Credit Card Default Prediction

Group 10 Zihao Li, Lunjing Yuan, Haorui Cheng, Mengyao Song

Background information

• In financial industry, credit score is a common risk control method. It uses personal information and data submitted by credit card applicants to predict the probability of future defaults and credit card borrowings. The bank is able to decide whether to issue a credit card to the applicant.

 Logistic model is a common method for credit scoring. Logistic is suitable for binary classification tasks and can calculate the coefficients of each feature.

 More predictive methods including KNeighbors, Random Forest, Decision Tree and Support Vector Machines have been introduced into credit card scoring.

Purpose of our analysis

Building machine learning models to predict if the applicant is a 'good' or 'bad' client.

End-to-end Machine Learning project

Here are the main steps we will go through:

- Get the data
- Data cleaning and preprocessing
- Discover and visualize the data to gain insights
- Select and train model
- Conclusions

Get the data

Data source: https://www.kaggle.com/rikdifos/credit-card-approval-prediction

Data description:

Table 1: application_record

Numerics: CNT_CHILDREN, AMT_INCOME_TOTA, DAYS_EMPLOYED, CNT_FAM_MEMBERS

Categoricals: FLAG_OWN_CAR, FLAG_OWN_REALTY, NAME_INCOME_TYPE, NAME_EDUCATION_TYPE, NAME_FAMILY_STATUS, NAME_HOUSING_TYPE, DAYS_BIRTH, FLAG_MOBIL, FLAG_WORK_PHONE, FLAG_PHONE, FLAG_EMAIL, OCCUPATION_TYPE

Table 2: credit_record

Numerics: ID

Categoricals: MONTHS BALANCE, STATUS

Prepare the data for Machine Learning

Drop

Transfer

Merge

Label

Overall statistics of table 1 : application

	CNT_CHILDREN	AMT_INCOME_TOTAL	DAYS_BIRTH	DAYS_EMPLOYED	FLAG_MOBIL	FLAG_WORK_PHONE	FLAG_PHONE	FLAG_EMAIL	CNT_FAM_MEMBER
count	101658.000000	1.016580e+05	101658.000000	101658.000000	101658.0	101658.000000	101658.000000	101658.000000	101657.00000
mean	0.434073	1.858836e+05	-16066.993803	63155.300449	1.0	0.216451	0.300271	0.086545	2.20356
std	0.739729	1.046114e+05	4204.728138	141002.279846	0.0	0.411827	0.458378	0.281169	0.90986
min	0.000000	2.700000e+04	-25201.000000	-16365.000000	1.0	0.000000	0.000000	0.000000	1.00000
25%	0.000000	1.192500e+05	-19575.000000	-3109.000000	1.0	0.000000	0.000000	0.000000	2.00000
50%	0.000000	1.575000e+05	-15624.000000	-1493.000000	1.0	0.000000	0.000000	0.000000	2.00000
75%	1.000000	2.250000e+05	-12564.000000	-357.000000	1.0	0.000000	1.000000	0.000000	3.00000
max	19.000000	3.825000e+06	-7489.000000	365243.000000	1.0	1.000000	1.000000	1.000000	20.00000

Drop duplicated rows

application.loc[application.DAYS_EMPLOYED==-1194].loc[application.DAYS_BIRTH== -10554]

i	NAME_EDUCATION_TYPE	NAME_INCOME_TYPE	AMT_INCOME_TOTAL	CNT_CHILDREN	FLAG_OWN_REALTY	FLAG_OWN_CAR	CODE_GENDER	ID	
	Secondary / secondary specia	Working	315000.0	0	Y	N	F	5009031	213
	Secondary / secondary specia	Working	315000.0	0	Y	N	F	5009032	214
	Secondary / secondar specia	Working	315000.0	0	Υ	N	F	6153669	215

application = application.drop_duplicates(subset=application.columns[1:], keep='first', inplace=False) application.loc[application.DAYS_BIRTH== -10554]

	ID	CODE_GENDER	FLAG_OWN_CAR	FLAG_OWN_REALTY	CNT_CHILDREN	AMT_INCOME_TOTAL	NAME_INCOME_TYPE	NAME_EDUCATION_TYF
213	5009031	F	N	Y	0	315000.0	Working	Secondary / seconda speci
359960	6491536	F	Υ	Υ	0	234000.0	Working	Secondary / seconda speci
363841	6508956	М	Υ	Y	0	157500.0	Working	Secondary / seconda speci
375944	6590652	М	Υ	N	0	315000.0	Commercial associate	Secondary / seconda speci

Employed_days : outlier and resacling

Outlier:

emplyed_days=365243


```
app['employed_years'] = app[['age', 'employed_years']].apply(
    lambda x :lm.predict(np.array([x['age']]).reshape(1,-1))[0]
    if pd.isna(x['employed_years']) else x['employed_years'], axis=1)
```

CNT_CHILDREN /CNT_FAM_MEMBERS: outliers

```
application.CNT_CHILDREN.value_counts()
      304071
0
       88527
       39884
        5430
                                                     SET:
                                                     CNT_CHILDREN < 10
          486
          133
            5
14
```

Mobile

```
application.FLAG_MOBIL.value_counts()
```

1 90085

Name: FLAG_MOBIL, dtype: int64

Overall statistics of table 2

credit.head()

	ID	MONTHS_BALANCE	STATUS
0	5001711	0	Х
1	5001711	-1	0
2	5001711	-2	0
3	5001711	-3	0
4	5001712	0	С

ID: Unique Id of the row in application record.

MONTHS_BALANCE: The number of months from record time.

STATUS: Credit status for this month.

X: No loan for the month

C: paid off that month

0: 1-29 days past due

1: 30-59 days past due

2: 60-89 days overdue

3: 90-119 days overdue

4: 120-149 days overdue

5: Overdue or bad debts, write-offs for more

than 150 days

df['decline'] = df.STATUS.apply(lambda x : 1 if x in (4, 5) else 0)

Create Labels

- 0: Decline =< 3 months or pay off on time
- 1: Decline > 3 months

Data Visualization

Binary features

	feature	type	decline_rate in type	count	decline_count
0	gender	0	0.009649	6322	61
1	gender	1	0.014476	3385	49
2	car	0	0.011567	6138	71
3	car	1	0.010927	3569	39
4	realty	0	0.014425	3189	46
5	realty	1	0.009819	6518	64
6	work_phone	0	0.011715	7597	89
7	work_phone	1	0.009953	2110	21
8	phone	0	0.010268	6915	71
9	phone	1	0.013968	2792	39
10	email	0	0.011516	8857	102
11	email	1	0.009412	850	8

Digital features: number of child

Digital features : number of children with number of family members

	num_of_children	num_of_fam_member	times
1	0	2	4880
0	0	1	1939
4	1	3	1577
7	2	4	792
3	1	2	303
9	3	5	116

Digital features : Total income and Age

Employed years

Class feature: income_resource/education level

Family status / housing type

Occupation type

Learning by doing

Concept of IV & WOE

Information Value (IV):

• A measure of how well a variable is able to distinguish between a binary response to the target variable.

$$IV = \sum$$
 (% of non-events - % of events) * WOE

Information Value	Variable Predictiveness
Less than 0.02	Not useful for prediction
0.02 to 0.1	Weak predictive Power
0.1 to 0.3	Medium predictive Power
0.3 to 0.5	Strong predictive Power
>0.5	Suspicious Predictive Power

Concept of IV & WOE

Weight of Evidence(WoE):

• Predictive power of the independent variable in relation to the dependent variable

WOE =
$$In \left(\frac{Distribution of Goods}{Distribution of Bads} \right)$$


```
def calc iv(df, target, feature):
    lst = []
    for i in range(df[feature].nunique()):
        val = list(df[feature].unique())[i]
        total = df[df[feature] == val].count()[feature]
                                                                             education
        Good = df[(df[feature] == val) & (df[target] == 0)].coun
                                                                      income
                                                                                    housing
        Bad = df[(df[feature] == val) & (df[target] == 1)].count
                                                                               marital
        lst.append([feature, val, total, Good, Bad])
                                                                       age
                                                                             job
                                                                                     tenure
    temp = pd.DataFrame(lst, columns=['Var', 'Value', 'Total', '
    temp['Share'] = temp['Total'] / temp['Total'].sum()
                                                                              Variable
    temp['Bad Rate'] = temp['Bad'] / temp['Total']
                                                                              Selection
    temp['Good distri'] = temp['Good'] / temp['Good'].sum()
    temp['Bad distri'] = temp['Bad'] / temp['Bad'].sum()
    temp['WoE'] = np.log(temp['Good distri'] / temp['Bad distri'
    temp['IV'] = temp['WoE'] * (temp['Good distri'] - temp['Bad
    temp = temp.sort values(by=['Var', 'Value'], ascending=[True
    temp.index = range(len(temp.index))
    iv = round(temp['IV'].sum(),8)
                                                                          age
                                                                                   income
    if ((iv == np.inf) | (iv == -np.inf)):
                                                                                     job
   calc iv(df copy, 'decline', 'phone')
                                                                          education
: 0.02108813
```

Problem : Imbalance Data

```
y_train.value_counts()

0 6650
1 144
Name: decline, dtype: int64
```

```
0 6650
1 6650
Name: decline, dtype: int64
```

SMOTE Techniques On Oversampling For Imbalance Data

SMOTE only works for continuous features

• In our case, we use SMOTE-NC for mixed (categorical and continuous) features

Cited From: https://towardsdatascience.com/5-smote-techniques-for-oversampling-your-imbalance-data-b8155bdbe2b5

Introduction To SMOTE

Cited From:

https://towards datascience.com/5-smote-techniques-for-oversampling-your-imbalance-data-b8155bdbe2b5

Select models to train

Machine Learning Algorithms

- Logistic Regression
- Decision Tree
- Random Forest
- KNeighbors
- Ridge
- Adaboost
- Voting

Accuracy Score

```
accuracy:
Best params:
{'classifier': RidgeClassifier alpha=1, max_iter=3000), 'classifier_alpha': 1, 'classifier_max_iter': 3000, 'preprocessing': StandardScaler()}
Best cross-validation score: 0.94
Test-set score: 0.91
_____
accuracy:
Best params:
{'classifier': LogisticRegression(C=100, max_iter=1000), 'classifier__C': 100, 'classifier__max_iter': 1000, 'preprocessing': StandardScaler()}
Best cross-validation score: 0.96
Test-set score: 0.93
_____
accuracy:
Best params:
{'classifier': DecisionTreeClassifier criterion='entropy', max depth=14), 'classifier criterion': 'entropy', 'classifier max depth': 14, 'preprocessing': N
one}
Best cross-validation score: 0.96
Test-set score: 0.92
______
```

Recall

```
recall:
Best params:
{'classifier': RidgeClassifier alpha=1, max_iter=3000), 'classifier_alpha': 1, 'classifier_max_iter': 3000, 'preprocessing': StandardScaler()}
Best cross-validation score: 0.97
Test-set score: 0.19
_____
recall:
Best params:
{'classifier': LogisticRegression(C=100, max_iter=1000), 'classifier_C': 100, 'classifier_max_iter': 1000, 'preprocessing': StandardScaler()}
Best cross-validation score: 0.98
Test-set score: 0.06
recall:
Best params:
{'classifier': DecisionTreeClassifie (max_depth=2), 'classifier__criterion': 'gini', 'classifier__max_depth': 2, 'preprocessing': None}
Best cross-validation score: 1.00
Test-set score: 0.44
```

ROC_AUC Score

```
roc_auc:
Best params:
{'classifier': RidgeClassifier alpha=91, max_iter=3000), 'classifier_alpha': 91, 'classifier_max_iter': 3000, 'preprocessing': StandardScaler()}
Best cross-validation score: 0.99
Test-set score: 0.48
roc_auc:
Best params:
{'classifier': LogisticRegression C=100, max iter=1000), 'classifier C': 100, 'classifier max iter': 1000, 'preprocessing': StandardScaler()}
Best cross-validation score: 0.99
Test-set score: 0.48
roc_auc:
Best params:
{'classifier': DecisionTreeClassifier criterion='entropy', max depth=14), 'classifier criterion': 'entropy', 'classifier max depth': 14, 'preprocessing': N
one}
Best cross-validation score: 0.98
Test-set score: 0.54
```

Confusion Matrix

current clf: LogisticRegression
test data score: 0.0625

current clf: DecisionTree
test data score: 0.0

Conclusion

- 1. **Accuracy Score:** Ridge Regression
- ROC_AUC Score & Recall Score (future work)

