

QUAD 2-INPUT MULTIPLEXER WITH 3-STATE OUTPUTS

The LSTTL/MSI SN54/74LS257B and the SN54/74LS258B are Quad 2-Input Multiplexers with 3-state outputs. Four bits of data from two sources can be selected using a Common Data Select input. The four outputs present the selected data in true (non-inverted) form. The outputs may be switched to a high impedance state with a HIGH on the common Output Enable (EO) Input, allowing the outputs to interface directly with bus oriented systems. It is fabricated with the Schottky barrier diode process for high speed and is completely compatible with all Motorola TTL families.

- Schottky Process For High Speed
- Multiplexer Expansion By Tying Outputs Together
- Non-Inverting 3-State Outputs
- Input Clamp Diodes Limit High Speed Termination Effects
- Special Circuitry Ensures Glitch Free Multiplexing
- ESD > 3500 Volts

CONNECTION DIAGRAM DIP (TOP VIEW)

SN54/74LS257B SN54/74LS258B

QUAD 2-INPUT MULTIPLEXER WITH 3-STATE OUTPUTS

LOW POWER SCHOTTKY

SN54/74LS257B • SN54/74LS258B

LOGIC DIAGRAMS

V_{CC} = PIN 16 GND = PIN 8

SN54/74LS258B

SN54/74LS257B • SN54/74LS258B

FUNCTIONAL DESCRIPTION

The LS257B and LS258B are Quad 2-Input Multiplexers with 3-state outputs. They select four bits of data from two sources each under control of a Common Data Select Input. When the Select Input is LOW, the I $_{\rm 0}$ inputs are selected and when Select is HIGH, the I $_{\rm 1}$ inputs are selected. The data on the selected inputs appears at the outputs in true (non-inverted) form for the LS257B and in the inverted form for the LS258B.

The LS257B and LS258B are the logic implementation of a 4-pole, 2-position switch where the position of the switch is determined by the logic levels supplied to the Select Input. The logic equations for the outputs are shown below:

When the Output Enable Input ($\overline{E_0}$) is HIGH, the outputs are forced to a high impedance "off" state. If the outputs are tied together, all but one device must be in the high impedance state to avoid high currents that would exceed the maximum ratings. Designers should ensure that Output Enable signals to 3-state devices whose outputs are tied together are designed so there is no overlap.

LS257B

$$\underline{Z}_{a} = \underline{E}_{0} \bullet (I_{1a} \bullet S + I_{0a} \bullet \underline{S}) \underline{Z}_{b} = \underline{E}_{0} \bullet (I_{1b} \bullet S + I_{0b} \bullet \underline{S})
Z_{c} = \underline{E}_{0} \bullet (I_{1c} \bullet S + I_{0c} \bullet S) Z_{d} = \underline{E}_{0} \bullet (I_{1d} \bullet S + I_{0d} \bullet S)$$

TRUTH TABLE

OUTPUT ENABLE	SELECT INPUT	DATA INPUTS				OUTPUTS LS257B	OUTPUTS LS258B
EO	S	l ₀	l ₁	Z	Z		
Н	Х	Χ	Χ	(Z)	(Z)		
L	Н	Х	L	L	Н		
L	Н	Х	Н	Н	L		
L	L	L	Χ	L	Н		
L	L	Н	Χ	Н	L		

H = HIGH Voltage Level

GUARANTEED OPERATING RANGES

Symbol	Parameter		Min	Тур	Max	Unit
VCC	Supply Voltage	54 74	4.5 4.75	5.0 5.0	5.5 5.25	V
T _A	Operating Ambient Temperature Range	54 74	-55 0	25 25	125 70	°C
ЮН	Output Current — High	54 74			-1.0 -2.6	mA
lOL	Output Current — Low	54 74			12 24	mA

L = LOW Voltage Level

X = Don't Care

⁽Z) = High Impedance (off)

SN54/74LS257B • SN54/74LS258B

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

	Parameter		Limits					
Symbol			Min	Тур	Max	Unit	Test Conditions	
VIH	Input HIGH Voltage		2.0			V	Guaranteed Input HIGH Voltage for All Inputs	
V _{IL} Input LOW Voltage		54			0.7	V		t LOW Voltage for
VIL.	input 2011 Voltage	74			0.8	,	All Inputs	
VIK	Input Clamp Diode Voltage			-0.65	-1.5	V	$V_{CC} = MIN, I_{IN} = -18 \text{ mA}$	
\/a	Output HIGH Voltage	54	2.4	3.4		V		= MAX, V _{IN} = V _{IH}
VOH	Output HIGH Voltage	74	2.4	3.1		V	or V _{IL} per Truth 1	Table
VOL	Output LOW Voltage	54, 74		0.25	0.4	V	I _{OL} = 12 mA	$V_{CC} = V_{CC} MIN,$ $V_{IN} = V_{IL} \text{ or } V_{IH}$
VOL	Output LOW Voltage	74		0.35	0.5	V	I _{OL} = 24 mA	per Truth Table
lozh	Output Off Current — HIGH				20	μΑ	V _{CC} = MAX, V _{OUT} = 2.7 V	
lozL	Output Off Current — LOW				-20	μΑ	V _{CC} = MAX, V _{OUT} = 0.4 V	
I _I H	Input HIGH Current Other Inputs S Inputs				20 40	μА	V _{CC} = MAX, V _{IN} = 2.7 V	
	Other Inputs S Inputs				0.1 0.2	mA	V _{CC} = MAX, V _{IN} = 7.0 V	
I _{IL}	Input LOW Current All Inputs				-0.4	mA	V _{CC} = MAX, V _{IN}	= 0.4 V
los	Short Circuit Current (Note	1)	-30		-130	mA	$V_{CC} = MAX$	
	Power Supply Current							
Icc	Total, Output HIGH	LS257B LS258B			10 9.0	mA		
	Total, Output LOW	LS257B LS258B			16 14	mA	V _{CC} = MAX	
	Total, Output 3-State LS257B LS258B				19 16	mA		

Note 1: Not more than one output should be shorted at a time, nor for more than 1 second.

AC CHARACTERISTICS (T_A = 25° C, V_{CC} = 5.0 V) See SN54LS251 for Waveforms

		Limits					
Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions	
^t PLH ^t PHL	Propagation Delay, Data to Output		10 12	13 15	ns	Figures 1 & 2	C 45 pE
^t PLH ^t PHL	Propagation Delay, Select to Output		14 14	21 21	ns	Figures 1 & 2	C _L = 45 pF
^t PZH	Output Enable Time to HIGH Level		20	25	ns	Figures 4 & 5	$C_L = 45 \text{ pF}$ $R_L = 667 \Omega$
tPZL	Output Enable Time to LOW Level		20	25	ns	Figures 3 & 5	$R_L = 667 \Omega$
tPLZ	Output Disable Time to LOW Level		16	25	ns	Figures 3 & 5	$C_L = 5.0 \text{ pF}$ $R_L = 667 \Omega$
^t PHZ	Output Disable Time from HIGH Level		18	25	ns	Figures 4 & 5	$R_L = 667 \Omega$

Case 648-08 N Suffix 16-Pin Plastic

- NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- CONTROLLING DIMENSION: MILLIMETER.
 DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION.
 MAXIMUM MOLD PROTRUSION 0.15 (0.006)
- PER SIDE. 751B-01 IS OBSOLETE, NEW STANDARD 751B-03.

	MILLIM	ETERS	INC	HES
DIM	MIN	MAX	MIN	MAX
Α	9.80	10.00	0.386	0.393
В	3.80	4.00	0.150	0.157
С	1.35	1.75	0.054	0.068
D	0.35	0.49	0.014	0.019
F	0.40	1.25	0.016	0.049
G	1.27	BSC	0.050 BSC	
J	0.19	0.25	0.008	0.009
K	0.10	0.25	0.004	0.009
M	0°	7°	0°	7°
P	5.80	6.20	0.229	0.244
R	0.25	0.50	0.010	0.019

NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- CONTROLLING DIMENSION: INCH.
 DIMENSION "L" TO CENTER OF LEADS WHEN
 FORMED PARALLEL.
- DIMENSION "B" DOES NOT INCLUDE MOLD
- ROUNDED CORNERS OPTIONAL. 648-01 THRU -07 OBSOLETE, NEW STANDARD

	MILLIM	ETERS	INCHES		
DIM	MIN	MAX	MIN	MAX	
Α	18.80	19.55	0.740	0.770	
В	6.35	6.85	0.250	0.270	
С	3.69	4.44	0.145	0.175	
D	0.39	0.53	0.015	0.021	
F	1.02	1.77	0.040	0.070	
G	2.54	BSC	0.100 BSC		
Н	1.27	BSC	0.050 BSC		
J	0.21	0.38	0.008	0.015	
K	2.80	3.30	0.110	0.130	
L	7.50	7.74	0.295	0.305	
М	0°	10°	0°	10°	
S	0.51	1.01	0.020	0.040	

- OTES:

 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

 2. CONTROLLING DIMENSION: INCH.

 3. DIMENSION L TO CENTER OF LEAD WHEN FORMED PARALLEL.

 4. DIM F MAY NARROW TO 0.76 (0.030) WHERE THE LEAD ENTERS THE CERAMIC BODY.

 5. 620-01 THRU -08 OBSOLETE, NEW STANDARD 620.09

- 620-09.

	MILLIM	ETERS	INC	HES			
DIM	MIN	MAX	MIN	MAX			
Α	19.05	19.55	0.750	0.770			
В	6.10	7.36	0.240	0.290			
С	_	4.19	_	0.165			
D	0.39	0.53	0.015	0.021			
E	1.27	BSC	0.050 BSC				
F	1.40	1.77	0.055	0.070			
G	2.54	BSC	0.100 BSC				
J	0.23	0.27	0.009	0.011			
K	_	5.08	_	0.200			
L	7.62	7.62 BSC		BSC			
M	0°	15°	0°	15°			
N	0.39	0.88	0.015	0.035			

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters can and do vary in different applications. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

Literature Distribution Centers:

USA: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036.

EUROPE: Motorola Ltd.; European Literature Centre; 88 Tanners Drive, Blakelands, Milton Keynes, MK14 5BP, England.

JAPAN: Nippon Motorola Ltd.; 4-32-1, Nishi-Gotanda, Shinagawa-ku, Tokyo 141, Japan.

ASIA PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Center, No. 2 Dai King Street, Tai Po Industrial Estate, Tai Po, N.T., Hong Kong.

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.