

QUÍMICA NIVEL SUPERIOR PRUEBA 1

Viernes 9 de noviembre de 2012 (tarde)

1 hora

INSTRUCCIONES PARA LOS ALUMNOS

- No abra esta prueba hasta que se lo autoricen.
- · Conteste todas las preguntas.
- Seleccione la respuesta que considere más apropiada para cada pregunta e indique su elección en la hoja de respuestas provista.
- Como referencia, se incluye la tabla periódica en la página 2 de esta prueba.
- La puntuación máxima para esta prueba de examen es [40 puntos].

0	2 He 4,00	10 Ne 20,18	18 Ar 39,95	36 Kr 83,80	54 Xe 131,30	86 Rn 2222)			
_	H + , , , ,	1 N 20,	1 A 39,	3 83, K		86 Rn (222)			
۲		9 F 19,00	17 Cl 35,45	35 Br 79,90	53 I 126,90	85 At (210)		71 Lu 174,97	103 Lr (260)
9		8 O 16,00	16 S 32,06	34 Se 78,96	52 Te 127,60	84 Po (210)		70 Yb 173,04	102 No (259)
w		7 N 14,01	15 P 30,97	33 As 74,92	51 Sb 121,75	83 Bi 208,98		69 Tm 168,93	101 Md (258)
4		6 C 12,01	14 Si 28,09	32 Ge 72,59	50 Sn 118,69	82 Pb 207,19		68 Er 167,26	100 Fm (257)
ю		5 B 10,81	13 Al 26,98	31 Ga 69,72	49 In 114,82	81 TI 204,37		67 Ho 164,93	99 Es
	!			30 Zn 65,37	48 Cd 112,40	80 Hg 200,59		66 Dy 162,50	98 Cf (251)
				29 Cu 63,55	47 Ag 107,87	79 Au 196,97		65 Tb 158,92	97 Bk (247)
riódic				28 Ni 58,71	46 Pd 106,42	78 Pt 195,09		64 Gd 157,25	96 Cm (247)
Tabla periódica				27 Co 58,93	45 Rh 102,91	77 Ir 192,22		63 Eu 151,96	95 Am (243)
Ta				26 Fe 55,85	44 Ru 101,07	76 Os 190,21		62 Sm 150,35	94 Pu (242)
				25 Mn 54,94	43 Tc 98,91	75 Re 186,21		61 Pm 146,92	93 Np (237)
	atómico	ento ca relativa		24 Cr 52,00	42 Mo 95,94	74 W 183,85		60 Nd 144,24	92 U 238,03
	Número atómico	Elemento Masa atómica relativa		23 V 50,94	41 Nb 92,91	73 Ta 180,95		59 Pr 140,91	91 Pa 231,04
	<u> </u>		,	22 Ti 47,90	40 Zr 91,22	72 Hf 178,49		58 Ce 140,12	90 Th 232,04
				21 Sc 44,96	39 Y 88,91	57 † La 138,91	89 ‡ Ac (227)	;-	++
7		4 Be 9,01	12 Mg 24,31	20 Ca 40,08	38 Sr 87,62	56 Ba 137,34	88 Ra (226)		
-	1 H 1,01	3 Li 6,94	11 Na 22,99	19 K 39,10	37 Rb 85,47	55 Cs 132,91	87 Fr (223)		

- 1. ¿Qué número de iones hay en 0,20 mol de $(NH_4)_3PO_4$?
 - A. 8.0×10^{-1}
 - B. 1.2×10^{23}
 - C. 4.8×10^{23}
 - D. $2,4 \times 10^{24}$
- 2. La ecuación para la reducción del óxido de hierro(III) es:

$$Fe_2O_3(s) + 3CO(g) \rightarrow 2Fe(s) + 3CO_2(g)$$

¿Qué masa de dióxido de carbono, en g, se produce por reducción completa de 80 g de óxido de hierro(III)?

- A. 44
- B. 66
- C. 88
- D. 132
- 3. Se mezclan 3.0 dm^3 de etino, C_2H_2 , con 3.0 dm^3 de hidrógeno y se encienden. La ecuación para la reacción que se produce se muestra a continuación.

$$C_2H_2(g) + 2H_2(g) \rightarrow C_2H_6(g)$$

Suponiendo que la reacción se completa y que todos los volúmenes gaseosos se miden a la misma temperatura y presión, ¿qué volumen de etano, C_2H_6 , en dm³, se forma?

- A. 1,5
- B. 2,0
- C. 3,0
- D. 6,0

- 4. ¿Qué ion sufrirá mayor deflexión en un espectrómetro de masas?
 - A. ${}^{35}\text{Cl}^+(g)$
 - B. ${}^{37}\text{Cl}^+(g)$
 - C. ${}^{35}\text{Cl}^{2+}(g)$
 - D. ${}^{37}\text{Cl}^{2+}(g)$
- 5. ¿Cuál de los siguientes gráficos representa el logaritmo de las sucesivas energías de ionización del fósforo?

-4-

A.

_

C.

D.

6. ¿Qué combinación es correcta para las propiedades de los metales alcalinos del Li al Cs?

	Radio atómico	Punto de fusión	Primera energía de ionización	
A.	aumenta	aumenta	aumenta	
B.	aumenta	disminuye	disminuye	
C.	aumenta	aumenta	disminuye	
D.	disminuye	disminuye	aumenta	

7. ¿Qué ecuación representa una reacción que se produce en condiciones normales?

A.
$$2\text{LiBr}(aq) + I_2(aq) \rightarrow 2\text{LiI}(aq) + \text{Br}_2(aq)$$

B.
$$2KF(aq) + Cl_2(aq) \rightarrow 2KCl(aq) + F_2(aq)$$

C.
$$2\text{LiCl}(aq) + I_2(aq) \rightarrow 2\text{LiI}(aq) + \text{Cl}_2(aq)$$

D.
$$2KBr(aq) + Cl_2(aq) \rightarrow 2KCl(aq) + Br_2(aq)$$

8. ¿Qué combinación de enunciados sobre los óxidos de los elementos del periodo 3 es correcto?

	Estado a	temperatura	ambiente	Conductividad eléctrica en estado fundido		
	Na ₂ O	Al ₂ O ₃	P_4O_{10}	Na ₂ O	Al_2O_3	P ₄ O ₁₀
A.	sólido	sólido	gaseoso	buena	buena	buena
B.	sólido	sólido	sólido	buena	buena	mala
C.	sólido	líquido	líquido	buena	mala	mala
D.	sólido	sólido	sólido	mala	mala	buena

8812-6125 Véase al dorso

- 9. ¿Qué compuesto es iónico?
 - A. Mg_3N_2
 - B. Al₂Cl₆
 - C. SiO₂
 - D. SF₆
- **10.** ¿Qué molécula es polar?

	Molécula	Forma
A.	CO_2	lineal
B.	SO_3	plana trigonal
C.	CCl_4	tetraédrica
D.	SO_2	en forma de V

- 11. ¿Qué fuerzas intermoleculares están presentes en el HI(l)?
 - I. Enlace de hidrógeno
 - II. Fuerzas dipolo-dipolo
 - III. Fuerzas de van der Waals (de dispersión de London)
 - A. Solo I y II
 - B. Solo I y III
 - C. Solo II y III
 - D. I, II y III

¿Cuáles son los ángulos de enlace correctos en la molécula de SF₄? 12.

β/ °

- A. 180 120

 α / $^{\circ}$

- B. 187 103
- C. 187 120
- D. 180 90
- 13. ¿Qué sustancias tienen electrones deslocalizados en su estructura?
 - I. Etanal
 - II. Ozono
 - III. Benceno
 - Solo I y II A.
 - B. Solo I y III
 - C. Solo II y III
 - D. I, II y III
- Una muestra de 5,00 g de una sustancia se calentó desde 25,0 °C hasta 35,0 °C usando $2,00\times10^2~\mathrm{J}$ de energía. ¿Cuál es la capacidad calorífica específica de la sustancia en J g⁻¹ K⁻¹?
 - $4,00 \times 10^{-3}$ A.
 - $2,50 \times 10^{-1}$ B.
 - C. 2,00
 - 4,00 D.

15. Usando las ecuaciones que se muestran a continuación:

$$\begin{split} & \text{C(s)} + \text{O}_2(\text{g}) \to \text{CO}_2(\text{g}) & \Delta H^{\ominus} = -390 \text{ kJ} \\ & \text{H}_2(\text{g}) + \frac{1}{2} \text{O}_2(\text{g}) \to \text{H}_2 \text{O(l)} & \Delta H^{\ominus} = -286 \text{ kJ} \\ & \text{CH}_4(\text{g}) + 2 \text{O}_2(\text{g}) \to \text{CO}_2(\text{g}) + 2 \text{H}_2 \text{O(l)} & \Delta H^{\ominus} = -890 \text{ kJ} \end{split}$$

¿cuál es el ΔH^{Θ} , en kJ, para la siguiente reacción?

$$C(s) + 2H_2(g) \rightarrow CH_4(g)$$

- A. -214
- B. -72
- C. +72
- D. +214
- **16.** ¿Cuál es la mejor definición de afinidad electrónica?
 - A. La habilidad de un átomo de atraer los electrones de un enlace covalente.
 - B. La atracción de un átomo por un electrón.
 - C. La variación de entalpía cuando un átomo gana un electrón.
 - D. La variación de entalpía cuando un átomo gaseoso gana un electrón.
- 17. ¿Cuál es la mejor definición de estado estándar?
 - A. El estado estándar de un sólido es la forma más pura del sólido.
 - B. El estado estándar de un sólido es la forma más pura del sólido a 298 °C.
 - C. El estado estándar de un gas es la forma más pura del gas a 298 °C.
 - D. El estado estándar de un gas es la forma más pura del gas a una presión de 100 kPa.

18. Considere la siguiente información:

$$CaCO_3(s) \rightarrow CaO(s) + CO_2(g)$$

 $\Delta H = +179 \text{ kJ mol}^{-1}$
 $\Delta S = +161.0 \text{ J K}^{-1} \text{ mol}^{-1}$

¿Qué le sucede a la espontaneidad de esta reacción a medida que aumenta la temperatura?

- A. La reacción se hace más espontánea a medida que aumenta la temperatura.
- B. La reacción se hace menos espontánea a medida que aumenta la temperatura.
- C. La reacción permanece espontánea a cualquier temperatura.
- D. La reacción permanece no espontánea a cualquier temperatura.
- 19. ¿Qué equipo no se podría usar en un experimento para medir la velocidad de esta reacción?

$$\mathrm{CH_3COCH_3(aq)} + \mathrm{I_2(aq)} \rightarrow \mathrm{CH_3COCH_2I(aq)} + \mathrm{H^+(aq)} + \mathrm{I^-(aq)}$$

- A. Un colorímetro
- B. Una jeringa de gases
- C. Un cronómetro
- D. Un pehachímetro

20. ¿Cuál gráfico seria producido por una reacción de 2° orden si la ecuación de velocidad fuera velocidad = $k[X]^2$?

A.

В.

C.

D.

- 21. ¿Qué etapa de un mecanismo de reacción de múltiples etapas es la determinante de la velocidad?
 - A. La primera etapa
 - B. La última etapa
 - C. La etapa que tiene mayor energía de activación
 - D. La etapa que tiene menor energía de activación

22. Los iones hierro(III), Fe³⁺, reaccionan con los iones tiocianato, SCN⁻, por medio de una reacción reversible para formar una solución roja. ¿Qué cambios en el equilibrio harán que la solución se ponga roja?

$$Fe^{3+}(aq) + SCN^{-}(aq) \rightleftharpoons [FeSCN]^{2+}(aq)$$
 $\Delta H^{\ominus} = positivo$
Amarillo Rojo

- I. Aumentar la temperatura
- II. Añadir FeCl₃
- III. Añadir un catalizador
- A. Solo I y II
- B. Solo I y III
- C. Solo II y III
- D. I, II y III
- **23.** Considere la siguiente reacción reversible:

$$2NO_2(g) \rightleftharpoons N_2O_4(g)$$

¿Cuál es el valor de K_c para la reacción cuando las concentraciones en el equilibrio son $[NO_2] = 4.0 \text{ mol dm}^{-3} \text{ y } [N_2O_4] = 4.0 \text{ mol dm}^{-3}$?

- A. 0,25
- B. 0,50
- C. 2,0
- D. 4,0
- **24.** ¿Qué sustancia puede actuar como ácido de Lewis pero no como ácido de Brønsted–Lowry?
 - A. HCl
 - B. CH₃COOH
 - C. BF₃
 - D. CF₃COOH

25. ¿En qué fila se describe correctamente NaOH (aq) 1,0 mol dm⁻³?

	рН	Color con solución de indicador universal	Conductividad eléctrica
A.	14	púrpura	buena
B.	10	verde	mala
C.	14	rojo	buena
D.	10	azul	mala

- **26.** Para el agua pura a 50 °C, $K_{\rm w} = 5{,}48 \times 10^{-14}$. ¿Cuál es el pH de esta agua?
 - A. 4,8
 - B. 6,6
 - C. 7,0
 - D. 8,2
- **27.** ¿Cuál es el ácido más fuerte?

	Ácido	pK _a
A.	cloroetanoico	2,87
B.	yodoetanoico	3,18
C.	benzoico	4,20
D.	pentanoico	4,83

- **28.** ¿Qué sales se disolverán en agua para dar soluciones de pH por encima de 7?
 - I. Na₂CO₃
 - II. CH₃COONa
 - III. Na₂SO₄
 - A. Solo I y II
 - B. Solo I y III
 - C. Solo II y III
 - D. I, II y III
- **29.** Durante una titulación, se añade hidróxido de sodio 0,1 mol dm⁻³ a ácido etanoico 0,1 mol dm⁻³. ¿Cuál sería el **mejor** indicador del punto final de esta titulación?

	Indicador	rango de pH del indicador
A.	naranja de metilo	3,2–4,4
B.	azul de bromofenol	3,0-4,6
C.	azul de bromotimol	6,0-7,6
D.	fenolftaleína	8,2–10,0

- **30.** ¿Cuál es el nombre sistemático correcto del MnO₂?
 - A. Óxido de manganeso(II)
 - B. Óxido de manganeso(IV)
 - C. Óxido de magnesio(II)
 - D. Óxido de magnesio(IV)

31. Se construye una pila voltaica conectando semipilas de zinc y plomo. La ecuación total para la reacción que se produce en la pila se muestra a continuación.

$$Zn(s) + Pb^{2+}(aq) \rightarrow Pb(s) + Zn^{2+}(aq)$$

¿Qué enunciados son correctos cuando la pila produce electricidad?

- I. El zinc se oxida.
- II. Los electrones se mueven del zinc al plomo por el circuito externo.
- III. La masa del electrodo de plomo aumenta.
- A. Solo I y II
- B. Solo I y III
- C. Solo II y III
- D. I, II y III

32. Considere los siguientes valores de potenciales estándar de electrodo:

Fe³⁺(aq) + e⁻
$$\rightleftharpoons$$
 Fe²⁺(aq) $E^{\ominus} = +0.77 \text{ V}$
MnO₄⁻(aq) + 8H⁺(aq) + 5e⁻ \rightleftharpoons Mn²⁺(aq) + 4H₂O(l) $E^{\ominus} = +1.51 \text{ V}$

¿Cuál es el potencial de la pila, en V, para esta reacción?

$${\rm MnO_4}^-({\rm aq}) + 8{\rm H^+(aq)} + 5{\rm Fe^{2+}(aq)} \rightarrow {\rm Mn^{2+}(aq)} + 4{\rm H_2O(l)} + 5{\rm Fe^{3+}(aq)}$$

- A. -2,28
- B. -0.74
- C. +0,74
- D. +2.28

33. Considere los siguientes valores de potenciales estándar de electrodo:

$$\operatorname{Ca}^{2+}(\operatorname{aq}) + 2e^{-} \rightleftharpoons \operatorname{Ca}(\operatorname{s}) \qquad E^{\ominus} = -2,87 \text{ V}$$

Fe²⁺(aq) + 2e⁻
$$\rightleftharpoons$$
 Fe(s) $E^{\ominus} = -0.45 \text{ V}$
Ni²⁺(aq) + 2e⁻ \rightleftharpoons Ni(s) $E^{\ominus} = -0.26 \text{ V}$
Fe³⁺(aq) + e⁻ \rightleftharpoons Fe²⁺(aq) $E^{\ominus} = +0.77 \text{ V}$

$$Ni^{2+}(aq) + 2e^- \rightleftharpoons Ni(s)$$
 $E^{\Theta} = -0.26 \text{ V}$

$$Fe^{3+}(aq) + e^{-} \rightleftharpoons Fe^{2+}(aq)$$
 $E^{\Theta} = +0.77 \text{ V}$

¿Qué reacción es espontánea?

A.
$$Ca^{2+}(aq) + Ni(s) \rightarrow Ca(s) + Ni^{2+}(aq)$$

B.
$$3Fe^{2+}(aq) \rightarrow Fe(s) + 2Fe^{3+}(aq)$$

C.
$$Fe(s) + 2Fe^{3+}(aq) \rightarrow 3Fe^{2+}(aq)$$

D.
$$\operatorname{Fe}^{2+}(aq) + \operatorname{Ni}(s) \rightarrow \operatorname{Fe}(s) + \operatorname{Ni}^{2+}(aq)$$

34. ¿Qué compuesto tiene el menor punto de ebullición?

- A. (CH₃)₃COH
- CH₃(CH₂)₃OH В.
- C. $(CH_3)_4C$
- D. CH₃(CH₂)₃CH₃

¿Qué compuesto decoloraría al agua de bromo en la oscuridad? 35.

- A. CH₃COCH₂CH₃
- В. CH₃(CH₂)₄OH
- C. CH₃CHCHCH₃
- D. $CH_3(CH_2)_3CH_3$

- **36.** ¿Qué enunciado sobre la oxidación de alcoholes es correcto?
 - A. La oxidación de 1-propanol produce propanona.
 - B. La oxidación suave de 1-butanol produce butanal.
 - C. La oxidación enérgica de 2-pentanol produce ácido pentanoico.
 - D. La oxidación suave de 2-butanol produce butanal.
- 37. ¿Qué halógenoalcano reaccionará con hidróxido de sodio más rápidamente?
 - A. CH₃CH₂CH₂CH₂Cl
 - B. CH₃CH₂CH₂CH₂Br
 - C. $(CH_3)_3CC1$
 - D. $(CH_3)_3CBr$
- **38.** ¿Cuál sería el producto principal de la reacción entre 1-bromobutano e hidróxido de sodio concentrado en etanol caliente?
 - A. CH,CHCH,CH,
 - B. CH₃CHCHCH₃
 - C. CH₃CH₂CH₂CH₃
 - D. CH₃CHOHCH₂CH₃

- **39.** ¿Qué moléculas pueden reaccionar para formar un polímero de condensación con un ácido dicarboxílico como el ácido hexanodioico?
 - I. HOCH, CH, OH
 - II. CH₃CH₂NH₂
 - III. $H_2N(CH_2)_6NH_2$
 - A. Solo I y II
 - B. Solo I y III
 - C. Solo II y III
 - D. I, II y III
- **40.** Se miden 50 cm³ de solución de sulfato de cobre(II) usando una probeta de 100 cm³ y se colocan en un vaso de plástico. Se añade exceso de zinc en polvo y se mide la elevación de temperatura producida con un termómetro de −10 °C a +110 °C. A continuación se calcula la variación de entalpía de la reacción. ¿Qué enunciado es correcto?
 - A. El error sistemático se reducirá repitiendo el experimento varias veces y promediando los resultados.
 - B. El error aleatorio se reducirá aislando el vaso de plástico.
 - C. El error aleatorio se reducirá usando una pipeta graduada de 50 cm³ en lugar de usar una probeta.
 - D. El error sistemático aumentará usando mayor volumen de solución de sulfato de cobre(II).