සියලු ම	හිමිකම්	<i>ඇව්රිණි (</i>	பதிப்புரிமையுடை	.யது/All Rights	Reserved]

Ι

ල් ලංකා වතාශ දෙපාර්තමේන්තුව දී ලංකා විතාශ දෙපාර්තමේන්තුව පිරිදුන් පාර්තමේන්තුව විතාශ දෙපාර්තමේන්තුව දී ලංකා විතාශ දෙපාර්තමේන්තුව මතාශ දෙපාර්තමේන්තුව දී ලංකා විතාශ දෙපාර්තමේන්තුව මතාශ දෙපාර්තමේන්තුව මතාශ දෙපාර්තමේන්තුව මතාශ දෙපාර්තමේන්තුව මතාශ දෙපාර්තමේන්තුව විතාශ සේකාශ දූර් විතාශ දේකාශ දූර් විතාශ දේකාශ දූර් විතාශ දේකාශ දූර් විතාශ දේකාශ දුරුවර්ගමේන්තුව දී ලංකා විතාශ දේකාශ දුරුවර්ගම්න්තුව දී ලංකා විතාශ දක්වීවර්ගම්න්තුව දී ලංකා විතාශ දේකාශ දුරුවර්ගම්න්තුව දී ලංකා විතාශ දේකාශ දුරුවර්ගම්න්තුව දී ලංකා විතාශ දේකාශ දුරුවර්ගම්න්තුව දක්වීම දේකාශ දේකාශ දුරුවර්ගම්න්තුව දක්වීම දක්වීම දේකාශ දේකාශ දේකාශ දුරුවර්ගම්න්තුව දක්වීම දේකාශ දුරුවර්ගම්න්තුව දක්වීම දේකාශ දක්වීම දක

අධායන පොදු සහතික පතු (උසස් පෙළ) විභාගය, 2018 අගෝස්තු கல்லிப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2018 ஓகஸ்ந் General Certificate of Education (Adv. Level) Examination, August 2018

<mark>සංයුක්ත ගණිතය</mark> இணைந்த கணிதம் Combined Mathematics

2018.08.06 / 0830 - 1140

පැය භූනයි

மூன்று மணித்தியாலம் Three hours අමතර කියවීම් කාලය - මිනිත්තු 10 යි மேலதிக வாசிப்பு நேரம் - 10 நிமிடங்கள் Additional Reading Time - 10 minutes

අමතර කියවීම් කාලය පුශ්න පතුය කියවා පුශ්න තෝරා ගැනීමටත් පිළිතුරු ලිවීමේදී පුමුවත්වය දෙන පුශ්න සංවිධානය කර ගැනීමටත් යොදාගන්න.

	Γ-	i -		1	,
විභාග අංකය					

උපදෙස්:

💥 මෙම පුශ්න පතුය කොටස් දෙකකින් සමන්විත වේ;

A කොටස (පුශ්න 1 - 10) සහ B කොටස (පුශ්න 11 - 17).

* A කොටස:

සියලු ම පුශ්නවලට පිළිතුරු සපයන්න. <mark>එක් එ</mark>ක් පුශ්නය සඳහා ඔබේ පිළිතුරු, සපයා ඇති ඉඩෙහි ලියන්න. වැඩිපුර ඉඩ අවශ<mark>ා වේ නම්,</mark> ඔ<mark>බට අම</mark>තර ලියන කඩදාසි භාවිත කළ හැකි ය.

* B කොටස:

පුශ්ත පහකට පමණක් පිළිතුරු සපයන්න. ඔබේ පිළිතුරු, සපයා ඇති කඩදාසිවල ලියන්න.

- * නියමිත කාලය අවසන් වූ පසු A කොටසෙහි පිළිතුරු පතුය, B කොටසෙහි පිළිතුරු පතුයට උඩින් සිටින පරිදි කොටස් දෙක අමුණා විභාග ශාලාධිපතිට භාර දෙන්න.
- * පුශ්න පතුයෙහි B කොටස පමණක් විභාග ශාලාවෙන් පිටතට ගෙන යාමට ඔබට අවසර ඇත.

පරික්ෂකවරුන්ගේ පුයෝජනය සඳහා පමණී.

(10) සංයුක්ත ගණිතය I				
කොටස	උග්න අංකය	ලකුණු		
	1	· ·		
	2			
	3			
	4			
	5			
A	6			
	7			
	8			
	9			
	10			
	11			
	12			
	13			
В	10 11 12 13 14 15			
	15			
	16			
	17			
	එකතුව			
	පුතිශතය			

I පතුය	
II පතුය	
එකතුව	
අවසාන ලකුණු	

අවසාන ලකුණු

	• •		
ඉලක්කමෙන්			
අකුරෙන්		 -	

සංකේත අංක

උත්තර පතු පරීක්ෂා	ක	
පරීක්ෂා කළේ:	1	
උටකමා ක්ෂළ.	2	
අධීක්ෂණය කළේ:		

	<u>A</u> කොටස
1.	ගණිත අභපුහන මූලධර්මය භාවිතයෙන්, සියලු $n\in \mathbb{Z}^+$ සඳහා $\sum_{r=1}^n r^3 = rac{1}{4} n^2 (n+1)^2$ බව සාධනය කරන්න.
	•••••••••••••••••••••••••••••••••••••••
	••••••
	······································
2.	එක ම රූප සටහනක $y=3- x $ හා $y= x-1 $ හි පුස්තා <mark>රව</mark> ල දළ සටහන් අඳින්න.
	ඒ නයින් හෝ අන් අයුරකින් හෝ , $ x + x-1 \leq 3$ අසමානතාව සපුරාලන x හි සියලු ම තාත්ත්වික අගයන් සොයන්න.

	40223
	ූ විභාග අංකය <u> </u>
AL/	2018/10/S-I
3.	ආගන්ඩ් සටහනක, ${ m Arg}(z-3i)=-rac{\pi}{3}$ සපුරාලන z සංකීර්ණ සංඛාා නිරූපණය කරන ලක්ෂාවල පථයෙහි
	දළ සටහනක් අඳින්න. ඒ නයින් හෝ අන් අයුරකින් හෝ, ${ m Arg}(\overline{z}+3i)=rac{\pi}{3}$ වන පරිදි $ z-1 $ හි අවම අගය සොයන්න.
	<u>ම නයින හෝ අන අයුටකන හෝ, Arg(2 + 31) = 3</u>

4.	$\left(x^2+rac{3k}{x} ight)^8$ හි ද්විපද පුසාරණයේ x හා x^4 හි සංගුණක සමාන වේ. k නියකයෙහි අගය සොයන්න.
	·

	•••••••••••••••••••••••••••••••••••••••

1	

5	5. $\lim_{x \to 0} \frac{1 - \cos\left(\frac{\pi x}{4}\right)}{x^2 (x+1)} = \frac{\pi^2}{32}$ බව පෙන්වන්න.	
1.		
		••••
		••••
	•••••••••••••••••••••••••••••••••••••••	••••
ĺ		••••
		· · · ·
	***************************************	•••
		•••
		• • •
		•••
_	2x 3-x	•••
U.	$y=e^{2x},\ y=e^{3-x},\ x=0,\ x=3$ හා $y=0$ වකු මගින් ආවෘත පෙදෙසෙහි වර්ගඑලය, වර්ග ඒකක $\frac{3}{2}\left(e^2-e^{3-x}\right)$ වෙනවන්න.	1)
	2125 - 600	
		••
		••
		•••

7.	$\frac{\pi}{2} < t < \pi$ සඳහා $x = \ln\left(\tan\frac{t}{2}\right)$ හා $y = \sin t$ පරාමිතික සමීකරණ මගින් C වකුයක් දෙනු ලැබේ. $\frac{\mathrm{d}y}{\mathrm{d}r} = \cos t \sin t$ බව පෙන්වන්න.
	$t=rac{2\pi}{3}$ ට අනුරූප ලක්ෂායෙහි දී C වකුයට ඇඳි ස්පර්ශ රේඛාවෙහි අනුකුමණය $-rac{\sqrt{3}}{4}$ බව අපෝහනය
	කරන්න.

	·
	Mathe
8.	l_1 යනු $x+y-5=0$ සරල රේඛාව යැයි ගනිමු. $P\equiv (3,4)$ ලක්ෂාය හරහා යන හා l_1 ට ලම්බ වූ l_2 සරල
8.	l_1 යනු $x+y-5=0$ සරල රේඛාව යැයි ගනිමු. $P\equiv (3,4)$ ලක්ෂාය හරහා යන හා l_1 ට ලම්බ වූ l_2 සරල රේඛාවෙහි සමීකරණය සොයන්න.
8.	රේඛාවෙහි සමීකරණය සොයන්න.
8.	1-1010110
8.	රේබාවෙහි සමීකරණය සොයන්න. Q යනු l_1 හා l_2 හි ඡේදන ලක්ෂාය යැයි ද R යනු $PQ:QR=1:2$ වන පරිදි l_2 මත වූ ලක්ෂාය යැයි ද
8.	රේබාවෙහි සමීකරණය සොයන්න. Q යනු l_1 හා l_2 හි ඡේදන ලක්ෂාය යැයි ද R යනු $PQ:QR=1:2$ වන පරිදි l_2 මත වූ ලක්ෂාය යැයි ද
8.	රේබාවෙහි සමීකරණය සොයන්න. Q යනු l_1 හා l_2 හි ඡේදන ලක්ෂාය යැයි ද R යනු $PQ:QR=1:2$ වන පරිදි l_2 මත වූ ලක්ෂාය යැයි ද
8.	රේබාවෙහි සමීකරණය සොයන්න. Q යනු l_1 හා l_2 හි ඡේදන ලක්ෂාය යැයි ද R යනු $PQ:QR=1:2$ වන පරිදි l_2 මත වූ ලක්ෂාය යැයි ද
8.	රේබාවෙහි සමීකරණය සොයන්න. Q යනු l_1 හා l_2 හි ඡේදන ලක්ෂාය යැයි ද R යනු $PQ:QR=1:2$ වන පරිදි l_2 මත වූ ලක්ෂාය යැයි ද
8.	රේබාවෙහි සමීකරණය සොයන්න. Q යනු l_1 හා l_2 හි ඡේදන ලක්ෂාය යැයි ද R යනු $PQ:QR=1:2$ වන පරිදි l_2 මත වූ ලක්ෂාය යැයි ද
8.	රේබාවෙහි සමීකරණය සොයන්න. Q යනු l_1 හා l_2 හි ඡේදන ලක්ෂාය යැයි ද R යනු $PQ:QR=1:2$ වන පරිදි l_2 මත වූ ලක්ෂාය යැයි ද
8.	රේබාවෙහි සමීකරණය සොයන්න. Q යනු l_1 හා l_2 හි ඡේදන ලක්ෂාය යැයි ද R යනු $PQ:QR=1:2$ වන පරිදි l_2 මත වූ ලක්ෂාය යැයි ද
8.	රේබාවෙහි සමීකරණය සොයන්න. Q යනු l_1 හා l_2 හි ඡේදන ලක්ෂාය යැයි ද R යනු $PQ:QR=1:2$ වන පරිදි l_2 මත වූ ලක්ෂාය යැයි ද
8.	රේබාවෙහි සමීකරණය සොයන්න. Q යනු l_1 හා l_2 හි ඡේදන ලක්ෂාය යැයි ද R යනු $PQ:QR=1:2$ වන පරිදි l_2 මත වූ ලක්ෂාය යැයි ද
8.	රේබාවෙහි සමීකරණය සොයන්න. Q යනු l_1 හා l_2 හි ඡේදන ලක්ෂාය යැයි ද R යනු $PQ:QR=1:2$ වන පරිදි l_2 මත වූ ලක්ෂාය යැයි ද
8.	රේබාවෙහි සමීකරණය සොයන්න. Q යනු l_1 හා l_2 හි ඡේදන ලක්ෂාය යැයි ද R යනු $PQ:QR=1:2$ වන පරිදි l_2 මත වූ ලක්ෂාය යැයි ද
8.	රේබාවෙහි සමීකරණය සොයන්න. Q යනු l_1 හා l_2 හි ඡේදන ලක්ෂාය යැයි ද R යනු $PQ:QR=1:2$ වන පරිදි l_2 මත වූ ලක්ෂාය යැයි ද
8.	රේබාවෙහි සමීකරණය සොයන්න. Q යනු l_1 හා l_2 හි ඡේදන ලක්ෂාය යැයි ද R යනු $PQ:QR=1:2$ වන පරිදි l_2 මත වූ ලක්ෂාය යැයි ද
8.	රේබාවෙහි සමීකරණය සොයන්න. Q යනු l_1 හා l_2 හි ඡේදන ලක්ෂාය යැයි ද R යනු $PQ:QR=1:2$ වන පරිදි l_2 මත වූ ලක්ෂාය යැයි ද

9.	$P\equiv (1,2)$ හා $Q\equiv (7,10)$ යැයි ගනිමු. P හා Q ලක්ෂා විෂ්කම්භයක අන්ත ලෙස වූ වෘත්තයෙහි සමීකරණය $S\equiv (x-1)(x-a)+(y-2)(y-b)=0$ වන පරිදි a හා b නියතවල අගයන් ලියා දක්වන්න.
	$S'\equiv S+\lambda(4x-3y+2)=0$ යැයි ගනිමු; මෙහි λ \in \mathbb{R} වේ. P හා Q ලක්ෂා $S'=0$ වෘත්තය මත පිහිටන බව පෙන්වා, මෙම වෘත්තය $R\equiv (1,4)$ ලක්ෂාය හරහා යන පරිදි λ හි අගය සොයන්න.
	······
	······
10.	$x \neq (2n+1)\frac{\pi}{2}$ සඳහා $\sec^3 x + 2\sec^2 x \tan x + \sec x \tan^2 x = \frac{\cos x}{\left(1 - \sin x\right)^2}$ බව පෙන්වන්න; මෙහි $n \in \mathbb{Z}$ වේ.
	3876000
	•••••••••••••••••••••••••••••••••••••••
	•••••••••••••••••••••••••••••••••••••••
	•••••••••••••••••••••••••••••••••••••••
	•••••••••••••••••••••••••••••••••••••••
	•••••••••••••••••••••••••••••••••••••••
	•••••••••••••••••••••••••••••••••••••••
	•••••••••••••••••••••••••••••••••••••••
	••••••

ପିପତ୍ର ଡ ବିଡିଲଡି ମ୍ୟଟିଠରି /(மୁହ୍ରା ଧର୍ନାଧ୍ୟମିକ୍ତେଧ୍ୟକ୍ତLଧ୍ୟକ୍ତ $|All\ Rights\ Reserved]$

ලී ලංකා විභාග දෙපාර්තමේන්තුව ලී ලංකා විභාග දෙපාර්ත**ල් පුළුදුන් වේ.පුද්ගු පුළුදුන් කිරීම් පිට**න්තුව ලී ලංකා විභාග දෙපාර්තමේන්තුව ඉහතිගෙනව ප්රධානවේ නිශාගත්යනහාර ඉහතිගෙනව ප්රධානවේ නිශාගත්යනුවේ ප්රධානවේ ප්රධානවේ නිශාගත්යනහාර ඉහතිගෙනව ප්රධානවේ නිශාගත්යනහාර විභාගත්යනහාර මූහත්යනහාර විර්යාවේ මූහත්යනහාර වූ විභාගත්යනහාර මූහත්යනහාර වූ මූහත්යනහාර මූහත්යන් මූහත්යන්

අබනයන පොදු සහනික පනු (උසස් පෙළ) විභාගය, 2018 අගෝස්තු கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2018 ஓகஸ்ந் General Certificate of Education (Adv. Level) Examination, August 2018

கேංයුක්ත ගණිතය I இணைந்த கணிதம் I Combined Mathematics I

B කොටස

* පුශ්න **පහකට** පමණක් පිළිතුරු සපයන්න.

 $a,b\in\mathbb{R}$ යැයි ගනිමු. $3x^2-2\left(a+b\right)x+ab=0$ සමීකරණයේ විවේචකය a හා b ඇසුරෙන් ලියා දක්වා **ජ නයින්**, මෙම සමීකරණයේ මූල තාත්ත්වික බව පෙන්වන්න.

මෙම මූල lpha හා eta යැයි ගනිමු. a හා b ඇසුරෙන් lpha+eta හා lphaeta ලියා දක්වන්න.

දැන්, $\beta=\alpha+2$ යැයි ගනිමු. $a^2-ab+b^2=9$ බව පෙන්වා,

 $|a| \leq \sqrt{12}$ බව **අපෝහනය** කර, a ඇසුරෙන් b සොයන්න.

- (b) c (≠ 0) හා d තාත්ත්වික සංඛාන <mark>යැයි ද $f(x) = x^3 + 4x^2 + cx + d$ </mark> යැයි ද ගනිමු. (x + c) මගින් f(x) බෙදූ විට ශේෂය $-c^3$ වේ. තව ද (x c) යන්න f(x) හි සාධකයක් වේ. c = -2 හා d = -12 බව පෙන්වන්න. c හා d හි මෙම අගයන් සඳහා $(x^2 4)$ මගින් f(x) බෙදූ විට ශේෂය සොයන්න.
- 12. (a) එක එකක පිරිමි ළමයින් තිදෙනකු හා ගැහැනු ළමයින් දෙදෙනකු සිටින කණ්ඩායම් දෙකක සාමාජිකයන් අතුරෙන්, සාමාජිකයන් හයදෙනකුගෙන් යුත් කමිටුවක් තෝරා ගත යුතුව ඇත්තේ කමිටුවේ සිටින ගැහැනු ළමයින් සංඛ්‍යාව වැඩි තරමින් දෙදෙනකු වන පරිදි ය.
 - (i) කමිටුවට එක් එක් කණ්ඩායමෙන් සාමාජිකයන් ඉරට්ටේ සංඛාභවක් තෝරා ගත යුතු නම්,
 - (ii) කම්ටුවට එක් ගැහැනු ළමයකු පමණක් තෝරා ගත යුතු නම්,

සෑදිය හැකි එවැනි වෙනස් කමිටු ගණන සොයන්න.

$$(b) \ r \in \mathbb{Z}^+$$
 සඳහා $f(r) = \frac{1}{(r+1)^2}$ සහ $U_r = \frac{(r+2)}{(r+1)^2(r+3)^2}$ යැයි ගනිමු.

 $r \in \mathbb{Z}^+$ සඳහා $f(r) - f(r+2) = 4U_r$ බව පෙන්වන්න.

ඊ නයින්,
$$n\in\mathbb{Z}^+$$
සඳහා $\sum_{r=1}^n U_r = \frac{13}{144} - \frac{1}{4(n+2)^2} - \frac{1}{4(n+3)^2}$ බව පෙන්වන්න.

 $\sum_{r=1}^\infty U_r$ අපරිමිත ශ්ලේණිය අභිසාරී බව **අපෝහන**ය කර එහි ඓකාසය සොයන්න.

$$n\!\in\! {\hbox{$\Bbb Z$}}^+$$
සඳහා $t_n=\sum_{r=n}^{2n}U_r$ යැයි ගතිමු.

 $\lim_{n\to\infty} t_n = 0$ බව පෙන්වන්න.

$$egin{aligned} \mathbf{13.} & (a) & \mathbf{A} = \begin{pmatrix} 1 & 1 & 0 \\ 2 & 4 & -1 \end{pmatrix}$$
 හා $\mathbf{B} = \begin{pmatrix} 3 & 2a \\ -1 & 0 \\ 1 & 3a \end{pmatrix}$ යැයි ගනිමු; මෙහි $a \in \mathbb{R}$ වේ.

 ${f P}={f A}{f B}$ මගින් අර්ථ දැක්වෙන ${f P}$ නාහසය සොයා, a හි කිසිදු අගයකට ${f P}^{-1}$ නොපවතින බව පෙන්වන්න.

$$\mathbf{P}igg(egin{array}{c}1\2\end{array}igg)=5igg(egin{array}{c}2\1\end{array}igg)$$
 නම්, $a=2$ බව පෙන්වන්න.

a සඳහා මෙම අගය සහිත ව, ${f Q}={f P}+{f I}$ යැයි ගනිමු; මෙහි ${f I}$ යනු ගණය ${f 2}$ වන ඒකක නාහසයයි.

$$\mathbf{Q}^{-1}$$
 ලියා දක්වා $\mathbf{A}\mathbf{A}^{\mathrm{T}}-\frac{1}{2}\mathbf{R}=\left(\frac{1}{5}\mathbf{Q}\right)^{-1}$ වන පරිදි \mathbf{R} නාාසය සොයන්න.

- (b) z=x+iy යැයි ගනිමු; මෙහි x,y∈ \mathbb{R} වේ. z හි, මාපාංකය |z| හා පුතිබද්ධය \overline{z} අර්ථ දක්වන්න.
 - (i) $z\overline{z} = |z|^2$,
 - (ii) $z + \overline{z} = 2 \operatorname{Re} z$ so $z \overline{z} = 2i \operatorname{Im} z$
 - බව පෙන්වන්න.

$$z \neq 1$$
 හා $w = \frac{1+z}{1-z}$ යැයි ගතිමු. $\operatorname{Re} w = \frac{1-\left|z\right|^2}{\left|1-z\right|^2}$ හා $\operatorname{Im} w = \frac{2\operatorname{Im} z}{\left|1-z\right|^2}$ බව පෙන්වන්න.

 $z=\cos{lpha}+i\sin{lpha}~(0<lpha<2\pi)$ නම්, $w=i\cot{rac{lpha}{2}}$ බව තව දුරටත් පෙන්වන්න.

- (c) ආගන්ඩ් සටහනක, A හා B ලක්ෂා පිළිවෙළින් -3i හා 4 සංකීර්ණ සංඛාා නිරූපණය කරයි. C හා D ලක්ෂා පළමුවන වෘත්ත පාදකයේ පිහිටන්නේ ABCD රොම්බසයක් හා $B\hat{A}D=\theta$ වන පරිදි ය; මෙහි $\theta=\sin^{-1}\left(\frac{7}{25}\right)$ වේ. C හා D ලක්ෂා මගින් නිරූපණය කරනු ලබන සංකීර්ණ සංඛාා සොයන්න.
- **14.** (a) $x \neq -1$, $\frac{1}{3}$ සඳහා $f(x) = \frac{16(x-1)}{(x+1)^2(3x-1)}$ යැයි ගනිමු.

 $x \neq -1$, $\frac{1}{3}$ සඳහා f(x)හි වයුත්පන්නය, f'(x) යන්න $f'(x) = \frac{-32x(3x-5)}{(x+1)^3(3x-1)^2}$ මගින් දෙනු ලබන බව පෙන්වන්න.

ස්පර්ශෝත්මුඛ හා හැරුම් ලක්ෂාා දක්වමින් y=f(x) හි පුස්තාරයේ දළ සටහනක් අඳින්න.

පුස්තාරය භාවිතයෙන්, $k(x+1)^2 (3x-1) = 16(x-1)$ සමීකරණයට හරියටම එක් මූලයක් පවතින පරිදි $k \in \mathbb{R}$ හි අගයන් සොයන්න.

(b) අරය $3r \, {\rm cm} \, {\rm so} \, {\rm cm} \, 2h \, {\rm cm} \, 2$

15. (a) (i) x^2, x^1 හා x^0 හි සංගුණක සැසඳීමෙන්,

සියලු $x \in \mathbb{R}$ සඳහා $Ax^2(x-1) + Bx(x-1) + C(x-1) - Ax^3 = 1$ වන පරිදි A, B හා C නියතවල අගයන් සොයන්න.

ඒ නයින්, $\frac{1}{x^3(x-1)}$ යන්න භින්න භාග වලින් ලියා දක්වා $\int \frac{1}{x^3(x-1)} \, \mathrm{d}x$ සොයන්න.

(ii) කොටස් වශයෙන් අනුකලනය භාවිතයෙන්, $\int x^2 \cos 2x \, \mathrm{d}x$ සොයන්න.

(b) $\theta = an^{-1}(\cos x)$ ආදේශය භාවිතයෙන්, $\int\limits_0^\pi \frac{\sin x}{\sqrt{1+\cos^2 x}} \, \mathrm{d}x = 2\ln\left(1+\sqrt{2}\right)$ බව පෙන්වන්න.

a නියතයක් වන $\int\limits_0^a f(x)\,\mathrm{d}x = \int\limits_0^a f(a-x)\,\mathrm{d}x$ සූතුය භාවිතයෙන්, $\int\limits_0^\pi \frac{x\sin x}{\sqrt{1+\cos^2 x}}\,\mathrm{d}x$ සොයන්න.

16. $A\equiv (-2,-3)$ හා $B\equiv (4,5)$ යැයි ගනිමු. AB රේඛාව සමග l_1 හා l_2 රේඛා එක එකක් සාදන සුළු කෝණය $rac{\pi}{4}$ වන පරිදි A ලක්ෂාය හරහා යන l_1 හා l_2 රේඛාවල සමීකරණ සොයන්න.

P හා Q ලක්ෂා පිළිවෙළින් l_1 හා l_2 මත ගෙන ඇත්තේ APBQ සමචතුරසුයක් වන පරිදි ය.

PQ හි සමීකරණය සොයා, P හා Q හි ඛණ්ඩාංක සොයන්න.

තව ද $A,\,P,\,B$ හා Q ලක්ෂා හරහා යත S වෘත්තයේ සමීකරණය සොයන්න.

 $\lambda > 1$ යැයි ගනිමු. $R \equiv (4\lambda\,,5\lambda\,)$ ලක්ෂාය, S වෘත්තයට පිටතින් පිහිටන බව පෙන්වන්න.

R ලක්ෂායේ සිට S වෘත්තයට ඇඳි ස්පර්ශකවල ස්පර්ශ ජාහයේ සමීකරණය සොයන්න.

 λ (> 1) විචලනය වන විට, මෙම ස්පර්ශ ජාායන් අචල ලක්ෂායක් හරහා යන බව පෙන්වන්න.

17. (a) $0 \le \theta \le \pi$ සඳහා $\cos 2\theta + \cos 3\theta = 0$ විසඳන්න. $\cos \theta$ ඇසුරෙන් $\cos 2\theta$ හා $\cos 3\theta$ ලියා දක්වා, $\cos 2\theta + \cos 3\theta = 4t^3 + 2t^2 - 3t - 1$ බව පෙන්වන්න; මෙහි $t = \cos \theta$ වේ.

ඒ නයින්, $4t^3+2t^2-3t-1=0$ සමීකරණයෙහි මූල තුන ලියා දක්වා $4t^2-2t-1=0$ සමීකරණයෙහි මූල $\cos\frac{\pi}{5}$ හා $\cos\frac{3\pi}{5}$ බව පෙන්වන්න. $\cos\frac{3\pi}{5}=\frac{1-\sqrt{5}}{4}$ බව **අපෝහන**ය කරන්න.

(b) ABC තිකෝණයක් යැයි ද D යනු BD:DC=m:n වන පරිදි BC මත වූ ලක්ෂාය යැයි ද ගනිමු; මෙහි $m,\,n>0$ වේ. $B\hat{A}D=\alpha$ හා $D\hat{A}C=\beta$ බව දී ඇත. BAD හා DAC තිකෝණ සඳහා සයින් නීතිය භාවිතයෙන්, $\frac{mb}{nc}=\frac{\sin\alpha}{\sin\beta}$ බව පෙන්වන්න; මෙහි b=AC හා c=AB වේ.

ඒ නයින්, $\frac{mb-nc}{mb+nc}= anigg(rac{lpha-eta}{2}igg)\cotigg(rac{lpha+eta}{2}igg)$ බව පෙන්වන්න.

(c) $2 \tan^{-1} \left(\frac{1}{3}\right) + \tan^{-1} \left(\frac{4}{3}\right) = \frac{\pi}{2}$ බව පෙන්ව<mark>න්න.</mark>

