

Surface Areas and Volumes Ex.16.2 Q3 Answer:

Given:

Height of the cylinder $h_{\rm l}=77~{\rm dm}=7.7~{\rm m}$, diameter of cylinder $d=36~{\rm m}$ Height of the cone $h_{\rm l}=44~{\rm dm}=4.4~{\rm m}$

We have the following diagram

Radius
$$r = \frac{d}{2} = \frac{36}{2} = 18 \text{ m}$$

The curved area S_1 of cylinder is given by

$$S_1 = 2\pi rh$$

$$= 2 \times \frac{22}{7} \times 18 \times 7.7$$

$$= 871.2 \text{ m}^2$$

The slant height of the cone is

$$I = \sqrt{r^2 + h^2}$$
= $\sqrt{18^2 + 4.4^2}$
= 18.53 m

The curved area of the cone is given by

$$S_2 = \pi rI$$

= $\frac{22}{7} \times 18 \times 18.53$
= 1048.26 m²

The total area of the canvas required is given as

$$S = S_1 + S_2$$

= 871.2 + 1048.26
= 1919.46 m²

Therefore the cost of the canvas at the rate of Rs 3.5 per square meter is given by

$$=1919.46 \times 3.5 = Rs. 6718.11$$

Hence the cost of the canvas is Rs 6718.11

Surface Areas and Volumes Ex.16.2 Q4

Answer:

Given that, a toy is in the form of a cone surmounted on the hemisphere.

Diameter of the base d=6 cm and the height of the cone h=4 cm , then we have to find the surface area of the toy.

We have the following figure

The radius of the base is

$$r = \frac{d}{2}$$
$$= \frac{6}{2} = 3 \text{ cm}$$

From the above figure, the slant height of the cone is

$$l = \sqrt{r^2 + h^2}$$
$$= \sqrt{3^2 + 4^2}$$
$$= 5 \text{ cm}$$

We know that when the surface area of the cone is S_1 , then

$$S_1 = \pi r l$$

$$= 3.14 \times 3 \times 5$$

$$= 47.1 \text{ cm}^2$$

The surface area of the hemisphere is

$$S_2 = 2\pi r^2$$

= 2×3.14×3²
= 56.52 cm²

Therefore the surface area of the toy is

$$S = S_1 + S_2$$

= 47.1+56.52
= 103.62 cm²
Hence, $S = 103.62$ cm²

********* END ********