模块三 三角函数的图象性质

第1节 求三角函数解析式 $f(x) = A\sin(\omega x + \varphi) + B$ ($\bigstar \star \star \star$)

强化训练

1. (★★) 设
$$f(x) = 4\cos(2x - \frac{\pi}{6})\sin 2x$$
, 则函数 $y = f(x)$ 的值域为_____.

答案: [-1,3]

解析: 欲求值域, 得把解析式化简, 首先拆 $\cos(2x-\frac{\pi}{6})$ 这一项,

由题意, $f(x) = 4(\frac{\sqrt{3}}{2}\cos 2x + \frac{1}{2}\sin 2x)\sin 2x = 2\sqrt{3}\sin 2x\cos 2x + 2\sin^2 2x$,

再降次,并用辅助角公式合并,所以 $f(x) = \sqrt{3}\sin 4x + 1 - \cos 4x = 2\sin(4x - \frac{\pi}{6}) + 1$,

因为 $-1 \le \sin(4x - \frac{\pi}{6}) \le 1$,所以 $-1 \le f(x) \le 3$,故f(x)的值域为[-1,3].

2. (★★) 已知函数 $f(x) = \sin^2(x + \frac{\pi}{3}) + \cos^2 x (x \in \mathbb{R})$,则 f(x)的最小正周期为_____,值域为_____.

答案: π , $\left[1-\frac{\sqrt{3}}{2},1+\frac{\sqrt{3}}{2}\right]$

解析: 先把解析式化简, 两项均为平方, 所以降次,

曲题意,
$$f(x) = \frac{1 - \cos(2x + \frac{2\pi}{3})}{2} + \frac{1 + \cos 2x}{2} = 1 - \frac{1}{2}\cos(2x + \frac{2\pi}{3}) + \frac{1}{2}\cos 2x$$
,

把 $\cos(2x + \frac{2\pi}{3})$ 拆开,就可以用辅助角公式合并,

$$f(x) = 1 - \frac{1}{2}(\cos 2x \cos \frac{2\pi}{3} - \sin 2x \sin \frac{2\pi}{3}) + \frac{1}{2}\cos 2x = 1 + \frac{\sqrt{3}}{4}\sin 2x + \frac{3}{4}\cos 2x = 1 + \frac{\sqrt{3}}{2}\sin(2x + \frac{\pi}{3}),$$

所以 f(x) 的最小正周期 $T = \frac{2\pi}{2} = \pi$,值域为 $[1 - \frac{\sqrt{3}}{2}, 1 + \frac{\sqrt{3}}{2}]$.

3. $(2021 \cdot 全国甲卷 \cdot ★★)$ 已知函数 $f(x) = 2\cos(\omega x + \varphi)$ 的部分图象如图所示,则 $f(\frac{\pi}{2}) = ____.$

解析: 欲求 $f(\frac{\pi}{2})$,先把解析式中的 ω 和 φ 求出来,图上标了一个零点 $\frac{\pi}{3}$,一个最大值点 $\frac{13\pi}{12}$,由它们可求出 f(x)的最小正周期,从而求得 ω ,

设 f(x) 的最小正周期为 T,由图可知, $\frac{13\pi}{12} - \frac{\pi}{3} = \frac{3}{4}T$, 所以 $T = \pi$, 从而 $\frac{2\pi}{|\omega|} = \pi$, 故 $\omega = \pm 2$,

不妨取 $\omega = 2$,则 $f(x) = 2\cos(2x + \varphi)$,要求 φ ,首选代最值点,图中有 $x = \frac{13\pi}{12}$ 这个最大值点可代,

曲图可知,
$$f(\frac{13\pi}{12}) = 2\cos(2 \times \frac{13\pi}{12} + \varphi) = 2 \Rightarrow \cos(\frac{13\pi}{6} + \varphi) = 1 \Rightarrow \frac{13\pi}{6} + \varphi = 2k\pi \Rightarrow \varphi = 2k\pi - \frac{13\pi}{6}(k \in \mathbb{Z})$$
,

所以
$$f(x) = 2\cos(2x + 2k\pi - \frac{13\pi}{6}) = 2\cos(2x - \frac{\pi}{6})$$
,故 $f(\frac{\pi}{2}) = 2\cos\frac{5\pi}{6} = -\sqrt{3}$.

【**反思**】同一个图象可以有不同的解析式,所以本题 ω 取-2也行,如果取-2,答案会变吗?不会,因为求得的解析式必定能用诱导公式化为与 $\omega=2$ 相同.

4. $(2023 \cdot 全国乙卷 \cdot ★★)$ 已知函数 $f(x) = \sin(\omega x + \varphi)$ 在区间 $(\frac{\pi}{6}, \frac{2\pi}{3})$ 单调递增,直线 $x = \frac{\pi}{6}$ 和 $x = \frac{2\pi}{3}$ 为

函数 y = f(x) 的图象的两条对称轴,则 $f(-\frac{5\pi}{12}) = ($

(A)
$$-\frac{\sqrt{3}}{2}$$
 (B) $-\frac{1}{2}$ (C) $\frac{1}{2}$ (D) $\frac{\sqrt{3}}{2}$

答案: D

解析:条件中有两条对称轴,以及它们之间的单调性,据此可画出草图来分析,

如图,
$$\frac{2\pi}{3} - \frac{\pi}{6} = \frac{T}{2} \Rightarrow T = \pi$$
, 所以 $|\omega| = \frac{2\pi}{T} = 2$, 故 $\omega = \pm 2$,

不妨取 $\omega = 2$, 则 $f(x) = \sin(2x + \varphi)$,

再求 φ ,代一个最值点即可,

曲图可知,
$$f(\frac{\pi}{6}) = \sin(2 \times \frac{\pi}{6} + \varphi) = \sin(\frac{\pi}{3} + \varphi) = -1$$
,

所以
$$\frac{\pi}{3} + \varphi = 2k\pi - \frac{\pi}{2}$$
,从而 $\varphi = 2k\pi - \frac{5\pi}{6} (k \in \mathbf{Z})$,

故
$$f(x) = \sin(2x + 2k\pi - \frac{5\pi}{6}) = \sin(2x - \frac{5\pi}{6})$$
,

所以
$$f(-\frac{5\pi}{12}) = \sin[2\times(-\frac{5\pi}{12}) - \frac{5\pi}{6}] = \sin(-\frac{5\pi}{3}) = \sin\frac{\pi}{3} = \frac{\sqrt{3}}{2}$$
.

5. (2023 · 海南模拟 · ★★★)函数 $f(x) = A\cos(\omega x + \varphi)(A > 0, \omega > 0, |\varphi| < \frac{\pi}{2}$) 的部分图象如图所示,则

$$f(\frac{7}{3}) = ()$$

$$(A) \frac{1}{2}$$

$$(B) \frac{\sqrt{2}}{2}$$

(A)
$$\frac{1}{2}$$
 (B) $\frac{\sqrt{2}}{2}$ (C) $\frac{\sqrt{3}}{3}$ (D) 1

答案: D

解析:图上标注了零点-1和最大值点1,可由此求出周期,进而求得 ω ,

曲图可知,
$$1-(-1)=\frac{T}{4}$$
 \Rightarrow $T=8$ \Rightarrow $\omega=\frac{2\pi}{T}=\frac{\pi}{4}$,所以 $f(x)=A\cos(\frac{\pi}{4}x+\varphi)$,

求A一般看最值,但图中没有标注最大值和最小值,观察发现图象上标了(-1,0)和 $(0,\sqrt{2})$ 这两个点,故尝 试把它们代入解析式,建立关于Α和φ的方程组并求解,

$$\begin{cases} f(-1) = A\cos(-\frac{\pi}{4} + \varphi) = 0 & \text{①} \\ f(0) = A\cos\varphi = \sqrt{2} & \text{②} \end{cases}, \quad \text{由①可得}\cos(\varphi - \frac{\pi}{4}) = 0, \quad \text{结合} |\varphi| < \frac{\pi}{2} \text{可得} \varphi = -\frac{\pi}{4},$$

代入②得 $A\cos(-\frac{\pi}{4}) = \sqrt{2}$,所以 A = 2, 从而 $f(x) = 2\cos(\frac{\pi}{4}x - \frac{\pi}{4})$, 故 $f(\frac{7}{3}) = 2\cos(\frac{\pi}{4} \times \frac{7}{3} - \frac{\pi}{4}) = 2\cos(\frac{\pi}{3} - \frac{\pi}{4}) = 2\cos(\frac{\pi}$

6. (2020・新课标 I 巻・★★★)设 $f(x) = \cos(\omega x + \frac{\pi}{6})$ 在 $[-\pi, \pi]$ 的图象大致如下图,则 f(x)的最小正周 期为()

(A)
$$\frac{10\pi}{9}$$
 (B) $\frac{7\pi}{6}$ (C) $\frac{4\pi}{3}$ (D) $\frac{3\pi}{2}$

(B)
$$\frac{7\pi}{6}$$

(C)
$$\frac{4\pi}{3}$$

(D)
$$\frac{3\pi}{2}$$

答案: C

解析:要求最小正周期,可先求 ω ,图上只有 $\left(-\frac{4\pi}{\alpha},0\right)$ 这一个点可代入解析式,所以把它代进去,

由图可知, $f(-\frac{4\pi}{9}) = \cos(-\frac{4\pi}{9}\omega + \frac{\pi}{6}) = 0$,所以 $-\frac{4\pi}{9}\omega + \frac{\pi}{6} = k\pi + \frac{\pi}{2}$,解得: $\omega = -\frac{3+9k}{4}(k \in \mathbb{Z})$ ①,

图中x 轴上还标记了 $x = -\pi$ 和 $x = \pi$ 这两个位置,它们虽不能代入解析式,但可用于估算周期的范围,从 而得到 ω 的范围,例如, $-\frac{4\pi}{\alpha}$ 与 π 之间的部分超过1个周期, $-\pi$ 与 $-\frac{4\pi}{\alpha}$ 之间的部分不足半个周期,

设 f(x) 的最小正周期为 T,由图可知, $\frac{T}{2} > -\frac{4\pi}{\alpha} - (-\pi)$,故 $T > \frac{10\pi}{\alpha}$,

另一方面,
$$\pi-(-\frac{4\pi}{9})>T$$
,所以 $T<\frac{13\pi}{9}$,故 $\frac{10\pi}{9}< T<\frac{13\pi}{9}$,所以 $\frac{10\pi}{9}<\frac{2\pi}{|\omega|}<\frac{13\pi}{9}$,解得: $\frac{18}{13}<|\omega|<\frac{9}{5}$,

结合式①,可尝试 $k=\pm 2$, ± 1 , 0 等值,可以发现只有k=-1才能满足上述范围,

所以
$$\omega = -\frac{3+9\times(-1)}{4} = \frac{3}{2}$$
,故 $T = \frac{2\pi}{\omega} = \frac{4\pi}{3}$.

7. $(2022 \cdot 福州模拟 \cdot \star \star \star \star)$ 如图,A,B 是函数 $f(x) = 2\sin(\omega x + \varphi)(\omega > 0, |\varphi| < \frac{\pi}{2})$ 的图象与x 轴的两个

交点,若
$$|OB|-|OA|=\frac{4\pi}{3}$$
,则 $\omega=$ ()

(A) 1 (B)
$$\frac{1}{2}$$
 (C) 2 (D) $\frac{2}{3}$

答案: B

解法 1: 图象上横纵坐标都已知的点只有(0,1)这一个, 先把它代入解析式, 求得 φ ,

由图可知,
$$f(0) = 2\sin \varphi = 1$$
, 所以 $\sin \varphi = \frac{1}{2}$, 又 $|\varphi| < \frac{\pi}{2}$, 所以 $\varphi = \frac{\pi}{6}$, 故 $f(x) = 2\sin(\omega x + \frac{\pi}{6})$,

接下来求 ω , $|OB|-|OA|=\frac{4\pi}{3}$ 这个条件肯定要用,所以我们求出A、B的横坐标来表示|OB|和|OA|,

令
$$f(x) = 0$$
可得 $\sin(\omega x + \frac{\pi}{6}) = 0$,所以 $\omega x + \frac{\pi}{6} = k\pi$,故 $x = \frac{1}{\omega}(k\pi - \frac{\pi}{6})(k \in \mathbf{Z})$,

从图象来看,点A处是f(x)从y轴往左边的第一个零点,必定为k=0的情形,

令
$$k=0$$
 得: $x=-\frac{\pi}{6\omega}$, 所以 $x_A=-\frac{\pi}{6\omega}$;

点 B 处是 f(x) 从 y 轴往右边的第一个零点,必定为 k=1的情形,令 k=1得: $x=\frac{5\pi}{6\omega}$,所以 $x_B=\frac{5\pi}{6\omega}$;

从而
$$|OA| = \frac{\pi}{6\omega}$$
, $|OB| = \frac{5\pi}{6\omega}$,故 $|OB| - |OA| = \frac{5\pi}{6\omega} - \frac{\pi}{6\omega} = \frac{2\pi}{3\omega}$,由题意, $\frac{2\pi}{3\omega} = \frac{4\pi}{3}$,解得: $\omega = \frac{1}{2}$.

解法 2: f(x) 的图象可由 $y=2\sin x$ 经过横向的平移和伸缩得来, $y=2\sin x$ 的图象如图 2,横向的平移和

伸缩不会改变水平方向上的线段长度的比例关系,所以图 $1 + \frac{|OA|}{|OB|}$ 与图 $2 + \frac{|OM|}{|MN|}$ 相等,

曲图 2 可知
$$\frac{|OM|}{|MN|} = \frac{\frac{\pi}{6} - 0}{\pi - \frac{\pi}{6}} = \frac{1}{5}$$
,所以 $\frac{|OA|}{|OB|} = \frac{1}{5}$,结合 $|OB| - |OA| = \frac{4\pi}{3}$ 可得 $|OA| = \frac{\pi}{3}$, $|OB| = \frac{5\pi}{3}$,

所以
$$|AB| = |OA| + |OB| = 2\pi$$
,由图1可知 $|AB| = \frac{T}{2}$,其中 T 为 $f(x)$ 的最小正周期,

所以 $\frac{T}{2}=2\pi$,从而 $T=4\pi$,故 $\omega=\frac{2\pi}{T}=\frac{1}{2}$.

《一数•高考数学核心方法》