Bias-Variance Tradeoff:
It is very important to know the definitions
It is very important to know the definitions of Bias (4) Variance as a Data Scientist because of plays a vital role in assessing the quality of a Model.
Bias: - It is a phenomenon that skews the result of an algorithm in favour (07) against an idea. Explaination:
Consider an idea cus Training data], if the model
data points accurately, it implies that the
model has Low Bias If the model was
unable to capture the pattern (or) data points
from the training data accurately, it implies
that the model has Thigh Bias.
Hence, Bias is a measurement of how accurately

Hence, Bias is a measurement of how accurately. a model can capture a pattern in a Training. Dataset.

Variance: - Variance refors to the change
in the model when using different portions
(ON) subsets of the training (ON) test datasets.
Explaination:
Consider we have a dataset with
(N) data points and out of that we have
(N) data points and out of that we have Selected a subset of training data (SI) and as the left over samples for
testing the Model P.e (S,1).
SI -> Train Data - Test (T1) SI -> Test Data - Error
Consider, we trained the model using SI, and tested the model on SI and obtained the test Error as (TI).
Similarity, next time have selected different training set (S2) and
different training ser (52) and obtained the test Error as (T2).
S2 -> Train data.] -> Test (72) S2' -> Test data
S2' -> Test data Error

If the difference between different test

Errors i.e (Ti) and (Ta) is high, it

implies [High Variance] (or, high variability

on the Test Errors. Else, if the difference

between different test Errors i.e (Ti) f(T2)

is low, it implies how variance.

Thereby, High variance implies that the fest Error varies greatly based on the Selection of the Training dataset.

if you select different training samples, and found that the difference between the test Errors is almost same (07) Low.

means Low Variance.

three models: -Consider me have Underfit:-0 Generalized model (07)

In the Overfit model, the model captures all the training data points precisely but fails to predict the output if the model is tested on unseen data. Therefore, the training Error = 0 Since, It captures all the data points in training Set precisely. => [Low Bias] In overfitted model the test Error varies greatly based on the selection of the training dataset. Therefore High Variance. (0x) high vouidbility in test error. Overfit -> Low Bias & High Variance. In the Underfit model, the model fails to capture the pattern from the training dataset, this implies high training Error => | High Bias. |

In Underfit model, even if you select different

Hilry

toraining samples to train the model,
the différence between test Errors will
be almost same 9.e
1 0 m / 12 1 and CO
be almost same 9.e [Low Variance.]
Underfit -> High Blas & Low Variance.
From above, it is dear that as a Data
Cos tist use should always try to
Scientist we should always try to build a model which has Low Bias
& Low Variance i.e Perfect Model
(OY)
Generalized Model
in the training dataset and also should
in the training dataset and asso should
also have low test Error for different
training Samples.
Like this we can assess the quality
of a Machine Learning Model using
Bias-Variance Tradeoff.