DFA to RE

Beulah A.

AP/CSE

Road map

Conversion of DFA to RE

- 1. Regular Expression equation method $R_{ij}^{(k)}$
- 2. Arden's Theorem.
- 3. State elimination technique.

RE Equation Method - R_{ij}(k)

Theorem

If L=L(M) for some DFA M= $(Q, \Sigma, \delta, S, F)$, then there is a regular expression r such that L= L(r).

Proof

Let L be the set accepted by the DFA Given a DFA $M = (Q, \Sigma, \delta, S, F)$, where $Q = \{q_1, q_2, ..., q_n\}$, i.e., |Q| = n.

RE Equation Method - $R_{ij}^{(k)}$

 $R_{ij}^{(K)} \rightarrow RE$ describing the set of all strings x such that $\delta(q_i, x) = q_j$ going through intermediate states $\{q_1, q_2,q_K\}$ only.

Basis

 $K = 0 \rightarrow$ no intermediate states.

 $R_{ij}^{(0)} \rightarrow$ a set of strings which is either $\epsilon(\text{or})$ single symbol.

RE Equation Method - $R_{ij}^{(k)}$

• Case i

$$R_{ij}^{0} = \{a \in \Sigma \mid \delta(q_i, a) = q_j\}$$

if
$$i \neq j$$

• Case ii

$$R_{ij}^{0} = \{a \in \Sigma \mid \delta(q_i, a) = q_j\} \cup \{\epsilon\} \quad \text{if } i = j$$

RE Equation Method - R_{ij}(k)

- Induction
 - It involves regular expression operations : union, concatenation and closure.
 - $R_{ij}^{k} = R_{ik}^{k-1} (R_{kk}^{k-1}) * R_{kj}^{k-1} + R_{ij}^{k-1}$

RE Equation Method - R_{ij}(k)

The observation of this proof is that regular expression

$$L(M) = \{w \in \Sigma^* \mid \delta (q_1, w) = q_j \in F\}$$

$$= \bigcup_{qj \in F} R_{1j}^{n}$$
where $R_{1j}^{(n)}$ denotes the labels of all paths from q_1 to q_j
where $F = \{q_{j1}, q_{j2}, q_{jp}\},$
so $L(M) = R_{1j1}^{(n)} + R_{1j2}^{(n)} + R_{1jp}^{(n)}$

Identities for Regular Expressions

I1
$$\varphi + R = R$$
 I7 $RR^* = R^*R$
I2 $\varphi R = R\varphi = \varphi$ I8 $(R^*)^* = R^*$
I3 $\lambda R = R\lambda = R$ I9 $\lambda + RR^* = R^* = \lambda + R^*R$
I4 $\lambda^* = \lambda$ I10 $(PQ)^*P = P(QP)^*$
I4 $\lambda^* = \lambda$ I11 $(P + Q)^* = (P^*Q^*)^* = (P^* + R^*)^*$
I5 $R + R = R$ $Q^*)^*$
I6 $R^*R^* = R^*$ I12 $(P + Q)R = PR + QR$ and $R(P + Q) = RP + RQ$

Example

• Find a regular expression representing the set L over an alphabet $\Sigma = \{0, 1\}$ accepted by the following DFA M.

Example

	1 0	1 4	1 2
	k=0	k=1	k=2
r(1,1,k)	e	e	0(00)*0+ e
r(1,2,k)	0	0	0(00)*
r(1,3,k)	1	1	0(00)*(1+01)+1
r(2,1,k)	0	0	(00)*0
r(2,2,k)	e	00+e	(00)*
r(2,3,k)	1	1+01	(00)*(1+01)
r(3,1,k)	Ø	Ø	1(00)*0
r(3,2,k)	1	1	1(00)*
r(3,3,k)	0+ e	0+ e	1(00)*(1+01)+0+ e

Example

$$r_{1,3}^{3} = r_{1,3}^{2} + r_{1,3}^{2} (r_{3,3}^{2}) * r_{3,3}^{2}$$

$$= (0(00)*(1+01)+1)+(0(00)*(1+01)+0+\epsilon)*(1(00)*(1+01)+0+\epsilon)$$

$$= (0(00)*(1+01)+1) (1(00)*(1+01)+0)*$$

$$= (0*1) (1(00)*(1+01)+0)*$$

$$= (0*1) (10*1+0)*$$

DFA to RE construction

• Informally, trace all distinct paths (traversing cycles only once) from the start state to *each of the* final states and enumerate all the expressions along the way

Arden's Theorem

• Lemma:

A solution of x = S+Rx is $x = SR^*$. Furthermore, if $\varepsilon \in L(R)$ then this is the only solution of the equation x = Rx + S.

Proof

$$x = S+Rx$$

$$= S + RSR^* \qquad x = SR^*$$

$$= S (\epsilon + RR^*) \qquad R^* = R^*R + \epsilon$$

$$= SR^*$$

So $x = SR^*$ is a solution of x = S+Rx

Principle of Arden's Theorem

- No ε moves
- Only one start state say q_1
- Its states are q_1, q_2, \dots, q_n
- α_{ij} denotes the set of labels of edges from q_i to q_j .

If there is no edge $\alpha_{ij} = \varphi$. $q_1 = q_1 \alpha_{11} + q_2 \alpha_{21} + \dots + q_n \alpha_{n1} + \varepsilon$

$$q_2 = q_1 \alpha_{12} + q_2 \alpha_{22} + \dots + q_n \alpha_{n2}$$

$$q_n = q_1 \alpha_{1n} + q_2 \alpha_{2n} + \dots + q_n \alpha_{nn}$$

State Elimination Method

- \bullet S \rightarrow intermediate state
- Predecessor of S \rightarrow q1, q2 ... qk
- Successor of S \rightarrow p1, p2, ... pm

S before & after elimination

Steps

- 1. Eliminate all states except q and the start state q_0
- 2. $q \neq q0$
 - (R + SU*T)*SU*

Steps

3. Start state = final state

4. Union of all expressions derived from 2 and 3

Road map

A language is regular iff it is accepted by a DFA, NFA, eNFA, or regular expression