2021

Big Data Architecture & Governance

Northeastern University

Assignment Name:

Group Assignment

Student Names:

Navaneeta Naik

Nikunj Doshi

Yu Ren

1. Contents

2.	Ass	ignment	2
	2.1.	Case	
	2.2.	Assignment Goals	
	2.2.		
	2.2.		
3.	Doc	cumentation	4
	3.1.	Vision Diagram	4
	3.2.	Data Wrangling and Cleansing	
	3.3.	Database Installation	g
	3.4.	Data Mapping and Integration	10
	3.5.	Data Validation and Data Visualization	15
	3.6.	System Integration and User Acceptance Testing	20
	3.7.	Challenges Encountered	21
	3.8.	End User Instructions	22

2. Assignment

2.1. Case

Each team should select a dataset to analyze and build an analytical dashboard as a Proof-of-concept to illustrate the value of data driven analytics. You need to present your dataset.

.

2.2. Assignment Goals

To work with datasets, Perform/Create:

- Group Assignment/Project on Velero with below mentioned activities:
 - o Tasks/ Project Short/ Long Form/ Group Allocation/ Timesheet/ Issues & Risks.
- Data Profiling Using Python profiling library, describe your understanding of the data.
- Data Wrangling and Cleansing Pandas/Alteryx/XSV
 - Filtering and Aggregating if needed.
 - Missing value handling.
 - o Deriving additional columns from existing datasets if needed.
 - Cleaning (removing blank spaces, formatting dates, Capitalizing etc.) .
- Database Installation: Install NEO4J database.
- Data Mapping and Integration to your Database for the Entire Dataset.
- Business and Technical Metadata develop business term list describing all the data elements available in the file.
- Data Validation and Data Visualization using Python Validate the data using python and provide a dashboard using python visualization libraries.
- System Integration and User Acceptance Testing Test Cases describe your validation & testing process.
- Risks/Issues of project.
- Describe challenges encountered and how you resolved them.
- End User Instructions (Steps to run your Dashboard) provide a full description how to run your process:
 - Database Creation and load.
 - Visualization interpretation describe information regarding your findings.

2.2.1. VISUALIZATION DELIVERABLES

Once you wrangle/clean/join/integrate the data, import the data into **NEO4J** and illustrate how to use the appropriate graph to illustrate various aspects of analysis.

Questions to consider:

- Columns used for dimensions, and columns that are used for measurement.
- How would you generate new dimensions?
- Who would use this dashboard and how they benefit from your dashboard?
- What value would be generated using this dashboard?

2.2.2. OTHER DELIVERABLES

- Presentation of the entire work from the first step till the dashboards including the Velero screenshots.
- Business and technical metadata presentation Identifying all available business terms and extracting related technical metadata.
- Complete explanation of the dashboard and usability.
- Complete instruction as how to implement and run the database load, technical meta data extraction, and dashboard.

3. Documentation

3.1. Vision Diagram

Data is being collected from data sources such as Patients and Hospitals and those have been compiled in the dataset on Kaggle through John Hopkins University

Before the data is being sent to the Data Store in Neo4j, it needs to clean, wrangled and profiled extensively which has been done using Python and Pandas Profiling Library.

Then, Data Modelling and Data Integration is done on the Neo4j database.

Visualizations we get after analyzing the data will be used by the Business Users such as Pharma Companies and the Research Scientists as well as End Users such as Government agencies and the people across the globe to track covid cases and implementation measures.

3.2. Data Wrangling and Cleansing

- Data Wrangling & cleaning is done to make use of the raw data for analytics
- Data Wrangling & Cleansing processes were performed using Pandas

 Performing data profiling on our dataset gave us an insight on the missing values in our data and other details in our dataset which helped us understand our data

- Handling Missing Values:
 - All the missing values in Province/State column were replaced with "not available".
 - 2. All other columns did not have any missing values

- New columns were generated using the existing columns.
 - Date of Observation was used to derive year of observation and Month of observation columns
 - Country & Province columns were used to derive unique id numbers country id and province id which would then identify unique countries or states

 Last Update column was used to derive the last updated month and last updated year columns

```
Creating new columns - observation_year and observation_month from the existin column ObservationDate

In [4]:  # create two columns from ObservationDate column

df.ObservationDate = pd.to_datetime(df.ObservationDate)

df[['Observation_year','Observation_month']] = df.ObservationDate.apply(lambda x: pd.Series(x.strftime("%Y/%m").split("/")))

Creating new columns - lastupdate_year & lastupdate_month from the existing column LastUpdate

In [5]:  # create two columns from LastUpdate column

df.LastUpdate = pd.to_datetime(df.LastUpdate)

df[['LastUpdate_year', 'LastUpdate_month']] = df.LastUpdate.apply(lambda x: pd.Series(x.strftime("%Y/%m").split("/")))

Creating new columns countryid and provinceid using country & province columns

In [6]:  # creating countryid and provinceid using country and province columns

df['Country/Region'] = df['Country/Region'].map(lambda x: (re.sub("\(|'|\)),|", '', x)).strip().capitalize())

keys = sorted(df['Country/Region'].unique())

vals = range(1,len(df['Country/Region'])+1)

country_id_dict = dict(list(zip(keys,vals)))
```


3.3. Database Installation

- Install Neo4j Desktop
- Create Database:
 - 1. Create a new project named "CSYE7250Final".
 - 2. Add a new local DBMS named "COVID19". The default username is 'neo4j'. Set the password '123456'.
- Import Data Source:
 - 1. Open the folder and enter import directory.
 - 2. Paste the CSV file to this directory and change it name 'COVID19.csv'.
- Install APOC in plugins of the database for exporting the metadata.
- Start the database
- Database Information:

Version	4.2.1
Edition	enterprise
Status	Active
Labels	4
Nodes	473627
Relationship Types	3
Relationships	1014114
DBMS ID	database-25aad50a-42a5-44f4- 9659-128a524032b5
Property Keys	14
IP address	localhost
Bolt port	7687
HTTP port	7474

3.4. Data Mapping and Integration

- Open Neo4j Browser. It will connect with the database automatically.
- Create Constrains:

1. country node: Countryld is unique

2. province node: ProvinceId is unique

3. date node: ObservationDate is unique

4. infectionStatus node: Entryld is unique

Create Nodes and map data columns to the Node properties one by one

• Establish the relationships according to the following draft:

• Get the Nodes Information:

• Get the Relationships Information:

3.5. Data Validation and Data Visualization

- Data Visualization is the graphic representation of data that helps understand the data without requiring technical knowledge
- Data validation & Data visualization were performed using Python
- These visualizations could answer questions like
- What was the difference between the confirmed, recovered and death numbers for different month & year?

What was the country that had highest number of deaths?

• What was the country that had highest number of recovered patients?

• What was the country that had highest number of confirmed cases?

• Which State had highest number of deaths?

 What was the difference between the confirmed, recovered and death numbers for different countries?

• What was the difference in number of deaths in year 2020 and year 2021?

 What was the difference in number of patients that recovered from covid in the year 2020 and year 2021?

3.6. System Integration and User Acceptance Testing

System Integration Test Cases

	TestCaseName			Cycle1		Cycle2			
TestCase_ID		TestCaseDescription	Expected Test Result	Pass	Fail	Pass	Fail	Reviewed By	Comments
	Installation of		Anaconda, Jupyter		_				
TC 01	Anaconda, Jupyter	Followed the instructions to install Anaconda, Jupyter Notebook,	Notebook, Pandas Profiling	Dana		Pass		Nikunj Doshi	
TC_01	Notebook, Pandas	Pandas Profiling Library to our desktop	Library was succsesfully	PdSS					
	Profiling Library		installed.						Comments
TC_02	Connection Jupyter		Dataset was populated		Fail	Pass		Yu Ren	
10_02	Notebook to Neo4j	Connecting "Covid19" dataset to Neo4j from Jupyter Notebook	successfully.	Гаі	raii	rass		Tu Kell	
TC_03	Load Covid19.csv	All columns should be succesfully loaded into neo4j	CSV file was successfully	Pass		Pass		Navaneeta Naik	
10_03	dataset	All columns should be successfully loaded into fleo4j	loaded.			r ass		ivavaneeta ivaik	
TC 04	Measures Data type	Checking the data types of measures and changing date measure	Data types of some	Pass		Pass		Nikuni Doshi	
10_04		as per our needs	measures are changed.	1 433		1 433		Wikunj bosin	
	Validate all Columns and creation of new	New column of ProvinceID and CountryID has been created in the csv	New label created	Pass					
TC_05			successfully.			Pass		Yu Ren	
	labels		saccessiany.						
TC 06	Graphs Created	All plots created should provide some good analysis and should	Plots validated	Pass		Pass		Navaneeta Naik	
		make sense	successfully.						
TC 07	Validation of Graphs	Graphs plotted should provide some insightful sights to the	Plots validated		Fail	Pass		Nikunj Doshi	
		business as per the business requirements	successfully.			. 300		,	
TC 08	Graph Values	Al graphs should have correct values as per the needs to verify our	Plots validated		Fail	Pass		Yu Ren	
	C. april values	analysis	successfully.		Tun	. 455			
TC 09	Colors and Allignment	Plots should follow the right color combinations and proper	Plots validated	Pass		Pass		Navaneeta Naik	
		allignment of all graphs should be there.	successfully.			1 433			
TC 10	Dashboard	Dashboard should be very neetly designed and should display the	Dashboard validated	Pass		Pass		Navaneeta Naik	
10_10	Dustiboutu	correct analysis and depictions.	successfully.						

UAT Test Cases

TestCase_ID	TestCaseName	TestCaseDescription	Expected Test Result	Cycle1		Cycle2		Reviewed	Comments
				Pass	Fail	Pass	Fail	Ву	
TC_01	Deployment at Customers	Follow the End Userinstructions to deploy	Deployment is successful at	Pass		Pass		Nikunj	
	Enviroment	the product at Customers Environment	Customers environment					Doshi	
TC_02	Customer is happy with the Product	Check if customer is happy with the	Customer is happy and has		Fail	Pass		Nikunj	Customer gave "Go-
	Usage and Functionalities	Product Usage and Functionalities	given Go-Live					Doshi	Live"

3.7. Challenges Encountered

1. Python:

- Null Values: The dataset had around 62000 missing values to be handled. Since
 dropping the columns would reduce the dataset and have an impact on the
 visualizations, we decided to fill the null values with "not available" so that even
 this data could be used for our further analysis
- Generating ProvinceID: A new column ProvinceID was created to better help in viewing data by grouping them as different provinces. It was a challenging execution, but with references from python documents we were able to do it

2. NEO4J:

- Forget Password and Reset Error: When we want to connect with the database, we forgot the password and we try to reset the password but it fails. Finally we create a new one so that we can use.
- Exporting Metadata Error: There are some NaN values when we want to export our metadata which make things wrong. We filter the error value in the loop of processing the data.

3.8. End User Instructions

Python:

- 1. Install python libraries: pandas, pandas-profiling, matplotlib, seaborn.
- 2. Download the dataset: Novel Corona Virus 2019 Dataset | Kaggle
- 3. Run the csye7250_project.ipynb in Jupyter Lab or Jupyter Notebook
- Visualizations can be used to compare and understand how different countries have been affected by COVID-19