Глава 2. Математические модели синтеза топологии сети для охвата линейного участка в виде задачи целлочисленного линейного

2.1 Постановка задачи

Проблема формулируется следующим образом. Для контроля над заданным линейным участком необходимо разместить базовые приемопередающие станции (далее называемые станциями) таким образом, чтобы максимизировать покрытие с ограничениями на суммарнуб стоимость размещенных станций. Важно обеспечить связи любой станции со шлюзами на концах участка через систему размещенных станций.

Задано множество станций $S=\{s_j\}$. Каждой станции приписаны параметры $s_j=\{r_j,\{R_{jq}\},c_j\},\ j=\overline{1,m};q=\overline{1,m};q\neq j$. Здесь r_j – радиус покрытия станции, R_{jq} – это радиус связи между станцями s_j и s_q , и c_j – это стоимость.

Задан линейный участок длиной L с концами в точка a_0 и a_{n+1} . Внутри отрезка $[a_0,a_{n+1}]$ задано конечное множество точек $A=\{a_i\}, i=\overline{1,n};$ эти точки соответствуют набору свободных мест, где могут быть размещены станции. Каждая точка a_i определяется своей одномерной координатой l_i .

Заданы станции специального вида s_{m+1} – шлюзы. Данные шлюзы размещены на концах a_0 и a_{n+1} данного линейного участка . Для данных станций параметр радиуса покрытия $r_{m+1}=0$. Радиус связи и стоимость не заданы.

Требуется разместить станции таким образом, чтобы максимизировать покрытие с условием ограничения на суммарное стоиомсть C.

2.2 Calculation of Link Distance and Coverage Radius of Stations

Перед тем как приступить к задаче ЦЛП необходимо рассчитать характеристики станции: радиус связи R_{jq} и радиус покрытия r_{j} .

При развертывания сети необходимо обеспечить максимальное покрытие данного участка связь между шлюзами через систему размещенных базовых станций беспроводной широкополосной сети.

Для оценки производительности канала связи воспользуемся уравнением энергетического потенциала. Полное уравнение можно записать следующим образом:

$$P_{tr} - L_{tr} + G_{tr} - L_{fs} + G_{recv} - L_{recv} = SOM + P_{recv},$$

$$(2.1)$$

где:

- $-P_{tr}$ мощность передатчика, дБм;
- $-L_{tr}$ потери сигнала на антенном кабеле и разъемах передающего тракта, дБ;
- $-G_{tr}$ усиление антенны передатчика, дБ;
- $-L_{fs}$ потери в свободном пространстве, дБ;
- $-G_{recv}$ усиление антенны приемника, дБ;
- $-L_{recv}$ потери сигнала на антенном кабеле и разъемах приемного тракта, дБ;
- SOM запас на замирание сигнала, дБ;
- $-P_{recv}$ чувствительность приемника, дБм.

Мощность принимаемой антенны рассчитывается из уравнения передачи Фрииса:

$$\frac{P_{recv}}{P_{tr}} = G_{tr}G_{recv} \left(\frac{c}{4\pi Rf}\right)^2,$$

где c — скорость света, f — частота, R рассточние между приемной и передающей антенной.

The Free Space Path Loss (FSPL) equation defines the propagation signal loss between two antennas through free space (air):

Уравнение потерь в свободном пространстве (Free Space Path Loss, FSPL) определяет потерю сигнала при распространении между двумя антеннами в свободном пространстве (в воздухе):

$$FSPL = \left(\frac{4\pi Rf}{c}\right)^2. \tag{2.2}$$

Формула (2.2), выраженная в децибеллах будет выражаться как

$$L_{fs} = 20 \lg F + 20 \lg R + K, \tag{2.3}$$

где F — центральная частота, на котором работает канал связи, R — рассточние между приемной и передающей антенной и K — константа.

Константа K зависит от размерностей частоты и расстояния:

- для чистоты, выраженной в $\Gamma\Gamma$ ц, и рассчтояния, выраженная в км, константа K равна 92.45;
- для чистоты, выраженной в М Γ ц, и рассчтояния, выраженная в км, константа K равна 32.4;
- для чистоты, выраженной в М Γ ц, и рассчтояния, выраженная в м, константа K равна -27.55.

Потерия L_{fs} выразим из формулы (2.1) как:

$$L_{fs} = P_{tr} - L_{tr} + G_{tr} + G_{recv} - L_{recv} - SOM - P_{recv}.$$

$$(2.4)$$

Радиус связи получаем из уравнений (2.3) и (2.4):

$$R = 10^{\left(\frac{L_{fs} - 20\lg F - K}{20}\right)}. (2.5)$$

Используя формулу (2.5) и (2.4), we can calculate the theoretical maximal communication link distance R_{jq} between base stations and the coverage radius r_j assuming the absence of obstacles, reflections, influence of terrain contours, etc. This is acceptable for our case of an open area.