Math104Hw1

Trustin Nguyen

September 11, 2023

Exercise 1: Prove that $\forall a, b, c \in \mathbb{R}$, $|a + b + c| \leq |a| + |b| + |c|$. (Hint: Use the triangle inequality twice).

Proof. We have by triangle inequality:

$$|(a+b)+c| \le |a+b|+|c|$$

and by triangle inequality again,

$$|a + b| + |c| \le |a| + |b| + |c|$$

Exercise 2: $\forall a, b \in \mathbb{R}$ and c > 0, prove that

$$|a-b| \le c \iff b-c \le a \le b+c$$

Proof. (\rightarrow) We note that there are two cases.

• $a - b \ge 0$. Then |a - b| = a - b and so we get

$$a - b \le c$$

So we get

$$a \le b + c$$

• a - b < 0. Then we have that |a - b| = b - a and so

$$b - a \leq c$$

or in other words,

$$b-c\leqslant \alpha$$

If we consider both cases, we have that:

$$b - c \le a \le b + c$$

which is possible since c > 0.

Exercise 3:

• Construct a set $S_1 \subseteq \mathbb{R}$ so that $\sup S_1$ exists and $\sup S_1 \notin S_1$:

Proof. Take the set $S_1 = \{a \in \mathbb{R} : 0 < a < 1\}$. We see that an upper bound is 1 since 1 > s if $s \in S_1$. We will prove that an upper bound less than 1 does not exist. Suppose that s_u is an upper bound such that $s_u < 1$. Then we have two cases:

- s_u ≤ 0. Then we notice that clearly, $.5 ∈ S_1$ but $s_u < .5$ so this is not an upper bound
- s_u > 0. Then s_u ∈ S_1 . But then there is always a rational number between any two real numbers, which was proved in class. This means that there is a q ∈ \mathbb{Q} such that s_u < q < 1. Then q ∈ S_1 but q > s_u . Therefore, s_u is not an upper bound. Therefore, 1 is the supremum and 1 $\notin S_1$.

So our construction S_1 satisfies the qualities.

• Construct a set $S_2 \subseteq \mathbb{R}$ so that S_2 is bounded above but not bounded below.

Proof. Take the set $S = \{a \in \mathbb{R} : a < 0\}$. This is bounded above by 0 because for an arbitrary $s \in S$, then we have s < 0 and therefore, s < 0. So 0 is an upper bound. Now we show that it is not bounded below. Suppose it is bounded below by $s_b < 0$. Then we note that $s_b - 1 \in \mathbb{R}$ and $s_b - 1 < s_b$. So s_b is not a lower bound. Contradiction. So our construction S satisfies the requirements. □

Exercise 4: Assume that $S,T\subseteq\mathbb{R}$ be two non-empty bounded sets. Prove that:

• $S \cup T$ is a bounded set

Proof. (Lower Bound) Since S, T are bounded, we have s_b and t_b are lower bounds of S, T respectively. Then we take $l = \min(s_b, t_b)$. We claim that this is the lower bound of $S \cup T$. Suppose that $x \in S \cup T$. Then $x \in S$ or $x \in T$. In either case, we see that l < x because l is a lower bound of S and T.

(Upper Bound) The upper bound is the same case, but for completion, say that s_u , t_u are upper bounds of S,T respectively. Then we take $u = \max(s_u, t_u)$. We see that for an arbitrary $x \in S \cup T$, $x \in S$ or $x \in T$. Since u is the upper bound of both S and T, we have that u > x.

• $\inf(S \cup T) = \min(\inf S, \inf T)$

Proof. Suppose that $i_t = \inf T$ and $i_s = \inf S$. Let $i = \min(i_s, i_t)$. Wlog, suppose that $i = i_t$. Then that means that $i_t \le i_s$. Suppose that $x \in S \cup T$. Then $x \in S$ or $x \in T$. We have three cases:

 $-x \in S$. So

$$i = i_t \le i_s \le x$$

so we are done

 $-x \in T$. So

$$i = i_t \leq x$$

so we are done

- $x \in S \land x \in T$. We reduce this to the previous two cases.

We can conclude that $i \le x$ for all $x \in S \cup T$. So $i = \inf S \cup T$.

Exercise 5: Let $S = \{r \in \mathbb{Q} : \sqrt{2} \ge r \ge 0\}$. Show that $\sup S = \sqrt{2}$.

Proof. Clearly, by definition of our set S, $\sqrt{2}$ is an upper bound. Suppose for contradiction there exists an upper bound $s_u < \sqrt{2}$. Then we are reduced to two cases:

• $s_u < 0$. Then we see that $0 \in S$ but $0 > s_u$. This means that s_u is not an upper bound.

• $s_u \ge 0$. Then we note that $s_u \in S$. But by the fact that $\mathbb Q$ is dense in $\mathbb R$, we have that there is a $q \in \mathbb Q$ such that

$$s_u < q < \sqrt{2}$$

But since $q < \sqrt{2}$, $q \in S$ but $q > s_u$. Therefore, s_u is not an upper bound.

Since s_u is not an upper bound in either case, we conclude that there is not upper bound less than $\sqrt{2}$. So $\sup(S) = \sqrt{2}$.

Exercise 6: Decide whether the following sequences converge or diverge, find the limit if it converges. No proof required.

• $s_n = \sqrt{n}, n \in \mathbb{N};$

Answer. Diverges. We need to show that there is an $\varepsilon > 0$ such that for any N there is an n > N where it is not true that

$$|\sqrt{n} - L| < \varepsilon$$

Let $\varepsilon = \frac{1}{2}$. We have two cases:

- \sqrt{n} L ≥ 0. Then we have \sqrt{n} L < $\frac{1}{2}$ or \sqrt{n} < ε + L or n < $(\frac{1}{2}$ + L)². But this means that n has an upper bound. This means that there is no N such that all n > N works.
- \sqrt{n} L < 0. Then we have L \sqrt{n} < $\frac{1}{2}$ or n > (L $\frac{1}{2}$)². But it does not matter because first case failed. We note that the first case is possible because we can choose n ≥ L²

So there is an upper bound on our interval of convergence, and therefore, the series diverges.

• $a_n = \sin n\pi, n \in \mathbb{N}$;

Answer. Diverges. We need to show that there is an $\varepsilon > 0$ such that for any N there is an n > N where it is not true that

$$|a_n - L| < \varepsilon$$

We choose ε to be $\frac{1}{10}$. Suppose that for contradiction we have an N such that for all n > N,

$$|\sin n\pi - L| < \frac{1}{10}$$

So

$$\frac{-1}{10} < \sin n\pi - L < \frac{1}{10} \implies \frac{-1}{10} + L < \sin n\pi < \frac{1}{10} + L$$

We notice that $-1 \le \sin n\pi \le 1$, so we have conditions on L:

$$\frac{1}{10} + L > 1$$

$$L > \frac{9}{10}$$

$$\frac{-1}{10} + L < -1$$

$$L < \frac{-9}{10}$$

But that is a contradiction. So the limit does not exist.

• $b_n = \cos n\pi, n \in \mathbb{N}$;

Answer. Diverges. We need to show that there is an $\varepsilon > 0$ such that for any N there is an n > N where it is not true that

$$|b_n - L| < \varepsilon$$

We choose ϵ to be $\frac{1}{10}$. Suppose that for contradiction we have an N such that for all n > N,

$$|\cos n\pi - L| < \frac{1}{10}$$

So

$$\frac{-1}{10} < \cos n\pi - L < \frac{1}{10} \implies \frac{-1}{10} + L < \cos n\pi < \frac{1}{10} + L$$

We notice that $-1 \le \cos n\pi \le 1$, so we have conditions on L:

$$\frac{1}{10} + L > 1$$

$$L > \frac{9}{10}$$

$$\frac{-1}{10} + L < -1$$

$$L < \frac{-9}{10}$$

But that is a contradiction. So the limit does not exist.

•
$$c(n) = \frac{10^{20}}{n}, n \in \mathbb{N}.$$

Answer. This converges. As $n \to \infty$, $10^2/n \to 0$. We want that $\forall \epsilon > 0$, there should be an N such that $\forall n > N$,

$$\left|\frac{10^{20}}{n} - 0\right| < \varepsilon$$

So we need

$$\frac{10^{20}}{n} < \varepsilon$$

or

$$n > \frac{10^{20}}{\varepsilon}$$

The limit is 0.