Билет 1. Шесть определений непрерывной функции.

Билет 2. Определение непрерывности в точке справа и слева. Критерий непрерывности в терминах непрерывности слева и справа (Предложение 1, Лекция 13).

Билет 3. Локальные свойства непрерывных функций.

Билет 4. Теорема о композиции непрерывных функций. Точка разрыва.

Билет 5. Устранимый разрыв, разрыв первого рода и разрыв второго рода. Разрывы монотонной на интервале функции. Определение непрерывной на множестве функции.

Билет 6. Теорема о нуле непрерывной на отрезке функции (Теорема 1, Лекция 13). Определение ограниченной на множестве функции. 1-я теорема Вейерштрасса.

Билет 7. 2-я теорема Вейерштрасса Теорема Больцано – Коши о промежуточном значении.

Билет 8. Определение равномерной непрерывности. Теорема Гейне – Кантора.

Определение 8.1. Функция f, определенная на множестве E, называется равномерно непрерывной на этом множестве, если для любого числа $\varepsilon > 0$ существует такое $\delta > 0$, что при всех таких $x_1, x_2 \in E$, что $|x_1 - x_2| < \delta$, выполнено неравенство

$$|f(x_1) - f(x_2)| < \varepsilon.$$

Теорема 8.1. (Гейне – Кантора о равномерной непрерывности). Функция f, непрерывная на отрезке [a,b], равномерно непрерывна на этом отрезке.

Билет 9. Обратная функция. Критерий непрерывности монотонной функции. Теорема об обратной функции.

Определение 9.1. Пусть функция $f: E \to D$ осуществляет биекцию между E и D. Если каждому $y \in D$ поставить в соответствие то $x \in E$, для которого f(x) = y, то тем самым будет определена функция, отображающая множество D во множество E. Она называется **обратной** для функции f и обозначается f^{-1} . Таким образом, $f^{-1}: D \to E$.

Теорема 9.1. (Критерий непрерывности монотонной функции). Монотонная на отрезке [a,b] функция f, непрерывна на этом отрезке тогда и только тогда, когда множеством её значений является отрезок c концами f(a) и f(b).

Теорема 9.2. (**Теорема об обратной функции.**) Пусть функция f непрерывна и строго монотонна (то есть возрастает или убывает) на отрезке [a,b]. Тогда функция f имеет обратную функцию f^{-1} , определенную на отрезке c концами f(a) и f(b), причём f^{-1} строго монотонна и непрерывна на отрезке c концами f(a) и f(b) и характер монотонности функций f и f^{-1} одинаковый.

Билет 10. Определение дифференцируемой функции. Определение дифференциала. Дифференциал как линейная функция (Лекция 16).

Определение 10.1. Функция f, определённая в некоторой окрестности точки a, называется **диф-ференцируемой** в точке a, если существуют такие число A и функция α , что при всех h из некоторой проколотой окрестности нуля выполнено равенство

$$f(a+h) - f(a) = Ah + \alpha(h)h, \tag{1}$$

где $\lim_{h\to 0} \alpha(h) = 0$. При этом A и α зависят и от точки a, поэтому часто равенство (1) записывают в виде

$$f(a+h) - f(a) = A(a)h + \alpha(a,h)h.$$

Определение 10.2. Функция $h \mapsto Ah$ называется **дифференциалом** функции f в точке a. Она обозначается df(a) или $df|_{x=a}$, то есть $df(a)(h) = df(h)|_{x=a} = Ah$.

Ещё раз подчеркнём, что равенство записано в фиксированной точке a, то есть оно зависит от точки a. Другими словами, число A, вообще говоря, разное при разных a.

Здесь символ df(a) нужно воспринимать как обозначение функции, то есть как *цельный* символ. Отметим два очевидных наблюдения для функции $h \mapsto Ah$: во-первых

$$\forall \lambda \in \mathbb{R} \ df(a)(\lambda h) = A\lambda h = \lambda Ah,$$

а во-вторых

$$df(a)(h_1 + h_2) = A(h_1 + h_2) = Ah_1 + Ah_2.$$

Так как здесь A – число, то свойства очевидны. Однако позже мы увидим, что дифференциал функции многих переменных также обладает аналогичными свойствами. Выполнение этих свойств по определению означает, что дифференциал является линейной функцией от h.

Вилет 11. Определение производной. Связь дифференцируемости и производной (Предложение 1, Лекция 16). Определение касательной.

Определение 11.1. Если существует предел $\lim_{h\to 0} \frac{f(a+h)-f(a)}{h}$, то он называется производной функции f в точке a. Другая форма записи предела: $\lim_{x\to a} \frac{f(x)-f(a)}{x-a}$. Производная функции f в точке a обозначается символом f'(a) или $\frac{df}{dx}(a)$ (второе обозначение позже обсудим подробно).

Предложение 11.1. Функция f дифференцируема в точке а тогда и только тогда, когда в точке а существует производная этой функции f'(a). При этом $df(h)|_{x=a} = f'(a)h$.

Изучим геометрическую интерпретацию производной и дифференциала. Из равенства h = x - a получим, что дифференцируемая функция может быть записана в виде $f(x) = f(a) + f'(a)(x - a) + \alpha(x)(x - a)$, где $\lim_{x \to a} \alpha(x) = 0$. Это значит, что в некоторой окрестности точки a функция f приближается функцией $x \mapsto f(a) + f'(a)(x - a)$. Таким образом, локально (то есть в некоторой окрестности точки a) график функции f выглядит "почти"как прямая. Сама прямая y = f'(a)(x - a) + f(a) называется касательной к графику функции f в точке a. Производная f'(a) является тангенсом угла наклона касательной к положительному направлению оси Ox. На рисунке 1 красным цветом изображена касательная. Обра-

Рис. 1: Функция "сливается" с касательной.

тим внимание, что график функции и касательной неразличимы в некоторой окрестности. Приведём несколько примеров на вычисление производных с помощью определения производной.

Билет 12. Непрерывность дифференцируемой функции. Определение равномерной сходимости.

Предложение 12.1. Пусть функция f дифференцируема в точке a. Тогда f непрерывна в точке a.

Билет 16. Таблица производных.

Билет 18. Теорема Ролля. Теорема Лагранжа. Геометрические смыслы этих теорем.

Билет 19. Два следствия теоремы Лагранжа. Теорема Коши.