青岛鼎信通讯股份有限公司技术文档

载波转 GPRS 模块型式规范

V1.0

2016-03-04 发布

2016-03-04

目录

1	范围	 2
2	规范性引用文件	 2
3	术语和定义	 2
	3.1 通信单元 communication unit	 2
	3.2 载波频率范围 Carrier-frequency Range	 2
	3.3 载波侧标称阻抗 Nominal Impedance on line side	 2
	3.4 误码率 Bit Error Rate	 2
	3.5 线路传输速率 Data Transmission Rate over Line	 3
4	载波转 GPRS 模块组成	 3
5	外形结构	 3
	5.1 载波转 GPRS 模块外形	 3
	5.2 外壳及其防护性能	
	5.2.1 机械强度	
	5.2.2 阻燃性能	 3
	5.3 接线端子	 3
	5.4 电气间隙和爬电距离	 3
	5.5 外形及安装尺寸	 4
6	技术要求	 4
	6.1 气候环境条件	 4
	6.2 工作电源	 4
	6.3 电力线載波	 4
	6.3.1 信号频率	 4
	6.3.2 输出信号电平限值	 4
	6.3.3 带外传导骚扰电平	 5
	6.4 电气安全要求	 5
	6.4.1 绝缘电阻	 5
	6.4.2 绝缘强度	
	6.4.3 冲击电压	
	6.4.4 电磁兼容性要求	
	6.4.5 电压暂降和短时中断抗扰度	
	6.4.6 工频磁场抗扰度	
	6.4.7 射频辐射电磁场抗扰度	
	6.4.8 静电放电抗扰度	
	6.4.9 电快速瞬变脉冲群抗扰度	
	6.4.10 振荡波抗扰度	
	6.4.11 射频场感应的传导抗扰度	
	6. 4. 12 浪涌抗扰度	
	6.4.13 无线电干扰抑制	 7

7	通信接口	7
8	材料及工艺要求	7
	8.1 线路板及元器件	
	8.2 采集器上盖	
	8.3 接线端子	8
	8.4 翻盖	8
9	标志标识	8
	9.1 产品标志	8
	9.2 包装标志和标识	8
	9.3 通信模块标识	8

前言

为规范载波转GPRS模块设备技术指标,指导XX电网公司系统各单位载波转GPRS模块设备的建设、改造、设计、验收及运行工作,依据国家和行业的有关标准、规程和规定,特制定本规范。

本技术规范由XX电网公司XX部提出。

本技术规范由XX电网公司XX部归口并解释。

本技术规范起草单位:青岛鼎信通讯股份有限公司。

载波转 GPRS 模块型式规范

1 范围

本规范对载波转GPRS模块型式提出了具体要求,包括气候环境条件、外形结构、材料及工艺要求、通信接口等。

本规范适用于XX电网公司系统各单位载波转GPRS模块设备采购、改造、设计、验收、运行工作的技术管理。

2 规范性引用文件

下列标准所包含的条文,通过在本规范中引用而构成本规范的条文。本规范出版时,所示出版均为有效。虽有标准都会被修订,使用本规范的各方应探讨使用下列标准最新版本的可能性。下列文件中若对同一内容定义了不同指标和要求,则按较高指标和要求执行,

- GB 4208-2008 外壳防护等级(IP代码)
- GB/T 5169.11-2006 电工电子产品着火危险试验 第 11 部分: 灼热丝/热丝基本试验方法 成品的 灼热丝可燃性试验方法
- GB/T 16935.1-2008 低压系统内设备的绝缘配合 第1部分:原理、要求和试验
- Q/GDW 1374.2-2013 电力用户用电信息采集系统技术规范 第 2 部分:集中抄表终端技术规范
- Q/GDW 1374.3-2013 电力用户用电信息采集系统技术规范 第3部分:通信单元技术规范

3 术语和定义

Q/GDW 377-2009、Q/GDW1373-2013、Q/GDW 1374-2013、Q/GDW1375-2013、Q/GDW 1376-2013、Q/GDW 1379-2013界定的术语和定义适用于本部分。

3.1 通信单元 communication unit

用于电力用户用电信息采集系统主站与采集终端之间、采集终端与采集器,以及采集器/采集终端 与电表之间本地通信的通信模块或通信设备。

3.2 载波频率范围 Carrier-frequency Range

供电力线载波系统使用的全部频率范围。

3.3 载波侧标称阻抗 Nominal Impedance on line side

载波输入输出电路技术特性要求的阻抗。

3.4 误码率 Bit Error Rate

在一给定的时间内,接收到的错误比特数与接收到的比特总数的比值。

3.5 线路传输速率 Data Transmission Rate over Line

载波信号在电力线上的数据传输速率。

4 载波转 GPRS 模块组成

载波转GPRS主机、载波转GPRS从机、载波转GPRS转接模块

5 外形结构

5.1 载波转 GPRS 模块外形

同一类型的载波转GPRS主机、从机、转接模块外形结构在外形尺寸、安装尺寸、接线端子、通信接口、铭牌、标志标识上应符合本部分中所规定的要求。

5.2 外壳及其防护性能

5.2.1 机械强度

载波转GPRS模块的外壳应有足够的强度,外物撞击造成的变形不应影响其正常工作。

5.2.2 阻燃性能

非金属外壳应符合GB/T 5169.11的阻燃要求。

5.3 接线端子

模块对外的连接线应经过接线端子,强电端子和弱电端子分开排列,具备有效的绝缘隔离。

端子排的最小电气间隙和爬电距离应符合本部分4.8的要求。

端子排的阻燃性能应符合GB/T 5169.11的阻燃要求。

5.4 电气间隙和爬电距离

裸露的带电部分对地和对其它带电部分之间,以及出线端子螺钉对金属盖板之间应具有表1规定的最小电气间隙和爬电距离。对于工作在海拔高度2000m以上的终端的电气间隙应按GB/T 16935.1的规定进行修正。

额定电压	电气间隙	爬电距离
V	mm	mm
U≤25	1	1.5
25 <u≤60< td=""><td>2</td><td>2</td></u≤60<>	2	2
60 <u≤250< td=""><td>3</td><td>4</td></u≤250<>	3	4
250 <u≤380< td=""><td>4</td><td>5</td></u≤380<>	4	5

表 1 最小电气间隙和爬电距离

参比温度为23℃,参比湿度为40%~60%。

5.5 外形及安装尺寸

- ——主机外形尺寸为150mm(长) ×120mm(宽) ×54mm(高),外形及安装尺寸详见附录A。
- ——从机外形尺寸为90mm(长) ×121mm(宽) ×36mm(高),外形及安装尺寸详见附录B。
- ——国网13规范串口转接模块外形尺寸为75 mm(长)×69 mm(宽)×36.5 mm(高),外形及安装尺寸详见附录C。
- ——国网09规范串口转接模块外形尺寸为71 $mm(长) \times 66 mm(宽) \times 35 mm$ (高),外形及安装尺寸详见附录D。

6 技术要求

6.1 气候环境条件

通信单元正常运行的工作环境应符合用载波转GPRS模块的要求,分类见表2。

			1 10 1 10 10 11 11			
		空气	温度	湿度		
场所类型	级别	范 围 ℃	最大变化率 a ℃/h	相对湿度 b %	最大绝对湿度 g/m³	
遮蔽场所	C2	−25~+55	0.5	10~100	29	
户 外	C3	-40∼+70	1	10, < 100	35	
协议特定	CX	/				

表 2 气候环境条件分类

6.2 工作电源

载波转GPRS模块可采用工频交流电源或直流电源,工作电源电压允许偏差为额定值的-20%~20%。 现场安装的载波转GPRS模块功耗要求见表3。

表 3 通信模块的功耗要求

模块类型	静 态 功 耗	动 态 功 耗
主机	≤2W	≤9W
从机	≤1.5W	≤3W

6.3 电力线載波

6.3.1 信号频率

采用低压电力线窄带载波通信时,其载波信号频率范围应为 $3kHz\sim500kHz$,优先选择IEC 61000-3-8规定的电力部门专用频带 $9kHz\sim95kHz$ 。

6.3.2 输出信号电平限值

a 温度变化率取 5min 时间内平均值。

b 相对湿度包括凝露。

输出信号电平限值见表4,电平测量均在GB/T 6113.102-2008 第4章和附录A的 $50\Omega/50\mu$ H+ 5Ω (9kHz \sim 150kHz) 和 $50\Omega/50\mu$ H (>150kHz) 的V型人工电源网络上。

表 4 输出信号电平限值

工作频率 kHz	输出电平限值(峰值) dB(μV)	测量带宽
3~9	134	200Hz
9~95	带宽<5kHz, 134~120 (随频率的对数呈线性减少) 带宽≥5kHz, 134	200Hz
95~148.5	122	200Hz
148.5~500	120	9kHz

6.3.3 带外传导骚扰电平

带外传导骚扰电平限值见表5。

表 5 带外骚扰电平限值

频 率 范 围 MHz	骚扰电平限值(准峰值) dB(μV)	测量带宽
3kHz~9 kHz	89	100Hz
9kHz~150kHz	89~66	200Hz
150kHz~500 kHz	66~56 (随频率的对数呈线性减少)	9kHz
500kHz~5MHz	56	9kHz

6.4 电气安全要求

6.4.1 绝缘电阻

各电气回路对地和各电气回路之间的绝缘电阻要求如表6。

表6 绝缘电阻

额定绝缘电压		绝 缘 电 阻 MΩ		
V	正常条件	湿热条件	V	
U≤60	≥10	≥2	250	
60 <u≤250< td=""><td>≥10</td><td>≥2</td><td>500</td></u≤250<>	≥10	≥2	500	

6.4.2 绝缘强度

电源回路对地应耐受500V(<60V直流电源回路)或2500V(220V交流电源回路)的50Hz的交流电压, 历时1min的绝缘强度试验。试验时不得出现击穿、闪络现象,泄漏电流应不大于5mA。

6.4.3 冲击电压

电源回路、信号输入回路、信号输出回路各自对地和输入回路、输出回路和电源回路之间,应耐受如表7中规定的冲击电压峰值,正负极性各5次。试验时应无破坏性放电(击穿跳火、闪络或绝缘击穿)现象。

试验回路 冲击电压峰值 试验回路 冲击电压峰值 直流电源对地 500V 信号输入回路对输出回路 500V 4000V 交流电源对地 5000V 信号输入回路对电源回路 信号输入/输出对地 500V 信号输出回路对电源回路 4000V

表7 冲击电压峰值

6.4.4 电磁兼容性要求

载波转 GPRS 模块应在表 6 所列的电磁骚扰环境下能正常工作,骚扰对主、从机工作影响程度用试验结果评价等级表示。

评价等级A: 骚扰对主、从机工作无影响,试验时和试验后主、从机均能正常通信。

评价等级B: 骚扰使主、从机暂时丧失通信功能,骚扰后不需人工干预能自行恢复通信功能。

6.4.5 电压暂降和短时中断抗扰度

在电源电压突降及短时中断时,主、从机不应发生死机或损坏,电源电压恢复后应能自动恢复正常通信。

电磁骚扰源	严酷等级	骚扰施加值	施加端口	评价等级要求
工频磁场		400A/m	整机	A
叶梅梅针由磁 权	3	10V/m	整机	A
射频辐射电磁场	4	30V/m	整机	A
静电放电	4	8kV	外壳和操作部分	A/B
电快速瞬变脉冲群		1.0kV (耦合)	通信线	A
电伏逐瞬文脉冲研	4	4.0kV	电源端口	A/B
振荡波	2	1.0kV (共模)	信号输入/输出端口	A/B
振荡波	4	2.5kV (共模) , 1.25kV (差模)	电源端口	A/B
射频场感应的 传导骚扰	3	10V	电源端口	A
浪涌	2	1.0kV (共模)	信号输入/输出端口	A/B
4区4用	4	4.0kV (共模), 2.0kV (差模)	电源端口	A/B

表8 电磁兼容性要求

6.4.6 工频磁场抗扰度

在表8所列严酷等级的工频磁场影响下,主、从机不应发生死机或损坏,应能正常通信。

6.4.7 射频辐射电磁场抗扰度

在表 8 所列严酷等级的射频辐射电磁场影响下,主、从机不应发生死机或损坏,应能正常通信。

6.4.8 静电放电抗扰度

有外封装的主、从机,在表8所列严酷等级的节点放电骚扰下,主、从机不应发生死机或损坏;允 许出现复位或短时通信中断现象。

6.4.9 电快速瞬变脉冲群抗扰度

在表8所列严酷等级的电快速瞬变脉冲群骚扰下,主、从机不应发生死机或损坏;允许出现复位或短时通信中断现象。

6.4.10 振荡波抗扰度

在表8所列严酷等级的振荡波骚扰下,主、从机不应发生死机或损坏;允许出现复位或短时通信中断现象。

6.4.11 射频场感应的传导抗扰度

在表 8 所列严酷等级的射频场感应的传导骚扰下,主、从机不应发生死机或损坏,应能正常通信。

6.4.12 浪涌抗扰度

在表 8 所列严酷等级的振荡波骚扰下,通主、从机不应发生死机或损坏;允许出现复位或短时通信中断现象。

6.4.13 无线电干扰抑制

除电力线载波和微功率无线通信单元,主、从机的无线电干扰抑制应符合 GB 9254—2008 的 B 级设备的要求。

7 通信接口

载波转 GPRS 模块通信接口应采用标准化设计,要满足采用不同通信方式的通信模块可互换的要求,结构见本部分附录 A。

8 材料及工艺要求

8.1 线路板及元器件

- ——线路板须用耐氧化、耐腐蚀的 A 级双面敷铜环氧树脂板,并具有载波转 GPRS 模块生产厂家的标识。
- ——线路板表面应清洗干净,不得有明显的污渍和焊迹。并经绝缘、防腐处理。
- ——载波转 GPRS 模块内所有元器件均能防锈蚀、防氧化,紧固点牢靠。
- ——电子元器件(除电源器件外)官使用贴片元件,使用表面贴装工艺生产。
- ——线路板焊接采用回流焊和波峰焊工艺。
- ——载波转 GPRS 模块内部端钮螺钉、引线之间以及线路板之间应保持足够的间隙和安全距离。
- 一一电源变压器等较重的器件不宜直接焊接在线路板上,确有必要直接焊接的,应具有相应措施保证在实际使用条件下的正常使用。

8.2 采集器上盖

- ——上盖应使用绝缘、阻燃、防紫外线的环保材料制成。
- ——上盖应耐腐蚀、抗老化、有足够的硬度,上紧螺丝后,不应有变形现象。
- ——上盖的透明窗口(包括整个上盖为全透明的)应采用透明度好、防紫外线的聚碳酸酯(PC) 材料(不应使用再生料),透明窗口与上盖应无缝紧密结合。

8.3 接线端子

- ——接线端子应使用绝缘、阻燃、防紫外线的环保材料制成,要求有足够的绝缘性能和机械强度。
- ——接线端子与主体外壳之间应有密封垫带,密封良好。

8.4 翻盖

——翻盖应采用透明度好、防紫外线的聚碳酸酯 (PC) 材料 (不应使用回收材料),翻盖与上盖应 无缝紧密结合。

9 标志标识

9.1 产品标志

载波转 GPRS 模块标志所用文字应为规范中文。可以同时使用外文。标志的汉字、数字和字母的字体高度应不小于 4mm。

采集器上应有下列标识:

- a) 名称及型号。
- b) 工作状态指示。

9.2 包装标志和标识

载波转 GPRS 模块的包装箱上应有下列标志:

- a) 标以"小心轻放","向上","防潮","层叠"等图标。
- b) 产品数量,体积,重量。

9.3 通信模块标识

- a) 指示灯状态。
- b) 产品商标或企业 LOGO。
- c) 端子说明。

附录A (规范性附录) 载波转 GPRS 主机外观型式要求

A.1 载波转 GPRS 主机外观尺寸示意图

载波转 GPRS 主机的整机结构尺寸为 150mm(长) \times 120mm(宽) \times 54mm(高),具体尺寸如图 A1~图 A2 所示。

图 A1 载波转 GPRS 主机尺寸示意图 (一)

图 A2 载波转 GPRS 主机尺寸示意图 (二)

A.3 载波转 GPRS 主机接线端子示意图

图 A3 接线端子尺寸示意图

A.5 载波转 GPRS 主机状态指示

载波转 GPRS 主机的状态指示如图 A4 所示。

图 A4 载波转 GPRS 主机状态显示图

电源指示灯一上电 3.3V 电源指示灯,红色。灯亮,表示主机上电;灯灭,表示主模块没电;载波接收灯一载波通信接收指示灯,绿色。绿灯闪烁,表示主机接收从模块发送的载波数据;载波发送灯一载波通信发送指示灯,红色。红灯闪烁,表示主机往从模块发送载波数据;串口接收灯一串口通信接收指示灯,绿色。绿灯闪烁,表示主机接收来自 GPRS 通信模块串口数据;串口发送灯一串口通信发送指示灯,红色。红灯闪烁,表示主机往 GPRS 通信模块串口发送数据。

A.6 载波转 GPRS 主机通信模块要求

A.6.1 国网 2009 规范远程无线公网通信模块

国网 2009 规范远程无线公网通信模块的外形尺寸为 71 $mm(长) \times 66 mm(宽) \times 35 mm$ (高),模块外形结构和尺寸示意图见图 A5。

图 A5 2009 规范无线公网通信模块外形结构和尺寸示意图

A.6.2 国网 2013 规范远程无线公网通信模块

国网 2013 规范远程无线公网通信模块的外形尺寸为 75 $mm(长) \times 69 mm(宽) \times 36.5 mm$ (高),模块外形结构和尺寸示意图见图 A6。

图 A6 2013 规范无线公网通信模块外形结构和尺寸示意图

A.6.3 国网 2009 规范远程无线公网通信模块接口管脚定义

载波转 GPRS 主机 2009 规范远程通信模块接口定义见图 A7 和表 2 远程通信模块接口管脚定义表。

图 A7 集中器远程通信模块接口定义(俯视)

表 2 2009 规范远程通信模块接口管脚定义表

集中器接口板 引脚编号	模块对应引 脚编号	信号类别	信号名称	信号方向 (针对模块)	说 明	
1, 3, 5	1, 3, 5	电源	VDD 5V	电源输入	通讯模块电源输入, $5V\pm0.25V$,瞬时最大电流 $1.5A$	
2	2	电源地	GND	电源输入	通讯模块电源地输入	
4	4	USB	USB-HP	USB 差分信号	USB HOST +	
6	6	USB	USB-HN	USB 差分信号	USB HOST -	
7	7	电源地	GND	电源输入	通讯模块电源地输入	
8	8	电源	VDDUSB	电源输入	USB 接口专用电源输入,5V±0.1V, 最大电流 500mA。	
9	9	串口信号	RXD	输出	模块串口输出信号(3.3V/TTL)	
10	10	串口信号	RTS	输入	模块串口输入信号(3.3V/TTL)	
11	11	电源地	GND	电源输入	通讯模块电源地输入	

12	12	串口信号	CTS	输出	模块串口输出信号(3.3V/TTL)
13	13	串口信号	TXD	输入	模块串口输入信号(3.3V/TTL)
14	14	串口信号	DTR	输入	模块串口输入信号(3.3V/TTL)
15	15	串口信号	DCD	输出	模块串口输出信号(3.3V/TTL)
16	16	电源地	GND	电源输入	通讯模块电源地输入
17	17	电源地	RI	输出	模块串口输出信号(3.3V/TTL)
18	18	状态识别	STATE3	输出	模块类型识别
19	19	状态识别	STATE4	输出	模块类型识别
20	20	模块控制	IGT	输入	通信模块控制信号,为"1"时通信模 块处于工作模式(3.3V/TTL)
21	21	电源控制	PCTRL	输入	模块电源控制信号,为"0"时关断模 块电源(3.3V/TTL)
22	22	模块控制	RST	输入	通信模块复位控制信号,为"0"时通信模块处于复位状态(3.3V/TTL)
23	23	预留	NC	预留	预留信号, 暂无定义
24	24	状态识别	STATE0	输出	模块类型识别
25	25	电源	GND	电源输入	通讯模块电源地输入
26	26	状态识别	STATE1	输出	模块类型识别
27	27	电源	VCC3v3	电源输入	逻辑电路电源, 3.3V±0.3V, 最大电流 50mA
28	28	状态识别	STATE2	输出	模块类型识别
29	29	电源	VCC3v3	电源输入	逻辑电路工作电源,3.3V±0.3V,最大电流50mA
30	30	电源	GND	电源输入	通讯模块电源地输入

A.6.4 国网 2013 规范远程无线公网通信模块接口管脚定义

载波转 GPRS 主机 2013 规范远程通信模块接口定义见图 A8 和表 3 远程通信模块接口管脚定义表。

图 A8 集中器远程通信模块接口定义(俯视)

表 3 2013 规范远程通信模块接口管脚定义表

集中器接口 板引脚编号	模块对应引 脚编号	信号类别	信号名称	信号方向 (针对模块)	说明
1, 2	1、2	电源地	GND	电源输入	电源地输入,比其他信号管脚的插针长 0.5mm

3、4	3、4	电源	VCC 4V	电源输入	通信模块由电源输入,直流电压为 4V± 0.2V,正常工作电流 500mA,电压纹波小于 30mV;最大电流 2A,可持续 1ms	
5	5	信号	DCE_TXD	输出	模块串口输出信号(3.3V/TTL)	
6	6	信号	DCE_RXD	输入	模块串口输入信号(3.3V/TTL)	
7	7	信号	I/O1	输入/输出	预留 I/O(3.3V/TTL)	
8	8	信号	I/O2	输入/输出 预留 I/O (3.3V/TTL)。		
9	9	信号	I/O3	输入/输出	预留 I/O(3.3V/TTL)	
10	10	信号	USB+	输入/输出	USB HOST 接口,可用于 3G 等通信	
11	11	信号	USB-	输入/输出		
12	12	信号	PCTRL	输入	SIM 卡加热控制信号,为"0"时关断 (3.3V/TTL)	
13	13	电源地	GND	电源输入	通信模块电源地输入	
14	14	模块控制	RST	输入	通信模块复位控制信号,为"0"时通信模 块处于复位状态(3.3V/TTL)	
15	15	信号	ON/OFF	输入	通信模块控制信号,低电平持续 1s 为开机信号(3.3V/TTL)	
16	16	状态识别	STATE0	输出	模块未插入时,其管脚不可悬空,在终端侧对状态识别管脚做弱上拉处理,模块侧的状态识别管脚为"0"时做强下拉处理或者直接接地	
17	17	状态识别	STATE1	输出		
18	18	状态识别	STATE2	输出		
19	19	状态识别	STATE3	输出		
20	20	状态识别	STATE4	输出		
21	21	网络信号	LED_ACT	输入	网络指示灯输入信号,低电平有效,指示网 络有数据正在传输	
22	22	网络信号	LED_LINK	输入	网络指示灯输入信号,低电平有效,指示网 络物理连接已建立	
23	23	网络信号	TD+	网络差分信号	以太网发送	
24	24	网络信号	TD-	网络差分信号	以太网发送	
25	25	网络信号	RD+	网络差分信号	以太网接收	
26	26	网络信号	RD-	网络差分信号	以太网接收	
27	27	电源	VCC3V3	电源输入	逻辑电路工作电源,可用于网络变压器、电平转接、指示灯驱动等,3.3V±0.3V,电流不小于50mA,电压纹波小于30mV	
28	28	状态识别	VCC3V3	电源输入		
29	29	电源	GND	电源输入	电源地输入,比其他信号管脚的插针长 0.5mm	
30	30	电源	GND	电源输入		

附录B (规范性附录) 载波转 GPRS 从机外观型式要求

B.1 载波转 GPRS 从机外观尺寸示意图

载波转 GPRS 从机的整机结构尺寸为 90mm(长) \times 121mm(宽) \times 36mm (高), 具体尺寸如图 B1 \sim 图 B2 所示。

图 B1 载波转 GPRS 从机尺寸示意图 (一)

图 A2 载波转 GPRS 从机尺寸示意图 (二)

A.3 载波转 GPRS 从机接线端子示意图

图 A3 接线端子尺寸示意图

A.5 载波转 GPRS 从机状态指示

载波转 GPRS 从机的状态指示如图 A4 所示。

图 B4 载波转 GPRS 从机状态显示图

电源指示灯一上电 3.3V 电源指示灯,红色。灯亮时,表示从机上电;灯灭时,表示从模块没电;载波接收灯一载波通信接收指示灯,绿色。绿灯闪烁时,表示从机接收主模块发送的载波数据;载波发送灯一载波通信发送指示灯,红色。红灯闪烁时,表示从机往主模块发送载波数据;串口接收灯一串口通信接收指示灯,绿色。绿灯闪烁时,表示从机接收串口转接模块发送的数据;串口发送灯一串口通信发送指示灯,红色。红灯闪烁时,表示从机往串口转接模块发送数据。

版本记录

版本编号/修改状态	拟制人/修改人	修改日期	变动内容	备注
V1.0	滕绍伟	2016-03-05		

编制: 审核: 标准化: 批准: