THE EQUATIONS OF SOME DISPERSIONLESS LIMIT

SEUNG HWAN SON

ABSTRACT. These equations are the generalized equations of several dispersionless equations. A complete table for $p \leq 10$ is provided.

1. Introduction

It is well-known that a lot of nonlinear solitonic equations can be transformed into certain Hirota type bilinear equations [17]. The τ -function of the KP hierarchy can be characterized by the Hirota equations and the Plücker relations are given from these equations. The differential Fay identity which has quasiclassical limit, is a part of the Plücker relations. The leading term of the quasiclassical limit of the differential Fay identity satisfies an identity [22] and from the identity $EQUATION(\cdot, \infty)$ is extracted.* Therefore, $EQUATION(\cdot, \infty)$ is a subset of the dispersionless KP hierarchy. EQUATION(p,q) are derived from EQUATION (p, ∞) . EQUATION $(\cdot, 2)$ can be regarded as a subset of dispersionless KdV hierarchy. We can easily show that EQUATION(4,3) is a dispersionless Boussinesq equation. Therefore, EQUATION $(\cdot, 3)$ can be regarded as a subset of dispersionless Boussinesq hierarchy. EQUATION (\cdot,q) for q>3 is a whole new set of dispersionless equations which can be regarded as a subset of new hierarchy which may have some useful application.

2. The formula

Let us use F_{mn} instead of $\frac{\partial^2}{\partial t_m \partial t_n} (F(t_1, \dots, t_r, \dots)).$

Definition 2.1. EQUATION
$$(p, q)$$
:

Definition 2.1. EQUATION
$$(p,q)$$
:
$$\sum_{\substack{0 < i_1 < \dots < i_{k_p} \\ (i_1+1)n_{i_1} + \dots + (i_{k_p}+1)n_{i_{k_p}} = p}} \left(\left(\sum_{j=1}^{k_p} n_{i_j} - 1 \right)! \prod_{j=1}^{k_p} \frac{\left(-F_{1i_j} \right)^{n_{i_j}}}{n_{i_j}!} \right)$$

$$+\sum_{m+n=p} \frac{F_{mn}}{mn} = 0.$$

 $+\sum_{m+n=p}\frac{F_{mn}}{mn}=0.$ where the terms having $\frac{\partial}{\partial t_q},\ldots,\frac{\partial}{\partial t_{kq}},\ldots$ vanish.

 $^{1991\} Mathematics\ Subject\ Classification.\ Primary\ 35Q53,\ 35Q51.$

Key words and phrases. Dispersionless limit, KdV, KP, Boussinesq equation.

^{* (}Caution)

This notation is used only for technical simplicity of expression since the formula was found by the author recently (Fall, 1994) [5]. This is another way of using equation numbers. Therefore, the author strongly recommends careful use of the notation until the formula is well-known. (Of course, given notation has no meaning elsewhere like other usual equation numbers.)

3. EQUATION(4, q)

One can easily show that EQUATION $(4,\infty)$ is a dispersionless KP and EQUATION(4,2) is a dispersionless KdV.

Consider a dispersionless Boussinesq equation

$$(uu_x)_x + \frac{1}{2}u_{yy} = 0. (3.1)$$

If we set $t_1 = x$ and $t_2 = y$, then EQUATION(4,3) is

$$\frac{1}{2}(F_{xx})^2 + \frac{1}{4}F_{yy} = 0. {(3.2)}$$

Differentiate (3.2) with respect to x. Then we get

$$F_{xx}F_{xxx} + \frac{1}{4}F_{xyy} = 0. (3.3)$$

Setting $u = 2F_{xx}$, (3.3) becomes

$$\left(\frac{u}{2}\frac{u_x}{2}\right)_x + \frac{1}{4}\left(\frac{u_{yy}}{2}\right) = 0.$$

which is the same as (3.1).

4. Discussion

We could get the useful expression of the generalized equations of the dispersionless limit of KdV, KP and Boussinesq equations. And one can get a specific equation for each (p,q). Furthermore, new hierarchies are derived from EQUATION (\cdot,q) for q>3. For further research, a table of equations are provided. By definition, EQUATION(p,q) is the same as EQUATION (p,∞) for $q\geq p$.

Table. Equations for (p, q).

$$(4,\infty) \qquad \frac{1}{2}F_{11}^2 - \frac{1}{3}F_{13} + \frac{1}{4}F_{22} = 0$$

$$(5,\infty) F_{11}F_{12} - \frac{1}{2}F_{14} + \frac{1}{3}F_{23} = 0$$

$$(6,\infty) \qquad \frac{1}{3}F_{11}^{3} - \frac{1}{2}F_{12}^{2} - F_{11}F_{13} + \frac{3}{5}F_{15} - \frac{1}{9}F_{33} - \frac{1}{4}F_{24} = 0$$

$$(7,\infty) F_{11}^2 F_{12} - F_{12} F_{13} - F_{11} F_{14} + \frac{2}{3} F_{16} - \frac{1}{6} F_{34} - \frac{1}{5} F_{25} = 0$$

$$(8,\infty) \qquad \frac{1}{4}F_{11}^{4} - F_{11}F_{12}^{2} - F_{11}^{2}F_{13} + \frac{1}{2}F_{13}^{2} + F_{12}F_{14} + F_{11}F_{15} - \frac{5}{7}F_{17} + \frac{1}{16}F_{44} + \frac{2}{15}F_{35} + \frac{1}{6}F_{26} = 0$$

$$(9,\infty) F_{11}{}^{3}F_{12} - \frac{1}{3}F_{12}{}^{3} - 2F_{11}F_{12}F_{13} - F_{11}{}^{2}F_{14} + F_{13}F_{14}$$
$$+F_{12}F_{15} + F_{11}F_{16} - \frac{3}{4}F_{18} + \frac{1}{10}F_{45} + \frac{1}{9}F_{36} + \frac{1}{7}F_{27} = 0$$

$$(10,\infty) \qquad \frac{1}{5}F_{11}^{5} - \frac{3}{2}F_{11}^{2}F_{12}^{2} - F_{11}^{3}F_{13} + F_{12}^{2}F_{13} + F_{11}F_{13}^{2}$$

$$+2F_{11}F_{12}F_{14} - \frac{1}{2}F_{14}^{2} + F_{11}^{2}F_{15} - F_{13}F_{15} - F_{12}F_{16} - F_{11}F_{17}$$

$$+ \frac{7}{9}F_{19} - \frac{1}{25}F_{55} - \frac{1}{12}F_{46} - \frac{2}{21}F_{37} - \frac{1}{8}F_{28} = 0$$

$$(4,2) \qquad \frac{1}{2}F_{11}^2 - \frac{1}{3}F_{13} = 0$$

$$(5,2)$$
 $0=0$

$$(6,2) \qquad \frac{1}{3}F_{11}^{3} - F_{11}F_{13} + \frac{3}{5}F_{15} - \frac{1}{9}F_{33} = 0$$

$$(7,2)$$
 $0=0$

$$(8,2) \qquad \frac{1}{4}F_{11}^{4} - F_{11}^{2}F_{13} + \frac{1}{2}F_{13}^{2} + F_{11}F_{15} - \frac{5}{7}F_{17} + \frac{2}{15}F_{35} = 0$$

$$(9,2)$$
 $0=0$

(10,2)
$$\frac{1}{5}F_{11}^{5} - F_{11}^{3}F_{13} + F_{11}F_{13}^{2} + F_{11}^{2}F_{15} - F_{13}F_{15} - F_{11}F_{17}$$
$$+ \frac{7}{9}F_{19} - \frac{1}{25}F_{55} - \frac{2}{21}F_{37} = 0$$

$$(4,3) \qquad \frac{1}{2}F_{11}^2 + \frac{1}{4}F_{22} = 0$$

$$(5,3) F_{11}F_{12} - \frac{1}{2}F_{14} = 0$$

$$(6,3) \qquad \frac{1}{2}F_{11}^{3} - \frac{1}{2}F_{12}^{2} + \frac{3}{5}F_{15} - \frac{1}{4}F_{24} = 0$$

$$(7,3) F_{11}{}^{2}F_{12} - F_{11}F_{14} - \frac{1}{5}F_{25} = 0$$

$$(8,3) \qquad \frac{1}{4}F_{11}^{4} - F_{11}F_{12}^{2} + F_{12}F_{14} + F_{11}F_{15} - \frac{5}{7}F_{17} + \frac{1}{16}F_{44} = 0$$

$$(9,3) F_{11}{}^{3}F_{12} - \frac{1}{3}F_{12}{}^{3} - F_{11}{}^{2}F_{14} + F_{12}F_{15} - \frac{3}{4}F_{18} + \frac{1}{10}F_{45} + \frac{1}{7}F_{27} = 0$$

(10,3)
$$\frac{1}{5}F_{11}^{5} - \frac{3}{2}F_{11}^{2}F_{12}^{2} + 2F_{11}F_{12}F_{14} - \frac{1}{2}F_{14}^{2} + F_{11}^{2}F_{15} - F_{11}F_{17}$$
$$- \frac{1}{25}F_{55} - \frac{1}{8}F_{28} = 0$$

$$(5,4) F_{11}F_{12} + \frac{1}{3}F_{23} = 0$$

$$(6.4) \qquad \frac{1}{2}F_{11}^{3} - \frac{1}{2}F_{12}^{2} - F_{11}F_{13} + \frac{3}{5}F_{15} - \frac{1}{9}F_{33} = 0$$

(7,4)
$$F_{11}{}^{2}F_{12} - F_{12}F_{13} + \frac{2}{3}F_{16} - \frac{1}{5}F_{25} = 0$$

$$(8,4) \qquad \frac{1}{4}F_{11}^{4} - F_{11}F_{12}^{2} - F_{11}^{2}F_{13} + \frac{1}{2}F_{13}^{2} + F_{11}F_{15} - \frac{5}{7}F_{17} + \frac{2}{15}F_{35} + \frac{1}{6}F_{26} = 0$$

$$(9,4) F_{11}{}^{3}F_{12} - \frac{1}{3}F_{12}{}^{3} - 2F_{11}F_{12}F_{13} + F_{12}F_{15} + F_{11}F_{16} - + \frac{1}{9}F_{36} + \frac{1}{7}F_{27} = 0$$

$$(10,4) \qquad \frac{1}{5}F_{11}^{5} - \frac{3}{2}F_{11}^{2}F_{12}^{2} - F_{11}^{3}F_{13} + F_{12}^{2}F_{13} + F_{11}F_{13}^{2} + F_{11}^{2}F_{15}$$

$$-F_{13}F_{15} - F_{12}F_{16} - F_{11}F_{17} + \frac{7}{9}F_{19} - \frac{1}{25}F_{55} - \frac{2}{21}F_{37} = 0$$

$$(6.5) \qquad \frac{1}{3}F_{11}^{3} - \frac{1}{2}F_{12}^{2} - F_{11}F_{13} - \frac{1}{9}F_{33} - \frac{1}{4}F_{24} = 0$$

$$(7.5) F_{11}^2 F_{12} - F_{12} F_{13} - F_{11} F_{14} + \frac{2}{3} F_{16} - \frac{1}{6} F_{34} = 0$$

$$(8.5) \qquad \frac{1}{4}F_{11}^{4} - F_{11}F_{12}^{2} - F_{11}^{2}F_{13} + \frac{1}{2}F_{13}^{2} + F_{12}F_{14} - \frac{5}{7}F_{17} + \frac{1}{16}F_{44} + \frac{1}{6}F_{26} = 0$$

(9,5)
$$F_{11}{}^{3}F_{12} - \frac{1}{3}F_{12}{}^{3} - 2F_{11}F_{12}F_{13} - F_{11}{}^{2}F_{14} + F_{13}F_{14} + F_{11}F_{16} - \frac{3}{4}F_{18} + \frac{1}{9}F_{36} + \frac{1}{7}F_{27} = 0$$

$$(10,5) \qquad \frac{1}{5}F_{11}^{5} - \frac{3}{2}F_{11}^{2}F_{12}^{2} - F_{11}^{3}F_{13} + F_{12}^{2}F_{13} + F_{11}F_{13}^{2} + 2F_{11}F_{12}F_{14} - \frac{1}{2}F_{14}^{2} - F_{12}F_{16} - F_{11}F_{17} + \frac{7}{9}F_{19} - \frac{1}{12}F_{46} - \frac{2}{21}F_{37} - \frac{1}{8}F_{28} = 0$$

$$(7.6) F_{11}^2 F_{12} - F_{12} F_{13} - F_{11} F_{14} - \frac{1}{6} F_{34} - \frac{1}{5} F_{25} = 0$$

$$(8,6) \qquad \frac{1}{4}F_{11}^{4} - F_{11}F_{12}^{2} - F_{11}^{2}F_{13} + \frac{1}{2}F_{13}^{2} + F_{12}F_{14} + F_{11}F_{15} - \frac{5}{7}F_{17} + \frac{1}{16}F_{44} + \frac{2}{15}F_{35} = 0$$

(9,6)
$$F_{11}{}^{3}F_{12} - \frac{1}{3}F_{12}{}^{3} - 2F_{11}F_{12}F_{13} - F_{11}{}^{2}F_{14} + F_{13}F_{14} + F_{12}F_{15} - \frac{3}{4}F_{18} + \frac{1}{10}F_{45} + \frac{1}{7}F_{27} = 0$$

$$(10,6) \qquad \frac{1}{5}F_{11}^{5} - \frac{3}{2}F_{11}^{2}F_{12}^{2} - F_{11}^{3}F_{13} + F_{12}^{2}F_{13} + F_{11}F_{13}^{2} + 2F_{11}F_{12}F_{14} - \frac{1}{2}F_{14}^{2} + F_{11}^{2}F_{15} - F_{13}F_{15} - F_{11}F_{17} + \frac{7}{9}F_{19} - \frac{1}{25}F_{55} - \frac{2}{21}F_{37} - \frac{1}{8}F_{28} = 0$$

$$(8,7) \qquad \frac{1}{4}F_{11}^{4} - F_{11}F_{12}^{2} - F_{11}^{2}F_{13} + \frac{1}{2}F_{13}^{2} + F_{12}F_{14} + F_{11}F_{15} + \frac{1}{16}F_{44} + \frac{2}{15}F_{35} + \frac{1}{6}F_{26} = 0$$

(9,7)
$$F_{11}{}^{3}F_{12} - \frac{1}{3}F_{12}{}^{3} - 2F_{11}F_{12}F_{13} - F_{11}{}^{2}F_{14} + F_{13}F_{14} + F_{12}F_{15} + F_{11}F_{16} - \frac{3}{4}F_{18} + \frac{1}{10}F_{45} + \frac{1}{9}F_{36} = 0$$

$$(10,7) \qquad \frac{1}{5}F_{11}{}^{5} - \frac{3}{2}F_{11}{}^{2}F_{12}{}^{2} - F_{11}{}^{3}F_{13} + F_{12}{}^{2}F_{13} + F_{11}F_{13}{}^{2} + 2F_{11}F_{12}F_{14}$$

$$- \frac{1}{2}F_{14}{}^{2} + F_{11}{}^{2}F_{15} - F_{13}F_{15} - F_{12}F_{16} + \frac{7}{9}F_{19} - \frac{1}{25}F_{55} - \frac{1}{12}F_{46} - \frac{1}{8}F_{28} = 0$$

(9,8)
$$F_{11}{}^{3}F_{12} - \frac{1}{3}F_{12}{}^{3} - 2F_{11}F_{12}F_{13} - F_{11}{}^{2}F_{14} + F_{13}F_{14} + F_{12}F_{15} + F_{11}F_{16} + \frac{1}{10}F_{45} + \frac{1}{9}F_{36} + \frac{1}{7}F_{27} = 0$$

$$(10.8) \qquad \frac{1}{5}F_{11}^{5} - \frac{3}{2}F_{11}^{2}F_{12}^{2} - F_{11}^{3}F_{13} + F_{12}^{2}F_{13} + F_{11}F_{13}^{2} + 2F_{11}F_{12}F_{14}$$

$$-\frac{1}{2}F_{14}^{2} + F_{11}^{2}F_{15} - F_{13}F_{15} - F_{12}F_{16} - F_{11}F_{17} + \frac{7}{9}F_{19} - \frac{1}{25}F_{55}$$
$$-\frac{1}{12}F_{46} - \frac{2}{21}F_{37} = 0$$

$$(10,9) \qquad \frac{1}{5}F_{11}^{5} - \frac{3}{2}F_{11}^{2}F_{12}^{2} - F_{11}^{3}F_{13} + F_{12}^{2}F_{13} + F_{11}F_{13}^{2} + 2F_{11}F_{12}F_{14}$$
$$-\frac{1}{2}F_{14}^{2} + F_{11}^{2}F_{15} - F_{13}F_{15} - F_{12}F_{16} - F_{11}F_{17} - \frac{1}{25}F_{55} - \frac{1}{12}F_{46}$$
$$-\frac{2}{21}F_{37} - \frac{1}{8}F_{28} = 0$$

References

- [1] M. J. Ablowitz and H. Segur, Solitons and the Inverse Scattering Transform, SIAM (1981).
- [2] S. Aoyama and Y. Kodama, A generalized Sato equation and the W_{∞} algebra, Phys. Lett. B **278** (1992), 56–62.
- [3] S. Aoyama and Y. Kodama, The M-truncated KP hierarchy and matrix models, Phys. Lett. B 295 (1992), 190–198.
- [4] S. Aoyama and Y. Kodama, Topological Conformal Field Theory with a Rational W Potential and the dispersionless KP hierarchy, Mod. Phy. Lett. A, 9 No. 27 (1994), 2481–2492.
- [5] R. W. Carroll, On dispersionless Hirota type equations, hep-th/9410063.
- [6] R. Dijkgraaf, H. Verlinde and E. Verlinde, Loop Equations and Virasoro Constraints in Non-Perturbative 2d Quantum Gravity, Nucl. Phys. B348 (1991), 435–456.
- [7] R. Dijkgraaf, H. Verlinde and E. Verlinde, Topological Strings in d < 1, Nucl. Phys. **B352** (1991), 59–86.
- [8] J. Gibbons and Y. Kodama, Solving dispersionless Lax Equations, Singular Limits of Dispersive Waves, (Plenum, 1994), 61–66.
- [9] Y. Kodama and J. Gibbons, A Method for Solving the dispersionless KP hierarchy and its Exact Solutions. II, Phys. Lett. A 135 No. 3 (1989), 167–170.
- [10] Y. Kodama and J. Gibbons, Integrability of the dispersionless KP hierarchy, Proc. of the Workshop on Nonlinear Processes in Physics (World Scientific, 1990), p. 166.
- [11] Y. Kodama, Exact Solutions of Hyperdynamic type Equations having Infinitely Many Conserved Densities, Phys. Lett. A 135 No. 3 (1989), 171–174.
- [12] B. G. Konopelchenko, Introduction to Multidimensional Integrable Equations, Plenum Press, (1992).
- [13] I. M. Krichever, Method of Averaging for Two-dimensional Integrable Equations, Funct. Anal. Appl. 22 (1988), 200–213.
- [14] I. M. Krichever, The dispersionless Lax Equations and Topological Minimal Models, Commun. Math. Phys. 143 (1991), 415–426.
- [15] I. M. Krichever, The τ-Function of the Universal Whitham Hierarchy, Matrix Models and Topological Field Theorie, hep-th/9205110.
- [16] Y. Ohta, J. Satsuma, D. Takahashi and T. Tokihiro, An Elementary Intro-

- duction to Sato Theory, Prog. Theoret. Phys. Supp., 94 (1988), 210.
- [17] S. Oishi, A Method of Analysing Soliton Equations by Bilinearization, J. Phys. Soc. Jpn, 48 (1980), 639.
- [18] M. Sato and Y. Sato, Soliton Equations as Dynamical Systems on Infinite Dimensional Grassmann Manifold, Proc. the U.S.-Japan Seminar, Tokyo, 1982.
- [19] M. Sato and M. Noumi, Soliton Equations and the Universal Grassmann Manifolds, Sophia Univ. Kokyuroku in Math., 18 (1984).
- [20] K. Takasaki and T. Takebe, SDiff(2) KP Hierarchy, Int. J. Mod. Phys. A7, Suppl. 1B (1992), 889–922.
- [21] K. Takasaki and T. Takebe, Quasi-Classical Limit of KP Hierarchy, W-Symmetries and Free Fermions, Kyoto preprint KUCP-0050/92 (July, 1992).
- [22] K. Takasaki and T. Takebe, Integrable hierarchies and dispersionless limit, hep-th/940596.
- [23] E. Witten, Ground Ring of Two Dimensional String Theory, Nucl. Phys. **B373** (1992), 187–213.

Seung H. Son Department of Mathematics University of Illinois at Urbana-Champaign E-mail address: son@math.uiuc.edu