Interferenza nel piano

$$t = \frac{T}{4}$$

$$t = \frac{T}{2}$$

$$t = \frac{3}{4}T$$

Le due onde interferiscono distruttivamente nei punti A_i perché per giungere fino lì percorrono cammini di lunghezze diverse, che differiscono per un numero $\emph{dispari}$ di \emph{mezze} lunghezze d'onda: $(2n+1)\frac{\lambda}{2}$, cioè $n\lambda+\frac{\lambda}{2}$

La mezza lunghezza d'onda di differenza (sfasamento) causa l'interferenza distruttiva

Per esempio il punto A_1 è distante $\frac{3}{2}\lambda$ da una sorgente e 2λ dall'altra, perciò la differenza di cammino percorso è $\frac{\lambda}{2}$

Per il punto A_2 i cammini differiscono di $\frac{3}{2}\lambda$, mentre per il punto A_3 risulta $\frac{\lambda}{2}$ (discorsi analoghi per i punti A_4 , A_5 e A_6)

Invece le onde giungono in fase nei punti B_i e lì interferiscono costruttivamente Per esempio in B_1 e in B_3 la differenza è 0, mentre in B_2 e in B_4 è λ

In conclusione:

- i punti fissi A_i hanno come proprietà geometrica una differenza di cammino $(2n+1)\frac{\lambda}{2}$ (interferenza distruttiva)
- ullet i punti di massima oscillazione B_i hanno differenza di cammino $n\lambda$ (interferenza costruttiva)

Cresta

