Loopy belief propagation

CS B553 Spring 2013

Announcements

- · A2 due tonight
 - Reminder of late policy: 10% off for up to 48 hours late
- A3 coming soon!

Constructing a clique tree

- One way to find a clique tree is to choose a variable elimination ordering and "run" VE
- Another approach is to use a graph construction
 - If necessary, moralize to produce an undirected graph G.
 - Triangulate G to produce a chordal graph H. (Would like one with minimum clique size, but this is NP hard.)
 - Find maximal cliques in H. (Not NP hard for chordal graphs.)
 - Construct graph with nodes corresponding to max cliques in H, edges weighted according to degree of overlap. I.e. edge between C1 and C2 has weight $|C1 \cap C2|$
 - Find a max spanning tree on this graph to yield a clique tree.

Tree width

- The tree width of a graph G is equal to m-1,
 - Where m is the size of the largest clique in the triangulated (chordal) version of G
- The worst-case running time of exact inference on a Markov or Bayes network is exponential in the tree width of the moralized graph.
 - E.g., the tree width of an n x n grid graph is n, so inference takes O(sⁿ) time, where s is # of possible values of each random variable

Making inference tractable

- Three strategies for efficient inference in practice:
 - 1. Use a graphical model with low tree width.
 - 2. Make some additional assumptions about the problem. (Efficient algorithms exist for some special cases, e.g., when the clique potentials have a specific form.)
 - 3. Settle for an approximate inference algorithm.

Making inference tractable

- In practice, making inference tractable is a key challenge in applying graphical models to applications
- Typically, the options are:
 - Exact inference with arbitrary potentials on a graphical model, but with a simplified structure
 - Exact inference on a graphical model with arbitrary structure, but restricted potentials
 - Graphical model with arbitrary structure and arbitrary potentials, but settle for approximate inference

Approximate inference

- So far, we've covered exact inference algorithms
 - I.e. algorithms that can compute marginal probability distributions exactly, with no error
 - They are fast for some graphical models, like trees, but are prohibitively expensive for most applications
- · But is exact inference worth it?
 - Our models aren't perfect anyway...
- Much more efficient approximate inference algorithms exist
 - If we're willing to settle for inexact answers

Consider a simple cycle:

• A clique tree for this cycle is:

- Recall that a clique tree is a special cluster graph (each node is a clique of the original graph, edges connect subset of nodes sharing a common variable)
- Here's another cluster graph for the above cycle:
 - It's not a clique tree
 - It's a loopy graph

Back to sum-product...

 Recall that sum-product involves sending messages to neighbors,

$$\delta_{i \rightarrow j}(\mathbf{S_{i,j}}) = \sum_{\mathbf{C_i} - \mathbf{C_j}} \psi_i(\mathbf{C_i}) \prod_{k \in \mathcal{N}(i) - \{j\}} \delta_{k \rightarrow i}(\mathbf{S_{k,i}})$$

- We derived this for use on a clique tree, but the definition of messages (above) works on any graph!
 - I.e., there's nothing that prevents us from running Sum-Product Belief Propagation on a loopy cluster graph
 - There's just no theoretical justification for doing this...

Sum product

$$\delta_{i \rightarrow j}(\mathbf{S_{i,j}}) = \sum_{\mathbf{C_i} - \mathbf{C_j}} \psi_i(\mathbf{C_i}) \prod_{k \in \mathcal{N}(i) - \{j\}} \delta_{k \rightarrow i}(\mathbf{S_{k,i}})$$

BP on a clique tree

 Messages start at leaves, propagate up to root, then propagate down to leaves

BP on loopy cluster graph

 Nodes send messages to their neighbors, based on their clique potential and messages from neighbors

Loopy Belief Propagation

- · Construct a cluster graph from the Markov network
- · Each node sends messages to its neighbor,

$$\delta_{i \rightarrow j}(\mathbf{S_{i,j}}) = \sum_{\mathbf{C_i} - \mathbf{C_j}} \psi_i(\mathbf{C_i}) \prod_{k \in \mathcal{N}(i) - \{j\}} \delta_{k \rightarrow i}(\mathbf{S_{k,i}})$$

- Problems with this?
- · How to begin?
 - Initialize by having every node send a "fake" initial message, consisting of just a uniform distribution
- · How to end?
 - Keep running iterations of BP until convergence
 - Unfortunately, convergence might not happen...

Historical note: Turbo codes

- Loopy Belief Propagation (LBP) has been known for ~25 years, but people assumed it was not useful
- In the 1990s, a seemingly unrelated discovery sparked renewed interest in LBP
 - Paper on a new error-correcting transmission algorithm, for noisy links (e.g. wireless networks)
 - Breakthrough in communications technology; modern wireless phones still use this (or a related) technique

Noisy link model

- Suppose we want to send bits U1, U2, U3, U4 across a noisy communications link
 - Need some redundancy to detect and correct errors
 - So, we encode these bits as some new bits X1 X8
 - The observer receives some bits Y1—Y8, which may be a corrupted copy of X1 – X8
- From a probabilistic inference standpoint, receiver wants to compute distribution over X given Y

Turbo codes

- Berrou (1993)
- Solve for U1—U4, given Y1 Y8
- Hack: First solve for Y1, Y3, Y5, Y7.
- Hold these constant, then solve for Y2, Y4, Y6, Y8.
- Then repeat, iteratively; i.e. "Turbocharge" estimates using iterative feedback loop
- Unbeknownst to them, they had (re-)discovered Loopy Belief Propagation!

Loopy BP properties

- Recall that clique trees exhibited the running intersection property:
 - If variable X is part of node C and node D, then every node along the path from C to D also contains X
- · Loopy cluster graphs won't satisfy this condition
- Instead, we'll require the following weaker property:
 - If variable X is part of node C and node D, then there exists exactly one path between C and D such that the scope of the messages along the path include X
 - Intuitively, helps to prevent endless propagation cycles

Loopy BP properties

- Loopy BP can be **much** faster than exact inference
 - Running time?
- Loopy BP is not guaranteed to converge to a solution
- Even if it does converge, it's not guaranteed to converge to the correct solution
 - However, in practice it seems to converge to a reasonably good solution for a variety of Markov net problems
- · Rather little is known about its theoretical properties
 - $\boldsymbol{-}$ Including when it will work well and when it won't
 - We'll see (later) one explanation for why it works

Loopy BP on grid graphs

- In the special case of grid graphs, we can run BP on the Markov net directly, instead of the cluster graph
- This is possible because we can create a cluster graph with a very simple structure
- The computation is exactly the same, but it's more convenient to understand and implement this way

Belief propagation

- Messages are passed between the variables
 - Message from node i to j at iteration t is,

$$m_{i \to j}^{(t)}(X_j) = \sum_{X_i} \phi(X_i, X_j) \prod_{k \in \mathcal{N}(X_i) - \{X_j\}} m_{k \to i}^{(t-1)}(X_i)$$

 Intuitively (and anthropomorphically) a message from me to you says, for each of your states, "If you choose state Xj, here's how happy my neighbors and I would be."

