

SoC Design with Advanced Technology FD-SOI, FinFET, Quantum & Beyond

Chun-Zhang Chen, Ph.D.

June 25-29, 2018

Advanced Technology in SoC From Planar (2D) to 3D

Bulk FinFET Definition

Fins on Oxide Definition

SOI Tech at IBM

Intel vs TSMC and Samsung

Inte	ITSMC	Samsun
• ??	28	32
28	20?	
22	16 16+ ~19	14
14	10	
1 3	7	

	Intel	TSMC	Samsung	Intel
Process Name	22nm HP	16nm FF+	14nm FF	14nm HP
Supply Voltage (Vdd)	0.75V	0.75V	0.8V	0.7V
Minimum Gate Length	26nm	30nm	20nm	20nm
Contacted Gate Pitch	90nm	90nm	78nm	70nm
Minimum Metal Pitch	80nm	64nm	64nm	52nm
HD SRAM Cell Size	0.092um2	0.070um2	0.064um2	0.050um2
Apple A9 Die Size	Not applicable	104.5mm2	96mm2	Not applicable
Volume Production	2Q12	3Q15	1Q15	4Q14

Others

Minimum Feature Size

	Intel 22 nm	Intel 14 nm	TSMC 16 nm	Samsung 14 nm
Transistor Fin Pitch	60 nm	42 nm	48 nm	48 nm
Transistor Gate Pitch	90 nm	70 nm	90 nm	84 nm
Interconnect Pitch	80 nm	52 nm	64 nm	64 nm
SRAM Cell Area	.1080 um²	.0588 um²	.0700 um²	.0645 um²
			SY. Wu 2014 IEDM p. 48	T. Song 2014 ISSCC p. 232

The Industry First 3nm Tape Out (02/28/18)

- (2015 5nm Tape Out)
- EUV (Extreme ultraviolet) and 193i (193 immersion lithography technology)
- 64-bit CPU (FinFET, 21nm routing pitch)

FD-SOI vs Bulk CMOS

Depleted devices deliver improved electrostatic control and device scalability

FinFET = 3D

Efficient FD-SOI Transistors

- FD-SOI enables better transistor electrostatics
 - Enabling faster operation at low voltage, leading to better energy efficiency
 - Improving transistor behavior, especially at low supply, enabling ultra-low-voltage operation
 - Reducing transistor variability sources
- FD-SOI has a shorter channel length
 - 28nm FD-SOI is in reality a 24nm technology!
- FD-SOI has lower leakage current
 - Lower channel leakage current
 - Carriers efficiently confined from source to drain
 - Thicker gate dielectrics, leading to lower gate leakage
 - Enabling ultra low power SRAM memories
 - Leakage current is less sensitive to temperature with FD-SOI

FD-SOI is Simpler

FD-SOI significantly reduces the process complexity

28nm FD-SOI 38 Masks

For 8 Metal Layers

28nm Bulk LP: 45 Masks

28nm Bulk G mobile: >48 Masks

SOI and ISDA

IBM, AMD/GF, FSL, IFN, NEC, Samsung, STM, Toshiba

SOI vs Bulk CMOS

- FD-SOI
- PD-SOI

Proposed RM of FD-SOI Technology

- Extending 28nm to below
- **OUTBB FD-SOI**

10nm FD-SOI 2017

14nm FD-SOI 2015

28nm FD-SOI 2012

Moore's law on Planar Technology

Smart Cut[™] Technology

- Soitec, Bernin, Grenoble
 - Patent # US5374564
- CEA-Leti

Studies on FD-SOI

SOI Consortium

PRESEN	PRESENTATIONS	
Feb. 15, 2011	Evaluation of Fully-Depleted SOI for next generation Mobile Consumer Chips [Horacio Mendez, Executive Director, SOI Industry Consortium]	
Jan. 28, 2010	SOI – The next five years: The critical role that SOI will play in the semiconductor market EuroSOI 2010 – Grenoble, France [Horacio Mendez, Executive Director, SOI Industry Consortium]	
Jul. 28, 2009	SOI - Integrated Technology, IP and Design Flow for Customer Success 46th Design Automation Conference - San Francisco, CA, USA [Gordon Starkey, IBM Systems & Technology Group; David Desharnais, Group Marketing Director, Cadence Design Systems; Tom Lantzch, VP Marketing, ARM]	
Jul. 28, 2009	Low-Power Design with Material Impact on Silicon-on-Insulator Technology 46th Design Automation Conference – San Francisco, CA, USA [Horacio Mendez, Executive Director, SOI Industry Consortium]	
Jul. 28, 2009	The Truth About Power and Process Technology 46th Design Automation Conference – San Francisco, CA, USA [Horacio Mendez, Executive Director, SOI Industry Consortium]	
Apr. 9, 2009	SOI technology & emerging applications [Horacio Mendez, Executive Director, SOI Industry Consortium]	

Comparison on FD-SOI and Bulk CMOS

Cooler Smartphone can be used for longer time

Running applications simultaneously on both L8540 & L8580 platforms configured with same settings (max 1.85GHz). Monitoring temperature and power consumption for the digital part

ST-Ericsson NovaThor L8580 FD-SOI is Cooler than Bulk Technology

BSIM SOI Modeling

•BSIMSOI is a SPICE compact model for SOI (Silicon-On-Insulator) circuit design. This model is formulated on top of the BSIM3 framework. It shares the same basic equations with the bulk model so that the physical nature and smoothness of BSIM3v3 are retained. It's already being used in production by major semiconductor companies such as IBM and AMD. BSIMSOI was selected by TechAmerica Compact Model Coalition (CMC) as the standard SOI MOSFET model in December 2001.

Advanced Technology in SoC FinFET

"FinFET; Tri-Gate Transistors;
Multigate-FET"

SoC Design at Advanced Process Node

150+ Million Instance Designs

Custom-digital integration, low power design

More Moore – Miniaturization

Beyond CMOS at 14nm & Below

Compact Modeling

 BSIM-CMG is a compact model for the class of common multi-gate FETs. BSIM-CMG has been implemented in Verilog-A. Physical surface-potential-based formulations are derived for both intrinsic and extrinsic models with finite body

subsequent I-V formulation automatically captures the volume inversion effect. Analysis of the electro-static potential in the body of MG MOSFETs provided the model equation for the short channel effects (SCE). The extra electrostatic control from the end-gates (top/bottom gates) (triple or quadruple-gate) is also captured in the short channel model.

Advanced Technology in SoC 20xnm

"28/22/20nm"

Memory Patents (20xnm ...)

- DRAM
- SRAM
- NAND Flash
- Storage (25% Patents): 美光(Micron)、三星电子(Samsung Electronics)、东芝(Toshiba)、IBM和英特尔(Intel)
- DRAM: Conversant、高通(Qualcomm)、Rambus、 Round Rock Research

FinFET at Intel

FinFET Process Technology Transition

FinFET at Various Foundries

Advanced Technology in SoC 10nm

"16/14/10nm"

Quantum Computing

- Theoretical model: <u>quantum Turing machine</u>
- quantum bits (qubits)

2015 NASA displayed the first \$15M quantum computer

Quantum Computer

- Copenhagen
 - Digital, Analog, MS
 - PLL/DLL
- Quantum Computer
- Richard Feynman 1981

- Quantum Computer Design
 - IBM, Google, UCSB: qubits

circuit in the middle of this image can represent digital data using quantum mechanical effects.

Researchers from Google and the University of California, Santa Barbara, used this chip to demonstrate a crucial method needed to make quantum computers reliable.

IBM Quantum Experience (QX)

- Quantum computing
 - Quantum circuit, quantum (logic) gate:
 - to work a small number of qubits
 - Unitary Matrices: 2ⁿx2ⁿ
- From 5-qubit to 50-qubit

TSMC Top10 2018

	eFlash	MRAM	RRAM
Cost	\$\$\$	\$\$	\$
Read perf.	1X	1X	1X
Read Power	0.77	2	1.2
uA/MHz/bit			
Write perf.	1X	3X	
_			
Cycles	100K	>1M	10K

MRAM qualification for the Automotive platform is underway -- "We will provide a feasibility assessment on MRAM for Automotive in 2H'18."

More than Moore

- CNT
- Graphene
- Spintronics

Biochip

