

Universidade Federal de Pernambuco Departamento de Física

Eletrodinâmica Clássica I, Segundo Semestre de 2019

Professor: José W Tabosa Sala: B-312, Ramal-7616

<u>4^a Lista de Exercícios</u>

1) Problemas do Jackson (3a. Edição):

- Resolva o problema 4.1
- Resolva o problema 4.7
- Resolva o problema 4.8
- Resolva o problema 4.9
- Resolva o problema 4.10
- 2) Considere a distribuição de cargas mostrada na figura abaixo, consistindo de duas cargas pontuais $-q_1$ e q_2 $(q_2 > q_1 > 0)$, separadas pela distância 2a.
- a) Obtenha os momentos de multipolos q_{lm} desta distribuição de cargas considerando o limite em que $a \to 0$ e $q_1, q_2 \to \infty$, mantendo $p = 2aq_1$ e $q = q_2 q_1$ finitos.
- b) Calcule o potencial elétrico neste limite em todos os pontos do espaço. Interprete o resultado.

- 3) Uma esfera dielétrica, de raio a e permissividade elétrica ϵ , é colocada na presença de duas cargas pontuais +Q e -Q, localizadas respectivamente em z=-R e z=R, conforme mostra a figura abaixo.
- a) Escreva uma expressão, em coordenadas esféricas, para a densidade superficial de cargas associadas às cargas +Q e -Q.
- b) Usando as condições de contorno apropriadas, obtenha o potencial elétrico para os pontos interiores e exteriores à esfera.

Universidade Federal de Pernambuco Departamento de Física Eletrodinâmica Clássica I, Segundo Semestre de 2019

- c) Obtenha o potencial no limite em que $R\to\infty$ e $Q\to\infty$, mantendo constante a relação $\frac{1}{4\pi\epsilon_0}\frac{Q}{R^2}=E_0$. Compare o seu resultado com o obtido no Cap. 4 do Jackson.
- d) Neste último limite, obtenha a densidade superficial de carga de polarização induzida na esfera dielétrica.

