Short introduction to ARMA processess without nonsense. The goal is to state all the theorems rigorously.

Definition 1. The process (u_t) is called white noise if

$$E(u_t) = 0$$
, $Var(u_t) = \sigma^2$, $Cov(u_s, u_t) = 0$ for $s \neq t$.

This definition does not assume that u_t and u_s are independent. They may be dependent but uncorrelated. This definition does not assume normality of u_t but normality of white noise is often assumed in maximum likelihood estimation.

Definition 2. Lag operator L transforms a stochastic process (y_t) with $t \in \mathbb{Z}$ into a new stochastic process by shifting the index back in time,

$$Ly_t = y_{t-1}.$$

Definition 3. Forward operator F transforms a stochastic process (y_t) with $t \in \mathbb{Z}$ into a new stochastic process by shifting the index forward in time,

$$Ly_t = y_{t+1}$$
.

Simple arithmetic examples are:

$$(1+2L+3L^2)y_t = y_t + 2y_{t-1} + 3y_{t-2},$$

$$(3+2F+5F^2)y_t = 3y_t + 2y_{t+1} + 5y_{t+2},$$

Theorem 4. The operators L and F are linear and $L^{-1} = F$.

Proof. The action LF or FL does nothing with any process (y_t) . So operators L and F are mutually inverse.

Definition 5. The process (y_t) is called stationary in weak sense if

$$E(y_t) = \mu$$
, $Cov(u_s, u_t) = \gamma(t - s)$.

In particular all variances of stationary process are equal, $Var(y_t) = Cov(y_t, y_t) = \gamma_0$.

When infinite sums do exist?

We define division by monomials.

Definition 6. For $|\alpha| < 1$ we define

$$\frac{1}{1 - \alpha L} y_t = (1 + \alpha L + \alpha^2 L^2 + \alpha^3 L^3 + \dots) y_t,$$

and

$$\frac{1}{1 - \alpha F} y_t = (1 + \alpha F + \alpha^2 F^2 + \alpha^3 F^3 + \ldots) y_t.$$

1

Theorem 7. If (u_t) is a white noise and $|\alpha| < 1$ then $\frac{1-\alpha L}{1-\alpha F}u_t$ and $\frac{1-\alpha F}{1-\alpha L}u_t$ are white noises.

Theorem 8. The equation

$$P(L)y_t = Q(L)u_t + c,$$

where (u_t) is a white noise has infinitely many non-stationary solutions (y_t) if degree of P is higher than one.

Theorem 9. Consider the equation

$$P(L)y_t = Q(L)u_t + c.$$

If polynomials P and Q are coprime then

- 1. There are no stationary solutions (y_t) at all if P has at least one root ℓ with $|\ell| = 1$.
- 2. There is exactly one stationary solution (y_t) if all roots ℓ of P have $|\ell| \neq 1$.

There are two subcases when all roots ℓ of P have $|\ell| \neq 1$:

1. All roots ℓ of P have $|\ell| > 1$. In this case the unique stationary solution has the form

$$y_t = \mu + u_t + c_1 u_{t-1} + c_2 u_{t-2} + c_3 u_{t-3} + \dots,$$

where (u_t) is the white noise from original equation.

2. At least one root of P has $|\ell| < 1$. In this case the unique stationary solution has the form

$$y_t = \mu + \nu_t + c_1 \nu_{t-1} + c_2 \nu_{t-2} + c_3 \nu_{t-3} + \dots,$$

where (ν_t) is a white noise different from (u_t) .

Definition 10. The process (y_t) is called ARMA(p,q) process with equation

$$P(L)y_t = Q(L)u_t + c,$$

if

- 1. the process (y_t) satisfies this equation;
- 2. polynomial P(L) has degree p and polynomial Q(L) has degree q;
- 3. P(0) = Q(0) = 1;
- 4. P and Q are coprime, in other words they have no common roots.
- 5. the process (y_t) can be represented in $MA(\infty)$ form with respect to (u_t) :

$$y_t = \mu + u_t + c_1 u_{t-1} + c_2 u_{t-2} + c_3 u_{t-3} + \dots$$

From the last requirement in this definition it *follows* that all ARMA(p,q) processes are stationary. By definition. Point.

Not all solutions of equation $P(L)y_t = Q(L)u_t + c$ are called ARMA processes.

Definition 11. The *equation*

$$P(L)y_t = Q(L)u_t + c,$$

is called *invertible* if all roots ℓ of Q have $|\ell| > 1$.

Stationarity is the property of a process, invertibility is the property of an equation. One cannot check whether a given sequence of random variables is invertible. Even more.