Examen de Théorie algébrique des nombres – MAT552 – 19/12/2018

Documents autorisés : polycopié du cours, notes de cours et PC, calculatrice. Les corrigés des exercices du polycopié, ainsi que les corrigés des examens antérieurs, ne sont pas autorisés.

Problème 1. On pose $\alpha = \frac{1+\sqrt{-155}}{2}$ et $A = \mathbb{Z}[\alpha]$.

- (i) Déterminer des représentants de Cl(-155) et ses classes ambiguës.
- (ii) En déduire la structure du groupe P(-155).
- (iii) En utilisant le théorème de Dedekind, déterminer la structure du groupe Pic(A).

On se propose de redémontrer le (iii) sans utiliser le théorème de Dedekind.

- (iv) Montrer que tout idéal non nul de A est équivalent à un idéal contenant un entier N avec 1 < N < 7.
- (v) Montrer que Cl(A) est un groupe, et qu'il est engendré par les classes des idéaux premiers de A contenant 2, 3, 5 ou 7.
- (vi) Montrer qu'il existe exactement deux idéaux premiers de A contenant 3, à savoir $T = (3, \alpha)$ et $T' = (3, \alpha 1)$, et que l'on a(3) = TT'.
- (vii) Montrer que les idéaux (2) et (7) sont premiers, et que l'on a (5) = C^2 avec C l'unique idéal premier de A contenant 5.
- (viii) Montrer $(\alpha 3) = CT^2$ et que C n'est pas principal.
- (ix) En déduire que Cl(A) est engendré par la classe de T, et conclure.

Si K est un corps de nombres, on rappelle que $\Sigma(K)$ désigne l'ensemble de ses plongements. On dira que K est totalement réel si pour tout σ dans $\Sigma(K)$ on a $\sigma(K) \subset \mathbb{R}$.

Problème 2. (Un théorème de Hermite) On fixe un entier $n \geq 1$. On se propose de démontrer que pour tout entier d il n'existe qu'un nombre fini de corps de nombres totalement réels, de degré n, et de discriminant d.

(i) (Question prélimininaire) Soient K un corps de nombres et $x \in K$ avec $\mathbb{Q}(x) \neq K$. Montrer que pour tout σ dans $\Sigma(K)$, il existe τ dans $\Sigma(K) - \{\sigma\}$ vérifiant $\tau(x) = \sigma(x)$.

Dans les questions suivantes, K est un corps de nombres totalement réel fixé de degré n, et on pose $\Sigma(K) = \{\sigma_1, \ldots, \sigma_n\}$ (justifier) et $d = |\operatorname{disc} K|$.

- (ii) Montrer qu'il existe un élément $x \in \mathcal{O}_K$ non nul vérifiant $|\sigma_1(x)| \leq 2^{n-1}\sqrt{d}$ et $|\sigma_i(x)| \leq 1/2$ pour tout $i \neq 1$.
- (iii) Montrer $|\sigma_1(x)| \geq 2^{n-1}$.
- (iv) En déduire $K = \mathbb{Q}(x)$.
- (v) Conclure en examinant le polynôme caractéristique de x dans l'extension K/\mathbb{Q} .

Problème 3. (Un anneau d'entiers non monogène)

Partie I. Soit p un nombre premier. Pour tout anneau A on note $\operatorname{Hom}(A,\mathbb{Z}/p\mathbb{Z})$ l'ensemble des morphismes d'anneaux de A dans $\mathbb{Z}/p\mathbb{Z}$.

- (i) Montrer que si x est dans $\overline{\mathbb{Z}}$, et si R est le polynôme minimal de x sur \mathbb{Q} , alors $\mathrm{Hom}(\mathbb{Z}[x],\mathbb{Z}/p\mathbb{Z})$ est en bijection avec l'ensemble des racines dans $\mathbb{Z}/p\mathbb{Z}$ de la réduction modulo p de R.
- (ii) Montrer que si K est un corps de nombres, et si P_1, \ldots, P_r désignent les idéaux premiers distincts de \mathcal{O}_K de norme p, alors $\operatorname{Hom}(\mathcal{O}_K, \mathbb{Z}/p\mathbb{Z})$ a au moins r éléments.
- (iii) (suite) En déduire que si \mathcal{O}_K est de la forme $\mathbb{Z}[x]$ avec x dans \mathcal{O}_K , on a $r \leq p$.

Partie II. Soient α dans $\overline{\mathbb{Q}}$, $K = \mathbb{Q}(\alpha)$ et R le polynôme minimal de α sur \mathbb{Q} .

- (iv) Montrer que pour tout $t \in \mathbb{Q}$ on a $N_{K/\mathbb{Q}}(t-\alpha) = R(t)$.
- (v) On suppose $\alpha \neq 1$. Montrer $\operatorname{Tr}_{K/\mathbb{Q}} \frac{1}{1-\alpha} = \frac{R'(1)}{R(1)}$.

Partie III. Soient $\alpha \in \mathbb{C}$ vérifiant $\alpha^3 - \alpha - 8 = 0$ et $K = \mathbb{Q}(\alpha)$. On se propose de démontrer que \mathcal{O}_K n'est pas de la forme $\mathbb{Z}[x]$ avec $x \in \mathcal{O}_K$.

- (vi) Montrer que $t^3 t 8$ est irréductible dans $\mathbb{Q}[t]$. En déduire $[K:\mathbb{Q}]$.
- (vii) En contemplant l'égalité $8 = \alpha(\alpha 1)(\alpha + 1)$, montrer que tout idéal premier de \mathfrak{O}_K contenant 2 contient soit α , soit $\alpha + 1$ (exclusivement).
- (viii) Montrer que l'idéal principal $P = (\alpha 2)\mathcal{O}_K$ est de norme 2.
- (ix) En déduire que P est l'unique idéal premier de \mathfrak{O}_K contenant 2 et α .
- (x) On suppose qu'il existe un unique idéal premier Q de \mathcal{O}_K contenant 2 et $\alpha+1$. Montrer qu'il existe un entier $m \geq 1$ vérifiant $(\alpha-1)\mathcal{O}_K = Q^m = (\alpha+1)\mathcal{O}_K$.

Indication: on pourra observer $N_{K/\mathbb{Q}}(\alpha \pm 1) = 8$.

- (xi) (suite) En déduire que l'élément $\beta = \frac{1+\alpha}{1-\alpha}$ est dans \mathcal{O}_K .
- (xii) Montrer $\operatorname{Tr}_{K/\mathbb{Q}} \beta = -7/2$.
- (xiii) En déduire qu'il existe au moins 2 idéaux premiers de \mathfrak{O}_K contenant 2 et $\alpha+1$, disons Q_1 et Q_2 .
- (xiv) Montrer $2O_K = PQ_1Q_2$ et $N(Q_1) = N(Q_2) = 2$.
- (xv) Conclure.

Partie IV. (Bonus)

- (xvi) Montrer $(\alpha) = P^3$.
- (xvii) Quitte à échanger les rôles de Q_1 et Q_2 , montrer $(\alpha+1)\mathfrak{O}_K=Q_1^2Q_2$ et $(\alpha-1)\mathfrak{O}_K=Q_1Q_2^2$.
- (xviii) En déduire $\frac{\alpha(\alpha+1)}{2} \in \mathcal{O}_K$.
- (xix) Montrer $\mathfrak{O}_K = \mathbb{Z} + \mathbb{Z}\alpha + \mathbb{Z}\frac{\alpha(\alpha+1)}{2}$. (Observer que le discriminant de $t^3 t 8$ est $-4 \cdot 431$.)
- (xx) Retrouver que l'anneau $\mathcal{O}_K/2\mathcal{O}_K$ est isomorphe à l'anneau produit $(\mathbb{Z}/2\mathbb{Z})^3$.