$$tonf := 1000kgf$$
$$g = 9.807 \frac{m}{s^2}$$

교량용 방호울타리 구조 계산서

2012.6.20

교량명 :

보강방법:

1. 설계 기준

1.1 방호벽 형식

1) 구조 형식 교량용 차량 방호 울타리

2) 방호벽 형식 보완 형식 - 1

3) 방호벽 높이 H := 1.050m

4) 충돌 높이 He := 1.000m

1.2 하중

1) 고정하중

$$W_{c1} := 2.500 \cdot tonf \, m^{-3}$$
 철근 콘크리트 단위 중량

$$W_{C2} := 2.350 \cdot tonf \, m^{-3}$$
 무근 콘크리트 단위 중량

$$W_a := 2.300 \cdot tonf m^{-3}$$
 ASCON 단위중량

2) 충돌 하중

(1) 도로안전시설 설치 및 관리지침 (건설교통부 2001.7)

SB5	송별
14tonf	차량중량 (tonf)
$\frac{80}{\text{hr}}$	충돌 속도 (km/hr)
15deg	충돌 각도 (도)

충격도(J)

(2) AASHTO LRFD Bridge Design Specifications

420J

1070mm

TL – 4	Railing Test Level
240000N	Transverse (N)
80000N	Longitudinal (N)
80000N	Vertical (N)
1070mm	$L_{\rm t}$ and $L_{\rm L}$ (mm)

3) 사용재료

(1) 기존 방호벽

$$f_{ck.old} := 240 \cdot kgf cm^{-2} = 23.536 \times MPa$$

기존 방호벽 콘크리트 설계기준 강도

$$E_{c.old} := \frac{238000}{1000} \cdot kgf cm^{-2} = 23339.827 \times MPa$$

기존 방호벽 콘크리트 탄성계수

$$f_{y.old} := 3000 \cdot kgf cm^{-2} = 294.2 \times MPa$$

기존 방호벽 철근 항복 강도

$$E_{s.old} := 2000000 \cdot kgf cm^{-2} = 196133 \times MPa$$

기존 방호벽 철근 탄성계수

(2) 보완 방호벽 (추가분)

$$f_{ck.new} := 240 \cdot kgf cm^{-2} = 23.536 \times MPa$$

$$E_{c \text{ new}} := 238000 \cdot \text{kgf cm}^{-2} = 23339.827 \times \text{MPa}$$

$$f_{v \text{ new}} := 3000 \cdot \text{kgf cm}^{-2} = 294.2 \times \text{MPa}$$

$$E_{s,new} := 2000000 \cdot kgf cm^{-2} = 196133 \times MPa$$

(3) 슬래브

$$f_{ck.slab} := 270 \cdot kgf \times cm^{-2} = 26.478 \times MPa$$

$$E_{c.slab} := 253000 \cdot kgf \times cm^{-2} = 24810.824 \times MPa$$

$$f_{y.slab} := 4000 \cdot kgf \times cm^{-2} = 392.266 \times MPa$$

$$E_{S.slab} := 2000000 \cdot kgf \times cm^{-2} = 196133 \times MPa$$

(4) 철근 단면적

$$D10 := 0.7133 \cdot cm^2$$

$$D13 := 1.267 \cdot cm^2$$

$$D16 := 1.986 \cdot cm^2$$

$$D19 := 2.865 \cdot cm^2$$

$$D22 := 3.871 \cdot cm^2$$

1.3 참고문헌

2. 가정 단면

【 기존 단면 제원 】

【 보완 단면 제원 】

[Segment 1]

【 기존 방호벽 제원 】

$$H_{seg1} := 700 mm$$

$$B_{seg1} := 1000 mm$$

【 기존 방호벽 철근 제원 】

$$n_{bar.11} := 3$$

$$D_{11} := D13$$

$$n_{bar.h11} := \frac{1000}{200} = 5$$

$$D_{h11} := D16$$

【 보완 방호벽 철근 제원 】

$$n_{bar.12} := 3$$

$$D_{12} := D13$$

$$n_{bar.h12} := \frac{1000}{200} = 5$$

$$D_{h12} := D13$$

[Segment 2]

【 기존 방호벽 제원 】

$$H_{seg2} := 175$$
mm

$$B_{seg2} := 1000 mm$$

【 기존 방호벽 철근 제원 】

$$n_{bar.21} := 0$$

$$D_{21} := D13$$

$$n_{bar.h21} := \frac{1000}{200} = 5$$

$$D_{h21} \coloneqq D13$$

【 보완 방호벽 철근 제원 】

$$n_{bar.22} := 1$$

$$D_{22} := D13$$

$$n_{bar.h22} := \frac{1000}{200} = 5$$

$$D_{h22} \coloneqq D13$$

[Segment 3]

【 기존 방호벽 제원 】

$$H_{seg3} := 175mm$$

$$B_{seg3} := 1000 mm$$

【 기존 방호벽 철근 제원 】

$$n_{bar.31} := 1$$

$$D_{31} := D13$$

$$n_{bar.h31} := \frac{1000}{200} = 5$$

$$D_{h31} := D13$$

【 보완 방호벽 철근 제원 】

$$n_{bar.32} := 1$$

$$D_{32} \coloneqq D13$$

$$n_{bar.h32} := 0$$

$$D_{h32} := D13$$

3. 충돌 시 최대 충격력

3.1 Olsen Model (NCHRP Report 86)

【설계 입력 변수값】

A	차량 앞면으로부터 차량의 무게 중심 까지의 거리	$A := 14.2 \cdot ft = 4.328 m$
В	차량의 폭	$B := 8 \cdot ft = 2.438 m$
θ	충돌각	$\Theta := 15 \cdot \deg = 0.262 \times \operatorname{rad}$
D	방호울타리의 횡방향 변위	$D := 0.0 \cdot mm$
V _o	충돌전 차량의 속도	$V_0 := 80 \cdot \frac{km}{hr} = 22.222 \frac{m}{s}$

1) 감가속도

$$\begin{split} avgG_{lat} &:= \frac{{V_o}^2 \times \sin(\theta)}^2}{2 \times g \times [A \times \sin(\theta) - 0.5 \times B \times (1 - \cos(\theta)) + D]} = 1.564 \\ maxG_{lat} &:= \frac{\pi}{2} \times avgG_{lat} = 2.456 \end{split}$$

2) 횡방향 충격력

W := 14 tonf	차량의 중량	종별	차량 중량 (tonf)
		SB5	14tonf
$maxF_{lat} := maxG_{lat} \times W = 34.386 \times tonf$		SB6	25tonf
iat · iiwii	o lat William Strategy Control	SB7	36tonf

3.2 AASHTO LRFD Bridge Design Specifications

1) 적용기준

TL - 4

2) 황방향 충격력

종별 충격력
maxF_{AASHTO} := 240000N = 24.473 × tonf
SB5 TL-4 240000N
SB6 TL-5 550000N

4. 방호벽 전체 저항력 검토

【설계 변수】

방호울타리 Η 높이.

방호울타리의 파괴길이 L_{c}

충돌하중의 재하길이 L_t

 M_b

연직축에 대한 보 거동을 하는 방호울타리 상단의 저항모멘트

 $M_{\rm w}$

연직축에 대한 방호울타리 벽체의 단위 높이당 저항모멘트

방호울타리의 M_{c}

당오물다디의 바닥판을 지점으로 한 캔틸레버 거동에 의한 단위길이당 저항모멘트

4.1 연직축에 대한 BEAM의 Moment강도 (Mb)

가정한 방호벽 상단에 Beam 구간이 없으므로 Mb=0으로 된다.

 $M_b := 0.000 \cdot tonf m$

4.2 연직축에 대한 WALL의 Moment강도 ($_{\mathrm{M_w} \times \mathrm{~H}}$)

1.1) 기존 방호벽 Segement1 의 정부모멘트 강도

【설계 입력 변수값】

$$f_{v} := f_{v.old} = 294.2 \times MPa$$
 철근의 항복강도

$$f_{ck} \coloneqq f_{ck.old} = 23.536 \times MPa$$
 콘크리트 설계 기준강도

$$d_v := d_{v11} = 13.2 \times cm$$
 단면의 유효깊이

$$D := D_{11} = 1.267 \times cm^2$$
 철근 규격 및 개당 단면적

【계산】

$$As := D \times n_{bar} = 3.801 \times cm^2$$
 사용 철근 단면적

$$a := \dfrac{As imes f_y}{0.85 imes f_{ck} imes b} = 0.799 imes cm$$
 단면의 응력 직사각형의 깊이 계수

Mn
$$_{11} := \phi \times As \times f_y \times \left(d_v - \frac{a}{2}\right) = 145966.785 \times kgf cm$$

 $Mn_{11} = 1.46 \times tonf m$

1.2) 보완 방호벽 (추가분) Segment1의 정.부모멘트 강도

【설계 입력 변수값】

$$f_v := f_{v.new} = 294.2 \times MPa$$

$$f_{ck} := f_{ck.new} = 23.536 \times MPa$$

$$\phi := 1.0$$

$$b := H_{seg1} = 70 \times cm$$

$$d_v := d_{v12} = 19.4 \times cm$$

$$n_{bar} := n_{bar.12} = 3$$

$$D := D_{12} = 1.267 \times \text{cm}^2$$

$$As := D \times n_{bar} = 3.801 \times cm^2$$

$$a := \frac{As \times f_y}{0.85 \times f_{ck} \times b} = 0.799 \times cm$$

Mn ₁₂ :=
$$\phi \times As \times f_y \times \left(d_v - \frac{a}{2}\right) = 216665.385 \times kgf cm$$

2.1) 기존 방호벽 Segment2의 정.부모멘트 강도

【설계 입력 변수값】

$$f_y := f_{y.old} = 294.2 \times MPa$$

$$f_{ck} := f_{ck,old} = 23.536 \times MPa$$

$$\phi := 1.0$$

$$b := H_{seg2} = 17.5 \times cm$$

$$d_v := d_{v21} = 0 \times cm$$

$$n_{bar} := n_{bar.21} = 0$$

$$D := D_{21} = 1.267 \times \text{ cm}^2$$

$$As := D \times n_{bar} = 0 \times cm^2$$

$$a := \frac{As \times f_y}{0.85 \times f_{ck} \times b} = 0 \times cm$$

Mn
$$_{21} := \phi \times As \times f_y \times \left(d_v - \frac{a}{2}\right) = 0 \times kgf \times cm$$

2.2) 보완 방호벽 Segment2의 정.부모멘트 강도

【설계 입력 변수값】

$$f_v := f_{v.new} = 294.2 \times MPa$$

$$f_{ck} := f_{ck.new} = 23.536 \times MPa$$

$$\phi := 1.0$$

$$b := H_{seg2} = 17.5 \times cm$$

$$d_v := d_{v22} = 23.8 \times cm$$

$$n_{bar} := n_{bar,22} = 1$$

$$D := D_{22} = 1.267 \times \text{ cm}^2$$

$$As := D \times n_{bar} = 1.267 \times cm^2$$

$$a := \frac{As \times f_y}{0.85 \times f_{ck} \times b} = 1.065 \times cm$$

Mn
$$_{22} := \phi \times As \times f_y \times \left(d_v - \frac{a}{2}\right) = 88440.326 \times kgf cm$$

3.1) 기존 방호벽 Segment3의 정.부모멘트 강도

【설계 입력 변수값】

$$f_y := f_{y.old} = 294.2 \times MPa$$

$$f_{ck} := f_{ck.old} = 23.536 \times MPa$$

$$\phi := 1.0$$

$$b := H_{seg3} = 17.5 \times cm$$

$$d_v := d_{v31} = 31.9 \times cm$$

$$n_{bar} := n_{bar.31} = 1$$

$$D := D_{31} = 1.267 \times \text{ cm}^2$$

$$As := D \times n_{bar} = 1.267 \times cm^2$$

$$a := \frac{As \times f_y}{0.85 \times f_{ck} \times b} = 1.065 \times cm$$

Mn ₃₁ :=
$$\phi \times As \times f_y \times \left(d_v - \frac{a}{2}\right) = 119228.426 \times kgf cm$$

3.2) 보완 방호벽 Segment3의 정.부모멘트 강도

【설계 입력 변수값】

$$f_v := f_{v.new} = 294.2 \times MPa$$

$$f_{ck} := f_{ck.new} = 23.536 \times MPa$$

$$\phi := 1.0$$

$$b := H_{seg3} = 17.5 \times cm$$

$$d_v := d_{v32} = 34.6 \times cm$$

$$n_{bar} := n_{bar,32} = 1$$

$$D := D_{32} = 1.267 \times \text{ cm}^2$$

[계산]

$$As := D \times n_{bar} = 1.267 \times cm^2$$

$$a := \frac{As \times f_y}{0.85 \times f_{ck} \times b} = 1.065 \times cm$$

Mn ₃₂ :=
$$\phi \times As \times f_y \times \left(d_v - \frac{a}{2}\right) = 129491.126 \times kgf cm$$

4) 전체 모멘트

$$Mn_{11} = 1.46 \times tonf m$$

$$Mn_{12} = 2.167 \times tonf m$$

$$Mn_{21} = 0 \times tonf m$$

$$Mn_{22} = 0.884 \times tonf m$$

$$Mn_{31} = 1.192 \times tonf m$$

Mn
$$_{32} = 1.295 \times \text{tonf m}$$

$$M_w := N\!\!\!/ n \quad _{11} + N\!\!\!/ n \quad _{12} + N\!\!\!/ n \quad _{21} + N\!\!\!/ n \quad _{22} + N\!\!\!/ n \quad _{31} + N\!\!\!/ n \quad _{32} = 6.998 \times tonf \ m$$

 $H \times M_w := M_w = 6.998 \times \text{ tonf m}$

4.3 수평축에 대한 WALL의 Moment강도 ($_{ m M_c}$)

1.1) 기존 방호벽 Segment1의 모멘트 강도

【설계 입력 변수값】

$$f_v := f_{v.old} = 294.2 \times MPa$$

$$f_{ck} := f_{ck.old} = 23.536 \times MPa$$

$$\phi := 1.0$$

$$b := B_{seg1} = 100 \times cm$$

$$d := d_{h11} = 14.3 \times cm$$

$$n_{bar} := n_{bar.h11} = 5$$

$$D := D_{h11} = 1.986 \times cm^2$$

【계산】

$$As := D \times n_{bar} = 9.93 \times cm^2$$

$$a := \frac{As \times f_y}{0.85 \times f_{ck} \times b} = 1.46 \times cm$$

Mc
$$_{11} := \phi \times As \times f_y \times \left(d - \frac{a}{2}\right) = 404245.919 \times kgf cm$$

 $Mc_{11} = 4.042 \times tonf m$

1.2) 보완 방호벽 (추가분) Segment1의 모멘트 강도

【설계 입력 변수값】

$$f_v := f_{v.new} = 294.2 \times MPa$$

$$f_{ck} := f_{ck.new} = 23.536 \times MPa$$

$$\phi := 1.0$$

$$b := B_{seg1} = 100 \times cm$$

$$d := d_{h12} = 21.8 \times cm$$

$$n_{bar} := n_{bar,h12} = 5$$

$$D := D_{h12} = 1.267 \times cm^2$$

【계산】

$$As := D \times n_{bar} = 6.335 \times cm^2$$

$$a := \frac{As \times f_y}{0.85 \times f_{ck} \times b} = 0.932 \times cm$$

$$Mc_{12} := \phi \times As \times f_y \times \left(d - \frac{a}{2}\right) = 405456.303 \times kgf cm$$

 $Mc_{12} = 4.055 \times tonf m$

2.1) 기존 방호벽 Segment2의 모멘트 강도

【설계 입력 변수값】

$$f_v := f_{v.old} = 294.2 \times MPa$$

$$f_{ck} := f_{ck,old} = 23.536 \times MPa$$

$$\phi := 1.0$$

$$b := B_{seg2} = 100 \times cm$$

$$d:=\,d_{h21}=21.4\times\,cm$$

$$n_{bar} := n_{bar.h21} = 5$$

$$D := D_{h21} = 1.267 \times \text{ cm}^2$$

[계산]

$$As := D \times n_{bar} = 6.335 \times cm^2$$

$$a := \frac{As \times f_y}{0.85 \times f_{ck} \times b} = 0.932 \times cm$$

$$Mc_{21} := \phi \times As \times f_y \times \left(d - \frac{a}{2}\right) = 397854.303 \times kgf cm$$

 $Mc_{21} = 3.979 \times tonf m$

2.2) 보완 방호벽 (추가분) Segment2의 모멘트 강도

【설계 입력 변수값】

$$f_v := f_{v.new} = 294.2 \times MPa$$

$$f_{ck} := f_{ck.new} = 23.536 \times MPa$$

$$\phi := 1.0$$

$$b := B_{seg2} = 100 \times cm$$

$$d:=\,d_{h22}=30.7\times\,cm$$

$$n_{bar} := n_{bar.h22} = 5$$

$$D := D_{h22} = 1.267 \times \text{ cm}^2$$

[계산]

$$As := D \times n_{bar} = 6.335 \times cm^2$$

$$a := \frac{As \times f_y}{0.85 \times f_{ck} \times b} = 0.932 \times cm$$

Mc
$$_{22} := \phi \times As \times f_y \times \left(d - \frac{a}{2}\right) = 574600.803 \times kgf cm$$

 $Mc_{22} = 5.746 \times tonf m$

3.1) 기존 방호벽 Segment3의 모멘트 강도

【설계 입력 변수값】

$$f_y := f_{y.old} = 294.2 \times MPa$$

$$f_{ck} := f_{ck.old} = 23.536 \times MPa$$

$$\phi := 1.0$$

$$b := B_{seg3} = 100 \times cm$$

$$d := d_{h31} = 31.8 \times cm$$

$$n_{bar} := n_{bar.h31} = 5$$

$$D := D_{h31} = 1.267 \times \text{ cm}^2$$

[계산]

$$As := D \times n_{bar} = 6.335 \times cm^2$$

$$a := \frac{As \times f_y}{0.85 \times f_{ck} \times b} = 0.932 \times cm$$

Mc ₃₁ :=
$$\phi \times As \times f_y \times \left(d - \frac{a}{2}\right) = 595506.303 \times kgf cm$$

 $Mc_{31} = 5.955 \times tonf m$

3.2) 보완 방호벽 (추가분) Segment3의 모멘트 강도

【설계 입력 변수값】

$$f_y := f_{y.new} = 294.2 \times MPa$$

$$f_{ck} := f_{ck.new} = 23.536 \times MPa$$

$$\phi := 1.0$$

$$b := B_{seg3} = 100 \times cm$$

$$d := d_{h32} = 37 \times cm$$

$$n_{bar} := n_{bar,h32} = 0$$

$$D := D_{h32} = 1.267 \times cm^2$$

【계산】

$$As := D \times n_{bar} = 0 \times cm^2$$

$$a := \frac{As \times f_y}{0.85 \times f_{ck} \times b} = 0 \times cm$$

Mc ₃₂ :=
$$\phi \times As \times f_y \times \left(d - \frac{a}{2}\right) = 0 \times kgf cm$$

 $Mc_{32} = 0 \times tonf m$

4) 전체 모멘트

$$Mc_{11} = 4.042 \times tonf \cdot m$$

$$Mc_{12} = 4.055 \times tonf \cdot m$$

$$Mc_{21} = 3.979 \times tonf \cdot m$$

$$Mc_{22} = 5.746 \times tonf \cdot m$$

$$Mc_{31} = 5.955 \times tonf \cdot m$$

$$Mc_{32} = 0 \times tonf \cdot m$$

$$L_1 := H_{seg1} = 70 \times cm$$

$$L_2 := H_{seg2} = 17.5 \times cm$$

$$L_3 := H_{seg3} = 17.5 \times cm$$

$$M_c := \frac{\left(\text{Mc}_{-11} + \text{Mc}_{-12}\right) \times L_1 + \left(\text{Mc}_{-21} + \text{Mc}_{-22}\right) \times L_2 + \left(\text{Mc}_{-31} + \text{Mc}_{-32}\right) \times L_3}{L_1 + L_2 + L_3} = 8.011 \times tonf \ m$$

$$M_c := M_c \times \frac{1}{m} = 8.011 \times tonf \frac{m}{m}$$

4.4 Critical Length Yield Line Pattern (L_c)

【설계 입력 변수값】

H := 1.05m 방호울타리 높이

 $M_b = 0 imes tonf \ m$ 보 거동을 하는 방호울타리 상단의 저항모멘트

시앙포텐트

 $m M_w$ 방호울타리 벽체의 단위 높이당 저항모멘트

 $(H \times M_w) = 6.998 \times \text{ tonf m}$

 $M_c = 8.011 imes rac{ ext{tonf m}}{ ext{m}}$ 방호울타리의 바닥판을 지점

방호울타리의 바닥판을 지점으로 한 캔틸레버 거동에 의한 단위길이당 저항모멘트

 $(H \times M_w) \times 2 = 13.996 \times tonf \times m$

【계산】

 L_{c} 방호울타리의 파괴길이

 $L_{c} := \frac{L_{t}}{2} + \sqrt{\left(\frac{L_{t}}{2}\right)^{2} + \frac{8 \times H \times \left[M_{b} + \left(H \times M_{w}\right)\right]}{M_{c}}} = 3.296 \,\mathrm{m}$

4.5 Nominal Resistance to Transverse Load ($\rm R_{\rm w}$)

【설계 입력 변수값】

$$L_{\rm t} = 1.07\,{\rm m}$$
 충돌하중의 재하길이

$$M_b = 0 imes tonf \ m$$
 보 거동을 하는 방호울타리 상단의 저항모멘트

$$M_{
m w}$$
 = $6.998 imes$ tonf m 방호울타리 벽체의 단위 높이당 저항모멘트

$$M_c = 8.011 \, \frac{1}{m} \times tonf \, m$$
 방호울타리의 바닥판을 지점으로 한 캔틸레버 거동에 의한 단위길이당 저항모멘트

【계산】

$$R_{w} := \left(\frac{2}{2 \times L_{c} - L_{t}}\right) \times \left[8 \times M_{b} + 8 \times \left(H \times M_{w}\right) + \frac{M_{c} \times L_{c}^{2}}{H}\right] = 50.297 \times tonf$$

 $R_w = 50.297 \times tonf$

1) 우리 기준과 비교

 $maxF_{lat} = 34.386 \times tonf$

$$R_{w.OlsenModel.check} := \begin{bmatrix} "O.K" & if \ R_w > maxF_{lat} & = "O.K" \\ "N.G" & otherwise \\ \end{bmatrix}$$

2) AASHTO (LRFD) 기준과 비교

$$maxF_{AASHTO} = 24.473 \times tonf$$

$$R_{w.AASHTO.check} := \begin{bmatrix} "O.K" & if \ R_w > maxF_{AASHTO} & = "O.K" \\ "N.G" & otherwise \end{bmatrix}$$

4.6 Shear Transfer Between Baririer and Deck

접촉면에서의 전단력 전달

- 1. 이미 발생했거나 발생할 균열
- 2. 서로 다른 재료사이의 접촉면
- 3. 서로 다른 시기에 타설된 콘크리트의 접촉면

접촉면에서의 공칭 전단강도

Pc

$$V_{n} = c \times A_{cv} + \mu \times \left(A_{vf} \times \sigma_{y} + Pc\right)$$

V_n	접촉면에서의 공칭전단강도		
c	점착계수		
μ	마찰계수	c	μ
	1) 일체로 타설한 콘크리트	1.0MPa	$1.4 \times \lambda$
	2) 표면을 의도적으로 6mm 크기의 요철로 거칠게 한 깨끗하고 굳은 콘크리트에 타설한 콘크리트	0.70MPa	1.0 × λ
	3) 표면이 깨끗하고 레이어턴스가 없으나, 의도적으로 요철을 두지 않은 콘크리트에 타설한 콘크리트	0.52MPa	$0.6 \times \lambda$
	4) 구조용 강재에 스터드 또는 전단 연결철근으로 정착된 콘크리트	0.17MPa	0.7× λ
A_{cv}	전단력을 전달하는 콘크리트의 면적		
$A_{ m vf}$	전단면을 가로지르는 전단철근의 단면적		
$\sigma_{\rm y}$	전단철근의 항복강도		

전단면에 수직한 영구 순압력 만약 작용하는 힘이 인장력이면 Pc = 0

1) 충돌에 의한 방호벽의 전단력 (AASHTO (LRFD) p.A13-11 참조)

【설계 입력 변수값】

 $R_{\rm w}$ = 50.297 imes tonf 방호울타리의 저항능력

 $L_c = 3.296\,\mathrm{m}$ 방호울타리의 파괴길이

H = 1.05 m 방호울타리의 높이

【계산】

 $V_{CT} := \frac{R_w}{L_c + 2 \times H} = 9.321 \times \frac{tonf}{m}$

 $T := V_{CT} = 9.321 \times \frac{tonf}{m}$

그림 : 충돌에 의한 방호벽의 전단력

2) Nominal Shear Resistance (도로교표준시방서 (부록) p.5-72 참조)

【설계 입력 변수값】

$$A_{cv} := B_{bottom} \times 1 mm \times \frac{1}{mm} = 420 \times \frac{mm^2}{mm}$$
 방호벽 하단의 벽체 두께

$$A_{vf} := \left(D16 \times \frac{1000}{200} + D16 \times \frac{1000}{200} + D13 \times \frac{1000}{200}\right) \times \frac{1}{m} = 2.619 \times \frac{mm^2}{mm}$$

기존 방호벽의 수직 철근량

$$f_{y.old}$$
 = 294.2 × MPa 기존 방호벽의 배근 철근의 항복강도

$$f_{ck.old}$$
 = $23.536 imes$ MPa 약한 쪽 콘크리트의 28일 압축강도 (기존 방호벽)

$$c := 0.52MPa$$
 점착 계수

$$\mu := 0.6 \times \lambda = 0.6$$
 콘크리트 종류에 따른 계수

$$Pc := 837 \frac{kgf}{m} = 8.208 \times \frac{N}{mm}$$
 전단면에 수직한 영구 순압축력 (방호벽 중량)

[계산]

$$V_n := c \times A_{cv} + \mu \times \left(A_{vf} \times f_{y.new} + Pc\right) = 685.718 \times \frac{N}{mm}$$
 공칭 전단강도
$$V_n = 69.924 \times \frac{tonf}{m}$$

식 (5 8 4 1-1)에 대한 검토

$$f_{ck.new} \times A_{cv} = 9885.103 \times \frac{N}{mm}$$

$$V_{n.check1} \coloneqq \begin{bmatrix} "O.K" & \text{if} \ \ V_n < 0.2 \times \ f_{ck.new} \times \ A_{cv} & = "O.K" \\ "N.G" & \text{otherwise} \end{bmatrix}$$

공칭 전단강도 상한값에 대한 검토

$$0.55$$
MPa × $A_{cv} = 231 \times \frac{N}{mm}$

$$V_{n.check2} \coloneqq \begin{bmatrix} "O.K" & \text{if} \ \ V_n < 5.5 MPa \times A_{cv} & = "O.K" \\ "N.G" & \text{otherwise} \\ \end{bmatrix}$$

충돌에 의한 방호벽에 작용하는 전단력 검토

$$V_{CT} = 91.408 \times \frac{N}{mm}$$

$$V_{n.check3} := \begin{bmatrix} "O.K" & \text{if } V_n > V_{CT} & = "O.K" \\ "N.G" & \text{otherwise} \end{bmatrix}$$

3) 최소 전단 철근 검토 (도로교표준시방서 (부록) p.5-73참조)

【설계 입력 변수값】

 $b_v := 420 \text{mm}$

접촉면의 폭 900mm보다 커서는 안된다

$$s := \frac{200mm + 200mm + 200mm}{4} = 15 \times cm$$

이음재의 행간 간격

철근의 행사이의 종방향 간격은 600mm를 초과할 수 없다

$$A'_{vf} := (D16 + D16 + D13) = 523.9 \times mm^2$$

한 행에 배근된 철근의 량

【계산】

$$A_{cf} := 0.35 MPa \times \frac{b_v \times s}{f_{y.old}} = 74.949 \times mm^2$$

최소전단철근량

$$A_{vf.check} := \begin{bmatrix} "O.K" & if A'_{vf} > A_{cf} = "O.K" \\ "N.G" & otherwise \end{bmatrix}$$

4) 정착길이 검토 (도로교표준시방서 (부록) p.5-135 참조)

전단 마찰 철근은 설계항복강도를 발휘하기 위해 전단면의 양쪽에 매입, 갈고리 또는 용접으로 정착 하여야 한다

【 기본 정착 길이 】

 $d_b := 16mm$

사용 철근의 공칭 지름

$$L_{nb.1} := \frac{\frac{1}{100 MPa^{\frac{1}{2}} \times d_b}}{\sqrt{f_{ck.slab}}} = 310.941 \times mm$$

$$L_{nb.2} := 8 \times d_b = 128 \times mm$$

$$L_{nb,3} := 150 \text{mm}$$

$$L_{nb} := max(L_{nb,1}, L_{nb,2}, L_{nb,3}) = 310.941 \times mm$$

【 수정 계수 】

사용된 철근이 해석에 의해 요구되는 량을 초과하는 경우

$$A_{cf} = 0.749 \times cm^2$$
 최소 필요 전단 철근량
$$A'_{vf} = 5.239 \times cm^2 \quad \text{배근된 전단 철근량}$$

수정계수 :=
$$\frac{A_{cf}}{A'_{vf}}$$
 = 0.143

【정착 길이】

$$L_{dh} \coloneqq L_{nb} \times$$
 수 정 계 수 = 4.448 \times cm

【 사용 정착 길이 】

$$L_{dh.use} := 158mm$$

$$L_{dh.check} := \begin{bmatrix} "O.K" & if \ L_{dh} < L_{dh.use} & = "O.K" \\ "N.G" & otherwise \end{bmatrix}$$

5. 방호벽의 기존 콘크리트와 보강콘크리트의 일체화 검토

5.1 발생가능한 최대 전단력 산정

콘크리트의 전단강도 이상이 발생하게 되면 콘크리트의 부착강도가 충분하더라도 콘크리트의 전단파괴가 발생하게 되므로 부착강도는 콘크리트의 전단강도에 대해 설계한다.

【설계 입력 변수값】

$$f_{ck.new} = 23.536 \times MPa$$

$$V_c := 0.13\text{MPa}^{\frac{1}{2}} \times \sqrt{f_{ck.new}} = 0.631 \times \text{MPa}$$

$$V_u = V_c \times A_c$$

5.2 전단에 대한 저항력 산정 (부착강도)

(도로교표준시방서 (부록) p.5-72 참조)

1) 상면에 대한 검토

【설계 입력 변수값】

 $B_c := 0.27m$

방호벽 상면 기존 방호벽 만나는 부분의 방호벽 두께

방호벽 상면의 전단 저항 단면적 $A_c := B_c \times 1 m = 0.27 m^2$

저항 전단력 $V_u := V_c \times A_c = 170.284 \times kN$

산정

점착 계수 c := 0.52MPa

표면이 깨끗하고 레이어턴스가 없으나, 의도적으로 요철을 두지 않은 콘크리트에 타설한 콘크리트 C = 0.52MPa

 $\mu = 0.6 \times \lambda$

콘크리트 종류에 따른 계수 $\lambda := 1.0$

 $\mu := 0.6 \times \lambda = 0.6$ 마찰 계수

표면이 깨끗하고 레이어턴스가 없으나, 의도적으로 요철을 두지 않은 콘크리트에 타설한 콘크리트 C = 0.52MPa μ = 0.6×λ

전단면에 수직한 영구 순압력 만약 작용하는 힘이 인장력이면 Pc = 0 $P_c := 0.000N$

보완 단면의 수직철근의 항복강도 $f_{y.new} = 294.2 \times MPa$

 $\phi := 0.8$

【 필요 철근량 산정 】

$$V_u = V_n = 0.8 \times \left[c \times A_c + \mu \times \left(A_{vf} \times f_y + Pc \right) \right]$$

$$A_{vf.req} := \frac{\frac{V_u}{\varphi} - c \times A_c}{\mu \times \left(f_{y.new} - P_c\right)} = 4.105 \times cm^2$$

D := D13사용 철근 규격
(보완 단면의 수직철근의 규격)
$$n_{bar} := \frac{1000}{200} = 5$$
사용 갯수
(보완단면의 수직 철근의 배근 간격)

$$A_{\text{s.use}} := D \times n_{\text{bar}} = 6.335 \times \text{cm}^2$$

$$A_{s.check} := \begin{bmatrix} "O.K" & if \ A_{vf.req} < A_{s.use} \ = "O.K" \\ "N.G" & otherwise \end{bmatrix}$$

2) 측면에 대한 검토 (원설계)

표면을 의도적으로 mm 크기의 요철로 거칠게 한 깨끗하고 굳은 콘크리트에 타설한 콘크리트

【설계 입력 변수값】

 $B_c := 0.49 \text{m} \dots = 0.92 \text{ m}$ + 0.3m ... +0.13m

방호벽 측면에서 기존 방호벽과 만나는 부분의 총 연장

 $\sqrt{(215 + 215)^2 + 50^2} = 432.897$

 $\sqrt{(175 \text{mm})^2 + (120 \text{mm})^2} = 0.212 \text{ m}$

 $A_c := B_c \times 1m = 0.92 \,\text{m}^2$

방호벽 상면의 전단 저항 단면적

 $V_u := V_c \times A_c = 580.226 \times kN$

저항 전단력 산정

c := 0.70MPa

점착 계수

표면을 의도적으로 6mm 크기의 요철로 거칠게 한 깨끗하고 굳은 콘크리트에 타설한 콘크리트

C = 0.7MPa $\mu = 1.0 \times \lambda$

 $\lambda := 1.0$

콘크리트 종류에 따른 계수

 $\mu := 1.0 \times \lambda = 1$

마찰 계수

표면을 의도적으로 6mm 크기의 요철로 거칠게 한 깨끗하고 굳은 콘크리트에 타설한 콘크리트 C = 0.7MPa

 $\mu = 1.0 \times \lambda$

 $P_c := 0.000N$

전단면에 수직한 영구 순압력 만약 작용하는 힘이 인장력이면

 $f_y := f_{y.new} = 294.2 \times MPa$

보완 단면의 수직철근의 항복강도

 $\phi := 0.8$

【 필요 철근량 산정 】

$$V_u = V_0 = 0.8 \times [c \times A_c + \mu \times (A_{vf} \times f_y + Pc)]$$

$$A_{vf.req} := \frac{\frac{V_u}{\phi} - c \times A_c}{\mu \times (f_y - P_c)} = 2.763 \times cm^2$$

$$n_{bar} \coloneqq \frac{1000}{400} + \frac{1000}{400} = 5$$
 사용 갯수 (보완단면의 전단 철근의 배근 간격)

$$A_{s.use} := D \times n_{bar} = 3.567 \times cm^2$$

$$A_{s.check} := \begin{bmatrix} "O.K" & if \ A_{vf.req} < A_{s.use} \ = "O.K" \\ "N.G" & otherwise \end{bmatrix}$$

2) 측면에 대한 검토 (철근 변경 검토) D10을 D13으로 표면 치핑 삭제

표면이 깨끗하고 레이턴스가 없으나 의도로적으로 요철을 두지 않은 콘크리트에 타설한 콘크리트

【설계 입력 변수값】

 $B_c := 0.49 \text{m} \dots = 0.92 \text{ m}$ + 0.3m ... +0.13m

방호벽 측면에서 기존 방호벽과 만나는 부분의 총 연장

 $\sqrt{(215 + 215)^2 + 50^2} = 432.897$

 $\sqrt{(175 \text{mm})^2 + (120 \text{mm})^2} = 0.212 \text{ m}$

 $A_c := B_c \times 1m = 0.92 \,\text{m}^2$

방호벽 상면의 전단 저항 단면적

 $V_u := V_c \times A_c = 580.226 \times kN$

저항 전단력 산정

c := 0.52MPa

점착 계수

표면을 의도적으로 6mm 크기의 요철로 거칠게 한 깨끗하고 굳은 콘크리트에 타설한

콘크리트 C = 0.7MPa $\mu = 1.0 \times \lambda$

 $\lambda := 1.0$

콘크리트 종류에 따른 계수

 $\mu := 0.6 \times \lambda = 0.6$

마찰 계수

표면을 의도적으로 6mm 크기의 요철로 거칠게 한 깨끗하고 굳은 콘크리트에 타설한 콘크리트 C = 0.7MPa

 $\mu = 1.0 \times \lambda$

 $P_c := 0.000N$

전단면에 수직한 영구 순압력 만약 작용하는 힘이 인장력이면

Pc = 0

 $f_v := f_{v.new} = 294.2 \times MPa$

보완 단면의 수직철근의 항복강도

 $\phi := 0.8$

【 필요 철근량 산정 】

$$V_u = V_0 = 0.8 \times [c \times A_c + \mu \times (A_{vf} \times f_y + Pc)]$$

$$A_{vf.req} := \frac{\frac{V_u}{\phi} - c \times A_c}{\mu \times (f_y - P_c)} = 13.986 \times cm^2$$

$$n_{bar} \coloneqq \frac{1000}{200} + \frac{1000}{200} = 10$$
 사용 갯수 (보완단면의 전단 철근의 배근 간격)

$$A_{\text{s.use}} := D \times n_{\text{bar}} = 12.67 \times \text{cm}^2$$

$$A_{s.check} \coloneqq \begin{bmatrix} "O.K" & if \ A_{vf.req} < A_{s.use} & = "N.G" \\ "N.G" & otherwise \\ \end{bmatrix}$$

n_{bar} :=
$$\frac{1000}{200} + \frac{1000}{400} = 7.5$$
 사용 갯수 (보완단면의 전단 철근의 배근 간격)

$$A_{s.use} := D \times n_{bar} = 14.895 \times cm^2$$

$$A_{s.check} := \begin{bmatrix} "O.K" & if \ A_{vf.req} < A_{s.use} \ = "O.K" \\ "N.G" & otherwise \end{bmatrix}$$