Ulysses Palomar 3/31/2023 Worksneet #4

0	5 mod 9 = 5 28 mod 9 =
28, 19, 10	19 mod 9=1 15 mod 9=6
2 20	20 mod 9=2 33 mod 9=6
3 21	21 mod $9=3$ 17 mod $9=8$
4	$10 \mod 9 = 1$
5 5	
6 15, 33	
7	
8 17	

$$M = 1000$$

$$h(K) = \lfloor m(RA \mod I) \rfloor \quad \text{for } A = \frac{\sqrt{5}-1}{2}$$

61	700	W(91) = [1000 [91. 12] mog 1)]
	318	= L1000 (818.) mod 1)]
	936	= [1000 (37.7 mod 1)]

- حرد ١٥٥٥ ١٠٠ م ١٥٥٥ -

= 318

$$h(63) = 936$$

 $h(64) = 554$
 $h(65) = 172$

Linear Probing

0 22
1 88
31 mod
$$11 = 9$$
 4 mod $11 = 9$
3 mod $11 = 9$ 4 mod $11 = 9$
15 mod $11 = 9$ 28 mod $11 = 6$
17 mod $11 = 6$ 17 86 mod $11 = 6$
5 15
6 28
7 17
8 59
9 31

Quadratic Probing

	- MANONONO		,, -	
-		31 mod 11=9	4 mod 11=4	
ے	88		·	
3	17	$- 15 \mod 11=4$	28 mod 11=6	
4	4	· [=1] 4+ 14) + 360°	= &	
5		17 mod 11=6		
6	28	i=1 6+ 161) + 36132 =	= 10	
7	59	1=2 6+1(2)+3(2)2	= 20 mod 11=9	
8	15	i=3/6+1(3)+3(3)2=	= 36 mod 11=3	
9	31	- 88 mod 11=0		
10	10	i=1) 0+1613+86	$y^2 = 4$	
		$i = 2 \int_{0}^{1} 0 + 1(2) + 3(2)$	12 = 14 mod 11 = 3	
i=3/0+1(3)+3(3)=30mod11=8				
		1=4/0+1(4)+36		
		i=5 0 + (5) + 36	_	
		i = 6 0 + 1(6) + 3(6)		
		$i = 7 \int 0 + 1(7) + 3($		
		i = 8 0 + 1(8) + 3 (8)	$(3)^2 = 200 \text{ mod } 11 = 2$	
		59 mod 11 = 4		
		i=1 U + 1/11 + 3	/1) ² = C	

59 mod
$$11 = 4$$

 $i = 1 | 4 + 1(1) + 3(1)^{2} = 8$
 $i = 2 | 4 + 1(2) + 3(2)^{2} = 18 \mod 11 = 7$

Double Hashing $h_1(K) = K \mod m \quad h_2(K) = 1 + (K \mod (m-1))$ $h(K) = h_1(K) + i h_2(K)$

n N 25 0

59

59

4 + 60 10 = 14 mod (1 = 3

7 (2)10 = 24 mod 11 = 2)