Name :	Utech
Roll No.:	استعمال ما مناسب المناسبة المناسبة
Invigilator's Signature :	

CS/B.Tech (CE)/SEM-4/CE-401/2011 2011 MATHEMATICS – II

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP – A

(Multiple Choice Type Questions)

- 1. Choose the correct alternatives for any ten of the following: $10 \times 1 = 10$
 - i) Newton's forward formula is used for interpolating the value of y near the
 - a) end of a set
- b) beginning of a set
- c) both (a) and (b)
- d) none of these.
- ii) As soon as a new value of a variable is found by iteration it is used immediately in the following equation, this method is called
 - a) Gauss-Jacobi method b) Gauss-Seidal method
 - c) Relaxation method d) None of these.

4007 [Turn over

iii)	The	order of converge	nce in Ne	wton-Raphson method is
	a)	2	b)	3
	c)	0	d)	none of these.
iv)			correct	to 5 significant digits
	41.7	79992 becomes		
	a)	41.800	b)	41.7990
	c)	42.799	d)	none of these.
v)	In c	ase of bisection m	ethod the	convergence is
	a)	linear	b)	quadratic
	c)	very slow	d)	none of these.
vi)	The	degree of precision	n of Simp	oson's $\frac{1}{3}$ rd rule is
	a)	1	b)	2
	c)	3	d)	4.
vii)	If th	ne number 436·2	68184 is	rounded off to 436·2682
	(cc	orrect to 7 signifi	cant figu	re) the relative error in
	rou	nding off is		
	a)	0 · 000016	b)	$3 \cdot 667469 \times 10^{-8}$
	c)	$3 \cdot 667469 \times 10^{-6}$	d)	none of these.
4007			2	

viii) Lagrange's interpolation formula deals with

- b) Unequispaced argument
- c) both (a) and (b)
- d) none of these.
- ix) For trapezoidal rule of numerical integration the number of sub-intervals should be
 - a) even

b) even or odd

odd c)

- d) multiples of three.
- Newton-Raphson method fails if X)
 - a) f'(x) = 0
- b) f'(x) > 0
- c) f'(x) < 0
- d) none of these.
- The method of iteration formula for the function xi) ϕ (x) must satisfy
 - a) $\left| \phi'(x) \right| < 1$ b) $\left| \phi'(x) \right| > 1$

 - c) $\left| \phi'(x) \right| = 1$ d) $\left| \phi'(x) \right| = 2$.

xii) Regula-Falsi method is used to

- a) solve the differential equation of boundary value problem
- b) solve transcendental equation numerically
- c) to find the real roots of an equation f(x) = 0
- d) none of these.
- xiii) Runge-Kutta method has a truncation error, which is of order
 - a) h²

b) h^3

c) h4

- d) none of these.
- xiv) An example of iterative method is
 - a) Gauss-elimination
- b) Gauss-Jordan
- c) Gauss-Seidel method d)
 - l) None of these.
- xv) If $f(x) = 2x^3 3x^2 + 4x + 5$ lets $\Delta^3 f(x)$ [where h = 1] is
 - a) 8

b) 200

c) 12

d) 1000.

4007

GROUP - B

(Short Answer Type Questions)

Answer any three of the following.

		_	-		
3	×	5	=	1	5

2. Evaluate the missing term from the following table :

х	0	1	2	3	4	5
f(x)	0	_	8	15	_	35

3. Prove that:

- i) $E = e^{hD}$ where $D = \frac{d}{dx}$ and E is shift operator.
- ii) Find the absolute, relative and percentage errors if $\frac{1}{3}$ is approximated by 0.333. 2 + 3
- 4. Compute the root of $10^x + \sin x + 2x = 0$ by method of bisection correct up to three significant figures.
- 5. Find the positive root of the equation $x^2 + 2x 2 = 0$ correct up to two significant figures by Newton-Raphson method.
- 6. Obtain a function whose first differences is $2x^3 3x^2 + 3x 10.$
- 7. Using Taylor's series method, find y (0.1) and y (0.2) where $\frac{dy}{dx} = 2y + 3e^x \text{ with } y$ (0) = 0.

(Long Answer Type Questions

Answer any three of the following.

8. a) Construct the forward difference table for a function

f(x) given by the following table:

x	2.0	2.2	2·4	2.6	2.8	3.0	3.2
y = f(x)	0.135335	0.110803	0.090718	0.074274	0.060810	0.049787	0.040762

b) Discuss the advantages and disadvantages of Lagrange's interpolation.

c) Construct Lagrange's interpolation formula by using the following table :

x	40	45	50	55
y = f(x)	15.22	13.99	12.62	11.13

5 + 4 + 6

9. a) Solve by Jacobi's method:

$$x - y + 4z = 9$$

$$8x - 3y + 2z = 20$$

$$4x + 11y - z = 33$$
.

4007

b) Solve by Gauss-Seidel iterative method:

$$3x + 9y - 2z = 11$$

$$4x + 2y + 13z = 24$$

$$4x - 2y + z = -8.$$

c) Calculate mean, mode and median of the following data relating to weights of 120 articles:

Weight (gm)	0 – 10	10 – 20	20 – 30	30 – 40	40 – 50	50 - 60
No of articles	14	17	22	26	23	18

4 + 5 + 6

10. a) Using Euler's method find the solution of the differential equation $\frac{dy}{dx} = x^2 - y$, y (0) = 1 for x = 0.3 taking

h = 0.1. Compare the result with exact solution.

- b) Use Runge-Kutta fourth order method to solve the following equation $\frac{dy}{dx} = x + y$, y(0) = 1 at x = 0.1.
- c) Fit the parabola $y = a + bx + cx^2$ to the following data and also the goodness of fit, by least square method :

<i>x</i> :	1	2	3	4	5	6	7	8	9
y :	2	6	7	8	10	11	11	10	9

5 + 5 + 5

- 11. a) Find the numerical value of $\int_0^6 \frac{dx}{1+x^2}$ by taking h=1 using Simpson's rule.
 - b) Use trapezoidal rule to evaluate $\int_{0}^{1} x^{3} dx$ considering 5 sub-intervals.
 - c) Prove that for small value of h $\Delta^{x+1} f(x_0) \approx h^{x+1} f^{x+1}(x_0)$ where the symbols have their usual meaning. 5+5+5
- 12. a) Find first derivative of f(x) at x = 15 if

x	15	20	25	30	35	40
f(x)	3.37	7.0	13.62	24.00	38.87	59.00

- b) Find the numerically largest eigenvalue of the matrix $A = \begin{bmatrix} 3 & -5 \\ -2 & 4 \end{bmatrix}$ by power method.
- c) Derive Newton's forward difference interpolation formula. 5 + 5 + 5

4007