Week2 friday

Warmup: Design a DFA (deterministic finite automaton) and an NFA (nondeterministic finite automaton) that each recognize each of the following languages over $\{a, b\}$

 $\{w \mid w \text{ has an } a \text{ and ends in } b\}$

 $\{w \mid w \text{ has an } a \text{ or ends in } b\}$

Strategy: To design DFA or NFA for a given language, identify patterns that can be built up as we process strings and create states for intermediate stages. Or: decompose the language to a simpler one that we already know how to recognize with a DFA or NFA.

Recall (from Wednesday of last week, and in textbook Exercise 1.14): if there is a DFA M such that L(M) = A then there is another DFA, let's call it M', such that $L(M') = \overline{A}$, the complement of A, defined as $\{w \in \Sigma^* \mid w \notin A\}$.

Let's practice defining automata constructions by coming up with other ways to get new automata from old.

Suppose A_1, A_2 are languages over an alphabet Σ . Claim: if there is a NFA N_1 such that $L(N_1) = A_1$ and NFA N_2 such that $L(N_2) = A_2$, then there is another NFA, let's call it N, such that $L(N) = A_1 \cup A_2$.

Proof idea: Use nondeterminism to choose which of N_1 , N_2 to run.

Formal construction: Let $N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ and $N_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ and assume $Q_1 \cap Q_2 = \emptyset$ and that $q_0 \notin Q_1 \cup Q_2$. Construct $N = (Q, \Sigma, \delta, q_0, F_1 \cup F_2)$ where

- Q =
- $\delta: Q \times \Sigma_{\varepsilon} \to \mathcal{P}(Q)$ is defined by, for $q \in Q$ and $x \in \Sigma_{\varepsilon}$:

Proof of correctness would prove that $L(N) = A_1 \cup A_2$ by considering an arbitrary string accepted by N, tracing an accepting computation of N on it, and using that trace to prove the string is in at least one of A_1 , A_2 ; then, taking an arbitrary string in $A_1 \cup A_2$ and proving that it is accepted by N. Details left for extra practice.

Example: The language recognized by the NFA over $\{a, b\}$ with state diagram

is:

Could we do the same construction with DFA?

Happily, though, an analogous claim is true!

Suppose A_1 , A_2 are languages over an alphabet Σ . Claim: if there is a DFA M_1 such that $L(M_1) = A_1$ and DFA M_2 such that $L(M_2) = A_2$, then there is another DFA, let's call it M, such that $L(M) = A_1 \cup A_2$. Theorem 1.25 in Sipser, page 45

Proof idea:

Formal construction:

Example: When $A_1 = \{w \mid w \text{ has an } a \text{ and ends in } b\}$ and $A_2 = \{w \mid w \text{ is of even length}\}.$

Suppose A_1 , A_2	l_2 are languages	over an alp	habet Σ .	Claim: i	if there is	s a DFA M_1	$_{\rm l}$ such that .	$L(M_1) = A_1$
and DFA M_2 s	such that $L(M_2)$	$= A_2$, then	there is and	other DF.	A, let's ca	all it M , such	ch that $L(M)$	$)=A_1\cap A_2.$
$Sipser\ Theore$	m 1.25, page 45							

Proof idea:

Formal construction: