Counting minimal transversals in β -acyclic Hypergraph

Benjamin Bergougnoux, Florent Capelli[†], Mamadou M. Kanté*

* LIMOS, CNRS, Université Clermont Auvergne

† Université Lille 3, CRIStAL, CNRS, INRIA

Algorithm Seminar, Bergen, November 22, 2019

Hypergraphs

Definitions

Transversal

A set of vertices intersecting all hyperedges.

- ► Transversals of graph: Vertex Cover.
- ► Minimal w.r.t. inclusion.
- Every vertex has a private hyperedge.

Definitions

Transversal

A set of vertices intersecting all hyperedges.

- ► Transversals of graph: Vertex Cover.
- ► Minimal w.r.t. inclusion.
- Every vertex has a private hyperedge.

Motivations

- Graphs: vertex covers, dominating sets (transversals of closed neighborhoods),...
- ► AI: models of monotone CNF-formula.

Counting and enumerating them have a lot of applications

▶ Graphs Theory, A.I. (robustness), Datamining, Model-checking,...

Counting

Goal

Find the number of solutions to some problem.

- ▶ An analogous hierarchy to $P \subseteq NP$.
 - Polynomial
 - **▶** #*P*
 - \blacktriangleright #P-hard / complete
- Counting can be much harder than finding:
 - ▶ Minimal Transversal, Perfect Matching, 2-SAT,...
 - ▶ *k*-path, *k*-cycle!

Minimality matters

Theorem [Okamoto, Uno, Uehara 2005]

In chordal graphs:

- ► Counting transversals is doable in polynomial time.
- \triangleright Counting minimal transversals is #P-complete.

▶ Chordal graph: no induced cycle of size ≤ 4 .

β -acyclic

Definition

A hypergraph is β -acyclic if it does not have β -cycles.

► The incidence graph (vertices/hyperedges) is Bipartite Chordal.

β -acyclic

Definition bis

A hypergraph is β -acyclic if

▶ Strong Elimination ordering on $V(\mathcal{H})$: β -leaf

Not related to the x-width of the incidence graph.

Results on β -acyclic hypergraph

Theorem [Brault-Baron, Capelli, Mengel 2017]

We can count the transversals of a β -acyclic hypergraph in polynomial time.

Theorem [B., Capelli, Kanté 2017]

We can count the minimal transversals of a β -acyclic hypergraph in polynomial time.

► The ingredients: recursive decomposition and "blocked transversals".

Fact

The nb. of minimal transversals of $\mathcal H$ not containing x is the nb. of minimal transversals of $\mathcal H-x$.

Fact

The nb. of minimal transversals of \mathcal{H} not containing x is the nb. of minimal transversals of $\mathcal{H}-x$.

Lemma

 $T \cup x$ is a min. transversal of \mathcal{H} iff:

- ightharpoonup T is a min. transversal of $\mathcal{H} \setminus \mathcal{H}(x)$
- ightharpoonup T is not a transversal of \mathcal{H}

Formula

Corollary

The following values are equal:

- ▶ The nb. of minimal transversals of \mathcal{H} containing x.
- ▶ The nb. of minimal transversals of $\mathcal{H} \mathcal{H}(x)$ that are not transversals of \mathcal{H} .
- ▶ The nb. of minimal transversals of $\mathcal{H} \mathcal{H}(x)$ minus the nb. of minimal transversals of $\mathcal{H} \mathcal{H}(x)$ that are transversals of \mathcal{H} .

S: a subset of vertices.

Definition

S-blocked transversal of \mathcal{H} (denoted by S-btr(\mathcal{H})):

- ▶ Minimal transversals of \mathcal{H} and of $\mathcal{H} \setminus \mathcal{H}(S)$
- \triangleright \varnothing -btr(\mathcal{H}) = min. transversals of \mathcal{H} .
- Private hyperedges cannot contain a vertex of S.

Lemma (reformulation)

The nb. of minimal transversals of $\mathcal{H}=$ nb. of min. transversals of \mathcal{H} excluding x

- + nb. of min. transversals of $\mathcal{H} \setminus \mathcal{H}(x)$
- nb. of min. transversals of $\mathcal{H} \setminus \mathcal{H}(x)$ and of \mathcal{H} .

Lemma (reformulation)

The nb. of minimal transversals of $\mathcal{H}=$

$$\#\varnothing$$
-btr $(\mathcal{H}-x)$

- + nb. of min. transversals of $\mathcal{H} \setminus \mathcal{H}(x)$
- nb. of min. transversals of $\mathcal{H} \setminus \mathcal{H}(x)$ and of \mathcal{H} .

Lemma (reformulation)

The nb. of minimal transversals of $\mathcal{H}=$

$$\#\varnothing$$
-btr $(\mathcal{H} - x)$

$$+ \#\varnothing$$
-btr $(\mathcal{H} \setminus \mathcal{H}(x))$

− nb. of min. transversals of $\mathcal{H} \setminus \mathcal{H}(x)$ and of \mathcal{H} .

Lemma (reformulation)

The nb. of minimal transversals of ${\cal H}=$

$$\#\varnothing$$
-btr $(\mathcal{H} - x)$

- $+ \#\varnothing$ -btr $(\mathcal{H} \setminus \mathcal{H}(x))$
- $\#x\text{-btr}(\mathcal{H}).$

Lemma (reformulation)

The nb. of minimal transversals of $\mathcal{H}=$ $\# \varnothing \text{-btr}(\mathcal{H}-x)$

- $+ \#\varnothing$ -btr $(\mathcal{H} \setminus \mathcal{H}(x))$
- $\#x\text{-btr}(\mathcal{H}).$

Lemma (generalization)

The nb. of S-blocked transversals of $\mathcal{H}=$

- #S-btr $(\mathcal{H} x)$
- + #S-btr $(\mathcal{H} \setminus \mathcal{H}(x))$
- $\#S \cup \{x\}\text{-btr}(\mathcal{H} \setminus (\mathcal{H}(x) \cap \mathcal{H}(S))).$

Using the formula leads to a combinatorial explosion in general!

Decomposition of β -acyclic hypergraph

- ▶ Strong elimination ordering on $V(\mathcal{H})$: x_1, \ldots, x_n .
- ▶ Induced order on the hyperedges : e_1, \ldots, e_m .

Definition

 $\mathcal{H}(x,e) \Rightarrow$ the hyperedges $\leq e$ connected to e through vertices $\leq x$.

- $ightharpoonup \mathcal{H}(x_n, e_m) = \mathcal{H}.$
- ▶ Goal is to compute $\#\emptyset$ -btr $(\mathcal{H}(x_n, e_m))$ with the help of:
 - The formula: #S-btr $(\mathcal{H}) = \#S$ -btr $(\mathcal{H} x) + \#S$ -btr $(\mathcal{H} \setminus \mathcal{H}(x)) \#S \cup \{x\}$ -btr $(\mathcal{H} \setminus (\mathcal{H}(x) \cap \mathcal{H}(S)))$
 - ▶ Structural properties of the hypergraphs $\mathcal{H}(x,e)$.

Avoid the explosion

Combinatorial explosion!

To compute $\#\{w\}$ -btr (\mathcal{H}) we need to compute:

 $\blacktriangleright \#\{x,w\}$ -btr $(\mathcal{H}\setminus (\mathcal{H}(x)\cap\mathcal{H}(w))),...$

But in β -acyclic hypergraphs

We can compute $\#\{x,w\}$ - $\mathrm{btr}(\mathcal{H}\setminus (\mathcal{H}(x)\cap\mathcal{H}(w)))$ from

- \blacktriangleright #x-btr(\mathcal{H}').
- \blacktriangleright #w-btr(\mathcal{H}').

We can express each \mathcal{H}' as a $\mathcal{H}(y, f)$ where y < x.

```
\#\emptyset-btr(\mathcal{H}(5, e_5))
5
3
```


1

We end up with a DAG.

Sink are easily computable.

As a salmon, we go back to the source.

As a salmon, we go back to the source.

Number of terms is polynomial \Rightarrow Algorithm polynomial.

Result and Consequences

Theorem [B., Capelli, Kanté 2017]

We can count the number of minimal transversals of a β -acyclic hypergraph in polynomial time.

- ightharpoonup Min. dominating sets \Rightarrow min. transversals of closed neighborhoods.
- ▶ Strongly chordal graphs \Leftrightarrow $\{N[x] \mid x \in V(G)\}$ is β -acyclic.

Corollary

We can count the number of min. dominating sets of Strongly Chordal graph in polynomial time.

Minimal dominating sets

► Stongly Chordal graphs \Leftrightarrow Chordal graphs + k-sun free, for $k \geqslant 3$.

[Kanté, Uno 2017]

Counting min. dominating sets of Chordal graphs is #P-complete.

Minimal dominating sets

► Stongly Chordal graphs \Leftrightarrow Chordal graphs + k-sun free, for $k \geqslant 3$.

[Kanté, Uno 2017]

Counting min. dominating sets of Chordal graphs is #P-complete.

Conjecture [Kanté, Uno 2017]

Counting min. dominating sets of a subclass of Chordal graphs is

- ▶ doable in polynomial time if this class is k-sun free, for $k \ge 4$,
- \blacktriangleright #*P*-complet otherwise.

Possible generalizations

Theorem [Brault-Baron, Capelli, Mengel 2015]

We can count the Models of a β -acyclic CNF-formula in polynomial time.

Corollary of our result

We can count the minimal models of a monotone β -acyclic CNF-formula in polynomial time.

Can we do it for non-monotone formulas?

Beyond β -acyclicity

Thank you!

