Relational Model

Dr. M. Brindha
Assistant Professor
Department of CSE
NIT, Trichy-15

Example of a Relation

account-number	branch-name	balance
A-101	Downtown	500
A-102	Perryridge	400
A-201	Brighton	900
A-215	Mianus	700
A-217	Brighton	750
A-222	Redwood	700
A-305	Round Hill	350

Basic Structure

```
• Formally, given sets D_1, D_2, \dots D_n a relation r is a subset of
 D_1 \times D_2 \times ... \times D_n
 Thus a relation is a set of n-tuples (\alpha_1, \alpha_2, ..., \alpha_n) where
 each a_i \in D_i
Example: if
     customer-name = {Jones, Smith, Curry, Lindsay}
     customer-street = {Main, North, Park}
     customer-city = {Harrison, Rye, Pittsfield}
 Then r = \{ (Jones, Main, Harrison),
           (Smith, North, Rye),
           (Curry, North, Rye),
           (Lindsay, Park, Pittsfield)}
 is a relation over customer-name x customer-street x
 customer-city
```

Attribute Types

- Each attribute of a relation has a name
- The set of allowed values for each attribute is called the domain of the attribute
- Attribute values are (normally) required to be atomic, that is, indivisible
 - E.g. multivalued attribute values are not atomic
 - E.g. composite attribute values are not atomic
- The special value null is a member of every domain
- The null value causes complications in the definition of many operations
 - we shall ignore the effect of null values in our main presentation and consider their effect later

Relation Schema

Relation Instance

- The current values (*relation instance*) of a relation are specified by a table
- An element t of r is a tuple, represented by a row in a table

Relations are Unordered

Order of tuples is irrelevant (tuples may be stored in an arbitrary order)

E.g. account relation with unordered tuples

account-number	branch-name	balance
A-101	Downtown	500
A-215	Mianus	700
A-102	Perryridge	400
A-305	Round Hill	350
A-201	Brighton	900
A-222	Redwood	700
A-217	Brighton	750

Database

- A database consists of multiple relations
- Information about an enterprise is broken up into parts,
 with each relation storing one part of the information
 - E.g.: account: stores information about accounts depositor: stores information about which customer owns which account customer: stores information about customers
- Storing all information as a single relation such as bank(account-number, balance, customer-name, ..) results in
 - repetition of information (e.g. two customers own an account)
 - the need for null values (e.g. represent a customer without an account)
- Normalization theory deals with how to design relational schemas

The customer Relation

customer-name	customer-street	customer-city
Adams	Spring	Pittsfield
Brooks	Senator	Brooklyn
Curry	North	Rye
Glenn	Sand Hill	Woodside
Green	Walnut	Stamford
Hayes	Main	Harrison
Johnson	Alma	Palo Alto
Jones	Main	Harrison
Lindsay	Park	Pittsfield
Smith	North	Rye
Turner	Putnam	Stamford
Williams	Nassau	Princeton

The depositor Relation

customer-name	account-number
Hayes	A-102
Johnson	A-101
Johnson	A-201
Jones	A-217
Lindsay	A-222
Smith	A-215
Turner	A-305

E-R Diagram for the Banking Enterprise

Keys

- Let $K \subseteq R$
- K is a superkey of R if values for K are sufficient to identify a unique tuple of each possible relation r(R)
 - by "possible r" we mean a relation r that could exist in the enterprise we are modeling.
 - Example: {customer-id, customer-street} and {customer-id} are both superkeys of Customer, if no two customers can possibly have the same name.
- K is a candidate key if K is minimal Example: {customer-id} is a candidate key for Customer, since it is a superkey (assuming no two customers can possibly have the same name), and no subset of it is a superkey.

Determining Keys from E-R Sets

- •Strong entity set. The primary key of the entity set becomes the primary key of the relation.
- Weak entity set. The primary key of the relation consists of the union of the primary key of the strong entity set and the discriminator of the weak entity set.
- •Relationship set. The union of the primary keys of the related entity sets becomes a super key of the relation.
 - For binary many-to-one relationship sets, the primary key of the "many" entity set becomes the relation's primary key.
 - For one-to-one relationship sets, the relation's primary key can be that of either entity set.
 - For many-to-many relationship sets, the union of the primary keys becomes the relation's primary key

Schema Diagram for the Banking Enterprise

Query Languages

- Language in which user requests information from the database.
- Categories of languages
 - procedural
 - non-procedural
- "Pure" languages:
 - Relational Algebra
 - Tuple Relational Calculus
 - Domain Relational Calculus
- Pure languages form underlying basis of query languages that people use.

Relational Algebra

- Procedural language
- Six basic operators
 - select
 - project
 - union
 - set difference
 - Cartesian product
 - rename
- The operators take one or more relations as inputs and give a new relation as a result.

Select Operation – Example

Relation r

Α	В	С	D
α	α	1	7
α	β	5	7
β	β	12	3
β	β	23	10

Select Operation

- Notation: $\sigma_p(r)$
- p is called the selection predicate
- Defined as:

$$\sigma_p(r) = \{t \mid t \in r \text{ and } p(t)\}$$

Where p is a formula in propositional calculus consisting of terms connected by : \land (and), \lor (or), \neg (not)

Each term is one of:

<attribute>op <attribute> or <constant>

where op is one of: =, \neq , >, \geq . <. \leq

Example of selection:

```
\sigma_{branch-name="Perryridge"}(loan)
```

The *loan* Relation

loan-number	branch-name	amount
L-11	Round Hill	900
L-14	Downtown	1500
L-15	Perryridge	1500
L-16	Perryridge	1300
L-17	Downtown	1000
L-23	Redwood	2000
L-93	Mianus	500

Result of $\sigma_{branch-name = "Perryridge"}$ (loan)

loan-number	branch-name	amount
L-15	Perryridge	1500
L-16	Perryridge	1300

Project Operation – Example

Project Operation

• Notation:

$$\prod_{\mathsf{A1},\,\mathsf{A2},\,\ldots,\,\mathsf{Ak}}(r)$$

where A_1 , A_2 are attribute names and r is a relation name.

- •The result is defined as the relation of *k* columns obtained by erasing the columns that are not listed
- Duplicate rows removed from result, since relations are sets
- E.g. To eliminate the branch-name attribute of account

 $\prod_{loan-number, amount}$ (loan)

Loan Number and the Amount of the Loan

loan-number	amount
L-11	900
L-14	1500
L-15	1500
L-16	1300
L-17	1000
L-23	2000
L-93	500

Union Operation – Example

□ Relations *r*, *s*:

Α	В	
α	1	
α	2	
β	1	
r		

 $r \cup s$:

Α	В
α	1
α	2
β	1
β	3

Union Operation

- Notation: $r \cup s$
- Defined as:

$$r \cup s = \{t \mid t \in r \text{ or } t \in s\}$$

- For $r \cup s$ to be valid.
 - 1. r, s must have the same arity (same number of attributes)
 - 2. The attribute domains must be *compαtible* (e.g., 2nd column of *r* deals with the same type of values as does the 2nd column of *s*)
- E.g. to find all customers with either an account or a loan $\prod_{customer-name}$ (depositor) $\cup \prod_{customer-name}$ (borrower)

The depositor Relation

customer-name	account-number
Hayes	A-102
Johnson	A-101
Johnson	A-201
Jones	A-217
Lindsay	A-222
Smith	A-215
Turner	A-305

The borrower Relation

customer-name	loan-number
Adams	L-16
Curry	L-93
Hayes	L-15
Jackson	L-14
Jones	L-17
Smith	L-11
Smith	L-23
Williams	L-17

Names of All Customers Who Have Either a Loan or an Account

customer-name Adams Curry Hayes Jackson Jones Smith Williams Lindsay Johnson Turner

Set Difference Operation – Example

Set Difference Operation

- Notation r − s
- Defined as:

$$r-s = \{t \mid t \in r \text{ and } t \notin s\}$$

- Set differences must be taken between *compatible* relations.
 - r and s must have the same arity
 - attribute domains of r and s must be compatible

Customers With An account But No Loan

Johnson
Lindsay
Turner

Cartesian-Product Operation-Example

Relations r, s:

Α	В		
α	1		
β	2		
r			

 $\begin{array}{c|cccc} C & D & E \\ \hline \alpha & 10 & a \\ \beta & 10 & a \\ \beta & 20 & b \\ \gamma & 10 & b \\ \end{array}$

r x s:

Α	В	С	D	Ε
α	1	α	10	а
α	1	β	10	а
α	1	β	20	b
α	1	γ	10	b
β	2	α	10	а
β	2	β	10	а
β	2	β	20	b
β	2	γ	10	b

Cartesian-Product Operation

- Notation r x s
- Defined as:

$$r \times s = \{t \mid q \mid t \in r \text{ and } q \in s\}$$

- Assume that attributes of r(R) and s(S) are disjoint. (That is, $R \cap S = \emptyset$).
- If attributes of *r*(*R*) and *s*(*S*) are not disjoint, then renaming must be used.

Result of borrower × loan

	borrower.	loan.		
customer-name	loan-number	loan-number	branch-name	amount
Adams	L-16	L-11	Round Hill	900
Adams	L-16	L-14	Downtown	1500
Adams	L-16	L-15	Perryridge	1500
Adams	L-16	L-16	Perryridge	1300
Adams	L-16	L-17	Downtown	1000
Adams	L-16	L-23	Redwood	2000
Adams	L-16	L-93	Mianus	500
Curry	L-93	L-11	Round Hill	900
Curry	L-93	L-14	Downtown	1500
Curry	L-93	L-15	Perryridge	1500
Curry	L-93	L-16	Perryridge	1300
Curry	L-93	L-17	Downtown	1000
Curry	L-93	L-23	Redwood	2000
Curry	L-93	L-93	Mianus	500
Hayes	L-15	L-11		900
Hayes	L-15	L-14		1500
Hayes	L-15	L-15		1500
Hayes	L-15	L-16		1300
Hayes	L-15	L-17		1000
Hayes	L-15	L-23		2000
Hayes	L-15	L-93		500
•••	• • • •	• • • •	•••	
•••	•••	• • • •	•••	
011	· · ·		D 1 I I I I	
Smith	L-23	L-11	Round Hill	900
Smith	L-23	L-14	Downtown	1500
Smith	L-23	L-15	Perryridge	1500
Smith	L-23	L-16	Perryridge Downtown	1300
Smith	L-23 L-23	L-17 L-23		1000
Smith			Redwood	2000
Smith	L-23	L-93	Mianus	500
Williams	L-17	L-11	Round Hill	900
Williams	L-17	L-14	Downtown	1500
Williams	L-17	L-15	Perryridge	1500
Williams	L-17	L-16	Perryridge Downtown	1300
Williams Williams	L-17 L-17	L-17 L-23	Redwood	1000 2000
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
Williams	L-17	L-93	Mianus	500

Composition of operations

- Can build expressions using multiple operations
- Example: $\sigma_{A=C}(r \times s)$

	r	Χ	S
--	---	---	---

A	В	U	D	Ε
α	1	α	10	а
α	1	β	10	а
α	1	β	20	b
α	1	γ	10	b
β	2	α	10	а
β	2	β	10	а
β	2	β	20	b
β	2	γ	10	b

 \Box $\sigma_{A=C}(r x s)$

Α	В	С	D	Ε
$\begin{bmatrix} \alpha \\ \beta \\ \beta \end{bmatrix}$	1 2 2	β β	10 20 20	a a b

Result of $\sigma_{branch-name = "Perryridge"}$ (borrower × loan)

	borrower.	loan.		
customer-name	loan-number	loan-number	branch-name	amount
Adams	L-16	L-15	Perryridge	1500
Adams	L-16	L-16	Perryridge	1300
Curry	L-93	L-15	Perryridge	1500
Curry	L-93	L-16	Perryridge	1300
Hayes	L-15	L-15	Perryridge	1500
Hayes	L-15	L-16	Perryridge	1300
Jackson	L-14	L-15	Perryridge	1500
Jackson	L-14	L-16	Perryridge	1300
Jones	L-17	L-15	Perryridge	1500
Jones	L-17	L-16	Perryridge	1300
Smith	L-11	L-15	Perryridge	1500
Smith	L-11	L-16	Perryridge	1300
Smith	L-23	L-15	Perryridge	1500
Smith	L-23	L-16	Perryridge	1300
Williams	L-17	L-15	Perryridge	1500
Williams	L-17	L-16	Perryridge	1300

Rename Operation

- Allows us to name, and therefore to refer to, the results of relational-algebra expressions.
- Allows us to refer to a relation by more than one name.

Example:

$$\rho_{x}(E)$$

returns the expression E under the name XIf a relational-algebra expression E has arity n, then

$$\rho_{X(A_1,A_2,...,A_n)}(E)$$

returns the result of expression E under the name X, and with the attributes renamed to A_1, A_2, \ldots, A_n .

Example Queries

Find the largest account balance

- Rename account relation as d
- The query is:

```
\Pi_{balance}(account) - \Pi_{account.balance}
(\sigma_{account.balance} < d.balance (account x \rho_d (account)))
```

Example of a Relation

account-number	branch-name	balance
A-101	Downtown	500
A-102	Perryridge	400
A-201	Brighton	900
A-215	Mianus	700
A-217	Brighton	750
A-222	Redwood	700
A-305	Round Hill	350

Result of the Subexpression

Largest Account Balance in the Bank

balance 900

Banking Example

branch (branch-name, branch-city, assets)

customer (customer-name, customer-street, customer-only)

account (account-number, branch-name, balance)

loan (loan-number, branch-name, amount)

depositor (customer-name, account-number)

borrower (customer-name, loan-number)

Example Queries

• Find all loans of over \$1200

$$\sigma_{amount > 1200}$$
 (loan)

Find the loan number for each loan of an amount greater than
 \$1200

$$\Pi_{loan-number} \left(\sigma_{amount > 1200} \left(loan \right) \right)$$

Example Queries

• Find the names of all customers who have a loan, an account, or both, from the bank

```
\Pi_{customer-name} (borrower) \cup \Pi_{customer-name} (depositor)
```

• Find the names of all customers who have a loan and an account at bank.

```
\Pi_{customer-name} (borrower) \cap \Pi_{customer-name} (depositor)
```

Example Queriess

•Find the names of all customers who have a loan at the Perryridge branch.

```
\Pi_{customer-name} (\sigma_{branch-name="Perryridge"}
(\sigma_{borrower.loan-number=loan.loan-number}(borrower x loan)))
```

□ Find the names of all customers who have a loan at the Perryridge branch but do not have an account at any branch of the bank.

```
\Pi_{customer-name} (\sigma_{branch-name} = "Perryridge" (\sigma_{borrower.loan-number} = loan.loan-number (borrower x loan))) - \Pi_{customer-name} (depositor)
```

Example Queries

• Find the names of all customers who have a loan at the Perryridge branch.

```
\begin{split} &-\text{Query 1} \\ &\Pi_{\text{customer-name}}(\sigma_{\text{branch-name}} = \text{``Perryridge''} (\\ &\sigma_{\text{borrower.loan-number}}(\text{borrower x loan}))) \\ &-\text{Query 2} \\ &\Pi_{\text{customer-name}}(\sigma_{\text{loan.loan-number}} = \text{borrower.loan-number}(\\ &(\sigma_{\text{branch-name}} = \text{``Perryridge''}(\text{loan})) \text{ x borrower})) \end{split}
```

Formal Definition

- A basic expression in the relational algebra consists of either one of the following:
 - A relation in the database
 - A constant relation
- Let E_1 and E_2 be relational-algebra expressions; the following are all relational-algebra expressions:
 - $\bullet E_1 \cup E_2$
 - $\bullet E_1 E_2$
 - $\bullet E_1 \times E_2$
 - $\sigma_p(E_1)$, P is a predicate on attributes in E_1
 - $\prod_{s}(E_1)$, S is a list consisting of some of the attributes in E_1
 - $\rho_{x}(E_{1})$, x is the new name for the result of E_{1}

Additional Operations

We define additional operations that do not add any power to the relational algebra, but that simplify common queries.

- Set intersection
- Natural join
- Division
- Assignment

Set-Intersection Operation

- Notation: $r \cap s$
- Defined as:
- • $r \cap s = \{t \mid t \in r \text{ and } t \in s\}$
- Assume:
 - r, s have the same arity
 - attributes of r and s are compatible
- Note: $r \cap s = r (r s)$

Set-Intersection Operation - Example

Relation r, s: Relation r, s: В Α В Α α S • r ∩ s $r \cap s$ Α В α

Natural-Join Operation

Notation: r ⋈ s

- •Let r and s be relations on schemas R and s respectively. Then, $r \bowtie s$ is a relation on schema s obtained as follows:
 - Consider each pair of tuples t_r from r and t_s from s.
 - If t_r and t_s have the same value on each of the attributes in $R \cap S$, add a tuple t to the result, where
 - t has the same value as t_r on r
 - t has the same value as t_s on s

• Example:

$$R = (A, B, C, D)$$
$$S = (E, B, D)$$

- Result schema = (*A*, *B*, *C*, *D*, *E*)
- *r* ⋈*s* is defined as:

$$\prod_{r.A, r.B, r.C, r.D, s.E} (\sigma_{r.B=s.B} \wedge_{r.D=s.D} (r \times s))$$

Natural Join Operation – Example

Relations r, s:

Division Operation

- Suited to queries that include the phrase "for all".
- Let r and s be relations on schemas R and S respectively where

```
• R = (A_1, ..., A_m, B_1, ..., B_n)
• S = (B_1, ..., B_n)
```

The result of $r \div s$ is a relation on schema

$$R - S = (A_1, ..., A_m)$$

$$r \div s = \{t \mid t \in \prod_{R \in S}(r) \land \forall u \in s (tu \in r)\}$$

Division Operation – Example

Relations *r, s*:

A B

α 1 α 2

 $\beta \mid 1$

 $\begin{array}{c|c} \gamma & 1 \\ S & 1 \end{array}$

 δ 3

 $\delta \mid 4$

∈ 6

∈ | 1 ß | 2

r

r ÷ s:

Α

α

β

В

1

2

S

Another Division Example

Relations r, s:

Α	В	С	D	Ε
α	а	α	а	1
α	а	γ	а	1
α	а		b	1
β	а	γ γ	а	1
β β γ	а	γ	b	3
γ	а	γ	а	1
γ	а	γ	b	1
γ	а	β	b	1

D E
a 1
b 1

r ÷ *s*:

Α	В	С
α	а	γ
γ	а	γ

Assignment Operation

- The assignment operation (←) provides a convenient way to express complex queries.
 - Write query as a sequential program consisting of
 - a series of assignments
 - followed by an expression whose value is displayed as a result of the query.
 - Assignment must always be made to a temporary relation variable.
- Example: Write $r \div s$ as

```
temp1 \leftarrow \prod_{R-S} (r)

temp2 \leftarrow \prod_{R-S} ((temp1 \times s) - \prod_{R-S,S} (r))

result = temp1 - temp2
```

- The result to the right of the \leftarrow is assigned to the relation variable on the left of the \leftarrow .
- May use variable in subsequent expressions.

Example Queries

• Find all customers who have an account from at least the "Downtown" and the Uptown" branches.

```
Query 1
     \Pi_{CN}(\sigma_{BN="Downtown"}(depositor \bowtie account)) \cap
           \Pi_{CN}(\sigma_{BN="Uptown"}(depositor \bowtie account))
  where CN denotes customer-name and BN denotes
  branch-name.
Query 2
    \Pi_{customer-name, branch-name} (depositor \bowtie account)
          ÷ Ptemp(branch-name) ({("Downtown"), ("Uptown")})
```

Example Queries

• Find all customers who have an account at all branches located in Brooklyn city.

 $\Pi_{customer-name, branch-name}$ (depositor \bowtie account)

 $+ \prod_{branch-name} (\sigma_{branch-city = "Brooklyn"} (branch))$

Extended Relational-Algebra-Operations

- Generalized Projection
- Outer Join
- Aggregate Functionss

Generalized Projection

 Extends the projection operation by allowing arithmetic functions to be used in the projection list.

$$\prod_{\mathsf{F1},\,\mathsf{F2},\,\ldots,\,\mathsf{Fn}}(E)$$

- E is any relational-algebra expression
- Each of F_1 , F_2 , ..., F_n are arithmetic expressions involving constants and attributes in the schema of E.
- Given relation *credit-info(customer-name, limit, credit-balance)*, find how much more each person can spend:

 $\prod_{customer-name, limit-credit-balance}$ (credit-info)

The credit-info Relation

customer-name	branch-name
Hayes	Perryridge
Johnson	Downtown
Johnson	Brighton
Jones	Brighton
Lindsay	Redwood
Smith	Mianus
Turner	Round Hill

Result of $\Pi_{customer-name, (limit-credit-balance)}$ as credit-available (credit-info).

customer-name	credit-available
Curry	250
Jones	5300
Smith	1600
Hayes	0

Aggregate Functions and Operations

 Aggregation function takes a collection of values and returns a single value as a result.

avg: average value

min: minimum value

max: maximum value

sum: sum of values

count: number of values

Aggregate operation in relational algebra

- E is any relational-algebra expression
- G_1 , G_2 ..., G_n is a list of attributes on which to group (can be empty)
- Each F_i is an aggregate function
- Each A; is an attribute name

Aggregate Operation – Example

• Relation r:

Aggregate Operation – Example

Relation account grouped by branch-name:

branch-name	account-number	balance
Perryridge	A-102	400
Perryridge	A-201	900
Brighton	A-217	750
Brighton	A-215	750
Redwood	A-222	700

branch-name g sum(balance) (account)

branch-name	balance
Dianon-name	Dalarioc
Perryridge	1300
Brighton	1500
Redwood	700

Aggregate Functions (Cont.)

- Result of aggregation does not have a name
 - Can use rename operation to give it a name
 - For convenience, we permit renaming as part of aggregate operation

branch-name g sum(balance) as sum-balance (account)

The pt-works Relation

employee-name	branch-name	salary
Adams	Perryridge	1500
Brown	Perryridge	1300
Gopal	Perryridge	5300
Johnson	Downtown	1500
Loreena	Downtown	1300
Peterson	Downtown	2500
Rao	Austin	1500
Sato	Austin	1600

The pt-works Relation After Grouping

employee-name	branch-name	salary
Rao	Austin	1500
Sato	Austin	1600
Johnson	Downtown	1500
Loreena	Downtown	1300
Peterson	Downtown	2500
Adams	Perryridge	1500
Brown	Perryridge	1300
Gopal	Perryridge	5300

Result of branch-name S sum(salary) (pt-works)

branch-name	sum of salary
Austin	3100
Downtown	5300
Perryridge	8100

Result of

branch-name 5 sum salary, max(salary) as max-salary (pt-works)

branch-name	sum-salary	max-salary
Austin	3100	1600
Downtown	5300	2500
Perryridge	8100	5300

Outer Join

- An extension of the join operation that avoids loss of information.
- Computes the join and then adds tuples form one relation that do not match tuples in the other relation to the result of the join.
- Uses null values:
 - null signifies that the value is unknown or does not exist
 - All comparisons involving *null* are (roughly speaking) false by definition.
 - Will study precise meaning of comparisons with nulls later

Outer Join – Example

• Relation loan

loan-number	branch-name	amount
L-170	Downtown	3000
L-230	Redwood	4000
L-260	Perryridge	1700

Relation borrower

customer-name	loan-number
Jones	L-170
Smith	L-230
Hayes	L-155

Outer Join – Example

• Inner Join

loan ⊠Borrower

loan-number	branch-name	amount	customer-name
L-170	Downtown	3000	Jones
L-230	Redwood	4000	Smith

☐ Left Outer Join

loan ─⋈ Borrower

loan-number	branch-name	amount	customer-name
L-170	Downtown	3000	Jones
L-230	Redwood	4000	Smith
L-260	Perryridge	1700	null

Outer Join – Example

Right Outer Join

loan ⊠ borrower

loan-number	branch-name	amount	customer-name
L-170	Downtown	3000	Jones
L-230	Redwood	4000	Smith
L-155	null	null	Hayes

☐ Full Outer Join

loan > borrower

loan-number	branch-name	amount	customer-name
L-170	Downtown	3000	Jones
L-230	Redwood	4000	Smith
L-260	Perryridge	1700	null
L-155	null	null	Hayes

The employee and ft-works Relations

e^{i}	mployee-name		street		city	
	Coyote	Toon		Hol	lywood	
	Rabbit	Τ	unnel	Car	rotville	
	Smith	R	Revolver	Dea	eath Valley	
	Williams	Seaview		Seat	eattle	
	employee-nam	e	branch-n	ame	salary	
	Coyote		Mesa		1500	
	Rabbit		Mesa		1300	
	Gates		Redmo	nd	5300	
	Williams		Redmo	nd	1500	

The Result of *employee* ⋈ *ft-works*

employee-name	street	city	branch-name	salary
Coyote	Toon	Hollywood	Mesa	1500
Rabbit	Tunnel	Carrotville	Mesa	1300
Williams	Seaview	Seattle	Redmond	1500

The Result of *employee* \bowtie *ft-works*

employee-name	street	city	branch-name	salary
Coyote	Toon	Hollywood	Mesa	1500
Rabbit	Tunnel	Carrotville	Mesa	1300
Williams	Seaview	Seattle	Redmond	1500
Smith	Revolver	Death Valley	null	null

Result of *employee ∞ ft-works*

employee-name	street	city	branch-name	salary
Coyote	Toon	Hollywood	Mesa	1500
Rabbit	Tunnel	Carrotville	Mesa	1300
Williams	Seaview	Seattle	Redmond	1500
Gates	null	null	Redmond	5300

Result of *employee* **≥** *ft-works*

employee-name	street	city	branch-name	salary
Coyote	Toon	Hollywood	Mesa	1500
Rabbit	Tunnel	Carrotville	Mesa	1300
Williams	Seaview	Seattle	Redmond	1500
Smith	Revolver	Death Valley	null	null
Gates	null	null	Redmond	5300

Null Values

- It is possible for tuples to have a null value, denoted by *null*, for some of their attributes
- null signifies an unknown value or that a value does not exist.
- The result of any arithmetic expression involving *null* is *null*.
- Aggregate functions simply ignore null values
 - Is an arbitrary decision. Could have returned null as result instead.
 - We follow the semantics of SQL in its handling of null values
- For duplicate elimination and grouping, null is treated like any other value, and two nulls are assumed to be the same
 - Alternative: assume each null is different from each other
 - Both are arbitrary decisions, so we simply follow SQL

Null Values

- Comparisons with null values return the special truth value unknown
 - If false was used instead of unknown, then not (A < 5) would not be equivalent to A >= 5
- Three-valued logic using the truth value unknown:
 - OR: (unknown or true) = true, (unknown or false) = unknown (unknown or unknown) = unknown
 - AND: (true and unknown) = unknown, (false and unknown) = false, (unknown and unknown) = unknown
 - NOT: (not unknown) = unknown
 - In SQL "P is unknown" evaluates to true if predicate P evaluates to unknown
- Result of select predicate is treated as false if it evaluates to unknown

Modification of the Database

- The content of the database may be modified using the following operations:
 - Deletion
 - Insertion
 - Updating
- All these operations are expressed using the assignment operator.

Deletion

- •A delete request is expressed similarly to a query, except instead of displaying tuples to the user, the selected tuples are removed from the database.
- Can delete only whole tuples; cannot delete values on only particular attributes
- A deletion is expressed in relational algebra by:

$$r \leftarrow r - E$$

where r is a relation and E is a relational algebra query.

Deletion Examples

Delete all account records in the Perryridge branch.

$$account \leftarrow account - \sigma_{branch-name} = "Perryridge" (account)$$

□Delete all loan records with amount in the range of 0 to 50

loan ← loan −
$$\sigma_{amount \ge 0}$$
 and $\sigma_{amount \le 50}$ (loan)

□Delete all accounts at branches located in Needham.

$$r_1 \leftarrow \sigma_{branch-city} = \text{``Needham''} (account \bowtie branch)$$
 $r_2 \leftarrow \Pi_{branch-name, account-number, balance} (r_1)$
 $r_3 \leftarrow \Pi_{customer-name, account-number} (r_2 \bowtie depositor)$
 $account \leftarrow account - r_2$
 $depositor \leftarrow depositor - r_3$

Insertion

- To insert data into a relation, we either:
 - specify a tuple to be inserted
 - write a query whose result is a set of tuples to be inserted
- in relational algebra, an insertion is expressed by:

$$r \leftarrow r \cup E$$

where r is a relation and E is a relational algebra expression.

• The insertion of a single tuple is expressed by letting E be a constant relation containing one tuple.

Insertion Examples

• Insert information in the database specifying that Smith has \$1200 in account A-973 at the Perryridge branch.

```
account ← account ∪ {("Perryridge", A-973, 1200)} depositor ← depositor ∪ {("Smith", A-973)}
```

Provide as a gift for all loan customers in the Perryridge branch, a \$200 savings account. Let the loan number serve as the account number for the new savings account.

```
r_1 \leftarrow (\sigma_{branch-name} = "Perryridge" (borrower \bowtie loan))

account \leftarrow account \cup \prod_{branch-name, account-number, 200} (r_1)

depositor \leftarrow depositor \cup \prod_{customer-name, loan-number} (r_1)
```


Tuples Inserted Into *loαn* and *borrowers*

loan-number	branch-name	amount
L-11	Round Hill	900
L-14	Downtown	1500
L-15	Perryridge	1500
L-16	Perryridge	1300
L-17	Downtown	1000
L-23	Redwood	2000
L-93	Mianus	500
null	null	1900

customer-name	loan-number
Adams	L-16
Curry	L-93
Hayes	L-15
Jackson	L-14
Jones	L-17
Smith	L-11
Smith	L-23
Williams	L-17
Johnson	null

Updating

- A mechanism to change a value in a tuple without charging *all* values in the tuple
- Use the generalized projection operator to do this task

$$r \leftarrow \prod_{F_1, F_2, \dots, F_{l_i}} (r)$$

- Each F; is either
 - the ith attribute of r, if the ith attribute is not updated, or,
 - if the attribute is to be updated F_i is an expression, involving only constants and the attributes of r, which gives the new value for the attribute

Update Examples

Make interest payments by increasing all balances by 5 percent.

```
account \leftarrow \prod_{AN.\ BN.\ BAL * 1.05} (account)
```

where AN, BN and BAL stand for account-number, branch-name and balance, respectively.

 Pay all accounts with balances over \$10,000 6 percent interest and pay all others 5 percent

```
account \leftarrow \Pi_{AN, BN, BAL * 1.06} (\sigma_{BAL > 10000} (account))
\cup \Pi_{AN, BN, BAL * 1.05} (\sigma_{BAL \le 10000} (account))
```

Views

- In some cases, it is not desirable for all users to see the entire logical model (i.e., all the actual relations stored in the database.)
- Consider a person who needs to know a customer's loan number but has no need to see the loan amount. This person should see a relation described, in the relational algebra, by

 $\prod_{customer-name, loan-number} (borrower \bowtie loan)$

 Any relation that is not of the conceptual model but is made visible to a user as a "virtual relation" is called a view.

View Definition

• A view is defined using the create view statement which has the form

create view v as <query expression

where <query expression> is any legal relational algebra query expression. The view name is represented by v.

- •Once a view is defined, the view name can be used to refer to the virtual relation that the view generates.
- View definition is not the same as creating a new relation by evaluating the query expression
 - Rather, a view definition causes the saving of an expression; the expression is substituted into queries using the view.

View Examples

• Consider the view (named *all-customer*) consisting of branches and their customers.

create view all-customer as

 $\Pi_{branch-name, customer-name}$ (depositor \bowtie account)

 $\cup \prod_{branch-name, customer-name} (borrower \bowtie loan)$

We can find all customers of the Perryridge branch by writing:

 $\Pi_{customer-name}$

(σ_{branch-name = "Perryridge"} (all-customer))

Updates Through View

- Database modifications expressed as views must be translated to modifications of the actual relations in the database.
- Consider the person who needs to see all loan data in the *loan* relation except *amount*. The view given to the person, *branch-loan*, is defined as:

create view branch-loan as

$$\prod_{branch-name, loan-number}$$
 (loan)

 Since we allow a view name to appear wherever a relation name is allowed, the person may write:

 $branch-loan \leftarrow branch-loan \cup \{("Perryridge", L-37)\}$

Updates Through Views (Cont.)

- The previous insertion must be represented by an insertion into the actual relation *loan* from which the view *branch-loan* is constructed.
- An insertion into *loan* requires a value for *amount*. The insertion can be dealt with by either.
 - rejecting the insertion and returning an error message to the user.
 - inserting a tuple ("L-37", "Perryridge", null) into the loαn relation
- Some updates through views are impossible to translate into database relation updates
 - create view v as $\sigma_{branch-name = \text{``Perryridge''}}(account))$ v \leftarrow v \cup (L-99, Downtown, 23)
- Others cannot be translated uniquely
 - all-customer \leftarrow all-customer \cup {("Perryridge", "John")}
 - Have to choose loan or account, and create a new loan/account number!

Views Defined Using Other Views

- One view may be used in the expression defining another view
- A view relation v_1 is said to depend directly on a view relation v_2 if v_2 is used in the expression defining v_1
- A view relation v_1 is said to depend on view relation v_2 if either v_1 depends directly to v_2 or there is a path of dependencies from v_1 to v_2
- A view relation v is said to be recursive if it depends on itself.

View Expansion

- A way to define the meaning of views defined in terms of other views.
- Let view v_1 be defined by an expression e_1 that may itself contain uses of view relations.
- View expansion of an expression repeats the following replacement step:

repeat
Find any view relation v_i in e_1 Replace the view relation v_i by the expression defining v_i until no more view relations are present in e_1

 As long as the view definitions are not recursive, this loop will terminate

E-R Diagram

The branch Relation

branch-name	branch-city	assets
Brighton	Brooklyn	7100000
Downtown	Brooklyn	9000000
Mianus	Horseneck	400000
North Town	Rye	3700000
Perryridge	Horseneck	1700000
Pownal	Bennington	300000
Redwood	Palo Alto	2100000
Round Hill	Horseneck	8000000

Thank You!!!

Division Operation (Cont.)

- Property
 - Let $q r \div s$
 - Then q is the largest relation satisfying $q \times s \subseteq r$
- Definition in terms of the basic algebra operation Let r(R) and s(S) be relations, and let $S \subseteq R$

$$r \div s = \prod_{R-S} (r) - \prod_{R-S} ((\prod_{R-S} (r) \times s) - \prod_{R-S,S} (r))$$

To see why

- $\prod_{R-S,S}(r)$ simply reorders attributes of r
- $\prod_{R-S}(\prod_{R-S}(r) \times s) \prod_{R-S,S}(r)$) gives those tuples t in
 - $\prod_{R-S} (r)$ such that for some tuple $u \in s$, $tu \notin r$.