Prowadz	Marek Polewski Cessna 150m zący: Maciej Lasek Grupa: ML6
Projekt 4 Lot szybowy. Biegunowa pręd	kości
Data oddania projektu	OCENA:

Spis treści

1	Lot szybowy	1
2	Przybliżone wartości ekonomicznych i optymalnych warunków lotu szybowego	5
3	Wnjoski	6

1 Lot szybowy

Zależność prędkości opadania w od prędkości lotu V w locie ślizgowym ustalonym nosi biegunowej prędkości. W projekcie tym wyznaczymy ją dla trzech różnych mas samolotu. Dla masy minimalnej, masy maksymalnej i dla średniej arytmetycznej tych mas.

Masa minimalna (samolot + pilot + mała ilość paliwa)	600	kg
Maksymalna	726	kg
Średnia	650	kg

TAB. 1: masy

Pole powierzchni nośnej	15	m^2
Gęstość na wysokości h = 2 km	1.007	$\frac{kg}{m^3}$
V(H = 2km)	54	$\frac{m}{s}$
Maksymalna prędkość dopuszczalna samolotu $1.2*V_{max}$	64,8	$\frac{m}{s}$

TAB. 2: Inne parametry

Z podanych związków można wyznaczyć prędkość lotu V, kąt toru γ oraz prędkość opadania w jako funkcje współczynnik asiły nośnej C_z (współczynnik C_x jest funkcją C_z):

$$V = \sqrt{\frac{2mg}{\rho S} \cdot \frac{1}{\sqrt{C_x^2 + C_z^2}}} \qquad \sqrt{\frac{2mg}{\rho S} \cdot \frac{C_x^2}{\sqrt{(C_x^2 + C_z^2)^3}}}$$

Przybliżenie $C_x(C_z)$ na podstawie :

$$C_x(C_z) = 0.06661 \cdot C_z^2 - 0.001342 \cdot C_z + 0.04781$$

W celu uproszczenia wprowadzę zmienne:

$$\psi(m) = \sqrt{\frac{2mg}{\rho S}} \qquad \Theta_1(C_z, C_z) = \sqrt{\frac{1}{\sqrt{C_x^2 + C_z^2}}} \qquad \Theta_2(C_z, C_z) = \sqrt{\frac{C_x^2}{\sqrt{(C_x^2 + C_z^2)^3}}}$$

, takie że:

$$V(m,C_z,C_x)=\psi(m)\cdot\Theta_1(C_z,C_x) \qquad w(m,C_z,C_x)=\psi(m)\cdot\Theta_2(C_x,C_z)$$

gdzie:

ψ_{min}	26.53
ψ_{max}	29.18
ψ_{sr}	27.61

Wszystkie obliczenia zostały wykonane dla wysokości h=2km, gdzie $\rho(h)\approx 1.007\frac{kg}{m^3}$. Przykładowe obliczenia dla $C_z=0.85$ i $C_x=0.0948$:

$$\psi_{min} = \sqrt{\frac{2 \cdot 600 \cdot 9.81}{1.007 \cdot 15}}$$

$$\Theta_1(C_z, C_z) = \sqrt{\frac{1}{\sqrt{0.85^2 + 0.0948^2}}} = 1.0813 \qquad \Theta_2(C_z, C_z) = \sqrt{\frac{0.0948^2}{\sqrt{(0.0948^2 + 0.85^2)^3}}} = 0.1198$$

$$\gamma = atan(\frac{C_x}{C_z}) = 6.3635[deg]$$

Dla m_{min}

$$V = \psi_{min}(m) \cdot \Theta_1(C_z = 0.85, C_x = 0.0948) = 26.53 \cdot 1.0813 = 28.6874[m/s]$$
$$w = \psi_{min}(m) \cdot \Theta_2(C_z = 0.85, C_x = 0.0948) = 26.53 \cdot 0.1198 = 3.1796[m/s]$$

^{*} zobaczyć rząd dla $C_z = 0.85$.

Ca	Cr	Δ.	Ω.	~	m_{min}		m_{max}	ıax	m_r	
Cz	Cx	Θ_1	Θ_2	γ	V	w	V	w	V	w
1.80	0.2612	0.7415	0.1065	8.2570	19.6718	2.8251	21.6389	3.1076	20.4750	2.9405
1.75	0.2495	0.7521	0.1061	8.1126	19.9544	2.8159	21.9499	3.0975	20.7692	2.9309
1.70	0.2380	0.7633	0.1058	7.9707	20.2493	2.8079	22.2742	3.0887	21.0761	2.9225
1.65	0.2269	0.7749	0.1056	7.8313	20.5573	2.8011	22.6130	3.0812	21.3967	2.9155
1.60	0.2162	0.7870	0.1054	7.6949	20.8794	2.7957	22.9673	3.0753	21.7320	2.9099
1.55	0.2058	0.7997	0.1052	7.5617	21.2168	2.7920	23.3385	3.0712	22.0831	2.9060
1.50	0.1957	0.8131	0.1052	7.4321	21.5707	2.7902	23.7278	3.0692	22.4515	2.9041
1.45	0.1859	0.8271	0.1052	7.3063	21.9426	2.7905	24.1368	3.0696	22.8386	2.9045
1.40	0.1765	0.8418	0.1053	7.1849	22.3340	2.7934	24.5674	3.0727	23.2459	2.9074
1.35	0.1674	0.8574	0.1055	7.0684	22.7467	2.7991	25.0214	3.0790	23.6755	2.9134
1.30	0.1586	0.8738	0.1058	6.9573	23.1828	2.8081	25.5011	3.0889	24.1294	2.9228
1.25	0.1502	0.8912	0.1063	6.8523	23.6445	2.8210	26.0090	3.1031	24.6100	2.9362
1.20	0.1421	0.9097	0.1070	6.7542	24.1345	2.8385	26.5480	3.1223	25.1200	2.9544
1.15	0.1344	0.9293	0.1078	6.6639	24.6559	2.8612	27.1215	3.1473	25.6627	2.9780
1.10	0.1269	0.9503	0.1089	6.5824	25.2121	2.8901	27.7333	3.1791	26.2416	3.0081
1.05	0.1198	0.9727	0.1103	6.5111	25.8073	2.9264	28.3880	3.2191	26.8611	3.0459
1.00	0.1131	0.9968	0.1120	6.4515	26.4462	2.9715	29.0908	3.2687	27.5260	3.0929
0.95	0.1067	1.0228	0.1141	6.4054	27.1344	3.0272	29.8479	3.3299	28.2424	3.1508
0.90	0.1006	1.0508	0.1167	6.3752	27.8788	3.0956	30.6667	3.4052	29.0172	3.2220
0.85	0.0948	1.0813	0.1198	6.3635	28.6874	3.1796	31.5561	3.4976	29.8587	3.3094
0.80	0.0894	1.1146	0.1237	6.3740	29.5699	3.2828	32.5269	3.6111	30.7774	3.4168
0.75	0.0843	1.1511	0.1285	6.4110	30.5386	3.4099	33.5925	3.7509	31.7856	3.5492
0.70	0.0795	1.1914	0.1345	6.4802	31.6083	3.5673	34.7691	3.9240	32.8990	3.7130
0.65	0.0751	1.2362	0.1419	6.5889	32.7979	3.7634	36.0777	4.1398	34.1372	3.9171
0.60	0.0710	1.2865	0.1512	6.7471	34.1317	4.0101	37.5448	4.4111	35.5253	4.1738
0.55	0.0672	1.3434	0.1630	6.9682	35.6411	4.3239	39.2052	4.7563	37.0964	4.5005
0.50	0.0638	1.4085	0.1783	7.2707	37.3684	4.7292	41.1052	5.2022	38.8942	4.9223
0.45	0.0607	1.4840	0.1984	7.6815	39.3712	5.2626	43.3083	5.7889	40.9788	5.4775
0.40	0.0579	1.5730	0.2255	8.2407	41.7310	5.9814	45.9040	6.5795	43.4350	6.2256
0.35	0.0555	1.6798	0.2631	9.0105	44.5668	6.9798	49.0235	7.6778	46.3866	7.2648
0.30	0.0534	1.8116	0.3175	10.0934	48.0612	8.4229	52.8673	9.2651	50.0237	8.7668
0.25	0.0516	1.9792	0.4004	11.6704	52.5093	10.6216	57.7602	11.6838	54.6534	11.0553
0.20	0.0502	2.2022	0.5362	14.0918	58.4241	14.2249	64.2665	15.6473	60.8097	14.8057
0.15	0.0491	2.5171	0.7832	18.1276	66.7793	20.7773	73.4572	22.8550	69.5061	21.6257
0.10	0.0483	3.0005	1.3059	25.8000	79.6050	34.6466	87.5655	38.1112	82.8555	36.0613

TAB. 3: Wyliczone wartości

2 Przybliżone wartości ekonomicznych i optymalnych warunków lotu szybowego

Prędkość ekonomiczna lotu i ekonomiczna opadania oraz prędkość optymalna lotu i optymalna opadania wynosza:

$$\begin{split} V_{opt} &= \sqrt{\frac{2mg}{\rho S \sqrt{\pi \Lambda_e C_{x0}}}} = \psi_{min} \cdot \sqrt{\frac{1}{\sqrt{\pi \Lambda_e C_{x0}}}} = \psi_{min} \cdot \xi \\ w_{opt} &= \sqrt{\frac{8mg \sqrt{C_{x0}}}{\rho S (\sqrt{\pi \Lambda_e})^3}} = \psi_{min} \cdot \sqrt{\frac{4 \sqrt{C_{x0}}}{(\sqrt{\pi \Lambda_e})^3}} = \psi_{min} \cdot \xi \\ V_{ek} &= \sqrt{\frac{2mg}{\rho S \sqrt{3\pi \Lambda_e C_{x0}}}} = V_{opt} \cdot \frac{1}{\sqrt[4]{3}} \\ w_{ek} &= \sqrt{\frac{32mg \sqrt{C_{x0}}}{\rho S (\sqrt{3\pi \Lambda_e})^3}} = w_{opt} \cdot \frac{2}{\sqrt{3\sqrt{3}}} \end{split}$$

Przykładowe obliczenia dla m_{min} :

$$V_{opt} = 26.53 \cdot \sqrt{\frac{1}{\sqrt{\pi 4.88 \cdot 0.05}}} = 26.53 \cdot 1.071 = 27.195 \frac{m}{s}$$

$$w_{opt} = 26.53 \cdot \sqrt{\frac{4\sqrt{0.05}}{(\sqrt{\pi 4.88})^3}} = 26.53 \cdot 0.123 = 3.117 \frac{m}{s}$$

$$V_{ek} = V_{opt} \cdot \frac{1}{\sqrt[4]{3}} = 27.195 \cdot \frac{1}{\sqrt[4]{3}} = 20.664 \frac{m}{s}$$

$$w_{ek} = w_{opt} \cdot \frac{2}{\sqrt{3\sqrt{3}}} = 3.117 \cdot \frac{2}{\sqrt{3\sqrt{3}}} = 2.73 \frac{m}{s}$$

masa	masa wartosc ξ		odczytana [m/s]	obliczona [m/s]	blad [%]	
	V_{opt}	1.071	27.466	27.195	0.995	
min	w_{opt}	0.123	3.044	3.117	2.347	
111111	V_{ek}	0.814	18.830	20.664	8.876	
	w_{ek}	0.142	2.600	2.735	4.942	
	V_{opt}	1.071	31.556	31.245	0.995	
may	w_{opt}	0.123	3.498	3.582	2.347	
max	V_{ek}	0.814	21.630	23.741	8.893	
	w_{ek}	0.142	3.060	3.142	2.624	
	V_{opt}	1.071	29.859	29.565	0.995	
średnia	w_{opt}	0.123	3.309	3.389	2.347	
Siculia	V_{ek}	0.814	20.450	22.464	8.966	
	w_{ek}	0.142	2.910	2.973	2.133	

TAB. 4: Uzyskane wyniki

3 Wnioski

W tym projekcie udało nam się ustalić biegunową prędkości dla różnych mas. Wyliczone przez nas wartości charakterystyczne lotu ślizgowego i prędkości opadania pokrywają się z tymi odczytanymi z wykresów. Błąd względny przekracza 8 % tylko dla prędkości ekonomicznej. Wszystkie inne wartości takie jak prędkość optymalna pokrywają się z tymi podanymi w [2]

Bibliografia

Przewodnik po zadaniach domowych z mechaniki lotu - tab1 Atmosfera wzorcowa https://www.cpaviation.com/images/downloads/CESSNA150POH.pdf Współczynnik na podstawie
Na podstawie przykładu ze strony 722 General Aviation Aircraft