Numerical Analysis FMN011

Carmen Arévalo
Lund University
carmen@maths.lth.se

Data Linearization and the QR factorization.

Data linearization: the exponential model

The parameters of

$$y = c_1 e^{c_2 t}$$

are not linear. To apply linear least squares we linearize the model:

$$ln y = ln c_1 + c_2 t$$

Let $Y = \ln y$ and $k = \ln c_1$, to get the straight line

$$Y = k + c_2 t$$

To obtain the parameters k and c_2 , one needs to modify the data (t, y) to $(t, Y) = (t, \ln y)$. After computing k, c_1 must be calculated as e^k .

Data linearization: the power law

The parameters of

$$y = c_1 t^{c_2}$$

are nonlinear, but we can linearize the model:

$$ln y = ln c_1 + c_2 ln t$$

Let $Y = \ln y$, $k = \ln c_1$ and $T = \ln t$, to get the straight line

$$Y = k + c_2 T$$

The original data must be modified to $(T,Y)=(\ln t, \ln y)$ and to obtain c_1 we compute e^k .

Orthogonal matrices vs Vandermonde

We know that solving the normal equations is ill-conditioned, because A^TA inherits and even worsens the large condition number of the Vandermonde matrix A.

An orthogonal matrix is a matrix with real entries such that $Q^{-1} = Q^T$.

$$\kappa_2(Q) = ||Q||_2 ||Q^{-1}||_2 = \sqrt{\rho(Q^T Q)} \sqrt{\rho(QQ^T)} = \sqrt{\rho(I)} \sqrt{\rho(I)} = 1$$

As orthogonal matrices have 2-norm condition number equal to 1, we will develop a method to solve the least squares problem using orthogonal matrices.

Gram-Schmidt Orthogonalization

Compute an **orthogonal** basis for the space spanned by k given linearly independent vectors, $\{v_1, v_2, \dots, v_k\}$.

Define the unit vector in the direction of v_1 ,

$$q_1 = \frac{v_1}{\|v_1\|_2}$$

The projection of v_2 onto q_1 is $(q_1^Tv_2)q_1$, so vector $y_2=v_2-(q_1^Tv_2)q_1$ is perpendicular to v_1 and

$$q_2 = \frac{y_2}{\|y_2\|_2}$$

is a unit vector that is perpendicular to v_1 and such that $\{q_1, q_2\}$ span the same subspace as $\{v_1, v_2\}$.

Gram-Schmidt algorithm

Define

1.
$$y_1 = v_1$$
, $q_1 = \frac{v_1}{\|v_1\|_2}$

2.
$$y_2 = v_2 - q_1(q_1^T v_2), \quad q_2 = \frac{y_2}{\|y_2\|_2}$$

1.
$$y_1 = v_1$$
, $q_1 = \frac{v_1}{\|v_1\|_2}$
2. $y_2 = v_2 - q_1(q_1^T v_2)$, $q_2 = \frac{y_2}{\|y_2\|_2}$
 \vdots
k. $y_k = v_k - q_1(q_1^T v_k) - \dots - q_{k-1}(q_{k-1}^T v_k)$, $q_k = \frac{y_k}{\|y_k\|_2}$

Note that $q_j \perp q_i$

Example: Gram-Schmidt on the columns of a matrix

$$A = \begin{pmatrix} -4 & -4 \\ -2 & 7 \\ 4 & -5 \end{pmatrix} = \begin{pmatrix} \mathbf{v_1} & \mathbf{v_2} \end{pmatrix}$$

$$\|y_1\|_2 = \sqrt{(-4)^2 + (-2)^2 + 4^2} = 6 \Rightarrow q_1 = \begin{pmatrix} -4/6 \\ -2/6 \\ 4/6 \end{pmatrix}$$

$$y_2 = \begin{pmatrix} -4 \\ 7 \\ -5 \end{pmatrix} + 3 \begin{pmatrix} -4/6 \\ -2/6 \\ 4/6 \end{pmatrix} = \begin{pmatrix} -6 \\ 6 \\ -3 \end{pmatrix} \Rightarrow q_2 = \begin{pmatrix} -6/9 \\ 6/9 \\ -3/9 \end{pmatrix}$$

$$\begin{pmatrix} -4 & -4 \\ -2 & 7 \\ 4 & -5 \end{pmatrix} \quad \text{and} \quad \begin{pmatrix} -4/6 & -6/9 \\ -2/6 & 6/9 \\ 4/6 & -3/9 \end{pmatrix} \quad \text{span the same plane.}$$

Orthogonalization of a matrix

Let
$$r_{ii} = ||y_i||_2$$
, $r_{ji} = q_j^T v_i$.

We can write $v_i = r_{ii}q_i + r_{1i}q_1 + \cdots + r_{i-1,i}q_{i-1}$, so

$$A = \begin{pmatrix} \mathbf{q_1} & \cdots & \mathbf{q_k} \end{pmatrix} \begin{pmatrix} r_{11} & r_{12} & \cdots & r_{1k} \\ & r_{22} & \cdots & r_{2k} \\ & & \ddots & \vdots \\ & & & r_{kk} \end{pmatrix}$$

If $\mathbf{v_1}, \dots, \mathbf{v_k}$ are linearly independent, all r_{ii} are nonzero.

If $\mathbf{v_i}$ is spanned by $\mathbf{v_1}, \dots, \mathbf{v_{i-1}}$, then $r_{ii} = 0$ and the Gram-Schmidt method terminates.

The QR-factorization

Once we have the Gram-Schmidt orthogonalization of an $n \times k$ matrix A, we can complete the orthonormal basis by adding vectors $\mathbf{q_{k+1}}, \dots, \mathbf{q_n}$,

 $Q = (\mathbf{q_1} \cdots \mathbf{q_n})$ is an orthogonal $n \times n$ matrix and R is an $n \times k$ upper triangular matrix.

Orthogonal matrices and the QR-factorization

A square matrix Q is **orthogonal** if $Q^T = Q^{-1}$.

A square matrix Q is orthogonal if its columns are pairwise orthogonal unit vectors $(\mathbf{q_i^T q_i} = 0 \text{ and } ||\mathbf{q_i}||_2 = 1)$.

If Q is orthogonal, then $||Qx||_2 = ||x||_2$.

In A = QR, Q is an orthogonal matrix and R is upper triangular.

Example: QR-factorization by Gram-Schmidt

To
$$\begin{pmatrix} -4 \\ -2 \\ 4 \end{pmatrix}$$
, $\begin{pmatrix} -4 \\ 7 \\ -5 \end{pmatrix}$ we add vector $\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$ to complete the space \mathbb{R}^3 .

$$y_3 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + \frac{4}{6} \begin{pmatrix} -4/6 \\ -2/6 \\ 4/6 \end{pmatrix} + \frac{6}{9} \begin{pmatrix} -6/9 \\ 6/9 \\ -3/9 \end{pmatrix} = \begin{pmatrix} 1/9 \\ 2/9 \\ 2/9 \end{pmatrix}, q_3 = \begin{pmatrix} 1/3 \\ 2/3 \\ 2/3 \end{pmatrix}$$

$$r_{11} = ||y_1||_2 = 6, \ r_{12} = q_1^T v_2 = -3, \ r_{22} = ||y_2||_2 = 9$$

The QR-factorization of A is

$$\begin{pmatrix} -4 & -4 \\ -2 & 7 \\ 4 & -5 \end{pmatrix} = \begin{pmatrix} -2/3 & -2/3 & 1/3 \\ -1/3 & 2/3 & 2/3 \\ 2/3 & -1/3 & 2/3 \end{pmatrix} \begin{pmatrix} 6 & -3 \\ 0 & 9 \\ 0 & 0 \end{pmatrix}$$

Least Squares and QR-factorization

The least squares solution minimizes

$$||b - Ax||_2 = ||b - QRx||_2 = ||Q^T(b - QRx)||_2 = ||Q^Tb - Rx||_2$$

Let $d = Q^T b$. We can find x so that

$$\begin{pmatrix}
\frac{d_1}{\vdots} \\
\frac{d_k}{d_{k+1}} \\
\vdots \\
d_n
\end{pmatrix} - \begin{pmatrix}
\frac{r_{11} & r_{12} & \cdots & r_{1k}}{r_{22} & \cdots & r_{2k}} \\
\vdots & \vdots & \vdots \\
0 & \cdots & \cdots & 0 \\
\vdots & \vdots & \vdots \\
0 & \cdots & \cdots & 0
\end{pmatrix} \begin{pmatrix}
x_1 \\
\vdots \\
x_k
\end{pmatrix} = \begin{pmatrix}
0 \\
\vdots \\
0 \\
\hline
d_{k+1} \\
\vdots \\
d_n
\end{pmatrix}$$

Steps for least squares solving by QR-factorization

$$A = QR \Rightarrow Ax = QRx = b \Rightarrow Rx = Q^Tb$$

Given the $m \times n, m > n$ system Ax = b,

- 1. Find Q and R such that A=QR
- 2. Set $\hat{R} = \text{upper } n \times n \text{ submatrix of } R$
- 3. Set $\hat{d} = \text{upper } n \text{ entries of } d = Q^T b$
- 4. Solve $\hat{R}x = \hat{d}$

Example

Solve the least squares problem $\begin{pmatrix} -4 & -4 \\ -2 & 7 \\ 4 & -5 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 3 \\ 9 \\ 0 \end{pmatrix}$

$$\begin{pmatrix} -4 & -4 \\ -2 & 7 \\ 4 & -5 \end{pmatrix} = \begin{pmatrix} -2/3 & -2/3 & 1/9 \\ -1/3 & 2/3 & 2/9 \\ 2/3 & -1/3 & 2/9 \end{pmatrix} \begin{pmatrix} 6 & -3 \\ 0 & 9 \\ 0 & 0 \end{pmatrix}$$

$$\left(\begin{array}{cc} 6 & -3 \\ 0 & 9 \end{array}\right) \left(\begin{array}{c} x_1 \\ x_2 \end{array}\right) = \left(\begin{array}{c} -5 \\ 4 \end{array}\right)$$