

Outline

- The need for cryptography
- Ciphers classification

Cryptography

- The process of disguising a message in such a way as to hide its substance is called *encryption*
 - a message is called *plaintext*
 - the encrypted message is called ciphertext
 - The algorithm used is called cypher
 - the process of turning ciphertext back into plaintext is called decryption
- The art and science of keeping messages secure is called cryptography
 - cryptanalysis is the art and science of breaking ciphertext

Auguste Kerckhoffs (1883)

A cryptosystem should be secure even if everything about the system, except the key, is public knowledge

The Beginning

- One of the first recorded uses of secret writing occurred in 1900 BC
 - An inscription carved into the rock of the main chamber of the tomb of an Egyptian nobleman uses some unusual symbols in place of standard hieroglyphics
 - Its purpose was (perhaps) to impress the reader by adding dignity and authority to the message

Nowadays

- We want to protect information
- Ciphers classification

Cipher Classification

Substitution Cipher

Caesar cipher 100 BC

German Enigma
WWII

Substitution Cipher

- Each character in the plaintext is substituted for another character in the ciphertext
 - The Caesar Cipher replaces each plaintext character by the character 3 positions to the right (key = 3)

Caeser Cipher

the word privacy does not appear in the united states constitution wkh zrug sulydfb grhv qrw dsshdu lq wkh xqlwhg vwdwhv frqvwlwxwlrq

NOTE: the shift could be any value from 1 to 25

How would you break the Caesar cipher?

Vigenere Cipher

- Caeser cipher is a monoalphabetic cipher
- Vigenere cipher is an example of a polyalphabetic cipher where the substitution pattern varies
 - a plaintext "e" may be replaced by a ciphertext "p" one time and a ciphertext "w" another
 - the Vigenere cipher does this using a table
 - Blaise de Vigenère

Traicté des Chiffres ou Secrètes Manières d'Escrire (1586)

Vigenere Table

keys chars on the top of the table

plaintext chars on the side

```
abcdefghijklmnopqrstuvwxyz
         jklmnopgr
         klmnopqr
        klmnopqrs
       klmnopqrst
     klmnopqrstuvwxyza
         uvwxyzabcd
        uvwxyzabcde
        vwxyzabcde
      uvwxyzabcdef
      vwxyzabcdef
     vwxyzabcdefqhi
     wxyzabcdef
                q
     xyzabcdefqhi
    xyzabcdefghi
     zabcdefghi
          ghi
         ghi
      fqhijklmnopqrst
```

Vigenere Operation

A keyword is selected and it is repeatedly written above the plaintext bcdefghij **EXAMPLE:** using the keyword "hold" cdefghijk defghijkl efghijk 1 m fghijklmn ghijklm no **KEY** hij k 1 m n o p ijk 1 m n o p q j k l m n o p q r klmnopqrs l m n o p q r s t m n o p q r s t u plaintext nopqrstuv → ciphertext

Breaking Vigenere

- For more than 300 years cryptanalysts worked on the problem of breaking a polyalphabetic cipher (like the V-cipher)
- In 1863, a Polish Infantry officer, Friedrich W. Kasiski, published a short book (95 pages) which changed the nature of cryptography
 - He had found a simple solution to the polyalphabetic ciphers
 - He died in 1881 without realizing that he had started a revolution in cryptography

Cipher Classification

Transposition Ciphers

- Like jigsaw puzzles in that all the pieces are present but are merely disarranged
 - o rather than substitute letters, rearrange letters in the text
- Most transpositions involve a geometric figure (square, rectangle, . . .)
 - the letters are inscribed in the figure upon some agreed direction
 - the letters are then transcribed or rewritten according to another direction to form the ciphertext

Rail-Fence Cipher

Plaintext: this is a test

Ciphertext: tiehsstsiat

Key: (lines=3, columns=11)

Inscribe by a zigzag pattern

extract by rows

Other Figures

Use a triangle

Plaintext: You must do that

Ciphertext: tuhosayuttmdnoow

Key: (lines=4, columns=7)

Inscribe by rows

Column Transposition Ciphers

- Write the plaintext into a matrix by rows, then generate the ciphertext by selecting the columns in a given order
 - Plaintext: encryption algorithms

Cryptanalysis: Breaking Transpositions

- We will look at the process of breaking a keyed columnar transposition with completely filled rectangles
- Given the following ciphertext, what is the first thing you must determine?

NETEFLTDSRTSSTFMDCETDRHXSWHOHOEEADUOUUFIRRRRS NEROTCFIEMEDSHARTCPJAOEGEWNLHOEPMWAWERUVAAINA TSDDSOEOACEHNTLHFLAURAEENOTOTSSOSYSTNNCGEMETT YDYRRNEOOERESTHINR

Tasks

- There are three tasks involved in breaking a column transposition cipher:
 - Find possible rectangle sizes
 - in a completely filled transposition, the number of characters is the product of the number of rows and the number of columns
 - so, factor the number of characters to determine possible row and column sizes
 - 2. Select the correct rectangle
 - Find the column order

Example

- First, factor the message length of the example ciphertext
 - o our message has 153 letters and 153 has 3, 9, 17, and 51 as factors
 - possible rectangle sizes (columns by row):

$$3 \times 51$$
 51×3 9×17 17×9

 9 x 17 and 17 x 9 are the most probable because the other two have poor distributions of rows vs columns

Which Rectangle?

- Since the factors only supply possible column sizes test each possibility by doing a vowel count
 - any line of plaintext should contain about 40% vowels
 - So, count the vowels in each row of each possible rectangle
 - the one with the best match to 40% is the best choice for the actual rectangle

Rectangle 1

■ The 9 x 17 rectangle - 3.6 vowels per row expected (9 x 0.4)

1	2	3	4	5	6	7	8	9	vowels dif	ference
N	С	U	F	G	A	N	S	E	2	1.6
E	E	0	I	E	A	Τ	S	Y	7	3.4
T	Т	U	E	M	I	L	0	R	4	. 4
E	D	U	M	N	N	Н	S	R	2	1.6
F	R	F	E	L	A	F	Y	N	3	. 6
L	Н	I	D	Н	Τ	L	S	E	2	1.6
T	Χ	R	S	0	S	A	T	0	3	. 6
D	S	R	Н	E	D	U	N	0	3	. 6
S	M	R	A	P	D	R	N	E	2	1.6
R	Н	R	R	M	S	A	С	R	1	2.6
T	0	S	Т	M	0	E	G	E	4	. 4
S	Н	N	С	A	E	E	E	S	4	. 4
S	0	E	P	M	0	N	M	T	3	. 6
T	E	R	J	E	A	0	E	Н	5	1.4
F	E	0	A	R	С	T	Τ	I	4	. 4
M	A	T	0	U	E	0	Τ	N	5	1.4
D	D	С	Ε	V	Н	Т	Y	R	2	1.6

Total Difference 20.6

Rectangle 2

The second possible rectangle is 17 x 9 (expected per row vowel count = 6.8)

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	Vowels	Difference
N	R	E	0	U	N	M	P	L	E	Т	С	A	0	N	Y	Ε	8	1.2
E	Τ	Т	Н	U	E	Ε	J	Н	R	S	\mathbf{E}	U	Τ	N	D	R	6	. 8
T	S	D	0	F	R	D	A	0	U	D	Н	R	S	С	Y	Ε	6	. 8
E	S	R	E	I	0	S	0	E	V	D	N	A	S	G	R	S	7	. 2
F	T	Н	E	R	Т	Н	E	P	A	S	T	E	0	E	R	T	6	. 8
L	F	X	A	R	С	A	G	M	A	0	L	E	S	M	N	Н	5	1.8
T	M	S	D	R	F	R	E	M	I	E	Н	N	Y	E	E	I	7	. 2
D	D	M	U	R	I	T	M	A	N	0	F	0	S	Т	0	N	6	. 8
S	С	Н	0	S	E	С	N	M	A	A	L	Т	Т	Т	0	R	5	1.8

Total Difference = 8.4

Find the Column Order: Letter Affinity

- Once the rectangle size is determined, the column order must be discovered
 - Advantage is taken of all the characteristics of the plaintext language
- First, in all languages there are certain letters usually of medium or low frequency which combine with other letters to form diagrams of high frequency
 - H (medium frequency) combines with T to form TH (highest frequency)
 - H combines with C (medium frequency) to form CH
 - V (low frequency) combines with E to form VE (medium frequency in military text)

Other Heuristics

- When there is an H, attempts should be made to combine it with a T or a C
- AV should be combined first with an E
- AK should be combined first with a C

Pilot Letters

- Second, there is usually in every language at least one letter which can be followed by only certain other letters forming an obligatory sequence or invariable digraph
 - Q is always followed by U
 - J can only be followed by a vowel
 - X can be preceded only by a vowel and, except at the end of a word, X can only be succeeded by a vowel or C, H, P, T
- Letters such as these with limited affinity are called pilot letters

Anagramming

 Breaking a transposition cipher is a process of anagramming by selecting a pilot letter and trying to form digrams with the other letters in its row

for example, select the J in column 8 and match it with . . .

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
N	R	E	0	U	N	M	P	L	E	T	С	A	0	N	Y	Ε
E	${ m T}$	Τ	Н	U	E	E	J	Н	R	S	E	U	Т	N	D	R
T	S	D	0	F	R	D	A	0	U	D	Н	R	S	С	Y	E
E	S	R	Ε	I	0	S	0	E	V	D	N	A	S	G	R	S
F	T	Н	Ε	R	Τ	Н	E	Р	A	S	T	E	0	E	R	Т
L	F	X	A	R	С	A	G	M	A	0	L	E	S	M	N	Н
T	M	S	D	R	F	R	E	M	I	E	Н	N	Y	E	E	I
D	D	M	U	R	I	T	\overline{W}	A	N	0	F	0	S	T	0	N
S	С	Н	0	S	Ε	С	N	M	A	A	L	Τ	Τ	Τ	0	R

Centiban Weights

- The US government studied a set of 5,000 digraphs and produced a table of what are called centiban weights
- Higher values indicate that the character occurs more often

Centiban Table

Second Letter

г																											$\overline{}$
		A	В	С	D	Ε	F	G	Н	I	J	K	L	M	N	0	P	Q	R	S	T	U	V	M	X	Y	Z
	Α	33	45	61	73	13	38	45	25	64	13	25	76	61	89	25	58	00	82	80	83	59	48	33	00	58	00
.	В	38	00	00	00	66	00	00	00	25	13	00	45	13	00	38	00	00	25	13	13	25	00	00	00	48	00
	С	67	00	33	13	76	13	00	61	48	00	38	42	13	13	80	00	00	38	13	61	38	00	13	00	13	00
	D	76	38	38	51	77	51	25	25	73	13	00	33	42	38	63	42	25	58	59	62	42	33	38	00	13	00
	Ε	78	38	76	88	81	66	38	48	73	13	00	74	61	99	58	67	58	94	86	79	33	67	48	48	38	13
	F	42	00	25	13	55	56	13	00	80	00	00	25	13	00	80	13	00	53	33	56	33	00	13	00	13	00
	G	48	00	25	13	61	25	13	67	42	13	00	25	13	33	45	25	00	42	33	38	25	00	13	00	00	00
	Н	67	13	33	25	67	42	00	00	77	00	00	13	25	33	67	13	13	64	38	74	51	00	13	00	13	00
	I	51	25	69	45	59	55	67	00	00	00	25	70	53	92	80	48	00	73	78	73	00	72	00	62	00	25
	J	18	00	00	00	25	00	00	00	00	00	00	00	00	00	25	00	00	00	00	00	25	00	00	00	00	00
	K	13	00	13	00	45	00	00	00	25	00	00	13	00	13	00	00	00	00	13	00	00	00	00	00	00	00
	L	74	33	33	53	79	33	13	13	67	00	00	73	25	13	59	33	00	25	45	51	25	25	25	00	55	00
	M	78	45	33	13	72	13	00	13	53	00	00	00	59	00	55	51	00	25	38	25	25	00	00	00	25	00
.	N	72	25	67	85	87	53	73	38	75	13	25	42	42	51	66	33	13	38	71	93	48	33	33	00	42	00
	0	48	38	51	58	33	72	25	33	42	13	25	67	72	92	45	72	00	89	61	67	79	48	51	13	25	00
	Р	61	13	13	13	70	25	00	33	45	00	00	59	38	13	64	56	00	66	45	51	33	13	13	00	13	00
	Q	00	00	00	00	00	00	00	00	00	00	00	00	13	00	00	00	00	13	00	00	62	00	00	00	00	00
	R	80	25	53	64	96	45	48	33	75	13	13	42	53	48	74	59	00	56	75	81	42	42	38	00	53	00
	S	71	33	59	42	84	58	25	72	77	00	13	25	33	38	62	55	00	42	67	88	56	13	38	00	13	00
	Т	74	33	45	45	91	48	13	92	82	00	00	42	45	48	84	25	13	64	67	67	42	00	78	00	80	13
	U	42	33	33	33	56	13	51	00	42	00	00	45	42	68	13	25	00	75	58	58	00	13	00	00	00	00
	V	45	00	00	00	87	00	00	00	58	00	00	00	00	00	13	00	00	00	00	13	00	00	00	00	00	00
	M	58	00	00	00	69	00	00	38	59	00	00	13	00	25	67	00	00	13	13	00	00	00	00	00	13	00
	Χ	25	00	25	13	13	13	00	13	25	00	00	00	00	13	13	25	00	13	13	48	00	00	00	00	00	00
	Y	45	25	38	38	53	56	13	13	33	00	00	25	25	45	55	33	00	38	56	62	13	00	13	00	00	00
	Z	13	00	00	00	25	00	00	00	13	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00

Possible Pairings

 Try both JU pairings in the example and rank each digram by the centiban numbers

8	5	rank	8	3	13	rank
P	U	33	Ι)	A	61
J	U	25		J	U	25
A	F	38	Z	7	R	82
0	I	42	()	A	48
Ε	R	94	Ε	S	E	81
G	R	42	(ק כ	E	61
Ε	R	94	Ε	S	N	99
M	N	25	∇	V	0	67
N	S	71	1	1	${ m T}$	93
		464				617

Result: pair columns 8 and 13

Form Trigrams

 The digram JU should be followed by a consonant, preferably N or S columns 15 and 11 are candidates

8	13	15	rank	8	13	11	rank
P	A	N	89	Р	A	Т	83
J	U	N	68	J	U	S	58
A	R	С	53	A	R	D	64
0	A	G	45	0	A	D	73
Ε	E	E	81	Ε	E	S	86
G	E	M	61	G	E	0	58
E	N	E	87	Ε	N	E	87
M	0	${\mathbb T}$	67	M	0	0	45
N	Τ	${\mathbb T}$	_67	N	T	A	74
			618				628

Look for Words

- Continue this process looking for new digraphs and for possible words
- For example, are there any possible words in this text?

Solution

3	6	17	7	16	8	13	11	2	14	9	10	1	12	4	5	15
E	N	E	M	Y	Р	A	Т	R	0	L	E	N	С	0	U	N
Τ	E	R	E	D	J	U	S	T	Τ	Н	R	E	E	Н	U	N
D	R	E	D	Y	A	R	D	S	S	0	U	Τ	Н	0	F	С
R	0	S	S	R	0	A	D	S	S	E	V	E	N	E	I	G
Н	Τ	T	Н	R	E	E	S	T	0	P	A	F	Τ	E	R	E
Χ	С	Н	A	N	G	E	0	F	S	M	A	L	L	A	R	M
S	F	I	R	E	E	N	E	M	Y	M	I	Τ	Н	D	R	E
M	I	N	Τ	0	M	0	0	D	S	A	N	D	F	U	R	T
Н	E	R	С	0	N	T	A	С	Τ	M	A	S	L	0	S	Τ

Cipher Classification

Stream Ciphers

- Computer-based approach to cipher systems
 - data in computer is stored, processed, and transmitted in binary form (as 0's and 1's)
 - Letters are represented as binary bits (ASCII code)
- Encryption done at bit level
 - Execute at hight speed (higher than block ciphers)
 - Can have security vulnerabilities
- Commonly used in hardware applications
 - Pay-per-view TV encryption
 - Mobile phone conversation encryption

Bit Level Ciphers

- Using computers, ciphers are implemented at the bit level (ex. RC4)
 - o that is, we can now substitute or transpose 0's and 1's
- For example, an A is **ASCII** is 0100 0001, so if I randomly change some 0's to 1's and some 1's to 0's the result might be 0010 1011 which is a "+"
- The problem is, how can I randomly change bits and yet still be able to recover the plaintext?
 - to do this we will use a binary function called the exclusive-OR (XOR)

XOR Function

- It is a two input, one output binary function where the output is 1 if the inputs are different and the output is 0 if the inputs are the same
 - this can be expressed in a "truth table" which lists all the inputs and outputs

A will be the plaintext and B the key

А	В	F
0	0	0
0	1	1
1	0	1
1	1	0

Bit Stream

The pattern of inputs and outputs may look like:

Plaintext bits encrypted once at a time

Problem: How do we recover the plaintext from knowledge of the ciphertext and key?

Simple Stream Cipher

- Set up a known pattern (sequence) of 1's and 0's to use as a key
- Apply the key to the plaintext bit stream using an XOR function
- Recover the plaintext using the same key pattern on the ciphertext bit stream

How to Generate a Key?

- A short sequence of key bits would be easy to remember but not very secure
- A long sequence of key bits would be secure but hard to remember
- PROBLEM: How can we generate a long random-appearing sequence of 0's and 1's yet easy to reproduce by legitimate users?
- ANSWER: Construct a Linear Feedback Shift Register LFSR

Shift Register

- A shift register is a hardware device which:
 - saves bits
 - shifts bits
- For example, a 4-bit shift register looks like:

Add Feedback

Take some of the bits in the shift register, combine them with an XOR, and feedback the result as the input

Breaking a Stream Cipher

- One way is using an insertion attack
 - Intercept the ciphertext
 - Insert a known bit somewhere in the plaintext and get the modified plaintext encrypted with the same keystream
 - Knowledge of the single bit will compromise the plaintext

Insertion Attack

Assume the following ciphertext is intercepted:

```
p1 p2 p3 p4 p5 . . . All we know is the ciphertext c1 c2 c3 c4 c5 . . .
```

Now insert a bit p after p1 and observe the new ciphertext:

```
p1 p p2 p3 p4 p5 . . . k1 k2 k3 k4 k5 k6 . . . c1 c d3 d4 d5 d6 . . .
```

Using the two ciphers and the one bit of plaintext:

- 1. Find k2 using c and p
- 2. Find p2 using c2 and k2
- 3. Find k3 using p2 and d3
- 4. Find p3 using c3 and k3
- 5. Etc.

Stream Ciphers - Conclusions

- A binary keystream is mixed with the binary plaintext stream to produce a binary ciphertext stream
 - XOR function is used
 - The binary keystream can be generated by a LFSR
 - The user only has to remember how to get the key generator started

Cipher Classification

Block Cipher

- Today's most widely used ciphers
 - Define the size of a block of bits
 - Encipher the complete block at one time
 - DES, 3DES, AES, etc.
- Suitable where encryption is done in software

Cipher Classification

Public Key Ciphers

- Most are based on some intractable problem
 - Factoring large numbers
 - Finding the logarithm of a number (discrete logarithm problem)

RSA

- Invented by Rivest, Shamir, and Adleman, in 1977
- It is based on the idea of factorizing integers on their prime factors
- Used in most web browsers in the SSL protocol

The **RSA** Algorithm

- 1. Bob chooses **secrete** primes p and q and computes n = pq
- 2. Bob chooses e s.t. GCD(e, (p-1)(q-1)) = 1
- 3. Bob computes d s.t ed mod ((p-1)(q-1)) = 1
- 4. Bob makes n and e public
- 5. Alice encrypts m as $c = m^e \mod n$ and sends c to Bob
- 6. Bob decrypts by computing $m = c^d \mod n$

Note: (e,n) is the public key of Bob and (d,n) is his private key

RSA

- Encrypt: $c = m^e \mod n$
- Decrypt: $m = c^d \mod n$
- The value of d that works is found by

ed mod
$$\varphi(n) = 1$$

- $\varphi(n)$ is the **Euler function** number of integers in $\{1, 2, ..., n\}$ which are relatively prime to n
 - If n is prime then φ(n) = n-1
 - o If p and q are relatively prime then φ(pq) = φ(p) φ(q)

RSA

- If small numbers are chosen for p and q then the private key d is easy to guess
 - 1. Try to factor n to guess p and q
 - 2. Solve ed mod((p-1)(q-1)) = 1 to find d
- Hence, p and q should be very large prime numbers
- Security due to the cost of factoring large numbers (hard)
- Performance is a serious issue
 - Long integer arithmetic is needed

Key Agreement

- Since public key algorithms are slow, they are often used to securely transmit keys for faster block ciphers
- However, there are protocols other than public key systems for agreeing on a common block key.
 - One of the key exchange methods developed is called the *Diffie-Hellman Key Agreement* system

Diffie-Hellman Key Agreement (1976)

- Bob and Alice want to agree on a secure key without meeting in person so they decide to use the Diffie-Hellman protocol
 - First they agree on two numbers:
 - p a large prime number
 - g a random number less than p
 - Both p and g are public so they can select them over an insecure channel
 - Alice selects a secret random number, a and sends Bob the value g^a mod p
 - At the same time Bob selects a secret random number, b and sends the value g^b mod p to Alice

Diffie-Hellman Key Exchange

- Alice uses her secret number and the value Bob sent her to calculate:
 (g^b mod p)^a mod p = k
- Bob uses his secret number and the value Alice sent him to calculate:
 (g^a mod p)^b mod p = k
- They both end up with the same number, k
 - This is their common key

Observations

- Neither Bob nor Alice have any idea what the final key will be
- Neither Bob nor Alice shares their secret number with each other
- Eve can have access to g, p, and the values g^a mod p and g^b mod p
 - The only way she can find k is to solve (for a and b):
 - g^a mod p
 - gb mod p
 - This is equivalent to the discrete logarithm problem:
 - Hard problem
 - Given f: x → g^x mod p
 find x from the value g^x mod p
 f is a one-way function

Example

- If Alice and Bob agree on the values: p = 113 g = 23
 - then Alice selects the secret value 4 and sends Bob the value

$$23^4 \mod 113 = 53$$

While Bob selects the secret value 11 and sends Alice the value

$$23^{11} \mod 113 = 27$$

They both calculate the common key:

Bob Alice
$$53^{11} \mod 113 = 2$$
 $27^4 \mod 113 = 2$