(19) Weltorganisation für geistiges Eigentum Internationales Büro

(43) Internationales Veröffentlichungsdatum 14. Juli 2005 (14.07.2005)

PCT

(10) Internationale Veröffentlichungsnummer WO 2005/063406 A1

(51) Internationale Patentklassifikation⁷: B05B 12/12

(21) Internationales Aktenzeichen: PCT/EP2004/014698

(22) Internationales Anmeldedatum:

23. Dezember 2004 (23.12.2004)

(25) Einreichungssprache:

Deutsch

(26) Veröffentlichungssprache:

Deutsch

(30) Angaben zur Priorität:

103 61 018.9 23. Dezember 2003 (23.12.2003) DE

(71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): QUISS GMBH [DE/DE]; Lilienthalstrasse 5, 82178 Puchheim (DE).

(72) Erfinder; und

(75) Erfinder/Anmelder (nur für US): TOMTSCHKO, Andreas [DE/DE]; Rodelbahnstr. 15, 82223 Eichenau (DE). BERGER, Mirko [DE/DE]; Anglerstr. 11, 80339 München (DE). **LINNENKOHL**, **Jan** [DE/DE]; Oswald-Bieber-Weg 6, 81241 München (DE). **RAAB**, **Roman** [DE/DE]; Friedenspromenade 117, 81827 München (DE).

(74) Anwalt: KUNZ, Herbert; Hammonds Rechtsanwälte Patentanwälte, Karl-Scharnagl-Ring 7, 80539 München (DE).

(81) Bestimmungsstaaten (soweit nicht anders angegeben, für jede verfügbare nationale Schutzrechtsart): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

[Fortsetzung auf der nächsten Seite]

(54) Title: METHOD FOR RECOGNISING A STRUCTURE TO BE APPLIED TO A SUBSTRATE, WITH THE AID OF SEVERAL CAMERAS AND DEVICE THEREFOR

(54) Bezeichnung: VERFAHREN ZUM ERKENNEN EINER AUF EINEM SUBSTRAT AUFZUBRINGENDEN STRUKTUR MIT MEHREREN KAMERAS SOWIE EINE VORRICHTUNG HIERFÜR

(57) Abstract: The invention relates to a method and/or a device which is used to recognise a structure which is to be applied to a substrate (30), preferably an adhesive bead or adhesive trace (20), with the aid of at least one camera, particularly several cameras (12, 13, 14). A reference applicational structure is inputted by a single run of said reference application structure, such that the images of the cameras (12, 13, 14) are stored in an image sequence. The invention also relates to a method for recognising a structure which is to be applied to a substrate. When started, the applied structure is processed as an optical image for the assessment of the structure such that only one strip of the image is captured by each camera forming an image sequence and the image capturing frequency corresponding to the reduction in data is increased as a single strip of the image is captured.

WO 2005/063406 A1

(84) Bestimmungsstaaten (soweit nicht anders angegeben, für jede verfügbare regionale Schutzrechtsart): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), eurasisches (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht:

mit internationalem Recherchenbericht

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

(57) Zusammenfassung: Es wird ein Verfahren bzw. eine Vorrichtung zum Erkennen einer auf einem Substrat (30) aufzubringenden Struktur, vorzugsweise eine Kleberraupe oder Kleberspur (20), mit mindestens einer Kamera, insbesondere mehreren Kameras (12, 13, 14) beschrieben. Dabei wird das Einlernen einer Referenzauftragsstruktur durch lediglich ein einmaliges Abfahren dieser Referenzauftragsstruktur derart vorgenommen, dass die Bilder aller Kameras (12, 13, 14) in einer Bildsequenz gespeichert werden. Ferner wird ein Verfahren zum Erkennen einer auf einem Substrat aufzubringenden Struktur beschrieben, wobei die aufgebrachte Struktur beim Abfahren für die Bewertung der Struktur derart als optisches Abbild verarbeitet wird, dass von jeder Kamera lediglich ein Streifen des Bildes unter Bildung einer Bildsequenz aufgenommen wird und die Bildaufnahmefrequenz entsprechend der Datenverminderung durch die Aufnahme von lediglich einem Streifen des Bildes erhöht wird.

Verfahren zum Erkennen einer auf einem Substrat aufzubringenden Struktur mit mehreren Kameras sowie eine Vorrichtung hierfür

Die vorliegende Erfindung betrifft ein Verfahren zum Erkennen einer auf einem Substrat aufzubringenden Struktur mit zumindest einer bzw. mehreren Kameras gemäß dem Oberbegriff von Anspruch 1 sowie eine entsprechende Vorrichtung hierfür.

Herkömmlicherweise werden bislang zum Erkennen einer auf einem Substrat aufzubringenden Struktur optische Vermessungen durchgeführt, wobei häufig verschiedene Systeme zur vollautomatischen Prüfung der Struktur, u.a. Klebstoff und Dichtmittelraupen, verwendet werden. Hierzu werden mehrere Videokameras auf die zu erkennende Struktur gerichtet, wobei zusätzlich ein Beleuchtungsmodul erforderlich ist, das zur Erzeugung eines kontrastreichen Kamerabildes dient.

Um eine Kleberraupe bzw. Kleberspur beim Auftragen überwachen zu können, ist es erforderlich, dass eine Referenzkleberspur eingelernt wird, d.h. von der Kamera bzw. den Kameras abgefahren wird, um daraus entsprechende Parameter zu berechnen, nach denen die aufgebrachten Kleberspuren daraufhin bewertet werden.

Bisher war es erforderlich, dass beim Einlernen einer Referenzkleberspur jede Kamera einzeln diese Referenzkleberspur ab fahren musste, um für alle Positionen Kamerabilder zu erhalten. Das heißt, dass bei der Verwendung von drei Kameras die Referenzkleberspur dreimal hintereinander abgefahren werden musste und die drei unterschiedlichen Bildsequenzen der drei Kameras zugeordnet werden mussten. Daraus ergibt sich der Nachteil, dass die Parametrierung der Referenzkleberspur umständlich und zeitintensiv ist sowie zu einer hohen Ungenauigkeit führen kann.

Darüber hinaus besteht Bedarf nach einem Verfahren zum Erkennen einer auf einem Substrat aufzubringenden Struktur für zumindest eine bzw. mehrere Kameras, welches eine Auftragsstruktur bzw. Kleberspur mit hoher Genauigkeit und Geschwindigkeit während des Auftragens überwacht.

Somit ist es Aufgabe der vorliegenden Erfindung, ein Verfahren zum Erkennen einer auf einem Substrat aufzubringenden Struktur für zumindest eine bzw. mehrere Kameras bereitzustellen, welches eine schnelle Inbetriebnahme mit hoher Genauigkeit bzw. ein schnelles Einlernen der Referenzkleberspur ermöglicht.

Des weiteren ist es Aufgabe der vorliegenden Erfindung, ein Verfahren zum Erkennen einer auf einem Substrat aufzubringenden Struktur für zumindest eine bzw. mehrere Kameras bereitzustellen, welches eine Auftragsstruktur bzw. Kleberspur mit hoher Genauigkeit und Geschwindigkeit während des Auftragens überwacht.

Ferner ist es Aufgabe der vorliegenden Erfindung, eine geeignete Vorrichtung zur Durchführung des erfindungsgemäßen Verfahrens bereitzustellen.

Diese Aufgaben werden verfahrenstechnisch mit den Merkmalen von Anspruch 1 und 4 sowie vorrichtungstechnisch mit den Merkmalen von Anspruch 28 gelöst.

Bei der erfindungsgemäßen Vorrichtung und dem erfindungsgemäßen Verfahren wird einerseits eine Referenzauftragsstruktur eingelernt und weitere aufgebrachte Auftragsstrukturen bzw. Kleberspuren zu dessen Bewertung mit der Referenzauftragsstruktur verglichen. Dabei ist es unerheblich, ob die erfindungsgemäße Auftragsvorrichtung, d.h. die Auftragsvorrichtung mit Kameras. oder als kinematische Umkehr das Substrat bewegt wird.

Das erfindungsgemäße Verfahren ermöglicht es, dass durch das Einlernen einer Referenzauftragsstruktur lediglich durch ein einmaliges Abfahren dieser die Referenzauftragsstruktur Bilder aller Kameras in einer Bildseauenz aufgenommen bzw. gespeichert werden können. Dadurch wird die Inbetriebnahme einer derartigen Vorrichtung auf eine kurze Einlernzeit verringert.

Gemäß einem erfindungsgemäßen Verfahren zum Erkennen einer auf einem Substrat aufzubringenden Struktur, vorzugsweise einer Kleberraupe oder Kleberspur, mit mindestens einer Kamera, insbesondere mehreren Kameras, wobei die

aufgebrachte Struktur beim Abfahren für die Bewertung dieser Struktur derart als optisches Abbild verarbeitet wird, dass von jeder Kamera lediglich ein Streifen des Bildes unter Bildung einer Bildsequenz aufgenommen wird und die Bildaufnahmefrequenz entsprechend der Datenverminderung durch die Aufnahme von lediglich einen Streifen des Bildes erhöht wird, erhält man ein vorteilhaftes Erkennungsverfahren und Überprüfungsverfahren für eine aufzubringende Struktur, welches eine hohe Genauigkeit aufweist und vollautomatisierbar ist. Dadurch kann eine Kleberspur parallel bzw. simultan zum Aufbringen der Kleberspur überwacht werden.

Weitere vorteilhafte Ausgestaltungen ergeben sich aus den Unteransprüchen. So ist von Vorteil, wenn von jeder Kamera lediglich ein Streifen des Bildes unter Bildung eines Teils der Bildsequenz aufgenommen wird, um die zu verrechnenden Daten zu minimieren. Durch die geringeren zu verrechneten Daten können durch die hohe Bildaufnahmefrequenz vergleichsweise kurze Teilabschnitte der gesamten Kleberspur aufgenommen werden, welche beispielsweise zwischen 1mm und 3mm liegen, so dass die Kleberspur nach Art einer Vektorkette aus den einzelnen Bildern automatisch verfolgt werden kann.

Darüber hinaus ist es von Vorteil, dass die Bildaufnahmefrequenz entsprechend der Datenverminderung durch die Aufnahme von lediglich einem Streifen des Bildes erhöht wird, was insbesondere durch den Einsatz der Partial-Scantechnik ermöglicht wird, so dass eine höhere Bildwiederholrate erreicht wird. Folglich ist es möglich, dass synchron und parallel von allen Kameras gleichzeitig Bilder erfasst werden können. Die Bildaufnahmen folgen somit in definierten festen Zeitabständen und sind unabhängig von der Robotersteuerung.

Erfindungsgemäß werden die Bildstreifen der einzelnen Kameras zu einem einzigen Bild zusammengefügt, wodurch sich der Vorteil ergibt, dass die jeweiligen Bilder der einzelnen Kameras jeweils ortsabhängig entsprechend zugeordnet sind und synchron aufgenommen und verarbeitet werden können. Somit wird des Weiteren ein fehlerhaftes Einlernen vermieden, da die Bilder der einzelnen Kameras stets zeitund ortrichtig zugeordnet werden.

Gemäß einer bevorzugten Ausführungsform werden pro Kamera in etwa nur 1/4 der Bildzeilen als Bildstreifen verwendet und dadurch die Bildaufnahmefrequenz vervierfacht.

Des weiteren ist es vorteilhaft, wenn die Parametrierung der von der Referenzauftragsstruktur erhaltenen Bildsequenz, welche aus einem einzigen Bildaufnahmelauf aller Kameras resultiert, automatisch durch ein einmaliges externes Anzeigen bzw. externes Markieren (bspw. per Mausklick) der Referenzauftragsstruktur vorgenommen wird und zum Vergleich mit einer aufgebrachten Kleberspur verwendet wird. Für die Parametrierung wird insbesondere der Roboterverfahrweg, die Roboterverfahrzeit, die Richtung, die Breite und die Güte der Kleberspur verwendet. Durch dieses einfache Parametrierungsverfahren vermindert sich die Gefahr von Fehlbedienung oder Fehlparametrierung, wobei das System auch durch gering qualifiziertes Personal bedienbar ist. Somit erzeugt diese Parametrierung eine Vektorisierung der gesamten Kleberspur, wobei diese auf Grund der hohen Bildaufnahmefrequenz eine sichere und automatische Überprüfung der Kleberspur ermöglicht. Dadurch ergibt sich ferner, dass nach einem Tausch des Sensorkopfs lediglich eine Rekalibrierung bzw. eine Neukalibrierung erfolgen muss, ohne dass die Spur erneut eingelernt werden muss.

Gemäß einer bevorzugten Ausführungsform Erfindung der wird eine Bewertungsfunktion, insbesondere Fuzzy-Bewertung zum Auswerten Klebstoffspur bzw. Kleberspur verwendet, wobei insbesondere die Breite des Kantenpaares der rechten und linken Kante der Kleberspur, der mittlere Grauwert des projizierten Grauwertprofils zwischen dem Kantenpaar, der Randkontrast und der Positionsverlauf mittels der Bewertungsfunktion verrechnet werden, wobei als Folge davon die Klebstoffspur genau beschrieben werden kann, um diese sicher automatisch zu erkennen.

Ferner ist es vorteilhaft, wenn die Kante der Kleberspur auf einer umlaufenden Bahn bzw. Umlaufbahn und insbesondere einer im wesentlichen kreisförmigen Bahn bzw. Kreisbahn ermittelt wird, um die Klebstoffspur um die Auftragseinrichtung herum bei

einem beliebigen Verlauf jeweils in einem definierten Bereich zu erfassen. Dabei verläuft die Klebespur jeweils innerhalb der umlaufenden Bahn, die elipsenförmig, vieleckförmig oder in etwa kreisförmig sein kann.

Gemäß einer bevorzugten Ausführungsform stimmt der Mittelpunkt der Kreisbahn oder der umlaufenden Bahn im wesentlichen mit der Stelle überein, aus welcher der Kleber zur Bildung der Kleberspur austritt, wobei jede Kamera zumindest ein Segment des aus der Kreisbahn gebildeten Kreises überwacht.

Wenn jede Kamera zumindest einen Überlappungsbereich mit zumindest einer angrenzenden Kamera überwacht, können Fehler beim Übergang von einer Kamera zur nächsten vermindert werden.

Besonders vorteilhaft ist es, wenn die Winkelwerte der Kreisbahn von 0 bis 360° ein globales Koordinatensystem der einzelnen Kameras bilden, wobei den Bildern der einzelnen Kameras ein Segment der Kreisbahn zugeordnet wird. Als Folge davon kann der Verlauf der Kleberspur von jeweils zumindest einer aktiven Kamera verfolgt werden, wodurch mit relativ einfachen Mitteln Aussagen über die gesamte Kleberspur sowie deren Lage bzw. Verlauf getroffen werden kann.

Gemäß einer bevorzugten Ausführungsform deckt eine erste Kamera einen Winkelbereich von –10° bis 130° eine zweite Kamera einen Winkelbereich von 110° bis 250° und eine dritte Kamera einen Winkelbereich von 230° bis 10° ab, wenn drei Kameras verwendet werden.

Darüber hinaus ist es von Vorteil, wenn bei dem Verlauf der Kleberspur von einer Kamera zur nächsten automatisch umgeschaltet wird, wenn die Kleberspur von dem Segment der Kreisbahn oder Umlaufbahn einer Kamera über den Überlappungsbereich in das Segment der Kreisbahn oder Umlaufbahn einer anderen Kamera verläuft. Als folge davon ist es möglich, dass dem Verlauf der Spur bzw. der Lage der Spur sicher gefolgt werden kann und diese entsprechend voraussehbar sind. Somit kann rechtzeitig ein voll automatisches Umschalten der benachbarten Kameras erfolgen, so dass sich die Parametrierzeiten verringern.

Des Weiteren ist es von Vorteil, wenn zur Beleuchtung LED Leuchtmittel verwendet werden, welche eine Lichtfarbe umfassen, die einen geeigneten Kontrast zur Farbe der Auftragsstruktur aufweist. Die Lichtfarbe wird dabei derart ausgewählt, dass sich nach dem Prinzip der Komplementärfarben der größte Kontrast zwischen dem Substrat und der Klebstoffspur ergibt. Vorteilhafterweise werden Infrarot LED oder UV LEDs verwendet. Besondere Vorteile ergeben sich, wenn man Leuchtdioden verwendet, die auf Grund ihrer besonderen Bauweise in der Lage sind, rotes, grünes und blaues Licht zu emittieren, insbesondere bei der Verwendung von RGB LEDs. Somit kann der Sensoraufbau ohne weitere Umbauten auf eine entsprechende Klebstofffarbe umgestellt werden.

Wenn LEDs in Farbtrippeln aus den Farben Rot, Grün und Blau verwendet werden, kann die am besten geeignete Mischfarbe für die optimale Kontrastierung erzeugt werden.

Gemäß einer Ausgestaltung der Erfindung werden die LEDs geblitzt, wobei insbesondere Stromimpulse von 1,0 bis 0,01 ms auf die Dioden aufgebracht werden, um während des Abfahrens des Sensors über dem Substrat scharfe Bilder insbesondere von der Klebstoffspur zu erhalten.

Desweiteren ist es für eine dreidimensionale Positionskorrektur in bezug auf Lagetoleranzen der einzelnen Bauteile bzw. Toleranzen von Fügenähten vorteilhaft, wenn die Referenzkontur bzw. ein Merkmal von zumindest zwei Kameras ermittelt wird, um eine dreidimensionale Positionskorrektur für die Auftragseinrichtung mit Hilfe des Stereometrieverfahrens durchzuführen.

Ferner ist es von Vorteil, wenn die beiden Kameras das Substrat, einen Bauteilabschnitt oder ein oder mehrere Bauteile als Vollbild oder Großbild aufnehmen, wobei die Vollbilder oder Großbilder der beiden Kameras einen Überlappungsbereich in Vorlaufrichtung aufweisen, und wobei die sich im Überlappungsbereich ergebende dreidimensionale Lageerkennung der Referenzkontur zur Grobjustierung der Auftragseinrichtung vor dem Aufbringen der

Struktur verwendet wird. Dabei wird der Auftragseinrichtung bzw. dem Roboter entsprechende Korrekturwerte übermittelt, um dessen Koordinatensystem für den Klebstoffauftrag zu verschieben.

Wenn eine Projektion zur dreidimensionalen Auswertung auf den Bereich der Referenzkontur aufgebracht wird, insbesondere wenn eine oder mehrere Laserlinien als Projektion auf das Substrat aufgebracht werden, dann kann eine dreidimensionale Profilauswertung hinsichtlich der Höhe und der Kontur von beliebigen Bauteilen ermöglicht werden, auch wenn diese für eine übliche Bildbearbeitung ohne zusätzliche Projektion nicht auswertbar ist.

Vorteilhafterweise wird eine Kalibrierung der einzelnen Kameras vorgenommen, um gemäß dem Kreiscaliper die Winkelzugehörigkeit der einzelnen Kameras vorzunehmen, wobei insbesondere ein Kreisbogen der Kalibriervorrichtung mit Markierungsstellen mit 0°, 120° und 240° für drei Kameras verwendet wird. Dadurch kann ein globales Koordinatensystem hinsichtlich der Winkelzugehörigkeit für die einzelnen Kameras auf dem Kreiscaliper um die Auftragseinrichtung herum für eine vereinfachte softwareseitige Bildverarbeitung verwendet werden.

Darüber hinaus kann der Abstand der Auftragseinrichtung zu einem Bauteilmerkmal gemessen werden, beispielsweise zu Bauteilkanten oder Löchern Durchbrüchen, um eine Lageprüfung der aufgebrachten Struktur durchzuführen. Dabei wird insbesondere zur Abstandsmessung eine linienförmige Grauwertkantenantastung bzw. linienförmige Caliper verwendet, so dass beliebig viele Referenzmarken gesetzt werden können, wobei die Bildauswertung nicht ausschließlich auf das Kamerabild beschränkt ist, in dem die Kleberspurprüfung stattfindet. Somit ist es nicht erforderlich, dass die Kleberspur und geeignete Referenzmerkmale in demselben Kamerabild zu sehen sind, was insbesondere hinsichtlich der parallelen Verarbeitung von drei Kamerabildern vorteilhaft ist.

Mit vorliegender Erfindung wird eine Vorrichtung zum Erkennen einer auf einem Substrat aufzubringenden Struktur, vorzugsweise eine Kleberraupe oder Kleberspur, zur Durchführung eines erfindungsgemäßen Verfahrens nach Anspruch 1 bzw. 4

bereitgestellt, wobei zumindest ein Beleuchtungsmodul und eine Sensoreinheit vorgesehen ist. Die Sensoreinheit ist aus zumindest einer bzw. mehreren Kameras aufgebaut, welche um die Einrichtung zum Auftragen der Struktur vorgesehen und angeordnet sind sowie auf die Einrichtung zum Auftragen der Struktur jeweils ausgerichtet sind. Dadurch ist es möglich, dass der Verfahrweg der Vorrichtung über einem Substrat bzw. ein Verfahrweg des Substrats bzgl. der Vorrichtung stets in allen Richtungen durch die Ausrichtung der Kameras auf die Auftragseinrichtung überwacht werden kann.

Wenn sich die axiale Längsachse der einzelnen Kameras in Blickrichtung im wesentlichen mit der axialen Längsachse der Auftragseinrichtung schneidet, so ist es gemäß einer derartigen Weiterbildung vorteilhaft, dass ein enger Bereich um die Auftragseinrichtung mit geeigneter Auflösung und hoher Bildaufnahmefrequenz überwacht werden kann.

Gemäß einer bevorzugten Ausführungsform sind einzelne Kameras, insbesondere 3 Kameras, in Umfangsrichtung in jeweils gleichem Abstand voneinander angeordnet.

Vorteilhafterweise werden die einzelnen Kameras derart verschaltet, dass die Bilder der Kameras in einer Bildsequenz gespeichert werden, so dass diese Bilder synchron und parallel sowie zugeordnet aufgenommen werden können.

Gemäß einer Ausgestaltung einer Erfindung bilden ein oder mehrere Kameras einen Kreiscaliper, dessen Mittelpunkt die Auftrageinrichtung der Struktur bildet. Dabei können ein oder mehrere kreisförmige Caliper verwendet werden, die es ermöglichen, dass die Ermittlung der Kante der Kleberspur auf einer Kreisbahn stattfindet.

Gemäß einer bevorzugten Ausführungsform weisen die einzelnen Kameras einen Überlappungsbereich von jeweils mindestens 10° zur nächsten Kamera auf. Dieser Überlappungsbereich ermöglicht ein vollautomatisches Umschalten von benachbarten Kameras, wenn die Klebstoffspur von dem Überwachungsbereich einer Kamera in den nächsten verläuft, da die Auswahl der Kamera nicht gebunden

an die Roboterposition oder eine zeitliche Komponente gebunden ist, sondern sich auf die aktuellen Inspektionsergebnisse bezieht, d.h. auf die Anordnung auf der Umlaufbahn bzw. Kreisbahn des Kreiscalipers bzw. auf dem dadurch gebildeten globalen Koordinatensystem.

Ferner ist es von Vorteil, wenn das Beleuchtungsmodul aus LEDs, insbesondere Infrarot-LEDs, UV-LEDs oder RGB-LEDs aufgebaut ist.

Darüber hinaus ist es von Vorteil, wenn zur Kalibrierung der einzelnen Kameras für die Zuordnung der Winkelzugehörigkeit eine Kalibrierscheibe mit einzelnen Formelementen verwendet wird, wobei diese Formelemente insbesondere einen Winkelabstand von im wesentlichem 10° aufweisen. Dadurch kann der Skalierungsfaktor, die Winkelzugehörigkeit und der Mittelpunkt sowie der Radius des Suchkreises für die einzelnen Kameras zugeordnet werden. Erfindungsgemäß weist die Kalibrierscheibe zumindest drei Markierungsstellen auf, die in einem Kreisbogen der Kalibrierscheibe von im wesentlichen 0°, 120° und 240° angeordnet sind, um drei Kameras zu kalibrieren.

Wenn eine Projektionseinrichtung an der Auftragseinrichtung vorgesehen ist, welche oder mehrere Merkmale, insbesondere Streifen, auf das Substrat für die dreidimensionale Auswertung projiziert, dann können beliebige Bauteile für eine Korrektur bzw. Justierung der Auftragseinrichtung vor dem Aufbringen der Struktur verwendet werden.

Gemäß einer bevorzugten Ausführungsform sendet die Projektionseinrichtung eine oder mehrere Laserlinien zur dreidimensionalen Profilauswertung aus. Wenn zumindest zwei Projektionseinrichtungen rund um die Auftragseinrichtung angeordnet sind, dann wird eine lückenlose dreidimensionale Auswertung um die Auftragseinrichtung ermöglicht, wobei die Auswertung von Dichtmittelhöhe und Dichtmittelkontur sowie Lage und Breite nach dem Triangulationsprinzip mittels Bildverarbeitung vorgenommen werden kann.

Weitere vorteilhafte Ausgestaltungen der Erfindung sind Gegenstand der übrigen Unteransprüche.

Anhand der nachfolgenden Zeichnungen werden beispielhaft vorteilhafte Ausgestaltungen der Erfindung dargestellt.

Figur 1 zeigt eine schematische Seitenansicht einer erfindungsgemäßen Vorrichtung zum Auftragen und Überwachen einer Klebstoffspur.

Figur 2 zeigt eine perspektivische Ansicht der erfindungsgemäßen Vorrichtung von Figur 1.

Figur 3 zeigt den Verfahrweg der erfindungsgemäßen Vorrichtung zum Aufbringen und Überwachen einer Klebstoffspur.

Figur 4 zeigt einen anderen Verfahrweg der erfindungsgemäßen Vorrichtung bzgl. des Umschaltens der relevanten Kameras.

Figur 5 ist eine Darstellung eines einzigen Bilds, dass aus drei Bildstreifen von drei Kameras zur Online-Überwachung zusammengesetzt ist.

Figur 6 erläutert den prinzipiellen Aufbau der Software.

Figur 7 zeigt schematisch eine erfindungsgemäße Kalibriervorrichtung zum kalibrieren der einzelnen Kameras der erfindungsgemäßen Vorrichtung zum Erkennen einer auf einem Substrat aufzubringenden Struktur.

Fig. 8 stellt eine Draufsicht auf das Substrat mit aufgebrachter Klebstoffspur hinsichtlich der Auftragsüberwachung.

Fig. 9 zeigt eine Draufsicht hinsichtlich der Profilauswertung.

Im Weiteren wird nun der Aufbau der erfindungsgemäßen Vorrichtung zum Erkennen einer auf einem Substrat aufzubringenden Struktur gemäß den Figuren 1 und 2 erläutert.

Mit dem Bezugszeichen 10 ist die schematisch dargestellte Vorrichtung zum Aufbringen und Erkennen einer Kleberspur gezeigt. Dabei ist im Zentrum der erfindungsgemäßen Vorrichtung eine Auftragseinrichtung 11 angeordnet, durch welche eine Klebstoffspur 20 auf ein Substrat bzw. auf ein Blech 30 in der Fig. 1 von rechts nach links aufgebracht wird. Um die Auftragseinrichtung 11 sind in einem Kreis drei Kameras 12, 13, 14 in gleichmäßigem Abstand angeordnet, die auf die Auftragseinrichtung 11 jeweils ausgerichtet sind. Wie aus Figur 1 ersichtlich, schneiden sich die axialen Längsachsen der drei Kameras 12, 13, 14 mit der axialen Längsachse der Auftragseinrichtung 11 unmittelbar unterhalb des Substrats 30, sodass der Fokus der einzelnen Kameras unmittelbar um den Bereich der Auftragseinrichtung 11, insbesondere auf einer Kreisbahn, angeordnet ist.

Bei der Klebstoffinspektion wird nun entweder die Auftragseinrichtung mit den Kameras oder das Substrat verfahren, wobei gleichzeitig die Klebstoffspur 20 auf das Substrat 30 mittels der Auftragseinrichtung 11 aufgebracht wird und wobei die Kameras 12, 13, 14 die aufgebrachte Struktur überwachen. Es ist hierzu möglich, die Auftragseinrichtung mit den Kameras oder das Substrat zu verfahren, um die Klebstoffspur in einem gewünschten Verlauf auf dem Substrat 30 aufzubringen. Dadurch können die mitfahrenden Kameras simultan mit dem Auftragen die Klebstoffspur unabhängig von dem Verfahrweg überwachen. In Fig. 2 verläuft die Klebstoffspur 20 von links nach rechts, wobei diese als durchgezogene Linie dargestellt ist. Rechts von der Auftragseinrichtung 11 ist der beabsichtigte Verlauf der Klebstoffspur 20 mit gestrichelter Linie angezeigt.

Figur 3 zeigt nun den Verlauf der Klebstoffspur 20, welcher mittels Pfeilen angezeigt wird, wobei an drei Stellen die Ausrichtung bzw. der Sichtbereich der einzelnen drei Kameras dargestellt ist. Die Sichtbereiche der einzelnen drei Kameras sind jeweils durch ein Rechteck mit durchgezogener Linie, ein Rechteck mit weit gestrichelten Linien und ein Rechteck mit eng gestrichelten Linien dargestellt. Wie aus der Figur

ersichtlich bleibt die Ausrichtung der einzelnen Sichtbereiche stets konstant ausgerichtet, wobei lediglich die gesamte Vorrichtung verfahren wird.

Figur 4 zeigt einen weiteren Verlauf einer Klebstoffspur 20, wobei jeweils angezeigt ist, welcher Sichtbereich aktiv ist, d.h. welche Kamera mit dem entsprechenden als Rechteck dargestellten Sichtbereich beim Abfahren der Klebstoffspur aktiv ist.

In Figur 5 sind nun drei Bildstreifen dargestellt, die jeweils einen relevanten Bildausschnitt bzw. Bildstreifen der einzelnen drei Kameras von Figur 1 darstellen. Gemäß dem erfindungsgemäßen Verfahren wird von jeder Kamera lediglich ein Streifen des Bildes aufgenommen, um für eine entsprechende Datenverminderung zu sorgen, sodass die Aufnahmefrequenz erhöht werden kann. Diese einzelnen Bildstreifen der drei Kameras werden zu einem Bild zusammengefügt, wobei die Bildaufnahmen in definierten festen Zeitabständen und unabhängig von der Robotersteuerung für die Auftragseinrichtung erfolgen. Beispielsweise nehmen die Kameras lediglich einen Steifen des Bildes auf, wobei an Stelle einer Bildhöhe von 480 Bildpunkten eine Bildhöhe von rund 100 Bildpunkten (100 Bildzeilen) verwendet wird. Durch diese Partial-Scan-Technik, d.h. ein teilweises Auslesen des Bildaufnahmechips, entstehen nur aerinae Datenströme. dass Bildaufnahmefrequenz um das entsprechende vielfache erhöht werden kann. Bei der Auswertung der Daten ist es somit möglich, dass die Bilder der einzelnen Kameras synchron und parallel und folglich gleichzeitig erfasst werden können und anschließend zu einem einzigen Bild zusammengefügt werden, wobei die drei Bildstreifen untereinander angeordnet werden. Als Folge davon sind die drei Bilder, d.h. die drei Bildstreifen, sofort hinsichtlich des Ortes und der Zeit zueinander richtig angeordnet sowie zugeordnet und können entsprechend verarbeitet werden. Diese spezielle Bildaufnahmetechnik ermöglicht somit das gleichzeitige und parallele aufnehmen einzelner Kamerabilder, wodurch es möglich wird, dass beim Einlernen einer Referenzauftragsstruktur lediglich ein einmaliges Abfahren dieser Struktur vorgenommen werden muss, wobei die Bilder aller Kameras in einer Bildsequenz gespeichert werden.

Wenn die Bilder der drei Kameras in einer Bildsequenz gespeichert worden sind, wird beim Einlernen der Referenzkleberspur anschließend eine Parametrierung dieser Referenzspur durchgeführt. Für die Parametrierung wird der Roboterverfahrweg, die Roboterverfahrzeit, die Richtung, die Breite und die Güte der Klebespur verwendet. Somit ergibt sich für die Kleberspur eine Art Vektorkette, wodurch es möglich ist, die hohe Bildaufnahmefrequenz und die vergleichsweise kurzen Teilabschnitte (zwischen 1 und 3 mm) zu erzielen. Die Vektorvisierung hat ferner den Vorteil, dass die Kleberspur in Form einer Vektorkette in einem kameraübergreifenden, globalem Koordinatensystem abgelegt werden kann.

Wie aus dem untersten Streifen von Figur 5 ersichtlich, ist um das Zentrum der Auftragseinrichtung 11 eine Kreisbahn angeordnet, wobei die beiden Kantenpunkte 21 und 22 der Klebstoffspur 20 auf der Kreisbahn angeordnet sind. Diese Kreisbahn ist derart unterteilt, dass einer ersten Kamera ein Winkelbereich von –10° bis 130°, einer zweiten Kamera ein Winkelbereich von 110° bis 250° und einer dritten Kamera ein Winkelbereich von 230° bis –10° zugeordnet wird, sodass eine lückenlose Abdeckung mit Überlappungsbereichen der einzelnen Kameras um die Auftragseinrichtung 11 herum ermöglicht wird. Daraus ergibt sich für die drei Bildstreifen ein globales Koordinatensystem, welches sowohl kartesisch als auch polar ausgeführt sein kann.

Falls die Kleberspur nun aus dem Sichtbereich einer Kamera läuft, befindet sich die Kleberspur übergangsweise im Überlappungsbereich der Winkelbereiche der beiden Kameras. Wenn nun die Kleberspur von dem Segment der Kreisbahn der einen Kamera über den Überlappungsbereich in das Segment der Kreisbahn einer anderen Kamera verläuft, wird von der einen zur anderen Kamera automatisch umgeschaltet. Dies ist insbesondere in Figur 4 durch die aktiven Sichtbereiche der einzelnen Kameras dargestellt.

Die obigen Vorteile werden dadurch erzielt, dass die einzelnen Kameras einen Kreiscaliper bilden, dessen Mittelpunkt die Auftrageinrichtung 11 bildet, wobei die Suche nach den Kanten 21, 22 der Klebstoffspur auf einer Kreisbahn unmittelbar um die Auftragseinrichtung erfolgt. Hierzu ist es wesentlich, dass die einzelnen Kameras

auf die Auftragseinrichtung ausgerichtet sind, wobei sich die axialen Längsachsen der einzelnen Kameras mit der Längsachse der Auftragseinrichtung schneiden.

Im Folgenden wird nun eine Teach-In-Lauf bzw. ein Einlernen einer Referenzkleberspur erläutert.

Der Einlernvorgang der Referenzkleberspur kann mittels eines Mausklicks vom Bediener auf die Spur begonnen werden, wodurch die Lage der Kleberspur angezeigt wird. Dies ist ausreichend, um in den nächsten Kamerabildern die Position Richtung erkennen, der Kleberspur voll automatisch zu Bildaufnahmefrequenz entsprechend hoch ist und die einzelnen Bildaufnahmen sehr kurz hintereinander stattfinden, beispielsweise alle 1 mm bis 3 mm. Ab dem Startpunkt findet Bild für Bild die Kleberantastung statt, wobei die im aktuellen Bild gefundene Kleberspurposition und Kleberspurwinkel als A-Priori-Wissen für das kommende Bild verwendet wird. Da die Spurradien zumeist größer als 20 mm betragen, wird somit das vollautomatische Erfassen der Kleberspur möglich, ohne dass ein Mensch das Bild bzw. die Lage der Kleberspur ermitteln bzw. bewerten muss. Als Folge davon kann der Suchbereich eingeschränkt werden, wodurch mittels der hohen Bildaufnahmefrequenz errechnet werden kann, wo die Kleberspur im wesentlichen im nächsten Bild verlaufen wird.

In Figur 6 ist der prinzipielle Aufbau der Software dargestellt, wobei der Teach-In-Lauf bzw. Einlernlauf die Bildsequenz erzeugt, welche daraufhin die automatische Parametrisierung ermöglicht. Diese Parametrisierung kann gegebenenfalls vom Benutzer voreingestellt werden und wird für den Inspektionslauf zusammen mit einem Verlaufs-file für die Inspektion einer aufgebrachten Klebstoffspur verwendet.

Die Onlineüberwachung einer aufgebrachten Klebstoffspur wird nun kurz erläutert. Die in Figur 1 gezeigte Auftragseinrichtung 11 bringt die Klebstoffspur auf das Blech 30 auf, wobei die Auftragseinrichtung 11 mit den Kameras über dem Blech 30 verfahren wird. Jedoch ist auch eine kinematische Umkehr möglich, d.h., dass das Blech 30 verfahren wird und die Auftragseinrichtung mit den Kameras ortsfest angeordnet ist. Die aufgetragene Klebstoffspur 20 wird synchron und parallel von

den Kameras 12, 13, 14 auf der gemäß Figur 5 erläuterten Kreisbahn des Kreiscalipers ermittelt und ausgewertet, wobei von jeder Kamera jeweils lediglich ein Streifen des Bildes aufgenommen wird und in einem einzigen Bild unter Bildung einer Bildsequenz zusammengefügt wird. Entsprechend der Datenverminderung durch die Aufnahme von lediglich einem Streifen des Bildes jeder Kamera wird die Bildaufnahmefrequenz erhöht. wobei die einzelnen Bildstreifen in dem zusammengefügten Bild das synchrone und parallele sowie gleichzeitige Erfassen der drei Kamerabilder ermöglichen und wobei die einzelnen Bilder der drei Kameras ortsabhängig zugeordnet werden unmittelbar können. Somit wird eine Onlineüberprüfung der Klebstoffspur in Echtzeiten möglich, welche durch die hohe Bildaufnahmefrequenz sowohl beim Einlernen einer Referenzkleberspur als auch beim Überprüfen der aufgebrachten Kleberspur eine hohe Genauigkeit bei hohen Verfahrgeschwindigkeiten erzielt. Hierbei sind die Informationen über Klebstoffspur im Klebersuchbereich, die Winkelzuordnung des Sensors, die Kleberbewertung, der Roboterverfahrweg und die Roboterverfahrzeit in einer Verlaufsliste zusammen gefasst.

Gemäß einer Ausführungsform der vorliegenden Erfindung kann eine Bewertungsfunktion zum Auffinden der Kanten der Klebstoffspur, insbesondere eine Fuzzy-Bewertung, verwendet werden. Um die Klebstoffspur zu ermitteln und zu bewerten, werden mittels einer Fuzzy-Bewertung folgende Parameter miteinander verrechnet:

Breite des Kantenpaares (Kante1: linke Kante der Klebstoffspur, Kante 2: rechte Kante der Kleberspur), mittlerer Grauwert des projizierten Grauwertprofils zwischen dem Kantenpaar, Randkontrast (geometrischer Mittelwert der Amplituden der beiden Kanten) und Positionsverlauf (gerichtete Abweichung des Mittelpunkts zwischen den beiden Kleberkanten vom Mittelpunkt des Suchbereichs in Pixel). Durch diese Vielzahl an Parametern kann, auch mit Hilfe der Fuzzy-Bewertungsfunktion, die Klebstoffspur sehr genau beschrieben werden, damit diese sicher automatisch erkannt wird.

Für die erfindungsgemäße Vorrichtung ist das nicht gezeigte Beleuchtungsmodul aus LEDs, insbesondere Infrarot-LEDs, UV-LEDs oder RGB-LEDs, aufgebaut. Um hohe Kontraste bei der Bildaufnahme zu erhalten, können die LEDs geblitzt werden, d.h., dass kurze, starke Stromimpulse auf die Dioden im Bereich von 1,0 bis 0,01 ms aufgebracht werden. Dabei sind insbesondere derartige Leuchtdioden vorteilhaft, die verschiedenfarbiges Licht emittieren können, sodass der Sensoraufbau ohne Umbauten auf andere Klebertypen bzw. Kleberfarben umgestellt werden kann.

Figur 7 zeigt eine Kalibriereinrichtung 40 in Form einer kreisförmigen um den einzelnen Kameras ihren Skalierungsfaktor, ihre Kalibrierscheibe. Winkelzugehörigkeit und den Mittelpunkt sowie den Radius des Suchkreises zuzuordnen. Die Kalibrierscheibe besteht aus einzelnen auf einer Kreisbahn angeordneten Formelementen bzw. Dots 41, die jeweils in einem Winkelabstand von einem im wesentlichen 10° angeordnet sind. In gleichmäßigen Abstand voneinander sind ferner Markierungsstellen 42 angeordnet, um drei Kameras zu kalibrieren. Mittels einer Ausgleichsrechnung wird aus den Koordinaten der Mittelpunkte der einzelnen Dots zum einen der Skalierungsfaktor der einzelnen Kameras zum anderen der Mittelpunkt sowie der Radius des Suchbereichs berechnet. Durch die Markierungsstellen im Winkel von 0°, 120°, 240° im globalem Koordinatensystem kann die Winkelzuordnung und der jeweilige Sichtbereich der einzelnen Kameras bestimmt werden. Der Sichtbereich der einzelnen Kameras ist insbesondere durch die drei Rechtecke in Figur 7 dargestellt, wobei die Formelemente 41 der Kreisbahn des Kreiscalipers zur Erfassung der Klebstoffspur entsprechen können.

In Fig. 8 ist die Auftragseinrichtung 11 dargestellt, wobei jeweils in Strichpunktlinie die Streifen 31, 32 und 33 um die Auftragseinrichtung 11 dargestellt, welche den Auslesebereich der einzelnen Kameras darstellen. Die Klebstoffspur 20 wird dabei im Überlappungsbereich der Streifen 32 und 33 überwacht, so dass diese beiden Kameras aktiv sind. Wenn sich der Verlauf der Klebstoffspur im Verhältnis zur Auftragseinrichtung 11 ändert, so wird gegebenenfalls lediglich eine der beiden Kameras aktiv, wobei hierzu ein nicht dargestellter im wesentlichen kreisförmiger Caliper verwendet wird, der um die Auftragseinrichtung 11 konzentrisch angeordnet ist.

Gemäß dieser Ausführungsform wird der Kreiscaliper durch mehrere Kameras gebildet, welche um die Auftragseinrichtung angeordnet sind, jedoch insbesondere in einem unterschiedlichen Radius von dem Mittelpunkt der Auftragseinrichtung angebracht sein können. Zur Inspektion einer Auftragsstruktur bzw. Kleberspur werden die Kameras auf einen Kreis bzw. eine Kreisbahn ausgerichtet, dessen Mittelpunkt mit dem Mittelpunkt der Auftragseinrichtung übereinstimmt. Auf dieser Kreisbahn findet die oben erläuterte optische Erfassung der Kleberspur statt.

Gemäß Figur 9 wird nun die dreidimensionale Profilauswertung mit Hilfe einer Projektion beschrieben, um für eine Positionskorrektur der Auftragseinrichtung zu sorgen. In Fig. 9 sind aus Übersichtlichkeitsgründen wiederum nur zwei Kamerasichtfelder 51, 52 gestrichelt dargestellt. Im Überlappungsbereich der beiden Kamerasichtfelder 51, 52 sind eine Vielzahl von Laserlinien 60 dargestellt, welche zur Profilauswertung hinsichtlich der Höhe und der Kontur von Strukturraupen und auf die Erzeugung von sogenannten Softkonturen verwendet werden. Die Laserlinien 60 werden von einer Projektionseinrichtung erzeugt, welche beispielsweise an dem optischen Sensor mit drei Kameras angeordnet sein kann. Ferner kann die Projektionseinrichtung jedoch auch unmittelbar an der Auftragseinrichtung 11 angeordnet sein. Der Sensor mit den drei Kameras ist schematisch durch den Kreis 70 dargestellt. Durch die auf das Bauteil 30 bzw. Blech 30 projizierten Laserlinien bzw. Laserstreifen werden Konturen auf dem Bauteil hervorgehoben, die mit üblicher Bildverarbeitung für die dreidimensionale Auswertung nicht verwendbar sind. Mit Hilfe der Laserlinien auf dem Bauteil werden künstliche Merkmale erzeugt, die dann mittels der Bildverarbeitung gemäß der Stereometrie ausgewertet werden können.. Somit zeigt Figur 9 das Prinzip der dreidimensionalen Lageerkennung vor dem Dichtmittelauftrag, falls keine harten, auswertbaren Merkmale vorhanden sind.

Somit wird ein Verfahren bzw. eine Vorrichtung zum Erkennen einer auf einem Substrat aufzubringenden Struktur, vorzugsweise eine Kleberraupe oder Kleberspur, mit mindestens einer Kamera, insbesondere mehreren Kameras beschrieben. Dabei wird das Einlernen einer Referenzauftragsstruktur durch lediglich ein einmaliges

Abfahren dieser Referenzauftragsstruktur derart vorgenommen, dass die Bilder aller Kameras in einer Bildsequenz gespeichert werden.

Ferner wird ein Verfahren zum Erkennen einer auf einem Substrat aufzubringenden Struktur beschrieben, wobei die aufgebrachte Struktur beim Abfahren für die Bewertung der Struktur derart als optisches Abbild verarbeitet wird, dass von jeder Kamera lediglich ein Streifen des Bildes unter Bildung einer Bildsequenz aufgenommen wird und die Bildaufnahmefrequenz entsprechend der Datenverminderung durch die Aufnahme von lediglich einem Streifen des Bildes erhöht wird.

Ansprüche

1. Verfahren zum Erkennen einer auf einem Substrat aufzubringenden Struktur, vorzugsweise eine Kleberraupe oder Kleberspur, mit mindestens einer Kamera, insbesondere mehreren Kameras, dadurch gekennzeichnet, dass das Einlernen einer Referenzauftragsstruktur durch lediglich ein einmaliges Abfahren dieser Referenzauftragsstruktur derart vorgenommen wird, dass die Bilder aller Kameras in einer Bildsequenz gespeichert werden.

- Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass von jeder Kamera lediglich ein Streifen des Bildes unter Bildung eines Teils der Bildsequenz aufgenommen wird.
- 3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass die Bildaufnahmefrequenz entsprechend der Datenverminderung durch die Aufnahme von lediglich einem Streifen des Bildes erhöht wird.
- 4. Verfahren zum Erkennen einer auf einem Substrat aufzubringenden Struktur, vorzugsweise einer Kleberraupe oder Kleberspur, mit mindestens einer Kamera, insbesondere mehreren Kameras, dadurch gekennzeichnet, dass die aufgebrachte Struktur beim Abfahren für die Bewertung der Struktur derart als optisches Abbild verarbeitet wird, dass von jeder Kamera lediglich ein Streifen des Bildes unter Bildung einer Bildsequenz aufgenommen wird und die Bildaufnahmefrequenz entsprechend der Datenverminderung durch die Aufnahme von lediglich einem Streifen des Bildes erhöht wird.
- 5. Verfahren nach zumindest einem der Ansprüche 2 bis 4, dadurch gekennzeichnet, dass die Bildstreifen der einzelnen Kameras zu einem einzigen Bild zusammengefügt werden.

- 19 -

6. Verfahren nach zumindest einem der Ansprüche 2 bis 5, dadurch gekennzeichnet, dass pro Kamera in etwa nur 1/4 der Bildzeilen als Streifen des Bildes verwendet werden und die Bildaufnahmefrequenz vervierfacht wird.

- 7. Verfahren nach zumindest einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Parametrierung der von der Referenzauftragsstruktur erhaltenen Bildsequenz, welche aus einem einzigen Bildaufnahmelauf aller Kameras resultiert, automatisch durch ein einmaliges externes Anzeigen der Referenzauftragsstruktur vorgenommen wird und zum Vergleich mit einer aufgebrachten Kleberspur verwendet wird.
- 8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass für die Parametrierung der Roboterverfahrweg, die Roboterverfahrzeit, die Richtung, die Breite und die Güte der Kleberspur verwendet wird.
- 9. Verfahren nach zumindest einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass eine Bewertungsfunktion, insbesondere eine Fuzzy-Bewertung, zum Auswerten der Klebstoffspur verwendet wird.
- 10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass die Breite des Kantenpaares der rechten und linken Kante der Kleberspur, der mittlere Grauwert des projizierten Grauwertprofils zwischen dem Kantenpaar, der Randkontrast und der Positionsverlauf mittels der Bewertungsfunktion verrechnet werden.
- 11. Verfahren nach zumindest einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Kanten der Kleberspur auf einer umlaufenden Bahn, insbesondere im wesentlichen einer Kreisbahn in Form eines kreisförmigen Calipers, ermittelt werden, wobei innerhalb der umlaufenden Bahn die Kleberspur verläuft.

12. Verfahren nach Anspruch 11, dadurch gekennzeichnet, dass der Mittelpunkt der Kreisbahn oder das Zentrum der umlaufenden Bahn im wesentlichen mit der Stelle übereinstimmt, aus welcher der Kleber zur Bildung der Kleberspur austritt.

- 13. Verfahren nach Anspruch 11 oder 12, dadurch gekennzeichnet, dass jede Kamera zumindest ein Segment des aus der Kreisbahn gebildeten Kreises oder der Umlaufbahn überwacht.
- 14. Verfahren nach Anspruch 13, dadurch gekennzeichnet, dass jede Kamera zumindest einen Überlappungsbereich mit zumindest einer angrenzenden Kamera überwacht.
- 15. Verfahren nach einem der Ansprüche 11 bis 14, dadurch gekennzeichnet, dass die Winkelwerte der Kreisbahn von 0 bis 360° ein globales Koordinatensystem bilden, wobei den Bildern der einzelnen Kameras ein Segment der Kreisbahn zugeordnet wird.
- 16. Verfahren nach einem der Ansprüche 11 bis 15, dadurch gekennzeichnet, dass eine erste Kamera mindestens einen Winkelbereich von -10° bis 130°, eine zweite Kamera mindestens einen Winkelbereich von 110° bis 250° und eine dritte Kamera mindestens einen Winkelbereich von 230° bis 10° abdeckt.
- 17. Verfahren nach einem der Ansprüche 11 bis 16, dadurch gekennzeichnet, dass bei dem Verlauf der Kleberspur von einer Kamera zur nächsten automatisch umgeschaltet wird, wenn die Kleberspur von dem Segment der Kreisbahn oder der Umlaufbahn einer Kamera über den Überlappungsbereich in das Segment der Kreisbahn einer anderen Kamera verläuft.
- 18. Verfahren nach zumindest einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zur Beleuchtung LED-Leuchtmittel verwendet

werden, welche eine Lichtfarbe umfassen, die einen geeigneten Kontrast zur Farbe der Auftragsstruktur aufweist.

- 19. Verfahren nach Anspruch 18, wobei Infrarot-LEDs oder UV-LEDs verwendet werden.
- 20. Verfahren nach Anspruch 18 oder 19, dadurch gekennzeichnet, dass Leuchtdioden verwendet werden, insbesondere RGB-LEDs.
- 21. Verfahren nach einem der vorhergehenden Ansprüche 18 bis 20, dadurch gekennzeichnet, dass LEDs in Farbtripeln aus den Farben rot, grün und blau verwendet werden.
- 22. Verfahren nach einem der Ansprüche 18 bis 21, dadurch gekennzeichnet, dass die LEDs geblitzt werden, wobei insbesondere Stromimpulse von 1,0 bis 0,01 ms auf die Dioden aufgebracht werden.
- 23. Verfahren nach einem der vorhergehenden Ansprüche 1 bis 22, wobei eine Referenzkontur von zumindest zwei Kameras ermittelt wird, um eine dreidimensionale Positionskorrektur für die Auftragseinrichtung mit Hilfe des Stereometrieverfahrens durchzuführen.
- 24. Verfahren nach Anspruch 23, dadurch gekennzeichnet, dass die beiden Kameras das Substrat, einen Bauteilabschnitt oder ein oder mehrere Bauteile als Vollbild oder Großbild aufnehmen, wobei die Vollbilder oder Großbilder der beiden Kameras einen Überlappungsbereich ergebende dreidimensionale Lageerkennung der Referenzkontur zur Justierung der Auftragseinrichtung vor dem Aufbringen der Struktur verwendet wird.
- 25. Verfahren nach einem der Ansprüche 23 oder 24, dadurch gekennzeichnet, dass eine Projektion zur dreidimensionalen Auswertung auf den Bereich der Referenzkontur aufgebracht wird, insbesondere eine

oder mehrere Laserlinien als Projektion auf das Substrat aufgebracht werden.

- Verfahren nach einem der Ansprüche 1 bis 25, dadurch gekennzeichnet, dass eine Kalibrierung der einzelnen Kameras zur Zuordnung der Winkelzugehörigkeit vorgenommen wird, wobei insbesondere ein Kreisbogen der Kalibriervorrichtung mit Markierungsstellen mit 0°, 120° und 240° für drei Kameras verwendet wird.
- 27. Verfahren nach einem der Ansprüche 1 bis 26, dadurch gekennzeichnet, dass der Abstand der Einrichtung zum Auftragen der Struktur zu einem Bauteilmerkmal gemessen wird, um eine Lageprüfung der aufgebrachten Struktur durchzuführen, wobei zur Abstandsmessung insbesondere eine linienförmige Grauwertkantenantastung verwendet wird.
- 28. Vorrichtung zum Erkennen einer auf einem Substrat aufzubringenden Struktur, vorzugsweise eine Kleberraupe oder Kleberspur. zur Durchführung eines Verfahrens gemäß den Ansprüchen 1 bis 27, wobei zumindest ein Beleuchtungsmodul und eine Sensoreinheit vorgesehen ist, dadurch gekennzeichnet, dass die Sensoreinheit aus mindestens einer Kamera, insbesondere mehreren Kameras, aufgebaut ist, wobei die Kameras um die Einrichtung zum Auftragen der Struktur vorgesehen sind und an dieser derart angeordnet sind, dass die Kameras jeweils auf die Einrichtung zum Auftragen der Struktur ausgerichtet sind.
- 29. Vorrichtung nach Anspruch 28, dadurch gekennzeichnet, dass sich die axiale Längsachse der einzelnen Kameras in Blickrichtung im wesentlichen mit der axialen Längsachse der Auftragseinrichtung schneidet.
- 30. Vorrichtung nach Anspruch 28 oder 29, dadurch gekennzeichnet, dass die einzelnen Kameras, insbesondere drei Kameras, in Umfangsrichtung in jeweils gleichem Abstand voneinander angeordnet sind.

31. Vorrichtung nach einem der Ansprüche 28 bis 30, dadurch gekennzeichnet, dass die einzelnen Kameras derart verschaltet werden, dass die Bilder aller Kameras in einer Bildsequenz gespeichert werden.

- 32. Vorrichtung nach Anspruch 31, dadurch gekennzeichnet, dass von jeder Kamera lediglich ein Streifen des Bildes unter Bildung eines Teils der Bildsequenz aufgenommen wird.
- 33. Vorrichtung nach Anspruch 32, dadurch gekennzeichnet, dass die Bildaufnahmefrequenz entsprechend der Datenverminderung durch die Aufnahme von lediglich einem Streifen des Bildes erhöht wird.
- 34. Vorrichtung nach Anspruch 32 und/oder 33, dadurch gekennzeichnet, dass die Bildstreifen der einzelnen Kameras zu einem einzigen Bild zusammengefügt werden, um eine Referenzauftragsstruktur einzulernen und mit einer aufgebrachten Kleberspur zu vergleichen.
- 35. Vorrichtung nach einem der Ansprüche 28 bis 34, dadurch gekennzeichnet, dass eine oder mehrere Kameras zumindest einen im wesentlichen kreisförmigen Caliper oder umlaufenden Caliper bilden, dessen Mittelpunkt oder Zentrum im wesentlichen die Einrichtung zum Auftragen der Struktur bildet, wobei insbesondere die Kameras auf einen Kreis um die Auftragseinrichtung ausgerichtet sind, dessen Mittelpunkt im wesentlichen mit dem Mittelpunkt der Auftragseinrichtung übereinstimmt.
- 36. Vorrichtung nach einem der Ansprüche 28 bis 35, dadurch gekennzeichnet, dass die einzelnen Kameras einen Überlappungsbereich von jeweils mindestens 10°, insbesondere 30° bis 90°, zur nächsten Kamera aufweisen.
- 37. Vorrichtung nach einem der vorhergehenden Ansprüche 28 bis 36, dadurch gekennzeichnet, dass das Beleuchtungsmodul aus LEDs, insbesondere Infrarot-LEDs, UV-LEDs oder RGB-LEDs aufgebaut ist.

38. Vorrichtung nach Anspruch 37, dadurch gekennzeichnet, dass die LEDs geblitzt werden, wobei Stromimpulse von 1,0 bis 0,01 ms verwendet werden.

- 39. Vorrichtung nach einem Ansprüche 28 bis 38, dadurch gekennzeichnet, dass zur Kalibrierung der einzelnen Kameras für die Zuordnung der Winkelzugehörigkeit eine Kalibriervorrichtung mit einzelnen Formelementen verwendet wird, wobei die Formelemente insbesondere einen Winkelabstand von im wesentlichem 10° aufweisen.
- 40. Vorrichtung nach Anspruch 39, dadurch gekennzeichnet, dass die Kalibriervorrichtung zumindest drei Markierungsstellen aufweist, die in einem Kreisbogen der Kalibriervorrichtung von im wesentlichen 0°, 120° und 240° angeordnet sind, um drei Kameras zu kalibrieren.
- 41. Vorrichtung nach Anspruch 40, dadurch gekennzeichnet, dass sich die Markierungsstellen auf der Kreisbahn in einem Winkelbereich von jeweils im wesentlichen 10° erstrecken, wobei die Markierungsstellen insbesondere durch zumindest zwei Formelemente gebildet werden.
- 42. Vorrichtung nach einem der Ansprüche 28 bis 41, dadurch gekennzeichnet, dass eine Projektionseinrichtung an der Auftragseinrichtung vorgesehen ist, welche einen oder mehrere Merkmale. insbesondere Streifen, auf das Substrat für eine dreidimensionale Auswertung projiziert.
- 43. Vorrichtung nach Anspruch 42, dadurch gekennzeichnet, dass die Projektionseinrichtung eine oder mehrere Laserlinien zur dreidimensionalen Profilauswertung aussendet.

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Fig. 7

Fig. 8

Fig. 9

INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER IPC 7 B05B12/12

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols) IPC 7 - B05B - B05C

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, PAJ

Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
χ .	US 5 402 351 A (BATCHELDER ET AL)	1,28-30
A	28 March 1995 (1995-03-28) column 3, line 13 - line 47 column 8, line 62 - column 10, line 27 figures 4a,4b,5,6a,6b	4
Х	FR 2 817 618 A (RENAULT)	1,28
Α	7 June 2002 (2002-06-07) page 2, line 3 - page 7, line 12; figures 1-3	4
Х	WO 02/26397 A (SCHUCKER, JOSEF) 4 April 2002 (2002-04-04)	28
Α	page 1, line 1 — page 9, line 5; figure 1	1,4
	-/	

X Further documents are listed in the continuation of box C.	Patent family members are listed in annex.
 Special categories of cited documents: "A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier document but published on or after the international filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filing date but later than the priority date claimed 	 "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. "&" document member of the same patent family
Date of the actual completion of the international search 2 March 2005	Date of mailing of the international search report 14/03/2005
Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL – 2280 HV Rijswijk Tel. (+31–70) 340–2040, Tx. 31 651 epo ni, Fax: (+31–70) 340–3016	Authorized officer Van der Bijl, S

INTERNATIONAL SEARCH REPORT

	PC1/EP2004/014698			
	Relevant to claim No.			
LIC 4 704 000 A (DENNEY ET AL.)	1 4 00			
US 4 724 302 A (PENNEY ET AL) 9 February 1988 (1988-02-09) column 1, line 1 - column 3, line 22 column 3, line 58 - column 4, line 62; figures 1,2,5	1,4,28			
figures 1,2,5 US 2002/113198 A1 (BIEMAN LEONARD H ET AL) 22 August 2002 (2002-08-22) paragraph '0008! - paragraph '0009! paragraph '0023! - paragraph '0044!; figures 1-4,9	1,4,28			
	US 4 724 302 A (PENNEY ET AL) 9 February 1988 (1988-02-09) column 1, line 1 - column 3, line 22 column 3, line 58 - column 4, line 62; figures 1,2,5 US 2002/113198 A1 (BIEMAN LEONARD H ET AL) 22 August 2002 (2002-08-22) paragraph '0008! - paragraph '0009! paragraph '0023! - paragraph '0044!; figures 1-4,9			

INTERNATIONAL SEARCH REPORT

PCT/E P2004/014698

Patent document cited in search report		Publication date		Patent family member(s)		Publication date
US 5402351	Α	28-03-1995	US JP JP	5303141 2597778 5345359	B2	12-04-1994 09-04-1997 27-12-1993
FR 2817618	Α	07-06-2002	FR	2817618	A1	07-06-2002
WO 0226397	A	04-04-2002	DE AT AU BR CA DE DE WO EP JP US ZA	10048749 286785 8586301 0114314 2422825 20122250 50105078 0226397 1320419 1445031 2004528956 2004011284 200302280	T A A A1 U1 D1 A1 A1 A2 T A1	11-04-2002 15-01-2005 08-04-2002 14-10-2003 18-03-2003 14-10-2004 17-02-2005 04-04-2002 25-06-2003 11-08-2004 24-09-2004 22-01-2004 29-03-2004
US 4724302		09-02-1988	NONE			
US 2002113198	A1	22-08-2002	NONE			

INTERNATIONALER RECHERCHENBERICHT

ationales Aktenzeichen PCT/EP2004/014698

A.	KL/	SSIF	IZIERUNG DES	ANMELDUNGSGEGENSTANDES
IF	PΚ	7	B05B12/	12

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchierter Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole) $IPK \ 7 \quad B05B \quad B05C$

Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

EPO-Internal, PAJ

Kategorie°	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
Х	US 5 402 351 A (BATCHELDER ET AL) 28. März 1995 (1995-03-28)	1,28-30
Α	Spalte 3, Zeile 13 - Zeile 47 Spalte 8, Zeile 62 - Spalte 10, Zeile 27 Abbildungen 4a,4b,5,6a,6b	4
Х	FR 2 817 618 A (RENAULT) 7. Juni 2002 (2002-06-07)	1,28
A	Seite 2, Zeile 3 - Seite 7, Zeile 12; Abbildungen 1-3	4
Х	WO 02/26397 A (SCHUCKER, JOSEF) 4. April 2002 (2002-04-04)	28
A	Seite 1, Zeile 1 - Seite 9, Zeile 5; Abbildung 1	1,4
		}

	-/			
Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen	X Siehe Anhang Patentfamilie			
ausgeführt) "O" Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht "P" Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist	 "T" Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist "X" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachtet werden "Y" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erfinderischer Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist "&" Veröffentlichung, die Mitglied derselben Patentfamilie ist 			
Datum des Abschlusses der internationalen Recherche 2. März 2005	Absendedatum des internationalen Recherchenberichts 14/03/2005			
Name und Postanschrift der Internationalen Recherchenbehörde Europäisches Patentamt, P.B. 5818 Patentlaan 2 NL – 2280 HV Rijswijk Tel. (+31–70) 340–2040, Tx. 31 651 epo nl, Fax: (+31–70) 340–3016	Bevollmächtigter Bediensteter Van der Bijl, S			

INTERNATIONALER RECHERCHENBERICHT

		101/1120	004/014698
C.(Fortsetz	ung) ALS WESENTLICH ANGESEHENE UNTERLAGEN		
Kategorie°	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht komme	nden Teile	Betr. Anspruch Nr.
A	US 4 724 302 A (PENNEY ET AL) 9. Februar 1988 (1988-02-09) Spalte 1, Zeile 1 - Spalte 3, Zeile 22 Spalte 3, Zeile 58 - Spalte 4, Zeile 62; Abbildungen 1,2,5		1,4,28
A	US 2002/113198 A1 (BIEMAN LEONARD H ET AL) 22. August 2002 (2002-08-22) Absatz '0008! - Absatz '0009! Absatz '0023! - Absatz '0044!; Abbildungen 1-4,9		1,4,28

INTERNATIONALER RECHERCHENBERICHT

	echerchenbericht rtes Patentdokument		Datum der Veröffentlichung		Mitglied(er) der Patentfamilie		Datum der Veröffentlichung
US	5402351	Α	28-03-1995	US JP JP	5303141 / 2597778 5345359 /	B2	12-04-1994 09-04-1997 27-12-1993
FR	2817618	Α	07-06-2002	FR	2817618 /	A1	07-06-2002
WO	0226397	A	04-04-2002	DE AU BR CA DE WO EP JP US ZA	1445031	T A A A1 U1 D1 A1 A1 A2 T A1	11-04-2002 15-01-2005 08-04-2002 14-10-2003 18-03-2003 14-10-2004 17-02-2005 04-04-2002 25-06-2003 11-08-2004 24-09-2004 29-03-2004
US	4724302	Α	09-02-1988	KEIN	NE		
US	2002113198	A1	22-08-2002	KEIN	VE		