

Aula 2 - Alfabeto - Palavras - Gramática

Uma Linguagem Formal, ao contrário de uma Linguagem Natural, é tal que:

- Tem uma sintaxe bem definida, de forma que, dada uma sentença, seja sempre possível saber se ela pertence ou não à linguagem;
 - Tem uma semântica precisa, de modo que não contenha sentenças sem significado ou ambíguas.

O Dicionário Aurélio define linguagem como: "O uso da palavra articulada ou escrita como meio de expressão e comunicação entre pessoas".

Linguagem é um dos conceitos fundamentais da computação. Entretanto, para definir linguagem é necessário antes estudar e conhecer os conceitos de *alfabeto* e de *palavra* ou *cadeia de caracteres.*Toda linguagem tem um alfabeto associado.

1 Alfabeto

Um alfabeto é um conjunto finito de símbolos ou caracteres. Portanto:

- Um conjunto infinito não é um alfabeto;
- O conjunto vazio é um alfabeto.

Exemplos de Alfabeto:

- Os seguintes conjuntos são exemplos de alfabetos:

- Os seguintes conjuntos não são exemplos de alfabetos:

N (conjunto dos números naturais) {a,b,AA,ab,ba,bb,aaa,...}

Exemplos de Alfabeto: Linguagens de Programação

O Alfabeto de uma linguagem de programação é o conjunto de todos os símbolos usados na construção de programas, denotado por Σ , incluindo:

- Letras; - Caracteres especiais como ">", "/", etc.;

- Dígitos; - Espaço ou "branco".

2 Palavra, Cadeia de Caracteres ou Sentença

Uma Palavra, Cadeia de Caracteres ou Sentença sobre um alfabeto é uma sequência finita se símbolos (do alfabeto) justapostos denotada por \mathbf{W} .

Portanto, uma cadeia sem símbolos é uma palavra válida, e o símbolo:

E denota a cadeia vazia ou palavra vazia.

Se Σ representa um alfabeto, então:

 Σ^* denota o conjunto de todas as palavras possíveis sobre Σ

 Σ^+ denota Σ^* - $\{\epsilon\}$ -> portanto sem a palavra vazia

Tamanho ou Comprimento de uma Palavra

O Tamanho ou Comprimento de uma palavra \mathbf{w} , representado por $|\mathbf{w}|$, é o número de símbolos que compõe a palavra. Portanto, para um dado alfabeto Σ , comprimento é uma função com domínio em Σ * e condomínio em \mathbf{N} .

Exemplo de comprimento de uma Palavra:

$$|abcde| = 5$$
 $|\epsilon| = 0$

2.1 Prefixo, Sufixo, subpalavra

Um Prefixo de uma palavra é qualquer sequência inicial de símbolos da palavra.

Um Sufixo de uma palavra é qualquer sequência final de símbolos da palavra.

Uma Subpalavra de uma palavra é qualquer sequência de símbolos contígua da palavra.

Exemplos:

- a) **abcb** é uma palavra sobre o alfabeto $\Sigma = \{a,b,c\}$;
- b) Se $\Sigma = \{a,b\}$, então $\Sigma_+ = \{a,b,aa,bb,ab,ba,aaa,...\}$ e $\Sigma_* = \{\epsilon,a,b,aa,bb,ab,ba,...\}$;
- c) $|abcb| = 4 e |\epsilon| = 0;$

2.2 Linguagem Formal

Uma Linguagem Formal, ou simplesmente *Linguagem L*, é um conjunto de palavras sobre um alfabeto Σ , ou seja: L $\subseteq \Sigma^*$

Exemplo: Suponha o alfabeto $\Sigma = \{a,b\}$. Então:

- a) O conjunto vazio e o conjunto formado pela palavra vazia são linguagens sobre o alfabeto Σ (obviamente $\emptyset \neq \{\epsilon\}$);
 - b) Os conjuntos Σ^* e Σ_+ são linguagens sobre um alfabeto Σ qualquer. Vale que: $\Sigma^* \neq \Sigma_+$
- c) O conjunto de palíndromos (palavras que tem a mesma leitura da esquerda para a direita e viceversa) sobre Σ é um exemplo de linguagem infinita. Assim, ϵ , a, b, aa, bb, aaa, aba, ... são palavras desta linguagem.

2.3 Concatenação

A concatenação é uma operação binária, definida sobre uma linguagem, a qual associa a cada par de palavras uma palavra formada pela justaposição da primeira com a segunda. Uma concatenação é denotada pela justaposição dos símbolos que representam as palavras componentes.

A operação de concatenação satisfaz às seguintes propriedades (suponha v,w,t palavras):

- a) Associatividade: v(w.t) = (v.w).t;
- b) Elemento Neutro à Esquerda e à Direita: $\varepsilon.w = w = w.\varepsilon$

Uma operação de concatenação definida sobre uma Linguagem L não é, necessariamente, fechada sobre L, ou seja, a concatenação de duas palavras de L não é, necessariamente, uma palavra de L.

Suponha o $\Sigma = \{a,b\}$. Então, para as palavras v = baaaa e w = bb, vale que:

$$v.w = baaabb$$

$$v.\epsilon = v = baaaa$$

ciência da computação

Linguagens Formais

2.4 Concatenação Sucessiva

A Concatenação Sucessiva de uma palavra (como ela mesma), representada na forma de expoente $\mathbf{w}^{\mathbf{n}}$, onde \mathbf{w} é a palavra e \mathbf{n} indica o número de concatenações sucessivas, é definida indutivamente a partir da concatenação binária, como segue:

$$\label{eq:w0} \begin{split} w^0 &= \epsilon \\ w^n &= w.w^{n\text{-}1} \text{, para } n > 0 \end{split}$$

Exemplo: Seja w uma palavra e a um símbolo, então:

$$w^2 = ww$$
 $a^5 = aaaaa$

$$w^1 = w$$
 $a^n = aaa...a$ (o símbolo **a** repetido **n** vezes)

3 Gramática

Uma Gramática de Chomsky, Gramática Irrestrita ou simplesmente Gramática, é definida como uma quádrupla ordenada $\mathbf{G} = (\mathbf{V}, \mathbf{T}, \mathbf{P}, \mathbf{S})$, onde:

V é o conjunto finito de símbolos variáveis ou não-terminais;

T é o conjunto finito de símbolos terminais disjuntos de V;

 \mathbf{P} é o conjunto finito de pares chamado de regras de produção, tal que a primeira componente é palavra de $(\mathbf{V} \cup \mathbf{T})^+$ e a segunda componentes é palavra $(\mathbf{V} \cup \mathbf{T})^*$;

S é o elemento de **V** denominado *variável inicial ou símbolo inicial*.

Uma regra de produção (α,β) é representada por $\alpha \rightarrow \beta$

Por simplicidade, um grupo de regras de produção da forma:

$$\alpha \rightarrow \beta_1, \, \alpha \rightarrow \beta_2, \, ..., \, \alpha \rightarrow \beta_n$$

(mesma componente no lado esquerdo) é usualmente abreviada como:

$$\alpha \rightarrow \beta 1 \mid \beta 2 \mid ... \mid \beta n$$
.

A aplicação de uma regra de produção é denominada derivação de uma palavra. A aplicação sucessiva de regras de produção permite derivar as palavras da linguagem representada pela gramática.

3.1 Relação de Derivação

Seja **G** =(**V**, **T**, **P**, **S**) uma gramática. Uma Derivação é um par da relação denotada por \Rightarrow com domínio em (**V** \cup **T**)+ e contra-domínio em (**V** \cup **T**)+. Um par (α , β) é representado: $\alpha \Rightarrow \beta$

A relação \Rightarrow é indutivamente definida com segue:

- Para toda a produção da forma $\mathbf{S} \to \beta$ (a primeira componente é o símbolo inicial de G), tem-se que: $\mathbf{S} \Rightarrow \beta$;
 - Para todo o par $\alpha \Rightarrow \beta$, onde $\beta = \beta \cup \beta \cup \beta \cup \beta$, se $\beta \cup \beta \cup \beta$ é regra de P então: $\beta \Rightarrow \beta \cup \beta \cup \beta \cup \beta$.

Linguagens Formais

Portanto, uma Derivação é a substituição de uma subpalavra de acordo com uma regra de produção. Quando for desejado explicitar a regra de produção $\mathbf{p} \in \mathbf{P}$ que define a derivação $\alpha \Rightarrow \beta$, a sequinte notação é usada: $\alpha \Rightarrow_{\mathbf{p}} \beta$.

Uma Gramática é considerada um formalismo de geração, pois permite derivar ("gerar") todas as palavras da linguagem que representa.

Os sucessivos passos de derivação são definidos com segue:

- ⇒ * fecho transitivo e reflexivo da relação ⇒, ou seja, zero ou mais passos de derivações sucessivas;
 - ⇒ + fecho transitivo da relação ⇒, ou seja, um ou mais passos de derivações sucessivas;
 - ⇒ i exatos i passos de derivação sucessivas, onde i e um número natural.

3.2 Linguagem Gerada

Seja G = (V,T,P,S) uma gramática.

A Linguagem Gerada pela gramática G, denotada por L(G) ou GERA(G), é composta por todas as palavras de símbolos terminais deriváveis a partir do símbolo inicial S, ou seja: $L(G) = \{w \in T^* | S \Rightarrow +w\}$ a palavra "w" pertence a T (conjunto finito) com o vazio, tal que S (símbolo inicial) deriva em uma palavra com mais de uma derivação (símbolo do + antes da palavra).

Exemplo: Gramática, Derivação, Linguagem Gerada. A gramática G = (V,T,P,N) onde:

$$V = \{N,D\}$$

$$T = \{0,1,2,...,9\}$$

$$P = \{N \to D \mid DN,$$

$$D \to 0 \mid 1 \mid ... \mid 9\}$$

Gera, sintaticamente, o conjunto dos números naturais. Note que se distingue o zero à esquerda. Por exemplo, distingue 123 de 0123.

Exemplo 1: Derivação do número 243:

N ⇒	$N \to DN$
DN ⇒	$D \rightarrow 2$
2N ⇒	$N \to DN$
2DN ⇒	$D \rightarrow 4$
24N ⇒	$N \to D$
24D ⇒	$D \rightarrow 3$
243	

Logo, pode-se indicar que:

 $S \Rightarrow {}^{+}243$ (um ou mais passos de derivações sucessivas)

 $S \Rightarrow ^6243$ (exatos 6 passos de derivação sucessiva)

Linguagens Formais

Observe que, no exemplo acima, a seguinte interpretação indutiva pode ser dada à gramática em questão:

- Base de Indução: todo dígito é um número natural
- Passo de Indução: se n é um número natural, então a concatenação de n com qualquer dígito também é um número natural.

Exemplo 2: A seguinte gramática:

$$G = (\{S, X, Y, A, B, F\}, \{a, b\}, P, S)$$

Na qual:

$$\begin{array}{lll} P = \{S \rightarrow XY \\ & X \rightarrow XaA \mid XbB \mid F \\ & Aa \rightarrow aA, \\ & Ab \rightarrow bA \\ & AY \rightarrow Ya, \\ & Ba \rightarrow aB, \end{array} \qquad \begin{array}{ll} Bb \rightarrow bB \\ & BY \rightarrow Yb, \\ & Fa \rightarrow aF \\ & Fb \rightarrow bF, \\ & FY \rightarrow \epsilon\} \end{array}$$

Gera a linguagem cujas palavras são tais que a primeira metade é igual à segunda metade:

$$L(G) = \{ww \mid w \in palavra de \{a,b\}^*\}$$

Verificar se as palavras abaixo pertencem a Linguagem acima:

- a) baba
- b) abab
- c) bbaabb
- d) aabaab