# Reparameterized SGLMM (Spatial Generalized Linear Mixed Model): A Review

Frances Lin

June 2022

# Background and Introduction

### The SGLMM (spatial generalized linear mixed model)

- ▶ is a hierarchical model that introduces spatial dependence through a GMRF (Gaussian Markov random field) (Besag et al., 1991).
- was initially proposed for prediction for count data, but
- has later been applied to estimation and prediction for other types of data (e.g. binary) and
- found applications in many fields (e.g. ecology, geology, epidemiology, image analysis, and forestry).

### Background and Introduction

The SGLMM has been the dominant model for areal data because of

- its flexible hierarchical specification,
- the availability of the software WinBUGS for (Bayesian) data analysis (Lunn et al., 2000) and
- various theoretical and computational advantages over the competitive model named automodel.

However, SGLMMs suffer from two major shortcomings:

- i) variance inflation due to spatial confounding and
- ii) computational challenges posed by high dimensional latent variables ("random effects").

## Background and Introduction

On the other hand, while another model named RHS model

- seeks to alleviate confounding (Reich et al., 2006),
- can result in random-effects structure with negative spatial dependence (i.e. repulsion) that is not typically applied in practice.

A reparameterized model is proposed, and it is able to

- alleviate confounding, and, at the same time,
- include patterns of positive spatial dependence (i.e. attraction) while excluding patterns of repulsion.

The proposed model is also one of the first dimension reduction techniques for spatial areal models.

### Outline

- Traditional SGLMM (Spatial Generalized Linear Mixed Model)
- Spatial confounding (via the automodel)
- RHZ model
- Sparse reparameterization of the areal SGLMM

### Traditional SGLMM

Let

$$G = (V, E)$$

be an undirected, labelled graph, where  $V = \{1, 2, ..., n\}$  is a set of vertices (nodes) and  $E = \{i, j\}$  is a set of edges, where  $i, j \in V$ ,  $i \neq j$ .

- ► Each vertex represents an area of interest and each edge represents the proximity of areas *i* and *j*.
- The graph G is represented using an adjacency matrix A, which is a  $n \times n$  matrix with diag(A) = 0 and entries  $A_{ij} = 1\{(i,j) \in E, i \neq j\}$ , where  $1(\cdot)$  is an indicator function (i.e. entry  $a_{ij} = 1$  if vertex  $v_i$  and  $v_j$  are adjacent.  $a_{ij} = 0$ , otherwise).

### Traditional SGLMM

Further let  $Z = (Z_1, ... Z_n)^T$  be the random field of interest, where  $Z_i$  is the random variable associated with vertex i. Then, the first stage of the model is given by

$$g(E(Z_i|\beta,W_i)) = X_i\beta + W_i, \qquad (1)$$

where

- g is a link function,
- $\triangleright$   $X_i$  is the *i*th row of the design matrix X,
- ightharpoonup eta is a p-vector of regression parameters and
- $ightharpoonup W_i$  is a spatial random effect associated with vertex i.

Different types of data require different canonical choices of the link function g (e.g. the logit function for spatial binary data and the logarithm function for spatial count data).

### GMRF prior for the random effects

The field of random effects  $W = (W_1, ..., W_n)^T$ , through which spatial dependence is incorporated, is assumed to follow the intrinsic conditionally autoregressive or improper GMRF prior

$$p(W|\tau) \propto \tau^{rank(Q)/2} exp(-\frac{\tau}{2}W^T QW), \qquad (2)$$

where  $\tau$  is a smoothing ("precision") parameter and Q=diag(A1)-A is a precision matrix. The precision matrix Q incorporates both dependence and prior uncertainty.

#### Note. A SGLMM

- 1. can be reformatted by replacing GMRF with GP (Gaussian process) for point-referenced data (or geostatistical) data.
- 2. is restricted to a Bayesian or restricted maximum likelihood (REML) analysis since the prior (2) is improper.

# Spatial confounding (via the automodel)

The automodel, SGLMM's closest competitor, is a Markov random-field model that incorporates dependence directly and is defined as

$$g(E(Z_i|\beta,\eta,Z_{-i})) = X_i\beta + \eta \sum_{(i,j)\in E} Z_j^*,$$
 (3)

#### where

- g is a (canonical) link function,
- $\blacktriangleright \ \eta$  is the dependence parameter (  $\eta > 0$  implies attraction;  $\eta < 0$  implies repulsion), and
- $ightharpoonup Z_{-i}$  is the field excluding the *i*th observation.

# Spatial confounding (via the automodel)

- For the centred automodel,  $Z_j^* = Z_j \mu_j$ , where  $\mu_j$  is the independence expectation of  $Z_j$  (i.e.  $\mu_j = E(Z_j | \beta, \eta = 0) = g^{-1}(X_j \beta)$ ).
- ▶ For the uncentred automodel,  $Z_j^* = Z_j$ .

The sum term  $\sum_{(i,j)\in E} Z_j^*$  is called the autocovariate, and it is considered as a synthetic predictor.

- The centred autocovariate makes the dependence parameter easily interpretable ( $\eta$  captures the relativity of an observation to its neighbours, conditional on the hypothesized regression component).
- ► The uncentred autocovariate not only poses conceptual challenge but also shows spatial confounding.

### The RHS model

The traditional SGLMM can also shown to be confounded.

Consider P be a projection onto C(X)

$$P = X(X^T X)^{-1} X^T$$

and let  $P^{\perp}$  be the projection onto C(X)'s complement such that  $P^{\perp} = I - P$ , then equation (1) can be rewritten as

$$g(E(Z_i|\beta, W_i)) = X_i\beta + K_i\gamma + L_i\delta,$$

where K and L are orthogonal bases for C(X) and  $C(X)^{\perp}$  respectively and  $\gamma$  and  $\delta$  are random coefficients.

 ${\cal K}$  and  ${\cal X}$  now share the same column space, and this is the source of the spatial confounding.

### The RHS model

Since K has no practical meaning, setting  $\gamma=$  0, the first stage of the RHS model is given by

$$g(E(Z_i|\beta,\delta)) = X_i\beta + L_i\delta,$$

and, compared to equation (2), the prior for the random effects  $\delta$  becomes \_

$$p(\delta| au) \propto au^{(n-p)/2} exp(-rac{ au}{2}\delta^T Q_R \delta),$$

where  $Q_R = L^T Q L$ .

## The sparse, reparameterized areal SGLMM

However, the RHZ model does not allow parsimonious fitting of the residual clustering.

- ▶ The geometry corresponding to the projection  $P^{\perp}$  fails to account for the underlying graph G, thus permitting structure of negative spatial dependence (i.e. repulsion) in the random effects
- ► This is not useful in practice since neighboring observation tends to be similar, rather than dissimilar.

### The proposed reparameterized model

- i) considers an alternative projection that captures the geometry of the models, thus allowing *only* patterns of positive spatial dependence (i.e. attraction).
- ii) utilizes the geometry of the models, which leads to dimension reduction of the random effects naturally.

### The sparse, reparameterized areal SGLMM

Consider the operator  $(I-11^T/n)A(I-11^T/n)$  that appears in the numerator (top) of Moran's *I*-statistic (a commonly used for nonparametric method for spatial dependence)

$$I(A) = \frac{n}{1^{T}A1} \frac{Z^{T}(I - 11^{T}/n)A(I - 11^{T}/n)Z}{Z^{T}(I - 11^{T}/n)Z},$$

where I is a  $n \times n$  identity matrix and 1 is a n-vector of 1s.

Next replace  $I-11^T/n$  with  $P^\perp$ , then the resulting operator called the Moran operator for X with respect to G,  $P^\perp A P^\perp$ , appears in the numerator of the generalized Moran's I-statistic

$$I_{x}(A) = \frac{n}{1^{T}A1} \frac{Z^{T}P^{\perp}AP^{\perp}Z}{Z^{T}P^{\perp}Z}.$$



# The sparse, reparameterized areal SGLMM

Replacing L with M in the RHS model, the first stage of the reparameterized model is given by

$$g(E(Z_i|\beta,\delta_S)) = X_i\beta + M_i\delta_S,$$

and the prior for the random effects  $\delta_{\mathcal{S}}$  becomes

$$p(\delta_S|\tau) \propto \tau^{q/2} exp(-\frac{\tau}{2}\delta_S^T Q_S \delta_S),$$

where  $Q_S = M^T Q M$ .

Note. It is assumed that

- 1. M is a matrix that contains the first  $q \ll n$  eigenvectors of the Moran operator.
- 2.  $\lambda_q > 0$  (since neighboring observations tend to be similar in practice). Half of the eigenvectors can be discarded as a result, making it possible to achieve a much greater dimension reduction.

# Comparision of various SGLMMs

Table 1 compares and contrasts the five models.

Table 1: Comparision of various SGLMMs

| Model             | Confounded | Account_G |
|-------------------|------------|-----------|
| Traditional       | Yes        | No        |
| SGLMM             |            |           |
| Uncentred         | Yes        | Yes       |
| automodel         |            |           |
| Centred automodel | No         | Yes       |
| RHZ SGLMM         | No         | No        |
| Sparse SGLMM      | No         | Yes       |
|                   |            |           |

# Dimension reduction for spatial models

Evaluation of the quadratic form  $\delta_S^T Q_S \delta_S$  for the sparse model can be  $\mathcal{O}(1)$ , which makes the model more suitable (than the RHZ model) for large-scale data sets.