





## 管网优化设计快速入门 第二课-管网建模

主讲人: 小木

东华大学

#### 课程大纲

- 1.水量预测
- 2.管网建模
- 3.监测点布置
- 4.水泵优化调度
- 5.爆管分析
- 6.余氯衰减
- 7.管网分区
- 8.模型校核





- 1.什么是管网模型、建模?
- 2.管网模型的作用?
- 3.如何在计算机上对管网进行建模?
- 给水管网看什么书?
- 《给排水管网系统(第三版)严煦世、刘遂庆
- 《给水管网系统理论与分析》赵洪宾







- 1.什么叫做管网模型、管网建模
- (1) 什么叫做管网模型
- 这里的模型,只得是拓扑模型,《离散数学》里面有专门关于图论的部分,管网的模型就是拓扑模型的一种应用。其管网模型本质上还是数学模型
- (2) 管网建模
- 很多人做过数学建模、数据挖掘等项目,但这里的建模跟数学建模还是有一些差别的,管网建模类似于画CAD的图纸,但比CAD图纸要更先进的一步是他能够进行水力和水质的计算,其实叫物理建模更好



节段水阀





- 3.如何在计算机上对管网进行建模?
- · 计算机上面制作管网的软件有很多: EPANET是美国国家环境署开发的一种 开源的软件,用于给水管网模拟,完全免费,搞科研很有用!
- •除了EPANET,还有许多商业的软件,如bentely公司开发的WaterGems,给排水系统研究所开发的WNW等等。
- 一般来说商业软件的功能多一些,但是我今天要用epanet这个软件来讲解,原因是这个软件开源,可以进行二次开发,就像上次说的神经网络,你直接用发虚,但你了解内部原理之后,你就会感到舒适!



- 3.如何在计算机上对管网进行建模?
- 管网建模分为水力建模和水质建模
- (1) 水力建模主要是求压力
- (2) 水质建模主要是求余氯值,也就是说管网里面加的药的量是在水中如何变化的。

- 3.如何在计算机上对管网进行建模?
- 管网的建模步骤分为如下几步:











绘制管网图

设定参数

设定节点需

运行模型

求出结果

管道 水泵 节点 阀门

水泵转速 阀门开启度

水量及需水 量模式

·参考EPANET2\_用户手册的案例,我们现在来做一遍



表 2.1 示例管网节点属性

| 节点 | 标高 (ft) | 需水量 (L/s) |
|----|---------|-----------|
| 1  | 13.6    | 0         |
| 2  | 13.6    | 0         |
| 3  | 18.8    | 14.6      |
| 4  | 18.3    | 35.1      |
| 5  | 19.1    | 51.2      |
| 6  | 17.3    | 82.3      |
| 7  | 22.0    | 40.8      |
| 8  | 32.2    | 0         |

表 2.2 示例管网管道属性

| 管道 | 长度 (m) | 直径(mm) | C因子 |
|----|--------|--------|-----|
| 1  | 320    | 400    | 100 |
| 2  | 650    | 300    | 100 |
| 3  | 330    | 300    | 100 |
| 4  | 590    | 300    | 100 |
|    | 350    | 200    | 100 |
| 5  | 550    | 200    | 100 |
| 7  | 270    | 300    | 100 |
| 8  | 660    | 200    | 100 |



#### 结语



一般科研来说,我么需要买点塑料管,买个小水泵,然后买点 阀门,我们可以在一个屋子里面组装成一个小型的管网,大约 几千块钱吧。如果民科各位感兴趣的话,也请尝试做一些实验

• 对与科研而言,我们要用计算机,模仿我们搭建的实验平台, 这个计算机画的管网的准确度完全影响后续的任何工作,因此, 我们在这步中必须要细致,与实验室的东西尽量一致,一定不

能出现任何差错!







# 

求三连!!