Synchronous Sequential Circuits

Chapter 8

Chapter Objectives

- Design techniques for circuits that use flipflops
- The concept of states that their implementation with flip-flops
- Synchronous control by using a clock signal
- A complete procedure for designing synchronous sequential circuits
- The concept of finite state machines

Contents

- Basic Design Steps
- 2. State-Assignment Problem
- Mealy State Model
- 4. Serial Adder Example
- 5. State Minimization
- 6. Design of a Counter Using the Sequential Circuit Approach
- 7. Analysis of Synchronous Sequential Circuit

The general form of a sequential circuit

Moore Type: Outputs depend only on the state of circuits

Mealy Type: Outputs depend on both the state and the inputs

Figure 8.1. The general form of a sequential circuit.

BASIC DESIGN STEPS

Basic Design Steps

Moore-type Design

- Specification of sequence detector
 - One input w, one output z
 - All changes on the positive edge of a clock signal
 - ▶ The output z is equal to 1 if during two immediately preceding clock cycles the input w was equal to 1. Otherwise, the value of z is equal to 0.

$$\stackrel{\mathsf{W}}{\longrightarrow}$$
 '11'detector $\stackrel{\mathsf{Z}}{\longrightarrow}$

Sequences of input and output signals

Moore-type Design

Clockcycle:
$$t_0$$
 t_1 t_2 t_3 t_4 t_5 t_6 t_7 t_8 t_9 t_{10} w : 0 1 0 1 1 1 0 1 1 1 0 1 z : 0 0 0 0 0 0 0 0 1 0 0 1 0

Figure 8.2. Sequences of input and output signals.

State diagram of a simple sequential circuit

Figure 8.3. State diagram of a simple sequential circuit.

State Table

In sequential logic, the next states are functions of the present states and inputs. And, the outputs are functions of the present states and/or inputs.

Present	Next	state	Output
state	w = 0	<i>w</i> = 1	Z
Α	Α	В	0
В	Α	C	0
C	Α	С	1

f	$(w_1,$	w_2)	=	$w_1'w_2$	+	w_1w_2'

w_1	W_2	f
0	0	0
0	1	1
1	0	1
1	1	0

Truth table

W:input

Difference in state table between Moore-type and Mealy type design is only the output.

In combinational logic, output is function of inputs only.

Figure 8.4. State table for the sequential circuit in Figure 8.3.

A general sequential circuit

Moore-type Design

 Y_i : next state (input of F/F) y_i : present state

Figure 8.5. A general sequential circuit with input w, output z, and two state flip-flops.

State-Assigned Table

	Present	Next s	state		
	state	w = 0	w = 1	Output	
				Z	
	y_2y_1	Y_2Y_1	$Y_2 Y_1$		
Α	00	00	01	Ō	
В	01	00	10	0	
С	10	00	10	1	
	11	dd	ad	a	Unused state
Bin	nary number o	code			F

Figure 8.6. State-assigned table for the sequential circuit in Figure 8.4.

State-Assigned Table

Present state & input	Next state
y_2y_1w	Y_2Y_1
0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1	0 0 0 1 0 0 1 0 0 0 1 0 d d d d

State-Assigned Table

Present state	Output <i>z</i>
00	0
01	0
10	1
11	d

Derivation of logic expressions of logic expressions of logic expressions

Ignoring don't cares

$$Y_1 = wy_1'y_2'$$

$$Y_1 = wy_1'y_2'$$

$$y_2y_1$$
 w
00 01 11 10

 Y_2

Next state 1 0 1 d 1

 wy_1
 wy_2

 y_2

output

$$Y_2 = wy_1y_2' + wy_1'y_2$$

$$Y_2 = wy_1 + wy_2$$
$$= w(y_1 + y_2)$$

$$z = y_1'y_2$$

$$z = y_2$$

OImplementation of the sequential circuit

Figure 8.8. Final implementation of the sequential circuit derived in Figure 8.7.

Timing diagram

Figure 8.9. Timing diagram for the circuit in Figure 8.8.

OOO Summary of Design Steps OOO

- 1. Obtain the specification of the desired circuit.
- 2. Derive the state diagram.
- Create a state table from the state diagram.
- 4. Minimize the number of states (The process of the state minimization).
- 5. Decide on the number of state variables.
- 6. Choose the type of flip-flops to be used in the circuit.
- 7. Implement the circuit.

Example 8.1

- The contents of R1 and R2 can be swapped using R3 as a temporary storage
 - 1. R2 → R3
 - ▶ Control signal $R2_{out} = 1$ and $R3_{in} = 1$
 - 2. R1 → R2
 - Control signal $R1_{out} = 1$ and $R2_{in} = 1$
 - 3. R3 → R1
 - ▶ Control signal $R3_{out} = 1$ and $R1_{in} = 1$
 - ▶ Task is completed, *Done* = 1
- Swapping is performed in response to a pulse on an input signal called w

O Signal needed in Example 8.1 O O

Figure 8.10. Signal needed in Example 8.1.

O State diagram for Example 8.100

O State table for Example 8.1 OO

Present	Next state		Outputs						
state	w = 0	<i>w</i> = 1	$R1_{out}$	$R1_{in}$	$R2_{out}$	$R2_{in}$	$R3_{out}$	$R3_{in}$	Done
Α	Α	В	0	0	0	0	0	0	0
В	С	С	0	0	1	0	0	1	0
C	D	D	1	0	0	1	0	0	0
D	Α	Α	0	1	0	0	1	0	1

R2
$$\rightarrow$$
 R3 $R2_{out} = 1$ and $R3_{in} = 1$
R1 \rightarrow R2 $R1_{out} = 1$ and $R2_{in} = 1$
R3 \rightarrow R1 $R3_{out} = 1$ and $R1_{in} = 1$, $Done = 1$

Figure 8.12. State table for Example 8.1.

State-assigned table

	Present	Next	state							
	state	w = 0	w = 1	Outputs						
	y_2y_1	Y_2Y_1	Y_2Y_1	$R1_{out}$	$R1_{in}$	$R2_{out}$	$R2_{in}$	$R3_{out}$	$R3_{in}$	Done
Α	00	0 0	01	0	0	0	0	0	0	0
В	01	1 0	10	0	0	1	0	0	1	0
С	10	1 1	11	1	0	0	1	0	0	0
D	11	0 0	0 0	0	1	0	0	1	0	1

Binary number code

$$R2_{out} = R3_{in} = y'_{2}y_{1}$$

 $R3_{out} = R1_{in} = y_{2}y'_{1}$
 $R1_{out} = R2_{in} = Done = y_{2}y_{1}$

Figure 8.13. State-assigned table for the sequential circuit in Figure 8.12.

Derivation of next-state expressions

Figure 8.14. Derivation of next-state expressions for the sequential circuit in Figure 8.13.

Final implementation of sequential circuit in Figure 8.13

Figure 8.15. Final implementation of sequential circuit in Figure 8.13

STATE-ASSIGNMENT PROBLEM

O State-Assignment Problem OO

	Present			Next		
	state			w = 0	w = 1	Output
	y_2y_1			Y_2Y_1	Y_2Y_1	Z
A		00		00	01	0
В		01		00	11	0
C	11			00	11	1
	10			dd	dd	d

Gray code

Figure 8.16. Improved state assignment for the sequential circuit in Figure 8.4.

Derivation of logic expressions of logic expressions of logic expressions

Gray code

$$Y_1 = w$$

$$Y_2 = wy_1$$

$$z = y_2$$

Binary code

$$Y_1 = wy_1'y_2'$$

$$Y_2 = wy_1 + wy_2$$

= $w(y_1 + y_2)$

$$z = y_2$$

Figure 8.7. Derivation of logic expressions for the sequential circuit in Figure 8.6.

Final circuit for the improved state assignment

Improved state assignment for the sequential circuit in Figure 8.12

	Present	Next	state								
state $w = 0$ $w = 1$					Outputs						
	y_2y_1	Y_2Y_1	Y_2Y_1	$R1_{out}$	$R1_{in}$	$R2_{out}$	$R2_{in}$	$R3_{out}$	$R3_{in}$	Done	
Α	00	0 0	0 1	0	0	0	0	0	0	0	
В	01	1 1	11	0	0	1	0	0	1	0	
С	11	1 0	10	1	0	0	1	0	0	0	
D	10	0 0	00	0	1	0	0	1	0	1	

Gray code

$$R2_{out} = R3_{in} = y'_{2}y_{1}$$

 $R1_{out} = R2_{in} = y_{2}y_{1}$
 $R3_{out} = R1_{in} = Done = y_{2}y'_{1}$

Derivation of next-state expressions

Figure 8.19. Derivation of next-state expressions for the sequential circuit in Figure 8.18.

One-Shot Encoding

	Present	Next		
	state	w = 0 $w = 1$		Output
	$y_3y_2y_1$	$Y_3Y_2Y_1$	$Y_3Y_2Y_1$	Z
Α	001	001	010	0
В	010	001	100	0
C	100	001	100	1

$$Y_1 = w'$$

$$Y_2 = y_1 w$$

$$Y_3 = y'_1 w$$

$$z = y_3$$

Figure 8.20. One-hot state assignment for the sequential circuit in Figure 8.4.

One-Shot Encoding

$$Y_3 = y_1'w$$

$$Y_2 = y_1 w$$

One-Shot Encoding

	y_3y_2	2			
y_1w		00	01	11	10
	00	d	1	d	1
<i>Y</i> ₁	01	d	0	d	0
	11	0	d	d	d
	10 w'	1	d	d	d
	w'				

$$Y_1 = w'$$

$$z = y_3$$

Example 8.3

,	Present	Next	state								
	state	w = 0	w = 1	Outputs							
	$y_4y_3y_2y_1$	$Y_4Y_3Y_2Y_1$	$Y_4Y_3Y_2Y_1$	$R1_{out}$	$R1_{in}$	$R2_{out}$	$R2_{in}$	$R3_{out}$	$R3_{in}$	Done	
<u>.</u>	0001	0001	0010	0	0	0	0	0	0	0	
)	0010	0100	0100	0	0	1	0	0	1	0	
,	0100	1000	1000	1	0	0	1	0	0	0	
)	1000	0001	0001	0	1	0	0	1	0	1	

$$R2_{out} = R3_{in} = y_2$$

 $R3_{out} = R1_{in} = y_3$
 $R1_{out} = R2_{in} = Done = y_4$

Figure 8.21. One-hot state assignment for the sequential circuit in Figure 8.12.

One-hot state assignment for the sequential circuit in Figure 8.12

	y_4y_3	3					
	y_2y_1	00	01	11	10		
	00	d	1	d	0		
<i>1</i> ₃	01	0	d	d	d		
	11	d	d	d	d		
	10	0	d	d	d		
	w = 1						

$$Y_4 = y_3$$

One-hot state assignment for the sequential circuit in Figure 8.12

$$Y_3 = y_2$$

One-hot state assignment for the sequential circuit in Figure 8.12

	y_4y_3	3			
y_2	y_1	00	01	11	10
	00	d	0	d	0
Y_2	01	0	d	d	d
	11	d	d	d	d
	10	0	d	d	d
			w =	= 0	

$$Y_2 = y_2 w$$

One-hot state assignment for the sequential circuit in Figure 8.12

$$Y_1 = y_4 + y_1 w'$$

000

MEALY STATE MODEL

Mealy State Model

Figure 8.22. Sequences of input and output signals.

State diagram of an FSM

input/output: w = 1/z = 0

Figure 8.23. State diagram of an FSM that realizes the task in Figure 8.22.

State table for the FSM

Present	Next	state	Out	out <i>z</i>
state	w = 0	<i>w</i> = 1	w = 0	w = 1
A	A	В	0	0
В	A	В	Ü	1

Different from Moore type model

Figure 8.24. State table for the FSM in Figure 8.23.

State table for the FSM

	Present	Next	state	Output		
	state	w = 0	w = 1	w = 0	<i>w</i> = 1	
	У	Y	Y	Z	Z	
Α	0	0	1	0	0	
В	1	0	1	0	1	

Y	=	W
Z =	=	yw

Figure 8.25. State-assigned table for the FSM in Figure 8.24.

Implementation of FSM in Figure 8.25

Implementation of FSM in Figure 8.25

Circuit that implements the specification in Figure 8.2

Circuit that implements the specification in Figure 8.2

O State diagram for Example 8.400

Figure 8.28. State diagram for Example 8.4.

State assignment for the sequential circuit in Figure 8.28

	Present	Next	state		Outpu				outs								
	state	w = 0	w = 1			,	w =	0					ι	<i>v</i> =	1		
	y_2y_1	Y_2Y_1	Y_2Y_1	$R1_{out}$	R1 _{in}	R2 _{out}	_t R2 _{in}	R3 _{ou}	_t R3 _{in}	Done	$R1_{out}$	R1 _{in}	R2 _{out}	tR2 _{in}	R3 _{ou}	_t R3 _{in}	Done
4	00	0 0	01	0	0	0	0	0	0	0	0	0	1	0	0	1	0
3	01	1 1	11	1	0	0	1	0	0	0	1	0	0	1	0	0	0
C	11	0 0	00	0	1	0	0	1	0	1	0	1	0	0	1	0	1

$$R2_{out} = R3_{in} = y'_1w$$

$$R1_{out} = R2_{in} = y'_2y_1$$

$$R3_{out} = R1_{in} = Done = y_2$$

OO Karnaugh map for Figure 8.28 OO

OO Karnaugh map for Figure 8.28

$$R2_{out} = y_1'w$$

$$R1_{out} = y_2'y_1$$

SERIAL ADDER EXAMPLE

Block diagram for the serial adder

Figure 8.39. Block diagram for the serial adder.

State diagram for the serial adder FSM

Figure 8.40. State diagram for the serial adder FSM.

H: carry-in = 1 (y = 1)

State table for the serial adder FSMO

Present	Next	sta	ite		O	utpı	ut s	,
state	ab = 00	01	10	11	00	01	10	11
G	G	G	G	I	0	1	1	0
Н	G	Н	Н	Н	1	0	0	1

Figure 8.41. State table for the serial adder FSM.

OState-assigned table for Figure 8.410

Present	Next state		Output			
state	$ab = 00 \ 01 \ 10 \ 1$	00 01 10 11			11	
$y(c_i)$	$\gamma(c_{i+1})$	$\gamma(c_{i+1})$;	
0	0 0 0	1	0	1	1	0
1	0 1 1	1	1	0	0	1

Figure 8.42. State-assigned table for Figure 8.41.

Control Con

s 0 0 01 11 10 0 0 1 0 1 1 1 0 1 0 Output of Full Adder

$$Y = ab + ay + by$$
$$= ab + y(a + b)$$

$$s = a \oplus b \oplus y$$

Circuit for the adder FSM for Figure 8.39

Figure 8.43. Circuit for the adder FSM for Figure 8.39.

State diagram for the serial adder FSM

Figure 8.44. State diagram for the Moore-type serial adder **FSN**

State table for the serial adder FSMO

Present	Next state	Output
state	$ab = 00 \ 01 \ 10 \ 11$	S
G_0	G_0 G_1 G_1 H_0	0
G_1	G_0 G_1 G_1 H_0	1
H_0	$G_1 H_0 H_0 H_1$	0
H_1	$G_1 H_0 H_0 H_1$	1

Figure 8.45. State table for the Moore-type serial adder FSM.

State-assigned table for Figure 8.45

Present	Next state	Output
state	$ab = 00 \ 01 \ 10 \ 11$	S
y_2y_1	Y_2Y_1	
00	00 01 01 10	0
01	00 01 01 10	1
10	01 10 10 11	0
11	01 10 10 11	1

Figure 8.46. State-assigned table for Figure 8.45.

Karnaugh Map for State Table

	y_1	0	1	
S	0	0	0	
	1	1	1	y_1

	y_2y_1	00	01	<i>ab</i> 11	10
	00	0	0	1	0
<i>Y</i> ₂	01	0	0	1	0
	11	0	1	1	1
	10	0	1	1	1
			by_2		av_2

$$Y_1 = a \oplus b \oplus y_2$$

$$Y_2 = ab + ay_2 + by_2$$

$$s = y_1$$

$$Y_1 = a'by'_2 + a'b'y_2 + ab'y'_2 + aby_2$$

= $a'(by'_2 + b'y_2) + a(b'y'_2 + by_2)$
= $a'(b \oplus y_2) + a(b \oplus y_2)'$
= $a \oplus b \oplus y_2$

State-assigned table for Figure 8.41

STATE MINIMIZATION

OOO State Minimization

- If the number of states in an FSM can be reduced, then some states in the original design must be equivalent to other states in their contribution to the overall behavior of the FSM.
- ▶ Definition 8.1 Two states S_i and S_j are said to be equivalent if and only if for every possible input sequence, the same output sequence will be produced regardless of whether S_i or S_j is the initial state.
- ▶ Definition 8.2 A partition consists of one or more blocks, where each block comprises a subset of states that may be equivalent, but the states in a given block are definitely not equivalent to the states in other blocks.

Present state		state	Output	
	w = 0	W = 1		
Α	В	С	1	
В	D	F	1	
С	F	Е	0	
D	В	G	1	
Е	F	С	0	
F	E	D	0	
G	F	G	0	

Present	Next state		Output	
state	w = 0	<i>w</i> = 1	Z	
A Group I	BGroup I	CGroup	" 1	
B Group I	DGroup I	FGroup	<mark>п 1</mark>	
C Group I	Group II	EGroup	<mark>" 0 </mark>	
DGroup I	BGroup I	GGroup	1	
E _{Group} I	I Group II	CGroup	<mark>" 0 </mark>	
F _{Group I}	Group II	DGroup	0	
G Group I	l FGroup II	GGroup	п О	

Present State Next state $w = 0 w = 1$		Output		
AGroup I	BGroup I	CGroup	<mark>п 1</mark>	
BGroup I	DGroup I	Group	III 1	
C Group I	Group III	EGroup	п О	
DGroup I	BGroup I	GGroup	ıı <u>1</u>	
E _{Group} I	Group III	CGroup	<mark>и О</mark>	
F Group I	I EGroup II	DGroup	0	
G Group I	F Group III	GGroup	<mark>" 0</mark>	

$$P3=(ABD)(CEG)(F)$$
 depends on o-successors and 1-successors

Present state	Next st $w = 0$	ate	Output
AGroup I BGroup I CGroup I	BGroup II DGroup I FGroup IV	CGroup FGroup EGroup	ıv 1
DGroup I EGroup I	B _{Group} II	Group	
FGroup I GGroup I	<u></u>	DGroup GGroup	_

Minimized state table for Example 8.5

Present	Nextstate		Output
state	w = 0	w = 1	Z
Α	В	С	1
В	Α	F	1
C	F	С	0
F	С	Α	0

Figure 8.52. Minimized state table for Example 8.5.

000

Example 8.5

000

- State Table in Figure 8.51
- To minimize the number of states
 - Initial partition: P1=(ABCDEFG)
 - New partition: P2=(ABD)(CEFG)
 - Depends on the value of output z
 - New partition: P3=(ABD)(CEG)(F)
 - Depends on o-successors and 1-successors
 - New partition: P4=(AD)(B)(CEG)(F)
 - Repeats the process on o-successors and 1successors

000

Example 8.6

- Another example of minimization
- A coin-operated vending machine
 - The machine accepts nickels and dimes
 - It takes 15 cents for a piece of candy
 - It 20 cents is deposited, the machine will not return the change, but it will credit the buyer with 5 cents and wait for the buyer to make a second purchase.

Signals for the vending machine o

Signals for the vending machine

State diagram for Example 8.6

Present	Ne	ext sta	ate		Output
state	<i>DN</i> =00	01	10	11	Z
S1	S1	S3	S2		0
S2	S2	S4	S5	_	0
S3	S3	S6	S7	_	0
S4	S1	_	_	_	1
S5	S3	_	_	_	1
S6	S6	S8	S9	_	0
S7	S1	_	_	_	1 1
S8	S1	_	_	_	$oxed{1}$
S9	S3	_	_	_	1 1

P1=(S1, S2, S3, S4, S5, S6, S7, S8, S9)

Present	Nex	xt sta	te		Output
state	<i>DN</i> =00	01	10	11	Z
S1 g ₁	S1g1	S3g1	S2g1	_	0
S2 g ₁	S2g1	S4g2	S5g2	_	0
S3 g1	S3g1	S6g1	S7g2	_	0
S4 g2	S1g1	_	_	_	1
S5 g2	S3g1	_	_	_	1
S6 g1	S6g1	S8 g2	S9g2	_	0
S7 g2	S1g1	_	_	_	1 1
S8 g2	S1g1	_	_	_	1 1
S9g2	S3g1	_	_	_	1 1

P2=(S1, S2, S3, S6)(S4, S5, S7, S8, S9) depends on the value of output z g_1

Present	Nex	Output				
state	<i>DN</i> =00	01	10	11	Z	
S1 g ₁	S1g1	S3g1	S2g1	_	0	
S2 g1	S2g1	S4g2	S5g2	_	0	
S3 g ₁	S3g1	S6g1	S7g2	_	0	
S4 g2	S1g1	_	_	_	1	
 S5 g2	S3g1	_	_	_	1	
S6 g1	S6g1	S8g2	S9g2	_	0	
S7 g2	S1g1	_		_	1	
S8 g2	S1g1	_	_	_	1 1	
S9g2	S3g1	_	_	-	1	

P2=(S1, S2, S3, S6)(S4, S5, S7, S8, S9) depends on the value of output z

P₃=(S₁)(S₂, S₆)(S₃)(S₄, S₅, S₇, S₈, S₉) depends on DN-successors.

Present	Nex	Next state						
state	<i>DN</i> =00	01	10	11	Z			
S1 g ₁	S1g1	S3g3	S2g2	_	0			
S2 g2	S2g2	S4g4	S5g4	_	0			
S3g3	S3g3	S6g2	S7g4	_	0			
S4g4	S1g1	_	_	_	1			
S5g4	S3g3	-	_	_	1			
S6 g2	S6g2	S8g4	S9g4	_	0			
S7 g4	S1g1	_	_	_	1			
S8 g4	S1g1	_	_	_	1			
S9g4	S3 g3	_	_	_	1			

P₃=(S₁)(S₂, S₆)(S₃)(S₄, S₅, S₇, S₈, S₉) depends on DN-successors.

P4=(S1)(S2, S6)(S3)(S4, S7, S8)(S5, S9)depends on DN-successors.

Present			Nex	kt sta	te		Output
	state	DN	=00	01	10	11	Z
	S1g1		S1g1	S3g3	S2g2	_	0
	S2 g2		S2g2	S4g4	S5g5	_	0
	S3g3		S3g3	S6g2	S7g4	_	0
	S4g4		S1g1	_	_	_	1
	S5g5		S3g3	_	_	_	1
	S6 g2		S6g2	S8g4	S9g5	_	0
	S7 g4		S1g1	_	_	_	1
	S8 g4		S1g1	_	_	_	1
	S9g5		S3g3	_	_	_	1

Deposited money

S1: 0 cent S2: 10 cent S3: 5 cent S4: 15 cent S5: 20 cent S6: 10 cent S7: 15 cent S8: 15 cent S9: 20 cent

P4= $(S_1)(S_2, S_6)(S_3)(S_4, S_7, S_8)(S_5, S_9)$ depends on DN-successors.

Minimized state table for Example 8.6

Present	Ne	Next state						
state	<i>DN</i> =00	01	10	11	Z			
S1	S1	S3	S2	1	0			
S2	S2	S4	S5		0			
S3	S3	S2	S4	_	0			
S4	S1	_	_	_	1			
S5	S3	_	_	_	1			

Figure 8.56. Minimized state table for Example 8.6.

Minimized state diagram for Example 8.6

Figure 8.57. Minimized state diagram for Example 8.6.

Mealy type state table for Example 8.6

Deposit	Present	Ne	ext sta	ate		Output z			
	state	<i>DN</i> =00	01	10	11	<i>DN</i> =00	01	10	11
0	S1	S1	S3	S2	1	0	0	0	_
10	S2	S2	S1	S3	_	0	1	1	_
5	S3	S3	S2	S1	_	0	00	1	
$15 \rightarrow 0$	S4	S1	_	_	_	_			
20 → 5	S5	S3	_	_	_	_	_	_	-

discard

Figure 8.56. Mealy type state table for Example 8.6.

Mealy type state table for Example 8.6

Present	Ne	xt sta	ate		Output z			
state	DN = 00	01	10	11	<i>DN</i> =00	01	10	11
S1	S1	S3	S2	_	0	0	0	-
S2	S2	S1	S3	_	0	1	1	_
S3	S3	S2	S1	-	0	0	1	-

Figure 8.56. Mealy type state table for Example 8.6.

• Mealy-type FSM for Example 8.6 •

									$\bar{D}\bar{N}/0$
Present	Nex	xt st	ate		Oı	ıtput	Z		DN/0
state	<i>DN</i> =00	01	10	11	<i>DN</i> =00	01	10	11	
S1	S1	S3	S2	-	0	0	0	-	
S1 S2 S3	S2 S3	S1 S2	S3 S1	_	0 0	1 0	0 1 1	_	
									S1)
									N/0 $D/1$
									/
									$\overline{DN}/0$
								1	$\left(\begin{array}{c} \mathbf{Y}_{00} \\ \end{array}\right)$
						N.	/1	1	$\left(\begin{array}{c} \left(\begin{array}{c} S3 \end{array} \right) & D/0 \end{array} \right)$
								•	
									N/0 D/1
									S2)
									(32)
									()

O Incompletely Specified FSMs O O

Incompletely Specified FSMs: have don't care terms in state table.

Present	Next	state	Output <i>z</i>		
state	w = 0 $w = 1$		w = 0	<i>w</i> = 1	
Α	В	C	0	0	
В	D	_	0	_	
C	F	Ε	0	1	
D	В	G	0	0	
E	F	C	0	1	
F	E D		0	1	
G	F	_	0	_	

P1=(ABCDEFG)

Incompletely Specified FSMs

Present	Next	state	Out		
state	w = 0	<i>w</i> = 1	w = 0	w = 1	
 A g1	B g1	Cg2	0	0	
B g1	Dg1	_	0	0	
C g2	Fg2	Eg2	0	1	
D g1	Bg1	Gg1	0	0	
E g2	Fg2	Cg ₂	0	1	
F g2	Eg2	Dg1	0	1	
G g1	Fg2	_	0	0	

P2=(ABDG)(CEF) depends on the value of output z

O Incompletely Specified FSMs

Present	Next	state	Outputz		
state	w = 0	<i>w</i> = 1	w = 0	w = 1	
A g1	B g1	Cg4	0	0	
B g1	Dg ₂	_	0	0	
C g4	Fg5	Eg4	0	1	
Dg2	Bg1	Gg3	0	0	
Eg4	Fg5	Cg4	0	1	
F g5	Eg4	Dg ₂	0	1	
Gg3	Fg5	_	0	0	

P3=(AB)(D)(G)(CE)(F) depends on 0-successors and 1-successors P4=(A)(B)(D)(G)(CE)(F)

Figure 8.59. Incompletely specified state table for Example §

O Incompletely Specified FSMs O O

Incompletely Specified FSMs: have don't care terms in state table.

Present	Next state		Outputz	
state	w = 0	w = 1	w = 0	<i>w</i> = 1
Α	В	C	0	0
В	D	_	0	_
C	F	Ε	0	1
D	В	G	0	0
E	F	C	0	1
F	Е	D	0	1
G	F	_	0	_

P1=(ABCDEFG)

Incompletely Specified FSMs

Present	Next	state	Out	out <i>z</i>	
state	w = 0	<i>w</i> = 1	w = 0	<i>w</i> = 1	
Ag1	B g2	Cg ₂	0	0	
B g2	Dg1	_	0	1	
C g2	Fg2	Eg2	0	1	
D g1	B g2	Gg2	0	0	
E g ₂	Fg2	Cg ₂	0	1	
F g2	Eg2	Dg1	0	1	
G g ²	Fg2	_	0	1	

P2=(AD)(BCEFG) depends on the value of output z

O Incompletely Specified FSMs OO

Present	Next	state Outp		out <i>z</i>	
state	w = 0	<i>w</i> = 1	w = 0	w = 1	
A g1	Bg ²	Cg3	0	0	
B g2	Dg1	_	0	1	
Cg3	Fg4	Eg3	0	1	
D g1	B g2	G g 3	0	0	
Eg3	Fg4	Cg3	0	1	
Fg4	Eg3	Dg1	0	1	
G g3	Fg4	_	0	1	

Figure 8.59. Incompletely specified state table for Example §

000

Example 8.7

- Assuming the unspecified outputs have a value of o
 - P1=(ABCDEFG), P2=(ABDG)(CEF)
 - P3=(AB)(D)(G)(CE)(F),P4=(A)(B)(D)(G)(CE)(F), P5=P4 → 6 states
- Assuming the unspecified outputs have a value of 1
 - ▶ P1=(ABCDEFG), P2=(AD)(BCEFG)
 - P3=(AD)(B)(CEFG),P4=(AD)(B)(CEG)(F), P5=P4 → 4 states

000

DESIGN OF A COUNTER USING THE SEQUENTIAL CIRCUIT APPROACH

State Diagram for a Modulo-8 Counter O

Figure 8.60. State diagram for the counter.

State table for a Modulo-8 Counter

Present	Next	state	Output
state	w = 0 $w = 1$		
Α	Α	В	0
В	В	C	1
C	С	D	2
D	D	Е	3
E	Е	F	4
F	F	G	5
G	G	Н	6
H	Н	Α	7

Figure 8.61. State table for the counter.

State-assigned table for the counter

Moore-type design

nt Z _o
$\mathbf{z_0}$
)
_
)
-
)
_
)
-

Figure 8.62. State-assigned table for the counter.

$$Y_0 = w'y_0 + wy_0'$$
$$= w \oplus y_0$$

$$Y_{1} = w'y_{1} + y_{1}y'_{0} + wy_{0}y'_{1}$$

$$= (w' + y'_{0})y_{1} + wy_{0}y'_{1}$$

$$= (wy_{0})'y_{1} + wy_{0}y'_{1}$$

$$= wy_{0} \oplus y_{1}$$

Figure 8.64. Circuit diagram for the counter implemented with D flip-flops.

J	K	Q(t+1)
0	0	Q(t)
0	1	0
1	0	1
1	1	Q'(t)

Truth table

Present state $Q(t) = y$	Next state $Q(t+1) = Y$	J K
0	0	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
0	1	$\begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} 1 \mathbf{d}$
1	0	$\begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} \frac{d}{} 1$
1	1	$\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} d 0$

	Present		Flip-flop inputs								
	state		w=	: 0			w=	1		Count	
	ИИИ	Y ₂ Y ₁ Y ₀	J_2K_2	J_1K_1	J_0K_0	Y ₂ Y ₁ Y ₀	J_2K_2	J_1K_1	J_0K_0	Z ₂ Z ₁ Z ₀	
Α	000	000	0d	0d	0d	001	0d	0d	1d	000	
В	001	001	i0 <mark>d</mark>	0d	d0	010	0 <mark>d</mark>	1d	d1	001	
C	010	010	0d	d0	0d	011	0d	d0	1d	010	
D	011	011	0d	d0	d0	100	1 <mark>d</mark>	d1	d1	011	
Е	100	100	d0	0d	0d	101	d0	0d	1d	100	
F	101	101	'd 0 i	0d	d0	110	d0	1d	d1	101	
G	110	110	d <mark>0</mark>	d0	0d	111	d <mark>0</mark>	d0	1d	110	
Н	111	111	d0	d0	d0	000	d1	d1	d1	111	
							<u> </u>				=

Figure 8.65. Excitation table for the counter with JK flip-flops.

$$J_0 = w$$

$\sqrt{y_1y_0}$							
wy_2	00	01	11	10			
00	d	0	0	d			
01	d	0	0	d			
11	d	1	1	d			
10	d	1	1	d			
	W						

$$K_0 = w$$

$\searrow y_1 y_0$						
wy_2	00	01	11	10		
00	d	d	0	0		
01	d	d	0	0		
11	d	d	1	0		
10	d	d	1	0		
	wy_0					

 $K_1 = wy_0$

$\searrow y_1 y_0$							
wy_2	00	01	11	10			
00	0	0	0	0			
01	d	d	d	d			
11	d	d	d	d			
10	0	0	1	0			
	wy_0y_1						

$$J_2 = wy_0y_1$$

$\searrow y_1 y_0$							
wy_2	00	01	11	10			
00	d	d	d	d			
01	0	0	0	0			
11	0	0	1	0			
10	d	d	d	d			
	wy_0y_1						

$$K_2 = wy_0y_1$$

Circuit diagram using JK flip-flops

Factored-form implementation of the counter

Figure 8.68. Factored-form implementation of the counter.

O Example-A Different Counter O O

Present state	Next state	Output Z ₂ Z ₁ Z ₀
А	В	000
В	С	100
С	D	010
D	E	110
Е	F	001
F	G	101
G	Н	011
Н	Α	111

Figure 8.69. State table for the counter like example.

OState-assigned table for Figure 8.690

Present state	Next state	Output
$y_2y_1y_0$	$Y_2Y_1Y_0$	$Z_2Z_1Z_0$
000	100	000
100	010	100
010	110	010
110	001	110
001	101	001
101	011	101
011	111	011
111	000	111

Figure 8.70. State-assigned table for Figure 8.69.

O Karnaugh map for Figure 8.70 O

$$Y_0 = y_2' y_0 + y_1' y_0 + y_2 y_1 y_0'$$

= $(y_2' + y_1') y_0 + y_2 y_1 y_0'$
= $y_2 y_1 \oplus y_0$

$$Y_1 = y_2' y_1 + y_2 y_1' = y_2 \oplus y_1$$

Circuit for Figure 8.70

Figure 8.71. Circuit for Figure 8.70.

ANALYSIS OF SYNCHRONOUS

SEQUENTIAL CIRCUITS

Moore-type design

The output of the flip-flops represent the present-state variables. Their inputs determine the next state that the circuit will enter.

Figure 8.80. Circuit for Example 8.8.

$$z = y_1 y_2$$

 $Y_1 = wy'_1 + wy_2$
 $Y_2 = wy_1 + wy_2$

$$y_2y_1 = {0 \atop 0}0, w = 0 \rightarrow Y_2Y_1 = {0 \atop 0}0, z = 0$$

 $y_2y_1 = {0 \atop 0}0, w = 1 \rightarrow Y_2Y_1 = 01$

	Present	Next state		
	state	w = 0 $w = 1$		Output
	y_2y_1	Y_2Y_1	Y_2Y_1	Z
A	00	00	01	0
В	01	00	10	0
\mathbf{C}	10	00	11	0
D	11	00	11	1

(a) State-assigned table

Present	Next	Output	
state	w = 0	w = 1	Z
Α	Α	В	0
В	Α	C	0
C	Α	D	0
D	Α	D	1

(b) State table

Figure 8.82. Circuit for Example 8.9.

$$J_1 = w$$
 $K_1 = w' + y'_2$
 $J_2 = wy_1$ $K_2 = w'$ $z = y_1y_2$

$$y_2y_1 = 00, w = 0 \rightarrow J_2K_2 = 01, J_1K_1 = 01, z = 0$$

 $y_2y_1 = 00, w = 1 \rightarrow J_2K_2 = 00, J_1K_1 = 11$

Present		Next st			
state	w =	= 0	w =	- 1	Output
y_2y_1	J_2K_2	J_1K_1	J_2K_2	J_1K_1	Z
00	01	01	00	11	0
01	01	01	10	11	0
10	01	01	00	01	0
11	01	01	10	01	1

Figure 8.83. The excitation tables for the circuit in Figure 8.82.

00

Figure 8.84. Circuit for Example 8.10.

$$D_1 = w(y_1' + y_2)$$

 $T_2 = w'y_2 + wy_1y_2'$ $z = y_1y_2$

$$y_2y_1 = 00, w = 0 \rightarrow T_2D_1 = 00, z = 0$$

 $y_2y_1 = 00, w = 1 \rightarrow T_2D_1 = 01$

Present	Next state		
state	w = 0 $w = 1$		Output
y_2y_1	T_2D_1	T_2D_1	Z
00	00	01	0
01	00	10	0
10	10	01	0
11	10	01	1

Figure 8.85. The excitation table for the circuit in Figure 8.84.

EXAMPLES OF SOLVED PROBLEMS

00

Example 8.11

00

Problem: Design an FSM that has an input w and an output z. The machine is a sequence detector that produces z=1 when the previous two values of w were 00 or 11; otherwise z=0.

O State diagram for Example 8.11 O O

Figure 8.91. State diagram for Example 8.11.

Present	Next	Output	
state	w = 0	<i>w</i> = 1	Z
A g1	B g1	D g1	0
Bg1	Cg2	Cg ² Dg ¹	
C g ₂	C g2	D g ₁	1
Dg1	B g1	E g2	0
Eg2	Bg1	E g2	1

Figure 8.92. State table for the FSM in Example 8.11.

O Stable table for Example 8.11 O O

	Present	Next state		
	state	w = 0 $w = 1$		Output
	$y_3y_2y_1$	$Y_3Y_2Y_1$	$Y_3Y_2Y_1$	Z
Α	000	000	001	0
В	001	001	010	0
C	010	010	011	1
D	011	011	100	0
Е	100	100	101	1

Figure 8.93. State-assigned table for the FSM in Figure 8.92.

O O Karnaugh Map for Example 8.11 O O

$\sqrt{y_2y_1}$						
wy_3	00	01	11	10		
00	0	1	0	1		
01	0	d	d	d		
11	0	d	d	d		
10	1	1	0	1		
$wy_3'y_2' y_2'y_1 y_2y_1'$						

$$Y_1 = wy_3'y_1' + wy_3'y_2' + w'y_2y_1 + w'y_2'y_1'$$
 $Y_2 = y_2'y_1 + y_2y_1' + wy_3'y_2'$

OO Karnaugh Map for Example 8.11 OO

$$Y_3 = wy_3 + wy_2y_1$$

$$z = y_3 + y_2 y_1'$$

O Karnaugh map for Figure 8.70 O O

$$Y_0 = y_2' y_0 + y_1' y_0 + y_2 y_1 y_0'$$

= $(y_2' + y_1') y_0 + y_2 y_1 y_0'$
= $y_2 y_1 \oplus y_0$

$$Y_1 = y_2' y_1 + y_2 y_1' = y_2 \oplus y_1$$

Stable table

	Present	Next		
	state	w = 0 $w = 1$		Output
	$y_2y_1y_0$	$Y_2Y_1Y_0$	$Y_2Y_1Y_0$	Z
Α	000	100	110	0
В	100	101	110	0
C	101	101	110	1
D	110	100	111	0
Е	111	100	111	1

Figure 8.94. An improved state assignment for the FSM in Figure 8.92.

O Karnaugh Map for Example 8.11 O O

$$Y_1 = wy_2 + w'y_3y_2'$$

$$Y_2 = w$$

O Karnaugh Map for Example 8.11 O O

y_2y_1						
wy_3	00	01	11	10		
00	1	d	d	d		
01	1	1	1	1		
11	1	1	1	1		
10	1	d	d	d		

$$Y_3 = 1$$

$$z = y_1$$

Problem: Implement the sequence detector of Example 8.11 by using two FSMs. One FSM detects the occurrence of consecutive 1s, while the other detects consecutive 0's.

O State-Assignment Problem OO

	Present	Next	state	
	state	w = 0	w = 1	Output
	y_2y_1	Y_2Y_1	Y_2Y_1	z _{ones}
A	00	00	01	0
В	01	00	11	0
C	11	00	11	1
	10	dd	dd	d

Gray code

Figure 8.16. Improved state assignment for the sequential circuit in Figure 8.4.

Derivation of logic expressions for next states and output

$$Y_1 = w$$

$$Y_2 = wy_1$$

$$z_{ones} = y_2$$

• • Circuit for the output z_{ones}

Present	Next	state	Output
state	w = 0 $w = 1$		Z _{zeros}
D	Е	D	0
E	F	D	0
F	F	D	1

(a) State table

	Present	Next		
•	state	w = 0	w = 1	Output
	y_4y_3	Y_4Y_3	Y_4Y_3	Z _{zeros}
	00	01	00	0
	01	11	00	0
	11	11	00	1
	10	dd	dd	d

(b) State-assigned table

Derivation of logic expressions for next states and output

output

$$Y_1 = w'$$

$$Y_2 = w'y_3$$

$$z_{zeros} = y_4$$

\circ Circuit for the output z_{zeros}

The output of the combined circuit is

$$z = z_{ones} + z_{zeros}$$

Problem: Derive a Mealy-type FSM that can act as a sequence detector described in Example 8.11.

State diagram

00

A: reset

 $B: \geq 0$

 $C: \ge 1$

Figure 8.96. State diagram for Example 8.13.

Stable table

Present	Next	state	Output z	
state	w = 0	w = 1	w = 0	<i>w</i> = 1
Α	В	С	0	0
В	В	С	1	0
С	В	С	0	1

Figure 8.97. State table for the FSM in Figure 8.96.

Stable table

	Present	Next state		Output		
	state	w = 0	w = 1	w = 0	<i>w</i> = 1	
	y_2y_1	Y_2Y_1	Y_2Y_1	Z	Z	
Α	00	01	11	0	0	
В	01	01	11	1	0	
C	11	01	11	0	1	

Figure 8.98. State-assigned table for the FSM in Figure 8.92.

OO Karnaugh map for Figure 8.98

$$Y_2 = w$$

$$Y_1 = 1$$

$$z = y_2' y_1 w' + y_2 w$$

Problem: Implement the FSM in the Figure 8.94 using JK-type flip-flop.

	Present	Next		
	state	w = 0	w = 1	Output
	$y_2y_1y_0$	$Y_2Y_1Y_0$	$Y_2Y_1Y_0$	Z
Α	000	100	110	0
В	100	101	110	0
С	101	101	110	1
D	110	100	111	0
E	111	100	111	1

Figure 8.94. An improved state assignment for the FSM in Figure 8.92.

J	K	Q(t+1)
0	0	Q(t)
0	1	0
1	0	1
1	1	Q'(t)

Truth table

Present state $Q(t) = y$	Next state $Q(t+1) = Y$	J K
0	0	$ \begin{array}{ccc} 0 & 0 \\ 0 & 1 \end{array} \right\} \begin{array}{cccc} 0 & \mathbf{d} \end{array} $
0	1	$\begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} 1 \mathbf{d}$
1	0	$\begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} \begin{array}{c} d & 1 \\ \end{array}$
1	1	$\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} d 0$

Present Flip-flop inputs									
state $w = 0$				w=1				Count	
ሃያኒሳ	Y ₃ Y ₂ Y ₁	J_3K_3	J_2K_2	J_1K_1	Y ₃ Y ₂ Y ₁	J_3K_3	J_2K_2	J_1K_1	Z
000	100	1d	0d	0d	110	1d	1d	0d	0
100	101	d0	0d	1d	110	d0	1d	0d	0
101	101	d0	0d	d0	110	d0	1d	d1	1 1
110	100	d0	d1	0d	111	d0	d0	1d	0
111	100	d0	d1	d1	111	d0	d0	d0	1

A B C D

Figure 8.99. Excitation table for the FSM in Figure 8.94 with JK-type flip-flops.

$$J_1 = wy_2 + w'y_3y_2'$$

$$K_1 = w'y_2 + wy_2'$$

$\sqrt{y_2y_1}$						
wy_3	00	01	11	10		
00	0	d	d	d		
01	0	0	d	d		
11	1	1	d	d		
10	1	d	d	d		
	W					

$$J_2 = w$$

$$K_2 = w'$$

$\sqrt{y_2y_1}$						
wy_3	00	01	11	10		
00	1	d	d	d		
01	d	d	d	d		
11	d	d	d	d		
10	1	d	d	d		
$J_3 = 1$						

y_2y_1							
wy_3	00	01	11	10			
00	d	d	d	d			
01	0	0	0	0			
11	0	0	0	0			
10	d	d	d	d			
$K_3 = 0$							

y_3	y_2				
y_1	00	01	11	10	
0	0	d	0	0	
1	d	d	1	1	y_1
1	d	d	1	1)	<i>J</i>

$$z = y_1$$

Circuit diagram using JK flip-flops

00

Problem: In computer systems it is often desirable to transmit data serially, namely, one bit at a time, to save on the cost of interconnecting cables. This means that parallel data at one end must be transmitted serially, and at the other end the received serial data has to be turned back into parallel form. Suppose that we wish to transmit ASCII characters in this manner. Usually, a character occupies one byte, in which case the eighth bit can either be set to 0 or it can be used to indicate the parity of the other bits to ensure a more reliable transmission.

00

Example 8.17

00

Parallel-to-serial conversion can be done by means of a shift register. Assume that a circuit accepts parallel data, B = b_7, b_6, \cdots, b_0 , representing ASCII characters. Assume also that b_7 is set to 0. The circuit is supposed to generate a parity bit, p, and send it instead of b_7 as a part of the serial transfer. Figure 8.102 gives a possible circuit. An FSM is used to generate the parity bit, which is included in the output stream by using a multiplexer. A three-bit counter is used to determine when the p bit is transmitted, which happens when the count reaches 7. Design the desired FSM.

00

Figure 8.102. Parallel-to-serial converter.

State diagram for a parity generator FSM

Present	Next	Output	
state	w = 0	w = 1	p
S_{even}	S_{even}	S_{odd}	0
S_{odd}	S_{odd}	S_{even}	1

(a) State table

Present	Next state		
state	w = 0	w = 1	Output
у	Y	Y	p
0	0	1	0
1	1	0	1

(b) State-assigned table

Figure 8.103. FSM for parity generation.

(c) Circuit