

Fig. 4 – Bos & Wallinga (2012)

u

Fig. 4 – Bos & Wallinga (2012)

Fig. 4 – Bos & Wallinga (2012)

Histogram

Histogram

Χ

LxTxData\$Dose

RLum.Data.Image

OSL (UVVIS)

RLum.Data.Spectrum

IR-RF $D_e = 623.25 [600.63; 635.8]$ RF_nat + RF_reg 2.0e+03 IR-RF [cts/1.3 s] 1.8e + 031.6e + 031.4e+03Ш 100 200 300 400 500 600 700 0

Time [s]

IR-RF $D_e = 610.17 [567.19; 653.15]$ RF_nat + RF_reg 2.0e+03 IR-RF [cts/1.3 s] 1.6e + 031.4e+03Ш 610.17 600 0 100 200 300 400 500 700 Time [s]

Growth curve

 $D_e = 1668.25 \pm 49.22$ | fit: EXP

Growth curve

 $D_e = 406.61 \pm 48.44$ | fit: EXP

TL pseudoIRSL1 pseudoIRSL2

T [°C]

help("analyse_pIRIRSequence")

T [°C]

D_e from MC simulation

Test dose response

Pseudo pIRIR data set based on quartz OSL

Pseudo pIRIR data set based on quartz OSL

 $D_e = 1668.25 \pm 47.59$ | fit: EXP

$\ensuremath{D_{e}}$ from MC simulation

Summarised Dose Response Curves

Sensitivity change

Rejection criteria

OSL

OSL

OSL

Monte Carlo Simulation

$$n = 100 \mid \hat{\mu} = 43 \mid \hat{\sigma} = 20 \mid \frac{\hat{\sigma}}{\sqrt{n}} = 2 \mid v = 0.73$$

Profile log likelihood for σ_{OD}

Fast Ratio

Fuchs & Lang (2001)

Likelihood profile: gamma

Likelihood profile: p0

Likelihood profile: sigma

Likelihood profile: gamma

Likelihood profile: p0

Likelihood profile: sigma

Likelihood profile: gamma

Likelihood profile: p0

Likelihood profile: sigma

3-parameter Minimum Age Model

Standardised estimate

Source Dose Rate Prediction

help("calc_SourceDoseRate")

D_e distribution

Thermal Lifetime Contour Plot

Thermal Lifetime Density Plot

gSGC and resulting De

Background

D_e distribution

Standardised estimate

Profile log likelihood for σ_{OD}

TL (UVVIS)

help("merge_RLum.Data.Curve")

TL (UVVIS)

TL (UVVIS)

Profile log likelihood for σ_{OD}

Profile log likelihood for σ_{OD}

 D_{e} distribution

 D_{e} distribution

n = 62 | in 2 sigma = 41.9 %

D_{e} distribution

n = 62 | in 2 sigma = 54.8 %

n = 62 | in 2 sigma = 41.9 %

D_{e} distribution

n = 62 | in 2 sigma = 41.9 %

D_{e} distribution

Scatter

2 0 -2

Standardised estimate

 \triangle

| n = 5 | weighted mean = 1.01 | | n = 5 | weighted mean = 1 | +10 % Normalised D_e 1.0 -10% 0.8 2 3 5 6 1

Aliquot

Dose recovery test

Preheat temperature [°C]

Preheat temperature [°C]

Preheat temperature [°C]

Filter Combination

Filter Combination

Growth curve

Growth curve

Dose [s]

n = 100, valid fits = 100

Growth curve

$\ensuremath{D_{e}}$ from MC simulation

 $D_{e_{MC}} = 1745.42 \pm 64.53 \mid quality = 99.6 \%$

help("plot_GrowthCurve")

Dose [s] n = 100, valid fits = 100

Test dose response

Histogram

Histogram of De-values

Example data set

Dose distribution

NR(t) Plot

NR(t) Plot

help("plot_NRt")

TnTx(t) Plot

TL combined

unkown curve type

RLum.Data.Image

RLum.Data.Spectrum

help("plot_RLum.Data.Spectrum")

RLum.Data.Spectrum

RLum.Data.Spectrum

unkown curve type

0.0

0.1

0.2

p0

0.3

0.4

Monte Carlo Simulation

$$n = 100 \mid \hat{\mu} = 45 \mid \hat{\sigma} = 21 \mid \frac{\hat{\sigma}}{\sqrt{n}} = 2 \mid v = 0.84$$

Precision

Precision

Precision

Data precision

D_e distribution

Density

OSL

D_e distribution

Standardised estimate

