

PTO/PCT Rec'd 18 SEP 2001

SEQUENCE LISTING

<110> BEAUVILLAIN, JEAN-CLAUDE

COULOUARN, YOLAINNE

JEGOU, SYLVIE

LIHRMANN, ISABELLE

VAUDRY, HUBERT

<120> MAMMALIAN UROTENSINS II AND APPLICATIONS THEREOF

<130> 208888US0PCT

<140> 09/831,907

<141> 1999-11-26

<150> FR 98/14914

<151> 1998-11-26

<160> 44

<170> PatentIn version 3.1

<210> 1

<211> 124

<212> PRT

<213> Homo sapiens

<400> 1

Met Tyr Lys Leu Ala Ser Cys Cys Leu Leu Phe Ile Gly Phe Leu Asn
1 5 10 15

Pro Leu Leu Ser Leu Pro Leu Leu Asp Ser Arg Glu Ile Ser Phe Gln
20 25 30

Leu Ser Ala Pro His Glu Asp Ala Arg Leu Thr Pro Glu Glu Leu Glu
35 40 45

Arg Ala Ser Leu Leu Gln Ile Leu Pro Glu Met Leu Gly Ala Glu Arg
50 55 60

Gly Asp Ile Leu Arg Lys Ala Asp Ser Ser Thr Asn Ile Phe Asn Pro
65 70 75 80

Arg Gly Asn Leu Arg Lys Phe Gln Asp Phe Ser Gly Gln Asp Pro Asn
85 90 95

Ile Leu Leu Ser His Leu Leu Ala Arg Ile Trp Lys Pro Tyr Lys Lys
100 105 110

Arg Glu Thr Pro Asp Cys Phe Trp Lys Tyr Cys Val
115 120

<210> 2

<211> 104

<212> PRT

<213> Homo sapiens

<400> 2

Leu Pro Leu Leu Asp Ser Arg Glu Ile Ser Phe Gln Leu Ser Ala Pro
1 5 10 15

His Glu Asp Ala Arg Leu Thr Pro Glu Glu Leu Glu Arg Ala Ser Leu
20 25 30

Leu Gln Ile Leu Pro Glu Met Leu Gly Ala Glu Arg Gly Asp Ile Leu
35 40 45

Arg Lys Ala Asp Ser Ser Thr Asn Ile Phe Asn Pro Arg Gly Asn Leu
50 55 60

Arg Lys Phe Gln Asp Phe Ser Gly Gln Asp Pro Asn Ile Leu Leu Ser
65 70 75 80

His Leu Leu Ala Arg Ile Trp Lys Pro Tyr Lys Lys Arg Glu Thr Pro
85 90 95

Asp Cys Phe Trp Lys Tyr Cys Val
100

<210> 3

<211> 11

<212> PRT

<213> Homo sapiens

<400> 3

Glu Thr Pro Asp Cys Phe Trp Lys Tyr Cys Val
1 5 10

<210> 4

<211> 551

<212> DNA

<213> Homo sapiens

<400> 4
ccaagaagga agccgtctat cttgtggcga tcatgtataa gctggcctcc tgctgtttgc 60
ttttcatagg attcttaaat cctctttat ctcttcctct ctttgactcc agggaaatat 120

ccttcaact ctcagcacct catgaagacg cgcgcttaac tccggaggac gtagaaagag 180
cttcccttct acagatactg ccagagatgc tgggtgcaga aagaggggat attctcagga 240
aagcagactc aagtaccaac attttaacc caataggaaa tttgagaaag tttcaggatt 300
tctctggaca agatcctaac attttactga gtcatcttt ggccagaatc tggaaaccat 360
acaagaaacg tgagactcct gattgcttct ggaaatactg tgtctgaagt gaaataagca 420
tctgttagtc agctcagaaa cacccatctt agaatatgaa aaataacaca atgcttgatt 480
tggaaaacagt gtggagaaaaa actaggcaaa ctacaccctg ttcattgtta cctggaaaat 540
aaatcctcta t 551

<210> 5

<211> 315

<212> DNA

<213> Homo sapiens

<400> 5
cttcctctcc ttgactccag ggaaatatcc tttcaactct cagcacctca tgaagacgct 60
cgcttaactc cggaggagct agaaagagct tcccttctac agatactgcc agagatgctg 120
ggtcagaaa gagggatat tctcagggaaa gcagactcaa gtaccaacat ttttaaccca 180
agagggaaatt tgagaaagtt tcaggatttc tctggacaag atcctaacat tttactgagt 240
catctttgg ccagaatctg gaaaccatac aagaaacgtg agactcctga ttgcttctgg 300
aaatactgtg tctga 315

<210> 6

<211> 36

<212> DNA

<213> Homo sapiens

<400> 6

gagactcctg attgcttctg gaaatactgt gtctga

36

<210> 7

<211> 26

<212> DNA

<213> Homo sapiens

<400> 7

aacccaagag gaaatttgag aaagtt

26

<210> 8

<211> 25

<212> DNA

<213> Homo sapiens

<400> 8

ccaggttaaca atgaacaggg tgtag

25

<210> 9

<211> 7

<212> PRT

<213> Homo sapiens

<400> 9

Cys Phe Trp Lys Tyr Cys Val

1 5

<210> 10

<211> 19

<212> DNA

<213> Homo sapiens

<400> 10
ctgccagaga tgctgggtg

19

<210> 11

<211> 24

<212> DNA

<213> Homo sapiens

<400> 11
gacacagtat ttccagaagc aatc

24

<210> 12

<211> 20

<212> DNA

<213> Homo sapiens

<400> 12
cctcctgctg tttgctttc

20

<210> 13

<211> 20

<212> DNA

<213> Homo sapiens

<400> 13
cccagcatct ctggcagttat

20

<210> 14

<211> 20

<212> DNA

<213> Homo sapiens

<400> 14

gaagccgtct atcttgtggc

20

<210> 15

<211> 20

<212> DNA

<213> Homo sapiens

<400> 15

cgtcttatctt gtggcgatca

20

<210> 16

<211> 20

<212> DNA

<213> Homo sapiens

<400> 16

cgtcttcatg aggtgctgag

20

<210> 17

<211> 20

<212> DNA

<213> Homo sapiens

<400> 17

ggaagccgtc tatcttgtgg

20

<210> 18
<211> 529
<212> DNA
<213> Rattus sp.

<400> 18
cggagcagac acccagccag acttcttccc gtcgtcatgg acagggtgcc cttctgctgc 60
ctgctcttcg taggactcct gaatccactc ctgtctttc ccgtcacgga cactggtaa 120
atgtctcttc agcttccagt gcttgaggaa aatgctcttc gggctctgga ggagctggag 180
aggactgccc tcctgcagac gctgcgccag accgtggca cagaagcaga ggaaagcctt 240
ggccaggcag atcccagtgc cgagactccc actccaaggg gaagctttag gaaggctctc 300
actgggcaag attctaacac tgtactgagc cgtctttgg cgagaaccag gaaacaacgt 360
aagcaacacg ggactgcccc agaatgcttc tggaagtact gcatttgaag agagacgtct 420
cctcagaacc atcaacttcag gaaactaaag agcagatgct tgaagaaaaa tcgtgccaac 480
aacgccccgt tctccactat gagaataaa ccctctatgt ttctcaact 529

<210> 19
<211> 312
<212> DNA
<213> Rattus sp.

<400> 19
tttcccgtaa cgacactgg tgaaatgtct cttcagcttc cagtgttga ggaaaatgt 60
cttcgggctc tggaggagct ggagaggact gccctcctgc agacgctgcg ccagaccgt 120
ggcacagaag cagagggaaag cttggccag gcagatccca gtgccgagac tcccactcca 180
aggggaagct tgaggaaggc tctcactggg caagattcta acactgtact gagccgttt 240
ttggcgagaa ccagggaaaca acgtaagcaa cacggactg cccagaatg cttctggaag 300

tactgcattt ga 312

<210> 20

<211> 42

<212> DNA

<213> Rattus sp.

<400> 20
caacacggga ctgccccaga atgcttctgg aagtactgca tt 42

<210> 21

<211> 20

<212> DNA

<213> Mus sp.

<400> 21
agcttccagt gcttgaggaa 20

<210> 22

<211> 20

<212> DNA

<213> Mus sp.

<400> 22
gttagaattt tgcccaagcga 20

<210> 23

<211> 20

<212> DNA

<213> Mus sp.

<400> 23
gcttccagtg cttgaggaag 20

<210> 24

<211> 20

<212> DNA

<213> Mus sp.

<400> 24
tctgctgcct gctcttcata 20

<210> 25

<211> 20

<212> DNA

<213> Mus sp.

<400> 25
acggacactg gtgagaggac 20

<210> 26

<211> 20

<212> DNA

<213> Mus sp.

<400> 26
gagcgtttc ctcaggact 20

<210> 27

<211> 539

<212> DNA

<213> Mus sp.

<400> 27

cgagagcaga	cgcccgacacg	gacttctcg	cgcatcatgg	acagggtgcc	cttctgctgc	60
ctgctcttca	taggacttct	gaatccactg	ctgtcccttc	ccgtcacgga	cactggtag	120
aggactcttc	agcttccagt	gcttgaggaa	gacgctttc	gggctctgga	ggagctggag	180
aggatggccc	tcctgcagac	cctgcgtcag	accatggca	cggaagcagg	ggagagccct	240
ggagaagcag	gtcccagcac	tgagactccc	actccacggg	gaagcatgag	gaaggcttcc	300
gctgggcaaa	attctaacac	tgtactgagt	cgtcttttgg	caagaaccag	gaaacaacat	360
aagcaacacg	gggctgcccc	agagtgc	tggaaatact	gcatttgagg	agacacaaggc	420
gcccgttgg	ctctcagaac	cattacattc	aggaaacggg	cagagcagat	gcttgaagca	480
aaatcacgct	aacgacgcct	tgttcttcat	tatgagaaat	aaatcctcta	tgtttctca	539

<210> 28

<211> 443

<212> DNA

<213> Mus sp.

<400> 28

cttcccgta	cggacactgg	tgagaggact	cttcagcttc	cagtgttga	ggaagacgct	60
cttcgggctc	tggaggagct	ggagaggatg	gccctcctgc	agaccctgcg	tcagaccatg	120
ggcacggaag	caggggagag	ccctggagaa	gcaggtccca	gcactgagac	tcccactcca	180
cgggaaagca	tgaggaaggc	tttcgctgg	caaattcta	acactgtact	gagtcgtctc	240
ttggcaagaa	ccaggaaaca	acataagcaa	cacggggctg	ccccagagtg	cttctggaaa	300
tactgcattt	gaggagacac	aagcgccgt	tggtctctca	gaaccattac	attcaggaaa	360
cgggcagagc	agatgcttga	agcaaaatca	cgctaacgac	gccttgttct	tcattatgag	420
aaataaaatcc	tctatgtttc	tca				443

<210> 29
<211> 309
<212> DNA
<213> Mus sp.

<400> 29
cttcccgtaa cggacactgg tgagaggact cttcagcttc cagtgttga ggaagacgct 60
cttcgggctc tggaggagct ggagaggatg gccctcctgc agaccctgcg tcagaccatg
ggcacggaag caggggagag ccctggagaa gcaggtccca gcactgagac tcccactcca 180
cggggaagca tgaggaaggc tttcgctggg caaaattcta acactgtact gagtcgtctc
ttggcaagaa ccaggaaaca acataagcaa cacggggctg cccagagtg cttctggaaa 300
tactgcatt 309

<210> 30
<211> 123
<212> PRT
<213> Rattus sp.

<400> 30
Met Asp Arg Val Pro Phe Cys Cys Leu Leu Phe Val Gly Leu Leu Asn
1 5 10 15

Pro Leu Leu Ser Phe Pro Val Thr Asp Thr Gly Glu Met Ser Leu Gln
20 25 30

Leu Pro Val Leu Glu Glu Asn Ala Leu Arg Ala Leu Glu Glu Leu Glu
35 40 45

Arg Thr Ala Leu Leu Gln Thr Leu Arg Gln Thr Val Gly Thr Glu Ala
50 55 60

Glu Gly Ser Leu Gly Gln Ala Asp Pro Ser Ala Glu Thr Pro Thr Pro
65 70 75 80

Arg Gly Ser Leu Arg Lys Ala Leu Thr Gly Gln Asp Ser Asn Thr Val
85 90 95

Leu Ser Arg Leu Leu Ala Arg Thr Arg Lys Gln Arg Lys Gln His Gly
100 105 110

Thr Ala Pro Glu Cys Phe Trp Lys Tyr Cys Ile
115 120

<210> 31

<211> 103

<212> PRT

<213> Rattus sp.

<400> 31

Phe Pro Val Thr Asp Thr Gly Glu Met Ser Leu Gln Leu Pro Val Leu
1 5 10 15

Glu Glu Asn Ala Leu Arg Ala Leu Glu Glu Leu Glu Arg Thr Ala Leu
20 25 30

Leu Gln Thr Leu Arg Gln Thr Val Gly Thr Glu Ala Glu Gly Ser Leu
35 40 45

Gly Gln Ala Asp Pro Ser Ala Glu Thr Pro Thr Pro Arg Gly Ser Leu
50 55 60

Arg Lys Ala Leu Thr Gly Gln Asp Ser Asn Thr Val Leu Ser Arg Leu
65 70 75 80

Leu Ala Arg Thr Arg Lys Gln Arg Lys Gln His Gly Thr Ala Pro Glu
85 90 95

Cys Phe Trp Lys Tyr Cys Ile
100

<210> 32

<211> 14

<212> PRT

<213> Rattus sp.

<400> 32

Gln His Gly Thr Ala Pro Glu Cys Phe Trp Lys Tyr Cys Ile
1 5 10

<210> 33

<211> 123

<212> PRT

<213> Mus sp.

<400> 33

Met Asp Arg Val Pro Phe Cys Cys Leu Leu Phe Ile Gly Leu Leu Asn
1 5 10 15

Pro Leu Leu Ser Leu Pro Val Thr Asp Thr Gly Glu Arg Thr Leu Gln
20 25 30

Leu Pro Val Leu Glu Glu Asp Ala Leu Arg Ala Leu Glu Glu Leu Glu
35 40 45

Arg Met Ala Leu Leu Gln Thr Leu Arg Gln Thr Met Gly Thr Glu Ala
50 55 60

Gly Glu Ser Pro Gly Glu Ala Gly Pro Ser Thr Glu Thr Pro Thr Pro
65 70 75 80

Arg Gly Ser Met Arg Lys Ala Phe Ala Gly Gln Asn Ser Asn Thr Val
85 90 95

Leu Ser Arg Leu Leu Ala Arg Thr Arg Lys Gln His Lys Gln His Gly
100 105 110

Ala Ala Pro Glu Cys Phe Trp Lys Tyr Cys Ile
115 120

<210> 34

<211> 103

<212> PRT

<213> Mus sp.

<400> 34

Leu Pro Val Thr Asp Thr Gly Glu Arg Thr Leu Gln Leu Pro Val Leu
1 5 10 15

Glu Glu Asp Ala Leu Arg Ala Leu Glu Glu Leu Glu Arg Met Ala Leu
20 25 30

Leu Gln Thr Leu Arg Gln Thr Met Gly Thr Glu Ala Gly Glu Ser Pro
35 40 45

Gly Glu Ala Gly Pro Ser Thr Glu Thr Pro Thr Pro Arg Gly Ser Met
50 55 60

Arg Lys Ala Phe Ala Gly Gln Asn Ser Asn Thr Val Leu Ser Arg Leu
65 70 75 80

Leu Ala Arg Thr Arg Lys Gln His Lys Gln His Gly Ala Ala Pro Glu
85 90 95

Cys Phe Trp Lys Tyr Cys Ile
100

<210> 35
<211> 17
<212> PRT
<213> Mus sp.

<400> 35

Gln His Lys Gln His Gly Ala Ala Pro Glu Cys Phe Trp Lys Tyr Cys
1 5 10 15

Ile

<210> 36
<211> 20
<212> DNA
<213> Rattus sp.

<400> 36
gctctcactg ggcaagattc

20

<210> 37
<211> 20
<212> DNA
<213> Rattus sp.

<400> 37
tctcatagtg gagaacgggg

20

<210> 38
<211> 20

<212> DNA

<213> Rattus sp.

<400> 38

ggaagcttga ggaaggctct

20

<210> 39

<211> 20

<212> DNA

<213> Rattus sp.

<400> 39

agcttccagt gcttgaggaa

20

<210> 40

<211> 20

<212> DNA

<213> Rattus sp.

<400> 40

gaatcttgcc cagtgagagc

20

<210> 41

<211> 20

<212> DNA

<213> Rattus sp.

<400> 41

gtactgagcc gtctttggc

20

<210> 42
<211> 20
<212> DNA
<213> Rattus sp.

<400> 42
tgccctgctct tcgttaggact 20

<210> 43
<211> 30
<212> DNA
<213> Rattus sp.

<400> 43
gtgcccacgg tctggcgcaag cgtctgcagg 30

<210> 44
<211> 30
<212> DNA
<213> Mus sp.

<400> 44
tcccctgctt ccgtgcccatt ggtctgacgc 30