		Part A:	Introduction	
Program: Diploma		Class: B.Sc.	Semester: Fifth	Session:2024-2025
1	Course Code	PSC - 05T		
2	Course Title	MODERN PHYSICS		
3	Course Type	Theory		
4	Pre-requisite (if any)	As per norms		
5	Course Learning Outcomes (CLO)	After completion of the course students will be able to: Understand reference systems, inertial frames, and Galilean invariance in classical mechanics. Explain special relativity postulates, Lorentz transformations, and massenergy equivalence. Describe quantum theory origins, wave-particle duality, and uncertainty principle. Analyze Schrödinger's equation, wave function interpretation, and quantum mechanics applications.		
6	Credit Value	Theory: 3		
7	Total Marks	Max. Mark		n Passing Marks : 40

a+

Total Hours: 45					
Unit	Торіс				
I	Reference systems, inertial frames, Galilean invariance, propagation of light, Michelson- Morley experiment, search for ether	12			
	Postulates for the special theory of relativity, Lorentz transformations, length contraction, time dilation, velocity addition theorem, variation of mass with velocity, mass-energy equivalence, particle with a zero rest mass.				
II	Origin of the quantum theory: Failure of classical physics to explain the phenomena such as black body spectrum, photoelectric effect, Compton effect				
	Wave particle duality and uncertainty principle, de Broglie's hypothesis for matter waves; the concept of phase and group velocities, Experimental demonstration of matter waves Davisson and Germer's experiment.				
	Consequence of de-Broglie's concepts, Bohr's complimentary principle, Bohr's correspondence principle, Bohr's atomic model, energies of a particle in a box, wave packets.				
	Consequence of the uncertainty relation: gamma ray microscope, diffraction at a slit.				
Ш	Quantum Mechanics: Schrodinger's equation, statistical interpretation of wave function, Orthogonality and normalization of wave function, probability current density, Postulatory basis of quantum mechanics; operators, expectation values, Ehrenfest's theorem, transition probabilities, application to particle in one and three dimensional boxes, harmonic oscillator in one dimension, reflection at a step potential, transmission across a potential barrier.				
IV	Spectra of hydrogen, deuteron and alkali atoms, spectral terms, doublet fine structure, screening constants for alkali spectra for s , p , d and f states, selection rules.				
	Discrete set of electronic energies of molecules, quantization of vibrational and				

T	rotational energies. Determination of internuclear distance, pure rotational and rotation
l	vibration spectra. Dissociation limit for the ground and other electronic states, transition
l	rules for pure vibration and electronic vibration spectra.

Raman effect, Stokes and anti-Stokes lines, complementary character of Raman and infrared spectra, experimental arrangements for Raman Spectroscopy.