

Student's Name: Aryan Tiwari Mobile No: 8982562898

Roll Number: B20187 Branch: Electrical Engineering

1

Table 1 Mean, median, mode, minimum, maximum and standard deviation for all the attributes

S. No.	Attributes	Mean	Median	Mode	Min.	Max.	S.D.
1	pregs	3.845	3	1	0	17	3.37
2	plas	120.89	117.0	99, 100	0	199	31.97
3	pres (in mm Hg)	69.105	72	70	0	122	19.35
4	skin (in mm)	20.53	23	0	0	99	15.95
5	test (in mu U/mL)	79.79	30.5	0	0	846	115.244
6	BMI (in kg/m²)	31.99	32	32	0	67.1	7.88
7	pedi	0.47	0.37	0.254,	0.078	2.42	0.33
				0.258			
8	Age (in years)	33.24	29	22	21	81	11.76

- 1. Closer the values of mean, median and mode lower is the value of standard deviation and vice versa.
- 2. Standard deviation is the spread of distribution wrt mean.

2 a.

Figure 1 Scatter plot: Age (in years) vs. pregs

- 1. Number of times pregnant rises with the increase in age (positively correlated) and is highest among the mid value of 35-50 years.
- 2. This distribution is left skewed.

Figure 2 Scatter plot: Age (in years) vs. plas

- 1. Age is positively correlated to blood glucose level in glucose tolerance test.
- 2. The density of very high for the lower values of age and becomes less dense with increasing age.

Figure 3 Scatter plot: Age (in years) vs. pres (in mm Hg)

Inferences:

- 1. There is a positive correlation between age and blood pressure
- 2. The density of points is very high for the lower values of age and becomes less dense with increasing age.

Figure 4 Scatter plot: Age (in years) vs. skin (in mm)

- 1. Thickness of skin fold decreases with increasing age.
- 2. The plot is dense towards the origin(lower age and lower thickness), which shows that thickness increases slightly an initial ages and then decreases.

Figure 5 Scatter plot: Age (in years) vs. test (in mm U/mL)

Inferences:

- 1. The plot of insulin levels is almost un-corelated to age.
- 2. The density is very high at origin showing lower levels of insulin at younger ages.

Figure 6 Scatter plot: Age (in years) vs. BMI (in kg/m²)

- 1. The BMI is almost un-corelated to age.
- 2. The plot is dense at mid values of bmi for younger ages.

Figure 7 Scatter plot: Age (in years) vs. pedi

Inferences:

- 1. The pedigree function of diabetes increases slightly with increasing age
- 2. Dense at origin, showing very low pedigree function at younger age.

b.

Figure 8 Scatter plot: BMI (in kg/m²) vs. pregs

- 1. BMI is uncorrelated to pregs.
- 2. The plot is evenly scattered.

Figure 9 Scatter plot: BMI (in kg/m²) vs. plas

Inferences:

- 1. Plasma glucose concentration increases with increasing BMI.
- 2. The plot is very dense at intermediate BMI and medium glucose levels.

Figure 10 Scatter plot: BMI (in kg/m²) vs. pres (in mm Hg)

- 1. BP increases with increasing BMI.
- 2. Highly dense in mid BMI values and mid BP, showing mid BMI has optimum BP.

Figure 11 Scatter plot: BMI (in kg/m²) vs. skin (in mm)

Inferences:

- 1. Thickness in skin fold increases with higher bmi. As body fat increases.
- 2. Gradual density.

Figure 12 Scatter plot: BMI (in kg/m²) vs. test (in mm U/mL)

- 1. Insulin levels are higher for higher bmi.
- 2. Dense at low values of insulin showing that insulin in low in most individuals.

Figure 13 Scatter plot: BMI (in kg/m²) vs. pedi

Inferences:

- 1. Pedigree function increases with BMI above 35.
- 2. Lower pedigree function of diabetes for mid BMI.

Figure 14 Scatter plot: BMI (in kg/m²) vs. Age (in years)

- 1. BMI and age are uncorrelated.
- 2. Mid BMI for younger individuals is dense. (Younger age, optimum BMI)

Data visualization and statistics from data

3 a.

Table 3 Correlation coefficient value computed between age and all other attributes

S. No.	Attributes	Correlation Coefficient Value		
1	pregs	0.554		
2	plas	0.263		
3	pres (in mm Hg)	0.239		
4	skin (in mm)	-0.114		
5	test (in mu U/mL)	-0.042		
6	BMI (in kg/m ²)	0.036		
7	pedi	0.033		
8 Age (in years)		1		

Inferences:

- 1. Pregs increase with higher rate with increasing age while plas and pres increase at moderate rate due to magnitude in correlation coefficient.
- 2. Preg, plas and pres increase with age and skin thickness and insulin conc. decrease with age. BMI, pedi are almost uncorrelated.

b.

Table 4 Correlation coefficient value computed between BMI and all other attributes

S. No.	Attributes	Correlation Coefficient Value		
1	pregs	0.017		
2	plas	0.221		
3	pres (in mm Hg)	0.281		
4	skin (in mm)	0.392		
5	test (in mu U/mL)	0.198		
6	BMI (in kg/m ²)	1		
7	pedi	0.146		
8 Age (in years)		0.036		

Inferences:

- 1. From the magnitude of correlation coefficient value, comment on the degree of correlation between age and each of the attribute.
- 2. Pregs and age are uncorrelated to BMI while all other attributes show slightly positive correlation to BMI.

4 a.

Figure 15 Histogram depiction of attribute pregs

- 1. Infer the frequency of each bin referring to its height.
- 2. Mode of pregs lies in 0 to 3.

Data visualization and statistics from data

Figure 16 Histogram depiction of attribute skin

Inferences:

- 1. Highest frequency at start and high in middle with lowest in last.
- 2. Mode of skin thickness lies at 0 to 10.

5

Figure 17 Histogram depiction of attribute pregs for class 0

Data visualization and statistics from data

Figure 18 Histogram depiction of attribute pregs for class 1

Inferences:

1. In both classes mode lies in 0 to 2 pregs.

6

Figure 19 Boxplot for attribute pregs

- 1. Outliers lie above 12.5
- 2. Inter quartile range 1 to 6.
- 3. Left skewed.

Data visualization and statistics from data

Figure 20 Boxplot for attribute plas

Inferences:

- 1. Outliers below 40.
- 2. Inter quartile range 100 to 140.
- 3. Mid skewed.

Figure 21 Boxplot for attribute pres(in mm Hg)

- 1. Outliers below 40 and above 100.
- 2. Inter quartile range 60 to 80.
- 3. Relate with the values from Q1. for this attribute.

Figure 22 Boxplot for attribute skin(in mm)

Inferences:

- 1. Outliers lie above 60 and only one at 100.
- 2. Inter quartile range 0 to 35.
- 3. Left skewed.

Figure 23 Boxplot for attribute test (mu U/mL)

Inferences:

1. Lots of outliers above 300.

Data visualization and statistics from data

2. Inter quartile range 0 to 150.

Figure 24 Boxplot for attribute BMI (in kg/m²)

Inferences:

- 1. Many outliers above 50 and one below 20 at 0.
- 2. Inter quartile range is 27 to 35.

Figure 25 Boxplot for attribute pedi

- 1. Lots of outliers above 1.24.
- 2. Inter quartile range is 0.25 to 0.75

Figure 26 Boxplot for attribute Age (in years)

- 1. 6 outliers above 65.
- 2. Inter quartile range is 25 to 41.