

Рекомендательная система для подбора скважин-аналогов

by Chipollino.Al

наша команда нефтяников

Основная проблема отрасли.

Подбор наилучших параметров для бурения новых скважин

Физические модели

- Упрощают реальные условия, приводит к типовому подходу к проектированию скважин и упускают возможности для оптимизации процесса добычи
- Не позволяют использовать накопленный опыт и данные о ранее пробуренных скважинах

Компании сталкиваются с риском неоптимального выбора параметров скважины, что приводит к потери времени и ресурсов на бурение с низкой продуктивностью.

Что предлагаем мы.

RecSys для подбора скважин-аналогов с прогнозированием показателей добычи

Используем накопленный опыт компании

Увеличиваем глубину проработки моделирования

Позволяем определить релевантный тип и параметры скважины

Ожидаемые эффекты

- Сокращение временных затрат
- Прогнозирование показателей добычи
- Минимизация рисков
- Помощь в принятие решения

ПЛАН, КОТОРОГО МЫ ПРИДЕРЖИВАЛИСЬ:

01

Извлечение данных

02

Моделирование

03

Измерение качества

04

Экспертная оценка

05

Развертывание системы

06

Конвертация в прибыль

Модульный подход.

DATA PROCESSING

Ошибки и аномалии

- Проведение квантильного анализа данных
- Проверка показателей на соответствие области допустимых значений
- Детекция аномальных значений

Несбалансированные данные

- Применение метода эквивалентного диаметра, взвешенное среднее показателей.
- Boccтановление пропущенных значений при помощи алгоритма IsolationForest

Нормирование

Приведение различных данных разных единицах измерения и диапазонах значений к единому виду, который позволит сравнивать их между собой или использовать для расчёта схожести

Отбор признаков

Выбор наиболее важных признаков для описания интегрированной модели: конструкция и оборудование скважины, взаимодействие с пластом

FORECAST

Входные параметры

PVT свойства

IPR

Параметры оборудования

Инклинометрия

FORECAST

MODEL	MAPE
ElasticNet	3%
MLP	5%
CatBoostRegressor	6%

CLUSTERING

K-Means (Clusters=5)

RANKING

OIL

Масштабирование

Применение продвинутых алгоритмов ранжирования

Split-моделирование для различных типов скважин

Обучение моделей с использованием экспертной оценки релевантности

github.com/EgorProkopov/Wells_RecSys