Flight Delay Model

By Will Bishop Springboard Data Science Intensive February 2017

Question and data

>>> Part 1

Flight delay model goal

- To predict the on-time performance of a flight based on:
 - Origin and destination cities
 - Airline
 - Time of year, time of day, day of week
 - Other variables if possible

Flight delay model data

- Bureau of Transportation Statistics On-Time Performance Table
 - Includes every flight of major U.S. airlines since 1990
 - Used 5% random sample due to computer memory limitations
- Added BTS crosswalks for airline names and market names

Client and usefulness

- The ideal client is an application developer that helps travelers decide on the best flights
 - Google Flights
 - Kayak
 - Expedia
- With a flight delay model, they can incorporate likely delay times as well as price

Part 2

Descriptive statistics

Delay times in 15-minute groups

Airlines by percentage of flights

Southwest	20%

- Delta 13%
- ExpressJet 11%
- SkyWest 10%
- American 10%
- United 8%
- Others

Airlines by 15-minute delay rate

Highest delay rates			
Spirit	30%		
Frontier	24%		
JetBlue	22%		
ExpressJet	22%		
Envoy	22%		

Lowest delay rates		
Hawaiian	8%	
Alaska	12%	
Delta	14%	
AirTran	15%	
Mesa	16%	

Delay rate across all flights in data set: 19%

Delay rates by time of day

Destination cities by delay rate

Green: best 10 destination cities Red: worst 10 destination cities (At least 2,000 flights in data set)

Origin cities by delay rate

Green: best 10 origin cities Red: worst 10 origin cities (At least 2,000 flights in data set)

I DON'T TRUST LINEAR REGRESSIONS WHEN IT'S HARDER TO GUESS THE DIRECTION OF THE CORRELATION FROM THE SCATTER PLOT THAN TO FIND NEW CONSTELLATIONS ON IT.

Part 3

Linear regression model

Variables included

- Dependent: Arrival delay time in minutes
- Independent dummy variables:
 - Airline name
 - Origin and destination cities
 - Month
 - Time of day
- Interaction between airline and airport if:
 - Airport has at least 1.5% of flights in data set

Linear regression technique

- SGDRegressor from scikit-learn
- Used partial_fit to allow large data set
- Broke data into 15 batches of about 100,000 observations each
 - Each batch was 70% training data and 30% test data

Predicted vs. actual values (test data)

Predicted arrival delay (min)

Histogram of residuals (test data)

Residual arrival delay

Linear regression conclusions

- Most variation in flight delays driven by factors outside this model
- Extreme outliers (500+ minutes delay) are hard to predict and have no analogue on the negative side
- However, the model does provide insights beyond descriptive statistics

Part 4

Logistic regression model

Logistic regression technique

- Dependent variable: 15-minute delay binary
- Independent variables: same as linear model
- SGDClassifier from scikit-learn
 - Used loss = log to estimate probability of delay
 - Used L1 penalty to drive more coefficients to 0
- Used partial_fit with 15 batches as in linear model

Logistic regression results

- Simple measures of classifying power look very poor
 - Prediction score: 81% no better than predicting "0" for every flight
 - F1 score: 0.0002
 - Confusion matrix:

15-minute delay?	Predicted no	Predicted yes
Actual no	297,822	19
Actual yes	68,475	7

Logistic regression results cont.

- Consider different probabilities of delay as cutoff for a "positive" result
- Example: confusion matrix with 20% probability cutoff is

15-minute	Predicted no	Predicted yes
delay?		
Actual no	174,377	123,064
Actual yes	31,105	37,377

Logistic regression ROC curve

Overall conclusions

- Flight delays are often driven by random events
- Model needs more data and more variables in order to have predictive power
- Our exploration and modeling still provides useful information on airlines, airports, and times of day to avoid flight delays