Se duas matrizes escalonadas tem o mesmo espaço de linhas, os elementos distinguidos estão nas mesmas posições. Ou seja, se $A=(a_{ij})$ e $B=(b_{k\ell})$ tem o mesmo espaço de linhas, se a_{ij_m} e $b_{k\ell_n}$ são os elementos distinguidos das linhas i de A e B, $j_m=\ell_n$ para i=k.

Tomemos a linha R_1 de A. R_1 é uma combinação linear das linhas de B. Como, $a_{1j_1} = \sum_{o=1}^s c_o b_{o\ell_1} = c_1 b_{1\ell_1}$ e $a_{1j_1} \neq 0$ e $b_{1\ell_1} \neq 0$, $c_1 \neq 0$, logo $j_1 = \ell_1$.

Provemos agora que a matriz A', resultante da remoção da primeira linha de A tem o mesmo espaço de linhas da matriz B', resultante da remoção da primeira linha da matriz B.

Sejam R_i , $i \neq 1$, uma linha de A e R'_k uma linha de B, R_i é uma combinação linear das linhas de B. Como $a_{ij_1} = 0$, $\forall i \neq 1$, $R_i = \sum_{o=2}^{s} c_o R'_o$, logo A' e B' tem o mesmo espaço de linhas.

Procedendo recursivamente estas duas etapas até que se tenha chegado à última linha não nula de A, repetindo todo o procedimento permutando-se A e B, o teorema está demonstrado.

Quod Erat Demonstrandum.

Documento compilado em Wednesday 12th March, 2025, 22:09, tempo no servidor.

Sugestões, comunicar erros: "a.vandre.g@gmail.com".

Licenca de uso:

 $\label{lem:attribuição-NãoComercial-CompartilhaIgual (CC BY-NC-SA)}.$