6.2 Inverse Functions & Relations- Day 1 Notes

Objective: Find and graph the inverse of a function or relation

An inverse relation is the set of ordered pairs obtained by 5 witching the

_____. If the inverse of f(x) is a function, we use inverse function

Graph the relation and connect the points. Then graph the inverse. Identify the domain & range of each relation.

Relation:

X	0	1	5	8	
y	2	5	6	9	

Domain: 1

[0,00]

Range:

Inverse:

X	2	5	6	9
У	0	1	5	8

Domain: [3,9]

Range:

Property of Inverses: Two functions are inverses if they 'undo' one another. Inverse functions have their points reflected across the line y=x.

To find inverses of functions:

step 1: rewrite using x & y

step 2: switch the x & y

step 3: solve for y

Write the inverse of the function. Graph both the function & its inverse (label each.)

Ex:
$$f(x) = 2x - 8$$

X	У
0	-8
4	0
(0	4

$$f^{-1}(x) = \sqrt{2 \times 49}$$

X	у
-8	0
0	4
4	1-

$$y = \frac{x}{2} + \frac{8}{2}$$

= $\frac{1}{2} \times + 4$

1.
$$f(x) = -3x + 6$$

y
6
0

$$f^{-1}(x) = \frac{1}{3} \times +2$$

$$f(x) = \frac{1}{3} \times +2$$

X	у
6	0
0	2
-10	u

X	у
6	0
0	2
-10	u

$$y = \frac{x}{-3} - \frac{6}{3}$$

Write and graph the inverse of each function

Ex.
$$f(x) = 3(x-4)$$

	- / '
X	y
. 1	-9
3	3 -3
-	5 3

$$f^{-1}(x) = \frac{1}{3} \times +4$$

X	у
98	

$$y_{1} = \frac{1}{3} = \frac{1}{3$$

2.
$$f(x) = -5(x+1)$$

20/21 41 10	45.75
X	у
0	-5
-1	0
	1)
-2	5

$$f^{-1}(x) = -\frac{1}{5} \times -1$$

x	y	
-5	0	2
0	-1	Fix
5	-7-	

 $y = \frac{x}{-5} - 1$ of $y = -\frac{1}{5}x - 1$

$$Ex. \ f(x) = -\frac{5}{3}x + 5$$

$$\begin{array}{c} X = -5/3y + 5 \\ -3/5x + 3 = y \end{array}$$

$$3. \ f(x) = -\frac{1}{3}x + 3$$

$$\begin{array}{c} x = -\frac{1}{3}y + 3 \\ (-\frac{3}{3})(-\frac{3}{3})(-\frac{3}{3}) \\ \hline 1 - 3x + 9 = y \end{array}$$