and

$$VD = \begin{pmatrix} 51.4683 & 3.3013 & -3.8569 \\ -9.9623 & -6.6467 & -2.7082 \\ 76.6327 & 3.1845 & 0.2348 \\ 2.2393 & -8.6943 & 5.2872 \\ -33.6038 & 4.1334 & -3.6415 \\ -25.5941 & 1.3833 & -0.4350 \\ -53.4333 & 7.2258 & -1.3547 \\ -13.0100 & 6.8594 & 4.2010 \\ -6.2843 & 4.6254 & 4.3212 \\ -15.2173 & -14.3266 & -1.1581 \end{pmatrix}, \quad X - \mu = \begin{pmatrix} -1.2000 & -51.4000 & -5.6000 \\ -4.2000 & 9.6000 & 6.4000 \\ 3.8000 & -76.4000 & -5.6000 \\ 3.8000 & -2.4000 & 9.4000 \\ -4.2000 & 33.6000 & -3.6000 \\ -1.2000 & 25.6000 & -0.6000 \\ 4.8000 & 13.4000 & -5.6000 \\ 4.8000 & 6.6000 & -3.6000 \\ -4.2000 & 14.6000 & 14.4000 \end{pmatrix}$$

The first principal direction $u_1 = (0.0394, -0.9987, -0.0327)$ is basically the opposite of the y-axis, and the most significant feature is the year of birth. The second principal direction $u_2 = (0.1717, 0.0390, -0.9844)$ is close to the opposite of the z-axis, and the second most significant feature is the length of beards. A best affine plane is spanned by the vectors u_1 and u_2 .

There are many applications of PCA to data compression, dimension reduction, and pattern analysis. The basic idea is that in many cases, given a data set X_1, \ldots, X_n , with $X_i \in \mathbb{R}^d$, only a "small" subset of m < d of the features is needed to describe the data set accurately.

If u_1, \ldots, u_d are the principal directions of $X - \mu$, then the first m projections of the data (the first m principal components, i.e., the first m columns of VD) onto the first m principal directions represent the data without much loss of information. Thus, instead of using the original data points X_1, \ldots, X_n , with $X_i \in \mathbb{R}^d$, we can use their projections onto the first m principal directions Y_1, \ldots, Y_m , where $Y_i \in \mathbb{R}^m$ and m < d, obtaining a compressed version of the original data set.

For example, PCA is used in computer vision for face recognition. Sirovitch and Kirby (1987) seem to be the first to have had the idea of using PCA to compress facial images. They introduced the term eigenpicture to refer to the principal directions, u_i . However, an explicit face recognition algorithm was given only later by Turk and Pentland (1991). They renamed eigenpictures as eigenfaces.

For details on the topic of eigenfaces, see Forsyth and Ponce [64] (Chapter 22, Section 22.3.2), where you will also find exact references to Turk and Pentland's papers.

Another interesting application of PCA is to the *recognition of handwritten digits*. Such an application is described in Hastie, Tibshirani, and Friedman, [88] (Chapter 14, Section 14.5.1).

23.6 Summary

The main concepts and results of this chapter are listed below: