الجمهورية الجزائرية الديمقراطية الشعبية وزارة التربية الوطنية

الديوان الوطني للامتحانات والمسابقات امتحان بكالوريا التعليم الثانوي

الشعبة: علوم تجريبية

المدة: 03 سا و30 د

دورة: 2021

اختبار في مادة: الرياضيات

على المترشح أن يختار أحد الموضوعين الآتيين:

الموضوع الأول

التمرين الأول: (04 نقاط)

 F_2 و F_1 و امرأتان F_3 و F_3 و F_4 و امرأتان F_3 و F_4 و امرأتان F_4 و امرأتان F_4 و F_4 و امرأتان F_4

" عضوا اللجنة من جنسين مختلفين B

عضو في اللجنة ". H_1 " C

أ. احسب (A) ، (B) ، (B) ، احتمال (B) ، احسب الترتيب.

 $\frac{2}{5}$ يساوي C يساوي p(C) احتمال الحدث

لمتغير العشوائي X يرفق بكلّ إمكانية اختيار لعضوين عدد الرّجال في اللّجنة. (2

 $\{0\,;1\,;2\}$ هي X ان مجموعة قيم X

E(X) عين قانون احتمال المتغير العشوائي X و احسب أمله الرياضياتي

التمرين الثاني: (04 نقاط)

أجب بصح أو خطأ مع التبرير في كل حالة من الحالات التالية:

 $f(x) = x + \frac{2}{e^x + 1}$ الدّالة العددية f معرّفة على (1

f(x) + f(-x) = 2 من أجل كلّ عدد حقيقي x لدينا:

 $S_n = u_0 + u_1 + \dots + u_n$ نضع: ، نضع: $\frac{1}{3}$ بحدّها الأول 2 وأساسها \mathbb{N} بخدّها الأول 2 وأساسها (u_n) (2

 $3 - \frac{1}{3^{n+1}}$ هي: S_n عبارة S_n عبارة عدد طبيعي

 $g(x) = x + \ln(e^x + 1)$ بالدّالة العددية g المعرّفة على $g(x) = x + \ln(e^x + 1)$ بالدّالة العددية والمعرّفة على $g(x) = x + \ln(e^x + 1)$

معادلة له. y=2x كما مقاربا مائلا y=2x معادلة له. تمثيلها البياني y=2x معادلة له.

y'-3y=1 الدّالة العددية h المعرّفة على \mathbb{R} بـ: \mathbb{R} بـ: h الدّالة العددية المعادلة التفاضلية h

اختبار في مادة: الرياضيات/ الشعبة: علوم تجريبية / بكالوريا 2021

التمرين الثالث: (05 نقاط)

$$u_n = -4n+3$$
 : المتتالية العددية (u_n) معرّفة على المتتالية العددية

- u_0 بيّن أنّ المتتالية u_n حسابية يُطلب تعيين أساسها u_n وحدّها الأول (1
 - $S_n = u_0 + u_1 + \dots + u_n$ نضع: n نضع عدد طبیعي من أجل كلّ عدد طبیعي (2

$$S_n = -2n^2 + n + 3$$
 : n عدد طبیعی عدد طبیعی أنّه من أجل كلّ عدد طبیعی

$$S_n = -30132$$
 :حيث عين قيمة العدد الطبيعي n حيث

- $u_n = \ln(v_n) : n$ عدد طبيعي المتتالية العددية (v_n) عدودها موجبة تماما و من أجل كلّ عدد طبيعي
 - $\cdot n$ بدلالة v_n بدلالة أ. اكتب عبارة الحد العام

$$\cdot e^{-}$$
 بيّن أنّ المتتالية $\left(v_{n}
ight)$ هندسية أساسها .

$$S'_n = \ln[v_0(1-\frac{1}{2})] + \ln[v_1(1-\frac{1}{3})] + \dots + \ln[v_n(1-\frac{1}{n+2})]$$
 نضع: n نضع: n نضع: n نضع: n نضع: n نصب n بدلالة n نصب n بدلالة n نصب n نصب n نصب n نصب n بدلالة n نصب n نصب

التمرين الرابع: (07 نقاط)

- $g(x) = 2x^3 2x^2 + 3x 2$ بـ: \mathbb{R} معرّفة على g معرّفة على (I
 - \mathbb{R} بيّن أنّ الدّالة g متزايدة تماما على \mathbb{R} .
- $0,7 < \alpha < 0,8$: يَتْنَ أَنَّ المعادلة g(x) = 0 تقبل حلا وحيدا α يُحقِّق (2)
 - g(x) ب. استنتج حسب قيم العدد الحقيقي x إشارة

$$f(x) = 2x - 1 + \ln\left(1 + \frac{1 - x}{x^2}\right)$$
 بن الدّالة العددية f معرّفة على $f(x) = 2x - 1 + \ln\left(1 + \frac{1 - x}{x^2}\right)$ بن الدّالة العددية $f(x) = 2x - 1 + \ln\left(1 + \frac{1 - x}{x^2}\right)$

- (C) . $(C;\vec{i},\vec{j})$ المتعامد المتعامد المتعامد المستوي المنسوب إلى المعلم المتعامد المتجانس .
 - أ. بيّن أنّ: $\infty + = \lim_{x \to 0} f(x) = +\infty$ ثم فسّر النتيجة هندسيا. (1

$$\lim_{x\to +\infty} f(x)$$
 و $\lim_{x\to -\infty} f(x)$ ب. احسب

$$f'(x) = \frac{g(x)}{x(x^2 - x + 1)}$$
 : x عدد حقیقي غیر معدوم : x عدد عقیقي غیر معدوم : x

[0;lpha] ومتناقصة تماما على كلّ من $[\alpha;+\infty[$ و $]-\infty;0[$ و أصلاح على الله على الل

f شكّل جدول تغيّرات الدّالة f

- (Δ) بيّن أنّ المستقيم (C) ذا المعادلة y=2x-1 مقارب مائل لـ(C) ثمّ ادرس وضعية (Δ) بالنسبة إلى (Δ)
 - له. القاصلة 2 ثمّ اكتب معادلة له. (C) بيّن أنّ (C) يقبل مماسا (T) موازيا له (C) في النّقطة (C)
 - -0.5 < eta < -0.4 : يقطع حامل محور الفواصل في نقطة وحيدة فاصلتها eta تُحقِّق (C) بيّن أنّ
 - . ($f(\alpha) \approx 0.87$: نأخذ:) (C) و المنحنى (C) و المنحنى (Δ

انتهى الموضوع الأول

الموضوع الثانى

التمرين الأول: (04 نقاط)

صندوق به 9 بطاقات متماثلة لا نفرّق بينها باللمس، مكتوب على كلّ منها سؤال واحد، منها ثلاثة أسئلة في الهندسة مرقمة ب: 1، 2، 3 و 4 وسؤالين في التحليل مرقمين ب: 1 و 2 نسحب عشوائيا بطاقة واحدة من الصندوق ونعتبر الحوادث التالية:

"سحب سؤال في الهندسة "، B "سحب سؤال في التحليل " و C "سحب سؤال في الجبر يحمل رقما زوجيا".

- احسب (A) و (C) و (B) احتمال الحوادث (B) الترتيب. (B)
 - 2) احسب احتمال سحب سؤال رقمه مختلف عن 1.
 - لمتغيّر العشوائي X يرفق بكلّ بطاقة مسحوبة رقم السؤال المسجل عليها. X

أ. برّر أنّ مجموعة قيم
$$X$$
 هي $\{1;2;3;4\}$.

 $oldsymbol{\psi}$. عين قانون الاحتمال للمتغيّر العشوائي X ثمّ احسب E(X) أمله الرّياضياتي.

E(2021X + 1442) جـ. استنتج قيمة

التمرين الثاني: (04 نقاط)

لكلّ سؤال جواب واحد فقط صحيح من بين الأجوبة الثلاثة المقترحة، عينه مع التعليل.

2 لتكن $(u_{_n})$ متتالية حسابية معرّفة على $\mathbb N$ بحدّها الأول 1 و أساسها $(u_{_n})$

:ن عدر الجل کل عدد طبیعی
$$P_n=e^{u_0}\times e^{u_1}\times \cdots \times e^{u_n}:n$$
 عبارة و عدد طبیعی $e^{-n(n+1)}$ (ب

الدّالة العددية f معرّفة على \mathbb{R} بـ: \mathbb{R} الدّالة العددية f معرّفة على \mathbb{R} بالدّالة العددية العد

$$f(-x) = f(x)$$
 ($f(2-x) = f(x)$ ($f(-2-x) = f(x)$

 $\lim_{x \to +\infty} \left[\ln(x+1) - \ln(x+2) \right]$ (3

 $v_n = \ln w_n$ متتالیة هندسیة معرفة علی \mathbb{N} حدودها موجبة تماما وأساسها عدد حقیقی $v_n = \ln w_n$ معرفة علی $v_n = \ln w_n$

: هـی متتالیه (v_n)

التمرين الثالث: (05 نقاط)

 $u_{n+1} = \frac{3}{8}(u_n + 5): n$ عدد طبيعي عدد طبيعي عدد الأوّل عدد $u_0 = 0$ حيث: $u_0 = 0$ عدد المتتالية العددية $u_n = 0$

- $u_n < 3$: n برهن بالتراجع أنّه من أجل كلّ عدد طبيعي (1
 - بيّن أنّ (u_n) متزايدة تماما ثمّ استنتج أنّها متقاربة.

اختبار في مادة: الرياضيات/ الشعبة: علوم تجريبية / بكالوريا 2021

$$v_n=3(3-u_n)$$
 بـ: $\mathbb N$ معرّفة على معرّفة (v_n) المنتالية العددية

$$rac{3}{8}$$
 أ. احسب v_0 ثمّ بيّن أنّ المتتالية $\left(v_n
ight)$ هندسية أساسها

$$\cdot u_n = 3 - 3 \left(\frac{3}{8}\right)^n$$
 : n عدد طبیعي عدد العام v_n ثمّ استنتج أنّه من أجل كلّ عدد طبیعي v_n عبارة الحد العام v_n

$$P_n = (3-u_0) \times (3-u_1) \times \cdots \times (3-u_n)$$
 : n عدد طبیعي (4 من أجل كلّ عدد طبیعي P_n بدلالة P_n

التمرين الرابع: (07 نقاط)

الدّالة العددية g معرّفة على \mathbb{R} بـ: \mathbb{R} بـ: $g(x) = 1 + xe^{-x-1}$ تمثيلها الدّالة العددية $g(x) = 1 + xe^{-x-1}$ البياني في المستوي المنسوب إلى المعلم المتعامد المتجانس (i,j) الشكل المقابل) g(-1) احسب g(-1)

$$f(x) = x - (x+1)e^{-x-1}$$
 بـ: \mathbb{R} معرّفة على f معرّفة العددية العددية

$$\left(O; \overrightarrow{i}, \overrightarrow{j}
ight)$$
 سنجامد المتعامد المتعامد المستوي المستوي المنسوب إلى المعلم المتعامد المتجانس $\left(C_{f}
ight)$

$$f(x) = x[1 - (1 + \frac{1}{x})e^{-x-1}]$$
 غير معدوم: (1 عدد حقيقي عدد حقيقي عدد عقيق (1

.
$$\lim_{x \to +\infty} f(x)$$
 و $\lim_{x \to -\infty} f(x)$ تمّ احسب

$$f'(x) = g(x) : x$$
 عدد حقیقی عدد من أجل كل أ. بيّن أنّه من أجل كل عدد علية أنّه من أجل أيّا عدد علية أنّه من أجل أيّا عدد علية أنّه من أجل أيّا عدد الم

$$-$$
ب. استنتج أنّ الدالة f متزايدة تماما على $-$ ا $+\infty$ ومتناقصة تماما على $-$ ا $-$ ثمّ شكّل جدول تغيّراتها.

اً. احسب
$$\lim_{x\to +\infty} (f(x)-x)$$
 ثمّ فسّر النّتيجة هندسيا. (3

$$y=x$$
 المعادلة ي المستقيم (Δ) بالنسبة إلى المستقيم (C_f) المعادلة ب . ب

ج. بيّن أنّ
$$\left(C_{f}
ight)$$
 يقبل مماسا $\left(T
ight)$ موازيا للمستقيم $\left(C_{f}
ight)$ يُطلب كتابة معادلة له.

$$eta$$
 و $lpha$ اً. بیّن أنّ (C_f) یقطع حامل محور الفواصل في نقطتین فاصلتاهما α و α الفواصل في نقطتین أن α الفواصل في α المواصل في α المواصل

$$-2;+\infty$$
 ارسم المستقيمين Δ و Δ و Δ ارسم المنحنى و المجال على المجال على المجال Δ

$$h(x) = -|x| + (|x|-1)e^{|x|-1}$$
 :ب $[-2;2]$ بالدّالة العددية h معرّفة على المجال (5

. تمثيلها البياني في المعلم السابق
$$\left(\, C_{_h}
ight)$$

أ. بيّن أنّ الدّالة
$$h$$
 زوجية.

$$h(x)=f(x)$$
 : $\left[-2;0\right]$ من المجال عدد حقیقی عدد عدد عنو من أبّه من أجل كلّ عدد عنو من المجال

ج. اشرح کیف یمکن رسم
$$\binom{C_h}{n}$$
 انطلاقا من $\binom{C_f}{n}$ ثمّ ارسمه.

انتهى الموضوع الثاني

العلامة		/ b w E b				
مجموعة	مجزأة	عناصر الإجابة (الموضوع الأوّل)				
	التمرين الأول: (04 نقاط)					
	0.75+0.75	$p(A) = \frac{2}{5}$, $p(B) = \frac{3}{5}$; $p(B)$, $p(A)$! (1)				
02.00	0.50	$rac{2}{5}$ بينان أنّ $p(C)$ احتمال الحدث C يساوي				
		(يمكن استعمال شجرة الامكانيات أو الجدول)				
	0.75	$\{0;1;2\}$ أ. تبرير أنّ مجموعة قيم X هي $\{2;1;0\}$				
02.00	0.75	X بعيين قانون احتمال المتغير العشوائي x $x_i = 0 + 1 + 2$				
		$ \begin{array}{c ccccc} x_i & 0 & 1 & 2 \\ \hline p(X = x_i) & 0.1 & 0.6 & 0.3 \end{array} $				
	0.50	E(X) = 1.2 : $E(X)$ حساب أمله الرياضياتي				
		التمرين الثاني: (04 نقاط)				
01.00	0,50 x 2	1.صح ، التبرير				
01.00	0,50 x 2	2.خطأ ، التبرير				
01.00	0,50 x 2	3.صح ، التبرير				
01.00	0,50 x 2	4. خطأ ، التبرير				
		التمرين الثالث: (05 نقاط)				
01.00	0,25x2+0,50	$u_0=3$ و $r=-4$ و المتتالية $\left(u_n\right)$ حسابية: 1				
02.00	01 01	$S_n = -2n^2 + n + 3$: n عدد طبیعي عدد الجا کان عدد عدد عدد عدد الجا کان کان عدد الجا کان کان کان کان کان کان کان کان کان کا				
02.00		$n=123: S_n=-30132:$ جيث محيث العدد الطبيعي n حيث				
	0.75 0.75	$v_n=e^{-4n+3}:n$ بدلالة v_n بدلالة عبارة الحد العام $v_n=1$				
01.5		e^{-4} هندسية أساسها $\left(abla_n ight)$ هندسية أساسها بيان أنّ				
00.50	0.50	$S'_n = -2n^2 + n + 3 - \ln(n+2)$.4				

		التمرين الرابع: (07 نقاط)
0.50	0.25	$g'(x) = 6x^2 - 4x + 3: \mathbb{R}$ ا. تبیان أنّ الدّالة g متزایدة تماما علی
	0.25	$g'(x) \! > \! 0 \! : \! x$ من أجل كلّ عدد حقيقي
01.00	0.50	0.7 < lpha < 0.8: تبيان أنّ المعادلة $g(x) = 0$ تقبل حلا وحيدا $lpha$ يُحقِّق: a
		g(0.8) = 0.144 مستمرة و متزايدة تماما و $g(0.7) = -0.194$ و
	0.50	$g(\alpha)=0$ ،] $-\infty$; α [و $g(x)<0$ علی $g(x)>0$ علی $g(x)>0$ علی $g(x)>0$
01.25	0.50	$\lim_{x\to 0} f(x) = +\infty$.i. تبیان أنّ: $\infty + = -\infty$
	0.25	معادلة مستقيم مقارب للمنحنى $x=0$
	2x0.25	$\lim_{x \to +\infty} f(x) = +\infty \lim_{x \to -\infty} f(x) = -\infty .$
	0.50	$f'(x) = \frac{g(x)}{x(x^2 - x + 1)}$: x عدد حقیقي غیر معدوم x عدد .2
	0.50	$[x] - \alpha; + \infty$ و $[x] - \alpha; + \alpha$ و $[x] - \alpha; + \alpha$ على الب. إشارة $[x] - \alpha; + \alpha$ على الب. إشارة $[x] - \alpha; + \alpha$ على
		$]0;\alpha[$
		$x = \alpha$ لمّا $f'(x) = 0$
01.50	0.25	$]0;lpha$ متزایدة تماما علی کلّ من $[lpha;+\infty[$ و $[lpha;+\infty[$ ومتناقصة تماما علی f
01.50	0.20	x $-\infty$ 0 α $+\infty$ $+\infty$ $+\infty$ $+\infty$ $+\infty$ $+\infty$ $+\infty$ $+\infty$
	0.25	$f'(x)$ + $-\phi$ +
	0.25	$f(x)$ $+\infty$ $+\infty$ $+\infty$ $f(\alpha)$
	0.50	(C)مقارب مائل لـ $y=2x-1$ دا المعادلة $y=2x-1$ مقارب مائل ال
01.00		$]0;1[$ وضعية (C) بالنّسبة الِيُ (Δ) : (Δ) فوق (Δ) على (C) وضعية (C)
01.00	0.50	$]1;+\infty[$ علی (Δ) تحت (C)
		A (1;1) عند (Δ) يقطع (C)
0.50	0.25	$\left(\Delta ight)$ موازیا لـ $\left(C ight)$ بقبل مماسا $\left(T ight)$ موازیا لـ 4
0.50	0.25	$y=2x-1+\ln(\frac{3}{4})$: (T) معادلة
0.50	0.50	5. تبيان أنّ (C) يقطع حامل محور الفواصل
0.50		f(-0.5) = -0.54 و $f(-0.4) = 0.4773$ و مستمرة و متزايدة تماما و

العلامة					
مجموعة	مجزأة	عناصر الإجابة (الموضوع الثاني)			
	التمرين الأول: (04 نقاط)				
01.50	0.502	p(C) و $p(B)$ ، $p(A)$ عساب .1			
	0.50x3	$p(C) = \frac{2}{9}$, $p(B) = \frac{2}{9}$, $p(A) = \frac{1}{3}$			
00.50	0.50	$rac{2}{3}$: احتمال سحب سؤال رقمه مختلف عن 1 هو			
	0.50	$\{1;2;3;4\}$ هي X هي $\{1;2;3;4\}$			
02.00	0.25x4	x_i 1 2 3 4 : X قانون احتمال x_i 3 4			
	0.25	$P(X = x_i)$ $\begin{vmatrix} 3 \\ 9 \end{vmatrix} \begin{vmatrix} 3 \\ 9 \end{vmatrix} \begin{vmatrix} 2 \\ 9 \end{vmatrix} \begin{vmatrix} 1 \\ 9 \end{vmatrix}$ $E(X)$ - $E(X) = \frac{19}{9} : E(X)$			
	0.25	E(2021X + 1442) = 2021E(X) + 1442 = 5708.55 : استنتاج			
		التمرين الثاني: (04 نقاط)			
	0.50x2	1. الجواب الصحيح هو ب) ، التبرير			
04.00	0.50x2	2. الجواب الصحيح هو أ) ، التبرير			
	0.50x2	3. الجواب الصحيح هو ج) ، التبرير			
	0.50x2	4. الجواب الصحيح هو ب) ، التبرير			
	التمرين الثالث: (05 نقاط)				
0.75	0.5+0.25	$u_n < 3 : n$ البرهان بالتراجع أنّه من أجل كلّ عدد طبيعي 1 .			
01.25	0.25+0.50	$u_{n+1} - u_n = -\frac{5}{8}(u_n - 3)$: تبیان أنّ (u_n) متزایدة تماما .2			
01.25	0.50	استنتاج أنّها متقاربة			
	0.25	$v_0 = 9$.1.3			
	0.75	$v_{n+1} = v_n \times \frac{3}{8} : \frac{3}{8}$ تبيين أنّ المتتالية $\left(v_n\right)$ هندسية أساسها			
02.50	0.50	$V_n = 9 \left(\frac{3}{8}\right)^n$: v_n عبارة الحد العام			
	0.75	$u_n=3-3igg(rac{3}{8}igg)^n:n$ استنتاج أنّه من أجل كلّ عدد طبيعي			
	0.25	$\lim_{n\to+\infty}u_n=3\qquad .\Rightarrow$			
00.50	0.50	$P_n = 3^{n+1} \times \left(\frac{3}{8}\right)^{\frac{n(n+1)}{2}} .4$			

العلامة		/ 2120/ 2 21/ 7 4 20/ 42			
مجموعة	مجزأة	عناصر الإجابة (الموضوع الثاني)			
·	التمرين الرابع: (07 نقاط)				
0.25	0.25	g(-1) = 0 .1 (I			
		$g(x) < 0$ فان $g(x) = -\infty$ لما $g(x) = -\infty$ اشارة الما الما الما الما الما الما الما الم			
0.50	0.50	$g(x) > 0$ فان $x \in]-1;+\infty[$ لما			
		g(-1)=0			
0.77	0.25	$f(x) = x[1 - (1 + \frac{1}{x})e^{-x-1}]$:التحقق:			
0.75	0.25x2	$\lim_{x \to +\infty} f(x) = +\infty \lim_{x \to -\infty} f(x) = +\infty$			
	0. 25	f'(x) = g(x) : x عدد حقیقی عدد .2			
	0. 25	$]-\infty;-1]$ متزایدة تماما علی $[-1;+\infty[$ ومتناقصة تماما علی f			
01.00	0.50	x $-\infty$ -1 $+\infty$ $f'(x)$ $+\infty$ $+\infty$ $f(x)$ $+\infty$ $+\infty$			
	0.25	$\lim_{x \to +\infty} (f(x) - x) = 0 \qquad -1 .3$			
	0.25	$\left(\begin{array}{c} C_f \end{array}\right)$ المستقيم ذو المعادلة $y=x$ مقارب مائل			
	3,23	(Δ) بالنسبة إلى بالنسبة إلى بالنسبة إلى بالنسبة إلى ال (C_f)			
		$.(\Delta)$ لما $x\in]-\infty;-1[$ لما $x\in]-\infty$ فان لم			
01.75	0.5	$\cdot \left(\Delta ight)$ يقع تحت $\left(C_{f} ight)$ فان $x\in]-1;+\infty [$ لما			
02070		$A(-1;-1)$ يقطع $\left(\Delta ight)$ في النقطة $\left(C_{f} ight)$			
		$\left(\Delta ight)$ موازیا للمستقیم (C_f) موازیا $\left(C_f ight)$ موازیا کامستقیم (C_f) موازیا کامستقیم			
	0,25	f'(x) = 1			
	0,25	x=-1 تكافئ $f'(x)=1$			
	0,25	$y = x - e^{-1}$ کتابة معادلة (T)			

العلامة		/ :1*tl c : : tl)
مجموعة	مجزأة	عناصر الإجابة (الموضوع الثاني)
	0.25 0.25 0.25x2	ب. أ. تبيان أن C_f يقطع حامل محور الفواصل في نقطتين $f(-1.8)=-0.01956$ و $f(-1.8)=-0.01956$ مستمرة و متناقصة تماما و $f(0.4)=0.05476$ و $f(0.4)=0.05476$ و $f(0.3)=-0.054$ و $f(0.4)=0.05476$ ب. رسم $f(0.4)=0.05476$
01.50	0.50	(C_f) aug (C_f) $_{35}$ (C_{5}) $_{35}$ (
		(L) (T) -15 -25 -25
	0. 25	اً. تبیان أن الدّالة h زوجیه f
	0. 25	$h(x)=f\left(x ight):\left[-2;0 ight]$ من أجل كلّ عدد حقيقي x من أجل كلّ عدد الم
01.25	0.25	$\left(\left. C_{f} ight) $ انطلاقا من انطلاقا من جـ. شرح کیفیة رسم
	0.50	$\left(C_{_h} ight)$ رسم