Caleb Logemann MATH 520 Methods of Applied Math II Homework 4

Section 11.4

#6 Let $\mathbf{H} = L^2(0,1)$ and $T_1 u = T_2 u = i u'$ with domains

$$D(T_1) = \left\{ u \in H^1(0,1) : u(0) = u(1) \right\} D(T_2) \qquad = \left\{ u \in H^1(0,1) : u(0) = u(1) = 0 \right\}$$

Show that T_1 is self-adjoint, and that T_2 is closed and symmetric but not self-adjoint. What is T_2^* ?

Proof. \Box

#7 If T is symmetric with $R(T)=\mathbf{H}$ show that T is self-adjoint. $Proof. \qed$

#16 We say that a linear operator on a Hilbert space **H** is bounded below if there exists a constant $c_0 > 0$ such that

$$\langle Tu, u \rangle \ge -c_0 \|u\|^2 \quad \forall u \in D(T)$$

Show that Theorem 11.6 remains valid if the condition that T be positive is replaced by the assumption that T is bounded below.

Proof.

Section 12.4

3	Recall that the resolvent operator of T is defined to be $R_{\lambda} = (\lambda I - T)^{-1}$ for $\lambda \in \rho(T)$.	
	(a) Prove the resolvant identity (12.1.3).	
	Proof.	
	(b) Deduce from this that R_{λ} and R_{μ} commute.	
	Proof.	
	(c) Show also that T and R_{λ} commute for $\lambda \in \rho(T)$.	
	Proof.	

#4 Show that $\lambda \to R_{\lambda}$ is continuously differentiable, regarded as a mapping from $\rho(T) \subset \mathbb{C}$ into $\mathcal{B}(\mathbf{H})$, with $dR_{\lambda} = \mathbb{R}^2$

 $\frac{\mathrm{d}R_{\lambda}}{\mathrm{d}\lambda} = -R_{\lambda}^2$

Proof. \Box