ}}{{\rm mol.}^{\circ}{\rm C}} = 89.4~{\rm kJ}$$

$$Q = \Delta U \Rightarrow -89.4 \text{ kJ} = \frac{2.01 \text{ g C}_8 \text{H}_{18} \text{ consumed}}{\text{l 1 mol C}_8 \text{H}_{18}} \frac{\text{L} \hat{U}_c^{\text{o}} \text{ (kJ)}}{\text{l 114.2 g}} \frac{\Delta \hat{U}_c^{\text{o}} \text{ (kJ)}}{\text{l 1 mol C}_8 \text{H}_{18}}$$

$$\Rightarrow \Delta \hat{U}_{c}^{o} = -5079 \text{ kJ/mol}$$

$$\Delta \hat{H}_{c}^{o} = \Delta \hat{U}_{c}^{o} + RT \left[\sum_{\substack{\text{gaseous} \\ \text{products}}} v_{i} - \sum_{\substack{\text{gaseous} \\ \text{reactants}}} v_{i} \right]$$

$$= -5079 \text{ kJ/mol} + \frac{8.314 \text{ J} | 1 \text{ kJ} | 298 \text{ K} | (8+9-12.5)}{\text{mol} \cdot \text{K} | 10^{3} \text{ J}}$$

$$\Rightarrow \Delta \hat{H}_{c}^{o} = -5068 \text{ kJ/mol}$$

% difference =
$$\frac{(-5068) - (-4850)}{|-5068|} \times 100 = -4.3 \%$$

c.
$$\Delta \hat{H}_{c}^{o} = 8 \left(\Delta \hat{H}_{f}^{o} \right)_{CO_{2}(g)} + 9 \left(\Delta \hat{H}_{ff}^{o} \right)_{H_{2}O(g)} - \left(\Delta \hat{H}_{f}^{o} \right)_{C_{8}H_{18}(1)}$$

$$\Rightarrow \left(\Delta \hat{H}_{f}^{o} \right)_{C_{8}H_{18}(1)} = \left[8 \left(-393.5 \right) + 9 \left(-241.83 \right) + 5068 \right] \text{kJ/mol} = \underline{-256.5 \text{ kJ/mol}}$$

There is no practical way to react carbon and hydrogen such that 2,3,3-trimethylpentane is the only product.

9.11 a.
$$n - C_4H_{10}(g) \rightarrow i - C_4H_{10}(g)$$

Basis: 1 mol feed gas

$$\begin{split} &(n_{n\text{-CH}_4H_{10}})_{out} = 0.930(1-0.400) = \underline{0.560 \text{ mol}} \\ &(n_{i\text{-CH}_4H_{10}})_{out} = 0.050 + 0.930 \times 0.400 = \underline{0.420 \text{ mol}} \end{split}$$

$$\xi = \frac{\left| (n_{\text{n-C}_4H_{10}})_{\text{out}} - (n_{\text{n-C}_4H_{10}})_{\text{in}} \right|}{\left| v_{\text{n-C}_4H_{10}} \right|} = \frac{\left| 0.560 - 0.930 \right|}{\left| 1 \right|} = \underline{0.370 \text{ mol}}$$

$$\mathbf{b.} \qquad \Delta \hat{H}_{\mathrm{r}}^{\mathrm{o}} = \left(\Delta \hat{H}_{\mathrm{f}}^{\mathrm{o}}\right)_{i-\mathrm{C_4H_{10}}} - \left(\Delta \hat{H}_{\mathrm{f}}^{\mathrm{o}}\right)_{n-\mathrm{C_4H_{10}}} \xrightarrow{\mathrm{Table B.1}} \Delta \hat{H}_{\mathrm{r}}^{\mathrm{o}} = \left[-134.5 - \left(-124.7\right)\right] \, \mathrm{kJ/mol} = \underbrace{-9.8 \, \mathrm{kJ/mol}}_{-9.8 \, \mathrm{kJ/mol}}$$

c. References:
$$n - C_4H_{10}(g)$$
, $i - C_4H_{10}(g)$ at 25°C

substance	$n_{ m in}$	\hat{H}_{in}	$n_{ m out}$	$\hat{H}_{ m out}$
	(mol)	(kJ/mol)	(mol)	(kJ/mol)
$n - C_4 H_{10}$	1	\hat{H}_1	0.600	\hat{H}_1
$i - C_4 H_{10}$	_	-	0.400	\hat{H}_2

$$\hat{H}_1 = \left[\int_{25}^{149} \overset{\text{Table B.2}}{C_p} dT \right] \frac{\text{kJ}}{\text{mol}} = \underbrace{14.29 \text{ kJ/mol}}_{\text{mol}} \qquad \hat{H}_2 = \left[\int_{25}^{149} \overset{\text{Table B.2}}{C_p} dT \right] \frac{\text{kJ}}{\text{mol}} = \underbrace{14.14 \text{ kJ/mol}}_{\text{mol}}$$

$$Q = \Delta H = \xi \left[\Delta \hat{H}_{r}^{\circ} + \sum_{\text{out}} n_{i} \hat{H}_{i} - \sum_{\text{in}} n_{i} \hat{H}_{i}\right] = 0.370 \left[-9.8 + (1)(14.142) - (1)(14.287)\right] \text{ kJ}$$
$$= -3.68 \text{ kJ}$$

For 325 mol/h fed,
$$\dot{Q} = \frac{-9.8 \text{ kJ}}{1 \text{ mol feed}} \frac{325 \text{ mol feed}}{\text{h}} \frac{1 \text{ h}}{3600 \text{ s}} \frac{1 \text{ kW}}{1 \text{ kJ/s}} = \frac{-0.90 \text{ kW}}{1 \text{ mol feed}}$$

d.
$$\Delta \hat{H}_{r} (149^{\circ}\text{C}) = \frac{-3.68 \text{ kJ}}{0.370 \text{ mol}} = \frac{-9.95 \text{ kJ/mol}}{-9.95 \text{ kJ/mol}}$$

9.12

1 m³ at 298K, 3.00 torr

$$n_0$$
 (mol)

0.111 mol SiH₄/mol

0.8889 mol O₂/mol

Products at 1375K, 3.00 torr

 n_1 (mol O₂)

 n_2 (mol SiO₂)

 n_3 (mol H₂)

$$SiH_4(g) + O_2(g) \rightarrow SiO_2(s) + 2H_2(g)$$

Ideal Gas Equation of state:
$$n_o = \frac{1 \text{ m}^3}{298 \text{ K}} = \frac{3.00 \text{ torr}}{298 \text{ K}} = \frac{1 \text{ mol}}{200 \text{ torr}} = 0.1614 \text{ mol}$$

$$n_i = n_{io} + v_i \xi$$

$$\underline{\text{SiH}_4}$$
: 0=0.1111(0.1614 mol) – $\xi \Rightarrow \underline{\xi}$ = 0.0179 mol

$$\underline{O_2}$$
: $n_1 = 0.8889(0.1614 \text{ mol}) - \xi = \underline{0.1256 \text{ mol } O_2}$

$$\underline{\text{SiO}_2}: n_2 = \xi = \underline{0.0179 \text{ mol SiO}_2}$$

$$\underline{\mathbf{H}_2} : n_3 = 2\xi = 0.0358 \text{ mol } \mathbf{H}_2$$

b.
$$\Delta \hat{H}_{r}^{o} = (\Delta \hat{H}_{f}^{o})_{SiO_{2}(s)} - (\Delta \hat{H}_{f}^{o})_{SiH_{4}(g)}$$

= $[-851 - (-61.9)] \text{ kJ/mol} = -789.1 \text{ kJ/mol}$

References: SiH₄(g),O₂(g),SiO₂(g),H₂(g) at 298 K

Substance	$n_{ m in}$	$\hat{H}_{ ext{in}}$	$n_{ m out}$	$\hat{H}_{ ext{out}}$
	(mol/h)	(kJ/mol)	(mol/h)	(kJ/mol)
SiH ₄	0.0179	0	_	_
O_2	0.1435	0	0.1256	$\hat{H}_{_{1}}$
SiO ₂	_	_	0.0179	$\hat{H}_{_{2}}$
Н,	_	_	0.0358	$\hat{H}_{\scriptscriptstyle 3}$

$$O_2(g,1375K)$$
: $\hat{H}_1 = \hat{H}_{O_2}(1102^{\circ}C) = 36.14 \text{ kJ/mol}$

$$SiO_2(s, 1375K): \hat{H}_2 = \int_{298}^{1375} (C_p)_{SiO_2(s)} dT = 79.18 \text{ kJ/mol}$$

$$\text{H}_{2}(\text{g,1375K}): \hat{H}_{3} = \hat{H}_{\text{H}_{2}}(1102^{\circ}\text{C}) \stackrel{\text{Table B.8}}{=} 32.35 \text{ kJ / mol}$$

c.
$$Q = \Delta H = \xi \Delta \hat{H}_{r}^{o} + \sum_{\text{out}} n_{i} \hat{H}_{i} - \sum_{\text{in}} n_{i} \hat{H}_{i} = -7.01 \text{ kJ/m}^{3} \text{ feed}$$

$$\dot{Q} = \frac{-7.01 \text{ kJ}}{\text{m}^{3}} \begin{vmatrix} 27.5 \text{ m}^{3} & 1 \text{ h} & 1 \text{ kW} \\ h & 3600 \text{ s} & 1 \text{ kJ/s} \end{vmatrix} = \underline{-0.0536 \text{ kW}} \text{ (transferred from reactor)}$$

9.13 a.
$$Fe_2O_3(s) + 3C(s) \rightarrow 2Fe(s) + 3CO(g)$$
, $\Delta \hat{H}_r(77^{\circ}F) = 2.111 \times 10^5$ Btu/lb-mole

Basis:
$$\frac{2000 \text{ lb}_{\text{m}} \text{ Fe}}{55.85 \text{ lb}_{\text{m}}} = 35.81 \text{ lb-moles} \text{ Fe produced}$$

53.72 lb - moles CO produced

17.9 lb - moles Fe₂O₃ fed

53.72 lb - moles C fed

b. References: $Fe_2O_3(s)$, C(s), Fe(s), CO(g) at 77° F

Substance	$n_{\rm in}$	$\hat{H}_{ m in}$	$n_{ m out}$	$\hat{H}_{ ext{out}}$		
	(lb - moles)	(Btu/lb - mole)	(lb - moles)	(Btu/lb - mole)		
$Fe_2O_3(s,77^{\circ}F)$	17.91	0	_	_		
C(s,77°F)	53.72	0	_	_		
Fe(1,2800°F)	_	_	35.81	\hat{H}_1		
CO(g,570°F)	_	_	53.72	\hat{H}_2		

$$\text{Fe(I,2800° F): } \hat{H}_1 = \int_{77}^{2794} \left(C_p \right)_{\text{Fe(s)}} dT + \Delta \hat{H}_m \left(2794^\circ \text{F} \right) + \int_{2794}^{2800} \left(C_p \right)_{\text{Fe(l)}} dT = \underline{\underline{28400 \text{ Btu/lb-mole}}}$$

$$\text{CO(g,570° F): } \hat{H}_2 = \hat{H}_{\text{CO}} \left(570^\circ \text{F} \right) = \underbrace{\frac{3486 \text{ Btu/lb-mole}}{\text{from Table B.9}}}$$

c.
$$Q = \Delta H = \frac{n_{\text{Fe}} \Delta \hat{H}_r^{\text{o}}}{v_{\text{Fe}}} + \sum_{\text{out}} n_i \hat{H}_i - \sum_{\text{in}} n_i \hat{H}_i$$

$$= \frac{(35.81)(2.111 \times 10^5)}{2} + (35.81)(28400) + (53.72)(3486) - 0 = \underbrace{4.98 \times 10^6 \text{ Btu/ton Fe produced}}_{}$$

d. Effect of any pressure changes on enthalpy are neglected.

Specific heat of Fe(s) is assumed to vary linearly with temperature from 77°F to 570°F.

Specific heat of Fe(1) is assumed to remain constant with temperature.

Reaction is complete.

No vaporization occurs.

9.14 a. $C_7H_{16}(g) \rightarrow C_6H_5CH_3(g) + 4H_2(g)$

Basis: 1 mol C₇H₁₆

b. References: C(s), $H_2(g)$ at 25° C

substance	$n_{\rm in}$	$\hat{H}_{ m in}$	$n_{ m out}$	\hat{H}_{out}
	(mol)	(kJ/mol)	(mol)	(kJ/mol)
C ₇ H ₁₆	1	\hat{H}_1	_	_
C_7H_8	_	-	1	\hat{H}_2
H_2	_	_	4	\hat{H}_3

$$C_{7}H_{16}(g,400^{\circ}C): \hat{H}_{1} = (\Delta \hat{H}_{f}^{\circ})_{C_{7}H_{16}(g)} + \begin{bmatrix} \int_{25}^{400} \overset{0.2427}{C_{p}} dT \end{bmatrix}$$

$$= (-187.8 + 91.0) \text{ kJ/mol} = \underline{-96.8 \text{ kJ/mol}}$$

$$C_{6}H_{5}CH_{3}(g,400^{\circ}C): \hat{H}_{2} = (\Delta \hat{H}_{f}^{\circ})_{C_{6}H_{5}CH_{3}(g)} + \begin{bmatrix} \int_{25}^{400} \overset{\text{Table B.2}}{\downarrow} & \\ \int_{25}^{400} \overset{\text{Table B.2}}{\downarrow} & \\ \end{bmatrix}$$

$$= (+50 + 60.2) \text{ kJ / mol} = \underline{110.2 \text{ kJ / mol}}$$

$$H_{2}(g,400^{\circ}C): \hat{H}_{3} = \hat{H}_{H_{2}}(400^{\circ}C) = \underline{10.89 \text{ kJ/mol}}$$

c.
$$Q = \Delta H = \sum_{\text{out}} n_i \hat{H}_i - \sum_{\text{in}} n_i \hat{H}_i$$
$$= \left[(1)(110.2) + (4)(10.89) - (1)(-96.8) \right] \text{kJ} = 251 \text{ kJ (transferred to reactor)}$$

d.
$$\Delta \hat{H}_r (400^{\circ} \text{C}) = \frac{251 \text{ kJ}}{1 \text{ mol } C_7 H_{16} \text{ react}} = \frac{251 \text{ kJ/mol}}{1 \text{ mol } C_7 H_{16} \text{ react}} = \frac{251 \text{ kJ/mol}}{1 \text{ mol } C_7 H_{16} \text{ react}} = \frac{251 \text{ kJ/mol}}{1 \text{ mol } C_7 H_{16} \text{ react}} = \frac{100 \text{ kJ/mol}}{1 \text{ mol } C_7 H_{16} \text{ react}} = \frac{100 \text{ kJ/mol}}{1 \text{ mol } C_7 H_{16} \text{ react}} = \frac{100 \text{ kJ/mol}}{1 \text{ mol } C_7 H_{16} \text{ react}} = \frac{100 \text{ kJ/mol}}{1 \text{ mol } C_7 H_{16} \text{ react}} = \frac{100 \text{ kJ/mol}}{1 \text{ mol } C_7 H_{16} \text{ react}} = \frac{100 \text{ kJ/mol}}{1 \text{ mol } C_7 H_{16} \text{ react}} = \frac{100 \text{ kJ/mol}}{1 \text{ mol } C_7 H_{16} \text{ react}} = \frac{100 \text{ kJ/mol}}{1 \text{ mol } C_7 H_{16} \text{ react}} = \frac{100 \text{ kJ/mol}}{1 \text{ mol } C_7 H_{16} \text{ react}} = \frac{100 \text{ kJ/mol}}{1 \text{ mol } C_7 H_{16} \text{ react}} = \frac{100 \text{ kJ/mol}}{1 \text{ mol } C_7 H_{16} \text{ react}} = \frac{100 \text{ kJ/mol}}{1 \text{ mol } C_7 H_{16} \text{ react}} = \frac{100 \text{ kJ/mol}}{1 \text{ mol } C_7 H_{16} \text{ react}} = \frac{100 \text{ kJ/mol}}{1 \text{ mol } C_7 H_{16} \text{ react}} = \frac{100 \text{ kJ/mol}}{1 \text{ mol } C_7 H_{16} \text{ react}} = \frac{100 \text{ kJ/mol}}{1 \text{ mol } C_7 H_{16} \text{ react}} = \frac{100 \text{ kJ/mol}}{1 \text{ mol } C_7 H_{16} \text{ react}} = \frac{100 \text{ kJ/mol}}{1 \text{ mol } C_7 H_{16} \text{ react}} = \frac{100 \text{ kJ/mol}}{1 \text{ mol } C_7 H_{16} \text{ react}} = \frac{100 \text{ kJ/mol}}{1 \text{ mol } C_7 H_{16} \text{ react}} = \frac{100 \text{ kJ/mol}}{1 \text{ mol } C_7 H_{16} \text{ react}} = \frac{100 \text{ kJ/mol}}{1 \text{ mol } C_7 H_{16} \text{ react}} = \frac{100 \text{ kJ/mol}}{1 \text{ mol } C_7 H_{16} \text{ react}} = \frac{100 \text{ kJ/mol}}{1 \text{ mol } C_7 H_{16} \text{ react}} = \frac{100 \text{ kJ/mol}}{1 \text{ mol } C_7 H_{16} \text{ react}} = \frac{100 \text{ kJ/mol}}{1 \text{ mol } C_7 H_{16} \text{ react}} = \frac{100 \text{ kJ/mol}}{1 \text{ mol } C_7 H_{16} \text{ react}} = \frac{100 \text{ kJ/mol}}{1 \text{ mol } C_7 H_{16} \text{ react}} = \frac{100 \text{ kJ/mol}}{1 \text{ mol } C_7 H_{16} \text{ react}} = \frac{100 \text{ kJ/mol}}{1 \text{ mol } C_7 H_{16} \text{ react}} = \frac{100 \text{ kJ/mol}}{1 \text{ mol } C_7 H_{16} \text{ react}} = \frac{100 \text{ kJ/mol}}{1 \text{ mol } C_7 H_{16} \text{ react}} = \frac{100 \text{ kJ/mol}}{1 \text{ mol } C_7 H_{16} \text{ react}} = \frac{100 \text{ kJ/mol}}{1 \text{ mol } C_7 H_{16} \text{ react}} = \frac{1$$

9.15 a.
$$(CH_3)_2O(g) \to CH_4(g) + H_2(g) + CO(g)$$

Moles charged: (Assume ideal gas)

$$\frac{2.00 \text{ liters}}{873 \text{ K}} \frac{273 \text{ K}}{350 \text{ mm Hg}} \frac{1 \text{ mol}}{22.4 \text{ liters(STP)}} = 0.01286 \text{ mol (CH}_3)_2 \text{O}$$

Let $x = \text{fraction } (\text{CH}_3)_2 \text{O} \text{ decomposed } (\text{Clearly } x < 1 \text{ since } P_f < 3P_0)$

Total moles in tank at t = 2h = 0.01286[(1-x)+3x] = 0.01286(1+2x)mol

References: C(s), $H_2(g)$, $O_2(g)$ at $25^{\circ}C$

substance	$n_{\rm in}$	\hat{H}_{in}	$n_{ m out}$	$\hat{H}_{ ext{out}}$
substance	(mol)	(kJ / mol)	(mol)	(kJ / mol)
$\left(\mathrm{CH_3}\right)_2\mathrm{O(g)}$	0.01286	\hat{H}_1	0.25×0.01286	\hat{H}_1
$CH_4(g)$	_	-	0.75×0.01286	\hat{H}_2
$H_2(g)$	_	_	0.75×0.01286	\hat{H}_3
CO(g)	_	_	0.75×0.01286	\hat{H}_4

$$(CH_3)_2 O(g,600^{\circ}C): \hat{H}_1 = (\Delta \hat{H}_f^{\circ})_{(CH_3)_2 O} + \left[\int_{298}^{873} C_p dT \right] \frac{J}{\text{mol}} \times \frac{1 \text{ kJ}}{10^3 \text{ J}} = (-180.16 + 62.40) \text{ kJ/mol}$$

$$= -118 \text{ kJ/mol}$$

$$\text{CH}_4(\text{g},600^{\circ}\text{C}): \hat{H}_2 = (\Delta \hat{H}_{\text{f}}^{\circ})_{\text{CH}_4} + \left[\int_{25}^{600} \overset{\text{Table B.2}}{C_p} dT\right] = -74.85 + 29.46 = \underline{-45.39 \text{ kJ/mol}}$$

$$H_2(g,600^{\circ}C)$$
: $\hat{H}_3 = \hat{H}_{H_2}(600^{\circ}C) = \underbrace{\frac{16.81 \text{ kJ/mol}}{16.81 \text{ kJ/mol}}}$

For the reaction of parts (a) and (b), the enthalpy change and extent of reaction are: c.

$$\Delta H = \sum n_{\text{out}} \hat{H}_{\text{out}} - \sum n_{\text{in}} \hat{H}_{\text{in}} = [-1.5515 - (-1.5175)] \text{ kJ} = -0.0340 \text{ kJ}$$

9.15 (cont'd)

$$\xi = \frac{(n_{\text{CH}_4})_{\text{out}} - (n_{\text{CH}_4})_{\text{in}}}{\nu_{\text{CH}_4}} = \frac{0.75 \times 0.01286}{1} \text{mol} = 0.009645 \text{ mol}$$

$$\Delta H = \xi \Delta \hat{H}_r (600^{\circ}\text{C}) \Rightarrow \Delta \hat{H}_r (600^{\circ}\text{C}) = \frac{-0.0340 \text{ kJ}}{0.009645} = \frac{-3.53 \text{ kJ/mol}}{0.009645}$$

$$\Delta \hat{U}_r (600^{\circ}\text{C}) = \Delta \hat{H}_r (600^{\circ}\text{C}) - RT \left[\sum_{\substack{\text{gaseous} \\ \text{products}}} \nu_i - \sum_{\substack{\text{gaseous} \\ \text{reactants}}} \nu_i \right]$$

d.

$$= -3.53 \text{ kJ/mol} - \frac{8.314 \text{ J}}{\text{mol} \cdot \text{K}} \frac{1 \text{ kJ}}{10^3 \text{ J}} \frac{873 \text{ K}}{10^3 \text{ K}} \frac{(1+1+1-1)}{(1+1+1-1)} = \underbrace{-18.0 \text{ kJ/mol}}_{==-18.0 \text{ kJ/mol}} = \underbrace{-18.0 \text{ kJ/mol}}_{==-18$$

 $Q = \xi \Delta \hat{U}_r (600^{\circ}\text{C}) = (0.009645 \text{ mol})(-18.0 \text{ kJ/mol}) = \underline{-0.174 \text{ kJ}} \text{ (transferred from reactor)}$

9.16 a.
$$SO_2(g) + \frac{1}{2}O_2(g) \rightarrow SO_3(g)$$

Basis:
$$\frac{100 \text{ kg SO}_3}{\text{min}} = \frac{10^3 \text{ mol SO}_3}{80.07 \text{ kg SO}_3} = 1249 \text{ mol SO}_3/\text{min}$$

Assume low enough pressure for \hat{H} to be independent of P.

$$\frac{\text{SO}_3 \text{ balance}:}{(\text{Generation=output})} \frac{\dot{n}_0 \text{ (mol SO}_2 \text{ fed)} \mid 0.65 \text{ mol SO}_2 \text{ react} \mid 1 \text{ mol SO}_3 \text{ produced}}{\text{min} \mid 1 \text{ mol SO}_2 \text{ fed} \mid 1 \text{ mol SO}_2 \text{ react}} = 1249 \frac{\text{mol SO}_3}{\text{min}}$$

$$\Rightarrow \dot{n}_0 = \underline{1922 \text{ mol SO}_2 / \text{min fed}}$$

$$N_2 \text{ balance} : 3.76(1922) = \frac{7227 \text{ mol/min (in \& out)}}{1.56 \text{ min (in \& out)}}$$

65% conversion:
$$\dot{n}_2 = 1922(1 - 0.65) \text{ mol/s} = 673 \text{ mol SO}_2/\text{min out}$$

O balance:
$$(2)(1922) + (2)(1922) = (3)(1249) + (2)(673) + 2\dot{n}_3 \Rightarrow \dot{n}_3 = 1298 \text{ mol/min out}$$

9.16 (cont'd)

Extent of reaction:
$$\xi = \frac{\left| (n_{SO_2})_{out} - (n_{SO_2})_{in} \right|}{\left| v_{SO_2} \right|} = \frac{\left| (673 - 1922)_{out} - (n_{SO_2})_{in} \right|}{\left| 1 \right|} = \frac{1249 \text{ mol } / \text{min}}{\left| 1 \right|}$$

$$\Delta \hat{H}_{r}^{o} = (\Delta \hat{H}_{f}^{o})_{SO_{3}(g)} - (\Delta \hat{H}_{f}^{o})_{SO_{2}(g)} \stackrel{\text{Table B.1}}{=} -395.18 - (-296.9) = \underline{-99.28 \text{ kJ/mol}}$$

References: SO₂(g), O₂(g), N₂(g), SO₃(g) at 25°C

Substance	$\dot{n}_{ m in}$	\hat{H}_{in}	$\dot{n}_{ m out}$	$\hat{H}_{ m out}$
Substance	(mol/min)	(kJ / mol)	(mol/min)	(kJ / mol)
SO ₂	1922	\hat{H}_1	673	\hat{H}_4
O_2	1922	\hat{H}_2	1298	\hat{H}_5
N_2	7227	\hat{H}_3	7227	\hat{H}_6
SO ₃	_	-	1249	\hat{H}_7

$$SO_2(g,450^{\circ}C): \hat{H}_1 = \int_{25}^{450} C_p^{\text{Table B.2}} dT = \underline{19.62 \text{ kJ/mol}}$$

$$O_2(g,450^{\circ}C) = \hat{H}_2 = \hat{H}_{O_2}(450^{\circ}C) = \underbrace{\frac{\text{Table B.8}}{13.36 \text{ kJ/mol}}}_{\text{Table B.8}}$$

$$N_2(g,450^{\circ}C) = \hat{H}_3 = \hat{H}_{N_2}(450^{\circ}C) = \underbrace{\frac{12.69 \text{ kJ/mol}}{12.69 \text{ kJ/mol}}}_{}$$

Out:

$$SO_{2}(g,550^{\circ}C): \hat{H}_{4} = \int_{25}^{550} \stackrel{\text{Table B.2}}{C_{p}} dT = \underline{24.79 \text{ kJ/mol}}$$

$$O_{2}(g,550^{\circ}C) = \hat{H}_{5} = \hat{H}_{O_{2}}(550^{\circ}C) = \underline{16.71 \text{ kJ/mol}}$$

$$N_{2}(g,550^{\circ}C) = \hat{H}_{6} = \hat{H}_{N_{2}}(550^{\circ}C) = \underline{15.81 \text{ kJ/mol}}$$

$$O_2(g,550^{\circ}C) = \hat{H}_5 = \hat{H}_{O_2}(550^{\circ}C) = \underbrace{16.71 \text{ kJ/mol}}_{16.71 \text{ kJ/mol}}$$

$$N_2(g,550^{\circ}C) = \hat{H}_6 = \hat{H}_{N_2}(550^{\circ}C) = \underline{15.81 \text{ kJ/mol}}$$

$$SO_3(g,550^{\circ}C): \hat{H}_7 = \int_{25}^{550} \stackrel{\text{Table B.2}}{\downarrow} C_p dT = \underline{35.34 \text{ kJ/mol}}$$

$$\dot{Q} = \Delta \dot{H} = \dot{\xi} \Delta \hat{H}_{r}^{o} + \sum_{\text{out}} \dot{n}_{i} \hat{H}_{i} - \sum_{\text{in}} \dot{n}_{i} \hat{H}_{i}$$

$$= (1249)(-98.28) + (673)(24.796) + (179.8)(16.711) + (7227)(15.808) + (1249)(35.336) - (194.27)(13.362) - (7227)(12.691)$$

$$= \frac{-8.111 \times 10^{4} \text{ kJ}}{\text{min}} \frac{1 \text{ min}}{60 \text{ s}} \frac{1 \text{ kW}}{1 \text{ kJ/s}} = \frac{-1350 \text{ kW}}{1 \text{ kJ/s}}$$

Assume system is adiabatic, so that $\dot{Q}_{\text{lost from reactor}} = \dot{Q}_{\text{gained by cooling water}}$

9.16 (cont'd)

$$\dot{Q} = \Delta \dot{H} = \dot{m}_{w} \begin{bmatrix} \hat{H}_{w} \left(1, 40^{\circ} \text{C} \right) - \hat{H}_{w} \left(1, 25^{\circ} \text{C} \right) \\ \uparrow \text{Table B.5} \end{bmatrix}$$

d.
$$\Rightarrow 8.111 \times 10^4 \frac{\text{kJ}}{\text{min}} = \dot{m}_w \left(\frac{\text{kg}}{\text{min}}\right) \left[167.5 - 104.8\right] \frac{\text{kJ}}{\text{kg}} \Rightarrow \frac{\dot{m}_w = 1290 \text{ kg/min cooling water}}{\text{kg}}$$

If elemental species were taken as references, the heats of formation of each molecular species would have to be taken into account in the enthalpy calculations and the heat of reaction term would not have been included in the calculation of $\Delta \dot{H}$.

9.17 $CO(g) + H_2O(v) \rightarrow H_2(g) + CO_2(g)$,

$$\Delta \hat{\boldsymbol{H}}_{r}^{o} = \left(\Delta \hat{\boldsymbol{H}}_{f}^{o}\right)_{CO_{2}(g)} - \left(\Delta \hat{\boldsymbol{H}}_{f}^{o}\right)_{CO(g)} - \left(\Delta \hat{\boldsymbol{H}}_{f}^{o}\right)_{H_{2}O(v)} \overset{\text{Table B.1}}{=} -41.15 \frac{kJ}{mol}$$

a. Basis: $[2.5 \text{ m}^3(\text{STP}) \text{ product gas/h}][1000 \text{ mol/}22.4 \text{ m}^3(\text{STP})] = 111.6 \text{ mol/h}$

<u>C balance on reactor</u>: $\dot{n}_1 = (0.40)(111.6 \text{ mol/h}) = 44.64 \text{ mol CO/h}$

<u>H balance on reactor</u>: $2\dot{n}_2 = 111.6[(2)(0.40) + (2)(0.20)] \text{mol/h} \Rightarrow \dot{n}_2 = 66.96 \text{ mol H}_2\text{O(v)/h}$

$$\frac{\text{Steam theoretically required}}{\text{h}} = \frac{44.64 \text{ mol CO}}{\text{h}} \frac{1 \text{ mol H}_2\text{O}}{1 \text{ mol CO}} = 44.64 \text{ mol H}_2\text{O}$$

$$\frac{\% \text{ excess steam}}{44.64 \text{ mol/h}} \times 100\% = \frac{66.96 - 44.64) \text{ mol/h}}{44.64 \text{ mol/h}} \times 100\% = \frac{50\% \text{ excess steam}}{600\% \text{ excess steam}}$$

 CO_2 balance on condenser: $\dot{n}_3 = (0.40)(111.6 \text{ mol/h}) = 44.64 \text{ mol } CO_2/\text{h}$

 H_2 balance on condenser: $\dot{n}_4 = (0.40)(111.6 \text{ mol/h}) = 44.64 \text{ mol } H_2/\text{h}$

Saturation of condenser outlet gas:

$$y_{\text{H}_2\text{O}} = \frac{p_w^* (15^\circ \text{C})}{\text{p}} \Rightarrow \frac{\dot{n}_5 (\text{mol H}_2\text{O/h})}{(44.64 + 44.64 + \dot{n}_5)(\text{mol/h})} = \frac{12.788 \text{ mm Hg}}{760 \text{ mm Hg}} \Rightarrow \dot{n}_5 = 1.53 \text{ mol H}_2\text{O(v)/h}$$

$$\frac{\text{H}_2\text{O balance on condenser:}}{\Rightarrow \dot{n}_6 = 20.8 \text{ mol H}_2\text{O/h} = 1.53 + \dot{n}_6}$$

9.17 (cont'd)

b. Energy balance on condenser

References: H₂(g), CO₂(g) at 25°C, H₂O at reference point of steam tables

Substance	$\dot{n}_{ m in}$	$\hat{H}_{ ext{in}}$	$\dot{n}_{ m out}$	$\hat{H}_{ ext{out}}$
Substance	mol / h	kJ / mol	mol / h	kJ / mol
CO ₂ (g)	44.64	\hat{H}_1	44.64	\hat{H}_4
$H_2(g)$	44.64	\hat{H}_2	44.64	\hat{H}_{5}
$H_2O(v)$	22.32	\hat{H}_3	1.53	\hat{H}_{6}
H ₂ O(1)	_	_	20.80	\hat{H}_7

Enthalpies for CO₂ and H₂ from Table B.8

$$CO_2(g,500^{\circ}C)$$
: $\hat{H}_1 = \hat{H}_{CO_2}(500^{\circ}C) = 21.34 \text{ kJ/mol}$

$$H_2(g,500^{\circ} \text{ C}): \hat{H}_2 = \hat{H}_{H_2}(500^{\circ} \text{ C}) = 13.83 \text{ kJ} / \text{mol}$$

$$H_2O(v,500^{\circ}C)$$
: $\hat{H}_3 = 3488 \frac{kJ}{kg} \times \left(\frac{18 \text{ kg}}{10^3 \text{ mol}}\right) = 62.86 \text{ kJ/mol}$

$$CO_2(g,15^{\circ}C)$$
: $\hat{H}_4 = \hat{H}_{CO_2}(15^{\circ}C) = -0.552 \text{ kJ/mol}$

$$H_2(g,15^{\circ}C)$$
: $\hat{H}_5 = \hat{H}_{H_2}(15^{\circ}C) = -0.432 \text{ kJ/mol}$

$$H_2O(v,15^{\circ}C)$$
: $\hat{H}_6 = 2529 \frac{kJ}{kg} \times \left(\frac{18.0 \text{ kg}}{10^3 \text{ mol}}\right) = 45.52 \text{ kJ/mol}$

$$H_2O(1,15^{\circ}C)$$
: $\hat{H}_7 = 62.9 \frac{kJ}{kg} \times \left(\frac{18.0 \text{ kg}}{10^3 \text{ mol}}\right) = 1.13 \text{ kJ/mol}$

$$\dot{Q} = \Delta \dot{H} = \sum_{\text{out}} \dot{n}_i \hat{H}_i - \sum_{\text{in}} \dot{n}_i \hat{H}_i = \frac{\left(49.22 - 2971.8\right) \text{ kJ}}{\text{h}} \frac{1 \text{ h}}{3600 \text{ s}} \frac{1 \text{ kW}}{1 \text{ kJ/s}} = \frac{-0.812 \text{ kW}}{1 \text{ kJ/s}}$$

(heat transferred from condenser)

Energy balance on reactor:

<u>References</u>: $H_2(g)$, C(s), $O_2(g)$ at 25° C

Substance	$\dot{n}_{ m in}$	\hat{H}_{in}	$\dot{n}_{ m out}$	$\hat{H}_{ m out}$
Substance	(mol/h)	(kJ / mol)	(mol/h)	(kJ / mol)
CO(g)	44.64	\hat{H}_1	_	_
$H_2O(v)$	66.96	\hat{H}_2	22.32	\hat{H}_3
$H_2(g)$	_	_	44.64	\hat{H}_4
$CO_2(g)$	_	_	44.64	\hat{H}_{5}

$$CO(g,25^{\circ}C): \hat{H}_{1} = (\Delta \hat{H}_{f}^{\circ})_{CO} = \underline{-110.52 \text{ kJ/mol}}$$

$$H_2O(v,150^{\circ}C)$$
: $\hat{H}_2 = (\Delta \hat{H}_f^{\circ})_{H_2O(v)} + \hat{H}_{H_2O}(150^{\circ}C) = \underline{-237.56 \text{ kJ/mol}}$

9.17 (cont'd)

$$\begin{split} & \text{H}_2\text{O(v,}500^\circ\text{C)}: \, \hat{H}_3 = (\Delta \hat{H}_{\text{f}}^\circ)_{\text{H}_2\text{O(v)}} + \hat{H}_{\text{H}_2\text{O}}(500^\circ\text{C}) \stackrel{\text{Tables B.1, B.8}}{=} \underbrace{-224.82 \text{ kJ/mol}}_{=} \\ & \text{H}_2(\text{g,}500^\circ\text{C}): \, \hat{H}_4 = \hat{H}_{\text{H}_2}(500^\circ\text{C}) \stackrel{\text{Table B.8}}{=} \underbrace{13.83 \text{ kJ/mol}}_{=} \\ & \text{CO}_2(\text{g,}500^\circ\text{C}): \, \hat{H}_5 = (\Delta \hat{H}_{\text{f}}^\circ)_{\text{CO}_2} + \hat{H}_{\text{CO}_2}(500^\circ\text{C}) \stackrel{\text{Tables B.1, B.8}}{=} \underbrace{-372.16 \text{ kJ/mol}}_{=} \\ & Q = \Delta H = \sum_{\text{out}} n_i \hat{H}_i - \sum_{\text{in}} n_i \hat{H}_i = \underbrace{\begin{bmatrix} -21013.83 - (-20839.96) \end{bmatrix} \text{kJ}}_{\text{h}} \frac{1 \text{ h}}{3600 \text{ s}} \frac{1 \text{ kW}}{1 \text{ kJ/s}} = \underbrace{-0.0483 \text{ kW}}_{=} \end{split}$$

(heat transferred from reactor)

d. Benefits

Preheating CO \Rightarrow more heat transferred from reactor (possibly generate additional steam for plant) Cooling CO \Rightarrow lower cooling cost in condenser.

9.18 b.

References:	$F_0\Omega(c)$	$CO(\alpha)$	Fo(c)	$CO_{(\alpha)}$	at 25°C
References:	reu(s),	CO(g),	re(s),	CONTRA	at 23 C

Substance	n _{in} (mol)	\hat{H}_{in} (kJ / mol)	n _{out} (mol)	\hat{H}_{out} (kJ / mol)
FeO	1.00	0	n_1	\hat{H}_1
СО	n_0	\hat{H}_0	n_2	\hat{H}_2
Fe	_	-	n_3	\hat{H}_3
CO_2	_	-	n_4	\hat{H}_4

$$Q = \xi \Delta \hat{H}_{r}^{\circ} + \sum n_{\text{out}} \hat{H}_{\text{out}} - \sum n_{\text{in}} \hat{H}_{\text{in}}$$

$$\Rightarrow Q = \xi \Delta \hat{H}_{r}^{\circ} + n_{1} \hat{H}_{1} + n_{2} \hat{H}_{2} + n_{3} \hat{H}_{3} + n_{4} \hat{H}_{4} - n_{0} \hat{H}_{0}$$

$$\underline{\text{Fractional Conversion}} : X = \frac{(1.00 - n_{1})}{1.00} \Rightarrow \underline{n_{1} = 1 - X}$$

$$\underline{\text{CO consumed}} : \frac{1 \text{ mol CO}}{1 \text{ mol FeO consumed}} = (1 - n_{1}) \text{ mol FeO consumed}$$

$$\Rightarrow n_{2} = n_{0} - (1 - n_{1}) = \underline{n_{0} - X}$$

$$\underline{\text{Fe produced}} : n_{3} = \frac{1 \text{ mol FeO consumed}}{1 \text{ mol FeO consumed}} = (1 - n_{1}) \text{ mol FeO consumed}$$

$$\underline{\text{CO}_{2} \text{ produced}} : n_{4} = \frac{1 \text{ mol CO}_{2}}{1 \text{ mol FeO consumed}} = (1 - n_{1}) \text{ mol FeO consumed}$$

$$\underline{\text{CO}_{2} \text{ produced}} : n_{4} = \frac{1 \text{ mol CO}_{2}}{1 \text{ mol FeO consumed}} = (1 - n_{1}) \text{ mol FeO consumed}$$

$$\underline{\text{Extent of reaction}} : \xi = \frac{|(n_{\text{CO}})_{\text{out}} - (n_{\text{CO}})_{\text{in}}|}{|\nu_{\text{CO}}|} = \frac{|n_{2} - n_{0}|}{1} = \underline{X}$$

$$\hat{H}_i = \int_{0.7}^{T} C_{pi} dT$$
 for $i = 0,1,2,3,4$

$$\hat{H}_0 = 0.02761 \ (T_0 - 298) + 2.51 \times 10^{-6} \ (T_0^2 - 298^2)$$

$$\Rightarrow \hat{H}_0 = (-8.451 + 0.02761 \ T_0 + 2.51 \times 10^{-6} \ T_0^2) \ \text{kJ / mol}$$

$$\hat{H}_1 = 0.0528 \ (T - 298) + 3.1215 \times 10^{-6} (T^2 - 298^2) + 3.188 \times 10^2 (1/T - 1/298)$$

$$\Rightarrow \hat{H}_1 = (-17.0814 + 0.0528 T + 3.1215 \times 10^{-6} T^2 + 3.188 \times 10^2 / T) \text{ kJ / mol}$$

$$\hat{H}_2 = (0.02761 (T - 298) + 2.51 \times 10^{-6} (T^2 - 298^2))$$

$$\Rightarrow \hat{H}_2 = -8.451 + 0.02761 T + 2.51 \times 10^{-6} T^2) \text{ kJ / mol}$$

$$\hat{H}_3 = 0.01728 \; (T - 298) + 1.335 \times 10^{-5} (T^2 - 298^2)$$

$$\Rightarrow \hat{H}_3 = (-6.335 + 0.01728 \ T + 1.335 \times 10^{-5} \ T^2) \ \text{kJ / mol}$$

$$\hat{H}_4 = 0.04326(T - 298) + 0.573 \times 10^{-5} (T^2 - 298^2) + 8.18 \times 10^2 (1/T - 1/298)$$

$$\Rightarrow \hat{H}_4 = (-16.145 + 0.04326 T + 0.573 \times 10^{-5} T^2 + 8.18 \times 10^2 / T) \text{ kJ / mol}$$

9.18 (cont'd)

 $n_0 = 2.0 \text{ mol CO}, T_0 = 350 \text{ K}, T = 550 \text{ K}, \text{ and } X = 0.700 \text{ mol FeO reacted/mol FeO fed}$ $\Rightarrow n_1 = 1 - 0.7 = 0.3, n_2 = 2 - 0.7 = 1.3, n_3 = 0.7, n_4 = 0.7, \xi = 0.7$

 $\underline{\text{Summary}} : \hat{H}_0 = 1.520 \text{ kJ/mol}, \, \hat{H}_1 = 13.48 \text{ kJ/mol}, \, \hat{H}_2 = 7.494 \text{ kJ/mol},$

 $\hat{H}_3 = 7.207 \text{ kJ/mol}, \hat{H}_4 = 10.87 \text{ kJ/mol}$

 $\Delta \hat{H}_{\rm r}^{\rm o} = -16.48 \text{ kJ/mol}$

Q = (0.7)(-16.48) + (0.3)(13.48) + (1.3)(7.494) + (0.7)(7.207) + (0.7)(10.87) - (2)(1.520)

 $\Rightarrow Q = 11.86 \text{ kJ}$

d. no	То	X	Т	Xi	n1	n2	n3	n4	Н0	H1	Н2	Н3	H4	Q
1	400		298	1	0	0	1	1	2.995	0	0	0	0	-19.48
1	400	1	400	1	0	0	1	1	2.995	5.335	2.995	2.713	4.121	-12.64
1	400	1	500	1	0	0	1	1	2.995	10.737	5.982	5.643	8.553	-5.279
1	400	1	600	1	0	0	1	1	2.995	16.254	9.019	8.839	13.237	2.601
1	400	1	700	1	0	0	1	1	2.995	21.864	12.11	12.303	18.113	10.941
1	400	1	800	1	0	0	1	1	2.995	27.555	15.24	16.033	23.152	19.71
1	400	1	900	1	0	0	1	1	2.995	33.321	18.43	20.031	28.339	28.895
1	400) 1	1000	1	0	0	1	1	2.995	39.159	21.67	24.295	33.663	38.483
no	To	X	T	Xi	n1	n2	n3	n4	Н0	H1	H2	Н3	H4	Q
1	298	3 1	700	1	0	0	1	1	0	21.864	12.11	12.303	18.113	13.936
1	400	1	700	1	0	0	1	1	2.995	21.864	12.11	12.303	18.113	10.941
1	500) 1	700	1	0	0	1	1	5.982	21.864	12.11	12.303	18.113	7.954
1	600) 1	700	1	0	0	1	1	9.019	21.864	12.11	12.303	18.113	4.917
1	700		700	1	0	0	1	1	12.11	21.864	12.11	12.303	18.113	1.83
1	800		700	1	0	0	1	1	15.24	21.864	12.11	12.303		-1.308
1	900		700	1	0	0	1	1	18.43	21.864	12.11	12.303	18.113	-4.495
1	1000) 1	700	1	0	0	1	1	21.67	21.864	12.11	12.303	18.113	-7.733
no	To	X	T	Xi	n1	n2	n3	n4	H0	H1	H2	Н3	H4	Q
1	400	0	500	0	1	1	0	0	2.995	10.737	5.55	5.643	8.533	13.72
1	400		500	0.1		0.9	0.1	0.1	2.995	10.737	5.55	5.643	8.533	11.82
1	400		500	0.2		0.8	0.2	0.2	2.995	10.737	5.55	5.643	8.533	9.92
1	400		500	0.3		0.7	0.3	0.3	2.995	10.737	5.55	5.643	8.533	8.02
1	400		500	0.4		0.6	0.4	0.4	2.995	10.737	5.55	5.643	8.533	6.12
1	400		500	0.5		0.5	0.5	0.5	2.995	10.737	5.55	5.643	8.533	4.22
1	400		500	0.6		0.4	0.6	0.6	2.995	10.737	5.55	5.643	8.533	2.32
1	400		500	0.7		0.3	0.7	0.7	2.995	10.737	5.55	5.643	8.533	0.42
1	400		500	0.8		0.2	0.8	0.8	2.995	10.737	5.55	5.643	8.533	-1.48
1	400		500	0.9		0.1	0.9	0.9	2.995	10.737	5.55	5.643	8.533	-3.38
1	400	1	500	1	0	0	1	1	2.995	10.737	5.55	5.643	8.533	-5.28
no	To	X	T	Xi	n1	n2	n3	n4	Н0	H1	H2	Н3	H4	Q
0.5	400		400	0.5		0.0	0.5	0.5	2.995	5.335	2.995	2.713	4.121	-3.653
0.6	400	0.5	400	0.5	0.5	0.1	0.5	0.5	2.995	5.335	2.995	2.713	4.121	-3.653
0.8 1.0	400 400		400 400	0.5 0.5		0.3	0.5	0.5 0.5	2.995 2.995	5.335 5.335	2.995 2.995	2.713 2.713	4.121	-3.653 -3.653

9.18 (cont'd)

1.2	400	0.5	400	0.5	0.5	0.7	0.5	0.5	2.995	5.335	2.995	2.713	4.121	-3.653
1.4	400	0.5	400	0.5	0.5	0.9	0.5	0.5	2.995	5.335	2.995	2.713	4.121	-3.653
1.6	400	0.5	400	0.5	0.5	1.1	0.5	0.5	2.995	5.335	2.995	2.713	4.121	-3.653
1.8	400	0.5	400	0.5	0.5	1.3	0.5	0.5	2.995	5.335	2.995	2.713	4.121	-3.653
2.0	400	0.5	400	0.5	0.5	1.5	0.5	0.5	2.995	5.335	2.995	2.713	4.121	-3.653

9.19 a. Fermentor capacity: 550,000 gal

Solution volume : $(0.9 \times 550,000) = 495,000$ gal

 $[0.071 \text{ lb}_{\text{m}} \text{ C}_{2}\text{H}_{5}\text{OH}/\text{lb}_{\text{m}} \text{ solution}]$

Final reaction mixture: $\{0.069 \text{ lb}_{\text{m}} \text{ (yeast, other species)/lb}_{\text{m}} \text{ solution}\}$

 $0.86 \text{ lb H}_2\text{O}/\text{lb}_{\text{m}} \text{ solution}$

<u>Mass of tank contents</u>: $\frac{495,000 \text{ gal}}{7.4805 \text{ gal}} = \frac{1 \text{ ft}^3}{1 \text{ ft}^3} = 4335593 \text{ lb}_m$

 $\underline{\text{Mass of ethanol produced}}: \ \frac{4.336 \times 10^6 \ \text{lb}_{\text{m}} \ \text{solution} \ \ \left| \ 0.071 \ \text{lb}_{\text{m}} \ \text{C}_2 \text{H}_5 \text{OH}}{\text{lb}_{\text{m}} \ \text{solution}} \right| = \ \underline{3.078 \times 10^5 \ \text{lb}_{\text{m}} \ \text{C}_2 \text{H}_5}$

 $\Rightarrow \frac{3.078 \times 10^{5} \text{ lb}_{\text{m}} \text{ C}_{2}\text{H}_{5}\text{OH}}{46.1 \text{ lb}_{\text{m}} \text{ C}_{2}\text{H}_{5}\text{OH}} = 6677 \text{ lb - mole C}_{2}\text{H}_{5}\text{OH}$

 $\Rightarrow \frac{307827 \text{ lb}_{\text{m}} \text{ C}_{2}\text{H}_{5}\text{OH}}{49.67 \text{ lb}_{\text{m}} \text{ C}_{2}\text{H}_{5}\text{OH}} \frac{7.4805 \text{ gal}}{1 \text{ ft}^{3}} = 46,360 \text{ gal } \text{C}_{2}\text{H}_{5}\text{OH}$

9.19 (cont'd)

$$\begin{split} &C_{12}H_{22}O_{11}(s) + 12O_{2}(g) \rightarrow 12CO_{2}(g) + 11H_{2}O(l) \qquad \Delta \hat{H}_{c}^{o} = -5649.1 \text{ kJ/mol} \\ &\Delta \hat{H}_{c}^{o} = 12 \ \Delta \hat{H}_{f}^{o}(CO_{2}) + 11\Delta \hat{H}_{f}^{o}(H_{2}O) - \Delta \hat{H}_{f}^{o}(C_{12}H_{22}O_{11}) \\ &\Rightarrow \Delta \hat{H}_{f}^{o}(C_{12}H_{22}O_{11}) = -2217.14 \text{ kJ/mol} \\ &C_{12}H_{22}O_{11}(s) + H_{2}O(l) \rightarrow 4C_{2}H_{5}OH(l) + 4CO_{2}(g) \\ &\Delta \hat{H}_{r}^{o} = 4 \ \Delta \hat{H}_{f}^{o}(C_{2}H_{5}OH) + 4 \ \Delta \hat{H}_{f}^{o}(CO_{2}) - \Delta \hat{H}_{f}^{o}(C_{12}H_{22}O_{11}) - \Delta \hat{H}_{f}^{o}(H_{2}O) = -184.5 \text{kJ/mol} \\ &\Rightarrow \Delta \hat{H}_{r}^{o} = \frac{-181.5 \text{ kJ}}{1 \text{ mol}} \frac{453.6 \text{ mol}}{1 \text{ lb-mole}} \frac{0.9486 \text{ Btu}}{1 \text{ kJ}} = \frac{-7.811 \times 10^{4} \text{ Btu/lb-mole}}{1 \text{ kJ/mol}} \end{split}$$

Moles of maltose:

$$\begin{split} \frac{4.336\times10^6 \text{ lb}_{\text{m}} \text{ solution}}{1 \text{ lb}_{\text{m}} \text{ solution}} & \frac{0.071 \text{ lb C}_2\text{H}_5\text{OH}}{1 \text{ lb} - \text{mole C}_2\text{H}_5\text{OH}} & \frac{1 \text{ lb} - \text{mole C}_{12}\text{H}_{22}\text{O}_{11}}{1 \text{ lb}_{\text{m}} \text{ solution}} & \frac{46.1 \text{ lb C}_2\text{H}_5\text{OH}}{4 \text{ lb} - \text{mole C}_2\text{H}_5\text{OH}} & \frac{4 \text{ lb} - \text{mole C}_2\text{H}_5\text{OH}}{4 \text{ lb} - \text{mole C}_2\text{H}_5\text{OH}} \\ = 1669 \text{ lb} - \text{moles C}_{12}\text{H}_{22}\text{O}_{11} \implies \xi = n_{\text{C}_{10}\text{H}_{22}\text{O}_{11}} = 1669 \text{ lb} - \text{moles} \\ Q = \xi\Delta\hat{H}_r + mC_p (95^\circ \text{F} - 85^\circ \text{F}) \\ = (1669 \text{ lb} - \text{moles})(-7.811\times10^4 \frac{\text{Btu}}{\text{lb} - \text{mole}}) + (4.336\times10^6 \text{lb}_{\text{m}})(0.95 \frac{\text{Btu}}{\text{lb} - ^\circ \text{F}})(10^\circ \text{F}) \end{split}$$

 $= -8.9 \times 10^7$ Btu (heat transferred from reactor) d.

Brazil has a shortage of natural reserves of petroleum, unlike Venezuela.

9.20 a.
$$4NH_3 + 5O_2 \rightarrow 4NO + 6H_2O$$
,
 $2NH_3 + \frac{3}{2}O_2 \rightarrow N_2 + 3H_2O$

References: $N_2(g)$, $H_2(g)$, $O_2(g)$, at 25°C

Substance	$\dot{n}_{ m in}$	$\hat{H}_{ m in}$	$\dot{n}_{ m out}$	$\hat{H}_{ m out}$
	(mol/min)	(kJ/mol)	(mol/min)	(kJ/mol)
NH ₃	100	\hat{H}_1	-	-
Air	900	\hat{H}_2	_	-
NO	_	-	90	\hat{H}_3
H ₂ O	_	_	150	\hat{H}_4
N_2	_	-	716	\hat{H}_{5}
O_2	_	_	69	\hat{H}_6

$$\hat{H}_i = \Delta \hat{H}_{fi}^o + \int_{25}^T C_{pi} dT$$

$$\hat{H}_{i} = \Delta \hat{H}_{fi}^{o} + \int_{25}^{T} C_{pi} dT$$

$$NH_{3}(g, 25^{\circ}C): \hat{H}_{1} = (\Delta \hat{H}_{f}^{o})_{NH_{3}} \stackrel{\text{Table B.1}}{=} \underline{-46.19 \text{ kJ/mol}}$$

9.20 (cont'd)

Air(g, 150°C):
$$\hat{H}_2 = \underbrace{\frac{3.67 \text{ kJ/mol}}{\text{Table B.1, Table B.2}}}_{\text{Table B.1, Table B.1, Table B.2}}$$

NO(g, 700°C): $\hat{H}_3 = 90.37 + \int_{25}^{700} C_p dT = \underbrace{\frac{111.97 \text{ kJ/mol}}{\text{Table B.8}}}_{\text{Table B.8}}$

H₂O(g, 700°C): $\hat{H}_4 = \underbrace{-216.91 \text{ kJ/mol}}_{\text{Table B.8}}$

N₂(g, 700°C): $\hat{H}_5 = \underbrace{\frac{20.59 \text{ kJ/mol}}{\text{Table B.8}}}_{\text{Table B.8}}$

O₂(g, 700°C): $\hat{H}_6 = \underbrace{\frac{21.86 \text{ kJ/mol}}{\text{Eable M.1, Table B.8}}}_{\text{Table B.8}}$

b.
$$\dot{Q} = \Delta \dot{H} = \sum_{\text{out}} \dot{n}_i \hat{H}_i - \sum_{\text{in}} \dot{n}_i \hat{H}_i = -4890 \text{ kJ/min} \times (1 \text{ min} / 60\text{s}) = \underline{-81.5 \text{ kW}}$$

(heat transferred from the reactor)

c. If molecular species had been chosen as references for enthalpy calculations, the extents of each reaction would have to be calculated and Equation 9.5-1b used to determine $\Delta \dot{H}$. The value of \dot{Q} would remain unchanged.

9.21 a. <u>Basis</u>: 1 mol feed

1 mol at 310°C
0.537
$$C_2H_4(v)$$

0.367 $H_2O(v)$
0.096 $N_2(g)$
Products at 310°C
 $n_1 \pmod{C_2H_4(v)}$
 $n_2 \pmod{H_2O(v)}$
0.096 mol $N_2(g)$
 $n_3 \pmod{C_2H_5OH(v)}$
 $n_4 \pmod{(C_2H_3)_2O(v)}$

$$\begin{split} &C_2H_4(v) + H_2O(v) \Leftrightarrow C_2H_5OH(v) \\ &2C_2H_5OH(v) \Leftrightarrow \left(C_2H_5\right)_2O(v) + H_2O(v) \end{split}$$

5% ethylene conversion:
$$(0.537)(0.05) = 0.02685 \text{ mol } C_2H_4 \text{ consumed}$$

 $\Rightarrow n_1 = (0.95)(0.537) = 0.510 \text{ mol } C_2H_4$

90% ethanol yield:

$$n_3 = \frac{0.02685 \; \mathrm{mol} \; \mathrm{C_2H_4} \; \mathrm{consumed} \; \middle| \; 0.9 \; \mathrm{mol} \; \mathrm{C_2H_5OH}}{1 \; \mathrm{mol} \; \mathrm{C_2H_4}} = 0.02417 \; \mathrm{mol} \; \mathrm{C_2H_5OH}$$

C balance:
$$(2)(0.537) = (2)(0.510) + (2)(0.02417) + 4n_4 \Rightarrow n_4 = 1.415 \times 10^{-3} \text{ mol } (C_2H_5)_2O_4$$

O balance:
$$0.367 = n_2 + 0.02417 + 1.415 \times 10^{-3} \Rightarrow n_2 = 0.3414 \text{ mol H}_2\text{O}$$

substance	$n_{\rm in}$	$\hat{H}_{ ext{in}}$	n _{out}	$\hat{H}_{ ext{out}}$
	(mol)	(kJ/mol)	(mol)	(kJ/mol)
C_2H_4	0.537	$\hat{H}_{_{1}}$	0.510	$\hat{H}_{_1}$
H ₂ O	0.367	$\hat{H}_{_2}$	0.3414	$\hat{H}_{_2}$
N_2	0.096	0	0.096	0
C ₂ H ₅ OH	_	_	0.02417	$\hat{H}_{\scriptscriptstyle 3}$
$(C_2H_5)_2O$	_	-	1.415×10^{-3}	$\hat{H}_{\scriptscriptstyle 4}$

$$\underline{C_{2}H_{4}(g, 310^{\circ}C)}: \hat{H}_{1} = (\Delta \hat{H}_{f}^{\circ})_{C_{2}H_{4}} + \int_{25}^{310} C_{p} dT \underset{\text{Table B.1 for } \Delta \hat{H}_{f}^{\circ}}{\Longrightarrow} (52.28 + 16.41) = 68.69 \text{ kJ/mol}$$

$$\underline{\text{H}_2\text{O}(\text{g},\ 310^{\circ}\text{C}):}\ \hat{H}_2 = (\Delta \hat{H}_{\text{f}}^{\circ})_{\text{H}_2\text{O}(\text{v})} + \hat{H}_{\text{H}_2\text{O}(\text{v})} (310^{\circ}\text{C}) \underset{\text{Table B.1}}{\Longrightarrow} \left(-241.83 + 9.93\right) = -231.90 \text{ kJ/mol}$$

$$\frac{\left(\text{C}_{2}\text{H}_{5}\right)_{2}\text{O}\left(\text{g},\ 310^{\circ}\text{C}\right)}{\left(\text{C}_{2}\text{H}_{5}\right)_{0}\text{O}\left(\text{g},\ 410^{\circ}\text{C}\right)} + \Delta\hat{H}_{1}^{\circ}\left(25^{\circ}\text{C}\right) + \int_{25}^{310}C_{p}dT = \left(-272.8 + 26.05 + 42.52\right)}{= -204.2 \text{ kJ/mol}}$$

Energy balance:
$$Q = \Delta H = \sum_{\text{out}} n_i \hat{H}_i - \sum_{\text{in}} n_i \hat{H}_i = -1.3 \text{ kJ} \Rightarrow \underline{1.3 \text{ kJ transferred from reactor/mol feed}}$$

To suppress the undesired side reaction. Separation of unconsumed reactants from products and recycle of ethylene.

9.22
$$C_6H_5CH_3 + O_2 \rightarrow C_6H_5CHO + H_2O$$

 $C_6H_5CH_3 + 9O_2 \rightarrow 7CO_2 + 4H_2O$

Basis: 100 lb-mole of C₆H₅CH₃ fed to reactor.

Strategy:

All material and energy balances will be performed for the assumed basis of 100 lb-mole $C_6H_5CH_3$. The calculated quantities will then be scaled to the known flow rate of water in the product gas $(29.3\ lb_m/4\ h)$.

9.22 (cont'd)

Plan of attack:% excess air
$$\Rightarrow n_0$$
Ideal gas equation of state $\Rightarrow V_0$ 13% C_6H_5CHO formation $\Rightarrow n_3$ Ideal gas equation of state $\Rightarrow V_p$ 0.5% CO_2 formation $\Rightarrow n_4$ E.B. on reactor $\Rightarrow Q$ C balance $\Rightarrow n_1$ E.B. on jacket $\Rightarrow m_w$ H balance $\Rightarrow n_5$ Scale V_0 , V_p , Q , m_w by (\dot{n}_5) actual $/(n_5)$ basisO balance $\Rightarrow n_2$

100% excess air:

$$n_0 = \frac{100 \text{ lb - moles C}_6 \text{H}_5 \text{CH}_3}{1 \text{ mole C}_6 \text{H}_5 \text{CH}_3} \frac{1 \text{ mol O}_2 \text{ reqd}}{1 \text{ mole C}_6 \text{H}_5 \text{CH}_3} \frac{(1+1) \text{mole O}_2 \text{ fed}}{1 \text{ mol O}_2 \text{ reqd}} = 200 \text{ lb - moles O}_2$$

 N_2 feed (& output) = 3.76(200)lb - moles N_2 = 752 lb - moles N_2

$$\underbrace{13\% \rightarrow C_6 H_5 CHO} \Rightarrow n_3 = \underbrace{\frac{100 \text{ lb-moles } C_6 H_5 CH_3}{1 \text{ mole } C_6 H_5 CH_3 \text{ react}}}_{= 13 \text{ lb-moles } C_6 H_5 CHO} = \underbrace{\frac{100 \text{ lb-moles } C_6 H_5 CH_3}{1 \text{ mole } C_6 H_5 CH_3 \text{ fed}}}_{= 13 \text{ lb-moles } C_6 H_5 CHO} = \underbrace{\frac{100 \text{ lb-moles } C_6 H_5 CH_3}{1 \text{ mole } C_6 H_5 CH_3 \text{ react}}}_{= 13 \text{ lb-moles } C_6 H_5 CHO}$$

$$\frac{0.5\% \to \text{CO}_2}{0.5\% \to \text{CO}_2} \Rightarrow n_4 = \frac{(100)(0.005)\text{lb - moles C}_6\text{H}_5\text{CH}_3 \text{ react}}{1 \text{ mole C}_6\text{H}_5\text{CH}_3} = 35 \text{ lb - moles CO}_2$$

$$\frac{\text{C balance:}}{(100)(7)} \quad \text{lb - moles C} = 7n_1 + (13)(7) + (3.5)(1) \Rightarrow n_1 = 86.5 \text{ lb - moles C}_6\text{H}_5\text{CH}_3$$

C balance:

<u>H balance</u>: (100)(8)lb - moles H = $(86.5)(8) + (13)(6) + 2n_5 \Rightarrow n_5 = 15.0$ lb - moles H₂O(v)

O balance: (200)(2)lb - moles $O = 2n_2 + (13)(1) + (35)(2) + (15)(1) \Rightarrow n_2 = 1825$ lb - moles O_2

Ideal gas law - inlet:

$$V_0 = \frac{(100 + 200 + 752)\text{lb - moles}}{1 \text{ lb - moles}} \frac{359 \text{ ft}^3 (\text{STP})}{492 \text{ R}} = 6.218 \times 10^5 \text{ ft}^3$$

9.22 (cont'd)

Energy balance on reactor (excluding cooling jacket)

References: C(s), $H_2(g)$, $O_2(g)$, $N_2(g)$ at $25^{\circ}C(77^{\circ}F)$

substance	$n_{\rm in}$	$\hat{H}_{ ext{in}}$	$n_{ m out}$	$\hat{H}_{ m out}$
	(lb - moles)	(Btu/lb - mole)	(lb - moles)	(Btu/lb - mole)
C ₆ H ₅ CH ₃	100	\hat{H}_1	86.5	\hat{H}_4
O_2	200	\hat{H}_2	182.5	\hat{H}_{5}
N_2	752	\hat{H}_3	752	\hat{H}_{6}
C ₆ H ₅ CHO	_	_	13	\hat{H}_7
CO ₂	_	_	3.5	\hat{H}_8
H ₂ O	_	_	15	\hat{H}_{9}

Enthalpies:

$$C_{6}H_{5}CH_{3}(g,T): \hat{H}(T) = \begin{bmatrix} T_{able B.1} \\ \Delta \hat{H}_{f}^{o} (kJ/mol) \times \frac{430.28 \text{ Btu/lb-mole}}{1 \text{ kJ/mol}} + 31 \frac{\text{Btu}}{1 \text{ b-mole} \cdot \text{°F}} (T - 77)^{\circ} \text{ F} \end{bmatrix}$$

$$C_6H_5CH_3(g,350^{\circ}F)$$
: $\hat{H}_1 = 2.998 \times 10^4$ Btu/lb - mole

$$C_6H_5CH_3(g,379^{\circ}F)$$
: $\hat{H}_4 = 3.088 \times 10^4$ Btu/lb - mole

$$C_6H_5CHO(g, T)$$
: $\hat{H}(T) = [-17200 + 31(T - 77)^{\circ} F]$ Btu/lb - mole
 $\Rightarrow \hat{H}_7 = -7.83 \times 10^3$ Btu/lb - mole

$$O_2(g,350^{\circ} F)$$
: $\hat{H}_2 = \hat{H}_{O_2}(350^{\circ} F) = 1.972 \times 10^3 \text{ Btu/lb-mole}$

$$N_2(g,350^{\circ} F)$$
: $\hat{H}_3 = \hat{H}_{N_2}(350^{\circ} F) = 1.911 \times 10^3 \text{ Btu/lb-mole}$

$$N_{2}(g,350^{\circ} F): \hat{H}_{3} = \hat{H}_{N_{2}}(350^{\circ} F) \stackrel{\text{Table B.9}}{\downarrow} = 1.911 \times 10^{3} \text{ Btu/lb-mole}$$

$$O_{2}(g,379^{\circ} F): \hat{H}_{5} = \hat{H}_{O_{2}}(379^{\circ} F) \stackrel{\text{Table B.9}}{\downarrow} = 2.186 \times 10^{3} \text{ Btu/lb-mole}$$

$$N_2(g,379^{\circ} F)$$
: $\hat{H}_6 = \hat{H}_{N_2}(379^{\circ} F) = 2.116 \times 10^3 \text{ Btu/lb-mole}$

$$CO_{2}(g,379^{\circ} F): \hat{H}_{8} = (\Delta \hat{H}_{f}^{\circ})_{CO_{2}(g)} + \hat{H}_{CO_{2}}(379^{\circ} F) = -1.664 \times 10^{5} \text{ Btu/lb-mole}$$

$$\text{H}_2\text{O}\big(\text{g}, 379^\circ\text{F}\big) \hspace{-0.5cm}:\hspace{0.5cm} \hat{H}_9 = (\Delta \hat{H}_\text{f}^\circ)_{\text{H}_2\text{O}(\text{g})} + \hat{H}_{\text{H}_2\text{O}}(379^\circ\text{F}) \hspace{0.5cm} \stackrel{\text{Table B.1 and B.9}}{=} -1.016 \times 10^5 \text{ Btu/lb-mole}$$

Energy Balance:

$$Q = \Delta H = \sum_{\text{out}} n_i \hat{H}_i - \sum_{\text{in}} n_i \hat{H}_i = -2.376 \times 10^6 \text{ Btu}$$

Energy balance on cooling jacket:

$$Q = \Delta H = m_w \int_{80}^{105} (C_p)_{\rm H_2O(1)} dT$$

$$\downarrow Q = +2.376 \times 10^4 \text{ Btu}, C_p = 1.0 \text{ Btu/(lb}_{\rm m} \cdot {}^{\circ} \text{ F)}$$

$$2.376 \times 10^6 \text{ Btu} = m_w (\text{lb}_{\rm m}) \times 1.0 \frac{\text{Btu}}{\text{lb}_{\rm m} \cdot {}^{\circ} \text{F}} \times (105 - 80)^{\circ} \text{F} \Rightarrow m_w = 9.504 \times 10^4 \text{ lb}_{\rm m} \text{ H}_2\text{O(l)}$$

9.22(cont'd)

$$\frac{\text{Scale factor:}}{\left(n_{5}\right)_{\text{basis}}} = \frac{(\dot{n}_{5})_{\text{actual}}}{4 \text{ h}} = \frac{29.3 \text{ lb}_{\text{m}} \text{ H}_{2}\text{O}}{4 \text{ h}} = \frac{1 \text{ lb-mole H}_{2}\text{O}}{18.016 \text{ lb}_{\text{m}} \text{ H}_{2}\text{O}} = \frac{1}{15.0 \text{ lb-moles H}_{2}\text{O}} = 0.02711 \text{ h}^{-1}$$

a.
$$V_0 = (6.218 \times 10^5 \text{ ft}^3)(0.02711 \text{ h}^{-1}) = \underbrace{\frac{1.69 \times 10^4 \text{ ft}^3/\text{h (feed)}}{1.75 \times 10^4 \text{ ft}^3/\text{h (product)}}}_{V_p = (6.443 \times 10^5 \text{ ft}^3)(0.02711 \text{ h}^{-1}) = \underbrace{1.75 \times 10^4 \text{ ft}^3/\text{h (product)}}_{}$$

b.
$$Q = (-2.376 \times 10^6 \text{ Btu})(0.02711 \text{ h}^{-1}) = \underline{\frac{-6.44 \times 10^4 \text{ Btu/h}}{2577 \text{ lb}_m \text{ l} 1 \text{ ft}^3}}$$

 $\dot{m}_w = (9.504 \times 10^4 \text{ Btu})(0.02711 \text{ h}^{-1}) = \underline{\frac{2577 \text{ lb}_m \text{ l} 1 \text{ ft}^3}{\text{h} 62.4 \text{ lb}_m \text{ l} 1 \text{ ft}^3}} \frac{7.4805 \text{ gal}}{60 \text{ min}} = \underline{\frac{5.15 \text{ gal H}_2\text{O/min}}{60 \text{ min}}}$

9.23 a. $CaCO_3(s) \rightarrow CaO(s) + CO_2(g)$

$$\underline{\text{Basis}}: 1000 \text{ kg CaCO}_3 = \frac{1000 \text{ kg}}{0.100 \text{ kg}} = \frac{1 \text{ mol}}{0.100 \text{ kg}} = 10.0 \text{ kmol CaCO}_3 \Rightarrow 10.0 \text{ kmol CoCO}_2(\text{g}) \text{ produced}$$

$$10.0 \text{ kmol CaCO}_3(\text{g}) \text{ fed}$$

References: Ca(s), C(s), O₂(g) at 25°C

	. ` ′ ′ ` `	, ·		
	$n_{\rm in}$	\hat{H}_{in}	$n_{ m out}$	$\hat{H}_{ ext{out}}$
Substance	(mol)	(kJ/mol)	(mol)	(kJ/mol)
CaCO ₃	10 ⁴	$\hat{H}_{_1}$	_	_
CaO	_	_	10^{4}	$\hat{H}_{_2}$
CO ₂	_	_	10^{4}	\hat{H}_3

$$\text{CaCO}_{3}(\mathbf{s}, 25^{\circ}\text{C}) : \hat{H}_{1} = (\Delta \hat{H}_{\mathrm{f}}^{\circ})_{\text{CaCO}_{3}(\mathbf{s})} = -1206.9 \text{ kJ/mol}$$

$$\text{CaO}(\mathbf{s}, 900^{\circ}\text{C}) : \hat{H}_{2} = (\Delta \hat{H}_{\mathrm{f}}^{\circ})_{\text{CaO}(\mathbf{s})} + \int_{298}^{1173} C_{p} dT = (-635.6 + 48.54) \text{ kJ/mol} = -587.06 \text{ kJ/mol}$$

$$\text{CaO}(\mathbf{s}, 900^{\circ}\text{C}) : \hat{H}_{3} = (\Delta \hat{H}_{\mathrm{f}}^{\circ})_{\text{CO}_{2}(\mathbf{g})} + \hat{H}_{\text{CO}_{2}}(900^{\circ}\text{C}) = (-3935 + 42.94) \text{ kJ/mol} = -350.56 \text{ kJ/mol}$$

$$\text{Energy balance: } Q = \Delta H = \left(\sum n_{i} \hat{H}_{i} - \sum n_{i} \hat{H}_{i}\right) = 2.7 \times 10^{6} \text{ kJ}$$

9.23 (cont'd)

b. <u>Basis</u>: $1000 \text{ kg CaCO}_3 \text{ fed} \Rightarrow 10.0 \text{ kmol CaCO}_3$ $CaCO_3(s) \rightarrow CaO(s) + CO_2(g)$ $2\text{CO} + \text{O}_2 \rightarrow 2\text{CO}_2$

10 kmol CaCO₃ react $\Rightarrow n_1 = 10.0$ kmol CaO

$$n_2 = (0.14)(200) + \frac{10.0 \text{ kmol CaCO}_3 \text{ react}}{1 \text{ kmol O}_2} + \frac{1 \text{ kmol CO}_2}{1 \text{ kmol O}_2} + \frac{4 \text{ kmol O}_2 \text{ react}}{1 \text{ kmol O}_2} = 46 \text{ kmol CO}_2$$

 $n_3 = (0.75)(200) = 150 \text{ kmol N}_2$

<u>C balance</u>: $(10.0)(1) + (200)(0.09)(1) + (200)(0.14)(1) = 46(1) + n_4(1) \Rightarrow n_4 = 10.0 \text{ kmol CO}$

References: Ca(s), C(s), O₂(g), N₂(g) at 25°C

	$n_{\rm in}$	$\hat{H}_{ ext{in}}$	$n_{ m out}$	$\hat{H}_{ ext{out}}$
Substance	(mol)	(kJ/mol)	(mol)	(kJ/mol)
CaCO ₃	10.0	$\hat{H_1}$	_	_
CaO	_	_	10	-587.06
CO ₂	28	-350.56	46	-350.56
СО	18	$\hat{H}_{_{2}}$	10	$\hat{H}_{_{2}}$
O_2	4.0	$\hat{H}_{\scriptscriptstyle 3}$	_	_
N ₂	150	$\hat{H}_{\scriptscriptstyle 4}$	150	$\hat{H}_{\scriptscriptstyle 4}$

CaCO₃(s, 25°C):
$$\hat{H}_1 = (\Delta \hat{H}_f^{\circ})_{\text{CaCO}_3(s)} = -1206.9 \text{ kJ/mol}$$

CO(g, 900°C):
$$\hat{H}_1 = (\Delta \hat{H}_f^{\circ})_{CO(g)} + \hat{H}_{CO}(900^{\circ}C) = (-110.52 + 27.49) \text{ kJ/mol} = -83.03 \text{ kJ/mol}$$

$$\begin{aligned} & \text{O}_2(\text{g}, 900^{\circ}\text{C}) : \hat{H}_2 = \hat{H}_{\text{O}_2}(900^{\circ}\text{C}) \overset{\text{Table B.8}}{=} 28.89 \text{ kJ/mol} \\ & \text{N}_2(\text{g}, 900^{\circ}\text{C}) : \hat{H}_3 = \hat{H}_{\text{N}_2}(900^{\circ}\text{C}) \overset{\text{Table B.8}}{=} 27.19 \text{ kJ/mol} \end{aligned}$$

$$N_2(g, 900^{\circ}C) : \hat{H}_3 = \hat{H}_{N_2}(900^{\circ}C) = 27.19 \text{ kJ/mol}$$

$$Q = \Delta H = \left(\sum_{\text{out}} n_{i} \hat{H}_{i} - \sum_{\text{in}} n_{i} \hat{H}_{i}\right) = 0.44 \times 10^{6} \text{ kJ}$$

% reduction in heat requirement =
$$\left| \frac{2.7 \times 10^6 - 0.44 \times 10^6}{2.7 \times 10^6} \right| \times 100 = 83.8\%$$

The hot combustion gases raise the temperature of the limestone, so that less heat from the outside c. is needed to do so. Additional thermal energy is provided by the combustion of CO.

9.24 a.
$$A+B \rightarrow C$$
 (1)
 $2C \rightarrow D+B$ (2)
Basis: 1 mol
 $x_{AO} \pmod{A/mol}$
 $x_{BO} \pmod{B/mol}$
 $x_{IO} \pmod{I/mol}$
 $n_A \pmod{A}$
 $n_B \pmod{B}$
 $n_C \pmod{C}$
 $n_D \pmod{D}$
 $n_I \pmod{I}$
 $n_I \pmod{I}$

D generated:
$$n_D = 0.5 \times \text{mol C consumed} = (1/2) \times (\text{mol A consumed} - \text{mol C out})$$

$$\Rightarrow \underline{n_D} = (1/2)(x_{AO}f_A - n_C)$$

<u>Balance on B</u>: mol B out = mol B in – mol B consumed in (1) + mol B generated in (2) = mol B in – mol A consumed in (1) + mol D generated in (2) $\Rightarrow \underline{n_B = x_{BO} - x_{AO}f_A + n_D}$

<u>Balance on I</u>: mol I out = mol I in $\Rightarrow \underline{n_I = x_{IO}}$

b.	Species	Formula	DHf	а	b	С	d
υ•	Α	C2H4(v)	52.28	0.04075	1.15E-04	-6.89E-08	1.77E-11
	В	H2O(v)	-241.83	0.03346	6.88E-06	7.60E-09	-3.59E-12
	С	C2H5OH(v)	-235.31	0.06134	1.57E-04	-8.75E-08	1.98E-11
	D	C4H10)O(v	-246.75	0.08945	4.03E-04	-2.24E-07	0
	1	N2(g)	0	0.02900	2.20E-05	5.72E-09	-2.87E-12
	Tf	Тр	xA0	xB0	xI0	fA	YC
	310	310	0.537	0.367	0.096	0.05	0.90
		n(in)	H(in)	n(out)	H(out)		
	Species	(mol)	(kJ/mol)	(mol)	(kJ/mol)		
	Α	0.537	68.7	0.510	68.7		
	В	0.367	-231.9	0.341	-231.9		
	С	0	-211.2	0.024	-211.2		
	D	0	-204.2	0.001	-204.2		
	I	0.096	9.4	0.096	9.4		
	Q(kJ) =	-1.31					

c. For $T_f = 125^{\circ}$ C, $Q = \underline{7.90 \text{ kJ}}$. Raising T_p , lowering f_A , and raising Y_C all increase Q.

9.25 a.
$$CH_4(g) + O_2(g) \rightarrow HCHO(g) + H_2O(g)$$

$$\begin{array}{c|c}
10 \text{ L, } 200 \text{ kPa} \\
n_0 \text{ (mol feed gas) at } 25^{\circ}\text{C} \\
\hline
0.85_1 \text{ mol CH}_4/\text{mol} \\
0.15 \text{ mol O}_2/\text{mol}
\end{array}$$

$$\begin{array}{c|c}
n_3 \text{ (mol HCHO)} \\
n_4 \text{ (mol H}_2\text{O)} \\
\hline
n_5 \text{ (mol CH}_4) \\
T \text{ (°C), P(kPa), 10L}
\end{array}$$

$$\frac{\text{Basis}: n_0 = \frac{200 \text{ kPa} | 1000 \text{ Pa} | 10 \text{ L} | 10^{-3} \text{ m}^3 | 1 \text{ mol K}}{| 1 \text{ kPa} | 1 \text{ L} | 8.314 \text{ m}^3 \text{ Pa} | 298 \text{ K}}$$

$$= 0.8072 \text{ mol feed gas mixture}$$

$$\frac{0.8072 \text{ mol feed gas mixture}}{\Rightarrow (0.85)(0.8072) = 0.6861 \text{ mol CH}_4,}$$
$$\Rightarrow (0.15)(0.8072) = 0.1211 \text{ mol O}_2$$

$$\underline{\text{CH}_4 \text{ consumed}}: \ \frac{1 \text{ mol CH}_4 }{1 \text{ mol O}_2 \text{ fed}} \ | \ 0.1211 \text{ mol O}_2 \text{ fed} \ | \ 0.1211 \text{ mol CH}_4$$

$$\Rightarrow n_5 = (0.6861 - 0.1211) \text{ mol CH}_4 = 0.5650 \text{ mol CH}_4$$

$$\frac{\text{HCHO produced}}{1 \text{ mol CH}_4 \text{ consumed}} : n_3 = \frac{1 \text{ mol HCHO}}{1 \text{ mol CH}_4 \text{ consumed}} = 0.1211 \text{ mol HCHO}$$

$$\underline{\text{H}_2\text{O produced}}: n_4 = \frac{1 \text{ mol H}_2\text{O}}{1 \text{ mol CH}_4 \text{ consumed}} = 0.1211 \text{ mol CH}_4 \text{ consumed} = 0.1211 \text{ mol H}_2\text{O}$$

Extent of reaction:
$$\xi = \frac{\left| (n_{O_2})_{\text{out}} - (n_{O_2})_{\text{in}} \right|}{\left| v_{O_2} \right|} = \frac{\left| (0 - 0.1211) \right|}{\left| 1 \right|} = 0.1211 \text{ mol}$$

References: CH₄(g), O₂(g), HCHO(g), H₂O(g), at 25°C

Substance	$n_{\rm in}$	\hat{U}_{in}	$n_{ m out}$	$\hat{U}_{ ext{out}}$
Buostance	mol	kJ/mol	mol	kJ/mol
CH ₄	0.6861	0	0.5650	\hat{U}_1
O_2	0.1211	0	_	-
НСНО	-	_	0.1211	$\hat{{U}}_2$
H ₂ O	_	_	0.1211	\hat{U}_3

$$\hat{U}_i = \int_{25}^{T} (C_v)_i dT = \int_{25}^{T} (C_p - R)_i dT \quad i = 1, 2, 3$$

Using $(C_p)_i$ from Table B.2 and $R = 8.314 \times 10^{-3} \text{ kJ} / \text{mol} \cdot \text{K}$:

$$\hat{U}_1 = (0.02599 \ T + 2.7345 \times 10^{-5} \ T^2 + 0.1220 \times 10^{-8} \ T^3 - 2.75 \times 10^{-12} \ T^4 - 0.6670) \ \text{kJ/mol}$$

$$\hat{U}_2 = (0.02597 \ T + 2.1340 \times 10^{-5} \ T^2 - 2.1735 \times 10^{-12} \ T^4 - 0.6623) \ \text{kJ} \ / \ \text{mol}$$

$$\hat{U}_3 = (0.02515\ T + 0.3440 \times 10^{-5}\ T^2 + 0.2535 \times 10^{-8}\ T^3 - 0.8983 \times 10^{-12}\ T^4 - 0.6309)\ \text{kJ/mol}$$

9.25 (cont'd)

$$Q = \frac{100 \text{ J} | 85 \text{ s} | 1 \text{ kJ}}{\text{s} | 1000 \text{ J}} = 8.5 \text{ kJ}$$

$$\Delta \hat{H}_{r}^{o} = (\Delta \hat{H}_{f}^{o})_{\text{ HCHO}} + (\Delta \hat{H}_{f}^{o})_{\text{ H2O}} - (\Delta \hat{H}_{f}^{o})_{\text{ CH}_{4}} \stackrel{\text{Table B.1}}{=} ((-115.90) + (-241.83) - (-74.85)) \text{ kJ / mol}$$

$$= -282.88 \text{ kJ / mol}$$

$$\Delta \hat{U}_{r}^{o} = \Delta \hat{H}_{r}^{o} - RT \left(\sum_{\substack{\text{gaseous} \\ \text{products}}} v_{i} - \sum_{\substack{\text{gaseous} \\ \text{reactants}}} v_{i} \right)$$

$$= -282.88 \text{ kJ / mol} - \frac{8.314 \text{ J} | 298 \text{ K} | (1+1-1-1) | 1 \text{ kJ}}{\text{mol K}} = -282.88 \text{ kJ / mol}$$

Energy Balance:

$$\begin{split} Q &= \xi \Delta \hat{U}_{\rm r}^{\rm o} + \sum \left(n_i\right)_{\rm out} (\hat{U}_i)_{\rm out} - \sum \left(n_i\right)_{\rm in} (\hat{U}_i)_{\rm in} \\ &= (0.1211)(-282.88~{\rm kJ\,/\,mol}) + 0.5650~\hat{U}_1 + 0.1211~\hat{U}_2 + 0.1211~\hat{U}_3 \\ \text{Substitute for } \hat{U}_1 \text{ through } \hat{U}_3 \text{ and } Q \end{split}$$

$$0 = 0.02088 \ T + 1.845 \times 10^{-5} \ T^2 + 0.09963 \times 10^{-8} \ T^3 - 1.926 \times 10^{-12} \ T^4 - 43.29 \ \text{kJ / mol}$$

Solve for T using E - Z Solve $\Rightarrow T = 1091^{\circ} \text{C} = 1364 \ \text{K}$

$$\Rightarrow P = nRT / V = \frac{0.8072 \text{ mol}}{8.314 \text{ m}^3 \cdot \text{Pa}} = \frac{1364 \text{ K}}{1364 \text{ K}} = \frac{1 \text{ L}}{10^{-3} \text{ m}^3} = 915 \times 10^3 \text{ Pa} = \frac{915 \text{ kPa}}{10^{-3} \text{ kPa}} = \frac{1364 \text{ K}}{10^{-3} \text{ m}^3} = 915 \times 10^3 \text{ Pa} = \frac{1364 \text{ K}}{10^{-3} \text{ m}^3} = 915 \times 10^3 \text{ Pa} = \frac{1364 \text{ K}}{10^{-3} \text{ m}^3} = 915 \times 10^3 \text{ Pa} = \frac{1364 \text{ K}}{10^{-3} \text{ m}^3} = 915 \times 10^3 \text{ Pa} = \frac{1364 \text{ K}}{10^{-3} \text{ m}^3} = 915 \times 10^3 \text{ Pa} = \frac{1364 \text{ K}}{10^{-3} \text{ m}^3} = 915 \times 10^3 \text{ Pa} = \frac{1364 \text{ K}}{10^{-3} \text{ m}^3} = 915 \times 10^3 \text{ Pa} = \frac{1364 \text{ K}}{10^{-3} \text{ m}^3} = 915 \times 10^3 \text{ Pa} = \frac{1364 \text{ K}}{10^{-3} \text{ m}^3} = \frac{1364 \text{ K}}{10^{-3} \text{ m}^3}$$

- **b.** Add heat to raise the reactants to a temperature at which the reaction rate is significant.
- c. Side reaction: $CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$. T would have been higher (more negative heat of reaction for combustion of methane), volume and total moles would be the same, therefore P = nRT / V would be greater.

9.26 a.

$$C_2H_4(g) + \frac{1}{2}O_2(g) \rightarrow C_2H_4O(g)$$

 $C_2H_4 + 3O_2 \rightarrow 2CO_2 + 2H_2O$

 $\underline{25\% \text{ conversion}} \Rightarrow 0.500 \text{ mol } C_2H_4 \text{ consumed } \Rightarrow n_3 = 1.50 \text{ mol } C_2H_4$

$$\frac{70\% \text{ yield}}{} \Rightarrow n_5 = \frac{0.500 \text{ mol C}_2\text{H}_4 \text{ consumed}}{} | 0.700 \text{ mol C}_2\text{H}_4\text{O}} = \underbrace{0.350 \text{ mol C}_2\text{H}_4\text{O}}_{} = \underbrace{0.350 \text{ mol C}_2\text{H}_4\text{O}}_{}$$

<u>C balance on reactor:</u> $(2)(2) = (2)(1.50) + (2)(0.350) + n_6 \Rightarrow n_6 = \underline{0.300 \text{ mol CO}_2}$

O balance on reactor:
$$(2)(1) = 2n_4 + 0.350 + (2)(0.300) + 0.300 \Rightarrow n_4 = 0.375 \text{ mol O}_2$$

Overall C balance:
$$2n_1 = n_6 + 2n_5 = 0.300 + (2)(0.350) \Rightarrow n_1 = 0.500 \text{ mol } C_2H_4$$

Overall O balance:
$$2n_2 = 2n_6 + n_7 + n_5 = (2)(0.300) + (0.300) + (0.350) \Rightarrow n_2 = 0.625 \text{ mol O}_2$$

 $\underline{\text{Feed stream:}} \ 44.4\% \ \text{C}_2\text{H}_4, \ 55.6\% \ \text{O}_2 \qquad \underline{\text{Reactor inlet:}} \ 66.7\% \ \text{C}_2\text{H}_4, \ 33.3\% \ \text{O}_2$

Recycle stream: 80.0% C_2H_4 , 20.0% O_2

 $\underline{\text{Reactor outlet:}}\ 53.1\%\ \text{C}_2\text{H}_4,\ 13.3\%\ \text{O}_2,\ 12.4\%\ \text{C}_2\text{H}_4\text{O},\ 10.6\%\ \text{CO}_2,\ 10.6\%\ \text{H}_2\text{O}$

$$\frac{\text{Mass of ethylene oxide}}{\text{Mass of ethylene oxide}} = \frac{0.350 \text{ mol C}_2\text{H}_4\text{O}}{1 \text{ mol}} = \frac{1 \text{ kg}}{10^3 \text{ g}} = 0.0154 \text{ kg}$$

b. References for enthalpy calculations : C(s), $H_2(g)$, $O_2(g)$ at 25° C

9.26 (cont'd)

Overall Process

Reactor

$\hat{H}_{ ext{in}}$	n _{out}	$\hat{H}_{ m out}$	substance	$n_{\rm in}$	$\hat{H}_{ ext{in}}$	$n_{ m out}$	$\hat{H}_{ ext{out}}$
kJ/mol)	(mol)	(kJ/mol)	Substance	(mol)	(kJ / mol)	(mol)	(kJ / mol)
52.28	_	_	C_2H_4	2	79.26	1.50	79.26
0	_	-	O_2	1	13.37	0.375	13.37
_	0.350	-51.00	C ₂ H ₄ O	_	_	0.350	-19.99
_	0.300	-393.5	CO ₂	_	_	0.300	-374.66
_	0.300	-285.84	$H_2O(g)$	-	_	0.300	-226.72
	52.28	dJ/mol) (mol) 52.28 - 0 - - 0.350 - 0.300	Marcon M	Substance Substance Substance Substance Substance	Substance Composition Substance Composition Comp	Substance C2H4 C2H4O C4H4O C	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Energy balance on process:
$$Q = \Delta H = \sum_{\text{out}} n_i \hat{H}_i - \sum_{\text{in}} n_i \hat{H}_i = \underline{-248 \text{ kJ}}$$

Energy balance on reactor:
$$Q = \Delta H = \sum_{\text{out}} n_i \hat{H}_i - \sum_{\text{in}} n_i \hat{H}_i = \underline{-236 \text{ kJ}}$$

c. Scale to 1500 kg C_2H_4O/day :

$$\underline{\text{C}_2\text{H}_4\text{O production for initial basis}} = (0.350 \text{ mol})(\frac{44.05 \text{ kg}}{10^3 \text{ mol}}) = 0.01542 \text{ kg C}_2\text{H}_4\text{O}$$

$$\Rightarrow Scale factor = \frac{1500 \text{ kg/day}}{0.01542 \text{ kg}} = 9.73 \times 10^4 \text{ day}^{-1}$$

In initial basis, fresh feed contains 0.500 mol C₂H₄
$$0.625 \text{ mol O}_2$$

$$= 34.025 \times 10^{-3} \text{ kg}$$

$$= (0.500)(28.05 \text{ g C}_2\text{H}_4/\text{mol}) + (0.625)(32.0 \text{ g O}_2/\text{mol})$$

$$\underline{\text{Fresh feed rate}} = \left(34.025 \times 10^{-3} \text{ kg}\right) \left(9.73 \times 10^{4} \text{ day}^{-1}\right) = \underline{3310 \text{ kg/day } (44.4\% \text{ C}_{2}\text{H}_{4}, 55.6\% \text{ O}_{2})}$$

$$Q_{\text{process}} = \frac{\left(-248 \text{ kJ}\right)\left(9.73 \times 10^4 \text{ day}^{-1}\right) \left| 1 \text{ day} \right| 1 \text{ hr} \left| 1 \text{ kW}}{24 \text{ hr} \left| 3600 \text{ s} \right| 1 \text{ kJ/s}} = \frac{-279 \text{ kW}}{24 \text{ hr}}$$

$$Q_{\text{reactor}} = \frac{\left(-236 \text{ kJ}\right)\left(9.73 \times 10^4 \text{ day}^{-1}\right) \left| 1 \text{ day} \right| 1 \text{ hr} \left| 1 \text{ kW} \right|}{24 \text{ hr} \left| 3600 \text{ s} \right| 1 \text{ kJ/s}} = \underline{-265 \text{ kW}}$$

Basis:
$$\frac{1200 \text{ lb}_{\text{m}} \text{ C}_{9} \text{H}_{12}}{\text{h}} = 10.0 \text{ lb - moles cumene produced/h}$$

Overall process:

$$n_1$$
 (lb-moles C_3H_6/h)
 $0.75 C_3H_6$
 $0.25 C_4H_{10}$
 n_2 (lb-moles C_6H_6/h)
 n_3 (lb-moles C_4H_{10}/h)
 n_4 (lb-moles C_4H_{10}/h)
 n_5 (lb-moles C_4H_{10}/h)

$$C_3H_6(1) + C_6H_6(1) \rightarrow C_9H_{12}(1), \quad \Delta \hat{H}_r(77^{\circ}F) = -39520 \text{ Btu/lb-mole}$$

$$\begin{split} & \underbrace{\frac{\text{Benzene balance:}}{(\text{input=consumption})}} \quad \dot{n_2} = \frac{10.0 \text{ lb-moles } C_9 H_{12} \text{ produced}}{h} \quad & | 1 \text{ mole } C_6 H_6 \text{ consumed}}{h} \\ & = \frac{10.0 \text{ lb-moles } C_6 H_6}{h} \quad & | 78.1 \text{ lb_m } C_6 H_6}{h} = \underbrace{\frac{781 \text{ lb_m } C_6 H_6/h}{1 \text{ lb-mole}}} = \underbrace{\frac{781 \text{ lb_m } C_6 H_6/h}{1 \text{ lb-mole}}} = \underbrace{\frac{781 \text{ lb_m } C_6 H_6/h}{1 \text{ lb-mole}}} = \underbrace{\frac{781 \text{ lb_m } C_6 H_6/h}{1 \text{ lb-mole}}} = \underbrace{\frac{781 \text{ lb_m } C_6 H_6/h}{1 \text{ lb-mole}}} = \underbrace{\frac{781 \text{ lb_m } C_6 H_6/h}{1 \text{ lb-mole}}} = \underbrace{\frac{781 \text{ lb_m } C_6 H_6/h}{1 \text{ lb-moles }}} = \underbrace{\frac{781 \text{ lb_m } C_6 H_6/h}{1 \text{ lb-moles }}} = \underbrace{\frac{781 \text{ lb_m } C_6 H_6/h}{1 \text{ lb-moles }}} = \underbrace{\frac{781 \text{ lb_m } C_6 H_6/h}{1 \text{ lb-moles }}} = \underbrace{\frac{781 \text{ lb_m } C_6 H_6/h}{1 \text{ lb-moles }}} = \underbrace{\frac{781 \text{ lb_m } C_6 H_6/h}{1 \text{ lb-moles }}} = \underbrace{\frac{781 \text{ lb_m } C_6 H_6/h}{1 \text{ lb-moles }}} = \underbrace{\frac{781 \text{ lb_m } C_6 H_6/h}{1 \text{ lb-moles }}} = \underbrace{\frac{781 \text{ lb_m } C_6 H_6/h}{1 \text{ lb-moles }}} = \underbrace{\frac{781 \text{ lb_m } C_6 H_6/h}{1 \text{ lb-moles }}} = \underbrace{\frac{781 \text{ lb_m } C_6 H_6/h}{1 \text{ lb-moles }}} = \underbrace{\frac{781 \text{ lb_m } C_6 H_6/h}{1 \text{ lb-moles }}} = \underbrace{\frac{781 \text{ lb_m } C_6 H_6/h}{1 \text{ lb-moles }}} = \underbrace{\frac{781 \text{ lb_m } C_6 H_6/h}{1 \text{ lb-moles }}} = \underbrace{\frac{781 \text{ lb_m } C_6 H_6/h}{1 \text{ lb-moles }}} = \underbrace{\frac{781 \text{ lb_m } C_6 H_6/h}{1 \text{ lb-moles }}} = \underbrace{\frac{781 \text{ lb_m } C_6 H_6/h}{1 \text{ lb-moles }}} = \underbrace{\frac{781 \text{ lb_m } C_6 H_6/h}{1 \text{ lb-moles }}} = \underbrace{\frac{781 \text{ lb_m } C_6 H_6/h}{1 \text{ lb-moles }}} = \underbrace{\frac{781 \text{ lb_m } C_6 H_6/h}{1 \text{ lb-moles }}} = \underbrace{\frac{781 \text{ lb_m } C_6 H_6/h}{1 \text{ lb-moles }}} = \underbrace{\frac{781 \text{ lb_m } C_6 H_6/h}{1 \text{ lb-moles }}} = \underbrace{\frac{781 \text{ lb_m } C_6 H_6/h}{1 \text{ lb-moles }}} = \underbrace{\frac{781 \text{ lb_m } C_6 H_6/h}{1 \text{ lb-moles }}} = \underbrace{\frac{781 \text{ lb_m } C_6 H_6/h}{1 \text{ lb-moles }}} = \underbrace{\frac{781 \text{ lb_m } C_6 H_6/h}{1 \text{ lb-moles }}} = \underbrace{\frac{781 \text{ lb_m } C_6 H_6/h}{1 \text{ lb-moles }}} = \underbrace{\frac{781 \text{ lb_m } C_6 H_6/h}{1 \text{ lb-moles }}} = \underbrace{\frac{781 \text{ lb_m } C_6 H_6/h}{1 \text{ lb-moles }}} = \underbrace{\frac{781 \text{ lb_m } C_6 H_6/h}{1 \text{ lb-moles }}} = \underbrace{\frac{781 \text{ lb_m } C_6 H_6/h}{1 \text{ lb-moles }}} = \underbrace{\frac{781 \text{ l$$

Propylene balance:
$$0.75\dot{n}_1 = \dot{n}_3 + \frac{10.0 \text{ lb - moles } C_9H_{12}}{h} = 1 \text{ mole } C_9H_{12}$$

$$\frac{\text{Mass flow rate of C}_{3}\text{H}_{6} / \text{C}_{4}\text{H}_{10} \text{ feed}}{\text{h}} = \frac{(0.75)(16.67)\text{lb - moles C}_{3}\text{H}_{6}}{\text{h}} \frac{42.08 \text{ lb}_{m} \text{ C}_{3}\text{H}_{6}}{\text{h}} \\ + \frac{(0.25)(16.67)\text{lb - moles C}_{4}\text{H}_{10}}{\text{h}} \frac{58.12 \text{ lb}_{m} \text{ C}_{4}\text{H}_{10}}{\text{h}} = \frac{768 \text{ lb}_{m}/\text{h}}{\text{lb - mole}}$$

Reactor:

$$\frac{\text{Benzene feed rate}}{\text{Benzene feed rate}} = \frac{10.0 \text{ lb - moles fresh feed}}{\text{h}} = \frac{(3+1) \text{moles fed to reactor}}{\text{l mole fresh feed}} = 40 \text{ lb - moles } C_6 H_6 / \text{h}$$

$$\frac{\text{Overhead from T1}}{\text{Overhead from T1}} \Rightarrow \frac{2.50 \text{ lb-moles } C_3 H_6/h}{4.17 \text{ lb-moles } C_4 H_{10}/h} \\ \Rightarrow \frac{\frac{6.67 \text{ lb-moles/h}}{37.5\% \text{ } C_3 H_6}}{\frac{62.5\% \text{ } C_4 H_{10}}{62.5\% \text{ } C_4 H_{10}}}$$

b. Heat exchanger:

9.27 (cont'd)

Energy balance:
$$\Delta H = 0 \Rightarrow \sum n_i (\hat{H}_{i, \text{ out}} - \hat{H}_{i, \text{ in}}) = \sum n_i C_{pi} (T_{\text{out}} - T_{\text{in}})_i = 0$$
(Assume adiabatic)

$$\begin{bmatrix} \frac{10 \text{ lb - moles } C_9 H_{12}}{h} & \frac{120 \text{ lb}_m}{1 \text{ lb - mole}} & \frac{0.40 \text{ Btu}}{1 \text{ bm}} \\ 0.40 \text{ Btu} \\ 1 \text{ lb - mole} & \frac{120 \text{ lb}_m}{1 \text{ lb - mole}} & \frac{0.40 \text{ Btu}}{1 \text{ lb}_m} \\ 1 \text{ lb - mole} & \frac{120 \text{ lb}_m}{1 \text{ lb - mole}} & \frac{0.40 \text{ Btu}}{1 \text{ lb}_m} \\ 1 \text{ lb - mole} & \frac{120 \text{ lb}_m}{1 \text{ lb}_m} \\ 1 \text{ lb - mole} & \frac{120 \text{ lb}_m}{1 \text{ lb}_m} \\ 1 \text{ lb - mole} & \frac{120 \text{ lb}_m}{1 \text{ lb}_m} \\ 1 \text{ lb - mole} & \frac{120 \text{ lb}_m}{1 \text{ lb}_m} \\ 1 \text{ lb - mole} & \frac{120 \text{ lb}_m}{1 \text{ lb}_m} \\ 1 \text{ lb - mole} & \frac{120 \text{ lb}_m}{1 \text{ lb}_m} \\ 1 \text{ lb - mole} & \frac{120 \text{ lb}_m}{1 \text{ lb}_m} \\ 1 \text{ lb - mole} & \frac{120 \text{ lb}_m}{1 \text{ lb}_m} \\ 1 \text{ lb - mole} & \frac{120 \text{ lb}_m}{1 \text{ lb}_m} \\ 1 \text{ lb - mole} & \frac{120 \text{ lb}_m}{1 \text{ lb}_m} \\ 1 \text{ lb - mole} & \frac{120 \text{ lb}_m}{1 \text{ lb}_m} \\ 1 \text{ lb - mole} & \frac{120 \text{ lb}_m}{1 \text{ lb}_m} \\ 1 \text{ lb - mole} & \frac{120 \text{ lb}_m}{1 \text{ lb}_m} \\ 1 \text{ lb - mole} & \frac{120 \text{ lb}_m}{1 \text{ lb}_m} \\ 1 \text{ lb - mole} & \frac{120 \text{ lb}_m}{1 \text{ lb}_m} \\ 1 \text{ lb - mole} & \frac{120 \text{ lb}_m}{1 \text{ lb}_m} \\ 1 \text{ lb - mole} & \frac{120 \text{ lb}_m}{1 \text{ lb}_m} \\ 1 \text{ lb - mole} & \frac{120 \text{ lb}_m}{1 \text{ lb}_m} \\ 1 \text{ lb - mole} & \frac{120 \text{ lb}_m}{1 \text{ lb}_m} \\ 1 \text{ lb - mole} & \frac{120 \text{ lb}_m}{1 \text{ lb}_m} \\ 1 \text{ lb - mole} & \frac{120 \text{ lb}_m}{1 \text{ lb}_m} \\ 1 \text{ lb - mole} & \frac{120 \text{ lb}_m}{1 \text{ lb}_m} \\ 1 \text{ lb - mole} & \frac{120 \text{ lb}_m}{1 \text{ lb}_m} \\ 1 \text{ lb - mole} & \frac{120 \text{ lb}_m}{1 \text{ lb}_m} \\ 1 \text{ lb - mole} & \frac{120 \text{ lb}_m}{1 \text{ lb}_m} \\ 1 \text{ lb - mole} & \frac{120 \text{ lb}_m}{1 \text{ lb}_m} \\ 1 \text{ lb - mole} & \frac{120 \text{ lb}_m}{1 \text{ lb}_m} \\ 1 \text{ lb - mole} & \frac{120 \text{ lb}_m}{1 \text{ lb}_m} \\ 1 \text{ lb - mole} & \frac{120 \text{ lb}_m}{1 \text{ lb}_m} \\ 1 \text{ lb - mole} & \frac{120 \text{ lb}_m}{1 \text{ lb}_m} \\ 1 \text{ lb - mole} & \frac{120 \text{ lb}_m}{1 \text{ lb}_m} \\ 1 \text{ lb - mole} & \frac{120 \text{ lb}_m}{1 \text{ lb}_m} \\ 1 \text{ lb - mole} & \frac{120 \text{ lb}_m}{1 \text{ lb}_m} \\ 1 \text{ lb - mole} & \frac{120 \text{ lb}_m}{1 \text{ lb}_m} \\ 1 \text{ lb - mole} & \frac{120 \text{ lb}_m}{1 \text{ lb}_m} \\ 1 \text{ lb - mole} \\ 1 \text{ lb$$

(Refer to flow chart of Part b: $T = 323^{\circ} F$)

References:
$$C_3H_6(1)$$
, $C_4H_{10}(1)$, $C_6H_6(1)$, $C_9H_{12}(1)$ at 77° F

$$\hat{H}_i(\text{Btu/lb-mole}) = C_{ni}(\text{Btu/lb_m} \cdot {}^{\circ}\text{F})M_i(\text{lb_m/lb-mole})(T-77)({}^{\circ}\text{F})$$

Substance	$\dot{n}_{ m in}$	\hat{H}_{in}	$\dot{n}_{ m out}$	$\hat{H}_{ ext{out}}$
Substance	(lb - mole / h)	(Btu / lb - mole)	(lb - mole / h)	(Btu / lb - mole)
C_3H_6	12.0	0	2.50	7750
C_4H_{10}	4.17	0	4.17	10330
C_6H_6	40.0	8650	30.0	11350
C_9H_{12}	_	_	10.0	15530

Energy balance on reactor:

$$Q = \Delta H = \frac{\dot{n}_{\text{C}_9 \text{H}_{12}} \Delta \hat{H}_{\text{r}}^{\text{o}}}{v_{\text{C}_9 \text{H}_{12}}} + \sum_{\text{out}} \dot{n}_i \hat{H}_i - \sum_{\text{in}} \dot{n}_i \hat{H}_i$$

$$= \frac{(10.0)(-39520)}{(1)} + (2.50)(7750) + (4.17)(10330) + (30.0)(11350) + (10.0)(15530)$$

$$-(40.0)(8650) = \underline{-183000 \text{ Btu/h}} \text{ (heat removal)}$$

9.28

Basis:
$$\frac{100 \text{ kg C}_8 \text{H}_8}{\text{h}} = \frac{10^3 \text{ g}}{104.15 \text{ g}} = \frac{1 \text{ mol}}{104.15 \text{ g}} = 960 \text{ mol/h}$$
 styrene produced

a. $C_8H_{10}(g) \rightarrow C_8H_8(g) + H_2(g)$

Overall system

Fresh feed
$$n_1 \pmod{C_8H_{10}/h}$$

960 mol C_2H_0 / h

$$\begin{aligned} & \frac{\text{Fresh feed rate:}}{(C_8 H_{10} \text{ balance})} \quad \dot{n_1} = \frac{960 \text{ mol } C_8 H_8}{h} \quad \begin{vmatrix} 1 \text{ mol } C_8 H_{10} \\ 1 \text{ mol } C_8 H_8 \end{vmatrix} = \frac{960 \text{ mol } C_8 H_{10}/h}{h} \quad \text{fresh feed} \\ & \frac{H_2 \text{ balance}}{h} : \dot{n_2} = \frac{960 \text{ mol } C_8 H_{10}}{h} \quad \begin{vmatrix} 1 \text{ mol } H_2 \\ 1 \text{ mol } C_8 H_{10} \end{vmatrix} = 960 \text{ mol } H_2/h \end{aligned}$$

9.28 (cont'd)

$$\frac{35\% \text{ 1-pass conversion}}{h} \Rightarrow \frac{0.35n_3 (\text{mol } C_8H_{10} \text{ react}) | 1 \text{ mol } C_8H_8}{h} = 960 \text{ mol } C_8H_8/h$$

$$\Rightarrow \dot{n}_3 = 2740 \text{ mol } C_8H_{10}/h \text{ fed to reactor}$$

$$\Rightarrow \text{Recycle rate} = (2740 - 960) = 1780 \text{ mol } C_8H_{10}/h \text{ recycled}$$

Reactor feed mixing point

2740 mol
$$C_8H_{10}(v)/h$$
500°C

2740 mol $C_8H_{10}(v)/h$
 $n_4 \text{ [mol } H_2O(v)/h]$
 $n_4 \text{ [mol } H_2O(v)/h]$
600°C

Energy balance:
$$\Delta H = 2740 \Delta \hat{H}_{C_8 H_{10}} + \dot{n}_4 \Delta \hat{H}_{H_2 O} = 0 (kJ/h)$$

$$\Delta \hat{H}_{C_8H_{10}} = \left[\int_{500}^{600} \underbrace{(118 + 0.30T)}_{C_p} dT \right] \frac{J}{\text{mol} \cdot ^{\circ} C} \times \frac{1 \text{ kJ}}{10^3 \text{ J}} = 28.3 \text{ kJ/mol}$$

$$\Delta \hat{H}_{H_2O} \xrightarrow[P=1 \text{ bar}]{\text{Table B.8}}_{P=1 \text{ bar}} = -3.9 \text{ kJ/mol}$$

$$(2740)(28.3) + \dot{n}_4(-3.9) = 0 \Rightarrow \dot{n}_4 = \underline{1.99 \times 10^4 \text{ mol H}_2\text{O}/\text{h}}$$

Ethylbenzene preheater (A):

b. =

$$\begin{split} \frac{960 \text{ mol fresh feed}}{h} + & \frac{1780 \text{ mol recycled}}{h} = \frac{2740 \text{ mol EB(1)}}{h} \text{ at } 25^{\circ}\text{C} \\ \Rightarrow & \frac{2740 \text{ mol EB(v)}}{h} \text{ at } 500^{\circ}\text{C} \\ \Delta \hat{H} = & \int_{25}^{136} & C_{pi} dT + \Delta \hat{H}_{v} (136^{\circ}\text{C}) + \int_{136}^{500} & C_{pv} dT = (20.2 + 36.0 + 77.7) \text{ kJ/mol} = 133.9 \text{ kJ/mol} \\ \dot{Q}_{A} = \Delta \dot{H} = & \frac{2740 \text{ mol C}_{8}\text{H}_{10}}{h} & \frac{133.9 \text{ kJ}}{\text{mol C}_{8}\text{H}_{10}} = & \underline{\frac{3.67 \times 10^{5} \text{ kJ/h}}{\text{kJ/mol}}} \text{ (preheater)} \end{split}$$
 Steam generator (F):

= 19400 mol/h H₂O(l, 25°C) \rightarrow 19400 mol/h H₂O(v, 700°C, 1 atm)

Table B.5 $\Rightarrow \hat{H}(1, 25^{\circ}C) = 104.8 \text{ kJ/kg}$;

Table B.7 $\Rightarrow \hat{H}(v, 700^{\circ}C, 1 \text{ atm} \approx 1 \text{ bar}) = 3928 \text{ kJ/kg}$

9.28 (cont'd)

$$\dot{Q}_F = \Delta \dot{H} = \frac{19400 \text{ mol H}_2\text{O}}{\text{h}} \left| \begin{array}{c|c} 18.0 \text{ g} & 1 \text{ kg} & (3928 - 104.8)\text{kJ} \\ \hline 1 \text{ mol} & 10^3 \text{ g} & \text{kg} \end{array} \right|$$

$$= 1.34 \times 10^6 \text{ kJ/h (steam generator)}$$

Reactor (C):

<u>References</u>: $C_8H_8(v)$, $C_8H_{10}(v)$, $H_2(g)$, $H_2O(v)$ at 600° C

$$\hat{H}_i (560^{\circ} \text{C}) = \int_{600}^{560} (C_{pv})_i dT \text{ for } C_8 \text{H}_{10}, C_8 \text{H}_8$$

 $\approx \hat{H}(T)$ for H₂, H₂O (interpolating from Table B.8)

Substance	$\dot{n}_{ m in}$	\hat{H}_{in}	$\dot{n}_{ m out}$	$\hat{H}_{ ext{out}}$
	(mol/h)	(kJ/mol)	(mol/h)	(kJ/mol)
C_8H_{10}	2740	0	1780	-11.68
H ₂ O	19900	0	19900	-1.56
C_8H_8	_	-	960	-10.86
H_2	_	_	960	-1.19

Energy balance:

$$\begin{split} \dot{Q}_c &= \Delta \dot{H} = \frac{960 \text{ mol } C_8 H_8 \text{ produced}}{\text{h}} \frac{124.5 \text{ kJ}}{1 \text{ mol } C_8 H_8} + \sum_{\text{out}} \dot{n}_i \hat{H}_i - \sum_{\text{in}} \dot{n}_i \hat{H}_i \\ &= 5.61 \times 10^4 \text{ kJ/h (reactor)} \end{split}$$

This is a poorly designed process as shown. The reactor effluents are cooled to 25° C, and then all but the hydrogen are reheated after separation. Probably less cooling is needed, and in any case provisions for heat exchange should be included in the design.

9.29 CH₃OH
$$\rightarrow$$
 HCHO + H₂, H₂ + $\frac{1}{2}$ O₂ \rightarrow H₂O

b. In the absence of data to the contrary, we assume that the separation of methanol from formaldehyde is complete.

Methanol vaporizer:

The product stream, which contains 42 mole % $CH_3OH(v)$, is saturated at $T_m(^{\circ}C)$ and 1 atm.

9.29 (cont'd)

$$y_m P = p_m^*(T_m) \Rightarrow (0.42)(760 \text{ mmHg}) = 319.2 \text{ mmHg} = p_m^*(T_m)$$

$$\xrightarrow{\text{Antoine equation}} p_m^* = 319.2 \text{ mmHg} \Rightarrow T_m = \underline{44.1^{\circ} \text{ C}}$$

c. Moles HCHO formed :

$$= \frac{36 \times 10^6 \text{ kg solution}}{350 \text{ days}} \begin{vmatrix} 0.37 \text{ kg HCHO} & 1 \text{ kmol} & 1 \text{ day} \\ 1 \text{ kg solution} & 30.03 \text{ kg HCHO} & 24 \text{ h} \end{vmatrix} = 52.80 \frac{\text{kmol HCHO}}{\text{h}}$$

but if all the HCHO is recovered, then this equals \dot{n}_4 , or $\dot{n}_4 = 52.80$ kmol HCHO/h

70% conversion:

	1 kmol CH ₃ OH react	3	1 kmol feed gas
h	1 kmol HCHO formed	0.70 kmol CH ₃ OH react	$0.42 \text{ kmol CH}_3\text{OH} = n_f$
$\Rightarrow \dot{n}_f = 179.59 $	kmol/h		

Methanol unreacted:

$$\dot{n}_1 = \frac{(0.42)(179.59) \text{kmol CH}_3 \text{OH fed}}{\text{h}} \frac{(1 - 0.70) \text{ kmol CH}_3 \text{OH fed}}{1 \text{ kmol CH}_3 \text{OH fed}} = 22.63 \frac{\text{kmol CH}_3 \text{OH}}{\text{h}}$$

 N_2 balance: $\dot{n}_3 = (179.6 \text{ kmol/h})(0.58)(0.79) = 82.29 \text{ kmol } N_2/h$

Four reactor stream variables remain unknown — \dot{n}_s , \dot{n}_2 , \dot{n}_5 , and \dot{n}_6 — and four relations are available — H and O balances, the given H₂ content of the product gas (5%), and the energy balance. The solution is tedious but straightforward.

H balance:
$$(179.6)(0.42)(4) + 2n_s = (22.63)(4) + (52.8)(2) + 2\dot{n}_5 + 2\dot{n}_6$$

$$\Rightarrow \dot{n}_s = \dot{n}_5 + \dot{n}_6 - 52.80 \tag{1}$$

$$\underline{\text{O balance:}} \ \, \big(179.6\big)\big(0.42\big)\big(1\big) + \big(179.6\big)(0.58)\big(0.21\big)\big(2\big) + \dot{n}_s = (22.63)(1) + 2\dot{n}_2 + (52.80)(1) + \dot{n}_6$$

$$\Rightarrow \dot{n}_s = 2\dot{n}_2 + \dot{n}_6 - 43.75 \tag{2}$$

$$\frac{\text{H}_2 \text{ content:}}{22.63 + \dot{n}_2 + 82.29 + 52.89 + \dot{n}_5 + \dot{n}_6} = 0.05 \Rightarrow 19\dot{n}_5 - \dot{n}_2 - \dot{n}_6 = 157.72$$
 (3)

References: C(s), H₂(g), O₂(g), N₂(g) at 25°C

$$H = \Delta \hat{H}_{\rm f}^{\rm o} + \int_{25}^{T} C_p dT$$

or Table B.8 for O_2 , N_2 and H_2

9.29 (cont'd)

substance	$\dot{n}_{\rm in}$ kmol/h	\hat{H}_{in} kJ / kmol	$\dot{n}_{ m out}$ kmol/h	$\hat{H}_{ ext{out}}$ kJ/kmol
		RO / RIHOT		RO / RIIIOI
CH ₃ OH	75.43	-195220	22.63	-163200
O_2	21.88	3620	n_2	18410
N ₂	82.29	3510	82.29	17390
H ₂ O	n_s	-237740	n_6	-220920
НСНО	_	_	52.80	-88800
H_2	_	_	n_5	16810

Energy Balance:

$$\Delta H = \sum_{\text{out}} n_i \hat{H}_i - \sum_{\text{in}} n_i \hat{H}_i = 0 \implies 18410n_2 + 16810n_5 - 220920n_6 + 237704n_s = -7.406 \times 10^6$$
 (4)

We now have four equations in four unknowns. Solve using E-Z Solve.

$$\dot{n}_s = \frac{58.8 \text{ kmol H}_2\text{O(v)}}{\text{h}} = \frac{18.02 \text{ kg}}{1 \text{ kmol}} = \frac{1060 \text{ kg steam fed/h}}{1 \text{ kmol}}$$

$$\dot{n}_2 = 2.26 \text{ kmol } O_2/h$$
, $\dot{n}_5 = 13.58 \text{ kmol } H_2/h$, $\dot{n}_6 = 98.00 \text{ kmol } H_2O/h$

Summarizing, the product gas component flow rates are 22.63 kmol CH₃OH/h, 2.26 kmol O₂/h, 82.29 kmol N₂/h, 52.80 kmol HCHO/h, 13.58 kmol H₂/h, and 98.02 kmol H₂O/h

$$\Rightarrow \frac{272~\text{kmol/h}~\text{product gas}}{8\%~\text{CH}_3\text{OH},~0.8\%~\text{O}_2,~30\%~\text{N}_2,~19\%~\text{HCHO},~5\%~\text{H}_2,~37\%~\text{H}_2\text{O}}$$

Energy balance on waste heat boiler. Since we have already calculated specific enthalpies of all components of the product gas at the boiler inlet (at 600°C), and for all but two of them at the boiler outlet (at 145°C), we will use the same reference states for the boiler calculation

Reference States: C(s), $H_2(g)$, $O_2(g)$, $N_2(g)$ at 25°C for reactor gas $H_2O(1)$ at triple point for boiler water

Substance	$\dot{n}_{ m in}$	$\hat{H}_{ ext{in}}$	$\dot{n}_{ m out}$	$\hat{H}_{ ext{out}}$
	kmol/h	kJ/kmol	mol	kJ/mol
CH ₃ OH	22.63	-163200	22.63	-195220
O_2	2.26	18410	2.26	3620
N_2	82.29	17390	82.29	3510
H_2O	98.02	-220920	98.02	-237730
НСНО	52.80	-88800	52.80	-111350
H_2	13.58	16810	13.58	3550
H ₂ O	m_b	125.7	m_b	2726.1
	(kg/h)	(kJ/kg)	(kg/h)	(kJ/kg)

9.29 (cont'd)

Energy Balance:

$$\Delta H = \sum_{\text{out}} n_i \hat{H}_i - \sum_{\text{in}} n_i \hat{H}_i = 0$$

$$\Rightarrow m_b (2726.1 - 125.7) - 4.92 \times 10^6 = 0$$

$$\Rightarrow \underline{m_b = 1892 \text{ kg steam/h}}$$

9.30 a. $C_2H_4 + HCl \rightarrow C_2H_5Cl$

Basis:
$$\frac{1600 \text{ kg C}_2\text{H}_5\text{Cl(l)}}{\text{h}} = \frac{10^3 \text{ g}}{1 \text{ kg}} = \frac{1 \text{ mol}}{64.52 \text{ g}} = 24800 \text{ mol/h C}_2\text{H}_5\text{Cl}$$

Product composition data:

$$n_3 = 0.015n_1 \tag{1}$$

$$n_4 = 0.015(0.93n_2) = 0.01395n_2$$
 (2)

$$n_5 = 0.07n_2 \tag{3}$$

Overall Cl balance:

$$\frac{n_1(\text{mol HCl/h}) \mid 1 \text{ mol Cl}}{\mid 1 \text{ mol HCl}} = (n_3)(1) + (24800)(1)$$
 (4)

Solve (4) simultaneously with (1)
$$\Rightarrow n_1 = 25180 \text{ mol/h} = \underline{25.18 \text{ kmol HCl fed/h}}$$

 $n_3 = 378 \text{ mol HCl (g)/h}$

Overall C balance:

$$n_2(0.93)(2) + n_2(0.07)(2) = 2n_4 + 2n_5 + (2)(24800)$$

From Eqs. (2) and (3) $\Rightarrow 2n_2 \left[0.93 + 0.07 - 0.0139 - 0.07 \right] = (2)(24800)$
 $n_2 = 27070 \text{ mol fed/h} = 27.07 \text{ kmol/h of Feed B}$

b.
$$n_3 = 378 \text{ mol HCl/h}$$
 $n_4 = 0.01395(27070) = 378 \text{ mol } C_2H_4/h$ $n_5 = 0.07(27070) = 1895 \text{ mol } C_2H_6/h$ $\frac{2.65 \text{ kmol/h of Product C}}{14.3\% \text{ HCl, } 14.3\% \text{ } C_2H_4}, 71.4\% \text{ } C_2H_6}{2}$

9.30 (cont'd)

c.

substance	$n_{\rm in}$	\hat{H}_{in}	$n_{ m out}$	$\hat{H}_{ m out}$
substance	mol	kJ / mol	mol	kJ / mol
HCl	25180	0	378	1.456
C_2H_4	25175	0	378	2.181
C_2H_6	1895	0	1895	2.512
C ₂ H ₅ Cl	$n_6 - 24800$	-24.7	n_6	2.709

Energy balance:

$$\Delta H = 0 \Rightarrow \frac{n_{\rm A} \Delta \hat{H}_{\rm r} \left(0^{\circ} \,\mathrm{C}\right)}{v_{\rm A}} + \sum_{\rm out} n_{i} \hat{H}_{i} - \sum_{\rm in} n_{i} \hat{H}_{i} = 0$$

$$\Rightarrow \frac{\left(25180 - 378\right) \,\mathrm{mol} \;\mathrm{HCl} \;\mathrm{react} \; \left| \; -64.5 \;\mathrm{kJ} \right|}{\mathrm{h}} + \left(378\right) \left(1.456\right) + \left(378\right) \left(2.181\right) + \left(1895\right) \left(2.512\right)$$

$$+ 2.709 n_{6} - \left(n_{6} - 24800\right) \left(-24.7\right) = 0 \Rightarrow n_{6} = 80490 \;\mathrm{mol} \;\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl/h} \;\mathrm{in} \;\mathrm{reactor} \;\mathrm{effluent}$$

$$\frac{\text{C}_2\text{H}_5\text{Cl recycled}}{\text{h}} = \frac{80490 \text{ mol condensed}}{\text{h}} - \frac{24800 \text{ mol product}}{\text{h}} = 55690 \frac{\text{mol}}{\text{h}}$$
$$= 55.7 \frac{\text{kmol recycled}}{\text{h}}$$

d.

 C_p is a linear function of temperature.

 $\Delta \hat{H}_{\rm v}$ is independent of temperature.

100% condensation of ethylbenzene in the heat exchanger is assumed.

Heat of mixing and influence of pressure on enthalpy is neglected.

Reactor is adiabatic.

No C₂H₄ or C₂H₆ is absorbed in the ethyl chloride product.

9.31 a.
$$4NH_3(g) + 5O_2(g) \rightarrow 4NO(g) + 6H_2O(g)$$
 $\triangle \hat{H}_r^0 = -904.7 \text{ kJ/mol}$

Basis: 10 mol/s Feed gas

9.31 (cont'd)

$$\begin{array}{c|c}
4 \text{ mol/s NH}_3 & \dot{n}_3 \text{ (mol O}_2) \\
6 \text{ mol/s O}_2 & \dot{n}_4 \text{ (mol NO)} \\
\hline
T_{in} = 200^{\circ} \text{C} & \dot{n}_5 \text{ (mol H}_2\text{O)} \\
\hline
T_{out}
\end{array}$$

$$\underline{O_2 \text{ consumed}}: \frac{5 \text{ mol } O_2 \quad | \text{ 4 mol NH}_3 \text{ fed}}{4 \text{ mol NH}_3 \quad | \text{ s}} = 5 \text{ mol / s} \quad \Rightarrow \dot{n}_3 = (6-1) \text{ mol } O_2 / \text{ s} \quad = \underline{1 \text{ mol } O_2 / \text{ s}}$$

$$\frac{\text{NO produced}}{\text{1 mol NH}_3}: \dot{n}_4 = \frac{4 \text{ mol NO produced}}{4 \text{ mol NH}_3} = \frac{4 \text{ mol NO/s}}{4 \text{ mol NH}_3} = \frac{4 \text{ mol NO/s}}{4 \text{ mol NH}_3}$$

$$\underline{\text{H}_2\text{O produced}}: \dot{n}_5 = \frac{6 \text{ mol H}_2\text{O produced} \mid 4 \text{ mol NH}_3 \text{ fed}}{4 \text{ mol NH}_3} = \underbrace{6 \text{ mol H}_2\text{O/s}}_{\text{S}}$$

$$\underline{\text{Extent of reaction}} : \dot{\xi} = \frac{\left| (\dot{n}_{\text{NH}_3})_{\text{out}} - (\dot{n}_{\text{NH}_3})_{\text{in}} \right|}{\left| \nu_{\text{NH}_3} \right|} = \frac{\left| 0 - 4 \right|}{\left| 4 \right|} = \underline{1 \text{ mol/s}}$$

b. Well-insulated reactor, so no heat loss

No absorption of heat by container wall

Neglect kinetic and potential energy changes;

No shaft work

No side reactions.

c. References: $NH_3(g)$, $O_2(g)$, NO(g), $H_2O(g)$ at 25° C, 1atm

Substance	$\dot{n}_{ m in}$	\hat{H}_{in}	$\dot{n}_{ m out}$	$\hat{H}_{ m out}$
Substance	(mol/s)	(kJ / mol)	(mol/s)	(kJ / mol)
$NH_3(g)$	4.00	\hat{H}_1	_	_
$O_2(g)$	6.00	\hat{H}_2	1.00	\hat{H}_3
NO(g)	_	_	4.00	\hat{H}_4
$H_2O(g)$	_	_	6.00	\hat{H}_5

$$\hat{H}_{1} = \int_{25}^{200} (C_{p})_{\text{NH}_{3}} dT \stackrel{\text{Table B.2}}{=} 6.74 \text{ kJ/mol}, \quad \hat{H}_{2} = \hat{H}_{\text{O}_{2}} (200^{\circ}\text{C}) \stackrel{\text{Table B.8}}{=} 5.31 \text{ kJ/mol}$$

Using $(C_p)_i$ from Table B.2:

$$\begin{split} \hat{H}_3 &= (0.0291 \ T_{\text{out}} + 0.5790 \times 10^{-5} \ T_{\text{out}}^{\quad 2} - 0.2025 \times 10^{-8} \ T_{\text{out}}^{\quad 3} + 0.3278 \times 10^{-12} \ T_{\text{out}}^{\quad 4} - 0.7311) \ \text{kJ/mol} \\ \hat{H}_4 &= (0.0295 \ T_{\text{out}} + 0.4094 \times 10^{-5} \ T_{\text{out}}^{\quad 2} - 0.0975 \times 10^{-8} \ T_{\text{out}}^{\quad 3} + 0.0913 \times 10^{-12} \ T_{\text{out}}^{\quad 4} - 0.7400) \ \text{kJ/mol} \\ \hat{H}_5 &= (0.03346 \ T_{\text{out}} + 0.3440 \times 10^{-5} \ T_{\text{out}}^{\quad 2} + 0.2535 \times 10^{-8} \ T_{\text{out}}^{\quad 3} - 0.8983 \times 10^{-12} \ T_{\text{out}}^{\quad 4} - 0.8387) \ \text{kJ/mol} \end{split}$$

Energy Balance: $\Delta \dot{H} = 0$

$$\Delta \dot{H} = \dot{\xi} \Delta \hat{H}_{r}^{o} + \sum_{i=3}^{5} (n_{i})_{out} (\hat{H}_{i})_{out} - \sum_{i=1}^{2} (n_{i})_{in} (\hat{H}_{i})_{in}$$

9-31 (cont'd)

$$\begin{split} & \Rightarrow \Delta \dot{H} = \dot{\xi} \Delta \hat{H}_{\rm r}^{\rm o} + (1.00) \hat{H}_{\rm 3} + (4.00) \hat{H}_{\rm 4} + (6.00) \hat{H}_{\rm 5} - (4.00) \hat{H}_{\rm 1} - (6.00) \hat{H}_{\rm 2} \\ & \downarrow \downarrow \text{Substitute for } \dot{\xi}, \ \Delta \dot{H}_{\rm r}^{\rm o}, \ \text{and } \hat{H}_{\rm 1} \ \text{through } \hat{H}_{\rm 6} \\ & \Delta \dot{H} = (0.3479 \ T_{\rm out} + 4.28 \times 10^{-5} \ T_{\rm out}^{-2} + 0.9285 \times 10^{-8} \ T_{\rm out}^{-3} - 4.697 \times 10^{-12} \ T_{\rm out}^{-4}) \\ & - 972.24 \ \text{kJ/mol} = 0 \\ & \text{E-Z Solve} \Rightarrow \ \underline{T_{\rm out}} = 2223 \ ^{\rm o} \underline{\text{C}} \end{split}$$

d. If only the first term from Table B.2 is used,
$$\hat{H}_i = \int_{25}^T (C_{pi}) dT = C_{pi} (T-25)$$

$$\hat{H}_1 = 0.03515(200-25) = 6.15 \text{ kJ/mol}, \ \hat{H}_2 = 5.31 \text{ kJ/mol}, \ \hat{H}_3 = 0.0291(T_{\text{out}} - 25), \\ \hat{H}_4 = 0.0295(T_{\text{out}} - 25), \ \hat{H}_5 = 0.03346(T_{\text{out}} - 25)$$

$$\underline{\text{E.B.}} \ \Delta \dot{H} = \dot{\xi} \Delta \hat{H}_r^\circ + (1.00) \hat{H}_3 + (4.00) \hat{H}_4 + (6.00) \hat{H}_5 - (4.00) \hat{H}_1 - (6.00) \hat{H}_2 = 0$$

$$\downarrow \downarrow \text{Substitute for } \dot{\xi} \text{ (=1 mol/s)}, \ \Delta \dot{H}_r^\circ \text{ (= -904.7 kJ/mol) and } \hat{H}_1 \text{ through } \hat{H}_6$$

$$0 = 0.3479 \ T_{\text{out}} - 969.86 \ \Rightarrow \underline{T_{\text{out}} = 2788 \ ^\circ\text{C}} \ \Rightarrow \ \% \text{ error} = \frac{2788 \ ^\circ\text{C} - 2223 \ ^\circ\text{C}}{2223 \ ^\circ\text{C}} \times 100 = \underline{25\%}$$

- **e.** If the higher temperature were used as the basis, the reactor design would be <u>safer</u> (but more expensive).
- 9.32 $\underline{\text{Basis}}$: 100 lb_m coke fed

 \Rightarrow 84 lb_m C \Rightarrow 7.00 lb - moles C fed \Rightarrow 7.00 lb - moles CO₂ fed

a.
$$C(s) + CO_2(g) \rightarrow 2CO(g)$$
,

$$\Delta \hat{H}_r^o (77^\circ F) = (\Delta \hat{H}_c^o)_{CO_2(g)} - 2(\Delta \hat{H}_c^o)_{CO(g)}$$

$$= \frac{\left[-393.50 - (2)(-282.99)\right] \text{kJ} \quad 0.9486 \text{ Btu} \quad 453.6 \text{ mols}}{\text{mol} \quad 1 \text{ kJ} \quad 1 \text{ lb - mole}} = 74,210 \text{ Btu/lb - mole}$$

Let x =fractional conversion of C and CO_2 :

$$n_1 = \frac{7.00x(\text{lb - moles C reacted})}{|1|} = \frac{2 \text{ lb - moles CO formed}}{|1|} = 14.0x \text{ lb - moles CO}$$

$$n_2 = 7.00(1-x) \text{ lb - moles CO}_2$$

$$n_3 = 7.00(1-x) \text{ lb - moles C(s)}$$

References for enthalpy calculations: C(s), CO₂(g), CO(g), ash at 77° F

9.32 (cont'd)

Mass of solids (emerging)

$$= \frac{7.00(1-x) \text{ lb - moles C}}{1 \text{ lb - mole}} + 16 \text{ lb}_{m} = (100-84x) \text{ lb}_{m}$$

substance	$n_{\rm in}$	$\hat{H}_{ m in}$	$n_{ m out}$	$\hat{H}_{ m out}$
substance	(lb – moles)	(Btu/lb - mole)	(lb – moles)	(Btu/lb - mole)
CO ₂	7.00	3130	7.00(1-x)	20,890
CO	_	_	14.0 <i>x</i>	13,280
	(lb _m)	(Btu/lb_m)	(lb _m)	(Btu/lb _m)
solid	100	0	100 - 84x	420

Extent of reaction: $n_{CO} = (n_{CO})_o + \nu_{CO} \xi \Rightarrow 14.0x = 2\xi \Rightarrow \xi(lb - moles) = 7.0x$ Energy balance:

$$Q = \Delta H = \xi \, \Delta \hat{H}_{r}^{o} + \sum_{\text{out}} n_{i} \hat{H}_{i} - \sum_{\text{in}} n_{i} \hat{H}_{i}$$

$$585,900 \text{ Btu} = \frac{7.0x \text{ (lb - moles)}}{| \text{lb - mole}} + 7.00(1 - x)(20,880)$$

$$+ (14.0x)(13,280) + (100 - 84x)(420) - (7.00)(3130)$$

$$\downarrow \downarrow$$

$$x = 0.801 \Rightarrow 80.1\% \text{ conversion}$$

b.

<u>Advantages of CO</u>. Gases are easier to store and transport than solids, and the product of the combustion is CO₂, which is a much lower environmental hazard than are the products of coke combustion.

<u>Disadvantages of CO</u>. It is highly toxic and dangerous if it leaks or is not completely burned, and it has a lower heating value than coke. Also, it costs something to produce it from coke.

Basis:
$$\frac{17.1 \text{ m}^3 | 10^3 \text{ L} | 273 \text{ K} | 5.00 \text{ atm} | 1 \text{ mol}}{\text{h} | 1 \text{ m}^3 | 298 \text{ K} | 1.00 \text{ atm} | 22.4 \text{ L(STP)}} = 3497 \text{ mol/h feed}$$

$$CO(g) + 2H_2(g) \rightarrow CH_3OH(g),$$

$$\Delta \hat{H}_{\rm f}^{\rm o} = \left(\Delta \hat{H}_{\rm f}^{\rm o}\right)_{\rm CH_3OH(g)} - \left(\Delta \hat{H}_{\rm f}^{\rm o}\right)_{\rm CO(g)} = -90.68 \text{ kJ/mol}$$

$$\frac{3497 \text{ mol/h}}{0.333 \text{ mol CO/mol}} \qquad \qquad \frac{n_1 \text{ (mol CH}_3OH \text{ /h)}}{n_2 \text{ (mol CO/h)}}$$
0.667 mol H 2/mol
25°C, 5 atm
$$\frac{n_1 \text{ (mol CH}_3OH \text{ /h)}}{127°C, 5 \text{ atm}}$$

Let f = fractional conversion of CO (which also equals the fractional conversion of H_2 , since CO and H_2 are fed in stoichiometric proportion).

$$\frac{\text{CO reacted}}{\text{CO reacted}} := \frac{(3497)(0.333) \text{ mol CO feed}}{\text{mol feed}} | f \text{ (mol react)}}{\text{mol feed}} = 1166 f \text{ (mol CO react)}$$

$$\frac{\text{CH}_3\text{OH produced}}{\text{Inol CO}} : \dot{n}_1 = \frac{1166 f \text{ mol CO react}}{\text{Inol CO}} | 1 \text{ mol CH}_3\text{OH}/\text{h}$$

$$\frac{\text{CO remaining}}{\text{Inol CO}} : \dot{n}_2 = 1166 (1 - f) \text{ mol CO/h}$$

$$\frac{\text{H}_2 \text{ remaining}}{\text{Inol CO react}} : \dot{n}_3 = (3497)(0.667) \text{ mol H}_2 \text{ fed} - \frac{1166 f \text{ mol CO react}}{\text{Inol CO react}} | 2 \text{ mol H}_2 \text{ react}$$

$$= 2332 (1 - f) \text{ mol H}_2/\text{h}$$

Reference states: CO(g), $H_2(g)$, $CH_3OH(g)$ at 25°C

Substance	$\dot{n}_{ m in}$	\hat{H}_{in}	$\dot{n}_{ m out}$	\hat{H}_{out}
	(mol/h)	(kJ/mol)	(mol/h)	(kJ/mol)
СО	1166	0	1166(1-f)	\hat{H}_1
H_2	2332	0	2332(1-f)	\hat{H}_2
CH ₃ OH	_	_	1166 <i>f</i>	\hat{H}_3

$$CO(g,127^{\circ}C): \hat{H}_{1} = \hat{H}_{CO}(127^{\circ}C) = 2.99 \text{ kJ/mol}$$

$$H_{2}(g,127^{\circ}C): \hat{H}_{2} = \hat{H}_{H_{2}}(127^{\circ}C) = 2.943 \text{ kJ/mol}$$

$$CH_{3}OH(g,127^{\circ}C): \hat{H}_{3} = \int_{25}^{122} C_{p} dT = 5.009 \text{ kJ/mol}$$

$$\underline{CH_{3}OH(g,127^{\circ}C): \hat{H}_{3}} = \int_{25}^{122} C_{p} dT = 5.009 \text{ kJ/mol}$$

$$\underline{Energy \ balance}: \hat{Q} = \Delta \dot{H} = \dot{\xi} \Delta \hat{H}_{r}^{\circ} + \sum_{\text{out}} \dot{n}_{i} \hat{H}_{i} - \sum_{\text{in}} \dot{n}_{i} \hat{H}_{i}$$

$$\Rightarrow \frac{-17.05 \text{ kJ}}{\text{s}} = \frac{3600 \text{ s}}{1 \text{ h}} = (1166f)(-90.68) \frac{\text{kJ}}{\text{h}} + \left[1166(1-f)\right](2.99)$$

$$+ \left[2332(1-f)\right](2.993) + \left[1166f(5.009)\right](\text{kJ/h})$$

$$\Rightarrow 1.102 \times 10^{5} f = 7.173 \times 10^{4} \Rightarrow f = 0.651 \text{ mol CO(or H}_{2}) \text{ converted/mol fed}$$

9.33 (cont'd)

$$\begin{split} \dot{n}_1 &= 1166 \big(0.651 \big) = 759.1 \ \text{mol/h} \\ \dot{n}_2 &= 1166 \big(1 - 0.651 \big) = 406.9 \ \text{mol/h} \\ \dot{n}_3 &= 2332 \big(1 - 0.651 \big) = 813.9 \ \text{mol/h} \\ &\downarrow \\ \dot{n}_{\text{tot}} &= 1980 \frac{\text{mol}}{\text{h}} \Rightarrow V_{\text{out}} = \frac{1980 \ \text{mol}}{\text{h}} \, \frac{22.4 \ \text{L(STP)}}{\text{l}} \, \frac{400 \ \text{K}}{\text{l}} \, \frac{1.00 \ \text{atm}}{\text{l}} \, \frac{1 \ \text{m}^3}{\text{l}} = \underline{13.0 \ \text{m}^3/\text{h}} \\ &= \underline{100 \ \text{m}} \, \frac{1.00 \ \text{m}}{\text{l}} \, \frac{1.00 \ \text{m}}{\text{l}} \, \frac{1.00 \ \text{l}}{\text{l}} = \underline{100 \ \text{m}} \, \frac{1.00 \ \text{l}}{\text{l}} = \underline{100 \ \text{l}} = \underline{10$$

9.34 a. $CH_4(g) + 4S(g) \rightarrow CS_2(g) + 2H_2S(g)$, $\Delta \hat{H}_r(700^{\circ}C) = -274 \text{ kJ/mol}$ Basis: 1 mol of feed

Let f = fractional conversion of CH_4 (which also equals fractional conversion of S, since the species are fed in stoichiometric proportion)

Moles
$$CH_4$$
 reacted = 0.20 f , Extent of reaction = ξ (mol) = 0.20 f
 $n_3 = 0.20(1-f)$ mol CH_4
 $n_4 = 0.80$ mol S fed $-\frac{0.20 f (\text{mol CH}_4 \text{ react})}{1 \text{ mol CH}_4 \text{ react}} = 0.80(1-f)$ mol S
 $n_1 = \frac{0.20 f \text{ mol CH}_4 \text{ react}}{1 \text{ mol CH}_4} = 0.20 f \text{ mol CS}_2$
 $n_2 = \frac{0.20 f \text{ mol CH}_4 \text{ react}}{1 \text{ mol CH}_4} = 0.40 f \text{ mol H}_2 S$

<u>References</u>: $CH_4(g)$, S(g), $CS_2(g)$, $H_2S(g)$ at $700^{\circ}C$ (temperature at which $\Delta \hat{H}_r$ is known)

substance	$n_{\rm in}$	\hat{H}_{in}	$n_{ m out}$	$\hat{H}_{ m out}$
	(mol)	(kJ/mol)	(mol)	(kJ/mol)
CH ₄	0.20	0	0.20(1-f)	\hat{H}_1
S	0.80	0	0.80(1-f)	\hat{H}_2
CS ₂	_	_	0.20f	\hat{H}_3
H_2S	_	_	0.40 <i>f</i>	\hat{H}_4

$$\hat{H}_{\text{out}} = C_{pi}(800 - 700) \Rightarrow \begin{cases} \text{CH}_4(\text{g}, 800^{\circ}\text{C}): \ \hat{H}_1 = 7.14 \text{ kJ/mol} \\ \text{S(g}, 800^{\circ}\text{C)}: \ \hat{H}_2 = 3.64 \text{ kJ/mol} \\ \text{CS}_2(\text{g}, 800^{\circ}\text{C}): \ \hat{H}_3 = 3.18 \text{ kJ/mol} \\ \text{H}_2\text{S(g}, 800^{\circ}\text{C)}: \ \hat{H}_4 = 4.48 \text{ kJ/mol} \end{cases}$$

9.34 (cont'd)

Energy balance on reactor:

$$\dot{Q} = \Delta \dot{H} = \dot{\xi} \Delta \hat{H}_r + \sum_{\text{out}} \dot{n}_i \hat{H}_i - \sum_{\text{in}} \dot{n}_i \hat{H}_i = 41 \frac{\text{kJ}}{\text{s}}$$

$$= \frac{(0.20f)(-274.0)}{(1)} + \left[0.20(1-f)(7.140) + 0.80(1-f)(3.640) + 0.20f(3.180) + 0.40f(4.480)\right]$$

$$\Rightarrow \underline{f} = 0.800$$

<u>System:</u> Heat exchanger-preheater combination. Assume the heat exchanger is adiabatic, so that the only heat transferred to the system from its surroundings is Q for the preheater.

 $\underline{References}: \ CH_4(g), S(1), CS_2(g), H_2S(g) \ at \ 200^{\circ}C$

Substance	$n_{\rm in}$	\hat{H}_{in}	$n_{ m out}$	$\hat{H}_{ m out}$
	(mol)	(kJ/mol)	(mol)	(kJ/mol)
(CH ₄) _{150°,700°}	0.20	\hat{H}_1	0.20	\hat{H}_7
(CH ₄) _{800°,200°}	0.04	\hat{H}_2	0.04	0
S(1)	0.80	\hat{H}_3	0.16	0
S(g)	0.16	\hat{H}_4	0.80	\hat{H}_8
CS ₂	0.16	\hat{H}_5	0.16	0
H_2S	0.32	\hat{H}_6	0.32	0

$$\begin{split} \hat{H}_i &= C_{pi}(T - 200) \text{ for all substances but S} \\ &= \left(C_p\right)_{\mathrm{S(1)}}(T - 200) \text{ for S(1)} \\ &= \left(C_p\right)_{\mathrm{S(1)}} \left(444.6 - 200\right) + \Delta \hat{H}_{\nu} \atop = 83.7 \text{kJ/mol}} (T_b) + \left(C_p\right)_{\mathrm{S(g)}} (T - 444.6) \text{ for S(g)} \end{split}$$

9.34 (cont'd)

Energy balance:
$$Q(kJ) = \sum_{\text{out}} n_i \hat{H}_i - \sum_{\text{in}} n_i \hat{H}_i \implies Q = 59.2 \text{ kJ} \implies \underline{\underline{59.2 \text{ kJ/mol feed}}}$$

c. The energy economy might be improved by insulating the reactor better. The reactor effluent will emerge at a higher temperature and transfer more heat to the fresh feed in the first preheater, lowering (and possibly eliminating) the heat requirement in the second preheater.

9.35 Basis: $1 \text{ mol } C_2H_6 \text{ fed to reactor}$

$$\begin{array}{c|c}
1 \text{ mol C } \stackrel{\mathsf{H}}{\overset{6}{\overset{}}} \\
1273 \text{ K, P atm}
\end{array}
\qquad
\begin{array}{c|c}
n \text{ (mols) } @ T(\text{K), P atm} \\
\hline
n_{\text{C}:\text{H}_6} \text{ (mol C } \stackrel{\mathsf{H}}{\overset{}} \\
n_{\text{C}:\text{H}_6} \text{ (mol C } \stackrel{\mathsf{H}}{\overset{}} \\
n_{\text{H}_3} \text{ (mol H}_3)
\end{array}$$

a.
$$C_2H_6 \Leftrightarrow C_2H_4 + H_2$$
, $K_p = \frac{x_{C_2H_4}x_{H_2}}{x_{C_2H_6}}P = 7.28 \times 10^6 \exp[-17,000/T(K)]$ (1)

 $\underline{Fractional\ conversion} = f\ (mols\ C_2H_6\ react/mol\ fed)$

$$\frac{\xi(\text{mol}) = f}{n_{\text{C}_{2}\text{H}_{6}}} = (1 - f)(\text{mol } \text{C}_{2}\text{H}_{6}) \\
n_{\text{C}_{2}\text{H}_{4}} = f(\text{mol } \text{C}_{2}\text{H}_{4}) \\
\frac{n_{\text{H}_{2}} = f(\text{mol } \text{H}_{2})}{n = 1 + f(\text{mols})} \\
K_{p} = \frac{x_{\text{C}_{2}\text{H}_{4}} x_{\text{H}_{2}}}{x_{\text{C}_{2}\text{H}_{4}}} \text{P} \Rightarrow K_{p} = \frac{\frac{f^{2}}{(1 + f)^{2}} \text{P}}{\frac{(1 - f)}{(1 + f)}} = \frac{f^{2} \text{P}}{(1 - f)(1 + f)} = \frac{f^{2}}{1 - f^{2}} \text{P} \\
\left(1 - f^{2}\right) K_{p} = f^{2}\text{P} \Rightarrow f = \left(\frac{K_{p}}{\text{P} + K_{p}}\right)^{1/2} \tag{2}$$

b. References: $C_2H_6(g)$, $C_2H_4(g)$, $H_2(g)$ at 1273 K

Energy balance:

$$\Delta H = 0 \Rightarrow \xi \Delta \hat{H}_r (1273 \text{ K}) + \sum_{\text{out}} n_i \hat{H}_i - \sum_{\text{in}} n_i \hat{H}_i$$

 $\left(\hat{H}_i\right)_{\text{in}} = 0$ (inlet temperature = reference temperature)

$$\left(\hat{H}_i\right)_{\text{out}} = \int_{1273}^T C_{pi} dT$$

↓ energy balance

$$f \Delta \hat{H}_{r}(1273 \text{ K}) \text{kJ} + (1-f) \int_{1273}^{T} (C_{p})_{C_{2}H_{6}} dT + f \int_{1273}^{T} (C_{p})_{C_{2}H_{4}} dT + f \int_{1273}^{T} (C_{p})_{H_{2}} dT = 0$$

$$\text{rearrange, reverse limits and change signs of integrals}$$

$$\frac{1-f}{f} = \frac{\Delta \hat{H}_{r}(1273K) - \int_{T}^{1273} (C_{p})_{C_{2}H_{4}} dT - \int_{T}^{1273} (C_{p})_{H_{2}} dT}{\int_{T}^{1273} (C_{p})_{C_{2}H_{6}} dT}$$

$$(3)$$

$$\frac{1-f}{f} = \phi(T) \Rightarrow 1-f = f\phi(T) \Rightarrow f = \frac{1}{1+\phi(T)} \quad (4)$$

9.35 (cont'd)

$$\phi(T) = \frac{145600 - \int_{T}^{1273} (9.419 + 0.1147T)dT - \int_{T}^{1273} (26.90 + 4.167 \times 10^{-3} T)dT}{\int_{T}^{1273} (11.35 + 0.1392T)dT}$$

$$\Rightarrow \phi(T) = \frac{3052 + 36.2T + 0.05943T^{2}}{127240 - 11.3T - 0.0696T^{2}}$$

$$\mathbf{c.} \qquad \left(\frac{K_p}{1+K_p}\right)^{1/2} = \frac{1}{1+\phi(T)} \Longrightarrow \left(\frac{K_p}{1+K_p}\right)^{1/2} - \frac{1}{1+\phi(T)} = \psi(T) = 0$$

 $\phi(T)$ given by expression of Part b. $K_p(T)$ given by Eq. (1)

d.

Р	T	f	Кр	Phi	Psi
(atm)	(K)		(atm)		
0.01	794	0.518	0.0037	0.93152	-0.0001115
0.05	847.4	0.47	0.0141	1.12964	-0.0002618
0.1	872.3	0.446	0.025	1.24028	0.00097743
0.5	932.8	0.388	0.0886	1.57826	3.41E-05
1	960.3	0.36	0.1492	1.77566	4.69E-05
5	1026			2.42913	
10	1055	0.261	0.7283	2.83692	-7.54E-05

e. C **PROGRAM FOR PROBLEM 9-35

WRITE (5, 1)

FORMAT ('1', 20X, 'SOLUTION TO PROBLEM 9-35'//)

T = 1200.0

TLAST = 0.0

PSIL = 0.0

```
C **DECREMENT BY 50 DEG. AND LOOK FOR A SIGN IN PSI
                 DO 10I = 1.20
                 CALL PSICAL (T, PHI, PSI)
                 IF ((PSIL*PSI).LT.0.0) GO TO 40
                 TLAST = T
                 PSIL = PSI
                 T = T - 50.
           10
                 CONTINUE
           40
                 IF (T.GE.0.0) GO TO 45
                 WRITE (3, 2)
                 FORMAT (1X, 'T LESS THAN ZERO -- ERROR')
                 STOP
            C **APPLY REGULA-FALSI
           45
                 DO 50 I = 1, 20
                 IF (I.NE.1) T2L = T2
                 T2 = (T*PSIL-TLAST*PSI)/(PSIL-PSI)
                 IF (ABS(T2-T2L).LT.0.01) GO TO 99
                 CALL PSICAL (T2, PHIT, PSIT)
                 IF (PSIT.EQ.0) GO TO 99
                 IF ((PBIT*PBIL).GT.0.0) PSIL = PSIT
                 IF ((PSIT*PSIL).GT.0.0) TLAST = T2
                 IF((PSIT*PSI).GT.0.0) PSI = PSIT
                 IF ((PSIT*PSI).GT.0.0) T = T2
           50
                 CONTINUE
                 IF (I.EQ.20) WRITE (3, 3)
            3
                 FORMAT ('0', 'REGULA-FALSI DID NOT CONVERGE IN 20 ITERATIONS')
           93
                 STOP
                 END
                 SUBROUTINE PSICAL (T, PHI, PSI)
                 REAL KF
                 PHI = (3052 + 36.2*T + 36.2*T + 0.05943*T**2)/(127240. - 11.35*T)
               * - 0.0636*T**2
                 KP = 7.28E6*EXP(-17000./T)
                 FBI = SQRT((KP/(1. + KP)) - 1./12. + PHI)
                 WRITE (3, 1) T, PSI
                 FORMAT (6X, 'T =', F6.2, 4X, 'PSI =', E11,4)
                 RETURN
                 END
OUTPUT: SOLUTION TO PROBLEM 9-35
          T = 1200.00 PSI = 0.8226E + 00
          T = 1150.00 PSI = 0.7048E + 00
          T = 1100.00 \text{ PSI} = 0.5551E + 00
          T = 1050.00 PSI = 0.3696E + 00
          T = 1000.00 \quad PSI = 0.1619E + 00
          T = 950.00 PSI = -0.3950E - 01
          T = 959.80 PSI = -0.1824E - 02
          T = 960.25 PSI = -0.7671E - 04
          T = 960.27 PSI = -0.3278E - 05
Solution: T = 960.3 \text{ K}, f = 0.360 \text{ mol C}_2\text{H}_6 reacted/mol fed
```

9.35 (cont'd)

9.36
$$2CH_4 \rightarrow C_2H_2 + 3H_2$$

 $C_2H_2 \rightarrow 2C(s) + H_2$

a.
$$\underline{60\% \text{ conversion}} \Rightarrow \dot{n}_1 = 10(1 - 0.600) = 4.00 \text{ mol CH}_4/\text{s}$$

C balance:
$$10(1) = 4(1) + 2\dot{n}_2 + \dot{n}_4 \Rightarrow 2\dot{n}_2 + \dot{n}_4 = 6$$
 (1)

H balance:
$$10(4) = 4(4) + 2\dot{n}_2 + 2\dot{n}_3 \Rightarrow 2\dot{n}_2 + 2\dot{n}_3 = 24$$
 (2)

References for enthalpy calculations: C(s), H₂(g) at 25°C

$$H_i = (\Delta \hat{H}_f^0)_i + C_{pi} (1500 - 25), i = CH_4, C_2H_2, C, H_2$$

Substance	$\dot{n}_{ m in}$	\hat{H}_{in}	$\dot{n}_{ m out}$	$\hat{H}_{ ext{out}}$
Substance	(mol/s)	(kJ/mol)	(mol/s)	(kJ/mol)
CH ₄ (g)	10	41.68	4	41.68
$C_2H_2(g)$	_	_	\dot{n}_2	303.45
$H_2(g)$	_	_	\dot{n}_3	45.72
C(s)	_	-	\dot{n}_4	32.45

Energy Balance:
$$Q = \Delta H \Rightarrow 975 \text{ kJ/s} = \sum_{\text{out}} \dot{n}_i \hat{H}_i - \sum_{\text{in}} \dot{n}_i \hat{H}_i$$
 (3)
Solve (1) - (3) simultaneously $\Rightarrow \begin{cases} \dot{n}_2 = 250 \text{ mol } C_2 H_2 / \text{s} \\ \dot{n}_3 = 950 \text{ mol } H_2 / \text{s} \\ \dot{n}_4 = 100 \text{ mol } C/\text{s} \end{cases}$

$$\underline{\text{Yield of acetylene}} = \frac{2.50 \text{ mol } \text{ C}_2\text{H}_2/\text{s}}{6.00 \text{ mol } \text{ CH}_4 \text{ consumed/s}} = \underbrace{\frac{0.417 \text{ mol } \text{ C}_2\text{H}_2/\text{mol } \text{CH}_4 \text{ consumed/s}}_{2}}_{}$$

b. If no side reaction,

$$\dot{n}_1 = 10.0(1 - 0.600) = \underbrace{\frac{4.00 \text{ mol CH}_4 / \text{s}}{\text{mol C}_2 \text{H}_2 / \text{s}}}_{1.00 \text{ mol C}_2 \text{H}_2 / \text{s}} = \underbrace{\frac{3.00 \text{ mol C}_2 \text{H}_2 / \text{s}}{\text{mol C}_2 \text{H}_2 / \text{s}}}_{1.00 \text{ mol H}_2 / \text{s}} = \underbrace{\frac{3.00 \text{ mol C}_2 \text{H}_2 / \text{s}}{\text{mol C}_2 \text{H}_2 / \text{s}}}_{1.00 \text{ mol H}_2 / \text{s}} = \underbrace{\frac{3.00 \text{ mol C}_2 \text{H}_2 / \text{s}}{\text{mol C}_2 \text{H}_2 / \text{s}}}_{1.00 \text{ mol C}_2 \text{H}_2 / \text{s}} = \underbrace{\frac{3.00 \text{ mol C}_2 \text{H}_2 / \text{s}}{\text{mol C}_2 \text{H}_2 / \text{s}}}_{1.00 \text{ mol C}_2 \text{H}_2 / \text{s}} = \underbrace{\frac{3.00 \text{ mol C}_2 \text{H}_2 / \text{s}}{\text{mol C}_2 \text{H}_2 / \text{s}}}_{1.00 \text{ mol C}_2 \text{H}_2 / \text{s}} = \underbrace{\frac{3.00 \text{ mol C}_2 \text{H}_2 / \text{s}}_{1.00 \text{ mol C}_2 \text{H}_2 / \text{s}}}_{1.00 \text{ mol C}_2 \text{H}_2 / \text{s}}$$

$$\frac{\text{Yield of acetylene}}{\text{6.00 mol } \text{CH}_4 \text{ consumed/s}} = \frac{3.00 \text{ mol } \text{C}_2\text{H}_2/\text{s}}{\text{6.00 mol } \text{CH}_4 \text{ consumed/s}} = \frac{0.500 \text{ mol } \text{C}_2\text{H}_2/\text{mol } \text{CH}_4 \text{ consumed/s}}{\text{6.00 mol } \text{C}_2\text{H}_2/\text{mol } \text{CH}_4 \text{ consumed/s}} = \frac{0.500 \text{ mol } \text{C}_2\text{H}_2/\text{mol } \text{CH}_4 \text{ consumed/s}}{\text{6.00 mol } \text{C}_2\text{H}_2/\text{mol } \text{CH}_4 \text{ consumed/s}} = \frac{0.500 \text{ mol } \text{C}_2\text{H}_2/\text{mol } \text{CH}_4 \text{ consumed/s}}{\text{6.00 mol } \text{C}_2\text{H}_2/\text{mol } \text{CH}_4 \text{ consumed/s}} = \frac{0.500 \text{ mol } \text{C}_2\text{H}_2/\text{mol } \text{CH}_4 \text{ consumed/s}}{\text{6.00 mol } \text{C}_2\text{H}_2/\text{mol } \text{CH}_4 \text{ consumed/s}} = \frac{0.500 \text{ mol } \text{C}_2\text{H}_2/\text{mol } \text{CH}_4 \text{ consumed/s}}{\text{6.00 mol } \text{C}_2\text{H}_2/\text{mol } \text{CH}_4 \text{ consumed/s}} = \frac{0.500 \text{ mol } \text{C}_2\text{H}_2/\text{mol } \text{CH}_4 \text{ consumed/s}}{\text{6.00 mol } \text{C}_2\text{H}_2/\text{mol } \text{CH}_4 \text{ consumed/s}} = \frac{0.500 \text{ mol } \text{C}_2\text{H}_2/\text{mol } \text{CH}_4 \text{ consumed/s}}{\text{6.00 mol } \text{C}_2\text{H}_2/\text{mol } \text{CH}_4 \text{ consumed/s}} = \frac{0.500 \text{ mol } \text{C}_2\text{H}_2/\text{mol } \text{CH}_4 \text{ consumed/s}}{\text{6.00 mol } \text{C}_2\text{H}_2/\text{mol } \text{CH}_4 \text{ consumed/s}} = \frac{0.500 \text{ mol } \text{C}_2\text{H}_2/\text{mol } \text{CH}_4 \text{ consumed/s}}{\text{6.00 mol } \text{C}_2\text{H}_2/\text{mol } \text{CH}_4 \text{ consumed/s}} = \frac{0.500 \text{ mol } \text{C}_2\text{H}_2/\text{mol } \text{CH}_4 \text{ consumed/s}}{\text{6.00 mol } \text{C}_2\text{H}_2/\text{mol } \text{CH}_4 \text{ consumed/s}} = \frac{0.500 \text{ mol } \text{C}_2\text{H}_2/\text{mol } \text{CH}_4 \text{ consumed/s}}{\text{6.00 mol } \text{C}_2\text{H}_2/\text{mol } \text{CH}_4 \text{ consumed/s}} = \frac{0.500 \text{ mol } \text{C}_2\text{H}_2/\text{mol } \text{CH}_4 \text{ consumed/s}}{\text{6.00 mol } \text{C}_2\text{H}_2/\text{mol } \text{CH}_4 \text{ consumed/s}} = \frac{0.500 \text{ mol } \text{C}_2\text{H}_2/\text{mol } \text{CH}_4 \text{ consumed/s}}{\text{6.00 mol } \text{C}_2\text{H}_2/\text{mol } \text{CH}_4 \text{ consumed/s}} = \frac{0.500 \text{ mol } \text{C}_2\text{H}_2/\text{mol } \text{CH}_4 \text{ consumed/s}}{\text{6.00 mol } \text{C}_2\text{H}_2/\text{mol } \text{C}_2\text{H}_2/\text$$

$$\frac{\text{Reactor Efficiency}}{0.500} = \frac{0.417}{0.500} = \frac{0.834}{0.500}$$

9.37
$$C_3H_8(g) + 3H_2O(v) \rightarrow 3CO(g) + 7H_2(g)$$

 $CO(g) + H_2O(v) \rightarrow CO_2(g) + H_2(g)$

Basis: 1 mol C₃H₈ fed

$$n_g = \frac{4.94 \text{ m}^3}{1 \text{ m}^3} \frac{10^3 \text{ L}}{1 \text{ m}^3} \frac{273 \text{ K}}{1673 \text{ K}} \frac{1 \text{ mol}}{22.4 \text{ L}} = 35.99 \text{ mol heating gas}$$

Let ξ_1 and ξ_2 be the extents of the two reactions.

$$\begin{aligned} n_1 &= 1 - \xi_1 \overset{n_1 = 0}{\Rightarrow} \xi_1 = 1 \text{ mol} \\ n_2 &= 6 - 3\xi_1 - \xi_2 \overset{\xi_1 = 1}{\Rightarrow} n_2 = 3 - \xi_2 \\ n_3 &= 3\xi_1 - \xi_2 \overset{\xi_1 = 1}{\Rightarrow} n_3 = 3 - \xi_2 \end{aligned} \qquad \begin{aligned} n_4 &= \xi_2 \\ n_5 &= 7\xi_1 + \xi_2 \overset{\xi_1 = 1}{\Rightarrow} n_5 = 7 + \xi_2 \end{aligned}$$

References: C(s), $H_2(g)$, $O_2(g)$ at 25°C, heating gas at 900°C

$$\hat{H}_i = \Delta \hat{H}_{fi}^o + \int_{25}^T C_{pi} dT \qquad \text{for } C_3 H_8$$

= Table B.8 for CO_2 , H_2 , H_2O , CO

$$= \int_{900}^{T} C_p dT = C_p (T - 900)$$
 for heating gas

Substance	$n_{\rm in}$	\hat{H}_{in}	$n_{ m out}$	$\hat{H}_{ m out}$
Substance	mol	kJ / mol	mol	kJ / mol
C ₃ H ₈	1	-95.39	0	-
H ₂ O	6	-238.43	$3 - \xi_2$	-212.78
CO	_	_	$3-\xi_2$	-86.39
CO ₂	_	_	ξ_2	-356.15
H_2	_	_	$7 + \xi_2$	22.85
heating gas	35.99	200.00	35.99	0

Energy Balance:

$$\sum_{\text{out}} n_i \hat{H}_i - \sum_{\text{in}} n_i \hat{H}_i = 0 \Rightarrow \xi_2 = 2.00 \text{ mol} \Rightarrow n_2 = 1 \text{ mol H}_2\text{O}, \ n_3 = 1 \text{ mol CO},$$

$$n_4 = 1 \text{ mol CO}_2, n_5 = 9 \text{ mol H}_2 \Rightarrow 7.7 \text{ mol \% H}_2\text{O}, \ 7.7\% \text{ CO}, \ 15.4\% \text{ CO}_2, \ 69.2\% \text{ H}_2$$

- **9.38** a. Any C consumed in reaction (2) is lost to reaction (1). Without the energy released by reaction (2) to compensate for the energy consumed by reaction (1), the temperature in the adiabatic reactor and hence the reaction rate would drop.
 - **b.** Basis: 1.00 kg coal fed ($+0.500 \text{ kg H}_20$)

$$n_{f1} = [(1.00)(0.669)(0.812) \text{ kg C}][1 \text{ mol C}/12.01 \times 10^{-3} \text{ kg}] = 45.23 \text{ mol C}$$

 $n_{f2} = (1.00)(0.669)(0.134) / 16.0 \times 10^{-3} = 5.6 \text{ mol O}$

$$\begin{split} n_{f3} &= (1.00)(0.669)(0.054) \ / 1.01 \times 10^{-3} = 35.77 \ \text{mol H} \\ n_{f4} &= [\ (0.500 + 0.105) \ \text{kg}][1 \ \text{mol H}_2\text{O} / 18.016 \times 10^{-3} \ \text{kg}] \ = \ 33.58 \ \text{mol H}_2\text{O} \end{split}$$

Reactive oxygen (O) available = $(2n_0 + 5.60)$ mol O

Oxygen consumed by H
$$(2H+O \rightarrow H_2O)$$
: $\frac{35.77 \text{ mol H}}{2 \text{ mol H}} = 17.88 \text{ mol O}$

 \Rightarrow Reactive O remaining = $(2n_0 + 5.60) - 17.88 = (2n_0 - 12.28)$ mol O

$$\underline{\text{CO}_2 \text{ formed}} \ \ (\text{ C} + 2\text{O} \to \text{CO}_2) : n_1 = \frac{(2n_0 - 12.28) \text{ mol O}}{2 \text{ mol O}} = \underline{(n_0 - 6.14) \text{ mol CO}_2} = \underline{(n_0 - 6.14) \text{ mol CO}_2}$$

C balance:
$$45.23 = n_1 + n_2 \xrightarrow{n_1 = n_0 - 6.14} n_2 = \underbrace{(51.37 - n_0) \text{ mol CO}}_{n_1 = n_0 - 6.14}$$

$$\underline{\text{O balance}}: 2n_0 + 5.60 + 33.58 = 2n_1 + n_2 + n_4 \underset{n_2 = 51.37 - n_0}{\Longrightarrow} n_4 = \underbrace{(n_0 + 0.06) \text{ mol H}_2\text{O}}$$

H balance: 35.77+ 2(33.58)=
$$2n_3 + 2n_4 \xrightarrow{n_4 = n_0 + 0.06} n_3 = (51.37 - n_0) \text{ mol H}_2$$

9.38 (cont'd)

1 kg coal contains 45.23 mol C and 35.77 mol H
$$\Rightarrow 1 \text{ kg coal} + \text{nO}_2 \rightarrow 45.23 \text{ CO}_2 + (35.77/2) \text{ mol H}_2\text{O (l)}$$

$$\Delta \hat{H}_r = -21,400 \text{ kJ} = 45.23 (\Delta \hat{H}_f^{\circ})_{\text{CO}_2} + (35.77/2) (\Delta \hat{H}_f^{\circ})_{\text{H}_2\text{O(l)}} - (\Delta \hat{H}_f^{\circ})_{\text{coal}}$$

$$\Rightarrow (\Delta \hat{H}_f^{\circ})_{\text{coal}} = -1510 \text{ kJ} / \text{kg}$$

 $\underline{Re\,ferences}: C(s),\, O_2(g),\, H_2(g),\, ash(s) \ at \ 25^{\circ}C$

Substance	n _{in} (mol)	\hat{H}_{in} (kJ/mol)	n _{out} (mol)	\hat{H}_{out} (kJ/mol)
CO ₂	_	_	$n_0 - 6.14$	$\hat{H}_{_1}$
СО	_	_	$51.37 - n_0$	\hat{H}_2
H_2	_	_	$51.37 - n_0$	\hat{H}_3
H ₂ O	33.58	\hat{H}_0	$n_0 + 0.06$	$\hat{H}_{\scriptscriptstyle 4}$
Coal	1 kg	-1510 kJ/kg	_	_
Ash(slag)	(in coal)	0	0.266 kg	$\hat{H}_5(\text{kJ/kg})$

$$\hat{H}_i = \Delta \hat{H}_{fi}^{o} + C_{pi}(2500 - 25), i = 1,3$$

$$\hat{H}_1 = -393.5 + 0.0508(2475) = -267.8 \text{ kJ/mol CO}_2$$

$$\hat{H}_2 = -110.52 + 0.0332(2475) = -28.35 \text{ kJ/mol CO}$$

$$\hat{H}_3 = 0.0300(2475) = 74.25 \text{ kJ/mol H}_2$$

$$\hat{H}_4 = -241.83 + 0.0395(2475) = -144.07 \text{ kJ/mol H}_2\text{O}$$

$$\hat{H}_5 = (\Delta \hat{H}_{\rm m})_{\rm ash} + 1.4(2475) = 710 + 1.4(2475) = 4175 \text{ kJ/kg ash}$$

Energy Balance

$$\Delta H = \sum n_{out} \hat{H}_{out} - \sum n_{in} \hat{H}_{in} = 0 \implies n_0 = \underbrace{35.4 \text{ mol O}_2}_{2}$$

 $H = (3000 \text{ mol H}_2\text{SO}_4)(-884.7 \text{ kJ/mol H}_2\text{SO}_4) = -2.65 \times 10^6 \text{ kJ}$

HCl (aq):
$$\Delta \hat{H}_{\rm f}^{\rm o} = \left(\Delta \hat{H}_{\rm f}^{\rm o}\right)_{\rm HCl(g)} + \left(\Delta \hat{H}_{\rm s}^{\rm o}\right)_{\infty}^{\rm Tables B.1, B11} = -92.31 - 75.14 = -167.45 \text{ kJ/mol}$$

NaOH (aq): $\Delta \hat{H}_{\rm f}^{\rm o} = \left(\Delta \hat{H}_{\rm f}^{\rm o}\right)_{\rm NaOH(s)} + \left(\Delta \hat{H}_{\rm s}^{\rm o}\right)_{\infty}^{\rm Tables B1, B.11} = -426.6 - 42.89 = -469.49 \text{ kJ/mol}$

NaCl (aq): $\Delta \hat{H}_{\rm f}^{\rm o} = \left(\Delta \hat{H}_{\rm f}^{\rm o}\right)_{\rm NaCl(s)} + \left(\Delta \hat{H}_{\rm s}^{\rm o}\right)_{\infty} = -411.0 + 4.87 = -406.1 \text{ kJ/mol}$

HCl(aq) + NaOH(aq) → NaCl(aq) + H₂O(1)

 $\Delta \hat{H}_{\rm r}^{\rm o} = \left[-406.1 - 285.84 - \left(-167.45\right) - \left(-469.49\right)\right] = \frac{-55.0 \text{ kJ/mol}}{=}$

HCl(g) + NaOH(s) → NaCl(s) + H₂O(1)

 $\Delta \hat{H}_{\rm r}^{\rm o} = \sum_{\rm products} v_i \Delta \hat{H}_{\rm f}^{\rm o} - \sum_{\rm reactants} v_i \Delta \hat{H}_{\rm f}^{\rm o} = \left[-411.0 - 285.84 - \left(-92.31\right) - \left(-426.6\right)\right] \text{ kJ/mol} = \frac{-177.9 \text{ kJ/mol}}{=}$

The difference between the two calculated values equals

$$\left\{ \left(\Delta \hat{H}_{\mathrm{s}} \right)_{\mathrm{NaCl}} - \left(\Delta \hat{H}_{\mathrm{s}} \right)_{\mathrm{HCl}} - \left(\Delta \hat{H}_{\mathrm{s}} \right)_{\mathrm{NaOH}} \right\}.$$

9.41 a.
$$H_2SO_4(aq) + 2NaOH(aq) \rightarrow Na_2SO_4(aq) + 2H_2O(1)$$

$$\underbrace{Basis:} 1 \text{ mol } H_2SO_4 \text{ soln} \Rightarrow \frac{0.10 \text{ mol } H_2SO_4 \times (98.08 \text{ g/mol}) = 9.808 \text{ g } H_2SO_4}{0.90 \text{ mol } H_2O \times (18.02 \text{ g/mol}) = 16.22 \text{ g } H_2O}$$

$$\Rightarrow \frac{26.03 \text{ g soln}}{1.27 \text{ g}} = 20.49 \text{ cm}^3$$

$$\Rightarrow \frac{0.10 \text{ mol } H_2SO_4}{1 \text{ mol } H_2SO_4} = \frac{2 \text{ mol } NaOH}{1 \text{ liter caustic soln}} = \frac{10^3 \text{ cm}^3}{1 \text{ L}} = 66.67 \text{ cm}^3 \text{ NaOH(aq)}$$

9.41 (cont'd)

$$\underline{\text{Volume ratio}} = \frac{66.67 \text{ cm}^3 \text{ NaOH(aq)}}{20.49 \text{ cm}^3 \text{ H}_2 \text{SO}_4 \text{ (aq)}} = \underline{\frac{3.25 \text{ cm}^3 \text{ caustic solution / cm}^3 \text{ acid solution}}{20.49 \text{ cm}^3 \text{ H}_2 \text{ SO}_4 \text{ (aq)}}}$$

b.
$$H_2SO_4(aq)$$
: $r = 9 \text{ mol } H_2O/1 \text{ mol } H_2SO_4$

$$\left(\Delta \hat{H}_{f}^{o}\right)_{soln} = \left(\Delta \hat{H}_{f}^{o}\right)_{H_{2}SO_{4}(1)} + \left(\Delta \hat{H}_{f}^{o}\right)_{H_{2}SO_{4}(aq., r=9)} = \left(-811.32 - 65.23\right) \frac{kJ}{mol} = \frac{-877 \text{ kJ/mol H}_{2}SO_{4}(aq., r=9)}{mol} = \frac{-877 \text{ kJ/mol H}_{2}SO_{4$$

 $\underline{\text{NaOH(aq)}}$: The solution fed contains $(66.67 \text{ cm}^3)(1.13 \text{ g/cm}^3) = 75.34 \text{ g}$, and

$$(0.2 \text{ mol NaOH})(40.00 \text{ g/mol}) = 8.00 \text{ g NaOH}$$

$$\Rightarrow$$
 (75.34 – 8.00) g H₂O \Rightarrow (67.39 g H₂O)(1 mol/18.02 g) = 3.74 mol H₂O

$$\Rightarrow$$
 r = 3.74 mol H₂O/0.20 mol NaOH = 18.7 mol H₂O/mol NaOH

 $Na_2SO_4(aq)$:

Extent of reaction: $(n_{\text{H}_2\text{SO}_4})_{\text{final}} = (n_{\text{H}_2\text{SO}_4})_{\text{fed}} + \nu_{\text{H}_2\text{SO}_4} \xi \Rightarrow 0 = 0.10 \text{mol} - (1)\xi \Rightarrow \xi = 0.10 \text{ mol}$

Energy Balance:

$$Q = \Delta H = \xi \Delta \hat{H}_{r}^{\circ} = \xi \left[(\Delta \hat{H}_{f}^{\circ})_{\text{Na}_{2}\text{SO}_{4}(\text{aq})} + 2(\Delta \hat{H}_{f}^{\circ})_{\text{H}_{2}\text{O}(\text{I})} - (\Delta \hat{H}_{f}^{\circ})_{\text{H}_{2}\text{SO}_{4}(\text{aq})} - 2(\Delta \hat{H}_{f}^{\circ})_{\text{NaOH(aq)}} \right]$$

$$= (0.10 \text{ mol}) \left[-1385.7 + 2(-285.84) - (-876.55) - (2)(-469.4) \right] \frac{\text{kJ}}{\text{mol}} = \underline{-14.2 \text{ kJ}}$$

9.42 a.

NaCl(aq):
$$\Delta \hat{H}_{f}^{o} = \left(\Delta \hat{H}_{f}^{o}\right)_{\text{NaCl(s)}} + \left(\Delta \hat{H}_{s}^{o}\right)_{\infty} = \left(-411.0 + 4.87\right) \text{kJ/mol} = \underbrace{-406.1 \text{ kJ/mol}}_{\text{NaCl(s)}}$$

NaOH(aq):

$$\Delta \hat{H}_{f}^{o} = \left(\Delta \hat{H}_{f}^{o}\right)_{\text{NaOH(s)}} + \left(\Delta \hat{H}_{s}^{o}\right)_{\infty} \stackrel{\text{Table B.1}}{=} (-426.6 - 42.89) \text{kJ/mol} = \underline{-469.5 \text{ kJ/mol}}$$

$$\text{NaCl(aq)} + \text{H}_{2}\text{O(l)} \rightarrow \frac{1}{2} \text{H}_{2}(\text{g}) + \frac{1}{2} \text{Cl}_{2}(\text{g}) + \text{NaOH(aq)}$$

$$\Delta \hat{H}_{r}^{o} = \left[-469.5 - \left(-406.1\right) - \left(-285.84\right)\right] \text{kJ/mol} = 222.44 \text{ kJ/mol}$$

b.

$$8500 \text{ ktonne Cl}_2$$
 10^3 tonne
 10^3 kg
 10^3 g
 1 mol Cl_2
 222.44 kJ

 yr
 1 ktonne
 1 tonne
 1 kg
 70.91 g Cl_2
 0.5 mol Cl_2

$$\frac{10^{3} \text{ J}}{1 \text{ kJ}} = \frac{2.778 \times 10^{-7} \text{ kW} \cdot \text{h}}{1 \text{ J}} = \frac{1.48 \times 10^{7} \text{ MW} \cdot \text{h/yr}}{1 \text{ kW} \cdot \text{h/yr}}$$

9.43 a.
$$CaCl_2(s) + 10H_2O(1) \rightarrow CaCl_2(aq, r = 10)$$

(1)
$$\Delta \hat{H}_{r1}^{o} = -64.85 \text{ kJ/mol}$$

$$CaCl_2 \cdot 6H_2O(s) + 4H_2O(1) \rightarrow CaCl_2(aq, r = 10)$$

(2)
$$\Delta \hat{H}_{r2}^{o} = +32.41 \text{ kJ/mol}$$

$$(1)-(2) \Rightarrow CaCl_2(s)+6H_2O(1) \rightarrow CaCl_2 \cdot 6H_2O(s)$$

$$\Rightarrow \Delta \hat{H}_{r3}^{o} = \Delta \hat{H}_{r1}^{o} - \Delta \hat{H}_{r2}^{o} \text{ (Hess's law)} = -97.26 \text{ kJ/mol}$$

b. From (1),
$$\Delta \hat{H}_{\text{rl}}^{\circ} = \left(\Delta \hat{H}_{\text{f}}^{\circ}\right)_{\text{CaCl}_{2}(\text{aq, r=10})} - \left(\Delta \hat{H}_{\text{f}}^{\circ}\right)_{\text{CaCl}_{2}(\text{s})}$$

$$\Rightarrow \left(\Delta \hat{H}_{\text{f}}^{\circ}\right)_{\text{CaCl}_{2}(\text{aq, r=10})} = \left(-64.85 - 794.96\right) \text{ kJ/mol} = \underline{-859.81 \text{ kJ/mol}}$$

9.44 Basis: $1 \text{ mol } (NH_4)_2 SO_4 \text{ produced}$

$$2NH_3(g) + H_2SO_4(aq) \rightarrow (NH_4)_2SO_4(aq)$$

a. References: Elements at 25°C

$$\underline{\text{NH}_3(g, 75^{\circ}\text{C})}: \hat{H} = \Delta \hat{H}_f^{\circ} + \int_{25}^{75} C_p dT = \left(-46.19 + 1.83\right) \text{kJ/mol} = -44.36 \text{ kJ/mol} \text{ (Table B.1, B.2)}$$

$$\underline{\text{H}_2\text{SO}_4(\text{aq}, 25^{\circ}\text{C})}: \ \hat{H} = \left(\Delta \hat{H}_f^{\circ}\right)_{\text{H}_2\text{SO}_4(\text{aq})} = -907.51 \text{ kJ/mol H}_2\text{SO}_4 \ (\text{Ta.ble B.1})$$

Energy balance:

$$Q = \Delta H = \sum_{\text{out}} n_i \hat{H}_i - \sum_{\text{in}} n_i \hat{H}_i = (1)(-1173.1) - (2)(-44.36) - (1)(-907.51) \text{ kJ}$$

$$= -177 \text{ kJ} \Rightarrow 177 \frac{\text{kJ withdrawn}}{\text{mol (NH}_4)_2 \text{SO}_4 \text{ produced}}$$

b. 1 mole %
$$(NH_4)_2 SO_4$$
 solution $\Rightarrow \frac{1 \text{ mol } (NH_4)_2 SO_4}{| \text{ mol }} = 132 \text{ g } (NH_4)_2 SO_4$

$$\frac{99 \text{ mol H}_2\text{O}}{|\text{mol}|} = \frac{1782 \text{ g H}_2\text{O}}{1914 \text{ g solution}}$$

The heat transferred from the reactor in part (a) now goes to heat the product solution from

25° C to
$$T_{\text{final}} \implies 177 \text{ kJ} = \begin{array}{c|cccc} 1.914 & 1 \text{ kg} & 4.184 \text{ kJ} & (T-25)^{\circ} \text{C} \\ \hline & 10^{3} \text{ g} & \text{kg}^{\circ} \text{C} \end{array} \implies T_{\text{final}} = \underline{47.1^{\circ} \text{C}}$$

c. In a real reactor, the final solution temperature will be less than the value calculated in part b, due to heat loss to the surroundings. The final temperature will therefore be <u>less</u> than 47.1°C.

9.45 $H_2SO_4(aq) + 2NaOH(aq) \rightarrow Na_2SO_4(aq) + 2H_2O(aq)$ Basis: 1 mol H_2SO_4 fed

<u>Reference states</u>: Na(s), $H_2(g)$, S(s), $O_2(g)$ at 25°C

$$\begin{split} \frac{\mathrm{H_2SO_4}\left(\mathrm{aq,\,r} = 49,25^{\circ}\,\mathrm{C}\right)}{\mathrm{n}\hat{H} &= \left(1\,\mathrm{mol\,\,H_2SO_4}\right) \left[\left(\Delta\hat{H}_\mathrm{f}^{\,\mathrm{o}}\right)_{\mathrm{H_2SO_4}(\mathrm{l})} + \Delta\hat{H}_\mathrm{s}^{\,\mathrm{o}}\left(\mathrm{r} = 49\right)\right] \!\!\left(\mathrm{kJ/mol}\right) + 49\!\left(\Delta\hat{H}_\mathrm{f}^{\,\mathrm{o}}\right)_{\mathrm{H_2O(l)}} \\ &= \left(1\right) \!\!\left[-811.3 - 73.3\right] = -884.6\,\,\mathrm{kJ} + 49\!\left(\Delta\hat{H}_\mathrm{f}^{\,\mathrm{o}}\right)_{\mathrm{H_2O(l)}} \end{split}$$

NaOH(aq, $r = 19, 25^{\circ} C$):

$$\begin{split} & n\hat{H} = \left(2 \text{ mol NaOH}\right) \!\! \left[\left(\Delta \hat{H}_{\rm f}^{\, \rm o} \right)_{\rm NaOH(s)} + \Delta \hat{H}_{\rm s}^{\, \rm o} \left({\rm r} = 19 \right) \right] \!\! \left({\rm kJ/mol} \right) + 38 \!\! \left(\Delta \hat{H}_{\rm f}^{\, \rm o} \right)_{\rm H_2O(l)} \\ & = \left(2 \right) \!\! \left[-426.6 - 42.8 \right] = -938.8 \; {\rm kJ} + 38 \!\! \left(\Delta \hat{H}_{\rm f}^{\, \rm o} \right)_{\rm H_2O(l)} \end{split}$$

$$Na_2SO_4$$
 (aq, r = 89, 40° C):

$$\frac{1 \text{ kmol Na}_2\text{SO}_4}{1 \text{ kmol}} = 0.142 \text{ kg}, \quad \frac{89 \text{ kmol H}_2\text{O}}{1 \text{ kmol}} = 1.604 \text{ kg} \implies 1.746 \text{ kg}$$

$$n\hat{H} = -1276 \text{ kJ} + 89 \left(\Delta \hat{H}_{f}^{0}\right)_{\text{H}_{2}\text{O}(1)}$$

Energy balance:
$$Q = \Delta H = \sum_{\text{out}} n_i \hat{H}_i - \sum_{\text{in}} n_i \hat{H}_i = 547.4 + 2 \left(\Delta \hat{H}_f^{\text{o}}\right)_{\text{H}_2\text{O}(1)} = -24.3 \text{ kJ}$$

Mass of acid fed

$$\frac{1 \text{ mol H}_{2}\text{SO}_{4}}{1 \text{ mol}} = \frac{98.08 \text{ g H}_{2}\text{SO}_{4}}{1 \text{ mol}} + \frac{49 \text{ mol H}_{2}\text{O}}{1 \text{ mol}} = \frac{18.02 \text{ g H}_{2}\text{O}}{1 \text{ mol}} = 981 \text{ g} = 0.981 \text{ kg}$$

$$\Rightarrow \frac{Q}{M_{acid}} = \frac{-24.3 \text{ kJ}}{0.981 \text{ kg acid}} \Rightarrow \frac{24.8 \text{ kJ/kg acid transferred from reactor contents}}{1 \text{ kg acid transferred from reactor contents}}$$

b. If the reactor is adiabatic, the heat transferred from the reactor of Part(a) instead goes to heat the product solution from 40°C to T_f

$$\Rightarrow 24.3 \times 10^3 \text{ J} = \frac{1.746 \text{ kg}}{\text{kg} \cdot \text{°C}} \left| \frac{4.184 \text{ kJ}}{\text{kg} \cdot \text{°C}} \right| \left| \frac{(T_f - 40)^{\circ} \text{C}}{\text{C}} \right| \Rightarrow T_f = \frac{43^{\circ} \text{C}}{\text{C}}$$

9.46 a.
$$H_2SO_4(aq) + 2NaOH(aq) \rightarrow Na_2SO_4(aq) + 2H_2O(1)$$

 H_2SO_4 solution::

75 ml of 4M H₂SO₄ solution
$$\Rightarrow \frac{4 \text{ mol H}_2SO_4}{1 \text{ L acid soln}} \frac{1 \text{ L}}{10^3 \text{ mL}} = 0.30 \text{ mol H}_2SO_4$$

(75 mL)(1.23 g/mL) = 92.25 g, (0.3 mol H₂SO₄)(98.08 g/mol) = 29.42 g H₂SO₄
 \Rightarrow (92.25 - 29.42) g H₂O \Rightarrow (62.83 g H₂O)(1 mol/18.02 g) = 3.49 mol H₂O
 \Rightarrow r = 3.49 mol H₂O/0.30 mol H₂SO₄ = 11.63 mol H₂O/ mol H₂SO₄

$$\begin{split} \left(\varDelta \hat{H}_{\rm f}^{\rm o} \right)_{\rm soln} &= \left(\varDelta \hat{H}_{\rm f}^{\rm o} \right)_{\rm H_2SO_4(l)} + \left(\varDelta \hat{H}_{\rm f}^{\rm o} \right)_{\rm H_2SO_4(aq.,\,r=11.63)} \overset{\rm Table\ B.1,}{=} \left(-811.32 - 67.42 \right) \frac{\rm kJ}{\rm mol} \\ &= -878.74\ \rm kJ/mol\ H_2SO_4 \end{split}$$

NaOH solution required:

$$\frac{0.30 \text{ mol H}_2\text{SO}_4}{1 \text{ mol H}_2\text{SO}_4} \frac{2 \text{ mol NaOH}}{1 \text{ mol H}_2\text{SO}_4} \frac{1 \text{ L NaOH(aq)}}{12 \text{ mol NaOH}} \frac{10^3 \text{ mL}}{1 \text{ L}} = \frac{50.00 \text{ mL NaOH(aq)}}{1 \text{ mol NaOH(aq)}} = \frac{50.00 \text{ mL NaOH(aq)}}{10^3 \text{ mL}} = \frac{50.00 \text{ mL}}{10^3 \text{$$

$$(50.00 \text{ mL})(1.37 \text{ g/mL}) = 68.5 \text{ g}$$

$$\frac{12 \text{ mol NaOH}}{1 \text{ L NaOH(aq)}} \left| \begin{array}{c|c} 1 \text{ L} & 50 \text{ mL} \\ \hline 10^3 \text{ mL} \end{array} \right| = 0.60 \text{ mol NaOH} \xrightarrow{40 \text{ g/mol NaOH}} 24.00 \text{ g NaOH}$$

$$\Rightarrow \left(68.5 - 24.00\right) \text{ g H}_2\text{O} \Rightarrow \left(44.5 \text{ g H}_2\text{O}\right) \left(1 \text{ mol/18.02 g}\right) = 2.47 \text{ mol H}_2\text{O}$$

$$\Rightarrow$$
 (68.5 – 24.00) g H₂O \Rightarrow (44.5 g H₂O)(1 mol/18.02 g) = 2.47 mol H₂C

$$\Rightarrow r = 2.47 \text{ mol H}_2\text{O}/0.6 \text{ mol NaOH} = \frac{4.12 \text{ mol H}_2\text{O}}{\text{mol NaOH}}$$

$$(\Delta \hat{H}_{f}^{o})_{soln} = (\Delta \hat{H}_{f}^{o})_{NaOH(s)} + (\Delta \hat{H}_{s}^{o})_{NaOH(s)(aq., r=4.12)} = (-426.6 - 35.10) \frac{kJ}{mol}$$

= -461.70 kJ/mol NaOH

 $Na_2SO_4(aq)$:

$$\left(\Delta \hat{H}_{\rm f}^{\rm o} \right)_{\rm soln} = \left(\Delta \hat{H}_{\rm f}^{\rm o} \right)_{\rm Na_2SO_4(s)} + \left(\Delta \hat{H}_{\rm f}^{\rm o} \right)_{\rm Na_2SO_4(aq)} = \left(-1384.5 - 1.17 \right) \frac{\rm kJ}{\rm mol} = -1385.7 \text{ kJ/mol Na}_2 \text{SO}_4$$

$$m_{total} = \text{total mass of reactants or products} = (92.25 \text{ g H}_2 \text{SO}_4 \text{ soln} + 68.5 \text{ g NaOH}) = 160.75 \text{ g} = 0.161 \text{ kg}$$

Extent of reaction: $(n_{\text{H}_2\text{SO}_4})_{\text{final}} = (n_{\text{H}_2\text{SO}_4})_{\text{fed}} + \nu_{\text{H}_2\text{SO}_4} \xi \Rightarrow 0 = 0.30 \text{ mol} - (1)\xi \Rightarrow \xi = 0.30 \text{ mol}$ Standard heat of reaction

$$\varDelta \hat{\boldsymbol{H}}_{r}^{o} = \left(\varDelta \hat{\boldsymbol{H}}_{f}^{o}\right)_{\mathrm{Na}_{2}\mathrm{SO}_{4}\left(\mathrm{aq}\right)} + 2\left(\varDelta \hat{\boldsymbol{H}}_{f}^{o}\right)_{\mathrm{H}_{2}\mathrm{O}\left(\mathrm{l}\right)} - \left(\varDelta \hat{\boldsymbol{H}}_{f}^{o}\right)_{\mathrm{H}_{2}\mathrm{SO}_{4}\left(\mathrm{aq}\right)} - 2\left(\varDelta \hat{\boldsymbol{H}}_{f}^{o}\right)_{\mathrm{NaOH}\left(\mathrm{aq}\right)}$$

Energy Balance:
$$Q = \Delta H = \xi \Delta \hat{H}_{r}^{\circ} + m_{total} C_{p} (T - 25)^{\circ} C$$

$$= (0.30 \text{ mol})(155.2 \text{ kJ/mol}) + (0.161 \text{ kg}) \left(4.184 \frac{\text{kJ}}{\text{kg}^{\circ} C} \right) (T - 25)^{\circ} C = 0 \Rightarrow T = \underline{94^{\circ} C}$$

b. Volumes are additive.

Heat transferred to and through the container wall is negligible.

9.47 Basis: 50,000 mol flue gas/h

90%
$$SO_2$$
 removal: $\dot{n}_4 = 0.100(0.00300)(50,000 \text{ mol/h}) = 15.0 \text{ mol } SO_2/\text{h}$

$$N_2$$
 balance: $\dot{n}_5 = (0.997)(50,000 \text{ mol/h}) = 49,850 \text{ mol } N_2/h$

$$\frac{\text{NH}_{4}^{+} \text{ balance:}}{\text{S balance:}} \quad \frac{(2)(0.100)(\dot{n}_{1}) = \dot{n}_{2} + (1.5)(2)\dot{n}_{2} \Rightarrow \dot{n}_{1} = 20\dot{n}_{2}}{0.100\dot{n}_{1} + (0.00300)(50,000) = 15.0 + \dot{n}_{2} + 1.5\dot{n}_{2}} \right\} \Rightarrow \dot{n}_{1} = 5400 \text{ mol/h} \\ \dot{n}_{2} = 270 \text{ mol NH}_{4}\text{HSO}_{3}/\text{h}_{2} = 270 \text{ m$$

$$\frac{\text{H}_2\text{O balance:}}{\text{h}_3 = (0.900)(5400) - \frac{270 \text{ mol NH}_4\text{HSO}_3 \text{ produced}}{\text{h}} \frac{1 \text{ mol H}_2\text{O consumed}}{2 \text{ mol NH}_4\text{HSO}_3 \text{ produced}}$$

$$= 4725 \text{ mol H}_2\text{O(1)/h}$$

Heat of reaction:

$$\begin{split} \Delta \hat{H}_{r}^{o} &= 2 \Big(\Delta \hat{H}_{f}^{o} \Big)_{\text{NH}_{4} \text{HSO}_{4}(\text{aq})} - \Big(\Delta \hat{H}_{f}^{o} \Big)_{\text{(NH}_{4})_{2} \text{SO}_{3}(\text{aq})} - \Big(\Delta \hat{H}_{f}^{o} \Big)_{\text{SO}_{2}(\text{g})} - \Big(\Delta \hat{H}_{f}^{o} \Big)_{\text{H}_{2} \text{O}(\text{l})} \\ &= 2 \big(-760 \big) - \big(-890 \big) - \big(-296.90 \big) - \big(-285.84 \big) \text{ kJ/mol} = -47.3 \text{ kJ/mol} \end{split}$$

$$\underline{References}:\ N_2(g), SO_2(g), (NH_4)_2SO_3(aq), NH_4HSO_3(aq), H_2O(l)\ at\ 25^{\circ}C$$

$$\frac{\text{SO}_2(g, 50^{\circ}\text{C})}{\frac{1}{25}} \cdot \hat{H} = \int_{25}^{50} (C_p)_{\text{SO}_2} dT = 1.01 \text{ kJ/mol} \quad (C_p \text{ from Table B.2})$$

$$\frac{1}{25} \cdot \hat{H} = \int_{25}^{35} (C_p)_{\text{SO}_2} dT = 0.40 \text{ kJ/mol}$$

$$\frac{\text{SO}_2(g, 35^{\circ}\text{C})}{\hat{H}} = \int_{25}^{33} (C_p)_{\text{SO}_2} dT = 0.40 \text{ kJ/mol}$$

$$N_2(g, 50^{\circ}C)$$
: $\hat{H} = 0.73 \text{ kJ/mol}$ (Table B.8)

$$N_2(g, 35^{\circ}C)$$
: $\hat{H} = 0.292 \text{ kJ/mol}$

Entering solution: $\hat{H} = 0$

Effluent solution at 35°C

$$\begin{split} \dot{m} \big(\mathbf{g} / \mathbf{h} \big) &= \frac{270 \text{ mol NH}_4 \text{HSO}_3}{\text{h}} \, \frac{99 \text{ g}}{\text{mol}} \\ &+ \frac{1.5 \times 270 \text{ mol (NH}_4)_2 \text{SO}_3}{\text{h}} \, \frac{116 \text{ g}}{\text{mol}} + \frac{4725 \text{ mol H}_2 \text{O}}{\text{h}} \, \frac{18 \text{ g}}{\text{l}} = 159,000 \frac{\text{g}}{\text{h}} \\ \\ \dot{n} \hat{H} &= m C_p \Delta T = \frac{159,000 \text{ g}}{\text{h}} \, \frac{4 \text{ J}}{\text{g}} \, \frac{(35 - 25)^\circ \text{C}}{\text{l}} \, \frac{1 \text{ kJ}}{\text{l}} = 6360 \text{ kJ} / \text{h} \end{split}$$

Extent of reaction:

$$(\dot{n}_{\rm NH_4HSO_3})_{out} = (\dot{n}_{\rm NH_4HSO_3})_{in} + v_{\rm NH_4HSO_3}\dot{\xi} \Rightarrow 270 \text{ mol/h} = 0 + 2\dot{\xi} \Rightarrow \dot{\xi} = 135 \text{ mol/h}$$

9.47 (cont'd)

Energy balance:
$$\dot{Q} = \Delta \dot{H} = \dot{\xi} \Delta \hat{H}_{r}^{o} + \sum_{\text{out}} \dot{n}_{i} \hat{H}_{i} - \sum_{\text{in}} \dot{n}_{i} \hat{H}_{i}$$

$$Q = \frac{135 \text{ mol} \quad | -47.3 \text{ kJ}}{\text{h} \quad | \text{mol}} + (15)(0.40) + (49,850)(0.292)$$

$$+ \frac{\text{effluent solution}}{6360} - (50,000)(0.003)(1.01) - (49,850)(0.73) = \frac{-22,000 \text{ kJ} \quad | 1 \text{ h} \quad | 1 \text{ kW}}{\text{h} \quad | 3600 \text{ s} \quad | 1 \text{ kJ/s}} = \underline{-6.11 \text{ kW}}$$

9.48 a. $CH_4(g) + 2O_2(g) \rightarrow CO_2(g) + 2H_2O(v)$

$$HHV = 890.36 \text{ kJ/mol}, LHV = -\Delta \hat{H}_{c}^{o} - 2\left(\Delta \hat{H}_{v}\right)_{H_{2}O} = \left[890.36 - 2(44.01)\right] \text{kJ/mol}$$

$$= 802.34 \text{ kJ/mol CH}_{4}$$

$$C_2H_4(g) + \frac{7}{2}O_2(g) \rightarrow 2CO_2(g) + 3H_2O(v)$$

$$HHV = 1559.9 \text{ kJ/mol}, LHV = [1559.9 - 3(44.01)] \text{kJ/mol} = 1427.87 \text{ kJ/mol} \text{ C}_2\text{H}_6$$

$$C_3H_8(g) + 5O_2(g) \rightarrow 3CO_2(g) + 4H_2O(v)$$

$$HHV = 2220.0 \text{ kJ/mol}, LHV = [2220.0 - 4(44.01)] \text{kJ/mol} = 2043.96 \text{ kJ/mol} \text{ C}_3\text{H}_8$$

$$(HHV)_{\text{natural gas}} = (0.875)(890.36 \text{ kJ/mol}) + (0.070)(1559.9 \text{ kJ/mol}) + (0.020)(2200.00 \text{ kJ/mol})$$

= $\underline{933 \text{ kJ/mol}}$

$$(LHV)_{\text{natural gas}} = (0.875)(802.34 \text{ kJ/mol}) + (0.070)(1427.87 \text{ kJ/mol}) + (0.020)(2043.96 \text{ kJ/mol})$$

$$= 843 \text{ kJ/mol}$$

$$\begin{aligned} \textbf{b.} & 1 \text{ mol natural gas} \Rightarrow [\left(0.875 \text{ mol CH}_4\right) \left(16.04 \frac{\text{g}}{\text{mol}}\right) + \left(0.070 \text{ mol C}_2\text{H}_6\right) \left(30.07 \frac{\text{g}}{\text{mol}}\right) \\ & + \left(0.020 \text{ mol C}_3\text{H}_8\right) \left(44.09 \frac{\text{g}}{\text{mol}}\right) + \left(0.035 \text{ mol N}_2\right) \left(28.02 \frac{\text{g}}{\text{mol}}\right)] \times \frac{1 \text{ kg}}{10^3 \text{ g}} = 0.01800 \text{ kg} \\ & \Rightarrow \frac{843 \text{ kJ}}{\text{mol}} \frac{1 \text{ mol}}{0.01800 \text{ kg}} = \underline{46800 \text{ kJ/kg}} \end{aligned}$$

C. The enthalpy change when 1 kg of the natural gas at 25° C is burned completely with oxygen at 25° C and the products $CO_2(g)$ and $H_2O(v)$ are brought back to 25° C.

9.49
$$C(s) + O_{2}(g) \rightarrow CO_{2}(g), \quad \Delta \hat{H}_{c}^{o} = \left(\Delta \hat{H}_{f}^{o}\right)_{CO_{2}(g)} = \frac{-393.5 \text{ kJ}}{\text{mol}} \frac{1 \text{ mol}}{12.01 \text{ g}} \frac{10^{3} \text{ g}}{1 \text{ kg}} = -32,764 \text{ kJ/kg C}$$

$$S(s) + O_{2}(g) \rightarrow SO_{2}(g), \quad \Delta \hat{H}_{c}^{o} = \left(\Delta \hat{H}_{f}^{o}\right)_{SO_{2}} = -296.90 \text{ kJ/mol} \Rightarrow -9261 \text{ kJ/kg S}$$

$$H_{2}(g) + \frac{1}{2}O_{2}(g) \rightarrow H_{2}O(l), \quad \Delta \hat{H}_{c}^{o} = \left(\Delta \hat{H}_{f}^{o}\right)_{H_{2}O(l)} = -285.84 \text{ kJ/mol} \quad H_{2} \Rightarrow -141,790 \text{ kJ/kg H}$$

9.49 (cont'd)

H available for combustion = total H – H in H₂O; latter is
$$\frac{x_0 \text{ (kg O)}}{\text{kg coal}}$$
 $\frac{2 \text{ kg H}}{\text{16 kg O}}$

Eq. (9.6-3)
$$\Rightarrow HHV = 32,764C + 141,790 \left(H - \frac{O}{8}\right) + 9261S$$

This formula does not take into account the heats of formation of the chemical constituents of coal.

b.
$$C = 0.758$$
, $H = 0.051$, $O = 0.082$, $S = 0.016 \Rightarrow (HHV)_{Dulong} = 31,646 \text{ kJ/kg coal}$
 $1 \text{ kg coal} \Rightarrow \frac{0.016 \text{ kg S}}{32.06 \text{ kg S burned}} = 0.0320 \text{ kg SO}_2/\text{kg coal}$
 $\phi = \frac{0.0320 \text{ kg SO}_2/\text{kg coal}}{31,646 \text{ kJ/kg coal}} = \frac{1.01 \times 10^{-6} \text{ kg SO}_2/\text{kJ}}{31,646 \text{ kJ/kg coal}}$

C. Diluting the stack gas lowers the mole fraction of SO₂, but does not reduce SO₂ emission rates. The dilution does not affect the kg SO₂/kJ ratio, so there is nothing to be gained by it.

$$CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O(1)$$
, $HHV = -\Delta \hat{H}_c^0 = 890.36 \text{ kJ/mol}$ (Table B.1)

$$C_2H_6 + \frac{7}{2}O_2 \rightarrow 2CO_2 + 3H_2O(1)$$
, $HHV = 1559.9$ kJ/mol

$$CO + \frac{1}{2}O_2 \rightarrow CO_2$$
, $HHV = 282.99 \text{ kJ/mol}$

$$\frac{\text{Initial moles charged:}}{\text{(Assume ideal gas)}} \ \frac{2.000 \text{ L}}{\text{(25 + 273.2)K}} \ \frac{273.2 \text{K}}{760 \text{ mm Hg}} \ \frac{1 \text{ mol}}{22.4 \text{ L(STP)}} = 0.25 \text{ mol}$$

Average mol. wt.: (4.929 g)/(0.25 mol) = 19.72 g/mol

Let $x_1 = \text{mol CH}_4/\text{mol gas}$, $x_2 = \text{mol C}_2\text{H}_6/\text{mol gas}$ (\Rightarrow (1- x_1 - x_2)mol CO(mol gas))

$$\overline{MW} = 19.72 \Rightarrow x_1 (16.04 \text{ g/mol CH}_4) + x_2 (30.07) + (1 - x_1 - x_2)(28.01) = 19.72$$
 (1)

$$\overline{HHV} = 963.7 \text{ kJ/mol} \Rightarrow x_1(890.36) + x_2(1559.9) + (1 - x_1 - x_2)(282.99) = 963.7$$
 (2)

Solving (1) & (2) simultaneously yields

$$x_1 = 0.725 \text{ mol CH}_4/\text{mol}, \ x_2 = 0.188 \text{ mol C}_2\text{H}_6/\text{mol}, \ 1 - x_1 - x_2 = 0.087 \text{ mol CO/mol}$$

9.51

a. Basis: 1 mol/s fuel gas

$$\begin{split} & CH_4(g) \ + 2O_2(g) \to CO_2(g) \ + 2H_2O(v), \quad \varDelta \hat{H}_c^o = -890.36 \text{ kJ/mol} \\ & C_2H_6(g) + \frac{7}{2}O_2(g) \to 2CO_2(g) + 3H_2O(v), \ \varDelta \hat{H}_c^o = -1559.9 \text{ kJ/mol} \end{split}$$

9.51 (cont'd)

$$1 \text{ mol/s} \text{ fuel gas} \Rightarrow 0.85 \text{ mol CH}_4 / \text{s}$$
 , $0.15 \text{ mol C}_2 \text{H}_6 / \text{s}$

$$\underline{\frac{\text{Theoretical oxygen}}{1 \text{ mol CH}_4}} = \frac{2 \text{ mol O}_2}{1 \text{ mol CH}_4} \left| \begin{array}{cc} 0.85 \text{ mol CH}_4 \\ \text{s} \end{array} \right| + \frac{3.5 \text{ mol O}_2}{1 \text{ mol C}_2 \text{H}_6} \left| \begin{array}{cc} 0.15 \text{ mol C}_2 \text{H}_6 \\ \text{s} \end{array} \right| = 2.225 \text{ mol O}_2 / \text{s}$$

Assume 10% excess $O_2 \Rightarrow O_2$ fed = $1.1 \times 2.225 = 2.448 \text{ mol } O_2 / \text{s}$

C balance:
$$\dot{n}_2 = (0.85)(1) + (0.15)(2) \Rightarrow \dot{n}_2 = 1.15 \text{ mol CO}_2 / \text{s}$$

H balance:
$$2\dot{n}_3 = (0.85)(4) + (0.15)(6) \Rightarrow \dot{n}_3 = 2.15 \text{ mol H}_2\text{O/s}$$

10% excess
$$O_2 \implies \dot{n}_4 = (0.1)(2.225) \text{ mol } O_2 / s = 0.223 \text{ mol } O_2 / s$$

Extents of reaction:
$$\dot{\xi}_1 = \dot{n}_{\text{CH}_4} = 0.85 \text{ mol/s}, \quad \dot{\xi}_2 = \dot{n}_{\text{C}_2\text{H}_6} = 0.15 \text{ mol/s}$$

Reference states:
$$CH_4(g)$$
, $C_2H_6(g)$, $N_2(g)$, $O_2(g)$, $H_2O(1)$, $CO_2(g)$ at 25°C

(We will use the values of $\Delta \hat{H}_c^0$ given in Table B.1, which are based on $H_2O(1)$ as a combustion product, and so must choose the liquid as a reference state for water)

Substance	$\dot{n}_{ m in}$	\hat{H}_{in}	$\dot{n}_{ m out}$	$\hat{H}_{ m out}$
Substance	mol	kJ/mol	mol	kJ/mol
CH ₄	0.85	0	_	_
C_2H_6	0.15	0	_	_
O_2	2.225	0	0.223	0
CO_2	_	_	1.15	0
$H_2O(v)$	_	_	2.15	H_1

$$\hat{H}_1 = \Delta \hat{H}_v (25^{\circ} \text{ C}) = 44.01 \text{ kJ/mol}$$

Energy Balance:

$$\frac{\dot{Q} = \dot{n}_{\text{CH}_4} \left(\Delta \hat{H}_c^{\text{o}} \right)_{\text{CH}_4} + \dot{n}_{\text{C}_2\text{H}_6} \left(\Delta \hat{H}_c^{\text{o}} \right)_{\text{C}_2\text{H}_6} + \sum_{\text{out}} \dot{n}_i \hat{H}_i - \sum_{\text{in}} \dot{n}_i \hat{H}_i \\
= (0.85 \text{ mol/s CH}_4) (-890.36 \text{ kJ/mol}) + (0.15 \text{ mol/s C}_2\text{H}_6) (-1559.9 \text{ kJ/mol}) \\
+ (2.15 \text{ mol/s H}_2\text{O}) (44.01 \text{ kJ/mol}) = -896 \text{ kW}$$

 $\Rightarrow \underline{-\dot{Q} = 896 \text{ kW}}$ (transferred from reactor)

b. <u>Constant Volume Process</u>. The flowchart and stoichiometry and material balance calculations are the same as in part (a), except that amounts replace flow rates (mol instead of mol/s, etc.)

1 mol fuel gas \Rightarrow 0.85 mol CH₄, 0.15 mol C₂H₆

Theoretical oxygen = 2.225 mol O_2

Assume 10% excess $O_2 \Rightarrow O_2$ fed = $1.1 \times 2.225 = 2.448 \text{ mol } O_2$

<u>C balance</u>: $n_2 = (0.85)(1) + (0.15)(2) \Rightarrow n_2 = 1.15 \text{ mol CO}_2$

<u>H balance</u>: $2n_3 = (0.85)(4) + (0.15)(6) \Rightarrow n_3 = 2.15 \text{ mol H}_2\text{O}$

 $\underline{10\% \text{ excess O}_2} \implies n_4 = (0.1)(2.225) \text{ mol O}_2 = 0.223 \text{ mol O}_2$

9.51 (cont'd)

Reference states: $CH_4(g)$, $C_2H_6(g)$, $N_2(g)$, $O_2(g)$, $H_2O(1)$, $CO_2(g)$ at 25° C

For a constant volume process the heat released or absorbed is determined by the internal energy of reaction.

Substance	$n_{\rm in}$	\hat{U}_{in}	$n_{ m out}$	$\hat{U}_{ ext{out}}$
Substance	mol	kJ/mol	mol	kJ/mol
CH ₄	0.85	0	_	_
C_2H_6	0.15	0	_	_
O_2	2.225	0	0.223	0
CO ₂	_	_	1.15	0
$H_2O(v)$	_	-	2.15	$\hat{U_1}$

$$\hat{U}_{1} = \Delta \hat{U}_{v} \left(25^{\circ} \text{ C}\right) = \Delta \hat{H}_{v} \left(25^{\circ} \text{ C}\right) - RT = 44.01 \text{ kJ / mol} - \frac{8.314 \text{ J}}{\text{mol K}} \frac{1 \text{ kJ}}{1000 \text{ J}} \frac{298 \text{ K}}{\text{mol}} = 41.53 \frac{\text{kJ}}{\text{mol}}$$
Eq. (9.1-5) $\Rightarrow \Delta \hat{U}_{c}^{\circ} = \Delta \hat{H}_{c}^{\circ} - RT \left(\sum_{\substack{\text{gaseous} \\ \text{products}}} v_{i} - \sum_{\substack{\text{gaseous} \\ \text{reactants}}} v_{i}\right)$

$$\Rightarrow \left(\Delta \hat{U}_{c}^{o}\right)_{CH_{4}} = \left(-890.36 \text{ kJ/mol}\right) - \frac{8.314 \text{ J}}{\text{mol K}} \frac{298 \text{ K}}{|} \frac{(1+2-1-2)}{|} \frac{1 \text{ kJ}}{|} = -890.36 \frac{\text{kJ}}{\text{mol}}$$

$$\left(\Delta \hat{U}_{c}^{o}\right)_{C_{2}H_{6}} = \left(-1559.9 \text{ kJ/mol}\right) - \frac{8.314 \text{ J}}{|} \frac{298 \text{ K}}{|} \frac{(3+2-35-1)}{|} \frac{1 \text{ kJ}}{|} = -1561.14 \frac{\text{kJ}}{|} \frac{\text{kJ}}{|} = -1561.14 \frac{\text{kJ}}{|} =$$

Energy balance:

$$\begin{split} Q &= \Delta U = n_{\text{CH}_4} \left(\Delta \hat{U}_{\text{c}}^{\, \text{o}} \right)_{\text{CH}_4} + n_{\text{C}_2\text{H}_6} \left(\Delta \hat{U}_{\text{c}}^{\, \text{o}} \right)_{\text{C}_2\text{H}_6} + \sum_{\text{out}} n_i \hat{U}_i - \sum_{\text{in}} \dot{n}_i \hat{U}_i \\ &= \left(0.85 \text{ mol/s CH}_4 \right) \left(-890.36 \text{ kJ/mol} \right) + \left(0.15 \text{ mol/s C}_2\text{H}_6 \right) \left(-1561.14 \text{ kJ/mol} \right) \\ &+ \left(2.15 \text{ mol/s H}_2\text{O} \right) \left(41.53 \text{ kJ/mol} \right) = -902 \text{ kJ} \\ \Rightarrow \underline{-Q = 902 \text{ kJ}} \text{ (transferred from reactor)} \end{split}$$

- c. Since the O_2 (and N_2 if air were used) are at 25°C at both the inlet and outlet of this process, their specific enthalpies or internal energies are zero and their amounts therefore have no effect on the calculated values of $\Delta \dot{H}$ and ΔU .
- **9.52** a. $\dot{n}_{fuel}(-\Delta \hat{H}_c^0) = \dot{W}_s \dot{Q}_l$ (Rate of heat release due to combustion = shaft work + rate of heat loss)

- **b.** The work delivered would be less since more of the energy released by combustion would go into heating the exhaust gas.
- **c.** Heat loss increases as T_a decreases. Lubricating oil becomes thicker, so more energy goes to overcoming friction.

9.53 a.
$$\underline{\text{Energy balance:}} \quad \Delta U = 0 \Rightarrow \frac{n(\text{lb}_{\text{m}} \text{ fuel burned}) \left| \Delta \hat{U}_{\text{c}}^{\circ} \text{ (Btu)}}{\text{lb}_{\text{m}}} + mC_{\nu} (T_{\text{out}} - 77^{\circ} \text{F}) = 0 \right|$$

$$\Rightarrow (0.00215) \Delta \hat{U}_{\text{c}}^{\circ} + (4.62 \text{ lb}_{\text{m}}) (0.900 \text{ Btu/lb}_{\text{m}} \cdot {}^{\circ} \text{F}) (87.06^{\circ} \text{F} - 77.00^{\circ} \text{F}) = 0$$

$$\Rightarrow \Delta \hat{U}_{\text{c}}^{\circ} = -19500 \text{ Btu/lb}_{\text{m}}$$

b. The reaction for which we determined $\Delta \hat{U}_c^0$ is

$$1 \text{ lb}_{\text{m}} \text{ oil } + a\text{O}_2(g) \rightarrow b\text{CO}_2(g) + c\text{H}_2\text{O}(v)$$
 (1)

The higher heating value is $\Delta \hat{H}_r$ for the reaction

$$1 \text{ lb}_{\text{m}} \text{ oil } + aO_2(g) \rightarrow bCO_2(g) + cH_2O(l)$$
 (2)

Eq. (9.1-5) on p. 441
$$\Rightarrow \Delta \hat{H}_{c1}^{0} = \Delta \hat{U}_{c1}^{0} + RT(b+c-a)$$

Eq. (9.6-1) on p. 462
$$\Rightarrow -\Delta \hat{H}_{c2}^{o} = -\Delta \hat{H}_{c1}^{o} + c\Delta \hat{H}_{v}(H_{2}O, 77^{\circ}F)$$

To calculate the higher heating value, we therefore need

 $a = lb - moles of O_2$ that react with 1 lb_m fuel oil

b = lb - moles of CO₂ formed when $1 lb_m$ fuel oil is burned

c = lb - moles of H_2O formed when 1 lb_m fuel oil is burned

9.54 a.
$$CH_3OH(v) + \frac{3}{2}O_2(g) \rightarrow CO_2(g) + 2H_2O(l)$$
 $\Delta \hat{H}_r^o = (\Delta \hat{H}_c^o)_{CH_3OH(v)} = -764.0 \frac{kJ}{mol}$

Basis: 1 mol CH₃OH fed and burned

$$\underline{\text{Overall C balance:}} \ \frac{1 \ \text{mol CH}_3\text{OH} \ | \ 1 \ \text{mol C}}{1 \ \text{mol CH}_3\text{OH}} = n_p \big(0.048\big) \big(1\big) \ \Rightarrow \ n_p = 20.83 \ \text{mol dry gas}$$

$$N_2$$
 balance: $3.76n_0 = (20.83)(0.809) \Rightarrow n_0 = 4.482 \text{ mol O}_2$

Theoretical O_2 : (1 mol CH_3OH)(1.5 mol O_2 /mol CH_3OH) = 1.5 mol O_2

$$\frac{\% \text{ excess air}}{15 \text{ mol O}_2} = \frac{(4.482 - 1.5) \text{ mol O}_2}{15 \text{ mol O}_2} \times 100\% = \frac{200\% \text{ excess air}}{15 \text{ mol O}_2}$$

H balance:
$$(1 \text{ mol CH}_3\text{OH})(4 \text{ mol H}/1 \text{ mol CH}_3\text{OH}) = n_w(2) \Rightarrow n_w = 2 \text{ mol H}_2\text{O}$$

(An atomic O balance \Rightarrow 9.96 mol O = 9.96 mol O , so that the results are consistent.)

$$p_{w}^{*} = \frac{n_{w}}{n_{w} + n_{p}} \times P = \frac{2 \text{ mol H}_{2}\text{O}}{(2 + 20.83)\text{mol}} \times 760 \text{ mm Hg} = 66.58 \text{ mm Hg} = p_{w}^{*} \left(T_{dp}\right)^{\text{Table B.3}} \underbrace{T_{dp} = 44.1^{\circ}\text{C}}_{\text{Table B.3}}$$

9.54 (cont'd)

b. Energy balance on vaporizer:

$$Q_{1} = \Delta H = n\Delta \hat{H} = 1 \text{ mol} \left[\int_{25}^{64.7} C_{pl} dT + \Delta \hat{H}_{v} + \int_{64.7}^{100} C_{pv} dT \right] \frac{\text{kJ}}{\text{mol}} = \underline{40.33 \text{ kJ}}$$
Table B.2 Table B.1 Table B.2

 $\underline{References}: CH_3OH(v),\ N_2(g),\ O_2(g),\ CO_2(g),\ H_2O(l)\ at\ 25^{\circ}C$

Substance	$n_{\rm in}$	\hat{H}_{in}	$n_{ m out}$	$\hat{H}_{ m out}$
	(mol)	(kJ / mol)	(mol)	(kJ/mol)
CH ₃ OH	1.00	3.603	_	_
N ₂	16.85	2.187	16.85	8.118
O_2	4.482	2.235	2.98	8.470
CO ₂	_	_	1.00	11.578
H ₂ O	ı	_	2.00	53.58

$$\begin{split} \hat{H}(T) &= \hat{H}_i \text{ for N}_2, \text{ O}_2, \text{ CO}_2 \text{ (Table B.8)} \\ &= \Delta \hat{H}_v \Big(25^{\circ} \text{ C} \Big) + \hat{H}_i \text{ for H}_2 \text{O(v)} \text{ (Eq. 9.6-2a on p. 462, Table B.8)} \\ &= \int_{25}^{T} C_p dT \text{ for CH}_3 \text{OH(v)} \text{ (Table B.2)} \end{split}$$

(Note: $H_2O(1)$ was chosen as the reference state since the given value of $\Delta \hat{H}_c^o$ presumes liquid water as the product.)

Extent of reaction:
$$(n_{\text{CH}_3\text{OH}})_{out} = (n_{\text{CH}_3\text{OH}})_{in} + \nu_{\text{CH}_3\text{OH}}\xi \Rightarrow 0 = 1 \text{ mol} - \xi \Rightarrow \xi = 1 \text{ mol}$$

Energy balance on reactor:
$$Q_2 = \xi \Delta \hat{H}_c^o + \sum_{out} n_i \hat{H}_i - \sum_{in} n_i \hat{H}_i$$

$$= \underbrace{(1)(-764.0)}_{\text{(Table B.I)}} + \underbrace{[(16.85)(8.118) + \ldots - (4.482)(2.235)]}_{\text{kJ}} \text{kJ}$$

= $-534 \text{ kJ} \Rightarrow 534 \text{ kJ}$ transferred from reactor

9.55 **a.**
$$CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$$
 $CH_4 + \frac{3}{2}O_2 \rightarrow CO + 2H_2O$

Basis: 1000 mol CH₄/h fed

 $\underline{90\% \text{ combustion}} \Rightarrow \dot{n}_1 = 0.10(1000) = 100 \text{ mol CH}_4/\text{s}$

Theoretical O₂ required = 2000 mol/s

9.55 (cont'd)

 $\underline{10\% \text{ excess O}_2} \Longrightarrow O_2 \text{ fed=1.1(2000 mol/s)=2200 mol/s}$

C balance:

(1000 mol CH₄/s)(1 mol C/mol CH₄) = (100)(1) + \dot{n}_3 (1) + 10 \dot{n}_3 (1) $\Rightarrow \dot{n}_3$ = 81.8 mol CO/s \Rightarrow 10 \dot{n}_3 = 818 mol CO₂/s

<u>H balance</u>: $(1000)(4) = (100)(4) + 2\dot{n}_4 \Rightarrow \dot{n}_4 = 1800 \text{ mol H}_2\text{O/s}$

Obalance: $(2200)(2) = 2\dot{n}_2 + (81.8)(1) + (818)(2) + (1800)(1) \Rightarrow \dot{n}_2 = 441 \text{ mol } O_2/s$

References: C(s), $H_2(g)$, $O_2(g)$, $N_2(g)$ at $25^{\circ}C$

Substance	$\dot{n}_{ m in}$	$\hat{H}_{ ext{in}}$	$\dot{n}_{ m out}$	$\hat{H}_{ ext{out}}$
	(mol/s)	(kJ/mol)	(mol/s)	(kJ/mol)
CH ₄	1000	-74.85	100	-57.62
O_2	2200	2.24	441	11.72
N_2	8272	2.19	8272	11.15
CO	_	_	81.8	-99.27
CO_2	_	_	818	-377.2
H,O	_	_	1800	-228.63

$$\hat{H} = \Delta \hat{H}_{f}^{o} + \int_{25}^{T \text{ Table B.2}} C_{p} dT \text{ for CH}_{4}$$

$$= \Delta \hat{H}_{f}^{o} + \hat{H}_{i}^{o} (T) \text{ for others}$$

Energy balance:
$$\dot{Q} = \Delta \dot{H} = \sum_{\text{out}} \dot{n}_i \hat{H}_i - \sum_{\text{in}} \dot{n}_i \hat{H}_i = \underbrace{-5.85 \times 10^5 \text{ kJ/s (kW)}}_{}$$

- **b.** (i) $T_{air} \uparrow \text{(increases)} \Rightarrow -\dot{Q} \uparrow$
 - (ii) %XS $\uparrow \Rightarrow -\dot{Q} \downarrow$ (more energy required to heat additional O_2 and N_2 to 400° C, therefore less energy transferred.)
 - (iii) $S_{\text{CO}_2/\text{CO}} \uparrow \Rightarrow -\dot{Q} \uparrow$ (reaction to form CO2 has a greater heat of combustion and so releases more thermal energy)
 - (iv) $T_{stack} \uparrow \Rightarrow -\dot{Q} \downarrow$ (more energy required to heat combustion products)

9.56
$$CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O, C_2H_6 + \frac{7}{2}O_2 \rightarrow 2CO_2 + 3H_2O$$

Basis: 100 mol stack gas. Assume ideal gas behavior.

a.
$$N_2$$
 balance: $3.76n_3 = (100)(0.7352) \text{mol } N_2 \Rightarrow n_3 = 19.55 \text{ mol } O_2 \text{ fed}$

$$\underline{\text{C balance:}} \quad n_1(1) + n_2(2) = (100)(0.0532)(1) + (100)(0.0160)(1) \\
\underline{\text{H balance:}} \quad n_1(4) + n_2(6) = (100)(0.1224)(2)$$

$$\Rightarrow n_1 = 3.72 \text{ mol CH}_4 \\
n_2 = 1.60 \text{ mol C}_2 \text{H}_6$$

$$V_f = \frac{(3.72 + 1.60) \text{mol fuel gas}}{1 \text{ mol}} \frac{22.4 \text{ L(STP)}}{298.2 \text{ K}} \frac{1 \text{ m}^3}{1 \text{ mol}} = 0.130 \text{ m}^3$$

$$\frac{\text{Theoretical O}_2}{\text{1 mol CH}_4} = \frac{3.72 \text{ mol CH}_4}{\text{1 mol CH}_4} + \frac{2 \text{ mol O}_2}{\text{1 mol CH}_4} + \frac{1.60 \text{ mol C}_2 \text{H}_6}{\text{1 mol C}_2 \text{H}_6} = 13.04 \text{ mol O}_2$$

$$\frac{\text{\% Excess air:}}{13.04 \text{ mol O}_2 \text{ in excess}} \times 100\% = \frac{50\% \text{ excess air}}{13.04 \text{ mol O}_2 \text{ required}}$$

b. References: C(s), $H_2(g)$, $O_2(g)$, $N_2(g)$ at 25° C

Substance	$n_{\rm in}$	\hat{H}_{in}	$n_{ m out}$	$\hat{H}_{ ext{out}}$
Substance	mol	kJ / mol	mol	kJ / mol
CH ₄	3.72	-74.85	_	_
C_2H_6	1.60	-84.67	-	_
O ₂	19.55	5.31	7.32	25.35
N ₂	73.52	5.13	73.52	23.86
СО	_	-	1.60	-86.39
CO ₂	_	-	5.32	-356.1
H ₂ O	_	-	12.24	-212.78

9.56 (cont'd)

$$\begin{split} \hat{H} &= \Delta \hat{H}_{\mathrm{f}}^{\mathrm{o}} + \int_{25}^{T} \overset{\text{Table B.2, for } \\ CH_{4}, C_{2}H_{6}}{CD_{p}} dT \\ &= \Delta \hat{H}_{\mathrm{f}}^{\mathrm{o}} + \hat{H}_{\mathrm{i}}^{\mathrm{o}} (T) \text{ for O}_{2}, N_{2}, \text{ CO, CO}_{2}, H_{2}O(v) \end{split}$$

Energy balance:

$$Q = \Delta H = \sum_{\text{out}} n_i \hat{H}_i - \sum_{\text{in}} n_i \hat{H}_i = \frac{-2764 \text{ kJ}}{0.130 \text{ m}^3 \text{ fuel}} = \frac{-2.13 \times 10^4 \text{ kJ/m}^3 \text{ fuel}}{2.13 \times 10^4 \text{ kJ/m}^3 \text{ fuel}}$$

9.57

$$\frac{\text{Basis}: 50000 \text{ lb}_{\text{m}} \text{ coal fed/h}}{\text{h}} \Rightarrow \frac{(0.730)(50000)\text{lb}_{\text{m}}\text{C}}{\text{h}} \frac{\text{1b-mole C}}{12.01 \text{ lb}_{\text{m}}} = 3039 \text{ lb-mole C/h}}{12.01 \text{ lb}_{\text{m}}} = 3039 \text{ lb-mole C/h}}$$

$$(0.047)(50000)/1.01 = 2327 \text{ lb-moles H/h} \text{ (does not include H in water)}$$

$$(0.037)(50000)/32.07 = 57.7 \text{ lb-moles S/h}$$

$$(0.068)(50000)/18.02 = 189 \text{ lb - moles } H_2O/h$$

$$(0.118)(50000) = 5900 \text{ lb}_{\text{m}} \text{ ash/h}$$

a. Feed rate of air:

$$\frac{O_2 \text{ required to oxidize carbon}}{O_2 \text{ required to oxidize carbon}} (C + O_2 \rightarrow CO_2) = \frac{3039 \text{ lb - moles C}}{h} \frac{1 \text{ lb - mole O}_2}{1 \text{ lb - mole C}}$$

$$= 3039 \text{ lb - moles } O_2/h$$

$$\underline{\text{Air fed:}} \quad \dot{n}_1 = \frac{1.5 \times 3039 \text{ lb - moles O}_2 \text{ fed}}{\text{h}} \frac{1 \text{ mole air}}{0.210 \text{ mole O}_2} = 21710 \text{ lb - moles air/h}$$

30% ash in coal emerges in slag
$$\Rightarrow$$
 0.697 \dot{m}_8 = 0.30(5900 lb_m/h) \Rightarrow \dot{m}_8 = 2540 lb_m slag/h \Rightarrow \dot{m}_7 = 0.700(5900) = 4130 lb_m fly ash/h

C balance:
$$3039(lb - moles C/h) = \dot{n}_2 + (0.287)(2540)/12.01$$

$$\Rightarrow \dot{n}_2 = 2978 \text{ lb - moles } \text{CO}_2/\text{h} \xrightarrow{\text{M}_{\text{CO}_2} = 44.01} 1.31 \times 10^5 \text{ lb}_{\text{m}} \text{CO}_2/\text{h}$$

H balance:
$$2327(lb - moles H/h) + (189)(2) = 2\dot{n}_3$$

$$\Rightarrow \dot{n}_3 = 13525 \text{ lb-moles } \text{H}_2\text{O/h} \xrightarrow{\text{M}_{\text{H}_2\text{O}} = 18.02} 2.44 \times 10^4 \text{ lb}_{\text{m}} \text{ H}_2\text{O/h}$$

$$\underline{N_2} \text{ balance: } \dot{n}_6 = (0.790)21710 \text{ lb - moles/h} = 17150 \text{ lb - moles } N_2/h$$

$$\xrightarrow{M_{N_2} = 28.02} 4.81 \times 10^5 \text{ lb}_m N_2/h$$

S balance:
$$57.7(lb - moles S/h) = (1)\dot{n}_4 + 0.016(2540)/32.06$$

$$\Rightarrow \dot{n}_4 = 56.4 \text{ lb-moles SO}_2/\text{h} \xrightarrow{\text{M}_{\text{SO}_2} = 64.2} 3620 \text{ lb}_{\text{m}} \text{SO}_2/\text{h}$$

$$\Rightarrow \dot{n}_5 = 943 \text{ lb - moles } O_2/h \Rightarrow 30200 \text{ lb}_m O_2/h$$

9.57 (cont'd)

Summary of component mass flow rates

Check:
$$[50000 + (21710)(29)]_{in}$$
 ⇔ $[674350 + 2540]_{out}$
⇒ $(679600)_{in}$ ⇔ $(676900)_{out}$ (0.4% roundoff error)

 $\underline{\text{Total molar flow rate}} = 22480 \text{ lb-moles/h} \text{ at } 600^{\circ}\text{F}, 1 \text{ atm (excluding fly ash)}$

$$\Rightarrow V = \frac{22480 \text{ lb - moles}}{\text{h}} = \frac{359 \text{ ft}^3 (\text{STP})}{\text{lb - mole}} = \frac{1060 \text{ R}}{492 \text{ R}} = \frac{1.74 \times 10^7 \text{ ft}^3 / \text{h}}{\text{mole}}$$

b. References: Coal components, air at 77°F
$$\Rightarrow \sum_{i} n_i \hat{H}_i = 0$$

Stack gas:
$$n\hat{H} = \frac{674350 \text{ lb}_{\text{m}}}{\text{h}} = \frac{7.063 \text{ Btu}}{\text{h}} = \frac{1 \text{ lb-mole}}{\text{h}} = \frac{(600-77)^{\circ} \text{F}}{\text{lb-mole} \cdot ^{\circ} \text{F}} = 8.90 \times 10^{7} \text{ Btu/h}$$

Slag:
$$n\hat{H} = \frac{2540 \text{ lb}_{\text{m}}}{\text{h}} = \frac{0.22 \text{ Btu}}{\text{h}} = \frac{(600 - 77)^{\circ} \text{ F}}{\text{lb}_{\text{m}} \cdot {}^{\circ} \text{F}} = 2.92 \times 10^{5} \text{ Btu/h}$$

Energy balance:
$$Q = \Delta H = n_{\text{coal burned}} \Delta \hat{H}_{\text{c}}^{\circ} (77^{\circ} \text{ F}) + \sum_{\text{out}} n_{i} \hat{H}_{i} - \sum_{\text{in}} n_{i} \hat{H}_{i}$$

$$= \frac{5 \times 10^{4} \text{ lb}_{\text{m}}}{\text{h}} \frac{|-1.8 \times 10^{4} \text{ Btu}}{\text{lb}_{\text{m}}} + (8.90 \times 10^{7} + 2.92 \times 10^{5}) \text{ Btu/h}$$

$$= -8.11 \times 10^{8} \text{ Btu/h}$$

$$\frac{\text{Power generated}}{\text{h}} = \frac{(0.35)(8.11 \times 10^8) \text{Btu}}{\text{h}} \frac{1 \text{ hr}}{3600 \text{ s}} \frac{1 \text{ W}}{9.486 \times 10^{-4}} \frac{1 \text{ MW}}{\text{Btu/s}} = \frac{83.1 \text{ MW}}{10^6 \text{ W}} = \frac{10.35}{10^6 \text{ W}} = \frac{10.35}{1$$

$$\hat{Q} = (-8.11 \times 10^8 \text{ Btu/h})/(5000 \text{ lb}_{\text{m}} \text{ coal/h}) = -1.62 \times 10^4 \text{ Btu/lb}_{\text{m}} \text{ coal}$$

$$\Rightarrow \frac{-\hat{Q}}{HHV} = \frac{1.62 \times 10^4 \text{ Btu/lb}_{\text{m}}}{1.80 \times 10^4 \text{ Btu/lb}_{\text{m}}} = \underline{0.901}$$

Some of the heat of combustion goes to vaporize water and heat the stack gas.

d. $-\hat{Q}/HHV$ would be closer to 1. Use heat exchange between the entering air and the stack gas.

9.58 b. <u>Basis</u>: 1 mol fuel gas/s

c.

$$CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$$

 $C_2H_6 + \frac{7}{2}O_2 \rightarrow 2CO_2 + 3H_2O$

Percent excess air:
$$\dot{n}_0 = (1 + \frac{P_{xs}}{100})[2x_m + 35(1 - x_m - x_a)]$$

C balance:
$$x_m + 2(1 - x_m - x_a) = (1 + r)\dot{n}_{CO} \Rightarrow \dot{n}_{CO} = \frac{x_m + 2(1 - x_m - x_a)}{(1 + r)}$$

H balance:
$$4x_m + 6(1 - x_m - x_a) = 2\dot{n}_{H,O} \Rightarrow \dot{n}_{H,O} = 2x_m + 3(1 - x_m - x_a)$$

O balance:
$$2\dot{n}_0 = 2\dot{n}_{\rm O_2} + \dot{n}_{\rm CO} + 2 \, r \, \dot{n}_{\rm CO} + \dot{n}_{\rm H_2O} \Rightarrow \dot{n}_{\rm O_2} = \dot{n}_0 - \dot{n}_{\rm CO} (1 + 2r) / 2 - \dot{n}_{\rm H_2O} / 2$$

References : C(s), $H_2(g)$, $O_2(g)$, $N_2(g)$ at 25°C

Substance	n_{in}	\hat{H}_{in}	n _{out}	\hat{H}_{out}
CH ₄	x_m	0	_	_
C_2H_6	$(1-x_m-x_A)$	0	_	_
A	x_A	0	$x_{\rm A}$	\hat{H}_3
O_2	n_o	\hat{H}_1	n_{O_2}	\hat{H}_4
N_2	$3.76n_o$	\hat{H}_2	3.76n _o	\hat{H}_5
CO	_	_	n_{CO}	\hat{H}_6
CO_2	_	-	$r n_{\rm CO}$	\hat{H}_7
H ₂ O	-	-	$n_{ m H_2O}$	\hat{H}_8

$$\hat{H}_i = (\Delta \hat{H}_f)_i + \int_{25}^{T_a \text{ or } T_s} C_{p,i}^{\text{Table B.2}} dT$$

Given:
$$x_m = 0.85$$
, $x_a = 0.05$, $Px_s = 5\%$, $r = 10.0$, $T_a = 150^{\circ}$ C, $T_s = 700^{\circ}$ C
 $\Rightarrow n_o = 2.153$, $n_{\text{CO}} = 0.0955$, $n_{\text{H}_2\text{O}} = 2.00$, $n_{\text{O}_2} = 0.1500$
 $\hat{H}_1(\text{kJ/mol}) = 8.091$, $\hat{H}_2 = 29.588$, $\hat{H}_3 = 0.702$, $\hat{H}_4 = 3.279$,
 $\hat{H}_5 = 166.72$, $\hat{H}_6 = -8.567$, $\hat{H}_7 = -345.35$, $\hat{H}_8 = -433.82$

Energy balance:
$$\dot{Q} = \sum \dot{n}_{out} \hat{H}_{out} - \sum \dot{n}_{in} \hat{H}_{in} = \underline{-655 \text{ kW}}$$

9.58 (cont'd)

d.

•)	Xa	Pxs	r	Ta	Ts	Q	
	0.0 0.0 0.0 0.0 0.0 0.0	5 5 5 5 5 5	10 10 10 10 10 10	150 150 150 150 150 150	700 700 700 700 700 700	- - - - - -	Q -600 -1200 Xm
	0.1 0.1 0.1 0.1 0.1	5 10 20 50 100	10 10 10 10 10	150 150 150 150 150	700 700 700 700 700	-	0
	0.1 0.2 0.3 0.4 0.5	5 5 5 5 5	10 10 10 10 10	150 150 150 150 150	700 700 700 700 700	-	-850 -860 -870 Q -880 -890 -900 -910
	0.1 0.1 0.1 0.1 0.1 0.1 0.1	5 5 5 5 5 5 5 5 5	1 2 3 4 5 10 20 50	150 150 150 150 150 150 150 150 150	700 700 700 700 700 700 700 700 700	-722 -796 -834 -856 -871 -905 -924 -936	20 40 60 80 100 120 -200 -400 -800 -1000
	0.1 0.1 0.1 0.1 0.1	5 5 5 5 5	10 10 10 10 10	25 100 150 200 250	700 700 700 700 700	-852 -883 -905 -926 -948	80 50 100 150 200 250 300 250 300 250 300 250 300 300 300 300 300 300 300 300 300 3
	0.1 0.1 0.1 0.1 0.1	5 5 5 5 5	10 10 10 10 10 10	150 150 150 150 150 150	500 600 700 800 900 1000	-1014 -960 -905 -848 -790 -731	200 400 600 800 1000 1200 0 -1000 1500

9.59 a. Basis:
$$\frac{207.4 \text{ liters}}{\text{s}} = \frac{273.2 \text{ K}}{\text{s}} = \frac{1.1 \text{ atm}}{1.0 \text{ atm}} = \frac{1 \text{ mol}}{22.4 \text{ liters(STP)}} = 10.0 \text{ mols/s fuel gas to furnace}$$

$$H = C_6 H_{14}$$
; $M = CH_4$

$$T_{dp} = 55^{\circ} \text{ C} \Rightarrow y_0 P = p_H^{\alpha} (55^{\circ} \text{ C}) \stackrel{\text{Antoine Eq.}}{=} 483.3 \text{ mm Hg}$$

$$\Rightarrow y_0 = \frac{483.3 \text{ mm Hg}}{1.2 \times 760 \text{ mm Hg}} = \underbrace{0.530 \text{ mol } C_6 H_{14} / \text{mol}}_{=} \Rightarrow 0.470 \text{ mol } CH_4 / \text{mol}$$

Saturation at condenser outlet:

$$y_2 = \frac{p_H^*(5^{\circ} \text{C})}{\text{P}} = \frac{58.89 \text{ mm Hg}}{1.1 \times 760 \text{ mm Hg}} = \frac{0.070 \text{ mol } \text{C}_6 \text{H}_{14}/\text{mol}}{1.1 \times 760 \text{ mm Hg}} = 0.93\% \text{ mol } \text{CH}_4/\text{mol}$$

Methane balance on condenser:
$$\dot{n}_0(1-y_0) = 10.0(1-y_2) \underset{y_2=0.070}{\overset{y_0=0.530}{\Rightarrow}} \dot{n}_0 = 19.78 \text{ mol/s}$$

Hexane balance on condenser:
$$\dot{n}_0 y_0 = \dot{n}_b + 10.0 y_2 \underset{\substack{\dot{n}_0 = 19.78 \\ y_0 = 0.530 \\ y_2 = 0.070}}{\Longrightarrow} \dot{n}_b = 9.78 \text{ mol C}_6 H_{14}/\text{s condensed}$$

$$\frac{\text{Volume of condensate}}{\text{Volume of condensate}} = \frac{9.78 \text{ mol } C_6 H_{14}(l)}{\text{s}} \begin{vmatrix} 86.17 \text{ g} & \text{cm}^3 & 1L & 3600 \text{ s} \\ & \text{mol } & 0.659 \text{ g} & 10^3 \text{ cm}^3 & 1 \text{ h} \\ & & \uparrow & \uparrow & \uparrow \\ & \text{Table B.1} & 10^3 \text{ cm}^3 & 1 \text{ h} \end{vmatrix}$$

$$= \underline{4600 \text{ L } C_6 H_{14}(l)/h}$$

b. References:
$$CH_4(g, 5^{\circ}C)$$
, $C_6H_{14}(l, 5^{\circ}C)$

Substance	$\dot{n}_{ m in}$	\hat{H}_{in}	$\dot{n}_{ m out}$	$\hat{H}_{ m out}$
Substance	(mol/s)	(kJ / mol)	(mol/s)	(kJ/mol)
CH ₄	9.30	1.985	9.30	0
$C_6H_{14}(v)$	10.48	41.212	0.70	32.940
$C_6H_{14}(l)$	_	_	9.78	0

Condenser energy balance:
$$\dot{Q}_c = \Delta \dot{H} = \sum_{cont} \dot{n}_i \hat{H}_i - \sum_{in} \dot{n}_i \hat{H}_i = \underline{-427 \text{ kW}}$$

9.59 (cont'd)

$$CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$$
, $C_6H_{14} + \frac{19}{2}O_2 \rightarrow 6CO_2 + 7H_2O$

$$\frac{\text{Theoretical O}_2:}{\text{s}} \ \frac{9.30 \text{ mol CH}_4}{\text{s}} \ \frac{2 \text{ mol O}_2}{\text{l mol CH}_4} + \frac{0.70 \text{ mol C}_6 \text{H}_{14}}{\text{s}} \ \frac{9.5 \text{ mol O}_2}{\text{l mol C}_6 \text{H}_{14}} = 25.3 \text{ mol O}_2/\text{s}$$

$$\underline{100\% \text{ excess}} \Rightarrow (O_2)_{\text{fed}} = 2 \times (O_2)_{\text{theor}} \Rightarrow 0.21 \dot{n}_a = 2 \times 25.3 \Rightarrow \dot{n}_a = 240.95 \text{ mol air/s}$$

 N_2 balance: $0.79(240.95) = \dot{n}_4 \Rightarrow \dot{n}_4 = 190.35 \text{ mol } N_2/\text{s}$

C balance:

$$\frac{9.30 \text{ mol CH}_{4} | 1 \text{ mol C}_{5}}{\text{s} | 1 \text{ mol CH}_{4}} + \frac{0.70 \text{ mol C}_{6}\text{H}_{14}}{\text{l} | 1 \text{ mol C}_{6}\text{H}_{14}} = \frac{n_{5}(\text{mol CO}_{2}) | 1 \text{ mol CO}_{2}}{\text{l} | 1 \text{ mol CO}_{2}}$$

$$\Rightarrow \dot{n}_{5} = 13.5 \text{ mol CO}_{2}/\text{s}$$

H balance:

$$(9.30 \text{ mol CH}_4/\text{s})(4 \text{ mol H/mol CH}_4) + (0.70)(14) = \dot{n}_6(2) \Rightarrow \dot{n}_6 = 23.5 \text{ mol H}_2\text{O}$$

Since combustion is complete,
$$(O_2)_{\text{remaining}} = (O_2)_{\text{excess}} = \frac{1}{2}(O_2)_{\text{fed}} \Rightarrow \dot{n}_3 = 25.3 \text{ mol } O_2/\text{s}$$

<u>References</u>: C(s), $H_2(g)$, $O_2(g)$, $N_2(g)$ at 25°C for reactor side, $H_2O(1)$ at triple point for steam side (reference state for steam tables)

Substance	$\dot{n}_{ m in}$	\hat{H}_{in}	$\dot{n}_{ m out}$	$\hat{H}_{ ext{out}}$
Substance	mol/s	kJ / mol	mol/s	kJ / mol
CH ₄	9.30	-75.553	_	-
C ₆ H ₁₄ (v)	0.70	-170.07	_	_
O_2	50.6	5.31	25.3	11.72
N_2	190.35	5.13	190.35	11.15
CO ₂	_	-	13.5	-377.15
H ₂ O(v)	_	_	23.5	-228.60
H ₂ O(boiler water)	$\dot{m}_{\rm w} ({\rm kg/s})$	104.8	$\dot{m}_{\rm w} ({\rm kg/s})$	2776.2

Table B.1 and B.8
$$= \Delta \hat{H}_{\mathrm{f}}^{\mathrm{o}} + \hat{H}_{i}(T) \text{ for } \mathrm{O}_{2}, \mathrm{N}_{2}, \mathrm{CO}_{2}, \mathrm{H}_{2}\mathrm{O}(\mathrm{v})$$

Energy balance on reactor (assume adiabatic):

$$\Delta \dot{H} = \sum_{\text{out}} \dot{n}_i \hat{H}_i - \sum_{\text{in}} \dot{n}_i \hat{H}_i = 0 \Rightarrow -8468 + \dot{m}_{\text{w}} \left(2776.2 - 104.8 \right) = 0 \Rightarrow \dot{m}_{\text{w}} = \underbrace{\underline{3.2 \text{ kg steam/s}}}_{\text{steam/s}}$$

9.60 a. Basis:
$$450 \text{ kmol CH}_4 \text{ fed/h}$$

$$CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$$

450 kmol/h CH₄ react $\Rightarrow \dot{n}_1 =$ 450 kmol CO₂/h, $\dot{n}_2 =$ 900 kmol H₂O/h

$$N_2$$
 balance: $\dot{n}_4 = (0.79)(5.143 \times 10^6 \text{ mol/h}) = 4060 \text{ kmol } N_2/\text{h}$

Molecular O₂ balance:

Mean heat capacity of stack gas

$$\overline{C}_p = \sum y_i C_{pi} = (0.0805)(0.0423) + (0.161)(0.0343) + (0.726)(0.0297) + (0.0322)(0.0312)$$
$$= 0.0315 \text{ kJ/mol} \cdot {}^{\circ}\text{ C}$$

Energy balance on furnace (combustion side only)

References:
$$CH_4(g)$$
, $CO_2(g)$, $O_2(g)$, $N_2(g)$, $H_2O(1)$ at 25° C

Substance	$\frac{\dot{n}_{\rm in}}{({ m kmol}/{ m h})}$	\hat{H}_{in} (kJ / kmol)	$ \frac{\dot{n}_{\text{out}} \hat{H}_{\text{out}}}{(\text{kJ/h})} $
CH ₄	450	0	_
Air	5143	0	_
Stack gas	_	_	\dot{H}_{p}

Extent of reaction:

$$\dot{\xi} = \dot{n}_{\text{CH}_4} = 450 \text{ kmol/h}$$

9.60 (cont'd)

$$\begin{split} \dot{H}_{p} &= \dot{n}_{2} (\Delta \hat{H}_{v})_{\text{H}_{2}\text{O}(25^{\circ}\text{C})} + \dot{n}_{\text{stack gas}} (\overline{C}_{p})_{\text{stack gas}} (T_{\text{stack gas}} - 25^{\circ}\text{C}) \\ &= \frac{180 \text{ kmol H}_{2}\text{O}}{\text{h}} \frac{10^{3} \text{ mol}}{\text{1 kmol}} \frac{44.01 \text{ kJ}}{\text{mol}} + \frac{5590 \text{ kmol}}{\text{h}} \frac{10^{3} \text{ mol}}{\text{1 kmol}} \frac{0.0315 \text{ kJ}}{\text{mol} \cdot {}^{\circ}\text{C}} \frac{(300 - 25)^{\circ}\text{C}}{\text{mol} \cdot {}^{\circ}\text{C}} \\ &= 5.63 \times 10^{7} \text{ kJ/h} \end{split}$$

$$\begin{split} \dot{Q} &= \Delta \dot{H} = \dot{\xi} (\Delta \hat{H}_{c}^{\circ})_{\text{CH}_{4}} + \sum_{\text{out}} n_{i} \hat{H}_{i} - \sum_{\text{in}} n_{i} \hat{H}_{i} \\ &= \left(450 \ \frac{\text{kmol}}{\text{h}} \right) \left(1000 \frac{\text{mol}}{\text{kmol}} \right) \left(-890.36 \frac{\text{kJ}}{\text{mol}} \right) + 5.63 \times 10^{7} \frac{\text{kJ}}{\text{h}} = \ \underline{-3.44 \times 10^{8} \frac{\text{kJ}}{\text{h}}} \end{split}$$

Energy balance on steam boiler

$$\dot{Q} = \dot{m}_w \Delta \hat{H}_w \implies +3.44 \times 10^8 \frac{\text{kJ}}{\text{h}} = \left[\dot{m}_w \left(\frac{\text{kg}}{\text{h}} \right) \right] \left[(2914 - 105) \frac{\text{kJ}}{\text{kg}} \right]$$

$$\Rightarrow \dot{m}_w = 1.23 \times 10^5 \text{ kg steam/h}$$

<u>E.B.</u> on overall process: The material balances and the energy balance are identical to those of part (a), except that the stack gas exits at 150°C instead of 300°C.

References:
$$CH_4(g)$$
, $CO_2(g)$, $O_2(g)$, $N_2(g)$, $H_2O(1)$ at 25° C (furnace side)
 $H_2O(1)$ at triple point (steam table reference) (steam tube side)

Substance	$\dot{n}_{\rm in}$ (kmol/h)	\hat{H}_{in} (kJ / kmol)	$ \frac{\dot{n}_{\rm out} \hat{H}_{\rm out}}{(\text{kJ}/\text{h})} $
CH ₄ Air Stack gas	450 5143 -	0 0 -	_ _
H ₂ O	$\dot{m}_w (\text{kg/h})$	105 kJ / kg	$\dot{m}_w (kg/h)$ 2914 kJ/kg

$$\begin{split} \dot{H}_{p} &= \dot{n}_{2} (\Delta \hat{H}_{v})_{\text{H}_{2}\text{O}(25^{\circ}\text{C})} + \dot{n}_{\text{stack gas}} (\overline{C}_{p})_{\text{stack gas}} (T_{\text{stack gas}} - 25^{\circ}\text{C}) \\ &= \frac{180 \text{ kmol H}_{2}\text{O}}{\text{h}} \frac{10^{3} \text{ mol}}{\text{1 kmol}} \frac{44.01 \text{ kJ}}{\text{mol}} + \frac{5590 \text{ kmol}}{\text{h}} \frac{10^{3} \text{ mol}}{\text{1 kmol}} \frac{0.0315 \text{ kJ}}{\text{mol} \cdot {}^{\circ}\text{C}} \frac{(150 - 25)^{\circ}\text{C}}{\text{C}} \\ &= \underline{2.99 \times 10^{7} \text{ kJ/h}} \end{split}$$

9.60 (cont'd)

$$\Delta \dot{H} = \dot{\xi} (\Delta \hat{H}_{c}^{0})_{\text{CH}_{4}} + \sum_{\text{out}} n_{i} \hat{H}_{i} - \sum_{\text{in}} n_{i} \hat{H}_{i} = 0$$

$$\Rightarrow \left(450 \frac{\text{kmol}}{\text{h}} \right) \left(1000 \frac{\text{mol}}{\text{kmol}} \right) \left(-890.36 \frac{\text{kJ}}{\text{mol}} \right) + 2.99 \times 10^{7} \frac{\text{kJ}}{\text{h}}$$

$$+ \left[\dot{m}_{w} \left(\frac{\text{kg}}{\text{h}} \right) \right] \left[(2914 - 105) \frac{\text{kJ}}{\text{kg}} \right] = 0 \Rightarrow m_{w} = \underbrace{1.32 \times 10^{5} \text{ kg steam/h}}$$

$$\underline{\text{Energy balance on preheater:}} \quad \Delta \dot{H} = \left(\Delta \dot{H} \right)_{\text{stack gas}} + \left(\Delta \dot{H} \right)_{\text{air}} = 0$$

$$\left(\Delta H \right)_{\text{stack gas}} = n \overline{C}_{p} \Delta T = \underbrace{5590 \text{ kmol}}_{\text{h}} \frac{10^{3} \text{ mol}}{1 \text{ kmol}} \frac{0.0315 \text{ kJ}}{\text{mol}} \frac{(150 - 300)^{\circ} \text{C}}{\text{C}} = -2.64 \times 10^{7} \frac{\text{kJ}}{\text{h}}$$

$$\left(-\Delta H \right)_{\text{stack gas}} = \left(\Delta H \right)_{\text{air}} = n_{a} \hat{H}_{\text{air}} (T_{a}) \Rightarrow \hat{H}_{\text{air}} (T_{a}) = \underbrace{\frac{2.64 \times 10^{7} \text{ kJ/h}}{5143 \text{ kmol/h}} \frac{1 \text{ kmol}}{10^{3} \text{ mol}} = 5.133 \frac{\text{kJ}}{\text{mol}}$$

The energy balance on the furnace includes the term $-\sum n_{\rm in} \hat{H}_{\rm in}$. If the air is preheated and the stack gas temperature remains the same, this term and hence \dot{Q} become more negative, meaning that more heat is transferred to the boiler water and more steam is produced. The stack gas is a logical heating medium since it is available at a high temperature and costs nothing.

9.61
$$\frac{\text{Basis: } 40000 \text{ kg coal/h}}{\text{Assume coal enters at 25°C}} \Rightarrow \frac{(0.76 \times 40000) \text{kg C}}{\text{h}} \frac{10^{3} \text{g}}{1 \text{ kg}} \frac{1 \text{ mol C}}{12.01 \text{ g}} = 2.531 \times 10^{6} \text{ mol C/h}$$

$$\left[(0.05 \times 4000) \text{kg H/h} \right] \left(10^{3} / 1.01 \right) = 1.98 \times 10^{6} \text{ mol H/h}$$

$$\left[(0.08 \times 4000) \text{kg C/h} \right] \left(10^{3} / 160 \right) = 2.00 \times 10^{5} \text{ mol C/h}$$

 $\hat{H}_{air} = 5.133 \text{ kJ/mol}$ Table B.8 $\underline{T}_a = 199^{\circ} \text{C}$

$$[(0.08 \times 4000) \text{kg O/h}](10^3/16.0) = 2.00 \times 10^5 \text{ mol O/h}$$
$$(0.11 \times 40000) = 4400 \text{ kg ash/h}$$

a. Overall system balances

C balance:
$$2.531 \times 10^6 = 0.078 n_3 + 0.012 n_3 \Rightarrow n_3 = 2.812 \times 10^7 \text{ mol/h dry flue gas}$$

 $\underline{N_2 \text{ balance}}$: $3.76 n_1 = (0.796)(2.812 \times 10^7) \Rightarrow n_1 = 5.95 \times 10^6 \text{ mol } O_2/h (3.76)(5.95 \times 10^6)$
 $= 224 \times 10^7 \text{ mol } N_2/h$

9.61 (cont'd)

30% relative humidity (inlet air):

$$y_{\text{H}_2\text{O}}P = 0.30 p_{\text{H}_2\text{O}}^* (30^{\circ} \text{C}) \Rightarrow \frac{\dot{n}_2}{5.95 \times 10^6 + 2.24 \times 10^7 + n_2} (760 \text{ mm Hg}) = 0.300 (31.824 \text{ mm Hg})$$

 $\Rightarrow \dot{n}_2 = 3.61 \times 10^5 \text{ mol H}_2\text{O/h}$

Volumetric flow rate of inlet air:

$$\dot{V} = \frac{\left(5.95 \times 10^6 + 224 \times 10^7 + 3.61 \times 10^5\right) \text{mol}}{\text{h}} \frac{22.4 \text{ liters(STP)}}{1 \text{ mol}} \frac{1 \text{ m}^3}{10^3 \text{ liters}} = 6.43 \times 10^5 \text{ SCMH}$$

Air/fuel ratio:
$$\frac{6.43 \times 10^5 \text{ m}^3 \text{ air/h}}{40000 \text{ kg coal/h}} = \frac{16.1 \text{ SCM air/kg coal}}{40000 \text{ kg coal/h}}$$

$$\underline{\text{H balance:}} \quad \underbrace{1.98 \times 10^6 \text{ mol H/h}}_{\text{H in coal}} + \underbrace{2\left(3.61 \times 10^5\right) \text{mol H/h}}_{\text{H in water vapor}} = 2\dot{n}_4 \Rightarrow \dot{n}_4 = 1.351 \times 10^6 \text{ mol H}_2\text{O/h}$$

$$\frac{\text{H}_2\text{O content of stack gas}}{\left(1.357 \times 10^6 \text{ mol H}_2\text{O/h} \times 100\% = \frac{4.6\% \text{ H}_2\text{O}}{\left(1.357 \times 10^6 + 2.812 \times 10^7\right) \text{mol/h}} \times 100\% = \frac{4.6\% \text{ H}_2\text{O}}{2.812 \times 10^7}$$

b. Energy balance on stack gas in preheater

References: CO₂, CO, O₂, N₂, H₂O(v) at 25°C

Substance	$n_{ m in} \ m mol/h$	$\hat{H}_{\rm in}$ kJ/mol	$n_{ m out} \ m mol/h$	$\hat{H}_{ m out}$ kJ/mol
CO_2	2.193×10^6	4.942	2.193×10^6	9.738
CO	0.337×10^6	3669	0.337×10^6	6.961
O_2	3.706×10^6	3758	3.206×10^6	7.193
N_2	22.38×10^6	3655	72.38×10^6	6.918
H_2O	1.357×10^6	4266	1.351×10^6	8135

$$\hat{H}_i(T)$$
 from Table B.8 for inlet $\hat{H}_i(T) = \int_{-\infty}^{\text{Table B.2}} \hat{C}_p dT$ for outlet

$$Q = \sum_{\text{out}} n_i \hat{H}_i - \sum_{\text{in}} n_i \hat{H}_i = \underline{-1.01 \times 10^8 \text{ kJ/h}} \text{ (Heat transferred from stack gas)}$$

Air preheating

$$\begin{array}{c|c} 1.01\times10^{8}\,\mathrm{kJ/hr} \\ \hline 2.83\times10^{7}\,\mathrm{mol\,dry\,air/h} \\ 3.61\times10^{5}\,\mathrm{mol\,H_{2}O/h} \\ 30^{\circ}\mathrm{C} \\ \end{array}$$

(We assume preheater is adiabatic, so that $Q_{\text{stack gas}} = -Q_{\text{air}}$)

Energy balance on air:

$$Q = \Delta H \Rightarrow 1.01 \times 10^{8} \text{ kJ/hr} = \sum_{30}^{T_a} n_i (C_p)_i dT = \int_{30}^{T_a} n_{dry \, air} (C_p)_{dry \, air} dT + \int_{30}^{T_a} n_{\text{H}_2\text{O}} (C_p)_{\text{H}_2\text{O}} dT$$

9.61 (cont'd)

$$\Rightarrow 1.01 \times 10^8 = 8.31 \times 10^5 (T_a - 30) + 59.92 (T_a^2 - 30^2) + 0.031 (T_a^3 - 30^3) - 1.42 \times 10^{-5} (T_a^4 - 30^4)$$

$$\Rightarrow \underline{T_a = 150^{\circ} \text{C}}$$

c.

References for energy balance on furnace: CO_2 , CO, O_2 , N_2 , $H_2O(1)$, coal at 25°C (Must choose $H_2O(1)$ since we are given the higher heating value of the coal.)

substance	$n_{ m in}$	$\hat{H}_{ ext{in}}$	$n_{ m out}$	$\hat{H}_{ ext{out}}$	
Coal	40000	0	_	_	n(kg/h)
Ash	_	-	4400	412.25	$\hat{H}(\mathrm{kJ/kg})$
O_2	5.95×10^6	3.758	3.206×10^6	7.193	
N_2	2.24×10^6	3.655	2.24×10^{7}	6.918	n(mol/h)
CO_2	_	-	2.193×10^6	9.738	$\hat{H}(\mathrm{kJ/mol})$
CO	_	-	0.337×10^6	6.961	
H_2O	3.61×10^5	48.28	1.351×10^6	52.14	

(Furnace only — exclude boiler water)

Heat transferred from furnace

$$\begin{split} Q &= n_{\rm coal} \Delta \hat{H}_{\rm i}^{\rm o} + \sum_{\rm out} n_i \hat{H}_i - \sum_{\rm in} n_i \hat{H}_i \\ &= \left(4 \times 10^4 \frac{\rm kg}{\rm h}\right) \left(-2.5 \times 10^4 \frac{\rm kJ}{\rm kg}\right) + \left(2.74 \times 10^3 - 1.22 \underset{\hat{H} \text{ of preheated air}}{1200 \times 10^8}\right) \frac{\rm kJ}{\rm kg} \\ &= -8.76 \times 10^8 \text{ kJ/h} \end{split}$$

<u>Heat transferred to boiler water</u>: $0.60(8.76 \times 10^8 \text{ kJ/h}) = 5.25 \times 10^8 \text{ kJ/h}$

Energy balance on boiler:
$$\dot{Q}(kJ/h) = \dot{m} \left(\frac{kg}{h}\right) \left[\hat{H}(H_2O(1), 30b, sat'd) - \hat{H}(H_2O(1), 50^{\circ}C)\right]$$

$$\Rightarrow 5.25 \times 10^8 \quad kJ/h = \dot{m} \left[2802.3 - 209.3 \atop \text{Table B.6} \right] \frac{kJ}{kg} \Rightarrow \dot{\underline{m}} = 2.02 \times 10^5 \text{ kg steam/h}$$

9.62

Basis: 1 mol CO burned.

$$CO + \frac{1}{2}O_2 \rightarrow CO_2$$
, $\Delta \hat{H}_c^0 = -282.99 \text{ kJ/mol}$

a. Oxygen in product gas: $n_1 = n_0 \pmod{O_2}$ fed $-\frac{1 \mod{CO} \pmod{O_2}}{1 \mod{CO}} = n_0 - 0.5$

References: CO, CO₂, O₂, N₂ at 25°C

Substance	$n_{\rm in} \pmod{1}$	$\hat{H}_{\mathrm{in}} \ ig(\mathrm{kJ/mol}ig)$	$n_{ m out} \pmod{1}$	$\hat{H}_{\mathrm{out}} \ \left(\mathrm{kJ/mol}\right)$
СО	1	0	_	_
O_2	n_0	0	$n_0 - 0.5$ $3.76n_0$	H_1
N ₂	$3.76n_0$	0	$3.76n_0$	\hat{H}_2
CO_2	_	_	1	\hat{H}_3

O₂(g,1400°C):
$$\hat{H}_1 = \hat{H}_{O_2} (1400^{\circ}C) = 47.07 \text{ kJ/mol}$$

$$N_2(g,1400^{\circ}C)$$
: $\hat{H}_2 = \hat{H}_{N_2}(1400^{\circ}C) \stackrel{\text{Table B.8}}{=} 44.51 \text{ kJ/mol}$

$$CO_2(g,1400^{\circ}C)$$
: $\hat{H}_3 = \hat{H}_{CO_2}(1400^{\circ}C) = 71.89 \text{ kJ/mol}$

E.B.:

$$\Delta H = n_{CO} \Delta \hat{H}_c^{\text{o}} + \sum_{\text{out}} n_i \hat{H}_i - \sum_{\text{in}} n_i \hat{H}_i = -282.99 + 47.07 (n_0 - 0.5) + 44.51 (3.76 n_0) + 71.89 = 0$$

$$\Rightarrow n_0 = 1.094 \text{ mol O}_2$$

Theoretical $O_2 = (1 \text{ mol CO})(0.5 \text{ mol } O_2/\text{mol CO}) = 0.500 \text{ mol } O_2$

Excess oxygen:
$$\frac{1.094 \text{ mol fed} - 0.500 \text{ mol reqd.}}{0.500 \text{ mol}} \times 100\% = \underbrace{\frac{119\% \text{ excess oxygen}}{100\%} = \underbrace{\frac{119\% \text{ excess oxygen}}{100\%}}_{\text{excess oxygen}}$$

- **b.** Increase %XS air \Rightarrow T_{ad} would <u>decrease</u>, since the heat liberated by combustion would go into heating a larger quantity of gas (i.e., the additional N_2 and unconsumed O_2).
- **9.63** a. <u>Basis</u>: 100 mol natural gas \Rightarrow 82 mol CH₄, 18 mol C₂H₆

$$CH_4(g) + 2O_2(g) \rightarrow CO_2(g) + 2H_2O(v), \quad \Delta \hat{H}_c^0 = -890.36 \text{ kJ/mol}$$

$$C_2H_6(g) + \frac{7}{2}O_2(g) \rightarrow 2CO_2(g) + 3H_2O(v), \ \Delta \hat{H}_c^o = -1559.9 \text{ kJ/mol}$$

9.63 (cont'd)

$$\frac{\text{Theoretical oxygen}}{1 \text{ mol CH}_4} = \frac{2 \text{ mol O}_2}{1 \text{ mol CH}_4} + \frac{82 \text{ mol CH}_4}{1 \text{ mol C}_2 \text{H}_6} + \frac{3.5 \text{ mol O}_2}{1 \text{ mol C}_2 \text{H}_6} = 227 \text{ mol O}_2$$

Air fed:
$$n_1 = \frac{1.2 \times 227 \text{ mol O}_2}{0.21 \text{ mol O}_2} = 1297.14 \text{ mol air}$$

<u>C balance</u>: $n_2 = (82.00)(1) + (18.00)(2) \Rightarrow n_2 = 118.00 \text{ mol CO}_2$

<u>H balance</u>: $2n_3 = (82.00)(4) + (18.00)(6) \Rightarrow n_3 = 218.00 \text{ mol H}_2\text{O}$

20% excess air, complete combustion $\Rightarrow n_4 = (0.2)(227) \text{ mol } O_2 = 45.40 \text{ mol } O_2$

 N_2 balance: $n_5 = (0.79)(1297.14) = 1024.63 \text{ mol } N_2$

Extents of reaction: $\xi_1 = n_{\text{CH}_4} = 82 \text{ mol}, \ \xi_1 = n_{\text{C},\text{H}_6} = 18 \text{ mol}$

Reference states: CH₄(g), C₂H₆(g), N₂(g), O₂(g), H₂O(l) at 298 K

(We will use the values of $\Delta \hat{H}_c^o$ given in Table B.1, which are based on $H_2O(1)$ as a combustion product, and so must choose the liquid as a reference state for water.)

$$\hat{H}_i(T) = C_{pi}(T - 298 \text{ K})$$
 for all species but water
= $\Delta \hat{H}_{v,H,O}(298 \text{ K}) + C_{p,H,O}(T - 298 \text{ K})$ for water

Substance	$n_{ m in}$ mol	\hat{H}_{in} kJ/mol	n _{out} mol	$\hat{H}_{ ext{out}}$ k $J/ ext{mol}$
CH ₄	82.00		_	_
C_2H_6	18.00	0	_	_
O_2	272.40	4.14	45.40	0.0331(T-298)
N_2	1024.63	3.91	1024.63	0.0313(T-298)
CO ₂	_	_	118.00	0.0500(T-298)
$H_2O(v)$	_	_	218.00	44.013 + 0.0385(T - 298)

Energy balance: $\Delta H = 0$

$$\xi_1 \left(\Delta \hat{H}_c^{\, o} \right)_{\text{CH}_4} + \xi_2 \left(\Delta \hat{H}_c^{\, o} \right)_{\text{C}_2 \text{H}_6} + \sum_{\text{out}} n_i \hat{H}_i - \sum_{\text{in}} n_i \hat{H}_i = 0$$

$$\Rightarrow (82.00 \text{ mol CH}_4)(-890.36 \text{ kJ/mol}) + (18.00 \text{ mol C}_2\text{H}_6)(-1559.90 \text{ kJ/mol}) + [(45.40)(0.0331) + (1024.63)(0.0313) + (118.00)(0.0500) + (218.00)(0.0385)](T - 298) + (218.00)(44.01) - (272.40)(4.14) - (1024.63)(3.91) = 0$$

b. Solving for *T* using E - Z Solve \Rightarrow *T* = 2317 K

Increase % excess air \Rightarrow T_{out} decreases. (Heat of combustion has more gas to heat)

% methane increases \Rightarrow T_{out} might decrease. (lower heat of combustion, but heat released goes into heating fewer moles of gas.)

9.64
$$C_3H_6O(g) + 4O_2(g) \rightarrow 3CO_2(g) + 3H_2O(1), \ \Delta \hat{H}_i^o = -1821.4 \text{ kJ/mol}$$

Basis:
$$\frac{1410 \text{ m}^3 \text{(STP) feed gas}}{\text{min}} = \frac{10^3 \text{ mol}}{22.4 \text{ m}^3 \text{(STP)}} = \frac{1049 \text{ mol/s feed gas}}{60 \text{ s}} = \frac{1049 \text{ mol/s feed gas}}{10^3 \text{ mol}} = \frac{1049 \text{ mol/s feed gas}}{10^3 \text{ mol/s feed gas}} = \frac{1049 \text{ mol/s feed gas}}{10^3 \text{ mol/s feed gas}} = \frac{1049 \text{ mol/s feed gas}}{10^3 \text{ mol/s feed gas}} = \frac{1049 \text{ mol/s feed gas}}{10^3 \text{ mol/s feed gas}} = \frac{1049 \text{ mol/s feed gas}}{10^3 \text{ mol/s feed gas}} = \frac{1049 \text{ mol/s feed gas}}{10^3 \text{ mol/s feed gas}} = \frac{1049 \text{ mol/s feed gas}}{10^3 \text{ mol/s feed gas}} = \frac{1049 \text{ mol/s feed gas}}{10^3 \text{ mol/s feed gas}} = \frac{1049 \text{ mol/s feed gas}}{10^3 \text{ mol/s feed gas}} = \frac{1049 \text{ mol/s feed gas}}{10^3 \text{ mol/s feed gas}} = \frac{1049 \text{ mol/s feed gas}}{10^3 \text{ mol/s feed gas}} = \frac{1049 \text{ mol/s feed gas}}{10^3 \text{ mol/s feed gas}} = \frac{1049 \text{ mol/s feed gas}}{10^3 \text{ mol/s feed gas}} = \frac{1049 \text{ mol/s feed gas}}{10^3 \text{ mol/s feed gas}} = \frac{1049 \text{ mol/s feed gas}}{10^3 \text{ mol/s feed gas}} = \frac{1049 \text{ mol/s feed gas}}{10^3 \text{ mol/s feed gas}} = \frac{1049 \text{ mol/s feed gas}}{10^3 \text{ mol/s feed gas}} = \frac{1049 \text{ mol/s feed gas}}{10^3 \text{ mol/s feed gas}} = \frac{1049 \text{ mol/s feed gas}}{10^3 \text{ mol/s feed gas}} = \frac{1049 \text{ mol/s feed gas}}{10^3 \text{ mol/s feed gas}} = \frac{1049 \text{ mol/s feed gas}}{10^3 \text{ mol/s feed gas}} = \frac{1049 \text{ mol/s feed gas}}{10^3 \text{ mol/s feed$$

Stochiometric proportion:

1 mol $C_3H_6O \Rightarrow 4 \text{ mol } O_2 \Rightarrow 4 \times 3.76 = 15.04 \text{ mol } N_2 \Rightarrow (1+4+15.04) = 20.04 \text{ mol}$

$$y_{\rm C_3H_6O} = \frac{1~\rm{mol}~C_3H_6O}{20.04~\rm{mol}} = 0.0499 \frac{\rm{mol}~C_3H_6O}{\rm{mol}},~y_{\rm O_2} = \frac{4}{20.04} = 0.1996~\rm{mol}~O_2/\rm{mol}$$

Relative saturation =
$$12.2\% \Rightarrow y_{\text{C}_3\text{H}_6\text{O}} P = 0.122 p_{\text{C}_3\text{H}_6\text{O}}^* \left(T_f\right)$$

$$\Rightarrow p^* = \frac{(0.0499)(1500 \text{ mm Hg})}{0.122} = 613.52 \text{ mm Hg}$$

$$T_f = 50.0^{\circ} \text{ C}$$

Feed contains
$$(1049 \text{ mol/s})(0.0499 \text{ C}_3\text{H}_6\text{O/mol}) = 52.34 \text{ mol C}_3\text{H}_6\text{O/s}$$

$$(1049)(0.1996) = 209.4 \text{ mol } O_2/s$$

$$(1049)(0.7505) = 787.3 \text{ mol } N_2/s$$

$$\Rightarrow \text{Product contains} \begin{array}{l} n_1 = (52.34)(3) = 157.0 \text{ mol } \text{CO}_2/\text{s} \\ n_2 = (52.34)(3) = 157.0 \text{ mol } \text{H}_2\text{O/s} \\ n_3 = 787.3 \text{ mol } \text{N}_2/\text{s} \end{array} \Rightarrow \underbrace{\frac{14.25 \text{ mole} \% \text{ CO}_2}{14.25\% \text{ H}_2\text{O}}}_{\overline{71.5\% \text{ N}_2}}$$

$$\underline{\text{References}}: \ C_3H_6O(g), \ O_2, \ N_2, \ H_2O(l), \ CO_2 \ \text{at } 25^{\circ}C$$

Substance	$\dot{n}_{ m in}$	$\hat{H}_{ ext{in}}$	$\dot{n}_{ m out}$	${\hat H}_{ m out}$
Substance	(mols)	(kJ/mol)	(mols)	(kJ/mol)
		(562°C)		T_a
C ₃ H ₆ O	52.34	67.66	_	-
O_2	209.4	17.72	_	_
N_2	787.3	17.18	787.3	$0.032(T_a-25)$
CO ₂	_	_	157.0	$0.052(T_a - 25)$
H_2O	_	_	157.0	$44.013 + 0.040(T_a - 25)$

Energy balance on reactor:

$$\varDelta H = n_{\mathrm{C_3H_6O}} \varDelta \hat{H}_c^{\mathrm{o}} + \sum_{\mathrm{out}} n_i \hat{H}_i - \sum_{\mathrm{in}} n_i \hat{H}_i = 0 \; \left(\mathrm{kJ/s} \right)$$

$$\Rightarrow (5234 \text{ mol/s}) \left(-1821.1 \frac{\text{kJ}}{\text{mol}}\right) + 39.638 \left(T_a - 25\right) + 157.0 \left(44.013\right) - 2.078 \times 10^4 = 0 \Rightarrow \underline{T_a = 2780^{\circ}\text{C}}$$

9.64 (cont'd)

c

<u>Preheating step:</u> References: C₃H₆(g), O₂, N₂ at 25°C

Substance	$ \frac{\dot{n}_{\rm in}}{(\text{mol}/\text{s})} $	\hat{H}_{in} (kJ / mol)	$ \frac{\dot{n}_{\text{out}}}{(\text{mol}/\text{s})} $	\hat{H}_{out} (kJ / mol)
		$(50^{\circ} \mathrm{C})$		(562°C)
C ₃ H ₆ O	52.34	3.15	52.34	67.66
O_2	209.4	0.826	209.4	17.72
N_2	787.3	0.775	787.3	16.65

$$\underline{\text{E.B.}} \Rightarrow \dot{Q}_1 = \sum_{\text{out}} \dot{n}_i \hat{H}_i - \sum_{\text{in}} \dot{n}_i \hat{H}_i = \underline{1.94 \times 10^4 \text{ kW}}$$

Cooling step. References: CO₂(g), H₂O(v), N₂(g) at 25°C

Substance	n _{in} (mol)	\hat{H}_{in} (kJ / mol) (2871° C)	n _{out} (mol)	\hat{H}_{out} (kJ / mol) (350° C)
CO_2 H_2O N_2	157.0	142.3	157.0	16.25
	157.0	108.15	157.0	12.35
	787.3	88.23	787.3	10.08

$$\underline{\text{E.B.}} \implies Q_2 = \sum_{\text{out}} \dot{n}_i \hat{H}_i - \sum_{\text{in}} \dot{n}_i \hat{H}_i = \underline{-9.64 \times 10^4 \text{ kW}}$$

Exchange heat between the reactor feed and product gases.

9.65 a. Basis: $1 \text{ mol } C_5H_{12}(1)$

$$C_5H_{12}(l) + 8O_2(g) \rightarrow 5CO_2(g) + 6H_2O(v),$$
 $\Delta \hat{H}_c^o = -3509.5 \text{ kJ/mol}$

$$n_2(\text{mol CO}_2)$$

$$n_3 \text{ (mol H}_2O(v))$$

$$n_4 \text{ (mol O}_2)$$

$$\begin{array}{c|c}
 & 1 \mod C_5H_{12} \text{ (1)} \\
\hline
 & n_2(\mod CO_2) \\
 & n_3 \pmod H_2O \text{ (v)}) \\
\hline
 & n_4 \pmod O_2) \\
\hline
 & T_{ad}(^{\circ}C)
\end{array}$$

30% excess $\Rightarrow n_0 = 1.3 \times 8 = 10.4 \text{ mol O}_2$

<u>C balance:</u> $n_2 = (1)(5) \Rightarrow n_2 = 5 \text{ mol CO}_2$

<u>H balance:</u> $2n_3 = (1)(12) \Rightarrow n_3 = 6 \text{ mol H}_2\text{O}$

30% excess O_2 , complete combustion $\Rightarrow n_4 = (0.3)(8) \text{ mol } O_2 = 2.4 \text{ mol } O_2$

Reference states: C₅H₁₂(1), O₂(g), H₂O(1), CO₂(g) at 25°C

(We will use the values of $\Delta \hat{H}_c^0$ given in Table B.1, which are based on $H_2O(1)$ as a combustion product, and so must choose the liquid as a reference state for water)

9.65 (cont'd)

substance	$n_{\rm in}$	\hat{H}_{in}	$n_{ m out}$	$\hat{H}_{ m out}$
substance	mol	kJ/mol	mol	kJ/mol
C_5H_{12}	1.00	0	_	_
O_2	10.40	\hat{H}_1	2.40	\hat{H}_2
CO_2	_	_	5.00	\hat{H}_3
H ₂ O	_	_	6.00	\hat{H}_4

$$\hat{H}_{i} = \int_{25}^{T} (C_{p})_{i} dT \qquad i = 2,3$$

$$= \Delta \hat{H}_{v} (25^{\circ} C) + \int_{25}^{T} (C_{p})_{H_{2}O(v)} dT \text{ for } H_{2}O(v)$$

$$\hat{H}_1 = \hat{H}_{\mathrm{O}_2} (75^{\mathrm{o}}\,\mathrm{C}) \stackrel{\mathrm{Table B.8}}{\stackrel{\downarrow}{=}} 1.48 \;\mathrm{kJ \,/\,mol}$$

Substituting $(C_p)_i$ from Table B.2:

$$\begin{split} \hat{H}_2 &= (0.0291 \ T_{ad} + 0.579 \times 10^{-5} \ T_{ad}^{\ 2} - 0.2025 \times 10^{-8} \ T_{ad}^{\ 3} + 0.3278 \times 10^{-12} \ T_{ad}^{\ 4} - 0.7311) \ \frac{\text{kJ}}{\text{mol}} \\ \hat{H}_3 &= (0.03611 \ T_{ad} + 2.1165 \times 10^{-5} \ T_{ad}^{\ 2} - 0.9623 \times 10^{-8} \ T_{ad}^{\ 3} + 1.866 \times 10^{-12} \ T_{ad}^{\ 4} - 0.9158) \ \frac{\text{kJ}}{\text{mol}} \\ \hat{H}_4 &= 44.01 + (0.03346 \ T_{ad} + 0.3440 \times 10^{-5} \ T_{ad}^{\ 2} + 0.2535 \times 10^{-8} \ T_{ad}^{\ 3} - 0.8983 \times 10^{-12} \ T_{ad}^{\ 4} - 0.838) \ \frac{\text{kJ}}{\text{mol}} \\ \Rightarrow \hat{H}_4 &= 43.17 + (0.03346 \ T_{ad} + 0.3440 \times 10^{-5} \ T_{ad}^{\ 2} + 0.2535 \times 10^{-8} \ T_{ad}^{\ 3} - 0.8983 \times 10^{-12} \ T_{ad}^{\ 4}) \ \frac{\text{kJ}}{\text{mol}} \end{split}$$

Energy balance : $\Delta H = 0$

$$n_{C_5H_{12}} \left(\Delta \hat{H}_c^o \right)_{C_5H_{12}(I)} + \sum_{\text{out}} n_i \hat{H}_i - \sum_{\text{in}} n_i \hat{H}_i = 0$$

 $(1 \; \text{mol} \; \text{C}_5 \text{H}_{12}) (-3509.5 \; \text{kJ} \; / \; \text{mol}) + (2.40) \; \hat{H}_2 \; + (5.00) \; \hat{H}_3 \; + (6.00) \; \hat{H}_4 \; - (10.40) (\hat{H}_1) = 0$

Substitute for
$$\hat{H}_1$$
 through \hat{H}_4

$$\Delta \dot{H} = (0.4512 \ T_{\text{ad}} + 14.036 \times 10^{-5} \ T_{\text{ad}}^{2} - 3.777 \times 10^{-8} \ T_{\text{ad}}^{3} + 4.727 \times 10^{-12} \ T_{\text{ad}}^{4}) - 3272.20 \ \text{kJ/mol} = 0$$

$$\Rightarrow f(T_{\text{ad}}) = -3272.20 + 0.4512 \ T_{\text{ad}} + 14.036 \times 10^{-5} \ T_{\text{ad}}^{2} - 3.777 \times 10^{-8} \ T_{\text{ad}}^{3} + 4.727 \times 10^{-12} \ T_{\text{ad}}^{4} = 0$$

$$\underline{\text{Check}} : \frac{-3272.20}{4.727 \times 10^{-12}} = -6.922 \times 10^{14}$$

Solving for T_{ad} using E-Z Solve $\Rightarrow T_{ad} = 4414^{\circ}$ C

9.65 (cont'd)

d. The polynomial formulas are only applicable for $T \le 1500^{\circ}C$

$$2\mathrm{CH_4} + 2\mathrm{O_2} \rightarrow \mathrm{CO_2} + 2\mathrm{H_2O}$$

Fuel feed rate : =
$$\frac{5.50 \text{ L}}{\text{s}} = \frac{273 \text{ K}}{1.0 \text{ atm}} = \frac{1.1 \text{ atm}}{22.4 \text{ L(STP)}} = 0.247 \text{ mol CH}_4 / \text{s}$$

Theoretical
$$O_2 = 2 \times 0.247 = 0.494 \text{ mol } O_2 / \text{s}$$

$$\frac{25\% \text{ excess air}}{\Rightarrow \dot{n}_2 = 1.25(0.494) = 0.6175 \text{ mol O}_2 / \text{s}} \quad ,$$
$$\Rightarrow 3.76 \times 0.6175 = 2.32 \text{ mol N}_2 / \text{s}$$

$$\frac{\text{Complete combustion}}{\dot{\xi} = n_1 = 0.247 \text{ mol/s}, \ \dot{n}_4 = 0.247 \text{ mol CO}_2 / \text{s}, \ \dot{n}_5 = 0.494 \text{ mol H}_2\text{O/s} }{\dot{n}_3 = 0.6175 \text{ mol O}_2 \text{ fed/s} - 0.494 \text{ mol consumed/s} }$$

$$= 0.124 \text{ mol O}_2 / \text{s}$$

References: CH_4 , O_2 , N_2 , CO_2 , H_2O at $25^{\circ}C$

$ \frac{\dot{n}_{\rm in}}{(\text{mol/s})} $	\hat{H}_{in} (kJ/mol)	$ \frac{\dot{n}_{\text{out}}}{(\text{mol}/\text{s})} $	\hat{H}_{out} (kJ / mol)
0.247	0	-	- <
	^ 1		$\hat{H}_3 \\ \hat{H}_4$
2.32	H_2		$\hat{H}_4 \ \hat{H}_5$
_	_		\hat{H}_5
	(mol/s)	$\begin{array}{c cc} (\text{mol/s}) & (\text{kJ/mol}) \\ \hline 0.247 & 0 \\ 0.6175 & \hat{H}_1 \\ \hline \end{array}$	$\begin{array}{c cccc} (\text{mol/s}) & (\text{kJ/mol}) & (\text{mol/s}) \\ \hline 0.247 & 0 & - \\ 0.6175 & \hat{H}_1 & 0.124 \\ \end{array}$

$$\hat{H}_{1} = \hat{H}(O_{2}, 150^{\circ} C) \xrightarrow{\text{Table B.8}} 3.78 \text{ kJ/mol}$$

$$\hat{H}_{2} = \hat{H}(N_{2}, 150^{\circ} C) \xrightarrow{\text{Table B.8}} 3.66 \text{ kJ/mol}$$

$$(\Delta \hat{H}_{c}^{\circ})_{\text{CH}_{4}} = -890.36 \text{ kJ/mol}$$

$$\hat{H}_{i} = \int_{C}^{T} C_{pi} dT, \quad i = 3 - 5$$

9.66 (cont'd)

$$\hat{H}_b = (\Delta \hat{H}_v)_{H_2O(25^{\circ}C)} + \int_{25}^{T} (C_p)_{H_2O(v)} dT$$

a. Energy Balance

$$\Delta \dot{H} = \dot{\xi} (\Delta \hat{H}_{\rm c}^{\rm o})_{\rm CH_4} + \sum \dot{n}_{\rm out} \hat{H}_{\rm out} - \sum \dot{n}_{\rm in} \hat{H}_{\rm in} = 0$$

Table B.2 for $C_{ni}(T)$, $(\Delta \hat{H}_{V})_{H_{\bullet}O} = 44.01 \text{ kJ/mol}$

$$0.247(-890.36) + 0.494(44.01) + 0.0963(T - 25) + 1.02 \times 10^{-5}(T^2 - 25^2) + 0.305 \times 10^{-8}(T^3 - 25^3) - 1.61 \times 10^{-12}(T^4 - 25^4) - 0.6175(3.78) - 2.32(3.66) = 0$$

$$\Rightarrow -211.4 + 0.0963T_{ad} + 1.02 \times 10^{-5}T_{ad}^{2} + 0.305 \times 10^{-8}T_{ad}^{3} - 1.61 \times 10^{-12}T_{ad}^{4} = 0 \Rightarrow \underline{T = 1832^{\circ}C}$$

b. In product gas,

$$T = 1832^{\circ}$$
 C, $P = 1.05 \times 760 = 798$ mmHg

$$y_{H_2O} = \frac{0.494 \text{ mol/s}}{(0.124 + 2.32 + 0.247 + 0.494) \text{ mol/s}} = 0.155 \text{ mol } H_2O/\text{mol}$$

Raoult's law:
$$y_{H_2O}P = p_{H_2O}^*(T_{dp}) \Rightarrow p_{H_2O}^* = (0.155)(798) = 124 \text{ mmHg} \xrightarrow{\text{Table B.3}} \underline{T_{dp} = 56^{\circ}\text{C}}$$

Degr. superheat = $1832^{\circ}\text{C} - 56^{\circ}\text{C} = \underline{1776^{\circ}\text{C}}$

9.67 a. $CH_4(1) + 2O_2(g) \rightarrow CO_2(g) + 2H_2O(v)$

Basis: 1 mol CH₄

$$\frac{\text{Theoretical oxygen}}{\text{1 mol CH}_4} = \frac{1 \text{ mol CH}_4 | 2 \text{ mol O}_2}{1 \text{ mol CH}_4} = 2.00 \text{ mol O}_2$$

30 % excess air ⇒ 1.30 (2.00) = 2.60 mol O_2 , ⇒ 3.76 × 2.60 = 9.78 mol N_2

 $\underline{\text{Complete combustion}} \Rightarrow n_2 = 1.00 \text{ mol CO}_2, \quad n_3 = 2.00 \text{ mol H}_2\text{O}$

2.00 mol O_2 consumed $\Rightarrow n_4 = (2.60 - 2.00) \text{ mol } O_2 = 0.60 \text{ mol } O_2$

Internal energy of reaction: Eq. (9.1-5)
$$\Rightarrow \Delta \hat{U}_{c}^{o} = \Delta \hat{H}_{c}^{o} - RT \left(\sum_{\text{gaseous products}} v_{i} - \sum_{\text{gaseous products}} v_{i} \right)$$

$$\Rightarrow \left(\Delta \hat{U}_{c}^{o}\right)_{CH_{4}} = \left(-890.36 \frac{kJ}{mol}\right) - \frac{8.314 \text{ J}}{mol} \left(\frac{298 \text{ K}}{mol}\right) + \frac{1 kJ}{10^{3} \text{ J}} = -890.36 \frac{kJ}{mol}$$

$$\hat{U} = \int_{25}^{T} (C_v) dT \xrightarrow{\text{Ideal Gas}} \int_{25}^{T} (C_p - R_g) dT$$

If C_p is independent of $T \Rightarrow \hat{U} = (C_p - R_g)(T - 25^{\circ} \text{C})$

9.67 (cont'd)

b.

Reference states: CH₄(g), N₂(g), O₂(g), H₂O(l), CO₂(g) at 25°C

(We will use the values of $\Delta \hat{H}_c^0$ given in Table B.1, which are based on $H_2O(1)$ as a combustion product, and so must choose the liquid as a reference state for water.)

Substance	$n_{\rm in}$	\hat{U}_{in}	$n_{ m out}$	$\hat{U}_{ ext{out}}$
Substance	mol	kJ/mol	mol	kJ/mol
CH ₄	1.00	0	_	_
O_2	2.60	0	0.60	${\hat U}_1$
N_2	9.78	0	9.78	\hat{U}_2
CO_2	_	_	1.00	\hat{U}_3
$H_2O(v)$	_	_	2.00	\hat{U}_4

Part a
$$\hat{U}_{i} = (C_{p} - R_{g})(T - 25) \text{ for all species except H}_{2}O(v)$$

$$= \Delta \hat{U}_{v} (25^{\circ} \text{ C}) + (C_{p} - R_{g})(T - 25) = \left[\Delta \hat{H}_{v} (25^{\circ} \text{ C}) - R_{g} T_{ref}\right] + (C_{p} - R_{g})(T - 25) \text{ for H}_{2}O(v)$$

Substituting given values of $(C_p)_i$ and $R_g = 8.314 \times 10^{-3}$ kJ/mol yields

$$\hat{U}_1 = (0.033 - 8.314 \times 10^{-3})(T - 25) \text{ kJ/mol} = (0.02469T - 0.6172) \text{ kJ/mol}$$

$$\hat{U}_2 = (0.032 - 8.314 \times 10^{-3})(T - 25) \text{ kJ/mol} = (0.02369T - 0.5922) \text{ kJ/mol}$$

$$\hat{U}_3 = (0.052 - 8.314 \times 10^{-3})(T - 25) \text{ kJ} / \text{mol} = (0.04369T - 1.0922) \text{ kJ} / \text{mol}$$

$$\hat{U}_4 = \left[44.01 \frac{\text{kJ}}{\text{mol}} - \left(8.314 \times 10^{-3} \frac{\text{kJ}}{\text{mol} \cdot \text{K}} \right) (298 \text{ K}) \right] + (0.040 - 8.314 \times 10^{-3}) (T - 25) \frac{\text{kJ}}{\text{mol}}$$

$$\Rightarrow \hat{U}_4 = 41.53 \frac{\text{kJ}}{\text{mol}} + (0.052 - 8.314 \times 10^{-3}) (T - 25) \frac{\text{kJ}}{\text{mol}} = (0.03167T - 40.74) \frac{\text{kJ}}{\text{mol}}$$

Energy Balance

$$\begin{split} Q &= n_{\mathrm{CH_4}} \left(\Delta \hat{U}_{\mathrm{c}}^{\mathrm{o}} \right)_{\mathrm{CH_4}} + \sum_{\mathrm{out}} n_i \hat{U}_i - \sum_{\mathrm{in}} n_i \hat{U}_i = 0 \\ \\ \Rightarrow Q &= (1.00) \Big(-890.36 \; \mathrm{kJ / mol} \Big) + (0.60) \hat{U}_1 + (9.87) \hat{U}_2 + (1.00) \hat{U}_3 + (2.00) \hat{U}_4 = 0 \end{split}$$
 Substituting \hat{U}_1 through \hat{U}_4

$$0.3557 \ T - 816.19 = 0 \Rightarrow \underline{T = 2295^{\circ} \text{C}}$$

$$\underline{\text{Ideal Gas Equation of State}} \implies \frac{P_{\rm f}}{P_{\rm i}} = \frac{T_{\rm f}}{T_{\rm i}} \Rightarrow P_{\rm f} = \left(\frac{(2295 + 273) \text{ K}}{(25 + 273) \text{ K}}\right) \times 4.00 \text{ atm} = \underline{\underline{34.5 \text{ atm}}}$$

- Heat loss to and through reactor wall

- Tank would expand at high temperatures and pressures

9.68

b. 1 mol natural gas

Basis: 1 g-mole natural gas

$$\begin{split} & \text{CH}_4(\mathbf{g}) \ + 2\text{O}_2(\mathbf{g}) \to \text{CO}_2(\mathbf{g}) + \text{H}_2\text{O}(\mathbf{v}) \\ & \text{C}_2\text{H}_6(\mathbf{g}) + \frac{7}{2}\text{O}_2(\mathbf{g}) \to 2\text{CO}_2(\mathbf{g}) + 3\text{H}_2\text{O}(\mathbf{v}) \\ & \text{C}_3\text{H}_8(\mathbf{g}) + 5\text{O}_2(\mathbf{g}) \to 3\text{CO}_2(\mathbf{g}) + 4\text{H}_2\text{O}(\mathbf{v}) \end{split}$$

Theoretical oxygen:

$$\begin{split} \frac{2 \operatorname{mol} \mathcal{O}_{2}}{1 \operatorname{mol} \mathcal{CH}_{4}} & | y_{\mathcal{CH}_{4}} \operatorname{(mol} \mathcal{CH}_{4}) + \frac{3.5 \operatorname{mol} \mathcal{O}_{2}}{1 \operatorname{mol} \mathcal{C}_{2} \mathcal{H}_{6}} & | y_{\mathcal{C}_{2} \mathcal{H}_{6}} \operatorname{(mol} \mathcal{C}_{2} \mathcal{H}_{6}) + \frac{5 \operatorname{mol} \mathcal{O}_{2}}{1 \operatorname{mol} \mathcal{C}_{3} \mathcal{H}_{8}} & | y_{\mathcal{C}_{3} \mathcal{H}_{8}} \operatorname{(mol} \mathcal{C}_{3} \mathcal{H}_{8}) \\ & = (2 y_{\mathcal{CH}_{4}} + 3.5 y_{\mathcal{C}_{2} \mathcal{H}_{6}} + 5 y_{\mathcal{C}_{3} \mathcal{H}_{8}}) \\ & \underline{\operatorname{Excess oxygen:}} & 0.21 n_{a} (1 - y_{wo}) = \left(1 + \frac{P_{xs}}{100}\right) (2 y_{\mathcal{CH}_{4}} + 3.5 y_{\mathcal{C}_{2} \mathcal{H}_{6}} + 5 y_{\mathcal{C}_{3} \mathcal{H}_{8}}) \operatorname{mol} \mathcal{O}_{2} \\ & \Rightarrow n_{a} = \left(1 + \frac{P_{xs}}{100}\right) (2 y_{\mathcal{CH}_{4}} + 3.5 y_{\mathcal{C}_{2} \mathcal{H}_{6}} + 5 y_{\mathcal{C}_{3} \mathcal{H}_{8}}) & \frac{1}{0.21 (1 - y_{w0})} \operatorname{mol air} \end{split}$$

Feed components

$$(n_{\rm O_2})_{\rm in} = 0.21 n_a (1 - y_{wo}), (n_{\rm N_2})_{\rm in} = 0.79 n_a (1 - y_{wo}), (n_{\rm H_2O})_{\rm in} = n_a y_{wo}$$

 $\underline{N_2 \text{ in product gas:}} \ n_{N_2} = (n_{N_2})_{\text{in}} \ \text{mol } N_2$

CO₂ in product gas:

$$\begin{split} n_{\text{CO}_2} = & \frac{1 \, \text{mol CO}_2 \, \left| \, n_{\text{CH}_4} \, \left(\text{mol CH}_4 \right) \right|}{1 \, \text{mol C}_4 \, \left| \, \frac{2 \, \text{mol CO}_2 \, \left| \, n_{\text{C}_2\text{H}_6} \, \left(\text{mol C}_2\text{H}_6 \right) \right|}{1 \, \text{mol C}_2\text{H}_6} + \frac{3 \, \text{mol CO}_2 \, \left| \, n_{\text{C}_3\text{H}_8} \, \left(\text{mol C}_3\text{H}_8 \right) \right|}{1 \, \text{mol C}_3\text{H}_8 \, \left| \, \frac{1 \, \text{mol CO}_2 \, \left| \, n_{\text{C}_3\text{H}_8} \, \left(\text{mol C}_3\text{H}_8 \right) \right|}{1 \, \text{mol C}_3\text{H}_8 \, \left| \, \frac{1 \, \text{mol CO}_2 \, \left| \, n_{\text{C}_3\text{H}_8} \, \left(\text{mol C}_3\text{H}_8 \right) \right|}{1 \, \text{mol C}_3\text{H}_8 \, \left| \, \frac{1 \, \text{mol CO}_2 \, \left| \, n_{\text{C}_3\text{H}_8} \, \left(\text{mol C}_3\text{H}_8 \right) \right|}{1 \, \text{mol C}_3\text{H}_8 \, \left| \, n_{\text{C}_3\text{H}_8} \, \left(\text{mol C}_3\text{H}_8 \right) \right|} \\ = & \left(n_{\text{CH}_4} \, + 2 n_{\text{C}_3\text{H}_6} \, + 3 n_{\text{C}_3\text{H}_8} \, \right) \, \text{mol CO}_2 \, \end{split}$$

H₂O in product gas:

$$\begin{split} n_{\rm H_2O} = & \frac{1 \; \text{mol H}_2\rm O}{1 \; \text{mol CH}_4} \left| \frac{n_{\rm CH_4} \; (\text{mol CH}_4)}{1 \; \text{mol C}_2\rm H_6} + \frac{3 \; \text{mol H}_2\rm O}{1 \; \text{mol C}_2\rm H_6} \left| \frac{n_{\rm C_2H_6} \; (\text{mol C}_2\rm H_6)}{1 \; \text{mol C}_3\rm H_8} \right| + \frac{4 \; \text{mol O}_2}{1 \; \text{mol C}_3\rm H_8} \left| \frac{n_{\rm C_3H_8} \; (\text{mol C}_3\rm H_8)}{1 \; \text{mol C}_3\rm H_8} \right| \\ = & [2n_{\rm CH_4} + 3n_{\rm C_2H_6} + 4n_{\rm C_3H_8} + n_{\rm a}(1 - y_{\rm wo})] \; \text{mol H}_2\rm O \\ \\ = & \frac{O_2 \; \text{in product gas} : \; n_{\rm O_2} = \frac{P_{\rm xs}}{100} (\; 2n_{\rm CH_4} + 3.5n_{\rm C_2H_6} + 5\; n_{\rm C_3H_8}) \; \text{mol O}_2 \end{split}$$

9.68 (cont'd)

c. References: C(s), $H_2(g)$ at $25^{\circ}C$

$$\hat{H}_{CH_4}(T) = (\Delta H_f^0)_{CH_4} + \int_{25}^T (C_p)_{CH_4} dT$$

Using ($\Delta H_{\rm f}^{\rm o}$)_{CH₄} from Table B.1 and (C_p)_{CH₄} from Table B.2

$$\hat{H}_{\text{CH}_4}(T) = -74.85 \text{ kJ/mol} + \left(\int_{25}^{T} (0.03431 + 5.469 \times 10^{-5} T + 0.3661 \times 10^{-8} T^2 - 11.00 \times 10^{-12} T^3) dT \right) \text{kJ/mol}$$

$$\Rightarrow \hat{H}_{\mathrm{CH_4}}(T) = [-75.72 + 3.431 \times 10^{-2} \, T + 2.734 \times 10^{-5} \, T^2 + 0.122 \times 10^{-8} \, T^3 - 2.75 \times 10^{-12} \, T^4] \, \text{ kJ / mol}$$

Substance	$n_{\rm in}$	\hat{H}_{in}	$n_{ m out}$	$\hat{H}_{ ext{out}}$
Substance	mol	kJ / mol	mol	kJ / mol
CH ₄	n_1	\hat{H}_1	_	_
C_2H_6	n_2	\hat{H}_2	_	_
C_3H_8	n_3	\hat{H}_3	_	_
O_2	n_4	\hat{H}_4	n_7	\hat{H}_7
N_2	n_5	\hat{H}_5	n_8	\hat{H}_8
CO_2	n_6	_	n_9	\hat{H}_{9}
H ₂ O	_	_	n_{10}	\hat{H}_{10}

$$\begin{split} \Delta H &= \sum_{i=4}^{7} (n_i)_{\text{out}} (H_i)_{\text{out}} - \sum_{i=1}^{6} (n_i)_{\text{in}} (H_i)_{\text{in}} \\ \hat{H}_i &= a_i + b_i T + c_i T^2 + d_i T^3 + e_i T^4 \\ \sum_{i=1}^{6} (n_i)_{\text{in}} (H_i)_{\text{in}} &= \sum_{i=1}^{3} (n_i)_{\text{in}} \hat{H}_i (T_f) + \sum_{i=4}^{6} (n_i)_{\text{in}} \hat{H}_i (T_a) \\ \Rightarrow \Delta H &= \sum_{i=4}^{7} (n_i)_{\text{out}} (a_i + b_i T + c_i T^2 + d_i T^3 + e_i T^4)_{\text{out}} - \sum_{i=1}^{3} (n_i)_{\text{in}} \hat{H}_i (T_f) - \sum_{i=4}^{6} (n_i)_{\text{in}} \hat{H}_i (T_a) \\ \Rightarrow \Delta H &= \sum_{i=1}^{7} (n_i)_{\text{out}} a_i + \sum_{i=4}^{7} (n_i)_{\text{out}} b_i T + \sum_{i=1}^{7} (n_i)_{\text{out}} c_i T^2 + \sum_{i=1}^{7} (n_i)_{\text{out}} d_i T^3 + \sum_{i=1}^{7} (n_i)_{\text{out}} e_i T^4 \\ &- \sum_{i=1}^{3} (n_i)_{\text{in}} \hat{H}_i (T_f) - \sum_{i=4}^{6} (n_i)_{\text{in}} \hat{H}_i (T_a) \\ &= \alpha_0 + \alpha_1 T + \alpha_2 T^2 + \alpha_3 T^3 + \alpha_4 T^4 \\ \text{where} \quad \alpha_0 &= \sum_{i=1}^{7} (n_i)_{\text{out}} a_i - \sum_{i=1}^{3} (n_i)_{\text{in}} \hat{H}_i (T_f) - \sum_{i=4}^{6} (n_i)_{\text{in}} \hat{H}_i (T_a) \\ &\alpha_1 &= \sum_{i=1}^{7} (n_i)_{\text{out}} b_i \qquad \alpha_2 = \sum_{i=1}^{7} (n_i)_{\text{out}} c_i \\ &\alpha_3 &= \sum_{i=1}^{7} (n_i)_{\text{out}} d_i \qquad \alpha_4 = \sum_{i=1}^{7} (n_i)_{\text{out}} e_i \end{split}$$

.

9.68 (cont'd)

d.

	Run 1	Run 2	Run 3	Run 4	Run 5	Run 6
VCH4	0.75					
yCH4		0.86	0.75	0.75	0.75	0.75
уС2Н6	0.21	0.1	0.21	0.21	0.21	0.21
уСЗН8	0.04	0.04	0.04	0.04	0.04	0.04
Tf	40	40	150	40	40	40
Та	150	150	150	250	150	150
Pxs	25	25	25	25	100	25
ywo	0.0306	0.0306	0.0306	0.0306	0.0306	0.1
nO2i	3.04	2.84	3.04	3.04	4.87	3.04
nN2	11.44	10.67	11.44	11.44	18.31	11.44
nH2Oi	0.46	0.43	0.46	0.46	0.73	1.61
HCH4	-74.3	-74.3	-70	-74.3	-74.3	-74.3
HC2H6	-83.9	-83.9	-77	-83.9	-83.9	-83.9
HC3H8	-102.7	-102.7	-93	-102.7	-102.7	-102.7
HO2i	3.6	3.6	3.6	6.6	3.6	3.6
HN2i	3.8	3.8	3.8	6.9	3.8	3.8
HH2Oi	-237.6	-237.6	-237.6	-234.1	-237.6	-237.6
nCO2	1.29	1.18	1.29	1.29	1.29	1.29
nH2O	2.75	2.61	2.75	2.75	3.02	3.9
nO2	0.61	0.57	0.61	0.61	2.44	0.61
nN2	11.44	10.67	11.44	11.44	18.31	11.44
Tad	1743.1	1737.7	1750.7	1812.1	1237.5	1633.6
alph0	-1052	-978.9	-1057	-1099	-1093	-1058
alph1	0.4892	0.4567	0.4892	0.4892	0.7512	0.5278
alph2	0.0001	1.00E-04	0.0001	0.0001	0.0001	0.0001
alph3	-3.00E-08	-3.00E-08	-3.00E-08	-3.00E-08	-4.00E-08	-2.00E-08
alph4	3.00E-12	3.00E-12	3.00E-12	3.00E-12	4.00E-12	2.00E-12
Delta H	3.00E-07	9.00E-06	-4.00E-07	-1.00E-04	-1.00E-05	6.00E-04

Species	а	b	С	d	е
		x 10^2	x 10^5	x 10^8	x 10^12
CH4	-75.72	3.431	2.734	0.122	-2.75
C2H6	-85.95	4.937	6.96	-1.939	1.82
C3H8	-105.6	6.803	11.3	-4.37	7.928
02	-0.731	2.9	0.11	0.191	-0.718
N2	-0.728	2.91	0.579	-0.203	0.328
H20	-242.7	3.346	0.344	0.254	-0.898
CO2	-394.4	3.611	2.117	-0.962	1.866

Average M.W. of product gas:

$$\overline{M} = 0.991(26.04) + 0.00059(18.016) + 0.00841(44.01) = 26.19 \text{ g/mol}$$

Molar flow rate of product gas:
$$n_0 = \frac{5000 \text{ kg}}{\text{day}} = \frac{10^3 \text{ g}}{1 \text{ kg}} = \frac{1 \text{ mol}}{26.19 \text{ g}} = \frac{1 \text{ day}}{24 \text{ h}} = 7955 \text{ mol/h}$$

Material balances -- plan of attack (refer to flow chart):

Stripper balances:
$$C_2H_2 \Rightarrow n_1$$
, $CO \Rightarrow n_2$, $CH_4 \Rightarrow n_3$, $H_2O \Rightarrow n_4$, $CO_2 \Rightarrow n_5$

Absorber balances:
$$CH_4 \Rightarrow n_6$$
, $C_2H_2 \Rightarrow n_7$, $CO \Rightarrow n_9$, $CO_2 \Rightarrow n_{10}$, $H_2O \Rightarrow n_{11}$

$$\begin{cases} 5.67\% \text{ soot formation} \\ \text{converter C balance} \end{cases} \Rightarrow n_{13}, n_{14}, \text{ converter H balance} \Rightarrow n_8$$

<u>Converter O balance</u> $\Rightarrow n_{15}$, converter N₂ balance $\Rightarrow n_{12}$

Stripper balances:

$$C_2H_2$$
: $0.0155n_1 = 0.991(7955 \text{ mol/h}) \Rightarrow n_1 = 5.086 \times 10^5 \text{ mol/h}$

CO:
$$(0.00055)(5.086 \times 10^5) = n_2 \implies n_2 = 79.7 \text{ mol CO/h}$$

$$CH_4$$
: $(0.00055)(5.086 \times 10^5) = n_3 \Rightarrow n_3 = 79.7 \text{ mol } CH_4/h$

$$H_2O: (0.0596)(5.086 \times 10^5) = n_4 + (0.00059)(7955) \Rightarrow n_4 = 30308 \text{ mol } H_2O/h$$

$$CO_2$$
: $(0.0068)(5.086 \times 10^5) = n_5 + (0.00841)(7955) \Rightarrow n_5 = 3392 \text{ mol } CO_2/h$

Absorber balances

CH₄:
$$n_6 = 0.950n_6 + (0.00055)(5.086 \times 10^5) = n_6 \Rightarrow 5595 \text{ mol CH}_4/\text{h}$$

9.69 (cont'd)

$$C_{2}H_{2}: n_{7} = (0.0155)(5.086 \times 10^{5}) + 0.006n_{7} \Rightarrow n_{7} = 7931 \text{ mol } C_{2}H_{2}/h$$

$$CO: n_{9} = 0.988n_{9} + (0.00055)(5.086 \times 10^{5}) \Rightarrow n_{9} = 23311 \text{ mol } CO/h$$

$$CO_{2}: n_{10} = (0.0068)(5.086 \times 10^{5}) = 3458 \text{ mol } CO_{2}/h$$

$$H_{2}O: n_{11} = (0.0596)(5.086 \times 10^{5}) = 30313 \text{ mol } H_{2}O/h$$

$$\underline{Soot \text{ formation:}} \frac{n_{13} = (0.0567)n_{14} (\text{mol } CH_{4})}{h} \frac{1 \text{ mol } C}{1 \text{ mol } CH_{4}} \Rightarrow n_{13} = 0.0567n_{14} \quad (1)$$

Converter C balance:

$$n_{14} = (5595 \text{ mol CH}_4/\text{h})(1 \text{ mol C/mol CH}_4) + (7931)(2) + (23311)(1) + (3458)(1) + n_{13}$$

 $\Rightarrow n_{14} = n_{13} + 48226$ (2)

Solve (1) & (2) simultaneously $\Rightarrow n_{13} = 2899 \text{ mol C(s)/h}, n_{14} = 51120 \text{ mol CH}_4/h$

Converter H balance:
$$\frac{\text{Converter H balance:}}{\text{h}} \frac{51120 \text{ mol CH}_4}{\text{l}} = \frac{4 \text{ mol H}}{(5595)(4)} = \frac{\text{CH}_4}{(5595)(4)} + \frac{\text{C}_2\text{H}_2}{(7931)(2)} + \frac{\text{H}_2}{2n_8} + \frac{\text{H}_2\text{O}}{(30313)(2)}$$
$$\Rightarrow n_8 = 52816 \text{ mol H}_2/\text{h}$$

Converter O balance:
$$(0.96n_{15})(2) = \frac{23311 \text{ mol CO}}{\text{h}} + \frac{1 \text{ mol O}}{1 \text{ mol CO}} + \frac{\text{CO}_2}{(3458)(2)} + \frac{\text{H}_2\text{O}}{(30313)(1)}$$

$$\Rightarrow n_{15} = 31531 \text{ mol/h}$$

Converter N₂ balance: $(0.04)(31531)n_{12} \Rightarrow n_{12} = 1261 \text{ mol N}_2/\text{h}$

a. Feed stream flow rates

$$\begin{split} V_{\text{CH}_4} &= \frac{51120 \text{ mol CH}_4}{\text{h}} \; \left| \begin{array}{c} 0.0244 \text{ m}^3 \big(\text{STP} \big)}{1 \text{ mol}} \right| = \underline{1145 \text{ SCMH CH}_4} \\ \\ V_{\text{O}_2} &= \frac{31531 \text{ mol } \big(\text{O}_2 + \text{N}_2 \big)}{\text{h}} \; \left| \begin{array}{c} 0.0244 \text{ m}^3 \big(\text{STP} \big)}{1 \text{ mol}} \right| = \underline{706 \text{ SCMH O}_2 \big(+ \text{N}_2 \big)} \\ \\ \end{array} \end{split}$$

b. Gas feed to absorber

$$\begin{array}{c|c} 5595 \; \mathrm{mol} \; \mathrm{CH_4/h} \\ 7931 \; \mathrm{mol} \; \mathrm{C_2H_2/h} \\ 23311 \; \mathrm{mol} \; \mathrm{CO/h} \\ 3458 \; \mathrm{mol} \; \mathrm{CO_2/h} \\ 30313 \; \mathrm{mol} \; \mathrm{H_2O/h} \\ 52816 \; \mathrm{mol} \; \mathrm{H_2/h} \\ \underline{1261 \; \mathrm{mol} \; \mathrm{N_2/h}} \\ 1.2469 \times 10^5 \; \mathrm{mol/h} \end{array} \\ \Rightarrow \underline{\underline{125 \; \mathrm{kmol/h}}} \; , \quad \begin{array}{c} 4.5 \; \mathrm{mole\%} \; \mathrm{CH_4} \; , \; 6.4 \; \% \; \mathrm{C_2H_2} \; , \; 18.7 \% \; \mathrm{CO} \; , \\ \underline{2.8\% \; \mathrm{CO_2} \; , \; 24.3 \% \; \mathrm{H_2O} \; , \; 42.4 \% \; \mathrm{H_2} \; , \; 1.0 \% \; \mathrm{N_2} \end{array}$$

Absorber off-gas

$$\begin{array}{c} 52816 \; \mathrm{mol} \; \; \mathrm{H_2/h} \\ 1261 \; \mathrm{mol} \; \; \mathrm{N_2/h} \\ 23031 \; \mathrm{mol} \; \; \mathrm{CO/h} \\ 5315 \; \mathrm{mol} \; \; \mathrm{CH_4/h} \\ \frac{41.6 \; \mathrm{mol} \; \; \mathrm{C_2H_2/h}}{8.2471 \times 10^4 \; \mathrm{mol/h}} \\ \end{array} \\ \Rightarrow \underbrace{\frac{82.5 \; \; \mathrm{kmol/h}}{64.1 \; \mathrm{mole\%} \; \; \mathrm{H_2}, \; \; 1.5\% \; \mathrm{N_2}, \; 27.9\% \; \; \mathrm{CO}, \\ \frac{6.4\% \; \mathrm{CH_4}, \; 0.06\% \; \mathrm{C_2H_2}}{8.2471 \times 10^4 \; \; \mathrm{mol/h}}}$$

9.69 (cont'd)

d. Overall product yield =
$$\frac{(0.991)(7955) \text{ mol } C_2H_2 \text{ in product gas}}{51120 \text{ mol } CH_4 \text{ in feed/h}} = \frac{0.154 \frac{\text{mol } C_2H_2}{\text{mol } CH_4}}{\text{mol } CH_4}$$

The theoretical maximum yield would be obtained if only the reaction $2CH_4 \rightarrow C_2H_2 + 3H_2$ occurred, the reaction went to completion, and all the C_2H_2 formed were recovered in the product gas. This yield is $(1 \text{ mol } C_2H_2/2 \text{ mol } CH_4) = 0.500 \text{ mol } C_2H_2/2 \text{ mol } CH_4$.

The ratio of the actual yield to the theoretical yield is 0.154/0.500 = 0.308.

e. Methane preheater

$$\dot{Q}_{\text{CH}_4} = \Delta \dot{H} = \dot{n}_{14} \int_{25}^{650} \begin{pmatrix} C_p \end{pmatrix}_{\text{CH}_4} dT = \frac{51120 \text{ mol}}{\text{h}} \begin{vmatrix} 32824 \text{ J} & | 1 \text{ h} & | 1 \text{ kJ} \\ & \text{mol} & | 3601 \text{ s} & | 10^3 \text{ J} \end{vmatrix} = \frac{466 \text{ kW}}{\text{mol}}$$

Oxygen preheater

$$\dot{Q}_{O_{2}} = \Delta \dot{H} = 0.96 \dot{n}_{15} \, \hat{H}(O_{2},650^{\circ} \, C) + 0.04 \dot{n}_{15} \, \hat{H}(N_{2},650^{\circ} \, C) \\
= \left(31531 \, \frac{\text{mol}}{\text{h}}\right) \left[\left(0.96 \times 20.135 + 0.04 \times 18.99\right) \frac{\text{kJ}}{\text{mol} \cdot {}^{\circ} \, C} \right] \left(\frac{1 \, \text{h}}{3600 \, \text{s}} \right) = \frac{176 \, \text{kW}}{\text{mol} \cdot {}^{\circ} \, C}$$

f. References:
$$C(s)$$
, $H_2(g)$, $O_2(g)$, $N_2(g)$ at 25° C

Substance	$\dot{n}_{ m in}$	$\hat{H}_{\rm in}$ (650° C)	$\dot{n}_{ m out}$	$\hat{H}_{\mathrm{out}}(T_{\mathrm{out}})$	
CH ₄	51120	-42.026		$-74.85 + \int_{25}^{T_a} C_p dT$	
O_2	30270	20.125	_	_	
N ₂	1261	18.988	1261	$\int_{35}^{T_a} C_p dT$	
C_2H_2	_	_	7931	$+226.75 \int_{25}^{T_a} C_p dT$	
H ₂	_	_	52816	$\int C_p dT$	n(mol/h)
СО	_	_	23311	$-110.52 + \int C_p dT$	$\hat{H}(kJ/mol)$
CO ₂	_	_	3458	$-393.5 + \int C_p dT$	
H ₂ O	_	_	30313	$-241.83 + \int C_p dT$	
C(s)	_	_	2899	$\int C_p dT$	

9.69 (cont'd)

$$\begin{split} \hat{H}_{i} &= {}_{\Delta}\hat{H}_{i}^{0} + \int_{25}^{T} C_{pi} dT \\ &\text{kJ/mol} \cdot \text{CC} \\ \sum_{\text{kJ/mol} \cdot \text{CC}} \hat{n}_{i} \hat{H}_{i} = -1.575 \times 10^{6} \text{ kJ/h} \\ \sum_{\text{in}} \hat{n}_{i} \hat{H}_{i} &= -9.888 \times 10^{6} \text{ kJ/h} + \int_{25}^{T_{\text{out}}} \left[5595 \left(C_{p} \right)_{\text{CH}_{4}} + 1261 \left(C_{p} \right)_{\text{N}_{2}} + 7931 \left(C_{p} \right)_{\text{C}_{3}\text{H}_{2}} \right. \\ &\left. + 52816 \left(C_{p} \right)_{\text{H}_{2}} + 23311 \left(C_{p} \right)_{\text{CO}} + 3458 \left(C_{p} \right)_{\text{CO}_{2}} + 3013 \left(C_{p} \right)_{\text{H}_{2}\text{O}(v)} \right] \frac{1 \text{ kJ}}{10^{3} \text{ J}} dT \\ &\left. + \int_{298}^{T_{ad} + 273} \left(C_{p} \right)_{\text{C}(s)} \times \frac{1 \text{ kJ}}{10^{3} \text{ J}} dT \right] dT \end{split}$$

We will apply the heat capacity formulas of Table B.2, recognizing that we will probably push at least some of them above their upper temperature limits

$$\sum_{\text{out}} \dot{n}_{i} \hat{H}_{i} = -9.888 \times 10^{6} \text{ kJ/h} + \int_{25}^{T_{ad}} \left(3902 + 1.2185 - 5.9885 \times 10^{-4} \, T^{2} - 1.0162 \times 10^{-7} \, T^{3}\right) dT$$

$$+ \int_{298}^{T_{ad} + 273} \left(32.411 + 0.031744T - \frac{1.4179 \times 10^{6}}{T^{2}}\right) dT$$

$$\sum_{\text{out}} \dot{n}_{i} \hat{H}_{i} = -1.000 \times 10^{7} + 3943T_{a} + 0.6251T_{a}^{2} - 1.996 \times 10^{-4} \, T_{a}^{3} - 2.5405 \times 10^{-8} \, T_{a}^{4} + \frac{1.418 \times 10^{6}}{T_{a} + 273}$$
Energy balance: $\Delta \dot{H} = \sum_{\text{out}} \dot{n}_{i} \, \hat{H}_{i} - \sum_{\text{in}} \dot{n}_{i} \, \hat{H}_{i} = 0$

$$\Rightarrow f(T_{c}) = -8.485 \times 10^{6} + 3943T_{c} + 0.6251T_{c}^{2} - 1.996 \times 10^{-4} \, T_{c}^{3} - 2.5405 \times 10^{-8} \, T_{c}^{4} + \frac{1.418 \times 10^{6}}{T_{c} + 273} = 0$$
E-Z Solve
$$\stackrel{\text{E-Z Solve}}{\Longrightarrow} \underline{T_{c}} = 2032^{\circ} \, \text{C}.$$

9.70 a.

9.70 (cont'd)

Solids balance on dryer:

$$0.35 \times 24,000 \text{ kg/d} = 0.75 \dot{n}_2 \Rightarrow \dot{n}_2 = 11200 \text{ kg/d} \Rightarrow F = 11.2 \text{ tonnes/d}$$
 (conc. sludge)

<u>Mass Balance on dryer</u>: $24,000 = \dot{n}_1 + 11200 \Rightarrow \dot{n}_1 = 12,800 \text{ kg/d}$

Energy balance on sludge side of dryer:

References: H₂O(1,22°C), Solids(22°C)

Substance	$\dot{n}_{\rm in}$ (kg/d)	\hat{H}_{in} (kJ/kg)	$\frac{\dot{n}_{\rm out}}{({\rm kg/d})}$	\hat{H}_{out} (kJ/kg)
Solids	8400	0	8400	$\hat{H}_{_1}$
H ₂ O(l)	15600	0	2800	$\hat{H}_{_{2}}$
$H_2O(v)$	_	_	12800	$\hat{H}_{\scriptscriptstyle 3}$

$$\hat{H}_1 = 2.5(100 - 22) = 195.0 \text{ kJ/kg}$$

$$\hat{H}_2 = (419.1 - 92.2) = 326.9 \text{ kJ/kg}$$

$$\hat{H}_3 = (2676 - 92.2) = 2584 \text{ kJ/kg}$$

$$(\hat{H}_{\text{water}} \text{ from Table B.5})$$

$$\dot{Q}_2 = \sum_{\text{out}} \dot{m}_i \hat{H}_i - \sum_{\text{in}} \dot{m}_i \hat{H}_i \Longrightarrow \dot{Q}_2 = 3.56 \times 10^7 \text{ kJ/day}$$

$$\dot{Q}_{\text{steam}} = \frac{3.56 \times 10^7}{0.55} = 6.47 \times 10^7 \text{ kJ/d} \Rightarrow \frac{\dot{Q}_3 = 2.91 \times 10^7 \text{ kJ/d}}{0.55}$$

Energy balance on steam side of dryer:

$$6.47 \times 10^{7} \frac{\text{kJ}}{\text{d}} = \dot{n}_{3} \left(\frac{\text{kg}}{\text{d}}\right)^{3} \times 2133 \left(\frac{\text{kJ}}{\text{kg}}\right) \left(\frac{1 \text{ tonne}}{10^{3} \text{ kg}}\right) \Rightarrow \frac{\dot{n}_{3} = 30.3 \text{ tonnes}/\text{d}}{10^{3} \text{ kg}} \text{ (boiler feedwater)}$$

Energy balance on steam side of boiler:

$$Q_1 = (30300 \frac{\text{kg}}{\text{d}})(2737.6 - 83.9) \frac{\text{kJ}}{\text{kg}} = \underbrace{8.04 \times 10^7 \text{kJ/d}}_{}$$

62% efficiency
$$\Rightarrow$$
 Fuel heating value needed = $\frac{8.04 \times 10^7}{0.62} = 1.3 \times 10^8 \text{ kJ/d}$

$$\Rightarrow \dot{n}_4 = \frac{1.30 \times 10^8 \,\text{kJ/d}}{3.75 \times 10^4 \,\text{kJ/kg}} = \underbrace{\frac{3458 \,\text{kg/d}}{3.75 \times 10^4 \,\text{kJ/kg}}} \Rightarrow \underbrace{\frac{D = 3.5 \,\text{tonnes/day}}{3.75 \times 10^4 \,\text{kJ/kg}}}_{\text{max}} \text{ (fuel oil)}$$

$$\underline{\text{Air feed to boiler furnace:}}\ C + O_2 \rightarrow CO_2\ , \quad 4H + O_2 \rightarrow 2H_2O, \quad S + O_2 \rightarrow SO_2$$

$$(n_{O_2})_{\text{theo}} = 3458 \frac{\text{kg}}{\text{d}} \left[(0.87 \frac{\text{kgC}}{\text{kg}}) (\frac{1 \text{ kmol C}}{12 \text{ kg}}) (\frac{1 \text{ kmol O}_2}{1 \text{ kmol C}}) + (0.10) (\frac{1}{1}) (\frac{1}{4}) + (0.0084) (\frac{1}{32}) (\frac{1}{1}) \right]$$

$$= 338 \text{ kmol O}_2/\text{d}$$

9.70 (cont'd)

Air fed (25% excess) =
$$1.25(4.76 \frac{\text{kmol air}}{\text{kmol O}_2})(338 \frac{\text{kmol O}_2}{\text{d}}) = 2011 \frac{\text{kmol air}}{\text{d}}$$

$$\Rightarrow \frac{2011 \text{ kmol}}{\text{d}} \frac{\text{l 29 kg}}{\text{l 1 tonne}} \Rightarrow \frac{\dot{\text{E}} = 58.3 \text{ tonnes} / \text{d}}{\text{l (air to boiler)}}$$

Energy balance on boiler air preheater:

Table B.8
$$\Rightarrow \hat{H}_{air}(125^{\circ}\text{C}) = 2.93 \frac{\text{kJ}}{\text{mol}} \Rightarrow \dot{Q}_{0} = \frac{2011 \text{ kmol}}{\text{d}} \frac{10^{3} \text{ mol}}{\text{1 kmol}} \frac{2.93 \text{ kJ}}{\text{mol}} = \frac{5.89 \times 10^{6} \text{ kJ/d}}{\text{1 kmol}}$$

Supplementary fuel for incinerator:

Air feed to incinerator:

$$\frac{\text{Fin feed to includes:}}{\text{(air)}_{th,sludge}} : \frac{11200 \text{ kg sludge}}{\text{d}} \begin{vmatrix} 0.75 \text{ kg sol} & | 19000 \text{ kJ} & | 2.5 \text{ m}^3 (\text{STP}) \text{ air} & | 1 \text{ kmol}}{\text{d}} \\ \text{(air)}_{th,sludge} : \frac{11200 \text{ kg sludge}}{\text{d}} \begin{vmatrix} 0.75 \text{ kg sol} & | 19000 \text{ kJ} & | 2.5 \text{ m}^3 (\text{STP}) \text{ air} & | 1 \text{ kmol}}{\text{d}} \\ \text{(air)}_{th,gas} : 97.5 \frac{\text{kmol}}{\text{d}} \begin{bmatrix} 0.90 \frac{\text{kmol CH}_4}{\text{kmol}} \times \frac{2 \text{ kmol O}_2}{\text{kmol CH}_4} + (0.10)(3.5) \end{bmatrix} \left(\frac{4.76 \text{ kmol air}}{1 \text{ kmol O}_2} \right) = 998 \frac{\text{kmol air}}{\text{d}} \\ 100\% \text{ excess air: } \dot{n}_7 = 2(1781 + 998) \frac{\text{kmol air}}{\text{d}} = 5558 \text{ kmol air/d} \\ \Rightarrow \frac{5558 \text{ kmol air}}{\text{d}} \begin{vmatrix} 29.0 \text{ kg air} & | 1 \text{ tonne}}{1 \text{ kmol air}} = \frac{161 \text{ tonne air/d}}{1 \text{ kmol air/d}} \text{ (incinerator air)} \\ \end{cases}$$

Energy balance on air preheater:

Table B.8
$$\Rightarrow \hat{H}_{air}(110^{\circ}\text{C}) = 2.486 \frac{\text{kJ}}{\text{mol}} \Rightarrow \dot{Q}_{4} = \frac{5558 \text{ kmol}}{\text{d}} \frac{10^{3} \text{ mol}}{\text{1 kmol}} \frac{2.486 \text{ kJ}}{\text{mol}} = 1.38 \times 10^{7} \frac{\text{kJ}}{\text{d}}$$

- **b.** Cost of fuel oil, natural gas, fuel oil and air preheating, pumping and compression, piping, utilities, operating personnel, instrumentation and control, environmental monitoring. Lowering environmental hazard might justify lack of profit.
- **c.** Put hot product gases from boiler and/or incinerator through heat exchangers to preheat both air streams. Make use of steam from dryer.
- **d.** Sulfur dioxide, possibly NO₂, fly ash in boiler stack gas, volatile toxic and odorous compounds in gas effluents from dryer and incinerator.