# オペレーティングシステム 第14章 二次記憶装置

https://github.com/tctsigemura/OSTextBook

◆ロト ◆回 ト ◆ 重 ト ◆ 重 ・ り Q (^\*)

2次記憶 1/19

# 記憶装置の階層(1)



- レジスタは CPU レジスタのこと。容量は数十バイト程度,高速アクセスが可能,揮発性
- 主記憶 (メモリ)アクセス時間は数ナノ秒~十数ナノ秒程度容量は数 Gi バイト~数十 Gi バイト程度, 揮発性
- 二次記憶装置 ハードディスクや SSD (Solid State Drive) のこと。 アクセス時間は数ミリ秒〜数十ミリ秒 (ハードディスク), 不揮発性

2次記憶 2/19

# 記憶装置の階層(2)

夫々の特性に合った使い方をする.

- 二次記憶装置の特性は次の通り.
  - 大容量(ビット単価が安い) オペレーティングシステム,アプリケーション,データなどの 全てを格納できる。
  - 不揮発性(電源を切っても消えない) プログラムやデータの永続的な置き場所として適している。

2次記憶 3/19

## 二次記憶装置の種類(1)



#### 接続方式

- CPU からはホストコントローラを介してアクセスする.
- 二次記憶装置は SATA や USB バスの先に接続される.
- USBメモリスティックやポータブルハードディスクは取り外し可能.
- 取り外し可能 => データ交換,バックアップ用途にも適する.

2次記憶 4/19

## 二次記憶装置の種類(2)



#### テープ型装置

- データのバックアップや輸送用(ビット単価が安い)
- シーケンシャルアクセス専用
- 読み出し位置まで進むために数分!!

2次記憶 5/19

# 二次記憶装置の種類(3)



#### ディスク型装置

- ランダムアクセスが可能
- ハードディスクのこと(CD-ROM などの光ディスクも仲間)
- SSD, USB メモリ, その他メモリカードも仲間

2次記憶 6/19

## <u>ハー</u>ドディスク(1)



- システムの起動ドライブ(OS、アプリ、データ全てが置かれる)
- 仮想記憶のバックストレージとしても使用される。
- ハードディスク管理が、OSの性能や使い勝手を左右する。
- ファイル管理機構はハードディスクを前提にしていることが多い

7/19

## ハードディスク(2)



#### セクタ・トラック・シリンダ

- 同心円のトラック (Track)
- トラックを区切ったセクタ(Sector)
- トラックをまとめた**シリンダ(**Cylinder)

2次記憶 8/19

## ハードディスク(3)

#### セクタのアドレッシング

512 バイト (4KiB) のセクタのアドレス付け方法

- CHS (Clinder Head Secor) 方式
  - Clinder Head Secor の三次元アドレス.
  - Head は Track と同じ意味.
  - CHS は PC の世界で使用されてきた用語.
  - ハードディスクの物理的な構造通りのアドレッシング.
  - 過去,長く使われてきた方式.
- LBA (Logical Block Addressing)
  - セクタの通し番号(一次元)を用いる.
  - ハードディスクブラックボックス化(物理構造通が不明)
  - CHS は煩雑なだけでメリットがなくなった.

2次記憶 9/19

## フォーマッティング(1)

#### ハードディスクの初期化の例

- 1. 低レベル (物理) フォーマット ディスクの表面に磁気的にトラックを書き込む.
- 2. パーティション(区画)に分割
  - 装置全体を一つのボリューム => 大きすぎる
  - 区画に分割し区画をボリュームとして扱う => オペレーティングシステムのパーティション ユーザデータのパーティション => ここだけバックアップ
  - 複数のオペレーティングシステムをインストール第1パーティション (ボリューム) に Windows 第2パーティション(ボリューム) に Linux 第3パーティション(ボリューム) に FreeBSD
- 3. 高レベル (論理) フォーマット 各ボリュームの内部に該当オペレーティングシステムの 空のファイルシステムを作る.

10/10/12/12/2/2/3/0

## フォーマッティング(2)

#### PC用ハードディスクのパーティションの例

| MBR       |  |  |  |  |
|-----------|--|--|--|--|
| パーティション l |  |  |  |  |
| パーティション 2 |  |  |  |  |
| パーティション3  |  |  |  |  |
| パーティション4  |  |  |  |  |

- MBR (Master Boot Record)
  - ハードディスクの先頭セクタ(LBA0)に格納
  - MBR のサイズは 512 バイト
  - 内容はブートプログラムとパーティションテーブル

2次記憶 11/19

# フォーマッティング(3)

#### PC用ハードディスクの MBR の内容

ブートプログラム (446 バイト) パーティション テーブル (64 バイト) シグネチャ (2 バイト)

- MBR (Master Boot Record) (512バイト)
  - ブートプログラム(446バイト)PCの機械語プログラム(OSを起動するためのプログラム)
  - パーティションテーブル (64 バイト)各パーティションの位置と大きさ等を記録する4業の表
  - シグネチャ(2バイト)フォーマッティングされている目印(55H, AAH)

2次記憶 12 / 19

# フォーマッティング (4)

#### PC用ハードディスクのパーティションテーブルの例

| Flag | Start  | Туре | End    | Start     | Size      |
|------|--------|------|--------|-----------|-----------|
| (1)  | CHS(3) | (1)  | CHS(3) | LBA(4)    | (4)       |
| 80H  | ???    | 06H  | ???    | 0000003FH | 00003F00H |
| 80H  | ???    | A5H  | ???    | 00003F3FH | 0000BD00H |
| ООН  | ???    | ???  | ???    | ????????  | ??????    |
| ООН  | ???    | ???  | ???    | ????????  | ??????    |

| 項目        | バイト数 | 意味              |
|-----------|------|-----------------|
| Flag      | 1    | 80H アクティブ/      |
|           |      | OOH インアクティブ     |
| Start CHS | 3    | 開始アドレス (CHS 表現) |
| Туре      | 1    | ファイルシステムの種類     |
| End CHS   | 3    | 終了アドレス (CHS 表現) |
| Start LBA | 4    | 開始アドレス (LBA 表現) |
| Size      | 4    | セクタ数 (LBA 表現)   |

| Туре | 意味          |
|------|-------------|
| ООН  | 空き          |
| 01H  | FAT12       |
| 04H  | FAT16(小)    |
| 06H  | FAT16(大)    |
| 07H  | NTFS        |
| OBH  | FAT32       |
| 83H  | Linux(ext2) |
| A5H  | FreeBSD     |

2次記憶 13/19

# ブートストラップ(1)

#### PC の場合を例にブートストラップを説明する.

- ハードディスクから OS を起動する作業のこと.
- OS のカーネルを格納したファイルを見つけてロード・実行する.
- PC の製造時にはどんな OS がインストールされるか分からない。=> ブートストラップは後で変更できる必要がある。
- 以下に説明する段階を経て OS をブートする.
- 以下の方法がPCでは標準的であるが様々な変種がある。(段階が多い場合、強力なブートマネージャを備えている場合)

2次記憶 14 / 19

### ブートストラップ(2)

#### ハードディスク = ボリュームの場合



- IPL (Initial Program Loader) PC の ROM に格納されており電源 ON と同時に動作開始
- ブートローダ(第1段階:Loader1) 512 バイト以内 IBAO に格納され IPI によってロード・実行される
- ブートローダ(第2段階:Loader2) ディスク上のどこか連続セクタに格納され Loader1 がロード・実行. サイズに制限がない => 高機能にできる
- OS のカーネル ファイルシステムにファイルとして格納され Loader2 がロード・実行

2次記憶 15 / 19

## ブートストラップ(3)

#### パーティション = ボリュームの場合



- IPL (Initial Program Loader)
- ブートセレクタ・ブートマネージャ(Boot) 446バイト以内 LBA0 (MBR) に格納され IPL によってロード・実行される。 メニューを表示してユーザに OS のパーティションを選択させる。 (勝手に次に進むものもある。)
- ブートローダ(第1段階:Loader1) 512 バイト以内
- ブートローダ(第2段階:Loader2)
- OS のカーネル

2次記憶 16 / 19

## 練習問題(1)

- 1. 次の言葉の意味を説明しなさい.
  - 二次記憶装置
  - 揮発性・不揮発性
  - 記憶の階層
  - テープ型装置・ディスク型装置
  - シーケンシャルアクセス・ランダムアクセス
  - セクタ・トラック・シリンダ
  - CHS · LBA
  - ・ボリューム
  - パーティション
  - MBR
  - IPL
  - ブートストラップ

17 / 19

2次記憶

## 練習問題(2)

2. 次のディスクに付いて答えなさい.

1台全体 1,024シリンダ 1シリンダ 8トラック 1トラック 128セクタ 1セクタ 512バイト

- ディスクの容量をセクタ単位で答えなさい。
- ディスクの容量をバイト単位で答えなさい.
- 最後のセクタのアドレスを LBA で答えなさい.
- 最後のセクタのアドレスを CHS で答えなさい。 (但し、C:0以上、H:0以上、S:1以上である。)

2次記憶 18 / 19

## 練習問題(3)

- 例示したパーティションテーブルに付いて答えなさい。
  - 第1パーティションの位置をLBAで答えなさい。
  - 第1パーティションのサイズをセクタ数で答えなさい。
  - 第1パーティションの種類を答えなさい。
  - 第2パーティションの位置を LBA で答えなさい.
  - 第2パーティションのサイズをセクタ数で答えなさい。
  - 第2パーティションの種類を答えなさい。

4. PC用の高機能なブートローダ GRUB について調査しなさい.

2次記憶 19 / 19