Assignment Math45-Homework-WEEK-04 due 09/26/2020 at 11:59pm PDT

Consider the function $f(x,y) = \frac{y^4}{x}$. Find $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$.

• A.
$$\frac{\partial f}{\partial x} = \frac{y^4}{x^2}$$
; $\frac{\partial f}{\partial y} = \frac{y^4}{x}$

• B.
$$\frac{\partial f}{\partial x} = -\frac{y^4}{x^2}$$
; $\frac{\partial f}{\partial y} = \frac{y^3}{x}$

• C.
$$\frac{\partial f}{\partial x} = -\frac{4y^3}{x}$$
; $\frac{\partial f}{\partial y} = -\frac{4y^3}{x^x}$

• D.
$$\frac{\partial f}{\partial x} = -\frac{y^4}{x^2}$$
; $\frac{\partial f}{\partial y} = \frac{4y^3}{x}$

Solution:

SOLUTION:

To find $\frac{\partial f}{\partial x}$ we treat y as a constant and take the derivative with respect to x. Since the derivative of $\frac{1}{r}$ is $-\frac{1}{r^2}$ and we are treating y as a constant, we find

$$\frac{\partial f}{\partial x} = -\frac{y^4}{x^2}.$$

To find $\frac{\partial f}{\partial y}$ we treat x as a constant and take the derivative with respect to y. Since the derivative of y^4 is $4y^3$ and we are treating x as a constant, we find

$$\frac{\partial f}{\partial y} = \frac{4y^3}{x}.$$

Thus, the correct answer is D.

Correct Answers:

D

Consider the first-order differential equation $y' = \frac{y'}{y'}$. Which of the following best describes the regions in the xy-plane for which the differential equation would have a unique solution which passes through a point in the region?

• A. half-plane defined by either y < 0 or y > 0

- B. the quadrant with y < 0 and x > 0
- C. half-plane defined by either x < 0 or x > 0
- D. the quadrant with x < 0 and y > 0

Solution:

SOLUTION:

Set $f(x,y) = \frac{y^7}{x}$ so that the given differential equation can be written as y' = f(x,y). There will be such a unique solution on a region for which $f(x,y) = \frac{y^7}{x}$ and $\frac{\partial f}{\partial y} = \frac{7y^6}{x}$ are continuous on. We have that f(x,y) and $\frac{\partial^2}{\partial y}$ are continuous for all y and x, except for when x = 0 since we cannot divide by zero. Thus, either x < 0 or x > 0. This gives us the two half-planes for which a solution will have a unique solution. One half-plane given by all y and x < 0 and the other given by all y and x > 0. Thus, the correct answer is C.

Correct Answers:

C

Consider the first-order differential equation $y' = y^{\frac{2}{7}}$. Which of the following best describes the regions in the xy-plane for which the differential equation would have a unique solution which passes through a point in the region?

- A. half-plane defined by either x < 0 or x > 0
- B. half-plane defined by either y < 0 or y > 0
- C. the quadrant with y < 0 and x > 0
- D. the quadrant with x < 0 and y > 0

Solution:

SOLUTION:

Set $f(x,y) = y^{\frac{2}{7}}$ so that the given differential equation can be written as y' = f(x, y). There will be such a unique solution on a region for which $f(x,y) = y^{\frac{2}{7}}$ and $\frac{\partial f}{\partial y} = \frac{2}{7}y^{\frac{-5}{7}}$ are continuous on. We have that f(x, y) is continuous for all x and all y. However,

since we cannot have y = 0 in $\frac{\partial f}{\partial y} = \frac{2}{7}y^{\frac{-5}{7}}$ we have that $\frac{\partial f}{\partial y}$ is continuous for all x and y, except for when y = 0 since we cannot divide by zero. Thus, either y < 0 or y > 0. This gives us the two half-planes for which a region will have a unique solution. One half-plane given by all x and y < 0 and the other given by all x and y > 0. Thus, the correct answer is B.

Correct Answers:

B

Consider the first-order differential equation $(x + y)y' = y^3$. Which of the following best describes the regions in the *xy*-plane for which the differential equation would have a unique solution which passes through a point in the region?

- A. the quadrant with y < 0 and x > 0
- B. half-plane defined by either y < -x or y > -x
- C. half-plane defined by either y < x or y > x
- D. the quadrant with x < 0 and y > 0

Solution:

SOLUTION:

Set $f(x,y) = \frac{y^3}{x+y}$ so that the given differential equation can be written as y' = f(x,y). There will be such a unique solution on a region for which $f(x,y) = \frac{y^3}{x+y}$ and

$$\frac{\partial f}{\partial y} = \frac{3y^2(x+y) - y^3}{(x+y)^2} = \frac{3y^2((x+y) - y)}{(x+y)^2} = \frac{3xy^2}{(x+y)^2}$$

are continuous on. We have that f(x,y) and $\frac{\partial f}{\partial y}$ are continuous for all y and x, except for when y=-x since we cannot divide by zero. Thus, either y<-x or y>-x. This gives us the two half-planes for which a solution will have a unique solution. One half-plane given by all y<-x and the other given by all y>-x. Thus, the correct answer is B.

Correct Answers:

B

Consider the first-order differential equation $y' = \ln(y^2 - 4)$. For which point (x_0, y_0) below is it guaranteed that this differential equation has a unique solution at the point (x_0, y_0) ?

• A.
$$(x_0, y_0) = (1, 1)$$

- B. $(x_0, y_0) = (1, 3)$
- C. $(x_0, y_0) = (1, 2)$
- D. $(x_0, y_0) = (2, -2)$

Solution:

SOLUTION:

Set $f(x,y) = \ln(y^2 - 4)$. We need that f(x,y) and $\frac{\partial f}{\partial y}$ are both continuous in a region that contains the point (x_0, y_0) . Since $\ln(w)$ is continuous for w > 0 we have that f(x,y) is continuous for $y^2 - 4 > 0$. That is, for $y^2 > 4$, or when y > 2 or y < 2. Meanwhile, since we cannot divide by zero we have that

$$\frac{\partial f}{\partial y} = \frac{2y}{y^2 - 4}$$

is continuous so long as $y \neq \pm 2$. These points were already excluded with our range of y > 2 or y < 2. The only point given so that y > 2 or y < 2 is the point (1,3). Thus, the correct answer is B.

Correct Answers:

B

Consider the first-order differential equation $y' = \ln(y^2 - 4)$. For which point (x_0, y_0) below is it guaranteed that this differential equation has a unique solution at the point (x_0, y_0) ?

- A. $(x_0, y_0) = (-2, -5)$
- B. $(x_0, y_0) = (5, 1)$
- C. $(x_0, y_0) = (0, 1)$
- D. $(x_0, y_0) = (1, -2)$

Solution:

SOLUTION:

Set $f(x,y) = \ln(y^2 - 4)$. We need that f(x,y) and $\frac{\partial f}{\partial y}$ are both continuous in a region that contains the point (x_0, y_0) . Since $\ln(w)$ is continuous for w > 0 we have that f(x,y) is continuous for $y^2 - 4 > 0$. That is, for $y^2 > 4$, or when y > 2 or y < 2. Meanwhile, since we cannot divide by zero we have that

$$\frac{\partial f}{\partial y} = \frac{2y}{y^2 - 4}$$

is continuous so long as $y \neq \pm 2$. These points were already excluded with our range of y > 2 or y < 2. The only point given so that y > 2 or y < 2 is the point (-2, -5). Thus, the correct answer is A.

Correct Answers:

I

You should verify that $y = \frac{1}{x^2 + c}$ is a one-parameter family of solutions for the first-order differential equation $y' = -2xy^2$. Setting $f(x,y) = -2xy^2$ note also that f(x,y) and $\frac{\partial f}{\partial y} = -4xy$ are continous thoughout the entire xy-plane. Thus, for any point (x_0, y_0) in the xy-plane there exists an interval I such that there exists a unique solution which passes through (x_0, y_0) .

Find a solution from the family $y = \frac{1}{x^2 + c}$ and determine the largest interval I of definition for the solution of for the initial value condition $y(0) = -\frac{1}{9}$.

• A.
$$y = \frac{1}{x^2 + \frac{1}{0}}; \quad (-\infty, \infty)$$

• B.
$$y = \frac{1}{x^2 - 9}$$
; $(-\infty, -3)$ or $(3, \infty)$

• C.
$$y = \frac{1}{x^2 - 9}$$
; (-3,3)

• D.
$$y = \frac{1}{r^2 - 3}$$
; $(-\infty, -3)$ or $(3, \infty)$

Solution:

SOLUTION:

We need $y(0) = -\frac{1}{9}$. Thus, we have $\frac{1}{0^2+c} = -\frac{1}{9}$, and solving for c gives c = -9. Thus, the desired solution is $y = \frac{1}{x^2-9}$. This solution is continuous for x < -3, -3 < x < 3, and x > 3. However, the initial condition is in (-3,3). Thus, the correct answer is C.

Correct Answers:

• (

8. (1 point)

You should verify that $y = \frac{1}{x^2 + c}$ is a one-parameter family of solutions for the first-order differential equation $y' = -2xy^2$. Setting $f(x,y) = -2xy^2$ note also that f(x,y) and $\frac{\partial f}{\partial y} = -4xy$ are continous thoughout the entire xy-plane. Thus, for any point (x_0, y_0) in the xy-plane there exists an interval I such that there exists a unique solution which passes through (x_0, y_0) .

Note, however, that there is no solution from the family $y = \frac{1}{x^2 + c}$ which satisfies y(0) = 0.

- (a) A solution for $y' = -2xy^2$ such that y(0) = 0 is $y = \underline{\hspace{1cm}}$.
- (b) The largest interval of definition for y in part (a) is
 - Choose
 - All real numbers
 - All positive real numbers
 - All nonnegative real numbers

Solution:

SOLUTION:

Note that the trivial solution y = 0 is a solution to $y' = -2xy^2$ and satisfies y(0) = 0. Thus, the answer for part (a) is y = 0. Meanwhile, since y = 0 is continuous for all real numbers we have the answer to part (b) is All real numbers.

Correct Answers:

- 0
- All real numbers

9. (1 point)

Solve the differential equation $\frac{dy}{dx} = \cos(5x)$ using separation of variables.

$$y = \underline{\hspace{1cm}} + C$$

[NOTE: Remember to enter all necessary *, (, and) see help (syntax) for more information.]

Solution:

SOLUTION:

We 'separate the variables' and rewrite $\frac{dy}{dx} = \cos(5x)$ as

$$dy = \cos(5x) dx$$
.

Integrating both sides (which is done using a *u*-sub with u = 5x and du = 5 dx so that $dx = \frac{du}{5}$)

$$\int dy = \int \cos(5x) \, dx$$

gives

$$y + c_1 = \frac{1}{5}\sin(5x) + c_2,$$

for arbitrary constants c_1 and c_2 . Combinging these to a single arbitrary constant C we have

$$y = \frac{1}{5}\sin(5x) + C.$$

Thus the solution is 1/5 * sin(5 * x) + C. *Correct Answers:*

• 1/5 * sin(5 *x)

10. (1 point)

Solve the differential equation $e^{9x} dy + dx = 0$ using separation of variables.

$$y = \underline{\hspace{1cm}} + C$$

[NOTE: Remember to enter all necessary *, (, and) see help (syntax) for more information.]

Solution:

SOLUTION:

We 'separate the variables' and rewrite $e^{9x} dy + dx = 0$ as $e^{9x} dy = -dx$ or

$$dy = -e^{-9x}dx$$

(where we used that $\frac{1}{e^{9x}} = e^{-9x}$. Integrating both sides (which is done using a *u*-sub with u = -9x and du = -9 dx so that $dx = -\frac{du}{9}$)

$$\int dy = -\int e^{-9x} dx$$

gives

$$y + c_1 = \frac{1}{9}e^{-9x} + c_2,$$

for arbitrary constants c_1 and c_2 . Combinging these to a single arbitrary constant C we have

$$y = \frac{1}{9}e^{-9x} + C.$$

Thus the solution is 1/9 * exp(-9 * x) + C.

Correct Answers:

•
$$1/9 * \exp(-9 *x)$$

11. (1 point) Find the general solution of the differential equation $y' = e^{4x} - 9x$.

(Use C to denote the arbitrary constant.)

y = _____ help (formulas)

Solution:

SOLUTION:

We 'separate the variables' and rewrite $y' = e^{4x} - 9x$ as

$$dy = (e^{4x} - 9x) dx$$
.

Integrating both sides (which is done using a *u*-sub with u = 4x and du = 4dx so that $dx = \frac{du}{4}$)

$$\int dy = \int e^{4x} dx - \int 9x dx$$

gives

$$y + c_1 = \frac{1}{4}e^{4x} - \frac{9}{2}x^2 + c_2,$$

for arbitrary constants c_1 and c_2 . Combining these to a single arbitrary constant C we have the solution is

$$y = \frac{1}{4}e^{4x} - \frac{9}{2}x^2 + C.$$

Correct Answers:

• $0.25*exp(4*x)-4.5*x^2+C$

12. (1 point) Find the general solution of the differential equation $x \frac{dy}{dx} = 5y$.

(Use C to denote the arbitrary constant.)

y =_____help (formulas)

Solution:

SOLUTION:

We 'separate the variables' and rewrite $x \frac{dy}{dx} = 5y$ as

$$\frac{1}{y}dy = \frac{5}{x}dx.$$

Integrating both sides

$$\int \frac{1}{y} \, dy = \int \frac{5}{x} \, dx$$

gives

$$ln(y) + c_1 = 5 ln(x) + c_2$$

for arbitrary constants c_1 and c_2 . Combinging these to a single arbitrary constant k we have

$$ln(y) = 5 ln(x) + k.$$

Applying *e* to both sides (that is, $e^{\ln(y)} = e^{5\ln(x)+k}$) we find

$$y = e^{5\ln(x)+k} = e^{5\ln(x)}e^k = e^{\ln(x^5)}C = Cx^5,$$

where we replace the arbitrary constant e^k with the notation C. Thus the solution is

$$y = Cx^5$$
.

Correct Answers:

• C*x^5

13. (1 point) Find the equation of the solution to $\frac{dy}{dx} = x^5y$ through the point (x,y) = (1,4).

(Don't forget to add 'y =' to your equation!)

_____ help (equations)

Solution:

SOLUTION:

We 'separate the variables' and rewrite $\frac{dy}{dx} = x^5 y$ as

$$\frac{1}{y}dy = x^5 dx.$$

Integrating both sides

$$\int \frac{1}{y} dy = \int x^5 dx$$

gives

$$\ln(y) + c_1 = \frac{1}{5+1}x^{5+1} + c_2,$$

for arbitrary constants c_1 and c_2 . Combining these to a single arbitrary constant k we have

$$ln(y) = \frac{1}{6}x^6 + k.$$

4

Applying *e* to both sides (that is, $e^{\ln(y)} = e^{\frac{1}{6}x^6 + k}$) we find

$$y = e^{\frac{1}{6}x^6 + k} = e^{\frac{1}{6}x^6}e^k = e^{\frac{1}{6}x^6}C = Ce^{\frac{1}{6}x^6},$$

where we replace the arbitrary constant e^k with the notation C.

We want the particular solution that passes through the point (1,4). That is, we want y(1)=4, or using our general solution above

$$4 = v(1) = Ce^{\frac{1}{6}1^6} = Ce^{\frac{1}{6}}$$
.

Solving for *C* we find $C = 4e^{-\frac{1}{6}}$. Thus the solution is

$$v = 4e^{-\frac{1}{6}}e^{\frac{1}{6}x^6} = 4e^{\frac{1}{6}(x^6-1)}$$
.

Correct Answers:

• $y = 4/[e^{(1/6)}] *e^{(x^6/6)}$

14. (1 point) Find the general solution of the differential equation $\frac{dy}{dx} = e^{2x-9y}$.

(Use C to denote the arbitrary constant.) y =____help (formulas)

Solution:

SOLUTION:

Generated by ©WeBWorK, http://webwork.maa.org, Mathematical Association of America

We 'separate the variables' and rewrite $\frac{dy}{dx} = e^{2x-9y}$ as

$$\frac{1}{e^{-9y}}\,dy = e^{2x}\,dx.$$

Integrating both sides

$$\int e^{9y} \, dy = \int e^{2x} \, dx$$

(using *u*-subs) gives

$$\frac{1}{9}e^{9y} + c_1 = \frac{1}{2}e^{2x} + c_2,$$

for arbitrary constants c_1 and c_2 . Combining these to a single arbitrary constant C we have

$$e^{9y} = \frac{9}{2}e^{2x} + C.$$

Applying ln to both sides (that is, $\ln(e^{9y}) = \ln(\frac{9}{2}e^{2x} + C)$) we find

$$9y = \ln\left(\frac{9}{2}e^{2x} + C\right),\,$$

or

$$y = \frac{1}{9} \ln \left(\frac{9}{2} e^{2x} + C \right).$$

Correct Answers:

• 0.111111*ln(4.5*exp(2*x)+C)