2

Visualizando datos de múltiples tablas

Objetivos

Tras completar esta lección seremos capaces de hacer los siguiente:

- Escribir sentencias SELECT para acceder a datos de más de una tabla usando Equal-Join y Outer-Join.
- Join de una tabla consigo misma.

Obtener datos de múltiples tables

EMP DEPT

EMPNO	ENAME	 DEPTNO
7839	KING	 10
7698	BLAKE	 30
7934	MILLER	 10

DEPTNO	DNAME	LOC
10	ACCOUNTING	NEW YORK
20	RESEARCH	DALLAS
30	SALES	CHICAGO
40	OPERATIONS	BOSTON

Qué es un Join?

Se usa para consultar datos procedentes de más de una tabla.

```
SELECT table1.column, table2.column

FROM table1, table2

WHERE table1.column1 = table2.column2;
```

- Se escribe la condición del join en la cláusula WHERE.
- Cuando el mismo nombre de columna aparece en más de una tabla se pone el nombre de tabla delante del nombre de columna.

Producto cartesiano

- Se forma cuando:
 - Se omite la condición del JOIN.
 - La condición del JOIN es inválida.
 - Todas las filas de la primera tabla se unen con todas las filas de la segunda tabla.
- Para evitar el producto cartesiano siempre incluiremos una condición válida de join en la cláusula WHERE.

Generación de un producto cartesiano

EMP (14 rows)

DEPT (4 rows)

EMPNO	ENAME	 DEPTNO
7839	KING	 10
7698	BLAKE	 30
7934	MILLER	 10

DEPTNO	DNAME	LOC
10	ACCOUNTING	NEW YORK
20	RESEARCH	DALLAS
30	SALES	CHICAGO
40	OPERATIONS	BOSTON

"Cartesian product: ->
14*4=56 rows"

ENAME	DNAME
KING	ACCOUNTING
BLAKE	ACCOUNTING
KING	RESEARCH
BLAKE	RESEARCH
56 rows	selected.

Tipos de Join

Equijoin Non-equijoin Outer join Self join

Equijoin

EMP

EMPNO	ENAME	DEPTNO			
7839	KING	10			
7698	BLAKE	30			
7782	CLARK	10			
7566	JONES	20			
7654	MARTIN	30			
7499	ALLEN	30			
7844	TURNER	30			
7900	JAMES	30			
7521	WARD	30			
7902	FORD	20			
7369	SMITH	20			
14 rows selected.					
14 10%5 SETECTED.					

DEPT

DEPTNO	DNAME	LOC
10	ACCOUNTING	NEW YORK
30	SALES	CHICAGO
10	ACCOUNTING	NEW YORK
20	RESEARCH	DALLAS
30	SALES	CHICAGO
20	RESEARCH	DALLAS
20	RESEARCH	DALLAS
 14 rows	selected.	

Foreign key Primary key

Recuperación de registros con Equijoins

```
SQL> SELECT emp.empno, emp.ename, emp.deptno,
dept.deptno, dept.loc
3 FROM emp, dept
4 WHERE emp.deptno=dept.deptno;
```

Nombres ambiguos de columnas

- Se usa el nombre de tabla como prefijo para cualificar nombres de columnas que aparecen en múltiples tablas.
- Se gana eficiencia usando nombres de tabla como prefijos.
- Es conveniente distinguir columnas que tienen nombres idénticos pero que residen en diferentes tablas usando alias de columna.

Definiremos condiciones adicionales de búsqueda usando el operador AND

EMP		DEPT
-----	--	------

EMPNO ENAME	E 1	DEPTNO		DEPTNO	DNAME	LOC	
	·						
7839 KING		10		10	ACCOUNTING	NEW	YORK
7698 BLAKE		30		30	SALES	CHIC	AGO
7782 CLARI	ζ	10		10	ACCOUNTING	NEW	YORK
7566 JONES	5	20		20	RESEARCH	DALI	LAS
7654 MARTI	IN	30		30	SALES	CHIC	AGO
7499 ALLEN	J	30		30	SALES	CHIC	AGO
7844 TURNI	ER	30		30	SALES	CHIC	AGO
7900 JAMES	3	30		30	SALES	CHIC	AGO
7521 WARD		30		30	SALES	CHIC	AGO
7902 FORD		20		20	RESEARCH	DALI	LAS
7369 SMITE	i	20		20	RESEARCH	DALI	LAS
				• • •			
14 rows sele	4 rows selected. 14 rows selected.						

ORACLE®

Uso de Alias de Tablas

Se pueden simplificar las consultas usando alias de tablas.

```
SQL> SELECT e.empno, e.ename, e.deptno,
2          d.deptno, d.loc
3 FROM emp e, dept d
4 WHERE e.deptno=d.deptno;
```

Unir más de dos tablas

Non-Equijoins

EMP

EMPNO ENAME	SAL			
7839 KING	5000			
7698 BLAKE	2850			
7782 CLARK	2450			
7566 JONES	2975			
7654 MARTIN	1250			
7499 ALLEN	1600			
7844 TURNER	1500			
7900 JAMES	950			
14 rows selected.				

SALGRADE

GRADE	LOSAL	HISAL
1	700	1200
2	1201	1400
3	1401	2000
4	2001	3000
5	3001	9999

El salario en la tabla EMP está comprendido entre LOSAL y HISAL en la tabla SALGRADE

Recuperación de Registros con Non-Equijoins

```
SQL> SELECT e.ename, e.sal, s.grade
2 FROM emp e, salgrade s
3 WHERE e.sal
4 BETWEEN s.losal AND s.hisal;
```

ENAME	SAL	GRADE				
JAMES	950	1				
SMITH	800	1				
ADAMS	1100	1				
•••						
14 rows selected.						

Outer Joins

EMP DEPT ENAME DEPTNO DEPTNO DNAME KING 10 10 ACCOUNTING **BLAKE** 30 30 SALES CLARK 10 10 ACCOUNTING **JONES** 20 20 RESEARCH

40

No hay empleados en el Departamento OPERATIONS

OPERATIONS

Outer Joins

- Se pueden usar también para obtener filas que no cumplen la condición del JOIN.
- El operador Outer join es el signo (+).

```
SELECT table1.column, table2.column
FROM table1, table2
WHERE table1.column(+) = table2.column;
```

```
SELECT table1.column, table2.column
FROM table1, table2
WHERE table1.column = table2.column(+);
```

Ejemplo de Outer Joins

```
SQL> SELECT e.ename, d.deptno, d.dname
2 FROM emp e, dept d
3 WHERE e.deptno(+) = d.deptno
4 ORDER BY e.deptno;
```

Self Joins

EMP (WORKER)

EMP (MANAGER)

EMPNO	ENAME	MGR	EMPNO	ENAME
7839	KING			
7698	BLAKE	7839	7839	KING
7782	CLARK	7839	7839	KING
7566	JONES	7839	7839	KING
7654	MARTIN	7698	7698	BLAKE
7499	ALLEN	7698	7698	BLAKE

"MGR en la tabla WORKER es igual a EMPNO en la tabla MANAGER"

Join de una Tabla consigo misma

```
SQL> SELECT worker.ename||' works for '||manager.ename
2 FROM emp worker, emp manager
3 WHERE worker.mgr = manager.empno;
```

Resumen

SELECT table1.column, table2.column

FROM table1, table2

WHERE table1.column1 = table2.column2;

Equijoin Non-equijoin Outer join Self join

