2 Evaluation

$$P = \frac{TP}{TP + FP}$$

$$R = \frac{TP}{TP + FN}$$

$$F = \frac{FP}{FP + TN}$$

• Relevant documents: 20 total.

n	relevant	Recall	Precision	n	relevant	Recall	Precision
1	х	0.05	1	11			
2	х	0.1	1	12			
3	х	0.15	1	13	х	0.3	0.46
4		0.15	0.75	14	х	0.35	0.5
5				15	х	0.4	0.53
6	х	0.2	0.67	16	x	0.45	0.56
7				17	x	0.5	0.59
8	х	0.25	0.63	18			
9				19	х	0.55	0.58
10				20			

Recall	D
recan	Precision
0.05	1
0.1	1
0.15	1
0.2	0.67
0.25	0.63
0.3	0.46
0.35	0.5
0.4	0.53
0.45	0.56
0.5	0.59
0.55	0.58
	0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

$$P_{interp}(r) = max_{r' \geq r}p(r')$$
 # best current or future performance

Precision-recall curve - take average of precision at 11 levels of recall from 0 to 1

3 Boolean

Term-document incidence matrix

	Antony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth
Antony	1	1	0	0	0	1
Brutus	1	1	0	1	0	0
Caesar	1	1	0	1	1	1
Calpurnia	0	1	0	0	0	0
Cleopatra	1	0	0	0	0	0
mercy	1	0	1	1	1	1
worser	1	0	1	1	1	0

Generate Postings

Doc 1. I did enact julius caesar I was killed i' the capitol brutus killed me.

Doc 2. so let it be with caesar the noble brutus hath told you caesar was ambitious

term	docID
I	1
did	1
enact	1
julius	1
caesar	1
I	1
was	1
killed	1
i'	1
the	1
capitol	1
brutus	1
killed	1
me	1
so	2
let	2
it	2 2 2 2
be	2
with	2

Sort Postings

term	docID
I	1
did	1
enact	1
julius	1
caesar	1
I	1
was	1
killed	1
i'	1
the	1
capitol	1
brutus	1
killed	1
me	1
so	2
let	2
it	2 2 2 2
be	2
with	2
 	

term	docID
ambitious	2
be	2
brutus	1
brutus	2
capitol	1
caesar	1
caesar	2 2
caesar	2
did	1
enact	1
hath	1
Ι	1
Ι	1
i'	1
it	2
julius	1
killed	1
killed	1
let	2

Inverted index:

Positional index (t,df,tf->d#,tf->...):

```
to, 993427:

\( \) 1, 6: \langle 7, 18, 33, 72, 86, 231 \rangle;
\( 2, 5: \langle 1, 17, 74, 222, 255 \rangle;
\( 4, 5: \langle 8, 16, 190, 429, 433 \rangle;
\( 5, 2: \langle 363, 367 \rangle;
\( 7, 3: \langle 13, 23, 191 \rangle; \dots \rangle
\)
be, 178239:
\( \langle 1, 2: \langle 17, 25 \rangle;
\( 4, 5: \langle 17, 191, 291, 430, 434 \rangle;
\( 5, 3: \langle 14, 19, 101 \rangle; \dots \rangle
\)
```

4. Vector Space

$$jaccard(A, B) = \frac{|A \cap B|}{|A \cup B|}$$

 $jaccard(A, A) = 1$
 $jaccard(A, B) = 0$ if $A \cap B = 0$
Set of words model - no order, no duplicates
Bags of words model - no order, with duplicates

 $tf_{t,d}$ - frequency of term t in document d

 df_t - number of documents that contain term t (if higher, term is less informative)

N - total number of documents

$$idf_{t} = \log_{10} \frac{N}{df_{t}}$$
 (log dampens the effect of idf)

N=1M:

term	DF	IDF
calpurnia	1	6
animal	100	4
sunday	1,000	3
fly	10,000	2
under	100,000	1
the	1,000,000	0

$$\begin{aligned} w_{t,d} &= t f_{t,d} * i d f_t = t f_{t,d} * \log_{10} \frac{N}{d f_t} \text{ \# tf-idf weight \# best known} \\ t f_{t,d} &= 1 + log_{10} t f_{t,d} & i f t f_{t,d} > 0 & \textit{else } 0 \text{ \# won't be used on exams} \end{aligned}$$

term fre	quency	docume	ent frequency	normalization			
n (natural)	$tf_{t,d}$	n (no)	1	n (none)	1		
l (logarithm)	$1 + \log(tf_{t,d})$	t (idf)	$\log \frac{N}{\mathrm{df}_t}$	c (cosine)	$\frac{1}{\sqrt{w_1^2 + w_2^2 + \dots + w_M^2}}$		
a (augmented)	$0.5 + \frac{0.5 \times \text{tf}_{t,d}}{\max_{t}(\text{tf}_{t,d})}$	p (prob idf)	$\max\{0,\log \frac{N-\mathrm{d} f_t}{\mathrm{d} f_t}\}$	u (pivoted unique)	1/u (Section 17.4.4)		
b (boolean)	$\begin{cases} 1 \text{ if } tf_{t,d} > 0 \\ 0 \text{ otherwise} \end{cases}$			b (byte size)	$1/CharLength^{\alpha}$, $\alpha < 1$		
L (log ave) $\frac{1}{1}$	$\frac{1 + \log(tf_{t,d})}{+ \log(ave_{t \in d}(tf_{t,d}))}$						

$$D1 = [w_{1,1} = tf_{"a",D1} \times idf_{"a"}, w_{2,1}, ..., w_{N,1}]$$

Document vectors in vector space:

	$ \mathbf{D}_{i} $	a	arrived	damaged	delivery	fire	gold	in	of	silver	shipment	truck
df		3	3	2	1	1	2	3	3	1	2	3
idf		0.125	0.125	0.301	0.602	0.602	0.301	0.125	0.125	0.602	0.301	0.125
\mathbf{D}_1	0.825	0.125		0.301		0.602	0.301	0.125	0.125		0.301	
D_2	1.375	0.125	0.125		0.602			0.125	0.125	1.204		0.125
D_3	0.509	0.125	0.125				0.301	0.125	0.125		0.301	0.125
D_4	0.349		0.125	0.301								0.125

Row: document vector. Column: term dimension (optional normalization:)

	$ \mathbf{D}_{i} $	a	arrived	damaged	delivery	fire	gold	in	of	silver	shipment	truck
df		3	3	2	1	1	2	3	3	1	2	3
idf		0.125	0.125	0.301	0.602	0.602	0.301	0.125	0.125	0.602	0.301	0.125
\mathbf{D}_1	1	0.151		0.365		0.730	0.365	0.151	0.151		0.365	
D_2	1	0.091	0.091		0.438			0.091	0.091	0.876		0.091
D_3	1	0.245	0.245				0.592	0.245	0.245		0.592	0.245
D_4	1		0.358	0.862								0.358

For queries: create vector out of idf Boolean VS Vector models:

The following two notions are equivalent.

- Rank documents in <u>increasing</u> order of the angle between query and document
- Rank documents in <u>decreasing</u> order of the cosine of the angle.

$$\cos(\overrightarrow{q}, \overrightarrow{d}) = \frac{\overrightarrow{q} \cdot \overrightarrow{d}}{|\overrightarrow{q}||\overrightarrow{d}|} = \frac{\sum_{i=1}^{|V|} q_i d_i}{\sqrt{\sum_{i=1}^{|V|} q_i^2} \sqrt{\sum_{i=1}^{|V|} d_i^2}}$$

Cosine similarity:

$$sim(D_1, D_2) = \frac{\sum_{i=1}^{t} w_{1i} * w_{2i}}{\sqrt{\sum_{i=1}^{t} (w_{1i})^2} * \sqrt{\sum_{i=1}^{t} (w_{2i})^2}}$$

4.5 Efficiency

Efficient ranking: pruning

Find a set A of contenders, with K < |A| << N

A does not necessarily contain the top K, but has many docs from among the top K Return the top K docs in A

- Only consider high-idf query terms (i.e, without the, in)
- Only consider docs containing many query terms (i.e >1)
- Only consider top docs for each query term

Champion list for t - pre-compute for each dictionary term t, the r docs of highest weight in t's postings

Plus, order documents by authority of source - and then compute cosine for first k

5 Text

Remove stop words (to, in)

Tokenize (split compound nouns, split on punctuation)

Normalize (color, colour)

Solutions: index under both, or expand query to search under both

Lemmatization (dupes->dupe, is->be)

Stemming (building->build, automates->automat)

6 IR Systems

Evaluation criteria:

- recall and precision
- response time
- user effort
- form of presentation
- content coverage

7 Feedback

Add the vectors for the relevant documents to the query vector. Subtract the vectors for the irrelevant docs from the query vector.

$$\vec{\mu^{\prime}}(\textit{C}) = \frac{\sum\limits_{\vec{d^{\prime}} \in \textit{C}} \vec{d^{\prime}}}{|\textit{C}|}$$
 # Centroid. C - set of documents

$$\overrightarrow{q_m} = \overrightarrow{aq_0} + \ \beta \frac{\sum\limits_{\overrightarrow{d_i} \in D_r} \overrightarrow{d_i}}{|D_r|} - \ \gamma \frac{\sum\limits_{\overrightarrow{d_j} \in D_{nr}} \overrightarrow{d_j}}{|D_{nr}|} \ \text{\# modified query vector}$$

 D_r # set of known relevant doc vectors

 D_{nr} # set of known irrelevant doc vectors

Different from C_r and C_{nr}

 q_0 # original query vector

α , β , γ # weights, hand-chosen

```
\begin{array}{l} \text{D4=[0\ 0.602\ 0.301\ 0.602\ 0.301\ 0.301\ 0.301\ 0.249]} \\ |\text{D4|=1.072\ (sqrt(x^2+y^2))\ }\#\text{ Normalize: divide each by }|\text{D4}| \\ |\text{D4'}=[0\ 0.5616\ 0.2808\ 0.5616\ 0.2808\ 0.2808\ 0.2808\ 0.2323]} \\ |\text{Q1=[0\ 0\ 0\ 0\ 0\ 0\ 0\ 0.125]} \\ |\text{Q}=\alpha^*\text{Q1'}+\beta^*\text{D4'}=\text{Q1'}+0.5^*\text{D4'} \\ &=[\ 0\ 0\ 0\ 0\ 0\ 0\ 1\ ]+0.5^*[\ 0\ 0.5616\ 0.2808\ 0.5616\ 0.2808\ 0.2808\ 0.2808\ 0.2808\ 0.2323\ ] \\ &=[\ 0\ 0.2808\ 0.1404\ 0.2808\ 0.1404\ 0.1404\ 1.1161\ ] \\ |\text{Q}|=1.2175 \\ |\text{Normalization: Q'}=[\ 0\ 0.2306\ 0.1153\ 0.2306\ 0.1153\ 0.1153\ 0.1153\ 0.1153\ 0.9168] \\ &\text{sim}(\text{Q'},\text{D4})=0.6015 \end{array}
```

TODO

Print notes
Review notes
EXAM Overview