1. Epickie igrzyska

Rasy zamieszkujące kontynent Walbardu zorganizowały igrzyska sportowe. Ich celem było umocnienie przyjaźni i przymierzy między od wieków konkurującymi ze sobą grupami. Pokojowa rywalizacja miała pozwolić na uwolnienie skumulowanej agresji w postaci sportowej rywalizacji. O medale można było walczyć w takich konkurencjach jak: strzelanie z łuku do dziesięciu ruchomych celów jednocześnie, rozłupywanie głazów młotem na czas, wyścigi na wilkobobrach, rzucanie pierścieniem do krateru z lawą. W każdej z nich można było zdobyć złoty, srebrny lub brązowy medal.

Po igrzyskach, królowa elfów, Monea Beryllium, zażądała od swojego doradcy, Kolusa Genbitusa, porównania wyników medalowych elfów i krasnoludów – ich głównego rywala. Do rozpatrzenia były dwie kategorie: "liczba" i "kolor". W pierwszej z nich wygrywa zdobywca większej liczby medali, bez względu na ich kolor, W drugiej kategorii wygrywa rasa, która zdobyła więcej złotych medali, albo zdobyła więcej srebrnych, jeżeli był remis w złotych, albo zdobyła więcej brązowych, jeżeli był remis w złotych i srebrnych.

Zadanie

Napisz program, który dla zadanej liczby kolorów medali obu ras, zwróci informację o kategoriach medalowych, w których lepsza była rasa elfów. Na prośbę doradcy, program ma pozwolić na podawanie wielu statystyk medalowych, co pozwoli na wygodniejsze analizowanie różnych wariantów.

Dane wejściowe

Pierwsza linia wejścia zawiera liczbę całkowitą N ($1 \le N \le 100$) określającą liczbę kolejnych linii ze statystykami medalowymi dla obu ras.

Kolejnych N linii zawiera statystyki medalowe składające się z 6 liczb całkowitych oddzielonych spacją. Każda z nich należy do przedziału <0, 100>. Pierwsze trzy to liczba złotych, srebrnych i brązowych medali zdobytych przez przedstawicieli elfów, kolejne trzy to liczba złotych, srebrnych i brązowych medali zdobytych przez przedstawicieli krasnoludów.

Dane wyjściowe

Dla każdej ze statystyk wypisz w nowej linii jeden z czterech komunikatów:

- 1. "liczba", jeżeli elfy wygrały w kategorii liczby medali,
- 2. "kolor", jeżeli elfy wygrały w kategorii kolorów medali,
- 3. "obie", jeżeli elfy wygrały w obu kategoriach,
- 4. "żadna", jeżeli elfy nie wygrały w żadnej z kategorii.

Przykład

Dane wejściowe	Dane wyjściowe		
5	obie		
10 5 15 10 1 0	liczba		
10 5 15 10 6 10	kolor		
12 5 10 5 20 30	żadna		
10 0 15 10 5 30	żadna		
10 5 15 10 5 15			

2. Upragnione antidotum

Kilka tygodni po igrzyskach zaczęły pojawiać się niezwykłe przypadki zmieniania się osobników różnych ras w orków. Szybko zauważono, że ofiarami byli uczestnicy tej imprezy sportowej i ich rodziny. Od razu zaczęto podejrzewać niecny spisek orków. Nikt jednak nie miał pojęcia, kto nimi dowodzi i opracował tak przerażającą zarazę. Przywódcy każdej z ras nakazali otoczyć zagrożone sekcje miast kwarantanną i wysłać próbki pobrane z pojmanych przekształceńców do głównego ośrodka nauki Walbardu, Wieży Mędrców w Celides.

Najlepsi alchemicy, pod bacznym okiem Ewany Goro – Arcymistrzyni Wieży, zabrali się do pracy nad miksturą, która potrafiłaby cofnąć proces zamiany w orka i wyeliminować z zarażonych osobników orkonawirusa (nazwanego tak ze względu na jego objawy). Do przygotowania antidotum wykorzystano sześć substancji kodowanych dla bezpieczeństwa symbolami: "q", "w", "e", "t", "y". Mikstury przechodzące pomyślnie testowanie na różnych próbkach składały się przeważnie z różnej liczby i kombinacji składników. Kolejnym krokiem w drodze do znalezienia rozwiązania stało się wyodrębnienie wspólnej sekwencji w składzie każdej z opracowanych mikstur.

Zadanie

Napisz program, który pomoże alchemikom z Celides odnaleźć wspólny fragment we wskazanych składach mikstur.

Dane wejściowe

Pierwsza linia wejścia zawiera liczbę naturalną N ($2 \le N \le 100$) określającą liczbę kolejnych linii z sekwencjami składników mikstur. Kolejnych N linii to ciągi znaków złożone z różnej liczby i kombinacji liter "q", "w", "e", "r", "t", "y". Minimalna długość tych ciągów to 1, maksymalna to 100 znaków.

Dane wyjściowe

Wypisz pojedynczą linię ze wspólnym podciągiem znaków o maksymalnej długości występującym we wszystkich podanych na wejściu sekwencjach składników. Jeżeli wystąpi kilka podciągów o maksymalnej długości, wypisz ten, który pojawia się najwcześniej w pierwszej sekwencji.

Przykłady

Dane wejściowe	Dane wyjściowe		
3	ryt		
eqwryt			
rytyyyeq			
ewwrytwwe			
2			
qwe			
rtyyy	第4時間 新州市		
2	qw		
qwert			
qwqery			

3. Nikczemny sabotaż

Tajemniczy i złowrogi przywódca orków dowiedział się poprzez swoich szpiegów o pracach nad antidotum. Zaskoczony ich szybkością i efektywnością, postanowił dokonać sabotażu. Ten niecny czyn ma polegać na wysadzeniu w powietrze magazynu z rzadkimi substancjami niezbędnymi do wytwarzania antidotum. Ten, sąsiadujący z Więżą Mędrców, budynek znajduje się jednak za kilkoma rzędami murów chroniących miasto Celides. Do rozwinięcia lontu i podłożenia materiału wybuchowego został wyznaczony najsprytniejszy i najbardziej zwinny ork zwany Stąpkiem. Wpadł on od razu na pomysł wzięcia tylko niezbędnej ilości lontu, tak aby niepotrzebnie się nie obciążać i nie spowalniać skradania. Obliczenie dokładnej długości lontu stało się możliwe dzięki raportom szpiegów szczegółowo opisującym położenie i rozmiary murów.

Zadanie

Napisz program, który pomoże Stąpkowi wyliczyć długość niezbędnego lontu. Ork wyrusza ze współrzędnych (0, 0), a miejsce u dołu ściany magazynu, gdzie zostawi materiał wybuchowy, znajduje się we współrzędnych (100, 0). Jedna jednostka to jeden metr. Gdyby na drodze nie stały mury, wystarczyłoby 100 metrów lontu. Oś Y reprezentuje wysokość murów. Stąpek, po napotkaniu na mur, będzie się na niego wspinał, skradał po jego górze, i schodził z drugiej strony, przymocowując jednocześnie lont do jego powierzchni albo ziemi.

Dane wejściowe

Pierwsza linia wejścia zawiera liczbę naturalną N ($1 \le N \le 50$) określającą liczbę kolejnych linii z opisem murów. Każda linia opisująca mur składa się z trzech liczb naturalnych oddzielonych spacjami: X, W, S, gdzie:

- $X(1 \le X \le 98)$ oznacza odległość dolnego lewego rogu muru od punktu startowego,
- W (1 ≤ W ≤ 100) oznacza wysokość muru,
- S (1 ≤ S ≤ 98) oznacza szerokość muru.

Kolejność opisów murów jest dowolna. Mury mogą do siebie przylegać, ale nie mogą na siebie zachodzić. Żaden mur nie kończy się za punktem (99,0).

Dane wyjściowe

Wypisz pojedynczą linię zawierającą długość lontu.

Przykłady

Dane wejściowe	Dane wyjściowe		
1	200		
10 50 10			
2	320		
10 50 10			
40 60 10			
2	220		
10 50 10			
20 60 10			
3	420		
70 50 10			

4. Nadmorska twierdza

Po zniszczeniu magazynu w Celides, postanowiono przenieść zapasy najcenniejszych składników alchemicznych do nieco odległej, ale dobrze strzeżonej twierdzy Sędeku, położonej nad Morzem Księżycowym. Powiadomiony o tej decyzji dowódca garnizonu, znany w całym Walbardzie ze swoich walecznych czynów Arturo Domo, postanowił dokonać przeglądu straży, sprawdzić ich gotowość bojową i czujność, oraz przeprowadzić kilka testowych scenariuszy ataku. Część żołnierzy ma symulować pojawienie się orków w różnych sekcjach głównego placu twierdzy, na którym będą rozlokowani strażnicy. Takie ćwiczenia mają pomóc w ocenie sposobu ich rozstawienia i sprawiedliwego obciążenia obowiązkami. Arturo zdał sobie sprawę, że już za długo zlecał większość zadań tylko kilku podwładnym. Pozostali też muszą wprawić się w boju i zyskać doświadczenie. Pierwszym krokiem planu jest sprawdzenie czasu reakcji straży na pojawienie się wrogów dla przyjętego sposobu obstawienia placu.

Zadanie

Napisz program, który pomoże dowódcy garnizonu ustalić najkrótsze odległości od strażników do pojawiających się orków i tym samym potencjalną szybkość reakcji. Główny plac twierdzy traktowany jest jako dwuwymiarowa płaszczyzna. Każdy ze strażników i wrogów zajmuje lokalizację o podanych współrzędnych. W jednym kroku strażnik może zmienić każdą ze swoich współrzędnych o -1, 0, lub 1. Odległość między dwoma lokalizacjami jest równa minimalnej liczbie kroków, które musi wykonać strażnik, aby dotrzeć z miejsca stacjonowania do celu.

Dane wejściowe

Pierwsza linia wejścia zawiera dwie liczby naturalne S i W oddzielone spacją. Liczba S ($1 \le S \le 100$) oznacza liczbę strażników; W ($1 \le W \le 100$) oznacza liczbę wrogów. Kolejnych S linii zawiera współrzędne strażników. Następne W linii zawiera współrzędne wrogów. Współrzędne podawane są jako dwie liczby całkowite x i y oddzielone spacją ($0 \le x \le 100$, $0 \le y \le 100$).

Dane wyjściowe

Dla każdego z wrogów wypisz w nowej linii odległość do najbliższego strażnika/strażników mierzoną w krokach.

Przykłady

Dane wejściowe	Dane wyjściowe				
23	1				
01	3				
40	1				
50					
43					
12					
24	1				
00	3				
33	2				
11	0				

03			1000	1000	
03 12 33					
33					

5. Krytyczna misja

Jako że twierdza Sędeku zbudowana została nad samym morzem, posiada ona również własny port i jeden czteromasztowy statek do dyspozycji dowódcy garnizonu. Niedługo po zajściach w Celides zajechał tam ze służbową wizytą kapitan Mirkus Baronus z rozkazami od Wielkiej Rady Walbardu. Miał on otrzymać kontrolę nad statkiem i wypłynąć na Morze Księżycowe w poszukiwaniu waserfruchtu, jednego z sześciu składników niezbędnych do wytwarzania antidotum na orkanowirusa. Okazało się, że jego zapasy zostały najbardziej uszczuplone podczas sabotaźu orków. Substancję tę można pozyskać wyłącznie na Morzu Księżycowym a dokładne miejsca jej występowania zna tylko kilku wtajemniczonych mieszkańców Wieży Mędrców.

W dniu wypłynięcia w morze okazało się, że ster statku został uszkodzony i, co gorsze, zniknęła zakodowana wiadomość z poleceniami nawigacyjnymi. To zatrudniona przez kapitana Mirkusa załoga składająca się z goblinów z plemienia Ceplusków postanowiła przypodobać się władcy orków. Zwiewali, aż się kurzyło. Wszystkie je sprawnie wyłapano i rzucono na pożarcie drapieżnym wilkobobrom morskim, ale rozkazów nie odzyskano. Od tego wydarzenia kapitan stwierdził, że lepiej będzie współpracować z niziołkami z plemienia Siszarpków, jeszcze sprytniejszymi, łatwiejszymi do zarządzania i nie powodującymi wycieków cennych informacji. Z tygodniowym opóźnieniem spowodowanym wymianą załogi i oczekiwaniem na nowe rozkazy uwzględniające uszkodzone sterowanie statkiem, wypłynięto w morze. Po wykonaniu krytycznego zadania zebrania sezonowo pojawiającego się waserfruchtu, statek ma przybić do zaprzyjaźnionej stoczni w Mijamato, poddać się naprawom i wrócić prosto do twierdzy Sędeku.

Zadanie

Napisz program, który pomoże kapitanowi oszacować długość podróży do i z Mijamato na podstawie zakodowanych rozkazów.

Dane wejściowe

Pierwsza linia wejścia zawiera liczbę naturalną N (3 ≤ N ≤ 100) określającą liczbę kolejnych linii z poleceniami. Każde z poleceń składa się z kodu polecenia i liczby całkowitej C. Kod polecenia może przyjąć wyłącznie jedną z trzech wartości: "np" (na przód), "sp" (skręć w prawo), "sl" (skręć w lewo). Liczba C za kodem rozkazu "np" może przyjmować wartości z przedziału <1, 100>. W przypadku kodów "sp" i "sl" liczba ta ma wartość 90 (na tym polegało właśnie uszkodzenie steru – statek może skręcać w lewo albo prawo wyłącznie pod kątem prostym). Statek wypływa z punktu (0, 0) wzdłuż osi OX w kierunku dodatnich wartości (inaczej mówiąc – ku wschodowi).

Dane wyjściowe

Wypisz pojedynczą linię z dwoma liczbami oddzielonymi spacją. Pierwszą z nich ma być łączna odległość pokonana przez statek zgodnie z listą poleceń (zakładamy, że statek skręca w miejscu). Współrzędne uzyskane po wykonaniu wszystkich poleceń, to współrzędne stoczni. Drugą liczbą ma być odległość od stoczni w Mijamato do twierdzy Sędeku (czyli długość drogi powrotnej w linii prostej, co będzie już możliwe dzięki naprawie statku). Liczbę tą zaokrąglij do całości.