प्रदाह एनुमा training dataset ना अंश्वर मृद्, भाउर दााग€ाना generalization ol
4. Model Selection & Validation 25元 全場には好かけもして > Mode(号 ははよらとは、社会(Validation)からせ、
4.1 The statistical learning setup
Problem Def)
· 워는 어떤 양국 X E X 라 غ격 Y E Y 의 관계를 모델맞습니다.
• Data는 財産 駐 D 에 따라 생명된 (X.y)~D 샘플.
• But this the D= PZZ, Sample dataset $S = \{(x_i, y_i)\}_{i=1}^n$ which the state.
· Loss function: 예약이 얼마나 复烈士지 朝治에 유명 loss: y x y → R+ 本質 (055(Z,y) = (Z-y)2 ···
• Risk
1) Population Risk R(h) = E[loss(h(x), y)] < 字217ト 社以 多に 出た、But D 全江ではのは すれた X
$h^* = \underset{\sim}{\text{arg onin }} R(h)$
2) Empirical Risk R(h) = 1/2 (loss (h(x),y) ← fint bythe talletole f chety. D 71501 loss aug. (在处理证)
7년 Idea: 모델학급학교대 R(W)를 권소라하는 방량으로 학급하다, R(W)가 작아야하(R(W)으로 Overfitting 하면 안뜽)
4.2 Training, Validation, Test errors 1) Training Set - 呈现的告
ML 어떠 데이터를 3백으로 나뉘서 오텔 성능 ISTIF 2) Validation Set - 모델 변덕 / Hyperparanweter tuning, 사용
3) Test Set - 최종 (당 Ignr (unseen data)
· Risk HIIII Hall I Eurors
(Model how that) Roman Empirical Risk on training set
(Model how then) Model how then Empirical Pask on training set
2) Validation Error $\hat{R}(h, D_{vol}) = \frac{1}{N_{vol}} \sum_{i=1}^{N_{vol}} loss (h(x_i), y_i)$
Nool 1=1 HITPETCH WAS
3) Test Error 2(h, Deext) = 1 Next (h(Xi), Yi) 3501 是也年 9500 2000 1850 温度型打场地 82.
They is now (Milling)
र भ । विद्वार । पिर्नार
· 모델이 training set 에만 너무 잘 맛으면(overfitting) test Set 성능 떨어진수 있음.
· Validation set 이 이른 방지하고, 오랜 티퍼 기는 제공
· test set은 한번로 비사으로 data set, 즉 한지 방향처럼 test.
• Steps 1) 여러 觃((M, h2,)을 trawng set 이 皓
2) Validatión enor Êval (h) 7+ 7时 柴 兜 h* 切到
3) 선택성는 연望 h* on that test error Êtest (h) 超7+.

True RZK R(h) = E[loss(h(x),y)]Emprised Risk $\hat{R}(h) = \frac{1}{h} \sum loss (h(x),y)$ 위는 설명으로 R(N)를 워버지만 HZ 게산 빛가. → test set 위에서 R(N)를 사용 → 그럼 권은: Empirical Risk Ê(W) Truce Rak R(W)를 얼마나 잘 라난한까? Hoeffding's Inequality 动() 弘詩: test evor, true risk 知 for sample (Xi, Yi): 字站: I 和口上 O((14(15)) 2) 好意 의미: test set이 홢히 크면 test ewor는 true nskon 北州华凡仁 eg) d=0.05 ≈ 95% N315 결크: Hoeffding's (neguality는 test error R(h) 7+ true risk R(h)를 연외나 잘라けば지 학율학교 보장. 4.3 K-fold Cross Validation · Goal: 여러 5일 궁 generation How l 살 発 9일 N 선택HORT (true risk R(W)가 가상 작은 9절 선택) → But, R(h) 직접 HILL 對下→ validation set out 等的 R(h) 子 Ight 計化. K-fold - Cross-Validation 1) Pataset D를 크기가 같은 Knell 변경함으로 나는다. Dr. Da,.... Dr. 2) It i e {1, ..., k} on they . Train Dtrain = D\Di

· Validator Dual = Di $\hat{R}_{cv}(h) = \frac{1}{\kappa} \sum_{i=1}^{\kappa} \hat{R}_{i}(h)$ 4) 是 foldon than The validation enor 知也. → 妈妈(叶呢?) 모델 한택시 단일 Validation set 7+ 아닌 다리 Split 은 사용 > 보다 안정되인 전태기는 . 특히 Dataset 각은~~ 本) test set 은 短 はる はいいしと (場、発生には (Model Selection)のは、人格 X Validation enor 是 空野.

5. Convex optimization > Basic Intro. · Convexity > A	spect) Optimization algorithm.
5.1 Optimization Problems	
· Basic Structure	
win $f(x)$ • $f: \mathbb{R}^d \to \mathbb{R}$ Objective function $\int_{\mathbb{R}^d} \cdot \tilde{a}$	주해 X^* 는 $f(X^*) \leq f(X)$ $\forall X \in \mathbb{R}^d$ 를 만속해야 한다
xe Rd • 목적: f(x)를 최호라하는 x를 찾자.	(= global minimum)
	•
5.2 Convexity	
· Definition 1: Convex Set	
A convex set ℓ is any set s.t. for $x,y \in \ell$ and $\forall \theta \in \ell$	(0.1):
0x+ (1-0)y & e	(a) Convex set (b) Non-convex set
,	युर्ध थाना शूटका Couver set.
· Definition 2: Convex Function (Strictly convex) 32+	프기ト 식턴 연결방다 ORM 있으면 OMVEX
A function $f:\mathbb{R}^d \to \mathbb{R}$ is convex	• Linear-function $f(x) = \langle a, x \rangle + b$
for all x,y∈R ^d , B∈(0.1) on this	• Quadratic $f(x) = \frac{1}{2}x^{T}Qx + b^{T}x + C$
$\theta f(x) + (1-\theta)f(y) \geq f(\theta x + (1-\theta)y)$	· Any Norm f(x) = (x
$\theta f(x) + (1-\theta)f(y) > f(\theta x + (1-\theta)y)$	1/
· Prop 1: 함수 for convex 하고, diff-able 하고 다음 영립 →	$f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle$
	हिस्ति। व्रेष्ट उथा धर्म अयाना क्रदम
· Prob 2: convex function for Uthan, 可望 图 X*EIRd 7+ D	$f(x^*) = 0 0 $ $0 \rightarrow x^* = g $ bal winimum $o(t)$.
CON	ex function = staitionary point = global minimum orat
→ 7	B17+ D el 20m1 global 主工法 (≈ 五寸41毫 7以に X*)
· Plot f strictly concex 2 39 xx = 2016! global minimizer	
ı	
5.3 Computational aspect of optimization algorithm	
유니는 min f(x) 를 팦섶어. e.g) f(x) = 11 Ax-y 113. DATIES	AERMXN & full column rank \$122.
만약 ATH full rank 라면 (개를 구할 수 있다면) 코딩해 화 X*;	= (A ^T A) ⁻¹ A ^T y. 卫祖明 范特可忆? 1) f 7+ Closed form
계산이 불가한 경국에 어떡하지?	그) 역생인 구하이 이겨움
→ 반발에서 최대한 버유하게 다들어보고ト (군사하기 Approxim	te Solution 784921)
•	
· Oracle Access - 원제 컴퓨터가 j릴 가능한 것(할수있는것).	일 ¹² 음이 강은 가능한 정보. 현실
1) Oth-order oracle: 주어진 X에 대해 f(x) 안 반화	を- accurate solution 是空に引起し
2) 1 st _order oracle: f(X) Lt ▽f(X) (Goodsout)를 반찬	(xk-x* ≤ € or f(xk) -f(x*) ≤ €
3) 2nd - order oracle: f(x), \(\nabla f(x)\), \(\nabla f(x)\) (Hessian) THI Y	라 이 중하나를 만속할다니의 oracle 라틴 및수 = 박납긴.
+ 몇번호 호클하이아 (반설 SHOP) 한가? = Orade complexity	
· स्थारा अपने रामार केपिया	Napter 7515 algorithm & 127001 of olaton
•이 정별 몇번 요청하여는 청분한 정확한 #를 얻는 수 있을까?	
7	(-5 Lay, Alay BE place (MD) 032 1.000

의미)

3) (Zeometrical ...

1) 어떤 행열 Q의 condition number (的主 政识 胜

+Q is well-conditioned (K≈1): 正弦的 好 ⇒ 蛭 比透明的 站門 是可 HF. → 宁县fast. Stable

* Q B ill-conditioned (K>1): 建散剂大⇒加热器部外, 两两⇒铝 slow, zigzag 姚y

2) rate of convergence = $(1 - \frac{1}{\kappa})^{\kappa}$ K个= 智慧 小人 K→ m → 智慧 매 느,

Quadratic function (2計部)의 5과인이 QOI 대社 타원형여질, Q의 condition number It 老海 고吟地 EKZ Qx2+by2=1. GD는 달년 따라 수상하강 방우로 움이임. 곡호 되가 크면 관일로요9