Exercice 006 - Solution

GSF-6053

Hiver 2025

Énoncé

Supposons un échantillon aléatoire de 200 hommes de 20 ans, et leurs tailles et poids sont enregistrés. Une régression du poids sur la taille donne :

$$\hat{Poids} = -99.41 + 3.94 \times Taille, \quad R^2 = 0.81, \quad SER = 10.2$$

Construisez un intervalle de confiance à 99% pour la différence de poids de deux camarades qui diffèrent de 1.5 pouces en taille.

Solution

Pour construire un intervalle de confiance pour la différence de poids, on relie la différence attendue de poids à la différence observée de taille :

$$\Delta \hat{Poids} = \Delta Taille \times \hat{\beta}_1$$

L'erreur standard pour la différence attendue est :

$$SE(\Delta P \hat{oids}) = \Delta Taille \times SE(\hat{\beta}_1)$$

Un intervalle de confiance pour la différence de poids peut être construit de manière analogue à un intervalle de confiance pour le coefficient de pente β_1 :

$$\hat{\beta}_1 \times \Delta Taille \pm t_{\alpha/2} \times SE(\hat{\beta}_1) \times \Delta Taille$$

En utilisant les valeurs données :

$$3.94 \times 1.5 \pm 2.58 \times 0.31 \times 1.5$$

L'intervalle de confiance à 99% pour la différence de poids est donc :

$$4.71 < \Delta \hat{Poids} < 7.11$$

