# 3<sup>rd</sup> Machine Learning in Heliophysics Madrid, 22-26 September 2025



## Monday 22<sup>nd</sup> September

| <b>9:30 – 10:00</b> Welco | me & Introductory Remarks |
|---------------------------|---------------------------|
|---------------------------|---------------------------|

Session 1 – Chairs: TBD

| 10:00 – 10:30 | Sabrina Guastavino Learning the Sun: Machine Learning and Physical Insight for Space Weather Forecasting (invited)             |
|---------------|--------------------------------------------------------------------------------------------------------------------------------|
| 10:30 - 10:50 | Anant Telikicherla A New HOPE for Accurate Solar Flare Prediction                                                              |
| 10:50 – 11:10 | <i>Youngjae Kim</i> Interpretable Data-Driven Models for Solar Flare Forecasting through Deep Learning and Symbolic Regression |
| 11:10 – 11:40 | <u>Coffee break</u>                                                                                                            |
| 11:40 – 12:00 | <i>Ekaterina Dineva</i> Combining Physics-Derived and Machine-Learned Features for Probabilistic Solar Flare Forecasting       |
| 12:00 – 12:20 | Naoto Nishizuka Operational Use of Deep Flare Net and AI techniques for Space Weather Forecasting                              |
| 12:20 – 12:40 | Panagiotis Gonidakis Soft X-ray Flux Prediction for Onboard 24-Hour Solar Flare Forecasting Using CNNs and SDO/AIA Images      |
| 12:40 – 13:00 | Linn Abraham Interpretable Deep Learning for Solar Flare Predictions                                                           |
| 13:00 – 13:20 | Daniel da Silva Generative Diffusion Models of the Solar Corona                                                                |
| 13:30 - 15:00 | <u>Lunch</u>                                                                                                                   |

#### Session 2 – Chairs:

| 15:00 – 15:30 | George Miloshevich Data-Driven Closures for Hybrid Plasma Models in Space Plasmas (invited)                                    |
|---------------|--------------------------------------------------------------------------------------------------------------------------------|
| 15:30 – 15:50 | Prateek Mayank Next-Generation MHD Modeling Of Solar Wind Using Neural Operators                                               |
| 15:50 – 16:10 | Hiroshi Hasegawa Reconstruction of two-dimensional MHD and Hall MHD equilibria in space using physics-informed neural networks |
| 16:10 – 16:30 | Manuel Lacal Physics-Informed Neural Networks for Modeling Geomagnetic Storm Dynamics                                          |
| 16:30 – 17:00 | <u>Coffee break</u>                                                                                                            |

| 17:00 – 17:20 | Jithu J Athalathil Investigating Nonlinear Quenching Effects on Polar Field Buildup Using Physics-Informed Neural Networks     |
|---------------|--------------------------------------------------------------------------------------------------------------------------------|
| 17:20 – 17:40 | Mingyu Jeon Real-time Reconstruction of Coronal Magnetic Fields using a Physics-informed Neural Operator                       |
| 17:40 – 18:00 | Clinton Groth Merging Observational Data and Magnetohydrodynamics: A Variational Data Assimilation Approach for the Solar Wind |
| 18:00 – 18:30 | Robert Jarolim The Sun in 3D: Bridging Gaps in Solar Observations with Physics-Informed Machine Learning (invited)             |
| 19:00 – 20:30 | Reception (on-site)                                                                                                            |

# Tuesday 23<sup>rd</sup> September

## Session 3 – Chairs:

| bession b Chairs. |                                                                                                                                   |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| 9:30 - 10:00      | <i>Opal Issan</i> Bayesian Inference and Global Sensitivity Analysis for Ambient Solar Wind Prediction (invited)                  |
| 10:00 – 10:20     | Seungwoo Ahn Verification of Empirical and Deep Learning Models for Solar Wind Speed Forecasting                                  |
| 10:20 – 10:40     | Matthew Billcliff Extended Lead-Time Geomagnetic Storm Forecasting with Solar Wind Ensembles and Machine Learning                 |
| 10:40 – 11:00     | Esraa Elelimy Long-Horizon Prediction of Solar Wind Events with Reinforcement Learning                                            |
| 11:00 – 11:30     | <u>Coffee break</u>                                                                                                               |
| 11:30 – 11:50     | Peter Wintoft Gaussian Process forecast of strong geomagnetic storms using CME-ICME properties                                    |
| 11:50 – 12:10     | Hannah Ruedisser ARCANE: An Operational Framework for Automatic<br>Realtime ICME Detection in Solar Wind In Situ Data             |
| 12:10 – 12:30     | Jiahui Shan CAMEL-II: A 3D Coronal Mass Ejection Catalog Based on<br>Coronal Mass Ejection Automatic Detection with Deep Learning |
| 12:30 – 12:50     | <i>Julio Hernandez Camero</i> Bayesian Inference for 3D CME Characterization and Uncertainty Quantification                       |
| 12:50 – 13:10     | <i>Matthew Rutala</i> Data-driven, Probabilistic Solar Wind Reconstruction Beyond the Earth                                       |
| 13:10 – 13:30     | Sadaf Shahsavani Kp Prediction from Solar Wind Parameters Using Sparse<br>Library Regression                                      |
| 13:30 – 15:00     | <u>Lunch</u>                                                                                                                      |

## Poster Session 1

**15:00 – 18:30** Poster session 1

## Wednesday 24th September

| 9:30 - 10:20         | ESA lab tutorial                                                                                                          |
|----------------------|---------------------------------------------------------------------------------------------------------------------------|
| 10:20 – 10:50        | Caitriona Jackman How to creatively account for the lack of an upstream monitor at planets other than Earth (invited)     |
| 10:50 – 11:20        | Paul Wright From Model to Impact: Engineering Machine Learning for Space Weather Forecasting (invited)                    |
| 11:20 - 11:50        | <u>Coffee break</u>                                                                                                       |
| Session 4 – Chairs:  |                                                                                                                           |
| 11:50 – 12:10        | Abigail Azari Towards Operational Planetary Space Weather with A Virtual Solar Wind Monitor at Mars                       |
| 12:10 – 12:30        | Daragh Hollman Classifying MESSENGER Magnetospheric Boundary<br>Crossings Using a Random Forest Model                     |
| 12:30 – 12:50        | Gautier Nguyen Auto-encoder based reduced order emulation of the Earth electron radiation belt modeling                   |
| 12:50 – 13:10        | <i>François Ginisty</i> SPARTAI – an AI-based forecasting pipeline for energetic electrons in the Earth's radiation belts |
| 13:10 – 13:30        | <i>Dylan Weston</i> A threshold-based random forest forecasting model for the Outer Radiation Belt                        |
| <b>13:30 – 15:00</b> | <u>Lunch</u>                                                                                                              |
| Poster Session 2     |                                                                                                                           |
| <b>15:00 – 18:30</b> | Poster session 2                                                                                                          |

# Thursday 25<sup>th</sup> September

| Session 5 | Chairs: |
|-----------|---------|
|-----------|---------|

| 9:30 - 10:00        | Henrik Eklund Deep learning across multi-dimensional data (invited)                                                                                                       |
|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 10:00 - 10:20       | Daniel Gass Dataset Creation for ML Applications in Heliophysics - Lessons from ARCAFF                                                                                    |
| 10:20 - 10:40       | Bhishek Manek Cross-Calibrated Video Super-Resolution for Solar Dopplergrams                                                                                              |
| 10:40 - 11:00       | <i>Léa Zuili</i> MLOps for Reproducible Machine Learning in Space Science: Insights from ESAC                                                                             |
| 11:00 - 11:30       | <u>Coffee break</u>                                                                                                                                                       |
| Session 6 – Chairs: |                                                                                                                                                                           |
| 11:30 – 11:50       | Mohamed Nedal Short-Term Solar Energetic Proton Flux Forecasting using Transformer Architectures                                                                          |
| 11:50 – 12:10       | Paulina Quijia Pilapana Automatic Identification of Magnetic Reconnection to<br>Assess its Role in Collisionless Turbulent Plasmas Using Unsupervised<br>Machine Learning |
| 12:10 – 12:30       | Joanna Slawinska Koopman Operator Theory and new Data-Driven Approach to Modeling and Signal Processing of Spatiotemporal Data                                            |
| 12:30 – 12:50       | <i>Junmu Youn</i> Aurora Detection in Sequential e-POP/FAI Images Using Deep Learning and Explainable AI                                                                  |
| 12:50 – 13:10       | Katherine Keegan An AI-powered Surface Flux Transport model to measure high-resolution velocity fields and forecast magnetic flux emergence                               |
| 13:10 – 13:30       | <i>Francesco Carella</i> Transient-Oriented Clustering of Solar Wind Observations at 1 AU                                                                                 |
| 13:30 – 15:00       | <u>Lunch</u>                                                                                                                                                              |
| Poster session 3    |                                                                                                                                                                           |
| 15:00 – 18:30       | Poster Session 3                                                                                                                                                          |
|                     |                                                                                                                                                                           |

### Friday 26th September

#### Session 7 – Chairs:

| 9:30 - 10:00  | Early career awards                                                                                                     |
|---------------|-------------------------------------------------------------------------------------------------------------------------|
| 10:00 – 10:30 | Jonathan Citrin TORAX: A Fast and Differentiable Tokamak Transport Simulator in JAX (invited)                           |
| 10:30 – 10:50 | <i>Nikita Balodhi</i> Bayes in Space: A Bayesian Deep Learning approach for Coronal Temperature estimation              |
| 10:50 - 11:10 | Andrés Muñoz-Jaramillo HelioFM a foundation model in heliophysics                                                       |
| 11:10 – 11:30 | <i>Sergio Sánchez Hurtado</i> Toward Uncertainty-Aware Thermospheric Drag Forecasting via Time Series Foundation Models |
| 11:30 – 12:00 | <u>Coffee break</u>                                                                                                     |
| 12:00 13:30   | Open discussion                                                                                                         |
| 13:30 – 15:00 | Farewell lunch                                                                                                          |

### List of posters

#### Poster session 1

- 1) *Idowu Raji* A Multi-Stage Self Organizing Map-Autoencoder-LSTM Model for Total Solar Irradiance Prediction
- 2) Simon Joyce Revealing the Martian ionosphere using AI and 20 years of Mars Express data
- 3) Samuel Abaidoo CIR-Driven Geomagnetic Storm and High-Intensity Long-Duration Continuous AE Activity (HILDCAA) Event: Effects on Brazilian Equatorial and Low-Latitude Ionosphere—Observations and Modeling
- 4) *Simon Wing* Information theory based system level Babcock-Leighton flux transport model-data comparisons
- 5) Armando Collado-Villaverde Dst Forecasting with REDst: Pushing the Limits of Real-Time L1 Data
- 6) Rong Sun Automatic Detection of Lyman-alpha Solar Flares Based on GOES/EUVS Flux and ASO-S/SDI Images
- 7) *Maria Hasler* Unsupervised analysis of dangerous space weather: Combining ground and space-based measurement
- 8) Yasmin Machuca Automatic Identification of CMEs images using synthetically trained neural networks
- 9) Shi Tao Automated Detection of Foreshock Transients Using Machine Learning Techniques
- 10) Emanuel Jeß Discovering heat flux closures using machine learning methods
- 11) *François Ginisty* Augura Space Nowcast Platform: A Research-Focused, Open Demonstrator for Space Weather Data Integration and Visualization

- 12) *Emerick Laborde* Physics-Informed Deep Learning for the characterization of the electron radiation belts dynamics
- 13) Daniele Telloni Transition to a Critical State of Active Regions: Identifying Solar Flare Precursors
- 14) Dibya Mishra Neural Network-Based Detection of Plages in Historical Solar Drawings
- 15) *Alexandre Suteau* DeepHelio Predicting Solar Wind Speed at L1 Using Solar Imagery and Deep Learning
- 16) Samuel Burles Data-Driven Plasma Closure Relation for Landau Damping in One Dimension
- 17) Mariano Sanchez Toledo Automatic GCS reconstruction of CMEs using synthetically-trained neural networks
- 18) *Ji-Hye Baek* DeepSDO: A Deep Learning-Based Approach for Automated Detection and Visualization of Solar Events
- 19) Paloma Jol Flare forecasting using Fully Convolutional Network to gain insight into active regions
- 20) *Verena Heidrich-Meisner* Anomaly detection applied to solar wind composition measured by SOHO/CELIAS/CTOF and ACE/SWICS
- 21) JUNMU YOUN Stereoscopic DEM Analysis Using Solar Orbiter/EUI and AI-Generated Data
- 22) *KD Leka* SuperSynthia LOS: Learning to Estimate Photospheric Vector Fields from Line-of-Sight Magnetograms
- 23) Andy Smith Self Supervised Encoding to Find Similar Observations
- 24) *Francesco Ramunno* Enhancing image resolution of solar magnetograms: A latent diffusion model approach

#### Poster session 2

- 1) Benjamin Grison Comparison of automatic and machine-learning detections of EMIC waves
- 2) Qiushuo Wang Modeling Ring Current Oxygen Ions Using Neural Network
- 3) Giuseppe Consolini On timescale of geomagnetic storm recovery phase.
- 4) *Hiroshi Hasegawa* Revisiting the cold-dense plasma sheet formation mechanism using causal inference and information-theoretic analysis
- 5) Daeil Kim Solar EUV Channel Selection with Magnetogram via Multi-domain image Translation
- 6) Poshan Belbase Reconstructing Historical Solar Activity Indices to Model Past Space Weather Events
- 7) Edoardo Legnaro Solar Active Region Classification with Deep Learning
- 8) *Veronique Delouille* Mitigating hallucination with non-adversarial strategies for image-to-image translation in solar physics
- 9) Atuel Villegas High resolution TEC forecasting using transformers models
- 10) Francesco Ramunno AIA2STIX: Bridging the gap between UV and X-ray in solar imaging
- 11) João Felipe Pereira Comparing Machine and Deep Learning Techniques for Solar Flare Prediction
- 12) *Raman Mukundan* Towards an Interpretable Model of Localized Geomagnetic Disturbances in Terms of Solar Wind and M-I Processes
- 13) *Brianna Isola* ML-IMEF: A Machine Learning Approach to Global Modeling of the Inner Magnetospheric Electric Field
- 14) Stefan Lotz Solar wind geomagnetic disturbance coupling predicted and interpreted with KnowIt
- 15) Jihyeon Son Time-Resolved Causal Analysis of Geomagnetic Storms Using Information Theory

- 16) Iván Maseda-Zurdo An Interpretable Approach to SYM-H Geomagnetic Index Forecasting
- 17) *Jakub Juranek* Self-improving solar events prediction system: exploring potential of Darwin Gödel Machine agentic AI framework for cosmic weather forecasting.
- 18) *Maria Elena Innocenti* Bridging Kinetic and Fluid Scales: Addressing the Plasma Closure Problem with ML
- 19) Carl Shneider Proxy Sensing of Space Weather Events Using Solar Panel Telemetry
- 20) Herman le Roux Automated Detection of Solar Radio Bursts Using Detectron
- 21) Liam Smith Using TEC to Enhance 3D Electron Density Models
- 22) *Silvia Kostárová* Opportunities for early detection of CMEs and CIRs by Vigil data and machine learning approach
- 23) *Subhamoy Chatterjee* Deep Generative model that uses physical quantities to generate and retrieve solar magnetic active regions
- 24) Jan Raath Machine Learning in Galactic Cosmic Ray Propagation

#### Poster session 3

- 1) Stefan Lotz TEC and Transfer Learning
- 2) *Francesco Ramunno* Predicting partially observable dynamical systems via diffusion models with a multiscale inference scheme
- 3) Nina Bonaventura Estimated high-resolution photospheric flows using an AI surface flux transport model
- 4) Simon Mackovjak Deep Learning Classification of Low-latitude Ionospheric Structures in Airglow Images
- 5) *Karen Júlia Ferreira* CIR-Driven Ion Injections and EMIC Wave Dynamics: Implications for Wave Generation Mechanisms and Outer Radiation Belt Variability
- 6) Raphael Attie CHESS: Coronal Hole Extraction with Semantic Segmentation
- 7) Shiva Kavosi Ground Signatures of Magnetopause Surface Waves
- 8) Nathaniel Laurent World Coordinate System Framework to enhance AI applications in PyTorch
- 9) *STEPHEN TETE* Bayesian and Machine Learning for Geomagnetic Activity forecast: Where Causality augments Explainability
- 10) *Jose Espinoza Acosta* CCA-Informed Neural Networks for Predicting Plasma Sheet Conditions from Solar Wind Drivers
- 11) Tania Varesano Investigating plasma composition with deep learning
- 12) *Jacob Bortnik* Using interpretable AI to discover the drivers of acceleration vs depletion events in the radiation belt
- 13) Dominique Stumbaugh Reconstructing Equatorial Electron Flux Measurements from LEO
- 14) *Daniel da Silva* Data-Mining Similar Scenarios for Uncertainty Quantification of Solar Wind Predictions at L1
- 15) *Robert Jarolim* 3D Tomographic Reconstruction of Coronal Plasma Density and Temperature Using Neural Radiance Fields
- 16) *Pete Riley* Feature Detection and Tracking in White-Light Observations from WISPR using Machine Learning
- 17) *Sanjali Vuriti* Data Analysis for Multi-Hazard Risk Science: Risk and Resilience of Societal Critical Infrastructure to Space Weather and Compounding Natural Hazards

- 18) *Paraksh Vankawala* A Computer Vision Guided Detection and Classification of Plasma Waves in the Inner Magnetosphere
- 19) Xiangning Chu Unraveling Near-Earth Space Dynamics with Machine Learning
- 20) Sandor Kruk ESA Datalabs: Digital Innovation in Space Science
- 21) David O'Ryan AnomalyMatch: A Detection Method of Astrophysical Anomalies in Imaging Data
- 22) Jan Reerink The Heliophysics Extended Survey Environment
- 23) Griffin T. Goodwin An EUV Extension to the SWAN-SF Flare Forecasting Dataset
- 24) *Aikaterini Pesini* Solar Radio Burst Tracker: A citizen science initiative to identify Type III solar radio bursts

### **Sponsors**



## **European Space Agency**







