COMP 3605

Naïve Bayes Classifier

- ➤ The Naive Bayes classifier is a family of probabilistic classifiers based on applying Bayes' theorem with the assumption of independence between every pair of features.
- Despite its simplicity, Naive Bayes can be surprisingly accurate and is particularly useful for very large datasets.
- It's often used for text classification, spam filtering, sentiment analysis, and recommendation systems.

Bayes' Theorem:

$$P(A|B) = \frac{P(B|A)*P(A)}{P(B)}$$

Where:

- P(A|B) is the posterior probability of class A given predictor B.
- P(A) is the prior probability of class A.
- P(B|A) is the likelihood which is the probability of predictor B given class A.
- ullet P(B) is the prior probability of predictor B.

EXAMPLE 1

. [TID	age	income	student	credit_rating	buys_computer?
	1	youth	high	no	fair	no
	2	youth	high	no	excellent	no
	3	middle_aged	high	no	fair	yes
	4	senior	medium	no	fair	yes
	5	senior	low	yes	fair	yes
	6	senior	low	yes	excellent	no
	7	middle_aged	low	yes	excellent	yes
	8	youth	medium	no	fair	no
	9	youth	low	yes	fair	yes
	10	senior	medium	yes	fair	yes
	11	youth	medium	yes	excellent	yes
	12	middle_aged	medium	no	excellent	yes
	13	middle_aged	high	yes	fair	yes
	14	senior	medium	no	excellent	no

Predict the class label for this new tuple:

X = (age = youth, income = medium, student = yes, credit_rating = fair)

i.e., X = (x1 = youth, x2 = medium, x3 = yes, x4 = fair)

	buys_computer			
age	yes	no		
youth	2	3		
middle_aged	4	0		
senior	3	2		

	buys_computer			
income	yes	no		
low	3	1		
medium	4	2		
high	2	2		

	buys_computer			
student	yes	no		
yes	6	1		
no	3	4		

	buys_computer			
credit_ratting	yes	no		
fair	6	2		
excellent	3	3		

1. Calculate Prior Probabilities:

Calculate the probability of each class in the class_buy_computer column.

$$P(Yes) = 9/14$$

$$P(No) = 5/14$$

2. Calculate Likelihoods:

For each feature (age, income, student, credit_rating), calculate the likelihood of that feature given each class.

For Buy_Computer = Yes:

P(Age = Youth | Yes) = 2/9

P(Income = Medium | Yes) = 4/9

 $P(Student = Yes \mid Yes) = 6/9$

P(Credit_Rating = Fair | Yes) = 6/9

For Buy_Computer = No:

P(Age = Youth | No) = 3/5

P(Income = Medium | No) = 2/5

P(Student = Yes | No) = 1/5

P(Credit_Rating = Fair | No) = 2/5

3. Calculate Posterior Probabilities:

For the given example X, calculate the probability of each class given X by multiplying the prior probabilities by the likelihoods.

$$P(X \mid C_i) = P(x_1 \mid C_i) \times P(x_2 \mid C_i) \times ... \times P(x_n \mid C_i)$$

Compute P(X | yes) = P(age = youth | yes) *P(income = medium | yes)*
P(student = yes | yes) *P(credit_rating = fair | yes)

$$= 2/9 \times 4/9 \times 6/9 \times 6/9$$

Compute P(X | no) = P(age = youth | no) *P(income = medium | no)* P(student = yes | no) *P(credit_rating = fair | no)

To find the class Ci that maximizes P(X | Ci)P(Ci), we compute:

P(Yes | X) = P(Yes) * P(Age = Youth | Yes) * P(Income = Medium | Yes) * P(Student = Yes | Yes) * P(Credit_Rating = Fair | Yes)

P(No | X) = P(No) * P(Age = Youth | No) * P(Income = Medium | No) * P(Student = Yes | No) * P(Credit_Rating = Fair | No)

Substitute the probabilities calculated above:

P(Yes | X) =
$$(9/14) * (2/9) * (4/9) * (6/9) * (6/9) = 0.0282$$

P(No | X) = $(5/14) * (3/5) * (2/5) * (1/5) * (2/5) = 0.0069$

4.Prediction: The class with the highest posterior probability will be the prediction.

Since $P(Yes \mid X) > P(No \mid X)$, the Naive Bayes Classifier predicts that the computer will be bought.(yes)

EXAMPLE 2:

The "Play Tennis" dataset is a well-known toy dataset often used to illustrate the concepts of classification algorithms. The dataset consists of 14 instances, each representing a day with corresponding weather conditions and whether or not tennis was played on that day.

Da	y	ı	Outlook	ı	Temperature	ı	Humidity	ı	Wind	ı	Play Tennis
D1		ī	Sunny	í	Hot	Ī	High	Ī	Weak	ī	No
D2		Ī	Sunny	Ī	Hot	I	High	I	Strong	Ī	No
D3		Ī	0vercast	Ī	Hot	I	High	Ī	Weak	Ī	Yes
D4		Ī	Rain	Ī	Mild	I	High	I	Weak	Ī	Yes
D5		Ī	Rain	Ī	Cool	I	Normal	Ī	Weak	Ī	Yes
D6		Ī	Rain	Ī	Cool	I	Normal	Ī	Strong	Ī	No
D7		Ī	0vercast	Ī	Cool	I	Normal	Ī	Strong	Ī	Yes
D8		Ī	Sunny	Ī	Mild	I	High	Ī	Weak	Ī	No
D9		Ī	Sunny	Ī	Cool	I	Normal	I	Weak	Ī	Yes
D1	0	Ī	Rain	Ī	Mild	I	Normal	Ī	Weak	Ī	Yes
D1	1	Ī	Sunny	Ī	Mild	Ī	Normal	Ī	Strong	Ī	Yes
D1	2	I	0vercast	I	Mild	I	High	I	Strong	I	Yes
D1	3	I	0vercast	I	Hot	I	Normal	I	Weak	I	Yes
D1	4	I	Rain	I	Mild	I	High	I	Strong	I	No

Let's say we have a new instance with the following features:

Outlook: Sunny

Temperature: Mild

Humidity: High

Wind: Strong

We want to predict whether tennis will be played under these conditions (Play

Tennis: Yes/No).

Temperature	Yes	No
Hot	2	2
Mild	4	2
Cool	3	1

Humidity	Yes	No
High	3	4
Normal	6	1

Outlook	Yes	No
Sunny	2	3
Overcast	4	0
Rain	3	2

Wind	Yes	No
Strong	3	3
Weak	6	2

Predict a class label using the Naive Bayes Classifier for a new instance with the following features:

- Outlook: Sunny

- Temperature: Mild

- Humidity: High

- Wind: Strong

We want to predict whether tennis will be played under these conditions (Play Tennis: Yes/No).

1. Calculate Prior Probabilities

P(Yes) = 9/14 (9 days of playing tennis out of 14)

P(No) = 5/14 (5 days of not playing tennis out of 14)

2. Calculate Likelihoods

For the class label Yes:

P(Outlook=Sunny | Yes) = 2/9 (2 sunny days out of 9 days of playing tennis)

P(Temperature=Mild|Yes) = 4/9

P(Humidity=High|Yes) = 3/9

P(Wind=Strong|Yes) = 3/9

For the class label No:

P(Outlook=Sunny|No) = 3/5 (3 sunny days out of 5 days of not playing tennis)

P(Temperature=Mild|No) = 2/5

P(Humidity=High|No) = 4/5

P(Wind=Strong|No) = 3/5

2. Calculate Posterior Probabilities

$$P(X \mid C_i) = P(x_1 \mid C_i) \times P(x_2 \mid C_i) \times ... \times P(x_n \mid C_i)$$

P(X|Yes) = P(Outlook=Sunny|Yes) * P(Temperature=Mild|Yes) *

P(Humidity=High|Yes) * P(Wind=Strong|Yes)

$$P(X|Yes) = P(2/9) * (4/9) * (3/9) * (3/9)$$

P(X|No) = P(Outlook=Sunny|No) * P(Temperature=Mild|No) *

P(Humidity=High|No) * P(Wind=Strong|No)

$$P(X|No) = (3/5) * (2/5) * (4/5) * (3/5)$$

For the given example X = (Outlook=Sunny, Temperature=Mild, Humidity=High, Wind=Strong), calculate the posterior probabilities:

Substitute the calculated probabilities:

$$P(Yes|X) = (9/14) * (2/9) * (4/9) * (3/9) * (3/9) = 0.0053$$

$$P(No|X) = (5/14) * (3/5) * (2/5) * (4/5) * (3/5) = 0.0206$$

3. Prediction: The class with the highest posterior probability will be the prediction.

Since $P(No \mid X) > P(Yes \mid X)$, the Naive Bayes Classifier predicts that tennis will not be played under the given conditions (Play Tennis: No).

EXERCISE 1:

Dataset:

Age	Income	Gender	Owns House	Buy Product
Young	High	M	N	No
Young	High	M	N	No
Middle	High	M	Υ	Yes
Old	Medium	F	Υ	Yes
Old	Low	F	Υ	No
Old	Low	F	N	Yes
Middle	Low	F	Υ	Yes
Young	Medium	M	N	No
Young	Low	F	Υ	Yes
Old	Medium	F	Υ	Yes
Young	Medium	F	Υ	Yes
Middle	Medium	M	Υ	Yes
Middle	High	F	Υ	Yes
Old	Medium	M	N	No
Middle	Low	F	N	Yes

Predict if an individual with the following attributes will buy the product:

Age: Middle

Income: Low

Gender: F

Owns House: N