Lecture 5: GPU Programming

CSE599W: Spring 2018

Typical Deep Learning System Stack

User API

High level Packages

Programming API

Gradient Calculation (Differentiation API)

System Components

Computational Graph Optimization and Execution

Runtime Parallel Scheduling

Architecture

GPU Kernels, Optimizing Device Code

Accelerators and Hardwares

Typical Deep Learning System Stack

High level Packages

Programming AP

Gradient Calculation (Differentiation API)

Computational Graph Optimization and Execution

Runtime Parallel Scheduling

Architecture

GPU Kernels, Optimizing Device Code

Accelerators and Hardwares

Overview

- GPU architecture
- CUDA programming model
- Case study of efficient GPU kernels

Streaming Multiprocessor (SM)

GPU Architecture

Theoretical peak FLOPS comparison

Theoretical single precision GFLOP/s at base clock

CPU memory hierarchy

CPU memory hierarchy

CPU memory hierarchy

GPU memory hierarchy

CPU memory hierarchy

GPU memory hierarchy

Core
Reg
L1 cache
L2 cache

Intel Xeon E7-8870v4 Cores: 20

Reg / core: ??

L1 / core: 32KB

L2 / core: 256KB

L1 / SM: 48 KB

Titan X Pascal

Cores / SM: 128

Reg / SM: 256 KB

SMs: 28

Sharedmem / SM: 64 KB

SM

Reg

L1 cache
Shared memory
Read-only cache

L3 cache

L3 cache: 50MB

L2 cache: 3 MB

L2 cache

DRAM

DRAM: 100s GB

GPU DRAM: 12 GB

GPU DRAM

Price: \$12,000

Price: \$1,200

CPU memory hierarchy GPU memory hierarchy Intel Xeon E7-8870v4 Titan X Pascal Core Cores: 20 SMs: 28 SM Cores / SM: 128 Reg / core: ?? Reg Reg / SM: 256 KB Reg L1 / core: 32KB L1 cache Shared Read-only L1 / SM: 48 KB L1 cache cache memory L2 / core: 256KB Sharedmem / SM: 64 KB L2 cache More registers than L1 cache L2 cache L3 cache L3 cache: 50MB L2 cache: 3 MB DRAM: 100s GB GPU DRAM: 12 GB DRAM **GPU DRAM** Price: \$12,000 Price: \$1,200

CPU memory hierarchy

GPU memory hierarchy

Core Reg L1 cache L2 cache

Intel Xeon E7-8870v4 Cores: 20 Reg / core: ??

L1 / core: 32KB

L2 / core: 256KB

Titan X Pascal SMs: 28

> Cores / SM: 128 Reg / SM: 256 KB

L1 / SM: 48 KB

Sharedmem / SM: 64 KB

L1 cache controlled by programmer

L3 cache L3 cache: 50MB

L2 cache: 3 MB

L2 cache

DRAM

DRAM: 100s GB

GPU DRAM: 12 GB

GPU DRAM

Price: \$12,000

Price: \$1,200

GPU Memory Latency

Registers: R 0 cycle / R-after-W ~20 cycles

L1/texture cache: 92 cycles

Shared memory: 28 cycles

Constant L1 cache: 28 cycles

L2 cache: 200 cycles

DRAM: 350 cycles

(for Nvidia Maxwell architecture)

* http://lpgpu.org/wp/wp-content/uploads/2013/05/poster_andresch_acaces2014.pdf

Memory bandwidth comparison

Nvidia GPU Comparison

GPU	Tesla K40 (2014)	Titan X (2015)	Titan X (2016)
Architecture	Kepler GK110	Maxwell GM200	Pascal GP102
Number of SMs	15	24	28
CUDA cores	2880 (192 * 15SM)	3072 (128 * 24SM)	3584 (128 * 28SM)
Max clock rate	875 MHz	1177 MHz	1531 MHz
FP32 GFLOPS	5040	7230	10970
32-bit Registers / SM	64K (256KB)	64K (256KB)	64K (256KB)
Shared Memory / SM	16 KB / 48 KB	96 KB	64 KB
L2 Cache / SM	1.5 MB	3 MB	3 MB
Global DRAM	12 GB	12 GB	12 GB
Power	235 W	250 W	250 W

CUDA Programming Model

Programming model: SIMT

- **SIMT**: Single Instruction, Multiple Threads
- Programmer writes code for a single thread in simple C program.
 - All threads executes the same code, but can take different paths.

Programming model: SIMT

thread block

- **SIMT**: Single Instruction, Multiple Threads
- Programmer writes code for a single thread in simple C program.
 - All threads executes the same code, but can take different paths.
- Threads are grouped into a block.
 - Threads within the same block can synchronize execution.

Programming model: SIMT

- **SIMT**: Single Instruction, Multiple Threads
- Programmer writes code for a single thread in simple C program.
 - All threads executes the same code, but can take different paths.
- Threads are grouped into a block.
 - Threads within the same block can synchronize execution.
- Blocks are grouped into a grid.
 - Blocks are independently scheduled on the GPU, can be executed in any order.
- A kernel is executed as a grid of blocks of threads.

Kernel Execution

- Each block is executed by one SM and does not migrate.
- Several concurrent blocks can reside on one SM depending on block's memory requirement and the SM's memory resources.

Kernel Execution

- A warp consists of 32 threads
 - A warp is the basic schedule unit in kernel execution.
- A thread block consists of 32-thread warps.
- Each cycle, a warp scheduler selects one ready warps and dispatches the warps to CUDA cores to execute.


```
100: ...
101: if (condition) {
102:
103: } else {
104:
105: }
warp
```

pc: 100 time

```
100: ...
101: if (condition) {
102: ...
103: } else {
104: ...
105: }
```


pc: 100 pc: 101

```
100: ...
101: if (condition) {
102: ...
103: } else {
104: ...
105: }
```


pc: 100 pc: 101 pc: 102

```
100: ...
101: if (condition) {
102: ...
103: } else {
104: ...
105: }
```


pc: 100 pc: 101 pc: 102 pc: 104

```
100: ...
101: if (condition) {
102: ...
103: } else {
104: ...
105: }
```


pc: 100 pc: 101 pc: 102 pc: 104 pc: 105

Thread Hierarchy & Memory Hierarchy

GPU memory hierarchy

Example: Vector Add

```
// compute vector sum C = A + B
Void vecAdd_cpu(const float* A, const float* B, float* C, int n) {
   for (int i = 0; i < n; ++i)
        C[i] = A[i] + B[i];
}</pre>
```

Example: Vector Add

```
// compute vector sum C = A + B
Void vecAdd cpu(const float* A, const float* B, float* C, int n) {
    for (int i = 0; i < n; ++i)
       C[i] = A[i] + B[i];
 global void vecAddKernel(const float* A, const float* B, float* C, int n) {
    int i = blockDim.x * blockIdx.x + threadIdx.x;
    if (i < n) {
       C[i] = A[i] + B[i];
```


Example: Vector Add

Example: Vector Add

Suppose each block only includes 4 threads: blockDim.x = 4

Example: Vector Add (Host)

```
#define THREADS PER BLOCK 512
void vecAdd(const float* A, const float* B, float* C, int n) {
    float *d A, *d B, *d C;
    int size = n * sizeof(float);
    cudaMalloc((void **) &d A, size);
    cudaMemcpy(d A, A, size, cudaMemcpyHostToDevice);
    cudaMalloc((void **) &d B, size);
    cudaMemcpy(d B, B, size, cudaMemcpyHostToDevice);
    cudaMalloc((void **) &d C, size);
    int nblocks = (n + THREADS_PER_BLOCK - 1) / THREADS_PER_BLOCK;
    vecAddKernel<<<nblocks, THREADS_PER_BLOCK>>>(d A, d B, d C, n);
    cudaMemcpy(C, d C, size, cudaMemcpyDeviceToHost);
    cudaFree(d A); cudaFree(d_B); cudaFree(d_C);
```


Example: Vector Add (Host)

```
#define THREADS PER BLOCK 512
void vecAdd(const float* A, const float* B, float* C, int n) {
    float *d A, *d B, *d C;
    int size = n * sizeof(float);
    cudaMalloc((void **) &d A, size);
    cudaMemcpy(d A, A, size, cudaMemcpyHostToDevice);
    cudaMalloc((void **) &d B, size);
    cudaMemcpy(d B, B, size, cudaMemcpyHostToDevice);
    cudaMalloc((void **) &d C, size);
    int nblocks = (n + THREADS PER BLOCK - 1) / THREADS PER BLOCK;
    vecAddKernel<<<nblocks, THREADS PER BLOCK>>>(d A, d B, d C, n);
    cudaMemcpy(C, d C, size, cudaMemcpyDeviceToHost);
                                                            Launch the GPU kernel
    cudaFree(d A); cudaFree(d_B); cudaFree(d_C);
                                                            asynchronously
```

Example: Sliding Window Sum

- Consider computing the sum of a sliding window over a vector
 - Each output element is the sum of input elements within a radius
 - Example: image blur kernel
- If radius is 3, each output element is sum of 7 input elements

A naive implementation

```
#define RADIUS 3
global void windowSumNaiveKernel(const float* A, float* B, int n) {
    int out index = blockDim.x * blockIdx.x + threadIdx.x;
    int in index = out index + RADIUS;
    if (out index < n) {</pre>
        float sum = 0.;
        for (int i = -RADIUS; i <= RADIUS; ++i) {
            sum += A[in index + i];
        B[out index] = sum;
```


A naive implementation

```
void windowSum(const float* A, float* B, int n) {
    float *d A, *d B;
    int size = n * sizeof(float);
    cudaMalloc((void **) &d A, (n + 2 * RADIUS) * sizeof(float));
    cudaMemset(d A, 0, (n + 2 * RADIUS) * sizeof(float));
    cudaMemcpy(d A + RADIUS, A, size, cudaMemcpyHostToDevice);
    cudaMalloc((void **) &d B, size);
    dim3 threads(THREADS PER BLOCK, 1, 1);
    dim3 blocks((n + THREADS PER BLOCK - 1) / THREADS PER BLOCK, 1, 1);
    windowSumNaiveKernel<<<blocks, threads>>>(d A, d B, n);
    cudaMemcpy(B, d B, size, cudaMemcpyDeviceToHost);
    cudaFree(d A); cudaFree(d B);
```


How to improve it?

• For each element in the input, how many times it is loaded?

How to improve it?

- For each element in the input, how many times it is read?
 - Each input element is read 7 times!
 - Neighboring threads read most of the same elements
- How can we avoid redundant reading of data?

Sharing data between threads within a block

• A thread block first cooperatively loads the needed input data into the shared memory.

Kernel with shared memory

```
global void windowSumKernel(const float* A, float* B, int n) {
  shared float temp[THREADS PER BLOCK + 2 * RADIUS];
   int out index = blockDim.x * blockIdx.x + threadIdx.x;
   int in index = out index + RADIUS;
   int local index = threadIdx.x + RADIUS;
   if (out index < n) {</pre>
      temp[local index] = A[in index];
       if (threadIdx.x < RADIUS) {</pre>
           temp[local_index - RADIUS] = A[in_index - RADIUS];
           temp[local index + THREADS PER BLOCK] = A[in index+THREADS PER BLOCK];
      syncthreads();
```

Kernel with shared memory

```
float sum = 0.;
for (int i = -RADIUS; i <= RADIUS; ++i) {
        sum += temp[local_index + i];
}
B[out_index] = sum;
}</pre>
```

Performance comparison

Demo!

Code:

https://github.com/dlsys-course/examples/blob/master/cuda/window_sum.cu

Case study of efficient GPU kernels

Workload of a thread block

 $C = A \times B$

A: MxK matrix

B: KxN matrix

C: MxN matrix

Workload of a thread block

PAUL G. ALLEN SCHOOL OF COMPUTER SCIENCE & ENGINEERING

 $C = A \times B$

A: MxK matrix

B: KxN matrix

C: MxN matrix

Workload of a thread block

 $C = A \times B$

A: MxK matrix

B: KxN matrix

C: MxN matrix

A: MxK matrix B: KxN matrix C: MxN matrix В Global Cooperatively loaded by memory both thread 1 and 2 Κ Suppose each thread block has t * t threads, Shared **B** strip b,=b / t K memory

a b x b area

 $C = A \times B$

Case study: GEMM pseudocode

```
block dim: <M / b, N / b>
thread dim: <t, t>
// thread function
global void SGEMM(float *A, float *B, float *C, int b, int s) {
 shared float sA[2][b][s], sB[2][s][b]; // shared by a thread block
 float rC[b_{+}][b_{+}] = \{0\};
                            // thread local buffer, in the registers
 Cooperative fetch first strip from A, B to sA[0], sB[0]
 sync threads();
 for (k = 0; k < K / s; k += 1) {
   Cooperative fetch next strip from A, B to sA[(k+1)\%2], sB[(k+1)\%2]
   sync threads();
                                                                              Run in parallel
   for (kk = 0; kk < s; kk += 1) {
     for (j = 0; j < b_{+}; j += 1) { // unroll loop
        for (i = 0; i < b_{+}; i += 1) \{ // unroll loop
          rC[j][i] += sA[k\%2][threadIdx.x*b_++j][kk]*sB[k\%2][kk][threadIdx.y*b_++i];
  }}}
```

More details see:

- http://homes.cs.washington.edu/~tws10/cse599i/CSE%20599%20I%20Acc elerated%20Computing%20-%20Programming%20GPUs%20Lecture%204.
 pdf
- Lai, Junjie, and André Seznec. "Performance upper bound analysis and optimization of SGEMM on Fermi and Kepler GPUs." Code Generation and Optimization (CGO), 2013 IEEE/ACM International Symposium on. IEEE, 2013.

Case study: Reduction Sum

http://developer.download.nvidia.com/compute/cuda/1.1-Beta/x86 website/p rojects/reduction/doc/reduction.pdf

Tips for high performance

- Use existing libraries, which are highly optimized, e.g. cublas, cudnn.
- Use nvprof or nvvp (visual profiler) to debug the performance.
- Use high level language to write GPU kernels.

References

CUDA Programming Guide:
 http://docs.nvidia.com/cuda/cuda-c-programming-guide/