

구현을 위한 딥러닝

- 고려대학교 물리학과 한승희

Review Curse of Dimensionality 3 **Dimension Reduction** 4 **Auto Encoder** 5 VAE 6 **Implementation**

Review **Curse of Dimensionality Dimension Reduction Auto Encoder** VAE **Implementation**

Example

Example

Review 2 **Curse of Dimensionality Dimension Reduction Auto Encoder** VAE **Implementation**

Curse of Dimensionality

- Model becomes complex
- Need exponentially many data
- Metric(distance) goes wrong

Need exponentially many data

Metric goes wrong

In D-dimensional space,

Review **Curse of Dimensionality** 3 **Dimension Reduction Auto Encoder** VAE **Implementation**

Dimension Reduction

- Traditional Algorithms
 - PCA
 - LDA
 - ICA
 - CCA
 - LLE
 - MDS
 - Isomap
 - t-SNE

PCA

PCA defines a new orthogonal coordinate system that optimally describes variance in a single dataset.

PCA

Review **Curse of Dimensionality Dimension Reduction** 4 **Auto Encoder** VAE **Implementation**

AE

AE vs PCA

Autoencoder

PCA

AE vs RBM*

AE...Conv2DTranspose?

AE...Conv2DTranspose?

$$\begin{bmatrix} w_1 & w_2 & w_3 \\ w_4 & w_5 & w_6 \\ w_7 & w_8 & w_9 \end{bmatrix} * \begin{bmatrix} x_1 & x_2 & x_3 & x_4 \\ x_5 & x_6 & x_7 & x_8 \\ x_9 & x_{10} & x_{11} & x_{12} \\ x_{13} & x_{14} & x_{15} & x_{16} \end{bmatrix} = \begin{bmatrix} y_1 & y_2 \\ y_3 & y_4 \end{bmatrix}$$

$$\begin{bmatrix} w_1 & w_2 & w_3 & 0 & w_4 & w_5 & w_6 & 0 & w_7 & w_8 & w_9 & 0 & 0 & 0 & 0 & 0 \\ 0 & w_1 & w_2 & w_3 & 0 & w_4 & w_5 & w_6 & 0 & w_7 & w_8 & w_9 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & w_1 & w_2 & w_3 & 0 & w_4 & w_5 & w_6 & 0 & w_7 & w_8 & w_9 & 0 \\ 0 & 0 & 0 & 0 & w_1 & w_2 & w_3 & 0 & w_4 & w_5 & w_6 & 0 & w_7 & w_8 & w_9 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_{15} \\ x_{16} \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{bmatrix}$$

AE - Usage1: Denoising

AE - Usage1: Denoising

AE - Usage2: Classification

Review **Curse of Dimensionality Dimension Reduction Auto Encoder** 5 VAE **Implementation**

Variational Auto Encoder (VAE)

VAE – latent space sampling

VAE – latent space sampling

VAE – loss function

$$\begin{split} L \Big(\theta, \phi; x^i \Big) &= D_{KL} (q_{\phi}(z|x^i) | \big| p_{\theta}(z) \Big) - E_{z \sim q_{\phi} \left(z \big| x^i \right)} [\log p_{\theta} \left(x^i \big| z \right)] \\ &\approx - \frac{1}{2} \sum_{j=1}^{J} \left(1 + \log(\sigma_j^i)^2 - \left(\mu_j^i \right)^2 - \left(\sigma_j^i \right)^2 \right) + H[q_{\phi} \left(z \big| x^i \right), \, p_{\theta} \left(x^i \big| z \right)] \end{split}$$

Review **Curse of Dimensionality Dimension Reduction Auto Encoder** VAE 6 **Implementation**

AE

MNIST

VAE

- MNIST
- ❖ CIFAR10