Final Lab Exam - Comp 304 - Spring 24-25

Task 1: Elimination of ε -Productions

Question: Given a context-free grammar G, eliminate all ε -productions (productions of the form $A \to \varepsilon$) from G to obtain an equivalent ε -free grammar G' that generates the same language except possibly for the empty string if $S \to \varepsilon$ was originally present.

Algorithm:

- 1. Copy all non ε -productions from G to the new grammar.
- 2. Find all nullable symbols
 - (a) Initialize a nullable set N with all non-terminals A where $A \to \varepsilon$.
 - (b) For all productions $A \to X_1 X_2 \dots X_k$. If all $X_i \in \mathbb{N}$, add A to N.
 - (c) Repeat the above step until N does not change.
- 3. For each productions $A \to \alpha$ (where α is a sequence of terminals and non-terminals), generate new productions:
 - (a) For each subset of nullable symbols in α , create a new production by removing those nullable symbols.
 - (b) Exclude the case where all symbols are removed (empty RHS), unless A is the start symbol and ε is in the language.
- 4. Remove all original ε -productions (except possibly $S \to \varepsilon$ if language contains ε).

Example:

ample.				
Input	Step 1	Step 2	Step 3	Output
$S \to ABC \mid D$ $A \to aA \mid \varepsilon$ $B \to bB \mid \varepsilon$ $C \to c$ $D \to \varepsilon$	$S \rightarrow A B C \mid D$ $A \rightarrow a A$ $B \rightarrow b B$ $C \rightarrow c$	$N = \{A, B, D, S\}$	$S \rightarrow ABC$ $\mid BC \mid AC \mid C$ $\mid \varepsilon$ $A \rightarrow aA \mid a$ $B \rightarrow bB \mid b$ $C \rightarrow c$	$S \rightarrow ABC \mid BC \mid AC \mid C \mid \varepsilon$ $A \rightarrow aA \mid a$ $B \rightarrow bB \mid b$ $C \rightarrow c$
$S ightarrow a S b S \ b S a S b S \ arepsilon arepsilon $				S ightarrow aSbS $ abS $ $ abG $ $ abG $ $ bSaS $ $ bSaG $ $ baG $ $ bGGG $ $ bGGGGGGGGGGGGGGGGGG$