Digital-to-Analog and Analog-to-Digital Converters

M. B. Patil
mbpatil@ee.iitb.ac.in
www.ee.iitb.ac.in/~sequel

Department of Electrical Engineering Indian Institute of Technology Bombay

* Real signals (e.g., a voltage measured with a thermocouple or a speech signal recorded with a microphone) are analog quantities, varying continuously with time.

- * Real signals (e.g., a voltage measured with a thermocouple or a speech signal recorded with a microphone) are analog quantities, varying continuously with time.
- * Digital format offers several advantages: digital signal processing, storage, use of computers, robust transmission, etc.

- * Real signals (e.g., a voltage measured with a thermocouple or a speech signal recorded with a microphone) are analog quantities, varying continuously with time.
- * Digital format offers several advantages: digital signal processing, storage, use of computers, robust transmission, etc.
- * An ADC (Analog-to-Digital Converter) is used to convert an analog signal to the digital format.

- * Real signals (e.g., a voltage measured with a thermocouple or a speech signal recorded with a microphone) are analog quantities, varying continuously with time.
- * Digital format offers several advantages: digital signal processing, storage, use of computers, robust transmission, etc.
- * An ADC (Analog-to-Digital Converter) is used to convert an analog signal to the digital format.
- * The reverse conversion (from digital to analog) is also required. For example, music stored in a DVD in digital format must be converted to an analog voltage for playing out on a speaker.

- * Real signals (e.g., a voltage measured with a thermocouple or a speech signal recorded with a microphone) are analog quantities, varying continuously with time.
- * Digital format offers several advantages: digital signal processing, storage, use of computers, robust transmission, etc.
- * An ADC (Analog-to-Digital Converter) is used to convert an analog signal to the digital format.
- * The reverse conversion (from digital to analog) is also required. For example, music stored in a DVD in digital format must be converted to an analog voltage for playing out on a speaker.
- * A DAC (Digital-to-Analog Converter) is used to convert a digital signal to the analog format.

* For a 4-bit DAC, with input $S_3S_2S_1S_0$, the output voltage is $V_A = K\left[(S_3 \times 2^3) + (S_2 \times 2^2) + (S_1 \times 2^1) + (S_0 \times 2^0) \right]$. In general, $V_A = K \sum_0^{N-1} S_k 2^k$.

* For a 4-bit DAC, with input $S_3S_2S_1S_0$, the output voltage is $V_A = K\left[(S_3 \times 2^3) + (S_2 \times 2^2) + (S_1 \times 2^1) + (S_0 \times 2^0) \right]$. In general, $V_A = K \sum_0^{N-1} S_k 2^k$.

- * For a 4-bit DAC, with input $S_3S_2S_1S_0$, the output voltage is $V_A = K \left[(S_3 \times 2^3) + (S_2 \times 2^2) + (S_1 \times 2^1) + (S_0 \times 2^0) \right]$. In general, $V_A = K \sum_{0}^{N-1} S_k 2^k$.
- * K is proportional to the reference voltage V_R . Its value depends on how the DAC is implemented.

* If the input bit S_k is 1, A_k gets connected to V_R ; else, it gets connected to ground.

* If the input bit S_k is 1, A_k gets connected to V_R ; else, it gets connected to ground. $\to V(A_k) = S_k \times V_R$.

- * If the input bit S_k is 1, A_k gets connected to V_R ; else, it gets connected to ground. $\to V(A_k) = S_k \times V_R$.
- * Since the inverting terminal of the op-amp is at virtual ground, $I_k = \frac{V(A_k) 0}{R_k} = \frac{S_k \, V_R}{R_k}$.

- * If the input bit S_k is 1, A_k gets connected to V_R ; else, it gets connected to ground. $\to V(A_k) = S_k \times V_R$.
- * Since the inverting terminal of the op-amp is at virtual ground, $I_k = \frac{V(A_k) 0}{R_k} = \frac{S_k V_R}{R_k}$.

*
$$I = \frac{S_0 V_R}{8 R} + \frac{S_1 V_R}{4 R} + \frac{S_2 V_R}{2 R} + \frac{S_3 V_R}{R} = \frac{V_R}{2^{N-1} R} \sum_{0}^{N-1} S_k \times 2^k (N=4).$$

- * If the input bit S_k is 1, A_k gets connected to V_R ; else, it gets connected to ground. $\to V(A_k) = S_k \times V_R$.
- * Since the inverting terminal of the op-amp is at virtual ground, $I_k = \frac{V(A_k) 0}{R_k} = \frac{S_k V_R}{R_k}$.

*
$$I = \frac{S_0 V_R}{8 R} + \frac{S_1 V_R}{4 R} + \frac{S_2 V_R}{2 R} + \frac{S_3 V_R}{R} = \frac{V_R}{2^{N-1} R} \sum_{0}^{N-1} S_k \times 2^k \ (N=4).$$

* The output voltage is
$$V_o = -R_f \, I = -V_R \, rac{R_f}{2^{N-1} R} \, \sum_0^{N-1} S_k imes 2^k$$
 .

* Consider an 8-bit DAC with $V_R = 5$ V. What is the smallest value of R which will limit the current drawn from the supply (V_R) to 10 mA?

* Consider an 8-bit DAC with $V_R = 5$ V. What is the smallest value of R which will limit the current drawn from the supply (V_R) to 10 mA?

Maximum current is drawn from V_R when the input is 1111 1111.

* Consider an 8-bit DAC with $V_R = 5 \text{ V}$. What is the smallest value of R which will limit the current drawn from the supply (V_R) to 10 mA?

Maximum current is drawn from V_R when the input is 1111 1111.

 \rightarrow All nodes A_0 to A_7 get connected to V_R .

* Consider an 8-bit DAC with $V_R = 5 \, \text{V}$. What is the smallest value of R which will limit the current drawn from the supply (V_R) to $10 \, \text{mA}$?

Maximum current is drawn from V_R when the input is 1111 1111.

$$\rightarrow$$
 All nodes A_0 to A_7 get connected to V_R .

* Consider an 8-bit DAC with $V_R = 5$ V. What is the smallest value of R which will limit the current drawn from the supply (V_R) to 10 mA?

Maximum current is drawn from V_R when the input is 1111 1111.

$$\rightarrow$$
 All nodes A_0 to A_7 get connected to V_R .

(Ref.: K. Gopalan, Introduction to Digital Microelectronic Circuits, Tata McGraw-Hill, New Delhi, 1998)

* If $R_f = R$, what is the resolution (i.e., ΔV_A corresponding to the input LSB changing from 0 to 1 with other input bits constant)?

* If $R_f = R$, what is the resolution (i.e., ΔV_A corresponding to the input LSB changing from 0 to 1 with other input bits constant)?

$$V_A = -V_R \frac{R_f}{2^{N-1}R} \left[S_7 2^7 + \dots + S_1 2^1 + S_0 2^0 \right]$$

* If $R_f = R$, what is the resolution (i.e., ΔV_A corresponding to the input LSB changing from 0 to 1 with other input bits constant)?

$$\begin{split} V_A &= -V_R \, \frac{R_f}{2^{N-1}R} \, \left[S_7 2^7 + \dots + S_1 2^1 + S_0 2^0 \right] \\ &\to \Delta V_A = \frac{V_R}{2^{N-1}} \, \frac{R_f}{R} = \frac{5 \, \text{V}}{2^{8-1}} \, \times 1 = \frac{5}{128} = 0.0391 \, \text{V}. \end{split}$$

* What is the maximum output voltage (in magnitude)?

* What is the maximum output voltage (in magnitude)?

$$V_A = -\frac{V_R}{2^{N-1}} \frac{R_f}{R} \left[S_7 2^7 + \dots + S_1 2^1 + S_0 2^0 \right].$$

* What is the maximum output voltage (in magnitude)?

$$V_A = -rac{V_R}{2^{N-1}}\,rac{R_f}{R}\,\left[S_72^7+\cdots+S_12^1+S_02^0
ight].$$

Maximum V_A (in magnitude) is obtained when the input is 1111 1111.

* What is the maximum output voltage (in magnitude)?

$$V_A = -rac{V_R}{2^{N-1}}\,rac{R_f}{R}\,\left[S_72^7+\cdots+S_12^1+S_02^0
ight].$$

Maximum V_A (in magnitude) is obtained when the input is 1111 1111.

$$|V_A|^{\mathsf{max}} = \frac{5}{128} \times 1 \times \left[2^0 + 2^1 + \dots + 2^7\right] = \frac{5}{128} \times \left(2^8 - 1\right) = 5 \times \frac{255}{128} = 9.961 \, V.$$

* Find the output voltage corresponding to the input 1010 1101.

* Find the output voltage corresponding to the input 1010 1101.

$$V_A = -\frac{V_R}{2^{N-1}} \frac{R_f}{R} \left[S_7 2^7 + \dots + S_1 2^1 + S_0 2^0 \right].$$

* Find the output voltage corresponding to the input 1010 1101.

$$V_A = -\frac{V_R}{2^{N-1}} \frac{R_f}{R} \left[S_7 2^7 + \dots + S_1 2^1 + S_0 2^0 \right].$$

= $-\frac{5}{128} \times 1 \times \left[2^7 + 2^5 + 2^3 + 2^2 + 2^0 \right] = -5 \times \frac{173}{128} = -6.758 \,\text{V}.$

* If the resistors are specified to have a tolerance of 1%, what is the range of $|V_A|$ corresponding to input 1111 1111?

* If the resistors are specified to have a tolerance of 1%, what is the range of $|V_A|$ corresponding to input 1111 1111? $|V_A|$ is maximum when (a) currents I_0 , I_1 , etc. assume their maximum values, with $R_k = R_k^0 \times (1 - 0.01)$ and (b) R_f is maximum, $R_f = R_f^0 \times (1 + 0.01)$. (The superscript '0' denotes nominal value.)

* If the resistors are specified to have a tolerance of 1%, what is the range of $|V_A|$ corresponding to input 1111 1111? $|V_A|$ is maximum when (a) currents I_0 , I_1 , etc. assume their maximum values, with $R_k = R_k^0 \times (1 - 0.01)$ and (b) R_f is maximum, $R_f = R_f^0 \times (1 + 0.01)$.

(The superscript '0' denotes nominal value.)

$$\to |V_A|_{111111111}^{\text{max}} = V_R \times \frac{255}{128} \times \frac{R_f}{R} \Big|^{\text{max}} = 5 \times \frac{255}{128} \times \frac{1.01}{0.99} = 10.162 \, \text{V}.$$

* If the resistors are specified to have a tolerance of 1%, what is the range of $|V_A|$ corresponding to input 1111 1111? $|V_A|$ is maximum when (a) currents I_0 , I_1 , etc. assume their maximum values, with $R_k = R_k^0 \times (1 - 0.01)$ and (b) R_f is maximum, $R_f = R_f^0 \times (1 + 0.01)$. (The superscript '0' denotes nominal value.)

$$\rightarrow |V_A|_{111111111}^{\text{max}} = V_R \times \frac{255}{128} \times \frac{R_f}{R} \Big|^{\text{max}} = 5 \times \frac{255}{128} \times \frac{1.01}{0.99} = 10.162 \,\text{V}.$$

Similarly,
$$|V_A|_{11111111}^{\text{min}} = 5 \times \frac{255}{128} \times \frac{0.99}{1.01} = 9.764 \,\text{V}.$$

* ΔV_A for input 1111 1111 = 10.162 - 9.764 \approx 0.4 V which is larger than the resolution (0.039 V) of the DAC. This situation is not acceptable.

- * ΔV_A for input 1111 1111 = 10.162 9.764 \approx 0.4 V which is larger than the resolution (0.039 V) of the DAC. This situation is not acceptable.
- * The output voltage variation can be reduced by using resistors with a smaller tolerance. However, it is difficult to fabricate an IC with widely varying resistance values (from R to $2^{N-1}R$) and each with a small enough tolerance.

- * ΔV_A for input 1111 1111 = 10.162 9.764 \approx 0.4 V which is larger than the resolution (0.039 V) of the DAC. This situation is not acceptable.
- * The output voltage variation can be reduced by using resistors with a smaller tolerance. However, it is difficult to fabricate an IC with widely varying resistance values (from R to $2^{N-1}R$) and each with a small enough tolerance. \rightarrow use R-2R ladder network instead.

R-2R ladder network

Node A_k is connected to V_R if input bit S_k is 1; else, it is connected to ground.

Node A_k is connected to V_R if input bit S_k is 1; else, it is connected to ground.

The original network is equivalent to

R-2R ladder network: V_{Th} for $S_0 = 1$

R-2R ladder network: V_{Th} for $S_0 = 1$ 2R ⋛ 2R ⋛ V_R(2R ⋛ 2R≯

R-2R ladder network: V_{Th} for $S_0 = 1$ 2R ⋛ 2R Ş

R-2R ladder network: V_{Th} for $S_1 = 1$

R-2R ladder network: V_{Th} for $S_1 = 1$

R-2R ladder network: V_{Th} for $S_1 = 1$

R-2R ladder network: V_{Th} for $S_1 = 1$ 2R Ş 2R≯

R-2R ladder network: V_{Th} for $S_1 = 1$

R-2R ladder network: $V_{Th} \text{ for } S_2 = 1$ ${}_{2R} \underbrace{ {}_{2R} \underbrace{ {}_{2R$

R-2R ladder network: V_{Th} for $S_2 = 1$

R-2R ladder network: V_{Th} for $S_2 = 1$

R-2R ladder network: V_{Th} for $S_2 = 1$

R-2R ladder network: V_{Th} for $S_2 = 1$ 2R Ş

R-2R ladder network: V_{Th} for $S_2 = 1$ 2R Ş

R-2R ladder network: $V_{Th} \text{ for } S_3 = 1$ ${}_{2R} \underbrace{{}_{2R} \underbrace{{}_{2R}$

R-2R ladder network: V_{Th} for $S_3 = 1$

R-2R ladder network: V_{Th} for $S_3 = 1$

R-2R ladder network: V_{Th} for $S_3 = 1$

* $R_{Th} = R$.

*
$$R_{Th} = R$$
.

*
$$V_{Th} = V_{Th}^{(S0)} + V_{Th}^{(S1)} + V_{Th}^{(S2)} + V_{Th}^{(S3)}$$

= $\frac{V_R}{16} \left[S_0 \, 2^0 + S_1 \, 2^1 + S_2 \, 2^2 + S_3 \, 2^3 \right]$.

- * $R_{Th} = R$.
- * $V_{Th} = V_{Th}^{(S0)} + V_{Th}^{(S1)} + V_{Th}^{(S2)} + V_{Th}^{(S3)}$ = $\frac{V_R}{16} \left[S_0 \, 2^0 + S_1 \, 2^1 + S_2 \, 2^2 + S_3 \, 2^3 \right]$.
- * We can use the R-2R ladder network and an op-amp to make up a DAC \rightarrow next slide.

$$* \ V_o = -\frac{\textit{R}_f}{\textit{R}_{\textit{Th}}} \ V_{\textit{Th}} = -\frac{\textit{R}_f}{\textit{R}_{\textit{Th}}} \ \frac{\textit{V}_\textit{R}}{16} \ \left[\textit{S}_0 \, \textit{2}^0 + \textit{S}_1 \, \textit{2}^1 + \textit{S}_2 \, \textit{2}^2 + \textit{S}_3 \, \textit{2}^3 \right] \, .$$

DAC with R-2R ladder

$$* \ \, V_o = -\frac{R_f}{R_{Th}} \; V_{Th} = -\frac{R_f}{R_{Th}} \; \frac{V_R}{16} \; \left[S_0 \, 2^0 + S_1 \, 2^1 + S_2 \, 2^2 + S_3 \, 2^3 \right] \; . \label{eq:Vo}$$

$$* \ \, \text{For an N-bit DAC,} \, \, V_o = -\frac{R_f}{R_{Th}} \, \, V_{Th} = -\frac{R_f}{R_{Th}} \, \, \frac{V_R}{2^N} \, \, \sum_0^{N-1} S_k 2^k \, .$$

- $* \ V_o = -\frac{R_f}{R_{Th}} \ V_{Th} = -\frac{R_f}{R_{Th}} \ \frac{V_R}{16} \ \left[S_0 \, 2^0 + S_1 \, 2^1 + S_2 \, 2^2 + S_3 \, 2^3 \right] \ .$
- * For an N-bit DAC, $V_o = -\frac{R_f}{R_{Th}} \; V_{Th} = -\frac{R_f}{R_{Th}} \; \frac{V_R}{2^N} \; \sum_0^{N-1} S_k 2^k \, .$
- * 6- to 20-bit DACs based on the R-2R ladder network are commercially available in monolithic form (single chip).

$$* \ \, V_o = -\frac{R_f}{R_{Th}} \; V_{Th} = -\frac{R_f}{R_{Th}} \; \frac{V_R}{16} \; \left[S_0 \, 2^0 + S_1 \, 2^1 + S_2 \, 2^2 + S_3 \, 2^3 \right] \; . \label{eq:Vo}$$

* For an N-bit DAC,
$$V_o = -\frac{R_f}{R_{Th}} \; V_{Th} = -\frac{R_f}{R_{Th}} \; \frac{V_R}{2^N} \; \sum_0^{N-1} S_k 2^k \, .$$

- * 6- to 20-bit DACs based on the R-2R ladder network are commercially available in monolithic form (single chip).
- * Bipolar, CMOS, or BiCMOS technology is used for these DACs.

Combination of weighted-resistor and R-2R ladder networks

Combination of weighted-resistor and R-2R ladder networks

* Find the value of r for the circuit to work as a regular (i.e., binary to analog) DAC.

Combination of weighted-resistor and R-2R ladder networks

- * Find the value of r for the circuit to work as a regular (i.e., binary to analog) DAC.
- * Find the value of r for the circuit to work as a BCD to analog DAC.

* When there is a change in the input binary number, the output V_A takes a finite time to settle to the new value.

- * When there is a change in the input binary number, the output V_A takes a finite time to settle to the new value.
- * The finite settling time arises because of stray capacitances and switching delays of the semiconductor devices used within the DAC chip.

- * When there is a change in the input binary number, the output V_A takes a finite time to settle to the new value.
- * The finite settling time arises because of stray capacitances and switching delays of the semiconductor devices used within the DAC chip.
- * Example: 500 ns to 0.2 % of full scale.

* If the input V_A is in the range $V_R^k < V_A < V_R^{k+1}$, the output is the binary number corresponding to the integer k. For example, for $V_A = V_A'$, the output is 100.

- * If the input V_A is in the range $V_R^k < V_A < V_R^{k+1}$, the output is the binary number corresponding to the integer k. For example, for $V_A = V_A'$, the output is 100.
- * We may think of each voltage interval (corresponding to 000, 001, etc.) as a "bin." In the above example, the input voltage V'_A falls in the 100 bin; therefore, the output of the ADC would be 100.

- * If the input V_A is in the range $V_R^k < V_A < V_R^{k+1}$, the output is the binary number corresponding to the integer k. For example, for $V_A = V_A'$, the output is 100.
- * We may think of each voltage interval (corresponding to 000, 001, etc.) as a "bin." In the above example, the input voltage V'_A falls in the 100 bin; therefore, the output of the ADC would be 100.
- * Note that, for an N-bit ADC, there would be 2^N bins.

* The basic idea behind an ADC is simple:

- * The basic idea behind an ADC is simple:
 - Generate reference voltages $\mathit{V}^1_\mathit{R},~\mathit{V}^2_\mathit{R},$ etc.

ADC: introduction

- * The basic idea behind an ADC is simple:
 - Generate reference voltages V_R^1 , V_R^2 , etc.
 - Compare the input V_A with each of V_R^i to figure out which bin it belongs to.

ADC: introduction

- * The basic idea behind an ADC is simple:
 - Generate reference voltages V_R^1 , V_R^2 , etc.
 - Compare the input V_A with each of V_R^i to figure out which bin it belongs to.
 - If V_A belongs to bin k (i.e., $V_R^k < V_A < V_R^{k+1}$), convert k to the binary format.

ADC: introduction

- * The basic idea behind an ADC is simple:
 - Generate reference voltages V_R^1 , V_R^2 , etc.
 - Compare the input V_A with each of V_R^i to figure out which bin it belongs to.
 - If V_A belongs to bin k (i.e., $V_R^k < V_A < V_R^{k+1}$), convert k to the binary format.
- * A "parallel" ADC does exactly that \rightarrow next slide.

* Practical difficulty: As the input changes, the comparator outputs (C_0 , C_1 , etc.) may not settle to their new values at the same time. \rightarrow ADC output will depend on when we sample it.

- * Practical difficulty: As the input changes, the comparator outputs (C_0 , C_1 , etc.) may not settle to their new values at the same time. \rightarrow ADC output will depend on when we sample it.
- * Add D flip-flops. Allow sufficient time (between the change in V_A and the active clock edge) so that the comparator outputs have already settled to their new values before they get latched in.

- * Practical difficulty: As the input changes, the comparator outputs $(C_0, C_1, \text{ etc.})$ may not settle to their new values at the same time. \rightarrow ADC output will depend on when we sample it.
- * Add D flip-flops. Allow sufficient time (between the change in V_A and the active clock edge) so that the comparator outputs have already settled to their new values before they get latched in.

* In the parallel (flash) ADC, the conversion gets done "in parallel," since all comparators operate on the same input voltage.

- * In the parallel (flash) ADC, the conversion gets done "in parallel," since all comparators operate on the same input voltage.
- * Conversion time is governed only by the comparator response time → fast conversion (hence the name "flash" converter).

- * In the parallel (flash) ADC, the conversion gets done "in parallel," since all comparators operate on the same input voltage.
- Conversion time is governed only by the comparator response time → fast conversion (hence the name "flash" converter).
- Flash ADCs to handle 500 million analog samples per second are commercially available.

- * In the parallel (flash) ADC, the conversion gets done "in parallel," since all comparators operate on the same input voltage.
- Conversion time is governed only by the comparator response time → fast conversion (hence the name "flash" converter).
- Flash ADCs to handle 500 million analog samples per second are commercially available.
- 2^N comparators are required for N-bit ADC → generally limited to 8 bits.

* An ADC typically operates on a "sampled" input signal $(V_s(t))$ in the figure) which is derived from the continuously varying input signal $(V_s(t))$ in the figure) with a "sample-and-hold" (S/H) circuit.

- * An ADC typically operates on a "sampled" input signal $(V_s(t))$ in the figure) which is derived from the continuously varying input signal $(V_s(t))$ in the figure) with a "sample-and-hold" (S/H) circuit.
- * The S/H circuit samples the input signal $V_a(t)$ at uniform intervals of duration T_c , the clock period.

- * An ADC typically operates on a "sampled" input signal ($V_s(t)$) in the figure) which is derived from the continuously varying input signal ($V_s(t)$) in the figure) with a "sample-and-hold" (S/H) circuit.
- * The S/H circuit samples the input signal $V_a(t)$ at uniform intervals of duration T_c , the clock period.
- * When the clock goes high, switch S (e.g., a FET or a CMOS pass gate) is closed, and the capacitor C gets charged to the signal voltage at that time. When the clock goes low, switch S is turned off, and C holds the voltage constant, as desired.

- * An ADC typically operates on a "sampled" input signal ($V_s(t)$) in the figure) which is derived from the continuously varying input signal ($V_s(t)$) in the figure) with a "sample-and-hold" (S/H) circuit.
- * The S/H circuit samples the input signal $V_a(t)$ at uniform intervals of duration T_c , the clock period.
- * When the clock goes high, switch S (e.g., a FET or a CMOS pass gate) is closed, and the capacitor C gets charged to the signal voltage at that time. When the clock goes low, switch S is turned off, and C holds the voltage constant, as desired.
- Op-amp buffers can be used to minimise loading effects.

* Suppose we have a 4-bit DAC. We can use it to perform A-to-D conversion by successively setting the four bits as follows.

- * Suppose we have a 4-bit DAC. We can use it to perform A-to-D conversion by successively setting the four bits as follows.
 - Start with $D_3D_2D_1D_0 = 0000$, I = 3.

- * Suppose we have a 4-bit DAC. We can use it to perform A-to-D conversion by successively setting the four bits as follows.
 - Start with $D_3D_2D_1D_0 = 0000$, I = 3.
 - Set D[I] = 1 (keep other bits unchanged).

- * Suppose we have a 4-bit DAC. We can use it to perform A-to-D conversion by successively setting the four bits as follows.
 - Start with $D_3D_2D_1D_0 = 0000$, I = 3.
 - Set D[I] = 1 (keep other bits unchanged).
 - If $V_o^{DAC} > V_A$ (i.e., C = 0), set D[I] = 0; else, keep D[I] = 1.

- * Suppose we have a 4-bit DAC. We can use it to perform A-to-D conversion by successively setting the four bits as follows.
 - Start with $D_3D_2D_1D_0 = 0000$, I = 3.
 - Set D[I] = 1 (keep other bits unchanged).
 - If $V_o^{DAC} > V_A$ (i.e., C = 0), set D[I] = 0; else, keep D[I] = 1.
 - I \leftarrow I 1; go to step 1.

- * Suppose we have a 4-bit DAC. We can use it to perform A-to-D conversion by successively setting the four bits as follows.
 - Start with $D_3D_2D_1D_0 = 0000$, I = 3.
 - Set D[I] = 1 (keep other bits unchanged).
 - If $V_o^{DAC} > V_A$ (i.e., C = 0), set D[I] = 0; else, keep D[I] = 1.
 - $I \leftarrow I 1$; go to step 1.
- * At the end of four steps, the digital output is given by $D_3D_2D_1D_0$. Example \rightarrow next slide.

* At the end of the 5th step, we know that the input voltage corresponds to 10110.

- * At the end of the 5th step, we know that the input voltage corresponds to 10110.
- * For the digital representation to be accurate up to $\pm \frac{1}{2}$ LSB, ΔV corresponding to $\frac{1}{2}$ LSB is added to V_A (see [Taub]).

* Each step (setting SAR bits, comparison of V_A and V_o^{DAC}) is performed in one clock cycle \to conversion time is N cycles, irrespective of the input voltage value V_A .

- * Each step (setting SAR bits, comparison of V_A and V_o^{DAC}) is performed in one clock cycle \rightarrow conversion time is N cycles, irrespective of the input voltage value V_A .
- * S. A. ADCs with built-in or external S/H (sample-and-hold) are available for 8- to 16-bit resolution and conversion times of a few μ sec to tens of μ sec.

- * Each step (setting SAR bits, comparison of V_A and V_o^{DAC}) is performed in one clock cycle \rightarrow conversion time is N cycles, irrespective of the input voltage value V_A .
- * S. A. ADCs with built-in or external S/H (sample-and-hold) are available for 8- to 16-bit resolution and conversion times of a few μ sec to tens of μ sec.
- * Useful for medium-speed applications such as speech transmission with PCM.

* The "start conversion" signal clears the counter; counting begins, and V_o^{DAC} increases with each clock cycle.

- * The "start conversion" signal clears the counter; counting begins, and V_o^{DAC} increases with each clock cycle.
- * When V_o^{DAC} exceeds V_A , C becomes 0, and counting stops.

- * The "start conversion" signal clears the counter; counting begins, and V_o^{DAC} increases with each clock cycle.
- * When V_o^{DAC} exceeds V_A , C becomes 0, and counting stops.
- * Simple scheme, but (a) conversion time depends on V_A , (b) slow (takes (2^N-1) clock cycles in the worst case) \rightarrow tracking ADC

* The counter counts up if $V_o^{\it DAC} < V_A$; else, it counts down.

- * The counter counts up if $V_o^{DAC} < V_A$; else, it counts down.
- * If V_A changes, the counter does not need to start from 000 \cdots 0, so the conversion time is less than that required by a counting ADC.

- * The counter counts up if $V_o^{DAC} < V_A$; else, it counts down.
- * If V_A changes, the counter does not need to start from 000 \cdots 0, so the conversion time is less than that required by a counting ADC.
- * used in low-cost, low-speed applications, e.g., measuring output from a temperature sensor or a strain gauge

* t = 0: reset integrator output V_o to 0 V by closing S momentarily.

- * t = 0: reset integrator output V_o to 0 V by closing S momentarily.
- * Integrate V_A (voltage to be converted to digital format, assumed to be positive) for a fixed interval T_1 .

- * t = 0: reset integrator output V_o to 0 V by closing S momentarily.
- * Integrate V_A (voltage to be converted to digital format, assumed to be positive) for a fixed interval T_1 .
- * At $t=T_1$, integrator output reaches $-V_1=-V_A\,rac{T_1}{RC}$.

- * t = 0: reset integrator output V_o to 0 V by closing S momentarily.
- * Integrate V_A (voltage to be converted to digital format, assumed to be positive) for a fixed interval T_1 .
- * At $t = T_1$, integrator output reaches $-V_1 = -V_A \frac{T_1}{RC}$.
- * Now apply a reference voltage V_R (assumed to be negative, with $|V_R| > V_A$), and integrate until V_o reaches 0 V.

- * t = 0: reset integrator output V_o to 0 V by closing S momentarily.
- * Integrate V_A (voltage to be converted to digital format, assumed to be positive) for a fixed interval T_1 .
- * At $t=T_1$, integrator output reaches $-V_1=-V_A\frac{T_1}{RC}$.
- * Now apply a reference voltage V_R (assumed to be negative, with $|V_R| > V_A$), and integrate until V_o reaches 0 V.
- * Since $V_1 = V_A \frac{T_1}{RC} = |V_R| \frac{T_2}{RC}$, we have $T_2 = T_1 \frac{V_A}{|V_R|} \to T_2$ gives a measure of V_A .

- * t = 0: reset integrator output V_o to 0 V by closing S momentarily.
- * Integrate V_A (voltage to be converted to digital format, assumed to be positive) for a fixed interval T_1 .
- * At $t = T_1$, integrator output reaches $-V_1 = -V_A \frac{T_1}{RC}$.
- * Now apply a reference voltage V_R (assumed to be negative, with $|V_R| > V_A$), and integrate until V_o reaches 0 V.
- * Since $V_1 = V_A \frac{T_1}{RC} = |V_R| \frac{T_2}{RC}$, we have $T_2 = T_1 \frac{V_A}{|V_R|} \to T_2$ gives a measure of V_A .
- * In the dual-slope ADC, a counter output which is proportional to T_2 provides the desired digital output.

* Start: counter reset to 000 $\cdot \cdot \cdot$ 0, SPDT in position A.

- * Start: counter reset to 000···0, SPDT in position A. * Counter counts up to 2^N at which point the overflow flag becomes 1, and SPDT switches to position B $\rightarrow T_1 = 2^N T_c$ where T_c is the clock period.

- * Start: counter reset to 000···0, SPDT in position A.
- Counter counts up to 2^N at which point the overflow flag becomes 1, and SPDT switches to position B → T₁ = 2^N T_c where T_c is the clock period.
- * The counter starts counting again from $000 \cdots 0$, and stops counting when V_o crosses 0 V. The counter output gives T_2 in binary format.

References

- * K. Gopalan, Introduction to Digital Microelectronic Circuits, Tata McGraw-Hill, New Delhi, 1998.
- * H. Taub and D. Schilling, *Digital Integrated Electronics*, McGraw-Hill, 1977.