Exercices - Applications linéaires : études théoriques : énoncé

GÉNÉRALITÉS SUR LES APPLICATIONS LINÉAIRES

Exercice 1 - Avez-vous compris ce qu'étaient le noyau et l'image? - $L1/Math\ Sup$ -

Soient E,F,G trois \mathbb{K} -espaces vectoriels, et soient $f\in\mathcal{L}(E,F)$ et $g\in\mathcal{L}(F,G)$. Démontrer que

$$g \circ f = 0 \iff \operatorname{Im} f \subset \ker g.$$

Exercice 2 - Isomorphisme - L1/Math Sup - **

Soient E, F deux espaces vectoriels et $f \in \mathcal{L}(E, F)$. Soit G un supplémentaire de $\ker(f)$ dans E. Montrer que G et $\operatorname{Im}(f)$ sont isomorphes.

Exercice 3 - Factorisation d'une application linéaire surjective - $L1/L2/Math\ Sup$ - **

Soient E et F deux K-espaces vectoriels et f appartient à $\mathcal{L}(E,F)$.

- 1. On suppose qu'il existe g appartenant à $\mathcal{L}(F, E)$ telle que $f \circ g = Id_F$. Montrer que f est surjective.
- 2. On suppose que f est surjective. On admet l'existence d'un sous-espace vectoriel G de E tel que $G \oplus \ker(f) = E$.
 - (a) Soit $\hat{f}: G \to F$, $x \mapsto f(x)$. Montrer que \hat{f} est un isomorphisme d'espaces vectoriels.
 - (b) Soit $g: F \to E, y \mapsto \hat{f}^{-1}(y)$. Calculer $f \circ g$.
- 3. Conclure.

Exercice 4 - Toujours liés - L1/Math Sup - ***

Soit E un espace vectoriel et $f \in \mathcal{L}(E)$ tel que, pour tout $x \in E$, la famille (x, f(x)) est liée. Montrer que f est une homothétie.

Exercice 5 - Factorisation et inclusion de noyaux - $L1/L2/Math\ Sup/Math\ Sp\'e$ - *** Dans cet exercice, on admet que dans tout espace vectoriel, un sous-espace admet un supplémentaire.

Soient E, F deux espaces vectoriels et $u, v \in \mathcal{L}(E, F)$. Montrer que

$$\ker(u) \subset \ker(v) \iff \exists f \in \mathcal{L}(F) \text{ tel que } v = f \circ u.$$

Exercice 6 - Factorisation et inclusion des images - L1/Math Sup - ***

Dans cet exercice, on suppose connue la propriété suivante : si E_1 est un espace vectoriel et F_1 est un sous-espace vectoriel de E_1 , alors il possède un supplémentaire. Soient alors E, F, G trois espaces vectoriels, $u \in \mathcal{L}(F,G)$ et $v \in \mathcal{L}(E,G)$. Démontrer que les propriétés suivantes sont équivalentes :

- (i) $\operatorname{Im}(v) \subset \operatorname{Im}(u)$;
- (ii) Il existe $w \in \mathcal{L}(E, F)$ tel que $v = u \circ w$.

SYMÉTRIE ET PROJECTIONS

Exercices - Applications linéaires : études théoriques :

énoncé

Exercice 7 - Projections - L1/L2/Math Sup/Math Spé - **

Soit E un K-ev, et $p \in \mathcal{L}(E)$. On dit que p est un projecteur si $p \circ p = p$.

- 1. Etude individuelle
 - (a) Montrer que pour tout $y \in \text{Im}(p)$, alors p(y) = y. En déduire que $E = \ker(p) \oplus \text{Im}(p)$. On dit que p est le projecteur sur Im(p) parallèlement à $\ker(p)$.
 - (b) On suppose désormais que E est de dimension finie. Montrer qu'il existe une base $\mathcal B$ de E dans laquelle p a pour matrice

$$\begin{pmatrix} 1 & 0 & \dots & & & \\ 0 & 1 & 0 & \dots & & & \\ & & \ddots & & & & \\ & & 0 & 0 & 0 & \\ & & & & \ddots & \end{pmatrix}.$$

En déduire que la trace d'un projecteur est égal à son rang.

2. Etude collective. Soient E_1, \ldots, E_p des sous-espaces vectoriels de E. On suppose que $E_1 \oplus \cdots \oplus E_p = E$. On note p_i le projecteur sur E_i parallèlement à $\oplus_{j\neq i} E_j$. Montrer que $p_i \circ p_j = 0$ si $i \neq j$ et $p_1 + \cdots + p_n = Id_E$.

Exercice 8 - Matrice d'une projection - L1/Math Sup - **

Soient, dans \mathbb{R}^3 , P le plan d'équation z=x-y et D la droite d'équation x=-y=z. Trouver la matrice dans la base canonique de \mathbb{R}^3 de la projection p de \mathbb{R}^3 sur P parallèlement à D.

Exercice 9 - Famille de deux projecteurs - $L1/Math\ Sup$ - \star

Soit E un espace vectoriel et p,q deux projecteurs de E tels que $p \neq 0, q \neq 0$ et $p \neq q$. Démontrer que (p,q) est une famille libre de $\mathcal{L}(E)$.

Exercice 10 - Somme de deux projecteurs - L1/Math Sup - **

Soit E un \mathbb{R} -espace vectoriel. Soient p et q deux projecteurs de E.

- 1. Montrer que p+q est un projecteur si et seulement si $p \circ q = q \circ p = 0$.
- 2. Montrer que, dans ce cas, on a $\operatorname{Im}(p+q) = \operatorname{Im}(p) \oplus \operatorname{Im}(q)$ et $\ker(p+q) = \ker p \cap \ker q$.

Exercice 11 - Sous-espace stable et projecteur - L1/Math Sup - **

Soit E un \mathbb{K} -espace vectoriel, et soit $u \in \mathcal{L}(E)$. On dit qu'un sous-espace vectoriel F de E est stable par u si $u(x) \in F$ pour tout $x \in F$. Soit p un projecteur de E. Démontrer que u commute avec p si et seulement si Im(p) et ker(p) sont stables par u.

Exercice 12 - Endomorphismes annulant un polynôme de degré 2 - $L1/Math\ Sup$ - +

Soit $f \in \mathcal{L}(E)$ et soient α, β deux réels distincts.

1. Démontrer que $E = \text{Im}(f - \alpha I d_E) + \text{Im}(f - \beta I d_E)$.

On suppose de plus que

$$(f - \alpha I d_E) \circ (f - \beta I d_E) = 0.$$

- 2. Démontrer que f est inversible, et calculer f^{-1} .
- 3. Démontrer que $E = \ker(f \alpha I d_E) \oplus \ker(f \beta I d_E)$.

Exercices - Applications linéaires : études théoriques : énoncé

4. Exprimer en fonction de f le projecteur p sur $\ker(f-\alpha Id_E)$ parallèlement à $\ker(f-\beta Id_E)$.

Exercice 13 - Base de projecteurs - $L2/Math\ Sp\acute{e}$ - **

Soit E un espace vectoriel de dimension n. On souhaite démontrer qu'il existe une base de $\mathcal{L}(E)$ constituée de projecteurs. On fixe une base \mathcal{B} de E. On note $E_{i,j}$ les matrices élémentaires de $\mathcal{M}_n(\mathbb{R})$.

- 1. À quelle condition une matrice $M \in \mathcal{M}_n(\mathbb{R})$ est-elle la matrice dans la base \mathcal{B} d'un projecteur de E.
- 2. En déduire que pour tout $i, j \in \{1, ... n\}$ avec $i \neq j$, les matrices $E_{i,i}$ et $E_{i,i} + E_{i,j}$ sont des matrices de projecteurs.
- 3. Démontrer la propriété annoncée.