

Torchwood物理学社 陈乐 chenle9@mail2.sysu.edu.cn

2023-11-04

由极坐标系下的牛顿第二定律有: $\tau = I\alpha$

由受力分析有:

$$\tau = F_{\triangle} \times l = mgl \sin \theta$$
$$I = ml^2$$

单摆的动力学方程如下:

$$\alpha = -\frac{g}{l}\sin\theta$$

即

$$\frac{d^2\theta}{dt^2} + \frac{g}{l}\sin\theta = 0$$

$$\frac{d^2\theta}{dt^2} + \frac{g}{l}\sin\theta = 0$$

由小角近似 $\sin \theta \approx \theta$ 化为:

$$\frac{d^2\theta}{dt^2} + \frac{g}{l}\theta = 0$$

其解析解为:

$$\theta(t) = \theta_0 \cos\left(\sqrt{\frac{g}{l}}t\right) + \frac{\omega_0}{\sqrt{g/l}}\sin\left(\sqrt{\frac{g}{l}}t\right)$$

经典周期:

$$T = 2\pi\sqrt{l/g}$$

若小角近似 $\sin\theta \approx \theta$ 不再适用 我们怎么求解 $\frac{d^2\theta}{dt^2} + \frac{g}{l}\sin\theta = 0$?

f(t) 假设有一个函数f(t) 我们知道f(0) 能否通过步进t的方法求解数值解?——微分方程初值问题数值解

如何离散化时间?

将
$$f(t)$$
在 $t = t_0$ 处做泰勒展开:
 $f(t)$
 $= f(t_0) + f'(t_0)(t - t_0) + \frac{1}{2!}f''(t_0)(t - t_0)^2$
 $+ \dots + \frac{1}{n!}f^{(n)}(t_0)(t - t_0)^n + \dots$

将
$$f(t_i)$$
在 $t = t_{i-1}$ 处做泰勒展开:

$$f(t_{i}) = f(t_{i-1} + \Delta t)$$

$$= f(t_{i-1}) + f'(t_{i-1})(\Delta t)$$

$$+ \frac{1}{2!}f''(t_{i})(\Delta t)^{2} + \cdots$$

$$+ \frac{1}{n!}f^{(n)}(t_{i})(-\Delta t)^{n} + \cdots$$

对于一阶欧拉方法:

$$f(t_i) = f(t_{i-1}) + f'(t_{i-1})\Delta t$$

$$f(t_i) = f(t_{i-1}) + f'(t_{i-1})\Delta t$$

后退欧拉方法(隐式):

$$f(t_i) = f(t_{i-1}) + f'(t_i)\Delta t$$

迭代求解:

$$f(t_{i,1}) = f(t_{i-1}) + f'(t_{i-1})\Delta t$$

$$f(t_{i,2}) = f(t_{i-1}) + f'(t_{i,1})\Delta t$$

• • •

将
$$f(t_i)$$
在 $t = t_{i-1}$ 处做泰勒展开:
 $f(t_i) = f(t_{i-1} + \Delta t)$
 $= f(t_{i-1}) + f'(t_{i-1})(\Delta t)$
 $+ \frac{1}{2!}f''(t_{i-1})(\Delta t)^2 + O(t^3)$

$$\lambda p = \frac{1}{2}$$

将
$$K_1$$
和 K_2 代入
 $f(t_i) = f(t_{i-1}) + \Delta t[(1 - \lambda)K_1 + \lambda K_2]$
 $f(t_i) = f(t_{i-1}) + \Delta t(1 - \lambda) f'(t_{i-1}) + \Delta t \lambda f'(t_{i-1}) + \Delta t \lambda f''(t_{i-1}) (p \Delta t) + O(t^3)$
 $= f(t_{i-1}) + f'(t_{i-1})(\Delta t) + \Delta t \lambda f''(t_{i-1})(\Delta t) + \Delta t \lambda f''(t_{i-1})(\Delta t) + \Delta t \lambda f''(t_{i-1})(\Delta t)^2 + O(t^3)$

二阶龙格-库塔方法(中点格式):
$$\lambda = 1, \ p = \frac{1}{2}$$

$$f(t_i) = f(t_{i-1}) + \Delta t K_2$$

$$K_2 = f'(t_{i-1/2})$$

回到单摆

回到单摆

回到单摆

微分方程初值问题数值解: 物理过程与时间有关 考虑方程 (Mooney-Rivlin双参数超弹性模型):

$$\sigma = 2C_{10}\left(\lambda - \frac{1}{\lambda^2}\right) + 2C_{01}\left(\lambda - \frac{1}{\lambda}\right)$$

- · σ是应力
- λ是拉伸比,即拉伸后的长度与原始长度的比值
- C_{10} 和 C_{01} 是Mooney-Rivlin模型的参数 非线性方程数值解: 物理过程与时间无关

非线性方程数值解

考虑方程f(x) = m,化为g(x) = f(x) - m = 0

牛顿迭代法:

$$x_{n+1} = x_n - \frac{g(x_n)}{g'(x_n)}$$

橡皮筋拉伸的数值解

考虑方程(Mooney-Rivlin双参数超弹性模型)

$$\sigma = 2C_{10}\left(\lambda - \frac{1}{\lambda^2}\right) + 2C_{01}\left(\lambda - \frac{1}{\lambda}\right)$$

取 $C_{10} = 0.187MPa$, $C_{01} = 0.122MPa$, $\sigma = 0.5MPa$

最终解得λ≈ 1.40

顶盖驱动空腔问题

欧拉方程:

①有限差分 $f(x_i, y) = f(x_{i-1}, y) + f'_x(x_{i-1}, y)h$ 缺点: 要求规则网格,通用性弱

②有限元

使用函数逼近方法

类似傅里叶变换:

$$f(x) \approx c_0 \cdot \varphi_0 + c_1 \cdot \varphi_1 + \cdots$$

 φ 为基函数, c为系数

将节点 A、B、C 的平衡关系写成一个方程组,有

$$-\tilde{P}_{A} - \left(\frac{E_{1}A_{1}}{l_{1}}\right)u_{A} + \left(\frac{E_{1}A_{1}}{l_{1}}\right)u_{B} + 0 = 0$$

$$0 + \left(\frac{E_{1}A_{1}}{l_{1}}\right)u_{A} - \left(\frac{E_{1}A_{1}}{l_{1}} + \frac{E_{2}A_{2}}{l_{2}}\right)u_{B} + \left(\frac{E_{2}A_{2}}{l_{2}}\right)u_{C} = 0$$

$$P_{C} - 0 + \left(\frac{E_{2}A_{2}}{l_{2}}\right)u_{B} - \left(\frac{E_{2}A_{2}}{l_{2}}\right)u_{C} = 0$$

写成矩阵形式,有

$$\begin{bmatrix} -\tilde{P}_{A} \\ 0 \\ P_{C} \end{bmatrix} - \begin{bmatrix} \frac{E_{1}A_{1}}{l_{1}} & -\frac{E_{1}A_{1}}{l_{1}} & 0 \\ -\frac{E_{1}A_{1}}{l_{1}} & \frac{E_{1}A_{1}}{l_{1}} + \frac{E_{2}A_{2}}{l_{2}} & -\frac{E_{2}A_{2}}{l_{2}} \\ 0 & -\frac{E_{2}A_{2}}{l_{2}} & \frac{E_{2}A_{2}}{l_{2}} \end{bmatrix} \begin{bmatrix} u_{A} \\ u_{B} \\ u_{C} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\begin{array}{c} 0.8 \\ 0.7 \\ 0.6 \\ 0 \\ 0 \end{array}$$

$$\begin{array}{c} 0.8 \\ 0.7 \\ 0.5 \\ 0.4 \\ 0.2 \\ 0.1 \end{array}$$

小总结

现代计算机模拟方法导论

Jim Gray, The Fourth Paradigm: Data-Intensive Scientific Discovery, 2009

现代计算机模拟方法导论

计算机模拟是一种"计算实验"

- ① 建模与边界问题:建模为三维/二维/二维轴对称?建模的范围多大?
- ② 材料与参数问题: 材料的物理参数从哪里来?
- ③物理模型的准确性和适用范围
- ④ 有限元的基础——网格划分
- ⑤ 求解方程——边界条件
- ⑥ 验证仿真的正确性——结果与和实验的对照

如何学习计算机模拟

- ①相关课程:《数值计算(数值分析)》、《计算物理》
- ②实践的第一步: 商业软件
- ③深入数学/算法: 开源软件/代码

什么是COMSOL Multiphysics®

使用 COMSOL 多物理场仿真软件 模拟真实场景下的物理现象 设计和优化实际工程问题

- ✓ 基于先进数值方法的通用仿真软件
- ✓ 支持单一物理场及多物理场耦合建模
- ✔ 同一界面中实现完整建模流程 从几何模型构建到结果后处理
- ✓ 提供便捷易用的仿真 App 创建、部署工具

本质:有限元方法商业软件

优点: 高度自由, 易上手的交互, 非常充足的案例库

缺点: 闭源, 方法有限, 计算效率较低

COMSOL Multiphysics®的一般流程

COMSOL Multiphysics®的一般流程

COMSOL Multiphysics®的一般流程

COMSOL Multiphysics®应用

草图

COMSOL Multiphysics®的一般流程

COMSOL Multiphysics®的一般流程

物理场设置 后处理 网格划分 求解器 几何建模

电磁

AC/DC 模块

RF 模块

波动光学模块

射线光学模块

等离子体模块

半导体模块

结构 & 声学

结构力学模块

非线性结构材料模块

复合材料模块

岩土力学模块

疲劳模块

转子动力学模块

多体动力学模块

MEMS 模块

声学模块

流体 & 传热

CFD 模块

搅拌器模块

聚合物流动模块

微流体模块

多孔介质流模块

地下水流模块

管道流模块

分子流模块

金属加工模块

传热模块

化工

化学反应工程模块

电池模块

燃料电池和电解槽模块

电镀模块

腐蚀模块

电化学模块

多功能

优化模块

不确定性量化模块

材料库

粒子追踪模块

气液属性模块

COMSOL Multiphysics®的一般流程

COMSOL Multiphysics®的一般流程

- ▲ 🧀 研究 1
 - 参数化扫描
 - ├── 步骤 1: 稳态
 - ▲ 11 求解器配置
 - ▶ 🙀 解 1 (sol1)
 - ▶ m 参数化解 1 (sol2)
 - ◢ 🛃 作业配置
 - 参数化扫描 1

▼ 时间步进	
求解器类型:	隐式 ▼
方法:	向后差分公式 ▼
求解器采用的步长:	自由 ▼
☑ 在结束时间插值解	
初始步长:	0.001 s
最大步长约束:	自动 ▼
最大 BDF 阶次:	5 ▼
最小 BDF 阶次:	1
事件容差:	0.01
非线性控制器	
一代数变量设置 一	
奇异质量矩阵:	可能 ▼
一致初始化:	后向欧拉法 ▼
后向欧拉法初始步长分数:	0.001
后向欧拉法的安全系数:	20
误差估计:	包含代数 ▼
□ 初始化后重新缩放	

COMSOL Multiphysics®的一般流程

求解器 几何建模 物理场设置 网格划分 后处理

- 数据集
 - 派生值
 - 表格
- 速度 (spf)
- 压力 (spf)
- -维绘图组 3
 - 导出
 - 报告

怎么学习COMSOL Multiphysics®

- ① 先了解基础的面板与操作
- ② 多跑案例,多尝试
- ③ 查看文档,不断修改自己的模型

怎么学习COMSOL Multiphysics®

- ① COMSOL官方视频中心
- COMSOL官方案例库
- COMSOL官方博客
- ④ COMSOL内置的帮助……

手把手案例

COMSOL Multiphysics®应用

13. Shooting Rubber Band

A rubber band may fly a longer distance if it is non-uniformly stretched when shot, giving it spin. Optimize the distance that a rubber band with spin can reach.

13. 射击橡皮筋

如果橡皮筋在射击时不均匀拉伸,使其 旋转,则可以飞得更远。优化带旋转的 橡皮筋能到达的距离。

提问时间

谢谢大家