

UNIVERSAL ISM BAND FSK TRANSCEIVER MODULE RFM12B

(the purpose of this spec covers mainly for the physical characteristic of the module, for register configure and its related command info please refer to RF12B data sheets)

General Introduction

RFM12B is a low costing ISM band transceiver module implemented with unique PLL. It works signal ranges from 433/868/915MHZ bands, comply with FCC, ETSI regulation. The SPI interface is used to communicate with microcontroller for parameter setting.

Features:

- · Low costing, high performance and price ratio
- Tuning free during production
- PLL and zero IF technology
- Fast PLL lock time
- High resolution PLL with 2.5 KHz step
- High data rate (up to 115.2 kbps with internal demodulator, with external RC filter highest data rate is 256 kbps)
- Differential antenna input/output
- Automatic antenna tuning
- Programmable TX frequency deviation (from 15 to 240 KHz)
- Programmable receiver bandwidth (from 67 to 400 kHz)
- Analog and digital signal strength indicator (ARSSI/DRSSI)
- Automatic frequency control (AFC)
- Data quality detection (DQD)
- Internal data filtering and clock recovery
- RX synchron pattern recognition
- SPI compatible serial control interface
- Clock and reset signal output for external MCU use
- 16 bit RX Data FIFO
- Two 8 bit TX data registers
- Standard 10 MHz crystal reference
- · Wakeup timer
- 2.2V 3.8V power supply
- · Low power consumption
- Standby current less than 0.3uA
- Supports very short packets (down to 3 bytes)

RFM12B

Typical Application:

- Remote control
- Remote sensor
- Wireless data collection
- Home security system
- Toys
- Tire pressure monitoring system

Pin Definition:

definition	Туре	Function						
nINT/VDI	DI/ DO	Interrupt input (active low)/Valid data indicator						
VDD	S	Positive power supply						
SDI	DI	SPI data input						
SCK	DI	SPI clock input						
nSEL	DI	Chip select (active low)						
SDO	DO	Serial data output with bus hold						
nIRQ	DO	Interrupts request output (active low)						
FSK/DATA/nFFS	DI/DO/DI	Transmit FSK data input/ Received data output (FIFO not used)/ FIFO						
		select						
DCLK/CFIL/FFIT	DO/AIO/DO	Clock output (no FIFO)/ external filter capacitor(analog mode)/ FIFO interrupts(active high)when FIFO level set to 1, FIFO empty						
		interruption can be achieved						
CLK	DO	Clock output for external microcontroller						
nRES	DIO	Reset output (active low)						
GND	S	Power ground						

Electrical Parameter:

Maximum (not at working mode)

symbol	parameter	minimum	maximum	Unit
V_{dd}	Positive power supply	-0.5	6.0	V
V _{in}	All pin input level	-0.5	Vdd+0.5	V

Tel: +86-755-82973806 Fax: +86-755-82973550 E-mail: <u>sales@hoperf.com</u> <u>http://www.hoperf.com</u>

RFM12B

I _{in}	Input current except power	-25	25	mA
ESD	Human body model		1000	V
T _{st}	Storage temperature	-55	125	$^{\circ}$
T _{Id}	Soldering temperature(10s)		260	$^{\circ}$ C

Recommended working range

symbol	parameter	minimum	maximum	Unit
V _{dd}	Positive power supply	2.2	3.8	V
T _{op}	Working temperature	-40	85	$^{\circ}$ C

DC characteristic

symbol	parameter	Remark	minimum	typical	maximum	Unit
I _{dd_TX_0}	Supply current	315,433MHz band		15	17	mA
	(TX mode, P _{out} = 0dBm)	868MHz band		16	18	
		915MHz band		17	19	
I _{dd_TX_PMAX}	Supply current	315,433MHz band		22	24	mA
	(TX mode, $P_{out} = P_{max}$)	868MHz band		23	25	
		915MHz band		24	26	
I_{dd_RX}	Supply current	315,433MHz band		11	13	mA
	(RX mode)	868MHz band		12	14	
		915MHz band		13	15	
l _x	Idle current	Crystal oscillator on		0.62	1.2	mA
I _{pd}	Sleep mode current	All blocks off		0.3		uA
I _{lb}	Low battery detection			0.5		uA
V _{Ib}	Low battery detect	0.1V per step	2.2		3.7	V
	threshold					
V _{lba}	Low battery detection		0		5	%
	accuracy					
V_{il}	Low level input				0.3*V _{dd}	V
V _{ih}	High level input		0.7*V _{dd}			V
l _{il}	Leakage current	V _{il} =0V	-1		1	uA
I _{ih}	Leakage current	V _{ih} =V _{dd} , V _{dd} =5.4V	-1		1	uA
V _{ol}	Low level output	I _{ol} =2mA			0.4	٧
V _{oh}	High level output	I _{oh} =-2mA	V _{dd} -0.4			V

AC characteristic

symbol	parameter	remark	min	typical	max	Unit
f _{ref}	PLL frequency		9	10	11	MHz
f _{LO}	frequency	433 MHz band,2.5KHz step	430.24		439.75	
	(10MHz crystal	868 MHz band,5KHz step	860.48		879.51	MHz
	used)	915 MHz band,7.5KHz step	900.72		929.27	
	frequency	433 MHz band,2.5KHz step	387.22		395.76	
f_{LO}	(9MHZ crystal	868 MHz band,5KHz step	774.43		791.56	MHz
	used)	915 MHz band,7.5KHz step	810.65		836.34	

RFM12B

	frequency	433 MHz band,2.5KHz step	473.26		483.73	
f_{LO}	(11MHZ crystal	868 MHz band,5KHz step	946.53		967.46	MHz
	used)	915 MHz band,7.5KHz step	990.79		1022.2	
BW	Receiver	mode 0	60	67	75	
	bandwidth	mode 1	120	134	150	
		mode 2	180	200	225	KHz
		mode 3	240	270	300	
		mode 4	300	350	375	
		mode 5	360	400	450	
t _{lock}	PLL lock time	After 10MHz step hopping,		30		us
		frequency error <10 kHz				
	PLL startup time	With a running crystal		200	300	us
tst, P	FLL Startup time	oscillator		200	300	us
BR	Data rate	With internal digital	0.6		115.2	kbps
		demodulator				
BR_A	Data rate	With external RC filter			256	kbps
P_{min}	sensitivity	BER 10 ⁻³ ,		-102	-96	dBm
		BW=134KHz,BR=1.2kbps				
AFC_{range}	AFC working range	df _{FSK} : FSK deviation in the		0.8*		
		received signal		df_{FSK}		
RSA	RSSI accuracy			±5		dB
RS _R	RSSI range			46		dB
C _{ARSSI}	ARSSI filter			1		nF
RS _{STEP}	RSSI			6		dB
	programmable step					
RS _{RESP}	DRSSI response	RSSI output high after		500		us
	time	valid , CARRSI=5nF				

AC characteristic(Transmitter)

710 011	aracteristic (Transmitter)					
symbol	parameter	remark	min	typical	max	Unit
P _{max_50}	Max. output power delivered to	433MHZ band		7		
	500hm load over a suitable					dbm
	matching network	868/915MHZ band		5		
		In 433 MHz band with		7		
P _{max_ant}	Max. EIRP with suitable selected	monopole antenna with				
	PCB antenna.	matching network				dbm
		In 868 / 915 MHz bands		7		
P _{out}	Typical output power	Selectable in 3 dB	P _{max} -21		P _{max}	dbm
		steps				
Co	Output capacitance	In low bands	2	2.6	3.2	pf
	(set by the automatic antenna	In high bands	2.1	2.7	3.3	
	tuning circuit)					

RFM12B

Qo	Quality factor of the output	In low bands	13	15	17	
	capacitance	In high bands	8	10	12	
L _{out}	Output phase noise	100 kHz from carrier			-80	dbc/HZ
		1 MHz from carrier			-103	
BR _{TX}	FSK bit rate	Via internal TX data			172	kbps
		register				
BRA _{TX}	FSK bit rate	TX data connected to the			256	kbps
		FSK input				
df _{fsk}	FSK frequency deviation	Programmable in 15	15		240	kHZ
		kHz steps				

AC characteristic(Turn-on/Turnaround timings)

	arriar carra tirriirigo,				
parameter	remark	min	typical	max	Unit
Crystal oscillator startup	Crystal ESR < 100		1	5	ms
time					
Transmitter turn-on	Synthesizer off, crystal		250		us
time	oscillator on with 10 MHz step		230		us
Receiver turn-on time	Synthesizer off, crystal		250		us
	oscillator on with 10 MHz step		230		u
Transmitter – Receiver	Synthesizer and crystal				
turnover time	oscillator on during TX/RX		150		us
	change with 10 MHz step				
Receiver – Transmitter	Synthesizer and crystal				
turnover time	oscillator on during RX/TX		150		us
	change with 10 MHz step				
Crystal load	Programmable in 0.5 pF steps,	8.5		16	pf
capacitance	tolerance+/- 10%				
Internal POR timeout	After V _{dd} has reached 90% of			100	ms
	final value				
Wake-up timer clock	Calibrated every 30 seconds	0.96		1.05	ms
period					
Digital input apacitance				2	pf
Digital output rise/fall	15pF pure capacitive load			10	ns
time					
	parameter Crystal oscillator startup time Transmitter turn-on time Receiver turn-on time Transmitter – Receiver turnover time Receiver – Transmitter turnover time Crystal load capacitance Internal POR timeout Wake-up timer clock period Digital input apacitance Digital output rise/fall	Crystal oscillator startup time Transmitter turn-on time Receiver turn-on time Transmitter - Receiver turnover time Receiver - Transmitter turnover time Receiver - Transmitter turnover time Crystal oscillator on with 10 MHz step Synthesizer and crystal oscillator on during TX/RX change with 10 MHz step Receiver - Transmitter turnover time Receiver - Transmitter oscillator on during RX/TX change with 10 MHz step Crystal load crystal oscillator on during RX/TX change with 10 MHz step Crystal load Programmable in 0.5 pF steps, tolerance+/- 10% Internal POR timeout After V _{dd} has reached 90% of final value Wake-up timer clock period Digital input apacitance Digital output rise/fall 15pF pure capacitive load	parameter remark min Crystal oscillator startup time Transmitter turn-on time Synthesizer off, crystal oscillator on with 10 MHz step Receiver turn-on time Synthesizer off, crystal oscillator on with 10 MHz step Transmitter – Receiver turnover time Synthesizer and crystal oscillator on during TX/RX change with 10 MHz step Receiver – Transmitter turnover time Synthesizer and crystal oscillator on during RX/TX change with 10 MHz step Receiver – Transmitter turnover time Synthesizer and crystal oscillator on during RX/TX change with 10 MHz step Crystal load programmable in 0.5 pF steps, tolerance+/- 10% Internal POR timeout After V _{dd} has reached 90% of final value Wake-up timer clock Calibrated every 30 seconds Digital input apacitance Digital output rise/fall 15pF pure capacitive load	parameter remark min typical Crystal oscillator startup time Transmitter turn-on time Synthesizer off, crystal oscillator on with 10 MHz step Receiver turn-on time Synthesizer off, crystal oscillator on with 10 MHz step Transmitter – Receiver turnover time Synthesizer and crystal oscillator on during TX/RX change with 10 MHz step Receiver – Transmitter Synthesizer and crystal turnover time oscillator on during RX/TX change with 10 MHz step Receiver – Transmitter Synthesizer and crystal turnover time oscillator on during RX/TX change with 10 MHz step Crystal load programmable in 0.5 pF steps, tolerance with 10 MHz step Crystal load capacitance tolerance+/- 10% Internal POR timeout After V _{dd} has reached 90% of final value Wake-up timer clock period Digital input apacitance Digital output rise/fall 15pF pure capacitive load	parameter remark min typical max Crystal oscillator startup time Crystal ESR < 100

Field testing range

Band	Test condition	Distance
433MHz band	Receiver bandwidth =67KHz, data rate=1.2kbps, transmitter frequency	>200M
	deviation =45KHZ (matches with RFM12) In free open area	
868MHz band	Receiver bandwidth=67KHz,data rate =1.2kbps,Transmitter frequency	>300M
	deviation =45KHZ (matches with RFM12) in free open area	
915MHz band	Receiver bandwidth=67KHz,data rate =1.2kbps,Transmitter frequency	>300M
	deviation =45KHZ (matches with RFM12) in free open area	

SGS Reports

820,600 3.30 22.33 26.84 45.80 44.59 47.82 -3.24 868.375 3.48 22.85 26.58 103.62 103.36 61.57 41.79

Cableintenna Preamp Read Limit Over Freq Loss Factor Factor Level Level Line Limit

816.700 3.28 22.29 26.86 44.32 43.04 47.80 -4.76 868.375 3.40 22.85 26.58 101.04 100.78 61.57 39.21

dB dBuV dBuV/m dBuV/m

dB dB/m

| Dote: 40 | Dote: 2006-12-29 Time: 2032-02 | Dote: 2006-12-29 Tim

Mechanical Dimension

(units in mm)

SMD PACKAGE (S1)

SMD PACKAGE (S2)

DIP PACKAGE (D)

1,5
1,2
3,8
9,9
9,9
0,5
1,0,6
0,5
1,0,1
0,0,6
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0,1
0,0

Module Model Definition

model=module-operation band

example: 1, RFM12B module at 433MHz band, DIP: RFM12B-433-D.

2, RFM12B module at 868MHZ band, SMD, thickness at 4.2mm: RFM12B-868-S1 $\! _{\circ}$

RFM12B

HOPE RF

HOPE MICROELECTRONICS CO.,LTD

Rm B.8/F LiJingGe Emperor Regency 6012 ShenNan Rd., Shenzhen,China

Tel: 86-755-82973805

Fax: 86-755-82973550

Email: sales@hoperf.com

trade@hoperf.com

Website: http://www.hoperf.com
http://hoperf.en.alibaba.com

This document may contain preliminary information and is subject to change by Hope Microelectronics without notice. Hope Microelectronics assumes no responsibility or liability for any use of the information contained herein. Nothing in this document shall operate as an express or implied license or indemnity under the intellectual property rights of Hope Microelectronics or third parties. The products described in this document are not intended for use in implantation or other direct life support applications where malfunction may result in the direct physical harm or injury to persons. NO WARRANTIES OF ANY KIND, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MECHANTABILITY OR FITNESS FOR A ARTICULAR PURPOSE, ARE OFFERED IN THIS DOCUMENT.

©2006, HOPE MICROELECTRONICS CO.,LTD. All rights reserved.

Tel: +86-755-82973806 Fax: +86-755-82973550 E-mail: <u>sales@hoperf.com</u> <u>http://www.hoperf.com</u>

RF12 programming guide

1. Brief description

RF12B is a low cost FSK transceiver IC witch integrated all RF functions in a single chip. It only need a MCU, a crystal, a decouple capacitor and antenna to build a hi reliable FSK transceiver system. The operation frequency can cover 400 to 1000MHz.

RF12B supports a command interface to setup frequency, deviation, output power and also data rate. No need any hardware adjustment when using in frequency-hopping applications

RF12B can be used in applications such as remote control toys, wireless alarm, wireless sensor, wireless keyboard/mouse, home-automation and wireless data collection.

2. Commands

1. Timing diagram

2. Configuration Setting Command

bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	POR
	1	0	0	0	0	0	0	0	el	ef	b1	b0	x 3	x2	x1	x0	8008h

e 1: Enable TX register

e f: Enable RX FIFO buffer

b1..b0: select band

b1	b0	band[MHz]
0	0	Reserved
0	1	433
1	0	868
1	1	915

x3..x0: select crystal load capacitor

х3	x2	x1	x0	load capacitor [pF]
0	0	0	0	8.5
0	0	0	1	9.0
0	0	1	0	9.5
0	0	1	1	10.0
1	1	1	0	15.5
1	1	1	1	16.0

3. Power Management Command

bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	POR
	1	0	0	0	0	0	1	0	er	ebb	et	es	ex	eb	ew	dc	8208h

er: Enable receiver

ebb: Enable base band block

et: Enable transmitteres: Enable synthesizer

ex: Enable crystal oscillator

eb: Enable low battery detector

ew: Enable wake-up timer

dc: Disable clock output of CLK pin

4. Frequency Setting Command

					0												
bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	POR
	1	0	1	0	f11	f10	f9	f8	f7	f6	f5	f4	f3	f2	f1	f0	A680h

f11..f0: Set operation frequency:

433band: Fc=430+F*0.0025 MHz 868band: Fc=860+F*0.0050 MHz 915band: Fc=900+F*0.0075 MHz

Fc is carrier frequency and F is the frequency parameter. $36 \le F \le 3903$

5. Data Rate Command

bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	POR
	1	1	0	0	0	1	1	0	cs	r6	r5	r4	r3	r2	r1	r0	C623h

r6..r0: Set data rate:

BR=10000000/29/ (R+1) / (1+cs*7)

6. Receiver Control Command

bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	POR
	1	0	0	1	0	P16	d1	d0	i2	i1	i0	g1	g0	r2	r1	r0	9080h

P16: select function of pin16

P16	
0	Interrupt input
1	VDI output

i2..i0:select baseband bandwidth

i2	i1	iO	Baseband Bandwidth [kHz]
0	0	0	reserved
0	0	1	400
0	1	0	340
0	1	1	270
1	0	0	200
1	0	1	134
1	1	0	67
1	1	1	reserved

d1..d0: select VDI response time

d1	d0	Response
0	0	Fast
0	1	Medium
1	0	Slow
1	1	Always on

g1..g0: select LNA gain

g1	g0	LNA gain (dBm)
0	0	0
0	1	-6
1	0	-14
1	1	-20

r2..r0: select DRSSI threshold

r2	r1	r0	RSSIsetth [dBm]
0	0	0	-103
0	0	1	-97
0	1	0	-91
0	1	1	-85
1	0	0	-79
1	0	1	-73
1	1	0	Reserved
1	0	1	Reserved

The actual DRSSI threshold is related to LNA setup:

 $RSSI_{th} = RSSI_{setth} + G_{LNA}$

7. Data Filter Command

bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	POR
	1	1	0	0	0	0	1	0	al	ml	1	s	1	f2	f1	f0	C22Ch

al: Enable clock recovery auto-lock

ml: Enable clock recovery fast mode

s: select data filter type

S	Filter type
0	Digital filter
1	Analog RC filter

f1..f0: Set DQD threshold

8. FIFO and Reset Mode Command

bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	POR
	1	1	0	0	1	0	1	0	f3	f2	f1	f0	sp	al	ff	dr	CA80h

f3..f0: Set FIFO interrupt level

sp: Select the length of the synchron pattern:

sp	Byte1	Byte0 (POR)	Synchron Pattern (Byte1+Byte0)
0	2Dh	D4h	2DD4h
1	Not used	D4h	D4h

al: select FIFO fill start condition

al	condition
0	Sync-word
1	Always

ff: Enable FIFO fill

dr: Disable hi sensitivity reset mode

9. Synchron pattern Command

bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	POR
	1	1	0	0	1	1	1	0	b7	b6	b5	b4	b3	b2	b1	b0	CED4h

This command is used to reprogram the synchronic pattern;

10. Receiver FIFO Read Command

bit	15	14	13	12		10	9	8	7	6	5	4	3	2	1	0	POR
	1	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	B000h

This command is used to read FIFO data when FFIT interrupt generated. FIFO data output starts at 8^{th} SCK period.

11. AFC Command

bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	POR
	1	1	0	0	0	1	0	0	a1	a0	rl1	rlO	st	fi	oe	en	C4F7h

a1..a0: select AFC auto-mode:

a1	a0	
0	0	Controlled by MCU
0	1	Run once at power on
1	0	Keep offset when VDI hi
1	1	Keeps independently from VDI

rl1..rl0: select range limit

r1	r0	range (fres)
0	0	No restriction
0	1	+15/-16
1	0	+7/-8
1	1	+3-4

fres

315, 433band: 2.5kHz

868band: 5kHz 915band: 7.5kHz

st: st goes hi will store offset into output register

fi: Enable AFC hi accuracy mode

oe: Enable AFC output register

en: Enable AFC funcition

12. TX Configuration Control Command

bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	POR
	1	0	0	1	1	0	0	mp	m3	m2	m1	m0	0	p2	p1	p0	9800h

m: select modulation polarity

m2..m0: select frequency deviation:

m3	m2	m1	m0	frequency deviation [kHz]
0	0	0	0	15
0	0	0	1	30
0	0	1	0	45
0	0	1	1	60
0	1	0	0	75
0	1	0	1	90
0	1	1	0	105
0	1	1	1	120
1	0	0	0	135
1	0	0	1	150
1	0	1	0	165
1	0	1	1	180
1	1	0	0	195
1	1	0	1	210
1	1	1	0	225
1	1	1	1	240

p2..p0: select output power

p2	p1	p0	Output power[dBm]
0	0	0	0
0	0	1	-3
0	1	0	-6
0	1	1	-9
1	0	0	-12
1	0	1	-15
1	1	0	-18
1	0	1	-21

13. PLL Setting Command

bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	POR
	1	1	0	0	1	1	0	0	0	ob1	ob0	lpx	ddy	ddit	1	bw0	CC67h

ob1-ob0: Microcontroller output clock buffer rise and fall time control.

ob1	ob0	Selected uC CLK frequency
0	0	5 or 10 MHz (recommended)
0	1	3.3 MHz
1	Х	2.5 MHz or less

lpx: select low power mode of the crystal oscillator.

lpx	Crystal start-up time (typ)	Power consumption (typ)
0	1 ms	620 uA
1	2 ms	460 uA

ddy: phase detector delay enable.

ddi: disables the dithering in the PLL loop.

bw1-bw0: select PLL bandwidth

bw0	Max bit rate [kbps]	Phase noise at 1MHz offset [dBc/Hz]
0	86.2	-107
1	256	-102

14. Transmitter Register Write Command

bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	POR
	1	0	1	1	1	0	0	0	t7	t6	t5	t4	t3	t2	t1	t0	B8AAh

This command is use to write a data byte to RF12 and then RF12 transmit it

15. Wake-Up Timer Command

bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	POR
	1	1	1	r4	r3	r2	r1	r0	m7	m6	m5	m4	m3	m2	m1	m0	E196h

The wake-up period is determined by:

$$T_{\text{wake-up}} = M * 2^{R} [ms]$$

For continual operation, bit 'ew' must be cleared and set

16. Low Duty-Cycle Command

bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	POR
	1	1	0	0	1	0	0	0	d6	d5	d4	d3	d2	d1	d0	en	C8OEh

 $Tel: +86-755-82973806 \quad Fax: +86-755-82973550 \quad E-mail: \\ \underline{sales@hoperf.com} \quad \underline{http://www.hoperf.com}$

d6..d0: Set duty cycle

D. C. = (D * 2 +1) / M *100%

en: Enable low duty cycle mode

17. Low Battery Detector and Microcontroller Clock Divider Command

bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	POR
	1	1	0	0	0	0	0	0	d2	d1	d0	0	v3	v2	v1	v0	C000h

d2..d0: select frequency of CLK pin

d2	d1	d0	Clock frequency[MHz]
0	0	0	1
0	0	1	1.25
0	1	0	1.66
0	1	1	2
1	0	0	2.5
1	0	1	3.33
1	1	0	5
1	1	1	10

CLK signal is derive form crystal oscillator and it can be applied to MCU clock in to save a second crystal.

If not used, please set bit "dc" to disable CLK output

To integrate the load capacitor internal can not only save cost, but also adjust reference frequency by software

v3..v0: Set threshold voltage of Low battery detector:

V1b=2.2+V*0.1 [V]

18. Status Read Command

bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	POR
	0	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	-

This command starts with a 0 and be used to read internal status register

3. Demo flow diagram

Transmitter:

Note: Initialize RF12B and open transmitter, RF12B will transmit a byte and pull nIRQ low when transmit over, then MCU can write next byte to transmit

Receiver:

Note: After RF12B initialization, Open FIFO receive mode and wait nIRQ low, only then MCU

can read received and stored in FIFO data. For next package receive, please reset FIFO.

4. Example 1 (for AVR microcontroller)

RF12 transmitter demo:

/*

; copyright (c) 2006

;Title RF12 TX simple example based on AVR C

;Company: Hope microelectronic Co., Ltd.

;Author: Tank ;Current version: v1.0

;Date: 2006-11-13; ;processor ATMEGA48; ;Clock: 10MHz Crystal; ;Contact: +86-0755-86106557

;E-MAIL: hopefsk@hoperf.com

Connections

ATMEGA48 SIDE	RF12 SIDE
SCK	>SCK
MISO	>SDO
MOSI	>SDI
SS	>nSEL
INTO<	nIRQ

PD6: LED GREEN PD7: LED RED

*/

```
#include <mega48.h>
#define DDR_IN
                        0
#define DDR_OUT
                        1
#define PORT_SEL
                        PORTB
#define PIN_SEL
                        PINB
#define DDR_SEL
                        DDRB
#define PORT_SDI
                        PORTB
#define PIN_SDI
                        PINB
#define DDR_SDI
                        DDRB
#define PORT_SCK
                        PORTB
#define PIN_SCK
                        PINB
#define DDR_SCK
                        DDRB
#define PORT_SDO
                        PORTB
#define PIN_SDO
                        PINB
#define DDR_SDO
                        DDRB
#define PORT_DATA
                        PORTD
#define PIN_DATA
                        PIND
#define DDR_DATA
                        DDRD
                        7//--\
#define PB7
#define PB6
                        6//
#define RFXX_SCK
                        5//
                        4// | RF_PORT
#define RFXX_SDO
#define RFXX_SDI
                        3//
#define RFXX_SEL
                        2//
#define NC
                        1//
#define PBO
                        0//--/
#define SEL_OUTPUT()
                        DDR_SEL |= (1<<RFXX_SEL)
#define HI_SEL()
                        PORT_SEL = (1<<RFXX_SEL)
                        PORT\_SEL\&=^{\sim}(1<<RFXX\_SEL)
#define LOW_SEL()
```

#define SDI_OUTPUT()

DDR_SDI |= (1<<RFXX_SDI)

```
#define HI_SDI()
                         PORT_SDI = (1<<RFXX_SDI)
#define LOW_SDI()
                         PORT_SDI&=~(1<<RFXX_SDI)
#define SDO_INPUT()
                         DDR_SD0&= ^{\sim} (1<<RFXX_SD0)
#define SDO HI()
                         PIN_SDO&(1<<RFXX_SDO)
#define SCK_OUTPUT()
                         DDR\_SCK \mid = (1 << RFXX\_SCK)
#define HI_SCK()
                         PORT_SCK = (1 << RFXX_SCK)
                         PORT_SCK&=~(1<<RFXX_SCK)
#define LOW_SCK()
#define RF12_DATA
                         4//PD4
#define DATA_OUT
                         DDR_DATA =1<<RF12_DATA
#define HI_DATA
                         PORT_DATA =1<<RF12_DATA
#define LEDG_OUTPUT()
                         DDRD = (1 << 6)
#define LEDR_OUTPUT()
                         DDRD = (1 << 7)
                         PORTD&=~(1<<6)
#define LEDG_ON()
                         PORTD = (1 << 6)
#define LEDG OFF()
                         PORTD&=~(1<<7)
#define LEDR_ON()
#define LEDR_OFF()
                         PORTD = (1 << 7)
void RFXX_PORT_INIT(void) {
  HI_SEL();
  HI SDI();
  LOW_SCK();
  SEL_OUTPUT();
  SDI_OUTPUT();
  SDO_INPUT();
  SCK OUTPUT();
}
unsigned int RFXX_WRT_CMD(unsigned int aCmd) {
  unsigned char i;
  unsigned int temp;
  LOW_SCK();
  LOW_SEL();
  for(i=0;i<16;i++){
    temp <<=1;
    if(SDO_HI()){
      temp = 0x0001;
    }
    LOW_SCK();
    if (aCmd&0x8000) {
```

```
HI_SDI();
    }else{
      LOW SDI();
    }
    HI SCK();
    aCmd <<=1;
  };
  LOW_SCK();
  HI_SEL();
  return(temp);
void RF12_INIT(void) {
  RFXX_WRT_CMD (0x80D7); //EL, EF, 433band, 12. 0pF
  RFXX_WRT_CMD(0x8239);//!er, !ebb, ET, ES, EX, !eb, !ew, DC
  RFXX_WRT_CMD (0xA640); //434MHz
  RFXX_WRT_CMD(0xC647);//4.8kbps
  RFXX_WRT_CMD(0x94A0);//VDI, FAST, 134kHz, 0dBm, -103dBm
  RFXX_WRT_CMD (0xC2AC);//AL, !m1, DIG, DQD4
  RFXX WRT CMD(0xCA81);//FIF08, SYNC, !ff, DR
  RFXX_WRT_CMD(0xCED4);//SYNC=2DD4;
  RFXX_WRT_CMD(0xC483);//@PWR, NO RSTRIC, !st, !fi, OE, EN
  RFXX_WRT_CMD(0x9850);//!mp, 90kHz, MAX OUT
  RFXX_WRT_CMD(0xCC77);//OB1, OB0, LPX,! ddy, DDIT, BW0
  RFXX_WRT_CMD(0xE000);//NOT USE
  RFXX_WRT_CMD(0xC800);//NOT USE
  RFXX WRT CMD (0xC040);//1.66MHz, 2.2V
}
void RF12_SEND(unsigned char aByte) {
  while (PIND& (1<<2)); //wait for previously TX over
  RFXX_WRT_CMD(0xB800+aByte);
}
void Delay_ms(unsigned char amS) {
  unsigned char i;
  unsigned int j;
  for (i=0; i \le mS; i++) for (j=0; j \le 914; j++);
}
void main(void)
  unsigned int i, j;
  unsigned char ChkSum;
  #asm("cli");
  DDRB=0x00;//PB INPUT;
```



```
DDRD=0x00;//PD INPUT;
//POWER ON indication: both LEDR and LEDG blink 3 times
LEDG_OFF();
LEDR OFF();
LEDG_OUTPUT();
LEDR_OUTPUT();
for (i=0; i<3; i++) {
  Delay_ms(200);
 LEDG ON();
 LEDR_ON();
  Delay_ms(200);
 LEDG_OFF();
  LEDR_OFF();
}
  LEDG_OFF();
  LEDR_OFF();
RFXX_PORT_INIT();
RF12_INIT();
DDRD = (1 < RF12\_DATA);
PORTD = (1 \le RF12\_DATA); // SET nFFS pin HI when using TX register
DDRD\&=^{(1<<2)}; //PD2 (INT0)
while(1) {
  LEDR_ON();
  RFXX_WRT_CMD(0x0000);//read status register
  RFXX_WRT_CMD (0x8239); //!er, !ebb, ET, ES, EX, !eb, !ew, DC
  ChkSum=0:
  RF12_SEND(0xAA);//PREAMBLE
  RF12_SEND(0xAA);//PREAMBLE
  RF12_SEND(0xAA);//PREAMBLE
  RF12_SEND(0x2D);//SYNC HI BYTE
  RF12_SEND(0xD4);//SYNC LOW BYTE
  RF12_SEND(0x30);//DATA BYTE 0
  ChkSum+=0x30;
  RF12_SEND(0x31);//DATA BYTE 1
  ChkSum+=0x31;
  RF12\_SEND(0x32);
```

/*

```
ChkSum+=0x32;
    RF12_SEND(0x33);
    ChkSum+=0x33;
    RF12\_SEND(0x34);
    ChkSum+=0x34;
    RF12\_SEND(0x35);
    ChkSum+=0x35;
    RF12_SEND(0x36);
    ChkSum+=0x36;
    RF12 SEND (0x37);
    ChkSum+=0x37;
    RF12_SEND(0x38);
    ChkSum+=0x38;
    RF12\_SEND(0x39);
    ChkSum+=0x39;
    RF12\_SEND(0x3A);
    ChkSum+=0x3A;
    RF12\_SEND(0x3B);
    ChkSum+=0x3B;
    RF12\_SEND(0x3C);
    ChkSum+=0x3C;
    RF12\_SEND(0x3D);
    ChkSum+=0x3D;
    RF12\_SEND(0x3E);
    ChkSum+=0x3E;
    RF12 SEND (0x3F);
                        //DATA BYTE 15
    ChkSum+=0x3F;
    RF12_SEND(ChkSum); //send chek sum
    RF12_SEND(0xAA);//DUMMY BYTE
    RF12_SEND(0xAA);//DUMMY BYTE
    RF12_SEND(0xAA);//DUMMY BYTE
    RFXX_WRT_CMD(0x8201);
    LEDR_OFF();
   LEDG_OFF();
    for (i=0; i<10000; i++) for (j=0; j<123; j++); //sleep 1 second appr.
 };
RF12 receiver demo
```

copyright (c) 2006

;Title RF12 RX simple example based on AVR C

;Company: Hope microelectronic Co., Ltd.

;Author: Tank ;Current version: v1.0

;Date: 2006-11-17 ;processor ATMEGA48 ;Clock: 10MHz Crystal

;Contact: +86-0755-86106557 ;E-MAIL: hopefsk@hoperf.com

Connections

ATMEGA48 SIDE RF12 SIDE

SCK------SCK

MISO<-----SDO

MOSI-----SDI

SS----->nSEL

PD4------>FSK/DATA

INTO<-----nIRQ

PD6: LED GREEN PD7: LED RED

*/

#include <mega48.h>

#define DDR_IN 0 #define DDR_OUT 1

#define PORT_SEL PORTB
#define PIN_SEL PINB
#define DDR_SEL DDRB

#define PORT_SDI PORTB
#define PIN_SDI PINB
#define DDR_SDI DDRB

#define PORT_SCK PORTB
#define PIN_SCK PINB
#define DDR_SCK DDRB

#define PORT_SD0	PORTB
#define PIN_SDO	PINB
#define DDR_SD0	DDRB
#define PORT_IRQ	PORTD
#define PIN_IRQ	PIND
#define DDR_IRQ	DDRD
#define PORT_DATA	PORTD
#define PIN_DATA	PIND
#define DDR_DATA	DDRD
#define PB7	7//\
#define PB6	6//
#define RFXX_SCK	5//
#define RFXX_SDO	4// RF_PORT
#define RFXX_SDI	3//
#define RFXX_SEL	2//
#define NC	1//
#define PB0	0///
#1.c: CDI (MEDITE)	DDD CEI _ (1//DEVV CEI)
#define SEL_OUTPUT()	DDR_SEL = (1< <rfxx_sel) port="" sel)<="" sel ="(1<<RFXX" td=""></rfxx_sel)>
#define HI_SEL()	PORT_SEL&=~(1< <rfxx_sel)< td=""></rfxx_sel)<>
#define LOW_SEL()	FURI_SEL&- (I\\RFXX_SEL)
<pre>#define SDI_OUTPUT()</pre>	DDR_SDI = (1< <rfxx_sdi)< td=""></rfxx_sdi)<>
#define HI SDI()	PORT_SDI = (1< <rfxx_sdi)< td=""></rfxx_sdi)<>
#define LOW_SDI()	PORT SDI&=~(1< <rfxx sdi)<="" td=""></rfxx>
_	
<pre>#define SDO_INPUT()</pre>	DDR_SD0&= ~(1< <rfxx_sd0)< td=""></rfxx_sd0)<>
<pre>#define LOW_SDO()</pre>	PORT_SDO&= (1< <rfxx_sdo)< td=""></rfxx_sdo)<>
<pre>#define SDO_HI()</pre>	PIN_SDO&(1< <rfxx_sdo)< td=""></rfxx_sdo)<>
<pre>#define SCK_OUTPUT()</pre>	$DDR_SCK \mid = (1 << RFXX_SCK)$
<pre>#define HI_SCK()</pre>	$PORT_SCK = (1 < RFXX_SCK)$
<pre>#define LOW_SCK()</pre>	PORT_SCK&=~(1< <rfxx_sck)< td=""></rfxx_sck)<>
#define RF12_IRQ	2
#define IRQ_IN()	DDR_IRQ &=~(1< <rf12_irq)< td=""></rf12_irq)<>
#define WAIT_IRQ_LOW()	while(PIND&(1< <rf12_irq))< td=""></rf12_irq))<>
#dofino DD10 DATA	4 / /DD4
#define RF12_DATA	4//PD4
#define DATA_OUT()	DDR_DATA =1< <rf12_data< td=""></rf12_data<>

```
#define HI_DATA()
                         PORT_DATA | =1 << RF12_DATA
                          DDRD | = (1 << 6)
#define LEDG_OUTPUT()
                         DDRD | = (1 << 7)
#define LEDR_OUTPUT()
#define LEDG_ON()
                          PORTD&=~(1<<6)
#define LEDG_OFF()
                          PORTD = (1 << 6)
                          PORTD&=~(1<<7)
#define LEDR_ON()
#define LEDR_OFF()
                          PORTD = (1 << 7)
void RFXX_PORT_INIT(void) {
  HI_SEL();
  HI_SDI();
  LOW_SCK();
  //SET nFFS pin HI when using FIFO
  HI_DATA();
  SEL_OUTPUT();
  SDI OUTPUT();
  SDO_INPUT();
  SCK_OUTPUT();
  IRQ_IN();
  DATA_OUT();
unsigned int RFXX_WRT_CMD(unsigned int aCmd) {
  unsigned char i;
  unsigned int temp;
  temp=0;
  LOW_SCK();
  LOW_SEL();
  for (i=0; i<16; i++) {
    if (aCmd&0x8000) {
      HI_SDI();
    }else{
      LOW_SDI();
    }
    HI_SCK();
    temp <<=1;
    if(SDO_HI()){
      temp = 0x0001;
    LOW_SCK();
    aCmd <<=1;
```

```
HI_SEL();
  return(temp);
}
void RF12 INIT(void) {
  RFXX_WRT_CMD(0x80D7);//EL, EF, 433band, 12. 0pF
  RFXX_WRT_CMD(0x8239);//!er, !ebb, ET, ES, EX, !eb, !ew, DC
  RFXX_WRT_CMD (0xA640); //434MHz
  RFXX_WRT_CMD(0xC647);//4.8kbps
  RFXX WRT CMD(0x94A0);//VDI, FAST, 134kHz, 0dBm, -103dBm
  RFXX_WRT_CMD(0xC2AC);//AL, !m1, DIG, DQD4
  RFXX_WRT_CMD(0xCA81);//FIF08, SYNC, !ff, DR
  RFXX_WRT_CMD(0xCED4);//SYNC=2DD4;
  RFXX_WRT_CMD(0xC483);//@PWR, NO RSTRIC, !st, !fi, OE, EN
  RFXX_WRT_CMD(0x9850);//!mp, 90kHz, MAX OUT
  RFXX_WRT_CMD(0xCC77);//OB1, OBO, LPX,! ddy, DDIT, BWO
  RFXX_WRT_CMD(0xE000);//NOT USE
  RFXX_WRT_CMD(0xC800);//NOT USE
  RFXX_WRT_CMD (0xC040); //1. 66MHz, 2. 2V
unsigned char RF12_RECV(void) {
  unsigned int FIFO_data;
  WAIT_IRQ_LOW();
  RFXX_WRT_CMD(0x0000);
  FIFO_data=RFXX_WRT_CMD(0xB000);
  return (FIFO data&0x00FF);
}
void Delay_ms(unsigned char amS) {
  unsigned char i;
  unsigned int j;
  for (i=0; i \le amS; i++) for (j=0; j \le 914; j++);
}
void main(void)
  unsigned char i;
  unsigned char ChkSum;
  //POWER ON indication: both LEDR and LEDG blink 3 times
  LEDG_OFF();
  LEDR OFF();
  LEDG_OUTPUT();
  LEDR_OUTPUT();
```

```
for (i=0; i<3; i++) {
  Delay_ms(200);
 LEDG_ON();
 LEDR_ON();
  Delay ms(200);
 LEDG_OFF();
  LEDR_OFF();
}
 LEDG_OFF();
  LEDR_OFF();
//Initialize command port
RFXX_PORT_INIT();
//Initialize RF12 chip
RF12_INIT();
//Init FIFO
RFXX_WRT_CMD (0xCA81);
while(1){
  //Enable FIF0
  RFXX_WRT_CMD(0xCA83);
  ChkSum=0;
  //Receive payload data
  for(i=0;i<16;i++){
    ChkSum+=RF12_RECV();
  }
  //Receive Check sum
  i=RF12_RECV();
  //Disable FIFO
  RFXX_WRT_CMD(0xCA81);
  //Package chkeck
  if(ChkSum==i) {
    LEDG_ON();
    Delay_ms(200);
    LEDG_OFF();
  }
}
```


5. Example 2 (for PIC microcontroller)

RF12 transmitter demo:

copyright (c) 2006

Title: RFM12A transmitter simple example based on PIC C

Current version: v1.0

Function: Package send Demo
Processor PIC16F73 DIP-28
Clock: 10MHz Crystal

Operate frequency: 434MHz
Data rate: 4.8kbps
Package size: 23byte
Author: Robben

Company: Hope microelectronic Co., Ltd.

Contact: +86-0755-86106557 E-MAIL: hopefsk@hoperf.com

Date: 2006-11-21

#include "pic.h"

typedef unsigned char uchar; typedef unsigned int uint;

Tel: +86-755-82973806 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com

```
#define
         SDI
                        RB7
#define
         SD<sub>0</sub>
                        RB6
#define SCK
                        RB5
#define nSEL
                        RB4
#define SDI_OUT()
                        TRISB7=0
#define SDO_IN()
                        TRISB6=1
#define SCK_OUT()
                        TRISB5=0
#define nSEL_OUT()
                        TRISB4=0
void Init_RF12(void);
void WriteO( void );
void Writel( void );
void WriteCMD( uint CMD );
void DelayUs( uint us );
void DelayMs(uint ms);
void WriteFSKbyte( uchar DATA );
CONFIG(0x3FF2);
void Init_RF12(void)
{
  nSEL_OUT();
  SDI_OUT();
  SDO_IN();
  SCK OUT();
  nSEL=1:
  SDI=1;
  SCK=0;
  WriteCMD(0x80D8);//enable register, 433MHz, 12.5pF
  WriteCMD(0x8208);//Turn on crystal, !PA
  WriteCMD(0xA640);//
  WriteCMD(0xC647);//
  WriteCMD(0x94C0);//VDI, FAST, 134kHz, 0dBm, -103dBm
  WriteCMD(0xC2AC);
  WriteCMD(0xCA80);
  WriteCMD(0xCED4);
  WriteCMD(0xCA83);//FIF08, SYNC,
  WriteCMD(0xC49B);
  WriteCMD(0x9850);//!mp,90kHz,MAX OUT
  WriteCMD(0xCC77);
  WriteCMD(0xE000);//NOT USE
  WriteCMD(0xC80E);//NOT USE
  WriteCMD(0xC000);//1.0MHz, 2.2V
```

```
void main()
 uint ChkSum=0;
  Init_RF12();
 while(1)
   {
    WriteCMD(0x8228);
                           //OPEN PA
    DelayUs(4);
    WriteCMD (0x8238);
    NOP();
    NOP();
    WriteFSKbyte( 0xAA );
    WriteFSKbyte( 0xAA );
    WriteFSKbyte( 0xAA );
    WriteFSKbyte( 0x2D );
    WriteFSKbyte( 0xD4 );
    WriteFSKbyte( 0x30 );//DATA0
    ChkSum+=0x30;
    WriteFSKbyte( 0x31 );//DATA1
    ChkSum+=0x31;
    WriteFSKbyte( 0x32 );
    ChkSum+=0x32;
    WriteFSKbyte( 0x33 );
    ChkSum+=0x33;
    WriteFSKbyte( 0x34 );
    ChkSum+=0x34;
    WriteFSKbyte( 0x35 );
    ChkSum+=0x35:
    WriteFSKbyte( 0x36 );
    ChkSum+=0x36;
    WriteFSKbyte( 0x37 );
    ChkSum+=0x37;
    WriteFSKbyte( 0x38 );
    ChkSum+=0x38;
    WriteFSKbyte( 0x39 );
    ChkSum+=0x39;
    WriteFSKbyte( 0x3A );
    ChkSum+=0x3A:
    WriteFSKbyte( 0x3B );
    ChkSum+=0x3B;
     WriteFSKbyte( 0x3C );
```

```
ChkSum+=0x3C;
     WriteFSKbyte(0x3D);
     ChkSum+=0x3D;
     WriteFSKbyte( 0x3E );
     ChkSum+=0x3E;
     WriteFSKbyte( 0x3F );//DATA15
     ChkSum+=0x3F;
     ChkSum&=0x0FF;
     WriteFSKbyte( ChkSum );
     WriteFSKbyte( 0xAA );
     WriteCMD( 0x8208 );
                               //CLOSE PA
     DelayMs (1000);
   }
}
void WriteO( void )
  SDI=0;
  SCK=0;
  NOP();
  SCK=1;
  NOP();
}
void Writel( void )
{
  SDI=1;
  SCK=0;
```

```
NOP();
  SCK=1;
  NOP();
}
void WriteCMD( uint CMD )
  uchar n=16;
  SCK=0;
  nSEL=0;
  while(n--)
   {
     if(CMD&0x8000)
      Writel();
     else
      Write0();
     CMD=CMD<<1;
   }
  SCK=0;
  nSEL=1;
}
void WriteFSKbyte( uchar DATA )
{
  uchar RGIT=0;
  uint temp=0xB800;
  temp | =DATA;
Loop: SCK=0;
```

```
nSEL=0;
  SDI=0;
  SCK=1;
  if(SDO)
                        //Polling SDO
   {
   RGIT=1;
   }
  else
   {
   RGIT=0;
  SCK=0;
  SDI=1;
  nSEL=1;
  if(RGIT==0)
   {
   goto Loop;
  }
  else
  {
   RGIT=0;
   WriteCMD(temp);
  }
}
void DelayUs( uint us )
  uint i;
  while(us--)
    {
       i=2;
       while( i-- )
         {
           NOP();
   }
}
void DelayMs(uint ms)
  uchar i;
  while(ms--)
  {
```

```
i=35:
  while(i--)
   {
    DelayUs(1);
 }
}
RF12 receiver demo:
copyright (c) 2006
Title:
                 RFM12A transmitter simple example based on PIC C
Current version:
                 v1.0
Function:
                 Package send Demo
                 PIC16F73 DIP-28
Processor
Clock:
                 10MHz Crystal
Operate frequency: 434MHz
Data rate:
                 4.8kbps
Package size:
                 23byte
Author:
                 Robben
Company:
                 Hope microelectronic Co., Ltd.
Contact:
                 +86-0755-86106557
E-MAIL:
                 hopefsk@hoperf.com
Date:
                 2006-11-17
******************************
#include "pic.h"
typedef unsigned char uchar;
typedef unsigned int uint;
#define SDI
                     RB7
#define SDO
                     RB6
#define SCK
                     RB5
#define nSEL
                     RB4
#define nIRQ
                     RB3
#define LED
                     RA0
#define LED_OUT()
                     TRISA0=0
#define nIRQ_IN()
                     TRISB3=1
#define SDI OUT()
                     TRISB7=0
#define SDO_IN()
                     TRISB6=1
#define SCK_OUT()
                     TRISB5=0
#define nSEL_OUT()
                     TRISB4=0
```

```
void Init_RF12(void);
void WriteO( void );
void Write1( void );
void WriteCMD( uint CMD );
uchar RF12_RDFIF0(void);
void Delayus( uint us );
\_CONFIG(0x3FF2);
bank1 uchar RF_RXBUF[19];
void Init_RF12(void)
  LED_OUT();
  nSEL_OUT();
  SDI_OUT();
  SDO_IN();
  SCK_OUT();
  nIRQ_IN();
  nSEL=1;
  SDI=1;
  SCK=0;
  SD0=0;
  LED=0;
  WriteCMD(0x80D8);//enable register, 433MHz, 12.5pF
  WriteCMD(0x82D8);//enable receive, !PA
  WriteCMD(0xA640);//
  WriteCMD(0xC647);//
  WriteCMD(0x94C0);//VDI, FAST, 134kHz, 0dBm, -103dBm
  WriteCMD(0xC2AC);
  WriteCMD(0xCA80);
  WriteCMD(0xCED4);
  WriteCMD(0xCA83);//FIF08, SYNC,
  WriteCMD(0xC49B);
  WriteCMD(0x9850);//!mp,90kHz,MAX OUT
  WriteCMD(0xCC77);
  WriteCMD(0xE000);//NOT USE
  WriteCMD(0xC800);//NOT USE
  WriteCMD(0xC000);//1.0MHz, 2.2V
}
void main()
  uchar i=0, j=0;
```



```
uint CheckSum;
  Init_RF12();
  while(1)
   {
     while(!nIRQ)
      RF_RXBUF[i++]=RF12_RDFIF0();
      if(i==17)
       {
        i=0;
        WriteCMD(0xCA80);
        WriteCMD(0xCA83);
                                //reset FIFO and read to receive next Byte
        CheckSum=0;
        for(j=0;j<16;j++)
         CheckSum+=RF_RXBUF[j]; //add 0x30----0x3F
        CheckSum&=0x0FF;
        if (CheckSum==RF_RXBUF[16])
         {
           LED=1;
         }
        Delayus(1);
        LED=0;
        }
       }
   }
}
void WriteO( void )
  SDI=0;
  SCK=0;
  NOP();
  NOP();
 NOP();
  NOP();
  NOP();
  NOP();
  NOP();
  NOP();
  NOP();
  NOP();
  NOP();
```

```
NOP();
  NOP();
  NOP();
  NOP();
  NOP();
  SCK=1;
  NOP();
}
void Writel( void )
  SDI=1;
  SCK=0;
  NOP();
  SCK=1;
  NOP();
}
void WriteCMD( uint CMD )
  uchar n=16;
  SCK=0;
  nSEL=0;
  while(n--)
   {
     if (CMD&0x8000)
      Writel();
     else
      WriteO();
```

```
CMD=CMD<<1;
  }
  SCK=0;
  nSEL=1;
}
uchar RF12_RDFIF0(void)
  uchar i, Result;
  SCK=0;
  SDI=0;
  nSEL=0;
  for(i=0;i<16;i++)
                         //skip status bits
    SCK=1;
    NOP();
    NOP();
    SCK=0;
    NOP();
    NOP();
  }
  Result=0;
  for (i=0; i<8; i++)
   {
                         //read fifo data byte
    Result<<1;</pre>
    if(SDO)
    {
      Result =1;
    SCK=1;
    NOP();
    NOP();
    SCK=0;
    NOP();
    NOP();
   }
  nSEL=1;
  return(Result);
void Delayus( uint us )
{
  uint i;
```


RF12B Program

HOPE MICROELECTRONICS CO.,LTD

Address: Rm B.8/F LiJingGe Emperor Regency 6012 ShenNan Rd, Shenzhen, China

Tel: 86-755-82973805
Fax: 86-755-82973550
Email: sales@hoperf.com
trade@hoperf.com

Website: http://www.hoperf.com http://www.hoperf.cn http://hoperf.en.alibaba.com This document may contain preliminary information and is subject to change by Hope Microelectronics without notice. Hope Microelectronics assumes no responsibility or liability for any use of the information contained herein. Nothing in this document shall operate as an express or implied license or indemnity under the intellectual property rights of Hope Microelectronics or third parties. The products described in this document are not intended for use in implantation or other direct life support applications where malfunction may result in the direct physical harm or injury to persons. NO WARRANTIES OF ANY KIND, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MECHANTABILITY OR FITNESS FOR A ARTICULAR PURPOSE, ARE OFFERED IN THIS DOCUMENT.

©2006, HOPE MICROELECTRONICS CO.,LTD. All rights reserved.

Tel: +86-755-82973806 Fax: +86-755-82973550 E-mail: sales@hoperf.com http://www.hoperf.com