Table of Contents

- 1 Goal
- 2 importing the libraries
- 3 Plot settings
- 4 Reading the data
- 5 Exploratory data analysis (EDA)
 - 5.1 Dashboard with sweetviz
 - 5.2 Pairplot of the all the features
 - 5.3 Pearson correlation and feature selection
 - 5.4 Class distribution in Diabetes dataset
- 6 Preparing data for machine learning
- 7 Machine learning Models
 - 7.1 k-Nearest Neighbors (KNN)
 - 7.1.1 Confusion matrix
 - 7.1.2 K-fold cross validation
 - 7.2 Logistic Regression
 - 7.2.1 Confusion matrix
 - 7.2.2 K-fold cross validation
 - 7.3 Decision Tree
 - 7.3.1 Confusion matrix
 - 7.3.2 K-fold cross validation
 - 7.3.3 Feature importance in Decision trees
 - 7.4 Random Forest
 - 7.4.1 Feature importance in Random Forest
 - 7.4.2 Confusion matrix
 - 7.4.3 K-fold cross-validation
 - 7.5 Gradient Boosting
 - 7.5.1 Feature importance in Gradient Boosting
 - 7.5.2 Confusion matrix
 - 7.5.3 K-fold cross-validation
 - 7.6 Support Vector Machine (SVM)
 - 7.6.1 Confusion matrix
 - 7.6.2 K-fold cross-validation
 - 7.7 Neural Networks
 - 7.7.1 Confusion matrix
 - 7.7.2 K-fold cross-validation
 - 7.8 XGBoost
 - 7.8.1 Confusion matrix
 - 7.8.2 K-fold cross-validation
 - 7.8.3 Feature importance in XGBoost
- 8 Model comparision
- 9 Conclusion
- 10 In Future

Goal

Understanding and predicting of diabetes based of medical conditions.

importing the libraries

In [239]:

```
import pandas as pd
import numpy as np
import seaborn as sns
import sweetviz as sv
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
```

```
from sklearn.linear_model import LogisticRegression
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.ensemble import GradientBoostingClassifier
from sklearn.neural_network import MLPClassifier
from sklearn.preprocessing import MinMaxScaler
from sklearn.preprocessing import StandardScaler
from xgboost import XGBClassifier
from sklearn.svm import SVC
from sklearn.model_selection import cross_val_score
from sklearn.metrics import accuracy_score, fl_score, precision_score, recall_score, confusion_matr
ix

%matplotlib inline
```

Plot settings

```
In [240]:

plt.rcParams['axes.labelsize'] = 20
plt.rcParams['xtick.labelsize'] = 15
plt.rcParams['ytick.labelsize'] = 15
plt.rcParams['legend.fontsize'] = 23
plt.rcParams['figure.titlesize'] = 26
plt.rcParams['xtick.major.size'] = 10
plt.rcParams['xtick.major.width'] = 1
plt.rcParams['ytick.major.width'] = 1
plt.rcParams['ytick.major.width'] = 1
plt.rcParams['ytick.minor.width'] = 1
plt.rcParams['ytick.minor.width'] = 1
plt.rcParams['ytick.minor.size'] = 5
plt.rcParams['ytick.minor.size'] = 5
plt.rcParams['xtick.minor.size'] = 5
plt.rcParams['figure.figsize'] = 7,4
```

Reading the data

sns.set_style('ticks')

```
In [241]:
```

```
csv_file='diabetes.csv'
df = pd.read_csv(csv_file)
```

In [242]:

```
df.iloc[:,:-1].describe().style.background_gradient(axis=0,cmap='Accent')
```

Out[242]:

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigreeFunction	Age
count	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000
mean	3.845052	120.894531	69.105469	20.536458	79.799479	31.992578	0.471876	33.240885
std	3.369578	31.972618	19.355807	15.952218	115.244002	7.884160	0.331329	11.760232
min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.078000	21.000000
25%	1.000000	99.000000	62.000000	0.000000	0.000000	27.300000	0.243750	24.000000
50%	3.000000	117.000000	72.000000	23.000000	30.500000	32.000000	0.372500	29.000000
75%	6.000000	140.250000	80.000000	32.000000	127.250000	36.600000	0.626250	41.000000
max	17.000000	199.000000	122.000000	99.000000	846.000000	67.100000	2.420000	81.000000

```
In [243]:
```

```
df.head(10).style.bar(axis=0)
```

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigreeFunction	Age	Outcome
0	6	148	72	35	0	33.600000	0.627000	50	1
1	1	85	66	29	0	26.600000	0.351000	31	0
2	8	183	64	0	0	23.300000	0.672000	32	1
3	1	89	66	23	94	28.100000	0.167000	21	0
4	0	137	40	35	168	43.100000	2.288000	33	1
5	5	116	74	0	0	25.600000	0.201000	30	0
6	3	78	50	32	88	31.000000	0.248000	26	1
7	10	115	0	0	0	35.300000	0.134000	29	0
8	2	197	70	45	543	30.500000	0.158000	53	1
9	8	125	96	0	0	0.000000	0.232000	54	1

Exploratory data analysis (EDA)

```
In [244]:
```

```
print("dimension of diabetes data: {}".format(df.shape))
dimension of diabetes data: (768, 9)
```

In [245]:

```
df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 768 entries, 0 to 767
Data columns (total 9 columns):

2000	columns (cocal s columns)	•				
#	Column	Non-Null Count	Dtype			
0	Pregnancies	768 non-null	int64			
1	Glucose	768 non-null	int64			
2	BloodPressure	768 non-null	int64			
3	SkinThickness	768 non-null	int64			
4	Insulin	768 non-null	int64			
5	BMI	768 non-null	float64			
6	DiabetesPedigreeFunction	768 non-null	float64			
7	Age	768 non-null	int64			
8	Outcome	768 non-null	int64			
<pre>dtypes: float64(2), int64(7)</pre>						

- Dataset is small and well labeled. There are no null values present.
- very suitable to supervised machine learning formulation.
- This is a binary classification problem, where we have 2 classes in the target (y) (i.e. df['Outcome']) and the medical conditions can be used as the feature (X).

Dashboard with sweetviz

memory usage: 54.1 KB

```
In [247]:
```

Pairplot of the all the features

```
In [248]:
```

```
sns.pairplot(df.iloc[:,:-1], diag_kind='hist')
```

Out[248]:

<seaborn.axisgrid.PairGrid at 0x132334b90>

Pearson correlation and feature selection

```
In [250]:
```

```
plt.figure(figsize=(10,7))
corr_mat = df.iloc[:,:-1].corr()
sns.heatmap(corr_mat, fmt='0.2f', annot=True, lw=2, cbar_kws={'label':'Pearson Correlation (r)'})
plt.xticks(size=15,rotation=90)
plt.yticks(size=15)
plt.tight_layout()
plt.savefig('Correlation.png',dpi=300);
```


• All the features hold very little correlation amongst each other. Only age and pregnancies shows a significant strong correlation. Therefore, keeping the all the features.

Class distribution in Diabetes dataset

```
In [293]:
```

```
plt.figure(figsize=(5,5))
sns.countplot(df['Outcome'],label='Count')
plt.xticks(size=15)
plt.yticks(size=15)
plt.ylabel('Outcome',size=15)
plt.xlabel('Count',size=15)
sns.despine(top=True)
plt.title('Class distribution',size=26, weight='bold')
plt.tight_layout()
plt.savefig('Class-distribution.png');
```

Class distribution

Preparing data for machine learning

```
In [186]:

X = df.iloc[:,:-1].values  ##features selection
y = df.iloc[:,-1].values  ## target selection

In [187]:

X_train, X_test, y_train, y_test = train_test_split(X,y, stratify=y, random_state=27)
```

• It is importannt to use stratify inside **train_test_split**. It keeps the same distribution of target same within train and testing datasets. if variable y is a binary categorical variable with values 0 and 1 and there are 25% of zeros and 75% of ones, stratify=y will make sure that random split has 40% of 0's and 60% of 1's

Machine learning Models

k-Nearest Neighbors (KNN)

```
In [188]:
```

```
training_accuracy = []
test_accuracy = []
training_f1 = []
test_f1 = []

neighbors_settings = range(2,20)

for n_neighbors in neighbors_settings:
    print(f'working on neighbors {n_neighbors}')
    knn = KNeighborsClassifier(n_neighbors=n_neighbors)
    knn.fit(X_train, y_train)

y_train_pred=knn.predict(X_train)
y_pred=knn.predict(X_test)

training_accuracy.append(accuracy_score(y_train,y_train_pred))
test_accuracy.append(fl_score(y_train,y_train_pred))
training_f1.append(fl_score(y_train,y_train_pred))
test_f1.append(fl_score(y_test, y_pred))
```

```
working on neighbors 2
working on neighbors 3
working on neighbors 4
working on neighbors 5
working on neighbors 6
working on neighbors 7
working on neighbors 8
working on neighbors 9
working on neighbors 10
working on neighbors 11
working on neighbors 12
working on neighbors 12
working on neighbors 13
```

```
working on neighbors 14
working on neighbors 15
working on neighbors 16
working on neighbors 17
working on neighbors 18
working on neighbors 18
```

In [189]:

```
fig = plt.figure(figsize=(14,10))
fig.subplots adjust(hspace=0.5, wspace=0.3)
fig.add_subplot(2,2,1)
plt.plot(neighbors_settings, training_accuracy, label='training accuracy')
plt.plot(neighbors_settings, test_accuracy, label='test accuracy')
plt.ylabel('Accuracy',size=20)
plt.xticks(size=15)
plt.yticks(size=15)
plt.xlabel('n_neighbors',size=20)
plt.title('Accuracy Score', size=20, weight='bold')
plt.legend([],frameon=False)
fig.add subplot(2,2,2)
plt.plot(neighbors_settings, training_f1)
plt.plot(neighbors_settings, test_f1)
plt.xticks(size=15)
plt.yticks(size=15)
plt.ylabel('F1 Score', size=20)
plt.xlabel('n_neighbors',size=20)
plt.title('F1-Score',size=20,weight='bold')
plt.legend(['Training','Testing'],frameon=False, bbox to anchor=(0.4,-0.2), ncol=2);
```


Accuracy score, F1-score suggest that n neighbors=19 is the optimum choice (by looking a testing accuracies).

In [190]:

```
knn = KNeighborsClassifier(n_neighbors=19).fit(X_train, y_train)
y_pred = knn.predict(X_test)

print('Accuracy of K-NN classifier on test set: {:.2f}'.format(knn.score(X_train, y_train)))
print('Accuracy of K-NN classifier on test set: {:.2f}'.format(accuracy_score(y_test, y_pred)))
print('F1-score of K-NN classifier on test set: {:.2f}'.format(f1_score(y_test, y_pred)))

Accuracy of K-NN classifier on test set: 0.79
```

Accuracy of K-NN classifier on test set: 0.71 F1-score of K-NN classifier on test set: 0.56

Confusion matrix

```
def normalized_confusion_matrix(y_test, conf_mat, model):
    _ , counts = np.unique(y_test,return_counts=True)
    conf_mat = conf_mat/counts
    plt.figure(figsize=(6,5))
    ax=sns.heatmap(conf_mat,fmt='.2f',annot=True,annot_kws={'size':20},lw=2, cbar=True, cbar_kws={'label':'% Class accuracy'})
    plt.title(f'Confusion Matrix ({model})',size=22)
    plt.xticks(size=20)
    plt.yticks(size=20)
    ax.figure.axes[-1].yaxis.label.set_size(20) ##colorbar label
    cax = plt.gcf().axes[-1] ##colorbar ticks
    cax.tick_params(labelsize=20) ## colorbar ticks
    plt.savefig(f'confusion-matrix-{model}.png',dpi=300)
```

In [192]:

وزعامتي ست

```
conf_mat = confusion_matrix(y_test,y_pred)
normalized_confusion_matrix(y_test,conf_mat, 'knn')
```


K-fold cross validation

```
In [193]:
```

```
k_fold_knn_accuracy = cross_val_score(knn, X, y, cv=10) ##10-fold cross validation
k_fold_knn_f1 = cross_val_score(knn, X, y, cv=10, scoring='f1_macro') ##10-fold cross validation
```

In [194]:

```
print(f'Average accuracy after 10 fold cross validation :{k_fold_knn_accuracy.mean().round(2)} +/-
{k_fold_knn_accuracy.std().round(2)}')
print(f'Average F1-score after 10 fold cross validation :{k_fold_knn_f1.mean().round(2)} +/- {k_fold_knn_f1.std().round(2)}')
```

Average accuracy after 10 fold cross validation :0.75 +/- 0.06 Average F1-score after 10 fold cross validation :0.71 +/- 0.07

Logistic Regression

In [195]:

```
plt.figure(figsize=(8,6))
Clist=[1,0.01,100]
for C in Clist:
    logreg = LogisticRegression(C=C,solver='newton-cg').fit(X_train, y_train) #keeping C=1 a
    y train pred = logreg.predict(X train)
    y_pred = logreg.predict(X_test)
    print('C: {} Training set accuracy: {:.3f}'.format(C,accuracy score(y train, y train pred)))
    print('C : {} Test set accuracy: {:.3f}'.format(C,accuracy_score(y_test, y_pred)))
    print('C: {} Training set F1-score: {:.3f}'.format(C,f1_score(y_train, y_train_pred)))
    print('C : {} Test set F1-score: {:.3f}'.format(C, f1_score(y_test, y_pred)))
    print('\n')
    diabetes features = [x for i,x in enumerate(df.columns) if i!=8]
    plt.plot(logreg.coef .T, marker='o', label=f"C={C}")
plt.xticks(range(df.shape[1]), diabetes_features, rotation=90)
plt.hlines(0, 0, df.shape[1])
plt.ylim(-5, 5)
plt.xticks(size=15)
plt.yticks(size=15)
plt.xlabel("Feature",size=20)
plt.ylabel("Coefficient magnitude",size=15)
plt.legend(frameon=False)
C: 1 Training set accuracy: 0.778
C: 1 Test set accuracy: 0.776
C: 1 Training set F1-score: 0.646
C: 1 Test set F1-score: 0.650
C: 0.01 Training set accuracy: 0.776
C : 0.01 Test set accuracy: 0.766
C: 0.01 Training set F1-score: 0.645
C: 0.01 Test set F1-score: 0.634
C : 100 Training set accuracy: 0.774
C: 100 Test set accuracy: 0.771
C: 100 Training set F1-score: 0.641
C : 100 Test set F1-score: 0.645
Out[195]:
```

<matplotlib.legend.Legend at 0x12e2ac850>

The default value of C=1 provides with 78% accuracy on training and 77% accuracy on test set.

Stronger regularization (C=0.001) pushes coefficients more and more toward zero. Inspecting the plot more closely suggests that feature DiabetesPedigreeFunction, for C=100, C=1 and C=0.001, the coefficient is positive. This indicates that high DiabetesPedigreeFunctio feature is related to a sample being diabetes, regardless which model we look at.

Confusion matrix

```
In [196]:
```

```
logreg = LogisticRegression(C=1,solver='newton-cg').fit(X_train,y_train)
y_pred=logreg.predict(X_test)
```

In [197]:

```
conf_mat = confusion_matrix(y_test,y_pred)
normalized_confusion_matrix(y_test,conf_mat,'Logistic Regression')
```

Confusion Matrix (Logistic Regression)

In [198]: k_fold_logreg_accuracy = cross_val_score(logreg, X, y, cv=10) ##10-fold cross validation k_fold_logreg_f1 = cross_val_score(logreg, X, y, cv=10, scoring='f1_macro') ##10-fold cross validat ion In [199]: print(f'Average accuracy after 10 fold cross validation :{k_fold_logreg_accuracy.mean().round(2)}+/- {k_fold_logreg_accuracy.std().round(2)}') print(f'Average F1-score after 10 fold cross validation :{k_fold_logreg_f1.mean().round(2)} +/- {k_fold_logreg_f1.std().round(2)}') Average accuracy after 10 fold cross validation :0.77 +/- 0.04 Average F1-score after 10 fold cross validation :0.74 +/- 0.04 Decision Tree In [200]: max_depth=range(1,20)

```
max_depth=range(1,20)
training_accuracy = []
test_accuracy = []
training_f1 = []
test_f1 = []

for depth in max_depth :
    tree = DecisionTreeClassifier(random_state=0, max_depth=depth, min_samples_leaf=1).fit(X_train, y_train)
    y_train_pred = tree.predict(X_train)
    y_pred = tree.predict(X_test)

    training_accuracy.append(accuracy_score(y_train,y_train_pred))
    test_accuracy.append(f1_score(y_train,y_train_pred))
    training_f1.append(f1_score(y_test, y_pred))
```

In [201]:

```
fig = plt.figure(figsize=(14,10))
fig.subplots_adjust(hspace=0.5, wspace=0.3)
fig.add subplot(2,2,1)
plt.plot(max_depth, training_accuracy, label='training accuracy')
plt.plot(max_depth, test_accuracy, label='test accuracy')
plt.ylabel('Accuracy',size=20)
plt.xlabel('Max depth',size=20)
plt.xticks(size=15)
plt.yticks(size=15)
plt.title('Accuracy Score', size=20, weight='bold')
plt.legend([],frameon=False)
fig.add subplot(2,2,2)
plt.plot(max_depth, training_f1)
plt.plot(max depth, test f1)
plt.ylabel('F1 Score', size=20)
plt.xlabel('Max depth', size=20)
plt.xticks(size=15)
plt.yticks(size=15)
plt.title('F1-Score',size=20,weight='bold')
plt.legend(['Training','Testing'],frameon=False, bbox_to_anchor=(0.4,-0.2), ncol=2);
```


The training accuracy on the after training set is 100%, while the test set accuracy is much worse. This means tree is overfitting and not generalizing well to new data. We set max depth=4, limiting the depth of the tree decreases overfitting. This leads to a lower accuracy on the training set, but an improvement on the test set.

```
In [202]:
```

```
tree = DecisionTreeClassifier(max depth=4, min samples leaf=1, random state=0).fit(X train, y train
y pred=tree.predict(X test)
print("Accuracy on test: {:.3f}".format(accuracy_score(y_pred, y_test)))
print("F1-score on test set: {:.3f}".format(f1_score(y_pred, y_test)))
Accuracy on test: 0.724
```

F1-score on test set: 0.624

Confusion matrix

In [203]:

```
conf_mat = confusion_matrix(y_test,y_pred)
normalized_confusion_matrix(y_test,conf_mat,'Decision Tree')
```


K-fold cross validation

In [204]:

```
k_fold_tree_f1 = cross_val_score(tree, X, y, cv=10, scoring='f1_macro') ##10-fold cross validation

In [205]:
```

```
print(f'Average accuracy after 10 fold cross validation :{k_fold_tree_accuracy.mean().round(2)} +/
    - {k_fold_tree_accuracy.std().round(2)}')
print(f'Average F1-score after 10 fold cross validation :{k_fold_tree_f1.mean().round(2)} +/- {k_fold_tree_f1.std().round(2)}')
```

```
Average accuracy after 10 fold cross validation :0.72 +/- 0.04 Average F1-score after 10 fold cross validation :0.69 +/- 0.05
```

Feature importance in Decision trees

Feature importance rates how important each feature is for the decision a tree makes. It is a number between 0 and 1

```
0 means "not used at all"
1 means "perfectly predicts the target"
```

In [252]:

```
def plot_feature_importances(model, figure):
    n_features = 8
    plt.figure(figsize=(10,6))
    plt.barh(range(n_features), model.feature_importances_, align='center')
    plt.yticks(np.arange(n_features), diabetes_features,size=15)
    plt.xticks(size=15)
    plt.xlabel('Feature importance',size=20,)
    #plt.ylabel('Feature',size=20)
    plt.ylim(-1, n_features)
    sns.despine(top=True)
    plt.title(f'{figure}',size=20)
    plt.tight_layout()
    plt.savefig(f'feature-image{figure}.png',dpi=300)
```


Feature Glucose is the most important feature.

Random Forest

In [253]:

```
rf = RandomForestClassifier(n_estimators=100, random_state=0).fit(X_train, y_train)
y_pred=rf.predict(X_test)
print("Accuracy on test: {:.3f}".format(accuracy_score(y_pred, y_test)))
print("F1-score on test set: {:.3f}".format(f1_score(y_pred, y_test)))
```

Accuracy on test: 0.740 F1-score on test set: 0.603

The default parameters of the random forest work well. This conclusion is derived after trying various values of max_depth and n estimators.

Feature importance in Random Forest

In [255]:

```
plot_feature_importances(rf, 'Random Forest')
```


Similarly to the single decision tree, the random forest also gives a lot of importance to the Glucose feature and it also chooses BMI to be the 2nd most informative features.

Confusion matrix

In [256]:

```
conf_mat = confusion_matrix(y_test,y_pred)
normalized_confusion_matrix(y_test,conf_mat,'Random Forest')
```

Confusion Matrix (Random Forest)


```
In [257]:
```

```
k_fold_rf_accuracy = cross_val_score(rf, X, y, cv=10) ##10-fold cross validation
k_fold_rf_f1 = cross_val_score(rf, X, y, cv=10, scoring='f1_macro') ##10-fold cross validation
```

In [258]:

```
print(f'Average accuracy after 10 fold cross validation :{k_fold_tree_accuracy.mean().round(2)} +/
    - {k_fold_tree_accuracy.std().round(2)}')
print(f'Average F1-score after 10 fold cross validation :{k_fold_tree_f1.mean().round(2)} +/- {k_fold_tree_f1.std().round(2)}')
```

Average accuracy after 10 fold cross validation :0.72 +/- 0.04 Average F1-score after 10 fold cross validation :0.69 +/- 0.05

Gradient Boosting

In [259]:

```
gb = GradientBoostingClassifier(random_state=0, max_depth=1, learning_rate=0.01).fit(X_train, y_train)
y_pred=gb.predict(X_test)

print("Accuracy on train: {:.3f}".format(gb.score(X_train, y_train)))
print("Accuracy on test: {:.3f}".format(accuracy_score(y_pred, y_test)))
print("F1-score on test set: {:.3f}".format(f1_score(y_pred, y_test)))
```

Accuracy on train: 0.750 Accuracy on test: 0.734 F1-score on test set: 0.463

Default values result in **overfitting**. Therefore, max_depth = 1 and learning_rate = 0.01 is chosen which reduces the gap between training and test accuracy.

Feature importance in Gradient Boosting

```
In [260]:
```

```
plot_feature_importances(gb, 'Gradient Boosting')
```


Gradient Boosting gives the most importance to Glucose.

Confusion matrix

```
In [261]:
```

```
conf_mat = confusion_matrix(y_test,y_pred)
normalized_confusion_matrix(y_test,conf_mat,'Gradient Boosting')
```


K-fold cross-validation

```
In [215]:
```

```
k_fold_gb_f1 = cross_val_score(gb, X, y, cv=10, scoring='f1_macro') ##10-fold cross validation

In [216]:

print(f'Average accuracy after 10 fold cross validation :{k_fold_gb_accuracy.mean().round(2)} +/-
{k_fold_gb_accuracy.std().round(2)}')
print(f'Average F1-score after 10 fold cross validation :{k_fold_gb_f1.mean().round(2)} +/- {k_fold_gb_f1.std().round(2)}')

Average accuracy after 10 fold cross validation :0.75 +/- 0.03
Average F1-score after 10 fold cross validation :0.67 +/- 0.03
```

Support Vector Machine (SVM)

```
In [217]:
```

```
scaler = MinMaxScaler()
X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.fit_transform(X_test)

#SVM requiest feature scaling
svc = SVC(C=1000, gamma='auto').fit(X_train_scaled, y_train)
y_pred=svc.predict(X_test_scaled)

print("Accuracy on train: {:.3f}".format(svc.score(X_train_scaled, y_train)))
print("Accuracy on test: {:.3f}".format(accuracy_score(y_pred, y_test)))
print("F1-score on test set: {:.3f}".format(f1_score(y_pred, y_test)))
```

Accuracy on train: 0.811 Accuracy on test: 0.719 F1-score on test set: 0.460

C = 1000, gamma='auto' gives the best performance and minimum overfitting.

Confusion matrix

In [218]:

```
conf_mat = confusion_matrix(y_test,y_pred)
normalized_confusion_matrix(y_test,conf_mat,'SVM')
```



```
In [219]:
```

```
k_fold_svm_accuracy = cross_val_score(svc, scaler.fit_transform(X), y, cv=10) ##10-fold cross valid
ation
k_fold_svm_f1 = cross_val_score(svc, scaler.fit_transform(X), y, cv=10, scoring='f1_macro') ##10-fo
ld cross validation
```

In [220]:

```
print(f'Average accuracy after 10 fold cross validation : {k_fold_svm_accuracy.mean().round(2)} +/
    - {k_fold_svm_accuracy.std().round(2)}')
print(f'Average F1-score after 10 fold cross validation : {k_fold_svm_f1.mean().round(2)} +/- {k_fold_svm_f1.std().round(2)}')
```

```
Average accuracy after 10 fold cross validation : 0.76 +/- 0.03 Average F1-score after 10 fold cross validation : 0.72 +/- 0.03
```

Neural Networks

In [221]:

```
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.fit_transform(X_test)

mlp = MLPClassifier(random_state=0, alpha=1, max_iter=2000).fit(X_train_scaled, y_train)
y_pred=mlp.predict(X_test_scaled)

print("Accuracy on train: {:.3f}".format(mlp.score(X_train_scaled, y_train)))
print("Accuracy on test: {:.3f}".format(accuracy_score(y_pred, y_test)))
print("F1-score on test set: {:.3f}".format(f1_score(y_pred, y_test)))
```

```
Accuracy on train: 0.825
Accuracy on test: 0.776
F1-score on test set: 0.656
```

Confusion matrix

In [222]:

```
conf_mat = confusion_matrix(y_test,y_pred)
normalized_confusion_matrix(y_test,conf_mat,'Neural Networks')
```

Confusion Matrix (Neural Networks)


```
In [223]:
```

```
k_fold_mlp_accuracy = cross_val_score(mlp, scaler.fit_transform(X), y, cv=10) ##10-fold cross valid
ation
k_fold_mlp_f1 = cross_val_score(mlp, scaler.fit_transform(X), y, cv=10, scoring='f1_macro') ##10-fo
ld cross validation
```

1

In [224]:

```
print(f'Average accuracy after 10 fold cross validation : {k_fold_mlp_accuracy.mean().round(2)} +/
- {k_fold_mlp_accuracy.std().round(2)}')
print(f'Average F1-score after 10 fold cross validation : {k_fold_mlp_f1.mean().round(2)} +/- {k_fold_mlp_f1.std().round(2)}')
```

```
Average accuracy after 10 fold cross validation : 0.77 +/- 0.04 Average F1-score after 10 fold cross validation : 0.73 +/- 0.04
```

XGBoost

In [262]:

```
xgb = XGBClassifier(random_state=0, learning_rate =0.01,n_estimators=100, max_depth=5,gamma=1).fit(
X_train,y_train)

y_pred=xgb.predict(X_test)

print("Accuracy on train: {:.3f}".format(xgb.score(X_train, y_train)))

print("Accuracy on test: {:.3f}".format(xgb.score(X_test, y_test)))

print("F1-score on test set: {:.3f}".format(f1_score(y_pred, y_test)))
Accuracy on train: 0.878
```

Accuracy on test: 0.776 F1-score on test set: 0.667

Confusion matrix

In [263]:

```
conf_mat = confusion_matrix(y_test,y_pred)
normalized_confusion_matrix(y_test,conf_mat,'XGBoost')
```


In [264]:

```
k_fold_xgb_accuracy = cross_val_score(xgb, X, y, cv=10) ##10-fold cross validation
k_fold_xgb_f1 = cross_val_score(xgb, X, y, cv=10, scoring='f1_macro') ##10-fold cross validation
```

In [265]:

```
print(f'Average accuracy after 10 fold cross validation : {k_fold_xgb_accuracy.mean().round(2)} +/
- {k_fold_xgb_accuracy.std().round(2)}')
print(f'Average F1-score after 10 fold cross validation : {k_fold_xgb_f1.mean().round(2)} +/- {k_fold_xgb_f1.std().round(2)}')
```

Average accuracy after 10 fold cross validation : 0.75 +/- 0.06 Average F1-score after 10 fold cross validation : 0.72 +/- 0.07

Feature importance in XGBoost

In [266]:

```
plot_feature_importances(xgb, 'XGBoost')
```


Model comparision

In [230]:

```
all_accuracies = [k_fold_knn_accuracy.mean().round(2),
                   k\_fold\_logreg\_accuracy.mean().round(2),
                   k fold tree accuracy.mean().round(2),
                   k_fold_rf_accuracy.mean().round(2),
                   k_fold_gb_accuracy.mean().round(2),
                   k fold svm accuracy.mean().round(2),
                   k fold mlp accuracy.mean().round(2),
                   k fold xgb accuracy.mean().round(2)]
all_accuracies_errors = [k_fold_knn_accuracy.std().round(2),
                   k_fold_logreg_accuracy.std().round(2),
                   k_fold_tree_accuracy.std().round(2),
                   k_fold_rf_accuracy.std().round(2),
                   k_fold_gb_accuracy.std().round(2),
                   k_fold_svm_accuracy.std().round(2),
                   k_fold_mlp_accuracy.std().round(2),
                   k fold xgb accuracy.std().round(2)]
```

In [231]:

```
all_f1 = [k_fold_knn_accuracy.mean().round(2),
                  k_fold_logreg_f1.mean().round(2),
                   k fold tree f1.mean().round(2),
                   k_fold_rf_f1.mean().round(2),
                   k_fold_gb_f1.mean().round(2),
                   k_fold_svm_f1.mean().round(2),
                   k_fold_mlp_f1.mean().round(2),
                   k_fold_xgb_f1.mean().round(2)]
all_f1_errors = [k_fold_knn_f1.std().round(2),
                   k_fold_logreg_f1.std().round(2),
                   k fold tree f1.std().round(2),
                   k fold rf f1.std().round(2),
                   k_fold_gb_f1.std().round(2),
                   k fold svm f1.std().round(2),
                   k_fold_mlp_f1.std().round(2),
                   k_fold_xgb_f1.std().round(2)]
```

In [232]:

```
models=['kNN','Logistic Regression','Decision Tree','Random Forest','Gradient Boosting','SVM','Neu
ral Networks', 'XGBoost']
```

In [233]:

```
model_data =
pd.DataFrame([all_accuracies,all_accuracies_errors,all_f1,all_f1_errors],columns=models, index = ['
Accuracy','STD_acc','F1-macro','STD_f1']).T
```

In [234]:

```
model_data.style.background_gradient(cmap='coolwarm',axis=0)
```

Out[234]:

	Accuracy	STD_acc	F1-macro	STD_f1
kNN	0.750000	0.060000	0.750000	0.070000
Logistic Regression	0.770000	0.040000	0.740000	0.040000
Decision Tree	0.720000	0.040000	0.690000	0.050000
Random Forest	0.760000	0.060000	0.730000	0.060000
Gradient Boosting	0.750000	0.030000	0.670000	0.030000
SVM	0.760000	0.030000	0.720000	0.030000
Neural Networks	0.770000	0.040000	0.730000	0.040000
XGBoost	0.750000	0.060000	0.720000	0.070000

```
model_data[['Accuracy','F1-macro']].plot.barh(figsize=(10,7))
plt.legend(frameon=False,bbox_to_anchor=(0.7,0.8), prop={'size':20})
plt.xticks(size=15)
plt.yticks(size=15)
plt.xlim([0.65,0.8]);
plt.title('Model performances',size=20)
sns.despine(top=True)
plt.tight_layout()
plt.savefig('model-comparision.png',dpi=300)
```


In [291]:

```
plt.figure(figsize=(10,7))
diabetes_accuracy = [0.52, 0.60, 0.66, 0.57, 0.33, 0.34, 0.61, 0.64]
plt.barh(models,diabetes_accuracy, color='red',alpha=0.5)
plt.xticks(size=15)
plt.yticks(size=15)
plt.title('Accuracy in Diabetes Detection',size=20)
sns.despine(top=True)
plt.tight_layout()
plt.savefig('diabetes-detection.png',dpi=300)
```

Accuracy in Diabetes Detection

Conclusion

- Logistic regression and Neural Netowrks seems to provide the best performance based on 10-fold cross validation of the dataset. Logistic regression achieves a higher *F1-score* as well, which is better metric for model evalution.
- From the confusion matricies, decision tree has the highest success in detecting the diabetes.
- Feature selection suggests the Glucose is the most crucial factor for the successful prediction of diabetes.

In Future

- More hyperparameter tuning.
- More classifiers such as catboost to improve the performance.
- Generating a Tableau Dashboard