ELECTROLYSIS #5

Practice Problems -

1. Electrolysis Of Sodium Chloride solution :

IONS PRESENT	Nat, CI, Ht, OH-
CATIONS	Nat, H+
ANIONS	Cl, OH
EQUATION AT CATHODE	$2H^+ + 2e^- \longrightarrow H_2$ (REDUCTION)
EQUATION AT ANODE	$40H^{-} - 4e^{-} \longrightarrow 2H_{2}O + O_{2}$ (OXIDATION)
	$\Rightarrow 40H^{-} \longrightarrow 2H_{2}O + O_{2} + 4e^{-}$
IONS LEFT IN THE ELECTROLYTE	Nat , CI

2. Electrolysis Of Potassium Iodide solution -

IONS PRESENT	K+, I-, H+, OH-
CATIONS	K+, H+
ANIONS	I-, OH-
EQUATION AT CATHODE	2H+ + 2e -> H2 (REDUCTION)
EQUATION AT ANODE	$40H^{-} - 4e^{-} \rightarrow 2H_{2}O + O_{2}$ (OXIDATION)
	\Rightarrow 40H ⁻ \longrightarrow 2H ₂ 0 + O ₂ +
IONS LEFT IN THE ELECTROLYTE	K+ , I -

3. Electrolysis Of Calcium Bromide solution - Cabr (4)

IONS PRESENT	Ca2+, Br-, H+, OH-
CATIONS	Ca2+, (H+)
ANIONS	Br- , OH-
EQUATION AT CATHODE	$2H^{+} + 2e^{-} \rightarrow H_{2}$ (REDUCTION)
EQUATION AT ANODE	$40H^{-} - 4e^{-} \rightarrow 2H_{2}O + O_{2}$ (0x IDATION) $\Rightarrow 40H^{-} \rightarrow 2H_{2}O + O_{2} + 4e^{-}$
IONS LEFT IN THE ELECTROLYTE	Ca2+, Br-

IONS PRESENT	Na+, OH-, H+, OH-
CATIONS	Na+, H+
ANIONS	OH-
EQUATION AT CATHODE	$2H^+ + 2e^- \rightarrow H_2$ (REDUCTION)
EQUATION AT ANODE	$40H^{-} - 4e^{-} \rightarrow 2H_{2}O + O_{2}$ (oxidation) $\Rightarrow 40H^{-} \rightarrow 2H_{2}O + O_{2} + 4e^{-}$
IONS LEFT IN THE ELECTROLYTE	Nat

5. Electrolysis Of Copper (II) Sulfate solution - Substitute (2)

IONS PRESENT	Cu2+, SO42-, H+, OH-
CATIONS	(Cu2+) H+
ANIONS	5042- OH-
EQUATION AT CATHODE	Cu2+ + 2e> Cu (REDUCTION)
EQUATION AT ANODE	$40H^{-} - 4e^{-} \rightarrow 2H_{2}O + O_{2}$ (0x1PATION) $\Rightarrow 40H^{-} \rightarrow 2H_{2}O + O_{2} + 4e^{-}$
IONS LEFT IN THE ELECTROLYTE	H+, 504 ²⁻

IONS PRESENT	Mg2+, NO3-, H+, OH-
CATIONS	Mg^{2+} , H^+
ANIONS	
EQUATION AT CATHODE	2H+ 2e - Hz (REDUCTION)
EQUATION AT ANODE	/ o u o
	$40H^{-} \rightarrow 2H_{2}O + O_{2} + 4e^{-} (OXIDATION)$
IONS LEFT IN THE ELECTROLYTE	Hg2+, NO3

7. Electrolysis Of Hydrochloric acid -

IONS PRESENT	H+, C1-, H+, OH-
CATIONS	H+
ANIONS	CI-, OH-
EQUATION AT CATHODE	2H+ + 2e> H2 (REDUCTION)

EQUATION AT ANODE	$4 OH^- \rightarrow 2 H_2 O + O_2 + 4 e^- (OXIDATION)$
IONS LEFT IN THE ELECTROLYTE	

SUMMARY:

	SOLUTION ELECTROLYZED	CATHODE	ANODE	PRODUCT AT CATHODE	PRODUCT AT ANODE:
1.	Hydrochloric acid (concentrated)	Carbon / Platinum	Carbon	Hydrogen	CHLORINE
2.	Sulfuric acid (dilute)	Platinum	Platinum	Hydrogen	OXYGEN
3.	Sodium Hydroxide	Platinum	Platinum	Hydrogen	OXYGEN
4.	Sodium Chloride (concentrated)	Platinum	Platinum	Hydrogen	CHLORINE
5.	Sodium Chloride (dilute)	Carbon	Carbon	Hydrogen	OXYGEN
6.	Sodium Chloride (molten)	Carbon	Carbon	Sodium	CHLORINE
7.	Lead (II) Bromide (molten)	Carbon	Carbon	Lead	BROMINE
8.	Copper (II) Sulfate	Carbon	Carbon	Copper	OXYGEN
9.	Copper (II) Sulfate	Copper	Copper	Copper (deposited)	COPPER(DISSOLVED)

Effect Of Concentration Of The Selective Discharge Of Anions -

An anion in higher concentration is more easily discharged at the Anode.

For example, in the electrolysis of <u>concentrated</u> Sodium Chloride solution, two different ions are present in the electrolyte: CI- and OH- ions.

According to the selective discharge of anion, OH- <u>should be</u> discharged at the anode preferentially. However, in the <u>concentrated</u> Sodium Chloride solution, Cl- ions are **far more numerous** than OH- ions. So, Cl- ions are discharged at the anode in preference to OH- ions.

Electrolysis Of Concentrated Sodium Chloride:

IONS PRESENT	Nat, Cl-, H+, OH-
CATIONS	Nat, H+
ANIONS	CI-) OH-
EQUATION AT CATHDOE	$2H^+ + 2e^- \rightarrow H_2$ (RED VCTION)
EQUATION AT ANODE	2CT - 2e -> Cl2 (OXIDATION)
	> 2c1 - C12 + 2e-

Electrolysis Of concentrated Calcium Bromide solution - conc. Cabr (%)

IONS PRESENT	Ca2+, Gr-, H+, OH-
CATIONS	Ca2+ , (H+)
ANIONS	BY-, OH-
EQUATION AT CATHDOE	2H+ + Ze - Hz (REDUCTION)
EQUATION AT ANODE	2Br - 2e - Brz (OXIDATION)
	⇒ 28 ₁ - → 8 ₁ + 2 _e -

Electrolysis Of Water -

☐ Md. Ashikul Hoque's Notebook > VH JAN 22 ▼ →

Pure, distilled water is a covalent compound which has simple molecular structure. So, it does not conduct electricity.

If a **small amount of ionic compounds**, such as Sodium Chloride or any **dilute acid** like Hydrochloric acid or Sulfuric acid is added to the pure, distilled water, then the water becomes a **good conductor of electricity** as the water gets ionized.

When electrolysis of (impure) water is carried out, two products are formed, Hydrogen and Oxygen.

IONS PRESENT	H+ OH-
CATIONS	H+
ANIONS	OH-
EQUATION AT CATHDOE	$2H^{+} + 2e^{-} \rightarrow H_{2}$ (REDUCTION)
EQUATION AT ANODE	

EQUATION AT ANODE
$$40H^{-} - 4e^{-} \longrightarrow 2H_{2}O + O_{2} (OXIDATION)$$

$$\Rightarrow 40H^{-} \longrightarrow 2H_{2}O + O_{2} + 4e^{-}$$

$$2H^{+} + 2e^{-} \longrightarrow H_{2} \times 2$$

$$4OH^{-} - 4e^{-} \longrightarrow 2H_{2}O + O_{2} \times 1$$

$$4H^{+} + 4e^{-} \longrightarrow 2H_{2}O + O_{2}$$

$$4OH^{-} - 4e^{-} \longrightarrow 2H_{2}O + O_{2}$$

$$4OH^{-} - 4e^{-} \longrightarrow 2H_{2}O + O_{2}$$

$$4H^{+} + 4OH^{-} \longrightarrow 2H_{2} + 2H_{2}O + O_{2}$$

The products of electrolysis of water are two volume of Hydrogen at the Cathode and one volume of Oxygen at the Anode.

NOTE:

For all the electrolysis of molten / aqueous electrolytes, all were done using inert / unreactive electrodes such as Platinum or Graphite.