Colle 27 - MPSI Calcul matriciel - Variable aléatoire

Rang d'une matrice

Exercice 1

Calculer le rang des applications linéaires suivantes :

1.
$$f: \mathbb{K}^3 \to \mathbb{K}^3$$
 définie par

$$f(x, y, z) = (-x + y + z, x - y + z, x + y - z)$$

2.
$$f: \mathbb{K}^3 \to \mathbb{K}^3$$
 définie par

$$f(x, y, z) = (x - y, y - z, z - x)$$

3.
$$f: \mathbb{K}^4 \to \mathbb{K}^4$$
 définie par

$$f(x, y, z, t) = (x + y - t, x + z + 2t, 2x + y - z + t, -x + 2y + z)$$

Exercice 2

Soient $n \in \mathbb{N}^*$ et $M \in \mathcal{M}_n(\mathbb{R})$ définie par

$$M = \begin{pmatrix} 1 & 1 & 0 & \cdots & 0 \\ 0 & 1 & 1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & 0 \\ 0 & & \ddots & \ddots & 1 \\ 1 & 0 & \cdots & 0 & 1 \end{pmatrix}$$

- 1. Donner le rang de M et la dimension de son noyau.
- 2. Préciser noyau et image de M.
- 3. Calculer M^n .

Exercice 3

Soit $A \in \mathcal{M}_n(\mathbb{K})$ une matrice carrée de rang 1.

- 1. Etablir l'existence de colonnes $X, Y \in \mathcal{M}_{n,1}(\mathbb{K})$ vérifiant $A = X^t Y$.
- 2. En déduire l'existence de $\lambda \in \mathbb{K}$ tel que $A^2 = \lambda A$.

Trace

Exercice 4

Existe-t-il des matrices $A, B \in \mathcal{M}_n(\mathbb{K})$ vérifiant

$$AB - AB = I_n$$
?

Exercice 5

Soient $A, B \in \mathcal{M}_n(\mathbb{K})$ des matrices vérifiant

$$AB - BA = A$$

Calculer $\operatorname{tr}(A^p)$ pour $p \in \mathbb{N}^*$.

Exercice 6

Soient $A \in \mathcal{M}_n(\mathbb{R})$ et φ l'endomorphisme de $\mathcal{M}_n(\mathbb{R})$ défini par

$$\varphi(M) = MA$$

Exprimer la trace de φ en fonction de celle de A.

Exercice 7

Soit $A \in \mathcal{M}_n(\mathbb{R})$. Résoudre l'équation

$$X + {}^t X = \operatorname{tr}(X)A$$

d'inconnue $X \in \mathcal{M}_n(\mathbb{R})$.

Loi binomiale

Exercice 8

Une variable aléatoire X suit une loi binomiale de taille n et de paramètre p.

Quelle est la loi suivie par la variable Y = n - X?

Exercice 9

Une variable aléatoire réelle X suit une loi binomiale de taille n et de paramètre $p \in]0;1[$.

Pour quelle valeur de k, la probabilité $p_k = \mathbb{P}(X = k)$ est-elle maximale?

Exercice 10

Un étudiant résout un QCM constitué de n questions offrant chacune quatre réponses possibles. Pour chaque question, et indépendamment les unes des autres, il a la probabilité p de savoir résoudre celle-ci. Dans ce cas il produit la bonne réponse. Si en revanche, il ne sait résoudre la question, il choisit arbitrairement l'une des quatre réponses possibles.

On note X la variable aléatoire déterminant le nombre de questions qu'il savait résoudre et Y le nombre de question qu'il a correctement résolues parmi celles où il a répondu « au hasard ».

- 1. Reconnaître la loi de Z = X + Y.
- 2. Calculer espérance et variance de Z.

Indépendance de variables aléatoires

Exercice 11

Soient X et Y deux variables aléatoires finies sur un espace Ω . On suppose

$$\forall (x,y) \in X(\Omega) \times Y(\Omega), \mathbb{P}(X=x,Y=y) = \mathbb{P}(X=x)\mathbb{P}(Y=y)$$

Montrer que les variables X et Y sont indépendantes.

Exercice 12

Montrer que deux événements sont indépendants si, et seulement si, leurs fonctions indicatrices définissent des variables aléatoires indépendantes.

Exercice 13

Soient X et Y deux variables aléatoires prenant pour valeurs $a_1, ..., a_n$ avec

$$\mathbb{P}(X = a_i) = \mathbb{P}(Y = a_i) = p_i$$

On suppose que les variables X et Y sont indépendantes.

Montrer que

$$\mathbb{P}(X \neq Y) = \sum_{i=1}^{n} p_i (1 - p_i)$$

Exercice 14

Deux variables aléatoires indépendantes X et Y suivent des lois binomiales de tailles n et m et de même paramètre p. Peut-on identifier la loi suivie par la variable aléatoire Z = X = Y?

Exercice 15

Soient X et Y deux variables aléatoires réelles indépendantes. Les variables aléatoires X + Y et X - Y sont-elles indépendantes?

Espérance et Variance

Exercice 16

Soit X une variable aléatoire réelle sur un espace probabilisé fini. Etablir

$$\mathbb{E}(X)^2 \le \mathbb{E}(X^2)$$

Exercice 17

Soit $p \in]0;1[$ et $(X_k)_{k \in \mathbb{N}^*}$ une suite de variables aléatoires mutuellement indépendantes vérifiant

$$\mathbb{P}(X_k = 1) = p \text{ et } \mathbb{P}(X_k = -1) = 1 - p$$

1. Calculer l'espérance de X_k .

2. On pose

$$Y_n = \prod_{k=1}^n X_k$$

En calculant de deux façons l'espérance de Y_n , déterminer $p_n = \mathbb{P}(Y_n = 1)$.

3. Quelle est la limite de p_n quand $n \to +\infty$.

Exercice 18

Soient X et Y deux variables aléatoires indépendantes à valeurs dans [[1; n]].

1. Montrer que

$$\mathbb{E}(X) = \sum_{k=1}^{n} \mathbb{P}(X > k).$$

2. On suppose les variables X et Y uniformes. Déterminer l'espérance de $\min(X,Y)$ puis $\max(X,Y)$. Déterminer aussi l'espérance de |X-Y|.

Exercice 19

Soit X une variable aléatoire à valeurs dans [[0; n]] telle qu'il existe $a \in \mathbb{R}$ vérifiant

$$\mathbb{P}(X=k) = a \binom{n}{k}$$

Calculer l'espérance et la variance de X.

Exercice 20

Soit X une variable aléatoire binomiale de taille n et de paramètre $p \in]0;1[$.

Calculer l'espérance de la variable

$$Y = \frac{1}{X+1}$$

Exercice 21

Une urne contient n boules blanches et n boules rouges. On tire simultanément n boules dans celle-ci et on note X le nombre de boules rouges obtenues lors de ce tirage.

Quelle est la loi de X, son espérance, sa variance?

Rang d'une matrice

Correction de l'exercice 1

- 1. rg(f) = 3.
- 2. rg(f) = 2.
- 3. rg(f) = 4.

Correction de l'exercice 2

1. En retirant la première ligne à la dernière

$$\operatorname{rg}\begin{pmatrix} 1 & 1 & 0 & \cdots & 0 \\ 0 & 1 & 1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & 0 \\ 0 & & \ddots & \ddots & 1 \\ 1 & 0 & \cdots & 0 & 1 \end{pmatrix} = \operatorname{rg}\begin{pmatrix} 1 & 1 & 0 & \cdots & 0 \\ 0 & 1 & 1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & 0 \\ 0 & & \ddots & \ddots & 1 \\ 0 & -1 & \cdots & 0 & 1 \end{pmatrix}$$

puis en ajoutant la deuxième ligne à la dernière

$$\operatorname{rg}\begin{pmatrix} 1 & 1 & 0 & \cdots & 0 \\ 0 & 1 & 1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & 0 \\ 0 & & \ddots & \ddots & 1 \\ 1 & 0 & \cdots & 0 & 1 \end{pmatrix} = \operatorname{rg}\begin{pmatrix} 1 & 1 & 0 & \cdots & 0 \\ 0 & 1 & 1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & 0 \\ 0 & & \ddots & \ddots & 1 \\ 0 & 0 & \cdots & 0 & 1 - (-1)^n \end{pmatrix}$$

Si n est pair alors rgM = n - 1, sinon rgM = n.

2. Dans le cas n impair c'est immédiat. Dans le cas n pair, $\ker M = \operatorname{Vect}^t \begin{pmatrix} 1 & -1 & \cdots & 1 & -1 \end{pmatrix}$ et $\operatorname{Im} M : x_1 - x_2 + x_3 + \ldots + x_{n-1} - x_n = 0$.

3. M = I + N avec la matrice de permutation

$$N = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & 0 \\ 0 & & \ddots & \ddots & 1 \\ 1 & 0 & \cdots & 0 & 0 \end{pmatrix}$$

On en déduit

$$M^{n} = \sum_{k=0}^{n} \binom{n}{k} N^{k} = \begin{pmatrix} 2\binom{n}{0} & \binom{n}{1} & \binom{n}{2} & \cdots & \binom{n}{n-1} \\ \binom{n}{n-1} & 2\binom{n}{0} & \binom{n}{1} & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \binom{n}{2} \\ \binom{n}{2} & & \ddots & \ddots & \binom{n}{1} \\ \binom{n}{1} & \binom{n}{2} & \cdots & \binom{n}{n-1} & 2\binom{n}{0} \end{pmatrix}$$

Correction de l'exercice 3

1. A est équivalente à la matrice $J_1 = \text{diag}(1, 0, ..., 0)$, donc il existe $P, Q \in GL_n(\mathbb{K})$ vérifiant $A = PJ_1Q$. Pour $C = {}^t(1, 0, ..., 0)$, on a $J_1 = C^tC$ donc $A = X^tY$ avec X = PC et $Y = {}^tQC$.

2. $A^2 = X({}^tYX){}^tY$ tYX est un scalaire λ donc $A^2 = X\lambda{}^tY = \lambda X{}^tY = \lambda A$.

Trace

Correction de l'exercice 4

De telles matrices n'existent pas

$$tr(AB) = tr(BA)$$

et donc

$$\operatorname{tr}(AB - BA) = 0 \neq \operatorname{tr}(I_n)$$

Correction de l'exercice 5

$$tr(AB) = tr(BA)$$

On a donc

$$trA = tr(AB - BA) = 0$$

En généralisant

$$tr(A^p) = tr(A^{p-1})(AB - BA) = tr(A^pB) - tr(A^{p-1}BA)$$

Or

$$\operatorname{tr}(A^{p-1}BA) = \operatorname{tr}((A^{p-1}B)A) = \operatorname{tr}(A(A^{p-1}B)) = \operatorname{tr}(A^pB)$$

Donc

$$\operatorname{tr}(A^p) = 0$$

Correction de l'exercice 6

Calculons les coefficients diagonaux de la représentation matricielle de φ dans la base canonique formée des matrices élémentaires $E_{i,j}$.

On a $\varphi(E_{i,j}) = E_{i,j}A$.

Or $A = \sum_{k=1}^{n} \sum_{l=1}^{n} a_{k,l} E_{k,l}$ donc $\varphi(E_{i,j}) = \sum_{l=1}^{n} a_{j,l} E_{i,l}$ car $E_{i,j} E_{k,l} = \delta_{j,k} E_{i,l}$. La composante de $\varphi(E_{i,j})$ selon $E_{i,j}$ vaut $a_{j,j}$. Par suite la trace de φ vaut $\sum_{i=1}^{n} \sum_{j=1}^{n} a_{j,i} = n \operatorname{tr} A$.

Correction de l'exercice 7

Soit X solution. La matrice $X + {}^{t}X$ est symétrique.

Cas A n'est pas symétrique :

Nécessairement tr(X) = 0 et l'équation étudiée devient X + t X = 0 dont les solutions sont les matrices antisymétriques. Inversement, ces dernières sont solutions de l'équation initiale.

 $\operatorname{Cas} A$ est symétrique :

En passant à la trace l'équation étudiée, on obtient

$$2\operatorname{tr}(X) = \operatorname{tr}(X)\operatorname{tr}(A).$$

Si ${\rm tr} A \neq 2$ alors on obtient à nouveau ${\rm tr} X = 0$ et on conclut que X est antisymétrique.

Si $\operatorname{tr} A = 2$ alors $Y = X - \frac{1}{2}\operatorname{tr}(X)A$ vérifie $Y + {}^tY = X + {}^tX - \operatorname{tr} A = 0$ donc Y est antisymétrique puis la matrice X est de la forme $\lambda A + Y$ avec Y antisymétrique. Inversement, une telle matrice est solution.

Loi Binomiale

Correction de l'exercice 8

$$X(\Omega) = Y(\Omega) = [[0; n]]. \text{ Pour } k \in [[0; n]],$$

$$\mathbb{P}(X=k) = \binom{n}{k} p^k (1-p)^{n-k}$$

donc

$$\mathbb{P}(Y=k) = \mathbb{P}(X=n-k) = \binom{n}{k} p^{n-k} (1-p)^k$$

La variable aléatoire Y suit une loi binomiale de taille n et de paramètre q = 1 - p.

Correction de l'exercice 9

Par définition d'une loi binomiale

$$p_k = \binom{n}{k} p^k (1-p)^{n-k}$$

et donc pour $k \ge 1$

$$\frac{p_k}{p_{k-1}} = \frac{n-k+1}{k} \frac{p}{1-p}$$

On en déduit

$$\frac{p_k}{p_{k-1}} \ge 1 \Leftrightarrow k \le (n+1)p$$

En notant k_0 la partie entière de (n+1)p, la suite $(p_k)_{0 \le k \le k_0}$ est croissante et la suite $(p_k)_{k_0 \le k \le n}$ est décroissante. Le maximum de p_k est donc atteint en $k = k_0$.

Correction de l'exercice 10

Compte tenu de l'expérience modélisée, on peut affirmer que la variable aléatoire X suit une loi binomiale de paramètre n et p.

$$\mathbb{P}(X=k) = \binom{n}{k} p^k (1-p)^{n-k}$$

De plus, pour $k \in [[0; n]]$, si l'événement (X = k) est réalisé, il y a n - k questions pour lesquelles l'étudiant répond au hasard avec une probabilité 1/4 de réussir :

$$\mathbb{P}(Y=j|X=k) = \binom{n-k}{j} \left(\frac{1}{4}\right)^j \left(\frac{3}{4}\right)^{n-k-j}$$

avec $j \in [[0; n - k]].$

1. La variable Z prend ses valeurs dans [[0; n]]. Pour $k \in [[0; n]]$, l'événement (Z = k) peut être décomposé en la réunion disjointe des événements

$$(X = j, Y = k - j)$$
 avec $j \in \{0, 1, ..., k\}$

Ainsi

$$\mathbb{P}(Z=k) = \sum_{j=0}^{k} \mathbb{P}(X=j, Y=k-j)$$

$$= \sum_{j=0}^{k} \mathbb{P}(Y=k-j|X=j) \mathbb{P}(X=j)$$

$$= \sum_{j=0}^{k} \binom{n-j}{j-j} \left(\frac{1}{4}\right)^{k-j} \left(\frac{3}{4}\right)^{n-k} \binom{n}{j} p^{j} (1-p)^{n-j}$$

$$= \sum_{j=0}^{k} \frac{n!}{(k-j)!(n-k)!j!} \left(\frac{1}{4}\right)^{k-j} \left(\frac{3}{4}\right)^{n-k} p^{j} (1-p)^{n-j}$$

$$= \sum_{j=0}^{k} \binom{k}{j} \binom{n}{k} \left(\frac{1}{4}\right)^{k-j} \left(\frac{3}{4}\right)^{n-k} p^{j} (1-p)^{n-j}$$

$$= \binom{n}{k} (1-p)^{n-k} \left(\frac{3}{4}\right)^{n-k} \sum_{j=0}^{k} \binom{k}{j} \left(\frac{1}{4} (1-p)\right)^{k-j} p^{j}$$

$$= \binom{n}{k} \left[(1-p)\frac{3}{4}\right]^{n-k} \left[\frac{1}{4} (1-p) + p\right]^{k}$$

$$= \binom{n}{k} q^{k} (1-q)^{n-k} \text{ avec } q = \frac{1}{4} + \frac{3}{4} p$$

2. On a alors

 $\mathbb{E}(Z) = \frac{(3p+1)n}{4}$

et

$$V(Z) = \frac{3n(3p+1)(1-p)}{16}$$

Indépendance de variables aléatoires

Correction de l'exercice 11

Soient $A \subset \{X_1, ..., x_n\}$ et $B \subset \{y_1, ..., y_m\}$. On a

$$(X=A)\cap (Y=B)=(\uplus_{x\in A}X=x)\cap (\uplus_{y\in B}Y=y)$$

En développant

$$(X=A)\cap (Y=B)= \uplus_{(x,y)\in A\times B}(X=x)\cap (Y=y)$$

Cette réunion étant disjointe

$$\mathbb{P}(X = A, Y = B) = \sum_{(x,y) \in A \times B} \mathbb{P}(X = x) \mathbb{P}(Y = y)$$
$$= \sum_{x \in A} \mathbb{P}(X = x) \sum_{y \in B} \mathbb{P}(Y = y)$$
$$= \mathbb{P}(X = A) \mathbb{P}(Y = B)$$

Correction de l'exercice 12

Soient A, B deux événements de l'espace probabilisé (Ω, \mathbb{P}) . Supposons les fonctions indicatrices 1_A et 1_B indépendantes. On a

$$\mathbb{P}(1_A = 1, 1_B = 1) = \mathbb{P}(1_A = 1)\mathbb{P}(1_B = 1)$$

ce qui se relit

$$\mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B)$$

Inversement, supposons les événements A et B indépendants. On sait alors

$$\mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B)$$

$$\mathbb{P}(\overline{A} \cap B) = \mathbb{P}(\overline{A})\mathbb{P}(B)$$

$$\mathbb{P}(A \cap \overline{B}) = \mathbb{P}(A)\mathbb{P}(\overline{B})$$

$$\mathbb{P}(\overline{A} \cap \overline{B}) = \mathbb{P}(\overline{A})\mathbb{P}(\overline{B})$$

ce qui se relit

$$\begin{split} \mathbb{P}(1_A = 1, 1_B = 1) &= \mathbb{P}(1_A = 1)\mathbb{P}(1_B = 1) \\ \mathbb{P}(1_A = 0, 1_B = 1) &= \mathbb{P}(1_A = 0)\mathbb{P}(1_B = 1) \\ \mathbb{P}(1_A = 1, 1_B = 0) &= \mathbb{P}(1_A = 1)\mathbb{P}(1_B = 0) \\ \mathbb{P}(1_A = 0, 1_B = 0) &= \mathbb{P}(1_A = 0)\mathbb{P}(1_B = 0) \end{split}$$

On en déduit que les variables aléatoires 1_A et 1_B sont indépendantes.

Correction de l'exercice 13

L'événement $\{X=Y\}$ se décompose en les événements incompatibles $\{X=a_i\cap Y=a_i\}$. Par hypothèse d'indépendance

$$\mathbb{P}(X = a_i \cap Y = a_i) = \mathbb{P}(X = a_i)\mathbb{P}(Y = a_i) = p_i^2$$

donc

$$\mathbb{P}(X=Y) = \sum_{i=1}^{n} p_i^2$$

Puis par complémentation

$$\mathbb{P}(X \neq Y) = 1 - \sum_{i=1}^{n} p_i^2 = \sum_{i=1}^{n} - \sum_{i=1}^{n} p_i^2 = \sum_{i=1}^{n} p_i (1 - p_i)$$

Correction de l'exercice 14

Voir la correction de l'exercice 3.

On obtient $Z \sim \mathcal{B}(n+m,p)$

Correction de l'exercice 15

La réponse est négative en général.

Supposons que X et Y suivent des lois de Bernoulli de paramètre 1/2. On a

$$\mathbb{P}(X + Y = 2) = \mathbb{P}(X = 1)\mathbb{P}(Y = 1) = 1/4$$

et

$$\mathbb{P}(X - Y = 0) = \mathbb{P}(X = 0)\mathbb{P}(Y = 0) + \mathbb{P}(X = 1)\mathbb{P}(Y = 1) = 1/2$$

Or l'événement X + Y = 2 est inclus dans l'événement X - y = 0 et donc

$$\mathbb{P}(X + Y = 2 \cap X - Y = 0) = \mathbb{P}(X + Y) = 2$$

et l'on constate

$$\mathbb{P}(X+Y\cap X-Y=0)\neq \mathbb{P}(X+Y=2)\mathbb{P}(X-Y=0)$$

Espérance et variance

Correction de l'exercice 16

Par la formule de Huygens

$$V(X) = \mathbb{E}\left[\left(X - \mathbb{E}(X)\right)^2\right] = \mathbb{E}(X^2) - \mathbb{E}(X)^2 \ge 0$$

Correction de l'exercice 17

- 1. $\mathbb{E}(X_k) = 1 \times p + (-1) \times (1-p) = 2p 1$.
- 2. Par l'indépendance des variables

$$\mathbb{E}(Y_n) = \prod_{k=1}^{n} \mathbb{E}(X_k) = (2p-1)^n$$

Aussi $Y_n \in \{1, -1\}$ et

$$\mathbb{E}(Y_n) = 1 \times p_n + (-1) \times (1 - p_n) = 2p_n - 1$$

On en déduit

$$p_n = \frac{1 + (2p - 1)^n}{2}$$

3. Puisque $|p| < 1, p_n \to \frac{1}{2}$.

Correction de l'exercice 18

1. En écrivant

$$\mathbb{P}(X = k) = \mathbb{P}(X \ge k) - \mathbb{P}(X \ge k + 1)$$

on obtient

$$\mathbb{E}(X) = \sum_{k=1}^{n} \mathbb{P}((X=k) = \sum_{k=1}^{n} \mathbb{P}(X \ge k)$$

2. Par la propriété au-dessus

$$\mathbb{E}(\min(XnY)) = \sum_{k=1}^{n} \mathbb{P}(X \ge k \text{ et } Y \ge k) = \sum_{k=1}^{n} \mathbb{P}(X \ge k) \mathbb{P}(Y \ge k)$$

Puisque $\mathbb{P}(X \ge k) = \mathbb{P}(Y \ge k) = \frac{n+1-k}{n}$ on obtient

$$\mathbb{E}(\min(X,Y)) = \frac{1}{n^2} \sum_{k=1}^{n} (n+1-k)^2$$
$$= \frac{1}{n^2} \sum_{k=1}^{n} k^2$$
$$= \frac{(n+1)(2n+1)}{6n}$$

Aussi

$$\min(X, Y) + \max(X, Y) = X + Y$$

donc

$$\mathbb{E}(\max(X,Y)) = n + 1 - \frac{(n+1)(2n+1)}{6n} = \frac{(n+1)(4n-1)}{6n}$$

Encore

$$\min(X,Y) = \frac{1}{2}((X+Y)-|X-Y|)$$

donc

$$\mathbb{E}(|X - Y|) = n + 1 - \frac{(n+1)(2n+1)}{3n} = \frac{n^2 - 1}{3n}$$

Correction de l'exercice 19

La valeur de a se déduit de l'identité

$$\sum_{k=0}^{n} \mathbb{P}(X=k) = 1$$

et l'on obtient $a = \frac{1}{2^n}$.

$$\mathbb{E}(X) = a \sum_{k=1}^{n} k \binom{n}{k} = an \sum_{k=1}^{n} \binom{n-1}{k-1} = an 2^{n-1} = \frac{n}{2}$$

et la variance est

$$V(X) = \mathbb{E}(X^2) - \mathbb{E}(X)^2$$

Or

$$\mathbb{E}(X(X-1)) = a\sum_{k=2}^{n} k(k-1) \binom{n}{k} = an(n-1)\sum_{k=2}^{n} \binom{n-2}{k-2}$$

Donc

$$\mathbb{E}(X^2) = \mathbb{E}(X(X-1)) + \mathbb{E}(X) = \frac{n}{2} + \frac{n(n-1)}{4} = \frac{n(n+1)}{4}$$

puis

$$V(X) = \frac{n}{4}$$

Correction de l'exercice 20

Puisque

$$\mathbb{P}(X=k) = \binom{n}{k} p^k (1-p)^{n-k}$$

l'espérance de Y est donnée par

$$\mathbb{E}(Y) = \sum_{k=0}^{n} \frac{1}{k+1} \binom{n}{k} p^{k} (1-p)^{n-k}$$

Or

$$\binom{n+1}{k+1} = \frac{n+1}{k+1} \binom{n}{k}$$

donc

$$\mathbb{E}(Y) = \frac{1}{n+1} \sum_{k=0}^{n} \binom{n+1}{k+1} p^k (1-p)^{n-k}$$

puis par glissement d'indice

$$\mathbb{E}(Y) = \frac{p(n+1)}{\sum_{k=1}^{n+1} {n+1 \choose k}} p^k (1-p)^{(n+1)-k}$$

et enfin par la formule du binôme avec un terme manquant

$$\mathbb{E}(Y) = \frac{1 - (1 - p)^{n+1}}{p(n1)}$$

Correction de l'exercice 21

En distinguant les boules, il y a $\binom{2n}{n}$ tirages possibles et, pour $0 \le k \le n$, exactement $\binom{n}{k}\binom{n}{n-k}$ tirages conduisant à l'obtention de k boules rouges. On en déduit

$$\mathbb{P}(X=k) = \frac{\binom{n}{k} \binom{n}{n-k}}{\binom{2n}{n}}$$

L'espérance de X est

$$\mathbb{E}(X) = \frac{1}{\binom{2n}{n}} \sum_{k=1}^{n} k \binom{n}{k} \binom{n}{n-k}$$

avec

$$\sum_{k=1}^{n} k \binom{n}{k} \binom{n}{n-k} = \sum_{k=1}^{n} n \binom{n-1}{k-1} \binom{n}{n-k}$$

On a

$$\sum_{k=1}^{n} \binom{n-1}{k-1} \binom{n}{n-k} = \binom{2n-1}{n-1}$$

en considérant les coefficients de X^{n-1} dans le développement de

$$(1+X)^{n-1}(1+X)^n = (1+X)^{2n-1}$$

et donc

$$\mathbb{E}(X) = n \frac{\binom{2n-1}{n-1}}{\binom{2n}{n}} = \frac{n}{2}$$

On calcule la variance par la relation

$$V(X) = \mathbb{E}(X^2) - \mathbb{E}(X)^2$$

en commençant par calculer $\mathbb{E}(X(X-1))$.

$$\mathbb{E}(X(X-1)) = \frac{1}{\binom{2n}{n}} n(n-1) \sum_{k=2}^{n} \binom{n-2}{k-2} \binom{n}{n-k}$$

et en considérant le coefficient de X^{n-2} dans le développement de

$$(1+X)^{n-2}(1+X)^n = (1+X)^{2n-2}$$

on obtient

$$\mathbb{E}(X(X-1)) = n(n-1)\frac{\binom{2n-2}{n-2}}{\binom{2n}{n}} = \frac{n(n-1)^2}{2(2n-1)}$$

puis

$$\mathbb{E}(X^2) = \frac{n^3}{2(2n-1)}$$

et enfin

$$V(X) = \frac{n^2}{4(2n-1)}$$