

SEQUENCE LISTING

Bl
 <110> KISHIMOTO, Tadamitsu
 NAGASAWA, Takashi
 TACHIBANA, Kazunobu
 CHUGAI SEIYAKU KABUSIKI KAISHA

<120> Vascularization Inhibitors

<130> 46124-5042-US

<140> US 09/646,785

<141> 2001-02-16

<150> PCT/JP99/01448

<151> 1999-03-23

<150> JP10/95448

<151> 1998-03-24

<160> 12

<210> 1

<211> 352

<212> PRT

<213> Mus

<400> 1

Met	Glu	Gly	Ile	Ser	Ile	Tyr	Thr	Ser	Asp	Asn	Tyr	Thr	Glu	Glu
5													15	
Met	Gly	Ser	Gly	Asp	Tyr	Asp	Ser	Met	Lys	Glu	Pro	Cys	Phe	Arg
20													30	
Glu	Glu	Asn	Ala	Asn	Phe	Asn	Lys	Ile	Phe	Leu	Pro	Thr	Ile	Tyr
35													45	
Ser	Ile	Ile	Phe	Leu	Thr	Gly	Ile	Val	Gly	Asn	Gly	Leu	Val	Ile
50													60	
Leu	Val	Met	Gly	Tyr	Gln	Lys	Lys	Leu	Arg	Ser	Met	Thr	Asp	Lys
65													75	
Tyr	Arg	Leu	His	Leu	Ser	Val	Ala	Asp	Leu	Leu	Phe	Val	Ile	Thr
80													90	
Leu	Pro	Phe	Trp	Ala	Val	Asp	Ala	Val	Ala	Asn	Trp	Tyr	Phe	Gly
95													105	
Asn	Phe	Leu	Cys	Lys	Ala	Val	His	Val	Ile	Tyr	Thr	Val	Asn	Leu
110													120	
Tyr	Ser	Ser	Val	Leu	Ile	Leu	Ala	Phe	Ile	Ser	Leu	Asp	Arg	Tyr
125													135	
Leu	Ala	Ile	Val	His	Ala	Thr	Asn	Ser	Gln	Arg	Pro	Arg	Lys	Leu
140													150	
Leu	Ala	Glu	Lys	Val	Val	Tyr	Val	Gly	Val	Trp	Ile	Pro	Ala	Leu
155													165	
Leu	Leu	Thr	Ile	Pro	Asp	Phe	Ile	Phe	Ala	Asn	Val	Ser	Glu	Ala
170													180	
Asp	Asp	Arg	Tyr	Ile	Cys	Asp	Arg	Phe	Tyr	Pro	Asn	Asp	Leu	Trp
185													195	
Val	Val	Val	Phe	Gln	Phe	Gln	His	Ile	Met	Val	Gly	Leu	Ile	Leu
200													210	
205														

RECEIVED

JUL 23 2002

TECH CENTER 1600/2900

158

Pro Gly Ile Val Ile Leu Ser Cys Tyr Cys Ile Ile Ile Ser Lys
 215 220 225
 Leu Ser His Ser Lys Gly His Gln Lys Arg Lys Ala Leu Lys Thr
 230 235 240
 Thr Val Ile Leu Ile Leu Ala Phe Phe Ala Cys Trp Leu Pro Tyr
 245 250 255
 Tyr Ile Gly Ile Ser Ile Asp Ser Phe Ile Leu Leu Glu Ile Ile
 260 265 270
 Lys Gln Gly Cys Glu Phe Glu Asn Thr Val His Lys Trp Ile Ser
 275 280 285
 Ile Thr Glu Ala Leu Ala Phe Phe His Cys Cys Leu Asn Pro Ile
 290 295 300
 Leu Tyr Ala Phe Leu Gly Ala Lys Phe Lys Thr Ser Ala Gln His
 305 310 315
 Ala Leu Thr Ser Val Ser Arg Gly Ser Ser Leu Lys Ile Leu Ser
 320 325 330
 Lys Gly Lys Arg Gly Gly His Ser Ser Val Ser Thr Glu Ser Glu
 335 340 345
 Ser Ser Ser Phe His Ser Ser
 350

<210> 2
 <211> 1588
 <212> DNA
 <213> Mus

<220>
 <221> CDS
 <222> (1)...(1059)

<400> 2
 atg gag ggg atc agt ata tac act tca gat aac tac acc gag gaa 45
 atg ggc tca ggg gac tat gac tcc atg aag gaa ccc tgt ttc cgt 90
 gaa gaa aat gct aat ttc aat aaa atc ttc ctg ccc acc atc tac 135
 tcc atc atc ttc tta act ggc att gtg ggc aat gga ttg gtc atc 180
 ctg gtc atg ggt tac cag aag aaa ctg aga agc atg acg gac aag 225
 tac agg ctg cac ctg tca gtg gcc gac ctc ctc ttt gtc atc acg 270
 ctt ccc ttc tgg gca gtt gat gcc gtg gca aac tgg tac ttt ggg 315
 aac ttc cta tgc aag gca gtc cat gtc atc tac aca gtc aac ctc 360
 tac agc agt gtc ctc atc ctg gcc ttc atc agt ctg gac cgc tac 405
 ctg gcc atc gtc cac gcc acc aac agt cag agg cca agg aag ctg 450
 ttg gct gaa aag gtg gtc tat gtt ggc gtc tgg atc cct gcc ctc 495
 ctg ctg act att ccc gac ttc atc ttt gcc aac gtc agt gag gca 540
 gat gac aga tat atc tgt gac cgc ttc tac ccc aat gac ttg tgg 585
 gtg gtt gtg ttc cag ttt cag cac atc atg gtt ggc ctt atc ctg 630
 cct ggt att gtc atc ctg tcc tgc tat tgc att atc atc tcc aag 675
 ctg tca cac tcc aag ggc cac cag aag cgc aag gcc ctc aag acc 720
 aca gtc atc ctc atc ctg gct ttc ttc gcc tgt tgg ctg cct tac 765
 tac att ggg atc agc atc gac tcc ttc atc ctc ctg gaa atc atc 810
 aag caa ggg tgt gag ttt gag aac act gtg cac aag tgg att tcc 855
 atc acc gag gcc cta gct ttc ttc cac tgt tgt ctg aac ccc atc 900
 ctc tat gct ttc ctt gga gcc aaa ttt aaa acc tct gcc cag cac 945
 gca ctc acc tct gtg agc aga ggg tcc agc ctc aag atc ctc tcc 990
 aaa gga aag cga ggt gga cat tca tct gtt tcc act gag tct gag 1035
 tct tca agt ttt cac tcc agc taa cacagatgta aaagactttt ttttat 1085
 acgataaata actttttttt aagttacaca ttttcagat ataaaagact gccaatatt 1145

gtacaggaaaa	tattgcttgg	tggattttgtt	tcttgggttt	cttttagtttt	tgtgaagttt	1205
aattgactta	tttatataaa	ttttttttgt	ttcatattga	tgtgtgtcta	ggcaggacct	1265
gtggccaagt	tcttagttgc	tgtatgtctc	gtggtaggac	tgtaaaaaaag	ggaactgaac	1325
attccagagc	gtgttagttaa	tcacgtaaag	ctagaaatga	tccccagctg	tttatgcata	1385
gataatctct	ccattcccggt	ggaacgtttt	tcctgttctt	aagacgtgat	tttgctgttag	1445
aagatggcac	ttataaccac	agcccaaagt	ggtatagaaa	tgctggtttt	tcagtttca	1505
ggagtgggtt	gatttcagca	cctacagtgt	acagtcttgt	attaaagtgt	taataaaaagt	1565
acatgttaaa	ctaaaaaaa	aaa				1588

<210> 3
<211> 359
<212> PRT
<213> Mus

<400> 3

Met	Glu	Pro	Ile	Ser	Val	Ser	Ile	Tyr	Thr	Ser	Asp	Asn	Tyr	Ser
							5		10					15
Glu	Glu	Val	Gly	Ser	Gly	Asp	Tyr	Asp	Ser	Asn	Lys	Glu	Pro	Cys
							20		25					30
Phe	Arg	Asp	Glu	Asn	Val	His	Phe	Asn	Arg	Ile	Phe	Leu	Pro	Thr
							35		40					45
Ile	Tyr	Phe	Ile	Ile	Phe	Leu	Thr	Gly	Ile	Val	Gly	Asn	Gly	Leu
							50		55					60
Val	Ile	Leu	Val	Met	Gly	Tyr	Gln	Lys	Lys	Leu	Arg	Ser	Met	Thr
							65		70					75
Asp	Lys	Tyr	Arg	Leu	His	Leu	Ser	Val	Ala	Asp	Leu	Leu	Phe	Val
							80		85					90
Ile	Thr	Leu	Pro	Phe	Trp	Ala	Val	Asp	Ala	Met	Ala	Asp	Trp	Tyr
							95		100					105
Phe	Gly	Lys	Phe	Leu	Cys	Lys	Ala	Val	His	Ile	Ile	Tyr	Thr	Val
							110		115					120
Asn	Leu	Tyr	Ser	Ser	Val	Leu	Ile	Leu	Ala	Phe	Ile	Ser	Leu	Asp
							125		130					135
Arg	Tyr	Leu	Ala	Ile	Val	His	Ala	Thr	Asn	Ser	Gln	Arg	Pro	Arg
							140		145					150
Lys	Leu	Leu	Ala	Glu	Lys	Ala	Val	Tyr	Val	Gly	Val	Trp	Ile	Pro
							155		160					165
Ala	Leu	Leu	Leu	Thr	Ile	Pro	Asp	Phe	Ile	Phe	Ala	Asp	Val	Ser
							170		175					180
Gln	Gly	Asp	Ile	Ser	Gln	Gly	Asp	Asp	Arg	Tyr	Ile	Cys	Asp	Arg
							185		190					195
Leu	Tyr	Pro	Asp	Ser	Leu	Trp	Met	Val	Val	Phe	Gln	Phe	Gln	His
							200		205					210
Ile	Met	Val	Gly	Leu	Ile	Leu	Pro	Gly	Ile	Val	Ile	Leu	Ser	Cys
							215		220					225
Tyr	Cys	Ile	Ile	Ile	Ser	Lys	Leu	Ser	His	Ser	Lys	Gly	His	Gln
							230		235					240
Lys	Arg	Lys	Ala	Leu	Lys	Thr	Thr	Val	Ile	Leu	Ile	Leu	Ala	Phe
							245		250					255
Phe	Ala	Cys	Trp	Leu	Pro	Tyr	Tyr	Val	Gly	Ile	Ser	Ile	Asp	Ser
							260		265					270
Phe	Ile	Leu	Leu	Gly	Val	Ile	Lys	Gln	Gly	Cys	Asp	Phe	Glu	Ser
							275		280					285
Ile	Val	His	Lys	Trp	Ile	Ser	Ile	Thr	Glu	Ala	Leu	Ala	Phe	Phe
							290		295					300
His	Cys	Cys	Leu	Asn	Pro	Ile	Leu	Tyr	Ala	Phe	Leu	Gly	Ala	Lys

305.	310	315
Phe Lys Ser Ser Ala Gln His Ala Leu Asn Ser Met Ser Arg Gly		
320	325	330
Ser Ser Leu Lys Ile Leu Ser Lys Gly Lys Arg Gly Gly His Ser		
335	340	345
Ser Val Ser Thr Glu Ser Glu Ser Ser Phe His Ser Ser		
350	355	

<210> 4
<211> 1758
<212> DNA
<213> Mus

<220>
<221> CDS
<222> (1) ... (1080)
<223>

<400> 4
atg gaa ccg atc agt gtg agt ata tac act tct gat aac tac tct 45
gaa gaa gtg ggg tct gga gac tat gac tcc aac aag gaa ccc tgc 90
ttc cgg gat gaa aac gtc cat ttc aat agg atc ttc ctg ccc acc 135
atc tac ttc atc atc ttc ttg act ggc ata gtc ggc aat gga ttg 180
gtg atc ctg gtc atg ggt tac cag aag aag cta agg agc atg acg 225
gac aag tac cgg ctg cac ctg tca gtg gct gac ctc ctc ttt gtc 270
atc aca ctc ccc ttc tgg gca gtt gat gcc atg gct gac tgg tac 315
ttt ggg aaa ttt ttg tgt aag gct gtc cat atc atc tac act gtc 360
aac ctc tac agc agc gtt ctc atc ctg gcc ttc atc agc ctg gac 405
cggt tac ctc gcc att gtc cac gcc acc aac agt caa agg cca agg 450
aaa ctg ctg gct gaa aag gca gtc tat gtg ggc gtc tgg atc cca 495
gcc ctc ctc ctg act ata cct gac ttc atc ttt gcc gac gtc agc 540
cag ggg gac atc agt cag ggg gat gac agg tac atc tgt gac cgc 585
ctt tac ccc gat agc ctg tgg atg gtg gtg ttt caa ttc cag cat 630
ata atg gtg ggt ctc atc ctg ccc ggc atc gtc atc ctc tcc tgt 675
tac tgc atc atc atc tct aag ctg tca cac tcc aag ggc cac cag 720
aag cgc aag gcc ctc aag acg aca gtc atc ctc atc cta gct ttc 765
ttt gcc tgc tgg ctg cca tat tat gtg ggg atc agc atc gac tcc 810
ttc atc ctt ttg gga gtc atc aag caa gga tgt gac ttc gag agc 855
att gtg cac aag tgg atc tcc atc aca gag gcc ctc gcc ttc ttc 900
cac tgt tgc ctg aac ccc atc ctc tat gcc ttc ctc ggg gcc aag 945
ttc aaa agc tct gcc cag cat gca ctc aac tcc atg agc aga ggc 990
tcc agc ctc aag atc ctt tcc aaa gga aag cgg ggt gga cac tct 1035
tcc gtc tcc acg gag tca gaa tcc tcc agt ttt cac tcc agc taa 1080
cccttatgca aagacttata taatataat atatataatgta taaagaactt ttttatgtta 1140
cacatttcc agatataaga gactgaccag tcttgatcag ttttttttt ttttaattg 1200
actgttggga gtttatgttc ctctagttt tgtgaggtt gacttaattt atataaatat 1260
tgggggtt tttttttt tttttttt tttttttt tttttttt tttttttt 1320
tagctgttta tctgtgtgta ggactgtaga actgttaggg aagaaaactga acattccaga 1380
atgtgtggta aattgaataa agctagccgt gatctcagc tggctgtca taatctttc 1440
atcccgagga gcacccacc cccaccccca cccccccccc attcttaaat tgggggtt 1500
tgctgtgtga tggtttggtt gtttttttt tgggtttttt gtttttttt tttttttt 1560
aagatggcac ttaaaaaccaa agcctgaaat ggtggtagaa atgctggggt tttttttt 1620
tgggggtt ttcagtttc aagagtagat tgacttcagt ccctacaaat gtacagtctt 1680
gtattacatt gttaaaaaa gtcaatgata aactaaaaaa aaaaaaaaaa aaaaaaaaaa 1740
aaaaaaaaaa aaaaaaaaaa 1758

<210> 5
<211> 89
<212> PRT
<213> Artificial Sequence

<220>
<223> Ligand peptide

<400> 5
Met Asn Ala Lys Val Val Val Val Leu Val Leu Val Leu Thr Ala
5 10 15
Leu Cys Leu Ser Asp Gly Lys Pro Val Ser Leu Ser Tyr Arg Cys
20 25 30
Pro Cys Arg Phe Phe Glu Ser His Val Ala Arg Ala Asn Val Lys
35 40 45
His Leu Lys Ile Leu Asn Thr Pro Asn Cys Ala Leu Gln Ile Val
50 55 60
Ala Arg Leu Lys Asn Asn Asn Arg Gln Val Cys Ile Asp Pro Lys
65 70 75
Leu Lys Trp Ile Gln Glu Tyr Leu Glu Lys Ala Leu Asn Lys
80 85

<210> 6
<211> 2244
<212> DNA
<213> Mus

<220>
<221> CDS
<222> (471) ... (743)

<400> 6
gcacgggaca ggccgggcca caccacccgg ggcgagctcg gagggcgccg ctctggcg 60
agggccggc ggctcgccccc agggcgccgtt acctcgctcg cggggccgga gagggcgccg 120
ggagggcacgg ggcctggagg cgccaggcgg aggatgcggg cgacacggtg ggcgcggcga 180
ccgcgcgacc gggcgggcccgcg gcgggcaggg gcgagcggag ggagggagcg gactgcggca 240
ggatctgtcg aggaaaaatc ttgcggccgg cgatcccccg ccttttaagc gcagcctgca 300
ctccccccac cccacgcagg gcggggcctt ccccaacgcg ggcccact ggcgcgcgcg 360
cgccgcgtccc ctccagctcg ctcgcgcctc tcactctccg tcagccgcatt tgccgcgtcg 420
gcgtccggcc cccgacccgc gctcgccgc cccgcggccccc gcccgcgcgc gcc 473
atg aac gcc aag gtc gtc gtc gtc ctc gtc ctg acc gcg 518
ctc tgc ctc agc gac ggg aag ccc gtc agc ctg agc tac aga tgc 563
cca tgc cga ttc ttc gaa agc cat gtt gcc aga gcc aac gtc aag 608
cat ctc aaa att ctc aac act cca aac tgt gcc ctt cag att gta 653
gcc cgg ctg aag aac aac aga caa gtg tgc att gac ccc aag 698
cta aag tgg att cag gag tac ctg gag aaa gct tta aac aag taa 743
gcacaacgc caaaaaggac tttccgctag acccaactcgaa ggaaaactaa aacccgtgtga 803
gagatgaaag ggcaaaagacg tggggggagggg ggccttaacc atgaggacca ggtgtgtgtg 863
tgggggtgggc acatttgcgtt gggatcgccgctt ctgagggtttt ccagcattta gaccctgcatt 923
ttatagcata cggatgtata ttgcagctta tattcatcca tgccctgtac ctgtgcacgt 983
tggaaattttt attactgggg tttttctaaag aaagaaattt gattatcaac agcattttca 1043
agcagtttagt tccttcatga tcatcacaat catcatcatt ctcattctca ttttttaaat 1103
caacgagtac ttcaagatct gaatttggct tggttggagc atctcctctg ctcccctggg 1163
gagtctgggc acagtcaggt ggtggcttaa cagggagctg gaaaaagtgt cctttcttca 1223
gacactgagg ctccgcagc agcgcggccctc ccaagaggaa ggcctctgtg gcactcagat 1283

accgactggg gctggcgcc gccactgcct tcacccctc tttcaaccc agtgattggc 1343
tctgtggc ccatgttagaa gccactattt ctggactgt gctcagagac ccctctccca 1403
gctattccata ctctctcccc gactccgaga gcatgcatta atcttgcctc tgcttctcat 1463
ttctgttagcc tgatcagcgc cgcaccagcc gggaaagaggg tgattgtgg ggctcgtgcc 1523
ctgcacccct ctcctccca ggcctgcccc acagctcggg ccctctgtga gatccgtt 1583
tggcctcctc cagaatggag ctggccctct cctggggatg tctaattggc cccctgctta 1643
cccgcaaaaag acaagtctt acagaatcaa atgcaatttt aaatctgaga gctcgctttg 1703
agtgactggg ttttgcatt gcctctgaag cctatgtatg ccatggaggg actaacaac 1763
tctgagggtt ccgaatcag aagcgaaaaa atcagtgaat aaaccatcat ctggccacta 1823
ccccctcctg aagccacagc agggtttcag gttccaatca gaactgttg caaggtgaca 1883
tttccatgca taaatgcgtt ccacagaagg tcctgggtt atttgtact ttttgcagg 1943
catttttttatataatttt ttttgcacatt ttttttacg ttttgcattaa aaacaaatgt 2003
atttcaaaaat atatttatac tgcacaattt catatattt aagtggagcc atatgaatgt 2063
cagtagttt tacttctcta ttatctcaaa ctactggcaa tttgtaaaga aatataatgt 2123
atataaaaat gtgattgcag ctttcaatg ttagccacag ttttgcattttt cacttgcact 2183
aaaattgtat caaatgtgac attatatgca cttagcaataa aatgctaatt gtttcatgg 2243
a
2244

<210> 7
<211> 89
<212> PRT
<213> Artificial Sequence

<220>
<223> Ligand peptide

<400> 7
Met Asp Ala Lys Val Val Ala Val Leu Ala Leu Val Leu Ala Ala
5 10 15
Leu Cys Ile Ser Asp Gly Lys Pro Val Ser Leu Ser Tyr Arg Cys
20 25 30
Pro Cys Arg Phe Phe Glu Ser His Ile Ala Arg Ala Asn Val Lys
35 40 45
His Leu Lys Ile Leu Asn Thr Pro Asn Cys Ala Leu Gln Ile Val
50 55 60
Ala Arg Leu Lys Asn Asn Asn Arg Gln Val Cys Ile Asp Pro Lys
65 70 75
Leu Lys Trp Ile Gln Glu Tyr Leu Glu Lys Ala Leu Asn Lys
80 85

<210> 8
<211> 1781
<212> DNA
<213> Mus

<220>
<221> CDS
<222> (82)...(351)

<400> 8
gaccactttc cctctcggtc cacctcggtg tcctttgt gtccagctct gcagcctccg 60
gcgcgccttc ccccccacgc c 81
atg gac gcc aag gtc gtc gcc gtg ctg gcc ctg gtg ctg gcc gcg 126
ctc tgc atc agt gac ggt aaa cca gtc agc ctg agc tac cga tgc 171
ccc tgc cgg ttc ttc gag agc cac atc gcc aga gcc aac gtc aag 216

cat ctg aaa atc ctc. aac act cca aac tgt gcc ctt cag att gtt 261
gca cgg ctg aag aac aac aac aga caa gtg tgc att gac ccg aaa 306
tta aag tgg atc caa gag tac ctg gag aaa gct tta aac aag taa 351
gcacaacaggc ccaaaggact ttccagtaga ccccccggaggc aggctgacat ccgtgggaga 411
tgcaaggggca gtgggtgggaa ggaggggctg aaccctggcc aggatggccg gcgggacagc 471
actgactggg gtcatgctaa gtttgccag cataaaagaca ctccgcccata gcataatggta 531
cgatattgca gcttatattc atccctgccc tcgcccgtgc acaatggagc ttttataact 591
ggggttttc taaggaattt tattacccta accagttgc ttcatccccca ttctcctcat 651
cctcatcttc atttaaaaaa gcagtgatta cttaaggc ttttgcgttgc ttgttttgg 711
gtttctctt gcccggggc ctctggcac agttatagac ggtggcttgc cagggagccc 771
tagagagaaa cttccacca gaggcagatgc cgaggaacgc tgcaggcgtt gtcctgcagg 831
ggcgctccct cgacagatgc ttgtcctga gtcaacacaa gatccggcag agggaggctc 891
ctttatccag ttcaaggc gggtcgggaa gtttttttttta gaagtgttcc ctgaagctgt 951
gctcagagac cttttcttag ccgttccctgc tctctgttttgc cttccaaacg catgcttcat 1011
ctgacttccg cttctcacct ctgttagcctg acggaccaat gctgcaatgg aaggaggag 1071
agtgtatgtgg ggtccccctt ccctctcttc ctttttttttgc cttctactt gggcccttttgc 1131
tgagatttttt ctttggcctc ctgttagatg gagccagacc atccctggata atgtgagaac 1191
atgccttagat ttaccacaa aacacaagtc tgagaattaa tcataaaacgg aagtttaaat 1251
gaggatggg accttggtaa ttgtccctga gtccttataa tttcaacagt ggctctatgg 1311
gctctgatcg aatatcagtg atgaaaataa taataataat aataataacg aataagccag 1371
aatcttgcca tgaagccaca gtggggattc tgggttccaa tcagaaaatgg agacaagata 1431
aaacttgcat acattttat gatcacagac gcccctggtg gtttttggta actatttaca 1491
aggcattttt ttacatatat ttttggcac tttttatgtt tctttggaaag acaaatgtat 1551
ttcagaatat atttggtagtc aattcatataa ttttggtagtgg agccatagta atggcagtag 1611
atatctctat gatcttgagc tactggcaac ttgtaaagaa atatataatga catataaaatg 1671
tattgttagct ttccgggtgc agccacgggtg tattttccca ctttggaaatgtt aattgtatca 1731
actgtgacat tataatgcact agcaataaaaaa tgctaaattgt ttcatgtgt 1781

<210> 9
<211> 4
<212> PRT
<213> Artificial Sequence

<220>
<223> added peptide

<400> 9
Arg Phe Lys Met

<210>10
<211> 4
<212> PRT
<213> Artificial Sequence

<220>
<223> added peptide

<400> 10
Arg Leu Lys Met

<210> 11
<211> 27
<212> DNA
<213> Artificial Sequence

b1
Amplified

<220>
<223> primer

<400> 11
tagcggccgc gttgccatgg aaccgat 27

<210> 12
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 12
gcgtcgactt tgcataaggg ttagctg 27