Methods of Integration

1.1 u-substitution

Sometimes a function's antiderivative isn't obvious. Take this integral for example:

$$\int 4x\sqrt{1+2x^2}\,\mathrm{d}x$$

We can solve this integral using *u*-substitution. Recall from implicit differentiation that if u = f(x), then we can also way du = f'(x)dx. Let's set u so that it is equal to the statement under the square root sign:

$$u = 1 + 2x^2$$

Taking the derivative of both sides, we see that

$$du = (4x)dx$$

How does this help us evaluate the integral? First, let's rearrange the integrand a bit:

$$\int 4x\sqrt{1+2x^2} \, dx = \int \sqrt{1+2x^2} 4x \, dx$$

We can substitute $u = 1 + 2x^2$ and du = 4xdx to get:

$$=\int \sqrt{u}\,du$$

That is a much nicer integral! We can evaluate this integral using the Power Rule:

$$\int \sqrt{u} \, du = \frac{2}{3} u^{3/2}$$

We can now substitute $u = 1 + 2x^2$ back into our solution to yield:

$$=\frac{2}{3}(1+2x^2)^{3/2}$$

Feel free to double-check this answer by taking the derivative using the Chain Rule. You should get the original integrand, $4x\sqrt{1+2x^2}$ back.

1

As you may have guessed, u-substitution is a method to help us "undo" the Chain Rule. Recall that the Chain Rule states:

$$\frac{\mathrm{d}}{\mathrm{d}x}f(g(x)) = f'(g(x))g'(x)$$

If we integrate both sides we see that:

$$f(g(x)) = \int f'(g(x))g'(x) dx$$

Which leads us to the formal definition of the u-substitution method:

If u = g(x) is a differentiable function whose range is an interval I and f is continuous on I, then $\int f(g(x))g'(x) dx = \int f(u) du$

1.2 Partial Fractions

1.3 Integration by Parts

1.4 Practice

Exercise 1

Using the substitution $u = x^2 - 3$, rewrite $\int_{-1}^4 x(x^2 - 3)^5 dx$ in terms of u.

Working Space —

____ Answer on Page 3

Exercise 2

Evaluate $\int_0^1 \frac{5x+8}{x^2+3x+2} dx$ without a calculator.

Working Space —

_____ Answer on Page 3

Exercise 3

Let f be a function such that $\int f(x) \sin x \, dx = -f(x) \cos x + \int 4x^3 \sin x \, dx$. Give a possible expression for f(x).

Working Space	

Answer on Page 3

Exercise 4

Evaluate $\int_{1}^{\infty} xe^{-x^2} dx$.

Working Space	
rioning opinee	

_____ Answer on Page 3

This is a draft chapter from the Kontinua Project. Please see our website (https://kontinua.org/) for more details.

Answers to Exercises

Answer to Exercise 1 (on page 1)

If $u = x^2 - 3$, then du = 2xdx and $x(x^2 - 3)^5 dx = \frac{1}{2}u^5 du$. When x = -1, u = -2 and when x = 4, u = 13. Putting it all together, we find an equivalent integral is $\frac{1}{2} \int_{-2}^{13} u^5 du$.

Answer to Exercise 2 (on page 1)

We cannot use u-substitution because $\frac{d}{dx}(x^2+3x+2)\neq n(5x+8)$. We will use partial fractions to simplify the integrand. Settig up: $\frac{5x+8}{(x+1)(x+2)}=\frac{A}{x+1}+\frac{B}{x+2}$. Rearranging, we find 5x+8=A(x+2)+B(x+1). Letting x=-2, we find that B=2. And taking x=-1, we find A=3. Therefore, $\int_0^1 \frac{5x+8}{x^2+3x+2} \, dx = \int_0^1 \frac{3}{x+1} \, dx + \int_0^1 \frac{2}{x+2} \, dx$. Evaluating the integrals, we get $3\ln(x+1)|_0^1+2\ln(x+2)|_0^1=3(\ln 2-\ln 1)+2(\ln 3-\ln 2)=3\ln 2+2\ln\frac{3}{2}=\ln 8+\ln\frac{9}{4}=\ln 18$.

Answer to Exercise 3 (on page 2)

This question takes the form of integration by parts. That is, $\int f(x)g'(x) dx = f(x)g(x) - \int g(x)f'(x) dx$. If we let $g(x) = -\cos x$, then $g'(x) = \sin x$. The structure of the equation implies that $f'(x) = 4x^3$ and therefore that f could be $f(x) = x^4$.

Answer to Exercise 4 (on page 2)

Letting $u=-x^2$, then du=-2xdx and $xdx=\frac{-1}{2}du$. Substituting u and du into the integral, we have $\int_{x=1}^{x=\infty}\frac{-1}{2}e^u\,du$, which equals $\frac{-1}{2}e^u=\frac{-1}{2}e^{-x^2}|_1^\infty$. Evaluating the statement, we get $\frac{-1}{2}(e^{-\infty}-e^{-1})=\frac{-1}{2}(0-\frac{1}{e})=\frac{1}{2e}$