CMPE 310 Systems Design and Programming

L₁₃: Chapter ₁₁ – BASIC I/O Interface

L₁₃ Objectives

- * Describe the function of each pin of the 16550
 - * Diagram how the 16550 is connected to the x86/88 PC
 - * Define the terms simplex, half duplex & full duplex
 - * Program the 16550 (Initialization & Operation)

Programmable Communications Interface: 16550

- A universal asynchronous receiver/transmitter (UART).
- * Operation speed: 0-1.5M Baud (Baud is number of bits transmitted/sec, including start, stop, data and parity).
- * Includes:
 - * A programmable Baud rate generator.
 - * Separate FIFO buffers for input and output data (16 bytes each).
- Asynchronous serial data:
 - * Transmitted and received without a clock or timing signal.

- * Two 10-bit frames of asynchronous data.
- * 7- or 8- bit ASCII can be used, e.g. w or w/o parity.

Pinout of the 16550

* A₀, A₁ and A₂: Select an internal register for programming and data transfer.

42	A_I	Ao	Register	
0	0	0	Receiver buffer (read) and transmitter holding (write)	- A ₂
0	0	1	Interrupt enable	- CS
0	1	0	Interrupt identification (read) and FIFO control (write)	M
0	1	1	Line control	RD
1	0	0	Modem control	
1	0	1	Line status	-AD
1	1	0	Modem status	
1	1	1	Scratch	→ TX RX

- * ADS: Address strobe used to latch address and chip select lines. Not needed on Intel systems connected to ground.
- * BAUDOUT: Clock signal from Baud rate generator in transmitter.
- * CS₀, CS₁, CS₂: Chip selects
- * CTS: Clear to send -- indicates that the modem or data set is ready to exchange information.

Pinout of the 16550

D₇-D_o: The data bus pins are connected to the microprocessor data bus.

- * DCD: The data carrier detect -- used by the modem to signal the 16550 that a carrier is present.
- * DDIS: Disable driver output -- set to o to indicate that the microprocessor is reading data from the UART. Used to change direction of data flow through a buffer.
- * DSR: Data set ready is an input to 16550 -- indicates that the modem (data set) is ready to operate.
- * DTR: Data terminal ready is an output -- indicates that the data terminal (16550) is ready to function.
- INTR: Interrupt request is an output to the microprocessor -- used to request an interrupt.
 - * Receiver error
 - * Data received
 - * Transmit buffer empty
- * MR: Master reset -- connect to system RESET

Pinout of the 16550

OUT1, OUT2: User defined output pins for modem or other device.

- * RCLK: Receiver clock -- clock input to the receiver section of the UART.
 - * Always 16 times the desired receiver baud rate.
- * RD, RD: Read inputs (either can be used) -- cause data to be read from the register given by the address inputs to the UART.
- * RI: Ring indicator input -- set to 0 by modem to indicate telephone is ringing.
- * RTS: Request-to-send -- signal to modem, indicating UART wishes to send data.
- * SIN, SOUT: Serial data pins, in and out.
- * RXRDY: Receiver ready -- used to transfer received data via DMA techniques.
- * TXRDY: Transmitter ready -- used to transfer transmitter data via DMA.
- * WR, WR: Write (either can be used) -- connects to microprocessor write signal to transfer commands and data to 16550.
- * XIN, XOUT: Main clock connections -- a crystal oscillator can be used.

Programmable Communications Interface: 16550

- Two separate sections are responsible for data communications:
- * Receiver & Transmitter
- Can function in:
 - * simplex: transmit only (unidirectional communication line)
 - * half-duplex: transmit and receive but not simultaneously (bidirectional communication line) (CTS to turn the line around).
 - * full-duplex: transmit and receive simultaneously (two communication lines)
 - * Higher performance communication
- * The 16550 can control a modem through DSR, DTR, CTS, RTS, RI and DCD.
- * In this context, the modem is called the *data set* while the 16550 is called the *data terminal*.

Programming the 16550

- * Two phases: Initialization, operation.
- * Initialization:
 - After RESET, the line control register and baud rate generator need to be programmed.
 - * Line control register selects the number of data bits, number of stop bits and the parity.
 - * Addressed at location o11.

* Stop bits: S = 1, 1.5 stop bits used for 5 data bits, 2 used for 6, 7 or 8.

Programming the 16550

Initialization (cont.)

* ST, P and PE used to send even or odd parity, to send no parity or to send a 1 or a 0 in the parity bit position for all data.

ST	P	PE	Function
0	0	0	No parity
0	0	1	Odd parity
0	1	0	No parity
0	1	1	Even parity
1	0	0	Undefined
1	0	1	Send/receive 1
1	1	0	Undefined
1	1	1	Send/receive 0

- * No parity, both ST and PE are o -- used for internet connections.
- * SB = 1 causes a break to be transmitted on SOUT.
 - * A break is at least two frame of logic o data.
- * DL = 1 enables programming of the baud rate divisor.

Programming the 16550

- Initialization (cont.)
 - * Baud rate generator is programmed with a divisor that sets baud rate of transmitter.
 - * Baud rate generator is programmed at ooo and oo1.
 - * Port ooo used to hold least significant byte, oo1 most significant byte
 - * Value used depends on external clock/crystal frequency.
 - * For 18.432MHz crystal, 10,473 gives 110 baud rate, 30 gives 38,400 baud.
 - * Note, number programmed generates a clock 16 times the desired baud rate.
 - * Last, the FIFO control register must be programmed at 010.

Programming the 16550

Operation:

 Status line register gives information about error conditions and state of the transmitter and receiver.

- * This register needs to be tested in software routines designed to use the 16550 to transmit/receive data.
- Suppose a program wants to send data out SOUT.
 - * It needs to poll the **TH** bit to determine if transmitter is ready to send data.
- * To receive information, the **DR** bit is tested.

Programming the 16550

- Operation:
 - * It is also a good idea to check for errors.
 - * Parity error: Received data has wrong error -- transmission bit flip due to noise.
 - Framing error: Start and stop bits not in their proper places.
 This usually results if the receiver is receiving data at the incorrect baud rate.
 - * Overrun error: Data has overrun the internal receiver FIFO buffer.

 Software is failing to read the data from UART before the receiver FIFO is full.
 - * **Break indicator bit:** Software should check for break condition as well i.e. two consecutive frames of os on SIN pin

Next time

☐ Interrupts – Hardware Interrupts

STOP