Praktikum 1 : DGL

André Harms, Oliver Steenbuck

02.11.2011

Inhaltsverzeichnis

1	Steife Differentialgleichungen					
	1.1	Simulink/Analogrechner	2			
	1.2	Iterationsgleichungen	2			
		1.2.1 Euler (expl)	2			
		1.2.2 Euler (impl)	2			
		1.2.3 Runge-Kutta 2	2			
	1.3	Matlab Programme	2			
		1.3.1 Euler (expl)	2			
		1.3.2 Euler (impl)	3			
		1.3.3 RungeKutta	3			
		1.3.4 stiff	4			
	1.4	Ergebnisausdrucke	4			
	1.5	Interpretation der Ergebnisse	4			
2	Van	-der-Pol-DGL	4			
	2.1	Simulink/Analogrechner	4			
	2.2	Zu DGL 1 Ordnung transformierte DGL				
	2.3	Iterationsgleichungen	5			
	2.0	2.3.1 Euler (expl)	5			
		2.3.2 Runge-Kutta 2	5			
	2.4	Ergebnisausdrucke	5			
	2.5	Interpretation der Ergebnisse	5			
3	Lore	orenz-Attraktor mit RK 2				
	3.1	Simulink/Analogrechner	5			
	3.2	Iterationsgleichungen	5			
	-	3.2.1 Runge-Kutta 2				
	3.3	Matlab Programme	5			
		3.3.1 Lorenz	5			

MT, Pareigis		Steife Differentialgleichungen	Praktikum	1
3.4 Erge	ebnisausdrucke			5

1 Steife Differentialgleichungen

1.1 Simulink/Analogrechner

Abbildung 1: abbildung 1

1.2 Iterationsgleichungen

- 1.2.1 **Euler** (expl)
- 1.2.2 Euler (impl)
- 1.2.3 Runge-Kutta 2

1.3 Matlab Programme

1.3.1 **Euler (expl)**

```
Listing 1: Explizites Euler-Verfahren
```

Generiert am: 12. Oktober 2011

Oliver Steenbuck Andre Harms

1.3.2 **Euler** (impl)

Listing 2: Implizites Euler-Verfahren

```
_{1} function [x, y] = euler_{-}expl(h, xend)
      ska_y_i = 1;
2
      vec_ytmp = [];
3
      vec_xtmp = [];
4
5
      vec\_range = [0:h:xend];
      for ska_cur_x=vec_range
           ska_y_i = ska_y_i + h * mtp0101(ska_cur_x, ska_y_i);
           vec_xtmp = [vec_xtmp, ska_cur_x];
           vec_ytmp = [vec_ytmp, ska_y_i];
10
      end
11
12
      y = vec_ytmp;
      x = vec_xtmp;
14
15 end
```

1.3.3 RungeKutta

Listing 3: Runge Kutta

```
_{1} function [x, y] = rk2(h, xend, f)
      ska_y_i = 1;
      vec_ytmp = [];
3
      vec_xtmp = [];
4
      vec_range = [0:h:xend];
      for ska_cur_x=vec_range
          ska_y_i = ska_y_i + h * f(ska_cur_x + h / 2 , ska_y_i)
              + h/2 * f(ska_cur_x, ska_y_i));
          vec_xtmp = [vec_xtmp, ska_cur_x];
          vec_ytmp = [vec_ytmp, ska_y_i];
10
      end
11
12
```

Generiert am: 12. Oktober 2011

Oliver Steenbuck Andre Harms MT, Pareigis

```
\begin{array}{lll} {}_{13} & & y = vec\_ytmp\,; \\ {}_{14} & & x = vec\_xtmp\,; \\ {}_{15} \ \mbox{end} \end{array} \label{eq:condition}
```

1.3.4 stiff

1.4 Ergebnisausdrucke

1.5 Interpretation der Ergebnisse

2 Van-der-Pol-DGL

2.1 Simulink/Analogrechner

Abbildung 2: Simulink-Schaltbild Van-der-Pol-DGL

2.2 Zu DGL 1 Ordnung transformierte DGL

- 2.3 Iterationsgleichungen
- 2.3.1 **Euler** (expl)
- 2.3.2 Runge-Kutta 2
- 2.4 Ergebnisausdrucke
- 2.5 Interpretation der Ergebnisse
- 3 Lorenz-Attraktor mit RK 2
- 3.1 Simulink/Analogrechner
- 3.2 Iterationsgleichungen
- 3.2.1 Runge-Kutta 2
- 3.3 Matlab Programme
- 3.3.1 Lorenz
- 3.4 Ergebnisausdrucke
- 3.5 Interpretation der Ergebnisse