Real and Complex Analysis, 3rd Edition, W.Rudin Chapter 6 Complex Measures

Yung-Hsiang Huang*

1. Let ν be a complex measure on (X, \mathcal{M}) . If $E \in \mathcal{M}$, define

$$\mu_1(E) = \sup \left\{ \sum_{1}^{n} |\nu(E_j)| : n \in \mathbb{N}, E_1, E_2, \dots E_n \text{ disjoint}, E = \bigcup_{1}^{n} E_j \right\}$$
$$|\nu|(E) = \sup \left\{ \sum_{1}^{\infty} |\nu(E_j)| : E_1, E_2, \dots \text{ disjoint}, E = \bigcup_{1}^{\infty} E_j \right\}$$
$$\mu_3(E) = \sup \left\{ |\int_E f \, d\nu| : |f| \le 1 \right\}$$

Show that $\mu_1 = |\nu| = \mu_3$.

Remark 1. We extend the problem slightly, which comes from [3, Exercise 3.21]. To prove the original problem, we can simplify the proof given here, that is, without μ_3 .

Proof. We are going to show $\mu_1 \leq |\nu| \leq \mu_3 \leq \mu_1$. The first inequality is trivial. For the second one, since there exists $w_j \in \mathbb{C}$, $|w_j| = 1$ such that $|\nu(E_j)| = w_j \nu(E_j)$. Consider the function $f = \sum_j w_j \chi_{E_j}$. Since $\{E_j\}$ is mutually disjoint, $|f| \leq 1$. Take $f_n = \sum_1^n w_j \chi_{E_j}$. We then have, by dominate convergence theorem,

$$\left| \int f_n - \int f \, d\nu \right| \le \int \left| f_n - f \right| \, d|\nu| \to 0,$$

We then have

$$\int_{E} f \, d\nu = \lim_{n \to \infty} \int_{E} f_n \, d\nu = \lim_{n \to \infty} \sum_{j=1}^{n} w_j \nu(E_j) = \sum_{j=1}^{\infty} |\nu(E_j)|.$$

Then $\sum_{1}^{\infty} |\nu(E_j)| = |\int_E f d\nu| \le \mu_3(E)$. Since $\{E_j\}$ is arbitrary, $|\nu| \le \mu_3$. For the third inequality, given $\epsilon > 0$, then we can find some f with $|f| \le 1$ such that

$$\mu_3(E) < |\int_E f \, d\nu| + \epsilon$$

^{*}Department of Math., National Taiwan University. Email: d04221001@ntu.edu.tw

We approximate f by a simple function as follows. Let $D \subset \mathbb{C}$ be the closed unit disc. The compactness of D implies that there are finite many $z_j \in D$ such that $B_{\epsilon}(z_j)$ covers D. Define $B_j = f^{-1}(B_{\epsilon}(z_j)) \subset X$, which is measurable since f is. The union of B_j is X. Let

$$A_1 = B_1, \ A_j = B_j \setminus \bigcup_{i=1}^{j-1} B_i$$

be the disjoint sets with $A_j \subset B_j$ and $\bigcup A_j = X$. Define the simple function $\phi = \sum_1^m z_j \chi_{A_j}$, then $|\phi| \leq 1$ and $|f(x) - \phi(x)| < \epsilon$ for all x by the construction. Then

$$\left| \int_{E} f \, d\nu \right| - \left| \int_{E} \phi \, d\nu \right| \le \left| \int_{E} f - \phi \, d\nu \right| < |\nu|(E).$$

$$\mu_3(E) < |\int_E f \, d\nu| + \epsilon < |\int_E \phi \, d\nu| + \epsilon + \epsilon |\nu|(E)$$

Now we define $F_j = A_j \cap E$, then F_j is a finite partition of E and

$$|\int_{E} \phi \, d\nu| = |\int \sum_{j} z_{j} \chi_{A_{j} \cap E} \, d\nu| = |\sum_{j} z_{j} \nu(F_{j})| \le \sum_{j} |\nu(F_{j})| \le \mu_{1}(E).$$

Since ϵ is arbitrary, we have $\mu_3(E) \leq \mu_1(E)$.

2. Find two measures μ , λ that are σ -finite positive measure on some (X, \mathcal{M}) , but the function h in the absolutely continuous part of the Lebesgue-Radon-Nikodym decomposition of λ with respect to μ is not μ -integrable.

Proof. Let μ be the Lebesgue measure on $((0,1),\mathcal{L})$. The desired λ is defined by

$$\lambda(E) = \int_{E} \frac{1}{x} d\mu(x).$$

which is easy to see it's positive, σ -finite, absolutely continuous with respect to μ .

Remark 2. This example also provide us a reason why we need to assume the measure λ is finite in Theorem 6.11.

3. Proof. Any multiple of complex regular Borel measure is still a complex regular Borel measure. Given two complex regular Borel measures μ_1, μ_2 . Given a Borel set E and $k \in \mathbb{N}$, then there exist open sets O_1, O_2 containing E such that $|\mu_i|(O_i \setminus E) < \frac{1}{2k}$ (i = 1, 2), then $|\mu_1 + \mu_2|(O_1 \cap O_2) = |\mu_1 + \mu_2|(E) + |\mu_1 + \mu_2|((O_1 \cap O_2) \setminus E) \leq |\mu_1 + \mu_2|(E) + |\mu_1|(O_1 \setminus E) + |\mu_2|(O_2 \setminus E) \leq |\mu_1 + \mu_2|(E) + \frac{1}{k}$, which implies the outer regularity of $|\mu_1 + \mu_2|$.

Given any open set E or Borel set E with finite measure, we see for each $k \in \mathbb{N}$, then there exist open sets K_1, K_2 contained in E such that $|\mu_i|(E \setminus K_i) < \frac{1}{2k}$ (i = 1, 2), then $|\mu_1 + \mu_2|(K_1 \cup K_2) = 0$

 $|\mu_1 + \mu_2|(E) - |\mu_1 + \mu_2|(E \setminus (K_1 \cup K_2)) \ge |\mu_1 + \mu_2|(E) - \frac{1}{k}$, which implies the inner regularity of $|\mu_1 + \mu_2|$. Hence $\mu_1 + \mu_2$ is a complex regular Borel measure.

Therefore M(X) is a vector space over \mathbb{C} . For each $\nu \in M(X)$, by Radon-Nikodym theorem, there is a integrable function f with respect to $\mu = |\nu_r| + |\nu_i|$ such that $d\nu = fd\mu$ and then $d|\nu| = |f|d\mu$. So $|\nu|(X) = ||\nu|| = 0$ iff f is zero μ -a.e. iff $\nu = 0$. For each $a \in \mathbb{C}$, $||a\nu|| = |a\nu|(X) = \int_X |af| d\mu = |a||\nu|(X) = |a|||\nu||$. The triangle inequality is proved by the same method with $\mu = \mu_1 + \mu_2 := |\nu_{1,r}| + |\nu_{1,i}| + |\nu_{2,r}| + |\nu_{2,i}|$. Therefore, $||\cdot||$ is a norm on M(X).

Given $\sum \nu_n$ be a absolutely convergent series in M(X). Since for each $A \in \Sigma$, $\sum |\nu_n(A)| \le \sum |\nu_n|(A) \le \sum |\nu_n|(X) = \sum |\nu_n|(X) = \sum |\nu_n|(X) = \sum |\nu_n(A)| \le \sum |\nu_n(A)|$

$$\sum_{n,k} |\nu_n|(A_k) = \sum_n \sum_k |\nu_n|(A_k) = \sum_n |\nu_n|(\cup_k A_k) \le \sum_k \|\nu_n\| < \infty$$

and therefore

$$\nu(\cup_k A_k) = \sum_n \nu_n(\cup_k A_k) = \sum_n \sum_k \nu_n(A_k) = \sum_k \sum_n \nu_n(A_k) = \sum_k \nu(A_k).$$

Hence, ν is a complex measure. $\nu \in M(X)$. Given $X_1 \cdots X_m$ covers X,

$$\sum_{j=1}^{m} |\left(\nu - \sum_{n=1}^{N} \nu_n\right)(X_j)| = \sum_{j=1}^{m} |\sum_{n=N+1}^{\infty} \nu_n(X_j)| \le \sum_{j=1}^{m} \sum_{n=N+1}^{\infty} |\nu_n|(X_j)| = \sum_{n=N+1}^{\infty} |\nu$$

By Exercise 1,
$$\|\nu - \sum_{n=1}^{N} \nu_n\| \le \sum_{n=N+1}^{\infty} \|\nu_n\| \to 0$$
 as $N \to 0$. So $M(X)$ is complete.

4. A special case was discussed in Exercise 4.7 earlier.

1st proof. Suppose there is no C > 0, such that $||fg||_1 \le C||f||_p$. Then there exist f_n such that $||f_n||_p = 1$ and $\int |f_n g| > 3^n$. Let $f = \sum 2^{-n} |f_n|$, then $||f||_p \le 1$ and for each n

$$\int |fg| > \int |f_n g| 2^{-n} > (\frac{3}{2})^n$$

This contradicts to $fg \in L^1$ and therefore the map $f \mapsto \int fg$ from $L^p \to \mathbb{R}$ or \mathbb{C} is bounded. if $1 \leq p < \infty$, then by Riesz Representation theorem, $g = \tilde{g} \in L^q$ a.e.. For $p = \infty$, if g is not integrable, then it contradicts to the hypothesis by taking $f \equiv 1$.

2nd proof. This is inspired by Exercise 5.10, which is an application of Banach-Steinhaus Theorem. I think this method is easier than the first proof since we don't need duality theorem.

This time, we define a linear map $\Lambda_n: L^p \to \mathbb{C}$ by $\Lambda_n(f) = \int f g_n$, where $g_n = g\chi_{\{|x| \le n: |g(x)| \le n\}}$ (this is the place we use the σ -finiteness of μ). Note that $\|\Lambda_n\| = \|g_n\|_q$ is bounded for all n and $\{\Lambda_n(f)\}$ is bounded by $\int |fg|$ for each $f \in L^p$. Therefore $g \in L^q$ by Banach-Steinhaus Theorem and monotone convergence theorem.

There is a theorem so called the converse Hölder's inequality:

Theorem 3. Let (X, Σ, μ) be a measure space, $1 \leq q < \infty$. If $g \in L^q$, then

$$||g||_q = \sup\{|\int fg \, d\mu| : ||f||_p = 1\}.$$

If $q = \infty$, this result holds if μ is semi-finite.

This exercise seems to be the converse of the theorem (but it's NOT) if we assume

$$M_q(g) = \sup\{|\int fg \, d\mu| : f \text{ is simple and its support has finite measure, } ||f||_p = 1\} < \infty.$$

I see this result in Folland [3, Theorem 6.14]. Compare the differences between their proofs. I think they can NOT be replaced by each other. (Reason: Exercise 6.4 do NOT permit $M_q(g) < \infty$. On the other hand, I think we can't use approximate argument to see $M_q(g) < \infty$ implies $fg \in L^1$ for all $f \in L^p$.)

- 5. Proof. No, since $L^1(\mu)$ is one dimensional, so does its dual space. But $L^{\infty}(\mu)$ is two dimensional.
 - **Remark** 4. This exercise shows that the map from $L^{\infty} \to (L^1)^*$ defined by $g \mapsto \phi_g$ is not injective if μ is not semifinite. This problem, however, can be remedied by redefining L^{∞} . See Folland [3, Exercise 6.23-25].

6. Proof. For each σ -finite set $E \subset X$ there is an a.e.-unique $g_E \in L^q(E)$ such that $\Phi(f) = \int f g_E$ for all $f \in L^p(E)$ and $\|g_E\|_q \leq \|\Phi\|$. If F is σ -finite and $E \subset F$, then $g_F = g_E$ a.e. on E, so $\|g_F\|_q \geq \|g_E\|_q$. Let M be the supremum of $\|g_E\|_q$ as E ranges over all σ -finite sets, noting that $M \leq \|\Phi\|$. Choose a sequence $\{E_n\}$ so that $\|g_{E_n}\|_q \to M$, and set $F = \bigcup_{1}^{\infty} E_n$. Then F is σ -finite and $\|g_F\|_q \geq \|g_{E_n}\|_q$ for all n, whence $\|g_F\|_q = M$. Now, if A is a σ -finite set containing F, we have

$$\int |g_F|^q + \int |g_{A\setminus F}|^q = \int |g_A|^q \le M^q = \int |g_F|^q,$$

and thus $g_{A\setminus F}=0$ and $g_A=g_F$ a.e. (Here we use the fact $q<\infty$.) But if $f\in L^p$, then $A_f=F\cup\{x:f(x)\neq 0\}$ is σ -finite, so $\Phi(f)=\int fg_{A_f}=\int fg_F$. Thus we may take $g=g_F$, and the proof is complete.

- 7. Proof. As Hint, the hypothesis holds for any $f d\mu$ with f is a trigonometric polynomial, and hence with f is continuous function by Weierstrauss' theorem, and therefore with f is any bounded Borel function by Lusin's theorem. Since by Theorem 6.12, $d\mu = h d|\mu|$ for some |h| = 1 a.e., $\widehat{|\mu|}(n) \to 0$ as $n \to \infty$. Since $\widehat{|\mu|}(n)| = \widehat{|\mu|}(n)| = \widehat{|\mu|}(-n)|$, we know $\widehat{|\mu|}(m) \to 0$ as $m \to -\infty$. By the same argument, it holds with $f d|\mu|$ for any f is bounded. In particular, we pick $hd|\mu| = d\mu$.
- 8. Proof. Assume that there is some $k \in \mathbb{N}$ such that for all n,

$$\int e^{-int} \, d\nu := \int e^{-int} (e^{-ikt} - 1) \, d\mu = \widehat{\mu}(n+k) - \widehat{\mu}(n) = 0$$

Since trigonometric polynomials are dense in $C[0, 2\pi]$, $\int f \, d\nu = 0$ for any continuous f. Given open set U, there is an increasing sequence of continuous function $f_n = 1$, if $\operatorname{dist}(x, \partial U) > \frac{1}{n}$ and $f_n = n \cdot \operatorname{dist}(x, \partial U)$ otherwise, that approximate to the charactertic function χ_U pointwise. By monotone convergence theorem, we see $\nu(U) = 0$. So $\nu_r(U) = \nu_i(U) = 0$, that is $\nu_r^+ = \nu_r^-$, $\nu_i^+ = \nu_i^-$ for all open sets. Since they are outer regular (Theorem 2.17), $\nu_r^+ = \nu_r^-$, $\nu_i^+ = \nu_i^-$, that is, $\nu_r = \nu_i = 0 = \nu$. Since $(e^{-ikt} - 1) \neq 0$ iff $t \neq \frac{2\pi j}{k} (j \in \mathbb{N})$, $\mu = \sum_{j=0}^{k-1} a_j \delta_{\frac{2\pi j}{k}}$ for some $a_j \in \mathbb{C}$.

9. Proof. We are going to construct $h_n \geq 0$ such that the conditions (i)(ii) are satisfied and for each $f \in C(I)$, $\int f h_n dm \to \int f dm$, more precisely, the Riemann integral of f. The desired $g_n = (1 + \frac{1}{n})^{-1}(h_n + \frac{1}{n}) > 0$ and satisfies conditions (i)-(iii).

Let $\delta_n = (2n^3)^{-1}$. Consider $h_n = \sum_{k=1}^n h_n^k$ where

$$h_n^k(x) = \begin{cases} 2n^2 & \text{for } |x - \frac{2k-1}{2n}| \le \frac{n-1}{2n} \delta_n, \\ \text{linear} & \text{for } \frac{n-1}{2n} \delta_n < |x - \frac{2k-1}{2n}| \le \frac{n+1}{2n} \delta_n, \\ 0 & \text{for } \frac{1}{2} \delta_n < |x - \frac{2k-1}{2n}|. \end{cases}$$
 (1)

Now observe that it's easy to check they satisfies (i)(ii). Moreover,

$$\begin{split} &|\int fh_n \, dm - \frac{1}{n} \sum_{k=1}^n f(\frac{2k-1}{2n})| \\ &\leq \sum_{k=1}^n \int_{|x-\frac{2k-1}{2n}| \leq \frac{n-1}{2n} \delta_n} 2n^2 |f(x) - f(\frac{2k-1}{2n})| \, dx + \left(2n^2 \|f\|_{\infty} \frac{1}{n} \delta_n + \|f\|_{\infty} \frac{1}{n^2}\right) n \\ &\leq \sup_{k=1, \dots, n} \sup\{|f(\frac{2k-1}{2n}) - f(x)| : |x - \frac{2k-1}{2n}| \leq \frac{n-1}{2n} \delta_n\} + \|f\|_{\infty} \frac{2}{n} \end{split}$$

which tends to zero as $n \to 0$ by the uniform continuity of f. This is what we want to see. \square

10. (a) it's obvious.

- (b) The Vitali's Convergence Theorem is easy to prove if we know Egoroff's theorem, Fatou's lemma, and the equivalence between the uses of $|\int f|$ and $\int |f|$ in the definition of uniform integrability.
- (c) Show that we can not omit the tightness condition (iii): for every $\epsilon > 0$ there exists $E \subset X$ such that $\mu(E) < \infty$ and $\int_{E^c} |f_n|^p < \epsilon$ for all n, even if $\{\|f_n\|_1\}$ is bounded.

Proof. Consider the Lebesgue measure on $(-\infty, \infty)$ with $f_n = \chi_{(n,n+1)}$.

- (d) To apply Vitali's theorem in finite measure space, sometimes we see $|f(x)| < \infty$ a.e. is automatically true, but sometimes it's not. Give examples.
- *Proof.* (i) Consider the Lebesgue measure on [0,1], by the uniform integrability we know there exist nonoverlapping closed intervals $I_1, \dots I_k$ whose union is [0,1], and for all $j=1,\dots k$ and $n \in \mathbb{N}$, $\int_{I_j} |f_n| < 1$. (It's easy to show it's equivalent to use $|\int f|$ and $\int |f|$ in the definition of uniform integrability.) By Fatou's Lemma,

$$\int_{[0,1]} |f| \le \liminf_n \int_{[0,1]} |f_n| < k.$$

(ii) We need to find out a finite measure space (X, \mathcal{M}, μ) and an uniformly integrable sequence of L^1 functions f_n with $f_n \to f$ a.e., f(x) is not finite a.e. and $f_n \nrightarrow f$ in L^1 .

On \mathbb{R} , let \mathscr{M} is the σ -algebra of countable or co-countable sets. $\mu(E) := 0$ if E is countable, $\mu(E) := 1$ if E is co-countable, which is easy to check μ is a measure on \mathscr{M} . Consider $f_n \equiv n$, which is the desired example.

- (e) It's easy to see Vitali's Theorem implies Lebesgue Dominated Convergence Theorem in finite measure space. The sequence $f_n(x) = \frac{1}{x}\chi_{(\frac{1}{n+1},\frac{1}{n})}(x)$ is an example in which Vitali's theorem applies although the hypothesis of Lebesgue's theorem do not hold.
- (f) The sequence $f_n = n\chi_{(0,1/n)} n\chi_{(1-\frac{1}{n},1)}$ on [0,1] shows the assumption that $f_n \geq 0$ is sometimes important in some applications. Note that $f_n(x) \to 0$ for every $x \in [0,1]$, $\int f_n(x) dx = 0$, but f_n is not uniformly integrable.
- (g) However, the following converse of Vitali's theorem is true:

Theorem 5. If $\mu(X) < \infty$, $f_n \in L^1(\mu)$, and $\lim_{n\to\infty} \int_E f_n d\mu$ exists for every $E \in \mathcal{M}$, then $\{f_n\}$ is uniformly integrable.

Proof. As hint, we define $\rho(A, B) = \int |\chi_A - \chi_B| d\mu$. Then (\mathcal{M}, ρ) is a complete metric space (modulo sets of measure zero), and $E \mapsto \int_E f_n d\mu$ is continuous for each n, (denote this map by F_n .) If $\epsilon > 0$, consider $A_N = \{E : |F_n(E) - F_m(E)| < \epsilon$, if $n, m \ge N\}$. Since $X = \cup A_N$ by hypothesis, Baire Category theorem implies that some A_N has nonempty interior, that is, there exist $E_0 \in \mathcal{M}, \delta > 0, N \in \mathbb{N}$ so that

$$\left| \int_{E} (f_n - f_N) \, d\mu \right| < \epsilon \text{ if } \rho(E, E_0) < \delta, \ n > N.$$
 (2)

If $\mu(A) < \delta$, (2) holds with $B = E_0 \setminus A$ and $C = E_0 \cup A$ in place of E. Thus,

$$\left| \int_{A} (f_n - f_N) d\mu \right| = \left| \int_{C} - \int_{B} (f_n - f_N) d\mu \right| < 2\epsilon.$$

By considering $\{f_1, \dots f_N\}$, there exists $\delta' > 0$, such that

$$\left| \int_A f_n \, d\mu \right| < 3\epsilon \text{ if } \mu(A) < \delta', \ n = 1, 2, 3, \cdots$$

Remark 6. The Dunford-Pettis theorem: [2, p.466 and 472]

11. Proof. By Fatou's lemma $\int_X |f|^p < C$ and hence f is finite a.e.. Given $\epsilon > 0$, by Egoroff's theorem, there is a measurable set F with $C^{1/p}\mu(F)^{1-1/p} < \epsilon$, such that $f_n \to f$ uniformly on $X \setminus F$. Then there is an $N(\epsilon) \in \mathbb{N}$ such that for $n > N(\epsilon)$,

$$\int_{X} |f_n - f| \le \int_{X \setminus F} |f_n - f| + \int_{F} |f_n| + \int_{F} |f| < \epsilon + 2C^{1/p}\mu(F)^{1 - 1/p} < 3\epsilon.$$

- 12. The assertions in this problem are easy to prove, we omit the proof and remark several things: First, this problem shows that the map $g \mapsto \Phi_g$ from $L^{\infty} \to (L^1)^*$ is not surjective if the measure space is not σ -finite; second, that map is also not injective if μ is not semifinite, this can be seen from the example I learned from Folland [3, p.191-192]: Let $E \subset X$ be a set of infinite measure that contains no subset of positive finite measure. Then for any $f \in L^1$, the set $\{x: f(x) \neq 0\}$ intersects E in a null set. It follows that $\Phi_{\chi_E} = 0$ although $\chi_E \not\equiv 0$ in L^{∞} .
- 13. Apply Hahn-Banach Theorem, see Theorem 5.19, p.107.

Additional Results

We present the proof that the constant $\frac{1}{\pi}$ in Sec 6.3 is sharpest. (Due to Bledsoe [1] which is a simpler treatment of Kaufman-Rickert [4]).

Theorem 7. Let C_0 be the supremum of the number C for which

$$|\sum_{z \in S}| \ge C \sum_{z \in T}|z|$$

where T is any nonempty finite set of complex numbers and S is any subset of T. Then $C_0 = \frac{1}{\pi}$.

Proof. By Theorem 6.3, $C_0 \ge \frac{1}{\pi}$. On the other hand, consider $z_j^n = \exp[i(2\pi/n)j]$, $j = 1, \dots, n$. For this choice of points we have for each θ , let S_{θ}^n be the set of those z_j^n such that $|\theta - \arg(z_j^n)| \le \frac{\pi}{2}$

$$\lim_{n \to \infty} \left(\left| \sum_{z \in S_{\theta}^n} z \right| / \sum_{j=1}^n |z_j| \right) = \lim_{n \to \infty} \frac{1}{n} \left| \sum_{z \in S_{\theta}^n} z \right|$$

$$= \lim_{n \to \infty} \frac{1}{2\pi} \left| \frac{\pi}{n/2} \sum_{z \in S_{\theta}^n} z \right|$$

$$= \frac{1}{2\pi} \left| \int_{\theta - \pi/2}^{\theta + \pi/2} e^{i\phi} d\phi \right| = \frac{1}{\pi}.$$

Thus, $C_0 \leq \frac{1}{\pi}$.

References

- [1] WW Bledsoe. An inequality about complex numbers. The American Mathematical Monthly, 77(2):180–182, 1970.
- [2] Haim Brezis. Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer Science & Business Media, 2010.
- [3] Gerald B Folland. Real analysis: Modern Techniques and Their Applications. John Wiley & Sons, 2nd edition, 1999.
- [4] Robert P Kaufman and Neil W Rickert. An inequality concerning measures. Bulletin of the American Mathematical Society, 72(4):672–676, 1966.