

Institut für Prozeßtechnik, Prozeßautomatisierung und Meßtechnik

Europäische Union

Landtags beschlossenen Haushaltes.

Gliederung

- 1. Ziele und Motivation
- 2. Aufbau und Struktur der Simulationsumgebung
- 3. Modellrandbedingungen
- 4. Erweiterungsmöglichkeiten
- 5. Verwendung im Projekt und Diskussion

Motivation und Ziele

- Ambitionierte Ziele zur Reduktion der Treibhausgasemissionen (PA¹ & EEG²)
 - Umbau des Energiesektors
 - Sektorübergreifende Nutzung der Energie
 - Nutzen von Speichertechnologien
- Herausforderungen: Versorgungssicherheit und Koordination

Motivation und Ziele

Ziel – Vernetzung und Integration

- Entwicklung einer Gateway-Technologie
 - Sicherstellen echtzeitfähiger Kommunikation
 - Einfache, hardwareunabhängige Umsetzung
 - Bereitstellung automatisierungstechnischer Grundfunktionen
 - Modular, erweiterbar
 - Einsatz intelligenter Algorithmen

Gewählter Ansatz:

- vereinfachte Modellierung eines generischen Energiesystems inklusive generischer Energiespeichertechnologien
- Modellierung der Gateway-Algorithmen (Model in the Loop)

Aufbau und Struktur

Zellular-Sektorale-Kopplung

Grundidee:

- Gemeinsame Betrachtung Strom, Wärme, Gas
- Konzept: Hierarchische, selbstähnliche Organisation
- Erweiterung leitungsgebundene
 Energieträger um Informationsschicht

Literatur:

- Präsentation Zellularer Ansatz³
- Definition Zelle⁴

Programmaufbau

Datenrückgabe

Parametrierung Modell

Python-Skripte

Aufbau Modell (Aufruf über pyo3-Schnittstelle)

Programmaufbau (pre)

Building overview

Programmstruktur

Identifikation der entscheidenden Objekte:

- Zelle: Organisationsobjekt
- Gebäude: Berechnung Heizlast
- Agenten: Datencontainer SLP, WW-Bedarf
- Komponenten: Einfache Energiewandler
- Logik-Klasse *_system: Default Betriebslogik für gekoppelte Anlagen (energy hub)

Programmstruktur

- Kapselung der Daten und Funktionen in hierarchisch organisierten Containern, Vec<object::class>
- Jedes Objekt stellt eine step()Methode bereit und gibt
 aktuelle thermische und
 elektrische Leistungen getrennt
 nach Verbrauch und
 Erzeugung zurück

Programmstruktur

Berechnungablauf:

- Jeweils Aufruf aller untergeordneten Objekte
- Verrechnung Bedarfe und Erzeugung auf nächst höherer Ebene
- Rückgabe der offenen (Leistungs-)Bilanzen

Exkurs: Selbstlernende Regler

Datenrückgabe

Parametrierung Modell

Python-Skripte

Aufbau Modell (Aufruf über pyo3-Schnittstelle)

DQN-Konzept

Randbedingungen (6 Folien)

Simulation von Verbraucherverhalten

- Randbedingungen Agenten
 - Standardlastprofile COC*-skaliert
 - Private Haushalte (PHH)
 - Unternehmen mit Standardlastprofil (BSL)
- Randbedingungen Wetter
 - Temperatur + Globalstrahlung
- Randbedingungen Gebäude
 - Vereinfachte Wärmebedarfsrechnung
- Randbedingungen Anlagen
 - "Energy hub": Input-Output-Verknüpfung über Gesamtwirkungsgrade
 - Vorstellung generisches Speichermodell

Erzeugung und Versorgung

- PV
- Generischer Speicher
- BHKW
- Boiler
- Wärmepumpe
- Nahwärme

Randbedingungen – Agenten (Strom)

Agentenverteilung PHH und Lastprofile

- Normiertes SLP (dyn. H0⁵)
- Verbrauchsfaktor (COC) [1;5] und Zufallsvektor [0.8;1.2]
- Verteilungsfunktion auf statistischer Basis
- Zuordnung der Profilabschnitte

Randbedingungen – Agenten (Strom)

Randbedingungen – Agenten (WW)

- Abschätzung Warmwasserbedarf anhand Raumwärmebedarf⁷
- Korrelation mit COC: $P_{WW} = \frac{684,7kWh \cdot COC + 314,4kWh}{8760h}$
- Nachbildung Tagesgang durch Verlaufsfaktor, zusätzliche Randomisierung [0,8..1,2]

RB Wetter

- Nutzung der Testreferenzjahresdaten von DWD und BMVI
- Bereitstellung von Temperatur, Globalstrahlung
- Referenzjahr plus Sommer-/Winterextrem
- Behandlung von Unstetigkeiten und Schalttagen

RB Gebäude

- Verwendung von Referenzgebäuden⁸
- Ermittlung Gebäudeheizlast nach DIN EN 12831-1 (Transmission + Luftaustausch)
- Berücksichtigung solare Einstrahlung (DIN 4108-6)
- Abbildung Alter/Sanierungsgrad
- Vereinfachte Berücksichtigung thermische Kapazität

EFH		
Wohnfläche	[m²]	110,0
Außenw and zur Luft	[m²]	123,4
Nord		34,3
Ost		28,1
Süd		34,7
West		26,3
Außenw and zum Erdreid	[m²]	0,0
Fenster Penster	[m²]	<u>26,5</u>
Nord		5,7
Ost		5,8
Süd		5,3
West		9,7
Horizontal	0%	0,0
Außentüren	[m²]	2,1
Bodenplatte/ Kellerdecke	[m²]	99,0
Dach/ Oberste Decke	[m²]	118,0
Db "b	fu.d	0.75
Raumhöhe	[m]	2,75
Gebäudevolumen	[m³]	465,0
Gebaudevoluli eli	[111]	405,0
A/V Rate	[1/m]	0,79
	[,,,,,,	5,70

Randbedingungen – Anlagen

- Einfache Leistungsbilanzen,
 Charakterisierung über Wirkungsgrad
- Zusätzliche Parameter, Bsp. Speicher:
 - Kapazität
 - Lade-/Entladeeffizienz
 - Selbstentladung
 - Maximale Lade-/Entladeleistung
- Zu jedem Anlagentyp wurden einfache Auslegungsregeln gewählt
- Zusammenfassung thermische Versorgung zu *_system (energy hub)

Erweiterung

- Mobilität, Wind
- Wärme mit Temperaturniveaus, exergetische Betrachtung
- Teillastbetrieb BHKW, WP
- Vorschläge?

- Kopplung mit Versuchsanlage, Hardware in the Loop
- Erforschen selbstlernender Algorithmen im Szenario Energiezelle, Versuche zu
 - state space
 - Kostenfunktionen, Optimierungskriterien
 - Hyperparametern

Vielen Dank für Ihr Interesse!

Ansprechpartner

Institut für Prozesstechnik, Prozessautomatisierung und Messtechnik

Martin Herling

Tel: +49 3583 - 612 4696 Fax: +49 3583 - 612 3449 Mail: Martin.Herling@hszg.de

Web: <u>www.hszg.de/ipm</u>

Adresse

Hochschule Zittau/Görlitz IPM

Theodor-Körner-Allee 16 02763 Zittau

Quellen und Bildnachweis

- 1 Paris Agreement (Annahme am 12.12.2015, Inkrafttreten am 4.11.2016). United Nations Treaty Collection, Kapitel XXVII 7 d.
- 2 EEG (Gesetz zur Neuregelung des Rechtsrahmens für die Förderung der Stromerzeugung aus erneuerbaren Energien), Inkrafttreten ursprüngliche Fassung am 1.4.2000, letzte Novelle 27.7.2021
- 3 Benz, T., Dickert, J., Erbert, M., Erdmann, N., Johae, C., und Katzenbach, B., "Der zellulare Ansatz Grundlage einer erfolgreichen, regionenübergreifenden Energiewende.", Verband der Elektrotechnik Elektronik Informationstechnik e. V. (VDE), Energietechnische Gesellschaft (ETG), Frankfurt a. M., VDE-Studie, Juni 2015.
- 4 Bayer, J., Benz, T., Erdmann, N., Grohmann, F., Hoppe-Oehl, H., und Hüttenrauch, J., "Zellulares Energiesystem Ein Beitrag zur Konkretisierung des zellularen Ansatzes mit Handlungsempfehlungen", VDE, ETG, Frankfurt a. M., VDE-Fachbeitrag, Mai 2019.

Quellen und Bildnachweis

- 5 "Energiemarkt Deutschland 2019". bdew (Bundesverband der Energie- und Wasserwirtschaft e.V.), Juni 03, 2019. Zugegriffen: Nov. 18, 2019. [Online]. Verfügbar unter: https://www.bdew.de/media/documents/Pub_20190603_BDEW-Energiemarkt-Deutschland-2019.pdf
- 6 Mikrozensus, Statistischen Ämtern des Bundes und der Länder
- 7 Berechnungen destatis nach Angaben der Arbeitsgemeinschaft Energiebilanzen und des Rheinisch-Westfälischen Instituts für Wirtschaftsforschung
- 8 Bettgenhäuser, K., Offermann, M., Sandau, F., und Gerhardt, N., "Systemischer Vergleich von Wärmeversorgungstechniken in einem regenerativen Energiesystem", Umweltbundesamt, Endbericht, Climate Change 33/2016, Apr. 2016.
- 9 M. Geidl, "Optimal Power Flow of Multiple Energy Carriers", IEEE Transactions on power systems, Bd. 22, Nr. 1, S. 11, 2007.

Quellen und Bildnachweis

Bilder

Energiewende: © Agora Energiewende

jupyter notebooks: © jupyter.org

rust: © Kofi Group

pytorch: © Ricky Martin @ morioh.com

python: © morioh.com

Testreferenzjahr: © Deutscher Wetterdienst

DQN-Konzept: © Markus Buchholz @ medium.com