Análisis Matemático III.

Examen Integrador. Cuarta fecha. 4 de agosto de 2022.

Justificar claramente todas las respuestas. La aprobación del examen requiere la correcta resolución de 3 (tres) ejercicios

Ejercicio 1. Comprobar que la función $f(x) = \frac{\cos(x^p)}{x^p(x+1)}$ con $p \in (0,1)$ es absolutamente integrable en $(0,\infty)$. Calcular su integral en $(0,\infty)$ para un valor particular de

Ejercicio 2. Plantear y resolver un sistema de ecuaciones que modele la oscilación u(x,t) de una cuerda de longitud 2π y extremos fijos, con condiciones iniciales u(x,0)=0 y $u_t(x,0)=\sin(3x)$, sabiendo que la velocidad de propagación es igual a 1. Graficar aproximadamente $u(\pi, t)$ y $u(3\pi/2, t)$.

Ejercicio 3. Sea $f: [-T, T] \to \mathbb{R}, \quad f(t) = \begin{cases} 1 & \text{si } |t| \leqslant T/2 \\ 0 & \text{si } |t| > T/2 \end{cases}$. Determinar ω_0 tal que

 $\sum c_k e^{i\omega_0 kt}$ es su desarrollo en serie exponencial de Fourier en [-T,T]. Calcular

$$\sum_{k=0}^{\infty} |c_k|^2 \quad y \quad \sum_{k=0}^{\infty} \operatorname{Re}(c_k)$$

Ejercicio 4. Resolver:

$$\begin{cases} u_{xx} - u_t - t u = 0 & -\infty < x < +\infty, \quad 0 < t < +\infty \\ u(x, 0) = e^{-4x} \mathbb{1}_{[-1, 1]}(x) & -\infty < x < +\infty \end{cases}$$

Ejercicio 5. Sabiendo que $f: \mathbb{R} \to \mathbb{R}$ es continua a trozos, de orden exponencial tal

que
$$f(t) = 0$$
 $\forall t < 0$ y $\mathcal{L}[f] = \text{Log}\left(1 + \frac{2}{s}\right)$, obtener $\int_{0}^{t} (t - x)f(t - x)dx$ para $t > 0$.