E - 107 - 2011

건축물 등의 피뢰설비 설치에 관한 기술지침

2011. 12.

한국산업안전보건공단

안전보건기술지침의 개요

작성자: 한국산업안전보건공단 이형수개정자: 한국산업안전보건공단 이형수

ㅇ 개정자 : 한국산업안전보건공단 산업안전보건연구원 안전시스템연구실

○ 제·개정경과

- 2002년 12월 전기안전분야 기준제정위원회 심의
- 2004년 12월 총괄제정위원회 심의
- 2009년 6월 전기안전분야 제정위원회 심의
- 2009년 8월 총괄제정위원회 심의
- 2011년 12월 전기안전분야 제정위원회 심의(개정)

ㅇ 관련규격 및 자료

- IEC 62305-1:2006(Protection of structures against lightning part 1, General principles)
- IEC 62305-3:2006(Protection of structures against lightning part 3, Physical damage to structures and life hazard)
- KSC IEC 62305-1: 2007(피뢰시스템-제1부: 일반원칙)
- KSC IEC 62305-3: 2007(피뢰시스템-제3부: 구조물의 물리적 손상 및 인명위험)
- o 관련법령·고시 등
 - 산업안전보건기준에 관한 규칙 제326조(피뢰침의 설치)
- ㅇ 기술지침의 적용 및 문의

이 기술지침에 대한 의견 또는 문의는 한국산업안전보건공단 홈 페이지 안전보건 기술지침 소관 분야별 문의처 안내를 참고하시기 바랍니다.

공표일자 : 2011년 12월 29일

제 정 자 : 한국산업안전보건공단 이사장

E - 107 - 2011

건축물 등의 피뢰설비 설치에 관한 기술지침

1. 목 적

이 지침은 산업안전보건기준에 관한 규칙(이하 "안전보건규칙"이라 한다) 제326조(피뢰침의 설치)에 따라 건축물 내·외부의 인명 및 설비를 낙뢰로부터 보호하기 위한 효과적인 피뢰설비의 설치에 관한 기술적 사항을 정함을 목적으로 한다.

2. 적용범위

이 지침은 건축물에 대한 피뢰설비 설치의 경우에 적용하며, 다음 설비에 대해서는 적용하지 않는다.

- (1) 철도 설비
- (2) 건축물 밖의 발전·송전·배전시스템
- (3) 건축물 밖의 원격 통신시스템
- (4) 차량·선박·항공기·해양설비 등

3. 정 의

- (1) 이 지침에서 사용하는 용어의 뜻은 다음과 같다.
 - (가) "보호범위(Space to be protected)"란 낙뢰의 영향으로부터 보호가 필요한 건축물의 일부 또는 그 지역을 말한다.
 - (나) "피뢰설비(Lightning protection system, LPS)"란 낙뢰의 영향으로부터 특정 공간을 보호하기 위한 설비로서 외부 및 내부 피뢰설비로 구분된다.
 - (다) "외부 피뢰설비(External lightning protection system)"란 직격뢰를 받는 수뢰 부, 뇌격전류를 접지전극으로 흐르게 하는 인하도선, 뇌격전류를 대지로 방류

하는 접지시스템 등의 3요소로 구성된 설비를 말한다.

- (라) "내부 피뢰설비(Internal lightning protection system)"란 보호범위 내에서 뇌격전류에 의한 전자적 영향을 감소시키기 위하여 설치되는 본딩도체, 서지억제 기 등 외부 피뢰설비 이외에 설치된 모든 설비를 말한다.
- (마) "등전위본딩(Equipotential bonding)"이란 내부 피뢰설비 중 뇌격전류에 의해 발생하는 전위차를 감소시키기 위하여 도전체 상호간을 전기적으로 연결하는 것을 말한다.
- (바) "수뢰부(受雷部, Air-termination system)"란 뇌격전류를 받아들이기 위한 외부 피 뢰설비의 일부분을 말하며, 돌침, 수평도체, 메시도체 등이 있다.
- (사) "인하도선(Down-conductor)"이란 수뢰부로부터 접지부로 뇌격전류를 흘리기 위한 외부 피뢰설비의 일부분을 말한다.
- (아) "접지시스템(Earth-termination system)"이란 뇌격전류를 대지로 흘려 분산시키기 위한 외부 피뢰설비의 일부분을 말한다.
- (자) "접지전극(Earth electrode)"이란 뇌격전류를 대지로 분산시키기 위하여 지중에 매설한 도체 또는 도체군을 말한다.
- (차) "환상 접지전극(Ring earth electrode)"이란 구조물의 지표면 또는 지중에서 폐루 프를 형성하는 접지전극을 말한다.
- (카) "기초 접지전극(Foundation earth electrode)"이란 구조물의 콘크리트 기초에 매설된 접지전극을 말한다.
- (타) "피뢰시스템의 자연적 구성부재(Natural component of an LPS)"란 외부 피뢰 설비를 별도로 설치하지 않고, 구조물의 도전성 구성부재를 이용하여 낙뢰보호 기능을 갖도록 한 것을 말한다.
- (파) "금속설비(Metal installations)"란 배관, 계단실, 엘리베이터 가이드 레일, 환기· 가열·공조 덕트, 상호 연결된 보강용 강재와 같이 뇌격전류 경로를 형성할 수 있는 보호대상 구조물 내의 금속제 부분을 말한다.
- (하) "본딩도체(Bonding conductor)"란 금속제 설비, 외부의 도체부분, 전력선 및 통신선 등 분리된 도전성 부분을 피뢰설비에 접속하는 도체를 말한다.
- (거) "보호등급(Protection level)"이란 피뢰설비가 낙뢰로부터 구조물을 보호할 수 있는 확률과 관련된 피뢰설비의 등급을 말한다.
- (너) "보호대상 구조물과 분리된 외부 피뢰설비(External LPS isolated from the structure to be protected)"란 뇌격전류의 통전경로와 보호대상 구조물이 서로 접촉되지 않도록 수뢰부와 인하도선을 설치한 피뢰설비를 말한다.

E - 107 - 2011

- (더) "보호대상 구조물과 접속된 외부 피뢰설비(External LPS not isolated from the structure to be protected)"란 뇌격전류의 통전경로가 보호대상 구조물과 접속되도록 수뢰부와 인하도선을 설치한 피뢰설비를 말한다.
- (2) 그 밖에 이 지침에서 사용하는 용어의 정의는 이 지침에서 특별히 규정하는 경우를 제외하고는 산업안전보건법, 같은 법 시행령, 같은 법 시행규칙 및 안전보건규칙에서 정하는 바에 따른다.

4. 외부 피뢰설비

4.1 수뢰부

4.1.1 수뢰부의 구성요소

뇌격이 보호범위 내에 침입할 확률은 수뢰부를 적절히 설계함으로서 상당히 감소된다. 수뢰부는 다음과 같은 요소 또는 이들의 조합으로 구성된다.

- (1) 돌침
- (2) 수평도체
- (3) 메시도체

4.1.2 수뢰부의 배치

(1) 수뢰부의 배치는 구조물의 형상에 따라 <표 1>에 나타낸 보호각, 회전구체, 메시 치수 등을 조합하여 사용할 수 있다.

<표 1> 보호등급별 회전구체 반지름, 메시치수와 보호각 최대값

보호등급	회전구체 반지름 (m)	메시치수 (m)	보호각 α°
I	20	5×5	
П	30	10×10	아래 그림
Ⅲ 45		15×15	아래 그림 참조
IV	60	20×20	

- (주1) 표를 넘는 범위에는 적용할 수 없으며, 회전구체법과 메시도체법만 적용할 수 있다.
- (주2) H는 보호대상 지역 기준평면으로부터의 높이이다.
- (주3) 높이 H가 2 m 이하인 경우 보호각은 불변이다.
- (2) 낙뢰로부터 보호할 수 있는 방법에는 보호각법, 회전구체법, 메시도체법이 있다.
 - (가) 보호각법은 <그림 1>과 같이 낙뢰 보호범위를 수뢰부 정점의 각도로 나타내는 방법으로서 단순한 형상의 건물에 적용할 수 있다.
 - (나) 회전구체법은 <그림 2>와 같이 낙뢰의 선행 선단이 대지에 근접할 때를 상정하여 뇌격거리 R의 반경을 갖는 구(球)가 지상물체 끝부분과 대지면에 접하는 면을 보호범위로 나타내는 방법으로 모든 경우에 적용할 수 있다.
- (다) 메시도체법은 <그림 3>과 같이 메시도체로 둘러싸인 안쪽을 보호범위로 설정

KOSHA GUIDE E - 107 - 2011

하는 방법으로, 메시도체의 폭은 <표 1>의 값 이하로 하며, 보호대상 건축물의 표면이 평평한 경우에 적합하다.

<그림 1> 보호각법의 보호범위

<그림 2> 회전구체법의 보호범위

<그림 3> 메시도체법의 보호범위

- (3) 보호등급은 다음과 같은 사항 등을 고려하여 I, II, III 및 IV의 4개 등급으로 구분한다.
 - (가) 해당 지역의 낙뢰빈도, 지형 등 입지조건
 - (나) 구조물의 종류와 중요도
 - ① 구조물의 높이
 - ② 다중이용시설(학교, 병원, 백화점, 극장 등)
 - ③ 중요업무를 수행하는 구조물(관공서, 전화국, 은행, 회사 등)
 - ④ 문화시설(미술관, 박물관 등)
 - ⑤ 목장
 - ⑥ 화약, 가연성 액체, 가연성 가스, 독극물, 방사성 물질 등을 저장 또는 취급 하는 구조물
 - ⑦ 전자기기가 많이 설치되어 있는 구조물
 - (다) (가)와 (나)항을 고려하여 일반구조물은 보호등급 Ⅳ, 화약, 가연성 액체나 가연성 가스 등 위험물을 취급 또는 저장하는 구조물은 보호등급 Ⅱ를 최저 기준으로 적용하고, 상황에 따라 가급적 상위 등급을 적용한다.
- (4) 높이 60 m를 넘는 구조물의 경우 상층부의 모서리, 돌출부 등에 측면 낙뢰가 있을 수 있으므로 이를 보호할 수 있는 수뢰부를 구성한다.

E - 107 - 2011

(5) 구조물의 높이가 120 m를 넘는 모든 부분은 뇌격으로부터 보호되어야 한다.

4.1.3 수뢰부의 설치

- (1) 보호대상 구조물과 피뢰설비의 수뢰부가 접속된 경우 다음과 같이 설치한다.
 - (가) 지붕마감재가 불연성 재료인 경우, 수뢰부는 지붕표면에 설치할 수 있다.
 - (나) 지붕마감재가 가연성 재료인 경우 수뢰부와 지붕 사이의 거리는 0.10 m 이상을 유지하여야 한다.
 - (다) 보호대상 구조물 중 가연성이 높은 부분은 피뢰설비의 구성요소와 접촉되지 않아야 하고, 뇌격으로 관통될 수 있는 금속지붕재 바로 아래에 위치하지 않도 록 한다.
- (2) 수뢰부의 설치장소에는 목재판과 같은 가연성이 낮은 지붕마감재의 적용이 바람직하다.

4.1.4 자연적 구성부재

구조물의 다음 부분은 자연적 구성부재를 이용한 수뢰부로 간주할 수 있다.

- (1) 다음의 조건을 만족시키는 보호대상 구조물을 덮고 있는 금속판
 - (가) 각 부분 사이의 접속은 전기적으로 연속성이 있을 것
 - (나) 뇌격전류로 인하여 금속판에 구멍이 뚫리거나 고온으로 용융될 우려가 있을 경우 금속판의 두께는 <표 2>에 명시된 값 t 이상일 것
 - (다) 금속판이 뚫리거나 내부의 가연성 물질이 발화될 우려가 없는 경우 금속판 두께는 <표 2>에 명시된 값 t' 이상일 것
 - (라) 절연물로 피복되어 있지 않을 것
- (2) 지붕구성재가 금속제인 것(트러스, 상호 접속된 철근 등). 다만, 지붕 상부에 비금속 제가 있을 경우에는 제외한다.
- (3) <표 5>에 제시된 돌침 최소 굵기 이상의 단면적을 가진 홈통, 난간 등과 같은

E - 107 - 2011

금속제 부분

- (4) <표 2>에 규정된 두께 이상의 재료로 제작된 일반 금속제 배관이나 저장탱크에 서 뇌격점의 내부표면 온도상승이 위험의 원인이 되지 않는 것
 - (가) 보호 페인트가 얇게 도장되거나, 약 1mm 이하의 아스팔트 또는 0.5mm 이하의 PVC는 절연물로 간주하지 않는다.
 - (나) 가연성 가스 또는 인화성 액체가 흐르는 배관의 접속이 비금속제인 경우에는 이를 구조체 이용 구성부재의 수뢰부로 사용할 수 없다.

<표 2> 수뢰부의 금속판 또는 금속배관 최소 두께

보호등급	재료	두께 t ¹⁾ (mm)	두께 t' ²⁾ (mm)
	납	-	2.0
	강철(스테인리스, 아연도금강)	4	0.5
I ∼IV	티타늄	4	0.5
	동	5	0.5
	알루미늄	7	0.65
	아연	_	0.7

주 1) t : 관통이나 발화를 방지한다.

2) t' : 관통이나 발화를 방지하는 것이 그다지 문제가 되지 않는 경우

의 금속판에 한정한다.

4.2 인하도선

4.2.1 인하도선의 구성

인하도선은 위험한 불꽃방전이 발생하지 않도록 다음과 같이 구성한다.

E - 107 - 2011

- (1) 다수의 통전경로가 병렬로 구성되도록 할 것
- (2) 통전경로 길이를 최소로 유지할 것
- (3) 5.1항에 따라 구조물의 도전성 부분에 등전위 본딩을 실시할 것

4.2.2 보호대상 구조물과 분리된 피뢰설비의 배치

- (1) 수뢰부가 별개의 지지대 위에 설치된 돌침의 경우, 각 지지대마다 1조 이상의 인하도선을 배치한다. 지지대가 금속 또는 상호 접속된 철근인 경우 별도로 인하도 선을 배치하지 않아도 된다.
- (2) 수뢰부가 1조 이상의 수평도체인 경우, 도체의 말단에는 1조 이상의 인하도선을 배치한다.
- (3) 수뢰부가 메시도체로 되어 있는 경우, 각 지지구조물에 1조 이상의 인하도선을 배치한다.

4.2.3 보호대상 구조물과 분리되지 않은 피뢰설비의 배치

- (1) 인하도선은 상호간의 평균간격이 <표 3>에 표시한 값 이하가 되도록 배치한다. 어느 경우나 2조 이상의 인하도선을 배치한다.
- (2) 인하도선은 보호범위의 주위로 일정한 간격으로 배치하고, 가능한 건축물의 각 모서리에 보다 가깝게 배치한다.
- (3) 인하도선은 지표면 근방에서 수평환상도체로 상호 연결하고, 높이 20 m가 넘는 건축물 등에는 수직거리 20 m마다 추가로 수평환상도체에 접속한다.

<표 3> 보호등급에 따른 인하도선간 평균거리

보호등급	평균거리(m)
I	10
П	10
Ш	15
IV	20

4.2.4 인하도선의 설치

- (1) 구조물과 분리된 피뢰설비의 경우 인하도선과 보호범위의 금속설비 사이의 거리는 5.2 항에서 정하는 안전거리 이상이어야 한다. 보호범위와 연접되어 있는 피뢰설비의 인하도선은 다음과 같이 설치할 수 있다.
 - (가) 불연성 재료의 벽인 경우, 인하도선을 벽면이나 벽 내에 설치하여도 된다.
 - (나) 가연성 재료의 벽일지라도 뇌격전류 통과에 의한 온도상승이 벽의 재질에 위험을 주지 않을 경우, 벽면에 설치할 수 있다.
 - (다) 가연성 재료의 벽이 인하도선의 온도상승으로 인해 위험이 있을 경우, 인하도선과 보호범위간 이격거리가 0.1 m 이상이 되도록 인하도선을 설치하여야 한다.
- (2) 홈통에 있는 습기는 인하도선에 강한 부식을 일으키므로, 인하도선에 절연피복이 되어 있더라도 홈통 또는 낙수관 내에 설치하여서는 아니 된다.
- (3) 인하도선은 대지와 최단거리가 되도록 직선으로 설치하고, 루프가 형성되지 않도록 한다. 직선 설치가 곤란한 경우 도선의 두 점간 간격을 최단으로 측정한 거리 S와 두 점간의 도체길이 l은 5.2항 (<그림 4> 참조)에 적합하여야 한다.

E - 107 - 2011

<그림 4> 인하도선의 루프

(4) 인하도선과 가연성 재료 사이의 거리를 충분히 확보할 수 없는 경우, 인하도선 단면적은 100 mm² 이어야 한다.

4.2.5 자연적 구성부재

구조물의 다음 부분은 자연적 구성부재를 이용한 인하도선으로 간주할 수 있다.

- (1) 다음에 적합한 금속 설비
- (가) 전기적으로 연속성이 있는 것
- (나) <표 5>에 의한 인하도선의 최소 굵기 이상인 것
- (2) 건축물의 금속 구조체
- (3) 건축물의 상호 접속된 강재 구조체

4.2.6 시험접속부

(1) 자연적 구성부재의 인하도선인 경우를 제외하고는 각 인하도선과 접지설비와의 접속점에 시험용 접속부를 설치하여야 한다.

E - 107 - 2011

(2) 측정을 하고자 할 때 시험단자는 공구를 사용하여 열 수 있어야 하고, 평상시는 닫혀 있어야 한다.

4.3 접지시스템

4.3.1 접지시스템의 구성

- (1) 과전압을 발생시키지 않고 뇌격전류를 대지로 안전하게 흐르게 하려면 접지전극의 형상과 크기를 선정하고 적절히 배치하는 것이 중요하다. 일반적으로 낮은 접지 저항(가능한 한 저주파에서 10 Ω 이하의 접지저항)이 바람직하다.
- (2) 피뢰의 관점에서 구조체를 사용한 통합 단일의 접지시스템이 바람직하며, 이는 전력계통 및 통신계통의 접지에도 적합하다. 다만, 불가피하게 분리하여야 할 접지설 비는 5.1항에 따라 등전위 본딩이 되도록 기준 접속점에 접속하여야 한다.
- (3) 재질이 다른 접지설비를 상호 접속할 경우 부식문제를 검토하여야 한다.

4.3.2 접지전극

- (1) 한 조 이상의 환상 접지전극, 수직 접지전극, 방사상 접지전극 또는 기초 접지전 극을 사용한다.
- (2) 환상 접지전극과 메시 접지전극은 접속점에서 부식이 발생하지 않도록 하여야 한다.
- (3) 단일 접지선을 길게 하는 것보다 도체를 여러 조로 분산 배치하는 것이 좋으며, 대지 저항률에 따른 보호등급별 접지전극의 최소길이는 <그림 5>와 같다. 다만, 대 지저항률이 지층 깊이에 따라 감소하는 토양과 통상적으로 접지봉 매설 깊이보다 깊 은 지층에서 대지저항률이 낮은 경우에는 심타접지봉이 효과적이다.

<그림 5> 보호등급별 전극의 최소 길이 1

4.3.3 접지시설

접지시스템에서 다음 두 가지 기본 형태의 접지전극이 적용된다.

(1) A형 접지전극

- (가) A형 접지전극에는 방사상 접지전극, 판상 접지전극, 수직 접지전극(일반적으로 봉상전극) 등이 있으며, 인하도선은 이들 접지전극중 하나의 접지전극에 연결되 어야 하고, 또한 접지전극은 최소 2조 이상으로 한다.
- (나) 각 접지전극의 최소길이는 <그림 5>에서 방사상 접지전극의 최소길이를 l_1 이라 할 때, 방사상 수평 접지전극은 l_1 이상, 수직 접지전극은 0.5 l_1 이상이어야 한다. A형의 접지전극을 설치할 때 감전의 위험이 있을 경우에는 특별한 조치를 취하여야 한다.
- (다) 대지저항률이 낮은 토양에서 10 Ω 이하의 접지저항을 얻을 수 있는 경우에는 <그림 5>에 표시된 최소길이를 고려하지 않아도 된다.
- (라) 여러 형태의 전극을 조합한 경우 전체길이를 고려하여야 한다.
- (마) 접지극의 길이를 길게 하여 접지저항을 감소시키는 것은 실질적으로 60 m까지 가능하다.

E - 107 - 2011

- (바) A형 접지전극은 토양의 대지저항률이 낮고 소규모 구조물에 적합하다.
- (2) B형 접지전극
 - (가) B형 접지전극에는 환상 접지전극, 메시 접지전극, 건축물 등의 기초구조체 대용접 지전극 등이 있다. 환상 접지전극(또는 기초 접지전극)의 경우, 이들 접지전극 (또는 기초접지전극)으로 둘러싸인 곳의 평균반경 r은 다음과 같아야 한다.

$$r \ge l_1$$

여기서, 1,은 <그림 5>에서 표시한 보호등급별로 요구되는 최소 길이이다.

(나) 필요값 l_1 이 산정치 r의 평균반경보다 클 때는 방사형 또는 수직 접지전극을 추가로 설치한다. 이때 l_h (수평길이)와 l_n (수직길이)의 관계식은 다음과 같다.

$$l_h = l_1 - r, \qquad l_v = \frac{l_1 - r}{2}$$

4.3.4 접지전극 시공

- (1) 외부 환상접지전극은 최소 0.5 m 깊이에 매설하고, 벽과 1 m 이상 떨어지도록 한다.
- (2) 접지전극은 최소 0.5 m 이상의 깊이에 매설하고, 지중에서 전기적 결합 효과를 최소화하기 위하여 일정한 간격으로 배치하여야 한다.
- (3) 매설 접지전극은 시공 중 검사할 수 있도록 설치되어야 한다.
- (4) 매설 깊이와 전극형태는 부식, 토양의 온도와 습도에 영향을 적게 받도록 하여 일정한 접지저항이 유지되도록 하여야 한다.
- (5) 토양이 동결되었을 때는 지표면 아래 1 m 깊이까지는 수직 접지전극의 접지효과 가 없으며, 암반에서는 B형 접지전극이 유리하다.

E - 107 - 2011

4.3.5 자연적 구성부재의 접지전극

- (1) 콘크리트 내에 상호 접속된 철근 또는 4.5항의 요구사항에 적합한 지중 금속구조체는 이를 접지전극으로 이용할 수 있다.
- (2) 콘크리트의 철근을 접지전극으로 이용할 때는 콘크리트의 균열이 생기지 않도록 접속에 특별한 주의를 기울여야 한다.

4.4 조임부

4.4.1 조임

수뢰부와 인하도선은 전자력이나 진동, 빙설로 인한 균열 등으로 도체가 절단되거나 늘어지지 않도록 견고하게 고정되어야 한다.

4.4.2 접속

- (1) 도체간의 접속개소는 최소로 하여야 한다.
- (2) 접속은 슬리브, 땜, 용접, 나사 조임 또는 볼트 조임 등의 방법으로 전기적 연속 성을 유지하여야 한다.

4.5 재료 및 굵기

4.5.1 재료

- (1) 사용재료는 뇌격전류에 의한 전기·전자적 영향에 견디고 사고로 인해 예상되는 응력변형에 손상이 없어야 한다.
- (2) 재료와 굵기는 보호되어야 할 구조물 또는 피뢰설비의 부식 가능성을 고려하여 선정하여야 하며, 도전율과 내부식성이 충족되는 경우, 피뢰설비의 구성부분들은 <표 4>에 열거한 재료 또는 이와 동등한 기계·전기·화학적 특성을 가

KOSHA GUIDE E - 107 - 2011

진 재료로 제작할 수 있다.

<표 4> 사용조건과 피뢰설비의 재질

	사용조건		부 식			
재질	대기중	지중	콘크리트내	내성	진행성	전해대상
구리	단선, 연선	피복단선, 연선	피복단선, 연선	대부분의 환경에 양호	황화합물, 유기물	-
용융아연 도금강	단선, 연선	단선,	단선, 연선	대기중, 콘크리트내, 일반토양	높은 염화물 용액	구리
스테인 레스강	단선, 연선	단선, 연선	단선, 연선	대부분의 환경에 양호	높은 염화물 용액	-
알루미늄	단선, 연선	부적합	부적합	낮은 농도의 유황과 염화물의 대지중에 양호	알칼리 용액	구리
납	피복단선	피복단선	부적합	높은 농도의 황산염의 대기중에 양호	산성토양	구리, 스텐레스강

4.5.2 굵기

- (1) 도체의 최소 굵기는 <표 5>에 따른다.
- (2) 기계적 또는 부식문제를 고려하여 도체의 굵기를 크게 할 수 있다.

<표 5> 피뢰설비 도체의 최소 굵기 (㎡)

보호등급	재질	돌침	인하도선	접지도체
	구리(Cu)	35	16	50
$I \sim IV$	알루미늄(Al)	70	25	_
	철(Fe)	50	50	80

E - 107 - 2011

4.5.3 부식으로부터 보호

부식위험이 있는 장소에서의 도체재료와 굵기는 <표 4>와 4.5.2항에 따라 선택하여 결정하여야 한다.

5. 내부 피뢰설비

5.1 등전위 본딩

5.1.1 일반사항

- (1) 건축물이나 수뢰부에 뇌격전류가 흐를 경우 건축물의 각 부분에 발생하는 전위 상승 및 각종 설비와 피뢰설비간 또는 건축물 구조체와의 전위차는 화재·폭발 및 인명에 대한 위험 발생의 원인이 된다.
- (2) 건축물 내의 전위차로 인한 재해를 방지하는 기본적인 대책은 보호범위 내의 건축물 및 각종 설비를 등전위로 유지하는 것이다.
- (3) 등전위화는 보호범위 내의 피뢰설비, 금속구조체, 금속설비, 외부 도전성 부분과 전력 및 통신선로 등을 본딩도체로 상호 연결하거나, 서지억제기를 설치하면 가능하다.
- (4) 외부 피뢰설비가 설치되지 않았으나, 인입선에 대한 뇌 보호가 필요한 경우에는 등전위 본딩을 하여야 한다.

5.1.2 금속설비의 등전위 본딩

(1) 지하 또는 지표면의 본딩용 도체는 쉽게 점검할 수 있도록 설치하고, 본딩모선에 접속하여야 한다. 본딩모선은 접지시스템과 연결되어야 한다. 대규모 건축물(일반적으로 높이 20 m이상)에서는 2개 이상의 본딩 모선을 설치하고, 이를 상호 접속한다.

E - 107 - 2011

- (2) 높이가 20 m 이상인 건축물은 수직거리 20 m마다 인하도선을 상호 연결한 수 평환상도체를 본딩모선에 접속한다.(4.2.3 참조)
- (3) 보호대상 구조물과 분리된 피뢰설비의 경우 등전위 본딩은 지표면에서만 한다.
- (4) 가스관이나 수도관에 절연물이 삽입되어 있는 경우는 적합한 동작조건을 가진 서지 억제기로 교락(Bridge)시키고, 등전위 본딩을 한다.
- (5) 뇌격전류의 대부분이 본딩 접속부를 통해 흐르는 경우 본딩도체의 최소단면적은 <표 6>에 표시된 굵기 이상이어야 한다. 기타 경우의 단면적은 <표 7>에 따른다.
- (6) 본딩도체를 설치할 수 없는 곳에서는 서지억제기를 설치한다.

<표 6> 뇌격전류 대부분이 본딩도체로 흐를 때 본딩도체의 최소 굵기

보호등급	재질	단면적(mm²)
	구리(Cu)	14
$I \sim IV$	알루미늄(Al)	22
	철(Fe)	50

<표 7> <표 6>이외의 본딩도체의 최소 굵기

보호등급	재질	단면적 (mm³)
	구리(Cu)	5
I ~ IV	알루미늄(Al)	8
	철(Fe)	16

5.1.3 외부 도전성 부분의 등전위 본딩

외부 도전성 부분은 뇌격전류의 대부분이 본딩 접속을 통하여 흐르게 되므로, 건축물의 인입점 가까이에 등전위 본딩을 하여야 한다.

5.1.4 전력 및 통신선로의 등전위 본딩

- (1) 전력 및 통신선로에 대한 등전위 본딩은 5.1.3항 따라 설치하되, 건축물의 인입점 가까이 설치하여야 한다.
- (2) 전선이 차폐되어 있거나 금속관 안에 있을 때는 차폐층 또는 금속관을 본딩하여 야 한다.

5.2 외부 피뢰설비와의 전기적 절연

(1) 수뢰부 또는 인하도선과 보호범위 내의 금속설비, 전력 및 통신선로 등과의 이 격거리 d 를 안전 이격거리 s 이상으로 유지하여야 한다.

$$d \ge s$$

$$s = k_i \frac{k_c}{k_m} l \text{ (m)} \dots (1)$$

여기서, k_i : 피뢰설비의 보호등급별 계수(<표 8> 참조)

 k_c : 인하도선에 흐르는 뇌전류 계수(<부록 1> 참조)

 k_m : 이격재료별 계수(<표 9> 참조)

l: 가장 근접된 등전위 본딩점에서 인하도선에 이르는 거리 (m)

(2) 외부 도전성 부분은 인입구에서 등전위 본딩(직접 접속하거나 서지억제기를 통해 접속)을 하여야 한다.

<표 8> 피뢰설비의 보호등급별 k_i 값

보호등급	k_i
I	0.08
П	0.06
III, IV	0.04

E - 107 - 2011

<표 9> 이격재료별 계수 km 값

재 질	k_m
공 기	1
콘크리트, 블럭	0.5

6. 피뢰설비의 점검 및 정비

6.1 점검 시 확인사항

피뢰설비의 점검을 통하여 다음 사항을 확인한다.

- (1) 피뢰설비가 설계와 일치하고 있는지의 여부
- (2) 피뢰설비의 모든 구성요소가 양호한 상태이고, 설계 시 의도한 기능을 달성할 수 있으며 부식이 있는지의 여부
- (3) 최근에 시설된 구조물이 피뢰설비에 본딩되거나 피뢰설비에 적합한지의 여부

6.2 점검 순서

피뢰설비의 점검은 다음과 같이 실시한다.

- (1) 건축물의 건설 중에 매설 접지극을 확인하기 위한 점검실시
- (2) 피뢰설비를 설치한 후 6.1을 확인하는 점검실시
- (3) 보호대상 구조물의 성격과 피뢰설비의 부식문제를 고려하여 6.1을 확인하는 정기적인 점검실시
- (4) 변경, 수리 또는 구조물이 뇌격을 받았을 때, 6.1을 확인하는 추가적 점검실시

KOSHA GUIDE E - 107 - 2011

6.3 피뢰설비의 정비

피뢰설비의 신뢰성 유지를 위하여 점검결과 발견된 결함은 지체없이 정비하여야 한다.

<부록 1>

인하도선에 흐르는 뇌격전류의 분류(分流)

인하도선에 흐르는 뇌격전류의 분류계수는 인하도선의 총수 n과 환상도체의 배치, 수뢰부의 형태, 접지전극의 종류에 따라 <표 1.1>과 같이 적용한다.

<표 1.1> 분류계수 k_c 값

이러드기	k_c		
인야도신	A형 접지전극	B형 접지전극	
1	1	1	
2	0.66	0.5~1(<부록그림 1> 참조*)	
4 이상	0.44	0.1~1(<부록그림 2> 참조)	
	인하도선 1 2 4 이상	A형 접지전극 1 1 2 0.66	

주 * k_c =0.5 $(h\gg c$ 일 때)에서 $k_c=1 \left(h\ll c$ 일 때) 까지

**
$$k_c = 0.1[n \rightarrow \infty (c \rightarrow 0)$$
일 때] $\sim k_c = 1(n = 1$ 일 때)

$$k_c = \frac{h+c}{2h+c}$$

<부록그림 1> 수평도체 수뢰부 및 B형 접지전극인 경우 k_c 값

E - 107 - 2011

n : 총 인하도선의 수

 c_s : 인하도선 사이의 거리

h : 환상도체간 간격

<부록그림 2> 메시 수뢰부 및 B형 접지전극인 경우 계수 k_c 값