

LUD-YOLO: A novel lightweight object detection network for unmanned aerial vehicle

AUTHORS

Qingsong Fan, Seifedine Kadry , Yiting Li , Muhammet Deveci, Kaiyang Zhong g ,

LUD-YOLO is a lightweight object detection algorithm for UAVs, based on YOLOv8. It incorporates dynamic sparse attention for efficient computing and is optimized for UAV small devices..

1. Motivation

- Models with better trade-off between computational cost, inference time and accuracy are necessary for UAVs
- Two-Staged Object Detection models have very accurate results but with low inference speed
- One-Staged Object Detection models have show good detection results with better performance but are still large models for the UAVs design domain

3. Contributions

3.1. Improvements in feature fusion

YOLOv8 feature fusion: combines multi-scale features, but...

- Feature degradation (low-level feature dilution)
- Combines information only from adjacent feature levels

Solution proposal:

- Use of **Asymptotic Feature Pyramid Network (AFPN)** in YOLOv8 for progressive distinct-level feature interaction, improving FPN-PAN limitations
- Faster inference by one-step C2-C4 adjustment yields **ASFF3 module**

3.2. Improvements in feature extraction

Convolution only operates on local information

Proposal:

- **BiLevel Routing Attention** combines local information by convolutions and global information by self-attention, adapting the C2f of YOLOv8 → **C2f-BRA**
- Image is divided into regions and attention computed only with important regions.
- Extract better features.

3.3. Lightweight adjustment of the LUD-YOLO

Crucial factors on models executed on UAVs:

- Size of the model (disk memory)
- Memory occupied on runtime
- Convolutions are memory-expensive operations!
- Amount of calculations

Solution proposal: Network Slimming adaptation:

- Adding L1 regularization constraints
- Acquiring sensitivity
- Pruning convolution channels that do not meet the threshold
- Fine-tuning the model to compensate for accuracy loss

4. Experiments-VisDrone2019 Dataset

To evaluate the models VisDrone2019 and UAVDT datasets are used:

- 6000 videos and 25000 images.
- Target categories: pedestrians, bicycles, motorcycles...
- Labels: object bounding boxes, object categories...
- Class unbalance
 Data a

Data augmentation

4.1 Comparisons

Results of the LUDY-N ablation experiment.

Data	AFPN	Biform	Pruning	P	R	mAP	FPS	Parameters/million	Model size/MB
Val	×	×	×	0.412	0.325	0.315	205	3.008	6.082
	\checkmark	×	×	0.458	0.344	0.348	171	3.491	7.090
	×	\checkmark	×	0.427	0.322	0.319	218	2.552	5.183
	\checkmark		×	0.471	0.349	0.353	180	3.035	6.191
			\checkmark	0.470	0.347	0.352	218	2.812	5.560
Test	×	×	×	0.365	0.286	0.257	218	3.008	6.082
	\checkmark	×	×	0.396	0.302	0.281	197	3.491	7.090
	×	\checkmark	×	0.382	0.285	0.256	257	2.552	5.183
	\checkmark		×	0.401	0.305	0.281	199	3.035	6.191
			\checkmark	0.401	0.303	0.279	263	2.812	5.560
Results o	f the LUDY-S	ablation expe	riment.						
Results of Data	f the LUDY-S AFPN	ablation expe	riment. Pruning	P	R	mAP	FPS	Parameters/million	Model size/MB
				P 0.504	R 0.373	mAP 0.381	FPS 186	Parameters/million 11.129	Model size/MB
Data	AFPN	Biform	Pruning						
Data	AFPN ×	Biform ×	Pruning ×	0.504	0.373	0.381	186	11.129	22.203
Data	AFPN × √	Biform × ×	Pruning × ×	0.504 0.535	0.373 0.411	0.381 0.422	186 173	11.129 13.048	22.203 25.789
Data	AFPN × √	Biform × ×	Pruning × × ×	0.504 0.535 0.507	0.373 0.411 0.373	0.381 0.422 0.384	186 173 179	11.129 13.048 9.301	22.203 25.789 18.389
Data	AFPN × √	Biform × ×	Pruning × × ×	0.504 0.535 0.507 0.531	0.373 0.411 0.373 0.413	0.381 0.422 0.384 0.424	186 173 179 164	11.129 13.048 9.301 11.209	22.203 25.789 18.389 22.204
Data Val	AFPN	Biform × × √ √ √	Pruning × × × × √	0.504 0.535 0.507 0.531 0.525	0.373 0.411 0.373 0.413 0.408	0.381 0.422 0.384 0.424 0.417	186 173 179 164 194	11.129 13.048 9.301 11.209 10.339	22.203 25.789 18.389 22.204 20.492
Data Val	AFPN	Biform × × √ √ × × × ×	Pruning	0.504 0.535 0.507 0.531 0.525 0.430	0.373 0.411 0.373 0.413 0.408 0.331	0.381 0.422 0.384 0.424 0.417 0.309	186 173 179 164 194 209	11.129 13.048 9.301 11.209 10.339 11.129	22.203 25.789 18.389 22.204 20.492 22.203
Data Val	AFPN	Biform × × √ √ × × × ×	Pruning	0.504 0.535 0.507 0.531 0.525 0.430 0.471	0.373 0.411 0.373 0.413 0.408 0.331 0.352	0.381 0.422 0.384 0.424 0.417 0.309 0.339	186 173 179 164 194 209 193	11.129 13.048 9.301 11.209 10.339 11.129 13.048	22.203 25.789 18.389 22.204 20.492 22.203 25.789

\checkmark \checkmark	\checkmark	0.464	0.343	0.333 213	10.339	20.492
Model	P	R	mAP(50:95)	FPS	Parameters/million	Model size/ME
YOLOv8-s	0.978	0.975	0.831	238.00	11.127	21.968
YOLOv8-n	0.971	0.963	0.773	278.00	3.011	6.079
YOLOv7tiny-silu	0.961	0.960	0.709	263.00	6.012	11.974
YOLOv7tiny-mobilevit-odconv	0.945	0.886	0.639	208.00	8.572	17.072
YOLOv5-MobileNetv3	0.964	0.963	0.728	257.00	3.553	7.431
YOLOv5n-Bifpn	0.969	0.964	0.768	268.00	2.513	5.203
YOLOXs	0.960	0.952	0.710	55.00	8.928	35.172
MobileNetv3-SSD	0.933	0.875	0.613	156.00	3.926	15.680
LUDY-N	0.971	0.974	0.809	277.00	3.262	5.313
LUDY-S	0.981	0.982	0.862	251.00	9.716	19.210

5. Conclusions

- High detection accuracy under the premise of real-time detection
- Number of parameters and model size greatly reduced compared with benchmark model

6. Future work

Only usable on high-quiality labeled data scenarios

7. Ackowledgments

This paper was published by Elsevier Inc. This is an open access article under the CC BY license, 16 August 2024, State Key Laboratory of Intelligent Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.