1 Cela števila

- 1. Osnovni izrek o deljenju celih števil
 - Načelo dobre urejenosti v $\mathbb{N}.$
 - Načeli dobre urejenosti v \mathbb{Z} .
 - Izrek. Osnovni izrek o deljenju celih števil. Ostanek.
- 2. Največji skupni delitelj
 - **Definicija.** Kadar pravimo, da celo število $k \neq 0$ deli celo število m? Zapis.
 - **Definicija.** Delitelj. Število m deljivo s številom k.
 - **Definicija.** Skupni delitelj. Največji skupni delitelj.
 - Izrek. Obstoj največjega skupnega delitelja. Kako lahko ga zapišemo?
 - **Definicija.** Tuji števili.
 - **Posledica.** Kadar sta števili m in n tuji?
- 3. Osnovni izrek aritmetike
 - **Definicija.** Praštevila.
 - Lema. Evklidova lema.
 - Izrek. Osnovni izrek aritmetike.
 - **Izrek.** Ali je praštevil neskončno?

2 Uvodni pojmi algebre

- 1. Binarne operacije
 - **Definicija.** Binarna operacija na množice S.
 - Primer. Najpomembnejše operacije: seštevanje, množenje in komponiranje. Množica preslikav iz X vase.
 - *Primer*. Navedi primeri in protiprimeri binarnih operacij.
 - Definicija. Kadar pravimo, da množica zaprta za operacijo? Notranja operacija.
 - *Primer*. Navedi primeri in protiprimeri množic zaprtih za operacijo.
 - Definicija. Zunanja binarna operacija.
 - *Primer*. Navedi primer zunanji operaciji.
 - **Definicija.** Asociativna operacija.
 - **Definicija.** Kadar pravimo, da sta elementa x in y komutirata? Komutativna operacija.
 - *Primer*. Navedi primeri in protiprimeri asociativnih in komutativnih operacij.
 - **Definicija.** Nevtralni element.
 - Primer. Navedi primeri nevtralnih elementov za različne operacije na različnih množicah.
 - Trditev. Enoličnost nevtralnega elementa.
 - Definicija. Levi nevtralni element. Desni nevtralni element.
 - *Opomba*. Kako sta povazana levi in desni nevtralna elementa?
 - *Primer*. Ali lahko obstaja več levih nevtralnih elementov?

2. Polgrupe

- Kaj je algebrska struktura?
- **Definicija.** Polgrupa (S, \star) .
- *Primer*. Navedi primeri in protiprimeri polgrup.
- Trditev. Ali lahko oklepaje v polgrupe vedno odpravimo?
- **Definicija.** Potenca elementa $x \in S$.
- Primer. Kakšne formule veljajo za potence v polgrupi?

3. Monoidi

- **Definicija.** Monoid (S, \star) .
- *Primer*. Navedi primeri in protiprimeri monoidov.
- **Definicija.** Levi inverz. Desni inverz. Inverz. Obrnljiv element.
- Trditev. Kadar lahko krajšamo v monoidu?
- *Primer*. Koliko obrnljivih elementov ima vsak monoid?
- Primer. Naštej obrnljive elemente v $(\mathbb{N}_0,+), (\mathbb{Z},\cdot), (\mathbb{Q},\cdot), (\mathbb{R},\cdot), (\mathbb{C},\cdot).$
- *Primer*. Naj bo $\mathcal{F}(X)$ množica vseh funkcij iz X vase.
 - Kadar $f \in \mathcal{F}(X)$ ima levi inverz? Kadar jih ima več?
 - Kadar $f \in \mathcal{F}(X)$ ima desni inverz? Kadar jih ima več?
 - Kadar $f \in \mathcal{F}(X)$ ima inverz?
- **Trditev.** Ali so levi in desni inverzi elementa $x \in S$ sovpadata?
- Posledica. Kaj če ima nek element levi in desni inverz?
- Posledica. Kaj velja, če je element $x \in S$ obrnjiv in yx = 1?
- Posledica. Koliko lahko inverzov ima obrnjiv element monoida?
- Trditev. Ali je produkt obrnjivih elementov monoida obrnjiv? Kako dobimo inverz produkta?
- Opomba. Kako lahko definiramo potenco obrnjivega elementa monoida za vsa cela števila?

Rezultati vaj

- Ali je v končnem monoidu levi inverz avtomatično tudi desni inverz?
- Ali je element monoida obrnljiv, če obrnljiva neka njegova potenca?

3 Uvod v teorijo grup

1. Grupe

- Definicija. Grupa. Abelova grupa.
- Opomba. Zapiši definicijo grupe preko aksiomov. Enota. Inverz elementa.
- Opomba. Koliko so enot v grupi? Koliko inverzov ima vsak element? Računanje s potenci.
- *Opomba*. Multiplikativni in aditivni zapis. Dogovor o aditivni grupi.
- Trditev. Pravila krajšanja v grupi.
- **Definicija.** Končna grupa. Red grupe.
- Trditev. Kako iz monoida dobimo grupo? Množica obrnljivih elementov monoida.

2. Primeri grup

- Navedi primeri in protiprimeri številskih grup za seštevanje in množenje.
- Kaj je trvialna grupa?
- Kaj je $(\mathcal{F}(X))^*$? Permutacija. **Simetrična grupa** $\operatorname{Sim}(X)$ množie S. Ali je komutativna?
- Grupa permutacij S_n končne množice [n]:
 - Ali je vsaka permutacija produkt disjunktnih ciklov?
 - Ali je vsaka permutacija produkt transpozicij?
 - Sode in lihe permutacije. Predznak permutacije. Čemu je enak predznak produkta permutacij?
 - Čemu je enak red grupe S_n ?
- Množica vseh realnih $n \times n$ matrik $M_n(\mathbb{R})$:
 - Ali je Abelova grupa za seštevanje?
 - Kaj pa za množenje? **Splošna linearna grupa** $\mathrm{GL}_n(\mathbb{R})$. Ali je Abelova?
 - Ali lahko \mathbb{R} zamenjamo z poljubnim poljem?
- Opiši simetrije kvadrata. **Diedrska grupa** D_8 .
 - S čim je enolično določena simetrija?
 - Ali je D_8 Abelova?
- Diedrska grupa D_{2n} . Opiši elementi D_{2n} .
- **Diedrska grupa** D_4 simetrij pravokotnika, ki ne kvadrat.
- Direktni produkt grup G_1, G_2, \ldots, G_n . Direktna vsota grup.

3. Podgrupe

- **Definicija.** Podgrupa.
- Opomba. Vsaj koliko podgrup ima vsaka grupa? Trvialna podgrupa. Prava podgrupa.
- Opomba. Naj bo $H \leq G$. Ali je enota grupe G vsebovana v H?
- **Trditev.** 3 ekvivalantne trditve o podgrupe H grupe G.
- *Opomba*. Kako karakterizacije podgrupe zgledajo v aditivnem zapisu?
- **Posledica.** Kadar je končna podmnožica H grupe G podgrupa?
- Opomba. Kakšne oblike inverz vsakega elementa $x \in G$, če je G končna grupa?
- **Trditev.** Opiši podgrupe grupe $(\mathbb{Z}, +)$.
- Trditev. Ali je poljuben presek podgrup podgrupa?
- **Definicija.** Produkt podgrup H in K grupe G.
- *Opomba*. Ali je produkt podgrup nujno podgrupa.
- Trditev. Zadosten pogoj, da bi bil produkt podgrup podgrupa.
- *Opomba*. Kaj velja, če je G Abelova?

- 4. Primeri podgrup
 - Določi osnovne podgrupe v $(\mathbb{C},\cdot)^*.$ Ali so podgrupe tudi:
 - $\mathbb{Q}^+ = \{ x \in \mathbb{Q} \mid x > 0 \}.$
 - $\mathbb{R}^+ = \{ x \in \mathbb{R} \mid x > 0 \}.$
 - $-\mathbb{T} = \{z \in \mathbb{C} \mid |z| = 1\}$. Krožna grupa \mathbb{T} .
 - $-\mathbb{U}_n = \{z \in \mathbb{C} \mid z^n = 1\}.$ n-to koreni enote \mathbb{U}_n .
 - Alternirajoča grupa A_n .
 - Ali je diedrska grupa D_{2n} podgrupa v S_n ?
 - Pokaži da so podgrupe grupe $GL_n(F)$:
 - $-\operatorname{SL}_n(F) = \{A \in M_n(F) \mid \det(A) = 1\}$). Specialna linearna grupa SL_n .
 - $-O_n = \{A \in M_n(\mathbb{R}) \mid AA^T = I\}$. Ortogonalna grupa O_n . Specialna ortogonalna grupa SO_n .
 - $-U_n = \{A \in M_n(\mathbb{C}) \mid AA^H = I\}$. Unitarna grupa U_n . Specialna unitarna grupa SU_n .
 - Trditev. Konjugirana podgrupa podgrupe H.
 - Trditev. Center Z(G) grupe G.
 - Trditev. Centralizator $C_G(a)$ elementa $a \vee G$.
- 5. Odseki in Lagrangeev izrek

Naj boGgrupa in $H \leq G.$ Definiramo relacijo na Gs predpisom

$$\forall a, b \in G . a \sim b :\Leftrightarrow a^{-1}b \in H$$

- Trditev. Relacija \sim je ekvialenčna.
- **Definicija.** Ekvivalenčni razred elementa $a \in G$. Levi odsek grupe G po podgrupi H.
- Opomba. Kadar aH = H?
- Opomba. Kako pišemo odseke, če je G Abelova?
- *Primer*. Kaj so odseke, če:
 - $-G = (\mathbb{R}^2, +), H$ abscisna os.
 - $-G=\mathbb{C}^*, H=\mathbb{T}.$
 - $-G = S_n, H = A_n.$
- *Opomba*. S kakšno relacijo dobimo desni odseki?
- *Opomba*. Ali je grupa G disjunktna unija odsekov?
- **Definicija.** Faktorska (oz. kvocientna) množica.
- Opomba. Ali je G/H nujno grupa?
- Lema. Kadar sta dva odseka enaka?
- **Definicija.** Indeks podgrupe H v grupi G.
- **Izrek.** Lagrangeev izrek.
- Posledica. Kaj lahko povemo o moči vsake podgrupe končne grupe?
- 6. Grupa ostankov
 - Opomba. Naj bo G Abelova. Kako lahko definiramo seštevanje na G/H?
 - **Trditev.** Ali je (G/H, +) Abelova?
 - Naj bo $n \in \mathbb{N}$. Kadar pravimo da sta $a, b \in \mathbb{Z}$ kongruentni po modulu n?
 - Karakteriziruj kongruentnost z ostanki.
 - Opiši kongruentnost kot relacijo na Z.
 - *Primer.* Grupa ostankov \mathbb{Z}_n po modulu n.
 - Opomba. Ali za vsak $n \in \mathbb{N}$ obstaja vsaj ena grupa moči n?

7. Ciklične grupe

- Naj bo G grupa, $a \in G$. Kaj je $\langle a \rangle$? Ali je to podgrupa grupe G? Ali je Abelova?
- **Definicija.** Ciklična podgrupa. Ciklična grupa. Generator grupe.
- *Primer*. Ali so ciklične:
 - $-\mathbb{Z},\mathbb{Z}_n.$
 - $-\mathbb{U}_n$.
 - D_4 .
- **Definicija.** Naj bo G grupa. Naj bo $a \in G$. Red elementa a.
- *Primer*. Katere elemente v grupe G imajo red 1?
- *Primer*. Določi red:
 - $-1 v \mathbb{Z}, 1 v \mathbb{Z}_n.$
 - $-e^{\frac{2\pi i}{n}}$ v \mathbb{U}_n .
 - Transpozicij v S_n .
 - Simetrij v D_4 .
- **Trditev.** Karakterizacija reda elementa (kadar je enak $n \in \mathbb{N}$)?
- Posledica. Kadar je končna grupa ciklična?
- **Posledica.** Naj bo G končna grupa:
 - Kako so povezani redi elementov $a \in G$ in moč G?
 - Naj bo $a \in G$. Čemu je enako $a^{|G|}$?
- Posledica. Naj bo G končna grupa. Recimo, da je |G| praštevilo. Kaj lahko povemo o G?

8. Generatorji grup

- **Definicija.** Podgrupa generirana z množico X.
- *Opomba*. Zakaj je definicija smiselna?
- **Trditev.** Kako izgledajo elementi $\langle X \rangle$?
- Opomba. Kaj če je G Abelova?
- **Definicija.** Kadar pravimo, da je grupa G generirana z X? Generatorji grupe G.
- *Primer*. Obravnavaj primera:
 - S čim je generirana vsaka podgrupa grupe \mathbb{Z} ?
 - Naj bo $X \subseteq \mathbb{Z}$. Kaj je $\langle X \rangle$?
 - S čim je generirana grupa \mathbb{Q}^+ ?
 - S čim je generirana grupa D_{2n} ?
 - S čim je generirana grupa S_n ?
 - S čim je generirana grupa $A_n, n \geq 3$?
- **Definicija.** Končno generirana grupa.
- *Primer*. Ali je $(\mathbb{Z}, +)$ končno generirana?
- *Primer.* Pokaži, da Q ni končno generirana.

Rezultati z vaj

- 1. Grupe
 - Ali je polgrupa z deljenjem grupa?
 - Zadostni pogoj, da je grupa Abelova.
- 2. Grupa permutacij
 - Kako zapišemo permutacijo kot produkt transpozicij?
 - Kako dobimo inverz k-cikla?
 - Konjugiranje cikla.
 - Kadar pravimo, da permutaciji $\pi, \pi' \in S_n$ imata enako zgradbo disjunktnih ciklov?
 - Kako sta povezana komutativnost in konjugiranje?
 - S čim je generirana grupa S_n ?
- 3. Diedrska grupa
 - Grupa D_{∞} .
- 4. Podgrupe
 - Diagonalna podgrupa.
 - Kaj velja, če unija dveh podgrup podgrupa? Ali isto velja za unijo treh podgrup?
 - Zadostna pogoja, da je presek dveh končnih podgrup trivialen.
 - Naj bosta $H, G \leq G, H, G$ končni. Čemu je enaka |HK|?
- 5. Ciklične grupe
 - Kadar je \mathbb{Z}_n vsebuje podgrupo reda k? Alo je ta podgrupa enolična?
 - Kaj lahko povemo o vsake podrupe cilkične grupe?
 - Naj bo $k \in \mathbb{Z}_n$. Čemu je enak red(k)? Kadar je $\langle k \rangle = \mathbb{Z}_n$?
 - Kakšna je zveza med red(a) in $red(a^{-1})$, red(a) in $red(bab^{-1})$ ter red(ab) in red(ba)?
 - Koliko podgrup ima neskončna grupa?

4 Uvod v teorijo kolobarjev

- 1. Definicije kolobarja, obsega in polja
 - **Definicija.** Kolobar.
 - **Trditev.** 3 lastnosti kolobarja K:
 - Množenje z nevtralnim elementom $0 \in K$.
 - Množenje z nasprotnim elementom $-x \in K$. Množenje nasprotnih elementov.
 - Množenje z $-1 \in K$.
 - *Primer.* Trivialni (ničelni) kolobar.
 - Trditev. Naj bo K neničeln. Kaj lahko povemo o 0 in 1?
 - **Definicija.** Komutativen kolobar.
 - **Definicija.** Delitelj niča. Levi delitelj niča, desni delitelj niča.
 - *Primer*. Poišči delitelja niča v $M_2(\mathbb{R})$.
 - **Definicija.** Idempotent. Nilpotent.
 - Primer. Poišči idempotenti in nilpotenti v $M_2(\mathbb{R})$. Kako so povezani z delitelji niča?
 - Opomba. Pravilo krajšanja v kolobarju brez deliteljev niča.
 - **Definicija.** Cel kolobar.
 - **Definicija.** Obseg. Polje.
 - Trditev. Ali lahko obrnljiv element delitelj niča? Ali v obsegu so delitelji niča?
 - *Primer*. Ali je \mathbb{Z} cel kolobar? Ali je obseg?
- 2. Definicija algebre
 - **Definicija.** Vektorski prostor.
 - Trditev. 4 lastnosti vektorskega prostora.
 - **Definicija.** Algebra nad poljem F. Realna algebra. Kompleksna algebra.
 - *Primer*. Navedi osnovni primeri kolobarjev, obsegov, polj in algeber.
- 3. Primeri kolobarjev in algeber
 - Številski kolobarji, polja in algebre.
 - Algebra funkcij \mathbb{R}^X . Kaj dobimo, če je $X = \mathbb{N}$? Algebra realnih zaporedij.
 - Kolobar polinomov ene spremenljivke.
 - **Definicija.** Polinom f(X). Koeficienti polinoma f(X). Kaj so X^{i} ?
 - **Definicija.** Kadar sta polinoma enaka? Vsota polinomov. Produkt polinomov.
 - **Definicija.** Kolobar polinomov ene spremenljivke nad kolobarjem K. Oznaka.
 - **Trditev.** Karakterizacija komutativnosti kolobarja K[X].
 - **Trditev.** Kadar K[X] nima deliteljev niča?
 - **Posledica.** Kadar je K[X] cel kolobar?
 - Kako naravno postane K[X] algebra? Ali lahko nad K?
 - Kolobar formalnih potenčnih vrst K[[X]].
 - · Kolobar polinomov več spremenljivk.
 - **Definicija.** Monom.
 - **Definicija.** Kolobar polinomov dveh spremenljivk. Kolobar polinomov n spremenljivk.
 - Naj bo K cel kolobar. Kako ga povečamo do polja? Polje ulomkov celega kolobarja K.
 - **Definicija.** Relacija na $K \times K \setminus \{0\}$.
 - **Trditev.** Ali je ekvivalenčna? Oznaka za ekvivalenčni razred elementa $(a,b) \in K \times K \setminus \{0\}$.
 - **Definicija.** Seštevanje in množenje na $K \times K \setminus \{0\}$.
 - *Opomba*. Ali sta seštevanje in množenje dobro definirani.
 - **Trditev.** Ali s tem postane $K \times K \setminus \{0\}$ polje?
 - **Definicija.** Polje F ulomkov celega kolobarja K.
 - Opomba. Kako kolobar K vložimo v polje F? Kaj če je K že polje?
 - Opomba. Kaj je polje ulomkov kolobarja \mathbb{Z} ?
 - Definicija. Polje racionalnih funkcij.
 - Kolobar matrik $M_n(K)$ nad kolobarjem K.
 - Ali je komutativen? Ali ima delitelji niča?
 - Kako dobimo algebro?

- Kolobar endomorfizmov $\operatorname{End}_F(V)$ vektorskega prostora V nad poljem F.
 - Definicija. Linearna preslikava. Endomorfizem vektorskega prostora V.
 - **Definicija.** Seštevanje, množenje s skalarji na $\operatorname{End}_F(V)$.
 - Ali je $\operatorname{End}_F(V)$ algebra?
- Algebra kvaternionov \mathbb{H} .
 - Ali obstaja realna algebra lihe dimenzije več kot 1, ki je obseg?
 - Naj bo \mathbb{H} vektorski prostor z bazo $\{1, i, j, k\}$.
 - **Definicija.** Množenje na \mathbb{H} .
 - **Trditev.** Ali je \mathbb{H} algebra?
 - **Definicija.** Kvaternioni.
 - Opomba. Ali je \mathbb{H} komutativna?
 - **Definicija.** Konjugirani kvaternion.
 - **Trditev.** Ali je ℍ obseg?
 - Definicija. Kvaternionska grupa Q.
 - Opomba. Ali so $\mathbb{R}, \mathbb{C}, \mathbb{H}$ edini končnorazsežne realne algebre, ki so obsegi?
- Direktni produkt kolobarjev.
 - Definicija. Direktni produkt kolobarjev.
 - *Opomba*. Kadar direktni produkt kolobarjev ima delitelje niča? Ali je direktni produkt polj tudi polje?
 - **Definicija.** Direktni produkt algeber.
- 4. Podkolobarji, podalgebre in podpolja
 - **Definicija.** Podkolobar L.
 - *Primer.* Zakaj moramo zahtevati, da $1 \in L$?
 - **Definicija.** Podalgebra.
 - *Opomba*. Kaj je podalgebra v jeziku linearne algebre in podkolobarjev?
 - **Definicija.** Podpolje F.
 - *Primer*. Zakaj ni zahtevamo, da $1 \in F$?
 - **Definicija.** Razširitev polja.
 - *Primer*. Navedi številski primeri ražširitev.
 - Trditev. Karakterizacija podkolobarja.
 - Trditev. Karakterizacija podalgebre.
 - **Definicija.** Podobseg.
 - Trditev. Karakterizacija podpolja (podobsega).
 - Opomba. Ali je presek podkolobarjev, podprostorov, podalgeber in podpolj spet ustrezna podstruktura?
 - *Primer*. Primeri podkolobarjev, podalgeber, podpolj.
 - Navedi primer številskega zaporedja podkolobarjev.
 - Kako lahko opišemo odnos med \mathbb{R} in \mathbb{C} ?
 - Ali je K[X] podkolobar v kolobarju K[[X]]? Kaj pa v K[X,Y]?
 - Kakšen odnos med celimi kolobarji in njihovimi polji ulomkov?
 - Množica vseh diagonalnih matrik v $M_n(\mathbb{R})$.
 - Množica vseh zgoraj trikotnih matrik v $M_n(\mathbb{R})$. Kaj pa množica vseh strogo zgoraj trikotnih matrik?
 - **Algebra** C(X) vseh zveznih funkcij.
 - Množica c konvergentnih zaporedij v algebre realnih zaporedij.
 - Primer. Kolobar Gaussovih celih števil $\mathbb{Z}[i]$.
 - Primer. Center Z(K) kolobarja K.

- 5. Kolobarji ostankov in karakteristika kolobarja.
 - *Opomba*. Ali je vsak kolobar vsebuje kopijo celih števil?
 - **Definicija.** Karakteristika kolobarja K.
 - Trditev. 3 lastnosti kolobarja s karakteristiko $n \in \mathbb{N}$.
 - Posledica. Kako karakteristiko lahko ima polje?
 - **Definicija.** Množenje v \mathbb{Z}_n .
 - **Trditev.** Ali je \mathbb{Z}_n komutativen kolobar? **Kolobar** \mathbb{Z}_n ostankov po modulu n.
 - Lema. Kaj lahko povemo o končnem celem kolobarju?
 - Opomba. Ali predpostavka o komutativnosti odveč? Kaj lahko sklepamo?
 - **Trditev.** Kadar je \mathbb{Z}_p polje?
 - *Primer*. Navedi osnovni primeri kolobarjev in polj s različno karakterizacijo.
 - **Izrek.** Vali Fermatov izrek.
- 6. Generatorji kolobarjev, algeber in polj
 - **Definicija.** Naj bo K kolobar in $X \subseteq K$. Podkolobar, generiran z X.
 - **Definicija.** Generatorji. Končno generiran kolobar.
 - *Opomba*. Zapiši isti definiciji za obseg, polje in algebro.
 - Trditev. Opiši podkolobar, generiran z množico X.
 - Trditev. Opiši podalgebro, generirano z množico X.
 - Trditev. Opiši podpolje, generirano z množico X.
 - *Primer*. Primeri generatorjev.
 - Kaj je podkolobar kolobarja ℂ, generiran z 1?
 - Kaj je podpolje kolobarja ℂ, generirano z 1?
 - Kaj je podkolobar kolobarja \mathbb{C} , generiran z i?
 - Kaj je podpolje kolobarja \mathbb{C} , generirano z i?
 - Kaj je podkolobar kolobarja $\mathbb{R}[X]$, generiran z X?
 - S čim je generirana realna algebra $\mathbb{R}[X]$?
 - S čim je generirana algebra $M_2(\mathbb{R})$? Čemu je enaka dim $M_2(\mathbb{R})$.
 - Kaj je podkolobar kolobarja $M_2(\mathbb{R})$, generiran z E_{12} in E_{21} ?

Rezultati z vaj

- 1. Kolobarji, obsegi, polja
 - Kako iz kolobarja brez enote lahko naredimo kolobar z enoto?
 - Boolov kolobar. Primer Boolova kolobarja.
- 2. Algebre
 - Ali je Z lahko algebra nad kakim poljem?
 - ullet Naj bo A končnorazsežna algebra.
 - Kaj velja za vsak $a \in A \setminus \{0\}$?
 - Kaj če ima $a \in A$ levi ali desni inverz?
 - Recimo, da je A tudi obseg. Kaj lahko povemo o vsaki podalgebri?
 - Algebra kvaternionov.
 - Čemu je enak $Z(\mathbb{H})$? Čemu je enak Z(Q)?
 - Kaj lahko povemo o enačbi $h^2 + \alpha h + \beta = 0$ za vsak $h \in \mathbb{H}$?
 - Kolobar \mathbb{Z}_n .
 - Kadar je $k \in \mathbb{Z}_n$ obrnljiv?
 - Koliko je obrn
ljivih elementov v $\mathbb{Z}?$ Koliko v $\mathbb{Z}_n?$ Kaj če je
 n praštevilo?

5 Homomorfizmi

- 1. Pojem homomorfizma
 - *Primer*. Cayleyeva tabela. Izomorfnost D_4 in $\mathbb{Z}_2 \oplus \mathbb{Z}_2$.
 - *Primer*. Homomorfizem iz kolobarja \mathbb{Z} v kolobar \mathbb{Z}_n .
 - *Opomba*. Kako lahko nasploh opišemo homomorfizem?
 - **Definicija.** Homomorfizem grup (vektorskih prostorov, kolobarjev, algeber).
 - Definicija. Izomorfizem, epimorfizem, monomorfizem (oz. vložitev), endomorfizem, avtomorfizem.
 - Primer. Ali je $\varphi : \mathbb{R} \to M_2(\mathbb{R}), \ \varphi(x) = \begin{bmatrix} x & 0 \\ 0 & 0 \end{bmatrix}$ homomorfizem kolobarjev oz. algeber?
 - Primer. Zakaj je smiselen izraz "vložitev"?
 - Naj bosta G_1 in G_2 grupi. Kako lahko vložimo G_1 v $G_1 \times G_2$?
 - Kako lahko vložimo S_n v S_{n+1} ?
 - Kako lahko polje realnih števil vložimo v polje kompleksnih števil?
 - Kako lahko vložimo kolobar K v kolobar K[X]?
 - Kako lahko vložimo cel kolobar v njegovo polje ulomkov?
 - Trditev. Kam homomorfizem grup slika enoto in inverz?
 - Opomba. Aditivni zapis prejšnje trditve. Kam homomorfizmi kolobarjev oz. algeber slikajo 0 in 1?
 - Trditev. Kam homorfizem kolobarjev slika obrnljive elemente?
 - Definicija. Slika homomorfizma (homomorfna slika).
 - Trditev. Kaj lahko povemo o slike homomorfizma grup (kolobarjev, algeber)?
 - **Definicija.** Jedro homomorfizma. Trivialno jedro.
 - Trditev. Karakterizacija injektivnosti homomorfizma.
 - *Primer*. Izomorfizem vs. trivialni homomorfizem grup.
 - Trditev. Kaj lahko povemo o kompozitumu homomorfizmov?
 - Trditev. Kaj lahko povemo o inverzni preslikavi izomorfizma?
 - Posledica. Kaj lahko povemo o množice vseh avtomorfizmov grupe (kolobarja, algebre) za operacijo o?
 - **Definicija.** Izomorfni grupi.
 - Trditev. Ali je izomorfnost ekvivalenčna relacija?
 - *Primer*. Kaj se ohranja pri izomorfizmih?
 - Trditev. Karakterizacija izmorfnosti končnorazsežnih vektorskih prostorov.

2. Primeri homomorfizmov grup

- Naj bo G Abelova. Ali je $x \mapsto x^{-1}$ avtomorfizem? Kaj pa $x \mapsto x^m$? Kaj če $x \mapsto x^{-1}$ avtomorfizem?
- Izomorfnost Z in $n\mathbb{Z}$, kjer $n \in \mathbb{N}$.
- Ali obstajajo netrivialni homomorfizmi iz \mathbb{Z}_n v \mathbb{Z} ?
- Čemu je izomorfna vsaka neskončna ciklična grupa? Čemu pa končna ciklična grupa?
- Ali sta \mathbb{Z} in \mathbb{Z}_n edini ciklični grupi?
- Ali je $z \mapsto |z|$ epimorfizem grup \mathbb{C}^* in \mathbb{R}^* ? Kaj je njegovo jedro?
- Izomorfnost \mathbb{R} in \mathbb{R}^+ (eksponentna funkcija).
- Ali je $x \mapsto e^{ix}$ epimorfizem grup \mathbb{R} in \mathbb{T} ? Kaj je njegovo jedro?
- Epimorfizem iz S_n v ($\{1,-1\},\cdot$). Kaj je njegovo jedro?
- Epimorfizem iz $GL_n(F)$ v F^* . Kaj je njegovo jedro?
- Naj bosta G_1 in G_2 grupi. Projekcija na G_1 . Vložitev G_1 v $G_1 \times G_2$.
- Kleinova četverka. Čemu je izomorfna vsaka grupa reda 4?
- Notranji avtomorfizem φ_a grupe G. Kaj lahko povemo o konjugiranih podgrupih?
- Grupa Aut(G) vseh avtomorfizmov. Grupa Inn(G) vseh notranjih avtomorfizmov.
- Epimorfizem iz grupe G v grupo Inn(G). Kaj je njegovo jedro?

3. Primeri homorfizmov kolobarjev

- \bullet Naj bo K komutativen kolobar. **Evalvacijski homomorfizem.**
 - **Definicija.** Vrednost (ali evalvacija) polinoma v elementu $x \in K$.
 - **Definicija.** Evalvacijski homomorfizem iz K[X] v K.
 - Kaj je jedro evalvacijskega homomorfizma?
 - Kako ta homomorfizem lahko pospološimo na polinome več spremenljivk?
- Kako idejo evalvacijskega homomorfizma lahko prenesemo v kolobarje funkcij? Kaj je jedro?
- Notranji avtomorfizem φ_a kolobarja K.
- Naj bo V n-rasežen vektroski prostor nad F. Izomorfnost algeber $\operatorname{End}_F(V)$ in $M_n(F)$.
- \bullet Naj bo K komutativen kolobar z praštevilsko karakteristiko p. Brucove sanje. Frobeniusov endomorfizem.
- Čemu so izomorfni naslednji podkolobarji kolobarja $M_2(F)$:

The second so isomorphic masternial policy
$$-K_1 = \left\{ \begin{bmatrix} x & 0 \\ 0 & x \end{bmatrix} \mid x \in \mathbb{R} \right\}.$$

$$-K_2 = \left\{ \begin{bmatrix} x & 0 \\ 0 & y \end{bmatrix} \mid x, y \in \mathbb{R} \right\}.$$

$$-K_3 = \left\{ \begin{bmatrix} x & y \\ -y & x \end{bmatrix} \mid x, y \in \mathbb{R} \right\}.$$

$$-K_4 = \left\{ \begin{bmatrix} z & w \\ -\overline{w} & \overline{z} \end{bmatrix} \mid z, w \in \mathbb{C} \right\}.$$

6 Kvocientne strukture

- 1. Podgrupe edinke in kvocientne grupe, I
 - *Primer*. Navedi primer grupe G in podgrupe H, v kateri operacija $(aH) \cdot (bH) = (ab)H$ ni dobro definirana na G/H (element reda 2).
 - **Definicija.** Podgrupa edinka.
 - Opomba. Ali za $N \triangleleft G$ velja, da $N \leq G$?
 - *Primer*. Primeri edink.
 - Vsaj koliko podgrup edink ima vsaka grupa?
 - Katere podgrupe Abelove grupe so edinke?
 - Ali je Z(G) edinka? Ali je vsaka podgrupa Z(G) edinka?
 - Navedi primeri podgrup, ki niso edinke.
 - Netrivialna edinka. Prava edinka.
 - **Definicija.** Enostavna grupa.
 - Trditev. 3 pogoja, ekvivalentnih definicije edinke.
 - *Opomba*. Ali je podgrupa edinka enaka svojim konjugiranim podgrupam?
 - Trditev. Kaj lahko povemo o
 - Produktu podgrupe in edinke.
 - Produktu edink.
 - Preseku edink.
 - **Definicija.** Naj bo $N \triangleleft G$. Definicija množenja na G/N.
 - Izrek. Ali je G/N grupa? Epimorfizem $\pi: G \to G/N$. Kaj je ker π ?
 - **Definicija.** Kvocientna grupa. Kanonični epimorfizem.
 - *Primer*. Navedi osnovni primer kvocientne grupe.
 - *Opomba*. Naj bo G končna in $N \triangleleft G$. Čemu je enaka |G/N|?
 - **Trditev.** Kadar je $N \subseteq G$ edinka v G (jedro homomorfizma).
 - **Definicija.** Kvocientni vektorski prostor.
- 2. Ideali in kvocientni kolobarji, I
 - **Definicija.** Ideal. Levi (desni) ideal.
 - *Primer*. Primeri idealov.
 - Vsaj koliko idealov ima kolobar?
 - Naj bo K kolobar in $a \in K$. Ali je aK desni ideal? Glavni ideal (a). Glavni ideali v \mathbb{Z} .
 - Kaj je množica matrik oblike $\begin{bmatrix} x & y \\ 0 & 0 \end{bmatrix}, x,y \in \mathbb{R} \text{ v } M_2(\mathbb{R})? \text{ Poišči še drug podoben ideal}.$
 - Trditev. Naj bo $I \subseteq K$ enostranski ali dvostranski ideal. Zadostni pogoj, da I = K.
 - *Opomba*. Ali je ideal zaprt za množenje? Ali je podkolobar?
 - *Opomba*. Kaj so enostranski oz. dvostranski ideali v obsegu?
 - **Definicija.** Enostaven kolobar.
 - **Definicija.** Vsota idealov. Produkt idealov.
 - Trditev. Kaj lahko povemo o
 - Vsote idealov.
 - Produktu idealov.
 - Preseku idealov.
 - *Opomba*. Ali trditev velja za enostranske ideale?
 - **Primer.** Uredi po vsebovanosti IJ, $I \cap J$, I+J. Naj bo $I=4\mathbb{Z}$, $J=6\mathbb{Z}$. Izračunaj IJ, $I \cap J$, I+J.
 - **Definicija.** Naj bo $I \triangleleft K$. Definicija seštevanja in množenja na K/I.
 - Izrek. Ali je K/I kolobar? Epimorfizem $\pi: I \to K/I$. Kaj je ker π ?
 - **Definicija.** Kvocientni kolobar. Kanonični epimorfizem.
 - *Primer*. Navedi osnovni preimer kvocientnega kolobarja.
 - **Trditev.** Kadar je $I \subseteq K$ ideal v K (jedro homomorfizma)?
 - Definicija. Ideal algebre. Kvocientna algebra. Kanonični epimorfizem.
 - Izrek. Ali so operacije dobro definirane? Jedro Kanoničniga epimorfizma.

- 3. Izrek o izomorfizmu
 - Izrek. 1. izrek o izomorfizmu.
 - Nariši diagram homomorfizmov iz izreka.
- 4. Podgrupe edinke in kvocientne strukture, II
 - Izrek. Čemu je izomorfna vsaka cilična grupa?
 - Posledica. Kadar je netrivialna grupa G nima pravih netrivialnih podgrup?
 - Lema. Naj bo G grupa, $a \in G$.
 - Naj bo red(a) = n. Kadar je $a^m = 1, m \in \mathbb{Z}$?
 - Naj bo $a \neq 1$ in $a^p = 1$ za neko praštevilo p. Kaj potem red(a)?
 - Naj bo red(a) = n in $N \triangleleft G$. Kaj lahko povemo o redu odseka aN?
 - Izrek. Cauchyjev izrek za Abelove grupe.
 - Lema. Naj bo $\varphi: G \to G$ homomorfizem grup.
 - Recimo, da $H' \leq G'$. Kaj lahko povemo o $\varphi^*(H')$?
 - Recimo, da $N' \triangleleft G'$. Kaj lahko povemo o $\varphi^*(N')$?
 - Recimo, da $H \leq G$. Kaj lahko povemo o $\varphi_*(H)$?
 - Recimo, da $N \triangleleft G$ in je φ epimorfizem. Kaj lahko povemo o $\varphi_*(N)$?
 - **Izrek.** Korespondenčni izrek.
- 5. Primeri ednik in kvocientnih grup
 - Pokaži da $G/\{1\} \cong G$ in $G/G \cong \{1\}$.
 - Kadar je $H \leq \mathbb{Z}_n$?
 - Naj bo $G = (\mathbb{R}^2, +), H$ abscisna os. Čemu je izomorfna G/H?
 - Čemu je izomorfna grupa C^*/\mathbb{T} ?
 - Čemu je izomorfna grupa S_n/A_n ?
 - Čemu je izomorfna grupa $\operatorname{GL}_n(F)/\operatorname{SL}_n(F)$?
 - Naj bo G_1, G_2 grupi. $\overline{G}_1 := \{(x_1, 1) \mid x_1 \in G_1\} \leq G_1 \times G_2$. Čemu je izomorfna $G_1 \times G_2/\overline{G_1}$?
 - Čemu je izomorfna grupa G/Z(G)?
- 6. Ideali in kvocientni kolobarji, II
 - **Definicija.** Maksimalni ideal.
 - Izrek. Naj bo M ideal komutativnega kolobarja. Kadar je M maksimalni ideal?
 - Izrek. Kaj lahko povemo o vsakem pravem idealu kolobarja?
 - *Opomba*. Ali isti rezultat velja za enostranski ideali?
- 7. Primeri idealov in kvocientnih kolobarjev
 - Pokaži da $K/\{0\} \cong K$ in $K/K \cong \{0\}$.
 - Kadar je $p\mathbb{Z}$ maksimalni ideal kolobarja \mathbb{Z} ?
 - Naj bo K kolobar. Naj bo I množica vseh polinomov iz K[X] s konstantnim členom 0.
 - Ali je I ideal kolobarja K[X]? Kako lahko zapišemo vsak odsek f(x) + I?
 - Čemu je izomorfen kolobar K[X]/I?
 - Kadar je I maksimalni ideal?
 - Naj bo $x \in [a, b]$.
 - Ali je $I_x := \{ f \in C[a,b] \mid f(x) = 0 \}$ ideal kolobarja C[a,b]?
 - Čemu je izomorfen kolobar $C[a,b]/I_x$?
 - Ali je I_x maksimalni ideal?
 - Poišči podobni kot prej ideali direktnega produkta kolobarjev. Čemu je izomorfen kvocient?
 - **Prapolje** F_o polja F.
 - Čemu je lahko enako char F_0 ?
 - Čemu je izomorfno F_0 ?
 - Nekaj o polinomih TODO