Непрерывность функций

Опр: 1. $f: D \to \mathbb{R}$, $a \in D$, f - непрерывна в точке a по множеству D, если $\forall \varepsilon > 0$, $\exists \delta > 0$: $\forall x \in D$, $|x - a| < \delta \Rightarrow |f(x) - f(a)| < \varepsilon$.

Теорема 1. Следующие утверждения равносильны:

- (1) f непрерывна в точке a (по множеству D);
- (2) $\forall x_n \in D, x_n \to a \text{ верно, что } f(x_n) \to f(a);$
- (3) a изолированная точка $D \vee (a$ предельная $\wedge \lim_{x \to a} f(x) = f(a));$

Утв. 1. Если f и g - непрервны в точке a по множеству D, то f+g, $f\cdot g$ и если $g\neq 0$ на D, то $\frac{f}{g}$ - все непрерывны в точке a по множеству D.

 \square Пусть $x_n \to a \Rightarrow f(x_n) \to f(a) \land g(x_n) \to g(a)$ и по свойству предела последовательности $f(x_n) + g(x_n) \to f(a) + g(a), f(x_n) \cdot g(x_n) \to f(a) \cdot g(a)$ и если $g \neq 0$ на D (в частности, в точке a), $\frac{f(x_n)}{g(x_n)} \to \frac{f(a)}{g(a)}$.

Утв. 2. Пусть $f: D \to E, g: E \to \mathbb{R}, a \in D, f$ - непрерывна в точке a (по множеству D) и g - непрерывна в точке f(a) (по множеству E). Тогда g(f(x)) - непрерывна в точке a (по множеству D).

 \square $x_n \to a \Rightarrow$ по непрерывности $f \Rightarrow f(x_n) \to f(a) \Rightarrow$ по непрерывности $g \Rightarrow g(f(x_n)) \to g(f(a))$.

Утв. 3.

- (1) Если f непрерывна в точке a по множеству D, то $\exists \mathcal{U}(a) \land C > 0 \colon |f(x)| \leq C, \forall x \in \mathcal{U}(a) \cap D;$
- (2) Если f непрерывна в точка a по множеству D и f(a) > 0, то $\exists \mathcal{U}(a) \colon f(x) \ge \frac{f(a)}{2} > 0$, $\forall x \in \mathcal{U}(a) \cap D$;

- (1) Пусть $\varepsilon = 1 \Rightarrow \exists \delta > 0$: $\forall x \in D$, $|x a| < \delta \Leftrightarrow x \in \mathcal{U}_{\delta}(a) \Rightarrow |f(x) f(a)| < \varepsilon \Rightarrow |f(x)| \le |f(x) f(a)| + |f(a)| < 1 + |f(a)| = C$, $\forall x \in \mathcal{U}(a)_{\delta} \cap D$;
- (2) Пусть $\varepsilon = \frac{f(a)}{2} \Rightarrow \exists \, \delta > 0 \colon \forall x \in \mathcal{U}_{\delta}(a) \cap D \Rightarrow |f(x) f(a)| < \frac{f(a)}{2} \Rightarrow f(x) > \frac{f(a)}{2};$

Рис. 1: $f(x) \ge \frac{f(a)}{2} > 0$.

Разрывность функций

Опр: 2. Функция $f: D \to \mathbb{R}$ разрывна в точке a, если f не является непрерывной в точке a.

Rm: 1. Если f разрывна в точке a, то a - предельная точка D.

Функция f разрывна в точке $a \Leftrightarrow \lim_{x \to a} f(x)$ или не существует или существует, но $\neq f(a)$.

Опр: 3. Функция f разрывна в точке $a \Leftrightarrow \nexists \lim_{x \to a} f(x) \lor \exists \lim_{x \to a} f(x) \neq f(a)$.

Опр: 4. Если в точке разрыва $a, \exists \lim_{x \to a} f(x) \neq f(a),$ то такую точку называют точкой устранимого разрыва.

(а) Пример точки устранимого разрыва.

(b) Пример точки разрыва I-го рода.

Рис. 2: Примеры точек разрыва.

Опр: 5. Пусть a - предельная точка $D^- = (-\infty, a) \cap D$ и $D^+ = (a, +\infty) \cap D$. Если \exists конечные пределы $\lim_{x \to a - 0} f(x) \wedge \lim_{x \to a + 0} f(x)$, но они различны, то говорят, что a - точка разрыва І-го рода.

Rm: 2. Точки разрыва I-го рода - неустранимые.

Опр: 6. Если хотя бы одного из односторонних пределов не существует (или этот предел $=\pm\infty$), то a называется точкой разрыва II-го рода.

Рис. 3: Пример точек разрыва II-го рода.

Теорема 2. Пусть f - определена на интервале (α, β) и монотонна. Тогда у f могут быть разрывы только І-го рода и множество точек разрыва не более, чем счетно.

 \square Пусть функция f не убывает. Пусть $a \in (\alpha, \beta)$. По теореме Вейрштрасса $\exists \lim_{x \to a-0} f(x) = \sup_{x < a} f = A$ и $\exists \lim_{x \to a+0} f(x) = \inf_{x > a} f = B$. Из-за монотонности $A \le f(a) \le B$.

Рис. 4: $\sup_{x < a} f = A \le f(a) \le B = \inf_{x > a} f$.

Если A = f(a) = B, то f - непрерывна в точке a. Если a - точка разрыва, то $A < f(a) \lor f(a) < B$, в частности $A \neq B$ и как следствие a - точка разрыва I-го рода.

Сопоставим каждой точке разрыва $a \mapsto (A, B)$ - непустой интервал. Пусть a < c - точки разрыва и (A, B), (C, D) - соответствующие им интервалы.

Рис. 5: Интервалы точек разрыва.

Пусть $x_0: a < x_0 < c \Rightarrow B \le f(x_0) \le C$ по определению B и C, значит $(A, B) \cap (C, D) = \emptyset$. Таким образом, разным точкам разрывы сопоставляются разные непересекающиеся интервалы. Так как на прямой можно расположить не более чем счетный набор попарно не пересекающихся интервалов, то точек разрыва - не более чем счетно.

Важные примеры

1) Функция Дирихле:

$$D(x) = \begin{cases} 1, & x \in \mathbb{Q} \\ 0, & x \notin \mathbb{Q} \end{cases}$$

эта функция всюду разрывна.

2) Функция Римана:

$$R(x)=egin{cases} rac{1}{n},&x=rac{m}{n}$$
 - нескоратимая дробь $0,&x
otin\mathbb{Q} \ 1,&x=0 \end{cases}$

эта функция разрывна в рациональных точках. Но она непрерывна в иррациональных точках.

Можно ли придумать функцию, которая была бы разрывна во всех иррациональных точках и только в них?

Структура множества точек разрыва

Опр: 7. Пусть $f \colon \mathbb{R} \to \mathbb{R}$ - ограниченна и $E \subset \mathbb{R}$, функция $\omega(f, E) = \sup_{x,y \in E} |f(x) - f(y)|$ называется колебанием функции f на множестве E.

Пусть $f \colon \mathbb{R} \to \mathbb{R}$ - ограниченна.

Утв. 4. $\omega(f, E) = \sup_{E} f - \inf_{E} f$.

Рис. 6: Колебание функции.

$$\Box \quad f(x) - f(y) \leq \sup_{E} f - \inf_{E} f, \, \forall x, y \in E \Rightarrow f(y) - f(x) \leq \sup_{E} f - \inf_{E} f, \, \forall x, y \in E \Rightarrow |f(x) - f(y)| \leq \sup_{E} f - \inf_{E} f, \, \forall x, y \in E \Rightarrow \omega(f, E) \leq \sup_{E} f - \inf_{E} f$$

Пусть $\varepsilon>0$ \Rightarrow по определению $\exists x\colon \sup_E f-\varepsilon< f(x)$. С другой стороны $\exists y\colon \inf_E f+\varepsilon> f(y)$ $\Rightarrow\sup_E f-\varepsilon-(\inf_E f+\varepsilon)=\sup_E f-\inf_E f-2\varepsilon< f(x)-f(y)\leq \omega(f,E)$ \Rightarrow $\forall \varepsilon>0,\sup_E f-\inf_E f<2\varepsilon+\omega(f,E).$ Устремим $\varepsilon\to0$, по правилу перехода к пределу неравенства получим $\sup_E f-\inf_E f\leq \omega(f,E)$.

Пусть $a \in \mathbb{R}$ и рассмотрим функцию $\delta \mapsto \omega(f, \mathcal{U}_{\delta}(a))$, $\delta > 0$. Эта функция не убывает: Чем больше $\delta \Rightarrow$ тем больше окрестность \Rightarrow точная верхняя грань может только возрастать. Если δ уменьшать, то к нулю эта функция будет лишь не возрастать.

Рис. 7: $\delta \mapsto \omega(f, \mathcal{U}_{\delta}(a)), \ \delta > 0$.

Снизу эта функция ограниченна: $\omega(f, \mathcal{U}_{\delta}(a)) \geq 0 \Rightarrow$ для не убывающей, ограниченной снизу функции мы знаем, что $\exists \lim_{\delta \to 0+} \omega(f, \mathcal{U}_{\delta}(a))$. Обозначаем этот предел $\omega(f, a)$ и называем колебанием f в точке a.

Опр: 8. Предел $\lim_{\delta \to 0+} \omega(f, \mathcal{U}_{\delta}(a)) = \omega(f, a)$ называется колебанием в точке a.

Утв. 5. f непрерывна в точке $a \Leftrightarrow \omega(f, a) = 0$.

 \square (\Rightarrow) Пусть f - непрерывна в точке $a \Rightarrow \forall \varepsilon > 0$, $\exists \mathcal{U}_{\delta}(a) \colon \forall x \in \mathcal{U}_{\delta}(a) \Rightarrow |f(x) - f(a)| < \varepsilon \Rightarrow \omega(f, \mathcal{U}_{\delta}(a)) \leq 2\varepsilon$ \Rightarrow при устремлении $\delta \to 0+$ такие выражения монотонно убывают $\Rightarrow \omega(f, a) \leq \omega(f, \mathcal{U}_{\delta}(a)) \leq 2\varepsilon$, а так как ε - любое, то $\omega(f, a) = 0$.

Формальнее: $\omega(f, \mathcal{U}_{\delta}(a)) \leq 2\varepsilon \Rightarrow \hat{\varepsilon} = \frac{\varepsilon}{2} \Rightarrow \exists \, \hat{\delta} > 0 \colon \omega(f, \mathcal{U}_{\hat{\delta}}(a)) \leq 2\hat{\varepsilon} = \varepsilon \wedge \omega(f, a) \leq \omega(f, \mathcal{U}_{\hat{\delta}}(a)) \leq \varepsilon$. И так как ε - любое, то $\omega(f, a) = 0$.

 (\Leftarrow) Пусть $\omega(f,a)=0$ - это означает, что $\lim_{\delta\to 0+}\omega(f,\mathcal{U}_{\delta}(a))=0$. Знаем, что $\omega(f,\mathcal{U}_{\delta}(a))$ - монотонно убывает, при $\delta\to 0+$ \Rightarrow $\forall \varepsilon>0,\ \exists\ \delta>0\colon \omega(f,\mathcal{U}_{\delta}(a))<\varepsilon\Rightarrow |f(x)-f(a)|<\varepsilon,\ \forall x\in\mathcal{U}_{\delta}(a).$

Следствие 1. Множество точек разрыва = $\bigcup_n \{ a : \omega(f, a) \ge \frac{1}{n} \}$.

Утв. 6. Множество $\bigcup_{n} \{ a : \omega(f, a) \ge \frac{1}{n} \}$ - замкнуто.

Таким образом, множество точек разрывов это не более чем счетное объединение замкнутых множеств.