Auxiliary Sections > Integral Transforms > Tables of Fourier Cosine Transforms > Fourier Cosine Transforms: Expressions with Logarithmic Functions

Fourier Cosine Transforms: Expressions with Logarithmic Functions

No	Original function, $f(x)$	Cosine transform, $f_{c}(u) = \int_{0}^{\infty} f(x) \cos(ux) dx$
1	$\begin{cases} \ln x & \text{if } 0 < x < 1, \\ 0 & \text{if } 1 < x \end{cases}$	$-\frac{1}{u}\operatorname{Si}(u)$
2	$\frac{\ln x}{\sqrt{x}}$	$-\sqrt{\frac{\pi}{2u}} \left[\ln(4u) + \mathcal{C} + \frac{\pi}{2} \right],$ $\mathcal{C} = 0.5772 \text{ is the Euler constant}$
3	$x^{\nu-1}\ln x, 0 < \nu < 1$	$\Gamma(\nu)\cos\left(\frac{\pi\nu}{2}\right)u^{-\nu}\left[\psi(\nu)-\frac{\pi}{2}\tan\left(\frac{\pi\nu}{2}\right)-\ln u\right]$
4	$ \ln\left \frac{a+x}{a-x}\right , a>0 $	$\frac{2}{u} \left[\cos(au) \operatorname{Si}(au) - \sin(au) \operatorname{Ci}(au) \right]$
5	$\ln(1+a^2/x^2), a>0$	$\frac{\pi}{u} \left(1 - e^{-au} \right)$
6	$ \ln \frac{a^2 + x^2}{b^2 + x^2}, a, b > 0 $	$\frac{\pi}{u} \left(e^{-bu} - e^{-au} \right)$
7	$e^{-ax} \ln x$, $a > 0$	$-\frac{aC + \frac{1}{2}a\ln(u^2 + a^2) + u\arctan(u/a)}{u^2 + a^2}$
8	$\ln(1+e^{-ax}), a>0$	$\frac{a}{2u^2} - \frac{\pi}{2u\sinh(\pi a^{-1}u)}$
9	$\ln(1 - e^{-ax}), a > 0$	$\frac{a}{2u^2} - \frac{\pi}{2u} \coth(\pi a^{-1}u)$

Notation: Ci(z) is the integral cosine, Si(z) is the integral sine, $\Gamma(z)$ is the gamma function, $\psi(z)$ is the logarithmic derivative of the gamma function.

References

Bateman, H. and Erdélyi, A., *Tables of Integral Transforms. Vols. 1 and 2*, McGraw-Hill Book Co., New York, 1954. Ditkin, V. A. and Prudnikov, A. P., *Integral Transforms and Operational Calculus*, Pergamon Press, New York, 1965. Polyanin, A. D. and Manzhirov, A. V., *Handbook of Integral Equations*, CRC Press, Boca Raton, 1998.

Fourier Cosine Transforms: Expressions with Logarithmic Functions