

Keys

Arhitekta Timoti je uključen u dizajn nove igre. U igri postoji n soba označenih brojevima od 0 do n-1. Na početku, svaka soba sadrži tačno jedan ključ. Svaki ključ ima svoj tip, takođe označen brojevima od 0 do n-1, inkluzivno. Tip ključa u sobi i ($0 \le i \le n-1$) je r[i]. Obratite pažnju da više soba može sadržati ključeve istog tipa tj. vrijednosti r[i] ne moraju biti različite.

Postoji m dvosmjernih konektora, označenih brojevima od 0 do m-1. Konektor j ($0 \le j \le m-1$) povezuje par različith soba u[j] i v[j]. Par soba može biti povezan pomoću više konektora.

Ovo je igra za jednog igrača, koji sakuplja ključeve kretanjem kroz sobe i premješta se iz sobe u sobu pomoću konektora.

Kažemo da igrač **prolazi** kroz konektor j ako koristi za prelazak iz sobe u[j] u sobu v[j] ili obrnuto. Igrač može proći kroz konektor j ako je ranije prikupio ključ tipa c[j].

U svakom trenutku igre, igrač je u nekoj sobi x i ima na raspolaganju dva tipa akcija:

- pokupi ključ tipa r[x] iz sobe x (osim ako ga već nije pokupio),
- prolazi kroz konektor j, gdje je ili u[j] = x ili v[j] = x, pod uslovom da je ranije poklupio ključ tipa c[j]. Obratite pažnju da igrač **nikada** ne odbacuje već prikupljene ključeve.

Igrač **počinje** igru u nekoj sobi s, pri čemu nema nijedan ključ. Soba t je **dohvatljiva** iz sobe s, ako igrač koji počne igru u sobi s može izvesti niz akcija koje će ga dovesti u sobu t.

Za svaku sobu i ($0 \le i \le n-1$), označimo sa p[i] broj soba dohvatljivih iz sobe i. Timoti želi da odredi skup indeksa i koji dostižu minimalnu vrijednost p[i] nad svim $0 \le i \le n-1$.

Detalji implementacije

Potrebno je implementirati sljedeću funkciju:

```
int[] find_reachable(int[] r, int[] u, int[] v, int[] c)
```

- r: niz dužine n. Za sve i ($0 \le i \le n-1$), ključ u sobi i ima tip r[i].
- u,v: dva niza dužine m. Za sve j ($0 \le j \le m-1$), konektor j povezuje sobe u[j] i v[j].
- c: niz dužine m. Za sve j ($0 \leq j \leq m-1$), c[j] je tip ključa potreban za prolaz kroz konektor j .
- Ova funkcija vraća niz a dužine n. Za svako $0 \le i \le n-1$, vrijednost a[i] treba da je 1 ako za sve j takve da $0 \le j \le n-1$, $p[i] \le p[j]$. U suprotnom, vrijednost a[i] treba da je 0.

Primjeri

Primjer 1

Razmotrimo sljedeći poziv funkcije:

```
find_reachable([0, 1, 1, 2],
       [0, 0, 1, 1, 3], [1, 2, 2, 3, 1], [0, 0, 1, 0, 2])
```

Ako igrač počne igru u sobi 0, može izvesti sljedeći niz akcija:

Trenutna soba	Akcija
0	Pokupi ključ tipa 0
0	Prolazi konektorom 0 do sobe 1
1	Pokupi ključ tipa 1
1	Prolazi konektorom 2 do sobe 2
2	Prolazi konektorom 2 do sobe 1
1	Prolazi konektorom 3 do sobe 3

Dakle, soba 3 je dohvatljiva iz sobe 0. Slično, možemo konstruisati nizove akcija koji će pokazati da su sve sobe dohvatljive iz sobe 0, pa zaključujemo da je p[0]=4. Tabela prikazuje za svaku početnu sobu odgovarajuću listu dohvatljivih soba:

Početna soba i	Dohvatljive sobe	p[i]
0	[0,1,2,3]	4
1	[1,2]	2
2	[1,2]	2
3	[1,2,3]	3

Najmanja vrijednost p[i] je 2 i ona se dostiže za i=1 ili i=2. Dakle, funkcija vraća [0,1,1,0].

Primjer 2

Tabela prikazuje za svaku početnu sobu odgovarajuću listu dohvatljivih soba:

Početna soba i	Dohvatljive sobe	p[i]
0	[0, 1, 2, 3, 4, 5, 6]	7
1	[1,2]	2
2	[1,2]	2
3	[3, 4, 5, 6]	4
4	[4,6]	2
5	[3,4,5,6]	4
6	[4,6]	2

Najmanja vrijednost $\,p[i]\,$ je $\,2\,$ i dostiže se za $\,i\in\{1,2,4,6\}$. Dakle, funkcija vraća $\,[0,1,1,0,1,0,1]$.

Primjer 3

```
find_reachable([0, 0, 0], [0], [1], [0])
```

Tabela prikazuje za svaku početnu sobu odgovarajuću listu dohvatljivih soba:

Početna soba i	Dohvatljive sobe	p[i]
0	[0,1]	2
1	[0,1]	2
2	[2]	1

Najmanja vrijednost p[i] je 1 i dostiže se kada je i=2. Funkcija vraća [0,0,1].

Ograničenja

- $2 \le n \le 300\,000$
- $1 \le m \le 300000$
- $0 \leq r[i] \leq n-1$ za sve $0 \leq i \leq n-1$
- $0 \leq u[j], v[j] \leq n-1$ i u[j]
 eq v[j] za sve $0 \leq j \leq m-1$
- $0 \leq c[j] \leq n-1$ za sve $0 \leq j \leq m-1$

Podzadaci

- 1. (9 bodova) $\,c[j]=0$ za sve $\,0\leq j\leq m-1\,$ i $\,n,m\leq 200\,$
- 2. (11 bodova) $n, m \le 200$
- 3. (17 bodova) $n, m \le 2000$
- 4. (30 bodova) $c[j] \leq 29$ (za sve $0 \leq j \leq m-1$) i $r[i] \leq 29$ (za sve $0 \leq i \leq n-1$)

5. (33 bodova) Nema dodatnih ograničenja.

Program za ocjenjivanje (Sample Grader)

Format za učitavanje podataka je:

- red 1: n m
- red 2: r[0] r[1] ... r[n-1]
- redovi 3+j ($0 \leq j \leq m-1$): u[j] v[j] c[j]

Program za ocjenjivanje štampa rezultat pozivanja find_reachable u sljedećem formatu:

• red 1:
$$a[0]$$
 $a[1]$ \dots $a[n-1]$