CSC373S: Algorithm Design, Analysis & Complexity

Lecture 05

Monday January 16, 2017

based on notes by Denis Pankratov

Greedy Algorithm Paradigm

Make a decision about an input item that looks best at the time. Never change your decision!

Activity Selection

Input: Array A of n activities described by:

 s_i - starting time

 f_i - finishing time

Output: $S \subseteq [n]$ so that activities in S are *compatible* in such a way that:

$$\forall i \neq j \in S[s_i, f_i) \cap [s_j, f_j) = \varnothing$$

and S is as large as possible.

Note: This can have multiple answers.

<u>Trivial solution:</u> consider all possible subsets of [n].

Running time: $\Omega(2^n)$ (which is a simplified version of $\mathcal{O}(2^n \text{poly}(n))$)

Algorithm (Generic):

```
1 def TemplateGreedy(A):
2  # assume this runs in O(n log n) (MergeSort)
3  sort A accordint to some criterion
4  
5  S = []
6  
7  # runs in O(n)
8  while A != []:
```

9 # select 1st activity from A
10 # add it to S
11 # remove all overlapping activities from A
12
13 return S

Approaches:

1. Increasing starting time [NOT OPTIMAL]:

$$s_1 < s_2 < \dots < s_n$$

2. Increasing interval length [NOT OPTIMAL]:

$$f_1 - s_1 \le f_2 - s_2 \le \dots \le f_n - s_n$$

- 3. Pick interval that overlaps fewest # of intervals first [NOT OPTIMAL]
- 4. Earlieset finishing time (EFT) [OPTIMAL]:

$$f_1 \le f_2 \le \dots \le f_n$$

<u>Definition</u>: Let S_i be the partial solution of EFT prior to i^{th} iteration.

<u>Definition</u>: S_i is feasible if it is possible to expand it to some optimal solution using intervals remaining in A.

Loop Invariant: S_i is feasible.

Proof by induction on i:

Base Case: $i = 0, S_i = \emptyset, A = \text{all intervals}$

Induction Assumption (IA): S_i is feasible for some $i \geq 0$. S_i is extendible to some optimal solution called emphOPT.

 $A \neq \emptyset$

Let a = [s, f) be the first element from A:

- Case 1: $a \in OPT$, then we are done.
- Case 2: $a \notin OPT$, let a' = [s', f') be the first interval in OPT, following integers from S_i .
 - 1. $a \cap a' \neq \emptyset$, otherwise $OPT \cup a$ is a valid solution > OPT.
 - 2. $f \leq f'$ due to algorithm choice.

 $(OPT \setminus a') \cup a$ is another optimal solution that agrees with EFT after i^{th} iteration $\to S_{i+1}$ is feasible.

<u>Termination:</u> $A = \emptyset \to S_i$ is optimal <u>Running Time:</u> $\mathcal{O}(n \log n)$ <u>Notes:</u>

- 1. Easy to come up with
- 2. Almost never works: very few problems where it is feasible, so it is advised to always be skeptical and try to prove its wrong!
- 3. Most useful for approximations (see later in the course)

Interval Scheduling to Minimize # of Machines

Input: Array A of n activities, $n \ge 1$ **Output:** $d \in \mathbb{N}$ so that all activities in A can be scheduled on d machines, but not d-1.

<u>Definition</u>: depth(A) = max # of intervals passing over a single point on the timeline

Claim: $d \ge \operatorname{depth}(A)$. Surprisingly, $d = \operatorname{depth}(A)$

It is possible to schedule on depth(A) machines using a *Greedy Algorithm*.

Algorithm:

```
def MinIntervalScheduling (A):
1
     # sort A by increasing starting time
2
3
4
     init array M of size n
5
     /* M[i] = \# (name) of the machine on which A[i] is scheduled */
6
     M[1] = 1
8
9
     for i = 2 to n:
10
11
       S = []
12
13
       for j = 1 to i - 1:
14
          if A[j] intersection A[i] != []
15
           add M[j] to S
16
         M[i] = smallest natural # not in S
17
     return max_{1<=i<=n} M[i]
18
```