

NASA Space Mission Al Project Plan

This presentation outlines a conceptual design for an AI system to optimize autonomous navigation for a NASA Mars rover. The project, led by Andrew Kuruvilla, focuses on real-time path planning and obstacle avoidance using machine learning and sensor data fusion. The goal is to enhance mission efficiency and safety in challenging Martian environments.

A by Andrew Kuruvilla

Project Overview & Objectives

Project Description

The project proposes an AI solution for real-time path planning and obstacle avoidance on Mars. It leverages computer vision, reinforcement learning, and sensor fusion to help rovers adapt to unpredictable terrain and environmental changes.

Key Objectives

- Design AI model architecture for path planning
- Create a sensor fusion framework
- Develop a robust testing plan
- Align with NASA mission requirements

Defining the Problem

Autonomous Navigation Challenges

Mars rovers face communication delays and must navigate complex, unpredictable terrains with minimal human input.

Current Limitations

Existing systems rely on preprogrammed routes and lack real-time adaptability, risking inefficiency and mission failure when encountering unexpected obstacles.

Mission Risks

Obstacles like rocks, craters, and sand traps can jeopardize mission success if not detected and avoided in real time.

Proposed Al Solution

Dynamic Path Planning

Utilizes computer vision and reinforcement learning for real-time route optimization.

Sensor Data Fusion

Combines LiDAR, stereo cameras, and IMU data for robust obstacle detection and classification.

Environmental Adaptation

Adapts to changing conditions such as dust storms and lighting variations to ensure safe navigation.

Energy Optimization

Minimizes energy use while achieving mission objectives and reaching scientific targets.

System Architecture Overview

Data Acquisition

Collects and preprocesses LiDAR, camera, and IMU data using Python, OpenCV, and PCL.

Sensor Fusion

Integrates sensor data with a Kalman filter to create a unified 3D map.

Obstacle Detection

CNN model identifies and classifies obstacles using simulated Mars terrain data.

Path Planning

Reinforcement learning algorithm generates optimal, energy-efficient routes.

Workflow: From Data to Action

Assumptions & Risk Mitigation

Hardware Support

Assumes onboard GPU for real-time processing and access to simulated Mars environments.

Efficiency

Optimizes algorithms to address computational limits and prioritize critical tasks.

Sensor Redundancy

Mitigates sensor noise/failure with fallback strategies and robust fusion.

Model Generalization

Prevents overfitting with data augmentation and domain randomization.

Testing Plan & Scenarios

1

Static Obstacle Avoidance

Test rover navigation on simulated terrain with rocks and craters; measure collision-free success rate.

2

Dynamic Environments

Assess rover's ability to adapt to changing conditions like dust storms; track adaptation time and avoidance.

3

Edge Cases

Evaluate performance on extreme slopes, narrow passages, and with sensor noise; monitor failure and recovery rates.

4

Energy Efficiency

Measure energy use during long-distance navigation with obstacles, comparing to baseline paths.

Validation & Success Criteria

90%

95%

Obstacle Detection Accuracy

Precision and recall for identifying obstacles must exceed 90%.

Path Planning Success

Static environment navigation must succeed in over 95% of tests.

20%

90%

Energy Efficiency Gain

Robustness

System should use at least 20% less energy than shortest-path baseline.

No mission failures in more than 90% of edge case tests.