

相似矩阵及二次型

向量的肉积、长度

马正文性

向量的肉积

内积的定义与性质

内积的定义与性质
$$1、定义$$
 设 n 维实向量 $\alpha = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix}, \beta = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix}, 称实数$

 $a_1b_1+a_2b_2+\cdots+a_nb_n$ 为向量 α 与 β 的内积, 记作 $[\alpha,\beta]$.

$$a_1b_1+a_2b_2+\cdots+a_nb_n$$
 为向量 α 与 β 的内积,记作 $[\alpha,\beta]$.
注:内积是向量的一种运算,其结果是数.
用矩阵形式表示,有 $[\alpha,\beta]=(a_1\ a_2\ \cdots\ a_n)egin{pmatrix} b_1\\ b_2\\ \vdots\\ b_n \end{pmatrix}=\alpha^T\beta.$

$$[\alpha,\beta]=[\beta,\alpha]$$

(2) 线性性:

$$[\alpha + \beta, \gamma] = [\alpha, \gamma] + [\beta, \gamma]$$

$$[k\alpha,\beta]=k[\alpha,\beta]$$

(3) 正定性:

$$[\alpha,\alpha] \ge 0$$
, 当且仅当 $\alpha \ne 0$ 时 $[\alpha,\alpha] > 0$.

$$\alpha = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix}, \beta = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix}, \begin{bmatrix} \gamma = \begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{pmatrix}, \begin{bmatrix} \gamma = \begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{pmatrix}, \begin{bmatrix} \alpha, \beta \end{bmatrix} = \begin{pmatrix} \alpha + \beta \\ \alpha + \beta \end{pmatrix}, \alpha = \begin{pmatrix} \alpha + \beta \\ \alpha + \beta \end{pmatrix}, \alpha = \begin{pmatrix} \alpha + \beta \\ \alpha + \beta \end{pmatrix}, \gamma = \begin{pmatrix} \alpha + \beta \\ \alpha + \beta \end{pmatrix}, \gamma = \begin{pmatrix} \alpha + \beta \\ \alpha + \beta \end{pmatrix}, \gamma = \begin{pmatrix} \alpha + \beta \\ \alpha + \beta \end{pmatrix}, \gamma = \begin{pmatrix} \alpha + \beta \\ \alpha + \beta \end{pmatrix}, \gamma = \begin{pmatrix} \alpha + \beta \\ \alpha + \beta \end{pmatrix}, \gamma = \begin{pmatrix} \alpha + \beta \\ \alpha + \beta \end{pmatrix}, \gamma = \begin{pmatrix} \alpha + \beta \\ \alpha + \beta \end{pmatrix}, \gamma = \begin{pmatrix} \alpha + \beta \\ \alpha + \beta \end{pmatrix}, \gamma = \begin{pmatrix} \alpha + \beta \\ \alpha + \beta \end{pmatrix}, \gamma = \begin{pmatrix} \alpha + \beta \\ \alpha + \beta \end{pmatrix}, \gamma = \begin{pmatrix} \alpha + \beta \\ \alpha + \beta \end{pmatrix}, \gamma = \begin{pmatrix} \alpha + \beta \\ \alpha + \beta \end{pmatrix}, \gamma = \begin{pmatrix} \alpha + \beta \\ \alpha + \beta \end{pmatrix}, \gamma = \begin{pmatrix} \alpha + \beta \\ \alpha + \beta \end{pmatrix}, \gamma = \begin{pmatrix} \alpha + \beta \\ \alpha + \beta \end{pmatrix}, \gamma = \begin{pmatrix} \alpha + \beta \\ \alpha + \beta \end{pmatrix}, \gamma = \begin{pmatrix} \alpha + \beta \\ \alpha + \beta \end{pmatrix}, \gamma = \begin{pmatrix} \alpha + \beta \\ \alpha + \beta \end{pmatrix}, \gamma = \begin{pmatrix} \alpha + \beta \\ \alpha + \beta \end{pmatrix}, \gamma = \begin{pmatrix} \alpha + \beta \\ \alpha + \beta \end{pmatrix}, \gamma = \begin{pmatrix} \alpha + \beta \\ \alpha + \beta \end{pmatrix}, \gamma = \begin{pmatrix} \alpha + \beta \\ \alpha + \beta \end{pmatrix}, \gamma = \begin{pmatrix} \alpha + \beta \\ \alpha + \beta \end{pmatrix}, \gamma = \begin{pmatrix} \alpha + \beta \\ \alpha + \beta \end{pmatrix}, \gamma = \begin{pmatrix} \alpha + \beta \\ \alpha + \beta \end{pmatrix}, \gamma = \begin{pmatrix} \alpha + \beta \\ \alpha + \beta \end{pmatrix}, \gamma = \begin{pmatrix} \alpha + \beta \\ \alpha + \beta \end{pmatrix}, \gamma = \begin{pmatrix} \alpha + \beta \\ \alpha + \beta \end{pmatrix}, \gamma = \begin{pmatrix} \alpha + \beta \\ \alpha + \beta \end{pmatrix}, \gamma = \begin{pmatrix} \alpha + \beta \\ \alpha + \beta \end{pmatrix}, \gamma = \begin{pmatrix} \alpha + \beta \\ \alpha + \beta \end{pmatrix}, \gamma = \begin{pmatrix} \alpha + \beta \\ \alpha + \beta \end{pmatrix}, \gamma = \begin{pmatrix} \alpha + \beta \\ \alpha + \beta \end{pmatrix}, \gamma = \begin{pmatrix} \alpha + \beta \\ \alpha + \beta \end{pmatrix}, \gamma = \begin{pmatrix} \alpha + \beta \\ \alpha + \beta \end{pmatrix}, \gamma = \begin{pmatrix} \alpha + \beta \\ \alpha + \beta \end{pmatrix}, \gamma = \begin{pmatrix} \alpha + \beta \\ \alpha + \beta \end{pmatrix}, \gamma = \begin{pmatrix} \alpha + \beta \\ \alpha + \beta \end{pmatrix}, \gamma = \begin{pmatrix} \alpha + \beta \\ \alpha + \beta \end{pmatrix}, \gamma = \begin{pmatrix} \alpha + \beta \\ \alpha + \beta \end{pmatrix}, \gamma = \begin{pmatrix} \alpha + \beta \\ \alpha + \beta \end{pmatrix}, \gamma = \begin{pmatrix} \alpha + \beta \\ \alpha + \beta \end{pmatrix}, \gamma = \begin{pmatrix} \alpha + \beta \\ \alpha + \beta \end{pmatrix}, \gamma = \begin{pmatrix} \alpha + \beta \\ \alpha + \beta \end{pmatrix}, \gamma = \begin{pmatrix} \alpha + \beta \\ \alpha + \beta \end{pmatrix}, \gamma = \begin{pmatrix} \alpha + \beta \\ \alpha + \beta \end{pmatrix}, \gamma = \begin{pmatrix} \alpha + \beta \\ \alpha + \beta \end{pmatrix}, \gamma = \begin{pmatrix} \alpha + \beta \\ \alpha + \beta \end{pmatrix}, \gamma = \begin{pmatrix} \alpha + \beta \\ \alpha + \beta \end{pmatrix}, \gamma = \begin{pmatrix} \alpha + \beta \\ \alpha + \beta \end{pmatrix}, \gamma = \begin{pmatrix} \alpha + \beta \\ \alpha + \beta \end{pmatrix}, \gamma = \begin{pmatrix} \alpha + \beta \\ \alpha + \beta \end{pmatrix}, \gamma = \begin{pmatrix} \alpha + \beta \\ \alpha + \beta \end{pmatrix}, \gamma = \begin{pmatrix} \alpha + \beta \\ \alpha + \beta \end{pmatrix}, \gamma = \begin{pmatrix} \alpha + \beta \\ \alpha + \beta \end{pmatrix}, \gamma = \begin{pmatrix} \alpha + \beta \\ \alpha + \beta \end{pmatrix}, \gamma = \begin{pmatrix} \alpha + \beta \\ \alpha + \beta \end{pmatrix}, \gamma = \begin{pmatrix} \alpha + \beta \\ \alpha + \beta \end{pmatrix}, \gamma = \begin{pmatrix} \alpha + \beta \\ \alpha + \beta \end{pmatrix}, \gamma = \begin{pmatrix} \alpha + \beta \\ \alpha + \beta \end{pmatrix}, \gamma = \begin{pmatrix} \alpha + \beta \\ \alpha + \beta \end{pmatrix}, \gamma = \begin{pmatrix} \alpha + \beta \\ \alpha + \beta \end{pmatrix}, \gamma = \begin{pmatrix} \alpha + \beta \\ \alpha + \beta \end{pmatrix}, \gamma = \begin{pmatrix} \alpha + \beta \\ \alpha + \beta \end{pmatrix}, \gamma = \begin{pmatrix} \alpha + \beta \\ \alpha + \beta \end{pmatrix}, \gamma = \begin{pmatrix} \alpha + \beta \\ \alpha + \beta \end{pmatrix}, \gamma = \begin{pmatrix} \alpha + \beta \\ \alpha + \beta \end{pmatrix}, \gamma = \begin{pmatrix} \alpha + \beta \\ \alpha + \beta \end{pmatrix}, \gamma = \begin{pmatrix} \alpha + \beta \\ \alpha + \beta \end{pmatrix}, \gamma = \begin{pmatrix} \alpha + \beta \\ \alpha + \beta \end{pmatrix}, \gamma = \begin{pmatrix} \alpha + \beta \\ \alpha + \beta \end{pmatrix}, \gamma = \begin{pmatrix} \alpha + \beta \\ \alpha + \beta \end{pmatrix}, \gamma = \begin{pmatrix} \alpha + \beta \\ \alpha + \beta \end{pmatrix}, \gamma = \begin{pmatrix} \alpha + \beta \\ \alpha + \beta \end{pmatrix}, \gamma = \begin{pmatrix} \alpha + \beta \\ \alpha + \beta \end{pmatrix}, \gamma = \begin{pmatrix} \alpha + \beta \\ \alpha + \beta \end{pmatrix}, \gamma = \begin{pmatrix} \alpha + \beta \\ \alpha + \beta \end{pmatrix}, \gamma = \begin{pmatrix} \alpha + \beta \\ \alpha + \beta \end{pmatrix}, \gamma = \begin{pmatrix} \alpha + \beta \\ \alpha + \beta \end{pmatrix}, \gamma = \begin{pmatrix} \alpha + \beta \\ \alpha + \beta \end{pmatrix}, \gamma = \begin{pmatrix} \alpha$$

$$=(a_1+b_1)c_1+\cdots+(a_n+b_n)c_n$$

线性组合的内

积等于内积的 $+a_nc_n+b_1c_1+\cdots+b_nc_n$

线性组合 $[\alpha,\gamma]+[\beta,\gamma]$

1、长度的概念

令
$$\|\alpha\| = \sqrt{[\alpha,\alpha]} = \sqrt{a_1^2 + a_2^2 + \cdots + a_n^2}$$
 为 n 维向量 α

的长度(模或范数).

例如:向量(3,4)的长度为5.

特别地,长度为1的向量称为单位向量.

2、向量长度的性质

(1) 正定性:
$$\|\alpha\| \ge 0; \exists \alpha = 0 \Leftrightarrow \|\alpha\| = 0;$$

(2) 齐次性:
$$||k\alpha|| = |k| \cdot ||\alpha||;$$

(3) 三角不等式:
$$\|\alpha + \beta\| \le \|\alpha\| + \|\beta\|$$
;

(4) 柯西一施瓦兹(Cauchy -Schwarz)不等式:

$$\left[\alpha,\beta\right]^{2} \leq \left\|\alpha\right\|^{2} \left\|\beta\right\|^{2}, \, \left\|\left[\alpha,\beta\right]^{2} \leq \left[\alpha,\alpha\right] \left[\beta,\beta\right]$$

当且仅当α与β的线性相关时,等号成立.

注①当
$$\alpha \neq 0$$
时, $\alpha' = \frac{1}{|\alpha|}\alpha$ 是 α 的单位向量.

②由非零向量 α 得到单位向量 $\alpha'' = \frac{1}{|\alpha|}\alpha$ 的过程 称为把 α 单位化.

3、向量之间的夹角

设 α 与 β 为n维空间的两个非零向量, α 与 β 的夹角的余弦为 $\cos\theta = \frac{[\alpha,\beta]}{\|\alpha\|\|\beta\|}$,因此 α 与 β 的夹角为

$$\theta = \arccos \frac{\lfloor \alpha, \beta \rfloor}{\|\alpha\| \|\beta\|}, \quad 0 \le \theta \le \pi.$$

向量的正文化

1、向量正交的定义

当
$$[\alpha,\beta]=0$$
,称 α 与 β 正交.

注 ① 若 $\alpha = 0$,则 α 与任何向量都正交.

- ② $\alpha \perp \alpha \Leftrightarrow \alpha = 0$.
- ③ 对于非零向量 α 与 β , $\alpha \perp \beta \Leftrightarrow \angle(\alpha,\beta) = \frac{n}{2}$.
- 2、正交向量组

若向量组中的向量两两正交,且均为非零向量,则 这个向量组称为正交向量组,简称正交组.

解 记
$$A = \begin{pmatrix} \alpha_1^T \\ \alpha_2^T \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & -2 & 1 \end{pmatrix}, \alpha_3$$
应满足外,没线阻力程组入2—0,
$$p \begin{pmatrix} 1 & 1 & 1 \\ 1 & -2 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \quad$$
基础解系为
$$\begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}, \quad$$
取
$$\alpha_3 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \alpha_2 = \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}, \alpha_3 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$$
两两正交.

定理1 若n维向量 $\alpha_1, \alpha_2, \cdots, \alpha_r$ 是一组两两正交的非零向量,则 $\alpha_1, \alpha_2, \cdots, \alpha_r$ 线性无关.

证 设有 $\lambda_1, \lambda_2, \cdots, \lambda_r$ 使 $\lambda_1 \alpha_1 + \lambda_2 \alpha_2 + \cdots + \lambda_r \alpha_r = 0$,以 α_1 与上式两端作内积,

$$\lambda_1[\alpha_1,\alpha_1] \pm \emptyset_2[\alpha_1,\alpha_2] + \cdots + \lambda_r[\alpha_1,\alpha_r] = 0,$$

因 $\alpha_1 \neq 0$,故 $[\alpha_1,\alpha_1] = ||\alpha_0||^2 \neq 0$,从而必有 $0_1 = 0$,

类似可证 $\lambda_2=0,\cdots,\lambda_r=0$. 向量组 $\alpha_1,\alpha_2,\cdots,\alpha_r$ 线性无关.

3、规范正交组

由单位向量组成的正交组称为规范正交组.

例如,
$$e_{1} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, e_{2} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, e_{3} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

就是一个规范正交组.

4、正交基

若正交向量组 $\alpha_1,\alpha_2,...,\alpha_r$ 为向量空间V上的一个基,则称 $\alpha_1,\alpha_2,...,\alpha_r$ 为向量空间V上的一个正交基.

5、规范正交基

若规范正交组 51,52,…,5,为向量空间 1/上的一个基,

则称51,52,…,5,为向量空间V上的一个规范正交基.

例如,
$$e_{1} = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \\ 0 \\ 0 \end{pmatrix}, e_{2} = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \\ 0 \\ 0 \end{pmatrix}, e_{3} = \begin{pmatrix} 0 \\ 0 \\ \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix}, e_{4} = \begin{pmatrix} 0 \\ 0 \\ \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix}$$

就是 R^4 的一个规范正交基.

谢 谢!