EGF Deconvolution

- Rupture directivity
- Rupture complexity (multiple subevents)
 - centroid locations
 - → rupture area
 - → ∆CFS calculation
 - centroid times
 - → guide multi-point-source inversion, which need preset time windows

Wu, Chen, & Abercrombie, GRL 2019

EGF Deconvolution

Inputs

- fpha_tar: phases for the target events
- fctlg_all: catalog that contain all available events
- fsta (station_eg.csv): station file

Outputs

- spectrum of target & EGFs
- STF on 1-station & 1-EGF
- STF on 1-station & multi-EGF
- STF alignment by azimuth

Input	Operation	Output	Notes
fctlg_all & fsta	select_egf_loc.py	fpha_egf_org	select EGF by time, location, & magnitude
fpha_tar & fpha_egf_org	cut_events.py	input/events_tar input/events_egf	cut raw data
fpha_egf_org & input/events_egf	pick_events.py	fpha_egf_org	refine original pick with STA/LTA
fpha_egf_org	calc_egf-cc.py & plot_egf-cc.py	eg_tar-egf.cc & eg_tar-egf-cc.pdf	
eg_tar-egf.cc	select_egf_cc.py	fpha_egf	select with CC (not strict criteria as well)
fpha_egf	plot_waveform- events.py	evid_name.pdf	inspect selected events

Event Waveform: 1 20190705072737.11 M3.72 Z 1-20Hz

EGF Deconvolution

Input	Operation	Output	Notes
fpha_egf & fpha_tar	plot_spec-s.py	eg_spec-s_name.pdf	check the consistency between spectrum of EGFs
fpha_egf & fpha_tar	check_stf-sta_freq.py check_stf-sta_time.py	eg_stf-sta_freq-p/s.pdf eg_stf-sta_time-p/s.pdf	check deconvolution on 1-sta & 1-EGF
fpha_egf & fpha_tar	check_stf-egf_freq.py check_stf-egf_time.py	eg_stf-egf_freq-p/s.pdf eg_stf-egf_time-p/s.pdf	check deconvolution on 1-sta & multi-EGF
fpha_egf & fpha_tar	plot_stf-align.py	eg_stf-align.pdf	align STF by azimuth

References

- Abercrombie, R. E. (2015), Investigating uncertainties in empirical Green's function analysis of earthquake source parameters. *J. Geophys. Res. Solid Earth*, 120, 4263–4277. doi: 10.1002/2015JB011984.
- López-Comino, J. A., Stich, D., Morales, J., and Ferreira, A. M. G. (2016), Resolution of rupture directivity in weak events: 1-D versus 2-D source parameterizations for the 2011, M_w 4.6 and 5.2 Lorca earthquakes, Spain, *J. Geophys. Res. Solid Earth*, 121, 6608–6626, doi:10.1002/2016JB013227.
- Wu, Q., Chen, X., & Abercrombie, R. E. (2019). Source complexity of the 2015 Mw 4.0 Guthrie, Oklahoma earthquake. Geophysical Research Letters, 46, 4674–4684. https://doi.org/10.1029/2019GL082690
- Yoshida, K., Uchida, N., Kubo, H., Takagi, R., & Xu, S. (2022). Prevalence of updip rupture propagation in interplate earthquakes along the Japan trench. *Earth and Planetary Science Letters*, *578*, 117306. https://doi.org/10.1016/j.epsl.2021.117306