Matrius i vectors (grup de matí)

Curs 2018–2019

7.1 Intersecció de subespais

En tota aquesta secció suposarem que E és un espai vectorial qualsevol de dimensió finita. Donats dos subespais F i G de E, la intersecció

$$F \cap G = \{ v \in E \mid v \in F \text{ i } v \in G \}$$

torna a ser un subespai de E. Per demostrar aquesta afirmació, observem que si $v_1 \in F \cap G$ i $v_2 \in F \cap G$, aleshores $v_1 + v_2$ pertany a F perquè v_1 i v_2 pertanyen a F, i $v_1 + v_2$ també pertany a G pel mateix motiu; aleshores $v_1 + v_2 \in F \cap G$. De manera anàloga, si $v \in F \cap G$ aleshores per a tot nombre $a \in \mathbb{R}$ el vector av pertany a F i també pertany a G, d'on $av \in F \cap G$.

Proposició 7.1. Donats dos subespais F i G de E, la intersecció $F \cap G$ és el més gran subespai de E que és alhora subespai de F i de G.

Demostració. Com que $F \cap G \subseteq F$ i $F \cap G \subseteq G$, resulta que $F \cap G$ és un subespai de F i també és un subespai de G. A més, si H és alhora un subespai de F i un subespai de G, llavors tot vector $v \in H$ pertany a F i també pertany a G, d'on $v \in F \cap G$; per tant, $H \subseteq F \cap G$.

Més en general, $F_1 \cap \cdots \cap F_n$ és el més gran subespai de E que és contingut a F_i per a tot i, per a qualsevol conjunt finit de subespais F_1, \ldots, F_n . Evidentment és perfectament possible que $F_1 \cap \cdots \cap F_n = \{0\}$, però no pot ser que $F_1 \cap \cdots \cap F_n = \emptyset$, ja que $0 \in F_i$ per a tot i.

Per tal de calcular interseccions de subespais és particularment útil tenir-los expressats com a solucions de sistemes homogenis d'equacions lineals. En concret, suposem fixada una base e_1, \ldots, e_n de E i representem els vectors de E mitjançant les seves components (x_1, \ldots, x_n) en aquesta base. Aleshores, si dos subespais F i G són, respectivament, els conjunts de solucions de dos sistemes homogenis

$$\left. \begin{array}{c}
 a_1^1 x_1 + \dots + a_1^n x_n = 0 \\
 \vdots \\
 a_k^1 x_1 + \dots + a_k^n x_n = 0
\end{array} \right\} \qquad b_1^1 x_1 + \dots + b_1^n x_n = 0 \\
 \vdots \\
 b_\ell^1 x_1 + \dots + b_\ell^n x_n = 0$$

llavors $F \cap G$ és el conjunt de solucions de

$$a_1^1 x_1 + \dots + a_1^n x_n = 0$$

$$\vdots$$

$$a_k^1 x_1 + \dots + a_k^n x_n = 0$$

$$b_1^1 x_1 + \dots + b_1^n x_n = 0$$

$$\vdots$$

$$b_\ell^1 x_1 + \dots + b_\ell^n x_n = 0$$

7.2 Suma de subespais

Si F i G són subespais de E, llavors $F \cup G$ no és un subespai de E (llevat que un dels dos estigui contingut en l'altre), ja que si $v \in F$ i $w \in G$ llavors $v + w \notin F \cup G$ en general.

Tanmateix, definim la suma F + G com

$$F + G = \{ u \in E \mid u = v + w \text{ amb } v \in F \text{ i } w \in G \}.$$

Aleshores F + G sí que és un subespai de E. Per demostrar-ho, observem que si $u_1 = v_1 + w_1$ amb $v_1 \in F$ i $w_1 \in G$ i $u_2 = v_2 + w_2$ amb $v_2 \in F$ i $w_2 \in G$, llavors

$$u_1 + u_2 = (v_1 + w_1) + (v_2 + w_2) = (v_1 + v_2) + (w_1 + w_2),$$

on $v_1 + v_2 \in F$ i $w_1 + w_2 \in G$; per tant, $u_1 + u_2 \in F + G$. A més, si u = v + w amb $v \in F$ i $w \in G$, llavors per a tot $a \in \mathbb{R}$ tenim que au = av + aw i per tant $au \in F + G$.

Proposició 7.2. Donats dos subespais F i G de E, la suma F + G és el més petit subespai de E que conté F i conté G.

Demostració. És clar que $F \subseteq F + G$, ja que tot vector $v \in F$ es pot escriure com v = v + 0 on $0 \in G$, i anàlogament $G \subseteq F + G$ ja que tot vector $w \in G$ es pot escriure com w = 0 + w on $0 \in F$. Per tant, F i G són subespais de F + G. A més, si H és un subespai de E amb $F \subseteq H$ i $G \subseteq H$, llavors $F + G \subseteq H$ perquè si u = v + w amb $v \in F$ i $w \in G$ aleshores $v \in H$ i $w \in H$ i per tant $u \in H$.

Es compleix que F + (G + H) = (F + G) + H, ja que tots dos estan formats pels vectors de la forma u + v + w amb $u \in F$, $v \in G$ i $w \in H$. Aquesta propietat associativa de la suma de subespais permet considerar sumes finites $F_1 + \cdots + F_n$ per a tot n: $F_1 + \cdots + F_n$ és el subespai de E format pels vectors de la forma $v_1 + \cdots + v_n$ on $v_i \in F_i$ per a tot i. Cada F_i és un subespai de $F_1 + \cdots + F_n$ i, de fet, $F_1 + \cdots + F_n$ és el més petit subespai de E que conté F_i per a tot i.

Per tal de calcular sumes de subespais, el més pràctic és disposar de conjunts de generadors dels subespais donats. Concretament, si

$$F = \langle v_1, \dots, v_k \rangle, \qquad G = \langle w_1, \dots, w_\ell \rangle,$$

llavors

$$F + G = \langle v_1, \dots, v_k, w_1, \dots, w_\ell \rangle.$$

A continuació demostrarem que, donats dos subespais F i G de E, les dimensions dels subespais $F \cap G$ i F + G estan relacionades per la fórmula següent, anomenada fórmula de Grassmann:

Teorema 7.3. Donats dos subespais F i G d'un espai vectorial E de dimensió finita, es compleix

$$\dim(F+G) = \dim F + \dim G - \dim(F \cap G).$$