RÓWNANIA RÓŻNICZKOWE, II ROK MATEMATYKI LISTA 7

Zadanie 1. Rozwiązać metodą rozdzielania zmiennych następujące zagadnienie brzegowe dla funkcji harmonicznych w prostokącie $(0, a) \times (0, b)$

(i) $u|_{x=a} = u|_{y=b} = 0$, $u|_{x=0} = A\sin\frac{\pi y}{b}$, $u|_{y=0} = B\sin\frac{\pi x}{a}$;

(ii)
$$u|_{x=a} = u|_{y=0} = u|_{y=b} = 0$$
, $u_x(0,y) + \lambda u(0,y) = g(y)$, $y \in (0,b)$.

Zadanie 2. Rozwiązać zagadnienie Dirichleta dla równania Laplace'a $\Delta u = 0$ (we współrzędnych biegunowych $\frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} + \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2} = 0$) w pierścieniu $\{R_1 < r = (x^2 + y^2)^{1/2} < R_2\}$ z warunkami brzegowymi $u(R_1, \theta) = g_1(\theta)$, $u(R_2, \theta) = g_2(\theta)$.

Wsk. użyć szeregów Fouriera, tzn. metody rozdzielania zmiennych, podobnie jak w przypadku koła. Co należy zmodyfikować w otrzymanych wzorach (i jakie przyjąć warunki brzegowe) w przypadkach granicznych: $R_1=0$ albo $R_2=\infty$?

Zadanie 3. Sprawdzić, że rozwiązanie zagadnienia Dirichleta dla równania Laplace'a $\Delta u = 0$ w kuli $B_R(0) \subset \mathbb{R}^n$ z warunkiem brzegowym $u|_{\partial B_R} = g \in C(\partial B_R)$ jest dane wzorem Poissona

$$u(x) = \frac{1}{\sigma_n R} \int_{\partial B_R} g(y) \frac{R^2 - |x|^2}{|x - y|^n} dS(y).$$

Zauważyć, że $u\in C^2(B_R)\cap C(\overline{B_R})$. Jak można wyprowadzić wzór Poissona dla koła na płaszczyźnie $\mathbb{R}^2\equiv\mathbb{C}$?

Wsk. użyć twierdzenia o wartości średniej dla funkcji harmonicznych i odwzorowań homograficznych koła.

Zadanie 4. ** Skonstruować funkcję Greena dla półprzestrzeni $\mathbb{R}^n_+ = \{x_n > 0\}.$

Zadanie 5. ** Udowodnić twierdzenie Harnacka: Jeżeli ciąg funkcji harmonicznych u_k w obszarze $\Omega \subset \mathbb{R}^n$ jest zbieżny (niemal) jednostajnie do funkcji u, to u jest funkcją harmoniczną w Ω .

Wsk. użyć własności średniej charakteryzującej funkcje harmoniczne.

Zadanie 6. ** Udowodnić twierdzenie Liouville'a: Ograniczona funkcja harmoniczna w \mathbb{R}^n jest funkcją stałą.

Wsk. skorzystać z własności średniej po kulach lub ze wzoru Poissona.

Zadanie 7. Znaleźć wartości własne i funkcje własne operatora Laplace'a w prostokącie $(0,a)\times(0,b)$, tzn. wyznaczyć $\lambda=\lambda_k,\ u=u_k$ spełniające równanie $\Delta u+\lambda u=0$ w $(0,a)\times(0,b)$ i warunek Dirichleta u=0 na brzegu prostokąta.

Zadanie 8. Sprawdzić, że funkcja $u(x,y)=xy(-\log(x^2+y^2))^{1/2},\,x^2+y^2>0,\,u(0,0)=0,$ ma ciągłe pochodne $u_{xx},\,u_{yy},$ ale pochodna mieszana u_{xy} nie istnieje w (0,0). Zatem u jest potencjałem newtonowskim **ciągłej** gęstości, ale $u\notin C^2$.

22 maja 2020

 $Piotr\ Biler$