

## Algorítmica Grado en ingeniería informática

## Práctica 3

### El viajante de comercio

#### Autores

María Jesús López Salmerón Nazaret Román Guerrero Laura Hernández Muñoz José Baena Cobos Carlos Sánchez Páez





ESCUELA TÉCNICA SUPERIOR DE INGENIERÍAS INFORMÁTICA Y DE TELECOMUNICACIÓN

## Índice

| 1. | Descripción de la práctica                                    | 1 |
|----|---------------------------------------------------------------|---|
| 2. | Descripción del algoritmo 2.1. Datos y estructuras utilizadas |   |
| 3. | Resultados obtenidos                                          | 2 |
| 4. | Conclusiones                                                  | 2 |
| 5. | Anexo: código fuente                                          | 3 |
|    |                                                               |   |

# Índice de figuras

## 1. Descripción de la práctica

El objetivo de esta práctica es abarcar el problema del viajante de comercio (TSP, *Travel Salesman Problem*) mediante estrategias voraces. En concreto, seguiremos la heurística de *Branch and Bound*.

Tiene las siguientes características:

- Conjunto de candidatos. Ciudades a visitar.
- Conjunto de seleccionados. Aquellas ciudades que vayamos incorporando al circuito.
- Función solución. Todas las ciudades han sido visitadas y hemos vuelto a la primera.
- Función de factibilidad. La ciudad no ha sido visitada aún.
- Función selección. De entre todos los candidatos, elegimos aquella ciudad que incrementa menos el coste del circuito que llevamos hasta el momento.

### 2. Descripción del algoritmo

#### 2.1. Datos y estructuras utilizadas

- **Distancia**. Comienza inicializada a  $+\infty$ .
- Cota inferior. Utilizamos una cota inferior optimista que inicializamos mediante un algoritmo greedy, aproximado al algoritmo vecino más cercano. La heurística que sigue el algoritmo es la siguiente:

$$\frac{1}{2} \sum_{i=0}^{n} coste_{entrada}(i) + coste_{salida}(i)$$

En la sumatoria se acumulan progresivamente los costes de entrada y de salida de cada nodo que sean menores entre las aristas posibles de cada uno. Tras completar la sumatoria se divide a la mitad debido a que la salida de un nodo es la entrada del siguiente.

- Solución parcial. Es un vector que contiene la solución, pudiendo o no estar completa. En el caso de que esté completa pasa a ser la nueva cota.
- Visitados. Es un vector de booleanos que contiene *true* si la ciudad ya ha sido visitada y *false* en otro caso.

#### 2.2. Procedimiento

El ajuste inicial que se lleva a cabo es el siguiente:

- 1. Se calcula la cota inferior inicial mediante el algoritmo greedy anteoriormente explicado.
- 2. Se toma la primera ciudad y se introduce en la solución parcial. La ciudad ya ha sido visitada, por tanto se pone a *true* en el vector de visitados.

3. Se llama entonces al método recursivo que lleva a cabo el algoritmo *Branch and Bound* propiamente dicho.

El seguimiento del algoritmo es el que sigue:

- 1. En el caso base se comprueba si hemos llegado a un nodo hoja del árbol. Si efectivamente estamos en un nodo hoja, cerramos el circuito y comprobamos si la solución parcial es mejor que la actual (la distancia es menor). En caso afirmativo, ésta se actualiza.
- 2. Si no estamos en el caso base, se siguen los siguientes pasos
  - a) Recorremos todas las ciudades restantes.
  - b) Comprobamos que no ha sido visitada y que no es la misma ciudad en la que estamos actualmente.
  - c) Calculamos el coste que supone añadir la nueva ciudad al recorrido.
  - d) Calculamos la cota de la rama actual. Se puede calcular de dos formas: si el nivel es el 1 la calculamos como la media entre el menor arco entrante de la última ciudad de la solución parcial y la nueva que queremos añadir. Si el nivel no es el 1, se calcula como la media entre el menor arco saliente de la última ciudad de la solución parcial y el menor arco entrante de la ciudad a añadir.
  - e) Comprobamos si la suma entre la cota actual y el peso actual es menor que la distancia total, hemos encontrado una cota menor y por tanto exploramos los hijos mediante una llamada recursiva.
  - f) Deshacemos los cambios que hemos realizado para que el siguiente hijo que evaluemos encuentre las variables en las mismas condiciones que el que se acaba de comprobar.

### 3. Resultados obtenidos

| Número de ciudades | ${f Tiempo(s)}$                     |
|--------------------|-------------------------------------|
| 6                  | $1,27 \cdot 10^{-5}$                |
| 7                  | $4,39 \cdot 10^{-5}$                |
| 8                  | 0,0002036                           |
| 9                  | 0,0054381                           |
| 10                 | 0,0325048                           |
| 11                 | 0,381596                            |
| 12                 | 2,23487                             |
| 13                 | 8,90865                             |
| 14                 | 107,772 (2 minutos y 20 segundos)   |
| 15                 | 1192,761 (19 minutos y 53 segundos) |
| 16                 | ( minutos y segundos)               |

#### 4. Conclusiones

Lo más destacable de este algoritmo es que en términos de orden de eficiencia es pésimo pero, sin embargo, proporciona una solución muy óptima.

5. Anexo: código fuente