Inferring Phylogenies

Joseph Felsenstein

University of Washington

Contents

Pı	reface	xix
1	Parsimony methods	1
	A simple example	1
	Evaluating a particular tree	1
	Rootedness and unrootedness	4
	Methods of rooting the tree	6
	Branch lengths	8
	Unresolved questions	9
2	Counting evolutionary changes	11
	The Fitch algorithm	11
	The Sankoff algorithm	13
	Connection between the two algorithms	16
	Using the algorithms when modifying trees	16
	Views	16
	Using views when a tree is altered	17
	Further economies	18
3	How many trees	
	are there?	19
	Rooted bifurcating trees	20
	Unrooted bifurcating trees	24
	Multifurcating trees	25
	Unrooted trees with multifurcations	28
	Tree shapes	29
	Rooted bifurcating tree shapes	29
	Rooted multifurcating tree shapes	30
	Unrooted Shapes	32
	Labeled histories	35
	Perspective	36

4	Finding the best tree	
	by heuristic search	37
	Nearest-neighbor interchanges	88
	Subtree pruning and regrafting	ŀ1
	Tree bisection and reconnection	14
		14
		Ι4
	Genetic algorithms	! 5
		16
		16
	Sequential addition	ŀ7
		18
	•	50
		51
		52
		53
	-	
5	Finding the best tree	
		54
	A nonbiological example	54
		57
		59
		60
		60
		51
		54
		54
		54
		55
	O	
6	Ancestral states	
	and branch lengths	7
	Reconstructing ancestral states	57
	· ·	70
		70
7	r	73
		73
	j	74
	Dollo parsimony	75
	Polymorphism parsimony	76
		78
		78
	Dollo parsimony and multiple states	30

 $^{^{\}circ}$ Sinauer Associates, Inc. This material cannot be copied, reproduced, manufactured or disseminated in any form without express written permission from the publisher.

	Polymorphism parsimony and multiple states	81 81 82
	Successive weighting and nonlinear weighting	83 83 85
_		
8	Compatibility	87
	Testing compatibility	88
	The Pairwise Compatibility Theorem	89
	Cliques of compatible characters	91
	Finding the tree from the clique	92
	Other cases where cliques can be used	94
	Where cliques cannot be used	94
	Perfect phylogeny	95
	Using compatibility on molecules anyway	96
9	Statistical properties of parsimony	97
,	Likelihood and parsimony	97
	The weights	100
	Unweighted parsimony	100
	Limitations of this justification of parsimony	101
	Farris's proofs	102
	No common mechanism	103
	Likelihood and compatibility	105
	Parsimony versus compatibility	107
	Consistency and parsimony	107
	Character patterns and parsimony	107
	Observed numbers of the patterns	110
	Observed fractions of the patterns	111
	Expected fractions of the patterns	111
	Inconsistency	113
	When inconsistency is not a problem	114
	The nucleotide sequence case	115
	Other situations where consistency is guaranteed	117
	Does a molecular clock guarantee consistency?	118
	The Farris zone	120
	Some perspective	121
	come perspective	141
10	A digression on history and philosophy	123
	How phylogeny algorithms developed	123
	Sokal and Sneath	123
	Edwards and Cavalli-Sforza	125
	Camin and Sokal and parsimony	129

 $^{^{\}circ}$ Sinauer Associates, Inc. This material cannot be copied, reproduced, manufactured or disseminated in any form without express written permission from the publisher.

	Eck and Dayhoff and molecular parsimony	130
	Fitch and Margoliash popularize distance matrix methods	131
	Wilson and Le Quesne introduce compatibility	133
	Jukes and Cantor and molecular distances	134
	Farris and Kluge and unordered parsimony	134
	Fitch and molecular parsimony	136
	Further work	136
	What about Willi Hennig and Walter Zimmerman?	136
	Different philosophical frameworks	138
	Hypothetico-deductive	139
	Logical parsimony	141
	Logical probability?	142
	Criticisms of statistical inference	143
	The irrelevance of classification	145
11	Distance matrix methods	147
	Branch lengths and times	147
	The least squares methods	148
	Least squares branch lengths	148
	Finding the least squares tree topology	153
	The statistical rationale	153
	Generalized least squares	154
	Distances	155
	The Jukes-Cantor model—an example	156
	Why correct for multiple changes?	158
	Minimum evolution	159
	Clustering algorithms	161
	UPGMA and least squares	161
	A clustering algorithm	162
	An example	162
	UPGMA on nonclocklike trees	165
	Neighbor-joining	166
	Performance	168
	Using neighbor-joining with other methods	169
	Relation of neighbor-joining to least squares	169
	Weighted versions of neighbor-joining	170
	Other approximate distance methods	171
	Distance Wagner method	171
	A related family	171
	Minimizing the maximum discrepancy	172
	Two approaches to error in trees	172
	A puzzling formula	173
	Consistency and distance methods	174

 $^{^{\}hbox{$\mathbb C$}}$ Sinauer Associates, Inc. This material cannot be copied, reproduced, manufactured or disseminated in any form without express written permission from the publisher.

	A limitation of distance methods	175
12	Quartets of species	176
	The four point metric	177
	The split decomposition	178
	Related methods	182
	Short quartets methods	182
	The disk-covering method	183
	Challenges for the short quartets and DCM methods	185
	Three-taxon statement methods	186
	Other uses of quartets with parsimony	188
	Consensus supertrees	189
	Neighborliness	191
	De Soete's search method	192
	Quartet puzzling and searching tree space	193
	Perspective	194
13	Models of DNA evolution	196
	Kimura's two-parameter model	196
	Calculation of the distance	198
	The Tamura-Nei model, F84, and HKY	200
	The general time-reversible model	204
	Distances from the GTR model	206
	The general 12-parameter model	210
	LogDet distances	211
	Other distances	213
	Variance of distance	214
	Rate variation between sites or loci	215
	Different rates at different sites	215
	Distances with known rates	216
	Distribution of rates	216
	Gamma- and lognormally distributed rates	217
	Distances from gamma-distributed rates	217
	Models with nonindependence of sites	221
14	Models of protein evolution	222
	Amino acid models	222
	The Dayhoff model	222
	Other empirically-based models	223
	Models depending on secondary structure	225
	Codon-based models	226
	Inequality of synonymous and nonsynonymous substitutions	227
	Protein structure and correlated change	228

 $^{^{\}hbox{$\mathbb C$}}$ Sinauer Associates, Inc. This material cannot be copied, reproduced, manufactured or disseminated in any form without express written permission from the publisher.

15	Restriction sites, RAPDs, AFLPs, and microsatellites	230
	Restriction sites	230
	Nei and Tajima's model	230
	Distances based on restriction sites	233
	Issues of ascertainment	234
	Parsimony for restriction sites	235
	Modeling restriction fragments	236
	Parsimony with restriction fragments	239
	RAPDs and AFLPs	239
	The issue of dominance	240
	Unresolved problems	240
	Microsatellite models	241
	The one-step model	241
	Microsatellite distances	242
	A Brownian motion approximation	244
	Models with constraints on array size	246
	Multi-step and heterogeneous models	246
	Snakes and Ladders	246
	Complications	247
16	Likelihood methods	248
	Maximum likelihood	248
	An example	249
	Computing the likelihood of a tree	251
	Economizing on the computation	253
	Handling ambiguity and error	255
	Unrootedness	256
	Finding the maximum likelihood tree	256
	Inferring ancestral sequences	259
	Rates varying among sites	260
	Hidden Markov models	262
	Autocorrelation of rates	264
	HMMs for other aspects of models	265
	Estimating the states	265
	Models with clocks	266
	Relaxing molecular clocks	266
	Models for relaxed clocks	267
	Covarions	268
	Empirical approaches to change of rates	269
	Are ML estimates consistent?	269
	Comparability of likelihoods	270
	A nonexistent proof?	270
	A simple proof	271

 $^{^{\}hbox{$\mathbb C$}}$ Sinauer Associates, Inc. This material cannot be copied, reproduced, manufactured or disseminated in any form without express written permission from the publisher.

	Misbehavior with the wrong model	272274
17	Hadamard methods	275
1,	The edge length spectrum and conjugate spectrum	279
	The closest tree criterion	281
	DNA models	284
	Computational effort	285 286
18	Bayesian inference of phylogenies	288
10	Bayes' theorem	288
	Bayesian methods for phylogenies	291
	Markov chain Monte Carlo methods	292
		292
	The Metropolis algorithm	292
	Its equilibrium distribution	
	Bayesian MCMC	294
	Bayesian MCMC for phylogenies	295
	Priors	295
	Proposal distributions	296
	Computing the likelihoods	298
	Summarizing the posterior	299
	Priors on trees	300
	Controversies over Bayesian inference	301
	Universality of the prior	301
	Flat priors and doubts about them	302
	Applications of Bayesian methods	304
19	Testing models, trees, and clocks	307
	Likelihood and tests	307
	Likelihood ratios near asymptopia	308
	Multiple parameters	309
	Some parameters constrained, some not	310
	Conditions	310
	Curvature or height?	311
	Interval estimates	311
	Testing assertions about parameters	312
	Coins in a barrel	313
	Evolutionary rates instead of coins	314
	Choosing among nonnested hypotheses: AIC and BIC	315
	An example using the AIC criterion	317
	The problem of multiple topologies	318
	LRTs and single branches	319
	Interior branch tests	320

 $^{^{\}hbox{$\mathbb C$}}$ Sinauer Associates, Inc. This material cannot be copied, reproduced, manufactured or disseminated in any form without express written permission from the publisher.

	Interior branch tests using parsimony	321
	A multiple-branch counterpart of interior branch tests	322
	Testing the molecular clock	322
	Parsimony-based methods	323
	Distance-based methods	323
	Likelihood-based methods	323
	The relative rate test	324
	Simulation tests based on likelihood	328
	Further literature	329
	More exact tests and confidence intervals	329
	Tests for three species with a clock	330
	Bremer support	330
	Zander's conditional probability of reconstruction	331
	More generalized confidence sets	332
	O	
20	Bootstrap, jackknife, and permutation tests	335
	The bootstrap and the jackknife	335
	Bootstrapping and phylogenies	337
	The delete-half jackknife	339
	The bootstrap and jackknife for phylogenies	340
	The multiple-tests problem	342
	Independence of characters	343
	Identical distribution — a problem?	343
	Invariant characters and resampling methods	344
	Biases in bootstrap and jackknife probabilities	346
	P values in a simple normal case	346
	Methods of reducing the bias	349
	The drug testing analogy	352
	Alternatives to <i>P</i> values	355
	Probabilities of trees	356
	Using tree distances	356
	Jackknifing species	357
	Parametric bootstrapping	357
	Advantages and disadvantages of the parametric bootstrap	358
	Permutation tests	359
	Permuting species within characters	359
	Permuting characters	361
	Skewness of tree length distribution	
		J 0 2
21	Paired-sites tests	364
	An example	365
	Multiple trees	369
	The SH test	370
	Other multiple-comparison tests	371
	* *	

 $^{^{\}circ}$ Sinauer Associates, Inc. This material cannot be copied, reproduced, manufactured or disseminated in any form without express written permission from the publisher.

	Testing other parameters	372
	Perspective	372
22	Invariants	373
22		375
	Symmetry invariants	
	Three-species invariants	376
	Lake's linear invariants	378
	Cavender's quadratic invariants	380
	The K invariants	380
	The L invariants	381
	Generalization of Cavender's L invariants	382
	Drolet and Sankoff's k -state quadratic invariants	385
	Clock invariants	385
	General methods for finding invariants	386
	Fourier transform methods	386
	Gröbner bases and other general methods	387
	Expressions for all the 3ST invariants	387
	Finding all invariants empirically	388
	All linear invariants	388
	Special cases and extensions	389
	Invariants and evolutionary rates	389
	Testing invariants	389
	What use are invariants?	390
23	Brownian motion and gene frequencies	391
	Brownian motion	391
	Likelihood for a phylogeny	392
	What likelihood to compute?	395
	Assuming a clock	399
	The REML approach	401
	Multiple characters and Kronecker products	402
	Pruning the likelihood	404
	Maximizing the likelihood	406
	Inferring ancestral states	408
	Squared-change parsimony	409
	Gene frequencies and Brownian motion	410
	Using approximate Brownian motion	412
	Distances from gene frequencies	412
	A more exact likelihood method	413
	Gene frequency parsimony	413
	concinequency purchasery	110

 $^{^{\}circ}$ Sinauer Associates, Inc. This material cannot be copied, reproduced, manufactured or disseminated in any form without express written permission from the publisher.

24	Quantitative characters	415
	Neutral models of quantitative characters	416
	Changes due to natural selection	419
	Selective correlation	419
	Covariances of multiple characters in multiple lineages	420
	Selection for an optimum	421
	Brownian motion and selection	422
	Correcting for correlations	422
	Punctuational models	424
	Inferring phylogenies and correlations	425
	Chasing a common optimum	426
	The character-coding "problem"	426
	Continuous-character parsimony methods	428
	Manhattan metric parsimony	428
	Other parsimony methods	429
	Threshold models	429
25	Comparative methods	432
	An example with discrete states	432
	An example with continuous characters	433
	The contrasts method	435
	Correlations between characters	436
	When the tree is not completely known	437
	Inferring change in a branch	438
	Sampling error	439
	The standard regression and other variations	442
	Generalized least squares	442
	Phylogenetic autocorrelation	442
	Transformations of time	442
	Should we use the phylogeny at all?	443
	Paired-lineage tests	443
	Discrete characters	444
	Ridley's method	444
	Concentrated-changes tests	445
	A paired-lineages test	446
	Methods using likelihood	446
	Advantages of the likelihood approach	448
	Molecular applications	448
26	Coalescent trees	450
	Kingman's coalescent	454
	Bugs in a box—an analogy	460
	Effect of varying population size	460
	Migration	461

 $^{^{\}hbox{$\mathbb C$}}$ Sinauer Associates, Inc. This material cannot be copied, reproduced, manufactured or disseminated in any form without express written permission from the publisher.

	Effect of recombination	464
	Coalescents and natural selection	467
	Neuhauser and Krone's method	468
	**************************************	4=0
27	Likelihood calculations on coalescents	470
	The basic equation	470
	Using accurate genealogies—a reverie	471
	Two random sampling methods	473
	A Metropolis-Hastings method	473
	Griffiths and Tavaré's method	476
	Bayesian methods	482
	MCMC for a variety of coalescent models	482
	Single-tree methods	484
	Slatkin and Maddison's method	484
	Fu's method	485
	Summary-statistic methods	485
	Watterson's method	485
	Other summary-statistic methods	486
	Testing for recombination	486
20	Carlamata and an electronic	400
28	Coalescents and species trees	488
	Methods of inferring the species phylogeny	491
	Reconciled tree parsimony approaches	492
	Likelihood	493
29	Alignment, gene families, and genomics	496
	Alignment	497
	Why phylogenies are important	497
	Parsimony method	498
	Approximations and progressive alignment	500
	Probabilistic models	502
	Bishop and Thompson's method	502
	The minimum message length method	502
	The TKF model	503
	Multibase insertions and deletions	506
	Tree HMMs	507
	Trees	507
	Inferring the alignment	509
	Gene families	509
	Reconciled trees	510
	Reconstructing duplications	511
	Rooting unrooted trees	512
	A likelihood analysis	514
	Comparative genomics	515
	Comparative genomics	

 $^{^{\}circ}$ Sinauer Associates, Inc. This material cannot be copied, reproduced, manufactured or disseminated in any form without express written permission from the publisher.

	Tandemly repeated genes	515
	Inversions	516
	Inversions in trees	516
	Inversions, transpositions, and translocations	516
	Breakpoint and neighbor-coding approximations	517
	Synteny	517
	Probabilistic models	518
	Genome signature methods	519
30	Consensus trees and distances between trees	521
	Consensus trees	521
	Strict consensus	522
	Majority-rule consensus	523
	Adams consensus tree	524
	A dismaying result	525
	Consensus using branch lengths	526
	Other consensus tree methods	526
	Consensus subtrees	528
	Distances between trees	528
	The symmetric difference	529
	The quartets distance	530
	The nearest-neighbor interchange distance	530
	The path-length-difference metric	531
	Distances using branch lengths	531
	Are these distances truly distances?	533
	Consensus trees and distances	534
	Trees significantly the same? different?	534
	What do consensus trees and tree distances tell us?	535
	The total evidence debate	536
	A modest proposal	537
31	Biogeography, hosts, and parasites	539
	Component compatibility	540
	Brooks parsimony	541
	Event-based parsimony methods	543
	Relation to tree reconciliation	545
	Randomization tests	545
	Statistical inference	546
32	Phylogenies and paleontology	547
	Stratigraphic indices	548
	Stratophenetics	549
	Stratocladistics	550
	Controversies	552

 $^{^{\}hbox{$\mathbb C$}}$ Sinauer Associates, Inc. This material cannot be copied, reproduced, manufactured or disseminated in any form without express written permission from the publisher.

		xvii
	A not-quite-likelihood method Stratolikelihood Making a full likelihood method More realistic fossilization models Fossils within species: Sequential sampling Between species	553 553 554 554 555 557
33	Tests based on tree shape Using the topology only Imbalance at the root Harding's probabilities of tree shapes Tests from shapes Measures of overall asymmetry Choosing a powerful test Tests using times Lineage plots Likelihood formulas Other likelihood approaches Other statistical approaches A time transformation Characters and key innovations Work remaining	559 559 560 561 562 563 564 565 567 569 570 571
34	Drawing trees Issues in drawing rooted trees	573 574 574 576 578 578 580 582 584
35	Phylogeny software Trees, records, and pointers Declaring records Traversing the tree Unrooted tree data structures Tree file formats Widely used phylogeny programs and packages	585 585 586 587 589 590 591
References		
Inc	Index	

 $^{^{\}hbox{$\mathbb C$}}$ Sinauer Associates, Inc. This material cannot be copied, reproduced, manufactured or disseminated in any form without express written permission from the publisher.