Objetivo do projeto: desenvolver um modelo de regressão linear para prever o preço das casas com base nas variáveis fornecidas:

- o SalePrice: Preço de venda em dólares
- o Basement_Area: Área do porão em pés quadrados
- o Lot_Area: Tamanho do lote em pés quadrados
- o Heating QC: Qualidade e condição do aquecimento
- o Season Sold: Estação quando a casa foi vendida
- o Gr Liv Area: Área acima do nível do solo em pés quadrados
- o Garage Area: Tamanho da garagem em pés quadrados
- Deck_Porch_Area: Área total de decks e varandas em pés quadrados
- o Age_Sold: Idade da casa quando vendida, em anos
- o Bedroom AbvGr: Quartos acima do nível do solo
- o Total_Bathroom: Número total de banheiros (meio banheiro contado como 10%)

Heating_QC e Season_Sold são variáveis categóricas, então temos que converter em dummies.

Heating_QC: variável nominal ordinal (Ex > Gd > TA > Fa > Po)
Representa a qualidade e condição do sistema de aquecimento em uma escala ordinal.

- Ex: Excellent (Excelente) em ótimo estado.
- Gd: Good (Bom) em bom estado.
- TA: Typical/Average (Típico ou Médio) na média.
- Fa: Fair (Regular) abaixo da média.
- Po: Poor (Ruim) em más condições.

Season_Sold: variável categórica que indica a estação em que foi vendida. Apesar de ser numérica representa uma informação associada a estação do ano.

Variáveis com valores muito elevados dificultando a análise e por esse motivo foi aplicada uma transformação (logaritmo dos valores)

Outra decisão foi com relação as diversas áreas existentes no imóvel que possuem uma distribuição assimétrica e com muitos outliers, com isso, decidi trabalhar com uma nova variável (área total) que é a soma das áreas (area_total = Basement_Area + Lot_Area + Gr_Liv_Area + Garage_Area + Deck_Porch_Area) e não utilizá-las do modelo para evitar multicolinearidade.

Dessa forma obtive a matrix de correlação sem indício de multicolinearidade.

Análise univariada e verificação de inconsistências:

<pre>> summary(precos)</pre>						
SalePrice	Basement_Area	Lot_Area	Heating_QC	Season_Sold	Gr_Liv_Area	Garage_Area
Min. : 12789	Min. : 0	Min. : 1300	Length:2928	Min. :1.000	Min. : 334	Min. : 0.0
1st Qu.:129500	1st Qu.: 793	1st Qu.: 7441	Class :character	1st Qu.:2.000	1st Qu.:1126	1st Qu.: 320.0
Median :160000	Median : 990	Median : 9444	Mode :character	Median :3.000	Median :1442	Median : 480.0
Mean :180841	Mean :1052	Mean : 10150		Mean :2.608	Mean :1500	Mean : 472.9
3rd Qu.:213500	3rd Qu.:1302	3rd Qu.: 11556		3rd Qu.:3.000	3rd Qu.:1742	3rd Qu.: 576.0

Max. :755000	Max. :6110 N	Max. :215245		Max.	:4.000	Max.	:5642	Max.	:1488.0
Deck_Porch_Area	Age_Sold	Bedroom_AbvGr	Total_Bathroom						
Min. : 0.0	Min. : -1.00	Min. :0.000	Min. :0.400						
1st Qu.: 22.0	1st Qu.: 7.00	1st Qu.:2.000	1st Qu.:1.100						
Median : 140.0	Median : 34.00	Median :3.000	Median :2.000						
Mean : 159.9	Mean : 36.41	Mean :2.855	Mean :2.042						
3rd Qu.: 247.0	3rd Qu.: 54.00	3rd Qu.:3.000	3rd Qu.:2.100						
Max. :1424.0	Max. :136.00	Max. :8.000	Max. :6.200						

SalePrice (Preço de Venda)

Descrição: preco de venda das casas.

Distribuição: A mediana é menor que a média, indicando uma assimetria à direita (presença de outliers ou valores extremos altos).

Basement_Area (Área do Porão)

Descrição: Área total do porão em feet quadrados.

Distribuição: A mediana é próxima da média, sugerindo uma distribuição relativamente simétrica.

Lot Area (Área do Terreno)

Descrição: Área total do terreno em feet quadrados.

Distribuição: A média é maior que a mediana, indicando uma assimetria à direita (possíveis outliers ou terrenos muito grandes).

Heating QC (Qualidade do Aquecimento)

Descrição: Qualidade do sistema de aquecimento (variável categórica).

Season Sold (Estação da Venda)

Descrição: Estação do ano em que a casa foi vendida Mais provável? 1: Inverno, 2: Primavera, 3: Verão, 4: Outono Distribuição: A maioria das vendas ocorre mediana = 3

Gr Liv Area (Área Habitável)

Descrição: Área habitável da casa em feet quadrados.

Distribuição: A média e a mediana são próximas, sugerindo uma distribuição simétrica.

Garage_Area (Área da Garagem)

Descrição: Área da garagem em metros quadrados.

Distribuição: A mediana é próxima da média, indicando uma distribuição simétrica.

Deck_Porch_Area (Área do Deck/Varanda)

Descrição: Área do deck ou varanda em feet quadrados.

Distribuição: A média é maior que a mediana, indicando uma assimetria à direita (possíveis outliers).

Age_Sold (Idade da Casa na Venda)

Descrição: Idade da casa no momento da venda (em anos).

Mínimo: -1 ano (possível erro ou casa ainda em construção).

Distribuição: A mediana é próxima da média, sugerindo uma distribuição simétrica.

Bedroom_AbvGr (Número de Quartos)

Descrição: Número de quartos acima do nível do solo.

Análise:

Mínimo: O quartos (possível erro ou casa sem quartos).

Distribuição: A média e a mediana são próximas, indicando uma distribuição simétrica.

Total Bathroom (Número Total de Banheiros)

Descrição: Número total de banheiros

Análise:

Mínimo: 0,4 banheiros (possível erro ou casa sem banheiros).

istribuição: A média e a mediana são próximas, sugerindo uma distribuição simétrica.

Dicionário de Dados

Nome da Variável	Descrição Tipo de Dado	Unidade/Métrica	Observações
SalePrice	Preço de venda da casa	Numérico US\$	Variável dependente (target).
Basement_Area	Área total do porão	Numérico Feets quadrados (f2)	Valor mínimo = 0 (sem porão).
Lot_Area	Área total do terreno	Numérico Feets quadrados (f2)	Possíveis outliers (valores altos).
Heating_QC	Qualidade do sist de aquecimento	Categórico Texto	Precisa ser convertido em fator.
Season_Sold	Estação do ano	Categórico	
Gr_Liv_Area	Área habitável da casa	Numérico Feets quadrados (f2)	Distribuição simétrica.
Garage_Area	Área da garagem	Numérico Feets quadrados (f2)	Valor mínimo = 0 (sem garagem).
Deck_Porch_Area	Área do deck ou varanda	Numérico Feets quadrados (f²)	Valor mínimo = 0 (sem deck/varanda).

Boxplot

Necessidade de aplicar transformação (logaritmo) para poder analisar. Presença de outliers em diversas variáveis.

A distribuição da variável SalesPrice - **log(SalesPrice)**: distribuição simétrica

> summary(log(precos novo\$SalePrice))

Min. 1st Qu. Median Mean 3rd Qu. Max. 2.247 2.466 2.483 2.486 2.507 2.605

Decisões tomadas:

Criar e trabalhar com uma nova variável: área total do imóvel ao invés das áreas separadamente.

area_total = Basement_Area + Lot_Area + Gr_Liv_Area + Garage_Area + Deck_Porch_Area area_total: a média e a mediana são próximas, indicando uma distribuição simétrica. Presença de outliers superiores e inferiores.

Min. 1st Qu. Median Mean 3srd Qu. Max.

A distribuição da variável area_total - **log(area_total)**: distribuição simétrica. Presença de outliers superiores e inferiores.

Avaliando o volume das variáveis categóricas

Heating_QC

Ajustando o volume, pois está muito discrepante.

Categorias: EX, (FA+Gd+Po) e TA

EX: casela de referência por ser o maior volume

Season Sold

Ajustando o volume

V3: casela de referência

Análise bivariada

Matriz de correlações

Não existe um indicativo de multicolinearidade entre as variáveis escolhidas para integrar o modelo:

SalePrice, area_total, Age_sold, Bedroom_AbvGr, Total_Bathroom, Heating_QC e Season_Sold (as duas últimas são categóricas e com isso, serão criadas variáveis dummies)

Criação do modelo nulo e o modelo completo para usar o step(forward)

#modelo nulo

Im precos nulo <- Im(SalePrice ~ 1, data=precos dummies)

#modelo completo

 $lm_precos_full <- lm(SalePrice \sim area_total + Age_Sold + Bedroom_AbvGr + Total_Bathroom + heating_agrupadaFAGdPo + heating_agrupadaTA + season_agrupadav2 + season_agrupadav1e4, data=precos_dummies)$

Step partindo do modelo nulo até o modelo completo

forw <- step(Im_precos_nulo, scope=list(lower=Im_precos_nulo, upper=Im_precos_full), direction = "forward") summary(forw)

Melhor resultado: AIC=-8392.27

SalePrice ~ Total_Bathroom + Age_Sold + area_total + heating_agrupadaTA +
heating_agrupadaFAGdPo + Bedroom_AbvGr

lm(formula = SalePrice ~ Total_Bathroom + Age_Sold + area_total +
heating_agrupadaTA + heating_agrupadaFAGdPo + Bedroom_AbvGr, data =
precos_dummies)

Residuals:

Min 1Q Median 3Q Max -2.3039 -0.1363 -0.0037 0.1319 1.0142

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 8.843635 0.105601 83.746 < 2e-16 ***
Total_Bathroom 0.152576 0.007168 21.285 < 2e-16 ***
Age_Sold -0.004673 0.000183 -25.537 < 2e-16 ***

```
area_total 0.321919 0.011762 27.369 < 2e-16 ***
heating_agrupadaTA -0.178120 0.011248 -15.835 < 2e-16 ***
heating_agrupadaFAGdPo -0.121491 0.012613 -9.632 < 2e-16 ***
Bedroom_AbvGr 0.029452 0.005656 5.207 2.05e-07 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
```

Residual standard error: 0.2383 on 2921 degrees of freedom Multiple R-squared: 0.6588, Adjusted R-squared: 0.6581 F-statistic: 939.8 on 6 and 2921 DF, p-value: < 2.2e-16

Observações:

Todos os coeficientes são estatisticamente significativos (p-value < 0.001), extremamente significativo para todas as variáveis e nenhuma variável pode ser considerada irrelevante.

Coeficientes

Impacto no preço (log) por unidade de variação:

Impacto positivo:

area_total: +0.322 (maior impacto positivo)

Total_Bathroom: +0.153 Bedroom AbvGr: +0.029

Impacto negativo: Age_Sold: -0.005

heating_agrupadaTA: -0.178 heating_agrupadaFAGdPo: -0.121

Oualidade do modelo:

R-squared: 0.6588 (65.88% da variância explicada)

Adjusted R-squared: 0.6581 (muito próximo do R-squared)

Resíduos

Simetria próxima de zero (Median: -0.0037)

Amplitude: -2.3039 a 1.0142

Erro padrão residual: 0.2383 (baixo)

O modelo parece bem ajustado, pois explica 66% da variabilidade do preço de venda com variáveis estatisticamente significativas.

Podem haver variáveis importantes ausentes, já que 34% da variação ainda não é explicada.

Calculando VIF

ols vif tol(Im bodyfat final AIC)

ols vif tol(Im precos aic)

```
Variables Tolerance VIF

1 Total_Bathroom 0.6591966 1.516998

2 Age_Sold 0.6315267 1.583464

3 area_total 0.8413160 1.188614

4 heating_agrupadaTA 0.7372998 1.356300

5 heating_agrupadaFAGdPo 0.7764692 1.287881

6 Bedroom_AbvGr 0.8847687 1.130239
```

Nenhum valor de VIF acima de 2, um forte indício de ausência de multicolinearidade

Os resíduos não seguem uma Distribuição Normal: (95% de nível de confiança)

- # Teste de normalidade (Shapiro-Wilk)
- > resultado <- shapiro.test(residuals(lm_precos_aic))</pre>
- > print(resultado\$p.value)
- [1] 3.700888e-28

Histograma e normalidade (QQ)

Resíduos padronizados distribuídos não estão aleatoriamente em torno de 0.

Teste de homogeneidade de Variância dos resíduos indica heterocedasticidade

> bptest(lm_precos_aic)

studentized Breusch-Pagan test

data: lm_precos_aic
BP = 99.299, df = 6, p-value < 2.2e-16
Hipótese alternativa (H1): Os resíduos possuem variância não constante</pre>

(heterocedasticidade).P-valor < 0.05</pre>

Qualidade do modelo

MSE (Erro Quadrático Médio) = 0.0566 RMSE (Raiz do Erro Quadrático Médio) = 0.2380

Como SalePrice está transformado em logaritmo (log(SalePrice), o RMSE precisa ser interpretado no domínio original dos preços.

O RMSE 0.2380 representa o erro médio dos logaritmos dos preços.

Interpretação "desfazendo" a transformação

O erro percentual médio: erro_perc <- exp(rmse) - 1

Erro percentual médio aproximadamente 26,9% Isso significa que, em média, as previsões do modelo diferem do valor real de SalePrice em aproximadamente 26,9%.

Conclusões:

Modelo é razoavel: possui um bom ajuste inicial, com um R-squared de cerca de 65%, erros médios razoáveis e sem problemas significativos de multicolinearidade.

A presença de heterocedasticidade sugere que a variância dos resíduos não é constante, talvez uma outra transformação possa melhorar.

A ausência de normalidade dos resíduos é um problema que pode afetar a robustez dos testes de hipóteses e a confiabilidade do modelo, então seria interessante investigar transformações adicionais ou modelagem não linear.

Erro Percentual Médio: O modelo apresenta um erro percentual médio relativamente alto.