- 1. Genetic Algorithm For LoRa
- **Transmission Parameter Selection**
- 1. Problem statement
- 2. Related work
- 3. Background
- 4. Method
- 5. Experimentation
- 6. Results
- 7. Discussion

- 1. Genetic Algorithm For LoRa Transmission Parameter Selection
- 1. Problem statement
- 2. Related work
- 1. Mothod
- 5. Experimentation
- 6. Results
- Discussion

Problem statement

Introduction²?

- Parameters
 - → Bandwidth (BW)
 - → Spreading Factor (SF)
 - → Coding Rate (CR)
 - → Transmission Power (Tx)

- Metrics
 - → Receiver Sensitivity (RS)
 - → Signal Noise Rate (SNR)
 - → Data Rate (DR)
 - → Air Time (AT)
 - → Payload length (PktL)

Setting	Values	Rewards	Costs
BW	7.8 → 500 <i>kHz</i>	DR	RS, Range
SF	2 ⁶ → 2 ¹²	RS, Range	DR, SNR, PktL, Tx
CR	4/5 ➡ 4/8	Resilience	PktL, Tx, AT
Tx	-4 → 20 <i>dBm</i>	SNR	Tx

Table 1. 1

¹M. Cattani, C. Boano, and K. Rômer, * An Experimental Evaluation of the Reliability of Lora Long-Range Low-Power Wireless Communication *, Journal of Sensor and Actuator Networks, vol. 6, no. 2, p. 7, p. 72, p. 73, p. 73, p. 74, p.

- 1. Genetic Algorithm For LoRa Transmission Parameter Selection
- Problem statement
- 2. Related work
- Background
 Mathed
- 5. Experimentation
- 6. Results
- Discussion

- 1. Genetic Algorithm For LoRa Transmission Parameter Selection
- 1. Problem statement
- 3. Background
- 3. Background
- 5. Experimentation
- 6. Results
- 7. Discussion

- 1. Bandit Algorithm
- 2. Genetic Algorithm
- 3. Marcov chain
- 4. Game theory

- 1. Genetic Algorithm For LoRa Transmission Parameter Selection
- Problem statement
- 3. Background
- 3. Background
- 5. Experimentation
- 6. Results
- 7. Discussion

- 1. Bandit Algorithm
- 2. Genetic Algorithm
- 3. Marcov chair
- 4. Game theory

Multi-Armed-Bandit Algorithm

Related work

```
→ Arms: K = 1, ..., K
```

- Decision: T = 1, ..., T
- \rightarrow Reward: X_t^k with $\mu_t^k = E[X_t^k]$
 - \rightarrow Best reward: X_t^* with $\mu_t^* = \max \mu_t^k$, $k \in K$

- 1. Genetic Algorithm For LoRa Transmission Parameter Selection
- Problem statement
- 3. Background
- A Mothod
- 5. Experimentation
- 6. Results
- 7. Discussion

- Bandit Algorithm
- 2. Genetic Algorithm
- 3. Marcov chain
- 4. Game theory

Genetic Algorithm

Related work alkhawlani access 2008a

- → Heterogeneous wireless network: (RAT 1 ,RAT 2 ,...,RAT n)
- $\, \Longrightarrow \,$ Criteria up to i (c 1 ,c 2 ,...,c i) the operators, the applications, and the network conditions.
- → The different sets of scores (d 1, d 2,...,d i) are sent to the MCDM in the second component.
- → GA component assigns a suitable weight (w 1 ,w 2 ,...,w i)

Genetic Algorithm

Related work

```
S = SF12, BW125, 4/8, 17 dBm
Input:
     → Problem: f(x) = max(x^2), x \in [0,32]
          * x_1:01101_6
          * x_0:11000_h
          * x_3:01000_b
          * x_4:10011_b
Method: Genetic algorithm
     Generate a set of random possible solution
     Test each solution and see how good it is (ranking)
          * Remove some bad solutions
          * Duplicate some good solutions
          * Make small changes to some of them (Crossover, Mutation)
Output:
    \rightarrow x_1: 01101 (169) (14.4)
    \rightarrow x_2: 11000 (576) (49.2)
     \rightarrow x_3: 01000 (64) (5.5)
     → x<sub>4</sub>: 10011 (361) (30.9)
```

- 1. Genetic Algorithm For LoRa Transmission Parameter Selection
- 1. Problem statement
- z. neialeu work
- 3. Background
- 5 Experimentation
- 6 Results
- 7. Discussion

- . Bandit Algorithm
- 2. Genetic Algorithn
- 3. Marcov chain
- 4. Game theory

Marcov chain

Related work

$$V(s,\pi) = \mathbb{E}_{s}^{\pi} \left(\sum_{k=0}^{\inf} \gamma^{k} \cdot r(s_{k}, a_{k}) \right), s \in \mathbb{S}$$
(1)

$$r(s_k, a_k) = G_k \cdot PRR(a_k) \tag{2}$$

$$\pi^* = \arg\max_{\pi} V(s,\pi) \tag{3}$$

$$PRR = (1 - BER)^{L} \tag{4}$$

$$BER = 10^{\alpha e^{\beta SNR}} \tag{5}$$

Learning Iterative Steps:

- Choose action $a_k(t) \sim \pi_k(t)$.
- Observe game outcome, e.g.,
 a_{-k}(t)
 u_k(a_k(t), a_{-k}(t)).
- Improve $\pi_k(t+1)$.

Thus, we can expect that: $\forall k \in \mathcal{K}$,

$$\pi_k(t) \stackrel{t\to\infty}{\longrightarrow} \pi_k^*$$
 (1)

$$\bar{u}_k(\pi_k(t), \pi_{-k}(t)) \stackrel{t \to \infty}{\longrightarrow} \bar{u}_k(\pi_k^*, \pi_{-k}^*)$$
 (2)

where, $\pi^* = (\pi_1^*, \dots, \pi_K^*)$ is a NE strategy profile.

- 1. Genetic Algorithm For LoRa Transmission Parameter Selection
- Problem statement
- 3. Background
- A Mothod
- 5. Experimentation
- 6. Results
- 7. Discussion

- . Bandit Algorithm
- 2. Genetic Algorithn
- 3. Marcov chair
- 4. Game theory

Game theory

Related work

```
⇒ Players: K = \{1, ..., K\}
```

- \implies Strategies: $S = S_1 \times ... \times S_K$
 - \rightarrow S_k is the strategy set of the k^{th} player.
- \longrightarrow Rewards: $u_k: S \longrightarrow R_+$ and is denoted by $r_k(s_k, s_{-k})$
 - $\Rightarrow s_{-k} = (s_1, ..., s_{k-1}, s_{k+1}, ..., s_K) \in S_1 \times ... \times S_{k-1} \times S_{k+1} \times ... \times S_K$

1. Genetic Algorithm For LoRa Transmission Parameter Selection | 3. Background | 4. Game theory

- 1. Genetic Algorithm For LoRa **Transmission Parameter Selection**

- 4. Method

... (step 2)

Figure 2. HH.

... (step 3)
Methods

... (step 4)
Methods

1. Genetic Algorithm For LoRa Transmission Parameter Selection | 4. Method

- 1. Genetic Algorithm For LoRa Transmission Parameter Selection
- Problem statement
- 2. Related work
- Background
 Mathad
- 5. Experimentation
 - Results
- Discussion

Contribution

Contributions

- Use cases (Application Requirements)
 - → Smart building: Voice, Images, Text.
- Environments
 - → Rural/Urban
 - → Static/Mobile
 - → Temperature
- Scenarios
 - → Application protocol (MQTT, COAP, XMPP)
 - → Network protocol (Start, Mesh)
 - → MAC protocol (LoraWan, Sigfox, ...)
- → Input:
 - → Service QoS metrics requirements
 - → MAC configuration (SF, CR, BW, ...)
 - → Network QoS metrics

Algorithms:

- → MADM
 - * Ranking methods
 - * Ranking & weighted methods
- → Game theory
 - * Users vs users
 - * Users vs networks
 - * Networks vs network
- → Fuzzy logic
 - * as a score method
 - * another theory
- Utility function
 - * 1
 - * 2

Outputs:

Ranked networks

Technical choice

Implementation

- - → Low consumption component
 - → ADC port for placing sensors on it
- → CONTIKI OS
 - Operating system for wireless and low power development
 - → Support for newer standards (6LowPAN, RPL, CoAP, MQTT)
- → 6LowPAN
 - → Based on IPv6 and IEEE 802.15.4
 - → IPv6-based network with low power consumption
 - → Ability to create a mesh network
- Sending packages
 - UDP in the 6LowPAN network
 - → MQTT between the cloud platform and the router

Experimentation

Experimentation

Figure 3. .

- 1. Genetic Algorithm For LoRa Transmission Parameter Selection
- Problem statement
- 2. Related work
- 3. Background
- 5. Experimentation
- 6. Results
- Discussion

Results

Comparison

Figure 4. .

- 1. Genetic Algorithm For LoRa Transmission Parameter Selection
- Problem statement
- 2. Related work
- 3. Background
- 5. Experimentation
- 6. Results
- 7. Discussion

Discussion

⇒ b

Figure 5. .

References

M. Cattani, C. Boano, and K. Römer, * An Experimental Evaluation of the Reliability of Lora Long-Range Low-Power Wireless Communication *, Journal of Sensor and Actuator Networks, vol. 6, no. 2, p. 7, 2017, 00042.