Deep Learning III: memory-based layers for learning sequences

Moacir Ponti ICMC, Universidade de São Paulo

Contact: www.icmc.usp.br/~moacir — moacir@icmc.usp.br

Rio de Janeiro/Brazil - April, 2019

Agenda

When data sequence matters

Basic recurrent layer (RNN)

Long Short Term Memory (LSTM)

Concluding remarks

Non-sequence processing

- ► Dense and convolutional layers only consider the current example to compute their output
- ► In every iteration, the input moves forward, until reaching the output

When sequence is important

▶ What if some output of a layer at iteration t is used as an additional input to the same layer at iteration t + 1?

When sequence is important

► This way the output depends not only on the current input, but previous outputs of the same layers

- ▶ One input, sequence output
- ► Sequence input, one output
- Sequence input, sequence output

► One input, sequence output: e.g. one image is provided and the network outputs a sequence of words describing it

► Sequence input, one output: e.g. sentence (text) is given and the output is a sentiment analysis, into positive or negative content.

Sequence input, sequence output: e.g. machine translation of sentences in different languages (it may or not have a delay)

Agenda

When data sequence matters

Basic recurrent layer (RNN)

Long Short Term Memory (LSTM)

Concluding remarks

Recurrent layer: to remember or to forget?

Recurrent layer: to remember or to forget?

$$egin{aligned} \mathbf{h}_t &= anh \left(W_h \mathbf{h}_{t-1} + W_{\mathsf{x}} \mathbf{x}_t + b_h
ight) \ y &= \left(W_y \mathbf{h}_t + b_y
ight) \end{aligned}$$

Recurrent layer: to remember or to forget?

Example: predicting next character

Let us define a one-hot vector for characters so that:

- h = [1, 0, 0, 0]
- ightharpoonup e = [0, 1, 0, 0]
- ightharpoonup 1 = [0, 0, 1, 0]
- \bullet o = [0, 0, 0, 1]

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Example: predicting next character

Agenda

When data sequence matters

Basic recurrent layer (RNN)

Long Short Term Memory (LSTM)

Concluding remarks

Long Short Term Memory Unit (LSTM)

Understanding LSTM Networks

Long Short Term Memory Unit (LSTM)

This and following figures are from http://colah.github.io/posts/2015-08-Understanding-LSTMs/

LSTM network: Cell line

- ▶ Runs down the entire chain, with minor linear interactions
- ► LSTM may remove or add information to the cell state, via 3 gates

LSTM network: forget gate

- decide what to cancel out from the cell state
- outputs values between 0 (forget) and 1 (keep entirely) for each value of the cell state vector

LSTM network: input and update gate

$$i_t = \sigma \left(W_i \cdot [h_{t-1}, x_t] + b_i \right)$$

$$\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$$

- ▶ first, it combines previous output h_{t-1} and the input x_t
- ▶ then, it filters out those by learning \tilde{C}_t , which are candidate values for updating the cell state

LSTM network: update Cell state

▶ now the previous and current cell state are combined

LSTM network: output gate

$$o_t = \sigma (W_o [h_{t-1}, x_t] + b_o)$$

$$h_t = o_t * \tanh (C_t)$$

- ► decide what to output
- ▶ the output is based on the computed cell state C_t , which weights the vector formed by the recurrence h_{t-1} and input x_t

Concluding remarks

- Recurrent layers are essential when sequential data is concerned
- ▶ It is paramount to format the input to as simple as possible configurations
- ► Example: one-hot vectors for words or characters.

Further reading

- Try to look for the Attention Networks: the idea is to let every step of an RNN pick information to look at from some larger collection of information.
- For example, a recurrent net to output caption of an image, it might pick a different part of the image to decide every word it outputs.

References

- ▶ Goodfellow, I., Bengio, Y., and Courville, A. Deep learning. MIT press, 2016.
- A. Karpathy. Understanding LSTM Networks. http://karpathy.github.io/2015/05/21/rnn-effectiveness/
- C. Olah. Understanding LSTM Networks http://colah.github.io/posts/2015-08-Understanding-LSTMs/