به نام آفریدگار دینامیک ۲

دانشگاه صنعتی امیرکبیر

پروژه درس دینامیک ۲

استاد درس: دكتر افشين تقوائي پور

دانشگاه صنعتی امیرکبیر (پلی تکنیک تهران) دانشکده مهندسی مکانیک

ترم دوم سال تحصیلی ۱۴۰۱–۱۴۰۰

حل تمرین: علیرضا صابری

در این پروژه هدف استخراج معادلات ریاضیاتی حاکم بر سیستم نشان داده شده در شکل ۱، به روش معادلات لاگرانژ است. همانطور که در شکل ۱ مشاهده می شود، سیستم مذکور از یک دیسک به جرم m_1 و شعاع m_2 یک ذره به جرم m_3 و طول اولیه m_4 و طول اولیه m_5 و یک فنر با سفتی m_5 نشکیل شده است. دیسک m_4 بدون لغزش بر روی سطح نشان داده شده در حال غلتش است.

شكل ١- شماتيك سيستم مفروض

مقادیر عددی پارامترهای ذکر شده، در جداول ۱ و ۲ آمده است.

جدول ۱- جرم و ابعاد اجسام موجود در مسئله

شماره جسم	مشخصات	جرم (kg)	ابعاد (m)
١	دیسک همگن	$m_1 = 1.5$	$r = \cdot . $
٢	ذره	$m_{\scriptscriptstyle Y} = \cdot . \Delta$	_
٣	میله همگن	$m_{r} = 1$	$L = \cdot .$

جدول ۲- سفتی و طول اولیه فنرهای موجود در مسئله

شماره فنر	سفتی (N/m)	طول اوليه (m)
١	$k_{\scriptscriptstyle 1} = {\scriptscriptstyle 1}$	$d_{\gamma} = \gamma$
۲	$k_{\scriptscriptstyle m Y}=\Delta \cdot$	$d_{\scriptscriptstyle m Y} = \cdot . m Y$

 $\frac{m_l u d_l u d$

جدول ۳- فشردگی اولیه فنرها

شماره فنر	فشردگی اولیه (m)
١	$cmp_{k_{\lambda}}=-\cdot$. γ \hat{I}
٢	$cmp_{k_{\scriptscriptstyle extsf{T}}}=$ ۳ ناشی از وزن اجسام

با توجه به موارد ذکر شده، به سوالات مطرح شده در زیر پاسخ دهید.

سوالات:

۱- تعداد درجات آزادی سیستم دینامیکی نشان داده شده در شکل ۱ را با استدلال تعیین نمایید.

۲- ضمن مشخص نمودن مختصههای تعمیمیافته و قیدهای موجود در مسئله، انرژی جنبشی، انرژی پتانسیل
 (گرانشی و فنر) و نیروهای تعمیمیافته را محاسبه نمایید.

۳- با توجه به مورد قبل و با استفاده از معادله لاگرانژ، معادلات حرکت سیستم را استخراج نمایید (بدین منظور می توانید از نرمافزار MATLAB استفاده نمایید).

۴- معادلات استخراج شده را برای بازه زمانی ۰ تا ۱۰ ثانیه با استفاده از حل گرهای موجود در نرمافزار MATLAB حل نمایید.

 * - معادلات حاکم بر مسئله را با روش نیوتن-اویلر استخراج و آن را برای بازه زمانی * تا ۱۰ ثانیه با استفاده از حل * رهای موجود در نرمافزار MATLAB حل نموده و نتایج حا صل شده را با نتایج قسمت * صحه گذاری نمایید (**اختیاری**).

۶*- مکانیزم نشان داده شده در شکل ۱ را در نرمافرا^۱ MSC Adams View شبیهسازی نموده و نتایج حاصل شده را با نتایج قسمت ۴ صحه گذاری نمایید (**اختیاری**).

ٔ استفاده از هر نرمافزار شبیه سازی دیگری که قابلیت حل مسائل به صورت دینامیکی را داشته باشد، مورد قبول است.