Mathematics GU4042 Modern Algebra II Assignment # 8

Benjamin Church

February 16, 2020

Page 200. Problem 6.

Let ζ be a primitive n^{th} root of unity in a field extension E/K. That is, ζ is a root of X^n-1 and not of X^k-1 for any k < n. Consider $G \subset E$, the set of all roots of the polynomial X^n-1 . Now, if $\alpha, \beta \in G$ then $(\alpha\beta)^n-1=\alpha^n\beta^n-1=0$ because $\alpha^n=\beta^n=1$. Furthermore, $\alpha \neq 0$ (since $0^n=0\neq 1$) so $\alpha^{-1}\in E$ and $(\alpha^{-1})^n=(\alpha^n)^{-1}=1^{-1}=1$ so $\alpha^{-1}\in E$. Therefore, (G,\cdot) is a group and because each element satisfies X^n-1 which has at most n roots in E then $|G|\leq n$ so G is finite. Therefore, as a finite multiplicative subgroup of a field, G is cyclic. Suppose that $\zeta^i=\zeta^j$ with i>j, then $\zeta^{i-j}=1$ but because ζ is primitive, i-j>n. Therefore, for $0\leq i,j< n$, the n powers of ζ are all distinct meaning that the entire group is only powers of ζ . Thus, ζ is a generator of G.

Consider the extension $K(\zeta)/K$. Because $G = \langle \zeta \rangle$ and $K(\zeta)$ is a subfield of E, then $G \subset K(\zeta)$ so $K(\zeta)$ contains all the roots of $X^n - 1$. Furthermore, $K(\zeta) = K(G)$ because $\zeta \in G$ and $G \subset K(\zeta)$. Therefore, $K(\zeta)$ is the splitting field of $X^n - 1$ over K. Therefore, $K(\zeta)/K$ is a normal extension. The extension is also separable because K has characteristic zero. Therefore, $K(\zeta)/K$ is a Galois extension. Finally, consider $\operatorname{Gal}(K(\zeta)/K)$ which is embedded in S_n because $\operatorname{deg}(X^n - 1) = n$. Any Galois automorphism restricted to G is a group automorphism of G because it is multiplicative and permutes roots. Because the group of automorphisms of any cyclic group is abelian (see Lemma \P), for any $\sigma, \tau \in \operatorname{Gal}(K(\zeta)/K)$ then $\sigma|_G \circ \tau|_G = \tau|_G \circ \sigma|_G$. However, the map from $\operatorname{Gal}(E/K)$ into S_n given by the action of $\operatorname{Gal}(E/K)$ on G (the roots of $X^n - 1$) is injective since E = K(G) so if σ fixes G and K then it is the identity on E. Because $\sigma \circ \tau$ and $\tau \circ \sigma$ acts indentically on G by injectivity $\sigma \circ \tau = \tau \circ \sigma$. Therefore $\operatorname{Gal}(E/K)$ is abelian.

Probelm 2.

Let E be the splitting field of $X^3 - 2$ over \mathbb{Q} . Take $\alpha = \sqrt[3]{2}$ and $\zeta = \frac{-1+\sqrt{-3}}{2}$. The Galois group $\operatorname{Gal}(E/\mathbb{Q})$ is isomorphic to $S_3 = \langle \sigma, \tau \rangle$ with automorphisms acting as follows,

$$\sigma: \zeta^i \alpha \mapsto \zeta^{i+1} \alpha$$
$$\tau: x \mapsto \bar{x}$$

which permute the roots of $X^3 - 2$. Now, we consider the element $AB \in E$ where $A = \alpha = \sqrt[3]{2}$ and $B = \sqrt{-3} = 2\zeta + 1$. The six elements of S_3 are presented as $\sigma^i \tau^j$ for $0 \le i \le 2$ and $0 \le j \le 1$. Therefore, we can calculate the conjugtes of AB by acting on the element $AB = (2\zeta + 1)\alpha$ with the

elements of the Galois group:

$$\begin{split} &\sigma^0\tau^0((2\zeta+1)\alpha) = \mathrm{id}((2\zeta+1)\alpha) = (2\zeta+1)\alpha = \sqrt{-3}\cdot\sqrt[3]{2} \\ &\sigma^0\tau^1((2\zeta+1)\alpha) = \tau((2\zeta+1)\alpha) = (2\bar{\zeta}+1)\alpha = -\sqrt{-3}\cdot\sqrt[3]{2} \\ &\sigma^1\tau^0((2\zeta+1)\alpha) = \sigma((2\zeta+1)\alpha) = (2\zeta+1)\zeta\alpha = \zeta\sqrt{-3}\cdot\sqrt[3]{2} \\ &\sigma^1\tau^1((2\zeta+1)\alpha) = \sigma((2\bar{\zeta}+1)\alpha) = (2\bar{\zeta}+1)\zeta\alpha = -\zeta\sqrt{-3}\cdot\sqrt[3]{2} \\ &\sigma^1\tau^1((2\zeta+1)\alpha) = \sigma((2\bar{\zeta}+1)\alpha) = (2\bar{\zeta}+1)\zeta\alpha = -\zeta\sqrt{-3}\cdot\sqrt[3]{2} \\ &\sigma^2\tau^0((2\zeta+1)\alpha) = \sigma^2((2\zeta+1)\alpha) = (2\zeta+1)\zeta^2\alpha = \zeta^2\sqrt{-3}\cdot\sqrt[3]{2} \\ &\sigma^2\tau^1((2\zeta+1)\alpha) = \sigma((2\bar{\zeta}+1)\alpha) = (2\bar{\zeta}+1)\zeta^2\alpha = -\zeta^2\sqrt{-3}\cdot\sqrt[3]{2} \end{split}$$

Lemmas

Lemma 0.1. Let G be cyclic, then Aut(G) is abelian.

Proof. Take a generator $g \in G$. Now, let $\sigma, \tau : G \to G$ be automorphisms. Then $\sigma(g) = g^{k_{\sigma}}$ and $\tau(g) = g^{k_{\tau}}$ because every element in G is a power of g. Thus, for any element $g^r \in G$,

$$\sigma \circ \tau(g^r) = \sigma(\tau(g)^r) = \sigma(g^{k_\tau r}) = \sigma(g)^{k_\tau r} = (g^{k_\sigma})^{k_\tau r} = g^{k_\sigma k_\tau r}$$
$$\tau \circ \sigma(g^r) = \tau(\sigma(g)^r) = \tau(g^{k_\sigma r}) = \tau(g)^{k_\sigma r} = (g^{k_\tau})^{k_\sigma r} = g^{k_\tau k_\sigma r}$$

However, $k_{\sigma}k_{\tau} = k_{\tau}k_{\sigma}$ because integer multiplication is commutative. Therefore, $\sigma \circ \tau(g^r) = \tau \circ \sigma(g^r)$. However, every element of G is of the form g^r so $\sigma \circ \tau = \tau \circ \sigma$.