Systemes

Algebriques

David Wiedemann

Table des matières

1	\mathbf{Pre}	euves	2	
		1.0.1 Proprietes de preuves formelles	2	
	1.1	Ensembles	4	
2	Applications entre ensembles			
	2.1	Relations d'equivalence	7	
	2.2	Cardinal d'un ensemble	8	
${f L}$	\mathbf{ist}	of Theorems		
	1	Definition (division d'entiers)	3	
	1	Proposition (Division avec reste)	3	
		Preuve	3	
	2	Proposition (Paradoxe de Russel)	4	
		Preuve	4	
	2	Definition (Formalisation des applications)	5	
	4	Proposition (Surjectivite de la composition)	6	
		Preuve	6	
	3	Definition (Relations d'equivalence)	7	
	4	Definition (Classes d'equivalence)	8	
	5	Definition (L'ensemble quotient)	8	
	6	Definition (Cardinal d'un ensemble)	8	
	8	Theorème (Cantor-Schroeder-Bernstein)	9	
	9	Lemme	9	
		Preuve	9	
		Prouvo	Q	

Lecture 1: Introduction

Tue 15 Sep

Parties

- preuves et ensembles
- Theorie des nombres
- Theorie des groupes

1 Preuves

Une grande partie du bachelor est de faire des preuves, il est donc important de comprendre quand une preuve est correcte.

Il y a deux types de preuves :

- Preuves formelles
 Tres precise, mais difficile a lire.
- Preuves d'habitude
 Approximation des preuves formelles, en remplacant que parties par du texte "humain". Il faut s'assurer qu'on peut traduire cette preuve en preuve formelle.

1.0.1 Proprietes de preuves formelles

Elles utilisent seulement des signes/symboles mathematiques. — \exists (existe)
— \forall (pour tout)
— ∃! (existe unique)
$$ \wedge (et)
— v (ou)
— ¬ (non)
$- \Rightarrow (implique)$
— etc

- Elle consiste de lignes, et il y a des regles strictes que ces lignes doivent suivre.
- Regles
 - Axiomes
 - Propositions qu'on a deja montrees.
 - TautologiesExemples

$$\neg (A \lor B) \iff ((\neg A) \lor (\neg B))$$

— Modus Ponens : Si on a que

$$\begin{cases} A \Rightarrow B \\ A \end{cases}$$

Alors B est vrai 1

Dans ce cours 0 n'est ni positif, ni negatif.

Definition 1 (division d'entiers)

q divise a (q|a) si il existe un entier r tel que $a = q \cdot r$.

Proposition 1 (Division avec reste)

 $a, q \neq 0$ entiers non-negatifs,

 $\Rightarrow \exists entiers non-negatifs$

b et r t.q.

$$a = b \cdot q + r$$

et

Preuve

Unicite Supposons que $\exists b, r, b', r'$ entiers non-negatifs et r < q et r' < q.

$$a=bq+r$$

$$a = b'q + r'$$

Alors

$$\underbrace{(b-b')}_{-q,0,q}q = \underbrace{r'-r}_{-q < r'-r < q}$$

^{1.} Pour lire plus, regarder "Calcul des predicats" sur wikipedia

$$\Rightarrow r' - r = 0$$

$$(b - b')q = 0 \Rightarrow b = b'$$

Existence

Par induction sur a.

 $\bullet \ a=0 \Rightarrow b=0 \ et \ r=0$

0 supposons que on connait l'existence pour a remplace par a-1. Alors, $\exists c, s \ tq$

$$a-1=cq+s$$

Alors, soit s < q - 1

$$a = (a-1) + 1$$

$$= cq + s + 1$$

Alors on peut dire que s + 1 = r. Sinon s = q - 1

$$a = (a-1)+1$$

$$= cq + \underbrace{s+1}_{=q}$$

$$= (c+1) \cdot q + 0$$

1.1 Ensembles

Premiere approche :

 $ensemble = \{ collection de choses \}$

Exemple:

$$\underbrace{\{\{\{\emptyset\},\emptyset\}\emptyset\}}_A$$

 $\Rightarrow A \in A$

Proposition 2 (Paradoxe de Russel)

$$B = \{Aest\ un\ ensemble | A \in A\}$$

peut pas etre un ensemble.

Preuve

Supposons que B est un ensemble et $B \subset B \iff B \not\subset B \iff B \subset B \dots$

${\bf Question}:$

Alors, qui sont les ensembles? Reponse :

Quelques exemples de Zermelo-Fraenkel

- 1) et 2) impliquent que \emptyset est un ensemble.
- 2) A ensemble, E(x) expression $\rightarrow \{a \in A | E(a) \text{vrai} \}$ 3) A_i ensembles ($i \in I$)

$$\to \bigcup_{i \in I} A_i$$

est un ens. 4)...

5) axiome de l'ensemble puissance

A ensemble

$$\rightarrow 2^A = \{B \subseteq A | B \text{sous-ens.} deA\}$$

Exemple : $\{0, 1\} = A$

$$2^A = \{\emptyset, \{0\}, \{1\}, \{0, 1\}\}\$$

- 6) A_i ensembles ($i \in I$) \rightarrow on peut choisir $a_i \in A_i$ a la meme fois
- 7) etc...

Consequences 1) Les ensembles finis existent.

- (i) ∅
- (ii) {∅}

...

2)
$$\mathbb{N} = \{0, 1, 2, \ldots\}$$
 est un ensemble 3) $\mathbb{Z} = \{\ldots, -2, -1, 0, 1, 2, \ldots\}$

4) $2 \cdot \mathbb{N} = \{x \in \mathbb{N} | 2|x\}$ 5) $A \subseteq B$

Alors on peut definir la difference

$$B \setminus A = \{x \in B | x \notin A\}$$

6)
$$A, B \subseteq C$$

$$A\cap B=\{x\in C|x\in A, x\in B\}$$

Lecture 2: Applications entre ensembles

Tue 22 Sep

2 Applications entre ensembles

Plus complet dans les notes de cours.

Definition 2 (Formalisation des applications)

Soit A, B deux ensembles, alors

$$\phi: A \to B$$

 $On\ la\ definit\ comme\ un\ sous-ensemble\ du\ produit\ cartesien\ :$

$$\Gamma_{\phi} \subseteq A \times B$$

$$\forall a \exists ! b : (a, b) \in \Gamma_{\phi}$$

Une maniere de penser d'une application est comme une machine qui prend a et qui sort b, la machine aura un fonctionnement deterministe.

Propriete 3 (Propriete des applications)

Soit $\phi: A \to B$

1. injective:

$$\phi(a) = \phi(b) \iff a = b$$

2. surjective

$$\forall b \in B \exists a : \phi(a) = b$$

3. bijective \iff injective et bijective L'inverse

$$\phi^{-1}: B \to A \iff \phi(a) = b$$

4. Image

$$\phi(A) = \{\phi(a)|a \in A\} \subseteq B$$

5. $\phi: A \to B, \xi: B \to C$, alors

$$(\xi \circ \phi)(a) = \xi(\phi(a))$$

L'ordre est etrange.

Proposition 4 (Surjectivite de la composition)

- (i) ξ surjectif
- (ii) ϕ pas necessairement \iff il existe un contre exemple.

Preuve

(i)
$$\forall c \in C : \exists a : \xi(\phi(a)) = c$$

$$Donc \ \exists b := \phi(a) \Rightarrow \xi(b) = c$$

2.1 Relations d'equivalence

$$A = \left\langle \begin{array}{c} \\ \\ \\ \end{array} \right\rangle, \begin{array}{c} \\ \\ \\ \end{array} \right\rangle, \left(\begin{array}{c} \\ \\ \\ \end{array} \right), \left(\begin{array}{c} \\ \\ \\ \end{array} \right) \left\langle \begin{array}{c} \\ \\ \\ \end{array} \right\rangle$$

FIGURE 1 – schema relation d equivalence

Definition 3 (Relations d'equivalence)

Une relation d'equivalence de A est un sous ensemble du produit $R \subseteq A \times A$ tq.

- 1. (identite) $\forall a \in A : (a, a) \in R$
- 2. $(reflexivite): (a,b) \in R \iff (b,a) \in R$
- 3. (transitivite): $(a,b) \in R, (b,c) \in R \Rightarrow (a,c) \in R$.

Exemple 5 (Exemple de transitivite)

 $A = \mathbb{Z}$, alors:

$$R \subseteq \mathbb{Z} \times \mathbb{Z} : (a, b) \in R \iff m|a - b|$$

- 1. $(a,a) \in R : m|a-a$.
- $2. (a,b) \in R \Rightarrow (b,a) \in R$

$$\Rightarrow m|a-b \ m|b-a=-(a-b)$$

 $Ce\ qui\ est\ equivalent.$

3. $(a,b) \in R, (b,c) \in R \Rightarrow (a,c) \in R$

$$m|a-b, m|b-c \Rightarrow m|(a-b) + (b-c) = a-c$$

Definition 4 (Classes d'equivalence)

Soir $R \subseteq A \times A$ rel. d'equivalence. et $a \in A$.

La classe d'equivalence de a est

$$R_a = \{b \in A | (a, b) \in R\}$$

Definition 5 (L'ensemble quotient)

L'ensemble quotient de R:

$$A/R = \{R_a | a \in A\} \subseteq 2^A$$

Exemple 6 (Cas de relation d'equivalence)

m=3 et R la relation d'equivalence precedente.

$$A = \mathbb{Z} = \{-2, -1, 0, 1, 2\}$$

Alors:

$$R \supseteq (0.3)$$

 $R_a = \{b \in A | (a, b) \in R\} = \{b \in \mathbb{Z} | 3|a - b\} \text{ Pour le cas } a = 1, \text{ on } a:$

$$R_1 = \{\ldots, -5, -2, 1, 4, 7, \ldots\} = 1 + 3\mathbb{Z}$$

$$R_0 = 3\mathbb{Z}$$

$$R_2 = \{\ldots, -4, -1, 2, 5, \ldots\}$$

$$A/R = \{3\mathbb{Z}, 3\mathbb{Z} + 1, 3\mathbb{Z} + 2\}$$

 $En\ general,\ pour\ m\ arbitraire$

$$A/R = \{m\mathbb{Z}, m\mathbb{Z} + 1, \dots, m\mathbb{Z} + (m-1)\}\$$

2.2 Cardinal d'un ensemble

La question generale est : comment mesure-t'on la taille d'un ensemble (meme pour des ensembles infinis)?

Definition 6 (Cardinal d'un ensemble)

1. A et B ont le meme cardinal si il existe $\phi:A\to B$ bijection, on note |A|=|B|

2. A a un cardinal plus petit que B si \exists une injection

$$\psi: A \hookrightarrow B$$

On note $|A| \leq |B|$.

Par exemple, il n'existe pas de bijection de \mathbb{Z} a \mathbb{R} , par contre il existe une injection $\mathbb{Z} \hookrightarrow \mathbb{R}$ donc $|\mathbb{Z}| < |\mathbb{R}|$. On dit quue $|\mathbb{Z}| = \omega_0 = \aleph_0$ et on note $|R| = \kappa$

Exemple 7

On veut montrer que $|\mathbb{N}| = |\mathbb{Z}|$ et

$$\phi: \mathbb{Z} \to \mathbb{N}$$

$$\phi: \begin{matrix} 0 \leq x \mapsto 2x \\ 0 > x \mapsto -2x - 1 \end{matrix}$$

Devoir : montrer que ϕ est une bijection.

Theorème 8 (Cantor-Schroeder-Bernstein)

 $|A| \le |B|, |B| \le |A|$ alors |A| = |B|. Autrement dit:

$$f:A\hookrightarrow B, B\hookrightarrow A\Rightarrow \exists bijA\mapsto B$$

Lemme 9

Si il existe

$$X \subseteq A$$

$$X = A \setminus g(B \setminus f(X))$$

Ou g et f sont des injections.

Alors il existe une bijection $A \mapsto B$

Preuve

$$Y_A := A \setminus X = g(Y)$$

$$X_B = f(X)$$

$$Y = B \setminus f(x)$$

Union disjointe $B = Y \perp X_B$

Preuve

 $f:A\hookrightarrow B\ et\ g:B\hookrightarrow A.$

Il faut: X tq:

$$X = A \setminus g(B \setminus f(x)) = H(X)$$

FIGURE 2 – preuve fonction bizarre

$$\begin{split} X \subseteq Z \Rightarrow f(X) \subseteq f(Z) \\ \Rightarrow B \setminus f(x) \supseteq B \setminus f(Z) \\ \Rightarrow g(B \setminus f(x)) \supseteq g(B \setminus f(Z)) \\ \Rightarrow A \setminus g(B \setminus f(x)) \supseteq g(B \setminus f(Z)) \\ \Rightarrow A \setminus g(B \setminus f(Z)) \subseteq A \setminus g(B \setminus f(x)) \\ \Rightarrow H(X) \subseteq H(Z) \end{split}$$

Soit $W = \bigcap_{X \subseteq A, \ H(X) \subseteq X} X$ Lire les notes pour voir que W = H(W)

Lecture 3: Oscillateurs harmoniques

Wed 23 Sep