Brock Biology of Microorganisms

Sixteenth Edition, Global Edition

Madigan • Bender • Buckley • Sattley • Stahl

Chapter 3

Microbial Metabolism

Metabolisme

Katabolisme: omzetting reactanten in producten, energie komt vrij

Anabolisme: omzetting precursors in celmateriaal, kost energie

16e: figuur 3.1 15e: geen figuur

Energiebron

Energy Sources 16e: figuur 3.3 Light Chemicals Chemotrophy Phototrophy Organic Inorganic chemicals chemicals (H₂, H₂S, Fe²⁺, NH₄+, etc.) (glucose, acetate, etc.) Chemolithotrophs Phototrophs Chemoorganotrophs (Glucose + 6 O_2 > 6 CO_2 + 6 H_2O) ($H_2S + \frac{1}{2} O_2$ > $S^0 + H_2O$) (light) Oxigeen of anoxigeen ATP Rhodobacter Example: Escherichia Thiobacillus

coli

thiooxidans

capsulatus

Koolstofbron

Autotroof: koolstofbron = CO₂ (primaire producers)

Heterotroof: koolstof uit organisch materiaal

Chemoorganotrofen zijn ook heterotrofen

Meeste chemolithotrofen en fototrofen zijn autotrofen

Autotrofen worden ook wel 'primary producers' genoemd

Wat zijn wij?

- 1. chemolithoautotroof
- 2. chemolithoheterotroof
- 3. chemoorganoautotroof
- 4. chemoorganoheterotroof
- 5. fotoautotroof
- 6. fotoheterotroof

Vrije energie – wat weet je nog?

ΔG is het.... verschil in vrije energie ... tussen product en reactanten

ΔG < 0 energie komt vrij exergonisch spontaan

ΔG > 0 energie nodig endergonisch niet spontaan

ΔG vs ΔG^0 vs $\Delta G^{0'}$

Vrije energie: ΔG onder <u>werkelijke</u> condities

Maar: concentraties weet je vaak niet

Daarom ΔG^0 :

 ΔG^0 : standaard condities = pH 0 , 25 °C, 1 atmosfeer, concentraties 1M

pH 0 lijkt natuurlijk niet op condities in cel!

Daarom $\Delta G^{0'}$:

condities = pH 7, 25 °C, 1 atmosfeer, concentraties 1M

van $\Delta G^{0'}$ naar ΔG

$$\Delta G = \Delta G^{0'} + RT \ln K$$

R = gasconstante: 8,29 J/mol/°K

T = temperatuur in $^{\circ}$ K (298 $^{\circ}$ K) $^{\sim}$ 25 $^{\circ}$ C

K = equilibrium constante van de reactie

Voor reactie $aA + bB \rightarrow cC + dD$:

$$\Delta G = \Delta G^{0'} + RT \ln \frac{[C]^c \cdot [D]^d}{[A]^a \cdot [B]^b}$$

Metabolisme

Katabole reacties zijn exergoon:

- deel van de energie die vrijkomt, komt vrij als warmte
- rest wordt opgeslagen in energierijke moleculen zoals ATP

Anabole reacties zijn endergoon:

De energie die nodig is, komt b.v. van ATP hydrolyse

16e: figuur 3.1

15e: geen figuur

Wat heeft een cel nodig om te leven?

- Water, koolstofbron(nen) en andere nutriënten
- Vrije energie
- Reducerend vermogen (vermogen om elektronen te doneren tijdens redoxreacties)
 - om vrije energie te genereren
 - om bepaalde biosynthetische reacties uit te voren

Redoxreacties

Overdracht van elektronen (e⁻) tussen moleculen

Oxidatie: verlies van e Reductie: verkrijgen van e

Electronen kunnen niet los bestaan Er is altijd een donor EN een acceptor

Ezelsbruggetje

OILRIG

Oxidation Involves Loss Reduction Involves Gain (van elektronen)

Ezelsbruggetje

LEO the lion says GER

Redoxreacties

Algemeen:

Xe is de reductor => reduceert Y (e- donor: draagt e- over aan Y)

Y is de oxidator => oxideert Xe^- (e- acceptor: neemt e- af van Xe^-)

Voorbeeld redoxreactie

Redoxreacties opstellen

Voorbeeld: oxidatie van glucose met zuurstof tot CO₂

$$C_6H_{12}O_6 + O_2 \rightarrow CO_2 + ?$$

Twee vragen:

- a) Hoeveel elektronen worden er overgedragen?
- b) Wat is de totaalreactie?

Hoe pak je dit aan?

- Stel eerst de halfreacties op.
- Antwoord a (aantal e⁻ dat overgedragen wordt) haal je uit de oxidatie halfreactie.
- Voor antwoord b (totaalreactie) combineer je de oxidatie en reductie halfreactie.

Opstellen halfreacties

Voorbeeld: oxidatie van glucose met zuurstof tot CO₂

$$C_6H_{12}O_6 + O_2 \rightarrow CO_2 + ?$$

Maak eerst onderscheid tussen beide halfreacties

A. oxidatie reactie: $C_6H_{12}O_6 \rightarrow CO_2$

B. reductie reactie: $O_2 \rightarrow ?$

Opstellen halfreacties (zowel oxidatie- als reductie-reactie):

- 1. Maak C kloppend.
- 2. Maak O kloppend met H₂O (<u>niet</u> met O₂)
- 3. Maak H kloppend met H⁺
- 4. Maak lading kloppend met elektronen

Reactie: $C_6H_{12}O_6 + O_2 \rightarrow CO_2 + ?$

A. oxidatie: $C_6H_{12}O_6 \rightarrow CO_2$

B. reductie: $O_2 \rightarrow ?$

A. Opstellen halfreactie oxidatie:

1. Maak C kloppend: $C_6H_{12}O_6 \rightarrow 6 CO_2$

2. Maak O kloppend met H_2O : $C_6H_{12}O_6 + 6H_2O \rightarrow 6CO_2$

3. Maak H kloppende met H⁺: $C_6H_{12}O_6 + 6H_2O \rightarrow 6CO_2 + 24H^+$

4. Maak lading kloppend met e^- : $C_6H_{12}O_6 + 6H_2O \rightarrow 6CO_2 + 24H^+ + 24e^-$

Dit (24) is het aantal e dat overgedragen wordt!

Reactie:

 $C_6H_{12}O_6 + O_2 \rightarrow CO_2 + ?$

A. oxidatie:

 $C_6H_{12}O_6 \rightarrow CO_2$

B. reductie:

 $O_2 \rightarrow ?$

B. Opstellen halfreactie reductie:

1. Maak C kloppend:

 $O_2 \rightarrow ?$

2. Maak O kloppend met H₂O:

 $O_2 \rightarrow 2 H_2O$

3. Maak H kloppende met H⁺:

 $O_2 + 4 H^+ \rightarrow 2 H_2O$

4. Maak lading kloppend met e:

 $O_2 + 4 H^+ + 4 e^- \rightarrow 2 H_2O$

Reactie:
$$C_6H_{12}O_6 + O_2 \rightarrow CO_2 + ?$$

A. oxidatie:
$$C_6H_{12}O_6 \rightarrow CO_2$$

B. reductie:
$$O_2 \rightarrow ?$$

A. Oxidatie reactie:
$$C_6H_{12}O_6 + 6H_2O \rightarrow 6CO_2 + 24H^+ + 24e^-$$

B. Reductie reactie:
$$O_2 + 4 H^+ + 4e^- \rightarrow 2 H_2O$$

Er moeten bij de reductie evenveel elektronen in als er bij er bij de oxidatie elektronen uit gaan

Oxidatie:
$$C_6H_{12}O_6 + 6 + 2 + 2 + 4 + 2 + e^-$$

Reductie: $6 O_2 + 2 + 4 + 2 + e^- \rightarrow 12 H_2O$

Reductie:
$$6 O_2 + 24 H^+ + 24 e^- \rightarrow 12 H_2 O_2$$

Totaal:
$$C_6H_{12}O_6 + 6O_2 \rightarrow 6CO_2 + 6H_2O$$

Oefening halfreacties

Oefening 1

Een bacterie oxideert het koolhydraat C₇H₁₄O₅ tot CO₂ met behulp van zuurstof.

- a. Stel de halfreacties voor deze redoxreactie op
- b. Hoeveel elektronen worden er overgedragen?
- c. Wat is de totale reactie?

Uitwerking oefening 1

Een aerobe bacterie oxideert het koolhydraat $C_7H_{14}O_5$ tot CO_2

Oxidatie:
$$C_7H_{14}O_5$$
 \rightarrow CO_2 $C_7H_{14}O_5$ \rightarrow $7 CO_2$ \rightarrow $7 CO_2$ $C_7H_{14}O_5 + 9 H_2O$ \rightarrow $7 CO_2 + 32 H^+$ $C_7H_{14}O_5 + 9 H_2O$ \rightarrow $7 CO_2 + 32 H^+$ $C_7H_{14}O_5 + 9 H_2O$ \rightarrow $7 CO_2 + 32 H^+ + 32 e^-$

Reductie:
$$O_2$$
 \rightarrow $O_2 + 4 H^+ \rightarrow 2 H_2O$ $O_2 + 4 H^+ \rightarrow 2 H_2O$ $O_2 + 4 H^+ + 4 e^- \rightarrow 2 H_2O$ (x 8 voor totaalreactie)

Controles

(wees niet lui en voer ze <u>altijd</u> uit):

Halfreacties:

- komen bij de oxidatie electronen vrij?
- worden bij de reductie electronen opgenomen?

<u>Totaalreactie</u>:

- Aantal C links rechts gelijk?
- Aantal O links rechts gelijk?
- Aantal H links rechts gelijk?
- Lading links en rechts gelijk?

ΔG°' van een redoxreactie berekenen

Om de ΔG° ' te kunnen berekenen moet je twee dingen weten:

- ✓ het aantal elektronen dat wordt overgedragen
- het verschil in redoxpotentiaal tussen de reductor en de oxidator

Redoxpotentiaal (E₀')

Tendency to donate or accept electrons

Redox couples, e.g. 2 H⁺/H₂

The *reduced* substance of the couple at the top of the tower has the greatest tendency to **donate** electrons

The *oxidized* substance of the couple at the bottom of the tower hase the greates tendency to **accept** electrons

Redoxpotentiaal (E_0')

The greater the difference in reduction potential between electron donor and acceptor, the more free energy is released

Dus: hoe verder je valt hoe meer energie er vrijkomt

16e: figuur 3.4

Van redoxpotentiaal naar ΔG°'

Nernstvergelijking:

$$\Delta G^{0'} = -nF \Delta E_{0'}$$

n = aantal electronen dat vrijkomt (per molecuul van de elektrondonor)

F = constante van Faraday (96.48 Kj/V)

 $\Delta E_0'$ = verschil in redoxpotentiaal

Hoe kom je aan ΔE_0

Wat moet je weten?

- E₀' van beide redoxkoppels
- $\Delta E_0' = E_0'_{\text{(koppel dat e- opneemt)}} E_0'_{\text{(koppel dat e- afstaat)}}$

Controle: 'traject' van de eletronen:

- e^{-} van boven naar beneden? => ΔE_0 ' positief
- e⁻ van beneden naar boven?
 => ΔE₀' negatief

16e: figuur 3.4

Voorbeeld

Pyruvaat / lactaat

oxidized

reduced

NAD+ / NADH

oxidized

reduced

mogelijkheid 1: NADH wordt geoxideerd en pyruvaat wordt gereduceerd

OX: $NADH \rightarrow NAD^+$

RED: pyruvaat \rightarrow lactaat

mogelijkheid 2: lactaat wordt geoxideerd en NAD+ wordt gereduceerd

OX: $lactaat \rightarrow pyruvaat$

RED: $NAD^+ \rightarrow NADH$

Wat is de ΔE_0 ?

16e: figuur 3.4

Voorbeeld berekenen ΔE₀'

NADH geoxideerd tot NAD+ m.b.v. pyruvaat

OX: NADH \rightarrow NAD⁺

RED: pyruvaat \rightarrow lactaat

E₀' pyruvaat/lactaat: -0.19 V

 $E_0' NAD^+/NADH: -0.32 V$

$$\Delta E_0' = -0.19 - -0.32 \text{ V} = +0.13 \text{ V}$$

controle:

e⁻ van NADH naar pyruvaat \rightarrow naar beneden in toren $\rightarrow \Delta E_0'$ positief KLOPT!

Voorbeeld berekenen ΔE₀'

lactaat geoxideerd tot pyruvaat m.b.v. NAD+

OX: $lactaat \rightarrow pyruvaat$

RED: $NAD^+ \rightarrow NADH$

E₀' pyruvaat/lactaat: -0.19 V

 $E_0' NAD^+/NADH: -0.32 V$

$$\Delta E_0' = -0.32 - -0.19 \text{ V} = -0.13 \text{ V}$$

Controle:

e⁻ van lactaat naar NAD+ \rightarrow naar boven in toren $\rightarrow \Delta E_0'$ negatief KLOPT!

Berekenen ΔE_0 : probeer het zelf

16e: figuur 3.4

De 'knalgasbacterie' oxideert H₂ tot H⁺ m.b.v. zuurstof

Wat is de ΔE_0 ?

Voorbeeld berekenen ΔE₀'

H₂ wordt geoxideerd tot H⁺ mbv O₂/H₂O

$$E_0' 2H^+/H_2: -0.42 V$$

$$E_0' O_2/H_2O: +0.82 V$$

$$\Delta E_0' = 0.82 - -0.42 = +1.24 \text{ V}$$

Controle:

naar beneden in toren $\rightarrow \Delta E_0'$ positief KLOPT!

Terug naar de Nernstvergelijking

$$\Delta G^{0'} = -nF \Delta E_{0'}$$

n = aantal overgedragen electronen

F = constante van Faraday (96.48 Kj/V)

DE₀' = verschil in redoxpotential (=> m.b.v. elektronentoren)

Let op:

ΔG⁰' berekenen we <u>kJ per mol substraat</u>.

n = aantal electronen dat vrijkomt per molecuul van de elektrondonor.

Het getal n haal je uit de halfreactie van de oxidatie.

Gebruik dus niet het aantal elektronen na balansen!

Berekenen $\Delta G^{0'}$ – probeer het zelf

Methanococcus capsulatus oxideert methaan (CH_4) naar CO_2 m.b.v. zuurstof

16e: figuur 3.4

VRAAG: Wat is de ΔG_0 van deze reactie?

$$\Delta G^{0'} = -nF \Delta E_{0'}$$

F = constante van Faraday (96.48 Kj/V)

TIJD OVER? Stel de totaalreactie van de oxidatie van methaan m.b.v. zuurstof op.

Stap 1: aantal elektronen (n)

Stel hiervoor de oxdiatie halfreactie op:

Oxidatie:

$$CH_4 \rightarrow CO_2$$

- 1) Maak C kloppend:
- 2) Maak O kloppend met water:
- 3) Maak H kloppend met H⁺:
- 4) Lading kloppend met el⁻:

$$CH_4 \rightarrow CO_2$$

$$CH_4 + 2H_2O -> CO_2$$

$$CH_4 + 2H_2O -> CO_2 + 8H^+$$

$$CH_4 + 2H_2O -> CO_2 + 8H^+ + 8e^-$$

Er worden 8 elektronen overgedragen per CH₄

Stap 2: berekenen ΔE_0

16e: figuur 3.4

Methaan (CH₄) wordt geoxideerd tot CO₂ m.b.v. zuurstof

Wat is de ΔE_0 ?

Antwoord:

$$CO_2/CH_4 = -0.24 \text{ V}$$

 $O_2/H_2O = +0.82 \text{ V}$

$$\Delta E_0' = 0.82 - 0.24 = 0.82 + 0.24 = +1.06 \text{ V}$$

(→ naar beneden in toren $\rightarrow \Delta E_0$ ' positief)

Stap 3: ∆G⁰′ berekenen

$$CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$$

$$\Delta G^{0'} = -nF \Delta E_{0'}$$

n = aantal electronen

F = constante van Faraday (96.48 Kj/V)

 $\Delta E_0'$ = verschil in elektronen potentiaal donor acceptor

$$\Delta G^{0'}$$
= -n * F * $\Delta E_{0'}$
= -8 * 96.48 * 1.06
= -818.2 kJ per mol CH₄

LET OP DE EENHEDEN (OOK BIJ TENTAMEN!)

Totaalreactie van de oxidatie CH₄ naar CO₂?

Halfreactie oxidative (zie ook stap 1 vorige opgave):

$$CH_4 + 2H_2O \rightarrow CO_2 + 8H^+ + 8e^-$$

Halfreactie reductive (zie ook eerdere oefenopgave):

$$O_2 + 4H^+ + 4e^- \rightarrow 2H_2O$$

Oxidatie: 8 elektronen komen vrij

Reductie: 4 elektronen opgenomen

Dus: reductie x 2

$$2O_2 + 8H^+ + 8e^- \rightarrow 4H_2O$$

Totaal:

$$CH_4 + 2H_2O + 2O_2 + 8H^+ + 8e^- \rightarrow CO_2 + 4H_2O + 8H^+ + 8e^-$$

Vereenvoudigen:

$$CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$$

Oefenen

Er staan een oefenopgaven op Blackboard.

Alle figuren in deze PowerPoint zijn eigen werk of afkomstig uit Brock Biology of Microorganisms (16th edition, Pearson) tenzij anders vermeld.