ИДЗ №3

по дисциплине "Функциональный анализ"

Винницкая Дина Сергеевна

Группа: Б9122-02.03.01сцт

Задание 10.8. (а)

$$f(x) = \int_0^1 \sqrt{t} \cdot x(t^2) dt,$$
$$X = [0, 1];$$

Решение

Рассмотрим функционал

$$f(x) = \int_0^1 \sqrt{t} \cdot x(t^2) \, dt,$$

заданный на пространстве C[0,1] — пространстве непрерывных функций на отрезке [0,1] с нормой супремума $\|x\|_{\infty} = \sup_{t \in [0,1]} |x(t)|$.

Функция $x(t^2)$ определена корректно, поскольку при $t \in [0,1]$ имеем $t^2 \in [0,1]$, а значит аргумент функции x лежит в области определения.

Композиция непрерывной функции x(t) с непрерывной функцией t^2 остаётся непрерывной, поэтому $x(t^2)$ — непрерывна на [0,1]. Функция \sqrt{t} также непрерывна на [0,1], включая t=0.

Следовательно, произведение $\sqrt{t} \cdot x(t^2)$ — непрерывная функция на [0,1], а значит интеграл определён как обычный определённый интеграл Римана.

Покажем теперь, что функционал f линеен и непрерывен. Линейность очевидна, так как оператор интегрирования и умножение на фиксированную функцию сохраняют линейность.

Проверим ограниченность функционала. По модулю:

$$|f(x)| = \left| \int_0^1 \sqrt{t} \cdot x(t^2) dt \right| \le \int_0^1 \sqrt{t} \cdot |x(t^2)| dt.$$

Так как $x \in C[0,1]$, то $|x(t^2)| \le ||x||_{\infty}$ для всех $t \in [0,1]$.

Получаем:

$$|f(x)| \le ||x||_{\infty} \cdot \int_0^1 \sqrt{t} \, dt = ||x||_{\infty} \cdot \left[\frac{2}{3} t^{3/2} \right]_0^1 = \frac{2}{3} ||x||_{\infty}.$$

$$||f|| = \frac{2}{3}$$