Stochastic Gradient Descent. Finite-sum problems

Daniil Merkulov

Optimization methods. MIPT

We consider classic finite-sample average minimization:

$$\min_{x \in \mathbb{R}^p} f(x) = \min_{x \in \mathbb{R}^p} \frac{1}{n} \sum_{i=1}^n f_i(x)$$

The gradient descent acts like follows:

$$x_{k+1} = x_k - \frac{\alpha_k}{n} \sum_{i=1}^n \nabla f_i(x)$$
 (GD)

Iteration cost is linear in n.

 $f \to \min_{x,y,y}$

Finite-sum problem

⊕ n ø

We consider classic finite-sample average minimization:

$$\min_{x \in \mathbb{R}^p} f(x) = \min_{x \in \mathbb{R}^p} \frac{1}{n} \sum_{i=1}^n f_i(x)$$

The gradient descent acts like follows:

$$x_{k+1} = x_k - \frac{\alpha_k}{n} \sum_{i=1}^n \nabla f_i(x)$$
 (GD)

- Iteration cost is linear in n.
- Convergence with constant α or line search.

Finite-sum problem

We consider classic finite-sample average minimization:

$$\min_{x \in \mathbb{R}^p} f(x) = \min_{x \in \mathbb{R}^p} \frac{1}{n} \sum_{i=1}^n f_i(x)$$

The gradient descent acts like follows:

$$x_{k+1} = x_k - \frac{\alpha_k}{n} \sum_{i=1}^n \nabla f_i(x)$$
 (GD)

- Iteration cost is linear in n.
- Convergence with constant α or line search.

Finite-sum problem

We consider classic finite-sample average minimization:

$$\min_{x \in \mathbb{R}^p} f(x) = \min_{x \in \mathbb{R}^p} \frac{1}{n} \sum_{i=1}^n f_i(x)$$

The gradient descent acts like follows:

• Iteration cost is linear in
$$n$$
.

 $x_{k+1} = x_k - \frac{\alpha_k}{n} \sum_{i=1}^{n} \nabla f_i(x)$

• Convergence with constant α or line search.

Let's/ switch from the full gradient calculation to its unbiased estimator, when we randomly choose
$$i_k$$
 index of point at each iteration uniformly:
$$x_{k+1} = x_k - \alpha_k \nabla f_{i_k}(x_k) \tag{SGD}$$

With $p(i_k = i) = \frac{1}{n}$, the stochastic gradient is an unbiased estimate of the gradient, given by:

$$\mathbb{E}[\nabla f_{i_k}(x)] = \sum_{i=1}^n p(i_k = i) \nabla f_i(x) = \sum_{i=1}^n \frac{1}{n} \nabla f_i(x) = \frac{1}{n} \sum_{i=1}^n \nabla f_i(x) = \nabla f(x)$$

This indicates that the expected value of the stochastic gradient is equal to the actual gradient of f(x).

(GD)

Stochastic iterations are n times faster, but how many iterations are needed?

If ∇f is Lipschitz continuous then we have:

Assumption	Deterministic Gradient Descent	Stochastic Gradient Descent
PL	$O(\log(1/arepsilon))$	$O(1/\varepsilon)$
Convex	O(1/arepsilon)	$O(1/\varepsilon^2)$
Non-Convex	O(1/arepsilon)	$O(1/\varepsilon^2)$

• Stochastic has low iteration cost but slow convergence rate.

Finite-sum problen

Stochastic iterations are n times faster, but how many iterations are needed?

If ∇f is Lipschitz continuous then we have:

Assumption	Deterministic Gradient Descent	Stochastic Gradient Descent
PL	$O(\log(1/arepsilon))$	O(1/arepsilon)
Convex	O(1/arepsilon)	$O(1/arepsilon) \ O(1/arepsilon^2)$
Non-Convex	O(1/arepsilon)	$O(1/\varepsilon^2)$

- Stochastic has low iteration cost but slow convergence rate.
 - Sublinear rate even in strongly-convex case.

Stochastic iterations are n times faster, but how many iterations are needed?

If ∇f is Lipschitz continuous then we have:

Assumption	Deterministic Gradient Descent	Stochastic Gradient Descent
PL	$O(\log(1/arepsilon))$	$O(1/\varepsilon)$
Convex	O(1/arepsilon)	$O(1/arepsilon) \ O(1/arepsilon^2)$
Non-Convex	O(1/arepsilon)	$O(1/arepsilon^2)$

- Stochastic has low iteration cost but slow convergence rate.
 - Sublinear rate even in strongly-convex case.
 - Bounds are unimprovable under standard assumptions.

♥ റ ഉ

Stochastic iterations are n times faster, but how many iterations are needed?

If ∇f is Lipschitz continuous then we have:

Assumption	Deterministic Gradient Descent	Stochastic Gradient Descent
PL	$O(\log(1/arepsilon))$	O(1/arepsilon)
Convex	O(1/arepsilon)	$O(1/arepsilon) \ O(1/arepsilon^2)$
Non-Convex	O(1/arepsilon)	$O(1/arepsilon^2)$

- Stochastic has low iteration cost but slow convergence rate.
 - Sublinear rate even in strongly-convex case.
 - Bounds are unimprovable under standard assumptions.
 - Oracle returns an unbiased gradient approximation with bounded variance.

Stochastic iterations are n times faster, but how many iterations are needed?

If ∇f is Lipschitz continuous then we have:

Assumption	Deterministic Gradient Descent	Stochastic Gradient Descent
PL	$O(\log(1/arepsilon))$	$O(1/\varepsilon)$
Convex	O(1/arepsilon)	$O(1/arepsilon) \ O(1/arepsilon^2)$
Non-Convex	O(1/arepsilon)	$O(1/arepsilon^2)$

- Stochastic has low iteration cost but slow convergence rate.
 - Sublinear rate even in strongly-convex case.
 - Bounds are unimprovable under standard assumptions.
 - Oracle returns an unbiased gradient approximation with bounded variance.
- Momentum and Quasi-Newton-like methods do not improve rates in stochastic case. Can only improve constant factors (bottleneck is variance, not condition number).

Stochastic Gradient Descent (SGD)

Typical behaviour

Convergence. Smooth PL case.

Convergence. Convex case.

Convergence. Smooth non-convex case.

Mini-batch SGD

Mini-batch SGD

