Lecture 4: Higher Dimensional Regular Surfaces

Note Title 1/8/2017

SOUN = {ACR "X": ATA = I, det(A) > 0},

when viewed as a subset of

 $\mathbb{R}^{n \times n} \approx \mathbb{R}^{n^2}$ 

is certainly not a linear subspace

Sure enough,

A, B & SO(N) \* A+B & SO(N),
and O & SO(N).

Here, you see that:

- there are nonlinearities in linear maps,
- there are linearities in nonlinear maps.

My excuse for making the last comment is simply that a key mathematical tool for dealing with nonlinearities is the idea of Local Linear Approximation.

f: UCR<sup>n</sup>→R<sup>m</sup> is differentiable means: — some open neighborhood of a ∈ R<sup>n</sup>

$$f(x) = f(a) + \begin{bmatrix} \frac{2}{3}x_1 & \frac{2}{3}x_1 \\ \frac{2}{3}x_1 & \frac{2}{3}x_1 \end{bmatrix} (x-a) + o(11x-a11)$$
nonlinear  $\frac{2}{3}x_1 & \frac{2}{3}x_1 \\ \frac{2}{3}x_1 & \frac{2}{3}x_1 \end{bmatrix} \leftarrow 1$  hear

The goal of this lecture is to Define "k-dimensional regular surfaces in IR" Give a mental picture of what is a "k-dimensional manifold" And, as an important example prove: 50(n) is a  $\frac{n(n-1)}{2}$ -dimensional regular surface in IRn2. discuss: 50(n) is a  $\frac{n(n-1)}{2}$  -dimensional manifold. Another interesting example: G(n, k) = the set of all k-dimensional linear subspaces of Rn Like socn), Gin, k) is made up of objects in linear algebra, but, as a space by itself, it is not a linear space. e.g. n=3, k=1

~L1+BL2"

| Unlike SO(n), G(n,k) does not naturally sit in some Euclidean space.                                                                                                                                        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sit in some bulliagus space.                                                                                                                                                                                |
| so(n) C Rn2                                                                                                                                                                                                 |
|                                                                                                                                                                                                             |
| $G(n,k) \subset \mathbb{R}^{n/2}$                                                                                                                                                                           |
| We shall later prove:                                                                                                                                                                                       |
| · ·                                                                                                                                                                                                         |
| - G(n,k) is a k(n-k) - dim. manifold.                                                                                                                                                                       |
|                                                                                                                                                                                                             |
| - G(n,k) C Rsym                                                                                                                                                                                             |
|                                                                                                                                                                                                             |
| Definition:                                                                                                                                                                                                 |
| A subset SCRN is a                                                                                                                                                                                          |
| k-dimensional regular surface in IR if, for each pes there exists a neighborhood V in IR and a map                                                                                                          |
| if, for each DES there exists                                                                                                                                                                               |
| a neighborhood V in Rn and a map                                                                                                                                                                            |
|                                                                                                                                                                                                             |
| X: U -> V/S "a local parameteri-<br>2 ok A no in B Zation"                                                                                                                                                  |
| Zation'                                                                                                                                                                                                     |
| s.t. [Not a easy condition                                                                                                                                                                                  |
| 1. $X$ is $C^{\infty}$ to work with. Fortunately                                                                                                                                                            |
| 2. X is a homeomorphism 2' is enough.                                                                                                                                                                       |
| X: M -> V/S  a local parameteri- zation'  open in Rk & spen in R  s.t.  1. X is C <sup>∞</sup> lowork with. Fortundely  2. X is a homeomorphism 2' is enough.  3. dX(q) is injective for all q ∈ M.  2'X is |
| 2. X is                                                                                                                                                                                                     |
| a bijection                                                                                                                                                                                                 |
| U                                                                                                                                                                                                           |
|                                                                                                                                                                                                             |

| 1        |
|----------|
| <u> </u> |
|          |
| ı        |
|          |
| •        |
|          |
|          |
|          |
|          |
|          |
|          |
|          |
|          |
|          |
|          |
|          |
|          |
|          |
|          |
|          |
|          |
|          |
|          |
|          |
|          |
|          |
|          |
|          |
|          |
|          |
|          |
|          |

To show that S is a regular surface, for any pes, simply choose u=Rk, V=R ~= (t,,,tk) >> x0+ t, v,+...+ tkvk is a perfectly smooth map from IRR to IRn. parameterization = explicit representation In this case, we can also choose n-ke independent vectors orthogonal to 5, i.e. Ukti, ---, vn L S-xo S= {xeRn: [vkH, -, Un](x-x0) = 0} = Xo + null ([Vpr, -, vn]T). This gives an implicit representation of S XES if (some condition on X) is satisfied." span / image <> explicit representation null/kernel (=> implicit representation Important to master this boning example, because locally a secause <u>locally</u> a k-dim. regular surface/manifold is not very different from a k-dim. plane.

We now extend the concept of local linear approximation / denvative to the case of f: S1 -> S2 regular surfaces. But before we do so, what does it mean by "f is differentiable"? Note: Local parameterization provides coordinate neighborhood of a point. How about: f is <u>defined</u> to be differentiable X20foX1: 14, > 12 is differentiable in the usual sense in advanced Cakulus.

Ex: what is the problem with this definition?



Proposition: If X: U=S, Y: V=S

are two Ct local parameterizations
(ak.a "coordinate neighborhoods")

around PES, then

the change of coordinates map

X'oY: Y'(X(u) n Y(v))

-> X'(X(u) n Y(v))

is Ck with a Ck inverse.

(aka a Ck diffeomorphism.)

For simplicity, assume k = 00, i.e. all ] local parameterizations are infinitely smooth.]

Ex: why does this result fix the problem in the previous ex.?

|          | Discussions:                                                                                    |
|----------|-------------------------------------------------------------------------------------------------|
|          | Discussions: What needs to be proved?                                                           |
|          |                                                                                                 |
|          | Didn't we assume those local                                                                    |
|          | parameterizations are smooth, 30                                                                |
|          | parameterizations are smooth, $30$ composition of $C^{\infty}$ maps are $C^{\infty}$ .          |
|          |                                                                                                 |
|          | The stinging technicality is that it                                                            |
|          | The stinging technicality is that it makes no sense at this point to                            |
|          | say that                                                                                        |
|          | say that  X-1: III -> Rk  is Coo smooth.  curved  surface                                       |
| •        | is Coo smooth. 4                                                                                |
| , 9X     | curved                                                                                          |
| <b>℃</b> | Curved Surface                                                                                  |
|          | It is, however, sensible to talk                                                                |
|          | about the continuity of X-1. Indeed,                                                            |
|          | condition 2. in the def. of regular                                                             |
|          | condition 2. in the def. of regular surfaces requires $X^{-1}$ to be continuous.                |
|          |                                                                                                 |
|          | Xo Y: (Euclidean) → (Euclidean)                                                                 |
|          |                                                                                                 |
|          | (Fuclidean) $\xrightarrow{Y}$ (curved object) $\xrightarrow{X^{-1}}$ (Fuclidean) $\mathbb{R}^k$ |
|          | Rk n                                                                                            |
|          | (Euclidean)                                                                                     |
|          | Rr                                                                                              |
|          |                                                                                                 |
|          | Smoothness of I" O.K.                                                                           |
|          | "smoothness of XtoY" o.k.                                                                       |
|          | "smoothness of X'oY" o.k.  "continuity of X-1" o.k.                                             |
|          |                                                                                                 |
|          | "Smoothness of X7" not ak. 1                                                                    |

| Proof:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Trick: Ret help from the Euclidean Structure of the <u>ambient space</u> (Rn).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| of the ambient space (Rn).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| By renaming the axes if necessary, we can                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $\frac{3\pi}{3} \frac{3\pi}{3} \frac{3\pi}{3} \frac{3\pi}{3} $ $= \frac{3\pi}{3} \frac{3\pi}$ |
| ( ) — invertible                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 3xt 3xt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 3xv 3xv ]   X(b)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| (full rank = k) open in Rn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Extend X to a map F: UxRnk => Rn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| (u, t) (u) X(u) (u) (u) (u) (th) (th) (th)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| (u,,-,up) (th-1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Xp(u)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| easiest to picture Xxxx (w) + t1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| when 12=2, n=3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| LXn (u) + tn-k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| w X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| To the last of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| The state of the s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| At 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| MAT F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| u <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| F(Ux[0]) cured surface                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| but ownced                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| u, ux R F(ux(-e,e)) curred solid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |



ie. 
$$\exists$$
 open neighborhood  $N$  of  $P$  in  $\mathbb{R}^n$  st.  $F^{-1}\colon N \ni U \times \mathbb{R}^{n \times k}$  is well-defined and  $F \circ F^{-1} = F^{-1} \circ F = id$ 

 $V=Y^{1}(N\cap S)$  T(U, L) = U

Note: the composition with To on the r.h.s.

is only for argument sake, it does

not have any "real effect" as

F(I(v))

is always of the form (u, 0).

We have argued that X'oY is CR smooth in the neighborhood of any point in its domain.

Comment: Note that this proof relies on
the Euclidean structure of the
ambient space, which is something
we want to dispense with in
the development of manifolds. It
is, therefore, necessary to impose
the smoothness of change of
coordinates in the definition of a
smooth manifold. (see Lecture 5.)

Tangent Plane

S - k-dimensional regular surface in Rn

<u>Def:</u> TpS:= { α'(0): α:(-3ε)→S, α(0)=p}

This definition is nicer than than the one given before (even for the (k,n)=(2,3) case), because it looks simpler and does not involve

any parameterization.



With a parameterization,

$$\alpha'(0) = \left[ X_0(X_0 \alpha) \right]'(0)$$
 $\alpha \in \mathbb{R}$ 
 $\alpha \in \mathbb{R}$ 

is an ordered basis of TpS.

Ex: Fill in any logical gap. (compare with the discussion in Lecture 3.)

Note:





Two coordinate neighborhoods induce two different bases for the same tangent space TpS.

$$(\pi) \quad \alpha'(o) = \widetilde{\alpha}(o)$$

Def: Let

 $f: S_1 \rightarrow S_2$  be differentiable.

Its differential at PES1

dfp: TpS1 -> Tf(p) S2

is defined by:

TpS1 > V I (fox) (o) E Tg(p) S2



But what if  $\widetilde{\alpha}(0) = V$ , then



Below, we answer this question affirmatively, it requires a pretty standard calculation in basic manifold theory. This calculation also illustrates that

· dfp: TpS1 -> TgqpS2 is a linear map

To check (?), write everything in local coordinates and use the chain rule from advanced calculus:  $X_2 \circ f \circ \alpha = (X_2 \circ f \circ X_1) \circ (X_1 \circ \alpha)$ & in local coordinates f in local (foot) in coordinates local coordinates (x2 of ox)(0) = dt (x2 of ox) o (x, ox) \=0 d(x2-10f0x1) (x,100x) 0 But  $\alpha'(0) = \alpha'(0) \implies \alpha(x_1^{-1} \circ \alpha)|_{t=0} = \alpha(x_1^{-1} \circ \alpha)|_{t=0}$ Note(II)  $So(X_2^{\prime}\circ f\circ \alpha)'(\sigma) = (X_2^{\prime}\circ f\circ \hat{\alpha})'(\sigma),$ 

and (again by Note II earlier) (fox)'(o) = (fox)'(o).

Q.E.D.

Ex: Based on the above derivation, argue that dfp is linear.

Recap:

curved/nonlinear objects

f: S1 -> S2

dfp: TpS1 -> TfpS2

Linear map that serves as first

as first order local approximation of f

linear spaces that serve as first order local approximations of Si and Sz, resp.

| $N: S \rightarrow S^2$ $P$ Surface in $\mathbb{R}^3$       |
|------------------------------------------------------------|
| $N:S \rightarrow S^2$                                      |
| & Surface in IR3                                           |
|                                                            |
| PeS, dNp: TpS → TnpS2                                      |
|                                                            |
| goes under several names                                   |
| _                                                          |
| - shape operator<br>- 2nd fundamental form                 |
| - 2nd fundamental form                                     |
| - Weingarten map                                           |
|                                                            |
| But most importantly we need to first                      |
| identify                                                   |
| IN(p) S2 with Tps                                          |
| identify  TN(p)S <sup>2</sup> with TpS  and write instead  |
| _                                                          |
| dNp: TpS → TpS                                             |
| Note that N is a unit vector (<=>                          |
| Nes2)                                                      |
| $\langle N, N \rangle = 1$                                 |
| 7(4)   4 / =                                               |
| In local coordinates, $\langle N(u,v), N(u,v) \rangle = 1$ |
| Yu,v                                                       |
| 50 (N, Nu7=0                                               |
| $\langle N, N_{V} \rangle = 0$                             |
|                                                            |
| which means Nu, Nr E TpS.                                  |
|                                                            |
|                                                            |

Example: Gauss map

| Ex (needed for HW#3 and for the previous                                               |
|----------------------------------------------------------------------------------------|
| Ex (needed for HW#3 and for the previous proof):                                       |
|                                                                                        |
| Explain: $dNp(Xu) = Nu$ [Note: notations abused] $dNp(Xr) = Nr$                        |
|                                                                                        |
| Recall                                                                                 |
| If A: Rn -> Rm is a linear map,                                                        |
| n>m 2 mil(A) +2c                                                                       |
| rank(A) = m                                                                            |
| then $A^{-1}\{0\} = \text{null}(A)$                                                    |
| A'{y} = null(A) + (any point)                                                          |
| $A'\{y\} = null(A) + (any point)$<br>are $(n-m)$ -dimensional planes in $\mathbb{R}^n$ |
| When m=1, these are called hyperplanes.                                                |
| We now discuss a useful nonlinear                                                      |
| generalization of the above.                                                           |
|                                                                                        |
|                                                                                        |

|   | Regular Level Set Theorem (Fuchidean version):                                                                                                 |
|---|------------------------------------------------------------------------------------------------------------------------------------------------|
|   | Regular Level Set Theorem (Euclidean version):<br>Let F: IRn -> IRm a smooth map,                                                              |
|   | $\sim$                                                                                                                                         |
|   | If $y \in F(\mathbb{R}^n)$ and $F$ is                                                                                                          |
|   | If $y \in F(\mathbb{R}^n)$ and $F$ is a submersion at each $x \in F^1(y)$ ,                                                                    |
|   | 1.6.                                                                                                                                           |
|   | dFx: TxRn -> TyRm is                                                                                                                           |
|   |                                                                                                                                                |
|   | of rank m, Yx E F-1(g).                                                                                                                        |
|   | 49.000                                                                                                                                         |
|   | E-1(u) is a requier surface                                                                                                                    |
|   | then $F^{-1}(y)$ is a regular surface in $\mathbb{R}^n$ with dimension $n-m$ .                                                                 |
|   |                                                                                                                                                |
| • | We shall state and prove this result in                                                                                                        |
|   | We shall state and prove this result in a more general context, in which                                                                       |
|   |                                                                                                                                                |
|   | R'is replaced by N - an N-dim. manifold.  R''is replaced by M - an m-dim. manifold.  regular surface in R''' is replaced by  submanifold of M' |
|   | R"is replaced by M - an m-dirm. manifold                                                                                                       |
|   | regular surface in RM is replaced by                                                                                                           |
|   | · submanifold of M'                                                                                                                            |
|   |                                                                                                                                                |
|   | Now, we apply this result to prove                                                                                                             |
|   |                                                                                                                                                |
|   | Proposition:                                                                                                                                   |
|   | 20(0-1)                                                                                                                                        |
|   | O(n) and SO(n) are $\frac{n(n-1)}{2}$ - dimensional regular surfaces in $\mathbb{R}^{n^2}$ .                                                   |
|   | regular surfaces in IRM.                                                                                                                       |
|   |                                                                                                                                                |
|   |                                                                                                                                                |

| P   | roof:                                                                     |
|-----|---------------------------------------------------------------------------|
|     | roof: I) Note that Rn2                                                    |
|     | det: O(n) -> IR                                                           |
|     | det: O(n) -> IK                                                           |
|     | is continuous.                                                            |
|     | 15 COVETINUOUS.                                                           |
|     | And SO(n) = O(n) \(\text{det}^{\frac{1}{2}}\)                             |
|     | And $SO(n) = O(n) \cap det^{-1}(\mathbb{R}+)$ is an open subset of $O(n)$ |
|     | [In fact, O(n) consists of two connected                                  |
|     | components, so(n) is one of them.]                                        |
|     | Hence, if we can show that O(n) is                                        |
|     | a regular surface in IR <sup>n2</sup> with a                              |
|     | certain intrinsic dimension, then so                                      |
|     | is soln).                                                                 |
| (II | Recall $O(n) = \{A \in \mathbb{R}^{n \times n} : A^T A = I\}$             |
|     | Plausible Strategy:                                                       |
|     | consider F: Rnxn > Rnxn                                                   |
|     | $A \mapsto A^{T}A  (C^{00}-smooth)$                                       |
|     | then $O(n) = F^{-1}(I)$                                                   |
|     | and apply the regular level set<br>theorem.                               |
|     | theorem.                                                                  |
|     |                                                                           |

| But this is not going to fit into the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| But this is not going to fix into the setting of the theorem, as                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| dFA can never be full rank,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| since $F(A)$ is always symmetric, meaning that, as a map from $\mathbb{R}^{n^2}$ to $\mathbb{R}^{n^2}$ , $n(n-1)/2$ pairs of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| meaning that, as a map from R"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| to Rn2, n(n-1)/2 pars of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| component functions are the same,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| so n <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $dF_A = n^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| would also have noni/2 pairs of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| rows that are identical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 0.9.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $n=2$ , $F(A) = \begin{bmatrix} F_{11}(A) & F_{12}(A) \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| [F21(A) F22(A)]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| e.g.  n=2, F(A) = [F11(A) F12(A)]  [F21(A) F22(A)]  DF11/DA11 DF12/DA12 DF11/DA22  DF12/DA11 DF12/DA12 DF12/DA21 DF12/DA22  DF12/DA11 DF12/DA12 DF12/DA21 DF12/DA22  DF12/DA11 DF12/DA12 DF12/DA21 DF12/DA22  Nas rank at most 3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| dF(A)= 35/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25/2/0 25 |
| 2F21/2A11 2F21/2A21 2F21/2A21 2F21/2A22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 252/2A11 252/2A12 252/2A21 252/2A22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| has rank at most 3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| So, consider instead                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $F: \mathbb{R}^{n^2} \to \mathbb{R}^{n^2 - \frac{n(n+1)}{2}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |



remove these repetitive components

e.g. 
$$n=2$$
  $\mathbb{R}^4 \to \mathbb{R}^3$   
 $n=3$   $\mathbb{R}^9 \to \mathbb{R}^6$ 

By the regular level set theorem, we are done if we can show that dFA is full rank for any A & O(n).

(III) We observe the structure of dFg in the case of N=3, the pattern holds for any n.

$$Ai = ith column of A = \begin{pmatrix} aii \\ i \\ ain \end{pmatrix}$$

$$A^TA = [\langle Ai, Aj \rangle]_{i,j=1,...,n}$$

e.g. n=3

(a<sub>11</sub>, a<sub>21</sub>, a<sub>31</sub>, a<sub>12</sub>, a<sub>22</sub>, a<sub>13</sub>, a<sub>23</sub>, a<sub>33</sub>)<sup>T</sup> (A<sub>1</sub>, A<sub>1</sub>)
(A<sub>1</sub>, A<sub>2</sub>)
(A<sub>1</sub>, A<sub>3</sub>)
(A<sub>2</sub>, A<sub>2</sub>)
(A<sub>2</sub>, A<sub>3</sub>)  $\frac{\partial F_{A}}{\partial A} = \begin{bmatrix}
2a_{11} & 2a_{21} & 2a_{31} & 0 & 0 & 0 & 0 & 0 & 0 \\
a_{12} & a_{22} & a_{32} & a_{11} & a_{21} & a_{31} & 0 & 0 & 0 \\
a_{13} & a_{23} & a_{33} & 0 & 0 & 0 & a_{11} & a_{21} & a_{31} \\
0 & 0 & 0 & 2a_{12} & 2a_{22} & 2a_{32} & 0 & 0 & 0 \\
0 & 0 & 0 & a_{13} & a_{23} & a_{33} & a_{12} & a_{22} & a_{32} \\
0 & 0 & 0 & 0 & 0 & 0 & 2a_{13} & 2a_{23} & 2a_{33}
\end{bmatrix}$ 

when  $A^TA = I$ , i.e.  $\langle Ai, Aj \rangle = Sij$ , the rows of dFA are also orthogonal, therefore

rank  $dF_A = 6$  when  $A \in O(3)$ .

In general, any row of dFA is of the form:

 $d\langle A_i, A_i \rangle = \begin{cases} [0 - 0 \ 2A_i^T 0 - 0], & i = j \end{cases}$   $[0 - - A_j^T - A_i^T - 0], & i \neq j$   $e_{i+h} block \qquad j+h block$ 

And the rows are orthogonal (in  $\mathbb{R}^{n^2}$ ), (hence linearly independent) when evaluated at an  $A \in O(n)$ .

so rank  $dF_A = n^2 - \frac{n(n+1)}{2}$ ,  $\forall A \in O(n)$ .



dim SO(2) = 1 dim SO(3) = 3

50(3) is also a group, generated by

 $\begin{bmatrix}
\cos \theta & \sin \theta & 0 \\
-\sin \theta & \cos \theta & 0
\end{bmatrix}
\begin{bmatrix}
\cos \theta & 0 & \sin \theta \\
0 & 1 & 0
\end{bmatrix}
\begin{bmatrix}
1 & 0 & 0 \\
0 & \cos \theta & \sin \theta \\
-\sin \theta & 0 & \cos \theta
\end{bmatrix},
\begin{bmatrix}
1 & 0 & 0 \\
0 & \cos \theta & \sin \theta \\
0 & -\sin \theta & \cos \theta
\end{bmatrix}$ 

Ex: Label the three axes in the figure so that 'pitch', 'yow', 'row' correspond to the three matrices above.

Now you know that SO(3) is a regular Surface in TR9, it would have a well-defined tangent space at each element.

How would TASO(3) look like?

Let 
$$A(t)$$
 be a curve in  $SO(3)$ , with  $A(0) = A_0$ 

$$A(t)^T A(t) = I$$

$$A(t)^T A(t) + A(t)^T A(t) = O$$

$$A(0)^T A(0) + A(0)^T A(0) = O$$

$$A_0 A(0) = -(A_0^T A(0))^T$$
i.e.  $A_0^T A(0)$  is a skew-symmetric matrix.

Recall Frenet-frame from Lecture 1:

$$\begin{bmatrix} t(s), n(s), b(s) \end{bmatrix} = \begin{bmatrix} s(s), n(s), b(s) \end{bmatrix} = a \text{ skew-symmetric matrix}$$

$$C = SO(3)$$

$$SO \begin{bmatrix} t(s), n(s), b(s) \end{bmatrix} = \begin{bmatrix} t(s), n(s), b(s) \end{bmatrix} = a \text{ skew-symmetric matrix}$$

$$C = SO(3)$$

This is how the Frenct-frame equation looks like; again see the comments in Lecture 1. But, a 3×3 skew symmetric matrix has three degrees of freedom The skew-symmetric matrix that shows up in the Frenet-frame equation however, only has 2 degrees of freedom. FX: Explain what is going on here. L more on SO(3) and SO(n) later.