Parcial 1 - Análisis Numérico

Camilo Jose Narvaez Montenegro camilonarvaez@javeriana.edu.co

26 de agosto de 2021

1. 2.a) Polinomio de Taylor

$$f(x) = e^x \cos(x); x_0 = 0; P_3(0.5)$$
(1)

Lo primero a realizar en este ejercicio es calcular el Polinomio de Taylor de grado 3, el cual se ve a continuación:

$$P_3(x) = 1 + x - \frac{x^3}{3} \tag{2}$$

Las derivadas utilizadas para este cálculo se muestran a continuación:

$$f'(x) = e^{x}(\cos(x) - \sin(x))$$

$$f''(x) = -2e^{x}\sin(x)$$

$$f'''(x) = -2e^{x}(\cos(x) + \sin(x))$$
(3)

Se pide además calcular el límite superior del error entre el Polinomio de Taylor y la función original, para esto se utilizar la Cota de Lagrange para el error polinomial, la cual se define como:

$$R_N = \frac{f^{(N+1)}(c)}{(N+1)!} x^{N+1} \tag{4}$$

Donde $N=3, c\in x$. Para esto se debe definir un intervalo en x donde evaluar el error. Puesto que el punto a calcular es x=0.5 y se sabe que el polinomio de Taylor tiene errores mayores cuanto más alejado del centro, se utilizará un intervalo ± 1 del valor a calcular, dando $x\in [-0.5,1.5]$. Realizando los cálculos se obtiene:

$$f^{(4)}(x) = -4e^x \cos(x) \tag{5}$$

$$R_N = \frac{4e^c \cos(c)}{4!} x^4$$

$$= e^c \cos(c) \frac{x^4}{6}$$
(6)

Para calcular la cota superior, se debe hallar los valores de x y c que maximicen la función. Con solo observarla se ve que se desea maximizar el numerador, por lo que x=1.5 y c será el máximo de la función

 $e^c \cos(c)$ en el intervalo c = [-0.5, 1.5]. Esto se calculó por medio del Método de Newton, arrojando un valor de c = 0.78539816. Colocando esto en la fórmula R_N se puede hallar que:

$$R_N \le \left| -e^c \cos(c) \frac{1.5^4}{6} \right| \approx 1.3085577$$
 (7)

Con esta información se procedió a graficar las dos funciones:

Figura 1: Gráfica de la función original y del polinomio de Taylor

También se graficó la función del error y la cota superior R_N observando que en x=1.5 el error es de :

Figura 2: Gráfica del error con la cota superior

Al final, se calculó $P_3(0.5) = 1.4583333$, el valor real es f(0.5) = 1.446889. El error absoluto se puede observar en la tabla a continuación con todos los errores calculados en el intervalo con un salto de 0.1:

X	Error Absoluto	Error Relativo
-0.5	0.0093859365	1.7633433%
-0.4	0.0039276854	0.63615962%
-0.3	0.001269322	0.17935099%
-0.2	0.00025601932	0.031906272%
-0.1	1.6333488e-05	0.001814193%
0	0	0 %
0.1	1.6999837e-05	0.0015459321%
0.2	0.00027731198	0.023166165%
0.3	0.001430626	0.11093827%
0.4	0.0046051278	0.33514713%
0.5	0.011444297	0.79095884%
0.6	0.024140459	1.6052337%
0.7	0.045463641	2.9517953%
0.8	0.078784037	5.0810404%
0.9	0.12808619	8.3775938%
1	0.19797273	13.479509%
1.1	0.29365528	21.549865%
1.2	0.42092989	34.987976%
1.3	0.58613411	59.716216%
1.4	0.79608258	115.4997%
1.5	1.0579779	333.72365%