# Trabajo Práctico 2 Reconocimiento de dígitos

Métodos Numéricos

Segundo cuatrimestre - 2020

### Antes de pasar al TP2...

Dónde estamos y qué vimos hasta ahora

- Errores numéricos.
- Resolución de sistema lineales. (EG, LU, SDP)
- Aplicación de resolución de sistemas (Rankings deportivos y otros rankings).
- Aplicaciones de Cholesky a generación de variables.
- Cómo experimentar, tanto a nivel metodológico como a nivel implementación.

# Subiendonos a la ola: un TP de Machine Learning

# Subiendonos a la ola: un TP de Machine Learning



IN CS, IT CAN BE HARD TO EXPLAIN THE DIFFERENCE BETWEEN THE EASY AND THE VIRTUALLY IMPOSSIBLE.

# Subiendonos a la ola: un TP de Machine Learning



IN CS, IT CAN BE HARD TO EXPLAIN THE DIFFERENCE BETWEEN THE EASY AND THE VIRTUALLY IMPOSSIBLE.



### En realidad ya estabamos en la ola

Reacciones populares

Métodos numéricos



Norma matricial, número de condición, factorización de matrices, distancia de un punto a un subespacio

Machine learning



Data scientist, Big data, Deep learning, Data guru ninja visionary

# Trabajo Práctico 2

Reconocimiento de dígitos - Aplicaciones





### Trabajo Práctico 2

#### Reconocimiento de dígitos

- ▶ Datos: base de datos etiquetada de imágenes de dígitos manuscritos (0-9) tomadas de una forma particular.
- Objetivo: dada una nueva imagen de un dígito, ¿A cuál corresponde?



### Problema a resolver Recibimos un nuevo dígito manuscrito, ¿Podemos determinar

automáticamente a cuál pertenece?

#### Contexto

### Objetivo

Desarrollar (no solo en términos de implementación) un *clasificador* que permita reconocer dígitos manuscritos.

#### Contexto

- Disponemos de una base de datos etiquetada (train), y un conjunto de datos para los que no conocemos cuál es su etiqueta (test). Este último nos permitirá evaluar como se comporta nuestro clasificador.
- Consideramos la base MNIST, en la versión utilizada en Kaggle.
   42k dígitos en train, 18k dígitos en test.
- ► Cada dígito es una imagen en escala de grises de 28 × 28.

Vecino más cercano

### Idea general (caso particular reconocimiento dígitos)

- Consideramos cada imagen como un vector  $x_i \in \mathbb{R}^m$ ,  $m = 28 \times 28$ ,  $i = 1, \ldots, n$ . Para las imágenes en la base de datos, sabemos además a que clase pertenece.
- Cuando llega una nueva imagen de un dígito z, con el mismo formato, recorremos toda la base y buscamos aquella que minimice

$$\arg\min_{i=1,\ldots,n}||z-x_i||_2$$

Luego, le asignamos la clase del representante seleccionado.

#### Generalización

Considerar más de un vecino.

Vecinos más cercanos: kNN

- Consideramos los k vecinos más cercanos.
- Entre ellos hacemos una votación, eligiendo como clase la moda del conjunto. En otras palabras, hacemos una votación y se elige aquella clase con más votos.



kNN: Ejemplo de clasificación y definición de fronteras



Imagen tomada de SCIKIT-LEARN.ORG

### Algunos pros & cons

- + Es conceptualmente simple.
- Funciona bien en general para dimensiones bajas, y puede ser utilizado con pocos ejemplos.
- Sufre de *La maldición de la dimensionalidad*.
- La clasificación puede ser lenta dependiendo del contexto.

Ejemplo datos en  $\mathbb{R}^2$ 

Sean  $x^{(1)}, x^{(2)}, \dots, x^{(n)}$  una secuencia de n datos, con  $x^{(i)} \in \mathbb{R}^2$ .





Ejemplo datos en  $\mathbb{R}^2$ 

$$X = \begin{bmatrix} 26.4320 & 27.7740 \\ 26.8846 & 26.5631 \\ 23.3309 & 26.6983 \\ 30.6387 & 31.5619 \\ 30.5171 & 30.8993 \\ 45.6364 & 36.6035 \\ \vdots & & \vdots \\ 16.0650 & 24.0210 \end{bmatrix}$$

# Media: $\mu = \frac{1}{n}(x^{(1)} + \dots + x^{(n)})$ $\mu = (29.3623, 29.7148)$



Varianza de una variable  $x_k$ : Medida para la dispersión de los datos.

$$\sigma^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_k^{(i)} - \mu_k)^2$$
  

$$\sigma_{x_1}^2 = 66.2134, \ \sigma_{x_2}^2 = 12.5491$$

Ejemplo datos en  $\mathbb{R}^2$  - Covarianza

$$X = \begin{bmatrix} 26.4320 & 27.7740 \\ 26.8846 & 26.5631 \\ 23.3309 & 26.6983 \\ 30.6387 & 31.5619 \\ 30.5171 & 30.8993 \\ 45.6364 & 36.6035 \\ \vdots & \vdots \\ 16.0650 & 24.0210 \end{bmatrix}$$

<u>Covarianza</u>: Medida de cuánto dos variables varían de forma similar. Variables con mayor covarianza inducen la presencia de cierta dependencia o relación.

$$\sigma_{x_j x_k} = \frac{1}{n-1} \sum_{i=1}^{n} (x_j^{(i)} - \mu_j) (x_k^{(i)} - \mu_k)$$

Ejemplo datos en  $\mathbb{R}^2$  - Covarianza

Dadas *n* observaciones de dos variables  $x_k$ ,  $x_j$ , y  $v = (1, ..., 1)^t$ :

$$\sigma_{x_j x_k} = \frac{1}{n-1} \sum_{i=1}^n (x_j^{(i)} - \mu_j) (x_k^{(i)} - \mu_k) = \frac{1}{n-1} (x_k - \mu_k v)^t (x_j - \mu_j v)$$

Matriz de Covarianza:

$$X = \begin{bmatrix} 26.4320 - \mu_1 & 27.7740 - \mu_2 \\ 26.8846 - \mu_1 & 26.5631 - \mu_2 \\ 23.3309 - \mu_1 & 26.6983 - \mu_2 \\ 30.6387 - \mu_1 & 31.5619 - \mu_2 \\ 30.5171 - \mu_1 & 30.8993 - \mu_2 \\ 45.6364 - \mu_1 & 36.6035 - \mu_2 \\ \vdots & \vdots & \vdots \\ 16.0650 - \mu_1 & 24.0210 - \mu_2 \end{bmatrix} \qquad M_X = \frac{1}{n-1} X^t X = \begin{bmatrix} \sigma_{x_1 x_1} & \sigma_{x_1 x_2} \\ \sigma_{x_1 x_2} & \sigma_{x_2 x_2} \end{bmatrix}$$

$$= \begin{bmatrix} \sigma_{x_1}^2 & \sigma_{x_1 x_2} \\ \sigma_{x_1 x_2} & \sigma_{x_2}^2 \end{bmatrix}$$

$$M_X = \begin{bmatrix} 66.2134 & 27.1263 \\ 27.1263 & 12.5491 \end{bmatrix}$$

# ¿Cómo expresar mejor nuestros datos?

### Objetivo

Buscamos una transformación de los datos que disminuya la redundancia (es decir, disminuir la covarianza).

- ► Cambio de base:  $\hat{X}^t = PX^t$ .
- Cómo podemos hacerlo? Diagonalizar la matriz de covarianza. Esta matriz tiene la varianza de cada variable en la diagonal, y la covarianza en las restantes posiciones. Luego, al diagonalizar buscamos variables que tengan covarianza cero entre sí y la mayor varianza posible.

# Autovalores y Autovectores

#### Definición

Sea  $A \in \mathbb{R}^{n \times n}$ . Un *autovector* de A es un vector no nulo tal que  $Ax = \lambda x$ , para algun escalar  $\lambda$ . Un escalar  $\lambda$  es denominado *autovalor* de A si existe una solución no trivial x del sistema  $Ax = \lambda x$ . En este caso, x es llamado *autovector asociado* a  $\lambda$ .

Consideramos:

$$A = \begin{bmatrix} 3 & -2 \\ 1 & 0 \end{bmatrix}, u = \begin{bmatrix} -1 \\ 1 \end{bmatrix}, v = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$
$$Au = \begin{bmatrix} -5 \\ -1 \end{bmatrix}, Av = \begin{bmatrix} 4 \\ 2 \end{bmatrix} = 2 \begin{bmatrix} 2 \\ 1 \end{bmatrix} = 2v$$

Gráficamente....A sólo estira (o encoge) el vector v.

### Diagonalización

En muchos casos, la presencia de autovectores-autovalores puede ser utilizada para encontrar una factorización  $A=PDP^{-1}$ , donde D es una matriz diagonal.

#### Intuición

Podemos encontrar una base donde la transformación lineal A se comporta como si fuese diagonal.

#### Observación

No toda matriz  $A \in \mathbb{R}^{n \times n}$  es diagonalizable.

#### Teorema

Una matriz  $A \in \mathbb{R}^{n \times n}$  es diagonalizable sí y solo sí A tiene n autovectores linealmente independientes (las columnas de P).

#### Teorema

Si  $A \in \mathbb{R}^{n \times n}$  es simétrica, entonces existe una base ortonormal de autovectores  $\{v_1, \dots, v_n\}$  asociados a  $\lambda_1, \dots, \lambda_n$ .

Consecuencia: Existe P, y  $P^{-1}=P^t$ . Luego,  $A=PDP^t$ .

### Cálculo de autovalores/autovectores

- Vamos a necesitar calcular los autovectores v de una matriz para poder calcular las transformaciónes de los métodos que estamos viendo.
- Consideremos  $A^tA$ , y supongamos  $\lambda_1 > \lambda_2 > \cdots > \lambda_k$ .  $A^tA$  es simétrica y semidefinida positiva.
- Podemos considerar el Método de la Potencia para calcular  $\lambda_1$  y  $v_1$ .
  - 1. MetodoPotencia( $B, x_0, niter$ )
  - 2.  $v \leftarrow x_0$ .
  - 3. Para  $i = 1, \ldots, niter$
  - 4.  $v \leftarrow \frac{Bv}{||Bv||}$
  - 5. Fin Para
  - 6.  $\lambda \leftarrow \frac{v^t B v}{v^t v}$
  - 7. Devolver  $\lambda$ ,  $\nu$ .

# Cálculo de autovalores/autovectores

Una vez que tenemos  $\lambda_1$  y  $v_1$ , como seguimos?

### Deflación

Sea  $B \in \mathbb{R}^{n \times n}$  una matriz con autovalores distintos  $|\lambda_1| > |\lambda_2| > \cdots > |\lambda_n|$  y una base ortonormal de autovectores. Entonces, la matriz  $B - \lambda_1 v_1 v_1^t$  tiene autovalores  $0, \lambda_2, \ldots, \lambda_n$  con autovectores asociados  $v_1, \ldots, v_n$ .

- $(B \lambda_1 v_1 v_1^t) v_1 = B v_1 \lambda_1 v_1 (v_1^t v_1) = \lambda_1 v_1 \lambda_1 v_1 = 0 v_1.$
- $(B \lambda_1 v_1 v_1^t) v_i = B v_i \lambda_1 v_1 (v_1^t v_i) = \lambda_i v_i.$

### Observación

En nuestro caso, no hace falta que todos los autovalores tengan magnitudes distintas.

# ¿Cómo expresar mejor nuestros datos?

► Cambio de base:  $\hat{X}^t = PX^t$ . Sea P ortogonal y  $M_{\hat{X}}$  la matriz de covarianza de  $\hat{X}$ .

$$M_{\hat{X}} = \frac{1}{n-1} \hat{X}^t \hat{X}$$

$$= \frac{1}{n-1} (PX^t) (XP^t)$$

$$= P \frac{X^t X}{n-1} P^t$$

$$= P M_X P^t$$

▶  $M_X$  es simétrica, entonces existe V ortogonal tal que  $M_X = VDV^t$ .

$$\begin{array}{lcl} M_{\hat{X}} & = & PM_X P^t \\ & = & P(VDV^t)P^t & \text{tomamos } P = V^t \\ & = & (V^t V)D(VV^t) = D \end{array}$$

# ¿Cómo expresar mejor nuestros datos?

Volvemos al ejemplo

$$M_X = \begin{bmatrix} 66.2134 & 27.1263 \\ 27.1263 & 12.5491 \end{bmatrix}$$

$$= \underbrace{\begin{bmatrix} 0.9228 & -0.3852 \\ 0.3852 & 0.9228 \end{bmatrix}}_{V} \underbrace{\begin{bmatrix} 77.5362 & 0 \\ 0 & 1.2263 \end{bmatrix}}_{D=M_{\hat{Y}}} \underbrace{\begin{bmatrix} 0.9228 & 0.3852 \\ -0.3852 & 0.9228 \end{bmatrix}}_{V^t}$$



#### Resumen hasta acá

- ► Tenemos *n* muestras de *m* variables.
- ▶ Calculamos el vector  $\mu$  que contiene la media de cada de una las variables.
- Construimos la matriz  $X \in \mathbb{R}^{n \times m}$  donde cada muestra corresponde a una fila de X y tienen media cero (i.e.,  $x^{(i)} := (x^{(i)} \mu)/\sqrt{n-1}$ ).
- ▶ Diagonalizamos la matriz de covarianzas  $M_X$ . La matriz V (ortogonal) contiene los autovectores de  $M_X$ .

#### Propiedades del cambio de base

- Disminuye redundancias.
- ► El cambio de base  $\hat{X}^t = PX^t = V^tX^t$  asigna a cada muestra un nuevo *nombre* mediante un cambio de coordenadas.
- Las columnas de V (autovectores de  $M_X$ ) son las componentes principales de los datos.
- ► En caso de *m* grande, es posible tomar sólo un subconjunto de las componentes principales para estudiar (i.e., aquellas que capturen mayor proporción de la varianza de los datos)

Autodígitos (Eigendigits)

Los primeros 6 autovectores en V.



¿Cómo reconocemos un dígito?

#### Idea

- Utilizar el cambio de base, transformando cada imagen convenientemente.
- Reducir la dimensión de los datos utilizando sólo algunas de las nuevas variables (eligiendo aquellas que capturan una fracción mayor de la varianza).

#### Procedimiento

- Peducción de la dimensión: parámetro de entrada que indica cuántas componentes principales considerar,  $\alpha$ . Es decir, tomaremos  $\bar{V} = [v_1 \ v_2 \ \dots \ v_{\alpha}].$
- Tranformación característica: Aplicamos el cambio de base a cada muestra  $x^{(i)}$ , definimos  $tc(x^{(i)}) = \bar{V}^t x^{(i)} = (v_1^t x^{(i)}, \dots, v_{\alpha}^t x^{(i)})$ .

Transformación + Reducción (k = 2)



¿Cómo reconocemos un dígito?

Finalmente, dada una imagen de un dígito que no se encuentra en la base:

- ▶ Vectorizamos la imagen en  $x^* \in \mathbb{R}^m$ .
- Aplicamos la transformación característica,  $tc(\bar{x}^*)$  y buscamos (de alguna manera) a que dígito pertenece.

### Pregunta:

Sugerencias para buscar a qué dígito pertenece?

Metodología de evaluación

Elegimos un numero de vecinos k (adicionalmente un número  $\alpha$  o  $\gamma$  de componentes). Como evaluamos si el método funciona?

Como medimos la efectividad del método?

Metodología de evaluación

Elegimos un numero de vecinos k (adicionalmente un número  $\alpha$  o  $\gamma$  de componentes). Como evaluamos si el método funciona?

- Como medimos la efectividad del método?
- Tiene sentido probarlo sobre la base de training?

Metodología de evaluación

Elegimos un numero de vecinos k (adicionalmente un número  $\alpha$  o  $\gamma$  de componentes). Como evaluamos si el método funciona?

- Como medimos la efectividad del método?
- Tiene sentido probarlo sobre la base de training?
- De alguna forma defino una instancia, pruebo todas las combinaciones de parámetros sobre la misma. Es correcto? Puede surgir algún problema?

Metodología de evaluación

Elegimos un numero de vecinos k (adicionalmente un número  $\alpha$  o  $\gamma$  de componentes). Como evaluamos si el método funciona?

- Como medimos la efectividad del método?
- Tiene sentido probarlo sobre la base de training?
- De alguna forma defino una instancia, pruebo todas las combinaciones de parámetros sobre la misma. Es correcto? Puede surgir algún problema?

#### Idea

Utilizar la base de entrenamiento convenientemente para estimar y proveer suficiente evidencia respecto a la efectividad del método.

### Midiendo la efectividad - Matriz de confusión



### Métricas

- Accuracy: Los aciertos totales sobre los casos totales. En términos de la matriz de confusión, sumar la diagonal dividido la suma de todas las celdas.
- Precision: Aciertos relativos dentro de una clase. Dada una clase i, tpi tpi;
   La precision en el caso de un clasificador de muchas clases, se define como el promedio de las precision para cada una de las clases.
- **Recall**: Métrica para medir los reconocimientos dentro de una clase. Dada una clase i,  $\frac{tp_i}{tp_i+fn_i}$ .

### Métricas

- ▶ **F1-Score**: Dado que *precision* y *recall* son dos medidas importantes que no necesariamente tienen la misma calidad para un mismo clasificador, se define la métrica F1 para medir un compromiso entre el *recall* y la *precision*. La métrica F1 se define como 2 \* *precision* \* *recall* / (*precision* + *recall*).
- ▶ Kappa de Cohen: Es una medida para indicar cuánto concuerdan dos clasificadores sobre un mismo set de datos. Dicha medida se define como  $\kappa = (p_o p_a)/(1 p_a)$ . Donde  $p_o$  es la probabilidad observada de que los dos clasificadores concuerden y  $p_a$  es la probabilidad aleatoria de que lo hagan. Esta métrica puede utilizarse para determinar si el problema contiene ejemplos particularmente complicados, porque por ejemplo ningún clasificador lo reconoce correctamente.

# ¿Qué hay que hacer en el TP?

### Objetivos generales

- Implementar el método kNN.
- Implementar el método de PCA y combinarlo con kNN.
- Experimentar variando: k, α, K, Analizar los resultados en términos de diferentes métricas (mirando al menos la tasa de efectividad) aplicando cross validation sobre la base de training.
- Para encontrar los autovectores necesarios, utilizar el Método de la Potencia + Deflación.

# ¿Qué hay que hacer en el TP?

### Objetivos generales

- Implementar el método kNN.
- ► Implementar el método de PCA y combinarlo con kNN.
- Experimentar variando: k, α, K, Analizar los resultados en términos de diferentes métricas (mirando al menos la tasa de efectividad) aplicando cross validation sobre la base de training.
- Para encontrar los autovectores necesarios, utilizar el Método de la Potencia + Deflación.

### Algunas (posibles) preguntas y dificultades

- ▶ kNN y 42k imágenes de 28 × 28?
- Tolerancia de corte Método de la Potencia? Se cumplen las condiciones para aplicar deflación?
- Cuántas componentes principales tomar?
- Que combinación de parámetros (modelo) da los mejores resultados?

### Por último...

#### Competencia activa en KAGGLE.COM



### Entrega

### Fecha de entrega

► Formato electrónico: Domingo 1 de Noviembre de 2020, hasta las 23:59 hs., enviando el trabajo (informe+código) a metnum.lab@gmail.com.