

Department of ECE, Bennett University

EECE105L: Fundamentals of Electrical and Electronics Engineering

Tutorial Sheet-8

1. Consider the signals given in (a) - (g). In each case, two waves f(t) and g(t) are described by corresponding equations. From the wave equations, find which wave leads and which wave lags. Also find the angle of leading/lagging.

$$f(t) = 10\sin(\omega t + 30^{0})$$

$$g(t) = 10\sin(\omega t + 40^{0})$$
(a)

$$f(t) = 10\sin(\omega t + 20^{0})$$

$$g(t) = 10\sin(\omega t - 80^{0})$$
(b)

$$f(t) = 10\sin(\omega t - 20^{0})$$

$$g(t) = 10\cos(\omega t + 80^{0})$$
(c)

$$f(t) = -10\sin(\omega t + 20^{0})$$

$$g(t) = 10\sin(\omega t - 80^{0})$$
(d)

$$f(t) = 10\sin(\omega t - 20^{\circ})$$

$$g(t) = -10\sin(\omega t + 80^{\circ})$$
(e)

$$f(t) = -A\sin(\omega t + \theta)$$

$$g(t) = B\cos(\omega t - \phi)$$
(f)

$$f(t) = A\sin(\omega t + \theta)$$

$$g(t) = B\sin(\omega t + \phi)$$
(g)

- 2. Consider the wave form shown in fig. 1 through fig. 4. Answer the following questions.
 - a. Peak value, peak amplitude, peak to peak value
 - b. Average value and RMS over one period
 - c. Average value and RMS over half period
 - d. Relation between RMS value and peak value.

- 3. Consider the signals shown in fig. 5 through fig. 8. Evaluate
 - a. Peak value, peak amplitude, peak to peak value
 - b. Over one period, find average value and RMS value

- 4. For the waveforms shown in fig. 9 and 10. Evaluate
 - a. Peak value, peak amplitude, peak to peak value
 - b. Over one period, find average value and RMS value

----- END OF QUESTIONS -----

Answers:

Question 1: No answers are provided, as answer is the complete solution.

Question 2:

- a. Peak value, peak amplitude both are equal in all the cases and is V_0 . Peak to peak value is $2V_0$.
- b. Average value over one period is zero.

Question 3:

- a. Peak value is $2V_0$, peak amplitude is V_0 . Peak to peak value is $2V_0$.
- b.