

Flight control of a Quadrotor Vehicle Subsequent to a Rotor Failure

Edoardo Ghini, Gianluca Cerilli, Giuseppe L'Erario

Modeling and control of multi-rotor UAVs

Table of contents

- 1. Introduction
- 2. Quadrotor Model
- 3. Control Architecture
- 4. Vattela a pesca3

Introduction

Problem statement

Development of a control scheme in case of **rotor failure**, to allow the quadrotor to land with only three actuators.

Proposed Strategy

Full control of attitude is lost: renounce the yaw angle control, maintaining flight control of a spinning vehicle

Double-loop architecture

- Outer Control
 Yaw velocity is computed instead of the yaw angle
- Inner Control
 Roll angle, pitch angle and yaw velocity regulated via feedback linearization

Quadrotor Model

- Symmetric
- Rigid propellers

· Linear drag

Two reference frames:

- Earth frame: $\{R\}\{O, x, y, z\}$
- Body-fixed frame: $\{R_b\}\{O_b, x_b, y_b, z_b\}$

Rotations along roll (ϕ) and pitch (θ) angles are constrained:

$$(-\frac{\Pi}{2} < \phi < \frac{\Pi}{2}), \qquad (-\frac{\Pi}{2} < \theta < \frac{\Pi}{2})$$

while yaw angle ψ is unconstrained.

Inertia matrix in the body frame:

$$\mathbf{I} = \begin{bmatrix} I_{xx} & 0 & 0 \\ 0 & I_{yy} & 0 \\ 0 & 0 & I_{zz} \end{bmatrix}$$

where $I_{xx} = I_{yy}$ due to symmetry.

5

Dynamic model, defined from generalized forces, drag force and weight:

$$\begin{cases} \ddot{x} = \frac{1}{m} [(C_{\phi} S_{\theta} C_{\psi} + S_{\phi} S_{\psi}) u_f - k_t \dot{x}] \\ \ddot{y} = \frac{1}{m} [(C_{\phi} S_{\theta} S_{\psi} - S_{\phi} C_{\psi}) u_f - k_t \dot{y}] \\ \ddot{z} = \frac{1}{m} [(C_{\phi} C_{\theta}) u_f - mg - k_t \dot{z}] \\ \dot{p} = \frac{1}{l_{xx}} [-k_r p - qr(l_{zz} - l_{yy}) + \tau_p] \\ \dot{q} = \frac{1}{l_{yy}} [-k_r q - pr(l_{xx} - l_{zz}) + \tau_q] \\ \dot{r} = \frac{1}{l_{zz}} [-k_r r - pq(l_{yy} - l_{xx}) + \tau_r] \\ \dot{\phi} = p + q S_{\phi} T_{\theta} + r C_{\phi} T_{\theta} \\ \dot{\psi} = \frac{1}{C_{\theta}} [q S_{\phi} + r C_{\phi}] \end{cases}$$

- k_r, k_t = rotational and linear drags, $N \cdot m \cdot s$;
- u_f = total upward lift force, N;
- τ_p , τ_q , τ_r = torque around roll, pitch and yaw axis, $N \cdot m$;

System inputs:

Generalized forces u_f , τ_p , τ_q , τ_r

Real actuation:

Four motors forces f_1 , f_2 , f_3 , f_4

Relation between these is given by:

$$\begin{bmatrix} u_f \\ \tau_p \\ \tau_q \\ \tau_r \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & -l & 0 & l \\ -l & 0 & l & 0 \\ d & -d & d & -d \end{bmatrix} \begin{bmatrix} f_1 \\ f_2 \\ f_3 \\ f_4 \end{bmatrix}$$
(1)

where

- d = ration between drag and thrust coefficient of the rotor, m
- l = arm length, m

7

Control Architecture

Control scheme

Figure 1: The double loop architecture in case of actuator loss.

Generalized force - real actuation mapping

In case of failure of rotor \mathcal{M}_2 the mapping (1) is:

$$\begin{bmatrix} u_f \\ \tau_q \\ \tau_r \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ -l & l & 0 \\ d & d & -d \end{bmatrix} \begin{bmatrix} f_1 \\ f_3 \\ f_4 \end{bmatrix}$$
 (2)

and the neglected input is $au_p = l \cdot f_4$

Generalized force - real actuation mapping

In case of failure of rotor \mathcal{M}_2 the mapping (1) is:

$$\begin{bmatrix} u_f \\ \tau_q \\ \tau_r \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ -l & l & 0 \\ d & d & -d \end{bmatrix} \begin{bmatrix} f_1 \\ f_3 \\ f_4 \end{bmatrix}$$
 (2)

and the neglected input is $\tau_p = l \cdot f_4$

The inverse of (2) is:

$$\begin{bmatrix} f_1 \\ f_3 \\ f_4 \end{bmatrix} = \frac{1}{4} \begin{bmatrix} 1 & -2/l & l/d \\ 1 & 2/l & l/d \\ 2 & 0 & -2/d \end{bmatrix} \begin{bmatrix} u_f \\ \tau_q \\ \tau_r \end{bmatrix}$$
 (3)

State-space model

State vector

Input vector

$$\mathbf{u} = \begin{bmatrix} u_1 & u_2 & u_3 \end{bmatrix}^\mathsf{T} = \begin{bmatrix} u_f & \tau_q & \tau_r \end{bmatrix}^\mathsf{T} \tag{4}$$

The neglected input is expressed as:

$$\tau_p = \frac{l}{2}(u_1 - \frac{u_3}{d}) \tag{5}$$

State-space model

$$\begin{cases} \dot{\phi} &= \dot{x}_{1} = x_{4} + x_{5}S_{x_{1}}T_{x_{2}} + x_{6}C_{x_{1}}T_{x_{2}} \\ \dot{\theta} &= \dot{x}_{2} = x_{5}C_{x_{1}} \\ \dot{\psi} &= \dot{x}_{3} = \frac{1}{C_{x_{2}}}[x_{5}S_{x_{1}} + x_{6}C_{x_{1}}] \\ \dot{p} &= \dot{x}_{4} = \frac{1}{I_{xx}}[-R_{r}x_{4} - x_{5}x_{6}(I_{zz} - I_{xx}) + \frac{1}{2}(u_{1} - \frac{u_{3}}{d})] \\ \dot{q} &= \dot{x}_{5} = \frac{1}{I_{xx}}[-R_{r}x_{4} - x_{5}x_{6}(I_{zz} - I_{xx}) + u_{2}] \\ \dot{r} &= \dot{x}_{6} = \frac{1}{I_{xx}}(-R_{r}x_{6} + u_{3}) \\ \dot{x} &= \dot{x}_{7} = x_{10} \\ \dot{y} &= \dot{x}_{8} = x_{11} \\ \dot{z} &= \dot{x}_{9} = x_{12} \\ \ddot{x} &= \dot{x}_{10} = \frac{C_{x_{1}}S_{x_{2}}C_{x_{3}} + S_{x_{1}}S_{x_{3}}}{m}u_{1} - \frac{R_{t}}{m}x_{10} \\ \ddot{y} &= \dot{x}_{11} = \frac{C_{x_{1}}S_{x_{2}}S_{x_{3}} - S_{x_{1}}C_{x_{3}}}{m}u_{1} - \frac{R_{t}}{m}x_{11} \\ \ddot{z} &= \dot{x}_{12} = \frac{1}{m}[u_{1}C_{x_{1}}C_{x_{2}} - R_{t}x_{12} - mg] \end{cases}$$

The horizontal motion depends on the projection of the thrust vector on the (x, y) plane.

The direction of this vector depends on the roll and pitch angles.

Task of the Outer control:

Generate the right values of:

- roll and pitch angles to reach a desired horizontal position;
- · yaw velocity to control vertical dynamics.

Assuming the inner control loop stabilizes the state near the equilibrium:

$$X_1 = \phi \to \phi_d, \qquad X_2 = \theta \to \theta_d, \qquad X_6 = r \to r_d$$
 (7)

Inputs at the steady-state are:

$$u_2 \to 0$$

$$u_3 \to x_{6d}k_r$$

$$u_1 \to \frac{u_3}{d} = \frac{x_{6d}k_r}{d}$$

Rewrite the equations relative to (x, y, z) dynamics of (6) using:

- 1. assumption of small angles for ϕ_d and θ_d
- 2. inputs written at the steady-state
- 3. new state for outer control loop:

$$\tilde{X} = \begin{bmatrix} \tilde{X}_1 & \tilde{X}_2 & \tilde{X}_3 & \tilde{X}_4 & \tilde{X}_5 & \tilde{X}_6 \end{bmatrix}^T$$

= $\begin{bmatrix} X_7 & X_8 & X_9 & X_{10} & X_{11} & X_{12} \end{bmatrix}^T$

4. new control inputs vector:

$$\tilde{u} = \begin{bmatrix} \tilde{u}_1 & \tilde{u}_2 & \tilde{u}_3 \end{bmatrix} = \begin{bmatrix} \frac{k_r x_{6d}}{dm} x_{1d} & \frac{k_r x_{6d}}{dm} x_{2d} & \frac{k_r x_{6d}}{dm} \end{bmatrix}$$
(8)

Outer control loop model:

$$\begin{split} \dot{\bar{x}}_1 &= \tilde{x}_4 \\ \dot{\bar{x}}_2 &= \tilde{x}_5 \\ \dot{\bar{x}}_3 &= \tilde{x}_6 \\ \dot{\bar{x}}_4 &= C_{\psi} \tilde{u}_2 + S_{\psi} \tilde{u}_1 - \frac{k_t}{m} \tilde{x}_4 \\ \dot{\bar{x}}_5 &= S_{\psi} \tilde{u}_2 - C_{\psi} \tilde{u}_1 - \frac{k_t}{m} \tilde{x}_5 \\ \dot{\bar{x}}_6 &= \tilde{u}_3 - \frac{k_t}{m} \tilde{x}_6 - g \end{split}$$

Outer control loop model:

$$\begin{split} \dot{\bar{X}}_1 &= \tilde{X}_4 \\ \dot{\bar{X}}_2 &= \tilde{X}_5 \\ \dot{\bar{X}}_3 &= \tilde{X}_6 \\ \dot{\bar{X}}_4 &= C_{\psi} \tilde{u}_2 + S_{\psi} \tilde{u}_1 - \frac{k_t}{m} \tilde{X}_4 \\ \dot{\bar{X}}_5 &= S_{\psi} \tilde{u}_2 - C_{\psi} \tilde{u}_1 - \frac{k_t}{m} \tilde{X}_5 \\ \dot{\bar{X}}_6 &= \tilde{u}_3 - \frac{k_t}{m} \tilde{X}_6 - g \end{split}$$

Not yet linear!

To linearize the nonlinear dynamics we manipulate the control inputs:

$$\begin{bmatrix} \tilde{u}_1 \\ \tilde{u}_2 \end{bmatrix} = \begin{bmatrix} S_{\psi} & -C_{\psi} \\ C_{\psi} & S_{\psi} \end{bmatrix} \begin{bmatrix} \tilde{\tilde{u}}_1 \\ \tilde{\tilde{u}}_2 \end{bmatrix}$$
 (9)

Obtaining:

$$\dot{\tilde{x}}_4 = \tilde{\tilde{u}}_1 - \frac{k_t}{m} \tilde{x}_4$$

$$\dot{\tilde{x}}_5 = \tilde{\tilde{u}}_2 - \frac{k_t}{m} \tilde{x}_5$$

$$\dot{\tilde{x}}_6 = \tilde{u}_3 - \frac{k_t}{m} \tilde{x}_6 - g$$

To linearize the nonlinear dynamics we manipulate the control inputs:

$$\begin{bmatrix} \tilde{u}_1 \\ \tilde{u}_2 \end{bmatrix} = \begin{bmatrix} S_{\psi} & -C_{\psi} \\ C_{\psi} & S_{\psi} \end{bmatrix} \begin{bmatrix} \tilde{\tilde{u}}_1 \\ \tilde{\tilde{u}}_2 \end{bmatrix}$$
 (9)

Obtaining:

$$\dot{\tilde{x}}_4 = \tilde{\tilde{u}}_1 - \frac{k_t}{m} \tilde{x}_4$$

$$\dot{\tilde{x}}_5 = \tilde{\tilde{u}}_2 - \frac{k_t}{m} \tilde{x}_5$$

$$\dot{\tilde{x}}_6 = \tilde{u}_3 - \frac{k_t}{m} \tilde{x}_6 - g$$

Linear and decoupled

The control inputs are chosen as:

$$u_i = \ddot{x}_i + 2\xi_{out}c_{out}\dot{e}_i + c_{out}^2e_i \tag{10}$$

where:

- \ddot{x}_i is the feed-forward term;
- $e_i = x_{di} x_i$ is the error;
- c_{out} represents the natural frequency of the system and must be small: we want the outer loop control to be slower then inner control loop;
- ξ_{out} represents the dumping of the system.

Inner control loop

Inner control loop

Task of Inner control loop:

to control the dynamics of the attitude angle and the yaw velocity.

Equation relative to ψ, θ, p, q, r expressed such that the origin of the system is an equilibrium point when the inputs are equal to zero.

State vector:

$$\hat{x} = [\hat{x}_1 \quad \hat{x}_2 \quad \hat{x}_3 \quad \hat{x}_4 \quad \hat{x}_5] = [x_1 \quad x_1 \quad x_2 \quad x_3 \quad x_4 \quad (x_6 - \frac{mgd}{k_r})]$$
(11)

Inputs vector:

$$\hat{u} = [\hat{u}_1 \ \hat{u}_2 \ \hat{u}_3] = [(u_1 - mg) \ u_2 \ (u_3 - mgd)]$$
 (12)

Nonlinear model

The system is described by:

$$\dot{\hat{x}} = \hat{f}(\hat{x}) + \hat{G}(\hat{x})\hat{u} \tag{13}$$

$$\hat{y} = [\hat{h}_1 \quad \hat{h}_2 \quad \hat{h}_3] = [\hat{x}_1 \quad \hat{x}_2 \quad \hat{x}_5]$$
 (14)

where:

$$\hat{f}(\hat{x}) = \begin{bmatrix} \hat{x}_3 + \hat{x}_4 S_{\hat{x}_1} T_{\hat{x}_2} + (\hat{x}_5 + \frac{mgd}{k_r}) C_{\hat{x}_1} T_{\hat{x}_2} \\ \hat{x}_4 C_{\hat{x}_1} - (\hat{x}_5 + \frac{mgd}{k_r}) S_{\hat{x}_1} \\ \frac{1}{l_{xx}} [-k_r \hat{x}_3 - \hat{x}_4 (\hat{x}_5 + \frac{mgd}{k_r}) (l_{zz} - l_{yy})] \\ \frac{1}{l_{yy}} [-k_r \hat{x}_4 - \hat{x}_3 (\hat{x}_5 + \frac{mgd}{k_r}) (l_{xx} - l_{zz})] \\ \frac{1}{l_{zz}} (-k_r \hat{x}_5) \end{bmatrix} \hat{G}(\hat{x}) = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ \frac{1}{2} I_{xx} & 0 & -\frac{1}{2} I_{xx} \\ 0 & \frac{1}{l_{xx}} & 0 \\ 0 & 0 & \frac{1}{l_{zz}} \end{bmatrix}$$

Feedback Linearization

The system fulfills the conditions for the feedback linearization:

- the sum of the relative degrees is equal to the dimension of the state vector;
- · the decoupling matrix:

$$M(\hat{x}) = \begin{bmatrix} \frac{l}{2l_{XX}} & \frac{S_{\hat{x}_1}T_{\hat{x}_2}}{l_{XX}} & \frac{C_{\hat{x}_1}T_{\hat{x}_2}}{l_{ZZ}} - \frac{l}{2dl_{XX}} \\ 0 & \frac{C_{\hat{x}_1}}{l_{XX}} & -\frac{S_{\hat{x}_1}}{l_{ZZ}} \\ 0 & 0 & \frac{1}{l_{ZZ}} \end{bmatrix}$$
(15)

is always invertible.

Feedback Linearization

The system fulfills the conditions for the feedback linearization:

- the sum of the relative degrees is equal to the dimension of the state vector;
- · the decoupling matrix:

$$M(\hat{x}) = \begin{bmatrix} \frac{l}{2I_{xx}} & \frac{S_{\hat{x}_1}T_{\hat{x}_2}}{I_{xx}} & \frac{C_{\hat{x}_1}T_{\hat{x}_2}}{I_{zz}} - \frac{l}{2dI_{xx}} \\ 0 & \frac{C_{\hat{x}_1}}{I_{xx}} & -\frac{S_{\hat{x}_1}}{I_{zz}} \\ 0 & 0 & \frac{1}{I_{zz}} \end{bmatrix}$$
(15)

is always invertible.

We can compute the linearizing input as:

$$u(x, v) = \alpha(x) + \beta(x) \cdot v \tag{16}$$

Feedback Linearization

The (16) leads to the canonical Brunowski form:

$$\dot{x}_{c} = A_{c}x_{c} + B_{c}v \tag{17}$$

The linear input *v* is chosen to regulate the attitude angles and the yaw velocity to the desired values, coming from the *outer control loop*.

Vattela a pesca3

Whatever3

Do it