

Lecture 14 – Combinational circuits 3

Dr. Aftab M. Hussain,
Assistant Professor, PATRIOT Lab, CVEST

Chapter 4

4-bit binary adder

- Can we make this circuit through the normal route?
- Note that the classical method would require a truth table (and K-map) with $2^9 = 512$ entries, since there are nine inputs to the circuit
- By using an iterative method of cascading a standard function, it is possible to obtain a simple and straightforward implementation

- The addition of two binary numbers in parallel implies that all the bits of the augend and addend are available for computation at the same time
- As in any combinational circuit, the signal must propagate through the gates before the correct output sum is available
 in the output terminals
- The total propagation time is equal to the propagation delay of a typical gate, times the number of gate levels in the circuit
- The longest propagation delay time in an adder is the time it takes the carry to propagate through the full adders
- Since each bit of the sum output depends on the value of the input carry, the value of S_i at any given stage in the adder will be in its steady-state final value only after the input carry to that stage has been propagated

- The number of gate levels for the carry propagation can be found from the circuit of the full adder
- The signals at P_i and G_i settle to their steady-state values after they propagate through their respective gates
- These two signals are common to all half adders and depend on only the input augend and addend bits
- The signal from the input carry C_i to the output carry C_{i+1} propagates through an AND gate and an OR gate, which constitute two gate levels
- If there are four full adders in the adder, the output carry C_4 would have 2 * 4 = 8 gate levels from C_0 to C_4
- For an *n* -bit adder, there are 2*n* gate levels for the carry to propagate from input to output

- There are several techniques for reducing the carry propagation time in a parallel adder
- An obvious solution to this problem is to actually make the 2ⁿ truth-table, K-map and get a two level implementation (either SoP or PoS)
- The most widely used technique employs the principle of carry lookahead logic

• With the definition of P and G, we can write:

$$S_i = P_i + C_i$$
 and $C_{i+1} = G_i + P_i C_i$

- G_i is called a *carry generate*, and it produces a carry of 1 when both A_i and B_i are 1, regardless of the input carry C_i
- P_i is called a *carry propagate*, because it determines whether a carry into stage i will propagate into stage i + 1 (i.e., whether an assertion of C_i will propagate to an assertion of C_{i+1})

• We now write the Boolean functions for the carry outputs of each stage and substitute the value of each C_i from the previous equations:

$$C_0 = input \ carry$$

$$C_1 = G_0 + P_0C_0$$

$$C_2 = G_1 + P_1C_1 = G_1 + P_1G_0 + P_1P_0C_0$$

$$C_3 = G_2 + P_2C_2 = G_2 + P_2G_1 + P_2P_1G_0 + P_2P_1P_0C_0$$

- Since the Boolean function for each output carry is expressed in sum-ofproducts form only dependent on P and G, each function can be implemented with one level of AND gates followed by an OR gate (or by a two-level NAND)
- Note that this circuit can add in less time because C_3 does not have to wait for C_2 and C_1 to propagate; in fact, C_3 is propagated at the same time as C_1 and C_2
- This gain in speed of operation is achieved at the expense of additional complexity (hardware)

- We can make the four bit adder as shown
- Each sum output requires two XOR gates
- The output of the first XOR gate generates the P_i variable, and the AND gate generates the G_i variable
- The carries are propagated through the carry lookahead generator and applied as inputs to the second XOR gate
- All output carries are generated after a delay through only two levels of gates
- Thus, outputs S_1 through S_3 have equal propagation delay times

The Binary Subtractor

Binary subtractor

- The subtraction of unsigned binary numbers can be done most conveniently by means of complements
- Remember that the subtraction A B can be done by taking the 2's complement of B and adding it to A
- The 2's complement can be obtained by taking the 1's complement and adding 1 to the least significant pair of bits
- The 1's complement can be implemented with inverters, and a 1 can be added to the sum through the input carry
- The circuit for subtracting A B consists of an adder with inverters placed between each data input B and the corresponding input of the full adder
- The input carry C_0 must be equal to 1 when subtraction is performed
- The operation thus performed becomes A, plus the 1's complement of B, plus 1. This is equal to A plus the 2's complement of B
- That gives A B if $A \ge B$ or the 2's complement of B A if A < B

Can we combine the binary adder & subtractor

 Both use the 4-bit full adder. In one case, we use B and in another we use inverted B

Binary adder-subtractor

- Here is some magic: The addition and subtraction operations can be combined into one circuit
- The mode input M controls the operation
- When M = 0, the circuit is an adder, and when M = 1, the circuit becomes a subtractor
- When M = 0, the full adders receive the value of B, the input carry is 0, and the circuit performs A + B
- When M = 1, the full adders receive B' and $C_0 = 1$
- Thus, the B inputs are all complemented and a 1 is added through the input carry
- The circuit performs the operation A plus the 2's complement of B

Binary adder-subtractor

