1 Wärmelehre

1.1 Rauschen

Rauschen auf p
 und T bei Zimmertemperatur im Glas. Histogramm \Rightarrow Fehler auf Einzelwert.

$$\sigma_p = \sqrt{\frac{\sum (p - \bar{p})^2}{n - 1}} \tag{1}$$

 $\sigma_{\bar{p}} = \frac{\sigma_p}{\sqrt{n}}$

Intervall	$20 \mathrm{ms}$
Anzahl	5000
Zeit	100s

1.2 Temperaturkalibration

$$T_R = aT_C + b (2)$$

Eiswasser: $T_0^T = 273.16K$, Siedetemperatur $T_{100}^T = T_0^T + T(p)$

1.3 Dichtigkeit

Mit Pumpe Unterdruck erzeugen 400-300 h Pa
 p gegen t auftragen maximal $3\frac{hPa}{min}$

1.4 Hauptmessung

Clausius Clapeyron:

$$\frac{dp}{dT} = \frac{\nu\Lambda}{T(V_1 - V_2)}\tag{3}$$

Näherungen: $V_{Gas} >> V_{Fluessig}, pV = \nu RT,$

 \Rightarrow

$$ln(p) = -\frac{\Lambda}{R} \frac{1}{T} + c \tag{4}$$

erhitzen bis sieden, erst beim Abkühlen Messung starten.

Intervall	$100 \mathrm{ms}$
Anzahl	∞
Zeit	∞

2 Elektrotechnik

2.1 Gedämpfter LC Schwingkreis Oszilloskop + Cassy

$$U_{n+1} = U_n e^{\delta(t_{n+1} - t_n)} \Rightarrow \delta_n = \frac{\ln(\frac{U_n}{U_{n+1}})}{t_{n+1} - t_n}$$
 (5)

Intervall	$10~\mu~\mathrm{s}$
Anzahl	4000
Zeit	$40 \mathrm{ms}$

Abbildung 1: Gedämpfter LC Schwingkreis

Bei Oszillospkop auf Single Sequence stellen.

Offset vor dem logarithmieren abziehen.

 $C=10\mu F, L=36mH, R_i=9.5\Omega, R=0-220\Omega$ Drehwiderstand

2.2 Bestimmung der Induktivität

$$\delta = \frac{1}{2L} \cdot R \tag{6}$$

 δ bei unterschiedlichen R messen.

2.3 Schwingfälle

$$\omega_0 = \sqrt{\frac{1}{LC}}, \qquad \omega = \sqrt{\omega_0^2 - \delta^2} \tag{7}$$

Aperiodischer Grenzfall

$$\omega_0 = \delta \Rightarrow R_{ap} = 2\sqrt{\frac{L}{C}} \stackrel{hier}{\approx} 120\Omega$$
 (8)

Für den Kriechfall $R=1000\Omega$