School of Computing and Information Systems The University of Melbourne

COMP90049 Introduction to Machine Learning (Semester 2, 2020)

Workshop: Week 10

- 1. Explain the two main concepts that we use to measures the goodness of a clustering structure without external information.
- 2. Let's revisit the logic behind the voting method of classifier combination (used in Bagging, Random Forests, and Boosting to some extent). We are assuming that *the errors between the two classifiers are uncorrelated*
 - (a) First, let's assume our three independent classifiers both have an error rate of e = 0.4, calculated over 1000 instances with binary labels (500 A and 500 B).
 - (i) Build the confusion matrices for these classifiers, based on the assumptions above.
 - (ii) Using that the majority voting, what the expected error rate of the voting ensemble?
 - (b) Now consider three classifiers, first with $e_1 = 0.1$, the second and third with $e_2 = e_3 = 0.2$.
 - (i) Build the confusion matrices.
 - (ii) Using the majority voting, what the expected error rate of the voting ensemble?
 - (iii) What if we relax our assumption of independent errors? In other words, what will happen if the errors between the systems were very highly correlated instead? (Systems make similar mistakes.)
- 3. Consider the following dataset:

id	apple	ibm	lemon	sun	label
A	4	0	1	1	fruit
В	5	0	5	2	fruit
С	2	5	0	0	comp
D	1	2	1	7	comp
Ε	2	0	3	1	?
F	1	0	1	0	?

- (a) Treat the problem as an unsupervised machine learning problem (excluding the id and label attributes), and calculate the clusters according to k-means with k = 2, using the Manhattan distance:
 - (i) Starting with seeds A and D.
 - (ii) Starting with seeds A and F.
- (b) Perform agglomerative clustering of the above dataset (excluding the *id* and *label* attributes), using the Euclidean distance and calculating the group average as the cluster centroid.