Sheaves and their cohomology

Date: 2023-08-29 3:00-5:00 PM Lecturer: Nithi Rungtanapirom Transcriber: Kittapat Ratanaphupha

Last session: T_pM for the geometric and algebraic sense are the same for C^{∞} - $/\mathbb{C}^{\omega}$ - $/\mathbb{C}$ -

manifold.

$$T_p^{\mathrm{geo}}M \cong \mathrm{Der}_{\mathbb{K}}(\mathcal{O}_{M,p},\mathbb{K}) \cong (\mathfrak{m}_{M,p}/\mathfrak{m}_{M,p}^2)^{\vee}$$

Let (A, \mathfrak{m}, k) be a local ring which satisfies the tangent space conditions.

For $f \in A$, define

$$df := (f - \bar{f}) \bmod \mathfrak{m}^2 \in \mathfrak{m}/\mathfrak{m}^2$$

Note that \bar{f} is the image of f under $A \to A/\mathfrak{m} \cong k \hookrightarrow A$.

Exercise Show that in this case, $d: A \to \mathfrak{m}/\mathfrak{m}^2$, $f \mapsto df$, is a k-derivation.

Example. $A = \mathcal{C}_{\mathbb{R}^n,0}^{\infty}$ that 0 is the identity of \mathbb{R}^n . $\mathfrak{m} = (x_1, \dots, x_n)$ is the maximal ideal of A.

Let $f \in A$ then there is a Taylor expansion.

$$f(x_1, \dots, x_n) = f(0) + \sum_{i=1}^n \frac{\partial f}{\partial x_i}(0) \cdot x_i + \underbrace{r(x_1, \dots, x_n)}_{\in \mathbb{R}^2}$$

$$df = f - \bar{f} = \sum_{i=1}^{n} \frac{\partial f}{\partial x_i}(0) \cdot x_i \text{ is in } \mathfrak{m}/\mathfrak{m}^2.$$

Remark. Let M be a C^{∞} - $/C^{\omega}/\mathbb{C}$ -manifold, $p \in M$, $f \in \mathcal{O}_{M,p} \mapsto df \in T_pM^{\vee}$. What is df(v) for $v \in T_pM$?

Use the algebraic definition $v = \partial_v : \mathcal{O}_{M,p} \to \mathbb{K}$. Under the isomorphism, $\operatorname{Der}_{\mathbb{K}}(\mathcal{O}_{M,p}, \mathbb{K}) \xrightarrow{\sim} (\mathfrak{m}_{M,p}/\mathfrak{m}_{M,p}^2)^{\vee}$, ∂_v is sent to $\partial_v|_{\mathfrak{m}_p}$. Hence $df(v) = \partial_v(f - \bar{f}) = \partial_v(f)$.

Exercise.

• Let M be a premanifold, $P(\epsilon)$ be a locally \mathbb{K} -ringed space consisting of one single point such that $\mathcal{O}_{P(\epsilon)} = P(\epsilon) = \mathbb{K}[\epsilon]/(\epsilon^2)$. Show that there is a natural bijection.

$$\operatorname{Hom}_{\mathbb{K}}(P(\epsilon), M) \cong \{(p, v) \mid p \in M, v \in T_p M\}$$

(for a more general statement, see Wedhorn, Problem 5.5.)

• Arapura, Exercise 2.5.22

Def Let M be a C^{∞} -manifold. A C^{∞} 1-form on $U \subseteq M$ is a finite linear combination $\sum_{i=1}^{n} g_i df_i$, $f, g \in C^{\infty}(U)$ as a function $U \to \bigsqcup_{p \in M} T_p M^{\vee}$.

Then $\{1\text{-forms on }U\}$ is a $C^{\infty}(U)$ module.

The sheaf associated to $U \mapsto \{1\text{-forms on } U\}$ will be denoted by \mathcal{E}_M^1 . $\mathcal{E}_M^1(U)$ is again a $C^\infty(U)$ module.

Remark. let M be a C^{∞} -manifold, (U, x) be a chart of M where $x : U \xrightarrow{\sim} B \subseteq \mathbb{R}^n$. If say that $x = (x_1, \dots, x_n), x_i$ is then smooth.

Discussion before:

$$\forall p \in U \forall f \in C^{\infty}(U), df|_{p} = \sum_{i=1}^{n} \frac{\partial (f \circ x^{-1})}{\partial x_{i}}(x(p)) dx^{i}|_{p}$$

Based on this observation, we can show that

$$\mathcal{E}_n^1(U) = \bigoplus_{i=1}^n C^{\infty}(U) \, dx_i$$

How?: For each $j = \{1, ..., n\}$, define $\partial_j|_p \in T_pM$ by $\partial_j|_p(f) := \frac{\partial (f \circ x^{-1})}{\partial x_j}(x(p))$ when $dx^i|_p\partial_j|_p = \delta_{ij}$ (! Need to verify)

Def Let M be a C^{∞} -premanifold. A vector field on $V \subseteq M$ is a collection of vectors $(v_p \in T_p M)_{p \in V}$ such that $\forall U \subseteq V \forall f \in C^{\infty}(U)$ the function $p \in U \mapsto \langle v_p, df|_p \rangle$ is a C^{∞} (i.e. lies in $C^{\infty}(U)$, $\langle \cdot, \cdot \rangle$ denotes the standard pairing $T_p M \times T_p M^{\vee} \to \mathbb{R}$).

$$\mathcal{T}_M(V) := \{C^{\infty}\text{-vector fields on } V\}$$

Remark.

- Therefore, each $D \in \mathcal{T}_M(V)$ defines a derivation $C_M^{\infty}(V) \to C_M^{\infty}(V), f \mapsto \langle D, df \rangle$.
- We can show that \mathcal{T}_M is a sheaf on M.
- Let (U,x) be a chart on M, $x=(x^1,\cdots,x^n)$. Define $\partial_i:=\frac{\partial}{\partial x^i}:=(\partial_i|_p)_{p\in U}$ $(\partial_i|_p)$ as before.) For each $D\in\mathcal{T}_M(U)$, there are $f_1,\ldots,f_n:U\to\mathbb{R}$ such that $D=\sum_{i=1}^n f_i\partial_i$. Consider $x^j\in C^\infty(U)$. $\langle D,dx^j\rangle=\sum_{i=1}^n f_i\langle\partial_i,dx^j\rangle=f_j$ Hence $f_i\in C^\infty(U)$.

$$\mathcal{T}_M(U) = \bigoplus_{i=1}^n C^{\infty}(U)\partial_i$$

Sheaves of Modules

We want to generalize \mathcal{E}_M^1 , \mathcal{T}_M^1 . Unless otherwise specified, let (X, \mathcal{O}_X) be a ringed space. **Def** A sheaf of \mathcal{O}_X -modules or simply an \mathcal{O}_X -module is a sheaf \mathcal{F} of abelian groups on X together with a morphism of sheaves (of sets!)

$$\mathcal{O}_X imes \mathcal{F} o \mathcal{F}$$

such that $\forall U \subseteq X$: the map $\mathcal{O}_X(U) \times \mathcal{F}(U) \to \mathcal{F}(U)$ yields an $\mathcal{O}_X(U)$ -module structure on $\mathcal{F}(U)$.

(In particular, for $U \subseteq V \subseteq X$, $f \in \mathcal{O}_X(V)$, $s \in \mathcal{F}(V)$, we have $(f \cdot s)|_V = (f|_V)(s|_V)$)

More definitions

- Let \mathcal{F} be an \mathcal{O}_X -module. An \mathcal{O}_X -submodule of \mathcal{F} in an \mathcal{O}_X -module \mathcal{G} such that $\forall U \overset{\circ}{\subseteq} X : \mathcal{G}(U)$ is an $\mathcal{O}_X(U)$ -submodule of $\mathcal{F}(U)$ and the restriction morphisms for \mathcal{G} are obtained from those for \mathcal{F} .
- An *ideal sheaf* of \mathcal{O}_X is an \mathcal{O}_X -submodule of \mathcal{O}_X .

Examples

- Let M be a C^{∞} -premanifold. $\mathcal{E}_M^1, \mathcal{T}_M^1$ are \mathcal{C}_M^{∞} -modules.
- Let M be a C^{∞} -/ \mathbb{C} -manifold, $N \subseteq M$ be a closed submanifold. Define $\mathcal{J}_{N/M}$ by

$$\forall U \subseteq \mathcal{J}_{N/M} := \{ f \in \mathcal{O}_M(U) \mid f|_N = 0 \} \leq \mathcal{O}_M(U)$$

or $\mathcal{J}_{N/M}$ is an ideal sheaf of \mathcal{O}_M .

Def A morphism of \mathcal{O}_X -modules $\mathcal{F} \to \mathcal{G}$ is a morphism φ of sheaves such that $\forall U \overset{\circ}{\subseteq} X : \varphi_U : \mathcal{F}(U) \to \mathcal{G}(U)$ is an $\mathcal{O}_X(U)$ -module homomorphism.

Notation (\mathcal{O}_X -Mod) is the category of \mathcal{O}_X -modules.

Exercise. Let \mathcal{F} and \mathcal{G} be sheaves of \mathcal{O}_X -modules

- 1. Show that $\operatorname{Hom}_{\mathcal{O}_X}(\mathcal{F},\mathcal{G})$ has a natural structure as \mathcal{O}_X -module.
- 2. Show that $\mathfrak{Hom}_{\mathcal{O}_X}(\mathcal{F},\mathcal{G}): U \mapsto \mathrm{Hom}_{\mathcal{O}_X|_U}(\mathcal{F}|_U,\mathcal{G}|_U)$ is a sheaf (!) of \mathcal{O}_X -modules.

Def We say that an \mathcal{O}_X -module \mathcal{F} is locally free of rank n if \exists open covering $X = \bigcup_{i \in I} U_i$ such that $\forall i \in I, \mathcal{F}|_{U_i} \cong (\mathcal{O}_X|_{U_j})^n$

Example. Let M be an n-dimensional C^{∞} -premanifold. \mathcal{E}_{M}^{1} , \mathcal{T}_{M} are locally free of rank n. Furthermore, $\mathcal{E}_{M}^{1} \cong \mathfrak{Hom}_{\mathcal{O}_{M}}(\mathcal{T}_{M}, \mathcal{O}_{M})$.

Question: further construction of \mathcal{O}_X -modules?

Prop/Def Let $\varphi : \mathcal{F} \to \mathcal{G}$ be a morphism of \mathcal{O}_X -modules.

1. $\ker(\varphi): U \mapsto \ker(\varphi_U)$ is an \mathcal{O}_X -submodule of \mathcal{F} , called the *kernel* of φ .

2. The sheaf $\operatorname{im}(\varphi)$ associated to $\operatorname{im}(\varphi)^{\mathcal{P}}: U \mapsto \operatorname{im}(\varphi_U)$ is an \mathcal{O}_X -submodule of \mathcal{G} , called the range of φ .

 $(\mathcal{O}_X \times \operatorname{im}(\varphi)^{\mathcal{P}} \to \operatorname{im}(\varphi)^{\mathcal{P}}$, sheafification yields an \mathcal{O}_X -module structure on $\operatorname{im}(\varphi)$)

Def Let \mathcal{F} be a \mathcal{O}_X -module, $\mathcal{G} \subseteq \mathcal{F}$ be an \mathcal{O}_X -submodule. The quotient \mathcal{F}/\mathcal{G} is the sheaf associated to $U \mapsto \mathcal{F}(U)/\mathcal{G}(U)$.

Example. Let $N \subseteq M$ be a closed submanifold, $\mathcal{J}_{N/M} \subseteq \mathcal{O}_M$ as before. $\stackrel{!}{\Longrightarrow} \mathcal{O}_M/\mathcal{J}_{N/M} \cong i_*\mathcal{O}_N$, where $i: N \hookrightarrow M$ denotes the inclusion morphism.

Sketch proof: $i^{\flat}: \mathcal{O}_M \to i_*\mathcal{O}_N$

 $\mathcal{O}_M(U)/\mathcal{J}_{N/M}(U) \to i_*\mathcal{O}_N(U)$ for each $U \subseteq M$. Then sheafify this one: $\mathcal{O}_M/\mathcal{J}_{N/M} \to i_*\mathcal{O}_N$

Excursion Tensor products

Let R be a commutative ring.

Prop/Def. Let M, N be R-modules. There exists an R-module $M \otimes_R N$ with an R-bilinear map.

$$\tau: M \times N \to M \otimes_R N$$

which satisfies the following universal property:

 $\forall R$ -module T $\forall R$ -bilinear map $\varphi: M \times N \to T$, $\exists !R$ -linear map $\psi: M \otimes_R N \to T$ such that $\psi \circ \tau = \varphi$

$$M \times N \xrightarrow{\tau} M \otimes_R N$$

 $M \otimes_R N$ is called the tensor product of M and N over R. It is unique up to unique isomorphism.

Construction.

$$M \otimes_R N = \left(\bigoplus_{(m,n) \in M \times N} R(m \otimes n) \right) / \left\langle \left\langle \substack{m+m' \oplus n = m \oplus n + m' \oplus n, \\ (rm) \oplus n = r(m \oplus n), \\ m \oplus (n+n') = m \oplus n + m \oplus n', \\ m \oplus rn = r(m \oplus n)} \right| m, m' \in M, n, n' \in N, r \in R \right\rangle$$

Remark. If M is generated by $\{m_i|i\in I\}$ and N by $\{n_j|j\in J\}$, then $M\otimes_R N$ is generated by $\{m_i\times n_j|i\in I,j\in J\}$

Example.

- $R^m \otimes R^n \cong R^{mn}$
- $\mathbb{Z}/n\mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Q} = \{0\}$, since $([a]) \otimes r = (n[a]) \otimes \frac{r}{n}$ for all $[a] \in \mathbb{Z}/n\mathbb{Z}$, $r \in \mathbb{Q}$.