- 1. Fizyka opiera się na doświadczeniu i pomiarach ilościowych
- 2. Celem fizyki jest **poszukiwanie** uniwersalnych **praw rządzących zjawiskam**i zachodzącymi we wszechświecie
- Fizyka teoretyczna teorie fizyczne powalają przewidzieć wyniki przyszłych doświadczeń
- 4. Do formułowania teorii fizycznych oraz przedstawiania wyników doświadczeń używa się **matematyki**

Cztery podstawowe oddziaływania

Typ oddziaływań	Źródło	Względne natężenie	lne natężenie Zasięg	
grawitacyjne	masa	ok. 10 ⁻³⁸	długi	
słabe	wszystkie cząstki elementarne ok. 10 ⁻¹⁵		krótki (10 ⁻¹⁸ m)	
elektromagnetyczne	ładunek elektryczny	ok. 10 ⁻²	długi	
jądrowe	hadrony (protony, neutrony, mezony)	1	krótki (10 ⁻¹⁵ m)	

Wielkości fizyczne i ich jednostki – typy wielkości fizycznych

<u>Wielkości skalarne</u> – do ich opisu ilościowego wystarczy jedna liczba

Na przykład: temperatura, masa, czas, pole powierzchni, objętość, gęstość, potencjał grawitacyjny, potencjał elektryczny, ...

Na przykład: przemieszczenie, prędkość, przyspieszenie, siła, natężenie pola grawitacyjnego, natężenie pola elektrycznego, ...

<u>Wielkości tensorowe</u> – rozszerzenie pojęcia wektora, przedstawiany w postaci tablicy liczb (macierzy)

Na przykład: moment bezwładności, współczynnik rozszerzalności liniowej, przewodnictwa cieplnego, załamania światła w ośrodkach anizotropowych

Wielkości fizyczne i ich jednostki – układ SI

<u>Układ jednostek SI</u> - powstał ze starego **układu MKS** (**metr, kilogram** i **sekunda**), do którego w 1954 roku dołączono jako podstawowe jednostki **amper, kelwina** oraz **kandelę**. Został oficjalnie zatwierdzony na XI Generalnej Konferencji Miar w 1960 roku. Po obradach XIV Konferencji w 1971 r. do klasy jednostek podstawowych został włączony **mol** (liczność materii). Natomiast na XX Konferencji, w 1995 roku włączono do niego jednostki uzupełniające – **radian** i **steradian**.

Jednostki podstawowe układu SI

Nazwa	Jednostka	Wielkość fizyczna
metr	m	długość
kilogram	kg	masa
sekunda	S	czas
amper	Α	natężenie prądu elektrycznego
kelwin	K	temperatura
kandela	cd	światłość
mol	mol	liczność materii

Inne układy jednostek: CGS, MKS, MKSA, MTS, ciężarowy.

Definicje wybranych jednostek podstawowych

Jednostka długości – metr

1 metr = długość drogi, jaką światło przebywa w próżni w czasie 1/299792458 sekundy.

Jednostka masy – kilogram

1 kilogram = masa wzorca wykonanego ze stopu platyny i irydu (odpowiednio 90 i 10%) w formie cylindra o średnicy i wysokości około 39 mm, przechowywany w sejfie w Międzynarodowym Biurze Miar i Wag w Sèvres koło Paryża.

*w przybliżeniu jest to masa 1 litra czystej wody w temperaturze 4°C

Jednostka czasu – sekunda

1 sekunda = przedział czasu równy 9 192 631 770 okresom promieniowania emitowanego przy przejściu pomiędzy dwoma nadsubtelnymi poziomami stanu podstawowego atomu ¹³³Cs

Redefinicja układu SI

SI jest układem jednostek miar, w którym:

- 1. Częstotliwość nadsubtelnego przejścia w atomach cezu 133 w niezaburzonym stanie podstawowym, Δv_{Cs} wynosi 9 192 631 770 Hz,
- **2.** Prędkość światła w próżni c wynosi 299 792 458 m/s,
- **3.** Stała Plancka *h* wynosi 6,626 070 $15 \cdot 10^{-34} J \cdot s$,
- **4. Ladunek elementarny** *e* wynosi 1,602 176 634 \cdot 10⁻¹⁹ *C*,
- **5.** Stała Boltzmanna k wynosi 1,380 649 · $10^{-23} J/K$,
- **6.** Stała Avogadra N_A wynosi 6,022 140 76 \cdot 10²³ mol^{-1} ,
- 7. Skuteczność świetlna monochromatycznego promieniowania o częstotliwości $540 \cdot 10^{12} \ Hz, K_{cd}$, wynosi $683 \ lm/W$.

kg

Nowa definicja kilograma

<u>Kilogram</u>, oznaczenie kg, jest to jednostka SI masy. Jest ona zdefiniowana poprzez przyjęcie ustalonej wartości liczbowej stałej Plancka h, wynoszącej $6,626~070~15 \cdot 10^{-34}$, wyrażonej w jednostce $J \cdot s$, która jest równa $kg \cdot m^2 \cdot s^{-1}$, przy czym metr i sekunda zdefiniowane są za pomocą c i Δv_{Cs} .

1 kilogram = masa wzorca wykonanego ze stopu platyny i irydu (odpowiednio 90 i 10%) w formie cylindra o średnicy i wysokości około 39 mm, przechowywany w sejfie w Międzynarodowym Biurze Miar i Wag w Sèvres koło Paryża.

Wielokrotności i podwielokrotności

Przedrostek	Oznaczenie	Wartość	Liczba
eksa	Ε	$10^{18} = 1\ 000\ 000\ 000\ 000\ 000\ 000$	trylion
peta	Р	$10^{15} = 1\ 000\ 000\ 000\ 000\ 000$	biliard
tera	T	$10^{12} = 1\ 000\ 000\ 000\ 000$	bilion
giga	G	10 9 = 1 000 000 000	miliard
mega	М	10 ⁶ = 1 000 000	milion
kilo	K	10 ³ = 1 000	tysiąc
hekto	h	10 ² = 100	sto
deka	da	10 ¹ = 10	dziesięć
jednostka		10 ° = 1	jeden
decy	d	$10^{-1} = 0.1$	dziesiąta
centy	С	$10^{-2} = 0.01$	setna
mili	m	$10^{-3} = 0.001$	tysięczna
mikro	<i>l</i> ′	10-6 = 0,000 001	milionowa
nano	n	10 ⁻⁹ = 0,000 000 001	miliardowa
piko	p	10 ⁻¹² = 0,000 000 000 001	bilionowa
femto	f	$10^{-15} = 0,000\ 000\ 000\ 000\ 001$	biliardowa
atto	а	10 ⁻¹⁸ = 0,000 000 000 000 000 001	trylionowa

Działania na wektorach

Wektor charakteryzuje wartość (długość), kierunek i zwrot.

Opisanie wektora wymaga układu współrzędnych, a najczęściej stosowany jest układ kartezjański.

Współrzędne wektora \vec{a} :

$$\vec{a} = [a_x, a_y] = [(x_2 - x_1), (y_2 - y_1)]$$

Działania na wektorach – dodawanie wektorów

Metoda równoległoboku

Metoda trójkąta

Współrzędne wektora \vec{c} :

$$\vec{c} = \vec{a} + \vec{b} = [(a_x + b_x), (a_y + b_y)] = [c_x, c_y]$$

Dodawanie wektorów jest przemienne: $\vec{a} + \vec{b} = \vec{b} + \vec{a}$ i łączne: $\vec{a} + (\vec{b} + \vec{c}) = (\vec{a} + \vec{b}) + \vec{c}$.

<u>Działania na wektorach</u> – odejmowanie wektorów

Współrzędne wektora \vec{c} :

$$\vec{c} = \vec{a} - \vec{b} = \vec{a} + (-\vec{b}) = [(a_x - b_x), (a_y - b_y)] = [c_x, c_y]$$

<u>Działania na wektorach</u> – iloczyn skalarny

Długość wektora:

$$|\vec{a}| = \sqrt{(a_x)^2 + (a_y)^2}$$

Iloczyn skalarny wektorów \vec{a} i \vec{b} :

$$\vec{a} \cdot \vec{b} = |\vec{a}| \cdot |\vec{b}| \cdot \cos \alpha$$

$$\vec{a} \cdot \vec{b} = a_x \cdot b_x + a_y \cdot b_y$$

Iloczyn skalarny jest przemienny: $\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a}$

Działania na wektorach – iloczyn wektorowy

Wektor w przestrzeni o 3 wymiarach:

$$\vec{a} = [a_x, a_y, a_z] = [(x_2 - x_1), (y_2 - y_1), (z_2 - z_1)]$$

Długość iloczynu wektorowego wektorów \vec{a} \vec{b} :

$$|\vec{a} \times \vec{b}| = |\vec{a}| \cdot |\vec{b}| \cdot \sin\alpha$$

Wektor wynikowy iloczynu wektorowego wektorów \vec{a} \vec{i} \vec{b} :

$$\vec{a} \times \vec{b} = \begin{vmatrix} \hat{\imath} & \hat{\jmath} & \hat{k} \\ a_x & a_y & a_z \\ b_x & b_y & b_z \end{vmatrix} =$$

$$= \hat{\imath} \cdot (b_z \cdot a_y - b_y \cdot a_z) - \hat{\jmath} \cdot (b_z \cdot a_x - b_x \cdot a_z) + \hat{k} \cdot (b_y \cdot a_x - b_x \cdot a_y)$$

 $\hat{\imath},\hat{\jmath},\hat{k}$ — wersory osi x, y, z, mają kierunek zgodny z odpowiednimi osiami i długość jednostkową

Graficzna interpretacja iloczynu wektorowego

Wzór na pole równoległoboku o bokach a i b oraz kącie α między nimi: $P=a\cdot b\cdot sin\alpha$

Iloczyn wektorowy nie jest przemienny: $\vec{a} \times \vec{b} = -(\vec{b} \times \vec{a})$

Przykłady

- 1. Dane są trzy wektory \vec{a} , \vec{b} i \vec{c} , znaleźć:
- $\vec{a} + \vec{b}$
- $|\vec{a}|$
- $\vec{a} \cdot 2\vec{b}$
- $\vec{c} \times (\vec{b} 3\vec{a})$
- $(\vec{a} \times \vec{b}) \cdot \vec{c}$

jeżeli:

$$\vec{a} = [1,2,3], \vec{b} = [1,1,1], \vec{c} = [1,2,1].$$

2. Sprawdź, że wektory:

$$\vec{u} = [1,1,0], \vec{v} = [1,-1,0] \text{ i } \vec{w} = [0,0,1], \text{ są do siebie prostopadłe.}$$

3. Dane są wektory:

$$\vec{a}=3\vec{\imath}+4\vec{\jmath}+5\vec{k}$$
 oraz $\vec{b}=-\vec{\imath}+\vec{k}$, obliczyć kąt między tymi wektorami.

4. Pewien wektor ma współrzędne początku (15,17), zaś współrzędne końca wynoszą (-2,7). Jaka jest jego długość i jaki kąt tworzy z osią x?