Mixed methods on the cheap (sometimes) brown-bag lunch seminar

M.W. Farthing¹ C.E. Kees¹

¹U.S. Army Engineer Research and Development Center

February 27 2008

Variably Saturated Flow in Porous Media

$$m_t + \nabla \cdot (\rho \mathbf{q}) = b$$
, for $\mathbf{x}, t \in \Omega \times [0, T]$
 $m = \rho \theta$
 $\mathbf{q} = -k_r \mathbf{K}_s (\nabla \psi - \rho \mathbf{g}_u)$
 $\sigma = \rho \mathbf{q}$ (1)

with

$$\psi = \psi^b$$
, on Γ_D , $\boldsymbol{\sigma} \cdot \mathbf{n} = q^b$, on Γ_N

Nonlinear, Scalar PDE

Rewrite as generic nonlinear advection-diffusion equation for convenience ...

$$m_t + \nabla \cdot \boldsymbol{\sigma} = \boldsymbol{b} \tag{2}$$

$$\boldsymbol{\sigma} = \mathbf{f} - \mathbf{a} \nabla \psi \tag{3}$$

or

$$m_t + \nabla \cdot (\mathbf{f} - \mathbf{a} \nabla \psi) = b$$
 (4)

Locally Conservative Methods

Local conservation has long been a motivating factor in method development (FVM, MFEM, MPFA, CV-MFEM, ...)

$$\mathcal{E}(n) = \{8, 9, 17, 18, 19\}$$

$$e^* = \{1, 5, 2, 3, 4\}$$

Element-based conservation

$$\int_{\Omega_{\boldsymbol{\theta}}} \left(\hat{\boldsymbol{m}}_t - \boldsymbol{b}\right) \, \mathrm{d}\boldsymbol{x} + \int_{\partial \Omega_{\boldsymbol{\theta}}} \boldsymbol{\sigma}_h \cdot \boldsymbol{n} \, \mathrm{d}\boldsymbol{s} = 0$$

Standard Mixed FEM formulation

Find (ψ_h, σ_h) in (W_h, \mathbf{W}_h) such that

$$\int_{\Omega} \hat{m}_{t} w_{h} \, \mathrm{d}x + \int_{\Omega} \nabla \cdot \boldsymbol{\sigma}_{h} w_{h} \, \mathrm{d}x = \int_{\Omega} b w_{h} \, \mathrm{d}x, \ \forall w_{h} \in W_{h}$$

$$\int_{\Omega} \boldsymbol{a}^{-1} (\boldsymbol{\sigma}_{h} - \mathbf{f}) \cdot \mathbf{w}_{h} + \int_{\partial \Omega} \psi_{h} \mathbf{w}_{h} \cdot \mathbf{n} \, \mathrm{d}s = \int_{\Omega} \psi_{h} \nabla \cdot \mathbf{w}_{h} \, \mathrm{d}x, \ \forall \mathbf{w}_{h} \in \mathbf{W}_{h}$$

Here $W_h \in L_2(\Omega)$, and $\mathbf{W}_h \in H(\operatorname{div}, \Omega)$

Mixed Hybrid Version

Find $(\psi_h, \sigma_h, \Lambda_h)$ in (W_h, \mathbf{W}_h, L_h) such that

$$\begin{split} \sum_{e} \int_{\Omega_{e}} \hat{m}_{t} w_{h} \, \mathrm{d}x + \int_{\Omega_{e}} \nabla \cdot \boldsymbol{\sigma}_{h} w_{h} \, \mathrm{d}x &= \int_{\Omega_{e}} b w_{h} \, \mathrm{d}x, \\ \sum_{e} \int_{\Omega_{e}} \boldsymbol{a}^{-1} (\boldsymbol{\sigma}_{h} - \boldsymbol{f}) \cdot \boldsymbol{w}_{h} + \int_{\partial \Omega_{e}} \Lambda_{h} \boldsymbol{w}_{h} \cdot \boldsymbol{n} \, \mathrm{d}s &= \int_{\Omega_{e}} \psi_{h} \nabla \cdot \boldsymbol{w}_{h} \, \mathrm{d}x, \\ \sum_{e} \int_{\partial \Omega_{e}} \boldsymbol{\sigma}_{h} \cdot \boldsymbol{n}_{e} \mu_{h} \, \mathrm{d}s &= 0, \ \forall \mu_{h} \in L_{h}, \end{split}$$

Local Representation for RT0

For RT0 on simplices, $W_h(\Omega_e) = P^0$, $\widetilde{\mathbf{W}}_h(\Omega_e) = P^0 \oplus \mathbf{x} P^0$

$$\int_{\gamma_f} \boldsymbol{\sigma}_{h,f} \cdot \mathbf{n}_f \, \mathrm{d}s \tag{5}$$

for $\gamma_f \in \partial \Omega_e$ can be used as the degree of freedom along with the local basis

$$\mathbf{N}_{e,i_f} = \frac{1}{n_d |\Omega_e|} (\mathbf{x} - \mathbf{x}_{n,i_f}), \ i_f = 1, \dots, n_d + 1$$
 (6)

 L_h is spanned by constant functions on the faces γ_f in \mathcal{M}^h

Standard CG Formulation

find
$$\psi_h \in V_h \in H^1(\Omega)$$

$$\int_{\Omega} \hat{m}_t w_h \, \mathrm{d}x - \int_{\Omega} (\mathbf{f} - \mathbf{a} \nabla \psi_h) \cdot \nabla w_h \, \mathrm{d}x + \int_{\Gamma_N} \sigma^b w_h \, \mathrm{d}s$$

$$- \int_{\Omega} b w_h \, \mathrm{d}x = 0, \ \forall w_h \in W_h$$
 (7)

P¹ nonconforming approximation

 P^1 nonconforming approximation, find $\psi_h \in V_h^{nc}$

$$\int_{\Omega} \hat{m}_{t} w_{h} dx - \int_{\Omega} (\mathbf{f} - \mathbf{a} \nabla \psi_{h}) \cdot \nabla w_{h} dx + \int_{\Gamma_{N}} \sigma^{b} w_{h} ds
- \int_{\Omega} b w_{h} dx = 0 \forall w_{h} \in W_{h}^{nc}$$
(8)

with trial space

$$V_h^{nc} = \{ v : v |_{\Omega_e} \in P^1(\Omega_e), \ \forall \Omega_e \in T_h; v \text{ cont. at } \bar{\mathbf{x}}_f, \ \forall \gamma_f \in \Gamma_I; v = \psi^b \text{ at } \bar{\mathbf{x}}_f, \ \forall \gamma_f \in \Gamma_D \}$$

$$(9)$$

P¹ NC shape functions

Locally use the Crouzeix-Raviart space with basis

$$N_i = n_d \left(\frac{1}{n_d} - \lambda_i \right),$$
 $\lambda_i = 1 - \frac{(\mathbf{x} - \mathbf{x}_i) \cdot \mathbf{n}_i}{(\mathbf{x}_{i+1} - \mathbf{x}_i) \cdot \mathbf{n}_i}$
 $\nabla N_i = |\gamma_i| \mathbf{n}_i / |\Omega_e|$

$$i=1,\ldots,n_d+1$$

P¹ NC velocity

Define local velocity approximation

$$\hat{\boldsymbol{\sigma}}_{h,e} = \bar{\mathbf{f}}_{e} - \bar{\boldsymbol{a}}_{e} \nabla \psi_{h} + \frac{\bar{d}_{e}}{n_{d}} (\mathbf{x} - \bar{\mathbf{x}}_{e}) + \mathbf{c}_{e}$$
 (10)

where \bar{a}_e and f_e represent averages (componentwise) over Ω_e

$$\bar{d}_{e} = \frac{1}{|\Omega_{e}|} \int_{\Omega_{e}} (b - \hat{m}_{t}) dx = \bar{b}_{e} - \bar{\hat{m}}_{t,e}$$
 (11)

 $\sigma_{h,e}$ is in the lowest order Raviart-Thomas space on Ω_e . Local conservation

$$\int_{\Omega_{e}} \hat{m}_{t} dx + \int_{\Omega_{e}} \nabla \cdot \hat{\sigma}_{h,e} dx - \int_{\Omega_{e}} b dx = |\Omega_{e}| \left(\bar{\hat{m}}_{t,e} - \bar{b}_{e} \right) + \bar{d}_{e} |\Omega_{e}|$$

$$= 0$$

P¹ NC velocity (cont'd.)

The piecewise constant \mathbf{c}_e serves to enforce continuity at element interfaces and requires, in general, the solution of a local $n_d \times n_d$ system on each element, Chou and Tang(2000)

$$\mathbf{B}_{\mathbf{e}}^{nc}\mathbf{C}_{\mathbf{e}} = \eta_{\mathbf{e}} \tag{12}$$

$$\mathbf{B}_{\mathbf{e},ij} = |\partial\Omega_{\mathbf{e},i}| n_{\mathbf{e},i}^{j}, i, j = 1, \dots, n_{d}$$

$$\eta_{\mathbf{e},i} = \int_{\Omega_{\mathbf{e}}} b w_{h,i} \, \mathrm{d}x - \frac{|\Omega_{\mathbf{e}}|}{n_{d}+1} \bar{b}_{\mathbf{e}} - \int_{\Omega_{\mathbf{e}}} \hat{m}_{t} w_{h,i} \, \mathrm{d}x + \frac{|\Omega_{\mathbf{e}}|}{n_{d}+1} \bar{\hat{m}}_{t}$$

P¹ NC (cont'd)

eqn (8) and eqn (10) (with $\mathbf{c}_e = 0$) yield solutions equivalent to a MHFEM discretization with the correct L_2 projections and assumptions on the problem data, Marini(1985), Arbogast and Chen(1995), Chen(1996).

In essence, piecewise constant approximations are needed for \boldsymbol{a} and \boldsymbol{f} in the mixed formulation and \boldsymbol{b} , \hat{m}_t in the NC formulation.

- Can also view (ψ_h, σ_h) as the solution to a finite volume "box scheme."
- In general, we would like to keep a consistent mass integral because it's less distributed in this case
- If a consistent mass integral is used or source term, we can still recover a locally conservative σ_h by solving appropriate element problems for $\mathbf{c}_e = 0$.

Comparisons

We perform a series of numerical experiments to evaluate the accuracy of the CG VPP algorithm and the effectiveness of multiscale stabilization in controlling over/undershoot.

Abbrev.	Definition
CG	conforming Galerkin approximation,
CG-S	multiscale stabilized CG with shockcapturing ($\nu_{c}=0.1^{\dagger}$)
CG-V	lumped CG approximation with vertex quadrature
NC	P ¹ nonconforming approach
÷ 11. — 0	5 for Problem V

Linear, elliptic problems

Smooth analytical solutions and domain properties

$$u(\mathbf{x}) = \sin^2(2\pi x_1) + \cos^2(2\pi x_2) + x_1 + x_2 + 5$$

$$a_{ii}(\mathbf{x}) = (5 + x_i^2)\delta_{ii}$$
(13)

for $n_d = 2$ and

$$u(\mathbf{x}) = \sum_{i=1}^{3} x_i^2$$

$$a_{ij}(\mathbf{x}) = (5 + x_i^2 x_{i+1}) \delta_{ij}$$
 (14)

for $n_d = 3$.

Spatial Error

Table: $\varepsilon_{u,2}$, Problem I

	level	h	N _{dof}	$\varepsilon_{u,2}$	rate
CG	4	0.0442	1089	9.36×10^{-4}	1.98
NC	4	0.0442	3136	9.86×10^{-4}	1.98
CG	5	0.0221	4225	2.35×10^{-4}	1.99
NC	5	0.0221	12416	2.48×10^{-4}	1.99

Table: $\varepsilon_{\sigma,2}$ and ε_{mc} , Problem I

	level	$\varepsilon_{\sigma,2}$	rate	ε_{mc}
CG-PE	4	0.111	0.989	0.628
CG-LN	4	0.110	0.984	0
CG-SW	4	0.111	1.00	0
NC	4	0.110	0.980	0
CG-PE	5	0.0554	0.997	0.205
CG-LN	5	0.0553	0.996	0
CG-SW	5	0.0554	1.00	10^{-6}
NC	5	0.0553	0.994	0

Boundary layer example

Van Genuchten Mualem *p-s-k* relations, $n_{vg} = 4.264$, $\alpha_{vg} = 5.47$ [1/m], $K_s = 5.04$ [m/d].

Table: CPU overhead

Method	Level	Its.	CPU [s]
LN	4	-	1.35×10 ⁻³
CG-V-SW	4	250	3.33×10^{-2}
CG-S-SW	4	595	6.67×10 ⁻²
LN	5	-	5.52×10^{-3}
CG-V-SW	5	83	3.33×10^{-2}
CG-S-SW	5	207	1.17×10^{-1}

Spatial Error

Method	Level [†]	N _{dof}	$\varepsilon_{\psi,\infty}$	ε_{mc}	$\varepsilon_{\sigma_1,\infty}$	$\varepsilon_{\sigma_2,\infty}$
CG-PE	4	289	8.72×10 ⁻²	2.26×10^{-3}	4.40×10^{-3}	2.19×10 ⁰
CG-LN	4	289	8.72×10^{-2}	1.35×10^{-8}	4.37×10^{-4}	1.89×10^{-1}
CG-S-LN	4	289	4.36×10^{-2}	3.00×10^{-7}	3.90×10^{-4}	3.65×10^{-1}
CG-S-SW	4	289	4.36×10^{-2}	9.97×10^{-7}	2.10×10^{-3}	6.91×10^{-1}
CG-V-LN	4	289	1.75×10 ⁻¹	9.33×10^{-9}	2.29×10^{-4}	9.84×10^{-2}
CG-V-SW	4	289	1.75×10^{-1}	9.93×10^{-7}	6.99×10^{-4}	2.49×10^{-1}
NC	4	800	9.49×10^{-2}	0	5.21×10^{-8}	1.66×10^{-4}
CG-PE	5	1089	3.28×10^{-2}	7.17×10^{-4}	2.22×10^{-3}	1.61×10 ⁰
CG-LN	5	1089	3.28×10^{-2}	6.10×10^{-8}	3.29×10^{-4}	1.71×10^{-1}
CG-S-LN	5	1089	2.30×10^{-2}	8.88×10^{-8}	3.39×10^{-4}	3.58×10^{-1}
CG-S-SW	5	1089	2.30×10^{-2}	9.97×10^{-7}	1.11×10^{-3}	3.98×10^{-1}
CG-V-LN	5	1089	5.58×10^{-2}	4.92×10^{-9}	2.54×10^{-4}	1.12×10^{-1}
CG-V-SW	5	1089	5.58×10^{-2}	9.98×10^{-7}	4.99×10^{-4}	1.45×10^{-1}
NC	5	3136	2.32×10^{-2}	0	2.71×10^{-7}	1.55×10^{-5}

[†] h = 0.319 on level 4, and h = 0.160 on level 5

Block heterogeneous example

Constant recharge into two-dimensional domain, n_{vg} ranges from 1.632 to 5.

Block heterogeneous example (transient)

Infiltration into two-dimensional domain, n_{vg} ranges from 1.632 to 5.

Revisiting P^1 nonconforming behavior for sharp fronts

At least two options to improve NC. Subgrid viscosity stabilization Alaoui and Ern (2006), and/or local refinement

