

Reinforcement Learning

Slides by Bryan Pardo; thanks in part to Bill Smart at WUSTL

Learning Types

- Supervised learning:
 - (Input, output) pairs of the function to be learned can be perceived or are given.

Regression or classification

- Unsupervised Learning:
 - No information about desired outcomes given

Clustering or expectation-maximization

- Reinforcement learning:
 - Reward or punishment for actions

Q-Learning

Reinforcement Learning

Task

- Learn how to behave to achieve a goal
- Learn through experience from trial and error

Examples

- Game playing: The agent knows when it wins, but doesn't know the appropriate action in each state along the way
- Control: a traffic system can measure the delay of cars, but not know how to decrease it.

The Multi Armed Bandit Problem

Which slot machine do I play?

Multi-Armed Bandits

- What if we can't observe the current state, or we assume there is only one state?
- Common examples:
 - Bidding for advertisement space on websites
 - Price setting in a grocery store
 - Playing slot machines

Multi-Armed Bandits

- The action value Q(a) is the expected reward when we take action a.
- Say we take action a N times, and observe rewards $r_1, r_2, ... r_N$.

$$Q_{N+1}(a) = E[r|a]$$

$$\approx \frac{1}{N} \sum_{i=1}^{N} r_i$$

$$= Q_N(a) + \frac{1}{N} [r_N - Q_N(a)]$$

 Update based on the difference between expected and observed rewards

Picking Actions

There are two common approaches.

Greedy

Pick the action a with the highest current Q(a) estimate.

ε-greedy

Pick the best action with with probability $1 - \varepsilon$

Else, pick the action randomly with equal probability

Multi-Armed Bandits

A simple bandit algorithm

 $N(A) \leftarrow N(A) + 1$

 $Q(A) \leftarrow Q(A) + \frac{1}{N(A)} [R - Q(A)]$

```
Initialize, for a=1 to k:
Q(a) \leftarrow 0
N(a) \leftarrow 0
Loop forever:
A \leftarrow \begin{cases} \operatorname{argmax}_a Q(a) & \text{with probability } 1-\varepsilon \\ \operatorname{a random action} & \text{with probability } \varepsilon \end{cases}
R \leftarrow bandit(A)
```

Example multi-armed bandit rewards

Greedy vs ε—Greedy

Assumes a stationary world

This update rule:

$$Q_{N+1}(a) = Q_N(a) + \frac{1}{N} [r_N - Q_N(a)]$$

...assumes a stationary world, where the rewards never change.

What if things change over time?

A new update rule

This update rule:

$$Q_{N+1}(a) = Q_N(a) + \alpha [r_N - Q_N(a)]$$

...assumes a world where change can happen. Let's rearrange the terms....

$$Q_{N+1}(a) = Q_N(a) + \alpha [r_N - Q_N(a)]$$

= $Q_N(a) + \alpha r_N - Q_N(a)$
= $(1 - \alpha)Q_N(a) + \alpha r_N$

Now, it should be clear we're balancing our existing knowledge Q(a) vs our new information *r*.

Non-stationary Multi-armed Bandit

A simple bandit algorithm

Initialize, for
$$a = 1$$
 to k :
 $Q(a) \leftarrow 0$

Loop forever:

$$A \leftarrow \begin{cases} \operatorname{arg\,max}_a Q(a) & \text{with probability } 1 - \varepsilon \\ \operatorname{a random action} & \text{with probability } \varepsilon \end{cases}$$
 (breaking ties randomly)
$$R \leftarrow bandit(A)$$

$$Q_{N+1}(a) = Q_N(a) + \alpha [r_N - Q_N(a)]$$

Note: this formulation is from Sutton & Barto's "Reinforcement Learning" See equation 2.5 on page 32.

Actions have consequences

 What if taking an action changes the state of the world?

This is the full reinforcement learning problem.

Basic RL Model

- 1. Observe state, s_t
- 2. Decide on an action, at
- 3. Perform action
- 4. Observe new state, s_{t+1} S
- 5. Observe reward, r_{t+1}
- 6. Learn from experience
- 7. Repeat

•Goal: Find a control policy that will maximize the observed rewards over the lifetime of the agent

An Example: Gridworld

Canonical RL domain

States are grid cells

4 actions: N, S, E, W

Reward for entering top right cell

-0.01 for every other move

Mathematics of RL

- Before we talk about RL, we need to cover some background material
 - Simple decision theory
 - Markov Decision Processes
 - Value functions
 - Dynamic programming

Making Single Decisions

- Single decision to be made
 - Multiple discrete actions
 - Each action has an associated reward
- Goal is to maximize reward
 - Just pick the action with the largest reward
- State 0 has a value of 2
 - Reward from taking the best action

Markov Decision Processes

- We can generalize the previous example to multiple sequential decisions
 - Each decision affects subsequent decisions
- This is formally modeled by a Markov Decision Process (MDP)

Markov Decision Processes

- Formally, a MDP is
 - A set of states, $S = \{s_1, s_2, \dots, s_n\}$
 - A set of actions, A = $\{a_1, a_2, \dots, a_m\}$
 - − A reward function, R: $S \times A \times S \rightarrow \Re$
 - A transition function, $P_{ij}^a = P(s_{t+1} = j | s_t = i, a_t = a)$
 - Sometimes T: S×A→S
- We want to learn a policy, π: S →A
 - Maximize sum of rewards we see over our lifetime

Policies

• A policy $\pi(s)$ returns the action to take in state s.

There are 3 policies for this MDP

Policy 1: $0 \rightarrow 1 \rightarrow 3 \rightarrow 5$

Policy 2: $0 \rightarrow 1 \rightarrow 4 \rightarrow 5$

Policy 3: $0 \rightarrow 2 \rightarrow 4 \rightarrow 5$

Comparing Policies

- Which policy is best?
- Order them by how much reward they see

Policy 1:
$$0 \rightarrow 1 \rightarrow 3 \rightarrow 5 = 1 + 1 + 1 = 3$$

Policy 2:
$$0 \rightarrow 1 \rightarrow 4 \rightarrow 5 = 1 + 1 + 10 = 12$$

Policy 3:
$$0 \rightarrow 2 \rightarrow 4 \rightarrow 5 = 2 - 1000 + 10 = -988$$

Value Functions

- We can associate a value with each state
 - For a fixed policy
 - How good is it to run policy π from that state s
 - This is the state value function, V

Q Functions

- Define value without specifying the policy
 - Specify the value of taking action A from state S and then performing optimally, thereafter

Reinforcement Learning

- What happens if we don't have the whole MDP?
 - We know the states and actions
 - We don't have the system model (transition function) or reward function
- We're only allowed to sample from the MDP
 - Can observe experiences (s, a, r, s')
 - Need to perform actions to generate new experiences
- This is Reinforcement Learning (RL)
 - Sometimes called Approximate Dynamic Programming (ADP)

Exploration vs. Exploitation

- We want to pick good actions most of the time, but also do some exploration
- Exploring means we can learn better policies

- But we want to balance known good actions with exploratory ones
- This is the exploration / exploitation problem

Picking Actions

ε-greedy

- Pick best (greedy) action with probability 1 ε
- Otherwise, pick a random action
- Softmax function
 - Pick an action randomly based on its Q-value

$$p(A = a \mid S = s) = \frac{\exp(Q(s, a))}{\sum_{a'} \exp(Q(s, a'))}$$

Q-Learning

- Q-learning iteratively approximates the stateaction value function, Q
 - We won't estimate the MDP directly
 - Learns the value function and policy simultaneously
- Keep an estimate of Q(s, a) in a table
 - Update these estimates as we gather more experience
 - Estimates do not depend on exploration policy
 - Q-learning is an off-policy method

Q-Learning Algorithm

- Initialize Q(s, a) to 0, ∀s,a
 (Often initialize randomly or with prior knowledge)
- 2. Observe state, s
- 3. ε-greedy pick an action, a
- 4. Observe next state, s', and reward, r
- 5. $Q(s, a) \leftarrow Q(s, a) + \alpha(r + \gamma \max_{a'} Q(s', a') Q(s, a))$
- 6. s ←s'
- 7. Go to 2

 $0 \le \alpha \le 1$ is the learning rate (which we might decay α) Note: this formulation is from Sutton & Barto's "Reinforcement Learning"

Breaking apart that update formula

$$Q(s, a) \leftarrow Q(s, a) + \alpha(r + \gamma \max_{a'} Q(s', a') - Q(s, a))$$

This can be written another way...

$$Q(s, a) \leftarrow (1-\alpha)Q(s, a) + \alpha(r + \gamma \max_{a'} Q(s', a'))$$

Looked at this way, it is more obvious that α controls whether we value past experience more or new experience more.

Q-learning

 Q-learning, learns the expected utility of taking a particular action a in state s

$$Q(s, a) \leftarrow Q(s, a) + \alpha(r + \gamma \max_{a'} Q(s', a') - Q(s, a))$$

$$Q(s, a) \leftarrow Q(s, a) + \alpha(r + \gamma \max_{a'} Q(s', a') - Q(s, a))$$

immediate reward values

$$Q(s, a) \leftarrow Q(s, a) + \alpha(r + \gamma \max_{a'} Q(s', a') - Q(s, a))$$

Q(D, East) =
$$\alpha(100 + \gamma 0 - 0)$$

Q(C, North) =
$$\alpha(0 + \gamma(\alpha 100) - 0)$$

immediate reward values

$$Q(s, a) \leftarrow Q(s, a) + \alpha(r + \gamma \max_{a'} Q(s', a') - Q(s, a))$$

Q(A, East) =
$$\alpha(0 + \gamma(\alpha^2 \gamma 100) - 0)$$

= $\alpha^3 \gamma^2 100$

immediate reward values

Q-learning

 Q-learning, learns the expected utility of taking a particular action a in state s

r(state, action) immediate reward values

Asymptotic Q(state, action) values

RoboCup: An RL proving ground

robocub "reinforcement learning"

Scholar About 6,540 results (0.07 sec)

[PDF] Scaling reinforcement learning toward RoboCup soccer

P Stone, RS Sutton - Icml, 2001 - academia.edu

... RoboCup soccer will answer this question. In this paper we begin to scale **reinforcement** learning up to RoboCup ... we build on prior work in RoboCup soccer to formulate this problem at ...

☆ Save ඕ Cite Cited by 282 Related articles All 18 versions ≫

Reinforcement learning for robocup soccer keepaway

P Stone, RS Sutton, G Kuhlmann - Adaptive Behavior, 2005 - journals.sagepub.com

... RoboCup soccer will answer this question. In this article we begin to scale **reinforcement** learning up to RoboCup ... the limits of what **reinforcement learning** methods can tractably handle ...

☆ Save ⑰ Cite Cited by 570 Related articles All 20 versions ≫

Heuristic reinforcement learning applied to robocup simulation agents

LA Celiberto, CHC Ribeiro, AHR Costa... - Robot Soccer World ..., 2007 - Springer

... RoboCup Simulation 2D category that learns using a recently proposed Heuristic Reinforcement Learning ... to speed up the well-known Reinforcement Learning algorithm Q-Learning. A ...

☆ Save ☑ Cite Cited by 48 Related articles All 14 versions ≫

Half field offense in **RoboCup** soccer: A multiagent **reinforcement learning** case study

RoboCup: combining many tasks

https://youtu.be/xkoXeF9oVH4

On-Policy vs. Off Policy

- On-policy algorithms
 - Final policy is influenced by the exploration policy
 - Generally, the exploration policy needs to be "close" to the final policy
 - Can get stuck in local maxima

Off-policy algorithms

^{Siven} enough experience

- Final policy is independent of exploration policy
- Can use arbitrary exploration policies
- Will not get stuck in local maxima

Convergence Guarantees

- The convergence guarantees for RL are "in the limit"
 - The word "infinite" crops up several times
- Don't let this put you off
 - Value convergence is different than policy convergence
 - We're more interested in policy convergence
 - If one action is significantly better than the others, policy convergence will happen relatively quickly

Rewards

- Rewards measure how well the policy is doing
 - Often correspond to events in the world
 - Current load on a machine
 - Reaching the coffee machine
 - Program crashing
 - Everything else gets a 0 reward
- Things work better if the rewards are incremental
 - For example, distance to goal at each step
 - These reward functions are often hard to design

These are Sparse rewards

The Markov Property

- RL needs a set of states that are Markov
 - Everything you need to know to make a decision is included in the state
 - Not allowed to consult the past
- Rule-of-thumb
 - If you can calculate the reward function from the state without any additional information, you're OK

But, What's the Catch?

- RL will solve all of your problems, but
 - We need lots of experience to train from
 - Taking random actions can be dangerous
 - It can take a long time to learn
 - Not all problems fit into the MDP framework

Learning Policies Directly

- An alternative approach to RL is to reward whole policies, rather than individual actions
 - Run whole policy, then receive a single reward
 - Reward measures success of the whole policy
- If there are a small number of policies, we can exhaustively try them all
 - However, this is not possible in most interesting problems

Policy Gradient Methods

- Assume that our policy, p, has a set of n real-valued parameters, q = {q₁, q₂, q₃, ..., q_n}
 - Running the policy with a particular q results in a reward, r_q
 - Estimate the reward gradient, $\frac{\partial R}{\partial \theta_i}$, for each q_i

Policy Gradient Methods

- This results in hill-climbing in policy space
 - So, it's subject to all the problems of hill-climbing
 - But, we can also use tricks from search, like random restarts and momentum terms

- This is a good approach if you have a parameterized policy
 - Typically faster than value-based methods
 - "Safe" exploration, if you have a good policy
 - Learns locally-best parameters for that policy

An Example: Learning to Walk

[Kohl & Stone, 04]

- RoboCup legged league
 - Walking quickly is a big advantage
- Robots have a parameterized gait controller
 - 11 parameters
 - Controls step length, height, etc.

- Robots walk across soccer pitch and are timed
 - Reward is a function of the time taken

An Example: Learning to Walk

Basic idea

- 1. Pick an initial $\theta = \{\theta_1, \theta_2, \dots, \theta_{11}\}$
- 2. Generate N testing parameter settings by perturbing θ $\theta^{j} = \{\theta_{1} + \delta_{1}, \theta_{2} + \delta_{2}, \dots, \theta_{11} + \delta_{11}\}, \delta_{i} \in \{-\epsilon, 0, \epsilon\}$
- 3. Test each setting, and observe rewards $\theta^j \rightarrow r_i$
- 4. For each $\theta_{i} \in \theta$ Calculate θ_{1}^{+} , θ_{1}^{0} , θ_{1}^{-} and set $\theta'_{i} \leftarrow \theta_{i}^{+} + \begin{cases} \delta & \text{if } \theta_{i}^{+} \text{ largest} \\ 0 & \text{if } \theta_{i}^{0} \text{ largest} \end{cases}$ 5. Set $\theta \leftarrow \theta'$, and go to 2

Average reward when $q^{n_i} = q_i - d_i$

An Example: Learning to Walk

Initial Final

http://utopia.utexas.edu/media/features/av.qtl

Video: Nate Kohl & Peter Stone, UT Austin

Value Function or Policy Gradient?

- When should I use policy gradient?
 - When there's a parameterized policy
 - When there's a high-dimensional state space
 - When we expect the gradient to be smooth

- When should I use a value-based method?
 - When there is no parameterized policy
 - When we have no idea how to solve the problem