Assignment 0

Kethari Narasimha Vardhan

1 Software Installation

Run the following commands

sudo apt-get update sudo apt-get install libffi-dev libsndfile1 python3 -scipy python3-numpy python3-matplotlib sudo pip install cffi pysoundfile

2 DIGITAL FILTER

2.1 Download the sound file from

wget https://raw.githubusercontent.com/ gadepall/ EE1310/master/filter/codes/Sound Noise.wav

- 2.2 You will find a spectrogram at https: //academo.org/demos/spectrum-analyzer. Upload the sound file that you downloaded in Problem 2.1 in the spectrogram and play. Observe the spectrogram. What do you find? Solution: There are a lot of yellow lines between 440 Hz to 5.1 KHz. These represent the synthesizer key tones. Also, the key strokes are
- audible along with background noise.2.3 Write the python code for removal of out of band noise and execute the code.

Solution:

```
import soundfile as sf
from scipy import signal

# read .wav file
input_signal, fs = sf.read('Sound_Noise.wav
')

# sampling frequency of Input signal
sampl_freq = fs

# order of the filter
order = 2
```

cutoff frequency 4kHz

cutoff freq = 4000.00

```
# digital frequency
Wn = 2 * cutoff_freq / sampl_freq
# b and a are numerator and denominator
    polynomials respectively
b, a = signal.butter(order, Wn, 'low')
# filter the input signal with butterworth filter
#output_signal = signal.filtfilt(b, a,
    input_signal)
output_signal = signal.lfilter(b, a,
    input_signal)
# write the output signal into .wav file
sf.write('Sound_With_ReducedNoise_lfilter.
    wav', output_signal, fs)
```

2.4 The output of the python script 2.3 Problem is the audio file Sound With ReducedNoise.wav. Play the file in the spectrogram in Problem 2.2. What do you observe?

Solution: The key strokes as well as background noise is subdued in the audio. Also, the signal is blank for frequencies above 5.1 kHz.

3 DIFFERENCE EQUATION

3.1 Let

$$x(n) = \left\{ 1, 2, 3, 4, 2, 1 \right\} \tag{3.1}$$

Sketch x(n).

3.2 Let

$$y(n) + \frac{1}{2}y(n-1) = x(n) + x(n-2),$$

$$y(n) = 0, n < 0 \quad (3.2)$$

Sketch y(n).

Solution: The following code yields Fig. 3.2.

wget https://github.com/gadepall/EE1310/raw/master/filter/codes/xnyn.py

Fig. 3.2

From equation (3.2), putting n = 0 and n = 1

$$y(0) = x(0), (3.3)$$

$$y(1) = \frac{-1}{2}y(0) + x(1)$$
 (3.4)

as the length of x(n) is 6,

3.3 Repeat the above exercise with C code.

Download the codes for this exercise from

https://github.com/kn-vardhan/EE3900/tree/main/Assignment 1/codes

4 Z-TRANSFORM

4.1 The Z-transform of x(n) is defined as

$$X(z) = \mathbb{Z}\{x(n)\} = \sum_{n=-\infty}^{\infty} x(n)z^{-n}$$
 (4.1)

Show that

$$Z{x(n-1)} = z^{-1}X(z)$$
 (4.2)

and find

$$\mathcal{Z}\{x(n-k)\}\tag{4.3}$$

Solution: From (4.1),

$$\mathcal{Z}\{x(n-k)\} = \sum_{n=-\infty}^{\infty} x(n-1)z^{-n}$$

$$= \sum_{n=-\infty}^{\infty} x(n)z^{-n-1} = z^{-1} \sum_{n=-\infty}^{\infty} x(n)z^{-n}$$
(4.4)

resulting in (4.2). Similarly, it can be shown that

$$\mathcal{Z}\{x(n-k)\} = z^{-k}X(z) \tag{4.6}$$

4.2 Obtain X(z) for x(n) defined in problem 3.1 **Solution:**

$$X(z) = \sum_{n=0}^{5} x(n)z^{-n}$$
 (4.7)

$$X(z) = 1 + 2z^{-1} + 3z^{-2} + 4z^{-3} + 2z^{-4} + z^{-5}$$
(4.8)

4.3 Find

$$H(z) = \frac{Y(z)}{X(z)} \tag{4.9}$$

from (3.2) assuming that the Z-transform is a linear operation.

Solution: Applying (4.6) in (3.2),

$$Y(z) + \frac{1}{2}z^{-1}Y(z) = X(z) + z^{-2}X(z)$$
 (4.10)

$$\implies \frac{Y(z)}{X(z)} = \frac{1 + z^{-2}}{1 + \frac{1}{2}z^{-1}} \tag{4.11}$$

4.4 Find the Z transform of

$$\delta(n) = \begin{cases} 1 & n = 0 \\ 0 & \text{otherwise} \end{cases}$$
 (4.12)

and show that the Z-transform of

$$u(n) = \begin{cases} 1 & n \ge 0 \\ 0 & \text{otherwise} \end{cases}$$
 (4.13)

is

$$U(z) = \frac{1}{1 - z^{-1}}, \quad |z| > 1$$
 (4.14)

Solution: It is easy to show that

$$\delta(n) \stackrel{\mathcal{Z}}{\rightleftharpoons} 1 \tag{4.15}$$

and from (4.13),

$$U(z) = \sum_{n=0}^{\infty} z^{-n}$$
 (4.16)

$$=\frac{1}{1-z^{-1}}, \quad |z| > 1 \tag{4.17}$$

using the fomula for the sum of an infinite geometric progression.

4.5 Show that

$$a^n u(n) \stackrel{\mathcal{Z}}{\rightleftharpoons} \frac{1}{1 - az^{-1}} \quad |z| > |a| \tag{4.18}$$

Solution: Applying (4.1)

$$a^{n}U(z) = \sum_{n=0}^{\infty} a^{n}u(n)z^{-n}$$
 (4.19)

and from (4.14), if |a| < |z|

$$a^{n}u(n) \stackrel{Z}{\rightleftharpoons} \frac{1}{1 - az^{-1}} \quad |z| > |a|$$
 (4.20)

4.6 Let

$$H(e^{j\omega}) = H(z = e^{j\omega}).$$
 (4.21)

Plot $|H(e^{j\omega})|$. Comment. $H(e^{j\omega})$ is known as the *Discret Time Fourier Transform* (DTFT) of x(n).

Comment: The DTFT of x(n) is a Fourier Analysis that is applicable to a sequence of values. This produces a periodic function of a frequency variable. Here in $|H(e^{j\omega})|$, when the graph is plotted (Fig. 4.6).

Solution: The following code plots Fig. 4.6.

wget https://raw.githubusercontent.com/ gadepall/EE1310/master/filter/codes/dtft. py

Fig. 4.6: $|H(e^{j\omega})|$

A function $f: A \rightarrow B$ is said to be periodic with a period T if,

$$f(t+T) = f(t) \ \forall \ t \in A \tag{4.22}$$

Now, for the function $|H(e^{j\omega})|$, it can be written

as

$$|H(e^{J\omega})| = \left| \frac{1 + e^{-2J\omega}}{1 + \frac{1}{2}e^{-J\omega}} \right|$$

$$= \sqrt{\frac{(1 + \cos 2\omega)^2 + (\sin 2\omega)^2}{\left(1 + \frac{1}{2}\cos \omega\right)^2 + \left(\frac{1}{2}\sin \omega\right)^2}}$$
(4.23)

$$=\sqrt{\frac{2(1+\cos 2\omega)}{\frac{5}{4}+\cos \omega}}\tag{4.25}$$

$$=\sqrt{\frac{2(2\cos^2\omega)}{\frac{5}{4}+\cos\omega}}\tag{4.26}$$

$$=\frac{4|\cos\omega|}{\sqrt{5+4\cos\omega}}\tag{4.27}$$

Therefore, the period of $|H(e^{j\omega})| = 2\pi$.

4.7 Express h(n) in terms of $H(e^{j\omega})$ Solution: We have,

$$H(e^{j\omega}) = \sum_{k=-\infty}^{\infty} h(k)e^{-j\omega k}$$
 (4.28)

However,

$$\int_{-\pi}^{\pi} e^{\mathrm{J}\omega(n-k)} d\omega = \begin{cases} 2\pi & n=k\\ 0 & \text{otherwise} \end{cases}$$
 (4.29)

and so,

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} H(e^{j\omega}) e^{j\omega n} d\omega \tag{4.30}$$

$$=\frac{1}{2\pi}\sum_{k=-\infty}^{\infty}\int_{-\pi}^{\pi}h(k)e^{j\omega(n-k)}d\omega \qquad (4.31)$$

$$= \frac{1}{2\pi} 2\pi h(n) = h(n) \tag{4.32}$$

which is known as the Inverse Discrete Fourier Transform. Thus,

$$h(n) = \frac{1}{2\pi} \int_{-\pi}^{\pi} H(e^{j\omega}) e^{j\omega n} d\omega \qquad (4.33)$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{1 + e^{-2j\omega}}{1 + \frac{1}{2}e^{-j\omega}} e^{j\omega n} d\omega \qquad (4.34)$$

5 IMPULSE RESPONSE

5.1 Using long division, find

$$h(n), \quad n < 5 \tag{5.1}$$

for H(z) in (4.11).

Solution: For long division, substitute $x := z^{-1}$

$$\frac{2x-4}{x^2+1}$$

$$\frac{-x^2-2x}{-2x+1}$$

$$\frac{2x+4}{5}$$

Therefore,

$$H(z) = 2z^{-1} - 4 + \frac{5}{1 + \frac{1}{2}z^{-1}}$$
 (5.2)

$$=2z^{-1}-4+5\sum_{n=0}^{\infty}\left(-\frac{1}{2}\right)^{n}z^{-n} \tag{5.3}$$

$$=1-\frac{1}{2}z^{-1}+5\sum_{n=2}^{\infty}\left(-\frac{1}{2}\right)^{n}z^{-n}$$
 (5.4)

$$= \sum_{n=0}^{\infty} \left(-\frac{1}{2}\right)^n z^{-n} + 4 \sum_{n=2}^{\infty} \left(-\frac{1}{2}\right)^n z^{-n} \quad (5.5)$$

$$=\sum_{n=-\infty}^{\infty}u(n)\left(-\frac{1}{2}\right)^nz^{-n}+$$

$$\sum_{n=-\infty}^{\infty} u(n-2) \left(-\frac{1}{2}\right)^{n-2} z^{-n}$$
 (5.6)

Now, from (4.1), we get

$$h(n) = \left(-\frac{1}{2}\right)^n u(n) + \left(-\frac{1}{2}\right)^{n-2} u(n-2) \quad (5.7)$$

5.2 Find an expression for h(n) using H(z), given that

$$h(n) \stackrel{\mathcal{Z}}{\rightleftharpoons} H(z)$$
 (5.8)

and there is a one to one relationship between h(n) and H(z). h(n) is known as the *impulse response* of the system defined by (3.2).

Solution: From (4.11),

$$H(z) = \frac{1}{1 + \frac{1}{2}z^{-1}} + \frac{z^{-2}}{1 + \frac{1}{2}z^{-1}}$$
 (5.9)

$$\implies h(n) = \left(-\frac{1}{2}\right)^n u(n) + \left(-\frac{1}{2}\right)^{n-2} u(n-2)$$
(5.10)

using (4.18) and (4.6).

5.3 Sketch h(n). Is it bounded? Justify theoritically. **Solution:** Yes, h(n) is bounded as well as converges to 0 when n approaches to ∞ . The following code plots Fig. 5.3.

wget https://raw.githubusercontent.com/ gadepall/EE1310/master/filter/codes/hn.py

Fig. 5.3: h(n) as the inverse of H(z)

For large values of n, we have $u(n) \to 1$ Therefore,

$$h(n) = \left(-\frac{1}{2}\right)^n + \left(-\frac{1}{2}\right)^{n-2} \tag{5.11}$$

$$= \left(-\frac{1}{2}\right)^n (4+1) = 5\left(-\frac{1}{2}\right)^n \tag{5.12}$$

$$\implies \left| \frac{h(n+1)}{h(n)} \right| = \frac{1}{2} \tag{5.13}$$

5.4 Convergent? Justify using ratio test

Solution: From the above result, we have

$$\left| \frac{h(n+1)}{h(n)} \right| = \frac{1}{2} \tag{5.14}$$

Therefore, we have,

$$\lim_{n \to \infty} \left| \frac{h(n+1)}{h(n)} \right| = \frac{1}{2} < 1 \tag{5.15}$$

We can see that limit < 1, therefore, h(n) is convergent.

5.5 The system with h(n) is defined to be stable if

$$\sum_{n=-\infty}^{\infty} h(n) < \infty \tag{5.16}$$

Is the system defined by (3.2) stable for the impulse response in (5.8)?

Solution: We have,

$$\sum_{n=-\infty}^{\infty} h(n) = \sum_{n=-\infty}^{\infty} \left(-\frac{1}{2}\right)^n u(n) + \left(-\frac{1}{2}\right)^{n-2} u(n-2)$$
(5.17)

$$=2\left(\frac{1}{1+\frac{1}{2}}\right)=\frac{4}{3}\tag{5.18}$$

Therefore, we can see that the given system with h(n) is stable for the impulse response (5.8).

- 5.6 Verify the above result using a python code.
- 5.7 Compute and sketch h(n) using

$$h(n) + \frac{1}{2}h(n-1) = \delta(n) + \delta(n-2), \quad (5.19)$$

This is the definition of h(n).

Solution: The following code plots Fig. 5.7. Note that this is the same as Fig. 5.3.

wget https://raw.githubusercontent.com/ gadepall/EE1310/master/filter/codes/hndef .py

Fig. 5.7: h(n) from the definition

5.8 Compute

$$y(n) = x(n) * h(n) = \sum_{n = -\infty}^{\infty} x(k)h(n - k) \quad (5.20)$$

Comment.

The operation in (5.20) is known as *convolution*.

Solution: The following code plots Fig. 5.8. Note that this is the same as y(n) in Fig. 3.2.

wget https://raw.githubusercontent.com/ gadepall/EE1310/master/filter/codes/ ynconv.py

Fig. 5.8: y(n) from the definition of convolution

5.9 Express the above convolution using a Toeplitz matrix.

Solution:

The Toeplitz matrices for convolution are,

$$\mathbf{y} = \mathbf{x} \circledast \mathbf{h}$$

$$\mathbf{y} = \begin{pmatrix} h_1 & 0 & . & . & . & 0 \\ h_2 & h_1 & . & . & . & 0 \\ h_3 & h_2 & h_1 & . & . & . & 0 \\ . & . & . & . & . & . & . \\ 0 & . & . & h_3 & h_2 & h_1 \\ 0 & . & . & . & h_2 & h_1 \\ 0 & . & . & . & 0 & h_1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$
(5.21)

5.10 Show that

$$y(n) = \sum_{n = -\infty}^{\infty} x(n - k)h(k)$$
 (5.23)

Solution: From (5.20), we substitute k := n - k to get

$$y(n) = \sum_{k=-\infty}^{\infty} x(k) h(n-k)$$
 (5.24)

$$= \sum_{n-k=-\infty}^{\infty} x (n-k) h (k)$$
 (5.25)

$$=\sum_{k=-\infty}^{\infty}x\left(n-k\right)h\left(k\right)\tag{5.26}$$

6 DFT AND FFT

6.1 Compute

$$X(k) \stackrel{\triangle}{=} \sum_{n=0}^{N-1} x(n)e^{-j2\pi kn/N}, \quad k = 0, 1, \dots, N-1$$
(6.1)

and H(k) using h(n).

6.2 Compute

$$Y(k) = X(k)H(k) \tag{6.2}$$

6.3 Compute

$$y(n) = \frac{1}{N} \sum_{k=0}^{N-1} Y(k) \cdot e^{j2\pi kn/N}, \quad n = 0, 1, \dots, N-1$$
(6.3)

Solution: The following code plots Fig. 5.8. Note that this is the same as y(n) in Fig. 3.2.

wget https://raw.githubusercontent.com/ gadepall/EE1310/master/**filter**/codes/yndft. py

Fig. 6.3: y(n) from the DFT

6.4 Repeat the previous exercise by computing X(k), H(k) and y(n) through FFT and IFFT. **Solution:** The python codes for the following can be downloaded from

wget https://raw.githubusercontent.com/knvardhan/EE3900-Digital-Signal-Processing/main/Assignment_1/codes/fftfft.py

and execute it using

python3 fft-ifft.py

Fig. 6.4: y(n) using FFT and IFFT

Observe that Fig. (6.4) is the same as y(n) in Fig. (3.2).

6.5 Wherever possible, express all the above equations as matrix equations.

Solution:

We use the DFT Matrix, where $\omega = e^{-\frac{j2k\pi}{N}}$, which is given by

$$\mathbf{W} = \begin{pmatrix} \omega^0 & \omega^0 & \dots & \omega^0 \\ \omega^0 & \omega^1 & \dots & \omega^{N-1} \\ \vdots & \vdots & \ddots & \vdots \\ \omega^0 & \omega^{N-1} & \dots & \omega^{(N-1)(N-1)} \end{pmatrix}$$
(6.4)

i.e. $W_{jk} = \omega^{jk}$, $0 \le j, k < N$. Hence, we can write any DFT equation as

$$\mathbf{X} = \mathbf{W}\mathbf{x} = \mathbf{x}\mathbf{W} \tag{6.5}$$

where

$$\mathbf{x} = \begin{pmatrix} x(0) \\ x(1) \\ \vdots \\ x(n-1) \end{pmatrix}$$
 (6.6)

Using (6.3), the inverse Fourier Transform is given by

$$\mathbf{X} = \mathcal{F}^{-1}(\mathbf{X}) = \mathbf{W}^{-1}\mathbf{X} = \frac{1}{N}\mathbf{W}^{\mathbf{H}}\mathbf{X} = \frac{1}{N}\mathbf{X}\mathbf{W}^{\mathbf{H}}$$
(6.7)

$$\implies \mathbf{W}^{-1} = \frac{1}{N} \mathbf{W}^{\mathbf{H}} \tag{6.8}$$

where H denotes hermitian operator. We can rewrite (6.2) using the element-wise multipli-

cation operator as

$$\mathbf{Y} = \mathbf{H} \cdot \mathbf{X} = (\mathbf{W}\mathbf{h}) \cdot (\mathbf{W}\mathbf{x}) \tag{6.9}$$

The plot of y(n) using the DFT matrix in Fig. 6.5 is the same as y(n) in Fig. (3.2).

Fig. 6.5: y(n) using the DFT matrix

6.6 Verify the above equations by generating the DFT matrix in python.

Solution: The code for the following question can be downloaded from

\$ wget https://raw.githubusercontent.com/knvardhan/EE3900-Digital-Signal-Processing/main/Assignment_1/codes/6 _6.py

and can be executed using the command

The plot is shown in Fig. (6.6)

7 FFT

7.1. The DFT of x(n) is given by

$$X(k) \triangleq \sum_{n=0}^{N-1} x(n)e^{-j2\pi kn/N}, \quad k = 0, 1, \dots, N-1$$
(7.1)

7.2. Let

$$W_N = e^{-j2\pi/N} \tag{7.2}$$

Then the *N*-point *DFT matrix* is defined as

$$\vec{F}_N = [W_N^{mn}], \quad 0 \le m, n \le N - 1$$
 (7.3)

where W_N^{mn} are the elements of \vec{F}_N .

Fig. 6.6: Own implementation of FFT and IFFT

7.3. Let

$$\vec{I}_4 = (\vec{e}_4^1 \quad \vec{e}_4^2 \quad \vec{e}_4^3 \quad \vec{e}_4^4) \tag{7.4}$$

be the 4×4 identity matrix. Then the 4 point *DFT permutation matrix* is defined as

$$\vec{P}_4 = (\vec{e}_4^1 \quad \vec{e}_4^3 \quad \vec{e}_4^2 \quad \vec{e}_4^4) \tag{7.5}$$

7.4. The 4 point DFT diagonal matrix is defined as

$$\vec{D}_4 = diag \left(W_8^0 \quad W_8^1 \quad W_8^2 \quad W_8^3 \right) \tag{7.6}$$

7.5. Show that

$$W_N^2 = W_{N/2} (7.7)$$

Solution: We can check that

$$W_N^2 = \left(e^{-\frac{12\pi}{N}}\right)^2 = e^{-\frac{12\pi}{N/2}} = W_{N/2}$$
 (7.8)

7.6. Show that

$$\vec{F}_4 = \begin{bmatrix} \vec{I}_2 & \vec{D}_2 \\ \vec{I}_2 & -\vec{D}_2 \end{bmatrix} \begin{bmatrix} \vec{F}_2 & 0 \\ 0 & \vec{F}_2 \end{bmatrix} \vec{P}_4$$
 (7.9)

Solution: Observe that for $n \in \mathbb{N}$, $W_4^{4n} = 1$ and $W_4^{4n+2} = -1$. Using (7.7),

$$\vec{D}_2 \vec{F}_2 = \begin{bmatrix} W_4^0 & 0\\ 0 & W_4^1 \end{bmatrix} \begin{bmatrix} W_2^0 & W_2^0\\ W_2^0 & W_2^1 \end{bmatrix} \quad (7.10)$$

$$= \begin{bmatrix} W_4^0 & 0 \\ 0 & W_4^1 \end{bmatrix} \begin{bmatrix} W_4^0 & W_4^0 \\ W_4^0 & W_4^2 \end{bmatrix}$$
 (7.11)

$$= \begin{bmatrix} W_4^0 & W_4^0 \\ W_4^1 & W_4^3 \end{bmatrix} \tag{7.12}$$

$$\implies -\vec{D}_2 \vec{F}_2 = \begin{bmatrix} W_4^2 & W_4^6 \\ W_4^3 & W_4^9 \end{bmatrix} \tag{7.13}$$

and

$$\vec{F}_2 = \begin{pmatrix} W_2^0 & W_2^0 \\ W_2^0 & W_2^1 \end{pmatrix} \tag{7.14}$$

$$= \begin{pmatrix} W_4^0 & W_4^0 \\ W_4^0 & W_4^2 \end{pmatrix} \tag{7.15}$$

Hence,

$$\vec{W}_{4} = \begin{pmatrix} W_{4}^{0} & W_{4}^{0} & W_{4}^{0} & W_{4}^{0} \\ W_{4}^{0} & W_{4}^{2} & W_{4}^{1} & W_{4}^{3} \\ W_{4}^{0} & W_{4}^{4} & W_{4}^{2} & W_{4}^{6} \\ W_{4}^{0} & W_{4}^{6} & W_{4}^{3} & W_{4}^{9} \end{pmatrix}$$
 (7.16)

$$= \begin{bmatrix} \vec{I}_2 \vec{F}_2 & \vec{D}_2 F_2 \\ \vec{I}_2 \vec{F}_2 & -\vec{D}_2 F_2 \end{bmatrix}$$
 (7.17)

$$= \begin{bmatrix} \vec{I}_2 & \vec{D}_2 \\ \vec{I}_2 & \vec{D}_2 \end{bmatrix} \begin{bmatrix} \vec{F}_2 & 0 \\ 0 & \vec{F}_2 \end{bmatrix}$$
 (7.18)

Multiplying (7.18) by \vec{P}_4 on both sides, and noting that $\vec{W}_4\vec{P}_4 = \vec{F}_4$ gives us (7.9).