



### Comparación de preferencias Análisis y Diseño de Algoritmos

## Comparación de preferencias

Un sitio web intenta comparar las preferencias de un usuario con las de otros:

- El usuario establece un ranking de n productos.
- La aplicación web consulta su base de datos para encontrar usuarios con gustos similares.

#### Medida de similitud:

Número de "inversiones" entre dos rankings:

- Ranking A: 1, 2, ..., n.
- Ranking B: a<sub>1</sub>, a<sub>2</sub>, ..., a<sub>n</sub>.
- i y j están invertidos si i < j pero a<sub>i</sub> > a<sub>i</sub>.



#### **Productos**

|          | P1 | P2 | P3 | P4 | P5 |
|----------|----|----|----|----|----|
| Α        | 1  | 2  | 3  | 4  | 5  |
| В        | 1  | 3  | 4  | 2  | 5  |
| <u> </u> |    |    |    |    |    |

Inversiones 3-2, 4-2

Algoritmo por fuerza bruta: Comprobar todos los pares (i,j)  $\Theta(n^2)$ 



### Comparación de preferencias

### Algoritmo "divide y vencerás"

#### División:

Dividir la lista de productos en dos mitades y contar recursivamente el número de inversiones en cada mitad.

#### Combinación:

Contar las inversiones en las que a<sub>i</sub> y a<sub>j</sub> están en mitades diferentes y devolver la suma de 3 cantidades.



### Algoritmo "divide y vencerás"

1 5 4 8 10 2 6 9 12 11 3 7

1 5 4 8 10 2 6 9 12 11 3 7 División: 2T(n / 2)

5 inversiones

8 inversiones

9 inversiones entre una mitad y la otra: 5-3, 4-3, 8-6, 8-3, 8-7, 10-6, 10-9, 10-3, 10-7

Total = 5 + 8 + 9 = 22.

Combinación: ???



### Comparación de preferencias

### Algoritmo "divide y vencerás"

Combinación

- Asumiendo que cada mitad está ordenada, se contabilizan las inversiones en las que a<sub>i</sub> y a<sub>j</sub> están en mitades diferentes.
- A continuación, se mezclan las dos mitades para devolver un conjunto ordenado.



### Algoritmo "divide y vencerás"

Combinación

13 inversiones: 6 + 3 + 2 + 2 + 0 + 0 Conteo: O(n)

2 3 7 10 11 14 16 17 18 19 23 25 Mezcla: O(n)

$$T(n) \le T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + O(n) \Rightarrow T(n) = O(n \log n)$$



### Comparación de preferencias

### Algoritmo "divide y vencerás"

Implementación

```
Sort-and-Count(L)
{
   if (L.length==1)
      return (0, L);

   Dividir la lista en dos mitades A y B
   (r<sub>A</sub>, A) ← Sort-and-Count(A)
   (r<sub>B</sub>, B) ← Sort-and-Count(B)
   (r , L) ← Merge-and-Count(A, B)

return (r<sub>A</sub> + r<sub>B</sub> + r , L);
}
```



### **Merge & Count**





### Comparación de preferencias

### **Merge & Count**



Total: 6



### **Merge & Count**



Total: 6



### Comparación de preferencias

### **Merge & Count**



Total: 6



### **Merge & Count**



Total: 6



### Comparación de preferencias

### **Merge & Count**

Total: 6



### **Merge & Count**

Total: 6 + 3



### Comparación de preferencias

### **Merge & Count**

Total: 6 + 3



### **Merge & Count**

Total: 6 + 3 + 2



### Comparación de preferencias

### **Merge & Count**

Total: 6 + 3 + 2 + 2



### **Merge & Count**

Total: 6 + 3 + 2 + 2



### Comparación de preferencias

### **Merge & Count**

Total: 6 + 3 + 2 + 2



### **Merge & Count**

Total: 6 + 3 + 2 + 2 + 0



### Comparación de preferencias

### **Merge & Count**

Total: 6 + 3 + 2 + 2 + 0 + 0



### **Merge & Count**

Total: 6 + 3 + 2 + 2 + 0 + 0 = 13

