F-328 – Física Geral III

Aula exploratória – Cap. 23 UNICAMP – IFGW

Ponto essencial

O fluxo de água atravessando uma superfície fechada depende somente das torneiras no interior dela.

O fluxo elétrico atravessando uma superfície fechada depende somente das cargas no interior dela.

Resumo

- Fluxo elétrico
 - Quantidade de campo atravessando perpendicularmente uma superfície

$$\Phi_E = \int \vec{E} \cdot d\vec{A}$$

- Lei de Gauss
 - O fluxo elétrico atravessando uma superfície fechada (gaussiana) somente depende das cargas envolvidas por ela

$$\oint \vec{E} \cdot d\vec{A} = \frac{q_{env}}{\mathcal{E}_0}$$

- Condutores (equilíbrio eletrostático)
 - Movimento livre das cargas
 - Cargas em excesso na superfície externa
 - Campo elétrico nulo no interior
 - Campo elétrico perpendicular à superfície

Fluxo elétrico

Fluxo:

Quantidade de campo vetorial atravessando perpendicularmente uma superfície

$$\Phi_E = \int \vec{E} \cdot d\vec{A}$$

Superfície gaussiana (fechada)

 $d\vec{A}$

- Elemento de superfície
- Direção
 - Normal à superfície
- Sempre saindo da superfície

то дероги — **Ф**

 $\Phi = 0$

Lei de Gauss

Lei de Gauss

- Relaciona o campo elétrico em uma superfície gaussiana à carga elétrica contida no interior dela
- Independente da forma da superfície gaussiana

- $^{ullet}q_{e\underline{\eta}v}$
- Carga total dentro da superfície gaussiana
- \overrightarrow{dA} \overrightarrow{E}
- → Sempre saindo da superfície gaussiana
- → Campo elétrico na superfície gaussiana
 - Pode ser criado por cargas dentro e fora da superfície

Condutores

O campo elétrico no interior de um condutor *em equilíbrio eletrostático* é sempre nulo.

Onde vai o excesso de carga num condutor?

Todo o excesso de carga deverá migrar para a sua superfície externa de um condutor.

$$\Phi_{E} = \oint \vec{E} \cdot d\vec{A}$$

$$= 0$$

$$= \frac{q_{env}}{\varepsilon_{0}}$$

$$q_{env} = 0$$

Estratégia de resolução

- 1) Desenhar as linhas de campos
 - E vai da carga + à carga -
- 2) Escolher a superfície de Gauss adequada à simetria
 - Plano infinito: superfície cilíndrica
 - Cilíndrico, reta: superfície cilíndrica
 - Esfera: superfície esférica
- 3) Considerar o cálculo do fluxo para cada parte da superfície gaussiana
 - Desenhar os vetores $\vec{E_i}$ e dA_i de cada parte
 - Sentido de E_{\pm} : Depende do sinal de q_{env}
 - Sentido de dA_i : Sempre para fora da superfície de Gauss
- 4) Calcular a carga total q_{env} dentro da superfície
- 5) Somar o fluxo
 - Não esquecer que \vec{E} e $d\vec{A}$ são vetores
- 6) Isolar o campo elétrico

Uma carga de 2µC dista 20 cm do centro de um quadrado de 40 cm de lado.

a) determine o fluxo do campo elétrico da carga através do quadrado.

Uma carga de $2\mu C$ dista 20 cm do centro de um quadrado de 40 cm de lado.

b) qual seria o fluxo do campo elétrico desta carga, através de um cubo de aresta igual a 40 cm, se ela estivesse em um de seus vértices?

Questão #1

A superfície fechada em forma de prisma está dentro um campo elétrico \vec{E} constante e uniforme, preenchendo todo o espaço, apontando para a direita. As três faces retangulares do prisma são marcadas por A, B, e C. A face A é perpendicular ao campo \vec{E} , a face inferior C é paralela a \vec{E} e a face B é inclinada.

Ordene em ordem crescente o fluxo atravessando as superfícies.

$$\mathbf{A}$$
) $A < C < B$

$$\mathbf{B}$$
) $A = B < C$

$$\mathbf{C}$$
) $C < A < B$

$$\mathbf{D}$$
) $C < A = B$

$$\mathbf{E}$$
) $A = B = C$

Para a configuração da figura abaixo, temos a = 5.0 cm, b = 20 cm e c = 25 cm. Suponhamos agora que o campo elétrico em um ponto a 10 cm do centro da esfera isolante seja 3.6×10^3 N/C e aponte radialmente para dentro, e que o campo elétrico em um ponto a 50 cm do centro seja 3.6×10^2 N/C, apontando radialmente para fora. A partir destas informações e baseando-se na lei de Gauss, calcule: (use $k=1/4\pi\epsilon_0=9.0\times 10^9$ Nm²/C²)

- a) A carga da esfera isolante;
- b) A carga resultante na camada esférica condutora;
- c) As densidades de carga nas superfícies interna e externa da camada condutora;

a) A carga da esfera isolante

b) A carga resultante na camada esférica condutora

c) As densidades de carga nas superfícies interna e externa da camada condutora

O cilindro interno da figura, de comprimento muito longo L, é feito de um material não condutor com uma distribuição de carga volumétrica dada por $\rho(r)=C/r$, onde C=50 nC/m². A camada cilíndrica externa é condutora.

- a) determine a carga por unidade de comprimento λ do cilindro interno;
- b) calcule o campo elétrico para todos os valores de r.
- c) Esboce o gráfico de E(r) versus r.

Dados:
$$\begin{cases} a = 1,0 \text{ cm} \\ b = 2,0 \text{ cm} \\ c = 2,5 \text{ cm} \end{cases}$$

b) Cilindro interno $d\vec{A}_1$

Entre os cilindros $d\vec{A}_1$

Questão #2

Um excesso de carga +Q é colocado em uma esfera de cobre. Em seguida, coloca-se uma carga puntiforme +q fora da esfera. O sistema de cargas está em equilíbrio.

Qual é a magnitude do campo elétrico no centro da esfera?

$$A) E = \frac{q + Q}{4\pi\varepsilon_0 r^2}$$

$$\mathbf{B)} \quad E = \frac{q}{4\pi\varepsilon_0 r^2}$$

$$\mathbf{C)} \ E = \frac{Q}{4\pi\varepsilon_0 r^2}$$

D)
$$E = 0$$

E) Nenhuma das opções acima

Considere um plano e uma camada infinitos paralelos, como mostrado. O plano da esquerda é não condutor e tem uma densidade superficial de carga uniforme +σ, enquanto a camada da direita é condutora e neutra. Calcule o campo elétrico:

- a) à esquerda das duas placas;
- b) no espaço entre as placas;
- c) à direita das duas placas.

Exercício 05 - Lista

No interior de uma esfera condutora neutra de raio R existem duas cavidades esféricas de raios a e b, em cujos centros estão localizadas as cargas puntiformes q_a e q_b . Determine:

- a) as densidades superficiais de carga σ_a , σ_b e σ_R ;
- b) o campo elétrico $E_{ext}(r)$ na região externa à esfera;
- c) os campos elétricos $E_a(r)$ e $E_b(r)$ dentro de cada cavidade;
- d) as forças que agem sobre q_a e q_b ;
- e) quais dessas respostas mudariam se uma terceira carga fosse colocada fora da esfera condutora?

