This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

Europäisches Patentamt
European Patent Office
Office européen des brevets

EP 1 113 516 A1

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication: 04.07.2001 Bulletin 2001/27

(21) Application number: 00124165.2

(51) Int Cl.7: HO1M B/04

Rec2536

(22) Date of filing: 07.11.2000

AL LT LY MK RO SI

(84) Designated Contracting States:
AT BE CHICY DE DK ES FI FR GB GR IE IT LI LU
MC NL PT SE TR
Designated Extension States:

(30) Priority: 22.12.1999 US 470366 10.04.2000 US 546404

(71) Applicant: General Motors Corporation Detroit, Michigan 48265-3000 (US) (72) Inventors:

Rock, Jeffrey Allan
 Rochester, New York 14825 (US)

 Plant, Lawrence Bruco Milford, 48381 Michigan (US)

(74) Representative: Manitz, Finsterwald & Pertner Postfach 22 16 11 80508 München (DE)

(54) Method of cold start-up of a PEM fuel cell

(57) A method of heating a cold MEA to accelerate cold start-up of a PEM fuel cell. The MEA is locally heatad from below freezing to a suitable operating temperature by the exothermal chemical reaction between H₂ and $\rm O_2$ on the anode and/or cethode catalysts. To their end, $\rm H_2$ is introduced into the $\rm O_2$ -rich cathode feed stream and/or $\rm O_2$ is introduced into the $\rm H_2$ -rich anode feed stream.

EP 1 113 516 A1

2

Description

[0001] This is a Continuation-in-Pari application of Serial No. 09/470,366 filled on December 22, 1999.

1

TECHNICAL FIELD

[0002] This invention relates to PEM/SPE fuel cells, and more particularly, to a method of starting-up such fuel cells from subfreezing temperatures.

BACKGROUND OF THE INVENTION

[0003] Fuel cells have been proposed as a power source for many applications. So-called PEM (protonexchange membrane) fuel cells [a k a, SPE (solid polymer electrolyte) fuel cells] are particularly desirable for both mobile (e.g. electric vehicles) and stationary applications. PEM/SPE fuel cells include a "membrane electrode assembly" (hereafter, MEA) comprising a thin proton-conductive (i.e. H*-conductive), solid-polymer, memorane-electrolyte having an anode on one of its faces and a cathode on the opposite face. The solid-polymer membranes are typically made from ion exchange realns such as perfluoronated sulfonic acid. One such 25 resin is NAFION™ sold by the DuPont Company, Such membranes are well known in the art and are described in U.S. Patent 5,272,017 and 3,134,597 as well as in the Journal of Power sources, Vol. 29, (1990), pages 367-367, Inter alla. The anode and cathode typically 32 comprise finely divided catalytic particles either alone or supported on the Internal and external surfaces of carbon particles, and have proton conductive resin intermingled therewith. The anode and cathode catelysts cover opposite faces of a solid polymer membrane cicctrolyte.

[0004] The MEA is sandwiched between a pair of electrically conductive current collectors for the anode and cathode. The current collectors contain channels/ grooves on the faces thereof defining a "flow field" for distributing the fuel cell's gaseous reactants (i.e. H2 and O₂) over the surfaces of the respective anode and cathode catalysts. Hydrogen is the anode reactant (i.e. fuel) and can either be in a pure form or derived from the reformation of methanol, gasoline or the like. Oxygen is the 45 cathode reactant (i.e. oxidant), and can be either in a pure form or diluted with nitrogen (e.g. air). The overall electrochemical reaction occurring at the MEA under normal fuel cell operation is: (1) H2 is oxidized on the anode catalyst to form 2H*lons and releases 2 electrons to the external circuit; (2) the H+ ions move through the membrane to its cathode side; (3) the 2 electrons flow through the external circuit to the cathode side of the membrane where they reduce the O2 on the cathode catalyst to form Or ions; and (4) The Or ions react with the H* ions on the cathode side of the membrane to form water.

[0005] It is desirable for many applications, and par-

ticularly electric vehicle applications (i.e. to meet custemer expectations), that the 'uel cell be capable of tieing started-up quickly so as to be immediately available to produce the energy needed to propel the vehicle without significant delay. At high ambient temperatures (e. g. about 20 °C or more), the fuel cell stack (i.e. plurality of individual calls bundled together into a high voltage pack) can be started-up in a reasonable amount of time because electrical current can be immediately drawn from the stack which in turn, causes electrical IR-heating of the stack to quickly heat up the stack to its preferred operating temperature (i.e. about 80 °C). At subfreezing temperatures below about -25 °C, however. rapid start-up is much more difficult, because at these temperatures the rate at which the overall electrochemical reaction occurring at the membrane-electrode-assambly takes place is significantly reduced thereby limiting the amount of current that can be drawn from the steck, and hence the IR-heating that can be inputted to the stack. The precise mechanism for the reaction rate reduction is not known. However, it is believed to be that either (1) the Hr ion conductivity of the solid polymer mambrane electrolytes is so poor at these temperatures, (2) or the effectiveness of the catalysts to electrochemically lonize the H2 and/or O2 is so poor at these temperatures, that no significant amount of electrical current can be drawn from the stack, and no corresponding IR-heating thereof can occur.

SUMMARY OF THE INVENTION

[0006] The present invention comprehends a method of heating the MEA of a FEM fuel cell while it is cold to thaw it but and thereby accelerate cold start-up of the fuel cell. The method applies to single cells as well as a stack of euch cells. The fuel cell has a MEA that comprises a proton-conductive membrane, a cathode catalyst supported on a first face of the membrane, and an anode catalyst supported on a second face of the membrane opposite the first face, in accordance with the present invention, the MEA is thawed out by locally heating it using the heat generated by the exothermal chemloal reaction between H2 and O2 on the anode and/or cathode catalyst(s) which raises the MEA's temperature from a first subfreezing temperature to a second temperature which is above the first temperature and which enhances the rate of the overall electrochemical reaction occurring at the MEA. More specifically, the method of the present invention comprises the steps of: (1) supplying a H2-rich gas (e.g. pure H2 or CO-containing reformate) to the anode catalyst and a O2-rich gas (e.g. pure C2 or air) to the cathode catalyst; (2) introducing a sufficient quantity of H2 Into the O2-rich gas, and/or a sufficient quantity of O2 into the H2-rich gas to exothermally chemically react the H2 with the O2, and thereby assist in heating the MEA up to a second temperature where current can be drawn from the fuel cell; (3) discontinuing the introduction of such quantities of H2 and/

3

or O_2 after the MEA resones a suitable temperature at or above the second temperature; and (4) drawing electrical current from the fuel cell to assist in completing the heating of the fuel cell up to its normal operature.

[0007] The ${\rm H_2}$ -rich gas that fuels the anode may be the source of the ${\rm H_2}$ -provided to the ${\rm O_2}$ -rich cathode gas, and air may be the source of the ${\rm O_2}$ -provided to the ${\rm H_2}$ -rich gas. The amount of ${\rm H_2}$ introduced into the ${\rm O_2}$ -rich gas is such as would produce a mix having a hydrogen content of about 0.5% to about 3.5% by volume ${\rm O_2}$ concentrations as low as about 1% and as high as 7% by volume (i.e. when mixed with the ${\rm H_2}$ -rich gas) can be used when pure ${\rm H_2}$ is the fuel. When CO-containing ${\rm H_2}$ -rich gases (e.g. reformate) are used, ${\rm O_2}$ concentrations between 2% and about 7% by volume are preferred.

[0008] The faces of the membrane that support the catalyste each has (1) a leading edge that first contacts the O2-rich/H2-rich gas (es), and (2) a trailing edge that last contacts O2-rich/H2-rich gases as the gas (es) flow over the appropriate cathode or anode face. During the thawing step of this invention, the O2-rich and/or H2-rich gases may be flowed across their associated MEA faces from the leading edge toward the trailing edge at a flow rate greater that than the flow rate used for the normal operation of the fuel cell once it has reached he normal operating temperature. This higher rate Insures that much of the O2 and/or H2, as appropriate, is/are swept downstream of the leading edge to react on catelyst downstream of the leading edge so as to heat the MEA. more evenly than would occur if the O2/H2 gas were flowed at a slower rate and mostly reacted near the leadingledge. In this regard, slow flow rates tends to increase the residence time of the O2/H2 near the leading edge which causes more of the $\mathrm{O}_{\mathrm{Z}}/\mathrm{H}_{\mathrm{Z}}$ to react thereat causing uneven heating of the MEA. Hence by way of example, If the flow rate of H2 through a given stack during normal operations were 0.01 kg/min., a useful flow rate during MEA thawing might be about 0.04 kg/min. SImilarly, if the flow rate of O2 through a given stack during normal operations were 0.18 kg/min., a useful flow rate during MEA thawing might be about 0.64 kg/min. Alternatively, the gas flow channels through which the O2-rich and Harich gases flow could be configured (e.g. tapered) such that the gas velocity therein changes from a first higher velocity at the leading edge to a second lower velocity downstream of the leading edge which will also serve to effect more even heating of the MEA.

[0009] If the fuel cell stack were shut down "wet" (i.e. with free water present), ice could form atop the catalyst (s) when the stack is subjected to freezing temperatures. Such ice could block access to the catalyst(s) by the H₂ and/or O₂ and prevent the desired chemical reaction from occurring. In the event of such foling, it is preferred to warm (i.e. above the temperature of the MEA) dry H₂-rich and/or O₂-rich gas (as) and pass it/ them through the associated flow fletd(s) for a sufficient time to desice the catalyst(s) before introducing the O₂

and/or He Into the fuel or oxidant streams.

[0010] The present invention will better be understood when considered in the light of the following detailed description of one embodiment thereof which is given nereatter in conjunction with the Figure in which:

BRIEF DESCRIPTION OF THE DRAWINGS

[0011] The Figure is a simplified schematic of a fual cell system according to the present invention.

DESCRIPTION OF THE PREFERRED EMBODIMENT

[0012] The Figure depicts a simplified schematic of a fuel cell system in accordance with the present invention. In this embodiment, a fuel processor (e.g. reformer) is used to produce a CO-containing, H2-rich fuel gas Alternatively, the H2-rich gas could be sourced from tanked H2, adsorbed H2 (e.g. on carbon), or chemically bound hydrogen (e.g. metal hydride). In the embodiment shown, a hydrogencontaining fuel (e.g. methanol, or gasoline) 2 is supplied to a fuel processor 4 (e.g. steam reformer or autothermal reactor) that catalytically dissociates the fuet into an Ho-rich reformate 6 comprising H2, CO2, H2O and CO. The CO content of the reformate 8 is usually too high for the fuel cell stack 8 to accommodate -- so the reformate 6 passes one or more CO clean-up devices 10 which typically includes a water gas shift reactor and a preferential oxidation reactor, both of which are well known in the art and do not form a part of the present invention. After the CO content has been reduced to satisfactory levels, the reformate feed stream 12 is fed to the fuel cell stack 8. As a final COcleanup measure, a small amount of all (I e. less than 8 % by volume) is fed into the feed stream 12 via a metering device 14 at the entrance to the stack 8. The metering device 14 may comprise any one of a variety of devices such as a variable orlice injector, a pulse width modulated injector or a fixed-displacement type device so long as it is capable of modulating the flow of eir. The air for the metering device 14 is provided by a compressor 18, and is heated therein incident to the heat of compression that is produced in the compressor 16. The compressor 18 also produces compressed air 18 for the cathode side of the fuel cell stack 8 which cathode air is humidified in a humidifier 20 positioned downstream of the compressor 16. A pressure regulator 22 insures that the air supplied to the fuel cell 8 is at an appropriate pressure.

[0013] In accordance with the present Invention, sufficient O₂ (i.e. as air) is provided to the H₂-rich feed stream for the anode side of the stack 8 and/or sufficient H₂ supplied to the O₂-rich feed stream for the cathode side of the stack 8 when the stack is at a temperature below about -25 °C to heat-up the MEA(s) in the stack to a temperature of at least about -20 °C, at which latter temperature electrical current can be drawn from the stack and internal IR heating of the stack begun. Ther-

mai start-up of the stack 8 can further be effected by heating the coolant (e.g. with a combuster) that normally circulates through the stack 8 to cool it. Once the stack B is up to temperature, heating of the stack coolant is discontinued, and it resumes its normal cooling function. Preferably, the O2 and/or H2 used for heating/thawing will continue to flow until the stack has reached a tempereture of at least about 0°C to supplement the IRheating below freezing.

[0014] The O₂ (e.g. as air) can conveniently be supplied to the anode side of the stack 8 via the same metering device 14 that is used for supplying air for the final CO clean-up, supra, during normal operation of the stack. However, for the exothermic heating purpose of the present invention, the O2 will be supplied to the an- 15 ode side at a rate sufficient to yield a feed stream having an O2 content of at least 2% by volume and less than about 7% by volume. Once the temperature of the MEA Is raised sufficiently (i.e. to above about 0 °C), the O2 flow rate is reduced down to the desired CO-cleanup level (i.e. less than 1.6 % by volume). Similarly, the H₂ is supplied to the air stream 24 to the stack 8 viz line 25 and metering device 28. The He will be supplied to the cethode side of the stack B at a rate sufficient to yield an air stream 24 having an H₂ content of at least about 25 4. The method according to claim 1 including the step 0.5% by volume and less than about 3.5% by volume. A H₂ sensor 20 monitors the H₂ concentration in the air stream 24, and can be coupled to appropriate devices for controlling the H₂ flow rate.

[0015] Secause of the cold temperatures, little if any 30 reaction occurs between the H2 and O2 until the gas streams are contacted by the catalysts that form the anoce and cathode faces of the membrane. When such contact is made, an exothermic reaction occurs and the heat therefrom is transmitted directly into the MEA. If the 35 stack was shutdown "wet", some ice may form over the catalyst(s) when the stack is frozen. Such ice formation can inhibit contact between the catalysts and the H2 -O₂, but can readily be removed by heating the feed stream 12 and air stream 24 and flowing them over the 40 catalyst to melt the ice and carry away the water formed before admitting the O2 and H2 to their appropriate streams.

[0016] While the invention has been described in terms of specific embodiments thereof, it is not intended 45 to be limited thereto but rather only to the extent set forth hereafter in the claims which follow.

Claima

1. A method of heating a membrane electrode assembly of a PEM fuel cell from a first subfreezing temperature to a second temperature above said first temperature that enhances the rate of the overall 55 6. electrochemical reaction occurring at the membrane-electrode-assembly, said fuel cell having a membrane-electrode-assembly comprising a pro-

ton-conductive membrane, a cathode catalyst supported on a first faca of sald membrane, and an anode catalyst supported on a second face of said membrane opposite said first face, comprising the stops of:

- a) supplying a H2-rich gas to sald anode cata-
- b) supplying an O2-rich gas to said cathode catalyst; and
- c) Introducing sufficient H₂ into said O₂-rich gas to exothermally chemically react said H2 with sald Oz-rich gas on said cathods catalyst to heat said membrane-electrode-assembly to said second temperature.
- 2. The method according to claim 1 wherein said $\rm H_{2^{-}}$ non gas is supplied at a temperature that is above said first temperature.
- The method according to claim 1 wherein said O₂nch gas is supplied at a temperature that is above said first temperature.
- of introducing sufficient O2 into said H2-rich gas to exothermally chemically react said O2 with sufficient H₂ in said H₂-1ch gas on said anode catalyst so as to further heat said membrane-electrode-assembly to said second temperature.
- 5. A method of heating membrane-electrode-assemby of a PEM fuel cell from a first subfreezing temperature to a second temperature above said first temperature that enhances the rate of the overall electrochemical reaction occurring at the membrane-electrode-assembly, said fuel cell having a membrana-electrode-assembly comprising a proton-conductive membrane, a cathode catalyst supported on a first face of said membrane, and an anode catalyst supported on a second face of eald membrane opposite said first face, comprising the steps of:
 - a) supplying a CO-free, H2-rich gas to said enode catalyst;
 - b) supplying an O2-rich gas to said calhodo catalyst; and
 - c) introducing sufficient O2 into said CO-free, H2-rich gas to exothermally chemically react with sufficient Ho in said Ho-rich gas on said anode catalyst to heat said membrane-electrodeassembly to said second temperature.
- The method according to claim 5 wherein sald Horich gas le supplied at a temperature that is above said first temperature.

50

EP 1 113 516 A1

25

35

8

7

 The method according to claim 5 wherein said O₂rich gas is supplied at a temperature that is above said first temperature.

- The method according to claim 1 wherein the concentration of said H₂ in said O₂-rich gas is 0.5% to 3.5% by volume.
- The method according to claim 5 wherein the concentration of said O₂ in said H₂-rich gas is about 1% to about 7% by volume.
- 10. A method of heating a membrane-electrode-assembly of a PEM fuel cell from a first subfreezing temperature to a second temperature above said tirst temperature that enhances the rate of the overall-electrochemical reaction occurring at the membrane-electrode-assembly, said fuel cell having a membrane-electrode-assembly comprising a proton-conductive membrane, a cathode catalyst supported on a first face of said membrane, and an anode catalyst supported on a second face of said membrane opposite said first face, comprising the steps of:
 - e) supplying a CO-containing, H₂-rich gas to said anode catalyst;
 - b) supplying an O2-rich gas to said cathode catalyst, and
 - c) introducing about 2% to about 7% by volume O_2 into seld CO-containing. H_2 -rich gas to exothermally chemically react with sufficient H_2 in said H_2 -rich gas on said anode catalyst to heat said membrane-electrode-assembly to said second temperature.
- The method according to claim 10 wherein said H₂rich gas is supplied at a temperature that is above said first temperature.
- The method according to claim 10 wherein said O₂rion gas is supplied at a temperature that is above said first temperature.
- 13. The method according to claim 1 wherein self first face has a leading edge that first contacts said O2-rich gas and a trailing edge that last contacts said O2-rich gas as said O2-rich gas flowed across said first face from said leading edge toward said trailing edge at a first rate during the normal operation of said fuel cell, and said O2-rich gas is flowed across said first face at a second rate greater than said first rate during chemical heating of the membrane-electroda-assembly whereby more of said O2-rich gas is swept downstream of said leading edge to react on cathode catalyst downstream of said leading edge and thereby heat said membrane more eventy than if the

O2-rich gas were flowed at said first rate.

- 14. The method according to claim 3 wherein said O₂-rich gas is supplied to said cathode catalyst for a sufficient period of time before the introduction of said H₂ to remove any ice from the surface of said cathode catalyst that might otherwise impede the H₂-O₂ chemical reaction that is to occur on said cathode catalyst.
- 15. The method according to claim 2 wherein said H₂-rich gas is supplied to said anode catalyst for a sufficient period of time before the introduction of said O₂ to remove any ice from the surface of said anode catalyst that might otherwise impede the H₂-O₂ chemical reaction that is to occur on said anode catalyst.
- 16. The method according to claim 1 wherein said first face has a leading edge that first contacts eald O₂-rich gae and a trailing edge that last contacts said O₂-rich gas as eald O₂-rich gas its flows over said face, and said O₂-rich gas is flowed over said first face from said leading edge toward said trailing edge at a rate that varies from a first velocity at said leading edge to a second velocity at said trailing edge that is less than said first velocity to heat said membrane substantially eventy.
- 17. The method according to claim 1 wherein said H₂rich gas is the source of said H₂
 - 18. The method according to claim 1 wherein air is the source of said O_2 .

MOU 10 2001 08:42 FK THIL FUEL CELLS - 668 121 5333 10 503051044

EP 1 113 516 A1

WOO 10 5001 08.45 EK INTE ENER CEERS 900 IF 5000 0 00000 0

EP 1 113 516 A1

EUROPEAN SEARCH REPORT

Application Number

	DOCUMENTS CONSIDERE		Relevant	CLASSIPICATION OF THE
210907	Citation of document with Indicate of relevant passages	on, where &oprophate.	to cla m	APPLICATION (MACI.7)
Ρ, Χ	WO 00 54356 A (VON HELN KONRAD (DE); GEBHARDT to 14 September 2000 (2001 * page 2, line 23-29 * * page 3, line 34 - pag * page 5, line 1-16 * * claims 1,2 *	JLRICH (DE); LUFI) D-09-14)	1-7,14, 15,17,18	H01M8/04
P,X	US 6 127 056 A (WHEELE) 3 October 2000 (2000-1) = the whole document =	0-03)	1-4,14, 15,17,10	3
P,X	US 6 103 410 A (WHEELE 15 August 2000 (2000-0 column 1, line 47 - column 4, line 12-27 claim 1 *	8-15) column 2, line 7 +	1-4,14, 15,17,1	8
Y	PATENT ABSTRACTS OF JA	PAN	1-18	
	vol. 013, no. 018 (E-7 17 January 1989 (1989-	01-17)		TECHNICAL FIRLDS SEARCHED (MILCLY)
	\$ JP 63 225477 A (MITS CORP), 20 September 19 * abstract *	UBISHI ELECTRIC		H01M
Y	DE 40 33 286 A (ASEA B 28 February 1991 (1991 * column 4, line 35-41 * claims 3-6 *	02-28)	1-18	
A	PATENT ABSTRACTS OF JA vol. 010, no. 363 (E-4 5 December 1986 (1986- 8 JP 61 158672 A (FUJI 18 July 1986 (1986-07- + abstract *	61), -12-05) : ELECTRIC CO LTD),	1,5,10	
			_	
	The present search report has been			
	Flace of eparth	21 March 2001	E.	gl, H
	MUNICH CATEGORY OF CITED DOCUMENTS	T - moons or mood	rele underlysna fr	e invention
X:pa Y;pa CD A:194	CATEGORY OF CITED DOCUMENTS ritcularly returent if taken alone current of the admir category chnologiscs background an-writing decirone atmostisc out ment	€ : daAlisr palahi gjer the Beng O : document che t : document che	document, but pu colo id in the appacable is for other mason	oconed on, or on on

WOO 10 5001 88.45 EK THIE FOEL CELES - 900 IT. 5001 TO 90000 C. S.

EP 1 113 516 A1

EUROPEAN SEARCH REPORT

Application Number EP 00 12 4165

gradion	Citation of document with in of relevant pass	cication, whore appropriets, ages	Aelevant to daim	CLASSIFICATION OF THZ APPLICATION (INLCL7)
A	PATENT ABSTRACTS OF vol. 013, no. 038 (1 27 January 1989 (198 & JP 63 236262 A (H 3 October 1988 (198 * abstract *	E-709), B9-01-27) ITACHI LTD),	1,5,10	
A	PATENT ABSTRACTS OF vol. 016, no. 347 (1 27 July 1992 (1992→ & JP 04 106877 A (M CORP), 8 April 1992	E-1240), 07-27) ITSUBISHI ELECTRIC	1,5,10	
				TECHNICAL FIELDS SEARCHED (Int.Cl.7)
	The present search report has t	occa drawa up for all claims	\dashv	
	Practical controls	Open of completion of the sector		EXAMPOI
	MUNICH	21 March 2001	End	11, H
X : per V : par doc A : tec	CATEGORY OF CITED DOCUMENTS rickeshy relevant 4 tohen blond rickeshy relevant 5 combined with anof surrent of the earne calegory Photogical background	T theory or print E : earlier present eather the fitting ther D document of L : document of	eripta undernying (he seripta undernying (he seripta in emerge	Envention bland on, or

ANNEX TO THE EUROPEAN SEARCH REPORT ON EUROPEAN PATENT APPLICATION NO.

EP 00 12 4165

This annex that the patent lamily members relating to the patent documents cited in the above-mentioned European search report. The members are as combined in the European Patent Office EDP file on The European Patent Office to in no way liable for these particulars which are merely given for the purpose of information.

21-03-2001

cib	ed in search repo		Publication date	Palent lamily member(5)	Publication date
MO	0054356	A	14-09-2000	NONE	
US	6127056	A	03-10-2000	NONE	
US	6103410	A	15-08-2000	NONE	
JP	63225477	Α	20-09-1988	NONE	
DE	4033286	A	28-02-1991	NONE	
JP	61158672	Α	18-07-1986	NONE	
JP	63236262	A	03-10-1988	NONE	
JP	04106877	A	08-04-1992	NONE	