

PATENT ABSTRACTS OF JAPAN

(11) Publication number: 07255068 A

(43) Date of publication of application: 03.10.95

(51) Int. CI H04N 13/00

(21) Application number: 06068117 (71) Applicant: SONY CORP

(22) Date of filing: 14.03.94 (72) Inventor: ISOBE TOSHINOBU OURA KOICHI

(54) TELEVISION SYSTEM AND DISPLAY DEVICE

(57) Abstract:

PURPOSE: To automatically switch the display modes of a standard television signal and a stereoscopic television signal by discriminating between them.

CONSTITUTION: A discrimination signal which is inverted by fields and lines is added in a pseudo blanking period between two video signals of a right-eye image and a left-eye image utilizing the parallax between both eyes. Further, the display device is equipped with a discrimination signal detection part 5 which detects the discrimination signal, a vertical synchronizing signal generating circuit 6c which generates a vertical synchronizing signal VD₂ for deflection at a frequency twice as high as that of a standard vertical synchronizing signal VD, a switch 6g which selects the vertical synchronizing signal VD or VD2 and supplies them to a deflection means 6h, and spectacles IF6k which outputs control signals SSW, and SSW, for controlling the opening and closure of the shutter means of a spectacles device 7 in synchronism with the vertical synchronizing signal VD₂. When the stereoscopic television signal is inputted, the vertical synchronizing signal VD, is automatically selected and supplied to the deflection means 6h, and the spectacles IF6k output the control signals SSW₁ and SSW₂ controlling the opening and closure of the shutter means of the spectacles device 7.

COPYRIGHT: (C)1995,JPO

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

庁内整理番号

(11)特許出願公開番号

特開平7-255068

(43)公開日 平成7年(1995)10月3日

(51) Int.Cl.⁶

識別記号

FΙ

技術表示箇所

H04N 13/00

審査請求 未請求 請求項の数6 FD (全 14 頁)

(21)出願番号

特願平6-68117

(22)出顧日

平成6年(1994) 3月14日

(71)出願人 000002185

ソニー株式会社

東京都品川区北品川6丁目7番35号

(72)発明者 磯辺 敏信

東京都品川区北品川6丁目7番35号 ソニ

一株式会社内

(72)発明者 大浦 浩一

東京都品川区北品川6丁目7番35号 ソニ

一株式会社内

(74)代理人 弁理士 脇 篤夫 (外1名)

(54) [発明の名称] テレビジョン方式及び表示装置

(57)【要約】

【目的】 標準テレビジョン信号と立体テレビジョン信号を識別して、その表示モードを自動的に切替える。

【構成】 両眼視差を利用した右眼画像及び左眼画像の2個の映像信号間にある疑似ブランキング期間に、フィールド毎、及びライン毎に反転する識別信号を付加する。また、表示装置として、前記識別信号を検出する識別信号検出部5と、標準垂直同期信号VDの2倍の周波数で偏向を行う垂直同期信号VD2を生成する垂直同期信号VD2を生成する垂直同期信号VD2を生成する垂直同期信号VD2を生成する。と、垂直同期信号VD2を出力する眼鏡IF6kを備える。そして、立体テレビジョン信号が入力されたとき、垂直同期信号VD2が自動的に選択されて偏向手段6hに供給し、眼鏡IF6kは眼鏡装置7のシャッタ手段の開閉を制御する制御信号SSW1、SSW2を出力する。

-

【特許請求の範囲】

【請求項1】 奇数及び偶数フィールド信号の各有効走 査期間の映像信号に相当する2個の映像信号が所定の圧 縮比を以て垂直方向に圧縮され、その時間間隔が1/2 フィールド期間となるようなテレビジョン方式におい て、

1

前記奇数及び偶数フィールドの有効走査期間内に上記2個の映像信号があることを識別する識別信号を備えたことを特徴とするテレビジョン方式。

【請求項2】 上記2個のテレビジョン信号は両眼視差 10 を利用した立体画像の右眼画像及び左眼画像であることを特徴とする請求項1に記載のテレビジョン方式。

【請求項3】 上記識別信号は上記2個の映像信号の間に在る疑似垂直ブランキング期間に設けられることを特徴とする請求項1、又は請求項2に記載のテレビジョン方式。

【請求項4】 上記識別信号はフィールド毎、及びライン毎に反転する信号であることを特徴とする請求項1、 又は請求項2、又は請求項3に記載のテレビジョン方式。

【請求項5】 標準のテレビジョン信号となる第一のテレビジョン信号と、該第一のテレビジョン信号の奇数及び偶数フィールド信号の各有効走査期間の映像信号に相当する2個の映像信号が所定の圧縮比を以て垂直方向に圧縮され、その時間間隔が1/2フィールド期間となるような第二のテレビジョン信号を表示することができる表示装置において、

前記2個の映像信号の間に在る疑似ブランキング期間に 付加されている識別信号を検出する識別信号検出手段 レ

標準の垂直同期信号となる第一の垂直同期信号から前記 第二のテレビジョン信号の垂直偏向を行う第二の垂直同 期信号を生成する垂直同期信号発生手段と、

前記識別信号検出手段の検出結果に基づき、前記第一の 垂直同期信号と第二の垂直同期信号を選択して偏向手段 に供給する垂直同期信号選択手段と、

を備え、前記第一の標準のテレビジョン信号が入力されたときには前記第一の垂直同期信号が、また、前記第二のテレビジョン信号が入力されたときには前記第二の垂直同期信号が自動的に選択されて前記偏向手段に供給されることを特徴とする表示装置。

【請求項6】 標準のテレビジョン信号となる第一のテレビジョン信号と、該第一のテレビジョン信号の奇数及び偶数フィールド信号の各有効走査期間の映像信号に相当する2個の映像信号が所定の圧縮比を以て垂直方向に圧縮され、その時間間隔が1/2フィールド期間となるような第二のテレビジョン信号を表示することができる表示装置において、

前記2個の映像信号の間に在る疑似ブランキング期間に 付加されている識別信号を検出する識別信号検出手段 と、

標準の垂直同期信号となる第一の垂直同期信号から前記 第二のテレビジョン信号の垂直偏向を行う第二の垂直同 期信号を生成する垂直同期信号発生手段と、

2

前記識別信号検出手段の検出結果に基づき、前記第一の 垂直同期信号と第二の垂直同期信号を選択して偏向手段 に供給する垂直同期信号選択手段と、

前記識別信号検出手段の検出結果に基づき、前記第二の 垂直同期信号に同期して眼鏡装置に設けられている2個 のシャッタ手段を交互に開閉するか、又は2個のシャッ タ手段を開状態にする制御信号を制御するインターフェ イス手段と、

を備え、前記インターフェイス手段は、前記第一のテレビジョン信号が入力されたときには前記2個のシャッタ 手段を開状態にする制御信号を出力し、前記第二のテレビジョン信号が入力されたときには前記2個のシャッタ 手段を交互に開閉する制御信号を出力することを特徴とする表示装置。

【発明の詳細な説明】

20 [0001]

【産業上の利用分野】本発明は、奇数及び偶数フィールドの各有効走査線期間が2個の映像信号に分割され、例えば立体画像信号として用いられるたテレビジョン方式及びその表示装置にかかわり、各フィールドの有効走査期間内に2つの画像に分割されていることを示す識別信号を備えるテレビジョン方式、及びその表示装置に関するものである。

[0002]

【従来の技術】近年、左眼/右眼の両眼視差を利用し 30 て、左眼画像と右眼画像の2個の映像信号すなわち左フ ィールドと右フィールドの映像信号を、1 系統のテレビ ジョン信号と同様の立体テレビジョン信号に変換したテ レビジョン方式が知られている。それは、例えば米国特 許第4,523,226号明細書に記載されているよう に、左及び右フィールド用の映像信号の有効走査期間を 垂直方向に1/2に圧縮するとともに、その間に疑似垂 直同期信号を含む疑似ブランキング期間を設けて、それ ぞれ奇数及び偶数フィールドの映像信号としたテレビジ ョン信号 (立体テレビジョン信号) を伝送するものであ る。そしてこの立体テレビジョン信号を、通常の垂直偏 向周波数の2倍の周波数でで垂直方向に偏向するCRT 等の表示手段に供給するとともに、この2倍の垂直偏向 周波数に同期して、例えば液晶などからなる一対のシャ ッタ手段が交互に開閉する眼鏡装置を介して見ることに よって、両眼視差により立体的な画像を見ることができ るようにしている。

[0003]

【発明が解決しようとする課題】ところが、前記立体テレビジョン信号と、立体テレビジョン信号でないテレビ 50 ジョン信号、すなわち標準テレビジョン信号は同様の信

号方式で形成されているために、表示装置に入力されたときに標準のテレビジョン信号か、また立体テレビジョン信号であるかを区別することができなかった。したがって、標準の画像表示と立体画像表示を兼用している表示装置を使用している場合は、入力されるテレビジョン信号 (立体又は標準)に応じて、自動的な切替えを行うことが不可能であり、その都度ユーザが標準/立体表示の切替え操作を行う必要があった。また、標準テレビジョン信号と立体テレビジョン信号を識別するための識別信号を、例えば標準テレビジョン信号の帰線期間内に付加することも考えられるが、このためには識別信号の規格化等の必要があり容易に行うことが不可能である。さらに識別信号を有効走査期間内に付加する場合は、その識別信号が例えばノイズとして映像に現れてしまい、映像が劣化してしまうという問題点がある。

[0004]

【課題を解決するための手段】本発明はこのような問題 点を解決するためになされたもので、奇数及び偶数フィールド信号の各有効走査期間の映像信号に相当する2個の映像信号が所定の圧縮比を以て垂直方向に圧縮され、

・その時間間隔が1/2フィールド期間となるようなテレビジョン方式において、前記奇数及び偶数フィールドの有効走査期間内に前記2個の映像信号があることを識別する識別信号を付加するようにする。前記2個のテレビジョン信号は例えば両眼視差を使用した立体画像の左眼画像及び右眼画像とする。また、前記識別信号は前記2個の映像信号の間に在る疑似垂直ブランキング期間に付加され、フィールド毎、及びライン毎に反転する信号である。

【0005】また、標準のテレビジョン信号となる第一 のテレビジョン信号と、該第一のテレビジョン信号の奇 数及び偶数フィールド信号の各有効走査期間の映像信号 に相当する2個の映像信号が、所定の圧縮比を以て垂直 方向に圧縮され、その時間間隔が1/2フィールド期間 となるような第二のテレビジョン信号を表示することが できる表示装置において、前記2個の映像信号の間に在 る疑似ブランキング期間に付加されている識別信号を検 出する識別信号手段と、標準の垂直同期信号となる第一 の垂直同期信号から前記第二のテレビジョン信号の垂直 偏向を行う第二の垂直同期信号を生成する垂直同期信号 発生手段と、前記識別信号手段の検出結果に基づき、前 記第一の垂直同期信号と第二の垂直同期信号を選択して 偏向手段に供給する垂直同期信号選択手段を備え、前記 第一のテレビジョン信号が入力されたときには前記第一 の垂直同期信号が、また、前記第二のテレビジョン信号 が入力されたときには前記第二の垂直同期信号が自動的 に選択されて前記偏向手段に供給されるように表示装置 を構成する。

【0006】さらに前記識別信号手段の検出結果に基づき、前記第二の垂直同期信号に同期して眼鏡装置に設け 50

られている2個のシャッタ手段を交互に開閉するか、又は2個のシャッタ手段を開状態にする制御信号を制御するインターフェイス手段を備え、前記第一のテレビジョン信号が入力されたときには前記2個のシャッタ手段を開状態にする制御信号を出力し、前記第二のテレビジョン信号が入力されたときには前記2個のシャッタ手段を交互に開閉する制御信号を出力するようにする。

[0007]

【作用】例えば立体テレビジョン信号と標準テレビジョン信号を識別する識別信号は、疑似ブランキング期間に付加されフィールド毎及びライン毎に反転する信号なので、映像に例えばノイズなどとして現れることがない。また、表示装置において前記識別信号の検出手段を設けることにより、自動的に表示切替えを行うことができるようになり、例えば立体/標準表示の操作性が向上するようになる。

[0008]

30

【実施例】以下、図1乃至図11に従い本発明のテレビジョン方式及び表示装置の実施例を説明する。本実施例では例えば走査線数1125/フィールド周波数60Hzのハイビジョン信号を標準テレビジョン信号とした立体テレビジョンシステムを例にとして説明する。本実施例の標準テレビジョンとなるハイビジョン信号の映像信号と同期信号の基本特性の一部を説明すると、フレーム当たり走査線数が1125本、有効走査線数が1035本、インターレース比が2:1、フィールド周波数(垂直周波数)が60Hz、ライン周波数(水平周波数)が33.75kHz、垂直ブランキング幅が45ラインである。

【0009】図1は本実施例の立体テレビジョンシステ ムの概要を示すブロック図である。この図で1Lは例え ば左眼用の映像を撮影するテレビカメラ、1 Rは例えば 右眼用の映像を撮影するテレビカメラを示し、それぞれ 視聴者の視線となるような位置に配置され被写体を撮影 して、映像画面L及びRを得る。2は立体信号変換部を 示し、テレビカメラ1L、1Rから入力される2個(左 眼及び右眼)の映像信号の垂直方向の時間軸を圧縮し、 左/右映像信号の合成等をしてL+R画面となるような 信号処理がおこなわれる。この立体信号変換部2は後で くわしく説明するように、奇数及び偶数フィールド信号 の有効走査期間の映像信号に相当する左映像信号、右映 像信号が11:5の圧縮比を以て垂直方向に圧縮され る。そして圧縮された左映像信号、右映像信号の時間間 隔が1/2フィールド期間となるように、各映像信号間 に疑似垂直ブランキング期間が設けられ、1系統のテレ ビジョン信号の奇数及び偶数フィールド信号の各有効走 査線期間に配されてなる立体テレビジョン信号が形成さ れる。なお、テレビカメラ1L、1Rは例えばハイビジ ョン方式の左映像信号、右映像信号が記録されているビ デオテープを再生することができるビデオデッキやレー

ザディスクプレーヤ等と置換しても、上記した場合と同様に立体テレビジョン信号を形成することができる。

【0010】立体信号変換部2で変換された立体テレビ ジョン信号は、立体画像識別信号付加部3に入力され、 疑似垂直ブランキング期間に立体画像識別信号(以下、 単に識別信号という)が付加される。そして識別信号が 付加された立体テレビジョン信号は、例えばVTR等か らなる記憶装置に記録され、再生されるか又は伝送線を 介して供給される記憶/伝送装置部4を経由し、スイッ チSWで選択されてモニタ装置6に入力される。また、 テレビカメラ1Rで撮影された標準のテレビジョン信号 は、そのまま標準画像の出力としても用いられ、この場 合は立体信号変換部2、及び立体画像識別信号付加部3 を介さず、記憶/伝送装置部4からスイッチSWを介し てモニタ装置6に入力されることとなる。そしてスイッ チSWにより標準テレビジョン信号と立体テレビジョン 信号が選択されてモニタ装置6に供給されることにな る。

- 7 【0011】モニタ装置6には後述するような立体画像
- 。 識別信号検出部が設けられており、スイッチSWを介し 20
- 、て入力された映像信号から前記識別信号が検出されたときには立体表示モードで画面表示がなされ、同じく前記識別信号が検出されなかった場合には標準表示モードで画面表示がなされるようにしている。

【0012】以下、上記した立体テレビジョンシステムを構成する各ブロックの説明をする。まず図2乃至図4に従い立体信号変換部2における2個の映像信号の垂直圧縮処理、及び左/右映像信号の合成処理について説明する。

【0013】図2(a)は標準のテレビジョン信号、同 30図(b)は実施例の立体テレビジョン信号を示し、示されている数値で括弧が付されていないものは奇数フィールドの水平ラインの数値、また括弧が付されているものは偶数フィールドの水平ラインの数値を示している。同図(a)に示されているように標準テレビジョン信号の垂直帰線期間の走査線数は奇数・偶数フィールドとも45本[1121H~40H(558H~602H)]、映像信号の有効走査期間の走査線数は奇数フィールドで517本(41H~557H)、偶数フィールドで518本(603H~1120H)である。 40

【0014】同図(b)に示されているように、本実施例の立体テレビジョン信号の垂直帰線期間内の走査線数は、標準テレビジョン信号と同様に奇数・偶数フィールドとも45本[1121H~40H(558H~602H)]である。そして左、及び右映像信号の奇数・偶数フィールドの有効走査期間の走査線数517本及び518本を5/11を掛けて、それぞれの走査線数を235本に圧縮するようにする。このとき、奇数フィールドの517本に5を掛けた値は11では割り切れないので、517に5/11を掛け余りの1を後述するブランキン50

6

グで吸収するものとする。このようにして11:5の圧縮比を以て圧縮された各映像信号を、奇数・偶数フィールドの有効帰線期間において、走査線46本分の疑似ブランキングを挟んで右、左の順に配し、さらに、圧縮された右映像信号の後に奇数・偶数フィールドにおいてそれぞれ走査線1本分及び2本分のブランキング期間を設けるようにする。

【0015】このようにして、奇数フィールドでは41 H~275Hには圧縮された左映像信号、276H~321Hには疑似ブランキング期間、332H~556Hには圧縮された右映像信号が位置し、最後にプランキングが557Hに位置するようになる。また、偶数フィールドでは603H~837Hには圧縮された左映像信号、838H~883Hには疑似ブランキング期間、884H~1118Hには圧縮された右映像信号が位置し、最後にブランキングが1119H~1120Hに位置するようになる。

【0016】図3は立体信号変換部2を構成する回路ブ ロックの一例を示す図である。この図で2a、2bはテ レビカメラ1L、1Rから入力される左及び右輝度信号 (Y_L:Y_R) 及び色差信号 (Pb_L、Pr_L:Pb _R、Pr_R)をデジタル信号に変換するA/D変換器、 2 d、2 e は垂直方向の折り返し妨害を防ぐための垂直 ローパスフィルタを示す。2 f、2 g はデュアルポート メモリを示し、垂直ローパスフィルタ2d、2eを介し て供給されたライン信号に対して、後述するアドレス信 号に従い間引きによる圧縮処理を行う。2hは同期分離 回路2 c から出力される水平同期信号及びカラーバース ト信号に基づいて、書き込みアドレス信号を形成する書 き込みアドレスカウンタ、2 i は同様にして同期分離回 路2cから出力される水平同期信号及びカラーバースト 信号に基づいて、読み出しアドレス信号を形成する読み 出しアドレスカウンタを示す。

【0017】2 kはデュアルポートメモリ2f、2gから出力される各輝度信号(YL:YR)、及び色差信号(PbL、PrL:PbR、PrR)を合成する合成スイッチを示す。この合成スイッチ2kにおいて、特に各輝度信号(YL:YR)は同期信号発生回路2jから供給される水平及び垂直同期信号、並びにカラーバースト40信号に基づいて合成される。21はD/A変換器を示し、合成スイッチ2kで合成された輝度信号Yx、及び色差信号Pbx、Prxをアナログ信号に変換して出力する。

【0018】上記した回路構成において、まずテレビカメラ1 L から入力される左輝度信号及び色差信号(Y L、PbL、PrL)は入力端子 t1 から、またテレビカメラ1 R から入力される右輝度信号及び色差信号(Y R、PbR、PrR)は入力端子 t2 から入力され、A /D変換器 2a、2bに供給される。ここでA /D変換された左輝度信号及び色差信号(YL、PbL、Pr

L)、右輝度信号及び色差信号(YR、PbR、Pr R) は垂直方向の折り返し妨害を防ぐために垂直ローパ スフィルタ2d、2eに入力される。

【0019】図4は垂直ローパスフィルタ2d、2eの 構成を示す図である。この垂直ローパスフィルタ2d、 2 e は、それぞれ入力信号を1水平ライン毎に遅延させ る1水平周期遅延器DL1~DL10、係数K1~K11を 有している係数乗算器M1 ~M11、加算器AD1 ~AD 10からなる11次のフィルタである。

【0020】入力端子tinからの入力信号を縦続接続さ れた10段の1水平周期遅延器DL1~DL10に供給し て、その各出力に係数乗算器M1 ~M11によって係数K 1 ~K11を乗算する。この乗算結果をそれぞれ加算器A D1 ~AD10に供給して累積加算して、出力端子 t out から折り返し妨害の除去された左及び右輝度信号(Y L :YR) 並びに左及び右色差信号(Pbc、Prc: PbR、PrR) が得られる。係数乗算器M1~M11は 水平同期信号HD及び垂直同期信号VDが供給されるカ ⁹ ウンタCNからの係数出力によって、所定の走査線番号 € に合わせた係数にセットされる。この場合、圧縮比が1 1:5であるので、図5(a)に示されているように1 1本の走査線n~n+10が、この垂直ローパスフィル タ2d、2eによって同図(b)に示されているよう に、走査線m、m+1、m+1、m+2、m+2、m+ 3、m+3、m+4、m+4、m+4に変換される。さ らに走査線n+10以降も同様の処理によって走査線m +5、m+5、m+6、m+6・・・・に変換される。 【0021】このようにして垂直ローパスフィルタ2 d、2eからの左及び右輝度信号($Y_L:Y_R$) 並びに 左及び右色差信号(Pbc、Prc:Pbr、Prr) はそれぞれデュアルポートフレームメモリ2f、2gに 供給される。そして、前記書き込み/読みだしアドレス 信号に従いライン信号の間引きによる圧縮処理がなされ るが、ここでは垂直ローパスフィルタ2d、2eから出 力される走査線の位置を変換する処理が行われる。

【0022】図5 (c) はデュアルポートフレームメモ リ2f、2gの読み出し出力を示す図である。デュアル ポートフレームメモリ2f、2gは垂直ローパスフィル タ2d、2eを介して左及び右輝度信号(YL :YR) 並びに左及び右色差信号 (Pbc、Prc: Pbc、P 40 r_R) を入力すると、前記各アドレス信号に従い、1ラ イン毎に書き込みアドレス及び読み出しアドレスを変化 させる。このときの書き込みは、走査線m、m+1、m +2、m+3は1ライン毎、走査線m+4については2 ライン毎というタイミングで行う。そして、読み出し は、水平ラインの41H及び322Hを基準として、走 査線m~m+234をライン毎に連続して行うようにす る。さらに走査線m+5以降も同じタイミングで書き込 みが行われる。

てデュアルポートフレームメモリ2f、2gで圧縮され た左及び右輝度信号 (YL:YR) 並びに左及び右色差 信号(P b L 、 P r L : P b R 、 P r R) は合成スイッ チ2kに供給されて合成される。そして立体テレビジョ ン信号の輝度信号Yェ、色差信号Pbェ、 Prェ として 出力される。この輝度信号Yx 、色差信号Pbx 、Pr x はD/A変換器21によってアナログ信号に変換さ れ、後段に配されてる立体画像識別信号付加部3に供給 される。

8

【0024】次に立体画像識別信号付加部3について説 明する。図6は立体画像識別信号付加部3の回路ブロッ クの一例を示す図である。この図で3 a は同期分離回路 を示し、立体信号変換部2から供給される輝度信号Yx 色左信号Pbx 、Prx から同期信号を抽出し、水平同 期信号H p 、垂直同期信号V p 、フレーム同期信号F p を出力する。出力された各同期信号は、PLL回路3 b、Cカウンタ3c、Hカウンタ3d、Vカウンタ3e にクロック信号又はリセット信号として供給される。3 f はゲート回路を示し疑似ブランキング期間の有効走査 期間にのみスイッチ3hが接点b側に接続されるような スイッチングパルスを形成する。3gはエクスクルーシ ブ O R 回路を示し、上記各カウンタ (3 c 、 3 d 、 3 e) の出力の排他的論理和をとり識別信号として出力す

【0025】まず、同期信号分離回路3aから出力され る水平同期信号HpはPLL回路3bに入力され水平同 期信号Hpに同期した16.2MHzのパルスCk1 を 発生する。そしてCカウンタ3cのクロック端子C1に パルスCkı、リセット端子Rıに水平同期信号Hpを 入力し、8分周した水平同期信号Hpに同期した約0. 5 μ S のパルス C k 2 を出力する。Ηカウンタ 3 d は水 平同期信号H p をクロック端子C2 、垂直同期信号V p をリセット端子R1に入力し、奇数ラインが『O』、偶 数ラインが『1』となるようなパルスLOEを形成して 出力する。Vカウンタ3eは垂直同期信号Vpをクロッ ク端子C。、フレーム同期信号F p をリセット端子R。 として入力し、同じく奇数フィールドが『0』、偶数フ ィールドが『1』となるようなパルスVOEを形成して 出力する。

【0026】そして上記各カウンタ3c、3d、3eか ら出力されるパルスCk₂、LOE、VOEをエクスク ルーシブOR回路3gに入力する。ここでまずパルスC k_2 パルスLOEの排他的論理和をとり、さらにその排 他的論理和出力とパルスVOEとの排他的論理和をとる ようにする。前記したようにС k 2 は 0. 5 μ S 幅の 『0』と『1』が50個交互に繰り返されるパルスであ り、これがライン毎、フィールド毎に反転して出力され るようになる。本発明ではこのパルスDpを、後述する ように276H~321H、838H~882Hの疑似 【0023】図3に戻って説明する。上記したようにし 50 ブランキング期間に付加することにより立体テレビジョ

ン信号の職別信号として用いるようにする。この職別信号は、1 ラインに5 0 データ、1 フィールドでは5 0 × 4 6 = 2 3 0 0 データとなり、1 フレームでは2 3 0 0 × 2 = 4 6 0 0 個のデータとなる。

【0027】図7は有効走査期間内に付加される識別信号を模式的に示す図であり、同図(a)は第一フィールド奇数ライン、同図(b)は第一フィールド偶数ライン、同図(c)は第二フィールド奇数ライン、同図(d)は第二フィールドの識別信号を示す。図示されているように、第一フィールド奇数ライン(a)と第一フ 10ィールド偶数ライン(b)の疑似ブランキング期間に付加される識別信号、及び第二フィールド奇数ライン(c)と第二フィールド偶数ライン(d)の疑似ブランキング期間に付加される識別信号はライン毎に反転している信号となる。また第一フィールド奇数ライン(a)

期間に付加される識別信号、及び第一フィールド偶数ライン(b)と第二フィールド偶数ライン(d)の疑似ブランキング期間に付加される識別信号はフィールド毎に反転している信号となる。

と第二フィールド奇数ライン(c)の疑似ブランキング

【0028】図6にもどり説明する。ゲート回路3fに はCカウンタ3cから水平有効期間のみ『1』となるパ ルスと、Hカウンタ3dから疑似ブランキング期間のみ 『1』となるパルスが入力される。そしてゲート回路3 fにおいてこられ2個のパルスの論理積をとり、疑似ブ ランキング期間の有効走査期間のみに『1』となるよう なスイッチングパルスSpをスイッチ3hに供給する。 スイッチ3hはスイッチングパルスSpが『0』の時、 すなわち左又は右映像信号の期間は接点 a 側に接続され 立体テレビジョン信号が出力されるが、スイッチングパ 30 ルスSpが『1』となったとき、すなわち擬似ブランキ ング期間では接点 b 側に切替えられエクスクルーシブO R回路3gから出力される識別信号Dpが出力されるよ うになる。このようなスイッチ3hのスイッチング動作 によって接点a、bを切替えることにより、立体テレビ ジョン信号における疑似ブランキング期間の有効走査期 間に、図7(a) (b) (c) (d) に示したような識 別信号を付加することができるようになる。

【0029】なお、この識別信号Dpはライン毎、フィールド毎に反転するパルスなので、映像として画面上に出現する確率が非常に低い信号となる。さらに、この識別信号Dpは標準テレビジョン信号の規格に適合しており、立体テレビジョン信号の疑似ブランキング期間に付加するだけで標準テレビジョン信号を用いる記憶装置、伝送装置などで使用することが可能である。

【0030】このようにして識別信号Dpが付加された立体テレビジョン信号は、図1に示した記憶/伝送装置部4を介してモニタ装置6に入力される。そしてモニタ装置6の立体画像識別信号検出部5において識別信号Dpの有無が検出されることになる。

【0031】図8は立体画像識別信号検出部5の回路プロックの一例を示す図である。この図で同期信号分離回路5a、PLL回路5b、Cカウンタ5c、Hカウンタ5d、Vカウンタ5e、ゲート回路5f、エクスクルーシブOR回路5gは、図6において同一の添え字(a、b、c、d、e、f、g)を付して説明した各プロックと同一のものでありここでの説明は省略する。なお、この図に示されているエクスクルーシブOR回路5gからも前記した識別信号Dpと同様の信号が出力されるが、ここでは基準信号Dprとして用いられる。

10

【0032】この図で、5iは入力されたテレビジョン 信号の高周波成分やノイズを抑制するローパスフィルタ (LPF)、5jはコンパレータ、5kは入力されたテ レビジョン信号と基準信号Dprの位相を合わせるラッ チ回路、51は比較器、5mはフレーム毎にリセットを 行うカウンタである。このカウンタ5mはゲート回路5 f から供給されるパルスに従い、映像期間はそのカウン ト動作が停止され、識別信号Dp期間にのみカウントさ れるようになされている。5 n は立体/標準の判別結果 を出力するコンパレータである。入力されたテレビジョ ン信号 (立体/標準) は、LPF5 i、及び同期信号分 離回路5aに供給される。同期信号分離回路5aに供給 されたテレビジョン信号からは図6で説明した場合と同 様に基準信号Dprが形成される。またLPF5iに供 給されたテレビジョン信号はノイズや高周波成分が抑圧 された後に、コンパレータ5jで例えば映像信号の白レ ベル100IREに対して50IREを境に2値化され る。 2 値化されたテレビジョン信号は、ラッチ回路 5 k においてパルスCk2 によってラッチされ、エクスクル ーシブOR回路5gから出力される基準信号Dprと位 相が合わせられる。

【0033】ラッチ回路5jから出力されるテレビジョ ン信号と、エクスクルーシブOR回路5gから出力され る基準信号Dp. を比較器51において比較し、一致し た場合、すなわち入力されたテレビジョン信号に識別信 号Dpが付加されている場合は『1』、また一致しない 場合は『0』を出力するようにする。カウンタ5mでは 比較器51の比較結果である『1』又は『0』が識別信 号Dp期間にのみカウントされる。このときのカウント 方法は、例えば出力が『1』の時にアップカウント、 『0』の時にダウンカウントがなされる。このカウンタ 5 mは前記したように、フレーム同期信号Fpによって リセットされるので、各フィールドの初期段階では 『0』となっている。そして入力されたテレビジョン信 号のすべてのデータが基準信号Dp,と一致した場合に は、カウンタ5mの出力(カウント値)は50×46× 2=4600となる。ここで、例えば全黒信号のような 識別信号でない信号が入力信号である場合は、ラッチ回

路5jの出力は常に『0』となり、比較器5lからも 『0』と『1』が交互に出力されるようになる。その結

11

果カウンタ5mの出力も『O』となる。

【0034】コンパレータ5nはカウンタ5mの出力に従い立体/標準テレビジョン信号の判別結果を出力するが、この場合ノイズマージンなどの諸状況を考慮して、前記したカウント値『4600』の例えば80%である『3680』を基準値とし、カウンタ5mのカウント値が『3680』を超えたときに立体テレビジョン信号であると判別して『1』を出力する。またカウント値が『3680』以下である場合は通常テレビジョン信号であると判別し『0』を出力するようにする。

体画像識別信号検出部5を備えた立体テレビジョンシス テムを構成するモニタ装置6の説明をする。本実施例の モニタ装置6には、交互に開閉するシャッタ手段が設け られている立体画像鑑賞用の眼鏡装置を制御する眼鏡 I F手段が設けられており、モニタ装置6に表示される立 体画像に同期して、前記シャッタ手段の開閉制御を行う ようになされている。なお、図9は眼鏡装置に供給され - る制御信号のインターフェイスを有するモニタ装置6の 回路ブロックの一例、図10は図9に示されている各回 20 路ブロックにおいて生成される同期信号などの波型を示 す図であり、同図 (a) は同期分離回路で抽出される3 3. 75kHz の水平同期信号HD、同図 (b) は12 O Hz同期信号HD2 、同図(c)は圧縮及び合成処理 が施され疑似ブランキング期間に識別信号Dpが付加さ れている立体テレビジョン信号VIDEO 、同図 (d) は同 期分離回路で抽出される60Hz の垂直同期信号VD、 同図 (e) は時間幅が1/(33.75kHz×2)と なる垂直同期信号VDA、同図(f)は垂直同期信号V Dの2倍の120Hz の垂直同期信号VD2、同図 (g) (h) は前記眼鏡装置のシャッタ手段の切替え制

御信号SSW1、SSW2を示す。

【0036】この図で、6aは標準テレビジョン信号又 は立体テレビジョン信号VIDEO の輝度信号Y又はYx、 色差信号Pb、Pr又はPbx、Prx が入力され、各 種の信号処理がなされる映像信号処理部、6bは輝度信 号Y又はYx が入力され水平/垂直同期信号HD、VD を抽出する同期信号分離回路、6cは垂直同期信号VD Aを形成する垂直同期信号形成回路、 6 d は水平同期信 号に基づいて120Hz の同期信号HD2 を生成するP 40 L L 回路を示す。6 e は同期信号HD2 がクロック信 号、垂直同期信号VDAがリセット信号として入力され るアドレスカウンタ、6 f はプログラマブル・ロジック デバイス (以下PLDという)を示し、アドレスカウ ンタ6eから出力されるアドレス信号ADRに基づき、 120Hz の垂直同期信号VD2 を出力するとともに、 眼鏡インターフェイス6kに制御信号SSW1、SSW2を供給 する。眼鏡インターフェイス6kは、立体画像識別信号 検出部5の検出結果に基づき、例えば入力された映像信 号が立体テレビジョン信号VIDEO である場合に、制御信 50

号SSW₁、SSW₂にしたがってシャッタ手段を交互に開閉する制御を行う。また標準テレビジョン信号の場合は常にシャッタ手段が開状態となるような制御を行う。

【0037】6gは垂直同期切替えスイッチを示し、前記した図8の立体画像識別信号検出部5の判別結果に基づき偏向回路6hに供給する垂直同期信号(VD/VD_2)を選択する。例えば標準テレビジョン信号が入力されたときには接点aが選択され通常の垂直同期信号VDによって垂直偏向が行われる。また立体テレビジョン信号VIDEOが入力されたときには接点bに接続され2倍の垂直同期信号 VD_2 によって垂直偏向が行われるようになる。6iは偏向回路6hから供給される偏向電流でCRT6iをドライブする偏向ョークである。

【0039】同期分離回路 6b で抽出された水平同期信号HDは偏向回路 6h 及びPLL回路 6d に供給される。PLL回路 6d では供給された水平同期信号HDに基づいて、標準の垂直周波数 60H との2倍の周波数、即ち、120H の同期信号HD2を生成する。この同期信号HD2を、前記したようにラッチ信号として垂直同期信号形成回路 6c に供給するとともに、アドレスカウンタ 6e にクロック信号として供給する。また、このアドレスカウンタ 6e には垂直同期信号 VDA がリセット信号として供給される。したがってアドレスカウンタ 6e は、このようなクロック信号及びリセット信号を入力することにより、1125 進のカウンタとして動作し、そのカウント値がアドレス信号 ADR として ADR として ADR として ADR と ADR と ADR と ADR と ADR と ADR に供給される。

【0040】 PLD 6 fには、垂直同期信号 VD と同期し交互に変化する周期 281、 281. 5 を有する垂直同期信号 VD $_2$ と、この垂直同期信号 VD $_2$ に同期するとともに、その到来毎に反転する 6 OHz のシャッタ切替え制御信号 SSW1、SSW2 が記憶されている。この制御信号 SSW1、SSW2 はそれぞれ眼鏡装置 7 の左/右のシャッタ手段をオン/オフする制御信号で、例えばパルスがオンであるときにシャッタ手段がオンとされる。したがって左/右のシャッタ手段は 6 OHz の周期でで交互に開閉するようになる。そして、この PLD 6 f にアドレスカウンタ 6 e からアドレス信号 AD Rが供給されることに

より、垂直同期信号 VD_2 は垂直同期切替えスイッチ 6 gを介して偏向回路 6hに、また制御信号 SSW_1 、 SSW_2 は眼鏡インターフェイス 6kに供給されるようになる。

【0041】このとき、本実施例では立体テレビジョン信号VIDEOが入力され識別信号Dpが検出されるので、垂直同期切替えスイッチ6gは接点b側に接続され偏向回路6hには水平同期信号HDと垂直同期信号VD2が供給され、水平及び垂直偏向が行われる。また眼鏡装置7には眼鏡インターフェイス6kを介して制御信号SSW1、SSW2が供給されるようになる。そしてユーザは眼鏡10装置7を掛けてCRT6jに映し出される映像を見ることにより、左/右映像を左眼/右眼で交互に見ることができるようになる。

【0042】また入力端子t。から入力される信号が標準テレビジョン信号である場合は、立体画像識別信号検出部5の判別結果に従い、垂直同期切替えスイッチ6gは接点a側に切替えられ、偏向回路6hには通常の水平同期信号HD、及び垂直同期信号VDが供給され、CRT6jには通常の映像が映し出されるようになる。そして眼鏡インターフェイス6kは立体画像識別信号検出部205の判別結果に従い、左右のシャッタ手段を両方とも開状態を維持するようにする。これにより、ユーザは眼鏡装置7を掛けた状態でも通常の映像を見ることができるようになる。

【0043】このように、立体テレビジョン信号VIDEO と標準テレビジョン信号を識別してその表示モードを自動的に切替えることができるので、立体テレビジョン信号VIDEO 専用の表示装置を用いたり、また表示モードにしたがって眼鏡装置7の取り外しをする必要がなくなる。

【0044】図11は例えば上記したモニタ装置6の映 像出力部分と、眼鏡装置制御部分を別体として、複数の ユーザに対して映写を行う映画館等において使用する場 合の概要を示す図である。ここでは表示手段として例え ばプロジェクタ装置を用いた例を示す。この図で10は プロジェクタ装置を示し、図9に示したモニタ装置6の 眼鏡インターフェイス6kを除いた同様の回路構成とさ れ、立体テレビジョン信号VIDEO が入力されたときには 水平同期信号HD及び垂直同期信号VD2 によって水平 /垂直偏向がなされる。同時に制御出力端子 tr から制 御信号SSW1、SSW2又は立体画像識別信号検出部5の判別 結果に基づいた制御信号が出力される。11は制御出力 端子 tr に接続される眼鏡インターフェイスを示す。こ の眼鏡インターフェイス11も図9に示した眼鏡インタ ーフェイスと同様に眼鏡装置7に設けられているシャッ タ手段の開閉制御を行うインターフェイスであり、本実 施例の場合は一つの眼鏡インターフェイス11に例えば 複数の端子を設け、複数個の眼鏡装置7を接続して多数 の人がスクリーン12に写し出される立体画像を見るこ とができるようになされている。

14

【0045】なお、制御出力端子trと眼鏡インターフェイス11、及び眼鏡インターフェイス11と眼鏡装置7を接続コードで接続する方法以外にも、例えば赤外線やワイヤレス無線機などを用いて各制御信号を供給するようにすることも可能である。

【0046】このように眼鏡インターフェイス11を別体とすることにより、プロジェクタ装置10で検出された識別信号に基づいて出力される制御信号を、外部に配される眼鏡インターフェイス11を介して複数の眼鏡装置7、7、7・・・に供給することが容易になる。そこでこのような眼鏡インターフェイス11を例えば映画館などで用いることで、映画を視聴する観客各自が眼鏡装置7、7、7・・・を掛けて、スクリーン12に映し出される立体画像の映画を鑑賞することができるようになる。

[0047]

30

50

【発明の効果】以上、説明したように本発明のテレビジ ョン方式は例えば立体画像用に圧縮された左及び右映像 信号の間に設けられる疑似ブランキング期間に、立体画 像用の信号であることを識別する識別信号を付加するこ とができる。したがって前記識別信号の検出手段を備え た本発明の表示装置に入力されたテレビジョン信号が、 立体テレビジョン信号であるか、または標準テレビジョ ン信号であるかを判別することができるようになる。従 って、その判別結果にしたがって立体表示モードと標準 表示モードを自動的に切替えて表示することができるよ うになる。さらに、立体画像を視聴するときに用いられ る眼鏡装置のシャッタ手段も同時に制御することができ るので、視聴中に表示モード (立体/標準) が切り替わ った場合でも、眼鏡装置を取り外して視聴する必要がな くなる。また識別信号は有効走査期間に付加されるの で、例えば伝送装置や記録装置等を経由してた場合でも 識別信号が失われることがない。さらに識別信号は疑似 ブランキング期間内に付加されるので、CRTやスクリ ーン等に映し出される映像には現れることがなく、例え ば映画などを立体画像で視聴する場合でも識別信号が視 聴の妨げになることはなく、迫力のある立体画像を視聴

【図面の簡単な説明】

することができるようになる。

【図1】本発明の実施例の立体テレビジョンシステムの 概要を示す図である。

【図2】標準テレビジョン信号及び、実施例の立体テレビジョン信号を摸式的に示す図である。

【図3】立体信号変換部の回路ブロックの一例を示す図 である。

【図4】立体信号変換部を構成する垂直ローパスフィル タの構成を示す図である。

【図5】標準テレビジョン信号を垂直方向に圧縮する場合の説明図である。

【図6】立体画像識別信号付加部の回路ブロックの一例

を示す図である。

【図7】立体画像識別信号付加部において有効走査線期間内に付加される識別信号を摸式的に示す図である。

【図8】立体画像識別信号検出部の回路ブロックの一例 を示す図である。

【図9】立体画像識別信号検出部及び眼鏡インターフェイスを備えたモニタ装置のブロック図の一例である。

【図10】モニタ装置の各ブロックにおいて生成される 各種波形を示す図である。

【図11】モニタ装置のその他の実施例の概要を示す図 10である。

【符号の説明】

- 11、1R テレビカメラ
- 2 立体信号変換器
- 3 立体画像識別信号付加部
- 4 記憶/伝送装置部

- 5 立体画像識別信号検出部
- 6 モニタ装置
- 6 a 映像信号処理部
- 6 b 同期信号分離回路
- 6 c 垂直同期信号成形回路
- 6 d PLL回路
- 6 e アドレスカウンタ
- 6 f プログラマブル・ロジック・デバイス

16

- 6 g 垂直同期切替えスイッチ
- 6 h 偏向回路
 - 6 i 偏向ヨーク
 - 6 j CRT
 - 6 k、11 眼鏡インターフェイス
 - 7 眼鏡装置
 - 10 プロジェクタ装置

【図1】

【図3】

[図2]

[図4]

【図5】

【図6】

【図7】

【図8】

【図9】

【図10】

【図11】

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED TEXT OR DRAWING
BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
□ other:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.