전기전자공학수학 Computer Simulation HW3

2018142023 조성민

16.21 Write a MATLAB routine that implements the two-phase simplex method. It may be useful to use the MATLAB function of Exercise 16.20. Test the routine on the problem in Example 16.5.

Example 16.5 Consider solving the following LP problem using the revised simplex method:

maximize
$$3x_1 + 5x_2$$

subject to $x_1 + x_2 \le 4$
 $5x_1 + 3x_2 \ge 8$
 $x_1, x_2 \ge 0$.

16.20 Write a simple MATLAB function that implements the simplex algorithm. The inputs are c, A, b, and v, where v is the vector of indices of basic columns. Assume that the augmented matrix [A, b] is already in canonical form; that is, the v_i th column of A is $[0, \ldots, 1, \ldots, 0]^{\top}$, where 1 occurs in the ith position. The function should output the final solution and the vector of indices of basic columns. Test the MATLAB function on the problem in Example 16.2.

Example 16.2 Consider the following linear program (see also Exercise 15.10):

maximize
$$2x_1 + 5x_2$$

subject to $x_1 \le 4$
 $x_2 \le 6$
 $x_1 + x_2 \le 8$
 $x_1, x_2 \ge 0$.

We solve this problem using the simplex method.

<Theory>

Simplex algorithm

- 1. Form a canonical augmented matrix corresponding to an initial basic feasible solution.
- 2. Calculate the reduced cost coefficients corresponding to the nonbasic variables.
- 3. If $r_{j} \ge 0$ for all j, stop the current basic feasible solution is optimal.
- 4. Select a q such that $r_q < 0$.
- 5. If no $y_{iq}>0$, stop the problem is unbounded; else, calculate $p={\rm arg} min_i \{y_{i0}/y_{iq}:y_{iq}>0\}.$
- 6. Update the canonical augmented matrix by pivoting about the $(p,q)^{th}$ element.
- 7. Go to step 2.

Two-Phase Simplex method

-Delete the columns corresponding to the artificial variables in the last tableau in phase 1 and revert back to the original objective function.

ex)

<Implementation>

maximize
$$3x_1+5x_2$$
 subject to $x_1+x_2 \le 4$
$$5x_1+3x_2 \ge 8$$

$$x_1,x_2 \ge 0$$

Minimize
$$c^Tx$$
 subject to $Ax = b, x \ge 0$, where $A = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 5 & 3 & 0 - 1 \end{bmatrix}$, $b = \begin{bmatrix} 4 & 8 \end{bmatrix}^T$, $c = \begin{bmatrix} -3 & -5 & 0 & 0 \end{bmatrix}^T$

<MATLAB code>

1. foptions

```
1
     ☐ function OPTIONS=foptions(parain)
2 -
       if nargin<1
3 -
          parain = [];
4 -
5 -
       sizep=length(parain);
6 -
       OPTIONS=zeros(1,18);
7 -
       OPTIONS(1:sizep)=parain(1:sizep);
8 -
       default_options=[0,1e-4,1e-4,1e-6,0,0,0,0,0,0,0,0,0,0,0,1e-8,0.1,0];
9 -
      LOPTIONS=OPTIONS+(OPTIONS==0).*default_options;
```

2. pivot

3. simplex

```
1
      \sqsubseteq function [x,v]=simplex(c,A,b,v,options)
2 -
        if nargin ~= 5
3 -
            options = [];
                                                       31 -
                                                                   min_ratio = inf;
4 -
            if nargin ~= 4
                                                       32 -
                                                                   p=0;
5 -
                disp('Wrong number of arguments,');
                                                       33 -
                                                                   for i=1:m
6 -
                                                                       if tabl(i,q)>0
7 -
            end
                                                       35 -
                                                                           if tabl(i,n+1)/tabl(i,q) < min_ratio
8 -
        end
                                                       36 -
                                                                               min_ratio = tabl(i,n+1)/tabl(i,q);
9 -
        format compact;
                                                       37 -
                                                                               p = i;
10 -
        options = foptions(options);
                                                       38 -
                                                                           end
11 -
        print = options(1);
                                                       39 -
                                                                       end
12 -
        n=length(c);
                                                       40 -
                                                                   end
13 -
        m=lenath(h):
                                                                   if p == 0
                                                       41 -
14 -
        cB=c(v(:));
                                                       42 -
                                                                       disp('Problem unbounded');
        r = c.'-cB.'*A;
15 -
                                                       43 -
                                                                       break;
16 -
        cost = -cB.'+b;
                                                       44 -
17 -
        tabl=[A b;r cost];
                                                       45 -
                                                                   tabl=pivot(tabl,p,q);
                                                       46 -
18 -
        if print
                                                                   if print
                                                       47 -
                                                                       fprintf("\mun");
19 -
            disp('Initial tableau:');
                                                       48 -
                                                                       disp('Pivot point:');
20 -
            disp(tabl);
                                                       49 -
                                                                       disp([p,q]);
21 -
        end
                                                       50 -
                                                                       fprintf("\n");
22 -
      = while ones(1,n)*(r.' >= zeros(n,1)) ~= n
                                                       51 -
                                                                       disp('New tableau:');
23 -
            if options(5) == 0
                                                       52 -
                                                                       disp(tabl);
                 [r_q,q] = min(r);
24 -
                                                       53 -
25 -
            else
                                                       54 -
                                                                   v(p) = q;
26 -
                q=1;
                                                       55 -
                                                                   r = tabl(m+1,1:n);
27 - 🗀
                while r(q) >= 0
                                                       56 -
                                                               end
28 -
                    q=q+1;
                                                       57 -
                                                               x=zeros(n,1);
29 -
                 end
                                                       58 -
                                                               x(v(:))=tabl(1:m,n+1);
30 -
            end
```

4. tpsimplex

```
function [x,v]=tpsimplex(c,A,b,options)
2 -
        if nargin ~= 4
                                                   23 -
                                                          [x,v]=simplex([zeros(n,1);ones(m,1)],[A eye(m)],b,v,options);
3 -
           options = [];
                                                   24 -
                                                            if all(v<=n)
4 -
               if nargin ~= 3
               disp('Wrong number of arguments,'); 25 -
5 -
                                                               if print
                                                    26 -
                                                                   fprintf("\mun");
6 -
7 -
                                                                   disp('Phase 2');
                                                   27 -
           end
                                                    28 -
                                                                   disp('Basic columns:')
8 -
        end
                                                                   disp(v.')
                                                   29 -
9 -
       clc;
                                                    30 -
10 -
        format compact;
                                                   31 -
                                                               Binv=inv(A(:,[v]));
11 -
       options = foptions(options);
12 -
                                                    32 -
                                                               A=Biny+A;
       print = options(1);
                                                   33 -
                                                               b=Biny*b;
        n=length(c);
13 -
                                                   34 -
                                                               [x,v]=simplex(c,A,b,v,options);
14 -
        m=length(b);
15 –
       if print
                                                   35 -
                                                               if print
                                                   36 -
                                                                    fprintf("\mun");
           fprintf("\n");
16 -
                                                   37 -
                                                                   disp('Final solution:');
17 -
           disp('Phase 1');
                                                   38 -
                                                                   disp(x.');
18 -
                                                   39 -
                                                               end
19 -
       v=n*ones(m,1);
                                                   40 -
                                                            else
20 - for i=1:m
                                                   41 -
                                                               disp('Terminating: problem has no feasible solution.');
21 -
           v(i)=v(i)+i;
                                                   42 -
22 -
```

<Result & Analysis>

```
-입력

>> A=[1 1 1 0; 5 3 0 -1];
>> b=[4;8];
>> c=[-3;-5;0;0];
>> options(1)=1;
>> format rat;

fx >> tpsimplex(c,A,b,options);
```

D1	-
-Phase	
1 11430	

Phase 1						
Initial tablea	u:					
1	1	1	0	1	0	4
5	3	0	-1	0	1	8
-6	-4	-1	1	0	0	-12
Pivot point:						
2	1					
New tableau:						
0	2/5	1	1/5	1.	-1/5	12/5
1	3/5	0	-1/5	Ö	1/5	8/5
o O	-2/5	-1	-1/5	0	6/5	-12/5
J	2, 3		1,75	Ü	0, 0	12,0
Pivot point:						
1	3					
New tableau:						
0	2/5	1	1/5	1	-1/5	12/5
1	3/5	0	-1/5	0	1/5	8/5
0	*	0	*	1	1	*
B:						
Pivot point:						
2	2					
New tableau:						
-2/3	0	1	1/3	1	-1/3	4/3
5/3	1	0	-1/3	0	1/3	8/3
*	0	0	*	1	1	*
Pivot point:						
1	4					
New tableau:						
-2	0	3	1	3	-1	4
1	1	1	0	1	0	4
*	0	*	0	1	1	*

-Phase 2

Phase 2 Basic columns: Initial tableau: -2 Final solution: