Math 31 Derivatives of Trig and Exponential Functions

Jad Chehimi

March 24, 2021

Unfinished!

Contents

Review	2
Exponent Appearance	2
Derivatives of Trigonometric Functions	2
	2
Reciprocal	2
Related Rates	3
Revolutions	3
Euler's Number	3
Derivative of Exponential Functions	3
Derivatives of Logarithmic Functions	3
Restrictions	
Applications of Logarithmic Functions	4

ALL DERIVATIVES ARE ON YOUR FORMULA SHEET!

Review

You need to review the following for this unit. There are good review resources in the notes booklet.

- Trigonometry
- Exponents and Logs (notably log laws)
- The graphs of the above two

Exponent Appearance

$$\sin(x+2)^3 = \sin(x^3+2^3)$$

$$\sin^3(x+2) = (\sin(x+2))^3$$

Derivatives of Trigonometric Functions

Primary

$$\frac{\mathrm{d}}{\mathrm{d}x}\sin u = \cos u \cdot u'$$

$$\frac{\mathrm{d}}{\mathrm{d}x}\cos u = -\sin u \cdot u'$$

In simpler terms...

- Swap between sin and cos
- cos to sin prepends negative
- Multiply by derivative of trig function argument

Reciprocal

$$\frac{\mathrm{d}}{\mathrm{d}x}\csc u = -\csc u \cot u \cdot u'$$

$$\frac{\mathrm{d}}{\mathrm{d}x}\sec u = \sec u \tan u \cdot u'$$

$$\frac{\mathrm{d}}{\mathrm{d}x}\tan u = \sec^2 u \cdot u'$$

$$\frac{\mathrm{d}}{\mathrm{d}x}\cot u = -\csc^2 u \cdot u'$$

Related Rates

Related rates is done the same way as before. Here are some formulas you could derive and plug in.

- Cosine Law: For non-right triangles, on your formula sheet $c^2 = a^2 + b^2 2ab\cos C$
- (remember that angle C is opposite to side c)
- ullet Use trigonometric ratios for right triangles (stuff like $\sin heta = rac{x}{2}$)

Revolutions

Related rates questions often involve radians per second/minute for rate of change of theta. Some, however, have revolutions per minute (rpm). To convert, multiply it by 2π .

$$32 \frac{\text{rev}}{\text{min}} \cdot \frac{2\pi \text{rad}}{\text{rev}} = 64\pi \frac{\text{rad}}{\text{min}}$$

Euler's Number

$$e \approx 2.71828$$

$$\ln x = \log_e x$$

Derivative of Exponential Functions

$$\frac{\mathrm{d}}{\mathrm{d}x}e^u = e^u \cdot u'$$

$$\frac{\mathrm{d}}{\mathrm{d}x}a^u = a^u \cdot \ln a \cdot u'$$

Derivatives of Logarithmic Functions

$$\frac{\mathrm{d}}{\mathrm{d}x}\log_b u = \frac{u'}{u\ln b}$$

$$\frac{\mathrm{d}}{\mathrm{d}x}\ln u = \frac{u'}{u}$$

Restrictions

Remember that the argument of a log function must be greater than zero.

$$\log x, x > 0$$

You'll need to be able to determine the restrictions as well as derive log functions. Get the restrictions of the original function, before deriving.

If you do get the log of a value 0 or lower, the answer is DNE.

Applications of Logarithmic Functions

$$y = y_i e^{kt}$$

You do have to memorize this. (wasn't on unit exam, though...)

- \bullet y: final population
- y_i : initial population
- k: growth period
 - k > 0 is exponential growth
 - k < 0 is exponential decay
- *t*: time