Lesson 14-1 – Risk Analysis – Cases and Joint Probability

A Range of Estimates

- We can't foretell precisely the costs and benefits for future years.
- It is more realistic to describe a range of possible values.
 - For example a range could include:
 - "Optimistic," "most likely," and "pessimistic" estimates
 - The analysis could then determine whether the decision is sensitive to the range of values.
- All estimates are inherently uncertain.
 - Far-term estimates are generally more uncertain than near-term estimates.
- Changes in any estimate(s) can alter the results of an economic analysis.
- Using breakeven and sensitivity analysis yields an understanding of how changes in variables will affect the economic analysis.

Decision-making and Uncertainty of Future Outcomes

- It is good practice to examine the effects on outcomes of variability in the estimates.
 - By how much and in what direction will a measure of merit (e.g., NPV, EACF, IRR) be affected by variability in the estimates?
- But, this does not take into account the inherent variability of parameters in an economic analysis.
- We need to consider a range of estimates

Uncertainty of Future Outcomes

- In the left box, one cash flow in Project B is uncertain and $NPV_A > NPV_B$ (i = 10%).
- In the right box, the cash flow estimate has changed by a small amount and now $NPV_A < NPV_B$.

Year	Project A	Project B
0	-\$1000	-\$2000
1	\$400	\$700
2	\$400	\$700
3	\$400	\$700
4	\$400	\$700
NPV	\$267.95	\$218.91

Year	Project A	Project B
0	-\$1000	-\$2000
1	\$400	\$700
2	\$400	\$700
3	\$400	\$700
4	\$400	\$800
NPV	\$267.95	\$287.21

Probabilities of Future Events

- Probabilities of future events can be based on theory, empirical data, judgement, or a combination
 - games of chance
 - weather and climate data
 - expert judgement on events
- Most data has some level of uncertainty
 - Small uncertainties are often ignored.
- Variables can be known with certainty (deterministic) or with uncertainty (random).

Probability

- Probability of flipping a coin:
 - Head (50%), Tail (50%)

(This is the long range frequency and the single trial likelihood.)

- Mathematically: Between 0 and 1
 - •0 (can never happen) 0%
 - 1 (will always happen) 100%
 - 0.5 (half the time—as in the above example of flipping a coin—50%)
 - The sum of probabilities for all possible outcomes = 1 (or 100%)

Probability, cont'd

- The sum of all probabilities must equal 1.
 - Head (0.5), Tail (0.5)
 - $0 \le \text{Probability} \le 1$
 - $\sum P(\text{outcome}_j) = 1$, where there are K outcomes
- As opposed to large distributions, it is more common in economic analysis to use 2 to 5 discrete possibilities.
 - This is because:
 - Each outcome requires more analysis.
 - Expert judgement should be limited for accuracy.

Probability Continued...

- It is usual in engineering economics to use between two and five discrete outcomes with their probabilities.
 - Expert judgement limits the number of outcomes.
 - Each additional outcome requires more analysis.
- An outcome's probability can be determined as the long-run relative frequency of its occurrence

Example

- An oil exploration company is drilling a new wells in an established field. Based on the previous data from that field, they estimate
 - A 70% chance of a well being dry
 - A 25% chance of a well being productive
 - A 5% chance of the well being highly productive
- If they plan to drill 40 wells over the next two years, how many of each kind of well should they expect?
 - 40*70% = 28 dry wells
 - 40*25% = 10 productive wells
 - 40*5% = 2 very productive wells

Joint Probability Distributions

- Random variables are assumed to be statistically independent.
 - For instance, the project lifetime and the annual benefit are assumed to be independent (unrelated).
- Project criteria (eg. NPV & IRR), depend on the probability distributions of input variables.
- We need to determine the joint probability distributions of different combinations of input parameters.

Joint Probability Distributions Continued...

- If A and B are independent, $P(A \text{ and } B) = P(A) \times P(B)$.
- Example: Flipping a coin and rolling a die
 - Turning up a head and rolling a 4
 - $1/2 \times 1/6 = 1/12$ is the joint probability
- Suppose there are three values for the annual benefit and two values for the lifetime. This leads to six possible combinations that represent the full set of outcomes and probabilities
- Joint probabilities can increase the number of possibilities and become arithmetically burdensome.

Example (cont'd)

- Remember the oil exploration company has a
 - A 70% chance of a well being dry
 - A 25% chance of a well being productive
 - A 5% chance of the well being highly productive
- Additionally, there is a 60% probability oil prices will rise in the next three months, and a 40% probability oil prices will fall. If the company can drill one well in the next three months, what are the likelihoods of the potential outcomes?

Example (cont'd)

- Remember the oil exploration company has a
 - A 70% chance of a well being dry
 - A 25% chance of a well being productive
 - A 5% chance of the well being highly productive

Case	P(Well Type) x	P(Oil Price) =	P(case)
Dry Well, Low Price	70%	40%	28%
Dry Well, High Price	70%	60%	42%
Productive Well, Low Price	25%	40%	10%
Productive Well, High Price	25%	60%	15%
Very Productive Well, Low Price	5%	40%	2%
Very Productive Well, High Price	5%	60%	3%

Expected Value

Each outcome is weighted by its probability and the results are summed:

Expected value = Outcome_A (P(A)) + Outcome_B (P(B)) +...

Where outcome is our measure of worth or other value, e.g. NPV, Rate of Return, Future Value...

A weighted average of the values of each case based on the probability of those cases occurring

Expected Value: Problem

The proposed projects have the potential uniform annual <u>benefits</u> and associated probability at occurrence shown below. Which project is more desirable based on these data?

Project A		Project B	
EUAB	Probability	EUAB	Probability
\$1000	0.10	\$1500	0.20
\$2000	0.30	\$2500	0.40
\$3000	0.40	\$3500	0.30
\$4000	0.20	\$4500	0.10

Expected Value: Solution

Determine which project looks better based on expected values.

Expected Value_A = 1000(0.1) + 2000(0.3) + 3000(0.4) + 4000(0.2)

Expected Value_B = 1500(0.2) + 2500(0.4) + 3500(0.3) + 4500(0.1)

Project B has the greatest expected value (benefit) and should be selected.

Oil exploration example

- Suppose drilling a well costs \$700,000. A dry well provides zero benefits. A productive well provides \$150000 in net annual benefits for 15 years if oil prices are low, \$200,000 if high.
- A very productive well provides \$300,000 in annual benefits for 20 years if oil prices are low, \$400,000 if high. What is the expected value of drilling a single well?

Case	Cost	Annual Benefits	NPV (@15% interest)
Dry Well, Low Price	\$700000	\$0	-\$700,000
Dry Well, High Price	\$700000	\$0	-\$700,000
Productive Well, Low Price	\$700000	\$150000	\$177,105
Productive Well, High Price	\$700000	\$200000	\$469,474
Very Productive Well, Low Price	\$700000	\$300000	\$1,177,800
Very Productive Well, High Price	\$700000	\$400000	\$1,803,733

Oil exploration example

 Combining the probability for each case and the NPV for each case, we can calculate the expected value for each case, and the expected value for drilling a well overall

Case	P(case) x	NPV(case) =	Expected NPV
Dry Well, Low Price	28%	-\$700,000	-\$196,000
Dry Well, High Price	42%	-\$700,000	-\$294,000
Productive Well, Low Price	10%	\$177,105	\$17,711
Productive Well, High Price	15%	\$469,474	\$70,421
Very Productive Well, Low Price	2%	\$1,177,800	\$23,556
Very Productive Well, High Price	3%	\$1,803,733	\$54,112
Total (sum of all cases)	100%	N/A	-\$324,200