

Consensus-Driven Propagation in Massive Unlabeled Data for Face Recognition

Hongwei Fan

Lab of Pattern Recognition and Intelligent Systems, BUPT

Motivation: Unlabeled Data with Large Variation

A I-M L . C Lu h

Example: Statistic Data of MegaFace² Benchmark Set

Motivation: Semi-supervised Data Collection

Example: Semi-supervised Data Collection

Methodology: Overall Structure

Fig. 1: Consensus-Driven Propagation. We use a base model and committee models to extract features from unlabeled data and create k-NN graphs. The input to the mediator is constructed by various local statistics of the k-NN graphs of the base model and committee. Pairs that are selected by the mediator compose the "consensus-driven graph". Finally, we propagate labels in the graph, and the propagation for each category ends by recursively eliminating low-confidence edges.

Methodology: k-NN Graph

Vertex: embedding

Edge: B is in the knn of A

or not

Asymmetrical

Methodology: Input of Mediator

Methodology: Label Propagation

Step 1: Find connected components based on the current edges in the graph and add it to a queue Step 2: For each identified component, if its node number is larger than a pre-defined value, we eliminate low-score edges in the component, find connected components from it, and add the new disjoint components to the queue.

Step 3: If the node number of a component is below the pre-defined value, we annotate all nodes in the component with a new pseudo label.

Methodology: Joint Training

Fig. 1: Consensus-Driven Propagation. We use a base model and committee models to extract features from unlabeled data and create k-NN graphs. The input to the mediator is constructed by various local statistics of the k-NN graphs of the base model and committee. Pairs that are selected by the mediator compose the "consensus-driven graph". Finally, we propagate labels in the graph, and the propagation for each category ends by recursively eliminating low-confidence edges.

Experiments: Details

- Training Set: MS1M, 11 folds, 1 as labeled, 10 as unlabeled(1 of them is used to validate)
- Testing Set: MegaFace(FaceScrub, Rank-1, 1e6), IJB-A(fpr=0.001)
- Committee Setting: ResNet-18, ResNet-34, ResNet-50, ResNet-101, DenseNet-121, VGG-16, Inception-V3, Inception-ResNetV2, Tiny NASNet-A(base model)
- Mediator Setting: MLP with 2 hidden layers, 50 nodes each, ReLU activation
- similarity_threshold=0.96

Table 1: Performance and the number of parameters of the base model and the committee members.

	Architecture	MegaFace	IJB-A	Parameters
Base	Tiny NASNet-A	61.78	75.87	20.1M
	VGG16	50.22	70.75	75.6M
	ResNet18	51.48	69.23	23.5M
Committee	ResNet34	52.44	72.52	33.6M
	Inception V3	52.82	75.53	33.0M
	ResNet50	56.16	73.21	36.3M
	ResNet101	57.87	74.52	55.3M
	Inception-ResNet V2	58.68	75.13	66.1M
	DesNet121	60.77	69.78	28.9M
Ensemble	(multiple)	69.86	76.97	-

Experiments: Fraction of Unlabeled Data

The proposed method is more robust to noise

Supervised: the real labels of unlabeled data is recovered Mediator: the method proposed

Voting: a pair is selected if this pair is voted by all the committee members Hierarchical Clustering: a naïve clustering method

Experiments: Ablation Study

Pairs generated by mediator Pairs finally assigned

A serious and the leader

	Committee	Mediator inputs	Pair selection			Assigned labels	
Methods	number		pair	11	precision	pairwise	pairwise
			number	recam		recall	precision
Clustering	-	-	-	_	-	0.558	0.950
_	0	-	1.4M	0.313	0.966	0.680	0.829
	2	-	1.4M	0.313	0.986	0.783	0.849
Voting	4		1.4M	0.313	0.987	0.791	0.862
	6	Ī	$ 1.4M \rangle$	0.313	/ 0.984	0.801	0.877
	8	-	1.4M	0.313	0.979	0.807	0.876
		I_R	1.4M	0.318	0.975	0.825	0.822
Mediator	8	$I_R + I_A$	2.5M	0.561	0.982	0.832	0.888
		$I_R+I_A+I_D$	2.4M	0.527	0.983	0.825	0.912

Keep same to compare

Experiments: Backbone

Best Performance

Base	ResNet18		ResNet50		Tiny NASNet-A		Inception-ResNet V2	
Dase	MegaFace	IJB-A	MegaFace	IJB-A	MegaFace	IJB-A	MegaFace	IJB-A
Lower Bound	51.48	69.23	56.16	73.12	61.78	75.87	58.68	75.13
CDP	72.75	86.23	75.66	88.34	78.18	90.64	81.88	92.07
Supervised	73.88	85.08	77.13	87.92	78.52	89.40	84.74	91.90

Experiments: Nums of Neighbors

k	Pa	ir selec	Assigned labels			
n	/ pair	rocall	precision	/-	pairwise	
	number	recan	precision	recall	precision	
10	1.61M	0.601	0.985	0.810	0.940	
20	2.54M	0.527	0.983	0.825	0.912	
30	$\sqrt{2.96M}$	0.507	0.982	0.834	0.886	
40	3.17M	0.464	0.982	0.837	0.874	

Need a trade-off

High k makes no impact except more pairs

Experiments: Homogeneous/Heterogeneous

		Pair	selection	Assigned labels		
Committee	Methods	pair number	recall	precision	pairwise	pairwise
					recall	precision
Homogeneous	voting	1.93M	0.368	0.648	0.746	0.681
	mediator	2.46M	0.508	0.853	0.798	0.831
Heterogeneous	voting	1.41M	0.313	0.979	0.807	0.876
	mediator	2.54M	0.527	0.983	0.825	0.912

Heterogeneous is better

Experiments: Importance of inputs of mediator

Experiments: Import ArcFace

- m=0.5
- Output setting E(BN-Dropout-FC-BN)
- Cleaner training set for higher baseline
- Test on MegaFace

	Softmax	ArcFace [7]
baseline	61.78%	76.93%
CDP (Ratio = 2)	70.51%	83.68%

Experiments: IJB-A Example

Wrong Annotated

Low Quality

Cartoon

Discussion

- Contribution
 - Hard pairs mining: pipeline(Filtering) and benchmark(Precision-Recall)
 - Committee mechanism: heterogeneous is better
 - Overlapped: multi-task learning
- Further Direction
 - Committee: supervised feature extractor to unsupervised methods?
 - K-NN Graph: Graph Convolution Network³

References

- [1] X. Zhan, Z. Liu, J. Yan, D. Lin, and C. Change Loy. Consensus-driven propagation in massive unlabeled data for face recognition. In ECCV 2018.
- [2] I. Kemelmacher-Shlizerman, S. M. Seitz, D. Miller, and E. Brossard. The MegaFace Benchmark: 1 Million Faces for Recognition at Scale. In CVPR 2016.
- [3] Zhongdao Wang, Liang Zheng, Yali Li, Shengjin Wang. Linkage Based Face Clustering via Graph Convolution Network. CVPR 2019.

Thank you for listening

Hongwei Fan

Lab of Pattern Recognition and Intelligent Systems, BUPT