Many Prizes

Problem

We're going to run a tournament with $2^{\mathbb{N}}$ teams, and give out **P** identical prizes to the teams with ranks $0..\mathbf{P}-1$.

The teams are numbered 0 through 2^{N} -1. When team i and team j play against each other in a game, team i will win iff i < j.

The teams for a tournament are organized in some order, called the tournament's *tournament list*, which contains all $2^{\mathbb{N}}$ teams in the tournament. The tournament list will affect which teams play each other, and in what order.

Your job will be to find the largest-numbered team that is *guaranteed* to win a prize, independent of how the tournament list is ordered; and to find the largest-numbered team that *could* win a prize, depending on how the tournament list is ordered.

Tournament Resolution

The tournament is conducted in **N** rounds.

Each team has a *record*: the list of the results of the games it has played so far. For example, if a team has played three games, and won the first, lost the second and won the third, its record is [V, L, V]. If a team has played zero games, its record is [V].

In each round, every team plays a game against a team with the same record. The first team in the tournament list with a particular record will play against the second team with that record; the third team with the same record will play against the fourth; and so on.

After **N** rounds, each team has a different record. The teams are ranked in reverse lexicographical order of their records; so $[\mathbb{W}, \mathbb{W}, \mathbb{W}] > [\mathbb{W}, \mathbb{W}, \mathbb{L}] > [\mathbb{W}, \mathbb{L}, \mathbb{W}] \dots > [\mathbb{L}, \mathbb{L}, \mathbb{L}].$

Here is an example of a tournament with N=3, and the tournament list [2, 4, 5, 3, 6, 7, 1, 0], where the columns represent different rounds, and the teams are grouped by their records. The winner of each game in the example has been marked with a *.

Round 1	Round 2	Round 3	Final Result
[]	[W]	[W,W]	(best rank at top)
2 *	2 *	2	O [W,W,W]
4	3	0 *	2 [W,W,L]
		[W,L]	
5	6	3 *	3 [W,L,W]
3 *	0 *	6	6 [W,L,L]
	[L]	[L,W]	
6 *	4 *	4	1 [L,W,W]
7	5	1 *	4 [L,W,L]
		[L,L]	
1	7	5 *	5 [L,L,W]
0 *	1 *	7	7 [L,L,L]

If we give out 4 prizes (N=3, P=4), the prizes will go to teams 0, 2, 3 and 6.

The largest-numbered team that was guaranteed to win a prize with N=3, P=4, independent of the order of the tournament list, was team 0: this tournament list demonstrated that it's possible for team 1 *not* to win a prize, and it turns out that team 0 will always win one, regardless of the order of the tournament list.

The largest-numbered team that could win a prize with **N**=3, **P**=4, depending on how the tournament list was ordered, was team 6: this tournament list demonstrated that it's possible for team 6 to win a prize, and it turns out that team 7 will never win one, regardless of the order of the tournament list.

Input

The first line of the input gives the number of test cases, **T**. **T** test cases follow. Each test case consists of two space-separated integers: **N**, which indicates the tournament has 2^{N} teams, and **P**, the number of prizes.

Output

For each test case, output one line containing "Case #x: y z", where x is the case number (starting from 1), y is the largest-numbered team that is *guaranteed* to win a prize, independent of how the tournament list is ordered; and z is the largest-numbered team that *could* win a prize, depending on how the tournament list is ordered.

Limits

Time limit: 30 seconds per test set.

Memory limit: 1GB.

 $1 \le \mathbf{T} \le 100$.

 $1 \le \mathbf{P} \le 2^{\mathbf{N}}.$

Small dataset (Test set 1 - Visible)

 $1 \le \mathbf{N} \le 10$.

Large dataset (Test set 2 - Hidden)

 $1 \le N \le 50$.

Sample

Sample Input 3 3 4 3 5 3 3

Sample Output

Case #1: 0 6
Case #2: 2 6
Case #3: 0 4