Nam	<u>,.</u>	Page 1	IIT Kanpur
Roll		Dept.:	CS771A (IML) Quiz-1 Date: August 23, 2023
	uctions:	l	Total: 30 marks
1 2	,		
Section	n 1 (15 very short answer questions: 15	$5 \times 2 = 30 \text{ marks}$	
	~ · · · · · · · · · · · · · · · · · · ·	,	distances, suppose the means of the positive new test input x_* is classified as positive if
	Write down the expressions for the lose Assume training data to be denoted as	_	ares linear regression and ridge regression. ight vector to be denoted as \boldsymbol{w} .
	Briefly explain (in at most 1-2 sentence earning model.	ees) overfitting in terms of	of the training and test error of a machine
	pias term b as well. Also assume that	the inputs x_n have alrest their mean is 0. Assum	inputs, scalar weight w , and assume the ady been centered (i.e., by subtracting off ning you are given N input-response pairs ase do show the basic steps).

5. Consider two simple decision stumps D_1 and D_2 . The first leaf of D_1 has 200 positive and 0 negative examples, and its second leaf has 0 positive and 200 negatives. The first leaf of D_2 has 100 positives and 100 negatives, and its second leaf also has 100 positives and 100 negatives. Which is these two decision stumps has a higher information gain and why? Explain only using words in at most 1-2 sentences.

Page 2	

Name:		
Roll No.:	Dept.:	

IIT Kanpur CS771A (IML) Quiz-1

COII	110		Dept		Date: August 23, 20)23
6.	and a	multi-class classification model (e.g., test input \boldsymbol{x}_* , how would you predict belonging to any class $i \in \{1, 2, \dots, n\}$	t the class \boldsymbol{x}_* be			
7.		t is the advantage of using gradient instead of learning it using the closest transfer in the closest		_	of a linear/ridge regress:	On
8.	(1-y)	eross entropy loss on an example $(\boldsymbol{x}_n) \log(1-\mu_n)$ where $\mu_n = \sigma(\boldsymbol{w}^{\top}\boldsymbol{x}_n)$ in why this loss makes sense for a be	is the model's p	predicted probability		
9.	Let's possible ne	ider learning a decision tree, given so assume that we will not test any feat bly test a feature at multiple nodes a seded to construct the full decision t eed to try simplifying it too much to	ure that has been the same level ree (i.e., assum	en tested at one of the how many informing no pruning)? Ju	ne previous levels (but we cation gain calculations wo	can uld
10.	In wh	nat situation, an ϵ -ball nearest neigh	bors method m	ay fail to make a pro	ediction at test time?	

IIT Kanpur CS771A (IML) Quiz-1

Date: August 23, 2023

predict the label of a new test inp	it) for a binary cla	assification problem:	
n we use a linear regression model t) learn a nonlinear	regression function?	Briefly explain your answer
m III	we use a linear regression model to CQ) Which of these classifiers lear.	we use a linear regression model to learn a nonlinear at CQ) Which of these classifiers learns a linear separate	we use a linear regression model to learn a nonlinear regression function? CQ) Which of these classifiers learns a linear separator (select all options LwP when using Euclidean distance, (2) K-nearest neighbors classifier for

15. (MCQ) Which of these can be used for regression (select all options that you think are correct)? (1)

Decision Tree, (2) K-nearest neighbor, (3) Learning with Prototypes, (4) Logistic Regression.

Page 4

Name:	
Roll No.:	Dept.:

IIT Kanpur CS771A (IML) Quiz-1

Date: August 23, 2023

FOR ROUGH WORK ONLY