Studying extremes of summer Arctic sea ice reduction with rare event simulation methods

Jerome Sauer

Université Catholique de Louvain, Louvain-la-Neuve, Belgium

with Francesco Ragone, François Massonnet, Jonathan Demaeyer, Giuseppe Zappa

Extreme reductions in summer pan-Arctic sea ice area

Overarching goal: Understanding the atmospheric and oceanic drivers of extremes of summer Arctic sea ice reduction

Problem: Quantitative statistical and **dynamical studies** of **climate extremes** hindered by the **lack of data** in observations and in **numerical simulations with computationally expensive climate models**

Extreme reductions in summer pan-Arctic sea ice area

Problem: Quantitative statistical and dynamical studies of climate extremes are hindered by the lack of data

- → Improve the sampling efficiency of extreme events in climate model simulations with rare event algorithms
- → Genealogical selection algorithm adapted from Del Moral and Garnier (2005); Giardina et al. (2011) (Ragone et al. 2018; Ragone and Bouchet 2019; 2021): Efficient to study time-persistent extremes

Methodology: Rare event algorithm

- Importance sampling of trajectories in ensemble simulation with numerical model
 - → make trajectories with **large anomalies** of a **time-averaged observable** common
 - → more precise conditional statistics on extremes (e.g. composites, return times) + generation of ultra-rare events

Methodology: Rare event algorithm

- Importance sampling of trajectories in ensemble simulation with numerical model
 - → make trajectories with **large anomalies** of a **time-averaged observable** common
- Resampling at constant time intervals: trajectories are killed or cloned depending on weights measuring the likelihood to lead to an extreme of the time-averaged observable
- Importance sampling formular: Relates probabilities of trajectories between biased and unbiased statistics

Experiments with coupled climate model PlaSim

PlaSim: Intermediate complexity general circulation model

Coupled version: Large-Scale Geostrophic ocean and a zero-layer thermodynamic sea ice model

Resolution: T21 horizontal (32x64), 10 vertical layers

Forcing: constant pre-industrial greenhouse gas conditions

Observable: pan-Arctic sea ice area

3000-year control run: independent initial conditions for five 600-member ensemble simulations with the algorithm

Experiments with coupled climate model PlaSim

PlaSim: Intermediate complexity general circulation model

Coupled version: Large-Scale Geostrophic ocean and a zero-layer thermodynamic sea ice model

Resolution: T21 horizontal (32x64), 10 vertical layers

Forcing: constant pre-industrial greenhouse gas conditions

Observable: pan-Arctic sea ice area

3000-year control run: independent initial conditions for five 600-member ensemble simulations with the algorithm

Rare event algorithm experiments

Ехр.	Model years for initial conditions	k [10 ⁻⁶ km ⁻² day ⁻¹]
1	501,506,,3496	-0.06
2	502,507,,3497	-0.05
3	503,508,,3498	-0.04
4	504,509,,3499	-0.05
5	505,510,,3500	-0.04

Resampling time: 30 days

Simulation period: February-September

Seasons with extremely low pan-Arctic sea ice area in PlaSim

Daily mean sea ice area anomalies

Importance sampling of extreme negative February-September mean pan-Arctic sea ice area anomalies

Seasons with extremely low pan-Arctic sea ice area in PlaSim

Daily mean sea ice area anomalies

Importance sampling of extreme negative February-September mean pan-Arctic sea ice area anomalies

Seasons with extremely low pan-Arctic sea ice area in PlaSim

- Importance sampling of extreme negative February-September mean pan-Arctic sea ice area anomalies
- The algorithm allows to compute return times up to 10⁵ years with computational cost of 3000 years

Seasonal anomalies of SIC and T2M during extremes of sea ice reduction

"Seasonal"/ "summer": February-September average

Hatching: Significance on the 1% level

 Algorithm: Increase of statistical significance compared to control run

Seasonal anomalies of SIC and T2M during extremes of sea ice reduction

"Seasonal"/ "summer": February-September average

Hatching: Significance on the 1% level

 Algorithm: Increase of statistical significance compared to control run

Seasonal anomalies of SIC, T2M, Z500 during extremes of sea ice reduction

"Seasonal"/ "summer": February-September average

Hatching/Shading: Significance on the 1% level

 Algorithm: Increase of statistical significance compared to control run

 What are the dominant drivers of the warm Arctic in PlaSim?

Summary and ongoing work

- Application of a rare event algorithm to PlaSim: Improved sampling efficiency of extreme negative pan-Arctic sea ice area anomalies
- More precise composite maps conditional on the extremes and access to the statistics of ultra-rare events
- Warm Arctic state during low sea ice years with signature in the 500 hPa geopotential height field

Summary and ongoing work

- Application of a rare event algorithm to PlaSim: Improved sampling efficiency of extreme negative pan-Arctic sea ice area anomalies
- More precise composite maps conditional on the extremes and access to the statistics of ultra-rare events
- Warm Arctic state during low sea ice years with signature in the 500 hPa geopotential height field
- What is driving the warm Arctic in PlaSim?
 - → Analysis of the energetics: surface energy budget and meridional heat transports
 - → Dominant modes of atmospheric circulation variability
 - → Preconditioning and state of the ocean
- Extending the analysis to the annual sea ice minimum in September

Summary and ongoing work

- Application of a rare event algorithm to PlaSim: Improved sampling efficiency of extreme negative pan-Arctic sea ice area anomalies
- More precise composite maps conditional on the extremes and access to the statistics of ultra-rare events
- Warm Arctic state during low sea ice years with signature in the 500 hPa geopotential height field
- What is driving the warm Arctic in PlaSim?
 - → Analysis of the energetics: surface energy budget and meridional heat transports
 - → Dominant modes of atmospheric circulation variability
 - → Preconditioning and state of the ocean
- Extending the analysis to the annual sea ice minimum in September

Thank you for your attention

