IMPERIAL COLLEGE LONDON

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING **EXAMINATIONS 2017**

EIE PART II: MEng, BEng and ACGI

Corrected copy

COMPUTER ARCHITECTURE

Thursday, 18 May 2:00 pm

Time allowed: 1: 30 hours

There are TWO questions on this paper.

Answer TWO questions.

Answer ALL questions.

Use separate answer books for Sections A and B.

Any special instructions for invigilators and information for candidates are on page 1.

Examiners responsible

First Marker(s):

W. Luk, D.B. Thomas

Second Marker(s): D.B. Thomas, W. Luk

Section A (Use a separate answer book for this Section)

- I a Describe the key features of an accumulator architecture and a load-store architecture, and provide a benefit and a drawback of each of these architectures.
- b An 8-bit accumulator architecture AA has the following instructions.

Instruction	Effect
load \$a	A = M[a]
store \$a	M[a] = A
add \$a	A = A + M[a]
sub \$a	A = A - M[a]
loadc \$c	A = c
jmpneg \$a	if $A < 0$ then $PC = a$
stop	Program ends

Its instruction format consists of a 4-bit opcode field, and the remaining 4 bits can be used either for a memory address or for a constant value.

- i) A program P computes the sum C of A and B, where all three variables are in 8-bit BCD format (representing 2 digits, each 4 bits) and the value of A and B is between 0 and 9. Provide the instruction sequence for AA to implement P, with A in memory address 0, B in memory address 1, and C in memory address 2.
- ii) How many memory accesses, including both instruction fetch and data fetch, are involved when executing P on AA in the worst case?
- c Repeat Part b i) and ii) for an 8-bit load-store architecture LS, which has two general-purpose registers and the following instructions.

Instruction	Effect
load \$r \$a	R[r] = M[a]
store \$r \$a	M[a] = R[r]
add \$r1 \$r2 \$r3	R[r1] = R[r2] + R[r3]
sub \$r1 \$r2 \$r3	R[r1] = R[r2] - R[r3]
loadc \$r \$c	R[r] = c
jmpneg \$r \$a	if $R[r] < 0$ then $PC = a$
jump \$a	PC = a
stop	Program ends

The three parts carry, respectively, 30%, 35%, and 35% of the marks.

Section B (Use a separate answer book for this Section)

- 2a i) Under what conditions would a load instruction cause a write to memory?
 - ii) A non-pipelined processor is to be converted to a pipelined processor with two stages. Give upper and lower bounds on the pipelined processor's clock rate, and briefly comment on how realistic those bounds are.
 - iii) Caches can be inserted before or after physical to virtual translation. Give one advantage of each approach.
- b Most contemporary CPUs satisfy all three of these properties:
 - A: They are pipelined
 - B: There is a shared instruction and data address space
 - C: They have separate instruction and data caches
 - i) Why do properties A and B imply property C?
 - ii) Even when property A does not hold for a CPU, it is common for property C to still hold. Give two reasons why is it still useful to have separate instruction and data caches in a non-pipelined processor
- c Assume a re-useable cache design which is parametrised by cache capacity n. Extensive modelling has resulted in the following scaling properties for a given capacity (where c_a , c_h , and c_m are silicon-technology specific constants):

- Area:
$$a(n) = c_a n$$

- Hit time:
$$h(n) = c_h \log_2 n$$
.

- Miss rate :
$$m(n) = 1/(c_m n)$$

Two instances of the generic cache will be used to create separate data and instruction caches for a pipelined processor.

- i) Explain why each of the three modelled properties are plausible, in terms of the construction and behaviour of caches. Use sketches if necessary.
- ii) Given a total area budget of b for both the instruction and data cache, what is the optimal balance between the capacity of the instruction cache (n_i) and the data cache (n_d) in terms of cycle time?

The three parts carry, respectively, 35%, 30%, and 35% of the marks.

