3.0	* 11.0		
№ варианта	Фамилия И.О.	группа	балл

Домашнее задание по курсу основы электроники

1. Для генератора излучения на трёхуровневой активной среде рассчитать мощность источника накачки, чтобы обеспечить энергию излучения $E_{\rm изл}$. Коэффициент отражения зеркала R. Расчёт произвести с учетом потерь $\beta_{\rm a_9}$ в активном элементе, считая, что инверсная населенность снимается за импульс полностью. Учесть спектральные потери $\eta_{\rm cn}$, и потери из-за распада уровня за время накачки $t_{\rm H}$. Заполнить таблицу:

βмд	η_{τ}	Езап	Епогл	Енак	Рнак

2. Генератор лазерного излучения работает в непрерывном режиме излучения. В этом режиме плотность мощности и коэффициент усиления среды не изменяется. Потери, связанные с усилением спонтанного излучения принять равными потерям на само спонтанное излучение. Задана выходная плотность мощности генератора I_g . Оценить плотность мощности излучения I внутри резонатора. Рассчитать $P_{\text{нак}}$ мощность излучения лампы накачки. Заполнить таблицу:

$\beta_{\mathrm{выв}}$	eta_{Σ}	Ι	Рнак

Решение оформляется в рукописном виде.

1 ПРИЛОЖЕНИЕ 1. ИСХОДНЫЕ ДАННЫЕ

Таблица 1 – Параметры активных сред

Среда	λ _н , нм	λг, нм	τж, С	Карра	Q _{нас} , Дж/см ²
Ruby	500	694	0,00300	0,4	5,7
YAG	808	1064	0,00025	25,0	0,6
GLS	800	1055	0,00034	10,0	5,0

Таблица 2 – Условия к задаче 1

Гр.	Nº	D,	L, cm	R	β _{аэ} , 1/cм	Тмд	η _{sp}	η _{kv}	t _n , c	Еизл, Дж
	0	0,6	5,8	0,5	0,001	0,7	0,5	0,9	0,0005	15
0	1	0,6	5,8	0,49	0,001	0,69	0,5	0,901	0,00055	16,5
0	2	0,6	5,8	0,52	0,001	0,68	0,5	0,902	0,0006	18
0	3	0,6	5,8	0,47	0,001	0,67	0,5	0,903	0,00065	19,5
0	4	0,6	5,8	0,54	0,001	0,66	0,5	0,904	0,0007	21
0	5	0,6	5,8	0,45	0,001	0,65	0,5	0,905	0,00075	22,5
0	6	0,6	5,8	0,56	0,001	0,64	0,5	0,906	0,0008	24
0	7	0,6	5,8	0,43	0,001	0,63	0,5	0,907	0,00085	25,5
0	8	0,6	5,8	0,58	0,001	0,62	0,5	0,908	0,0009	27
0	9	0,6	5,8	0,41	0,001	0,61	0,5	0,909	0,00095	28,5
0	10	0,6	5,8	0,6	0,001	0,6	0,5	0,91	0,001	30
0	11	0,6	5,8	0,39	0,001	0,59	0,5	0,911	0,00105	31,5
0	12	0,6	5,8	0,62	0,001	0,58	0,5	0,912	0,0011	33
0	13	0,6	5,8	0,37	0,001	0,57	0,5	0,913	0,00115	34,5
0	14	0,6	5,8	0,64	0,001	0,56	0,5	0,914	0,0012	36
0	15	0,6	5,8	0,35	0,001	0,55	0,5	0,915	0,00125	37,5
0	16	0,6	5,8	0,66	0,001	0,54	0,5	0,916	0,0013	39
0	17	0,6	5,8	0,33	0,001	0,53	0,5	0,917	0,00135	40,5
0	18	0,6	5,8	0,68	0,001	0,52	0,5	0,918	0,0014	42
0	19	0,6	5,8	0,31	0,001	0,51	0,5	0,919	0,00145	43,5
0	20	0,6	5,8	0,7	0,001	0,5	0,5	0,92	0,0015	45
0	21	0,6	5,8	0,29	0,001	0,49	0,5	0,921	0,00155	46,5
0	22	0,6	5,8	0,72	0,001	0,48	0,5	0,922	0,0016	48
0	23	0,6	5,8	0,27	0,001	0,47	0,5	0,923	0,00165	49,5
0	24	0,6	5,8	0,74	0,001	0,46	0,5	0,924	0,0017	51
0	25	0,6	5,8	0,25	0,001	0,45	0,5	0,925	0,00175	52,5
1	1	0,66	5,22	0,49	0,001	0,69	0,5	0,911	0,00055	16,5
1	2	0,66	5,22	0,52	0,001	0,68	0,5	0,912	0,0006	18
1	3	0,66	5,22	0,47	0,001	0,67	0,5	0,913	0,00065	19,5

Гр.	Nº	D, cm	L, cm	R	β _{аэ} , 1/cм	Т _{мд}	η_{sp}	η_{kv}	t _n , c	Е _{изл} , Дж
1	4	0,66	5,22	0,54	0,001	0,66	0,5	0,914	0,0007	21
1	5	0,66	5,22	0,45	0,001	0,65	0,5	0,915	0,00075	22,5
1	6	0,66	5,22	0,56	0,001	0,64	0,5	0,916	0,0008	24
1	7	0,66	5,22	0,43	0,001	0,63	0,5	0,917	0,00085	25,5
1	8	0,66	5,22	0,58	0,001	0,62	0,5	0,918	0,0009	27
1	9	0,66	5,22	0,41	0,001	0,61	0,5	0,919	0,00095	28,5
1	10	0,66	5,22	0,6	0,001	0,6	0,5	0,92	0,001	30
1	11	0,66	5,22	0,39	0,001	0,59	0,5	0,921	0,00105	31,5
1	12	0,66	5,22	0,62	0,001	0,58	0,5	0,922	0,0011	33
1	13	0,66	5,22	0,37	0,001	0,57	0,5	0,923	0,00115	34,5
1	14	0,66	5,22	0,64	0,001	0,56	0,5	0,924	0,0012	36
1	15	0,66	5,22	0,35	0,001	0,55	0,5	0,925	0,00125	37,5
1	16	0,66	5,22	0,66	0,001	0,54	0,5	0,926	0,0013	39
1	17	0,66	5,22	0,33	0,001	0,53	0,5	0,927	0,00135	40,5
1	18	0,66	5,22	0,68	0,001	0,52	0,5	0,928	0,0014	42
1	19	0,66	5,22	0,31	0,001	0,51	0,5	0,929	0,00145	43,5
1	20	0,66	5,22	0,7	0,001	0,5	0,5	0,93	0,0015	45
1	21	0,66	5,22	0,29	0,001	0,49	0,5	0,931	0,00155	46,5
1	22	0,66	5,22	0,72	0,001	0,48	0,5	0,932	0,0016	48
1	23	0,66	5,22	0,27	0,001	0,47	0,5	0,933	0,00165	49,5
1	24	0,66	5,22	0,74	0,001	0,46	0,5	0,934	0,0017	51
1	25	0,66	5,22	0,25	0,001	0,45	0,5	0,935	0,00175	52,5
2	1	0,72	4,64	0,49	0,001	0,69	0,5	0,921	0,00055	16,5
2	2	0,72	4,64	0,52	0,001	0,68	0,5	0,922	0,0006	18
2	3	0,72	4,64	0,47	0,001	0,67	0,5	0,923	0,00065	19,5
2	4	0,72	4,64	0,54	0,001	0,66	0,5	0,924	0,0007	21
2	5	0,72	4,64	0,45	0,001	0,65	0,5	0,925	0,00075	22,5
2	6	0,72	4,64	0,56	0,001	0,64	0,5	0,926	0,0008	24
2	7	0,72	4,64	0,43	0,001	0,63	0,5	0,927	0,00085	25,5
2	8	0,72	4,64	0,58	0,001	0,62	0,5	0,928	0,0009	27
2	9	0,72	4,64	0,41	0,001	0,61	0,5	0,929	0,00095	28,5
2	10	0,72	4,64	0,6	0,001	0,6	0,5	0,93	0,001	30
2	11	0,72	4,64	0,39	0,001	0,59	0,5	0,931	0,00105	31,5
2	12	0,72	4,64	0,62	0,001	0,58	0,5	0,932	0,0011	33
2	13	0,72	4,64	0,37	0,001	0,57	0,5	0,933	0,00115	34,5
2	14	0,72	4,64	0,64	0,001	0,56	0,5	0,934	0,0012	36
2	15	0,72	4,64	0,35	0,001	0,55	0,5	0,935	0,00125	37,5
2	16	0,72	4,64	0,66	0,001	0,54	0,5	0,936	0,0013	39
2	17	0,72	4,64	0,33	0,001	0,53	0,5	0,937	0,00135	40,5
2	18	0,72	4,64	0,68	0,001	0,52	0,5	0,938	0,0014	42
2	19	0,72	4,64	0,31	0,001	0,51	0,5	0,939	0,00145	43,5
2	20	0,72	4,64	0,7	0,001	0,5	0,5	0,94	0,0015	45
2	21	0,72	4,64	0,29	0,001	0,49	0,5	0,941	0,00155	46,5
2	22	0,72	4,64	0,72	0,001	0,48	0,5	0,942	0,0016	48

Гр.	Nº	D, cm	L, cm	R	β _{аэ} , 1/cм	Тмд	η_{sp}	η_{kv}	t _n , c	Е _{изл} , Дж
2	23	0,72	4,64	0,27	0,001	0,47	0,5	0,943	0,00165	49,5
2	24	0,72	4,64	0,74	0,001	0,46	0,5	0,944	0,0017	51
2	25	0,72	4,64	0,25	0,001	0,45	0,5	0,945	0,00175	52,5
3	1	0,78	4,06	0,49	0,001	0,69	0,5	0,931	0,00055	16,5
3	2	0,78	4,06	0,52	0,001	0,68	0,5	0,932	0,0006	18
3	3	0,78	4,06	0,47	0,001	0,67	0,5	0,933	0,00065	19,5
3	4	0,78	4,06	0,54	0,001	0,66	0,5	0,934	0,0007	21
3	5	0,78	4,06	0,45	0,001	0,65	0,5	0,935	0,00075	22,5
3	6	0,78	4,06	0,56	0,001	0,64	0,5	0,936	0,0008	24
3	7	0,78	4,06	0,43	0,001	0,63	0,5	0,937	0,00085	25,5
3	8	0,78	4,06	0,58	0,001	0,62	0,5	0,938	0,0009	27
3	9	0,78	4,06	0,41	0,001	0,61	0,5	0,939	0,00095	28,5
3	10	0,78	4,06	0,6	0,001	0,6	0,5	0,94	0,001	30
3	11	0,78	4,06	0,39	0,001	0,59	0,5	0,941	0,00105	31,5
3	12	0,78	4,06	0,62	0,001	0,58	0,5	0,942	0,0011	33
3	13	0,78	4,06	0,37	0,001	0,57	0,5	0,943	0,00115	34,5
3	14	0,78	4,06	0,64	0,001	0,56	0,5	0,944	0,0012	36
3	15	0,78	4,06	0,35	0,001	0,55	0,5	0,945	0,00125	37,5
3	16	0,78	4,06	0,66	0,001	0,54	0,5	0,946	0,0013	39
3	17	0,78	4,06	0,33	0,001	0,53	0,5	0,947	0,00135	40,5
3	18	0,78	4,06	0,68	0,001	0,52	0,5	0,948	0,0014	42
3	19	0,78	4,06	0,31	0,001	0,51	0,5	0,949	0,00145	43,5
3	20	0,78	4,06	0,7	0,001	0,5	0,5	0,95	0,0015	45
3	21	0,78	4,06	0,29	0,001	0,49	0,5	0,951	0,00155	46,5
3	22	0,78	4,06	0,72	0,001	0,48	0,5	0,952	0,0016	48
3	23	0,78	4,06	0,27	0,001	0,47	0,5	0,953	0,00165	49,5
3	24	0,78	4,06	0,74	0,001	0,46	0,5	0,954	0,0017	51
3	25	0,78	4,06	0,25	0,001	0,45	0,5	0,955	0,00175	52,5
4	1	0,84	3,48	0,49	0,001	0,69	0,5	0,941	0,00055	16,5
4	2	0,84	3,48	0,52	0,001	0,68	0,5	0,942	0,0006	18
4	3	0,84	3,48	0,47	0,001	0,67	0,5	0,943	0,00065	19,5
4	4	0,84	3,48	0,54	0,001	0,66	0,5	0,944	0,0007	21
4	5	0,84	3,48	0,45	0,001	0,65	0,5	0,945	0,00075	22,5
4	6	0,84	3,48	0,56	0,001	0,64	0,5	0,946	0,0008	24
4	7	0,84	3,48	0,43	0,001	0,63	0,5	0,947	0,00085	25,5
4	8	0,84	3,48	0,58	0,001	0,62	0,5	0,948	0,0009	27
4	9	0,84	3,48	0,41	0,001	0,61	0,5	0,949	0,00095	28,5
4	10	0,84	3,48	0,6	0,001	0,6	0,5	0,95	0,001	30
4	11	0,84	3,48	0,39	0,001	0,59	0,5	0,951	0,00105	31,5
4	12	0,84	3,48	0,62	0,001	0,58	0,5	0,952	0,0011	33
4	13	0,84	3,48	0,37	0,001	0,57	0,5	0,953	0,00115	34,5
4	14	0,84	3,48	0,64	0,001	0,56	0,5	0,954	0,0012	36
4	15	0,84	3,48	0,35	0,001	0,55	0,5	0,955	0,00125	37,5
4	16	0,84	3,48	0,66	0,001	0,54	0,5	0,956	0,0013	39

Гр.	Nº	D,	L, cm	R	βаэ,	Т _{мд}	η_{sp}	η_{kv}	t _n , c	Е _{изл} , Дж
		CM			1/см					
4	17	0,84	3,48	0,33	0,001	0,53	0,5	0,957	0,00135	40,5
4	18	0,84	3,48	0,68	0,001	0,52	0,5	0,958	0,0014	42
4	19	0,84	3,48	0,31	0,001	0,51	0,5	0,959	0,00145	43,5
4	20	0,84	3,48	0,7	0,001	0,5	0,5	0,96	0,0015	45
4	21	0,84	3,48	0,29	0,001	0,49	0,5	0,961	0,00155	46,5
4	22	0,84	3,48	0,72	0,001	0,48	0,5	0,962	0,0016	48
4	23	0,84	3,48	0,27	0,001	0,47	0,5	0,963	0,00165	49,5
4	24	0,84	3,48	0,74	0,001	0,46	0,5	0,964	0,0017	51
4	25	0,84	3,48	0,25	0,001	0,45	0,5	0,965	0,00175	52,5

Таблица 3 – Исходные данные для решения второй задачи

Гр.	Nº	D	L	R	β _{аэ}	η_{sp}	η _{kv}	Ig	среда
	0	0,8	8	0,9	0,0012	0,99	0,76	934	YAG
0	1	0,8	8	0,89	0,0012	0,98	0,77	1027,4	YAG
0	2	0,8	8	0,92	0,0012	0,97	0,78	1120,8	YAG
0	3	0,8	8	0,87	0,0012	0,96	0,79	1214,2	YAG
0	4	0,8	8	0,94	0,0012	0,95	0,8	1307,6	YAG
0	5	0,8	8	0,85	0,0012	0,94	0,81	1401	YAG
0	6	0,8	8	0,96	0,0012	0,93	0,82	1494,4	YAG
0	7	0,8	8	0,83	0,0012	0,92	0,83	1587,8	YAG
0	8	0,8	8	0,98	0,0012	0,91	0,84	1681,2	YAG
0	9	0,8	8	0,81	0,0012	0,9	0,85	1774,6	YAG
0	10	0,8	8	0,9	0,0012	0,99	0,76	1868	YAG
0	11	0,8	8	0,89	0,0012	0,98	0,77	1961,4	YAG
0	12	0,8	8	0,92	0,0012	0,97	0,78	2054,8	YAG
0	13	0,8	8	0,87	0,0012	0,96	0,79	2148,2	YAG
0	14	0,8	8	0,94	0,0012	0,95	0,8	2241,6	YAG
0	15	0,8	8	0,85	0,0012	0,94	0,81	2335	YAG
0	16	0,8	8	0,96	0,0012	0,93	0,82	2428,4	YAG
0	17	0,8	8	0,83	0,0012	0,92	0,83	2521,8	YAG
0	18	0,8	8	0,98	0,0012	0,91	0,84	2615,2	YAG
0	19	0,8	8	0,81	0,0012	0,9	0,85	2708,6	YAG
0	20	0,8	8	0,9	0,0012	0,99	0,76	2802	YAG
0	21	0,8	8	0,89	0,0012	0,98	0,77	2895,4	YAG
0	22	0,8	8	0,92	0,0012	0,97	0,78	2988,8	YAG
0	23	0,8	8	0,87	0,0012	0,96	0,79	3082,2	YAG
0	24	0,8	8	0,94	0,0012	0,95	0,8	3175,6	YAG
0	25	0,8	8	0,85	0,0012	0,94	0,81	3269	YAG
1	1	0,88	7,2	0,89	0,00012	0,97	0,78	1027,4	GLS
1	2	0,88	7,2	0,92	0,00012	0,96	0,79	1120,8	GLS
1	3	0,88	7,2	0,87	0,00012	0,95	0,8	1214,2	GLS

Гр.	Nº	D	L	R	β _{аэ}	η_{sp}	η_{kv}	Ig	среда
1	4	0,88	7,2	0,94	0,00012	0,94	0,81	1307,6	GLS
1	5	0,88	7,2	0,85	0,00012	0,93	0,82	1401	GLS
1	6	0,88	7,2	0,96	0,00012	0,92	0,83	1494,4	GLS
1	7	0,88	7,2	0,83	0,00012	0,91	0,84	1587,8	GLS
1	8	0,88	7,2	0,98	0,00012	0,9	0,85	1681,2	GLS
1	9	0,88	7,2	0,81	0,00012	0,89	0,86	1774,6	GLS
1	10	0,88	7,2	0,9	0,00012	0,98	0,77	1868	GLS
1	11	0,88	7,2	0,89	0,00012	0,97	0,78	1961,4	GLS
1	12	0,88	7,2	0,92	0,00012	0,96	0,79	2054,8	GLS
1	13	0,88	7,2	0,87	0,00012	0,95	0,8	2148,2	GLS
1	14	0,88	7,2	0,94	0,00012	0,94	0,81	2241,6	GLS
1	15	0,88	7,2	0,85	0,00012	0,93	0,82	2335	GLS
1	16	0,88	7,2	0,96	0,00012	0,92	0,83	2428,4	GLS
1	17	0,88	7,2	0,83	0,00012	0,91	0,84	2521,8	GLS
1	18	0,88	7,2	0,98	0,00012	0,9	0,85	2615,2	GLS
1	19	0,88	7,2	0,81	0,00012	0,89	0,86	2708,6	GLS
1	20	0,88	7,2	0,9	0,00012	0,98	0,77	2802	GLS
1	21	0,88	7,2	0,89	0,00012	0,97	0,78	2895,4	GLS
1	22	0,88	7,2	0,92	0,00012	0,96	0,79	2988,8	GLS
1	23	0,88	7,2	0,87	0,00012	0,95	0,8	3082,2	GLS
1	24	0,88	7,2	0,94	0,00012	0,94	0,81	3175,6	GLS
1	25	0,88	7,2	0,85	0,00012	0,93	0,82	3269	GLS
2	1	0,96	6,4	0,89	0,0012	0,96	0,79	1027,4	YAG
2	2	0,96	6,4	0,92	0,0012	0,95	0,8	1120,8	YAG
2	3	0,96	6,4	0,87	0,0012	0,94	0,81	1214,2	YAG
2	4	0,96	6,4	0,94	0,0012	0,93	0,82	1307,6	YAG
2	5	0,96	6,4	0,85	0,0012	0,92	0,83	1401	YAG
2	6	0,96	6,4	0,96	0,0012	0,91	0,84	1494,4	YAG
2	7	0,96	6,4	0,83	0,0012	0,9	0,85	1587,8	YAG
2	8	0,96	6,4	0,98	0,0012	0,89	0,86	1681,2	YAG
2	9	0,96	6,4	0,81	0,0012	0,88	0,87	1774,6	YAG
2	10	0,96	6,4	0,9	0,0012	0,97	0,78	1868	YAG
2	11	0,96	6,4	0,89	0,0012	0,96	0,79	1961,4	YAG
2	12	0,96	6,4	0,92	0,0012	0,95	0,8	2054,8	YAG
2	13	0,96	6,4	0,87	0,0012	0,94	0,81	2148,2	YAG
2	14	0,96	6,4	0,94	0,0012	0,93	0,82	2241,6	YAG
2	15	0,96	6,4	0,85	0,0012	0,92	0,83	2335	YAG
2	16	0,96	6,4	0,96	0,0012	0,91	0,84	2428,4	YAG
2	17	0,96	6,4	0,83	0,0012	0,9	0,85	2521,8	YAG
2	18	0,96	6,4	0,98	0,0012	0,89	0,86	2615,2	YAG
2	19	0,96	6,4	0,81	0,0012	0,88	0,87	2708,6	YAG
2	20	0,96	6,4	0,9	0,0012	0,97	0,78	2802	YAG
2	21	0,96	6,4	0,89	0,0012	0,96	0,79	2895,4	YAG
2	22	0,96	6,4	0,92	0,0012	0,95	0,8	2988,8	YAG

Гр.	Nº	D	L	R	β _{аэ}	η_{sp}	η_{kv}	Ig	среда
2	23	0,96	6,4	0,87	0,0012	0,94	0,81	3082,2	YAG
2	24	0,96	6,4	0,94	0,0012	0,93	0,82	3175,6	YAG
2	25	0,96	6,4	0,85	0,0012	0,92	0,83	3269	YAG
3	1	1,04	5,6	0,89	0,00012	0,95	0,8	1027,4	GLS
3	2	1,04	5,6	0,92	0,00012	0,94	0,81	1120,8	GLS
3	3	1,04	5,6	0,87	0,00012	0,93	0,82	1214,2	GLS
3	4	1,04	5,6	0,94	0,00012	0,92	0,83	1307,6	GLS
3	5	1,04	5,6	0,85	0,00012	0,91	0,84	1401	GLS
3	6	1,04	5,6	0,96	0,00012	0,9	0,85	1494,4	GLS
3	7	1,04	5,6	0,83	0,00012	0,89	0,86	1587,8	GLS
3	8	1,04	5,6	0,98	0,00012	0,88	0,87	1681,2	GLS
3	9	1,04	5,6	0,81	0,00012	0,87	0,88	1774,6	GLS
3	10	1,04	5,6	0,9	0,00012	0,96	0,79	1868	GLS
3	11	1,04	5,6	0,89	0,00012	0,95	0,8	1961,4	GLS
3	12	1,04	5,6	0,92	0,00012	0,94	0,81	2054,8	GLS
3	13	1,04	5,6	0,87	0,00012	0,93	0,82	2148,2	GLS
3	14	1,04	5,6	0,94	0,00012	0,92	0,83	2241,6	GLS
3	15	1,04	5,6	0,85	0,00012	0,91	0,84	2335	GLS
3	16	1,04	5,6	0,96	0,00012	0,9	0,85	2428,4	GLS
3	17	1,04	5,6	0,83	0,00012	0,89	0,86	2521,8	GLS
3	18	1,04	5,6	0,98	0,00012	0,88	0,87	2615,2	GLS
3	19	1,04	5,6	0,81	0,00012	0,87	0,88	2708,6	GLS
3	20	1,04	5,6	0,9	0,00012	0,96	0,79	2802	GLS
3	21	1,04	5,6	0,89	0,00012	0,95	0,8	2895,4	GLS
3	22	1,04	5,6	0,92	0,00012	0,94	0,81	2988,8	GLS
3	23	1,04	5,6	0,87	0,00012	0,93	0,82	3082,2	GLS
3	24	1,04	5,6	0,94	0,00012	0,92	0,83	3175,6	GLS
3	25	1,04	5,6	0,85	0,00012	0,91	0,84	3269	GLS
4	1	1,12	4,8	0,89	0,0012	0,94	0,81	1027,4	YAG
4	2	1,12	4,8	0,92	0,0012	0,93	0,82	1120,8	YAG
4	3	1,12	4,8	0,87	0,0012	0,92	0,83	1214,2	YAG
4	4	1,12	4,8	0,94	0,0012	0,91	0,84	1307,6	YAG
4	5	1,12	4,8	0,85	0,0012	0,9	0,85	1401	YAG
4	6	1,12	4,8	0,96	0,0012	0,89	0,86	1494,4	YAG
4	7	1,12	4,8	0,83	0,0012	0,88	0,87	1587,8	YAG
4	8	1,12	4,8	0,98	0,0012	0,87	0,88	1681,2	YAG
4	9	1,12	4,8	0,81	0,0012	0,86	0,89	1774,6	YAG
4	10	1,12	4,8	0,9	0,0012	0,95	0,8	1868	YAG
4	11	1,12	4,8	0,89	0,0012	0,94	0,81	1961,4	YAG
4	12	1,12	4,8	0,92	0,0012	0,93	0,82	2054,8	YAG
4	13	1,12	4,8	0,87	0,0012	0,92	0,83	2148,2	YAG
4	14	1,12	4,8	0,94	0,0012	0,91	0,84	2241,6	YAG
4	15	1,12	4,8	0,85	0,0012	0,9	0,85	2335	YAG
4	16	1,12	4,8	0,96	0,0012	0,89	0,86	2428,4	YAG

Гр.	Nº	D	L	R	βаэ	η_{sp}	η_{kv}	lg	среда
4	17	1,12	4,8	0,83	0,0012	0,88	0,87	2521,8	YAG
4	18	1,12	4,8	0,98	0,0012	0,87	0,88	2615,2	YAG
4	19	1,12	4,8	0,81	0,0012	0,86	0,89	2708,6	YAG
4	20	1,12	4,8	0,9	0,0012	0,95	0,8	2802	YAG
4	21	1,12	4,8	0,89	0,0012	0,94	0,81	2895,4	YAG
4	22	1,12	4,8	0,92	0,0012	0,93	0,82	2988,8	YAG
4	23	1,12	4,8	0,87	0,0012	0,92	0,83	3082,2	YAG
4	24	1,12	4,8	0,94	0,0012	0,91	0,84	3175,6	YAG
4	25	1,12	4,8	0,85	0,0012	0,9	0,85	3269	YAG

2 ПРИЛОЖЕНИЕ 2. РЕКОМЕНДАЦИИ К РЕШЕНИЮ

1. Последовательность решения аналогична решениям такого типа задач на семинарах. Отличия состоят в том, что в представленной задаче требуется учесть потери в АЭ (формула 5,62) и потери, связанные с распадом уровня (формула 3,41).

Ответы для нулевого варианта

_{Вмд}	ητ	Езап	Епогл	Енак	Рнак
0,06 1/см	0,921	34,4 Дж	51,9 Дж	115 Дж	231 КВт

2. Задача решаєтся на основании точечной модели генератора (5,24,5,25). Требуется приравнять производные нулю из-за стационарного режима. Слагаемое формулы (5,25), ответственное за накачку может быть выражено через мощность накачки путём дифференцирования по времени формулы для запасённой энергии — выразив из этого дифференциального равенства dk/dt, получим связь приращения коэффициента усиления среды за счёт накачки (т.е. первый элемент суммы уравнения 5,25) с изменением запасённой энергии. Связь запасённой энергии и энергии накачки аналогична первой задаче этого ДЗ. Элемент суммы описывающий снижение инверсной населенности за счёт усиления спонтанного излучения, по условию задачи должен быть приравнен к k/т_ж. Интенсивность излучения внутри резонатора I может быть оценена с использованием (5.31). Произведя все замены в (5,25), останется только выразить Р_{нак} из формулы. При этом, помня, что в генераторе, находящемся в стационарном режиме выполняется условие баланса амплитуд.

Ответы для нулевого варианта

В ВЫВ	eta_{Σ}	Ι	Рнак
0,00658 1/см	0,00778	17,7 КВт/см ²	1,24 КВт