Análisis Matemático I

Práctica 1: Continuidad

Parte rutinaria

2 Límites parciales

- Substitution of the sub
- Existencia del límite

Otros recursos

Planteamiento del problema

El problema

Nos proponemos estudiar la continuidad de un campo escalar o vectorial

$$f: E \to \mathbb{R}^M$$
 donde $\emptyset \neq E \subset \mathbb{R}^N$

- \bullet Usando las componentes de un campo vectorial, el problema se reduce al caso M=1
- Trataremos el caso particular $E = \mathbb{R}^N$

Por tanto el problema que vamos a tratar se concreta en:

Estudiar la continuidad de un campo escalar $f:\mathbb{R}^N o \mathbb{R}$

Prestaremos especial atención al caso N=2

1. La parte rutinaria del problema

1. La rutina

Habitualmente, existe un conjunto abierto $U\subset\mathbb{R}^N$ tal que $f\big|_U$ se obtiene mediante operaciones con funciones continuas: suma, producto, cociente y composición

luego es fácil comprobar que $f\big|_U$ es continua y, como U es abierto, el carácter local de la continuidad nos dice que $f \ \ \text{es continua en todo punto de } U$

Por tanto, la parte rutinaria del problema consiste en:

- 1.a Definir el conjunto U y comprobar que U es abierto
- 1.b Comprobar que $f|_{II}$ es continua
- 1.c Aplicar el carácter local de la continuidad

Queda estudiar la continuidad de f en cada punto $\alpha \in \mathbb{R}^N \setminus U$, luego estudiamos la existencia de límite de f en α

2. Estudio de los límites parciales

¿Qué son los límites parciales?

Fijamos $\alpha\in\mathbb{R}^N$ para estudiar la existencia de límite de f en α Suponemos que las reglas de cálculo de límites no resuelven el problema, porque se presenta algún tipo de indeterminación

Sea $\{e_k:k\in\Delta_N\}$ la base usual de \mathbb{R}^N y fijemos $k\in\Delta_N$ El cambio de variable $x=\alpha+te_k\in\mathbb{R}^2$ con $t\in\mathbb{R}$, teniendo en cuenta que $x\to\alpha$ cuando $t\to0$ y $x\neq\alpha$ para $t\neq0$, nos dice que $\lim_{x\to\alpha}f(x)=L\in\mathbb{R}\quad\Longrightarrow\quad \lim_{t\to0}f(\alpha+te_k)=L$

El límite de la derecha, cuando existe, es el k-ésimo límite parcial de f en α .

Es fácil saber si existe, y en su caso calcularlo

En el caso N=2 con $\alpha=(a,b)\in\mathbb{R}^2$, los límites parciales, si existen, son:

$$\lim_{x \to a} f(x,b) \qquad \mathsf{y} \qquad \lim_{y \to b} f(a,y)$$

¿Para qué sirven los límites parciales?

Conclusiones del estudio de los límites parciales

Si f tiene límite en $\, \alpha \, ,$ todos sus límites parciales existen y coinciden

Por tanto:

- 2.a Si no existe uno de los límites parciales, f no tiene limite en lpha
- 2.b Igual ocurre si existen dos límites parciales, pero no coinciden
- 2.c Si todos los límites parciales existen y coinciden, es decir:

$$\lim_{t \to 0} f(\alpha + te_k) = L \in \mathbb{R} \quad \forall k \in \Delta_N$$

Sabemos que L es el único posible limite de f en α

En lo que sigue suponemos que estamos en el tercer caso, conociendo ${\it L}$

3. Estudio de los límites direccionales

¿ Qué son los límites direccionales?

Fijado $u \in \mathbb{R}^N \setminus \{0\}$, el cambio de variable $x = \alpha + tu$ con $t \in \mathbb{R}$, nos dice que

$$\lim_{x\to\alpha}f(x)=L\quad\Longrightarrow\quad \lim_{t\to0}f(\alpha+tu)=L$$

Si v = cu con $c \in \mathbb{R}^*$, es claro que:

$$\lim_{s \to 0} f(\alpha + sv) = L \quad \Longleftrightarrow \quad \lim_{t \to 0} f(\alpha + tu) = L$$

luego podemos "normalizar" u, sin perder información

Lo más habitual es suponer $\|u\|=1$ (norma euclídea en \mathbb{R}^N)

Sea pues
$$S = \{u \in \mathbb{R}^N : ||u|| = 1\}$$

Entonces, $\lim_{t\to 0} f(\alpha+tu)$, cuando existe,

es el límite direccional de f en α , según la dirección $u \in S$

Es fácil ver si existen todos los límites direccionales y, en su caso, calcularlos

Los límites parciales son límites direccionales $(u = e_k \text{ con } k \in \Delta_N)$

Conclusiones del estudio de los límites direccionales

Si $\,f\,$ tiene límite en $\,\alpha\,,$ todos sus límites direccionales existen y coinciden

Por tanto:

- 3.a Si no existe uno de los límites direccionales, f no tiene limite en lpha
- 3.b Igual ocurre si existen dos límites direccionales que no coinciden
- 3.c Si todos los límites direccionales existen y coinciden, no tenemos nueva información. Tan sólo tenemos $L\in\mathbb{R}$, que es el único posible límite

Límites radiales

Fijado $u\in\mathbb{R}^N$ con $\|u\|=1$ el límite radial de f en α según el vector u, caso de que exista, viene dado por:

$$\lim_{t\to 0^+} f(\alpha + tu)$$

El estudio de cada límite direccional equivale al de dos límites radiales:

$$\lim_{t \to 0} f(\alpha + tu) = L \quad \Longleftrightarrow \quad \lim_{t \to 0+} f(\alpha + tu) = \lim_{s \to 0^+} f(\alpha - su) = L$$

Estudiar los límites direccionales equivale a estudiar los radiales

Coordenadas polares en el plano

$$u \in \mathbb{R}^2$$
, $||u|| = 1$ \iff $u = (\cos \theta, \sin \theta)$ con $\theta \in \mathbb{R}$

El límite radial de f en $\alpha=(a,b)\in\mathbb{R}^2$, según $u\in S$, cuando existe, es:

$$\lim_{t\to 0^+} f(\alpha+tu) = \lim_{\rho\to 0} f(a+\rho\cos\theta,b+\rho\sin\theta)$$

$$\lim_{(x,y)\to(a,b)} f(x) = L \quad \Longrightarrow \quad \lim_{\rho\to 0} f(a+\rho\cos\theta,b+\rho\sin\theta) = L \ \ \forall\,\theta\in\mathbb{R}$$

La afirmación de la derecha sólo significa que todos los límites radiales existen, y todos valen $\,L\,$

Otra forma de manejarlos en coordenadas cartesianas

Para $u=(u_1,u_2)\in\mathbb{R}^2$ podemos suponer que $u_1\neq 0$ pues en otro caso recaemos en uno de los límites parciales En vez de $\|u\|=1$, normalizamos tomando $u_1=1$ y $u_2=\lambda\in\mathbb{R}$

El límite direccional según $\,u\,,\,$ cuando existe, toma la forma:

$$\lim_{t\to 0} f(\alpha+tu) = \lim_{t\to 0} f(a+t,b+\lambda t)$$

$$\lim_{(x,y)\to(a,b)} f(x) = L \quad \Longrightarrow \quad \lim_{t\to 0} f(a+t,b+\lambda t) = L \quad \forall \, \lambda \in \mathbb{R}$$

La afirmación de la derecha sólo significa que todos los límites direccionales, salvo uno, existen y valen $\,L\,$

En particular, para $\alpha = (0,0)$ tenemos:

$$\lim_{(x,y)\to(0,0)} f(x,y) = L \quad \Longrightarrow \quad \lim_{x\to 0} f(x,\lambda x) = L \quad \forall \, \lambda \in \mathbb{R}$$

4. Existencia de límite

¿Cómo probamos que el límite existe?

Sólo podemos probar que $\lim_{x \to \infty} f(x) = L$ usando una acotación de f

Si hallamos $r\in\mathbb{R}^+$ y una función $g:B(0,r)\to\mathbb{R}^+$, con $\lim_{z\to 0}g(z)=0$, tal que:

$$|f(\alpha+z)-L|\leqslant g(z) \ \forall \, z\in B(0,r)\setminus\{0\}$$

Entonces, es evidente que:
$$\lim_{x\to\alpha} f(x) = \lim_{z\to 0} f(\alpha+z) = L$$

Esto puede hacerse directamente, antes de estudiar todos los límites parciales y direccionales, pero no suele ser fácil

Aprovechemos el estudio de los límites direccionales o radiales

El estudio de los límites direccionales no ha dado resultado, porque

$$\lim_{t \to 0} f(\alpha + tu) - L = 0 \quad \forall u \in S$$

Si hallamos $r\in\mathbb{R}^+$ y una función $h:]0,r[\to\mathbb{R}^+$, con $\lim_{t\to 0}h(t)=0$ tal que:

$$|f(\alpha+tu)-L|\leqslant h(t) \quad \forall u\in S \quad \forall t\in]0,r[$$
 de nuevo es evidente que: $\lim_{x\to \alpha}f(x)=L$

Usando coordenadas polares

El estudio de los límites radiales en $\alpha = (a,b)$ no ha dado resultado, porque

$$\lim_{\rho \to 0} f(a + \rho \cos \theta, b + \rho \sin \theta) - L = 0 \quad \forall \theta \in \mathbb{R}$$

Si hallamos $r\in\mathbb{R}^+$ y una función $h:]0,r[\to\mathbb{R}^+$, con $\lim_{\rho\to 0}h(\rho)=0$ tal que:

$$|f(a+\rho\cos\theta,b+\rho\sin\theta)-L|\leqslant h(\rho) \ \forall \theta\in\mathbb{R}, \ \forall \rho\in]0,r[$$

de nuevo es evidente que: $\lim_{x \to \infty} f(x) = L$

Con la otra normalización

El estudio de los límites direccionales no ha dado resultado, porque

$$\lim_{t \to 0} f(a+t, b+\lambda t) - L = 0 \quad \forall \lambda \in \mathbb{R}$$

Si hallamos $r\in\mathbb{R}^+$ y una función $h:]0,r[\to\mathbb{R}^+$, con $\lim_{t\to 0}h(t)=0$ tal que:

$$\begin{split} \left| f(a+t,b+\lambda t) - L \right| \leqslant h(t) & \ \forall \lambda \in \mathbb{R}, \ \ \forall t \in [-r,r] \setminus \{0\} \\ \text{de nuevo es evidente que: } & \lim_{x \to \alpha} f(x) = L \end{split}$$

5. Otros recursos, en el caso N=2

¿Qué hacemos si no hemos conseguido la acotación adecuada?

El tipo de acotación intentada equivale a la existencia de límite, luego debemos sospechar que el límite no existe, pero ya no hay ningún método general para comprobarlo

Si $L \in \mathbb{R}$ es el único posible límite de f en α

Podemos probar con un cambio de variable $x = \varphi(t)$ con 0 < t < r tal que $\lim_{t \to 0} \varphi(t) = \alpha \quad \text{y} \quad \varphi(t) \neq \alpha \quad \forall \, t \in]0,r[$

$$\lim_{x \to \alpha} f(x) = L \quad \Longrightarrow \quad \lim_{t \to 0} f(\varphi(t)) = L$$

luego buscamos φ de forma que $f\circ\varphi$ no tenga límite L en 0

Ejemplo en el caso
$$N=2$$
 con $\alpha=(a,b)$:

$$\varphi_n(t) = (a+t, b+t^p) \quad \text{con } p \in \mathbb{R}^+$$