For each of the following, decide if the stated function μ does indeed define a measure on the provided X. Explain your answer.

- 1. $\mathbb{X} \subseteq \mathbb{R}$ nonempty, \mathcal{M} a σ -algebra. $\mu : \mathcal{M} \to [0, \infty]$ by $\mu(E)$ =the number of elements in E for all $E \in \mathcal{M}$.
- 2. $\mathbb{X} \subseteq \mathbb{R}$ nonempty, $x_0 \in \mathbb{X}$, \mathbb{M} a σ -algebra. $\mu : \mathbb{M} \to [0, \infty]$ by $\mu(E) = \begin{cases} 1 & x_0 \in E \\ 0 & x_0 E \end{cases}$ for all $E \in \mathbb{M}$.
- 3. $\mathbb{X} \subseteq \mathbb{R}$ uncountable, \mathcal{M} the σ -algebra $\mathcal{M} = \{E \subseteq \mathbb{X} : E \text{ is countable or } E^c \text{ is countable} \}$. $\mu: \mathcal{M} \to [0, \infty]$ by $\mu(E) = \begin{cases} 0 & E \text{ is countable} \\ 1 & E^c \text{ is countable} \end{cases}$ for all $E \in \mathcal{M}$.
- 4. $\mathbb{X} \subseteq \mathbb{R}$ infinite, $\mathbb{M} = \mathcal{P}(\mathbb{X})$. $\mu : \mathbb{M} \to [0, \infty]$ by $\mu(E) = \begin{cases} 0 & E \text{ finite} \\ \infty & E \text{ infinite} \end{cases}$ for all $E \in \mathbb{M}$.

Proof

- 1. Yes. First $\mu(\emptyset) = 0$. Disjoint sets do not have same elements, so the number of elements of the union of them will equal to the sum of the number of elements, including infinitely many.
- 2. Yes. First $\mu(\emptyset) = 0$. For any element x_0 , among all disjoint sets, x_0 is inside at most one of them. So the measurement of the union will be either 1, if one of them contains x_0 , or 0, if none of them contains x_0 . And that is equal to either 1 or 0 in both cases.
- 3. Yes. First $\mu(\emptyset) = 0$. For 2 countable sets, the measurement of the union is 0. The sum of measurement is 0.

For 2 uncountable sets, the measure of the union is 1. The sum of measurement is 1. For a countable and an uncountable, the measure of the union is 1. The sum of measurement is 1.

4. No. For $n \in \mathbb{N}$, let $E_n = \{n\}$. The union of E_n is infinite. Its measurement is ∞ , and the sum of each E_n is 0.