版本: 001 文档类型: [产品-产品规格书] 页码 1 of 11

# TF20 红外环境雷达产品规格书

发布范围: 对外公开

保密等级: 公开

产品线: DELIDAR-TF20

## 版本信息

| 版本  | 生成日期       | 修改类型 | 具体描述                        | 负责人 |
|-----|------------|------|-----------------------------|-----|
| 1   | 2016-8-10  | С    | 初稿编撰,共8页                    | 王瑞  |
| 2   | 2016-8-16  | М    | 增加产品测距精度相关数据                | 郑凯  |
| 2.1 | 2016-9-6   | M    | 增加 8*8 像素通信协议               | 王瑞  |
| 2.5 | 2016-11-11 | М    | 修改原有通信协议,增加1*1像素通信协议,增加串口指令 | 刘行健 |

未经允许, 文档内容不可全部或部分发表、复制、使用于任何目的。

#### 注意:

- 1. 对本规格的所有增加、修改或者删除都必须填写修订记录,详细记载其修订内容,使其具备强可追溯性;
- 2. 修订记录按修订时间倒序排列;
- 3. 修订类型: C-CREATED 创建 A ADDED 增加 M-MODIFIED 修改 D-DELETE 删除。



# 序言

#### 尊敬的用户:

您好!感谢您选择北醒光子科技的产品,谨致谢意!

此说明书的用途在于帮助您正确地使用本公司产品。在第一次安装和使用本产品之前, 请您务必先仔细阅读随产品赠送的资料,这会有助您更好的使用本产品。如果您已阅读完此说 明书,建议您将此说明书进行妥善的保管,以便在将来的使用过程中进行查阅。

北醒(北京)光子科技有限公司(www.benewake.com)是一家专注于"机器人眼睛"的高科技公司,公司已获得国际著名投资机构 IDG 资本的 A 轮投资。2016年获得"创新中国春季峰会"决赛冠军,得到 DEMO God 的荣誉(DEMO CHINA)。公司立志于将昂贵的激光雷达打造成满足消费级产品的核心部件,推动智能机器人走入于家万户。

公司核心研发团队来自国内外著名大学:美国华盛顿大学、美国维克森林大学、德国洪堡大学、法国马赛中央理工大学、法国奥尔良大学、清华大学、北京交通大学(原北方交通大学)、北京航空航天、北京理工、北京邮电大学、哈尔滨工业大学、苏州大学等。公司博士以上学历占比 18%,硕士以上学历占比 42%。

我们是北醒,我们立志做世界上最好的机器人的眼睛。



## 目录

| 版本 | 信息. |            | 1 |
|----|-----|------------|---|
| 1. | 产品概 | 既述         | 4 |
| 2. | 光学原 | 見理         | 4 |
| 3. | 电学特 | <b>导性</b>  | 5 |
| 4. | 光学特 | <b>-</b>   | 5 |
| 5. | 及寸及 | 及产品规格      | 5 |
| 6. | 数据格 | 各式         | 6 |
|    | 6.1 | 串口输出通信协议   | 6 |
|    | 6.2 | 串口输入指令通信协议 | 8 |
| 7  | 附件— | _          | ٤ |



### 1. 产品概述

产品基于 TOF (Time of Flight)原理,配合独特的光学、电学、设计,以达到稳定、精准、高灵敏和高速的距离测量。

#### 关键特性:

- 具有高灵敏度,并且测量距离最远可达50米
- 高速测量,最高 100Hz 的采样频率
- 优良的抗环境光使用性能 (100kLux 环境光线下工作)
- 室外远距离、重量轻(模组重量小于 160g)、高性价比
- 高精度,量程范围内精度最高可达厘米级

#### 主要应用:

- 无人机定高及地形跟随
- 机器控制和安全传感器
- 距离测量仪

#### 2. 光学原理

TOF 是飞行时间(Time of Flight)技术的缩写,即传感器发出经调制的近红外光,遇物体后反射,传感器通过计算光线发射和反射时间差或相位差,来换算被拍摄景物的距离,以产生深度信息。



TF20 光学仿真光路



## 3. 电学特性

| 项目       | 符号 | 最小值 | 典型值 | 最大值 | 单位 |
|----------|----|-----|-----|-----|----|
| 输入电压     | DC | 10  | 12  | 16  | V  |
| 功率       | Р  | 1   | 2.4 | 6   | W  |
| LED 平均电流 | Io | 14  | 100 | 350 | mA |

## 4. 光学特性

| 项目      | 符号 | 条件或说明          | 典型值                                  | 单位     |
|---------|----|----------------|--------------------------------------|--------|
| 工作距离    | L  | 100Klux 环境光强   | 0.5-15 (反射率 10%)<br>0.5-50 (反射率 90%) | m      |
| 信号光发射半角 | α  |                | 1.5                                  | Degree |
| 信号接收半角  | β  |                | 1.2                                  | Degree |
| 分辨力     | De | 5 米处可探测到最小物体尺寸 | 1                                    | cm     |
| 角度分辨率   | ω  | 水平/垂直分辨率       | 0.3                                  | Degree |
| 距离分辨率   | Re | 对距离变化的敏感度      | 2                                    | cm     |
| 距离精度    | σ  | 测试距离与实际距离的偏差   | 1~5(30m内)<br>10~50(30m至50m)          | cm     |
| 工作温度    | Т  |                | -10~60                               | °C     |
| 工作中心波长  | λ  |                | 850                                  | nm     |

## 5. 尺寸及产品规格

以下模组实物图片及外形尺寸图均为参考设计,可以根据客户需求和实际应用场景进行定制。





DELiDAR TF20 外形尺寸图

## 6. 数据格式

## 6.1 串口输出通信协议

以下部分为 DE-LiDAR TF20 使用串口与外部设备连接通信的方式介绍,其中包括:发送数据的编码格式,模组与外部设备间通信协议。

| 通讯协议 | UART   |  |  |
|------|--------|--|--|
| 波特率  | 460800 |  |  |
| 数据位  | 8      |  |  |
| 停止位  | 1      |  |  |
| 校验位  | 无      |  |  |

#### 6.1.1 8\*8 像素输出

TF20 8\*8 像素输出的通信协议如下表所示,数据均为 16 进制数,每帧数据共计 272 字节。



其中 Byte8-Byte135 为输出 Dist 值,每 2 字节为一个像素的 Dist 值,第一字节为 Dist 低八位,第二字节为 Dist 高八位,8\*8 像素的 Dist 按照行列顺序依次从(0,0)像素排列到(7,7)像素。

其中 Byte136-Byte263 为输出 Amp 值,每 2 字节为一个像素的 Amp 值,第一字节为 Amp 低八位,第二字节为 Amp 高八位,8\*8 像素的 Amp 按照行列顺序依次从(0,0)像素排列到(7,7)像素。

帧尾 4 字节为校验位,采用 CRC32 校验。

CRC32 校验算法见附件一。

| 数据位                                                          | 定义                   | 说明                                                                           |  |
|--------------------------------------------------------------|----------------------|------------------------------------------------------------------------------|--|
| Byte0-Byte3                                                  | 帧头                   | 44 45 32 30                                                                  |  |
| Byte4-Byte7                                                  | 保留                   | 保留                                                                           |  |
| Byte8-Byte135                                                | Byte8-Byte135 Dist   |                                                                              |  |
| Byte136-Byte263                                              | Amp                  | 每个像素的 Amp 占 2 字节,第一字节为低八位,第二字节为高八位<br>Amp 依次从(0,0)像素到(0,7)像素,8 行依次排列到(7,7)像素 |  |
| Byte264-Byte267                                              | /te264-Byte267 保留 保留 |                                                                              |  |
| <b>Byte268-Byte271</b> 校验位 使用 CRC32 校验方式对 Byte0-Byte267 进行校验 |                      | 使用 CRC32 校验方式对 Byte0-Byte267 进行校验                                            |  |

#### 6.1.2 1\*1 像素输出

TF20 1\*1 像素输出的通信协议如下表所示,数据均为 16 进制数,每帧数据共计 24 字节。

其中 Byte8-Byte11 为输出 Dist 值,每 2 字节为一个像素的 Dist 值,第一字节为 Dist 低八位,第二字节为 Dist 高八位,第三字节与第四字节为 0X00。

其中 Byte12-Byte15 为输出 Amp 值,每 2 字节为一个像素的 Amp 值,第一字节为 Amp 低八位,第二字节为 Amp 高八位,第三字节与第四字节为 0X00。



| 数据位                                                       | 定义                                                   | 说明                                              |  |  |
|-----------------------------------------------------------|------------------------------------------------------|-------------------------------------------------|--|--|
| Byte0-Byte3                                               | 帧头                                                   | 44 45 32 30                                     |  |  |
| Byte4-Byte7                                               | 保留                                                   | 保留                                              |  |  |
| Byte8-Byte11                                              | Byte8-Byte11 Dist Dist Dist Dist Dist Dist Dist Dist |                                                 |  |  |
| Byte12-Byte15                                             | Amp                                                  | Amp 占 4 字节,第一字节为低八位,第二字节为高八位<br>第三字节与第四字节为 0X00 |  |  |
| Byte16-Byte19 保留 保留                                       |                                                      | 保留                                              |  |  |
| <b>Byte20-Byte23</b> 校验位 使用 CRC32 校验方式对 Byte0-Byte19 进行校验 |                                                      | 使用 CRC32 校验方式对 Byte0-Byte19 进行校验                |  |  |

## 6.2 串口输入指令通信协议

串口输入指令为8字节,发送数据为16进制数,在切换工作状态或者修改触发时间时,需要先进入配置模式,在成功配置后,需要退出配置模式。在配置成功之后会回显原命令。

| 帧格式                     | 说明                                                                               | 备注          |  |
|-------------------------|----------------------------------------------------------------------------------|-------------|--|
| AA 55 F0 00 01 00 00 02 | 进入配置模式                                                                           | 配置成功之后回显原命令 |  |
| AA 55 F0 00 00 00 00 02 | 退出配置模式                                                                           | 配置成功之后回显原命令 |  |
| AA 55 F0 00 01 00 00 80 | 切换工作状态为 1*1 像素输出                                                                 | 配置成功之后回显原命令 |  |
| AA 55 F0 00 02 00 00 80 | 切换工作状态为 8*8 像素输出                                                                 | 配置成功之后回显原命令 |  |
| AA 55 F0 00 xx yy 00 40 | xx 代表时间触发低 8 位; yy 代表时间<br>触发高 8 位, 时间单位为秒<br>例:每1S 触发一次<br>xx = 0xe8; yy = 0x03 | 配置成功之后回显原命令 |  |

#### 7. 附件—

CRC32 校验

CRC32 算法主要用来保证数据传输的可靠性,串口通信并不可靠。 CRC 校验失败,可选择丢弃此帧码。 TF20 采用硬件协处理器进行 CRC32 运算。



```
CRC32 生成多项式为 0x04C11DB7, 初值为 0xFFFFFFFF。
```

```
客户端可以采用如下代码:
/**************
入口参数:
data[]: 数据帧
size: 数据长度(以四字节为单位)
返回值:
Crc: CRC32
输出值:
无
******************************
unsigned long Crc32Gen(unsigned long data[], unsigned long size)
{
    unsigned long i,j,temp,crc = 0xFFFFFFF;
    for(i=0; i<size; i++)
    {
       temp = data[i];
       for(j=0; j<32; j++)
       {
           if( (crc ^ temp) & 0x80000000)
```



```
{
     crc = 0x04C11DB7 ^ (crc<<1);
}
else
{
     crc <<=1;
}
temp<<=1;
}
return crc;</pre>
```

版本: 001 文档类型: [产品-产品规格书] 页码 11 of 11

## 使用时注意事项:

- •本产品属于定制精密光学仪器,须有本公司工程师进行维护。
- •工作温度: -10-60度。
- •防止灰尘等异物进入透镜内影响造成出光效果。
- •本产品采用潮湿敏感型元件,避免储运及工作于高湿度高温度环境中。避免产品处于酸性或浓硫的环境下使用。