Теория

1. Зачем нужны праймеры?

- для предотвращения деградации фермента
- для нейтрализации побочных продуктов реакции
- для обеспечения оптимальных условий работы фермента
- для запуска копирования целевого фрагмента ДНК

2. Из каких основных стадий состоит ЦПР?

- пурификация, инкубаци, элонгация
- экстракция, пурификация, синтез
- экстракция, элонгация, инкубация
- денатурация, инкубация, элонгация
- денатурация, отжиг, элонгация

3. Почему выделение ДНК проводят в «грязном» помещении?

- для исключения ложноотрицательных результатов
- для улучшения воспроизводимости результатов
- так делают в большинстве современных ПЦР-лабораторий
- согласно рекомендациям по устройству ПЦР-лабораторий
- для снижения риска получения ложноположительных результатов

4. Зачем требуется контролировать содержание остаточных белков продуцента в биотехнологических лекарственных препаратах?

- это один из показателей при регистрации лекарственного препарата
- эти белки могут вызвать побочные реакции и потому регламентируются МинЗдравом
- этот показатель необходим для понимания правильно ли протекает технологический процесс
- это примесь, а их содержание всегда нужно контролировать
- контроль этого показатель не всегда важен и выполняется по усмотрения производителя

5. Зачем требуется останавливаться ферментативную реакцию?

- для того, чтобы продемонстрировать разницу аналитических сигналов положительных и отрицательных контролей

- для построения калибровочной кривой
- для получения экспресс-результатов, с целью сэкономить время
- для получения аналитических сигналов, коррелирующих с концентрацией аналита

6. Какая манипуляция ИФА является самой часто повторяющийся и от тщательности которой зависят получаемые результаты?

- сканирование планшета
- заклеивание планшета адгезивной плёнкой
- подготовка растворов

- промывание лунок планшета

- прогревание растворов и планшета

Практика

- **1.** Опишите пошагово приготовление 0.5 М раствора трис(гидроксиметил)аминомета (рН 6.8) Приготовление 0,5 М раствор трис(гидроксиметил)аминомета (рН 6.8):
 - 1. На лабораторных весах взвешиваем навеску трис(гидроксиметил)аминомета (Трис(гидроксиметил)аминометан гидрохлорид, хч) массой 60,57 г;
 - 2. Помещаем навеску в химический стакан нужного объёма (в данном случае расчёт ведётся на литр конечного раствора). Подписываем стакан: «Название буфера. Дата приготовления»;
 - 3. Помещаем магнитную мешалку в стакан;
 - 4. Добавляем 800-900 мл очищенной воды;
 - 5. Ставим стакан на электрическую мешалку;
 - 6. Опускаем электрод рН метра в раствор. Проверяем значение;
 - 7. По капле добавляем пипеткой Пастера раствор соляной кислоты, проверяя рН по мере добавления. Доводим до нужного значения (рН 6.8);
 - 8. Доводим объём раствора до нужного значения (1 литр) очищенной водой;
 - 9. Обязательно перепроверяем pH: в случае, если значения завышенное (pH > 6.8), то необходимо скорректировать той же кислотой.

Примечание: Расчёт массы навески:

Дано:	<u>Расчёт</u>
$V_{buffer}=1$ (литр) $M_{TRIS}=121.14$ $\left(\frac{\Gamma}{\text{моль}}\right)$ $c=0.5~M$	$m_{ ext{навески}} = c \cdot V_{buffer} \cdot M_{TRIS} = 0.5 \ M \cdot 1 \ (\pi) \cdot 121.14 \ \left(\frac{\Gamma}{\text{моль}}\right)$ $= 60,57 \ \Gamma$

2. Как из двух растворов натрия хлорида 40 % и 10 %, приготовить 30 % раствор натрия хлорида?

Далее, идя по диагонали креста, вычитаем из большего меньшее значение концентрации и получаем массовые соотношения. Полученные числа сокращаем.

Массовые соотношения показывают, что для приготовления 30% -ного раствора надо взять 2 части 40%-ного раствора и 1 часть 10 процентного раствора, т.е. смешать имеющиеся растворы в массовом соотношении 2:1.

3. Для постановки ПЦР требуется концентрация зонда 300 нМ на реакцию. Какой объём исходного раствора зонда с концентрацией 100 пмоль/мкл потребуется на одну реакцию в объёме 25 мкл? Какой объём потребуется для 96 реакций?

Дано:	Решение:
$N_{\text{на реакцию}} = 300 \text{ нM} = 300 * 10^3 \text{ пM};$	Объем исходного раствора на 1-у реакцию:
$C_{\text{исx}} = 100 \text{ пмоль/мкл};$	$V_{\text{исх 1}} = \frac{N_{\text{на реакцию}}}{C_{\text{исх}}} = \frac{300 \cdot 10^3 \text{пМ}}{100 \left(\frac{\text{пмоль}}{\text{пмоль}}\right)}$
$n_{\text{реакций}} = 96;$	$V_{\text{исх 1}} = \frac{V_{\text{на реакцию}}}{C_{\text{исх}}} = \frac{300 \text{ To MV}}{100 \left(\frac{\Pi \text{МОЛЬ}}{\text{МКЛ}}\right)}$
Объём реакционной смеси $V_{peak} = 25$ мкл.	(MKJI /
V _{ucx} - ?	= 3000 мкл = 3 мл
V _{96 р-ций} - ?	Соответственно, данный объем не
	укладывает в объем реакционной смеси (25
	мкл), поэтому следует взять более
	концентрированный стоковый раствор
	зонда.
	Объем исходного раствора на 96 реакций:
	$V_{\text{исх}} = V_{\text{исх 1}} \cdot 96 = 3 \text{ (мл)} \cdot 96 = 288 \text{ (мл)}$
Ответ:	V _{исх} = 3 мл (следует взять более
	концентрированный стоковый раствор
	зонда).
	$V_{96 \text{ p-ций}} = 288 \text{ (мл)}.$

4. Для детекции при постановке ИФА антитело с ферментной метку требуется развести 1 : 25000. Какова будет концентрация антитела с ферментной меткой в рабочем растворе, если его концентрация в исходном растворе составляет 1,47 мг/мл?

Дано:	Решение:
-------	----------

Тестовые задания для стажера

Рабочее разведение конъюгата: 1:25000;	Соотношение компонентов рабочего
Исходная концентрация: $c_{uex} = 1,47 \text{ мг/мл}.$	раствора: 1 (конц. конъюгата): 25000
Рассчитать концентрацию антитела с	(растворитель).
ферментной меткой в рабочем растворе.	Следовательно, концентрация в рабочем
	разведении будет меньше в 25000 раз:
	$c_{\rm p} = \frac{1,47 \left(\frac{M\Gamma}{MJ}\right)}{25000} = 0,0000588 \left(\frac{M\Gamma}{MJ}\right)$
	$= 0.0588 \left(\frac{MK\Gamma}{MJ}\right) = 58.8 \left(\frac{H\Gamma}{MJ}\right)$
Ответ:	$c_p = 0.0588 \text{ (мкг/мл)}$