- (e) Use a graphing utility to evaluate $\int_0^9 N(t) dt$, and use the result to estimate the number of customers entering the store between noon and 9 P.M. Compare this with your answer in part (b).
- (f) Estimate the average number of customers entering the store per minute between 3 P.M. and 7 P.M.

In Exercises 59–62, find F as a function of x and evaluate F at x = 2, x = 5, and x = 8.

59.
$$F(x) = \int_0^x (t-5) dt$$
 60. $F(x) = \int_2^x (t^3 + 2t - 2) dt$

61.
$$F(x) = \int_{1}^{x} \frac{10}{v^2} dv$$
 62. $F(x) = \int_{1}^{x} (y - \sqrt{y}) dy$

- **63.** Let $g(x) = \int_0^x f(t) dt$, where f is a function whose graph is shown.
 - (a) Evaluate g(0), g(2), g(4), g(6), and g(8).
 - (b) Find the largest open interval on which *g* is increasing. Find the largest open interval on which *g* is decreasing.
 - (c) Identify any extrema of g.
 - (d) Sketch a rough graph of g.

Figure for 63

Figure for 64

- **64.** Let $g(x) = \int_0^x f(t) dt$, where f is a function whose graph is shown.
 - (a) Evaluate g(0), g(2), g(4), g(6), and g(8).
 - (b) Find the largest open interval on which *g* is increasing. Find the largest open interval on which *g* is decreasing.
 - (c) Identify any extrema of g.
 - (d) Sketch a rough graph of g.

In Exercises 65–70, (a) integrate to find F as a function of x and (b) demonstrate the Second Fundamental Theorem of Calculus by differentiating the result in part (a).

65.
$$F(x) = \int_0^x (t+2) dt$$
 66. $F(x) = \int_0^x t(t^2+1) dt$ **67.** $F(x) = \int_8^x \sqrt[3]{t} dt$ **68.** $F(x) = \int_4^x \sqrt{t} dt$

69.
$$F(x) = \int_{0}^{x} \frac{1}{t^2} dt$$
 70. $F(x) = \int_{0}^{x} t^{3/2} dt$

In Exercises 71–74, use the Second Fundamental Theorem of Calculus to find F'(x).

71.
$$F(x) = \int_{-2}^{x} (t^2 - 2t) dt$$
 72. $F(x) = \int_{1}^{x} \sqrt[4]{t} dt$

73.
$$F(x) = \int_{-1}^{x} \sqrt{t^4 + 1} dt$$
 74. $F(x) = \int_{1}^{x} \frac{t^2}{t^2 + 1} dt$

In Exercises 75–78, find F'(x).

75.
$$F(x) = \int_{x}^{x+2} (4t+1) dt$$
 76. $F(x) = \int_{-x}^{x} t^3 dt$

77.
$$F(x) = \int_{2}^{x^2} \frac{1}{t^3} dt$$
 78. $F(x) = \int_{0}^{3x} \sqrt{1 + t^3} dt$

79. Graphical Analysis Approximate the graph of g on the interval $0 \le x \le 4$, where $g(x) = \int_0^x f(t) dt$. Identify the x-coordinate of an extremum of g. To print an enlarged copy of the graph, go to the website www.mathgraphs.com.

80. Use the function f in the figure below and the function g defined by

$$g(x) = \int_0^x f(t) dt.$$

(a) Complete the table.

t	1	2	3	4	5	6	7	8	9	10
g(x)										

- (b) Plot the points from the table in part (a).
- (c) Where does g have its minimum? Explain.
- (d) Where does g have a maximum? Explain.
- (e) Between which two consecutive points does *g* increase at the greatest rate? Explain.
- (f) Identify the zeros of g.