WOJSKOWA AKADEMIA TECHNICZNA

Wydział Cybernetyki

Wprowadzenie do automatyki

"Programowanie z wykorzystaniem schematów drabinkowych LD i schematów funkcjonalnych FBD".

Wykonał: kpr. pchor. Damian Krata

Grupa: I4X3S1

Data wykonania ćwiczenia: 03.11.2015r.

Prowadzący: mgr inż. Małgorzata Rudnicka-Schmidt

Treść zadania:

Przedstawić program dla sterownika PLC działający jak maszyna stanowa, dla której diagram przejść stanów jest narysowany poniżej. Wyjście Q_1 jest aktywne w stanie 2, a wyjście Q_2 w stanie 1.

1. Tabela przejść stanów, M oznacza stan w chwili t, natomiast M' oznacza stan w chwili (t+1):

Μ	11	13	M	
0	0	0	0	
0	0	1	1	
0	1	0	0	
0	1	1	0	
1	0	0	1	
1	0	1	1	
1	1	0	0	
1	1	1	1	

2. Postać wyrażenia opisującego zmiany stanów:

Jak widzimy stan kolejny jest funkcją trzech zmiennych, zależy od stanu poprzedniego, oraz sygnałów sterujących I_1 oraz I_3 .

W postaci koniunktywnej wyprowadzonej z tabeli prawdy przed uproszczeniem, funkcja opisująca zmianę stanów ma postać:

$$M' = \overline{M}\overline{I_1}\overline{I_3} + M\overline{I_1}\overline{I_3} + M\overline{I_1}I_3 + MI_1I_3$$

Którą po uproszczeniu możemy przedstawić jako:

$$M' = \overline{I_1}I_3 + M\overline{I_1} + MI_3$$

Skoro wyjście Q1 jest aktywne w stanie 2, a wyjście Q2 w stanie 1 mamy:

М	Q1	Q2
0	0	1
1	1	0

Zatem
$$Q1 = M$$
, $Q2 = \overline{M}$

- 3. Program w języku FBD (we wszystkich programach w celu przejrzystości zapisu zamiast I_3 podstawiłem I_2).
- a) Przed dokonaniem uproszczenia:

b) Po dokonaniu uproszczenia

4. Program w języku LD

a) Przed wykonaniem uproszczenia

b) Po wykonaniu uproszczenia

5. Sprawdzenie poprawności działania układu.

Sprawdzenie to pokaże na przykładzie zmiany stanu za pomocą symulatora w programie LOGO.

Jak widzimy, gdy włączymy przełącznik I3, to stan Q1 będzie aktywny przy warunku, że stan poprzedni był równy 1.

Natomiast gdy wyłączymy I3 i włączymy I1 oraz naciśniemy przycisk POWER, to stan Q2 będzie aktywny. Wynika to bezpośrednio z tabeli prawdy oraz potwierdza, że diagram jest prawidłowo zrobiony.

6. Wnioski:

- Podczas laboratorium nauczyłem się korzystać z oprogramowania LOGO, które pozwala na intuicyjne i przyjazne przedstawienie funkcji realizującej zadaną tabelę prawdy.
- Poznałem dwa języki (LD i FBD), które pozwalają na efektywną interpretację zadanej funkcji oraz dzięki którym analiza układu staje się bardziej czytelna.
- Laboratorium pozwoliło mi w pełnym zakresie zapoznać się z wymaganym materiałem.