NSW BOS Mathematics Extension 1 Solutions 2007 Free download and print from www.itute.com Do not photocopy © Copyright 2007 itute.com

Q1a
$$(1+\sqrt{5})^3 = 1^3 + 3(1)^2(\sqrt{5}) + 3(1)(\sqrt{5})^2 + (\sqrt{5})^3 = 16 + 8\sqrt{5}$$
.

Q1b
$$x = \frac{(4)(3) + (19)(2)}{2+3} = 10$$
; $y = \frac{(5)(3) + (-5)(2)}{2+3} = 1$.

Q1c
$$\frac{d}{dx} \left(\tan^{-1} \left(x^4 \right) \right) = \left(\frac{d}{d(x^4)} \left(\tan^{-1} \left(x^4 \right) \right) \right) \left(\frac{d}{dx} \left(x^4 \right) \right)$$

= $\left(\frac{1}{1 + \left(x^4 \right)^2} \right) \left(4x^3 \right) = \frac{4x^3}{1 + x^8}$.

Q1d Line 1:
$$x - 2y + 3 = 0$$
, $y = \frac{1}{2}x + \frac{3}{2}$, $\frac{dy}{dx} = \frac{1}{2}$, $m_1 = \frac{1}{2}$.

Curve 2:
$$y = x^3 + 1$$
, $\frac{dy}{dx} = 3x^2$. At $x = 1$, $\frac{dy}{dx} = 3$, $m_2 = 3$.

$$\tan \theta = \frac{m_2 - m_1}{1 + m_2 m_1} = \frac{5/2}{1 + 3/2} = 1, :: \theta = \frac{\pi}{4}.$$

Q1e Given
$$u = 25 - x^2$$
, $\therefore -\frac{du}{dx} = 2x$.

When x = 3, u = 16; when x = 4, u = 9.

$$\int_{3}^{4} \frac{2x}{\sqrt{25 - x^{2}}} dx = -\int_{3}^{4} \frac{1}{\sqrt{u}} \frac{du}{dx} dx = -\int_{16}^{9} u^{-\frac{1}{2}} du = \int_{9}^{16} u^{-\frac{1}{2}} du$$
$$= \left[2u^{\frac{1}{2}} \right]_{0}^{16} = 2.$$

Q2a
$$LHS = \frac{1-\cos\theta}{\sin\theta} = \frac{2\sin^2\frac{\theta}{2}}{2\sin\frac{\theta}{2}\cos\frac{\theta}{2}} = \frac{\sin\frac{\theta}{2}}{\cos\frac{\theta}{2}} = \tan\frac{\theta}{2} = RHS$$
.

Q2bi

Q2bii The range is $[0,2\pi]$.

$$Q2c P(x) = x^2 + ax + b,$$

$$P(2) = 4 + 2a + b = 0$$
, $\therefore 2a + b = -4$.

$$P(-1) = 1 - a + b = 18$$
, $\therefore a - b = -17$.

Solve simultaneously, a = -7 and b = 10.

Q2di
$$v = 50(1 - e^{-0.2t})$$
, $a = \frac{dv}{dt} = 50(0.2e^{-0.2t}) = 10e^{-0.2t}$.

When
$$t = 10$$
, $a = 10e^{-2} \approx 1.4 \text{ ms}^{-2}$.

Q2dii Displacement in the first 10 seconds

$$= \int_{0}^{10} 50(1 - e^{-0.2t}) dt = \left[50(t + 5e^{-0.2t}) \right]_{0}^{10} = 50(10 + 5e^{-2} - 5) \approx 284.$$

Distance fallen = 284 m.

Q3a
$$V = \int_{0}^{3} \pi y^{2} dx = \int_{0}^{3} \frac{\pi}{9 + x^{2}} dx = \left[\frac{\pi}{3} \tan^{-1} \frac{x}{3} \right]_{0}^{3} = \frac{\pi}{3} \tan^{-1} 1 = \frac{\pi^{2}}{12}$$

Q3bi
$$y = \frac{x-2}{x-4} = 1 - \frac{2}{x-4}$$
. Vertical asymptote: $x = 4$;

horizontal asymptote: y = 1.

Q3bii
$$\frac{x-2}{x-4} = 3$$
 when $x-2 = 3x-12$, i.e. $x = 5$.

From graph, $\frac{x-2}{x-4} \le 3$ when x < 4 or $x \ge 5$.

Q3ci
$$\ddot{x} = -e^{-2x}$$
, $\frac{d}{dx} \left(\frac{1}{2} v^2 \right) = -e^{-2x}$,

$$\frac{1}{2}v^2 = \int \left(-e^{-2x}\right) dx = \frac{1}{2}e^{-2x} + c_1.$$

Given x = 0 and v = 1 when t = 0,

 $\therefore c_1 = 0$, $\therefore v^2 = e^{-2x}$, $\therefore \dot{x} = v = e^{-x}$. Note: $\dot{x} = -e^{-x}$ does not meet the initial conditions.

Q3cii
$$\dot{x} = e^{-x}$$
, $\therefore \frac{dx}{dt} = e^{-x}$, $\frac{dt}{dx} = e^{x}$, $\therefore t = \int e^{x} dx = e^{x} + c_{2}$.

Given x = 0 and v = 1 when t = 0,

$$\therefore c_2 = -1$$
 and $t = e^x - 1$. Hence $x = \log_e(t+1)$.

Q4ai
$$Pr(X = 2) = 0.1^2 = 0.01$$

Q4aii
$$Pr(X = 2) = {}^{20}C_2(0.1)^2(0.9)^{18} \approx 0.285$$

Q4aiii
$$Pr(X > 2) = 1 - Pr(X = 0) - Pr(X = 1) - Pr(X = 2)$$

= $1 - 0.9^{20} - {}^{20}C_1(0.1)(0.9)^{19} - 0.285 \approx 0.32$.

Q4b For n = 1, $7^{2n-1} + 5 = 12$ is divisible by 12.

For n = k, assume that $7^{2k-1} + 5$ is divisible by 12.

For n = k + 1,

$$7^{2(k+1)-1} + 5 = 7^2 7^{2k-1} + 5 = 49(7^{2k-1} + 5) - 48 \times 5$$
 is divisible by

12 because both $7^{2k-1} + 5$ and 48 are divisible by 12.

Hence $7^{2n-1} + 5 = 12$ is divisible by 12 for all integers $n \ge 1$.

Q4ci

 $\angle QBX = \angle XAP$ (angles subtended on the circumference by the same arc).

$$\angle XAP + \angle AXP = \angle PXD + \angle AXP = 90^{\circ}$$
, $\therefore \angle XAP = \angle PXD$.
 $\angle PXD = \angle QXB$ (vertically opposite angles).

$$\therefore \angle QXB = \angle QBX .$$

Q4cii $\angle QXB = \angle QBX$, $\therefore \Delta QXB$ is isosceles and QB = QX. Similarly, $\angle QXC = \angle QCX$, $\therefore \Delta QXC$ is isosceles and QX = QC. $\therefore QB = QC$ and hence Q bisects BC.

Q5ai Area of sector $OPQ = \frac{1}{2}r^2\theta$.

Area of
$$\triangle OPT = \frac{1}{2}r(PT) = \frac{1}{2}r(r \tan \theta) = \frac{1}{2}r^2 \tan \theta$$
.

$$\therefore \frac{1}{2}r^2 \tan \theta = 2 \times \frac{1}{2}r^2 \theta \,, \ \therefore \tan \theta = 2\theta \,.$$

Q5aii Let $f(\theta) = 2\theta - \tan \theta$. $f'(\theta) = 2 - \sec^2 \theta$.

Newton's method:

$$\theta_1 \approx \theta_0 - \frac{f(\theta_0)}{f'(\theta_0)} = 1.15 - \frac{2 \times 1.15 - \tan 1.15}{2 - \sec^2 1.15} = 1.1664$$
.

Q5b There are 4! permutations of the four children together, and there are 3! ways in arranging a particular permutation of the four children, Mr Roberts and Mrs Roberts.

 \therefore total number of arrangements of the family of six with the children together is 3!4!.

Total number of arrangements of the family of six without restriction is 6!.

$$\therefore \Pr(children.together) = \frac{3!4!}{6!} = \frac{1}{5}.$$

Q5c
$$\sin^{-1} x + \frac{1}{2} \cos^{-1} y = \frac{\pi}{3}$$
 (1)

$$3\sin^{-1} x - \frac{1}{2}\cos^{-1} y = \frac{2\pi}{3}$$
 (2)

(1) + (2):
$$4\sin^{-1} x = \pi$$
, $\sin^{-1} x = \frac{\pi}{4}$, $\therefore x = \frac{1}{\sqrt{2}}$.

From (1),
$$\cos^{-1} y = 2\left(\frac{\pi}{3} - \sin^{-1} x\right) = 2\left(\frac{\pi}{3} - \frac{\pi}{4}\right) = \frac{\pi}{6}$$
,

$$\therefore y = \frac{\sqrt{3}}{2}.$$

Q5di Substitute x = 2aq and $y = aq^2$ into the equation of PQ:

$$2aq + paq^2 - 2ap - ap^3 = 0,$$

$$a[2(q-p)+p(q^2-p^2)]=0$$
,

$$a[2(q-p)+p(q-p)(q+p)]=0$$
,

$$a(q-p)[2+p(q+p)]=0$$
.

Since $q - p \neq 0 : q \neq p$, and $a \neq 0$,

$$\therefore 2 + p(q + p) = 0$$
, hence $p^2 + pq + 2 = 0$.

Q5dii Gradient of
$$OP = \frac{ap^2}{2ap} = \frac{p}{2}$$
,

gradient of
$$OQ = \frac{aq^2}{2aq} = \frac{q}{2}$$

If
$$OP \perp OQ$$
, then $\frac{p}{2} \times \frac{q}{2} = -1$, $\therefore pq = -4$.

From Q5di,
$$p^2 + pq + 2 = 0$$
, $p^2 - 4 + 2 = 0$, hence $p^2 = 2$.

Q6ai
$$x = \sqrt{3} \sin 2t - \cos 2t + 3$$
, $\dot{x} = 2\sqrt{3} \cos 2t + 2 \sin 2t$,
 $\ddot{x} = -4\sqrt{3} \sin 2t + 4 \cos 2t = -4(\sqrt{3} \sin 2t - \cos 2t) = -4(x - 3)$.

Q6aii Period =
$$\frac{2\pi}{2}$$
 = π seconds.

Q6aiii
$$\dot{x} = 2\sqrt{3}\cos 2t + 2\sin 2t$$
,

$$\dot{x} = A\cos(2t - \alpha) = A\cos 2t\cos \alpha + A\sin 2t\sin \alpha.$$

$$A \cos \alpha = 2\sqrt{3}$$
 and $A \sin \alpha = 2$.

Hence
$$A^2 \cos^2 \alpha + A^2 \sin^2 \alpha = 16$$
,

$$\therefore A = 4 \text{ and } \sin \alpha = \frac{1}{2}, \text{ i.e. } \alpha = \frac{\pi}{6}.$$

$$\therefore \dot{x} = 4\cos\left(2t - \frac{\pi}{6}\right).$$

Q6aiv $0 \le t \le \pi$, $0 \le 2t \le 2\pi$.

When
$$\dot{x} = 2$$
, $4\cos\left(2t - \frac{\pi}{6}\right) = 2$, $\cos\left(2t - \frac{\pi}{6}\right) = \frac{1}{2}$,

$$2t - \frac{\pi}{6} = \frac{\pi}{3}$$
, $\frac{5\pi}{3}$. $\therefore t = \frac{\pi}{4}$, $\frac{11\pi}{12}$.

When
$$\dot{x} = -2$$
, $4\cos\left(2t - \frac{\pi}{6}\right) = -2$, $\cos\left(2t - \frac{\pi}{6}\right) = -\frac{1}{2}$,

$$2t - \frac{\pi}{6} = \frac{2\pi}{3}, \frac{4\pi}{3} : : t = \frac{5\pi}{12}, \frac{3\pi}{4}.$$

Q6bi $f(x) = e^x - e^{-x}$, $f'(x) = e^x + e^{-x} > 0$ for all values of x, f(x) is increasing for all values of x.

Q6bii Equation of f(x): $y = e^x - e^{-x}$

Equation of inverse: $x = e^y - e^{-y}$.

$$xe^{y} = (e^{y})^{2} - 1, (e^{y})^{2} - xe^{y} - 1 = 0.$$

Apply quadratic formula: $e^y = \frac{x + \sqrt{x^2 + 4}}{2}$ since $e^y > 0$.

$$\therefore y = \log_e \left(\frac{x + \sqrt{x^2 + 4}}{2} \right), \ \therefore f^{-1}(x) = \log_e \left(\frac{x + \sqrt{x^2 + 4}}{2} \right).$$

Q6biii
$$y = e^x - e^{-x}$$
, $\therefore x = \log_e \left(\frac{y + \sqrt{y^2 + 4}}{2} \right)$.

When
$$y = 5$$
, $x = \log_e \left(\frac{5 + \sqrt{5^2 + 4}}{2} \right) = 1.65$.

Q7ai
$$y = kx^n$$
, $\frac{dy}{dx} = nkx^{n-1}$. $y = \log_e x$, $\frac{dy}{dx} = \frac{1}{x}$.

At
$$x = a$$
, $nka^{n-1} = \frac{1}{a}$, $a^n = \frac{1}{nk}$.

Q7aii At x = a, $ka^n = \log_e a$.

From Q7ai,
$$a^n = \frac{1}{nk}$$
, $\therefore k \left(\frac{1}{nk}\right) = \log_e a$, $\log_e a = \frac{1}{n}$, $a = e^{\frac{1}{n}}$.

$$\therefore a^n = e = \frac{1}{nk}$$
. Hence $k = \frac{1}{en}$.

Q7bi
$$x = 14t \cos \theta$$
, $\therefore t = \frac{x}{14 \cos \theta}$

$$y = 14t\sin\theta - 4.9t^2, \quad y = 14\left(\frac{x}{14\cos\theta}\right)\sin\theta - 4.9\left(\frac{x}{14\cos\theta}\right)^2$$

$$= x \tan \theta - \frac{x^2}{40 \cos^2 \theta} = x \tan \theta - \frac{x^2}{40} \sec^2 \theta$$

=
$$x \tan \theta - \frac{x^2}{40} (1 + \tan^2 \theta) = mx - \left(\frac{1 + m^2}{40}\right) x^2$$
, where $m = \tan \theta$.

Q7bii At x = 10 and when $m = 2 \pm \sqrt{3 - 0.4h}$,

$$y = mx - \left(\frac{1+m^2}{40}\right)x^2$$

$$= 10\left(2 \pm \sqrt{3 - 0.4h}\right) - 2.5\left(1 + \left(2 \pm \sqrt{3 - 0.4h}\right)^2\right) = h.$$

Since $3 - 0.4h \ge 0$, $h \le \frac{3}{0.4} = 7.5$, $\therefore \max h$ is 7.5 m.

Q7biii Given $m = 2 \pm \sqrt{3 - 0.4h}$.

When h = 3.9, m = 0.8 or 3.2.

When h = 5.9, m = 1.2 or 2.8.

 \therefore The other interval is $0.8 \le m \le 1.2$.

Q7biv Let y = 0 to find the range.

$$mx - \left(\frac{1+m^2}{40}\right)x^2 = 0$$
, $x \left[m - \left(\frac{1+m^2}{40}\right)x\right] = 0$,

$$\therefore x = 0 \text{ or } x = \frac{40m}{1 + m^2}$$
. \therefore the range is $\frac{40m}{1 + m^2}$ metres.

For
$$2.8 \le m \le 3.2$$
, $\frac{40(3.2)}{1+3.2^2} \le x \le \frac{40(2.8)}{1+2.8^2}$,

 $11.388 \le x \le 12.670$

Width of interval = $12.670 - 11.388 \approx 1.282$ metres.

The range is maximum when $\theta^{\circ} = 45^{\circ}$, i.e. $m = \tan 45^{\circ} = 1$, which is within the interval $0.8 \le m \le 1.2$.

When m = 0.8, $x = \frac{40(0.8)}{1 + 0.8^2} = 19.512$; when m = 1, x = 20;

when m = 1.2, x = 19.672.

Width of interval = $20 - 19.512 \approx 0.488$ metres.

Please inform mathline@itute.com re conceptual, mathematical and/or typing errors.