

(11)Publication number:

02-072874 (JP, 5-22510, B2)

(43)Date of publication of application: 13.03.1990

(51)Int.CI.

C12N 9/08

(21)Application number: 63-222516

(71)Applicant: KOKEN CO LTD

(22)Date of filing:

07.09.1988

(72)Inventor: ASO TAKESHI

ODA KADOAKI SAKOTA NAOICHI

(54) PRODUCTION OF RICE HULL PEROXIDASE

(57)Abstract:

PURPOSE: To inexpensively produce a rice hull peroxidase in simple operation by adding a specific amount of water to rice hulls, crushing the rice hulls, separating a crude enzyme liquid by centrifugation, concentrating the enzyme by ultrafiltration and depositing and separating a protein of different kind by an organic solvent.

CONSTITUTION: 1-10pts.wt. water is added to 1pts.wt. rice hulls and the rice hulls are crushed and then a crude enzyme liquid is separated by centrifugation and concentrated by ultrafiltration and a protein of different kind other than the peroxidase is deposited and separated by an organic solvent and filtered to provide the rice hull peroxidase.

LEGAL STATUS

[Date of request for examination]

Date of sending the examiner's decision of rejection]

Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

⑩ 日本 国特許庁(JP)

① 特 許 出 願 公 告

許 公 報(B2) 平5-22510 ⑫特

®Int. Cl. 5

識別記号

庁内整理番号

2040公告 平成5年(1993)3月29日

C 12 N 9/08 7823-4B

請求項の数 1 (全5頁)

イネモミガラパーオキシターゼの製造方法 会発明の名称

圭

顧 昭63-222516 ②特

開 平2-72874 ❸公

②出 願 昭63(1988)9月7日 ❷平2(1990)3月13日

蘕 の発・明・者 阿

山形県鶴岡市宝田1丁目18番36号 株式会社高研鶴岡工場 雄

者

昭

山形具鶴岡市家中新町9番14号

小 (2)発 明 者 迫 田 直

兵庫県神戸市東灘区住吉本町1丁目23番24号

株式会社高研 の出 題 人

田

東京都新宿区下落合3丁目5番18号

弁理士 田 中 宏 四代 理 人

査 官 平 田 和 男 審

1

2

の特許請求の範囲

個発 明

1 イネモミガラ1重量部に対し、1~10倍重量 部の水を添加し、イネモミガラを水中で破砕し、 その後遠心分離によつて粗酵素液を分離し、次い た後、有機溶剤を用いてパーオキシダーゼ以外の 大部分の蛋白質を析出、分離した後、濾別するこ とからなるパーオキシダーゼの製造方法。

発明の詳細な説明

(産業上の利用分野)

本発明は、イネモミガラより簡単な操作によつ て純化パーオキシダーゼを製造する方法に関す る。

(従来の技術)

素の共存下で種々の供与体の酸化反応を触媒する 酵素であり、動物或は植物に由来する各種のパー オキシダーゼ及び微生物産生のパーオキシダーゼ 等が知られている。特に西洋わさびのパーオキシ ダーゼは古くから知られている。パーオキシダー 20 ぜは過酸化水素を生成する酸化酵素と組合せて糖 類、アミノ酸、有機塩基、コレステロール、ポリ アミン等の微量定量に利用されており、又、抗原 或は抗体の標識用酵素など広範囲の分野にわたつ て利用されている。

このような広範囲に利用できるパーオキシダー ゼがイネモミガラ中に存在することは、1970年、 安江らによつて指摘されている (Rep. Takai Br. Crop Sci.Soc. Japan、第59巻、第6頁)。そし で、得られた粗酵素液を限外濾過によつて濃縮し 5 て、イネモミガラからパーオキシダーゼを抽出す る方法としては、イネモミガラを0.05~0.1モル 濃度のリン酸緩衝液中で微粉化する方法が用いら れている。しかし、イネモミガラは多量のシリカ を含有し、堅固な構造を有するため、これを微粉 10 化することは機械的にも多大な困難を伴うばかり でなく、エネルギー的にも経済的な製造法とは言 い難い。

更に、リン酸緩衝液を使用して抽出した粗酵素 液には多量の異種蛋白質が含有されているため、 パーオキシダーゼは過酸化物、例えば過酸化水 15 有機溶剤分画、硫安分画、透析、カラム処理等の 複雑な処理行程を反復して行なうことが必要であ つて、極めて操作が煩雑であり、且つ得られる酵 素の収量も決して好ましいものではなかつた。

(発明が解決しようとする課題)

このような欠点を解決し、イネモミガラより簡 単な操作でパーオキシダーゼを安価に製造する方 法を種々検討した結果、0.05~0.1モル濃度のリ ン酸緩衝液の代わりに水を使用し、水中で破砕し て抽出実験を行なつたところ、極めて容易にパー 25 オキシダーゼを抽出できることを見出して本発明

を完成するに至つたもので、本発明の目的はイネ モミガラより簡単な操作によりパーオキシダーゼ を抽出する方法を提供するにある。

(課題を解決するための手段)

すなわち、本発明は、イネモミガラ1<u>重量</u>部に *5* 対し、1~0倍重量部の水を添加し、イネモミガ ラを水中で破砕し、その後遠心分離によつて粗酵 素液を分離し、次いで、得られた粗酵素液を限外 濾過によつて濃縮した後、有機溶剤を用いてパー オキシダーゼ以外の大部分の蛋白質を析出し、分 10 離した後、濾別することからなるパーオキシダー ぜを製造する方法である。

更に、本発明について詳細に述べる。

本発明において使用する水とは、蒸留水、イオ く、例えば水道水であつてもよい。

そして、その水の使用量はイネモミガラ1重量 部に対し1~10倍重量部、好ましくは、2~7倍 重量部である。

によるパーオキシダーゼの抽出量を調べたとこ ろ、第1図のような結果が得られた。すなわち、 第1図は、モミガラに対する抽出水量(重量倍) と抽出された酵素の収率(%)と比活性との関係 を示した図である。この図より水量が1~2倍量 25 に、イソプロパノールが好ましい。 では遠心分離によつて得られる粗酵素液量が使用 水量に対し比較的少量になるため酵素収率が少な い。ただ、実際には、遠心分離後、さらに水洗い を行なうことで酵素収率は向上させることができ るが、破砕器内での発熱を考えると、抽出水量と 30 としては適当でないと思われる。 してはモミガラの2倍程度がその下限と考えられ る。また、抽出水量を増加させることは、異種蛋 白質の抽出を促進することになり、抽出されたパ ーオキシダーゼの比活性(U/wg蛋白)を低下す 使用量はイネモミガラ1重量部に対し1~10倍重 量部、好ましくは2~7倍重量部が適当である。

次に本発明における特徴の一つは破砕すること である。すなわち、破砕とは、必ずしも微粉砕を 適当なズリ応力を加えることによつて剝離される。 程度に粉砕することで、外皮を剝離させることに よつて水易溶性のパーオキシダーゼは、他の蛋白 に先がけて容易に水によつて抽出される。使用す

る粉砕機としては、特に限定はないが、ミクロカ ツター (ステフアン社製)、マスコロイダー (増 幸産業製)などが好ましい。なお、破砕回数につ いては、モミガラに対し、3倍重量の水を用い、 ミクロカツターでの破砕を反復したところ、3回 の破砕で含有全活性の90%が抽出されることが解 つた。しかしながら、工業的抽出にあつては、モ ミガラを1回破砕した後、分液し、更に、水洗す ることによつて抽出目的を達することができる。

かくして得られた抽出酵素液を限外濾過によつ て約1/10まで濃縮して得られる粗酵素溶液は、約 1.75×10°~1.88×10°U/mの比活性を有してお り、これは従来の多量のリン酸緩衝液を用いうる 抽出液の比活性約0.7×10⁴U/mgと比較して2.5倍 ン交換水はもとより、いかなる水であつてもよ 15 ~25倍の比活性を有することになるが、なお多量 の異種蛋白質を含有しているから、該酵素の工業 的使用に対してもなお精製を必要とするものであ

次に、本発明においては、有機溶剤を使用して この点について、イネモミガラの水中での破砕 20 粗酵素溶液よりパーオキシダーゼ以外の異種蛋白 質を分離、除去する。本発明において使用する有 機溶剤は通常溶剤として使用されている有機溶剤 であればよく、例えば、メタノール、エタノー ル、アセトン、イソプロパノール等があるが、特

> 従来のパーオキシダーゼの精製法の基本は、粗 酵素液のアセトン分画、硫安分画操作であるが、 前者は、夏期における操業の危険性から、又後者 は透析を必要とすることから何れも工業的製造法

本発明者らは、イネモミガラパーオキシダーゼ がイソプロパノールに対して極めて安定であり、 室温であれば70%イソプロパノール水溶液中に数 日間放置してもほとんど活性を失わないことか ることとなる。これらの事情を考慮すると、水の 35 ら、イソプロパノールを使用することを試みた。 そして、イソプロパノールの濃度が30~40%のと きパーオキシダーゼと異種蛋白質を分離するのに 適していることを見出した。

次に、イソプロパノールを使用した抽出方法を 必要とせず、モミガラの外皮と内層の蛋白質とを 40 述べる。すなわち、イネモミガラを水中で破砕、 遠心分離によつて得られた粗酵素液を限外濾過に よつて濃濃縮した液に、イソプロパノールの濃度 が30~40%になるようにイソプロパールを加え、 パーオキシダーゼ以外の大部分の蛋白質を析出、

(3)

分離させた後、イソプロパノール濃度を60~80% にして沈澱する酵素を遠心分離してパーオキシダ ーゼを濾別するのである。この際の抽出温度とし ては、常温付近以下であれば良く、特に冷却する 必要はない。

次に、イソプロパノールの濃度と沈澱中にみら れるパーオキシダーゼ相対活性及び蛋白質収率と の関係を第2図に示す。この第2図に見られるよ うに、該酵素がイソプロパノール30~40%濃度ま ではほとんど沈澱しないのに対し、異種蛋白質 10 て24時間、冷蔵放置(2~5℃)する。 は、その約50%が、このイソプロパノール濃度ま でに沈澱することを見出した。従つて、30~40% イソプロパノール濃度までに沈澱する蛋白質を濾 別又は遠心分離によつて除去した後、イソプロパ ノール濃度を60~80%にして得た沈澱中に存在す 15 る酵素は、4.3×104~4.62×105U/mgの比活性を 有することに至る。この値は、イソプロパノール ル処理を施す前の粗酵素液に対し2.5倍の比活性 を有することとなり、冷蔵によつて極めて長期の 供することのできるパーオキシダーゼが得られた ことになる。この酵素溶液は、更に精製、真空乾 燥することによつて、純化酵素粉末として使用す ることも可能である。

が、本発明はその要旨を逸脱しないかぎり、以下 の実施例に何ら限定されるものではない。

実施例 1

モミガラ1kgに対して3ℓのイオン交換水を加 えミクロカツターによつて粗砕した後、遠心分離 30 不純蛋白は吸着される。ここで得られた活性分画 機(1800G)によつて約2.4 ℓの粗酵素液が得ら れる。

遠心残渣に対して再び3ℓのイオン交換水を加 えて同様の工程を行なつて、約2.7 ℓの粗酵素液 が得られた。上記の租酵素液約5.1ℓをホロフア 35 ものである。 イバー型(旭化成製ACL-1010、分画分子量 13000) の限外濾過を用いて約500mに濃縮し、こ れにイソプロパノールを攪拌しながら330叫加え て1時間放置する。このときイソプロパノールの 濃度は約40%となる。

次に、この粗酵素ーイソプロパノール混液を遠 心分離(10000G 10分)、またはガラス繊維濾紙 で不溶残渣を除去し、得られた上澄又は濾液に対 しさらにイソプロパノールを攪拌しながら840元

加え、70%イソプロパノール濃度にして24時間室 温放置する。このものを10000Gで10分間遠心分 離することによつて沈澱を分取する。この沈澱を 減圧乾固してパーオキシダーゼ標品とする。

5 実施例 2

実施例1と同様の方法でイソプロパノール40% 濃度で不溶残渣を除去した粗酵素のイソプロパノ ール溶液に、更にイソプロパノールを攪拌しなが ら840 叫を加え、70%イソプロパノール濃度にし

このものを遠心分離(1000G 10分)によつて 分取した酵素沈澱を減圧乾固してパーオキシダー ゼ標品とする。

実施例 3

実施例1と同様の方法でイソプロパノール40% で不溶残渣を除去した粗酵素のイソプロパノール 溶液に、更にイソプロパノールを攪拌しながら 840 叫を加え、70%イソプロパノール濃度にして 24時間、冷蔵放置 (-10~-15℃) し、遠心分離 保存に耐えることからそのままでも効業的使用に 20(10000G 10分)して得た沈澱を減圧乾固してパ ーオキシダーゼ標品とする。

実施例 4

実施例1と同様の方法でイソプロパノール40% 濃度で不溶残渣を除去した粗酵素のイソプロパノ 以下、実施例によつて酵素の製造法を説明する 25 ール溶液をロータリーエパポレーターにてイソプ ロパノールを減圧除去し、1mMのリン酸緩衝液 で平衡化したDEAEセルロースのカラムを通過さ せる。

> この操作で、酵素は吸着されずに通過するが、 をホロフアイパー型限外濾過器にて脱塩濃縮した 後、凍結乾燥してパーオキシダーゼ標品とする。

実施例1~3の活性収率の増加は、70%イソブ ロパノールの存在下での酵素析出温度の差による

実施例 5

モミガラ 1 kgに対して 3 ℓのイオン交換水を加 えマスコロイダーによつて破砕した後、遠心分離 機(1800G)によつて約2.4 ℓの租酵素液が得ら 40 れる。この粗酵素液をホロフアイバー型限外濾過 器を用いて約200元に濃縮し、これにイソプロパ ノールを攪拌しながら、133㎡加えて、40%イソ プロパノール濃度にし、1時間冷蔵放置(2~5 ℃) する。次に、この粗酵素-イソプロパノール

7

混液を遠心分離(10000G 10分)、又は、ガラスス繊維燭紙を用いて不溶残渣を除去し、ここで得た上清又は濾液に対してさらにイソプロパノールを攪拌しながら、334ml加え、70%イソプロパノール濃度にして24時間冷蔵放置(2~5℃)す 5 る。このものを10000Gで10分間遠心分離することによつて沈澱を分散する。この沈澱を減圧乾固してパーオキシダーゼ標品とする。

実施例 6

実施例5と同様の操作によって得た70%イソプ 10 ロパノール沈澱を1mMリン酸級衝液に溶解し、上記級衝液で平衡化したDEAEセルロースカラムを通過させる。ここで得られた活性画分をホロフアイバー型限外濾過器にて脱塩濃縮した後、凍結乾燥してパーオキシダーゼ標品とする。 15

これらのパーオキシダーゼ標品の収量、並びに 租酵素液に対する活性収率及び精製倍率を第1表 に示した。

第 1 表

パーオキ シダーゼ 標品	精製倍率 * 1	活性収率 * 2	酵素収量	酵素析 出温度
実施例1	4.32倍	39.6%	156.5mg	20℃
実施例2	5.10倍	51.4%	171.3mg	2~5℃
実施例3	5,35倍	60.8%	192.9mg	-10∼ -15℃
実施例 4	56.5倍	11.0%	5, 5mg	20°C

パーオキ シダーゼ 標品	精製倍率 * 1	活性収 率 *2	酵素収 量	酵素析 出温度
実施例 5	13,7倍	32.1%	92.1 mg	2~5℃
実施例 6	120.0倍	1.4%	1.24mg	2~5℃

8

*1 精製倍率=精製酵素の比活性

*2 収率=精製酵素の全活性×100

(効 果)

以上述べたように、本発明は、イネモミガラより水を使用してパーオキシダーゼを抽出し、得られた抽出液を簡単な操作によつて、特にイソプロ15 パノールを用いた場合、イソプロパノール濃度を30%から80%の範囲で、酵素蛋白を分画沈澱するという極めて簡単な操作によつて、純化パーオキシダーゼを得るのであつて、従来の製造方法に比して遥かに安価にパーオキシダーゼを得ることが20 できる。

図面の簡単な説明

第1図は、モミガラに対する抽出水量(重量倍)と抽出された酵素の収率(%)と比活性との関係を示した図、第2図はイソプロパノールの濃25 度とその濃度で沈澱する蛋白質収率及び沈澱中に存在するパーオキシダーゼの相対活性との関係を示した図である。

第1図

第2図

