

Report No.: AGC06426160901CE08 Page 1 of 26

IC Test Report

Report No.: AGC08116161202CE08

IC ID 20863-1337R

APPLICATION PURPOSE : Original Equipment

PRODUCT DESIGNATION **CHIP Pro**

BRAND NAME CHIP Pro

MODEL NAME CHIP-PRO

CLIENT Next Thing Co

DATE OF ISSUE Mar. 22, 2017

RSS-247, ISSUE 1 STANDARD(S) RSS-Gen, ISSUE 4 TEST PROCEDURE(S) ANSI C63.10

REPORT VERSION V1.0

Attestation of Global Compliance (Shenzhen) Co., Ltd

CAUTION:

This report shall not be reproduced except in full without the written permission of the test laboratory and shall not be quoted out of context.

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XCC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be

E-mail: agc@agc-cert.com

@ 400 089 2118

Page 2 of 26

Report Revise Record

Report Version	Revise Time	Issued Date	Valid Version	Notes
V1.0	1 承養	Mar. 22, 2017	Valid	Original Report

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

Report No.: AGC08116161202CE08 Page 3 of 26

TABLE OF CONTENTS

1. VERIFICATION OF COMPLIANCE	
2.GENERAL INFORMATION	
2 2 RELATED SUBMITTAL (S)/GRANT(S)	6
2.2 RELATED SUBMITTAL(S)/GRANT(S)	6
2.4 TEST FACILITY	
2.5 SPECIAL ACCESSORIES	
2.6 EQUIPMENT MODIFICATIONS	
3. SYSTEM TEST CONFIGURATION	
3.1 CONFIGURATION OF TESTED SYSTEM	
3.2 EQUIPMENT USED IN TESTED SYSTEM	
4. SUMMARY OF TEST RESULTS	g
5. DESCRIPTION OF TEST MODES	9
6. ANTENNA REQUIREMENT	
6.2. TEST RESULT	10
7. RADIATED EMISSION	11
7.1 MEASUREMENT PROCEDURE	11
7.2 TEST SETUP	
7.3 LIMITS AND MEASUREMENT RESULT	13
7.4 TEST RESULT	13
8. BAND EDGE EMISSION	17
8.1. MEASUREMENT PROCEDURE	
8.2. TEST SET-UP	17
8.3. RADIATED TEST RESULT	
8.4. CONDUCTED TEST RESULT	
9. 6DB&99% BANDWIDTH	20
9.2. SUMMARY OF TEST RESULTS/PLOTS	
10. CONDUCTED OUTPUT POWER	21 21
10.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	21
10.3. LIMITS AND MEASUREMENT RESULT	21
11. MAXIMUM CONDUCTED OUTPUT POWER SPECTRAL DENSITY	
11.1 MEASUREMENT PROCEDURE	
11 2 TEST SET LID (BLOCK DIACDAM OF CONFIGURATION)	22

The results showing this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attraction.

No.16 E

AGC 8

Page 4 of 26

11.3 LIMITS AND MEASUREMENT RESULT	22
12.1. MEASUREMENT PROCEDURE	
12.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	23
12.3. MEASUREMENT EQUIPMENT USED	23
12.4. LIMITS AND MEASUREMENT RESULT	23
APPENDIX A: PHOTOGRAPHS OF TEST SETUP	26

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc-gert.com.

Page 5 of 26

@ 400 089 2118

1. VERIFICATION OF COMPLIANCE

Next Thing Co
1940 Union St#32, Oakland CA
Next Thing Co
1940 Union St#32, Oakland CA
CHIP Pro
CHIP Pro
CHIP-PRO
Feb. 20, 2017~Mar. 16, 2017
None
Normal
AGCRT-US-BLE/RF

WE HEREBY CERTIFY THAT:

The above equipment was tested by Dongguan Precise Testing Service Co., Ltd. The test data, data evaluation test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI C63.10 (2013) and the energy emitted by the sample EUT tested as described in this report is in compliance with requirement of RSS-247 Rules requirement.

Tested By	demone itnong	
CC.	Donjon Huang(Huang Dongyang)	Mar. 16, 2017
Reviewed By	Bore sie	
Emmind a climate CG	Bart Xie(Xie Xiaobin)	Mar. 22, 2017
Approved By	Solya shong	
The state of Columbia	Solger Zhang(Zhang Hongyi) Authorized Officer	Mar. 22, 2017

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at bits://www.agc.met.com

Add: 2F., Building 2, No.1-4, Chaxi Sanwei Technical Industrial Park, Gushu, Xixiang, Baoan District, Shenzhen, Guangdong China

Page 6 of 26

2.GENERAL INFORMATION 2.1PRODUCT DESCRIPTION

The EUT is designed as "CHIP Pro". It is designed by way of utilizing the FHSS technology to achieve the system operation.

A major technical description of EUT is described as following

Operation Frequency	2.402 GHz to 2.480GHz
Bluetooth Version	V4.2
Modulation	GFSK
Number of channels	40 Channel(37 Hopping Channel,3 advertising Channel)
Antenna Designation	AA107:PCB Antenna HCX-P321:PCB Antenna FXP73: PCB Antenna AA055: Ceramic Antenna
Antenna Gain	AA107:3.3dBi; HCX-P321:2dBi; FXP73:2.5dBi; AA055:2.5dBi
Hardware Version	V1.0
Software Version	fcc-20170109-b6281346
Power Supply	DC5V by PC

2.2 RELATED SUBMITTAL(S)/GRANT(S)

This submittal(s) (test report) is intended for IC ID: 20863-1337R filing to comply with RSS-247.

2.3TEST METHODOLOGY

All measurements contained in this report were conducted with ANSI C63.10.

The equipment under test (EUT) was configured to measure its highest possible emission level. The test modes were adapted accordingly in reference to the Operating Instructions. The EUT was tested in all three orthogonal planes and the worse case was showed.

2.4 TEST FACILITY

Site	Dongguan Precise Testing Service Co., Ltd.
Location	Building D,Baoding Technology Park,Guangming Road2,Dongcheng District, Dongguan, Guangdong, China,
FCC Registration No.	371540
Description	The test site is constructed and calibrated to meet the FCC requirements in documents ANSI C63.10:2013.

2.5 SPECIAL ACCESSORIES

Refer to section 2.2.

2.6 EQUIPMENT MODIFICATIONS

Not available for this EUT intended for grant.

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gert.com.

No.16 E

Page 7 of 26

3. SYSTEM TEST CONFIGURATION

3.1 CONFIGURATION OF TESTED SYSTEM

Configuration:

3.2 EQUIPMENT USED IN TESTED SYSTEM

Item	Equipment	Model No.	ID or Specification	Note
1	CHIP Pro	CHIP-PRO	2AF9F-1337R	EUT
2	Lenovo	B460	WB03928113	PC
3	USB Cable	N/A	N/A	Accessory

ALL TEST EQUIPMENT LIST

FOR RADIATED EMISSION TEST (BELOW 1GHZ)

Radiated Emission Test Site								
Name of Equipment	Manufacturer	Model Number	Serial Number	Last Calibration	Due Calibration			
EMI Test Receiver	Rohde & Schwarz	ESCI	101417	July 3, 2016	July 2, 2017			
Trilog Broadband Antenna (25M-1GHz)	SCHWARZBECK	VULB9160	9160-3355	July 3, 2016	July 2, 2017			
Signal Amplifier	SCHWARZBECK	BBV 9475	9745-0013	July 3, 2016	July 2, 2017			
RF Cable	SCHWARZBECK	AK9515E	96221	July 3, 2016	July 2, 2017			
3m Anechoic Chamber	CHENGYU	966	PTS-001	June 5, 2016	June 4, 2017			
MULTI-DEVICE Positioning Controller	Max-Full	MF-7802	MF780208339	N/A	N/A			
Active loop antenna (9K-30MHz)	Schwarzbeck	FMZB1519	1519-038	June 5, 2016	June 4, 2017			
Spectrum analyzer	Agilent	E4407B	MY46185649	June 5, 2016	June 4, 2017			
Power Probe	R&S	NRP-Z23	100323	July 24,2016	July 23,2017			
RF attenuator	N/A	RFA20db	68	N/A	N/A			

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XQC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc-cert.com.

Page 8 of 26

FOR RADIATED EMISSION TEST (1GHZ ABOVE)

FOR RADIATED EM	الحوار	7-17-4	(r)(1)11	ted Emission	Tes	st Site		.70		
Name of Equipme	nt	Manufactur		Model Numb		Serial Number		Last Calibrati	on	Due Calibration
EMI Test Receive	r	Rohde & Schv	varz	ESCI		101417		July 3, 20		July 2, 2017
Horn Antenna (1G-18GHz)		SCHWARZBE	CK	BBHA9120	D	9120D-124	6	July 10, 2	016	July 9, 2017
Spectrum Analyze	r	Agilent		E4411B		MY451145	3	July 3, 20)16	July 2, 2017
Signal Amplifier		SCHWARZBE	CK	BBV 9718		9718-269	A.	July 6, 20)16	July 5, 2017
RF Cable		SCHWARZBE	CK	AK9515H		96220		July 7, 20)16	July 6, 2017
3m Anechoic Chaml	ber	CHENGYL		966	G	PTS-001	N	June 5, 20	016	June 4, 2017
MULTI-DEVICE Positioning Controll	ler	Max-Full	5	MF-7802		MF7802083	39	N/A		N/A
Horn Ant (18G-40GH	Hz)	Schwarzbed	ck	BBHA 9170)	9170-181	nd Gill	June 5, 2016		June 4, 2017
Power Probe	水	R&S	out Cours	NRP-Z23		100323		July 24,2016		July 23,2017
RF attenuator		N/A	1	RFA20db	E	68		N/A		N/A
		С	ondu	cted Emission	n Te	est Site		7626		
Name of Equipment	Ma	anufacturer	Мо	del Number	Se	erial Number	Ca	Last libration	Du	e Calibration
EMI Test Receiver	Roh	de & Schwarz	The same	ESCI		101417	Jul	/ 3, 2016	J	uly 2, 2017
Artificial Mains Network	0	Narda	~11	L2-16B	00	00WX31025	July	7, 2016	J	uly 6, 2017
Artificial Mains Network (AUX)		Narda	T THE STATE OF	L2-16B	00	00WX31026	Jul	7, 2016	J	uly 6, 2017
RF Cable	SCH	HWARZBECK	- 6	AK9515E		96222	July	3, 2016	J	uly 2, 2017
Shielded Room		CHENGYU	O.	843		PTS-002	Jun	e 5,2016	A J	une 4,2017
		С	ondu	cted Emissior	า Te	est Site				
Name of Equipment	Ma	anufacturer	Мо	del Number	Se	erial Number	Ca	Last libration	Du	e Calibration
EMI Test Receiver	Roh	de & Schwarz		ESCI		101417	Jul	3, 2016	J	uly 2, 2017
Artificial Mains Network		Narda		L2-16B	00	00WX31025	July	7, 2016	₹,J	uly 6, 2017
Artificial Mains Network (AUX)	9	Narda		L2-16B	00	00WX31026	Jul	7, 2016	J	uly 6, 2017
RF Cable	SCH	HWARZBECK	-0	AK9515E	C	96222	July	3, 2016	J	uly 2, 2017
Shielded Room		CHENGYU	0	843		PTS-002	Jun	e 5,2016	J	une 4,2017

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGE, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc-cett.com. AGC 8

Page 9 of 26

4. SUMMARY OF TEST RESULTS

IC RULES	DESCRIPTION OF TEST	RESULT
RSS-247, ISSUE 1 RSS-Gen, ISSUE 4	Antenna Requirement	Compliant
ANSI C63.10	0 60 -	
RSS-247, ISSUE 1		The Thomas of the Theorem
RSS-Gen, ISSUE 4	Radiated Emission	Compliant
ANSI C63.10	- F. S	
RSS-247, ISSUE 1		
RSS-Gen, ISSUE 4	Band Edges	Compliant
ANSI C63.10		M Transfer
RSS-247, ISSUE 1	The state of the s	
RSS-Gen, ISSUE 4	6 dB&99% Bandwidth	Compliant
ANSI C63.10		
RSS-247, ISSUE 1		
RSS-Gen, ISSUE 4	Conducted Power	Compliant
ANSI C63.10		T. T. San
RSS-247, ISSUE 1		
RSS-Gen, ISSUE 4	Maximum Conducted Output Power SPECTRAL Density	Compliant
ANSI C63.10		
RSS-247, ISSUE 1		1000000
RSS-Gen, ISSUE 4	Conduction Emission	Compliant
ANSI C63.10	the state of the s	C.C

5. DESCRIPTION OF TEST MODES

The EUT has been operated in three modulations: GFSK independently.

NO.		TEST MODE DESCRIPTION	
1	C	Low channel TX	
2	9	Middle channel TX	- B T
3	不够	High channel TX	
4	for at Giove	Normal Operating (BT)	报剂

Note

- 1. All the test modes can be supply by PC, only the result of the worst case was recorded in the report if no any records.
- 2. For Radiated Emission, 3axis were chosen for testing for each applicable mode.
- 3. Eut is operating at its maximum duty cycle>or equal 98%

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by ACC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gent.com.

Page 10 of 26

6. ANTENNA REQUIREMENT

6.1. STANDARD APPLICABLE

According to RSS-247, An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with Section RSS-247, must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this Part are not exceeded.

6.2. TEST RESULT

In addition to permanent antenna, the product could be connected with some detachable antennas. Please include them into this section.

Also, please note that U.FL / IPEX antenna connector is not considered as a type of unique antenna coupling. However, as the installation of this module would be done by OEM integrator, it could be considered as a professional installation.

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by ACC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gert.com.

Page 11 of 26

7. RADIATED EMISSION

7.1 MEASUREMENT PROCEDURE

- 1. Configure the EUT according to ANSI C63.10. The EUT was placed on the top of the turntable 0.8 meter above ground. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away from the turntable.
- 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization.
- 4. For each suspected emissions, the antenna tower was scan (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.
- 5. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.
- 6. For emissions above 1GHz, use 1MHz VBW and RBW for peak reading. Then 1MHz RBW and 10Hz VBW for average reading in spectrum analyzer. The EUT was placed on the top of the turntable 1.5 meter above ground. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away from the turntable.
- 7. When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum values.
- 8.If the emissions level of the EUT in peak mode was 3 dB lower than the average limit specified, then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions which do not have 3 dB margin will be repeated one by one using the quasi-peak method for below 1GHz.
- 9. For testing above 1GHz, the emissions level of the EUT in peak mode was lower than average limit (that means the emissions level in peak mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.
- 10. In case the emission is lower than 30MHz, loop antenna has to be used for measurement and the recorded data should be QP measured by receiver. High - Low scan is not required in this case.

The results showning this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at Attp://www.agc-cert.com.

Page 12 of 26

7.2 TEST SETUP

RADIATED EMISSION TEST SETUP 30MHz-1000MHz

RADIATED EMISSION TEST SETUP ABOVE 1000MHz

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XQC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc-cert.com.

Page 13 of 26

7.3 LIMITS AND MEASUREMENT RESULT

RSS-247 Limit in the below table has to be followed

Frequencies (MHz)	Field Strength (micorvolts/meter)	Measurement Distance (meters)		
0.009~0.490	2400/F(KHz)	300		
0.490~1.705	24000/F(KHz)	30		
1.705~30.0	30	30		
30~88	100	3		
88~216	150	3		
216~960	200	3		
Above 960	500	3		

Note: All modes were tested For restricted band radiated emission,

the test records reported below are the worst result compared to other modes.

7.4 TEST RESULT

RADIATED EMISSION BELOW 30MHZ

No emission found between lowest internal used/generated frequencies to 30MHz.

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XQC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc-cert.com.

Page 14 of 26

RADIATED EMISSION BELOW 1GHZ

RADIATED EMISSION TEST- (30MHZ-1GHZ) -HORIZONTAL

RESULT: PASS

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XQC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc-cert.com. IGC 8

Page 15 of 26

RADIATED EMISSION TEST- (30MHZ-1GHZ) -VERTICAL

RESULT: PASS

Note: 1. Factor=Antenna Factor + Cable loss, Margin=Measurement-Limit.

- 2. The "Factor" value can be calculated automatically by software of measurement system.
- 3. All modes were tested (matched worst case antenna), only the worst case record in the report

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gert.com.

No.16 E

Page 16 of 26

RADIATED EMISSION ABOVE 1GHZ

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector	Comment
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	Commone
		ALL THE	Low Channel (2402	2 MHz)	- F)	30 ¹⁰⁰	Full Global
4804	40.22	10.44	50.66	74	-23.34	Pk	Horizontal
4804	29.17	10.44	39.61	54	-14.39	AV	Horizontal
7206	42.06	12.39	54.45	74	-19.55	pk	Horizontal
7206	29.08	12.39	41.47	54	-12.53	AV	Horizontal
4804	43.10	10.4	53.50	74	-20.50	Pk	Vertical
4804	28.54	10.4	38.94	54	-15.06	AV	Vertical
7206	32.70	12.75	45.45	74	-28.55	Pk	Vertical
7206	27.95	12.75	40.70	54	-13.30	AV	Vertical
G	-		Mid Channel (2440	MHz)	Th.	- T	alian a
4880	38.59	10.4	48.99	74	-25.01	Pk	Horizontal
4880	29.75	10.4	40.15	54	-13.85	AV	Horizontal
7320	40.26	12.75	53.01	74	-20.99	Pk	Horizontal
7320	30.80	12.75	43.55	54	-10.45	AV	Horizontal
4880	43.31	10.39	53.70	74	-20.30	Pk	Vertical
4880	27.98	10.44	38.42	54	-15.58	AV	Vertical
7320	39.87	12.68	52.55	74	-21.45	Pk	Vertical
7320	30.90	12.68	43.58	54	-10.42	AV	Vertical
			High Channel (2480) MHz)	* 3W Court	The Francisco	-0
4960	43.23	10.39	53.62	74	-20.38	pk	Horizontal
4960	26.04	10.39	36.43	54	-17.57	AV	Horizontal
7440	39.36	12.68	52.04	74	-21.96	pk	Horizontal
7440	30.71	12.68	43.39	54	-10.61	AV	Horizontal
4960	37.05	10.39	47.44	74	-26.56	pk	Vertical
4960	27.13	10.39	37.52	54	-16.48	AV	Vertical
7440	39.85	12.68	52.53	74	-21.47	pk	Vertical
7440	30.97	12.68	43.65	54	-10.35	AV	Vertical

RESULT: PASS

Note: 1~25GHz scan with GFSK. No recording in the test report at least have 20dB margin.

Factor = Antenna Factor + Cable Loss - Pre-amplifier.

Emission Level = Meter Reading + Factor

Margin = Emission - Leve Limit

All modes were tested(matched worst case antenna), only the worst case record in the report

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gert.com.

Page 17 of 26

8. BAND EDGE EMISSION

8.1. MEASUREMENT PROCEDURE

1)Radiated restricted band edge measurements

The radiated restricted band edge measurements are measured with an EMI test receiver connected to the receive antenna while the EUT is transmitting

- 2)Conducted Emissions at the bang edge
 - a)The transmitter output was connected to the spectrum analyzer
 - b)Set RBW=100kHz,VBW=300kHz
 - c)Suitable frequency span including 100kHz bandwidth from band edge

8.2. TEST SET-UP

Radiated same as 6.2

Conducted set up

EUT Spectrum analyzer cable

The results shown this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XQC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc-cert.com.

E-mail: agc@agc-cert.com

@ 400 089 2118

Page 18 of 26

8.3. Radiated Test Result

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector	Comment
(MHz)			(dBµV/m)	(dBµV/m)	(dB)	Туре	Common
10	4	F A GOODE CONT	Low Channe	l (2402 MHz)	-G	60	
2399.9	69.44	-13	56.44	74	-17.56	peak	Horizontal
2399.9	55.13	-13	42.13	54	-11.87	AVG	Horizontal
2400	65.17	-12.99	52.18	74	-21.82	peak	Horizontal
2400	51.62	-12.99	38.63	54	-15.37	AVG	Horizontal
2399.9	64.24	-12.97	51.27	74	-22.73	peak	Vertical
2399.9	52.13	-12.97	39.16	54	-14.84	AVG	Vertical
2400	66.18	-12.94	53.24	74	-20.76	peak	Vertical
2400	54.18	-12.94	41.24	54	-12.76	AVG	Vertical
TO BE	極	in Al	High Channe	el (2480 MHz)	A State of the sta	100	10
2483.5	68.40	-12.78	55.62	74	-18.38	peak	Horizontal
2483.5	56.92	-12.78	44.14	54	-9.86	AVG	Horizontal
2483.6	67.31	-12.77	54.54	74	-19.46	peak	Horizontal
2483.6	54.25	-12.77	41.48	54	-12.52	AVG	Horizontal
2483.5	70.36	-12.76	57.60	74	-16.40	peak	Vertical
2483.5	53.45	-12.76	40.69	54	-13.31	AVG	Vertical
2483.6	65.98	-12.72	53.26	74	-20.74	peak	Vertical
2483.6	53.43	-12.72	40.71	54	-13.29	AVG	Vertical

RESULT: PASS

Note: Factor=Antenna Factor + Cable loss - Amplifier gain,

Emission Level = Meter Reading + Factor

Margin= Emission Level -Limit.

The "Factor" value can be calculated automatically by software of measurement system.

All modes were tested (matched worst case antenna), only the worst case record in the report

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by ACC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at a type of the report will be conf

8.4. Conducted Test Result Test Graph

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc-gent.com.

Attestation of Global Compliance

Page 20 of 26

9. 6DB&99% BANDWIDTH

9.1. TEST PROCEDURE

- 1. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- 2. Set the EUT Work on the top, the middle and the bottom operation frequency individually.
- 3. Set SPA Centre Frequency = Operation Frequency, RBW= 100 KHz, VBW≥RBW.
- 4. Set SPA Trace 1 Max hold, then View.

9.2. SUMMARY OF TEST RESULTS/PLOTS

Mode	Channel	6dB Bandwidth [KHz]	Verdict
BLE	LCH	513.4	PASS
BLE	MCH	512.2	PASS
BLE	HCH	514.7	PASS

Note: Two transmit antennas had been tested, the antenna 1 was the worst case and record in the test report.

Test Graph

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by ACC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gent.com.

Page 21 of 26

10. CONDUCTED OUTPUT POWER

10.1. MEASUREMENT PROCEDURE

- 1. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- 2. Set the EUT Work on the top, middle and the bottom operation frequency individually.
- 3. Use the following spectrum analyzer settings:

Set the RBW ≥ DTS bandwidth

Set the VBW \geq 3 x RBW Set the span \geq 3 x RBW

Detector = peak

Sweep time = auto couple

Trace mode = max hold

- 4. Allow the trace to stabilize. Use peak marker function to determine the peak amplitude level
- 5. Record the result form the Spectrum Analyzer.

Note: The EUT was tested according compliance ANSI C63.10 requirements.

10.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)

10.3. LIMITS AND MEASUREMENT RESULT

Channel	Peak Power (dBm)		Applicable Limits	Pass/Fail	
J	Ant1	Ant2	(dBm)	- 5.5 5/1 Gill	
Low Channel	5.175	-10.670	30	Pass	
Middle Channel	5.252	-10.666	30	Pass	
High Channel	6.277	-10.115	30	Pass	

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by ACC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gent.com.

No.16 E

Page 22 of 26

11. MAXIMUM CONDUCTED OUTPUT POWER SPECTRAL DENSITY 11.1 MEASUREMENT PROCEDURE

- (1). Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- (2). Set the EUT Work on the top, the middle and the bottom operation frequency individually.
- (3). Set SPA Trace 1 Max hold, then View.

Note: The EUT was tested according compliance ANSI C63.10 requirements.

11.2 TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)

11.3 LIMITS AND MEASUREMENT RESULT

		PSD [de	Bm/3kHz]		V. II.4	
Mode	Channel	Ant1	1 Ant2 Limit[dB		Verdict	
BLE	LCH	-2.656	-19.804	8	PASS	
BLE	MCH	-2.515	-19.811	8	PASS	
BLE	HCH	-2.984	-19.554	8	PASS	

The results shown this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XQC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be

Page 23 of 26

12. CONDUCTED SPURIOUS EMISSION

12.1. MEASUREMENT PROCEDURE

- Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- 2. Set the EUT Work on the top, the Middle and the bottom operation frequency individually.
- 3. Set the Span = wide enough to capture the peak level of the in-band emission and all spurious emissions from the lowest frequency generated in the EUT up through the 10th harmonic.
 - RBW = 100 kHz; VBW ≥ RBW; Sweep = auto; Detector function = peak.
- 4. Set SPA Trace 1 Max hold, then View.

Note: The EUT was tested according compliance ANSI C63.10 requirements. Owing to satisfy the requirements of the number of measurement points, we set the RBW=1MHz, VBW>RBW, scan up through 10th harmonic, and consider the tested results as the worst case, if the tested results conform to the requirement, we can deem that the real tested results(set the RBW=100KHz, VBW>RBW) are conform to the requirement.

12.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION

The same as described in section 8.2

12.3. MEASUREMENT EQUIPMENT USED

The same as described in section 6

12.4. LIMITS AND MEASUREMENT RESULT

LIMITS AND MEASUREMENT RESULT							
A south a thing it south	Measurement Result						
Applicable Limits	Test Data	Criteria					
In any 100 KHz Bandwidth Outside the frequency band in which the spread spectrum	At least -20dBc than the limit Specified on the BOTTOM Channel	PASS					
intentional radiator is operating, the radio frequency power that is produce by the intentional radiator shall be at least 20 dB below that in 100KHz bandwidth within the band that contains the highest level of the desired power. In addition, radiation emissions which fall in the restricted bands, as defined in ANSI C63.10, must also comply with the radiated emission limits specified in RSS-247	At least -20dBc than the limit Specified on the TOP Channel	PASS					

The results showning this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be

Test Graph

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by ACC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gent.com.

No.16 E

GC

Page 25 of 26

Note: All modes were tested, only the worst case record in the report.

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc.gert.com.

Page 26 of 26

APPENDIX A: PHOTOGRAPHS OF TEST SETUP

FCC RADIATED EMISSION TEST SETUP

----END OF REPORT----

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc-cert.com. GC S