```
Ejercicio 1: Pseudo código
     function calcular Terminan Antes_ai (5, F,i)
          5_i=[]
          F_i=[]
          for 1=0 to s.length-1 do
              if s[i] > f[l] then
                   Si. append [S[1]]
                   Finappend (F/21)
              end if
         end for
         return Si, Fi
    end function
    function calcular Inician Después-ai (S, F, i)
         S_i = []
         F_{-i} = []
         for l=0 to S. length-1 do
               if s[l] = f[i] +hen
                   S_i. append [S[1])
                   Finappend (F11)
              end if
         end for
         return S_i, F_i
    end function
```

```
function Selección Actividades_valoropls (s,f)
     if s.length == 0 then
         return O
     end if
    n = s.length
     9=-1
     for k=0 to n-1 do
          SI_K, FI_K = cal cular Terminan Antes_ai (s,f,k)
          SO-K, FO-K = calcular (nician Despues_a) [5,f,k]
          P=1+ Seleccion Actividades_valoropt (ST_K, FT_K) +
               Selection Activida des-valor Opt (SD_k, FD_k)
         if p>q then
                9=p
          end if
     end for
    return q
end function
```

Ejercicio 2: Lorrectez

Algorimo Termina

El programa tiene un for que va de 0 a n-1 donde n es la longitud del arreglo de tiempos de actividade s. Al salir del for del algoritmo regresa que la que concluimos que el algoritmo termina.

Invariante de ciclo

Al final de la K-ésima iteración, la variable q contiene el máximo númez o de actividades con la actividad K

Prueba la correctez

Inicialización

Al inicio de ciclo, el conjunto de actividades compatibles con k se encuentra vacio, entonces podemas concluir que la invariante se cumple

Mantenimiento

Para este caso, se debe probar por inducción que la invariante se cumple. Suponem os que el invariante es cierto en la iteración k y se probará para la iteración k+1.

En la K-ésima iteración los conjuntos de actividades ST-K, FT-K, SD-K y FD-K corresponden a las actividades que terminan antes de que inicie K, o inician después de que k termina. Este es el conjunto de actividades compatibles con K. Denotemos el conjunto SK=(ST-K, FT-K, SD-K, FD-K) En la línea 49 calalamas de forma recursiva el número de actividades compatibles con K. Esto tambien sucederá con el conjunto SK+1= (ST-K+1, FT-K+1, SD-K+1, FD-K+1) si el número de actividades en SK+1= (ST-K+1, FT-K+1, SD-K+1, FD-K+1) si el número de actividades en SK+1 es mayor al número de actividades en SK, esle número será el

máximo (nuevo) de actividades compatibles entre si. De esta forma, se cumple el muariante.

Terminación

Por la condición de mantenimiento, en la ultima iteración también se validarian los valores de p y 9 verificando si p>q, que en caso que se cumpla, se actualizar (a el número máximo, cumpliendo el invariante