Graduate Trade (II): ECON 8433

Sergey Nigai University of Colorado Boulder Fall Semester 2020

Plan

Week	Торіс
Week 1	Introduction to Structural Gravity Equation
Week 2	Calibration and Estimation
Week 3	Mapping Models to the Data
Week 4	Designing Counterfactual Experiments in General Equilibrium
Week 5	Presentations (I) and Catch-up
Week 6	Heterogeneous Firms (I)
Week 7	Heterogeneous Firms (II)
Week 8	Ricardian Models
Week 9	Multi-Sector Models
Week 10	Global Value Chains
Week 11	Presentations (II) and Catch-up
Week 12	Extensions: Demand Side
Week 13	Extensions: Supply Side
Week 14	Extensions: Migration and Geography
Week 15	Presentations (III) and Catch-up

Plan

_		
7	VEEK	Торіс
V	Veek 1	Introduction to Structural Gravity Equation
٧	Veek 2	Calibration and Estimation
٧	Veek 3	Mapping Models to the Data
٧	Veek 4	Designing Counterfactual Experiments in General Equilibrium
٧	Veek 5	Presentations (I) and Catch-up
٧	Veek 6	Heterogeneous Firms (I)
٧	Veek 7	Heterogeneous Firms (II)
٧	Veek 8	Ricardian Models
٧	Veek 9	Multi-Sector Models
٧	Veek 10	Global Value Chains
٧	Veek 11	Presentations (II) and Catch-up
٧	Veek 12	Extensions: Demand Side
٧	Veek 13	Extensions: Supply Side
٧	Veek 14	Extensions: Migration and Geography
_\	Veek 15	Presentations (III) and Catch-up

Timing

FCQ's:

► colorado.campuslabs.com/courseeval

EXTENSIONS: SUPPLY SIDE

Extensions: Supply Side

What we have seen so far:

- We started with a version where labor was the only factor of production
- ▶ In a multi-sector version, we incorporated intermediate inputs
- ► TFP parameters are firm-specific and follow a known p.d.f.

There are many possible extensions on the supply side:

- Separate unskilled and skilled workers as in Parro (2013)
- Make share of intermediate inputs endogenous as in Blaum, Lelarge and Peters (2018)
- Estimate and apply more plausible distribution of TFP parameters as in Nigai (2017)

Firm heterogeneity and aggregate economic outcomes

- Aggregate productivity
 - Restuccia and Rogerson (2008), Hsieh and Klenow (2009)
- Comparative advantage
 - ▶ Bernard, Redding and Schott (2007)
- Wage inequality
 - Egger and Kreickemeier (2009), Helpman, Itskhoki and Redding (2010), Card, Cardoso, Heining and Kline (2016)
- Innovation and growth
 - Baldwin and Robert-Nicoud (2008), Sampson (2016)

Firm heterogeneity and international trade

- Trade elasticity (import price elasticity)
 - ► Eaton and Kortum (2002), Costinot, Donaldson and Komunjer (2012)
- Firm entry and exit in production and exporting
 - Melitz (2003), Chaney (2008), Melitz and Ottaviano (2008)
- Size of trade flows across countries and time
 - Melitz and Ghironi (2007), Melitz, Helpman, and Rubinstein (2008), Bernard, Jensen, Redding and Schott (2012), Freund and Pierola (2015)
- Welfare gains from trade
 - ▶ Melitz and Redding (2014), Head, Mayer and Thoenig (2014)

Productivity distribution and selection effects

Figure: Productivity distributions and selection

Productivity distribution and selection effects

Figure: Productivity distributions and selection

Outline

- 1. Overview of current approaches
- 2. Two-piece distribution
- 3. Data and estimation
- 4. Workhorse trade model with heterogeneous firms
- 5. Counterfactual experiments
- 6. Sensitivity analysis and extensions
- 7. Follow-up research
- 8. Conclusion

Outline

- 1. Overview of current approaches
- Two-piece distribution
- 3. Data and estimation
- 4. Workhorse trade model with heterogeneous firms
- Counterfactual experiments
- Sensitivity analysis and extensions
- 7. Follow-up research
- 8. Conclusion

Left tail (bottom 95%): Pareto or Log-normal?

Figure: Empirical and Parametric P.D.F.'s (Left Tail) Lecture slides ECON 8433: Week 1

Right tail (top 5%): Pareto or Log-normal?

Figure: Empirical and Parametric P.D.F.'s (Right Tail)
Lecture slides ECON 8433: Week 1

Right tail (top 5%): Pareto or Log-normal?

Figure: Empirical and Parametric P.D.F.'s (Right Tail)
Lecture slides ECON 8433: Week 1

Pareto or Log-normal?

Three main observations:

- Pareto does not capture the shape of the left tail
- ► Log-normal underpredicts the thickness of the right tail
- Neither captures the empirical distribution over the entire support

So what?

Are deviations from the empirical distribution harmful?

- Both (un-)bounded Pareto and Log-normal lead to significant errors in trade outcomes:
 - Welfare gains from trade
 - Extensive margin of trade
 - Intensive margin of trade

Why?

- Efficiency distribution determines the magnitude of the selection effects:
 - Entry and exporting
 - Available varieties and their prices

Contribution of this paper

This paper proposes using a mixed distribution dubbed *Two-piece*. The distribution has several advantages:

- Models left tail as Log-normal (captures bell shape)
- Models right tail as Pareto (captures fat right tail)
- Amalgamates the relevant portions of the p.d.f.'s at an endogenous threshold
- ► Still parametric, tractable and well-behaved distribution
- ► Fits the data considerably better than (un-)bounded Pareto and Log-normal almost everywhere
- Produces negligible errors in the estimates of the gains from trade and other trade outcomes

Related literature

Why one may choose Pareto:

- Many firm-specific outcomes follow Pareto (at least in the upper tail):
 - ➤ Simon and Bonini (1958), Luttmer (2007), Axtell (2001), Gabaix (2008), Levchenko and di Giovanni (2012)
- ▶ By far the most popular choice in quantitative models:
 - ▶ Following Baldwin (2005) and Chaney (2008), hundreds of papers use Pareto, e.g., Melitz and Ottaviano (2008), Arkolakis, Costinot and Rodríguez-Clare (2012), Melitz and Redding (2014) and many others
- Elegant and easy to handle analytically

Related literature

Why one may choose Log-normal:

- ► Fits the data better on a larger interval of the support (> 90%):
 - ► Head, Mayer and Thoenig (2014), Freund and Pierola (2015)
- ► Leads to non-linear trade elasticities which are supported by the data:
 - ➤ Yang (2014), Bas, Mayer and Thoenig (2015), and Fernandes, Klenow, Meleshchuk, Pierola, and Rodríguez-Clare (2015)
- ▶ Not as elegant as Pareto but still tractable

Related literature

The paper is related to:

- Arkolakis (2015), who shows how endogenous growth processes can lead to mixture distribution of productivities
- Mrazova, Neary and Parenti (2015), who show how different assumptions about the structure of demand and technology affect distribution of firms outcomes
- ▶ Papers when the choice between Pareto and Log-normal is unclear, e.g., the debate about the city size distribution Gabaix (1999), Eeckhout (2004, 2009) and Levy (2009)

Outline

- 1. Overview of current approaches
- 2. Two-piece distribution
- 3. Data and estimation
- 4. Workhorse trade model with heterogeneous firms
- Counterfactual experiments
- 6. Sensitivity analysis and extensions
- 7. Follow-up research
- 8. Conclusion

Log-normal meets Pareto

Following Cooray and Ananda (2005) and Scollnik (2007) start with:

$$f_L(\phi) = \frac{1}{\sqrt{2\pi}s\phi} e^{-\frac{1}{2}\left(\frac{\ln\phi - \mu}{s}\right)^2} \text{ and } f_P(\phi) = \frac{\alpha\theta^{\alpha}}{\phi^{\alpha+1}}.$$
 (1)

Derive Two-piece distribution by imposing the following conditions:

- ▶ Random variable ϕ follows Log-normal up to a threshold, θ , and Pareto after that
- ► Two-piece is a well-behaved distribution:
 - continuous
 - differentiable
 - p.d.f. and c.d.f. have all necessary properties

Two-piece distribution

The resulting distribution has the following c.d.f. and p.d.f. :

$$F(\phi) = \begin{cases} \frac{\rho}{\Phi[\alpha s(\alpha, \rho)]} \Phi\left(\alpha s(\alpha, \rho) + \frac{\ln \phi - \ln \theta}{s(\alpha, \rho)}\right) & \text{for } \phi \in (0, \theta] \\ 1 - (1 - \rho) \frac{\theta^{\alpha}}{\phi^{\alpha}} & \text{for } \phi \in [\theta, \infty) \end{cases}$$

$$f(\phi) = \begin{cases} \frac{\rho}{\Phi[\alpha s(\alpha, \rho)]} \frac{1}{\sqrt{2\pi} s(\alpha, \rho) \phi} e^{-\frac{1}{2} \left(\alpha s(\alpha, \rho) - \frac{\ln \theta - \ln \phi}{s(\alpha, \rho)}\right)^2} & \text{for } \phi \in (0, \theta] \\ (1 - \rho) \frac{\alpha \theta^{\alpha}}{\phi^{\alpha + 1}} & \text{for } \phi \in [\theta, \infty) \end{cases}$$

where $\Phi(\cdot)$ is c.d.f. of standard normal and $s(\rho, \alpha)$ is an implicit function that defines s given ρ and α according to:

$$\Phi\left[\alpha s(\alpha,\rho)\right]\sqrt{2\pi}\left[\alpha s(\alpha,\rho)\right]e^{\frac{1}{2}\left[\alpha s(\alpha,\rho)\right]^{2}}=\frac{\rho}{1-\rho}$$

Two-piece distribution

The Two-piece distribution is characterized by the following parameters:

- ▶ Threshold parameter, θ , identifies the cut-off point
- ightharpoonup Second scale parameter, ho, identifies the share of the population that follows Log-normal
- Shape parameter, α , comes from the original Pareto distribution

Parameterized example:

- ► Set $\theta = 1$, $\rho = 0.95$, $\alpha = 3$.
- Choose parameters for Log-normal and Pareto to match the first two moments

Parameterized example

Figure: Two-piece, Log-normal and Pareto