Guru Nanak College of Arts, Science and Commerce

SECURITY IN COMPUTING

JOURNAL

Name: Rishabh Ramnarayan Nandmaher

Roll no: 39

TY. BSc(IT)

Sem VI

2023

Practical no	Title	Date	Sign
1	Configure Cisco Routers for Syslog, NTP, and SSH Operations	06-12-2022	
2	Configure AAA Authentication	13-12-2022	
3	Configuring Extended ACLs	03-01-2023	
4	Configure IP ACLs to Mitigate Attacks	17-01-2023	
5	Configuring IPv6 ACLs	24-01-2023	
6	Configuring a Zone-Based Policy Firewall (ZPF)	31-01-2023	
7	Configure IOS Intrusion Prevention System (IPS) Using the CLI	07-02-2023	
8	Packet Tracer - Layer 2 Security	21-02-2023	
9	Layer 2 VLAN Security	07-03-2023	

GURU NANAK COLLEGE OF ARTS, SCIENCE, AND COMMERCE GTB NAGAR, SION, MUMBAI -400037

(Affiliated to Mumbai University)

DEPARTMENT OF INFORMATION TECHNOLOGY

CERTIFICATE

This is to certify that **Mr. Rishabh Ramnarayan Nandmaher** of B.Sc(IT) Semester VI **Roll No:- 39** has successfully completed the practicals in the subject **SECURITY IN COMPUTING** of as per the requirement of the University Of Mumbai in part fulfillment for the completion of Degree of Bachelor of Science (INFORMATION TECHNOLOGY). It is also to certify that this is the original work of the candidate done during the academic year 2022-2023.

External Examiner
College Stamp

PRACTICAL NO 1:

Configure Cisco Routers for Syslog, NTP, and SSH Operations

OSPF, MD5 Authentication

- OSPF is a routing protocol. Two routers speaking OSPF to each other exchange information about the routes they know about and the cost for them to get there.
- When many OSPF routers are part of the same network, information about all of the routes in a network are learned by all of the OSPF routers within that network—technically called an **area**. (We'll talk more about area as we go on).
- Each OSPF router passes along information about the routes and costs they've heard about to all of their adjacent OSPF routers, called **neighbors**.
- OSPF routers rely on **cost** to compute the shortest path through the network between themselves and a remote router or network destination.
- The shortest path computation is done using <u>Djikstra's algorithm</u>. This algorithm isn't unique to OSPF. Rather, it's a mathematical algorithm that happens to have an obvious application to networking.

MD5 Authentication

- MD5 authentication provides higher security than plain text authentication.
- This method uses the MD5 algorithm to compute a hash value from the contents of the OSPF packet and a password (or key).
- This hash value is transmitted in the packet, along with a key ID and a non-decreasing sequence number.
- The receiver, which knows the same password, calculates its own hash value.
- If nothing in the message changes, the hash value of the receiver should match the hash value of the sender which is transmitted with the message.
- The key ID allows the routers to reference multiple passwords.
- This makes password migration easier and more secure.
- For example, to migrate from one password to another, configure a password under a different key ID and remove the first key.

Security in computing

- The sequence number prevents replay attacks, in which OSPF packets are captured, modified, and retransmitted to a router.
- As with plain text authentication, MD5 authentication passwords do not have to be the same throughout an area. However, they do need to be the same between neighbors.

Example

Consider the following topology

Configuring PC0

Security in computing

Configuring NTP Server

Configuring SYSLOG Server

7

Roll no: 39

Note: Adding Serial interface to all Routers

Part 1: Configure OSPF MD5 Authentication

ROUTER 3: Type the following command in the CLI mode

Router>enable

Router#

Router#configure terminal

Router(config)#interface GigabitEthernet0/0

Router(config-if)#ip address 10.0.0.1 255.0.0.0

Router(config-if)#no shutdown

Router(config-if)#exit

Router(config)#interface Serial0/1/0

Router(config-if)#ip address 20.0.0.1 255.0.0.0

Router(config-if)# no shutdown

Router(config-if)#exit

The following Command is for setting the OSPF configuration

Router(config)#router ospf 1

Router(config-router)#network 10.0.0.0 0.255.255.255 area 1

Router(config-router)#network 20.0.0.0 0.255.255.255 area 1

Router(config-router)#exit

Router(config)#exit

Router#

ROUTER 2: Type the following command in the CLI mode

Router>enable

Router#

Router#configure terminal

Router(config)#interface GigabitEthernet0/0

Router(config-if)#ip address 20.0.0.2 255.0.0.0

Router(config-if)#no shutdown

Router(config-if)#exit

Router(config)#interface Serial0/1/0

Router(config-if)#ip address 30.0.0.1 255.0.0.0

Router(config-if)# no shutdown

Router(config-if)#exit

The following Command is for setting the OSPF configuration

Router(config)#router ospf 1

Router(config-router)#network 30.0.0.0 0.255.255.255 area 1

Router(config-router)#network 20.0.0.0 0.255.255.255 area 1

Router(config-router)#exit

Router(config)#exit

Router#

ROUTER 1: Type the following command in the CLI mode

Router>enable

Router#

Router#configure terminal

Router(config)#interface GigabitEthernet0/0

Router(config-if)#ip address 40.0.0.1 255.0.0.0

Router(config-if)#no shutdown

Router(config-if)#exit

Router(config)#interface Serial0/1/0

Router(config-if)#ip address 30.0.0.2 255.0.0.0

Router(config-if)# no shutdown

Router(config-if)#exit

The following Command is for setting the OSPF configuration

Router(config)#router ospf 1

Router(config-router)#network 30.0.0.0 0.255.255.255 area 1

Router(config-router)#network 40.0.0.0 0.255.255.255 area 1

Router(config-router)#exit Router(config)#exit Router#

Now we verify the connectivity by using the following

MD5 Authentication For Router 3

Router(config)#router ospf 1

Router(config-router)#area 1 authentication message-digest

Router(config-router)#exit

Router(config)#interface Serial0/1/0

Router(config-if)#ip ospf message-digest-key 1 md5 ismail

Router(config-if)#exit

For Router 2

Router(config)#router ospf 1

Router(config-router)#area 1 authentication message-digest

Router(config-router)#exit

Router(config)#interface Serial0/1/0

Router(config-if)#ip ospf message-digest-key 1 md5 ismail

Router(config-if)#exit

Router(config)#router ospf 1

Name: Rishabh Ramnarayan Nandmaher

Router(config-router)#area 1 authentication message-digest Router(config-router)#exit Router(config)#interface Serial0/1/1
Router(config-if)#ip ospf message-digest-key 1 md5 ismail
Router(config-if)#exit

For Router 1

Router(config)#router ospf 1 Router(config-router)#area 0 authentication message-digest Router(config-router)#exit Router(config)#interface Serial0/1/0 Router(config-if)#ip ospf message-digest-key 1 md5 ismail Router(config-if)#exit

Verify the authentication using the following command on any Router

Router#show ip ospf interface

The following output is obtained

Name: Rishabh Ramnarayan Nandmaher

b) NTP

- Network Time Protocol (NTP) is a TCP/IP protocol used to synchronize computer clocks across data networks.
- NTP was developed in the 1980s by D.L. Mills at the University of Delaware to achieve highly accurate time synchronization and to sustain the effects of variable latency over packet-switched data networks through a jitter buffer.

We use the same topology to study the given protocol

Configure NTP Server and enable the NTP service

Security in computing

Now Go to CLI Mode of Router4 and type the following commands on all Routers

Router>en

Router#configure terminal

Enter configuration commands, one per line. End with CNTL/Z.

Router(config)#ntp server 10.0.0.2

Router(config)#ntp update-calendar

Router(config)#exit

Router#show clock 16:14:55.13 UTC Fri Dec 7 2018

Output

c) To log messages to the syslog server

Configure SYSLOG Server and enable the service

 Syslog is a way for network devices to send event messages to a logging server – usually known as a Syslog server.

- The Syslog protocol is supported by a wide range of devices and can be used to log different types of events.
- For example, a router might send messages about users logging on to console sessions, while a web-server might log access-denied events.

Start The syslog service on the server (10.0.0.3)

Now Go to CLI Mode of Router0 and type the following commands in all the Routers.

Router>enable Router#ping 10.0.0.3 Router#configure terminal Router(config)#logging 10.0.0.3

Output:

Name : Rishabh Ramnarayan Nandmaher

d) To support SSH connections.

- An SSH server is a software program which uses the secure shell protocol to accept connections from remote computers.
- The way SSH works is by making use of a client-server model to allow for authentication of two remote systems and encryption of the data that passes between them.
- It organizes the secure connection by authenticating the client and opening the correct shell environment if the verification is successful.

Now Go to CLI Mode of Router0 and type the following commands.

Router#configure terminal

Router(config)#ip domain-name ismail.com

Router(config)#hostname ismail ismail(config)#crypto

key generate rsa

The name for the keys will be: ismail.ismail.com

Choose the size of the key modulus in the range of 360 to 2048 for your

General Purpose Keys. Choosing a key modulus greater than 512 may take a few minutes.

How many bits in the modulus [512]: 1024

% Generating 1024 bit RSA keys, keys will be non-exportable...[OK]

ismail(config)#line vty 0

Security in computing

*Feb 19 12:58:22.61: %SSH-5-ENABLED: SSH 1.99 has been enabled ismail(config)#line vty 0 4 ismail(config-line)# transport input ssh ismail(config-line)#ip ssh ver 2 ismail(config-line)#login local ismail(config)#username ismail privilege 15 password rollno

Output: Go to cmd of PC0

Name: Rishabh Ramnarayan Nandmaher

Practical No. 2: Configure AAA Authentication

Access control is the way you control who is allowed access to the network server and what services the security services provide the primary framework through which you set up access control on your device or access server. AAA is an architectural framework for configuring a set of three independent security functions in a consistent manner. AAA provides a modular way of performing the following services:

· Authentication— Provides the method of identifying users, including login and password dialog, challenge and response, messaging support, and, depending on the security protocol you select, encryption. Authorization— Provides the method for remote access control, including one-time authorization or authorization for each service, per-user account list and profile, user group support, and support of IP and Telnet.

Accounting—Provides the method for collecting and sending security server information used for billing, auditing, and reporting, such as user identities, start and stop times.

AAA provides the following benefits:

- · Increased flexibility and control of access configuration
- · Scalability
- · Standardized authentication methods, such as RADIUS and TACACS+
- · Multiple backup systems
 - a) Configure a local user account on Router and configure authenticate on the console and vty lines using local AAA

We use the following topology for the present case.

Configure Router0

Router>enable

Router#

Router#configure terminal

Router(config)#interface GigabitEthernet0/0

Router(config-if)#ip address 20.0.0.1 255.0.0.0

Router(config-if)#no shutdown

Router(config-if)#exit

Router(config)#interface Serial0/1/0

Router(config-if)#ip address 30.0.0.1 255.0.0.0

Router(config-if)#no shutdown

Router(config-if)#exit

Router(config)#router rip Router(config-router)#network 20.0.0.0 Router(config-router)#network 30.0.0.0 Router(config-router)#

Configure Router1

Router>enable

Router#

Router#configure terminal

Router(config)#interface GigabitEthernet0/0

Router(config-if)#ip address 10.0.0.1 255.0.0.0

Router(config-if)#no shutdown

Router(config-if)#exit

Router(config)#interface Serial0/1/0

Router(config-if)#ip address 30.0.0.2 255.0.0.0

Router(config-if)#no shutdown

Router(config-if)#exit

Router(config)#interface Serial0/1/1

Router(config-if)#ip address 40.0.0.1 255.0.0.0

Router(config-if)#no shutdown

Router(config-if)#exit

Router(config)#router rip Router(config-router)#network 10.0.0.0 Router(config-router)#network 30.0.0.0 Router(config-router)#network 40.0.0.0 Router(config-router)#

Configure Router2

Router>enable
Router#
Router#configure terminal
Router(config)#interface GigabitEthernet0/0
Router(config-if)#ip address 50.0.0.1 255.0.0.0
Router(config-if)#no shutdown
Router(config-if)#exit
Router(config)#interface Serial0/1/0
Router(config-if)#ip address 40.0.0.2 255.0.0.0
Router(config-if)#no shutdown
Router(config-if)#exit

Router(config)#router rip Router(config-router)#network 40.0.0.0 Router(config-router)#network 50.0.0.0 Router(config-router)#

Configure PC0

Configure PC1

Configure PC2

Security in computing

Configure RADIUS SERVER

Configure TACACS+ SERVER

We verify the connectivity by using the following commands

```
PC2
                                                                                       X
           Config
                                        Attributes
 Physical
                   Desktop
                            Programming
 Command Prompt
                                                                                            X
  C:\>ping 10.0.0.2
  Pinging 10.0.0.2 with 32 bytes of data:
  Request timed out.
  Reply from 10.0.0.2: bytes=32 time=2ms TTL=126
  Reply from 10.0.0.2: bytes=32 time=1ms TTL=126
  Reply from 10.0.0.2: bytes=32 time=2ms TTL=126
  Ping statistics for 10.0.0.2:
      Packets: Sent = 4, Received = 3, Lost = 1 (25% loss),
  Approximate round trip times in milli-seconds:
      Minimum = 1ms, Maximum = 2ms, Average = 1ms
```

Name: Rishabh Ramnarayan Nandmaher

23

Security in computing

```
PC1
                                                                                       X
           Config
                                        Attributes
 Physical
                  Desktop
                            Programming
  Command Prompt
  C:\>ping 50.0.0.2
  Pinging 50.0.0.2 with 32 bytes of data:
  Request timed out.
  Reply from 50.0.0.2: bytes=32 time=2ms TTL=125
  Reply from 50.0.0.2: bytes=32 time=3ms TTL=125
  Reply from 50.0.0.2: bytes=32 time=2ms TTL=125
  Ping statistics for 50.0.0.2:
      Packets: Sent = 4, Received = 3, Lost = 1 (25% loss),
   Approximate round trip times in milli-seconds:
      Minimum = 2ms, Maximum = 3ms, Average = 2ms
```

Configure the Local AAA Authentication for Console Access on Router0 (type the following commands in the CLI mode of Router0)

Router>

Router>en

Router#configure terminal

Router(config)#username ismail secret abcd

Router(config)#aaa new-model

Router(config)#aaa authentication login default local

Router(config)#line console 0

Router(config-line)#login authentication default

Router(config-line)#end

Router#exit

Press ENTER to get started.

User Access Verification

Username: ismail

Password:

Router>enable

Router#

Hence the Authentication is done

Name: Rishabh Ramnarayan Nandmaher

24

Configure the vty lines to use the defined AAA authentication method(type the following command in Router0)

Router>enable

Router#configure terminal

Router(config)#ip domain-name ismail.com

Router(config)#hostname ismail

ismail(config)#crypto key generate rsa The

name for the keys will be: ismail.ismail.com

Choose the size of the key modulus in the range of 360 to 2048 for your General Purpose Keys. Choosing a key modulus greater than 512 may take a few minutes.

How many bits in the modulus [512]: 1024 % Generating 1024 bit RSA keys, keys will be non-exportable...[OK]

 $is mail (config) \# aaa \ authentication \ login \ ssh-is mail \ local \ is mail (config) \# line \ vty \ 0 \ 4$

Security in computing

ismail(config-line)#login authentication ssh-ismail ismail(config-line)#transport input ssh ismail(config-line)#end ismail#

Now verify the configuration using the following

TACACS+ Server configuration

27

Configure Server-Based AAA Authentication Using TACACS+ on Router1(type the following commands in the CLI mode of Router1)

Router#configure terminal

Router(config)#username ismail secret 12345

Router(config)#tacacs-server host 10.0.0.3

Router(config)#tacacs-server key 1234

Router(config)#hostname R1

R1(config)#aaa new-model

R1(config)#aaa authentication login default group tacacs+ local

R1(config)#line console 0

R1(config-line)#login authentication default

R1(config-line)#end

R1#

R1#exit

Press Enter to get started.

User Access Verification

Username: ismail

Password: R1>en R1#exit

Configure Server-Based AAA Authentication Using RADIUS on R3

RADIUS Server configuration

Name : Rishabh Ramnarayan Nandmaher

Configure Server-Based AAA Authentication Using RADIUS Server on Router3(type the following commands in the CLI mode of Router1)

Router#configure terminal

Router(config)#username ismail secret 12345

Router(config)#radius-server host 50.0.0.3

Router(config)#radius-server key 1234

Router(config)#hostname R3

R3(config)#aaa new-model

R3(config)#aaa authentication login default group tacacs+ local

R3(config)#line console 0

R3(config-line)#login authentication default

R3(config-line)#end

R3#

R3#exit

Press Enter to get started.

User Access Verification

Username: ismail

Password: R3>en R3#exit

Name: Rishabh Ramnarayan Nandmaher

Roll no: 39

29

PRACTICAL NO 3: Configuring Extended ACLs

ACLs are used to control network access or to specify traffic for many features to act upon. An extended ACL is made up of one or more access control entries (ACEs). Each ACE specifies a source and destination for matching traffic. You can identify parameters within the access-list command, or you can create objects or object groups for use in the ACL

We use the following topology to study ACL configuration

Configuring PC0

Security in computing

31

Configuring PC1

Configuring Server

Configuring Router

Security in computing

32

Security in computing

RIP Configuration for the Router

Name : Rishabh Ramnarayan Nandmaher

Router(config)#access-list?

<1-99> IP standard access list <100-

199> IP extended access list

Router(config)#access-list 100? deny Specify packets to reject permit Specify

packets to forward remark Access list

entry comment Router(config)#access-list

100 permit? ahp Authentication

Header Protocol eigrp Cisco's EIGRP

routing protocol esp Encapsulation

Security Payload gre Cisco's GRE

tunneling

icmp Internet Control Message Protocol

Any Internet Protocol ospf

OSPF routing protocol tcp

Transmission Control Protocol udp

User Datagram Protocol

Router(config)#access-list 100 permit tcp ?

A.B.C.D Source address any Any source

host host A single source host

Router(config)#access-list 100 permit tcp 10.0.0.2?

A.B.C.D Source wildcard bits

Router(config)#access-list 100 permit tcp 10.0.0.2 0.255.255.255 ? A.B.C.D Destination address any Any destination host eq Match only packets on a given port number gt Match only packets with a greater port number host A single destination host It Match only packets with a lower port number neg Match only packets not on a given port number range Match only packets in the range of port numbers

Router(config)#access-list 100 permit tcp 10.0.0.2 0.255.255.255 host ?

A.B.C.D Destination address

Router(config)#access-list 100 permit tcp 10.0.0.2 0.255.255.255 host 20.0.0.2 ? Match packets with given dscp value eq Match only packets on a dscp given port number established established gt Match only packets with a Match only packets with a lower port number neg greater port number It Match only packets not on a given port number precedence Match packets with given precedence value range Match only packets in the range of port numbers <cr>

Router(config)#access-list 100 permit tcp 10.0.0.2 0.255.255.255 host 20.0.0.2 eq?

Name: Rishabh Ramnarayan Nandmaher

<0-65535> Port number

ftp File Transfer Protocol (21) pop3

Post Office Protocol v3 (110) smtp

Simple Mail Transport Protocol (25) telnet

Telnet (23)

www World Wide Web (HTTP, 80)

Router(config)#access-list 100 permit tcp 10.0.0.2 0.255.255.255 host 20.0.0.2 eq ftp

Router(config)#interface FastEthernet0/0

Router(config-if)#ip access-group 100 in

Verifying the output by typing the following command from PC0

PC> ftp 10.0.0.2

We get the following output output

Name: Rishabh Ramnarayan Nandmaher

Now verifying the output by typing the following command from PC1

PC> ftp 10.0.0.2

Security in computing

Practical 4: Configure IP ACLs to Mitigate Attacks.

Addressing Table

Device	Interface	IP Address	Subnet Mask	Default Gateway	Switch Port
R1	G0/1	192.168.1.1	255.255.255.0	N/A	S1 F0/5
	S0/0/0 (DCE)	10.1.1.1	255.255.255.252	N/A	N/A
R2	S0/0/0	10.1.1.2	255.255.255.252	N/A	N/A
	S0/0/1 (DCE)	10.2.2.2	255.255.255.252	N/A	N/A
	Lo0	192.168.2.1	255.255.255.0	N/A	N/A
R3	G0/1	192.168.3.1	255.255.255.0	N/A	S3 F0/5
	S0/0/1	10.2.2.1	255.255.255.252	N/A	N/A
PC-A	NIC	192.168.1.3	255.255.255.0	192.168.1.1	S1 F0/6
PC-C	NIC	192.168.3.3	255.255.255.0	192.168.3.1	S3 F0/18

We configure the PCs, Server and Routers as follows

Name: Rishabh Ramnarayan Nandmaher Roll no: 39 38

Security in computing

Security in computing

Security in computing

Security in computing

Security in computing

STATIC ROUTING:

Now we do the Static Routing on all the Routers as follows

Security in computing

PART 1: Verify the basic network connectivity

Now we check the connectivity by pinging the server (192.168.1.3) from the PC (192.168.3.3)

Setting the SSH on Router 4 using the following commands in the CLI mode

Router(config)#username abcd secret xyz

Router(config)#aaa new-model

Router(config)#aaa authentication login default local

Router(config)#ip domain-name smile.com

Router(config)#hostname smile

smile(config)#crypto smile(config)#crypto

key generate rsa How many bits in the

modulus [512]: 1024

smile(config)#aaa authentication login abcd local smile(config)#line vty 0 4 smile(config-line)#login

authentication abcd smile(config-line)#transport input ssh smile(config-line)#end

Now verifying the same using the following commands on the PC

PART 2: Secure Access to Routers

Configure the Router 4 to block any access to the routers except the PC (192.168.3.3)

smile#configure terminal

Enter configuration commands, one per line. End with CNTL/Z. smile(config)#access-list 10 permit host 192.168.3.3 smile(config)#line vty 0 4 smile(config-line)#access-class 10 in smile(config-line)#exit

From the above commands we deny any host other than PC (192.168.3.3) to get access to the router 4

We check it by accessing the Router 4 through the Server (192.168.1.3) as follows

Name: Rishabh Ramnarayan Nandmaher

PART 3: Create a Numbered IP ACL 120 on Router 4

We type the following command in the CLI mode for the Router 4 smile#

smile#configure terminal smile(config)#access-list 120 permit tcp any host 192.168.1.3 eq smtp smile(config)#access-list 120 permit tcp any host 192.168.1.3 eq ftp smile(config)#access-list 120 deny tcp any host 192.168.1.3 eq 443 smile(config)#access-list 120 permit tcp any host 192.168.1.3 eq 22 smile(config)#interface Serial0/1/0

smile(config-if)#ip access-group 120 in smile(config-if)#exit

We do the verification of the given ACL by the following commands on the PC

PART 4: Modify an Existing ACL on Router 4

Smile(config)# access-list 120 permit icmp any any echo-reply Smile(config)# access-list 120 permit icmp any any unreachable Smile(config)# access-list 120 deny icmp any any Smile(config)# access-list 120 permit ip any any

Similarly we can create and modify the ACLs for all the Routers

Practical 5: Configuring IPv6 ACLs

We use the following topology to configure the IPv6 ACLs

We configure the Hosts and Routers as follows (only add ipv6 address and gateway, don't touch the link local address)

Security in computing

49

Security in computing

For router 3 type the following commands

Router>enable

Router#

Router#configure terminal

Router(config)#ipv6 unicast-routing

Router(config)#interface GigabitEthernet0/0

Router(config-if)#ipv6 address 2001::1/64

Router(config-if)#ipv6 rip a enable

Router(config-if)#no shutdown

Router(config-if)#exit

Router(config)#interface GigabitEthernet0/1

Router(config-if)#ipv6 address 2002::1/64

Router(config-if)#ipv6 rip a enable

Router(config-if)#no shutdown

For router 4 type the following commands

Router>en

Router#configure terminal

Router(config)#ipv6 unicast-routing

Router(config)#interface GigabitEthernet0/0

Router(config-if)#ipv6 address 2002::2/64

Name: Rishabh Ramnarayan Nandmaher

Security in computing

Router(config-if)#ipv6 rip a enable

Router(config-if)#no shutdown

Router(config-if)#exit

Router(config)#interface GigabitEthernet0/1

Router(config-if)#ipv6 address 2003::1/64

Router(config-if)#ipv6 rip a enable

For router 5 type the following commands

Router>

Router>enable

Router#configure terminal

Router(config)#ipv6 unicast-routing

Router(config)#interface GigabitEthernet0/1

Router(config-if)#ipv6 address 2003::2/64

Router(config-if)#ipv6 rip a enable

Router(config-if)#no shutdown

Router(config-if)#exit

Router(config)#interface GigabitEthernet0/1

Router(config-if)#ipv6 address 2004::1/64 Router(config-if)#ipv6 rip a enable

Router(config-if)#exit

Router(config)#

For router 6 type the following commands

Router>

Router>enable

Router#configure terminal

Router(config)#ipv6 unicast-routing

Router(config)#interface GigabitEthernet0/1

Router(config-if)#ipv6 address 2004::2/64

Router(config-if)#ipv6 rip a enable

Router(config-if)#no shutdown

Router(config-if)#exit

Router(config)#interface GigabitEthernet0/1

Router(config-if)#ipv6 address 2005::1/64

Router(config-if)#ipv6 rip a enable

Router(config-if)#exit

Router(config)#

Name: Rishabh Ramnarayan Nandmaher

Now we configure, apply and verify the IPv6 ACL on Router 6

Type the following command in the CLI mode of Router 6

Router(config)#ipv6 acc

Router(config)#ipv6 access-list smile

Router(config-ipv6-acl)#

Router(config-ipv6-acl)#deny tcp any host 2005::3 eq www

Router(config-ipv6-acl)#deny tcp any host 2005::3 eq 443

Router(config-ipv6-acl)#exit

WE apply the ACL list to the proper interface as follows

Router(config)#

Router(config)#interface GigabitEthernet0/1

Router(config-if)#ipv6 traffic-filter smile in

Router(config-if)#

We verify the services www on PC2 and PC3 and get the following output

Security in computing

54

Practical 6: Configuring a Zone-Based Policy Firewall (ZPF)

Consider the following topology

Configuring Server

Name: Rishabh Ramnarayan Nandmaher Roll no: 39

(Note: The SERIAL interface must be added on each Router before configuring them)

Configuring the Router0: Router>enable

Router#configure terminal

Enter configuration commands, one per line. End with CNTL/Z.

Router(config)#interface GigabitEthernet0/0

Router(config-if)#ip address 10.0.0.1 255.0.0.0

Router(config-if)#no shutdown

Router(config-if)#exit

Router(config)#interface Serial0/1/0

Router(config-if)#ip address 20.0.0.1 255.0.0.0

Router(config-if)#no shutdown

Router(config-if)#

Router(config-if)#exit

Router(config)#router rip

Router(config-router)#network 10.0.0.0

Router(config-router)#network 20.0.0.0

Router(config-router)#

Configuring the Router1: Router>enable

Router#configure terminal

Enter configuration commands, one per line. End with CNTL/Z.

Router(config)#interface Serial0/1/0

Router(config-if)#ip address 20.0.0.2 255.0.0.0

Router(config-if)#no shutdown

Router(config-if)#exit

Router(config)#interface Serial0/1/1

Router(config-if)#ip address 30.0.0.1 255.0.0.0

Router(config-if)#no shutdown Router(config-if)#

Router(config)#router rip

Router(config-router)#network 30.0.0.0

Router(config-router)#network 20.0.0.0

Router(config-router)#

Configuring the Router2: Router>enable

Router#configure terminal

Enter configuration commands, one per line. End with CNTL/Z.

Router(config)#interface Serial0/1/1

Name: Rishabh Ramnarayan Nandmaher

Security in computing

Router(config-if)#ip address 30.0.0.2 255.0.0.0

Router(config-if)#no shutdown

Router(config-if)#exit

Router(config)#interface GigabitEthernet0/0

Router(config-if)#ip address 40.0.0.1 255.0.0.0

Router(config-if)#no shutdown

Router(config-if)#exit

Router(config)#router rip

Router(config-router)#network 30.0.0.0

Router(config-router)#network 40.0.0.0

Router(config-router)#

Configure the PC

The Basic connectivity must be verified by using the ping command:

Setting the SSH on Router 1 using the following commands in the CLI mode

Router#configure terminal

Enter configuration commands, one per line. End with CNTL/Z.

Router(config)#username smile secret 1234

Router(config)#aaa new-model

Router(config)#aaa authentication login default local

Router(config)#ip domain-name smile.com

Router(config)#hostname smile

smile(config)#crypto key generate rsa The

name for the keys will be: smile.smile.com

Choose the size of the key modulus in the

range of 360 to 2048 for your General Purpose

Name: Rishabh Ramnarayan Nandmaher

Keys. Choosing a key modulus greater than 512 may take a few minutes.

How many bits in the modulus [512]: 1024 % Generating 1024 bit RSA keys, keys will be non-exportable...[OK]

*Mar 1 0:30:13.877: %SSH-5-ENABLED: SSH 1.99 has been enabled smile(config)#aaa authentication login smile local smile(config)#line vty 0 4 smile(config-line)#login authentication smile smile(config-line)#transport input ssh smile(config-line)#end smile#

Now verifying the same using the following commands on the PC

Checking the connectivity from Pc to Server by opening the Web Browser

Creating the FIREWALL ZONES ON Router2

Enabling the Security technology package on the Router2 using the following command

Router#

Router#conf

Router#configure ter

Router#configure terminal

Enter configuration commands, one per line. End with CNTL/Z.

Router(config)#zone sec

Router(config)#zone security SMILE-ZONE

Router(config-sec-zone)#EXIT

Router(config)#

Router(config)#zone

Router(config)#zone se

Router(config)#zone security OUT-ZONE

Router(config-sec-zone)#EXIT

Router(config-sec-zone)#exit

Router(config)#

Router(config)#ac

Router(config)#access-list 101 permit 40.0.0.2 0.255.255.255 any ^

% Invalid input detected at '^' marker.

Router(config)#access-list 101 permit ip 40.0.0.2 0.255.255.255 any

Router(config)#class

Router(config)#class-map type

Router(config)#class-map type inspect match

Name: Rishabh Ramnarayan Nandmaher

Router(config)#class-map type inspect match-all IN- Router(config)#class-map

type inspect match-all IN-NET-

Router(config)#class-map type inspect match-all IN-NET-CLASS-MAP

Router(config-cmap)#

Router(config-cmap)#mat

Router(config-cmap)#match ac

Router(config-cmap)#match access-group 101

Router(config-cmap)#exit

Router(config)#pol

Router(config)#policy-map type in

Router(config)#policy-map type inspect IN-2

Router(config)#policy-map type inspect IN-2-OUT-PMAP

Router(config-pmap)#cl

Router(config-pmap)#class t

Router(config-pmap)#class type in

Router(config-pmap)#class type inspect IN-NET-CLASS-MAP

Router(config-pmap-c)#in

Router(config-pmap-c)#inspect

%No specific protocol configured in class IN-NET-CLASS-MAP for inspection. All protocols

will be inspected

Router(config-pmap-c)#exit

Router(config-pmap)#exit

Router(config)#

Router(config)#zone-pair security IN-2-OUT-ZPAIR

Router(config)#zone-pair security IN-2-OUT-ZPAIR?

source Source zone

Router(config)#zone-pair security IN-2-OUT-ZPAIR SMILE-ZONE OUT-ZONE

Λ

% Invalid input detected at '^' marker.

Router(config)#zone-pair security IN-2-OUT-ZPAIR 40.0.0.1 30.0.0.2 ^

% Invalid input detected at '^' marker.

Router(config)#zone-pair security IN-2-OUT-ZPAIR 40.0.0.1 SMILE-ZONE 30.0.0.2

OUTZONE

۸

% Invalid input detected at '^' marker.

Router(config)#zone-pair security IN-2-OUT-ZPAIR? source

Source zone

Router(config)#zone-pair security IN-2-OUT-ZPAIR so

Router(config)#zone-pair security IN-2-OUT-ZPAIR source SMILE-ZONE de

Router(config)#zone-pair security IN-2-OUT-ZPAIR source SMILE-ZONE destination

OUTZONE

Router(config-sec-zone-pair)#ser

Router(config-sec-zone-pair)#service-policy type in

Router(config-sec-zone-pair)#service-policy type inspect IN

Router(config-sec-zone-pair)#service-policy type inspect IN-2-OUT-PMAP

Router(config-sec-zone-pair)#exit

Router(config)#

Router(config)#interface Serial0/1/1

Router(config-if)#zone

Router(config-if)#zone-member sec

Router(config-if)#zone-member security

Router(config-if)#zone-member security SMILE-ZONE

Router(config-if)#EXIT

Router(config)#

Router(config)#interface Serial0/1/1

Router(config-if)#

Router(config-if)#exit

Router(config)#interface GigabitEthernet0/0

Router(config-if)#ZONE

Router(config-if)#

Router(config-if)#zone

Router(config-if)#zone-member se

Router(config-if)#zone-member security OUT-ZONE

Router(config-if)#

Router(config-if)#exit

Router(config)#

Router(config)#exitt

Λ

% Invalid input detected at '^' marker.

Router(config)#exit

Router#

%SYS-5-CONFIG_I: Configured from console by console

Router#copy

Router#copy ru

Router#copy running-config star Router#copy

running-config startup-config Destination

filename [startup-config]?

Building configuration...

[OK]

Router#

Practical 7: Configure IOS Intrusion Prevention System (IPS) Using the CLI

Consider the following topology

Configure the PCs, Routers and the Server with the following addresses

PC0	10.0.0.3
SERVER	10.0.0.2
R1 G0/0	10.0.0.1
S0/1/0	20.0.0.1
R2 S0/1/0	20.0.0.2
S0/1/1	30.0.0.1
R3 S0/1/1	30.0.0.2
G0/0	40.0.0.1
PC1	40.0.0.2

Use RIP routing protocol and add the networks in the Routers as follows

R1	10.0.0.0	20.0.0.0
R2	20.0.0.0	30.0.0.0

Name: Rishabh Ramnarayan Nandmaher Roll no: 39 62

R3	30.0.0.0.	40.0.0.0

Configure Server as the SYSLLOG server

Ping the PC0 to PC1 and PC1 to PC0 and verify the connectivity

Type the following commands in R1

R1(config)# license boot module c1900 technology-package securityk9

Enable the security package and reload the router

R1(config)#exit

R1#write

R1#reload

R1# mkdir ipsdir

R1(config)# ip ips config location flash:ipsdir

R1(config)# ip ips name iosips

R1(config)# ip ips notify log

R1#set clock 11:12:23 5 APR 2019

R1#Show clock

R1(config)# service timestamps log datetime msec

R1(config)#logging host 10.0.0.2

R1(config)# ip ips signaturecategory

R1(config-ips-category)# category all

R1(config-ips-category-action)# retired true

R1(config-ips-category-action)# exit

R1(config-ips-category)# category ios_ips basic

R1(config-ips-category-action)# retired false

R1(config-ips-category-action)# exit

R1(config-ips-cateogry)# exit

Do you want to accept these changes? [confirm] <Enter>

R1(config)# interface g0/0

R1(config-if)# ip ips iosips out

R1(config)# ip ips signature-definition

R1(config-sigdef)# signature 2004 0

R1(config-sigdef-sig)# status

R1(config-sigdef-sig-status)# retired false

R1(config-sigdef-sig-status)# enabled true

R1(config-sigdef-sig-status)# exit

Security in computing

R1(config-sigdef-sig)# engine

R1(config-sigdef-sig-engine)# event-action produce-alert

R1(config-sigdefsig-engine)# event-action deny-packet-inline

R1(config-sigdef-sig-engine)# exit

R1(config-sigdef-sig)# exit

R1(config-sigdef)# exit

Do you want to accept these changes? [confirm] <Enter>

Now ping PC1 from PC0 and PC0 from PC1 and observe the output at the SYSLOG services of the Server

Only one ping is successful while the other fails

Practical 8: Packet Tracer – Layer 2 Security

Consider the following topology

Configure the Root Bridge

Type the following command in the CLI mode of CENTRAL switch

CENTRAL(config)#SPAnning-tree vlan 1 root primary CENTRAL(config)#exit

Type the following command in the CLI mode of SW1 switch

Switch>enable Switch#configure terminal Enter configuration commands, one per line. End with CNTL/Z.

Name: Rishabh Ramnarayan Nandmaher Roll no: 39 65

Security in computing

Switch(config)#hostname SW1 SW1(config)#spanning-tree vlan 1 root secondary

Verify the spanning-tree configuration by using the following commands in the CENTRAL switch

CENTRAL#show spanning-tree

The following output is obtained VLAN0001
Spanning tree enabled protocol ieee Root ID Priority 24577
Address 00E0.8F81.9573
This bridge is the root

Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec

Bridge ID Priority 24577 (priority 24576 sys-id-ext 1) Address 00E0.8F81.9573 Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec Aging Time 20

Interface Role Sts Cost Prio.Nbr Type

Fa0/1 Desg FWD 19 128.1 P2p Gi0/1 Desg FWD 4 128.25 P2p Gi0/2 Desg FWD 4 128.26 P2p

Protect against STP attacks

Type the following commands in the CLI modes of the Switches SWA and SWB **Enable portfast on all access ports**

Switch>enable Switch#configure terminal Switch(config)#hostname SWA SWA(config)#interface range f0/1-4 SWA(config-if-range)#spanning-tree portfast

Switch>enable Switch#configure terminal Switch(config)#hostname SWB SWB(config)#interface range f0/1-4

Name: Rishabh Ramnarayan Nandmaher

SWB(config-if-range)#spanning-tree portfast

Enable BPDU guard on all access points

SWA(config-if-range)#spanning-tree bpduguard enable

SWA(config-if-range)#exit

SWB(config-if-range)#spanning-tree bpduguard enable

SWB(config-if-range)#exit

Enable root guard

SW1(config)#interface range f0/23-24

SW1(config-if-range)#spanning-tree guard root

SW2(config)#interface range f0/23-24

SW2(config-if-range)#spanning-tree guard root

Configure Port Security and Disable Unused Ports

SWA(config-if-range)#exit

SWA(config)#interface range f0/1-22

SWA(config-if-range)#switchport port-security maximum 2

SWA(config-if-range)#switchport port-security violation shutdown

SWA(config-if-range)#switchport port-security mac-address sticky

SWB(config-if-range)#exit

SWB(config)#interface range f0/1-22

SWB(config-if-range)#switchport port-security maximum 2

SWB(config-if-range)#switchport port-security violation shutdown

SWB(config-if-range)#switchport port-security mac-address sticky

Verify Port Security (type the commands in SWA) and observe the output

SWA#show port-security interface f0/1

We get the following output

Port Security : Enabled Port Status : Secure-up Violation Mode : Shutdown

Aging Time: 0 mins

Name: Rishabh Ramnarayan Nandmaher Roll no: 39 67

Security in computing

Aging Type: Absolute

SecureStatic Address Aging: Disabled

Maximum MAC Addresses: 2 Total MAC Addresses: 0 Configured MAC Addresses: 0 Sticky MAC Addresses: 0

Last Source Address: Vlan: 0000.0000.0000:0

Security Violation Count: 0

Now we configure the PCs and Give assign IP address to any two PCs

Now we ping one of the PC from the other and then type the following command in SWA

Name: Rishabh Ramnarayan Nandmaher Roll no: 39 68

SWA#show port-security interface f0/1

We get the following output

SWA#show port-security interface f0/1

Port Security : Enabled Port Status : Secure-up Violation Mode : Shutdown

Aging Time : 0 mins Aging Type : Absolute

SecureStatic Address Aging: Disabled

Maximum MAC Addresses: 2

Total MAC Addresses: 1

Configured MAC Addresses : 0

Sticky MAC Addresses: 1

Last Source Address:Vlan: 0001.6406.2AAE:1

Security Violation Count: 0

Finally we disable the unused ports

SWA#configure terminal

Enter configuration commands, one per line. End with CNTL/Z.

SWA(config)#interface range f0/5-22

SWA(config-if-range)#shutdown

SWB#configure terminal

Enter configuration commands, one per line. End with CNTL/Z.

SWB(config)#interface range f0/5-22

SWB(config-if-range)#shutdown

Name: Rishabh Ramnarayan Nandmaher

Practical 9: Layer 2 VLAN Security

We use the following topology

Assign IP addresses to the PCs

PC1	192.168.10.1
PC2	192.168.10.2
PC3	192.168.10.3
PC4	192.168.10.4
PC5	192.168.10.5
PC6	192.168.10.6
PC7	192.168.10.7
PC8	192.168.10.10

Name : Rishabh Ramnarayan Nandmaher

VERIFY CONNECTIVITY

We Ping the PC2 from PC1

```
PC1
                                                                                                                     X
 Physical
                  Desktop
                           Programming
                                        Attributes
          Config
 Command Prompt
                                                                                                                   X
  C:\>ping 192.168.10.2
  Pinging 192.168.10.2 with 32 bytes of data:
  Reply from 192.168.10.2: bytes=32 time=1ms TTL=128
  Reply from 192.168.10.2: bytes=32 time=1ms TTL=128
  Reply from 192.168.10.2: bytes=32 time<1ms TTL=128
  Reply from 192.168.10.2: bytes=32 time<1ms TTL=128
  Ping statistics for 192.168.10.2:
      Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
  Approximate round trip times in milli-seconds:
      Minimum = Oms, Maximum = 1ms, Average = Oms
```

We Ping the PC4 from PC1

```
PC1
                                                                                                                                X
 Physical
           Config Desktop Programming
                                            Attributes
 Command Prompt
                                                                                                                              X
  Packet Tracer PC Command Line 1.0
  C:\>ping 192.168.10.4
  Pinging 192.168.10.4 with 32 bytes of data:
  Reply from 192.168.10.4: bytes=32 time=2ms TTL=128
  Reply from 192.168.10.4: bytes=32 time<1ms TTL=128 Reply from 192.168.10.4: bytes=32 time<1ms TTL=128
  Reply from 192.168.10.4: bytes=32 time<1ms TTL=128
  Ping statistics for 192.168.10.4:
      Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
  Approximate round trip times in milli-seconds:
       Minimum = Oms, Maximum = 2ms, Average = Oms
  C:\>
```

Name: Rishabh Ramnarayan Nandmaher

71

CREATE A REDUNDANT LINK BETWEEN SW1 and SW2 (f0/23 and f0/23)

Enable trunking, including all trunk security mechanisms on the link between SW-1 and SW-2.

Type the following commands in the CLI mode of SW1 and SW2

SW1(config)#interface f0/23

SW1(config-if)#switchport mode trunk

SW1(config-if)#switchport trunk native vlan 15

SW1(config-if)#switchport nonegotiate

SW1(config-if)#no shutdown

SW2(config)#interface f0/23

SW2(config-if)#switchport mode trunk

SW2(config-if)#switchport trunk native vlan 15

SW2(config-if)#switchport nonegotiate

SW2(config-if)#no shutdown

Enable VLAN 20 as a Management VLAN

SWA>

SWA>enable

Name: Rishabh Ramnarayan Nandmaher Roll no: 39 72

Security in computing

SWA#conf

SWA#configure ter

SWA#configure terminal

Enter configuration commands, one per line. End with CNTL/Z.

SWA(config)#vlan 20

SWA(config-vlan)#exit

SWA(config-if)#ip address 192.168.20.1 255.255.255.0

SWA(config-if)#

SWB>enable

SWB#configure terminal

SWB(config)#vlan 20

SWB(config-vlan)#exit

SWB(config)#interface vlan 20

SWB(config-if)#ip address 192.168.20.2 255.255.255.0

SW1(config)#vlan 20

SW1(config-vlan)#exit

SW1(config)#interface vlan 20

SW1(config-if)#ip address 192.168.20.3 255.255.255.0

SW2(config)#vlan 20

SW2(config-vlan)#exit

SW2(config)#interface vlan 20

SW2(config-if)#ip address 192.168.20.4 255.255.255.0

Switch>

Switch>enable

Switch#configure terminal

Switch(config)#interface vlan 20

Switch(config-if)#ip address 192.168.20.5 255.255.255.0

Connect and configure the management PC.

Connect the management PC to SW-A port F0/5 and ensure that it is assigned an available IP address within the 192.168.10.10

Type the following commands in the Router

Router>

Router>en

Router>enable

Router#confi

Router#configure ter

Router#configure terminal

Name: Rishabh Ramnarayan Nandmaher

74

Router(config)#interface g0/0.3

Router(config-subif)#

Router(config-subif)#encapsulation dot1Q 20

Router(config-subif)#exit

Router(config)#interface g0/0.3

Router(config-subif)#ip address 192.168.20.100 255.255.255.0

Router(config-subif)#exit

Router(config)#

Enable security

R1(config)# access-list 101 deny ip any 192.168.20.0 0.0.0.255 R1(config)# access-list 101 permit ip any any

R1(config)# access-list 102 permit ip host 192.168.20.50 any

R1(config)# interface g0/0.1

R1(config-subif)# ip access-group 101 in

R1(config-subif)# interface g0/0.2

R1(config-subif)# ip access-group 101 in

R1(config-subif)# line vty 0 4

R1(config-line)# access-class 102 in

R1(config-line)# exit

R1(config)#ip domain-name smile.com

R1(config)#crypto key generate rsa

The name for the keys will be:R1.smile.com

Choose the size of the key modulus in the range of 360 to 2048 for your

General Purpose Keys. Choosing a key modulus greater than 512 may take a few minutes.

How many bits in the modulus [512]: 1024

% Generating 1024 bit RSA keys, keys will be non-exportable...[OK]

R1(config)#aaa authentication login ssh-ismail local

R1(config)#line vty 0 4

R1(config-line)#login authentication ssh-ismail

R1(config-line)#transport input ssh

R1(config-line)#end

Verify security.

Verify only the Management PC can access the router. Use SSH to access R1 with username SSHadmin

No password set

PC> ssh -I SSHadmin 192.168.20.100

Name : Rishabh Ramnarayan Nandmaher Roll no: 39