Многочлены база

Вспомним материал первого семестра (без доказательств).

Необходимые знания: аксиоматика теории групп, аксиомы колец и поля, комплексные числа

Мотивация:

Многочлены вообще довольно часто используемое понятие, и мы хотим аккуратно построить теорию.

1. Кольцо многочленов

Далее R - кольцо с единицей. Упорядоченные н-ки из элементов этого кольца, где почти все элементы равны нулю (или другими словами все, кроме конечного числа):

$$R[x] = \{(a_0, a_1, a_2, \ldots) \mid a_i \in R;$$
 почти все a_i нули $\}$

- кольцо многочленов. R - кольцо коэффициентов.

Многочлен - элемент кольца многочленов: (a_0, a_1, \ldots)

 $\deg(a_0,\ldots,a_n,\ldots)$ - <u>степень</u> многочлена, если $a_n \neq 0$ и $orall m>n\ a_m=0.$

Многочлены можно складывать:

$$egin{align} +: R[x] imes R[x] & \to R[x] \ (a_0, a_1, \ldots) + (b_0, b_1, \ldots) = (a_0 + b_0, a_1 + b_1, \ldots) \ \end{array}$$

Лемма 1. $\deg(a+b) \leq \max(\deg a, \deg b)$

(а если $\deg a \neq \deg b$, то $\deg(a+b) = \max(\deg a, \deg b)$)

Многочлены можно перемножать:

$$egin{aligned} ullet : R[x] imes R[x] &
ightarrow R[x] \ a \cdot b = c = (c_0, c_1, \ldots) \ c_n = \sum_{i=0}^n a_i b_{n-i} \end{aligned}$$

Лемма 2. $\deg ab \leq \deg a + \deg b$

(а если R - кольцо без делителей нуля, то $\deg ab = \deg a + \deg b$)

Теорема. Если R - кольцо с единицей, то R[x] - тоже кольцо с единицей. Если R коммутативно, то и R[x] тоже коммутативно.

Рассмотрим следующее отображение:

$$arphi:R o R[x] \ r o (r,0,0,\ldots)$$

$$arphi(r_1+r_2) oarphi(r_1)+arphi(r_2) \ arphi(r_1r_2=arphi(r_1)arphi(r_2)) \ arphi$$
 - гомоморфизм колец.

Отождествим $\varphi(R)$ и R. Вместо $(r,0,0,\ldots)$ пишем r. Это константные многочлены.

Отсюда традиционная запись многочленов:

$$a = (a_0, a_1, \ldots, a_n, 0, \ldots) = \ (a_0, 0, \ldots) + (0, a_1, 0, \ldots) + \ldots + (0, \ldots, 0, a_n, 0, \ldots) = \ (a_0, 0, \ldots) \cdot (1, 0, \ldots) + \ (a_1, 0, \ldots) \cdot (0, 1, \ldots) + \ (a_2, 0, \ldots) \cdot (0, 0, 1, 0, \ldots) + \ \ldots + (a_n, 0, \ldots) \cdot (0, \ldots, 0, 1, 0, \ldots) = \ a_0 + a_1 x + a_2 x^2 + \ldots + a_n x^n = \sum_{i=0}^n a_i x^i$$

2. Биномиальные коэффициенты и биномиальная формула

Факториал: $n! = 1 \cdot 2 \cdot \ldots \cdot n, \; n \geq 1; \; 0! = 1$

Биномиальные коэффициенты:

$$egin{pmatrix} n \ k \end{pmatrix} = C_n^k = rac{n!}{k!(n-k)!}$$

Доопределим для k < 0 и $k > n: \binom{n}{k} = 0$

Свойства биномиальных коэффициентов:

1.
$$\binom{n}{0} = \binom{n}{n} = 1$$

$$2.\binom{n}{k} = \binom{n}{n-k}$$

3.
$$\binom{n-1}{k-1} + \binom{n-1}{k} = \binom{n}{k} \ n \ge 1$$

$$4. \binom{n}{k} \in \mathbb{Z}_{\geq 0}$$

Биномиальная формула:

Теорема. R - кольцо с 1; $a,b\in R$; a,b коммутируют. Тогда

$$(a+b)^n = \sum_{i=0}^n inom{n}{i} \ a^i b^{n-i}$$

Следствие.

$$\sum_{i=0}^{n} \binom{n}{i} = 2^n$$

3. Теорема о делении с остатком в кольце многочленов

R - кольцо с 1.

 R^* - множество всех обратимых элементов R.

$$a \in R^* \iff \exists b \in R : ab = ba = 1$$

Теорема. $f,g\in R[x],\ g=b_0+b_1x+\ldots+b_mx^m,\ \underline{b_i\in R^*}.$

$$\exists ! q, r \in R[x] : f = g \cdot q + r \quad \deg r < \deg g$$

q - <u>неполное частное</u>, r - <u>остаток</u>.

4. Значение многочлена в точке

$$R\subseteq L$$
 - кольца.

$$f\in R[x]$$

$$f = \sum_{i=0}^n a_i x^i$$

 $c \in L$

$$f(c) = a_0 + a_1 c + \ldots + a_n c^n$$
 - значение $f(c)$ в точке $c.$

c - корень f, если f(c)=0.

 $h,f\in R[x]$

h делит f, если $\exists s \in R[x]: f = h \cdot s.$ Пишут $h \mid f, \ f \mathrel{\dot{:}} h$

Теорема Безу. R - коммутативное кольцо с 1.

$$f\in R[x],\ c,r\in R$$

$$f = (x - c) \cdot q + r$$

Тогда

$$\underline{f(c)} = (c-c) \cdot q(c) + r = \underline{r}$$

Следствие. c - корень $f \iff (x-c) \mid f$

5. Характеристика поля

K - поле. $m \in \mathbb{N}$.

$$m \cdot 1 = \underbrace{1+1+1+1+\ldots+1}_m$$

Если $\exists m \in \mathbb{N} : m \cdot 1 = 0$, то $\min m =: \mathrm{char} K$ - характеристика поля.

Если такого m не существует, то $\mathrm{char} K = 0$.

$$\mathrm{char}\mathbb{R}=\mathrm{char}\mathbb{Q}=\mathrm{char}\mathbb{C}=0$$

 $m\in\mathbb{N}
eq 1$ называется <u>простым числом,</u> если все делители в \mathbb{Z} - $\pm 1, \pm m.$

В случае, если есть другие делители, число называется составным.

Теорема. Если $\mathrm{char} K = 0$ или простое, то K- поле.

6. Производная многочлена

R - кольцо с 1.

$$m\in\mathbb{N},\ r\in R$$

$$m \cdot r = (m \cdot 1) \cdot r$$

$$f = a_0 + a_1 x + \ldots + a_n x^n$$

Производная многочлена f:

$$f' = a_1 + 2a_2x + \ldots + na_nx^{n-1} = \sum_{k=0}^n k \cdot a_kx^{k-1}$$

Производная высшего порядка:

$$f^{(k)} = (f^{(k-1)})', \quad f^{(0)} = f$$

Свойства производной:

1.
$$(f+g)' = f' + g'$$

2.
$$c \in R(cf)' = c(f')$$

3.
$$(f \cdot g)' = f'g + fg'$$

4. Формула Лейбница:
$$(fg)^{(k)} = \sum_{k=0}^n C_n^k f^{(k)} g^{(n-k)}$$

$$5. \operatorname{char} K = 0 \quad f' = 0 \iff f \in K$$
 $\operatorname{char} K = p > 0 \quad f' = 0 \iff f \in K[x^p]$

7. Кратные корни многочленов

K - поле.

K[x] - область целостности (коммутативное кольцо с 1 без делителей 0).

$$f
eq 0 \in K[x]$$

$$c \in K$$
 - корень f кратности d , если $(x-c)^d \mid f$ и $(x-c)^{d+1} \nmid f$.

Предложение.

$$c$$
 - корень f кратности $d \iff f = (x-c)^d \cdot g, \quad g(c)
eq 0$

Предложение.

$$f,g
eq 0 \in K[x]$$

c - корень f и g кратностей k и c соответственно.

Тогда c - корень fg кратности k+c.

Теорема. $f eq 0 \in K[x]$

 c_1,\ldots,c_m - попарно различные корни f кратностей d_1,\ldots,d_m сответственно.

Тогда
$$(x-c_1)^{d_1}\cdot\ldots\cdot(x-c_m)^{d_m}\mid f$$

Следствие $f \neq 0 \in K[x]$.

Число корней f с учётом их кратности $\leq \deg f$.

$$f=(x-c_1)^{d_1}\dots(x-c_m)^{d_m}\cdot g$$

$$\deg f = d_1 + \ldots + d_m + \deg g \geq d_1 + \ldots + d_m$$

Но это неверно для некоммутативного и содержащего нули кольца коэффициентов.

8. Кратные корни и производная

K - поле, $\mathrm{char}K=0.$ $0
eq f \in K[x]$ c - корень f. Как определить кратность корня?

Теорема. c - корень f кратности $d \implies c$ - корень f' кратности d-1.

Теорема.
$$d \geq 1$$
. c - корень f кратности $d \iff f(c) = f'(c) = \ldots = f^{(d-1)}(c) = 0$. А $f^{(d)}(c) \neq 0$

9. Формальное и функциональное равенство многочленов

K - поле. $f,g\in K[x]$

Формальное равенство многочленов:

f=g, если совпадают последовательности их коэффициентов.

 $f\doteq g$, если $\widetilde{f}=\widetilde{g}$ (как отображения), где $\widetilde{f}:K o K[x],\ c o f(c)$, \widetilde{g} аналогично. Это функциональное равенство многочленов.

Теорема.
$$f,g\in K[x].\ |K|>\max(\deg f,\deg g).$$
 Тогда $f\doteq g\implies f=g$

Следствие. В бесконечном поле стрелка вправо есть всегда.

10. Интерполяционная задача

K - поле.

Даны точки c_1, \ldots, c_n - **узлы интерполяции**, и значения в этих точках: $y_1, \ldots, y_n \in K$.

Надо найти $f \in K[x]: f(c_i) = y_i \ orall i \in \{1,\dots,n\}.$

Но если f - решение, то $f+(x-c_1)\dots(x-c_n)\cdot h$ - тоже решение. Нам интересно искать многочлен наименьшей степени.

Теорема. Существует единственный многочлен $f: \deg f < n$, решающий интерполяционную задачу.

Метод Ньютона.

Метод Лагранжа.