Supporting information for: Adsorption behavior of organic molecules: a study of benzotriazole on Cu(111) with spectroscopic and theoretical methods

Chiara Gattinoni¹, Panayiotis Tsaousis², Chanan Euaruksakul^{2,3}, Rachel Price², David A. Duncan³, Tod Pascal⁴, David Prendergast⁴, Georg Held^{2,3}, and Angelos Michaelides¹

¹Thomas Young Centre, London Centre for Nanotechnology and Department of Physics and Astronomy, University College London, Gower Street, WC1E 6BT, UK

²Department of Chemistry, University of Reading, Reading RG6 6AD, UK

³Diamond Light Source Harwell Science and Innovation Campus, Didcot OX11 0QX, UK

⁴Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

E-mail: g.held@reading.ac.uk, angelos.michaelides@ucl.ac.uk

Pages 32 Tables 1 Figures 7

S1 Formation energy of the adsorbed systems

The complete set of candidate structures considered for this work is shown in Fig. S1. In order to

Figure S1: Summary of the benzotriazole structures considered in this work. Cu atoms are copper colored, N blue, C cyan H white. Cu adatoms are in gray. Relevant bond lengths between benzotriazole molecules and the substrate are also shown.

"rank" them in terms of stability, the cost of dissociation into BTA and H and of the formation of copper adatoms needs to be taken into account. We thus use the definition of adsorption energy given in the main manuscript which considers these energy costs:

$$E_{\text{ads}}^{\alpha} = E_{\text{system}} - N_{\text{BTAH}} E_{\text{BTAH}} - E_{\text{slab}} - \alpha \Delta N_{\text{Cu}} g_{\text{Cu}}, \tag{S1}$$

where $E_{\rm system}$ is the total energy of $N_{\rm BTAH}$ adsorbed benzotriazole molecules, dissociated or not, on Cu(111). For the deprotonated case, BTA and H are co-adsorbed on the surface. $E_{\rm BTAH}$ is the total energy of BTAH in the gas phase. $\Delta N_{\rm Cu}$ is the number of copper adatoms, $g_{\rm Cu}$ their formation energy and $E_{\rm slab}$ the total energy of the Cu(111) slab. Considering that some adatoms might already be present on the surface, a prefactor α , ranging from 0 to 1 has been added to $\Delta N_{\rm Cu}$, where 0 signifies that all adatoms are already available on the surface and 1 that all adatoms are extracted from the bulk. The experimental reality is likely to lie in between these endpoint values. The adsorption energies are reported in Table S1 for all structures in Fig. S1. They show that structures formed by intact BTAH are less favorable than many dissociated structures, although the energy barrier which could be an obstacle to dissociation is not included here.

Structure	$E_{\mathrm{ads}}^{\alpha=0}$	$P(\alpha = 0)$	$E_{\mathrm{ads}}^{\alpha=1}$	$P(\alpha = 1)$
50% Coverage				
BTAH Chains (a)	-1.46	0.0	-1.46	0.0
BTA Monomers (d)	-2.42	0.0	-0.69	0.0
BTA-Cu _{ad} Monomer (e)	-2.42	0.0	-0.69	0.0
Cu _{ad} -BTA-Cu _{ad} Monomer (f)	-2.42	97.7	-0.69	0.0
BTA Chains (g)	-2.31	2.2	-1.45	0.3
BTA Dimers (h)	-2.02	0.0	-1.59	99.6
100% Coverage				
BTAH Dimer (b)	-1.24	0.0	-1.24	0.0
BTAH Monomer (c)	-1.24	0.0	-1.24	0.0
BTA Dimers (h)	-2.02	100.0	-1.42	1.7
BTA Chains (i)	-2.36	1.7	-1.15	98.3

Table S1: Formation energies for the structures considered in this study and shown in Fig. 2. The energies, in eV, are calculated using Eq. S1. The Boltzman probability P at 300 K is also reported.

In order to establish which are the most prevalent dissociated structures at room temperature the Boltzman probability is obtained for $\alpha=0,1$. The results are shown in Table S1. The Cu_{ad}-BTA-Cu_{ad} monomer (simply referred to as Monomer subsequently and in the main manuscript), chain and dimer structures are the only ones which are competitive at this temperature.

For these three structures, the probability for α varying between 0 and 1 is shown in Fig. S2. It shows that three regimes are to be expected for low coverage of BTA (top graph, Fig. S2): one where the dominant structures are the monomers stabilized by two Cu_{ad}s (Fig. S1f), one where the low coverage chains of Fig. S1g are favorable and a third where dimers chains are observed (Fig. S1h). Similarly, for high coverage two regimes are possible (bottom graph, Fig. S2): for values of α up to ~ 0.8 closely packed chains (Fig. S1i) are expected to be the dominant feature, while for higher values dimers are predicted.

Figure S2: Boltzmann probability at 300 K as a function of the factor α in Eq. S1, representing the number of adatoms which are extracted from the bulk. The following structures are considered: at low coverage (top) the monomer (Fig. 2a), chain (Fig. 2b) and dimer (Fig. 2c, at high coverage (bottom) the chain (Fig. 2d) and dimer (Fig. 2c).

S2 NEXAFS C K-edge spectra

The π^* resonance leads to two strong peaks in all the model C K-edge spectra, as shown in Fig. S3. Most structures give the highest intensity for almost normal incidence ($\theta = 87^{\circ}$), reflecting the upright position of the molecules with respect to the surface. An exception are the low coverage chains of BTA (Fig. S3b) and of BTAH (Fig. S3e), where some or all of the molecules are lying flat on the Cu(111). The σ^* resonance is instead characterized by a broad feature with one main peak, and multiple smaller peaks. Conversely to the π^* feature, it has the highest intensity for grazing incident angles for all structures except the low coverage chains.

Figure S3: Simulated C K-edge NEXAFS spectra for the structures considered in this work, shown on the right. a) low coverage BTA monomer stabilized by two Cu_{ad}; b) low coverage BTA chains $(\frac{1}{10} \text{ ML})$; c) high coverage BTA chains $(\frac{1}{5} \text{ ML})$. d) BTA Dimers $(\frac{1}{7} \text{ ML} \text{ for low coverage}, \frac{1}{4} \text{ ML} \text{ for high coverage})$. e) low coverage BTAH $(\frac{1}{16} \text{ ML})$ f) high coverage BTAH dimers $(\frac{1}{4} \text{ ML})$ g) high coverage BTAH monomers $(\frac{1}{4} \text{ ML})$ The dark brown atoms shown on top of the Cu(111) surface (depicted in light brown) are copper adatoms. The NEXAFS spectra have been calculated for $\theta = 17, 42, 67, 87^{\circ}$, where θ is the angle between the polarization and the normal to the surface.

S3 Mixed Dimer-Chain NEXAFS

Figure S4: N K-edge calculated spectra corresponding to mixed low coverage chains (Fig. 2b) and dimer (Fig. 2c) structures.

Figure S5: C K-edge calculated spectra corresponding to mixed low coverage chains (Fig. 2b) and dimer (Fig. 2c) structures.

S4 Mixed Dimer-Chain XPS

Figure S6: Calculated XPS spectra for the deprotonated low coverage chains (green), high coverage dimers (blue) and a 30% chains-70% dimers mixture (red).

S5 NIXSW

The normal incidence X-ray standing wave (NIXSW) technique exploits the standing wavefield resulting from the coherent interference of incident and reflected beams at the Bragg condition. As the incident photon energy is scanned over the Darwin reflectivity curve the variation in the wavelength of the incident and reflected light results in a comparable variation in the wavelength of the standing wavefield. This results in the antinodes of the standing wavefield moving from half way between the scattering planes to lying on the scattering planes. Thus, as the standing wavefield will extend beyond the surface of the crystal in which it was generated, any adsorbate that lies above the surface will experience a variation in the amplitude of the standing wavefield as a function of the photon energy. This variation in amplitude will result in a modulation of the photoemission intensity that is indicative of the average position of the adsorbate between the projected scattering planes (coherent position) and the fraction of atoms that occupy that position (coherent fraction). If the scattering plane coincides with the surface plane, then the coherent position will be equivalent to the height of the adsorbate above the surface of the crystal, assuming that relaxation of the atoms in the outermost substrate layers can be neglected.

Figure S7: Example of peak fitting of the NIXSW data.

The measurements were performed at beam line I09 at Diamond Light Source in the same endstation that was used for XPS and NEXAFS. The intensity and width of the (111) Bragg reflection of Cu (≈ 2970 eV at 300 K) was acquired from a fluorescent screen mounted onto the port through which the incident photons entered. This Darwin reflectivity curve had a full width half maximum of 0.82 eV. It is as a measure of the energy broadening due to imperfections in the monochromator (Si(111) double-crystal) and the mosaicity of the single crystal substrate (about 0.7° in this case) and was incorporated in the data analysis through convolution with a Gaussian of the same width. The relative X-ray absorption of the N atoms was monitored through the integrated intensity of the N 1s photoemission peaks. Photoemission spectra were acquired using a VG Scienta EW4000 HAXPES hemispherical electron analyser with an angular acceptance range of $\pm 30^{\circ}$, which was orientated such that there was an angle of 90° between the incident photon beam and the centre of the analyser in the plane of the photon polarisation. The N 1s photoemission spectra were acquired in fixed energy mode with a pass energy of 500 eV. A calibration curve was generated by dividing a fixed energy mode scan by a swept energy mode scan with the same step size and comparable acquisition time acquired over an area of the XP spectrum that was comparably flat. This calibration curve was used to normalise the N 1s photoemission spectra, which were then fitted with a linear background and

four Gaussian peaks corresponding to the two chemically distinct N species in the adsorbed molecule and two satellite features at higher binding energy (see Fig. S7). Note that the binding energy axis in Figure S7 is not calibrated. Therefore the energies differ from those stated in the main text.

Non-dipolar effects, due to the angular dependence of the photoemission, were modelled using theoretically calculated values, specifically with a backward-forward asymmetry parameter, Q, of 0.115 (assuming $\Theta=18^{\circ}$ as defined in Ref. ?) and fitted to the energy dependence of the two peak intensities.

The N 1s NIXSW measurements were repeated five times on different spots on the sample and the absorption profiles fitted separately to produce average values for the coherent fraction and coherent position, and the associated random uncertainty (standard error at 2σ). Figure 8 of the main article shows average absorption profiles and fits.

S6 Summary of benzotriazole structures

In the following, .xyz files of the most relevant adsorbed benzotriazole structures, shown in Fig. S1 are shown.

S6.1 Chains BTAH

156

btah_chains

- H -3.5151177649999994 -0.9229860749999999 10.049382869999999
- H -6.2425027349999995 0.3384915350000002 9.86405208
- H -8.645820725 -0.3878777649999998 9.69250689
- H -9.265960385 -2.7811510349999997 9.684365239999998
- H -7.5221573049999995 -4.576547355 9.8423133
- H -3.903950804999999 3.4915630649999994 10.031097840000001
- H -1.163558974999999 4.737901075 9.820406429999998
- H 1.2338465750000012 3.9935395650000007 9.65481304
- H 1.8395951950000011 1.596354925 9.67164924
- H 0.08274946500000091 -0.18626109499999988 9.841499129999999
- C -5.561945454999999 -1.7352291049999997 9.94499351
- C -6.526620124999999 -0.7166784249999996 9.851463469999999
- C -7.850568314999999 -1.1371009349999999 9.75550243
- C -8.207150465 -2.512367255 9.752812549999998
- C -7.249729264999999 -3.517062125 9.841618879999999
- C -5.906440565 -3.108378355 9.93868526
- C -1.8592517749999988 2.669228275 9.91955952
- C -0.8871888849999987 3.6806137749999994 9.81430344
- C 0.4339353250000002 3.250203185 9.72289021
- C 0.7825052150000005 1.8722108950000003 9.73318922
- C -0.18157585500000017 0.8751355949999997 9.831003200000001
- C -1.5223240849999993 1.2942641149999998 9.924324819999999
- \mathbb{N} -4.200123994999999 -1.7344595649999999 10.045616769999999
- N -4.738379555 -3.830551945 10.032245249999999
- N -3.727177384999999 -2.988601695 10.09001074
- N -3.2207540949999993 2.678788245 10.02439888
- \mathbb{N} -2.6935890549999995 0.5801015850000004 10.030016790000001
- N -3.7001119549999997 1.4271607150000003 10.0838921
- Cu -10.187597055 3.5850820750000008 0.609989259999999
- Cu -7.6406212049999995 3.5850820750000008 0.609989259999999
- Cu -5.093645355 3.5850820750000008 0.609989259999999
- Cu -2.5466695049999997 3.5850820750000008 0.609989259999999
- Cu 0.0003063450000002632 3.5850820750000008 0.609989259999999
- Cu 2.5472821850000003 3.5850820750000008 0.609989259999999
- Cu 5.094258035000001 3.5850820750000008 0.609989259999999
- Cu 7.641233885 3.5850820750000008 0.609989259999999
- Cu -8.914109135 -3.032155285 0.609989259999999
- Cu -6.3671332849999995 -3.032155285 0.609989259999999
- Cu -3.8201574349999996 -3.032155285 0.609989259999999
- Cu -1.2731815849999997 -3.032155285 0.609989259999999
- Cu 1.2737942650000011 -3.032155285 0.609989259999999
- Cu 3.820770115 -3.032155285 0.609989259999999

- Cu 6.367745964999999 -3.032155285 0.609989259999999
- Cu 8.914721815000002 -3.032155285 0.609989259999999
- Cu -10.187597055 -0.826409495 0.609989259999999
- Cu -7.6406212049999995 -0.826409495 0.609989259999999
- Cu -5.093645355 -0.826409495 0.609989259999999
- Cu -2.5466695049999997 -0.826409495 0.609989259999999
- Cu 0.0003063450000002632 -0.826409495 0.609989259999999
- Cu 2.5472821850000003 -0.826409495 0.609989259999999
- Cu 5.094258035000001 -0.826409495 0.609989259999999
- Cu 7.641233885 -0.826409495 0.609989259999999
- Cu -8.914109135 1.379336285 0.609989259999999
- Cu -6.3671332849999995 1.379336285 0.609989259999999
- Cu -3.8201574349999996 1.379336285 0.609989259999999
- Cu -1.2731815849999997 1.379336285 0.609989259999999
- Cu 1.2737942650000011 1.379336285 0.609989259999999
- Cu 3.820770115 1.379336285 0.609989259999999
- Cu 6.367745964999999 1.379336285 0.609989259999999
- Cu 8.914721815000002 1.379336285 0.609989259999999
- Cu -8.913636044999999 -4.501628845 2.6661893899999995
- Cu -6.367767754999999 -4.503757845 2.664793079999999
- Cu -3.8179306849999994 -4.503991275 2.663089079999999
- Cu -1.2700564749999987 -4.503169915 2.667477589999999
- Cu 1.2731126350000004 -4.501487175 2.6707038700000005
- Cu 3.8188109150000003 -4.497704335 2.6673788399999996
- Cu 6.366207425000001 -4.498740235 2.6660641199999997
- Cu 8.915470565000001 -4.500133885 2.668098989999999
- Cu -10.186102895 -2.294478795 2.66816047
- Cu -7.641759875 -2.296581985 2.66623098
- Cu -5.096517444999999 -2.2974623149999998 2.666689009999999
- Cu -2.5464882049999993 -2.297190365 2.665177569999999
- Cu 0.0010449650000001753 -2.297445545 2.670560179999999
- Cu 2.5477411750000005 -2.293405625 2.6683746599999996
- Cu 5.093418415 -2.292277555 2.6668147599999994
- Cu 7.640813515 -2.293806875 2.665216579999999
- Cu -8.913571265 -0.09020004499999956 2.6699686200000006
- Cu -6.369952914999999 -0.09257760499999979 2.6682063300000003
- Cu -3.8220861149999994 -0.09246979499999952 2.6633752800000003
- Cu -1.2722021049999999 -0.0912005950000001 2.66570323
- Cu 1.273128175 -0.08904828499999962 2.6668901199999997
- Cu 3.8188291550000013 -0.08786817499999966 2.6689328299999993
- Cu 6.368578404999999 -0.0875215650000003 2.6657018800000003
- Cu 8.916167415000002 -0.0868009949999994 2.666851079999999
- Cu 10.187235375000002 2.117395655 2.6677733000000003
- Cu -7.641150625 2.1133388250000005 2.66999122
- Cu -5.0932785549999995 2.113172915 2.6654109199999994
- Cu -2.543146834999999 2.114413485 2.66654765
- Cu 0.001897745000000839 2.115560455 2.666481789999999
- Cu 2.5448078250000012 2.117686355 2.6692354399999996
- Cu 5.093472565000001 2.1180545349999997 2.6654748
- Cu 7.641037295000002 2.118907695 2.6666864500000003
- Cu 10.187597055 -3.769161505 4.732071979999999

- Cu -7.6428080949999995 -3.774218865 4.72838458
- Cu -5.089405244999999 -3.778450665 4.721577869999999
- Cu -2.540042024999999 -3.772421395 4.724092149999999
- Cu 0.0027099150000005068 -3.770134245 4.740060659999999
- Cu 2.547415055 -3.763893455 4.73047276
- Cu 5.093016395000001 -3.7663307049999997 4.7314969300000005
- Cu 7.638962355000002 -3.767807675 4.729582559999999
- Cu -8.912636155 -1.5634987749999998 4.73856928
- Cu -6.374835774999999 -1.568381385 4.736648539999999
- Cu -3.8229037849999994 -1.5689058249999999 4.722728009999999
- Cu -1.273728284999999 -1.5638797649999998 4.728354229999999
- Cu 1.2762055550000007 -1.5602897749999998 4.729112429999999
- Cu 3.822284335000001 -1.5612518949999998 4.73208537
- Cu 6.367378575000002 -1.5610948749999998 4.73130379
- Cu 8.912487324999999 -1.562799315 4.72638779
- Cu 10.186914655 0.6458206650000005 4.73012568
- Cu -7.643517165 0.6395125249999998 4.73922299
- Cu -5.100699355 0.637528015 4.726524019999999
- Cu -2.5526265649999997 0.6347017150000003 4.72186421
- Cu 0.0025170150000004554 0.6399759549999997 4.730598969999999
- Cu 2.5461211650000006 0.6444726450000005 4.734928009999999
- Cu 5.095858205000001 0.644027125 4.7290655600000004
- Cu 7.641470695000001 0.6444012749999999 4.73094569
- Cu -8.917607064999999 2.8485540150000004 4.72859609
- Cu -6.367240095 2.844882395 4.727930109999999
- Cu -3.818038454999999 2.841925065 4.722262709999999
- Cu -1.265197904999999 2.845752805 4.735362499999999
- Cu 1.270816765000001 2.849163815 4.74229008
- Cu 3.822040875000001 2.8497715550000002 4.726704059999999
- Cu 6.366862465000002 2.850579355 4.73140583
- Cu 8.912219434999999 2.848935505 4.731551639999999
- Cu 10.185624335000002 3.5867336749999996 6.7926746300000005
- Cu -7.641961405 3.573424255000001 6.783039240000001
- Cu -5.088823655 3.573999475000001 6.783204789999999
- Cu -2.548831774999999 3.578805525 6.770167539999999
- Cu 0.001011295000001411 3.595662675 6.811837820000001
- Cu 2.5577050050000008 3.5963346850000004 6.776474090000001
- Cu 5.095267185000001 3.5915966850000007 6.790052240000001
- Cu 7.641995645 3.5907222549999993 6.790399730000001
- Cu -8.914385164999999 -3.035159615 6.786626380000001
- Cu -6.356634404999999 -3.052117815 6.765466740000001
- Cu -3.8106285149999994 -3.042072685 6.772611229999999
- Cu -1.2737316749999987 -3.026510305 6.790839200000001
- Cu 1.2814984350000014 -3.0203586849999997 6.791833690000001
- Cu 3.8220322850000006 -3.023598695 6.794901769999999
- Cu 6.366593485000001 -3.026636895 6.789541960000001
- Cu 8.913781835 -3.0279309249999997 6.786013010000001
- Cu 10.178372295 -0.8183874150000001 6.7784029100000005
- Cu -7.6441400349999995 -0.8208841950000001 6.8082432399999995
- Cu -5.093870774999999 -0.834521735 6.774724110000001
- Cu -2.553608014999999 -0.834707415 6.783601990000001

- Cu -0.000316044999999315 -0.8347381449999998 6.78437531999999
- Cu 2.5499647350000014 -0.8232384749999997 6.79328829
- Cu 5.093055755 -0.8199908849999997 6.7912114599999995
- Cu 7.639826975 -0.8208178349999997 6.788679949999999
- Cu -8.922816395 1.386778905 6.792658499999998
- Cu -6.369793574999999 1.3814776650000002 6.791617240000001
- Cu -3.8323682749999994 1.370105185 6.7773351800000015
- Cu -1.287717485 1.3636588549999997 6.762213769999999
- Cu 1.272228085 1.3783327950000004 6.794897989999999
- Cu 3.822485015 1.385230505 6.785350099999999
- Cu 6.368453645000001 1.3847934650000004 6.789264150000001
- Cu 8.913383425000001 1.3861720450000004 6.793562699999999

S6.2 Dimer BTAH

60

btah dimer

- H 0.3899834599999994 0.032945734999999976 2.867688604999998
- H 1.1319717299999996 1.5677794050000002 5.273434484999999
- H 2.92162343 3.1658809250000006 6.032305444999999
- H 4.6697131800000005 3.9270590950000006 4.494334804999998
- H 4.754683700000001 3.1618914350000002 2.086869674999999
- H -2.3536567600000002 -2.9717231550000003 1.2191950249999977
- H -4.256254630000001 -3.8475479249999998 3.3649745650000007
- H -4.754683700000001 -3.304314625 5.783002875000001
- H -3.38882201 -1.6722445849999998 7.026516255000001
- H -1.48208734 -0.463721045 5.925154135
- C 1.989582 1.4760126850000004 3.2684635449999995
- C 1.9242669700000001 1.9073326250000002 4.601092805
- C 2.9194249099999996 2.787059535 5.0050251549999984
- C 3.923530429999999 3.231768935 4.112341444999998
- C 3.9877114199999997 2.811477215 2.7885022050000003
- C 3.0051338 1.896507705 2.3738834749999995
- C -2.59173256 -2.458735905 3.344362914999998
- C -3.66268678 -3.1328604249999996 3.9384136450000007
- C -3.9186352700000002 -2.822558815 5.266797335
- C -3.1391252 -1.877962045 5.980811344999999
- C -2.07929623 -1.2042574549999998 5.386331625
- C -1.8141454700000001 -1.5060027450000002 4.041033504999998
- N 1.227400959999999 0.610290035 2.551595374999998
- N 2.80580292 1.231394145 1.1859189850000007
- N 1.7207658000000001 0.4646936350000004 1.304043704999998
- \mathbb{N} -2.0434986100000003 -2.4879775449999997 2.097699145
- \mathbb{N} -0.8727499700000005 -1.021181895 3.1630067949999976
- ${\tt N} \ -1.0245311800000003 \ -1.619417905 \ 2.001999725000001$
- Cu -0.4133453 3.312859265 -7.026516255000001
- Cu 2.13363055 3.312859265 -7.026516255000001
- Cu -4.23380908 -3.3043780949999997 -7.026516255000001
- Cu -1.6868332300000004 -3.3043780949999997 -7.026516255000001
- Cu -2.96032115 -1.098632305 -7.026516255000001
- Cu -0.4133453 -1.098632305 -7.026516255000001
- Cu -1.6868332300000004 1.107113475 -7.026516255000001
- Cu 0.86014262 1.107113475 -7.026516255000001
- Cu 0.8640320199999993 4.038887295 -4.982134695000001
- Cu 3.41182378 4.040854525 -4.9803564850000015
- Cu -2.95955157 -2.563749595 -4.982473165
- Cu -0.4097714800000003 -2.564018625 -4.984856515000001
- Cu -1.6796641 -0.3517714150000002 -4.972471805000001
- Cu 0.8625094499999997 -0.35191520499999984 -4.959319725
- Cu -0.4078406600000002 1.8411327350000002 -4.963963385000001
- Cu 2.13918146 1.8426684949999996 -4.970495245
- Cu -0.3991866800000001 -4.039070815 -2.947873155
- Cu -2.95675552 -4.040854525 -2.951838005000001
- Cu 0.8577671099999997 -1.827609365 -2.9198915850000002

- Cu -1.6817239300000004 -1.823472585 -2.938011105000001
- Cu 2.1542985499999996 0.386999525 -2.8815477650000005
- Cu -0.41931114 0.38356032500000015 -2.855326625
- Cu 3.4156744199999998 2.5726848250000005 -2.891357375
- Cu 0.874268999999995 2.569107155 -2.8991961050000015
- Cu -0.37184153000000064 3.357872715 -0.8678332950000005
- Cu 2.1394650999999993 3.3644948350000004 -0.8724796350000013
- Cu -4.213768420000001 -3.3077127849999997 -0.8557098250000017
- Cu -1.6730423200000004 -3.3259634250000003 -0.930574674999999
- Cu -2.9575163300000002 -1.136063055 -0.9035299350000017
- $\mathtt{Cu} \ -0.4237183200000003 \ -1.1346941449999999 \ -0.8563728049999995$
- Cu -1.6320359500000001 1.1702228450000003 -0.750362814999999
- Cu 0.864892599999997 1.1094244949999996 -0.8393849750000015

S6.3 Monomer BTAH

60

```
btah_monomer
```

- H 4.950434515 0.30874271500000017 6.672025655000002
- H 5.827283875 0.07606950499999998 9.601416935
- H 4.749143555000001 -0.02091534500000014 11.845582525000001
- H 2.2815320750000003 0.03270134499999999 12.096632255
- H 0.7843408649999999 0.185683225 10.089676305000001
- H -1.083366905 -1.315517045 6.741717725000001
- H -0.40877341499999975 -1.7868750150000001 9.698600115000001
- H -0.8630962049999997 -0.6902792149999999 11.888992215000002
- H -2.172157805 1.413806005 12.034103675
- H -3.093383605 2.503539725 9.974367664999999
- C 3.890363365 0.177925675 8.593143435000002
- C 4.740887735 0.09178188500000006 9.703363405000001
- C 4.122925424999999 0.040837794999999844 10.949684605000002
- C 2.7148186250000004 0.0735618950000001 11.092274845000002
- C 1.872017435 0.1551566750000002 9.989549365000002
- C 2.478210764999999 0.206300315 8.722218855000001
- C -1.5064700850000001 -0.240266235 8.611713635000001
- C -0.9838724650000001 -0.860993355 9.754040185000001
- C -1.2484842350000003 -0.2366699849999998 10.969804135
- C -1.9973674149999998 0.9618741449999999 11.052391295
- C -2.511746505 1.5796747449999997 9.918149265
- C -2.259545895 0.960287745 8.681573365000002
- N 4.093719064999999 0.26567153500000007 7.2518539749999995
- N 1.914815775 0.310371224999999 7.469679984999999
- \mathbb{N} 2.9013852350000002 0.3428760350000002 6.601058994999999
- N -1.4968516149999997 -0.538299095 7.284237924999999
- N -2.658955545 1.3144811349999999 7.4127520350000005
- N -2.187139565 0.40556668500000015 6.587433964999999
- Cu 5.360619525 0.3964602749999999 -1.5966322549999994
- Cu -2.280308025 0.3964602749999999 -1.5966322549999994
- Cu 0.26666782499999986 0.3964602749999999 -1.5966322549999994 Cu 2.8136436750000007 0.3964602749999999 -1.5966322549999994
- Cu 4.087131595 -1.809285515 -1.5966322549999994
- Cu -3.553795955 -1.809285515 -1.5966322549999994
- Cu -1.006820105 -1.809285515 -1.5966322549999994
- Cu 1.5401557449999999 -1.809285515 -1.5966322549999994
- Cu -3.551021905 1.123144705 0.45706114500000083
- Cu -1.0059132350000004 1.1287660650000002 0.4604257750000009
- Cu 1.5414259350000004 1.119712255 0.45769574500000054
- Cu 4.091033755000001 1.1253489449999998 0.4577058550000004
- Cu -4.825958175 -1.083510215 0.4864288950000013
- Cu -2.273448565 -1.076840885 0.4582390350000001
- Cu 0.2668174150000002 -1.082532325 0.48749730499999977
- Cu 2.8153471750000003 -1.075409745 0.4602119250000012
- Cu 5.389052455000001 1.8419000850000002 2.472684685000001
- Cu -2.251931575 1.8265871749999998 2.522988455
- Cu 0.2915026550000004 1.8371812449999996 2.474909875

- Cu 2.8444722449999995 1.8192018649999997 2.510976095
- Cu 4.091852015 -0.35655376500000013 2.5222557850000005
- Cu -3.499605635 -0.3487289250000001 2.5104923250000013
- Cu -0.9976716550000004 -0.3534441049999999 2.5241136550000007
- Cu 1.5870574250000002 -0.34794816500000003 2.5245088449999997
- Cu 5.404760925000001 0.37382348499999996 4.494488705000002
- Cu -2.246104095 0.3820883949999998 4.7350771850000015
- Cu 0.29586393499999986 0.3782829350000001 4.5293774450000015
- Cu 2.8362922349999993 0.359179825 4.743376605000002
- Cu 4.1084569449999995 -1.836201695 4.5271784749999995
- Cu -3.505961985 -1.8337215649999998 4.506253355000002
- Cu -0.9719005850000002 -1.848535045 4.501350935000001
- Cu 1.5767833949999996 -1.849744375 4.503506695000002

S6.4 BTA Tilted Monomer

```
77
```

```
bta_tilted
```

- H 2.0956630050000005 0.14723824000000008 9.276402145
- H 1.9615307350000002 -2.2521757299999994 9.980310925
- H -0.18615413499999978 -3.4750056799999998 9.971972225
- H -2.313609275 -2.363535899999999 9.258227145000001
- C -0.04604656500000015 0.22156205000000018 8.850505395
- C 1.145723115000001 -0.3945838899999994 9.278008915
- C 1.0565327149999995 -1.7229967699999995 9.669177455000002
- C -0.17740967499999982 -2.4256731499999997 9.664208495000002
- C -1.362800955 -1.8233043199999996 9.267229025
- C -1.281601545 -0.4825665099999994 8.844797045000002
- N -0.2649206450000001 1.4556746400000007 8.282119685
- N -2.2273477449999994 0.33687308000000016 8.272503155
- N -1.585289425 1.49332331 7.982065575000002
- Cu 3.183719815 -2.3357977099999996 0.0196890750000005
- Cu -4.457207735 -2.3357977099999996 0.0196890750000005
- Cu -1.910231885 -2.3357977099999996 0.0196890750000005
- Cu 0.636743965 -2.3357977099999996 0.0196890750000005
- Cu 4.457207735000001 -0.13005191999999965 0.0196890750000005
- Cu -3.183719815 -0.13005191999999965 0.0196890750000005
- Cu -0.636743965 -0.13005191999999965 0.0196890750000005
- Cu 1.910231885 -0.1300519199999965 0.0196890750000005
- Cu 5.730695655 2.0756938700000003 0.0196890750000005
- Cu -1.910231885 2.0756938700000003 0.0196890750000005
- Cu 0.636743965 2.0756938700000003 0.0196890750000005
- Cu 3.183719815 2.0756938700000003 0.0196890750000005
- Cu 7.004183585 4.281439650000001 0.0196890750000005
- Cu -0.636743965 4.281439650000001 0.0196890750000005
- Cu 1.910231885 4.281439650000001 0.0196890750000005
- Cu 4.457207735000001 4.281439650000001 0.0196890750000005
- Cu 4.470460865 -1.5907178899999996 2.0856256350000013
- Cu -3.190060505 -1.6010454699999994 2.080344365
- Cu -0.6431167750000002 -1.5997288399999996 2.0679441450000002
- Cu 1.9190005150000005 -1.5984916099999995 2.057575805000001
- Cu 5.731850235 0.6074130500000008 2.0910168250000005
- Cu -1.9115828549999998 0.6093032000000003 2.0778509850000013
- Cu 0.635394045 0.6138496900000003 2.0744920550000003
- Cu 3.1739846650000008 0.61453033 2.088061855000001
- Cu 7.000652955 2.80736964 2.0761770449999997
- Cu -0.6348767749999995 2.81404779 2.075114505
- Cu 1.9066126749999999 2.8099288300000005 2.0928413050000003
- Cu 4.455691935000001 2.8123798100000004 2.0793525650000007
- Cu 3.1894434149999995 -3.8098939499999993 2.068014175
- Cu -4.454992004999999 -3.8167923999999998 2.0873125750000003
- Cu -1.9125342549999997 -3.80647471 2.0771357350000006
- Cu 0.6389542349999999 -3.8047531399999994 2.072559095000001
- Cu 3.199592655 -0.8591295199999998 4.126353845000001
- Cu -4.432058505 -0.844980099999999 4.196530585

- Cu -1.9381456149999998 -0.8606655499999998 4.134335925
- Cu 0.6634086550000005 -0.874862939999994 4.085226425
- Cu 4.446690825000001 1.3436923900000002 4.138097395000001
- Cu -3.1803441649999997 1.3337171700000008 4.178244235000001
- Cu -0.6408180850000003 1.3594444400000008 4.156524345000001
- Cu 1.8804249849999994 1.3516130800000008 4.189160215000001
- Cu 5.730872075000001 3.5477085100000005 4.131729425
- Cu -1.9104663950000003 3.54767013 4.134703145000001
- Cu 0.6288772649999999 3.52109918 4.189726355000001
- Cu 3.179050815 3.5461018600000003 4.145136885000001
- Cu 1.9262373050000008 -3.0651888199999995 4.111767875
- Cu -5.720915785 -3.0621000499999997 4.124530795
- Cu -3.1896447749999997 -3.0789836399999997 4.138377205000001
- Cu -0.6360629449999999 -3.0704774399999994 4.1257466350000005
- Cu 3.1960048949999997 -2.32815609 6.186409825
- Cu -4.449546495 -2.3347452599999996 6.208499954999999
- Cu -1.9109871050000002 -2.3696297399999997 6.173311615000001
- Cu 0.6550155950000001 -2.359145039999996 6.166414935000001
- Cu 4.454586075 -0.1214494999999977 6.208229845
- Cu -3.1869329549999996 -0.1376056499999936 6.383435875000002
- Cu -0.5780958350000001 -0.22135369999999988 6.035444655000001
- Cu 1.9398744850000007 -0.15668031999999954 6.177370535
- Cu 5.678186515 2.09770256 6.177877345000001
- Cu -1.962892825 2.1848458100000006 6.185130695
- Cu 0.6398234550000002 2.0681525700000005 6.393118795000001
- Cu 3.173027385000001 2.0758992000000003 6.213386855000001
- Cu 6.980067835 4.324415120000001 6.171543945000002
- Cu -0.6310612149999999 4.33579771 6.1807769650000015
- Cu 1.9081831650000005 4.279251290000001 6.210923335000002
- Cu 4.4467850349999996 4.2813506100000005 6.196191975

S6.5 BTA Upright Monomer

```
77
bta_up
H 0.53480112 -0.6219406800000002 10.534120755000002
H -0.6461118500000005 1.30449341 11.614953185
H -1.6561598799999997 3.1090401099999996 10.262835475000001
H -1.5391015799999996 3.086395899999994 7.765687775000002
C 0.15310621999999974 0.1598245999999943 8.536835654999999
C 0.08623664000000009 0.1791885899999987 9.941677045
C -0.5697330699999998 1.2499566 10.525972265000002
C -1.1499022600000002 2.28787553 9.748923365000001
C -1.09292489 2.2874652299999996 8.364762405000002
C -0.42920552 1.2029338099999993 7.7647309149999995
N 0.7234003600000003 -0.7554085200000005 7.687638715
N -0.19185323000000043 0.886250969999999 6.461854205
N 0.5011919000000002 -0.2969307300000006 6.476608805
Cu 0.8141891299999999 3.6314022799999996 -1.6149531849999992
Cu 3.3611649800000007 3.6314022799999996 -1.6149531849999992
Cu 5.90814083 3.6314022799999996 -1.6149531849999992
Cu -1.73278672 3.6314022799999996 -1.6149531849999992
Cu -3.00627464 -2.98583508 -1.6149531849999992
Cu -0.45929879000000007 -2.98583508 -1.6149531849999992
Cu 2.087677050000001 -2.98583508 -1.6149531849999992
Cu -5.55325049 -2.98583508 -1.6149531849999992
Cu -1.73278672 -0.7800893000000002 -1.6149531849999992
Cu 0.814189129999999 -0.7800893000000002 -1.6149531849999992
Cu 3.3611649800000007 -0.7800893000000002 -1.6149531849999992
Cu -4.27976257 -0.7800893000000002 -1.6149531849999992
Cu -0.45929879000000007 1.4256564899999997 -1.6149531849999992
Cu 2.087677050000001 1.4256564899999997 -1.6149531849999992
Cu 4.6346529 1.4256564899999997 -1.6149531849999992
Cu -3.00627464 1.4256564899999997 -1.6149531849999992
Cu 2.0890543100000007 4.36526158 0.4380360250000006
Cu 4.6361021 4.36859772 0.4383540350000015
Cu 7.18581087 4.36831031 0.43903173500000037
Cu -0.4573437 4.35571126 0.4420564150000015
Cu -1.7285545300000003 -2.2502231900000003 0.4403773450000017
Cu 0.8147587199999995 -2.2524377500000003 0.4368605150000011
Cu 3.3539806600000004 -2.2449276900000004 0.442361365
Cu -4.28008545 -2.252448090000006 0.43912539500000136
Cu -0.4577584100000003 -0.04614048000000004 0.4389656250000016
Cu 2.08161809999999 -0.04535121000000064 0.44413929500000116
Cu 4.634832820000001 -0.04368802000000027 0.4383721350000016
Cu -3.00422774 -0.04359418000000037 0.4392149250000017
Cu 0.8149622699999997 2.1546946599999997 0.44382491500000043
Cu 3.36428 2.1596469099999999 0.43649084500000157
Cu 5.91328915 2.15961731 0.4374200650000013
Cu -1.7317847000000004 2.15966626 0.4350122550000002
```

Cu -4.2800891 -3.72216314 2.4766484150000014

Cu -1.7338270500000004 -3.7218613300000003 2.477911135000001

- Cu 0.817392199999996 -3.7177716800000002 2.484696015000001
- Cu -6.82251296 -3.7202000400000004 2.4725531750000016
- Cu -3.0017939800000004 -1.5135371100000001 2.4777830650000006
- Cu -0.440894469999999 -1.507499440000001 2.5036698150000003
- Cu 2.0723404800000003 -1.5060618000000003 2.5152472150000005
- Cu 4.634438309999999 -1.5174762800000003 2.4774964750000006
- Cu -1.7148422300000004 0.7002694799999993 2.5002830950000003
- Cu 0.7987797299999997 0.67719212 2.5340040450000014
- Cu 3.358935 0.686662709999999 2.4808666950000013
- Cu 5.90920177 0.6888444899999993 2.477294285000001
- Cu -0.45722454000000035 2.8742522699999995 2.513718755000001
- Cu 2.0818875500000003 2.8928638699999993 2.480156495000001
- Cu 4.63581259 2.895619959999994 2.482653815000001
- Cu 7.18518524 2.8948073699999997 2.481660315000001
- Cu 0.8291993599999996 3.66220047 4.524930265
- Cu 3.3615341699999997 3.63065427 4.536044375000001
- Cu 5.90373064 3.6259868299999996 4.536927465
- Cu -1.7467147599999997 3.6582902500000003 4.526110505
- Cu -3.0026262800000003 -2.9838039200000006 4.5346263350000005
- Cu -0.46576964000000043 -3.0189094900000004 4.522230185
- Cu 2.109173039999999 -3.01963836 4.5315275050000015
- Cu -5.54502015 -2.9838959600000003 4.532399735
- Cu -1.7567914900000003 -0.7951008200000005 4.501871745000001
- Cu 0.8662872199999994 -0.8617720800000002 4.629702775
- Cu 3.3983145699999993 -0.7840362100000005 4.5259934850000025
- Cu -4.27386528 -0.778941800000006 4.533839325000001
- Cu -0.4988220100000005 1.499487659999998 4.630439385000001
- Cu 2.11881641 1.442772519999999 4.507472385000002
- Cu 4.635789119999999 1.4247572599999998 4.536535715000001
- Cu -3.0368065900000003 1.4354246099999992 4.520204655000002

S6.6 BTA Monomer with $Cu_{\rm ad}$ (Monomer in Fig. 2)

95								
BTA_monomer								
Н	10.402468	4.694794	21.562189					
H	0.576906	4.330880	23.684986					
H	3.020133	3.965180	23.668383					
H	4.317309	3.963699	21.525036					
C	1.115836	4.543141	20.364332					
C	11.484462	4.539071	21.560640					
C	1.100703	4.333453	22.727425					
C	2.505352	4.126817	22.718502					
C	3.236361	4.126509	21.541403					
C	2.518099	4.346291	20.356138					
N	0.728797	4.726511	19.065275					
N	2.928501	4.425018	19.054720					
N	1.835324	4.647211	18.309387					
Cu	3.600026	0.696933	10.000000					
Cu	3.892106	3.227106	10.000000					
Cu	5.937261	1.709071	10.000000					
Cu	7.982415	0.191036	10.000000					
Cu	4.184186	5.757279	10.000000					
Cu	6.229341	4.239244	10.000000					
Cu	8.274494	2.721209	10.000000					
Cu	10.319649	1.203174	10.000000					
Cu	2.430792	9.805839	10.000000					
Cu	4.476266	8.287452	10.000000					
Cu	6.521420	6.769417	10.000000					
Cu	8.566574	5.251382	10.000000					
Cu	10.611729	3.733347	10.000000					
Cu	1.554872	2.215312	10.000000					
Cu	6.813500	9.299590	10.000000					
Cu	8.858654	7.781555	10.000000					
Cu	10.903809	6.263520	10.000000					
Cu	1.846952	4.745485	10.000000					
Cu	11.195889	8.793693	10.000000					
Cu	2.139031	7.275658	10.000000					
Cu	3.008330	2.048001	12.052279					
Cu	5.061274	0.519932	12.045124					
Cu	3.298385	4.575266	12.047230					
Cu	5.354789	3.052708	12.047903					
Cu	7.393831	1.539570	12.065049					
Cu	9.434667	0.019858	12.068913					
Cu	3.592059	7.099981	12.059305					
Cu	5.645077	5.589171	12.050694					
Cu	7.677083	4.071155	12.051794					
Cu	9.725182	2.546909	12.049234					
Cu	0.675362	1.027658	12.049479					
Cu	3.892622	9.631330	12.054708					
Cu	5.939390	8.115766	12.051826					
Cu	7.972275	6.597275	12.053975					

Cu	10.025850	5.080929	12.055606
Cu	0.965636	3.561774	12.043180
Cu	8.270713	9.126703	12.067698
Cu	10.314432	7.615408	12.053720
Cu	1.260094	6.094659	12.049610
Cu	1.551762	8.623296	12.054906
Cu	4.482100	1.850854	14.078484
Cu	4.767678	4.398652	14.076949
Cu	6.806419	2.890331	14.137409
Cu	8.850267	1.370025	14.130782
Cu	5.064834	6.935155	14.097240
Cu	7.101656	5.405970	14.141994
Cu	9.125262	3.898562	14.090849
Cu	11.189103	2.364285	14.084737
Cu	2.144959	0.849479	14.101576
Cu	5.360622	9.452930	14.105672
Cu	7.395426	7.929886	14.134331
Cu	9.424168	6.420700	14.095634
Cu	11.500486	4.903996	14.115226
Cu	2.410923	3.402025	14.120162
Cu	6.518936	0.354716	14.126870
Cu	9.726890	8.948562	14.131857
Cu	11.775429	7.440094	14.097569
Cu	2.706331	5.899304	14.136481
Cu	12.072135	9.963243	14.113356
Cu	3.020549	8.445519	14.108336
Cu	3.896773	3.156761	16.067429
Cu	4.205019	5.779767	16.113340
Cu	6.218896	4.232221	16.235298
Cu	8.260921	2.719004	16.209332
Cu	4.475550	8.281652	16.165716
Cu	6.515750	6.757134	16.211988
Cu	8.560013	5.237303	16.232248
Cu	10.582991	3.661320	16.078657
Cu	1.539172	2.165004	16.129620
Cu	3.598528	0.669283	16.157940
Cu	6.807581	9.287631	16.179319
Cu	8.844735	7.765474	16.205477
Cu	10.884047	6.304663	16.104918
Cu	1.835381	4.730059	16.289558
Cu	5.929997	1.698195	16.203367
Cu	7.968784	0.182374	16.185644
Cu	11.185079	8.793268	16.174749
Cu	2.130286	7.291378	16.143738
Cu	10.305541	1.174742	16.172663
Cu	2.426265	9.789945	16.173819
Cu	10.209273	5.002751	18.014431
Cu	4.572762	4.337397	18.020336

BTA Low Coverage Chains

```
108
bta 1cc
H -4.66197318 -0.326982339999999 9.69843312
H -3.38428816 -0.6902251899999996 11.82349113
H -0.9416164900000004 -1.0532989699999997 11.80718851
H 0.35659039000000003 -1.070560599999999 9.66083111
H 5.4389220300000005 3.13631835 7.386668149999998
H 3.81034221 5.03097702 7.563775069999998
H 1.37203577 4.618861990000001 7.681133710000001
H 0.44480655999999996 2.2931359799999997 7.617464739999999
C -2.84823358 -0.5001636199999995 8.49855105
C -3.58058525 -0.4872387199999997 9.697209959999999
C -2.86046202 -0.6902678599999996 10.86423056
C -1.45591368 -0.8995334899999996 10.855243339999998
C -0.7252895800000001 -0.9141125599999995 9.67809891
C -1.44760211 -0.7121669099999997 8.490429629999998
C 3.8314027500000005 1.6519163900000002 7.388726379999998
C 4.36075932 2.95419536 7.432885849999998
```

- C 3.4465027700000004 3.999077830000001 7.536246200000001 C 2.0490629599999997 3.76256562 7.604873049999998 C 1.5225763599999995 2.4756259600000003 7.56870486 C 2.44044744 1.4167785400000001 7.451929189999998 \mathbb{N} -3.23526317 -0.3316538299999996 7.194411159999998
- \mathbb{N} -1.0420313200000004 -0.6669721500000003 7.183142119999999
- N -2.13248873 -0.4400131499999995 6.4419544
- N 4.4297328799999995 0.4222035799999997 7.230149659999999
- N 2.261086389999999 0.05471800000000266 7.327542640000001
- N 3.4684145100000006 -0.5155088699999997 7.198812709999999
- Cu -0.36491726000000035 -4.3340439 -1.8234911300000007
- Cu -0.07283750000000033 -1.8038708999999997 -1.8234911300000007
- Cu 1.9723167100000003 -3.32190589 -1.8234911300000007
- Cu 4.017470919999999 -4.83994088 -1.8234911300000007
- Cu 0.2192422599999997 0.7263020899999999 -1.8234911300000007
- Cu 2.2643964699999994 -0.791732899999995 -1.8234911300000007
- Cu 4.309550679999999 -2.30976789 -1.8234911300000007
- Cu -4.74730611 -3.82780287 -1.8234911300000007
- Cu -1.5341519000000003 4.77486214 -1.8234911300000007
- Cu 0.5113220199999997 3.2564750900000003 -1.8234911300000007
- Cu 2.5564762299999995 1.7384401 -1.8234911300000007
- Cu 4.60163043999999 0.22040510999999974 -1.8234911300000007
- Cu -4.45522635 -1.2976298800000001 -1.8234911300000007
- Cu -2.41007214 -2.81566487 -1.8234911300000007
- Cu 2.8485559800000004 4.2686130900000006 -1.8234911300000007
- Cu 4.893710199999999 2.75057811 -1.8234911300000007
- Cu -4.16314659 1.2325431199999999 -1.8234911300000007
- Cu -2.11799238 -0.28549186999999954 -1.8234911300000007
- Cu -3.87106683 3.7627161099999995 -1.8234911300000007
- Cu -1.82591262 2.24468112 -1.8234911300000007
- Cu -0.9550665700000005 -2.98180735 0.23487347000000014

- Cu 1.0942383099999997 -4.50734234 0.23204392999999968
- Cu -0.6655642899999998 -0.4561675300000001 0.23195254999999904
- Cu 1.3889925300000003 -1.97699332 0.2335671099999992
- Cu 3.4298401 -3.49326715 0.23868691999999925
- Cu -5.6279729000000005 -5.0105262999999995 0.2392478099999984
- Cu -0.3766924300000003 2.0683919499999996 0.23634526999999927
- Cu 1.679539929999999 0.55547301 0.23223418999999978
- Cu 3.720872939999996 -0.9622041000000001 0.23079554999999985
- Cu -5.33685389 -2.48185713 0.23337876999999985
- Cu -3.28856107 -3.99931576 0.23198842999999947
- Cu -0.07307712999999971 4.60204223999999 0.23385509999999954
- Cu 1.9712084899999995 3.0848027600000005 0.23278165999999878
- Cu 4.01080372 1.5677977500000004 0.2346644599999994
- Cu -5.03943854 0.04975459000000004 0.24296024999999943
- Cu -2.99903882 -1.468607749999999 0.23033409999999854
- Cu 4.3054841800000005 4.09831376 0.23943781000000008
- Cu -4.75201806 2.58293751 0.23380051000000002
- Cu -2.70839404 1.06213785 0.23366049999999916
- Cu -2.4138982 3.5925230799999994 0.23509483999999858
- Cu 0.5079245199999995 -3.16673985 2.2781833999999996
- Cu 0.7970346599999996 -0.6357604700000001 2.27300801
- Cu 2.8482578600000004 -2.14891256 2.3037065499999994
- Cu 4.89011824 -3.66503743 2.2991960099999993
- Cu 1.0848316599999999 1.8986688200000001 2.2754924799999987
- Cu 3.1399325099999995 0.3718997000000017 2.300973189999999
- Cu 5.17687802 -1.1383388599999997 2.287026429999999
- Cu -3.87742785 -2.65722674 2.2852065999999986
- Cu -1.82480771 -4.17785541 2.2830686
- Cu 1.3896332300000003 4.424754419999999 2.2921641699999995
- Cu 3.4309826900000004 2.91109305 2.3023536899999986
- Cu 5.4721290499999995 1.3958676500000005 2.2837876999999995
- Cu -3.5650495600000003 -0.12996963999999966 2.31546176
- Cu -1.5470578699999997 -1.6324358700000001 2.3122874399999986
- Cu 2.5504772300000003 -4.67371126 2.3048079
- Cu 5.76494396 3.92396205 2.29996987
- Cu -3.29298004 2.4056102900000003 2.287527259999999
- Cu -1.26339821 0.869564959999999 2.317566359999999
- Cu -2.99618995 4.9360794299999995 2.292228999999999
- Cu -0.9512589299999998 3.4160703100000003 2.2865884199999993
- Cu -0.06633597999999985 -1.8476040399999998 4.32070526
- Cu 0.23082378999999964 0.7241187800000004 4.317812189999998
- Cu 2.25112384 -0.8083011099999995 4.362702599999999
- Cu 4.2996494300000005 -2.3203347 4.375879959999999
- Cu 0.5027664300000003 3.2486365100000008 4.346118779999998
- Cu 2.5410356400000005 1.7333175800000005 4.323454699999999
- Cu 4.609386239999999 0.21257211999999992 4.35293665
- Cu -4.48044312 -1.3362754 4.33036791
- Cu -2.42721873 -2.864849 4.3214093899999995
- Cu -0.3742991600000005 -4.35035475 4.3427913700000005
- Cu 2.838470019999999 4.26799606 4.365130309999998
- Cu 4.8817723 2.7487939600000004 4.365100559999998

- Cu -4.17832542 1.2504329299999997 4.3341205800000004
- Cu -2.12763873 -0.2998265499999997 4.453851480000001
- Cu 1.9598257099999996 -3.32890186 4.3801525099999985
- Cu 4.00762383 -4.84212825 4.353575790000001
- Cu -3.88057713 3.7599743300000004 4.352565849999998
- Cu -1.8331967100000002 2.26023787 4.332012379999998
- Cu -4.76104666 -3.84729949 4.3607095099999995
- Cu -1.5419739000000003 4.76064929 4.356541669999999
- Cu -4.96629401 0.016889810000000338 6.39271287
- Cu 0.7279768300000002 -0.6886769699999995 6.343419189999999

S6.8 BTA Dimers

```
75
```

hc dimers

- H 3.179324779999999 0.7344337099999998 9.91840164
- H 5.48637474 1.1884805699999998 10.76760319
- H 7.4692592200000005 0.1384072299999988 9.729286400000001
- H 7.235348279999999 -1.45540124 7.80123508
- H 0.6713648799999996 1.7636602199999998 10.13151275
- H -0.6211852499999999 -0.9243762800000002 11.40723322
- H -2.73771626 0.0037200399999997025 10.53344712
- H -3.6578291700000003 -0.7296913900000002 8.312614680000001
- C 3.9295208199999996 -0.6342705000000002 8.38873524
- C 4.053321209999999 0.2461578900000001 9.476970839999998
- C 5.33885625 0.49064788000000004 9.938273959999998
- C 6.477284030000001 -0.11152472000000024 9.34093208
- C 6.364915320000001 -0.99203686 8.275531899999999
- C 5.06462225 -1.25579537 7.812256889999999
- C -0.7951194400000006 1.75119939 8.51317772
- C -0.26382861999999996 2.1772572799999996 9.743166059999998
- C -0.99404424 -1.28365265 10.44344803
- C -2.21243443 -0.7533346700000001 9.94374284
- C -2.7333050200000004 -1.14933185 8.721038909999999
- C -2.0034831200000003 -2.1147486300000002 8.00676763
- N 2.83711612 -1.04681793 7.667322359999998
- N 4.61818148 -2.04092144 6.78341591
- N 3.287196109999999 -1.89983195 6.72245567
- N -0.3659929699999975 0.8185641800000001 7.6055039
- N -2.25001051 1.69353812 6.805124609999998
- N -1.2709604700000003 0.80032405 6.6085817
- Cu -7.63832703 -2.20142615 -1.4072332200000002
- Cu -5.09135118 -2.20142615 -1.4072332200000002
- Cu -2.5443753300000003 -2.20142615 -1.4072332200000002
- Cu 0.002600519999999662 -2.20142615 -1.4072332200000002
- Cu 2.5495763699999996 -2.20142615 -1.4072332200000002
- Cu 5.09655221 -2.20142615 -1.4072332200000002
- $\mathtt{Cu} \ -6.36483911 \ 0.00431963999999847 \ -1.4072332200000002$
- Cu -3.81786326 0.004319639999999847 -1.4072332200000002
- Cu -1.2708874100000003 0.00431963999999847 -1.4072332200000002
- Cu 1.2760884399999997 0.00431963999999847 -1.40723322000000002
- Cu 3.8230642900000005 0.004319639999999847 -1.4072332200000002
- Cu 6.370040139999995 0.00431963999999847 -1.4072332200000002
- Cu -6.35863605 -1.4745622600000001 0.6341236400000003
- Cu -3.80253358 -1.47354064 0.642812339999999
- Cu -1.27296004 -1.47664045 0.653968299999999
- Cu 1.2676245600000007 -1.4742125600000002 0.6477217
- Cu 3.824950179999999 -1.47343573 0.6394484699999996
- Cu 6.37439688 -1.47824785 0.6321357299999999
- Cu 7.63832703 0.733332079999999 0.6445106299999992
- Cu -5.078712250000001 0.73285562 0.6377381799999995
- Cu -2.53697853 0.7221125100000001 0.6528236599999993

- Cu 0.008905089999999838 0.7389363799999997 0.6627409399999991
- Cu 2.5545741899999994 0.7323354900000001 0.6518065100000001
- Cu 5.091515439999999 0.729138799999999 0.6497537399999995
- Cu -7.616256040000001 -0.77229046 2.67750616
- Cu -5.083703489999995 -0.7633321900000001 2.6811143400000006
- Cu -2.5235355999999998 -0.7575519900000001 2.76497451
- Cu -0.006356819999999708 -0.7364473600000001 2.71973343
- Cu 2.55565602 -0.7676131500000001 2.69302261
- Cu 5.12093525 -0.7791293300000002 2.69566279
- Cu -6.35401064 1.434622039999999 2.6776015500000003
- Cu -3.79536729 1.46131548 2.709507349999999
- Cu -1.2818050699999999 1.45795808 2.7407359099999997
- Cu 1.308386229999999 1.4606166899999997 2.7342211899999995
- Cu 3.8355536500000005 1.4781438900000001 2.734393839999999
- Cu 6.36623484 1.4447869500000001 2.71865472
- Cu -7.59331323 2.1728697699999997 4.738864860000001
- Cu -5.1345408599999995 2.181829959999995 4.739743370000001
- Cu -2.6471576199999998 -2.17816299 4.844708559999999
- Cu 0.04308138000000028 2.20142615 4.717577619999998
- Cu 2.5322263099999995 2.1564787400000003 4.872100519999998
- Cu 5.20423397 2.1331459699999997 4.839643669999999
- Cu -6.3618100900000005 -0.023639650000000234 4.74910523
- Cu -3.88588144 -0.00796177000000009 4.72145499
- Cu -1.2300245500000004 -0.0473609800000011 4.809776049999998
- Cu 1.31068373 -0.0361781599999999 4.744726989999998
- Cu 3.8634157 -0.034492280000000264 4.644334840000001
- Cu 6.42805215 -0.06243189999999985 4.716305
- Cu 1.182460269999999 -0.2100241300000001 7.444107430000001

S6.9 BTA High Coverage Chains

```
68
```

bta_hcc

- H -5.23784124 1.9212399500000004 9.514276465
- H -4.11395149 1.5529707200000002 11.721705585
- H -1.6512201199999996 1.4010008200000001 11.895854545
- H -0.19670191999999975 1.57574067 9.857514135
- H 5.02184956 -0.52919049 8.694100815
- H 3.8340390000000006 0.71872194 10.521415055
- H 1.4190865400000003 0.4181864700000002 10.907653875
- H 0.035693239999999626 -1.08154026 9.453245775000001
- C -3.32849187 1.9365137700000004 8.459171884999998
- C -4.15127635 1.83637638 9.594538124999998
- C -3.51480278 1.6376663899999997 10.810679145
- C -2.10159342 1.547939539999998 10.909804164999999
- C -1.283869000000001 1.64197698 9.793444795000001
- C -1.9201302199999999 1.8259146399999997 8.555455775
- C 3.179318179999999 -1.53634257 8.091750575
- C 3.951319599999997 -0.66359821 8.878746094999999
- C 3.283242299999995 0.02220890999999804 9.881052814999999
- C 1.88972023 -0.14439301999999987 10.095572804999998
- C 1.11525694 -0.9824353800000001 9.305609304999999
- C 1.7840516500000003 -1.6857109700000001 8.287819285
- N -3.6245946 2.13675634 7.137027084999998
- \mathbb{N} -1.4230066199999998 1.9468250100000004 7.285525944999998
- N -2.46346309 2.12821906 6.469428634999998
- N 3.52631375 -2.34745486 7.046577585
- N 1.9505110400000003 2.47948609 7.342308484999998
- N 3.0107339900000003 2.1127455800000003 6.607700464999999
- Cu -0.1420112600000003 0.7476200300000002 -1.8958545450000006
- Cu -0.4539315000000004 -1.77640698 -1.8958545450000006
- Cu 2.1952227099999995 1.7597580300000004 -1.8958545450000006
- Cu 4.240376919999999 0.2417230400000001 -1.8958545450000006
- Cu 1.8833024700000003 -0.76426897 -1.8958545450000006
- Cu 3.92845668 -2.28230396 -1.8958545450000006
- Cu -4.52440011 1.2538610499999998 -1.8958545450000006
- Cu -4.83632035 -1.27016595 -1.8958545450000006
- Cu -2.18716614 2.2659990600000004 -1.8958545450000006
- Cu -2.49908638 -0.2580279499999998 -1.8958545450000006
- Cu -0.7074120700000002 2.0967952199999997 0.1902358349999993
- Cu 1.3247781500000002 0.5887785500000002 0.18703373499999998
- Cu -1.02931728 -0.42505959000000004 0.18626447499999976
- Cu 1.0147665899999998 -1.94045836 0.1713027450000002
- Cu 3.6566704100000003 1.5996447600000003 0.1641297349999995
- Cu -5.39256846 0.08472005000000005 0.14943227499999878
- Cu 3.349838760000001 -0.923588099999999 0.17196737499999948
- Cu -5.68922783 -2.44197536 0.15852310499999867
- Cu -3.04591939 1.0922006400000002 0.16310952499999942
- Cu -3.34803666 -1.44039724 0.15979779499999935
- Cu 0.7895489700000002 1.9290510000000003 2.2839396049999987

- Cu 2.8060412600000006 0.44309483000000016 2.281210065
- Cu 0.4454523300000002 -0.5887610699999999 2.2303856250000003
- Cu 2.4683137100000003 -2.10735316 2.246947734999999
- Cu 5.1375864 1.4332000800000002 2.1888171649999997
- Cu 4.843952679999999 -1.08089204 2.187491764999999
- Cu -3.59122895 2.43508324 2.2375214449999987
- Cu -1.5813435299999998 0.9350132900000001 2.275477015
- Cu -3.9081687499999997 -0.10087935000000003 2.204472935
- Cu -1.88589012 -1.63374181 2.272821875
- Cu -0.0952248999999983 0.748107989999998 4.319955524999999
- Cu -0.392418809999997 -1.7559680100000001 4.301717805000001
- Cu 2.2521270500000004 1.77685518 4.563469875000001
- Cu 4.2984737200000005 0.2591465799999999 4.302864944999998
- Cu 1.9188560399999997 -0.72550585 4.285434874999998
- Cu 3.9580833700000007 -2.24192993 4.181271765
- Cu -4.49949374 1.22005842 4.211813385000001
- Cu -4.81092492 -1.266974099999999 4.272232595
- Cu -2.15900466 2.26416389 4.469314114999998
- Cu -2.45568327 -0.2739003399999996 4.2690970749999995
- Cu 5.83411772 2.44587618 6.178084404999998
- Cu 0.30502549000000023 2.0146774800000005 6.420198054999998