МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РФ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«ПЕНЗЕНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ АРХИТЕКТУРЫ И СТРОИТЕЛЬСТВА»

Инженерно-строительный институт Кафедра «Строительные конструкции»

КУРСОВОЙ ПРОЕКТ

по дисциплине «Теоретические основы работы металлических и деревянных конструкций» на тему:

«Проектирование и моделирование металлического каркаса промышленного здания»

Автор проекта: Гафаров М. 3.

Группа: 22СТ1м

Обозначение: КП-2069059-08.04.01-220851-23.

Направление: 08.04.01 «Строительство»

Руководитель проекта: к.т.н. доц. Арискин М. В.

Проект защищен

Содержание

1. Общие данные	3
1.1 Сбор нагрузок	3
2. Краткая характеристика методики расчета	3
2.1. Системы координат	4
2.2. Тип схемы	5
2.3. Выбранный режим статического расчета	5
2.4. Условия примыкания элементов к узлам	5
2.5. Характеристики использованных типов конечных элементов	5
3. Правило знаков для перемещений	6
3.1. Усилия и напряжения	6
3.2. Правило знаков для усилий (напряжений)	6
4. Нагрузки, действующие на схему	8
5. Расчётные сочетания нагрузок	13
6. Расчёт	16
7. Результаты расчёта	18
7.1. Перемещения схемы	18
7.2. Результаты расчёта узлов	20
Список использованных источников	28

1. Общие данные

Расчет выполнен с помощью проектно-вычислительного комплекса SCAD.

Комплекс реализует конечно-элементное моделирование статических и динамических расчетных схем, проверку устойчивости, выбор невыгодных сочетаний усилий, подбор арматуры железобетонных конструкций, проверку несущей способности стальных конструкций. В представленной ниже пояснительной записке описаны лишь фактически использованные при расчетах названного объекта возможности комплекса SCAD.

Здание прямоугольное в плане с размерами 18×24 м.

1.1 Сбор нагрузок

- Собственный вес конструкций покрытия: 250 кг/м²;
- Снеговая нагрузка: 340 кг/м²;
- Нагрузка от пола: 200 кг/м 2 ;
- Полезная нагрузка: 150 кг/м 2 ;
- Ветровая нагрузка: 600 кг/м.

2. Краткая характеристика методики расчета

В основу расчета положен метод конечных элементов с использованием в качестве основных неизвестных перемещений и поворотов узлов расчетной схемы. В связи с этим, идеализация конструкции выполнена в форме, приспособленной к использованию этого метода, а именно: система представлена в виде набора тел стандартного типа (стержней, пластин, оболочек и т.д.), называемых конечными элементами, присоединенных к узлам.

Тип конечного элемента определяется его геометрической формой, правилами, определяющими зависимость между перемещениями узлов конечного элемента и узлов системы, физическим законом, определяющим зависимость между внутренними усилиями и внутренними перемещениями, и набором параметров (жесткостей), входящих в описание этого закона и др.

Узел в расчетной схеме метода перемещений представляется в виде абсолютно жесткого тела исчезающе малых размеров. Положение узла в пространстве при деформациях системы определяется координатами центра и углами поворота трех осей, жестко связанных с узлом. Узел представлен как объект, обладающий шестью степенями свободы — тремя линейными смещениями и тремя углами поворота.

Все узлы и элементы расчетной схемы нумеруются. Номера, присвоенные им, следует трактовать только как имена, которые позволяют делать необходимые ссылки.

Основная система метода перемещений выбирается путем наложения в каждом узле всех связей, запрещающих любые узловые перемещения. Условия равенства нулю усилий в этих связях представляют собой разрешающие уравнения равновесия, а смещения указанных связей — основные неизвестные метода перемещений.

В общем случае в пространственных конструкциях в узле могут присутствовать все шесть перемещений:

- 1 линейное перемещение вдоль оси Х;
- 2 линейное перемещение вдоль оси Y;
- 3 линейное перемещение вдоль оси Z;
- 4 угол поворота с вектором вдоль оси X (поворот вокруг оси X);
- 5 угол поворота с вектором вдоль оси Y (поворот вокруг оси Y);
- 6 угол поворота с вектором вдоль оси Z (поворот вокруг оси Z).

Нумерация перемещений в узле (степеней свободы), представленная выше, используется далее всюду без специальных оговорок, а также используются соответственно обозначения X, Y, Z, UX, UY и UZ для обозначения величин соответствующих линейных перемещений и углов поворота.

В соответствии с идеологией метода конечных элементов, истинная форма поля перемещений внутри элемента (за исключением элементов стержневого типа) приближенно представлена различными упрощенными зависимостями. При этом погрешность в определении напряжений и деформаций имеет порядок (h/L)k, где h — максимальный шаг сетки; L — характерный размер области. Скорость уменьшения ошибки приближенного результата (скорость сходимости) определяется показателем степени k, который имеет разное значение для перемещений и различных компонент внутренних усилий (напряжений).

2.1. Системы координат

Для задания данных о расчетной схеме могут быть использованы различные системы координат, которые в дальнейшем преобразуются в декартовы. В дальнейшем для описания расчетной схемы используются следующие декартовы системы координат:

- глобальная правосторонняя система координат XYZ, связанная с расчетной схемой;
- локальные правосторонние системы координат, связанные с каждым конечным элементом.

Рис. 2.1. Общий вид расчётной схемы.

2.2. Тип схемы

Расчетная схема определена как система с признаком 5. Это означает, что рассматривается система общего вида, деформации которой и ее основные неизвестные представлены линейными перемещениями узловых точек вдоль осей X, Y, Z и поворотами вокруг этих осей.

2.3. Выбранный режим статического расчета

Статический расчет системы выполнен в линейной постановке.

2.4. Условия примыкания элементов к узлам

Точки примыкания конечного элемента к узлам (концевые сечения элементов) имеют одинаковые перемещения с указанными узлами.

2.5. Характеристики использованных типов конечных элементов

В расчетную схему включены конечные элементы следующих типов.

Стержневые конечные элементы, для которых предусмотрена работа по обычным правилам сопротивления материалов. Описание их напряженного состояния связано с местной системой координат, у которой ось X_1 ориентирована вдоль стержня, а оси Y_1 и Z_1 – вдоль главных осей инерции поперечного сечения.

К стержневым конечным элементам рассматриваемой расчетной схемы относятся следующие типы элементов:

Элемент типа 5, который работает по пространственной схеме и воспринимает продольную силу N, изгибающие моменты M_y и M_z , поперечные силы Q_z и Q_y , а также крутящий момент M_k .

Конечные элементы оболочек, геометрическая форма которых на малом участке элемента является плоской (она образуют многогранник, вписанный в действительную криволинейную форму срединной поверхности оболочки). Для

этих элементов, в соответствии с идеологией метода конечных элементов, истинная форма перемещений внутри элемента приближенно представлена упрощенными зависимостями. Описание их напряженного состояния связано с местной системой координат, у которой оси X_1 и Y_1 расположены в плоскости элемента и ось X_1 направлена от первого узла ко второму, а ось Z_1 ортогональна поверхности элемента.

Четырехугольный элемент типа 44, который имеет четыре узловые точки, не является совместным и моделирует поле нормальных перемещений внутри элемента полиномом 3 степени, а поле тангенциальных перемещений неполным полиномом 2 степени. Располагается в пространстве произвольным образом.

3. Правило знаков для перемещений

Правило знаков для перемещений принято таким, что линейные перемещения положительны, если они направлены в сторону возрастания соответствующей координаты, а углы поворота положительны, если они соответствуют правилу правого винта (при взгляде от конца соответствующей оси к ее началу движение происходит против часовой стрелки).

3.1. Усилия и напряжения

Вычисленные значения усилий и напряжений в элементах от загружений представлены в таблице результатов расчета «Усилия/напряжения элементов».

Для стержневых элементов усилия по умолчанию выводятся в концевых сечениях упругой части (начальном и конечном) и в центре упругой части, а при наличии запроса пользователя и в промежуточных сечениях по длине упругой части стержня. Для пластинчатых, объемных, осесимметричных и оболочечных элементов напряжения выводятся в центре тяжести элемента и при наличии запроса пользователя в узлах элемента.

3.2. Правило знаков для усилий (напряжений)

Правила знаков для усилий (напряжений) приняты следующими:

Для стержневых элементов возможно наличие следующих усилий:

N — продольная сила;

 M_k – крутящий момент;

 M_{y} – изгибающий момент с вектором вдоль оси Y_{1} ;

 Q_z – перерезывающая сила в направлении оси Z_1 соответствующая моменту M_v ;

 M_z – изгибающий момент относительно оси Z_1 ;

 $Q_{\mathcal{Y}}$ — перерезывающая сила в направлении оси Y_1 соответствующая моменту M_z ;

 R_z — отпор упругого основания.

Положительные направления усилий в стержнях приняты следующими:

для перерезывающих сил Q_z и Q_y – по направлениям соответствующих осей Z_1 и Y_1 ;

для моментов M_x , M_y , M_z — против часовой стрелки, если смотреть с конца соответствующей оси X_1 , Y_1 , Z_1 ;

положительная продольная сила N всегда растягивает стержень.

Рис. 3.2. Положительные направления внутренних усилий.

На рис. 3.2 показаны положительные направления внутренних усилий и моментов в сечении горизонтальных и наклонных (а), а также вертикальных (б) стержней.

Знаком «+» (плюс) помечены растянутые, а знаком «-» (минус) – сжатые волокна поперечного сечения от воздействия положительных моментов M_y и M_z .

4. Нагрузки, действующие на схему

Рис. 4.1. Нагрузка от собственного веса.

Рис. 4.3. Нагрузка от снега.

Рис. 4.4. Полезная нагрузка.

Рис. 4.5. Нагрузка от пола.

Рис. 4.6. Ветровая нагрузка.

5. Расчётные сочетания нагрузок

Рис. 5.1. Таблица РСУ.

Жёсткости элементов схемы

Жёсткости

Единицы измерения:

- Линейные размеры: м
- Размеры сечений: мм
- Силы: Т

Топшина пластин представлена в единицах измерения линейных размеров

ТОЛЩИ	на пластин представлена в единицах измерения линейных раз	меров.
	Жёсткости	
Тип	Жесткость	Изображение
1	Жесткость стержневых элементов - профиль металлопроката Каталог: СТО АСЧМ 20-93 Семейство: Двутавр колонный (К) по СТО АСЧМ 20-93 Профиль: 20К1	6,5 8
	Модуль упругости E = 21000000,77 Т/м ² Коэффициент Пуассона n = 0,3	
	Объемный вес r = 7,85 Т/м ³ Коэффициент температурного расширения а = 1,2e-005 Продольная жесткость EF = 110649 Т Изгибная жесткость (ось Y) EI _V = 807,66 Т*м ²	99,5 99,5
	Изгибная жесткость (ось Z) EI _Z = 281,69 Т*м ² Сдвиговая жесткость (ось Y) GF _y = 22626,14 Т Сдвиговая жесткость (ось Z) GF _Z = 9471,61 Т	<i>x</i>
	Крутильная жесткость GI _{kp} = 1,43 Т*м ²	
	Ядровое расстояние вдоль положительного направления оси Y(U) a _{U+} = 2,56 см	
	Ядровое расстояние вдоль отрицательного направления оси Y(U) a _U - = 2,56 см	
	Ядровое расстояние вдоль положительного направления оси Z(V) a _{V+} = 7,45 см	

	Ядровое расстояние вдоль отрицательного направления оси Z(V) a _{V-} = 7,45 см	
2	Жесткость стержневых элементов - профиль металлопроката Каталог: СТО АСЧМ 20-93 Семейство: Двутавр колонный (К) по СТО АСЧМ 20-93 Профиль: 35К1	Z1 Z1
	Модуль упругости $E = 21000000,77 \text{ T/m}^2$ Коэффициент Пуассона $n = 0,3$ Объемный вес $r = 7,85 \text{ T/m}^3$ Коэффициент температурного расширения $a = 1,2e$ -005 Продольная жесткость $EF = 291963 \text{ T}$ Изгибная жесткость (ось Y) $El_Y = 6562,29 \text{ T*m}^2$ Изгибная жесткость (ось Y) $El_Z = 2213,76 \text{ T*m}^2$ Сдвиговая жесткость (ось Y) $GF_Y = 57909,61 \text{ T}$ Сдвиговая жесткость (ось Y) $GF_Z = 25568,61 \text{ T}$ Крутильная жесткость $Gl_{KP} = 8,44 \text{ T*m}^2$ Ядровое расстояние вдоль положительного направления оси $Y(U)$ $a_{U^+} = 4,36 \text{ cm}$ Ядровое расстояние вдоль отрицательного направления оси $Y(U)$ $Y_{U^+} = 13,14 \text{ cm}$ Ядровое расстояние вдоль отрицательного направления оси $Y(V)$ $Y_{U^+} = 13,14 \text{ cm}$ Ядровое расстояние вдоль отрицательного направления оси $Y(V)$ $Y_{U^+} = 13,14 \text{ cm}$	174 174 348
3	Жесткость стержневых элементов - профиль металлопроката Каталог: СТО АСЧМ 20-93 Семейство: Двутавр широкополочный по СТО АСЧМ 20-93 Профиль: 20Ш1 Модуль упругости $E = 21000000,77 \text{ T/m}^2$ Коэффициент Пуассона $n = 0,3$ Объемный вес $r = 7,85 \text{ T/m}^3$ Коэффициент температурного расширения $a = 1,2e$ -005 Продольная жесткость $EF = 81921 \text{ T}$ Изгибная жесткость (ось Y) $EI_{Z} = 106,49 \text{ T*m}^2$ Изгибная жесткость (ось Z) $EI_{Z} = 106,49 \text{ T*m}^2$ Сдвиговая жесткость (ось Z) $GF_{Z} = 8659,38 \text{ T}$ Крутильная жесткость (ось Z) $GF_{Z} = 8659,38 \text{ T}$ Крутильная жесткость $GI_{Kp} = 0,89 \text{ T*m}^2$ Ядровое расстояние вдоль положительного направления оси $Y(U)$ $a_{U+} = 1,73 \text{ cm}$ Ядровое расстояние вдоль отрицательного направления оси $Y(U)$ $a_{U-} = 1,73 \text{ cm}$ Ядровое расстояние вдоль положительного направления оси $Z(V)$ $a_{V+} = 7,11 \text{ cm}$ Ядровое расстояние вдоль отрицательного направления оси $Z(V)$ $a_{V-} = 7,11 \text{ cm}$	6 Y ₁ 75 75 150

Жесткость стержневых элементов - профиль металлопроката Каталог: СТО АСЧМ 20-93 Семейство: Двутавр нормальный (Б) по СТО АСЧМ 20-93

Профиль: 25Б1

Модуль упругости $E = 21000000,77 \text{ T/m}^2$

Коэффициент Пуассона n = 0,3 Объемный вес r = 7,85 T/м³

Коэффициент температурного расширения а = 1,2e-005

Продольная жесткость EF = 68628 Т

Изгибная жесткость (ось Y) $El_V = 742,77 \text{ T*m}^2$

Изгибная жесткость (ось Z) $EI_Z = 53,51 \text{ T*m}^2$

Сдвиговая жесткость (ось Y) GF_V = 11157,5 T

Сдвиговая жесткость (ось Z) GF_Z = 9213,13 T

Крутильная жесткость $GI_{kp} = 0,54 \text{ T*м}^2$

Ядровое расстояние вдоль положительного направления оси Y(U) а_{U+} = 1,26 см

Ядровое расстояние вдоль отрицательного направления оси Y(U) a_{u-} = 1,26 см

Ядровое расстояние вдоль положительного направления оси $Z(V) a_{V+} = 8,73 \text{ cm}$

Ядровое расстояние вдоль отрицательного направления оси $Z(V) a_{V-} = 8,73 \text{ cm}$

Жесткость стержневых элементов - профиль металлопроката

Каталог: Полный каталог профилей ГОСТ.. Семейство: Стальные гнутые замкнутые сварные квадратные профили по ГОСТ 30245-2003

Профиль: 160х5

5

6

Модуль упругости E = $21000000,77 \text{ T/m}^2$

Коэффициент Пуассона n = 0,3

Объемный вес $r = 7.85 \text{ T/m}^3$

Коэффициент температурного расширения а = 1,2e-005

Продольная жесткость EF = 63756 T

Изгибная жесткость (ось Y) $El_V = 252,42 \text{ T*m}^2$

Изгибная жесткость (ось Z) $EI_7 = 252,42 \text{ T*m}^2$

Сдвиговая жесткость (ось Y) GF_V = 10772,22 Т

Сдвиговая жесткость (ось Z) GF_Z = 10772,22 Т

Крутильная жесткость GI_{kp} = 150,39 Т*м²

Ядровое расстояние вдоль положительного направления оси

 $Y(U) a_{U+} = 4,95 cm$

Ядровое расстояние вдоль отрицательного направления оси Y(U) a_{u-} = 4,95 см

Ядровое расстояние вдоль положительного направления оси

 $Z(V) a_{V+} = 4,95 cm$ Ядровое расстояние вдоль отрицательного направления оси

 $Z(V) a_{V-} = 4,95 cm$

Жесткость стержневых элементов - профиль металлопроката Каталог: Полный каталог профилей ГОСТ..

Семейство: Стальные гнутые замкнутые сварные квадратные профили по ГОСТ 30245-2003

Профиль: 140х4.5

Модуль упругости E = $21000000,77 \text{ T/m}^2$

Коэффициент Пуассона n = 0,3

Объемный вес r = 7.85 Т/м³

Коэффициент температурного расширения а = 1,2e-005

Продольная жесткость EF = 50127 T

Изгибная жесткость (ось Y) EI_V = 151,64 Т*м² Изгибная жесткость (ось Z) $EI_7 = 151,64 \text{ T*m}^2$ Сдвиговая жесткость (ось Y) GF_V = 8467,86 Т Сдвиговая жесткость (ось Z) GF_Z = 8467,86 Т Крутильная жесткость $Gl_{kp} = 90,42 \text{ T*m}^2$ Ядровое расстояние вдоль положительного направления оси $Y(U) a_{U+} = 4.32 cm$ Ядровое расстояние вдоль отрицательного направления оси $Y(U) a_{U} = 4,32 cm$ Ядровое расстояние вдоль положительного направления оси $Z(V) a_{V+} = 4,32 cm$ Ядровое расстояние вдоль отрицательного направления оси $Z(V) a_{V-} = 4,32 \text{ cm}$ Жесткость стержневых элементов - профиль металлопроката Каталог: СТО АСЧМ 20-93 Семейство: Двутавр нормальный (Б) по СТО АСЧМ 20-93 Профиль: 35Б1 Модуль упругости $E = 21000000,77 \text{ T/m}^2$ Коэффициент Пуассона n = 0,3 Объемный вес $r = 7.85 \text{ T/m}^3$ Коэффициент температурного расширения а = 1,2e-005 Продольная жесткость EF = 110628,01 Т Изгибная жесткость (ось Y) $El_V = 2329,95 \text{ T*m}^2$ Изгибная жесткость (ось Z) $EI_7 = 166,19 \text{ T*m}^2$ Сдвиговая жесткость (ось Y) GF_V = 17493,37 Т Сдвиговая жесткость (ось Z) GF_Z = 15404,22 Т Крутильная жесткость $Gl_{kp} = 1,11 \text{ T*м}^2$ Ядровое расстояние вдоль положительного направления оси $Y(U) a_{u+} = 1,73 cm$ Ядровое расстояние вдоль отрицательного направления оси Y(U) a_{u-} = 1,73 см Ядровое расстояние вдоль положительного направления оси $Z(V) a_{V+} = 12,17 cm$

6. Расчёт

Z(V) $a_{V-} = 12,17$ cm

ПРОТОКОЛ ВЫПОЛНЕНИЯ РАСЧЕТА

Ядровое расстояние вдоль отрицательного направления оси

Полный расчет. Версия 21.1.9.9. Сборка: Apr 16 2021 файл - "H:folder's files0th term'23, projectsfoundations of the work of metal and wooden structuressteelprojects_pjs_model_gafarov.SPR", шифр - "NONAME".

- 20:20:56 Автоматическое определение числа потоков. Используется: 9
- 20:20:56 Вычисляются расчетные значения перемещений и усилий
- 20:20:56 Ввод исходных данных схемы

***** ОШИБКИ И ПРЕДУПРЕЖДЕНИЯ КОНТРОЛЯ ИСХОДНЫХ ДАННЫХ *****

W Проверьте знак длин жестких вставок по оси x1 у элементов : 27 34 38 45 49 56 60 67

Получено ошибок: 0, предупреждений: 1

- 20:20:56 Формирование графа смежности узлов
- 20:20:56 Формирование диагонали и профиля матрицы
- 20:20:57 Подготовка данных многофронтального метода
- 20:20:57 Автоматический выбор метода оптимизации.
- 20:20:57 Использование оперативной памяти: 70 процентов
- 20:20:57 Высокопроизводительный режим факторизации
- 20:20:57 Упорядочение матрицы алгоритмом минимальной степени

```
20:20:57 Информация о расчетной схеме:
  - шифр схемы
                              NONAME
  - порядок системы уравнений
                                    558
                               480
  - ширина ленты
                                  236, удаленых 0
  - количество элементов
                                107, удаленых 0
  - количество узлов
  - количество загружений
                                  6
                                 64%
  - плотность матрицы
20:20:57 Необходимая для выполнения расчета дисковая память:
  матрица жесткости - 0.173 Mb
  динамика - 0.000 Mb
перемещения - 0.031 Mb
          - 0.204 Mb
  усилия
  рабочие файлы - 0.031 Mb
                          0.495 Mb
  всего
20:20:57 На диске свободно 128173.620 Мb
20:20:57 Разложение матрицы жесткости многофронтальным методом.
20:20:58 Геометрически изменяемая система по направлению 5 в узлах : 105-107
20:20:58 Нулевая строка матрицы жесткости по направлению 5 в узлах : 105-107
20:20:58 Накопление нагрузок.
   Суммарные внешние нагрузки (Т, Тм)
                                       UY
                                               UΖ
20:20:58
              Χ
                    Υ
                         Ζ
                                 UX
                   0 33.5615
             0
                                 0
                                       0
                                             0
 1-
                                            0
 2-
             0
                   0
                      108
                                0
                                     0
                   0 146.88
 3-
             0
                                0
                                      0
                                            0
 4-
             0
                   0
                       21.6
                                0
                                     0
                                            0
 5-
             0
                   0
                       28.8
                                0
                                     0
                                            0
            19.2
                   0
                                0
                                    -20
                                            0
 6-
                          0
20:20:58 ВНИМАНИЕ: Дана сумма внешних нагрузок
   без учета приложенных непосредственно на связи
          ВНИМАНИЕ: Не учитывается нагрузка на жесткие вставки при задании
   равномерно-распределенных нагрузок на стержневые элементы
20:20:58 Вычисление перемещений.
20:20:58 Потенциальная энергия (Тм)
                 0.0218047
20:20:58
         1 -
20:20:58 2 -
                 0.745812
20:20:58 3 -
                 1.37945
20:20:58 4 -
                 0.0408273
20:20:58 5 -
                 0.0725818
20:20:58 6 -
                 0.0395233
20:20:58 Сортировка перемещений
20:20:58 Контроль решения
20:20:58 Вычисление усилий
20:20:58 Сортировка усилий и напряжений
20:20:58 Вычисление сочетаний нагружений.
20:20:58 Вычисление усилий от комбинаций загружений
20:20:58 Сортировка усилий и напряжений от комбинаций загружений
20:20:58 Вычисление перемещений от комбинаций загружений
20:20:58 Выбор расчетных сочетаний усилий по СП 20.13330.2016, изменение 1
20:20:58 В расчетных сочетаниях не учитываются комбинации загружений: 1 2
20:20:59 Выбор расчетных сочетаний перемещений по СП 20.13330.2016, изменение 1
20:20:59 В расчетных сочетаниях не учитываются комбинации загружений: 1 2
20:20:59 Выбор расчетных сочетаний прогибов в стержнях по СП 20.13330.2016, изменение 1
20:20:59 В расчетных сочетаниях не учитываются комбинации загружений: 1 2
20:20:59 ЗАДАНИЕ ВЫПОЛНЕНО
 Затраченное время: 0:00:03 ( 1 min )
```

7. Результаты расчёта

7.1. Перемещения схемы

Z Y

Рис. 7.1. Перемещения по Х.

Y X

Рис. 7.2. Перемещения по Ү.

Рис. 7.3. Перемещения по Z.

Рис. 7.4. Результаты экспертизы.

7.2. Результаты расчёта узлов

7.2.1. Жесткие базы колонн

Расчет выполнен по СП 16.13330.2017 с изменениями №1,2

Профиль

Коэффициент надежности по ответственности $\gamma_n = 1$

Коэффициент условий работы 1 Сталь колонны С355 Сталь плиты С255 Бетон тяжелый класса B25

35К1 (Двутавр колонный (К) по СТО АСЧМ 20-

	Свойства материалов сварки						
Нормативное сопротивление металла			шва	ПО	49949,032 Т/м ²		
временному (сопротивлению,	Rwun					
Расчетное сопротивление угловых швов срезу по 21916,412 T/м ²							
металлу шва, R _{wf}							
Вид сварки Ручная							
Положение ц	Положение шва Нижнее						

Знаки усилий

Результаты расчета по комбинациям загружений

	N	My	Qz	Mz	Qy
	Т	Т*м	Т	Т*м	Т
1	57,46	1,26	1,81	0,81	0,44

Проверено по СНиП	Проверка	Коэффициент использования
п.8.6.2, (101), (103)	Прочность опорной плиты	0,313
	по нормальным	
	напряжениям на участках,	
	опертых по контуру	
п.8.6.2, (101), (104)	Прочность опорной плиты	0,614
	по нормальным	
	напряжениям на участках,	
	опертых на три стороны	
п.8.6.2, (101), (104)	Прочность опорной плиты	0,31
	по нормальным	
	напряжениям на участках,	
	опертых на две стороны,	
	которые сходятся под углом	
п.8.6.2, (101)	Прочность опорной плиты	1,448*10 ⁻⁰⁰⁴
	по нормальным	
	напряжениям на свободных	
	трапециевидных участках	
	плиты	
	Прочность бетона	0,142
	фундамента на местное	
	смятие под плитой	
п.14.1.16, (176), (177)	Прочность крепления	0,998
	траверсы к полкам колонны	
п.14.1.16, (176), (177)	Прочность крепления	0,69
	траверсы к опорной плите	
	,Прочность крепления	0,523
п.14.1.17, (178), (179)	, консольного ребра к	
п.14.1.19, (182), (183)	траверсе	
п. 9.1.1	Несущая способность	0,187
	поперечного сечения	
	колонны	

Коэффициент использования 0,998 - Прочность крепления траверсы к полкам колонны

Коэффициент использования по всему пакету комбинаций 0,998 - Прочность крепления траверсы к полкам колонны

Кривые взаимодействия

7.2.2. Сопряжение ригеля с колонной

Расчет выполнен по СП 16.13330.2017 с изменениями №1,2

Коэффициент надежности по ответственности $\gamma_n = 1$

Коэффициент условий работы колонны 1 Коэффициент условий работы ригелей 1

Колонна

Сталь колонны С345

Профиль

35К1 (Двутавр колонный (К) по СТО АСЧМ 2093)

Схема ребер

Положение ригеля - верхнее Ригель 1 (жесткое сопряжение)

Сталь ригеля C255 Сталь фланца C255 Сталь ребра C245

20Ш1 (Двутавр широкополочный по СТО АСЧМ 20-93)

Конструкция

Профиль

Свойства материалов сварки							
Нормативное сопротивление металла шва по 49949,032 Т/м²							
временному сопротивлению, R _{wun}	временному сопротивлению, R _{wun}						
Расчетное сопротивление угловых швов срезу по 21916,412 Т/м²							
металлу шва, R _{wf}							

Свойства материалов сварки					
Вид сварки Ручная					
Положение шва	Нижнее				

Знаки усилий

Результаты расчета по комбинациям загружений

	Ригель 1		Верх колонны			Низ колонны			
	N_{BL}	M_{BL}	Q_{BL}	N _{CT}	McT	Q _{CT}	N _{CB}	M _{CB}	Q_{CB}
	T	Т*м	Т	Т	Т*м	Т	T	Т*м	Т
1	6,72	2	1,34	43,07	8,43	0,24	52,15	5,55	1,51

Проверено по СНиП	Проверка	Коэффициент использования
п. 8.2.1, (41)	Прочность фланца при	
	изгибе с учетом ослабления	
	отверстиями (ригель 1)	
п.14.1.16, (176), (177),	Прочность сварного	0,605
п.14.1.17, (178), (179),	соединения ригеля с	
	фланцем (ригель 1)	
	Прочность болтового	0,071
(192)	соединения фланца с	
	полкой колонны (ригель 1)	
п.9.1.1, (106)	Прочность стенки колонны	
	по нормальным	
	напряжениям	
п.8.2.1, (42)	Прочность стенки колонны	0,238
	по касательным	
	напряжениям	
п.8.2.1, (44)	Прочность стенки колонны	0,271
	по приведенным	
	напряжениям	
	Местная устойчивость	0,011
(131)	стенки колонны	
п.14.3.3, (191), п.14.3.4,		
(192)	соединения фланца ригеля	
	с полкой колонны на срез	
	(ригель 1)	
п. 9.1.1	Несущая способность	0,351
	сечения балки (ригель 1)	
п. 9.1.1	Несущая способность	0,236
	сечения колонны	

Коэффициент использования 0,605 - Прочность сварного соединения ригеля с фланцем (ригель 1)

Коэффициент использования по всему пакету комбинаций 0,605 - Прочность сварного соединения ригеля с фланцем (ригель 1)

Кривые взаимодействия

7.2.3. Узлы ферм

Расчет выполнен по СП 16.13330.2017 с изменениями №1,2

Коэффициент надежности по ответственности $\gamma_n = 1$

Коэффициент условий работы 1

Сталь трубы С345

. ,	Свойства материалов сварки						
Нормативное сопротивление металла шва по 49949,032 Т/м ²							
временному сог	противлению, R _{wui}	n					
Расчетное сог	Расчетное сопротивление угловых швов срезу по 21916,412 Т/м ²						
металлу шва, R	wf						
Тип сварки					Заводская сварка		
Вид сварки					Ручная		
Положение шва	3				Нижнее		

1	0	160x5 (Стальные гнутые замкнутые сварные квадратные профили по ГОСТ 30245-2003)
2	0	140х4.5 (Стальные гнутые замкнутые сварные квадратные профили по ГОСТ 30245-2003)

Сварные швы				
Швы (мм)	K ₁			
Катет	5			

N_1 — M_2 — M_3 — M_3 — M_3 — M_3

Результаты расчета по комбинациям загружений

	N ₁	M ₁	N ₂	M ₂	N ₃	Мз
	Т	Т*м	Т	Т*м	T	Т*м
1	54,01	0,11	54,01	0,11	17,49	1,08

Проверено по СНиП	Проверка	Коэффициент использования
п.Л.2.2, (Л.1), п.Л.2.3, (Л.2)	Несущая способность	0,032
	участка стенки пояса на	
	продавливание	
	(вырывание) в месте	
	примыкания стойки	
п.Л.2.5, (Л.4), (Л.5)	Несущая способность	0,021
	стойки в зоне примыкания к	
	поясу	
п.Л.2.6, (Л.6), (Л.7)	Несущая способность	0,044
	сварного шва,	
	прикрепляющего стойку к	
	поясу	
п. 9.1.1	Прочность элемента пояса	0,482
	фермы левой панели	
п. 9.1.1	Прочность элемента пояса	0,482
	фермы правой панели	
п. 9.1.1	Прочность стойки фермы	0,011

Коэффициент использования 0,482 - Прочность элемента пояса фермы левой панели Коэффициент использования по всему пакету комбинаций 0,482 - Прочность элемента пояса фермы левой панели

Катет шва крепления стойки больше допустимого значения.

Кривые взаимодействия

Список использованных источников

- 1. СП 53-102-2004. Общие правила проектирования стальных конструкций. Свод правил по проектированию и строительству. М.: 2005 132 с.
- 2. СП 20.13330.2016 Нагрузки и воздействия. Актуализированная редакция СНиП 2.01.07-85* (с Изменениями N 1, 2).
- 3. СП 16.13330.2017 "Стальные конструкции. Актуализированная редакция СНиП II-23-81*" (с Поправкой, с Изменением N 1). Дата введения 2017-08-28
- 4. ГОСТ 21.502-2007. Правила выполнения проектной и рабочей документации металлических конструкций, М.: Стандартинформ. 2008 20 с.