An Upper Limb Exoskeleton for Physical Assistance

Advanced robotic

Ali ahmadi

Supervisor: Dr bahrami

objectives

- > inverse kinematics
- trajectory and jacobian
- > inverse dynamics
- dynamics in presence of friction
- > control of the manipulator

Kinematics

Table 1. Denavit–Hartenberg (DH) parameters.

Joints	α_i	a_i	d_i	$ heta_i$
1	$\pi/2$	0	0	$\pi/2-\theta_1$
2	$\pi/2$	0	L_1	$\pi + heta_2$
3	$-\pi/2$	0	0	$ heta_3$
4	0	0	L_2	$ heta_4$

$$\mathbf{T}_{i-1,i} = \begin{bmatrix} c\theta_i & -s\theta_i c\alpha & s\theta_i s\alpha_i & a_i c\theta_i \\ s\theta_i & c\theta_i c\alpha_i & -c\theta_i s\alpha_i & a_i s\theta_i \\ 0 & s\alpha_i & c\alpha_i & d_i \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

the overall matrix of transformation from the base frame to the wrist:

$$T_{0,4} = \begin{bmatrix} m_{11} & m_{12} & m_{13} & n_{14} \\ m_{21} & m_{22} & m_{23} & n_{24} \\ m_{31} & m_{32} & m_{33} & n_{34} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$m_{11} = c\theta_4(s\theta_1s\theta_3 + c\theta_1c\theta_2c\theta_3) - c\theta_1s\theta_2s\theta_4$$

$$m_{12} = -s\theta_4(s\theta_1s\theta_3 + c\theta_1c\theta_2c\theta_3) - c\theta_1c\theta_4s\theta_2$$

$$m_{13} = c\theta_3s\theta_1 - c\theta_1c\theta_2s\theta_3$$

$$m_{21} = -c\theta_4(c\theta_1s\theta_3 - c\theta_2c\theta_3s\theta_1) - s\theta_1s\theta_2s\theta_4$$

$$m_{22} = s\theta_4(c\theta_1 s\theta_3 - c\theta_2 c\theta_3 s\theta_1) - c\theta_4 s\theta_1 s\theta_2$$

$$m_{23} = -c\theta_1 c\theta_3 - c\theta_2 s\theta_1 s\theta_3$$

$$m_{31} = c\theta_2 s\theta_4 + c\theta_3 c\theta_4 s\theta_2$$

$$m_{32} = c\theta_2 c\theta_4 - c\theta_3 s\theta_2 s\theta_4$$

$$n_{14} = L_2(c\theta_3s\theta_1 - c\theta_1c\theta_2s\theta_3) + L_1s\theta_1$$

$$n_{24} = -L_2(c\theta_1c\theta_3 + c\theta_2s\theta_1s\theta_3) - L_1c\theta_1$$

$$n_{34} = -L_2s\theta_2s\theta_3$$

The inverse kinematics is derived from the transformation matrix (2). The joint angles can be obtained as:

$$\theta_{2} = \pi + \arctan 2(n_{34}, n_{14})$$

$$\theta_{3} = \pm \arcsin(\frac{n_{34}}{L_{2}\sin\theta_{2}})$$

$$\theta_{1} = \frac{\pi}{2} + \frac{1}{2}\arcsin\frac{n_{14} - n_{24}}{L_{1} + L_{2}\cos\theta_{3} + L_{2}\cos\theta_{2}\sin\theta_{3}}$$

$$\theta_{4} = \arccos(\frac{m_{32}\cos\theta_{2} + m_{31}\cos\theta_{3}\sin\theta_{2}}{\cos^{2}\theta_{2} - \cos\theta_{3}\sin\theta_{2}})$$
(3)

Work space analysis

Using forward kinematics:

isotropic view of upper limb exoskeleton and human arm workspace

Simulations for path

Trajectory Simulation

Singularity Analysis

We take Jacobian in the form of:

$$\mathbf{J} = \frac{\partial \mathbf{n}}{\partial \theta_i} = \begin{bmatrix} -n_{24} + L_1 c\theta_1 & -n_{34} c\theta_1 & -L_2 (s\theta_1 s\theta_3 + c\theta_1 c\theta_2 c\theta_3) \\ n_{14} + L_1 s\theta_1 & -n_{34} s\theta_1 & L_2 (c\theta_1 s\theta_3 - s\theta_1 c\theta_2 c\theta_3) \\ 0 & -L_2 c\theta_2 s\theta_3 & -L_2 s\theta_2 c\theta_3 \end{bmatrix}$$
(4)

Practical review

Dynamics of manipulator

Using Lagrange formulation:

$$M(q)\ddot{q} + C(q,\dot{q})\dot{q} + \tau_g = \tau \tag{6}$$

Table A1. Mechanical properties of the exoskeleton, and the average estimated anthropomorphic parameters for human subjects.

Link	Exoskeleton		Human Subject	
	Length (m)	Weight (kg)	Length (m)	Weight (kg)
Upper arm	0.33	2.5	0.33	1.386
Forearm	0.246	1.5	0.37	0.886

All entries of the dynamic Equation:

inertia matrix:

$$M_{11} = I_1 + L_1^2 m_3 + L_{c1}^2 m_1 + L_{c1}^2 m_2 + L_{c2}^2 m_3 c\theta_2^2 + L_{c2}^2 m_3 c\theta_3^2 + 2L_1 L_{c2} m_3 c\theta_3 - L_{c2}^2 m_3 c\theta_2^2 c\theta_3^2$$

$$M_{12} = L_{c2}m_3s\theta_2s\theta_3(L_1 + L_{c2}c\theta_3)$$

$$M_{23}=0$$

$$M_{13} = -L_{c2}m_3c\theta_2(L_{c2} + L_1c\theta_3)$$

$$M_{31} = -L_{c2}m_3c\theta_2(L_{c2} + L_1c\theta_3)$$

$$M_{21} = L_{c2}m_3s\theta_2s\theta_3(L_1 + L_{c2}c\theta_3)$$

$$M_{32} = 0$$

$$M_{22} = -m_3 L_{c2}^2 c\theta_3^2 + m_3 L_{c2}^2 + I_2$$

$$M_{33} = m_3 L_{c2}^2 + I_3$$

Coriolis forces:

$$C_{1} = L_{c2}m_{3}(L_{1}\dot{\theta}_{2}^{2}c\theta_{2}s\theta_{3} + L_{1}\dot{\theta}_{3}^{2}c\theta_{2}s\theta_{3} - 2L_{1}\dot{\theta}_{1}\dot{\theta}_{3}s\theta_{3} - L_{c2}\dot{\theta}_{1}\dot{\theta}_{2}s2\theta_{2} - L_{c2}\dot{\theta}_{1}\dot{\theta}_{3}s2\theta_{3}$$

$$+L_{c2}\dot{\theta}_{2}^{2}c\theta_{2}c\theta_{3}s\theta_{3} + 2L_{1}\dot{\theta}_{2}\dot{\theta}_{3}c\theta_{3}s\theta_{2} + 2L_{c2}\dot{\theta}_{2}\dot{\theta}_{3}c\theta_{3}^{2}s\theta_{2} + 2L_{c2}\dot{\theta}_{1}\dot{\theta}_{2}c\theta_{2}c\theta_{3}^{2}s\theta_{2} + 2L_{c2}\dot{\theta}_{1}\dot{\theta}_{3}c\theta_{2}^{2}c\theta_{3}s\theta_{3})$$

$$C_{2} = (L_{c2}^{2}m_{3}(-2c\theta_{2}s\theta_{2}\dot{\theta}_{1}^{2}c\theta_{3}^{2} + s2\theta_{2}\dot{\theta}_{1}^{2} + 4\dot{\theta}_{3}s\theta_{2}\dot{\theta}_{1}c\theta_{3}^{2} - 4\dot{\theta}_{3}sin\theta_{2}\dot{\theta}_{1} + 2\dot{\theta}_{2}\dot{\theta}_{3}sin2\theta_{3}))/2$$

$$C_{3} = (L_{c2}m_{3}(2L_{1}\dot{\theta}_{1}^{2}s\theta_{3} + L_{c2}\dot{\theta}_{1}^{2}sin2\theta_{3} - L_{c2}\dot{\theta}_{2}^{2}s2\theta_{3} + 4L_{c2}\dot{\theta}_{1}\dot{\theta}_{2}s\theta_{2} - 2L_{c2}\dot{\theta}_{1}^{2}c\theta_{2}^{2}c\theta_{3}s\theta_{3} - 4L_{c2}\dot{\theta}_{1}\dot{\theta}_{2}c\theta_{3}^{2}s\theta_{2}))/2$$

The torque due to gravity:

$$G_1 = L_1 m_3 s \theta_1 + L_{c1} m_1 s \theta_1 + L_{c1} m_2 s \theta_1 + L_{c2} m_3 c \theta_3 s \theta_1 - L_{c2} m_3 c \theta_1 c \theta_2 s \theta_3$$

$$G_2 = L_{c2} m_3 s \theta_1 s \theta_2 s \theta_3 \times g$$

$$G_3 = L_{c2}m_3(c\theta_1s\theta_3 - c\theta_2c\theta_3s\theta_1)$$

Inverse dynamic simulations

inclusion of non-rigid body effects

- ✓ all mechanisms are affected by frictional forces.
- ✓ the forces due to friction can actually be quite large perhaps equaling 25% of the torque required to move the manipulator in typical situations.
- ✓ so it is important to model (at least approximately) these forces of friction.
- ✓ a very simple model for friction is <u>viscous friction</u>, in which the torque due to friction is proportional to the <u>velocity of joint motion</u>.

$$\tau_{friction} = \vartheta \dot{\theta}$$

✓ Another possible simple model for friction, Coulomb friction, is sometimes used.

$$\tau_{friction} = c \, sgn(\dot{\theta})$$

in general:

$$\tau_{friction} = \vartheta \dot{\theta} + c \, sgn(\dot{\theta}) = F(\theta, \dot{\theta})$$

$$\tau = M\ddot{\theta} + C\dot{\theta} + \tau_g + F(\theta, \dot{\theta})$$

simulations

v_1	0.68
v_2	0.8
v_3	0.7

Position control of manipulator

Refferences

- Introduction to Robotics Mechanics and Control Third Edition John J. Craig
- ROBOTICS Control, Sensing, Vision, and Intelligence K. S. Fu
- Yu, W. PID Control with Intelligent Compensation for Exoskeleton Robots; Academic Press: Cambridge, MA, USA, 2018
- Decision and Control (CDC), Atlanta, GA, USA, 15–17 December 2010; pp. 3548–3553. 24. Pan, Y.; Li, X.; Yu, H. Efficient PID Tracking Control of Robotic Manipulators Driven by Compliant Actuators. IEEE Trans. Control. Syst. Technol. 2019