QUI022 - Química Orgânica: Teste 2 (Módulo 8)			Pontuação ↓
Data limite: 14/10/2024	Questões: 2	Pontos totais: 5	
Matrícula:	Nome:		

Questão	Pontos	Nota
1	3	
2	2	
Total:	5	

Instruções:

- 1. Justifique todas as suas respostas.
- 2. Entregue as repostas manuscritas com essa folha anexa.

Valores de energia para a quebra homolítica de ligações X-Y ($kJ mol^{-1}$).

Ligação X-Y	$\Delta G, X-Y \longrightarrow X \cdot + Y \cdot (kJ \operatorname{mol}^{-1})$	Ligação X-Y	$\Delta G, X - Y \longrightarrow X \cdot + Y \cdot (kJ \operatorname{mol}^{-1})$
$\mathrm{H}\!-\!\mathrm{OH}$	498	$_{ m H_3C-Br}$	293
$\mathrm{H_{3}C\!-\!H}$	435	$_{ m H_3C-I}$	234
$_{ m H_3C-OH}$	383	Cl-Cl	243
$\mathrm{H_{3}C\!-\!CH_{3}}$	368	$\mathrm{Br}\!-\!\mathrm{Br}$	192
H-Cl	431	I-I	151
$\mathrm{H}\mathrm{-Br}$	366	$\mathrm{HO}\mathrm{-OH}$	213
$H\!-\!I$	298	${ m MeO-OMe}$	151
H ₃ C-Cl	349		

1. (3 pontos) A polimerização do propeno catalisada por peróxido de benzoíla possui reação geral de acordo com o esquema abaixo.

n
$$H_{2}C$$
 CH_{3} $H_{2}C$ CH_{3} $H_{2}C$ CH_{3} $H_{2}C$ H_{2} $H_{2}C$ H_{3} $H_{4}C$ $H_{2}C$ H_{3} $H_{4}C$ $H_{2}C$ H_{3} $H_{4}C$ $H_{$

- (a) Mostre o mecanismo da formação do polipropileno (PP) a partir do propeno e peróxido de benzoíla.
- (b) Suponha que a radiação utilizada na reação de polimerização em questão, representada por $h\nu$, fosse a vermelha, cuja energia é igual a 170,5 kJ mol⁻¹, produzindo o polipropileno com altos rendimentos. Todavia, observou-se que a troca do iniciador para o bromo molecular, Br₂, resultou na ausência de formação de produto na presença de radiação vermelha. Explique essa observação experimental.

Resposta:

Na letra a, o mecanismo da formação do PP a partir do propeno e do peróxido de benzoíla é descrito na figura abaixo

1. Iniciação

2. Propagação

Crescimento da cadeia polimérica

3. Término

Na letra b, a radiação vermelha não possui energia suficiente para promover a cisão homolítica da ligação Br-Br-170,5 kJ mol^{-1} é menor que 192 kJ mol^{-1} . Sendo assim, não há a geração do radical iniciador, $Br \cdot$, e não há polimerização.

2. (2 pontos) Considere a formação do polimetacrilato de metila, mais conhecido como polimetil metacrilato (PMMA), a partir do propenoato de metila (acrilato de metila) na presença do iniciador azo bisisobutironitrila (AIBN), de acordo com o esquema abaixo.

- (a) Mostre o mecanismo de formação do radical iniciador da polimerização e sua força motriz.
- (b) Considerando as forças das ligações químicas presentes no acrilato de metila, justifique a polimerização ocorrer na ligação C=C ao invés da ligação C=O.

Resposta:

Na letra a, o mecanismo da formação do radical iniciador a partir do AIBN é descrito na figura abaixo

$$NC$$
 N
 CN
 CN
 $+ N_{2(g)}$

Além disso, a força motriz da formação do radical é a liberação de N_2 que, por ser um gás nas CATP, aumenta a entropia do sistema e torna o processo mais espontâneo.

Na letra b, a ligação C=O é mais forte que a C=C. O átomo de oxigênio é mais eletronegativo que o de carbono, deixando a ligação C=O menor que a C=C, diminuindo as energias dos orbitais envolvidos quando comparadas às da C=C e tornando-a mais estável.