1. TEORETICKÝ ÚVOD

- Oscilátor s Wienovým článkem je typ elektronického oscilátoru, který generuje sinusové vlny. Může generovat široký rozsah frekvencí.
- Wienův článek je tvořen 2 kondenzátory a 2 rezistory. Kondenzátor C₁ propouští vysoké frekvence, které jsou přes kondenzátor C₂ staženy na zem.
- Mezní frekvence Wienova článku se dá vypočítat pomocí rovnice:

$$f_0 = \frac{1}{2\pi RC}$$

[Hz; Ω ; F]

2. SCHÉMA ZAPOJENÍ

Schéma č. 1 – Zapojení pro měření oscilátoru s Wienovým článkem

3. TABULKA POUŽITÝCH PŘÍSTROJŮ

Označení v zapojení	Přístroj	Тур	Inventární číslo	Poznámka
OSC	Osciloskop	OWON DS5032EV		ELM učebna 2
Z	SS zdroj	DIAMETRAL M27		ELM učebna 2
R ₁	Odporová dekáda	DIAMETRAL	10-1370/02	1 až 999999Ω,
		RLC-D 1000		tolerance 1%
R ₂ Od	Odporová dekáda	DIAMETRAL	19-0047/02	1 až 999999Ω,
		RLC-D 1000		tolerance 1%
R_{ZP}	Odporová dekáda	DIAMETRAL	10-1370/03	1 až 999999Ω,
		RLC-D 1000	10-13/0/03	tolerance 1%
	Digitální	MastechMY 75	19-0046/07	$4\frac{1}{2}$, MR = 200 Ω,
	multimetr	masteemin /3		$\delta = \pm (0.5\% + 10)$
	Digitální	Mastech MY75	19-0046/07	$4\frac{1}{2}$, MR = 200 nF,
	multimetr	Masteeli Mi 1/3	17-0040/07	$\delta = \pm (4\% + 20)$

Tabulka č. 1 - Použité přístroje

4. Postup měření

- Změřili jsme odpor žárovky Rž a vypočítali jsme odpor Rzp.
- Změřili jsme kondenzátory C1, C2.
- Vypočítali jsme R₁, R₂ pro obě krajní frekvence.
- Zapojili jsme obvod podle schématu č. 1.
- Měnili jsme R_{ZP} tak, aby byl na osciloskopu nezkreslený harmonický průběh.
- Nastavovali jsme různé frekvence pomocí rezistorů R₁, R₂, zaznamenali jsme U₀.
- Vypočítali jsme procentní chyby změny výstupního napětí.
- Změřili jsme maximální frekvenci oscilátoru.

5. TABULKY ZMĚŘENÝCH A VYPOČÍTANÝCH HODNOT

Rž [Ω]
52,4

Tabulka č. 2 - Odpor žárovky

R _{ZP} Výpočet [Ω]	R _{ZP} Skutečné [Ω]
104,8	335

Tabulka č. 3 - Zpětnovazební odpor

C ₁ [nF]	C ₂ [nF]
100	100

Tabulka č. 4 - Kondenzátory C1, C2

R _{fmin} [Ω]	$ m R_{fmax}\left[\Omega ight]$
15915,49	227,36

Tabulka č. 5 - Odpory pro krajní frekvence

	$ m f_{min}\left[Hz ight]$	f _{max} [kHz]
Zadané	100	7
Skutečné	101,2	6,65

Tabulka č. 6 - Zadané a skutečné krajní frekvence

6. Vzor výpočtu

1. Výpočet Rzp:

$$R_{ZP} = 2 * R_{\tilde{Z}} = 2 * 52,4 = 104,8\Omega$$

2. Výpočet odporů pro krajní frekvence:

$$R_1 = R_2 = \frac{1}{2\pi * C * f_{min}} = \frac{1}{2\pi * 100 * 10^{-9} * 100} = 15915,49\Omega$$

$$R_1 = R_2 = \frac{1}{2\pi * C * f_{max}} = \frac{1}{2\pi * 100 * 10^{-9} * 7000} = 227,36\Omega$$

3. Výpočet střední hodnoty výstupního napětí U_{0av}:

$$U_{Oav} = \frac{U_{Omax} + U_{Omin}}{2} = \frac{7,212 + 7,99}{2} = 7,601$$

4. Výpočet procentní chyby změny výstupního napětí oscilátoru při přelaďování frekvence:

$$\delta_f = \frac{(U_{Omax} - U_{Omin}) * 100}{U_{Oav}} = \frac{(7,99 - 7,212) * 100}{7,601} = 10,23\%$$

7. GRAFY

Graf č. 1 - Charakteristika závislosti napětí Uo na frekvenci f

8. ZÁVĚR

Chyby měřících přístrojů:

- 1. Odhad chyby měření odporu žárovky
- K měření odporu žárovky byl použit multimetr s velmi nízkou chybou, kde by neměla chyba být více než 1Ω .
- 2. Odhad chyby měření C₁, C₂.
- Bylo nám řečeno, že měřit kondenzátory nemusíme, a tak jsme šli z teoretických hodnot.
- 3. Odhad chyby měření odporových dekád
- Použité dekády mají toleranci kolem 1%, a tak by chyba měla být nedůležitá.
- 4. Odhad chyby měření frekvence osciloskopem
- Osciloskop měřil frekvenci velmi přesně s reakcí i na nejmenší změny, a tak lze usoudit, že chyba byla zanedbatelná.

Zhodnocení:

- 1. Daná a skutečná hodnota krajních frekvencí se liší u minimální o 1,18% a u maximální o 5,26%. Chyba je v jednotkách procent, což je odpovídající podmínkám. Za vinu lze považovat měřící přístroje a kondenzátory.
- 2. Naše naměřené U_{RMS} se neměnilo od 100Hz do 2000Hz, kde bylo 7,212V, ale ve frekvenci 5000HZ se zvýšilo na 7,99V. Na maximální krajní frekvenci 7000Hz napětí opět kleslo na menších 7,566V.
- 3. Nestabilita při přelaďování se pohybuje někde v okolí 10%. Předpovídat se z grafu dá, že v okolí 5000Hz je výstupní napětí maximální.
- 4. Maximální dosažená frekvence našeho přípravku byla 10kHz. U_{RMS} bylo 8,060V. Po překročení frekvence byl průběh znatelně zdeformován. Výsledné výstupní napětí grafu odpovídá.