

CAP 7. GERENCIAMENTO DE REDES

AULA 1: Introdução e Componentes Principais

INE5422 Redes de Computadores II

Prof. Roberto Willrich (INE/UFSC)

roberto.willrich@ufsc.br

https://moodle.ufsc.br

Nota sobre o uso destes slides ppt:

Estamos disponibilizando estes slides gratuitamente a todos (professores, alunos, leitores). Eles estão em formato do PowerPoint para que você possa incluir, modificar e excluir slides (incluindo este) e o conteúdo do slide, de acordo com suas necessidades. Eles obviamente representam *muito* trabalho da nossa parte. Em retorno pelo uso, pedimos apenas o seguinte:

- Se você usar estes slides (por exemplo, em sala de aula) sem muita alteração, que mencione sua fonte (afinal, gostamos que as pessoas usem nosso livro!).
- □ Se você postar quaisquer slides sem muita alteração em um site Web, que informe que eles foram adaptados dos (ou talvez idênticos aos) nossos slides, e inclua nossa nota de direito autoral desse material.

Obrigado e divirta-se! JFK/KWR

Todo o material copyright 1996-2009

J. F Kurose e K. W. Ross, Todos os direitos reservados.

Gerenciamento de rede

- Objetivos do capítulo:

- Introdução ao gerenciamento de redes: motivação e principais principais
- Serviços de apresentação: ASN.1
- Ambiente de gerenciamento de redes da Internet
 - MIB: base de informações de gerenciamento
 - SMI: linguagem de definição de dados
 - SNMP: protocolo para gerenciamento de redes

"Gerenciamento de redes inclui o fornecimento, a integração e a coordenação de hardware, software e elementos humanos para monitorar, testar, configurar, consultar, analisar, avaliar e controlar a rede e os recursos para atender aos requisitos de desempenho, qualidade de serviço e operação em tempo real dentro de um custo razoável."

- Áreas de gerenciamento de redes

- Gerenciamento de desempenho: meta é qualificar, medir, informar, analisar e controlar o desempenho (utilização, vazão) dos componentes da rede (enlaces, roteadores, hospedeiros) e tráfegos fim-a-fim
 - Abordagem de longo prazo
- Gerenciamento de falhas: meta é registrar, detectar e reagir às condições de falhas da rede
 - Tratamento imediato a falhas transitórias de rede
- Gerenciamento de configuração: permite que o administrador de rede saiba quais dispositivos fazem parte da rede administrativa e quais são suas configurações de hardware e software

- Áreas de gerenciamento de redes
 - Gerenciamento de contabilidade: permite ao administrador especificar, registrar e controlar o acesso de usuários e dispositivos aos recursos de rede
 - Quotas de uso, cobranças por uso e alocação de acesso privilegiadas a recursos
 - Gerenciamento de segurança: meta é controlar o acesso aos recursos de acordo com alguma política definida
 - Centrais de distribuição de chaves e as autoridades certificadoras

- Começando com um exemplo simples
 - Objetivo: Mostrar benefícios do uso de uma ferramenta de gerenciamento
- Cenários:
 - Detecção de falha em uma placa de rede em um hospedeiro ou roteador
 - Ex.: roteador sinaliza a falha, detecção de falhas eminentes (aumento de erros de checksums)
 - Monitoramento de um hospedeiro
 - Verificando se estão ativos e operacionais

- Cenários:

- Monitoramento de tráfego para auxiliar o oferecimento de recursos
 - Monitorando tráfego entre fontes e destinos é possível detectar mudança de servidores para outras LANs para evitar que o tráfego passe por várias LANs
 - Verificar se o enlace para a Internet está sobrecarregado (ou sobrecarga interna, exigindo aumento da largura de banda)

- Cenários:

- Detecção de mudanças rápidas em tabelas de roteamento
 - Pode ser sinal de instabilidade nos roteadores ou problemas de configuração
- Monitoramento de Acordo de Níveis de Serviço (SLA)
 - Contratos que definem parâmetros específicos de medida e níveis aceitáveis de desempenho do provedor
 - Define disponibilidade do serviço, latência, vazão, ...
- Detecção de intrusos
 - Tráfego de uma fonte suspeita ou quando se destinar a ela (p.e. hospedeiro, porta)
 - Ataques do tipo DoS (envio excessivo de pacotes SYN para um destino)

Definições:

Aplicação usada pelo administrador: controla a coleta, o processamento, a análise e/ou a apresentação de informações de gerencia de rede.

Equipamento de rede (incl.
Software): hospedeiro, roteador,
switch, impressora, modem..
Contém diversos objetos
gerenciados: partes do dispositivo
(placa de rede...) e os parâmetros
de configuração

Informações dos objetos gerenciados são mantidas em uma Base de Informações de Gerenciamento (MIB): disponível para a entidade gerenciadora

Agente de Gerenciamento

processo executando no dispositivo gerenciado que se comunica com a entidade gerenciadora.

Executa ações locais sob o comando e controle da entidade gerenciadora

Executado entre a entidade gerenciadora e os agente de gerenciamento: para investigar o estado dos dispositivos e executar ações sobre estes agentes.

SNMP visão geral

- SNMP: Simple network management protocol
 - Origem na Internet (SGMP)
 - Começou simples
 - Desenvolvido e adotado rapidamente
 - Crescimento: tamanho e complexidade
 - Atualmente três: SNMP, SNMPv2 e SNMPv3
 - Padrão de fato para gerenciamento de redes

SNMP visão geral: 3 partes-chave

- **→ Management Information Base (MIB):**
 - Base de dados distribuída com dados de gerenciamento de rede
 - Objetos MIB: objetos de gerenciamento de rede
 - Ex.: contador de pacotes IP descartados em um roteador; versão do software DNS; etc.
 - Objetos MIB relacionados são reunidos em Módulos MIB
- Structure of Management Information (SMI):
 - Linguagem de definição de objetos da MIB
 - Define tipos de dados, modelo de objeto e regras para escrever e revisar informações de gerência
- Protocolo SNMP
 - Transporta informações e comandos sobre objetos entre o gerenciador e o elemento gerenciado

O problema de apresentação

- P.: Uma cópia perfeita dos dados de memória, a memória, resolve o problema de comunicação entre computadores distintos?
 - R: Nem sempre!

```
struct {
   char code;
   int x;
   } test;
test.x = 259;
test.code='a'
```

test.code test.x

a 00000001 00000011

Formato do hospedeiro 1

test.code

test.x

a

00000011

Formato do hospedeiro 2

Problema: diferentes formatos de dados e convenções de armazenamento

Um problema de apresentação da vida real:

Resolvendo o problema de apresentação

UFSC

- 1. Transladar o formato do hospedeiro local para um formato independente de hospedeiro
- 2. Transmitir os dados num formato independente de hospedeiro
- 3. Transladar o formato independente para o formato do hospedeiro remoto

ASN.1: Abstract syntax notation 1

- Padrão ISO X.208
 - Usado extensivamente na Internet
 - BER: Basic encoding rules
 - Especificam como os dados definidos em ASN.1 devem ser transmitidos
 - Cada objeto transmitido tem codificação type, length, value (TLV) —
 Tipo, tamanho, valor

ASN.1 adota a abordagem TLV

- Ideia: os dados transmitidos são auto-identificáveis
 - T: tipo de dados, um dos tipos definidos em ASN.1
 - L: tamanho dos dados em bytes
 - V: valor dos dados, codificado de acordo com as regras do ASN.1

Valor do tag	Tipo
1 2 3 4 5 6 9	Booleano Inteiro Cadeia de bits Cadeia de octeto Nulo Identificador de objeto Real

Codificação TLV: exemplo

SMI: Structure of Management Information

Linguagem de Definição de Dados

- Propósito: criação de uma sintaxe e semântica para definição de dados de gerenciamento de forma não ambígua
 - Conjunto de regras que define como uma MIB é especificada
- Definido na RFC 1155 (melhorias nas RFCs 1212 e 1215)
- Um arquivo de MIB usa a notação ASN.1 e as regras SMI para definir objetos da MIB

- SMI define o que cada objeto da MIB deve possuir

- Um nome (OID) que identifica o objeto unicamente
- Uma sintaxe que identifica o tipo do objeto
- Uma codificação que descreve como as informações serão transmitidas

SMI: linguagem de definição de dados

-/Macros:

OBJECT-TYPE

 Usada para especificar o tipo de dado, status, semântica do objeto gerenciado

MODULE-IDENTITY

 Permite que objetos relacionados sejam agrupados num módulo MIB

Tipos de dados básicos

INTEGER
Integer32
Unsigned32
OCTET STRING
OBJECT IDENTIFIER
IPaddress
Counter32
Counter64
Gauge32
Time Ticks
Opaque

SMI: exemplo de objeto e módulo

OBJECT-TYPE: ipInDelivers MODULE-IDENTITY: ipMIB

```
ipInDelivers OBJECT TYPE
 SYNTAX Counter32
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
   "The total number of input
   datagrams successfully
    delivered to IP user-
    protocols (including ICMP)"
::= \{ ip 9 \}
```

```
ipMIB MODULE-IDENTITY
 LAST-UPDATED "941101000Z"
 ORGANIZATION "IETF SNMPv2
       Working Group"
 CONTACT-INFO
  "Keith McCloghrie
 DESCRIPTION
  "The MIB module for managing IP
  and ICMP implementations, but
  excluding the management of
  IP routes."
 REVISION "019331000Z"
```

::= {mib-2 48}

Árvore de identificação de objetos ISO

Nomeação de objetos

- P.: Como nomear cada possível objeto-padrão (protocolos, dados, outros...) em cada possível padrão de rede??
 - R.: ISO object identifier tree:
 - Nomeação hierárquica de todos os objetos
 - Cada ramificação tem um nome e um número

Pontos Importantes

Gerenciamento de Redes

- Entender o que é
- As vantagens de uso
- Os 3 pontos-chaves: SNMP, MIB, SMI

CAP 7. GERENCIAMENTO DE REDES

AULA 2: Protocolo SNMP e Sistemas de Gerenciamento

INE5422 Redes de Computadores II

Prof. Roberto Willrich (INE/UFSC)

roberto.willrich@ufsc.br

https://moodle.ufsc.br

- Protocolo SNMP (Simple Network Management Protocol)
 - Padrão de fato para gerenciamento de redes
 - Extensível, permitindo aos fabricantes adicionar funções de gerenciamento aos seus produtos
 - Independente do hardware

UFSC

Objeto gerenciado

- Representa um recurso, que pode ser um sistema hospedeiro (host, servidor, etc.), um gateway ou equipamento de transmissão (modems, pontes, concentradores, etc.)
- Cada objeto gerenciado é visto como uma coleção de variáveis cujo valor pode ser lido ou alterado

- MIB (Management Information Base)
 - Mantém informações sobre os objetos gerenciados
 - Informações sobre o funcionamento dos hosts, dos gateways, e dos processos que executam os protocolos de comunicação (IP, TCP, ARP, etc.)

Duas formas de transportar informações da MIB: comandos e eventos

Modo comando/resposta

Modo evento

- Três versões são disponíveis hoje:
 - SNMPv1 (1990)
 - SNMPv2c (1996)
 - Adiciona a função "GetBulk" e novos tipos
 - Adiciona capacidade de monitoramento remoto RMON
 - SNMPv3 (2002)
 - Resolveu problemas de segurança
- Todas as versão são mantidas hoje
 - Muitos agentes e gerenciadores SNMP suportam as três versões.

SNMP - Campos das Mensagens

Versão

Comunidade PDU GetRequest, GetNextRequest, GetResponse ou SetRequest

- Versão. Para garantir que gerente e agente estão executando a mesma versão do protocolo.
 - Mensagens com versões diferentes são descartadas.
- Comunidade. Garante o acesso a um conjunto limitado de objetos da MIB
 - o agente acessa apenas um conjunto de entidades de aplicação SNMP
- Caso exista diferenças na comunidade é emitido pelo agente uma trap que indica falha de autenticação
 - Funciona como uma password
- Caso a versão e comunidade estejam consistentes então é processada a PDU logo a seguir

SNMP - Campos das Mensagens

- Tipo de PDU. Inteiro que identifica a operação a ser processada
 - o GetRequest; 1 GetNextRequest; 2 GetResponse; 3 SetRequest;
 - 4 Trap
- Request ID. Inteiro que identifica pares de mensagens SNMP entre agente e gerente.
 - Permite associar a pergunta e a resposta

Protocolo SNMP: tipos de mensagens

Tipo de	mensagem snmpv2	Função
	GetRequest GetNextRequest GetBulkRequest	manager-to-agent: "envie-me dados" (instância, próximo na lista, bloco)
	InformRequest	manager-to-manager: eis o valor da MIB
	SetRequest	manager-to-agent: define o valor da MIB
	Response	agent-to-manager: valor, resposta ao pedido
	Trap	agent-to-manager: informa gerenciador de
	παρ	evento excepcional

SNMP - Campos das Mensagens

- Status de Erro. Identifica operações executadas com sucesso ou um dos cinco erros previstos
 - o (noError) Operação sem erros
 - 1 (tooBig) O tamanho da PDU GetResponse excede um limite local
 - 2 (noSuchName) Não existe objeto com o nome requisitado
 - 3 (badValue) Uma PDU SetRequest contém uma variável de tipo, tamanho ou valor inconsistente
 - 4 (readOnly) Uma PDU SetRequest foi enviada para alterar o valor de um objeto read-only
 - 5 (genErr) Erro genérico

SNMP - Portas e protocolo de transporte

- SNMP usa protocolo UDP como mecanismo de transporte para mensagens SNMP
 - Porta 161 Mensagens SNMP
 - Porta 162 Mensagens SNMP Trap

Arquitetura de Gerenciamento Baseada na Web

UFSC

- Interface de gerenciamento: browser
 - Vantagem: Independência de plataforma
 - Existem navegadores para todas as plataformas mais usadas
- As informação de gerenciamento são armazenadas em um WebServer
 - O browser acessa o WebServer para obter tais informações

Arquitetura de Gerenciamento Baseada na Web

- Existem duas formas de gerenciamento

- Gerentes SNMP usando WebServers
 - O sistema web acessa um gerente que acessa as informações via SNMP
 - As informações são disponibilizadas em páginas Web dinâmicas pelo gerente SNMP
- Agentes SNMP com HTTP
 - O browser acessa diretamente os recursos através do http
 - O WebServer acessa os dados através de SNMP
 - Os dados são disponibilizados através de páginas HTML geradas pelo agente SNMP
 - O recurso gerenciado deve possuir capacidade de processamento para suportar ao mesmo tempo um WebServer e um agente SNMP

Arquitetura de Gerenciamento Baseada na Web

UFSC

- Cacti (http://www.cacti.net)
 - Uma interface gráfica web feita em PHP para a ferramenta RRDTool, que coleta dados via SNMP, armazena informações em uma base de dados MySQL
 - Apresenta os gráficos de estatísticas, contas de usuários e demais configurações.

- MRTG Ferramenta para coletar informações e gerar estatísticas
 - http://www.mrtg.org/
 - Usada para registrar tráfego de rede
 - Gera páginas HTML com imagens PNG
 - Fornece uma representação visual do tráfego
 - Permite monitorar e analisar diversas funções (roteadores, servidores, latência, utilização, temperatura etc.)
 - Diversas formas de visualização de dados
 - Licença: GPL
 - Autor: Tobias Oetiker

Network Weathermap

- Network Weathermap –Software livre e gratuito, feito em script perl
 - http://netmon.grnet.gr/weathermap
 - Licença: GPL (General Public License)
 - Linguagem: Perl

Network Weathermap da RNP

Pontos Importantes

Protocolo SNMP

• Entender as principais características e funções do SNMP