《基础泛函分析》第十一周作业

- 1. 设p为赋范空间X上的次线性泛函,满足p(0) = 0,且在0处连续,求证:p为连续映射. 解:任意 $x \in X$,任意 $\epsilon > 0$,由于p在0处连续,故存在 $\delta > 0$,使得任意 $x' \in B(0,\delta)$,有 $|p(x') p(0)| = |p(x')| < \epsilon$. 从而对任意 $x'' \in B(x,\delta)$,若 $p(x'') \ge p(x')$,则 $0 \ge p(x') p(x'') \ge p(x' x'') > -\epsilon$,若p(x'') < p(x'),则 $0 > p(x'') p(x'') \ge p(x'' x'') > -\epsilon$,故总有 $|p(x') p(x'')| < \epsilon$. 因此p为连续映射.
- 2. 设 $a_1, a_2 \in \mathbb{R}$ 固定,考虑 \mathbb{R}^3 的线性子空间

$$Z = \{(x_1, x_2, x_3) \in \mathbb{R}^3 : x_3 = 0\},\$$

及Z上的线性泛函 $f(x_1, x_2, x_3) = a_1x_1 + a_2x_2$. 求出所有f到 \mathbb{R}^3 上的线性延拓及相应线性泛函的范数.

解:由于{(1,0,0),(0,1,0),(0,0,1)}是ℝ³的一组完全标准正交基,因此所有f到ℝ³上的线性延拓 \bar{f} 可写成 \bar{f} (x_1,x_2,x_3) = $b_1x_1+b_2x_2+b_3x_3$.由于 $\bar{f}\big|_Z=f$,故 $b_1=a_1$, $b_2=a_2$.因此所有f到ℝ³上的线性延拓 \bar{f} 的集合为{ \bar{f} : \bar{f} (x_1,x_2,x_3) = $a_1x_1+a_2x_2+b_3x_3$, $b_3\in \mathbb{R}$ }.令 $C=\sqrt{a_1^2+a_2^2+b_3^2}$,下证泛函 \bar{f} (x_1,x_2,x_3) = $a_1x_1+a_2x_2+b_3x_3$ 的范数为C.由 Cauchy 不等式可得任意(x_1,x_2,x_3) ∈ \mathbb{R}^3 ,、 $\sqrt{a_1^2x_1^2+a_2^2x_2^2+b_3^2x_3^2}$ ≤ $\sqrt{a_1^2+a_2^2+b_3^2}\sqrt{x_1^2+x_2^2+x_3^2}=C\|(x_1,x_2,x_3)\|$. 取 (x_1,x_2,x_3) = (a_1,a_2,a_3) 时有 $\|\bar{f}(x_1,x_2,x_3)\|=C\|(x_1,x_2,x_3)\|$,从而说明了 \bar{f} 的范数为 $C=\sqrt{a_1^2+a_2^2+b_3^2}$.

3. 设X为可分赋范空间,求证:存在X'单位球面的可数子集N,使得任取 $x \in X$,有 $\|x\| = \sup_{f \in N} |f(x)|$.

解:由于X为可分赋范空间,故存在X的可数稠密子集M.任意 $x_n \in M$,由定理 4.1.4 (Hahn-Banach),存在 $f_n \in X'$, $\|f\| = 1$ 且 $f(x_n) = x_n$.从而 $N = \{f_n\}$ 为X'单位球面的至多可数子集.下证N满足任取 $x \in X$,有 $\|x\| = \sup_{f \in N} |f(x)|$.任取 $x \in X$,由于任取 $f \in N$ 有

 $|f(x)| \le \|f\| \|x\| = \|x\|$,故 $\|x\| \ge \sup_{f \in N} |f(x)|$.若 $\sup_{f \in N} |f(x)| = \|x\| - \epsilon$, $\epsilon > 0$,由于M在

X中稠密,故存在 $x_n \in X$ 使得 $\|x-x_n\| < \frac{\epsilon}{3}$,从而 $\|x\| - |f_n(x)| = \|x\| - |f_n(x-x_n)|$

 $|f_n(x_n)| = ||x|| - |f_n(x - x_n) - ||x_n||| \le ||x|| - ||x_n|| + \frac{\epsilon}{3} \le \frac{2\epsilon}{3} < \epsilon \text{ , }$ 活 . 故 $||x|| = \sup_{f \in N} |f(x)|$.

部分同学只证明了 $\|x\| \ge \sup_{f \in \mathbb{N}} |f(x)|$,没有证明 $\|x\| \le \sup_{f \in \mathbb{N}} |f(x)|$. 另外需注意,题目要求

的是 $||x|| = \sup_{x \in \mathbb{N}} |f(x)|$ 对任意 $x \in X$ 成立,而不是只对某个x或M中的x成立.