Random Matrix Theory: Selected Applications from Statistical Signal Processing and Machine Learning

Ph.D. Thesis Defense

Khalil Elkhalil

Committee Chairperson: Dr. Tareq Y. Al-Naffouri Committee Co-Chair: Dr. Mohamed-Slim Alouini

Committee Members: Dr. Xiangliang Zhang and Dr. Abla Kammoun

External Examiner: Dr. Alfred Hero

June 24, 2019

King Abdullah University of Science and Technology Computer, Electrical and Mathematical Sciences and Engineering

Table of contents

- 1. Introduction
- 2. Moments of Correlated Gram matrices
- 3. Regularized discriminant analysis with large dimensional data
- 4. Centered Kernel Ridge Regression (CKRR)
- 5. Conclusion
- 6. Future research directions

Introduction

Moore's law

 \bullet The # of transistors that you can fit into a piece of silicon doubles every couple of years.

 $^{^{1}}$ C. M. Bishop, Microsoft research, Cambridge.

We need a tool that embraces these challenges

Random matrix theory (RMT)

Study the behavior of large random matrices

- Allow the prediction of the behavior of random quantities depending on large random matrices
- Key of success: Randomness + High dimensionality

RMT: Applications

Statistical Signal Processing

- Large number of antenna arrays vs large number of observations
- \rightarrow Improved signal processing techniques

Wireless Communications

- Large # of antennas, Large # of users
- → Improved transmission and detection strategies
- \rightarrow Low complexity design

Machine learning

- Supervised²/semi-supervised³/unsupervised learning⁴.
- → A better fundamental understanding
- \rightarrow Improved classification performance

 $^{^2}$ Z. Liao, R. Couillet, "A Large Dimensional Analysis of Least Squares Support Vector Machines", submitted

 $^{^{3}}$ X. Mai, R. Couillet, "A random matrix analysis and improvement of semi-supervised learning for large dimensional data", submitted.

⁴R. Couillet, F. Benaych-Georges, "Kernel Spectral Clustering of Large Dimensional Data", Electronic Journal of Statistics, vol. 10, no. 1, pp. 1393-1454, 2016.

RMT: Example

How does this work?

- Self-averaging effect mechanism similar to that met in the law of large numbers
- $\mathbf{h}_1, \cdots, \mathbf{h}_n \in \mathbb{C}^p$ with i.i.d entries with zero mean and variance $\frac{1}{n}$.
- $\mathbf{H}\mathbf{H}^{H}$ is an estimator of the cov. matrix with $\mathbf{H} = [\mathbf{h}_{1}, \cdots, \mathbf{h}_{n}]$.

Figure 1.1: Histogram of eigenvalues of **HH**^H

Figure 1.2: Histogram of eigenvalues of **HH**^H

Why is this useful?

The same result can be extended in the correlated $case^5$

Certain functionals of HH^H can be evaluated when $p, n \to \infty$, $p/n \to c$.

- $\frac{1}{n}$ tr (HH^H)
- $\frac{1}{n} \operatorname{tr} (\mathbf{H} \mathbf{H}^{\mathsf{H}})^{-k}$: performance of linear est. techniques
- $\frac{1}{n} \log \det (\mathbf{H}\mathbf{H}^{H})$: MIMO systems, linear estimation (LCE)
- λ_{\min} (**HH**^H), λ_{\max} (**HH**^H),... : WEV in linear estimation

What happens for the moments in the finite regime?

$$\mathbb{E}_{\mathsf{H}\sim\mathcal{D}}f\left(\mathsf{H}\mathsf{H}^{\mathsf{H}}\right)$$

⁵J. W. Silverstein and Z. D. Bai, On the Empirical Distribution of Eigenvalues of a Class of Large Dimensional Random Matrices, Journal of Multivariate Analysis, vol. 54, pp. 175192, May 2002.

Moments of Correlated Gram matrices

Gram matrices

Linear estimation

Let m < n and $\mathbf{H} \in \mathbb{C}^{n \times m}$ with i.i.d zero mean unit variance Gaussian entries and Λ is positive definite matrix with distinct eigenvalues $\theta_1, \theta_2, \dots, \theta_n$.

$$\mathbf{y}_{n\times 1} = \mathbf{H}_{n\times m} \mathbf{v}_{m\times 1} + \mathbf{\Lambda}^{-\frac{1}{2}} \mathbf{z}_{n\times 1}. \tag{1}$$

Define the correlated Gram matrix

$$G = H^* \Lambda H. \tag{2}$$

	LS	LMMSE
MSE	$\mathbb{E}\operatorname{tr}\mathbf{G}^{-1}$	$\mathbb{E}\operatorname{tr}\left(\mathbf{G}+\mathbf{R}_{v}^{-1} ight)^{-1}$

Sample covariance matrix (SCM): $u(k) = R^{\frac{1}{2}}h(k)$

$$\hat{\mathbf{R}}(n) = (1 - \lambda) \sum_{k=1}^{n} \lambda^{n-k} \mathbf{u}(k) \mathbf{u}^{*}(k) = \mathbf{R}^{\frac{1}{2}} \mathbf{H} \boldsymbol{\Lambda}(n) \mathbf{H}^{*} \mathbf{R}^{\frac{1}{2}},$$
(3)

$$Loss(n) \triangleq \mathbb{E} \left\| \mathbf{R}^{\frac{1}{2}} \hat{\mathbf{R}}^{-1}(n) \mathbf{R}^{\frac{1}{2}} - \mathbf{I}_{m} \right\|_{F}^{2}$$
$$= m + \mathbb{E} \operatorname{tr} \mathbf{G}_{n}^{-2} - 2\mathbb{E} \operatorname{tr} \mathbf{G}_{n}^{-1}$$

Negative moments of correlated Gram matrices

Define the negative moments of ${\bf G}$ as

$$\mu_{m{\Lambda}}\left(-k
ight) riangleq \mathbb{E}\operatorname{tr}\left(\mathbf{G}^{-k}
ight), \quad k \in \mathbb{N}.$$

Then,

$$\begin{array}{|c|c|c|}\hline & \mathsf{LS}\;(\mathsf{Exact}) & \mathsf{LMMSE}\;(\mathbf{R}_{\mathsf{x}} = \sigma_{\mathsf{x}}^2\mathbf{I},\,\sigma_{\mathsf{x}}^2 \gg 1) \\ \hline & \mathsf{MSE} & \mu_{\mathsf{\Lambda}}\,(-1) & \sum_{k=0}^{l}\frac{(-1)^k}{\sigma_{\mathsf{x}}^{2k}}\mu_{\mathsf{\Lambda}}\,(-k-1) + o\left(\sigma_{\mathsf{x}}^{-2l}\right) \\ \hline \end{array}$$

Loss (n) =
$$m + \mu_{\Lambda(n)}(-2) - 2\mu_{\Lambda(n)}(-1)$$
.

Negative moments of correlated Gram matrices

Theorem (Negative moments)^a Let $p = \min(m, n - m)$, then for $1 \le k \le p$, we have

$$\mu_{\Lambda}\left(-k\right) = L \sum_{j=1}^{k} \sum_{i=1}^{m} \mathcal{D}\left(i,j\right) \frac{\left(-1\right)^{k-j}}{\left(k-j\right)!} \mathbf{b}_{i}^{t} \mathbf{\Psi}^{-1} \mathbf{D}_{i} \mathbf{a}_{j,k}.$$

^aK. Elkhalil, A. Kammoun, T. Al-Naffouri and M.-S. Alouini. Analytical Derivation of the Inverse Moments of One-sided Correlated Gram Matrices with Applications.

IEEE Trans. Signal Processing, 2016.

$$\mathbf{\Psi} = \begin{bmatrix} 1 & \theta_1 & \cdots & \theta_1^{n-m-1} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & \theta_{n-m} & \cdots & \theta_{n-m}^{n-m-1} \end{bmatrix}$$

Limitations

$$\mu_{\Lambda}(-k) = L \sum_{j=1}^{k} \sum_{i=1}^{m} \mathcal{D}(i,j) \frac{(-1)^{k-j}}{(k-j)!} \mathbf{b}_{i}^{t} \boldsymbol{\Psi}^{-1} \mathbf{D}_{i} \mathbf{a}_{j,k}.$$

$$\Psi = \begin{bmatrix} 1 & \theta_1 & \cdots & \theta_1^{n-m-1} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & \theta_{n-m} & \cdots & \theta_{n-m}^{n-m-1} \end{bmatrix}$$

- So complicated formula
- Not useful if the eigenvalues of Λ are close to each other (We treat this issue for positive moments) ⁶.
- Not numerically stable if the dimensions are large.
- Not insightful!
- Not universal: the result will be different if we change the distribution from Gaussian.

⁶K. Elkhalil, A. Kammoun, T. Y. Al-Naffouri and M.-S. Alouini: Numerically Stable Evaluation of Moments of Random Gram Matrices With Applications. IEEE Signal Process. Lett. 24(9): 1353-1357 (2017)

Asymptotic moments

Theorem (Silverstein and Bai 7)

Consider the Gram matrix $G = H^* \Lambda H$ with the following assumptions

- $m, n \to \infty$ with $\frac{m}{n} \to c \in (0, \infty)$
- $\|\mathbf{\Lambda}\| = O(1)$ with rank $(\mathbf{\Lambda}) = O(m)$.

$$\frac{1}{m}\operatorname{tr}\mathbf{G}^{-1} - \delta \to_{a.s.} 0, \ \delta = \left[\frac{1}{m}\operatorname{tr}\mathbf{\Lambda}(\mathbf{I}_n + \delta\mathbf{\Lambda})^{-1}\right]^{-1}.$$

Higher inverse moments can be computed using an iterative process^a

^aKhalil Elkhalil, Abla Kammoun, Tareq Y. Al-Naffouri, Mohamed-Slim Alouini: Analytical Derivation of the Inverse Moments of One-Sided Correlated Gram Matrices With Applications IEEE Trans. Signal Processing 64(10): 2624-2635 (2016)

⁷J. W. Silverstein and Z. D. Bai, On the Empirical Distribution of Eigenvalues of a Class of Large Dimensional Random Matrices, Journal of Multivariate Analysis, vol. 54, pp. 175192, May 2002.

Validation of the inverse moments

Optimal λ for SCM estimation

Figure 2.1: The estimation loss as a function of λ (Exact formula).

Regularized discriminant analysis with large dimensional data

Supervised learning

- ullet We are provided with labeled data $\left(\text{features}_i, \frac{\text{response}}{\text{label}_i}\right)_{1 \le i \le n}$.
- Fit a model to the data.

https://towardsdatascience.com

Classification

 Principle: Build a classification rule that allows to assign for an unseen observation its corresponding class.

Let x be the input data and f be the classification rule.

Classifier
$$\triangleq \left\{ \begin{array}{ll} \text{Assign class 1} & \text{if} \quad f(\mathbf{x}) > 0 \\ \text{Assign class 2} & \text{if} \quad f(\mathbf{x}) \leq 0 \end{array} \right.$$

Model based classification

- Data is assumed to be sampled from a certain dist.
- The decision rule is constructed based on that.
- The MAP rule is considered in the design

$$\widehat{k} = \arg\max_{k: classes} \mathbb{P}\left[\mathcal{C}_k | \mathbf{x}\right]$$

The classifier is designed to satisfy this rule.

Gaussian discriminant analysis

Gaussian mixture model for binary classification (2 classes)

- $\mathbf{x}_1, \cdots, \mathbf{x}_n \in \mathbb{R}^p$
- Class k is formed by $\mathbf{x} \sim \mathcal{N}(\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$, k = 0, 1

Linear discriminant analysis (LDA): $\Sigma_0 = \Sigma_1 = \Sigma$

$$W^{LDA}\left(\mathbf{x}
ight) = \left(\mathbf{x} - rac{oldsymbol{\mu}_0 + oldsymbol{\mu}_1}{2}
ight)^T oldsymbol{\Sigma}^{-1}(oldsymbol{\mu}_0 - oldsymbol{\mu}_1) - \lograc{\pi_1}{\pi_0} < \quad 0.$$

 \rightarrow Decision rule is linear in x.

Quadratic discriminant analysis: $\Sigma_0 \neq \Sigma_1$

$$W^{QDA}(\mathbf{x}) = -\frac{1}{2}\log\frac{|\mathbf{\Sigma}_0|}{|\mathbf{\Sigma}_1|} - \frac{1}{2}(\mathbf{x} - \boldsymbol{\mu}_0)^T \mathbf{\Sigma}_0^{-1}(\mathbf{x} - \boldsymbol{\mu}_0) + \frac{1}{2}(\mathbf{x} - \boldsymbol{\mu}_1)^T \mathbf{\Sigma}_1^{-1}(\mathbf{x} - \boldsymbol{\mu}_1) \underset{<}{>} 0.$$

→ Decision rule is quadratic in x.

- ullet Assume Σ , μ_0 and μ_1 known.
- Equal priors : $\pi_0 = \pi_1 = 0.5$
- No asymptotic regime, p is fixed.

The total misclassification rate is given by ⁸

$$\epsilon = \Phi\left(-rac{\Delta}{2}
ight), \quad \Delta = \left\|oldsymbol{\mu}_0 - oldsymbol{\mu}_1
ight\|_{oldsymbol{\Sigma}^{-1}}$$

What happens when the statistics are not known?

 $^{^{8} \}mbox{Jerome Friedman, Trevor Hastie, and Robert Tibshirani. The Elements of Statistical Learning. Springer, 2009.$

LDA: Asymptotic regime (equal covariances)

Asymptotic growth regime

Let $n = n_0 + n_1$.

- $ullet n_0, n_1, p o \infty$ such that $rac{p}{n} o c < 1$.
- ullet μ_0 and μ_1 are known.
- Σ is replaced by its sample estimate $\widehat{\Sigma} = \frac{1}{n-2} \sum_{k=1}^{n} \sum_{i=1}^{n_k} (\mathbf{x}_{k,i} \overline{\mathbf{x}}_k) (\mathbf{x}_{k,i} \overline{\mathbf{x}}_k)^T$.

Wang et al. 2018 a

$$\epsilon_{LDA} - \Phi \Big[- \frac{\Delta}{2} \sqrt{1-c} \Big] \rightarrow_{prob.} 0$$

^aCheng Wang and Binyan Jiang. On the dimension effect of regularized linear discriminant analysis, arXiv:1710.03136v1

- \rightarrow When $c \rightarrow 1$, the misclassification rate tends to 0.5.
- \rightarrow For the LDA to result in acceptable performance, we need c close to 0.
- ightarrow Because its use of the inverse of the pooled covariance matrix, the LDA applies only when c < 1.

What happens if p > n?

LDA: High dimensionality

Regularization

$$\mathsf{H} = \left(\mathsf{I}_{p} + \gamma \widehat{\mathbf{\Sigma}}
ight)^{-1}.$$

Optimal γ ?

Dimensionality reduction

$$\mathsf{data}_{(d)} = \mathbf{W}_{d \times p} \times \mathsf{data}_{(p)}$$

Best d?

LDA with random projections

Random projections

$$\mathbb{R}^{p} \longrightarrow \mathbb{R}^{d}$$
$$x \longmapsto \mathbf{W}x$$

Projection matrix

We shall assume that the projection matrix ${\bf W}$ writes as ${\bf W}=\frac{1}{\sqrt{p}}{\bf Z}$, where the entries $Z_{i,j}$ $(1\leq i\leq d,\,1\leq j\leq p)$ of ${\bf Z}$ are centered with unit variance and independent identically distributed random variables satisfying the following moment assumption. There exists $\epsilon>0$, such that $\mathbb{E}\,|Z_{i,j}|^{4+\epsilon}<\infty$.

Johnsonn-Lindenstrauss Lemma

For a given n data points $\mathbf{x}_1,\cdots,\mathbf{x}_n$ in \mathbb{R}^p , $\epsilon\in(0,1)$ and $d>\frac{8\log n}{\epsilon^2}$, there exists a linear map $f:\mathbb{R}^p\to\mathbb{R}^d$ such that

$$(1 - \epsilon) \|\mathbf{x}_i - \mathbf{x}_j\|^2 \le \|\mathbf{W}\mathbf{x}_i - \mathbf{W}\mathbf{x}_j\|^2 \le (1 + \epsilon) \|\mathbf{x}_i - \mathbf{x}_j\|^2,$$
 (4)

Conditional risk after projection

$$\epsilon_i^{\text{P-LDA}} = \Phi \Bigg[-\frac{1}{2} \sqrt{\boldsymbol{\mu}^\top \mathbf{W}^\top \left(\mathbf{W} \boldsymbol{\Sigma} \mathbf{W}^\top \right)^{-1} \mathbf{W} \boldsymbol{\mu}} + \frac{\left(-1\right)^{i+1} \log \frac{\pi_0}{\pi_1}}{\sqrt{\boldsymbol{\mu}^\top \mathbf{W}^\top \left(\mathbf{W} \boldsymbol{\Sigma} \mathbf{W}^\top \right)^{-1} \mathbf{W} \boldsymbol{\mu}}} \Bigg]$$

Performance of LDA with random projections

Asymptotic Performance^a

$$\epsilon_{i}^{\text{P-LDA}} - \Phi \left[\frac{-\frac{1}{2} \boldsymbol{\mu}^{\top} \left(\boldsymbol{\Sigma} + \delta_{d} \mathbf{I}_{p} \right)^{-1} \boldsymbol{\mu} + (-1)^{i+1} \log \frac{\pi_{0}}{\pi_{1}}}{\sqrt{\boldsymbol{\mu}^{\top} \left(\boldsymbol{\Sigma} + \delta_{d} \mathbf{I}_{p} \right)^{-1} \boldsymbol{\mu}}} \right] \rightarrow_{prob.} 0, \tag{5}$$

$$\delta_d \operatorname{tr} \left(\mathbf{\Sigma} + \delta_d \mathbf{I}_p \right)^{-1} = p - d. \tag{6}$$

 δ_d can be seen as a penalty on projection.

^aK. Elkhalil, A. Kammoun, R. Calderbank, T. Al-Naffouri and M.-S. Alouini. Asymptotic Performance of Linear Discriminant Analysis with Random Projections. ICASSP 2019.

I DA

equal priors:
$$\Phi \left[-\frac{1}{2} \sqrt{\mu^{\top} \Sigma \mu} \right]$$

$$\Sigma = I_p : \Phi \left[-\frac{1}{2} \|\mu\| \right]$$

P-I DA

$$\Phi\left[-\frac{1}{2}\sqrt{\boldsymbol{\mu}^{\top}\left(\boldsymbol{\Sigma}+\boldsymbol{\delta_{d}}\boldsymbol{\mathsf{I}_{p}}\right)^{-1}\boldsymbol{\mu}}\right]$$

$$\Phi\left[-\frac{1}{2}\sqrt{d/p}\,\|\boldsymbol{\mu}\|\right]$$

P-LDA: Experiments

- p = 800.
- ullet $\mu_0=oldsymbol{0}_p$ and $\mu_1=rac{3}{\sqrt{p}}oldsymbol{1}_p$.
- $\Sigma = \{0.4^{|i-j|}\}_{i,j}$.

R-LDA: Asymptotic regime (equal covariances)

Asymptotic growth regime

- $n_0, n_1, p \to \infty$ such that $\frac{p}{n} \to c \in (0, \infty)$.
- ullet μ_k are replaced by $\overline{\mathbf{x}}_k = rac{1}{\overline{n}_k} \sum_{\mathbf{x}_i \in \mathcal{C}_k} \mathbf{x}_i$.
- ullet Σ^{-1} is replaced by its ridge estimate ${f H} = \left({f I}_{m p} + \gamma \widehat{\Sigma}
 ight)^{-1}.$

Hachem el al 2008. a

$$\mathbf{H} \sim \mathbf{T} = (\mathbf{I}_p + \rho \mathbf{\Sigma})^{-1} \,,$$
 in the sense that $\mathbf{a}^T \, (\mathbf{H} - \mathbf{T}) \, \mathbf{b} \to_{prob.} \, 0$ and $\frac{1}{n} \operatorname{tr} \mathbf{A} \, (\mathbf{H} - \mathbf{T}) \to_{prob.} \, 0$.

^aW. Hachem, O. Khorunzhiy, P. Loubaton, J. Najim, L. Pastur: A New Approach for Mutual Information Analysis of Large Dimensional Multi-Antenna Channels. IEEE Trans. Information Theory 54(9): 3987 - 4004 (2008).

Zollanvari and Dougherty 2015 a

$$\epsilon_{R-LDA}^{equal} - \Phi \left[\frac{-\mu^T \left(\mathbf{I}_{p} + \rho \mathbf{\Sigma} \right)^{-1} \mu}{\sqrt{D}} \right] \rightarrow_{prob.} 0$$

^aAmin Zollanvari and Edward R. Dougherty: Generalized Consistent Error Estimator of Linear Discriminant Analysis. IEEE Trans. Signal Processing 63(11): 2804-2814 (2015)

R-LDA: Asymptotic regime (dist. covariances)

Asymptotic growth regime

- $n_0, n_1, p \to \infty$ such that $\frac{p}{n} \to c \in (0, \infty)$.
- ullet μ_k are replaced by $\overline{\mathbf{x}}_k = rac{1}{n_k} \sum_{\mathbf{x}_i \in \mathcal{C}_k} \mathbf{x}_i$.
- ullet Σ^{-1} is replaced by its ridge estimate ${f H} = \left({f I}_{m p} + \gamma \widehat{\Sigma}
 ight)^{-1}.$

Benavch and Couillet 2016 a

$$\mathbf{H} \sim \mathbf{T}_{0,1} \propto \left(\mathbf{I_p} +
ho_0 \mathbf{\Sigma}_0 +
ho_1 \mathbf{\Sigma}_1
ight)^{-1}$$

^aF. Benaych-Georges and R. Couillet, Spectral Analysis of the Gram Matrix of Mixture Models, ESAIM: Probability and Statistics, vol. 20, pp. 217237, 2016.

Elkhalil et al. 2018 a

$$\epsilon_{R-LDA}^{\textit{dist.}} - \left\{ \frac{1}{2} \Phi \left[\frac{-\boldsymbol{\mu}^T \mathbf{T}_{0,1} \boldsymbol{\mu} + \boldsymbol{\beta}}{\sqrt{D_0}} \right] + \frac{1}{2} \Phi \left[\frac{-\boldsymbol{\mu}^T \mathbf{T}_{0,1} \boldsymbol{\mu} - \boldsymbol{\beta}}{\sqrt{D_1}} \right] \right\} \rightarrow_{\textit{prob.}} 0$$

^aK. Elkhalil, A. Kammoun, R. Couillet, T. Al-Naffouri and M.-S. Alouini. A Large Dimensional Study of Regularized Discriminant Analysis Classifiers. Under review in IEEE Trans. Information Theory.

How is this different from the case of equal covariances?

R-LDA: Asymptotic regime (dist. covariances)

$$\epsilon_{R-LDA}^{\textit{dist.}} - \left\{ \frac{1}{2} \Phi \left[\frac{-\boldsymbol{\mu}^T \mathbf{T}_{0,1} \boldsymbol{\mu} + \boldsymbol{\beta}}{\sqrt{D_0}} \right] + \frac{1}{2} \Phi \left[\frac{-\boldsymbol{\mu}^T \mathbf{T}_{0,1} \boldsymbol{\mu} - \boldsymbol{\beta}}{\sqrt{D_1}} \right] \right\} \rightarrow_{\textit{prob.}} \mathbf{0}$$

Some insights

• If $\|\Sigma_0 - \Sigma_1\| = o(1)$

$$\epsilon_{R-LDA}^{dist.} = \epsilon_{R-LDA}^{equal} + o(1).$$

- → R-LDA is robust against small perturbations.
- Different misclassification rates across classes.
- The enhancement in the misclassification rate in one class is likely to be lost by the other class.
- R-LDA does not leverage well the information about the covariance differences.

What about R-QDA?

R-QDA: Asymptotic regime

R-LDA	R-QDA
n_0, n_1 samples	n_0, n_1 samples
$\widehat{\boldsymbol{\Sigma}} = \frac{1}{n-2} \sum_{k=1}^{2} \sum_{i=1}^{n_k} \left(\mathbf{x}_{k,i} - \overline{\mathbf{x}}_k \right) \left(\mathbf{x}_{k,i} - \overline{\mathbf{x}}_k \right)^T$	$\widehat{\boldsymbol{\Sigma}}_{0} = \frac{1}{n_{0}-1} \sum_{i=1}^{n_{0}} \left(\mathbf{x}_{0,i} - \overline{\mathbf{x}}_{0} \right) \left(\mathbf{x}_{0,i} - \overline{\mathbf{x}}_{0} \right)^{T}$ $\widehat{\boldsymbol{\Sigma}}_{1} = \frac{1}{n_{1}-1} \sum_{i=1}^{n_{1}} \left(\mathbf{x}_{1,i} - \overline{\mathbf{x}}_{1} \right) \left(\mathbf{x}_{1,i} - \overline{\mathbf{x}}_{1} \right)^{T}$

$$\epsilon_{i} = \mathbb{P}\left[\omega^{T}\mathbf{B}_{i}\omega + 2\omega^{T}\mathbf{y}_{i} < \xi_{i}\right], where \ \omega \sim \mathcal{N}\left(\mathbf{0}_{p}, \mathbf{I}_{p}\right),$$

Asymptotic growth regime

- 1. Data scaling: $\frac{n_i}{\rho} \to c \in (0,\infty)$, with $|n_0 n_1| = o(p)$.
- 2. Mean scaling: $\|\boldsymbol{\mu}_0 \boldsymbol{\mu}_1\|^2 = O\left(\sqrt{p}\right)$.
- 3. Covariance scaling: $\|\mathbf{\Sigma}_i\| = O(1)$.
- 4. $\Sigma_0 \Sigma_1$ has exactly $O(\sqrt{p})$ eigenvalues of O(1).

CLT(Lyapunov)

$$\epsilon_i^{R-QDA} - \Phi \left[(-1)^i \frac{1/\sqrt{p}\xi_i - 1/\sqrt{p}\operatorname{tr} \mathbf{B}_i}{\sqrt{1/p2\operatorname{tr} \mathbf{B}_i^2 + 1/p4\mathbf{y}_i^T\mathbf{y}_i}} \right] \to_{prob.} 0.$$

R-QDA: Asymptotic regime

Elkhalil et al. 2017/2018 a b

$$\epsilon_i^{R-QDA} - \left\{ \frac{1}{2} \Phi \left[\frac{\overline{\xi}_0 - \overline{b}_0}{\sqrt{2\overline{B}_0}} \right] + \frac{1}{2} \Phi \left[\frac{-\overline{\xi}_1 + \overline{b}_1}{\sqrt{2\overline{B}_1}} \right] \right\} \rightarrow_{prob.} 0.$$

 $\overline{\xi}_i$, \overline{b}_i and \overline{B}_i depend on the classes' statistics.

^aK. Elkhalil, A. Kammoun, R. Couillet, T. Y. Al-Naffouri, and M.-S. Alouini. Asymptotic Performance of Regularized Quadratic Discriminat Analysis-Based Classifiers. IEEE MLSP, Roppongi, Japan, Sept 2017.

^bK. Elkhalil, A. Kammoun, R. Couillet, T. Al-Naffouri and M.-S. Alouini. A Large Dimensional Study of Regularized Discriminant Analysis Classifiers. Under review in IEEE Trans. Information Theory.

Recall that R-QDA needs
$$\|\mu_0 - \mu_1\|^2 = O\left(\sqrt{p}\right)$$

$$\|\mu_0 - \mu_1\| = O(1)$$

The information on the distance between the means is asymptotically useless!

R-QDA achieves asymptotic perfect classification.

Discussion

Classification is asymptotically impossible.

Discussion

• Unbalanced training: $n_0 - n_1 = O(p)$.

R-QDA is equivalent to the naive classifier.

$$\epsilon \to \pi_0 \Phi (\infty) + \pi_1 \Phi (-\infty)$$

Parameter tuning

- Prone to estimation errors due to insufficiency in the number of observations.
- The tuning of the regularization parameter is very important

Model selection Given a set of candidate regularization factors

- Evaluate the performance using the test data for each regularization value ⁹
- Select the value that presents the lowest mis-classification rate

 $^{^9}$ J. Friedman. Regularized discriminant analysis. Journal of the American Statistical Association, 84:165175, 1989

Consistent estimator of the classification error

Exploiting the asymptotic equivalent

- ullet If $p=\mathit{O}(1)$ and $n o\infty$, then $\left\|\widehat{oldsymbol{\Sigma}}_i-oldsymbol{\Sigma}_i
 ight\|=o_p\left(1
 ight).$
- When $p, n \to \infty$, then $\left\|\widehat{\mathbf{\Sigma}}_i \mathbf{\Sigma}_i\right\| \neq o_p$ (1).

R-LDA (GE)

$$\widehat{\epsilon}_{i}^{R-LDA} - \Phi \left[\frac{\left(-1\right)^{i} G\left(\hat{\mu}_{i}, \hat{\mu}_{0}, \hat{\mu}_{1}, \mathbf{H}\right)}{\sqrt{D\left(\hat{\mu}_{0}, \hat{\mu}_{1}, \mathbf{H}, \widehat{\boldsymbol{\Sigma}}_{i}\right)}} \right] \rightarrow_{p.} 0$$

R-QDA (GE)

$$\widehat{\epsilon}_{i}^{R-QDA} - \Phi \left[(-1)^{i} \frac{\widehat{\xi}_{i} - \widehat{b}_{i}}{\sqrt{2\widehat{B}_{i}}} \right] \rightarrow_{\rho.} 0$$

Optimal regularizer

$$\widehat{\gamma}^{\star} = \arg\min_{\gamma>0} \widehat{\epsilon}(\gamma)$$
 .

- ullet These results provides a glimpse on the region where the optimal γ is likely to belong.
- Perform a cross validation or testing in that region.

How well does this perform?

Performance

Benchmark estimation techniques:

- 5-fold cross-validation with 5 repetitions (5-CV).
- 0.632 bootstrap (B632).
- 0.632+ bootstrap (B632+)
- Plugin estimator consisting of replacing the stats. in the DEs by their sample estimates.

Synthetic data

- $[\Sigma_0]_{i,j} = 0.6^{|i-j|}$.
- $\bullet \ \ \boldsymbol{\Sigma}_1 = \boldsymbol{\Sigma}_0 + 3 \begin{bmatrix} \mathbf{1}_{\lceil \sqrt{\rho} \rceil} & \mathbf{0}_{k \times (p-k)} \\ \mathbf{0}_{(p-k) \times k} & \mathbf{0}_{(p-k) \times (p-k)} \end{bmatrix}.$
- $\bullet \ \mu_0 = \begin{bmatrix} 1, \mathbf{0}_{1 \times (p-1)} \end{bmatrix}^T.$
- $\mu_1 = \mu_0 + \frac{0.8}{\sqrt{p}} \mathbf{1}_{p \times 1}$.

Real data

- USPS dataset.
- p = 256 features (16 × 16) grayscale images.
- n = 7291 training examples.
- $n_{test} = 2007$ testing examples.

Performance: Synthetic data

Figure 3.1: $n_0 = n_1$ and $\gamma = 1$.

Performance: Synthetic data

Figure 3.2: p = 100 features with equal training size $(n_0 = n_1 = p)$.

Performance: USPS dataset

Figure 3.3: $n_0 = n_1$ and $\gamma = 1$. The first row gives the performance for the USPS data with digits (5, 2) whereas the second row considers the digits (5, 6).

Performance: USPS dataset

Centered Kernel Ridge Regression (CKRR)

KRR: Kernel trick

Input Space

Feature Space

$$y = w^T x$$

$$\mathbf{y} = \mathbf{w}^{\mathsf{T}} \phi(\mathbf{x})$$

KRR: Kernel trick

- $\{x_i, y_i\}_{i=1}^n$ in $\mathcal{X} \times \mathcal{Y}$ s.t. $y_i = f(x_i) + \sigma \epsilon_i$ with $\epsilon_i \sim_{\text{i.i.d}} \mathcal{N}(0, 1)$.
- Feature map: $\phi: \mathcal{X} \to \mathcal{H}$, with \mathcal{H} is a **RKHS**.
- · Learning problem

$$\min_{\boldsymbol{\alpha}} \frac{1}{2} \| \mathbf{y} - \boldsymbol{\Phi} \boldsymbol{\alpha} \|^{2} + \frac{\lambda}{2} \| \boldsymbol{\alpha} \|^{2}$$

$$\boldsymbol{\Phi} = [\phi(\mathbf{x}_{1}), \cdots, \phi(\mathbf{x}_{n})]^{T} \in \mathbb{R}^{|\mathcal{H}| \times n}$$

$$\boldsymbol{\alpha}^{*} = (\boldsymbol{\Phi}^{T} \boldsymbol{\Phi} + \lambda \mathbf{I}_{|\mathcal{H}|})^{-1} \boldsymbol{\Phi}^{T} \mathbf{y} \in \mathbb{R}^{|\mathcal{H}|}$$

$$\boldsymbol{\beta}^{*} (\mathbf{x}) = \phi(\mathbf{x})^{T} (\boldsymbol{\Phi}^{T} \boldsymbol{\Phi} + \lambda \mathbf{I}_{|\mathcal{H}|})^{-1} \boldsymbol{\Phi}^{T} \mathbf{y}$$

$$\boldsymbol{\beta}^{*} (\mathbf{x}) = \phi(\mathbf{x})^{T} \boldsymbol{\Phi}^{T} (\boldsymbol{\Phi} \boldsymbol{\Phi}^{T} + \lambda \mathbf{I}_{n})^{-1} \mathbf{y}$$

$$\{\boldsymbol{\Phi} \boldsymbol{\Phi}^{T}\}_{i,j} = \phi(\mathbf{x}_{i})^{T} \phi(\mathbf{x}_{j})$$

$$\mathbf{f}^{*} (\mathbf{x}) = \boldsymbol{\kappa} (\mathbf{x})^{T} (\boldsymbol{K} + \lambda \mathbf{I}_{n})^{-1} \mathbf{y}$$
with $\boldsymbol{\kappa} (\mathbf{x})_{i} = \phi(\mathbf{x})^{T} \phi(\mathbf{x}_{i})$ and $\boldsymbol{K}_{i,j} = \phi(\mathbf{x}_{i})^{T} \phi(\mathbf{x}_{j})$.

Centered KRR: Motivation

Inner-product kernels

$$k\left(\mathbf{x},\mathbf{x}'\right) = \phi\left(\mathbf{x}\right)^T\phi\left(\mathbf{x}'\right) = g\left(\mathbf{x}^T\mathbf{x}/\mathbf{p}\right), \ \mathbf{x} \ \text{and} \ \mathbf{x}' \in \mathcal{X}.$$

Asymptotic growth regime

Assumption 1.

- $p/n \to c(0, \infty)$.
- $\mathbb{E} \mathbf{x}_i = \mathbf{0}$ and $\text{cov} \mathbf{x}_i = \mathbf{\Sigma}$ unif. bounded in p (e.g. $\mathbf{x}_i \sim \mathcal{N}(\mathbf{0}, \mathbf{\Sigma})$).

El Karoui 2010^a

$$\|\mathbf{K} - \mathbf{K}^{\infty}\| \rightarrow_{a.s.} 0$$

with
$$K^{\infty} = \underbrace{g(0) \frac{11}{11}}_{\parallel \cdot \parallel = O(p)} + \underbrace{g'(0) \frac{XX^T}{p} + constant(g, \Sigma)}_{\parallel \cdot \parallel = O(1)}.$$

^aN. El-Karoui, The Spectrum of Kernel Random Matrices, The Annals of Statistics, vol. 38, no. 1, pp. 150, 2010.

Centered KRR: Motivation

Inner-product kernels

$$k\left(\mathbf{x},\mathbf{x}'\right) = \phi\left(\mathbf{x}\right)^{\mathsf{T}}\phi\left(\mathbf{x}'\right) = g\left(\mathbf{x}^{\mathsf{T}}\mathbf{x}/\mathbf{p}\right), \ \mathbf{x} \ \mathsf{and} \ \mathbf{x}' \in \mathcal{X}.$$

Asymptotic growth regime

Assumption 1.

- $p/n \to c(0, \infty)$.
- $\mathbb{E} x_i = \mathbf{0}$ and $\text{cov} x_i = \mathbf{\Sigma}$ unif. bounded in p (e.g. $x_i \sim \mathcal{N}\left(\mathbf{0}, \mathbf{\Sigma}\right)$).

Centering with $P = I_n - \frac{11^T}{n}$ $K_c = PKP$

El Karoui 2010^a

with
$$K^{\infty} = \underbrace{g(0)}_{\parallel \ell \parallel = O(p)} + \underbrace{g'(0)}_{\parallel \ell \parallel = O(p)} + \underbrace{constant(g, \Sigma)}_{\parallel \ell \parallel = O(p)}.$$

^aN. El-Karoui, The Spectrum of Kernel Random Matrices, The Annals of Statistics, vol. 38, no. 1, pp. 150, 2010.

Centered KRR

$$\mathbf{P}=\mathbf{I}_n-\frac{\mathbf{1}\mathbf{1}^T}{n}.$$

Learning problem

$$\begin{aligned} \min_{\alpha_{0},\alpha} \frac{1}{2} \| \mathbf{y} - \mathbf{\Phi} \alpha - \alpha_{0} \mathbf{1}_{n} \|^{2} + \frac{\lambda}{2} \| \alpha \|^{2} & \Leftrightarrow & \min_{\alpha} \frac{1}{2} \| \mathbf{P} (\mathbf{y} - \mathbf{\Phi} \alpha) \|^{2} + \frac{\lambda}{2} \| \alpha \|^{2} \\ \alpha^{\star} &= \mathbf{\Phi}^{T} \mathbf{P} \left(\underbrace{\mathbf{P} \mathbf{K} \mathbf{P}}_{\mathbf{K} c} + \lambda \mathbf{I}_{n} \right)^{-1} (\mathbf{y} - \bar{\mathbf{y}} \mathbf{1}_{n}) \\ f_{c}^{\star} (\mathbf{x}) &= \kappa_{c} (\mathbf{x})^{T} (\mathbf{K}_{c} + \lambda \mathbf{I}_{n})^{-1} \mathbf{P} \mathbf{y} + \bar{\mathbf{y}}. \\ \kappa_{c} (\mathbf{x}) &= \mathbf{P} \kappa (\mathbf{x}) - \frac{1}{n} \mathbf{P} \mathbf{K} \mathbf{1}_{n}, & \phi_{c} (\mathbf{x}) &= \phi (\mathbf{x}) - \frac{1}{n} \sum_{i=1}^{n} \phi (\mathbf{x}_{i}). \end{aligned}$$

Centered KRR \sim KRR with centered kernels

What about the performance?

Performance metrics

$$\mathcal{R}_{train} = \frac{1}{n} \mathop{\mathbb{E}}_{\epsilon} \left\| \widehat{f_c} \left(X \right) - f \left(X \right) \right\|_{2}^{2}$$

$$\mathcal{R}_{ ext{test}} = \mathop{\mathbb{E}}_{oldsymbol{s} \sim \mathcal{D}, oldsymbol{\epsilon}} \left| \widehat{f_c} \left(oldsymbol{s}
ight) - f \left(oldsymbol{s}
ight)
ight|^2$$

Assumption1. (Growth rate) As $p, n \to \infty$ we assume the following

- Data scaling: $p/n \to c \in (0, \infty)$.
- Covariance scaling: $\limsup_{n} \|\Sigma\| < \infty$.

Assumptions 2. (kernel function)

$$\mathbb{E}\left|g^{(3)}\left(\frac{1}{\rho}\boldsymbol{x}_{i}^{T}\boldsymbol{x}_{j}\right)\right|^{k}<\infty.$$

Assumption 3. (Data generating function)

•

$$\mathbb{E}_{\mathbf{x} \sim \mathcal{N}(\mathbf{0}, \mathbf{\Sigma})} \left| f(\mathbf{x}) \right|^k < \infty,$$

•

$$\underset{x \sim \mathcal{N}(\mathbf{0}, \mathbf{\Sigma})}{\mathbb{E}} \left\| \mathbf{\nabla}_{f} \left(\mathbf{x} \right) \right\|_{2}^{k} < \infty, \text{where } \mathbf{\nabla}_{f} \left(\mathbf{x} \right) = \left\{ \frac{\partial f \left(\mathbf{x} \right)}{\partial x_{l}} \right\}_{l=1}^{p}.$$

CKRR: Limiting risk

Limiting risk^a Let
$$z = -\frac{\lambda + g(\tau) - g(0) - \tau g'(0)}{g'(0)}$$
 with $\tau = \frac{1}{p} \operatorname{tr} \Sigma$.

$$\mathcal{R}_{train} - \frac{\mathcal{R}_{train}^{\infty}}{\mathcal{R}_{train}} \rightarrow_{prob.} 0$$

$$\mathcal{R}_{test} - \frac{\mathcal{R}_{test}^{\infty}}{\mathcal{R}_{test}} \rightarrow_{prob.} 0$$

$$\mathcal{R}_{\textit{train}}^{\infty} = \left(\frac{c\lambda \textit{m}_{\textit{z}}}{\textit{g}^{\prime}\left(0\right)}\right)^{2} \frac{\textit{n}\left(1 + \textit{m}_{\textit{z}}\right)^{2}\left(\sigma^{2} + \textit{var}_{\textit{f}}\right) - \textit{n}\textit{m}_{\textit{z}}\left(2 + \textit{m}_{\textit{z}}\right)\left\|\mathbb{E}\left[\boldsymbol{\nabla}_{\textit{f}}\right]\right\|^{2}}{\textit{n}\left(1 + \textit{m}_{\textit{z}}\right)^{2} - \textit{p}\textit{m}_{\textit{z}}^{2}} + \sigma^{2} - 2\sigma^{2} \frac{c\lambda \textit{m}_{\textit{z}}}{\textit{g}^{\prime}\left(0\right)}$$

$$\mathcal{R}_{\text{test}}^{\infty} = \frac{n\left(1+\textit{m}_{\textit{z}}\right)^{2}\left(\sigma^{2}+\textit{var}_{\textit{f}}\right)-\textit{nm}_{\textit{z}}\left(2+\textit{m}_{\textit{z}}\right)\left\|\mathbb{E}\left[\boldsymbol{\nabla}_{\textit{f}}\right]\right\|^{2}}{n\left(1+\textit{m}_{\textit{z}}\right)^{2}-\textit{pm}_{\textit{z}}^{2}}-\sigma^{2}.$$

^aK. Elkhalil, A. Kammoun, X. Zhang, M.-S. Alouini and T. Al-Naffouri. Risk Convergence of Centered Kernel Ridge Regression with Large Dimensional Data. Submitted to IEEE Trans. Signal Processing.

Bad news ©

Minimim prediction risk is achieved by all kernels!! \sim Linear kernel

 $\mathsf{Good}\ \mathsf{news}\ \odot$

kernel/regularizer can be jointly optimized!

CKRR: Consistent estimator of the prediction risk

Interesting relation between $\mathcal{R}_{\textit{train}}^{\infty}$ and $\mathcal{R}_{\textit{test}}^{\infty}$

$$\mathcal{R}_{\text{test}}^{\infty} = \left(\frac{c\lambda \textit{m}_{\textit{z}}}{\textit{g}^{\,\prime}\left(0\right)}\right)^{-2} \mathcal{R}_{\text{train}}^{\infty} - \sigma^{2} \left(\frac{\textit{g}^{\,\prime}\left(0\right)}{c\lambda \textit{m}_{\textit{z}}} - 1\right)^{2}.$$

Consistent estimator of $\widehat{\mathcal{R}}_{\textit{test}}$

$$\begin{split} \widehat{\mathcal{R}}_{\text{test}} &= \left(\frac{c\lambda \widehat{m}_z}{g^{\prime}\left(0\right)}\right)^{-2} \widehat{\mathcal{R}}_{\text{train}} - \sigma^2 \left(\frac{g^{\prime}\left(0\right)}{c\lambda \widehat{m}_z} - 1\right)^2, \\ \widehat{m}_z &= \frac{1}{p} \operatorname{tr} \left(\frac{XX^T}{p} - z \boldsymbol{I}_n\right)^{-1}. \end{split}$$

Issues with λ small \odot

Consistent estimator of $\widehat{\mathcal{R}}_{\textit{test}}$

$$\widehat{\mathcal{R}}_{\text{test}} = \frac{1}{(cz\widehat{m}_z)^2} \left[\frac{1}{np} \mathbf{y}^{\mathsf{T}} \mathbf{P} \mathbf{X} \left(z \widetilde{\mathbf{Q}}_z^2 - \widetilde{\mathbf{Q}}_z \right) \mathbf{X}^{\mathsf{T}} \mathbf{P} \mathbf{y} + \mathsf{var} \left(\mathbf{y} \right) \right] - \sigma^2.$$

$$\widetilde{\mathbf{Q}}_z = \left(\frac{\mathbf{X}^T \mathbf{P} \mathbf{X}}{\rho} - z \mathbf{I}_\rho\right)^{-1}.$$

More stable with respect to λ \circledcirc

$$\widehat{\mathcal{R}}_{\text{test}}^{\star} = \min_{z \notin \text{Supp}\left\{XX^{T}/p\right\}} \widehat{\mathcal{R}}_{\text{test}}\left(z\right), \ z^{\star} = -\frac{\lambda^{\star} + g^{\star}\left(\tau\right) - g^{\star}\left(0\right) - \tau g^{\prime \star}\left(0\right)}{g^{\prime \star}\left(0\right)}.$$

CKRR: Experiments

Kernels

- Linear kernels: $k(\mathbf{x}, \mathbf{x}') = \alpha \mathbf{x}^T \mathbf{x}' / p + \beta$.
- Polynomial kernels: $k(\mathbf{x}, \mathbf{x}') = (\alpha \mathbf{x}^T \mathbf{x}'/p + \beta)^d$.
- Sigmoid kernels: $k(x, x') = \tanh(\alpha x^T x'/p + \beta)$.
- Exponential kernels: $k(\mathbf{x}, \mathbf{x}') = \exp(\alpha \mathbf{x}^T \mathbf{x}'/p + \beta)$.

Synthetic data

- $\mathbf{z} \sim \mathbf{\Sigma}^{\frac{1}{2}} \mathbf{z}$ with $\mathbf{z} \{z_i\}_{i=1}^p$, $\mathbb{E} z_i = 0$, $\operatorname{var} z_i = 1$ and $\mathbb{E} z_i^k = O(1)$.
- Generating function: $f(x) = \sin\left(\frac{1^T x}{\sqrt{\rho}}\right)$.

Real data

- Communities and Crime dataset.
- p = 122, $n_{train} = 73$ and $n_{test} = 50$.
- Prediction risk is computed by averaging over 500 data shuffling.

CKRR: Synthetic data

CKRR: Synthetic data

Figure 4.1: CKRR risk with respect to the regularization parameter λ on Gaussian data $(\mathbf{x} \sim \mathcal{N}(0_p, \{0.4^{|i-j|}\}_{i,i}), n = 200$ training samples and p = 100 predictors.

Figure 4.2: CKRR risk with respect to λ where independent zero mean Gaussian noise samples with variance $\sigma^2=0.05$ are added to the true response.

Conclusion

Conclusion

- Random matrix theory is a powerful tool that has been applied with success to the fields wireless communications and signal processing, providing solutions to very challenging problems
- High dimensionality along with stochasticity are the sole prerequisite of this tool
- Successful application of this tool has been demonstrated in the context of RDA.
- Fundamental limits of Centered kernel ridge regression.

Future research directions

Future research directions

- We can also consider the performance analysis of kernel LDA/QDA.
- Extend the analysis to *Homogenous* kernels.

Important results on Homogenus Kernel matrices

ullet ϕ (x) is a fixed non linear feature space mapping. The kernel function is given by

$$k(\mathbf{x}, \mathbf{x}') = \phi(\mathbf{x})^T \phi(\mathbf{x}').$$

· Homogeneous kernels

$$k(\mathbf{x}, \mathbf{x}') = f\left(\frac{\|\mathbf{x} - \mathbf{x}'\|^2}{p}\right).$$

• $\{\mathbf{K}\}_{i,j} = k(\mathbf{x}_i, \mathbf{x}_j).$

Theorem (Spectrum of kernel random matrices, El-Karoui 2010)

¹⁰ [Informal statement]

$$\widehat{K} = f(\tau) \mathbf{1} \mathbf{1}^{T} + f'(\tau) \mathbf{W} + f''(\tau) \mathbf{Q}, \quad \frac{\|\mathbf{x} - \mathbf{x}'\|^{2}}{p} \rightarrow_{a.s.} \tau.$$

$$\|\mathbf{K} - \widehat{\mathbf{K}}\| \xrightarrow{p} 0. \tag{7}$$

This might help to analyze the performance of some kernel methods in regression or classification.

 $^{^{10}\}mbox{N}.$ El Karoui, The spectrum of kernel random matrices, The annals of statistics, Volume 38, Number 1 (2010), 1-50.

That's it

Thank you for your time and attention!