CS525: Advanced Database Organization

Notes 6: Query Processing Overview

Yousef M. Elmehdwi

Department of Computer Science

Illinois Institute of Technology

yelmehdwi@iit.edu

October 4, 2018

Slides: adapted from a courses taught by Hector Garcia-Molina, Stanford, & Shun Yan Cheung, Emory University

Where we are

 How a DBMS processes queries and the methods it uses to optimize their performance.

Query Processing: The major parts of the query processor

Steps needed to process a query (SQL command)

Query Processing

• The **Query Compiler** consists of 3 major steps


```
SELECT B,D
FROM R,S
WHERE R.A='c' and S.E=2 and R.c=S.c
```

R	A	В	C	S	C	D	Е
	a	1	10		10	X	2
	b	1	20		20	у	2
	c	2	10		30	Z	2
	d	2	35		40	X	1
	e	3	45		50	y	3

R	A	В	С	S	C	D	Е	
	a	1	10		10	X	2	\supset
	b	1	20		20	у	2	
	c	2	10		30	Z	2	
	d	2	35		40	X	1	
	e	3	45		50	y	3	

Answer	В	D
	2	X

How do we execute query?

- One idea
 - Scan relations
 - Do Cartesian product
 - Select tuples
 - Do projection

$R \times S$	R.A	R.B	R.C	S.C	S.D	S.E
	a	1	10	10	X	2
	a	1	10	20	y	2
	•					
	•					
	C	2	10	10	X	2
	•					

RXS	R.A	R.B	R.C	S.C	S.D	S.E
	a	1	10	10	X	2
	a	1	10	20	y	2
Bingo! Got one	·	2	10	10	X	2

Relational Algebra

- can be used to describe plans
- Example: Plan I: Initial query plan constructed directly from the query.

FROM expressed by a product, WHERE by a selection above it,
 Select by a projection

Relational Algebra

- can be used to describe plans
- Example: Plan I: Initial query plan constructed directly from the query.

- 1. Scan R.
- 2. For each tuple r of R scan S
- 3. For each tuple r,s, where s in S, select and project on the fly
- OR: $\pi_{B,D}^{FLY}[\sigma_{R,A='c'}^{FLY} \wedge S.E=2 \wedge R.C=S.C(R^{Scan} \times S^{Scan})]$

"FLY" and "SCAN" are the defaults

 Example: Plan I: Initial query plan constructed directly from the query.

• OR: $\pi_{B,D}[\sigma_{R.A='c'} \land s.E=2 \land R.C=s.C(R \times S)]$

Another idea

• Example: Plan II: Scan R and S, perform on the fly selections, do hash join, project

Another idea

- 1. Use R.A index to select R tuples with R.A = 'c'
- 2. For each R.C value found, use S.C index to find matching tuples
- 3. Eliminate S tuples S.E \neq 2
- 4. Join matching R,S tuples, project B,D attributes and place in result

1. Use R.A index to select R tuples with R.A = 'c'

2. For each R.C value found, use S.C index to find matching tuples

- 3. Eliminate S tuples S.E \neq 2
- 4. Join matching R,S tuples, project B,D attributes and place in result

Overview of Query Optimization

Example: SQL query

```
SELECT title
FROM StarsIn
WHERE starName IN (SELECT name
FROM MovieStar
WHERE birthdate LIKE '%1960');
```

• Find the movies with stars born in 1960

Example: Parse Tree

Example: Generating Relational Algebra

Example: Logical Query Plan

 May consider "IN" elimination as a rewriting in the logical plan generator or may consider it a task of the converter

Example: Improved Logical Query Plan

Result sizes are important for selecting physical plans

Example: One Physical Plan

Example: One Physical Plan

