© Copyright Microsoft Corporation. All rights reserved.

FOR USE <u>ONLY</u> AS PART OF VIRTUAL TRAINING DAYS PROGRAM. THESE MATERIALS ARE <u>NOT</u> AUTHORIZED FOR DISTRIBUTION, REPRODUCTION OR OTHER USE BY NON-MICROSOFT PARTIES.

Module 1: Explore core data concepts

Agenda

Explore core data concepts

Explore roles and responsibilities in the world of data

Describe concepts of relational data

Explore concepts of non-relational data

Explore concepts of data analytics

Lesson 1: Explore core data concepts

Lesson 1 objectives

Identify how data is defined and stored

Identify characteristics of relational and nonrelational data

Describe and differentiate data workloads

Describe and differentiate batch and streaming data

What is data?

Collection of facts, numbers, descriptions, objects, stored in a structured, semi-structured, unstructured way.

Structured

Semi-structured

```
## Document 1 ## {
"customerID": "103248",
"name": { "first": "AAA",
"last": "BBB" }, "address": {
"street": "Main Street",
"number": "101", "city":
"Acity", "state": "NY" },
"ccOnFile": "yes",
"firstOrder": "02/28/2003" }
## Document 2 ## {
"customerID": "103249",
"name": { "title": "Mr",
"forename": "AAA",
"lastname": "BBB" },
"address": { "street":
"Another Street", "number":
"202", "city": "Bcity",
"county": "Gloucestershire",
"country-region": "UK" },
"ccOnFile": "yes" }
```

Unstructured

Transactional vs analytical data stores

Online Transactional Processing (OLTP)

Online Analytical Processing (OLAP)

Transactional workloads

BEGIN TRANSACTION

UPDATE Account

SET Balance = Balance -500

WHERE CustomerID=6023;

UPDATE Account

SET Balance = Balance +500

WHERE CustomerID=5558;

INSERT INTO Transfers (Fromaccount, ToAccount, TransactionAmount,TransactionDescription) VALUES (6023,5558,500,'Transfer 500 from account 6023 to account 5558)

COMMIT TRANSACTION

Analytical System

101010 010101 101010

SaaS data

Salesforce, Dynamics

Batch Data / Streaming Data

BATCH

101010 101010 101010 010101 010101 010101 101010 101010 101010

STREAMING

| 01010 | 0101

Lesson 2: Explore roles and responsibilities in the world of data

Lesson 2 objectives

Explore data job roles

Explore common tasks and tools for data job roles

Roles in Data

Database Administrator

Database Management

Implements Data Security

Backups

User Access

Monitors performance

Data Engineer

Data Pipelines and processes

Data Ingestion storage

Prepare data for Analytics

Prepare data for analytical processing

Data Analyst

Provides insights into the data

Visual Reporting

Modeling Data for Analysis

Combines data for visualization and analysis

Common Tools – Database Administrator

Azure Data Studio

- Graphical interface for managing on-premises and cloud-based data services
- Runs on Windows, macOS, Linux

SQL Server Management Studio

- Graphical interface for managing on-premises and cloud-based data services
- Runs on Windows
- Comprehensive Database Administration tool

Azure Portal / CLI

- Tools for management and provisioning of Azure Data Services
- Manual and automation of scripts using Azure Resource Manager or Command Line Interface scripting

Common Tools – Data Engineering

Azure Synapse Studio

- Azure Portal integrated to manage Azure Synapse
- Data Ingestion (Azure Data Factory)
- Management of Azure Synapse assets (SQL Pools / Spark Pool)

SQL Server Management Studio

- Graphical interface for managing on-premises and cloud-based data services
- Runs on Windows
- Comprehensive Database Administration tool

Azure Portal / CLI

- Tools for management and provisioning of Azure resources
- Manual and automation of scripts using Azure Resource Manager or Command Line Interface scripting

Common Tools – Data Analyst

Power BI Desktop

- Data Visualization tool
- Model and Visualize Data
- Management of Azure Synapse assets (SQL Pools / Spark Pool)

Power BI Portal / Power BI Service

- Authoring and management of Power BI reports
- Authoring of Power BI dashboards
- Share Reports / Datasets

Power BI Report Builder

- Data Visualization tool for paginated reports
- Model and Visualize paginated reports

Lesson 3: Describe concepts of relational data

Lesson 3 objectives

Explore the characteristics of relational data

Define tables, indexes, and views

Explore relational data workload offerings in Azure

Tables

Customers		
CustomerID	CustomerName	CustomerPhone
100	Muisto Linna	XXX-XXX-XXXX
101	Noam Maoz	XXX-XXX-XXXX
102	Vanja Matkovic	XXX-XXX-XXXX
103	Qamar Mounir	XXX-XXX-XXXX
104	Zhenis Omar	XXX-XXX-XXXX
105	Claude Paulet	XXX-XXX-XXXX
106	Alex Pettersen	XXX-XXX-XXXX
107	Francis Ribeiro	XXX-XXX-XXXX

Data is stored in a table

Table consists of rows and columns

All rows have same # of columns

Each column is defined by a datatype

Normalization

Customers		
CustomerID	CustomerName	CustomerPhone
100	Muisto Linna	XXX-XXX-XXXX
101	Noam Maoz	XXX-XXX-XXXX
102	Vanja Matkovic	XXX-XXX-XXXX
103	Qamar Mounir	XXX-XXX-XXXX
104	Zhenis Omar	XXX-XXX-XXXX
105	Claude Paulet	XXX-XXX-XXXX
106	Alex Pettersen	XXX-XXX-XXXX

Data is normalized to:

- Reduce storage
- Avoid data duplication
- Improve data quality

Orders		
OrderID	CustomerName	CustomerPhone
AD100	Noam Maoz	XXX-XXX-XXXX
AD101	Noam Maoz	XXX-XXX-XXXX
AD102	Noam Maoz	XXX-XXX-XXXX
AX103	Qamar Mounir	XXX-XXX-XXXX
AS104	Qamar Mounir	XXX-XXX-XXXX
AR105	Claude Paulet	XXX-XXX-XXXX
MK106	Muisto Linna	XXX-XXX-XXXX

Relations

CustomerID	CustomerName	CustomerPhone			
00	Muisto Linna	XXX-XXX-XXXX	Orders		
01	Noam Maoz	XXX-XXX-XXXX	OrderID	CustomerID	SalesPerso
		XXX-XXX-XXXX	AD100	101	200
02	Vanja Matkovic	<i>XXX-XXX-XXXX</i>	AD101	101	200
03	Qamar Mounir	XXX-XXX-XXXX	AD102	101	200
03	Qarriar Mourin		AX103	103	201
04	Zhenis Omar	XXX-XXX-XXXX	AS104	103	201
		XXX-XXX-XXXX	AR105	105	200
05	Claude Paulet	t	MK106	105	201
106	Alex Pettersen	XXX-XXX-XXXX	DB205	100	205

In a normalized database schema:

- Primary Keys and Foreign keys are used to define relationships
- No data duplication exists (other than key values in 3rd Normal Form (3NF)
- Data is retrieved by joining tables together in a query

Indexes

Customers		
CustomerID	CustomerName	CustomerPhone
100	Muisto Linna	XXX-XXX-XXXX
101	Noam Maoz	XXX-XXX-XXXX
102	Vanja Matkovic	XXX-XXX-XXXX
103	Qamar Mounir	XXX-XXX-XXXX
104	Zhenis Omar	XXX-XXX-XXXX
105	Claude Paulet	XXX-XXX-XXXX
106	Alex Pettersen	XXX-XXX-XXXX

IDX-CustomerRegion		
CustomerID	Region	
100	France	
101	Brazil	
102	Croatia	
103	Jordan	
104	Spain	
105	France	
106	USA	

An index

- Optimizes search queries for faster data retrieval
- Reduces the amount of data pages that need to be read to retrieve the data in a SQL Statement
- Data is retrieved by joining tables together in a query

View

Customers		
CustomerID	CustomerName	CustomerPhone
100	Muisto Linna	XXX-XXX-XXXX
101	Noam Maoz	XXX-XXX-XXXX
102	Vanja Matkovic	XXX-XXX-XXXX
103	Qamar Mounir	XXX-XXX-XXXX
104	Zhenis Omar	XXX-XXX-XXXX
105	Claude Paulet	XXX-XXX-XXXX
106	Alex Pettersen	XXX-XXX-XXXX

Orders		
OrderID	CustomerID	SalesPersonID
AD100	101	200
AD101	101	200
AD102	101	200
AX103	103	201
AS104	103	201

Create the definition of a view:

AR105

MK106

DB205

CREATE VIEW vw_customerorders AS
SELECT Customers.CustomerID,
Customers.CustomerName, Orders.OrderID FROM
Customers JOIN Orders on Customers.CustomerID

= Orders.CustomerID

A view is a virtual table based on the result set of query

- Views are created to simplify the query
- Combine relational data into a single pane view

Retrieve the orders placed by customer 102 using the view:

SELECT CustomerName, OrderID from vw_customerorders WHERE CustomerID=102

Lesson 4: Explore concepts of non-relational data

Lesson 4 objectives

Explore the characteristics of non-relational data

Define types of non-relational data

Describe NoSQL, and the types of non-relational databases

Explore characteristics of non-relational data

Entities

Non-relational collections can have

- Multiple entities in the same collection or container with different fields
- Have a different, non-tabular schema
- are often defined by labeling each field with the name it represents

Identify non-relational database use cases

IoT and Telematics

Often require to ingest large amounts of data in frequent burst of activity, data is either semi structured or structured, often requires real time processing

Retail and Marketing

Common scenarios for globally distributed data, document storage

Gaming

In-game stats, social media integration, leaderboards, low-latency applications

Web and Mobile

Common used with web click analytics, modern applications including bots

Types of non-relational data

What is semi-structured data?

Data structure is defined within the actual data by fields. Format / file types include:

JSON AVRO ORC Parquet

What is unstructured data?

- Does not naturally contain fields Examples: video, audio, media streams, documents
- Often used to extract data form and categorize or identify "structures"
- Frequently used in combination with Machine Learning or Cognitive Services capabilities to "extract data" by using:
 - Text Analytics
 - Sentiment Analysis with Cognitive APIs
 - Vision API

What is NoSQL?

Loose term, to describe non-relational

Key-value stores

Document based

Column family databases

Graph Databases

What is a graph database?

- Stores entities centric around relationships
- Enable applications to perform queries traversing a network of nodes and edges

What applications require a graph database?

Business requirements:

- OLTP apps with highly correlated data.
- Easy updates to single or many objects.
- Flexible data modelling.
- Data requirements that evolve.
- Hierarchical data structures.

Lesson 5: Explore concepts of data analytics

Lesson 5 objectives

Learn about data ingestion and processing

Explore data visualization

Explore data analytics

What is data ingestion?

What is data processing?

What is ETL?

What is ELT?

Explore Data Visualization

Power BI: A collection of software, services, apps, and connectors.

Explore Data Analytics

© Copyright Microsoft Corporation. All rights reserved.

FOR USE <u>ONLY</u> AS PART OF VIRTUAL TRAINING DAYS PROGRAM. THESE MATERIALS ARE <u>NOT</u> AUTHORIZED FOR DISTRIBUTION, REPRODUCTION OR OTHER USE BY NON-MICROSOFT PARTIES.

Module 2: Explore relational data in Azure-Segment 1

Agenda

Explore relational data offerings in Azure

Explore provisioning and deploying relational database offerings in Azure

Query relational data in Azure

Lesson 1: Explore relational data offerings in Azure

Lesson 1 objectives

Explore relational data offerings in Azure

Explore provisioning and deploying of relational database offerings in Azure

Query relational data in Azure

What are Azure Data Services?

SQL Server on Azure Virtual Machines

Best for re-hosting and apps requiring OS-level access and control

Automated manageability features and OS-level access

Azure SQL Managed Instance

Best for modernizing existing apps

Offers high compatibility with SQL Server and native VNET support

Azure SQL Database

Best for building new apps in the cloud

Pre-provisioned or serverless compute and Hyperscale storage to meet demanding workload requirements

Infrastructure as a Service

Platform as a Service

SQL Server on Azure virtual machines

Customer challenge

I want to migrate to the cloud as fast as possible but maintain operating system control and complete SQL Server functionality

Solution

Get the combined performance, security, and analytics of SQL Server, backed by the flexibility, security, and hybrid connectivity of Azure

Key features

SQL Server and QS server access

Expansive SQL and OS versions

Windows, Linux, Containers

File stream, DTC, and Simple Recovery model

SSAS, SSRS, and SSIS

Azure differentiators

Free Extended Security Updates for SQL Server 2008/R2

Automated Backups and Security Updates

Point in Time Restore with Azure Backup

Accelerated storage performance with Azure Blob Caching

435 percent overall return on an Azure laaS investment over five years¹

SQL Server on Azure VM Deployment choices

Marketplace pre-installed SQL Server on Windows or Linux **Deployment Choices** Install your own SQL Server Lift and Shift with Azure Migrate (Azure Site Recovery) Unlock Licensing and Edition Flexibility Resource Provider Automated Backups and Security Updates Manage VMs through Azure SQL in portal Tempdb on local SSD Memory or Storage optimized sizes for best performance Sizes and Storage Data and log on Premium Storage Managed Disks Ultra disks for extremely low latency needs **Performance** Azure Blob Read Caching for data disks **Networking and** Virtual Networks to integrate with on-premises Advanced Data Security services (Preview) Security Azure VM built-in HA Failover Cluster Instance with Azure Premium File Share

HADR

Azure VM built-in HA
Azure Storage built-in DR
Azure Backup and Automated backups to Azure Blob Storage
File-Snapshot Backups

Failover Cluster Instance with Azure Premium File Share Always On Availability Groups with Cloud Witness Hybrid Availability Group Secondary replicas HADR on RedHat Linux with Pacemaker and fencing

laaS vs PaaS

Business continuity

High availability

Automated backups

Long term backup retention

Geo-replication

Scale

Advanced security

Version-less

Built-in monitoring

Built-in intelligence

Azure SQL DB

Customer challenge

I want to build modern apps, potentially multitenanted, with the highest uptime and predictable performance

Solution

Azure SQL Database is a highly scalable cloud database service with built-in high availability and machine learning

Key features

Single database or elastic pool

Hyperscale storage (100TB+)

Serverless compute

Fully managed service

Private link support

High availability with AZ isolation

Azure differentiators

Industry highest availability SLA of 99.995%

Industry only business continuity SLA with 5 second RPO and 30 second RTO

Price-performance leader for missioncritical workloads while costing up to 86 percent less than AWS RDS (GigaOm)

Azure SQL DB Service Tiers

*Not in managed instance

Azure SQL DB Managed Instance

Customer challenge

I want to migrate to the cloud, remove management overhead, but I need instance-scoped features (Service Broker, SQL Server Agent, CLR...)

Solution

Managed instance combines leading security features with SQL Server compatibility and business model designed for on-premises customers

Key features

Single instance or instance pool

SQL Server surface area (vast majority)

Native virtual network support

Fully managed service

On-premise identities enabled with Azure AD and AD Connect

Azure differentiators

Near zero downtime migration using log shipping

Fully managed business continuity with failover groups

Projected return on investment of 212 percent over three years¹

The best of SQL Server with the benefits of a managed service

Managed Instance Service Tiers

Azure SQL Managed instance or DB

Azure SQL managed instance

Single instance

SQL Server surface area (vast majority)

Native virtual network support

Fully managed service

Instance pool

Pre-provision compute resources for migration

Enables cost-efficient migration.

Ability to host smaller instances (2Vcore)

Currently in public preview

Azure SQL Database

Single database

Hyperscale storage (up to 100TB)

Serverless compute

Fully managed service

Elastic pool

Resource sharing between multiple databases to price optimize

Simplified performance management for multiple databases

Fully managed service

PostgreSQL, MariaDB, MySQL

PostgreSQL is the most popular and wanted database for modern apps

MySQL is a leading open source relational database for LAMP stack apps

MariaDB is a community-developed fork of MySQL with strong focus on the user community

Benefits of Azure Database for MySQL, PostgreSQL, MariaDB

Fully managed community database

Take advantage of a fully managed service while still using the tools and languages you're familiar with

Built-in high availability for lowest TCO

Ensure your data is always available without the need for additional costs

Intelligent performance and scale

Improve performance with built-in intelligence and up to 16TB storage and 20K IOPs

Industry-leading security and compliance

Protect your data with enhanced security features including Advanced Threat Protection

Integration with the Azure ecosystem

Build apps faster with Azure services and safeguard your innovation with Azure IP Advantage

Azure Database for PostgreSQL

Azure builds upon the core benefits of PostgreSQL and Open Source

Azure Database for PostgreSQL is fully-managed, community PostgreSQL

The benefits of Azure Database for PostgreSQL

Build or migrate your workloads with confidence and optimized for value

Fully managed and secure

Focus on your apps while Azure manages resourceintensive tasks, supports a large variety of Postgres versions and provides bestin industry indemnification coverage

Intelligent performance optimization

Improve performance and reduce cost with customized recommendations

Flexible and open

Stay productive with your favorite Postgres extensions and leverage Microsoft's contributions to the Postgres community

High performance scale-out with Hyperscale

Break free from the limits of single-node Postgres and scale out across 100s of nodes

Single Server

Lesson 2: Explore provisioning and deploying relational database offerings in Azure

Lesson 2 objectives

Provision relational data services

Configure relational data services

Explore basic connectivity issues

Explore data security

What is provisioning?

Configure Relational Data Services

Basics

Subscription

Resource group

Managed Instance/

Server name

Database Name (DB)

Admin Login

Password

Region

Opt-in for pools (DB)

Compute + storage

Network connectivity

Public vs Private access
VNet / Firewall rules

Connection type (MI)

Additional settings

Data source (DB)

Server Collation (MI)

Database Collation (DB)

Time zone (MI)

Opt-in for Advanced

data security (DB)

Tags (DB)

Review & create

Terms and Privacy

Connectivity and Firewalls

Network Security – SQL Database

- Allow access to Azure services
- Firewall Rules
- Virtual Network Rules
- Private Link

Authentication and Access Control

"Mixed Mode" authentication forced

SQL Auth for deployment: server admin

- Server-level principal for logical server for DB
- Member of sysadmin server role for MI

Need Windows Auth? Use Azure AD Authentication

Azure Managed Instance

- Azure AD Server Admin
- SQL or Azure AD Logins
- Database Users
- SQL Server Contained Database supported

Azure SQL Database

- Azure AD Server Admin
- SQL logins
- loginmanager and dbmanager roles for limited server admins
- Database Users
- Contained Database Users including Azure AD (recommended)

Azure Role Based Access Control (RBAC)

- All Azure operations for Azure SQL are controlled through RBAC
- Think of this as security rights outside the Managed Instance or Database
- Security principal and role-based system
- Scope includes subscription, resource group, and resource
- Decoupled from SQL Security (today)
- Applies to operations in Azure portal and CLI
- Allows for separation of duties for deployment, management, and usage
- Azure locks help protect resources from delete or read-only
- Built-in Azure SQL roles available to reduce need for owner

SQL DB Contributor SQL Managed Instance Contributor

SQL Security Manager

SQL Server Contributor

Azure DB - read replicas

Read replicas help improve performance and scale of read-intensive workloads such as BI and analytics Consider the read replica features in scenarios when delays in synching data between the master and replicas are acceptable

Create a replica in a different Azure region from the master for a disaster recovery plan, where a replica replaces the master in cases of regional disasters Data storage on replica servers grows automatically without impacting workloads

Create up to five replicas of the master server

© Copyright Microsoft Corporation. All rights reserved.

FOR USE <u>ONLY</u> AS PART OF VIRTUAL TRAINING DAYS PROGRAM. THESE MATERIALS ARE <u>NOT</u> AUTHORIZED FOR DISTRIBUTION, REPRODUCTION OR OTHER USE BY NON-MICROSOFT PARTIES.

Module 2: Explore relational data in Azure-Segment 2

Demo: Provision an Azure SQL Database

Lesson 3: Query relational data in Azure

Lesson 3 objectives

Describe query techniques for data using the SQL language

Query relational data

Introduction to SQL

- SQL is a standard language for use with relational databases
- SQL standards are maintained by ANSI and ISO
- Proprietary RDBMS systems have their own extensions of SQL such as T-SQL, PL/SQL, pgSQL

SQL Statement types

DML

- Data Manipulation Language
- Used to query and manipulate data
- SELECT, INSERT, UPDATE, DELETE

DDL

- Data Definition Language
- Used to define database objects
- CREATE, ALTER, DROP, REMOVE

DCL

- Data Control Language
- Used to manage security permissions
- GRANT, REVOKE, DENY

Use DML statements

Statement	Description
SELECT	Select/read from a table
INSERT	Insert new rows in a table
UPDATE	Edit/Update existing rows in a table
DELETE	Delete existing rows in a table

Elements of the SELECT Statement

Clause	Expression
SELECT	<select list=""></select>
FROM	
WHERE	<search condition=""></search>
GROUP BY	<group by="" list=""></group>
ORDER BY	<order by="" list=""></order>

Example of SELECT statement

```
SELECT EmployeeId, YEAR(OrderDate) AS OrderYear
FROM Sales.Orders
WHERE CustomerId = 71
GROUP BY EmployeeId, YEAR(OrderDate)
HAVING COUNT(*) > 1
ORDER BY EmployeeId, OrderYear;
```

Example of INSERT statement

The INSERT ... VALUES statement inserts a new row

```
INSERT INTO Sales.OrderDetails
          (orderid, productid, unitprice, qty, discount)
VALUES (10255,39,18,2,0.05);
```

Table and row constructors add multirow capability to INSERT ... VALUES

```
INSERT INTO Sales.OrderDetails
(orderid, productid, unitprice, qty, discount)

VALUES
(10256,39,18,2,0.05),
(10258,39,18,5,0.10);
```

Use DDL statements

Statement	Description
CREATE	Create a new object in the database, such as a table or a view.
ALTER	Modify the structure of an object. For instance, altering a table to add a new column.
DROP	Remove an object from the database.
RENAME	Rename an existing object.

Example of CREATE statement

```
CREATE TABLE Mytable
(Mycolumn1 int NOT NULL PRIMARY KEY, Mycolumn2
VARCHAR(50) NOT NULL , Mycolumn2 VARCHAR(10) NOT NULL
```

Query Tools

Azure Portal

Azure Data Studio

SQL Management Studio

SQLCMD

SQL Server Data Tools

Azure CLI / Cloud Shell

Query relational data in Azure SQL Database for PostgreSQL

Use PSQL to query a database

psql --host=<server-name>.postgres.database.azure.com -username=<admin-user>@<server-name> --dbname=postgres

Query relational data in Azure SQL Database for MySQL

Use MySQL Workbench to query a database

