

2 identifying a change in position of an input device, the change corresponding to movement of
3 the input device from an original position to any one of a plurality of new positions
4 along an arc length that defines a path of motion for the input device;
5 determining an input value from the change in position; and
6 processing the input value.

1 2. The method of claim 1, wherein identifying a change in position of an
2 input device corresponds to identifying a new position that is at least 180
3 degrees apart from the original position along the arc length.

1 3. The method of claim 1, wherein identifying a change in position of an
2 input device corresponds to identifying a new position that is up to 360 degrees
3 apart from the original position along the arc length.

1 4. The method of claim 1, wherein identifying a change of an input device
2 corresponds to identifying a change of a mechanical bezel rotatably to a
3 segment of a housing of the electronic device.

1 5. The method of claim 1, wherein identifying a change of an input device
2 corresponds to identifying a change of a virtual bezel appearing on a display of
3 the electronic device.

1 6. The method of claim 1, wherein determining an input value from the
2 change in position includes detecting an analog value corresponding to the
3 change in position.

CONFIDENTIAL

1 7. The method of claim 6, further comprising converting the analog value
2 to a digital value for a processor of the electronic device.

1 8. The method of claim 1, wherein processing the input value includes
2 scrolling a plurality of entries that are designated to appear on the display, so
3 that an entry designated to appear on the display when the input device is in the
4 new position is ordered to appear in a sequence after a series of entries ordered
5 to appear on the display after an entry corresponding to the input device being
6 in the original position.

1 9. The method of claim 8, wherein scrolling a plurality of entries includes
2 skipping entries designated to appear after the original entry so as to display the
3 entry designated to appear on the display when the input device is in the new
4 position.

1 10. The method of claim 1, wherein processing the input value includes
2 controlling an external device using the input value.

1 11. The method of claim 1, wherein processing the input value includes
2 selecting an application for a user based on the input value.

1 12. An electronic device comprising:
2 a bezel feature rotatable amongst a plurality of positions located on an arc
3 length that defines a path of motion for the bezel feature, the arc length

4 of the bezel feature extending 360 degrees, and the plurality of positions
5 being distributed along the entire arc length of the path of motion;

6 an interface; and

7 a processor coupled to the bezel feature via the interface to detect any one of the
8 plurality of positions of the bezel feature, and to perform one or more
9 operations based on the detected position of the bezel feature.

1 13. The electronic device of claim 12, further comprising a display, and
2 wherein the bezel feature is a housing segment that forms an exterior portion of
3 the electronic device so as to at least partially circumvent the display on the
4 exterior portion.

1 14. The electronic device of claim 12, further comprising a housing for the
2 electronic device, and wherein the bezel feature is a display assembly that is
3 rotatably coupled to the housing.

1 15. The electronic device of claim 12, wherein the bezel feature is actuatable
2 to cause an input to be entered into the electronic device, the input
3 corresponding to a change in an arc length of the bezel feature.

1 16. The electronic device of claim 12, further comprising a housing for the
2 electronic device, and wherein the bezel feature is partially embedded with the
3 housing of the electronic device.

PROOF-IT FINGERPRINT

1 17. The electronic device of claim 12, wherein the bezel feature includes a
2 lid that is rotatable about a first axis, and wherein the lid is moveable about an
3 end so as to lift up and away from the electronic axis along a direction of the
4 first axis.

1 18. The electronic device of claim 17, wherein the lid is opaque.

1 19. The electronic device of claim 12, wherein the electronic device further
2 includes a display assembly, the display assembly including a display material
3 combined with a touch-sensitive material, and wherein the bezel feature is
4 included with the touch-sensitive material.

1 20. The electronic device of claim 12, wherein a diameter length of the bezel feature is
2 greater than a length of the electronic device.

1 21. The electronic device of claim 12, wherein a diameter length of the bezel feature is at
2 least 50% of a length of the electronic device.

1 22. The electronic device of claim 12, wherein a diameter length of the bezel feature is at
2 least 90% of a length of the electronic device.

1 23. An electronic device comprising:
2 means for identifying a change in position of an input device, the change corresponding to
3 movement of the input device from an original position to anyone of a plurality of
4 new positions along an arc length that defines a range of freedom for the input device;
5 means for determining an input value from the change in position; and

6 means for processing the input value.

卷之三