# Foundations of Audio Signal Processing Exercise sheet 8

#### Group members

Christopher Schmidt Gerhard Mund Robert Logiewa Maren Pielka

14. Dezember 2018

## Exercise 8.1

Need to show:  $\langle sinc(\cdot - k)|sinc(\cdot - \ell)\rangle = \delta_{k,\ell}$   $\langle sinc(\cdot - k)|sinc(\cdot - \ell)\rangle$   $= \langle rect(\cdot - k)|rect(\cdot - \ell)\rangle$  (Def. of Box and Sinc function)  $= \int_{-1/2}^{1/2} 1e^{-2\pi i(k-\ell)t} dt$  (because rect(t) = 1 for  $|t| \le 1/2$ )  $= rect(k - \ell)$   $= sinc(k - \ell)$  (Def. of Box and Sinc function)  $= \begin{cases} sinc(k - \ell) = sinc(0) = 1 & k = \ell \\ sin(\pi(k - \ell)) = 0 \Rightarrow sinc(k - \ell) = 0 & k \ne \ell \end{cases}$  $= \delta_{k,\ell}$ 

### Exercise 8.2

(a)

Following the arguments from the lecture, by performing T-sampling of f, we get the undersampled DT-signal x(k) = f(kT). Applying Fourier inversion yields:

$$\begin{split} f(kT) &= \int_{-\Omega'}^{\Omega'} \hat{f}(\omega) e^{-2\pi i \omega k T} d\omega \qquad \qquad \text{where } \Omega' \leq 5\Omega \\ &= \int_{-5\Omega}^{5\Omega} \hat{f}(\omega) e^{-2\pi i \omega k T} d\omega \\ &= \int_{-5\Omega}^{-\Omega} \hat{f}(\omega) e^{-2\pi i \omega k T} d\omega + \int_{-\Omega}^{\Omega} \hat{f}(\omega) e^{-2\pi i \omega k T} d\omega + \int_{\Omega}^{5\Omega} \hat{f}(\omega) e^{-2\pi i \omega k T} d\omega \\ &= \int_{-5\Omega}^{-3\Omega} \hat{f}(\omega) e^{-2\pi i \omega k T} d\omega + \int_{-3\Omega}^{-\Omega} \hat{f}(\omega) e^{-2\pi i \omega k T} d\omega + \int_{-\Omega}^{\Omega} \hat{f}(\omega) e^{-2\pi i \omega k T} d\omega \\ &+ \int_{\Omega}^{3\Omega} \hat{f}(\omega) e^{-2\pi i \omega k T} d\omega + \int_{3\Omega}^{5\Omega} \hat{f}(\omega) e^{-2\pi i \omega k T} d\omega \end{split}$$

This results in:

$$\int_{-\Omega}^{\Omega} \underbrace{(\hat{f}(\omega) + \hat{f}(\omega + 2\Omega) + \hat{f}(\omega - 2\Omega) + \hat{f}(\omega + 4\Omega) + \hat{f}(\omega - 4\Omega))}_{(*)} e^{-2\pi i \omega k T} d\omega$$

$$\hat{g}(\omega) = \begin{cases} (*) & \text{if } |\omega| \le \Omega \\ 0 & \text{otherwise.} \end{cases}$$

So, all frequencies  $\omega$  within  $5\Omega \ge |\omega| > \Omega$  are mapped into the range  $(-\Omega, \Omega)$ , by adding  $\pm 2\Omega$  to those frequencies with  $5\Omega \ge |\omega| > 3\Omega$ , and  $\pm 4\Omega$  to those with  $3\Omega \ge |\omega| > \Omega$ .

(b)



Figure 1: The folded signal  $|\hat{g}|$ , after T-sampling of f with  $T = 2\Omega$ .

## Exercise 8.3

- 1. Read in the \*.mat file and extract  $f_s$  and signal out of the struct The signal is 20 seconds long and has 160000 points  $F_s=8000$
- 2. Sample over the signal (see figure 2) We take one sample each second, so we have 21 samples
- 3. Calculate for each sample the sinc function (see figure 3)
  t = [0:20],
  Time\_sample := second where the sample was taken (shift the sinc function),
  amplitude\_sample := amplitude of signal at Time\_sample (weighted the sinc function)
  y = amplitude\_sample \* sinc(t-Time\_sample)
- 4. Sum up all sinc functions to reconstruct the original signal (see figure 7)
- 5. Calculate the error of the reconstruction (see figure 8) error =  $0.5 * abs(signal reconstruction)^2$

If we double the sample size, the reconstruction of the signal is significantly better.



Figure 2: Signal (red) and samples (blue) for a sampling rate of  $1/\mathrm{s}$ 



Figure 3: Signal (red) and sinc functions of samples (green)



Figure 4: Signal (red) and reconstructed signal (green) for a sampling rate of  $1/\mathrm{s}$ 



Figure 5: Reconstruction error for a sampling rate of  $1/\mathrm{s}$ 



Figure 6: Signal (red) and samples (blue) for a sampling rate of  $2/\mathrm{s}$ 



Figure 7: Signal (red) and reconstructed signal (green) for a sampling rate of  $2/\mathrm{s}$ 



Figure 8: Reconstruction error for a sampling rate of  $2/\mathrm{s}$