Predicting Garment Worker Productivity

tara arantada di Attari ara taratara arantada di Attar

By Ethan Cheung, Moises Jabbour

Table of contents

Ol Dataset S. Attri

Dataset & Attributes

Preprocessing

O3

04

Handling missing values, nominalizing class, discretization

O2 Classifier Algorithms

Four attribute selection algorithms + intuition, four classifier models

Results and Conclusion

Best model, attribute selection results

01

Introduction

What is the garment industry?

- Employs over 100 thousand people in the US and 60 million worldwide
- Daily productivity of factories can drastically change from day to day, impacting sales
- Hard to manually predict productivity

Goal: Predict worker productivity using various Machine Learning models

Dataset Used

Number of Attributes	14
Number of Instances	1197
Class Attribute	Day Productivity
Dataset Type	Continuous

Source UCI Machine Learning Repository - Productivity Prediction of Garment Employees.

Attributes

Date	Date in MM-DD-YYYY
Quarter	The corresponding quarter of the month, with each month being split into 4 quarters
Department	Associated department of the instance (sewing or finishing)
Day	Day of the week
Team	Associated team number with the instance (1-12)
Target productivity	Worker productivity assigned by the supervisor (assuming 1 means perfect level production and 0 meaning no production)
SMV	Standard minute value, time allocated to complete a task (basic time + allowance)
WIP	Work in progress, # of unfinished products

Overtime	Amount of overtime by each team in minutes
Incentive	Amount of financial incentive (BDT) to complete a task
Idle time	Amount of time production was interrupted
Idle men	Amount of men idle due to production interruption
No_of_style_ch ange	Number of changes in a particular product's style
No_of_workers	Number of workers in each team

Nominalization of the Class

Advantages

- Simplification of the dataset
- Allows for more accurate prediction of class
- Allows for the use of classifier algorithms

Disadvantages

- Reduces the precision of the measurements
- Increases bias, decreases variance

Data Preprocessing

- Handling Missing Values and redundant attributes
- WIP attribute removed (506 missing values, ~42% of the data)
- Removed "date" and "quarter" due to redundancy

Data Preprocessing

- Discretized continuous attributes w/ decimals
- SMV (standard minute value), overtime, bonus incentives, idle men, idle time, and the number of workers
- Binned into equal frequencies

Attribute Selection

Four Algorithms

CorrelationAttributeEval

- Measures the correlation between each attribute and the class
- Pearson's correlation coefficient

$$r = rac{\sum \left(x_i - ar{x}
ight)\left(y_i - ar{y}
ight)}{\sqrt{\sum \left(x_i - ar{x}
ight)^2 \sum \left(y_i - ar{y}
ight)^2}}$$

r = correlation coefficient

 $oldsymbol{x}_i$ = values of the x-variable in a sample

 \bar{x} = mean of the values of the x-variable

 y_i = values of the y-variable in a sample

 $ar{y}$ = mean of the values of the y-variable

InfoGainAttributeEval

- Evaluates the value of an attribute by measuring the information gained concerning the class
- Information gain is the entropy or the measurement of uncertainty in the dataset

$$H(X) = -\sum_{i=1}^n P(x_i) \log_2 P(x_i)$$

IG(Class, Attribute) = H(Class) - H(Class|Attribute)

ReliefFAttributeEval

- Evaluates attributes by estimating how well they distinguish between instances that are near each other
- Considers differences between instances of the same label(nearest hit) and those of a different label(nearest miss)

$$W(A_i) = W(A_i) - rac{1}{m} \sum_{j=1}^m \left(\operatorname{diff}(A_i, I_j, \operatorname{nearestHit}(I_j)) - \operatorname{diff}(A_i, I_j, \operatorname{nearestMiss}(I_j))
ight)$$

WrapperSubsetEval with J48 Decision Tree

- Evaluates attribute subsets using specific machine learning algorithms, particularly the J48 Decision Tree.
- Uses the performance of the J48
 classifier to determine the
 effectiveness of a subset of attributes
 in making predictions.
- Constructs a tree using information gain

Intuition

- Removed the quarter and day attribute, lack of implications and effect
- Removed idle time and idle men because they were largely uncontrollable and non-frequent.
- Aimed to have model distinguish more significant attributes if looking at weights

Classifier Algorithms

Four Classifier Models

OneR

- Simple classification algorithm that generates a rule based on a single attribute to classify the data
- Works by checking each attribute for how well it performs in classifying data, and picks the best-performing attribute.

Frequency Tables

_		Play Golf		
7		Yes	No	
Outlook	Sunny	3	2	
	Overcast	4	0	
	Rainy	2	3	

		Play	Golf
		Yes	No
	Hot	2	2
Temp.	Mild	4	2
	Cool	3	1

		Play Golf	
		Yes	No
227 227	High	3	4
Humidity	Normal	6	1

		Play Golf	
		Yes	No
2221727	False	6	2
Windy	True	3	3

- for each predictor P
- for each value V of the predictor, generate rule as
- $\frac{1}{2}$ find the most frequent class c
- create a rule if (P = V) then c
- 5 compute the error rate of the rule
- 6 select predictor with minimum error rate for its rules

J48 Decision Tree

- Decision tree algorithm that is an extension of 1-R
- Makes a set of rules based on multiple attributes
- Looks at the information gained from each attribute (as seen in the attribute selection section) to divide the dataset into distinct attributes
- Continues until all instances are classified into a single class and no attributes remain.

Random Forest

- Constructs multiple
 decision trees and
 outputs the mode of the
 classes from all the trees
- Builds using a random subset of the training data and a random number of features.

Decision Table

A Sample Decision Table

Condition	Requirement Number						
Condition	1	2	3	4	5		
Requester is authorized	F	T	T	T	Т		
Chemical is available	-	F	T	T	Т		
Chemical is hazardous	-	-	F	T	T		
Requester is trained	-	_	_	F	T		
Action							
Accept request			X		X		
Reject request	X	X		X			

- Simple classification model that places instances in a table format
- Creates a set of rules based on combinations of attributes for each row
- Performs a lookup on a table and selects the closest matching row.

Results

- K Fold cross validation
- Roughy 80% accuracy
- InfoGainAttributeEval with Random Forest and WrapperSubsetEval with J48
- Four variations of error scores
- Incentive and smv ranked high
- Style changes, targeted_productivity, and day ranked low

	Correlation	Info Gain	Relief	WrapperSubset	Intuition
1-R	76.78%	76.78%	76.78%	76.78%	76.78%
J48	80.28%	80.12%	80.28%	81.62%	80.70%
Random Forest	79.28%	81.62%	80.95%	80.62%	80.79%
Decision Table	79.95%	80.20%	79.95%	79.95%	79.95%

Results Pt 2: Confusion Matrices

	Corre	lation	Info	Gain	Re	lief	Wrappe	erSubset	Intu	ition
4.5	830	39	830	39	830	39	830	39	830	39
1-R	239	89	239	89	239	89	239	89	239	89
100.0	809	60	809	60	795	74	819	50	794	75
J48	176	152	178	150	162	166	170	158	156	172
Random Forest	775	94	794	75	774	95	780	89	774	95
Kandom Forest	154	174	145	183	133	195	143	185	135	193
	816	53	816	53	810	59	810	59	810	59
Decision Table	187	141	184	144	181	147	181	147	181	147

Results Pt 3: Attribute Selection

Correlation	Info. Gain	Relief	Wrapper	
0.27416 8 incentive 0.24777 2 department 0.13956 9 idle_time 0.13956 10 idle_men 0.1369 12 no_of_workers 0.09686 6 smy 0.08654 4 team 0.06862 7 over_time 0.03666 3 day 0.03012 1 quarter 0.00633 5 targeted_productivity 0.00142 11 no_of_style_change	0.12903 8 incentive 0.10893 6 smy 0.07992 12 no_of_workers 0.06531 7 over_time 0.04406 2 department 0.02636 4 team 0.01211 9 idle_time 0.01211 10 idle_men 0.00553 1 quarter 0.00543 3 day 0 11 no_of_style_change 0 5 targeted_productivity	0.21746 6 smy 0.1929 8 incentive 0.13033 7 over_time 0.11228 12 no_of_workers 0.06867 1 quarter 0.0533 4 team 0.02804 5 targeted_productivity 0.02135 11 no_of_style_change 0.00819 2 department 0.00301 9 idle_time 0.00301 10 idle_men -0.02005 3 day	Selected Attributes: quarter department Day targeted_productivity sttly over_time incentive no_of_workers productivity_met	

Conclusion

- InfoGainAttributeEval with Random Forest
- Future projects to examine specific attribute weights
- Potentially use a deep neural network

```
=== Summary ===
Correctly Classified Instances
                                                          81.6207 %
Incorrectly Classified Instances
                                       220
                                                          18.3793 %
Kappa statistic
                                         0.5052
Mean absolute error
                                         0.2536
Root mean squared error
                                         0.3563
Relative absolute error
                                        63.7075 %
                                        79.8933 %
Root relative squared error
Total Number of Instances
                                      1197
=== Detailed Accuracy By Class ===
                                   Precision
                                              Recall
                                                        F-Measure
                                                                                      PRC Area
                                                                                                Class
                                   0.846
                                                       0.878
                                                                   0.512
                                                                            0.862
                                                                                      0.938
                 0.558
                          0.086
                                   0.709
                                               0.558
                                                       0.625
                                                                   0.512
                                                                            0.862
                                                                                      0.724
                          0.345
                                   0.808
                                               0.816
                                                       0.809
                                                                   0.512
                                                                            0.862
                                                                                      0.879
Weighted Avg.
                 0.816
=== Confusion Matrix ===
          <-- classified as
 794 75 | a = yes
```

References

Al Imran, Abdullah, Md Shamsur Rahim, and Tanvir Ahmed. "Mining the Productivity Data of the Garment Industry." International Journal of Business Intelligence and Data Mining, vol. 19, no. 3, 2021, pp. 319–342. Inderscience Enterprises Ltd.

Hasan, Mohammad Shahadat, et al. "An Approach to Predict Employee Productivity Using a Hybrid CNN-LSTM Model." 2021 International Conference on Artificial Intelligence (ICAI), IEEE, 2021, pp. 1-7, https://ieeexplore.ieee.org/document/9689701. Accessed 20 Oct. 2024.

Schlattmann, Maximilian. "OneR: Machine Learning in Under One Minute." Ephorie Blog, 13 Mar. 2020, https://blog.ephorie.de/oner-machine-learning-in-under-one-minute. Accessed 20 Oct. 2024.

Frank, Eibe, et al. The WEKA Workbench. Version 3.8, University of Waikato, 2023, https://www.weka.io/?utm_medium=cpc&utm_ Accessed 20 Oct. 2024.

Thanks!

Do you have any questions?

CREDITS: This presentation template was created by <u>Slidesgo</u>, and includes icons by <u>Flaticon</u>, and infographics & images by <u>Freepik</u>

Please keep this slide for attribution