§ 26. Лабораторная работа № 6. Построение модели множественной линейной корреляции

Цельработы: овладение способами построения модели множественной линейной корреляции, выработка умений и навыков нахождения параметров уравнения, оценки надежности уравнения регрессии и его параметров, проведения экономической интерпретации полученных результатов.

Содержание работы: на основании опытных данных требуется:

- 1. Определить форму связи между факторными и результативными признаками, построив корреляционные поля на плоскости для каждой пары факторов. Записать уравнение множественной регрессии.
 - 2. Произвести отбор факторов, включаемых в модель.
- 3. Определить тесноту связи между факторами, включенными в модель множественной линейной корреляции.
 - 4. Найти оценки уравнения регрессии по методу наименьших квадратов.
- 5. Проверить адекватность полученного модельного уравнения регрессии тремя способами:
 - с помощью коэффициента детерминации R^2 ;
 - по критерию Фишера;
 - с помощью средней ошибки аппроксимации.
 - 6. Определить воздействие неучтенных в модели факторов.
 - 7. Дать экономическую интерпретацию найденных оценок уравнения регрессии.
- 3 а д а ч а. Исходные данные для признаков X_1 , X_2 , X_3 , Y для различных нефтегазодобывающих управлений приведены в табл. 40:

Таблица 40

Признаки		Значение признаков на различных НГДУ								
X_1	0,92	0,93	0,89	0,90	0,90	0,89	0,92	0,91	0,93	0,89
X_2	45	47	42	46	43	45	48	46	48	44
X_3	69	71	64	66	65	63	68	66	69	65
Y	35	36	31	33	34	32	38	34	37	33

В таблице обозначено: X_1 – коэффициент эксплуатации скважин; X_2 – дебит скважин (тн/сут.); X_3 – уровень автоматизации труда (%); Y – производительность труда (тн/чел.). Определим форму связи. Для чего строим корреляционные поля (рис. 13-18),

по которым можно предположить, что зависимость между факторными признаками X_1 , X_2 , X_3 и результативным признаком Y может носить линейный характер.

Решим вопрос о включении факторных признаков X_1 , X_2 , X_3 в уравнение линейной регрессии. Найдем коэффициенты парной корреляции. Предварительно составим расчетную табл. 41.

Пользуясь табл. 41 и формулами, находим

$$\hat{S}_{X_1}^2 = \frac{1}{n-1} [(X_1 - \overline{X}_1)^2] = 0,00236/9 = 0,000262, \ \hat{S}_{X_1} = 0,0162.$$

$$\hat{S}_{X_2}^2 = \frac{1}{n-1} [(X_2 - \overline{X}_2)^2] = 37,8/9 = 4,2, \ \hat{S}_{X_2} = 2,0494.$$

$$\hat{S}_{X_3}^2 = \frac{1}{n-1} [(X_3 - \overline{X}_3)^2] = 58,4/9 = 6,4(8), \ \hat{S}_{X_3} = 2,5473.$$

$$\hat{S}_Y^2 = \frac{1}{n-1} [(Y - \overline{Y})^2] = 44,1/9 = 4,9, \ \hat{S}_Y = 2,2136.$$

$$r_{X_1X_2} = \frac{\overline{X_1X_2} - \overline{X_1}\overline{X_2}}{\hat{S}_{X_1} \cdot \hat{S}_{X_2}} = \frac{41,246 - 0,908 \cdot 45,4}{0,0162 \cdot 2,0494} = 0,69.$$

$$r_{X_1X_3} = \frac{\overline{X_1X_3} - \overline{X_1} \cdot \overline{X_3}}{\hat{S}_{X_1} \hat{S}_{X_3}} = \frac{60,508 - 0,908 \cdot 66,6}{0,0162 \cdot 2,5473} = 0,85,$$

 $r_{X_2X_3} = \frac{\overline{X_2} \cdot \overline{X_3}}{\hat{S}_{X_3} \cdot \hat{S}_{X_3}} = \frac{3026,8-45,4\cdot66,6}{2,0494\cdot2,5473} = 0,60$.

Таблица 41

-	Среднее	806.0	45,4	9'99	34,3	31,173	1560,5	2288,5	41,246	3026,8	805,09							
	Сумма Ср	80'6	454	999	343	311,73	15605	22885	412,46	302683	80'999	8,247	20648	44414	2360	36,4	58,4	44,1
	•	68'0	44	99	33	29,37	1452	2145	39,16	2860	57,85	0,7921	9861	4225	324	1,96	2,56	1,69
		0,93	48	89	33	34,41	1776	2553	44,64	3312	64,17	0,6849	2304	4761	484	9, 76	5,76	7,29
		16'0	46	99	*	30,94	1564	2244	41,86	3036	90'09	0,8281	2116	4356	4	96'0	96'0	0,09
	8	0,92	48	89	38	34,96	1824	2584	44,16	3264	62,56	0,8464	2304	4624	144	9,76	1,96	13,69
	н факторов	68'0	45	63	32	28,48	1440	2016	40,05	2835	56,07	0,7921	2025	3969	324	0,16	12,96	5,29
	Значения	6'0	43	65	34	30,6	1462	2210	38,7	2795	58,5	0,81	1849	4225	64	5,76	2,56	0,09
	3	6'0	46	99	33	29,7	1518	2178	41,4	3086	59,4	0,81	2116	4356	64	96,0	96'0	1,69
		68'0	42	2	31	27,59	1302	1984	37,38	3688	56,96	0,7921	1764	4096	324	11,56	6,76	10,89
		0,93	47	7.1	36	33,48	1692	2556	43,71	3337	66,03	0,6849	2209	5041	484	2,56	19,36	2,89
		0,92	45	69	35	32,2	1575	2415	41,4	3105	63,48	0,8464	2025	4761	144	0,16	5,76	0,49
	Факторы	¹ X ¹	χ_2	Х3	Y	$X_1 Y$	X_2Y	$\chi_3 Y$	X_1X_2	X_2X_3	X_2X_1	X_1^2	χ_2^2	χ_3^2	$10^6 (X_1 - \bar{X}_1)^2$	$(X_2 - \overline{X}_2)^2$	$(X_3 - \bar{X_3})^2$	$(Y - \overline{Y})^2$

По найденным коэффициентам парной корреляции видно, что сильно коррелируют между собой факторы X_1 или X_3 . Для решения вопроса о том, какой из факторов X_1 или X_3 следует исключить из модели множественной линейной корреляции, вычислим коэффициенты парной корреляции r_{YX1} и r_{YX3}

$$r_{XY_1} = \frac{\overline{YX_1} - \overline{Y} \cdot \overline{X_1}}{\hat{S}_Y \cdot \hat{S}_{X_1}} = \frac{31,173 - 34,3 \cdot 0,908}{2,2136 \cdot 0,0162} = 0,80,$$

$$r_{YX_3} = \frac{\overline{YX_3} - \overline{Y} \cdot \overline{X}_3}{\hat{S}_Y \cdot \hat{S}_{Y_3}} = \frac{2288,5 - 34,3 \cdot 66,6}{2,2136 \cdot 2,5473} = 0,73.$$

Так как $r_{YX1} > r_{YX3}$, то между признаками X_1 и Y связь сильнее, чем между X_3 и Y. Этот факт подтверждается путем вычисления коэффициентов частной корреляции $r_{YX1(X3)}$ и $r_{YX3(X1)}$ по формуле

$$r_{YX_{1}(X_{3})} = \frac{r_{YX_{1}} - r_{X_{1}X_{2}} \cdot r_{YX_{3}}}{\sqrt{(1 - r_{X_{1}X_{3}}^{2})(1 - r_{YX_{3}}^{2})}} = \frac{0.80 - 0.85 \cdot 0.73}{\sqrt{(1 - 0.85^{2})(1 - 0.73^{2})}} = 0.50,$$

$$r_{YX_3(X_1)} = \frac{r_{YX_3} - r_{X_1X_3} \cdot r_{YX_1}}{\sqrt{(1 - r_{X_1X_3}^2)(1 - r_{YX_1}^2)}} = \frac{0.73 - 0.85 \cdot 0.80}{\sqrt{(1 - 0.85^2)(1 - 0.80^2)}} = 0.16.$$

Поэтому из модели множественной линейной корреляции исключаем фактор X_3 . Тогда в модель будут включены факторы X_1 и X_2 и уравнение регрессии запишется в виде

$$\hat{Y}_{1,2} = a_0 + a_1 X_1 + a_2 X_2$$

Включение фактора X_2 в модель обосновано значимостью коэффициента парной корреляции r_{YX2} :

$$r_{YX_2} = \frac{\overline{YX_2} - \overline{Y \cdot X_2}}{\hat{S}_Y \hat{S}_{X_2}} = \frac{1560, 5 - 34, 3 \cdot 45, 4}{2, 2136 \cdot 2, 0494} = 0,72$$
.

Для выяснения вопроса о силе линейной связи между факторами, включенными в модель, вычисляем множественный коэффициент корреляции R по формуле

$$R = \sqrt{\frac{r_{YX_1}^2 + r_{YX_2}^2 - 2r_{X_1X_2} \cdot r_{YX_1} \cdot r_{YX_2}}{1 - r_{X_1X_2}^2}} = \sqrt{\frac{0.80^2 + 0.72^2 - 2 \cdot 0.69 \cdot 0.80 \cdot 0.72}{1 - 0.69^2}} = 0.83.$$

Так как в нашем примере объем выборки небольшой (n=10), то произведем корректировку R по формуле

$$\hat{R} = \sqrt{1 - (1 - R^2) \frac{n-1}{n-k}} = \sqrt{1 - (1 - 0.83^2) \frac{9}{8}} = 0.81.$$

Проверяем значимость $R = \hat{R}$ по критерию Стьюдента. Вычисляем среднеквадратическую ошибку S_R по формуле $S_R = \frac{1}{\sqrt{n-1}} = \frac{1}{3} = 0,3,$

Вычисляем статистику
$$t_H = \frac{\hat{R}}{S_R} = \frac{0.81}{0.3} = 2.7.$$

По таблице критических точек распределения Стьюдента при уровне значимости $\alpha=0,05$ с числом степеней свободы k=n-2=10-2=8 находим $t_T=1,86$. Так как $t_H=2,7>t_T$, то делаем вывод, что $R=\hat{R}$ значим. Для нахождения оценок $a_0,\ a_1,\ a_2$ уравнения регрессии $\hat{Y}_{1,2}=a_0+a_1X_1+a_2X_2$ решаем систему

$$\begin{cases} 10a_0 + 9,08a_1 + 454a_2 = 343, \\ 9,08a_0 + 8,247a_1 + 412,46a_2 = 311,73, \\ 454a_0 + 412,46a_1 + 20648a_2 = 15605. \end{cases}$$

Решив эту систему, получаем $a_2 = 0,360611$, $a_1 = 86,3271$, $a_0 = -60,45674$. Тогда уравнение регрессии, устанавливающее зависимость производительности труда Y от коэффициента эксплуатации X_1 и дебита скважин X_2 запишется в виде $\hat{Y}_{1,2} = -60,45674 + 86,3271X_1 + 0,360611X_2$.

Проверяем адекватность уравнения регрессии. Используем коэффициент детерминации R^2 , полагая $R = \hat{R}$. Для полученной модели $\hat{R}^2 = 0.81^2 = 0.66$. Это означает, что полученная модель приблизительно на 66% объясняет изменение производительности труда в зависимости от изменения включенных в модель факторов X_1 и X_2 , что является не плохим показателем. Проведем проверку модели на адекватность по критерию Фишера — Снедекора. Найдем статистику F_H по формуле (110), полагая в ней $R = \hat{R}$

$$F_{\rm H} = \frac{\hat{R}^2 \cdot (n-p-1)}{(1-\hat{R}^2) \cdot p} = \frac{0.81^2 \cdot (10-2-1)}{(1-0.81^2) \cdot 2} = 3.5$$

По таблице критических точек распределения Фишера — Снедекора при уровне значимости $\alpha=0,05$ и числах степеней свободы $k_1=p=2, k_2=n-p-1=10-2-1=7$ (p — число факторов X_i , включенных в модель, n — объем выборки) находим $F_{\rm T}=F_{a;k1;k2}=F_{0,05;2;7}=3,26$. Так как $F_{\rm H}>F_{\rm T}$, то найденное уравнение регрессии, устанавливающее зависимость производительности труда на десяти нефтегазодобывающих управлениях (НГДУ) от коэффициента эксплуатации скважин X_1 и дебита скважин X_2 , значимо описывает опытные данные и может быть принято для руководства.

Оценим адекватность уравнения регрессии по средней ошибке аппроксимации ε , которую вычислим по формуле

$$\varepsilon = \frac{1}{p} \sum_{Y} \frac{\left| Y - \hat{Y}_{1,2} \right|}{Y} \cdot 100 \%.$$

Для нахождения суммы, входящей в формулу, составляем расчетную табл. 42.

Таблица 42

			140111144 12
Y	$\hat{Y}_{1.2}$	$Y - \hat{Y}_{1.2}$	$\frac{\mid Y - \hat{Y}_{1,2} \mid}{Y}$
35	35,2	0,2	0,000114
36	36,8	0,8	0,017778
31	31,5	0,5	0,005952
33	33,8	0,8	0,019394
34	32,7	1,3	0,049706
32	32,6	0,6	0,008
38	36,3	1,7	0,076053
34	34,7	0,7	0,014412
37	37,1	0,1	0,00027
33	32,2	0,8	0,019394
			0,211073

По табл. 42 находим: $\varepsilon = (0.211073: 2) \times 100\% = 10.6\%$.

Среднеквадратическая ошибка небольшая, что дает основание считать, что построенная модель адекватно описывает опытные данные. Итак, все три метода проверки модели на адекватность подтвердили гипотезу о том, что уравнение регрессии $\hat{Y}_{1,2} = -60,45674 + 86,3271X_1 + 0,360611X_2$ в целом статистически значимо и хорошо соответствует данным наблюдений.

Дадим экономическую интерпретацию найденных коэффициентов уравнения регрессии.

Значение свободного члена $a_0 = -60,45674$ характеризует влияние неучтенных в модели факторов, в частности фактора X_3 (уровень автоматизации труда). Знак минус говорит о том, что отсутствие этого фактора в модели отрицательно сказывается на повышении производительности труда. Величина коэффициента a_1 =86,3271 показывает, что при увеличении коэффициента эксплуатации на 0,01 производительность труда увеличивается в среднем на 86,3271 тн/чел. Коэффициент a_2 = 0,360611 показывает, что при увеличении дебита скважин на одну тонну производительность труда увеличивается в среднем на 0,360611.

Варианты № 1 - №10.

Данные экспериментального определения производительности Y труда в зависимости от коэффициента X_1 эксплуатации скважин, дебита X_2 скважин, уровня X_3 автоматизации труда приведены в табл. 43. Пользуясь данными табл. 43, выполнить задание (по образцу приведенного выше примера) по вариантам, номера предприятий (НГДУ) для которых указаны в табл. 44.

Таблица 43

pei		Значения факторов на различных НГДУ														
CTO		Номера НГДУ														
Факторы	1	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16														
X_1	0,93	0,95	0,94	0,89	0,91	0,90	0,92	0,93	0,89	0,90	0,90	0,89	0,92	0,91	0,9	0,89
X_2	51	40	46	40	49	43	45	44	42	46	40	49	50	46	48	51
<i>X</i> ₃	71	74	72	65	68	67	69	72	65	68	65	66	71	67	70	65
Y	35	32	30	31	33	30	34	35	31	33	32	32	31	34	35	30

Здесь: X_1 — коэффициент эксплуатации скважин (в долях), X_2 — дебит скважин (тн/сутки), X_3 — уровень автоматизации труда (%), Y — производительность труда (тн/чел.).

Таблица 44

Варианты	Номера предприятий	Варианты	Номера предприятий
1	1-3, 7-12, 16	6	4-6, 10-16
2	1-3, 7-9, 13-16	7	1-6, 13-16
3	1-6, 10-12, 16	8	7-16
4	1-3, 10-16	9	4-9, 13-16
5	4-12, 16	10	1-9, 16

Вариант № 11.

Прогнозные показатели разработки по нефти на одном из месторождений Тюменской области, — характеризующие зависимость среднего дебита Y действующих скважин по нефти, от фонда X_1 действующих нагнетательных скважин на конец года, средней приемистости X_2 нагнетательных скважин и фонда X_3 механизированных скважин на конец года, — приведены в табл. 45.

Таблица 45

<i>Y</i> (т/сут.)	X ₁ (шт.)	$X_2 ({\rm m}^3/{\rm cyr.})$	X ₃ (шт.)
3,5	3	31	26
3,5	5	30	27
3,6	6	29	26
3,6	6	24	26
3,5	7	23	25
3,5	7	20	25
3,4	7	20	25
3,3	8	20	24
3,4	8	17	24
3,3	8	17	24
3,2	8	17	23
3,2 3,2	8	17	23
3,1	7	16	22
3,2	7	19	22
3,1	8	18	21
3,1	8	16	21
3,0	8	16	20
3,1	8	16	20
3,0	8	15	19
3,0	8	15	19
		_	4

Вариант № 12.

Прогнозные показатели разработки по нефти на одном из месторождений Тюменской области, — характеризующие зависимость объема Y добычи жидкости с начала разработки, от годовой добычи X_1 жидкости из перешедших скважин, среднегодовой обводненности X_2 и от среднего дебита X_3 действующих скважин по жидкости, — приведены в табл. 46.

Таблица 46

			таолица чо
<i>Y</i> (тыс. т)	X ₁ (тыс. т)	X ₂ (%)	X ₃ (т/сут.)
107	34,5	2,8	3,9
142	34,4	2,8	4
176	34,3	2,7	4
210	34,2	2,6	4,1
244	34,1	2,5	4,1
278	34	2,4	4,1
312	33,8	2,4	4,3
346	33,7	2,3	4,3
379	33,6	2,2	4,2
413	33,4	2,2	4,4
446	33,2	2,1	4,4
479	33,1	2,0	4,6
512	32,9	2,0	4,5
545	32,7	1,9	4,7
577	32,5	1,8	4,7

Вариант № 13.

Прогнозные показатели разработки по нефти на одном из месторождений Тюменской области, — характеризующие зависимость добычи Y нефти с начала разработки от суммарной добычи X_1 нефти из скважин предыдущего года, падения X_2 добычи нефти и фонда X_3 добывающих скважин на конец года, — приведены в табл. 47.

Таблипа 47

			таблица +/
<i>Y</i> (тыс.т)	X_1 (тыс.т)	X ₂ (тыс.т)	X ₃ (шт.)
100,5	30,4	-0,5	27
102	33	-0,9	26
133,1	32,1	-1	26
163,1	31,1	-0,9	25
192,6	30,2	-0,9	25
220,9	29,3	-0,9	25
248,5	28,4	-0,9	24
275,1	27,5	-0,8	24
301	26,7	-0,8	23
326,1	25,9	-0,8	23
350,4	25,1	-0,7	22
374	24,3	-0,7	21
379,5	23,6	-0,6	20

Вариант № 14.

Прогнозные показатели разработки по нефти на одном из месторождений Тюменской области, — характеризующие зависимость добычи Y нефти с начала разработки от суммарной добычи X_1 нефти из скважин предыдущего года, падение X_2 добычи нефти и коэффициента X_3 нефтеизвлечения, — приведены в табл. 48

Таблица 48

			таолица чо
<i>Y</i> (тыс.т)	X ₁ (тыс. т)	X ₂ (тыс.т)	X ₃ (%)
286	22	-0,7	0,9
360	22,7	- 0,9	1,2
86,9	31,7	- 0,9	1,9
117,3	31,2	- 0,8	2,5
147,1	30,5	- 0,8	3,2
176,1	29,7	- 0,8	3,8
204,5	29	- 0,7	4,4
232,2	28,4	- 0,7	5,0
259,2	27,7	- 0,6	5,6
285,6	26,4	- 0,6	6,2
311,4	25,8	- 0,6	6,7
336,6	25,2	- 0,5	7,3
361,2	24,6	- 0,5	7,8
385,3	24	- 0,5	8,3
408,7	23,5	- 0,5	8,8

Вариант № 15.

Прогнозные показатели разработки по нефти на одном из месторождений Тюменской области, — характеризующие зависимость добычи Y жидкости с начала разработки от годовой добычи X_1 жидкости из перешедших скважин, среднегодовой обводненности X_2 и от среднего дебита X_3 действующих скважин по жидкости, — приведены в табл. 49.

			Таблица 49
<i>Y</i> (тыс.т)	X ₁ (тыс. т)	X ₂ (%)	X ₃ (т/сут.)
90	32,7	4,8	2,7
123	32,7	6,8	2,8
155	32,6	8,8	2,8
188	32,5	10,7	2,8
220	32,4	12,6	2,9
253	32,5	14,4	2,9
285	32,3	16,2	3,0
317	32,2	17,9	3,0
349	32,1	19,5	2,9
381	32	21,2	3,0
413	31,8	22,8	3,0
445	31,7	24,3	3,1
476	31,6	25,8	3,1
508	31,5	27,2	3,2
539	31,4	28,7	3,2

Вариант № 16.

Прогнозные показатели разработки по нефти на одном из месторождений Тюменской области, — характеризующие зависимость среднего дебита Y действующих скважин по нефти от фонда X_1 действующих нагнетательных скважин на конец года, средней приемистости X_2 нагнетательных скважин и темпа X_3 отбора от начальных извлекаемых запасов, — приведены в табл. 50.

Таблица 50

<i>Y</i> (т/сут.)	X_1 (шт.)	X ₂ (м ³ /сут.)	X ₃ (%)
3	1	50	2,5
2,7	2	43	2
2,6	3	31	2,3
2,7	5	27	2,2
2,6	6	22	2,1
2,6	6	22	2,2
2,6 2,5	6	22	2,1
2,5	7	19	2
2,5	7	19	2,1
2,5	8	16	1,9
2,4	8	16	1,9
2,4	8	16	1,8
2,4	7	15	1,8
2,3	8	15	1,7
2,3 2,3	7	18	1,7
2,3	7	18	1,9
2,2	8	16	2,3
2,2 2,3	7	15	1,9
2,3	8	15	2,1
2,2	8	15	2

Вариант № 17.

Прогнозные показатели разработки по нефти на одном из месторождений Тюменской области, — характеризующие зависимость добычи *У* нефти с начала разработки от коэффициента *X*1 нефтеизвлечения, темпа *X*2 отбора от начальных извлекаемых запасов и среднего дебита *X*3 действующих скважин по нефти, — приведены в табл. 51.

Таблица 51

		тиолици эт
<i>X</i> ₁ (%)	X ₂ (%)	X ₃ (т/сут.)
1,5	2,8	3,6
1,9	2,8	3,6
2,4	2,7	3,5
2,8	2,6	3,5
3,2	2,5	3,4
4	2,4	3,4
4,4	2,4	3,3
4,8	2,3	3,2
5,1	2,2	3,2
5,5	2,2	3,1
5,8	2,1	3,2
6,1	2	3,1
6,4	2	3,1
6,7	1,9	3
7	1,8	3,1
	1,5 1,9 2,4 2,8 3,2 4 4,4 4,8 5,1 5,5 5,8 6,1 6,4 6,7	1,5 2,8 1,9 2,8 2,4 2,7 2,8 2,6 3,2 2,5 4 2,4 4,4 2,4 4,8 2,3 5,1 2,2 5,5 2,2 5,8 2,1 6,1 2 6,4 2 6,7 1,9

Вариант № 18.

Прогнозные показатели разработки по нефти на одном из месторождений Тюменской области, — характеризующие зависимость добычи Y жидкости сначала разработки от закачки X_1 агента за год, закачки X_2 агента с начала разработки и среднего дебита X_3 действующих скважин по жидкости, — приведены в табл. 52.

Таблица 52

			тиолици 52
<i>Y</i> (тыс. т)	X ₁ (тыс. т/год)	X ₂ (тыс. т)	X ₃ (т/сут.)
123	44,5	161	2,8
155	44,3	205	2,8
188	44	249	2,8
220	43,7	293	2,9
253	43,4	336	2,9
285	43,1	380	3
317	42,8	422	3
349	42,5	465	2,9
381	42,3	507	3
413	42	549	3
445	41,7	591	3,1
476	41,4	632	3,1
508	41,4	673	3,2
539	40,8	714	3,2
570	40,5	755	3,3

Вариант № 19.

Прогнозные показатели разработки по нефти на одном из месторождений Тюменской области, — характеризующие зависимость суммарной добычи *Y* нефти из скважин предыдущего года от падения *X*1 добычи нефти, процента *X*2 падения добычи нефти и фонда *X*3 добывающих скважин на конец года, — приведены в табл. 53.

Таблица 53

<i>Y</i> (тыс. т)	X ₁ (тыс. т)	X ₂ (%)	X ₃ (шт.)
35	- 1,1	- 2,4	27
33	- 0,9	- 2,6	26
32,1	-1	-2,6	26
31,1	- 0,9	- 2,6	25
29,3	- 0,9	- 2,7	25
28,4	- 0,9	- 2,7	24
27,5	-0,8	- 2,7	24
25,9	- 0,8	-2,8	23
24,3	- 0,7	-2,8	22
22,9	- 0,7	-2,8	21
21,5	- 0,7	- 2,9	20
20,2	- 0,6	- 2,9 -2,9	19
20	- 0,5	-3,1	18

Вариант № 20.

Исходные данные по цеху акционерного объединения машиностроительного профиля за 10 месяцев, — характеризующие зависимость между себестоимостью Y произведенной продукции, стоимостью X_1 материалов, основной зарплатой X_2 и расходами X_3 по содержанию и эксплуатации оборудования, — представлены в табл. 54

Таблипа 54

			таолица эт
іс. руб.)	X ₁ (тыс. руб.)	X ₂ (тыс. руб.)	X ₃ (тыс. руб.)
2,3	36,4	11,5	14,2
3,8	36,6	11,5	13,9
1,5	37,9	11,6	15,2
3,1	38,2	11,8	16,5
4,3	39,4	12	16,7
2,6	39,8	12,2	17,2
5,4	40,1	12,5	18,3
4,6	41,5	12,6	18,6
6,8	42,6	12,8	19,4
8,3	45,7	13,2	20,7
	32,3 33,8 31,5 33,1 34,3 32,6 35,4 44,6 36,8	36,4 33,8 36,6 31,5 37,9 33,1 38,2 34,3 39,4 39,4 39,8 35,4 40,1 34,6 41,5 36,6 41,5 41,5 42,6	36,4 11,5 33,8 36,6 31,5 37,9 33,1 38,2 34,3 39,4 32,6 39,8 35,4 40,1 34,6 41,5 34,6 41,5 36,8 42,6 32,8 12,2 34,6 41,5 36,8 42,6

Вариант № 21.

Исходные данные по цеху акционерного объединения машиностроительного профиля за 10 месяцев, — характеризующие зависимость между себестоимостью произведённой продукции Y, стоимостью X_1 материалов, основной зарплатой X_2 и цеховыми расходами X_3 , — предоставлены в табл. 55.

Таблица 55

<i>Y</i> (тыс. руб.)	X ₁ (тыс. руб.)	X ₂ (тыс. руб.)	X ₃ (тыс. руб.)
81,5	37,9	11,6	9,5
82,3	36,5	11,5	10,6
83,8	36,6	11,5	7,8
83,1	38,2	11,8	9,1
84,3	39,4	12	13,6
82,6	39,8	12,2	14,1
85,4	40,1	12,5	14,6
84,6	41,5	12,6	15,1
86,8	42,6	12,8	16
88,3	45,7	13,2	17,2

Вариант № 22.

Имеются данные, характеризующие зависимость нормы расхода Y моторного масла на угар и замену марки $Y_0 = 0,55$ от максимальной мощности X_1 двигателя, максимального крутящего момента X_2 , линейной нормы X_3 расхода топлива, и скорости автомобиля X_4 (табл. 56).

Таблица 56

Y (л/100 л. т)	X ₁ (л. c)	X ₂ ()	Х ₃ (л)	X ₄ (км/ч)
1,3	39	7,4	12	40
1,3	42	7,6	8	75
0,8	53	8,2	8	90
1,3	53	8,2	11	70
2,2	70	20,5	21,5	40
2,2	72	17	17	80
1,8	73,5	10,8	10	90
2,2	75	17	16	30
	75	21	22,8	60
2,1	75	17	15	40
2,2	90	17,5	16	70
2,3	90	17	17	60
1,8	98	18,4	15	60
2,8	110	35	39	35
2,2	115	29	27	70
2,1	115	29	29	60
2,1	120	29	35	50
2	150	41	36	45
2	180	47,3	44	40
1,8	175	48	54	40

Вариант № 23.

Имеются данные, характеризующие зависимость нормы расхода Y моторного масла на угар и замену марки $Y_0 = 0.55$ от максимальной мощности X_1 двигателя, линейной нормы X_2 расхода топлива, скорости X_3 двигателя и контрольного расхода топлива при данной скорости X_4 (табл. 57).

Таблица 57

				raomina o ,
Y (л/100 л. т.)	X ₁ (л. с.)	X ₂ (л)	X ₃ (км/ч)	Х ₄ (л)
1,3	39	12	40	10
1,3	42	8	75	8
0,8	53	8	90	9,45
1,3	53	11	70	8,85
2,2	70	21,5	40	21
2,2	72	17	80	13
1,8	73,5	10	90	9,3
2,2	75	16	30	10,6
2	75	22,8	60	22
2,1	75	15	40	12
2,2	90	16	70	13,1
2,3	90	17	60	10,6
1,8	98	15	60	11,8
2,8	110	39	35	38,5
2,2	115	27	70	23
2,1	115	29	60	20
2,1	120	35	50	35
2	150	36	45	35,9
2	180	44	40	41
1,8	175	54	40	39
	•		·	

Вариант № 24.

Имеются данные, характеризующие зависимость нормы расхода Y моторного масла на угар и замену марки $Y_0 = 0,55$ от максимальной мощности X_1 двигателя, диаметра X_2 цилиндра, линейной нормы X_3 расхода топлива и скорости X_4 (табл. 58).

		-	-	Таблица 58
<i>Y</i> (л/100 л. т.)	X ₁ (л. с.)	X_2 (MM)	X ₃ (л)	X_4 (км/ч)
1,3	39	76	12	40
1,3	42	76	8	75
0,8	53	72	8	90
1,3	53	76	11	70
2,2	70	82	21,5	40
2,2	72	92	17	80
1,8	73,5	82	10	90
2,2	75	92	16	30
2	75	82	22,8	60
2,1	75	92	15	40
2,2	90	92	16	70
2,3	90	92	17	60
1,8	98	92	15	60
2,8	110	101,6	39	35
2,2	115	92	27	70
2,1	115	92	29	60
2,1	120	92	35	50
2	150	100	36	45
2	180	108	44	40
1,8	175	108	54	40

Вариант № 25 – № 30.

Имеются данные, характеризующие зависимость нормы Y расхода моторного масла на угар и замену марки $Y_0 = 0,55$ от максимальной мощности двигателя X_1 , оборотов при максимальной мощности X_2 , линейной нормы X_3 расхода топлива и скорости X_4 (табл. 59).

Таблица 59

<i>Y</i> (л/100 л. т.)	X ₁ (л. с.)	X ₂ (об/мин)	X ₃ (л)	X ₄ (км/ч)
1,3	39	4200	12	40
1,3	42	4400	8	75
0,8	53	5400	8	90
1,3	53	5400	11	70
2,2	70	2800	21,5	40
2,2	72	4000	17	80
1,8	73,5	5800	10	90
2,2	75	2600	16	30
	75	2600	22,8	60
2,1	75	2600	15	40
2,2	90	4000	16	70
2,3	90	4000	17	60
1,8	98	4500	15	60
2,8	110	2800	39	35
2,2	115	3200	27	70
2,1	115	3200	29	60
2,1	120	3300	35	50
2	150	3200	36	45
2	180	3200	44	40
1,8	175	3200	54	40