Lesson 5: Arithmetic expressions

Arithmetic expressions

number = 10-2+2*5

Question

What value will be held by the variable number?

- 1
- -2
- 2 18
- **3** 50
- 30

Explorer task

Explain your answer

Arithmetic expressions are evaluated in order of operator precedence.

You can use **PEMDAS** to help remind you of the correct order.

It is important to note that **add** and **subtract** are interchangeable and should be evaluated from left to right.

P - parentheses

E – exponents

M - multiplication

D - division

A - addition

S - subtract

In your **maths** lessons you might have seen **PEMDAS** represented in a triangle like this diagram.

10-2**+2*5**

PEMDAS

There are no **p**arentheses, **e**xponents, or **d**ivision in this expression, so start with **m**ultiplication.

10-2**+2*5**

PEMDAS

There are no **p**arentheses, **e**xponents, or **d**ivision in this expression, so start with **m**ultiplication.

2*5 is 10

10-2+10

PEMDAS

There are no **p**arentheses, **e**xponents, or **d**ivision in this expression, so start with **m**ultiplication.

2*5 is 10

10-2+10

PEMDAS

There are no **b**rackets, **i**ndices, or **d**ivision in this expression, so start with **m**ultiplication.

2*5 is 10

10-2+10

PEMDAS

Add and subtract should be read from left to right. If the subtract appears first, then this should be carried out first.

10-2 is 8

8+10

PEMDAS

Add and subtract should be read from left to right. If the subtract appears first, then this should be carried out first.

10-2 is 8

8+10

PEMDAS

Finally, you are left with one **operator** and perform this final calculation.

8+10

18

PEMDAS

Finally, you are left with one **operator** and perform this final calculation.

Lesson 7: Arithmetic expressions

In this lesson, you will:

- Evaluate arithmetic expressions using rules of operator precedence (BIDMAS)
- Write and use expressions that use arithmetic operators (add, subtract, multiply, real division, integer division, MOD, to the power)
- Assign expressions to variables

Here is a list of **arithmetic operators** that can be used in Python.

- + Addition
- Subtraction
- * Multiplication
- / Real division
- // Integer division (quotient)
- ** Powers
- % Modulo (MOD)

Integer division and **modulo** are possibly unfamiliar to you.

- + Addition
- Subtract
- * Multiplication
- / Real division
- // Integer division (quotient)
- ** Powers
- % Modulo (MOD)

Here is an example of how **real** division will output.

In real division there is **no remainder** because the entire value is divided.

```
1 number = 14/3
2 print(number)
3
```

```
4.66666666666667
>>>
```

When you use **integer division**, it will discard the decimal part.

Integer division is the operation that calculates how many whole times the divisor (3) will fit in the dividend (14).

```
1 number = 14//3
2 print(number)
3
```

```
4 >>>
```

Modulo (MOD) is used to work out the remainder of the division.

```
1 number = 14%3
2 print(number)
3
```

```
2 >>>
```

If you divide **14** counters between **3** people, then there will be **4** counters each with **2** remaining.

Note: The MOD doesn't simply store the value that was discarded from integer division. It stores the whole number that was remaining.

```
1 counters_each = 14//3
```

- 2 counters_remaining = 14%3
- g print(counters_each)
- 4 print(counters_remaining)

```
4
2
>>>
```

You would use **modulo** when you need to find out the **remaining** whole value.

This will be helpful in many cases. An example might be when you wish to find out if a value is **odd** or **even**.

If the value evaluates as a 1, then it is odd.

```
1 number = 27
2 odd_even = number%2
3 print(odd_even)
```

```
1 >>>
```

If the value evaluates as a 0, then it is even.

```
number = 26
odd_even = number%2
print(odd_even)
```

```
0 >>>
```

Integer division and modulo

number = 25%4

Question

What value will be held by the variable number?

- **1** 6.25
- (2)
 - 6
- % is not a valid operator so this will cause an error message.

Integer division and modulo

number = 10/3

Question

What value will be held by the variable number?

- 3.333333333333333
- 2 3
- 3
- / is not a valid operator so this will cause an error message.

Integer division and modulo

number = 13//3

Question

What value will be held by the variable number?

- 1
- 2 4.333333333333333
- 3
- // is not a valid operator so this will cause an error message.

The 'Split my bill' app

Use the 'Split my bill' worksheet to investigate a program that has been designed to help friends split the bill at a restaurant.

Learning partner feedback

Discuss your solution to the **make** task with your learning partner.

- Did you meet the requirements?
- Did you try the explorer task?
- What errors did you encounter and how did you overcome them?
- How could you improve your program?

Homework: Finish the app

Complete the 'Split my Pizza' app.

Make improvements based on your peer feedback.

Due: Next lesson

Next lesson

In this lesson, you...

Learnt about BIDMAS and how this can help you with order of precedence

Explored arithmetic expressions

Familiarised yourself with integer division and modulo

Next lesson, you will...

Learn about selection statements and how these can be used to control the flow of execution in programs