

1. Business Challenge/Requirement Objective

MediaStream Analytics is a big data solution designed to deliver actionable insights from large-scale media consumption data. Using scalable AWS services, it enables real-time and batch processing of viewership logs, ad revenue, and user demographics to optimize programming and monetization.

Key Data Sources

- Viewership Logs (Kinesis)
- Ad Revenue Reports (S3)
- Channel Metadata
- Demographic Information
- Cooked PII Data (Hashed via Lambda)

Below is an abstract of end to end process:

- As the viewers are watching channels, Viewership logs are generated and received from an online process which are sent to kinesis for further processing.
- A bigdata processing system captures the log files and send them to snowflake and s3 for further querying
- Demographic, ad revenue and channel metadata are stored in S3 which needs to be cleaned before they are used for further processing
- The data has to be extracted ,transformed and cleaned before it can be used for reporting

Core Business Questions

- 1. Which channels generate the highest ad revenue per day?
- 2. What demographic segments generate the most ad revenue per minute?

- 3. What are the peak viewing hours across India?
- 4. How does genre popularity vary by gender?
- 5. Which channels are most popular among premium subscribers?
- 6. Which shows drive higher engagement in female metro audiences?

2. The Goal of the Project

Below are some of the high-level technical and non-technical goals for this project:

- Get an overall understanding of the Media domain
- Learn the fundamentals & standards of ETL and data warehousing using spark, snowflake, kinesis
- Real-time and batch ingestion of data from various sources to Big Data and processing them using EMR/Spark and storing them in snowflake and S3
- · Using reporting tools like Quick sight
- Lambda architecture where data can be processed in both batch and real-time
- Reporting KPIs(Key Performance Indicators)

3. Data Flow Architecture/Process Flow

4. Dataset Explanation and Schema

We have 2types of data sources:

- ❖ Data stored in S3
- ❖ Real-time data for the current date for viewership logs

4.1 Data stored in S3

We have the below datasets -

Ad-revenue

column Name	Data type	Column description	sample value
Channel_id	Int	Unique Channel id	
channel_name	varchar(50)	Name of the channel	Starsports
date	varchar(50)		
ad_revenue	double	Revenue generated from Ads	

Channel meta data

column Name	Data type	Column description	sample value
channel_id	int		
channel_name	varchar(50)		
genre	varchar(50)		
language	varchar(50)		
launch_year	int		

Demographics

column Name	Data type	Column description	sample value
user_id	int		
gender	varchar(10)		
age_group	varchar(50)		
region	varchar(50)		
subscription_type	varchar(10)		

4.2 Real-time data for the current date for viewship logs

Viewership_logs

column Name	Data type	Column description	sample value
user_id	int		
channel_name	varchar(75)		
channel_id	varchar(2)		
timestamp	varchar(2)		
duration	int		
region	varchar		
subscription	varchar		
device	varchar		
platform	varchar		
is_live	boolean		
genre	varchar		
ads_watched	int		

ad_revenue	double	
engagement	int	
buffer_count	int	
completion_pct	int	
session_id	varchar	
show_name	varchar	

Copy the file - generate_media_data.py to your VM and generate real-time data. This real-time simulator script which will generate json data and writes it to a kinesis data stream

5. Problem Statements/Tasks

- 1. Generate the realtime data (Viewership logs) and send them to a kinesis stream
- 2. Intercept this data in an EMR cluster and write them to snowflake and send the stream data in parallel to S3
- 3.Load the ad revenue, Channel_metadata, and demographics to S3 and use glue to transform this data in to S3.
- 4. The solution should also allow data to be updated in S3 as soon as the source data is updated for any of the files in ad revenue, channel_metadata or demographics using iceberg tables
- 5.New files(Updates or new records) pushed to S3 for the above files(step 3), apache airflow(AMAA) should run a glue job to merge the existing records or insert the new records for those tables
- 6. Use athena to run the required queries

7. Create dashboard for the queries in quicksight with snowflake as the source

Queries to run and visualize

- 1. Total viewership duration per channel
- 2. Average engagement by device
- 3. Daily ad revenue per channel
- 4. Gender-wise average completion percentage
- 5. Most watched genres in each region
- 6. Top 5 channels with highest ad revenue in the past 7 days
- 7. Peak viewership hours by region
- 8. Which age group watches the most live content?
- 9. Subscription type driving most revenue per channel
- 10. High engagement sessions (more than 90% completion and >1 min)
- 11. Channels with above-average ad revenue per day
- 12. Most engaging show for female users in metro regions
- 13. Genre-wise ad revenue and completion comparison
- 14. Channels with highest buffer counts but good engagement
- 15. which age group watches the most across all the channels
- 16. what is the average viewing time per user segmented by region
- 17. Do mobile users watch more content than Smart tv users
- 18. What is the total ad revenue per channel per day
- 19. what are the peak hours of viewership accross india
- 20. how does content genre popularity vary by gender
- 21. which channels are more popular among premium subscribers
- 22. are certain shows driving higher engagement among female users in metro cities