#### **CPE301 – SPRING 2019**

# Design Assignment 6

Student Name: Alira Coffman Student #: 5003236350

Student Email:coffma2@unlv.nevada.edu

Primary Github address:

https://github.com/Alira-Coffman/submission-repo.git

Directory:

#### Submit the following for all Labs:

1. In the document, for each task submit the modified or included code (only) with highlights and justifications of the modifications. Also, include the comments.

- 2. Use the previously create a Github repository with a random name (no CPE/301, Lastname, Firstname). Place all labs under the root folder ESD301/DA, sub-folder named LABXX, with one document and one video link file for each lab, place modified asm/c files named as LabXX-TYY.asm/c.
- 3. If multiple asm/c files or other libraries are used, create a folder LabXX-TYY and place these files inside the folder.
- 4. The folder should have a) Word document (see template), b) source code file(s) and other include files, c) text file with youtube video links (see template).

#### 1. COMPONENTS LIST AND CONNECTION BLOCK DIAGRAM w/ PINS

List of Components used:

- Atmega328p
- Breadboard
- MPU6050

### 2. INITIAL/MODIFIED/DEVELOPED CODE OF TASK 1/A

```
#define F_CPU 16000000UL
#include <avr/io.h>
#include <util/delay.h>
#include <inttypes.h>
#include <stdlib.h>
#include <stdio.h>
#include "MPU6050 def.h"
#include "i2c master.h"
#include "uart.h"
float Acc x, Acc y, Acc z, Gyro x, Gyro y, Gyro z;
/*PowerPoint*/
void MPU6050_Init()/* Gyro initialization function */
    delay ms(150);/* Power up time >100ms */
   I2C Start Wait(0xD0);/* Start with device write address */
    I2C Write(SMPLRT DIV);/* Write to sample rate register */
    I2C_Write(0x07);/* 1KHz sample rate */
    I2C_Stop();I2C_Start_Wait(0xD0);
    I2C_Write(PWR_MGMT_1);/* Write to power management register */
    I2C Write(0x01);/* X axis gyroscope reference frequency */
    I2C Stop();I2C Start Wait(0xD0);I2C Write(CONFIG);/* Write to Configuration register
*/
    I2C_Write(0x00);/* Fs = 8KHz */
    I2C Stop();I2C Start Wait(0xD0);
    I2C Write(GYRO CONFIG);/* Write to Gyro configuration register */
    I2C_Write(0x18);/* Full scale range +/-2000 degree/C */
    I2C_Stop();
    I2C Start Wait(0xD0);
    I2C_Write(INT_ENABLE);/* Write to interrupt enable register */
    I2C_Write(0x01);
    I2C_Stop();
}
/*Powerpoint function*/
void MPU_Start_Loc()
    I2C_Start_Wait(0xD0);/* I2C start with device write address */
    I2C_Write(ACCEL_XOUT_H);/* Write start location address from where to read */
    I2C_Repeated_Start(0xD1);/* I2C start with device read address */
void Read RawValue()
```

```
{
       _delay_ms(10);
                                                                                        /*
       MPU Start Loc();
Read Gyro values */
       Acc_x = (((int)I2C_Read_Ack()<<8) | (int)I2C_Read_Ack());</pre>
       Acc_y = (((int)I2C_Read_Ack()<<8) | (int)I2C_Read_Ack());</pre>
       Acc z = (((int)I2C Read Ack() << 8) | (int)I2C Read Ack());
       Gyro_x = (((int)I2C_Read_Ack()<<8) | (int)I2C_Read_Ack());</pre>
       Gyro_y = (((int)I2C_Read_Ack()<<8) | (int)I2C_Read_Ack());</pre>
       Gyro_z = (((int)I2C_Read_Ack()<<8) | (int)I2C_Read_Nack());</pre>
       I2C Stop();
}
int main()
{
       char buffer[20], float_[10];
       float Xa,Ya,Za;
       float Xg=0,Yg=0,Zg=0;
       I2C_Init();
       MPU6050 Init();
       USART_Init(9600);
       while(1)
       {
              _delay_ms(1500);
              Read RawValue();
              Xa = Acc_x/16384.0;
                                                                                        /*
Divide raw value by sensitivity scale factor to get real values */
              Ya = Acc_y/16384.0;
              Za = Acc z/16384.0;
              Xg = Gyro_x/16.4;
              Yg = Gyro_y/16.4;
              Zg = Gyro_z/16.4;
        dtostrf( Xa, 3, 2, float_ );
                                                                         /* Take values in
buffer to send all parameters over USART */
              sprintf(buffer," Ax = %s g\n",float_);
              USART_SendString(buffer);
              dtostrf( Ya, 3, 2, float_ );
sprintf(buffer," Ay = %s g\n",float_);
              USART_SendString(buffer);
              dtostrf( Za, 3, 2, float_ );
              sprintf(buffer," Az = %s g\n",float_);
              USART SendString(buffer);
              dtostrf( Xg, 3, 2, float_ );
              sprintf(buffer," Gx = %s%c/s\n",float_,0xF8);
              USART SendString(buffer);
              dtostrf( Yg, 3, 2, float_ );
              sprintf(buffer, "Gy = %s%c/s\n",float_,0xF8);
              USART_SendString(buffer);
```

```
dtostrf( Zg, 3, 2, float_ );
    sprintf(buffer," Gz = %s%c/s\r\n",float_,0xF8);
    USART_SendString(buffer);
}
```

3. DEVELOPED MODIFIED CODE OF TASK 2/A from TASK 1/A

n/a

# 4. SCHEMATICS



5. SCREENSHOTS OF EACH TASK OUTPUT (ATMEL STUDIO OUTPUT)

```
Receive

Ay = 0.29 g

Az = -0.84 g

Gx = -333.66ø/s

Gy = 7.13ø/s

Gz = 25.49ø/s

Ax = -0.85 g

Gx = -333.66ø/s

Gy = 0.91ø/s

Gz = -5.98ø/s
```

6. SCREENSHOT OF EACH DEMO (BOARD SETUP)





# 7. VIDEO LINKS OF EACH DEMO

https://www.youtube.com/watch?v=nQQzwkAGdJE&feature=youtu.be

# 8. GITHUB LINK OF THIS DA

https://github.com/Alira-Coffman/submission-repo/tree/master/ESD301/DA/DA6

Student Academic Misconduct Policy
http://studentconduct.unlv.edu/misconduct/policy.html

"This assignment submission is my own, original work".

Alira Coffman