MA4702. Programación Lineal Mixta. 2020.

Profesor: José Soto Auxiliar: Diego Garrido Fecha: 23 de abril de 2020.

Modelos y Dualidad

	mın	max	
Restricciones	$\geq b_i$	≥ 0	Variables
	$\leq b_i$	≤ 0	
	$=b_i$	Libre	
Variables	≥ 0	$\leq c_j$	Restricciones
	≤ 0	$\geq c_j$	
	Libre	$=c_j$	

1. Minium Spanning Tree (MST)

Queremos construir una red de comunicación que conecte a todas las ciudades a costo mínimo, para ello contamos con un grafo conectado no dirigido G(V, E), donde V es el conjunto de ciudades, E las carreteras que conectan las ciudades y w_e costo de usar la carretera $e \in E$. El problema anterior se puede formular como un MST.

a) Considere los siguientes modelos para el MST:

$$\begin{array}{ll} \text{modeloConect} \\ & \text{mín} & \sum_{e \in E} w_e x_e \\ & \text{s.a.} & x(E) = \mid V \mid -1 \\ & x(\delta(S)) \geq 1 \quad \forall S \subset V, \quad S \neq \emptyset \\ & x_e \in \{0,1\} \quad \forall e \in E \end{array}$$

$$\begin{aligned} & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ &$$

Demuestre que ambos son exactos

Solución:

Un árbol generador para un grafo G(V, E) es un subgrafo conexo de G que contiene a todos los vértices y utiliza exactamente |V|-1 arcos, si se le quita un arco el grafo resultante será no conexo. Una definición equivalente sería un subgrafo que utiliza exactamente |V|-1 arcos y no posee ciclos.

Un modelo exacto posee correspondencia uno a uno de soluciones factibles con el problema original.

(i) modeloConect

 (\Rightarrow) Probaremos que cualquier solución del problema es un árbol generador:

Por la primera restricción se tiene que toda solución utiliza exactamente |V|-1 arcos. Sea S^C el complemento de S, la segunda restricción indica que para cualquier $S\subset V, S\neq\emptyset$ existe un nodo en S^C al cual se puede llegar, por tanto la solución es conexa.

 (\Leftarrow)

Todo árbol generador posee exactamente |V|-1 arcos y como es conexo de cualquier subconjunto $S \subset V, S \neq \emptyset$ sale un arco, sino significaría que de un conjunto de nodos no se puede llegar a otro subconjunto lo que se contradice con la definición de grafo conexo.

(ii) modeloCiclos

 (\Rightarrow) Probaremos que cualquier solución del problema es un árbol generador: Por la primera restricción cualquier solución utilizará |V|-1 arcos, por tanto, se necesita probar que toda solución es además conexa para demostrar que cualquier solución del modeloCiclos es un árbol generador.

Por definición un conjunto de nodos S posee un ciclo ssi $x(E(S)) \ge |S|$, notar que por la segunda restricción no hay forma de escoger un subconjunto de nodos $S \subset V, S \ne \emptyset$ que formen un ciclo. Sea x una solución cualquiera, supongamos que es no conexa, esto significa que existe un $S \subset V, S \ne \emptyset$ del cual no sale ningún arco, es decir, $x(\delta(S)) = 0$, como S no tiene ciclos a lo más posee |S| - 1 arcos, sea S^C el complemento de S, el cual tiene |V| - |S| nodos, como la cantidad de arcos activos es |V| - 1, S^C debe tener al menos |V| - |S| arcos, lo que es una contradicción ya que la solución no puede tener ciclos, por tanto, el problema no puede tener soluciones no conexas.

- (\Leftarrow) Todo árbol generador posee exactamente |V|-1 arcos y no posee ciclos, por tanto satisface ambas restricciones.
- b) Relaje la integralidad de la primera formulación. Demuestre que no es un modelo exacto, pero si un modelo.

Solución:

Para demostrar que no es un modelo exacto basta con encontrar una solución del modeloConect que no sea un árbol generador. Contraejemplo:

Figura 1: Contraejemplo

Para demostrar que es un modelo necesitamos demostrar que existe una solución óptima que es un árbol generador. De optimización lineal sabemos que todo LP con óptimo finito y con al menos una esquina, entonces, existe un óptimo que es una esquina. En el problema anterior por unimodularidad todas sus soluciones básicas factibles (sbf) son enteras, y como el óptimo es una sbf, entonces, existe un óptimo que es un árbol generador. Otra forma de

2. Maximum Set Packing (MSP)

Dado un universo U y una familia S de subconjuntos de U, un empaquetamiento es una subfamilia $C \subset S$ tal que todos los conjuntos en C son disjuntos de a pares (en otras palabras, no hay dos conjuntos que compartan un elemento), siendo el tamaño del empaquetamiento igual a |C|. EL problema de empaquetamiento busca maximizar el número de conjuntos disjuntos de a pares en S que se puede escoger.

$$\max \sum_{s \in S} x_s$$
 s.a.
$$\sum_{s \in S: e \in S} x_s \le 1 \qquad \forall e \in U$$

$$x_s \in \{0,1\} \quad \forall s \in S$$

Obtenga el dual de la relajación lineal, luego restringa el dominio de las variables a $\{0,1\}$ e interprete el problema obtenido.

Solución:

$$\min \sum_{e \in U} y_e$$
 s.a.
$$\sum_{e \in S} y_e \ge 1 \qquad \forall s \in S$$

$$y_e \in \{0,1\} \quad \forall e \in U$$

El problema resultante se conoce como **Minimum Edge Cover**, consiste en utilizar la menor cantidad de elementos de U tal que todo subconjunto $s \in S$ tiene al menos un elemento siendo utilizado. Notar que las soluciones básicas del problema relajado (tanto del primal como dual) son binarias.

3. Single Source Capacitated Facility Location Problem (CFLP)

El problema consiste en escoger donde instalar bodegas tal que se satisface la demanda de los minoristas a costo mínimo. Cada minorista debe estar asignado a una única bodega y esta debe satisfacer toda su demanda por producto único sin violar su restricción de capacidad.

Parámetros del problema:

- M: sitios potenciales, con $M = \{1, \dots, m\}$
- N: minoristas, con $N = \{1, \dots, n\}$
- q_i : capacidad de bodega j.
- w_i : demanda del minorista i.
- f_i : costo de abrir bodega en sitio j.
- c_{ij} : costo de transportar w_i unidades de producto de bodega j a minorista i.
- a) Formule el PLB.

Solución:

$$\circ \ x_{ij} = \begin{cases} 1 & \text{si el minorista } i \text{ es asignado a bodega } j. \\ 0 & \sim \end{cases}$$

$$\circ \ y_j = \begin{cases} 1 & \text{si se abre una bodega en sitio } j \\ 0 & \sim \end{cases}$$

$$\begin{aligned} & \text{m\'in } \sum_{i \in N} \sum_{j \in M} c_{ij} x_{ij} + \sum_{j \in M} f_j y_j \\ & \text{s.a. } \sum_{j \in M} x_{ij} = 1 \quad \forall i \in N \\ & \sum_{i \in N} w_i x_{ij} \leq q_j y_j \quad \forall j \in M \\ & x_{ij}, y_j \in \{0,1\} \quad \forall i \in N, j \in M \end{aligned}$$

b) Obtenga el dual de la relajación lineal.

Solución:

$$\begin{aligned} & \text{máx } \sum_{i \in N} \mu_i + \sum_{j \in M} \beta_j \\ & \text{s.a. } \mu_i + w_i \lambda_j \leq c_{ij} \quad \forall i \in N, j \in M \\ & -q_j \lambda_j + \beta_j \leq f_j \quad \forall j \in M \\ & \lambda_j, \alpha_{ij}, \beta_j \leq 0, \mu_i \text{ libre} \quad \forall i \in N, j \in M \end{aligned}$$