Path Selection is in NP, since we can be shown a set of k paths from among  $P_1, \ldots, P_c$  and check in polynomial time that no two of them share any nodes.

Now, we claim that 3-Dimensional Matching  $\leq_P Path$  Selection. For consider an instance of 3-Dimensional Matching with sets X, Y, and Z, each of size n, and ordered triples  $T_1, \ldots, T_m$  from  $X \times Y \times Z$ . We construct a directed graph G = (V, E) on the node set  $X \cup Y \cup Z$ . For each triple  $T_i = (x_i, y_j, z_k)$ , we add edges  $(x_i, y_j)$  and  $(y_j, z_k)$  to G. Finally, for each  $i = 1, 2, \ldots, m$ , we define a path  $P_i$  that passes through the nodes  $\{x_i, y_j, z_k\}$ , where again  $T_i = (x_i, y_j, z_k)$ . Note that by our definition of the edges, each  $P_i$  is a valid path in G. Also, the reduction takes polynomial time.

Now we claim that there are n paths among  $P_1, \ldots, P_m$  sharing no nodes if and only if there exist n disjoint triples among  $T_1, \ldots, T_m$ . For if there do exist n paths sharing no nodes, then the corresponding triples must each contain a different element from X, a different element from Y, and a different element from Z— they form a perfect three-dimensional matching. Conversely, if there exist n disjoint triples, then the corresponding paths will have no nodes in common.

Since *Path Selection* is in NP, and we can reduce an NP-complete problem to it, it must be NP-complete.

(Other direct reductions are from Set Packing and from Independent Set.)

 $<sup>^{1}</sup>$ ex529.979.546