計算機構成論 第10回 一算術演算の実行(1)—

大連理工大学・立命館大学 国際情報ソフトウェア学部 大森 隆行

講義内容

- ■算術演算の実行
- → 2進数の加算・減算・AND/OR演算 シフト演算、符号拡張
 - 算術演算ユニット(ALU)

2進数の加算 復習

■正数+正数

	00010001	1710	
+	00000010	210	正しい
	00001111	15_{10}	

+ 00000010 126₁₀ 桁あふれ 10000000 128₁₀ イーバーフロー:overflow)

これは-128

どのように対処するかは、 プログラミング言語等による

確認問題

■ 01100110₂-00011000₂ の結果を 10進数で答えよ。

2進数の負数表現 -2の補数-復習

10進数	2進数	
-8	1000	
-7	1001	
-6	1010	
-5	1011	
-4	1100	
-3	1101	
-2	1110	
-1	1111	
-0	0000	

10進数	2進数		
8	- 4		
7	0111		
6	0110		
5	0101		
4	0100		
3	0011		
2	0010		
1	0001		
0	0000		

4ビットでは 表現不可能

2進数の減算 復習

■正数+負数を行えば良い

$$00001111$$
 15 $_{10}$ + 11111110 -2 $_{10}$ 正しい 00001101 13 $_{10}$

ここの繰り上がりは無視

正数+負数ではオーバーフローは発生しない

2進数の減算 復習

■負数+負数の場合

$$11110001$$
 -1510 $+ 111111110$ -210 正しい 11101111 -1710

AND, OR演算

■ AND演算

```
11110001

& 00110110

00110000
```

■OR演算

```
11110001
| 00110110
| 11110111
```

確認問題

- ■01010101₂ & 11110000₂ を計算せよ。
- 01010101₂ | 1111100000₂ を計算せよ。
- ■レジスタ\$s0に 15₁₀ が入っている。 命令 **s11** \$s0, \$s0, 2 を実行すると、 \$s0の中身はどうなるか、2進数で答えよ。
- ▶レジスタ\$s0に -2₁₀ が入っている。 命令 sra \$s0, \$s0, 1 を実行すると、 \$s0の中身はどうなるか、2進数で答えよ。 ※sraは右算術シフトを行う命令である。

シフト演算 (shift operation) 復習

■2進数のビットを左右にずらす演算

最上位ビット は捨てる 最下位ビットには0が入る

シフト演算 (shift operation) 復習

■左端、右端に注意

左に1ビット シフト

110000002 = 128+64 = 19210 2倍にならない 100000002 = 128 = 12810

右に1ビット シフト

000010012 = 8+1 = 910 (小数点以下 000001002 = 4 = 410 切り捨て)

算術シフト復習

- ■符号付きの場合
 - ■算術シフト

右に1ビット シフト

$$111110002 = -810$$
 $111111002 = -410$

左に1ビット シフト

$$111110002 = -810$$

$$111100002 = -1610$$

論理シフト 復習

- ■符号なしの場合
 - ■論理シフト

右に1ビット シフト

```
111110002 = 24810
011111002 = 12410
```

符号ビットを 考慮しない

左に1ビット シフト

$$01111000_2 = 120_{10}$$

 $11110000_2 = 240_{10}$

確認問題

■ (1) 命令 addi \$s0, \$zero, -1 を 機械語に直せ。

■ (2) (1)の命令の結果、\$s0の中身は どうなるか、2進数で示せ。

2進数の符号拡張 復習

- より多いビット数で同じ値を表現する方法
 - e.g., 8ビット2進数→16ビット2進数
- 新しい値の上位ビットを、元の値の最上位ビットで 埋めればOK
 - 負数は2の補数表現が前提

```
8bit 000000000001111 1510

8bit 11110001 -1510

1510
```

講義内容

- ■算術演算の実行
 - ■2進数の加算・減算・AND/OR演算 シフト演算、符号拡張

算術演算ユニット(ALU)

算術演算ユニット

- ALU (arithmetic logic unit) 本级特别,
 - ■算術演算 (加算、減算)
 - ■論理演算 (AND, OR)

論理演算の実現

■AND演算、OR演算の実現

論理演算の実現

■ AND演算、OR演算の実現

1ビット加算器の実現

■全加算器 (下位からの繰り上げあり)

1ビット加算器の実現

■全加算器 (下位からの繰り上げあり)

論理演算と加算が可能なALU

論理演算と加算が可能なALU

減算器の実現

- ■「入力値の2の補数を取る」という 指定ができる制御信号を導入すれば良い
 - → あとは加算器で加算する

- □各ビット反転
- □最下位ビットに1を加算

操作	オペランドA	オペランドB	結果
A+B	非負	非負	負
A+B	負	負	非負
A-B	非負	負	負
A-B	負	非負	非負

→実際には、もっと簡単に判定可能

2の補数を使えば、減算も加算として扱えるので、加算のみ考慮

最上位への繰り上がり、 最上位からの繰り上がりに着目

最上位への繰り上がり、最上位からの繰り上がりに着目

① **正**+正 ② 負+負 10000001 -127 01111111 127 00000011 11111101 -3 010000010 - 12610:1111110 126 異なるとオーバーフロー

2つのビットの**比較**を行えば判定可能

→ XORゲート(排他的論理和)が使える

MIPSにおけるオーバーフロー対応

- 加算(add)、即値加算(addi)、減算(sub)時に オーバーフロー例外が発生
- 符号なし加算(addu)、符号なし即値加算 (addiu)、符号なし減算(subu)は、 オーバーフローが発生しても例外にならない
 - ■通常、符号なし整数はメモリアドレスに使用される
- オーバーフローを認識するかどうかは状況依存
 - ■<mark>状況</mark>によって、認識したり、無視できるように 命令を選択
- 例外プログラムカウンタ(EPC)に例外を 起こした命令のアドレスが格納される

確認問題

- CPUの中に存在する様々な算術演算を行 う回路を、(1)と呼ぶ。
- ■加減算におけるオーバーフローを判定 するには、(2)と、(3)を見れば良い。

参考文献

- ■コンピュータの構成と設計 上 第5版 David A.Patterson, John L. Hennessy 著、 成田光彰 訳、日経BP社
- ■コンピュータの構成と設計 下 第5版 David A.Patterson, John L. Hennessy 著、 成田光彰 訳、日経BP社
- ■山下茂 「計算機構成論1」講義資料