LECTURE 14: CATEGORIES AND INTERACTIONS

ECON 480 - ECONOMETRICS - FALL 2018

Ryan Safner

November 12, 2018

Dummy Dependent (Y) Variables

Interaction Effects

Interactions Between a Dummy and a Continuous Variable

Interactions Between Two Dummy Variables

Interactions Between Two Continuous Variables

 A categorical variable expresses membership in a category, where there is no ranking or hierarchy of the categories

- A categorical variable expresses membership in a category, where there is no ranking or hierarchy of the categories
 - e.g. Male/Female, Spring/Summer/Fall/Winter, Democratic/Republican/Independent

- A categorical variable expresses membership in a category, where there is no ranking or hierarchy of the categories
 - e.g. Male/Female, Spring/Summer/Fall/Winter, Democratic/Republican/Independent
- An ordinal variable expresses rank or an ordering of data, but not necessarily their relative magnitude

- A categorical variable expresses membership in a category, where there is no ranking or hierarchy of the categories
 - e.g. Male/Female, Spring/Summer/Fall/Winter, Democratic/Republican/Independent
- An ordinal variable expresses rank or an ordering of data, but not necessarily their relative magnitude
 - e.g. Order of finalists in a competition (1st, 2nd, 3rd)

- A categorical variable expresses membership in a category, where there is no ranking or hierarchy of the categories
 - e.g. Male/Female, Spring/Summer/Fall/Winter, Democratic/Republican/Independent
- An ordinal variable expresses rank or an ordering of data, but not necessarily their relative magnitude
 - e.g. Order of finalists in a competition (1st, 2nd, 3rd)
 - e.g. Highest education attained (1=elementary school, 2=high school, 3=bachelor's degree, 4=graduate degree)

USING CATEGORICAL VARIABLES IN REGRESSION

 $\boldsymbol{\cdot}$ Categorical variables are useful, but not in easily quantifiable form

USING CATEGORICAL VARIABLES IN REGRESSION

- · Categorical variables are useful, but not in easily quantifiable form
- We can easily transform a categorical variable into a set of dummy variables, one for each possible category

Example

How do wages vary by region of the country? Let $Region_i = \{Northeast, Midwest, South, West\}$

USING CATEGORICAL VARIABLES IN REGRESSION

- · Categorical variables are useful, but not in easily quantifiable form
- We can easily transform a categorical variable into a set of dummy variables, one for each possible category

Example

How do wages vary by region of the country? Let $Region_i = \{Northeast, Midwest, South, West\}$

Can we run the following regression?

$$\widehat{Wages}_i = \hat{\beta}_0 + \hat{\beta}_1 Region_i + \epsilon_i$$

USING CATEGORICAL VARIABLES IN REGRESSION II

Example

How do wages vary by region of the country?

Let

$$Region_{i} = \begin{cases} 1 & \text{if } i \text{ is in Northeast} \\ 2 & \text{If } i \text{ is in Midwest} \\ 3 & \text{if } i \text{ is in South} \\ 4 & \text{If } i \text{ is in West} \end{cases}$$

$$\widehat{\text{Wages}}_i = \hat{eta}_0 + \hat{eta}_1 \text{Region} + \epsilon_i$$

USING CATEGORICAL VARIABLES IN REGRESSION II

Example

How do wages vary by region of the country?

Let

$$Region_{i} = \begin{cases} 1 & \text{if } i \text{ is in Northeast} \\ 2 & \text{If } i \text{ is in Midwest} \\ 3 & \text{if } i \text{ is in South} \\ 4 & \text{If } i \text{ is in West} \end{cases}$$

· Now can we run the following regression?

$$\widehat{\text{Wages}_i} = \hat{eta}_0 + \hat{eta}_1 \text{Region} + \epsilon_i$$

USING CATEGORICAL VARIABLES IN REGRESSION III

Example

How do wages vary by region of the country?

- · Create dummy for each region:
 - · Northeast_i = 1 if i is in Northeast, else 0
 - $Midwest_i = 1$ if i is in Midwest, else 0
 - $South_i = 1$ if i is in South, else 0
 - · $West_i = 1$ if i is in West, else 0

USING CATEGORICAL VARIABLES IN REGRESSION III

Example

How do wages vary by region of the country?

- · Create dummy for each region:
 - Northeast_i = 1 if i is in Northeast, else 0
 - $Midwest_i = 1$ if i is in Midwest, else 0
 - $South_i = 1$ if i is in South, else 0
 - $West_i = 1$ if i is in West, else 0
- · Now can we run the following regression?

$$\widehat{Wages_i} = \hat{eta_0} + \hat{eta_1} Northeast_i + \hat{eta_2} Midwest_i + \hat{eta_3} South_i + \hat{eta_4} West_i + \epsilon_i$$

USING CATEGORICAL VARIABLES IN REGRESSION III

Example

How do wages vary by region of the country?

- · Create dummy for each region:
 - · Northeast_i = 1 if i is in Northeast, else 0
 - $Midwest_i = 1$ if i is in Midwest, else 0
 - South_i = 1 if i is in South, else 0
 - $West_i = 1$ if i is in West, else 0
- · Now can we run the following regression?

$$\widehat{Wages}_i = \hat{eta}_0 + \hat{eta}_1 Northeast_i + \hat{eta}_2 Midwest_i + \hat{eta}_3 South_i + \hat{eta}_4 West_i + \epsilon_i$$

THE DUMMY VARIABLE TRAP

$$\widehat{Wages_i} = \hat{eta_0} + \hat{eta_1}$$
Northeast $+$ $\hat{eta_2}$ Midwest $+$ $\hat{eta_3}$ South $+$ $\hat{eta_4}$ West $+$ ϵ_i

THE DUMMY VARIABLE TRAP

$$\widehat{\textit{Wages}_i} = \hat{\beta_0} + \hat{\beta_1} \textit{Northeast} + \hat{\beta_2} \textit{Midwest} + \hat{\beta_3} \textit{South} + \hat{\beta_4} \textit{West} + \epsilon_i$$

• If we included *all* possible categories, they are perfectly multicollinear, an exact linear function of one another:

$$Northeast_i + Midwest_i + South_i + West_i = 1 \quad \forall i$$

• This is known as the dummy variable trap, a common source of perfect multicollinearity

• To avoid the dummy variable trap, always omit one category from the regression, known as the reference category

- To avoid the dummy variable trap, always omit one category from the regression, known as the reference category
 - \cdot It does not matter which category we omit!

- To avoid the dummy variable trap, always omit one category from the regression, known as the reference category
 - · It does not matter which category we omit!
 - Coefficients on dummies measure the difference between the reference category and each category dummy

- To avoid the dummy variable trap, always omit one category from the regression, known as the reference category
 - · It does not matter which category we omit!
 - Coefficients on dummies measure the difference between the reference category and each category dummy

$$\widehat{Wages}_i = \hat{eta}_0 + \hat{eta}_1 Northeast_i + \hat{eta}_2 Midwest_i + \hat{eta}_3 South_i + \epsilon_i$$

- To avoid the dummy variable trap, always omit one category from the regression, known as the reference category
 - · It does not matter which category we omit!
 - Coefficients on dummies measure the difference between the reference category and each category dummy

Example

$$\widehat{Wages}_i = \hat{eta}_0 + \hat{eta}_1 Northeast_i + \hat{eta}_2 Midwest_i + \hat{eta}_3 South_i + \epsilon_i$$

West_i omitted (arbitrarily chosen)

- To avoid the dummy variable trap, always omit one category from the regression, known as the reference category
 - · It does not matter which category we omit!
 - Coefficients on dummies measure the difference between the reference category and each category dummy

$$\widehat{Wages}_i = \hat{eta}_0 + \hat{eta}_1 Northeast_i + \hat{eta}_2 Midwest_i + \hat{eta}_3 South_i + \epsilon_i$$

- West_i omitted (arbitrarily chosen)
- · β_0 :

- To avoid the dummy variable trap, always omit one category from the regression, known as the reference category
 - · It does not matter which category we omit!
 - Coefficients on dummies measure the difference between the reference category and each category dummy

$$\widehat{Wages_i} = \hat{eta}_0 + \hat{eta}_1 Northeast_i + \hat{eta}_2 Midwest_i + \hat{eta}_3 South_i + \epsilon_i$$

- West_i omitted (arbitrarily chosen)
- β_0 : wages for *i* in West

- To avoid the dummy variable trap, always omit one category from the regression, known as the reference category
 - · It does not matter which category we omit!
 - Coefficients on dummies measure the difference between the reference category and each category dummy

$$\widehat{Wages}_i = \hat{eta}_0 + \hat{eta}_1 Northeast_i + \hat{eta}_2 Midwest_i + \hat{eta}_3 South_i + \epsilon_i$$

- West_i omitted (arbitrarily chosen)
- β_0 : wages for *i* in West
- · β_1 :

- To avoid the dummy variable trap, always omit one category from the regression, known as the reference category
 - · It does not matter which category we omit!
 - Coefficients on dummies measure the difference between the reference category and each category dummy

$$\widehat{Wages}_i = \hat{eta}_0 + \hat{eta}_1 Northeast_i + \hat{eta}_2 Midwest_i + \hat{eta}_3 South_i + \epsilon_i$$

- West_i omitted (arbitrarily chosen)
- β_0 : wages for *i* in West
- \cdot β_1 : difference between West and Northeast

- To avoid the dummy variable trap, always omit one category from the regression, known as the reference category
 - · It does not matter which category we omit!
 - Coefficients on dummies measure the difference between the reference category and each category dummy

$$\widehat{Wages}_i = \hat{eta}_0 + \hat{eta}_1 Northeast_i + \hat{eta}_2 Midwest_i + \hat{eta}_3 South_i + \epsilon_i$$

- West_i omitted (arbitrarily chosen)
- β_0 : wages for *i* in West
- β_1 : difference between West and Northeast
- · β_2 :

- To avoid the dummy variable trap, always omit one category from the regression, known as the reference category
 - · It does not matter which category we omit!
 - Coefficients on dummies measure the difference between the reference category and each category dummy

$$\widehat{Wages}_i = \hat{eta}_0 + \hat{eta}_1 Northeast_i + \hat{eta}_2 Midwest_i + \hat{eta}_3 South_i + \epsilon_i$$

- West_i omitted (arbitrarily chosen)
- β_0 : wages for *i* in West
- β_1 : difference between West and Northeast
- β_2 : difference between West and Midwest

- To avoid the dummy variable trap, always omit one category from the regression, known as the reference category
 - · It does not matter which category we omit!
 - Coefficients on dummies measure the *difference* between the reference category and each category dummy

$$\widehat{Wages}_i = \hat{eta}_0 + \hat{eta}_1 Northeast_i + \hat{eta}_2 Midwest_i + \hat{eta}_3 South_i + \epsilon_i$$

- West_i omitted (arbitrarily chosen)
- β_0 : wages for *i* in West
- β_1 : difference between West and Northeast
- β_2 : difference between West and Midwest
- $\cdot \beta_3$:

- To avoid the dummy variable trap, always omit one category from the regression, known as the reference category
 - · It does not matter which category we omit!
 - Coefficients on dummies measure the *difference* between the reference category and each category dummy

$$\widehat{Wages}_i = \hat{eta}_0 + \hat{eta}_1 Northeast_i + \hat{eta}_2 Midwest_i + \hat{eta}_3 South_i + \epsilon_i$$

- West_i omitted (arbitrarily chosen)
- β_0 : wages for *i* in West
- β_1 : difference between West and Northeast
- β_2 : difference between West and Midwest
- β_3 : difference between West and South

THE DUMMY VARIABLE TRAP IN R

```
dtreg<-lm(wage~noreast+northcen+south+west, data=wages)</pre>
summary(dtreg)
##
## Call:
## lm(formula = wage ~ noreast + northcen + south + west, data = wages)
##
## Residuals:
     Min
          10 Median 30
##
                                  Max
## -6.083 -2.387 -1.097 1.157 18.610
##
## Coefficients: (1 not defined because of singularities)
               Estimate Std. Error t value Pr(>|t|)
##
```

(Intercept) 6.6134 0.3891 16.995 < 2e-16 ***

```
# run 4 regressions
no.noreast.reg<-lm(wage~northcen+south+west, data=wages)
no.northcen.reg<-lm(wage~noreast+south+west, data=wages)</pre>
no.south.reg<-lm(wage~noreast+northcen+west, data=wages)</pre>
no.west.reg<-lm(wage~noreast+northcen+south, data=wages)</pre>
# make output table
library("stargazer")
stargazer(no.noreast.reg, no.northcen.reg,
          no.south.reg, no.west.reg,
          type="latex", header=FALSE,
          float=FALSE. font.size="tinv")
```

	Dependent variable: 			
	(1)	(2)	(3)	(4)
northcen	-0.659		0.324	-0.903*
	(0.465)		(0.417)	(0.504)
noreast		0.659	0.983**	-0.244
		(0.465)	(0.432)	(0.515)
south	-0.983**	-0.324		-1.226***
	(0.432)	(0.417)		(0.473)
west	0.244	0.903*	1.226***	
	(0.515)	(0.504)	(0.473)	
Constant	6.370***	5.710***	5.387***	6.613***
	(0.338)	(0.320)	(0.268)	(0.389)
Observations	526	526	526	526
R^2	0.017	0.017	0.017	0.017
Adjusted R ²	0.012	0.012	0.012	0.012
Residual Std. Error (df = 522)	3.671	3.671	3.671	3.671
F Statistic (df = 3; 522)	3.099**	3.099**	3.099**	3.099**

 Constant is always mean wage for reference (omitted) category

Note: *p<0.1; **p<0.05; ***p<0.01

11

	Dependent variable: 			
	(1)	(2)	(3)	(4)
northcen	-0.659		0.324	-0.903*
	(0.465)		(0.417)	(0.504)
noreast		0.659	0.983**	-0.244
		(0.465)	(0.432)	(0.515)
south	-0.983**	-0.324		-1.226***
	(0.432)	(0.417)		(0.473)
west	0.244	0.903*	1.226***	
	(0.515)	(0.504)	(0.473)	
Constant	6.370***	5.710***	5.387***	6.613***
	(0.338)	(0.320)	(0.268)	(0.389)
Observations	526	526	526	526
R^2	0.017	0.017	0.017	0.017
Adjusted R ²	0.012	0.012	0.012	0.012
Residual Std. Error (df = 522)	3.671	3.671	3.671	3.671
F Statistic (df = 3; 522)	3.099**	3.099**	3.099**	3.099**

- Constant is always mean wage for reference (omitted) category
- Compare coefficient on northcen in (1) and noreast in (2)

*p<0.1; **p<0.05; ***p<0.01

Note:

11

	Dependent variable: 			
	(1)	(2)	(3)	(4)
northcen	-0.659		0.324	-0.903*
	(0.465)		(0.417)	(0.504)
noreast		0.659	0.983**	-0.244
		(0.465)	(0.432)	(0.515)
south	-0.983**	-0.324		-1.226***
	(0.432)	(0.417)		(0.473)
west	0.244	0.903*	1.226***	
	(0.515)	(0.504)	(0.473)	
Constant	6.370***	5.710***	5.387***	6.613***
	(0.338)	(0.320)	(0.268)	(0.389)
Observations	526	526	526	526
R^2	0.017	0.017	0.017	0.017
Adjusted R ²	0.012	0.012	0.012	0.012
Residual Std. Error (df = 522)	3.671	3.671	3.671	3.671
F Statistic (df = 3; 522)	3.099**	3.099**	3.099**	3.099**

- Constant is always mean wage for reference (omitted) category
- Compare coefficient on northcen in (1) and noreast in (2)
- Compare coefficient on south in (3) and west in (4)

*p<0.1; **p<0.05; ***p<0.01

Note:

1

	Dependent variable: 			
	(1)	(2)	(3)	(4)
northcen	-0.659		0.324	-0.903*
	(0.465)		(0.417)	(0.504)
noreast		0.659	0.983**	-0.244
		(0.465)	(0.432)	(0.515)
south	-0.983**	-0.324		-1.226***
	(0.432)	(0.417)		(0.473)
west	0.244	0.903*	1.226***	
	(0.515)	(0.504)	(0.473)	
Constant	6.370***	5.710***	5.387***	6.613***
	(0.338)	(0.320)	(0.268)	(0.389)
Observations	526	526	526	526
R^2	0.017	0.017	0.017	0.017
Adjusted R ²	0.012	0.012	0.012	0.012
Residual Std. Error (df = 522)	3.671	3.671	3.671	3.671
F Statistic (df = 3; 522)	3.099**	3.099**	3.099**	3.099**

- Constant is always mean wage for reference (omitted) category
- Compare coefficient on northcen in (1) and noreast in (2)
- Compare coefficient on south in (3) and west in (4)
- · It doesn't matter which category we omit

*p<0.1; **p<0.05; ***p<0.01

Note:

USING DIFFERENT REFERENCE CATEGORIES II

	Dependent variable: wage			
	(1)	(2)	(3)	(4)
northcen	-0.659		0.324	-0.903*
	(0.465)		(0.417)	(0.504)
noreast		0.659	0.983**	-0.244
		(0.465)	(0.432)	(0.515)
south	-0.983**	-0.324		-1.226***
	(0.432)	(0.417)		(0.473)
west	0.244	0.903*	1.226***	
	(0.515)	(0.504)	(0.473)	
Constant	6.370***	5.710***	5.387***	6.613***
	(0.338)	(0.320)	(0.268)	(0.389)
Observations	526	526	526	526
R^2	0.017	0.017	0.017	0.017
Adjusted R ²	0.012	0.012	0.012	0.012
Residual Std. Error (df = 522)	3.671	3.671	3.671	3.671
F Statistic (df = 3; 522)	3.099**	3.099**	3.099**	3.099**

- Constant is always mean wage for reference (omitted) category
- Compare coefficient on northcen in (1) and noreast in (2)
- Compare coefficient on south in (3) and west in (4)
- · It doesn't matter which category we omit
- Same n, R^2 , and SER; coefficients give same results

*p<0.1; **p<0.05; ***p<0.01

Note:

• In many contexts, we will want to have our dependent (Y) variable be a dummy variable

· In many contexts, we will want to have our dependent (Y) variable be a dummy variable

$$\widehat{Admitted}_i = \hat{\beta}_0 + \hat{\beta}_1 GPA_i$$
 where $Admitted_i = \begin{cases} 1 & \text{if } i \text{ is Admitted} \\ 0 & \text{If } i \text{ is Not Admitted} \end{cases}$

· In many contexts, we will want to have our dependent (Y) variable be a dummy variable

$$\widehat{Admitted}_i = \hat{\beta}_0 + \hat{\beta}_1 GPA_i$$
 where $Admitted_i = \begin{cases} 1 & \text{if } i \text{ is Admitted} \\ 0 & \text{If } i \text{ is Not Admitted} \end{cases}$

- A model where Y is a dummy is called a linear probability model, as it measures the probability of Y occurring given the X's, i.e. $P(Y_i = 1|X_i)$
 - e.g. the probability person $\it i$ is Admitted to a program with a given GPA

• In many contexts, we will want to have our dependent (Y) variable be a dummy variable

$$\widehat{Admitted}_i = \hat{\beta}_0 + \hat{\beta}_1 GPA_i$$
 where $Admitted_i = \begin{cases} 1 & \text{if } i \text{ is Admitted} \\ 0 & \text{If } i \text{ is Not Admitted} \end{cases}$

- A model where Y is a dummy is called a linear probability model, as it measures the probability of Y occurring given the X's, i.e. $P(Y_i = 1|X_i)$
 - \cdot e.g. the probability person i is Admitted to a program with a given GPA
 - · requires special tools to properly interpret and extend this (logit, probit, etc)

· In many contexts, we will want to have our dependent (Y) variable be a dummy variable

$$\widehat{Admitted}_i = \hat{\beta}_0 + \hat{\beta}_1 GPA_i$$
 where $Admitted_i = \begin{cases} 1 & \text{if } i \text{ is Admitted} \\ 0 & \text{If } i \text{ is Not Admitted} \end{cases}$

- A model where Y is a dummy is called a linear probability model, as it measures the probability of Y occurring given the X's, i.e. $P(Y_i = 1|X_i)$
 - e.g. the probability person i is Admitted to a program with a given GPA
 - · requires special tools to properly interpret and extend this (logit, probit, etc)
- Feel free to write papers that have dummy Y variables (but you may have to ask me some more questions)!

• Sometimes an individual's membership in a category (measured by a dummy) might significantly interact with *other* independent (*X*) variables

• Sometimes an individual's membership in a category (measured by a dummy) might significantly interact with *other* independent (*X*) variables

Example

• Sometimes an individual's membership in a category (measured by a dummy) might significantly interact with *other* independent (*X*) variables

Example

- Experience certainly affects wages...Does experience affect *men's* wages differently than it affects *women's* wages?
 - i.e. is there an interaction effect between sex and experience?

• Sometimes an individual's membership in a category (measured by a dummy) might significantly interact with *other* independent (*X*) variables

Example

- Experience certainly affects wages...Does experience affect *men's* wages differently than it affects *women's* wages?
 - i.e. is there an interaction effect between sex and experience?
- Do men gain more than women from an additional year of experience?

• Sometimes an individual's membership in a category (measured by a dummy) might significantly interact with *other* independent (X) variables

Example

- Experience certainly affects wages...Does experience affect *men's* wages differently than it affects *women's* wages?
 - i.e. is there an interaction effect between sex and experience?
- Do men gain more than women from an additional year of experience?
 - Note this is not the same as asking: "do men earn more than women with the same amount of experience?"

 \cdot There are three types of interactions that may take place, depending on the types of variables

- There are three types of interactions that may take place, depending on the types of variables
- We look at each in turn:

- There are three types of interactions that may take place, depending on the types of variables
- · We look at each in turn:
- 1. Interaction between a dummy and a continuous variable:

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 D_i + \beta_3 X_i * D_i$$

- · There are three types of interactions that may take place, depending on the types of variables
- · We look at each in turn:
- 1. Interaction between a dummy and a continuous variable:

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 D_i + \beta_3 X_i * D_i$$

2. Interaction between two dummy variables:

$$Y_i = \beta_0 + \beta_1 D_{1i} + \beta_2 D_{2i} + \beta_3 D_{1i} * D_{2i}$$

- · There are three types of interactions that may take place, depending on the types of variables
- · We look at each in turn:
- 1. Interaction between a dummy and a continuous variable:

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 D_i + \beta_3 X_i * D_i$$

2. Interaction between two dummy variables:

$$Y_{i} = \beta_{0} + \beta_{1}D_{1i} + \beta_{2}D_{2i} + \beta_{3}D_{1i} * D_{2i}$$

3. Interaction between two continuous variables:

$$Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \beta_3 X_{1i} * X_{2i}$$

INTERACTIONS BETWEEN A DUMMY AND

A CONTINUOUS VARIABLE

• We can model this interaction by introducing a variable that is an interaction term capturing the interaction between two variables:

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 D_i + \beta_3 X_i * D_i \quad \text{where } D_i = \{0, 1\}$$

• We can model this interaction by introducing a variable that is an interaction term capturing the interaction between two variables:

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 D_i + \beta_3 X_i * D_i \quad \text{where } D_i = \{0, 1\}$$

• β_3 estimates the interaction term (in this case between a dummy variable and a continuous variable)

• We can model this interaction by introducing a variable that is an interaction term capturing the interaction between two variables:

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 D_i + \beta_3 X_i * D_i \quad \text{where } D_i = \{0, 1\}$$

- β_3 estimates the interaction term (in this case between a dummy variable and a continuous variable)
- What do the different coefficients (β 's) tell us?

• We can model this interaction by introducing a variable that is an interaction term capturing the interaction between two variables:

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 D_i + \beta_3 X_i * D_i \quad \text{where } D_i = \{0, 1\}$$

- β_3 estimates the interaction term (in this case between a dummy variable and a continuous variable)
- What do the different coefficients (β 's) tell us?
 - Again, think logically by examining each group ($D_i = 0$ or $D_i = 1$)

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 D_i + \beta_3 X_i * D_i$$

• When $D_i = 0$ (Control group):

INTERACTION EFFECTS AS TWO REGRESSIONS

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 D_i + \beta_3 X_i * D_i$$

• When $D_i = 0$ (Control group):

$$\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i + \hat{\beta}_2(0) + \hat{\beta}_3 X_i * (0)$$

INTERACTION EFFECTS AS TWO REGRESSIONS

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 D_i + \beta_3 X_i * D_i$$

• When $D_i = 0$ (Control group):

$$\hat{Y}_{i} = \hat{\beta}_{0} + \hat{\beta}_{1}X_{i} + \hat{\beta}_{2}(0) + \hat{\beta}_{3}X_{i} * (0)$$

$$\hat{Y}_{i} = \hat{\beta}_{0} + \hat{\beta}_{1}X_{i}$$

INTERACTION EFFECTS AS TWO REGRESSIONS

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 D_i + \beta_3 X_i * D_i$$

• When $D_i = 0$ (Control group):

$$\hat{Y}_{i} = \hat{\beta}_{0} + \hat{\beta}_{1}X_{i} + \hat{\beta}_{2}(0) + \hat{\beta}_{3}X_{i} * (0)$$

$$\hat{Y}_{i} = \hat{\beta}_{0} + \hat{\beta}_{1}X_{i}$$

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 D_i + \beta_3 X_i * D_i$$

• When $D_i = 0$ (Control group):

$$\hat{Y}_{i} = \hat{\beta}_{0} + \hat{\beta}_{1}X_{i} + \hat{\beta}_{2}(0) + \hat{\beta}_{3}X_{i} * (0)$$

$$\hat{Y}_{i} = \hat{\beta}_{0} + \hat{\beta}_{1}X_{i}$$

$$\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i + \hat{\beta}_2(1) + \hat{\beta}_3 X_i * (1)$$

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 D_i + \beta_3 X_i * D_i$$

• When $D_i = 0$ (Control group):

$$\begin{split} \hat{Y}_{i} &= \hat{\beta}_{0} + \hat{\beta}_{1}X_{i} + \hat{\beta}_{2}(0) + \hat{\beta}_{3}X_{i} * (0) \\ \hat{Y}_{i} &= \hat{\beta}_{0} + \hat{\beta}_{1}X_{i} \end{split}$$

$$\begin{split} \hat{Y}_{i} &= \hat{\beta}_{0} + \hat{\beta}_{1}X_{i} + \hat{\beta}_{2}(1) + \hat{\beta}_{3}X_{i} * (1) \\ \hat{Y}_{i} &= \hat{\beta}_{0} + \hat{\beta}_{1}X_{i} + \hat{\beta}_{2} + \hat{\beta}_{3}X_{i} \end{split}$$

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 D_i + \beta_3 X_i * D_i$$

• When $D_i = 0$ (Control group):

$$\hat{Y}_{i} = \hat{\beta}_{0} + \hat{\beta}_{1}X_{i} + \hat{\beta}_{2}(0) + \hat{\beta}_{3}X_{i} * (0)$$

$$\hat{Y}_{i} = \hat{\beta}_{0} + \hat{\beta}_{1}X_{i}$$

$$\hat{Y}_{i} = \hat{\beta}_{0} + \hat{\beta}_{1}X_{i} + \hat{\beta}_{2}(1) + \hat{\beta}_{3}X_{i} * (1)$$

$$\hat{Y}_{i} = \hat{\beta}_{0} + \hat{\beta}_{1}X_{i} + \hat{\beta}_{2} + \hat{\beta}_{3}X_{i}$$

$$\hat{Y}_{i} = (\hat{\beta}_{0} + \hat{\beta}_{2}) + (\hat{\beta}_{1} + \hat{\beta}_{3})X_{i}$$

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 D_i + \beta_3 X_i * D_i$$

• When $D_i = 0$ (Control group):

$$\hat{Y}_{i} = \hat{\beta}_{0} + \hat{\beta}_{1}X_{i} + \hat{\beta}_{2}(0) + \hat{\beta}_{3}X_{i} * (0)$$

$$\hat{Y}_{i} = \hat{\beta}_{0} + \hat{\beta}_{1}X_{i}$$

• When $D_i = 1$ (Treatment group):

$$\begin{split} \hat{Y}_{i} &= \hat{\beta}_{0} + \hat{\beta}_{1}X_{i} + \hat{\beta}_{2}(1) + \hat{\beta}_{3}X_{i} * (1) \\ \hat{Y}_{i} &= \hat{\beta}_{0} + \hat{\beta}_{1}X_{i} + \hat{\beta}_{2} + \hat{\beta}_{3}X_{i} \\ \hat{Y}_{i} &= (\hat{\beta}_{0} + \hat{\beta}_{2}) + (\hat{\beta}_{1} + \hat{\beta}_{3})X_{i} \end{split}$$

· So what we really have is two regression lines!

·
$$D_i = 0$$
 group:
 $\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i$

·
$$D_i = 1$$
 group:
 $\hat{Y}_i = (\hat{\beta}_0 + \hat{\beta}_2) + (\hat{\beta}_1 + \hat{\beta}_3)X_i$

·
$$D_i = 0$$
 group:
 $\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i$

• Three distinct possibilities for the two lines $D_i = 0$ and $D_i = 1$:

INTERACTION EFFECTS AS TWO REGRESSIONS III

• Three distinct possibilities for the two lines $D_i = 0$ and $D_i = 1$:

Interaction Effects as Two Regressions III

• Three distinct possibilities for the two lines $D_i = 0$ and $D_i = 1$:

Interaction Effects as Two Regressions III

• Three distinct possibilities for the two lines $D_i = 0$ and $D_i = 1$:

Interaction Effects as Two Regressions III

• Three distinct possibilities for the two lines $D_i = 0$ and $D_i = 1$:

· Well...four, but: what if they had the same slope and same intercept?

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 D_i + \beta_3 X_i * D_i$$

· To interpret the coefficients, compare cases after changing X by ΔX_i :

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 D_i + \beta_3 X_i * D_i$$

· To interpret the coefficients, compare cases after changing X by ΔX_i :

Interpretting the Coefficients

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 D_i + \beta_3 X_i * D_i$$

- To interpret the coefficients, compare cases after changing X by ΔX_i :

$$Y_i + \Delta Y_i = \beta_0 + \beta_1 (X_i + \Delta X_i) \beta_2 D_i + \beta_3 ((X_i + \Delta X_i) D_i)$$

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 D_i + \beta_3 X_i * D_i$$

- To interpret the coefficients, compare cases after changing X by ΔX_i :

$$Y_i + \Delta Y_i = \beta_0 + \beta_1 (X_i + \Delta X_i) \beta_2 D_i + \beta_3 ((X_i + \Delta X_i) D_i)$$

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 D_i + \beta_3 X_i * D_i$$

• To interpret the coefficients, compare cases after changing X by ΔX_i :

$$Y_i + \Delta Y_i = \beta_0 + \beta_1 (X_i + \Delta X_i) \beta_2 D_i + \beta_3 ((X_i + \Delta X_i) D_i)$$

$$\Delta Y_i = \beta_1 \Delta X_i + \beta_3 D_i \Delta X_i$$

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 D_i + \beta_3 X_i * D_i$$

• To interpret the coefficients, compare cases after changing X by ΔX_i :

$$Y_i + \Delta Y_i = \beta_0 + \beta_1 (X_i + \Delta X_i) \beta_2 D_i + \beta_3 ((X_i + \Delta X_i) D_i)$$

$$\Delta Y_i = \beta_1 \Delta X_i + \beta_3 D_i \Delta X_i$$
$$\frac{\Delta Y_i}{\Delta X_i} = \beta_1 + \beta_3 D_i$$

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 D_i + \beta_3 X_i * D_i$$

• To interpret the coefficients, compare cases after changing X by ΔX_i :

$$Y_i + \Delta Y_i = \beta_0 + \beta_1 (X_i + \Delta X_i) \beta_2 D_i + \beta_3 ((X_i + \Delta X_i) D_i)$$

$$\Delta Y_i = \beta_1 \Delta X_i + \beta_3 D_i \Delta X_i$$
$$\frac{\Delta Y_i}{\Delta X_i} = \beta_1 + \beta_3 D_i$$

- The effect of $X \to Y$ depends on the value of D_i !
- β_3 : increment to the effect of $X_i \to Y_i$ when $D_i = 1$ (vs. $D_i = 0$)

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 D_i + \beta_3 X_i * D_i$$

•
$$\beta_0$$
: Y_i for $X_i = 0$ and $D_i = 0$

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 D_i + \beta_3 X_i * D_i$$

- β_0 : Y_i for $X_i = 0$ and $D_i = 0$
- \cdot β_1 : Marginal effect of $X_i o Y_i$ for $D_i = 0$

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 D_i + \beta_3 X_i * D_i$$

- β_0 : Y_i for $X_i = 0$ and $D_i = 0$
- β_1 : Marginal effect of $X_i \to Y_i$ for $D_i = 0$
- · β_2 : Marginal effect on Y_i of difference between $D_i=0$ and $D_i=1$

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 D_i + \beta_3 X_i * D_i$$

- β_0 : Y_i for $X_i = 0$ and $D_i = 0$
- β_1 : Marginal effect of $X_i \to Y_i$ for $D_i = 0$
- β_2 : Marginal effect on Y_i of difference between $D_i = 0$ and $D_i = 1$
- β_3 : The **difference** of the marginal effect of $X_i \to Y_i$ between $D_i = 0$ and $D_i = 1$

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 D_i + \beta_3 X_i * D_i$$

- β_0 : Y_i for $X_i = 0$ and $D_i = 0$
- β_1 : Marginal effect of $X_i \to Y_i$ for $D_i = 0$
- β_2 : Marginal effect on Y_i of difference between $D_i = 0$ and $D_i = 1$
- β_3 : The difference of the marginal effect of $X_i \to Y_i$ between $D_i = 0$ and $D_i = 1$
- This is a bit awkward, easier to think about the two regression lines:

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 D_i + \beta_3 X_i * D_i$$

• For
$$D_i=0$$
 Group: $\hat{Y}_i=\hat{eta}_0+\hat{eta}_1X_i$

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 D_i + \beta_3 X_i * D_i$$

- For $D_i = 0$ Group: $\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i$
 - · Intercept (Y_i for $X_i=0$): \hat{eta}_0

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 D_i + \beta_3 X_i * D_i$$

- For $D_i = 0$ Group: $\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i$
 - · Intercept (Y_i for $X_i=0$): \hat{eta}_0
 - · Slope (Marginal effect of X_i on Y_i for $D_i=0$ group): $\hat{\beta}_1$

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 D_i + \beta_3 X_i * D_i$$

- For $D_i = 0$ Group: $\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i$
 - · Intercept (Y_i for $X_i=0$): \hat{eta}_0
 - · Slope (Marginal effect of X_i on Y_i for $D_i=0$ group): $\hat{\beta}_1$

· For
$$D_i=1$$
 Group: $\hat{Y}_i=(\hat{eta}_0+\hat{eta}_2)+(\hat{eta}_1+\hat{eta}_3)X_i$

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 D_i + \beta_3 X_i * D_i$$

- For $D_i = 0$ Group: $\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i$
 - · Intercept (Y_i for $X_i=0$): \hat{eta}_0
 - · Slope (Marginal effect of X_i on Y_i for $D_i=0$ group): $\hat{\beta}_1$
- For $D_i=1$ Group: $\hat{Y}_i=(\hat{\beta}_0+\hat{\beta}_2)+(\hat{\beta}_1+\hat{\beta}_3)X_i$
 - · Intercept (Y_i for $X_i=0$): $\hat{eta}_0+\hat{eta}_2$

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 D_i + \beta_3 X_i * D_i$$

- For $D_i = 0$ Group: $\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i$
 - · Intercept (Y_i for $X_i=0$): \hat{eta}_0
 - · Slope (Marginal effect of X_i on Y_i for $D_i=0$ group): \hat{eta}_1
- · For $D_i=1$ Group: $\hat{Y}_i=(\hat{eta}_0+\hat{eta}_2)+(\hat{eta}_1+\hat{eta}_3)X_i$
 - · Intercept (Y_i for $X_i=0$): $\hat{eta}_0+\hat{eta}_2$
 - · Slope (Marginal effect of X_i on Y_i for $D_i=1$ group): $\hat{\beta}_1+\hat{\beta}_3$

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 D_i + \beta_3 X_i * D_i$$

- For $D_i = 0$ Group: $\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i$
 - · Intercept (Y_i for $X_i=0$): \hat{eta}_0
 - · Slope (Marginal effect of X_i on Y_i for $D_i=0$ group): $\hat{\beta}_1$
- · For $D_i=1$ Group: $\hat{Y}_i=(\hat{eta}_0+\hat{eta}_2)+(\hat{eta}_1+\hat{eta}_3)X_i$
 - · Intercept (Y_i for $X_i=0$): $\hat{eta}_0+\hat{eta}_2$
 - · Slope (Marginal effect of X_i on Y_i for $D_i=1$ group): $\hat{\beta}_1+\hat{\beta}_3$
- How can we determine if the two lines have the same slope and/or intercept (and distinguish between the 3 cases)?

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 D_i + \beta_3 X_i * D_i$$

- For $D_i = 0$ Group: $\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i$
 - · Intercept (Y_i for $X_i = 0$): $\hat{\beta}_0$
 - · Slope (Marginal effect of X_i on Y_i for $D_i=0$ group): $\hat{\beta}_1$
- · For $D_i=1$ Group: $\hat{Y}_i=(\hat{eta}_0+\hat{eta}_2)+(\hat{eta}_1+\hat{eta}_3)X_i$
 - · Intercept (Y_i for $X_i=0$): $\hat{eta}_0+\hat{eta}_2$
 - · Slope (Marginal effect of X_i on Y_i for $D_i=1$ group): $\hat{\beta}_1+\hat{\beta}_3$
- How can we determine if the two lines have the same slope and/or intercept (and distinguish between the 3 cases)?
 - · Same intercept? t-test H_0 : $\beta_2 = 0$

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 D_i + \beta_3 X_i * D_i$$

- For $D_i = 0$ Group: $\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i$
 - · Intercept (Y_i for $X_i = 0$): $\hat{\beta}_0$
 - · Slope (Marginal effect of X_i on Y_i for $D_i=0$ group): $\hat{\beta}_1$
- · For $D_i=1$ Group: $\hat{Y}_i=(\hat{eta}_0+\hat{eta}_2)+(\hat{eta}_1+\hat{eta}_3)X_i$
 - · Intercept (Y_i for $X_i=0$): $\hat{eta}_0+\hat{eta}_2$
 - · Slope (Marginal effect of X_i on Y_i for $D_i=1$ group): $\hat{\beta}_1+\hat{\beta}_3$
- How can we determine if the two lines have the same slope and/or intercept (and distinguish between the 3 cases)?
 - Same intercept? t-test H_0 : $\beta_2 = 0$
 - Same slope? t-test H_0 : $\beta_3 = 0$

EXAMPLE

Example

$$\widehat{\text{wage}_i} = \hat{eta}_0 + \hat{eta}_1$$
exper $_i + \hat{eta}_2$ female $_i + \hat{eta}_3$ exper $_i * female_i$

EXAMPLE

Example

$$\widehat{wage}_i = \hat{eta}_0 + \hat{eta}_1$$
exper $_i + \hat{eta}_2$ female $_i + \hat{eta}_3$ exper $_i * female_i$

• For Males (female = 0):

$$\widehat{wage_i} = \hat{\beta_0} + \hat{\beta_1}$$
exper

Example

$$\widehat{\text{wage}_i} = \hat{eta}_0 + \hat{eta}_1 \text{exper}_i + \hat{eta}_2 \text{female}_i + \hat{eta}_3 \text{exper}_i * \text{female}_i$$

• For Males (female = 0):

$$\widehat{wage_i} = \hat{\beta_0} + \hat{\beta_1}$$
exper

• For Females (female = 1):

$$\widehat{wage_i} = \underbrace{(\hat{\beta}_0 + \hat{\beta}_2)}_{\text{intercept}} + \underbrace{(\hat{\beta}_1 + \hat{\beta}_3)}_{\text{slope}} exper$$

EXAMPLE II

EXAMPLE III

EXAMPLE III

EXAMPLE REGRESSION IN R

Syntax for interaction term is easy, simply add var1*var2 to the regression

```
interactionreg<-lm(wage~female+exper+female*exper, data=wages)</pre>
summary(interactionreg)
##
## Call:
## lm(formula = wage ~ female + exper + female * exper, data = wages)
##
## Residuals:
##
      Min
               1Q Median
                              30
                                     Max
## -6.3200 -1.8191 -0.9708 1.4132 17.2672
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.15828 0.34167 18.024 < 2e-16 ***
## female
           -1.54655 0.48186 -3.210 0.001411 **
                         0.01544 3.472 0.000559 ***
## exper
               0.05360
## female:exper -0.05507
                         0.02217 -2.483 0.013325 *
```

EXAMPLE REGRESSION IN R II

	Dependent variable:
	wage
female	1.547***
	(0.482)
exper	0.054***
	(0.015)
female:exper	-0.055**
	(0.022)
Constant	6.158***
	(0.342)
Observations	526
R ²	0.136
Adjusted R ²	0.131
Residual Std. Error	3.443 (df = 522)
F Statistic	27.307*** (df = 3; 522)
Note:	*p<0.1; **p<0.05; ***p<0.01

EXAMPLE REGRESSION IN R: INTERPRETTING COEFFICIENTS

$$\widehat{\text{wage}_i} = 6.16 + 0.05 \, \text{Experience}_i - 1.55 \, \text{Female}_i - 0.06 \, \text{Experience}_i \times \text{Female}_i$$
(0.34) (0.02) (0.02)

·
$$\hat{\beta}_0$$
:

Example Regression in R: Interpretting Coefficients

$$\widehat{\text{wage}_i} = 6.16 + 0.05 \, \text{Experience}_i - 1.55 \, \text{Female}_i - 0.06 \, \text{Experience}_i \times \text{Female}_i$$
(0.34) (0.02) (0.49) (0.02)

- \cdot $\hat{eta}_{ exttt{0}}$: Males with experience of 0 years earn \$6.16
- $\cdot \hat{\beta}_1$:

Example Regression in R: Interpretting Coefficients

$$\widehat{\text{wage}_i} = 6.16 + 0.05 \, \text{Experience}_i - 1.55 \, \text{Female}_i - 0.06 \, \text{Experience}_i \times \text{Female}_i$$
(0.34) (0.02) (0.49) (0.02)

- \cdot $\hat{eta}_{ exttt{0}}$: Males with experience of 0 years earn \$6.16
- $\cdot \hat{\beta}_1$:

Example Regression in R: Interpretting Coefficients

$$\widehat{\text{wage}}_i = 6.16 + 0.05 \, \text{Experience}_i - 1.55 \, \text{Female}_i - 0.06 \, \text{Experience}_i \times \text{Female}_i$$
(0.34) (0.02) (0.49) (0.02)

- \cdot \hat{eta}_0 : Males with experience of 0 years earn \$6.16
- \hat{eta}_1 : For every additional year of experience, *males* earn \$0.05
- $\cdot \hat{\beta}_2$:

Example Regression in R: Interpretting Coefficients

$$\widehat{\text{wage}_i} = 6.16 + 0.05 \text{ Experience}_i - 1.55 \text{ Female}_i - 0.06 \text{ Experience}_i \times \text{Female}_i$$
(0.34) (0.02) (0.49) (0.02)

- \cdot \hat{eta}_0 : Males with experience of 0 years earn \$6.16
- \cdot \hat{eta}_1 : For every additional year of experience, *males* earn \$0.05
- $\cdot \hat{\beta}_2$:

EXAMPLE REGRESSION IN R: INTERPRETTING COEFFICIENTS

$$\widehat{\text{wage}_i} = 6.16 + 0.05 \text{ Experience}_i - 1.55 \text{ Female}_i - 0.06 \text{ Experience}_i \times \text{Female}_i$$
(0.34) (0.02) (0.49) (0.02)

- \cdot \hat{eta}_0 : Males with experience of 0 years earn \$6.16
- \cdot \hat{eta}_1 : For every additional year of experience, *males* earn \$0.05
- \cdot \hat{eta}_2 : Women on average earn \$1.55 less than men, holding experience constant
- · $\hat{\beta}_3$:

EXAMPLE REGRESSION IN R: INTERPRETTING COEFFICIENTS

$$\widehat{\text{wage}_i} = 6.16 + 0.05 \text{ Experience}_i - 1.55 \text{ Female}_i - 0.06 \text{ Experience}_i \times \text{Female}_i$$
(0.34) (0.02) (0.49) (0.02)

- \cdot \hat{eta}_0 : Males with experience of 0 years earn \$6.16
- \cdot \hat{eta}_1 : For every additional year of experience, *males* earn \$0.05
- \cdot \hat{eta}_2 : Women on average earn \$1.55 less than men, holding experience constant
- · $\hat{\beta}_3$:

EXAMPLE REGRESSION IN R: INTERPRETTING COEFFICIENTS

$$\widehat{\text{wage}_i} = 6.16 + 0.05 \text{ Experience}_i - 1.55 \text{ Female}_i - 0.06 \text{ Experience}_i \times \text{Female}_i$$
(0.34) (0.02) (0.49) (0.02)

- \cdot \hat{eta}_0 : Males with experience of 0 years earn \$6.16
- \cdot \hat{eta}_1 : For every additional year of experience, *males* earn \$0.05
- \cdot \hat{eta}_2 : Women on average earn \$1.55 less than men, holding experience constant
- \cdot \hat{eta}_3 : Females earn \$0.06 less than men for every additional year of experience

$$\widehat{\text{wage}_i} = 6.16 + 0.05 \text{ Experience}_i - 1.55 \text{ Female}_i - 0.06 \text{ Experience}_i * \text{Female}_i$$
(0.34) (0.02) (0.49) (0.02)

• Regression for males (female = 0):

$$\widehat{\text{wage}}_i = 6.16 + 0.05 \text{Experience}_i$$

$$\widehat{\text{wage}_i} = 6.16 + 0.05 \text{ Experience}_i - 1.55 \text{ Female}_i - 0.06 \text{ Experience}_i * \text{Female}_i$$
(0.34) (0.02) (0.49) (0.02)

• Regression for males (female = 0):

$$\widehat{\text{wage}}_i = 6.16 + 0.05 \text{Experience}_i$$

• Males with no experience earn \$6.16

$$\widehat{\text{wage}_i} = 6.16 + 0.05 \text{ Experience}_i - 1.55 \text{ Female}_i - 0.06 \text{ Experience}_i * \text{Female}_i$$
(0.34) (0.02) (0.49) (0.02)

• Regression for males (female = 0):

$$\widehat{\text{wage}}_i = 6.16 + 0.05 \text{Experience}_i$$

- · Males with no experience earn \$6.16
- · For every year of experience, males' wages increase by \$0.05

$$\widehat{\text{wage}_i} = 6.16 + 0.05 \text{ Experience}_i - 1.55 \text{ Female}_i - 0.06 \text{ Experience}_i * \text{Female}_i$$
(0.34) (0.02) (0.49) (0.02)

• Regression for males (female = 0):

$$\widehat{\text{wage}}_i = 6.16 + 0.05 \text{Experience}_i$$

- · Males with no experience earn \$6.16
- · For every year of experience, males' wages increase by \$0.05
- Regression for females (female = 1):

$$\widehat{\text{wage}}_i = 6.16 + 0.05 \text{Experience}_i - 1.55(1) - 0.06 \text{Experience}_i * (1)$$

$$= (6.16 - 1.55) + (0.05 - 0.06) \text{Experience}$$

$$= 4.61 - 0.01 \text{Experience}$$

$$\widehat{\text{wage}_i} = 6.16 + 0.05 \text{ Experience}_i - 1.55 \text{ Female}_i - 0.06 \text{ Experience}_i * \text{Female}_i$$
(0.34) (0.02) (0.49) (0.02)

• Regression for males (female = 0):

$$\widehat{\text{wage}}_i = 6.16 + 0.05 \text{Experience}_i$$

- · Males with no experience earn \$6.16
- · For every year of experience, males' wages increase by \$0.05
- Regression for females (female = 1):

$$\widehat{\text{wage}}_i = 6.16 + 0.05 \text{Experience}_i - 1.55(1) - 0.06 \text{Experience}_i * (1)$$

$$= (6.16 - 1.55) + (0.05 - 0.06) \text{Experience}$$

$$= 4.61 - 0.01 \text{Experience}$$

· Females with no experience earn \$4.61

$$\widehat{\text{wage}_i} = 6.16 + 0.05 \text{ Experience}_i - 1.55 \text{ Female}_i - 0.06 \text{ Experience}_i * \text{Female}_i$$
(0.34) (0.02) (0.49) (0.02)

• Regression for males (female = 0):

$$\widehat{\text{wage}}_i = 6.16 + 0.05 \text{Experience}_i$$

- · Males with no experience earn \$6.16
- · For every year of experience, males' wages increase by \$0.05
- Regression for females (female = 1):

$$\widehat{\text{wage}_i} = 6.16 + 0.05 \text{Experience}_i - 1.55(1) - 0.06 \text{Experience}_i * (1)$$

$$= (6.16 - 1.55) + (0.05 - 0.06) \text{Experience}$$

$$= 4.61 - 0.01 \text{Experience}$$

- · Females with no experience earn \$4.61
- For every year of experience, females' wages decrease by \$0.01

EXAMPLE REGRESSION IN R: HYPOTHESIS TESTING

$$\widehat{\text{wage}_i} = 6.16 + 0.05 \text{ Experience}_i - 1.55 \text{ Female}_i - 0.06 \text{ Experience}_i * \text{Female}_i$$
(0.34) (0.02) (0.49) (0.02)

How can we test significant differences between two regressions' slopes and intercepts?

$$\widehat{\text{wage}_i} = 6.16 + 0.05 \text{ Experience}_i - 1.55 \text{ Female}_i - 0.06 \text{ Experience}_i * \text{Female}_i$$
(0.34) (0.02) (0.49) (0.02)

- How can we test significant differences between two regressions' slopes and intercepts?
- Different intercepts?

$$\widehat{\text{wage}_i} = 6.16 + 0.05 \text{ Experience}_i - 1.55 \text{ Female}_i - 0.06 \text{ Experience}_i * \text{Female}_i$$
(0.34) (0.02) (0.49) (0.02)

- How can we test significant differences between two regressions' slopes and intercepts?
- Different intercepts?
 - · Difference between male vs. female wages for no experience?

$$\widehat{\text{wage}_i} = 6.16 + 0.05 \text{ Experience}_i - 1.55 \text{ Female}_i - 0.06 \text{ Experience}_i * \text{Female}_i$$
(0.34) (0.02) (0.49) (0.02)

- · How can we test significant differences between two regressions' slopes and intercepts?
- Different intercepts?
 - · Difference between male vs. female wages for no experience?
 - Is β_2 significant?

EXAMPLE REGRESSION IN R: HYPOTHESIS TESTING

$$\widehat{\text{wage}_i} = 6.16 + 0.05 \text{ Experience}_i - 1.55 \text{ Female}_i - 0.06 \text{ Experience}_i * \text{Female}_i$$
(0.34) (0.02) (0.49) (0.02)

- How can we test significant differences between two regressions' slopes and intercepts?
- Different intercepts?
 - · Difference between male vs. female wages for no experience?
 - Is β_2 significant?
 - Yes, $t = \frac{-1.55}{0.48} \approx -3.210$, p(T > t) = 0.000 (from **R** output, above)

$$\widehat{\text{wage}_i} = 6.16 + 0.05 \text{ Experience}_i - 1.55 \text{ Female}_i - 0.06 \text{ Experience}_i * \text{Female}_i$$
(0.34) (0.02) (0.49) (0.02)

- · How can we test significant differences between two regressions' slopes and intercepts?
- · Different intercepts?
 - · Difference between male vs. female wages for no experience?
 - Is β_2 significant?
 - Yes, $t = \frac{-1.55}{0.48} \approx -3.210$, p(T > t) = 0.000 (from **R** output, above)
- Different slopes?

$$\widehat{\text{wage}_i} = 6.16 + 0.05 \text{ Experience}_i - 1.55 \text{ Female}_i - 0.06 \text{ Experience}_i * \text{Female}_i$$
(0.34) (0.02) (0.49) (0.02)

- · How can we test significant differences between two regressions' slopes and intercepts?
- · Different intercepts?
 - · Difference between male vs. female wages for no experience?
 - Is β_2 significant?
 - Yes, $t = \frac{-1.55}{0.48} \approx -3.210$, p(T > t) = 0.000 (from **R** output, above)
- Different slopes?
 - · Differences between male vs. female change in wages per 1 year of experience?

$$\widehat{\text{wage}_i} = 6.16 + 0.05 \text{ Experience}_i - 1.55 \text{ Female}_i - 0.06 \text{ Experience}_i * \text{Female}_i$$
(0.34) (0.02) (0.49) (0.02)

- · How can we test significant differences between two regressions' slopes and intercepts?
- · Different intercepts?
 - · Difference between male vs. female wages for no experience?
 - Is β_2 significant?
 - Yes, $t = \frac{-1.55}{0.48} \approx -3.210$, p(T > t) = 0.000 (from **R** output, above)
- Different slopes?
 - Differences between male vs. female change in wages per 1 year of experience?
 - Is β_3 significant?

$$\widehat{\text{wage}_i} = 6.16 + 0.05 \text{ Experience}_i - 1.55 \text{ Female}_i - 0.06 \text{ Experience}_i * \text{Female}_i$$
(0.34) (0.02) (0.49) (0.02)

- · How can we test significant differences between two regressions' slopes and intercepts?
- · Different intercepts?
 - · Difference between male vs. female wages for no experience?
 - Is β_2 significant?
 - Yes, $t = \frac{-1.55}{0.48} \approx -3.210$, p(T > t) = 0.000 (from **R** output, above)
- Different slopes?
 - · Differences between male vs. female change in wages per 1 year of experience?
 - Is β_3 significant?
 - Yes, $t = \frac{0.06}{0.02} \approx -2.483$, p(T > t) = 0.01 (from **R** output, above)

INTERACTIONS BETWEEN TWO DUMMY

VARIABLES

INTERACTIONS BETWEEN TWO DUMMIES

$$Y_{i} = \beta_{0} + \beta_{1}D_{1i} + \beta_{2}D_{2i} + \beta_{3}D_{1i} * D_{2i}$$

• D_{1i} , D_{2i} are dummy variables

$$Y_{i} = \beta_{0} + \beta_{1}D_{1i} + \beta_{2}D_{2i} + \beta_{3}D_{1i} * D_{2i}$$

- D_{1i} , D_{2i} are dummy variables
- β_1 : effect on Y of going from $D_{1i} = 0$ to $D_{1i} = 1$

$$Y_i = \beta_0 + \beta_1 D_{1i} + \beta_2 D_{2i} + \beta_3 D_{1i} * D_{2i}$$

- D_{1i} , D_{2i} are dummy variables
- β_1 : effect on Y of going from $D_{1i} = 0$ to $D_{1i} = 1$
- β_2 : effect on Y of going from $D_{1i}=0$ to $D_{2i}=1$ for $D_{1i}=0$

$$Y_{i} = \beta_{0} + \beta_{1}D_{1i} + \beta_{2}D_{2i} + \beta_{3}D_{1i} * D_{2i}$$

- D_{1i} , D_{2i} are dummy variables
- β_1 : effect on Y of going from $D_{1i}=0$ to $D_{1i}=1$
- β_2 : effect on Y of going from $D_{1i} = 0$ to $D_{2i} = 1$ for $D_{1i} = 0$
- β_3 : increment to effect on Y of going from $D_{1i}=0$ to $D_{1i}=1$ when $D_{2i}=1$ (vs. when $D_{2i}=0$)

$$Y_{i} = \beta_{0} + \beta_{1}D_{1i} + \beta_{2}D_{2i} + \beta_{3}D_{1i} * D_{2i}$$

- D_{1i} , D_{2i} are dummy variables
- β_1 : effect on Y of going from $D_{1i} = 0$ to $D_{1i} = 1$
- β_2 : effect on Y of going from $D_{1i} = 0$ to $D_{2i} = 1$ for $D_{1i} = 0$
- β_3 : increment to effect on Y of going from $D_{1i} = 0$ to $D_{1i} = 1$ when $D_{2i} = 1$ (vs. when $D_{2i} = 0$)
- \cdot Again, best to think logically about the possibilities (when each dummy = 0 or = 1)

$$Y_{i} = \beta_{0} + \beta_{1}D_{1i} + \beta_{2}D_{2i} + \beta_{3}D_{1i} * D_{2i}$$

 $\boldsymbol{\cdot}$ To interpret the coefficients, compare cases:

$$Y_{i} = \beta_{0} + \beta_{1}D_{1i} + \beta_{2}D_{2i} + \beta_{3}D_{1i} * D_{2i}$$

• To interpret the coefficients, compare cases:

$$E(Y_i|D_{1i} = 0, D_{2i} = d_2) = \beta_0 + \beta_2 d_2$$

• Subtracting the two, the difference between is:

$$\beta_1 + \beta_3 d_2$$

$$Y_i = \beta_0 + \beta_1 D_{1i} + \beta_2 D_{2i} + \beta_3 D_{1i} * D_{2i}$$

• To interpret the coefficients, compare cases:

$$E(Y_i|D_{1i} = 0, D_{2i} = d_2) = \beta_0 + \beta_2 d_2$$

$$E(Y_i|D_{1i} = 1, D_{2i} = d_2) = \beta_0 + \beta_1 + \beta_2 d_2 + \beta_3 d_2$$

· Subtracting the two, the difference between is:

$$\beta_1 + \beta_3 d_2$$

· The effect of $D_{1i} \rightarrow Y_i$ depends on d_{2i}

$$Y_{i} = \beta_{0} + \beta_{1}D_{1i} + \beta_{2}D_{2i} + \beta_{3}D_{1i} * D_{2i}$$

· To interpret the coefficients, compare cases:

$$E(Y_i|D_{1i} = 0, D_{2i} = d_2) = \beta_0 + \beta_2 d_2$$

$$E(Y_i|D_{1i} = 1, D_{2i} = d_2) = \beta_0 + \beta_1 + \beta_2 d_2 + \beta_3 d_2$$

· Subtracting the two, the difference between is:

$$\beta_1 + \beta_3 d_2$$

- The effect of $D_{1i} \rightarrow Y_i$ depends on d_{2i}
- β_3 : increment to the effect of D_1 when $D_2 = 1$

INTERACTIONS BETWEEN TWO DUMMIES: EXAMPLE

Example

$$\widehat{wage_i} = \hat{eta}_0 + \hat{eta}_1$$
femal $e_i + \hat{eta}_2$ marrie $d_i + \hat{eta}_3$ femal $e_i *$ marrie d_i

Example

Return to the gender pay gap: does it matter if person is married or single?

$$\widehat{wage_i} = \hat{eta}_0 + \hat{eta}_1$$
femal $e_i + \hat{eta}_2$ marrie $d_i + \hat{eta}_3$ femal $e_i *$ marrie d_i

· Logically, 4 possible combinations of $female_i = \{0,1\}$ and $married_i = \{0,1\}$

Example

$$\widehat{wage_i} = \hat{eta}_0 + \hat{eta}_1$$
femal $e_i + \hat{eta}_2$ marrie $d_i + \hat{eta}_3$ femal $e_i *$ marrie d_i

- · Logically, 4 possible combinations of $female_i = \{0,1\}$ and $married_i = \{0,1\}$
 - 1. Unmarried males (female_i = 0, married_i = 0)

Example

$$\widehat{wage_i} = \hat{eta}_0 + \hat{eta}_1$$
femal $e_i + \hat{eta}_2$ marrie $d_i + \hat{eta}_3$ femal $e_i *$ marrie d_i

- · Logically, 4 possible combinations of $female_i = \{0,1\}$ and $married_i = \{0,1\}$
 - 1. Unmarried males (female $_i=0$, married $_i=0$) $\widehat{wage}_i=\hat{\beta}_0$

Example

$$\widehat{wage_i} = \hat{eta}_0 + \hat{eta}_1$$
femal $e_i + \hat{eta}_2$ marrie $d_i + \hat{eta}_3$ femal $e_i *$ marrie d_i

- · Logically, 4 possible combinations of $\textit{female}_i = \{0,1\}$ and $\textit{married}_i = \{0,1\}$
 - 1. Unmarried males (female $_i=0$, married $_i=0$) $\widehat{wage}_i=\hat{\beta}_0$
 - 2. Married males (female $_i = 0$, married $_i = 1$)

Example

$$\widehat{wage_i} = \hat{eta}_0 + \hat{eta}_1$$
femal $e_i + \hat{eta}_2$ marrie $d_i + \hat{eta}_3$ femal $e_i *$ marrie d_i

- · Logically, 4 possible combinations of $female_i = \{0,1\}$ and $married_i = \{0,1\}$
 - 1. Unmarried males (female $_i=0$, married $_i=0$) $\widehat{wage}_i=\hat{\beta}_0$
 - 2. Married males (female_i = 0, married_i = 1) $\widehat{wage}_i = \hat{\beta}_0 + \hat{\beta}_2$

Example

$$\widehat{wage_i} = \hat{eta}_0 + \hat{eta}_1$$
femal $e_i + \hat{eta}_2$ marrie $d_i + \hat{eta}_3$ femal $e_i *$ marrie d_i

- · Logically, 4 possible combinations of $female_i = \{0,1\}$ and $married_i = \{0,1\}$
 - 1. Unmarried males (female $_i=0$, married $_i=0$) $\widehat{wage}_i=\hat{\beta}_0$
 - 2. Married males (female_i = 0, married_i = 1) $\widehat{wage}_i = \hat{\beta}_0 + \hat{\beta}_2$
 - 3. Unmarried females (female_i = 1, married_i = 0)

INTERACTIONS BETWEEN TWO DUMMIES: EXAMPLE

Example

Return to the gender pay gap: does it matter if person is married or single?

$$\widehat{wage_i} = \hat{eta}_0 + \hat{eta}_1$$
female $_i + \hat{eta}_2$ married $_i + \hat{eta}_3$ female $_i *$ married $_i$

- · Logically, 4 possible combinations of $female_i = \{0,1\}$ and $married_i = \{0,1\}$
 - 1. Unmarried males (female $_i=0$, married $_i=0$) $\widehat{wage}_i=\hat{\beta}_0$
 - 2. Married males (female_i = 0, married_i = 1) $\widehat{wage}_i = \hat{\beta}_0 + \hat{\beta}_2$
 - 3. Unmarried females (female_i = 1, married_i = 0) $\widehat{wage}_i = \hat{\beta}_0 + \hat{\beta}_1$

Interactions Between Two Dummies: Example

Example

Return to the gender pay gap: does it matter if person is married or single?

$$\widehat{wage_i} = \hat{eta}_0 + \hat{eta}_1$$
femal $e_i + \hat{eta}_2$ marrie $d_i + \hat{eta}_3$ femal $e_i *$ marrie d_i

- · Logically, 4 possible combinations of $female_i = \{0,1\}$ and $married_i = \{0,1\}$
 - 1. Unmarried males (female $_i=0$, married $_i=0$) $\widehat{wage}_i=\hat{\beta}_0$
 - 2. Married males (female_i = 0, married_i = 1) $\widehat{wage}_i = \hat{\beta}_0 + \hat{\beta}_2$
 - 3. Unmarried females (female $_i=1$, married $_i=0$) $\widehat{wage}_i=\hat{\beta}_0+\hat{\beta}_1$
 - 4. Married females (female_i = 1, married_i = 1)

Interactions Between Two Dummies: Example

Example

Return to the gender pay gap: does it matter if person is married or single?

$$\widehat{wage_i} = \hat{eta}_0 + \hat{eta}_1$$
femal $e_i + \hat{eta}_2$ marrie $d_i + \hat{eta}_3$ femal $e_i *$ marrie d_i

- · Logically, 4 possible combinations of $female_i = \{0,1\}$ and $married_i = \{0,1\}$
 - 1. Unmarried males (female_i = 0, married_i = 0) $\widehat{wage}_i = \hat{\beta}_0$
 - 2. Married males (female_i = 0, married_i = 1) $\widehat{wage}_i = \hat{\beta}_0 + \hat{\beta}_2$
 - 3. Unmarried females (female $_i=1$, married $_i=0$) $\widehat{wage}_i=\hat{\beta}_0+\hat{\beta}_1$
 - 4. Married females (female_i = 1, married_i = 1) $\widehat{wage_i} = \hat{\beta}_0 + \hat{\beta}_1 + \hat{\beta}_2 + \hat{\beta}_3$

Interactions Between Two Dummies: Conditionally Looking at the Data

```
# get average wage for unmarried men
mean(wages$wage[wages$married==0 & wages$female==0])
## [1] 5.168023
# get average wage for married men
mean(wages$wage[wages$married==1 & wages$female==0])
## [1] 7.983032
# get average wage for unmarried women
mean(wages$wage[wages$married==0 & wages$female==1])
## [1] 4.611583
# get average wage for married wommen
```


mean(wages\$wage[wages\$married==1 & wages\$female==1])

Interactions Between Two Dummies: Group Means

$$\widehat{\text{wage}_i} = \hat{eta}_0 + \hat{eta}_1$$
femal $e_i + \hat{eta}_2$ marrie $d_i + \hat{eta}_3$ femal $e_i *$ marrie d_i

	Unmarried	Married
Male	\$5.17	\$7.98
Female	\$4.61	\$4.57

Interactions Between Two Dummies: Regression in R

```
reg.2dummies.interact<-lm(wage~female+married+female*married, data=wages)
summary(reg.2dummies.interact)
##
## Call:
## lm(formula = wage ~ female + married + female * married, data = wages)
##
## Residuals:
##
      Min
              10 Median 30
                                    Max
## -5.7530 -1.7327 -0.9973 1.2566 17.0184
##
## Coefficients:
##
                Estimate Std. Error t value Pr(>|t|)
                  5.1680
                             0.3614 \ 14.299 < 2e-16 ***
## (Intercept)
## female
              -0.5564
                            0.4736 -1.175 0.241
## married
          2.8150 0.4363 6.451 2.53e-10 ***
## female:married -2.8607 0.6076 -4.708 3.20e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
```

Interactions Between Two Dummies: Regression in R II

Dependent variable		
	wage	
female	-0.556	
	(0.474)	
married	2.815***	
	(0.436)	
female:married	-2.861***	
	(0.608)	
Constant	5.168***	
	(0.361)	
Observations	526	
R^2	0.181	
Adjusted R ²	0.176	
Residual Std. Error	3.352 (df = 522)	
F Statistic	38.451*** (df = 3; 522)	
Note:	*n<0.1· **n<0.05· ***n<0.01	

$$\widehat{\text{wage}_i} = 5.17 - 0.56 \, \text{Female}_i + 2.82 \, \text{Married}_i - 2.86 \, \text{Female}_i * \text{Married}_i$$

$$(0.36) \quad (0.47) \qquad (0.44) \qquad (0.61)$$

Average Wage for each Grouping

	Unmarried	Married
Male	\$5.17	\$7.98
Female	\$4.61	\$4.57

 \cdot Wage for **unmarried males**: $\hat{eta}_0 = \$$ 5.17

$$\widehat{\text{wage}_i} = 5.17 - 0.56 \, \text{Female}_i + 2.82 \, \text{Married}_i - 2.86 \, \text{Female}_i * \text{Married}_i$$

$$(0.36) \quad (0.47) \qquad (0.44) \qquad (0.61)$$

	Unmarried	Married
Male	\$5.17	\$7.98
Female	\$4.61	\$4.57

- Wage for **unmarried males**: $\hat{\beta}_0 = \$5.17$
- · Wage for married males: $\hat{\beta}_0 + \hat{\beta}_2 =$ 5.17 + 2.82 = \$7.98

$$\widehat{\text{wage}_i} = 5.17 - 0.56 \, \text{Female}_i + 2.82 \, \text{Married}_i - 2.86 \, \text{Female}_i * \text{Married}_i$$
(0.36) (0.47) (0.44) (0.61)

	Unmarried	Married
Male	\$5.17	\$7.98
Female	\$4.61	\$4.57

- \cdot Wage for **unmarried males**: $\hat{eta}_0 = \$$ 5.17
- Wage for married males: $\hat{\beta}_0 + \hat{\beta}_2 = 5.17 + 2.82 = \7.98
- Wage for unmarried females: $\hat{\beta}_0 + \hat{\beta}_1 = 5.17 0.56 = \4.61

$$\widehat{\text{wage}_i} = 5.17 - 0.56 \text{ Female}_i + 2.82 \text{ Married}_i - 2.86 \text{ Female}_i * \text{Married}_i$$

$$(0.36) \quad (0.47) \qquad (0.44) \qquad (0.61)$$

	Unmarried	Married	
Male	\$5.17	\$7.98	
Female	\$4.61	\$4.57	
			_

- · Wage for **unmarried males**: $\hat{eta}_0 = \$5.17$
- · Wage for married males: $\hat{\beta}_0 + \hat{\beta}_2 = 5.17 + 2.82 = \7.98
- Wage for unmarried females: $\hat{\beta}_0 + \hat{\beta}_1 = 5.17 0.56 = \4.61
- Wage for married females: $\hat{\beta}_0 + \hat{\beta}_1 + \hat{\beta}_2 + \hat{\beta}_3 = 5.17 0.56 + 2.82 2.86 = 4.57

Interactions Between Two Continuous Variables

$$Y_{i} = \beta_{0} + \beta_{1}X_{1i} + \beta_{2}X_{2i} + \beta_{3}(X_{1i}X_{2i})$$

- To interpret the coefficients, compare cases after changing ΔX_1 :

$$Y + \Delta Y = \beta_0 + \beta_1(X_1 + \Delta X_1)\beta_2X_2 + \beta_3((X_1 + \Delta X_1)X_2)$$

-The difference is:

$$\Delta Y = \beta_1 \Delta X_1 + \beta_3 X_2 \Delta X_1$$
$$\frac{\Delta Y}{\Delta X_1} = \beta_1 + \beta_3 X_2$$

• The effect of X_1 depends on X_2

INTERACTIONS BETWEEN TWO CONTINUOUS VARIABLES

$$Y_{i} = \beta_{0} + \beta_{1}X_{1i} + \beta_{2}X_{2i} + \beta_{3}(X_{1i}X_{2i})$$

- To interpret the coefficients, compare cases after changing $\Delta extit{X}_1$:

$$Y + \Delta Y = \beta_0 + \beta_1(X_1 + \Delta X_1)\beta_2X_2 + \beta_3((X_1 + \Delta X_1)X_2)$$

-The difference is:

$$\Delta Y = \beta_1 \Delta X_1 + \beta_3 X_2 \Delta X_1$$
$$\frac{\Delta Y}{\Delta X_1} = \beta_1 + \beta_3 X_2$$

- The effect of X_1 depends on X_2
- \cdot β_3 : increment to the effect of X_1 from a 1 unit change in X_2

INTERACTIONS BETWEEN TWO CONTINUOUS VARIABLES: EXAMPLE

Example

Wages on education and experience: Do education & experience interact?

$$\widehat{wage_i} = \hat{eta}_0 + \hat{eta}_1 educ_i + \hat{eta}_2 exper_i + \hat{eta}_3 educ_i \times exper_i + \epsilon_i$$

Interactions Between Two Continuous Variables: Example

Example

Wages on education and experience: Do education & experience interact?

$$\widehat{wage_i} = \hat{\beta}_0 + \hat{\beta}_1 educ_i + \hat{\beta}_2 exper_i + \hat{\beta}_3 educ_i \times exper_i + \epsilon_i$$

• Estimated effect of education on wages depends on the amount of experience (and vice versa)!

$$\frac{\Delta wage}{\Delta educ} = \hat{\beta}_1 + \beta_3 exper$$

INTERACTIONS BETWEEN TWO CONTINUOUS VARIABLES: EXAMPLE

Example

Wages on education and experience: Do education & experience interact?

$$\widehat{wage_i} = \hat{\beta}_0 + \hat{\beta}_1 educ_i + \hat{\beta}_2 exper_i + \hat{\beta}_3 educ_i \times exper_i + \epsilon_i$$

• Estimated effect of education on wages depends on the amount of experience (and vice versa)!

$$\frac{\Delta wage}{\Delta educ} = \hat{\beta}_1 + \beta_3 exper$$

· This is a type of nonlinearity (we will examine nonlinearities next lesson)

Interactions Between Two Continuous Variables: Regression in R

```
reg.2x.interact<-lm(wage~educ+exper+educ*exper, data=wages)</pre>
summary(reg.2x.interact)
##
## Call:
## lm(formula = wage ~ educ + exper + educ * exper. data = wages)
##
## Residuals:
      Min
          10 Median 30
##
                                       Max
## -5.6747 -1.9683 -0.6991 1.2803 15.8067
##
## Coefficients:
                Estimate Std. Error t value Pr(>|t|)
##
```

Interactions Between Two Continuous Variables: Regression in R II

	Dependent variable:	
	wage	
educ	0.602***	
	(0.090)	
exper	0.046	
	(0.043)	
educ:exper	0.002	
	(0.003)	
Constant	-2.860**	
	(1.181)	
Observations	526	
R^2	0.226	
Adjusted R ²	0.221	
Residual Std. Error	3.259 (df = 522)	
F Statistic	50.713*** (df = 3; 522)	
Note:	*n<01·**n<005·***n<00	

Interactions Between Two Continuous Variables: Interpretting Coefficients

$$\widehat{\text{wage}}_i = -2.86 + 0.60 \text{ educ}_i + 0.05 \text{ exper}_i + 0.002 \text{ educ}_i \times \text{exper}_i$$
(1.181) (0.090) (0.043) (0.003)

Interactions Between Two Continuous Variables: Interpretting Coefficients

$$\widehat{\text{wage}}_i = -2.86 + 0.60 \text{ educ}_i + 0.05 \text{ exper}_i + 0.002 \text{ educ}_i \times \text{exper}_i$$
(1.181) (0.090) (0.043) (0.003)

Changes in Education

Exper	$rac{\Delta$ wage Δ educ	
5	0.60 + 0.002(5) = \$0.61	
10	0.60 + 0.002(10) = \$0.62	
15	0.60 + 0.002(15) = \$0.63	

Interactions Between Two Continuous Variables: Interpretting Coefficients

$$\widehat{\text{wage}}_i = -2.86 + 0.60 \text{ educ}_i + 0.05 \text{ exper}_i + 0.002 \text{ educ}_i \times \text{exper}_i$$
(1.181) (0.090) (0.043) (0.003)

Changes in Education

Exper	$rac{\Delta$ wage $}{\Delta$ educ
5	0.60 + 0.002(5) = \$0.61
10	0.60 + 0.002(10) = \$0.62
15	0.60 + 0.002(15) = \$0.63

