

Irta:
SZALKAI ISTVÁN
DÓSA GYÖRGY

KALKULUS PÉLDATÁR INFORMATIKUSOKNAK II.

Egyetemi tananyag

2011

COPYRIGHT: © 2011–2016, Dr. Szalkai István, Dr. Dósa György, Pannon Egyetem Műszaki Informatikai Kar Matematika Tanszék

LEKTORÁLTA: Dr. Molnárka Győző, Széchenyi István Egyetem Műszaki Tudományi Kar Mechatronika és Gépszerkezettan Tanszék

Creative Commons NonCommercial-NoDerivs 3.0 (CC BY-NC-ND 3.0)

A szerző nevének feltüntetése mellett nem kereskedelmi céllal szabadon másolható, terjeszthető, megjelentethető és előadható, de nem módosítható.

TÁMOGATÁS:

Készült a TÁMOP-4.1.2-08/1/A-2009-0008 számú, "Tananyagfejlesztés mérnök informatikus, programtervező informatikus és gazdaságinformatikus képzésekhez" című projekt keretében.

ISBN 978-963-279-522-5

KÉSZÜLT: a Typotex Kiadó gondozásában

FELELŐS VEZETŐ: Votisky Zsuzsa

AZ ELEKTRONIKUS KIADÁST ELŐKÉSZÍTETTE: Juhász Lehel

KULCSSZAVAK:

többváltozós integrálás és deriválás, közönséges differenciálegyenletek, parciális törtekre bontás, Laplace-transzformáció, Fourier-sorok.

ÖSSZEFOGLALÁS:

A példatárban található feladatok felölelik a többváltozós integrálás és deriválás, közönséges differenciál- és integro- egyenletek, a parciális törtekre bontás, Laplace-transzformáció és Fourier-sorok, az RLC elektronikus áramkörök alapjait. A bőséges útmutatóban röviden megtaláljuk a legfontosabb megoldási módszerek leírását is. A feladatgyűjtemény legnagyobb részét a feladatok részletes megoldásai (esetenként magyarázatokkal, megjegyzésekkel) teszik ki. A függelékben a legfontosabb tételek, képletek, táblázatok és tárgymutató kaptak helyet. Két animáció és két szemléltető program is segíti a megértést és egyszerűbb feladatok kiszámíttatását. Mind egyéni, mind csoportos felkészüléshez ajáljuk ezt a példatárat.

Tartalomjegyzék

Bevezetés	7
Feladatok	9
F1. Többváltozós függvények folytonossága és deriválhatósága	9
Folytonosság	9
Parciális deriváltak	9
Differenciálhatóság	10
Iránymenti derivált	10
Összetett függvény deriválása	11
Magasabbrendű deriváltak	11
Szélsőértékszámítás	12
Érintősík, Taylor-polinom, közelítő módszerek	12
F2. Két- és többváltozós integrálok	12
Szukcesszív integrálás	12
Transzformációk	14
Többváltozós integrálok	15
F3. Többváltozós integrálok alkalmazásai	15
F4. Közönséges differenciálegyenletek alapjai	16
	17
Szétválasztható változójú egyenletek	17
Visszavezethető típusok	17
	17
	18
Egzakt egyenletek	18
	18
F7. Parciális törtekre bontás	19
	20
F9. Integro-differenciálegyenletek megoldása Laplace-transzformációval	21
Lineáris differenciálegyenletek és -rendszerek	21
Integro-differenciálegyenletek és -rendszerek	22
Alkalmazások	22
	24
	24
Alkalmazások	25

Útmutatások 20
U1. Többváltozós függvények folytonossága és deriválhatósága
U2. Két- és többváltozós integrálok, transzformációk
Transzformációk
U3. Többváltozós integrálok alkalmazásai
Fizikai képletek
U4. Közönséges differenciálegyenletek alapjai
U5. Elsőrendű differenciálegyenletek
Szétválasztható változójú egyenletek
Visszavezethető típusok
Lineáris egyenletek
Bernoulli-egyenletek
Egzakt egyenletek
U6. Elsőrendű differenciálegyenletek alkalmazásai
U7. Parciális törtekre bontás
U8. Laplace-transzformáció és inverze
U9. Integro-differenciálegyenletek megoldása Laplace-transzformációval 37
Alkalmazások
U10. Fourier-sorok, alkalmazások
R-L-C áramkörökről
Megoldások 40
M1. Többváltozós függvények folytonossága és deriválhatósága
Folytonosság
Parciális deriváltak
Differenciálhatóság
Iránymenti derivált
Összetett függvény deriválása
Magasabbrendű deriváltak
Szélsőértékszámítás
Érintősík, Taylor-polinom, közelítő módszerek 61
M2. Két- és többváltozós integrálok, transzformációk
Szukcesszív integrálás
Transzformációk
Többváltozós integrálok
M3. Többváltozós integrálok alkalmazásai
M4. Közönséges differenciálegyenletek alapjai
M5. Elsőrendű differenciálegyenletek
Szétválasztható változójú egyenletek
Visszavezethető típusok
Lineáris egyenletek
Bernoulli-egyenletek
Egzakt egyenletek
M6. Elsőrendű differenciálegyenletek alkalmazásai

TARTALOMJEGYZÉK 5

M7. Parciális törtekre bontás	96
M8. Laplace-transzformáció és inverze	100
M9. Integro-differenciálegyenletek megoldása Laplace-transzformációval	105
Lineáris differenciálegyenletek és -rendszerek	105
Integro-differenciálegyenletek és -rendszerek	112
Alkalmazások	
M10. Fourier-sorok, alkalmazások	
Fourier-sorok	118
Alkalmazások	127
Javasolt irodalom	130
Név- és tárgymutató	131

Bevezetés

Feladatgyűjteményünk újdonsága, hogy (majdnem) minden feladat részletes, lépésenkénti megoldását tartalmazza, rövid elméleti magyarázatokkal. A megoldás elolvasása előtt azonban olvassuk el a 2. részben írt rövid *Útmutatást*, ahol a legtöbb elméleti képletet is megtaláljuk.

Két *animációt* és **két** *interaktív* **programot** is mellékelünk:

ARAMKOR-ANIM.GIF (+html) és TRAKTRIX-ANIM.GIF (+html), IRANYMEZO.EXE és EULERTV.EXE, ez utóbbiakhoz tömör HELP vagy HELP használati útmutató és mintaképek is tartoznak.

A válogatott gyakorlati példák elsősorban a matematikai számítási *módszerek* (többváltozós integrál- és differenciálszámítás, közönséges differenciálegyenletek) és azok *alkalmazásainak* (modell-állítás) jobb megértését kívánják elősegíteni. Kiemelten kezeltük az elektronikai alkalmazásokat. Bár nem a szokásos analízishez tartozik: közelítő módszereket is igyekeztünk minél többet bemutatni: érintősíkok, Euler-töröttvonal, Fourier-sorok, stb. felhasználásával. Ezek nagy része a folytonos mennyiséget/módszert közelíti *diszkrét* mennyiségekkel illetve módszerekkel, ami az informatikai módszerek egyik alappillére.

Természetesen *nem* csak informatikusok forgathatják haszonnal a feladatgyűjteményt: a feladatokat szigorú matematikai alapossággal oldjuk meg, az alkalmazások megértéséhez középiskolai ismeretek is elegendőek.

A feladatok nehézségi foka nagyon sokféle: az egyszerű bevezető példáktól egészen a "tanárizzasztó" méretűig minden megtalálható benne.

Terjedelmi okokból kimaradtak: komplex számok és alkalmazásaik; differenciálegyenleteknél az "állandók variálása" és a "klasszikus" módszerek, hiányos egyenletek. Legtöbb feladattípusra csak egy megoldási módszert ismertetünk, mégpedig azokat a módszereket részesítettük előnyben, melyek K.É.P. nélkül általános megoldásokat adnak. Magasabbrendű egyenleteket csak Laplace transzformációval oldunk meg. Részletes *Laplace-, differenciálés egyéb* táblázatokat (és egyéb oktatási segédanyagokat) találunk **Szalkai István** honlapjának **Analízis** c. részében: http://math.uni-pannon.hu/~szalkai/címen.

Elemi analízis problémák gyakorlására javasoljuk **dr. Koltay László – dr. Szalkai István:** *Analízis I. feladatgyűjteményét* (Pannon Egyetemi Kiadó, Veszprém, 2008), amely szintén részletes megoldásokat és megjegyzéseket, képleteket is tartalmaz.

```
Néhány alkalmazott jelölés: y=f(x) helyett sokszor csak y-t vagy y(x)-t írunk, e^x helyett néha \exp(x)-et; \arctan(x)=\arctan(x), \ \sinh(x)=\sinh(x), \ \cosh(x)=\cosh(x), \ \tanh(x)=\tanh(x), \ \mathrm{stb.}; többváltozós függvényeknél: z=f(x,y) vagy z=f(x_1,x_2,\ldots,x_n);
```

8 BEVEZETÉS

```
többdimemziós pontoknál: (x_1, x_2, \ldots, x_n) vagy \underline{a} csak egyszerűen a, P; parciális deriváltakra: D_1 f, \frac{\partial}{\partial x_1} f, \frac{d}{dx_1} f, f'_1 vagy csak D_x f, \frac{\partial}{\partial x} f, \frac{d}{dx} f, f'_x; DIFE = "differenciálegyenlet", K.É.P. = "Kezdeti Érték Probléma"; H(t) = 1 (t \ge 0) és H(t) = 0 máskor – ún. Heaviside függvény.
```

Köszönetünket fejezzük ki **dr. Gróf Józsefnek** és **dr. Székely Sándornak**, a Matematika Tanszék lelkes oktatóinak az alkalmazások terén nyújtott sok segítségért!

Feladatok

F1. Többváltozós függvények folytonossága és deriválhatósága

Folytonosság

1.1. Számítsuk ki a következő függvények határértékét és ellenőrizzük lehetséges folytonosságukat a feltüntetett "kritikus" helyeken:

a)
$$\lim_{(x,y)\to(\pi,0)}\cos(y)\sin(\frac{x}{2})$$
, $\lim_{(x,y)\to(0,1)}\frac{\sin(xy)}{x}$, $\lim_{(x,y)\to(0,0)}\frac{1}{xy}$, $\lim_{(x,y)\to(0,0)}\left(\frac{1}{x}-\frac{1}{y}\right)$,

$$b)\lim_{(x,y)\to(0,0)}\frac{y^2}{x^2+y^2},\quad \lim_{(x,y)\to(0,0)}\frac{xy^2}{x^2+y^2},\quad \lim_{(x,y)\to(0,0)}\frac{\sin(x)\sin(y)}{x^2+y^2},\quad \lim_{(x,y)\to(0,0)}\frac{x+y}{x-y},$$

c)
$$\lim_{(x,y)\to(0,0)} \frac{x}{\sqrt{x^2+y^2}}$$
, $\lim_{(x,y)\to(0,0)} \frac{xy}{\sqrt{x^2+y^2}}$, $\lim_{(x,y)\to(0,0)} \frac{x^2}{\sqrt{x^2+y^2}}$,

d)
$$\lim_{(x,y)\to(1,1)} \frac{x^2+y^2}{x^2-y^2}$$
, $\lim_{(x,y)\to(1,1)} \frac{x-y}{x^2-y^2}$,

$$e) \lim_{(x,y)\to(\infty,\infty)} \frac{x+y}{x^2+y^2}, \quad \lim_{(x,y)\to(\infty,\infty)} \frac{x+y}{x^2-y^2}, \quad \lim_{(x,y)\to(\infty,\infty)} \frac{x\cdot y}{x^2+y^2}, \quad \lim_{(x,y)\to(\infty,\infty)} \sin\left(\frac{\pi x}{6x+y}\right).$$

Parciális deriváltak

1.2. Adjuk meg a parciális deriváltak értékét az adott helyeken!

a)
$$f(x,y) = 2x^2 + y - \frac{\sqrt{x}}{y} + \pi$$
 $x \ge 0, y \ne 0$

$$\frac{\partial}{\partial x}f(1,2), \qquad \frac{\partial}{\partial y}f(1,2), \qquad \frac{\partial}{\partial x}f(0,-4), \qquad \frac{\partial}{\partial y}f(0,-4).$$

b)
$$f(x, y, z) = ze^{-\frac{x}{y}}$$
 $x, z \in \mathbb{R}, y \neq 0$

$$\frac{\partial}{\partial x} f(0,1,2), \qquad \frac{\partial}{\partial y} f(1,2,0), \qquad \frac{\partial}{\partial z} f(1,1,0).$$

$$c) \ f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2} & \text{ha} \quad x^2 + y^2 > 0 \\ 0 & \text{ha} \quad x^2 + y^2 = 0 \end{cases}, \quad \frac{\partial}{\partial x} f(0,0), \quad \frac{\partial}{\partial y} f(0,1), \quad \frac{\partial}{\partial x} f(1,2).$$

1.3. Adjuk meg a parciális derivált függvényeket!

a)
$$f(x, y, z) = x^2 + x \cdot y^2 + 3z^2$$
 $x, y, z \in \mathbb{R}$

$$\frac{\partial}{\partial x}f(x,y,z), \qquad \frac{\partial}{\partial y}f(x,y,z), \qquad \frac{\partial}{\partial z}f(x,y,z).$$

b)
$$f(x,y) = \frac{x}{\sqrt{x^2 + y^2}}$$
 $(x^2 + y^2 > 0), \frac{\partial}{\partial x} f(x,y), \frac{\partial}{\partial y} f(x,y).$

Differenciálhatóság

1.4. Vizsgáljuk meg az alábbi függvények differenciálhatóságát!

a)
$$f(x,y) = x^2 - xy + y^2$$

$$b) f(x,y) = y \sin^2 x + x \cos^2 y$$

c)
$$f(x, y, z) = \sqrt{x^2 + y^2 + z^2}$$

d)
$$f(x, y) = \ln (1 + \frac{y}{x})$$

e)
$$f(x,y) = \begin{cases} \frac{xy}{x^2+y^2} & x^2+y^2 > 0\\ 0 & x^2+y^2 = 0 \end{cases}$$

$$f(x,y) = \begin{cases} \frac{x|y|}{\sqrt{x^2 + y^2}} & x^2 + y^2 > 0\\ 0 & x^2 + y^2 = 0 \end{cases}$$

1.5. Adjuk meg a gradiensvektort az adott pontokban!

a)
$$f(x,y) = x^3 + y^2 - 3xy$$
 (0,0),

b)
$$f(x, y, z) = \sqrt{x^2 + y^2 + z^2}$$
 (1, 1, 1), (x, y, z) ,

$$(1,1,1), \qquad (x,y,z)$$

c)
$$f(x, y, z) = x^2 + y^2 + z^2$$
 (1, 2, 3), (x, y, z) ,

d)
$$f(x, y, z) = \frac{z}{\sqrt{x^2 + y^2}}$$
 (3, 4, 5), (x, y, z) .

$$(x,y,z)$$
.

Iránymenti derivált

1.6. Adjuk meg az f függvény iránymenti deriváltját az a pontban a v vektor illetve α szög irányában!

a)
$$f(x, y, z) = e^{x^2 + y^2}$$
 $a = (-1, 2), \quad v = \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right),$

$$a = (-1, 2),$$

$$v = \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$$

b)
$$f(x, y, z) = z \sin(x + y)$$
 $a = (\frac{\pi}{3}, \frac{\pi}{6}, 1),$ $v = (3, \sqrt{11}, 4),$

$$a = \left(\frac{\pi}{3}, \frac{\pi}{6}, 1\right),$$

$$v = (3, \sqrt{11}, 4)$$

c)
$$f(x,y) = \ln(x+y)$$
 $a = (1,1)$, $\alpha = 30^{\circ}$,

$$a = (1, 1),$$

$$\alpha = 30^{\circ}$$
,

d)
$$f(x,y) = \begin{cases} \frac{x|y|}{\sqrt{x^2 + y^2}} & x^2 + y^2 > 0\\ 0 & x^2 + y^2 = 0 \end{cases}$$
 $a = (0,0), \quad v = (1,\sqrt{3}).$

- **1.7.** Adjuk meg az $f(x,y)=x^2-2x^2y+xy^2+1$ függvény P(1,2) pontbeli, $\overrightarrow{Q}(4,6)$ vektor irányába vett iránymenti deriváltját!
- **1.8.** Milyen irányban változik "legjobban" az $f(x,y)=x^2+4y^2$ függvény a P(2,1) pontban?

Összetett függvény deriválása

- **1.9.** Adjuk meg az összetett függvény deriváltját!
 - a) f(x, y, z) = xyz, $x(u, v) = u^2 + v$, $y(u, v) = u v^2$, $z(u, v) = \sin u$,
 - b) $f(x,y) = \frac{x}{y}$, $x(t) = \ln t$, $y(t) = e^t$,
 - c) $f(x,y) = e^{x^2 + y^2}$, $x(r,\phi) = r\cos\phi$, $y(r,\phi) = r\sin\phi$.
- **1.10.** Adjuk meg az $f \circ (x,y)$ összetett függvény gradiensét az \underline{a} pontban (azaz $f(x(\underline{a}),y(\underline{a}))$ értékét), ha
 - a) $f(x,y) = x^2 + xy$, a = (1,2), x(1,2) = 3, y(1,2) = 4,

$$\operatorname{grad} x(1,2) = (-1,0), \qquad \operatorname{grad} y(1,2) = (\sqrt{2},10),$$

b) $\frac{\partial}{\partial x} f(-1,1) = 3$, $\frac{\partial}{\partial x} f(-1,1) = 2$,

$$x(u,v) = u^2 - v^2$$
, $y(u,v) = -\frac{uv}{\sqrt{2}}$, $\underline{a} = (-1,\sqrt{2})$.

- **1.11.** Legyen $g: \mathbb{R} \to \mathbb{R}$ differenciálható függvény, és legyen
 - $f(x,y) = xy + g\left(\frac{y}{x}\right) \quad (x \neq 0).$ Mutassuk meg, hogy teljesül az
 - $x \cdot \frac{\partial}{\partial x} f(x,y) + y \cdot \frac{\partial}{\partial y} f(x,y) = 2xy$ összefüggés.

Magasabbrendű deriváltak

- 1.12. Adjuk meg az alábbi parciális derivált függvényeket:
 - a) $f(x,y) = \sqrt{2xy + y^2}$ $\frac{\partial^2}{\partial x^2} f$, $\frac{\partial^2}{\partial x \partial y} f$, $\frac{\partial^2}{\partial y^2} f$,

- b) $f(x,y,z) = 2x^2y 3y^2z + xyz$ $\frac{\partial^2}{\partial x \partial y} f$, $\frac{\partial^2}{\partial x^2} f$, $\frac{\partial^3}{\partial x \partial y \partial z} f$, $\frac{\partial^3}{\partial x^2 \partial y} f$,
- c) $f(x,y) = x^y$ $\frac{\partial^2}{\partial x \partial y} f$, $\frac{\partial^2}{\partial y \partial x} f$, $\frac{\partial^3}{\partial x^2 \partial y} f$, $\frac{\partial^3}{\partial x \partial y \partial x} f$.

- 1.13. Számítsuk ki a következő parciális deriváltak értékét a megadott helyen:
 - a) $f(x,y) = \frac{1+x}{1+y}$ $\frac{\partial^2}{\partial x^2} f(0,0)$, $\frac{\partial^2}{\partial x \partial y} f(1,1)$, $\frac{\partial^2}{\partial y^2} f(2,2)$,

- b) $f(x,y) = \begin{cases} \frac{x^3y xy^3}{x^2 + y^2} & x^2 + y^2 > 0\\ 0 & x^2 + y^2 = 0 \end{cases}$ $\frac{\partial^2}{\partial x \partial y} f(0,0), \qquad \frac{\partial^2}{\partial y \partial x} f(0,0).$
- **1.14.** Ha $g, h : \mathbb{R} \to \mathbb{R}$ kétszer differenciálható függvények, mutassuk meg, hogy az
 - $f(x,y) = g(xy) + \sqrt{xy} \cdot h\left(\frac{y}{x}\right)$ (xy > 0) függvényre teljesül, hogy
 - $x^2 \frac{\partial^2}{\partial x^2} f(x,y) y^2 \frac{\partial^2}{\partial x^2} f(x,y) = 0.$
- © Szalkai István, Dósa György, Pannon Egyetem

Szélsőértékszámítás

1.15. Hol vannak stacionárius pontjai (hol lehet szélsőértéke) az alábbi függvényeknek?

a)
$$f(x, y, z) = x^2 + 2xy - 2x + 2y^2 - 2y + z^2 + 1$$

- b) $f(x,y) = e^{x^2 y^2}$
- c) $f(x,y) = \sin x + \cos y + x y.$
- 1.16. Keressük az alábbi függvények szélsőértékeit:

a)
$$f(x,y) = 2x^4 + y^4 - x^2 - 2y^2$$

b)
$$f(x,y) = xe^{-\frac{x^2+y^2}{2}}$$

c)
$$f(x,y) = x^4 + y^4 - 2x^2 + 4xy - 2y^2$$

d)
$$f(x,y) = xy\sqrt{1-x^2-y^2}$$
 $(x^2+y^2 \le 1)$

e)
$$f(x,y) = \frac{1-x+y}{\sqrt{1+x^2+y^2}}$$
.

Érintősík, Taylor-polinom, közelítő módszerek

- **1.17. i)** Írja fel az alábbi függvények érintősíkjának egyenletét a megadott \underline{a} pontokban,
 - ii) az érintősík segítségével közelítse a függvényt az \underline{a} pont egy környezetében,
 - iii) számítsa ki a függvény értékét közelítőleg a <u>b</u> pontban:

a)
$$f(x,y) = x^2 + y^2$$
, $\underline{a} = (4,3)$, $\underline{b} = (4,01;2,97)$,

b)
$$f(x,y) = x^y + \frac{x}{y}$$
, $\underline{a} = (3,2)$, $\underline{b} = (2,98;2,03)$,

c)
$$x^3 + x - y^3 + 2y + z^3 + 15 = 0$$
, $P = (-1,3,2)$, $b(-1,03;2,96)$.

1.18. Keresse meg az alábbi egyenletrendszer egy közelítő megoldását a függvények érintősíkjainak segítségével a megadott kezdő értékekből kiindulva, 6 tizedesjegy pontossággal:

$$\begin{cases} f(x,y) = x^3 + 2xy^2 - y^4 + 37 = 0\\ g(x,y) = 3x^2 - 5x^2y + 2y^3 - 6 = 0 \end{cases}$$

$$x_0 = 1,5, \quad y_0 = 2,5 \quad \text{ill.} \quad x_0 = 1, \quad y_0 = 1.$$

1.19. Írja fel az $f(x,y,z)=\frac{x^2y}{x+3z}$ függvény a=(2,-1,8) pont körüli 3-rendű Taylorpolinomját, és ennek felhasználásával becsülje meg az f(1,99,-0,89,8,06) függvényértéket!

F2. Két- és többváltozós integrálok

Szukcesszív integrálás

2.1. Számítsuk ki az alábbi *szukcesszív* (ismételt) integrálokat:

a)
$$\int_{3}^{7} \left(\int_{4}^{5} x^{2} + y^{3} dx \right) dy$$
, $\int_{1}^{2} \left(\int_{8}^{9} x^{5} y^{3} dy \right) dx$,

$$b) \int\limits_H \int f \quad \text{ahol} \quad f(x,y) = \frac{x}{y} \quad \text{és} \quad H \ \text{az} \ A(2,3), \, B(2,5), \, C(6,5), \, D(6,3) \ \text{pontok}$$
 által határolt téglalap.

c)
$$\int_{[1,2]\times[0,3]} \int (2x^2 + 3xy + 4y^2) dxdy$$
.

2.2. Számítsa ki az alábbi $\int\limits_a^b \int\limits_{u(x)}^{v(x)} f(x,y)\,dydx$ integrálokat, ahol

a)
$$u(x) = x^2 - 2x - 4$$
, $v(x) = 3x^2 + 8x$, $f(x, y) = 3x^2 + 8y^2 - xy$, $a = -6.83$, $b = 8.49$,

b)
$$u(x) = x^2 + x - 4$$
, $v(x) = 3\sqrt{x} + 8x$, $f(x, y) = x^2 + xy$, $a = 3$, $b = 9$.

- **2.3.** Számítsa ki az alábbi $\int_H \int_H f$ integrálokat, ahol a H korlátos tartományt alulról és felülről a q és h függvénygörbék határolják:
 - a) f(x,y) = x + y, $g(x) = x^2 + 2x$, $h(x) = 4 x^2$,
 - b) f(x,y) = 2y, $g(x) = x^2$, h(x) = x + 2,
 - c) $f(x,y) = y\cos(x)$, $g(x) = \sin(x)$, $h(x) = 2\sin(x)$, $0 \le x \le \pi$.
- **2.4.** Számítsa ki az alábbi $\int_H \int_H f$ integrálokat. (Minden esetben rajzolja fel a H tartományt is. Ahol lehet, számítsa ki az integrált mind függőlegesen, mind vízszintesen is.)
 - a) $f(x,y) = x^2 + y + 1$, H-t az x-tengely, y-tengely és az x + 2y = 1 egyenes határolják,
 - b) $f(x,y) = \sqrt{1-x^2}$ és $H = \{(x,y) : x \le y \le 1, \ 0 \le x \le 1\},$
- c) f(x,y)=xy és H a koordinátatengelyek és az y=1-x egyenes által bezárt korlátos halmaz,
- $d!) \ f(x,y)=x^2+y^3, \ H=ABC_{\triangle}=\text{az }A(3,2), \ B(5,8)$ és C(9,4) pontok által meghatározott háromszög,
 - $e) \ f(x,y) = yx \ \ {
 m \'es} \ \ H = {
 m az} \ (1,0)$ középpontú egységsugarú kör x tengely feletti fele,
 - $\mathit{f}) \ f(x,y) = y \ \ \text{\'es} \ \ H = \text{orig\'o}$ középpontú egységsugarú kör I. síknegyedbe eső negyede,
- $g)\; f(x,y)=1+2xy\;$ és $\;H$ az $\;y=\sqrt{x},\;y=2x-1$ és x=0 görbék által határolt korlátos halmaz,
 - h) $f(x,y) = xe^y$ és H-t az x = 0, y = 0, y = 2 és y = 4 2x egyenesek határolják.
- **2.5.** Adja meg a *H* tartományt az alábbi feladatokban:

a)
$$\int_{1}^{3} \int_{1}^{4x-x^2} f(x,y) \, dy dx$$
, b) $\int_{-\sqrt{3}/2}^{\sqrt{3}/2} \int_{1/2}^{\sqrt{1-y^2}} f(x,y) \, dx dy$, c) $\int_{2}^{2} \int_{1}^{1+\sqrt{1-y}} f(x,y) \, dx dy$.

2.6. Cserélje fel az integrálás sorrendjét (azaz vízszintes és függőleges irányát) az alábbi feladatokban:

a)
$$\int_{0}^{1.5} \int_{0}^{3-y/2} f(x,y) dxdy$$
, $\int_{0}^{1} \int_{y}^{1} f(x,y) dxdy$, $\int_{1}^{3} \int_{1}^{4x-x^{2}} f(x,y) dydx$,

$$\int_{0}^{1} \int_{-\sqrt{1-y^2}}^{1-y} f(x,y) \, dx dy, \quad \int_{-\sqrt{3}/2}^{\sqrt{3}/2} \int_{y}^{\sqrt{1-y^2}} f(x,y) \, dx dy,$$

$$b^*$$
) $\int_0^3 \int_0^{x^2} f(x,y) \, dy dx + \int_3^4 \int_{2x-6}^{x^2} f(x,y) \, dy dx$,

- c) a 2.5. feladatban szereplő integrálokban.
- **2.7.** Számítsa ki az $\iint_H e^{x^2} dxy$ integrált, ahol H-t az x-tengely, az y=x és az x=1 egyenesek határolják.

Transzformációk

- **2.8.** Számítsuk ki az alábbi $\int_{H} \int_{H} f$ integrálokat *polártranszformáció* segítségével, ahol:
 - a) f(x,y) = y és $H = \text{orig} \acute{o}$ közepű egységsugarú kör I. síknegyedbe eső negyede,
 - b) f(x,y) = yx és H = az(1,0) közepű egységsugarú kör x tengely feletti fele,

$$c_1$$
) $f(x,y) = \sqrt[3]{x^2 + y^2}$ és $H = \{(x,y) : x^2 + y^2 \le 1, y > -x\},$

$$c_2$$
) $f(x,y) = \ln(1+x^2+y^2)$ és $H = \{(x,y) : 1 \le x^2+y^2 \le 4\}$,

$$c_3$$
) $f(x,y) = x^3 - 2xy$ és $H = \left\{ (x,y) : 1 \le x^2 + y^2 \le 4, \frac{\sqrt{3}}{3}x \le y \le \sqrt{3}x \right\}$

d)
$$f(x,y) = 3x + y$$
 és $H = \{(x,y) : \frac{x^2}{4} + \frac{y^2}{9} \le 1\}.$

- **2.9.** Számítsuk ki az alábbi $\int_H \int_T f$ integrálokat *lineáris transzformáció* segítségével, ahol:
- a) $f(x,y)=x^2-y^2$ és H= az $A(0,0),\ B(3,1),\ C(5,4),\ D(2,3)$ pontok által meghatározott paralelogramma,
- b) f(x,y)=xy és H= az A(0,0), B(1,2), C(1,3), D(2,1) pontok által meghatározott paralelogramma,
- c) f(x,y)=x+y és H= az A(-2,0), B(0,3), C(2,0), D(0,-3) pontok által meghatározott paralelogramma.
- **2.10.** Számítsuk ki az alábbi $\int_H \int f$ integrálokat *egyéb* transzformáció segítségével, ahol:
- a) $f(x,y)=\frac{y}{x}$, H= az $y=\frac{1}{x}$, $y=\frac{4}{x}$, y=x és y=2x görbék által meghatározott korlátos síkrész,

 b^*) f(x,y)=1, H= az $y=\frac{1}{x}$, $y=\frac{4}{x}$, $y=x^2/2$ és $y=2x^2$ görbék által meghatározott korlátos síkrész,

c) $f(x,y)=2x+3y,\ H=$ az $y=\frac{1}{x},\ y=\frac{3}{x},\ y=\frac{1}{2}\sqrt{x}$ és $y=5\sqrt{x}$ görbék által meghatározott korlátos síkrész.

Többváltozós integrálok

- **2.11.** Számítsuk ki az alábbi szukcesszív többszörös integrálokat:
- a) $\int \int_H \int (x+3y^5+xz^2)\,dxyz$ ahol H az (-1,2,-3) és (4,5,9) átlós csúcsokkal meghatározott téglatest,

b)
$$\int_{1}^{2} \int_{2-x}^{2+3x} \int_{x-7y}^{x+y} (x^2 - 3y^3 + xz) dz dy dx$$
, c^*) $\int_{0}^{a} \int_{0}^{b\sqrt{1-\frac{x^2}{a^2}}} \int_{c\sqrt{\frac{x^2}{a^2} + \frac{y^2}{b^2}}}^{c} \frac{yz}{\sqrt{x}} dz dy dx$.

F3. Többváltozós integrálok alkalmazásai

3.1. Számítsuk ki az alábbi görbék közötti területet:

a)
$$y = \frac{1}{x}$$
, $y = \frac{4}{x}$, $y = x$ és $y = 2x$,

b)
$$y = \frac{1}{x}$$
, $y = \frac{4}{x}$, $y = x^2/2$ és $y = 2x^2$.

- **3.2.** Határozza meg az $f(x,y)=1-x^2-2y^2$ ellipszis keresztmetszetű "paraboloid" [x,y] sík feletti részének *térfogatát*.
- **3.3.** Határozza meg az $x^2+z^2=r^2$ és $y^2+z^2=r^2$ egymásra merőleges hengerek *metszetének térfogatát*.
- **3.4.** Mekkora *térfogatot* metsz ki az origó középpontú, R=2 sugarú gömbből az $\rho=R/2$ sugarú, az origót érintő henger (*Viviani- féle test*)?
- **3.5.** Határozza meg a z=xy ún. "**nyeregfelület**" $x^2+y^2=R$ kör "feletti" részének felszínét.
- **3.6.** Határozza meg a $z=\sqrt{1-x^2-y^2}\,$ forgási paraboloid alakú tükör felszínét.
- **3.7.** Határozzuk meg az alábbi, [x, y] síkban fekvő síkidomok súlypontjainak koordinátáit:
 - a) az $y=x^2$ görbe és $y=0,\,x=4$ egyenesek által határolt (homogén) paraboladarab,
 - b) az $x^2+y^2 \leq R^2$ homogén körlemez $y \geq 0$ fele,
 - $c)\left\{(x,y):x^{2/3}+y^{2/3}\leq R^2\right\}\ \ \mbox{homog\'en}\ \ \mbox{asztroid}\ \mbox{I.}\ \mbox{síknegyedbe eső negyede.}$

3.8. Az [x, y] sík (0, 0), (1, 0), (1, 1), (0, 1) négyzete fölé állított (z tengellyel párhuzamos) négyzetes hasábot elvágjuk a (0, 0, 0), (1, 0, 1), (1, 1, 2), (0, 1, 1) pontokon átmenő S síkkal.

- a) Határozzuk meg a keletkezett test súlypontjának [x, y] síkra való vetületét.
- b) Határozzuk meg a súlypont z koordinátáját is!
- **3.9.** Határozzuk meg a $z=0, \ x=a, \ y=b$ síkokkal és a $z^2=xy$ felülettel határolt homogén test *súlypontját*.
- **3.10.** Határozzuk meg az R sugarú, m tömegű homogén körlap középpontjára vonatkozó tehetetlenségi nyomatékát!
- **3.11.** Határozzuk meg az $a \times b$ méretű homogén téglalap oldalaira vonatkozó tehetetlenségi nyomatékát.
- **3.12.** Határozzuk meg az $y=x^2$ görbe és az y=x egyenes közötti homogén síklemez origóra vonatkozó tehetetlenségi nyomatékát.
- **3.13.** Határozzuk meg az a élű kocka középpontján átmenő, az élekkel párhuzamos tengelyre vonatkozó tehetetlenségi nyomatékát.

F4. Közönséges differenciálegyenletek alapjai

4.0. Adjuk meg az alábbi differenciálegyenletek értelmezési tartományát:

a)
$$y' = x^2 - y^2$$
, $y' = 2\sqrt{y}$, $y' = \frac{x \cdot y}{x^2 - 1}$, $y' = \frac{x}{2y} + \frac{y}{2x}$,
b) $x \cdot y' + 2y = 3x$, $x - \frac{y^2}{x^3} + \frac{y}{x^2} \cdot y' = 0$.

4.1. Számítsuk ki az alábbi explixit egyenletek kezdetiérték-feladatai megoldásgörbéinek megadott pontbeli érintői egyenletét! Számítsuk ki y'' értékét is a megadott pontokban!

a)
$$y' = x^2 - y^2$$
, $y(1) = 2$,
b) $y'(x) = \frac{x^2}{y \cdot (1 + x^3)}$, $y(2) = 3$,
c) $y'(x) = \frac{x}{2y} + \frac{y}{2x}$, $y(-1) = -2$,
 d^*) $x \cdot y'(x) + 2 \cdot y(x) = 3x$, $y(0) = 0$.

4.2. Vázoljuk az alábbi explicit egyenletek iránymezőjét, a megadott tartományok legalább 4×4 pontjában, majd vázoljuk a megoldás-sereget ("*általános megoldás*"). Végül rajzoljuk fel a K.É.P. megoldását vázlatosan.

(Csak a megoldás elkészítése *után* használjuk a Feladatgyűjteményhez **mellékelt** IRANYMEZO.EXE *interaktív* **programot**!)

a)
$$y' = x^2 - y^2$$
, $2 \le x \le 5$, $1 \le y \le 4$, $y(3) = 2$,
b) $y' = 2\sqrt{y}$, $-2 \le x \le 2$, $0 \le y \le 4$, $y(1) = 2$,
c) $y' = \frac{x \cdot y}{x^2 - 1}$, $1 < x \le 4$, $0 \le y \le 4$, $y(2) = 1$.

4.3. Oldjuk meg az előző feladat K.É.P.-t *közelítőleg* $\delta = 0,1$ lépésközzel: számoljunk ki legalább 10 lépést (Euler "*töröttvonal*" közelítő módszere).

(Csak a megoldás elkészítése *után* használjuk a Feladatgyűjteményhez **mellékelt** EULERTV.EXE *interaktív* **programot!**)

4.4. Ellenőrizzük, hogy az alábbi egyenleteket kielégítik-e a megadott függvények:

$$a) \ y' = \frac{y}{x}, \quad y(x) = c \cdot x \ (c \in \mathbb{R}),$$

$$b) \ y' = \frac{x \cdot y}{x^2 - 1} \quad \text{ahol} \quad x^2 + \frac{y^2}{b^2} = 1 \quad (b > 0, |x| \le 1, y > 0),$$

$$c) \ y' = 2\sqrt{y} \quad \text{ha} \quad y_1(x) = (x - c)^2 \ \text{ill.} \ y_2(x) = \begin{cases} (x - c)^2 & \text{ha} \quad x \ge c \\ 0 & \text{máskor} \end{cases} \ (c \in \mathbb{R}).$$

F5. Elsőrendű differenciálegyenletek

Oldjuk meg az alábbi elsőrendű differenciálegyenleteket.

Szétválasztható változójú egyenletek

5.1. a)
$$y'(x) = y^2(x) \cdot \cos(x)$$
, $y(0) = 2$,
b) $y'(x) = \frac{x^2}{y \cdot (1+x^3)}$, $y(1) = 2$, c) $y'(x) - 1 - x - y^2 - xy^2 = 0$, $y(0) = 1$.

Visszavezethető típusok

A következő típusú differenciálegyenleteket bizonyos transzformációkkal szétválasztható változójú egyenletekké alakíthatjuk.

5.2. a)
$$y'(x) = (y - x)^2$$
, $y(1) = 3$, b) $y'(x) = (2x + 3y)^2 + 1$, $y(0) = -1$, c) $y'(x) = \cos(x + y)$, $y(0) = \frac{\pi}{2}$.
5.3. a) $y'(x) = \frac{y^2}{x^2} + \frac{y}{x}$, $y(1) = 3$, b) $y'(x) = \frac{x}{2y} + \frac{y}{2x}$, $y(-1) = -2$,

5.4.
$$y'(x) - x \cdot y(x) = x$$
, $y(0) = 1$.

c) $y'(x) = \frac{y}{\pi} - \cos \frac{y}{\pi}$, $y(3) = \pi$.

5.5. a)
$$y'(x) + \frac{y(x)}{x} + e^x = 0$$
, $y(1) = 0$, b) $y'(x) - \frac{2x}{1+x^2} \cdot y(x) = 1$, $y(0) = 1$, c) $y'(x) + \frac{1-x}{x^2} \cdot y(x) = e^{1/x}$, $y(-1) = 2$.

5.6. a)
$$y'(x) + y(x) = e^{-x}$$
, $y(1) = 0$, b) $x \cdot y'(x) + 2y(x) = 3x$, $y(0) = 0$, c) $(1 - x^2) \cdot y'(x) + x \cdot y(x) = 1$, $y(0) = 1$, d) $y'(x) + \operatorname{tg}(x) \cdot y(x) = \sin(2x)$, $y(0) = 2$.

Bernoulli-egyenletek

5.7. a)
$$y'(x) - \frac{y(x)}{x} = 2y^2(x)$$
, $y(1) = 2$, b) $y'(x) - y(x) = x \cdot \sqrt{y(x)}$, $y(0) = 1$, c) $y'(x) - \frac{2y}{x} = \frac{y^3}{x^3}$, $y(-1) = 2$.

Egzakt egyenletek

5.8. a)
$$(x^2 + y) - (y - x)y'(x) = 0$$
, $y(2) = 3$,
b) $y'(x) = \frac{2x + 3y \cdot x^2}{3y^2 - x^3}$, $y(0) = 0$,
c) $x - \frac{y^2}{x^3} + \frac{y}{x^2} \cdot y'(x) = 0$, $y(1) = -2$,
d) $\left(\frac{y}{x + y}\right)^2 + \left(\frac{x}{x + y}\right)^2 \cdot y'(x) = 0$, $y(2) = 3$.

F6. Elsőrendű differenciálegyenletek alkalmazásai

- **6.1.** Határozzuk meg azon függvénygörbéket, melyeket az y tengely körül állandó ω szögsebességgel megforgatva *tetszőleges* pontjára helyezett pontszerű test egyensúlyban marad.
- **6.2.** Határozzuk meg azon görbék egyenletét, amelyeknél az érintési pont felezi az érintőnek a koordinátatengelyek közötti szakaszát.
- **6.3.** Keressük meg azokat az y = f(x) görbéket, amelyeknek bármely $E(x_0, y_0)$ pontjára teljesül a következő: az E-ben húzott *érintő*, az érintési pontban húzott "függőleges" *egyenes* (egyenlete: $x = x_0$) és a "vízszintes" ordináta- (y-) *tengely* által határolt háromszög területe (mindig) egységnyi.
- **6.4.** Egy test 10 perc alatt 100 °C-ról 60 °C-ra hűlt le. A környező levegő hőmérsékletét 20 °C-on tartják. Mikorra hűl le a test 25 °C-ra, ha a hűlés sebessége arányos a test és a környezet hőmérsékletének különbségével?
- **6.5.** 100 gr sóra vizet öntünk és keverjük, az oldódás sebessége a még fel nem oldódott só tömegével arányos. 1 perc elteltével még 50 gr feloldatlan só volt az oldatban. Adjuk meg a feloldott só tömegének időtől való függését!
- **6.6.** Egy 50 literes tartályban 8%-os sóoldat van. Egyszerre megnyitunk két csapot: az egyiken $4 \ell/\text{perc}$ sebességgel 10%-os sóoldat folyik be, a másikon (egyenletes elkeveredést feltételezve) ugyancsak $4 \ell/\text{perc}$ sebességgel folyik ki az oldat. Mennyi só lesz a tartályban 15 perc múlva?
- **6.7.** * A járda szélén húzunk h hosszú kötélen egy (pontszerű) kiskocsit, amely kezdetben d>0 távolságban van a járdától. Milyen görbe mentén halad a kocsi?

19

- **6.8.** Tetszőleges edény alján levő, az edény méreteihez képest kisméretű lyukon keresztül a víz kifolyási sebessége $v=0.6\sqrt{2gh}$, ahol h a nyílás feletti vízoszlop magassága Mennyi idő alatt folyik ki a víz az A területű lyukon keresztül, ha az edény
 - a) alapkörén álló henger,
 - b) csúcsán álló (lefelé szűkülő) kúp,
 - c) felül nyitott félgömb.
- **6.9.** Milyen alakot vesz fel a két rögzített végénél felfüggesztett homogén, nem nyúló kötél, amit csak a saját súlya terhel?
- **6.10.** u(t) feszültségforrásra kapcsoltunk sorosan egy $R=20\Omega$ ellenállást és egy L=10H önindukciójú tekercset. Határozzuk meg a $t\geq 0$ idő függvényében az i(t) áramerősséget, ha i(0)=0 és
 - a) u(t) = 100 V (egyenfeszültség),
 - b) $u(t) = U_0 \cdot \sin(\omega t) \text{ V (váltófeszültség)}, \omega = 100\pi, U_0 = 240 \text{ V}.$

F7. Parciális törtekre bontás

- 7.1. Végezze el a következő polinomok maradékos osztását:
 - a) $(x^4 + x^2) : (x 2)$,
 - b) $(x^3 + 3x + 5) : (2x^2 7x + 9),$
 - c) $(4x^5 + 5x 2) : (2x^3 + 3)$.
- **7.2.** Bontsa fel irreducibilis tényezők szorzatára az alábbi polinomokat:

a)
$$x^3 - 1$$
, $x^3 + 1$, $x^4 - 1$, $x^4 + 1$, $x^2 - 3x + 1$, $x^2 + 5x + 7$,

b)
$$2x^3 - 5x^2 + 3x - 2$$
, $2x^3 - x^2 - 1$,

$$c*) x^4 + 2x^3 + 2x^2 + 2x - 1.$$

7.3. Bontsa fel az alábbi törteket egy *valódi* tört és egy polinom összegére:

$$\frac{x^4 + 3x - 6}{x^2 + x - 2}, \quad \frac{2x^3 - 7x}{x^4 - 3}, \quad \frac{3x^3 - 2x^2 + 4}{x^2 - 8x + 15}, \quad \frac{x^5 + 1}{x^5 - 3x}, \quad \frac{x^5 + 2x^2 + 3}{x + 1}.$$

7.4. Írja fel az alábbi törtek racionális tört alakját, a konstansok kiszámítása nélkül:

$$\frac{x^3 - 8x^2 + 12}{(x-1)^2 (x^2 + 4x + 9)}, \quad \frac{x^4 + 5x^2 + 3}{(x+7) (x^2 + 5x + 7)^2},$$

$$\frac{x^2 + 8x + 2}{(x-1)^3 (x^2 + 4x + 9)^2 (x+7) (x^2 + 5)}, \quad \frac{3x^3 - 2x^2 + 4}{x^2 - 8x + 15}.$$

7.5. Bontsa fel az alábbi törteket parciális törtekre:

$$\frac{1}{k \cdot (k+1)}$$
, $\frac{x+6}{x^2+x-2}$, $\frac{3x+2}{(x^2+2x+5)(x+1)}$, $\frac{x^2-1}{x^3+2x^2}$, $\frac{x}{(1-2x)^2}$,

© Szalkai István, Dósa György, Pannon Egyetem

$$\frac{x}{(x-1)^3}, \quad \frac{x^3}{(x^2+1)^2}, \quad \frac{x^2+5}{x^4-16}, \quad \frac{1}{(1-x^2)(1-x^3)}, \quad \frac{3x^3-2x^2+4}{x^2-8x+15},$$

$$(*) \quad \frac{7s^4+23s^3-30s^2-172s-150}{(s+2)^4(s-5)}.$$

F8. Laplace-transzformáció és inverze

8.1. *a)* Vázoljuk az alábbi függvényeket és számítsuk ki Laplace-transzformáltjukat a definíció alapján:

$$f_1(t) = \begin{cases} 1 & ha \quad 2 \le t < 3 \\ 0 & m \text{\'askor} \end{cases}, \quad f_2(t) = \begin{cases} 1 & ha \quad 2 \le t \\ 0 & m \text{\'askor} \end{cases},$$

$$f_3(t) = \begin{cases} t & \text{ha} \quad 3 \le t \\ 0 & \text{m\'askor} \end{cases}, \quad \text{(!)} \quad f_4(t) = \begin{cases} t - 1 & \text{ha} \quad 1 \le t < 2 \\ 1 & \text{ha} \quad 2 \le t \\ 0 & \text{m\'askor} \end{cases},$$

 $f_5(t) = a(3,2)$ és (5,7) pontokat összekötő szakasz,

$$f_6(t) = \begin{cases} \sin(t) & \text{ha} \quad 2\pi \le t \le 4\pi \\ 0 & \text{m\'askor} \end{cases}$$

$$f_7(t) = \begin{cases} k & \text{ha} \quad k-1 \le t < k \quad (k=1,2,3,\dots) \\ 0 & \text{m\'askor} \end{cases}.$$

b) Az alábbi periodikus függvényekhez keressünk képletet, majd határozzuk meg Laplace-transzformáltjaikat (használjuk a *Heaviside*-függvényt:

$$H(t) = 1$$
 ha $t \ge 0$ és $H(t) = 0$ máskor).

1. ábra. 8.1.*b*)

8.2. Számítsuk ki az alábbi függvények Laplace-transzformáltját az alapfüggvények és a műveleti szabályok segítségével:

a)
$$7t^2 - 3t + 5$$
, $3 - 4e^{(5+6i)t}$, $e^{5t}\cos(2t)$, t^3e^{-7t} , t^3e^{it} , $\sinh(2t)$, $t \cdot \cosh(3t)$, $t^2e^{6t}\sin(4t)$,

$$b^*) 5^t$$
, $\cos^2(t)$, $\cos^3(4t)$, $\frac{1-e^{-t}}{t}$,

- c) $f_1(t)$ és $f_4(t)$ a 8.1. feladatból.
- **8.3.** Számítsuk ki az alábbi függvények Laplace-transzformáltját:

$$t \cdot \cos(\omega t)$$
, $t \cdot \sin(\omega t)$, $t \cdot \cosh(\omega t)$, $t \cdot \sinh(\omega t)$.

8.4. Számítsuk ki az alábbi racionális törtfüggvények *inverz Laplace*-transzformáltját parciális törtekre bontással:

a)
$$\frac{1}{5s-3}$$
, $\frac{1}{s^2-4}$, $\frac{1}{s^2+4}$, $\frac{5s+3}{s^2+4}$, $\frac{s+10}{s^2+4s+3}$, $\frac{1}{(s+3)^5}$, $\frac{1}{(2s-1)^3}$, $\frac{s+1}{(s+3)^5}$, $\frac{4s+2}{s^2+6s+13}$, $\frac{1}{s^3+6s^2+13s}$, $\frac{s^2}{(s-3)^5}$, $\frac{s}{(s^2+\omega^2)^2}$, $\frac{s}{(s^2+\omega^2)^2}$, $\frac{s}{(s^2+\omega^2)^2}$, $\frac{s}{(s^2+\omega^2)^2}$, $\frac{s}{(s^2+4)^2}$, $\frac{s^3}{(s^2+4)^2}$, $\frac{5s+3}{(s^2+9)^2}$.

8.5. Számítsuk ki a következő konvolúciókat:

$$e^{\alpha x} * e^{\beta x}$$
, $x * e^{\lambda x}$, $x^2 * e^{\lambda x}$, $1 * f(x)$, $\frac{x^n}{n!} * \frac{x^k}{k!}$ $(n, k \in \mathbb{N})$.

F9. Integro-differenciálegyenletek megoldása Laplacetranszformációval

Lineáris differenciálegyenletek és -rendszerek

Laplace-transzformációval oldjuk meg az alábbi lineáris differenciálegyenleteket:

9.1. a)
$$y' + 3y = e^x + \cos(2x)$$
, $y(0) = 1$,
b) $y'' - 2y' - 3y = e^{3x} + 2e^x$, $y(0) = 0$, $y'(0) = 0$,
c) $y'' - 6y' + 13y = 16xe^x$, $y(0) = 2$, $y'(0) = 4$,
d) $y'' + 6y' + 13y = e^{3x}\cos(2x)$, $y(0) = 0$, $y'(0) = 0$,
e) $y''' + 4y' = \cos(2x)$, $y(0) = 0$, $y'(0) = 0$, $y''(0) = 0$,
f) $y'' - 3y' - 10y = x^2e^{-2x}$, $y(0) = 7$, $y'(0) = 2$.

9.2. a)
$$y^{(3)}(x) + y'(x) = 1$$
, $y(\pi) = 2$, $y'(\pi) = 0$, $y''(\pi) = \pi$,
b) $y^{(3)}(x) - y''(x) = -6x$, $y(1) = 7$, $y'(1) = 10$, $y''(1) = 12$.

9.3. a)
$$y''(x) - y(x) = \frac{1}{1+e^x}$$
, $y(0) = y'(0) = 0$,

b)
$$y''(x) = \arctan(x)$$
, $y(0) = y'(0) = 0$,

c)
$$y''(x) - y(x) = th(x)$$
, $y(0) = y'(0) = 0$,

$$d^*y''(x) - 2y'(x) + y(x) = 1 - e^{-x^2}, \quad y(0) = y'(0) = 0.$$

9.4. Laplace-transzformációval oldjuk meg az alábbi lineáris differenciálegyenlet-rendszere-ket:

a)
$$\begin{cases} x'(t) = 7x(t) + 9y(t) & x(0) = 8\\ y'(t) = x(t) - y(t) & y(0) = 2 \end{cases}$$

b)
$$\begin{cases} x'(t) = x(t) + 2y(t) + e^{3t} & x(0) = 0 \\ y'(t) = x(t) + 2y(t) & y(0) = 0 \end{cases}$$

$$c)\begin{cases} x'(t) = x(t) + 2y(t) & y(0) = 0 \\ x'(t) = -5x(t) - y(t) + 5e^t & x(0) = -1 \\ y'(t) = x(t) - 3y(t) - 50te^t & y(0) = 2 \end{cases}$$

$$d) \begin{cases} x'(t) = y(t) + 1 & x(0) = 0 \\ y'(t) = z(t) + 2 & y(0) = 0 \\ z'(t) = x(t) + 3 & z(0) = 0 \end{cases}$$

Integro-differenciálegyenletek és -rendszerek

9.5. Laplace-transzformációval oldjuk meg az alábbi integro- differenciálegyenleteket és - rendszereket:

a)
$$y(x) = \sin(x) + \int_0^x e^{x-t} \cdot y(t) dt$$
,

b)
$$y'(x) + 2y(x) + \int_0^x y(t) dt = \sin(x), \quad y(0) = 1,$$

c)
$$\begin{cases} y_1(x) = 2 - \int_0^x (x - t) \cdot y_1(t) \, dt - 4 \int_0^x y_2(t) \, dt \\ y_2(x) = 1 - \int_0^x y_1(t) \, dt - \int_0^x (x - t) \cdot y_2(t) \, dt \end{cases}$$

Alkalmazások

- **9.6.** Egy $R=3\Omega$ ellenállás, egy L=1 Henry önindukciójú tekercs és egy C=0.001F kondenzátor sorban van kapcsolva az u(t) feszültségre. Mekkora lesz az áramerősség t sec múlva? Az alábbi adatok esetén készítsen számításokat:
- a) $u(t) = u_0$, i(0) = i'(0) = 0 illetve $i(0) = i_0 > 0$, $i(0) = i_1 \ge 0$ (magára hagyott rezgőkör),

b)
$$u(t) = \sin(10t), i(0) = i'(0) = 0$$
 (gerjesztett rezgőkör),

2. ábra. 9.6.d**)

 c^*) vizsgáljuk meg a megoldás tendenciáját ($\lim_{t\to\infty}i(t)$ értékét) a gerjesztő ω_g frekvenciától függően, azaz $u(t)=\sin(\omega_g t),$ i(0)=i'(0)=0,

 d^{**}) oldjuk meg általánosan $R,L,c\in\mathbb{R}$ -re ha $u(t)=U_0\cdot\sin(\omega_g t),\,i(0)=i'(0)=0,$ majd hasonlítsuk össze a c) feladattal.

- **9.7.** Sűrű anyagban lefelé süllyedő test sebessége $m\cdot v'(t)=mg-k\cdot v(t),\,v(0)=v_0$, ahol g a gravitációs állandó, $m,k,v_0\in\mathbb{R}^+$ valós számok. Keresendő v(t) és a"végleges" sebesség, azaz $\lim_{t\to\infty}v(t)$.
- **9.8.** Egy ideális, k rugóállandójú, súlytalan rugó végén m állandó tömegű test függ, a rugót s_0 hosszan megnyújtjuk / összenyomjuk ($s_0 > 0$ vagy $s_0 < 0$), ezen felül a rugó végét időben változó $F_K(t)$ kényszererővel terheljük (pl. egy másik, ráakasztott, időben változtatható tömeggel). Írjuk le és értékeljük a rugó végének s(t) kitérési függvényét, ha
 - a) $F_K(t) = 0$, $s(0) = s_0$ (elengedett azaz terheletlen rugó),
- b) $F_K(t)=mB\cdot\sin(\omega_K t)$ ha $\omega_K\neq\sqrt{\frac{k}{m}}$, $s(0)=s_0$ (az ω_K kényszerfrekvencia különbözik a rendszer saját frekvenciájától),
 - c) ugyanaz, mint b) csak $\omega_K = \sqrt{\frac{k}{m}}$.

F10. Fourier-sorok, alkalmazások

Fourier-sorok

10.1. Az alábbi ábrákhoz adja meg a függvényt definiáló formulát, majd számítsa ki Fouriersorukat:

- b) lásd a 8.1.b) feladat ábráját.
- **10.2.** Az alábbi képletekkel megadott periodikus függvényeket rajzolja fel és számítsa ki Fourier-sorukat:

$$f_{0}(x) = 1, \quad x \in \mathbb{R}; \quad f_{1}(x) = x, \quad x \in [-\pi, \pi];$$

$$f_{2}(x) = x^{2}, \quad x \in [-\pi, \pi]; \quad f_{3}(x) = 5x^{2} - 4x + 7, \quad x \in [-\pi, \pi];$$

$$f_{4}(x) = \cos(3x), \quad x \in [-2,2]; \quad f_{5}(x) = |\sin(x)|;$$

$$f_{6}(x) = e^{-2x}, \quad x \in [-2,2];$$

$$f_{7}(x) = \begin{cases} 1 & ha & -\pi \le x < 0 \\ 0 & ha & 0 \le x < \pi \end{cases}, \quad f_{8}(x) = \begin{cases} -1 & ha & -\pi \le x < 0 \\ +1 & ha & 0 \le x < \pi \end{cases},$$

$$f_{u,v}(x) = \begin{cases} u & ha & -L \le x < 0 \\ v & ha & 0 \le x < L \end{cases}, \quad f_{10}(x) = \begin{cases} 0 & ha & -\pi \le x < 0 \\ x & ha & 0 \le x < \pi \end{cases},$$

$$f_{11}(x) = \begin{cases} x & ha & -1 \le x < 0 \\ 2x & ha & 0 \le x < 1 \end{cases}, \quad f_{12}(x) = \begin{cases} -1 & ha & -2 \le x < -1 \\ 0 & ha & -1 \le x < 1 \\ 3 & ha & 1 \le x < 2 \end{cases}.$$

- 10.3. Terjessze ki az alábbi függvényeket
 - a) párosan /= y tengelyre szimmetrikusan/
- b) páratlanul /=origóra szimmetrikusan/ majd számítsa ki Fourier-sorukat mindkét esetben:

$$\begin{array}{lllll} g_1(x)=x, & \text{ ha } & x\in[0,2]; & g_2(x)=x^2, & \text{ ha } & x\in[0,3]; \\ g_3(x)=x(3-x), & \text{ ha } & x\in[0,3]; & g_4(x)=|x-1|, & \text{ ha } & x\in[0,2]; \\ g_4(x)=\sin(x), & \text{ ha } & x\in[0,\pi]; & g_5(x)=\cos(x), & \text{ ha } & x\in[0,\pi]. \end{array}$$

10.4. Az 10.1.*a*) feladat *B*) és *J*) függvényeit hogyan közelíti a Fourier-összegének első négy tagja? Néhány pontban számítsa ki az eltérést, esetleg készítsen vázlatot.

Alkalmazások

10.5. A bemenetre egyenirányított váltófeszültséget kapcsoltunk: $U_{in}(t) = 240 \cdot |\sin(100\pi t)|$ (azaz 50 Hz, $T = \frac{1}{100}$). Fejtse Fourier-sorba $U_{in}(t)$ -t, majd ennek segítségével határozza meg a kimeneti potenciál Fourier-sorának első három tagját!

4. ábra. 10.5.*a*), *b*)

Útmutatások

U1. Többváltozós függvények folytonossága és deriválhatósága

- **1.1.** Először közelítsük az (x,y) pontot a megadott (a,b) helyhez egy görbe (pl. egyenes) mentén, azaz pl. $(x,y) \to (0,0)$ esetén legyen y=tx és vizsgáljuk a $\lim_{x\to 0} f(x,tx)$ határtéket, ahol $t\in\mathbb{R}$ rögzített, de tetszőleges valós szám. Ezen határértékeknek $minden\ t\in\mathbb{R}$ esetén meg kell egyezniük ahhoz, hogy f(x,y)-nak lehessen határértéke az (a,b) pontban, bár ez még $nem\ elégséges$ a $\lim_{(x,y)\to(a,b)} f(x,y)$ határérték létezéséhez.
- **1.2.** Ha $\underline{a}=(a_1,a_2,\cdots a_n)\in Dom(f)$, adjuk meg, pl. az első változó szerinti $x\mapsto f(x,a_2,\cdots a_n)$ parciális függvény $(a_2,\cdots a_n\in\mathbb{R}$ rögzített) deriváltját az $x=a_1$ helyen, ami valós szám:

$$\frac{\partial}{\partial x} f(\underline{a}) := \lim_{x \to a_1} \frac{f(x, a_2, \dots a_n) - f(a_1, a_2, \dots a_n)}{x - a_1} \in \mathbb{R}$$

1.3. Vizsgáljuk meg, hogy Dom(f) mely pontjaiban adható meg pl. az első változó szerinti $x\mapsto f(x,x_2,\cdots x_n)$ $(x_2,\cdots x_n$ rögzített) parciális függvény derivált függvénye, ami az $x_2,\cdots x_n$ változóktól is függő függvény:

$$\frac{\partial}{\partial x}f: \mathbb{R}^n \to \mathbb{R}, \quad (x, x_2, \dots x_n) \mapsto \frac{\partial}{\partial x}f(x, x_2, \dots x_n).$$

- **1.4.** Használjuk a következő **tételek**et:
- i) Ahol a parciális derivált függvények folytonosak, ott a függvény (totálisan) differenciálható.
 - ii) Ahol a függvény nem folytonos, ott nem lehet differenciálható.
- iii) $Az \underline{a} = (a_1, a_2, \dots a_n) \in Dom(f)$ pontban differenciálható függvényre teljesülnek az \underline{a} pont egy környezetében az alábbiak:

$$f(x_1, x_2, \dots x_n) = f(\underline{a}) + \frac{\partial}{\partial x_1} f(\underline{a}) \cdot (x_1 - a_1) + \dots + \frac{\partial}{\partial x_n} f(\underline{a}) \cdot (x_n - a_n) + R(x_1, x_2, \dots x_n)$$

és

$$\lim_{x_1 \to a_1, \dots, x_n \to a_n} \frac{R(x_1, x_2, \dots x_n)}{\sqrt{(x - a_1)^2 + (y - a_2)^2 + \dots}} = 0.$$

1.5. Ellenőrizzük a differenciálhatóságot, és adjuk meg a parciális derivált függvények értékét az adott helyen, amivel az f függvény gradiense kiszámolható:

$$\operatorname{grad} f(\underline{a}) = \left(\frac{\partial}{\partial x_1} f(\underline{a}), \frac{\partial}{\partial x_2} f(\underline{a}), \cdots \frac{\partial}{\partial x_n} f(\underline{a})\right) \in \mathbb{R}^n.$$

1.6. Legyen \underline{v} egységvektor, adjuk meg a $t\mapsto f(\underline{a}+t\cdot\underline{v})$ függvény deriváltját a t=0 pontban, tehát az iránymenti derivált:

$$D_{\underline{v}}f(\underline{a}) := \lim_{t \to 0} \frac{f(\underline{a} + t \cdot \underline{v}) - f(\underline{a})}{t}.$$

Ha f differenciálható az \underline{a} pontban, és \underline{v} egységvektor, használhatjuk a

$$D_{\underline{v}}f(\underline{a}) = \operatorname{grad} f(\underline{a}) \cdot \underline{v}$$

formulát is.

1.8. Ha f differenciálható az \underline{a} pontban, és \underline{v} egységvektor, akkor a $D_{\underline{v}}f(\underline{a})=\operatorname{grad} f(\underline{a})\cdot\underline{v}$ formulából és az

$$|\underline{u} \cdot \underline{v}| \le |\underline{u}| \cdot |\underline{v}|$$

Cauchy-Schwarz-Bunyjakovszkij egyenlőtlenségből következik, hogy

$$-|\operatorname{grad} f(a)| \le D_v f(a) \le |\operatorname{grad} f(a)|,$$

és egyenlőség pontosan akkor van, ha grad $f(\underline{a})$ és \underline{v} párhuzamosak. Adjuk meg tehát a gradiens vektor és ellentettje irányában az iránymenti deriváltakat!

$$f: \mathbb{R}^3 \to \mathbb{R}, \qquad (x, y, z) \mapsto f(x, y, z)$$
$$x: \mathbb{R}^2 \to \mathbb{R}, \qquad (u, v) \mapsto x(u, v)$$
$$y: \mathbb{R}^2 \to \mathbb{R}, \qquad (u, v) \mapsto y(u, v)$$
$$z: \mathbb{R}^2 \to \mathbb{R}, \qquad (u, v) \mapsto z(u, v)$$

differenciálható függvények, használjuk az

$$\begin{array}{ccc} F & : & \mathbb{R}^2 \to \mathbb{R} \\ F(u,v) & = & f\left(x(u,v),y(u,v),z(u,v)\right) \end{array}$$

összetett függvény deriválásához a következő, ún. többdimenziós láncszabályt:

$$\begin{split} \frac{\partial}{\partial u} F(u,v) &= \frac{\partial}{\partial x} f(x(u,v),y(u,v),z(u,v)) \cdot \frac{\partial}{\partial u} x(u,v) + \\ &+ \frac{\partial}{\partial y} f\left(x(u,v),y(u,v),z(u,v)\right) \cdot \frac{\partial}{\partial u} y(u,v) + \\ &+ \frac{\partial}{\partial z} f\left(x(u,v),y(u,v),z(u,v)\right) \cdot \frac{\partial}{\partial u} z(u,v), \end{split}$$

28 ÚTMUTATÁSOK

$$\frac{\partial}{\partial v} F(u, v) = \frac{\partial}{\partial x} f(x(u, v), y(u, v), z(u, v)) \cdot \frac{\partial}{\partial v} x(u, v) + + \frac{\partial}{\partial y} f(x(u, v), y(u, v), z(u, v)) \cdot \frac{\partial}{\partial v} y(u, v) + + \frac{\partial}{\partial z} f(x(u, v), y(u, v), z(u, v)) \cdot \frac{\partial}{\partial v} z(u, v).$$

1.12. Készítsük el a megfelelő parciális derivált függvényeket (jelölésüknek megfelelő sorrendben), tehát például:

$$\frac{\partial^2}{\partial x \partial y} f(x, y, \dots) = \frac{\partial}{\partial y} \left(\frac{\partial}{\partial x} f(x, y, \dots) \right)$$
$$\frac{\partial^2}{\partial x^2} f(x, y, \dots) = \frac{\partial}{\partial x} \left(\frac{\partial}{\partial x} f(x, y, \dots) \right)$$
$$\frac{\partial^3}{\partial x \partial y^2} f(x, y, \dots) = \frac{\partial}{\partial y} \left(\frac{\partial}{\partial y} \left(\frac{\partial}{\partial x} f(x, y, \dots) \right) \right).$$

- **1.15.** Keressünk stacionárius $\underline{a} \in Dom(f)$ pontokat: ahol grad $f(\underline{a}) = \underline{0}$.
- **1.16.** Vizsgáljuk az $f \in \mathbb{R}^2 \to \mathbb{R}$ függvény $\underline{a} \in \mathbb{R}^2$ stacionárius pontjában a

$$\Delta_f(\underline{a}) := \frac{\partial^2}{\partial x^2} f(\underline{a}) \cdot \frac{\partial^2}{\partial y^2} f(\underline{a}) - \left(\frac{\partial^2}{\partial x \partial y} f(\underline{a})\right)^2$$

kifejezés értékét, és ha

$$\Delta_f(\underline{a})>0\Longrightarrow \text{VAN sz\'els\~o\'ert\'ek, ami} \begin{cases} \text{minimum, ha} & \frac{\partial^2}{\partial x^2}f(a)>0\\ \text{maximum, ha} & \frac{\partial^2}{\partial x^2}f(a)<0 \end{cases},$$

ha $\Delta_f(\underline{a}) < 0 \Longrightarrow$ NINCS szélsőérték, ha $\Delta_f(\underline{a}) = 0 \Longrightarrow$ LEHET szélsőérték (további bonyolult vizsgálat szükséges).

1.17. Az érintősík egyenlete éppen az 1-rendű Taylor-polinom:

$$z = f(x_0, y_0) + f'_x(x_0, y_0) \cdot (x - x_0) + f'_y(x_0, y_0) \cdot (y - y_0).$$

és így a közelítés:

$$f(x,y) \approx f(x_0,y_0) + f'_x(x_0,y_0) \cdot (x-x_0) + f'_y(x_0,y_0) \cdot (y-y_0).$$

1.18. Ha az f és g függvény mindegyikére az (x_0, y_0) pont közelében a fenti közelítést használjuk, akkor az $\{f(x,y)=0,g(x,y)=0\}$ egyenletrendszer helyett, az x,y ismeretlenekre az

$$\begin{cases} f'_x(x_0, y_0) \cdot x + f'_y(x_0, y_0) \cdot y = b_1 \\ g'_x(x_0, y_0) \cdot x + g'_y(x_0, y_0) \cdot y = b_2 \end{cases}$$

lineáris egyenletrendszert kapjuk, ahol

$$b_1 = f(x_0, y_0) + f'_x(x_0, y_0) \cdot x_0 + f'_y(x_0, y_0) \cdot y_0 - f(x_0, y_0),$$

$$b_2 = g(x_0, y_0) + g'_x(x_0, y_0) \cdot x_0 + g'_y(x_0, y_0) \cdot y_0 - g(x_0, y_0).$$

Ennek megoldása legyen (x_1, y_1) , melyből kiindulva a módszert ismételgetve egyre pontosabb gyököket kapunk. (Newton módszere).

1.19. Az n-változós $f: \mathbb{R}^n \to \mathbb{R}$ függvény $\underline{a} \in Dom(f)$ pontjában N-edrendű **Taylor – polinom**jának képlete

$$(T_{\underline{a}}^{(N)}f)(\underline{x}) = \sum_{k=0}^{N} \left(\sum_{|\overrightarrow{m}|=k} \frac{f^{(\overrightarrow{m})}(\underline{a})}{k!} (\underline{x} - \underline{a})^{\overrightarrow{m}} \right)$$

ahol az $\overrightarrow{m} = (m_1, m_2, \dots, m_k)$ ún. "multiindex" szerinti derivált

$$f^{\left(\overrightarrow{m}\right)} := \frac{\partial^k}{\partial x_{m_1} \partial x_{m_2} \dots \partial x_{m_k}} f$$

és

$$(\underline{x} - \underline{a})^{\overrightarrow{m}} := (x_{m_1} - a_{m_1}) \cdot (x_{m_2} - a_{m_2}) \cdot \dots \cdot (x_{m_k} - a_{m_k}).$$

U2. Két- és többváltozós integrálok, transzformációk

2.1. Amennyiben H az x=a, x=b, y=c és y=d egyenesek által határolt téglalap, akkor *szukcesszíve* ("egymás után") integrálunk: "*vízszintes" integrálás* esetén

$$\iint_{H} f = \int_{c}^{d} \left(\int_{a}^{b} f(x, y) \, dx \right) \, dy = \int_{c}^{d} \left(F_{x}(b, y) - F_{x}(a, y) \right) \, dy = G(d) - G(c),$$

ahol $F_x(x,y)$ az f(x,y) függvény x szerinti primitív függvénye, azaz $\frac{\partial}{\partial x}F_x(x,y)=f(x,y)$ $((x,y)\in Dom(f))$ és G(y) az $y\mapsto F_x(b,y)-F_x(a,y)$ egyváltozós függvény primitív függvénye y szerint; míg "függőleges" integrálás esetén pedig

$$\iint_{H} f = \int_{a}^{b} \left(\int_{c}^{d} f(x, y) \, dy \right) \, dx = \int_{a}^{b} \left(F_{y}(x, d) - F_{y}(x, c) \right) \, dx = H(b) - H(a),$$

ahol $F_y(x,y)$ az f(x,y) függvény y szerinti primitív függvénye, azaz

$$\frac{\partial}{\partial y}F_y(x,y) = f(x,y) \qquad ((x,y) \in Dom(f))$$

és H(x) a

$$h: x \mapsto F_y(x,d) - F_y(x,c)$$

30 ÚTMUTATÁSOK

egyváltozós függvény primitív függvénye x szerint, azaz

$$H(x) = \int h(x) \, dx.$$

Fubini tétele szerint a fenti két számítási módszer egyenértékű (ugyanazt az eredményt adja).

2.2. Használjuk az előző feladatban ismertetett szukcesszív integrálás alábbi, *általánosított* képletét:

$$\int_{a}^{b} \left(\int_{u(x)}^{v(x)} f(x, y) \, dy \right) \, dx = \int_{a}^{b} \left(F_y(x, v(x)) - F_y(x, u(x)) \right) \, dx = K(b) - K(a)$$

ahol K(x) a $k(x) := F_y\left(x,v(x)\right) - F_y\left(x,u(x)\right)$ egyváltozós függvény primitív függvénye.

- **2.3.** Először számítsa ki a g és h függvénygörbék metszéspontjait, majd állapítsa meg, hogy g és h közül melyik alkotja H alsó- és felső határát, végül számoljon a 2.2. feladat mintájára.
- **2.4.** d) Az $ABC\triangle$ oldalegyeneseihez használhatja az alábbi középiskolai képletet: az $U(u_1, u_2), \ V(v_1, v_2)$ pontokon átmenő egyenes egyenlete

$$(x-v_1)(u_2-v_2) = (u_1-v_1)(y-v_2).$$

2.7. Néhány feladatban az integrál *csak* egyik irányban lehetséges (vagy függőlegesen, vagy vízszintesen.)

Transzformációk

ÁLTALÁBAN a transzformációkról: Az $\int_H \int_H f(x,y) \, dx dy$ integrálban az $x=u(k,\ell)$, $y=v(k,\ell)$ helyettesítést alkalmazva a $J(k,\ell)=(u(k,\ell),v(k,\ell))$ függvény determinánsára (ún. **Jacobi-determináns**) van szükségünk:

$$\det(J) = \det \begin{vmatrix} \frac{\partial}{\partial k} u(k,\ell) & \frac{\partial}{\partial \ell} u(k,\ell) \\ \frac{\partial}{\partial k} v(k,\ell) & \frac{\partial}{\partial \ell} v(k,\ell) \end{vmatrix},$$

ami alapján

$$\iint_{H} f(x,y) dxdy = \iint_{M} f(u(k,\ell), v(k,\ell)) \cdot |\det(J)| dkd\ell,$$

ahol Dom(J) = M és Im(J) = H, azaz $J: M \to H$.

2.8. Kör alakú H tartományok esetén $((u_0, v_0) = a$ kör középpontja) használjuk az $x = r \cdot \cos(\varphi) + u_0$, $y = r \cdot \sin(\varphi) + v_0$ ún. **polártranszformációt**, determinánsa

$$J(r,\varphi) = r.$$

Ellipszis alakú H tartomány esetén az ún. Yvory transzformációt használjuk: $x = a \cdot r \cdot \cos(\varphi) + u_0, \ y = b \cdot r \cdot \sin(\varphi) + v_0$, determinánsa

$$Y(r,\varphi) = r \cdot a \cdot b.$$

2.9. Ha a H tartomány paralelogramma alakú, vagyis az $\overrightarrow{u}=(a_1,b_1)$ és $\overrightarrow{v}=(a_2,b_2)$ vektorok feszítik ki, kezdőcsúcsa $A(c_1,c_2)$, akkor a **lineáris transzformációt** alkalmazzuk: $x=a_1k+b_1\ell+c_1, \ y=a_2k+b_2\ell+c_2 \ (0\leq k,\ell\leq 1)$, determinánsa

$$\det (J(k,\ell)) = a_1 b_2 - a_2 b_1.$$

2.10. Általában: ha a H tartományt az $y=k_1\cdot \varphi(x),\ y=k_2\cdot \varphi(x)$ illetve az $y=\ell_1\cdot \psi(x),\ y=\ell_2\cdot \psi(x)$ görbék zárják közre, akkor H minden P(x,y) pontja az $y=k\cdot \varphi(x)$ és $y=\ell\cdot \psi(x)$ görbék metszéspontjaként megkapható $(k_1\leq k\leq k_2,\ \ell_1\leq \ell\leq \ell_2),\$ ami alapján felírhatunk egy $J:(k,\ell)\longmapsto (x,y)$ transzformációt.

a) $k_1=1,\ k_2=4,\ \ell_1=1,\ \ell_2=2.$ Az $y=\frac{k}{x}$ és $y=\ell x$ görbék P(x,y) metszéspontját az $y=\frac{k}{x}=\ell x$ egyenletrendszer megoldásából kapjuk, vagyis $P(x,y)=\left(\sqrt{\frac{k}{\ell}},\sqrt{k\ell}\right)$. Tehát a $J:(k,\ell)\longmapsto\left(\sqrt{\frac{k}{\ell}},\sqrt{k\ell}\right)$ helyettesítést alkalmazzuk, determinánsa

$$\det(J) = \det \begin{vmatrix} \frac{1}{2\sqrt{k\ell}} & \frac{1}{2}\sqrt{\frac{\ell}{k}} \\ \frac{-1}{2}\sqrt{\frac{k}{\ell^3}} & \frac{1}{2}\sqrt{\frac{k}{\ell}} \end{vmatrix} = \frac{1}{2\ell}.$$

b)
$$k_1 = 1$$
, $k_2 = 4$, $\ell_1 = \frac{1}{2}$, $\ell_2 = 2$. Az

$$y = \frac{k}{x} = \ell x^2$$

egyenletrendszer megoldása:

$$P(x,y) = J(k,\ell) = \left(\sqrt[3]{\frac{k}{\ell}}, \sqrt[3]{k^2\ell}\right) = \left(k^{1/3}\ell^{-1/3}, k^{2/3}\ell^{1/3}\right)$$

és így

$$\det(J) = \det \begin{vmatrix} \frac{1}{3}k^{-2/3}\ell^{-1/3} & \frac{2}{3}k^{-1/3}\ell^{1/3} \\ \frac{-1}{3}k^{1/3}\ell^{-4/3} & \frac{1}{3}k^{2/3}\ell^{-4/3} \end{vmatrix} = \frac{1}{9\ell^{\frac{5}{3}}} \left(2\ell^{\frac{2}{3}} + 1 \right) = \frac{2}{9}\ell^{-1} + \frac{1}{9}\ell^{-5/3}.$$

32 ÚTMUTATÁSOK

c) Az $y = \frac{k}{x} = \ell \sqrt{x}$ egyenletrendszer megoldása:

$$P(x,y) = J(k,\ell) = (k^{2/3}\ell^{-2/3}, k^{1/3}\ell^{2/3})$$

és

$$\det(J) = \det \begin{vmatrix} \frac{2}{3}k^{-1/3}\ell^{-2/3} & \frac{1}{3}k^{-2/3}\ell^{2/3} \\ \frac{-2}{3}k^{2/3}\ell^{-5/3} & \frac{2}{3}k^{1/3}\ell^{-1/3} \end{vmatrix} = \frac{2}{3}\ell^{-1} = \frac{2}{3\ell}.$$

U3. Többváltozós integrálok alkalmazásai

3.1. $H \subseteq \mathbb{R}^2$ sík- ill. $P \subseteq \mathbb{R}^3$ térbeli tartomány területe ill. térfogata

$$T_H = \int_H \int 1 \, dx dy, \qquad V_P = \int_P \int_P \int 1 \, dx dy dz.$$

- **3.3.** Az [x, y] sík feletti rész darabjait felülről egy-egy megfelelő függvényfelület határolja.
- **3.4.** A henger egyenlete $(x-1)^2 + y^2 = \rho^2$, a keresett térfogatot felülről a gömb határolja.
- **3.5. –3.6.** A z = f(x, y) egyenlettel meghatározott felület *felszíne*

$$A = \iiint_{H} \sqrt{1 + \left(\frac{\partial}{\partial x}f\right)^2 + \left(\frac{\partial}{\partial y}f\right)^2} \, dx \, dy.$$

Fizikai képletek

3.7. –**3.13.** *feladatokhoz:*

Ha a H síklemez az [x,y] síkban fekszik és $(x,y)\in H$ pontjában a sűrűsége $\rho(x,y)$, akkor H súlypontjának koordinátái:

$$x_s = \frac{\int\limits_H \int x \cdot \rho(x, y) \, dxy}{\int\limits_H \int \rho(x, y) \, dxy}, \qquad y_s = \frac{\int\limits_H \int y \cdot \rho(x, y) \, dxy}{\int\limits_H \int \rho(x, y) \, dxy}.$$

A fenti H síklemeznek az x illetve y tengelyekre vett másodrendű (tehetetlenségi) nyomatékai

$$\Theta_x = \int_H \int y^2 \cdot \rho(x, y) \, dxy, \qquad \Theta_y = \int_H \int x^2 \cdot \rho(x, y) \, dxy.$$

míg a z tengelyre (=origóra) vett tehetetlenségi nyomatéka

$$\Theta_z = \Theta_x + \Theta_y.$$

Ha a $K\subset \mathbb{R}^3$ térbeli tartomány és $(x,y,z)\in K$ pontjában a sűrűsége $\rho(x,y,z)$, akkor K tömege

$$m = \int \int_{K} \int \rho(x, y, z) \, dxyz$$

és súlypontjának koordinátái:

$$x_{s} = \frac{1}{m} \int \int_{K} \int x \cdot \rho(x, y, z) \, dxyz,$$

$$y_{s} = \frac{1}{m} \int \int_{K} \int y \cdot \rho(x, y, z) \, dxyz,$$

$$z_{s} = \frac{1}{m} \int \int_{K} \int z \cdot \rho(x, y, z) \, dxyz.$$

Ugyanennek a K tartománynak az x,y ill. z tengelyekre vett másodrendű (tehetetlenségi) nyomatékai

$$\Theta_x = \int \int \int \int \left(y^2 + z^2 \right) \cdot \rho(x, y, z) \, dxyz, \quad \Theta_y = \int \int \int \int \left(x^2 + z^2 \right) \cdot \rho(x, y, z) \, dxyz,
\Theta_z = \int \int \int \int \left(x^2 + y^2 \right) \cdot \rho(x, y, z) \, dxyz, \quad \Theta_0 = \int \int \int \int \left(x^2 + y^2 + z^2 \right) \cdot \rho(x, y, z) \, dxyz,$$

ahol Θ_0 az origóra vett tehetetlenségi nyomaték.

Tetszőleges e egyenesre vonatkozó tehetetlenségi nyomatéka pedig

$$\Theta_e = \int \int_K \int f(x, y, z) \cdot \rho(x, y, z) dxyz,$$

ahol f(x,y,z) megadja az (x,y,z) pontnak az e egyenestől való távolságának négyzetét.

3.8. A sík egyenlete x+y-z=0, vagyis a test (x,y) pontbeli magassága f(x,y)=x+y vehető a négyzet alakú lemez $\rho(x,y)$ tömegeloszlásának.

U4. Közönséges differenciálegyenletek alapjai

- **4.0.** x-re és y-ra mindig egy (összefüggő) intervallumot kell megadnunk!
- **4.1.** a) Tehát $x_0 = 1$ és $y_0 = 2$.

Az érintő egyenes általános egyenlete: $y = y(x_0) + y'(x_0) \cdot (x - x_0)$.

- **4.2.** Először a választott pontokban az érintő egy kis darabját kell felrajzolnunk.
- **4.3.** A függvényt egy δ hosszú intervallumon az érintőjével közelítjük, majd a végpontban a közelítést az újabb érintővel folytatjuk, s.í.t.

34 ÚTMUTATÁSOK

U5. Elsőrendű differenciálegyenletek

Szétválasztható változójú egyenletek

5.1. Az

$$y'(x) = H(y(x)) \cdot G(x), \quad y(x_0) = y_0$$
 (1)

differenciálegyenletek megoldása: az egyenlet mindkét oldalát H(y)-al osztjuk (Dom(y)-t eközben vizsgáljuk), integráljuk dx szerint és használjuk a helyettesítéses integrál szabályát:

$$\int \frac{y'(x)}{H(y(x))} dx = \int \frac{1}{H(y)} dy = \mathcal{H}(y(x)) = \int G(x) dx = \mathcal{G}(x) + C$$
 (2)

tehát az általános megoldás

$$y(x) = \mathcal{H}^{-1}(\mathcal{G}(x) + C), \quad (C \in \mathbb{R})$$
(3)

ahol $\mathcal H$ primitív függvénye $\frac{1}{H}$ -nek és $\mathcal G$ primitív függvénye G-nek.

A K.É.P. megoldása: $y(x_0) = y_0$ alapján az $\mathcal{H}^{-1}(\mathcal{G}(x_0) + C) = y_0$ egyenletből C meghatározható. Dom(y) meghatározásához a számolás során kapott kikötéseket, x_0 értékét, és azt a tényt kell figyelembe vennünk, hogy Dom(y) egyetlen (összefüggő) intervallum.

Visszavezethető típusok

5.2. Az y'(x) = F(ax + by + c) $(a, b, c \in \mathbb{R})$ alakú differenciálegyenletekből az u(x) := ax + by + c helyettesítéssel szétválasztható egyenletet kapunk:

$$y'(x) = \frac{1}{b}u'(x) - \frac{a}{b}.$$

5.3. Az $y'(x) = F\left(\frac{y}{x}\right)$ alakú, ún. "homogén fokszámú" egyenleteknél az $u(x) := \frac{y(x)}{x}$ helyettesítéssel szétválasztható differenciálegyenlet adódik:

$$y(x) = x \cdot u(x)$$
 és $y'(x) = u(x) + x \cdot u'(x)$.

Lineáris egyenletek

5.4.

$$y'(x) + p(x) \cdot y(x) = q(x), \quad y(x_0) = x_0.$$
 (4)

I. Direkt módszer: Legyen P(x) egy primitív függvénye p(x)-nek. Szorozzuk be a fenti egyenlet mindkét oldalát $e^{P(x)}$ -el:

$$y'(x) \cdot e^{P(x)} + p(x) \cdot e^{P(x)} \cdot y(x) = q(x) \cdot e^{P(x)}$$
(5)

ahonnan az $(e^{P(x)})' = e^{P(x)} \cdot P'(x)$ összefüggés alapján kapjuk:

$$(y(x) \cdot e^{P(x)})' = q(x) \cdot e^{P(x)} \tag{6}$$

vagyis az általános megoldás

$$y(x) = e^{-P(x)} \cdot \int q(x)e^{P(x)} dx. \tag{7}$$

A K.É.P. megoldása: $y(x_0) = y_0$ és (7) alapján C meghatározható. Dom(y) meghatározásához a számolás során kapott kikötéseket és x_0 értékét kell figyelembe vennünk. (A fenti gondolatmenet a Laplace-transzformáció alapja.)

II. "Állandó variálása" módszer: Az (4) egyenlet homogén változata

$$y'(x) + p(x) \cdot y(x) = 0$$

szétválasztható, melynek általános megoldása $y(x)=\pm e^{-P(x)}\cdot D$ $(D\in\mathbb{R}^+,\ P(x)=\int p(x)\,dx)$. Az "állandó variálása" elnevezés azt takarja, hogy a (4) *inhomogén* egyenlet megoldását $y(x)=\pm e^{-P(x)}\cdot D(x)$ alakban keressük. Ez pedig a

$$\pm e^{-P(x)} \cdot D'(x) = q(x)$$

egyenletre vezet, ahonnan

$$D(x) = \pm \int q(x)e^{P(x)} dx + C$$

és

$$y(x) = \pm e^{-P(x)} \cdot \left(\pm \int q(x)e^{P(x)} dx + C\right).$$

A K.É.P. megoldása és Dom(y) meghatározása a (7) után írtak szerint lehetséges.

Bernoulli-egyenletek

Általános alakjuk: $y'(x) + a(x) \cdot y(x) = b(x) \cdot y^{\beta}(x)$ ($\beta \in \mathbb{R}$). Az $u(x) := y^{1-\beta}(x)$ helyettesítés után lineáris differenciálegyenletet kapunk.

Egzakt egyenletek

Általános alakjuk:

$$P(x,y) + Q(x,y) \cdot y'(x) = 0$$
 ahol $\frac{\partial}{\partial y} P(x,y) = \frac{\partial}{\partial x} Q(x,y),$

az egyenletet szokás P(x,y) dx + Q(x,y) dy = 0 alakban is írni.

36 ÚTMUTATÁSOK

Megoldása: $\int P(x,y) dx$ és $\int Q(x,y) dy$ kiszámítása után felírjuk az

$$\int P(x,y) dx + \psi(y) = \int Q(x,y) dy + \varphi(x)$$
 (8)

egyenlőséget, melyből $\psi(y)$ és $\varphi(x)$ meghatározhatók.

Jelöljük a (8) egyenlet (bármelyik) oldalát F(x,y)-el, számítsuk ki a K.É.P. alapján c_0 értékét:

$$F(x,y) = c_0 (9)$$

majd oldjuk meg a fenti (implicit) egyenletet y-ra, a megoldás lesz a keresett y(x) függvény.

U6. Elsőrendű differenciálegyenletek alkalmazásai

6.9. Írjuk fel a kötél két közeli, $(x_0, f(x_0))$ és $(x_0 + h, f(x_0 + h))$ pontjaiban ható erőket: az érintő irányú kötélerők vízszintes összetevői kiegyenlítik egymást, míg függőleges összetevőinek különbsége megegyezik a gravitációs erővel. (A kötél sűrűsége legyen ρ , keresztmetszete Q.)

Ha nem sikerül a differenciálegyenletet felállítanunk, akkor a megoldást csak az (13) egyenlet felírásáig olvassuk el, és próbáljuk önállóan megoldani az egyenletet.

6.10. A feladat áramkörére

$$R \cdot i(t) + L \cdot i'(t) = u(t).$$

(Lásd még a 10. fejezet útmutatójában található általános elektronikai összefoglalót is.)

U7. Parciális törtekre bontás

7.2. Az **Algebra Alaptétele** (valós változat) szerint: *minden, legalább harmadfokú polinom felbontható alacsonyabb fokú polinomok szorzatára.*(Lásd pl. Szalkai István honlapján:

HTTP://MATH.UNI-PANNON.HU/~SZALKAI/PARCTORT-PDFW.PDF

vagy *Diszkrét matematika és algoritmuselmélet* c. könyvének (Veszprémi Egyetemi Kiadó, 2000) függelékében.)

A középiskolából jól ismert az alábbi összefüggés:

 $Egy\ p(x)=ax^2+bx+c\$ másodfokú polinom akkor és csak akkor **reducibilis** (felbontható), ha diszkriminánsa $D\geq 0$, ebben az esetben

$$p(x) = (x - x_1) \cdot (x - x_2)$$

("gyöktényezős alak").

A D < 0 esetben p(x) irreducibilis (felbonthatatlan).

7.3. –7.5. feladatok: A *parciális*- (más néven: *elemi*- vagy *rész*-) törtekre bontás módszere röviden megtalálható *Szalkai István* oktatói honlapján:

HTTP://MATH.UNI-PANNON.HU/~SZALKAI/PARCTORT-PDFW.PDF

vagy Diszkrét matematika és algoritmuselmélet c. könyvének függelékében.

U8. Laplace-transzformáció és inverze

A Laplace- és inverz- transzformáció alaptulajdonságai és az alapfüggvények transzformáltjai megtalálhatóak *Szalkai István* oktatói honlapján:

HTTP://MATH.UNI-PANNON.HU/~SZALKAI/LAPLACE-TABL+.PDF

8.1. A Laplace-transzformáció definíciója:

$$F(s) = \mathcal{L}(f)(s) := \int_{0}^{\infty} f(t) \cdot e^{-st} dt$$

amennyiben az improprius integrál konvergens.

8.4. A Laplace-transzformáció inverzének **definíciója**:

$$f(t) = \int_{x_0 - i\infty}^{x_0 + i\infty} F(s) \cdot e^{st} \, ds$$

amennyiben az improprius integrál konvergens, $x_0 > \alpha$ pedig tetszőleges (rögzített) valós szám, ahol $Dom(F) = \{z \in \mathbb{C} : \text{Re}(z) > \alpha\}.$

U9. Integro - differenciálegyenletek megoldása Laplacetranszformációval

9.2. Ha a K.É.P nem az $x_0 = 0$ pontban van megadva, akkor a függvényt vízszintesen eltolva alkalmazzuk az **Eltolási tételt**:

$$\mathcal{L}\left(f(t-b)\right) = e^{-bs}F(s).$$

9.3. Ha az egyenlet jobb oldalán levő f(x) függvénynek nincs Laplace-transzformáltja, akkor használjuk az $F(s) = \mathcal{L}(f(x))$ rövidítést, majd vissza transzformáláskor a **Konvolúciótétel**t: $\mathcal{L}(f*g) = \mathcal{L}(f) \cdot \mathcal{L}(g)$, vagy másképpen

$$\mathcal{L}^{-1}(F \cdot G) = \mathcal{L}^{-1}(F) * \mathcal{L}^{-1}(G).$$

Alkalmazások

9.6. Az ábrán vázolt rezgőkörök esetén

$$L \cdot i''(t) + R \cdot i'(x) + \frac{1}{C} \cdot i(t) = u'(t)$$

(lásd még a 10. fejezet útmutatójában található általános elektronikai összefoglalót is).

38 ÚTMUTATÁSOK

9.7. Ha csak v(t) határértékére vagyunk kíváncsiak, akkor használhatjuk a következő összefüggést:

$$\lim_{t \to \infty} f(t) = \lim_{s \to 0} s \cdot F(s)$$

ahol $F = \mathcal{L}(f)$.

9.8. Alkalmazzuk az

$$F_{rug\acute{o}} = -k \cdot s$$
 és $F_{\ddot{o}ssz} = m \cdot a = m \cdot s'' = F_{rug\acute{o}} + F_K$

összefüggéseket.

U10. Fourier-sorok, alkalmazások

A Fourier-sor definíciója ("képlete"):

ha az f függvény periódusa [-L, L], akkor

$$\mathcal{F}(f(x)) := \frac{a_0}{2} + \sum_{k=1}^{\infty} \left(a_k \cdot \cos\left(\frac{k\pi x}{L}\right) + b_k \cdot \sin\left(\frac{k\pi x}{L}\right) \right)$$

ahol

$$a_k = \frac{1}{L} \int_{-L}^{L} f(x) \cos\left(\frac{k\pi x}{L}\right) dx, \quad k = 0, 1, 2, \dots$$

$$b_k = \frac{1}{L} \int_{-L}^{L} f(x) \sin\left(\frac{k\pi x}{L}\right) dx, \quad k = 1, 2, \dots$$

Speciálisan $L=\pi$ esetén

$$\mathcal{F}(f(x)) = \frac{a_0}{2} + \sum_{k=1}^{\infty} \left(a_k \cdot \cos(kx) + b_k \cdot \sin(kx) \right)$$

ahol

$$a_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(kx) \, dx, \quad k = 0, 1, 2, \dots$$

$$b_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin(kx) \, dx, \quad k = 1, 2, \dots$$

10.1. Ha valamely függvény megkapható egy másik *lineáris transzformációival*, akkor Fourier-transzformáltját már könnyen előállíthatjuk.

Pontosabban: ha $g(x) = \alpha \cdot f(x) + \beta$ és $h(x) = f(\gamma \cdot x)$ akkor

$$\mathcal{F}(g) = \mathcal{F}(\alpha f_{(x)} + \beta) = \alpha \cdot \mathcal{F}(f_{(x)}) + \beta$$
$$\mathcal{F}(h) = \mathcal{F}(f_{(\gamma x)})(x) = \mathcal{F}(f_{(x)})(\gamma x).$$

R-L-C áramkörökről

Soros kapcsolásnál

$$i_{fo}(t) = i_1(t) = \dots = i_n(t), \quad u_{fo}(t) = u_1(t) + \dots + u_n(t),$$

párhuzamos kapcsolásnál

$$i_{fo}(t)=i_1(t)+\cdots+i_n(t),\ u_{fo}(t)=u_1(t)=\cdots=u_n\left(t
ight)$$
 bármely $t\in\mathbb{R}$ időpillanatban,

továbbá:

R ellenállásnál $u_R(t) = R \cdot i(t)$ $(R \in \mathbb{R}),$

L tekercsnél $u_L(t) = L \cdot \frac{d}{dt}i(t)$ $(L \in \mathbb{R}),$

C kapacitásnál $u_C(t) = \frac{1}{C} \cdot \int\limits_0^t i(au) \, d au \quad (C \in \mathbb{R}).$

A jegyzetben a 6.10, 9.6, 10.5 sorszámú feladatok vonatkoznak elektronikai áramkörökre.

10.5. Mivel a bemeneti körre felírt egyenlet $|\sin(100\pi t)|$ miatt nem számolható, ezért helyette Fourier-sorát véve tagonként oldjuk meg az egyenletet és a megoldásokat összegezzük.

Megoldások

M1. Többváltozós függvények folytonossága és deriválhatósága

Folytonosság

1.1. a) $\lim_{(x,y)\to(\pi,0)} \cos(y) \sin\left(\frac{x}{2}\right) = 1 \cdot 1 = 1.$

$$\lim_{(x,y)\to(0,1)}\frac{\sin(xy)}{x} = \lim_{(x,y)\to(0,1)}\frac{\sin(xy)}{yx} \cdot y = 1 \cdot 1 = 1.$$

 $\lim_{(x,y)\to(0,0)}\frac{1}{xy}\text{ nem létezik, mert }y=tx\text{ esetén }\lim_{(x,y)\to(0,0)}\frac{1}{xy}=\lim_{x\to0}\frac{1}{tx^2}\text{ különböző }t\text{ számokra különböző eredményt ad, pl. }t=1\text{ esetén }\lim_{x\to0}\frac{1}{x^2}=+\infty\text{ míg pl. }t=-1\text{ esetén }\lim_{x\to0}\frac{1}{-x^2}=-\infty\text{. Azonban }\lim_{(x,y)\to(0,0)}\left|\frac{1}{xy}\right|=+\infty\text{ könnyen belátható.}$

 $\lim_{(x,y)\to(0,0)}\left(\frac{1}{x}-\frac{1}{y}\right) \text{ nem létezik, mert } \lim_{x\to 0}\left(\frac{1}{x}-\frac{1}{tx}\right)=\lim_{x\to 0}\left(\frac{t-1}{tx}\right)=0 \text{ vagy } \pm\infty, \ t\text{-től és } x \text{ előjelétől függően.}$

b) $\lim_{(x,y)\to(0,0)} \frac{y^2}{x^2+y^2}$ nem létezik, mert $\lim_{x\to 0} \frac{t^2x^2}{x^2+t^2x^2} = \frac{t^2}{1+t^2}$ nem csak egy értéket vesz fel.

 $\lim_{(x,y)\to(0,0)}\frac{xy^2}{x^2+y^2}=0\ \text{mert}\ y=tx\ \text{eset\'en}\ \frac{xy^2}{x^2+y^2}=\frac{tx^3}{x^2+t^2x^2}=x\cdot\frac{t}{1+t^2},\ \text{de mivel}\ \left|\frac{t}{1+t^2}\right|< K$ valamilyen $K\in\mathbb{R}$ korlátra ($\forall t\in\mathbb{R},\ K$ értéke lényegtelen), így $\left|\frac{xy^2}{x^2+y^2}\right|<|x|\cdot K\to 0$ midőn $x\to 0$.

 $\lim_{(x,y) \to (0,0)} \frac{\sin(x)\sin(y)}{x^2 + y^2}$ nem létezik, mert y = txesetén a

$$\frac{\sin(x)\sin(y)}{x^2 + y^2} = \frac{\sin(x)\sin(tx)}{x^2(1+t^2)} = \frac{\sin(x)}{x} \cdot \frac{\sin(tx)}{tx} \cdot \frac{t}{1+t^2}$$

kifejezés határértéke függ t értékétől.

 $\lim_{(x,y)\to(0,0)} \frac{x+y}{x-y}$ nem létezik, mert $\lim_{x\to 0} \frac{x+tx}{x-tx} = \frac{1+t}{1-t}$ függ t értékétől.

c)
$$\lim_{(x,y)\to(0,0)} \frac{x}{\sqrt{x^2+y^2}}$$
 nem létezik, mert $\lim_{x\to 0} \frac{x}{\sqrt{x^2+t^2x^2}} = \frac{\pm 1}{\sqrt{1+t^2}}$ függ t értékétől.

 $\lim_{(x,y)\to(0,0)} \frac{xy}{\sqrt{x^2+y^2}} \ = \ 0 \quad \text{mert} \ y \ = \ tx \ \text{eset\'en} \quad \frac{xy}{\sqrt{x^2+y^2}} \ = \ \frac{x^2t}{\sqrt{x^2+x^2t^2}} \ = \ x\frac{t}{\sqrt{1+t^2}}, \quad \text{tov\'abb\'a}$ $\left| \frac{t}{\sqrt{1+t^2}} \right| < K$ valamilyen $K \in \mathbb{R}$ korlátra ($\forall t \in \mathbb{R}$, K értéke lényegtelen), így $\left|\frac{xy}{\sqrt{x^2+y^2}}\right| < |x| \cdot K \to 0 \text{ midőn } x \to 0.$

 $\lim_{(x,y)\to(0,0)} \frac{x^2}{\sqrt{x^2+y^2}} = 0$ az előző feladathoz hasonlóan.

d) $\lim_{(x,y)\to(1,1)}\frac{x^2+y^2}{x^2-y^2}$ nem létezik, mert ugyan $\left|\frac{x^2+y^2}{x^2-y^2}\right|\to\infty$ (a számláló korlátos és a nevező \to 0), de a nevező előjele instabil, vagyis $\frac{x^2+y^2}{x^2-y^2} \to ,, \pm \infty$ " – ami nem lehetséges.

$$\lim_{(x,y)\to(1,1)}\frac{x-y}{x^2-y^2}=\lim_{(x,y)\to(1,1)}\frac{1}{x+y}=\frac{1}{2},$$

 $e) \lim_{(x,y)\to(\infty,\infty)} \frac{x+y}{x^2+y^2} = 0, \quad \text{mert} \ y = tx \ \text{eset\'en} \ \frac{x+y}{x^2+y^2} = \frac{x+tx}{x^2+t^2x^2} = \frac{1}{x} \cdot \frac{1+t}{1+t^2} \ \text{\'es} \\ \left| \frac{1}{x} \frac{1+t}{1+t^2} \right| < \left| \frac{1}{x} \right| \cdot K \to 0 \ \text{mid\'en} \ x \to \infty, \ \text{a} \ \ b) \ 2 \ \text{feladathoz hasonl\'ean}.$

 $\lim_{\substack{(x,y)\to(\infty,\infty)\\x^2-y^2}}\frac{x+y}{x^2-y^2} \text{ nem létezik, mert } \frac{x+y}{x^2-y^2}=\frac{1}{x-y}, \text{ \'es az } y=x+h \text{ helyettes\'it\'es alapj\'an}$ $\frac{1}{x-y}=\frac{-1}{h}, \text{ ami minden } h\in\mathbb{R} \text{ eset\'en m\'as}.$

 $\lim_{(x,y)\to(\infty,\infty)} \tfrac{x\cdot y}{x^2+y^2} \text{ nem létezik, mert } y=tx \text{ esetén } \tfrac{x\cdot y}{x^2+y^2}=\tfrac{t}{1+t^2} \text{ minden } t\in\mathbb{R}\text{-re más.}$

 $\lim_{(x,y)\to(\infty,\infty)}\sin\left(\tfrac{\pi x}{6x+y}\right) \text{ nem létezik, mert } y=tx \text{ esetén } \tfrac{\pi x}{6x+y}=\tfrac{\pi}{6+t} \text{ minden } t\in\mathbb{R}\text{-re más.}$

Parciális deriváltak

1.2. a) Az x változó szerinti parciális függvény és deriváltja y=2 esetén:

$$x \mapsto f(x,2) = 2x^2 + 2 - \frac{\sqrt{x}}{2} + \pi, \qquad x \mapsto \frac{\partial}{\partial x} f(x,2) = 4x - \frac{1}{4\sqrt{x}} \quad (x > 0),$$

$$x = 1 \mapsto \frac{\partial}{\partial x} f(1, 2) = 4 - \frac{1}{4} = \frac{15}{4}.$$

Az y változó szerinti parciális függvény és deriváltja x=1 esetén: $y\mapsto f(1,y)=2+y-\frac{1}{y}+\pi, \qquad y\mapsto \frac{\partial}{\partial y}f(1,y)=1+\frac{1}{y^2} \quad (y\neq 0),$

$$y = 2 \mapsto \frac{\partial}{\partial y} f(1, 2) = 1 + \frac{1}{4} = \frac{5}{4}.$$

Az x változó szerinti parciális függvény y = -4 esetén:

$$x \mapsto f(x, -4) = 2x^2 - 4 + \frac{\sqrt{x}}{4} + \pi \quad (x \ge 0)$$

 $x\mapsto f(x,-4)=2x^2-4+rac{\sqrt{x}}{4}+\pi \quad (x\geq 0)$ ami x=0 pontban nem differenciálható, tehát $rac{\partial}{\partial x}f(0,-4)$ nem létezik.

Az y változó szerinti parciális függvény és deriváltja x=0 esetén: $y \mapsto f(0,y) = y + \pi, \quad y \mapsto \frac{\partial}{\partial y} f(0,y) = 1 \quad (y \neq 0),$

$$y = -4 \mapsto \frac{\partial}{\partial u} f(0, -4) = 1.$$

b) Az x változó szerinti parciális függvény és deriváltja y=1, z=2 esetén: $x\mapsto f(x,1,2)=2e^{-x}, \qquad x\mapsto \frac{\partial}{\partial x}f(x,1,2)=-2e^{-x},$

$$x = 0 \mapsto \frac{\partial}{\partial x} f(0, 1, 2) = -2.$$

Az y változó szerinti parciális függvény és deriváltja x=1, z=0 esetén: $y\mapsto f(1,y,0)=0, \qquad y\mapsto \frac{\partial}{\partial y}f(1,y,0)=0 \qquad (y\neq 0),$

$$y = 2 \mapsto \frac{\partial}{\partial y} f(1, 2, 0) = 0.$$

A z változó szerinti parciális függvény és deriváltja $x=1,\,y=1$ esetén: $z\mapsto f(1,1,z)=ze^{-1},\qquad z\mapsto \frac{\partial}{\partial z}f(1,1,z)=e^{-1}$

$$z = 0 \mapsto \frac{\partial}{\partial z} f(1, 1, 0) = \frac{1}{e}.$$

c) Az x változó szerinti parciális függvény és deriváltja y=0 esetén: $x\mapsto f(x,0)=0, \qquad x\mapsto \frac{\partial}{\partial x}f(x,0)=0 \qquad (x\in\mathbb{R}),$

$$x = 0 \mapsto \frac{\partial}{\partial x} f(0, 0) = 0.$$

Az y változó szerinti parciális függvény és deriváltja x=0 esetén: $y\mapsto f(0,y)=0, \qquad y\mapsto \frac{\partial}{\partial y}f(0,y)=0 \qquad (y\in\mathbb{R}),$

$$y = 0 \mapsto \frac{\partial}{\partial y} f(0, 0) = 0.$$

Az x változó szerinti parciális függvény és deriváltja y=2 esetén: $x\mapsto f(x,2)=\frac{2x}{x^2+4}, \qquad x\mapsto \frac{\partial}{\partial x}f(x,2)=\left(\frac{2x}{x^2+4}\right)'=-\frac{2x^2-8}{(x^2+4)^2} \quad (x\in\mathbb{R})\,,$

$$x = 1 \mapsto \frac{\partial}{\partial x} f(1, 2) = \frac{6}{25}.$$

1.3. a) $\frac{\partial}{\partial x} (x^2 + x \cdot y^2 + 3z^2) = 2x + y^2$,

$$\frac{\partial}{\partial y}\left(x^2+x\cdot y^2+3z^2\right)=2xy,\quad \frac{\partial}{\partial z}\left(x^2+x\cdot y^2+3z^2\right)=6z\quad (x,y,z\in\mathbb{R}).$$

b)
$$\frac{\partial}{\partial x} \left(\frac{x}{\sqrt{x^2 + y^2}} \right) = \frac{y^2}{(x^2 + y^2)^{\frac{3}{2}}} \quad x^2 + y^2 > 0$$

$$\frac{\partial}{\partial y} \left(\frac{x}{\sqrt{x^2 + y^2}} \right) = -\frac{xy}{(x^2 + y^2)^{\frac{3}{2}}} \quad x^2 + y^2 > 0$$

Differenciálhatóság

1.4. *a*) Mivel

$$\frac{\partial}{\partial x} (x^2 - xy + y^2) = 2x - y \quad x, y \in \mathbb{R}$$

$$\frac{\partial}{\partial y} (x^2 - xy + y^2) = 2y - x \quad x, y \in \mathbb{R}$$

folytonosak, f (totálisan) differenciálható minden $(x, y) \in \mathbb{R}^2$ pontban.

b) Mivel
$$\frac{\partial}{\partial x} (y \sin^2 x + x \cos^2 y) = y \sin 2x + \cos^2 y \quad x, y \in \mathbb{R}$$
$$\frac{\partial}{\partial y} (y \sin^2 x + x \cos^2 y) = \sin^2 x - x \sin 2y \quad x, y \in \mathbb{R}$$

folytonosak, f (totálisan) differenciálható minden $(x, y) \in \mathbb{R}^2$ pontban.

c)

$$\frac{\partial}{\partial x}f(x,0,0) = \frac{\partial}{\partial x}\left(\sqrt{x^2+0^2+0^2}\right) = \frac{\partial}{\partial x}\left|x\right| = \frac{x}{|x|} = \begin{cases} -1 & \text{ha } x<0\\ +1 & \text{ha } x<0 \end{cases}, \ x \neq 0$$

$$\frac{\partial}{\partial x}f(x,y,z) = \frac{\partial}{\partial x}\left(\sqrt{x^2+y^2+z^2}\right) = \frac{x}{\sqrt{x^2+y^2+z^2}} \quad \text{mivel} \quad y^2+z^2>0$$

tehát

$$\frac{\partial}{\partial x}f(x,y,z) = \frac{x}{\sqrt{x^2 + y^2 + z^2}}$$
 ha $x^2 + y^2 + z^2 > 0$

és hasonlóan

$$\begin{split} \frac{\partial}{\partial y}f(x,y,z) &= \frac{y}{\sqrt{x^2+y^2+z^2}} \quad ha \quad x^2+y^2+z^2 > 0 \\ \frac{\partial}{\partial z}f(x,y,z) &= \frac{z}{\sqrt{x^2+y^2+z^2}} \quad ha \quad x^2+y^2+z^2 > 0 \end{split}$$

folytonos függvények *az origót kivéve*, ezért f (totálisan) differenciálható minden $(x, y, z) \in \mathbb{R}^3 \setminus \{(0, 0, 0)\}$ pontban.

$$\frac{\partial}{\partial x} \ln \left(1 + \frac{y}{x} \right) = -\frac{1}{x} \cdot \frac{y}{x+y} \qquad ha \quad x \neq 0 \text{ és } \frac{y}{x} > -1$$

$$\frac{\partial}{\partial y} \ln \left(1 + \frac{y}{x} \right) = \frac{1}{x+y} \qquad ha \quad x \neq 0 \text{ és } \frac{y}{x} > -1$$

folytonos függvények, ezért f (totálisan) differenciálható a $\left\{(x,y)\in\mathbb{R}^2\mid x\neq 0 \text{ és } \frac{y}{x}>-1\right\}$ halmaz minden pontjában.

e) Mivel

$$\frac{\partial}{\partial x}f(x,y) = \left(\frac{\partial}{\partial x}\right)\frac{xy}{x^2 + y^2} = -y \cdot \frac{x^2 - y^2}{\left(x^2 + y^2\right)^2} \qquad ha \quad x^2 + y^2 > 0,$$

$$\frac{\partial}{\partial y}f(x,y) = \left(\frac{\partial}{\partial y}\right)\frac{xy}{x^2 + y^2} = -x \cdot \frac{y^2 - x^2}{\left(x^2 + y^2\right)^2} \qquad ha \quad x^2 + y^2 > 0,$$

$$f(x,0)=0,$$
 $\frac{\partial}{\partial x}f(0,0)=0,$ $f(0,y)=0,$ $\frac{\partial}{\partial y}f(0,0)=0,$

így a parciális derivált függvények folytonosak minden $(x,y) \in \mathbb{R}^2 \setminus \{(0,0)\}$ pontban, tehát ezekben a pontokban f differenciálható. Az origóban viszont, bár léteznek a parciális deriváltak, f nem folytonos, ugyanis

$$\lim_{n \to \infty} \left(\frac{1}{n}, \frac{1}{n} \right) = (0, 0) \qquad \lim_{n \to \infty} f\left(\frac{1}{n}, \frac{1}{n} \right) = \lim_{n \to \infty} \frac{\frac{1}{n^2}}{\frac{1}{n^2} + \frac{1}{n^2}} = 2 \neq f(0, 0) = 0$$

tehát f nem differenciálható a (0,0) pontban.

f) Mivel

$$\frac{\partial}{\partial x}f(x,y) = \frac{\partial}{\partial x}\frac{x\,|y|}{\sqrt{x^2 + y^2}} = \frac{|y|^3}{(x^2 + y^2)^{\frac{3}{2}}} \qquad ha \quad y \neq 0$$

$$\frac{\partial}{\partial y}f(x,y) = \frac{\partial}{\partial y}\frac{x\,|y|}{\sqrt{x^2 + y^2}} = \mathrm{sign}(y) \cdot \frac{x^3}{(x^2 + y^2)^{\frac{3}{2}}} \qquad hay \neq 0$$

folytonos függvények, f differenciálható minden $(x,y) \in \mathbb{R}^2 \setminus \{(a,0) \mid a \in \mathbb{R}\}$ pontban. Vizsgáljuk most a differenciálhatóságot az x tengely pontjaiban:

A (0,0) pontban *nem* differenciálható, ugyanis $\frac{\partial}{\partial x}f(0,0)=\frac{\partial}{\partial y}f(0,0)=0$ miatt a differenciálhatóság esetén

$$f(x,y) = f(0,0) + x \frac{\partial}{\partial x} f(0,0) + y \frac{\partial}{\partial y} f(0,0) + R(x,y) = R(x,y)$$

$$\lim_{(x,y)\to(0,0)}\frac{R(x,y)}{\sqrt{x^2+y^2}}=0 \ \ \text{teljesülne}.$$

Most azonban $\lim_{n \to \infty} (\frac{1}{n}, \frac{1}{n}) = (0, 0)$ és $\lim_{n \to \infty} \frac{R(\frac{1}{n}, \frac{1}{n})}{\sqrt{\frac{1}{n^2} + \frac{1}{n^2}}} = \frac{1}{2} \neq 0$. Egy $(a, 0), a \neq 0$ pontban

 $\frac{\partial}{\partial x}f(a,0)=\frac{\partial}{\partial u}f(a,0)=0$, és differenciálhatóság esetén

$$f(x,y) = f(a,0) + x \cdot \frac{\partial}{\partial x} f(a,0) + y \cdot \frac{\partial}{\partial y} f(a,0) + R(x,y) = R(x,y),$$

és
$$\lim_{(x,y)\to(a,0)} \frac{R(x,y)}{\sqrt{x^2+y^2}} = 0$$
 teljesülne.

Most azonban $\lim_{n\to\infty} (a + \frac{1}{n}, \frac{1}{n}) = (a, 0)$ és

$$\lim_{n \to \infty} \frac{\frac{\left(a + \frac{1}{n}\right)\left|\frac{1}{n}\right|}{\sqrt{\left(a + \frac{1}{n}\right)^2 + \frac{1}{n^2}}}}{\sqrt{\left(a + \frac{1}{n} - a\right)^2 + \frac{1}{n^2}}} = \lim_{n \to \infty} \frac{\frac{\left(a + \frac{1}{n}\right)}{\sqrt{\left(a + \frac{1}{n}\right)^2 + \frac{1}{n^2}}}}{\sqrt{2}} = \frac{\operatorname{sign}(a)}{\sqrt{2}} \neq 0.$$

5. ábra. 1.4.*f*) megoldás

$$z = \frac{x|y|}{\sqrt{x^2 + y^2}}$$

1.5. a) $(x,y) \in \mathbb{R}^2$ esetén

$$\frac{\partial}{\partial x} (x^3 + y^2 - 3xy) = 3x^2 - 3y$$
$$\frac{\partial}{\partial y} (x^3 + y^2 - 3xy) = 2y - 3x$$

folytonos függvények, ezért

$$\begin{aligned} & \text{grad } f(0,0) = (0,0) \\ & \text{grad } f(0,1) = (-3,2) \\ & \text{grad } f(x,y) = \left(3x^2 - 3y, 2y - 3x\right) \\ \end{aligned} \quad (x,y) \in \mathbb{R}^2.$$

b) Használjuk az 1.4.c) feladat megoldását:

grad
$$f(1, 1, 1) = \left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)$$

és $(x,y,z)\in\mathbb{R}^3\smallsetminus\{(0,0,0)\}$ esetén

$$\operatorname{grad} f(x, y, z) = \left(\frac{x}{\sqrt{x^2 + y^2 + z^2}}, \frac{y}{\sqrt{x^2 + y^2 + z^2}}, \frac{z}{\sqrt{x^2 + y^2 + z^2}}\right).$$

Megjegyzés: Az r=(x,y,z) jelöléssel függvényünk

$$f(r) = |r| \quad r \in \mathbb{R}^3$$

alakban írható, és deriváltja, azaz gradiense

$$f'(r)=\operatorname{grad} f(r)=\frac{r}{|r|} \quad r\in \mathbb{R}^3 \smallsetminus \{(0,0,0)\}$$

ami megfelel az

$$f(x) = |x| \quad x \in \mathbb{R}$$

függvény deriválásaként kapható, igaz egyszerűbb alakban is írható

$$f'(x) = \frac{x}{|x|} = \begin{cases} 1 & x > 0 \\ -1 & x < 0 \end{cases} \quad x \in \mathbb{R} \setminus \{0\}$$

eredménynek.

c) $(x, y, z) \in \mathbb{R}^3$ esetén

$$\frac{\partial}{\partial x} (x^2 + y^2 + z^2) = 2x$$
$$\frac{\partial}{\partial y} (x^2 + y^2 + z^2) = 2y$$
$$\frac{\partial}{\partial z} (x^2 + y^2 + z^2) = 2z$$

folytonos függvények, ezért

Megjegyzés Az r=(x,y,z) jelöléssel függvényünk $f(r)=|r|^2$ $(r\in\mathbb{R}^3)$ alakban írható, és deriváltja (gradiense) $f'(r)=\operatorname{grad} f(r)=2r$ $(r\in\mathbb{R}^3)$, ami megfelel az $f(x)==|x|^2=x^2$ $(x\in\mathbb{R})$ függvény deriválásaként kapható f'(x)=2x $(x\in\mathbb{R})$ eredménynek.

d)
$$x^2 + y^2 > 0$$
 esetén

$$\frac{\partial}{\partial x} \frac{z}{\sqrt{x^2 + y^2}} = \frac{-xz}{(x^2 + y^2)^{\frac{3}{2}}}$$
$$\frac{\partial}{\partial y} \frac{z}{\sqrt{x^2 + y^2}} = \frac{-yz}{(x^2 + y^2)^{\frac{3}{2}}}$$
$$\frac{\partial}{\partial z} \frac{z}{\sqrt{x^2 + y^2}} = \frac{1}{\sqrt{x^2 + y^2}}$$

folytonos függvények, ezért

$$\begin{split} \operatorname{grad} f(3,4,5) &= \left(\frac{-3}{25}, \frac{-4}{25}, \frac{1}{5}\right) \\ \operatorname{grad} f(x,y,z) &= \left(\frac{-xz}{\left(x^2 + y^2\right)^{\frac{3}{2}}}, \frac{-yz}{\left(x^2 + y^2\right)^{\frac{3}{2}}}, \frac{1}{\sqrt{x^2 + y^2}}\right) \quad x^2 + y^2 > 0. \end{split}$$

Iránymenti derivált

1.6. a) $v = \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$ egységvektor, és

$$\frac{\partial}{\partial x}e^{x^2+y^2} = 2xe^{x^2+y^2}$$
$$\frac{\partial}{\partial y}e^{x^2+y^2} = 2ye^{x^2+y^2}$$

folytonos függvények, tehát grad $f(-1,2)=(-2e^6,4e^6)$ ezért

$$D_v f(-1,2) = -2e^6 \cdot \frac{1}{\sqrt{2}} + 4e^6 \cdot \frac{1}{\sqrt{2}} = \sqrt{2}e^6 \approx 570,53.$$

b)
$$v=(3,\sqrt{11},4)$$
 normáltja: $\left(\frac{3}{6},\frac{\sqrt{11}}{6},\frac{4}{6}\right)$, és

$$\frac{\partial}{\partial x}z\sin(x+y) = z\cos(x+y)$$
$$\frac{\partial}{\partial y}z\sin(x+y) = z\cos(x+y)$$
$$\frac{\partial}{\partial z}z\sin(x+y) = \sin(x+y)$$

folytonos függvények, tehát grad $f\left(\frac{\pi}{6}, \frac{\pi}{6}, 1\right) = \left(\frac{1}{2}, \frac{1}{2}, \frac{\sqrt{3}}{2}\right)$, ezért

$$D_v f\left(\frac{\pi}{6}, \frac{\pi}{6}, 1\right) = \frac{1}{2} \cdot \frac{3}{6} + \frac{1}{2} \cdot \frac{\sqrt{11}}{6} + \frac{\sqrt{3}}{2} \cdot \frac{4}{6} = \frac{3 + 2\sqrt{11} + 8\sqrt{3}}{24} \approx 0.97874.$$

c) Az $\alpha \, (=30^\circ) = \frac{\pi}{6} \,$ szög irányába mutató egységvektor

$$v = \left(\cos\frac{\pi}{6}, \sin\frac{\pi}{6}\right) = \left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right),$$

és

$$\frac{\partial}{\partial x}\ln(x+y) = \frac{\partial}{\partial y}\ln(x+y) = \frac{1}{x+y}$$
 $x+y>0$

folytonos függvények, tehát grad $f(1,1) = \left(\frac{1}{2}, \frac{1}{2}\right)$ ezért

$$D_{30^{\circ}}f(1,1) = D_v f(1,1) = \frac{1}{2} \cdot \frac{\sqrt{3}}{2} + \frac{1}{2} \cdot \frac{1}{2} = \frac{\sqrt{3}+1}{4} \approx 0,68301.$$

d) \underline{v} normáltja: $\underline{e}_v = \frac{\underline{v}}{|\underline{v}|} = \left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$. Mivel f a (0,0) pontban nem differenciálható (lásd az 1.4.f) feladat megoldása), ezért adjuk meg a

$$g(t) := \begin{cases} f\left(\frac{t}{2}, \frac{t\sqrt{3}}{2}\right) = \frac{\frac{t}{2}\left|\frac{t\sqrt{3}}{2}\right|}{|t|} = \frac{t\sqrt{3}}{4} & \text{ha } t \neq 0 \\ f(0, 0) = 0 & \text{ha } t \neq 0 \end{cases}$$

függvény deriváltját t = 0 helyen:

$$D_{\underline{v}}f(0,0) = g'(0) = \frac{\sqrt{3}}{4}.$$

Megjegyzés: Vegyük észre, hogy minden α irányban létezik az iránymenti derivált az origóban, mivel

$$t \mapsto f(t\cos\alpha, t\sin\alpha) = \frac{t\cos\alpha |t\sin\alpha|}{\sqrt{(t\cos\alpha)^2 + (t\sin\alpha)^2}} = t\cos\alpha |\sin\alpha|$$

és a derivált értéke a t=0 pontban: $D_{\alpha}f(0,0)=\cos\alpha|\sin\alpha|$.

Tehát minden iránymenti derivált létezik, de f nem differenciálható a (0,0) pontban (lásd az 1.4.f) feladat megoldása).

1.7.
$$v = \overrightarrow{PQ}(3,4)$$
, normálva $\left(\frac{3}{5}, \frac{4}{5}\right)$

$$\frac{\partial}{\partial x}f(x,y) = \frac{\partial}{\partial x}\left(x^2 - 2x^2y + xy^2 + 1\right) = y^2 - 4xy + 2x$$
$$\frac{\partial}{\partial y}f(x,y) = \frac{\partial}{\partial y}\left(x^2 - 2x^2y + xy^2 + 1\right) = -2x(x-y)$$

$$\frac{\partial}{\partial x} f(1,2) = 2^2 - 4 \cdot 1 \cdot 2 + 2 \cdot 1 = -2$$

$$\frac{\partial}{\partial y} f(1,2) = -2 \cdot 1(1-2) = 2$$

$$\text{grad } f(1,2) = (-2,2)$$

$$D_{\overrightarrow{PO}} f(1,2) = -2 \cdot \frac{3}{5} + 2 \cdot \frac{4}{5} = \frac{2}{5}.$$

1.8.

$$\frac{\partial}{\partial x}f(x,y) = \frac{\partial}{\partial x}\left(x^2 + 4y^2\right) = 2x \qquad \frac{\partial}{\partial x}f(2,1) = 4$$

$$\frac{\partial}{\partial y}f(x,y) = \frac{\partial}{\partial y}\left(x^2 + 4y^2\right) = 8y \qquad \frac{\partial}{\partial y}f(2,1) = 8$$

$$\operatorname{grad} f(2,1) = (4,8)$$

Tehát a "legnagyobb növekedés" iránya és értéke

$$v = (4,8)$$
 $D_v f(1,2) = |\operatorname{grad} f(2,1)| = \sqrt{4^2 + 8^2} = 4\sqrt{5},$

a "legnagyobb csökkenés" iránya és értéke

$$-v = (-4, -8)$$
 $D_{-v}f(1, 2) = -|\operatorname{grad} f(2, 1)| = -4\sqrt{5}.$

Összetett függvény deriválása

1.9. a) f(x,y,z)=xyz, $x(u,v)=u^2+v$, $y(u,v)=u-v^2$ és $z(u,v)=\sin u$ parciális deriváltjai:

$$\frac{\partial}{\partial x}f(x,y,z) = yz \qquad \frac{\partial}{\partial y}f(x,y,z) = xz \qquad \frac{\partial}{\partial z}f(x,y,z) = xy,$$

$$\frac{\partial}{\partial u}x(u,v) = 2u \quad \frac{\partial}{\partial u}y(u,v) = 1 \quad \frac{\partial}{\partial u}z(u,v) = \cos u$$

$$\frac{\partial}{\partial v}x(u,v) = 1 \quad \frac{\partial}{\partial v}y(u,v) = -2v \quad \frac{\partial}{\partial v}z(u,v) = 0.$$

Tehát az összetett függvény parciális deriváltjai:

$$\begin{split} \frac{\partial}{\partial u} f\left(u^2+v,u-v^2,\sin u\right) &= \\ &= \left(u-v^2\right)\cdot\sin u\cdot 2u + \left(u^2+v\right)\cdot\sin u\cdot 1 + \left(u^2+v\right)\cdot \left(u-v^2\right)\cdot\cos u, \\ \frac{\partial}{\partial v} f\left(u^2+v,u-v^2,\sin u\right) &= \\ &= \left(u-v^2\right)\cdot\sin u\cdot 1 + \left(u^2+v\right)\cdot\sin u\cdot \left(-2v\right) + \left(u^2+v\right)\cdot \left(u-v^2\right)\cdot 0. \\ b) \, f(x,y) &= \frac{x}{y}, \ x(t) &= \ln t, \ y(t) &= e^t \ \text{parciális deriváltjai} \\ \frac{\partial}{\partial x} f(x,y) &= \frac{1}{y} \qquad \frac{\partial}{\partial y} f(x,y) &= -\frac{x}{y^2} \\ \frac{\partial}{\partial t} x(t) &= x'(t) &= \frac{1}{t} \\ \frac{\partial}{\partial t} y(t) &= y'(t) &= e^t. \end{split}$$

Tehát az összetétellel kapott egyváltozós függvény deriváltja:

$$\frac{\partial}{\partial t} f\left(\ln t, e^t\right) = \left(f(\ln t, e^t)\right)' = \frac{1}{e^t} \cdot \frac{1}{t} - \frac{\ln t}{e^{2t}} \cdot e^t = \frac{1 - t \cdot \ln t}{te^t}.$$

$$c) \ f(x,y) = e^{x^2 + y^2}, \ x(r,\phi) = r\cos\phi, \ y(r,\phi) = r\sin\phi \ \text{parciális deriváltjai:}$$

$$\frac{\partial}{\partial x} f(x,y) = 2xe^{x^2 + y^2} \qquad \frac{\partial}{\partial y} f(x,y) = 2ye^{x^2 + y^2}$$

$$\frac{\partial}{\partial r} x(r,\phi) = \cos\phi \qquad \frac{\partial}{\partial r} y(r,\phi) = \sin\phi$$

$$\frac{\partial}{\partial \phi} x(r,\phi) = -r\sin\phi \qquad \frac{\partial}{\partial \phi} y(r,\phi) = r\cos\phi.$$

Tehát az összetett függvény parciális deriváltjai:

$$\frac{\partial}{\partial r} f(r\cos\phi, r\sin\phi) = 2r\cos^2\phi \cdot e^{r^2} + 2r\sin^2\phi \cdot e^{r^2} = 2re^{r^2}$$
$$\frac{\partial}{\partial \phi} f(r\cos\phi, r\sin\phi) = -r^2\sin(2\phi) \cdot e^{r^2} + r^2\sin(2\phi) \cdot e^{r^2} = 0$$

felhasználva a $2\sin\phi\cdot\cos\phi=\sin(2\phi)$ azonosságot.

1.10. a) grad x(1,2) = (-1,0), grad $y(1,2) = (\sqrt{2},10)$ és $f(x,y) = x^2 + xy$ parciális deriváltjai az

$$(x(1,2),y(1,2)) = (3,4)$$

pontban:

$$\frac{\partial}{\partial x}f(x,y) = 2x + y \qquad \frac{\partial}{\partial x}f(3,4) = 2 \cdot 3 + 4 = 10$$

$$\frac{\partial}{\partial y}f(x,y) = x \qquad \frac{\partial}{\partial y}f(3,4) = 4$$

Tehát az $F(u,v)=f\left(x(u,v),y(u,v)\right)$ összetett függvény deriváltja az (1,2) pontban:

$$\operatorname{grad} F(1,2) = \left(10 \cdot (-1) + 4 \cdot \sqrt{2}, 10 \cdot 0 + 4 \cdot 10\right) = \left(4\sqrt{2} - 10, 40\right).$$

b) grad f(-1,1)=(3,2), és az $x(u,v)=u^2-v^2$ $y(u,v)=-\frac{uv}{\sqrt{2}}$ "helyettesítő" függvények és parciális deriváltjaik értéke az $\underline{a}=(u,v)=(-1,\sqrt{2})$ pontban

$$x\left(-1,\sqrt{2}\right) = -1 \qquad x\left(-1,\sqrt{2}\right) = 1$$

$$\frac{\partial}{\partial u}x(u,v) = \frac{\partial}{\partial u}\left(u^2 - v^2\right) = 2u \qquad \frac{\partial}{\partial u}x\left(-1,\sqrt{2}\right) = -2$$

$$\frac{\partial}{\partial u}y(u,v) = \frac{\partial}{\partial u}\left(-\frac{uv}{\sqrt{2}}\right) = -\frac{v}{\sqrt{2}} \qquad \frac{\partial}{\partial u}y\left(-1,\sqrt{2}\right) = -1$$

$$\frac{\partial}{\partial v}x(u,v) = \frac{\partial}{\partial v}\left(u^2 - v^2\right) = -2v \qquad \frac{\partial}{\partial v}x\left(-1,\sqrt{2}\right) = -2\sqrt{2}$$

$$\frac{\partial}{\partial v}y(u,v) = \frac{\partial}{\partial v}y\left(-\frac{uv}{\sqrt{2}}\right) = -\frac{u}{\sqrt{2}} \qquad \frac{\partial}{\partial v}y\left(-1,\sqrt{2}\right) = \frac{1}{\sqrt{2}}.$$

Tehát az $\ F(u,v)=f\left(x(u,v),y(u,v)\right)\$ függvény deriváltja a $\ \left(-1,\sqrt{2}\right)\$ pontban

$$\operatorname{grad} F\left(-1, \sqrt{2}\right) = \left(3(-2) + 2(-1), 3\left(-2\sqrt{2}\right) + 2\frac{1}{\sqrt{2}}\right) = \left(-8, -5\sqrt{2}\right).$$

1.11. Mivel

$$\begin{split} \frac{\partial}{\partial x} g\left(\frac{y}{x}\right) &= g'\left(\frac{y}{x}\right) \cdot \frac{\partial}{\partial x} \left(\frac{y}{x}\right) = g'\left(\frac{y}{x}\right) \cdot \left(-\frac{y}{x^2}\right) \\ \frac{\partial}{\partial y} g\left(\frac{y}{x}\right) &= g'\left(\frac{y}{x}\right) \cdot \frac{\partial}{\partial y} \left(\frac{y}{x}\right) = g'\left(\frac{y}{x}\right) \cdot \frac{1}{x} \end{split}$$

kapjuk

$$\frac{\partial}{\partial x}f(x,y) = \frac{\partial}{\partial x}\left(xy + g\left(\frac{y}{x}\right)\right) = y + g'\left(\frac{y}{x}\right) \cdot \left(-\frac{y}{x^2}\right) = y - \frac{y}{x^2} \cdot g'\left(\frac{y}{x}\right)$$
$$\frac{\partial}{\partial y}f(x,y) = \frac{\partial}{\partial y}\left(xy + g\left(\frac{y}{x}\right)\right) = x + g'\left(\frac{y}{x}\right) \cdot \frac{1}{x} = x + \frac{1}{x} \cdot g'\left(\frac{y}{x}\right)$$

amiket szorozva az x illetve y változóval, majd összegezve kapjuk a bizonyítandó

$$x \cdot \frac{\partial}{\partial x} f(x, y) + y \cdot \frac{\partial}{\partial y} f(x, y) = 2xy$$

összefüggést (mivel $\frac{y}{x} \cdot g'\left(\frac{y}{x}\right)$ kiesik).

Magasabbrendű deriváltak

1.12. *a*) Ha $2xy + y^2 > 0$

$$\frac{\partial}{\partial x} \left(\sqrt{2xy + y^2} \right) = \frac{y}{\sqrt{y^2 + 2xy}}$$

$$\frac{\partial^2}{\partial x^2} \left(\sqrt{2xy + y^2} \right) = \frac{\partial}{\partial x} \left(\frac{y}{\sqrt{y^2 + 2xy}} \right) = \frac{-y^2}{(y^2 + 2xy)^{\frac{3}{2}}}$$

$$\frac{\partial^2}{\partial x \partial y} \left(\sqrt{2xy + y^2} \right) = \frac{\partial}{\partial y} \left(\frac{y}{\sqrt{y^2 + 2xy}} \right) = \frac{xy}{(y^2 + 2xy)^{\frac{3}{2}}}$$

$$\frac{\partial^2}{\partial y^2} \left(\sqrt{2xy + y^2} \right) = \frac{\partial}{\partial y} \left(\frac{\partial}{\partial y} \left(\sqrt{2xy + y^2} \right) \right) =$$

$$= \frac{\partial}{\partial y} \left(\frac{x + y}{\sqrt{y^2 + 2xy}} \right) = \frac{-x^2}{(y^2 + 2xy)^{\frac{3}{2}}}.$$

b)

$$\frac{\partial}{\partial x} \left(2x^2y - 3y^2z + xyz \right) = 4xy + yz$$

$$\frac{\partial^2}{\partial x \partial y} \left(2x^2y - 3y^2z + xyz \right) = \frac{\partial}{\partial y} (4xy + yz) = 4x + z$$

$$\frac{\partial^2}{\partial x^2} \left(2x^2y - 3y^2z + xyz \right) = \frac{\partial}{\partial x} (4xy + yz) = 4y$$

$$\frac{\partial^3}{\partial x \partial y \partial z} \left(2x^2y - 3y^2z + xyz \right) = \frac{\partial}{\partial z} (4x + z) = 1$$

$$\frac{\partial^3}{\partial x^2 \partial y} \left(2x^2y - 3y^2z + xyz \right) = \frac{\partial}{\partial y} (4y) = 4.$$

c) Ha x > 0 akkor

$$\frac{\partial}{\partial x}(x^y) = y \cdot x^{y-1}$$

$$\frac{\partial^2}{\partial x \partial y}(x^y) = \frac{\partial}{\partial y} (y \cdot x^{y-1}) = x^{y-1}(y \ln x + 1)$$

$$\frac{\partial}{\partial y}(x^y) = x^y \ln x$$

$$\frac{\partial^2}{\partial y \partial x}(x^y) = \frac{\partial}{\partial x} (x^y \ln x) = x^{y-1}(y \ln x + 1)$$

$$\frac{\partial^3}{\partial x^2 \partial y}(x^y) = \frac{\partial}{\partial y} \left(\frac{\partial}{\partial x} (y \cdot x^{y-1})\right) = \frac{\partial}{\partial y} (x^{y-2} (y^2 - y)) =$$

$$= x^{y-2} (2y + y^2 \ln x - y \ln x - 1)$$

$$\frac{\partial^3}{\partial x \partial y \partial x}(x^y) = \frac{\partial}{\partial x} (x^{y-1}(y \ln x + 1)) = x^{y-2} (2y + y^2 \ln x - y \ln x - 1).$$

Megjegyzés: Vegyük észre, hogy a kapott parciális derivált függvények folytonosak, ezért az eredmény nem függ a deriválás változóinak sorrendjétől, tehát:

$$\frac{\partial^2}{\partial x \partial y} f = \frac{\partial^2}{\partial y \partial x} f \quad \text{ és } \quad \frac{\partial^3}{\partial x^2 \partial y} f = \frac{\partial^3}{\partial x \partial y \partial x} f.$$

1.13. *a*) Ha $y \neq -1$ akkor

$$\frac{\partial}{\partial x}\left(\frac{1+x}{1+y}\right) = \frac{1}{y+1}$$

$$\frac{\partial^2}{\partial x^2}\left(\frac{1+x}{1+y}\right) = \frac{\partial}{\partial x}\left(\frac{1}{y+1}\right) = 0 \qquad \frac{\partial^2}{\partial x^2}f(0,0) = 0$$

$$\frac{\partial^2}{\partial x\partial y}\left(\frac{1+x}{1+y}\right) = \frac{\partial}{\partial y}\left(\frac{1}{y+1}\right) = \frac{-1}{(y+1)^2} \qquad \frac{\partial^2}{\partial x\partial y}f(1,1) = \frac{-1}{2}$$

$$\frac{\partial}{\partial y}\left(\frac{1+x}{1+y}\right) = -\frac{x+1}{(y+1)^2}$$

$$\frac{\partial^2}{\partial y^2}\left(\frac{1+x}{1+y}\right) = \frac{\partial}{\partial y}\left(-\frac{x+1}{(y+1)^2}\right) = 2\frac{x+1}{(y+1)^3} \qquad \frac{\partial^2}{\partial y^2}f(2,2) = \frac{2}{9}.$$

$$b) \ f(x,y) = \begin{cases} \frac{x^3y-xy^3}{x^2+y^2} & x^2+y^2>0\\ 0 & x^2+y^2=0 \end{cases}, \ \operatorname{ez\acute{e}rt} \ f(x,0) = f(0,y) = 0 \ \operatorname{\acute{e}s}$$

$$\frac{\partial}{\partial x}f(x,y) = \begin{cases} \frac{y(x^4+4x^2y^2-y^4)}{(x^2+y^2)^2} & x\neq 0y \in \mathbb{R}\\ 0 & x=0 \ y \in \mathbb{R} \end{cases}$$

$$\frac{\partial}{\partial y}f(x,y) = \begin{cases} -\frac{x(-x^4+4x^2y^2+y^4)}{(x^2+y^2)^2} & y\neq 0x \in \mathbb{R}\\ 0 & y=0 \ x \in \mathbb{R} \end{cases}$$

tehát
$$\frac{\partial}{\partial x}f(0,y)=-y$$
 $y\in\mathbb{R}$ és $\frac{\partial}{\partial y}f(x,0)=x$ $x\in\mathbb{R}$, ezért
$$\frac{\partial}{\partial y}\left(\frac{\partial}{\partial x}f(0,y)\right)=-1$$
 $y\in\mathbb{R}$ $\frac{\partial^2}{\partial x\partial y}f(0,0)=-1$
$$\frac{\partial}{\partial x}\left(\frac{\partial}{\partial y}f(x,0)\right)=1$$
 $x\in\mathbb{R}$ $\frac{\partial^2}{\partial y\partial x}f(0,0)=1$.

Megjegyzés: Vegyük észre, hogy a másodrendű parciális derivált függvények nem folytonosak, ugyanis például

$$\frac{\partial^2}{\partial x \partial y} f(x,y) = \begin{cases} \frac{\partial}{\partial y} \left(\frac{y(x^4 + 4x^2y^2 - y^4)}{(x^2 + y^2)^2} \right) & x \neq 0y \in \mathbb{R} \\ \frac{\partial}{\partial y} (-y) & x = 0y \in \mathbb{R} \end{cases}$$

$$= \begin{cases} \frac{x^6 + 9x^4y^2 - 9x^2y^4 - y^6}{(x^2 + y^2)^3} & x \neq 0y \in \mathbb{R} \\ -1 & x = 0y \in \mathbb{R} \end{cases}$$

$$\left(\frac{1}{n}, 0 \right) \to (0, 0) \qquad \lim_{n \to \infty} \frac{\partial^2}{\partial x \partial y} f\left(\frac{1}{n}, 0 \right) = 1 \neq \frac{\partial^2}{\partial x \partial y} f(0, 0) = -1,$$

ezért nem következik a vegyes másodrendűek egyenlősége!

1.14. Ha xy > 0 akkor

$$\frac{\partial}{\partial x}f(x,y) = \frac{\partial}{\partial x}\left(g(xy) + \sqrt{xy} \cdot h\left(\frac{y}{x}\right)\right) = g'(xy)y + \frac{y}{2\sqrt{xy}}h\left(\frac{y}{x}\right) - \frac{y\sqrt{xy}}{x^2}h'\left(\frac{y}{x}\right)$$

$$\frac{\partial^2}{\partial x^2}f(x,y) = g''(xy)y^2 - \frac{y^2}{4\sqrt{x^3y^3}}h\left(\frac{y}{x}\right) + \frac{y^2}{x^2\sqrt{xy}}h'\left(\frac{y}{x}\right) + \frac{y^2\sqrt{xy}}{x^4}h''\left(\frac{y}{x}\right)$$

$$\frac{\partial}{\partial y}f(x,y) = \frac{\partial}{\partial y}\left(g(xy) + \sqrt{xy}h\left(\frac{y}{x}\right)\right) = g'(xy)x + \frac{x}{2\sqrt{xy}}h\left(\frac{y}{x}\right) + \frac{\sqrt{xy}}{x}h'\left(\frac{y}{x}\right)$$

$$\frac{\partial^2}{\partial y^2}f(x,y) = g''(xy)x^2 - \frac{x^2}{4\sqrt{x^3y^3}}h\left(\frac{y}{x}\right) + \frac{1}{\sqrt{xy}}\cdot h'\left(\frac{y}{x}\right) + \frac{\sqrt{xy}}{x^2}h''\left(\frac{y}{x}\right)$$

amiből kapjuk

$$x^{2} \frac{\partial^{2}}{\partial x^{2}} f(x, y) - y^{2} \frac{\partial^{2}}{\partial y^{2}} f(x, y) = 0.$$

Szélsőértékszámítás

$$\begin{cases} \frac{\partial}{\partial x} (x^2 + 2xy - 2x + 2y^2 - 2y + z^2 + 1) = 2x + 2y - 2 = 0\\ \frac{\partial}{\partial y} (x^2 + 2xy - 2x + 2y^2 - 2y + z^2 + 1) = 2x + 4y - 2 = 0\\ \frac{\partial}{\partial z} (x^2 + 2xy - 2x + 2y^2 - 2y + z^2 + 1) = 2z = 0 \end{cases}$$

egyenletrendszer megoldása a P(1,0,0) stacionárius pont.

Megjegyzés: Vegyük észre, hogy a függvényünk a következő alakban írható:

$$f(x,y,z) = x^2 + 2xy - 2x + 2y^2 - 2y + z^2 + 1 =$$

= $((x-1) + y)^2 + y^2 + z^2 \ge 0 = f(1,0,0)$

tehát a P(1,0,0) stacionárius pont – most szemmel láthatóan – (globális) minimum hely!

b) Az

$$\begin{cases} \frac{\partial}{\partial x} e^{x^2 - y^2} = 2xe^{x^2 - y^2} = 0\\ \frac{\partial}{\partial y} e^{x^2 - y^2} = -2ye^{x^2 - y^2} = 0 \end{cases}$$

egyenletrendszer megoldása a P(0,0) stacionárius pont.

Megjegyzés: A $z=e^{x^2-y^2}$ egyenletű

6. ábra. 1.15.*b*) megoldás

$$z = e^{x^2 - y^2}$$

felülettel adott függvénynek a P(0,0) stacionárius pontban nincs szélsőértéke, mert:

$$f(x,0) = e^{x^2} > 1 = f(0,0)$$
 ha $x \neq 0$

és

$$f(0,y) = e^{-y^2} < 1 = f(0,0)$$
 ha $y \neq 0$.

$$c)$$
 Az

$$\frac{\partial}{\partial x}(\sin x + \cos y + x - y) = \cos x + 1 = 0$$
$$\frac{\partial}{\partial y}(\sin x + \cos y + x - y) = -\sin y - 1 = 0$$

egyenletrendszer megoldásai a $P_{k,l}\left(\pi+2k\pi,\frac{3\pi}{2}+2l\pi\right)$ $(k,l\in\mathbb{N})$ stacionárius pontok.

1.16. *a*) A

$$\frac{\partial}{\partial x} \left(2x^4 + y^4 - x^2 - 2y^2 \right) = 8x^3 - 2x = 0$$

$$\frac{\partial}{\partial y} \left(2x^4 + y^4 - x^2 - 2y^2 \right) = 4y(y^2 - 1) = 0$$

egyenletrendszer megoldásai
$$P_1\left(\frac{-1}{2},1\right)$$
, $P_2(0,1)$, $P_3\left(\frac{1}{2},1\right)$, $P_4\left(\frac{-1}{2},0\right)$, $P_5(0,0)$, $P_6\left(\frac{1}{2},0\right)$, $P_7\left(\frac{-1}{2},-1\right)$, $P_8(0,-1)$, $P_9\left(\frac{1}{2},-1\right)$, továbbá
$$\frac{\partial^2}{\partial x^2}\left(2x^4+y^4-x^2-2y^2\right)=24x^2-2$$

$$\frac{\partial^2}{\partial y^2}\left(2x^4+y^4-x^2-2y^2\right)=12y^2-4$$

$$\frac{\partial^2}{\partial xy} \left(2x^4 + y^4 - x^2 - 2y^2 \right) = 0$$

vagyis

$$\Delta(x,y) = (24x^2 - 2)(12y^2 - 2) - 0^2.$$

 $\Delta\left(P_{1}\right)=\left(24/4-2\right)\left(12-2\right)=40>0\;$ tehát $P_{1}\text{-ben van szélsőérték,}$

$$\frac{\partial^2}{\partial x^2} \left(P_1 \right) = 4 > 0$$

miatt P_1 minimumhely, a minimum értéke

$$f(P_1) = f\left(\frac{-1}{2}, 1\right) = 2\left(\frac{-1}{2}\right)^4 + 1^4 - \left(\frac{-1}{2}\right)^2 - 2 \cdot 1^2 = \frac{-9}{8},$$

 $\Delta\left(P_{2}\right)=(-2)(12-2)=-20<0 \ \text{ tehát } P_{2}\text{-ben nincs szélsőérték } \ (P_{2} \text{ nyeregpont}),$

$$\Delta(P_3) = (24/4 - 2)(12 - 2) = 40 > 0$$
 és $\frac{\partial^2}{\partial x^2}(P_3) = 4 > 0$ tehát P_3 -ban minimum van,

$$\Delta\left(P_4\right)=(24/4-2)(-2)=-8<0\;$$
tehát P_4 -ben nincs szélsőérték (P_4 nyeregpont),

$$\Delta(P_5) = (-2)(-2) = 4 > 0$$
 és $\frac{\partial^2}{\partial r^2}(P_5) = -2$ tehát P_5 -ben maximum van,

$$\begin{split} &\Delta\left(P_6\right)=(24/4-2)(-2)=-8<0\ \text{ tehát }P_6\text{-ban nincs szélsőérték }\left(P_6\text{ nyeregpont}\right),\\ &\Delta\left(P_7\right)=(24/4-2)(12-2)=40>0\text{ és }\frac{\partial^2}{\partial x^2}\left(P_7\right)=4>0\ \text{ tehát }P_7\text{-ben minimum van,}\\ &\Delta\left(P_8\right)=(-2)(12-2)=-20<0\ \text{ tehát }P_8\text{-ban nincs szélsőérték }\left(P_8\text{ nyeregpont}\right),\\ &\Delta\left(P_9\right)=(24/4-2)(12-2)=40>0\text{ és }\frac{\partial^2}{\partial x^2}\left(P_9\right)=4>0\ \text{ tehát }P_9\text{-ben minimum van.} \end{split}$$

7. ábra. 1.16.*a*) megoldás

$$2x^4 + y^4 - x^2 - 2y^2$$

$$\frac{\partial}{\partial x} \left(x e^{-\frac{x^2 + y^2}{2}} \right) = \left(x^2 - 1 \right) e^{-\frac{x^2 + y^2}{2}} = 0$$
$$\frac{\partial}{\partial y} \left(x e^{-\frac{x^2 + y^2}{2}} \right) = -xy e^{-\frac{x^2 + y^2}{2}} = 0$$

egyenletrendszer megoldásai a $P(1,0),\,Q(-1,0)$ stacionárius pontok, továbbá

$$\frac{\partial^2}{\partial x^2} \left(x e^{-\frac{x^2 + y^2}{2}} \right) = x \left(x^2 - 3 \right) e^{-\frac{x^2 + y^2}{2}}$$
$$\frac{\partial^2}{\partial y^2} \left(x e^{-\frac{x^2 + y^2}{2}} \right) = x \left(y^2 - 1 \right) e^{-\frac{x^2 + y^2}{2}}$$
$$\frac{\partial^2}{\partial y \partial x} \left(x e^{-\frac{x^2 + y^2}{2}} \right) = y \left(x^2 - 1 \right) e^{-\frac{x^2 + y^2}{2}}$$

vagyis

$$\Delta(x,y) = x \left(x^2 - 3\right) e^{-\frac{x^2 + y^2}{2}} \cdot x \left(y^2 - 1\right) e^{-\frac{x^2 + y^2}{2}} - \left(y \left(x^2 - 1\right) e^{-\frac{x^2 + y^2}{2}}\right)^2.$$
 A $P(1,0)$ pontban $\left(\frac{\partial^2}{\partial x^2} f\right)(P) = \frac{-2}{\sqrt{e}}, \ \left(\frac{\partial^2}{\partial y^2} f\right)(P) = -\frac{1}{\sqrt{e}}, \ \left(\frac{\partial^2}{\partial y \partial x} f\right)(P) = 0, \text{ fgy}$
$$\Delta(P) = \frac{-2}{\sqrt{e}} \cdot \left(-\frac{1}{\sqrt{e}}\right) - 0 = \frac{2}{e} > 0$$

tehát P-ben van f-nek szélsőértéke, és $\left(\frac{\partial^2}{\partial x^2}f\right)(P)=\frac{-2}{\sqrt{e}}<0$ miatt a P(1,0) pont lokális maximumhely, ahol a maximum értéke $f(P)=\frac{1}{\sqrt{e}}$.

A
$$Q(-1,0)$$
 pontban $\left(\frac{\partial^2}{\partial x^2}f\right)(Q)=\frac{2}{\sqrt{e}},\;\left(\frac{\partial^2}{\partial y^2}f\right)(Q)=\frac{1}{\sqrt{e}},\;\left(\frac{\partial^2}{\partial y\partial x}f\right)(Q)=0,\;$ így

$$\Delta(Q) = \frac{2}{\sqrt{e}} \cdot \frac{1}{\sqrt{e}} - 0 = \frac{2}{e} > 0$$

tehát Q-ban is van szélsőértéke f-nek, és $\left(\frac{\partial^2}{\partial x^2}f\right)(Q)=\frac{2}{\sqrt{e}}>0$ miatt a Q(-1,0) pont lokális minimumhely, ahol a minimum értéke $f(Q)=-\frac{1}{\sqrt{e}}$.

$$\frac{\partial}{\partial x} \left(x^4 + y^4 - 2x^2 + 4xy - 2y^2 \right) = 4x^3 - 4x + 4y = 0$$

$$\frac{\partial}{\partial y} \left(x^4 + y^4 - 2x^2 + 4xy - 2y^2 \right) = 4y^3 - 4y + 4x = 0$$

egyenletrendszer megoldásai a $P(-\sqrt{2},\sqrt{2}),\ Q\left(\sqrt{2},-\sqrt{2}\right),\ R(0,0)$ stacionárius pontok. Továbbá

$$\frac{\partial^2}{\partial x^2} f(x, y) = \frac{\partial}{\partial x} (4x^3 - 4x + 4y) = 12x^2 - 4$$
$$\frac{\partial^2}{\partial y^2} f(x, y) = \frac{\partial}{\partial y} (4y^3 - 4y + 4x) = 12y^2 - 4$$
$$\frac{\partial^2}{\partial x \partial y} f(x, y) = \frac{\partial}{\partial y} (4x^3 - 4x + 4y) = 4$$

vagyis

$$\Delta(x,y) = (12x^2 - 4)(12y^2 - 4) - 4^2$$

A $P(-\sqrt{2},\sqrt{2})$ pontban

$$\Delta(P) = \left(12\left(-\sqrt{2}\right)^2 - 4\right) \left(12\left(\sqrt{2}\right)^2 - 4\right) - 4^2 = 384 > 0,$$

$$12\left(-\sqrt{2}\right)^2 - 4 = 20 > 0$$

tehát a $P(-\sqrt{2},\sqrt{2})~$ pont lokális minimumhely és $f(-\sqrt{2},\sqrt{2})=-8.$

A $Q(\sqrt{2}, -\sqrt{2})$ pontban

$$\Delta(Q) = \left(12\left(\sqrt{2}\right)^2 - 4\right) \left(12\left(-\sqrt{2}\right)^2 - 4\right) - 4^2 = 384 > 0,$$

$$12\left(\sqrt{2}\right)^2 - 4 = 20 > 0$$

tehát a $Q(\sqrt{2}, -\sqrt{2})$ pont lokális minimumhely, és $f(\sqrt{2}, -\sqrt{2}) = -8$.

Az R(0,0) pontban

$$\Delta(R) = (-4)(-4) - 4^2 = 0,$$

tehát az R(0,0) pontról Δ segítségével nem dönthető el, hogy szélsőérték hely-e.

Megjegyzés: A függvény grafikonjáról

8. ábra. 1.16.*c*) megoldás

$$z = x^4 + y^4 - 2x^2 + 4xy - 2y^2$$

is látható, hogy az R pontban (origóban) az $f(x,0)=x^4-2x^2$ és $f(0,y)=y^4-2y^2$ parciális függvényeknek maximuma van, de a $H=\{(a,a)\mid a\in\mathbb{R}\}$ pontokban vett $f(a,a)=2a^4$ függvényértékeknek az origóban minimumhelye van, tehát az origó nyeregpont, vagyis nem szélsőérték hely.

d) A

$$\frac{\partial}{\partial x} \left(xy\sqrt{1 - x^2 - y^2} \right) = -y \frac{2x^2 + y^2 - 1}{\sqrt{1 - x^2 - y^2}} = 0$$

$$\frac{\partial}{\partial y} \left(xy\sqrt{1 - x^2 - y^2} \right) = -x \frac{x^2 + 2y^2 - 1}{\sqrt{1 - x^2 - y^2}} = 0$$

egyenletrendszer megoldásai a P(0,0), $Q_{1,2,3,4}\left(\pm\frac{1}{\sqrt{3}},\pm\frac{1}{\sqrt{3}}\right)$ stacionárius pontok, továbbá

$$\frac{\partial^2}{\partial x^2} f(x,y) = \frac{\partial}{\partial x} \left(-y \frac{2x^2 + y^2 - 1}{\sqrt{1 - x^2 - y^2}} \right) = xy \frac{2x^2 + 3y^2 - 3}{(1 - x^2 - y^2 1)^{\frac{3}{2}}}$$

$$\frac{\partial^2}{\partial y^2} f(x,y) = \frac{\partial}{\partial y} \left(-x \frac{x^2 + 2y^2 - 1}{\sqrt{1 - x^2 - y^2}} \right) = xy \frac{3x^2 + 2y^2 - 3}{(1 - x^2 - y^2)^{\frac{3}{2}}}$$

$$\frac{\partial^2}{\partial x \partial y} f(x,y) = \frac{\partial}{\partial y} \left(-y \frac{2x^2 + y^2 - 1}{\sqrt{1 - x^2 - y^2}} \right) = \frac{2x^4 + 3x^2y^2 - 3x^2 + 2y^4 - 3y^2 + 1}{(1 - x^2 - y^2)^{\frac{3}{2}}}.$$

A P(0,0) esetén $\Delta(P) = -1 < 0$ tehát nincs szélsőérték.

 $Q_1\left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)$ esetén

$$\Delta(Q_1) = \left(-\frac{4}{3}\sqrt{3}\right)\left(-\frac{4}{3}\sqrt{3}\right) - \left(-\frac{2}{3}\sqrt{3}\right)^2 = 4 > 0$$

és

$$-\frac{4}{3}\sqrt{3} < 0,$$

tehát Q_1 maximumhely és

$$f\left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right) = \frac{1}{9}\sqrt{3}.$$

 $Q_2\left(-\frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}}\right)$ esetén

$$\Delta(Q_2) = \left(\frac{4}{3}\sqrt{3}\right)\left(\frac{4}{3}\sqrt{3}\right) - \left(-\frac{2}{3}\sqrt{3}\right)^2 = 4 > 0$$

és

$$\frac{4}{3}\sqrt{3} > 0,$$

tehát Q_2 minimumhely és

$$f\left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right) = -\frac{1}{9}\sqrt{3}.$$

 $Q_3\left(\frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}}\right)$ esetén

$$\Delta(Q_3) = \left(\frac{4}{3}\sqrt{3}\right) \left(\frac{4}{3}\sqrt{3}\right) - \left(-\frac{2}{3}\sqrt{3}\right)^2 = 4 > 0$$

és

$$\frac{4}{3}\sqrt{3} > 0,$$

tehát Q_3 minimumhely és

$$f\left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right) = -\frac{1}{9}\sqrt{3}.$$

 $Q_4\left(\frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}}\right)$ esetén

$$\Delta(Q_4) = \left(-\frac{4}{3}\sqrt{3}\right)\left(-\frac{4}{3}\sqrt{3}\right) - \left(-\frac{2}{3}\sqrt{3}\right)^2 = 4 > 0$$

és

$$-\frac{4}{3}\sqrt{3} < 0,$$

tehát Q_4 maximumhely és

$$f\left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right) = \frac{1}{9}\sqrt{3}.$$

e) A
$$\frac{\partial}{\partial x} \frac{1 - x + y}{\sqrt{1 + x^2 + y^2}} = \frac{-(y^2 + xy + x + 1)}{(x^2 + y^2 + 1)^{\frac{3}{2}}} = 0 \qquad \text{(I)}$$

$$\frac{\partial}{\partial y} \frac{1 - x + y}{\sqrt{1 + x^2 + y^2}} = \frac{(x^2 + yx - y + 1)}{(x^2 + y^2 + 1)^{\frac{3}{2}}} = 0 \qquad \text{(II)}$$

egyenletrendszer megoldása: (I) - (II) $=0 \implies -(x-y-1)(x+y)=0$ alapján y=-x vagy y=x-1. Csak az első esetben kapunk valós gyököket: x=-1, y=1 vagyis P(-1,1) az egyetlen stacionárius pont.

$$\frac{\partial^2}{\partial x^2} f(x,y) = \frac{-\left(-2x^2y - 2x^2 - 3xy^2 - 3x + y^3 + y^2 + y + 1\right)}{\left(x^2 + y^2 + 1\right)^{\frac{5}{2}}}$$

$$\frac{\partial^2}{\partial y^2} f(x,y) = \frac{-\left(-x^3 + 3x^2y + x^2 + 2xy^2 - x - 2y^2 + 3y + 1\right)}{\left(x^2 + y^2 + 1\right)^{\frac{5}{2}}}$$

$$\frac{\partial^2}{\partial x \partial y} f(x,y) = \frac{-x^3 - 2x^2y + 2xy^2 + 3xy - x + y^3 + y}{\left(x^2 + y^2 + 1\right)^{\frac{5}{2}}}.$$

így

$$\Delta(P) = \left(\frac{-2\sqrt{3}}{9}\right) \cdot \left(\frac{-2\sqrt{3}}{9}\right) - \left(\frac{-1\sqrt{3}}{9}\right)^2 = \frac{1}{9} > 0$$

és

$$\frac{\partial^2}{\partial x^2}(P) = \frac{-2\sqrt{3}}{9} < 0,$$

tehát P-ben maximuma van a függvénynek.

Érintősík, Taylor-polinom, közelítő módszerek

1.17. a) $f(x_0, y_0) = 4^2 + 3^2 = 25$, $f'_x = 2x$, $f'_x(a) = 2 \cdot 4$, $f'_y = 2y$, $f'_y(a) = 2 \cdot 3$, tehát az érintősík $z = 25 + 8 \cdot (x - 4) + 6 \cdot (y - 3)$, vagy átrendezve: 8x + 6y - z = 25.

A függvény közelítése: $f(x,y) \approx 25 + 8 \cdot (x-4) + 6 \cdot (y-3) = 8x + 6y - 25$, így közelítése a \underline{b} pontban: $f(\underline{b}) \approx 8 \cdot 4.01 + 6 \cdot 2.97 - 25 = 24.9$.

Megjegyzés: $f(\underline{b})$ valódi értéke: $f(\underline{b}) = 4.01^2 + 2.97^2 = 24.901$.

b)
$$f'_x = y \cdot x^{y-1} + \frac{1}{y}$$
, $f'_y = x^y \ln x - \frac{x}{y^2}$,

$$z = \left(3^2 + \frac{3}{2}\right) + \left(2 \cdot 3^{2-1} + \frac{1}{2}\right)(x-3) + \left(3^2 \ln 3 - \frac{3}{2^2}\right)(y-2) =$$

$$= \frac{13}{2}x + (9 \ln 3 - 3/4)y - (18 \ln 3 + 15/2)$$

$$\approx 6.5x + 9.1375y - 27.2750 \approx f(x,y),$$

$$f(b) \approx 6.5 \cdot 2.98 + 9.1375 \cdot 2.03 - 27.2750 = 10.6441.$$

c) Az egyenlet z-re könnyen megoldható:

$$z = -\sqrt[3]{x^3 + x - y^3 + 2y + 15} = f(x, y),$$
 $\underline{a} = (-1, 3)$

és P valóban illeszkedik a felületre: f(-1,3) = 2.

Továbbá:
$$\frac{\partial}{\partial x}f=\frac{-1}{3}\frac{3x^2+1}{\sqrt[3]{(x^3+x-y^3+2y+15)^2}}, \ \frac{\partial}{\partial y}f=\frac{1}{3}\frac{3y^2-2}{\sqrt[3]{(x^3+x-y^3+2y+15)^2}},$$
 p
$$z=2-\frac{1}{3}(x+1)+\frac{25}{12}(y-3)=\frac{-1}{3}x+\frac{25}{12}y-\frac{55}{12}\approx f(x,y),$$

$$f(b)\approx\frac{1,03}{3}+\frac{25}{12}\cdot 2,96-\frac{55}{12}\approx 1,9267.$$

1.18. a) $x_0 = 1.5$, $y_0 = 2.5$, $f(x_0, y_0) = 20,06250$, $g(x_0, y_0) = 3,87500$, $f_x'(x_0, y_0) = 19,25000$, $f_y'(x_0, y_0) = -47,50000$, $g_x'(x_0, y_0) = -28,50000$, $g_y'(x_0, y_0) = 26,25000$, $b_1 = -109,93750$, $b_2 = 19,00000$, az egyenletrendszer:

$$\begin{cases} 19,25 \cdot x - 47,50 \cdot y = -109,93750 \\ -28,50 \cdot x + 26,25 \cdot y = 19,00000 \end{cases}$$

melynek megoldása: $\{x_1 = 2,33766, y_1 = 3,26184\}.$

A fenti eljárást iterálva (többször megismételve) kapjuk: $x_1=2,33766,\ y_1=3,26184,\ f\left(x_1,y_1\right)=-13,68319,\ g\left(x_1,y_1\right)=-9,32084,\ f_x'\left(x_1,y_1\right)=37,67320,\ f_y'\left(x_1,y_1\right)=-108,31858,\ g_x'\left(x_1,y_1\right)=-62,22484,\ g_y'\left(x_1,y_1\right)=36,51437,\ b_1=-251,56769,\ b_2=-17,03566,\ az\ új\ egyenletrendszer:$

$$\begin{cases} 37,67320 \cdot x - 108,31858 \cdot y = -251,56769 \\ -62,22484 \cdot x + 36,51437 \cdot y = -17,03566, \end{cases}$$

 $x_2 = 2,05632, \quad y_2 = 3,03767, \quad f(x_2,y_2) = -1,50124, \quad g(x_2,y_2) = -1,47810,$ $f'_x(x_2,y_2) = 31,14020, \quad f'_y(x_2,y_2) = -87,13373, \quad g'_x(x_2,y_2) = -50,12624, \quad g'_y(x_2,y_2) = 34,22229, \quad b_1 = -199,14784, \quad b_2 = 2,35845,$

 $x_3 = 2,00176, \quad y_3 = 3,00094, \quad f(x_3,y_3) = -0,02613, \quad g(x_3,y_3) = -0,05246,$ $f'_x(x_3,y_3) = 30,03235, \quad f'_y(x_3,y_3) = -84,07278, \quad g'_x(x_3,y_3) = -48,06094, \quad g'_y(x_3,y_3) = 33,99864, \quad b_1 = -192,15366, \quad b_2 = 5,87399,$

 $x_4 = 2,00000, y_4 = 3,00000, f(x_4, y_4) = -0,00001, g(x_4, y_4) = -0,00005, f'_x(x_4, y_4) = 30,00003, f'_y(x_4, y_4) = -84,00004, g'_x(x_4, y_4) = -48,00005, g'_y(x_4, y_4) = 33,99999, b_1 = -192,00008, b_2 = 5,99987,$

 $x_5 = 2,00000, \ y_5 = 3,00000, \ f\left(x_5,y_5\right) = -0,00000, \ g\left(x_5,y_5\right) = 0,00000.$ Tehát (x_5,y_5) a megadott pontossággal közelítik az eredeti egyenletrendszer (egyik) gyökét.

b) Az $(x_0, y_0) = (1,000\,00, 1,000\,00)$ kiinduló értékek 13 (fentihez hasonló) lépés után adnak kívánt pontosságú gyököt: $(x_{13}, y_{13}) = (-1,374\,87, -2,156\,24)$.

1.19.
$$f = \frac{x^2y}{x+3z}$$
, $f(a) = \frac{-2^2}{2+3\cdot8} = \frac{-4}{26}$; $f'_x = \frac{2xy(x+3z)-x^2y}{(x+3z)^2}$, $f'_x(a) = \frac{-25}{169}$; $f'_y = \frac{x^2}{x+3z}$, $f'_y(a) = \frac{2}{13}$; $f'_z = \frac{-3x^2y}{(x+3z)^2}$, $f'_z(a) = \frac{3}{169}$;

$$f_{xx}'' = \frac{18yz^2}{(x+3z)^3}, \quad f_{xx}''(a) = \frac{-144}{2197}; \quad f_{yy}'' = 0 = f_{yy}''(a); \quad f_{zz}'' = \frac{18x^2y}{(x+3z)^3}, \quad f_{zz}''(a) = \frac{-9}{2197};$$

$$f_{xy}'' = \frac{x(x+6z)}{(x+3z)^2}, \quad f_{xy}''(a) = \frac{25}{169}; \quad f_{xz}'' = \frac{-18xyz}{(x+3z)^3}, \quad f_{xz}''(a) = \frac{36}{2197}; \quad f_{yz}'' = \frac{-3x^2}{t(x+3z)^2}, \quad f_{yz}''(a) = \frac{-3}{169};$$

 $f_{yyy}''' = f_{xyy}''' = f_{yyz}''' = 0; \quad f_{xxx}''' = \frac{-54yz^2}{(x+3z)^4}, \quad f_{xxx}'''(a) = \frac{216}{28561}; \quad f_{zzz}''' = \frac{-162 \cdot x^2 y}{(x+3z)^4},$ $f_{zzz}'''(a) = \frac{81}{57122}; \quad f_{xxy}''' = \frac{18z^2}{(x+3z)^3}, \quad f_{xxy}''(a) = \frac{144}{2197}; \quad f_{xxz}''' = \frac{18yz(2x-3z)}{(x+3z)^4}, \quad f_{xxz}'''(a) = \frac{180}{28561};$ $f_{xzz}''' = \frac{-18xy(x-6z)}{(x+3z)^4}, \quad f_{xzz}''(a) = \frac{-207}{57122}; \quad f_{yzz}''' = \frac{18x^2}{(x+3z)^3}, \quad f_{yzz}'''(a) = \frac{9}{2197}; \quad f_{xyz}''' = \frac{-18xz}{(x+3z)^3},$ $f_{xyz}'''(a) = \frac{-36}{2197};$ tehát $(T_a^3, f)(x, y, z) =$

$$\begin{split} &= \frac{-4/26}{0!} \cdot 1 + \frac{-25/169}{1!} (x-2) + \frac{2/13}{1!} (y+1) + \frac{3/169}{1!} (z-8) + \\ &+ \frac{-144/2197}{2!} (x-2)^2 + \frac{0}{2!} (y+1)^2 + \frac{-9/2197}{2!} (z-8)^2 + \\ &+ \frac{25/169}{2!} (x-2) (y+1) + \frac{36/2197}{2!} (x-2) (y+1) + \frac{-3/169}{2!} (y+1) (z-8) + \\ &+ \frac{216/28561}{3!} (x-2)^3 + \frac{0}{3!} (y+1)^3 + \frac{81/57122}{3!} (z-8)^3 + \\ &+ \frac{144/2197}{3!} (x-2)^2 (y+1) + \frac{0}{3!} (y+1)^2 (x-2) + \frac{180/28561}{3!} (x-2)^2 (z-8) + \\ &+ \frac{-207/57122}{3!} (z-8)^2 (x-2) + \frac{0}{3!} (y+1)^2 (z-8) + \frac{9/2197}{3!} (y+1)^2 (z-8) + \\ &+ \frac{-36/2197}{3!} (x-2) (y+1) (z-8) \approx \\ \approx &- 0.1538 - 0.1479 (x-2) + 0.1538 (y+1) + 0.0178 (z-8) + \end{split}$$

$$-0.0328(x-2)^2 -0.0020(z-8)^2 +0.0739(x-2)(y+1) +\\ +0.0082(x-2)(y+1) -0.0089(y+1)(z-8) +0.0013(x-2)^3 +\\ +0.0002(z-8)^3 +0.0109(x-2)^2(y+1) +0.0011(x-2)^2(z-8) +\\ -0.0006(z-8)^2(x-2) +0.0007(y+1)^2(z-8) -\\ -0.0027(x-2)(y+1)(z-8),\\ \text{és fgy } f(1.99,-0.89,8.06) \approx\\ \approx -0.1538 -0.1479(1.99-2) +0.1538(-0.89+1) +0.0178(8.06-8) -\\ -0.0328(1.99-2)^2 -0.0020(8.06-8)^2 +0.0739(1.99-2)(-0.89+1) +\\ +0.0082(1.99-2)(-0.89+1) -0.0089(-0.89+1)(8.06-8) +\\ +0.0013(1.99-2)^3 +0.0002(8.06-8)^3 +0.0109(1.99-2)^2(-0.89+1) +\\ +0.0011(1.99-2)^2(8.06-8) -0.0006(8.06-8)^2(1.99-2) +\\ +0.0007(-0.89+1)^2(8.06-8) -0.0027(1.99-2)(-0.89+1)(8.06-8) \approx\\ \approx 0.0000000708.$$

M2. Két- és többváltozós integrálok, transzformációk

Szukcesszív integrálás

2.1. a_1) Először a belső zárójelet számítjuk ki:

$$\begin{split} \int x^2 + y^3 \, dx &= \frac{1}{3} x^3 + y^3 x + C, \\ \int \int_4^5 x^2 + y^3 \, dx &= \left[\frac{1}{3} x^3 + y^3 x \right]_{x=4}^{x=5} = \left(\frac{1}{3} 5^3 + y^3 5 \right) - \left(\frac{1}{3} 4^3 + y^3 4 \right) = \frac{61}{3} + y^3, \\ & \text{ezután } \int \frac{61}{3} + y^3 \, dy = \frac{61}{3} y + \frac{1}{4} y^4 + C, \\ & \text{végül } \int \int_H f = \int_3^7 \frac{61}{3} + y^3 \, dy = \left[\frac{61}{3} y + \frac{1}{4} y^4 \right]_{y=3}^{y=7} = \left(\frac{61}{3} \cdot 7 + \frac{1}{4} 7^4 \right) - \left(\frac{61}{3} \cdot 3 + \frac{1}{4} 3^4 \right) \approx \\ & \approx 661,333 \dot{3}. \end{split}$$

 a_2) Először a belső zárójelet számítjuk ki:

$$\int x^5 y^3 dy = x^5 \frac{1}{4} y^4 + C,$$

$$\int_{8}^{9} x^5 y^3 dy = x^5 \frac{1}{4} \left[y^4 \right]_{y=8}^{y=9} = x^5 \frac{1}{4} \left(9^4 - 8^4 \right) = \frac{2465}{4} x^5,$$

ezután
$$\int \frac{2465}{4} x^5 dx = \frac{2465}{4} \cdot \frac{1}{6} x^6 + C = \frac{2465}{24} x^6 + C,$$
 végül $\iint_H f = \int_1^2 \frac{2465}{4} x^5 dx = \frac{2465}{24} \left[x^6 \right]_{x=1}^{x=2} = \frac{2465}{24} \left(2^6 - 1 \right) = 6470,625.$

b) "Függőlegesen" integrálva: $\iint_H f = \int_2^6 \left(\int_3^5 \frac{x}{y} \, dy \right) \, dx.$ Először a belső zárójelet számítjuk ki:

$$\int \frac{x}{y} dy = x \int \frac{1}{y} dy = x \ln|y| + C,$$

$$\int_{3}^{5} \frac{x}{y} dy = x \left[\ln|y| \right]_{y=3}^{y=5} = x \left(\ln(5) - \ln(3) \right) = x \ln\left(\frac{5}{3}\right),$$

ezután $\int x \ln\left(\frac{5}{3}\right) dx = \ln\left(\frac{5}{3}\right) \cdot \frac{1}{2}x^2 + C$, végül

$$\iint_{H} f = \int_{2}^{6} x \ln\left(\frac{5}{3}\right) dx = \ln\left(\frac{5}{3}\right) \left[\frac{1}{2}x^{2}\right]_{2}^{6} = \ln\left(\frac{5}{3}\right) \cdot \frac{1}{2} \left(6^{2} - 2^{2}\right) \approx 8,1732.$$

"Vízszintesen" integrálva: $\iint_H f = \int_3^5 \left(\int_2^6 \frac{x}{y} \, dx \right) \, dy.$ Először a belső zárójelet számítjuk ki:

$$\int \frac{x}{y} dx = \frac{1}{y} \int x dy = \frac{1}{2y} x^2 + C,$$

$$\int_{2}^{6} \frac{x}{y} dy = \frac{1}{2y} \left[x^2 \right]_{x=2}^{x=6} = \frac{1}{2y} \left(6^2 - 2^2 \right) = \frac{16}{y},$$

ezután $\int \frac{16}{y} \, dy = 16 \ln |y| + C$, végül

$$\iint_{H} f = \int_{3}^{5} \frac{16}{y} \, dy = 16 \left[\ln|y| \right]_{3}^{5} = 16 \left(\ln(5) - \ln(3) \right) \approx 8,1732.$$

2.2. *a*) Először

$$\int_{x^2-2x-4}^{3x^2+8x} \left(3x^2+8y^2-xy\right) dy = \left[3x^2y+\frac{8}{3}y^3-\frac{1}{2}xy^2\right]_{y=x^2-2x-4}^{y=3x^2+8x} =$$

$$= \left(3x^2\left(3x^2+8x\right)+\frac{8}{3}\left(3x^2+8x\right)^3-\frac{1}{2}x\left(3x^2+8x\right)^2\right)-$$

$$-\left(3x^2\left(x^2-2x-4\right)+\frac{8}{3}\left(x^2-2x-4\right)^3-\frac{1}{2}x\left(x^2-2x-4\right)^2\right) =$$

$$= \frac{208}{3}x^6+588x^5+1516x^4+\frac{3764}{3}x^3+20x^2+264x+\frac{512}{3},$$

másodszor

$$\int_{-6,83}^{8,49} \left(\frac{208}{3} x^6 + 588 x^5 + 1516 x^4 + \frac{3764}{3} x^3 + 20 x^2 + 264 x + \frac{512}{3} \right) dx =$$

$$= \left[\frac{208}{21} x^7 + 98 x^6 + \frac{1516}{5} x^5 + \frac{941}{3} x^4 + \frac{20}{3} x^3 + 132 x^2 + \frac{512}{3} x \right]_{x=-6,83}^{x=8,49} =$$

$$= \left(\frac{208}{21} \cdot 8,49^7 + 98 \cdot 8,49^6 + \frac{1516}{5} \cdot 8,49^5 + \frac{941}{3} \cdot 8,49^4 + \frac{20}{3} \cdot 8,49^3 + \right.$$

$$+ 132 \cdot 8,49^2 + \frac{512}{3} \cdot 8,49) -$$

$$- \left(\frac{208}{21} \cdot (-6,83)^7 + 98 \cdot (-6,83)^6 + \frac{1516}{5} \cdot (-6,83)^5 + \frac{941}{3} \cdot (-6,83)^4 + \right.$$

$$+ \frac{20}{3} \cdot (-6,83)^3 + 132 \cdot (-6,83)^2 + \frac{512}{3} \cdot (-6,83)) \approx 8,3951 \times 10^7.$$

b)
$$\int_{3\sqrt{x}+8x}^{3\sqrt{x}+8x} \left(x^2 + xy\right) dy = \left[x^2y + \frac{1}{2}xy^2\right]_{y=x^2+x-4}^{y=3\sqrt{x}+8x} = \left[x^2\left(3\sqrt{x} + 8x\right) + \frac{1}{2}x\left(3\sqrt{x} + 8x\right)^2\right) - \left(x^2\left(x^2 + x - 4\right) + \frac{1}{2}x\left(x^2 + x - 4\right)^2\right) = -\frac{1}{2}x^5 - 2x^4 + \frac{85}{2}x^3 + \frac{25}{2}x^2 - 8x + 27\left(\sqrt{x}\right)^5,$$

$$\int_{H} \int f = \int_{3}^{9} \left(-\frac{1}{2}x^{5} - 2x^{4} + \frac{85}{2}x^{3} + \frac{25}{2}x^{2} - 8x + 27\left(\sqrt{x}\right)^{5} \right) dx = \\
= \left[\frac{54}{7} \left(\sqrt{x} \right)^{7} + \frac{85}{8}x^{4} + \frac{25}{6}x^{3} - \frac{2}{5}x^{5} - \frac{1}{12}x^{6} - 4x^{2} \right]_{3}^{9} = \\
- \frac{1458}{7} \sqrt{3} + \frac{721341}{35} \approx 20248,9814.$$

2.3. a) g és h metszéspontjai pontosan a g(x)=h(x) azaz az $x^2+2x=4-x^2$ egyenlet megoldásai: $x_1=-2, x_2=1.$

A
$$[-2, 1]$$
 intervallumon $x^2 + 2x \le 4 - x^2$, tehát

$$\iint_{H} f = \int_{-2}^{1} \left(\int_{x^{2}+2x}^{4-x^{2}} (x+y) \, dy \right) dx = \int_{-2}^{1} \left(\left[xy + y^{2}/2 \right]_{y=x^{2}+2x}^{y=4-x^{2}} \right) dx =
= \int_{-2}^{1} \left(x \left(4 - x^{2} \right) + \left(4 - x^{2} \right)^{2}/2 - x \left(x^{2} + 2x \right) - \left(x^{2} + 2x \right)^{2}/2 \right) dx =$$

$$= \int_{-2}^{1} \left(-4x^3 - 8x^2 + 4x + 8 \right) dx = \left[-x^4 - \frac{8}{3}x^3 + 2x^2 + 8x \right]_{-2}^{1} =$$

$$= \left(-1 - \frac{8}{3} + 2 + 8 \right) - \left(-(-2)^4 - \frac{8}{3}(-2)^3 + 2(-2)^2 + 8(-2) \right) = 9.$$

b) g és h metszéspontjai: az $x^2 = x + 2$ egyenlet megoldásai: $x_1 = -1, x_2 = 2$. A [-1, 2] intervallumon $x^2 \le x + 2$, tehát

$$\iint_{H} f = \int_{-1}^{2} \left(\int_{x^{2}}^{x+2} 2y \, dy \right) dx = \int_{-1}^{2} \left(\left[y^{2} \right]_{y=x^{2}}^{y=x+2} \right) dx =
= \int_{-1}^{2} \left((x+2)^{2} - x^{4} \right) dx = \int_{-1}^{2} \left(-x^{4} + x^{2} + 4x + 4 \right) dx =
= \left[-\frac{1}{5}x^{5} + \frac{1}{3}x^{3} + 2x^{2} + 4x \right]_{-1}^{2} = \frac{72}{5}.$$

2.4. *a*) Függőlegesen:

$$\iint_{H} f = \int_{0}^{1} \left(\int_{y=0}^{y=1/2 - x/2} (x^{2} + y + 1) \, dy \right) \, dx = \int_{0}^{1} \left[x^{2}y + \frac{1}{2}y^{2} + y \right]_{y=0}^{y=1/2 - x/2} \, dx =$$

$$= \int_{0}^{1} \left(x^{2} \left(\frac{1}{2} - \frac{x}{2} \right) + \frac{1}{2} \left(\frac{1}{2} - \frac{x}{2} \right)^{2} + \left(\frac{1}{2} - \frac{x}{2} \right) - 0 \right) \, dx =$$

$$= \int_{0}^{1} \left(-\frac{1}{2}x^{3} + \frac{5}{8}x^{2} - \frac{3}{4}x + \frac{5}{8} \right) \, dx = \left[-\frac{1}{8}x^{4} + \frac{5}{24}x^{3} - \frac{3}{8}x^{2} + \frac{5}{8}x \right]_{0}^{1} =$$

$$= -\frac{1}{8} + \frac{5}{24} - \frac{3}{8} + \frac{5}{8} - 0 = \frac{1}{3}.$$

Vízszintesen:

$$\iint_{H} f = \int_{0}^{1/2} \left(\int_{x=0}^{x=1-2y} (x^{2} + y + 1) dx \right) dy = \int_{0}^{1/2} \left(\left[\frac{1}{3} x^{3} + yx + x \right]_{x=0}^{x=1-2y} \right) dy =$$

$$= \int_{0}^{1/2} \left(\frac{1}{3} (1 - 2y)^{3} + y (1 - 2y) + (1 - 2y) - 0 \right) dy =$$

$$= \int_{0}^{1/2} \left(-\frac{8}{3}y^3 + 2y^2 - 3y + \frac{4}{3} \right) dy = \left[-\frac{2}{3}y^4 + \frac{2}{3}y^3 - \frac{3}{2}y^2 + \frac{4}{3}y \right]_{0}^{1/2} =$$

$$= -\frac{2}{3} \left(\frac{1}{2} \right)^4 + \frac{2}{3} \left(\frac{1}{2} \right)^3 - \frac{3}{2} \left(\frac{1}{2} \right)^2 + \frac{4}{3} \left(\frac{1}{2} \right) - 0 = \frac{1}{3}.$$

b) Függőlegesen:

$$\begin{split} \int_{H} \int f &= \int_{0}^{1} \left(\int_{y=x}^{y=1} \sqrt{1-x^{2}} \, dy \right) \, dx = \int_{0}^{1} \left[y \sqrt{1-x^{2}} \right]_{y=x}^{y=1} \, dx = \\ &= \int_{0}^{1} \sqrt{1-x^{2}} - x \sqrt{1-x^{2}} \, dx = \int_{0}^{1} \sqrt{1-x^{2}} \, dx + \frac{1}{2} \int_{0}^{1} -2x \left(1-x^{2} \right)^{1/2} \, dx = \\ &= \left[\frac{1}{2} \arcsin(x) + \frac{1}{4} \sin(2 \cdot \arcsin(x)) \right]_{0}^{1} + \frac{1}{2} \left[\frac{2}{3} (1-x^{2})^{3/2} \right]_{0}^{1} = \\ &= \left(\frac{1}{2} \arcsin(1) + \frac{1}{4} \sin(2 \cdot \arcsin(1)) - 0 \right) + \frac{1}{2} \cdot \frac{2}{3} (0-1) = \\ &= \left(\frac{\pi}{4} + 0 \right) - \frac{1}{3} = \frac{\pi}{4} - \frac{1}{3} \approx 0.4521 \end{split}$$

mivel

$$\int \sqrt{1-x^2} \, dx = \frac{1}{2}\arcsin(x) + \frac{1}{4}\sin(2\cdot\arcsin(x)) + C. \tag{10}$$

Vízszintesen:

$$\int \int_{H} f = \int_{0}^{1} \left(\int_{x=0}^{x=y} \sqrt{1 - x^{2}} \, dx \right) dy = \operatorname{ism\'{e}t} (10) \text{ szerint:}$$

$$= \int_{0}^{1} \left[\frac{1}{2} \arcsin(x) + \frac{1}{4} \sin(2 \cdot \arcsin(x)) \right]_{x=0}^{x=y} dy =$$

$$= \int_{0}^{1} \left(\frac{1}{2} \arcsin(y) + \frac{1}{4} \sin(2 \cdot \arcsin(y)) - 0 \right) dy =$$
(4)

ahol
$$\frac{1}{2}\int \arcsin(y)\,dy = \frac{1}{2}\left(y\cdot\arcsin(y) + \sqrt{1-y^2}\right)$$
 /I. típ. helyettesítés/és $\sin(2\cdot\arcsin(y)) = 2y\sqrt{1-y^2}$ miatt

$$\frac{1}{4} \int 2y \sqrt{1-y^2} \, dy = \frac{1}{4} \cdot \frac{-2}{3} (1-y^2)^{3/2}$$
 /I. típ. helyettesítés/

TEHÁT

$$(\mathbf{H}) = \left[\frac{1}{2}\left(y \cdot \arcsin(y) + \sqrt{1 - y^2}\right) + \frac{1}{4} \cdot \frac{-2}{3}\left(1 - y^2\right)^{3/2}\right]_0^1 =$$

$$= \left(\frac{1}{2}(\arcsin(1) + 0) + 0\right) - \left(\frac{1}{2}(0 + 1) + \frac{1}{4} \cdot \frac{-2}{3} \cdot 1\right) = \frac{\pi}{4} - \frac{1}{3} \approx 0,4521.$$

d)
$$a = BC$$
 egyenes egyenlete $(x - 5)(4 - 8) = (9 - 5)(y - 8)$
azaz $y = -x + 13$ vagy $x = -y + 13$,

$$b = AC$$
 egyenes egyenlete $(x-3)(4-2) = (9-3)(y-2)$ azaz $y = \frac{1}{3}x + 1$ vagy $x = 3y - 3$,

$$c = AB$$
 egyenes egyenlete $(x-3)(8-2) = (5-3)(y-2)$ azaz $y = 3x-7$ vagy $x = \frac{1}{3}y + \frac{7}{3}$.

"Függőlegesen" integrálva (x = 5-nél el kell vágnunk):

$$\iint_{H} f = \int_{3}^{5} \left(\int_{y=b \text{ egyenes}}^{y=c \text{ egyenes}} f(x,y) \, dy \right) \, dx + \int_{5}^{9} \left(\int_{y=b \text{ egyenes}}^{y=a \text{ egyenes}} f(x,y) \, dy \right) \, dx,$$

az első tényező

$$\int_{3}^{5} \left(\int_{y=\frac{1}{3}x+1}^{y=3x-7} (x^{2}+y^{3}) dy \right) dx = \int_{3}^{5} \left(\left[x^{2}y + \frac{1}{4}y^{4} \right]_{y=\frac{1}{3}x+1}^{y=3x-7} \right) dx =$$

$$= \int_{3}^{5} \left(x^{2}(3x-7) + \frac{1}{4}(3x-7)^{4} - x^{2} \left(\frac{1}{3}x+1 \right) - \frac{1}{4} \left(\frac{1}{3}x+1 \right)^{4} \right) dx =$$

$$= \int_{3}^{5} \left(\frac{1640}{81} x^{4} - \frac{5032}{27} x^{3} + \frac{1960}{3} x^{2} - \frac{3088}{3} x + 600 \right) dx =$$

$$= \left[\frac{328}{81} x^{5} - \frac{1258}{27} x^{4} + \frac{1960}{9} x^{3} - \frac{1544}{3} x^{2} + 600 x \right]_{x=3}^{x=5} =$$

$$= \left(\frac{328}{81} \cdot 5^{5} - \frac{1258}{27} \cdot 5^{4} + \frac{1960}{9} \cdot 5^{3} - \frac{1544}{3} \cdot 5^{2} + 600 \cdot 5 \right) -$$

$$- \left(\frac{328}{81} \cdot 3^{5} - \frac{1258}{27} \cdot 3^{4} + \frac{1960}{9} \cdot 3^{3} - \frac{1544}{3} \cdot 3^{2} + 600 \cdot 3 \right) = \frac{51152}{81} \approx \mathbf{631,5062},$$

a második tényező

$$= \int_{5}^{9} \left(\int_{y=\frac{1}{3}x+1}^{y=-x+13} (x^{2} + y^{3}) dy \right) dx = \int_{5}^{9} \left(\left[x^{2}y + \frac{1}{4}y^{4} \right]_{y=\frac{1}{3}x+1}^{y=-x+13} \right) dx =$$

$$= \int_{5}^{9} \left(x^{2}(-x+13) + \frac{1}{4}(-x+13)^{4} - x^{2} \left(\frac{1}{3}x+1 \right) - \frac{1}{4} \left(\frac{1}{3}x+1 \right)^{4} \right) dx =$$

$$= \int_{5}^{9} \left(\frac{20}{81}x^{4} - \frac{388}{27}x^{3} + \frac{796}{3}x^{2} - \frac{6592}{3}x + 7140 \right) dx =$$

$$= \left[\frac{4}{81}x^{5} - \frac{97}{27}x^{4} + \frac{796}{9}x^{3} - \frac{3296}{3}x^{2} + 7140x \right]_{x=5}^{x=9} =$$

$$= \left(\frac{4}{81} \cdot 9^{5} - \frac{97}{27} \cdot 9^{4} + \frac{796}{9} \cdot 9^{3} - \frac{3296}{3} \cdot 9^{2} + 7140 \cdot 9 \right) -$$

$$- \left(\frac{4}{81} \cdot 5^{5} - \frac{97}{27} \cdot 5^{4} + \frac{796}{9} \cdot 5^{3} - \frac{3296}{3} \cdot 5^{2} + 7140 \cdot 5 \right) = \frac{153184}{81} \approx \mathbf{1891,1605},$$

tehát

$$\int_{H} \int f = \frac{51152}{81} + \frac{153184}{81} = \frac{7568}{3} \approx 2522,6667.$$

"Vízszintes" integrálás esetén y=4-nél kell elvágni:

$$\iint_{H} f = \int_{2}^{4} \left(\int_{x=c}^{x=b} f(x,y) \, dx \right) \, dy + \int_{4}^{8} \left(\int_{x=c}^{x=a} f(x,y) \, dx \right) \, dy = \dots = \frac{7568}{3} \approx 2522,6667.$$

e)
$$H$$
 képlete: $H = \{(x, y) : (x - 1)^2 + y^2 \le 1, \ 0 \le y\}$, ezért

$$\int_{H} f = \int_{H} yx \, dx \, dy = \int_{0}^{2} \left(\int_{0}^{\sqrt{1 - (x - 1)^{2}}} y \cdot x \, dy \right) \, dx = \int_{0}^{2} x \cdot \left[\frac{1}{2} y^{2} \right]_{y = 0}^{y = \sqrt{1 - (x - 1)^{2}}} \, dx =
= \frac{1}{2} \int_{0}^{2} x \left(1 - (x - 1)^{2} - 0 \right) \, dx = \frac{1}{2} \int_{0}^{2} \left(-x^{3} + 2x^{2} \right) \, dx = \frac{1}{2} \left[-\frac{1}{4} x^{4} + \frac{2}{3} x^{3} \right]_{0}^{2} =
= \frac{1}{2} \left(-\frac{1}{4} \cdot 2^{4} + \frac{2}{3} \cdot 2^{3} - 0 \right) = \frac{2}{3}.$$

(Lásd még a 2.8.b) feladat megoldását is.)

f) H képlete: $H=\{(x,y): x^2+y^2\leq 1,\ 0\leq x,\ 0\leq y\},$ ezért "Függőlegesen" integrálva:

$$\iint_{H} f = \int_{0}^{1} \left(\int_{y=0}^{y=\sqrt{1-x^{2}}} y \, dy \right) dx = \int_{0}^{1} \left[\frac{1}{2} y^{2} \right]_{y=0}^{y=\sqrt{1-x^{2}}} dx = \frac{1}{2} \int_{0}^{1} 1 - x^{2} \, dx = \frac{1}{2} \left[x - \frac{1}{3} x^{3} \right]_{0}^{1} = \frac{1}{2} \left(1 - \frac{1}{3} \right) = \frac{1}{3},$$

"Vízszintesen" integrálva:

$$\iint_{H} f = \int_{0}^{1} \left(\int_{x=0}^{x=\sqrt{1-y^{2}}} y \, dx \right) dy = \int_{0}^{1} y \sqrt{1-y^{2}} \, dy = \frac{-1}{2} \int_{0}^{1} -2y \left(1-y^{2}\right)^{1/2} \, dy = \frac{1}{2} \cdot \frac{2}{3} \left[\left(1-y^{2}\right)^{3/2} \right]_{0}^{1} = \frac{-1}{2} \cdot \frac{2}{3} (0-1) = \frac{1}{3}.$$

(Lásd még a 2.8.a) feladat megoldását is)

2.5. a) $H=\{(x,y):1\leq y\leq 4x-x^2,\ 1\leq x\leq 3\}$, tehát H-t az $y=4x-x^2$ parabola és az $x=1,\,x=3$ és y=1 egyenesek határolják.

 $b) \ H = \left\{ (x,y) : \tfrac{1}{2} \leq x \leq \sqrt{1-y^2}, \ \tfrac{-\sqrt{3}}{2} \leq y \leq \tfrac{\sqrt{3}}{2} \right\}, \ \text{tehát H-t az } \ x^2 + y^2 = 1 \ \text{körnek az } x = \tfrac{1}{2} \ \text{egyenestől jobbra eső szeletének az } y = \tfrac{-\sqrt{3}}{2} \ \text{és } y = \tfrac{\sqrt{3}}{2} \ \text{egyenesek közötti darabja alkotja. Mivel azonban ez utóbbi egyenesek éppen a körszelet "csúcsain" haladnak át, nincs is szerepük H határolásában.}$

Ez azt jelenti, hogy H pontosan az origó középpontú, egyégsugarú körből az $x=\frac{1}{2}$ egyenes által levágott kisebbik körszelet.

c) $H=\{(x,y):y\leq x\leq 1+\sqrt{1-y},\ 0\leq y\leq 2\}$. Mivel azonban 1< y esetén a $\sqrt{1-y}$ kifejezés nem értelmezhető, ezért ilyen y-ok nem adnak tényleges pontokat H-hoz. Így

$$H = \left\{ (x, y) : y \le x \le 1 + \sqrt{1 - y}, \ 0 \le y \le 1 \right\},\,$$

tehát H-t az $y=1-(x-1)^2$ parabola és az y=x (jobbra), y=0 (= x tengely, felfelé) és y=1 egyenes (lefelé) határolják. Az y=1 egyenesre nincs szükség, az előző feladathoz hasonló okok miatt.

2.6. a_1) A feladatban felírt képlet vízszintesen integrál. Ekkor H éppen az A(0,0), B(0,1,5), C(2,25,1,5) és D(3,0) pontok által meghatározott trapéz (készítsen ábrát!), ezért függőleges integráláskor x=2,25-nál ketté kell vágnunk a H tartományt. Mivel az $x=3-\frac{1}{2}y$ egyenes

ekvivalens y = 6 - 2x-el, így

$$\int_{0}^{1,5} \left(\int_{x=0}^{x=3-y/2} f(x,y) \, dx \right) \, dy =$$

$$= \int_{0}^{2,25} \left(\int_{y=0}^{y=1,5} f(x,y) \, dy \right) \, dx + \int_{2,25}^{3} \left(\int_{y=0}^{y=6-2x} f(x,y) \, dy \right) \, dx.$$

 b^*) A feladatban felírt képlet függőlegesen integrál. A H tartományt az x tengely, az $y=x^2$ parabola, az x=4 függőleges és az y=2x-6 (ferde) egyenes határolják (készítsen ábrát!). A két egyenes a (4,2) pontban metszi egymást, ezért vízszintes integráláskor y=2-nél ketté kell vágnunk a H tartományt. Mivel az y=2x-6 egyenlet ekvivalens $x=\frac{y}{2}+6$ -tal, így

$$\iint_{H} f = \int_{0}^{2} \left(\int_{x=\sqrt{y}}^{x=y/2+6} f(x,y) \, dx \right) \, dy + \int_{2}^{16} \left(\int_{x=\sqrt{y}}^{x=4} f(x,y) \, dx \right) \, dy.$$

2.7. a) H tulajdonképpen az O(0,0), A(1,1) és B(1,0) pontok által meghatározott háromszög. A vízszintes és a függőleges lehetőségek:

$$\iint_{H} f = \int_{0}^{1} \left(\int_{y}^{1} e^{x^{2}} dx \right) dy = \int_{0}^{1} \left(\int_{0}^{x} e^{x^{2}} dy \right) dx.$$

Liouville tétele szerint az $\int e^{x^2} dx$ primitív függvény képlettel nem írható fel, ezért csak függőlegesen tudunk integrálni:

$$\int_{H} \int f = \int_{0}^{1} \left(\int_{0}^{x} e^{x^{2}} dy \right) dx = \int_{0}^{1} \left(\left[y e^{x^{2}} \right]_{y=0}^{y=x} \right) dx =
= \int_{0}^{1} \left(x e^{x^{2}} - 0 \right) dx = \frac{1}{2} \int_{0}^{1} 2x e^{x^{2}} dx = \frac{1}{2} \left[e^{x^{2}} \right]_{0}^{1} = \frac{e}{2} \approx 1,3591.$$

Transzformációk

2.8. a) Az $\{x = r \cdot \cos(\varphi) + u_0, y = r \cdot \sin(\varphi) + v_0\}$ helyettesítésnél $(u_0, v_0) = (0, 0)$ a kör középpontja, $0 \le r \le 1$ és $0 \le \varphi \le \pi/2$, tehát

$$\iint_{H} f = \iint_{H} y \, dx dy = \int_{0}^{\pi/2} \left(\int_{0}^{1} r \cdot \sin(\varphi) \cdot r \, dr \right) \, d\varphi = \int_{0}^{\pi/2} \sin(\varphi) \cdot \left(\int_{0}^{1} r^{2} \, dr \right) \, d\varphi =$$

$$= \int_{0}^{\pi/2} \sin(\varphi) \cdot \left[\frac{1}{3} r^{3} \right]_{0}^{1} \, d\varphi = \frac{1}{3} \int_{0}^{\pi/2} \sin(\varphi) \, d\varphi = \frac{1}{3} \left[-\cos(\varphi) \right]_{0}^{\pi/2} = \frac{1}{3}.$$

b) Használjuk az $\{x=r\cdot\cos(\varphi)+u_0,y=r\cdot\sin(\varphi)+v_0\}$ helyettesítést: $(u_0,v_0)=(1,0),\ 0\leq r\leq 1$ és $0\leq \varphi\leq \pi$, tehát

$$\iint_{H} f = \iint_{H} yx \, dx \, dy = \iint_{0}^{\pi} \left(\iint_{0}^{1} r \sin(\varphi) \left(r \cos(\varphi) + 1 \right) r \, dr \right) \, d\varphi =
= \iint_{0}^{\pi} \left(\iint_{0}^{1} r^{3} \sin(\varphi) \cos(\varphi) + r^{2} \sin(\varphi) \, dr \right) \, d\varphi =
= \iint_{0}^{\pi} \left(\sin(\varphi) \cos(\varphi) \left[\frac{1}{4} r^{4} \right]_{0}^{1} + \sin(\varphi) \left[\frac{1}{3} r^{3} \right]_{0}^{1} \right) \, d\varphi =
= \frac{1}{4} \iint_{0}^{\pi} \frac{1}{2} \sin(2\varphi) \, d\varphi + \frac{1}{3} \iint_{0}^{\pi} \sin(\varphi) \, d\varphi =
= \frac{1}{4} \cdot \frac{1}{2} \left[\frac{1}{2} \left(-\cos(2\varphi) \right) \right]_{0}^{\pi} + \frac{1}{3} \left[(-\cos(\varphi)) \right]_{0}^{\pi} = \frac{1}{16} \cdot 0 + \frac{1}{3} (1+1) = \frac{2}{3}.$$

(Lásd még a 2.4.e) feladat megoldását is.)

2.9. *a*) A paralelogrammát az $\overrightarrow{u}=(3,1)$ és $\overrightarrow{v}=(2,3)$ vektorok feszítik ki (ell: $B+\overrightarrow{v}=D+\overrightarrow{u}=C$), tehát alkalmazzuk az $\{x=3k+2\ell,y=k+3\ell\}$ helyettesítést:

$$\int_{H} \int f = \int_{0}^{1} \int_{0}^{1} \left((3k + 2\ell)^{2} - (k + 3\ell)^{2} \right) (3 \cdot 3 - 1 \cdot 2) \, dk \, d\ell =$$

$$= \int_{0}^{1} \int_{0}^{1} (8k^{2} + 6k\ell - 5\ell^{2}) \cdot 7 \, dk \, d\ell = 7 \int_{0}^{1} \left(\int_{0}^{1} (8k^{2} + 6k\ell - 5\ell^{2}) \, dk \right) \, d\ell =$$

$$= 7 \int_{0}^{1} \left(\left[\frac{8}{3}k^{3} + \frac{6}{2}k^{2}\ell - 5\ell^{2}k \right]_{k=0}^{k=1} \right) \, d\ell = 7 \int_{0}^{1} \left(\frac{8}{3} + \frac{6}{2}\ell - 5\ell^{2} - 0 \right) \, d\ell =$$

$$= 7 \left[\frac{8}{3}\ell + \frac{3}{2}\ell^{2} - \frac{5}{3}\ell^{3} \right]_{0}^{1} = 7 \left(\frac{8}{3} + \frac{3}{2} - \frac{5}{3} - 0 \right) = \frac{35}{2}.$$

2.10.*a*) Az Útmutatás alapján $\left\{x=\sqrt{\frac{k}{\ell}},y=\sqrt{k\ell}\right\}$, $\det(J)=\frac{1}{2\ell}$ és $1\leq k\leq 4$, $1\leq \ell\leq 2$. Ezek alapján

$$\int_{H} y/x \, dx \, dy = \int_{1}^{2} \left(\int_{1}^{4} \sqrt{k\ell} / \sqrt{\frac{k}{\ell}} \cdot \frac{1}{2\ell} \, dk \right) \, d\ell = \int_{1}^{2} \left(\int_{1}^{4} \frac{\ell}{2\ell} \, dk \right) \, d\ell =
= \int_{1}^{2} \left(\int_{1}^{4} \frac{1}{2} \, dk \right) \, d\ell = \int_{1}^{2} \left[\frac{1}{2} k \right]_{k=1}^{k=4} \, d\ell = \int_{1}^{2} \frac{3}{2} \, d\ell = \left[\frac{3}{2} \ell \right]_{1}^{2} = \frac{3}{2}.$$

b) Az Útmutató szerint
$$x=k^{1/3}\ell^{-1/3},\ y=k^{2/3}\ell^{1/3},\ k_1=1,\ k_2=4,\ \ell_1=\frac{1}{2},\ \ell_2=2,$$
 $\det(J)=\frac{2}{9}\ell^{-1}+\frac{1}{9}\ell^{-5/3},$ így

$$\int_{H} 1 \, dx \, dy = \int_{\ell_{1}}^{\ell_{2}} \int_{k_{1}}^{k_{2}} \left(\frac{2}{9} \ell^{-1} + \frac{1}{9} \ell^{-5/3} \right) \, dk \, d\ell = 3 \left[\frac{2}{9} \ln(\ell) - \frac{1}{6} \ell^{-2/3} \right]_{\ell=1/2}^{\ell=2} =
= \frac{4}{3} \ln 2 - \frac{1}{2} 2^{-2/3} + \frac{1}{2} 2^{2/3} \approx 1,4029.$$

c)
$$x = k^{2/3}\ell^{-2/3}, \ y = k^{1/3}\ell^{2/3}, \ k_1 = 1, \ k_2 = 3, \ \ell_1 = \frac{1}{2}, \ \ell_2 = 5, \det(J) = \frac{2}{3}\ell^{-1},$$
így

$$\int_{H} (2x+3y) \, dx \, dy = \int_{1/2}^{5} \int_{1}^{3} \left(2k^{2/3}\ell^{-2/3} + 3k^{1/3}\ell^{2/3}\right) \frac{2}{3}\ell^{-1} \, dk \, d\ell =
= \int_{1/2}^{5} \left[\left(\frac{6}{5}k^{5/3}\ell^{-2/3} + \frac{9}{4}k^{4/3}\ell^{2/3}\right) \cdot \frac{2}{3}\ell^{-1} \right]_{k=1}^{k=3} \, d\ell =
= \int_{1/2}^{5} \left(\frac{9}{2}\frac{\sqrt[3]{3}}{\sqrt[3]{\ell}} + \frac{12}{5}\frac{3^{\frac{2}{3}}}{\ell^{\frac{5}{3}}} - \frac{3}{2\sqrt[3]{\ell}} - \frac{4}{5\ell^{\frac{5}{3}}}\right) \, d\ell \approx 25,0029.$$

Többváltozós integrálok

2.11. *a*)

$$\begin{split} \int_{-3}^{9} \int_{2}^{5} \int_{-1}^{4} \left(x + 3y^{5} + xz^{2} \right) \, dx dy dz &= \int_{-3}^{9} \int_{2}^{5} \left[\frac{1}{2} x^{2} + 3y^{5} x + \frac{1}{2} x^{2} z^{2} \right]_{x=-1}^{x=4} \, dy dz = \\ &= \int_{-3}^{9} \int_{2}^{5} \left(\frac{1}{2} \cdot (4^{2} - 1) + 3y^{5} (4 + 1) + \frac{1}{2} z^{2} (4^{2} - 1) \right) \, dy dz = \\ &= \int_{-3}^{9} \left[\frac{15}{2} y + \frac{15}{6} y^{6} + \frac{15}{2} z^{2} y \right]_{y=2}^{y=5} \, dz = \\ &= \int_{-3}^{9} \left(\frac{45}{2} + \frac{15}{6} (5^{6} - 2^{6}) + \frac{45}{2} z^{2} \right) \, dz = \left[\frac{45}{2} z + \frac{15}{6} (5^{6} - 2^{6}) z + \frac{45}{2 \cdot 3} z^{3} \right]_{z=-3}^{z=9} = \\ &= \left(\frac{45}{2} (9 + 3) + \frac{15}{6} (5^{6} - 2^{6}) (9 + 3) + \frac{45}{6} (9^{3} + 3^{3}) \right) = 472770. \end{split}$$

$$\int_{1}^{2} \int_{2-x}^{2+3x} \int_{x-7y}^{x+y} (x^{2} - 3y^{3} + xz) dz dy dx = \int_{1}^{2} \int_{2-x}^{2+3x} \left[x^{2}z - 3y^{3}z + \frac{1}{2}xz^{2} \right]_{z=x-7y}^{z=x+y} dy dx =$$

$$= \int_{1}^{2} \int_{2-x}^{2+3x} \left((x^{2} - 3y^{3})(y + 7y) + \frac{1}{2}x \left((x + y)^{2} - (x - 7y)^{2} \right) \right) dy dx =$$

$$= \int_{1}^{2} \left[8x^{2}y - 24y^{4} + 8x^{2}y - 24xy^{2} \right) dy dx =$$

$$= \int_{1}^{2} \left[8x^{2}y^{2} - \frac{24}{5}y^{5} - 8xy^{3} \right]_{y-2-x}^{y=2+3x} dx =$$

$$= \int_{1}^{2} \left((2 + 3x)^{2} - (2 - x)^{2} \right) -$$

$$- \frac{24}{5} \left((2 + 3x)^{5} - (2 - x)^{5} \right) - 8x \left((2 + 3x)^{3} - (2 - x)^{3} \right) \right) dx =$$

$$= \int_{1}^{2} \left(\frac{-5856}{5}x^{5} - 4000x^{4} - 5632x^{3} - 3456x^{2} - 1536x \right) dx =$$

$$= \left[\frac{-976}{5}x^{6} - 800x^{5} - 1408x^{4} - 1152x^{3} - 768x^{2} \right]_{x=1}^{x=2} =$$

$$= \frac{-342928}{5} = -68585,6.$$
c)
$$\int_{0}^{a} \int_{0}^{b\sqrt{1-\frac{x^{2}}{a^{2}}}} \left(\int_{c\sqrt{\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}}}}^{c} \sqrt{x} dz \right) dy dx = \int_{0}^{a} \int_{0}^{b\sqrt{1-\frac{x^{2}}{a^{2}}}} \left[\frac{yz^{2}}{2\sqrt{x}} \right]_{z=c\sqrt{\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}}}}^{z=c} dy dx =$$

$$= \int_{0}^{a} \int_{0}^{b\sqrt{1-\frac{x^{2}}{a^{2}}}} \sqrt{x} dz \left(1 - \left(\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} \right) \right) dy dx =$$

$$= \int_{0}^{a} \left[\frac{y^{2}c^{2}}{4\sqrt{x}} \left(1 - \frac{x^{2}}{a^{2}} \right) - \frac{y^{3}c^{2}}{2b^{2}\sqrt{x}} dy \right) dx =$$

$$= \int_{0}^{a} \left[\frac{y^{2}c^{2}}{4\sqrt{x}} \left(1 - \frac{x^{2}}{a^{2}} \right) - \frac{y^{4}c^{2}}{2b^{2}\sqrt{x}} \right]_{y=0}^{y=b\sqrt{1-\frac{x^{2}}{a^{2}}}} dx =$$

$$\begin{split} &= \int\limits_0^a \frac{c^2 b^2}{4 \sqrt{x}} \left(1 - \frac{x^2}{a^2}\right)^2 - \frac{b^4 c^2}{8 b^2 \sqrt{x}} \left(1 - \frac{x^2}{a^2}\right)^2 \, dx = \\ &= \frac{c^2 b^2}{8} \int\limits_0^a \frac{1}{\sqrt{x}} \left(1 - \frac{x^2}{a^2}\right)^2 \, dx = \frac{c^2 b^2}{8} \int\limits_0^a \frac{1}{\sqrt{x}} - \frac{2}{a^2} x^{\frac{3}{2}} + \frac{1}{a^4} x^{\frac{7}{2}} \, dx = \\ &= \frac{c^2 b^2}{8} \left[2 \sqrt{x} - \frac{4}{5a^2} x^{\frac{5}{2}} + \frac{2}{9a^4} x^{\frac{9}{2}} \right]_{x=0}^{x=a} = \\ &= \frac{c^2 b^2}{8} \left(2 \sqrt{a} - \frac{4}{5a^2} a^{\frac{5}{2}} + \frac{2}{9a^4} a^{\frac{9}{2}} \right) = \frac{8}{45} \sqrt{a} b^2 c^2. \end{split}$$

M3. Többváltozós integrálok alkalmazásai

3.1. *a*) A 2.10.*a*) feladat transzformációját alkalmazva:

$$T_H = \int_H \int 1 \, dx dy = \int_1^2 \left(\int_1^4 \frac{1}{2\ell} \, dk \right) \, d\ell \approx \frac{3}{2} \ln(2) = 1,0397.$$

b) A 2.10.b) feladatban már kiszámoltuk:

$$T_H = \frac{4}{3} \ln 2 - \frac{1}{2} 2^{-2/3} + \frac{1}{2} 2^{2/3} \approx 1,4029.$$

3.2. A felület az [x,y] síkot az $1-x^2-2y^2=0$ egyenletű ellipszisben metszi, tehát a térfogat $V=\int\limits_H\int f$ ahol $H=\{(x,y)\in\mathbb{R}^2:x^2+2y^2\leq 1\}.$

Polártranszformációt alkalmazva

$$V = \int_{0}^{2\pi} \int_{0}^{1} \left(1 - r^2 \cos^2 \varphi - r^2 \sin^2 \varphi \right) \frac{r}{\sqrt{2}} dr d\varphi = \frac{\sqrt{2}\pi}{4} \approx 1{,}1107.$$

3.3. A két henger forgástengelyei az x és y koordinátatengelyek. Felülről nézve a két henger metszésvonalai az y=x és y=-x egyenesek. A közös rész egyik nyolcada pl. a (0,0), (r,0) és (r,r) pontok által határolt háromszög alatt és felett van, határfelülete az $x^2+z^2=r^2$ henger, azaz a $z=\pm\sqrt{r^2-x^2}$ függvény. Tehát a térfogat

$$V = 16 \int_{0}^{r} \int_{0}^{x} \sqrt{r^2 - x^2} \, dy dx = 16 \int_{0}^{r} x \sqrt{r^2 - x^2} \, dx = \frac{16}{3} r^3.$$

Megjegyzés: A térfogat kiszámítására *Bláthy Ottó* rövid, szemléletes megoldást adott: "A közös test elöl- és oldalnézete kör, felülnézete és minden vízszintes metszete pedig a megfelelő kör köré írt négyzet. Tehát a közös test köbtartalma úgy viszonylik a gömbéhez, mint a négyzet területe a beírt köréhez, vagyis arányuk $4:\pi$. Tehát a közös test köbtartalma $\frac{4}{\pi}\cdot\frac{4}{3}r^3\pi=\frac{16}{3}r^3$."

3.4. A testet felülről határoló gömb egyenlete $x^2+y^2+z^2=R^2$ azaz $z=\sqrt{R^2-x^2-y^2}$, az $\int \int$ tartománya a henger és az [x,y] sík metszete:

$$T = \{(x, y) : (x - 1)^2 + y^2 \le \rho^2\}$$

egy origót érintő kör, így a térfogat $V=2\int_T \sqrt{R^2-x^2-y^2}\,dydx$. Az $x=r\cos\varphi$, $y=r\sin\varphi$ polártranszformáció után $T=\left\{(r,\varphi): \frac{-\pi}{2}\leq\varphi\leq\frac{\pi}{2},\ 0\leq r\leq R\cos\varphi\right\}$ és

$$V = 2 \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \int_{0}^{R\cos\varphi} r\sqrt{R^2 - r^2} \, dr d\varphi = 2 \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{-1}{2} \left[\frac{2}{3} \left(R^2 - r^2 \right)^{\frac{3}{2}} \right]_{r=0}^{r=R\cos\varphi} d\varphi =$$

$$= \frac{-2}{3} R^3 \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left[\left(1 - \cos^2\varphi \right)^{\frac{3}{2}} - 1 \right] \, d\varphi = \frac{-4}{3} R^3 \int_{0}^{\frac{\pi}{2}} (\sin^3\varphi - 1) \, d\varphi =$$

$$= \frac{-4}{3} R^3 \int_{0}^{\frac{\pi}{2}} \left(\sin\varphi (1 - \cos^2\varphi) - 1 \right) \, d\varphi = \frac{4}{3} R^3 \left[\cos\varphi - \frac{1}{3}\cos^3\varphi + \varphi \right]_{0}^{\pi/2} =$$

$$= \frac{4}{3} R^3 \left(\frac{\pi}{2} - \frac{2}{3} \right) \approx 1,2055 R^3.$$

3.5. $\frac{\partial}{\partial x}f=y$ és $\frac{\partial}{\partial y}f=x$, tehát $A=\int\limits_H\int\sqrt{1+x^2+y^2}$. Polártranszformáció után

$$A = \int_{0}^{2\pi} \int_{0}^{R} r \sqrt{1 + (r\cos\varphi)^2 + (r\sin\varphi)^2} \, dr d\varphi = \int_{0}^{2\pi} \int_{0}^{R} r \sqrt{1 + r^2} \, dr d\varphi =$$

$$= \frac{2\pi}{3} \left[(r^2 + 1)^{\frac{3}{2}} \right]_{0}^{R} = \frac{2\pi}{3} \left((R^2 + 1)^{\frac{3}{2}} - 1 \right).$$

3.6. $\frac{\partial}{\partial x}f = -2x$, $\frac{\partial}{\partial y}f = -2y$ így a felszín

$$A = \int_{x^2 + y^2 \le 1} \int \sqrt{1 + 4x^2 + 4y^2} \, dxy = \frac{\pi}{6} \left(\sqrt{125} - 1 \right)$$

(polárkoordinátás helyettesítés után).

3.7. *a*) A nevező

$$T = \int_{0}^{4} \int_{0}^{\sqrt{x}} 1 \, dy dx = \int_{0}^{4} \sqrt{x} \, dx = \frac{2}{3} \left[x^{\frac{3}{2}} \right]_{x=0}^{x=4} = \frac{16}{3},$$

$$\begin{split} x_s \text{ számlálója} & \int\limits_0^4 \int\limits_0^{\sqrt{x}} x \, dy dx = \int\limits_0^4 x^{\frac{3}{2}} \, dx = \frac{2}{5} \left[x^{\frac{5}{2}} \right]_{x=0}^{x=4} = \frac{64}{5}, \\ y_s \text{ számlálója} & \int\limits_0^4 \int\limits_0^{\sqrt{x}} y \, dy dx = \int\limits_0^4 \frac{1}{2} x \, dx = \frac{1}{4} \left[x^2 \right]_{x=0}^{x=4} = 4, \\ \text{tehát } x_s & = \frac{64}{5} / \frac{16}{3} = \frac{12}{5}, y_s = 4 / \frac{16}{3} = \frac{3}{4}, S = \left(\frac{12}{5}, \frac{3}{4} \right). \end{split}$$

b) Mivel a félkör szimmetrikus az y tengelyre ezért $x_s=0$. A lemez homogenitása miatt $\rho(x,y)=1$ és a nevező éppen a félkör területe $=R^2\pi/2$.

A számláló pedig = $\int\limits_H \int y\,dxy = \int\limits_{-R}^R \int\limits_0^{\sqrt{R^2-x^2}} y\,dydx = \frac{2}{3}R^3$, tehát $y_s = \frac{2}{3}R^3/\frac{R^2\pi}{2} = \frac{4R}{3\pi}$, és így a súlypont $S(x_s,y_s) = \left(0,\frac{4R}{3\pi}\right)$.

c) Az $~x=r\cos^3\varphi,~y=r\sin^3\varphi,~\det(J)=3r\cos^2\varphi\sin^2\varphi~$ transzformáció után a nevező

$$= \int_{H} \int 1 \, dxy = \int_{0}^{\pi/2} \int_{0}^{R} 3r \cos^{2} \varphi \sin^{2} \varphi \, dr d\varphi = \frac{3R^{2}}{2} \int_{0}^{\pi/2} \left(\frac{1}{2} \sin(2\varphi)\right)^{2} d\varphi =$$

$$= \frac{3R^{2}}{2} \cdot \frac{1}{4} \int_{0}^{\pi/2} \frac{1 - \cos(4\varphi)}{2} \, d\varphi = \frac{3R^{2}}{16} \left[\varphi - \frac{1}{4} \sin(4\varphi)\right]_{\varphi=0}^{\varphi=\pi/2} =$$

$$= \frac{3R^{2}}{16} \left(\frac{\pi}{2} - 0\right) = \frac{3\pi}{32} R^{2};$$

mindkét számláló

$$= \int_{H} \int x \, dxy = \int_{0}^{\pi/2} \int_{0}^{R} 3r^{2} \cos^{5} \varphi \sin^{2} \varphi \, dr d\varphi =$$

$$= R^{3} \int_{0}^{\pi/2} \cos(\varphi) \cdot \left(1 - \sin^{2}(\varphi)\right)^{2} \cdot \sin^{2}(\varphi) \, d\varphi =$$

$$= R^{3} \int_{0}^{\pi/2} \cos(\varphi) \cdot \left(\sin^{6} \varphi - 2\sin^{4} \varphi + \sin^{2} \varphi\right) d\varphi =$$

$$= R^{3} \left[\frac{1}{7} \sin^{7} \varphi - \frac{2}{5} \sin^{5} \varphi + \frac{1}{3} \sin^{3} \varphi\right]_{\varphi=0}^{\varphi=\pi/2} =$$

$$= R^{3} \left(\frac{1}{7} - \frac{2}{5} + \frac{1}{3}\right) = \frac{8}{105} R^{3}$$

hiszen H szimmetrikus az y=x egyenesre.

Így a súlypontra
$$x_s=y_s=\frac{8}{105}R^3/\frac{3\pi}{32}R^2=\frac{256}{315\pi}R$$
 azaz $S=\left(\frac{256}{315\pi}R,\frac{256}{315\pi}R\right)$.

3.8. a) A test szimmetrikus az y=x egyenesre, vagyis $x_s=y_s$. Ha csak a súlypont vetületére vagyunk kíváncsiak, akkor a test tekinthető egy [x,y] síkban fekvő négyzetlemeznek, melynek (x,y) pontjában sűrűsége $\rho(x,y)=f(x,y)=x+y$.

Ekkor a számlálók =
$$\int_0^1 \int_0^1 x(x+y) \, dyx = \frac{7}{12}$$
, a nevező = $\int_0^1 \int_0^1 x + y \, dyx = 1$ (= a megmaradt test térfogata), tehát a súlypont vetülete $\overline{S} = \left(\frac{7}{12}, \frac{7}{12}\right)$.

b) A térbeli súlypont z koordinátájának meghatározásához hármas integrál kell (most $\rho(x,y,z)=1$).

$$\begin{split} z_s & \operatorname{sz\'{a}ml\'{a}l\'{o}ja} = \int \int \int \int z \, dx y z = \int \int \int \int \int \int \int z \, dz \, dx dy = \\ & = \int \int \int \int \frac{1}{2} (x+y)^2 \, dx dy = \frac{1}{2} \int \int \int \int (x^2 + 2xy + y^2) \, dx dy = \\ & = \frac{1}{2} \int \int \left[\frac{1}{3} x^3 + x^2 y + x y^2 \right]_{x=0}^{x=1} \, dy = \frac{1}{2} \int \int \left(\frac{1}{3} + y + y^2 \right) \, dy = \\ & = \frac{1}{2} \left[\frac{1}{3} y + \frac{1}{2} y^2 + \frac{1}{3} y^3 \right]_{y=0}^{y=1} = \frac{1}{2} \left(\frac{1}{3} + \frac{1}{2} + \frac{1}{3} \right) = \frac{7}{12}, \end{split}$$

míg
$$z_s$$
 nevezője = $\int\int\limits_K\int 1\,dxyz=V_K=1$ (= K térfogata).

Tehát a súlypont
$$S = \left(\frac{7}{12}, \frac{7}{12}, \frac{7}{12}\right)$$
.

3.9. A közös nevező

$$m = V = \int \int_{K} \int 1 \, dxyz = \int_{0}^{a} \int_{0}^{b} \int_{0}^{\sqrt{xy}} 1 \, dzdydx = \int_{0}^{a} \int_{0}^{b} \sqrt{xy} \, dydx = \frac{4}{9} a^{\frac{3}{2}} b^{\frac{3}{2}},$$

$$x_{s} \text{ számlálója} = \int \int \int x \, dx y z = \int \int \int \int \int \int x \, dz \, dy dx = \int \int \int \int \int x^{\frac{3}{2}} y^{\frac{1}{2}} \, dy dx = \frac{4}{15} a^{\frac{5}{2}} b^{\frac{3}{2}},$$

$$y_{s} \text{ számlálója} = \int \int \int \int y \, dx y z = \int \int \int \int \int \int y \, dz \, dy dx = \int \int \int \int \int \int x^{\frac{1}{2}} y^{\frac{3}{2}} \, dy dx = \frac{4}{15} a^{\frac{3}{2}} b^{\frac{5}{2}},$$

$$z_s \operatorname{számlálója} = \int \int \int z \, dx y z = \int \int \int \int \int z \, dz \, dy dx = \frac{1}{2} \int \int \int \int \int x y \, dy dx = \frac{1}{8} a^2 b^2,$$
 tehát $S = \left(\frac{3}{5}a, \, \frac{3}{5}b, \, \frac{9}{32}\sqrt{ab}\right).$

3.10. $\rho(x,y)=\frac{m}{R^2\pi}$ állandó, így az integrál elé kiemelhető:

$$\Theta_z = \frac{m}{R^2 \pi} \int_{x^2 + y^2 < R^2} \left(x^2 + y^2 \right) dxy = \frac{m}{R^2 \pi} \cdot \frac{2\pi R^4}{4} = \frac{1}{2} R^2 m$$

(polárkoordinátás helyettesítést alkalmazva).

3.11. $H = \{(x, y) : 0 \le x \le a, \ 0 \le y \le b\}$ választással

$$\Theta_x = \rho \int \int_H y^2 \, dx y = \frac{\rho}{3} a b^3 = \frac{1}{3} m b^2$$

és

$$\Theta_y = \rho \int \int_H \int x^2 \, dx y = \frac{1}{3} ma^2$$

ahol $m = \rho ab$ a test tömege.

Megjegyzés: A feladat és végeredménye egy b illetve a hosszúságú, m tömegű rúd végpontjára vonatkozó tehetetlenségi nyomatékának is tekinthető.

3.12.
$$\Theta_{(0,0)} = \Theta_x + \Theta_y = 1 \cdot \int_H \int (x^2 + y^2) \, dxy = \int_0^1 \int_{x^2}^x (x^2 + y^2) \, dy dx = \int_0^1 \left[x^2 y + \frac{1}{3} y^3 \right]_{y=x^2}^{y=x} \, dx = \int_0^1 \left(x^3 + \frac{1}{3} x^3 - x^4 - \frac{1}{3} x^6 \right) \, dx = \frac{3}{35}.$$

3.13. Legyen a kocka középpontja az origó, a vonatkoztatási egyenes a x tengely. Ekkor

$$\Theta_x = \rho \cdot \int_{-a/2}^{a/2} \int_{-a/2}^{a/2} \int_{-a/2}^{a/2} (y^2 + z^2) dxyz = \rho a \int_{-a/2}^{a/2} \int_{-a/2}^{a/2} (y^2 + z^2) dydz =$$

$$= \rho a \int_{-a/2}^{a/2} \left[\frac{1}{3} y^3 + z^2 y \right]_{y=-a/2}^{y=a/2} dz = \rho a \int_{-a/2}^{a/2} \left(\frac{1}{12} a^3 + z^2 a \right) dz =$$

$$= \rho a \left[\frac{1}{12} a^3 z + \frac{1}{3} z^3 a \right]_{z=-a/2}^{z=a/2} = \rho a \left[\frac{1}{12} a^4 + \frac{1}{12} a^4 \right] = \frac{1}{6} \rho a^5 = \frac{1}{6} m a^2$$

hiszen $m = \rho a^3$.

M4. Közönséges differenciálegyenletek alapjai

4.0. a)
$$y' = x^2 - y^2 \implies x \in \mathbb{R}, y \in \mathbb{R},$$

$$y' = 2\sqrt{y} \implies x \in \mathbb{R}, \ y \ge 0,$$

$$y' = \frac{x \cdot y}{x^2 - 1} \implies x > 1 \text{ vagy } x < 1, \text{ mindk\'et esetben } y \in \mathbb{R},$$

$$y' = \frac{x}{2y} + \frac{y}{2x} \implies (x > 0 \text{ vagy } x < 0)$$
 és $(y > 0 \text{ vagy } y < 0) = \text{valamelyik fiknegyed.}$

b)
$$x \cdot y' + 2y = 3x$$
 \implies $y' = 3 - 2\frac{y}{x}$ \implies $x > 0$ vagy $x < 0$, mindkét esetben $y \in \mathbb{R}$,

$$x-\frac{y^2}{x^3}+\frac{y}{x^2}\cdot y'=0 \implies y'=\frac{x^2}{y}\cdot \left(\frac{y^2}{x^3}-x\right)=\frac{y^2-x^4}{xy} \implies (x>0 \text{ vagy } x<0) \text{ és } (y>0 \text{ vagy } y<0)=\text{ valamelyik (nyîlt) sîknegyed.}$$

4.1. a) $m = y'(1) = 1^2 - 2^2 = -3$, tehát az érintő egyenlete:

$$y = 2 - 3(x - 1) = 5 - 3x$$
. $y'' = \frac{d}{dx}(x^2 - y^2) = 2x - 2y \cdot y'$,

tehát
$$y''(1) = 2 \cdot 1 - 2 \cdot 2 \cdot (-3) = 14$$
.

b)
$$m = y'(2) = \frac{2^2}{3 \cdot (1+2^3)} = \frac{4}{27}$$
, az érintő:

$$y = 3 + \frac{4}{27}(x - 2) = \frac{4}{27}x + \frac{73}{27},$$
$$y'' = \frac{d}{dx}\frac{x^2}{y \cdot (1 + x^3)} = \frac{x \cdot (2 - x^3)}{y(x^3 + 1)^2},$$
$$y''(2) = \frac{-4}{81}.$$

c)
$$m = y'(-1) = \frac{5}{4}$$
, $y = -2 + \frac{5}{4}(x+1)$, $y'' = \frac{d}{dx}\left(\frac{x}{2y} + \frac{y}{2x}\right) = \frac{x^2 - y^2}{2x^2y}$, $y''(-1) = \frac{3}{4}$.

 d^*) x=y=0 esetén az egyenletből y'(0) nem határozható meg, ezért a K.É.P.-nak nincs megoldása.

4.2. A Feladatgyűjteményhez **mellékelt** IRANYMEZO.EXE *interaktív* **program** segítségével *tetszőleges explicit elsőrendű* differenciálegyenletet beírhatunk, iránymezőket rajzolhatunk és tanulmányozhatunk, a program **Help**-jében például a *c*) **feladat megoldását** láthatjuk.

4.3. a)
$$P_0 = (x_0; y_0) = (3; 2), \ y'(x_0) = 5, \ y = 2 + 5(x - 3),$$

$$x_1 = x_0 + \delta = 3, 1 \implies y_1 = 2 + 5 \cdot \delta = 2, 5,$$

$$P_1 = (x_1; y_1) = (3,1; 2,5), \ y'(x_1) = 3,36, \ y = 2,5 + 3,36(x - 3,1),$$

 $x_2 = x_1 + \delta = 3,2 \implies y_2 = 2,5 + 3,36 \cdot 0,1 = 2,836,$

$$P_2 = (3.2; 2.836), \ y'(x_2) \approx 2.1971, \ x_3 = 3.3,$$

$$y_1 = 2.836 + 2.1971 \cdot 0.1 \approx 3.0557,$$

vagyis a folytatás:

i	x_i	y_i	y_i'
0	3,0	2,0000	5,0000
1	3,1	2,5000	3,3600
2	3,2	2,8360	2,1971
3	3,3	3,0557	1,5526
4	3,4	3,2110	1,2496
5	3,5	3,3359	1,1215
6	3,6	3,4481	1,0707
7	3,7	3,5552	1,0509
8	3,8	3,6602	1,0426
9	3,9	3,7645	1,0385
10	4,0	3,8684	1,0358

b), c) hasonlóan:

i	x_i	y_i	y_i'
0	1,0	2,0000	2,8284
1	1,1	2,2828	3,0218
2	1,2	2,5850	3,2156
3	1,3	2,9066	3,4097
4	1,4	3,2476	3,6042
5	1,5	3,6080	3,7989
6	1,6	3,9878	3,9939
7	1,7	4,3873	4,1892
8	1,8	4,8062	4,3846
9	1,9	5,2446	4,5802
10	2,0	5,7027	4,7761

i	x_i	y_i	y_i'
0	2,0	1,0000	0,6667
1	2,1	1,0667	0,6568
2	2,2y	1,1324	0.6y487
3	2,3y	1,1972	0.6y418
4	2,4y	1.2y614	0,6360
5	2,5	1.3y250	0,6309
6	2,6y	1.3yy881	0,6265
7	2,7y	1,4507	0,6227
8	2,8	1,5130	0,6193
9	2,9	1,5749	0,6163
10	3,0	1,6366	0,6137

A jelen feladatgyűjteményhez **mellékelt** EULERTV.EXE *interaktív* **program** segítségével *tetszőleges explicit elsőrendű* differenciálegyenlet bármely (egyszerre legfeljebb tíz) K.É.P.

pontjából kiinduló megoldását közelíthetjük, álló- és mozgóképeket készíthetünk, a számítások részleteit táblázatba menthetjük. A program Help-jében például a c) feladat egy animált megoldását láthatjuk.

4.4. a)
$$y'(x) = (cx)' = c$$
 és $\frac{y(x)}{x} = \frac{c \cdot x}{x} = c$, tehát valóban $y' = \frac{y}{x}$.

b)
$$y(x) = b\sqrt{1 - x^2}$$
, tehát $y'(x) = \frac{-2bx}{2\sqrt{1 - x^2}}$, míg

$$\frac{x \cdot y(x)}{x^2 - 1} = \frac{x \cdot b\sqrt{1 - x^2}}{x^2 - 1} = \frac{xb}{-\sqrt{1 - x^2}},$$

ami ugyanaz.

c) $y'_1 = 2(x-c)$, $2\sqrt{y_1} = 2|x-c|$ CSAK $x \ge c$ esetén egyenlő!

 $y_2' = 2\sqrt{y_2}$ hiszen y_2 kizárólag $x \ge c$ esetén értelmezett.

M5. Elsőrendű differenciálegyenletek

Szétválasztható változójú egyenletek

5.1. a) $\int \frac{y'(x)}{y^2(x)} dx = \int \frac{1}{y^2} dy = \int \cos(x) dx$, $\frac{-1}{y} = -\sin(x) + C$, az általános megoldás: $y(x) = \frac{1}{\sin(x) + C}$ ($C \in \mathbb{R}$). K.É.P.:

$$y(0) = \frac{1}{\sin(0) + C} = 2 \implies C = \frac{1}{2}.$$
 $Dom(y)$

kikötései: $y \neq 0$, $\sin(x) + C \neq 0$, $x_0 = 0$, így $-\arcsin\left(\frac{1}{2}\right) < x < \pi + \arcsin\left(\frac{1}{2}\right)$, azaz: $-0.523\,60 < x < 3.6652$.

b)
$$\int y'(x) \cdot y(x) dx = \int y dy = \frac{1}{2}y^2(x) = \int \frac{x^2}{1+x^3} dx = \frac{1}{3} \ln|1+x^3| + C$$
, $y(x) = \pm \sqrt{\frac{2}{3} \ln|1+x^3| + C}$, K.É.P.:

$$2 = \sqrt{\frac{2}{3} \ln 2 + C} \implies C = 4 - \frac{2}{3} \ln 2 \approx 3,5379. \quad Dom(y)$$

kikötései: $x \neq -1$ azaz -1 < x, $0 \leq \frac{2}{3} \ln (1 + x^3) + C$ azaz $\sqrt[3]{e^{\frac{-3}{2}C} - 1} \approx -0.9983 \leq x$, vagyis: -1 < x.

c)
$$y'(x) = 1 + x + y^2 + xy^2 = (1+x) \cdot (1+y^2), \ \int \frac{y'(x)}{1+y^2(x)} \, dx = \int \frac{1}{1+y^2} \, dy = \operatorname{arctg}(y) = \int 1 + x \, dx = x + \frac{1}{2}x^2 + C, \ y(x) = \operatorname{tg}\left(x + \frac{1}{2}x^2 + C\right), \ \text{K.\'e.P.}$$
:

$$1 = \operatorname{tg}(0 + C) \quad \Longrightarrow \quad C = \frac{\pi}{4}. \quad Dom(y)$$

kikötései ($x_0 = 0$ és $C = \frac{\pi}{4}$ miatt):

$$\frac{-\pi}{2} < x + \frac{1}{2}x^2 + C < \frac{\pi}{2} \implies -\sqrt{1 + \frac{\pi}{2}} - 1 < x < \sqrt{1 + \frac{\pi}{2}} - 1 \approx$$

$$\approx -2,6034 < x < 0,6034.$$

Visszavezethető típusok

5.2. a)
$$u(x) = y(x) - x$$
, $y'(x) = u'(x) + 1 = u^{2}(x)$,
$$u'(x) = u^{2}(x) - 1,$$
$$\int \frac{u'(x)}{u^{2}(x) - 1} dx = \int \frac{1}{u^{2} - 1} du = \frac{1}{2} \ln \left| \frac{u - 1}{u + 1} \right| = \int 1 dx = x + C,$$
$$\frac{u(x) - 1}{u(x) + 1} = \pm e^{2(x + C)}.$$

A \pm eldöntéséhez használjuk a K.É.P.-t: u(1) = 3 - 1 = 2 és

$$\frac{u(x) - 1}{u(x) + 1} = \frac{2 - 1}{2 + 1} = +e^{2 \cdot (1 + C)}.$$

Így

$$\frac{u(x) - 1}{u(x) + 1} = 1 - \frac{2}{u(x) + 1} = e^{2(x+C)},$$

$$u(x) = \frac{2}{1 - e^{2(x+C)}} - 1,$$

$$y(x) = \frac{2}{1 \pm e^{2(x+C)}} - 1 + x.$$

K.É.P.: $C = \frac{1}{2} \ln \left(\frac{1}{3} \right) - 1 \approx -1{,}5493$ és

$$y(x) = \frac{2}{1 - e^{2(x+C)}} - 1 + x$$
. $Dom(y)$

kikötései: $1-e^{2(x+C)} \neq 0$ azaz $x \neq -C$ és

$$u(x) = y(x) - x = \frac{2}{1 - e^{2(x+C)}} - 1 \neq \pm 1 \iff x \in \mathbb{R},$$

végülis $x < -C \approx 1,5493$

b)
$$u(x) = 2x + 3y$$
, $y'(x) = \frac{1}{3}u'(x) - \frac{2}{3} = u^2(x) + 1$,
$$u'(x) = 3u^2(x) + 5$$
,
$$\int \frac{u'(x)}{3u^2(x) + 5} dx = \int \frac{1}{3u^2 + 5} du = \frac{1}{\sqrt{15}} \left(\operatorname{arctg} \left(\frac{\sqrt{15}}{5} u(x) \right) - \frac{\pi}{2} \right) = \int 1 dx = x + C$$
,

$$u(x) = \frac{5}{\sqrt{15}} \operatorname{tg} \left(\sqrt{15}(x+C) + \frac{\pi}{2} \right),$$

$$y(x) = \frac{5}{3\sqrt{15}} \operatorname{tg} \left(\sqrt{15}(x+C) + \frac{\pi}{2} \right) - \frac{2}{3}x.$$

K.É.P.

$$y(0) = \frac{5}{3\sqrt{15}} \operatorname{tg}\left(\sqrt{15}C + \frac{\pi}{2}\right) = -1 \quad \Longrightarrow \quad C = \frac{1}{\sqrt{15}} \left(\operatorname{arctg}\left(-3\sqrt{15}/5\right) - \frac{\pi}{2}\right) \approx -0,7062. \quad Dom(y)$$

kikötései:

$$\frac{-\pi}{2} < \sqrt{15}(x+C) + \frac{\pi}{2} < \frac{\pi}{2}$$

 $(x_0 = 0 \text{ miatt}), \ \frac{-\pi}{\sqrt{15}} - C < x < -C \text{ vagyis} \approx -0.1049 < x < 0.7062.$

c)
$$u(x) = x + y$$
, $y'(x) = u'(x) - 1 = \cos(u(x))$,

$$\int \frac{u'(x)}{\cos(u(x)) + 1} dx = \int \frac{1}{\cos(u) + 1} du = \frac{\sin u}{\cos u + 1} = \int 1 dx = x + C,$$

$$\frac{\sin(u)}{\cos(u) + 1} = \operatorname{tg}\left(\frac{u}{2}\right) = x + C,$$

$$u(x) = 2 \operatorname{arctg}(C + x),$$

$$y(x) = 2 \operatorname{arctg}(C + x) - x.$$

K.É.P.:

$$y(0) = 2 \arctan(C) = \frac{\pi}{2} \quad \Longrightarrow \quad C = 1. \quad Dom(y)$$

kikötései: $\cos(u) + 1 = \cos(2\arctan(1+x)) + 1 \neq 0$ azaz $x \in \mathbb{R}$.

5.3. a) Az $u(x) := \frac{y}{x}$ helyettesítés után kapjuk: $u(x) + x \cdot u'(x) = u^2(x) + u(x)$,

$$u'(x) = \frac{1}{x} \cdot u^{2}(x),$$

$$\int \frac{u'(x)}{u^{2}(x)} dx = \int u^{-2} du = \frac{-1}{u(x)} = \int \frac{1}{x} dx = \ln(x) + C$$

(mert $x_0 > 0$),

$$u(x) = \frac{-1}{\ln(x) + C},$$
$$y(x) = \frac{-x}{\ln(x) + C}.$$

K.É.P.:

$$y(1) = \frac{-1}{\ln(1) + C} = 3 \implies C = \frac{-1}{3}.$$
 $Dom(y)$

kikötései: $x \neq 0$,

$$u(x) = \frac{-1}{\ln(x) + C} \neq 0,$$

$$\ln(x) + C = \ln(x) - \frac{1}{3} \neq 0$$

azaz

$$x \neq e^{\frac{1}{3}} \approx 1,3956.$$

Tehát $x_0 = 1$ miatt $1 < x < e^{\frac{1}{3}}$.

b)
$$u(x) := \frac{y}{x}$$
,

$$y'(x) = u(x) + x \cdot u'(x) = \frac{1}{2u(x)} + \frac{u(x)}{2},$$

$$u'(x) = \frac{1}{x} \left(\frac{1}{2u(x)} - \frac{u(x)}{2} \right) = \frac{1}{x} \cdot \frac{1 - u^2(x)}{2u(x)},$$

$$\int \frac{2u(x)}{1 - u^2(x)} u'(x) \, dx = \int \frac{2u}{1 - u^2} \, du = -\ln|1 - u^2(x)| = \int \frac{1}{x} \, dx = \ln(-x) + C$$

(mert $x_0 < 0$),

$$\frac{1}{1 - u^2(x)} = \pm \left(-x \cdot e^C\right),$$
$$1 - u^2(x) = \frac{\pm 1}{x \cdot e^C}.$$

 $A \pm$ eldöntése a K.É.P.-val:

$$1 - u^2(-1) = 1 - \left(\frac{-2}{-1}\right)^2 = -3 = \frac{+1}{(-1) \cdot e^C} \implies C = \ln \frac{1}{3},$$

tehát

$$u(x) = \pm \sqrt{1 - \frac{1}{x \cdot e^C}},$$

$$u(-1) = \frac{-2}{-1} = 2$$

miatt

$$u(x) = +\sqrt{1 - \frac{1}{x \cdot e^C}}$$

és

$$y(x) = x \cdot \sqrt{1 - \frac{1}{x \cdot e^C}}$$
. $Dom(y)$

kikötései: $x \neq 0$,

$$u(x) = \sqrt{1 - \frac{1}{x \cdot e^C}} \neq 0$$

és

$$y(x) = x \cdot \sqrt{1 - \frac{1}{x \cdot e^C}} \neq 0 \implies x \neq e^{-C} = 3,$$

 $1 - u^2(x) \neq 0$ vagyis

$$\sqrt{1 - \frac{1}{x \cdot e^C}} \neq \pm 1 \implies x \in \mathbb{R}.$$

Tehát $x_0 = -1$ miatt x < 0.

c)
$$u(x) := \frac{y}{x}$$
,

$$y'(x) = u(x) + x \cdot u'(x) = u(x) - \cos(u(x)),$$

 $u'(x) = \frac{-1}{x} \cos(u(x)),$

$$\int \frac{u'(x)}{\cos(u(x))} dx = \int \frac{1}{\cos(u)} du = \frac{1}{2} \ln\left(\frac{1+\sin u}{1-\sin u}\right) = \int \frac{-1}{x} dx = -\ln(x) + C$$
(mert $x_0 > 0$),

$$\ln\left(\frac{1+\sin u}{1-\sin u}\right) = -2\ln(x) + C,$$

$$\frac{1+\sin u}{1-\sin u} = \frac{2}{1-\sin u} - 1 = x^{-2}D \quad (D=e^C > 0),$$

$$1-\sin u = \frac{2}{1+x^{-2}D},$$

$$u(x) = \arcsin\left(1 - \frac{2}{1 + x^{-2}D}\right),$$
$$y(x) = x \cdot \arcsin\left(1 - \frac{2}{1 + x^{-2}D}\right).$$

K.É.P.:

$$y(3) = 3\arcsin\left(1 - \frac{2}{1 + 3^{-2}D}\right) = \pi \implies D = \frac{-9}{\sqrt{3}/4 - 1/2} - 9 \approx \approx 125,3538. \quad Dom(y)$$

kikötései: $x \neq 0$,

$$\cos(u(x)) = \cos\left(\arcsin\left(1 - \frac{2}{1 + x^{-2}D}\right)\right) \neq 0$$

és

$$\sin(u(x)) \neq 0 \implies x \in \mathbb{R},$$

$$1 + x^{-2}D \neq 0 \implies x \in \mathbb{R},$$

$$-1 < 1 - \frac{2}{1 + x^{-2}D} < 1 \implies x \in \mathbb{R}.$$

Tehát $x_0 = 3$ miatt 0 < x.

Lineáris egyenletek

5.4. $P(x) = \int -x \, dx = \frac{-1}{2} x^2$,

$$\int q(x)e^{P(x)} dx = \int x \cdot e^{-x^2/2} dx =$$

$$= -e^{-x^2/2} + C,$$

így (7) szerint az általános megoldás

$$y(x) = e^{x^2/2} \cdot \left(-e^{-x^2/2} + C\right) = Ce^{x^2/2} - 1.$$

K.É.P.: $y(0) = Ce^0 - 1 = 1$ tehát C = 2. $Dom(y) = \mathbb{R}$.

5.5. a)
$$P(x) = \int \frac{1}{x} dx = \ln(x)$$
 /mivel $x_0 > 0$ /,

$$\int q(x)e^{P(x)} dx = \int -e^x \cdot e^{\ln(x)} = -\int xe^x dx = -e^x(x-1) + C,$$

így

$$y(x) = e^{-\ln(x)} \cdot (-e^x(x-1) + C) = -e^x \left(1 - \frac{1}{x}\right) + \frac{C}{x}.$$

K.É.P.: y(1) = C = 0. $Dom(y) = \mathbb{R}^+$.

b)
$$P(x) = \int \frac{-2x}{1+x^2} dx = -\ln(x^2+1)$$
,

$$\int q(x)e^{P(x)} dx = \int 1 \cdot e^{-\ln(x^2+1)} dx = \int \frac{1}{x^2+1} dx = \arctan(x) + C,$$
$$y(x) = (x^2+1) \cdot (\arctan(x) + C).$$

K.É.P.: $y(0) = 1 \cdot C = 1$, $Dom(y) = \mathbb{R}$.

c)
$$P(x) = \int \frac{1-x}{x^2} dx = \frac{-1}{x} (x \ln(-x) + 1) = -\ln(-x) - \frac{1}{x}$$
 (mert $x_0 < 0$),

$$\int q(x)e^{P(x)} dx = \int e^{1/x} \cdot \exp\left(-\ln(-x) - \frac{1}{x}\right) dx = \int \frac{-1}{x} dx = -\ln(-x) + C$$

(mert $x_0 < 0$),

$$y(x) = \exp\left(\ln(-x) + \frac{1}{x}\right) \cdot (-\ln(-x) + C) = xe^{\frac{1}{x}} (\ln(-x) - C).$$

$$\text{K.\'E.P.: } y(-1) = -e^{-1} \cdot (-C) = 2 \quad \Longrightarrow \quad C = 2e \approx 5,4366. \quad Dom(y) = \mathbb{R}^-.$$

Bernoulli-egyenletek

5.7. a)
$$u(x) := y^{1-2}(x) = y^{-1}(x)$$
,

$$y'(x) = (u^{-1}(x))' = \frac{-u'(x)}{u^{2}(x)} = \frac{y(x)}{x} + 2y^{2}(x) = \frac{u^{-1}(x)}{x} + 2u^{-2}(x),$$
$$u'(x) + \frac{u(x)}{x} = -2,$$
$$P(x) = \int \frac{1}{x} dx = \ln(x)$$

(mert $x_0 > 0$),

$$\int -2e^{\ln(x)} dx = \int -2x dx = -x^2 + C,$$

$$u(x) = e^{-\ln(x)} \cdot \left(-x^2 + C\right) = \frac{-x^2 + C}{x},$$

$$y(x) = u^{-1}(x) = \frac{x}{C - x^2}.$$

K.É.P.: $y(1) = \frac{1}{C-1^2} = 2 \implies C = \frac{3}{2}$. Dom(y) kikötései: $x \neq 0$,

$$u(x) = \frac{-x^2 + C}{x} \neq 0 \implies x \neq \pm \sqrt{\frac{3}{2}} \approx 1,2247,$$

tehát
$$0 < x < \sqrt{\frac{3}{2}}$$
.

$$b) \ u(x) = y^{1-1/2}(x) = y^{1/2}(x),$$

$$y'(x) = (u^2(x))' = 2u(x) \cdot u'(x) = y(x) + x \cdot \sqrt{y(x)} = u^2(x) + x \cdot u(x),$$

$$u'(x) - \frac{1}{2}u(x) = \frac{x}{2},$$

$$P(x) = \int -\frac{1}{2} dx = \frac{-x}{2},$$

$$\int \frac{x}{2}e^{-x/2} dx = -e^{-x/2}(x+2) + C,$$

$$u(x) = e^{x/2} \cdot \left(-e^{-x/2}(x+2) + C\right),$$

$$y(x) = \left(e^{x/2} \cdot \left(-e^{-x/2}(x+2) + C\right)\right)^2,$$

K.É.P.: az $y(0)=(e^0\cdot(-e^{-0}(0+2)+C))^2=1$ egyenletből C=3 mert u(x)>0. Dom(y) kikötései: $y(x)>0 \implies x\in\mathbb{R}$.

c)
$$u(x) = y^{1-3}(x) = y^{-2}(x)$$
,

$$y'(x) = (u^{-1/2}(x))' = \frac{-1}{2}u^{-3/2}(x) \cdot u'(x) =$$
$$= \frac{2y}{x} + \frac{y^3}{x^3} = \frac{2}{x}u^{-1/2}(x) + \frac{1}{x^3}u^{-3/2}(x),$$

$$u'(x) + \frac{4}{x}u(x) = \frac{-2}{x^3},$$

$$P(x) = \int \frac{4}{x} dx = 4\ln(-x) \qquad (\text{mert } x_0 < 0),$$

$$u(x) = e^{-4\ln(-x)} \cdot \int \frac{-2}{x^3} e^{4\ln(-x)} dx = x^{-4} \cdot (-x^2 + C) = \frac{-x^2 + C}{x^4},$$

$$y(x) = u^{-1/2}(x) = \sqrt{\frac{x^4}{C - x^2}} = \frac{x^2}{\sqrt{C - x^2}}.$$

K.É.P.:

$$y(-1) = \frac{1}{\sqrt{C-1}} = 2 \implies C = \frac{5}{4}.$$

Dom(y) kikötései: $x \neq 0$, x < 0,

$$C - x^2 > 0 \iff |x| < \sqrt{C},$$

$$teh \acute{a}t - \sqrt{\tfrac{5}{4}} < x < 0.$$

Egzakt egyenletek

5.8. *a*) Ellenőrzés:

$$\frac{\partial}{\partial y}P = \frac{\partial}{\partial y}(x^2 + y) = 1 \stackrel{?}{=} \frac{\partial}{\partial x}Q = \frac{\partial}{\partial x}(x - y) = 1$$

OK.

$$\int P(x,y) \, dx = \int x^2 + y \, dx = \frac{1}{3}x^3 + yx + \psi(y),$$

$$\int Q(x,y) \, dy = \int x - y \, dy = xy - \frac{1}{2}y^2 + \varphi(x),$$

így (*)

$$F(x,y) = \frac{1}{3}x^3 + yx - \frac{1}{2}y^2 = c$$

(ha $\psi(y)=-\frac{1}{2}y^2$ és $\varphi(x)=\frac{1}{3}x^3$). K.É.P.: $F(2,3)=\frac{1}{3}\cdot 2^3+3\cdot 2-\frac{1}{2}\cdot 3^2=\frac{25}{6}=c$.

y(x) meghatározásához a (*) egyenletet kell megoldanunk y-ra:

$$y(x) = \frac{1}{-1} \left(-x \pm \sqrt{x^2 - 4 \cdot \frac{-1}{2} \left(\frac{1}{3} x^3 - c \right)} \right) = x \pm \frac{\sqrt{3}}{3} \sqrt{2x^3 + 3x^2 - 25},$$

a K.É.P. miatt a \pm jel helyén + áll.

b) Az egyenlet $(2x + 3y \cdot x^2) + (x^3 - 3y^2)y'(x) = 0$ alakban is írható.

Ellenőrzés:

$$\frac{\partial}{\partial y}P = \frac{\partial}{\partial y}\left(2x + 3y \cdot x^2\right) = 3x^2 \stackrel{?}{=} \frac{\partial}{\partial x}Q = \frac{\partial}{\partial x}\left(x^3 - 3y^2\right) = 3x^2$$

OK.

$$\int P(x,y) dx = \int 2x + 3yx^2 dx = x^2 + yx^3 + \psi(y),$$

$$\int Q(x,y) dy = \int x^3 - 3y^2 dy = x^3 y - y^3 + \varphi(x),$$

$$F(x,y) = x^2 + yx^3 - y^3 = c = F(0,0) = 0,$$

$$y(x) = \mathcal{R}(x) + \frac{x^3}{3\mathcal{R}(x)}$$

ahol

$$\mathcal{R}(x) = \sqrt[3]{\sqrt{x^4/4 - x^9/27} + x^2/2}.$$

c) Ellenőrzés:

$$\frac{\partial}{\partial y}P = \frac{\partial}{\partial y}\left(x - \frac{y^2}{x^3}\right) = \frac{-2y}{x^3} \stackrel{?}{=} \frac{\partial}{\partial x}Q = \frac{\partial}{\partial x}\left(\frac{y}{x^2}\right) = \frac{-2y}{x^3}$$

OK,

$$\int P(x,y) dx = \int x - \frac{y^2}{x^3} dx = \frac{1}{2}x^2 + \frac{1}{2x^2}y^2 + \psi(y),$$

$$\int Q(x,y) dy = \int \frac{y}{x^2} dy = \frac{1}{2x^2}y^2 + \varphi(x),$$

$$F(x,y) = \frac{1}{2}x^2 + \frac{1}{2x^2}y^2 = c = F(1,-2) = \frac{5}{2},$$

$$y(x) = -x\sqrt{5-x^2}.$$

d) Ellenőrzés:

$$\frac{\partial}{\partial y}P = \frac{\partial}{\partial y}\left(\frac{y}{x+y}\right)^2 = \frac{2xy}{(x+y)^3} \stackrel{?}{=} \frac{\partial}{\partial x}Q =$$
$$= \frac{\partial}{\partial x}\left(\frac{x}{x+y}\right)^2 = \frac{2xy}{(x+y)^3}$$

OK,

$$\int P(x,y) dx = \int \left(\frac{y}{x+y}\right)^2 dx = \frac{-y^2}{x+y} + \psi(y),$$

$$\int Q(x,y) dy = \int \left(\frac{x}{x+y}\right)^2 dy = \frac{-x^2}{x+y} + \varphi(x),$$

$$F(x,y) = \frac{xy}{x+y}$$

(ugyanis $\frac{-y^2}{x+y} - \frac{-x^2}{x+y} = x - y$ azaz $\psi(y) = y$ és $\varphi(x) = x$), az $\frac{xy}{x+y} = F(2,3) = \frac{6}{5}$ egyenletből pedig $y(x) = \frac{6x}{5x-6}$.

Megjegyzés: az egyenlet $y'(x) = \frac{-y^2}{x^2}$ alakra is hozható, vagyis szeparálható is.

M6. Elsőrendű differenciálegyenletek alkalmazásai

6.1.

9. ábra. 6.1.

Az y = f(x) görbe egy $P(x_0, f(x_0))$ pontjára ható erőkre az

$$\left(\overrightarrow{F}_g + \overrightarrow{F}_c\right) \parallel \overrightarrow{F}_t$$
 és $\overrightarrow{F}_t \perp e$

feltételeknek kell teljesülnie (e az érintő), azaz

$$f'(x_0) = \operatorname{tg}(\alpha) = F_c/F_q = mx_0\omega^2/mg = kx_0$$
 $(k > 0),$

ahonnan $f(x)=\int kx\,dx=\frac{k}{2}x^2+C$. Tehát a forgó/megkevert pohár víz valóban forgási paraboloid alakú.

6.2. Az y = f(x) függvénygörbét $E\left(x_0, f\left(x_0\right)\right)$ pontjában érintő egyenes egyenlete

$$y = f(x_0) + f'(x_0) \cdot (x - x_0),$$

ennek tengelymetszetei $A(0, y_M)$ és $B(x_M, 0)$ ahol

$$y_M = f(x_0) - f'(x_0) \cdot x_0$$

és

$$0 = f(x_0) + f'(x_0) \cdot (x_M - x_0)$$

alapján

$$x_M = \frac{f'(x_0) \cdot x_0 - f(x_0)}{f'(x_0)}$$

(feltéve $f'(x_0) \neq 0$). E akkor felezőpontja AB-nek, ha $x_0 = \frac{1}{2}x_M$ és $f(x_0) = \frac{1}{2}y_M$.

Mindkét egyenlőség ekvivalens az $x_0 \cdot f'(x_0) = -f(x_0)$ egyenlőséggel $(x_0 \in Dom(f))$, vagyis az $x \cdot f'(x) = -f(x)$ szétválasztható differenciálegyenlettel. Ennek megoldása (ha csak az I. síknegyedben keressük):

$$\int \frac{f'(x)}{f(x)} \, dx = \int \frac{1}{f} \, df = \ln(f(x)) = \int \frac{-1}{x} \, dx = -\ln(x) + C,$$

vagyis

$$f(x) = \frac{e^C}{x} = \frac{D}{x}$$

minden D>0 számra.

6.3. Az előző feladat szerint az y = f(x) függvénygörbét $E(x_0, f(x_0))$ pontjában érintő egyenes tengelymetszetei $A(0, y_M)$ és $B(x_M, 0)$, ahol

$$y_M = f(x_0) - f'(x_0) \cdot x_0$$

és

$$x_M = \frac{f'(x_0) \cdot x_0 - f(x_0)}{f'(x_0)}.$$

A körülírt háromszög területe $T\left(x_{0}\right)=\pm\frac{1}{2}\left(x_{M}-x_{0}\right)\cdot f\left(x_{0}\right)$ (előjel attól függően, hogy fmonoton nő vagy csökken). Tehát

$$1 = \pm \frac{1}{2} \left(\frac{f'(x_0) \cdot x_0 - f(x_0)}{f'(x_0)} - x_0 \right) \cdot f(x_0) = \mp \frac{1}{2} \frac{f^2(x_0)}{f'(x_0)},$$

vagyis az $f'(x) = \mp \frac{1}{2} f^2(x_0)$ szétválasztható egyenlethez jutunk, aminek megoldása $f(x) = \frac{-1}{\mp x/2 + C} = \frac{2}{\pm x + D}$ $(C, D \in \mathbb{R})$.

6.4. Legyen x(t) = a test hőmérséklete $t \ge 0$ időpontban, az egyenlet:

$$x'(t) = k \cdot (x(t) - 20)$$
 $(k < 0)$,

 $x(0) = 100, \ x(10) = 60.$ A lineáris egyenlet általános megoldása:

$$x(t) \cdot e^{-kt} = 20e^{-kt} + C.$$

A K.É.P. megoldása C=80, $k=\frac{-1}{10}\ln 2\approx -0.0693.$ A keresett időpontot az $x\left(t_0\right)=20+Ce^{kt_0}=25\,$ egyenlet megoldása adja: $t_0=40\,$ (perc).

- **6.5.** Jelölje x(t) a még fel nem oldott só mennyiségét, azaz x(0) = 100 és x(1) = 50. A feltétel szerint $x'(t) = k \cdot x(t)$ ahol k < 0. Ennek megoldása $x(t) = e^{kt} \cdot C$, a K.É.P. alapján C = 100 és $k = -\ln 2 \approx -0.6931$. A feloldott só mennyisége pedig $100 x(t) = 100 \cdot \left(1 \frac{1}{2^t}\right)$.
- **6.6.** Jelölje c(t) az oldat töménységét az idő függvényében: c(0) = 0.08, ekkor a tartályban oldott anyag m(t) = 50c(t), m(0) = 4 és

$$m'(t) = 4 \cdot 0.1 - 4 \cdot c(t) = 0.4 - \frac{4}{50}m(t).$$

A lineáris egyenlet megoldása $m(t)=Ce^{-0.08t}+5$, a K.É.P. miatt C=-1. 15 perc múlva az oldatban $m(15)=5-e^{-0.08\cdot 15}\approx 4{,}6988$ g só lesz, a koncentráció pedig

$$c(15) = \frac{1}{50}m(15) \approx 0.09399 \approx 9.4\%$$
 lesz.

6.7. * Legyen a járda az y tengely. Az y=f(x) függvénygörbét $E\left(x_0,f\left(x_0\right)\right)$ pontjában érintő egyenes y-tengelymetszete $A\left(0,y_1\right)$ ahol $y_1=f\left(x_0\right)-f'\left(x_0\right)\cdot x_0$ (a 6.2. feladat alapján). Az EA távolság négyzete $\left(x_0\right)^2+\left(f(x_0)-y_1\right)^2=\left(x_0\right)^2+\left(f'(x_0)\cdot x_0\right)^2=h^2$ azaz $f'(x_0)=\pm\sqrt{\frac{h^2-(x_0)^2}{(x_0)^2}}$ ahonnan

$$f(x) = \pm \int \sqrt{\frac{h^2 - x^2}{x^2}} dx = h \ln \left(\frac{\sqrt{h^2 - x^2} - h}{x} \right) + \sqrt{h^2 - x^2} + C.$$

Ha a kocsi a (d,0) pontból indul, akkor az f(d)=0 K.É.P.-ból C kiszámítható. (A kocsi által leírt görbe neve: vonszolási görbe vagy traktrix.)

A mellékelt Traktrix-anim.gif (+html) mozgóképen szemléltetjük a kocsi mozgását.

- **6.8.** Ha V(t) és h(t) jelöli az edényben levő víz térfogatát és a nyílás feletti magasságát, akkor minden esetben $V'(t) = -A \cdot 0.6 \sqrt{2g \cdot h(t)}$. Az alábbi példákban legyen a lyuk az edény legalján, a víz magassága $h(0) = h_0$.
- a) Ha a henger alapterülete T akkor $V(t)=T\cdot h(t),$ $V'(t)=T\cdot h'(t)=$ $=-A\cdot 0,6\sqrt{2g\cdot h(t)}$ vagyis a $h'(t)=-K\cdot \sqrt{h(t)}$ $(K=\frac{A\cdot 0,6\sqrt{2g}}{T}\in\mathbb{R}^+)$ szétválasztható egyenletet kapjuk, melynek megoldása $h(t)=\left(C-\frac{K}{2}t\right)^2$, a K.É.P. miatt $C=\sqrt{h_0}$ és $0\leq t\leq \frac{C}{K}=\frac{\sqrt{h_0}}{K}$.
- b) Ha a lyuk nagyon kicsi a kúp méreteihez képest, akkor nem kell csonkakúpként számítanunk. Jelöljük a kezdeti h_0 magas vízoszlop térfogatát V_0 -al, ekkor

$$V(t) = V_0 \cdot \left(\frac{h(t)}{h_0}\right)^3,$$

$$V'(t) = \frac{V_0}{h_0^3} \cdot 3h^2(t) \cdot h'(t) = -A \cdot 0.6\sqrt{2g \cdot h(t)},$$

vagyis a

$$h'(t) = -K \cdot h^{-3/2}(t)$$

 $(K=rac{A\cdot 0.6\sqrt{2g}\cdot h_0^3}{3V_0}\in\mathbb{R}^+)$ egyenletet kapjuk, melynek megoldása

$$h(t) = \left(\frac{5}{2}(C - Kt)\right)^{2/5}.$$

A K.É.P. miatt $C = \frac{2}{5} (h_0)^{5/2}$ és $0 \le t \le \frac{C}{K}$.

c) Az R sugarú gömb h magasságú süvegének térfogata

$$V = \frac{\pi}{3}h^2 \cdot (3R - h) = R\pi h^2 - \frac{\pi}{3}h^3,$$

tehát

$$V'(t) = h'(t) \cdot \pi \left(2Rh(t) - h^{2}(t) \right) = -A \cdot 0.6\sqrt{2g \cdot h(t)}.$$

Így a

$$h'(t) \cdot (2Rh^{1/2}(t) - h^{3/2}(t)) = -K$$

 $(K = \frac{-A \cdot 0.6\sqrt{2g}}{\pi} \in \mathbb{R}^+)$

differenciálegyenletet kapjuk, melynek megoldása

 $(\maltese) \quad \frac{4}{3}Rh^{3/2}(t) - \frac{2}{5}h^{5/2}(t) = -Kt + C$

ahol a K.É.P. miatt

 $C = \frac{4}{3}Rh_0^{3/2} - \frac{2}{5}h_0^{5/2}$

és

$$0 \le t \le \frac{C}{K}.$$

A (\maltese) algebrai egyenletet (közelítőleg, pl.,,intervallum-felezés" módszerrel) megoldva megkapjuk a h(t) függvényt.

6.9. Ha a kötél (függvény) monoton ágában vagyunk és $\Delta x = h$ nagyon kicsi, akkor az $P_0\left(x_0,f\left(x_0\right)\right)$ és $P_h\left(x_0+h,f\left(x_0+h\right)\right)$ pontokban az $\mathbf{F_k}$ kötélerők ellentétes irányban hatnak: $\mathbf{F_v}$ vízszintes összetevőjük összege $\underline{0}$:

$$F_{\mathbf{v}}(x_0) = F_{\mathbf{v}}(x_0 + h) \tag{11}$$

(általában az ${\bf F}$ erővektor hosszát F-el jelöljük), míg ${\bf F_f}$ függőleges összetevőjük a közöttük levő kötéldarab súlyával (gravitációs erő) együtt ad $\underline{0}$ -t:

$$F_{\mathbf{f}}\left(x_0 + h\right) = F_{\mathbf{f}}\left(x_0\right) + mg$$

és

$$m = \rho Q \sqrt{h^2 + (h \cdot f'(x_0))^2} = \rho Q h \sqrt{1 + (f'(x_0))^2}$$

ahol a kötél sűrűsége ρ , keresztmetszete Q, és a kötelet az $[x_0, x_0 + h]$ intervallumon az x_0 -beli érintővel közelítettük, tehát

$$F_{\mathbf{f}}(x_0 + h) - F_{\mathbf{f}}(x_0) = \rho Q h g \sqrt{1 + (f'(x_0))^2}.$$
 (12)

Az $(F_{\mathbf{v}},F_{\mathbf{f}},F_{\mathbf{k}})\,$ derékszögű háromszögek hasonlóak a megfelelő (ugyanazon pontban vett)

$$\left(1, f', \sqrt{\left(f'\right)^2 + 1}\right)$$

derékszögű háromszögekhez, tehát (11) és (12) alapján (F_v és h-val egyszerűsítve)

$$\frac{f'(x_0+h) - f'(x_0)}{h} = \frac{\rho Qg}{F_{Y}} \sqrt{1 + (f'(x_0))^2},$$

majd $\lim_{h\to 0}$ határátmenetet véve kapjuk a keresett differenciálegyenletet:

$$f''(x_0) = K \cdot \sqrt{1 + (f'(x_0))^2}$$
(13)

ahol $K \in \mathbb{R}^+$ állandó, $x_0 \in [x_A, x_B]$ tetszőleges, $A(x_A, y_A)$ és $B(x_B, y_B)$ a kötél rögzítési pontjai.

Az (13) egyenlet megoldása: vezessük be az u=f' új változót, ekkor $u'(x)=K\sqrt{1+u^2(x)},$

$$\int \frac{u'(x)}{\sqrt{1+u^2(x)}} dx = \int \frac{1}{\sqrt{1+u^2}} du = Ar \sinh(u(x)) = \int K dx = Kx + C_1 f(x) =$$
$$= \int u(x) dx = \int \sinh(Kx + C_1) = \frac{1}{K} \cosh(Kx + C_1) + C_2,$$

tehát a végeredmény:

$$f(x) = \frac{1}{K} \cosh(Kx + C_1) + C_2.$$

A kötél rögzítési pontjait figyelembe véve az

$$\begin{cases} y_A = f(x_A) = \frac{1}{K} \cosh(Kx_A + C_1) + C_2 \\ y_B = f(x_B) = \frac{1}{K} \cosh(Kx_B + C_1) + C_2 \end{cases}$$

egyenletrendszert kell megoldanunk. A

$$\cosh(\alpha) - \cosh(\beta) = 2 \sinh\left(\frac{\alpha + \beta}{2}\right) \sinh\left(\frac{\alpha - \beta}{2}\right)$$

azonosság alapján az

$$y_A - y_B = \frac{2}{K} \sinh\left(K\frac{x_A + x_B}{2} + C_1\right) \sinh\left(K\frac{x_A - x_B}{2}\right)$$

összefüggésből C_1 és C_2 kiszámítható.

6.10. a)
$$R \cdot i(t) + L \cdot i'(t) = U_0$$
 $(U_0 = 100V)$ \Longrightarrow $i'(t) = \frac{U_0 - R \cdot i(t)}{L}$ szeparálható egyenlet \Longrightarrow $\frac{i'(t)}{U_0 - R \cdot i(t)} = \frac{1}{L}$ \Longrightarrow $\int \frac{i'(t)}{U_0 - R \cdot i(t)} dt = \int \frac{1}{U_0 - R \cdot i} di = \frac{-1}{R} \ln (U_0 - R \cdot i) = \frac{1}{L} t + C$ azaz

$$i(t) = \frac{1}{R} \left(U_0 - e^{-\left(\frac{R}{L}t + RC\right)} \right) = \frac{U_0}{R} - \frac{K}{R} e^{-\frac{R}{L}t}$$

(hiszen $i \leq \frac{U_0}{R}$), $K \in \mathbb{R}^+$. Az i(0) = 0 K.É.P. miatt $K = U_0$ vagyis

$$i(t) = \frac{U_0}{R} \left(1 - e^{-\frac{R}{L}t} \right)$$

tehát $\lim_{t\to\infty}i(t)=\frac{U_0}{R}$. A feladat adataival $i(t)=5-5e^{-2t}$.

b) $L \cdot i'(t) + R \cdot i(t) = U_0 \cdot \sin(\omega t)$ lineáris egyenlet, általános megoldása

$$i(t) = \frac{U_0}{L^2 \omega^2 + R^2} \left(R \sin(\omega t) - L\omega \cos(\omega t) \right) + Ce^{-\frac{R}{L}t} =$$

$$= \frac{U_0}{\sqrt{L^2 \omega^2 + R^2}} \sin\left(\omega t - \arctan\left(\frac{L\omega}{R}\right)\right) + Ce^{-\frac{R}{L}t}$$

a 10.5. feladat megoldásánál ismertetett (15) összefüggés alapján, és az $i(0)=0\,$ K.É.P. miatt

$$C = \frac{L\omega U_0}{L^2\omega^2 + R^2} = \frac{10 \cdot (100\pi) \, 240}{10^2 \cdot (100\pi)^2 + 20^2} = \approx 0.07639.$$

A feladat paramétereivel az

$$10i'(t) + 20i(t) = 240\sin(2\pi 50 \cdot t)$$

egyenlet megoldása

$$\begin{split} i(t) &= \frac{240}{10^2 \cdot (100\pi)^2 + 20^2} \left(20 \sin(100\pi t) - 10 \cdot 100\pi \cos(100\pi t) \right) + Ce^{-2t} = \\ &= \frac{240}{\sqrt{10^2 (100\pi)^2 + 20^2}} \sin\left(100\pi t - \operatorname{arctg}\left(\frac{10 \cdot 100\pi}{20}\right) \right) + Ce^{-2t} \approx \\ &\approx 2,4316 \cdot 10^{-5} \cdot \left(20 \sin(314t) - 1000\pi \cdot \cos(314t) \right) + 0,07639 \cdot e^{-2t} \\ &\approx 0,07639 \cdot \sin\left(314t - 1,5644 \right) + 0,07639 \cdot e^{-2t}. \end{split}$$

M7. Parciális törtekre bontás

7.1. a)
$$(x^4 + x^2)$$
 : $(x - 2) = x^3 + 2x^2 + 5x + 10$
 $2x^3 + x^2$
 $5x^2$
 $10x$
 20

azaz
$$(x^4 + x^2) = (x - 2) \cdot (x^3 + 2x^2 + 5x + 10) + (20).$$

b)
$$(x^3 + 3x + 5) = (2x^2 - 7x + 9) \cdot (\frac{1}{2}x + \frac{7}{4}) + (\frac{43}{4}x - \frac{43}{4}).$$

c)
$$4x^5 + 5x - 2 = (2x^3 + 3) \cdot 2x^2 + (-6x^2 + 5x - 2)$$
.

7.2. a)
$$x^3 - 1 = (x - 1)(x^2 + x + 1)$$
, $x^3 + 1 = (x + 1)(x^2 - x + 1)$, $x^4 - 1 = (x^2 - 1)(x^2 + 1) = (x - 1)(x + 1)(x^2 + 1)$.

 x^4+1 reducibilis az Algebra Alaptétele szerint. Próbálkozzunk $x^4+1=(x^2+ax+b)\,(x^2+cx+d)$ alakú felbontással, ahonnan az együtthatók összehasonlítása alapján a

$$\begin{cases}
0 = c + a \\
0 = d + ac + b \\
0 = ad + bc \\
1 = bd
\end{cases}$$

(nemlineáris) egyenletrendszert kapjuk, melynek megoldása az

$$x^{4} + 1 = \left(x^{2} - x\sqrt{2} + 1\right)\left(x^{2} + x\sqrt{2} + 1\right) \tag{14}$$

irreducibilis felbontást adja. (Az $x^4+1=0$ egyenlet komplex gyökeinek segítségével is megkaphatjuk ezt a felbontást.)

b) $2x^3-5x^2+3x-2$ harmadfokú, ezért $\mathbb{R}[x]$ -ben van gyöke. Egész együtthatós, ezért a konstans tag osztóit kipróbálva kapjuk az x=2 gyököt. Polinomosztással kapjuk: $(2x^3-5x^2+3x-2)=(x-2)\cdot(2x^2-x+1)$.

Hasonlóan:
$$2x^3 - x^2 - 1 = (x - 1) \cdot (2x^2 + x + 1)$$
.

 $c^*)$ A $~p(x)=x^4+2x^3+2x^2+2x-1=0$ negyedfokú egyenlet gyökei közelítőleg $x_1\approx 0{,}3392,~x_2\approx -1{,}7130, x_{3,4}\approx -0{,}3131\pm 1{,}2739\cdot i,$ tehát

$$p(x) \approx (x - 0.339)(x + 1.713)(x + 0.313 - 1.274i)(x + 0.313 + 1.274i)$$
$$\approx (x - 0.3392)(x + 1.7130)(x^2 + 0.6263x + 1.7208).$$

Másik megoldás: Az $x^4+2x^3+2x^2+2x-1=(x^2+Ax+B)(x^2+Cx+D)$ próbálkozásból $(A,B,C,D\in\mathbb{R})$ a

$$\begin{cases} 2 &= C + A \\ 2 &= D + AC + B \\ 2 &= AD + BC \\ -1 &= BD \end{cases}$$

egyenletrendszert kapjuk, ami szintén elvezet az előző végeredményhez.

7.3. Ha a számláló fokszáma nem kisebb a nevező fokánál, akkor a számlálót el kell osztanunk polinomosztással a nevezővel.

$$\frac{x^4 + 3x - 6}{x^2 + x - 2} = (x^2 - x + 3) + \frac{-2x}{x^2 + x - 2},$$

$$\frac{3x^3 - 2x^2 + 4}{x^2 - 8x + 15} = (3x + 22) + \frac{131x - 326}{x^2 - 8x + 15},$$

$$\frac{x^5 + 1}{x^5 - 3x} = 1 + \frac{3x}{x^5 - 3x},$$

$$\frac{x^5 + 2x^2 + 3}{x + 1} = (x^4 - x^3 + x^2 + x - 1) + \frac{4}{x + 1}.$$

7.4.
$$\frac{x^3 - 8x^2 + 12}{(x - 1)^2(x^2 + 4x + 9)} = \frac{A}{x - 1} + \frac{B}{(x - 1)^2} + \frac{Cx + D}{x^2 + 4x + 9}, \quad \frac{x^4 + 5x^2 + 3}{(x + 7)(x^2 + 5x + 7)^2} = \frac{A}{x + 7} + \frac{Bx + C}{x^2 + 5x + 7} + \frac{Dx + E}{(x^2 + 5x + 7)^2},$$

$$\frac{x^2 + 8x + 2}{(x+8)^3 (x^2 + 4x + 9)^2 (x+7) (x^2 + 5)} =$$

$$= \frac{A}{x+8} + \frac{B}{(x+8)^2} + \frac{C}{(x+8)^3} + \frac{Dx+E}{x^2 + 4x + 9} + \frac{Fx+G}{(x^2 + 4x + 9)^2} + \frac{H}{x+7} + \frac{Ix+J}{x^2 + 5},$$

$$\frac{3x^3 - 2x^2 + 4}{x^2 - 8x + 15} = (3x + 22) + \frac{131x - 326}{x^2 - 8x + 15} = (3x + 22) + \frac{131x - 326}{(x - 3)(x - 5)} =$$
$$= (3x + 22) + \frac{A}{x - 3} + \frac{B}{x - 5}.$$

7.5. $\frac{1}{k\cdot(k+1)}=\frac{A}{k}+\frac{B}{k+1}=\frac{A(k+1)+Bk}{k\cdot(k+1)}$, vagyis a számlálók egyezősége: 1=A(k+1)+Bk. Helyettesítsük be k helyére 0-át ill. -1-et, ahonnan $A=1,\ B=-1$, vagyis $\frac{1}{k\cdot(k+1)}=\frac{1}{k}-\frac{1}{k+1}$.

$$\frac{x+6}{x^2+x-2} = \frac{x+6}{(x+2)(x-1)} = \frac{A}{x+2} + \frac{B}{x-1} = \frac{A(x-1) + B(x+2)}{(x+2)(x-1)}$$

vagyis x + 6 = A(x - 1) + B(x + 2).

Az x = -2 és x = 1 helyettesítés után kapjuk:

$$\frac{x+6}{x^2+x-2} = \frac{\frac{-4}{3}}{x+2} + \frac{\frac{7}{3}}{x-1}.$$

$$\frac{3x+2}{(x^2+2x+5)(x+1)} = \frac{\frac{-1}{4}}{x+1} + \frac{\frac{13}{4} + \frac{x}{4}}{x^2+2x+5},$$

$$\frac{x^2-1}{x^3+2x^2} = \frac{\frac{-1}{2}}{x^2} + \frac{\frac{1}{4}}{x} + \frac{\frac{3}{4}}{x+2},$$

$$\frac{x}{(1-2x)^2} = \frac{-1/2}{1-2x} + \frac{1/2}{(1-2x)^2}, \quad \frac{x}{(x-1)^3} = \frac{1}{(x-1)^3} + \frac{1}{(x-1)^2},$$

$$\frac{x^3}{(x^2+1)^2} = \frac{-x}{(x^2+1)^2} + \frac{x}{x^2+1}, \quad \frac{x^2+5}{x^4-16} = \frac{\frac{9}{32}}{x-2} - \frac{\frac{9}{32}}{x+2} - \frac{\frac{1}{8}}{x^2+4};$$

$$\frac{1}{(1-x^2)(1-x^3)} = \frac{1}{(1-x)^2(1+x)(1+x+x^2)} =$$

$$= \frac{A}{1-x} + \frac{B}{(1-x)^2} + \frac{C}{1+x} + \frac{Dx+E}{1+x+x^2},$$

közös nevezőre hozás után a számlálók egyenlősége:

$$1 = A(1-x)(1+x)\left(1+x+x^2\right) + B(1+x)\left(1+x+x^2\right) + C(1-x)^2\left(1+x+x^2\right) + (Dx+E)(1-x)^2(1+x).$$

Az x=1,-1,0 és például a -2,+2 értékek behelyettesítése után kapjuk: $A=\frac{1}{4},\ B=\frac{1}{6},$ $C=\frac{1}{4},\ D=0$ és $E=\frac{1}{3},$ vagyis

$$\frac{1}{(1-x^2)(1-x^3)} = \frac{\frac{1}{4}}{1-x} + \frac{\frac{1}{6}}{(1-x)^2} + \frac{\frac{1}{4}}{1+x} + \frac{\frac{1}{4}}{1+x} + \frac{\frac{1}{3}}{1+x+x^2}.$$

$$\frac{3x^3 - 2x^2 + 4}{x^2 - 8x + 15} = (3x + 22) + \frac{131x - 326}{x^2 - 8x + 15} = 3x + 22 + \frac{A}{x-3} + \frac{B}{x-5} = 3x + 22 + \frac{-33,5}{x-3} + \frac{164,5}{x-5}.$$

$$\frac{7s^4 + 23s^3 - 30s^2 - 172s - 150}{(s+2)^4(s-5)} = \frac{A}{s+2} + \frac{B}{(s+2)^2} + \frac{C}{(s+2)^3} + \frac{D}{(s+2)^4} + \frac{E}{s-5}$$

közös nevezőre hozás után a számlálók egyenlősége:

$$7s^4 + 23s^3 - 30s^2 - 172s - 150 =$$

$$= A(s+2)^3(s-5) + B(s+2)^2(s-5) + C(s+2)(s-5) + D(s-5) + E(s+2)^4.$$

Az s=5,-2,0,1,-1 értékeket behelyettesítve kapjuk: $E=\frac{5490}{2401}\approx 2{,}2865$,

$$D = \frac{-2}{7} \approx -0.2857$$
, $A = \frac{11317}{2401} \approx 4.7135$, $B = -\frac{2}{343} \approx -0.0058$,

 $C=-\frac{2}{49}\approx -0.0408$. Tehát a keresett felbontás

$$\frac{7s^4 + 23s^3 - 30s^2 - 172s - 150}{(s+2)^4(s-5)} = \frac{\frac{11317}{2401}}{s+2} - \frac{\frac{2}{343}}{(s+2)^2} - \frac{\frac{2}{49}}{(s+2)^3} - \frac{\frac{2}{7}}{(s+2)^4} + \frac{\frac{5490}{2401}}{s-5}$$

M8. Laplace-transzformáció és inverze

8.1. *a*)

10. ábra. 8.1.*a*)

$$\mathcal{L}(f_1) = \int_2^3 1 \cdot e^{-st} dt = \left[\frac{-1}{s} e^{-st} \right]_{t=2}^{t=3} = \frac{e^{-2s} - e^{-3s}}{s},$$

(lásd még a 8.2.c) feladat megoldását is),

$$\mathcal{L}(f_2) = \int_2^\infty e^{-st} dt = \lim_{\omega \to \infty} \left[\frac{-1}{s} e^{-st} \right]_{t=2}^{t=\omega} = \frac{1}{s} e^{-2s},$$

$$\mathcal{L}(f_3) = \int_3^\infty t \cdot e^{-st} \, dt = \left[\frac{-t}{s} e^{-st} + \frac{1}{s} \int e^{-st} \, dt \right]_3^\infty = \lim_{\omega \to \infty} \left[-\left(\frac{t}{s} + \frac{1}{s^2} \right) e^{-st} \right]_{t=3}^{t=\omega} = 0 + \left(\frac{3}{s} + \frac{1}{s^2} \right) e^{-3s} = \frac{3s+1}{s^2} e^{-3s}.$$

Megjegyzés: Az "eltolási" tételt most nem használhatjuk, hiszen f_3 nem az id(t)=t függvény "eltoltja". Ez utóbbi $f_3^{(el)}(t)=\begin{cases} t-3 & ha\ 3\leq t\\ 0 & \textit{máskor} \end{cases}$, melynek Laplace- transzformáltja

$$\begin{split} \mathcal{L}(f_3^{(el)}) &= \int_3^\infty (t-3)e^{-st}\,dt = \left[\frac{-(t-3)}{s}e^{-st} + \frac{1}{s}\int e^{-st}\,dt\right]_3^\infty = \\ &= \lim_{\omega \to \infty} \left[-\left(\frac{t-3}{s} + \frac{1}{s^2}\right)e^{-st}\right]_{t=3}^{t=\omega} = \\ &= 0 + \left(\frac{0}{s} + \frac{1}{s^2}\right)e^{-3s} = \frac{1}{s^2}e^{-3s} = \text{ az ,,eltolási'' tétel szerint is.} \end{split}$$

$$\mathcal{L}(f_4) = \int_1^2 (t-1) \cdot e^{-st} dt + \int_2^\infty 1 \cdot e^{-st} dt =$$

$$= \left[-e^{-st} \left(\frac{t-1}{s} + \frac{1}{s^2} \right) \right]_{t=1}^{t=2} + \frac{1}{s} e^{-2s} = \frac{1}{s^2} e^{-s} - \left(\frac{1}{s} + \frac{1}{s^2} \right) e^{-2s} + \frac{1}{s} e^{-2s} =$$

$$= \frac{1}{s^2} \left(e^{-s} - e^{-2s} \right)$$

(lásd még a 8.2.c) feladat megoldását is),

a két ponton átmenő egyenes egyenlete y = 2.5x - 5.5, ezért

$$\mathcal{L}(f_5) = \int_3^5 (2,5t - 5,5)e^{-st} dt = \left[\frac{-1}{2s^2}e^{-st}(5st - 11s + 5) \right]_{t=3}^{t=5} =$$

$$= \frac{-1}{2s^2} \left(e^{-5s}(14s + 5) - e^{-3s}(4s + 5) \right),$$

$$\mathcal{L}(f_6) = \int_{2\pi}^{4\pi} \sin(t) \cdot e^{-st} dt = \left[-e^{-st} \frac{\cos t + s \sin t}{s^2 + 1} \right]_{t=2\pi}^{t=4\pi} = \frac{1}{s^2 + 1} \left(e^{-2\pi s} - e^{-4\pi s} \right),$$

$$\mathcal{L}(f_7) = \sum_{k=1}^{\infty} k \cdot \int_{k-1}^{k} e^{-st} dt = \sum_{k=1}^{\infty} \frac{-k}{s} \left(e^{-sk} - e^{-s(k-1)} \right) = \frac{1 - e^s}{s} \sum_{k=0}^{\infty} (-k)e^{-sk} =$$

$$= \frac{1 - e^s}{s} \sum_{k=0}^{\infty} \frac{d}{ds} e^{-sk} = \frac{1 - e^s}{s} \frac{d}{ds} \left(\sum_{k=0}^{\infty} e^{-sk} \right) = \frac{1 - e^s}{s} \cdot \frac{d}{ds} \left(\frac{1}{1 - e^{-s}} \right) =$$

$$= \frac{e^{-s} (e^s - 1)}{s (e^{-s} - 1)^2} \quad (\text{Re}(s) > 0).$$

Másképpen: a H(t) = 1 $(t \ge 0)$ *Heaviside* – függvény és az Eltolási tétel segítségével:

$$\mathcal{L}(f_7) = \mathcal{L}\left(\sum_{k=1}^{\infty} k \cdot (H(t - (k-1)) - H(t - k))\right) = \sum_{k=1}^{\infty} k \left(e^{-s(k-1)} - e^{-sk}\right) \frac{1}{s} =$$

$$= (1 - e^s) \frac{1}{s} \sum_{k=1}^{\infty} (-k) \cdot e^{-sk},$$

innen ugyanaz, mint az előző megoldásban.

b)

$$f(t) = b \cdot (H(t) - H(t - a) + H(t - 2a) - + \dots),$$

$$\mathcal{L}(f) = \frac{b}{s} \left(1 - e^{-as} + e^{-2as} - + \dots \right) = \frac{b}{s \left(1 + e^{-as} \right)},$$

$$g(t) = \frac{b}{a} t \cdot H(t) - bH(t - a) - bH(t - 2a) - \dots,$$

$$\mathcal{L}(g) = b \left(\frac{1}{as^2} - e^{-as} - e^{-2as} - \dots \right) = \frac{b}{as^2} - \frac{be^{-as}}{s \left(1 - e^{-as} \right)}.$$

8.2. a)
$$\mathcal{L}(7t^2 - 3t + 5) = \frac{7 \cdot 2}{s^3} - \frac{3}{s^2} + \frac{5}{s}$$
,

$$\mathcal{L}(3 - 4e^{(5+6i)t}) = \mathcal{L}(3) - 4\mathcal{L}(e^{(5+6i)t}) = \frac{3}{s} - \frac{4}{s - (5+6i)},$$

$$\mathcal{L}(e^{5t}\cos(2t)) = \frac{s - 5}{(s - 5)^2 + 2^2},$$

$$\mathcal{L}(t^{3}e^{-7t}) = \frac{3!}{(s+7)^{4}} = \frac{6}{(s+7)^{4}},$$

$$\mathcal{L}(t^{3}e^{it}) = \frac{6}{(s-i)^{4}},$$

$$\mathcal{L}(sh(2t)) = \frac{1}{2} \left(\mathcal{L}\left(e^{2t}\right) - \mathcal{L}\left(e^{-2t}\right) \right) = \frac{1}{2} \left(\frac{1}{s-2} - \frac{1}{s+2} \right) = \frac{2}{s^{2}-4},$$

$$\mathcal{L}(t \cdot ch(3t)) = -\frac{d}{ds} \mathcal{L}(ch(3t)) = -\left(\frac{s}{s^{2}-3^{2}}\right)' = \frac{s^{2}+9}{(s^{2}-9)^{2}},$$

$$\mathcal{L}(t^{2}e^{6t}\sin(4t)) = \frac{d^{2}}{ds^{2}} \mathcal{L}(e^{6t}\sin(4t)) = \left(\frac{4^{2}}{(s-6)^{2}+4^{2}}\right)'' = \frac{32\left(3s^{2}-36s+92\right)}{\left(s^{2}-12s+52\right)^{3}}.$$

$$b^*$$
) $5^t = e^{t \cdot \ln 5}$ miatt $\mathcal{L}(5^t) = \frac{1}{s - \ln 5}$

$$\cos^{2}(t) = \frac{1}{2}(1 + \cos 2t) \text{ miatt } \mathcal{L}(\cos^{2}(t)) = \frac{1}{2}\left(\frac{1}{s} + \frac{s}{s^{2} + 2^{2}}\right) = \frac{s^{2} + 2}{s\left(s^{2} + 4\right)},$$

$$\cos^{3}\alpha = \frac{1}{2}(1 + \cos 2\alpha) \cdot \cos\alpha = \frac{1}{2}\cos\alpha + \frac{1}{2}\cos2\alpha \cdot \cos\alpha =$$

$$= \frac{1}{2}\cos\alpha + \frac{1}{4}(\cos 3\alpha + \cos\alpha) = \cos^{3}\alpha = \frac{1}{4}\cos 3\alpha + \frac{3}{4}\cos\alpha$$

miatt

$$\mathcal{L}(\cos^3(4t)) = \frac{1}{4} \frac{s}{s^2 + 12^2} + \frac{3}{4} \frac{s}{s^2 + 4^2} = \frac{s(s^2 + 112)}{(s^2 + 144)(s^2 + 16)},$$

az
$$f(t) = \frac{1-e^{-t}}{t}$$
 jelölést és a $\mathcal{L}(t \cdot f(t)) = -\frac{d}{ds}\mathcal{L}(f)$ azonosságot használva: $\frac{d}{ds}\mathcal{L}(f) = -\mathcal{L}(1-e^{-t}) = \frac{-1}{s} + \frac{1}{s+1}$, ahonnan $\mathcal{L}(f) = \int \frac{-1}{s} + \frac{1}{s+1} ds = \ln\left(1+\frac{1}{s}\right) + C$. Mivel $\lim_{|s| \to \infty} \mathcal{L}(f)(s) = 0$, ezért $C = 0$ vagyis $\mathcal{L}(f) = \ln\left(1+\frac{1}{s}\right)$.

c) A 8.1 feladat jelöléseit használjuk:

Mivel
$$f_1(t) = f_2(t) - f_2(t-1)$$
, ezért

$$\mathcal{L}(f_1) = \mathcal{L}(f_2) - \mathcal{L}(f_2) \cdot e^{-s} = \mathcal{L}(f_2) \cdot (1 - e^{-s}) = \frac{1}{s} e^{-2s} (1 - e^{-s}) = \frac{1}{s} (e^{-2s} - e^{-3s}),$$

Mivel
$$f_4(t) = f_3(t+2) - f_3(t+1)$$
, ezért

$$\mathcal{L}(f_4)(s) = e^{2s} \cdot \mathcal{L}(f_3)(s) - e^s \cdot \mathcal{L}(f_3)(s) = \left(e^{2s} - e^s\right) \cdot \frac{1}{s^2} e^{-3s} = \frac{1}{s^2} \left(e^{2s} - e^s\right).$$

8.3. A $\mathcal{L}(t \cdot f(t)) = -\frac{d}{ds} \mathcal{L}(f(t))$ szabályt alkalmazzuk:

$$\mathcal{L}(t\cos(\omega t)) = -\frac{d}{ds}\frac{s}{s^2 + \omega^2} = \frac{s^2 - \omega^2}{(s^2 + \omega^2)^2},$$

$$\mathcal{L}(t\sin(\omega t)) = -\frac{d}{ds}\frac{\omega}{s^2 + \omega^2} = \frac{2\omega s}{(s^2 + \omega^2)^2},$$

$$\mathcal{L}(t\cdot ch(\omega t)) = -\frac{d}{ds}\frac{s}{s^2 - \omega^2} = \frac{s^2 + \omega^2}{(s^2 - \omega^2)^2},$$

$$\mathcal{L}(t\cdot sh(\omega t)) = -\frac{d}{ds}\frac{\omega}{s^2 - \omega^2} = \frac{2\omega s}{(\omega^2 - s^2)^2}.$$

8.4. a)
$$\mathcal{L}^{-1}\left(\frac{1}{5s-3}\right) = \mathcal{L}^{-1}\left(\frac{1}{5(s-3/5)}\right) = \frac{1}{5}e^{\frac{3}{5}t}$$

$$\mathcal{L}^{-1}\left(\frac{1}{s^2 - 4}\right) = \mathcal{L}^{-1}\left(\frac{1}{4(s - 2)} - \frac{1}{4(s + 2)}\right) = \frac{1}{4}\left(e^{2t} - e^{-2t}\right) = \frac{1}{2}sh(2t),$$

$$\mathcal{L}^{-1}\left(\frac{1}{s^2 + 4}\right) = \frac{1}{2}\mathcal{L}^{-1}\left(\frac{2}{s^2 + 2^2}\right) = \frac{1}{2}\sin(2t),$$

$$\mathcal{L}^{-1}\left(\frac{5s + 3}{s^2 + 4}\right) = \mathcal{L}^{-1}\left(5\frac{s}{s^2 + 2^2} + \frac{3}{2}\cdot\frac{2}{s^2 + 2^2}\right) = 5\cos(2t) + \frac{3}{2}\sin(2t),$$

$$\frac{s + 10}{s^2 + 4s + 3} = \frac{s + 10}{(s + 1)(s + 3)} = \frac{9/2}{s + 1} - \frac{7/2}{s + 3}$$

$$\mathcal{L}^{-1}\left(\frac{s+10}{s^2+4s+3}\right) = \frac{9}{2}\mathcal{L}^{-1}\left(\frac{1}{s+1}\right) - \frac{7}{2}\mathcal{L}^{-1}\left(\frac{1}{s+3}\right) = \frac{9}{2}e^{-t} - \frac{7}{2}e^{-3t},$$

$$\mathcal{L}^{-1}\left(\frac{1}{(s+3)^5}\right) = \frac{1}{4!}t^4e^{-3t},$$

$$\mathcal{L}^{-1}\left(\frac{1}{(2s-1)^3}\right) = \mathcal{L}^{-1}\left(\frac{1}{8}\frac{1}{(s-1/2)^3}\right) = \frac{1}{8\cdot 2!}t^2e^{t/2},$$

$$\mathcal{L}^{-1}\left(\frac{s+1}{(s+3)^5}\right) = \mathcal{L}^{-1}\left(\frac{1}{(s+3)^4} - \frac{2}{(s+3)^5}\right) = e^{-3t}\left(\frac{1}{3!}t^3 - \frac{2}{4!}t^4\right),$$

$$\mathcal{L}^{-1}\left(\frac{4s+2}{s^2+6s+13}\right) = \mathcal{L}^{-1}\left(\frac{4(s+3)-10}{(s+3)^2+4}\right) =$$

$$= \mathcal{L}^{-1}\left(4\frac{s+3}{(s+3)^2+2^2} - 5\frac{2}{(s+3)^2+2^2}\right) = (4\cos(2t) - 5\sin(2t)) \cdot e^{-3t},$$

$$\mathcal{L}^{-1}\left(\frac{1}{s\left((s+3)^2+4\right)}\right) = \mathcal{L}^{-1}\left(\frac{1}{13s} - \frac{1}{13}\frac{s+6}{(s+3)^2+4}\right) =$$

$$= \frac{1}{13}\mathcal{L}^{-1}\left(\frac{1}{s} - \frac{s+3}{(s+3)^2+2^2} - \frac{3}{2}\frac{2}{(s+3)^2+2^2}\right) =$$

$$= \frac{1}{13}\left(\cos(2t) + \frac{3}{2}\sin(2t)\right) \cdot e^{-3t},$$

$$\mathcal{L}^{-1}\left(\frac{s^2}{(s-3)^5}\right) = \mathcal{L}^{-1}\left(\frac{1}{(s-3)^3} + \frac{6}{(s-3)^4} + \frac{9}{(s-3)^5}\right) = e^{3t}\left(\frac{1}{2}t^2 + t^3 + \frac{9}{4!}t^4\right).$$

b*) a 8.3 feladat eredményeit használjuk:

$$\begin{split} \mathcal{L}^{-1}\left(\frac{s}{(s^2+\omega^2)^2}\right) &= \frac{1}{2\omega}t\sin{(\omega t)},\\ \mathcal{L}^{-1}\left(\frac{1}{(s^2+\omega^2)^2}\right) &= \mathcal{L}^{-1}\left(\frac{1}{s}\cdot\frac{s}{(s^2+\omega^2)^2}\right) = \int_0^t \mathcal{L}^{-1}\left(\frac{s}{(s^2+\omega^2)^2}\right)\,dx =\\ &= \int_0^t \frac{1}{2\omega}x\cdot\sin{(\omega x)}\,\,dx = \frac{1}{2\omega^3}\left[\sin{(x\omega)} - x\omega\cdot\cos{(x\omega)}\right]_{x=0}^{x=t} =\\ &= \frac{1}{2\omega^3}\left(\sin{(\omega t)} - t\omega\cos{(\omega t)}\right),\\ \mathcal{L}^{-1}\left(\frac{s^2}{(s^2+\omega^2)^2}\right) &= \mathcal{L}^{-1}\left(\frac{s^2-\omega^2}{(s^2+\omega^2)^2} + \omega^2\frac{1}{(s^2+\omega^2)^2}\right) =\\ &= z\operatorname{előző}\operatorname{eredmény}\operatorname{segítségével}\\ &= t\cos{(\omega t)} + \frac{\omega^2}{2\omega^3}\left(\sin{(\omega t)} - t\omega\cos{(\omega t)}\right) =\\ &= \frac{1}{2\omega}\left(\sin{(t\omega)} + t\omega\cos{(t\omega)}\right). \end{split}$$

c) a b) feladat eredményei alapján:

$$\mathcal{L}^{-1}\left(\frac{3s+6}{(s^2+4)^2}\right) = \frac{3}{2\cdot 2}t\sin(2t) + \frac{6}{2\cdot 2^3}\left(\sin(2t) - 2t\cos(2t)\right) =$$

$$= \left(\frac{3}{4}t + \frac{3}{8}\right)\sin 2t - \frac{3}{4}t\cos 2t,$$

$$\mathcal{L}^{-1}\left(\frac{s^2 - 3}{(s^2 + 4)^2}\right) = \frac{1}{2\cdot 2}\left(\sin(2t) + 2t\cos(2t)\right) - \frac{3}{2\cdot 2^3}\left(\sin(2t) - 2t\cos(2t)\right) =$$

$$= \frac{1}{16}\sin 2t + \frac{7}{8}t\cos 2t,$$

$$\mathcal{L}^{-1}\left(\frac{s^3}{(s^2 + 9)^2}\right) = \mathcal{L}^{-1}\left(\frac{s}{s^2 + 9} - \frac{9s}{(s^2 + 9)^2}\right) = \cos(3t) - \frac{9}{2\cdot 3}t\sin(3t),$$

$$\mathcal{L}^{-1}\left(\frac{5s + 3}{(s^2 - 1)^2}\right) = \mathcal{L}^{-1}\left(\frac{3}{4(s + 1)} - \frac{3}{4(s - 1)} + \frac{2}{(s - 1)^2} - \frac{1}{2(s + 1)^2}\right) =$$

$$= \frac{3}{4}e^{-t} - \frac{3}{4}e^t + 2te^t - \frac{1}{2}te^{-t} = \left(\frac{3}{4} - \frac{1}{2}t\right)e^{-t} + \left(\frac{-3}{4} + 2t\right)e^t.$$

8.5.

$$\begin{split} e^{\alpha x} * e^{\beta x} &= \int_0^x e^{\alpha (x-t)} \cdot e^{\beta t} \, dt = e^{\alpha x} \int_0^x e^{(\beta - \alpha)t} \, dt = \\ &= e^{\alpha x} \left[\frac{e^{(\beta - \alpha)t}}{\beta - \alpha} \right]_{t=0}^{t=x} = \frac{e^{\alpha x}}{\beta - \alpha} \left[e^{(\beta - \alpha)x} - 1 \right] = \frac{e^{\beta x} - e^{\alpha x}}{\beta - \alpha}, \\ x * e^{\lambda x} &= \int_0^x (x - t) \cdot e^{\lambda t} \, dt = x \int_0^x e^{\lambda t} \, dt - \int_0^x t \cdot e^{\lambda t} \, dt = \end{split}$$

$$= x \left[\frac{1}{\lambda} e^{\lambda t} \right]_{t=0}^{t=x} - \left[\frac{1}{\lambda^2} e^{\lambda t} (\lambda t - 1) \right]_{t=0}^{t=x} = x \frac{1}{\lambda} \left[e^{\lambda x} - 1 \right] - \frac{1}{\lambda^2} \left[e^{\lambda x} (\lambda x - 1) + 1 \right] =$$

$$= \frac{1}{\lambda^2} e^{\lambda x} - x \frac{1}{\lambda} - \frac{1}{\lambda^2},$$

$$x^2 * e^{\lambda x} = \int_0^x (x - t)^2 \cdot e^{\lambda t} dt = \frac{1}{\lambda^3} \left[e^{t\lambda} \left(t^2 \lambda^2 - 2tx\lambda^2 - 2t\lambda + x^2\lambda^2 + 2x\lambda + 2 \right) \right]_{t=0}^{t=x} =$$

$$= \frac{1}{\lambda^3} \left(2e^{x\lambda} - x^2\lambda^2 - 2x\lambda - 2 \right),$$

 $1 * f(x) = \int_0^x 1 \cdot f(t) dt = F(x) - F(0)$ ahol F(x) az f(x) egy primitív függvénye,

$$\begin{split} \frac{x^n}{n!} * \frac{x^k}{k!} &= \frac{1}{n! \cdot k!} \int_0^x (x-t)^n \cdot t^k \, dt = / \text{teljes indukcióval } n \in \mathbb{N} \text{-re/} \\ &= \frac{1}{n! \cdot k!} \left(\left[(x-t)^n \cdot \frac{t^{k+1}}{k+1} \right]_{t=0}^{t=x} + \frac{n}{k+1} \int_0^x (x-t)^{n-1} \cdot t^{k+1} \, dt \right) = \cdot \cdot \cdot = \\ &= \frac{1}{n! \cdot k!} \left[(x-t)^n \cdot \frac{t^{k+1}}{k+1} \right]_{t=0}^{t=x} + \frac{1}{(n-1)! \cdot (k+1)!} \left[(x-t)^{n-1} \cdot \frac{t^{k+2}}{k+2} \right]_{t=0}^{t=x} + \\ &+ \cdot \cdot \cdot + \frac{1}{1! \cdot (k+n-1)!} \left(\left[(x-t)^1 \cdot \frac{t^{k+n}}{k+n} \right]_{t=0}^{t=x} + \frac{1}{k+n} \int_0^x t^{k+n} \, dt \right) = \\ &= 0 + \frac{1}{(k+n)!} \int_0^x t^{k+n} \, dt = \frac{1}{(k+n+1)!} \left[t^{k+n+1} \right]_{t=0}^{t=x} \, dt = \frac{1}{(k+n+1)!} \cdot x^{k+n+1}. \end{split}$$

M9. Integro-differenciálegyenletek megoldása Laplacetranszformációval

Lineáris differenciálegyenletek és -rendszerek

9.1. Az egyenlet mindkét oldalának vesszük a Laplace-transzformáltját ("mérleg-elv"): az $Y = \mathcal{L}(y)$ jelölést és az $\mathcal{L}(y') = s \cdot Y(s) - y(0)$ összefüggést felhasználva:

a)
$$\mathcal{L}(y'+3y) = sY(s) - 1 + 3Y(s) = \mathcal{L}(e^x + \cos(2x)) = \frac{1}{s-1} + \frac{s}{s^2+2^2},$$

 $Y(s) \cdot (s+3) - 1 = \frac{1}{s-1} + \frac{s}{s^2+2^2},$
 $Y(s) \cdot (s+3) = \frac{1}{s-1} + \frac{s}{s^2+2^2} + 1 = \frac{s(s^2+s+3)}{(s-1)(s^2+2^2)},$
 $Y(s) = \frac{s(s^2+s+3)}{(s-1)(s^2+2^2)(s+3)} = \frac{\frac{3}{13}s + \frac{4}{13}}{s^2+4} + \frac{1}{4(s-1)} + \frac{27}{52(s+3)},$
 $y(x) = \mathcal{L}^{-1}\left(\frac{\frac{3}{13}s + \frac{4}{13}}{s^2+4} + \frac{1}{4(s-1)} + \frac{27}{52(s+3)}\right) = \frac{3}{13}\cos(2x) + \frac{4}{13 \cdot 2}\sin(2x) + \frac{1}{4}e^x + \frac{27}{52}e^{-3x}.$
b) $\mathcal{L}(y'' - 2y' - 3y) = s(sY(s) - 0) - 0 - 2(sY(s) - 0) - 3Y(s) =$

$$= Y(s) (s^{2} - 2s - 3) = \mathcal{L} (e^{3x} + 2e^{x}) = \frac{1}{s - 3} + \frac{2}{s - 1} = \frac{3s - 7}{(s - 3)(s - 1)},$$

$$Y(s) = \frac{3s - 7}{(s - 3)(s - 1)(s^{2} - 2s - 3)} = \frac{3s - 7}{(s - 3)^{2}(s - 1)(s + 1)} =$$

$$= \frac{5}{16(s + 1)} - \frac{1}{2(s - 1)} + \frac{3}{16(s - 3)} + \frac{1}{4(s - 3)^{2}},$$

$$y(x) = \mathcal{L}^{-1} (Y(s)) = \frac{5}{16}e^{-x} - \frac{1}{2}e^{x} + \left(\frac{3}{16} + \frac{1}{4}t\right)e^{3x}.$$

c)

$$\mathcal{L}(y'' - 6y' + 13y) = s(sY(s) - 2) - 4 - 6(sY(s) - 2) + 13Y(s) =$$

$$= Y(s) + (8 - 2s) = \mathcal{L}(16xe^x) = \frac{16}{(s - 1)^2},$$

$$Y(s) = \frac{\frac{16}{(s-1)^2} - (8-2s)}{(s^2 - 6s + 13)} = \frac{2(s^3 - 6s^2 + 9s + 4)}{(s-1)^2((s-3)^2 + 4)} =$$

$$= \frac{1}{s-1} + \frac{2}{(s-1)^2} + \frac{s-5}{(s-3)^2 + 4} =$$

$$= \frac{1}{s-1} + \frac{2}{(s-1)^2} + \frac{s-3}{(s-3)^2 + 2^2} - \frac{2}{(s-3)^2 + 2^2},$$

$$y(x) = \mathcal{L}^{-1}(Y(s)) = e^x + 2xe^x + e^{3x}\cos(2x) - e^{3x}\sin(2x) =$$

= $e^x(1+2x) + e^{3x}(\cos(2x) - \sin(2x))$.

d)

$$\mathcal{L}(y'' + 6y' + 13y) = s^2 Y(s) + 6sY(s) + 13Y(s) =$$

$$= Y(s) (s^2 + 6s + 13) = \mathcal{L}(e^{3x} \cos(2x)) = \frac{s - 3}{(s - 3)^2 + 2^2},$$

$$Y(s) = \frac{s-3}{((s-3)^2 + 2^2)(s^2 + 6s + 13)} = \frac{s-3}{((s-3)^2 + 2^2)((s+3)^2 + 2^2)} = \frac{\frac{1}{52}s - \frac{5}{156}}{(s-3)^2 + 2^2} - \frac{\frac{1}{52}s + \frac{31}{156}}{(s+3)^2 + 2^2},$$

$$y(x) = \mathcal{L}^{-1}(Y(s)) = \mathcal{L}^{-1}\left(\frac{\frac{1}{52}(s-3) + \left(\frac{-5}{156} + \frac{3}{52}\right)}{(s-3)^2 + 2^2}\right) - \mathcal{L}^{-1}\left(\frac{\frac{1}{52}(s+3) + \left(\frac{31}{156} - \frac{3}{52}\right)}{(s+3)^2 + 2^2}\right) =$$

$$= e^{3x}\left(\frac{1}{52}\cos(2x) + \frac{1}{39\cdot 2}\sin(2x)\right) - e^{-3x}\left(\frac{1}{52}\cos(2x) + \frac{11}{78\cdot 2}\sin(2x)\right).$$

$$\begin{split} e) \, \mathcal{L} \left(y''' + 4y' \right) &= s^3 Y(s) + 4s Y(s) = Y(s) \left(s^3 + 4s \right) = \mathcal{L} (\cos 2x) = \frac{s}{s^2 + 2^2}, \\ Y(s) &= \frac{s}{\left(s^3 + 4s \right) \left(s^2 + 2^2 \right)} = \frac{1}{\left(s^2 + 4 \right)^2}, \\ y(x) &= \mathcal{L}^{-1} \left(\frac{1}{\left(s^2 + 2^2 \right)^2} \right) = \frac{1}{2 \cdot 2^3} \left(\sin(2x) - 2x \cos(2x) \right) \text{ a 8.4.b*}) \text{ feladat alapján.} \\ f) \, \mathcal{L} \left(y'' - 3y' - 10y \right) &= \left(s \left(sY(s) - 7 \right) - 2 \right) - 3 \left(sY(s) - 7 \right) - 10Y(s) = \\ &= \left(s^2 - 3s - 10 \right) Y(s) - 7s + 19 = \mathcal{L} \left(x^2 e^{-2x} \right) = \frac{2}{(s+2)^3}, \end{split}$$

$$\begin{split} Y(s) &= \frac{\frac{2}{(s+2)^3} + 7s - 19}{(s^2 - 3s - 10)} = \frac{7s^4 + 23s^3 - 30s^2 - 172s - 150}{(s+2)^4(s-5)} = \\ &= \frac{11317/2401}{s+2} - \frac{2/343}{(s+2)^2} - \frac{2/49}{(s+2)^3} - \frac{2/7}{(s+2)^4} + \frac{5490/2401}{s-5}, \end{split}$$

(a 7.5. feladat számításai szerint), ahonnan

$$y(x) = \mathcal{L}^{-1}(Y(s)) = \frac{11317}{2401}e^{-2x} - \frac{2}{343}xe^{-2x} - \frac{2}{49} \cdot \frac{1}{2}x^2e^{-2x} - \frac{2}{7} \cdot \frac{1}{6}x^3e^{-2x} + \frac{5490}{2401}e^{5x} = \frac{5490}{2401}e^{5x} + e^{-2x}\left(-\frac{1}{21}x^3 - \frac{2}{98}x^2 - \frac{2}{343}x + \frac{11317}{2401}\right).$$

9.2. a) Vezessük be a $z(x) := y(x + \pi)$ új ismeretlent. Ekkor az egyenlet:

$$z^{(3)}(x) + z'(x) = 1, \quad z(0) = 2, \quad z'(0) = 0, \quad z''(0) = \pi,$$
 vagyis $\mathcal{L}\left(z^{(3)}(x) + z'(x)\right) = s^3 \cdot Z(s) - 2s^2 - \pi + s \cdot Z(s) - 2 = \mathcal{L}(1) = \frac{1}{s},$

$$\frac{1}{s} + 2s^2 + 2 + \pi = 1 + 2s^3 + (2 + \pi)s = 2 + \pi = 1 + \pi s = 1$$

$$Z(s) = \frac{\frac{1}{s} + 2s^2 + 2 + \pi}{s^3 + s} = \frac{1 + 2s^3 + (2 + \pi)s}{s^2 (s^2 + 1)} = \frac{2 + \pi}{s} - \frac{1 + \pi s}{s^2 + 1} + \frac{1}{s^2},$$

$$z(x) = 2 + \pi - \sin(x) - \pi \cos(x) + x,$$

$$y(x) = z(x - \pi) = 2 + x - \sin(x - \pi) - \pi \cos(x - \pi) = x + 2 + \sin(x) + \pi \cos(x).$$

b) Vezessük be a z(x) := y(x+1) új ismeretlent. Ekkor az egyenlet:

$$z^{(3)}(x)-z''(x)=-6\,(x+1),\quad z(0)=7,$$
 $z'(0)=10,$ $z''(0)=12,$ megoldása:

$$\mathcal{L}\left(z^{(3)}(x) - z''(x)\right) = s^3 \cdot Z(s) - 7s^2 - 10s - 12 - s^2 \cdot Z(s) + 7s + 10 = 0$$

$$= Z(s)(s^3 - s^2) - 7s^2 - 3s - 2 = \mathcal{L}(-6x - 6) = -\frac{6}{s} - \frac{6}{s^2},$$

$$Z(s) = \frac{-\frac{6}{s} - \frac{6}{s^2} + 7s^2 + 3s + 2}{s^3 - s^2} = \frac{7s^4 + 3s^3 + 2s^2 - 6s - 6}{s^4 (s - 1)} = \frac{7}{s} + \frac{10}{s^2} + \frac{12}{s^3} + \frac{6}{s^4},$$

$$z(x) = x^3 + 6x^2 + 10x + 7,$$

$$y(x) = z(x-1) = (x-1)^3 + 6(x-1)^2 + 10(x-1) + 7 = x^3 + 3x^2 + x + 2.$$

$$\begin{aligned} \mathbf{9.3.} & a) \ \mathcal{L} \left(y''(x) - y(x) \right) = s^2 Y(s) - Y(s) = \left(s^2 - 1 \right) Y(s) = \\ & = \mathcal{L} \left(\frac{1}{1 + e^x} \right) = F(s), \\ Y(s) & = \frac{1}{s^2 - 1} \cdot F(s), \\ y(x) & = \mathcal{L}^{-1} \left(\frac{1}{s^2 - 1} \cdot F(s) \right) = \mathcal{L}^{-1} \left(\frac{1}{s^2 - 1} \right) * \mathcal{L}^{-1} \left(F(s) \right) = \\ & = sh(x) * \frac{1}{1 + e^x} = \int_0^x sh\left(x - t \right) \cdot \frac{1}{1 + e^t} \, dt = \int_0^x \frac{1}{2} \cdot \frac{e^{x - t} - e^{-x + t}}{1 + e^t} \, dt = \\ & = \frac{1}{2} \int_0^x e^x \frac{e^{-t}}{1 + e^t} - e^{-x} \frac{e^t}{1 + e^t} \, dt = \\ & = \frac{1}{2} e^x \left[\ln\left(1 + e^{-t}\right) - e^{-t} \right]_{t = 0}^{t = x} - \frac{1}{2} e^{-x} \left[\ln\left(e^t + 1\right) \right]_{t = 0}^{t = x} = \\ & = \frac{1}{2} e^x \left[\left(\ln\left(1 + e^{-x}\right) - e^{-x} \right) - \left(\ln(2) - 1 \right) \right] - \frac{1}{2} e^{-x} \left[\ln\left(e^x + 1\right) - \ln(2) \right] = \\ & = \frac{1}{2} \left(e^x \ln\left(\frac{1 + e^{-x}}{2} \right) - e^{-x} \ln\left(\frac{e^x + 1}{2} \right) + e^x - 1 \right). \end{aligned}$$

$$b) \ y''(x) = \arctan(x) \implies s^2 Y(s) = F(s) \quad \text{igy}$$

$$y(x) = \mathcal{L}^{-1} \left(\frac{1}{s^2} \cdot F(s) \right) = x * \arctan(x) = \int_0^x \left(x - t \right) \cdot \arctan(t) \, dt = \\ & = \left[\frac{1}{2} t - \frac{1}{2} \arctan t - \frac{1}{2} t^2 \arctan t - \frac{1}{2} x \ln\left(t^2 + 1\right) + tx \arctan t \right]_{t = 0}^{t = x} = \\ & = \frac{1}{2} x - \frac{1}{2} \arctan x - \frac{1}{2} x^2 \arctan x - \frac{1}{2} x \ln\left(x^2 + 1\right). \end{aligned}$$

Megjegyzés: A feladat ismételt integrállal is kiszámolható:

$$y'(x) = \int \arctan(x) \, dx = x \cdot \arctan(x) - \frac{1}{2} \ln(x^2 + 1) + C_1,$$

$$y(x) = \int x \arctan(x) - \frac{1}{2} \ln(x^2 + 1) + C_1 \, dx =$$

$$= \frac{1}{2} (x^2 - 1) \arctan(x) - \frac{1}{2} x \ln(x^2 + 1) + x \left(\frac{1}{2} + C_1\right) + C_2,$$
K.É.P.: $y(0) = C_2 = 0 \implies C_2 = 0,$

$$y'(x) = \frac{d}{dx} \left(\frac{1}{2} (x^2 - 1) \arctan(x) - \frac{1}{2} x \ln(x^2 + 1) + x \left(\frac{1}{2} + C_1\right) + C_2\right) =$$

$$= C_1 - \frac{1}{2} \ln(x^2 + 1) + x \arctan x, \quad y'(0) = C_1 + 0 = 0 \implies C_1 = 0,$$
Tehát $y(x) = \frac{1}{2} (x^2 - 1) \arctan(x) - \frac{1}{2} x \ln(x^2 + 1) + \frac{1}{2} x.$

$$c) \mathcal{L}(y''(x) - y(x)) = s^2 \cdot Y(s) - 0 - Y(s) = \mathcal{L}(\tanh(x)) = F(s),$$

$$Y(s) = \frac{1}{s^2 - 1} \cdot F(s),$$

$$y(x) = \mathcal{L}^{-1} \left(\frac{1}{s^2 - 1}\right) * \mathcal{L}^{-1}(F(s)) = \sinh(x) * \tanh(x) = \int_0^x \sinh(x - t) \cdot \frac{\sinh(t)}{\cosh(t)} dt =$$

$$= \int_0^x \frac{1}{\cosh(t)} \cdot \frac{1}{2} \left(\cosh(x) - \cosh(x - 2t)\right) dt =$$

$$=\frac{\cosh(x)}{2}\int_{0}^{x}\frac{1}{\cosh(t)}dt-\frac{1}{2}\int_{0}^{x}\frac{\cosh(x-2t)}{\cosh(t)}dt=\frac{\cosh(x)}{2}\cdot[A]_{t=0}^{t=x}-\frac{1}{2}[B]_{t=0}^{t=x}\quad\text{ahol}$$

$$A=\int\frac{1}{\cosh(t)}dt=2\arctan\left(e^{t}\right),$$

$$B=\int\frac{\cosh(x-2t)}{\cosh(t)}dt=\int\frac{e^{x-2t}+e^{-x+2t}}{e^{t}+e^{-t}}dt=\int\frac{\frac{e^{x}}{u^{2}}+\frac{u^{2}}{e^{x}}}{u+\frac{1}{u}}\cdot\frac{1}{u}\,du=$$

$$=\int\frac{e^{2x}+u^{4}}{e^{x}u^{2}(u^{2}+1)}du=\int\frac{1}{e^{x}}+\frac{e^{x}}{u^{2}}-\frac{1}{u^{2}+1}\left(e^{x}+\frac{1}{e^{x}}\right)du=$$

$$=\frac{1}{e^{x}}u-\frac{e^{x}}{u}-\left(e^{x}+e^{-x}\right)\arctan\left(e^{t}\right)=$$

$$=2\sinh\left(t-x\right)-2\cosh(x)\cdot\arctan\left(e^{t}\right),\quad \text{tehát}$$

$$y(x)=\frac{\cosh(x)}{2}\cdot\left[2\arctan\left(e^{t}\right)\right]_{t=0}^{t=x}-\frac{1}{2}\left[2\sinh\left(t-x\right)-2\cosh(x)\cdot\arctan\left(e^{t}\right)\right]_{t=0}^{t=x}=$$

$$=\cosh(x)\cdot\left(\arctan\left(e^{x}\right)-\arctan\left(1\right)\right)-$$

$$-\left(\sinh(0)-\cosh(x)\cdot\arctan\left(e^{x}\right)-\sinh\left(-x\right)+\cosh(x)\cdot\arctan\left(1\right)\right)=$$

$$=\cosh(x)\cdot\left(2\arctan\left(e^{x}\right)-\frac{\pi}{2}\right)-\sinh(x)=\cosh(x)\cdot\left(\ln\left(\frac{1+e^{x}}{1-e^{x}}\right)-\frac{\pi}{2}\right)-\sinh(x).$$

$$d^{*})\mathcal{L}\left(y''-2y'+y\right)=s^{2}Y(s)-2sY(s)+Y(s)=\mathcal{L}\left(1-e^{-x^{2}}\right)=F(s),$$

$$Y(s)=\frac{1}{s^{2}-2s+1}\cdot F(s)=\frac{1}{(s-1)^{2}}\cdot F(s),$$

$$y(x)=\mathcal{L}^{-1}(Y)=\mathcal{L}^{-1}\left(\frac{1}{(s-1)^{2}}\right)*\mathcal{L}^{-1}(F)=$$

$$=xe^{x}*\left(1-e^{-x^{2}}\right)=\int_{0}^{x}(x-t)e^{x-t}\left(1-e^{-t^{2}}\right)\,dt$$

a primitív függvény:

$$\int (x-t)e^{x-t} \left(1 - e^{-t^2}\right) dt = xe^x \int e^{-t} dt - e^x \int te^{-t} dt + e^x \int te^{-t^2-t} dt - xe^x \int e^{-t^2-t} dt = xe^x \int e^{-t} dt - e^x \int te^{-t} dt + e^x \int \frac{-1}{2} (-2t - 1 + 1)e^{-t^2-t} dt - xe^x \int e^{-t^2-t} dt = xe^x e^{-t} + e^x e^{-t} (t+1) + e^x \left(\frac{-1}{2}e^{-t^2-t} + \frac{-1}{2}\int e^{-t^2-t} dt\right) - xe^x \int e^{-t^2-t} dt = xe^x e^{-t} + e^x e^{-t} (t+1) - \frac{1}{2}e^x e^{-t^2-t} - \left(\frac{1}{2}e^x + xe^x\right) \cdot \int e^{-t^2-t} dt.$$

Az $F(t) = \int e^{-t^2-t} dt$ integrál ugyan **Newton tétele** szerint létezik, de **Liouville tétele** szerint nem írható fel *képlettel*. Tehát csak annyit írhatunk:

$$y(x) = \left[-xe^x e^{-t} + e^x e^{-t}(t+1) - \frac{1}{2}e^x e^{-t^2 - t} \right]_{t=0}^{t=x} - \left(\frac{1}{2}e^x + xe^x \right) \cdot \int_0^x e^{-t^2 - t} dt =$$

$$= 1 + xe^x - \frac{1}{2}e^x - \frac{1}{2}e^{-x^2} - \left(\frac{1}{2}e^x + xe^x \right) \cdot \int_0^x e^{-t^2 - t} dt.$$

Megjegyzés: Mivel bármely folytonos f(t) függvény esetén $\int_0^x f(t) \, dt$ tetszőleges $x \in \mathbb{R}$ értékre könnyen (és tetszőleges pontossággal) kiszámolható, ezért y(x)-et lényegében kiszámoltuk.

Használatosak az

$$\operatorname{erf}(x) := \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt$$

és a

$$\Phi(x) := \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{\frac{-t^2}{2}} dt = \frac{1}{2} \operatorname{erf}(x) + \frac{1}{2}$$

jelölések (és értékeik táblázatban is megtalálhatóak), melyek segítségével y(x) így írható:

$$y(x) = 1 + xe^{x} - \frac{1}{2}e^{x} - \frac{1}{2}e^{-x^{2}} - \left(\frac{1}{2}e^{x} + xe^{x}\right) \cdot \frac{\sqrt{\pi}e^{1/4}}{2} \cdot \left(\operatorname{erf}\left(x + \frac{1}{2}\right) - \operatorname{erf}\left(\frac{1}{2}\right)\right).$$

9.4. Az $X = \mathcal{L}(x)$ és $Y = \mathcal{L}(y)$ jelöléseket használjuk

a)
$$\begin{cases} sX(s) - 8 = 7X(s) + 9Y(s) \\ sY(s) - 2 = X(s) - Y(s) \end{cases}$$

$$Y(s) = \frac{1}{9} (sX(s) - 8 - 7X(s)),$$

$$\implies \frac{1}{9}s(sX(s) - 8 - 7X(s)) - 2 = X(s) - \frac{1}{9}(sX(s) - 8 - 7X(s)),$$

$$X(s)\left(\frac{1}{9}s^2 - \frac{7}{9}s - 1 + \frac{s}{9} - \frac{7}{9}\right) = \frac{8}{9}s + 2 + \frac{8}{9}$$

$$X(s) = \frac{\frac{8}{9}s + 2 + \frac{8}{9}}{\left(\frac{1}{9}s^2 - \frac{7}{9}s - 1 + \frac{s}{9} - \frac{7}{9}\right)} = \frac{8s + 26}{s^2 - 6s - 16} = \frac{8s + 26}{(s + 2)(s - 8)} = \frac{9}{s - 8} - \frac{1}{s + 2},$$

$$x(t) = \mathcal{L}^{-1}(X(s)) = 9e^{8t} - e^{-2t},$$

és az első differenciálegyenletből:

$$y(t) = \frac{1}{9}x'(t) - \frac{7}{9}x(t) = \frac{1}{9}(9e^{8t} - e^{-2t})' - \frac{7}{9}(9e^{8t} - e^{-2t}) = 8e^{8t} + \frac{2}{9}e^{-2t} - 7e^{8t} + \frac{7}{9}e^{-2t} = e^{8t} + e^{-2t}.$$

b)
$$\begin{cases} sX(s) = X(s) + 2Y(s) + \frac{1}{s-3} \\ sY(s) = X(s) + 2Y(s) \end{cases}$$
,

a második egyenletből $Y(s)=rac{X(s)}{s-2}$, majd visszahelyettesítve az első egyenletbe:

$$sX(s) = X(s) + 2\frac{X(s)}{s-2} + \frac{1}{s-3} \implies X(s) \left(s - 1 - \frac{2}{s-2}\right) = \frac{1}{s-3}.$$

$$X(s) = \frac{\frac{1}{s-3}}{s - 1 - \frac{2}{s-2}} = \frac{s - 2}{s\left(s - 3\right)^2} = \frac{2}{9(s-3)} + \frac{1}{3(s-3)^2} - \frac{2}{9s},$$

$$x(t) = \mathcal{L}^{-1}(X(s)) = \frac{2}{9}e^{3t} + \frac{1}{3}te^{3t} - \frac{2}{9},$$

$$Y(s) = \frac{X(s)}{s - 2} = \frac{1}{s(s-3)^2} = \frac{1}{3(s-3)^2} - \frac{1}{9(s-3)} + \frac{1}{9s},$$

$$y(t) = \mathcal{L}^{-1}(Y(s)) = \frac{1}{2}te^{3t} - \frac{1}{2}e^{3t} + \frac{1}{2}.$$

c)
$$\begin{cases} sX(s) + 1 = -5X(s) - Y(s) + \frac{5}{s-1} \\ sY(s) - 2 = X(s) - 3Y(s) - \frac{50}{(s-1)^2} \end{cases}$$

$$\begin{cases} (s+5)X(s) + Y(s) = \frac{5}{s-1} - 1 = \frac{-s+6}{s-1} \\ -X(s) + (s+3)Y(s) = 2 - \frac{50}{(s-1)^2} = \frac{2s^2 - 4s - 48}{(s-1)^2} \end{cases}.$$

$$X(s) = \frac{\det \begin{bmatrix} \frac{-s+6}{s-1} & 1\\ \frac{2s^2-4s-48}{(s-1)^2} & s+3 \end{bmatrix}}{\det \begin{bmatrix} s+5 & 1\\ -1 & s+3 \end{bmatrix}} = \frac{\frac{-s^3+2s^2+19s+30}{s^2-2s+1}}{s^2+8s+16} = \frac{2}{(s-1)^2} - \frac{1}{s+4} + \frac{2}{(s+4)^2},$$

$$Y(s) = \frac{\det \begin{bmatrix} s+5 & \frac{-s+6}{s-1} \\ -1 & \frac{2s^2-4s-48}{(s-1)^2} \end{bmatrix}}{\det \begin{bmatrix} s+5 & 1 \\ -1 & s+3 \end{bmatrix}} = \frac{\frac{2s^3+5s^2-61s-246}{s^2-2s+1}}{s^2+8s+16} = \frac{2s^3+5s^2-61s-246}{(s-1)^2(s+4)^2} = \frac{3}{s-1} - \frac{12}{(s-1)^2} - \frac{1}{s+4} - \frac{2}{(s+4)^2},$$

ahonnan

$$x(t) = \mathcal{L}^{-1}(X(s)) = 2te^{t} - e^{-4t} + 2te^{-4t},$$

$$y(t) = \mathcal{L}^{-1}(Y(s)) = 3e^{t} - 12te^{t} - e^{-4t} - 2te^{-4t}.$$

d)
$$\begin{cases} sX(s) = Y(s) + \frac{1}{s} \\ sY(s) = Z(s) + \frac{2}{s} \\ sZ(s) = X(s) + \frac{3}{s} \end{cases}$$

ahonnan

$$X(s) = \frac{s^2 + 2s + 3}{s^4 - s} = \frac{s}{\left(s + \frac{1}{2}\right)^2 + \frac{3}{4}} + \frac{2}{s - 1} - \frac{3}{s},$$

$$Y(s) = \frac{2s^2 + 3s + 1}{s^4 - s} = \frac{-s - 1}{\left(s + \frac{1}{2}\right)^2 + \frac{3}{4}} + \frac{2}{s - 1} - \frac{1}{s},$$

$$Z(s) = \frac{3s^2 + s + 2}{s^4 - s} = \frac{1}{\left(s + \frac{1}{2}\right)^2 + \frac{3}{4}} + \frac{2}{s - 1} - \frac{2}{s},$$

és

$$x(t) = \mathcal{L}^{-1}(X(s)) = \mathcal{L}^{-1}\left(\frac{s + \frac{1}{2} - \frac{1}{2}}{\left(s + \frac{1}{2}\right)^2 + \left(\sqrt{\frac{3}{4}}\right)^2}\right) + 2e^t - 3 =$$

$$= e^{\frac{-1}{2}t}\left(\cos\left(\sqrt{\frac{3}{4}}t\right) - \frac{1}{2}\sqrt{\frac{4}{3}}\sin\left(\sqrt{\frac{3}{4}}t\right)\right) + 2e^t - 3,$$

$$y(t) = \mathcal{L}^{-1}(X(s)) = -e^{\frac{-1}{2}t} \left(\cos\left(\sqrt{\frac{3}{4}}t\right) + \frac{\sqrt{3}}{3}\sin\left(\sqrt{\frac{3}{4}}t\right) \right) + 2e^t - 1,$$

$$z(t) = \mathcal{L}^{-1}(X(s)) = \sqrt{\frac{4}{3}}e^{\frac{-1}{2}t} \cdot \sin\left(\sqrt{\frac{3}{4}}t\right) + 2e^t - 2.$$

Integro-differenciálegyenletek és -rendszerek

9.5. a) Mivel $\int_0^x e^{x-t} \cdot y(t) dt = \exp *y$ (konvolúció), ezért

$$\mathcal{L}\left(\int_{0}^{x}e^{x-t}\cdot y(t)\,dt\right)=\mathcal{L}\left(e^{t}\right)\cdot\mathcal{L}\left(y(t)\right)=\tfrac{1}{s-1}\cdot Y(s).$$

Az eredeti egyenlet mindkét oldalát \mathcal{L} -transzformálva:

$$\mathcal{L}(y) = Y(s) = \mathcal{L}\left(\sin(x) + \int_0^x e^{x-t} \cdot y(t) dt\right) = \frac{1}{1+s^2} + \frac{1}{s-1} \cdot Y(s),$$

$$Y(s) = \frac{\frac{1}{1+s^2}}{1-\frac{1}{s-1}} = \frac{s-1}{(s^2+1)(s-2)} = \frac{1}{5(s-2)} - \frac{1}{5} \cdot \frac{s-3}{s^2+1},$$

$$y(x) = \mathcal{L}^{-1}(Y) = \frac{1}{5}e^{2x} - \frac{1}{5}\cos x + \frac{3}{5}\sin x.$$

b)
$$\mathcal{L}\left(y'(x) + 2y(x) + \int_0^x y(t)dt\right) =$$

$$sY(s) - 1 + 2Y(s) + \frac{1}{s}Y(s) = \mathcal{L}(\sin(x)) = \frac{1}{s^2+1},$$

$$Y(s) = \frac{\frac{1}{s^2+1}+1}{s+2+\frac{1}{s}} = \frac{s^3+2s}{\left(s^2+1\right)\left(s+1\right)^2} = \frac{1}{s+1} - \frac{3}{2\left(s+1\right)^2} + \frac{1}{2\left(s^2+1\right)},$$

$$y(x) = \mathcal{L}^{-1}(Y) = e^{-x} - \frac{3}{2}xe^{-x} + \frac{1}{2}\sin x.$$

c) Vegyük észre, hogy
$$\int_0^x (x-t) \cdot y_i(t) dt = x * y_i(x)$$
, ezért

$$\begin{cases} Y_1(s) = \frac{2}{s} - \mathcal{L}(x) \cdot Y_1(s) - 4 \cdot \frac{1}{s} Y_2(s) = \frac{2}{s} - \frac{1}{s^2} \cdot Y_1(s) - \frac{4}{s} \cdot Y_2(s) \\ Y_2(s) = \frac{1}{s} - \frac{1}{s} Y_1(s) - \mathcal{L}(x) \cdot Y_2(s) = \frac{1}{s} - \frac{1}{s} \cdot Y_1(s) - \frac{1}{s^2} \cdot Y_2(s) \end{cases} ,$$
 azaz

azaz
$$\begin{cases} \left(1 + \frac{1}{s^2}\right) \cdot Y_1(s) + \frac{4}{s} Y_2(s) = \frac{2}{s} \\ \frac{1}{s} \cdot Y_1(s) + \left(1 + \frac{1}{s^2}\right) \cdot Y_2(s) = \frac{1}{s} \end{cases},$$

ahonnan

$$Y_1(s) = \frac{2s}{(s+1)^2} = \frac{2(s+1)}{(s+1)^2} - \frac{2}{(s+1)^2} \implies y_1(x) = \mathcal{L}^{-1}(Y_1) = 2e^{-x}(1-x),$$

$$Y_2(s) = \frac{s}{(s+1)^2} = \frac{1}{2}Y_1(s)$$
 \Longrightarrow $y_2(x) = \mathcal{L}^{-1}(Y_2) = e^{-x}(1-x).$

Alkalmazások

9.6. Az egyenlet mindegyik esetben $1 \cdot i''(t) + 3i'(t) + \frac{1}{0,001}i(t) = u'(t)$. Az egyenlet bal oldalának Laplace-transzformáltja :

$$\mathcal{L} = s^2 I(s) - s \cdot i_0 - i_1 + 3 \left(sI(s) - i_0 \right) + \frac{1}{0,001} I(s) =$$

$$= I(s) \cdot \left(s^2 + 3s + \frac{1}{0,001} \right) + \left(s \cdot i_0 + i_1 + 3i_0 \right).$$

a) i(0) = i'(0) = 0 esetén

$$\mathcal{L} = I(s) \cdot \left(s^2 + 3s + \frac{1}{0,001}\right) = \mathcal{L}\left(u'(t)\right) = 0 \implies i(t) \equiv 0 \quad (\forall t \in \mathbb{R}).$$

$$i(0) = i_0, \ i'(0) = i_1 \quad \text{eset\'en}$$

$$\mathcal{L} = s^2 I(s) - s \cdot i_0 - i_1 + 3(sI(s) - i_0) + \frac{1}{0.001}I(s) = 0,$$

$$I(s) = \frac{s \cdot i_0 + i_1 + 3 \cdot i_0}{s^2 + 3s + 1000},$$

$$\begin{split} i(t) &= \mathcal{L}^{-1}\left(I(s)\right) = i_0 \cdot e^{-\frac{3}{2}t} \left(\cos\left(\frac{\sqrt{3991}}{2}t\right) + \frac{2}{\sqrt{3991}} \left(\frac{3}{2} + \frac{i_1}{i_0}\right) \cdot \sin\left(\frac{\sqrt{3991}}{2}t\right)\right) = \\ &= i_0 T \cdot e^{-\frac{3}{2}t} \cdot \sin\left(\frac{\sqrt{3991}}{2}t + \delta\right) \quad \text{egy csillapod\'o szinuszhull\'am} \end{split}$$

 $(T \in \mathbb{R}^+, \delta \in \mathbb{R}).$

b)
$$\mathcal{L} = I(s) \cdot \left(s^2 + 3s + \frac{1}{0,001}\right) = \mathcal{L}\left(\sin'(10t)\right) = \mathcal{L}\left(10\cos(10t)\right) = \frac{10s}{s^2 + 100}$$
, ahonnan

$$I(s) = \frac{10s}{(s^2 + 100)(s^2 + 3s + 1000)} = \frac{\frac{10}{901}s + \frac{10}{2703}}{s^2 + 100} - \frac{\frac{10}{901}s + \frac{100}{2703}}{s^2 + 3s + 1000}$$

és \mathcal{L}^{-1} után (a 10.5. feladatban ismertetett (15) összefüggés felhasználásával)

$$i(t) = \frac{1}{2703}\sin(10t) + \frac{10}{901}\cos(10t) - \frac{10}{901}e^{-\frac{3}{2}t}\left(\cos\frac{\sqrt{3991}}{2}t + \frac{11\sqrt{3991}}{11\,973}\sin\frac{\sqrt{3991}}{2}t\right)$$

$$= \frac{1}{3\sqrt{901}}\sin(10t + \arctan(30)) - \frac{10}{901}e^{-\frac{3}{2}t} \cdot \frac{2\sqrt{9010}}{3\sqrt{3991}}\sin\left(\frac{\sqrt{3991}}{2}t + \arctan\left(\frac{3\sqrt{3991}}{11}\right)\right)$$

$$\approx 0.0111\sin(10t + 1.5375) - 0.0111e^{-\frac{3}{2}t}\sin(31.5872t + 1.5128)$$

egy beálló szinuszhullám hiszen $t \to \infty$ esetén $e^{-\frac{3}{2}t} \to 0$.

c*) A b) feladathoz hasonlóan

$$\mathcal{L} = I(s) \cdot \left(s^2 + 3s + \frac{1}{0,001}\right) = \mathcal{L}\left(u'(t)\right) = \mathcal{L}\left(\omega_g \cos\left(\omega_g t\right)\right) = \frac{s\omega_g}{s^2 + \omega_g^2}$$

ahonnan

$$I(s) = \frac{s\omega_g}{\left(s^2 + \omega_g^2\right)\left(s^2 + 3s + 1000\right)} = \omega_g \cdot \left(\frac{As + B}{s^2 + \omega_g^2} + \frac{Cs + D}{s^2 + 3s + 1000}\right)$$

ahol

$$A = C = \frac{\omega_g^2 - 1000}{nev}, \quad B = \frac{-3\omega_g^2}{nev}, \quad D = \frac{-3000}{nev}$$

és

$$nev = \omega_q^4 - 1991\omega_q^2 + 1000\,000,$$

a nevezőnek nincs valós gyöke.

$$i(t) = \mathcal{L}^{-1}(I(s)) =$$

$$= \omega_g \cdot \left(A \cos t \omega_g + \frac{B}{\omega_g} \sin t \omega_g \right) + \omega_g C e^{-\frac{3}{2}t} \left(\cos \frac{\sqrt{3991}}{2} t + \frac{2\frac{D}{C} - 3}{\sqrt{3991}} \sin \frac{\sqrt{3991}}{2} t \right) =$$

$$= T_1 \cdot \sin (\omega_g t + v_1) + C \cdot T_2 \cdot e^{-\frac{3}{2}t} \sin \left(\frac{\sqrt{3991}}{2} t + v_2 \right),$$

ahol

$$T_1 = \sqrt{A^2 + \left(\frac{B}{\omega_g}\right)^2} = \frac{1}{\sqrt{nev}},$$

$$T_2 = \sqrt{1^2 + \left(\frac{2\frac{D}{C} - 3}{\sqrt{3991}}\right)^2} = \sqrt{\frac{4000}{3991}} \cdot \frac{\sqrt{nev}}{\left|\omega_g^2 - 1000\right|},$$

$$v_1 = \arctan\left(\frac{A\omega_g}{B}\right) = \arctan\left(\frac{\omega_g^2 - 1000}{-3}\right)$$

és

$$v_2 = \arctan\left(\frac{\sqrt{3991}}{\frac{2}{C}D - 3}\right) = \arctan\left(\frac{-\sqrt{3991}\left(\omega_g^2 - 1000\right)}{3\omega_g^2 + 3000}\right)$$

a (15) azonosság alapján, tehát

$$i(t) =$$

$$= \omega_g \cdot \left(\frac{1}{\sqrt{nev}} \sin(\omega_g t + v_1) + \frac{\omega_g^2 - 1000}{nev} \cdot \frac{-3(\omega_g^2 + 1000)}{\omega_g^2 - 1000} \cdot e^{-\frac{3}{2}t} \sin\left(\frac{\sqrt{3991}}{2}t + v_2\right) \right) =$$

$$= \omega_g \cdot \left(\frac{1}{\sqrt{nev}} \sin(\omega_g t + v_1) + \frac{-3(\omega_g^2 + 1000)}{nev} \cdot e^{-\frac{3}{2}t} \sin\left(\frac{\sqrt{3991}}{2}t + v_2\right) \right).$$

Elemzés: $t \to \infty$ esetén az $e^{-\frac{3}{2}t}$ tag elenyésző, ekkor

$$i(t) \approx \frac{\omega_g}{\sqrt{nev}} \sin(\omega_g t + v_1) = \frac{\omega_g}{\sqrt{\omega_g^4 - 1991\omega_g^2 + 1000000}} \sin(\omega_g t + v_1)$$

ami egy tiszta szinuszhullám.

Megjegyezzük, hogy a gyakorlatban fellépő sok u(t) függvény esetén a megoldást Laplace -transzformációval nem lehet előállítani, a megoldás közelítése u(t) Fourier-sorával lehetséges. A 10.5. feladatban látunk erre példát.

 d^{**}) Az $Li''(t) + Ri'(t) + \frac{1}{c}i(t) = u'(t) = U_0\omega_g\cos(\omega_g t)$ egyenlet általános megoldása:

$$i(t) = \frac{c\omega_g U_0 \cos t\omega_g - Lc^2 \omega_g^3 U_0 \cos t\omega_g + Rc^2 \omega_g^2 U_0 \sin t\omega_g}{L^2 c^2 \omega_g^4 - 2Lc\omega_g^2 + R^2 c^2 \omega_g^2 + 1} + C_2 \exp\left(\frac{1}{L}t\left(\frac{1}{2}\sqrt{\frac{1}{c}(R^2c - 4L)} - \frac{1}{2}R\right)\right) + C_3 \exp\left(-\frac{1}{L}t\left(\frac{1}{2}R + \frac{1}{2}\sqrt{\frac{1}{c}(R^2c - 4L)}\right)\right).$$

Az $i(0) = D_t i(0) = 0$ K.É.P. megoldása

$$\begin{split} i(t) &= \frac{c\omega_g U_0 \cos\left(t\omega_g\right) - Lc^2 \omega_g^3 U_0 \cos\left(t\omega_g\right) + Rc^2 \omega_g^2 U_0 \sin\left(t\omega_g\right)}{L^2 c^2 \omega_g^4 - 2Lc\omega_g^2 + R^2 c^2 \omega_g^2 + 1} = \\ &= U_0 \cdot \frac{\left(\frac{1}{c\omega_g} - L\omega_g\right) \cdot \cos\left(t\omega_g\right) + R\sin\left(t\omega_g\right)}{L^2 \omega_g^2 - 2\frac{L}{c} + R^2 + \frac{1}{c^2 \omega_g^2}} = \\ &= \frac{U_0}{R^2 + \left(L\omega_g - \frac{1}{c\omega_g}\right)^2} \cdot \left(R\sin\left(t\omega_g\right) + \left(\frac{1}{c\omega_g} - L\omega_g\right) \cdot \cos\left(t\omega_g\right)\right) = \\ &= \frac{U_0}{R^2 + \left(L\omega_g - \frac{1}{c\omega_g}\right)^2} \cdot \sqrt{R^2 + \left(\frac{1}{c\omega_g} - L\omega_g\right)^2} \cdot \sin\left(t\omega_g + \arctan\left(\frac{\frac{1}{c\omega_g} - L\omega_g}{R}\right)\right) = \\ &= \frac{U_0}{\sqrt{R^2 + \left(L\omega_g - \frac{1}{c\omega_g}\right)^2}} \cdot \sin\left(t\omega_g - \arctan\left(\frac{L\omega_g - \frac{1}{c\omega_g}}{R}\right)\right) = \\ &= \frac{U_0}{\sqrt{R^2 + \left(L\omega_g - \frac{1}{c\omega_g}\right)^2}} \cdot \sin\left(\omega_g t - \arctan\left(\frac{L\omega_g}{R} - \frac{1}{Rc\omega_g}\right)\right) \end{split}$$

(a 10.5. feladatban ismertetett (15) azonosság felhasználásával).

Elemzés: Az amplitúdó
$$A\left(\omega_{g}\right)=\dfrac{U_{0}}{\sqrt{R^{2}+\left(L\omega_{g}-\frac{1}{c\omega_{g}}\right)^{2}}}$$

pontosan akkor maxim'alis, ha $L\omega_g-\frac{1}{c\omega_g}=0$, azaz

$$\omega_g = \frac{1}{\sqrt{Lc}},$$

ekkor $A\left(\omega_g\right)=\frac{U_0}{R}$ és az áramerősség $i(t)=\frac{U_0}{R}\cdot\sin\left(\omega_g t\right)$, továbbá fáziseltolódás sincs (mintha L és c egymást kompenzálná).

Ha c-t tudjuk változtatni, akkor $c=\frac{1}{L\omega_g^2}$ kell; ha L változtatható, akkor legyen $L=\frac{1}{c\omega_g^2}$; míg ω_g -re a feltétel $\omega_g=\frac{1}{\sqrt{Lc}}$.

9.7.
$$\mathcal{L}(m \cdot v'(t)) = ms \cdot V(s) - mv_0 = \mathcal{L}(mg - kv(t)) = \frac{mg}{s} - k \cdot V(s),$$

$$V(s) = \frac{\frac{mg}{s} + mv_0}{ms + k} = \frac{mg + smv_0}{s(ms + k)} = \frac{mv_0 - \frac{g}{k}m^2}{k + ms} + \frac{gm}{ks},$$

$$v(t) = \frac{-1}{km}e^{-\frac{k}{m}t}\left(gm^2 - kmv_0\right) + \frac{gm}{k}, \quad \lim_{t \to \infty} v(t) = \frac{mg}{k}.$$

Megjegyzés: az Útmutatóban említett tétel szerint is

$$\lim_{t \to \infty} v(t) = \lim_{s \to 0} s \cdot V(s) = \frac{mg}{k}.$$

9.8. A differenciálegyenlet mindegyik esetben $m \cdot s''(t) = -k \cdot s(t) + F_K(t)$.

a) Az $m \cdot s''(t) = -k \cdot s(t)$ azaz $s''(t) = \frac{-k}{m} \cdot s(t)$ egyenlet megoldása (a $\mathcal{L}\left(s(t)\right) = S\left(\xi\right)$ és $s'(0) = s_1$ jelölésekkel):

$$\mathcal{L}(s''(t)) = \xi \cdot (\xi \cdot S(\xi) - s_0) - s_1 = S(\xi) \xi^2 - s_0 \xi - s_1 = \frac{-k}{m} \cdot S(\xi),$$

$$S(\xi) \left(\xi^2 + \frac{k}{m} \right) = s_0 \xi + s_1 \implies S(\xi) = \frac{s_0 \xi + s_1}{\xi^2 + \frac{k}{m}},$$

$$s(t) = \mathcal{L}^{-1}\left(S\left(\xi\right)\right) = \mathcal{L}^{-1}\left(\frac{s_0\xi + s_1}{\xi^2 + \frac{k}{m}}\right) = s_0\cos\left(\sqrt{\frac{k}{m}}t\right) + \frac{s_1}{\sqrt{\frac{k}{m}}}\sin\left(\sqrt{\frac{k}{m}}t\right) =$$

$$= \sqrt{s_0^2 + \frac{s_1}{\omega_R}} \cdot \sin\left(\omega_R + \arctan\left(\frac{s_0}{s_1}\omega_R\right)\right)$$

a 10.5. feladat megoldásában ismertetett (15) azonosság alapján, ahol $\omega_R = \sqrt{\frac{k}{m}}$ a "ru-gó+m tömegű test"-rendszer saját frekvenciája.

Elemzés: A mozgás legnagyobb kitérése= amplitúdó= $A=\sqrt{s_0^2+\frac{s_1}{\omega_R}}$. Ha csak elengedjük a rendszert, akkor $s_1=0$, ekkor a fenti megoldás

$$s(t) = s_0 \cdot \sin\left(\omega_R + \frac{\pi}{2}\right) = s_0 \cdot \cos\left(\omega_R\right),$$

ez esetben $A=s_0$ és a fáziskésés $\delta=\arctan\left(\frac{s_0}{s_1}\omega_R\right)=\frac{\pi}{2}.$

b) Az egyenlet most $s''(t) = \frac{-k}{m} \cdot s(t) + B \cdot \sin(\omega_K t)$, megoldása az a) részben használt jelölésekkel:

$$\mathcal{L}\left(s''(t)\right) = \xi^2 \cdot S\left(\xi\right) - s_0 \xi - s_1 = \frac{-k}{m} \cdot S\left(\xi\right) + B \frac{\omega_K}{s^2 + \omega_K^2},$$

$$S\left(\xi\right) \left(\xi^2 + \frac{k}{m}\right) = s_0 \xi + s_1 + B \frac{\omega_K}{\xi^2 + \omega_K^2} \implies$$

$$S\left(\xi\right) = \frac{s_0 \xi + s_1 + B \frac{\omega_K}{\xi^2 + \omega_K^2}}{\xi^2 + \frac{k}{m}} = \frac{s_0 \xi^3 + s_1 \xi^2 + s_0 \xi \omega_K^2 + s_1 \omega_K^2 + B \omega_K}{(\xi^2 + \omega_K^2)(\xi^2 + \omega_K^2)} =$$

$$= \frac{\xi s_0 + E}{\xi^2 + \omega_R^2} - \frac{F}{\xi^2 + \omega_K^2} \quad \text{ahol} \quad F = B \frac{\omega_K}{\omega_K^2 - \omega_R^2}, \quad E = s_1 + F, \quad \omega_R = \sqrt{\frac{k}{m}},$$

$$s(t) = \mathcal{L}^{-1} \left(\frac{\xi s_0 + E}{\xi^2 + \omega_R^2} - \frac{F}{\xi^2 + \omega_K^2}\right) = s_0 \cos\left(t\omega_R\right) + \frac{E}{\omega_R} \sin\left(t\omega_R\right) - \frac{F}{\omega_K} \sin\left(t\omega_K\right) =$$

$$= s_0 \cos\left(t\omega_R\right) + \left(\frac{s_1}{\omega_R} + \frac{\omega_K}{\omega_R} \frac{B}{\omega_K^2 - \omega_R^2}\right) \sin\left(t\omega_R\right) - \frac{B}{\omega_K^2 - \omega_R^2} \cdot \sin\left(t\omega_K\right) =$$

$$= A_2 \cdot \sin\left(\omega_R + \delta_2\right) + \frac{B}{\omega_K^2 - \omega_R^2} \left(\frac{\omega_K}{\omega_R} \sin\left(t\omega_R\right) - \sin\left(t\omega_K\right)\right).$$

Elemzés: ha a kényszerfrekvencia ω_K megközelíti ω_R -et, a rendszer saját frekvenciáját, akkor az amplitúdó nagyon nagy lehet.

c) Az egyenlet most $s''(t) = \frac{-k}{m} \cdot s(t) + B \cdot \sin{(\omega_R t)}$, megoldása a b)-ben számoltak felhasználásával:

$$S(\xi) = \frac{s_0 \xi + s_1 + B \frac{\omega_R}{\xi^2 + \omega_R^2}}{\xi^2 + \omega_R^2} = \frac{s_0 \xi^3 + s_1 \xi^2 + s_0 \xi \omega_R^2 + s_1 \omega_R^2 + B \omega_R}{(\xi^2 + \omega_R^2)^2} =$$

$$= \frac{\xi s_0 + s_1}{\xi^2 + \omega_R^2} + \frac{B \omega_R}{(\xi^2 + \omega_R^2)^2},$$

$$s(t) = \mathcal{L}^{-1} \left(\frac{\xi s_0 + s_1}{\xi^2 + \omega_R^2} + \frac{B \omega_R}{(\xi^2 + \omega_R^2)^2} \right) =$$

$$= s_0 \cos(t \omega_R) + \left(\frac{s_1}{\omega_R} + \frac{B}{2\omega_R^2} \right) \sin(t \omega_R) - \frac{B}{2\omega_R} t \cos(t \omega_R) =$$

$$= A_3 \cdot \sin(\omega_R + \delta_3) - \frac{B}{2\omega_R} t \cos(t \omega_R).$$

Elemzés: $t \to \infty$ esetén az amplitúdó mindenképpen $+\infty$ -be tart.

Megjegyezzük, hogy a feladatban megoldott *állandó együtthatójú másodrendű lineáris homogén* differenciálegyenleteket az ún. "klasszikus" módszerrel egyszerűbben és áttekinthetőbben oldhatjuk meg, ez sajnos jelen Feladatgyűjteménybe terjedelmi korlátozások miatt nem fért be.

M10. Fourier-sorok, alkalmazások

Fourier-sorok

10.1. a)
$$f_A(x) = \begin{cases} 1 & \text{ha } -\pi \le x < 0 \\ -1 & \text{ha } 0 \le x < \pi \end{cases}$$
,
$$a_k = \frac{1}{\pi} \left(\int_0^0 \cos(kx) \, dx + \int_0^\pi -\cos(kx) \, dx \right) = 0$$

(páratlan függvény "koszinuszos" tagjai nullák),

$$b_k = \frac{1}{\pi} \left(\int_{-\pi}^0 \sin(kx) \, dx + \int_0^{\pi} -\sin(kx) \, dx \right) = \frac{2}{\pi} \left[\frac{-\cos(kx)}{k} \right]_{x=-\pi}^{x=0} =$$

$$= \frac{2}{\pi} \left(\frac{-\cos(0)}{k} - \frac{-\cos(k\pi)}{k} \right) = \frac{2}{\pi k} \left(-1 + \cos(k\pi) \right) =$$

$$= \begin{cases} \frac{-4}{\pi k} & \text{ha } k \text{ páratlan} \\ 0 & \text{ha } k \text{ páros} \end{cases}$$

tehát

$$\mathcal{F}(f_A(x)) = \frac{-4}{\pi} \left(\sin(x) + \frac{1}{3} \sin(3x) + \frac{1}{5} \sin(5x) + \dots \right) =$$
$$= \sum_{k=1}^{\infty} \frac{-4}{(2k-1)\pi} \sin((2k-1)x).$$

$$f_B(x) = 2x \text{ ha } x \in [-1, 1);$$

$$a_k = 1 \cdot \int_{-1}^{1} 2x \cdot \cos(k\pi x) \, dx = 0$$
 mert az integrandus páratlan függvény,

$$b_k = 1 \cdot \int_{-1}^{1} 2x \sin(k\pi x) \, dx = \frac{2}{\pi^2 k^2} \left[\sin(\pi kx) - \pi kx \cdot \cos(\pi kx) \right]_{x=-1}^{x=+1} = \frac{4}{\pi k} (-1)^{k+1}$$

tehát
$$\mathcal{F}(f_B(x)) = \sum_{k=1}^{\infty} \frac{4(-1)^{k+1}}{\pi k} \sin(k\pi x).$$

$$f_C(x) = \begin{cases} cl - 3 & \text{ha } -4.5 \le x < -3 \\ 6 + 2x & \text{ha } -3 \le x < 0 \\ 6 - 2x & \text{ha } 0 \le x < 3 \\ -3 & \text{ha } 3 \le x < 4.5 \end{cases}$$
$$a_0 = \frac{1}{4.5} \int_{-3}^{4.5} f_C(x) \, dx = 2,$$

$$a_k = 2 \cdot \frac{1}{4.5} \left(\int_{-4.5}^{-3} (-3) \cos\left(\frac{k\pi x}{4.5}\right) dx + \int_{-3}^{0} (6+2x) \cos\left(\frac{k\pi x}{4.5}\right) dx \right) =$$

$$= \frac{-81}{2\pi^2 k^2} \cos(\frac{2\pi k}{3}) + \frac{27}{2\pi k} \sin\left(\frac{2\pi k}{3}\right) + \frac{81}{2\pi^2 k^2},$$

 $b_k = 0$ mert az integrandus páros függvény,

tehát

$$\mathcal{F}(f_C(x)) = 1 + \sum_{k=1}^{\infty} \left(\frac{-81}{2\pi^2 k^2} \cos(\frac{2\pi k}{3}) + \frac{27}{2\pi k} \sin\left(\frac{2\pi k}{3}\right) + \frac{81}{2\pi^2 k^2} \right) \cdot \cos\left(\frac{k\pi x}{4,5}\right) =$$

$$\approx 1 + 9,8767 \cdot \cos\left(0,6981x\right) - 0,3219 \cdot \cos\left(1,3962x\right) + \dots$$

$$f_D(x) = \begin{cases} -6x-3 & \text{ha} & -1 \leq x < 0 \\ -6x+3 & \text{ha} & 0 \leq x < 1 \end{cases}, \ a_k = 0 \text{ mert az integrandus páratlan függvény,}$$
 vény,

$$b_k = \frac{2}{1} \cdot \int_0^1 (3 - 6x) \sin(k\pi x) \, dx = \frac{-2}{\pi^2 k^2} \left[6\sin(\pi k x) + 3\pi k (1 - 2x) \cos(\pi k x) \right]_{x=0}^{x=1} =$$

$$= \frac{-2}{\pi^2 k^2} \left(6\sin(\pi k) - 3\pi k \cos(\pi k) - 6\sin(0) - 3\pi k \cos(0) \right) = \frac{6}{\pi k} \left(\cos(\pi k) + 1 \right) =$$

$$= \frac{12}{\pi k} \text{ ha } k \text{ páros, tehát } \mathcal{F}(f_D(x)) = \sum_{\ell=1}^{\infty} \frac{12}{2\ell \pi} \sin(2\ell \pi x).$$

$$f_E(x) = \begin{cases} \frac{-1}{\pi}x & \text{ha} & -\pi \leq x < 0 \\ \frac{1}{\pi}x & \text{ha} & 0 \leq x < \pi \end{cases}, \text{ páros függvény, tehát } b_k = 0, \\ a_0 = \frac{1}{\pi}T = 1, \\ a_k = \frac{2}{\pi}\int\limits_0^{\pi}\frac{1}{\pi}x\cos(kx)\,dx = \frac{2}{\pi^2k^2}\left[\cos(kx) + kx\sin(kx)\right]_{x=0}^{x=\pi} = \\ = \frac{2}{\pi^2k^2}\left(\cos(k\pi) - 1\right) = \frac{-4}{\pi^2k^2}\,\text{ha } k\,\text{ páratlan, tehát} \\ \mathcal{F}\left(f_E(x)\right) = \frac{1}{2} + \sum_{\ell=0}^{\infty}\frac{-4}{(2\ell+1)^2\pi^2}\cos\left((2\ell+1)x\right). \end{cases}$$

$$f_F(x) = \begin{cases} 0 & \text{ha} & -b \leq x < a - b \\ c & \text{ha} & a - b \leq x < a - b \\ 0 & \text{ha} & 0 \leq x < a \\ -c & \text{ha} & a \leq x < b \end{cases} \quad (a < b), \ L = b, \ a_0 = \frac{1}{L}T = 0, \\ a_k = \frac{c}{b}\left(\int\limits_{-b}^{0}\cos\left(\frac{k\pi x}{b}\right)\,dx - \int\limits_{a}^{b}\cos\left(\frac{k\pi x}{b}\right)\,dx\right) = \\ = \frac{c}{k\pi}\left(\sin\left(k\pi - \frac{k\pi a}{b}\right) - \sin(k\pi) + \sin\left(\frac{k\pi a}{b}\right)\right) = \\ = \begin{cases} \frac{2c}{k\pi}\sin\left(\frac{k\pi a}{b}\right)\,\text{ha} \quad k\,\text{páratlan} \\ 0 & \text{ha} \quad k\,\text{páros} \end{cases}, \\ b_k = \frac{c}{b}\left(\int\limits_{a-b}^{0}\sin\left(\frac{k\pi x}{b}\right)\,dx - \int\limits_{a}^{b}\sin\left(\frac{k\pi x}{b}\right)\,dx\right) = \\ = \frac{-c}{k\pi}\left(-\cos\left(\frac{k\pi a}{b} - k\pi\right) - \cos(k\pi) + \cos\left(\frac{k\pi a}{b}\right)\right) = \\ = \begin{cases} \frac{c}{k\pi}\left(2\cos\left(\pi k\frac{a}{b}\right) + 1\right) & \text{ha} \quad k\,\text{páros} \end{cases},$$

$$f_G(x) = -6 \cdot \left(f_E(x \cdot \pi) - \frac{1}{2} \right) = 3 - 6f_E(x \cdot \pi),$$

tehát

$$\mathcal{F}(f_G(x)) = 3 - 6\mathcal{F}(f_E)(x \cdot \pi) = 3 - 6\left(\frac{1}{2} - \frac{4}{\pi^2} \sum_{\ell=0}^{\infty} \frac{1}{(2\ell+1)^2} \cos((2\ell+1)\pi x)\right) =$$

$$= \sum_{\ell=0}^{\infty} \frac{24}{(2\ell+1)^2 \pi^2} \cos((2\ell+1)\pi x).$$

$$f_H(x) = \begin{cases} \frac{1}{2}x + 1 & \text{ha} & -4 \le x < 0\\ \frac{-1}{2}x + 1 & \text{ha} & 0 \le x < 2 \\ -1 & \text{ha} & 2 \le x < 4 \end{cases} \quad L = 4, \ a_0 = \frac{1}{L}T = \frac{-1}{4},$$

$$a_{k} = \frac{1}{4} \int_{-4}^{6} \left(\frac{1}{2}x + 1\right) \cos\left(\frac{k\pi x}{4}\right) dx + \frac{1}{4} \int_{0}^{2} \left(\frac{-1}{2}x + 1\right) \cos\left(\frac{k\pi x}{4}\right) dx - \frac{1}{4} \int_{2}^{4} \cos\left(\frac{k\pi x}{4}\right) dx = \frac{1}{4\pi^{2}k^{2}} \left[8\cos\left(\frac{\pi kx}{4}\right) + 4\pi k\sin\left(\frac{\pi kx}{4}\right) + 2\pi kx\sin\left(\frac{\pi kx}{4}\right)\right]_{x=-4}^{x=0} + \frac{-1}{4\pi^{2}k^{2}} \left[8\cos\left(\frac{\pi kx}{4}\right) - 4\pi k\sin\left(\frac{\pi kx}{4}\right) + 2\pi kx\sin\left(\frac{\pi kx}{4}\right)\right]_{x=0}^{x=2} - \frac{1}{\pi k} \left[\sin\left(\frac{\pi kx}{4}\right)\right]_{x=2}^{x=4} = \frac{1}{2\pi^{2}k^{2}} \left(2\pi k\sin\left(k\frac{\pi}{2}\right) - 4\cos\left(k\frac{\pi}{2}\right) - 4\cos\left(\pi k\right) + 8\right) = \frac{12 + 2\pi}{2\pi^{2}}, \ \frac{1}{\pi^{2}}, \ \frac{12 - 6\pi}{18\pi^{2}}, \ 0, \ \frac{12 + 10\pi}{50\pi^{2}}, \ \frac{1}{9\pi^{2}}, \ \frac{12 - 14\pi}{98\pi^{2}}, \ 0, \ \frac{12 + 18\pi}{162\pi^{2}}, \ \frac{1}{25\pi^{2}}, \ \frac{12 - 22\pi}{242\pi^{2}}, \dots$$

$$b_{k} = \frac{1}{4} \int_{-4}^{0} \left(\frac{1}{2}x + 1\right) \sin\left(\frac{k\pi x}{4}\right) dx + \frac{1}{4} \int_{0}^{2} \left(\frac{-1}{2}x + 1\right) \sin\left(\frac{k\pi x}{4}\right) dx - \frac{1}{4} \int_{2}^{4} \sin\left(\frac{k\pi x}{4}\right) dx = \frac{-1}{4\pi^{2}k^{2}} \left[4\pi k \cos\left(\frac{1}{4}\pi k x\right) - 8\sin\left(\frac{1}{4}\pi k x\right) + 2\pi k x \cos\left(\frac{1}{4}\pi k x\right)\right]_{x=-4}^{x=0} + \frac{-1}{4\pi^{2}k^{2}} \left[8\sin\left(\frac{1}{4}\pi k x\right) + 4\pi k \cos\left(\frac{1}{4}\pi k x\right) - 2\pi k x \cos\left(\frac{1}{4}\pi k x\right)\right]_{x=0}^{x=2} - \frac{-1}{\pi k} \left[\cos\left(\frac{1}{4}\pi k x\right)\right]_{x=2}^{x=4} = \frac{-1}{\pi^{2}k^{2}} \left(2\sin\left(k\frac{\pi}{2}\right) + \pi k \cos\left(k\frac{\pi}{2}\right)\right) = \frac{-2}{\pi^{2}}, \frac{1}{2\pi}, \frac{2}{9\pi^{2}}, \frac{-1}{4\pi}, \frac{-2}{25\pi^{2}}, \frac{1}{6\pi}, \frac{2}{49\pi^{2}}, \frac{-1}{8\pi}, \frac{-2}{81\pi^{2}}, \frac{1}{10\pi}, \dots$$

$$\begin{split} f_I(x) &= \begin{cases} 2 & \text{ha} & -\pi \leq x < 0 \\ \frac{2}{\pi} & \text{ha} & 0 \leq x < \pi \end{cases} \quad L = \frac{3}{2}\pi, \ a_0 = \frac{1}{L}T = \frac{2}{3\pi} \cdot 3\pi = 2, \\ a_k &= \frac{2}{3\pi} \int_{-\pi}^0 2\cos\left(\frac{2k\pi x}{3\pi}\right) \, dx + \frac{2}{3\pi} \int_0^\pi \frac{2}{\pi}\cos\left(\frac{2k\pi x}{3\pi}\right) \, dx = \\ &= \frac{2}{\pi k} \left[\sin\left(\frac{2}{3}kx\right)\right]_{x=-\pi}^{x=-\theta} + \frac{2}{\pi^2 k} \left[\sin\left(\frac{2}{3}kx\right)\right]_{x=0}^{x=\pi} = \frac{2\pi + 2}{k\pi^2} \cdot \sin\left(k\frac{2\pi}{3}\right), \\ b_k &= \frac{2}{3\pi} \int_0^2 2\sin\left(\frac{2k\pi x}{3\pi}\right) \, dx + \frac{2}{3\pi} \int_0^\pi \frac{2}{\pi}\sin\left(\frac{2k\pi x}{3\pi}\right) \, dx = \\ &= \frac{-2}{\pi k} \left[\cos\left(\frac{2}{3}kx\right)\right]_{x=-\pi}^{x=0} + \frac{-2}{\pi^2 k} \left[\cos\left(\frac{2}{3}kx\right)\right]_{x=0}^{x=\pi} = \\ &= \frac{-2}{\pi k} - \frac{-2}{\pi k}\cos\left(\frac{2}{3}k\pi\right) + \frac{-2}{\pi^2 k}\cos\left(\frac{2}{3}k\pi\right) + \frac{2}{\pi^2 k} = \frac{2-2\pi}{\pi^2 k}\left(1-\cos\left(k\frac{2\pi}{3}\right)\right), \\ f_J(x) &= f_A\left(x-\frac{\pi}{2}\right) \text{ tehát} \\ \mathcal{F}\left(f_J(x)\right) &= \mathcal{F}\left(f_A\right)\left(x-\frac{\pi}{2}\right) = \sum_{k=1}^\infty \frac{-4}{(2k-1)\pi}\sin\left((2k-1)\left(x-\frac{\pi}{2}\right)\right) = \\ &= \frac{-4}{\pi}\left(\sin\left(x-\frac{\pi}{2}\right) + \frac{1}{3}\sin\left(3x-\frac{3\pi}{2}\right) + \frac{1}{5}\sin\left(5x-\frac{5\pi}{2}\right) + \ldots\right) = \\ &= \frac{4}{\pi}\left(\cos(x) - \frac{1}{3}\cos(3x) + \frac{1}{5}\cos(5x) - + \ldots\right) = \sum_{\ell=0}^\infty \frac{-4(-1)^\ell}{(2\ell+1)\pi}\cos\left((2\ell+1)x\right). \\ f_K(x) &= \begin{cases} 2 & \text{ha} & -3 \leq x < -2 \\ -1 & \text{ha} & 2 \leq x < 0 \\ 2 & \text{ha} & 0 \leq x < 1 \\ -1 & \text{ha} & 1 \leq x < 3 \end{cases} \\ a_k &= \frac{2}{3}\int_{-3}^2 \cos\left(\frac{k\pi x}{3}\right) \, dx - \frac{1}{3}\int_{-2}^0 \cos\left(\frac{k\pi x}{3}\right) \, dx + \frac{2}{3}\int_0^1 \cos\left(\frac{k\pi x}{3}\right) \, dx - \\ &- \frac{1}{3}\int_0^3 \cos\left(\frac{k\pi x}{3}\right) \, dx = \frac{2}{k\pi}\left(\sin\left(\frac{-2k\pi}{3}\right) - \sin\left(\frac{-3k\pi}{3}\right)\right) - \end{cases} \end{split}$$

 $-\frac{1}{k\pi}\left(\sin(0)-\sin\left(\frac{-2k\pi}{3}\right)\right)+\frac{2}{k\pi}\left(\sin\left(\frac{k\pi}{3}\right)-\sin(0)\right)-$

$$-\frac{1}{k\pi} \left(\sin \left(\frac{3k\pi}{3} \right) - \sin \left(\frac{k\pi}{3} \right) \right) = \boxed{\frac{3}{\pi k} \left(\sin \left(k\frac{\pi}{3} \right) - \sin \left(k\frac{2\pi}{3} \right) \right)} =$$

$$= 0, \frac{3\sqrt{3}}{2\pi}, 0, \frac{-3\sqrt{3}}{4\pi}, 0, 0, 0, \frac{3\sqrt{3}}{8\pi}, 0, \frac{-3\sqrt{3}}{10\pi}, 0, 0, 0, \frac{3\sqrt{3}}{14\pi}, 0,$$

$$\frac{-3\sqrt{3}}{16\pi}, \dots (k = 1, 2, \dots)$$

$$b_{k} = \frac{2}{3} \int_{-3}^{-2} \sin\left(\frac{k\pi x}{3}\right) dx - \frac{1}{3} \int_{-2}^{0} \sin\left(\frac{k\pi x}{3}\right) dx + \frac{2}{3} \int_{0}^{1} \sin\left(\frac{k\pi x}{3}\right) dx - \frac{1}{3} \int_{1}^{3} \sin\left(\frac{k\pi x}{3}\right) dx = \frac{-2}{k\pi} \left(\cos\left(\frac{-2k\pi}{3}\right) - \cos\left(\frac{-3k\pi}{3}\right)\right) + \frac{1}{k\pi} \left(\cos(0) - \cos\left(\frac{-2k\pi}{3}\right)\right) - \frac{2}{k\pi} \left(\cos\left(\frac{k\pi}{3}\right) - \cos(0)\right) + \frac{1}{k\pi} \left(\cos\left(\frac{3k\pi}{3}\right) - \cos\left(\frac{k\pi}{3}\right)\right) = \frac{3}{\pi k} \left(\cos(\pi k) - \cos\left(\frac{k\pi}{3}\right) - \cos\left(\frac{k\pi}{3}\right) + 1\right) = 0, \quad \frac{9}{2\pi}, \quad 0, \quad \frac{9}{4\pi}, \quad 0, \quad 0, \quad 0, \quad \frac{9}{10\pi}, \quad 0, \quad 0, \quad 0, \quad \frac{9}{14\pi}, \quad 0, \quad \frac{9}{16\pi}, \quad \dots \quad (k = 1, 2, \dots)$$

$$f_{L}(x) = \begin{cases} 0 & \text{ha} \quad -2\pi \le x < -\pi \\ \frac{1}{\pi}x + 1 & \text{ha} \quad -\pi \le x < 0 \end{cases},$$

páros függvény, tehát $b_k=0,\ L=2\pi,\ a_0=\frac{1}{\pi}T=1,$ és

$$a_k = \frac{2}{2\pi} \int_0^{\pi} \left(1 - \frac{1}{\pi} x \right) \cos\left(\frac{kx}{2}\right) dx = \frac{-1}{\pi^2 k^2} \left[4 \cos\left(\frac{1}{2}kx\right) + 2k(x - \pi) \sin\left(\frac{1}{2}kx\right) \right]_{x=0}^{x=\pi} =$$

$$= \frac{4}{\pi^2 k^2} \left(1 - \cos\left(\frac{1}{2}k\pi\right) \right) = \frac{4}{\pi^2 k^2}, \ \frac{8}{\pi^2 k^2}, \ \frac{4}{\pi^2 k^2}, \ 0, \ \frac{4}{\pi^2 k^2}, \ \frac{8}{\pi^2 k^2}, \ \frac{4}{\pi^2 k^2}, \ 0, \dots$$

rövidítve: $=\frac{4}{\pi^2 k^2} \cdot (1, 2, 1, 0, 1, 2, 1, 0, \dots).$

10.1.b) $f(x) = f_{0,1}(x)$ 10.2. feladatban, L = 1 választással,

$$g(x) = \frac{-1}{6}f_D(x) + \frac{1}{2}\operatorname{tehát}\mathcal{F}\left(g(x)\right) = \frac{-1}{6}\mathcal{F}\left(f_D(x)\right) + \frac{1}{2} = \frac{1}{2} - \sum_{\ell=1}^{\infty}\frac{1}{\ell\pi}\sin\left(2\ell\pi x\right).$$

10.2. $f_0(x)=1$: periódus: L>0 tetszőleges rögzített, $a_0=\frac{1}{L}\int\limits_{-L}^{L}1dx=2,\ a_k=\frac{1}{L}\int\limits_{-L}^{L}1\cdot\cos\left(\frac{k\pi x}{L}\right)\,dx=0,\ b_k=0$ mert f(x) páros függvény, tehát

$$\mathcal{F}(1) = 1$$

$$\begin{split} \mathcal{F}(f_1(x)) &= 2 \left(\sin(x) - \frac{1}{2} \sin(2x) + \frac{1}{3} \sin(3x) - \dots \right) = \sum_{k=1}^{\infty} \frac{2(-1)^{k-1}}{k} \sin(kx), \\ \mathcal{F}(f_2(x)) &= \frac{\pi^2}{3} + \sum_{k=1}^{\infty} \frac{4(-1)^k}{k^2} \cos(kx), \\ \mathcal{F}(f_3(x)) &= 5\mathcal{F}\left(x^2\right) - 4\mathcal{F}(x) + 7\mathcal{F}(1) = \\ &= 5 \left(\frac{\pi^2}{3} + \sum_{k=1}^{\infty} \frac{4(-1)^k}{k^2} \cos(kx) \right) - 4 \sum_{k=1}^{\infty} \left(\frac{2(-1)^{k-1}}{k} \sin(kx) \right) + 7 \cdot 1 = \\ &= \left(\frac{5\pi^2}{3} + 7 \right) + \sum_{k=1}^{\infty} \frac{20(-1)^k}{k^2} \cos(kx) + \sum_{k=1}^{\infty} \frac{-8(-1)^{k-1}}{k} \sin(kx), \\ \mathcal{F}(f_4(x)) &= \frac{1}{6} \sin(6) + \sum_{k=1}^{\infty} \frac{-12(-1)^k \sin(6)}{k^2\pi^2 - 36} \cos\left(\frac{k\pi x}{2}\right), \\ \mathcal{F}(f_5(x)) &= \frac{2}{\pi} - \frac{4}{\pi} \left(\frac{1}{1 \cdot 3} \cos(2x) + \frac{1}{3 \cdot 5} \cos(4x) + \frac{1}{5 \cdot 7} \cos(6x) + \dots \right), \\ \mathcal{F}(f_6(x)) &= \frac{e^4 - e^{-4}}{8} + \sum_{k=1}^{\infty} \frac{4(-1)^k \cdot (e^4 - e^{-4})}{k^2\pi^2 + 16} \cos\left(\frac{k\pi x}{2}\right), \\ \mathcal{F}(f_7(x)) &= \frac{1}{2} + \sum_{k=1}^{\infty} \frac{-2}{(2k-1)\pi} \sin\left((2k-1)x\right), \\ f_8(x) &= -f_A(x) \text{ (lásd a } 10.1.a) \text{ feladatot), fgy } \mathcal{F}(f_8(x)) = -\mathcal{F}(f_A(x)), \\ f_{u,v}(x) &= \begin{cases} u & ha & -L \leq x < 0 \\ v & ha & 0 \leq x < L \end{cases} \\ u & ba & 0 \leq x < L \end{cases} \\ a_0 &= \frac{1}{L} \int_{-L}^{L} f(x) \, dx = \frac{1}{L} (u+v)L = u+v, \\ a_k &= \frac{1}{L} \left(\int_{-L}^{0} u \cos\left(\frac{k\pi x}{L}\right) \, dx + \int_{0}^{L} v \cos\left(\frac{k\pi x}{L}\right) \, dx \right) = \frac{u+v}{L} \int_{0}^{L} \cos\left(\frac{k\pi x}{L}\right) \, dx = \frac{u+v}{L} \int_{0}^{L} \cos\left(\frac{k\pi x}{L$$

 $= \frac{u+v}{L} \cdot \frac{L}{k\pi} \left[\sin\left(\frac{k\pi x}{L}\right) \right]^{x=L} = \frac{u+v}{k\pi} \left(\sin(k\pi) - \sin(0) \right) = 0 \quad (k \in \mathbb{N} \setminus \{0\}),$

 $b_k = \frac{1}{L} \left(\int_0^0 u \sin\left(\frac{k\pi x}{L}\right) dx + \int_0^L v \sin\left(\frac{k\pi x}{L}\right) dx \right) =$

 $= \frac{1}{L} \cdot \frac{L}{k\pi} \left(u \left[-\cos\left(\frac{k\pi x}{L}\right) \right]^{x=0} + v \left[-\cos\left(\frac{k\pi x}{L}\right) \right]^{x=0} \right) =$

$$=\frac{u}{k\pi}\left(\cos(-k\pi)-\cos(0)\right)+\frac{v}{k\pi}\left(\cos(0)-\cos(k\pi)\right)=0 \text{ páros } k \text{ esetén, és}$$

$$b_k=\frac{u}{k\pi}\cdot(-2)+\frac{v}{k\pi}\cdot2=\frac{2(v-u)}{k\pi} \text{ ha } k \text{ páratlan, vagyis}$$

$$\mathcal{F}\left(f_{u,v}(x)\right) = \frac{u+v}{2} + \sum_{k=1}^{\infty} \frac{2\left(v-u\right)}{k\pi} \sin\left(\frac{k\pi x}{L}\right).$$

Megjegyzés: $f_{u,v}(x)$ -nek speciális esetei az 10.1.a) feladatból $f_A(x)$, 10.1.b) feladatból $f_a(x)$, 10.2. feladatból f_6 és f_7 függvények.

$$\mathcal{F}(f_{10}(x)) = \frac{\pi}{4} - \frac{2}{\pi} \left(\cos x + \frac{1}{3^2} \cos(3x) + \dots \right) + \left(\sin x - \frac{1}{2} \sin(2x) + \frac{1}{3} \sin(3x) + \dots \right) =$$

$$= \frac{\pi}{4} + \sum_{k=1}^{\infty} \frac{-2}{(2k-1)^2 \pi} \cos((2k-1)x) + \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} \sin(kx),$$

$$\mathcal{F}(f_{11}(x)) = \frac{1}{4} + \sum_{\ell=0}^{\infty} \left(\frac{-2}{(2\ell+1)^2 \pi^2} \cos((2\ell+1)\pi x) \right) + \sum_{k=1}^{\infty} \left(\frac{-3(-1)^k}{k\pi} \sin(k\pi x) \right),$$

$$\mathcal{F}(f_{12}(x)) = \frac{1}{2} + \sum_{\ell=0}^{\infty} \left(\frac{-2(-1)^{\ell}}{(2\ell+1)\pi} \cos\left(\frac{(2\ell+1)\pi}{2}x\right) \right) +$$

$$+ \sum_{k=1}^{\infty} \left(\frac{4\left(\cos\left(\frac{k\pi}{2}\right) - (-1)^k\right)}{k\pi} \sin\left(\frac{k\pi}{2}x\right) \right).$$

10.3. Ezek a feladatokat önállóan oldjuk meg.

10.4. Láttuk, hogy
$$f_B(x) = 2x_{|x \in [-1,1)}$$
 és $\mathcal{F}(f_B(x)) = \sum_{k=1}^{\infty} \frac{4(-1)^{k+1}}{\pi k} \sin(k\pi x)$, vagyis

$$f_B(x) = 2x \approx \frac{4}{\pi}\sin(\pi x) - \frac{4}{2\pi}\sin(2\pi x) + \frac{4}{3\pi}\sin(3\pi x) - \frac{4}{4\pi}\sin(4\pi x) + \dots,$$

tehát az f_B függvényt az $\mathcal{F}\left(f_B(x)\right)$ "kezdőszeleteivel" közelíthetjük:

$$s_1 = \frac{4}{\pi} \sin(\pi x)$$
 (fekete),
 $s_2 = \frac{4}{\pi} \sin(\pi x) - \frac{4}{2\pi} \sin(2\pi x)$ (zöld),
 $s_3 = \frac{4}{\pi} \sin(\pi x) - \frac{4}{2\pi} \sin(2\pi x) + \frac{4}{3\pi} \sin(3\pi x)$ (piros),

11. ábra. 10.4.

$$s_4 = \frac{4}{\pi}\sin(\pi x) - \frac{4}{2\pi}\sin(2\pi x) + \frac{4}{3\pi}\sin(3\pi x) - \frac{4}{4\pi}\sin(4\pi x)$$
 (kék),

 $narancsárga = f_B$

$$f_J(x) = \begin{cases} -1 & \text{ha} & -\pi \le x < \pi/2 \\ +1 & \text{ha} & -\pi/2 \le x < \pi/2 \approx \frac{4}{\pi} \cos(x) - \frac{4}{3\pi} \cos(3x) + \frac{4}{5\pi} \cos(5x) - \dots \\ -1 & \text{ha} & \pi/2 \le x < \pi \end{cases}$$

Láthatjuk, hogy mindkét függvénynél a periódus végpontjai felé közeledve f_B és s_i eltéréseri még mindig nagyok, de azon intervallum, ahol a hiba pl. $\delta=10\%$ -nál kisebb – egyre nő, és δ is csökkenthető, ha $\mathcal{F}\left(f_B(x)\right)$ -nek egyre több tagját vesszük.

Alkalmazások

10.5. $\mathcal{F}(U(t))=\mathcal{F}(|\sin(100\pi t)|)$ meghatározása: $b_k=0$ minden $k\in\mathbb{N}$ sorszámra, mert f páros függvény. $L=\frac{1}{200}$ így

$$\begin{split} a_0 &= 2 \cdot 200 \int\limits_0^{1/200} \sin(100\pi t) \, dt = \frac{400}{100\pi} \cos(0) = \frac{4}{\pi}, \\ a_k &= 2 \cdot 200 \int\limits_0^{1/200} \sin(100\pi t) \cos(200k\pi t) \, dt = \\ &= \frac{-2}{\pi^2 - (2k\pi)^2} \left[(\pi - 2k\pi) \cos\left((100\pi + 200k\pi) t \right) + \\ &+ (\pi + 2k\pi) \cos\left((100\pi - 200k\pi) t \right) \right]_{t=0}^{t=1/200} = \\ &= \frac{-2}{\pi^2 - (2k\pi)^2} \left(\left((\pi - 2k\pi) \cos\left(\frac{\pi + 2k\pi}{2} \right) + (\pi + 2k\pi) \cos\left(\frac{\pi - 2k\pi}{2} \right) \right) - 2\pi \right), \\ \text{tehát } \mathcal{F}(U_{be}(t)) &= 240\mathcal{F}(|\sin(100\pi t)|) = \\ &= \frac{480}{\pi} - \frac{320}{\pi} \cos(200\pi t) - \frac{64}{\pi} \cos(400\pi t) - \frac{192}{7\pi} \cos(600\pi t) - \frac{320}{21\pi} \cos(800\pi t) - \cdots = \\ &= \frac{480}{\pi} - \frac{960}{\pi} \left(\frac{1}{1 \cdot 3} \cos(200\pi t) + \frac{1}{3 \cdot 5} \cos(400\pi t) + \frac{1}{5 \cdot 7} \cos(600\pi t) + \cdots \right). \end{split}$$

Az útmutató alapján a bemeneti körben

$$1 \cdot i'(t) + R \cdot i(t) = U_{be}(t), \quad i(0) = 0$$

és a kimeneti körben

$$U_{ki}(t) = R \cdot i(t).$$

Mivel $\mathcal{L}\left(U_{be}(t)\right)$ nem számolható, ezért Fourier-sorának $u_k(t)$ tagjaira külön-külön oldjuk meg a bemeneti kör egyenletét, a végső megoldás $U_{ki}(t)$ pedig az egyes "részmegoldások" összege.

$$u_0(t) = \frac{480}{\pi}$$
: az $i'(t) + R \cdot i(t) = \frac{480}{\pi}$

egyenlet megoldása

$$i(t) = \frac{-480}{R\pi} \left(e^{-Rt} - 1 \right).$$

Mivel $e^{-Rt} \rightarrow 0$, ezért

$$i(t) = \frac{480}{R\pi}$$

vehető megoldásnak, azaz

$$u_{ki,0}(t) = \frac{480}{\pi}.$$

(Rövidebb, "fizikus" megoldás: egyenáram esetén a tekercs ellenállása 0, így az ellenálláson folyó áram $u_{ki,0}(t)=U_{be}(t)=\frac{480}{\pi} \ (t\in\mathbb{R})$.)

$$u_k(t) = v_k \cos(\omega_k t) \quad (v_k, \omega_k \in \mathbb{R}) \implies \text{az}$$

$$i'(t) + R \cdot i(t) = v_k \cos(\omega_k t)$$

egyenlet megoldása

$$i_k(t) = Ce^{-Rt} + \frac{1}{R^2 + \omega_k^2} \left(Rv_k \cos(t\omega_k) + v_k \omega_k \sin(t\omega_k) \right).$$

Ismét elhagyhatjuk az exponenciális tagot mivel $t \to 0$.

Továbbá érdemes alkalmaznunk a középiskolából jól ismert

$$A\sin(u) + B\cos(u) = T \cdot \sin(u+v) \tag{15}$$

$$= T \cdot \cos\left(u + v - \frac{\pi}{2}\right) = T \cdot \cos(u - w) \tag{16}$$

 $\text{ahol} \quad T = \sqrt{A^2 + B^2}, \quad v = \operatorname{arctg}\left(\frac{B}{A}\right) \quad \text{\'es} \quad \ w = \operatorname{arctg}\left(\frac{A}{B}\right)$

és

$$\arctan\left(\frac{1}{x}\right) = \frac{\pi}{2} - \arctan(x)$$

azonosságokat:

$$i_k(t) = rac{v_k}{\sqrt{R^2 + \omega_k^2}} \cos\left(t\omega_k - rctg\left(rac{\omega_k}{R}
ight)
ight).$$

Tehát, az

$$\frac{R}{\sqrt{R^2 + \omega_k^2}} = \frac{1000}{\sqrt{1000^2 + (k \cdot 200\pi)^2}} = \frac{1}{\sqrt{1 + k^2 \frac{\pi^2}{25}}}$$

átalakítás után

$$u_{ki,k}(t) = R \cdot i_k(t) = \frac{v_k}{\sqrt{1 + \frac{\pi^2}{25}}} \cos\left(t\omega_k - \operatorname{arctg}\left(\frac{\omega_k}{R}\right)\right),$$

vagyis

$$U_{ki}(t) = u_{ki,0}(t) + u_{ki,1}(t) + u_{ki,1}(t) + \cdots =$$

$$\begin{split} &=\frac{480}{\pi}-\frac{960}{\pi}\left(\frac{1}{1\cdot 3\sqrt{1+\frac{\pi^2}{25}}}\cos\left(200\pi t-\arctan\left(\frac{\pi}{5}\right)\right)+\right.\\ &\left.+\frac{1}{3\cdot 5\sqrt{1+\frac{4\pi^2}{25}}}\cos\left(400\pi t-\arctan\left(\frac{2\pi}{5}\right)\right)+\ldots\right)\\ &\approx 152,7887-86,2340\cos\left(628,3185t-0,5610\right)-17,2346\cos\left(1256,6371-0,8986\right). \end{split}$$

A mellékelt ARAMKOR-ANIM.GIF (+html) mozgóképen szemléltetjük a kimenő feszültség változását a bemeneti feszültségtől függően.

Javasolt irodalom

Feladatgyűjtemények:

- [FZ] Fekete Zoltán Zalay Miklós: *Többváltozós függvények analízise, Példatár* ("Bolyai-könyvek"), Műszaki Kiadó, Budapest, 1985.
- [KKM] Krasnov, M., Kiselev, A., Makarenko, G.: *Problems and excercises in integral equations*, Mir, Moscow, 1971.
- [P] Ponomarjov, K. K.: *Differenciálegyenletek felállítáa és megoldása*, Tankönyvkiadó, Budapest, 1981.
- [L] Lajkó Károly: *Kalkulus II. példatár*, mobiDIÁK könyvtár, Debreceni Egyetem Kiadó, 2004. http://www.math.klte.hu/~lajko/jegyzet/kalk2pt.pdf
- [KSz1] Koltay László Szalkai István: *Analízis I. feladatgyűjtemény*, Pannon Egyetemi Kiadó, Veszprém, 2009.
- [KSz2] Koltay László Szalkai István: *Analízis feladatok és interaktív megoldásuk*, Pannon Egyetem Könyvtár DIGITOOL digitális gyűjteménye (jelenleg szünetel), vagy: http://math.uni-pannon.hu/~szalkai/.

Tankönyvek:

[GyP] Győri István – Pituk Mihály: *Kalkulus informatikusoknak II.*, HTTP://WWW.TANKONYVTAR.HU, megjelenés alatt

Online lexikon:

[w] http://mathworld.wolfram.com/

Név- és tárgymutató

$A\cos(u) + B\sin(u)$, 128	Konvolúció – tétel, 37
Algebra Alaptétele, 36 "Állandó variálása" módszer, 35 $\arctan(1/x)$, 128	lineáris függvény-transzformáció, 38 lineáris integrál-transzformáció, 14 lineáris transzformáció, 31
Bláthy Ottó, 75	Liouville tétele, 71
Cauchy-Schwarz-Bunyjakovszkij egyenlőtlenség, 27	multiindex, 29 multiindex szerinti derivált, 29
$\Delta_f(\underline{a}), 28$	Newton módszere, 29
Egzakt egyenletek, 35 egyenes egyenlete, 30	összetett függvény deriválása, 27
egyéb transzformáció, 14	parciális függvény, 26
elemi törtek, 36	parciális törtek, 36
Eltolási tétel, 37	polártranszformáció, 14, 31
erf(x), 110	D. I. G. (. 1 1
$\exp(x)$, 7	R-L-C áramkörök, 39
érintősík egyenlete, 28	reducibilis polinom, 36
Φ(m) 110	rezgőkörök, 22
$\Phi(x)$, 110	résztörtek, 36
felület felszíne, 32	stacionárius pont, 28
Fourier-sor definíciója, 38	súlypont koordinátái, 32
Fubini tétele, 30	súlypontjának koordinátái, 33
"függőleges" integrálás, 29	szeparálható differenciálegyenletek, 34
gradiens, 27	Székely Sándor, 8
Gróf József, 8	szukcesszív integrálás, 12, 29
2101 002501, 0	szukcessziv integralas, 12, 29
Heaviside függvény, 8, 20	Taylor-polinom, 29
henger egyenlete, 32	táblázatok, 7
3.4	tehetetlenségi nyomatékok, 32, 33
integrál helyettesítés, 30	totális derivált, 26
iránymenti derivált, 27	többdimenziós láncszabály, 27
Jacobi-determináns, 30	tömeg kiszámítása, 33
jelölések, 7	traktrix, 93
	•
K.É.P., 8	"vízszintes" integrálás, 29

```
vonszolási görbe, 93
x szerinti primitív függvény, 29
y szerinti primitív függvény, 29
Yvory transzformáció, 31
```