

Vishay Vitramon

Surface Mount Multilayer Ceramic Chip Capacitors for Power Supply Applications

FEATURES

• Efficient low-power consumption, ripple current capable to 1.2 A_{rms} at 100 kHz

- High voltage breakdown compared to standard design
- · Excellent reliability and thermal shock performance
- Surface mount, precious metal technology, wet build process

APPLICATIONS

- · Ideal for power supplies
- For input/output filters

Insulation Resistance (IR):

At + 25 $^{\circ}C$ and rated voltage 100 000 $M\Omega$ minimum or 1000 $\Omega F,$ whichever is less

Dielectric Withstanding Voltage (DWV):

This is the maximum voltage the capacitors are tested for a 1 to 5 second period and the charge/discharge current does not exceed 50 mA

≤ 250 Vdc: DWV at 250 % of rated voltage 500 Vdc: DWV at 200 % of rated voltage 630 Vdc: DWV at 150 % of rated voltage

ELECTRICAL SPECIFICATIONS

Note: Electrical characteristics at + 25 °C unless otherwise specified

Operating Temperature: - 55 °C to + 125 °C Capacitance Range: 1000 pF to 1.8 μ F Voltage Rating: 50 Vdc to 630 Vdc

Temperature Coefficient of Capacitance (TCC):

X7R: ± 15 % from - 55 °C to + 125 °C, with 0 Vdc applied

Aging Rate: 1 % maximum per decade

PART	LENGTH (L)	WIDTH (W)	MAXIMUM	TERMINATION PAD (P)					
ORDERING NUMBER	LENGTH (L)	WIDTH (W)	THICKNESS (T)	MINIMUM	MAXIMUM				
VJ1206	0.126 ± 0.008 [3.20 ± 0.20]	$0.063 \pm 0.008 [1.60 \pm 0.20]$	0.067 [1.70]	0.010 [0.25]	0.030 [0.76]				
VJ1210	0.126 ± 0.008 [3.20 ± 0.20]	$0.098 \pm 0.008 [2.50 \pm 0.20]$	0.067 [1.70]	0.010 [0.25]	0.030 [0.76]				
VJ1812	0.177 ± 0.010 [4.50 ± 0.25]	$0.126 \pm 0.008 [3.20 \pm 0.20]$	0.086 [2.18]	0.010 [0.25]	0.030 [0.76]				
VJ1825	0.177 ± 0.010 [4.50 ± 0.25]	0.252 ± 0.010 [6.40 ± 0.25]	0.086 [2.18]	0.010 [0.25]	0.030 [0.76]				
VJ2220	0.228 ± 0.008 [5.79 ± 0.20]	$0.197 \pm 0.008 [5.00 \pm 0.20]$	0.086 [2.18]	0.010 [0.25]	0.030 [0.76]				
VJ2225	$0.220 \pm 0.010 [5.59 \pm 0.25]$	$0.262 \pm 0.010 [6.65 \pm 0.25]$	0.086 [2.18]	0.010 [0.25]	0.030 [0.76]				

ORDI	ERING INF	ORMATION						
VJ1812	Υ	824	K	Х	В	Α	Т	3E
CASE CODE	DIELECTRIC	CAPACITANCE NOMINAL CODE	CAPACITANCE TOLERANCE	TERMINATION	DC VOLTAGE RATING ⁽¹⁾	MARKING	PACKAGING	PROCESS CODE
1206 1210 1812 1825 2220 2225	Y = X7R	Expressed in picofarads (pF). The first two digits are significant, the third is a multiplier. Examples: 824 = 820 000 pF	J = ± 5 % K = ± 10 % M = ± 20 %	X = Ni barrier 100 % tin plated F = AgPd	A = 50 V B = 100 V C = 200 V P = 250 V E = 500 V L = 630 V	A = Unmarked	T = 7" reel/ plastic tape	3E = RuGGed

Note:

(1) DC voltage rating should not be exceeded in application

Not for New Designs Product Discontinuation

VJ RuGGed Chip

Vishay Vitramon Surface Mount Multilayer Ceramic Chip Capacitors for Power Supply Applications

SELE	CTION (CH/	4RT	Γ																							
CAS	CASE TYPE 1206				1210 ⁽¹⁾						1812 ⁽¹⁾					1825 ⁽¹⁾			2220 (1)				2225 ⁽¹⁾				
VOLTAGE (Vdc)		50	100	200	500	630	50	100	200	500	630	50	100	200	500	630	100	200	500	100	200	250	500	100	200	500	630
CAP. CODE	CAP.																										
102	1000 pF															•											
122	1200 pF															•											
152	1500 pF															•											
182	1800 pF															•											
222	2200 pF															•											
272	2700 pF															•											
332	3300 pF															•											
392	3900 pF															•											
472	4700 pF															•											
562	5600 pF	•	•	•	•	•										•											
682	6800 pF	•	•	•	•	•										•											
822	8200 pF	•	•	•	•	•										•											
103	10 nF	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
123	12 nF	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
153	15 nF	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
183	18 nF	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
223	22 nF	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
273	27 nF	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
333	33 nF	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
393	39 nF	•	•	•			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
473	47 nF	•	•	•			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
563	56 nF	•	•	•			•	•	•			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
683	68 nF	•	•	•			•	•	•			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
823	82 nF	•	•	•			•	•	•			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
104	0.1 μF	•	•	•			•	•	•			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
124	0.12 μF	•	•				•	•	•			•	•	•	•		•	•	•	•	•	•	•	•	•	•	•
154	0.15 μF	•	•				•	•	•			•	•	•			•	•	•	•	•	•	•	•	•	•	•
184	0.18 μF	•	•				•	•				•	•	•			•	•	•	•	•	•	•	•	•	•	•
224	0.22 μF	•					•	•				•	•	•			•	•	•	•	•	•	•	•	•	•	•
274	0.27 μF						•	•				•	•	•			•	•		•	•	•		•	•	•	
334	0.33 μF						•	•				•	•	•			•	•		•	•	•		•	•	•	
394	0.39 μF						•	•				•	•	•			•	•		•	•	•		•	•		
474	0.47 μF						•	•				•	•	•			•	•		•	•	•		•	•		
564	0.56 μF						•					•	•				•	•		•	•	•		•	•		
684	0.68 μF						•					•	•				•	•		•	•	•		•	•		
824	0.82 μF						•					•	•				•	•		•				•	•		
105	1.00 μF						•					•	•				•	•		•				•	•		
125	1.20 μF											•					•			•				•	•		
155	1.50 μF																•			•				•			
185	1.80 μF																							•			
205	2.00 μF																										

Note:

⁽¹⁾ See soldering recommendations within this data book, or visit www.vishay.com/doc?45034

Surface Mount Multilayer Ceramic Chip Capacitors Vishay Vitramon for Power Supply Applications

Rugged Power Supply Capacitor

STANDARD MLCC DESIGN

Vishay

Disclaimer

All product specifications and data are subject to change without notice.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.

Document Number: 91000 Revision: 18-Jul-08