Aprendizagem 2022

Homework II – Group 58

Part I: Pen and paper

applying the feeture transformation of
$$\varphi(X_1)$$
:

$$\begin{pmatrix}
1 & 0.3 & 0.3^{1} & 0.3^{1} \\
1 & 1 & 1 & 1^{2} \\
1 & 1.2 & 1.2^{1} & 1.2^{1} \\
1 & 1.4 & 1.4^{2} & 1.4^{2}
\end{pmatrix} = \begin{pmatrix}
1 & 0.8 & 0.64 & 0.512 \\
1 & 1 & 1 & 1 & 1 \\
1 & 1.4 & 1.4^{2} & 1.4^{2}
\end{pmatrix} = \begin{pmatrix}
1 & 1 & 1 & 1 \\
1 & 1.4 & 1.4^{2} & 1.4^{2} \\
1 & 1.6 & 1.6^{3} & 1.6^{3}
\end{pmatrix} = \begin{pmatrix}
1 & 1 & 1 & 1 \\
1 & 1.4 & 1.4 & 1.4 \\
0.512 & 1 & 1.4 & 1.4 \\
0.512 & 1 & 1.41 & 2.56
\end{pmatrix}$$

$$x^{T} \cdot X = \begin{pmatrix}
1 & 1 & 1 & 1 & 1 \\
0.81 & 1 & 1.2 & 14 & 1.6 \\
0.512 & 1 & 1.41 & 2.34 & 4.016
\end{pmatrix}$$

$$x^{T} \cdot X = \begin{pmatrix}
1 & 1 & 1 & 1 & 1 \\
0.81 & 1 & 1.2 & 14 & 1.6 \\
0.512 & 1 & 1.41 & 2.34 & 4.016
\end{pmatrix}$$

$$x^{T} \cdot X = \begin{pmatrix}
1 & 1 & 1 & 1 & 1 \\
0.81 & 1 & 1.4 & 1.4 & 1.4 \\
0.512 & 1 & 1.41 & 2.34 & 4.016
\end{pmatrix}$$

$$x^{T} \cdot X = \begin{pmatrix}
1 & 1 & 1 & 1 & 1 \\
0.81 & 1 & 1.4 & 1.4 & 1.4 \\
0.512 & 1 & 1.41 & 2.34 & 4.016
\end{pmatrix}$$

$$x^{T} \cdot X = \begin{pmatrix}
1 & 1 & 1 & 1 & 1 \\
0.81 & 1 & 1.4 & 1.4 & 1.4 \\
0.512 & 1 & 1.41 & 2.34 & 4.016
\end{pmatrix}$$

$$x^{T} \cdot X = \begin{pmatrix}
1 & 0 & 1 & 1 & 1 & 1 \\
0.512 & 1 & 1.41 & 2.34 & 4.016
\end{pmatrix}$$

$$x^{T} \cdot X = \begin{pmatrix}
1 & 0 & 2 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 & 0 & 0 \\
0 & 0 & 2 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{pmatrix}$$

$$x^{T} \cdot X + \lambda \cdot \mathbf{I} = \begin{pmatrix}
1 & 0 & 2.6 & 10.08 & 13.3784 & 14.68 &$$

RMSE =
$$\int \frac{3}{5} \frac{(g_1 - g_1)^2}{n} \quad \hat{g}(u) = 7,0451 + 4,6409 \times + 1.9673 \times^2 - 1.3009 \times^3$$

$$\hat{g}(0.8) = 11.3508 \quad \hat{g}(1.4) = 13.8286$$

$$\hat{g}(1) = 12.3524 \quad \hat{g}(1.6) = 14.1783$$

$$\hat{g}(1.2) = 13.19914$$

$$RMSE = \int \frac{(11.3508 - 24)^2 + (12.3524 - 20)^2 + (13.19914 - 10)^2 + (13.8286 - 13)^2 + (14.1783 - 12)^2}{5}$$

$$= \int \frac{160.0023 + 5.8.4858 + 10.2345 + 0.6866 + 2.1783}{5} = \int \frac{2.51.5875}{5}$$

$$= \int 46.3175 \quad = 6.8057$$

Backways
$$b_{1} = b_{2} - \eta \frac{\partial A}{\partial b_{2}}$$

$$b_{2} = b_{2} - \eta \frac{\partial A}{\partial b_{2}}$$

$$b_{3} = b_{2} - \eta \frac{\partial A}{\partial b_{2}}$$

$$\frac{\partial A}{\partial b_{3}} = \left(\frac{\partial A}{\partial b_{2}} + \frac{\partial A}{\partial b_{2}}\right) \otimes \frac{\partial h_{1}}{\partial b_{1}}$$

$$\frac{\partial A}{\partial b_{3}} = \left(\frac{\partial A}{\partial c} + \frac{\partial A}{\partial b_{2}}\right) \otimes \frac{\partial h_{2}}{\partial b_{2}}$$

$$\frac{\partial A}{\partial b_{3}} = \left(\frac{\partial A}{\partial c} + \frac{\partial A}{\partial b_{2}}\right) \otimes \frac{\partial h_{2}}{\partial b_{2}}$$

$$\frac{\partial A}{\partial b_{3}} = \left(\frac{\partial A}{\partial c} + \frac{\partial A}{\partial b_{2}}\right) \otimes \frac{\partial A}{\partial b_{1}}$$

$$\frac{\partial A}{\partial c} = \left(\frac{\partial A}{\partial c} + \frac{\partial A}{\partial b_{2}}\right) \otimes \frac{\partial A}{\partial b_{1}}$$

$$\frac{\partial A}{\partial c} = \left(\frac{\partial A}{\partial c} + \frac{\partial A}{\partial b_{2}}\right) \otimes \frac{\partial A}{\partial b_{1}}$$

$$\frac{\partial A}{\partial c} = \left(\frac{\partial A}{\partial c} + \frac{\partial A}{\partial c}\right) \otimes \frac{\partial A}{\partial c}$$

$$\frac{\partial A}{\partial c} = \left(\frac{\partial A}{\partial c} + \frac{\partial A}{\partial c}\right) \otimes \frac{\partial A}{\partial c}$$

$$\frac{\partial A}{\partial c} = \left(\frac{\partial A}{\partial c} + \frac{\partial A}{\partial c}\right) \otimes \frac{\partial A}{\partial c}$$

$$\frac{\partial A}{\partial c} = \left(\frac{\partial A}{\partial c} + \frac{\partial A}{\partial c}\right) \otimes \frac{\partial A}{\partial c}$$

$$\frac{\partial A}{\partial c} = \left(\frac{\partial A}{\partial c} + \frac{\partial A}{\partial c}\right) \otimes \frac{\partial A}{\partial c}$$

$$\frac{\partial A}{\partial c} = \left(\frac{\partial A}{\partial c} + \frac{\partial A}{\partial c}\right) \otimes \frac{\partial A}{\partial c}$$

$$\frac{\partial A}{\partial c} = \left(\frac{\partial A}{\partial c} + \frac{\partial A}{\partial c}\right) \otimes \frac{\partial A}{\partial c}$$

$$\frac{\partial A}{\partial c} = \left(\frac{\partial A}{\partial c} + \frac{\partial A}{\partial c}\right) \otimes \frac{\partial A}{\partial c}$$

$$\frac{\partial A}{\partial c} = \left(\frac{\partial A}{\partial c} + \frac{\partial A}{\partial c}\right) \otimes \frac{\partial A}{\partial c}$$

$$\frac{\partial A}{\partial c} = \left(\frac{\partial A}{\partial c} + \frac{\partial A}{\partial c}\right) \otimes \frac{\partial A}{\partial c}$$

$$\frac{\partial A}{\partial c} = \left(\frac{\partial A}{\partial c} + \frac{\partial A}{\partial c}\right) \otimes \frac{\partial A}{\partial c}$$

$$\frac{\partial A}{\partial c} = \left(\frac{\partial A}{\partial c} + \frac{\partial A}{\partial c}\right) \otimes \frac{\partial A}{\partial c}$$

$$\frac{\partial A}{\partial c} = \left(\frac{\partial A}{\partial c} + \frac{\partial A}{\partial c}\right) \otimes \frac{\partial A}{\partial c}$$

$$\frac{\partial A}{\partial c} = \left(\frac{\partial A}{\partial c} + \frac{\partial A}{\partial c}\right) \otimes \frac{\partial A}{\partial c}$$

$$\frac{\partial A}{\partial c} = \left(\frac{\partial A}{\partial c} + \frac{\partial A}{\partial c}\right) \otimes \frac{\partial A}{\partial c}$$

$$\frac{\partial A}{\partial c} = \left(\frac{\partial A}{\partial c} + \frac{\partial A}{\partial c}\right) \otimes \frac{\partial A}{\partial c}$$

$$\frac{\partial A}{\partial c} = \left(\frac{\partial A}{\partial c} + \frac{\partial A}{\partial c}\right) \otimes \frac{\partial A}{\partial c}$$

$$\frac{\partial A}{\partial c} = \left(\frac{\partial A}{\partial c} + \frac{\partial A}{\partial c}\right) \otimes \frac{\partial A}{\partial c}$$

$$\frac{\partial A}{\partial c} = \left(\frac{\partial A}{\partial c} + \frac{\partial A}{\partial c}\right) \otimes \frac{\partial A}{\partial c}$$

$$\frac{\partial A}{\partial c} = \left(\frac{\partial A}{\partial c} + \frac{\partial A}{\partial c}\right) \otimes \frac{\partial A}{\partial c}$$

$$\frac{\partial A}{\partial c} = \left(\frac{\partial A}{\partial c} + \frac{\partial A}{\partial c}\right) \otimes \frac{\partial A}{\partial c}$$

$$\frac{\partial A}{\partial c} = \left(\frac{\partial A}{\partial c} + \frac{\partial A}{\partial c}\right) \otimes \frac{\partial A}{\partial c}$$

$$\frac{\partial A}{\partial c} = \left(\frac{\partial A}{\partial c} + \frac{\partial A}{\partial c}\right) \otimes \frac{\partial A}{\partial c}$$

$$\frac{\partial A}{\partial c} = \left(\frac{\partial A}{\partial c} + \frac{\partial A}{\partial c}\right) \otimes \frac{\partial A}{\partial c}$$

$$\frac{\partial A}{\partial c} = \left(\frac{\partial A}{\partial c} + \frac{\partial A}{\partial c}\right) \otimes \frac$$

$$b_{1} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} - 0_{1} I \begin{pmatrix} -0,380 \\ -0,380 \end{pmatrix} + \begin{bmatrix} -0,330 \\ -0,330 \end{pmatrix} + \begin{bmatrix} -0,152 \\ -0,153 \end{bmatrix}$$

$$= \begin{bmatrix} 1 \\ 1 \end{bmatrix} + \begin{bmatrix} 0,0850 \\ -0,304 \end{bmatrix} + \begin{bmatrix} -0,390 \\ -0,304 \end{bmatrix} + \begin{bmatrix} -0,1824 \\ -0,1824 \end{bmatrix}$$

$$a_{1} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} - 0_{1} I \begin{pmatrix} -0,304 \\ -0,304 \end{bmatrix} + \begin{bmatrix} -0,390 \\ -0,330 \end{bmatrix} + \begin{bmatrix} -0,1824 \\ -0,1824 \end{bmatrix}$$

$$= \begin{bmatrix} 1 \\ 1 \end{bmatrix} + \begin{bmatrix} 0,0804 \\ 0,0804 \end{bmatrix} = \begin{bmatrix} 1,0804 \\ 1,0804 \end{bmatrix}$$

Part II: Programming

4. Ridge MAE: 0.162829976437694

*MLP*₁ MAE: 0.0680414073796843 *MLP*₂ MAE: 0.0978071820387748

6. *MLP*₁ number of iterations: 452 *MLP*₂ number of iterations: 77

7. We can observe that the Mean Absolute Error of MLP_1 is lower than the MSE of MLP_2 and the number of iterations of MLP_1 is significantly higher (about 6 times) than those of MLP_2 .

In MLP_1 , early stopping was considered, which means the training is stopped if the MSE on the validation set becomes bigger, even if the MSE on the training set goes down. In MPL_1 , the MSE on the validation set (10% of training data) of our problem only starts growing after 452 iterations, way after the condition to stop when $early_stopping = false$ (which is when the loss or score is not improving for $n_iter_no_change$ consecutive iterations) is met.

Appendix

```
import pandas as pd
2 import numpy as np
import matplotlib.pyplot as plt
4 from scipy.io.arff import loadarff
5 from sklearn.linear_model import Ridge
6 from sklearn.model_selection import train_test_split
7 from sklearn.metrics import mean_absolute_error
8 from sklearn.neural_network import MLPRegressor
data = loadarff('kin8nm.arff')
ii df = pd.DataFrame(data[0])
12 X = df.drop('y', axis=1)
y = df['y']
15 X_train, X_test, y_train, y_test = train_test_split(X, y, train_size = 0.7,
     random_state = 0)
reg = Ridge(alpha = 0.1)
reg.fit(X_train, y_train)
19 y_pred_reg = reg.predict(X_test)
20 print('Ridge MAE:', mean_absolute_error(y_test, y_pred_reg))
22 mlp1 = MLPRegressor(hidden_layer_sizes = (10, 10,), activation = 'tanh', max_iter =
      500, random_state = 0, early_stopping = True)
23 mlp1.fit(X_train.values, y_train.values)
24 y_pred_mlp1 = mlp1.predict(X_test.values)
25 print('MLP1 MAE:', mean_absolute_error(y_test, y_pred_mlp1))
mlp2 = MLPRegressor(hidden_layer_sizes = (10, 10,), activation = 'tanh', max_iter =
      500, random_state = 0, early_stopping = False)
28 mlp2.fit(X_train.values, y_train.values)
29 y_pred_mlp2 = mlp2.predict(X_test.values)
30 print('MLP2 MAE:', mean_absolute_error(y_test, y_pred_mlp2))
residue_reg = np.array(abs(y_pred_reg - y_test))
residue_mlp1 = np.array(abs(y_pred_mlp1 - y_test))
residue_mlp2 = np.array(abs(y_pred_mlp2 - y_test))
36 fig, ax = plt.subplots()
ax.boxplot([residue_reg, residue_mlp1, residue_mlp2])
39 ax.set_xticklabels(['REG', 'MLP1', 'MLP2'])
40 plt.show()
42 plt.hist([residue_reg, residue_mlp1, residue_mlp2], 10,color=['yellow', 'orange', '
     red'], label=['REG', 'MLP1', 'MLP2'])
43 plt.legend()
44 plt.show()
46 print('MLP1 num of iter', mlp1.n_iter_)
47 print('MLP2 num of iter', mlp2.n_iter_)
```