

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

ПЛАТЫ ПЕЧАТНЫЕ

ОСНОВНЫЕ ПАРАМЕТРЫ КОНСТРУКЦИИ

FOCT 23751-86

Издание официальное

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

ПЛАТЫ ПЕЧАТНЫЕ

Основные параметры конструкции

Printed circuit boards.
Basic parameters of structure

ГОСТ 23751—86

Взамен ГОСТ 23751—79

Постановлением Государственного комитета СССР по стандартам от 19 марта 1986 г. № 574 срок действия установлен

с 01.07.87

Несоблюдение стандарта преследуется по закону

Настоящий стандарт распространяется на односторонние (ОПП), двусторонние (ДПП) и многослойные (МПП) печатные платы на жестком и гибком основании, а также на гибкие печатные кабели (далее — $\Gamma\Pi K$).

Стандарт устанавливает основные параметры конструкции печатных плат и печатных кабелей.

Стандарт соответствует Публикации МЭК 326—3 в части номенклатуры параметров и размеров и их предельных отклонений.

Термины, применяемые в настоящем стандарте, — по ГОСТ 20406—75, ГОСТ 25346—82, ГОСТ 25347—82, ГОСТ 24642—81.

1. ОСНОВНЫЕ ПОЛОЖЕНИЯ

1.1. Настоящий стандарт устанавливает пять классов точности печатных плат и ГПК в соответствии со значениями основных параметров и предельных отклонений элементов конструкции (оснований печатных плат, проводников, контактных площадок, отверстий).

- 1.2. Размеры и предельные отклонения печатных плат и ГПК, установленные стандартом, обязательны для следующих методов проектирования: ручного, автоматизированного и полуавтоматизированного и должны обеспечивать автоматизированную установку изделий электронной техники.
- 1.3. Буквенные обозначения размеров конструкции печатных плат и ГПК приведены на черт. 1—4.

Односторонняя печатная плата (ОПП)

 H_{Π_*} — толщина печатной платы; H_{M} — толщина материала основания печатной платы; h_{Φ} — толщина фольги; b — гарантийный поясок; D — днаметр контактной площадки; d — днаметр отверстия; S — расстояние между краями соседних элементов проводящего рисунка; t — ширина печатного проводника; Q — расстояние от края печатной платы, выреза, паза до элементов проводящего рисунка

Черт. 1

Двусторонняя печатная плата (ДПП)

 $H_{\mbox{ п.-c}}$ — суммарная толщина печатной платы; $h_{\mbox{ п.-c}}$ — толщина химикогальванического покрытия; h— толщина проводящего рисунка; l— расстояние между центрами (осями) элементов конструкции печатной платы

Многослойная печатная плата (МПП)

Черт. 3

Гибкий печатный кабель (ГПК)

а — длина концевого контактаЧерт. 4

2. ОСНОВНЫЕ ПАРАМЕТРЫ И РАЗМЕРЫ

- 2.1. Размеры печатных плат
- 2.1.1. Размеры сторон печатных плат должны соответствовать ГОСТ 10317—79.
- 2.1.2. Предельные отклонения на сопрягаемые размеры контура печатной платы и ГПК не должны быть более 12-го квалитета по ГОСТ 25347—82.

Предельные отклонения на несопрягаемые размеры контура печатной платы и ГПК не должны быть более 14-го квалитета по ГОСТ 25347—82.

^{*} Для радиоэлектровных средств в модульном исполнении— с учетом ГОСТ 26765.11—85.

2.1.3. Толщину ОПП, ДПП и ГПК H_{π} определяют толщиной материала основания с учетом толщины фольги h_{Φ} .

Толщина МПП — по обязательному приложению.

Предельные отклонения толщин ОПП, ДПП, ГПК — по нормативно-технической документации на конкретный вид материала основания.

Предельные отклонения толщины МПП должны быть:

 ± 0.2 мм для МПП толщиной до 1,5 мм;

 ± 0.3 мм для МПП толщиной свыше 1,5 мм.

 Π р и м е ч а н и е. Допускается устанавливать по согласованию с головным технологическим предприятием отрасли более жесткие предельные отклонения толщины МПП.

2.1.4. Суммарную толщину печатной платы или ГПК $H_{\mathrm{n.c}}$ определяют как сумму толщины печатной платы или ГПК $H_{\mathrm{n.}}$ и сум-

марной толщины покрытий наружных слоев $h_{\rm m}$.

Предельные отклонения суммарных толщин печатной платы и ГПК не должны быть более суммы предельных отклонений толщин печатной платы или ГПК и покрытий на каждый наружный слой по ГОСТ 9.306—85. 3 % (- \$6

2.2. Размеры элементов конструкции

2.2.1. Наименьшие номинальные значения основных размеров элементов конструкции печатных плат и ГПК для узкого места в зависимости от классов точности приведены в табл. 1.

Таблица 1

Условное			значение основ		
обозначение	1	2	3	4	5
t, mm S, mm b, mm y*	0,75 0,75 0,30 0,40	0,45 0,45 0,20 0,40	0,25 0,25 0,10 0,33	0,15 0,15 0,05 0,25	0,10 0,10 0,025 0,20

^{*} γ — отношение номинального значения диаметра наименьшего из металлизированных отверстий к толщине печатной платы или ГПК,

Для свободного места указанные значения допускается устанавливать по любому более низкому классу, а для первого класса— увеличивать в два раза.

- 2.2.2. Номинальные размеры диаметров металлизированных и неметаллизированных монтажных и переходных (служащих только для соединения проводящих слоев) отверстий по ГОСТ 10317—79.
- 2.2.3. Предельные отклонения диаметров монтажных и переходных отверстий Δd должны соответствовать указанным в табл. 2.

			Преде	Предельное отклонение диаметра	наметра	
Диаметр отверс-	Наличие			Δd , мм, для класса точности		
тия <i>d,</i> мм	металлизации	1	5	8	4	\$
To 1,0 her	До 1,0 № Без металлизации	±0,10	±0,10	±0,05	∓0,05	±0,05 (±0.025)*
	С металлизацией без +0.05;-0.15 +0.05;-0.15 оплавления	+0,05;-0,15	+0,05;-0,15	+0;-0,10	+0:-0,10	+0;-0,10 +0;-0,075)*
	С металлизацией и с оплавлением	+0,05;-0,18	+0,05;-0,18 +0,05;-0,18	+0;-0,13	+0;-0,13	+0:-0,13
CB. 1,0	Без металлизации	±0,15	±0,15	±0,10	±0,10	±0,10
	С металлизацией без оплавления	+0,10;-0,20	+0,10;-0,20	+0,10;-0,20 +0,05;-0,15 +0,05;-0,15	+0,05;-0,15	+0,05;-0,15
	С металлизацией и с оплавлением	+0.10;-0,23	+0,10;-0,23	+0.10;-0.23 $ +0.10;-0.23$ $ +0.05;-0.18$ $ +0.05;-0.18$	+0,05;-0,18	+0,05;-0,18

* Норма вводится с 01.07.88.

- 2.2.4. Номинальные размеры сквозных отверстий под крепежные детали по ГОСТ 11284—75.
- 2.2.5. Ширину печатного проводника выбирают в зависимости от токовой нагрузки. Значения допустимой токовой нагрузки приведены в п. 2.4.4.
- 2.2.6. Предельные отклонения ширины печатного проводника, контактной площадки, концевого печатного контакта, экрана Δt для узкого места должны соответствовать указанным в табл. 3.

Таблица 3

Наличие		П	клонение ширин гроводника <i>Δt</i> , г ля класса точно	MM,	
металлическ ог о покрытия	1	2	3	4	5
Без покрытия	±0,15	±0,10	±0,05	±0,03	+0 -0,03
С покрытием	$^{+0,25}_{-0,20}$	$^{+0,15}_{-0,10}$	±0,10	±0,05	±0,03

- 2.3. Позиционные допуски расположения элементов конструкций
- 2.3.1. Значения позиционных допусков расположения осей отверстий T_d в диаметральном выражении приведены в табл. 4.

Таблица 4

Размер печатной платы	Знач	осей с	онного допу тверстий <i>Т</i> класса точ		жения
по большей стороне, мм	1	2	3	4	5
До 180 включ. Св. 180 до 360 включ. Св. 360	0,20 0,25 0,30	0,15 0,20 0,25	0,08 0,10 0,15	0,05 0,08 0,10	0,05 0,08 0,10

^{*} Позиционный допуск на расположение осей фиксирующих отверстий на платах, предназначенных для автоматической установки навесных элементов, устанавливают по 4-му классу, на расположение монтажных отверстий — по 3-му классу независимо от класса печатной платы.

- 2.3.2. Пересчет позиционных допусков расположения осей отверстий на предельные отклонения расстояний между осями этих отверстий проводят по ГОСТ 14140—81.
- 2.3.3. Значения позиционных допусков расположения центров контактных площадок T_D в диаметральном выражении приведены в табл. 5.

Таблица 5

Вид изделия	Размер печатной платы по большей стороне, мм				ов конт: Д' ^{мм}	
		1	2	3	4	5
ОПП; ДПП; ГПК; МПП (наружный слой) МПП (внутренний слой)	До 180 включ. Св. 180 до 360 включ. Св. 360 До 180 включ. Св. 180 до 360 включ. Св. 360	0,35 0,40 0,45 0,40 0,45 0,50	0,25 0,30 0,35 0,30 0,35 0,40	0,15 0,20 0,25 0,20 0,25 0,30	0,10 0,15 0,20 0,15 0,20 0,25	0,05 0,08 0,15 0,10 0,15 0,20

2.3.4. Значения позиционных допусков расположения печатного проводника T_l относительно соседнего элемента проводящего рисунка в диаметральном выражении приведены в табл. 6.

Таблица 6

		ение позици го проводны			
Вид изделия	1	2	3	4	5
ОПП; ДПП; ГПК; МПП (наружный слой) МПП (внутренний слой)	0,2 0,3	0,10 0,15	0,05 0,10	0,03 0,08	0,02 0,05

- 2.3.5. Формулы для расчета размеров элемента конструкции печатных плат и ГПК приведены в обязательном приложении.
 - 2.4. Электрические параметры
- 2.4.1. Значения допустимых рабочих напряжений между элементами проводящего рисунка, расположенными в соседних слоях печатной платы и ГПК, приведены в табл. 7.

Таблица 7

	Значение рабочег	о напряжения, В
Расстояние между элемен- тами проводящего рисунка, мм	Фольгированный гетинакс (ГФ)	Фольгированный стеклотекстолит (СФ)
От 0,1 до 0,2 включ. Св. 0,2 » 0,3 » » 0,3 » 0,4 » » 0,4 » 0,5 » » 0,5 » 0,75 » » 0,75 » 1,5 » » 1,5 » 2,5 »		25 50 100 200 350 500 650

2.4.2. Значения допустимых рабочих напряжений между элементами проводящего рисунка, расположенными на наружном слое печатной платы или ГПК, приведены в табл. 8.

2.4.3. Значения сопротивления печатных проводников длиной

1 м приведены в табл. 9.

2.4.4. Допустимую токовую нагрузку на элементы проводящего рисунка в зависимости от допустимого превышения температуры проводника относительно температуры окружающей среды выбирают для:

фольги — от $100 \cdot 10^6$ до $250 \cdot 10^6$ А/м² (от 100 до 250 А/мм²); гальванической меди — от $60 \cdot 10^6$ до $100 \cdot 10^6$ А/м² (от 60 до

 100 A/mm^2).

			Значени	Значение рабочего напряжения, В	напряжения	æ.		
			Внешни	Внешние воздействующие факторы	ющие факт	ифс		
D. C.	Попмальные	on H	Относительная влажность (93+3) % при)тносительная влажность (93+3)¶ при	I	Тониженное давл	Пониженное атмосферное давление	a
гасстояние между элементами проводящего рисунка, мм	условия	ия	темпе] (40±2)°С ние	температуре (40±2)°С в тече- ние 48 ч	БЗ600 Па (400 мм рт.ст.)	Па рт.ст.)	666 Па (5 мм рт. ст.)	Та г. ст.)
	ў	ф 2	ΓΦ	ΦÖ	ΓΦ	СФ	ΓΦ	ФЭ
Or 0,10 до 0,20 включ. CB. 0,20 » 0,30 » » 0,30 » 0,40 » » 0,40 » 0,70 » » 1,20 » 2,00 » 3,50 » 3,50 » 5,00 » 7,50 » 10,00 » 10,00 » 15,00 »	1.000 1.000 1.000 1.000 1.000 1.000	25 150 300 300 600 600 1160 2000 2300	200 230 230 360 360 560 830 1160	15 30 100 200 300 360 430 600 600 1160	250 250 250 250 250 250 250 250 250	20 110 110 200 300 400 560 660 1000	388 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	200 200 200 100 100 100 210 250 330 330

Примечания: 1. Цепи с напряжением более 250 В в МПП применять не рекомендуется. 2. Цепи с напряжением более 1800 В для фольгированного гетинакса и 2300 В для фольгированного стекло-столита в печатных платах и ГПК применять не рекомендуется.

текстолита в

Таблица 9

0,10
1 8 8 8 1 3,450 0,0 0,0

ПРИЛОЖЕНИ**Е** Обязательное

Формулы для расчета размеров элементов конструкции печатных плат, ГПК и толщины МПП

1. Наименьший номинальный диаметр *D* контактной площадки рассчитывают по формуле

$$D = (d + \Delta d_{B,0}) + 2b + \Delta t_{B,0} + 2 \Delta d_{\tau p} + (T_d^2 + T_D^2 + \Delta t_{n,0}^2)^{\frac{1}{2}},$$

где $\Delta d_{\text{в.о}}$ — верхнее предельное отклонение диаметра отверстия;

 $\Delta t_{\rm B.0}$ — верхнее предельное отклонение диаметра контактной площадки;

 $\Delta d_{\text{тр}}$ — значение подтравливания диэлектрика в отверстии равно 0,03 мм для МПП, для ОПП, ДПП и ГПК — нулю.;

 $\Delta t_{\pi,o}$ — нижнее предельное отклонение диаметра контактной площадки.

2. Наименьшее номинальное расстояние l для прокладки n-го количества проводников рассчитывают по формуле

$$l = \frac{D_1 + D_2}{2} + t \cdot n + S (n+1) + T_l,$$

где D_1 , D_2 — диаметры контактных площадок;

n — количество проводников.
 3. Толщину МПП рассчитывают по формуле

$$H_{\rm m} = \Sigma H_{\rm c} + (0.6 \div 0.9) \Sigma H_{\rm mp}$$

где H_c — толщина слоя МПП;

 $H_{\text{пр}}$ — толщина прокладки (по стеклоткани).

Редактор *В. Н. Шалаева* Технический редактор *Г. А. Макарова* Корректор *Е. И. Евтеева*

Сдано в наб. 10.04.86 Подп. в печ. 03.07.86 1,0 усл. п. л. 1,0 усл. кр.-отт. 0,60 уч.-изд. л. Тир. 16 000 Цена 3 ком.

		Единица	
Величина	Наименование	Обозна	чение
	l	международно е	русско е
основны	Е ЕДИНИ!	цы си	
Длина	метр	m	M
Macca	кипограмм	kg	KP
В ремя	секунда	s	c
Сила электрического тока	ампер	A	A
Термодинамическая температура	кельвин	K	K
Количество вещества	моль	mol	моль
Сила света	канде ла	ed	кд
ДОП ОЛНИТЕ	Лрные ет	, Гинипр. Си	ļ
Плоский угол	радиан	rad	pag
Телесный угол	стерадиан	sr	ср

ПРОИЗВОДНЫЕ ЕДИНИЦЫ СИ, ИМЕЮЩИЕ СПЕЦИАЛЬНЫЕ НАИМЕНОВАНИЯ

	1	Единица		Выражение через
Величина	Наименова	Обозн	аченне	основние и Уо-
	HN6	междуна- родное	русское	полинтел ьные единицы СИ
Частота	герц	Hz	Гц	C-1
Снпа	ньютон	N	н	M·KF·C-2
Давление	паскаль	Pa	Па	W-1 · KL·C-8
Энергия	джоуль	J	Дж	M2 · KF · C-2
Мощность	BOTT	W	Вт	M2.KT.C-3
Количество электричества	кулон	С	Кл	c·A
Электрическое напряжение	вольт	l v	В	M2-KF-C-3-A-1
Электрическая емкость	фарад	F	Ф	M-2KT-1.C4.A2
Электрическое сопротивление	ОМ	<u> </u> 2	OM	M2 KF C-3 · A-2
Электрическая проводимость	сименс	S	CM	M-2Kr-1. C3. A2
Поток магнитной индукции	вебер	Wb	Вб	M2 · Kr · C-2·A-1
Магнитная индукция	тесла	T	Tn	кг⋅с=2 · А=1
Индуктивность	генри	Н	Гн	M2 · KT · C −2 · A −2
Световой поток	люмен	lm	лм	кд - ср
Освещенность	люкс	$1_{\rm X}$	лk	м ⁻² ⋅ кд ⋅ ср
Активность радионуклида	беккерель	Bq	Бк	ct
Поглощенная доза ионизирую-	йєст	Gy	Гр	W ₅ ⋅ c ⁻²
щего излучения		-		•
Эквивалентная доза излучения	зиверт	Sv	3a	M ² · C ^{−2}