Math 216 Midterm 3 Study Guide

Jeffrey Wubbenhorst

April 21, 2017

1 Matrices for Linear Transformations

• Suppose $T:V\to W$ is an LT; further suppose $v_1,...,v_n$ form a basis α for V and $w_1,...,w_m$ form a basis β for W. If we were to express $T(v_1),...,T(v_n)$ in terms of $w_1,...,w_m$, we get a series of equations of the form: $T(v_1)=a_{11}w_1+a_{21}w_2+...+a_{m1}w_m$ $T(v_2)=a_{12}w_1+a_{22}w_2+...+a_{m2}w_m$ \vdots $T(v_m)=a_{1n}w_1$

Chapter 9.3 ("Schur's Theorem and Symmetric Matrices")

• Recall tha B is similar to A if there exists an invertible $n \times n$ matrix such that

$$B = P^{-1}AP$$

If P is an orthogonal matrix, that is:

$$P^{-1} = P^T$$
 and $B = P^T A P$

...we say that B is **orthogonally similar** to A.

- If P is an orthogonal matrix, B is an orthogonal basis for \mathbb{R}^n . ¹
- Schur's Theorem: Suppose A is an $n \times n$ matrix. If all the eigenvalues of A are real numbers, A is orthogonally similar to an upper triangle matrix.
- If C is a matrix whose entries are complex numbers, the **Hermitian conjugate** of C, notated as C^* , is given as $C^* = \bar{C}^T$
- An $n \times n$ matrix P with complex entries is a **unitary matrix** if $P^*P = I$. Unitary matrices are the analog of orthogonal matrices in a complex space.
- An $n \times n$ matrix B is unitarity similar to an $n \times n$ matrix A if there exists a unitary P such that $B = P^T A P$.
- If A is $n \times n$ and symmetric with real entries, all eigenvalues of A are real.
- \bullet If A is symmetric with real entries, A is diagonalizable.
- If A is symmetric with real entries and $\vec{v_1}, \vec{v_2}$ are eigenvectors of A with different associated eigenvalues, v_1 is orthogonal to v_2 .
- Commonly used steps for finding an orthogonal matrix P that diagonalizes an $n \times n$ matrix symmetrix matrix A with real entries:
 - 1. Find bases for eigenspaces of A
 - 2. Apply Gram-Schmidt process to basis of each eigenspace to obtain an orthonormal basis.
 - 3. P is a matrix made of columns from step 2. YEET
- If A is an $n \times n$ symmetric matrix with real entries, then all the eigenvalues of a A are real, and all eigenspaces have real bases.
- In the complex space \mathbb{C} , we have to redefine the inner product. The **Hermitian dot product** on \mathbb{C} is defined as:

$$\langle \vec{v}, \vec{w} \rangle = \sum v_i \bar{w}_i = \vec{v}^T \vec{w}$$

The properties of the Hermitian dot product are:

- 1. $<\vec{v}, \vec{w}>_H = <\vec{w}, \vec{v}>_H$
- 2. $<\vec{u} + \vec{v}, \vec{w}>_H = <\vec{u}, \vec{w}> + <\vec{v}, \vec{v}, \vec{w}>_H$
- 3. $\langle c\vec{v}, \vec{w} \rangle_H = c \langle \vec{v}, \vec{w} \rangle_H$

- 4. $\langle \vec{v}, \vec{v} \rangle_H \geq , \langle \vec{v}, \vec{v} \rangle_H = 0$ iff $\vec{v} = 0$ Functions satisfying these properties are called **Hermitian inner products.**
- 5. With the Hermitian inner product, we also have the **Hermitian transpose:**

$$A^* = \bar{A}^T$$

Note that Hermitian transpose \leftrightarrow Hermitian conjugate \leftrightarrow adjoint.

6. Transposes relate to symmetry by definition:

$$\langle A\vec{v}, \vec{w} \rangle_H = \langle \vec{w}, A\vec{v} \rangle_H$$

Real symmetric matrices are Hermitian as well.

- 7. if AA is real and symmetric with eigenvalues $\lambda_1 \neq \lambda_2$ and associated eigenvectors $\vec{v_1}, \vec{v_2}, \vec{v_1}, \vec{v_2}$ are **orthogonal**.
- 8. $\langle A\vec{v}, \vec{w} \rangle_H = \langle \vec{v}, A^*\vec{w} \rangle_H$
- 9. Recall that A, B are similar if $B = P^{-1}AP$, where P is a change of basis. We now say that: If A, B are similar by $BP^{-1}AP$ and P is orthogonal, then A, B are orthogonally similar, and $B = P^{T}AP$.
- 10. If A is diagonalizable with $D = P^{-1}AP$ (that is, columns of P are a basis of eigenvector) and if P is orthogonal, then we say A is **orthogonally diagonalizable**.
- 11. Every real, symmetric matrix is **orthogonally diagonalizable**.