T-test

Chao Cheng

August 2, 2022

1 Basic knowledge

Theorem 1. Let x_1, \dots, x_n be a random sample from a population with mean μ and variance $\sigma^2 < \infty$. Then

- 1. $E\bar{x} = \mu$.
- 2. $\operatorname{Var}\bar{x} = \sigma^2/n$.

3.
$$ES^2 = \sigma^2$$
, where $S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2$.

Theorem 2. Let x_1, \dots, x_n be a random sample from $N(\mu, \sigma^2)$. Then

- 1. $\bar{X} \sim N(\mu, \sigma^2/n)$.
- 2. \bar{X} is independent of S^2 .
- 3. $(n-1) S^2/\sigma^2$ follows a chi-squared distribution with n-1 degree of freedom.

2 One-sample test

Consider a random sample x_1, \dots, x_n from $N(\mu, \sigma^2)$.

- 2.1 variance known
- 2.2 variance unknown
- 3 Two sample test
- 3.1 Two-sample, variance known
- 3.2 Two-sample, variance unknown but equal
- 3.3 Two-sample, variance unknown and unequal