CS2040S – Data Structures and Algorithms

Lecture 20 – Four Lines Wonder

Finding Shortest Paths between All Pairs of Points

chongket@comp.nus.edu.sg

Outline

- Review: The <u>Single-Source</u> Shortest Paths Problem
- Introducing: The <u>All-Pairs</u> Shortest Paths Problem
 - With One motivating example
- Floyd Warshall's Dynamic Programming algorithm
 - The short code ⊕ + Basic Idea
- Some Floyd Warshall's variants

The SSSP problem is about...

- Finding the shortest
 path between a pair of
 vertices in the graph
 (source to destination)
- 2. Finding the shortest paths between any pair of vertices
- 3. Finding the shortest paths between one vertex to the other vertices in the graph

The four lines wonder

ALL-PAIRS SHORTEST PATHS

Motivating Problem

Diameter of a Graph

The diameter of a graph is defined as the **greatest** shortest path distance between any pair of vertices

- For example, the diameter of this graph is 2
 - The paths with length equal to diameter are:
 - 1-0-3 (or the reverse path)
 - 1-2-3 (or the reverse path)
 - 1-0-4 (or the reverse path)
 - 2-0-4 (or the reverse path)
 - 2-3-4 (or the reverse path)

What is the diameter of this graph?

- 1. 8, path = ____
- 2. 10, path = ____
- 3. 12, path = ____
- 4. I do not know ⊗...

All-Pairs Shortest Paths (APSP)

Simple problem definition:

Find the shortest paths between <u>any pair</u> of vertices in the given directed weighted graph

APSP Solutions with SSSP Algorithms

Several solutions from what we have known earlier:

- On unweighted graph
 - Call BFS V times, once from each vertex
 - Time complexity: O(V * (V+E)) = O(V³) if E = O(V²)
- On weighted graph, for simplicity, non (-ve) weighted graph
 - Call Bellman Ford's V times, once from each vertex
 - Time complexity: $O(V * VE) = O(V^4)$ if $E = O(V^2)$
 - Call Original/Modified Dijkstra's V times, once from each vertex
 - Time complexity: $O(V * (V+E) * log V)/O(V * E * log V) = O(V^3 log V)$ if $E = O(V^2)$

APSP Solution: Floyd Warshall's

Floyd Warshall's uses an **2D Matrix** for SP cost: D[|V|][|V|]

- At start, D[i][i] = 0, D[i][j] = the weight of edge(i, j) if there is an edge i->j, otherwise it is ∞
- After Floyd Warshall's stop, it contains the weight of shortestpath(i, j)

It runs in $O(V^3)$ since we have three nested loops!

• PS: Apparently, if we only given a short amount of time and $\mathbf{E} = O(\mathbf{V}^2)$, we can only solve the APSP problem for small graphs, as none of the APSP solution in this and last slides runs better than $O(\mathbf{V}^3)$

Floyd Warshall's – Basic Idea

- Assume that the vertices are labeled as [0 .. V 1].
- Now let **sp(i, j, k)** denotes the shortest path between vertex **i** and vertex **j** with the restriction that the vertices on the shortest path (excluding **i** and **j**) can only consist of vertices from [0 .. **k**]
 - How Robert Floyd and Stephen Warshall managed to arrive at this formulation is beyond this lecture...
- Initially k = -1 (or to say, we only use direct edges only)
 - Then, iteratively add k by one until k = V 1

Usefulness of APSP: Preprocessing Step (for lots of queries)

This is another problem solving technique

- Preprocess the data once (can be a costly operation)
- All future queries (of which there is a lot) can be (much) faster by working on the processed data

Example with the APSP problem:

- Once we have pre-processed the APSP information with $O(\mathbf{V}^3)$ Floyd Warshall's algorithm...
 - Future queries that ask "what is the shortest path cost between vertex i and j" can now be answered in O(1)...

SOME VARIANTS OF FLOYD WARSHALL'S

Variant 1 – Print the Actual SP (1)

We have learned to use array/Vector p (predecessor/parent) to record the BFS/DFS/SP Spanning Tree

But now, we are dealing with all-pairs of paths :O

Solution: Use predecessor matrix p

- let p be a 2D predecessor matrix, where p[i][j] is the predecessor of j on a shortest path from i to j, i.e. i -> ... -> p[i][j] -> j
- Initially, **p[i][j] = i** for all pairs of **i** and **j** (regardless if edge (i,j) exist)
- If D[i][k]+D[k][j] < D[i][j], then D[i][j] = D[i][k]+D[k][j]
 and p[i][j] = p[k][j] ← this will be the predecessor of j
 in the shortest path

Variant 1 – Print the Actual SP (2)

The two matrices, **D** and **p**

The shortest path from 3 ~> 4

D	0	1	2	3	4
0	0	2	1	6	2
1	5	0	6	4	7
2	6	1	0	5	1
3	1	3	2	0	3
4	∞	∞	∞	∞	0

р	0	1	2	3	4
0	0	0	0	1	2
1	3	1	0	1	2
2	3	2	2	1	2
3	3	0	0	3	2
4	4	4	4	4	4

Variant 2 – Transitive Closure (1)

Floyd Warshall's algorithm was initially invented for solving the transitive closure problem

• Given a graph, determine if vertex **i** is connected to vertex **j** either directly (via an edge) or indirectly (via a path)

Solution: Modify the matrix D to contain only 0/1

Modification of Floyd Warshall's algorithm:

```
// Initially: D[i][i] = 0
// D[i][j] = 1 if edge(i, j) exist; 0 otherwise
// the three nested loops as per normal
D[i][j] = D[i][j] | (D[i][k] & D[k][j]); // bitwise | and &
```

Variant 2 – Transitive Closure (2)

The matrix **D**, before and after

D,init	0	1	2	3	4
0	0	1	1	0	1
1	0	0	0	1	0
2	0	1	0	0	1
3	1	0	1	0	1
4	0	0	0	0	0

D,final	0	1	2	3	4
0	1	1	1	1	1
1	1	1	1	1	1
2	1	1	1	1	1
3	1	1	1	1	1
4	0	0	0	0	0

Variant 3 – Minimax/Maximin (1)

The minimax problem is a problem of finding the path that minimizes the maximum edge from vertex **i** to vertex **j** (maximin is the reverse)

- For a single path from i to j, we pick the maximum edge weight along this path
- Then, for all possible paths from i to j, we pick the maximum edge weight that is the smallest
- D[i][j] will store this smallest max-edge-weight

Solution: Again, a modification of Floyd Warshall's

```
// Initially: D[i][i] = 0
// D[i][j] = weight of edge(i, j) exist; INF otherwise
// the three nested loops as per normal
D[i][j] = Math.min(D[i][j], Math.max(D[i][k], D[k][j]));
```

Variant 3 – Minimax/Maximin (2)

The minimax path from 1 to 4 is 4, via edge (1, 3)

•
$$1 \rightarrow 3 \rightarrow 0 \rightarrow 2 \rightarrow 4$$

D,init	0	1	2	3	4
0	0	2	1	∞	3
1	∞	0	∞	4	∞
2	∞	1	0	∞	1
3	1	∞	3	0	5
4	∞	∞	∞	∞	0

D,final	0	1	2	3	4
0	0	1	1	4	1
1	4	0	4	4	4
2	4	1	0	4	1
3	1	1	1	0	1
4	∞	∞	∞	∞	0

Variant 4 — Detecting +ve/-ve Cycle

- 1. Set the main diagonal of D to ∞
- 2. Run Floyd Warshall's
- 3. Recheck the main diagonal
 - I. $< \infty$ but $>= 0 \rightarrow$ positive cycle
 - II. $< 0 \rightarrow$ negative cycle

D,init	0	1	2	3	4
0	∞	2	1	∞	3
1	∞	∞	∞	4	∞
2	∞	1	∞	∞	1
3	1	∞	3	∞	5
4	∞	∞	∞	∞	∞

D,final	0	1	2	3	4
0	7	2	1	6	2
1	5	7	6	4	7
2	6	1	7	5	1
3	1	3	2	7	3
4	∞	∞	∞	∞	∞

Java Implementations

See FloydWarshallDemo.java for more details

These four variants are listed inside that demo code

Summary

In this lecture, we have seen:

- Introduction to the APSP problem (with 1 motivating example)
- Introduction to the Floyd Warshall's algorithm
- Introduction to 4 variants of Floyd Warshall's