Chapitre 1: INTRODUCTION AUX ESPACES METRIQUES

I- Distances et normes.

1- Distances

Définition: Soit X un ensemble non vide. On appelle distance sur X, toute application

 $d: X \longrightarrow R$, vérifiant, $\forall x y z \in X$:

(D1)
$$d(x, y) = 0 \iff x = y$$

(D2)
$$d(x, y) = d(y, x)$$

(D3)
$$d(x, z) \le d(x, y) + d(y, z)$$
 (Inégalité triangulaire)

Exemple:

Montrer que l'application $d:[0, +\infty[\times[0, +\infty[-\rightarrow R$

$$(x, y) \rightarrow d(x, y) = |x - y|$$

est une distance sur [0, +∞[

2- Normes:

Définition:

Une norme sur un espace vectoriel E sur K = R ou C, est une application notée N ou $\parallel \parallel$ définie par N : E \rightarrow R

$$x \rightarrow N(x) = ||x||$$
 et vérifiant, $\forall x, y \in E$ et $\forall \alpha \in K$

(N1)
$$\|\alpha x\| = |\alpha| \|x\|$$

(N2)
$$||x|| = 0 \Rightarrow x = 0$$

(N3)
$$||x + y|| \le ||x|| + ||y||$$

Exemple:

Montrer que l'application définie de IR² vers IR par $\forall (x,y) \in IR^2, ||(x,y)|| = \sqrt{x^2 + y^2}$ est une norme sur IR²

Définition:

- 1. Un espace métrique est un couple (X, d) où X est un ensemble non vide et d est une distance sur X.
- 2. Un espace vectoriel normé sur K = R ou C est un couple $(E, \| \|)$ où E est un espace vectoriel sur E est une norme sur E.

Théorème:

 $\|$ || étant une norme sur un ensemble E alors d définie dans E^2 par $d(x,y) = \|x-y\|$ est une distance appelée distance associée à la norme.

II- Boules.

Définition:

Soit (X,d) un espace métrique. Soient $x \in X$ et $r \in R_+$

- 1. On appelle boule ouverte de centre x_0 et de rayon r, l'ensemble $B_o(x_0,r) = \{x \in X/d(x_0,x) < r\}$
- 2. On appelle boule fermée de centre x_0 et de rayon r, l'ensemble $B_f(x_0,r)=\{x\in X/d(x_0,x)\leq r\}$

Remarque:

Les boules sont des intervalles dans IR et des disques dans IR².

Exemple:

- **1-** IR étant muni de la distance définie par la valeur absolue, caractériser la boule ouverte de centre -2 et de rayon 5.
- **2-** IR² étant mini de la distance associée à la norme $||(x,y)|| = \sqrt{x^2 + y^2}$ caractériser dans IR² la boule fermée de centre (-1 ;2) et de rayon 3.

Définition:

Soit (X,d) un espace métrique. On dit qu'une partie A de X est bornée, s'il existe une boule fermée $B_f(x_0,r)$ telle que $A \subseteq B_f(x_0,r) \iff d(x_0,x) \le r \ \forall \ x \in A$

Exemple:

Dans IR muni de la distance usuelle cad la valeur absolue, les ensembles $C_1 = [-3,3[\cup]4,11[\cup\{31\}, C_2 =]12,17[$ et $C_3 =]-3,11[\cup\{20\}\cup]21,+\infty,[$ sont-ils bornés ?

Définition : Diamètre

- Soit (X,d) un espace métrique. Soient A et B deux parties non vide de X. On appelle distance entre A et B la valeur d(A,B) = inf{d(x,y),x ∈ A,y ∈ B}.
- On appelle diamètre d'une partie A non vide de X, notée diam(A), la valeur diam(A) =sup{d(x,y), x ∈ A, y ∈ A}.

Rappel: L'inf d'un ensemble est son plus grand minorant et son sup est son plus petit majorant.

Exemple:

On munit R de la distance usuelle. Soit A = $\{-1\}$ et B = $\{\frac{n}{1-n}$, $n \ge 2\}$. Montrer que d(A,B) = 0.

III- Ouverts et fermés d'un espace métrique

Soit (X,d) un espace métrique.

Définition: Ouvert

Une partie θ de X est dit ouverte si \forall x \in θ , il existe une boule ouverte $B_o(x_0, r)$ de centre x_0 et de rayon r telle $B_o(x_0, r) \subseteq \theta$. Les ensembles \emptyset et X sont des ouverts.

Définition:

Une partie F de X est dit fermée si son complémentaire C_F est une partie ouverte. Les ensembles \emptyset et X sont des fermés.

Proposition:

Soit (X,d) un espace métrique.

- Toute boule ouverte est un ouvert.
- Tout ouvert θ de X est réunion de boules ouvertes.
- Toute boule fermée est fermée.

Théorème: (Propriétés des ouverts)

Soit (X,d) un espace métrique, alors on a :

- 1. X et Ø sont des ouverts.
- 2. Si $(\theta_{\alpha})_{\alpha \in I}$ est une famille quelconque d'ouverts, alors $\bigcup_{\alpha \in I} \theta_{\alpha}$ est un ouvert
- 3. Si $(\theta_i)_{1 \leq i \leq n}$ est une famille finie d'ouverts, alors $\bigcap_{1 \leq i \leq n} \theta_i$ est un ouvert.

Théorème: (Propriétés des fermés)

Soit (X,d) un espace métrique, alors on a :

- 1. X et Ø sont des fermés.
- 2. Si $(\theta_{\alpha})_{\alpha \in I}$ est une famille quelconque de fermés, alors $\bigcap_{\alpha \in I} \theta_{\alpha}$ est un fermé
- 3. Si $(\theta_i)_{1 \le i \le n}$ est une famille finie de fermés, alors $\bigcup_{1 \le i \le n} \theta_i$ est un fermé.

Définition: Voinage

Soit (X,d) un espace métrique. Soient $x \in X$, $V \subseteq X$, on dit que V est un voisinage de x s'il existe $B_o(x_0,r)\subseteq V$.

Proposition : Soit (X,d) un espace métrique; θ est un ouvert de X si et seulement s'il est voisinage de chacun de ses points.

Exemple: Dans R muni de la distance usuelle soit $V =]-\infty, -2] \cup [4,7[$

V est il un voisinage de -5; 4 et 5?

IV- Intérieurs et Adhérences.

1- Intérieur.

Définition:

Soit (X,d) un espace métrique. Soit $A \subseteq X$ non vide et $x \in A$.

X est un point intérieur à A , s'il existe un voisinage v_x de x tel que $v_x \subseteq A$ L'ensemble des points intérieur à A est noté \dot{A}

2- Adhérence.

Définition:

Soit (X,d) un espace métrique. Soit $A \subseteq X$ non vide et $x \in X$.

x est un point adhérent de A si et seulement si $\forall v_x$, voisinage de x, $v_x \cap A \neq \emptyset$ L'ensemble des points adhérents à A est noté \bar{A} .

3- Point d'accumulation.

Définition:

Soit (X,d) un espace métrique. Soit $A \subseteq X$ non vide. Un élément $x \in X$ est dit point d'accumulation de A si pour tout voisinage v_x de x, on a : $(v_x \setminus \{x\}) \cap A \neq \emptyset$

4- Point isolé.

Définition:

Soit (X,d) un espace métrique. Soit $A \subseteq X$ non vide et $x \in A$. x est un point isolé à A s'il existe un voisinage , v_x de x tel que $v_x \cap A = \{x\}$ **Exemple :**

IR étant muni de la distance usuelle , soit $V = [-2, 5[U\{8\}$

- 1- Dire si -2 ; 5 et 8 sont des points adhérents , intérieurs ; d'accumulation ou isolés de A.
- 2- Donner l'intérieur et l'adhérence de A