Chapter 2 Boolean Algebra and Logic Gates

1

Outline

- Basic Definitions of Boolean Algebra
- Axiomatic Definitions
- Basic Theorems and Properties of Boolean Algebra
- Boolean Functions
- Canonical and Standard Forms
- Other Logic Operations
- Digital Logic Gates
- Integrated Circuits

History of Boolean Algebra

- In 1854, George Boole introduced a systematic treatment algebra for logic now called Boolean algebra.
- In 1904, Edward V. Huntington proposed a formal definition of Boolean Algebra.
- In 1938, Claude E. Shannon introduced two-value Boolean Algebra called switching algebra for bistable electrical switching circuits.

3

The postulates of a mathematical system

- 1. **Closure**: A set *S* is closed with respect to (w.r.t.) a binary operator * if, for every pair of elements of *S*, the binary operator specifies a rule for obtaining a unique element of *S*.
 - For any $a, b \in S$, a unique $c \in S$ such that a * b = c.
- 2. **Associative law**: A binary operator * on a set S is said to be associative whenever (x * y) * z = x * (y * z) for all $x, y, z \in S$.
- 3. **Commutative law**: A binary operator * on a set is said to be commutative whenever x * y = y * x for all $x, y \in S$.

The postulates of a mathematical system (Cont'd)

4. **Identity element**: A set S is said to have an identity element w.r.t. a binary operator * on S there exist an element $e \in S$ with the property:

$$e * x = x * e = x$$
 for every $x \in S$

- 5. **Inverse**: A set S having the identity element e w.r.t. to a binary operator * is said to have an inverse whenever, for every $x \in S$, there exists an element $y \in S$ such that x * y = e.
- 6. **Distributive Law**: If * and are binary operators on S, * is said to be distributive over \cdot whenever

$$x * (y \cdot z) = (x * y) \cdot (x * z)$$

5

Example

- For real number:
 - The operator "+" defines as addition.
 - The additive identity is 0.
 - Additive inverse is "subtraction."
 - The operator "●" defines multiplication.
 - The multiplicative identity is 1.
 - For $a \neq 0$, the multiplicative inverse of a is 1/a defines division.
 - The distributive law is "•" over "+":

$$a \cdot (b + c) = (a \cdot b) + (a \cdot c)$$

Boolean Algebra (Huntington Postulates)

- A set of elements *B* and two binary operators "+" and "•" are defined by the following postulates.
 - 1. Closure with respect to "+" and "•".
 - 2. An identity element with respect to "+" and "•".

$$x + 0 = 0 + x = x$$
 and $x \cdot 1 = 1 \cdot x = x$

- 3. Commutative with respect to "+" and "•".

$$x + y = y + x$$
 and $x \cdot y = y \cdot x$

- 4. Distributive over "+" and "•".

$$x \cdot (y + z) = (x \cdot y) + (x \cdot z)$$
 and $x + (y \cdot z) = (x + y) \cdot (x + z)$

- 5. For $x \in B$, there exists $x' \in B$ (complement of x) such that x + x' = 1 and $x \cdot x' = 0$.
- 6. There exist at least two elements x, $y \in B$, such that $x \neq y$.

Differences b/w Boolean and Ordinary Algebra

- 1. Huntington's postulates do not include <u>associative law</u>, but it holds for Boolean algebra.
- 2. The distributive law of "+" over "•" $(x + (y \cdot z) = (x + y) \cdot (x + z))$ is valid only for Boolean algebra, but not for ordinary algebra.
- 3. Boolean algebra has no *additive* and *multiplicative* inverses. Therefore, there are no *subtraction* and *division* operations.
- 4. The complement element is not available in ordinary algebra.
- 5. The two-value algebra (special case of Boolean algebra) is defined as a set of limited two elements, 0 and 1.

Two-Valued Boolean Algebra

- \blacksquare B = {0, 1} is the set of two-valued Boolean Algebra
- The binary operators "+" and "•" have the following characteristics:

X	у	$x \cdot y$
0	0	0
0	1	0
1	0	0
1	1	1

	Logic
AND	Logic

X	у	x + y
0	0	0
0	1	1
1	0	1
1	1	1

OR Logic

X	<i>x</i> '
0	1
1	0

NOT Logic

9

Two-Valued Boolean Algebra (Cont'd)

- Verifying Huntington postulates:
 - − 1. Closure: The result of each operator belongs to *B*.
 - 2. Identity elements:

 - (a) 0 + 0 = 0 0 + 1 = 1 + 0 = 1 (0: identity element for +)
 - (b) $1 \cdot 1 = 1$
- $1 \bullet 0 = 0 \bullet 1 = 0$ (1: identity element for \bullet)
- 3. Commutative: The commutative is obvious from the symmetry of the operator table.
- 5. Complement:
 - \blacksquare (a) x + x' = 1: 0 + 0' = 0 + 1 = 1; 1 + 1' = 1 + 0 = 1
 - (b) $x \cdot x' = 0$: $0 \cdot 0' = 0 \cdot 1 = 0$; $1 \cdot 1' = 1 \cdot 0 = 0$
- 6. The two-valued Boolean algebra has two distinct elements, 1 and 0.

Two-Valued Boolean Algebra (Cont'd)

■ 4. The distributive law of "•" over "+":

X	у	z		y + z	$x \cdot (y + z)$		$x \cdot y$	$x \cdot z$	$(x\cdot y)+(x\cdot z)$
0	0	0		0	0		0	0	0
0	0	1		1	0		0	0	0
0	1	0		1	0		0	0	0
0	1	1		1	0		0	0	0
1	0	0		0	0		0	0	0
1	0	1		1	1		0	1	1
1	1	0		1	1		1	0	1
1_	1	1	,	1	1		1	1	1

■ The distributive law of "+" over "•"?

Basic Theorems and Properties of Boolean Algebra

- **Duality:** every algebraic expression deducible from the postulates of Boolean algebra remains valid if the operators and identity elements are interchanged.
- **■** Example:
 - Postulate 2, Identity elements:
 - (a) x + 0 = x (change 0 to 1 and "+" to "•", we get (b))
 - (b) $x \cdot 1 = x$ (change 1 to 0 and " \cdot " to "+", we get (a))

Basic Theorems and Properties of Boolean Algebra (Cont'd)

■ Six theorems and four postulates of Boolean algebra:

<u>aigeora:</u>				
Pos. 2	(a)	x + 0 = x	(b)	$x \cdot 1 = x$
Pos. 5	(a)	x + x' = 1	(b)	$x \cdot x' = 0$
Thm. 1	(a)	x + x = x	(b)	$x \cdot x = x$
Thm. 2	(a)	x + 1 = 1	(b)	$x \cdot 0 = 0$
Thm. 3, involution	(a)	(x')'=x	(b)	
Pos. 3, commutative	(a)	x + y = y + x	(b)	xy = yx
Thm. 4, associative	(a)	x + (y + z) = (x + y) + z	(b)	x(yz) = (xy)z
Pos. 4, distributive	(a)	x(y+z)=xy+xz	(b)	x + yz = (x + y)(x + z)
Thm. 5, DeMorgan	(a)	$(x+y)'=x'\cdot y'$	(b)	(xy)' = x' + y'
Thm. 6, absorption	(a)	x + xy = x	(b)	x(x+y)=x

13

Basic Theorems

- The basic theorems can be derived from basic postulates.
- Thm. 1.(a): x + x = x

$$x + x = (x + x) \cdot 1$$
 Pos. 2(b)
= $(x + x) \cdot (x + x')$ Pos. 5(a)
= $x + x \cdot x'$ Pos. 4(b)
= $x + 0$ Pos. 5(b)
= $x + 0$ Pos. 2(a)

■ Thm. 1(b): $x \cdot x = x$

$$x \cdot x = x \cdot x + 0$$
 Pos. 2(a)
= $x \cdot x + x \cdot x'$ Pos. 5(b)
= $x \cdot (x + x')$ Pos. 4(a)
= $x \cdot 1$ Pos. 5(a)
= x Pos. 2(b)

Basic Theorems

■ Thm. 2: x + 1 = 1

$$x+1=1\cdot(x+1)$$
 Pos. 2(b)
= $(x+x')\cdot(x+1)$ Pos. 5(a)
= $x+x'\cdot 1$ Pos. 4(b)
= $x+x'$ Pos. 2(b)
= 1 Pos. 5(a)

- $-x \cdot 0 = 0$ is valid by duality.
- Thm. 3: (x')' = x
 - From Pos. 5: x + x' = 1 and $x \cdot x' = 0$, defines the complement of x'. $\Rightarrow x$ is the complement of x'.
 - The complement of x' is x and is also (x')'. Since the complement is unique, (x')' = x.

Basic Theorems

■ Thm. 6: x + xy = x

$$x + xy = x \cdot 1 + x \cdot y \qquad \text{Pos. 2(b)}$$

$$= x \cdot (1+y) \qquad \text{Pos. 4(a)}$$

$$= x \cdot (y+1) \qquad \text{Pos. 3(a)}$$

$$= x \cdot 1 \qquad \text{Pos. 2(a)}$$

$$= x \qquad \text{Pos. 2(b)}$$

$$- x \cdot (x+y) = x \text{ by duality.}$$

By means of truth table.

Х	у	xy	x + xy
0	0	0	0
0	1	0	0
1	0	0	1
1	1	1	1

Basic Theorems

■ DeMorgan's Theorem:

$$-(x+y)'=x'\cdot y'$$

$$-(x\cdot y)'=x'+y'$$

Verified by truth table:

х	у	x + y	(x+y)'	<i>x</i> ′	y'	x'y'
0	0	0	1	1	1	1
0	1	1	0	1	0	0
1	0	1	0	0	1	0
1	1	1	0	0	0	0

17

Operator Precedence

- The operator precedence for evaluating Boolean expressions:
 - 1. parentheses
 - 2. NOT
 - 3. AND
 - 4. OR
- Examples:

$$-xy'+z$$

$$-(xy+z)'$$

Boolean Functions

- Boolean algebra deals with binary variables and logic operations.

()

1

- A Boolean function consists of
 - binary variables (1 or 0)
 - logic operators OR and AND
 - unary operator NOT
 - parentheses
- Examples: (by Truth Table)
 - $-F_1 = x + y'z$
 - $-F_2 = x'y'z + x'yz + xy'$

0	1	1	0	1
1	0	0	1	1
1	0	1 0 1 0	1 1 1	1
1	1	0	1	0
1	1	1	1	0

19

Implementations of Boolean Functions with Logic Gates

■ Example: $F_1 = x + y'z$

■ Example:

$$F_2 = x'y'z + x'yz + xy' = x'z(y' + y) + xy' = x'z + xy'$$

Algebraic Manipulation

- To minimize Boolean expressions
 - literal: a primed or unprimed variable (an input to a gate)
 - term: an implementation with a gate (F_2 : 3 terms, 8 literals)
 - The minimization of the number of literals and the number of terms ⇒ a circuit with less equipments
 - It is a hard problem (no specific rules to follow)
- **■** Examples:

$$- x(x' + y) = xx' + xy = 0 + xy = xy$$

$$- x + x'y = (x + x')(x + y) = 1 (x + y) = x + y (by Pos.4(b))$$

$$- (x + y)(x + y') = x + xy + xy' + yy' = x(1 + y + y') = x$$

$$- xy + x'z + yz = xy + x'z + yz(x + x')$$

$$= xy + x'z + yzx + yzx'$$

$$= xy(1 + z) + x'z(1 + y) = xy + x'z$$

Complement of a Function

- The complement of a function F is F' and is an interchange of 0's for 1's and 1's for 0's in the value of F
 - by DeMorgan's theorem
 - DeMorgan's theorem can be extended to n variables:

$$-(A + B + C)' = (A + x)'$$
 let $B + C = x$

$$= A'x'$$
 by DeMorgan's

$$= A'(B + C)'$$
 substitute $B + C = x$

$$= A'(B'C')$$
 by DeMorgan's

$$= A'B'C'$$
 associative

generalizations

$$-(A + B + C + ... + F)' = A'B'C'...F'$$

 $-(ABC...F)' = A' + B' + C' + ... + F'$

Examples

$$[x(y'z' + yz)]' = x' + (y'z' + yz)'$$

$$= x' + (y'z')' (yz)'$$

$$= x' + (y + z) (y' + z')$$

- A simpler procedure
 - take the dual of the function and complement each literal

$$-x'yz' + x'y'z \Rightarrow (x' + y + z')(x' + y' + z)$$
 (the dual)

$$-(x'yz' + x'y'z)' \Rightarrow (x + y' + z)(x + y + z')$$

23

Canonical and Standard Forms

- Minterms and Maxterms
 - A minterm: an AND term consists of all literals in their normal form or in their complement form
 - For example, two binary variables x and y,
 - $\blacksquare xy, xy', x'y, x'y'$
 - It is also called a standard product
 - -n variables can be combined to form 2^n minterms
 - A maxterm: an OR term
 - It is also called a standard sum
 - -n variables can be combined to form 2^n maxterms

Minterms and Maxterms

 Minterms (standard products) and Maxterms (standard sums) for three binary variables

			M	linterms	Max	terms
х	y	Z	Term	Designation	Term	Designation
0	0	0	x'y'z'	m_0	x + y + z	M_0
0	0	1	x'y'z	m_1	x + y + z'	M_1
0	1	0	x'yz'	m_2	x + y' + z	M_2
0	1	1	x'yz	m_3	x + y' + z'	M_3
1	0	0	xy'z'	m_4	x' + y + z	M_4
1	0	1	xy'z	m_5	x' + y + z'	M_5
1	1	0	xyz'	m_6	x' + y' + z	M_6
_1	1	1	xyz	m_7	x' + y' + z'	M_7

25

Minterms and Maxterms

- A Boolean function can be expressed by
 - A truth table
 - Sum of minterms

-
$$f_1 = x'y'z + xy'z' + xyz = m_1 + m_4 + m_7$$

- $f_2 = x'yz + xy'z + xyz' + xyz$

$$= m_3 + m_5 + m_6 + m_7$$

\overline{x}	у	z	f_1	f_2
0	0	0	0	0
0	0	1	1	0
0	1	0	0	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Minterms and Maxterms

- The complement of a Boolean function
 - the minterms that produce a 0

$$-f_{1}' = m_{0} + m_{2} + m_{3} + m_{5} + m_{6}$$

$$= x'y'z' + x'yz' + x'yz + xy'z + xyz'$$

$$-f_{1} = (f_{1}')'$$

$$= (x + y + z)(x + y' + z)(x + y' + z')(x' + y + z')(x' + y' + z)$$

$$= M_{0} M_{2} M_{3} M_{5} M_{6}$$

- Any Boolean function can be expressed as
 - a sum of minterms
 - a product of maxterms

canonical form

27

Sum of Minterms

■ Express the general logic function as a sum of minterms

Truth table for F = A + B'C

$$-F = A + B'C$$

$$= A (B+B') + B'C$$

$$= AB + AB' + B'C$$

$$= AB(C+C') + AB'(C+C') + (A+A')B'C$$

$$= ABC + ABC' + AB'C + AB'C' + A'B'C$$

$$-F = A'B'C + AB'C' + AB'C + ABC' + ABC$$

$$= m_1 + m_4 + m_5 + m_6 + m_7$$

$$-F(A,B,C) = \Sigma(1,4,5,6,7) = \Pi(0,2,3)$$
- or, built the truth table first

A	В	C	F	
0	0	0	0	
0	0	1	1	
0	1	0	0	
0	1	1	0	
1	0	0	1	
1	0	1	1	
1	1	0	1	
1	1	1	1 :	28

Product of Maxterms

Product of maxterms

$$-x + yz = (x + y)(x + z)$$

$$= (x + y + zz')(x + z + yy')$$

$$= (x + y + z)(x + y + z')(x + y' + z) = M_0 M_1 M_2$$

$$-F = xy + x'z$$

$$= (xy + x')(xy + z)$$

$$= (x + x')(y + x')(x + z)(y + z)$$

$$= (x' + y)(x + z)(y + z)$$

$$- x' + y = x' + y + zz'$$

$$= (x' + y + z)(x' + y + z')$$

$$-F = (x + y + z)(x + y' + z)(x' + y + z')$$

$$= M_0 M_2 M_4 M_5$$

$$-F(x, y, z) = \Pi(0, 2, 4, 5)$$

Conversion between Canonical Forms

Conversion between Canonical Forms

$$-F(A, B, C) = \Sigma(1, 4, 5, 6, 7)$$

$$-F'(A, B, C) = \Sigma (0, 2, 3)$$

- By DeMorgan's theorem
$$F(A, B, C) = \Pi(0, 2, 3)$$

$$-m_i'=M_i$$

- Sum of minterms = product of maxterms
- Interchange the symbols Σ and Π and list those numbers missing from the original form

-
$$\Sigma$$
 of 1's = Π of 0's

30

Example

$$-F = xy + x'z$$

$$-F(x, y, z) = \Sigma(1, 3, 6, 7)$$

$$-F(x, y, z) = \Pi(0, 2, 4, 5)$$

Truth table for F = xy + x'z

A	В	С	$oxed{F}$
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

31

Standard Forms

■ Standard Forms

- Canonical forms are seldom used
- sum of products

$$F_1 = y' + xy + x'yz'$$
 (figure (a))
 $F_3 = AB + C(D + E)$ nonstandard form (figure (c))
 $F_3 = AB + CD + CE$ standard form (figure (d))

- product of sums

$$F_2 = x(y' + z)(x' + y + z)$$
 (figure (b))

 Standard form is preferred because the gate delay is minimized (figure (c) vs. figure (d))

Standard Form Logic

■ Two-level implementation

■ Multi-level implementation

Other Logic Operations

- \blacksquare 2ⁿ rows in the truth table of n binary variables
- 2^{2^n} functions for n binary variables
- 16 functions of two binary variables

х	у	F_0	F_1	F_2	F_3	F_4	F_5	F_6	F_7	F_8	F_9	F_{10}	F_{11}	F_{12}	F_{13}	F_{14}	F_{15}
0	0		0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
0	1	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
	0	I	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
_ 1	1	0		0	1	0	1	0	1	0	1	0	1	0	1	0	1
-	rator nbol			/		/		\oplus	+	\	•	,	<u> </u>	,	Π	↑	

 All the new symbols except for the exclusive-OR symbol are not in common use by digital designers

Table 2.8Boolean Expressions for the 16 Functions of Two Variables

Boolean Functions	Operator Symbol	Name	Comments
$F_0 = 0$		Null	Binary constant 0
$F_1 = xy$	$x \cdot y$	AND	x and y
$F_2 = xy'$	x/y	Inhibition	x, but not y
$F_3 = x$		Transfer	x
$F_4 = x'y$	y/x	Inhibition	y, but not x
$F_5 = y$	·	Transfer	y
$F_6 = xy' + x'y$	$x \oplus y$	Exclusive-OR	x or y, but not both
$F_7 = x + y$	x + y	OR	x or y
$F_8 = (x + y)'$	$x \downarrow y$	NOR	Not-OR
$F_9 = xy + x'y'$	$(x \oplus y)'$	Equivalence	x equals y
$F_{10} = y'$	y'	Complement	Not y
$F_{11} = x + y'$	$x \subset y$	Implication	If y, then x
$F_{12} = x'$	x'	Complement	Not x
$F_{13} = x' + y$	$x\supset y$	Implication	If x, then y
$F_{14} = (xy)'$	$x \uparrow y$	NAND	Not-AND
$F_{15} = 1$	• *	Identity	Binary constant 1

35

Digital Logic Gates

- Boolean expression: AND, OR and NOT operations
- Considerations of constructing other logic gates:
 - the feasibility and economy
 - the possibility of extending gate's inputs
 - the basic properties of the binary operations
 - the ability of the gate to implement Boolean functions alone
- Consider the 16 functions
 - two are equal to a constant
 - four are repeated twice
 - inhibition and implication are not commutative or associative
 - the other eight: complement, transfer, AND, OR, NAND, NOR, XOR, and equivalence are used as standard gates
 - complement: inverter
 - transfer: buffer (increasing drive strength)
 - equivalence: XNOR

Basic Digital Circuit Gates

	aoio Digitai on c	dit out	
Name	Graphic symbol	Algebraic function	Truth table
AND	$x \longrightarrow F$	F = xy	$\begin{array}{c cccc} x & y & F \\ \hline 0 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \\ \end{array}$
OR	$x \longrightarrow F$	F = x + y	$\begin{array}{c cccc} x & y & F \\ \hline 0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \\ \end{array}$
Inverter	$x \longrightarrow F$	F = x'	$\begin{array}{c c} x & F \\ \hline 0 & 1 \\ 1 & 0 \end{array}$
Buffer	<i>x</i> — <i>F</i>	F = x	$ \begin{array}{c cc} x & F \\ \hline 0 & 0 \\ 1 & 1 \end{array} $

Basic Digital Circuit Gates (Cont'd)

NAND	<i>x F</i>	F = (xy)'	$\begin{array}{c cccc} x & y & F \\ \hline 0 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\ \end{array}$
NOR	x y F	F = (x + y)'	$\begin{array}{c cccc} x & y & F \\ \hline 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \\ \end{array}$
Exclusive-OR (XOR)	$x \longrightarrow F$	$F = xy' + x'y$ $= x \oplus y$	$\begin{array}{c cccc} x & y & F \\ \hline 0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\ \end{array}$
Exclusive-NOR or equivalence	$x \longrightarrow F$	$F = xy + x'y'$ $= (x \oplus y)'$	$\begin{array}{c cccc} x & y & F \\ \hline 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \\ \end{array}$

Digital Circuit Gates - AND/OR, NAND/NOR

- Extension to multiple inputs
 - A gate can be extended to multiple inputs
 - if its binary operation is commutative and associative
 - AND and OR are commutative and associative
 - (x + y) + z = x + (y + z) = x + y + z
 - $(x \cdot y) \cdot z = x \cdot (y \cdot z) = x \cdot y \cdot z$
- NAND and NOR are commutative but not associative ⇒ They are not extendable.

Digital Circuit Gates - NAND/NOR

- Multiple NOR = a complement of OR gate
 Multiple NAND = a complement of AND
 Modified
- The cascaded NAND operations = sum of products
- The cascaded NOR operations = product of sums

Digital Circuit Gates - XOR

- The XOR and XNOR gates are commutative and associative
- Multiple-input XOR gates are uncommon.
- XOR is an odd function: it is equal to 1 if the inputs variables have an odd number of 1's

х	у	z	F		
0	0	0	0		
0	0	1	1		
0	1	0	1		
0	1	1	0		
1	0	0	1		
1	0	1	0		
1	1	0	0		
1	1	1	1		
	(c) Truth table				

41

Digital Circuit Gates

- Positive and Negative Logic
 - two signal values ⇔ two logic values
 - positive logic: H=1; L=0
 - negative logic: H=0; L=1
- Consider a TTL gate
 - a positive logic NAND gate
 - a negative logic OR gate
 - the positive logic is used in this book

(b) Negative logic

х	у	z
L	L	L
L	H	L
H	L	L
H	H	H

(a) Truth table with H and L

х	У	z
0 0 1 1	0 1 0 1	0 0 0 1
	_	_

(c) Truth table for positive logic

X	У	z
1	1	1
1	0	1
0	1	1
0	0	0

(e) Truth table for negative logic

(b) Gate block diagram

(d) Positive logic AND gate

(f) Negative logic OR gate

43

Integrated Circuits

■ An integrated circuit (IC) is a silicon semiconductor crystal, called a chip, containing electronic digital

gates.

■ Examples:

- SSI: < 10 gates

- MSI: 10 ~ 100 gates

LSI: 100 ~ xk gates

- VLSI: > xk gates

■ small size (compact size)

■ low cost

■ low power consumption

■ high reliability

■ high speed

Integrated Circuits

- Digital logic families: circuit technology
 - TTL: transistor-transistor logic (dying?)
 - ECL: emitter-coupled logic (high speed, high power consumption)
 - MOS: metal-oxide semiconductor (NMOS, high density)
 - CMOS: complementary MOS (low power)
 - BiCMOS: high speed, high density
- The characteristics of digital logic families
 - Fan-out: the number of standard loads that the output of a typical gate can drive
 - Power dissipation
 - Propagation delay: the average transition delay time for the signal to propagate from input to output
 - Noise margin: the minimum of external noise voltage that caused an undesirable change in the circuit output

Integrated Circuits

- CAD Computer-Aided Design
 - Millions of transistors
 - Computer-based representation and aid
 - Automatic the design process
 - Design entry
 - Schematic capture
 - HDL Hardware Description Language
 - Verilog, VHDL
 - Simulation
 - Physical realization
 - ASIC, FPGA, PLD