Assignment 2

Topology (KSM1C03)

Submission Deadline: 5th October, 2025

1) Let X_{α} be a family of spaces, and $A_{\alpha} \subset X_{\alpha}$. Consider $A := \Pi A_{\alpha} \subset X := \Pi X_{\alpha}$. Show that $\overline{A} = \Pi \overline{A_{\alpha}}$, for both product and box topology on X.

$$5 + 5 = 10$$

2) Given an infinite collection $\{X_{\alpha}\}_{{\alpha}\in I}$ of (non-empty) spaces, consider the product space $X=\Pi X_{\alpha}$. Fix a point $z=(z_{\alpha})\in X$. Consider the subset

$$A \coloneqq \left\{ (x_\alpha) \in X \mid x_\alpha = z_\alpha \text{ for all but finitely many } \alpha \in I \right\}.$$

Show that $\bar{A} = X$.

Prove (or disprove by example) the same if X is given the box topology.

$$7 + 3 = 10$$

- 3) Let X be an infinite set, equipped with the cofinite topology. Prove the following.
 - a) X is T_1 but not T_2 .
 - b) A sequence $\{x_n\}$ in X which is eventually constant, say, $x_n = x$ for some $n \ge N$, converges to only x and no other point.
 - c) A sequence $\{x_n\}$ in X where no point is repeated infinitely many times, converges to every point in X.

$$3 + 3 + 4 = 10$$

- 4) Let X be an uncountable set, equipped with the cocountable topology. Prove the following.
 - a) X is T_1 but not T_2 .
 - b) If a sequence $\{x_n\}$ in X converges to some x, the sequence is eventually constantly equal to x, i.e., there is some $N \ge 1$ such that $x_n = x$ for all $n \ge N$.
 - c) Any sequence in X can converge to at most one point.

$$3 + 3 + 4 = 10$$

- 5) Given a collection of T_2 -spaces (even T_1 will suffice) $\{X_\alpha\}$, denote the product set $X=\Pi X_\alpha$. Suppose $x_n=(x_{n,\alpha})$ is a sequence of points, and let $x=(x_\alpha)\in X$. Prove the following.
 - a) $x_n \to x$ in the product topology, if and only if $x_{n,\alpha} \to x_\alpha$ in X_α for each α . (Note : you don't need to assume T_2 for this case.)

- b) $x_n \to x$ in the box topology, if and only if
 - i) $x_{n,\alpha} \to x_{\alpha}$ in each X_{α} , and moreover,
 - ii) there is a finite set of $S = \{\alpha_1, \dots, \alpha_n\}$ of indices, and an integer $N \ge 1$, such that $x_{n,\alpha} = x_{\alpha}$ for all $n \ge N$ and for all $\alpha \notin S$.

That is to say, $x_n \to x$ in the box topology if and only if it converges component-wise, and moreover, all but finitely many components are uniformly eventually constant.

(Note : you need to assume T_2 for the "only if" part.)

$$4 + 6 = 10$$

6) Let $X = \mathbb{R}/\mathbb{Q}$ be the quotient space induced by the relation $x \sim y$ if and only $x - y \in \mathbb{Q}$. Prove that X has the indiscrete topology.

5

- 7) a) Suppose $A \subset X$ is a subspace and $f: A \to Y$ is a continuous map. On the disjoint union $X \sqcup Y$, consider the relation $u \sim v$ if and only if
 - i) u=v, or
 - ii) $u, v \in A$, f(u) = f(v), or
 - iii) $u \in A$, v = f(u), or
 - iv) $v \in A$, u = f(v), or

Check that \sim is an equivalence relation on $X \sqcup Y$.

b) Let us denote the quotient space under the equivalence relation as $X \cup_f Y$, which is called the *attaching space* obtained by the *attaching map* f. Check that the maps

$$p: X \to X \cup_f Y \\ x \mapsto [x], \qquad q: Y \to X \cup_f Y \\ y \mapsto [y]$$

are continuous. Moreover, check that $p|_A = q \circ f$.

c) Suppose we have maps $\phi: X \to Z$ and $\psi: Y \to Z$ such that the outer square in the diagram commutes (i.e, $\phi|_A = \psi \circ f$):

Then, show that there exists a unique continuous map $h: X \cup_f Y \to Z$ making the triangles commutative, i.e, $h \circ p = \phi$ and $h \circ q = \psi$.

$$5 + (3+2) + 5 = 15$$

- 8) Suppose $A \subset X$ is a subspace, and consider the identification space X/A (which identifies the points of A to each other, and any point outside A to itself). Say, $q: X \to X/A$ is the identification map.
 - a) Suppose $f:X\to Z$ is a continuous map, such that $f|_A$ is constant. Then, show that there exists a unique continuous map $\tilde{f}:X/A\to Z$ such that $\tilde{f}\circ q=f$.

b) Consider the constant map $f:A\to Y=\{\star\}$ (i.e, single-point space). Prove that the attaching space $X\cup_f Y$ is homeomorphic to the identification space X/A.

$$2 + 8 = 10$$

9) Suppose $\mathcal{F}=\{f_{\alpha}:(X_{\alpha},\mathcal{T}_{\alpha})\to Y\}$ is a given family of maps. Consider the collection

$$\mathcal{T} := \left\{ U \subset Y \mid f_{\alpha}^{-1}(U) \in \mathcal{T}_{\alpha} \, \forall \, f_{\alpha} \right\}.$$

Prove that \mathcal{T} is a topology (called the topology *co-induced by the family* \mathcal{F}).

Prove that any map $f:(Y,\mathcal{T})\to (Z,\mathcal{T}_Z)$ is continuous if and only if $f\circ f_\alpha:(X_\alpha,\mathcal{T}_\alpha)\to (Z,\mathcal{T}_Z)$ is continuous for all α .

$$5 + 5 = 10$$