Vectors /p> is a "superposition" of |x and /y>
- no mystery or "quantum weintness" about this! $\overrightarrow{P} = \begin{pmatrix} z \\ 1 \end{pmatrix} = 2\hat{i} + \hat{j} = \begin{pmatrix} z \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} = 2\begin{pmatrix} 1 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ $|p\rangle = 2 |x\rangle + |y\rangle |x\rangle = {1 \choose 0} |y\rangle = {0 \choose 1}$ $= {2 \choose 1}$ "Duril vector" or Hermitian conjugate: $\langle p|=(2\ 1)=2\langle x|+\langle y|$ Magnitude of P, $|p|^2=2^z+1^z$ (Pythagoras) $=(2\ 1)\cdot \binom{2}{1}=\langle p|p\rangle$ inner product" $NB - |p\rangle\langle p| = {2 \choose 1} \cdot {2 \choose 1} - {4 \choose 2}$ is not equal to $\langle p|p\rangle$!

"outer product" Othogonal tasis: $\langle x/y \rangle = \langle y/x \rangle = 0$ Normal basis: $\langle x/x \rangle = \langle y/y \rangle = 1$) together = 1 "orthonormal"

For business 1 12 7 5 For bour vector [1is], [i)(i) = I (identity) Change of basis |P> = 2 |x> + 1y> projection of bx) onto la) by a P $= (|a\rangle\langle a|+|b\rangle\langle b|) (2|a\rangle+|y\rangle)$ $= 2 |a\rangle\langle a|x\rangle + |a\rangle\langle a|y\rangle$ +2/b> (b/oc) + 16>(b/y) (a)= 定(2)+定(5) = (Z·声+声) 1a> + (Z·声+点) 1b> 16>=-= (x>+= (y) = 3/2/0/m/5/16> $\langle a|x\rangle = \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right) \cdot \left(\frac{1}{\sqrt{2}}\right) = \frac{1}{\sqrt{2}}$

(b/x) = -1/52 Smity deck: <p/p> = 5 in both bases!

Vectors and functions

There is a deep connection between vectors and functions: Imagine # 5 dimensional vectors If and 19>:

$$|f\rangle = \begin{cases} f_1 \\ f_2 \\ f_3 \end{cases} = \begin{cases} f(1) \\ f(2) \\ f(3) \\ f(4) \\ f(5) \end{cases}$$

$$|g\rangle = \begin{pmatrix} g_1 \\ g_2 \\ g_3 \\ g_4 \\ g_5 \end{pmatrix} = \begin{pmatrix} g(1) \\ g(2) \\ g(3) \\ g(4) \\ g(5) \end{pmatrix}$$

We can represent a function's values through the components of the vector

Now imagine including more points (dimensions) in If)... points (dimensions) in If).

1 Its Its Its I is Oltimately they become completely indistinguishable

Take home message: functions are just infinite dimensional vectors! $\langle f|g \rangle = \int f^*(x)g(x)dx = \vec{f} \cdot \vec{g}$

What does this mean for QM /NMR? Don't get too hung up on difference between wavefunctions, wavevectors, eigenfunctions, eigenvectors... it's all the same in the end! Can use whatever approach is most useful - for NMR, this is usually the vector picture.

Introducing QM: wavefunction, and complex vector spaces

Wavefunction $|\mathcal{V}\rangle = \begin{pmatrix} c_1 \\ c_2 \end{pmatrix}$ represents a spin-1/2 nucleus

Davefunction $|\mathcal{V}\rangle = (c_2)$ represents a $spin^{-1}/z$ nucleus Only difference to before: complex numbers in vector. $|\mathcal{V}\rangle = (c_1)^2 = (a_1 + ib_1)^2 = (a_2 + ib_2)^2$

Components are written in some basis space, but the wavefunction itself closen't clepend on this choice eg-previously /p> is same whether written in terms of be and /y> or lad and /b>

Measuremen 6

THIS is where QM gets weird!

Observable quantities \hat{Q} are operators, $\hat{Q} \cdot f(x) = g(x)$ or equivalently, matrices: $\hat{Q} \cdot \vec{x} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \vec{y}$

Dirac notation: $\hat{Q}|f\rangle = a \cdot |g\rangle$

For some combinations, $\widehat{Q} \cdot |x\rangle = \lambda |x\rangle$ $\Rightarrow |x\rangle$ is eigenstate leigenvector... $\Rightarrow \lambda$ is eigenvalue of $|x\rangle$

Eigenstates of observable operators form complete basis sets

WHATEVER the wavefunction before a measurement of operator \hat{Q} , afterward, the wavefunction will ALWAYS be in an eigenstate of \hat{Q} !

Measurements change the wavefunction!

All very weird and interesting - but for MMR we don't actually need to worry about the measurement problem. We only need to care about averages over lob of spins.

QM description of spin-1/2 nucleus $\begin{array}{l}
\text{Spin } /2 = 3 \ 2 \times 1/2 + 1 = 2 \ \text{energy levels} \\
&= 2 \ \text{eigenstates of Hamiltonian} \\
&\Rightarrow 2 \ \text{dimensional system} \\

|+> = (c_1) = c_2(0) + c_3(0) = c_2(0) + c_3(0) = c_2(0) + c_3(0) \\
&= c_2(0) + c_3(0) + c_3(0) = c_2(0) + c_3(0) \\
&= c_2(0) + c_3(0) + c_3(0) = c_2(0) + c_3(0) \\
&= c_2(0) + c_3(0) + c_3(0) = c_2(0) + c_3(0) \\
&= c_2(0) + c_3(0) + c_3(0) = c_2(0) + c_3(0) = c_2(0) + c_3(0) \\
&= c_2(0) + c_3(0) + c_3(0) = c_2(0) = c_2(0) + c_3(0) = c_2(0) + c_3(0) = c_2(0) = c_2(0) + c_3(0) = c_2(0) = c_2(0) + c_3(0) = c_2(0) + c_3(0) = c_2(0) + c_3(0) = c_2(0) = c_2(0) = c_2(0) = c_2(0) = c_2(0) + c_3(0) = c_2(0) = c_$

How many dof needed to describe a spin? How many dof are available?