$\begin{array}{c} \text{Oraux 2025 Wallon} \\ \text{PC/PCE} \end{array}$

Sommaire

- 1. Mathématiques • CCINP
- Mines TélécomCentrale 1
 - Centrale Info
 - Mines Ponts
 - - X-ESPCI • ENS

2. Physique

- CCINP
- Mines Télécom
 - Centrale 1
- Centrale Info
 - Mines Ponts
- X-ESPCI
 - ENS

Mathématiques

CCINP

**

Exercice 1 [-]

On pose, pour $(P,Q) \in \mathbb{R}_2[X]^2$,

$$\langle P,Q \rangle = P(0)Q(0) + P(1)Q(1) + P(2)Q(2)$$

- 1. Montrer que $\langle P,Q\rangle$ est un produit scalaire sur $\mathbb{R}_2[X]$. 2. Déterminer une base orthonormée sur $\mathbb{R}_2[X]$.

Exercice 2 [-]

On considère l'espace euclidien $\mathbb{R}[X]\ (n\geqslant 3)$ muni du produit scalaire :

$$\langle P,Q \rangle = \int_{-1}^{1} P(t)Q(t)dt$$

1. Déterminer $P_{\mathbb{R}_2[X]}(X^3)$.

2. Calculer
$$min \left\{ \int_{-1}^{1} (t^3 - (at^2 + bt + c))^2 dt, (a, b, c) \in \mathbb{R}^3 \right\}$$

Exercice 3 [-]

Soit $E = C^1([0,1], \mathbb{R})$. On pose pour tout $f \in E$:

$$||f||_0 = \sqrt{(f(0))^2 + \int_0^1 f'(t)dt}$$

- 1. Montrer que $||\cdot||_0$ est une norme.
- Montrer que $(f_n)_{n\in\mathbb{N}^*}$ converge pour la norme $\|\cdot\|_0$. 2. Soit pour tout $n \in \mathbb{N}^*$, $f_n : x \in [0,1] \longrightarrow \frac{\sin(n\pi x)}{1-2}$

Mines Télécom

Exercice 3 [C D.]

Démontrer l'équation de Navier-Stokes :
$$\mu \frac{D\boldsymbol{v}}{Dt} = \mu \left(\frac{\partial \boldsymbol{v}}{\partial t} + (\boldsymbol{v} \cdot \boldsymbol{grad}) \boldsymbol{v} \right) = -\boldsymbol{grad}\,P + \mu \boldsymbol{g} + \eta \Delta \boldsymbol{v}$$
 L'équation de Schrödinger :
$$i\hbar \frac{\partial \psi}{\partial t} = \hat{H}\psi = -\frac{\hbar^2}{2m}\Delta\psi + V\psi$$
 Ainsi que les équations de Maxwell :

$$i\hbarrac{\partial\psi}{\partial t}=\hat{H}\psi=-rac{\hbar^2}{2m}\Delta\psi+V{f q}$$

$$div oldsymbol{E} = rac{
ho}{\epsilon_0}$$
 $div oldsymbol{B} = 0$
 $oldsymbol{rot} oldsymbol{E} = -rac{\partial oldsymbol{B}}{\partial t}$
 $oldsymbol{rot} oldsymbol{B} = \mu_0 oldsymbol{j} + \mu_0 \epsilon_0 rac{\partial oldsymbol{E}}{\partial t}$

ENS

* * *

Exercice 1 [Ilian M.]

Soit $(a)_{n\in\mathbb{N}}$ définie par $a_0 = \frac{\pi}{2}$ et $a_{n+1} = \sin(a_n)$.

Nature de $\sum a_n^2$?

* * *

Exercice 2 [Ilian M.]

Soit $(A, B, C) \in (M_2(\mathbb{R}))^3$.

On définit [A, B] = AB - BA (ndl
r, crochet de Lie).

Montrer que $\left[[A,B]^2\,,C\right] = 0$ avec deux méthodes différentes.

* * *

Exercice 3 [Ilian M.]

Soit $A \in GL_n(\mathbb{R})$.

Montrer qu'il existe $P \in \mathbb{R}_n[X]$ tel que $A^{-1} = P(A)$.

Physique

CCINP

* * *

*

Q1) $\overline{\text{Système}}$: { S(m) }

 $\overline{\text{Référentiel}}: \text{Géocentrique}$

$$\overline{\mathrm{FD}}$$
 $\sum \mathbf{F} = m\mathbf{a}$ \Rightarrow $\frac{dv}{dt}\mathbf{T} + \frac{v^2}{r}\mathbf{N} = \frac{GM}{r^2}\mathbf{N}$

D'où
$$v^2 = \frac{GM}{r}$$
, et donc $\mathcal{E}_c = \frac{1}{2} \frac{GMm}{r}$
Or, $\mathcal{E}_p = -\frac{GMm}{r}$, d'où $\left[2\mathcal{E}_c + \mathcal{E}_p = 0\right]$

Q2) a) Sur un tour complet :

$$\begin{split} \Delta \mathcal{E}_m &= \Delta \mathcal{E}_c + \Delta \mathcal{E}_p \\ &= \frac{1}{2} m \left(v_f^2 - v_i^2 \right) - GMm \left(\frac{1}{R - \varepsilon} - \frac{1}{\varepsilon} \right) \\ &= \frac{1}{2} GMm \left(\frac{1}{R - \varepsilon} - \frac{1}{\varepsilon} \right) - GMm \left(\frac{1}{R - \varepsilon} - \frac{1}{\varepsilon} \right) \\ &= -\frac{1}{2} \frac{GMm}{R} \left(\frac{1}{1 - \frac{\varepsilon}{R}} - 1 \right) \\ &\approx -\frac{1}{2} \frac{GMm\varepsilon}{R^2} \end{split}$$

Or,
$$W(\mathbf{F_f}) = \int \mathbf{F} \cdot d\mathbf{l} = \int -\alpha m v \mathbf{v} \cdot d\mathbf{l} \approx -2\pi R \alpha m v^2$$

D'où
$$\overline{\text{TEM}}: \Delta \mathcal{E}_m = \mathcal{W}(\mathbf{F_f}) \Leftrightarrow \boxed{\alpha = \frac{\varepsilon}{4\pi R^2}}$$

b)
$$T = \frac{v}{d} = \sqrt{\frac{GM}{R}} \frac{1}{2\pi R} = \sqrt{\frac{GM}{4\pi^2}} \frac{1}{R^{-3/2}}$$

$$\underline{\mathrm{DL}}: T_n = KR^{-3/2} \left(1 - \frac{\varepsilon n}{R} \right)^{-3/2} \approx KR^{-3/2} \left(1 + \frac{3}{2} \frac{\varepsilon n}{R} \right)$$

Donc plus généralement, $T_n = K(R - \varepsilon n)^{-3/2}$, où $K = \sqrt{\frac{GM}{4\pi^2}}$

Donc:

$$\sum_{k=0}^{n} T_k = T_p \quad \Leftrightarrow \quad KR^{-3/2} \sum_{k=0}^{n} \left(1 + \frac{3}{2} \frac{\varepsilon n}{R} \right) = T_p$$

$$\Leftrightarrow \quad U \left(n + 1 + \frac{3}{2} \frac{\varepsilon}{R} \frac{n(n+1)}{2} \right) = 1 \quad \left(U = \frac{KR^{-3/2}}{T_p} \right)$$

$$\Leftrightarrow \quad n^2 + n \left(\frac{4}{3} \frac{R}{\varepsilon} + 1 \right) + \frac{4}{3} \frac{R}{\varepsilon} - \frac{1}{U} = 0$$

$$\Leftrightarrow \quad n^2 + \frac{4}{3} \frac{R}{\varepsilon} - \frac{1}{U} = 0$$

 $\overline{\text{AN}}: n \approx 2 \cdot 10^5, \text{ donc } \boxed{h \approx 200 \text{ km}}$

Mines Télécom

Exercice 3 [C D.]

Démontrer l'équation de Navier-Stokes :
$$\mu \frac{D\boldsymbol{v}}{Dt} = \mu \left(\frac{\partial \boldsymbol{v}}{\partial t} + (\boldsymbol{v} \cdot \boldsymbol{grad}) \boldsymbol{v} \right) = -\boldsymbol{grad}\,P + \mu \boldsymbol{g} + \eta \Delta \boldsymbol{v}$$
 L'équation de Schrödinger :
$$i\hbar \frac{\partial \psi}{\partial t} = \hat{H}\psi = -\frac{\hbar^2}{2m}\Delta\psi + V\psi$$
 Ainsi que les équations de Maxwell :

$$i\hbarrac{\partial\psi}{\partial t}=\hat{H}\psi=-rac{\hbar^2}{2m}\Delta\psi+V{f q}$$

$$div oldsymbol{E} = rac{
ho}{\epsilon_0}$$
 $div oldsymbol{B} = 0$
 $oldsymbol{rot} oldsymbol{E} = -rac{\partial oldsymbol{B}}{\partial t}$
 $oldsymbol{rot} oldsymbol{B} = \mu_0 oldsymbol{j} + \mu_0 \epsilon_0 rac{\partial oldsymbol{E}}{\partial t}$

ENS

* * *

Exercice 1 [Ilian M.]

On considère une masse M enroulée indéfiniment autour d'un cylindre, ce dernier pouvant tourner autour d'un axe horizontal sur lequel il est fixé, avec un pendule de masse m accroché sur une surface latérale.

Etudier le mouvement et les positions d'équilibre du système.

* * *