Lecture 7: Classification Models and Cross Validation

INFO 1998: Introduction to Machine Learning

Announcements

Mid-semester check-ins due this week! Come after lecture or go to Vivian's OH tomorrow to get this completed. (5 pts of project grade).

- Student Center enrollment: If you are enrolled in the 'Graded' option, you need to submit a petition to change to the 'S/U' option.
- Deep Learning Workshop: sometime after spring break!
- Mid-Semester Feedback Form: please complete if you haven't already! We have received a lot of valuable feedback.

Agenda

- 1. Decision Trees
- 2. Logistic Regression and Its Applications
- 3. Cross Validation

Decision Trees

Underfitting

Underfitting means we have <u>high bias</u> and <u>low variance</u>.

- Lack of relevant variables/factor
- Imposing limiting assumptions
 - Linearity
 - Assumptions on distribution
 - Wrong values for parameters

Overfitting

Overfitting means we have <u>low bias</u> and <u>high variance</u>.

- Model fits too well to specific cases
- Model is over-sensitive to sample-specific noise
- Model introduces too many variables/complexities than needed

How Should I Spend My Weekends

A decision tree is a supervised machine learning model used to predict a target by learning decision rules from features. As the name suggests, we can think of this model as breaking down our data by making a decision based on asking a series of questions.

CART (Classification and Regression Trees)

- Used for Classification and Regression
- At each node, split on variables
- Each split minimizes error/impurity function
- Very interpretable
- Models a non-linear relationship!

What would these decision boundaries look like?

What would these decision boundaries look like?

square. Otherwise, it's a blue circle."

What would these decision boundaries look like?

"If B less than this value, it's a red square. Otherwise, it's a blue circle."

But...

Pros and Cons of Using Decision Trees

Pros	Cons
Easy to interpret	Overfitting 🙁
Requires little data preparation (robust to missing data)	Requires parameter tuning (max depth)
Can use a lot of features	Can only make horizontal/vertical splits (solvable with feat. eng. / ensembling)
Can capture non-linear relationships	

How to Reduce Overfitting

1. Limit the max depth of the tree

Depth = 1

Depth = 2

When training a decision tree, we have to specify the maximum depth a constructed tree can have

How to Reduce Overfitting

- There are no "curves" for each decision tree boundary line
- Limiting the depth of the tree limits the number of lines you are splitting on

How to Reduce Overfitting

2) Train multiple decision trees and determine final output based on output of each decision tree

This is called a Random Forest Classifier

Demo

Logistic Regression

Logistic Regression

Used for Binary Classification:

$$Y = \begin{cases} 1 \\ 0 \end{cases}$$

- Fits a linear relationship between the variables
- Transforms the linear relationship of probability that the outcome is 1 by using the sigmoid function

Formula:

$$P(x) = \frac{1}{1 + e^{-(\beta_0 + \beta_1 x_1 + \dots + \beta_k x_k)}} \longrightarrow \ln\left(\frac{P}{1 - P}\right) = \beta_0 + \beta_1 x_1 + \dots + \beta_k x_k$$

Logistic Function

$$P(x) = \frac{1}{1 + e^{-x}}$$

The Logistic Function "squeezes" numbers to be between 0 and 1

Allows us to interpret our prediction as a "probability" that something is true

Threshold

At what point point do we differentiate between our classifications?

- f(x) below threshold: predict 0
- f(x) above threshold: predict 1

Pros and Cons of Using Logistic Regression

Pros	Cons
Easy to interpret (probability)	Only Capable of Binary Classification
Computationally efficient to compute	No closed form solution (requires use of optimization algorithms)
Does not require parameter tuning	

Logistic Regression is a simple model, therefore, oftentimes it is used as a good "baseline" to compare more complex models to

Cross Validation

Often used in practice with k=5 or k=10.

Create equally sized *k* partitions, or **folds**, of training data

For each fold:

- Treat the *k-1* other folds as training data.
- Test on the chosen fold.

The average of these errors is the validation error

Dataset

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Test Sample

Training Sample

Training Sample

Training Sample

Training Sample

Calculate MSE = mse1

Training Sample

Test Sample

Training Sample

Training Sample

Training Sample

Calculate MSE = mse2

Training Sample

Training Sample

Test Sample

Training Sample

Training Sample

Calculate MSE = mse3

And so on

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

MSE = Avg(mse1...5)

Matters less how we divide up

Selection bias not present

Leave-1-Out Cross Validation

For each sample:

- Treat all other data as training data.
- Test on that one sample

The average of these errors is the validation error

Pro: Better on small datasets

Pro: More realistic (trained on most of the data)

Con: Takes longer to run

Demo

Coming Up

- Assignment 7: Due at midnight on April 12
- Next Lecture: Linear Classifiers and Model Validation
- Final Project Check in: Due by the end of this week!

