ECE 65: Components & Circuits Lab

Lecture 7

Diode waveform shaping circuits Clipper circuits

Reference notes: sections 2.9

Sedra & Smith (7th Ed): sections 4.4-4.6

Saharnaz Baghdadchi

Course map

2. Diodes

Rectifier & clipper circuits

Half-wave Rectifier

Clipper

Clipper or Limiter Circuit

$$\begin{cases} \text{KVL: } v_i = v_R + v_D \\ \text{KVL: } v_o = v_D \end{cases}$$

$$\text{Ohm's law: } i_D = v_R/R$$

KVL:
$$v_o = v_D$$

Ohm's law:
$$i_D = v_R/R$$

Diode OFF:
$$i_D = 0$$
 & $v_D < V_{D0}$

$$V_{i} = V_{R} + V_{D} = V_{R} + V_{O} = \underbrace{R \times i_{D}}_{V_{i}} + V_{O} \longrightarrow \underbrace{V_{i} = V_{O}}_{V_{i}}$$

$$V_{i} = V_{R} + V_{D} \longrightarrow \underbrace{V_{i} = V_{D}}_{V_{i}} \times \underbrace{V_{D_{O}}}_{V_{O}} \longrightarrow \underbrace{V_{i} \times V_{D_{O}}}_{V_{O}} \times \underbrace{V_{O}}_{V_{O}} \longrightarrow \underbrace{V_{i} \times V_{O}}_{V_{O}} \times \underbrace{V_{O}}_{V_{O}} \longrightarrow \underbrace{V_{i} \times V_{O}}_{V_{O}} \times \underbrace{V_{O}}_{V_{O}} \longrightarrow \underbrace{V_{O} \times V_{O}}_{V_{O}} \times \underbrace$$

Diode ON:
$$v_D = V_{D0}$$
 & $i_D \ge 0$

$$\dot{c}_{o} = V_{D} = V_{D_{o}} , \quad V_{o} = V_{D_{o}}$$

$$\dot{c}_{o} = V_{D} = V_{D_{o}} , \quad V_{o} = V_{D_{o}}$$

Clipper Circuit open loop transfer function

Transfer Function is non-linear:

For
$$v_i \geq V_{D0}$$
 , $v_o = V_{D0}$ (Diode is ON) For $v_i < V_{D0}$, $v_o = v_i$ (Diode is OFF)

For
$$v_i < V_{D0}$$
 , $v_o = v_i$ (Diode is OFF

Clipper Circuit: example input-output waveforms

Adjusting the limiting voltage in the clipper circuit

Using Zener diodes to adjust the limiting voltage in the clipper circuit

v_o limited to $\leq V_{D\theta} + V_Z$

Clipping both the top & bottom portions of the signal simultaneously

 v_o limited to $\leq V_{D\theta} + V_{DC1}$ and $\geq -V_{D\theta} - V_{DC2}$

$$v_o$$
 limited to $\leq V_{D0} + V_{Z1}$ and $\geq -V_{D0} - V_{Z2}$

Lecture 7 reading quiz

Calculate and draw the output of the following two-port network for the given input signal.

Clicker question 1

Which one of the waveforms could be the output of a two-port network with the below transfer function for the input $v_i(t) = 2\sin(\omega t)$?

Clicker question 1

Which one of the waveforms could be the output of a two-port network with the below transfer function for the input $v_i(t) = 2\sin(\omega t)$?

- Looking at the transfer characteristic graph, for what range of Vi values, will the output be equal to zero?
- What is the range of Vi values for the given input signal?

Discussion question 1.

Draw the output of a two-port network with the shown transfer function to the below input signal.

Discussion question 1.

Draw the output of a two-port network with the shown transfer function to the below input signal.

- Write the equation of a line that relates Vo to Vi when Vi is greater than 5V?
- Write the equation of a line that relates Vo to Vi when Vi is less than -3V?
- On the graph of vi(t), find and label when vi is less than -3, greater than 5, and in between. Follow the Vi vs. Vo equations that you found and draw vo(t).

Discussion question 2

Calculate and draw the transfer function for the following two-port network.

$$(V_{D0}=0.7V)$$

Discussion question 2

Calculate and draw the transfer function for the following two-port network.

$$(V_{D0} = 0.7V)$$

- Label the diode voltage and current.
- List the cases of operation of the diode. You have two cases in this circuit.
- You need to find the range of vi values for each case and the relationship between vi and vo for each case.
- Use KVL to complete the above task.
- Using the ranges of vi and the relationship between Vi and Vo for each range, draw the transfer function or transfer characteristic graph, which is a graph showing the relationship between Vo and Vi.