

# Lecture 10 Introduction to Network Security



Textbook: Ch. 31



#### Main Topics

- A. Security Goal (31.1)
- в. Cryptography (31.2)
  - **Symmetric-Key Cryptography (31.2.1)** 
    - Monoalphabetic Substitution
    - Polyalphabetic Substitution
    - Transpositional Encryption
  - Asymmetric-key cryptography (31.2.2)
    - Requirements for Public Key
    - \* RSA
- c. Security Aspects (31.3)
  - **™** Message Integrity (31.3.1)
  - **™** Message Authentication (31.3.2)
  - □ Digital Signature (31.3.3)

# A. Security Goals

- \* Information needs to be secured from attacks.
- \* To be secured, information needs to be
  - many hidden from unauthorized access (confidentiality),
  - protected from unauthorized change (integrity),
  - available to an authorized entity when it is needed (availability).



Figure 31.1: Taxonomy of attacks with relation to security goals

# **B.** Cryptography

- Network security is mostly achieved through the use of cryptography.
  - Cryptography is the science of transforming messages to make them secure and immune to attack.
- Aim
  - **Ca**Confidentiality
  - **∞**Integrity
  - Authentication

#### **Concept of Encryption and Decryption**



Ke is the encryption key

Kd is the decryption key

#### **Encryption/Decryption Methods**



- In traditional encryption (symmetric), the encrypting algorithm is known to everyone but the key is secret except to the sender and receiver
- In public key encryption (asymmetric), both the encrypting algorithm and the encryption key are known to everyone but the decryption key is known only to the receiver

#### Comparison



a. Symmetric-key cryptography



b. Asymmetric-key cryptography

#### I. Symmetric-Key Cryptography



- -- The same key (called shared key) is used by the sender (for encryption) and the receiver (for decryption)
- -- e.g. the methods in the following slides
- -- Each pair of users must have a unique symmetric key

# Traditional Ciphers (Symmetric-Key)



#### 1. Monoalphabetic Substitution



- Map every alphabet to another (unique) alphabet. OR
- Shift the plaintext alphabet by n places (n is the key)
- In monoalphabetic substitution, the relationship between a character in the plaintext to the character in the ciphertext is always one-to-one.

#### Example of monoalphabetic substitution

Encryption algorithm

Substitute top row character with bottom row character

Decryption algorithm

Substitute bottom row character with top row character



Key

#### **Problem?**

- -- can be attacked easily
- -- cannot hide natural frequencies of characters

### 2. Polyalphabetic Substitution



- Use different monoalphabetic substitutions as one proceeds through the plaintext message.
- e.g. use the position of the character in the text as the key (of substitution).
- e.g. define a table which maps every plaintext alphabet to a ciphertext alphabet.

#### Example

Character in plaintext



Character in Ciphertext

Key = (Position of character in the text) mod 26

According to this table, A is encrypted as W if it is in position 0 and as M if it is in position 25.

#### 3. Transpositional Encryption

- Re-order the positions of the characters in the plaintext
- e.g. Organize the plaintext into a table of n columns (n is the key length)
  - The columns are interchanged according to the key, which is a series of numbers
  - After exchanging the columns, the "encrypted" data is outputted "row by row"
- e.g. The key in the following slide is
- Means column 1 becomes column 6,
- column 2 becomes column 9 and so on

#### **Transpositional Encryption**





### II. Asymmetric-key cryptography

- It is also called Public Key Cryptography
- Encryption uses the key E called public key, while decryption uses another key D called private key
- i.e. encryption and decryption use different keys (this is an asymmetric method)
- (Here E(P) represents the ciphertext formed by encrypting the plaintext P using the key E)

#### 1. Requirements for Public Key

- \* 1) The encryption key (called public key) is made public, while the decryption key (called private key) is kept by the user securely
- 2) D(E(P)) = P,i.e. using D to decrypt a ciphertext message which is encrypted by E can get back the original message P
- 3) It is very, very difficult to deduce D from E
- e.g. The RSA method
- Each user creates a pair of keys (E & D), which can be used to communicate with any other users

#### **Public-key cryptography**



Sender uses the receiver's public key to encrypt the message

Receiver uses its own private key to decrypt the ciphertext

#### 2. RSA Cryptosystem

RSA is named for its inventors Rivest, Shamir, and Adleman.



#### Selecting Key for RSA

- Bob uses the following steps to select the private and public keys:
- Chooses two very large <u>prime numbers</u> p and q.
- 2. Get n and  $\Phi$  by  $n = p \times q$  and  $\Phi = (p-1) \times (q-1)$
- 3. Choose a random integer e and calculate d so that  $d \times e \mod \Phi = 1$ .
- e and n are announced to the public; d
   and Φ are kept secret.

In RSA, e and n are announced to the public; d and  $\Phi$  are kept secret.

#### **Encryption**

#### $C = P^e \pmod{n}$

#### **♦ Example 31.7**

Bob chooses 7 and 11 as p and q and calculates =  $7 \cdot 11 = 77 = n$ . The value of  $\Phi = (7 - 1)(11 - 1)$  or 60.

 $37 \times 13 \mod 60 = 1$ 

Now he chooses two keys, e and d. If he chooses e to be 13, then d is 37.

Now imagine Alice sends the plaintext 5 to Bob. She uses the public key 13 to encrypt 5.

Plaintext: 5

 $C = 5^{13} \mod 77 = 26$ 

Ciphertext: 26

#### **Decryption**

 $P = C^d \pmod{n}$ 

Example 31.7 (continued)

Bob receives the ciphertext 26 and uses the private key 37 to decipher the ciphertext:

Ciphertext: 26

 $P = 26^{37} \mod 77 = 5$ 

Plaintext: 5

The plaintext 5 sent by Alice is received as plaintext 5 by Bob.

## How many keys are needed?

- N users in a network
  - a) Total number of keys?
  - b) Each user needs to know/store how many keys?
- Symmetric-key System
  - a) N(N-1)/2 b) N-1 Why?

- \* Asymmetric-key System
  - a) 2N

- b) N+1 Why?

# C. Security Aspects

#### 1. Message Integrity

- There are occasions where we may not even need secrecy but instead must have integrity: the message should remain unchanged.
- ❖ For example, Alice may write a will to distribute her estate upon her death. The will does not need to be encrypted. After her death, anyone can examine the will.
- The integrity of the will, however, needs to be preserved. Alice does not want the contents of the will to be changed.

#### **Message Digest**

- A miniature version (digest) of the message (like a fingerprint)
- Created by a one-way hash function: the digest can only be created from the message, not vice versa
- Common hash functions: MD5 and SHA-1



#### Message and Digest for checking the Integrity



#### 2. Message Authentication

- Means verifying the identity of a sender
- One method called digital signature is based on public key cryptography
- To prevent a user from repudiating the message that he has sent
- Additional Requirement: E(D(P)) = P
- (Both encryption and decryption are just transformation algorithms)

#### Signing the whole document



- Sender uses its own private key to sign (/encrypt)
- Receiver uses the sender's public key to verify (/decrypt)
- Digital signature does not provide privacy (i.e. secret of the message)
  SEHH2238 Lecture 10

# **Signing the Digest**

Digital Signature - Signing the Digest Only



#### Receiver site (verify)



# 3. Digital Signature together with Encryption

For user A, denote

$$\bowtie E_A$$
 = public key
 $\bowtie D_A$  = private key
 $\bowtie E_A$  (P) = encrypt message P using the key  $E_A$ 
 $\bowtie D_\Delta$  (P) = decrypt message P using the key  $D_\Delta$ 

The encryption and decryption algorithms should have the property that

$$\bowtie D(E(P)) = P$$
 $\bowtie E(D(P)) = P$ 

#### Digital Signature together with Encryption

- User A sends a message P to user B by transmitting E<sub>B</sub> (D<sub>A</sub> (P))
- ❖ B decrypts the ciphertext using its own private key:

$$\bowtie D_B (E_B (D_A (P))) = D_A (P)$$

- ❖ User B stores D<sub>A</sub> (P) in a safe place and then decrypts it (check A's signature) using the public key E<sub>A</sub> of user A to get the original message P
- Message Nonrepudiation
- When A denies having sent the message P to B
  - $\bowtie$  User B can show both P and D<sub>A</sub> (P) as evidence
  - $\bowtie$  (since  $D_A$  (P) can only be produced by user A)

# Summary

- Cryptography
  - **Symmetric-Key Cryptography**
  - Asymmetric-key cryptography
- Security Aspects
  - Message Integrity
  - Message Authentication

## References

- Video on Distributed Denial of Service (DDOS) Attacks
  - http://www.youtube.com/watch?v=NogCN78XN2w
  - http://www.youtube.com/watch?v=SCcpauJp63c
- Revision Quiz
  - http://highered.mheducation.com/sites/0073376221/student view0/chapter31/quizzes.html