Computer Graphics

Prof. Dr. Elnomery Zanaty

Aims

 Introduce basic graphics concepts and terminology

• Base for development of 2D interactive computer graphics programmes (OGO 2.3)

The textbook

• D. Hearn, M.P. Baker, "Computer Graphics

with OpenGL", 3rd Edition, 2004, ISBN 0-13-015390-7

Available at the bookstore

Literature

Computer Graphics - Principles and Practice Foley - van Dam - Feiner - Hughes 2nd edition in C - Addison and Wesley

Computer Graphics - C Version Donald Hearn - M. Pauline Baker 2nd edition - international edition Prentice Hall

Overview

Introduction

Geometry

Interaction

Raster graphics

Introduction

What is Computer Graphics?

Applications

Computer Graphics

Raster/vector graphics

Hardware

Computer Graphics

Computer Graphics is ubiquitous:

- Visual system is most important sense:
 - High bandwidth
 - Natural communication
- Fast developments in
 - Hardware
 - Software

Computer Graphics

Supporting Disciplines

- Computer science (algorithms, data structures, software engineering, ...)
- Mathematics (geometry, numerical, ...)
- Physics (Optics, mechanics, ...)
- Psychology (Colour, perception)
- Art and design

Applications

- Computer Aided Design (CAD)
- Computer Aided Geometric Design (CAGD)
- Entertainment (animation, games, ...)
- Geographic Information Systems (GIS)
- Visualization (Scientific Vis., Inform. Vis.)
- Medical Visualization

•

Computer Graphics

Current:

- Information visualisation
- •Interactive 3D design
- Virtual reality

Past: Rasterization, Animation

Interactive Computer Graphics

Graphics pipeline

Representations in graphics

Vector Graphics

• Image is represented by continuous geometric objects: lines, curves, etc.

Raster Graphics

• Image is represented as an rectangular grid of coloured squares

Vector graphics

- Graphics objects: geometry + colour
- Complexity ~ O(number of objects)
- Geometric transformation possible without loss of information (zoom, rotate, ...)
- Diagrams, schemes, ...
- Examples: PowerPoint, CorelDraw, ...

Raster graphics

- Generic
- Image processing techniques
- Geometric Transformation: loss of information
- Complexity ~ O(number of pixels)
- Jagged edges, anti-aliasing
- Realistic images, textures, ...
- Examples: Paint, PhotoShop, ...

Conversion

Hardware

- Vector graphics
- Raster graphics
- Colour lookup table
- 3D rendering hardware

Vector Graphics Hardware

Display list

continuous & smooth lines

no filled objects

random scan

refresh speed depends on complexity of the scene move 10 20

line 20 40

• • •

char O

char R

Raster Graphics Hardware

Frame buffer

jaggies (stair casing)

filled objects

(anti)aliasing

refresh speed independent of scene complexity

pixel

scan conversion resolution bit planes 20

Colour Lookup Table

3D rendering hardware

Geometric representation: Triangles

Viewing: Transformation

Hidden surface removal: z-buffer

Lighting and illumination: Gouraud shading

Realism: texture mapping

Special effects: transparency, antialiasing

2D geometric modelling

- Coordinates
- Transformations
- Parametric and implicit representations
- Algorithms

Coordinates

Point: position on plane

$$\mathbf{p} = (p_{x}, p_{y})$$
$$\mathbf{x} = (x, y)$$

$$\mathbf{x} = (x_1, x_2)$$

$$\mathbf{x} = x_1 \, \mathbf{e}_1 + x_2 \, \mathbf{e}_2, \quad \mathbf{e}_1 = (1, 0), \quad \mathbf{e}_2 = (0, 1)$$

• Vector: direction and magnitude $\mathbf{v} = (v_x, v_y)$, etc.

Vector arithmetic

Addition of two vectors:

$$\mathbf{v} + \mathbf{w} = (v_{x} + w_{x}, v_{y} + w_{y})$$

• Multiplication vector-scalar:

$$\alpha \mathbf{v} = (\alpha v_{x}, \alpha v_{y})$$

Coordinate systems

Why transformations?

Model of objects

world coordinates: km, mm, etc.

hierarchical models:

```
human = torso + arm + arm + head + leg + leg

arm = upperarm + lowerarm + hand ...
```

Viewing

zoom in, move drawing, etc.

Transformation types

• Translate according to vector **v**:

$$\mathbf{t} = \mathbf{p} + \mathbf{v}$$

• Scale with factor s:

$$\mathbf{s} = s\mathbf{p}$$

• Rotate over angle α:

$$r_{\rm x} = \cos(\alpha)p_{\rm x} - \sin(\alpha)p_{\rm y}$$

 $r_{\rm y} = \sin(\alpha)p_{\rm x} + \cos(\alpha)p_{\rm y}$

Homogeneous coordinates

- Unified representation of rotation, scaling, translation
- Unified representation of points and vectors
- Compact representation for sequences of transformations
- Here: convenient notation, much more to it

Homogeneous coordinates

• Extra coordinate added:

$$\mathbf{p} = (p_x, p_y, p_w)$$
 or $\mathbf{x} = (x, y, w)$

• Cartesian coordinates: divide by w

$$\mathbf{x} = (x/w, y/w)$$

• Here: for a point w = 1, for a vector w = 0

Matrices for transformation

$$\mathbf{x'} = \mathbf{M}\mathbf{x}, \text{ or}$$

$$\begin{pmatrix} x' \\ y' \\ w' \end{pmatrix} = \begin{pmatrix} m_{11} & m_{12} & m_{13} \\ m_{21} & m_{22} & m_{23} \\ m_{31} & m_{32} & m_{33} \end{pmatrix} \begin{pmatrix} x \\ y \\ w \end{pmatrix}, \text{ or}$$

$$x' = m_{11}x + m_{12}y + m_{13}w$$

$$y' = m_{21}x + m_{22}y + m_{23}w$$

$$w' = m_{31}x + m_{32}y + m_{33}w$$

Direct interpretation

$$\mathbf{x'} = \mathbf{M} \mathbf{x}, \text{ or}$$

$$\mathbf{x'} = (\mathbf{a} \quad \mathbf{b} \quad \mathbf{t}) \mathbf{x}, \text{ or}$$

$$\begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} = \begin{pmatrix} a_x & b_x & t_x \\ a_y & b_y & t_y \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$

$$\mathbf{b}$$

$$\mathbf{a}$$

$$\mathbf{b}$$

$$\mathbf{a}$$

$$\mathbf{b}$$

$$\mathbf{a}$$

$$\mathbf{a}$$

$$\mathbf{a}$$

$$\mathbf{c}$$

Translation matrix

Translation:

$$\mathbf{x}' = \mathbf{T}(t_x, t_y)\mathbf{x}$$
, with

$$\mathbf{T}(t_x, t_y) = \begin{pmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{pmatrix}$$

Scaling matrix

Scaling:

$$\mathbf{x}' = S(s_x, s_y)\mathbf{x}$$
, with

$$\mathbf{S}(s_x, s_y) = \begin{pmatrix} s_x & 0 & 0 \\ 0 & s_y & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Rotation matrix

Rotation:

$$\mathbf{x}' = \mathbf{R}(\alpha) \mathbf{x}$$
, with

$$R(\alpha) = \begin{pmatrix} \cos \alpha & -\sin \alpha & 0 \\ \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Sequences of transformations

Sequences of transformations can be described with a single transformation matrix, which is the result of concatenation of all transformations.

Order of transformations

$$x'' = T(2,3)R(30)x$$

$$x'' = R(30)T(2,3)x$$

Matrix multiplication is not commutative. Different orders of multiplication give different results.

Order of transformations

• Pre-multiplication:

$$x' = M_n M_{n-1} ... M_2 M_1 x$$

Transformation M_n in global coordinates

• Post-multiplication:

$$x' = M_1 M_2 ... M_{n-1} M_n x$$

Transformation M $_{\rm n}$ in local coordinates, i.e., the coordinate system that results from application of

$$M_1M_2...M_{n-1}$$

Window and viewport

Viewport:

Area on screen to be used for drawing.

Unit: pixels (screen coordinates)

Note: y-axis often points down

Window:

Virtual area to be used by application

Unit: km, mm,... (world coordinates)

Window/viewport transform

- Determine a matrix M, such that the window $(w_{x1}, w_{x2}, w_{y1}, w_{y2})$ is mapped on the viewport $(v_{x1}, v_{x2}, v_{y1}, v_{y2})$:
- $A = T(-w_{x1}, -w_{y1})$
- B = S(1/(w_{x2} - w_{x1}), 1/(w_{y2} - w_{y1})) A
- $C = S(v_{x2}-v_{x1}, v_{y2}-v_{y1})B$
- $M = T(v_{x1}, v_{y1}) C$

Forward and backward

 (v_{x2}, v_{y2})

Viewport

x':screen coordinates

 $(\mathbf{v}_{\mathbf{x}1},\,\mathbf{v}_{\mathbf{y}1})$

Drawing: (meters to pixels)

Use x' = Mx

Drawing

Picking

Window:

 $(\mathbf{w}_{\mathrm{x2}},\,\mathbf{w}_{\mathrm{y2}})$

x: user coordinates

 $(\mathbf{w}_{\mathbf{x}1}, \mathbf{w}_{\mathbf{v}1})$

Picking:(pixels to meters)

Use $\mathbf{x} = \mathbf{M}^{-1}\mathbf{x}$

Implementation example

Suppose, basic library supports two functions:

- MoveTo(x, y: integer);
- LineTo(x, y: integer);
- x and y in pixels.

How to make life easier?

State variables

• Define state variables:

Viewport: array[1..2, 1..2] of integer;

Window: array:[1..2, 1..2] of real;

Mwv, Mobject: array[1..3, 1..3] of real;

Mwv: transformation from world to view

Mobject: extra object transformation

Procedures

Define coordinate system:
 SetViewPort(x1, x2, y1, y2):
 Update Viewport and Mwv
 SetWindow(x1, x2, y1, y2):
 Update Window and Mwv

Procedures (continued)

• Define object transformation:

```
ResetTrans:
   Mobject := IdentityMatrix
Translate(tx, ty):
   Mobject := T(tx,ty)* Mobject
Rotate(alpha):
   Mobject := R(tx,ty)* Mobject
Scale(sx, sy):
   Mobject := S(sx, sy)^* Mobject
```

Procedures (continued)

- Handling hierarchical models:
 - PushMatrix();

Push an object transformation on a stack;

– PopMatrix()

Pop an object transformation from the stack.

Or:

- GetMatrix(M);
- SetMatrix(M);

Procedures (continued)

• Drawing procedures:

```
MyMoveTo(x, y):
    (x', y') = Mwv*Mobject*(x,y);
    MoveTo(x', y')
MyLineTo(x,y):
    (x', y') = Mwv*Mobject*(x,y);
    LineTo(x', y')
```

Application

```
DrawUnitSquare:
                                      Main program:
 MyMoveTo(0, 0);
                                        Initialize;
 MyLineTo(1, 0);
                                        Translate(-0.5, -0.5);
 MyLineTo(1, 1);
                                        for i := 1 to 10 do
 MyLineTo(0, 1);
                                        begin
 MyLineTo(0, 0);
                                           Rotate(pi/20);
                                           Scale(0.9, 0.9);
Initialize:
                                           DrawUnitSquare;
  SetViewPort(0, 100, 0, 100);
                                        end;
  SetWindow(0, 1, 0, 1);
```

Puzzles

- Modify the window/viewport transform for a display y-axis pointing downwards.
- How to maintain aspect-ratio world->view?
 Which state variables?
- Define a transformation that transforms a unit square into a "wybertje", centred around the origin with width w and height h.

Geometry

- Dot product, determinant
- Representations
- Line
- Ellipse
- Polygon

Good and bad

- Good: symmetric in x and y
- Good: matrices, vectors
- Bad: y = f(x)

- Good: dot product, determinant
- Bad: arcsin, arccos

Dot product

Notation: $\mathbf{v} \cdot \mathbf{w}$ (sometimes (\mathbf{v}, \mathbf{w}))

Definition:

$$\mathbf{v} \cdot \mathbf{w} = v_x w_x + v_y w_y$$

Also:

$$\mathbf{v} \cdot \mathbf{w} = |\mathbf{v}| |\mathbf{w}| \cos \theta \quad (0 \le \theta \le \pi)$$

with θ angle between \mathbf{v} and \mathbf{w} ,
and $|\mathbf{v}|$ is the length of vector \mathbf{v}

Dot product properties

$$\mathbf{v} \cdot \mathbf{w} = \mathbf{w} \cdot \mathbf{v}$$

 $(\mathbf{v} + \mathbf{w}) \cdot \mathbf{u} = \mathbf{v} \cdot \mathbf{u} + \mathbf{w} \cdot \mathbf{u}$
 $(\lambda \mathbf{v}) \cdot \mathbf{w} = \lambda \mathbf{v} \cdot \mathbf{w}$
 $\mathbf{v} \cdot \mathbf{v} = |\mathbf{v}|^2$
 $\mathbf{v} \cdot \mathbf{w} = 0$ iff \mathbf{v} and \mathbf{w} are perpendicular

Determinant

$$Det(\mathbf{v}, \mathbf{w}) = v_x w_y - v_y w_x$$
$$= |\mathbf{v}| |\mathbf{w}| \sin \theta$$

 θ is angle from v to w

$$0 < \theta < \pi : Det(\mathbf{v}, \mathbf{w}) > 0$$

$$\pi < \theta < 2\pi : Det(\mathbf{v}, \mathbf{w}) < 0$$

 $Det(\mathbf{v}, \mathbf{w}) = 0$ iff \mathbf{v} and \mathbf{w} are parallel

Curve representations

• Parametric: $\mathbf{x}(t) = (x(t), y(t))$

• Implicit: $f(\mathbf{x}) = 0$

Parametric line representation

Given point **p** and vector **v**:

$$\mathbf{x}(t) = \mathbf{p} + \mathbf{v}t$$

Given two points **p** and **q**:

$$\mathbf{x}(t) = \mathbf{p} + (\mathbf{q} - \mathbf{p})t$$
, or
$$= \mathbf{p}t + \mathbf{q}(1-t)$$

Parametric representation

- $\mathbf{x}(t) = (x(t), y(t))$
- Trace out curve:

 $MoveTo(\mathbf{x}(0));$

for i := 1 to N do LineTo($\mathbf{x}(i*\Delta t)$);

• Define segment: $t_{min} \le t \le t_{max}$

Implicit line representation

(x-p).n = 0
 with n.v = 0
 n is normal vector:

$$\mathbf{n} = [-\mathbf{v}_{\mathbf{y}}, \mathbf{v}_{\mathbf{x}}]$$

• Also:

$$ax+by+c=0$$

Implicit representation

$$f(\mathbf{x}) = 0$$
: curve
 $f(\mathbf{x}) = C$: contours
 $f = 0$ divides plane in
two areas: $f > 0$ and $f < 0$
 $|f(\mathbf{x})|$: measure of distance
of \mathbf{x} to curve

Circle

Parametric:

$$(x, y) = (r \cos \alpha, r \sin \alpha)$$

Implicit:

$$x^2 + y^2 - r^2 = 0$$

Ellipse

Parametric:

$$(x, y) = (a \cos \alpha, b \sin \alpha)$$

Implicit:

$$\left(\frac{x}{a}\right)^2 + \left(\frac{y}{b}\right)^2 - 1 = 0$$

Generic ellipse

Parametric:

$$\mathbf{x}(\alpha) = \mathbf{c} + \mathbf{a}\cos\alpha + \mathbf{b}\sin\alpha$$

Implicit:

$$|M\mathbf{x}| = 1$$
, with $M = (\mathbf{a} \quad \mathbf{b} \quad \mathbf{c})^{-1}$

Some standard puzzles

- Conversion of line representation
- Projection of point on line
- Line/Line intersection
- Position points/line
- Line/Circle intersection

Conversion line representations

Given line:

$$\mathbf{p}(s) = \mathbf{a} + \mathbf{u}s;$$

Find implicit representation:

$$\mathbf{n} \cdot \mathbf{x} + c = 0.$$

First, determine normal **n**.

n must be \perp on **u**, hence we set :

$$\mathbf{n} = (-u_y, u_x)$$

a must be on the line, hence:

$$c = -\mathbf{n} \cdot \mathbf{a}$$

Projection point on line

Project point **q** on line $\mathbf{p}(s) = \mathbf{a} + \mathbf{u}s$:

$$\mathbf{q'} = \mathbf{a} + \cos \theta |\mathbf{q} - \mathbf{a}| \frac{\mathbf{u}}{|\mathbf{u}|}$$

Use $(\mathbf{q} - \mathbf{a}) \cdot \mathbf{u} = |\mathbf{q} - \mathbf{a}| |\mathbf{u}| \cos \theta$:

$$\mathbf{q'} = \mathbf{a} + \frac{(\mathbf{q} - \mathbf{a}) \cdot \mathbf{u}}{|\mathbf{u}| |\mathbf{u}|} \mathbf{u}, \quad \text{or}$$

$$\mathbf{q'} = \mathbf{a} + \frac{(\mathbf{q} - \mathbf{a}) \cdot \mathbf{u}}{\mathbf{u} \cdot \mathbf{u}} \mathbf{u}$$

 $\cos\theta |\mathbf{q} - \mathbf{a}|$: length w

$$\frac{\mathbf{u}}{|\mathbf{u}|}$$
: unit vector along \mathbf{u}

Intersection of line segments

Find intersection of line segments:

$$\mathbf{p}(s) = \mathbf{a} + \mathbf{u}s, \ 0 \le s \le 1 \text{ and}$$

$$q(t) = b + vt, 0 \le t \le 1.$$

At intersection:

$$\mathbf{p}(s) = \mathbf{q}(t)$$

Solve for *s* and *t* (next sheet);

Check if $0 \le s \le 1$ and $0 \le t \le 1$;

If so, intersection is $\mathbf{p}(s)$.

Solving for s and t

$$\mathbf{p}(s) = \mathbf{q}(t)$$
, or $\mathbf{a} + \mathbf{u}s = \mathbf{b} + \mathbf{v}t$, or

$$(\mathbf{u} \quad \mathbf{v}) \begin{pmatrix} s \\ t \end{pmatrix} = \mathbf{b} - \mathbf{a}, \text{ or }$$

$$\begin{pmatrix} s \\ t \end{pmatrix} = (\mathbf{u} \quad \mathbf{v})^{-1}(\mathbf{b} - \mathbf{a}), \text{ or }$$

$$\begin{pmatrix} s \\ t \end{pmatrix} = \frac{1}{u_x v_y - u_y v_x} \begin{pmatrix} v_y & -v_x \\ -u_y & u_x \end{pmatrix} \begin{pmatrix} b_x - a_x \\ b_y - a_y \end{pmatrix}$$

Position points/line

Check if points **a** and **b** are on the same side of line $\mathbf{p}(s) = \mathbf{c} + \mathbf{u}s$

Use $Det(\mathbf{u}, \mathbf{v}) = |\mathbf{u}| |\mathbf{v}| \sin \theta$:

Points are on the same side if

 $Det(\mathbf{u}, \mathbf{a} - \mathbf{c})$ and $Det(\mathbf{u}, \mathbf{b} - \mathbf{c})$ have

the same sign.

Line/circle intersection

Find intersections of:

line: $\mathbf{p}(t) = \mathbf{a} + \mathbf{u}t$, $0 \le t \le 1$ and

circle: $\mathbf{x} \cdot \mathbf{x} = r^2$.

At intersection:

$$\mathbf{p}(t) \cdot \mathbf{p}(t) = r^2$$
, or
 $(\mathbf{a} + \mathbf{u}t) \cdot (\mathbf{a} + \mathbf{u}t) = r^2$, or
 $\mathbf{u} \cdot \mathbf{u}t^2 + \mathbf{a} \cdot \mathbf{u}t + \mathbf{a} \cdot \mathbf{a} - r^2 = 0$.

Solve quadratic equation for t:

0,1, or 2 solutions.

Polygons

- Sequence of points $\mathbf{p_i}$, i = 1, ..., N, connected by straight lines
- Index arithmetic: modulo N $\mathbf{p_0} = \mathbf{p_N}$, $\mathbf{p_{N+1}} = \mathbf{p_1}$, etc.

Regular N-gon

$$\mathbf{p}_i = (r\cos\alpha_i, r\sin\alpha_i)$$

$$\alpha_i = 2\pi(i+1/2)/N - \pi/2$$

triangle

square

pentagon

hexagon

octagon

Convex and concave

• Convex:

each line between two
 arbitrary points inside
 the polygon does not
 cross its boundary

• Concave:

not convex

Convexity test

Assume polygon is oriented counterclockwise.

Polygon is concave, if

$$\operatorname{Det}(\mathbf{p}_{i} - \mathbf{p}_{i-1}, \mathbf{p}_{i+1} - \mathbf{p}_{i}) > 0 \text{ for all } i$$

Polygon area and orientation

$$a = \sum_{i}^{N} Det(\mathbf{p}_{i} - \mathbf{c}, \mathbf{p}_{i+1} - \mathbf{c}) / 2, \quad \mathbf{c} \text{ is } arbitrary \text{ point}$$

$$area = |a|$$

a > 0: counterclockwise orientation

a < 0: clockwise orientation

Point/polygon test

Given a polygon. Test if a point c is inside or outside.

Solution:

Define a line $L = \mathbf{c} + \mathbf{v}t, t \ge 0$.

Let *n* be the number of crossings of L with the polygon. If *n* is odd: point is inside, else it is outside.

Point/polygon test (cntd.)

- Beware of special cases:
 - Point at boundary
 - v parallel to edge
 - $-\mathbf{c} + \mathbf{v}t$ through vertex

Puzzles

- Define a procedure to clip a line segment against a rectangle.
- Define a procedure to calculate the intersection of two polygons.
- Define a procedure to draw a star.
- Same, with the constraint that the edges $\mathbf{p_{i-1}} \, \mathbf{p_i}$ and $\mathbf{p_{i+2}} \, \mathbf{p_{i+3}}$ are parallel.