Welcome to STN International! Enter x:x

## LOGINID:SSPTAKAB1626

## PASSWORD:

TERMINAL (ENTER 1, 2, 3, OR ?):2

| * * *  | * * | * *  | * * | * Welcome to STN International * * * * * * * * * * *                                                   |
|--------|-----|------|-----|--------------------------------------------------------------------------------------------------------|
| NEWS   | 1   |      |     | Web Page for STN Seminar Schedule - N. America                                                         |
| NEWS   |     | APR  | 04  | STN AnaVist, Version 1, to be discontinued                                                             |
| NEWS   |     | APR  |     | WPIDS, WPINDEX, and WPIX enhanced with new                                                             |
|        |     |      |     | predefined hit display formats                                                                         |
| NEWS   | 4   | APR  | 28  | EMBASE Controlled Term thesaurus enhanced                                                              |
| NEWS   |     | APR  |     | IMSRESEARCH reloaded with enhancements                                                                 |
| NEWS   | 6   | MAY  | 30  | INPAFAMDB now available on STN for patent family searching                                             |
| NEWS   | 7   | MAY  | 3.0 | DGENE, PCTGEN, and USGENE enhanced with new homology                                                   |
| 112110 |     |      | 50  | sequence search option                                                                                 |
| NEWS   | 8   | JUN  | 06  | EPFULL enhanced with 260,000 English abstracts                                                         |
| NEWS   |     | JUN  | 06  | KOREAPAT updated with 41,000 documents                                                                 |
| NEWS   | 10  | JUN  | 13  | USPATFULL and USPAT2 updated with 11-character                                                         |
|        |     |      |     | patent numbers for U.S. applications                                                                   |
| NEWS   | 11  | JUN  | 19  | CAS REGISTRY includes selected substances from                                                         |
|        |     |      |     | web-based collections                                                                                  |
| NEWS   | 12  | JUN  | 25  | CA/CAplus and USPAT databases updated with IPC                                                         |
|        |     |      |     | reclassification data                                                                                  |
| NEWS   | 13  | JUN  | 30  | AEROSPACE enhanced with more than 1 million U.S.                                                       |
| NEWS   | 2.4 | JUN  | 20  | patent records EMBASE, EMBAL, and LEMBASE updated with additional                                      |
| NEWS   | 14  | JUN  | 30  | options to display authors and affiliated                                                              |
|        |     |      |     | organizations                                                                                          |
| NEWS   | 15  | JUN  | 3.0 | STN on the Web enhanced with new STN AnaVist                                                           |
|        |     | 0011 | -   | Assistant and BLAST plug-in                                                                            |
| NEWS   | 16  | JUN  | 30  | STN AnaVist enhanced with database content from EPFULL                                                 |
| NEWS   | 17  | JUL  | 28  | CA/CAplus patent coverage enhanced                                                                     |
| NEWS   | 18  | JUL  | 28  | EPFULL enhanced with additional legal status                                                           |
|        |     |      |     | information from the epoline Register                                                                  |
| NEWS   |     | JUL  |     | IFICDB, IFIPAT, and IFIUDB reloaded with enhancements                                                  |
| NEWS   | 20  | JUL  | 28  | STN Viewer performance improved                                                                        |
| NEWS   |     | AUG  |     | INPADOCDB and INPAFAMDB coverage enhanced                                                              |
| NEWS   | 22  | AUG  | 13  | CA/CAplus enhanced with printed Chemical Abstracts                                                     |
|        |     |      |     | page images from 1967-1998                                                                             |
| NEWS   |     | AUG  |     | CAOLD to be discontinued on December 31, 2008                                                          |
| NEWS   |     | AUG  |     | CAplus currency for Korean patents enhanced                                                            |
| NEWS   | 25  | AUG  | 25  | CA/CAplus, CASREACT, and IFI and USPAT databases<br>enhanced for more flexible patent number searching |
| NEWS   | 26  | AUG  | 27  | CAS definition of basic patents expanded to ensure                                                     |
|        |     |      |     | comprehensive access to substance and sequence                                                         |
|        |     |      |     | information                                                                                            |
| NEWS   | 27  | SEP  | 18  | Support for STN Express, Versions 6.01 and earlier,                                                    |
|        |     |      |     | to be discontinued                                                                                     |

NEWS 28 SEP 25 CA/CAplus current-awareness alert options enhanced to accommodate supplemental CAS indexing of exemplified prophetic substances

NEWS 29 SEP 26 WPIDS, WPINDEX, and WPIX coverage of Chinese and and Korean patents enhanced

NEWS 30 SEP 29 IFICLS enhanced with new super search field

NEWS 31 SEP 29 EMBASE and EMBAL enhanced with new search and display fields

NEWS 32 SEP 30 CAS patent coverage enhanced to include exemplified prophetic substances identified in new Japanese-language patents

NEWS EXPRESS JUNE 27 08 CURRENT WINDOWS VERSION IS V8.3, AND CURRENT DISCOVER FILE IS DATED 23 JUNE 2008.

NEWS HOURS STN Operating Hours Plus Help Desk Availability

NEWS LOGIN Welcome Banner and News Items

NEWS IPC8 For general information regarding STN implementation of IPC 8

Enter NEWS followed by the item number or name to see news on that specific topic.

All use of STN is subject to the provisions of the STN Customer agreement. Please note that this agreement limits use to scientific research. Use for software development or design or implementation of commercial gateways or other similar uses is prohibited and may result in loss of user privileges and other penalties.

TOTAL.

0.21

ENTRY SESSION

SINCE FILE

0.21

FILE 'HOME' ENTERED AT 08:00:40 ON 07 OCT 2008

=> file reg

COST IN U.S. DOLLARS
FULL ESTIMATED COST

FILE 'REGISTRY' ENTERED AT 08:00:48 ON 07 OCT 2008
USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT.
PLEASE SEE "HELP USAGETERMS" FOR DETAILS.
COPYRIGHT (C) 2008 American Chemical Society (ACS)

Property values tagged with IC are from the  ${\tt ZIC/VINITI}$  data file provided by  ${\tt InfoChem.}$ 

STRUCTURE FILE UPDATES: 6 OCT 2008 HIGHEST RN 1057750-28-3 DICTIONARY FILE UPDATES: 6 OCT 2008 HIGHEST RN 1057750-28-3

New CAS Information Use Policies, enter HELP USAGETERMS for details.

TSCA INFORMATION NOW CURRENT THROUGH July 5, 2008.

Please note that search-term pricing does apply when conducting  ${\tt SmartSELECT}$  searches.

REGISTRY includes numerically searchable data for experimental and predicted properties as well as tags indicating availability of experimental property data in the original document. For information on property searching in REGISTRY, refer to:

--

chain nodes :

```
Uploading C:\Program Files\STNEXP\Queries\10563702.str
```



```
30 31
ring nodes :
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
24 25 26 27 28 29
chain bonds :
2-27 7-30 10-29 16-25 20-31 30-31
ring bonds :
1-2 1-6 2-3 3-4 4-5 5-6 7-8 7-12 8-9 9-10 10-11 11-12 13-14 13-18 14-
15
15-16 16-17 17-18 19-20 19-24 20-21 21-22 22-23 23-24 25-26 25-29 26-27
27-28 28-29
exact/norm bonds :
7-30 10-29 16-25 20-31 25-26 25-29 26-27 27-28 28-29 30-31
exact bonds :
2-27
normalized bonds :
1-2 1-6 2-3 3-4 4-5 5-6 7-8 7-12 8-9 9-10 10-11 11-12 13-14 13-18 14-
15-16 16-17 17-18 19-20 19-24 20-21 21-22 22-23 23-24
isolated ring systems :
containing 1 : 7 : 13 : 19 : 25 :
```

Match level:
1:Atom 2:Atom 3:Atom 4:Atom 5:Atom 6:Atom 7:Atom 8:Atom 9:Atom 10:Atom
11:Atom 12:Atom 13:Atom 14:Atom 15:Atom 16:Atom 17:Atom 18:Atom 19:Atom
20:Atom 21:Atom 22:Atom 23:Atom 24:Atom 25:Atom 26:Atom 27:Atom 28:Atom 29:Atom 30:CLASS 31:CLASS

## L1 STRUCTURE UPLOADED

=> d L1 L1 HAS NO ANSWERS L1 STR

\* STRUCTURE DIAGRAM TOO LARGE FOR DISPLAY - AVAILABLE VIA OFFLINE PRINT \*

Structure attributes must be viewed using STN Express query preparation.

FILE 'CAPLUS' ENTERED AT 08:01:46 ON 07 OCT 2008 USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT. PLEASE SEE "HELP USAGETERMS" FOR DETAILS. COPYRIGHT (C) 2008 AMERICAN CHEMICAL SOCIETY (ACS)

Copyright of the articles to which records in this database refer is held by the publishers listed in the PUBLISHER (PB) field (available for records published or updated in Chemical Abstracts after December 26, 1996), unless otherwise indicated in the original publications. The CA Lexicon is the copyrighted intellectual property of the American Chemical Society and is provided to assist you in searching databases on STN. Any dissemination, distribution, copying, or storing of this information, without the prior written consent of CAS, is strictly prohibited.

FILE COVERS 1907 - 7 Oct 2008 VOL 149 ISS 15 FILE LAST UPDATED: 6 Oct 2008 (20081006/ED)

Caplus now includes complete International Patent Classification (IPC) reclassification data for the second quarter of 2008.

Effective October 17, 2005, revised CAS Information Use Policies apply. They are available for your review at:

## http://www.cas.org/legal/infopolicy.html

=> s L1 SSS full

REGISTRY INITIATED

Substance data SEARCH and crossover from CAS REGISTRY in progress... Use DISPLAY HITSTR (or FHITSTR) to directly view retrieved structures.

FULL SEARCH INITIATED 08:01:52 FILE 'REGISTRY'
FULL SCREEN SEARCH COMPLETED - 82 TO ITERATE

100.0% PROCESSED 82 ITERATIONS

SEARCH TIME: 00.00.01

L2 41 SEA SSS FUL L1

L3 8 L2

=> d ibib abs hitstr 1-YOU HAVE REQUESTED DATA FROM 8 ANSWERS - CONTINUE? Y/(N):y

YOU HAVE REQUESTED DATA FROM 8 ANSWERS - CONTINUE? Y/(N):y

L3 ANSWER 1 OF 8 CAPLUS COPYRIGHT 2008 ACS on STN ACCESSION NUMBER: 2007:1267503 CAPLUS Full-text

DOCUMENT NUMBER: 147:517654
TITLE: Total branched-chain-amino-acid/tyrosine mole ratio

assay liquid reagent

INVENTOR(S): Kimata, Shinsuke; Yoneda, Keizo

PATENT ASSIGNEE(S): Toyobo Co., Ltd., Japan SOURCE: Jpn. Kokai Tokkyo Koho, 29pp.

CODEN: JKXXAF
DOCUMENT TYPE: Patent
LANGUAGE: Japanese

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

AB

| PATENT NO.             | KIND | DATE     | APPLICATION NO. | DATE     |
|------------------------|------|----------|-----------------|----------|
|                        |      |          |                 |          |
| JP 2007289096          | A    | 20071108 | JP 2006-122045  | 20060426 |
| PRIORITY APPLN. INFO.: |      |          | JP 2006-122045  | 20060426 |

Provided are a total branched-chain-amino-acid (BCAA) assay reagent, a tyrosine (TYR) assay reagent and a total branched-chain-amino- acid/tyrosine mole ratio (BTY) assay reagent, which are stable for a long time in a solution state. The BCAA assay reagent is a reagent for assaying a total BACC using an enzyme, which is characterized in that a total BACC degradative enzyme (e.g., leucine dehydrogenase) and a chromogen (e.g., tetrazolium salt) with a reduced non-specific coloring are made coexisted, and the total BACC degradative enzyme and the chromogen are sep, formulated. The TYR assay reagent is a reagent for assaying TYR using an enzyme, which is characterized in that a TYR degradative enzyme and a metal salt are made coexisted. The BTY assay reagent is designed to calculate a BTY mole ratio using the BCAA assay reagent and the TYR assay reagent.

41 ANSWERS

T 848122-32-7 848122-84-9 848122-35-0

RL: ARG (Analytical reagent use); ANST (Analytical study); USES (Uses) (total branched-chain-amino-acid/tyrosine mole ratio enzymic assay liquid reagent)

RN 848122-82-7 CAPLUS

CN 2H-Tetrazolium, 2-(4-nitrophenyl)-5-phenyl-3-[2-sulfo-4-[2-(4-sulfophenyl)diazenyl]phenyl]-, inner salt (CA INDEX NAME)

RN 848122-84-9 CAPLUS

CN 2H-Tetrazolium, 2,5-bis(4-nitrophenyl)-3-[2-sulfo-4-[2-(4-sulfophenyl)diazenyl]phenyl]-, inner salt (CA INDEX NAME)

RN 848122-85-0 CAPLUS

CN 2H-Tetrazolium, 2-(4-nitrophenyl)-5-(2-sulfophenyl)-3-[2-sulfo-4-[2-(4-sulfophenyl)diazenyl]phenyl]-, inner salt (CA INDEX NAME)

TITLE:

Water-soluble tetrazolium compounds

INVENTOR(S): PATENT ASSIGNEE(S): Fukuoka, Yuriko; Sakamoto, Ryo; Ishiyama, Munetaka Dojindo Laboratories, Japan

SOURCE: PCT Int. Appl., 24 pp.

CODEN: PIXXD2 Patent

DOCUMENT TYPE: LANGUAGE:

Japanese

FAMILY ACC. NUM. COUNT: PATENT INFORMATION:

| P                    | PATENT NO.             |      |     |             |             | KIND |      | DATE            |                | APPLICATION NO. |      |      |          |      |          |             |      |     |  |
|----------------------|------------------------|------|-----|-------------|-------------|------|------|-----------------|----------------|-----------------|------|------|----------|------|----------|-------------|------|-----|--|
| W                    |                        |      |     |             |             |      |      |                 | WO 2004-JP9953 |                 |      |      |          |      |          |             |      |     |  |
|                      |                        | W:   | ΑE, | AG,         | AL,         | AM,  | AT,  | AU,             | AZ,            | BA,             | BB,  | BG,  | BR,      | BW,  | BY,      | BZ,         | CA,  | CH, |  |
|                      |                        |      | CN, | CO,         | CR,         | CU,  | CZ,  | DE,             | DK,            | DM,             | DZ,  | EC,  | EE,      | EG,  | ES,      | FI,         | GB,  | GD, |  |
|                      |                        |      | GE, | GH,         | GM,         | HR,  | HU,  | ID,             | IL,            | IN,             | IS,  | JP,  | KE,      | KG,  | KP,      | KR,         | KΖ,  | LC, |  |
|                      |                        |      | LK, | LR,         | LS,         | LT,  | LU,  | LV,             | MA,            | MD,             | MG,  | MK,  | MN,      | MW,  | MX,      | MZ,         | NA,  | NI, |  |
|                      |                        |      | NO, | NZ,         | OM,         | PG,  | PH,  | PL,             | PT,            | RO,             | RU,  | SC,  | SD,      | SE,  | SG,      | SK,         | SL,  | SY, |  |
|                      |                        |      | TJ, | TM,         | TN,         | TR,  | TT,  | TZ,             | UA,            | UG,             | US,  | UZ,  | VC,      | VN,  | YU,      | ZA,         | ZM,  | ZW  |  |
|                      |                        | RW:  | BW, | GH,         | GM,         | KE,  | LS,  | MW,             | MZ,            | NA,             | SD,  | SL,  | SZ,      | TZ,  | UG,      | ZM,         | ZW,  | AM, |  |
|                      |                        |      | ΑZ, | BY,         | KG,         | ΚZ,  | MD,  | RU,             | TJ,            | TM,             | AT,  | BE,  | BG,      | CH,  | CY,      | CZ,         | DE,  | DK, |  |
|                      |                        |      | EE, | ES,         | FI,         | FR,  | GB,  | GR,             | HU,            | ΙE,             | IT,  | LU,  | MC,      | NL,  | PL,      | PT,         | RO,  | SE, |  |
|                      |                        |      | SI, | SK,         | TR,         | BF,  | ВJ,  | CF,             | CG,            | CI,             | CM,  | GA,  | GN,      | GQ,  | GW,      | ML,         | MR,  | NE, |  |
|                      |                        |      | SN, | TD,         | TG          |      |      |                 |                |                 |      |      |          |      |          |             |      |     |  |
| C                    | CA 2532211             |      |     |             | A1 20050317 |      |      | CA 2004-2532211 |                |                 |      |      | 20040713 |      |          |             |      |     |  |
| E                    | EP 1650197             |      |     | A1 20060426 |             |      |      | EP 2004-747419  |                |                 |      |      | 20040713 |      |          |             |      |     |  |
|                      |                        | R:   | ΑT, | BE,         | CH,         | DE,  | DK,  | ES,             | FR,            | GB,             | GR,  | IT,  | LI,      | LU,  | NL,      | SE,         | MC,  | PT, |  |
|                      |                        |      | ΙE, | SI,         | FI,         | RO,  | CY,  | TR,             | BG,            | CZ,             | EE,  | HU,  | PL,      | SK   |          |             |      |     |  |
| C                    | N                      | 1823 | 049 |             |             | A    |      | 2006            | 0823           |                 | CN 2 | 004- | 8002     | 0013 |          | 2           | 0040 | 713 |  |
| U                    | US 20070111274         |      |     |             | A1 20070517 |      |      |                 |                | US 2006-563702  |      |      |          |      | 20060105 |             |      |     |  |
| PRIORI               | PRIORITY APPLN. INFO.: |      |     |             |             |      |      |                 |                | JP 2            | 003- | 2739 | 82       | - 2  | A 2      | 0030        | 714  |     |  |
|                      |                        |      |     |             |             |      |      |                 |                |                 | WO 2 | 004- | JP99.    | 53   | 1        | <i>ii</i> 2 | 0040 | 713 |  |
| OTHER SOURCE(S): MAR |                        |      |     |             | PAT         | 142: | 3127 | 54              |                |                 |      |      |          |      |          |             |      |     |  |

AB Water-soluble tetrazolium compds. suited for determining a dehydrogenase or an hydrogenase substrate (e.g., NADH) are provided, each of which is able to form a formazan exhibiting an optical absorption at a long-wavelength, and is

Ι

excellent in long-term stability in an aqueous solution The water-soluble tetrazolium compde. are represented by the general formula (I). In I, Rl to Rl9 are each independently a hydrogen atom, a nitro group, a sulfo group, or an alkyl group, an alkoxy group, sulfoalkyl group, or a sulfoalkyloxy group having 1 to 4 carbon atoms, with the proviso that at least two of R to Rl9 are each independently a sulfo group, or a sulfoalkyl group or a sulfoalkyloxy group having 1 to 4 carbon atoms; and M is an alkali metal or ammonium.

IT 847986-46-3P 847986-47-4P 347986-48-5P

847986-49-6P 847986-50-9P 847986-51-0P 847986-52-1P

RL: ARG (Analytical reagent use); PRP (Properties); SPN (Synthetic preparation); ANST (Analytical study); PREP (Preparation); USES (Uses) (water-soluble tetrazolium compds. for determining dehydrogenase)

(water-soluble tetrazolium compds. for deter RN 847986-46-3 CAPLUS

2H-Tetrazolium, 3-[2,5-dimethoxy-4-[2-(4-nitrophenyl)diazenyl]phenyl]-5-(2,4-disulfophenyl)-2-(4-nitrophenyl)-, inner salt, sodium salt (1:1) (CA INDEX NAME)

RN 847986-47-4 CAPLUS

CN

CN 2H-Tetrazolium, 2-(4-nitrophenyl)-5-phenyl-3-[2-sulfo-4-[2-(4-sulfophenyl)diazenyl]phenyl]-, inner salt, sodium salt (1:1) (CA INDEX NAME)

RN 847986-48-5 CAPLUS

CN 2H-Tetrazolium, 5-(2,4-disulfophenyl)-2-(4-nitrophenyl)-3-[2-sulfo-4-[2-(4-sulfophenyl)diazenyl]phenyl]-, inner salt, sodium salt (1:3) (CA INDEX NAME)

●3 Na

RN 847986-49-6 CAPLUS

CN 2H-Tetrazolium, 2,5-bis(4-nitrophenyl)-3-[2-sulfo-4-[2-(4-sulfophenyl)diazenyl]phenyl]-, inner salt, sodium salt (1:1) (CA INDEX NAME)

Na Na

RN 847986-50-9 CAPLUS

2H-Tetrazolium, 2-(4-nitrophenyl)-5-(2-sulfophenyl)-3-[2-sulfo-4-[2-(4-sulfophenyl)diazenyl]phenyl]-, inner salt, sodium salt (1:2) (CA INDEX NAME)

●2 Na

RN 847986-51-0 CAPLUS

CN 2H-Tetrazolium, 5-[2,4-bis(3-sulfopropoxy)phenyl]-3-[2,5-dimethoxy-4-[2-(4-nitrophenyl)diazenyl]phenyl]-2-(4-nitrophenyl)-, inner salt, sodium salt (1:1) (CA INDEX NAME)

Na.

RN 847986-52-1 CAPLUS

2H-Tetrazolium, 5-(2,4-disulfophenyl)-3-[2-methoxy-4-[2-(4-nitrophenyl)diazenyl]henyl]-2-(4-nitrophenyl)-, inner salt, sodium salt (1:1) (CA INDEX NAME)

REFERENCE COUNT: THERE ARE 9 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

ANSWER 3 OF 8 CAPLUS COPYRIGHT 2008 ACS on STN ACCESSION NUMBER: 1965:424618 CAPLUS Full-text

DOCUMENT NUMBER: 63:24618

ORIGINAL REFERENCE NO.: 63:4421h,4422b-f

TITLE: Influence of the azo group on the cytochemical

properties of ditetrazolium

Raikhlin, N. I.; Ostrovskaya, V. M.; Pryanishnikov, A. AUTHOR(S):

Tsitologiya (1965), 7(1), 116-20

SOURCE: CODEN: TSITAO: ISSN: 0041-3771

DOCUMENT TYPE: Journal LANGUAGE: Russian

For diagram(s), see printed CA Issue.

AB An anal. pure form of ditetrazolium with an azo group, called azotetrazolium (I) was prepared (4-H2NC6H4N:)2 (2.28 g.) was dissolved at -2° in 20 ml. H2O, followed by addition of 5 ml. concentrated HCl and 5 ml. H2O, containing 1.38 g. Na2NO2. The diazo compound obtained was coupled at  $-2^{\circ}$  with PhNHN:C(Ph)CO2H and dissolved in a mixture of 11 q. anhydrous Na2CO3 and 100 ml. H2O. The reaction mixture was stirred 2 hrs., left standing overnight, and the black, finely dispersed product filtered and washed with 400 ml. distilled H2O and boiling MeOH. The product (3.8 g.) was dried at 95°, transferred into 300 ml. HCONMe2, stirred, and filtered. The black precipitate on the filter was washed with 550 ml. MeOH and dried to give 1.70 g. azodiformazan ([p-(PhNHN: CPhN:N)C6H4N:]) (II), a black powder which did not melt at 350°, was easily soluble in tetrahydrofuran, less easily in HCONMe2, C6H6, and CC14, and insol. in MeOH, EtOH, and glycerol. II (1.62 g.) was dissolved in a mixture of 24 ml. tetrahydrofuran and 24 ml. dioxane. After cooling to 0°, 1.9 ml. iso-AmNO2 (III) was added to the solution and dry HCl passed through it till the medium was slightly acidic. After 2-3 days, 1 ml. III was added and HCl passed through slowly again. On the 3rd day, when the reaction mixture became colorless, it was filtered, the precipitate extracted twice with boiling MeOH, and an orange product precipitated from the extract with a ten-fold amount of ether and filtered. The filtrate was evaporated under an ir lamp at 60° to a small volume, cooled to 0°, and the orange precipitate filtered. The combined ppts. (0.63g.) were dissolved in 700 ml. distilled H2O at 80°. The undissolved portion was discarded and the aqueous solution dried by evaporation under an ir lamp at 70°. The product

was repptd. 2 times with ether from alc. solution and dried at  $60^{\circ}$  to give 0.41 g. I, an orange-cinnamon powder, very soluble in H2O, forming a light yellow solution. In histochem, tests I surpassed neoterrazolium and nitrotetrazolium blue in a number of properties. It is more sensitive to reduction than the former two, is insol, in lipids, is not affected by 96% EtOH in processing specimens, and does not form aggregates or crystals. 2095-14-3

(Derived from data in the 7th Collective Formula Index (1962-1966))

RN 2093-14-3 CAPLUS

CN

2H-Tetrazolium, 3,3'-(azodi-4,1-phenylene)bis[2,5-diphenyl-, dichloride (9CI) (CA INDEX NAME)

●2 C1-

L3 ANSWER 4 OF 8 CAPLUS COPYRIGHT 2008 ACS on STN ACCESSION NUMBER: 1965:424617 CAPLUS Full-text

DOCUMENT NUMBER: 63:24617

ORIGINAL REFERENCE NO.: 63:4421f-h
TITLE: Absorption spectrum of dyes. IX. Electronic spectra of

a 1:1 and a 1:2 complex, and CT-bands

AUTHOR(S): Hoshi, Toshihiko; Tanizaki, Yoshie; Ando, Noboru

CORPORATE SOURCE: Inst. Technol., Tokyo

SOURCE: Bulletin of the Chemical Society of Japan (1965),

38(5), 725-9 CODEN: BCSJA

CODEN: BCSJA8; ISSN: 0009-2673
DOCUMENT TYPE: Journal

LANGUAGE: Journal English

cf. CA 64, 1353h. The absorption spectra were determined at room temperature in the wavelength region 220-700 mµ. Mixed solns. of 2 concns. were prepared, one containing 10-5mole/1, of a partner dye (P) with an equal concentration of Chrysophenine G(G), and the other with the same concentration of P and 2-9 times the concentration of G. The absorption spectra of the PG and P2-9 times the concentration of P and P-20 species were determined by calcn. and were compared with the corresponding additive spectra (P + G and P + 2G), and the correlations among these spectra are discussed in detail. The mol. orbital (MO) pattern of the G mol. has been calculated empirically by applying Platt's theory; similarly, that of the P mol. has been calculated by assuming that there is 21 symmetry species. The spectral change caused by complex formation could be explained in relation to the MO's of the component mols. The existence of an intermol. charge transfer from P as an electron donor to G as an acceptor has been confirmed. The first band of a disazo dye (P) consists of 2 electronic transitions, one a  $\pi \to \pi^*$  (shorter wavelength) and the other an  $\iota \to \pi^*$  (longer wavelength) transition.

T 2093-14-3 (Derived from data in the 7th Collective Formula Index (1962-1966))

RN 2093-14-3 CAPLUS

 ${\tt CN-2H-Tetrazolium,\ 3,3'-(azodi-4,1-phenylene)bis[2,5-diphenyl-,\ dichloride]}$ 

●2 C1-

L3 ANSWER 5 OF 8 CAPLUS COPYRIGHT 2008 ACS on STN ACCESSION NUMBER: 1965:74191 CAPLUS Full-text

DOCUMENT NUMBER: 62:74191

ORIGINAL REFERENCE NO.: 62:13139d-f TITLE: Oxadiazole

TITLE: Oxadiazole derivatives. II. Mercuration of phenyl derivatives of 1,3,4-oxadiazole and their behavior in some electrophilic substitutions

AUTHOR(S): Shvaika, O. P.; Klimisha, G. P. CORPORATE SOURCE: All-Union Res. Inst. Monocrystals, Kharkov SOURCE: Zhurnal Obschede Khimii (1965), 35(2), 290-3

CODEN: ZOKHA4; ISSN: 0044-460X

LANGUAGE: Russian
AB cf. CA 55, 21103e: 61, 8298

cf. CA 55, 21103e; 61, 8298f. 2-Phenyl-1,3,4-oxadiazole refluxed with Hg(OAc)2 in PrOH 0.5 hr. gave bis(2-phenyl-1,3,4-oxadiazol-5-yl)mercury, m. 295-7° (C6H6); the filtrate gave 2-phenyl-1,3,4-oxadiazol-5-ylmercuric acetate (I), m. 197-8°. Mercuration in BuOH gave similar results. Mercuration failed in AcOH. I brominated in (CHC2I)2 at room temperature, finally at reflux, gave 2-phenyl-5-hydroxy-1,3,4-oxadiazole, m. 135.5-6.5°, after passage over Al2O3 in unspecified solvent. I and iodine in (CHCCI)2 gave mixed 2-phenyl-5-hydroxy- (II) and 2-phenyl-5-iodo-1,3,4-oxadiazoles, m. 107-9°; treated with H2O, the mixture gave II, m. 135°. 2,5-Diphenyl-1,3,4-oxadiazole and Br in AcOH or CC14 gave a complex with Br2, m. 157-9°, from which aqueous EtOH gave the original oxadiazole. No reaction of this with AcCl in the presence of AlCI3 could be accomplished. The passive nature of the phenylated oxadiazole ring is ascribed to formation of oxadiazolium cation.

IT 2093-14-3

(Derived from data in the 7th Collective Formula Index (1962-1966))

RN 2093-14-3 CAPLUS

CN 2H-Tetrazolium, 3,3'-(azodi-4,1-phenylene)bis[2,5-diphenyl-, dichloride (9CI) (CA INDEX NAME)

●2 C1-

L3 ANSWER 6 OF 8 CAPLUS COPYRIGHT 2008 ACS on STN ACCESSION NUMBER: 1965:74190 CAPLUS Full-text

DOCUMENT NUMBER: 62:74190 ORIGINAL REFERENCE NO.: 62:13139b-d

TITLE: Synthesis and polarographic reduction of

azotetrazolium AUTHOR(S): Ostrovskaya, V

AUTHOR(S): Ostrovskaya, V. M.; Davydovskaya, Yu. A.;
Prvanishnikov, A. A.; Vainshtein, Yu. I.; Dziomko, V.

SOURCE: Zhurnal Obshchei Khimii (1965), 35(2), 230-5

CODEN: ZOKHA4; ISSN: 0044-460X DOCUMENT TYPE: Journal

LANGUAGE: Russian

GI For diagram(s), see printed CA Issue.

Stirring 440 ml. 25% NH4OH, 36 g. p-O2NC6H4NHAC, 58 g. Zn dust, 0.08 g. H2PtC16 in H2O and 500 ml. MeOH 5 days gave after extraction of the precipitate with hot MeOH, 39% yellow 4,4'-azoacetanilide, m. 290-3°, which refluxed 2 hrs. with alc. KOH gave 90% orange-yellow 4,4'-azoaniline, m. 250-1°. This in aqueous HCl was treated with aqueous NaNO2 at -2°, filtered and treated with PhNHN:CPhCO2H in aqueous Na2CO3 at 0° at pH 9; on the following day the crude product was extracted with hot H2O and MeOH, then with Me2NCHO, and gave a 26% residual black I, does not m. 350°. I in dioxane-tetrahydrofuran was treated at 0° with iso-AmONO and dry HCl over 3 days and gave after extraction with hot MeOH 21% brown-orange II, decomposed 225-30°. Polarographic data of these compds. were reported and it was shown thereby that the azo group increased the electron-acceptor ability of the diterzaolium structure in polarographic reduction

2093-14-3

(Derived from data in the 7th Collective Formula Index (1962-1966))

RN 2093-14-3 CAPLUS

CN 2H-Tetrazolium, 3,3'-(azodi-4,1-phenylene)bis[2,5-diphenyl-, dichloride (9CI) (CA INDEX NAME)

L3 ANSWER 7 OF 8 CAPLUS COPYRIGHT 2008 ACS on STN

ACCESSION NUMBER: 1957:2060 CAPLUS

DOCUMENT NUMBER: 51:2060

ORIGINAL REFERENCE NO.: 51:489i,490a-i,491a

TITLE: Tetrazolium compounds

INVENTOR(S): Slack, Ronald; Nineham, Alan W.; Davis, Brenda M.

PATENT ASSIGNEE(S): May & Baker Ltd.
DOCUMENT TYPE: Patent

LANGUAGE: Unavailable

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO. KIND DATE APPLICATION NO. DATE

GB 738585 19551019 GB 1952-18148 19520717

AΒ Tetrazolium salts with therapeutic activity may be prepared by the following procedures: (A) 4,1-PhN:NC10NHNHCPh:NNHPh (4 q.) (I), 100 cc. CHC13, and 4.5 g. Pb(OAc)4 refluxed 30 min. and evaporated, the residue treated with excess dilute HCl and AmOH, and the organic layer washed with H2O, dried, and evaporated yielded crude 2,5-diphenyl-3-(4-phenylazo-1-naphthyl)tetrazolium (II) chloride; KI and II chloride in hot H2O gave II iodide, small orange needles, m. 180° (decomposition, from dilute EtOH). (B) 4-(4-ClC6H4N:N)C6H4NHNHCPh:NNHPh, m. 194.5-5.0° (5 g.), 15 g. yellow HgO, and 50 cc. MeOH refluxed 30 min., filtered, acidified to litmus with dilute HCl, filtered through Hyflo Supercel, and evaporated yielded 2,5-diphenyl-3-[4'-(4''-chlorophenylazo)phenyl]tetrazolium chloride (III), m. 184-5° (decomposition, from EtOH-Et20). (C) 4-(4- HOC6H4N:N)C6H4NHNHCPh:NNHPh, m. 193-4° (from EtOH) (10 q.), 200 cc. EtOH, and 10 cc. iso-Amono treated 30 min. with HCl at 0° and stirred into 1 1. H2O, the H2O decanted, the dark tarry residue in MeOH treated with carbon and filtered, and Et2O added precipitated the orange-red 4''-HO analog (IV), m. 230° (decomposition, from MeOH-Et2O), of III. IV (1.75 g.) and 0.9 g. Ag isethionate in 25 cc. dry EtOH yielded the isethionate analog, m. 218-19° (decomposition, from H2O), of IV. 2,5-Diphenyl-3-(2,5-dimethyl-4-phenylazophenyl)tetrazolium chloride-3H2O, m. 65°, was prepared from the formazan (V), m. 197°. p-H2NC6H4 N:NPh.HCl (17.25 g.) in 11.2 cc. HCl and 25 cc. H2O diazotized at 0-5° with 5.25 g. NaNO2 in 10 cc. H2O, 20 cc. EtOH added, the mixture gradually stirred into 9.8 g. PhCH:NNHPh (VI) in 100 cc. C5H5N, the whole stirred 3 hrs. at 0.5° and warmed to 25°, the precipitate washed with dilute HCl, H2O, and EtOH and boiled with 100 cc. EtOH, and the mixture cooled and filtered gave 4-PhN: NC6H4NHNHCPh: NNHPh, purplish black needles from Me2CO-H2O, m. 182° (decomposition); crude IX was used to prepare the tetrazolium iodide, m. 231-2° (decomposition, from MeOH), by method A. 4,1-PhN:NC10H6NH2 (26.7 q.) with NaNO2 in HOAc and H2SO4 slowly stirred into 19.6 g. VI in 600 cc. C5H5N below 10°, H2O added, and the precipitate washed and dried yielded I, purple needles from CHC13, m. 190-2°. V, m. 197° (from EtOAc), was similarly prepared 4-PhN:NC6H4NHNHC(C6H4OAc-4):NNHPh, m. 191° (from p-H2NC6H4N:NPh and p-AcOC6H4CH:NNHPh), with 0.2N NaOH in dilute EtOH gave the HO analog, C25H22N6O, m. 181°; the tetrazolium chloride, m. 267°. 4-HOC6H4N:NC6H4NH2-4 (53 g.) in 255 cc. HCl with 17.5 g. NaNO2 and coupled with 90 g. 4-IMe3NC6H4CH:NNHPh in 500 cc. C5H5N gave 4-ClMe3NC6H4C(:NNHPh)NHNHC6H4OH-4, m. 172-3° (decomposition), containing a small amount of the iodide; the tetrazolium chloride, C20H23C12N5O, m. 211-12° (decomposition, from MeOH-Et2O). p-AcOC6H4CHO (22 g.) and 36 g. finely powdered "4-phenylazophenylhydrazine  $\beta$ -sulfonic acid" (VII) [Troger and Franke, [Arch. Pharm. 244,307(1906)] in 100 cc. HOAc allowed to stand overnight and the purple product and excess NaOAc in ice water made just alkaline with dilute NH4OH gave 4-AcO C6H4 CH:NNHC6H4N:NPh-4, m. 161-2° (from

C6H6); this (6 g.) in 100 cc. C5H5N and 4-C1N2C6H4CH:CHPh (VIII) (from 4 g. in 14 cc. 50% HCl) yielded 4-PhN:NC6H4NHNHC(C6H4OAc-4):NNHCH6H4CH:CHPh-4, m. 220-1° (from C6H6); the tetrazolium chloride, m. 215-16° (from Me2CO-Et2O), p-HO2CC6H4CHO (7.5 q.) and 14.8 q. VII in 150 cc. warm HOAc similarly yielded 4-PhN:NC6H4NHN:CHC6H4CO2NH4-4, bright orange microcrystals, m. 245°; this and VIII gave 4-PhN:NC6H4NHNHC(C6H4CO2H- 4):NNHC6H4CH:CHPh-4, (XVII), m. 239-40° [the tetrazolium chloride, m. 195-6° (decomposition, from EtOH)]. The following 4-RC6H4NHNHCR':NNHC6H4N:NR''-4 (IX) and the corresponding tetrazolium salts (X) were prepared [R, R', R'', procedure, anion of X, m.p. of IX, and m.p. (decomposition) of X given]: H, Ph, 4-02NC6H4, A, Cl (dihydrate), 210° (decomposition), variable; Cl, Ph, Ph, A, I, 168-70°, 218° (decomposition); AcNH, Ph, Ph, A, I, 215°, 258° (decomposition); H, Me, Ph, A, I, 110°, 127-9° (from EtOH-Et2O); H, Ph, 4-MeC6H4, B, I, 186-8°, 175-7° (decomposition); HO2C, Ph, Ph, B, Cl, 209°, 164° (decomposition); H, Ph, 2,4-Cl(HO)C6H3, C, Cl, 149-50°, 204-5° (decomposition); H, Ph, 3,4-Cl(HO)C6H3, C, Cl. 205-10°, 206-7° (decomposition). The following 4-RC6H4NHNHCR':NNHC6H4:CHR''-4 were prepared: H, Ph, Ph, B, Cl (isethionate analog, m. 181°; H sulfate analog, m. 169-71°), 225° (from EtOAc), 228-9° (decomposition, from H2O); H, Ph, 4-AcNHC6H4, B, I (monohydrate), 208-9°, 244° (decomposition); H, Ph, 4-BrC6H4, B, Cl (monohydrate), 186-7°, 216-17° (decomposition); H, Ph, 4-HOC6H4, B, I, 175-6°, 272° (decomposition); H, 4-BrC6H6, Ph, B, I, 170-1° (decomposition), 206° (decomposition); H, 4-MeOC6H4, Ph, B, I, 157-8°, 167-8° (decomposition); H, Ph, 4-02NC6H4, B, Cl (dihydrate), 185-6°, 233-4° (decomposition); H, Me, Ph, B, I (hemihydrate), 160-2° (decomposition), 169-71°; H, Me, 4-O2NC6H4, B, I, 182-3°, 222-3° (decomposition); PhN:N, Ph, Ph, B, I, -, 172-6° (decomposition, from EtOH). 118951-83-8P, Tetrazolium, 2-(p-chlorophenyl)-5-phenyl-3-(pphenylazophenyl)-2H-, iodide 118951-88-5P, Tetrazolium, 3-[p-(p-chlorophenylazo)phenyl]-2,5-diphenyl-2H-, chloride 121655-17-2P, Tetrazolium, 3-[p-[2-chloro-4hydroxyphenylazo]phenyl]-2,5-diphenyl-2H-, chloride 121655-52-5P , Tetrazolium, 3-[p-[3-chloro-4-hydroxyphenylazo]phenyl]-2,5-diphenyl-2H-, chloride 122803-26-3P, Tetrazolium, 2,5-diphenyl-3-(pphenylazophenyl)-2H-, iodide 122803-35-4P, Tetrazolium, 5-(p-hydroxyphenyl)-2-phenyl-3-(p-phenylazophenyl)-2H-, chloride 124202-33-1P, Tetrazolium, 2-(p-carboxyphenyl)-5-phenyl-3-(pphenylazophenyl)-2H-, chloride 860224-83-5P, Tetrazolium, 2,5-diphenyl-3-(p-2,5-xylylazophenyl)-2H-, chloride RL: PREP (Preparation) (preparation of)

RN 118951-83-0 CAPLUS

IΤ

CN 2H-Tetrazolium, 2-(4-chlorophenyl)-5-phenyl-3-[4-(2-phenyldiazenyl)phenyl]-, iodide (1:1) (CA INDEX NAME)

RN 118951-88-5 CAPLUS

CN 2H-Tetrazolium, 3-[4-[2-(4-chlorophenyl)diazenyl]phenyl]-2,5-diphenyl-, chloride (1:1) (CA INDEX NAME)

RN 121655-17-2 CAPLUS

CN 2H-Tetrazolium, 3-[4-[2-(2-chloro-4-hydroxyphenyl)diazenyl]phenyl]-2,5-diphenyl-, chloride (1:1) (CA INDEX NAME)

RN 121655-52-5 CAPLUS

CN 2H-Tetrazolium, 3-[4-[2-(3-chloro-4-hydroxyphenyl)diazenyl]phenyl]-2,5-diphenyl-, chloride (1:1) (CA INDEX NAME)

C1 -

RN 122803-26-3 CAPLUS

CN 2H-Tetrazolium, 2,5-diphenyl-3-[4-(2-phenyldiazenyl)phenyl]-, iodide (1:1)

(CA INDEX NAME)

RN 122803-35-4 CAPLUS

CN 2H-Tetrazolium, 5-(4-hydroxyphenyl)-2-phenyl-3-[4-(2-phenyldiazenyl)phenyl]-, chloride (1:1) (CA INDEX NAME)

RN 124202-33-1 CAPLUS

CN 2H-Tetrazolium, 2-(4-carboxyphenyl)-5-phenyl-3-[4-(2-phenyldiazenyl)phenyl]-, chloride (1:1) (CA INDEX NAME)

● c1-

RN 860224-83-5 CAPLUS

CN 2H-Tetrazolium, 3-[4-[2-(2,5-dimethylphenyl)diazenyl]phenyl]-2,5-diphenyl-, chloride (1:1) (CA INDEX NAME)



L3 ANSWER 8 OF 8 CAPLUS COPYRIGHT 2008 ACS on STN ACCESSION NUMBER: 1955:28154 CAPLUS Full-text

DOCUMENT NUMBER: 49:28154

AB

ORIGINAL REFERENCE NO.: 49:5452d-i,5453a-e

TITLE: Tetrazolium compounds. II. Azo derivatives AUTHOR(S): Libman, D. D.; Nineham, A. W.; Slack, R.

CORPORATE SOURCE: May & Baker, Essex, UK

SOURCE: Journal of the Chemical Society (1954) 1565-8

CODEN: JCSOA9; ISSN: 0368-1769

DOCUMENT TYPE: Journal
LANGUAGE: Unavailable
OTHER SOURCE(S): CASREACT 49:28154
GI For diagram(s), see printed CA Issue.

cf. C.A. 49, 3172c. A new series of formazans and corresponding tetrazolium salts is described. In each compound an N-Ph group bears a phenylazo substituent. 3-p-Aminophenyl-2,5-di-phenyl-2H-tetrazolium chloride (Ia) [previously prepared (loc. cit.)] showed slight activity against influenza A and Nigg mouse pneumonitis viruses; the 3-(phenylazophenyl) analogs of Ia were chosen for the present study. The synthetic methods employed are described in Part I (loc. cit.). Variants of I were prepared as follows: ring A by (1) coupling p-AcNHC6H4N2C1 with substituted benzene derivs., (2) coupling diazonium salts with PhNHCH2SO3Na, or (3) rearrangement of diazoamino compds. in the presence of PhNH2.HCl; ring B by application of the above methods to 1-C10H7NH2 and p-xylidine; R by the use of different aldehydes; and ring C by the use of substituted phenylhydrazines. Formazans, RNHN: CR'N:NR''; Number, R, R', R'', Yield, %, M.p. °C.: 1, Ph. Ph. p-PhN: NC6H4, 50, 182\*; 2, Ph. Me p-PhN:NC6H4, 28, 115; 3, Ph, Ph, p-(p-MeC6H4N:N)C6H4, 53, 186-8; 4, Ph, Ph, p-(p-C1C6H4N:N)C6H4, 11.5,194.5-5;5,Ph,Ph,p-(p-O2NC6H4N:N)C6H4,57,205-6\*; 6, Ph, Ph, p-(p-HOC6H4N:N), C6H4, 28, 198-200; 7, Ph, Ph, p-[2, 4-C1 (HO) C6H3N:N], C6H4, 27, 149-50; 8, Ph, Ph, p-[3, 4-C1(HO)C6H3N:N], C6H4, 8, 205-10; 9, Ph, Ph, 4, 1-PhN:NC10H69,200;10,Ph,p-HOC6H4,p-PhN:NC6H4,50,180;11,Ph,Ph,2,5,4-Me2(PhN:N)C6H2,50,197\*;12,p-HO2CC6H4,Ph,p-PhN:NC6H4,10,209;13,p-ClC6H4,Ph,p-PhN:NC6H4,18,168-70;14,p-AcNHC6H4,Ph,p-PhN:NC6H4,26,215;15,Ph,- [CH2]2-,p-PhN:NC6H4,29 136-8;16,Ph,-[CH2]6-,p-PhN:NC6H4,39,161-2\*; 17,Ph,Ph,p-(p-AcNHC6H4N:N)C6H4,35,216;18,Ph,Ph,p-(p-Me2NC6H4N:N)C6H4,23 182;19,p-AcNHC6H4,p-AcNHC6H4,p-(p-HOC6H4N:N)C6H4,small,188;20,Ph,Ph,2,5- dimethyl-4-(2thiazolylazo)phenyl, 25, 216[\*]; 21, Ph, p-AeOC6H4, p- PhN: NC6H4, 50, 191; \* With decompose; Corresponding; Number\*, Yield, %, X, Method of oxidation, M.p. (°C).dag.;1,24,I,B,231-2;2,-,I,B,127-9;3,36,I,A,175-7; 4,72,C1,A,184-5;5,45,C1,B,250;6,70,C1,C,230;7,26,C1,C,204-5;8,53,C1,C,206-7;9,48,I,B,280;10,97,C1,C,267;11,54,C1,A,41;12,48,C1,A,264;13,33,I,B,219; 14,40,I,B,258;15,69,I,B,185-6;16,24,I,A,169-70; Methods of oxidation: A, HgO in MeOH; B, Pb(OAc)4 in CHC13; C, iso-AmoNO and HC1. \*These compds. have the same R, R', and R'' as the formazans of corresponding number in preceding table. .dag. With decomposition, except Number 13. p-AcOC6H4CH:NNHPh, 95% from

alc., m. 154°. p-AcNHCGHANNNHZ.SnCl4 (100 g.) and 100 g. AcONa in 1 l. hot water heated with 33 g. p-AcNHCGHACHO in aqueous MeoH 30 min. at 95° gave the phenylhydrazone, m. 233°. Diazotized p-AcNHCGHANHZ coupled with o-ClCGH4OH and product hydrolyzed with HCl gave 2,4-Cl(p-H2NCGH4N:N)CGH3OH (518), m. 186-7°. 4-p-Aminophenylazo-3- chlorophenol, prepared in the same way (838), m. 165°, N-acetyl derivative, m. 213-15°. 2-(p-Aminophenylazo)thiazole, m. 188-9°, was prepared by coupling diazotized 2-aminothiazole with PhNiCHZSOSNA and hydrolyzing the product with hot 50% NaOH; N-Ac derivative, m. 231°. 2,5-10methyl-4-(2-thiazolylazo)aniline (28%) m. 158°, N-Ac derivative, m. 187°. 4-(2-Thiazolylazo)-1- naphthylamine (60%) m. 195°; N-Ac derivative (60%), m. 236°.

118951-33-0P, Tetrazolium, 2-(p-chlorophenyl)-5-phenyl-3-(p-IΤ phenylazophenyl)-2H-, iodide 118951-88-5P, Tetrazolium, 3-[p-(p-chlorophenylazo)phenyl]-2,5-diphenyl-2H-, chloride 121655-17-2F, Tetrazolium, 3-[p-(2-chloro-4hydroxyphenylazo)phenyll-2,5-diphenyl-2H-, chloride 121655-52-5P , Tetrazolium, 3-[p-(3-chloro-4-hydroxyphenylazo)phenyl]-2,5-diphenyl-2H-, chloride 122803-26-3P, Tetrazolium, 2,5-diphenyl-3-(pphenylazophenyl)2H-, iodide 122803-35-4P, Tetrazolium, 5-(p-hydroxyphenyl)-2-phenyl-3-(p-phenylazophenyl)-2H-, chloride 124202-33-1P, Tetrazolium, 2-(p-carboxyphenyl)-5-phenyl-3-(pphenylazophenyl)-2H-, chloride 357746-42-0P, Tetrazolium, 3-[p-(3-chloro-4-hydroxyphenylazo)phenyl]-2,5-diphenyl-2H-, compound with EtOH 857746-51-19, Tetrazolium, 2,5-diphenyl-3-[p-(ptolylazo)phenyll-2H-, iodide 857746-58-8P, Tetrazolium, 2,5-diphenyl-3-(4-phenylazo-2,5-xylyl)-2H-, chloride 857750-06-2P , Tetrazolium, 2-(p-acetamidophenyl)-5-phenyl-3-(p-phenylazophenyl)-2H-, iodide RL: PREP (Preparation) (preparation of) 118951-83-0 CAPLUS

RN 118951-83-0 CAPLUS
CN 2H-Tetrazolium, 2-(4-chlorophenyl)-5-phenyl-3-[4-(2-phenyldiazenyl)phenyl], iodide (1:1) (CA INDEX NAME)

RN 118951-88-5 CAPLUS

CN 2H-Tetrazolium, 3-[4-[2-(4-chlorophenyl)diazenyl]phenyl]-2,5-diphenyl-, chloride (1:1) (CA INDEX NAME)

RN 121655-17-2 CAPLUS

CN 2H-Tetrazolium, 3-[4-[2-(2-chloro-4-hydroxyphenyl)diazenyl]phenyl]-2,5diphenyl-, chloride (1:1) (CA INDEX NAME)

● c1-

RN 121655-52-5 CAPLUS

CN 2H-Tetrazolium, 3-[4-[2-(3-chloro-4-hydroxyphenyl)diazenyl]phenyl]-2,5-diphenyl-, chloride (1:1) (CA INDEX NAME)

🕽 cl –

RN 122803-26-3 CAPLUS

CN 2H-Tetrazolium, 2,5-diphenyl-3-[4-(2-phenyldiazenyl)phenyl]-, iodide (1:1) (CA INDEX NAME)

RN 122803-35-4 CAPLUS

CN 2H-Tetrazolium, 5-(4-hydroxyphenyl)-2-phenyl-3-[4-(2-phenyldiazenyl)phenyl]-, chloride (1:1) (CA INDEX NAME)

RN 124202-33-1 CAPLUS

CN 2H-Tetrazolium, 2-(4-carboxyphenyl)-5-phenyl-3-[4-(2-phenyldiazenyl)phenyl]-, chloride (1:1) (CA INDEX NAME)

● c1-

RN 857746-42-0 CAPLUS

2H-Tetrazolium, 3-[4-[2-(3-chloro-4-hydroxyphenyl)diazenyl]phenyl]-2,5-diphenyl-, compd. with ethanol (1:1) (CA INDEX NAME)

CM 1

CRN 807299-17-8 CMF C25 H18 C1 N6 O

CM 2

CRN 64-17-5 CMF C2 H6 O

H3C-CH2-OH

RN 857746-51-1 CAPLUS

CN 2H-Tetrazolium, 3-[4-[2-(4-methylphenyl)diazenyl]phenyl]-2,5-diphenyl-, iodide (1:1) (CA INDEX NAME)

● I-

RN 857746-58-8 CAPLUS

2H-Tetrazolium, 3-[2,5-dimethyl-4-(2-phenyldiazenyl)phenyl]-2,5-diphenyl-, chloride (1:1) (CA INDEX NAME)

● C1-

RN 857750-06-2 CAPLUS

CN 2H-Tetrazolium, 2-[4-(acetylamino)phenyl]-5-phenyl-3-[4-(2-phenyldiazenyl)phenyl]-, iodide (1:1) (CA INDEX NAME)

=> log off

ALL L+QUERIES AND ANSWER SETS ARE DELETED AT LOGOFF LOGOFF? (Y)/N/HOLD:y

STN INTERNATIONAL LOGOFF AT 08:02:11 ON 07 OCT 2008