Zadanie 1. Dla ciągłych funkcji rzeczywistych f, g : M $\to \mathbb{R}$ na rozmaitości gładkiej M, oraz dla $\varepsilon > 0$ mówimy, że g jest ε -aproskymacją f, jeśli $||f - g|| < \varepsilon$ (tzn. dla każdego x \in M mamy $|f(x) - g(x)| < \varepsilon$).

- (a) Uzasadnij, że dla każdego ε > 0 każda ciągła funkcja F : M $\to \mathbb{R}$ posiada gładką ε -aproksymację.
- (b) Rozszerz ten wynik do sytuacji, gdy $\varepsilon: M \to \mathbb{R}$ jest dowolną ciągłą dodatnią funkcją rzeczywistą, zaś ε -aproksymacja funkcji f to dowolna taka funkcja g, że dla każdego $x \in M$ mamy $|f(x) g(x)| < \varepsilon(x)$.
- (c) Niech D \subseteq M będzie dowolnym domkniętym podzbiorem. Dla dowolnego ε jak w punkcie (b) uzasadnij, że dowolna funkcja ciągła f : M $\to \mathbb{R}$, która jest gładka na pewnym otwartym otoczeniu zbioru D, posiada gładką ε -aproksymację g : M $\to \mathbb{R}$ taką, że g \upharpoonright D = f \upharpoonright D.

(a)

Daną mam ciągłą funkcję $F: M \to \mathbb{R}$. Wiem, że każdą funkcję mogę dowolnie dokładnie aproksymować za pomocą wielomianu o współczynnikach wymiernych.

Weźmy sobie jakiś atlas na M zawierający mapy (U_{α} , ϕ_{α}). Wiem, że skoro f było ciągłe, a ϕ nic nie psuje, to pewnie i f \circ ϕ^{-1} jest ciągłe. Czyli w ten sposób dostaję funkcję $\mathbb{R} \to \mathbb{R}$ i na tym już chyba umiem pracować jakoś po ludzku.

Ten obrazek średnio cokolwiek daje, ale zrobiłam go i nie zamierzam usuwać, bo wygląda zajebiście.

Chyba mogę znaleźć sobie wielomian $w \in \mathbb{R}[X^n]$ taki, że siedzi w kulce nałożonej na f w przestrzeni funkcji ciągłych. Ewentualnie mogę powiedzieć, że w to jest po prostu gładka funkcja blisko f określona na $\phi_{\alpha}(U_{\alpha})$, bo chyba funkcje gładkie są gęste w zbiorze funkcji ciągłych czy jakoś tak. Teraz chcę sobie produkować g = $w(\phi(p))$, ale wtedy to nie wyśmignie się chyba tak od razu?

Może wyprodukujmy sobie rozkład jedności ψ_{α} taki, że $\psi_{\alpha}\equiv 0$ poza U_{α} i dowolny punkt $p\in M$ jest $\psi_{\alpha}(p)>0$ dla skończenie wielu α . No i jeszcze ten $\sum \psi_{\alpha}(p)=1$ dla każdego $p\in M$. Czyli mam pysia będącego rozkładem jedności. Czyli mogę go chyba użyć do wytworzenia w końcu tego g? Bo jak ψ_{α} jest gładkie, to ten

$$g(p) = \sum w(\phi_{\alpha}(p))\psi_{\alpha}(p)$$

jest nadal gładkie? Znaczy tutaj jest nieścisłość, bo powinnam pisać, że tak jest dla $p\in U_{\alpha}$, a jeśli $p\notin U_{\alpha}$, to po prostu 0, ale to i tak na jedno wychodzi, bo wtedy $\psi_{\alpha}(p)$ się zeruje. No i jakaś suma skończenie lokalnych gładkich funkcji bla bla bla bla

Teraz muszę się upewnić, że to faktycznie jest ograniczeniem moim?

$$\begin{aligned} \|f(\mathbf{x}) - g(\mathbf{x})\| &= \|f(\mathbf{x}) - \sum w(\phi_{\alpha}(\mathbf{x}))\psi_{\alpha}(\mathbf{x})\| \le \\ &\le \|\sum (\psi_{\alpha}(\mathbf{x}))[f(\mathbf{x}) - w(\phi_{\alpha}(\mathbf{x}))]\| < \\ &< \left|\sum (\psi_{\alpha}(\mathbf{x}))\varepsilon\right| = 1 \cdot \varepsilon = \varepsilon \end{aligned}$$

Teraz zamiast ładnej kulki mam troszkę brzydszą kulkę bo $\{w: f(x) - \varepsilon(x) < w(x) < f(x) + \varepsilon(x)\}$, ale nadal mogę znaleźć jakieś gładkie w i postąpić analogicznie jak wyżej.

Mamy $\{(U_{\alpha},\phi_{\alpha})\}$ - atlas złożony z prezwart<u>ych U_{α} </u>. Niech $\{\psi_{\alpha}\}$ będzie rozkładem jedności wpisanym w U_{α} . Ustalmy α . Wtedy $\varepsilon \circ \phi_{\alpha}^{-1}$ przyjmuje na $\overline{\phi_{\alpha}(U_{\alpha})}$ minimum $m_{\alpha} > 0$. Istnieje gładka $g_{\alpha}: U_{\alpha} \to \mathbb{R}$ takie, że $\|F \upharpoonright U_{\alpha} - g_{\alpha}\| < m_{\alpha}$. Niech

$$\overline{g_{\alpha}}(p) = \begin{cases} g_{\alpha}(p) & \in U_{\alpha} \\ 0 & p \notin U_{\alpha} \end{cases}$$

wtedy $m_{\alpha} \circ \psi_{\alpha}(p) \leq \varepsilon(p)$. Niech $G = \sum_{\alpha} \psi_{\alpha} \overline{g_{\alpha}}$.

$$\mathsf{G}(\mathsf{p}) \leq \sum \psi_{lpha}(\mathsf{F}(\mathsf{p}) + arepsilon(\mathsf{p})) = \mathsf{F}(\mathsf{p}) + arepsilon(\mathsf{p})$$

$$\mathsf{G}(\mathsf{p}) \geq \sum \psi_{lpha}(\mathsf{f}(\mathsf{p}) - arepsilon(\mathsf{p})) = \mathsf{F}(\mathsf{p}) - arepsilon(\mathsf{p})$$

(c)

Czyli robię jakieś bump function? Czyli biorę sobie atlas (U_1, ϕ_1) , (U_2, ϕ_2) taki, że $U_1 = M \setminus D$, a U_2 jest otwartym podzbiorem zawierającym $D \subseteq U_2$. Niech wtedy ψ_1, ψ_2 będzie gładkim rozkładem jedności takim, że $\psi_1 \equiv 0$ na D. Wtedy ϕ_2 na D się nie zeruje, a sumuje do 1, a na okolicy D musi stopniowo schodzić do 0, czyli wyśmignie. To teraz wystarczy znaleźć funkcję, która na $f(\phi_2(D))$ jest identyczna, a na pozostałej części troszkę odbiega, ale to też się da zrobić, taka funkcja to może być w i wtedy

$$g(x) = \begin{cases} w(\phi_2(x)) & x \in D \\ \sum w(\phi_\alpha(x))\psi_\alpha(x) & wpp \end{cases}$$

Niech $\{\psi_1, \psi_2\}$ będzie rozkładem jedności wpisanym w $\{U, M \setminus D\}$, gdzie U jest otoczeniem otwartym D, na którym f jest gładka. Niech

$$G = f \circ \phi_1 + g \circ \phi_2,$$

gdzie g to jest ε -aproksymacja f z punktu (b).

Zadanie 2. Dla niezwartej rozmaitości gładkiej M skonstruuj gładką funkcję $f: M \to \mathbb{R}$ taką, że dla każdego naturalnego n przeciwobraz $f^{-1}([-n,n])$ jest zwartym podzbiorem w M. Funkcje o tej własności nazywają się funkcjami właściwymi. Wskazówka: wykorzystaj zadanie 6 z listy 1: uzasadnij też najpierw następujący fakt pomocniczy: istnieje ciąg otwartych zbiorów V_i takich, że $\bigcup_{i \in \mathbb{N}} V_i = M$, oraz dla każdego i

domknięcie cl(V_i) w M jest zwarte i zawarte w V_{i+1}.

Zadanie 6 w liście 1 mówi, że każda rozmaitość M jest przeliczalną sumą otwartych podzbiorów homeomorficznych z otwartymi kulami w \mathbb{R}^n , których domknięcia w M sa homeomorficzne z domkniętymi kulami w \mathbb{R}^n .

Myślę, że wystarczy wziąć ten ciąg jak z faktu pomocniczego i troszkę go podciąć tak, żeby był homeomorficzny z otwartymi kulami. To już robiliśmy. Potem wiem, że domknięcie otwartej kuli jest zbiorem zwartym w \mathbb{R}^n , czyli jego przeciwobraz przez funkcje z atlasu też jest zbiorem zwartym. Mogę więc funkcją f skalować promień na kolejne liczby naturalne, a odległość od kuli i położenie w odpowiedniej półkuli skalować na cały taki odcinek. Taki mam chwilowo pomysł.

To może teraz uzasadnienie faktu pomocniczego? Niech $\bigcup U_i = M$ będzie przeliczalnym pokryciem M. To suniemy z tworzeniem ciągu V_i ? Niech $V_0 = U_0$. Czy mogę powiedzieć, że jeśli zrobię $V_1 = U_1 \cup cl(V_0)$ to jeśli rzucę to na \mathbb{R}^n i znajdę tam otwarty podzbiór niebędący całym obrazem M, który to zawiera, to jestem w domu? Raczej tak. Czyli takie coś powtarzam dla każdego i i jestem w domu.

Robimy zadanie 3 w inny sposób XD

Istnieją V_i - otwarte prezwarte takie, że $cl(V_i) \subseteq V_{i+1}$ i $\bigcup V_i = M$. Z zadania 6 z poprzedniej listy wiemy, że istnieją B_k takie, że $M = \bigcup B_k$ i $B_k \cong B(0, 1)$, wtedy $cl(B_k) \cong cl(B(0, 1))$.

Możemy więc robić, żeby

$$B \cong B(0,1) = \bigcup B(0,1-\frac{1}{s})$$

To teraz niech $B_k = \bigcup B_{k,s}$ i wtedy mamy to z domknięciem. Teraz możemy zdefiniować V_i jako:

$$V_{i} = \bigcup_{k=1}^{i} \bigcup_{s=1}^{i} B_{k,i} = \bigcup_{k=1}^{i} B_{k,i}$$

Wtedy

$$cl(V_i) = \bigcup cl(B_{k,i}) \subseteq \bigcup B_{k,i+1} \subseteq V_{i+1}$$

Będziemy mieli pary $\{V_{j+1}, M \setminus cl(V_j)\}$, czyli to jest takie dwuelementowe pokrycie rozmaitości. Teraz chcemy funkcję, która jest 1 na cl (V_{j+1}) , a zerem na tym drugim. Rozważmy rozkład jedności $\{\psi_1, 1 - \psi_j\}$ taki, że $\psi_i(M \setminus V_{j+1}) \equiv 1$ i $\psi_i(V_i) \equiv 0$.

Niech $f(x) = \sum \psi_i(x)$. Wystarczy pokazać, że jest to funkcja właściwa. Support to dopełnienie cl (V_i) i dla dużych i będzie zerem? Nieee wiem, chce spać.

Jeśli $x \in V_i$, to $f(x) \le i - 1$. Z drugiej strony, jeśli $x \in M \setminus V_i$, to $f(x) \ge i$.

Teraz potrzebujemy, żeby $f^{-1}[-n, n]$ było zwarte. Jak to się ma dla $f^{-1}[0, n]$? jest on zawarty w $cl(V_{n+1})$

Zadanie 3. Niech $\mathscr U$ będzie dowolnym pokryciem rozmaitości M zbiorami prezwartymi i niech $\{f_j\}$ będzie gładkim rozkładem jedności wpisanym w $\mathscr U$. Uzasadnij, że funkcja $h = \sum j \circ f_j$ jest gładką funkcją właściwą o dodatnich wartościach. Uzasadnij, że funkcja ta, jak każda rzeczywista funkcja właściwa ograniczona od dołu, posiada globalne minimum (czyli taki punkt $p \in M$ że dla każdego $x \in M$ zachodzi $f(x) \geq f(p)$.

Mamy funkcję $h = \sum j \circ f_j$. Jest gładka i tnie się niepusto tylko ze skończenie wieloma zbiorami z pokrycia. Chcemy pokazać, że to jest ograniczone od dołu. Jest właściwa, bo wiemy, że poza sumą zbiorów $U_1,...,U_n$ to jest suma większa niż n. Zbiory te są prezwarte, suma skończenie wielu zbiorów prezwartych jest prezwarty. Czyli

$$h^{-1}[-n,n] \subseteq \bigcup_{i < n} U_{\dot{i}}.$$

Mamy pokazać, że istnieje minimum, czyli cośtam gdzie cośtam jest realizowane.

Weźmy sobie punkt p taki, że $n \le h(p) < n + 1$. Teraz chcemy dzielić sobie rozmaitość na sumę od $U_1, ..., U_{n+1}$ i na resztę. I teraz na dopełnienu sumy $U_1, ..., U_{n+1}$ na pewno nie znajdę minimum, bo na tym dopełnieniu ta suma jest większa niż n + 1. Ni cholery nie zrozumiałam.

Zadanie 4. Dla rozmaitości M z brzegiem skonstruuj taką gładką funkcję $f: M \to [0, \infty)$ taką, że $\partial M = f^{-1}(0)$ oraz rząd f w dowolnym punkcie brzegowym wynosi 1.

Rząd funkcji

Idea: Ustalmy rozkład jedności dla zbiorów mapowych {h;}. Nie rozumiem tego, co szachu mówi.

$$f(\underset{\in M}{x}) = \sum g_j(\psi_j(x)) \cdot h_j(x)$$

Teraz wypadałoby sprawdzić, że $h_j(x)$ śmiga. Skoro cośtam zeruje się na brzegu, to ma rząd 1. Teraz trzeba policzyć pochodną. Kurwa zgubiłam się. Ale to, że rząd jest co najwyżej 1 to też wynika z tego, że idziemy w \mathbb{R} . Teraz chcemy liczyć pochodną i policzyć, że się nie zeruje.

Pochodna to będzie suma pochodnych czyli będą kontrybucje z różnych map. Teraz musimy wziąc jedną konkretną mapę i policzyć jej pochodną i pokazać, że ta pochodna jest dodatnia, czyli i cała suma też będzie sumą dodatnich i będzie dodatnia.

Ustalmy dowolne $p \in \partial M$. Zauwazmy, że f(p) jest skończenie wielu obrazów i skupmy się na jednym, nazwijmy go indeksem β .

$$g_{\beta}(\psi_{\beta}(p)) \circ h_{\beta}(p) = \xi(p)$$

i chcemy pokazać, że $\partial \xi(p) > 0$

DUUUŻO DZIWNYCH RZECZY

Trzeba udwodonić lemacik, że f : $M \to \mathbb{R}$ i nie wiem co sie dzieje hyhy

Ten lemat to w sumie trzeba zmienic, ale to i tak zdjęcia zrobię

Zadanie 5. Uzasadnij, że naturalne włożenie $i:S^n \to \mathbb{R}^{n+1}$ jest gładkie.

To nie tak, że po prostu mamy identyczność?

Zadanie 6. Niech M, N będą rozmaitościami różniczkowalnymi i niech $f: M \to N$ będzie przekształceniem gładkim, zaś $g: N \to \mathbb{R}$ gładką funkcją rzeczywistą. Uzasadnij z definicji, że złożenie $g \circ f: M \to \mathbb{R}$ jest funkcją gładką.

Niech $p \in M$, $q = f(p) \in N$ i $s = g(q) = g(f(p)) \in \mathbb{R}$. Teraz ustalamy sobie mapy (U, ϕ) , (V, ψ) wokół p i q. Wiem, że $\psi \circ f \circ \phi^{-1}$ i $g \circ \psi^{-1}$ są gładkie i obie przyjmują i oddają wartości rzeczywiste, czyli ich złożenie na pewno będzie gładkie:

 $\overline{(g\psi^{-1})(\psi f\phi^{-1})} = g\psi^{-1}\psi f\phi^{-1} = gf\phi^{-1}$

jest gładkie, to jak włożymy do tego $\phi(p)$ też będzie gładkie. Koniec.

Zadanie 7. Sprawdź, że dla naturalnej struktury rozmaitości gładkiej na produkcie $M \times N$ dwóch rozmaitości gładkich rzutowania $M \times N \to M$ i $M \times N \to N$ są odwzorowaniami gładkimi.

Na poprzedniej liście już pokazaliśmy, że jest to ziomek gładki i chyba, że $(U_{\alpha} \times V_{\beta}, \phi_{\alpha} \times \psi_{\beta})$ to jest atlas na produkcie kartezjańskim.

Weźmy sobie funkcję $f: M \times N \rightarrow M$ taką, że f(p,q) = p.

Niech $(p,q) \in M \times N$ i bierzemy mapy $(p,q) \in (U \times V, \phi \times \psi)$, $p \in (U,\phi)$. Chcę, żeby

$$\phi f(\phi \times \psi)^{-1}$$

było gładkie w punkcie ($\phi \times \psi$)(p, q).

$$\phi f(\phi \times \psi)^{-1}(\phi \times \psi)(p,q) = \phi(f(p,q)) = \phi(p)$$

no a to jest bardzo gładki?

Zadanie 8. Niech \mathfrak{L} będzie rozmaitością prostych na płaszczyźnie.

- (a) Zdefiniuj rozmaitość kierunków prostych na płaszczyźnie i pokaż, że odwzorowanie przyporządkowujące prostej z £ jej kierunek jest gładkie.
- (b) Pokaż, że odwzorowanie $\mathfrak{L} \to \mathfrak{L}$ przyporządkowujące każdej prostej prostopadłą do niej przechodzącą przez punkt (0,0) jest gładkie.
- (c) Dane są gładkie funkcje $p: \mathbb{R} \to \mathbb{R}^2$ i $\theta: \mathbb{R} \to \mathbb{R}$. Niech $L: \mathbb{R} \to \mathfrak{L}$ będzie odwzorowaniem w którym L(t) jest prostą przechodzącą przez punkt p(t) i mającą kierunek θ (t) (liczony w mierze łukowej, tak, że wartości różniące się o π oznaczają ten sam kierunek). Wykaż za pomocą map dla \mathfrak{L} , że L jest odwzorowaniem gładkim (gładką krzywą w \mathfrak{L}).

Nie rozumiem czego ode mnie wymagają.

Zadanie 9. Odwzorowanie $F: S^3 \to S^2$ zadane jest wzorem $F(z, w) = (z\overline{w} + w\overline{z}, iw\overline{z} - iz\overline{w}, z\overline{z} - w\overline{w})$, gdzie S^3 traktujemy jako podzbiór w \mathbb{C}^2 zadany równaniem $|z|^2 + |w|^2 = 1$. Uzasadnij za pomocą wyliczenia w mapach, że F jest odwzorowaniem gładkim. Wcześniej uzasadnij, że jest ono dobrze określone.

S³ mogę zanurzyć w \mathbb{R}^4 , ale ja mam myśleć w terminach \mathbb{C}^2 , czyli moje zbiory U_1^{\pm} , U_2^{\pm} , U_3^{\pm} , U_4^{\pm} będą zbiorami które mają dla nieparzystych indeksów Re(z) jest większe lub mniejsze niż 0, a dla parzystych to Im(z) jest warunkowane.

To jak wyglądałaby mi mapa $\phi_1^{+}:\mathbb{C}^2 o \mathbb{R}^3$ na

$$U_1^+ = \{(z, w) : Re(z) > 0\}$$
?

$$\phi_1^+(z, w) = (Im(z), Re(w), Im(w))$$

Aby pokazać gładkość F, muszę brać dowolny (p, q) $\in S^3$ i mapę (U, ϕ) zawierającą (p, q). Potem dobieram mapę (V, ψ) zawierającą F(p, q) i sprawdzam, że $\psi \circ F \circ \phi^{-1}$ jest gładkie.

Dobra, bierem $(p,q) \in S^3$ i żeby mi było dobrze w życiu, to chcę, aby $(p,q) \in U_1^+$, czyli Re(p) > 0. Wtedy

$$F(p,q) = (p\overline{q} + q\overline{p}, i[q\overline{p} - p\overline{q}], |p| - |q|)$$

Na S 2 ustalam mapy V $_1^\pm$, V $_2^\pm$, V $_3^\pm$ i ten obraz musi wpadać w jedną z nich. Chyba mnie nie obchodzi w którą, bo ma szansę wpaść w każdą z nich, w zależności od tego jak będzie wyglądać q?

Niech $(x, y, z) = \phi(p, q)$, tzn. p = w + ix, q = y + iz.

$$\psi \circ F \circ \phi^{-1}(x, y, z) = \psi(2(wy + xz), 2(wz + xy), w^2 + x^2 - y^2 - z^2)$$

Nie ważne które usuniemy, zawsze dostajemy funkcję gładką, więc i całość jest gładka?