Test Hypothesis Procedure	Step 1 State the null and alternative hypotheses	Step 2 Compute the Test Statistic	Confidence Interval	Sample Size Calculation
One sample Z-test for μ Population is normal or n large	H_0 : $\mu \le \mu_0$ vs. H_a : $\mu > \mu_0$ or H_0 : $\mu \ge \mu_0$ vs. H_a : $\mu < \mu_0$ or H_0 : $\mu = \mu_0$ vs. H_a : $\mu \ne \mu_0$	$z = \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}}$	$\bar{x} \pm z^* \frac{\sigma}{\sqrt{n}}$	$n = \left(\frac{Z^*\sigma}{Z}\right)^2$ key was
One sample t-test for μ -วาช ณ กกตัวข่าง Population is normal or n large and the population sd is unknown.	H_0 : $\mu \le \mu_0$ vs. H_a : $\mu > \mu_0$ or H_0 : $\mu \ge \mu_0$ vs. H_a : $\mu < \mu_0$ or H_0 : $\mu = \mu_0$ vs. H_a : $\mu \ne \mu_0$	$t = \frac{\overline{x} - \mu_0}{s / \sqrt{n}} , \text{ df = n-1}$	$\bar{x} \pm t^* \frac{s}{\sqrt{n}}$	Use the above formula.
Paired t-test differences are normal or n large	H_0 : $\mu_d \le 0$ vs. H_a : $\mu_d > 0$ or H_0 : $\mu_d \ge 0$ vs. H_a : $\mu_d < 0$ or H_0 : $\mu_d = 0$ vs. H_a : $\mu_d \ne 0$	$t = \frac{\overline{d} - 0}{s/\sqrt{n}}, \text{ df = n-1}$	C = confidence level.	Confidence Confidence x* or Coefficient 1 - α 1
One sample Z-test for p เด็กไกษ์ n is large ie. $n\hat{p}\geq 5$ and $n(1-\hat{p})\geq 5$ мอบล่างเหมิใช้ / ไม่ใช้	H_0 : $p \leq p_0$ vs. H_a : $p > p_0$ or H_0 : $p \geq p_0$ vs. H_a : $p < p_0$ or H_0 : $p = p_0$ vs. H_a : $p \neq p_0$ $p = population , \hat{p} = p_0 ample \hat{p} = p_0 portion$	$z = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}}$	$\hat{p} \pm z_{\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$	$n = p(1-p) \left(\frac{z^*}{E}\right)^2$ If do not know p, let p = 0.5. or $\frac{1}{4} \left(\frac{z^*}{E}\right)^2$
Binomial-test for p $\sim Bin(n, p) p(x y)$	$H_0: p \le p_0 \text{ vs. } H_a: p > p_0$ or $H_0: p \ge p_0 \text{ vs. } H_a: p < p_0$ or $H_0: p = p_0 \text{ vs. } H_a: p \ne p_0$	X = count of "successes" among a random sample of size n	Type of Errors Type I: Reject H_0 when I Type II: Reject H_a when	
Two sample t-test for comparing two means Each of the two populations is normal or sample sizes are large. Two populations have equal variance.	H_0 : $\mu_1 \le \mu_2 \ vs. H_0$: $\mu_1 > \mu_2$ or H_0 : $\mu_1 \ge \mu_2 \ vs. H_0$: $\mu_1 < \mu_2$ or H_0 : $\mu_1 = \mu_2 \ vs. H_0$: $\mu_1 \ne \mu_2$	$t = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{S_p^2(\frac{1}{n_1} + \frac{1}{n_2})}}, S_p^2 = \frac{(n_1)^2}{\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$	$\frac{(n_1-1)s_1^2 + (n_1-2)s_2^2}{\sqrt{n_1+n_2-2}}, df$ varience $\begin{array}{ccc} varience & varience \\ pop & 1 & pop & 2 \end{array}$	$= n_1 + n_2 - 2$ \downarrow size sample

p-Value (Reject H_0 if *p*-Value $< \alpha$)

Sampling distribution of the sample mean (Central limit Theorem)

The distribution of all possible sample mean is approximately normal with mean μ and standard deviation σ/\sqrt{n} as n large. Note that if the population is already normal, CLT applies for any n. $\rho(\bar{x}) = \rho(\bar{x}) = \rho(\bar{x})$

P-value = probability of getting the test statistic or more extreme (in the direction of alternative hypothesis) assuming the null hypothesis is true.

error

A1 CI nwujos

- 90% -> z* = 1.645

- 95% -> z* = 1.96

- 99% -> z* = 2.58

$$\int_{-\infty}^{2} = \frac{2(x_{1}-x_{1})^{2}}{N}$$

$$\int_{-\infty}^{2} = \frac{2(x_{1}-x_{2})^{2}}{N}$$
less than -> $\frac{1}{N}$ \(\text{10} \text{ ...} \)

 $\int_{-\infty}^{\infty} \frac{1}{N} \int_{-\infty}^{\infty} \frac{1}{N} \int_{-\infty}^{$

 $f_0 = \overline{\xi(0; -\overline{0})^2}$

Example

b. A random sample of 50 students is obtained. What is the probability that the *mean score* for these 50 students will be 21 or higher?

From CLT,
$$\bar{X} \sim N(\frac{M_2}{x} = 17.6)$$
 $\delta_s = \frac{d}{dk} = \frac{\ell.4}{\sqrt{10}}$ = 0.11+
$$P(\bar{X} > 21) = P(2 > \frac{\ell.1 - 17.6}{\sqrt{10}})$$

$$= P(2 > \dots)$$

$$= P(2 > \dots)$$

$$= 0.0121$$

central limit theorem

Example

Achievement test scores of all high school seniors in a state have mean 60 and variance 64. A random sample of 100 students from one large high school had a mean score of 58. Is there evidence to suggest that this high school is inferior?

Confidence Level	Confidence Coefficient, $1-\alpha$	z* or Z _{α/2} value	
80%	0.80	1.28	
	0.90	1.645	
	0.95	1.96	
98%	0.98	2.33	
	0.99	2.58	
99.8%	0.998	3.08	
99.9%	0.999	3.27	

		Diff = step-high
Descriptives		- Ho: No ≤ 0 , Ha; No?
	Difference	, "()""
N	8	$t = \frac{\bar{x} - 0}{50/5n} = \frac{190.5}{287.1048}$
Missing	0	
Mean	190.50000	t = 1.89
Median	231.50000	t ≠ reject Ho
Standard deviation	284.10411	
Minimum	-229	√ = 0.W
Maximum	559	(.mjcv
		- 1341
		. Not reject No

Given the following information, calculate the value of test statistics, set up the rejection region, and interpret the result

$$H_0$$
: $\mu = 1000$
 H_1 : $\mu \neq 1000$

$$\sigma = 200, n = 100, \bar{x} = 980, \alpha = 0.01$$

$$2 = \frac{\bar{x} - \mu}{\sqrt{f_{\rm fi}}} = \frac{240 - 101}{\sqrt{f_{\rm fig}}} = \frac{24}{26} = -1$$

