PROJEKT 3 Piotr Waszak k37

Porównanie szybkości działania 4 metod sortowania:

- Insertion Sort
- Selection Sort
- Heap Sort
- Cocktail Sort
- 1. Swój projekt zacząłem od metody Selection Sort. Kod dostępny na githubie pod nazwa SelectionSortWsb.
 - A.) Tworzenie generatorów tablic:
 - W Mainie wypisałem wszystkie funkcje generujące dane liczby: czyli generator liczb rosnących, malejących, losowych, stałej i V kształtnej.
 - funkckcje przeze mnie napisane są bardzo łatwe dlatego omówie przygotowanie V kształtnej. Funkcja SortVshape() pobiera liczby losowe, dzieli długość tablicy na pół, a następnie sprawdza na która strone powinny przejść wartości.
 - B.)Kod SelectionSort
 - Wyszukujemy w ciągu źródłowym element o najmniejszym kluczu, zamieniamy go z pierwszym elementem ciągu źródłowego ciąg posortowany poszerza się o jeden element.
 - C.) Wyniki zapisane zostały za pomocą StreamWriter sw = new StreamWriter(path).
 - Z 50 000 wyników, wybrałem 17 pomiarów.

	Α	В	С	D	E	F	G	- 1
1	Tablica	Miejsce	ASC	DSC	RAND	CONS	Vshape	
2	0				100000		100000000000000000000000000000000000000	
3	3125		236		1			
4	6250						100000000000000000000000000000000000000	
5	9375		170			171	181	
6	12500							
7	15625	6	143					
8	18750						129	
9	21875			133	128	282	121	
10	25000	9	212	119	112	104	107	
11	28125	10	96	101	98	91	91	
12	31250	11	78	96	86	78	78	
13	34375	12	65	70	70	69	64	
14	37500	13	52	59	56	53	52	
15	40625	14	40	74	42	40	39	
16	43750	15	26	28	28	27	26	
17	46875	16	13	14	14	14	14	
18	50000	17	14	0	0	0	1	
19			1		l î			
20								
21								
22								
23								
24								
25								
26								
27								
28								
29								
30								
31								

Wykres:

Selection Sort

Selection Sort wydaję mi się, że najszybciej poradził sobie z generatorem liczb rosnących, chociaż na wykresie widzimy przeskok, aczkolwiek wydaję mi się że w tym momencie musiało pojawić się jakieś opciążenie procesora. Natomiast gorzej poradził sobie z liczbami malejącymi.

- 2. Insertion Sort, metoda poprzez wstawianie, na githubie pod nazwa InsertionSortWsb.
 - Kod sortowania: w pierwszym przebiegu rozpoczynamy sortowanie od drugiej karty z puli (pierwsza jest już posortowana), w każdym kroku wykonuje dwa kroki:
 - A. bierze pierwszą tablice z lewej strony z nieposortowanego (prawego) ciągu.
 - B. wstawia ją we właściwe miejsce w posortowanym (lewym) ciągu odpowiednio przesuwając posortowane wcześniej i nieposortowane elementy w celu zrobienia miejsca na wstawianą liczbe.
- Wyniki 17 pomiarów z 50 000 licza

	A	В	С	D	E	F	G	- 0
1	Miejsce	Tablica	ASC	DSC	RAND	CONS	VSHAPE	
2	3		0	0	0	0		
3	2	3125	17	31	1	14	38	
4	3	6250	1	38	7	0		
5	4	9375	1	58		0	74	
6	. 5	12500	0					
7	- 6	15625	1	93	43	0	114	
8	7	18750	1	112	29	1	131	
9	8	21875	0	130	111	0	237	
10	9	25000	0	148	73	0	130	
11	10	28125	0	168	34	1	112	
12	31	31250	1	186	126	্ৰ	93	
13	12	34375	1	205		1	74	
14	13	37500	0	223			57	
15	14	40625	1	242	85	1	37	
16	15	43750	1	273	450	1	19	
17	16	46875	0	279	161	0	0	
18	17	50000	0	298	117	0	19	
19								
20								
21								
22	Į.							
23								
24								
25	Ī							
26	7							
27]							
28								
29								
30	Į.						, and the second	
31								
14 4	► H \Arkusz	1 (ASC /DSC /	RAND VSH	<	i.			

Wykres:

Insertion Sort, najszybciej poradziło sobie, tak samo jak w przypadku z Selection Sort, z liczbami rosnącymi, oraz stałymi. Najgorzej zaś z liczbami losowymi, oraz długo zajęło mu sortowanie liczb V kształnych.

3. Cocktail Sort na githubie pod nazwa CocktailSortWsb. sortowanie polegające na zapamiętaniu nie tylko faktu czy w trakcie przejścia dokonano jakiś zmian, ale również pozycji ostatniej zamiany co pozwala zawężać dolną i górną granicę przeglądania stosowaniu naprzemiennych kierunków przebiegów w celu zniwelowania wrażliwości na niekorzystną konfigurację danych wejściowych.

Ta metoda niestety okazała się bezużyteczna dla liczb rosnących, oraz liczby stałej.

Wvniki dla pomiarów:

	A	B	C	D	E	T T	G	H
1	Tablica	Miejsce	ASC	DSC	RAND	CONS	VSHAPE	
2		0	0	0	0	0		
3	2	3125	0	883	1296	0	775	
4	13	6250	0	792	1222	0	543	
5	4	9375	0	621	926	0	379	
6	5	12500	0	497	793	0	217	
7	6	15625	0	369	617	0	55	
8	7	18750	0	252	462	0	45	
9	8	21875	0	124	250	0	140	
10	9	25000	0	0	197	0	222	
11	10	28125	0	124	206	0	295	
12	11	31250	0	252	409	0	373	
13	12	34375	0	369	785	0	484	
14	13	37500	0	497	846	0	538	
15	14	40625	0	621	1046	0	616	
16	15	43750	0	792	1235	0	758	
17	16	46875	0	883	1312	0	799	
18	17	50000	0	1225	1189	0	881	
19								
20								
21								

Przykład pomiarów DSC.

	U	E	E 1	U	F)	- 1
1225 L		2		0	1225	
1225 F)	49998		3125	883	
1138 L		3		6250	792	
1138 F	D:	49997		9375	621	
1088 L		4		12500	497	
1088 F)	49996		15625	369	
1723 L	•0	5		18750	252	
1723 F	0	49995		21875	124	
1112 L		6		25000	0	
1112 F	2	49994		28125	124	
1139 L		7		31250	252	
1139 F)	49993		34375	369	
1014 L		8		37500	497	
1014 F)	49992		40625	621	
989 L	.0	9		43750	792	
989 F	0	49991		46875	883	
988 L		10		50000	0	
988 F	2	49990				
990 L		11				
990 F	0	49989				
987 L		12				

Wykres:

Sortowanie mieszane/koktajlowe najszybciej poradziło sobie z liczbami V kształtnymi, a najgorzej z liczbami losowymi.

4. Heap Sort na githubie pod nazwa HeapSortWsb. Metoda ta to tzw tworzenie kopca. Podstawową zaletą algorytmu jest to, że do stworzenia kopca wykorzystać można tę samą tablicę, w której początkowo znajdują się nieposortowane elementy. Dzięki temu uzyskuje się stałą złożoność pamięciową. Początkowo do kopca należy tylko pierwszy element w tablicy. Następnie kopiec rozszerzany jest o drugą, trzecią i kolejne pozycje tablicy, przy czym przy każdym rozszerzeniu, nowy element jest przemieszczany w górę kopca, tak aby spełnione były relacje pomiędzy węzłami.

Niestety, mi nie udało się sprawdzić czasu tej metody, zaimplementowałem stopWatch, w najrozsądniejsze miejsce moim zdaniem, jednak wyniku są bardzo marne.

	A	В	С	D	E	F	G
1	Pomiar	Tablica	ASC	DSC	RAND	CONS	VSHAPE
2	1	0		0	0	0	0
3	2	3125		1	0	1	1
4	3	6250		0	1 1	0	0
5	4	9375	1	1	1	1	1
6	5	12500		0	0	0	1
7	6	15625		0	1 1	1	0
8	7	18750		1	1 0	0	1
9	8	21875		0	1	1	0
10	9	25000	8	1	1 0	1	1
11	10	28125		1	1 1	1	0
12	11	31250		0	0	0	1
13	12	34375		0	1	0	1
14	13	37500		0	1 0	1	0
15	14	40625		1	1	0	1
16	15	43750		1	1 0	1	0
17	16	46875	8	1	1	0	0
18	17	50000		0	1 0	O	0
19		an a		1	1	-	

Wykres:

Bezsensowne jest odczytywanie, czegokolwiek z tego wykresu, aczkolwiek było takie polecenie. W przeciwieństwie do Sortowania Koktajlowego tutaj przynajmniej każda funkcja została przesortowana, jednak niestety nie otrzymałem satysfakcjonujących wyników.

Podsumowując, metode powinniśmy wybrać pod liczby, które chcemy posortować. Np liczby rosnące, nie jesteśmy w stanie posortowować metodą wstawiania.

Jednak w mojej ocenie najszybszą metodą jest metodą Koktajlowa, a najwolniejsza to Selekcji. Szkoda, że ciężko mi cokolwiek powiedzieć o metodzie stokowej, aczkowlwiek naprawdę nie miałem pomysłu, aby poprawnie zaimplemenotwać zegarek.