- 1 Discussiones Mathematicae
- ² Graph Theory xx (xxxx) 1–2

3 Note

A DIFFERENT SHORT PROOF OF BROOKS' THEOREM

5	Landon Rabern
6 7	$Arizona \ State \ University$ $School \ of \ Mathematical \ & Statistical \ Sciences$
8	e-mail: landon.rabern@gmail.com
9	${f Abstract}$
10 11	Lovász gave a short proof of Brooks' theorem by coloring greedily in a good order. We give a different short proof by reducing to the cubic case. Keywords: coloring, clique number, maximum degree.
12 13	2010 Mathematics Subject Classification: 05C15.
	In [5] Lovász gave a short proof of Brooks' theorem by coloring greedily in a good order. Here we give a different short proof by reducing to the cubic case. One interesting feature of the proof is that it doesn't use any connectivity concepts. Our notation follows Diestel [2] except we write K_t instead of K^t for the complete graph on t vertices. Theorem 1 (Brooks [1]). Every graph G with $\chi(G) = \Delta(G) + 1 \geq 4$ contains
20 21 22 23	$K_{\Delta(G)+1}$. Proof. Suppose the theorem is false and choose a counterexample G minimizing $ G $. Put $\Delta := \Delta(G)$. Using minimality of $ G $, we see that $\chi(G - v) \leq \Delta$ for all $v \in V(G)$. In particular, G is Δ -regular.
29	First, suppose $\Delta \geq 4$. Pick $v \in V(G)$ and let w_1, \ldots, w_{Δ} be v 's neighbors. Since $K_{\Delta+1} \not\subseteq G$, by symmetry we may assume that w_2 and w_3 are not adjacent. Choose a $(\Delta+1)$ -coloring $\{\{v\}, C_1, \ldots, C_{\Delta}\}$ of G where $w_i \in C_i$ so as to maximize $ C_1 $. Then C_1 is a maximal independent set in G and in particular, with $H := G - C_1$, we have $\chi(H) = \chi(G) - 1 = \Delta = \Delta(H) + 1 \geq 4$. By minimality of $ G $, we get $K_{\Delta} \subseteq H$. But $\{\{v\}, C_2, \ldots, C_{\Delta}\}$ is a Δ -coloring of H , so any K_{Δ} in H must contain u and hence w_1 and w_2 a contradiction
29	

Therefore G is 3-regular. Since G is not a forest it contains an induced cycle C. Put T := N(C). Then $|T| \ge 2$ since $K_4 \not\subseteq G$. Take different $x, y \in T$ and put $H_{xy} := G - C$ if x is adjacent to y and $H_{xy} := (G - C) + xy$ otherwise. Then, by minimality of |G|, either H_{xy} is 3-colorable or adding xy created a K_4 in H_{xy} .

L. Rabern

Suppose the former happens. Then we have a 3-coloring of G - C where x and y receive different colors. We can easily extend this partial coloring to all of G since each vertex of C has a set of two available colors and some pair of vertices in C get different sets.

Whence adding xy created a K_4 , call it A, in H_{xy} . We conclude that T is independent and each vertex in T has exactly one neighbor in C. Hence $|T| \geq |C| \geq 3$. Pick $z \in T - \{x,y\}$. Then x is contained in a K_4 , call it B, in H_{xz} . Since d(x) = 3, we must have $A - \{x,y\} = B - \{x,z\}$. But then any $w \in A - \{x,y\}$ has degree at least 4, a contradiction.

We note that the reduction to the cubic case is an immediate consequence of more general lemmas on hitting all maximum cliques with an independent set (see [4], [6] and [3]). H. Tverberg pointed out that this reduction was also demonstrated in his paper [7].

References

35

36

37

38

39

43

44

48

- [1] R.L. Brooks, On colouring the nodes of a network, Mathematical Proceedings of the Cambridge Philosophical Society, vol. 37, Cambridge Univ Press, 1941, pp. 194–197.
- [2] R. Diestel, Graph Theory, Fourth ed., Springer Verlag, 2010.
- [3] A.D. King, *Hitting all maximum cliques with a stable set using lopsided*independent transversals, Journal of Graph Theory **67** (2011), no. 4, 300–
 305.
- ⁵⁶ [4] A.V. Kostochka, *Degree*, *density*, and chromatic number, Metody Diskret. Anal. **35** (1980), 45–70 (in Russian).
- [5] L. Lovász, *Three short proofs in graph theory*, Journal of Combinatorial Theory, Series B **19** (1975), no. 3, 269–271.
- [6] L. Rabern, On hitting all maximum cliques with an independent set, Journal
 of Graph Theory 66 (2011), no. 1, 32–37.
- [7] H. Tverberg, On Brooks' theorem and some related results, Mathematics Scandinavia **52** (1983), 37–40.