8 Tema 2

тема 2

Elementos de combinatoria

2.1 Principios generales.

Existen dos principios generales que debemos estudiar para adentrarnos en las técnicas de conteo. Aunque la interpretación más intuitiva de los mismos se refiere a posibilidades de elección dentro de una gama de alternativas, la presentación más algebraica hace referencia a cardinales de conjuntos. La cuenta más simple que podemos analizar es la siguiente.

Proposición 1 (Principio de la suma). *Sean* $A, B \subseteq X$ *con* $A \cap B = \emptyset$. *Entonces* $|A \cup B| = |A| + |B|$.

En términos de opciones y elecciones debemos interpretar el principio de la suma de la siguiente forma. Para tomar una decisión tenemos dos alternativas. La primera nos lleva a seleccionar una opción entre n posibles, y la segunda una opción entre m posibles. Si no hay opciones comunes entre ambas alternativas entonces nuestra actuación consiste en decantarnos por una de las n+m opciones totales.

Corolario 2. Para cualesquiera $A, B \subseteq X, |A \cup B| + |A \cap B| = |A| + |B|$.

Demostración. Basta con escribir $A \cup B = A \cup (B \setminus A)$ y $B = (B \setminus A) \cup (A \cap B)$ y aplicar la Proposición 1.

El siguiente principio analiza aquellas situaciones en las que tenemos que realizar varias elecciones consecutivas entre alternativas no necesariamente iquales.

Proposición 3 (Principio del producto). Si X_1, \ldots, X_r son conjuntos de cardinal finito entonces $|X_1 \times \cdots \times X_r| = |X_1| \cdots |X_r|$.

La interpretación de este principio es la siguiente: Si tenemos que realizar cadena de k selecciones independientes, la primera entre n_1 posibilidades, la segunda entre n_2 y así sucesivamente hasta la última selección que debemos realizar entre n_k alternativas, las alternativas totales entre las que debemos optar son $n_1 n_2 \cdots n_k$.

2.2

Orden importa, Factorial

El principio del producto nos permite calcular el número de palabras de longitud dada r que podemos formar con un alfabeto de n caracteres. Este número es n^r . La clave está en que podemos repetir las letras en cada elección. Vamos a analizar a continuación situaciones en las que no podemos realizar dicha repetición. Recordemos que el factorial de un natural $n \in \mathbb{N}$ se define recursivamente como

$$0! = 1,$$
 $(n + 1)! = (n + 1)n!,$

lo que podemos interpretar como

$$n! = n(n-1) \cdot \cdot \cdot 3 \cdot 2 \cdot 1$$

cuando $n \ge 1$.

Definición 4. Sean $r \le n$ dos naturales. Una r-permutación en n es una aplicación inyectiva $\sigma: \{1, \ldots, r\} \to \{1, \ldots, n\}$. Al conjunto de las r-permutaciones en n lo denotamos P(n, r).

Proposición 5.

$$|P(n,r)| = \frac{n!}{(n-r)!} = n(n-1)\cdots(n-r+1)$$

Demostración. Aplicación directa de la proposición 3, ya que comenzamos con n alternativas y tras cada elección tenemos una posibilidad menos para la siquiente.

Corolario 6. El número de permutaciones de un conjunto de n elementos (aplicaciones biyectivas del conjunto en si mismo) es n!.

Definición 7. Una *partición ordenada* en un conjunto *X* es una partición en la que los subconjuntos están ordenados. Si bien los subconjuntos están ordenados, los elementos dentro de cada subconjunto no lo están.

El siguiente lema es intuitivo y fácil de demostrar a partir del principio de la suma. Además es muy útil para comprobar otros resultados.

Lema 8 (Lema de conteo). Sea $\phi: A \to B$ una aplicación sobreyectiva entre conjuntos finitos. Para cada $b \in B$ llamamos $\phi^{-1}(b) = \{a \in A \mid \phi(a) = b\}$. Si existe $k \in \mathbb{N}$ tal que $|\phi^{-1}(b)| = k$ para todo $b \in B$, entonces $|A| = k \cdot |B|$.

Demostración. Basta observar que $A = \bigcup_{b \in B} \phi^{-1}(b)$, que la unión anterior es disjunta y aplicar la Proposición 1.

Proposición 9. Sea X un conjunto con |X| = n, y sean n_1, \ldots, n_k números naturales tales que $n = n_1 + \cdots + n_k$. El número de particiones ordenadas $\langle A_1, \ldots, A_k \rangle$ con $|A|_j = n_j$ para cada $1 \le j \le k$ es

$$\frac{n!}{n_1!n_2!\cdots n_k!}$$

Demostración. Consecuencia de la Proposición 5 y del Lema 8: Sea $\sigma: \{1, \ldots, n\} \to X$ una biyección y sea ϕ la aplicación que lleva σ en una partición ordenada $\langle A_1, \ldots, A_k \rangle$ llevando $\sigma(1), \ldots, \sigma(n_1)$ a $A_1, \sigma(n_1+1), \ldots, \sigma(n_1+n_2)$ a A_2 , etcétera. Entonces $\phi^{-1}(\langle A_1, \ldots, A_k \rangle) = n_1! \cdots n_k!$. Como existen n! permutaciones en X concluimos que el número de particiones ordenadas es $\frac{n!}{n_1!n_2!\cdots n_k!}$.

El número de particiones ordenadas coincide con el número de permutaciones que podemos hacer en un conjunto con elementos repetidos.

Proposición 10. Dado un conjunto de n elementos que tiene n_1 elementos repetidos de un primer tipo, n_2 de un segundo tipo y así sucesivamente hasta n_k de un tipo k-esimo. El número de permutaciones de dicho conjunto es

$$\frac{n!}{n_1!n_2!\cdots n_k!}.$$

Demostración. Si ordenamos los elementos y consideramos el conjunto X de las posiciones que ocupan, dar una permutación es equivalente a dar una partición ordenada $\langle A_1, \ldots, A_k \rangle$ donde A_i contiene las posiciones que ocupan los n_i elementos de tipo i-ésimo.

2.3
Orden no importa. Coeficientes binomiales

Definición 11. Llamemos $\binom{n}{r}$ al número de subconjuntos de r elementos que tiene un conjunto de n elementos. Entonces

$$\binom{n}{r} = \frac{n!}{r!(n-r)!}.$$

Estos números reciben el nombre de coeficientes binomiales, debido sobre todo al teorema 13 que veremos con posterioridad.

Corolario 12. El número de cadenas compuestas por n-r ceros y r unos es $\binom{n}{r}$

Demostración. Cada una de las cadenas referidas es la imagen de la aplicación característica de un subconjunto con cardinal r del conjunto $\{1, \ldots, n\}$, luego hay tantas cadenas como subconjuntos de r elementos.

10 Tema 2

Entre otras, los coeficientes binomiales satisfacen las siguientes propiedades para $r \le n$

$$\binom{n}{0} = 1, \qquad \binom{n}{r} = \binom{n}{n-r},$$
$$\binom{n+1}{r} = \binom{n}{r-1} + \binom{n}{r}.$$

Teorema 13. Sea A un anillo. Para cualesquiera $a, b \in A$ y $n \in \mathbb{N}$ se tiene

$$(a+b)^{n} = \sum_{r=0}^{n} \binom{n}{r} a^{r} b^{n-r} =$$

$$= \binom{n}{0} b^{n} + \binom{n}{1} a b^{n-1} + \dots + \binom{n}{n-1} a^{n-1} b + \binom{n}{n} a^{n}$$

Proposición 14. Existen $\binom{n+k-1}{k-1}$ formas de descomponer $n \in \mathbb{N}$ como suma de k números naturales.

Demostración. La aplicación

$$\langle n_1, \ldots, n_k \rangle \longmapsto \underbrace{0 \cdots 0}_{n_1} \underbrace{1 0 \cdots 0}_{n_2} \underbrace{1 \cdots 1}_{n_k} \underbrace{0 \cdots 0}_{n_k}$$

es una biyección entre el conjunto de las descomposiciones de n como suma de k naturales y cadenas con n ceros y k-1 unos, así el resultado es consecuencia directa del Corolario 12.

Corolario 15. Existen $\binom{n+k-1}{k-1}$ formas de distribuir n objetos indistinguibles en k cajas distinguibles.

Corolario 16. Existen $\binom{n+k-1}{k-1}$ formas de seleccionar n objetos entre k objetos distintos, permitiendo repeticiones.

Teorema 17 (Principio de inclusión-exclusión). *Sean* $A_1, \ldots, A_n \subseteq X$ *subconjuntos finitos. Entonces*

$$|A_1 \cup \cdots \cup A_n| = \sum_{k=1}^n (-1)^{k+1} \sum_{\{i_1,\dots,i_k\} \subseteq \{1,\dots,n\}} |A_{i_1} \cap \cdots \cap A_{i_k}|,$$

es decir, sumamos los cardinales de los conjuntos obtenidos al realizar la intersección de un número impar de subconjuntos y restamos los cardinales de los conjuntos obtenidos al intersecar un número par de subconjuntos.

La fórmula se entiende más claramente si la describimos para tres y cuatro conjuntos:

$$|A \cup B \cup C| = |A| + |B| + |C|$$

$$-|A \cap B| - |A \cap C| - |B \cap C|$$

$$+|A \cap B \cap C|$$

$$|A_1 \cup A_2 \cup A_3 \cup A_4| = |A_1| + |A_2| + |A_3| + |A_4|$$

$$-|A_1 \cap A_2| - |A_1 \cap A_3| - |A_1 \cap A_4|$$

$$-|A_2 \cap A_3| - |A_2 \cap A_4| - |A_3 \cap A_4|$$

$$+|A_1 \cap A_2 \cap A_3| + |A_1 \cap A_2 \cap A_4|$$

$$+|A_1 \cap A_3 \cap A_4| + |A_2 \cap A_3 \cap A_4|$$

$$-|A_1 \cap A_2 \cap A_3 \cap A_4|$$

Terminamos con otro principio aparentemente sencillo, pero de gran utilidad a la hora de resolver problemas. Se le conoce con el nombre de principio del palomar o de Dirichlet.

Proposición 18 (Principio de Dirichlet). Sea $\{A_1, \ldots, A_k\}$ una partición de un conjunto X tal que |X| = n. Existe $i \in \{1, \ldots, k\}$ tal que $|A_i| \ge \frac{n}{k}$.

Demostración. Como consecuencia de la Proposición 1 (principio de la suma) $|X| = |A_1| + \cdots + |A_k|$. Si para todo $i |A_i| < \frac{n}{k}$, necesariamente tendríamos que $|X| < k \frac{n}{k} = n$, lo que es imposible.

Corolario 19. Sea $\varphi: X \to Y$ una aplicación entre conjuntos finitos tales que |X| > k |Y| para cierto $k \in \mathbb{N}$. Existe $y \in Y$ tal que $|\varphi^{-1}(y)| > k$.

Demostración. Sencilla aplicación de la Proposición 18 a la partición $\{\varphi^{-1}(y)\mid y\in Y\}\setminus\{\varnothing\}$ de X. \square