# 重回帰分析 1

「予測」と「因果効果」 拓殖大学 浅野正彦 Ph.D.

1

## <mark>理論</mark> 「人間の容姿は遺伝する」



## 仮説 「背の高い母親の子供は背が高い」

2



単回帰分析
母親の身長
独立変数
従属変数
で属変数

マ供の身長 =  $\alpha_0 + \alpha_1$ 母の身長



#### 親と子供の身長

| Statistic | N   | Mean   | St. Dev. | Min    | Pctl(25) | Pctl(75) | Max    |
|-----------|-----|--------|----------|--------|----------|----------|--------|
| height    | 169 | 168.22 | 8.17     | 151    | 163      | 175      | 188    |
| dad       | 167 | 171.83 | 6.05     | 140.00 | 168.00   | 176.00   | 185.00 |
| mom       | 169 | 159.98 | 5.29     | 142    | 156      | 164      | 172    |
| shoe      | 164 | 25.80  | 1.67     | 22.00  | 24.50    | 27.00    | 30.00  |
| parents   | 167 | 165.91 | 4.35     | 147.50 | 163.00   | 169.00   | 176.50 |

7

7

#### 単回帰分析 サンプルでは model\_1 <- lm(height ~ mom, data = df)</pre> 母の身長が 1cm 高い summary(model\_1) → 子供の身長が 0.5cm 高い height = 86 + 0.5mom このことは母集団でもそうなのか? 帰無仮説:「母集団では係数は0」 p値を確認 lm(formula = height ~ m Residuals: 0.0000098 Min 1Q Median -19.807 -4.723 1.113 30 Max .249 17.707 帰無仮説を棄却 係数は0ではない Coefficients: . Error t value Pr(>|t|) Estimate St (Intercept) 85.9939 18.0437 4.766 4.07e-06 \*\*\* 母親の身長は子供の身長と関係ある 0.5140 0.1127 4.560 9.86e-06 \*\*\* mom Signif. codes: 0 '\*\*\*' 0.001 '\*\*' 0.01 '\*' 0.05 '.' 0.1 ' ' 1 Residual standard error: 7.732 on 167 degrees of freedom Multiple R-squared: 0.1107, Adjusted R-squared: 0.1054 F-statistic: 20.79 on 1 and 167 DF, p-value: 9.863e-06 8



重回帰分析 model\_4 <- lm(height ~ mom + dad + male + shoe, data = df)</pre> summary(model\_4) サンプルでは height = -3.4 + 0.42mom + .... 母の身長が 1cm 高い → 子供の身長が 0.42cm 高い Coefficients: このことは母集団でもそうなのか? rror t value Pr(>|t|) 1.97926 -0.259 0.06277 6.719 (Intercept) -3.36560 帰無仮説:「母集団では係数は0」 0.796 0.42174 6.719 3.19e-10 \*\*\* mom p値を確認 4.486 1.40e-05 \*\*\* 0.05452 dad 0.24454 male男性 6.92812 1.05175 6.587 6.41e-10 \*\*\* 0.00000000319 2.20870 0.29016 7.612 2.35e-12 \*\*\* shoe 帰無仮説を棄却 Signif. codes: 0 '\*\*\*' 0.001 '\*\*' 0.01 '\*' 0.05 '.' 0.1 ' ' 1 係数は0ではない Residual standard error: 4.125 on 157 degrees of freedom 母親の身長は子供の身長と関係ある (7 observations deleted due to missingness) Multiple R-squared: 0.7545, Adjusted R-squared: 0.7482 F-statistic: 120.6 on 4 and 157 DF, p-value: < 2.2e-16 10

## 最大の関心は mom なので どのような組み合わせでも、統計的に有意であることを示したい

### mom が主要な独立変数

11

|                        |                   |                   |                    | モデルでも mom          | は女化して行忌           |
|------------------------|-------------------|-------------------|--------------------|--------------------|-------------------|
| 親と子供の身長                |                   |                   |                    |                    |                   |
|                        |                   | he                | eight              |                    |                   |
|                        | Model 1           | Model 2           | Model 3            | Model 4            |                   |
| mom                    | 0.51***           | 0.47***           | 0.51***            | 0.42***            |                   |
|                        | (0.11)            | (0.11)            | (0.07)             | (0.06)             |                   |
| dad                    |                   | 0.27***           | 0.31***            | 0.24***            |                   |
|                        |                   | (0.10)            | (0.06)             | (0.05)             | 主要な独立変数である mom は  |
| male男性                 |                   |                   | 12.96***           | 6.93***            | 全てのモデルに投入         |
|                        |                   |                   | (0.83)             | (1.05)             |                   |
| shoe                   |                   |                   |                    | 2.21***            |                   |
|                        |                   |                   |                    | (0.29)             |                   |
| Constant               | 85.99***          | 48.06**           | 24.17*             | -3.37              |                   |
|                        | (18.04)           | (22.60)           | (14.38)            | (12.98)            |                   |
| N                      | 169               | 167               | 167                | 162                |                   |
| R-squared              | 0.11              | 0.15              | 0.66               | 0.75               | height の分散の 75% が |
| Adj. R-<br>squared     | 0.11              | 0.14              | 0.66               | 0.75               | Model 4によって説明できた  |
| Residual Std.<br>Error | 7.73 (df = 167)   | 7.61 (df = 164)   | 4.82 (df = 163)    | 4.12 (df = 157)    |                   |
| F Statistic            | 20.79*** (df = 1; | 14.42*** (df = 2; | 106.26*** (df = 3; | 120.61*** (df = 4; |                   |
|                        | 167)              | 164)              | 163)               | 157)               | 12                |

12

|                     | height                  |                                                   |
|---------------------|-------------------------|---------------------------------------------------|
| mom                 | 0.42***                 | h - 2 - h - 2 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 |
|                     | (0.06)                  | height = $-3.37 + 0.42$ mom***                    |
| dad                 | 0.24***                 | + 0.24dad***                                      |
|                     | (0.05)                  | + 6.93male***                                     |
| male男性              | 6.93***                 |                                                   |
|                     | (1.05)                  | + 2.21shoe***                                     |
| shoe                | 2.21***                 |                                                   |
|                     | (0.29)                  |                                                   |
| Constant            | -3.37                   | 解釈                                                |
|                     | (12.98)                 | 761 W 1                                           |
| N                   | 162                     | ・母親の身長が 1 cm 高い                                   |
| R-squared           | 0.75                    | →子供身長が 0.42 cm 高い                                 |
| Adj. R-squared      | 0.75                    | プナ状分支が 0.42 CM 向い                                 |
| Residual Std. Error | 4.12 (df = 157)         | 他の変数は全て平均値に固定                                     |
| F Statistic         | 120.61*** (df = 4; 157) | 10 2000                                           |





# Why Beauty Matters: Candidates' Facial Appearance and Electoral Success

ONO, Yoshikuni

RIETI

ASANO, Masahiko

Takushoku University

https://www.rieti.go.jp/jp/publications/nts/20e072.html





## 「統計的に有意」とはどういうことか?



「95% 信頼区間」と聞くと、私たちが知ろうとしている 母数の値がこの区 間に含まれている確率かが95% なのだ ろうと思うかもしれない。しかし、それは 誤りである。 あるデータセットから得られた 95% 信頼区間に母数が含 まれる「確 率」は、0% または 100% である。

> 浅野・矢内 『Rによる計量政治学』pp.115-140

黒点が標本平均、水平方向に引かれた総分が信頼区間を表す。標本平均(ullet)が  $\mu\pm 1.98SE$  の範囲に入るとき、信頼区間が垂直に引かれた実線と交わる。それらの信頼区間は母平均  $\mu$  を区間内に捉えている。運が悪いと、標本平均が  $\mu\pm 1.98SE$  の範囲外の値をとり( $\star$ )、95% 信頼区間が母平均を捉え損なる(下から 7番目の線分)。標本出と総約 返し、それぞれの標本について95% 信頼区間を求めると、求めた信頼区間の95% が母平均を区間内に捉える。

図 7.8 同じ母集団から抽出された 20 個の標本 (n=100、すなわち t 分布の自由度 99)か 5得られる 95% 信頼区間