Rolling House Sales Analysis - Manhattan, NY Team: Sam Coyne / Ariel Francisco / Rob Rivens SMU Data Science / Section 402

Assignment:

Using the Rolling Data Sales website, examine the Manhattan, NY, housing sales data set, obtained from - http://www1.nyc.gov/site/finance/taxes/property-rolling-sales-data.page

Goal: Create an RStudio project for the analysis of this data set.

Our README file is posted in the project root directory; explains the premise of our assignment

Our Data Directory contains files we used to load in and clean up the data:

- Includes the original Excel file
- Includes the .csv file we referenced in RStudio
- Data Cleasing Techniques:
 - Used function (T/F) to count 0's True = \$0 sale price
 - manhattan\$SALE.PRICE.N <as.numeric(gsub("[^[:digit:]]","", manhattan\$SALE.PRICE))
 - count(is.na(manhattan\$SALE.PRICE.N))
 - Changed headers to lower case
 - names(manhattan) <- tolower(names(manhattan))
 - Removed leading digits
 - manhattan\$gross.sqft <as.numeric(gsub("[^[:digit:]]","",
 manhattan\$gross.square.feet))</pre>

 - Changed this from character to numeric
 - manhattan\$year.built <as.numeric(as.character(manhattan\$year.built)

- Performed more exploratory data analysis with histogram
 - attach(manhattan)
 - hist(sale.price.n)
 - detach(manhattan)

Histogram of sale.price.

- Kept only actual sales
 - manhattan.sale <- manhattan[manhattan\$sale.price.n! =0,]
 - plot sales >0 on raw data and on log scale-

plot(manhattan.sale\$gross.sqft,manhattan.sale\$sale.price.n)

plot(log10(manhattan.sale\$gross.sqft),log10(manhatt an.sale\$sale.price.n))

- Focused on 1-, 2-, and 3-family homes #grepl returns TRUE if string contains "FAMILY"
- m a n h a t t a n . h o m e s < manhattan.sale[which(grepl("FAMILY",manhattan.sale\$buildi ng.class.category)),]
- plot "family homes"

plot(log10(manhattan.homes\$gross.sqft),log10 (manhattan.homes\$sale.price.n))

#summary of "family homes"

summary(manhattan.homes[which(manhattan.homes \$sale.price.n<100000),])

- #remove outliers that seem like they weren't actual sales
 - manhattan.homes\$outliers <-(log10(manhattan.homes\$sale.price.n) <=5)
- m a n h a t t a n . h o m e s < manhattan.homes[which(manhattan.homes\$outliers==0),]

plot(log10(manhattan.homes\$gross.sqft),log10(manhattan.homes\$sale.price.n))

SUMMARY

- The data doesn't reveal much on the natural scale, but the log10 scale reveals a linear trend for gross sq. ft vs. sales price
- The correlation is positive with a few deviations from the expected pattern, but a positive correlation seems to exist.
- HISTOGRAM OF SALE PRICE PER SQ FACETIME:
 - x <-manhattan\$SALE.PRICE/ manhattan\$GROSS.SQUARE.FEET
 - hist(x,main="Manhattan Avg Family Home Sales Price per Sq Ft",xlab = "Sq Ft")

Manhattan Avg Family Home Sales Price per Sq Ft

-Analysis directory contains files for exploratory data analysis on to	the clean