Periodicity in Exponential Function Differences

Author: Joel B. Mohler

Date: 2022-11-28

Abstract

The taylor series $\sum_{m=0}^{\infty} \frac{x^{a_m}}{a_m!}$ is convergent for set of terms identified by a_m an infinite increasing sequence of positive integers. These functions all behave similar to the exponential function e^x . In particular, if the sequence a_m is an arithmetic progression with common difference d and first term $a_0 < d$, then the function f(x) defined by this taylor series is it's own d^{th} derivative.

Self Derivative Series

Define the function \mathcal{G}_d^i with $d \geq 1$ and $0 \leq i < d$ to be the i-th offset Taylor series as

$$\mathcal{G}_d^i(x) = \sum_{n=0}^{\infty} \frac{x^{dn+i}}{(dn+i)!}.$$

Observe the following familiar functions can be written in terms of these building blocks:

$$e^x = \mathcal{G}_1^0(x)$$

$$\cosh(x) = \mathcal{G}_2^0(x) \text{ and } \sinh(x) = \mathcal{G}_2^1(x),$$

$$\cos(x) = \mathcal{G}_4^0(x) - \mathcal{G}_4^2(x)$$
 and $\sin(x) = \mathcal{G}_4^1(x) - \mathcal{G}_4^3(x)$.

By computing the d – th derivative of $f = \mathcal{G}_d^i$ directly on the taylor series expansion we verify the claim of the abstract that $f^{(d)} = f$. So also we can verify the familiar claims of the above functions being their own first, second and fourth derivatives respectively.

Other functions

If you graph the families \mathcal{G}_d^i with fixed d and $0 \le i < d$ we see that they cluster together by family of fixed d. In fact, it is startling looking that the graph of the 4 functions \mathcal{G}_4^i overlaid on the same graph appear to be equal for x >> 0. The startling fact being that not only are these functions not equal but they criss cross each other as we observe writing $\sin x$ and $\cos x$ as above.

For what follows, it is sufficient to graph the taylor series truncated at 40 terms for d > 1 and simply use e^x for d = 1. Get a feel for this by observing that

Figure 1: \mathcal{G}_i families for i = 1, 2, ..., 7

 $\frac{25^{80}}{80!}<1.0e-7.$ It is sufficient to graph the interval -3< x<25 to walk through the following.

The expressions for $\sin x$ and $\cos x$ above suggest it is reasonable to look at differences of the various \mathcal{G}_d^i . The graph below is of the 3 functions $\mathcal{G}_3^i - \mathcal{G}_3^j$ with $0 \le i < j < 3$. Observe the exponential oscillation to the left and the exponential decay to the right.

Figure 2: Unscaled graph of \mathcal{G}_3 family

Now, here are these same three functions scaled by multiplying by $e^{x/2}$. Specifically

$$e^{x/2}\left(\mathcal{G}_3^i(x)-\mathcal{G}_3^j(x)\right).$$

Observe in this scaled version that we can easily see the periodic zeros very similar to sin and cos. Numerically the zeros are spaced with common difference approximately 3.628.

Figure 3: Scaled graph of \mathcal{G}_3 family

Conjecture 1: There exists a periodic function $\mathcal{H}_3^{i,j}$ such that

$$\lim_{x\to\infty}e^{x/2}\left(\mathcal{G}_3^i(x)-\mathcal{G}_3^j(x)\right)-\mathcal{H}_3^{i,j}(x)=0.$$

However they are not mutually derivitives of each other when the scaling factor is included.

Observation 2: The difference $\mathcal{G}_2^0(x) - \mathcal{G}_2^1(x)$ converges to 0 from above as $x \to \infty$. There is no oscillation. This is easily verified by writing sinh and cosh as linear combinations of e^x and e^{-x} in the usual way.

Observation 3: The 6 differences $\mathcal{G}_4^i(x) - \mathcal{G}_4^j(x)$ need no scaling and are exactly periodic and mutually self-differential with a small caveat. Aside from the differences for sin and cos, these functions grow exponentially to the left. The difference functions are "visually periodic" for x > 5. As above in Conjecture 1 we can make this precise with a periodic limiting function $\mathcal{H}_4^{i,j}$.

Figure 4: Unscaled graph of \mathcal{G}_4 family

With correct scaling for each $d \ge 5$, we observe this same sort of periodic behavior for x >> 0. The following table summarizes the numeric observation of required scaling and resulting periods and amplitudes.

d	scale	period	amplitudes
3	0.500	7.256	1.155
4		2π	0.707 1.000
5	-0.309	6.606	$0.470\ 0.761$
6	-0.500	7.255	$0.334\ 0.578\ 0.667$
7	-0.623	8.036	$0.248\ 0.447\ 0.557$
8	-0.707	8.886	$0.191\ 0.354\ 0.462\ 0.501$
9	-0.766	9.775	$0.152\ 0.286\ 0.385\ 0.438$
10	-0.809	10.690	$0.123\ 0.235\ 0.324\ 0.381\ 0.401$
11	-0.841	11.622	$0.102\ 0.196\ 0.274\ 0.330\ 0.360$
12	-0.866	12.566	$0.086\ 0.165\ 0.235\ 0.288\ 0.322\ 0.333$

Remaining Questions

Question 1: Given d can we compute the scale, period and amplitudes?

I have not been able to see any precise pattern in the scaling factor as d varies beyond the general decreasing and it possibly approaches -1.

Question 2: Do the functions

$$e^{\gamma x} \left(\mathcal{G}_d^i(x) - \mathcal{G}_d^j(x) \right)$$

always converge to a sinusoidal periodic function as $x \to \infty$?

Question 3: Does

$$\left(\sum_{n=0}^{\infty} \frac{x^{nd}}{(nd)!}\right) e^{-x} \to \frac{1}{d}$$

for all d as $x \to \infty$?

Question 4 (bonus): The abstract considered any sequence of exponents in a taylor series. What kind of conditions on a sequence a_m with $a_{m+1} > a_m$ enable us to make any interesting observations about $\sum_{m=0}^{\infty} \frac{x^{a_m}}{a_m!}$?