UNCLASSIFIED

AD 402 755

Reproduced by the

DEFENSE DOCUMENTATION CENTER

FOR

SCIENTIFIC AND TECHNICAL INFORMATION

CAMERON STATION, ALEXANDRIA. VIRGINIA

UNCLASSIFIED

NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.

402 755

63_3_3

NEW YORK UNIVERSITY

College of Engineering
RESEARCH DIVISION
University Heights, New York 53, N. Y.

LON

Qualified requesters may,
obtain copies of this
obtain copies of this
obtain copies of this
obtain copies of this
trom ASTIA.

DEVELOPMENT OF IMPROVED TITANIUM ORGANIC
COMPOUNDS FOR USE AS HYDRAULIC FLUIDS

December 14, 1962

Prepared under Navy, Bureau of Naval Weapons Contract NOw 62-0647-d

TECHNICAL REPORT NO.3.

Covering the period
16 August-15 November 1962

APR 3 0 1963

DEVELOPMENT OF IMPROVED TITANIUM ORGANIC COMPOUNDS FOR USE AS HYDRAULIC FLUIDS

December 14, 1962

Prepared under Navy, Bureau of Naval Weapons
Contract No. NOw 62-0647-d

Technical Report No. 3. Covering the period 16 August-15 November 1962

NEW YORK UNIVERSITY COLLEGE OF ENGINEERING RESEARCH DIVISION UNIVERSITY HEIGHTS NEW YORK 53, NEW YORK

ABSTRACT

In this report period special effort was directed to the question of the fire safety of the experimental fluid, and how far this can be influenced and evaluated. The ASTM method of determining the flash and flame points by heating a sample to a high enough temperature to cause the flash and flame effect does not express the safety conditions of contact with open flames when the fluid itself is held below the high ranges of 560° F.- 600° F. such as are found for these materials.

The synthesis work of this period has been directed at producing fluids with as-far-as-possible complete removal of low boiling cuts, so as to decrease short flashes of low cuts below the flame point. Also, work has been directed at increasing the self extinguishing properties after a short burning has taken place by the incorporation of phosphorus, halogen, or nitrogen, or combinations of these. The work is continuing.

TABLE OF CONTENTS

ABSTRACT	r -			_	· 	PAGE 1
SUMMARY			***	-		- 1
SECTION	1. 2.	EVALUATION OF THE INTRODUCTION — COMBUSTION OF THE COMBUSTION OF THE THE LENGTH OF CONT	FLUID IN A HOT FLUID IN CONTAC	MUFFLE OVE	EN. (TABLE 101) RY HOT SURFACES. (TABLE 102)	- 4 4-6 5&7
SECTION		FORMATION WHICH IS RESUMING THE STUDY CATALYST IN THE PROTECTION OF THE PROTECTION O	S BEING SUSTAINI (TABLE 103) OF THE EFFECT REPARATION OF TH	ED FOR 5 SI (FIC OF TITANI HE EXPERIM	ECONDS. GURE 1.) UM TETRA CHLORIDE ENTAL PRODUCT FRO	AS
	2.	INTRODUCTION - SYNTHESIS AND BENS EVALUATION TESTS. THE USE OF A ZINC	ZYL ALCOHOL MODI	FICATIONS (TA) (TA) (TA) (TA) (TA)	BLES 105-114) EAD OF 22% Zn.	- 14 15-24 - 25-27 28-30
SECTION	C.	INFLUENCE OF VARY ZINC OCTOATE REAC INTRODUCTION — EXPERIMENTAL (TABLE	CION.	ROUPS IN T	BLES 118/119) HE TITANATES IN T 	HEIR - 31 - 33-36
SECTION	1. 2.	COMPLEXING REACTION INTRODUCTION — EXPERIMENTS USING AMOUNTS OF WATER. EVALUATION TESTS. EMISSION SPECTROSO DIFFERENT CATALYS	DIFFERENT TETRA (TABLES 1-24-12 (TABLES 129-13 COPIC TESTS COME	 A ALKYL TI' 29) 31)	TANATES AND DIFFE	- 3743 - 37&43+46
SECTION	1. 2.	THE INTRODUCTION (Continued from I INTRODUCTION - EXPERIMENTS USING EXPERIMENTS USING USING DI 2 ETHYL I (OXIDATION-RESIS	Report 2, Sect. TRI 2 ETHYL HEX AN ALIPHATIC AN	D.). CYL PHOSPHA ID AN AROMA (TAI C ACID. ('	ATE. (TABLES 132 ATIC PHOSPHATE BLES 138-139)	- 47 -137) 47-54 52&55-56
SECTION	1.	THE INTRODUCTION (INTRODUCTION USING REACTIONS WI USING CHLORINE ANI	TH 2 CHLOROETHA	 NOL. (TAI THIS DI C		- 62 - 62-67 PHATE. 62&68

(CONTINUED ON NEXT PAGE)

TABLE OF CONTENTS (CONTINUED)

SECTION G.	REACTING THE TITANATE/ZINC OCTOATE PRODUCT W	ITH TETRA	BUTYL TIN.	PAGE
	INTRODUCTION	_		6 9 70
SECTION H.	SOME MORE WORK ON THE INHIBITED SILICONE FLU (TABLE		7	1-72
WORK SCHED	ULED FOR THE NEXT REPORT PERIOD	-	-	73。

SUMMARY

In this Report No. 3 efforts have been directed to improving the fire safety of the products which are here under development. The standard ASTM test for the flash point and the fire point is limited to a heating of the fluid to high enough temperature ranges to cause, in contact with an open flame, a short flash, or continuous burning, of the fluid. For most conventional fluids, this test might be satisfactory; but the fluids developed under this project have, after removal of their low distillation cuts, a boiling range of about 570°F. at 2-3 mm. Hg. pressure, flash points around 550°F. and flame points close to 600°F, and require additional methods.

The ASTM test does not consider at what temperature the fluid will ignite in contact with locally everhot metals, at what temperature it will self-ignite, and how it will behave when in contact with an open flame when it is not already at such high temperatures as indicated.

In SECTION A, the combustion behavior of the test fluids is studied by dropping the fluids on molten metal at temperature up to 1500°F, without an ignition taking place. If, however, flint sparks are released in the evaporating vapours of the fluid at that moment, the vapours will ignite.

Further-on is studied at what temperature the fluids in an open cup inside of a muffle oven will ignite. It is possible that hereby the vapours contact the heating elements of the muffle oven and so cause the ignition; but the results show that under these conditions the fluids do not ignite below 900° / 950°F. This might indicate that they do not give off vapours which might ignite in contact with the heating element.

Finally Section A shows a test whereby the test fluid is first brought to certain temperatures, and then is determined how long it will take before the hottest part of an open bunsen burner will cause a flash or fire which will not be self-extinguishing within a period of 5 seconds. FIGURE 1 shows an improvement of this characteristic by the effect of the benzyl alcohol modification of the experimental fluids of this development.

ŕ

The Sections which follow give data on the production of the hydraulic fluid product in such a manner that it is obtained in a form in which it is free enough from non-complexed matter, or from "low cuts", to produce desirable fire characteristics, and with simultaneously such properties of oxidation-reduction test resistance and of hydrolytic stability and wear-test properties as will fulfil the requirements of this fluid.

SECTIONS B and C give data on the development of the product by reacting tetra isopropyl titanate, and other tetra alkyl titanates, with basic zinc octoate, with the use of titanium tetra chloride as catalyst.

In SECTION D water is added to the reaction; and the properties of these products, and of the earlier product made with aluminum chloride as catalyst, are being studied and evaluated. The benzyl alcohol modification is a part of each study.

In SECTION E the introduction of phosphorus into these products is being studied, using aliphatic organo phosphates, or mixtures of aliphatic and aromatic organo phosphates, or using an organo phosphoric acid.

In SECTION F chlorine groups are introduced either alone or chlorine is introduced besides phosphorus, and in subsequent periods nitrogen also is introduced in various forms. Also an ultimate, future aim is kept in mind to explore the reasons for the burning properties of a fluid.

In SECTION G the product is reacted with a tetra alkyl-tin, instead of the tetra alkyl silane used earlier in this development. This is continuing. Other tetra alkyl silicones are being considered for future work, as well as organo derivatives of other metals such as boron, and others.

In SECTION H a new preparation of cerium 2-ethyl hexamoate inhibiting treatment of Silicone Fluid 510 is reported. It is shown by emission spectroscopy that the cerium component becomes a part of the inhibited fluid and can not be removed by filtration in a molecular sieve.

ĺ

The work reported herein has been performed in Research Building No. 3 of the Research Division, College of Engineering, New York University, located at 233 Fordham Landing Road, New York (68) New York, under the direction of Dr. Max Kronstein, Senior Research Scientist. The following members of the research staff have participated in the work:

Edward I. Stiefel

Research Aide

Robert A. Sierra

Research Aide

Jeannette Grace Musco, B.S. Research Aide

Michael R. Carroad, B.Ch.E. Research Aide

William Kapfer, Ph. D.

Chemical Engineer

Marion W. Kronstein, A. B. Assistant Res. Scientist.

SECTION A. EVALUATION OF THE FIRE SENSIBILITY OF THE EXPERIMENTAL FLUIDS, INTRODUCTION

Among the characteristics which it is desirable to know about, with respect to hydraulic fluids, is - besides their behavior at elevated temperatures - under what conditions they will flame, or catch fire, and continue to burn afterwards. In preceding reports of this project the flash point and flame point determinations have been made according to the Open Cup Method only. The results with this method had shown flash and flame points between 550°F. and 600°F. (This is considerably higher than commercially available erganic fluids.) This test method, however, is not conclusive because according to this method the fluid is heated quite rapidly to a high temperature and the flame is then moved over the fluid. Hereby it measures primarily the conditions under which fumes are being given off, which can then be combusted by the open flame.

As applied to the aims of this project, it would require that the fluid in the hydraulic system would be heated to very high temperatures before contact is made with the fleme; and such temperatures would not be expected to occur in the hydraulic system without other very serious fire causes already taking place. It was of interest, therefore, to use in addition a number of different test conditions in comparing the behavior of different fluids, and in particular, in comparing the different experimental fluids of this development in order to give additional guidance for influencing further developments.

1. COMBUSTION OF FLUID IN A HOT MUFFLE OVEN.

One of the questions studied was at what temperature will the fluid turn into flames, when it is in areas which are not from reasons other than open flames?

In earlier projectsof this group, standard self-combustion tests have been reported, and the results were in very high temperature ranges. In the present study a simpler, but very interesting, test was made, as shown in TABLE 101. Hereby, several test fluids were studied by inserting them in an open crucible and transferring them

into a heated muffle oven, where the temperature was indicated on the oven thermometer. In the upper part of Table 101, the temperature of the oven containing the crucible was increased until the fluid started to burn. In the lower part of Table 101, the oven temperature was kept constant and the sample was inserted in a space of constant temperature for 60 seconds. When it was not ignited, it was taken out. The oven was heated to a higher temperature and then the sample was tested at the higher temperature until the fluid began to burn within 60 seconds.

The results in the case of the tetraisopropyl titanate/zinc octoate complex fluid and its modifications were, in the first test method, between 860°F, and 950°F, in the second test method, between 900°F, and 950°F. At this temperature it is to be considered that hereby some vapors might have been given off which ignited in contact with the much hotter heating elements of the oven. It is interesting that in this Table 101 product T 42-111, whereby phosphate groups had been introduced into the system, burned at a lower temperature than the specimen without the phosphate components. What is still to be studied is whether or not this compound may still contain some "low cut" material which causes this earlier ignition.

2.COMBUSTION OF THE FLUID IN SUDDEN CONTACT WITH VERY HOT SURFACES.

A second study referred to what would occur if the fluids were suddenly in contact with very hot metal surfaces, such as an over heated metal part in an operating system of an aircraft. To test this an iron container was filled with a matal, zinc. (In future tests tin might be more suitable because of its higher evaporation temperature.) The container and zinc were placed in a muffle oven and the oven temperature was increased above the melting temperature of the zinc. That means that the molten zinc surface was at the oven temperature, as indicated on the temperature indicator of the muffle oven. At certain temperature levels a few drops of each test fluid were suddenly dropped on the metal surface. This means that the fluid was suddenly brought in contact with the molten zinc; and an observation was made when a flame formation could be detected. TABLE 102 lists results only at 1200°F. to 1500°F. . Lower temperatures were omitted in the table since no flame was observed in any of the lower temperature (Continued on page 8.)

TABLE 101.

AUTO-IGNITION TESTS IN A MUFFLE OVEN

T 43 - 14

THE MATERIAL WAS KEPT IN AN OPEN CRUCIBLE AND

INSERTED IN A"BLUE M"MUFFLE FURNACE SET ON"MEDIUM".

SETTING OF CONTROL: 6

THE PRODUCT BETWEEN TETRA ISOPROPYL TITANATE AND ZINCOCTOATE

WITH ALUMINUM CHLORIDE CATALYST CAUGHT FIRE AT 9 2 0 F.

THE BENZYLALCOHOL MODIFICATION OF THE SAME REACTION ,MADE WITH

TITANIUM TETRA CHLORIDE CATALYST AT 8 6 0 F.

THE PRODUCT BETWEEN TRI OCTYL PHOSPHATE AND TRICRESYLPHOSPHATE AND

TETRA ISOPROPYL TITANATE (T 42-110) REACTED WITH ZINCOCTOATE

AS T 42-111

AND THE PRODUCT BEWEEN ZINCOCTOATE 18% AND TETRALSOPROPYL TITANATE WITH Ti ${
m Cl}_4$ (T 42- 111)

REPEAT TESTS: OVEN KEPT AT CONSTANT TEMPERATURE. SAMPLE IN CRUCIBLE PLACED IN OVEN FOR 60 SECONDS. REPEATED UNTIL AUTOIGNITION OCCURS AT A SET TEMPERATURE WITHIN 60 SECONDS (T 40 -95)

PRODUCT MADE WITH Ti Cl AS CATALYST: AT .8 50°F . N O FLAME .

AT 900°F FLAMES WITHIN 60 SECONDS.

SAME PRODUCT, BUT MODIFIED WITH BENZYLALCOHOL: AT 9 0 0 F. N O FLAME.

AT 950°F. FLAMES WITHIN 60 SECONDS.

PRODUCT MADE WITH AL Cl₃ AS CATALYST ... AT 8 5 0 F. N O FLAME.

AT 9 0 0 F. FLAMES WITHIN 60 SEC.

TABLE 102.

STUDYING THE INFLAMMABILITY OF SOME OF THE

PRODUCTS OF THIS DEVELOPMENT IN RESPECT TO THEIR COMBUSTION

IN CONTACT WITH MOLTEN METAL.

T 40 -93

AS METAL, ZINC WAS SELECTED . (IN FUTURE TESTS TIN MIGHT BE USED BECAUSE OF ITS HIGHER EVAPORATING TEMPERATURE).

THE ZINC WAS MOLTEN IN AN IRON CONTAINER. THE SURFACE WAS SKIMMED WITH A SPATULA BEFORE EACH TEST.

THE SYSTEM WAS BROUGHT TO A GIVEN TEMPERATURE BY HOLDING IT IN A TEMPERATURE REGULATED MUFFLE OVEN, READING THE OVEN TEMPERATURE ON THE INDICATOR OF THE OVEN.

A FEW DROPS OF THE TEST MATERIAL WERE DROPPED ON THE MOLTEN ZINC.IF IT

FLAMES NO FURTHER TEST WAS MADE. IF NO FLAME RESULTED, THE TEST WAS REPEATED

BUT IN ADDITION A SPARK FROM A FLINT LIGHTER WERE AIMED INTO THE EVAPORATING

MATERIAL. ALL DATA WERE REPEATED TWICE.

MATERIAL	TEMPERATURE INDICATED AS OVEN TEMPERATURE OR AS ZINC TEMPERATURE:	BURNS WITHOUT ADDITION	DI BURNS WITH DNAL SPARKING
PRODUCT TPT/ ZINCOCTOATE (WITH AlCl ₃	1200°F,	n o	Y E S
CATALYST)	1300°F.	N O	YES
	1500°F.	N O	Y E S
PRODUCT OF TRIOCTYLPHOSPH & TRICRESYLPHO PHATE & TPTF TED WITH ZINCO T 42-111	EAC-	N O	YES
SILICONE FLUII INHIBITED (51		YES	YES

(Continued from page 5.)

ranges. At 1500°F. the TPT/zinc octoate product did not cause a flame.

The reason that the tests were not continued at still higher levels was that at that temperature the zinc and the iron pot underwent same form of alloying, and a leak developed. This resulted in some of the zinc vaporizing and oxidizing. In future tests other metals than zinc will be used.

In the second test group of TABLE 102 the test material was sparked at the indicated temperature, using a flint sparker at the same time that the specimen was set on the hot surface.

All the specimens were affected by the sparking. This is not necessarily due to the vapors of the fluid itself; it might indicate that at these temperatures the vapors represent a decomposition product of the fluids, and that these decomposition products can be influenced by the sparks. It is noted in this Table 102 that the inhibited Silicone Fluid 510 did burn when dropped on a surface at 1200°F.

3. A STUDY OF THE LENGTH OF CONTACT WITH AN OPEN FLAME WHICH CAUSES A FLAME FORMATION WHICH IS BEING SUSTAINED FOR 5 SECONDS.

In this study it is being explored how long a fluid can be in direct contact with a flame before it will burn for 5 seconds without self extinguishing before the end of that 5 second period.

In these tests the fluids are at different temperatures at the start of the test. They are placed in direct contact with the hottest area of the bunsenburner, exposing the burner at an angle of 60 degrees to the horizontal. Hereby, when a material is combustible it will begin to burn immediately or within a few seconds. The fact that the tetra isopropyl titanate/zinc octoate fluid complexes, when they are at room temperature or up to around 200/300°F., can be in contact with the open flame for considerable lengths of time before starting a 5 seconds burning period, indicates that they are of limited combustibility. Above this temperature range, that means, when approaching their flash points under the ASTM method, the period of direct contact is shorter, but it is still above 5 seconds direct flame exposure when the fluid itself is at temperatures up to around 450°F., and for the benzyl alcohol-modified product even up to 482°F. Immediate burning for 5 seconds occurs on the product when the fluid has

a temperature of 526°F. before contact with the flame is made, and at 572°F. for the benzyl alcohol modification. These data are shown in TABLE 103. Data on some other materials are given in TABLE 104. FIGURE 1 shows graphically the relationship between the time of contact with the bunsenburner flame and the temperature of two test fluids, before reaching a 5-second burning time of the fluids: Hereby A shows the reaction product between the tetraisopropyl titanate and zinc octoate with TiCl catalyst; while B shows the benzyl alcohol modification of the same material. It is interesting to note here that the alcohol-modification gives a considerably smoother slope of the curve.

In new work a study is being made of the elapsed time between the start of the burning at a given temperature and the moment of self extinguishing after the open flame has been removed.

Also a study is being made on the introduction of such groups as phosphorus, or of a halogen, or of a combination of both, or the introduction of NO₂ or of NH₂ groups, with respect to the rate of self combustibility of the resulting product.

TABLE 103.

A NEW TEST FOR THE DETERMINATION OF THE LENGTH OF TIME WHICH IS REQUIRED IN CONTACT WITH THE HOTTEST AREA OF THE BUNSENBURNER WITH THE TEST FLUID T 43-7 IN ORDER TO CAUSE A BURNING FOR FIVE SECONDS (WITHOUT SELF EXTINGUISHING BEFORE THAT TIME PERIOD).

TEST FLUID USED: THE REACTION PRODUCT BETWEEN TETRA ISOPROPYL TITANATE AND BASIC ZINCOCTOATE 18% ZINC WITH Ti C14 CATALYST (T 43-7)

EXPOSED IN AN OPEN COVER FOR A CRUCIBLE: DIAMETER 35 mm.

DEPTH ... 5 mm .

WHICH IS FILLED WITH THE TEST FLUID.

THE HOTTEST PART OF THE FLAME OF THE BUNSENBURNER IS SET AGAINST THE SURFACE OF THE FLUID AT AN ANGLE OF 60 DEGREES (FROM THE HORIZONTAL).

AT A TEMPERATURE FLUID (OBTAINED FLAME TEST)		TIME REQUIRED TO OBTAIN A 5 SECOND BURNING TIME(IN SEC.)	COMMENT
R.T. 27 °C	.(80°F.)	80 seconds	FLASHES ONLY
50°c.	122 ⁰ F。	47 sec 43 sec.(2 TE	STS) FLASHES
75	167°F _. .	50	BURNS 5 SECONDS
100	212 °F .	28	
125	257 F.	20	
150	302 F.	12	
175	347° F 。	9	
200	392 °F 。	7	
225	436°F.	7	
250	482 ° F.	5	
275	526°F.	0	BURNS ON CONTACT
	(TABLE CONT	INUED)	WITH THE FLAME

10.

TABLE 103 (CONTINUED)

DETERMINATION OF THE TIME OF CONTACT BETWEEN THE TESTSPECIMEN

AND THE HOTTEST PART OF THE BUNSENBURNER FLAME

BEFORE A BURNING FOR FIVE SECONDS TAKES PLACE

(CONTINUED)

TEST FLUID USED: THE BENZYLALCOHOL MODIFICATION OF THE SAME TETRA

ISOPROPYLTITANATE/ZINCOCTOATE PRODUCT (WITH T1 C14

CATALYST).

AT A TEMPERATUR FLUID (OBTAINED FLAME TEST)		IN OF.	TIME REQUIRED TO OBTAIN A 5 SECOND BURNING TIME (IN sec)
	130°C.	266°1	?。 39
	165	329	26
	180	356	20
	225	436	12
	250	482	6
	275	526	3
	300	572	0

THE RESULTS ARE PLOTTED IN FIGURE 1.

TABLE 104.

COMPARATIVE TESTS OF THE INFLAMMABILITY OF VARIOUS MATERIALS IN CONTACT

WITH AN OPEN BUNSENFLAME (HOTTEST PART) WHEN STARTED WITH THE

MATERIAL AT ROOM TEMPERATURE :

DIMETHYL DIETHOXYSILANE BURNS IMMEDIATELY AND MAINTAINS THE FLAME.

DIDODECYL-DIPHENYL SILANE .. FLASHES IN 60 seconds.

(DOW QF 6-7009)

BURNS CONTINUOUSLY AFTER 90 seconds.

SILICONE FLUID 510-50 (DOW)

FLASHES AFTER 120 seconds AND DECOMPOSES

WITH FORMATION OF A WHITE SKIN.

SAME INHIBITED

SHOWS HIGHER RESISTANCE THAN UNINHIBITED.

TETRA 2 ETHYL HEXYL TITANATE (DUPONT TETRAKIS TITANATE) BURNS AFTER 2 SECONDS.

TRIS DICHLORO PROPYL PHOSPHATE: FLASHES AFTER 90 seconds, TURNS BLACK

WITHOUT SUPPORTING A FLAME.

TRI-2 ETHYL HEXYL PHOSPHATE COMMERCIAL FLEXOL (Union Carbide)

FLASHES STRONGLY AFTER 60 seconds

MAINTAINS FLAME FOR 5 SECONDS AFTER 100 sec

BUT GOES OUT ULTIMATELY AFTERWARDS.

NATURAL HIVACUUM TYPE PUMPOIL

FLASHES AFTER 80 seconds AND CONTINUOUSLY

BURNS AFTER 100 seconds.

SECTION B. RESUMING THE STUDY OF THE EFFECT OF TITANIUM TETRA CHLORIDE AS CATALYST IN

THE PREPARATION OF THE EXPERIMENTAL PRODUCT FROM TETRA ISOPROPYL TITANATE

AND BASIC ZINC OCTUATE.

INTRODUCTION

TABLES 105 - 119 give various preparations of the reaction product using 1 part tetraisopropyl titanate and 3 parts zinc octoate with small amounts of titanium tetrachloride. This amount is varied slightly between tests, but it appeared that an increase in titanium tetra chloride does not increase the effect of the reaction. The product obtained from this reaction stands up more successfully in the oxidation-reduction tests than the corresponding product produced with aluminum chloride as catalyst; but it is further being improved and is more uniform in its characteristics when it is further reacted and vacuum distilled with benzyl alcohol. Generally 1 part benzyl alcohol and 2 parts of the reaction product gives the most stable material. FIGURE 1 in SECTION A of this report has shown already an example of the stabilizing influence of this benzyl alcohol modification.

The reaction between the titanate and the zinc octoate are further influenced by the control of the vacuum reaction when a capillary tube is inserted into the vacuum distillation and is used to control the uniformity of the boiling under vacuum.

The repeated preparations were made with careful consideration of an as-far-aspossible removal of low cut materials which might influence the flame- and the selfextinguishing-property tests. They were prepared also as starting materials for new
developments introducing into these complexes additional groups, such as phosphorus-,or
chlorine,-containing groups in efforts to study their influence on the fire exposure
tests.

Another problem which came up in the work on this Section B was that the company which produced the basic zinc octoate (Nuodex Products) tried to change the supplying of the material with 22% zinc to a material with 18% zinc. This was later abandoned, and the original material was supplied again; but TABLES 118-119 showed that this announced change was of no influence on the reaction. It was found that this change in zinc (Continued on page 30.)

TABLE 105.

RESUMED STUDY OF THE REACTION BETWEEN 1 part (by weight) TETRAISOPROPYLTITANATE

(120 g)

ANL 3 parts " BASIC ZINC OCTOATE

IN PRESENCE OF 2-3 DROPS TITANIUM TETRA CHLORIDE CATALYST

(T 42- 76)

HEAT DEVELOPED UPON MIXING

TIME min.	TEMPERATURE C.	VARIAC #	PRESSURE mm .	VOLUME ml .	REMARKS
_	24 (75 ⁰	F.) 50	2 -10	_	BUBBLING GENTLY
35	30	60			FEW DROPS DISTILLATE
60	95	60		20	CLEAR YELLOW LIQUID
85	100 (212	°F.) 60		40	
90	105	60		60	
100	115	60		85	
110	115	60		110	
120	105	60		135	
	-				CUTI
165	170 (338 ⁰	F _e) 60		10 I	DARK LOW VISCOUS MATERIAL
215	170 (338 ⁰ 183 (361 ⁰)	F _s) 60		20	
					CUTII
280	PRODUCT CAME	OVER BETWEE	n 305 9and	315°C 。	
				275 ml	L a
					CUTIII

THE TEMPERATURE DROPPED THERE STILL WAS A LOW VISCOUS MATERIAL IN THE FLASK. (T 42- 76-2)

BENZENE WAS ADDED AND THE DISTILLATION RESUMED AS T 42-77

T 42-77 : DISTILLATION OF THE FLASK RESIDUE WITH ADDED BENZENE.

- 30 45 60	25 (77°F.) 80 (176°F.) 80 80	40 ATM. 50 50 50	- 10 40 80	BENZENE	BEGINS	TO COME OVER
75	70 (158 ⁰ F。)	VACUUM APPLIED 40 2 - 1 0	120	— CUT I		
90 120	120 (248 [°] F.) 125 (257 [°] F.)	55 75	10 15	A YELLO	W MATER	IAL

THE STILL REMAINING FLASK CONTENT HAD A FLASH POINT OF 295 °C (563 °F)

15. AND A FLAME POINT OF 319 °C (606 °F)

TABLE 106.

(CONTINUATION OF TABLE 105.)

BENZYLALCOHOL MODIFICATION OF THE REACTION PRODUCT OBTAINED AS DISTILLATE

(T 42-76) FROM 1 part TETRA ISOPROPYL TITANATE WITH

3 parts BASIC ZINC OCTOATE IN PRESENCE OF

2-3 drops TITANIUM TETRA CHLORIDE AS CATALYST:

TEST: T 42-80: USED 153.7 g DISTILLATE OF T 42-76

AND 100 g BENZYLALCOHOL.

TIME min.	TEMPERATURE C.	VARIAC #	PRESSURE	VOLUME ml.	
	25 (77°)	 [) 40	2-10	_	
25	93 (199	F) 45		3	CLEAR, COLORLESS LIQUID
35	90	43		40	02-1111,002012-111,0020
45	88	45		50	
55	88	45		60	
65	88	45		75	
7 5	90	45		90	
85	90	55		95	
110	94 (201°)	F _u) 65		100	
					CUTI(80 g)
125	110 (230) 1 70 (338)	F.,) 65		5	CLEAR, SLIGHTLY YELLOW FLUID
140	170 (338)	F。) 65		10	WHITE FUMES
16 0	180	70		15	
170	180(356)	F。) 70		20	
180	210	70		30	
190	230	70		40	
220	160 _o	75		43	
230	200 (39 2)	F.) 75		_43	FLASK CONTENT TURNED WHITE
					CUTII (29 g)
245	290	75		10	
265	3 0 0 /305 (572 F./581	75		PRODU	CT: 120 g.
	(572°F ₀ /581°)	F.,)			

TABLE 107.

FURTHER STUDIES ON THE TITANIUM TETRA CHLORIDE CATALYST APPLICATION IN THE

PREPARATION OF THE REACTION PRODUCT BETWEEN TETRA ISOPROPYL TITANATE

AND BASIC ZINC OCTOATE

I. BENZYLALCOHOL MODIFICATION OF THE PREPARATION T 33-92

USED 185 PRODUCT.

185 g PRODUCT, THAT IS CUT 4 OF T 33-92

T 28 - 147

AND 93 g BENZYLALCOHOL

TIME	TEMPERATURE	VARIAC	PRESSURE	VOLUME	REMARKS
min 。	C.	. #	mm 。	ml 。	
	25 (77°F	·) 45	2-10		
30	25	45		_	
45	30	45		_	
120	53	35			
145	90	55		_	
170	90 (194°F	' ₄) 55		50	CLEAR CUT
190	92	55		75	
210	100	55		90	
230	147 (296 F	·。)65		100	STILL CLEAR
					CUTI
260	150	70		15	DARK YELLOW
280	105	70		25	
	0				CUTII
315	3 2 5 (616°	F.) 85		50	VERY DARK ORANGE, VISCOUS
	327 (620°F.,)		125	•
			TOTAL YIELD	••••••	. 141 g 。

II. NEW PREPARATION OF THE PRODUCT FROM 1 part by weight ..190 g TETRA ISOPROPYL TITANATE

3 parts by weight.. 570 g.ZINC OCTOATE T 28 - 148 WITH 2 - 3 DROPS Ti Cl₄

_	30 (86°F。)	50	2 -10	_
60	92 0	50	~ 10	10 ml CUT I
70	112 (233 F.)	60		60
85	126	60		150 CLEAR YELLOW LIQUID
90	130	60		195
120	100	65		225ml CUT II (200 g)
165	200	65		4 CLEAR ORANGE CUT III
170	3 1 5 (598°F _°)			PRODUCT COMING OVER
180	313	65		50 -60 g TAKEN AS CUT IV
190	296	65		15 COLOR LIGHTER
225	310	6 5		3 0
245	315	65		65 CLEAR YELLOW FLUID
310	314	65		165 TAKEN AS CUT V
330	315	65		120
355	315	65		200
375	316 ~	65		220 ml TOTAL YIELD 310 g
	A SMALL	AMOUNT OF	WHITE RESIDU	

TABLE 108.

ANOTHER APPLICATION OF THE TITANIUM TETRA CHLORIDE CATALYST IN THE

REACTION BETWEEN TETRA ISOPROPYL TITANATE AND BASIC ZINC OCTOATE

T 42- 81

USED: 1 part by weight (180 g) TETRA ISOPROPYL TITANATE
3 parts by weight (540 g) BASIC ZING OCTOATE
2-3 drops Ti Cl,

HEAT UPON MIXING DEVELOPED

TIME min .	TEMPERATURE C 。	VARIAC #	PRESSURE	VOLUME ml	REMARKS
-	27 (80°F.)	50	2-10	_	BUBBLING
30	30	50		-	
60	95 (203°F.) 50		10	CLEAR DISTILLATE
85	105	5 5		30	
100	110 0	55		70	
110	325 (257°F)) 55		125	
125	125	55		175	WHITE FUMES
140	110	55		200	
160	100	60		215	
175	100	65		220	
					CUTI(205 g)
200	170 (338 ⁰ F)) 70		5	DARK DISTILLATE, FLASK CON
220	3 770	770		15	TENT WHITISH YELLOW
240	185 (365°F.) 70		35	
280	170 185 (365°F. 195 (383°F.) 70		45	
					CUTII (23 g)
310	3 0 5 / (58 3 1 9 (606	1°F.) F.) 70		PRODUCT	2 5 6 g.
BENZYLAI	LCOHOL MODIFICAT	ion of T	HIS PRODUCT	(T 4	2- 83)
USED	: 100 g BENZYLA	LCOHOL W	I T H		
	200 g PRODUCT	OF TEST	T 42-81		
_	27 (80°F.) 45	2-10	_	_
60	105 (221°F	'。) 50		15	
75	105			20	
95	105	55		50	
120	110	60		85	
160	105	60		120	
170	105	70		130	
	•				CUTI
200	155(311°F.) 70		10)
210	170(338 F.) 70		25	;
220	170(338 F. 180(356 F.) 70		40	
240	215(419 F _o) 70		60)
260	230(446 ^o F。	70		70)
					CUTII
300	300(572°F。) 75			
,	310/320	75		PF	RODUCT: 135g.
	(590°F°./608°F	。)			
	.,,,	-,			

TABLE 109.

ANOTHER STUDY OF THE EFFECT OF TITANIUM TETRACHLORIDE AS

CATALYST IN THE REACTION BETWEEN TETRA ISOPROPYL TITANATE AND BASIC ZINC

OCTOATE (T 42 - 85)

USED 1 part by weight (190 g) TETRA ISOPROPYL TITANATE

3 parts by weight(570 g) BASIC ZINC OCTOATE

2-3 drops TITANIUM TETRA CHLORIDE .

MUCH HEAT DEVELOPED UPON MIXING .

TIME	TEMPERATURE	VARIA	C PRE	SSURE	VOLUME	REMARKS
min .	С	#		mm 。	ml,	
_	27 (80 ⁰ F	r _e) 50		2-10		BUBBLING
30	50 c	50		2-10	20	CLEAR AND COLOFLESS
60	60 (140 ั	F.,)60			40_	
					(C U T I (22 g)
95	95 (203 [°]	F_)60		2-10	50	
120	100	40			100	
160	120 (248	F.,)60			130	
200	115	60			160	
220	110	60			190	WHITE FUMES
240	90	60			200	
260	60	60			205	_
		_				CUT II (188.8 g)
280	165 (329 ^c	F.)70		2-10	10	YELLOW DISTILLATE
300	175 (347)	F. 70			25	
320	195 (383 ⁰	F. 70			65	
	10 (50)	,				CUT III
350	305/31	5 70				FLASK CONTENT DID N O T TURN
	(581°F./598°					WHITE
	()0= 10/)/0	/	PRODUCT	OBTAINE	D: 47	5.5 g.

BENZYLALCOHOL MODIFICATION T 42-89

us e d:	190 g ABOVE PRODU	CT T 42-85 WITH	
	75 g BENZYLALCOH	OL	
_	27 (80°F.) 50 30 (86°F.) 55	2-10	- BUBBLING QUIETLY
30	30 (86°F _s) 55		-
45	95 55		10 CLEAR AND COLORLESS
70	100 55		45 ·
90	98 60		<u>55</u> CUTI (65 g)
90 110	160 (320°F ₀)60		10 YELLOW DISTILLATE
120	170 70		<u>15</u> CUTII (20 g)
180	230 (446°F.) 75		
220	303/310	ABOUT 175 / 20	OO ml. PRODUCT CAME OVER .
,	(577°F./590°F.)		

TABLE 110

THE TITANIUM TETRA CHLORIDE CATALYST EFFECT ON THE

TETRA ISOPROPYL TITANATE/ZINC OCTOATE REACTION CONTINUED).

I. T 42-97 USED 190 g .TETRA ISOPROPYL TITANATE WITH 570 g .ZINC OCTOATE AND WITH 2-3 DROPS Ti Cl

HEAT UPON MIXING.

TIME		VARIAC	PRESSURE	AOTAME.	REMARKS
min		#	mm, ,	al.	
	27 (80°F	。) 50	2 - 10	-	
30	32 (8 9° F			_4_	CLEAR COLORLESS DISTILLATE
60	95	65		10	SLIGHTLY YELLOW DISTILLATE
70	105 (221°	F。)55		20	
75	110			30	
80	120 (248°F	。)		40	
85	120			65	
100	120			115	
120	130 (266°F	。)		155	
140	130			180	
150	130			210	WHITE FUMES
170	95			240	
190	80	50		245	
220	75	65		250	_
					CUTI
280	170 (338 ⁰ F	。)70		20	A DARKER YELLOW MATERIAL
					CUTII
320	270 (518 ⁰ F	۰)70		-	
3 60	305 / 3 1 5		PRODUC	T COMING	GOVER .
	(581°F。/5 98 °	F。)			
II. T 42			N WITH THE	SAME A	MOUNTS
_	25 (77°F	。)50	2-10		
30	32	55		_10_	CUT I CLEAR AND COLORLESS
60	50	60		-	
9 0	100	65		20	SLIGHTLY YELLOW
100	110 (230°F	°.)55		40	
120	110	70		65	
140	110			80	
160	125 (257 ⁰ 1 130 (266 ⁰ 1	`。)		105	
180	130 (266°F	`。)		135	
200	132			165	
220	130			185	
260	130			210	
270	105			220	CUT II (190 g)
300	175 (347)	`。) 70		10	DARKER YELLOW MATERIAL
320	220 (428°) 295 (563°)	·.)		-	
360	295 (563°)	۲,)		_	
370	3 0 5/ 315	70		PRODUC!	r coming over
	(581°F/.598°F	.)			YIELD 350 g .
	1000 01 1000 1	•			-

TABLE 111.

MORE PREPARATIONS OF THE TETRA ISOPROPYL TITANATE/BASIC ZINC OCTOATE PRODUCT

WITH TITANIUM TETRA CHLORIDE CATALYST

1. T 42-95 USING 190 g TETRA ISOPROPYL TITANATE AND 570 g ZINC OCTOATE WITH 2 - 3 DROPS Ti Cl_4 AS CATALYST

MUCHHEAT UPON MIXING

TIME	TEMPERATURE	VARIAC	PRESSURE	VOLUME	REMARKS
min 。	c	π	mm °	ml "	
	25 (770	F ₀) 50	2 - 10	-	BUBBLING SLIGHTLY
30	35			-	•
60	65 (149 ^o F	")		38 m	L CUTI(21g)
9 0	100	55		45	
120	120 (248 ⁰ F	.)		80	
140	135	60		140	
160	140 (284 ^o F	.)		180	
200	120			210	
240	95			220	WHITE FUMES
270	90 0			225	CUTII (190 g)
280	165 (32 9 F	.) 70		225 15 35	YELLOW DISTILLATE
300	300 (572 ⁰ F	.)		35	
	BETWEEN 305 AM	ID (581°F	`)		
	3 1 5°C	598 ⁰ F	`.)	ABOUT 350	O g DISTILLATION PRODUCT

II T 42-96
MODIFICATION OF THE PRODUCT OF I WITH BENZYLALCOHOL USING

120 g DISTILLATE OF I 55 g BENZYLALCOHOL

$- 25 (77^{\circ}F_{\circ}) 45 2 - 10 - BUBBLING SLIGHTLY$	
30 115 5 CLEAR SLIGHTLY YELLO	W FLUID
45 115 25	
45 115 25 60 100 3 5	
100 125 $(257^{\circ}F_{\circ})$ 50 45	
	•
150 100 60 55 CUTI 200 120 70 -	
240 150 - WHITE FUMES	
240 150 WHITE FUMES 260 165 (329°F _o) 5 DARKER YELLOW MATERIAL	
300 $185 (365^{\circ} F_{\circ})$ $15 C U T II$	
320 305 - 3 1 5°C. YIELD : 9 0 g MODIFIED PRODUCT.	
(581°F ₀ 598°F ₀)	

TABLE 112.

CONTINUED STUDIES ON THE TI CL, CATALYST IN THE TPT/ZINGOCTOATE PRODUCT

CONTINUED STUDIES ON THE TI CL, CATALYST IN THE TPT/ZINCOCTOATE PRODUCT BENZYLALCOHOL MODIFICATION OF T 42-98 I. T 42-99 USING 250 g .PRODUCT T 42-98 WITH 120 g BENZYLAL COHOL TEMPERATURE VARIAG PRESSURE VOLUME TIME REMARKS min mm ml28 (82°F.) 2- 10 50 95 CLEAR YELLOW DISTILLATE 30 55 30 93 55 45 80 60 90 85 95 100 130 (266°F.) 120 100 160 1.10 DARKER YELLOW 140 160 (320°F.) 180 J.20 160 55 230 (446°F.) 65 210 125 CUTI 260 PRODUCT COMING OVER 300 305 305/320 (581°F/608°F.) VIELD ABOUT 200 ml. USED 190 g TETRA ISOPROPYL TITANATE SLIGHTLY INCREASED AMOUNT II. T 42-101 OF Ti Cl 570 g ZING OCTOATE AND 2 ml Ti Gl₄
25 (770F) 30 2 - 10 -2 CLEAR COLORLESS DISTILLATE 20 40 5 CUTI 10 CLEAR, SLIGHTLY YELLOW 30 60 55 95 65 105 (221°F..) 50 75 30 50 85 105 70 100 110 100 70 110 130 110 1.00 60 130 140 1.10 1.50 150 120 170 DARKER YELLOW 160 125 190 170 130 CUTII 110 180 115 120 190 100 210 80 ..1.30 ourui 220 80 180 (356°F...) 70 260 60 DARKER YELLOW MATERIAL 300 250 CUTIV PRODUCT COMING OVER 3 0 5/315 (581°F₃/598°F₃) YIELD 475 g. 330 III. T 42-102 BENZYLALCOHOL MODIFICATION : 175 g. PRODUCT OF II 91 BENZYLALCOHOL 25 (77°F..)45 2 - 1070 115 50 35 90 120 95 200 173 1.10 60 190 125 DARKER AND MORE VISCOUS 280 65 170 CUT I 320 310 25 GOLDEN YELLOW CLEAR PRODUCT 50 310 (590°F)70 370 75 ml. TOTAL MORE VISCOUS THAN WHEN MADE WITH LESS TI CL

FLAME POINT: 300°C (572°F)

FLASH POINT: 285°C (545°F)

p.22.

TABLE 113.

STUDY OF THE REACTION BETWEEN

190 g .TETRA ISOPROPYL TITANATE

570 g BASIC ZINC OCTOATE 22 % Zn

WITH 3-4 DROPS Ti Gl

HEAT EVOLVED ON MIXING .

I. T 43-2 PREPARED IN REGULAR SET UP:

TIME min ,	TEMPERATURE C .	VARIAC #	PRESSURE	VOLUME ml.	REMARKS
	80 (176°	F.,) 50	2 - 7		
45	93			25	CLEAR COLORLESS FLUID
55	100			50	CLEAR YELLOW
63	100			75	
75	110 (230°	F.,)		115	
90	120			175	
125	70			235	CUTI
125 165	78	60		_	
185	120			_	
210	240			_	
235	280 (536°	F.)		_	
240	312	65			
255	3 2 0 (608	°F.)70		100	LIGHT YELLOW PRODUCT COMING
270	3 2 3 (612	°F) 70		310	ml . CLEAR LIGHT YELLOW PRODUCT
			PRODUCT U		ODIFICATIONS

11. T 43 - 5 PREPARED WITH CAPILLARY INTRODUCED INTO THE SET UP

.1. T 43 - 5	PREPARED !		ARI INTRUDUCE	וואז עי	U THE SET UP
	_	SAME A	MOUNTS USED		
-	50 (122 ⁰	'F。) 40	2-10	-	
30	50	45		-	
	95			10	
	95			20	LIGHT YELLOW CLEAR DISTILLATE
	100			40	
	95			55	
105	95			80	
120	100	55		1.05	
130	110			155	
150	110			230	CUTI
					COMPARISON TO ABOVE TEST ABOUT SAME AMOUNT OF CUT I OBTAINED
210	180 (356 ⁰	F.)65		***	
25 5	3 1 2 (593	^o F) 70		PROD	UCT COMING OVER.

YIELD ABOUT 400 ml (ABOVE IT WAS 310 ml),

BEFORE A DECOMPOSITION IN THE FLASK RESIDUE

IS TO BE SEEN

TABLE 114.

BENZYLALCOHOL MODIFICATION OF THE REACTION PRODUCT T 43-2

FROM TPT/ ZINCOCTOATE (WITH Ti CL;) TEST T 43-3

USED:

425 g PRODUCT T 43-2 AND

212 g BENZYLALCOHOL

NO HEAT EVOLVED ON MIXING.

TIME min	TEMPERATURE C.	VARIAC #	PRESSURE mm .	VOLUME ml.	REMARKS
- 15 60 70 85 100 115 125 140	27 (80°F.) 28 28 120 (248°F 125 125 130 (266°F 130) 40 .) 55 .)	2-10	- -	TING TO COME OVER
165 180	115 152 (305°F			200 205	
220 265	107 (224°F 84 (183°F	。) 60)	2-10		UTI (200 g) CLEAR YELLOW LIQUID UTII (21 g)
325	103 (217°F	。) 60		10 1	DARK RED OPAQUE LIQUID
370 380 425	3 0 7 307 (584°F 2 0 9 (408	65 °F.)	2-10	_	CLEAR YELLOW FLUID

PRODUCT : 318 g .

SMALL AMOUNT OF WHITE MATERIAL LEFT IN FLASK .

TABLE 115.

MORE STUDIES ON THE TETRA ISOPRYL TITANATE/BASIC ZINC OCTOATE PRODUCT

PREPARED WITH . TITANIUM TETRA CHLORIDE

AS CATALYST:

FLASH AND FLAME POINT TESTS ON THE

TEST T 28 - 146

BENZYLALCOHOL MODIFICATION T 42-89

TESTS MADE ON OPEN CUP WITH BURNER PASSING OVER THE HEATED FLUID:

FLASH POINT 285°C 545°F

FLAME POINT ,,,, 320 C 6 0 8°F.

TESTS MADE ON A 1:1 MIXTURE OF THE SAME PRODUCT WITH

INHIBITED SILICONE FLUID 510 acc.TABLE 100 (II.REPORT)

FLASH POINT 270 °C 518°F.

FLAME POINT .. 300°C 572°F

REPEAT TEST MADE ON ANOTHER BENZYLALCOHOL MODIFICATION (T 28-146)

MADE FROM ANOTHER PRODUCT PREPARATION (T 33-92)

FLASH POINT ... 265 C ... 508 F.

FLAME POINT ... 312°C ... 593°F.

TEST T 28-147.

TABLE 116.

HYDROLYTIC STABILITY TEST

OF THE REACTION PRODUCT BETWEEN TETRA ISOPROPYL TITANATE (120 g) AND

BASIC ZINC OCTOATE (360 g) IN PRESENCE OF

TITANIUM TETRA CHLORIDE AS CATALYST

(T42-71)

TEST No. T 42- 74: USED 7 5 g TEST FLUID T 42 -71

2 5 g. WATER WITH

COPPER STRIP : WEIGHT 1.3395 g .

AFTER 48 HOURS ROTATING AT 200 OF .

NO CHANGE IN APPEARANCE OF THE OIL.

WEIGHT OF COPPER STRIP AFTER TEST ... 1.3389 g .

WEIGHT LOSS: 0.0006 g.

or 0 . 0 4 5 % LOSS

HYDROLYTIC STABILITY TEST

OF THE BENZYL ALCOHOL MODIFICATION OF A REPEAT PREPARATION OF ABOVE MATERIAL.

T 42-89

T 42- 85

TEST: T-28-145 USED 37.5gT 42-89 MIXED WITH

37.5 g .INHIBITED SILICONE FLUID 510

25 g DISTILLED WATER

FOR 48 HOURS AT 200 F. WITH 5 rpm, ROTATION.

AFTERWARDS SOLUTION SOMEWHAT GREENISH IN COLOR

WEIGHT OF COPPER BEFORE TEST 1.7090 g

AFTER TEST1.7009 g.

LOSS0.0081 g. or 0.474 %

TABLE 117.

OXIDATION RESISTANCE TEST OF THE

BENZYLALCOHOL MODIFICATION OF THE TETRA ISOPROPYL TITANATE/ZINC OCTOATE PRODUCT

WITH TITANIUMTETRA CHLORIDE CATALYST:

TEST T 42 - 82

USED: 50g.T 42-80 PRODUCT OF TABLE 106.

IN VISCOSITY REDUCED BY ADDITION OF

5 0 g .INHIBITED DOW SILICONE FLUID OF TABLE 100 (REPORT No.2)

TOTAL WEIGHT OF APPARATUS 296.1 g.

. COPPER STRIP 0.4623 g (BEFORE TEST) 0.4620 g AFTER TEST

(LOSS: 0.065 %)

ALUMINUM STRIP...... 0 7039 g/BEFORE TEST) 0.7041 gAFTER TEST (LOSS: --)

TEST OPERATED AT 2 0 0 CENTIGRADE (392°F) WITH 5 1. AIR / HOUR.

AFTER 24 HOURS DARKER IN COLOR, BUT N O SEDIMENT

AFTER 48 HOURS SAME

AFTER 72 HOURS DARK IN COLOR, BUT STILL FLUID AND N O SEDIMENT:

WEIGHT AFTER 72 HOURS TEST 279.6 g.

LOSS.... 15.5 g or 15.5 %

VISCOSITY 1100 cps

POUR POINT OF THE SAME FLUID BEFORE TEST - 70 F.

AFTER 72 HOURS TEST ... - 45 %.

TABLE 118,

STUDY ON THE USE OF A NEW COMMERCIAL ZINC OCTOATE (1 8 %) NUODEX Co.

FOR THE COMPLEXING WITH TETRA ISOPROPYL TITANATE (Ticl_catalyst)

T 42- 104

USED: 151 g ZINC OCTOATE 1 8 % Zn

51 g TETRA ISOPROPYL TITANATE

2-3 drops Ti Cl,

HEAT EVOLVED ON MIXING THE TITANATE WITH THE ZING OCTOATE AND AGAIN MORE HEAT ON ADDITION OF THE TITANIUM TETRA CHLORIDE .

TIME	TEMPERATURE C	VARIAC	PRESSURE	VOLUME ml	REMARKS
min .	<u> </u>	-	<u> </u>		
-	25 (77 ⁹)	F.) 45	2-10		
60	8 5	50		2 (KEAR, COLORLESS
70	8 5	50		27	
90	1.00	50		37	
110	110 (230)	F) 55		. 55.	
	-			GU	JT I
120	110	55		25	YELLOW CLEAR DISTILLATE
160	100	60		30	FLASK CONTAINER TURNS WHITE
200	160 (320 260 (500	F) 70		35	
240	260 (500)	^O F)75		40	
				Ct	JT II (TOTAL 83 g.)
280	300 (572)	^o F) 75			
	PRODUCT_CA	ME OVER	ŢΑ		
			AB	OUT 75 ml	- <i>u</i>
	(577°F.)				
					DODGE TO OPERATION WINE

APPEARS TO BE THE SAME PRODUCT AS OBTAINED WITH

ZING OGTOATE 22% Zn .

O X I D A T I O N TEST WITH 1 part OF THIS PRODUCT AND
1 part INHIBITED SILICONE FLUID 510 T 42-107

WEIGHT OF SET-UP BEFORE TEST 256.5 g

AFTER TEST, 253.5 g, LOSS.... 3 g,

OBSERVATIONS:

TEST MADE WITH ONE STRIP EACH OF Gu Al AND STEEL . AIR: 5 LITER/HOUR

TEMPERATURE 200 °G (392 °F)

AFTER 72 HOURS STILL LIQUID. DARK BROWN IN COLOR, BUT STILL A CLEAR LIQUID WITHOUT ANY SEDIMENTATION.

TABLE 119.

USING THE INDUSTRIAL ZINCOCTOATE WITH 1.8 % ZINC CONTENT

IN REACTION WITH TETRA ISOPROPYL TITANATE

I. T 43-7 USING 300 g ZING OCTOATS 18%

100 g TETRA ISOPROPYI TITANATE

3 - 4 DROPS Ma 624

TIME min .	TEMPERATURE C.	VARUAC U BOTTOM	MARIAG II.	VARIAC III CLAISSEN	PRESSURE	VOLUME REMARKS
- 30 45 55 65	28 (82°F 85 (185°1 95 105 (221°1 110	₹)	30	20	2-10	35 CLEAR, COLOR- 70 LESS 100
90 120 180	135 (275°) 100 85	T.) 55	3'5	20	2-10	CUT I 40 CLEAR YELLOW
200 240 250	175 (347°) 160 (320 1 3 0 1(573°)	P.) 65 P.) P.) 65	∋0 60	30 50		CUT II CLEAR LIGHT YEL-
	297 / 301 ((566°F./574°	S F.) FLASH POIN'	r at °°G.	. 508 ^O F .	17	LOW PRODUCT 5 D. COMING
		FLAME POINT	e. 315°c.	600°F.		

II. T 43-8 HYDROLYTIC STABILITY TEST OF THIS PRODUCT T 43-7

ACCORDING TO THE TENTATIVE STANDARD METHOD 3457 (15 DEC 55)

COPPER SPECIMEN 1.3 cm ox 7.1 cm. 1.5325 g.

USED ... 75 g PRODUCT AND 25 g WATER

AT 200°F WITH 5 r p m

FOR 72 hours ..

(Continued from page 14.)

content is not a decrease in content of the basic zinc octoate component in the reaction, but is only the decrease of solids content of the delivered material. The difference consists of the presence of some solvent in the preparation of the octoate and after, under vacuum, such small amounts of solvent had been taken off, the materials are still of the same reactivity in the preparation of the titanate complex.

TABLES 115-117 give new flash point and flame point data and new hydrolytic stability and oxidation resistance tests on the materials of this Section B.

30 。

SECTION C. INFLUENCE OF VARYING THE ALKYL GROUPS IN THE TITANATES IN THEIR ZINC OCTOATE REACTION.

INTRODUCTION

This Section C gives data on tests where the tetra isopropyl titanate has been replaced by a tetra 2 ethyl hexyl titanate (TABLE 120.). In TABLES 121-123 the tetra isopropyl titanate was transesterified with tetra hydro furfuryl alcohol, and the resulting material was complexed with zinc octoate. This product was lower in viscosity, but it is still under study.

Further studies using tetra norm butyl titanate, tert. sec. butyl titanate, and tetra benzyl titanate are being discussed in Section D.

TABLE 120.

REACTING TETRA 2 ETHYL HEXYL (OCTYL) TITANATE WITH ZINCOCTOATE

USING TITANIUM TETRACHLORIDE AS CATALYST

I.

T 38 - 80

FIRST MIXED: 140 g. TETRA OCTYL TITANATE WITH

190 g ZINCOCTOATE

THIS CAUSED A VERY VISCOUS WHITE MATERIAL, ALMOST NOT POURING.

ON ADDING A FEW DROPS OF TITANIUM TETRA CHLORIDE TO THIS VISCOUS MATERIAL,

NO SPECIAL EFFECT IS OBSERVED, PROBABLY BECAUSE NO ACTUAL MIXTURE TAKES PLACE

WHEN THIS IS DISTILLED UNDER VACUUM A VERY STRONG FOAMING TAKES PLACE AT AROUND

(338°F) 170°C.(2-10 mm. PRESSURE) AND THE MIXTURE TURNS

ORANGE BROWN AND VERY

VISCOUS EVEN AT THAT TEMPERATURE:

TIME min.	C.	VARIAC	PRESSURE	MJ. VOLUME	REMARKS
	26° (78°F.)	40	2-10		
60	85 (185 ⁰ F.	.)		3	
120	145 (293°F.	.) 50		28	
140	155	55		5 3	
160	152			78	
170	145			88	
185	160 (320°F.)	60		108	
195	165			118	
205	170 (338 ⁰ F。)			128	

A STRONG FOAMING OCCURRED.

TO BE REPEATED IN A BENZENE SOLUTION.

TABLE 120 (Continued)

RESUMING THE REACTION OF TETRA OCTYL TITANATE AND

ZINCOCTOATE WITH TITANIUM TETRACHLORIDE

IN BENZENE SOLUTION

T 38- 82

DISSOLVED 290 g TETRA OCTYL TITANATE AND

380 g ZINC OCTOATE IN

100 g BENZENE

ADDED UNDER SHAKING A FEW DROPS OF TITANIUM TETRA CHLORIDE .

THE BENZENE WAS DISTILLED OFF UNDER ATMOSPHERIC PRESSURE

WITH VARIAC AT 40 AND RAISED TO 55 UNTIL

124 ml .LOW CUT HAD BEEN TAKEN OFF BELOW 100°C .

SOLUTION ALLOWED TO COOL, AFTERWARDS DISTILLED UNDER VACUUM:

TIME min .	TEMPERATURE C.	VARIAC	PRESSURE	VOLUME ml.	REMARKS
					
_	26 (78°	F.)40	2 -10	-	
65	110 (230°	F.)50		5	
100	160	60		20	RAPID DISTILLATION
110	163 (325°	F.)		40	
116	165			60	
130	170 (338°	'F .)		125	DISTILLATE TURNS YELLOW
140	163			165	
150				195	
170				205	
185					

HERE AGAIN OCCURS A SUDDEN VIOLENT FOAMING.

THE REASON IS STILL TO BE FOUND .

TABLE 121.

STUDIES USING A TETRA -TETRA HYDRO FURFURYL TITANATE

I. TRANSESTERIFICATION OF 1/2 mole TETRA ISOPROPYL TITANATE WITH (142 g)

T 38-66

2 moles TETRA HYDRO FURFURYL ALCOHOL

(176 g)

HEAT DEVELOPED ON MIXING AND A CLEAR REDDISH BROWN COLOR.

TIME	TEMPERATURE VARIAC	VACUUM	VOLUME	REMARKS	
min .	C	mm .	m] 。		
	25 (77°F°) 30	ATM	-		
50	83 (181°F.)40		50		
60	86 (187°F ₀) 40		75		
80	82 ₀ 45		95		
100	90 (194°F) 50		105	ASSUMED	TO BE ISOPROPANOL
140	100 55		115		
				ATTEN T	102 -

CUT I 103 g.
RESIDUE USED AS T-TETRA HYDROFURFURYL TITANATE
HAS TURNED DARKER IN COLOR AS THE ALCOHOL
IS TAKEN OFF.

II. REPEAT TEST USING 284 g .TETRA ISOPROPYL TITANATE AND

T 38-70 356 g. TETRA TETRA HYDRO FURFURYL ALCOHOL 40 (104°F.) 40 50 (122°F) 82 40 50 ASSUMED TO BE ISOPROPANOL 90 85 70 100 50 84 155 55 86 55 92 55 (131 F₀) 102 225 130 150 289 190 CUTI 228 g.

RESIDUE USED AS T-TETRA HYDRO FURFURYL TITANATE.

TABLE 122.

STUDIES USING A TETRA -TETRAHYDRO FURFURYL TITANATE

II.

II. T -38-69

REACTING THE TETRA TETRAHYDRO FURFURYL TITANATE OF THE PRECEEDING TABLE WITH BASIC ZINC OCTOATE

USING 60 g TETRA TETRAHYDRO FURFURYL TITANATE

100 g BASIC ZINC OCTOATE IN PRESENCE OF

9 g WATER

TIME min	TEMPERATURE C	VARIAC	PRESSURE mm	VOLUME ml	REMARKS
	27 (80°F) 30	2-10		
- , 0			2-10	-	ACCUMED NO DE MEMBA UVEDO TER
40	75	40		10	ASSUMED TO BE TETRA HYDRO FUR-
50	80	50		20	FURYL ALCOHOL
60	85	5 5		35	
65	86	55		40	
	o				CUTI 34 g
70	105 (221 F	。) 55		5	YELLOW LIQUID
83	110	60		10	•
95	130	60		15	
100	140 (284°F	,) 65		20	
110	180 (356°F	,) 70		30	_
	•				CUTII
130	270 (518 [°] F	.) 70		5	O RANGE LOW VISCOUS
135	275 (527°F	,) 70		10	PRODUCT

MATERIAL WAS COMING, BUT SUDDENLY BUMPED OVER.

TO BE REPEATED IN VIEW OF THE LOW VISCOSITY OF THE HIGH

TEMPERATURE CUT

TABLE 123.

STUDIES USING A TETRA - TETRAHYDRO FURFURYL TITANATE

III

III. T 38-77 REPEAT TEST WITH. 1/4 MOLE (100 g.) TETRA-TETRAHYDROFURFURYL TITANATE

190 g. ZINC OCTOATE

1/4 MOLE (4.5 g.) WATER.

WHEN WATER IS ADDED, HEAT IS EVOLVED AND THE VISCOSITY DECREASED.

TIME	TEMPERATURE	VARIAC	PRESSURE	VOLUME	REMARKS
min.	C .		mn.	ml.	
<u>-</u>	26° (78°F ₃)	40	2-10		
56	80	50		25	ASSUMED TO BE TETRAHYDRO
88	85	50		45	FURFURYLALCOHOL
120	88 (190°F。)	55		50 ml	. CUT I 46 g.
120 140	120 (248°F。)	60			VERY LIGHT YELLOW LIQUID
163	138 o	60		18	
210	155 (311 F)	70		33 I	LIQUID GETTING DARKER
235	145	70		<u>53</u>	CUT II
<u>235</u> 249	270 (518 F.)	75		5 1	DARK BROWN PRODUCT LIKE FLUID
255	270	75		<u>10</u>	CUT III
<u>255</u> 260	290 (554 F ₀)	75		5	
265	295	75		10	
270	2 96 (564 F _°)	75		15	
2 9 0	280	75		35	
302	265 (509°F _s)	75		40	CUT IV PRODUCT: 40 g.

FLASK RESIDUE SOLIDIFIED.

SECTION D. USING A SMALL AMOUNT OF WATER IN THE INTERREACTION BETWEEN TETRA ALKYL TITANATES AND ZINC OCTOATE.

INTRODUCTION.

This is a continuation of the studies in SECTION C of Report No. 2. In that work it had already been observed that complex products are being obtained in the presence of small amounts of water; but the reaction conditions vary with the alkyl types in the titanates and also with the amounts of water. In view of the fact that the literature, especially the foreign scientific literature, is using water additions in several kinds of metal organic complex formations, it was of interest to pursue this approach further.

1. EXPERIMENTS USING DIFFERENT TETRA ALKYL TITANATES AND DIFFERENT AMOUNTS OF WATER.

It is especially interesting to note that not only do different tetra alkyl titanates have different viscosities, their zinc octoate complexes also differ in their viscosity. However, it has not been found that any of these complexes are so much lower in viscosity as to allow their use alone as materials with the desired low pour point ranges of minus 40 to minus 75°F., without the addition of an additional viscosity reducing additive, such as an especially inhibited silicone fluid. TABLE 125 shows a successful preparation of the zinc octoate complex fluid with tetra n butyl titanate and with tetra sec. butyl titanate (further studied in TABLE 126) and with a new tetra benzyl titanate in TABLE 127. A reaction between tetra 2 ethyl hexyl titanate and basic zinc octoate with a higher amount of water produced, in TABLE 128, a material with a flame point of 604°F.

2. EVALUATION TESTS.

What limits the usefulness of the water additive in the reaction is that the resulting product behaves differently under the oxidation-reduction test. It not only shows some formation of a slight sedimentation; it also shows a greater increase in viscosity under the oxidation test together with a higher weight loss in material. The reason for this has not yet been explained. (TABLES 128-131)

(Continued on page 46.)

TABLE 124.

MORE STUDIES ON THE INFLUENCE OF SMALL AMOUNTS OF WATER ADDITION TO THE TETRA ALKYL TITANATE - BASIC ZINC OCTOATE REACTION I.

I. T 38- 57 USING 142.1 g. TETRA ISOPROPYL TITANATE A L O N E WITH
4.5 g. WATER

THIS WAS AN ATTEMPT TO OBTAIN A TITANATE-DIMER.

ISOPROPANOL WAS DISTILLED OFF AT ATMOSPHERIC PRESSURE, BUT A WHITE PRECIPITATE -PROBABLY PARTIALLY A Ti O₂ -WAS FORMED INSTEAD OF THE EXPECTED DIMER.

II. USING AS TETRA ALKYL TITANATE A TETRA B U T Y L TITANATE AND ZINGOCTOATE
T 38-56

USING 1/4 mole (83 5 g) TETRA BUTYL TITANATE (NORMAL BUTYL TITANATE)

190 g. ZINC OCTOATE AND

1/4 mole (4.5 g) WATER

SMALL AMOUNT OF HEAT DEVELOPED ON MIXING. THE MIXTURE REMAINED CLEAR (UNLIKE THE MIXTURE BETWEEN ZINCOCTOATE AND TETRA ISOPROPYL TITANATE).

HAD, ON VIGOROUS MIXING WITH THE WATER ADDITION, A CLEAR YELLOW COLOR.

TIME	TEMPERATURE	VARIAC	PRESSURE	VOLUME	E REMARKS
min 。	C	#	mm .	ml.	
_	30 (869	F.) 20	2-10	-	
20	50 (122)	(F.) 35	, e	20	CLEAR COLORLESS LIQUID
30	45 (113)	F.) 40		30	PROBABLY BUTYL ALCOHOL
40	45	45		35	
50	40	50		40	-
		,			CUTI 35 g.
80	95 (203)	(F。) 50	2-10	20	VERY LIGHT YELLOW LIQUID
90	98 (208 ^c			30	
100	95 d			35	
108	99 (210	F)		45	
115	100			55	
120	120 (248)	(F)		80	
133	140 (464)	(F.)		85	
135	135 (275)	(F。)65		95	
140	142 (287°	'F.)		100	
					TO HOTT

C U T II
FLASK CONTENT SOLIDIFIED BEFORE HIGH TEMPERATURE CUT
HAS BEEN OBTAINED.
TO BE REPEATED.

TABLE 125.

MORE STUDIES ON THE INFLUENCE OF SMALL AMOUNTS OF WATER ADDITION

TO THE TETRA ALKYL TITANATE-BASIC ZINC OCTOATE REACTION

III. T 38-58 REPETITION OF THE TETRA n BUTYL TITANATE / ZINC OCTOATE REACTION

USING THE SAME AMOUNTS OF THE COMPONENTS BUT 18 g. WATER (INSTEAD OF 4.5 g.)

TIME	TEMPERATURE	VARIAC	PRESSURE	VOLUME	WEIGHT	REMARKS
min.	С.	#	mm 。	\mathtt{ml} .		
	30 (860	F.)40	2-10			
60	50 (122	$\mathbf{P}^{\mathbf{O}}\mathbf{F}_{\circ}$		100	CLEAR COI	LORLESS, PRO-
80	50			105	BABLY r	BUTYLALCOHOL
	_	,		C	UT I 66) g .
1.00	75 (167	(F。) 50	2-10	3		QUID CUT II
130	150 (302)	(F。)		2	YELLOW	LIQUID CUT III
150	295 (563)	(F ₃)		20	CUT IV	
150 160	3 0 0 (572)	(F.)50		20		
200	295 (563) 3 0 0(572) 3 0 4(579)	F.)		1.00 п	1_	

THE PRODUCT ... 86 g.
THIS PRODUCT WAS A VISCOUS MATERIAL, SIMILAR IN APPEARANCE TO
THE TETRA ISOPROPYL TITANATE / ZINC OCTOATE DERIVATIVE.
THE FLASK RESIDUE WAS SOLID.

II

IV. T 38- 59 USING TETRA sec BUTYL TITANATE:

USING:

83.5 g. TETRA SEC. BUTYL TITANATE

190 & BASIC ZINC OCTOATE

	9 g WATER	
-	40 (104°F.) 20	2-10 - CLEAR FLUID, PROBABLY
20	44 (111°F。) 30	30 sec. BUTANOL
40	44 (111 ⁰ F.) 30 35 (9 5 ⁰ F.) 40	80
		C U T I (60 g)
90	75 (167°F.) 50 165 (32 9° F.) 70 285 (545°F.) 75	5
120	165 (329°F.) 70	10
1.60	285 (545°F ₀) 75	_20_
		CUTII
175	3 0 5 (581°F.)75	10
180	305 80	20
190	305 80 304 (579 F.) 302 (575 F.)	60
200	302 (575°F ₀)	60
		CUTIII (66 g)

VISCOUS YELLOW PRODUCT

TABLE 126

MORE STUDIES ON THE INFLUENCE OF SMALL AMOUNTS OF WATER ADDITION

TO THE TETRA ALKYL TITANATE-BASIC ZINC OCTOATE REACTION III

V. T 38-63 REPETITION OF THE REACTION WITH TETRA SEC.BUTYL TITANATE, USING L E S S WATER

USED: 100 g. TETRA SEC. BUTYL TITANATE
190 g. ZINC OCTOATE AND
4.5 g. WATER

WHEN TITANATE AND ZINCOCTOATE ARE MIXED THERE IS A SLIGHT HEAT DEVELOPMENT.

ON ADDITION OF WATER THERE IS MORE HEAT DEVELOPMENT.

TIME min.	TEMPERATURE C.	VARLAG #	VACUUM mm.	VOLUME	REMARKS	
	26°(79°	F.)40	2 - 10			
20	42 (107	°F.)		15	CLEAR FLUID, PROBABLY	SEC.
30	40 (104	o _r ′′		45	BUTANOL	 6
40	35	,		85	SOLMOD	
50	40			100		
	. , . 0				CUTI (80 g)	
70	85(185)	F)40	2 -10	10		
75	95(203	F) 50		22		
85	105(2210	F) 50		32		
90	110(230	F) 55		48		
98	130(266	F) 55		63	YELLOW LIQUID	
	165(329	* / / / / * / / 6 / /		68	ABILLOW LIQUID	
110	105(329	F)00				
120	230 (446)	F)65		73	•	
130	280 (536)	F) 70		78		
135	290 (554°	F)75		83		
		•		C	UTIJ	
140	300	75	2 -10	5		
155	305 (581°	ษาวั่	~	25		
170	308	75		45		
180	2 98 (56 8)	F)75		50		
				P	RODUCT: 40 g	

HERE THE TEMPERATURE DROPPED BELOW 240°C AND THE POT MATERIAL BEGAN TO DECOMPOSE.

DATA FROM THE DU PONT LITERATURE: VISCOSITIES OF KNOWN TETRA ALKYL TITANATES:

TETRA ISOPROPYL TITANATE AT 25°C 4.5 cps.

TETRA SEC.BUTYL TITANATE AT 25°C 1.9 cps.

TETRA n-BUTYL TITANATE AT $25^{\circ}\text{C.}......6$ 7 cps .

TETRA (2 ETHYL HEXYL) TITANATE
AT 25°C 1 0 3 cps

TABLE 127.

MORE STUDIES ON THE INFLUENCE OF SMALL AMOUNTS OF WATER ADDITION

TO THE TETRA ALKYL TITANATE-BASIC ZINC OCTOATE REACTION IV.

VI. T 38-61 PREPARATION OF TETRA BENZYL TITANATE

PREPARED FROM 106 ? g / 3/8 mole) TETRA ISOPROPYL TITANATE AND

162 g / 12/8 mole) BENZYLALCOHOL (BP 200°C)

TRANSESTERIFICATION UNDER ATMOSPHERIC PRESSURE

TIME	TEMPERATURE	VARI AC	PRESSURE	VOLUME	REMARKS
min 。	C .	#	ma .	ml.	
	26° (79°F)	45	ATM	-	
20	80 (176 ⁰ F	י)		15	
40	82			45	ASSUMED TO BE
60	84 (183°F	r) —		75	J SOPROPANOL
65	104 (219°)	י)		8 5	
68	108 (226°F	r)		88 n	1.
	-			· · · · · · · · · · · · · · · · · · ·	DISTILLATE 72 g.

RESIDUE A YELLOW LIQUID, VISCOSITY
SIMILAR AS TETRA 2 ETHYL HEXYL TITANATE, USED IN NEXT TEST.

VII. T 38-62 REACTING 130 g OF THIS RESIDUE (ASSUMED TO BE MOSTLY TETRA BENZYL TITANATE) WITH

190 g BASIC ZINC OCTOATE AND 18 g. WATER
ON MIXING WITH WATER MORE HEAT IS DEVELOPED AND AN ODOR OF BENZYLALCOHOL

UN		HOW US	WAT TO DEVEROPED AND AN OPOR OF BENZILALCOROR
	27 0	40	2-10 -
10	30 (86°F)		6 ml (4 g.) PROBABLY STILL
			ISOPROPANOL CUT I
40	105 (221°F)	50	5
75	115 (239°F)	50	70 ODOR OF BENZYLALCOHOL
105	120 (248°F)	60	100 CLEAR, COLORLESS LIQUID
120	1.00 (258 11)	60	110 CUTII (125 g)
150	220 (428°F)	65	<u> </u>
160	270(518 F)	75	5 MELLOW SLIGHTLY VISCOUS
170	290 (554 ⁰ F)	75	20 CUTIII
$\frac{170}{190}$	3 0 5 (581°F)	75	5
220	298 (568°F)	75	25 YELLOW PRODUCT
220	300 (572°F)	80	45
240	250 (482°F)	80	PRODUCT TOTAL : 50 g.
		Lo	and the state of t

TABLE 128.

MORE STUDIES ON THE INFLUENCE OF SMALL AMOUNTS OF WATER ADDITION TO

THE TETRA ALKYL TITANATE - BASIC ZINC OCTOATE REACTION V.

VIII.T 38-64

1)	PRODUCT OBTAINED FROM TETRA ISOPROPYL TITANATE	.(T 40-48)
2)	SAME PRODUCT , BUT MODIFIED WITH BENZYLALCOHOL	8 020 cps.
•	,	2 850 cps.
3)	PRODUCT OBTAINED FROM TETRA n BUTYL TITANATE	
۵)	(No.III OF THIS SERIES) PRODUCT OBTAINED FROM TETRA sec.BUTYL TITANATE	24 000 cps. (T 38-59)
	(No. V OF THIS SERIES)	28 000 cps
5)	PRODUCT OBTAINED FROM TETRA 2 ETHYL HEXYL (OCTYL) TITANATE (TABLE 88 IN II REPORT)	(T 38-53)21 000 cps
6)	PRODUCT OBTAINED FROM TETRA BENZYL TITANATE	(T38-62)
	(No. VII OF THIS SERIES)	3 250 cps

IX. T 38-65 REPEAT TEST: 510 g.TETRA 2 ETHYL HEXYL (OCTYL) TITANATE 760 g.BASIC ZINC OCTOATE WITH THREE MOLES (54 g) WATER

TIME	VARIAC I		TEMPERATURE	PRESSURE	VOLUME	REMARKS
min .	#	#	C ,	mm 。	ml.	
-	40	40	27 (81^oF) 75 (167 F	2- 10	_	-
40	50	50	75 (167°F)	20	
70	50	50	83 (181° F)	110	ASSUMED TO BE 2 ETHYL
90	55 ·	55	90 (194°F)	285	HEXANOL
120	60	60	92 (1 9 7°F)	425	
135	60	60	98 (208 ⁰ F)	520	
				-		UTI 454 grams
140	65	65	120 (248°F)	10	YELLOW LIQUID
160	70	70	150 (302°F	'}	80	
180	75	75	180 (356°F)	140 C	UTII
190	75	75	260 (500°F)	10	
210	70	60	300 (572°F	j	_50_	
					C	U T III
215	70	60	305 (<i>5</i> 81 ⁰ F)	20	
220	65	55	3 3 0 (626°	F)	50	
230	60	50	3 4 0 (644°	F)	70	
235	60	50	3 4 5 (653°	F)	100	
250	60	50	325 (617 ⁸ F	·)	140	
260	60	50	305	•		RODUCT

IN FLAME POINT TEST A VERY SMALL AMOUNT OF LOW CUT BURNED UP AT 240 C. (464 F)

AFTERWARDS THE PRODUCT HAD A FLASH POINT OF 286°C (546°F) AND A FLAME POINT OF 318C (604 F)

TABLE 129.

	ANOTHER REACTION BETWEEN	TETRAISOPROPYL TITANATE	290 g.
T 38-79	WITH	ZINC OCTOATE 22%	760 g.
	IN PRESENCE OF	• • • • • • • • • • • • • • • • • • • •	18 g .WATER

TIME min.	TEMPERATURE C	VARIAC I	VARIAC II #	PRESSURE	VOLUME	REMARKS
	26 (79 ^c	F) 40	20	2-10	_	
80	35 (9 5°	°F) 40	20			ASSUMED: ISOPROPA-
100	98 (208	°F)50	30		40 :	UT I 98 g NOL YELLOWISH LIQUID
130	110 (230) ^O F)	70		130	IEDDOWISH LIQUID
165	118 (244	(OF)			200 m.	1
						ut II 198 g
190	180 (356	о ^о ғ ъ о	35		1	DI 11. 000 170 B
200	200 (392	F)70	40		4	BROWN LIQUID
210	212	7.			9	DIGOIN DIQUID
220	230 (446	o ^o F)			12	
240	240 (464	(^O F)			17	
250	265 (509	o _F)			17	
						CUT III
263	273 (524	F)70	40		10 I	PRODUCT LIKE, BROWN
280	280 (536) F)			15	,
285	295 (563	^o F)			25	MORE VISCOUS
2 9 0	298 (5 68	^O F)			30	
		^			(CUT IV
298	315 (599 318 (604 320 (608	F) 70	40		10	
310	318 (604	Θ <u>F</u>)			50	CLEAR GOLDEN
320	320 (608	(F)			90	YELLOW PRODUCT
330	3 2 4 (61	.5°F)			130	
340	318	o_\ ⁷⁵	40		180	
350 260	318 312 (593 310 (590	(OF)			220	
3 60	310 (59 0) F)			250	
					2	2 4 5 g PRODUCT

POT RESIDUE VERY VISCOUS, BROWNISH WHITE

T 38-79 30 g OF THIS PRODUCT MIXED WITH 30 g INHIBITED SILICONE FLUID

72 HOURS OXIDATION TEST:

WEIGHT: ALUMINUM COPPER STEEL	AFTER TEST BEFORE TEST AFTER TEST	0.4420 g. LOSS 1.5637 g.	0.0041 g.
SOME SEDIMENT	WEIGHT LOS	s 37 \$	

TABLE 130.

FOUR BALL WEAR TEST ON THE TETRALSOPROPYL TITANATE BASIC ZINC OCTOATE PRODUCT PREPARED IN PRESENCE OF WATER

I. PREPARATION OF THE TEST MATERIAL:

T-40- 72

USED 425 g ZINC OCTOATE 22% Zn

158 g TETRA ISOPROPYL TITANATE

23 g WATER

TIME min .		RESSURE	VARIAC	VOLUME	REMARKS
-	28 (82°F)	3.5	-	-	· · · · · · · · · · · · · · · · · · ·
20	29	3.5	40	10	TOODSON MAY SOUTH OUT OF STREET
60	29 (84°F)	3.5	40	·30	ISOPROPANOL COMING OVER SLOWLY
90	29	3.5	40	80	
120	<u>9</u> 5 (203°F)	3.5			C U T I 60 g.
130		4.0			A CLEAR YELLOWISH FLUID APPEARS

PRODUCT CAME OVER BETWEEN 295 AND 305 C.

II. FOUR BALL WEAR TEST:

30 minutes 60°C 20 Kg. (140°F.)

BALL # 1 SCAR 2.98

2 " ... 3.20

3 " ... 2.81

9.03 ... 3.03 (average) FACTOR 0.145
SCAR 0.439 mm

TABLE 131.

MORE OXIDATION REDUCTION TESTS ON PRODUCTS MADE

WITH WATER ADDITION DURING THE REACTION

I. T 38 -68

PRODUCT MADE WITH TETRA n BUTYL TITANATE / ZINCOCTOATE 83.5 g. 190 g.

IN PRESENCE OF 18 g.WATER T 38 -58

TEST MADE WITH ONE STRIP EACH OF COPPER ALUMINUM AND STEEL

TEST AT 200°C. (392°F.)

AIR FLOW 5 LITER PER HOUR .

AFTER 72 HOURS THERE WAS A MODERATE AMOUNT OF A SEDIMENTATION FLUID BROWN AND CLOUDY.

II. T 38-68

PRODUCT MADE WITH TETRA ISOPROPIL TITANATE / ZINC OCTOATE

285 g. 760 g.

IN PRSENCE OF 20 g.WATER

T 40-68

TEST MADE WITH ONE STRIP EACH OF COPPER ALUMINUM AND STEEL

TEST AT 198°C (388°F.)

AIR FLOW 5 LITER PER HOUR

AFTER 72 HOURS TEST THE MATERIAL WAS A DARK FLUID, BUT VERY VISCOUS AFTER COOLING TO R.T.

(Continued from page 37)

4. EMISSION SPECTROSCOPIC. TESTS COMPARING THE PRODUCTS MADE WITH DIFFERENT CATALYSTS.

The work has established earlier that the reaction between tetra isopropyl titanate and zinc octoate produces a better yield of complex matter when a catalyst is being used, such as aluminum chloride; and the emission spectra, show on these products a strongly increased intensity of the titanium lines. Then the use of titanium tetrachloride brought an improved exidation resistance test of the reaction product. Further-on the reaction in the presence of water brought a more complete freeing of the isopropyl groups and therefore a more complete new reaction product.

Now these products have been subjected to comparative emission spectroscope qualitative tests. The report from the spectrochemical laboratory indicates that the product made with titanium tetra chloride and the product made in the presence of water (T-38-79) have about the same intensity of the titanium lines. The intensity of the titanium line in the product made with aluminum chloride as catalyst (T 40-74) is considerably higher. The zinc line in all three products appears in about the same intensity.

The reason for these observations is still to be explored.

SECTION E. THE INTRODUCTION OF PHOSPHORUS GROUPS INTO TITANATE COMPOUNDS. (Continued from Report 2, Section D.)

INTRODUCTION.

In the preceding Sections the production of material for this project showed differences in their flash point and flame point characteristics primarily in respect to the degree of the complex formation in the product and the elimination of low cuts. The difference between the distillation ranges of the non complexed and the complexed materials is great enough to aim for a quite complete separation of the materials. This difference in distillation range goes parallel to the difference in flame points, and that allows a quite high range for the flame points of these materials.

Another aim of this group, however, is to explore the influence of the introduction of new groups which might act as additional flame retarders, or as factors to increase the self-extinguishing properties, or to obtain ultimately non-burning properties, under such conditions as might prevail in the hydraulic systems of airplanes, missiles or space craft. Groups which are under consideration here are the phosphorus group, the halogens, and the nitrogen groups, and ultimately perhaps, combinations between these groups, in the titanate fluids which are under development here.

This Section E is concerned with the further study of the introduction of phosphorus.

1. EXPERIMENTS USING TRI 2 ETHYL HEXYL PHOSPHATE

In TABLES 132-137 a tri octyl phosphate, or tri-2-ethyl hexyl phosphate is being reacted with either tetra isopropyl titanate or with tetra octyl titanate (tetra 2-ethyl hexyl titanate)-using either aluminum chloride or titanium tetrachloride as catalyst. The resulting products have a distillation range, under vacuum, of 203°/225°C. (397°/437°F.) In TABLE 135 where a special capillary was installed into the distillation a cut was obtained at 240°C. (464°F.) and up to 255°C.(491°F.).

These materials are to be studied further as possible viscosity reducing components for the products in order to replace the inhibited silicone fluids as viscosity reducer. The development is still under study.

SECTION E-1 USING TRI-2-ETHYL HEXYL PHOSPHATE.

TABLE 132.

RESUMED STUDIES ON THE INTRODUCTION OF PHOSPHATES INTO TITANATE COMPOUNDS

T 42 - 72

REACTING: TRI - 2 ETHYL HEXYL PHOSPHATE or TRI OCTYL PHOSPHATE (TOF)

WITH TETRA ISOPROPYL TITANATE (TPT)

IN THE PRESENCE OF ALUMINUM CHLORIDE AS CATALYST

USING: 120 g.TOF WITH 60 g.TPT IN PRESENCE OF -0.5 g. Al Cl
NO HEAT EVOLVED ON MIXING.

TIME min .	TEMPERATURE C.	VARIAC	PRESSURE mm .	VOLUME	REMARKS
min .					
_	25° (77	^o F) 45	2 - 10	-	BUBBLING GENTLY
35	30 (86)	F) 50		-	SAME
60	55 (121	Or) 55		-	BUBBLING RAPIDLY
85	128 (262	F) 55		-	DISTILLATE BEGAN
100	128 (262 140 (284	°F) 60			. CLEAR COLORLESS DISTILLATE
135	140	60		<u>63</u> ml	•
	- •				CUTI
140	110 (230	F) 60		_	TEMPERATURE DROP
155	170 (230	^о ғ) 60		3	DISTILLATE CLEAR, SLIGHTLY
165	200 (392	F) 60		23	YELLOW
		60		33	
175	200	0			
1 º 0	20 3 (397	F) 60		53	
185	203	60		73	
190	203	60		93	
195	203	60		103	
200	203	60		113	
200	20)	00			C U T II

. .

TABLE 133.

REACTING TETRA OCTYL TITANATE WITH TRI OCTYL PHOSPHATE WITH ALUMINUM CHLORIDE

CATALYST

T 42 - 79 USED: 1 part (60 g) TETRA 2 ETHYL HEXYL TITANATE (TETRA OCTYL TITANATE)

AND 2 parts (120 g) TRI 2 ETHYL HEXYL (OCTYL) PHOSPHATE

SMALL AMOUNT OF ALUMINUM CHLORIDE.

NO HEAT DEVELOPED ON MIXING.

TIME min .	TEMPERATURE °C.	VARIAC #	PRESSURE mm .	VOLUME	
_	27 ° (81°F)	40	2 -10	·-	BUBELING GENTLY
30	30 (86°F)	50		_	
45	30	60			
65	100 o	6 0		2	SLIGHTLY YELLOW DISTILLATE
80	150 (302 ₀ F)	60		5	
110	110 (230 F)	6 0		30	
120	110	60		40	_
					CUT I
140	150 190 (374°F)	60		10	A DARKER YELLOW MATERIAL
150	190 (3/4 F)	60		2 <u>0</u>	ATT ATT
155	210 (410°F)	60		10	CUT II
155 160	21.0	60		10	SOMEWHAT LIGHTER COLOR
170	210 220 (428 F)	60		40 60	
170		00		00_	CUT III
175	195 (383°F)	60		20	001 111
180	210	60		80	
190	215 (419°F)	60		100	
200	210	60		120	
210	210	60		140	
	. = •	-		-34	CUT IV.

CUT III/IV BASED HERE ON REACTING TRI OCTYL PHOSPHATE WITH

TETRA OCTYL TITANATE HAVE ABOUT THE SAME
DISTILLATION RANGE AS THE PRODUCT T 42-72 OF TABLE 132 WHERE THE
REACTION HAD BEEN MADE BETWEEN TRI OCTYL PHOSPHATE AND

TETRA ISOPROPYL TITANATE.

TABLE 134.

MORE REACTIONS BETWEEN TETRA 2 ETHYL HEXYL TITANATE (TETRA OCTYL TITANATE)

AND TRI 2 ETHYL HEXYL PHOSPHATE (TRI OCTYL PHOSPHATE)

WITH TITANIUM TETRA CHLORIDE AS CATALYST

I. T 42- 91 USED 60 g. TETRA OCTYL TITANATE

120 g TRI OCTYL PHOSPHATE AND

2 to 3 DROPS OF Ti Cl

SLIGHT HEAT DEVELOPMENT ON MIXING

TIME min	TEMPERATURE C .	VARIAC #	PRESSURE mm.	VOLUME ml	REMARKS
_	25°(77°F)	45	2- 10	_	SLIGHT BUBBLING
25	28 (82°F)	55		_	
6ó	95 (203°F)			2 0	LEAR, SLIGHTLY YELLOW FLUID
80	103 (217°F)	Í		5	,
100	135 (275°F)	60		10	
140	138 (280°F))		35	
					CUT I
160	200 (3 9 2°F)	60		_	BOILS VERY RAPIDLY
220	2 2 0 / 225	60		150 -18	O ml.LIGHT GREENISH YELLOW
	$(428^{\circ} / 437^{\circ}F)$			•	DISTILLATE COMING.
	(14.11=) 42.1 =)	•			DIFFICULT TO CONTROL
					BECAUSE OF SEVERE
					BUMPING.

II. T 42-92 REPEATED WITH MORE CATALYST

USED 40 g.TETRA OCTYL TITANATE WITH 80 g.TRIOCTYLPHOSPHATE AND 10 to 15 DROPS Ti Cl, SLIGHT HEAT FREED

- 15 45 70 90 110	25°(77°F) 27 (81°F) 39 (102°F) 80 (176°F) 93 (199°F) 195 (383°F)	45 50 45	2 -10	- - 4 5 10	STILL NOT BUBBLING SLIGHT BUBBLING CLEAR, SLIGHTLY YELLOW FLUID CLEAR DISTILLATE
112	195			20	411 T
120	205 (/ 01 ⁰ E)	50		10	CUT I CLEAR YELLOW FLUID
	205 (401°F) 210 (410°F)	50			ODBAR IBDDOW PDOID
140 160				30	
160	205			45	
	205 - 210 (401° - 410°F.)			80	_ YIELD IN CUT II

TABLE 135.

REACTING TETRA 2 ETHYL HEXYL TITANATE (TETRA OCTYL TITANATE)

WITH TRI 2 ETHYL HEXYL PHOSPHATE (TRI OCTYL PHOSPHATE)

IN PRESENCE OF TITANIUM TETRA CHLORIDE AS CATALYST

T-28 - 152

SHARPER FRACTIONATION.

USED: 120 g. TRI OCTYL PHOSPHATE

60 g. TETRA OCTYL TITANATE WITH 3-4 DROPS Ti Cl

IN THIS DISTILLATION A CAPILLARY WAS USED TO AVOID "BUMPING" AND TO GET A

TIME min.	TEMPERATURE C .	VARIAC #	PRESSURE	VOLUM	IE REMARKS	
-	28° (82°F)	45	5	_		
40	32 (90°F)	45	4	_		
55	73 (163°F) 55		_		
7 5	73	55	5	_		
90	73	55	ź	5	LIGHT YELLOW	
105	85 (185°F)	55	5	ź		
135	85 (185°F) 87 (189°F)	55 55	4 5 5 5 5 6	5 5 10		
150	86 (187°F)	55 55	ĺ.	10		
1)0			J		UTI	
165	90 (194°F) 120 (248°F)	55	11	_	, 0	
190	120 (2/80F)	60	8	10	CLEAR COLORLESS.	
	220 (428°F)	65	10		CHEAR COLORDBOO	
210	220 (420 1)	65	10	10	ë u T II	
	70 B 40 N B C N B				, 0 1 11	
	POT CONTENT S	LIPP AFE	r rhold, Dank	URANGE.	T DADE ODANGE DUNDED	OWED
215	235 (455°F)	65	8 - 10		l DARK ORANGE.BUMPED	OVER
					UTIII	
220	237 - 240	65	8 -10	25	STRAW COLORED	
225	240 (464 F)		8		COMING OVER NICELY	
235	240	70	8 8	75	•	
240	240	70	8	100		
245	240	70	8	125_		
				(UT III	
250	245 - 255 (473° - 4 9 1°	70 F.,)	8	40	ORANGE COLOR	
				DITT ILDAS		

TO BE REPEATED AS EVENTUAL DILUENT FOR THE

TETRALSOPROPYL TITANATE/ ZINC OCTOATE PRODUCT.

(Continued from page 47.)

In TABLES 136-137 the aluminum or titanate chloride catalysts were replaced by phosphorus pentoxide. The highest cut with aluminum chloride came over at 195°C (383°F), and with phosphorus pentoxide at 200°C (392°F.), indicating no essential difference between the effects.

2. USING AN ALIPHATIC AND AN AROMATIC PHOSPHATE (TABLES 138/139).

In TABLE 138 again a different approach is being used with the aim of introducing the phosphorus into the complex matter between the titanate and zinc octoate. At the same time it was taken into consideration that the organic aliphatic phosphate results with tetra alkyl titanate in fluids of a distillation range under vacuum of around 200°C. (392°F.). The aromatic phosphates, such as tri cresyl phosphate, result with tetra isopropyl titanate in solids. Here one-half aliphatic and one-half aromatic phosphate was reacted, and the resulting product was afterwards reacted with zinc octoate instead of reacting the zinc octoate with tetra alkyl titanate itself. In TABLES 138-139 a reaction product is obtained from a distillation range of above 300°C. (572°F.) under vacuum. This product is being studied further.

3. USING DI-2-ETHYL HEXYL PHOSPHORIC ACID. (TABLES 140-144).

Earlier, organo phosphoric acid was used in reaction with the alkyl titanate, in particular, di-2-ethyl hexyl phosphoric acid (Section D-1, Report 2.). Now the acid was first reacted with the alkyl titanate and the reaction product further reacted in zinc octoate. The resulting product varied with the ratio between the first reaction product and the zinc octoate. TABLE 140 shows that in reacting tetra octyl titanate with di-2-ethyl hexyl phosphoric acid and then reacting one part of the resulting material with 3 parts basic zinc octoate a product is being obtained with a distillation range of 310-320°C. (590°-608°F.), under vacuum, which was modified with benzyl alcohol and showed good results in oxidation-reduction tests of TABLE 144.

Phosphorus pentoxide was not successful in these tests. (TABLE 143.)

TABLE 136

MORE ABOUT THE REACTION BETWEEN TETRA ISOPROPYL TITANATE AND

TRI OCTYL PHOSPHATE

I. T 42- 100 REACTION WITH A L U M I N U M C H L O R I D E AS CATALYST

USED: 60 g.TETRA ISOPROPYL TITANATE
120 g.TRI OCTYL PHOSPHATE AND 0.5 g.A 1 C 12

TIME min.	TEMPERATURE C .	VARIAC #	PRESSURE	VOLUME	REMARKS	
	0 /0	==\				
-	25° (77°	F) 45	2-10	-		
30	105 (221°	F) 50		5	CLEAR COLORLES	S DISTILLATE
40	108 (226	F)		10		
60	115 (239°	F)		30		
70	115	·		40		
80	115			55		
150	80 (176°	F)		55 60		
	·	•			UT I	
180	120 (248 ⁰	F) 55		_		
200	120 (248° 180 (356°	F)		10		
220	180	60		20		
240	1 9 5(383°	F) 55		80		
250	195	., .,		120		
-70	-,,				T II	

II. T 42-103 SAME WITH PHOSPHORUS PENTOXIDE AS CATALYST USED: 60 g.TETRA ISOPROPYL TITANATE 120 g.TRIOCTYL PHOSPHATE AND 0.5 g. P. 05

-	25 (77°F)	40	2 - 10	_	
20	30 (86°F)			_	BOILING RAPIDLY
60	120 (248°F)	45		10	CLEAR AND COLORLESS
80	110 (230°F)	40		20	
100	100	30		30	COMES VERY RAPEDLY
105	95 (203 F) 50 (122 F)	30		40	
200	50 (122°F)	45		45	
220	120			45	
240	120			60	el. CUTI
380	125 (257°F)	55		120	CLEAR AND COLORLESS C U T II

THE 195 °C CUT DID HERE NOT APPEAR AS IN I. (WITH AL Cl_3) (383 °F)

TEST No. II IS TO BE REPEATED (TABLE 137.)

TABLE 137.

THE USE OF PHOSPHORUS PENTOXIDE IN THE REACTION BETWEEN

TRI OCTYL PHOSPHATE AND

TETRA ISOPROPYL TITANATE

T 42- 108

USED: 60 g . TETRA ISOPROPYL TITANATE

120 g TRIOCTYL PHOSPHATE

0.5 g PHOSPHORUS PENTOXIDE

NO HEAT UPON MIXING

TIME min.	TEMPERATURE C.	VARIAC #	PRESSURE mm.	VOLUME ml.	REMARKS
- 30 60 90 120	25 ° (77° I 100 100 110 (230 I 150 (302° I	45 55 F) 50	2–10	- BC 10 35	OILING GENTLY C U T I CLEAR DISTILLATE, STRONG
130 140 160 180 200 200 230	155 (311°1 160 (320°1 200 (392 1 200 190 (374°1 193 (379°1 185 (365°1	F) 45 F) 40 40 F) 40 F) 40		10 15 35 55 85 100 105	FOAMING, INSPITE OF CAPILLARY STRONG FOAMING C U T II

FLASH POINT OF DISTILLATE ... 85°C.(185°F)

TABLE 138

REACTING TETRA ISOPROPYL TITANATE WITH AN ALIPHATIC A N D AN AROMATIC

ORGANO-PHOSPHATE

I. T 42- 110 USED 60 g TETRA ISOPROPYL TITANATE

60 g TRI CRESYL PHOSPHATE A N D

60 g TRI OCTYL PHOSPHATE

NO HEAT EVOLVED UPON MIXING

TIME	TEMPERATURE	VARIAC	PRESSURE	VOLUME	REMARKS
min ,	C	#	mm ,	ml.,	
_	30 (86°F	') 40	2 - 1 0		
- 50	45 (113°F	45		I	DROP OF CLEAR FLUID
60	105 (221°F			5	DISTILLATE CLEAR YELLOW
80	130 (266°F	·) 40		10	
100	140 (284 F			25	
110	140	40		35	
140	130	40		50	
160	135 (275°F	') 40		52	
180	130	40		62	
190	1.30 o	40		72	
200	120 (248 F	') 40			JOF A DARKER DISTILLATE.

DISTILLATION DISCONTINUED IN ORDER TO AVOID SOLIDIFICATION.

II. T 42- 111 FURTHER REACTING THE DISTILLATE OF I WITH ZINC OCTOATE

USED 55 2 g DISTILLATE OF I

55 2 g ZING OGTOATE 1 8 %

COLOR CHANGED TO DARK RED AND HEAT EVOLVED

_	25(77°F)	45	2 - 1 0		
45	on (ገባ/ጃፑ)	50		2	DISTILLATE CLEAR, ALMOST COLORLESS
60	115 (239°F)	35]5	SLIGHTLY YELLOW
90	120 (248°F)			25	
110	120			35	
120	115			45	•
130	110 (230°F)			55	
135	170			65	
150	125 (257°F)	65		75	WHITE FUMES
	0				CUTI
180	185 (365 F)	65		_	
200	235 (455°F)	70		5	A DARKER DISTILLATE
210	260 (500 F)			25	•
220	270 (518°F)			25_	_
					CUTII
230	2 9 5(563°F)	70		1:0	A MATERIAL IS COMING WHICH APPEARS
	•				LIKE THE PRODUCT FROM TPT/ZnOCT.
240	295 o	70		15	·
260	250 (482°F)	70			TEMPERATURE DROPPING
p.55.		(TO BE REPEATED)		

TABLE 139.

REPEAT TEST: REACTING TETRA ALKYL TITANATE WITH AN ALIPHATIC A N D AN

AROMATIC ORGANOPHOSPHATE

I. T 42- 112 USED: 120 g TETRA ISOPROPYL TITANATE

120 g. TRI OCTYL PHOSPHATE AND

120 g TRI CRESYL PHOSPHATE

NO HEAT EVOLVED UPON MIXING.

TIME	TEMPERATURE	VARIAC	PRESSURE	VOLUME	REMARKS
min .	C 。	#	mm .	m 1 .	
_	30 (86°F) 30	2 - 1 0		
30	70 (158 ⁰	F) 35		-	
90	140 (284 ⁰	F) 30		20	YELLOW DISTILLATE
100	140	3 0		45	
120	1.40	30		70	
140	160 (320	F) 30		110	
160	155 (311	F) 30		130	
200	150 (302°	F) 30		140	
210	150	30		150	

II. REACTING 128.8 g. OF THIS DISTILLATE I WITH

128.8 g.ZINC OCTOATE 18%

T 42- 113

COLOR CHANGED TO DEEP RED UNDER HEAT DEVELOPMENT

-	27° (81°F)	40	3 mm	n .,
35	90 (184°F)	45	-	10 CLEAR DISTILLATE
45	95 (203°F)			20
60	100		2 mm	n 。 40
70	100			55
90	110 (230 F)			75
120	115 (239°F)			85
140	130 (266°F)			95 DISTILLATE CLEAR, BUT MORE
150	135 (275°F)		3 mm	
165	140 (284 ⁶ F)		4 mm	m. 125
180	150 (302°F)	50		140
210	230 (446°F)	60		155 A DARK REDDISH MATERIAL IS
	0			COMING OVER
240	290 (554°F)	70	4 mm	
	, 0			C U T I (123.3 g)
260	310/312°C.	70	4	ABOUT 120 ml PRODUCT COMING OVER
	(590°/594°F ₃)			· ·

IT IS PLANNED TO PURIFY THIS PRODUCT FURTHER. (IT HAS NOW

A FLAME POINT OF 240°C464°F)

SECTION E-3 .: USING DI-2-ETHYL HEXYL PHOSPHORIC ACID,

TABLE 140.

RESUMING REACTIONS BETWEEN ORGANO PHOSPHORIC ACIDS WITH TETRA ALKYL TITANATE

I. T 42-75. REACTING TETRA 2 ETHYL HEXYL TITANATE (TOT) WITH

DI 2 ETHYL HEXYL PHOSPHORIC ACID

REPEAT OF T 42-65 OF TABLE 94 IN THE II. REPORT

USING 282 g. TOT WITH

322 g .ACID HEAT DEVELOPED ON MIXING

TIME min	TEMPERATURE C	VARIAC	PRESSURE	VOLUME -ml.	REMARKS
_	30 ° (86° F) 45	2 -10	_	BUBBLING
20	90 (1 9 4°			5	DISTILLATE CLEAR, COLORLESS
40	100 o	50		15	ŕ
80	103 (217			25	
100	103	50		35	
120	103	50		55	
140	103	50		75	DISTILLATE MIGHT BE A
160	103	50		100	2 ETHYL HEXANOL MATERIAL
189	103	50		125	
200	103	50		145	

II. T 42-73

FURTHER REACTING THE FLASK CONTENT WITH BASIC ZINC OCTOATE
IN A 1:1 RATIO INSTEAD OF THE 1:3 RATIO OF T 42-66 (TABLE 94, II.REPORT)
USING 81.9 g .FLASK RESIDUE WITH
81.9 g. ZINC OCTOATE AND
0.5 g. Al Cl₃

N O HEAT ON MIXING

_	20 (68°F)	45	2 -10	- BUBBLING GENTLY
35	85 (185°F)			A FEW DROPS DISTILLATE
60	85 o	50 50		20 CLEAR COLORLESS DISTILL.
85	105 (221 F)	55		25
100	155 (311°F)	60		40
120	1.55	60		_55
				CUTI (36 g.)
140	155	60		20 YELLOW IN COLOR
180	155	60		40
200	155	60		50
210	155	60		60
230	155	60		70
240	155	60		75
•				CUT II. (52.8 g)

IN THIS 1:1 RATIO NO HIGH TEMPERATURE CUT WAS OBTAINED. THE FLASK CONTENT WAS COMPLETELY CHARRED.

IN THE 1:3 RATIO A CUT WAS OBTAINED BETWEEN 305° AND 320°C (580F/ 608°F)

TABLE 141

RESUMED STUDY OF THE REACTING PRODUCT BETWEEN TETRA OCTYL TITANATE AND DI 2 ETHYL HEXYL PHOSPHORIC ACID (T 42-75) OF TABLE 140.

TEST T 42- 78: USING 100 g FLASK RESIDUE OF TEST T 42-75 WITH

200 g BASIC ZINC OCTOATE R

RATIO : 1 : 2

IN PRESENCE OF 0.5 g ALUMINUM CHLORIDE CATALYST

NO HEAT ON MIXING .

TIME min.	TEMPERATURE C.	VARLAC #	PRESSURE	MJ . VOLUME	REMARKS
	24°(75°	E) 50	0.70		DUDDI THA
-	24 (75	<u>g)</u> 50	2–10		BUBBLING
15	55 (131)	F) 50		5	CLEAR COLORLESS LIQUID
20	55	50		10	
30	55	50		J.5	
45	80 (176)	F) 50		20	
80	120 (2480	F) 50		20	
9 <u>5</u>	140 (284°	F) 50		25	
12	240 (204	- /)	-		TI
110	160 (320°	F) 60		20	YELLOW CLEAR DISTILLATE
110	100 ()20	1, 00	-	A	T II
125	7.40	~0		00	1 14
135	140	50			
160	160	55		25	
200	200 (3 9 2°	50 55 F) 65		45	
245	250 (482°	F) 75		55	DISTILLATE DARKER
				Marie Marie Andrews	CUT III
270	26 5 (509	^O F) 75		15 A D	ARKER MATERIAL
	200 (3926	ธา์ ฑะ			ERATURE DROPPED AND THE POT
280	200 (392	r) /5			
				CONT	ENT APPEARED TO DECOMPOSE.

REVIEW: IN THE 1:1 RATIO OF TABLE 140 NO HIGH TEMPERATURE WAS OBTAINED.

IN THE 1:2 RATIO OF THIS TEST A SMALL YIELD OF HIGH TEMPERATURE CUT WAS OBTAINED.

IN THE 1:3 RATIO OF TABLE 94 (II.REPORT) A HIGHER YIELD OF HIGH TEMPERATURE CUT UP TO 320°C. (608°F)

TABLE 142

REACTING THE REACTION PRODUCT BETWEEN TETRA OCTYL TITANATE AND DI 2 ETHYL HEXYL P H O S P H O R I C A C I D (T42-45) OF TABLE 140 AGAIN WITH BASIC ZINC OCTOATE IN THE RATIO OF

1 : 3 (T 42-84)

USED: 1 part by weight (150 g) T 42-75

3 parts by weight ZINC OCTOATE with 0.5 g.ALUMINUM CHLORIDE.

TIME min	TEMPERATURE C.	VARIAC #	PRESSURE	VOLUME ml.。	
	27° (81°F	r) 50	2-10		BUBBLING
30	30 (86°F		2-20	_	SOBELING
60	95 (203 ^c			3	CLEAR COLORLESS FLUID
70	95	55		20	CABAR CODOIGNOO FECTO
80	90 (1 9 4°) 10155		30	
110	70 (194 90 (200 ⁰ t	1 100 1 60			
	98 (208 ⁸ F 150 (302°F	0) 60		40 50	WHITE FUMES
130	150 (302 F	3 60		60	MULIE LOMES
140	100(311 1	7 60			CUTI
140	170 (338°F	N 60		, ,	
160				45	SLIGHTLY YELLOW
180	170	60		80	
190	190 (374 F 185 (365 F 120 (248 F	7) 60		125	
210	185 (365°F	') 60		165	
240	120 (248°F	7) 65		180	
260	175 (347°F	r) 70		190	
300	200 (392 ⁰ F	r) 70		200	,
	0				C U T II (160 g _o)
310	220 (428 ⁰ F	י) 70		20	CLEAR YELLOW DISTILLATE
340 -	245 (473°F	·) 70		40	
3 60	255 (4 9 1 F	70		60	
	•				C U T III
380	3 0 0(572°F	r) 70		A DARK	VISCOUS PRODUCT IS COMING OVER
	PRODUCT ARRIVED		3 1 0 ° AN 1	320	o o c
			(590° and	d 608 ⁰ F	,)

THIS PRODUCT WAS FURTHER MODIFIED WITH BENZYLALCOHOL

IN TEST T 33 -89 AND THEN SUBJECTED TO AN OXIDATION

RESISTANCE TEST (TEST T 42-87).

TABLE 143.

USING PHOSPHORUS PENTOXIDE IN A REACTION BETWEEN

DI 2 ETHYL HEXYL PHOSPHORIC ACID T 42- 106

USED: 166 g DI 2 ETHYL HEXYL PHOSPHORIC ACID

71 g TETRA ISOPROPYL TITANATE AND

0.5 g.PHOSPHORUS PENTOXIDE

BENZENE ADDED

MUCH HEAT EVOLVED ON MIXING

TIME min .	TEMPERATURE C .	VARIAC #	PRESSURE mm.	VOLUME ml	REMARKS
- 30	25° (77°F) 35 (95°F)	30 40	ATM	3 50	CLEAR COLORLESS FLUID
60	75 (167°F)		2 - 1 0		UT I CLEAR COLORLESS FLUID FLASK CONTENT VISCOUS
90 120	78 (172 F) 80 (176 F)) 55) 55		20 45	IDADII OOMILANI VIDOOD
160 170 200 220 300	170 (338°F) 100 125 (257°F) 125 125) 65 40			TOAMING IN THE FLASK CLEAR DISTILLATE

THE FLASK CONTENT WAS SOLID FOR THE LAST 30 MINUTES. LOW TEMPERATURE CUT DISTILLATE CONTINUED TO COME OVER.

TABLE 144.

MORE OXIDATION RESISTANCE TESTS

I. THE 1:1 (BY WEIGHT) MIXTURE OF THE BENZYLAL-COHOL MODIFICATION OF THE T42-80

TETRALSOPROPYL TITANATE / BASIC ZING OGTOATE PRODUCT MADE WITH TITANIUM

TETRA CHIORIDE AS CATALYST / AND INHIBITED DOW SILICOME

FIUID 5 2 O PREPARED IN TABLE 100 OF THE ILLREPORT.

USED 38.4 g INHIBETED SILICOME FLUID AND 38.4 g T 42-80

WEIGHT OF EMPTY FLASK ... 195 3 g WITH 243 g MIXTURE

MIXTURE ACTUALLY USED . 47 7 g

WITH ONE STRIP EACH OF COPPER, ALUMINUM AND STEEL AT 2 0 0 CENTIGRADE

(392°F) WITH 5 LITER AIR / HOUR) VARIAC POSITION 45)

AFTER 72 HOURS DARKER IN COLOR . BUT STILL FLUID.

WEIGHT AFTER 72 HOURS 228 g LOSS : 15%

II. THE BENZYLALCOHOL MODIFICATION (* 35-89) OF THE REACTION PRODUCT T 42-82)
OBTAINED FROM FIRST REACTION TETRA ISOPROPYL TITANATE WITH

DI 2 ETHYL HEXYL PHOSPHORIC ACID (T 42-75) AND

THEN REACTING THIS PRODUCT WITH BASIC ZING OCTOATE (T 42-84)

WEIGHT OF SET UP BEFORE TEST 214 7 g.

AFTER TEST 210 9 g.

PRODUCT T 33-89 USAD ... 53.1 g , LOST 3.2 g , LOSS: 6 \$

STEEL BEFORE TEST 1 4207 g AFTER TEST < 1.4209 g LOSS ...-

COPPER BEFORE TEST. 0.4320 g. AFTER TEST: 0.4318 g. LOSS:0.046%

ALUMINUM BEFORE TEST 0.5361 g AFTER TEST : 0.5365 g LOSS.... -

SECTION F. THE INTRODUCTION OF CHLORINE GROUPS.

INTRODUCTION.

1. USING REACTIONS WITH 2_CHLOROETHANOL (TABLES 145-149)

The introduction of chlorine in these experimental materials was utilized by transesterifying the tetraisopropyl titanate with a halogenated alcohol, such as 2-chloro ethanol. TABLE 145 shows that such a transesterification takes place nearly quantitatively. This material was then complexed with zinc octoate instead of the halogen free titanate.

In TABLE 146 both reactions were carried out in one vacuum distillation. In TABLE 147 the earlier approach of TABLE 144 was taken up again. In none of these tests was it possible to obtain under vacuum the desired distillation fluid at a temperature range around 300°C. (572°F.). When the reaction product between the titanate and the zinc octoate was produced first (with Ti Cl₄ as catalyst), and 157 g. of this product was reacted with chloroethanol, the 300°C. (572°F.) product was obtained. (TABLE 148). That the material actually interreacted, and that the low cut in this Table did not represent a recovered chloroethanol, was seen in the fact that it had a different refractive index. This study was repeated in TABLE 149 and again the 300/310°C. (572°F.~590°F.) cut was obtained. That hereby the reaction flask material turned very dark in a different color than observed without the use of chloroalcohol is also to be observed. This study is being continued.

2. USING CHLORINE AND PHOSPHORUS IN THIS DI CHLORO PROPYL PHOSPHATE. (TABLE 150).

A solid reaction product which forms no flame in contact with an open flame, was obtained by reacting tetraisopropyl titanate with a tris di chloro propyl phosphate, a commercial material offered as "FR-2". (TABLE 150). This material represents an attempt to introduce phosphorus and chlorine simultaneously; but the fact that the reaction product is a solid, makes it not useful for this development. The work is to be continued with similar materials, to aim for a fluid titanium-oxygen and phosphorus and halogen product.

TABLE 145.

MODIFICATION OF THE TPT/ZINCOCTOATE COMPLEX MATTER

WITH 2 CHLOROETHANOL

I. REACTING TPT AND 2 CHLORETHANOL T 40-78

USED: 2 MOLES 2 CHLORETHANOL 161 g.

AND 1/2 MOLE TETRAISOPROPYL

TITANATE 142.5 g.

TIME min.	VARIAC	PRESSURE	TEMPERATURE C.	VOLUME ml	REMARKS
- 10 20 30 35	30	3.5	37 ⁰ (99 ⁰ 40 (102 40 40 60 (140	40) 40 80 120	ISOPROPANOL COMING OVER NO MORE FLUID COMING

CUT I 107 g. TRAPFLUID., 19 g. 126 g,

(PRODUCT HAS SLIGHT ODOR OF CHLOR ETHANOL)

Ti- (0 - C - CH) mol.wt.367 g.

THEORETICAL YIELD ... 183.5 g. ACTUAL YIELD 177 g.

II. REACTING THIS YIELDED MATERIAL (163 g) WITH

NEW PRODUCT ASSUMED TO BE

ZINC OCTOATE 22% Zn(378 g)

- 20	40	3.5	27 [°] (81 [°] F) – 170 (338 [°] F) –
25			170 20 CLEAR YELLOW LIQUID, ODOR
50	50	3.5	170 o 150 LIKE CHLOROETHANOL
70	70	3.5	185 (365 F) <u>170</u>
			CUT I
90	70	3⋄5	60 (140°F) –
110	70	3.5	200 (392°F) –
115	70	3.5	280 (536°F) - PRODUCT-LIKE MATERIAL APPEARS
120	70	3.5	290 (554°F) 10
140	70	3.5	290 EXTENSIVE DECOMPOSITION INFLASK

TABLE 146.

MORE ATTEMPTS TO INTRODUCE A CHLORINE GROUP INTO THE TITANATE PRODUCT

III. T 38 - 76

FIRST ADDED 67.5 g.2 CHLOROETHANOL TO

72 g. TETRA ISOPROPYL TITANATE.

MIXTURE TURNED VERY HOT

HERE ADDED 190 g. ZINC OCTORTE (NOT MUCH TEMPERATURE CHANGE)

AGAIN ADDED: 4.5 g. WATER MORE HEAT RELEASED

TIME min.	TEMPERATURE VARIAC	PRESSURE	VOLUME ml	REMARKS
	27° (81°F) 40	2-10	_	
30	35 (95°F) 45	2-10	5	ASSUMED TO BE ISOPROPANOL
40	/O (10/°F)/5		15	ADDUMENT TO DE IDOURNI ANOD
50	42 (108 F) 45		25	
60	40 (104°F)45 42 (108°F) 45 38 (100°F) 50		33	
00				UT I: 26 g.AND 15 g.IN TRAP
66	65 (149°F) 50 75 (167°F)		5	21 27 ~ 80.20.2 27 8 210.
75	75 (167°F)		20	
85	80 (176°F)		25	ASSUMED TO BE 2 CHLOROETHANOL
90	82 (180°F)		30	
100	84 (183°F)		35	
	•			CUT II 35 g AND 5 g IN TRAP
120	110 (230°F) 60		5	
133	124 (255°F) 136 (277°F)		15	YELLOW LIQUID
140	136 (277°F)		20	•
145	149 (300°F)65		25	
150	149 (300°F)65 172 (342°F)70		30	
154	181 (358°F)		35	_
			-	CUT III
170	140 (284°F)70 110 (230°F)		-	
180	110 (230°F)		_	
195	2 1 0 (410°F)70		วั	DARK BROWN , SLIGHTLY VISCOUS
208	208 (406°F)		15	· ·
210	2 1 0 (410°F)70 208 (406°F) 205 (401°F)		25	
220	180 (356°F)	• "	30	_
				CUTIV 30 g.
				BURNS ON END OF SPATULA IN

FLASK CONTENT SOLIDIFIED INTO BROWN SOLID

OPEN BUNSEN BURNER

TABLE 147. ATTEMPTS TO INTRODUCE A CHLORINE GROUP INTO THE TITANATE

I. T 38- 72

REACTING	TETRA		TITANATE	WITH	2	CHLOROETHANOL	3/2 moles
	,) g ,				CH ₂ - Cl	144 g.
						CH2 - OH	

LARGE AMOUNT OF HEAT EVOLVED UPON MIXING

TIME MIN	TEMPERATURE C	VARIAC	PRESSURE	VOLUME	REMARKS
_	24°(75°)	E) 30	ATM	_	
40		F)40		10	
50	84 (183	F) 45		35	
62	86 (187°	F) 45		60	
76	- A U	F) 50		85	ASSUMED TO BE ISOPROPYL
94		F) 50		95	ALCOHOL
105	88	55		110	
120	90	55		120	
125	94	55		125	
135	98	55		130	ml. CUT I 98 g.

AS ALCOHOL IS BEING DRIVEN OFF THE REACTION MIXTURE TURNS DARKER

II. T 38-74

REACTING THE PRODUCT OF I. 88 g. WITH

ZINC OCTOATE......190 g IN PRESENCE OF 4.5 g WATER

SLIGHT HEAT NOTED ON MIXING OF I. WITH ZINCOCTOATE AND MORE ON ADDING THE WATER

	27 [°] (81°F)	40 2-10	_	
30	45 (113°F)		10	ODOR OF 2 CHLOROETHANOL
60	50 (122°F)		20	
70	58 (136 F)	45	25	CUTI
· 80	80 (176°F)	50	5	
90	100	60	8	CLEAR LIQUID SLIGHTLY
110	100		13	YELLOW
120	100	65	16	CUTII
140	180 (356 ⁰ F)	70	10	
150	185 (365 ⁰ F)	75	20	ORANGE LIQUID
<u> 160</u>	190 (374°F)		_30	C U T III
170	140 (284°F)	75	5	DARK BROWN CLOUDY LIQUID
180	130 (266°F)	80	10	
		POT SOLIDIFIED		

TO BE REPEATED

TABLE 148.

A MODIFICATION REACTION OF THE TETRA ISOPROPYL TITANATE/ZINCOCTOATE

REACTION PRODUCT (WITH Ti Cl, AS CATALYST) USING 2 CHLOROETHANOL

I. APPROACH T 43 -1

USING 157 g REACTION PRODUCT PREPARED AS T 42-95 (TABLE 111).

60 g 2 CHLOROETHANOL

TIME	TEMPERATURE	VARIAC	PRESSURE	VOLU	4E	REMARKS
min .	C 。	#	mm "	I	nl.	
	30 0 (860	F) 0	7		-	-
15	35 (95°F	·) 40	7		LO	CLEAR COLORLESS FLUID
25	33 (9 1°F	·)	7		35	
40	33	•	7		45	
65	33		7		55	
90	30		6		55	
	•			•	~43	CUT I 44 g.
120	55 (131°	F) 55	7			
145	87 (189°	F)	7		-	
160	110 (230°	F)	7		_	
175	133 (271°	F)	5		2	CLEAR YELLOW LIQUID
190	155 (3110	F) 60	5		3	
230	146 (295	F) 65	5		6	
325	75 (167°	F)	5		8	
	•	·	•	-		CUT II 7.9 g.
475	1.20 (248.º	F) 70	6			SOME CLEAR YELLOW FLUID
545	3 0 5 (581	OF)	6			STARTS TO COME UP, BUT THE
5 7 5	290 (554		6	TEST SE	er t	P DOES NOT GIVE HIGH ENOUGH
2.2	~/0 ()/4	/	•			TEMPERATURE TO COMPLETE THE
						DISTILLATION.

COMPARISON OF THE REFRACTOVE INDICES:

2 CHLOROETHANOL	24 N	1.,4380
C U T I (ABOVE)		1.4389
C U T II (ABOVE)		1 4459

TABLE 149.

MORE MODIFICATION TESTS FOR THE REACTION PRODUCT BETWEEN TETRAISOPROPYL

TITANATE AND ZINCOCTOATE (Ti Cl CATALYST) WITH 2 CHLOROETHANOL

II. T 43- 4 USING 196 g PRPDUCT T 43-2) AND

100 g . 2 CHLOROETHANOL

NO HEAT EVOLVED ON MIXING

DISTILLATION WITH CAPILLARY

TIME	TEMPERATURE	VARIAC	PRESSURE	VOLUME	REMARKS
min.	C .	#	mm 。	ml "	
	28 0 (83°F)	45	2-10	-	
20	35 (95 ⁶ F)	50		10 CL	EAR
35	30			50 LI	GHT YELLOW
45	30			70	
90	27			_80	
					TI
120	162 (323°F)) 55		- LIGH	T YELLOW FLUID COMING
135	143 (289°F))		10	
195	70 (158°F))		20	
				CUT	II
215	43 (109°F)) 55		- POT	VERY DARK
275	180 (356 F))		_	
295	180			- (U	SING NOW ELECTRIC BANDHEATER
325	180			- T (O GET MATERIAL OVER) VARIAC 45
342	3 0 0 (572°F)	75	2- 10	" -	•
355	305 (581°F)	75		PRO	DDUCT COMING OVER
365	3 1 0 (590°F)	75			AN AMBER CLEAR FLUID

FLASH POINT OF PRODUCT 285°C 545°F.

FLAME POINT OF PRODUCT 310°C ... 590°F.

III. T 43-6 R E DISTILLATION OF ABOVE PRODUCT.

SINCE THE PRODUCT TURNED CLOUDY UPON STANDING FOR A FEW DAYS, IT WAS WASHED WITH ACETONE AND BENZENE AND THE SOLVENT DISTILLED OFF AT ATMOSPHERIC PRESSURE.

THEN CONTINUED UNDER VACUUM

	30°(86°F) 35 (95°F)	.50 2 -10	-
20	35 (95 ⁰ F)	65	-
50	35	65	-
200	260 (500°F)	75	-
230	260 (500°F) 3 0 5 (581°F)	80	10 ml . CLEAR, LOW VISCOUS YELLOW
			MATERIAL CUT I
	305/320		75 ml. PRODUCT
	(581°/608°F。)		

REMAINS CLEAR ON STANDING.

TABLE 150.

REACTING TETRA ISOPROPYL TITANATE WITH CHLORINE CONTAINING ORGANO PHOSPHATE

USING TRIS DI CHLORO PROPYL PHOSPHATE

" TR R - 2 "

I. TEST T 42 - 93

USED 72 g TETRA ISOPROPYL TITANATE

108 g .TRIS DICHLOROPROPYL PHOSPHATE

0.5 g ALUMINUM CHLORIDE CATALYST

N O HEAT ON MIXING. CLOUDY FLASK CONTAINER TURNS EVEN MORE CLOUDY ON ADDITION OF THE ALUMINUM CHLORIDE.

TIME min .	TEMPERATURE C .	VARIAC #	PRESSURE	VOLUME ml.	REMARKS
30	25° (77°F) 28 (82°F)	40 40	2-10	-	BOILING SLIGHTLY
40	50 (122 F)			_	11 11
60	110 (230°F)			-	BOILING MORE RAPIDLY.FLASK CONTENT NOW CLEAR
120 130	150 (302°F) 155 (311°F)	1		10 15	CLEAR, SLIGHTLY YELLOW FLUID
140 160	160 (320°F)	ı I		35 40	WHITE FUMES
170	145 (293°F)			75	CUTI
190	120 (248°F)	40		25	DISTILLATE DARKER FLASK CONTENT DEEP VIOLET TURNS INTO A HARD, DRY MATTER.

THIS DRY SOLID REACTION PRODUCT FORMS IN AN OPEN FLAME

II. TËST T 42-93; MIXED 72 g. TETRA ISOPROPYL TITANATE AND 108 g. TRIS DICHLOROPROPYL PHOSPHATE AND 0.5 g. ALUMINUM CHLORIDE I N 40 g. BENZENE

	. 0 .	NO HEAT	ON	MIXING. NOT	CLOUDY AS	ABOVE.
-	27 9 (81 JF)	40		ATM.	-	BOILING SLIGHTLY
30	80 (176°F)	60			20 m l.	BENZENE COMING
40	80 , o ,				34 ml	CUT I
45 60	40 (104 F)	40	•	2 - 1 0	-	•
60	80 176°F)				-	
100	100				_	
120	130 (266°F)				5 ml.	CLEAR, SLIGHTLY YELLOW FLUID
140	140 (284°F)				15 °	*
120 140 160	142 (288°F)				25	
180	140				35	
200	130				60	
210	125 (257°F)				_80_	CUT II
220	115 (239°F)	40				ARKER DEEP VIOLET MATERIAL

POT MATTER HAS NOT CHARRED WHEN DISTILLATION WAS HALTED, BUT ON COOLING TURNS INTO A HARD SOLID AGAIN

SECTION G. REACTING THE TITANATE/ZINC OCTOATE PRODUCT WITH TETRA BUTYL TIN. INTRODUCTION

In the preceding project the product obtained from tetra isopropyl titanate and basic zinc octoate was reacted with certain tetra alkyl silanes, and it produced a new product which had more desirable qualities than before. A larger sample of this new product, diluted with inhibited silicone fluid, was tested in the Philadelphia Naval Laboratory with interesting and desirable properties. This was reviewed on pages 1 and 2 of Report No. 2 of this project.

The tetra alkyl silane which had been used at that time was a di-n-dodecyl di-n-octyl silane, or a silane with two different alkyl groups, each alkyl group in two positions. (Newer work which will be reported in the next report will review the effect of other silanes, having assymetrically selected alkyl groups.)

In the present study tetra alkyl tin was used instead of tetra alkyl silane. A commercially available tetra butyl tin was selected. First a complex fluid was carefully produced from 1/3 mole zinc octoate-22% and 1/2 mole tetra isopropyl titanate, with aluminum chloride as catalyst; and this product was obtained at a constant temperature of 295°C. (563°F.) at 2-mm. Hg. pressure.

Two hundred grams of this product was then further reacted with 60 g. tetra butyl tin in 60 g. benzene, and a reaction product came over under 2.5 mm. Hg. pressure at a temperature of 340°C. (644°F). This product appears very interesting and will be investigated further.

The material was studied by emission spectrographic analysis. Hereby the product of TABLE 151-I (that means, before tin modification) was compared with the tin modification of TABLE 151-II. The report of the spectroscopist reads "Comparison of the samples indicates that the tin did enter the compound. The zinc lines were not affected but the titanium lines were suppressed considerably". The meaning of this observation is still to be studied.

TABLE 151.

THE I.PREPARATION OF A REACTION PRODUCT BETWEEN THE TETRA ISOPROPYL TITANATE-

. ZINC OCTOATE REACTION PRODUCT AND TETRA BUTYL TIN

i. PREPARATION OF THE TPT/ZINCOCTOATE PRODUCT WITH ALUMINUM CHLORIDE T 40 - 74

USED 1/3 mole (378.4 g) ZINC OCTOATE 22% Zn 1/2 mole (142.6 g) TETRA ISOPROPYL TITANATE 0.5 g ALUMINUM CHLORIDE

TIME	PRESSURE	VARIAC	TEMPERATURE	VOLUME	REMARKS
min_	nn .	I II	C	ml.	
	2,5	60 -60	27 ° (81°F)	
60	2.5	60-60	95 (203°F) –	CLEAR YELLOW FLUID APPEARS
80	2,5	60- 60	110 (230°F) 40	
110	2.5	60-60	110	110	
130	2.5	60–60	110	160	CUTI
160	2.5	60-60	160 (320°F)		DARK YELLOW FLUID APPEARS
170	2.5	60-60	180 (356°F)	30	FLUID IS REDDISH
<u> 190 </u>	2.5	60-60	210 (410°F)	45	CUTII
220	2.5	60-60	280 (536°F)	_	PRODUCT APPEARS
230	2.5	6 0 –60	295 (563°F)	30	CLEAR GOLDEN COLOR
240	2.5	60-60	295	80	
250	2.5	6 0- 60	295	95	
260	2.5	60-60	295	110	
280	2.5	70-70	295	150	
290	2.5	70-70	295	200	
320	2.5	70-70	295	300 ml	<u>- </u>

YIELD ... 325 g . ABOUT 8 O % YIELD AT

CLOSE TEMPERATURE RANGE

II. REACTING 200 g.OF THIS PRODUCT WITH 60 g. TETRA BUTYL TIN IN 60 g. BENZENE

T 40-77

TIME min,	VARIAC	PRESSURE	TEMPERATURE C .	VOLUME	REMARKS
	40	3.5	27 ° (81°F		
10	70	3.5	37 (99°F)		LEAR COLORLESS FLUID
40	70	3.5	39 (102°F)		DISTILLS
70	70	3.5	170 (338°F)		LEAR COLORLESS FLUID
90	70	3.5	170	_	
120	90	3,5	170		PERATURE BEGINS DROPPING
140	90	3 ⋄5	45 (113°F)	S	T THE TAIL END OF THIS CUT OME YELLOW COLOR APPEARED APID RISE OF TEMPERATURE
160	90	3.5	310 (5 9 0°F)		in 15 these of the start start of the
180	90	3.5	330 (626°F)	30	
230	90	3.5	3 4 0 (644°) TOTAL YIELD	r)120 M (OST OF THE PRODUCT CAME AT ONSTANT TEMPERATURE : 340°C
		7 0 。			(644°F.)

SECTION H. SOME MORE WORK ON THE INHIBITED SILICONE FLUID 510.

The work of TABLE 152 follows the same pattern as in TABLES 99/100 of the preceding Report No. 2; but here a new factor has been introduced: When the fluid came from the inhibition treatment with Cerium 2 ethyl hexanoate in a dark orange color and was filtered through a Linde Molecular Sieve, Type 13X Powder, it turned lighter in color. It was of interest, therefore, to know if this lighter color might be accompanied by a decrease in Cerium content.

For this reason the unfiltered material and the filtered material were submitted to an emission spectrometer test. (SpectroChem Laboratories, Inc., Franklin Lakes,N.J.) The report of the laboratory of November 9, 1962 reads as follows: "The intensity of the Cerium lines did not change by filtering the Silicone Fluid through the molecular sieve".

TABLE 152.

MORE STUDIES ON THE INHIBITING OF SILICONE FLUID 510

I. NEW PREPARATION OF THE CERIUM 2 ETHYL HEXANOATE . T 40 - 75

NEUTRALIZED 34.6 g. 2 ETHYLHEXANOIC ACID WITH NaOH (2 N).

DISSOLVED 21.92 g. CERIUM AMMONIUM NITRATE IN 95% ALCOHOL.

MIXED AND COLLECTED THE GREENISH PRECIPITATE.

DISSOLVED THIS PRECIPITATE IN A MIXTURE OF ETHYL ETHER AND BENZENE.

FILTERED THE SOLUTION AND EVPORATED THE SOLVENTS BY HEATING ON STEAM BATH.

DRIED THE GREEN CRYSTALS.

II. PREPARED THE INHIBITED SILICONE FLUID BY T 40-76

HEATING 1.6g2-ETHYL HEXANOATE CERIUM SALT (PREPARED IN I)

12.8 g .COPPER INHIBITOR 65 DU PONT

800 g.SILICONE FLUID DOW 510 -50

HEATED AT 285 C UNDER AIRSTREAM OF 40 LITER / HOUR (545 F.)
4 x 24 HOURS.

THE FLUID IS DARK ORANGE IN COLOR.

WEIGHT LOSS: 83 g . OR 1 O . 5 % WEIGHT LOSS DURING TREATMENT

THE MATERIAL TURNED LIGHTER IN COLOR WHEN FILTERED THROUGH LINDE MOLECULAR SIEVE TYPE 13 X POWDER.

REFRACTIVE INDICES: THE NOT INHIBITED FLUID 1.4224

THE INHIBITED FLUID 1.4224

THE FILTERED INHIBITED FLUID.. 1.4224.

AT 24 C.

FLASH POINT OF FLUID ... 340 $^{\circ}$ C. (644 $^{\circ}$ F) .

WORK SCHEDULED FOR THE NEXT REPORT PERIOD.

In the new work period the following subjects will be pursued:

- 1. Further studies on different experimental materials with respect to the rate of flashing and self extinguishing properties before sustained burning occurs.
- Aiming to introduce additional groups to further delay the sustained burning, such
 as by introducing phosphorus derivatives.
- 3. As 2) but introducing halogen groups alone or together with phosphorus.
- 4. As 2) but introducing nitrogen groups alone or together with phosphorus, or phosphorus and halogen.
- 5. Reacting the titanate zinc octoate compound with tetra alkyl tin, or di alkyl di chloro tin, or similar products.
- 6. Similar as 5), but using borates.
- 7) Similar as 5), but using tetra alkyl silanes, in particular, unsymmetrical alkyl silane, or an aliphatic/aromatic silane.