

LDS-50C-C30E:适用机型 Ver 1.3:版 本

目录

PACE CAT®

产品简介 P01 工作原理 P01 产品优势 P03 机械尺寸和光学窗口 P03 机械尺寸 P03 光学窗口 P04 参数性能 **P05** P05 设备物理参数 P06 通讯与接口 P06 坐标系定义 P07 测试设备 软件测试 **P08** P06 客户端使用教程 P06 配置信息 客户端功能操作说明 P07 P09 数据通讯协议 P09 测量数据包格式 数据解析 P10 P11 报警数据包 P11 控制字指令 P12 设置字指令 报警信息输出协议 P13 P13 网络心跳协议 开发工具与支持 P13 修订历史 P14

注意事项

P14

产品简介

LDS-50C-C30E由蓝海光电(PACECAT)研发的高性能360度TOF激光雷达产品。可实现在二维平面的40米半径范围内可靠测量。如图1-1激光扫描测距模块已经被广泛应用于以下领域:机器人定位导航、扫地机器人、服务机器人、安防、无人机等。

扫地机器人

服务机器人

工业机器人

AGV小车

无人机避障

无人机测绘

图 1-1. LDS-50C-C30E应用场景

LDS-50C-C30E典型旋转频率为10HZ(600RPM),角度分辨率为0.2度,并支持切换为15HZ(900RPM),角度分辨率为0.3度;得益于高性能脉冲TOF测距系统.此传感器在各种室内室外环境均可实现出色的表现。

工作原理

LDS-50C-C20E 采用的是采用飞行时间(TOF,Time Of Flight)原理设计,进行每秒高达18000次的测距。测距数据通过高速光通讯发送到供电处理模块进行解算,将目标物体与雷达的距离值、强度信息从通讯接口中输出。如图2-1,在工作状态下,激光器向外发射出一束激光,照射到障碍物体上会发生反射,接收器对反光信号进行探测,通过时间分析模块测量出反射光与发射光之间的时间差,用时间乘以光速即可得到光的飞行距离,从而计算出障碍物的位置信息。

1

图 2-1. LDS-50C-C30E 工作原理图

为了获取更多的角度上的目标信息,雷达内部通过电机旋转得到不同的角度上的 距离和强度信息,从而获得完整的二维点云图,如图2-2,LDS-50C-C30E内部电 机驱动设计为顺时针旋转。

图2-2. LDS-50C-C30E实测图

LDS-50C-C30E激光雷达采用的是近红外脉冲激光器作为光源,激光器脉冲仅在 纳秒时间内进行发射。因而可以确保对人类及宠物的安全性,符合FDA Class 1 级别的激光器安全标准。近红外脉冲激光结合滤光片的应用可以有效的避光干扰, 因此可用于室内室外环境正常使用。

产品优势

▶雷达具有硬件滤波、去拖点功能,可有效规避一些噪点导致的干扰;

141

- ▶雷达可同步输出目标物反射强度,可用于算法判断;
- ▶雷达测距精度可达±3cm,不同目标物直线特性优良;
- ▶多雷达同时运行,雷达之间无干扰;
- ▶特殊的光学设计,有效提高抗脏污能力;

机械尺寸和光学窗口

■机械尺寸

单位:毫米 (mm)

图4-1. LDS-50C-C30E俯视图

图4-2. LDS-50C-C30E主视图

图4-3. LDS-50C-C30E背视安装孔位图

图4-4. LDS-50C-C30E外观图

=光学窗口

Pacecat进行LDS-50C-C30E的外观设计时,如图4-5,合理安排激光发射接收窗口,外观对光学窗口的部分遮挡会影响测距的性能和精度,若有特殊的要求或者要采用透明罩对此传感器进行保护,参考本文档了解光学测距窗口尺寸信息,并联系pacecat了解方案设计的可行性。

图4-5. LDS-50C-C30E部结构

图4-6. LDS-50C-C30E外观及串口

图4-7. 激光水平度示意图

每一台出厂的LDS-50C-C30E发射的激光的水平角度会有微小的偏差,以水平面为参考,LDS-50C-C30E发射的水平角度偏差范围在土0.3°以内。((如图4-7)

参数性能

量设备物理参数

表5-1. 设备参数

型号	LDS-50C-C30E					
检测距离	0.1-40m@90% 反射率					
	0.1-12m@10% 反射率					
扫描区域	360°					
扫描速率	10Hz,15Hz					
角分辨率	0.2°, 0.3°					
测量速率	18000测量值/s					
重复精度	±15mm					
测距精度	±30mm					
接口类型	Ethernet 100Mbit/s					
激光波长	905nm ± 15nm					
功耗	<3W					
输出	原始数据(距离、角度、能量、时间戳)					
环境光	>80000lux					
激光发散度	<3mrad					
供电	10-26VDC					
工作温度	-10° C-50° C					
存储温度	-25° C-65° C					
外形尺寸	55.5*55.5*51mm					

=通讯与接口

图5-1. 接口定义图

LDS-50C-C30E有两个外部接口,一个为外部电源接口,另一个为标准的RJ45网络接口,具体接口定义如下: (如图5-1)

图5-3. 586B线序

=坐标系定义

LDS-50C-C30E雷达的正前方中心定义为坐标系的x轴(即0角度位置),坐标系原点为测距单元的旋转中心,旋转角度沿着顺时针方向旋转增大。

6

雷达零位及旋转方向示意图

软件测试

=客户端使用教程

双击Bluescan 图 开软件,点击"连接"->"网络",如图6-1,会弹出如 下窗口,选择匹配的地址进行连接。(如图6-1)

设备列表								×
SN LH4902210610005	address 192.168.158.98	port 6543	upload 192.168.158.15		type LDS-50C-C30E	version 301.210420	CPU 27.0	Vol 11.9
1	2		3	4	5	6	7	8←

图 6-1. 网络搜索连接窗口

● SN: 雷达序列号为: LH4902210610005

② address: 雷达ip地址为192.168.158.98 port: 雷达服务端口为6543

③ upload: 上传ip地址为192.168.158.15 port: 上传端口为6668

4 RPM: 雷达此时转速为903.7RPM

5 ype:雷达的型号为LDS-50C-C30E

6 version: 固件版本号为301.210420

⑦ CPU:处理器此时的温度为27℃

8 Vol: 雷达此时的输入电压为11.9V

图6-2. 雷达测试工作界面

雷达测试工作界面,BLuescan显示界面分为四个区:功能操作区、点云显示区、数据显示区、指令区。(如图6-2)

=配置信息

图6-3. 配置信息

- ◆ 雷达型号:LDS-50C-C30E
- 2 雷达出厂序列号: LH4902210610005
- ③ 设备ID:1 客户可根据自身需求进行编号设置,设置范围为0-2147483647(D) 转换为十六进制即为0-7FFFFFFF(H)。
- 4 设备网络地址: 192.168.158.98客户可根据实际需求设置IP地址,服务端口号 默认为: 6543。
- 5 数据上传地址: 192.168.158.15,客户可根据实际需求设置IP地址,上传端口号默认为:6668,设备网络地址与数据上传地址必须保证在同一网段内。
- 6 开机自动上传: 选中开机自动上传后,雷达上电后会持续上传数据;若未选中 开机自动上传,雷达上电后数据不主动上传,需对雷达发送任意指令后才会输出 数据。
- 7 固定服务器上传:选中,只有雷达目标IP可接收到数据;若未选中,则与雷达同一网段内的任一IP地址上位机软件都可接收到雷达数据。
- 图 去拖点: 开启去拖点功能后,可有效去除前后目标之间的拖点。
- 数据平滑:数据平滑即为滤波功能,开启滤波功能后,可减少雷达数据线性波动, 线性趋于平滑;
- ⑩ 固定角度分辨率:目前雷达头部激光扫描频率为19K,关闭固定分辨率后,每旋转360°, 雷达将输出10包数据,每个数据包有190个左右的数据点,开启固定分辨率后,可实现频率为10Hz的情况下,固定角分辨率为: 0.2°,频率为15Hz的情况下,固定角分辨率为: 0.3°。
- 對 转速与距离修正值均可按实际情况设置(距离修正值出厂已设置,请勿随意更改)。

=客户端功能操作说明

图6-4 功能操作区

前端去拖点、前端滤波:与参数设置中的去拖点、数据平滑功能相同,此选项为临时开关,重新上电后,雷达会恢复到参数设置中去拖点、滤波的状态;设角度分辨率:目前支持输出原始数据、10Hz固定分辨率为0.2°、15Hz固定分辨率0.3°,此选项为临时开关,重新上电后雷达数据按参数设置中固定分辨率开关状态输出。

开始旋转、停止旋转、固定测距:可控制雷达正常起停与固定测距;

颜色:可设署電法输出数据品度新名映射・(加・図6-5) 程度類色映射

图6-5 强度颜色映射

单点分析:可持续监测单点输出的距离角度等数据,打开以后,在点云区右键选中监测的点;(如图6-6)

图6-6 单点分析

包点数:可持续监测雷达包点数及丢包情况

数据通讯协议

=测量数据包格式

```
测量数据包(点云输出)格式:点云数据基于以太网UDP协议包进行传输,默
认端口号为:6668(软件可配置)。
格式说明:一个字为一个数据,低字节在前,高字节在后。
struct
uint16_t code;
uint16_t count;
uint16_t whole_fan;
uint16_t offset;
uint32_t begin_ang;
uint32 tend ang;
uint32_t flags;
uint32_t timestamp;
uint32_t dev_no;
};
code:帧头,两字节,两字节固定为0xFAC7
count:数据包长度,两字节,表示此数据包的数据个数为count个
whole¬ fan:全部扇区,两字节,表示此数据包所在扇区数据总个数
offset:数据偏置,两字节,表示此数据包在扇区内的偏移
begin_ang:扇区起始角度,四字节,表示当前数据包的起始角度,以0.001°为
单位,例如: 180000表示180°。
end_ang:扇区结束角度,四字节,以0.001度为单位。
flags:数据包标志,四字节。
0x0001表示单位是mm, 0为cm;
0x0002 表示携带强度信息;
0x0004表示数据去拖点;
0x0008 表示数据经过平滑;
0x0080表示数据经重采样;
```

PACE CAT

timestamp:时间戳,四字节,取值范围为:0-3600×106μS,当前的时间戳表示当前UDP包第一个点云数据激光发射时的时间。

dev_no:设备编号,四字节。

距离数据数组:2×N字节。

相对角度偏移数组: 2×N字节,相对起始角度的偏转,单位: 0.001°。

强度数据数组:N字节。

校验:两字节,除帧头(0xFAC7后所有的和)求和,以字节为单位(强度数据扩展为2字节)。

=数据解析

雷达正常运行时,勾选"记录"窗口开始保存雷达数据包,取消勾选"记录"窗口,结束保存雷达数据包。在客户端的根目录下生成*.dump文件,即为保存的雷达数据包可用UltraEdit等软件打开数据包进行数据解析。(如图7-1,7-2)

图7-1. 雷达测试软件界面

99	FΑ	5A	99	2A	03	89	97	4F	99	99	99	88	FB	33	99
01	99	99	99	99	00	99	99	99	99	99	99	99	99	66	66
A3	01	A2	01	A1	01	A0	01	AΘ	01	99	99	99	99	99	99
99	99	83	01	83	01	81	01	81	01	7C	01	7C	01	79	01
77	01	77	01	78	01	79	01	7B	01	7A	01	78	01	79	01
7A	01	7A	01	7E	01	80	01	82	01	7F	01	00	99	99	99
99	66	CF	61	CD	01	CC	01	CB	01	CA	01	66	66	66	66
00	99	00	00	00	00	00	00	F3	01	F3	01	F4	01	F3	01
F3	01	99	99	99	99	99	99	99	99	60	02	64	02	99	99
1E	02	15	02	00	00	DF	02	00	00	00	00	00	00	00	99
00	00	00	00	FC	01	FD	01	FD	01	01	02	03	02	02	02
00	00	FF	01	FF	01	FC	01	FF	01	FC	01	00	00	00	99
00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	99
99	99	99	99	16	16	16	16	16	16	16	17	16	17	17	16
17	17	17	17	17	17	17	17	17	17	17	17	17	17	16	16
17	16	16	16	16	17	17	15	14	13	13	12	13	12	11	11
11	11	12	11	11	11	12	13	15	15	15	13	12	12	16	1A
16	13	13	13	14	13	12	12	12	12	12	12	12	12	11	12
12	12	11	11	11	12	13	14	15	17	18	18	19	19	39	03
99	FΑ	5A	99	84	03	89	97	4F	99	99	00	8B	FB	33	99

图7-2 测量数据包解析

数据校验

数据	说明
c7 fa	帧头
3c 00	00 3c,包内测距点个数为60个
3c 00	00 3c, 此包所在的扇区内的数据总数量为60
00 00	00 00, 此包所在的扇区数据的偏移为0
60 d8 03 00	00 03 d8 60,以0.001度为单位,扇区起始角度为252°
b0 1e 04 00	00 04 1e b0,以0.001度为单位,扇区终止角度为270°
9f 00 00 00	00 00 00 9f,转换为二进制为1001 1111;从左往右,依次为第0位至第8位; 第0位:1表示mm级,默认mm机 第1位:1表示带强度,默认带强度 第2位:1表示开启去拖点功能;0表示关闭去拖点功能 第3位:1表示开启滤波功能,0表示关闭滤波功能 第4位:1表示开启18°为一个扇区;0表示关闭18°为一个扇区 第5位:1表示开启9°为一个扇区;0表示关闭9°为一个扇区 第6位:1表示开启其他度数作为一个扇区;0表示关闭其他度数作为一个扇区 第7位:1表示开启固定分辨率;0表示关闭固定分辨率
a0 81 3a 01	时间戳
01 00 00 00	设备编号
51 03	距离 (mm)
00 00	相对扇区起始位角度
11 Of···	强度数据
3c 00	校验和

=报警数据包

提示报警数据包格式:

起始: 四字节, 固定格式为: 0xCECECECE;

数据:两字节为一个数据,低字节在前,高字节在后;

例:

CE CE CE CE 00 01: 表示电源故障;

请检测输入电源是否电压过低或者输出功率不够。

=控制字指令

```
控制字可在指令区进行输入,以控制或获取雷达的部分功能和参数。
```

```
LSTOPH-----停止旋转,停止为测距头供电;返回: OK表示成功;
```

```
LSTARH----开始正常工作;
```

返回: 0K表示成功;

LMEASH----停止旋转,固定测距;

返回: 0K表示成功;

LRESTH-----复位重新启动, 无返回;

LVERSH-----返回测距头和控制板的程序版本号;

LUUIDH-----获取序列号:

返回: PRODUCT SN 例: LH4902210610005:

=设置字指令

设置字可在指令区进行输入,用来对雷达的参数进行设置、并掉电保存。

LSSS1H----开启滤波;

返回: 0K表示成功;

LSSS0H----关闭滤波;

返回: 0K表示成功;

LFFF1H----去拖点功能开启;

返回: 0K表示成功;

LFFF0H----去拖点功能关闭;

返回: OK表示成功;

=报警信息输出协议

```
struct LidarMsgHdr
{
            // must be "LMSG"
char sign[4];
uint32 t proto version; 协议版本, 当前为0x101
char dev sn[20]; 设备编号
uint32 t dev id;
                    设备序号
uint32 t timestamp;
                    时间戳
uint32 t flags; 消息类型
uint32 t events; 消息内容的位组合
uint16 t id;
               消息序号
uint16 t extra;
               80
uint32_t zone_actived; 当前激活防区
uint8_t all_states[32];设备各功能状态
uint32 t reserved[11]; 保留
};
```

=网络心跳协议

```
Struct
char sign[4]; // must be "LiDA"
uint32_t proto_version; // 协议版本
uint32 t timestamp[2]; // 时间戳
char dev sn[20]; // 设备序列号
 char dev type[16]; // 设备类型
uint32 t version; // 程序版本号
uint32_t dev_id; // 设备id
uint8_t ip[4]; // 设备ip地址
uint8_t mask[4]; // 子网掩码
uint8 t gateway[4];// 网关
uint8_t remote_ip[4]; // 上传ip地址
uint16 t remote udp; // 上传端口
uint16 t port; // 服务端口
uint16_t status;// 设备状态
uint16_t rpm; // 雷达转速,以0.1为单位,例:所得值为6000,转速为600
uint16 t freq; // 频率,以0.01为单位,例:所得值为1000,频率为10Hz
uint8 t ranger version[2];// 测距头版本号
uint16_t CpuTemp;// CPU的温度,以0.1为单位,例:所得值为270,温度为27℃
uint16 t InputVolt; // 输入电压,以0.001为单位,例:所得值为12000,电压
为: 12V
uint8 t alarm[16]; // 报警信息
uint32 t crc;// 校验码
};
```

开发工具与支持

为了方便用户快速使用LDS-50C-C30E型号激光雷达进行产品开发,Pacecat提供了如下开发工具:

下载 Windows、Linux等平台下的SDK开发包及示例程序,请访问:

https://github.com/BlueseaLidar/lanhai-driver

下载Ros驱动,请访问:

https://github.com/BlueSeaLidar/bluesea2

如有疑问,可以联系Pacecat。

修订历史

日期	版本	内容更新
2020-08-15	Ver 1.0	LDS-50C-C30E初始版本;
2020-10-20	Ver 1.1	雷达参数更新;
2021-06-02	Ver 1.2	软件测试功能更新;
2021-07-08	Ver 1.3	文档中错误修正;

安全事项

- 使用前请详细阅读说明书,严禁违规操作,任何违规的操作导致设备损坏,责任自负;
- 未经蓝海光电科技有限公司许可用户不可擅自拆开设备,严禁在设备运行时拆开光学外罩;
- 严禁使用坚硬物品刮擦光学外罩,表面受损会影响测距精度,导致噪点数据增加;为避免灰尘影响测距性能,保持产品外观清洁;
- 防静电保护,静电可能会导致设备损坏,应在防静电区进行测试;
- 为了避免设备损坏和确保人身安全,严禁在易燃易爆的环境下操作设备, 严禁在易腐蚀的环境下放置设备;
- 设备长时间运行,请保持良好的散热;
- 设备运行时持续发射红外激光,符合FDA Class I 级别激光器安全标准, 为确保安全使用,请勿长时间直视发光表面;
- 若产品出现故障无法排障时,请联系蓝海光电技术有限公司进行检测, 任何维护、零件更换的措施必须由蓝海光电技术有限公司执行。

⋾声明

- 本公司产品受已获准及尚在审批的中华人民共和国专利保护;
- 未经蓝海光电技术有限公司事先书面许可,不得复制更改本说明书内容
- ▶ 本产品以此说明书内容为准,对因使用本说明书导致任何偶然或者继发的损失,蓝海光电技术有限公司保留解释权;

PACE CAT®

金华市蓝海光电技术有限公司 JINHUA LANHAI PHOTOELECTRICITY TECHNOLOGY CO., LTD.

地址: 金华市积道街358号 NO. 358, JIDAO STREET, JINHUA321000, CHINA

售后热线: 400-827-0027 AFTER-SALES SERVICE HOTLINE: 400-822-0027

网站: http://www.pacecat.com

版权: © 2021 浙江省金华市蓝海光电技术有限公司版权所有

