CS2700 Homework 1

Phillip Janowski (pajmc2@mail.umsl.edu) September 7, 2018

Question 1.

2.2 Consider two different machines, with two different instruction sets, both of which have a clock rate of 200 MHz. The following measurements are recorded on the two machines running a given set of benchmark programs:

Instruction Type	Instruction Count (millions)	Cycles Per Instruction
Machine A		
Arithmetic and logic	8	1
Load and store	4	3
Branch	2	4
Others	4	3
Machine B		
Arithmetic and logic	10	1
Load and store	8	2
Branch	2	4
Others	4	3

(a) Determine the effective CPI, MIPS rate, and execution time for each machine.

machine. Solution:
$$CPU_A = \frac{\sum CPI_i * I_i}{I_c} = \frac{(8*1+4*3+2*4+4*3)*10^6}{(8+4+2+4)*10^6} = 2.\overline{22}$$

$$MIPS_A = \frac{f}{CPI_A*10^6} = \frac{200*10^6}{2.22*10^6} = 90$$

$$CPU_A = \frac{I_c * CPI_A}{f} = \frac{18*10^6*2.2}{200*10^6} = .2 \text{ seconds}$$

$$CPI_B = \frac{\sum CPI_i * I_i}{I_c} = \frac{(10*1+8*2+2*4+4*3)*10^6}{(10+8+2+4)*10^6} = 1.91\overline{6}$$

$$MIPS_B = \frac{f}{CPI_B*10^6} = \frac{200*10^6}{1.92*10^6} = 104$$

$$CPU_B = \frac{I_c * CPI_B}{f} = \frac{24*10^6*1.92}{200*10^6} = .23 \text{ seconds}$$

(b) Comment on the results.

Solution:

Machine B takes more CPU time to finish its benchmark even though it has a higher MIPS that Machine A

Question 2.

2.5 The following table, based on data reported in the literature [HEAT84], shows the execution times, in seconds, for five different benchmark programs on three machines.

Benchmark	Processor		
Dendinark	R	M	Z
Е	417	244	134
F	83	70	70
Н	66	153	135
I	39449	35527	66000
K	771	368	369

(a) Compute the speed metric for each processor for each benchmark, normalized to machine R. That is, the ratio values for R are all 1.0. Other ratios are calculated using Equation (2.5) with R treated as the reference system. Then compute the arithmetic mean value for each system using Equation (2.3). This is the approach taken in [HEAT84]. Solution:

Arithmetic Mean = $\frac{1}{n} \sum_{i=1}^{n} x_i$

	R.	Normal to R M	7
	T.	1V1	Z
E	417/417 = 1	417/244 = 1.71	417/134 = 3.11
F	83/83 = 1	83/70 = 1.186	80/70 = 1.186
Н	66/66 = 1	66/153 = .431	$66/135 = .4\overline{88}$
I	39449/39449 = 1	39449/35527 = 1.11	39449/66000 = .598
K	772/772 = 1	772/368 = 2.098	772/369 = 2.092
AM			

- (b) Repeat part (a) using M as the reference machine. This calculation was not tried in [HEAT84].
- (c) Which machine is the slowest based on each of the preceding two calculations?
- (d) Repeat the calculations of parts (a) and (b) using the geometric mean, defined in Equation (2.6). Which machine is the slowest based on the two calculations?