HW 11

7.15. Recall that $\sigma = (\mathbf{D} - \alpha \mathbf{A})^{-1}$. This means that

$$\sigma = (\mathbf{D} - \alpha \mathbf{A})^{-1} \tag{1}$$

$$\sigma^{-1} = \mathbf{D} - \alpha \mathbf{A} \tag{2}$$

$$\sigma^{-1}\mathbf{D}^{-1} = \mathbf{I} - \alpha \mathbf{A} \mathbf{D}^{-1} \tag{3}$$

$$(\mathbf{D}\sigma)^{-1} = \mathbf{I} - \alpha \mathbf{A} \mathbf{D}^{-1}. \tag{4}$$

Recall that the pagerank centrality is given by $\mathbf{x} = (\mathbf{I} - \alpha \mathbf{A} \mathbf{D}^{-1})^{-1} \mathbf{1}$. This means that

$$\mathbf{x} = (\mathbf{I} - \alpha \mathbf{A} \mathbf{D}^{-1})^{-1} \mathbf{1} \tag{5}$$

$$= \mathbf{D}\sigma \mathbf{1} \tag{6}$$

$$\mathbf{D}^{-1}\mathbf{x} = \sigma \mathbf{1}.\tag{7}$$

Then we see that $\sigma_i = \sum_j \sigma_{ij}$ is just the i^{th} entry of $\sigma \mathbf{1}$ since we are summing over the columns. Note that since D is diagonal, the D^{-1} is diagonal with diagonal entries $\frac{1}{k_i}$. So the i^{th} entry of $\mathbf{D}^{-1}\mathbf{x}$ is $\frac{1}{k_i}x_i$. So $\sigma_i = \frac{1}{k_i} x_i$. Hence σ_i is just the pagerank centrality of i divided by the degree of node i. **7.16.**

Group	e_r	a_r
Black	.258	.354
Hispanic	.157	.294
White	.306	.494
Other	.016	.121