

Experiment:- 2

Student Name: Jitesh Kumar UID: 20BCS2334

Branch: CSE Section/Group: 20BCS_WM_903/A

Semester: 5th Date of Performance: Aug. 17, 2022

Subject Code: 20CSP-317

Subject Name: MACHINE LEARNING LAB

Aim/Overview of the practical:

Implement Data Visualization.

Task to be done:

To perform Data Visualization on any standard dataset.

Apparatus/Simulator used:

- Jupyter Notebook/Google Collab
- Python
- pandas Library
- seaborn Library
- Standard Dataset

Code and Output:

```
In [1]: import pandas as pd
    import numpy as np
    import matplotlib.pyplot as plt
```

In [2]: cars_data=pd.read_csv('Toyota.csv',index_col=0,na_values=["??","????"])

In [3]: cars_data

Out[3]:

	Price	Age	KM	FuelType	НР	MetColor	Automatic	СС	Doors	Weight
0	13500	23.0	46986.0	Diesel	90.0	1.0	0	2000	three	1165
1	13750	23.0	72937.0	Diesel	90.0	1.0	0	2000	3	1165
2	13950	24.0	41711.0	Diesel	90.0	NaN	0	2000	3	1165
3	14950	26.0	48000.0	Diesel	90.0	0.0	0	2000	3	1165
4	13750	30.0	38500.0	Diesel	90.0	0.0	0	2000	3	1170
1431	7500	NaN	20544.0	Petrol	86.0	1.0	0	1300	3	1025
1432	10845	72.0	NaN	Petrol	86.0	0.0	0	1300	3	1015
1433	8500	NaN	17016.0	Petrol	86.0	0.0	0	1300	3	1015
1434	7250	70.0	NaN	NaN	86.0	1.0	0	1300	3	1015
1435	6950	76.0	1.0	Petrol	110.0	0.0	0	1600	5	1114

1436 rows × 10 columns


```
In [6]: plt.scatter(cars_data['Age'],cars_data['Price'],c='blue')
    plt.title('Scatter Plot for Price v/s Age')
    plt.xlabel("Age(Months)")
    plt.ylabel("Price(Euros)")
    plt.show()
```


Plotted Histogram

```
In [7]: plt.hist(cars_data['KM'])
                                                                           2.]),
Out[7]: (array([ 92., 239., 331., 222., 111., 51., 25., 13., 10.,
         array([1.000000e+00, 2.430090e+04, 4.860080e+04, 7.290070e+04,
                 9.720060e+04, 1.215005e+05, 1.458004e+05, 1.701003e+05,
                 1.944002e+05, 2.187001e+05, 2.430000e+05]),
         <BarContainer object of 10 artists>)
         300
         250
         200
         150
         100
          50
                     50000
                             100000
                                     150000
                                              200000
                                                       250000
```



```
In [9]: plt.hist(cars_data['KM'],color='yellow',edgecolor='green',bins=6)
  plt.title('Histogram of KM')
  plt.xlabel('Kilometer')
  plt.ylabel('Frequency')
```

Out[9]: Text(0, 0.5, 'Frequency')


```
In [15]: plt.bar(index,counts,color=['orange','green','pink'])
    plt.title('BarPlot for fuel types')
    plt.xlabel('Fuel Types')
    plt.ylabel('Frequency')
    plt.xticks(index,FuelType,rotation=90)
    plt.show()
```



```
In [16]: import seaborn as sns
In [17]: sns.set(style='darkgrid')
In [18]: sns.regplot(x=cars_data['Age'],y=cars_data['Price'])
Out[18]: <AxesSubplot:xlabel='Age', ylabel='Price'>

30000
25000
15000
10000
5000
```

To remove the regression line we have to make it false as its default value is true.

```
In [19]: sns.regplot(x=cars_data['Age'],y=cars_data['Price'],fit_reg=False)
Out[19]: <AxesSubplot:xlabel='Age', ylabel='Price'>
```


In [20]: sns.regplot(x=cars_data['Age'],y=cars_data['Price'],fit_reg=False,marker="*")

Out[20]: <AxesSubplot:xlabel='Age', ylabel='Price'>

In [22]: sns.lmplot(x='Age',y='Price',data=cars_data,fit_reg=False,hue='FuelType',legend=True,palette="Set1")

In [26]: sns.countplot(x='FuelType',data=cars_data,hue="Automatic")

Out[26]: <AxesSubplot:xlabel='FuelType', ylabel='count'>

In [27]: sns.boxplot(y=cars_data['Price'])

Out[27]: <AxesSubplot:ylabel='Price'>

In [28]: sns.boxplot(x=cars_data['FuelType'],y=cars_data['Price'])
Out[28]:
AxesSubplot:xlabel='FuelType', ylabel='Price'>

30000
25000
15000
Diesel Petrol FuelType
CNG

Learning outcomes (What I have learnt):

- 1. To understand Data Visualization.
- 2. Learn about pandas', matplotlib and seaborn library/package of python.
- 3. Learn about the different methods/functions that are needed togenerate different types of graphs, charts and plots of the given dataset.
- 4. Leaned about regression line, KDE.

