README

July 4, 2022

This code plots the MSE in P and records the relative error in gain and cost as produced by the EnKF.

The code is written in Python 3 and there are four files: constants_enkf.py, enkf.py, enkf-time.py LQSys.py. The steps for running the code are as follows:

- 1. In constants_enkf.py, set the desired variables as per the modelling and simulation parameters, see Table 1 and Table 2 respectively for location of these variables in the code.
- 2. Run enkf.py to generate the plot of variation of mean square error versus number of particles. It will also output the terminal error in cost and gain.
- 3. To get the simulation time needed for an individual run, execute enkf-time.py

Table 1: Modelling parameters in constants_enkf.py

Modelling parameter	Variable name in code	Line number in code	
Modelling parameter	variable name in code	d/2 = 1	$d/2 \ge 2$
Number of masses	MASSES	14	14
C	C	24	42
R	R	26	44
P_T	ST	28	46

Table 2: Simulation parameters in constants_enkf.py

Modelling parameter	Variable name in code	Line number in code
Total simulation time (T)	T	4
Stepsize (Δt)	STEP	5
Number of repetitions for averaging	NAVG	7
Vector of number of particles	NVEC	9
Length of vector of number of particles	NSIM	8
Seed for RNG	SEED0	12