Ferienkurs Experimentalphysik 4 2009

Übung 1

Heisenberg'sche Unschärferelation

Zeigen Sie, dass eine Messaparatur beim Doppelspaltexperiment, die den Durchgang eines Teilchens durch ein Loch detektieren kann, das Interferenzmuster zerstört.

Dabei ist a der Abstand der Spalte, d der Abstand zum Schirm und l der Abstand zweier benachbarter Maxima.

Lösung: Die maximale Unschärfe, um bestimmen zu können, durch welchen Spalt ein Teilchen geflogen ist, ist

 $\Delta y < \frac{a}{2}$

Mit der Heisenberg'schen Unschärferelation ergibt sich die Impulsunschärfe in Y-Richtung

$$\Delta y \Delta p_y \ge h \Rightarrow \Delta p_y \ge \frac{2h}{a}$$

Aus der Unschärfe für den Impuls in Y-Richtung ergibt sich eine Unschärfe für das Auftreffen des Teilchens auf dem Schirm:

$$\tan(\alpha) = \frac{\Delta l}{d} = \frac{\Delta p_y}{p_x} \Rightarrow \Delta l = d\frac{\Delta p_y}{p_x}$$

Dies läßt sich mit dem Impuls für Materiewellen $p=h/\lambda$ und Δp_y Umformen zu

$$\Delta l = d \cdot \frac{2h}{a} \cdot \frac{\lambda}{h} = 2\frac{d \cdot \lambda}{a}$$

Konstruktive Interferenz tritt auf bei $\sin(\Theta_n) = n\frac{\lambda}{d}$, und zwei benachbarte Maxima haben dabei den Abstand l (siehe Optik):

$$l = d\sin(\Theta_{n+1}) - d\sin(\Theta_n) = \frac{d \cdot \lambda}{a} < \Delta l$$

Die Unschärfe des Teilchens auf dem Schirm ist also größer als der Abstand zweier Maxima und es kann keine Interferenz auftreten.

Ortswellenfunktion, Wahrscheinlichkeitsinterpretation

Die Quantenmechanische Wellenfunktion eines Teilchens sei gegeben durch

$$\Psi(x) = N e^{\frac{-|x|}{a}}$$

- a) Bestimmen Sie den Normierungsfaktor N so, dass die Wellenfunktion auf 1 normiert ist. Warum ist die Verwendung von *normierten* Wellenfunktionen notwendig für die Wahrscheinlichkeitsinterpretation der Quantenmechanik? Welche Einheit hat die Wellenfunktion?
- b) Wie groß ist die Wahrscheinlichkeit, das Teilchen am Ort x=0 zu finden? Wie groß ist die Wahrscheinlichkeit, das Teilchen im Intervall [-a,a] zu finden?

Lösung: a) Damit die Wellenfunktion normiert ist, muss gelten:

$$\int_{-\infty}^{+\infty} dx |\Psi(x)|^2 = \int_{-\infty}^{+\infty} dx \left| N e^{\frac{-|x|}{a}} \right|^2 = |N|^2 \int_{-\infty}^{+\infty} dx \ e^{\frac{-2|x|}{a}} = 2|N|^2 \int_{0}^{+\infty} dx \ e^{\frac{-2x}{a}} = 2|N|^2 \int_{0}^{+\infty} dx \ e$$

also (bis auf einen konstanten Phasenfaktor)

$$N = \frac{1}{\sqrt{a}}$$

und die normierte Wellenfunktion lautet

$$\Psi(x) = \frac{1}{\sqrt{a}} e^{\frac{-|x|}{a}}$$

Der Normierungsfaktor ist notwendig, um (wie in der Vorlesung erwähnt) $|\Psi|^2$ als Wahrscheinlichkeitsdichte interpretieren zu können. Über den gesamten Raum intergriert muss sie 1 ergeben, da sich das mit ihr assoziierte Teilchen irgendwo im Raum befinden muss. Da $|\Psi|^2$ eine ein-dimensionale Wahrscheinlichkeitsdichte mit der Dimension 1/m ist, muss Ψ selbst die Dimension $1/\sqrt{m}$ haben.

b) Die Wahrscheinlichkeit das Teilchen exakt an einem gegebenen Ort zu finden ist null. Die Wahrscheinlichkeit W das Teilchen im Interval [-a, a] zu finden ist

$$W = \int_{-a}^{a} dx \left| \frac{1}{\sqrt{(a)}} e^{\frac{-|x|}{a}} \right|^{2} = \frac{2}{a} \int_{0}^{a} dx \ e^{\frac{-x}{a}} = 1 - e^{-2} = 0.864...$$

Bemerkung: Das Ergebnis ist unabhängig von a!

Erwartungswert des 1-d harmonischen Oszillators

a) Berechnen Sie den Erwartungswert für den Operator des ein-dimensionalen harmonischen Oszillators

$$\hat{H} = \frac{\hat{p}^2}{2m} + \frac{m\omega^2 \hat{x}^2}{2}$$

mit Hilfe der Wellenfunktion

$$\Psi_{\lambda}(x) = A \mathrm{e}^{-\lambda x^2}$$

b) Minimieren sie das Ergebnis hinsichtlich λ und zeigen sie, dass man die Grundzustandsenergie E_0 des harmonischen Oszillators für $\lambda = \lambda_{min}$ erhält.

Was stellt $\Psi_{\lambda_{min}}$ dar?

Tipp:

$$\int_{-\infty}^{+\infty} dx \sqrt{\frac{a}{\pi}} \cdot e^{-ax^2} = 1$$

Lösung: a) Zunächst muss die Wellenfunktion normalisiert werden. Analog zur vorheri-

gen Aufgabe und unter Verwendung des Tipps ergibt sich

$$A = \left(\frac{2\lambda}{\pi}\right)^{1/4}$$

Danach wird der Erwartungswert $\langle \hat{H} \rangle = E_{\lambda} = \int \Psi \hat{H} \Psi$ berechnet (da Ψ reell ist, gilt $\Psi^* = \Psi$)

$$E_{\lambda} = \left(\frac{2\lambda}{\pi}\right)^{1/2} \int_{-\infty}^{+\infty} dx \, e^{-\lambda x^2} \left[-\frac{\hbar^2}{2m} \frac{d^2}{dx^2} + \frac{1}{2} m \omega^2 x^2 \right] e^{-\lambda x^2} =$$

$$= \left(\frac{2\lambda}{\pi}\right)^{1/2} \int_{-\infty}^{+\infty} dx \, e^{-2\lambda x^2} \left[-\frac{\hbar^2}{2m} (4\lambda^2 x^2 - 2\lambda) + \frac{1}{2} m \omega^2 x^2 \right] =$$

$$= \text{geschickt zusammen fassen, partiell intergrieren und Tipp ausnutzen} =$$

$$= \left(-\frac{\hbar^2}{2m} 4\lambda^2 + \frac{1}{2} m \omega^2 \right) \frac{1}{4\lambda} + \frac{\hbar^2}{2m} 2\lambda =$$

$$= \frac{1}{8} m \omega^2 \frac{1}{\lambda} + \frac{\hbar^2}{2m} \lambda$$

Eine Minimierung der Energie führt zu

$$\frac{dE_{\lambda}}{d\lambda} = -\frac{1}{8}m\omega^2 \frac{1}{\lambda_{min}^2} + \frac{\hbar^2}{2m} \stackrel{!}{=} 0 \Rightarrow \lambda_{min} = \frac{m\omega}{2\hbar}$$

Eingesetzt in E_{λ} ergibt sich für die Energie

$$E_{\lambda_{min}} = \frac{1}{8}m\omega^2 \frac{2\hbar}{m\omega} + \frac{\hbar^2}{2m} \frac{m\omega}{2\hbar} = \frac{1}{2}\hbar\omega$$

Dies ist die Grundzustandsenergie und die zugehörige Wellenfunktion $\Psi_{\lambda_{min}}$ ist die Grundzustandseigenfunktion.

1-d Potentialbarriere

Ein Teilchen der Masse m und Energie E bewege sich von links in auf eine ein-dimensionale Potentialbarriere V(x) zu.

$$V(x) = \begin{cases} 0 & \text{für } x < 0 \\ V_0 & \text{für } x > 0 \end{cases}$$

- a) Wie lautet die allgemeine Lösung der zeitunabhängigen Schrödingergleichung für den Bereich $-\infty < x < \infty$ für ein Teilchen mit Energie $E > V_0$
- b) Berechnen Sie die Reflektions- und die Transmissionswahrscheinlichkeit.

c) Nun bewege sich ein Teilchen der Masse m und Energie $E > V_0$ auf eine abfallende Potentialstufe zu, die gegeben ist durch

$$V(x) = \begin{cases} V_0 & \text{für } x \le 0 \\ 0 & \text{für } x > 0 \end{cases}$$

Berechnen Sie die Reflektionswahrscheinlichkeit.

- d) Wie lautet die allgemeine Lösung der zeitunabhängigen Schrödingergleichung für den Bereich $-\infty < x < \infty$ für ein Teilchen mit Energie $E < V_0$, dass sich im gleichen Potential wie in a) bewegt?
- e) Was ist jetzt die Reflektionswahrscheinlichkeit?

Lösung: a) Der (sehr) allgemeine Ansatz $\Psi(x) = Ae^{iqx} + Be^{-iqx}$ liefert

$$\left(-\frac{\hbar^2}{2m}\frac{d^2}{dx^2} + V\right)\Psi = E\Psi \text{ bzw. } \frac{d^2\Psi}{dx^2} = -\frac{2m}{\hbar}(E - V)\Psi = -q^2\Psi$$

Das Potential teilt den Raum in Region I (V = 0) und Region II $(V = V_0)$, sodass

$$\frac{d^2\Psi}{dx^2} = \begin{cases} -q_1^2\Psi & \text{für } x < 0\\ -q_2^2\Psi & \text{für } x \ge 0 \end{cases}$$

mit $q_1 = \frac{2mE}{\hbar}$ und $q_2 = \frac{\sqrt{2m(E-V_0)}}{\hbar}$ und sich für die allgemeine Lösung

$$\Psi(x) = \begin{cases} Ae^{iq_1x} + Be^{-iq_1x} & \text{für } x < 0\\ Ce^{iq_2x} + De^{-iq_2x} & \text{für } x \ge 0 \end{cases}$$

In dieser allgemeinen Lösung sind noch physikalisch nicht sinnvolle Terme enthalten. Geht man davon aus, dass die Welle von links kommt und an teilweise reflektiert und teilweise transmittiert wird, muss D=0 sein. Wäre $D\neq 0$ würde sich das Teilchen auch von rechts an die Barriere annähern. Man erhält:

$$\Psi(x) = \begin{cases} Ae^{iq_1x} + Be^{-iq_1x} & \text{für } x < 0 \\ Ce^{iq_2x}\text{für } x \ge 0 \end{cases}$$

Aus der Stetigkeitsbedingung für Ψ und $d\Psi/dx$ bei x=0 folgt

$$\begin{array}{rcl} \Psi_I(0) & = & \Psi_{II}(0) \Rightarrow A + B = C \\ \frac{d\Psi_I(0)}{dx} & = & \frac{d\Psi_{II}(0)}{dx} \Rightarrow q_1 A - q_1 B = q_2 C \end{array}$$

Löst man diese Gleichungen nach B bzw. C als Funktion von A auf, erhält man

$$B = \frac{q_1 - q_2}{q_1 + q_2} A = \frac{E^{1/2} - (E - V_0)^{1/2}}{E^{1/2} + (E - V_0)^{1/2}} A = \frac{1 - \sqrt{1 - V_0/E}}{1 + \sqrt{1 - V_0/E}} A$$

$$C = \frac{2q_1}{q_1 + q_2} A = \frac{2E^{1/2}}{E^{1/2} + (E - V_0)^{1/2}} A = \frac{2}{1 + \sqrt{1 - V_0/E}} A$$

oBdA sei A = 1 und als Lösung der SG ergibt sich

$$\Psi(x) = \begin{cases} e^{iq_1 x} + \frac{1 - \sqrt{1 - V_0/E}}{1 + \sqrt{1 - V_0/E}} e^{-iq_1 x} & \text{für } x < 0\\ \frac{2}{1 + \sqrt{1 - V_0/E}} e^{iq_2 x} & \text{für } x \ge 0 \end{cases}$$

b) Die Lösungen für B und C stellen die relativen Amplituden der reflektierten und der transmittierten Welle dar. Die Reflexions- und die Transmissionswahrscheinlichkeit sind die Verhältnisse der Betragsquadrate der relativen Amplituden zum Betragsquadrat der Amplitude der einfallenden Welle (im Falle der Transmission muss außerdem noch der Unterschied der Wellenvektoren q_1 und q_2 berücksichtigt werde):

$$R = \frac{|B|^2}{|A|^2} = \left(\frac{q_1 - q_2}{q_1 + q_2}\right)^2 \stackrel{A=1}{=} |B|^2$$

$$T = \frac{q_2|C|^2}{q_1|A|^2} = \frac{4q_1q_2}{(q_1 + q_2)^2} \stackrel{A=1}{=} \frac{q_2}{q_1}|C|^2$$

$$R + T = 1 \text{ (anschaulich wegen Energieerhaltung klar)}$$

Überraschend ist hierbei, dass die Reflexion ungleich null ist. Ein paar Teilchen werden also an der Barriere reflektiert, was klassisch nicht zu erwarten wäre. Außerdem hängt R nur vom Differenzquadrat von q_1 und q_2 ab, d.h. ein Teilchen, dass an eine umgekehrte Potentialbarriere (Potentialstufe nach unten) kommt, hat die gleiche Reflexionswahrscheinlichkeit!

- c) Die Reflexionswahrscheinlichkeit ist gleich der in b).
- d) Der gleiche Ansatz wie in a) liefert

$$\Psi(x) = \begin{cases} Ae^{iq_1x} + Be^{-iq_1x} & \text{für } x < 0\\ De^{-q_2x} & \text{für } x \ge 0 \end{cases}$$

mit
$$q_1 = \frac{\sqrt{2mE}}{\hbar}$$
 und $q_2 = \frac{\sqrt{2m(V_0 - E)}}{\hbar}$.

Dabei ist zu beachten, dass sich das Vorzeichen der Energie $E = E - V_0$ des Teilchen im Potential V_0 ändert. Außerdem wird die Welle nicht transmittiert (C = 0), sondern klingt exponentiell in die Barriere hinein ab $(D \neq 0)$.

Die Stetigkeitsbedingung für Ψ und $d\Psi/dx$ bei x=0 ergibt

$$A + B = D$$

$$A - B = \frac{iq_2}{q_1}D$$

und man erhält D durch Addition und B durch Substraktion der beiden Gleichungen.

$$D = \frac{2}{1 + iq_2/q_1} A = \frac{2}{1 + i\sqrt{V_0/E - 1}} A$$

$$B = \frac{1 - iq_2/q_1}{1 + iq_2/q_1} A = \frac{1 - i\sqrt{V_0/E - 1}}{1 + i\sqrt{V_0/E - 1}} A$$

e) oBdA sei A = 1 und damit ist $R = |B|^2$

$$R = |B|^2 = BB^* = \frac{1 - i\sqrt{V_0/E - 1}}{1 + i\sqrt{V_0/E - 1}} \cdot \frac{1 + i\sqrt{V_0/E - 1}}{1 - i\sqrt{V_0/E - 1}} = 1 \tag{1}$$

Die einfallende Welle wird also vollständig reflektiert. Trotzdem gibt es eine von null unterschiedliche Aufenthaltswahrscheinlichkeit der Welle in der Barriere.