COSC 290 Discrete Structures

Lecture 36: Bloom filters & Randomized Response

Prof. Michael Hay Friday, May 4, 2018

Colgate University

Bloom filters

Plan for today

- 1. Bloom filters
- 2. Expectation
- 3. Randomized response

Bloom filters

Purpose: keep track of which objects you have seen before.

- · Insert(x): inserts x into bloom filter
- Lookup(x): returns True if x appears to have been inserted before. False otherwise

Bloom filter:

- A of size m. Fach cell stores a bit.
- k hash functions: h₁, h₂, ..., h_k.
- · Each hash function maps object x to cell in A.

Insert(x): compute $h_1(x), h_2(x), \ldots, h_k(x)$. Set those bits to 1 in A. Lookup(x): compute $h_1(x), h_2(x), \ldots, h_k(x)$. Check these cells in array A. If they are *all* equal to 1, then return True. Otherwise false.

When bloom filters work well

Bloom filters sometimes produce false positives.

How do avoid false positives:

- Make array A large. The larger A is, the less likely a hash collision.
- · Set k to be "just right":
 - When k is too small, a few collisions can cause a false positive.
 (Imagine k = 1)
 - When k is too big, each insertion flips a lot of bits and we quickly "run out of bits." (Imagine k=m)

Strongly encourage you to look at exercises DLN 10.99-10.104. Useful study for the final exam!

Ferengi population

Last time we looked at \emph{B} , the number of boys, and \emph{G} , the number of girls and we found that:

- E[B] = 1
- $\mathbb{E}[G] = 1$

Let's define a new random variable, T := B + G (total number of children). What is $\mathbb{E}[T]$?

Expectation

Poll: expected value of T

Recall that $\mathbb{E}[B] = \mathbb{E}[G] = 1$. Let T := B + G (total number of children). What is $\mathbb{E}[T]$?

what is
$$\mathbb{E}[T]$$
 = $\mathbb{E}[T]$ = $Pr(s) \cdot T(s)$ definition of expectation $P(s)$ = $Pr(s) \cdot P(s) \cdot P(s)$ definition of $P(s)$ definition of $P(s)$ = $Pr(s) \cdot P(s) \cdot P(s) \cdot P(s)$ distribute mult. over addition $P(s)$ = $Pr(s) \cdot P(s) \cdot P(s)$ split into two summations $P(s)$ split into two summations

= ??? Can you simplify last line and solve?

Therefore, $\mathbb{E}[T]$ is (a) 0, (b) 1, (c) 1.5, (d) 2, (e) 2.5.

Linearity of expectations

Let X_1 and X_2 be any two random variables.

$$\mathbb{E}[X_1 + X_2] = \mathbb{E}[X_1] + \mathbb{E}[X_2]$$

More generally, let X_1, X_2, \dots, X_n be any n random variables.

$$\mathbb{E}\left[\sum_{i=1}^{n} X_i\right] = \sum_{i=1}^{n} \mathbb{E}[X_i]$$

Finally, it's not hard to show that for any a that is constant,

$$\mathbb{E}[aX] = a\mathbb{E}[X]$$

Using randomization to safely extract private information

Randomized response

Privacy through randomization

Suppose pollster wants to ask sensitive question.

Example: Do you support legalization of marijuana? Respondent may be reluctant to answer "Yes."

Randomized response (Warner, 1965)

- Pollster has a biased coin: heads with probability p where $p>\frac{1}{2}.$ Pollster knows the value of p.
- Pollster asks question. True response is kept secret.
- Respondent flips coin. Result of coin flip hidden from pollster.
- Randomized response: If heads, answers truthfully; if tails, lies.
- Respondent tells pollster only the ${\it randomized\ response}.$

(Quick demonstration.)

Let θ be fraction of population whose $true\ response$ is Yes. Let p be probability of heads.

Suppose a respondent is randomly chosen from population. Let *E* be the event that the randomly selected respondent gives a *randomized response* of Yes.

What is Pr(E)?

- A) θ
- B) p C) θ · n
- D) $\theta \cdot p + (1 \theta) \cdot (1 p)$
- E) Unknown because we don't know true response

Indicator random variable

An indicator random variable is a binary random variable (i.e. it maps each outcome to either 0 or 1).

Assume pollster asks \boldsymbol{n} respondents. Each respondent randomly selected from population.

Let X_i be the following indicator random variable,

$$X_i = \begin{cases} 1 & \text{if randomized response of } i^{th} \text{ respondent is "Yes"} \\ 0 & \text{if randomized response of } i^{th} \text{ respondent is "No"} \end{cases}$$

What is $Pr(X_i = 1)$?

$$Pr(X_i = 1) = \theta \cdot p + (1 - \theta) \cdot (1 - p)$$

What is $Pr(X_i = 0)$?

$$Pr(X_i = 1) = \theta \cdot (1 - p) + (1 - \theta) \cdot p$$

What can we learn about θ ?

Suppose we repeat this process with a sample of n respondents. Let $Y := \sum_{i=1}^{n} X_i$.

What is E[Y]?

- Use linearity of expectations: $\mathbb{E}[Y] = \mathbb{E}[\sum_i X_i] = \sum_i \mathbb{E}[X_i]$.
- E[X_i] = Pr(X_i = 1)

Let's rearrange and "solve" for θ :

$$\theta = \frac{\frac{\lfloor \lfloor y \rfloor}{n} - (1-p)}{(2p-1)}$$

Key point: if you knew $\mathbb{E}[Y]$, you'd know θ . Unfortunately we don't know $\mathbb{E}[Y]$. However, we can *estimate* it!

Estimating θ

Let $\hat{\theta}$ denote the following random variable

$$\hat{\theta} := \frac{\frac{y}{n} - (1-p)}{(2p-1)}$$

What is $\mathbb{E} \Big[\hat{\theta} \Big]$? $\mathbb{E} \Big[\hat{\theta} \Big] = \theta$ (an unbiased estimator)

How accurate is $\hat{\theta}$? We can look at the *variance* of $\hat{\theta}$, which is a measure of how much it deviates from its expected value.

$$V(\hat{\theta}) = \underbrace{\frac{\theta(1-\theta)}{n}}_{} + \underbrace{\frac{p(1-p)}{n(2p-1)^2}}_{}$$

What happens when p = 1/2? p = 1? p = 0? (Note: You can derive this result using definition of V in book and the fact that $V(\sum_i X_i) = \sum_i V(X_i)$ when X_i are independent, which they are here.)

10

12

Using randomization to safely extract private information

Google's approach: compress user data using bloom filter, then use randomized response on each bit of bloom filter.

Exercise

Consider this alternative randomized protocol. What is E[Y] under this randomized model?

Flip coin: if heads, answer Yes; if tails, answer truthfully.

As before,

- assume θ fraction of the population would answer Yes truthfully.
- use linearity of expectations: E[∑_i X_i] = ∑_i E[X_i]
- for indicator random variable E[X_i] = Pr(X_i = 1)

Does this approach leak more/less information than previous approach?

Apple uses similar technologies

13

