非中文母語學習者中文寫作用詞錯誤偵測及 更正之研究

Detection and Correction of Chinese Word Usage Errors for Learning Chinese as a Second Language

研究生: 薛祐婷

指導教授:陳信希教授

106年7月20日

Outline

- 1 Introduction
- 2 Related Work
- 3 The HSK Word Usage Error Dataset
- 4 Segment-level WUE Detection
- 5 Token-level WUE Detection
- 6 WUE Correction
- 7 Conclusion

1 Introduction

- Motivation
- Chinese Word Usage Error (WUE)
- Overview

1 Intro – Motivation

- More and more people around the world choose to learn Chinese as their second language.
- Grammatical error detection and correction (GEC) tools
 - Most studies are based on English learner data
 - But Chinese differs substantially from English
- Learner data is required!
 - Mistakes made by non-natives differ from those by natives
 - E.g. English verb tense error

 Native speakers: seldom

 Non-natives: one of the most common mistakes
 - Realistic evaluation on GEC systems targeting language learners

1 Intro - Motivation

- Ground-truth of correction must be manually annotated by trained annotators → available amount of data is limited
- At the time of this study, the largest available Chinese learner corpus was HSK dynamic composition corpus (by Beijing Language and Culture University).
- Word usage error (WUE) is the most frequent lexical-level error in the HSK corpus
 - → WUE detection and correction tool is worth developing

1 Intro – Chinese WUE

• In Chinese sentences, a WUE is a grammatically or semantically incorrect token.

HSK sub-types of WUE

Sub-type	Example
(1) Character disorder within a word	首先{CC先首} 眾所周知{CC眾所知周}
(2) Incorrect selection of a word	雖然現在還沒有 <u>實現{CC實踐}</u> ,
(3) Non-existent word	殘留量{CC潛留量} 農產品{CC農作品}
(4) Word collocation error	最好的辦法是兩個都 <u>保持{CC走去}</u> 平衡。

1 Intro – Chinese WUE

No sub-type annotation / division not clear

 Look up the erroneous token in a dictionary
 Not found → W-error

Sub-type	# instances
W	4,010
U	13,314

1 Intro – Overview

(1) Segment-level Detection

這個 故事 是 非常 簡單 的 我 會 說 法語 和 英語

...

Correct

Wrong

有些 化肥 對 人體 的 害 比較 小自己 這樣 的 煩惱 應該 自己 決解

...

(2) Token-level Detection

有些 化肥 對 人體 的 **害處** 比較 小自己 這樣 的 煩惱 應該 自己 **解決**

• • •

(3) Correction 有些 化肥 對 人體 的 書 比較 小自己 這樣 的 煩惱 應該 自己 決解

...

2 Related Work

- Grammatical Error Detection and Correction in English
- Grammatical Error Detection and Correction in Chinese
- Distributed Word Representations

2 Related Work – GEC in English

- Leacock et al. (2014): handbook, comprehensive survey of GEC
 - Annotated learner data is important, but the amount is limited
 → difficult to build robust statistical model
 - Solution: Combine statistical models with rule-based approaches
 - Solution: Construct artificial error corpora
 - Distribution of artificial training data could differ from that of real test data
 - Ends up learning the way of synthesizing data, instead of language learners' pattern of making mistakes?
 - Solution: Make use of large "grammatical" text corpora
 - Difference in domain and style
 - Large corpora: newspaper or Wikipedia text, more formal
 - Language learners (especially beginners): write about themselves and daily lives
 - Low frequency = wrong usage?

2 Related Work – GEC in English

Evaluation

- Different typology of errors, different datasets → hard to compare
- Shared tasks: evaluate GEC systems in a standardized manner
 - HOO 2011 (Dale and Kilgarriff, 2011), HOO 2012 (Dale et al., 2012)
 - CoNLL 2013 (Ng et al., 2013): article/determiner, preposition, noun number, verb form, subject-verb agreement
 - CoNLL 2014 (Ng et al., 2014): 28 error types

Approaches

- Language models
- Machine learning-based classifiers
- Rule-based classifiers
- Machine translation models

2 Related Work – GEC in English

- Machine translation approach to GEC
 - Advantage: no need to explicitly formulate types of the errors
 - Phrase-based statistical machine translation (SMT) framework
 - Dahlmeier and Ng (2011): **add phrase table entries** to handle semantic collocation errors due to similarity in writer's first language (L1) e.g. watch(看) / see(看)
 - Chollampatt et al. (2016b): add Neural Network Global Lexicon Model (NNGLM)
 & Neural Network Joint Model (NNJM) features
 - Chollampatt et al. (2016a): **adapt** a general NNJM with L1-specific text Kullback-Leibler divergence regularization term
- **Detection only**: Rei and Yannakoudakis (2016)
 - Correction can be subjective
 - Compare models: Convolutional Neural Network (CNN), Recurrent Neural Network (RNN) and Long-Short Term Memory (LSTM)

2 Related Work – GEC in Chinese

- Shared Task for **Chinese Grammatical Error Diagnosis** (Yu et al., 2014; Lee et al., 2015, 2016)
 - Types:

 (1)redundant word (2)missing word (3)word disorder (4)word selection
 - Performance reported on whole dataset → unclear whether some systems are better at certain types
 - Only deal with detection but not correction
- Huang and Wang (2016): use LSTM for the above shared task
 - Randomly initialized word vector
 - Trained only on learner data, without incorporating information derived from external well-formed text
 - → performance might be limited by the small amount of learner data

2 Related Work – GEC in Chinese

- HSK corpus-based research
 - Word Ordering Errors (WOEs)
 - Yu and Chen (2012): WOE detection with syntactic features, web corpus features, perturbation features
 - Chen et al. (2014): recommend correct word orderings with ranking SVM
 - Preposition Selection: Huang et al. (2016)
 - Gated recurrent unit (GRU)-based model
 - Select most suitable one from a closed set of 43 prepositions given context
 - Detect and correct preposition errors
- How to correct WUEs involving open-set types of words such as verbs and nouns?
 - Could be much more difficult since candidate set is huge
- To the best of our knowledge, this is the first research dealing with general-type Chinese WUE correction.

2 Related Work – Distributed Word Representations

- Distributed word representations (word embeddings) derived from neural network models have become popular in NLP
 - <u>Assumption</u>: similar words share similar context
 - Can be trained on large text corpora in an unsupervised manner
 - Real-valued vectors with low dimensionality (compared to vocabulary size)
 - Encode syntactic and semantic information implicitly beyond surface forms (Mikolov et al., 2013b)
- WUEs involve syntactic or semantic problems → vector representations could be promising
 - Three types of word embeddings are adopted throughout this research
 - 1. Word2vec CBOW/Skip-gram Word Embeddings
 - 2. CWINDOW/Structured Skip-gram Word Embeddings
 - 3. Character-enhanced Word Embedding (CWE)

2 Related Work - Word2vec CBOW & SG

Continuous bag-of-words (CBOW)

Context predict target

Skip-gram (SG)
Target predict context

 Every context word treated equally → information of word order not preserved

Mikolov et al. (2013a)

2 Related Work - CWIN & Struct-SG

Continuous window (CWIN)

Structured Skip-gram (Struct-SG)

- Consider order of context words
- Projection matrices
- Useful for syntactic tasks

Ling et al. (2015)

2 Related Work - CWE

- Character-enhanced Word Embedding (CWE)
 - Chinese characters usually take on their own meanings.
 - Word meaning can be inferred even without context!
 - E.g. 公車(bus) = 公(public) + 車(vehicle)

Chen et al. (2015)

3 HSK WUE Dataset

- Data Collection
- Linguistic Processing
- Split Sentence into Segments & Filtering

3 Dataset – Data Collection

• Split sentence by • ? !

Correct sentence 我曾經到台灣讀書交了很多外國朋友,我們是用漢語說話的。

Wrong sentence 可想而知,他們長大以後會遇到很多的麻煩,甚至不適應生活,造成不甚後果。

Correction of the wrong sentence 可想而知,他們長大以後會遇到很多的麻煩,甚至不適應生活,造成不良後果。

- A sentence containing n errors $\rightarrow n$ sentences with one error
 - A sentence may contain multiple errors, including errors of types other than WUE

3 Dataset – Linguistic Processing

- Stanford CoreNLP
 - Word Segmentation
 - Sentence length = # tokens
 - POS Tagging
 - Tagging set: Chinese Penn Treebank
 - Dependency Parsing

Will extract features based on these three levels of information

3 Dataset – Split Segments & Filtering

- Binary classification of correct & wrong sentence → 80% accuracy only with sentence length threshold!
 - A Chinese sentence is usually composed of several segments separated by
 - E.g. 3 segments: 如果我當推銷員的話,為了早點兒習慣,打算盡可能努力。
 - Longer sentence → more likely to make grammatical errors somewhere

	Average length
Correct sentence	7.8
Wrong sentence	25.6

- → Split into **segments** with punctuation marks (POS tag = PU)
- Filter segments:
 - Contain digits or English alphabets
 - Length < 5 (e.g. "您好!", "不過,…", "那時,…")

	#
Correct segments	63,612
Wrong segments	17,324

(1) Segment-level Detection

這個 故事 是 非常 簡單 的 我 會 說 法語 和 英語

...

Correct

Wrong

有些 化肥 對 人體 的 害 比較 小自己 這樣 的 煩惱 應該 自己 決解

. . .

4 Segment-level WUE Detection

- Features
- Machine Learning Classifiers
- Results & Discussion

4 Seg. Detection – Features

- 1. Google N-gram Features (**G**)
- 2. Dependency Count Features (**D**)
- 3. Dependency Bigram Features (B)
- 4. Single-character Features (S)
- 5. Word Embedding Features (**W**)

All combined with segment length (s_len)

4 Seg. Detection – G Features

- Chinese version of Google Web 5-gram (Liu et al., 2010)
- MLE n-gram probability
 - E.g. tri-gram: $p(w_i|w_{i-2},w_{i-1}) = \frac{c(w_{i-2},w_{i-1},w_i)}{c(w_{i-2},w_{i-1})}$
- $\mathbf{G} = (g_2, g_3, g_4, g_5)$, where

$$g_n = \sum_{i=n}^{L} p(w_i|w_{i-n+1},...,w_{i-1})$$

- Combine with $s_len \rightarrow$ let model handle the relationship between sum of probability & s_len
 - Might not be linear

4 Seg. Detection – D Features

• Errors in a sentence affect the result of segmentation and parsing.

Correct segment	Wrong segment
以下介紹一下我的簡歷和經驗。	以下紹介一下我的簡歷和經驗。
nsubj(介紹-2, 以下-1)	nsubj(介-3, 以下-1)
root(ROOT-0,介紹-2)	advmod(介-3, 紹-2)
advmod(介紹-2, 一下-3)	root(ROOT-0, 介-3)
assmod(經驗-8, 我-4)	advmod(介-3, 一下-4)
case(我-4, 的-5)	assmod(經驗-9, 我-5)
•••	case(我-5, 的-6)
	•••

4 Seg. Detection – D Features

Example

聽說 貴公司 在國內很有名 ,外國顧客也很多。

root(ROOT-0, <u>聽說**-1**</u>)

nn(公司-3, 貴-2)

nsubj(有名-7, 公司-3)

case(國內**-5**, 在**-4**)

prep(有名-7, 國內-5)

advmod(<u>有名-7</u>, 很-6)

ccomp(<u>聽說-1</u>, <u>有名-7</u>)

nn(顧客-10, 外國-9)

nsubj(很多-12, 顧客-10)

advmod(很多-12, 也-11)

conj(**有名-7**, 很多-12)

Internal count External count			
nn_int_cnt	1	nn_ext_cnt	1
nsubj_int_cnt	1	nsubj_ext_cnt	1
case_int_cnt	1	case_ext_cnt	1
prep_int_cnt	1	prep_ext_cnt	1
advmod_int_cnt	1	advmod_ext_cnt	1
ccomp_int_cnt	1	ccomp_ext_cnt	1
conj_int_cnt	0	conj_ext_cnt	1
all_dep_int_cnt	6	all_dep_ext_cnt	7

4 Seg. Detection – B Features

- Example: 親身 體會 了 一場 永遠 難忘 的 電單車 意外
- 6 words between 意外 and 體會 → out of the range of 5-gram

Dependency bigrams

- nsubj(體會-2, 親身-1) → 親身 體會
- dobj(體會-2, 意外-9) -> 體會 意外

	Bigram	gram Frequency	
Wrong	體會 意外	0	
Correct	經歷 意外	167	

- Sum bigram probabilities for each dependency type
 - Collocating behavior might vary with dependency type
 - Internal sum: dep_int_sum_prob, all_ext_sum_prob
 - External sum: dep_int_sum_prob, all_ext_sum_prob

4 Seg. Detection – S Features

- A non-existent Chinese word (W-error) is usually separated into several single-character words after segmentation
 - → important indicator of WUE
 - 1. seg_cnt: # contiguous single-character blocks
 - 2. len2above_seg_cnt: # contiguous single-character blocks with length> 2
 - 3. max_seg_len: length of the maximum contiguous single-character block
 - **4. sum_seg_len**: sum of the lengths of all contiguous single-character blocks
- Example: 而且 我 認為 貴 公司 是 我國 最 大 的

Feature	Value
seg_cnt	4
len2above_seg_cnt	1
max_seg_len	3
sum_seg_len	6

4 Seg. Detection – W Features

 Train CBOW/SG word embeddings on the Chinese part of the ClueWeb09 dataset

Embedding size	400
Window size	5
# negative samples	10
Iterations	20

 Concatenate CBOW and SG embeddings into a feature vector W (dim=800)

4 Seg. Detection – Classifiers

- Decision Tree (DT)
- Random Forest (RF)
- Support Vector Machine with RBF kernel (SVM)
- Feed-forward Neural Network (Deep Neural Network, DNN)

Scale feature values to zero mean and unit variance for SVM & DNN

4 Seg. Detection - Results & Discussion

Accuracy on 15000s **Balanced** Dataset

4 Seg. Detection – Results & Discussion

4 Seg. Detection - Results & Discussion

- Sub-type evaluation
 - Sample 4,000 segments from each WUE subtype and combine them with 4,000 correct segments respectively → 4000s_W and 4000s_U

4 Seg. Detection – Results & Discussion

- S not very effective on its own, but G+S is powerful for W-errors
 - Existence of single-character words
 - → not sufficient to conclude that there is something wrong
 - Correct segment: 有人對她說
 - Many single-character words due to its grammatical structure
 - Wrong segment: 他們應該 共敬 父母 //correction: 尊敬
 - Bigram probability of "共 敬" < 0.0001
- For U-errors, D and B, which are derived from the result of dependency parsing, are more useful
 - Help handle collocation errors better, especially those involving longdistance dependency

4 Seg. Detection - Conclusion

Best result:
 accuracy = 0.8425
 precision = 0.9450
 recall = 0.7274
 F1 = 0.8220

RF is the best classifier for the proposed features

- With suitable model and combination of features, precision can be up to 96.2%.
 - If a segment is classified as wrong by our high-precision model, it is very likely that there is indeed some WUE.

5 Token-level WUE Detection

(2) Token-level Detection

有些 化肥 對 人體 的 書 比較 小自己 這樣 的 煩惱 應該 自己 決解

有些 化肥 對 人體 的 害 比較 小

自己 這樣 的 煩惱 應該 自己 決解

...

- Dataset
- Bidirectional LSTM model
- Features

- Evaluation
- Results and Analysis

5 Token Detection – Dataset

- "Wrong" part of the 15000s dataset used in previous stage
- Each sentence segment has exactly one token-level position that is erroneous
- Filter out any segment whose corrected version differs from it by more than one token due to segmentation issue
 - Some W-error instances are filtered out since the erroneous token is segmented into several words
 - Focus on errors that can be corrected by replacing one single token
- Total: 10,510 sentence segments
 - 10% validation
 - 10% testing
 - 80% training

5 Token Detection - LSTM

5 Token Detection - Bidirectional LSTM

Bidirectional LSTM

Forward LSTM

Backward LSTM

- Example: 店是爸爸(*留在,留給) 我們的
 - Need the future information to detect the error

5 Token Detection – Features

Word	當時	我們	都	相信	*農作品	沒有	農藥		
1. 2.									
POS	NT	PN	AD	VV	NN	VE	NN		
	Embedding s Random	ize = 20, tr	ainable	(# unique	POS = 30)				
OOV	0	0	0	0	1	0	0		
2gram	-1	P(我們 當時 0.0109) 0.0116	0.0004	0.0000	0.0000	0.000017		
3gram	-1	-1	P(都 當時,我(0.0621	門) 0.0022	0.0000	0.0000	0.0000		

5 Token Detection – Evaluation

- Accuracy, MRR
- Hit@2
 - One most common type of WUEs is collocation error
 - Wrong segment: 學習的知識也很差 //Problem: word pair (知識,差)
 - Correction 1: 學習 的 知識 也 很 **不足**
 - Correction 2: 學習 的 **態度** 也 很 差
 - Both correction acceptable
 - Which is better? highly depend on the context, or even the intended meaning
 - Proposing two closely-related potentially erroneous tokens can be useful
- Hit@20%
 - Take segment length (s_len) into account
 - Hit@r%: regard an instance as correct if the answer is ranked within the top $max(1, [s_len * r\%])$ candidate(s)

Model	Features	Accuracy	MRR	Hit@2	Hit@20%
Rand. baseline	-	0.1239	0.3312	0.2478	0.1611
	Rand. Emb.	0.4186	0.6010	0.7222	0.6565
	CBOW	0.4072	0.5923	0.7155	0.6432
LSTM	SG	0.4072	0.5910	0.7146	0.6365
	CWIN	0.4853	0.6537	0.7774	0.7031
	Struct-SG	0.4710	0.6412	0.7650	0.6889
	CWIN	0.4795	0.6547	0.7840	0.7174
Bi-LSTM	+ POS	0.5138	0.6789	0.8097	0.7479
	+ N-gram	0.4948	0.6719	0.8173	0.7507

- LSTM vs. Bi-LSTM
 - Hit@20% rates on different length of segments
 - CWIN + POS + n-gram

Length (#tests)	# proposed	LSTM	Bi-LSTM
< 10 (645)	1	0.7426	0.7659
10 ~ 14 (137)	2	0.6908	0.7319
15+ (89)	3+	0.7416	0.7079

- Justification for hit@2: WUE usually involves a pair of words
- Are top two candidates proposed really closely related?
- Examine dependency distance
 - Undirected graph, node = word, edge = dependency relation
 - $dis(c_1, c_2)$: shortest path distance between first candidate c_1 and second candidate c_2 // Average segment length = 9.24
 - *a*: ground-truth error position

Bi-LSTM(CWIN + POS + n-gram)# correct $(c_1 = a)$ 520 (49.48%)

tests where
$$c_2 = a$$
 339 (32.25%)

Average
$$dis(c_1, c_2)$$
 when $c_2 = a$ 2.07

tests where $c_2 = a$ and $dis(c_1, c_2) = 1$ | 129 (12.27%)

- Effectiveness of POS features
 - POS tagger trained on well-formed text, but learner data is noisy
 - POS tag **changed** after correction: 26.7%

F	POS (# tes	ts)	CWI	N	C	WIN+PC)S		
V	/V (325)		0.81	23	C	.8185			
ı	NN (282)		0.68	79	C	.7447			I
_	ND (134)		0.61	94	C	.7015			in
	應該	有		別人		的	* 5	垦力	\angle
POS	VV	VE		NN		DEC	ΑC)	
w/o POS	0.048	0.2	226	0.030		0.016	0.0	042	
w/ POS	0.010	0.0)66	0.031		0.071	0.	077	

5 Token Detection - Conclusion

- Feature
 - External information: pre-trained word embedding, POS, n-gram
 - CWIN/Struct-SG are better word features for WUE detection.
 - POS information can be useful for detecting ungrammatical construction.
- Model
 - Bi-LSTM is more preferred than LSTM
- The best model can rank ground-truth error position within top two in 80.97% cases
 - Top two candidates usually closely related, according to dependency distance

有些 化肥 對 人體 的 **害處** 比較 小自己 這樣 的 煩惱 應該 自己 **解決**

(3) Correction 有些 化肥 對 人體 的 害 比較 小自己 這樣 的 煩惱 應該 自己 決解

...

6 WUE Correction

- Criteria for Correction
- Correction Generation Model
- Features

- Language Model Re-ranking
- Automatic Evaluation
- Human Evaluation

6 Correction – Criteria

 Given a token in a segment that is known to be erroneous, we aim to generate a suitable correction for it.

- Criteria of a suitable correction
- **1. Correctness**: result must be a syntactically and semantically correct Chinese sentence segment.
- 2. Similarity: meaning must be as close to the writer's intended meaning as possible.

6 Correction – Criteria

• Example 1

		Correctness	Similarity
Wrong segment	生活方式已經 猛烈 地改變了		
Correction 1	生活方式已經 強烈 地改變了	X	Ο
Correction 2	生活方式已經 緩慢 地改變了	0	X
V Correction 3	生活方式已經 劇烈 地改變了	O	Ο

• Example 2

		Correctness	Similarity
Wrong segment	發生這種情況的 情緒 很多		
Ground-truth correction	發生這種情況的 因素 很多	Ο	?

• **Correctness > similarity**: incorrect sentence can confuse language learners!

6 Correction – Model

- Target: erroneous token that needs correction **Context**: other words in the segment
- Both need to be considered to meet the two criteria

6 Correction – CWE Features

word

• CWE_w: Target CWE+P Word Embedding

• CWE_c: Target CWE **Position-insensitive** Character Embedding

6 Correction – Context2vec Features

- Context: 可是 每 個 人 的 [] 都 千差萬別
- Context2vec representation

6 Correction – Context2vec Features

Context2vec sentence completion

$$c *= \underset{c \in C}{\operatorname{argmax}} \cos \left(\operatorname{C2V}_{\operatorname{ctx}} (w_1 \dots w_{p-1} [] w_{p+1} \dots w_L \right), \operatorname{C2V}_{\operatorname{trg}} (c) \right)$$

• WUE correction ≠ sentence completion

		Correctness	Similarity
Wrong segment	可是每個人的 對應 都千差萬別		
C2V sentence completion	可是每個人的[境況]都千差萬別	O	X
Ground-truth correction	可是每個人的反應都千差萬別	0	O

6 Correction – POS Features

• Systematic transitions of POS tags before & after correction

Original POS	Correction POS	# instances (%)
(un	changed)	722 (68.70%)
VV	NN	27 (2.57%)
NN	VV	21 (2.00%)
P	VV	17 (1.62%)
DEC //的	DEV //地	15 (1.43%)
VV	Р	13 (1.24%)

 One-hot encoding of POS → learn different transformation function for different source POS (POS of the erroneous token)

6 Correction – LM Re-ranking

- Correctness criterion not taking priority over similarity criterion
- Can generate segments seriously violating correctness criterion

		Correctness	Similarity
Wrong segment	到山頂之間路走得不容易		
Model prediction	到山頂期間路走得不容易	X	O
Ground-truth correction	到山頂的路走得不容易	О	?

- Should be eliminated by a language model (LM)
 - LM probability reflects the level of correctness

6 Correction – LM Re-ranking

- LMs (trained on the Chinese ClueWeb corpus)
 - Traditional N-gram Language Model (N-gram LM)
 - n = 5
 - Modified Kneser-Ney smoothing (Heafield et al., 2013)
 - Recurrent Neural Network Language Model (RNNLM)
- · Re-ranking: combine ranks with weighted harmonic mean

$$r_{\rm com} = \frac{1}{\frac{\alpha}{r_{\rm LM}} + \frac{1 - \alpha}{r_{\rm DNN}}}$$

- α : tuned with validation set
- $r_{\rm com}$ can be interpreted as rank, smaller better

	Target features	Context features	Acc.	MRR	Hit@5	Hit@10	Hit@50
	Baselines (I	No training o	n the WUE	dataset)			
	-	N-gram LM	0.1659	0.2438	0.3268	0.4029	0.5951
	Ignore target	RNNLM	0.1468	0.2208	0.2847	0.3611	0.5793
	-	C2V _{ctx}	0.0714	0.1170	0.1575	0.2114	0.3611
	Correction C	Generation M	odel – Cor	ntext2vec	Features	Targe	et is importan
>	$C2V_{trg}$	-	0.2507	0.3030	0.3561	0.3932	0.5024
>	-	C2V _{ctx}	0.1249	0.1746	0.2273	0.2741	0.4010
	C2V _{trg}	C2V _{ctx}	0.3249	0.3891	0.4566	0.4976	0.6185

Target features	Context features	Acc.	MRR	Hit@5	Hit@10	Hit@50
Correction	Generation N	1odel – Co	ntext2vec	Features		
C2V _{trg}	-	0.2507	0.3030	0.3561	0.3932	0.5024
C2V _{trg}	C2V _{ctx}	0.3249	0.3891	0.4566	0.4976	0.6185
Correction	ndle target tion N	1odel – CV	VE + Othe	r Features		
CWEw		0.2898	0.3545	0.4195	0.4693	0.5971
+ CWE _c		0.2946	0.3570	0.4234	0.4722	0.6078
+ C2V _{trg}	+ C2V _{ctx}	0.3512	0.4250	0.5024	0.5571	0.6800
+ POS		0.3717	0.4378	0.5063	0.5688	0.6956

Target features	Context features	Acc.	MRR	Hit@5	Hit@10	Hit@50			
Correction Generation Model – Context2vec Features									
$C2V_{trg}$	-	0.2507	0.3030	0.3561	0.3932	0.5024			
C2V _{trg}	C2V _{ctx}	0.3249	0.3891	0.4566	0.4976	0.6185			
Correction	Generation I	Model – CV	VE + Othe	r Features	3				
CWE_{w}		0.2898	0.3545	0.4195	0.4693	0.5971			
+ CWE _c		0.2946	0.3570	0.4234	0.4722	0.6078			
+ C2V _{trg}	+ C2V _{ctx}	0.3512	0.4250	0.5024	0.5571	0.6800			
+ POS		0.3717	0.4378	0.5063	0.5688	0.6956			

DNN + LM Re-ranking

Model	Acc.	MRR	Hit@5	Hit@10	Hit@50	Hit@100
Best DNN	0.3717	0.4378	0.5063	0.5688	0.6956	0.7415
+ N-gram LM ($\alpha = 0.355$)	0.3727	0.4605	0.5561	0.6439	0.8039	0.8488
+ RNNLM $(\alpha = 0.255)$	0.3727	0.4527	0.5278	0.6205	0.7808	0.8302

Example in which LM helps

- 我從上小學起成績就(*一起,一直)都不理想
- LM rank: 7 / DNN rank: 1284
- Ans rank: 19

6 Correction – Human Evaluation

• Correction can be subjective, **alternatives** may exist!

		Correctness	Similarity
Wrong segment	不過 我們 要以 堅定 的 定心 與 病 對抗		
Model rank 1	不過 我們 要以 堅定 的 自信 與 病 對抗	Ο	?
Model rank 2	不過 我們 要以 堅定 的 信念 與 病 對抗	O	?
Model rank 3	不過 我們 要以 堅定 的 理智 與 病 對抗	?	?
Model rank 4	不過 我們 要以 堅定 的 自信心 與 病 對抗	O	?
Model rank 5	不過 我們 要以 堅定 的 毅力 與 病 對抗	O	?
Ground-truth correction	不過 我們 要以 堅定 的 決心 與 病 對抗	O	0

6 Correction - Human Evaluation

- Using single-answer ground-truth can underestimate system performance
- Human annotation
 - Ground-truth correction c_0
 - Rank r candidate c_r where $r \le 5$ and $r < r_{ans}$
 - r_{ans} : rank of c_0 predicted by model
- Annotation instance: a pair of segments (S1), (S0)
 - (S1): candidate correction (ground-truth or system generated)
 - (S0): wrong segment
- Annotation questions (binary)
 - is_c: Is (S1) syntactically and semantically correct?
 - *is_g*: Is (S1) a correction of (S0)?

6 Correction – Human Evaluation

- Update ranks according to annotation result
 - r: original rank / \bar{r} : updated rank

```
ar{r}=r
for r'=1 to 5
if is\_g(c_{r'}) and is\_c(c_{r'})
ar{r}=r'
break
```

• Use \bar{r} to re-calculate the evaluation metrics

Evaluation	Acc.	MRR	Hit@5	Hit@10	Hit@50	Hit@100
Ground-truth	0.3727	0.4605	0.5561	0.6439	0.8039	0.8488
+ Annotation	0.6829	0.7784	0.9122	0.9171	0.9502	0.9600

6 Correction – Error Analysis

Performance on most frequent target POS tags

POS (# instances)	Accuracy	MRR	Mean rank
VV (316)	0.67	0.77	26.12
NN (277)	0.64	0.73	73.97
AD (130)	0.65	0.75	96.16
P (62)	0.81	0.88	3.10
VA (45)	0.60	0.76	1.98
DEV (23) //地	1.00	1.00	1.00
PN (21)	0.71	0.80	2.33

6 Correction – Conclusion

 Both context and target information need to be considered to determine a suitable WUE correction

- LM re-ranking further emphasizes correctness
- Human evaluation is conducted since there might be alternative corrections.
- In more than 90% of the cases, at least one of the top 5 candidates is an acceptable correction.

7 Conclusion and Future Work

- Conclusion
- Future Work

7 Conclusion and Future Work

• Information used in each stage

Info.	Segment Detection	Token Detection	Correction	
Character	• Single- character		CWE word &	
Word	N-gram prob.CBOW/SG	CWIN/ Struct-SGN-gram prob.	char. embedding	Context2vecN-gram LM
POS		 POS embedding 	 POS one-hot encoding 	
Dependency	Dep. countDep. bigram	* Evaluation		

7 Conclusion and Future Work

- Future work
 - Wider context: sentence, paragraph, ...
 - Conjunction e.g. (*終於,所以)我只好放棄自己的希望 e.g. (*還是,並且)努力要理解媽媽時代的思想和看法
 - Discourse dependent e.g. 如果我是(*我, 她)的話 // Why not 你?
 - Meaning changed e.g. (*理解, 解決)各種的問題
 - Similar pronunciation
 - E.g. 最深刻的(*影響, 印象)是島上的小學運動會
 - E.g. 就會(*揮服,恢復)到以前的穩定的經濟情況了

Q&A