(Causal) Graphical Models

Zach Wood-Doughty CS 396 Winter 2022

Some slides taken from Mark Dredze and Bryan Pardo or inspired by Kevin Murphy

Last time: probabilities, independence, etc.

Are A and B Independent?

$$P(A, B) = 0.25 + 0.05$$

$$P(A) = 0.3 + 0.2 + 0.05$$

$$P(B) = 0.3 + 0.1 + 0.05$$

$$P(A) \times P(B) = 0.55 \times 0.45$$

$$P(A, B) = 0.3 \neq 0.248$$

A and B NOT independent

A	В	С	Prob
0	0	0	0.1
0	0	1	0.2
0	1	0	0.1
0	1	1	0.05
1	0	0	0.05
1	0	1	0.2
1	1	0	0.25
1	1	1	0.05

Example Probabilistic System

- A collection of related binary random variables
- Each day with some probability, a runner Avery:
 - Goes for a run (R)
 - Sprains an ankle (A)
 - Injuries their knee (K)
 - Goes to the hospital (H)
- Given a sprained ankle, what's the probability Avery goes to the hospital?
- What is the probability that Avery injuries their knee and goes to the hospital?

Example

- How do we answer these questions?
 - What is the structure of these variables?
 - What probabilities do I need to compute?
 - Are any of the variables independent of each other?
- How can we represent the variables in a way that answers these questions?

Graphical Models

Graphical Models

- Combination of probability theory and graph theory
 - Combines uncertainty (probability) and complexity (graphs)
 - Represent a complex system as a (modular) graph
 - Standard algorithms for solving graph problems
- Many statistical models can be framed as graphical models
 - Logistic regression, linear regression, GMMs, etc.
 - Helps us reason about the underlying data generating process

Representation

- A probabilistic system is encoded as a graph
- Nodes
 - Random variables
 - Could be discrete (this lecture) or continuous
- Edges
 - Connections between two nodes
 - Indicates a direct relationship between two random variables
 - Note: the lack of an edge is very important
 - Implies no direct relationship

Graph Types

- Edge type determines graph type
- Directed (acyclic) graphs (DAG)
 - Edges have directions (A -> B)
 - Cycles are not allowed
 - Typically called Bayesian Networks
 - Directionality indicates (possible) causality
- Undirected graphs
 - Edges don't have directions (A B)
 - Typically called Markov Random Fields (MRFs)
 - Popular in physics and vision

Directed Graphs

The direction of the edge indicates causation

- Causation can be very intuitive
 - We may know which random variable causes the other
 - Use this intuition to create a graph structure

Example

More examples

Advantages?

- What have we gained with this representation?
 - We could just draw a graph where everything is connected

Factorization

- Consider the joint probability of our example
 - What is the size of the conditional probability table for the p(R, A, K, H) distribution?
 - What can we do to simplify?

Notice that A and K are independent given R

Run

Hurt
Knee

Hosp

Product Rule

- Can use the product rule to decompose joint probabilities
 - p(a,b,c) = p(c|a,b) p(a,b)
 - p(a,b,c) = p(c|a,b) p(b|a) p(a)
- This is true for any distribution
- Same for K variables

$$p(X_1...X_K) = p(X_K | X_1...X_{K-1})...p(X_2 | X_1)p(X_1)$$

Recall: independence

- My height is independent of my favorite basketball team
- This is domain knowledge, typically supplied by the problem designer
- Independence implies:

$$A \perp B \Rightarrow p(A \mid B) = p(A)$$
$$A \perp B \mid C \Rightarrow p(A, B \mid C) = p(A \mid C)p(B \mid C)$$

How does independence help?

$$A \perp B \Rightarrow p(A \mid B) = p(A)$$

Α	В	P(A, B)
F	F	0.56
Т	F	0.24
F	Т	0.14
Т	Т	0.06

$$p(A) = \sum_{B} p(A, B)$$

$$= p(A, B) + p(A, \neg B)$$

$$= 0.24 + 0.06 = 0.3$$

$$p(A|B) = \frac{p(A, B)}{p(B)}$$

$$= \frac{p(A, B)}{\sum_{A} p(A, B)}$$

$$= \frac{p(A, B)}{p(A, B) + p(\neg A, B)}$$

$$= \frac{0.06}{0.06 + 0.14}$$

$$= 0.06/0.2 = 0.3$$

$$A \perp B \mid C \Rightarrow p(A, B \mid C) = p(A \mid C)p(B \mid C)$$

Conditional Independence

- Random variable X is conditionally independent of Y given Z if their conditional probabilities (given Z) are independent
- p(x,y|z) = p(x|z)p(y|z)
 - or p(x|z, y) = p(x|z)
- X: I need an umbrella and Y: the ground is wet
- Not independent! If ground is wet, it's probably raining (Z)
- I am told it is raining, now what?
- Knowing it's raining, needing an umbrella becomes independent of the ground being wet
- I gain no new information knowing that the ground is wet $P(x \mid z, y) = p(x \mid z)$

Factorization

- For any graphical model we can write the joint distribution using conditional probabilities
 - We just need conditional probabilities for a node given its parents

$$p(\mathbf{x}) = \prod_{k=1}^{K} p(\mathbf{x}_k | \text{parents}_k)$$

Counting parameters in CPTs

X ₁	X ₂	:	X _M	P(X)
F	I	L	I	0.001
Т	F	L	F	0.014
F	Τ	Щ	F	0.004
Т	Τ	I	F	0.002

P(X ₁)
.5

X ₁	P(X ₂ X ₁)	
F	0.5	
Т	0.3	

X ₁	X ₂	P(X ₃ X ₂ , X ₁)
F	Ŀ	0.4
Т	F	0.3
F	Т	0.2
Т	Т	0.7

$$p(\mathbf{x}) = \prod_{k=1}^{K} p(\mathbf{x}_k | \text{parents}_k)$$

Counting parameters in CPTs

X ₁	X ₂	•••	X _M	P(X)
I	I	Ŀ	F	0.001
Τ	F	F	F	0.014
F	Τ	F	F	0.004
Т	Т	F	F	0.002

$$p(\mathbf{x}) = \prod_{k=1}^{K} p(x_k | \text{parents}_k)$$

X ₁	P(X ₂ X ₁)
F	0.5
Т	0.3

X ₁	X ₂	P(X ₃	X ₂ , X ₁)
F	F	0.4	
Т	F	0.4	
F	Т	0.2	
Т	Тг	0.2	
,	,	Υ.	$P(X_2 \mid X$

F

0.4

0.2

Factorization

- Consider the joint probability of our example
 - The full p(R, A, K, H) is complex
 - What can we do to simplify?
 - Notice that A and K are independent given R
- Factor the joint probability according to the graph
 - $p(R, A, K, H) = p(H \mid A, K) p(A \mid R) p(K \mid R) p(R)$
 - This is simpler to compute, with fewer conditional probabilities track.

Conditional Probability Tables

 The CPTs specify the conditional probability distribution at each node

CPTs reflect local information only

R	P(A=T)	
F	0.05	
Т	0.2	

Independence and d-separation in DAGs

 DAGs are helpful because they make it much easier to visualize a complex probabilistic system

Independence

- The best part of graphical models is what they do not show
- Consider the network

- A and B are independent
 - P(A,B) = P(A) P(B)
 - Variable independence allows us to build efficient models

Conditional Independence

- Are Knee and Ankle injuries independent?
- Not marginally independent
- but conditionally independent given Run
- P(Knee, Ankle | Run) = p(Knee | Run) p(Ankle | Run)
- Once we know whether Avery ran, both injuries are independent of each other
- How do we know if something is independent?
 - We can read it from the paths of the graph!

Example 1: Fork or "tail-to-tail" nodes

- Are A and B independent?
 - No, because both depend on C
- Are A and B conditionally independent?
 - Yes, because common cause is their only connection
 - We'll call C's connection with A and B a "fork"
 - Conditioning on C "blocks the path" between A and B

Example 2: Chain or "head-to-tail" nodes

- Are A and B independent?
 - No. A causes C which causes B

- Are A and B conditionally independent?
 - Yes, because if we know C, knowing A tells us nothing about B

- The connection of A and B to C is a "chain" or "head-to-tail"
- Conditioning on C "blocks the path" between A and B

Example 3: Collider or "head-to-head" nodes

- Are A and B independent?
 - Yes, because A and B are generated without common parents
- Are A and B conditionally independent given C?
 - Counter-intuitively, no!
 - When C is unobserved, the path is blocked
 - When C is observed, the path becomes unblocked

Blocked vs. Unblocked?

- Terminology: y is a descendent of x if there is a path from x to y (following the arrows)
- A fork or chain node only blocks a path when it is observed
- A collider node blocks a path when it is unobserved
 - A collider will become unblocked if either it, or any of its descendants, is observed

Collider dependence

- Suppose you see the grass outside is wet
- The two causes (sprinkler/rain) compete to explain the grass

Explaining Away

- Competing explanations for the same event
 - The rain explained the grass, so sprinkler is now less likely
 - The rain explained away the state of the grass
 - Don't "need" to use sprinkler to explain it
- Thus, the observed head-to-head is unblocked
 - Once we know the value of C, we learn something about A and B

Explaining away

- Suppose A and B are coin flips (heads = 1)
- C is 1 if either A or B is 1
- A and B are independent: p(A=0)p(B=0) = p(A=0, B=0)
- But, if we condition on C, this changes!
- $p(A=0 \mid C=1) > 0$ and $p(B=0 \mid C=1) > 0$
- But $p(A=0, B=0 \mid C=1) = 0$

Monty Hall

D-Separation

- Two nodes A and B are d-separated given observed node(s) C if all paths between A and B are blocked
 - Blocked paths: two arrows on the path meet head-to-tail or tail-to-tail at a node in set C
 - Or, the arrows meet head-to-head at a node which isn't in C
 - And none of its descendants are either
- If two (sets of) nodes are d-separated they are conditionally-independent!

Are A and B d-separated?

C is a descendent of head to head E

Yes
F is a tail to tail node

Are A and B d-separated?

F is a tail-to-tail node

E is head-to-head

Causal DAGs

 DAGs are not necessarily causally-interpretable

Need to assume
(a) interventions are possible
(b) no missing variables

