# Report on the FCC and Industry Canada Testing of:

Alphatron Marine USA Inc 25kW X-Band Marine Radar Scanner/Tx/Rx, Model: NKE 2255

In accordance with FCC 47 CFR Part 80, FCC 47 CFR Part 2, Industry Canada RSS-238 and **Industry Canada RSS-GEN** 

Prepared for: Alphatron Marine USA Inc

1205, Butler Road, League City, TEXAS, 77573

UNITED STATES

FCC ID: 2ADJKNKE2255 IC: 12477A-NKE2255



Document Number: 75942754-01 | Issue: 02



Add value. Inspire trust.

| SIGNATURE                         |                                                                |                               |               |
|-----------------------------------|----------------------------------------------------------------|-------------------------------|---------------|
| Toussell                          |                                                                |                               |               |
| NAME                              | JOB TITLE                                                      | RESPONSIBLE FOR               | ISSUE DATE    |
| Matthew Russell                   | Senior Engineer                                                | Authorised Signatory          | 28 March 2019 |
| Signatures in this approval box h | ave checked this document in line with the requirements of TÜN | / SIID document control rules |               |

Signatures in this approval box have checked this document in line with the requirements of TUV SUD document control rules.

#### **ENGINEERING STATEMENT**

The measurements shown in this report were made in accordance with the procedures described on test pages. All reported testing was carried out on a sample equipment to demonstrate limited compliance with FCC 47 CFR Part 80, FCC 47 CFR Part 2, Industry Canada RSS-238 and Industry Canada RSS-GEN. The sample tested was found to comply with the requirements defined in the applied rules.

| SIGNATURE  |      |
|------------|------|
| Ge Nawler. | 7/1m |

| NAME          | JOB TITLE     | RESPONSIBLE FOR | ISSUE DATE    |
|---------------|---------------|-----------------|---------------|
| Neil Rousell  | Test Engineer | Testing         | 28 March 2019 |
| Graeme Lawler | Test Engineer | Testing         | 28 March 2019 |

**FCC** Accreditation **Industry Canada Accreditation** 

90987 Octagon House, Fareham Test Laboratory IC2932B-1 Octagon House, Fareham Test Laboratory

#### **EXECUTIVE SUMMARY**

A sample of this product was tested and found to be compliant with FCC 47 CFR Part 80: 2017, FCC 47 CFR Part 2: 2017, Industry Canada RSS-238: Issue 01 (07-2013) and Industry Canada RSS-GEN: Issue 05 (04-2018).





#### DISCLAIMER AND COPYRIGHT

This non-binding report has been prepared by TÜV SÜD with all reasonable skill and care. The document is confidential to the potential Client and TÜV SÜD. No part of this document may be reproduced without the prior written approval of TÜV SÜD. © 2019 TÜV SÜD.

Our UKAS Accreditation does not cover opinions and interpretations and any expressed are outside the scope of our UKAS Accreditation. Results of tests not covered by our UKAS Accreditation Schedule are marked NUA (Not UKAS Accredited).

TÜV SÜD is a trading name of TUV SUD Ltd Registered in Scotland at East Kilbride, Glasgow G75 0QF, United Kingdom Registered number: SC215164

TUV SUD Ltd is a TÜV SÜD Group Company

Phone: +44 (0) 1489 558100 Fax: +44 (0) 1489 558101 www.tuv-sud.co.uk

TÜV SÜD Octagon House Concorde Way Fareham Hampshire PO15 5RL United Kingdom



# Contents

| 1   | Report Summary                          |    |
|-----|-----------------------------------------|----|
| 1.1 | Report Modification Record              |    |
| 1.2 | Introduction                            |    |
| 1.3 | Brief Summary of Results                |    |
| 1.4 | Application Form                        |    |
| 1.5 | Product Information                     |    |
| 1.6 | Deviations from the Standard            | 8  |
| 1.7 | EUT Modification Record                 |    |
| 1.8 | Test Location                           |    |
| 2   | Test Details                            | 10 |
| 2.1 | Occupied Bandwidth                      | 10 |
| 2.2 | Transmitter Frequency Stability         |    |
| 2.3 | Spurious Emissions at Antenna Terminals |    |
| 2.4 | Radiated Spurious Emissions             |    |
| 2.5 | RF Output Power                         | 47 |
| 2.6 | Modulation Characteristics              | 49 |
| 3   | Photographs                             | 51 |
| 3.1 | Test Setup Photographs                  | 51 |
| 4   | Measurement Uncertainty                 | 53 |
|     |                                         |    |



# 1 Report Summary

#### 1.1 Report Modification Record

Alterations and additions to this report will be issued to the holders of each copy in the form of a complete document.

| Issue | Description of Change    | Date of Issue   |
|-------|--------------------------|-----------------|
| 1     | First Issue              | 30 January 2019 |
| 2     | FCC ID and IC ID amended |                 |

#### Table 1

#### 1.2 Introduction

Applicant Alphatron Marine USA Inc Manufacturer Alphatron Marine USA Inc

Model Number(s) NKE-2255 Serial Number(s) LC30003

Hardware Version(s) Issue 01 (07-2013)

Software Version(s) v00.00.01.00

Number of Samples Tested 1

Test Specification/Issue/Date FCC 47 CFR Part 80: 2017

FCC 47 CFR Part 2: 2017

Industry Canada RSS-238: Issue 01 (07-2013) Industry Canada RSS-GEN: Issue 05 (04-2018)

Order Number 2018PO-00399
Date 17-April-2018
Date of Receipt of EUT 11-June-2018
Start of Test 17-July-2018

Finish of Test 16-November-2018

Name of Engineer(s) Neil Rousell and Graeme Lawler

Related Document(s) ITU-R M.1177-4

ITU-R SM 1541-6

Keysight Radar Measurements Application Note -

5989-7575EN



#### 1.3 Brief Summary of Results

A brief summary of the tests carried out in accordance with FCC 47 CFR Part 80, FCC 47 CFR Part 2, Industry Canada RSS-238 and Industry Canada RSS-GEN is shown below.

| Section   | n Specification Clause |               | Specification Clause Test Description |         | Test Description                        | Result | Comments/Base Standard                                                     |
|-----------|------------------------|---------------|---------------------------------------|---------|-----------------------------------------|--------|----------------------------------------------------------------------------|
|           | Part 80                | Part 2        | RSS-238                               | RSS-GEN |                                         |        |                                                                            |
| Configura | tion and Mode: T       | ransmit - 120 | V AC 60 Hz                            |         |                                         |        |                                                                            |
| 2.1       | 80.205 and<br>80.207   | 2.1049        | 2.2 & 4.3                             | 6.7     | Occupied Bandwidth                      | Pass   | ITU-R M.1177-4                                                             |
| 2.2       | 80.209(b)              | 2.1055        | 4.1                                   | 6.11    | Transmitter Frequency Stability         | Pass   |                                                                            |
| 2.3       | 80.211(f)              | 2.1051        | 4.3                                   | 6.13    | Spurious Emissions at Antenna Terminals | Pass   | ITU-R M.1177-4 Keysight Radar Measurements Application Note  – 5989-7575EN |
| 2.4       | 80.211(f)              | 2.1053        | 4.3                                   | 6.13    | Radiated Spurious Emissions             | Pass   |                                                                            |
| 2.5       | 80.215(a)(3)           | 2.1046        | 4.2                                   | 6.12    | RF Output Power                         | Pass   | ITU-R M.1177-4                                                             |
| 2.6       | 80.205 and<br>80.207   | 2.1047(d)     | 2.2 &<br>3.2(a)                       | -       | Modulation Characteristics              | Pass   | ITU-R M.1177-4                                                             |

COMMERCIAL-IN-CONFIDENCE Page 3 of 53



### 1.4 Application Form

| EQUIPMENT DESCRIPTION                                                            |            |                                                          |  |  |
|----------------------------------------------------------------------------------|------------|----------------------------------------------------------|--|--|
| Model Name/Number                                                                | NKE-2255   | 25KW X-Band Marine Radar Scanner/Tx/Rx                   |  |  |
| Part Number                                                                      | NKE-2255   | -2255                                                    |  |  |
| Hardware Version                                                                 | v1.00 Prod | Production sample.                                       |  |  |
| Software Version                                                                 | v00.00.01. | 00                                                       |  |  |
| FCC ID (if applicable)                                                           |            | 2ADJKNKE2255                                             |  |  |
| Industry Canada ID (if applicable)                                               |            | 12477A-NKE2255                                           |  |  |
| Technical Description (Please provide description of the intended use of the equ |            | 25kW scanner/turning unit for radar on high seas vessel. |  |  |

|             | INTENTIONAL RADIATORS |                                 |                                                             |                      |            |                 |        |             |       |
|-------------|-----------------------|---------------------------------|-------------------------------------------------------------|----------------------|------------|-----------------|--------|-------------|-------|
| Technology  | Frequency<br>Band     | Conducted<br>Declared<br>Output | Antenna<br>Gain                                             | Modulation           |            | ITU<br>Emission | Test   | Channels (  | (MHz) |
| recrinology | (MHz)                 |                                 | (dBi) (MHz)                                                 | Scheme(s)            | Designator | Bottom          | Middle | Тор         |       |
| Magnetron   | X-Band                | 44dBW                           | 6FT HS -<br>30.1dBi<br>7FT -<br>30.8dBi<br>9FT -<br>31.7dBi | 9.41GHz +/-<br>30MHz | Pulse      | 79M50PO<br>N    | N/A    | 9.41<br>GHz | N/A   |

| UN-INTENTIONAL RADIATOR                                                                                                                       |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Highest frequency generated or used in the device or on which the device operates or tunes                                                    |  |  |  |  |  |
| Lowest frequency generated or used in the device or on which the device operates or tunes                                                     |  |  |  |  |  |
| Class A Digital Device (Use in commercial, industrial or business environment)   Class B Digital Device (Use in residential environment only) |  |  |  |  |  |

| Power Source                           |                            |             |            |                                 |  |  |
|----------------------------------------|----------------------------|-------------|------------|---------------------------------|--|--|
| 40                                     | Single Phase               | Three Phase |            | Nominal Voltage                 |  |  |
| AC                                     | 120 V                      |             |            |                                 |  |  |
| Nominal Voltage                        |                            |             |            | Maximum Current                 |  |  |
| External DC                            | 24 V (via AC/DC convertor) |             |            |                                 |  |  |
| Dotton                                 | Nominal Voltage            |             | Batte      | ery Operating End Point Voltage |  |  |
| Battery                                | N/A                        |             |            |                                 |  |  |
| Can EUT transmit whilst being charged? |                            |             | Yes 🗌 No 🗌 |                                 |  |  |

|                     | EXTREME                            | CONDITIONS          |                                  |
|---------------------|------------------------------------|---------------------|----------------------------------|
| Maximum temperature | +55°C (operational) +70C (storage) | Minimum temperature | -25°C (operational and storage). |



|             | Ancillaries                           |                        |                                |                                  |  |  |
|-------------|---------------------------------------|------------------------|--------------------------------|----------------------------------|--|--|
| Plea        | ase list all ancillaries which will I | e used with the device |                                |                                  |  |  |
| Dep         | ends upon the model of radar u        | sed with the NKE-2255  | scanner - See TUV MED Cert: ME | D000113 issue3 21 May.18 - p2/5. |  |  |
|             |                                       |                        |                                |                                  |  |  |
|             |                                       | ANTENNA                | A CHARACTERISTICS              |                                  |  |  |
|             | Antenna connector                     |                        | State impedance                | Ohm                              |  |  |
|             | Temporary antenna connector           |                        | State impedance                | Ohm                              |  |  |
| $\boxtimes$ | Integral antenna                      | Type                   |                                |                                  |  |  |
|             | External antenna                      | Туре                   |                                |                                  |  |  |
|             |                                       |                        |                                |                                  |  |  |

I hereby declare that the information supplied is correct and complete.

Name: James Moon

Position held: Compliance Manager Date: 21 June 2018



#### 1.5 Product Information

#### 1.5.1 Technical Description

25kW scanner/turning unit for radar on high seas vessel. Antenna information is displayed in the tables below.

#### 1.5.2 Antenna Details

The information below was supplied by the manufacturer: Japan Radio Company Ltd

| ITU emission type                                        | 79M50PON                                         |
|----------------------------------------------------------|--------------------------------------------------|
| Gain                                                     | 30.1 dBi                                         |
| Beam width                                               | Horizontal: < 1.2°                               |
| Side lobe suppression values End lobe suppression values | < -23dB within $\pm$ 10°, <-30 outside $\pm$ 10° |

#### Table 2 NKE - 2225 - 6HS 6ft

| ITU emission type                                        | 79M50PON                                         |
|----------------------------------------------------------|--------------------------------------------------|
| Gain                                                     | 30.8 dBi                                         |
| Beam width                                               | < 1.0°                                           |
| Side lobe suppression values End lobe suppression values | < -23dB within $\pm$ 10°, <-30 outside $\pm$ 10° |

#### Table 3 NKE - 2255 - 7 7ft

| ITU emission type                                        | 79M50PON                                         |
|----------------------------------------------------------|--------------------------------------------------|
| Gain                                                     | 31.7 dBi                                         |
| Beam width                                               | < 0.8°                                           |
| Side lobe suppression values End lobe suppression values | < -23dB within $\pm$ 10°, <-30 outside $\pm$ 10° |

Table 4 NKE - 2255 - 9 9ft



#### 1.5.3 Test Setup Diagram(s)



Figure 1 - Test Configuration for Conducted Measurements



Figure 2 – Radiated Spurious Emissions Setup



#### 1.5.4 EUT Configuration and Rationale for Radiated Spurious Emissions

The EUT was placed on the non-conducting platform in a manner typical of a normal installation.

Ports on the EUT were terminated with loads as described in ANSI C63.4 clause 6.2.4. For EUT's with multiple connectors of the same type, additional interconnecting cables were connected, and pre-scans performed to determine whether the level of the emissions were increased by >2 dB.

#### 1.6 Deviations from the Standard

No deviations from the applicable test standard were made during testing.



#### 1.7 EUT Modification Record

The table below details modifications made to the EUT during the test programme. The modifications incorporated during each test are recorded on the appropriate test pages.

| Modification State            | Description of Modification still fitted to EUT | Modification Fitted By | Date Modification<br>Fitted |
|-------------------------------|-------------------------------------------------|------------------------|-----------------------------|
| Serial Number: LC3            | Serial Number: LC30003                          |                        |                             |
| 0 As supplied by the customer |                                                 | Not Applicable         | Not Applicable              |

Table 5

#### 1.8 Test Location

TÜV SÜD conducted the following tests at our Fareham Test Laboratory.

| Test Name                                         | Name of Engineer(s) | Accreditation |
|---------------------------------------------------|---------------------|---------------|
| Configuration and Mode: Transmit - 120 V AC 60 Hz |                     |               |
| Occupied Bandwidth                                | Neil Rousell        | UKAS          |
| Transmitter Frequency Stability                   | Neil Rousell        | UKAS          |
| Spurious Emissions at Antenna Terminals           | Neil Rousell        | UKAS          |
| Radiated Spurious Emissions                       | Graeme Lawler       | UKAS          |
| RF Output Power                                   | Neil Rousell        | UKAS          |
| Modulation Characteristics                        | Neil Rousell        | UKAS          |

Table 6

#### Office Address:

Octagon House Concorde Way Segensworth North Fareham Hampshire PO15 5RL United Kingdom



#### 2 Test Details

#### 2.1 Occupied Bandwidth

#### 2.1.1 Specification Reference

FCC 47 CFR Part 80, Clause 80.205 & 80.207 FCC 47 CFR Part 2, Clause 2.1049 Industry Canada RSS-238, Clause 2.2 & 4.3 Industry Canada RSS-GEN, Clause 6.7

#### 2.1.2 Equipment Under Test and Modification State

NKE - 2255, S/N: LC30003 - Modification State 0

#### 2.1.3 Date of Test

30-July-2018

#### 2.1.4 Test Method

The measurements were made using a Spectrum Analyser with the RBW set to 1 MHz and the VBW to 3 MHz

40 dB bandwidth

The detector was set to RMS and a long sweep time employed with the trace set to Max Hold. The peak of the fundamental was measured and markers at -40 dBc were positioned above and below the center frequency. The Marker Delta function result was recorded.

Occupied (99%) bandwidth

A Peak Detector and Max Hold trace were used.

#### 2.1.5 Environmental Conditions

Ambient Temperature 25.6 °C Relative Humidity 60.2 %



#### 2.1.6 Test Results

#### Transmit - 120 V AC 60 Hz

| Pulse type | -40 dB Bandwidth (MHz) |  |
|------------|------------------------|--|
| LP3        | 34.7                   |  |
| LP2        | 37.8                   |  |
| LP1        | 42.4                   |  |
| MP3        | 61.8                   |  |
| MP2        | 72.9                   |  |
| MP1        | 83.7                   |  |
| SP1        | 127.5                  |  |

Table 7 - 40dB Bandwidth Results



Figure 3 - LP3





Figure 4 - LP2



Figure 5 - LP1





Figure 6 - MP3



Figure 7 - MP2





Figure 8 - MP1



Figure 9 - SP1

#### Transmit - 120 V AC 60 Hz

| Pulse type | Occupied Bandwidth (MHz) |
|------------|--------------------------|
|------------|--------------------------|



| LP3 | 9.4  |
|-----|------|
| LP2 | 10.5 |
| LP1 | 10.7 |
| MP3 | 19.9 |
| MP2 | 23.9 |
| MP1 | 34.0 |
| SP1 | 51.0 |

**Table 5 - Occupied Bandwidth Results** 



Figure 10 - LP3





Figure 11 - LP2



Figure 12 - LP1





Figure 13 - MP3



Figure 14 - MP2





Figure 15 - MP1



Figure 16 - SP1

FCC 47 CFR Part 80, Limit Clause 80.209(b)



When pulse modulation is used in land and ship radar stations operating in the bands above 2.4 GHz the frequency at which maximum emission occurs must be within the authorized bandwidth and must not be closer than 1.5/T MHz to the upper and lower limits of the authorized bandwidth where "T" is the pulse duration in microseconds. \*

#### Remarks:

See also Frequency Stability for demonstration of compliance fundamental <1.5/T MHz of upper and lower authorised bandwidth.

#### Industry Canada RSS-238

None Specified

#### 2.1.7 Test Location and Test Equipment Used

This test was carried out in RF Laboratory 2.

| Instrument                | Manufacturer          | Type No        | TE No      | Calibration<br>Period<br>(months) | Calibration Due |
|---------------------------|-----------------------|----------------|------------|-----------------------------------|-----------------|
| Programmable Power Supply | California Inst       | 2001RP         | 1898       | -                                 | TU              |
| Hygromer                  | Rotronic              | Hygropalm      | 2404       | 12                                | 26-Apr-2019     |
| PXA Signal Analyser       | Keysight Technologies | N9030A         | 4654       | 12                                | 06-Oct-2018     |
| Coupler                   | АТМ                   | 90-302A-30-6-6 | H328005-01 | -                                 | O/P Mon         |
| Load                      | Pasternack            | PE6824         | -          | -                                 | TU              |
| Attenuator (20dB, 100W)   | Weinschel             | 48-20-43       | 4870       | 12                                | 17-Jul-2019     |
| Attenuator (30dB, 100W)   | Weinschel             | 48-30-43       | 4871       | 12                                | 17-Jul-2019     |
| Cable (18GHz              | Rosenberger           | LU7-036-2000   | 5038       | -                                 | O/P Mon         |
| Cable (18GHz              | Rosenberger           | LU7-036-2000   | 5039       | -                                 | O/P Mon         |

#### Table 6

TU – Traceability Unscheduled O/P Mon – Output Monitored using calibrated equipment



#### 2.2 Transmitter Frequency Stability

#### 2.2.1 Specification Reference

FCC 47 CFR Part 80, Clause 80.209(b), FCC 47 CFR Part 2, Clause 2.1055 Industry Canada RSS-238, Clause 4.1 Industry Canada RSS-GEN, Clause 6.11

#### 2.2.2 Equipment Under Test and Modification State

NKE - 2255, Serial Number: LC30003 - Modification State 0

#### 2.2.3 Date of Test

17-July-2018 to 18-July-2018

#### 2.2.4 Test Method

This test was performed in accordance with ANSI C63.26 clause 5.6 and Industry Canada RSS-GEN clause 6.11.

The EUT was placed in a Climatic Chamber and its Frequency Error measured over the temperature range of -30°C to +50°C. In addition, measurements were made at ±15 % of the nominal voltage at 20°C. A Spectrum Analyser was used with a Peak detector and Max Hold trace. Once the trace had stabilized, a marker was used to measure the peak and record the frequency. Extreme temperature Frequency Error measurement results were made against a reference measurement at 20 °C and compared with the specification limits.

#### 2.2.5 Environmental Conditions

Ambient Temperature 21.8 °C Relative Humidity 44.0 %



#### 2.2.6 Test Results

#### Transmit - 120 V AC 60 Hz

| Voltage        | Measured Frequency (MHz) | Frequency Error (ppm) |
|----------------|--------------------------|-----------------------|
| 102 V AC 60 Hz | 9412.394614              | -398.05               |
| 120 V AC 60 Hz | 9416.140281              | 0                     |
| 138 V AC 60 Hz | 9414.641696              | -159.25               |

#### Table 7 - Frequency Stability Under Voltage Variations, Pulse Type SP1

| Voltage        | Measured Frequency (MHz) | Frequency Error (ppm) |
|----------------|--------------------------|-----------------------|
| 102 V AC 60 Hz | 9411.177982              | -205.78               |
| 120 V AC 60 Hz | 9413.114351              | 0                     |
| 138 V AC 60 Hz | 9413.455527              | 36.26                 |

#### Table 8 - Frequency Stability Under Voltage Variations, Pulse Type MP1

| Voltage        | Measured Frequency (MHz) | Frequency Error (ppm) |
|----------------|--------------------------|-----------------------|
| 102 V AC 60 Hz | 9411.619310              | -237.76               |
| 120 V AC 60 Hz | 9413.856642              | 0                     |
| 138 V AC 60 Hz | 9412.900080              | -101.65               |

Table 9 - Frequency Stability Under Voltage Variations, Pulse Type MP2

| Voltage        | Measured Frequency (MHz) Frequency Error (ppm) |         |
|----------------|------------------------------------------------|---------|
| 102 V AC 60 Hz | 9412.491790                                    | -179.45 |
| 120 V AC 60 Hz | 9414.180414                                    | 0       |
| 138 V AC 60 Hz | 9413.523763                                    | -69.78  |

Table 10 - Frequency Stability Under Voltage Variations, Pulse Type MP3

| Voltage        | Measured Frequency (MHz) Frequency Error (ppm) |        |
|----------------|------------------------------------------------|--------|
| 102 V AC 60 Hz | 9411.537579                                    | -99.31 |
| 120 V AC 60 Hz | 9412.472099                                    | 0      |
| 138 V AC 60 Hz | 9411.727342                                    | -79.15 |

Table 11 - Frequency Stability Under Voltage Variations, Pulse Type LP1



| Voltage        | Measured Frequency (MHz) Frequency Error (ppm) |        |
|----------------|------------------------------------------------|--------|
| 102 V AC 60 Hz | 9411.537579                                    | -63.48 |
| 120 V AC 60 Hz | 9412.472099                                    | 0      |
| 138 V AC 60 Hz | 9411.727342                                    | 46.43  |

**Table 12 - Frequency Stability Under Voltage Variations, Pulse Type LP2** 

| Voltage        | Measured Frequency (MHz) Frequency Error (ppm) |        |
|----------------|------------------------------------------------|--------|
| 102 V AC 60 Hz | 9411.537579                                    | -69.25 |
| 120 V AC 60 Hz | 9412.472099                                    | 0      |
| 138 V AC 60 Hz | 9411.727342                                    | -59.60 |

Table 13 - Frequency Stability Under Voltage Variations, Pulse Type LP3



| Temperature                        | Measured Frequency (MHz) Frequency Error (ppm)   |         |  |  |
|------------------------------------|--------------------------------------------------|---------|--|--|
| +50 °C                             | 9409.792777 -674.55                              |         |  |  |
| +40 °C                             | 9412.875934                                      | -346.90 |  |  |
| +30 °C                             | 9411.443060                                      | -499.17 |  |  |
| +20 °C                             | 9416.140281 0.00                                 |         |  |  |
| +10 °C                             | 9415.782287 -38.04                               |         |  |  |
| 0 °C                               | 9419.444153 351.10                               |         |  |  |
| -10 °C                             | 9417.854002 182.12                               |         |  |  |
| -20 °C                             | 9422.213486 645.40                               |         |  |  |
| -30 °C                             | 9423.728794 806.43                               |         |  |  |
| FCC Limits: 80.209(b)<br>1.5/T MHz | Lower: 9321.428571 MHz<br>Upper: 9478.571429 MHz |         |  |  |

Table 14 - Frequency Stability Under Temperature Variations, Pulse Type SP1

| Temperature                        | Measured Frequency (MHz) Frequency Error (ppm) |         |  |
|------------------------------------|------------------------------------------------|---------|--|
| +50 °C                             | 9408.632433                                    | -589.58 |  |
| +40 °C                             | 9410.993228                                    | -338.70 |  |
| +30 °C                             | 9411.174038                                    | -319.49 |  |
| +20 °C                             | 9414.180414                                    | 0.00    |  |
| +10 °C                             | 9414.600151                                    | 44.61   |  |
| 0 °C                               | 9418.263553 433.91                             |         |  |
| -10 °C                             | 9416.525279 249.19                             |         |  |
| -20 °C                             | 9419.760810 593.03                             |         |  |
| -30 °C                             | 9421.802847 810.04                             |         |  |
| FCC Limits: 80.209(b)<br>1.5/T MHz | Lower: 9307.5 MHz<br>Upper: 9492.5 MHz         |         |  |

Table 15 - Frequency Stability Under Temperature Variations, Pulse Type MP1



| Temperature                        | Measured Frequency (MHz) Frequency Error (ppm) |         |  |
|------------------------------------|------------------------------------------------|---------|--|
| +50 °C                             | 9407.419174                                    | -684.11 |  |
| +40 °C                             | 9410.966359                                    | -307.15 |  |
| +30 °C                             | 9411.355551                                    | -265.79 |  |
| +20 °C                             | 9413.856642                                    | 0.00    |  |
| +10 °C                             | 9414.744732                                    | 94.38   |  |
| 0 °C                               | 9416.716257 303.89                             |         |  |
| -10 °C                             | 9415.535359 178.40                             |         |  |
| -20 °C                             | 9419.032488 550.04                             |         |  |
| -30 °C                             | 9420.901153 748.62                             |         |  |
| FCC Limits: 80.209(b)<br>1.5/T MHz | Lower: 9305 MHz<br>Upper: 9495 MHz             |         |  |

Table 16 - Frequency Stability Under Temperature Variations, Pulse Type MP2

| Temperature                        | Measured Frequency (MHz) Frequency Error (ppm) |         |  |  |
|------------------------------------|------------------------------------------------|---------|--|--|
| +50 °C                             | 9407.600484                                    | -585.96 |  |  |
| +40 °C                             | 9410.765610                                    | -249.60 |  |  |
| +30 °C                             | 9410.768604                                    | -249.28 |  |  |
| +20 °C                             | 9413.114351 0.00                               |         |  |  |
| +10 °C                             | 173.38                                         |         |  |  |
| 0 °C                               | 9417.593038 475.95                             |         |  |  |
| -10 °C                             | 9416.427470 352.08                             |         |  |  |
| -20 °C                             | 9419.370584 664.85                             |         |  |  |
| -30 °C                             | 9421.566887 898.25                             |         |  |  |
| FCC Limits: 80.209(b)<br>1.5/T MHz | Lower: 9303.75 MHz<br>Upper: 9496.25 MHz       |         |  |  |

Table 17 - Frequency Stability Under Temperature Variations, Pulse Type MP3



| Temperature                        | Measured Frequency (MHz) Frequency Error (ppm) |         |  |
|------------------------------------|------------------------------------------------|---------|--|
| +50 °C                             | 9407.034916                                    | -568.98 |  |
| +40 °C                             | 9409.647479                                    | -291.34 |  |
| +30 °C                             | 9411.205352                                    | -125.79 |  |
| +20 °C                             | 9412.389013                                    | 0.00    |  |
| +10 °C                             | 9415.040191                                    | 281.74  |  |
| 0 °C                               | 9416.286556 414.19                             |         |  |
| -10 °C                             | 9415.855703 368.40                             |         |  |
| -20 °C                             | 9419.202186 724.04                             |         |  |
| -30 °C                             | 9420.765881 890.21                             |         |  |
| FCC Limits: 80.209(b)<br>1.5/T MHz | Lower: 9301.875 MHz<br>Upper: 9498.125 MHz     |         |  |

Table 18 - Frequency Stability Under Temperature Variations, Pulse Type LP1

| Temperature                        | Measured Frequency (MHz) Frequency Error (ppm) |         |  |
|------------------------------------|------------------------------------------------|---------|--|
| +50 °C                             | 9407.355965                                    | -452.52 |  |
| +40 °C                             | 9407.934227                                    | -391.06 |  |
| +30 °C                             | 9410.502842                                    | -118.10 |  |
| +20 °C                             | 9411.614144                                    | 0.00    |  |
| +10 °C                             | 9413.964201                                    | 249.74  |  |
| 0 °C                               | 9415.707262 434.98                             |         |  |
| -10 °C                             | 9415.611819 424.83                             |         |  |
| -20 °C                             | 9419.780816 867.87                             |         |  |
| -30 °C                             | 9420.244342 917.13                             |         |  |
| FCC Limits: 80.209(b)<br>1.5/T MHz | Lower: 9301.5 MHz<br>Upper: 9498.5 MHz         |         |  |

Table 19 - Frequency Stability Under Temperature Variations, Pulse Type LP2



| Temperature                        | Measured Frequency (MHz) Frequency Error (ppm) |         |  |  |
|------------------------------------|------------------------------------------------|---------|--|--|
| +50 °C                             | 9407.829363                                    | -493.38 |  |  |
| +40 °C                             | 9408.982580                                    | -370.83 |  |  |
| +30 °C                             | 9411.617152                                    | -90.86  |  |  |
| +20 °C                             | 9412.472099 0.00                               |         |  |  |
| +10 °C                             | 9415.187791                                    | 288.60  |  |  |
| 0 °C                               | 9416.454721 423.23                             |         |  |  |
| -10 °C                             | 9416.123998 388.09                             |         |  |  |
| -20 °C                             | 9420.624941 866.40                             |         |  |  |
| -30 °C                             | 9419.740929 772.46                             |         |  |  |
| FCC Limits: 80.209(b)<br>1.5/T MHz | Lower: 9301.25 MHz<br>Upper: 9498.75 MHz       |         |  |  |

Table 20 - Frequency Stability Under Temperature Variations, Pulse Type LP3

#### FCC 47 CFR Part 80, Limit Clause 80.209(b)

When pulse modulation is used in land and ship radar stations operating in the bands above 2.4 GHz the frequency at which maximum emission occurs must be within the authorized bandwidth and must not be closer than 1.5/T MHz to the upper and lower limits of the authorized bandwidth where "T" is the pulse duration in microseconds. In the band 14.00–14.05 GHz the centre frequency must not vary more than 10 MHz from 14.025 GHz.

#### Industry Canada RSS-238, Limit Clause 4.1

The carrier frequency shall not depart from the reference frequency in excess of 800 ppm for equipment which operates in the band 2900-3100 MHz nor in excess of 1250 ppm for equipment which operates in the band 9225-9500 MHz.



## 2.2.7 Test Location and Test Equipment Used

This test was carried out in RF Laboratory 1 and RF Laboratory 2.

| Instrument                   | Manufacturer          | Type No                      | TE No      | Calibration<br>Period<br>(months) | Calibration Due |
|------------------------------|-----------------------|------------------------------|------------|-----------------------------------|-----------------|
| Rubidium Standard            | Rohde & Schwarz       | XSRM                         | 1316       | 6                                 | 20-Oct-2018     |
| Programmable Power<br>Supply | California Inst       | 2001RP                       | 1898       | -                                 | O/P Mon         |
| Hygrometer                   | Rotronic              | I-1000                       | 3220       | 12                                | 30-Aug-2018     |
| DMM                          | Fluke                 | 179                          | 4006       | 12                                | 13-Dec-2018     |
| Frequency Standard           | Spectracom            | SecureSync<br>1200-0408-0601 | 4393       | 6                                 | 20-Oct-2018     |
| PXA Signal Analyser          | Keysight Technologies | N9030A                       | 4654       | 12                                | 06-Oct-2018     |
| Climatic Chamber             | Aralab                | FitoTerm<br>300E45           | 4823       | -                                 | O/P Mon         |
| Coupler                      | ATM                   | 90-302A-30-6-6               | H328005-01 | -                                 | O/P Mon         |
| Load                         | Pasternack            | PE6824                       | -          | -                                 | TU              |

Table 21

O/P Mon – Output Monitored using calibrated equipment TU – Traceability Unscheduled



#### 2.3 Spurious Emissions at Antenna Terminals

#### 2.3.1 Specification Reference

FCC 47 CFR Part 80, Clause 80.211(f) FCC 47 CFR Part 2, Clause 2.1051 Industry Canada RSS-238, Clause 4.3 Industry Canada RSS-GEN, Clause 6.13

#### 2.3.2 Equipment Under Test and Modification State

NKE - 2255, Serial Number: LC30003 - Modification State 0

#### 2.3.3 Date of Test

30-July-2018 to 16-November-2018

#### 2.3.4 Test Method

#### <250 % Authorized Bandwidth

The EUT was connected to a Spectrum Analyser via a WR90 Waveguide Directional Coupler with additional attenuation. The mask reference level was set to the Peak value of the carrier. An RBW of 1 MHz and a VBW of 3 MHz was used for all tests. The mask was derived based on the measured 40 dB Bandwidth as measured in Section 2.3 of this report. For FCC measurements, an RMS detector was used and for Industry Canada, a Peak detector was utilised.

#### >250 % Authorized Bandwidth

The test equipment was configured as shown in the setup diagram. A search was made over the range 9 kHz to 40 GHz using a 1 MHz RBW and 3 MHz VBW filter. A peak detector was used in conjunction with a Max Hold trace. Any emissions that were noted over the test range were then measured in conjunction with 'Keysight Radar Measurements Application Note – 5989-7575EN'. The span was reduced and the RBW and sweep time adjusted to show the emission in a Pulse Spectrum view. The peak emission value was measured and recorded, and the true Peak value calculated to account for the Pulse Desensitization of the Spectrum Analyser. This result can be directly compared to the Industry Canada limit requirements. To determine compliance against FCC limits, a Duty Cycle Correction Factor based on the Pulse Characteristics, (see section 2.6), is applied to the Peak Level results to give the Average value.

Declared Carrier Power: 74 dBm
Industry Canada Limit: -60 dBc

Industry Canada Limit (dBm) = 74 - 60 = +14 dBm

FCC Limit = 74 - (43 + 10log(P)) = -13 dBmwhere P = 25000 W

#### 2.3.5 Environmental Conditions

Ambient Temperature 25.6 °C Relative Humidity 60.2 %



#### 2.3.6 Test Results

Transmit - 120 V AC 60 Hz (FCC)

<250 % Authorized Bandwidth Results



Figure 17 - Unmodulated / LP3 Pulse - FCC Transmitter Mask



Figure 18 - Unmodulated / LP2 Pulse - FCC Transmitter Mask





Figure 19 - Unmodulated / LP1 Pulse - FCC Transmitter Mask



Figure 20 - Unmodulated / MP3 Pulse - FCC Transmitter Mask





Figure 21 - Unmodulated / MP2 Pulse - FCC Transmitter Mask



Figure 22 - Unmodulated / MP1 Pulse - FCC Transmitter Mask





Figure 23 - Unmodulated / SP1 Pulse - FCC Transmitter Mask

#### Transmit - 120 V AC 60 Hz (ISED)

In accordance with ITU-R M.1177-4 Clause 4, the 40 dB Bandwidth was calculated for each pulse type, (SP1, MP1, MP2, MP3, LP1, LP2, LP3). The calculations used are detailed in ITU-R SM.1541-6 Annex 8 Clause 3.1. In this case, the Radar pulse type used for the calculations was for non-FM pulse radars:

 $B_{-40} = K / SQRT(t * t_r)$ 

A value of K = 7.6 was used as the output power was <100 kW and the rise time for all pulses was <0.014t.

Based on the measured Pulse Rise and Pulse Width times, the 40 dB Bandwidths were calculated:

| Pulse type | Pulse Width (us) | Pulse Rise Time (ns) | Calculated 40dB Bandwidth (MHz) |
|------------|------------------|----------------------|---------------------------------|
| SP1        | 0.067            | 10.8                 | 282.53                          |
| MP1        | 0.189            | 13.1                 | 152.78                          |
| MP2        | 0.299            | 15.1                 | 113.11                          |
| MP3        | 0.400            | 14.5                 | 99.79                           |
| LP1        | 0.800            | 16.7                 | 65.75                           |
| LP2        | 1.000            | 19.4                 | 54.57                           |
| LP3        | 1.170            | 18.9                 | 51.11                           |

Table 8 – 40 dB Bandwidth for each Pulse Type



In accordance with RSS-238, the analyser RBW was set to 1 MHz and the VBW to 3 MHz. A Peak detector was configured with the trace set to Max Hold. The sweep points were set to > 2 \* (Span / RBW). The trace was allowed to stabilize, and the result checked against the mask. The plots can be seen on the following pages.



Figure 24 - Unmodulated / LP3 Pulse - Industry Canada Transmitter Mask



Figure 25 - Unmodulated / LP3 Pulse - Industry Canada Transmitter Mask Zoom





Figure 26 - Unmodulated / LP2 Pulse - Industry Canada Transmitter Mask



Figure 27 - Unmodulated / LP2 Pulse - Industry Canada Transmitter Mask Zoom





Figure 28 - Unmodulated / LP1 Pulse - Industry Canada Transmitter Mask



Figure 29 - Unmodulated / LP1 Pulse - Industry Canada Transmitter Mask Zoom





Figure 30 - Unmodulated / MP3 Pulse - Industry Canada Transmitter Mask



Figure 31 - Unmodulated / MP3 Pulse - Industry Canada Transmitter Mask Zoom





Figure 32 - Unmodulated / MP2 Pulse - Industry Canada Transmitter Mask



Figure 33 - Unmodulated / MP2 Pulse - Industry Canada Transmitter Mask Zoom





Figure 34 - Unmodulated / MP1 Pulse - Industry Canada Transmitter Mask



Figure 35 - Unmodulated / MP1 Pulse - Industry Canada Transmitter Mask Zoom





Figure 36 - Unmodulated / SP1 Pulse - Industry Canada Transmitter Mask



Figure 37 - Unmodulated / SP1 Pulse - Industry Canada Transmitter Mask Zoom



#### >250 % Authorized Bandwidth Results

| Pulse Type | Measured<br>Frequency | Peak Level<br>(dBm) | Duty Cycle<br>Correction<br>Factor (dB) | Average<br>Level (dBm) | FCC Limit (dBm) | Industry<br>Canada<br>Limit (dBm) | Result |
|------------|-----------------------|---------------------|-----------------------------------------|------------------------|-----------------|-----------------------------------|--------|
| SP1        | 18.8206               | 3.74                | -38.03                                  | -34.29                 | -13             | +14                               | Pass   |
| SP1        | 28.2280               | -7.60               | -38.03                                  | -45.63                 | -13             | +14                               | Pass   |
| MP1        | 18.8180               | 5.03                | -33.47                                  | -28.44                 | -13             | +14                               | Pass   |
| MP1        | 28.2276               | -7.76               | -33.47                                  | -41.23                 | -13             | +14                               | Pass   |
| MP2        | 18.8140               | 4.58                | -32.44                                  | -27.86                 | -13             | +14                               | Pass   |
| MP2        | 28.2199               | -3.65               | -32.44                                  | -36.09                 | -13             | +14                               | Pass   |
| MP3        | 18.8144               | 2.92                | -32.52                                  | -29.60                 | -13             | +14                               | Pass   |
| MP3        | 28.2188               | 2.59                | -32.52                                  | -29.93                 | -13             | +14                               | Pass   |
| LP1        | 18.8129               | 7.12                | -32.22                                  | -25.10                 | -13             | +14                               | Pass   |
| LP1        | 28.2177               | 0.99                | -32.22                                  | -31.23                 | -13             | +14                               | Pass   |
| LP2        | 18.8163               | 6.26                | -31.87                                  | -25.61                 | -13             | +14                               | Pass   |
| LP2        | 28.2157               | 0.96                | -31.87                                  | -30.91                 | -13             | +14                               | Pass   |
| LP3        | 18.8163               | 3.55                | -32.13                                  | -28.58                 | -13             | +14                               | Pass   |
| LP3        | 28.2173               | -2.00               | -32.13                                  | -34.13                 | -13             | +14                               | Pass   |

### FCC 47 CFR Part 80, Limit Clause 80.211(f)

On any frequency removed from the assigned frequency by more than 50 percent up to and including 100 percent of the authorized bandwidth: At least 25 dB;

On any frequency removed from the assigned frequency by more than 100 percent up to and including 250 percent of the authorized bandwidth: At least 35 dB;

On any frequency removed from the assigned frequency by more than 250 percent of the authorized bandwidth: At least 43 plus 10log<sub>10</sub> (mean power in watts) dB.

# Industry Canada RSS-238, Limit Clause 4.3

The unwanted emission and the transmitter power shall be measured using a peak detector.

The unwanted emission power in any 1 MHz bandwidth shall be attenuated below the transmitter peak power by at least 20dB per decade from the edge of the 40dB bandwidth and beyond.

The unwanted emissions power shall not need to be attenuated more than 60dB below the transmitter peak power.



# 2.3.7 Test Location and Test Equipment Used

This test was carried out in RF Laboratory 2.

| Instrument                   | Manufacturer          | Type No                      | TE No      | Calibration<br>Period<br>(months) | Calibration Due |
|------------------------------|-----------------------|------------------------------|------------|-----------------------------------|-----------------|
| Hygromer                     | Rotronic              | Hygropalm                    | 2404       | 12                                | 26-Apr-2019     |
| Network Analyser             | Rohde & Schwarz       | ZVA 40                       | 3548       | 12                                | 02-Oct-2018     |
| Calibration Unit             | Rohde & Schwarz       | ZV-Z54                       | 4368       | 12                                | 06-Mar-2019     |
| Frequency Standard           | Spectracom            | SecureSync<br>1200-0408-0601 | 4393       | 6                                 | 20-Oct-2018     |
| Rubidium Standard            | Rohde & Schwarz       | XSRM                         | 1316       | 6                                 | 20-Oct-2018     |
| Programmable Power<br>Supply | California Inst       | 2001RP                       | 1898       | -                                 | O/P Mon         |
| PXA Signal Analyser          | Keysight Technologies | N9030A                       | 4654       | 12                                | 06-Oct-2018     |
| DMM                          | Fluke                 | 179                          | 4006       | 12                                | 13-Dec-2018     |
| Coupler                      | ATM                   | 90-302A-30-6-6               | H328005-01 | -                                 | O/P Mon         |
| Load                         | Pasternack            | PE6824                       | -          | -                                 | TU              |
| Attenuator (20dB, 100W)      | Weinschel             | 48-20-43                     | 4870       | 12                                | 17-Jul-2019     |
| Attenuator (30dB, 100W)      | Weinschel             | 48-30-43                     | 4871       | 12                                | 17-Jul-2019     |
| Cable (18GHz                 | Rosenberger           | LU7-036-2000                 | 5038       | -                                 | O/P Mon         |
| Cable (18GHz                 | Rosenberger           | LU7-036-2000                 | 5039       | -                                 | O/P Mon         |
| Waveguide                    | Quasar                | QTT16SB-UBR-<br>UBR-18       | -          | -                                 | O/P Mon         |
| Waveguide                    | Quasar                | QTT18SB-UBR-<br>UBR-20       | -          | -                                 | O/P Mon         |
| Waveguide                    | Quasar                | QTT20SB-UBR-<br>UBR-22       | -          | -                                 | O/P Mon         |
| Waveguide                    | Quasar                | QTT16SB-UBR-<br>UBR-17       | -          | -                                 | O/P Mon         |
| Waveguide                    | Quasar                | QTT17SB-UBR-<br>UBR-18       | -          | -                                 | O/P Mon         |
| Waveguide                    | Quasar                | QTT18SB-UBR-<br>UBR-19       | -          | -                                 | O/P Mon         |
| Waveguide adaptor            | Quasar                | QWC19SB-UBR-<br>SMAF         | -          | -                                 | O/P Mon         |
| Waveguide adaptor            | Quasar                | QWC22SB-UBR-<br>K-F          | -          | -                                 | O/P Mon         |
| Waveguide adaptor            | Quasar                | QWC20SB-UBR-<br>K-F          | -          | -                                 | O/P Mon         |

Table 22

TU – Traceability Unscheduled O/P Mon – Output Monitored using calibrated equipment



# 2.4 Radiated Spurious Emissions

### 2.4.1 Specification Reference

FCC 47 CFR Part 80, Clause 80.211(f) FCC 47 CFR Part 2, Clause 2.1053 Industry Canada RSS-238, Clause 4.3 Industry Canada RSS-GEN, Clause 6.13

#### 2.4.2 Equipment Under Test and Modification State

NKE - 2255, Serial Number: LC30003 - Modification State 0

#### 2.4.3 Date of Test

29-July-2018

#### 2.4.4 Test Method

This test was performed in accordance with ANSI C63.26, clause 5.7.

#### 2.4.5 Environmental Conditions

Ambient Temperature 19.8 °C Relative Humidity 66.1 %

#### 2.4.6 Test Results

Transmit - 120 V AC 60 Hz

| Frequency ( | MHz) | QP Level (dBuV/m) | QP Limit (dBuV/m) | QP Margin (dB) | Angle(Deg) | Height(m) | Polarity |
|-------------|------|-------------------|-------------------|----------------|------------|-----------|----------|
| *           |      |                   |                   |                |            |           |          |

Table 9 - 30 MHz to 1 GHz - Radiated

<sup>\*</sup>No emissions were detected within 10 dB of the limit

| Frequency | F     | Result (dBµV/m)                 | Limit (dBµ              | Margin (dB)         |       |         |
|-----------|-------|---------------------------------|-------------------------|---------------------|-------|---------|
| (GHz)     | Peak  | Duty Cycle Corrected<br>Average | Industry Canada<br>Peak | FCC Pt80<br>Average | Peak  | Average |
| 18.819    | 81.43 | 59.84                           | 109.2 dBuV/m            | 82.2 dBuV/m         | 27.77 | 22.36   |
| 28.227    | 85.20 | 63.62                           | 109.2 dBuV/m            | 82.2 dBuV/m         | 24.30 | 18.58   |

Table 10 - 9410 MHz - 1 GHz to 40 GHz - Radiated

To determine the average value of each emission, a peak measurement was performed, and a duty cycle correction was applied to the peak measurement. Duty (dB) = 20log (On time/ (On time + Off time)) = -21.59dB measured over 100mS burst. Testing was performed with LP3.

The limits have been converted to field strength using equation c) from ANSI c63.26 clause 5.2.7 The field strength limit dBuV/m = EIRP (dBm) - 20log(D) + 104.8 where D is the measurement distance.

FCC Pt 80 Field strength limit =  $-13 - 20\log(3) + 104.8 = 82.2 \text{ dBuV/m}$ 



Industry Canada Limit =  $14 - 20\log(3) + 104.8 = 109.2 \text{ dBuV/m}$ 

No other emissions were detected within 10 dB of the limit



Figure 38 - 30 MHz to 1 GHz - Combined Polarity



Figure 39 - 1 GHz to 8 GHz - Combined Polarity





Figure 40 - 8 GHz to 18 GHz - Combined Polarity



Figure 41 - 18 GHz to 40 GHz - Combined Polarity

# FCC 47 CFR Part 80, Limit Clause 80.211(f)

On any frequency removed from the assigned frequency by more than 50 percent up to and including 100 percent of the authorized bandwidth: At least 25 dB;



On any frequency removed from the assigned frequency by more than 100 percent up to and including 250 percent of the authorized bandwidth: At least 35 dB;

On any frequency removed from the assigned frequency by more than 250 percent of the authorized bandwidth: At least 43 plus 10log<sub>10</sub> (mean power in watts) dB.

# Industry Canada RSS-238, Limit Clause 4.3

The unwanted emission and the transmitter power shall be measured using a peak detector.

The unwanted emission power in any 1 MHz bandwidth shall be attenuated below the transmitter peak power by at least 20 dB per decade from the edge of the 40dB bandwidth and beyond.

The unwanted emissions power shall not need to be attenuated more than 60 dB below the transmitter peak power.



# 2.4.7 Test Location and Test Equipment Used

This test was carried out in EMC Chamber 7.

| Instrument                                | Manufacturer      | Type No                | TE No | Calibration<br>Period<br>(months) | Calibration Due |
|-------------------------------------------|-------------------|------------------------|-------|-----------------------------------|-----------------|
| Antenna 18-40GHz<br>(Double Ridge Guide)  | Link Microtek Ltd | AM180HA-K-TU2          | 230   | 24                                | 02-May-2020     |
| Turntable Controller                      | Heinrich Diesel   | HD 050                 | 280   | -                                 | TU              |
| Antenna with permanent attenuator (Bilog) | Schaffner         | CBL6143                | 287   | 24                                | 15-May-2020     |
| Pre-Amplifier                             | Phase One         | PS04-0086              | 1533  | 12                                | 12-Jan-2019     |
| 18GHz - 40GHz Pre-<br>Amplifier           | Phase One         | PSO4-0087              | 1534  | 12                                | 02-Feb-2019     |
| Screened Room (7)                         | Siemens           | Siemens                | 1547  | 0                                 | 18-July-2019    |
| Multimeter                                | Iso-tech          | IDM 101                | 2118  | 12                                | 08-Feb-2019     |
| Signal Generator                          | Rohde & Schwarz   | SMR40                  | 3171  | 12                                | 17-Nov-2018     |
| EMI Test Receiver                         | Rohde & Schwarz   | ESU40                  | 3506  | 12                                | 22-Nov-2018     |
| Tilt Antenna Mast                         | Maturo Gmbh       | TAM 4.0-P              | 3916  | -                                 | TU              |
| Mast Controller                           | Maturo Gmbh       | NCD                    | 3917  | -                                 | TU              |
| 1501A 4.0M Km Km<br>Cable                 | Rhophase          | KPS-1501A-4000-<br>KPS | 4301  | 12                                | 19-Feb-2019     |
| Cable (Rx, Km-Km 2m)                      | Scott Cables      | KPS-1501-2000-<br>KPS  | 4526  | 6                                 | 31-Aug-2018     |
| Cable (Yellow, Rx, Km-Km 2m)              | Scott Cables      | KPS-1501-2000-<br>KPS  | 4527  | 6                                 | 15-Aug-2018     |
| Double Ridged<br>Waveguide Horn Antenna   | ETS-Lindgren      | 3117                   | 4722  | 12                                | 01-Mar-2019     |
| 9m N type RF cable                        | Rosenberger       | 2303-0 9.0m PNm        | 4827  | 6                                 | 04-Jan-2019     |
| Hygrometer                                | Rotronic          | HP21                   | 4989  | 12                                | 26-Apr-2019     |

Table 11

TU - Traceability Unscheduled



# 2.5 RF Output Power

# 2.5.1 Specification Reference

FCC 47 CFR Part 80, Clause 80.215(b)(3) FCC 47 CFR Part 2 Clause 2.1046 Industry Canada RSS-238, Clause 4.2 Industry Canada RSS-GEN, Clause 6.12

### 2.5.2 Equipment Under Test and Modification State

NKE – 2255, Serial Number: LC30003 - Modification State 0

#### 2.5.3 Date of Test

25-July-2018

#### 2.5.4 Test Method

Using a Network Analyser, the path loss between the EUT and the Power Sensor was measured. The loss was entered as a correction into the Power Meter which was connected via attenuators and a WR90 30dB Waveguide Directional Coupler to the EUT. Peak power measurements were made, and the Average derived by applying a Duty Cycle correction factor to the results based on the measured pulse characteristics, (see section 2.2).

#### 2.5.5 Environmental Conditions

Ambient Temperature 19.6 - 23.0 °C Relative Humidity 33.0 - 59.7 %

# 2.5.6 Test Results

Transmit - 120 V AC 60 Hz

| Pulse type | Nominal Centre Frequency | Peak Output Power |       | Average Carrier Power |       |
|------------|--------------------------|-------------------|-------|-----------------------|-------|
|            |                          | W                 | dBm   | W                     | dBm   |
| LP3        | 9410 MHz                 | 20511.6           | 73.12 | 3.11                  | 34.92 |
| LP2        | 9410 MHz                 | 20606.3           | 73.14 | 8.77                  | 39.43 |
| LP1        | 9410 MHz                 | 20370.4           | 73.09 | 11.55                 | 40.63 |
| MP3        | 9410 MHz                 | 20090.9           | 73.03 | 11.28                 | 40.52 |
| MP2        | 9410 MHz                 | 19952.6           | 73.00 | 12.00                 | 40.79 |
| MP1        | 9410 MHz                 | 20183.7           | 73.05 | 13.16                 | 41.19 |
| SP1        | 9410 MHz                 | 18535.3           | 72.68 | 11.12                 | 40.46 |

**Table 24 - RF Output Power** 

The antenna gain was declared by the manufacturer as: 29 dBi.



# FCC 47 CFR Part 80.215(a)(3) and Industry Canada RSS-238, Limit Clause 4.2

The transmitter output power shall not exceed 60 kW and the antenna gain shall not exceed 35 dBi.

# 2.5.7 Test Location and Test Equipment Used

This test was carried out in RF Laboratory 2.

| Instrument                             | Manufacturer         | Type No        | TE No      | Calibration<br>Period<br>(months) | Calibration Due |
|----------------------------------------|----------------------|----------------|------------|-----------------------------------|-----------------|
| Hygromer                               | Rotronic             | Hygropalm      | 2404       | 12                                | 26-Apr-2019     |
| Network Analyser                       | Rohde & Schwarz      | ZVA 40         | 3548       | 12                                | 02-Oct-2018     |
| P-Series Power Meter                   | Agilent Technologies | N1911A         | 3980       | 12                                | 28-Sep-2018     |
| 50 MHz-18 GHz<br>Wideband Power Sensor | Agilent Technologies | N1921A         | 3982       | 12                                | 28-Sep-2018     |
| Calibration Unit                       | Rohde & Schwarz      | ZV-Z54         | 4368       | 12                                | 06-Mar-2019     |
| Coupler                                | ATM                  | 90-302A-30-6-6 | H328005-01 | -                                 | O/P Mon         |
| Load                                   | Pasternack           | PE6824         | -          | -                                 | TU              |
| Attenuator (20dB, 100W)                | Weinschel            | 48-20-43       | 4870       | 12                                | 17-Jul-2019     |
| Attenuator (30dB, 100W)                | Weinschel            | 48-30-43       | 4871       | 12                                | 17-Jul-2019     |
| Cable (18GHz                           | Rosenberger          | LU7-036-2000   | 5038       | -                                 | O/P Mon         |
| Cable (18GHz                           | Rosenberger          | LU7-036-2000   | 5039       | -                                 | O/P Mon         |

Table 25

O/P Mon – Output Monitored using calibrated equipment TU = Traceability Unscheduled



#### 2.6 Modulation Characteristics

#### 2.6.1 Specification Reference

FCC 47 CFR Part 80, Clause 80.205 and 80.207 FCC 47 CFR Part 2, Clause 2.1047(d) Industry Canada RSS-238, Clause 2.2 & 3.2(a)

# 2.6.2 Equipment Under Test and Modification State

NKE - 2255, Serial Number: LC30003 - Modification State 0

#### 2.6.3 Date of Test

23-July-2018

#### 2.6.4 Test Method

The EUT was connected via a WR90 Waveguide Directional Coupler and attenuators to a Peak Power Analyser and the Width and Rise Time of each pulse type was measured.

The EUT was then connected via the WR90 Waveguide Directional Coupler and attenuators to a Spectrum Analyser and the Pulse Repetition Interval, (PRI), of each pulse type was measured. The Pulse Repetition Rate was calculated (1/PRI) and recorded.

The emission designator for the product was: P0N

#### 2.6.5 Environmental Conditions

Ambient Temperature 24.6 °C Relative Humidity 54.1 %

#### 2.6.6 Test Results

Transmit - 120 V AC 60 Hz

| Pulse type | Radar Pulse Width (µs) | Repetition Rate (Hz) | Pulse Rise Time (ns) |
|------------|------------------------|----------------------|----------------------|
| LP3        | 1.175                  | 510.73               | 18.888               |
| LP2        | 1.002                  | 650.62               | 19.355               |
| LP1        | 0.8004                 | 751.31               | 16.764               |
| MP3        | 0.4006                 | 1401.35              | 14.457               |
| MP2        | 0.2986                 | 1898.61              | 15.097               |
| MP1        | 0.1889                 | 2252.25              | 13.119               |
| SP1        | 0.0673                 | 2249.72              | 10.841               |

**Table 26 - Modulation Characteristics** 



# FCC 47 CFR Part 2, Limit Clause 2.1047(d), RSS-238 Clause 3.2(a)

Other types of equipment. A curve or equivalent data which shows that the equipment will meet the modulation requirements of the rules under which the equipment is to be licensed.

# 2.6.7 Test Location and Test Equipment Used

This test was carried out in RF Laboratory 2.

| Instrument                   | Manufacturer          | Type No        | TE No      | Calibration<br>Period<br>(months) | Calibration Due |
|------------------------------|-----------------------|----------------|------------|-----------------------------------|-----------------|
| Programmable Power<br>Supply | California Inst       | 2001RP         | 1898       | -                                 | TU              |
| Hygromer                     | Rotronic              | Hygropalm      | 2404       | 12                                | 26-Apr-2019     |
| Network Analyser             | Rohde & Schwarz       | ZVA 40         | 3548       | 12                                | 02-Oct-2018     |
| Peak Power Analyser          | Hewlett Packard       | 8990A          | 0107       | 12                                | 17-Aug-2019     |
| Power Sensor                 | Hewlett Packard       | 84812A         | 2743       | 12                                | 17-Aug-2019     |
| Calibration Unit             | Rohde & Schwarz       | ZV-Z54         | 4368       | 12                                | 06-Mar-2019     |
| PXA Signal Analyser          | Keysight Technologies | N9030A         | 4654       | 12                                | 06-Oct-2018     |
| Attenuator (20dB, 100W)      | Weinschel             | 48-20-43       | 4870       | 12                                | 17-Jul-2019     |
| Attenuator (30dB, 100W)      | Weinschel             | 48-30-43       | 4871       | 12                                | 17-Jul-2019     |
| Coupler                      | ATM                   | 90-302A-30-6-6 | H328005-01 | -                                 | O/P Mon         |
| Load                         | Pasternack            | PE6824         | -          | -                                 | TU              |
| Cable (18GHz                 | Rosenberger           | LU7-036-2000   | 5038       | -                                 | O/P Mon         |
| Cable (18GHz                 | Rosenberger           | LU7-036-2000   | 5039       | -                                 | O/P Mon         |

Table 27

TU – Traceability Unscheduled O/P Mon – Output Monitored using calibrated equipment



# 3 Photographs

# 3.1 Test Setup Photographs



Figure 42 – Radiated Setup





Figure 43 – Conducted Setup



Figure 44 – Conducted Setup



# 4 Measurement Uncertainty

For a 95% confidence level, the measurement uncertainties for defined systems are:

| Test Name                               | Measurement Uncertainty                                |
|-----------------------------------------|--------------------------------------------------------|
| Occupied Bandwidth                      | ± 1444 Hz                                              |
| Transmitter Frequency Stability         | ± 2610 kHz                                             |
| Spurious Emissions at Antenna Terminals | ± 3.45 dB                                              |
| Radiated Spurious Emissions             | 30 MHz to 1 GHz: ± 5.2 dB<br>1 GHz to 40 GHz: ± 6.3 dB |
| RF Output Power                         | ± 0.96 dB                                              |
| Modulation Characteristics              | ± 5%                                                   |