Лабораторная работа №4

Научное программирование

Дарижапов Тимур Андреевич

Содержание

1	Цель работы	5
2	Задание	6
3	Выполнение лабораторной работы	7
4	Выводы	11
5	Список литературы	12

List of Tables

List of Figures

3.1	Вывод данных	7
3.2	Метод Гаусса	8
3.3	Треугольная матрица	8
3.4	Изменение формата	9
3.5	Решение системы	9
3.6	LU разложение	. (
3.7	LUP разложение	0

1 Цель работы

Изучить применение языка Octave, познакомится с решением систем линейным уравнений с помощью Octave.

2 Задание

Разобраться со спецификой языка и выполнить операции.

- 1. Метод Гаусса
- 2. Левое деление
- 3. LU-разложение
- 4. LUP-разложение

3 Выполнение лабораторной работы

Для начала работы с программой включим журналирование сессии командой diary on. Затем приступим к выполнению первого этапа - Метода Гаусса. Для начала зададим матрицу В и покажем как её можно просматривать поэлементно или всю строку. (рис. 3.1)

```
B =

1 2 3 4
0 -2 -4 6
1 -1 0 0

>> B(2,3)
ans = -4
>> B(1, :)
ans =

1 2 3 4
```

Figure 3.1: Вывод данных

Теперь в явном виде реализуем метод Гаусса. Для начала добавим к третьей строке первую строку, умноженную на -1, а затем добавим к третьей строке вторую строку, умноженную на -1.5 (рис. 3.2)

Figure 3.2: Метод Гаусса

Теперь легко вычислить вектор, он будет равен x = (17/3 ; 17/3 ; -13/3). Из последний строки можно вычислить x3: 0x1 + 0x2 + 3*x3 = -13. Затем подставляя получившееся значение x3 во вторую строку мы получаем x2 и так далее.

У Octave есть встроенная функция, которая позволяет сразу получить треугольный вид матрицы (рис. 3.3)

```
>> rref(B)
ans =
1.0000 0 0 5.6667
0 1.0000 0 5.6667
0 0 1.0000 -4.3333
```

Figure 3.3: Треугольная матрица

Мы можем поменять формат матрицы, чтобы отобразить больше разрядов и увидеть более точные вычисления (рис. 3.4)

Figure 3.4: Изменение формата

Рассмотрим решение систем вида $A^*x = b$, решим с помощью левого деления. Для начала разделим матрицу В на коэффициенты A и вектор значений b. Вычислим вектор x с помощью команды A/b (рис. 3.5)

Figure 3.5: Решение системы

С помощью Octave покажем LU разложение матрицы (рис. 3.6)

Figure 3.6: LU разложение

С помощью Octave покажем LUP разложение матрицы. Программа показывает сразу все необходимые нам матрицы (рис. 3.7)

Figure 3.7: LUP разложение

4 Выводы

Я изучил способы применения языка Octave, познакомился с решением систем линейным уравнений с помощью Octave.

5 Список литературы

Лабораторная работа №4

Лабораторная работа № 4. Введение в работу с Octave [Электронный ресурс]. 2019. URL:https://esystem.rudn.ru/pluginfile.php/2372904/mod_resource/content/3/004-gauss.pdf