Présentation du phénomène de diffraction

Chapitre 3,2,1

Optique géométrique

- Lois tout d'abord expérimentales
 - Propagation rectiligne de la lumière dans les milieux homogènes
 - Les rayons lumineux se propagent indépendamment les uns des autres (ils peuvent se croiser sans se perturber)
 - Lois de la réflexion
 - Lois de la réfraction

Une conséquence : phénomène d'ombre portée

Animation à utiliser pour ce chapitre

Lien vers l'animation

Que se passe-t-il lorsqu'on essaie de restreindre l'extension spatiale d'une onde ?

- * On interpose sur le trajet d'une onde un écran opaque possédant une ouverture de dimension a.
- * Au delà de l'ouverture :
 - La propagation de l'onde est légèrement perturbée mais suit globalement les lois de l'optique géométrique : l'onde « occupe » sur l'écran une zone de dimension identique à celle de l'ouverture.

Remarque : $a \gg \lambda$

Que se passe-t-il lorsqu'on essaie de restreindre l'extension spatiale d'une onde?

- * On diminue la dimension de l'ouverture a.
- * Au delà de l'ouverture :
 - La propagation de l'onde ne suit plus les lois de l'optique géométrique.
 - Des zones où l'élongation de l'onde est nulle apparaissent.
 - Sur l'écran, une zone centrale (en rouge)
 de dimension bien supérieure à a reçoit
 l'onde.

Remarque: a est de l'ordre de grandeur de λ .

Diffraction d'une onde

Le **phénomène de diffraction** intervient chaque fois qu'une onde (mécanique, électromagnétique, etc.) **rencontre une ouverture ou un obstacle**.

On parle de **diffraction** d'une onde chaque fois que l'on trouve cette onde dans des zones de l'espace non prévues par les lois de l'optique géométrique.

Le phénomène de diffraction, **toujours présent dans l'absolu**, devient particulièrement important lorsque les dimensions de l'ouverture ou de l'obstacle sont de l'**ordre de grandeur de la longueur d'onde** de l'onde.

Diffraction d'une onde

Dans le *cas de la lumière*, le phénomène de diffraction devient très visible à partir de dimensions pour l'ouverture ou pour l'obstacle d'ordre de grandeur égal à 100 fois la longueur d'onde de l'onde.

On démontre que l'ordre de grandeur de l'ouverture angulaire est :

En radian!

Le phénomène de diffraction dépend de la longueur d'onde

Diffraction en optique : montage de base

Géométrie du montage :
$$tan\theta = \frac{L/2}{D} \approx \theta$$
Phénomène de diffraction : $\theta \approx \frac{\lambda}{a}$

$$\frac{L/2}{D} = \frac{\lambda}{a}$$

 θ en radian !

Diffraction en optique : fente fine

Diffraction en optique : cheveu

Diffraction en optique : fente

Diffraction en optique : disque

Diffraction dans la nature

