*** Applied Machine Learning Fundamentals *** Decision Trees and Ensembles

Daniel Wehner

SAPSE

October 21, 2019

Agenda October 21, 2019

- Introduction
- Wrap-Up Summary

Lecture Overview Self-Test Questions Recommended Literature and further Reading

Section: Introduction

What we want...

Outlook	Temperature	Humidity	Wind	PlayGolf
sunny	hot	high	weak	no
sunny	hot	high	strong	no
overcast	hot	high	weak	yes
rainy	mild	high	weak	yes
rainy	cool	normal	weak	yes
rainy	cool	normal	strong	no
overcast	cool	normal	strong	yes
sunny	mild	high	weak	no
sunny	cool	normal	weak	yes
rainy	mild	normal	weak	yes
sunny	mild	normal	strong	yes
overcast	mild	high	strong	yes
overcast	hot	normal	weak	yes
rainy	mild	high	strong	no
rainy	mild	normal	strong	???

What are Decision Trees?

- Decision trees are induced in a supervised fashion
- Originally invented by Ross Quinlan (1986)
- Decision trees are grown recursively → 'divide-and-conquer'
- A decision tree consists of:

Nodes Each node corresponds to an attribute test

Edges One edge per possible test outcome

Leaves Class label to predict

Classifying new Instances

• Suppose we get a new instance:

Outlook rainy
Temperature mild
Humidity normal
Wind strong

What is its class?

• Answer: No

Another Decision Tree...

Inductive Bias of Decision Trees

- Complex models tend to overfit the data and do not generalize well
- Small decision trees are preferred

Occam's razor:

'More things should not be used than are necessary.'

• Prefer the simplest hypothesis that fits the data!

The Root of all Evil... Which Attribute to choose?

Finding a proper Attribute

- Simple and small trees are preferred
 - Data in successor node should be as pure as possible
 - I. e. nodes containing one class only are preferable
- Question: How can we express this thought as a mathematical formula?
- Answer:
 - Entropy (Claude E. Shannon)
 - Originates in the field of information theory

Measure of Impurity: Entropy

- Entropy is a measure of chaos in the data (measured in bits)
- **Example:** Consider two classes A and B ($\mathcal{C} = \{A, B\}$)

```
\begin{array}{lll} E(\{ \textit{A}, \textit{A}, \textit{A}, \textit{A}, \textit{A}, \textit{A}, \textit{A}, \textit{A}, \textit{A}, \textit{A} \}) & \rightarrow 0 & \textit{Bits} \\ E(\{ \textit{A}, \textit{A}, \textit{A}, \textit{A}, \textit{A}, \textit{A}, \textit{B}, \textit{B}, \textit{B} \}) & \rightarrow 0.81 & \textit{Bits} \\ E(\{ \textit{A}, \textit{A}, \textit{A}, \textit{A}, \textit{A}, \textit{B}, \textit{B}, \textit{B}, \textit{B}, \textit{B}, \textit{B} \}) & \rightarrow 1 & \textit{Bit} \\ E(\{ \textit{A}, \textit{A}, \textit{A}, \textit{B}, \textit{B}, \textit{B}, \textit{B}, \textit{B}, \textit{B}, \textit{B}, \textit{B} \}) & \rightarrow 0.81 & \textit{Bits} \\ E(\{ \textit{B}, \textit{B} \} \}) & \rightarrow 0 & \textit{Bits} \end{array}
```

If both classes are equally distributed, the entropy function E reaches its maximum. Pure data sets have minimal entropy.

Measure of Impurity: Entropy (Ctd.)

Measure of Impurity: Entropy (Ctd.)

Entropy formula:

$$E(\mathcal{D}) = -\sum_{c \in \mathcal{C}} p_c \cdot \log_2 p_c \tag{1}$$

- Where p_c denotes the relative frequency of class $c \in \mathcal{C}$
- Weather data:

$$C = \{yes, no\}$$
 i.e. $p_{yes} = \frac{9}{14}$ and $p_{no} = \frac{5}{14}$

$$E(\mathcal{D}) = -\sum_{c,c} p_c \cdot \log_2(p_c) = -(\frac{9}{14} \cdot \log_2(\frac{9}{14}) + \frac{5}{14} \cdot \log_2(\frac{5}{14})) = \mathbf{0.9403}$$

Section: Wrap-Up

Summary

Lecture Overview

Unit I: Machine Learning Introduction

Self-Test Questions

Recommended Literature and further Reading

Thank you very much for the attention!

Topic: *** Applied Machine Learning Fundamentals *** Decision Trees and Ensembles

Date: October 21, 2019

Contact:

Daniel Wehner (D062271)

SAPSE

daniel.wehner@sap.com

Do you have any questions?

