$$A = \begin{bmatrix} 4 & 3 \\ 6 & 9 \end{bmatrix}$$

$$A = \begin{bmatrix} 4 & 3 \\ 6 & 9 \end{bmatrix}, \qquad B = \begin{bmatrix} -2 & 9 \\ -5 & 2 \end{bmatrix}$$

What is A + B?

$$\bigcirc \begin{bmatrix} 2 & 9 \\ 1 & 2 \end{bmatrix}$$

$$\bigcirc \begin{bmatrix} 6 & 12 \\ 11 & 11 \end{bmatrix}$$

$$\bigcirc \begin{bmatrix} 6 & -6 \\ 11 & 7 \end{bmatrix}$$

2. Let
$$x = \begin{bmatrix} 2 \\ 7 \\ 4 \\ 1 \end{bmatrix}$$

What is 3 * x?

- O [6 21 12 3]
- $\begin{bmatrix}
 \frac{2}{3} \\
 \frac{7}{3} \\
 \frac{4}{3} \\
 \frac{1}{3}
 \end{bmatrix}$
- $\bigcirc \begin{bmatrix} \frac{2}{3} & \frac{7}{3} & \frac{4}{3} & \frac{1}{3} \end{bmatrix}$

1 point

$$u = \begin{bmatrix} 2 \\ 1 \\ 8 \end{bmatrix}$$

What is u^{T} ?

- $\begin{bmatrix}
 8 \\
 1 \\
 2
 \end{bmatrix}$
- O [8 1 2]
- $\begin{bmatrix}
 2 \\
 1 \\
 8
 \end{bmatrix}$
- [2 1 8]

4. Let u and v be 3-dimensional vectors, where specifically

 $u = \begin{bmatrix} 3 \\ -5 \\ 4 \end{bmatrix}$

and

$$v = \begin{bmatrix} 1 \\ 2 \\ 5 \end{bmatrix}$$

What is $u^T v$?

(Hint: u^T is a

1x3 dimensional matrix, and v can also be seen as a 3x1

matrix. The answer you want can be obtained by taking

the matrix product of \boldsymbol{u}^T and \boldsymbol{v} .) Do not add brackets to your answer.

13

1 point

must necessarily hold true? Check all that apply.

- ightharpoonup If C = A * B, then C is a 3x3 matrix.
- lacksquare If B is the 3x3 identity matrix, then A*B=B*A