

### Definitions, Theorems, and Proofs

Intro to Theory of Computation + Math Review – Part 3



### Definitions, theorems, and proofs

"Theorems and proofs are the heart and soul of mathematics and definitions are its spirit"....Sipser

- Definitions describe the objects and notions that we use.
- A proof is a *convincing* logical argument that a statement is true
  - Convincing in an absolute sense ("beyond reasonable doubt" is not enough. Mathematics demands proof beyond any doubt.)
- A theorem is a mathematical statement proved true.



### Theorem and its cousins

- Generally, we reserve the use of the word theorem for statements of special interest.
- Occasionally we prove statements that are interesting only because they assist in the proof of another, more significant statement.
  - Such statements are called lemmas
- Occasionally a theorem or its proof may allow us to conclude easily that other, related statements are true.
  - Such statements are called corollaries of the theorem.

# An example

**Theorem:** The height of an *n*-node binary tree is at least floor(log n)

**Lemma:** Level *i* of a perfect binary tree has **2**<sup>*i*</sup> nodes.

Corollary: A perfect binary tree of height h has 2<sup>h+1</sup>-1 nodes.





### Quantifiers

#### "For all" or "For every"

- Universal proofs
- Notation:

#### "There exists"

- Used in existential proofs
- Notation: ¬

### Implication is denoted by =>

• E.g., "IF A THEN B" can also be written as "A=>B"

## Finding proofs

- Finding proofs isn't always easy
- Even though no one has a recipe for producing proofs, some helpful general strategies are available
  - Carefully read the statement you want to prove. Rewrite the statement in your own words.
  - Break it down and consider each part separately
    - E.g 1. P if and only if Q statement
    - E.g 2. A = B statement
- Tips for producing a proof:
  - Be patient. Come back to it. Be neat. Be concise.



### Proof techniques

#### By construction

- Many theorems state that a particular type of object exists.
  One way to prove such a theorem is by demonstrating how to construct the object.
- Example:

**Theorem**. For each even number n greater than 2, there exists a 3-regular graph with n nodes

## Example of proof by construction

THEOREM **0.22** .....

For each even number n greater than 2, there exists a 3-regular graph with n nodes.

**PROOF** Let n be an even number greater than 2. Construct graph G = (V, E) with n nodes as follows. The set of nodes of G is  $V = \{0, 1, ..., n-1\}$ , and the set of edges of G is the set

$$E = \{ \{i, i+1\} \mid \text{ for } 0 \le i \le n-2 \} \cup \{ \{n-1, 0\} \}$$
  
 
$$\cup \{ \{i, i+n/2\} \mid \text{ for } 0 \le i \le n/2 - 1 \}.$$

Picture the nodes of this graph written consecutively around the circumference of a circle. In that case, the edges described in the top line of E go between adjacent pairs around the circle. The edges described in the bottom line of E go between nodes on opposite sides of the circle. This mental picture clearly shows that every node in G has degree 3.



#### By construction

- Many theorems state that a particular type of object exists.
  One way to prove such a theorem is by demonstrating how to construct the object.
- Example:

**Theorem**. For each even number n greater than 2, there exists a 3-regular graph with n nodes

#### By contradiction

- Start with the statement contradictory to the given statement
- Example. Prove that sqrt(2) is irrational.
  - (Start by claiming that sqrt(2) is rational, and so it can be written as a ratio of two integers and arrive at a contradiction.)



### Details on proof of sqrt(2) is irrational

- $\blacksquare$  sqrt(2) = m/n
- n\*sqrt(2) = m
- $2n^2 = m^2$
- $2n^2 = (2k)^2$
- $2n^2 = 4k^2$
- $n^2 = 2k^2$

## Proof techniques

- By induction
  - (2 parts) **Basis**, induction hypothesis, **induction step**

The format for writing down a proof by induction is as follows.

**Basis:** Prove that  $\mathcal{P}(1)$  is true.

:

**Induction step:** For each  $i \geq 1$ , assume that  $\mathcal{P}(i)$  is true and use this assumption to show that  $\mathcal{P}(i+1)$  is true.

:



### Proof techniques

- By induction
  - (2 parts) Basis, induction hypothesis, induction step

- (By counter-example)
  - Show an example that disproves the claim
- Note: There is no such thing called a "proof by example"!
  - So, when asked to prove a claim, an example that satisfied that claim is not a proof



### Different ways of saying the same thing

- "If H then C":
  - H implies C
  - H => C
  - iii. C if H
  - iv. H only if C
  - w. Whenever H holds, C follows

### "If-and-Only-If" statements

- "A if and only if B" (A <==> B)
  - (if part) if B then A (<=)</p>
  - (only if part) A only if B (=>)(same as "if A then B")
- "If and only if" is abbreviated as "iff"
  - i.e., "A iff B"
- Example:
  - Theorem: Let x be a real number. Then floor of x = ceiling of x if and only if x is an integer.
- Proofs for iff have two parts
  - One for the "if part" & another for the "only if part"



### Summary (of last three lectures)

- Theory of computation overview
- Mathematical notions and terminology
  - Sets
  - Sequences and tuples
  - Functions and relations
  - Graphs
  - Strings and languages
  - Boolean logic
- Definitions, theorems, and proofs
- Proof techniques
  - By construction
  - By contradiction
  - By induction



### HW1 is out

- Due: Fri Jan 28
- Has 6 problems
  - 4 on what we covered so far (look back)
  - 2 on what we will cover next lecture (look forward)
  - 1 involves history of computation
- Submission on Canvas: PDF