

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

# Traffic flow with bicycle lanes and bike boxes: A cellular automaton

A project by:
Louis Bettens
Manuel Dublanc
Carolin Heinzler

Class Report for Complex Social Systems: Modeling Agents, Learning, and Games



#### Agenda:

Introduction Literature The Model The Simulation Results and Hypotheses Challenges

### Introduction

Safe cycling through
Transport planning
& Simulation

#### Bike Boxes or Advanced Stop Lines



#### The Nagel-Schreckenberg Model

- 1. Acceleration: If the velocity v of a vehicle is slower than its max velocity and the gap to the next vehicle is larger than v + 1, its speed is updated to v + 1
- 2. Slowing down: If the distance to the next vehicle is j and j<v, the vehicle's speed is updated to j 1
- 3. Randomization: With given probability p (called the slowdown probability) the vehicle decreases its velocity by 1
- 4. Vehicle motion: All vehicles are advanced v sites (according to their updated velocity of steps 1-3)

#### The Nagel-Schreckenberg Model<sup>1</sup>

- 1. Acceleration
- 2. Slowing down
- 3. Randomization
- 4. Vehicle motion



Fig.1. — Simulated traffic at a (low) density of 0.03 cars per site. Each new line shows the traffic lane after one further complete velocity-update and just before the car motion. Empty sites are represented by a dot, sites which are occupied by a car are represented by the integer number of its velocity. At low densities, we see undisturbed motion.

#### The Nagel-Schreckenberg Model<sup>1</sup>

- 1. Acceleration
- 2. Slowing down
- 3. Randomization
- 4. Vehicle motion



#### Adaptions to the original Model:

- Agents moving on a lattice (2 dimensional model)<sup>1</sup>
- Heterogeneous vehicles<sup>2</sup>
- Road with Bicycle Lane and interactions<sup>3</sup>

<sup>1</sup>Debashish Chowdhury and Andreas Schadschneider. "Self-organization of traffic jams in cities: Effects of stochastic dynamics and signal periods". Phys. Rev. E 59 (2 Feb. 1999), R1311–R1314. doi: 10.1103/PhysRevE.59.R1311

<sup>2</sup>Dirk Helbing and Michael Schreckenberg. "Cellular automata simulating experimental properties of traffic flow". Phys. Rev. E 59 (3 Mar. 1999), R2505–R2508. doi: 10.1103/PhysRevE.59.R2505.

<sup>3</sup>Jelena Vasic and Heather J. Ruskin. "Cellular automata simulation of traffic including cars and bicycles". Physica A: Statistical Mechanics and its Applications 391.8 (2012), pp. 2720–2729. issn: 0378-4371. doi: https://doi.org/10.1016/j.physa.2011.12.018.

#### The Model

- Lattice of 270 × 270 cells
- Open boundary conditions
- Vehicles moving in 1 direction only
- Intersections with traffic lights
- Heterogeneous vehicles:
  - CARS:
     2\*2 cells, max speed 5 cells/time step
  - BIKES:
     1\*1 cell, max speed 3 cells/time step
- 1 time step: 1 second, 1 cell: 3,5 m
- Visualisation with tuning parameters

#### The Simulation

#### Shared Roads

- Cars & Bikes share road with no protected bicycle space
- No overtaking

#### Bicycle Lanes & Bike Boxes

- Bike Lane and Bike box implemented
- Increase safety
- Prioritize bikes

Goal: compare in terms of

- average maximum velocity
  - traffic flow

For cars and bikes respectively

## The Simulation

The Simulation in the Web interface

# Results and Hypotheses

Make statements about and quantify the improvement of traffic flow and prioritizing bicycles in traffic

#### **Expectation:**

- Improved flow for bicycles with bike lanes and bike boxes
- Bike Boxes prioritize bicycles at intersections

# Challenges

- Generation of new agents:
   Dynamic number of agents
- Length of streets:
   If the first road in the simulation is full, no new agents
- Statistics:
   Generating statistics for dynamic number of agents

# Challenges

- Traffic lights:
   Not adaptive, e.g. green wave for bikes
- Look ahead for collisions
- Rules for bike boxes

# Thank you for your attention Ride safely