Задание 20. Функции нескольких переменных. Окрестность точки, внутренние и граничные точки, замкнутая ограниченная область. Приращения функции, предел функции, непрерывность. Теорема Вейерштрасса о непрерывных функциях

Функция нескольких переменных

Функцией нескольких переменных $u = u(x_1, x_2, x_3, ..., x_n)$ от n независимых $x_1, x_2, x_3, ..., x_n$ называется отображение u(x): $R^n -> R$ (то есть на отдельные плоскости или оси) -, которое сопоставляет точке x не более одного значения из R.

Окрестность точки

 ε -окрестностью точки $M_0 \in \mathbb{R}^n$ называется можнство точек, расстояние от которых до M_0 меньше ε . Так, для R^2 такой окрестностью будет окружность без границы радиусом ε , а для R^3 - шар без границы радиусом ε .

Внутренняя и граничная точки области

Пусть имеется область $D \in \mathbb{R}^n$. Тогда точка M называется

- 1. граничной точкой области, если $\forall \varepsilon(M_0)$:
 - (a) $\varepsilon(M_0) \cap D \neq \emptyset$
 - (b) $\varepsilon(M_0) \not\subset D$
- 2. внутренней точкой области, если существует $\varepsilon(M_0)$, такая что $\varepsilon(M_0) \subset D$ Пример внутренней и граничной точек области:

Здесь одна точка - внутренняя, одна - граничная, а последняя не относится ни к одному, ни к другому типу.

Замкнутая и ограниченная области

Область называется **замкнутой**, если она содержит все граничные точки. Область называется **ограниченной**, если существует C=const, такая что $\rho(0,x) < C \forall x \in D \ (\rho(0,x)$ - функция, описывающая расстояние между х-ми точек в пространстве R^n). То есть, например, в трехмерном пространстве ограниченной областью можно считать ту, которую можно поместить в конечный шар.

Как это выградит на плоскости:

Предел и непрерывность фунции

Пусть z=f(x,y) - функция двух перемнных, $M_0(x_0,y_0)$. Тогда эта функция **имеет предел** в точке M_0 , если $\forall \varepsilon > 0$ существует δ -окрестность точки M_0 , такая что $M(x,y) \in \delta(M_0)$ и $|f(x,y) - f(x_0,y_0)| < \varepsilon$.

Замечание: при вычислении предела может оказаться, что он зависит от направления и траектории, по которой мы подходим к точке. Тогда он не существует.

Отсюда исходит определение непрерывности функции. Функция f(x, y) непрерывна в точке $M_0(x_0, y_0)$, если она определена в этой точке и ее предел совпадает со значением в этой точке.

Функция **непрерывна в области** D, если она непрерывна в каждой точке этой области.

Теорема Вейерштрасса о непрерывных функциях

Непрерывная функция в замкнутой ограниченной области достигает наибольшего и наименьшего значения.