Boosting Summarization with Normalizing Flows and Aggressive Training

Yu Yang & Xiaotong Shen
University of Minnesota

UNIVERSIT

Motivation

Variational Models introduce uncertainty by learning a probability distribution over the latent variables. These models can generate smoother output spaces, more diverse summaries, and facilitate improved capture of semantic information.

Commonly used models typically utilize basic Gaussians, which are rigid in capturing latent intricacies. Moreover, numerous variational models encounter the issue of posterior collapse. In addressing this, we suggest the utilization of **Normalizing Flows** alongside **Aggressive Training**.

Background

Normalizing Flows^a

$$\mathbf{z}_{i} = f_{i}\left(\mathbf{z}_{i-1}\right) \Leftrightarrow \mathbf{z}_{i-1} = f_{i}^{-1}\left(\mathbf{z}_{i}\right); \quad \log p_{K}\left(\mathbf{z}_{K}\right) = \log p_{0}\left(\mathbf{z}_{0}\right) - \sum_{i=1}^{K} \log \left|\det \frac{df_{i}}{dz_{i-1}}\right|$$

Model Details

NF Latent Module (in purple)

- 1. Pass average embedding \overline{x} to an inference network $q_0: \overline{x} \mapsto (\mu_0, \sigma_0)$ 2. Sample $z_0 \sim N(\mu_0, \operatorname{diag}(\sigma_0^2))$
- 3. Apply K layers of normalizing flows transformation: $z_K = f_K \circ \cdots \circ f_1(z_0)$

Refined Gate Mechanism (in orange)

Mitigates saturation and allows for better gradient flow [1].

$$\begin{cases} z'_{K} = W^{z}z_{K} \\ f_{j} = \delta \left(W^{f} \left[h_{j}; z'_{K} \right] \right) \\ h'_{j} = (1 - f_{j}) \cdot h_{j} + f_{j} \cdot z'_{K} \end{cases} \Rightarrow \begin{cases} z'_{K} = W^{z}z_{K} \\ f_{j} = \delta \left(W^{f} \left[h_{j}; z'_{K} \right] \right) \\ r_{j} = \delta \left(W^{r} \left[h_{j}; z'_{K} \right] \right) \\ g_{j} = f_{j} + f_{j}(1 - f_{j})(2r_{j} - 1) \\ h'_{j} = (1 - g_{j}) \cdot h_{j} + g_{j} \cdot z'_{K} \end{cases}$$

Controlled Alternate Aggressive Training (CAAT)

Mitigate the posterior collapse problem:

- 1. Alternately update variational parameters and entire parameters for n_{agg} steps
- 2. Train all parameters jointly for the remainder of the training.

Objective Function

$$\mathbb{ELBO}_{NF-VED} = \mathbb{E}_{q_0(z_0)} \Big[\log p(y \mid x, z_K) + \log p(z_K \mid x) \Big] - \mathbb{E}_{q_0(z_0)} \Big[\log q_0(z_0) - \sum_{k=1}^K \log \left| \det J_{f_k}(z_{k-1}) \right| \Big], \qquad (1)$$

$$\mathcal{L} = -\sum_{j=1}^n \log p(y_j \mid \{x_i\}_{i=1}^m, z_K, y_{< j}) - \log p(z_K \mid x) + \log q_0(z_0) - \sum_{k=1}^K \log \left| \det J_{f_k}(z_{k-1}) \right| \qquad (2)$$

where q_0 is the probability density function for z_0 .

^almage source:

Model: FlowSUM

Quantitative Analyses

Model	R1	R2	RL
PG+Cov	39.53	17.28	36.38
BERT2BERT	41.28	18.69	38.09
BERTSUM	42.13	19.60	39.18
BART	44.16	21.28	40.90
PEGASUS	44.17	21.47	41.11
VHTM	40.57	18.05	37.18
TAS	44.38	21.19	41.33
PEGASUS+NTM	44.52	21.95	41.39
VEDSUM (BERT2BERT)	40.89	18.28	37.95
FlowSUM (BERT2BERT)	41.51	18.81	38.56
VEDSUM (BART)	44.36	21.09	41.37
FlowSUM (BART)	44.64	21.36	41.65

Table 1. Comparison with baselines on CNN/DM.

Model	ROUGE 1/2/L↑	BERTScore ↑	rep-w↓	Length	
CNN/DM					
BART	44.16/21.28/40.90	89.40	8.31	84.11	
VEDSUM	44.34/21.09/41.37	89.20	8.43	88.63	
FlowSUM	44.64/21.36/41.65	89.46	8.43	92.24	
Multi-News					
BART	42.56/15.34/36.67	86.69	9.76	133.42	
VEDSUM	43.91/16.68/38.10	87.04	9.95	128.79	
FlowSUM	44.42/17.01/38.36	87.09	9.91	128.87	
arXiv					
BART	42.55/15.92/37.89	85.35	17.23	130.68	
VEDSUM	43.05/ 16.34 /38.26	85.44	16.63	130.92	
FlowSUM	43.11/16.26/38.31	85.45	16.55	132.88	
PubMed					
BART	41.57/16.72/36.94	84.65	13.26	136.10	
VEDSUM	44.21/19.20/39.32	85.07	12.76	138.70	
FlowSUM	44.55/19.50/39.59	85.16	12.59	138.09	

Table 2. Comparison of BART, VEDSUM, and FlowSUM on long-summary benchmarks.

Ablation Studies

Model	ROUGE 1/2/L↑	BERTScore ↑	rep-w↓
BART	42.56/15.35/36.67	86.69	9.76
VEDSUM	43.91/16.68/38.10	87.04	9.95
FlowSUM (Planar)	43.85/16.61/37.97	87.03	10.04
FlowSUM (Radial)	43.84/16.68/37.98	87.04	9.92
FlowSUM (Sylvester)	44.18/16.71/38.15	87.08	9.80
FlowSUM (RealNVP)	44.19/16.64/38.15	87.05	9.81
FlowSUM (IAF)	44.42/17.01/38.36	87.09	9.91
FlowSUM (RLNSF)	44.25/16.86/38.14	87.06	9.80
FlowSUM (RQNSF)	44.31/16.98/38.27	87.07	9.91

Table 3. Effect of NF Types on Multi-News.

Model	Training	R1	R2	RL	KL Div
VEDSUM VEDSUM	standard β_C -VAE				0.0117 0.0082
FlowSUM (IAF) FlowSUM (IAF) FlowSUM (IAF)	standard β_C -VAE CAAT	43.81		37.91	3.9146 3.9128 2.1108
FlowSUM (RQNSF) FlowSUM (RQNSF) FlowSUM (RQNSF)	eta_C -VAE	44.18	16.76	38.18	127.8106 127.8106 107.0794

Table 4. Effect of Training Strategies.

FlowSUM on Knowledge Distillation

FlowSUM helps with knowledge distillation with both SFT and PL [2].

Model	ROUGE ↑ 1/2/L	BERT- Score	Length	# Params (MM)	Inference Time (MS) ↓
dBART-6-6					
dBART-6-6 FlowSUM FlowSUM-PLKD	42.78/20.24/39.72 43.41/20.33/40.41 43.70/20.71/40.73	88.98 89.18 89.24	67.42 91.25 91.10	230 238 238	170.5 234.9 239.7
dBART-12-3					
dBART-12-3 FlowSUM FlowSUM-PLKD	43.39/20.57/40.44 43.53/20.61/40.59 44.05/21.06/41.07	89.20 89.28 89.37	85.48 83.74 84.48	255 263 263	199.6 190.7 200.4

Table 5. Knowledge Distillation on DistilBART on CNN/DM.

References

- [1] Albert Gu, Caglar Gulcehre, Thomas Paine, Matt Hoffman, and Razvan Pascanu. Improving the gating mechanism of recurrent neural networks. In *International Conference on Machine Learning*, pages 3800–3809. PMLR, 2020.
- [2] Sam Shleifer and Alexander M Rush. Pre-trained summarization distillation. arXiv preprint arXiv:2010.13002, 2020.