6.S085 Statistics for Research Projects

IAP 2014

Lecture 3: January 23

Lecturer: Ramesh Sridharan and George Chen

Notes by: William Li

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

3.1 Linear Regression

Be sure to visualize! Recall Anscombe's Quartet.

Goal of linear regression: fit a line, $y = \beta_0 + \beta_1 x$ to data

y: dependent variable/response variable

 β_0 : intercept

 β_1 : slope (e.g. spring constant in Hooke's law)

x: independent variable/predictor variable

Slope close to 0: little/no relationship between x and y

3.2 Probabilistic Model

Observe $(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)$

Assume:

$$y_i(x_i) = \beta_0 + \beta_1 x_i + \epsilon_i$$

 ϵ_i : normally distributed with mean 0, variance σ^2 $(N(0, \sigma^2))$

 β_0 and β_1 are fixed but unknown.

Under this model, there is a "good" way of to estimate β_0 , β_1 :

$$\min_{\beta_0, \beta_1} \sum_{i=1}^{n} (y - (\beta_0 + \beta_1 x_i))^2$$

(This is called least-squares linear regression)

Solution:

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n x_i y_i - \frac{1}{n} (\sum_{i=1}^n x_i) (\sum_{i=1}^n y_i)}{\sum_{i=1}^n x_i^2 - \frac{1}{n} (\sum_{i=1}^n x_i)^2}$$

Correlation coefficient: $r = \frac{1}{n-1} \sum_{i=1}^{n} \frac{(x_i - \bar{x})(y_i - \bar{y})}{s_x s_y}$

where
$$s_x = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2}$$

 r^2 is called the "coefficient of determination", $-1 \le r \le 1$

Correlation does not imply casuation, e.g. sun cycles was correlated with the number of Republicans in the Senate in the 1980s

3.3 Hypothesis Testing

Warning: Everything here assumes that the above probabilistic model is true

3.3.1 Slope

 $t_{\beta_1} = \frac{\hat{\beta_1} - \beta_1}{s_{\beta_1}} \sim t_{n-2}$ (t distributed with n-1 degrees of freedom

$$s_{beta_1} = \frac{\hat{\sigma}}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2}}$$

$$\hat{\sigma}^2 = \sum_{i=1}^n \frac{(\hat{y_i} - y_i)^2}{n-2}$$

Let's break down these terms:

$$\sqrt{\sum_{i=1}^{n}(x_i-\bar{x})^2}$$
: How close together the x_i 's are

Intuition:

When the x_i values are very close together, it's hard to fit a line. This makes s_{β_1} large. This makes t_{β_1} smaller (closer to 0). For a null hypothesis (H_0) of $\beta_1 = 0$, there will be more area outside of $[-t_{\beta_1}, t_{\beta_1}]$, which means that your statistical significance will go down. (Your p-value will be higher, or it will be harder to achieve your threshold of statistical significance).

When there is a large error in fit, the term $\hat{\sigma}^2$ will be large. This makes $s_{\beta_1} large...$ your statistical significance will go down (following the line of reasoning above).

3.3.2 Intercept

$$t_{\beta_0} = \frac{\hat{\beta_0} - \beta_0}{s_{\beta_0}} \sim t_{n-2}$$

$$s_{eta_0} = \hat{\sigma} \sqrt{\frac{1}{n} + \frac{\bar{x}^2}{\sum\limits_{i=1}^{n} (x_i - \bar{x})^2}}$$

If the x_i 's are close together, then the s_{β_0} will be big. Then t_{beta_0} will be small. For a null hypothesis of $\beta_0 = 0$, there will be more area outside of $[-t_{\beta_0}, t_{\beta_0}]$, which means that your statistical significance will go down (your p-value will be higher).

Bonferroni correction: divide the p-value threshold by 2 to see if you have significance at p=0.05 (i.e. is

pi0.025 for both of them?)

3.3.3 Correlation Coefficient

$$t_r = \sqrt{\frac{n-2}{1-r^2}} \sim t_{n-2}$$

3.3.4 Prediction

What can we say about a new point generated from same probabilistic model with x-value x^* ?

$$\hat{y}(x^*) = \beta_0 + \hat{\beta}_1 x^*$$

$$var[\hat{\beta}_0 + \hat{\beta}_1 x^* + \epsilon] = var[\hat{\beta}_0 + \hat{\beta}_1 x^*] + var[\epsilon]$$

The first term is estimated with $\hat{\sigma}^2 \left[\frac{1}{n} + \frac{(x^* - \bar{x})^2}{\sum (x_i - \bar{x})^2} \right]$ — this is the variance in the mean estimate of the line at x^*

The second term is estimated with $\hat{\sigma}^2$ — it is variance introduced by extra noise

3.3.5 Multiple linear regression

 $((x_1, x_2, ..., x_p), y)...$ — there are p predictors for each y

Probabilistic model:

$$y = \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_p x_p + \epsilon$$

Why not use a very high degree polynomial? It will overfit.

3.3.6 Matrix Form

Solve:

$$\min_{\beta} \sum_{i=1}^{n} (Y_i - X_i \beta))^2$$

Solution:

$$\hat{\beta} = (X^T X)^{-1} X^T Y$$

3.4 Model Evaluation

$$y_i - \bar{y} = (\hat{y}_i - \bar{y}) + (y_i - \bar{y})$$

First term: difference explained by the model Second term: difference not explained by the model

Residual: $\hat{y}_i - y_i$: Visualizing this is important

With a bit of algebra:

$$\sum_{i=1}^{n} (y_i - \bar{y})^2 = \sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2 + \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

SST = SSM + SSE (sum of squares total) = (sum of squares model) + sum of squares error (sum of squares model) / (sum of squares total) is exactly r^2 !

We want SSM/SSE to be large

$$MSM = SSM / p - 1$$

$$MSE = SSE / n - p$$

For technical reasons, instead look at: MSM/MSE $\sim F_{p-1,n-p}$