

AP2204

General Description

The AP2204 series is a positive voltage regulator IC fabricated by high voltage EPNP process.

The AP2204 has features of wide input voltage range, high accurcay, high ripple rejection, low dropout voltage, low noise, current limit and ultra-low quiescent current which make it ideal for use in various USB and portable devices.

The IC consists of a voltage reference, an error amplifier, a resistor network for setting output voltage, a current limit circuit for current protection, and a chip enable circuit.

The AP2204 has 1.5V, 1.8V, 2.5V, 2.8V, 3.0V, 3.3V, 5.0V fixed voltage versions and adjustable voltage version.

The AP2204 is available in space-saving SOT-23-5, SOT-89 and PSOP-8 packages.

Features

- Wide Input Voltage Range: 2.3V to 24V
- Wide Output Voltage Range: 1.24V to 22V
- Excellent Ripple Rejection: 60dB@ f=1kHz
- Low Dropout Voltage: $V_{DROP}=100 mV@$ $I_{OUT}=100 \mu A$
- Low Ground Current
- High Output Voltage Accuracy
- Compatible with Low ESR Ceramic Capacitor
- Excellent Line/Load Regulation
- Thermal Shutdown Function

Applications

- Battery-powered Equipment
- Laptop, Palmtops, Notebook Computers
- Portable Information Appliances

Figure 1. Package Types of AP2204

AP2204

Pin Configuration

- Note 1: The substrate/exposed pad should be connected to GND or open.
- Note 2: The substrate/exposed pad should be connected to VIN or open.
- Note 3: The exposed pad should be connected to GND for better dissipation.

Figure 2. Pin Configuration of AP2204 (Top View)

Pin Description

Pin Number							
SOT-23-5	PSOP-8	SOT-89		Pin Name	Function		
301-23-3	1301-6	R	RA				
1	8	1	2	VIN	Input voltage		
2	7	2	1	GND	Ground		
3	5			EN	Enable input		
4	4			ADJ/NC	Adjust output for ADJ version/No connected for fixed version		
5	1	3	3	VOUT	Regulated output voltage		

Functional Block Diagram

Fixed Output Voltage

Figure 3. Functional Block Diagram of AP2204

Ordering Information

Package	Temperature	Output Voltage	Part Number	Marking ID	Packing Type	
1 ackage	Range	Output voltage	Green	Green	Tacking Type	
		ADJ	AP2204K-ADJTRG1	GAF	Tape & Reel	
		1.5V	AP2204K-1.5TRG1	GBH	Tape & Reel	
		1.8V	AP2204K-1.8TRG1	GAG	Tape & Reel	
SOT-23-5	-40 to 85°C	2.5V	AP2204K-2.5TRG1	GAD	Tape & Reel	
301-23-3		2.8V	AP2204K-2.8TRG1	GAE	Tape & Reel	
		3.0V	AP2204K-3.0TRG1	GEF	Tape & Reel	
		3.3V	AP2204K-3.3TRG1	GAH	Tape & Reel	
		5.0V	AP2204K-5.0TRG1	GAI	Tape & Reel	
		1.5V (R)	AP2204R-1.5TRG1	G22C	Tape & Reel	
	-40 to 85°C	1.8V (R)	AP2204R-1.8TRG1	G31C	Tape & Reel	
SOT-89		2.5V (R)	AP2204R-2.5TRG1	G22D	Tape & Reel	
		2.8V (R)	AP2204R-2.8TRG1	G22E	Tape & Reel	
		3.0V (R)	AP2204R-3.0TRG1	G22F	Tape & Reel	
		3.3V (R)	AP2204R-3.3TRG1	G31D	Tape & Reel	
		5.0V (R)	AP2204R-5.0TRG1	G31E	Tape & Reel	

AP2204

Ordering Information (Continued)

D. J	Temperature	O to tWilliam	Part Number	Marking ID	Packing Type	
Package	Range	Output Voltage	Green	Green		
		1.5V (RA)	AP2204RA-1.5TRG1	G22O	Tape & Reel	
		1.8V (RA)	AP2204RA-1.8TRG1	G27O	Tape & Reel	
	-40 to 85°C	2.5V (RA)	AP2204RA-2.5TRG1	G28O	Tape & Reel	
SOT-89		2.8V (RA)	AP2204RA-2.8TRG1	G31O	Tape & Reel	
		3.0V (RA)	AP2204RA-3.0TRG1	G33O	Tape & Reel	
		3.3V (RA)	AP2204RA-3.3TRG1	G37O	Tape & Reel	
		5.0V (RA)	AP2204RA-5.0TRG1	G41O	Tape & Reel	
		ADJ	AP2204MP-ADJTRG1	2204MP-ADJG1	Tape & Reel	
		1.5V	AP2204MP-1.5TRG1	2204MP-1.5G1	Tape & Reel	
		1.8V	AP2204MP-1.8TRG1	2204MP-1.8G1	Tape & Reel	
PSOP-8	40 . 0500	2.5V	AP2204MP-2.5TRG1	2204MP-2.5G1	Tape & Reel	
PSOP-8	-40 to 85°C	2.8V	AP2204MP-2.8TRG1	2204MP-2.8G1	Tape & Reel	
		3.0V	AP2204MP-3.0TRG1	2204MP-3.0G1	Tape & Reel	
		3.3V	AP2204MP-3.3TRG1	2204MP-3.3G1	Tape & Reel	
		5.0V	AP2204MP-5.0TRG1	2204MP-5.0G1	Tape & Reel	

BCD Semiconductor's products, as designated with "G1" suffix in the part number, are RoHS compliant and Green.

AP2204

Absolute Maximum Ratings (Note 4)

Parameter	Symbol	Value		Unit	
Supply Input Voltage	V _{IN}	38		V	
Enable Input Voltage	V_{CE}	3	38		
Output Current	I _{OUT}	250		mA	
Lead Temperature (Soldering, 10sec)	T_{LEAD}	260		°C	
Operating Junction Temperature	T_J	150		°C	
		SOT-23-5	250		
Thermal Resistance	$\theta_{ m JA}$	SOT-89	165	°C/W	
		PSOP-8 (Note 5)	51		
Storage Temperature Range	T_{STG}	-65 to 150		°C	
ESD (Machine Model)		275		V	
ESD (Human Body Model)		2000		V	

Note 4: Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "Recommended Operating Conditions" is not implied. Exposure to "Absolute Maximum Ratings" for extended periods may affect device reliability.

Note 5: θ_{JA} is measured with the component mounted on a 2-Layer FR-4 PCB board with 1.5cm*1.5cm thermal sink pad in free air.

Recommended Operating Conditions

Parameter	Symbol	Min	Max	Unit
Supply Input Voltage	V _{IN}	2.3	24	V
Operating Junction Temperature	T_{J}	-40	125	°C

AP2204

Electrical Characteristics

 $V_{IN} = V_{OUT} + 1V, \ T_J = 25^{o}C, \ I_{OUT} = 100 \mu A, \ C_{IN} = 1.0 \mu F, \ C_{OUT} = 2.2 \mu F, \ \textbf{Bold} \ type face applies over -40^{o}C \leq T_J \leq 125^{o}C, \ unless \ otherwise specified.$

Parameter	Symbol	Conditions		Min	Тур	Max	Unit
Output Voltage	$V_{ m OUT}$	Variation from Specified V_{OUT}		V _{OUT} ×98%		V _{OUT} ×102%	V
Reference Voltage V _{REF}				1.215	1.24	1.265	V
Input Voltage	V _{IN}					24	V
Maximum Output Current	I _{OUT(max)}	V_{IN} - V_{OUT} =1 V V_{OUT} =98% $\times V_{\text{OUT}}$	V_{IN} - V_{OUT} =1 V V_{OUT} =98% $\times V_{\text{OUT}}$		200		mA
Line Regulation	$\Delta V_{OUT}/\Delta V_{IN}$	$V_{OUT}+1V \le V_{IN} \le$	24V		0.05		%
Load Regulation	$\Delta V_{ m OUT}/V_{ m OUT}$	1mA≤I _{OUT} ≤150	mA		0.5		%
		I _{OUT} =100μA			100	150	mV
Dropout Voltage	$V_{ m DROP}$	I _{OUT} =50mA			270	350	
Bropout voluge	DROP	I _{OUT} =100mA			320	460	
		I _{OUT} =150mA			360	500	
		I _{OUT} =100μA			50		μΑ
Ground Current	$I_{ ext{GND}}$	I _{OUT} =50mA			0.5		mA
Ground Carrent		I _{OUT} =100mA			1.3		
		I _{OUT} =150mA			2.5		
Standby Current	I_{STD}	V _{IN} =V _{OUT} +1V V _{EN} in OFF Mode			0.01	1.0	μА
Power Supply	PSRR	Ripple 0.5V _{P-P}	f=100Hz		60		dB
Rejection Ration	Total	$V_{IN}=V_{OUT}+1V$	f=1kHz		60		
Output Voltage Temperature Coefficient	$\Delta V_{OUT}/(V_{OUT} \times \Delta T)$	I _{OUT} =100μA, -40 °C≤T _J ≤125°C			±100		ppm/°C
RMS Output Noise	V _{NOI}	T _J =25°C, 10Hz≤f≤100kHz			30		μV_{rms}
ADJ Pin Current	$I_{ m ADJ}$	I _{OUT} =100μA			0.5		μΑ
EN Pin Current	$I_{\rm EN}$	V _{EN} =V _{OUT} +1V			1		μΑ
EN "High" Voltage		EN Input Voltage "High"		2.0			V
EN "Low" Voltage		EN Input Voltage "Low"				0.4	V
T11 D		SOT-23-5			43		
Thermal Resistance (Junction to Case)	$\theta_{ m JC}$	SOT-89			27		°C/W
		PSOP-8			22		

Jul 2011 Rev. 2. 2

Typical Performance Characteristics

Figure 4. Output Voltage vs. Output Current

Figure 5. Output Voltage vs. Output Current

Figure 7. Dropout Voltage vs. Output Current

Figure 8. Dropout Voltage vs. Junction Temperature

Figure 9. Output Voltage vs. Input Voltage

Figure 10. Output Voltage vs. Input Voltage

Figure 11. Output Voltage vs. Junction Temperature

Figure 12. Supply Current vs. Input Voltage

Figure 13. Ground Current vs. Junction Temperature

Figure 14. Ground Current vs. Output Current

Figure 15. Enable Current vs. Enable Input Voltage

Figure 16. Line Transient (Conditions: V_{IN}=V_{EN}=3.5V to 8V, C_{IN}=1.0 μ F, C_{OUT}=2.2 μ F, I_{OUT}=1mA)

 $\label{eq:conditions} \begin{aligned} & \text{Figure 17. Line Transient} \\ & \text{(Conditions: V}_{\text{IN}} = \text{V}_{\text{EN}} = 5\text{V to 15V}, \ \ C_{\text{IN}} = 1.0 \mu \text{F}, \\ & C_{\text{OUT}} = 2.2 \mu \text{F}, \ \text{I}_{\text{OUT}} = 1 \text{mA}) \end{aligned}$

 $\label{eq:conditions} Figure~18.~Load~Transient~\\ (Conditions:~V_{IN}=5V,~~C_{IN}=1.0\mu F,~~C_{OUT}=2.2\mu F\\ I_{OUT}=1mA~to~50mA)~\\$

 $Figure~19.~Load~Transient\\ (Conditions:~V_{IN}=5V,~~C_{IN}=1.0\mu F,~~C_{OUT}=2.2\mu F\\ I_{OUT}=1mA~to~150mA)$

Figure 20. Enable Input Response

Figure 21. Start-up Response

10
9
8
7
8
7
AP2204MP-ADJTRG1
V_{IN}=12V, V_{Out}=7.6V
--- T_c=25°C
--- T_c=85°C
0
0
Output Current (mA)

Figure 22. PSRR vs. Frequency (Conditions: V_{PP} =2V, I_{OUT} =10mA)

Figure 23. Output Voltage vs. Output Current

Figure 24. Maximum Output Current vs. Case Temperature

Figure 25. Case Temperature vs. Output Current

Typical Application

Figure 26. Typical Application of AP2204

Mechanical Dimensions

SOT-23-5 Unit: mm(inch)

AP2204

Unit: mm(inch)

Mechanical Dimensions (Continued)

SOT-89

Mechanical Dimensions (Continued)

PSOP-8 Unit: mm(inch)

Note: Eject hole, oriented hole and mold mark is optional.

BCD Semiconductor Manufacturing Limited

http://www.bcdsemi.com

IMPORTANT NOTICE

BCD Semiconductor Manufacturing Limited reserves the right to make changes without further notice to any products or specifications herein. BCD Semiconductor Manufacturing Limited does not assume any responsibility for use of any its products for any particular purpose, nor does BCD Semiconductor Manufacturing Limited assume any liability arising out of the application or use of any its products or circuits. BCD Semiconductor Manufacturing Limited does not convey any license under its patent rights or other rights nor the rights of others.

MAIN SITE

- Headquarters

BCD Semiconductor Manufacturing Limited

No. 1600, Zi Xing Road, Shanghai ZiZhu Science-based Industrial Park, 200241, China Tel: +86-21-24162266, Fax: +86-21-24162277

REGIONAL SALES OFFICE

Shenzhen Office

Shanghai SIM-BCD Semiconductor Manufacturing Co., Ltd., Shenzhen Office Unit A Room 1203, Skyworth Bldg., Gaoxin Ave.1.S., Nanshan District, Shenzhen,

China Tel: +86-755-8826 7951 Fax: +86-755-8826 7865

- Wafer Fab

Shanghai SIM-BCD Semiconductor Manufacturing Co., Ltd. 800 Yi Shan Road, Shanghai 200233, China Tel: +86-21-6485 1491, Fax: +86-21-5450 0008

Taiwan Office

BCD Semiconductor (Taiwan) Company Limited 4F, 298-1, Rui Guang Road, Nei-Hu District, Taipei,

Taiwan Tel: +886-2-2656 2808 Fax: +886-2-2656 2806

USA Office BCD Semiconductor Corp. 30920 Huntwood Ave. Hayward, CA 94544, USA Tel: +1-510-324-2988 Fax: +1-510-324-2788