

Universidad Tecnológica Nacional - Facultad Regional La Plata COMUNICACIÓN DE DATOS

- 2025 -

Trabajo Práctico N°5

Codificación de señales digitales y tratamiento de errores

FORMATOS DE CODIFICACIÓN UTILIZANDO SEÑALES DIGITALES

1) Suponiendo que se transmiten los siguientes bits de datos, representar gráficamente los formatos de codificación indicados, utilizando señales digitales:

Universidad Tecnológica Nacional - Facultad Regional La Plata COMUNICACIÓN DE DATOS

- 2025 -

TÉCNICAS DE TRATAMIENTO DE ERRORES:

Codificación de Shannon-Fano y decodificación de Huffman

- 2) Codificar las siguientes salidas de la fuente y hallar su eficiencia:
 - a) AA = 0.64; AB = 0.16; BA = 0.16 y CB = 0.04
 - b) AA = 0.35; AB = 0.05; AC = 0.18; BA = 0.22; BC = 0.04 y CB = 0.16
 - c) AAA = AAB = 0,25; AAC = ABA = 0,125; ACA = ACB = ACC = BCC = 0,0625
- 3) Para las salidas del punto anterior, hallar el algoritmo decodificador de Huffman.
- 4) Sea una fuente que provee símbolos de manera que:

$$XZ = 0.25$$
; $WC = 0.2$; $ZW = 0.16$; $DD = 0.09$; $DW = 0.05$; $ZZ = 0.12$; $ZW = 0.07$; $ZZ = 0.08$

Realizar la Codificación por medio de SHANNON-FANO y hallar su eficiencia

- 5) Hallar el algoritmo decodificador de Huffman para el ejercicio anterior.
- 6) Suponiendo que se transmite la siguiente secuencia de símbolos inicial:

XAAYWWYAXACAYACAWXCYAWACAYCYAAXXWAACAWAYYW

a) Completar la tabla y determinar la Eficiencia y Redundancia en función de la aplicación de distintos códigos

SÍMBOLO	FRECUENCIA	CÓDIGO	INFORMACIÓN	ENTROPÍA MENSAJE	BITS MENSAJE	PROBABILIDAD	LONGITUD PROMEDIO
Α							
С							
W							
Х							
Υ							
,		•					

Codificación ASCII (3 bits)

SÍMBOLO	FRECUENCIA	CÓDIGO	INFORMACIÓN	ENTROPÍA MENSAJE	BITS MENSAJE	PROBABILIDAD	LONGITUD PROMEDIO
Α							
С							
W							
Х							
Y							

Codificación ASCII (8 bits)

Universidad Tecnológica Nacional - Facultad Regional La Plata COMUNICACIÓN DE DATOS

- 2025 -

SÍMBOLO	FRECUENCIA	CÓDIGO	INFORMACIÓN	ENTROPÍA MENSAJE	BITS MENSAJE	PROBABILIDAD	LONGITUD PROMEDIO
Α							
С							
W							
Х							
Υ							

Codificación SHANNON-FANO

- b) Conclusiones en función de la comparación de las tres codificaciones.
- 7) Ídem punto 6) pero analizando la siguiente secuencia:

AABCCDDAAAABCBBCCDBAAFFFACDBBDAACDBB

Codificación de Hamming

8) Utilizando la Codificación Hamming, supongamos que se transmiten los siguientes caracteres y llega al receptor con un error en los siguientes bits indicados. Realizar todo el procedimiento para detectar y corregir dichos errores.

CARACTER	ASCII	Bit de Error en la posición de la palabra código (Receptor)	PARIDAD A UTILIZAR			
а	1100001	7	PAR			
m	1101101	10	IMPAR			
С	1100011	2	PAR			

9) Se recibe la siguiente palabra código:

101111001110

- a) Encontrar y corregir (si existe) el error utilizando Paridad Par.
- b) En caso de existir un error, escribir la palabra código corregida. Justificar, en cualquier caso

CRC: Codificación de redundancia cíclica

- 10) Realizar el cálculo para la trama 1 1 0 1 0 1 1 0 1 y $G(x) = x^4 + x + 1$
- 11) Se dispone de la siguiente información binaria: 1 1 1 0 1 1 1 1. Se desea transmitirla con CRC utilizando $G(x) = x^3 + x + 1$. Indique el mensaje final transmitido.

Universidad Tecnológica Nacional - Facultad Regional La Plata

COMUNICACIÓN DE DATOS

- 2025 -

- 12) Dado el siguiente mensaje a transmitir: $1 \ 0 \ 1 \ 1 \ 0 \ 1 \ 1 \ 0 \ 1 \ y$ teniendo como polinomio generador $G(x) = x^4 + x + 1$. Aplicar el método para detección de errores CRC determinando la información a transmitir.
- 13) Dado el siguiente mensaje a transmitir: 1 0 1 1 0 0 0 1 1 1 0 0 0 1 y teniendo como polinomio generador **G(x)** = **x**⁸ + **x**³ + **x**² + **x** + **1** Aplicar el método para detección de errores CRC determinando la información a transmitir.

Algoritmo Checksum

- **14)** Supongamos que un usuario descarga por internet una aplicación formada por las siguientes tres palabras.
 - a) Realizar el procedimiento por algoritmo de checksum suponiendo que **no hay error en el receptor**.
 - b) Realizar el procedimiento por algoritmo de checksum suponiendo que **el receptor recibió con un bit erróneo.**

1	0	0	1	0	1	0	1	1	0	1	0	1	1	1	0	PALABRA 1
0	0	1	0	1	1	0	0	1	1	0	0	1	0	1	1	PALABRA 2
0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1	PALABRA 3

- **15)** Supongamos que un usuario descarga por internet una aplicación formada por las siguientes cuatro palabras.
 - a) Realizar el procedimiento por algoritmo de checksum suponiendo que **no hay error en el receptor.**
 - b) Realizar el procedimiento por algoritmo de checksum suponiendo que **el receptor recibió con dos bits de error** en el propio checksum.

1	0	1	1	0	0	0	1	0	0	1	1	1	1	1	0	PALABRA 1
0	0	1	0	0	1	1	0	1	0	1	1	0	0	1	1	PALABRA 2
1	0	1	0	1	0	0	1	0	1	0	1	0	1	1	0	PALABRA 3
1	1	1	1	0	0	0	0	1	1	1	1	0	0	0	0	PALABRA 4