

Measuring the prompt component of the atmospheric muon flux

Ludwig Neste and Pascal Gutjahr

F3/F4 Meeting

Dortmund 2023

Definition of the muon flux

Conventional component:

$$p \xrightarrow{\tau = 2.6 \cdot 10^{-8} \text{s}} \mu^{+} + \nu_{\mu}$$

$$\underset{\propto E^{-2.7}}{\sim E^{-2.7}} \kappa^{-2.7} + \nu_{\mu}$$

prompt component: $\tau = 1.04 \cdot 10^{-12} \text{s}$ $p \rightarrow D^{+} \rightarrow K^{0} + \mu^{+} + \nu_{\mu}$ $\pi F^{-2.7}$

```
Xi(c)~0
Lambda(c)~-
D(s)-
D~0
D-
rho(770)0
eta
omega(782)
eta'(958)
phi(1020)
D+
D0
D(s)+
J/psi(1S)
Lambda(c)+
Xi(c)0
```


Muon flux

- Prompt dominates at energies larger than PeV
- Conventional particle flux depends on zenith angle

Ideas to measure the prompt component

- CORSIKA 7
- SIBYLL 2.3d → charm included
- Use extended history option in CORSIKA → parent information
 - Tag muon parent particles in MC (prompt/conv)
- Scale amount of prompt particles to create several datasets
 - Fit of prompt flux normalization
 - Get handle on hadronic interaction models
 - Scaling saves time and resources instead of doing multiple simulations with different interaction models
- Analyze:
 - Muon energy
 - Zenith angle
 - Time (seasonal variations)
 - Conventional flux depends on the season

```
I3MCTree:

3001 PPlus (-162238m, 157642m, 108123m) (64.4051deg, 135.708deg) -819815ns 214166GeV 220335m

3002 PiPlus (nanm, nanm, nanm) (64.1885deg, 135.701deg) nanns 2077.16GeV nanm

3008 KPlus (-21004m, 19853.1m, 1884.56m) (64.1846deg, 135.7deg) nanns 1210.41GeV nanm

3009 NuMu (-3593.81m, 2844.39m, 1948.43m) (64.402deg, 135.662deg) -10.3179ns 409.741GeV nanm

3010 MuPlus (-3582.39m, 2855.52m, 1948.43m) (64.403deg, 135.7deg) -9.81788ns 795.696GeV nanm

3003 PiPlus (nanm, nanm, nanm) (64.2276deg, 135.706deg) nanns 1992.84GeV nanm

3011 Rho7700 (-17868.8m, 16795.2m, 1902.91m) (64.229deg, 135.719deg) nanns 1729.8GeV nanm

3012 unknown (nanm, nanm, nanm) (nandeg, nandeg) nanns nanGeV nanm

3013 NuMuBar (-3555.5m, 2848.75m, 1948.45m) (64.4281deg, 135.744deg) 63.2446ns 304.713GeV nanm
```

✓ First simulations produced

Identify prompt particles in air shower

- > Good agreement between CORSIKA and MCEq in total
- \triangleright Mismatches between the production of D_s and D_0

Scaling of the prompt component (sketch)

- Amount of prompt particles is re-weighted with 0.5 and 2
- Use tagging of prompt in CORSIKA MC
- Conventional component is not much affected
 - If a shower contains prompt, almost no conv. particles in the shower arrive at the surface
- >Used for likelihood fit

Summary

- CORSIKA 7 with SIBYLL 2.3d
- Tag muon parents
- Good agreement with MCEq in total, but mismatch in D_s and D_0

We will provide:

- Normalization of the prompt muon flux in dependence of muon energy and zenith angle
- Unfolding at Earth's surface

Future discussion:

- How to extract physical parameters from effective scaling?
 - branching ratios (BR), cross-sections, particle physics
- Scale BR and hadronic models compatible with LHC results

Backup

Observations

- Mismatch between data and hadronic interaction models
- No charm included in the past
- Prompt was neglected
- Fits better by adding prompt model

➤ New simulations including charm

[Journal of Physics: Conf. Series. 2019. V. 1181, 012054]

Previous analyses

- Fit compatible with zero
- MC uncertainties too large

Results promising, but zenith problem

Solution to zenith problem?

➤ No complete solution, but a step in the right direction

Muon energy distributions

- Highest energetic muon per shower/tree inside detector is shown
- Too less statistics at high energies
- Unknown: parent particle is not known \rightarrow generation counter indicates, that there are particles between mother and muon \rightarrow conventional

Backup: Zenith problem

Figure 8: Ratio of experimental data to simulation in terms of reconstructed zenith angle θ_{zen} and total amount of registered photo-electrons Q_{tot} . The primary flux models used in this comparison are discussed in Section 4.2.

Specific parent particle identification

- CORSIKA 7 using SIBYLL 2.3d vs. SIBYLL 2.3c¹
- Good agreement with unflavored particles
- Mismatches occur for all the D-mesons
 - Issue not yet solved
 - Only protons simulated with CORSIKA

¹ Phys. Rev. D 100 (2019) 103018

Backup: Scaling of the prompt component- DYNSTACK

- Use DYNSTACK
 - CORSIKA extension to manipulate stack
- Replace prompt particles with conv. (π, K) while shower simulation
 - adapt kinetic energy
- Issue?
 - More conv. particles in shower, but less in the high energy region
 - D⁰ \rightarrow K^+ (>50%) removing prompt parents removes conv. muons as well

