Aluno: Daniel de Souza Baulé (16200639)

Disciplina: INE5429 - Segurança em Computação

Trabalho Individual 2 - Número Primos

Este trabalho tem como objetivo a geração de números aleatórios primos de 40, 56, 80, 128, 168, 224, 256, 512, 1024, 2048 e 4096 bits. A geração destes números primos ocorre por meio da geração de números aleatórios utilizando os seguintes algoritmos:

- Linear Congruential Generator
- Xorshift

Uma vez gerados os números aleatórios, são utilizados os seguntes algoritmos para a execução dos testes de primalidade, para verificar se os números gerados são de fato primos:

- Miller-Rabin
- Teste de Primalidade de Fermat

As implementações dos algoritmos foram realizadas na linguagem de programação Python, devido à familiaridade do aluno com a linguagem, além da facilidade de lidar com números nas ordens de grandeza necessárias para a realização da atividade. A principal desvantagem da implementação em Python é a pior performance quando comparada a implementações similares em C ou Java, por exemplo, mas como o foco do trabalho é compreender a implementação destes algoritmos e não a posterior utilização destas implementações, a performance não foi considerada um fator crucial.

Números Aleatórios

O ponto inicial do trabalho foi a implementação de 2 algoritmos de geração de números aleatórios, sendo escolhidos:

- Linear Congruential Generator
- Xorshift

Linear Congruential Generator

O primeiro algoritmo para geração de números aleatórios foi o Linear Congruential Generator. Pesquisando sobre o algoritmo foi possivel obter uma implementação básica em Python, sendo realizadas adaptações para garantir a geração de números com o número de bits requisitados.

A implementação foi como mostrado abaixo:

```
import time
1.1.1
Linear Congruential Generation
From Wikipedia:
   def lcg(modulus, a, c, seed):
       while True:
            seed = (a * seed + c) % modulus
           yield seed
class LinearCongruentialGenerator:
    def init (self, seed=None, numMinBits = 32, m=None, a=1664525, c=1013904223, ):
        self.m = m if m is not None else 2**numMinBits
        self.a = a
        self.c = c
        self.numMinBits = numMinBits;
        # If no seed is provided, use time
        self.state = seed % self.m if seed is not None else int(time.time())
    # Change bit count
    def setMinBits(self, numMinBits):
        self.numMinBits = numMinBits
        self.m = 2 ** numMinBits
   # Generate next random number
   def next(self):
       # Generate next number
        self.state = (self.a * self.state + self.c) % self.m
        # While number doesn't meet bit count requiremente, keep generating
        while self.state < (2**(self.numMinBits - 1)):
            self.state = (self.a * self.state + self.c) % self.m
        # Return random number
        return self.state
```

Analisando a complexidade do algoritmo, desconsiderando as alterações realizadas para obtenção de um número em uma certa faixa, obtemos complexidade linear.

Xorshift

O outro algoritmo implementado para geração de números aleatórios foi o Xorshift, escolhido devido a sua implementação simples, porém extremamente diferente do algoritmo anterior.

No caso do Xorshift, a implementação foi baseada em uma implementação em linguagem C disponível na pagina da Wikipedia. Foi realizada apenas a implementação direta do algoritmo Xorshift 32 bits, com numeros aleatórios com maior contagem de bits sendo gerados por meio da concatenação de números menores.

A implementação foi como mostrado abaixo:

```
1.1.1
Xorshift
From Wikipedia (C implementation):
    struct xorshift32 state {
      uint32_t a;
    };
    /* The state word must be initialized to non-zero */
    uint32_t xorshift32(struct xorshift32_state *state)
    {
        /* Algorithm "xor" from p. 4 of Marsaglia, "Xorshift RNGs" */
        uint32 t x = state->a;
        x ^= x << 13;
        x ^= x >> 17;
        x ^= x << 5;
        return state->a = x;
class XorShiftGenerator:
    def init (self, seed=None):
        self.state = (seed & 0xffffffff if seed is
            not None else (int(time.time()) & 0xffffffff ))
    def next(self):
        self.state ^= (self.state << 13) & 0xffffffff</pre>
        self.state ^= (self.state >> 17) & 0xffffffff
        self.state ^= (self.state << 5) & 0xffffffff</pre>
        self.state &= 0xffffffff
        return self.state
    def getNumber(self, numBits):
        # Make sure number has specified number of bits (Most significant bit 1)
        numBitsFirstNumber = numBits % 32
        if numBitsFirstNumber == 0:
            numBitsFirstNumber = 32
        # Force number to have specified bit count
        next = self.next()
        number = next & (0xfffffffff >> (32 - numBitsFirstNumber))
        number = (0x800000000 \Rightarrow) (32 - numBitsFirstNumber))
        numBits -= numBitsFirstNumber
        # Concatenate remaining bits
        while numBits > 0:
            number = number << 32
            next = self.next()
            number |= next
```

```
numBits -= 32
return number
```

Assim como anteriormente, analisando a complexidade do algoritmo, desconsiderando as alterações realizadas para obtenção de um número em uma certa faixa, obtemos complexidade linear.

Resultados

Para a comparação dos algoritmos, foi realizada a implementação de um simples teste, com a configuração destes para gerar números com os diferentes números de bits requisitados no enunciado, além da contagem do tempo para geração de cada número:

```
from RandomNumberGeneration import LinearCongruentialGenerator, XorShiftGenerator
import time
def bitLen(int type):
   length = 0
   while (int_type):
       int type >>= 1
       length += 1
   return(length)
numBitsList = [40, 56, 80, 128, 168, 224, 256, 512, 1024, 2048, 4096]
sampleSize = 50;
seed = int(time.time())
lcg = LinearCongruentialGenerator(seed)
xsg = XorShiftGenerator(seed)
print('-----')
for numBits in numBitsList:
   lcg.setMinBits(numBits)
   averageTime = 0.0;
   print('\tGenerating ' + str(numBits) + ' bits numbers:')
   for _ in range(sampleSize):
       startTime = time.time()
       next = lcg.next()
       curTime = (time.time() - startTime)
       len = bitLen(next)
       averageTime += curTime/sampleSize
       print('\t\t' + str(len) + ' - ' + str(curTime))
   print('\t\tAverage Time: ' + str(averageTime))
print('-----')
for numBits in numBitsList:
   averageTime = 0.0;
   print('\tGenerating ' + str(numBits) + ' bits numbers:')
   for _ in range(sampleSize):
       startTime = time.time()
       next = xsg.getNumber(numBits)
       curTime = (time.time() - startTime)
       len = bitLen(next)
```

```
averageTime += curTime/sampleSize
print('\t\t' + str(len) + ' - ' + str(curTime))
print('\t\tAverage Time: ' + str(averageTime))
```

É necessário lembrar que a contagem de tempo como implementada pode ser afetada pelo escalonamento de processos do sistema operacional. Para amenizar este erro, o código gera 50 números de cada tamanho, calculando o tempo médio para a geração.

Algorítmo	Tamanho do Número	Tempo para Gerar (s)
Linear Congruente	40	7.410049438476564e-06
	56	7.2622299194335965e-06
	80	6.308555603027342e-06
	128	6.079673767089844e-06
	168	6.198883056640625e-06
	224	6.561279296874999e-06
	256	6.742477416992189e-06
	512	8.258819580078123e-06
	1024	1.255512237548828e-05
	2048	1.5039443969726562e-05
	4096	2.843379974365234e-05
Xorshift	40	7.848739624023435e-06
	56	8.530616760253905e-06
	80	8.740425109863282e-06
	128	9.39369201660156e-06
	168	1.1439323425292973e-05
	224	1.1687278747558594e-05
	256	1.453876495361328e-05

Algorítmo	Tamanho do Número	Tempo para Gerar (s)
	512	2.2592544555664067e-05
	1024	3.9763450622558594e-05
	2048	8.925437927246094e-05
	4096	1.5981674194335936e-04

Nos resultados é possível observar que a variação é mínima, mas como esperado números maiores tendem a demorar mais para gerar. É possível observar também que o Xorshift apresenta performance um pouco pior, provavelmente devido a utilização de concatenação para geração de números maiores que 32 bits.

Números Primos

Após finalizada a implementação dos algoritmos para geração de números aleatórios, foram implementados algoritmos para teste de primalidade de números:

- Miller-Rabin
- Teste de Primalidade de Fermat

O teste de primalidade de Miller-Rabin era de implementação obrigatória, enquanto a implementação do Teste de Primalidade de Fermat foi escolhida devido ao funcionamento diferente do algoritmo, e alta disposição de material na Internet.

Miller-Rabin

O primeiro algoritmo para teste de primalidade implementado foi o de Miller-Rabin. Baseando-se em implementações em pseudo-código disponibilizadas na internet, foi implementado o seguinte código:

```
from random import randint

Miller-Rabin primality test

From wikipedia:

Input #1: n > 3, an odd integer to be tested for primality

Input #2: k, the number of rounds of testing to perform

Output: "composite" if n is found to be composite,

"probably prime" otherwise

write n as 2^r·d + 1 with d odd (by factoring out powers of 2 from n - 1)
```

```
WitnessLoop: repeat k times:
       pick a random integer a in the range [2, n - 2]
       x \leftarrow ad \mod n
       if x = 1 or x = n - 1 then
          continue WitnessLoop
       repeat r - 1 times:
          x \leftarrow x^2 \mod n
          if x = n - 1 then
             continue WitnessLoop
       return "composite"
    return "probably prime"
class MillerRabin:
    def decompose(n):
        r = 0
        while n % 2 == 0:
            r += 1
            n = n \gg 1
        return r, n
    def testPrime(n, k=200):
        # Known small prime numbers
        if n in (2,3):
            return True
        # No number smaller than 2 is prime
        if n < 2:
            return False
        # No even number other than 2 is prime
        if n % 2 == 0:
            return False
        # Write n as 2^{r} \cdot d + 1 with d odd (by factoring out powers of 2 from n - 1)
        r, d = MillerRabin.decompose(n - 1)
        # WitnessLoop: repeat k times:
        for _ in range(k):
            # Pick a random integer a in the range [2, n - 2]
            a = randint(2, n - 2)
            \# x \leftarrow a^d \mod n
            x = pow(a, d, n)
            # if x = 1 or x = n - 1 then continue WitnessLoop
            if x in (1, n - 1):
                 continue
            try:
                 # repeat r - 1 times:
                 for _{\rm in} range(r - 1):
                     \# x \leftarrow x^2 \mod n
                     x = pow(x, 2, n)
                     # if x = n - 1 then continue WitnessLoop
                     if x == n - 1:
                         raise Exeption()
            except Exception as e:
                 continue
            return False
```

Comparando resultados com testes de primalidade disponíveis online, foi concluído que a implementação está correta.

Quanto a complexidade do algoritmo, todas as fontes encontradas concordam em O(k log3n), sendo n o número testado e k o número de rodadas.

Teste de Primalidade de Fermat

O segundo algoritmo para teste de primalidade implementado foi o Teste de Primalidade de Fermat. Assim como anteriormente, baseando-se em implementações em pseudo-código disponibilizadas na internet, foi implementado o seguinte código:

```
from random import randint
1 1 1
Fermat primality test
From wikipedia:
    Inputs: n: a value to test for primality, n>3; k: a parameter that
        determines the number of times to test for primality
    Output: composite if n is composite, otherwise probably prime
    Repeat k times:
        Pick a randomly in the range [2, n - 2]
        If a^(n-1) % n != 1, then return composite
        If composite is never returned: return probably prime
class Fermat:
   def testPrime(n, k=200):
        # Known small prime numbers
        if n in (2, 3):
            return True
        # No number smaller than 2 is prime
        if n < 2:
            return False
        # No even number other than 2 is prime
        if n % 2 == 0:
            return False
        # Repeat k times:
        for _ in range(k):
            # Pick a randomly in the range [2, n - 2]
            a = randint(2, n - 2)
            # If a^{(n-1)} % n != 1, then return composite
            if pow(a, n - 1, n) != 1:
                return False
            # If composite is never returned: return probably prime
        return True
```

Comparando resultados com testes de primalidade disponíveis online, foi concluído que a implementação está correta.

Quanto a complexidade do algoritmo, todas as fontes encontradas concordam em O(k log2n), sendo n o número testado e k o número de rodadas.

Resultados

Primeiramente, foi implementado um código de teste para os algoritmos de teste de primalidade, com números conhecidos primos/não primos, como mostrado abaixo:

```
from PrimeTests import MillerRabin, Fermat
primes = {
   40 : [701886890821,145833959483],
    80 : [627039700318015972526563, 17258016887375724832991],
    128 : [281823669593790837253752644147169483721,130149497672760612194506571911619816
    168 : [53577236802344919857680454697879375307504576088927,8763868424809381827710419
    224 : [9555570476784365604183370437996185501407868060964191196593302762711, 1192904
    256 : [1145217625417365729421758312928588471159780222975336433663365144733982966812
    512 : [1168798893473061508508875279728225037963956089980928675900416417776827783528
    1024:
    [4295990300262175286569706942624603289030853170013305621487189320909290520964802545
    38575398934944152639255304635266845090544524732524763115938444941405994491924271089
}
notPrimes = {
   40 : [701886690821,145834959483],
    80 : [627039700318015972526565, 17258016887375724832992],
    128 : [281823669593790837253752644147169483725,130149497672760612194506571911619816
    168 : [53577236802344919857680454697879375307504576088925,8763868424809381827710419
    224 : [9555570476784365604183370437996185501407868060964191196593302762717, 1192904
    256 : [1145217625417365729421758312928588471159780222975336433663365144733982966812
    512 : [1168798893473061508508875279728225037963956089980928675900416417776827783528
    1024:
    [4295990300262175286569706942624603289030853170013305621487189320909290520964802545
    38575398934944152639255304635266845090544524732524763115938444941405994491924271089
numBitsList = list(primes.keys())
numBitsList.sort()
for numBits in numBitsList:
   print('Number of bits: ' + str(numBits))
    print('\tTesting known primes:')
    for prime in primes[numBits]:
       print('\t\tMiller-Rabin: - ' + str(MillerRabin.testPrime(prime)))
    for prime in primes[numBits]:
       print('\t\tFermat: - ' + str(Fermat.testPrime(prime)))
    print('\tTesting known not primes:')
    for notPrime in notPrimes[numBits]:
       print('\t\tMiller-Rabin: - ' + str(MillerRabin.testPrime(notPrime)))
```

```
for notPrime in notPrimes[numBits]:
    print('\t\tFermat: - ' + str(Fermat.testPrime(notPrime)))
```

Sendo obtidos os seguintes resultados:

```
Number of bits: 40
       Testing known primes:
               Miller-Rabin: - True
               Miller-Rabin: - True
               Fermat: - True
               Fermat: - True
       Testing known not primes:
               Miller-Rabin: - False
               Miller-Rabin: - False
               Fermat: - False
               Fermat: - False
Number of bits: 80
       Testing known primes:
               Miller-Rabin: - True
               Miller-Rabin: - True
               Fermat: - True
               Fermat: - True
       Testing known not primes:
               Miller-Rabin: - False
               Miller-Rabin: - False
               Fermat: - False
               Fermat: - False
Number of bits: 128
       Testing known primes:
               Miller-Rabin: - True
               Miller-Rabin: - True
               Fermat: - True
               Fermat: - True
       Testing known not primes:
               Miller-Rabin: - False
               Miller-Rabin: - False
               Fermat: - False
               Fermat: - False
Number of bits: 168
       Testing known primes:
               Miller-Rabin: - True
               Miller-Rabin: - True
               Fermat: - True
               Fermat: - True
       Testing known not primes:
               Miller-Rabin: - False
               Miller-Rabin: - False
               Fermat: - False
               Fermat: - False
```

```
Number of bits: 224
       Testing known primes:
               Miller-Rabin: - True
               Miller-Rabin: - True
               Fermat: - True
               Fermat: - True
       Testing known not primes:
               Miller-Rabin: - False
               Miller-Rabin: - False
               Fermat: - False
               Fermat: - False
Number of bits: 256
       Testing known primes:
               Miller-Rabin: - True
               Miller-Rabin: - True
               Fermat: - True
               Fermat: - True
       Testing known not primes:
               Miller-Rabin: - False
               Miller-Rabin: - False
               Fermat: - False
               Fermat: - False
Number of bits: 512
       Testing known primes:
               Miller-Rabin: - True
               Miller-Rabin: - True
               Fermat: - True
               Fermat: - True
       Testing known not primes:
               Miller-Rabin: - False
               Miller-Rabin: - False
               Fermat: - False
               Fermat: - False
Number of bits: 1024
       Testing known primes:
               Miller-Rabin: - True
               Miller-Rabin: - True
               Fermat: - True
               Fermat: - True
       Testing known not primes:
               Miller-Rabin: - False
               Miller-Rabin: - False
               Fermat: - False
               Fermat: - False
```

Uma vez concluído que os testes apresentam funcionamento correto, foi implementada a geração de números aleatórios primos:

```
import time
def bitLen(int_type):
   length = 0
   while (int_type):
       int_type >>= 1
        length += 1
   return(length)
numBitsList = [40, 56, 80, 128, 168, 224, 256, 512, 1024, 2048, 4096]
sampleSize = 10;
seed = int(time.time())
lcg = LinearCongruentialGenerator(seed)
for numBits in numBitsList:
   lcg.setMinBits(numBits)
    averageTime = 0.0;
   print('Generating ' + str(numBits) + ' bits numbers:')
   for in range(sampleSize):
        startTime = time.time()
        next = lcg.next()
       while not MillerRabin.testPrime(next):
           next = lcg.next()
        len = bitLen(next)
        curTime = (time.time() - startTime)
        averageTime += curTime/sampleSize
        print('\t' + str(len) + ' - ' + str(curTime))
        #print('\t' + str(next))
    print('\tAverage Time: ' + str(averageTime))
```

Devido a melhor performance obtida, foi utilizado o algoritmo de Linear Congruential Generation em conjunto com o teste de primalidade de Miller-Rabin para geração dos números primos aleatórios mostrados abaixo:

Tamanho do Número	Tempo para Gerar (s)
40	0.0019159555435180665
56	0.0025369644165039065
80	0.00484907627105713
128	0.011374306678771972
168	0.018348765373229978
224	0.029324126243591313
256	0.03960294723510742
512	0.18643634319305422

Tamanho do Número	Tempo para Gerar (s)
1024	1.8157038688659664
2048	29.737854599952698
4096	184.57118501663206

Para se obter estes valores foi realizada a média de tempo a partir da geração de 10 números de cada tamanho. A seguir, também se gerou alguns exemplos de números aleatórios primos:

• 40 bits: 984881580169

• 56 bits: 59110269851068091

• 80 bits: 907671903864918607805683

• 128 bits: 308844230555655163188126921457452195287

168 bits: 366155287549482999304639720205531388563920662944771

224 bits:

60512381401449176386700885883257113601203870589381143310510447086816719 872873

• 256 bits:

60512381401449176386700885883257113601203870589381143310510447086816719 872873

• 512 bits:

10143396012432226485514547154325343238856089175640849059755118235888408 64069397247087967728293094611273282287410302663607409392975238149093636 3035239497219

1024 bits:

11211406460190735749779314344033362992737227983775716161822731005259996 95481396002278799434313347456710426151868922595250047511284972585913062 59571194882760337267757244490779871035297587726375829432552987987215174 80140948748956121484034881297036141995214617629411194854527967498311969 2551923717904052082066849

• 2048 bits:

23624425759091095026966776776871622317671613472252814759277622726499840 51029345549681190956445569933837593713630312131786444862611510566266713 90797213888175846482215042730848587027707525260645134778750106997717913 55456648893923054202412248100006593514642336436953135532167405656578176 79140002806032716626783677331722271928964346349669367484202332102817254 90767765127780717114331376525177189167828073976598366914644905752765684

• 4096 bits:

Dificuldades Encontradas

Dentre as principais dificuldades encontradas estão o tempo para geração de números aleatórios primos grandes, o que dificultou os testes, além de a comparação de resultados com testes de primalidade online, visto que a maioria não suporta números nesta ordem de grandeza.

Outra dificuldade foi a geração de números aleatórios grandes com algoritmos limitados, como Xorshift, sendo necessária a concatenação de resultados.

Referências

Miller-Rabin

https://en.wikipedia.org/wiki/Miller%E2%80%93Rabin_primality_test

https://crypto.stanford.edu/pbc/notes/numbertheory/millerrabin.html

Fermat

https://en.wikipedia.org/wiki/Fermat_primality_test

https://www.geeksforgeeks.org/primality-test-set-2-fermet-method/

Linear Congruential Generator

https://en.wikipedia.org/wiki/Linear_congruential_generator

https://rosettacode.org/wiki/Linear_congruential_generator

Xorshift

https://en.wikipedia.org/wiki/Xorshift

https://www.javamex.com/tutorials/random_numbers/xorshift.shtml