Задание 5. ЛВ. Элиминация кванторов.

1. Функциональным элементом (Φ Э) называют устройство с несколькими входами и одним выходом. Любой набор булевых значений (И,Л) на входах Φ Э перерабатывает в единственное булево значение на выходе; таким образом, Φ Э с n входами и одним выходом реализует n-местную булеву функцию.

Пусть есть набор $\Phi \Theta$, реализующих \wedge , \vee , и \neg , Присоединяя выходы одних $\Phi \Theta$ к входам других (циклы не допускаются), можно строить т.н. схемы из $\Phi \Theta$, также реализующие булевы функции. Можно строить и схемы с несколькими выходами (соответствующими наборам булевых функций).

Нарисуйте схемы с 4 входами и 4 выходами, реализующие сложение и умножение двух натуральных двузначных чисел в двоичной системе счисления.

2. Докажите, что теория плотного линейного порядка без наименьшего и наибольшего элемента допускает элиминацию кванторов.

Опишите одноместные и двухместные определимые отношения в структуре (\mathbb{Q} ; =, <).

Какие элементы определимы в структуре (\mathbb{Q} ; =, <)?

3. Докажите, что структура ($\mathbb{Z};=,S,<$) допускает элиминацию кванторов.

Опишите одноместные и двухместные определимые отношения в структуре ($\mathbb{Z}=,S,<$).

Определима ли функция S в структуре ($\mathbb{Z}=,<$) бескванторной формулой?

4. Докажите, что структура (\mathbb{Z} ;=,0,S), где S(x)=x+1, допускает элиминацию кванторов.

Опишите одноместные и двухместные определимые отношения в структуре (\mathbb{Z} ; =, 0, S).

Определимо ли отношение < в этой структуре?

5. Докажите, что бесконечная структура $(A; =, \sim)$, где \sim — эквивалентность с бесконечными классами, допускает элиминацию кванторов.