考虑下面的文法

E -> E + T | T

T->TF|F

F -> F* | a | b

- (a) 为此文法构造SLR分析表。
- (b) 为此文法构造LALR分析表。

(a)

Follow(E')={ \$ }

Follow(E)={ + , \$ }

Follow(T)={ a , b , + , \$ }

Follow(F)={ *, a, b, +, \$}

此文法的SLR的DFA如下图:

			动作				移进	
状态	+	*	а	b	\$	Е	Т	F
0			S ₄	S ₅		1	2	3
1	S ₆				acc			
2	r ₂		S ₄	S ₅	r ₂			7
3	r ₄	S ₈	r ₄	r ₄	r ₄			
4	r ₆							
5	r ₇							
6			S ₄	S ₅			9	3
7	r ₃	S ₈	r ₃	r ₃	r ₃			
8	r ₅							
9	r ₁		S ₄	S ₅	r ₁			7

(b)

此文法的LALR的DFA如下图:

故得LALR分析表

			动作				移进	
状态	+	*	а	b	\$	Е	Т	F
0			S ₄	S ₅		1	2	3
1	S ₆				acc			
2	r ₂		S ₄	S ₅	r ₂			7
3	r ₄	S ₈	r ₄	r ₄	r ₄			
4	r ₆							
5	r ₇							
6			S ₄	S ₅			9	3
7	r ₃	S ₈	r ₃	r ₃	r ₃			
8	r ₅							
9	r ₁		S ₄	S ₅	r ₁			7

3.31

下面两个文法中哪一个不是LR(1)文法?对非LR(1)的那个文法,给出那个有移进-归约冲突的规范的LR(1)项目集。

S -> a A c A -> A b b | b

S -> a A c A -> b A b | b

文法

S -> a A c

A -> A b b | b

的LR(1)自动机如图所示,没有移进-归约冲突、归约-归约冲突,故是LR(1)文法

文法

S -> a A c

A -> b A b | b

的部分LR(1)自动机如图所示,

其中, 状态7中, A -> b · 遇 b 归约, 而A -> · b Ab , A -> · b 遇 b 移进, 有移进-归约冲突, 故不是LR(1)文 法

有移进-归约冲突的规范的LR(1)项目集为:

 $A \rightarrow b \cdot Ab$, b

A -> b · , b

 $A \rightarrow bAb$, b

 $A \rightarrow b$, b