

Tensor

Reporter: Morin Wang

Supervisor: Zenglin Xu

Contents

Notations and Operations

Tensor Decomposition and Algorithm

Application

What is tensor?

 A tensor is something that transforms like a tensor!(Physics focuses more on Tensor Field.)

$$A' = TAT^{-1}$$

 A tensor is a multidimensional or N-way array.(More easily)

Why tensor?

Curse of dimensionality

large-scale, multi-modal and multi-relational

- Tensor decompositions, Tensor networks
 - -As emerging tools for dimensionality reduction and large scale optimization problems.
 - -Tensor networks offer a theoretical and computational framework for the analysis of computationally prohibitive large volumes of data.
 - Super-compression of datasets as large as 10^50 entries, down to the affordable levels of 10^7 or even less entries.

Some Useful Notations

• A N-order(N-way or N-Mode) Tensor: $\chi \in R^{I_1 \times I_2 \cdots I_N}$

• Its $(i_1, i_2 \cdots i_N)$ element:

$$x_{i_1i_2\cdots i_N}$$

• Outer product of vector $a_n \in R^{I_n}$: $\mathcal{X} = a_1 \circ a_2 \cdots a_N \in R^{I_1 \times I_2 \cdots I_N}$ $x_{i_1 i_2 \cdots i_N} = (a_1)_{i_1} (a_2)_{i_2} \cdots (a_n)_{i_n}$ • N-Mode product (Tensor with Matrix) $A \in R^{I_n \times R}$

$$(\mathcal{X} \times_{n} A)_{i_{1}, i_{2} \cdots i_{n-1} r i_{n+1} \cdots i_{N}}$$

$$= \sum_{i_{n}}^{I_{n}} x_{i_{1}, i_{2} \cdots i_{n} \cdots i_{N}} a_{i_{n}, r}$$

• Mode- $\binom{n}{m}$ product (Tensor and Tensor) $\mathcal{X} \in R^{I_1 \times I_2 \cdots I_N} \quad \mathcal{C} \in R^{J_1 \times J_2 \cdots J_M} (I_n = J_m)$

$$\mathcal{X} \in R^{I_1 \times I_2 \cdots I_N} \quad \mathcal{C} \in R^{J_1 \times J_2 \cdots J_M} (I_n = J_m)$$

$$(\mathcal{X} \times_m^n \mathcal{C})_{i_1, i_2 \cdots i_{n-1} i_{n+1} \cdots i_N, j_1, j_2 \cdots j_{m-1} j_{m+1} \cdots i_M}$$

$$= \sum_{i_n}^{I_n} x_{i_1, i_2 \cdots i_n \cdots i_N} c_{j_1, j_2, \cdots i_n, \cdots j_M}$$

Tensor Network

Matrix trace

Matricization

1) The little-endian convention

$$\overline{i_1, i_2, \dots, i_N} = i_1 + (i_2 - 1)I_1 + (i_3 - 1)I_1I_2 \\ \dots + (i_N - 1)I_1 \dots I_{N-1}.$$
 (1)

2) The big-endian

$$\overline{i_1, i_2, \dots, i_N} = i_N + (i_{N-1} - 1)I_N + + (i_{N-2} - 1)I_N I_{N-1} + \dots + (i_1 - 1)I_2 \dots I_N.$$
 (2)

N-Mode product (Tensor with Matrix)

$$A \in R^{l_n \times R}$$

$$(\mathcal{X} \times_n A)_{i_1, i_2 \cdots i_{n-1} r i_{n+1} \cdots i_N}$$

$$= \sum_{i_n}^{I_n} x_{i_1, i_2 \cdots i_n \cdots i_N} a_{i_n, r}$$

$$\stackrel{\underline{\mathbf{C}} = \underline{\mathbf{A}} \times_n B}{\overset{\underline{\mathbf{C}} = \underline{\mathbf{A}} \times_n B}{\overset{\underline{\mathbf{C}}}{= \underline{\mathbf{A}}} \times_n B}}$$

• Mode- $\binom{n}{m}$ product (Tensor and Tensor) $\mathcal{X} \in R^{I_1 \times I_2 \cdots I_N} \quad \mathcal{C} \in R^{J_1 \times J_2 \cdots J_M} (I_n = J_m)$

$$\mathcal{X} \in R^{I_1 \times I_2 \cdots I_N} \quad \mathcal{C} \in R^{J_1 \times J_2 \cdots J_M} (I_n = J_m)$$

$$(\mathcal{X} \times_m^n \mathcal{C})_{i_1, i_2 \cdots i_{n-1} i_{n+1} \cdots i_N, j_1, j_2 \cdots j_{m-1} j_{m+1} \cdots i_M}$$

$$= \sum_{i_n}^{I_n} x_{i_1, i_2 \cdots i_n \cdots i_N} c_{j_1, j_2, \cdots i_n, \cdots j_M}$$

About Tensor Network

A tensor network aims to decompose a higher-order tensor into a set of lower-order tensors (typically, 2nd (matrices) and 3rd-order tensors called cores or components) which are sparsely interconnected.

Tensor Decomposition

- CP
- Tucker
- Tensor Train & Ring
- Others

CP Formats

$$\mathbf{X} = \mathbf{U}\mathbf{S}\mathbf{V}^{\mathrm{T}} = \sum_{r=1}^{R} \sigma_r \ \mathbf{u}_r \circ \mathbf{v}_r = \sum_{r=1}^{R} \sigma_r \ \mathbf{u}_r \mathbf{v}_r^{\mathrm{T}},$$

CP ALS

Optimization:

$$\begin{aligned} \min \left\| \mathcal{X} - \widehat{\mathcal{X}} \right\|_F \\ s. t. \widehat{\mathcal{X}} &= \sum_r^R \lambda_r a_{1_r} \circ a_{2_r} \cdots a_{N_r} = \llbracket \Lambda; A_1, A_2 \dots A_N \rrbracket \\ \widehat{\mathcal{X}}_{(n)} &= A_n \Lambda (A_1 \odot \cdots A_{n-1} \odot A_{n+1} \cdots \odot A_N)^{\mathrm{T}} \end{aligned}$$

Algorithm:

Input: \mathcal{X} , RInitialize: $\forall n$, A_n Repeat:

$$\begin{split} V &\longleftrightarrow A_1^T A_1 \circledast \cdots \circledast A_{n-1}^T A_{n-1} \circledast A_{n+1}^T A_{n+1} \cdots \circledast A_N^T A_N \\ A_n &\longleftrightarrow X_{(n)} (A_N \odot \cdots \odot A_{n+1} \odot A_{n-1} \cdots \odot A_1) V^\dagger \\ \lambda_n &\longleftrightarrow \|A_n\| \\ A_n &\longleftrightarrow \frac{A_n}{\lambda} \end{split}$$

Tucker

HOSVD

Optimization:

$$\min \| \mathcal{X} - \widehat{\mathcal{X}} \|_{F}$$

$$s. t. \widehat{\mathcal{X}} = [G; A_{1}, A_{2} ... A_{N}]$$

$$X_{(n)} = U^{(n)}G_{(n)} \big(U^{(1)} \otimes \cdots \otimes U^{(n-1)} \otimes U^{(n+1)} \otimes \cdots \otimes U^{(N)} \big)^T$$

HOOI

```
Input: Nth-order tensor \underline{\mathbf{X}} \in \mathbb{R}^{I_1 \times I_2 \times \cdots \times I_N} (usually in Tucker/HOSVD format)

Output: Improved Tucker approximation using ALS approach, with orthogonal factor matrices \mathbf{U}^{(n)}

1: Initialization via the standard HOSVD (see Algorithm 2)

2: repeat

3: for n = 1 to N do

4: \underline{\mathbf{Z}} \leftarrow \underline{\mathbf{X}} \times_{p \neq n} \{\mathbf{U}^{(p)T}\}

5: \mathbf{C} \leftarrow \mathbf{Z}_{(n)} \mathbf{Z}_{(n)}^T \in \mathbb{R}^{R \times R}

6: \mathbf{U}^{(n)} \leftarrow \text{leading } R_n \text{ eigenvectors of } \mathbf{C}

7: end for

8: \underline{\mathbf{G}} \leftarrow \underline{\mathbf{Z}} \times_N \mathbf{U}^{(N)T}

9: until the cost function (\|\underline{\mathbf{X}}\|_F^2 - \|\underline{\mathbf{G}}\|_F^2) ceases to decrease

10: return \|\underline{\mathbf{G}}; \mathbf{U}^{(1)}, \mathbf{U}^{(2)}, \dots, \mathbf{U}^{(N)}\|
```

```
Input: Nth-order tensor \underline{\mathbf{X}} \in \mathbb{R}^{I_1 \times I_2 \times \cdots \times I_N} and multilinear rank \{R_1, R_2, \dots, R_N\}
```

Output: Approximative representation of a tensor in Tucker format, with orthogonal factor matrices $\mathbf{U}^{(n)} \in \mathbb{R}^{I_n \times R_n}$

- 1: Initialize factor matrices U⁽ⁿ⁾ as random Gaussian matrices Repeat steps (2)-(6) only two times:
- 2: for n = 1 to N do
- 3: $\underline{\mathbf{Z}} = \underline{\mathbf{X}} \times_{p \neq n} \{ \mathbf{U}^{(p) \mathrm{T}} \}$
- 4: Compute $\tilde{\mathbf{Z}}^{(n)} = \mathbf{Z}_{(n)} \Omega^{(n)} \in \mathbb{R}^{I_n \times R_n}$, where $\Omega^{(n)} \in \mathbb{R}^{\prod_{p \neq n} R_p \times R_n}$ is a random matrix drawn from Gaussian distribution
- 5: Compute $\mathbf{U}^{(n)}$ as an orthonormal basis of $\tilde{\mathbf{Z}}^{(n)}$, e.g., by using QR decomposition
- 6: end for
- 7: Construct the core tensor as $\underline{\mathbf{G}} = \underline{\mathbf{X}} \times_1 \mathbf{U}^{(1) \text{ T}} \times_2 \mathbf{U}^{(2) \text{ T}} \cdots \times_N \mathbf{U}^{(N) \text{ T}}$ 8: **return** $\underline{\mathbf{X}} \cong [\![\mathbf{G}; \mathbf{U}^{(1)}, \mathbf{U}^{(2)}, \dots, \mathbf{U}^{(N)}]\!]$

C	T)	
ъ.			

Tucker

Scalar product

$$x_{i_1,\dots,i_N} = \sum_{r=1}^R \lambda_r \ b_{i_1,r}^{(1)} \cdots b_{i_N,r}^{(N)}$$

$$x_{i_1,\dots,i_N} = \sum_{r=1}^R \lambda_r \ b_{i_1,r}^{(1)} \cdots b_{i_N,r}^{(N)} \qquad x_{i_1,\dots,i_N} = \sum_{r_1=1}^{R_1} \cdots \sum_{r_N=1}^{R_N} g_{r_1,\dots,r_N} \ b_{i_1,r_1}^{(1)} \cdots b_{i_N,r_N}^{(N)}$$

Outer product

$$\underline{\mathbf{X}} = \sum_{r=1}^{R} \lambda_r \ \mathbf{b}_r^{(1)} \circ \cdots \circ \mathbf{b}_r^{(N)}$$

$$\underline{\mathbf{X}} = \sum_{r_1=1}^{R_1} \cdots \sum_{r_N=1}^{R_N} g_{r_1,\dots,r_N} \ \mathbf{b}_{r_1}^{(1)} \circ \cdots \circ \mathbf{b}_{r_N}^{(N)}$$

Multilinear product

$$\mathbf{X} = \mathbf{\Lambda} \times_1 \mathbf{B}^{(1)} \times_2 \mathbf{B}^{(2)} \cdots \times_N \mathbf{B}^{(N)}$$

$$\mathbf{X} = \mathbf{G} \times_1 \mathbf{B}^{(1)} \times_2 \mathbf{B}^{(2)} \cdots \times_N \mathbf{B}^{(N)}$$

$$\underline{\mathbf{X}} = \left[\!\left[\underline{\boldsymbol{\Lambda}}; \mathbf{B}^{(1)}, \mathbf{B}^{(2)}, \dots, \mathbf{B}^{(N)}\right]\!\right]$$

$$\underline{\mathbf{X}} = \left[\underline{\mathbf{G}}; \mathbf{B}^{(1)}, \mathbf{B}^{(2)}, \dots, \mathbf{B}^{(N)}\right]$$

Vectorization

$$\operatorname{vec}(\underline{\mathbf{X}}) = \left(\bigodot_{n-N}^{1} \mathbf{B}^{(n)} \right) \lambda$$

$$\operatorname{vec}(\underline{\mathbf{X}}) = \left(\bigotimes_{n=N}^{1} \mathbf{B}^{(n)}\right) \operatorname{vec}(\underline{\mathbf{G}})$$

Different Constraints

Cost Function	Constraints	
Multilinear (sparse) PCA (MPCA)	$\mathbf{u}_r^{(n)\mathrm{T}}\mathbf{u}_r^{(n)} = 1, \ \forall (n,r)$	
$\max_{\mathbf{u}_r^{(n)}} \ \underline{\mathbf{X}} \overline{\mathbf{x}}_1 \mathbf{u}_r^{(1)} \overline{\mathbf{x}}_2 \mathbf{u}_r^{(2)} \cdots \overline{\mathbf{x}}_N \mathbf{u}_r^{(N)} + \gamma \sum_{n=1}^N \ \mathbf{u}_r^{(n)}\ _1$	$\mathbf{u}_r^{(n)\mathrm{T}} \mathbf{u}_q^{(n)} = 0 \text{ for } r \neq q$	
HOSVD/HOOI	$\mathbf{U}^{(n)\mathrm{T}}\mathbf{U}^{(n)} = \mathbf{I}_{R_n}, \ \forall n$	
$\min_{\mathbf{U}^{(n)}} \ \ \underline{\mathbf{X}} - \underline{\mathbf{G}} \times_1 \mathbf{U}^{(1)} \times_2 \mathbf{U}^{(2)} \cdots \times_N \mathbf{U}^{(N)} \ _F^2$	$G^{**} = \mathbf{I}_{R_n}, \ \forall n$	
Multilinear ICA	Vectors of $\mathbf{B}^{(n)}$ statistically	
$\min_{\mathbf{B}^{(n)}} \ \ \underline{\mathbf{X}} - \underline{\mathbf{G}} \times_{1} \mathbf{B}^{(1)} \times_{2} \mathbf{B}^{(2)} \cdots \times_{N} \mathbf{B}^{(N)} \ _{F}^{2}$	as independent as possible	
Nonnegative CP/Tucker decomposition		
(NTF/NTD) (Cichocki et al., 2009)	Entries of $\underline{\mathbf{G}}$ and $\mathbf{B}^{(n)}$, $\forall n$	
$\min_{\mathbf{B}^{(n)}} \ \ \underline{\mathbf{X}} - \underline{\mathbf{G}} \times_1 \mathbf{B}^{(1)} \cdots \times_N \mathbf{B}^{(N)} \ _F^2$	are nonnegative	
$+\gamma \sum_{n=1}^{N} \sum_{r_{n}=1}^{R_{n}} \ \mathbf{b}_{r_{n}}^{(n)}\ _{1}$		
Sparse CP/Tucker decomposition	g	
$\min_{\mathbf{B}^{(n)}} \ \ \underline{\mathbf{X}} - \underline{\mathbf{G}} \times_1 \mathbf{B}^{(1)} \cdots \times_N \mathbf{B}^{(N)} \ _F^2$	Sparsity constraints	
$+\gamma \sum_{n=1}^{N} \sum_{r_{n}=1}^{R_{n}} \ \mathbf{b}_{r_{n}}^{(n)}\ _{1}$	imposed on $\mathbf{B}^{(n)}$	
Smooth CP/Tucker decomposition	Smoothness imposed	
(SmCP/SmTD) (Yokota et al., 2016)	on vectors $\mathbf{b}_r^{(n)}$	
$\min_{\mathbf{B}^{(n)}} \ \ \underline{\mathbf{X}} - \underline{\mathbf{\Lambda}} \times_1 \mathbf{B}^{(1)} \cdots \times_N \mathbf{B}^{(N)} \ _F^2$	of $\mathbf{B}^{(n)} \in \mathbb{R}^{I_n \times R}$, $\forall n$	
$+\gamma \sum_{n=1}^{N} \sum_{r=1}^{R} \ \mathbf{L}\mathbf{b}_{r}^{(n)}\ _{2}$	via a difference operator ${f L}$	

Tensor Train&Ring

- Periodic Boundary Conditions(PBC)
- Open Boundary Conditions (OBC)
- Matrix Product State(MPS)
- Matrix Product Operator(MPO)
- Projected Entangled-Pair State(PEPS)
- Projected Entangled-Pair Operator(PEPO)

Tensor Train(MPS with OBC)

Tensor Train(MPO with OBC)

$$\mathbf{x}_{\mathbf{i}_1 j_1 \mathbf{i}_2 j_2 \cdots, \mathbf{i}_N j_N} = \sum_{\mathbf{r}_1, \mathbf{r}_2 \cdots \mathbf{r}_{N-1}}^{\mathbf{R}_1, \mathbf{R}_2 \cdots \mathbf{R}_{N-1}} \mathbf{g}_{1, \mathbf{i}_1, \mathbf{j}_1, \mathbf{r}_1}^{(1)} \mathbf{g}_{\mathbf{r}_1, \mathbf{i}_2, j_2, \mathbf{r}_2}^{(2)} \cdots \mathbf{g}_{\mathbf{r}_{(N-1)}, \mathbf{i}_{(N)}, \mathbf{j}_N, 1}^{(N)}$$

Tensor Ring (MPS with PBC)

$$\begin{split} \chi_{i_{1}i_{2}\cdots,i_{N}} &= \sum_{r_{1},r_{2}\cdots r_{N-1}r_{N}}^{R_{1},R_{2}\cdots R_{N-1}R_{N}} g_{r_{N},i_{1},r_{1}}^{(1)} g_{r_{1},i_{2},r_{2}}^{(2)} \cdots g_{r_{(N-1)},i_{(N)},r_{N}}^{(N)} \\ & \mathcal{X} = G_{(1)} \times_{1} G_{(2)} \times_{1} \cdots \times_{1} G_{(N)} \in \mathbb{R}^{I_{1} \times I_{2} \cdots \times I_{N}} \\ & G_{(n)} \in \mathbb{R}^{R_{n-1} \times I_{n} \times R_{n}} \ \forall n \end{split}$$

Tensor Ring (MPO with PBC)

TT SVD

TT Rounding

PVD or Tucker2
$$I_1$$
 A_1 R_1 R_1I_2 G_2 G_2 G_3 G_4 G_4 G_5 G_5 G_5 G_5 G_5 G_5 G_5 G_5 G_5 G_7 G_8 G_8 G_8 G_9 G_9

Why TR?

 The constraint on TT-ranks, leads to the limited representation ability and flexibility;

 TT-ranks are small in the border cores and large in the middle cores, which might not be optimal for a given data tensor;

 TT representations and TT-ranks are sensitive to the order of tensor dimensions

Hierarchical Tucker

Block Term Decomposition

Hierarchical Outer Product Tensor Approximation (HOPTA)

Honey-Comb Lattice

Some Discussions

Tensor Networks	Neural Networks and Graphical Models in ML/Statistics
TT/MPS	Hidden Markov Models (HMM)
HT/TTNS	Deep Learning Neural Networks, Gaussian Mixture Model (GMM)
PEPS	Markov Random Field (MRF), Conditional Random Field (CRF)
MERA	Wavelets, Deep Belief Networks (DBN)
ALS, DMRG/MALS Algorithms	Forward-Backward Algorithms, Block Non- linear Gauss-Seidel Methods

Some Discussions

(b)

 Tensor decomposition may be considered as a multilinear extension of PCA.(Especially CP and Tucker)

 It was recently shown that Tensor decomposition can also perform simultaneous subspace selection (data compression) and clustering.

Some Applications

- SVM
- Recommendation
- Image
- Biology
- Neural Network

SVM To STM

$$\min_{\mathbf{w},b,\boldsymbol{\xi}} J(\mathbf{w},b,\boldsymbol{\xi}) = \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{m=1}^{M} \xi_m,$$
s.t. $y_m(\mathbf{w}^T \mathbf{x}_m + b) \ge 1 - \xi_m, \quad \boldsymbol{\xi} \ge 0, \quad m = 1, \dots, M,$

$$\min_{\mathbf{W},b,\xi} \frac{1}{2} \operatorname{tr}(\mathbf{W}^{\mathsf{T}} \mathbf{W}) + C \sum_{m=1}^{M} \xi_{m}$$

s.t.
$$y_m(\operatorname{tr}(\mathbf{W}^T\mathbf{X}_m) + b) \ge 1 - \xi_m, \, \xi \ge 0, \quad m = 1, ..., M.$$

$$\min_{\mathbf{w}_n,b,\boldsymbol{\xi}} J(\mathbf{w}_n,b,\boldsymbol{\xi}) = \frac{1}{2} \left\| \bigotimes_{n=1}^N \mathbf{w}_n \right\|^2 + C \sum_{m=1}^M \xi_m$$

s.t.
$$y_m (\underline{\mathbf{X}}_m \bar{\mathbf{x}}_1 \mathbf{w}_1 \cdots \bar{\mathbf{x}}_N \mathbf{w}_N + b) \ge 1 - \xi_m, \quad \boldsymbol{\xi} \ge 0,$$

 $m = 1, \dots, M.$

$$\phi(\mathbf{X}_m) = \left[egin{array}{c} arphi(\mathbf{z}_{m1}) \ arphi(\mathbf{z}_{m2}) \ drawnotto \ arphi(\mathbf{z}_{mI_1}) \end{array}
ight].$$

Methods	ADNI	HIV	ADHD
SVM	0.49 ± 0.02	0.70 ± 0.01	0.58 ± 0.00
SVM+PCA	0.50 ± 0.02	0.73 ± 0.03	0.63 ± 0.01
K_{3rd}	0.55 ± 0.01	0.75 ± 0.02	0.55 ± 0.00
sKL	0.51 ± 0.03	0.65 ± 0.02	0.50 ± 0.04
FK	0.51 ± 0.02	0.70 ± 0.01	0.50 ± 0.00
STuM	0.52 ± 0.01	0.66 ± 0.01	0.54 ± 0.03
DuSK	0.75 ± 0.02	0.74 ± 0.00	0.65 ± 0.01
$\overline{MMK_{best}}$	0.81 ± 0.01	0.79 ± 0.01	0.70 ± 0.01
MMK_{cov}	0.69 ± 0.01	0.72 ± 0.02	0.66 ± 0.02
3D CNN	0.52 ± 0.03	0.75 ± 0.02	0.68 ± 0.02
KSTM	$\boldsymbol{0.84 \pm 0.03}$	$\boldsymbol{0.82 \pm 0.02}$	$\boldsymbol{0.74 \pm 0.02}$

CVPR(2017)

Multi-way Multi-level Kernel Modeling for Neuroimaging Classification

Recommendation

Acm Conference on Recommender Systems (2010)

Multiverse Recommendation: N-dimensional TensorFactorization for Context-aware Collaborative Filteri

Image

Tensor Networks for Latent Variable Analysis. Part I: Algorithms for Tensor Train Decomposition

		•		
Samples	MC1	MC2	MC3	TC
20%	670	781	862	17
50%	27	36	75	0

IEEE International Conference on Computer Vision (2009)

Tensor completion for estimating missing values in visual data.

Paper: PLTD: Patch-Based Low-Rank Tensor Decomposition for Hyperspectral Images

	Proposed	MPCA	MPCA2	PCA	JPEG	PCA+JPEG	KSVD
Rate	0.0202	0.0203	0.0291	0.0202	0.0206	0.0220	0.0625
PSNR	49.5481	45.9795	47.7080	47.9091	42.0732	45.5686	43.1158
SSIM	0.9908	0.9850	0.9884	0.9876	0.9717	0.9821	0.9795
FSIM	0.9983	0.9939	0.9935	0.9937	0.9645	0.9850	0.9710
ERGAS	16.6267	25.3740	19.8433	26.4368	40.6427	28.7114	33.9282
MSAM	0.0312	0.0335	0.0352	0.0416	0.0583	0.0590	0.0346
Time	36.31 s	30.66 s	3.75 s	0.71 s	510.39 s	1000.61 s	11650.27 s

IEEE TRANSACTIONS ON MULTIMEDIA(2017)

PLTD: Patch-Based Low-Rank Tensor Decomposition for Hyperspectral Images

Tensor Networks for Image Compression

Author: Alex Trujillo Boque JPEG (Image coding standard) Theses. Issue Date:

Jan-2016.

Method: Fine-grained and

coarse-grained

Not a competitive alternative

	Lat. size	512	256	512	256	256
	SSIM	0.8311	0.8122	0.9014	0.8910	0,9400
MPS	χ_{trunc}	2	2	3	3	4
	DCR	17.97	19.60	7.64	7.93	3.82
JPEG	Q	10	11	24	32	70
	DCR	33.14	29.06	20.06	16.58	8.90

From Internet

Tensor Networks for Image Compression

Biology

$$3012 \times 67 \times 41 \times 58$$

$$179 \times 67 \times 41 \times 33$$
$$3021 \times 22 \times 13 \times 19$$

BIOINFORMATICS(2011)

Computational network analysis of the anatomical and genetic organizations in the mouse brain

Biology

Nature Genes (2016)

Tensor decomposition for multiple-tissue gene expression

Neural Network

CVPR2018

Learning Compact Recurrent Neural Networks with Block-Term Tensor Decomposition

	Method	Accuracy
Orthogonal	Original [25]	0.712
The state of the s	Spatial-temporal [24]	0.761
Approaches	Visual Attention [32]	0.850
DAINI	LSTM	0.697
RNN Approaches	TT-LSTM [47]	0.796
	BT-LSTM	0.853

(a) Training loss of baseline LSTM, TT-LSTM and BT-LSTM.

Our work

Figure 5: The illustration on the ground truth **W** and the recovered weights from different models. The recovered RM-SEs of the linear model, tensor train, and tensor ring, are 0.16, 0.18, and 0.09, respectively.

(a) Compression Ratio

Method	Accuracy
(Hasan and Roy-Chowdhury 2014)	54.5%
(Liu, Luo, and Shah 2009)	71.2%
(Ikizler-Cinbis and Sclaroff 2010)	75.2%
(Liu, Shyu, and Zhao 2013)	76.1%
(Sharma, Kiros, and Salakhutdinov 2015)	85.0%
(Wang et al. 2011)	84.2%
(Sharma, Kiros, and Salakhutdinov 2015)	84.9%
(Cho et al. 2014a)	88.0%
(Gammulle et al. 2017)	94.6%
CNN + LSTM	92.3%
CNN + TR-LSTM	93.8%

Table 2: The state-of-the-art performance on UCF11.

Method	#Params	Accuracy
LSTM	59M	0.697
TT-LSTM	3360	0.796
BT-LSTM	3387	0.853
TR-LSTM	1725	0.869

(b) Train Loss

(c) Test Accuracy