K 体

V K-線形空間

 $f: V \to V$ K-線形写像

 $f \circ f = f$ ならば、 $V = \operatorname{Ker} f \oplus \operatorname{Im} f$ となることを示せ。

......

準同型定理より

$$V/\operatorname{Ker} f \cong \operatorname{Im} f \tag{1}$$

これより $\dim_K V = \dim_K \operatorname{Ker} f + \dim_K \operatorname{Im} f$

 $f \circ f = f$ より f(f(v)) = f(v) である。この為、写像 f を $\mathrm{Im}\, f$ に制限した写像 は恒等写像である。

$$f \mid_{\operatorname{Im} f} : \operatorname{Im} f \to \operatorname{Im} f, \quad f(v) \mapsto f(v)$$
 (2)

この為、 $\operatorname{Ker} f \cap \operatorname{Im} f = \{0\}$ であることが分かる。

つまり、 $V = \operatorname{Ker} f \cap \operatorname{Im} f$ である。

任意の集合 I に対し、

$$\prod_{i \in I} K \cong \operatorname{Hom}_{K}(\bigoplus_{i \in I} K, K) \tag{3}$$

を示せ。

.....

 $\prod_{i \in I} K$ と $\operatorname{Hom}_K(\bigoplus_{i \in I} K, K)$ は線形空間である。

 $h\in \operatorname{Hom}_K(\bigoplus_{i\in I}K,K)$ は線形写像であり、 $\bigoplus_{i\in I}K$ の元との内積を取る $\prod_{i\in I}K$ の元に対応する。 $\bigoplus_{i\in I}K$ の成分は有限個を除いて全て 0 であるので、 $\prod_{i\in I}K$ の元との内積は有限和となり、Kの元となる。

この為、次の線形写像 f は全射となる。

$$f: \prod_{i \in I} K \to \operatorname{Hom}_K(\bigoplus_{i \in I} K, K)$$
 (4)

 $\operatorname{Hom}_K(igoplus_{i\in I}K,K)$ の零元は $igoplus_{i\in I}K$ 上の零写像であるので、 $\operatorname{Ker}f$ は $\prod_{i\in I}K$ の零元のみとなる。この為、f は単射でもある。

よって、

$$\prod_{i \in I} K \cong \operatorname{Hom}_{K}(\bigoplus_{i \in I} K, K) \tag{5}$$

である。

整数mをm>0とする。

- 1. Ker $f^m \subset \text{Ker } f^{m+1}$ (ただし、 f^0 は恒等写像)
- 2. Ker $f^m = \operatorname{Ker} f^{m+1}$ ならば、 $\forall p \geq 0$ に対して Ker $f^m = \operatorname{Ker} f^{m+p}$
- 3. $n = \dim_K V$ のとき、 $\operatorname{Ker} f^n = \operatorname{Ker} f^{n+1}$

.....

1. Ker $f^0=\{0\}$ であるので、Ker $f^0\subset \operatorname{Ker} f^1$ である。 $^\forall x\in \operatorname{Ker} f^m \ {\it O}$ 時、 $f^m(x)=0$ である。 $f^{m+1}(x)=f(f^m(x))=f(0)=0$ となるので、 $x\in \operatorname{Ker} f^{m+1}$ 。 よって、Ker $f^m\subset \operatorname{Ker} f^{m+1}$ である。

2. Ker $f^m = \text{Ker } f^{m+1}$ であるので、準同型定理より

$$\operatorname{Im} f^{m} \cong V/\operatorname{Ker} f^{m} = V/\operatorname{Ker} f^{m+1} \cong \operatorname{Im} f^{m+1} \tag{6}$$

となる。

線形写像 $f:V\to V$ を $\mathrm{Im}\,f^m$ に制限すると

$$f|_{\operatorname{Im} f^m}: \operatorname{Im} f^m \to \operatorname{Im} f^{m+1}$$
 (7)

は同型写像である。同様に f を $\operatorname{Im} f^{m+1}$ に制限すると

$$\operatorname{Im} f^{m+1} \cong f(\operatorname{Im} f^{m+1}) = \operatorname{Im} f^{m+2} \tag{8}$$

となり、

$$V/\operatorname{Ker} f^{m+1} \cong \operatorname{Im} f^{m+1} \cong \operatorname{Im} f^{m+2} \cong V/\operatorname{Ker} f^{m+2} \tag{9}$$

となる。

 $\operatorname{Ker} f^{m+1} \subset \operatorname{Ker} f^{m+2}$ であるので、 $\operatorname{Ker} f^{m+1} = \operatorname{Ker} f^{m+2}$ である。 同様の議論を繰り返すことにより

$$\operatorname{Ker} f^m = \operatorname{Ker} f^{m+p} \tag{10}$$

が得られる。

3. Ker の列

$$\operatorname{Ker} f^0 \subset \cdots \subset \operatorname{Ker} f^m \subset \operatorname{Ker} f^{m+1} \subset \cdots$$
 (11)

は $\operatorname{Ker} f^n = \operatorname{Ker} f^{n+1}$ となる n があれば、それ以降全て等しくなる。

$$\operatorname{Ker} f^0 \subset \cdots \subset \operatorname{Ker} f^n = \operatorname{Ker} f^{m+1} = \cdots$$
 (12)

 $\operatorname{Ker} f^m$ は V の部分空間であるので $\dim_K \operatorname{Ker} f^m \leq \dim_K V$ である。 $\operatorname{Ker} f^m \neq \operatorname{Ker} f^{m+1}$ であれば $\dim_K \operatorname{Ker} f^m < \dim_K \operatorname{Ker} f^{m+1}$ である。 これにより $n = \dim_K V$ 以降は全て等しくなる。

$$\operatorname{Ker} f^{n} = \operatorname{Ker} f^{n+1} = \operatorname{Ker} f^{n+2} = \cdots$$
 (13)

- 1. 複素 2 次正方行列 A について、 $A \neq 0$ かつ $A^2 = 0$ をみたすものは $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ と相似であることを示せ。
- 2. 複素 3 次正方行列 A について、 $A^2 \neq 0$ かつ $A^3 = 0$ をみたすものは $\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$ と相似であることを示せ。
- 1. あるベクトル $p \in \mathbb{C}^2$ が存在し $Ap \neq 0$ とする。 2 つのベクトル p, Ap は次のようにして一次独立である事がわかる。 次の式に A をかける。

$$a_0 \mathbf{p} + a_1 A \mathbf{p} = \mathbf{0} \quad (a_0, a_1 \in \mathbb{C}) \tag{14}$$

これにより $a_0A\mathbf{p} = \mathbf{0}$ となり、 $a_0 = 0$ が分かる。これにより $a_1 = 0$ となるので、 \mathbf{p} , $A\mathbf{p}$ は一次独立である。

そこでこのベクトルを並べて行列 P を作る。

$$P = \begin{pmatrix} A\boldsymbol{p} & \boldsymbol{p} \end{pmatrix} \tag{15}$$

列ベクトルが独立なので P は正則行列である。

$$AP = A (A\mathbf{p} \quad \mathbf{p}) = (\mathbf{0} \quad A\mathbf{p}) \tag{16}$$

$$= \begin{pmatrix} A\boldsymbol{p} & \boldsymbol{p} \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = P \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \tag{17}$$

$$P^{-1}$$
 をかけることにより $P^{-1}AP=\begin{pmatrix} 0&1\\0&0 \end{pmatrix}$ となる。
これにより A は $\begin{pmatrix} 0&1\\0&0 \end{pmatrix}$ と相似である。

2. $A^2 \mathbf{p} \neq 0$ となるベクトル $\mathbf{p} \in \mathbb{C}^3$ を取ってくる。 3 つのベクトル \mathbf{p} , $A\mathbf{p}$, $A^2 \mathbf{p}$ について

$$a_0 \boldsymbol{p} + a_1 A \boldsymbol{p} + a_2 A^2 \boldsymbol{p} = \boldsymbol{0} \tag{18}$$

を考える。 A^2 をかけると $a_0A^2p=0$ となり $a_0=0$ が得られる。A をかけて $a_0=0$ を当てはめると $a_1A^2p=0$ となり $a_1=0$ が得られる。 $a_0=a_1=0$ より $a_2=0$ となり、ベクトル p, Ap, A^2p は一次独立であることが分かる。 このベクトルを用いて正則行列 P を次のように定める。

$$P = \begin{pmatrix} A^2 \boldsymbol{p} & A \boldsymbol{p} & \boldsymbol{p} \end{pmatrix} \tag{19}$$

$$AP = A \begin{pmatrix} A^2 \mathbf{p} & A\mathbf{p} & \mathbf{p} \end{pmatrix} = \begin{pmatrix} \mathbf{0} & A^2 \mathbf{p} & A\mathbf{p} \end{pmatrix}$$
 (20)

$$= (A^{2} \boldsymbol{p} \quad A \boldsymbol{p} \quad \boldsymbol{p}) \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} = P \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$
(21)

これにより
$$P^{-1}AP=\begin{pmatrix}0&1&0\\0&0&1\\0&0&0\end{pmatrix}$$
 であるので A は $\begin{pmatrix}0&1&0\\0&0&1\\0&0&0\end{pmatrix}$ に相似で

ある。