Predpokladajte, že máte štandardný Solowov model s Cobb-Douglasovou produkčnou funkciou a rastom produktivity zvyšujúcej pracovnú silu a rastom populácie. Centrálna rovnica modelu je:

$$\widehat{k}_{t+1} = \frac{1}{(1+z)(1+n)} \left[ sA\widehat{k}_t^{\alpha} + (1-\delta)\widehat{k}_t \right]$$

Spotreba na efektívnu jednotku práce je:

$$\widehat{c}_t = (1 - s)A\widehat{k}_t^{\alpha}$$

- (a) Odvodte výraz pre kapitál na efektívnu jednotku práce v stálom stave.
- (b) Použite svoju odpoveď z predchádzajúcej časti na odvodzenie výrazu pre hodnotu spotreby na efektívneho pracovníka v stálom stave.
- (c) Použite kalkulus na odvodzenie výrazu pre hodnotu s, ktorá maximalizuje spotrebu v stálom stave na pracovníka. Závisí tento výraz s od hodnôt z alebo n?
- 2. Excel Úloha Príklad Predpokladajte, že máte štandardný Solowov model s rastom produktivity upravujúcej pracovnú silu a rastom populácie. Produkčná funkcia je Cobb-Douglas. Centrálna rovnica Solowovho modelu, vyjadrená na efektívne jednotky práce, je daná:

$$\widehat{k}_{t+1} = \frac{1}{(1+z)(1+n)} \left[ sA\widehat{k}_t^{\alpha} + (1-\delta)\widehat{k}_t \right]$$

Ostatné premenné modelu sú riadené rovnicami:

$$\widehat{i}_t = s\widehat{y}_t \tag{1}$$

$$\widehat{y}_t = Af\left(\widehat{k}_t\right) \tag{2}$$

$$\widehat{y}_t = \widehat{c}_t + \widehat{i}_t \tag{3}$$

$$R_t = Af'\left(\widehat{k}_t\right) \tag{4}$$

$$w_t = Z_t \left[ Af\left(\widehat{k}_t\right) - Af'\left(\widehat{k}_t\right)\widehat{k}_t \right]$$
 (5)

- (a) Vytvorte súbor Excel. Predpokladajte, že úroveň produktivity je fixovaná na A=1. Predpokladajte, že s=0.2 a  $\delta=0.1$ . Predpokladajte, že  $\alpha=1/3$ . Nech z=0.02 a n=0.01. Vypočítajte číselnú hodnotu kapitálu v stálom stave na efektívnu jednotku práce.
- (b) Predpokladajte, že kapitál na pracovníka spočiatku leží v období 1 v stálom stave. Vytvorte stĺpec období od obdobia 1 do obdobia 100. Použite centrálnu rovnicu modelu na získanie hodnoty  $\hat{k}$  v období 2, za predpokladu, že  $\hat{k}$  je rovný svojmu stálemu stavu v období 1. Pokračujte v iterácii a nájdite hodnoty  $\hat{k}$  v nasledujúcich obdobiach až do obdobia 9. Čo platí o kapitáli na efektívnu jednotku práce v obdobiach 2 až 9?

- (c) V období 10 predpokladajte, že dôjde k zvýšeniu miery rastu populácie z n=0.01 na n=0.02. Všimnite si, že kapitál na efektívnu jednotku práce v období 10 závisí od premenných z obdobía 9 (t. j. starej, nižšej hodnoty n), aj keď bude závisieť od novej hodnoty n v období 11 a ďalej. Použite túto novú hodnotu n, existujúcu hodnotu kapitálu na efektívnu jednotku práce, ktorú ste našli pre obdobie 9, a centrálnu rovnicu modelu na výpočet hodnôt kapitálu na efektívnu jednotku práce v obdobiach 10 až 100. Vytvorte graf, ktorý ukazuje cestu kapitálu na efektívnu jednotku práce od obdobia 1 do obdobia n00
- (d) Predpokladajte, že počiatočné úrovne N a Z v období 1 sú obe 1. To znamená, že následné úrovne Z a N sú riadené rovnicami  $N_t = (1+n)^t$  a  $Z_t = (1+z)^t$ . Vytvorte stĺpce vo vašom Excel súbore na meranie úrovní N a Z v obdobiach 1 až 100.
- (e) Použite tieto úrovne Z a N a sériu  $\hat{k}$ , ktorú ste vytvorili vyššie, na vytvorenie série kapitálu na pracovníka, t. j.  $k_t = \hat{k}_t Z_t$ . Zoberte prirodzený logaritmus výsledného časového radu a zakreslite ho v čase.
- (f) Ako ovplyvňuje zvýšenie miery rastu populácie dynamickú cestu kapitálu na pracovníka?
- 3. Excel Úloha Príklad Predpokladajte, že máte dve krajiny, nazvime ich 1 a 2. Každú riadi Solowov model s Cobb-Douglasovou produkčnou funkciou, ale každá krajina môže mať potenciálne rôzne hodnoty s a A. Predpokladajme, že hodnota A pre každú krajinu je v čase fixná. Centrálna rovnica modelu je:

$$k_{i,t+1} = s_i A_i k_{i,t}^{\alpha} + (1 - \delta) k_{i,t}, \quad i = 1, 2$$

Výstup v každej krajine je daný:

$$y_{i,t} = A_i k_{i,t}^{\alpha}$$

- (a) Riešte pre kapitál na pracovníka v stálom stave pre všeobecnú krajinu i (i je index rovný buď 1 alebo 2).
- (b) Použite toto riešenie na výstup na pracovníka v stálom stave v krajine i.
- (c) Použite svoje odpovede z predchádzajúcich častí na napísanie výrazu pre pomer výstupu v stálom stave v krajine 1 k krajine 2 ako funkcie príslušných mier úspor, úrovní produktivity a spoločných parametrov modelu.
- (d) Predpokladajte, že každá krajina má rovnakú hodnotu A, teda  $A_1 = A_2$ . Predpokladajte, že  $\alpha = 1/3$  a  $\delta = 0.1$ . Predpokladajte, že miera úspor v krajine 1 je  $s_1 = 0.2$ . V Excelovom hárku vypočítajte rôzne hodnoty relatívnych výstupov v stálom stave (t.j.  $\frac{y_1^*}{y_2^*}$ ) v rozmedzí od 1 do 5, s medzerou 0.1 medzi položkami (t.j. mali by ste vytvoriť stĺpec s hodnotami 1, 1.01, 1.02, 1.03 atď.). Pre každú hodnotu  $\frac{y_1^*}{y_2^*}$  riešte pre hodnotu  $s_2$  potrebnú na to, aby bola konzistentná s touto hodnotou. Vytvorte graf tejto hodnoty  $s_2$  proti hodnotám  $\frac{y_1^*}{y_2^*}$ . Komentujte, či je pravdepodobné, že rozdiely v mierach úspor by mohli vysvetliť veľké rozdiely v relatívnych HDP.
- (e) Prepracujte túto úlohu, ale tentokrát predpokladajte, že  $\alpha=2/3$ . Porovnajte grafy medzi sebou. Komentujte, ako vyššia hodnota  $\alpha$  zvyšuje alebo nezvyšuje pravdepodobnosť, že rozdiely v mierach úspor môžu vysvetliť veľké rozdiely vo výstupe na obyvateľa.

4. R/STATA Úloha - Empirické zadanie Táto úloha sa zameriava na empirický odhad Solowovho modelu rastu s technologickým pokrokom pomocou nevyváženého panelu krajín Európskej únie (EÚ) v období 2005 až 2020 na základe databázy AMECO a WB. Cieľom je posúdiť dlhodobý rast a beta-konvergenciu medzi krajinami, pričom dôraz sa kladie na rozdiely v ľudskom kapitáli.

## Zdroj dát

Dáta získajte z databázy AMECO a obsahujú HDP na obyvateľa, zásoby kapitálu, rast populácie, ľudský kapitál a ukazovatele kvality inštitúcií nájdete v databáze Svetovej Banky pre 27 krajín EÚ.

## Špecifikácia modelu

Odhadujeme rozšírený Solow-Swanov model rastu podľa Mankiw, Romer a Weil (1992), ktorý zahŕňa ľudský kapitál a kvalitu inštitúcií:

$$\Delta \ln y_{jt} = \beta_0 + \beta_1 \ln y_{jt-1} + \beta_2 \ln k_{jt} + \beta_3 \ln(n_{jt} + 0.05) + \beta_4 \ln \text{Právny štát}_{jt} + \beta_5 \ln \text{Ľudský kapitál}_{jt} + \mu_j + \tau_t + u_{jt}$$

kde:

- $\Delta \ln y_{cijt}$  je logaritmická aproximácia rastu HDP na obyvateľa pre región i v krajine j v čase t
- $y_{ijt-1}$  je oneskorený HDP na obyvateľa.
- $k_{ijt}$  je zásoba kapitálu na obyvateľa.
- $n_{ijt}$  je rast populácie.
- Sadzba rastu technologického pokroku a miera odpisov sú súčtom 0.05.
- Právny štát $_{jt}$  vyjadruje kvalitu inštitúcií (postačuje jeden ukazovateľ, v prípade záujmu môžete redukovať počet všetkých dimenzií do jedného komponentu pomocou Analýzy hlavných komponentov (PCA)).
- Ľudský kapitál $_{ijt}$  predstavuje zásoby ľudského kapitálu (miera terciálneho vzdelania, veková skupina 25-64)
- $\mu_j$  a  $\tau_t$  sú fixné efekty krajín a času.
- $u_{iit}$  je náhodný člen.

## Postup odhadu

- (a) Načítajte a predspracujte dáta z ARDECO a Svetovej Banky.
- (b) Vytvorte panelové premenné: HDP na obyvateľa, zásoby kapitálu, rast populácie, ľudský kapitál a kvalitu inštitúcií.
- (c) Odhadnite štandardný Solowov model rastu.
- (d) Interpretujte výsledky so zameraním na beta-konvergenciu medzi krajinami.