simulations_confouding

Michael Cork

1/20/2022

Count data

Confounding

We now look to generate the exposure data using different specifications of the relationship between confounding and exposure based on work by Xiao. We generate E using six different specifications that rely on the function $\gamma(\mathbf{C}) = -0.8 + (0.1, 0.1, -0.1, 0.2, 0.1, 0.1)$ C. Specifically, 1) $W = 9 \times \gamma(\mathbf{C}) + 17 + N(0, 5)$; 2) $W = 15 \times \gamma(\mathbf{C}) + 22 + T(2)$; 3) $W = 9 \times \gamma(\mathbf{C}) + 3/2C_3^2 + 15 + N(0, 5)$ 4) $W = 49 \times \frac{\exp(\gamma(\mathbf{C}))}{1 + \exp(\gamma(\mathbf{C}))} - 6 + N(0, 5)$; 22 5) $W = 42 \times \frac{1}{1 + \exp(\gamma(\mathbf{C}))} - 18 + N(0, 5)$; 6) $W = 7 \times \log(\gamma(\mathbf{C})) + 13 + N(0, 4)$;

One thing to note is that for 6), in actuality it is using $W = 7 \times \log(|\gamma(\mathbf{C})|) + 13 + N(0, 4)$. I then ran through three different iterations of the sample size (N = 200, 1000, 5000) and then fit the following outcome model:

$$Y|E,C \sim Pois(\mu(E,C))$$

$$log(\mu(E,C)) = 2 + 0.1 * E - (0.2, 0.2, 0.3, -0.1, 0.2, 0.2) * C$$

gps_mod	$sample_size$	model	bias	mse
1	200	linear_model	2.733619e-01	1.992652e+00
1	200	$\operatorname{gam}_{-}\operatorname{model}$	2.359080e-02	4.262503e+00
1	1000	linear_model	4.400800 e-03	5.115241e-01
1	1000	$\operatorname{gam}_{-}\operatorname{model}$	1.038210 e - 02	1.061761e + 00
2	200	$linear_model$	1.021310e-01	4.367799e + 01
2	200	$\operatorname{gam}_{-}\operatorname{model}$	9.081375 e-01	1.051411e+02
2	1000	$linear_model$	-6.659149e-01	4.484542e+01
2	1000	$\operatorname{gam}_{-}\operatorname{model}$	-2.246836e-01	7.662117e + 01
3	200	$linear_model$	2.161620 e-02	2.323701e-01
3	200	$\operatorname{gam}_{-}\operatorname{model}$	1.039950e-01	1.510932e+00
3	1000	linear_model	1.871913e-01	4.872672e + 00
3	1000	$\operatorname{gam}_{-}\operatorname{model}$	1.550040 e-01	9.240206e+00
4	200	$linear_model$	-1.119050e-02	7.605035e-01
4	200	$\operatorname{gam}_{-}\operatorname{model}$	-2.094760e-02	1.519948e+00
4	1000	$linear_model$	-8.931430e-02	6.154136e-01
4	1000	$\operatorname{gam}_{-}\operatorname{model}$	-1.733474e-01	1.296533e+00
5	200	$linear_model$	-1.640017e-01	1.177963e+00
5	200	$\operatorname{gam}_{-}\operatorname{model}$	1.460340 e - 02	7.029202e+00
5	1000	$linear_model$	2.937790e-02	2.662051 e-01
5	1000	$\operatorname{gam}_{-}\operatorname{model}$	-1.319360e-02	6.212679 e-01
6	200	$linear_model$	3.202174 e-01	4.202221e+00
6	200	$\operatorname{gam}_{-}\operatorname{model}$	$9.662872 \mathrm{e}\text{-}01$	5.947636e + 01
6	1000	$linear_model$	1.478495e+00	1.775422e + 03

gps_mod	sample_size	model	bias	mse
6	1000	gam_model	6.405137e + 06	7.939458e + 15

Questions: What other types of outcome model should I use to make sure nonlinear confounding is occurring?

Types of confounding

Count data with sublinear relationship

See equation above

5% ## 1.524179 ## 95% ## 20.7137

