Advanced Cable Monitoring

February 2022

Light speed system awareness

- Reduces capital cost and carbon footprint of instrumentation
- Reduces outage time and repair cost
- World first: Distributed Electromechanical Sensors (DES)
- Passive sensors networked by light, not data

Some of our customers

More sensors, better data, smarter decisions

Underground monitoring limitations

- Lack of online asset management, condition monitoring data despite increased global use
- Conventional monitoring misses 69% of failures modes, locations and time before failure

•DTS	£0.1-0.2M RTTR, misses terminations, limited fault detection
•DAS	£0.1-0.2M 3rd party interference, limited fault detection
•PD	£1.0-2.0M for 10 joints, failure seen too late, equipment space and cost

•Manual low frequency inspection inefficient, unlikely to catch early signs of failure

IMPACTS	TYPICAL EXAMPLES			
ELECTRICAL	TRANSIENTS	POWER QUALITY	VARIABLE LOAD	
ENVIRONMENTAL	WATER INGRESS	FLOODING	CORROSION	
MECHANICAL	IMPERFECT INSTALLATION	OHMIC OVERHEATING	STRAIN	

		Improves	Application	Benefits
TIME	Years	Asset Performance Management	Multi-point comparative analytics	Condition- based maintenance decisions Earlier warning of more failure modes
		Real-time monitoring	RTTR	More accurate systemic thermal rating for the circuit
	Minutes		Alarms and ampacity	Instant warning of overheating and losses Works where 4G / IoT cannot
	<2 ms	Multi-zone protection	Mixed Circuit Protection	Auto reclose on overhead faults, block reclose on faults in underground cable sections

- Permanent, synchronous monitoring for inaccessible and remote HV assets
- Sheath current, phase current, harmonics, temperatures correlated in one view
- Earlier warning of more failure modes buys more response time

30 sensors per 60 km / 37 miles of fibre

Strain & sag Temperature

Current

Voltage

More sensors in development

Summary

Safety
Control
Resiliency

- Zero power, zero comms, zero data, zero maintenance sensors
- More operational insight without traditional limitations
- Earlier failure warnings for remote HV assets to avoid outage
- Safely optimised capacity and scheduled maintenance

Can we help your business?

