

* Accurate integral estimation is possible by evaluating the target function at a small number of randomly selected points.

- * Accurate integral estimation is possible by evaluating the target function at a small number of randomly selected points.
- * The number of points needed does not depend on the underlying dimensionality.

- * Accurate integral estimation is possible by evaluating the target function at a small number of randomly selected points.
- * The number of points needed does not depend on the underlying dimensionality.

Cons:

Pros:

- * Accurate integral estimation is possible by evaluating the target function at a small number of randomly selected points.
- * The number of points needed does not depend on the underlying dimensionality.

Cons:

* The method falters if exceedingly high precision is needed.

Pros:

- * Accurate integral estimation is possible by evaluating the target function at a small number of randomly selected points.
- * The number of points needed does not depend on the underlying dimensionality.

Cons:

- * The method falters if exceedingly high precision is needed.
- * The computational estimates are intrinsically probabilistic.

Pros:

- * Accurate integral estimation is possible by evaluating the target function at a small number of randomly selected points.
- * The number of points needed does not depend on the underlying dimensionality.

Cons:

- * The method falters if exceedingly high precision is needed.
- * The computational estimates are intrinsically probabilistic.

Slogan

A relatively small number of, *dimensionality independent* evaluations of a target function suffices to give a good estimate of the integral of the function ... but the requisite sample size becomes untenable if very high precision is necessary.