```
In [ ]: # import libaries
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
```

In [104]: x=pd.read_csv(r"C:\Users\user\Downloads\4_drug200 - 4_drug200.csv")

Out[104]:

	Age	Sex	ВР	Cholesterol	Na_to_K	Drug
0	23	F	HIGH	HIGH	25.355	drugY
1	47	М	LOW	HIGH	13.093	drugC
2	47	М	LOW	HIGH	10.114	drugC
3	28	F	NORMAL	HIGH	7.798	drugX
4	61	F	LOW	HIGH	18.043	drugY
195	56	F	LOW	HIGH	11.567	drugC
196	16	М	LOW	HIGH	12.006	drugC
197	52	М	NORMAL	HIGH	9.894	drugX
198	23	М	NORMAL	NORMAL	14.020	drugX
199	40	F	LOW	NORMAL	11.349	drugX

200 rows × 6 columns

In [105]: x=x.head(100)

Out[105]:

	Age	Sex	ВР	Cholesterol	Na_to_K	Drug
0	23	F	HIGH	HIGH	25.355	drugY
1	47	М	LOW	HIGH	13.093	drugC
2	47	М	LOW	HIGH	10.114	drugC
3	28	F	NORMAL	HIGH	7.798	drugX
4	61	F	LOW	HIGH	18.043	drugY
95	36	М	LOW	NORMAL	11.424	drugX
96	58	F	LOW	HIGH	38.247	drugY
97	56	F	HIGH	HIGH	25.395	drugY
98	20	М	HIGH	NORMAL	35.639	drugY
99	15	F	HIGH	NORMAL	16.725	drugY

100 rows × 6 columns

```
In [106]:
           <class 'pandas.core.frame.DataFrame'>
           RangeIndex: 100 entries, 0 to 99
           Data columns (total 6 columns):
                              Non-Null Count Dtype
            #
                Column
            0
                              100 non-null
                                               int64
                Age
            1
                                               object
                Sex
                              100 non-null
            2
                BP
                                               object
                              100 non-null
            3
                Cholesterol 100 non-null
                                               object
            4
                Na_to_K
                              100 non-null
                                               float64
            5
                Drug
                              100 non-null
                                               object
           dtypes: float64(1), int64(1), object(4)
           memory usage: 4.8+ KB
In [107]:
Out[107]: Index(['Age', 'Sex', 'BP', 'Cholesterol', 'Na_to_K', 'Drug'], dtype='object')
In [109]: d=x[['Age', 'Sex', 'BP', 'Cholesterol', 'Na_to_K', 'Drug']]
Out[109]:
                              BP Cholesterol Na_to_K
               Age
                   Sex
                                                     Drug
                23
                      F
                           HIGH
                                      HIGH
                                              25.355 drugY
            0
             1
                47
                            LOW
                                      HIGH
                                              13.093 drugC
                      Μ
            2
                            LOW
                                              10.114 drugC
                47
                                      HIGH
                      M
                                               7.798 drugX
             3
                28
                      F NORMAL
                                      HIGH
             4
                61
                      F
                            LOW
                                      HIGH
                                              18.043 drugY
            ...
                      ...
                            LOW
                                   NORMAL
            95
                36
                      Μ
                                              11.424 drugX
                      F
                            LOW
            96
                58
                                      HIGH
                                              38.247 drugY
            97
                56
                      F
                            HIGH
                                      HIGH
                                              25.395 drugY
                           HIGH
                                   NORMAL
                                              35.639 drugY
            98
                20
                     Μ
                      F
            99
                15
                           HIGH
                                   NORMAL
                                              16.725 drugY
```

100 rows × 6 columns

In [110]:

Out[110]:

	Age	Na_to_K
count	100.000000	100.000000
mean	43.770000	16.823000
std	16.367531	7.257723
min	15.000000	7.285000
25%	30.500000	11.031250
50%	43.000000	15.025500
75%	58.000000	20.020250
max	74.000000	38.247000

In [111]:

Out[111]: <seaborn.axisgrid.PairGrid at 0x2602cb536a0>

In [113]:

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: Fut ureWarning: `distplot` is a deprecated function and will be removed in a futu re version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for hi stograms).

warnings.warn(msg, FutureWarning)

Out[113]: <AxesSubplot:xlabel='Age', ylabel='Density'>

In [114]:

In [115]:

Out[115]: <AxesSubplot:>

In [131]: x=x1[['Age','Na_to_K']]

```
In [132]: # to split my dataset into traning and test date
          from sklearn.model_selection import train_test_split
In [133]: from sklearn.linear_model import LinearRegression
          lr=LinearRegression()
Out[133]: LinearRegression()
In [134]:
          1.0658141036401503e-14
In [135]: coeff=pd.DataFrame(lr.coef_,x.columns,columns=['Co-efficient'])
Out[135]:
                     Co-efficient
               Age 6.566793e-18
           Na_to_K 1.000000e+00
In [136]: prediction=lr.predict(x_test)
Out[136]: <matplotlib.collections.PathCollection at 0x2602cb2a880>
           30
           25
           20
           15
           10
                          15
                  10
                                  20
                                           25
                                                   30
In [137]: L
Out[137]: 1.0
  In [ ]:
```

6 of 6