Tutorial-4

Inner Product Spaces, Gram-Schmidt Process

MA 106 (Linear Algebra)

Spring 2020

1 Tutorial Problems

- 1. In the vector space C[1,e], define $\langle f,g\rangle = \int_1^e \log x f(x) g(x) dx$.
 - (a) if $f(x) = \sqrt{x}$, compute $||f|| = \langle f, f \rangle^{1/2}$.
 - (b) Find a linear polynomial g(x) = ax + b that is orthogonal to f(x) = 1.
- 2. Let $C_0^1[a, b] = \{ f \in C^1[a, b] : f(a) = 0 \}$. Show that $\langle f, g \rangle = \int_a^b f'(x)g'(x) dx$ is an inner product on $C_0^1[a, b]$.
- 3. Orthonormalize the set $\{(1,0,0,0),(1,1,0,0),(1,1,1,1)\}$ of vectors in \mathbb{R}^4 , using the Gram-Schmidt process.
- 4. Let A be an $n \times n$ square matrix with real (or complex) entries. Show that the following are equivalent.
 - (i) A is orthogonal (unitary).
 - (ii) A^t (resp. A^*) is orthogonal (unitary).
 - (iii) The column vectors of A form an orthonormal set.
 - (iv) The row vectors of A form an orthonormal set.

2 Practice Problems

1. On the vector space $C^1[a, b]$ of continuously differentiable real valued functions, examine whether or not $\langle f, g \rangle$, defined below is an inner product in each case. Justify your answer.

(a)
$$\langle f, g \rangle = \int_{a}^{b} f'(t)g'(t) dt$$

(b)
$$\langle f, g \rangle = \int_{a}^{b} (f(t)g(t) + f'(t)g'(t)) dt.$$

(c)
$$\langle f, g \rangle = f(b)g(b)$$

2. Let $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ be an orthonormal basis for an inner product space V. Suppose $\mathbf{u} = \sum_{i=1}^n \alpha_i \mathbf{v}_i$ and $\mathbf{v} = \sum_{i=1}^n \beta_i \mathbf{v}_i \in V$. Prove that

(a)
$$\alpha_i = \langle \mathbf{u}, \mathbf{v}_i \rangle$$
 and $\beta_i = \langle \mathbf{v}, \mathbf{v}_i \rangle$ for $i = 1, 2, \dots, n$.

(b)
$$\langle \mathbf{u}, \mathbf{v} \rangle = \sum_{i=1}^{n} \alpha_i \beta_i$$
 and $\|\mathbf{u}\| = \left(\sum_{i=1}^{n} \alpha_i^2\right)^{1/2}$.

- 3. Prove that in a real inner product space V, the following are equivalent:
 - (i) $\langle x, y \rangle = 0$;
 - (ii) ||x + y|| = ||x y||;
 - (iii) $||x + y||^2 = ||x||^2 + ||y||^2$.

Describe this geometrically.

4. In the vector space $\mathcal{P}_n[t]$ of all real polynomials of degree $\leq n$, define

$$\langle f, g \rangle = \sum_{i=0}^{n} f\left(\frac{j}{n}\right) g\left(\frac{j}{n}\right).$$

- (a) Prove that $\langle f, g \rangle$ is an inner product on P_n .
- (b) Compute $\langle f, g \rangle$, when f(t) = t, g(t) = at + b.
- (c) If f(t) = t, find all linear polynomials g orthogonal to f.
- 5. Write elements of \mathbb{R}^n as column vectors of length n. Let A be an $n \times n$ real matrix and A^t be its transpose. For usual inner product $\langle \ , \ \rangle$ on \mathbb{R}^n , prove that for any two $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$,

$$\langle A\mathbf{u}, \mathbf{v} \rangle = \langle \mathbf{u}, A^t \mathbf{v} \rangle.$$

State and prove a similar result about \mathbb{C}^n .

6. In a real inner product space V, show that for any $x, y \in V$

$$\langle x + y, x - y \rangle = 0$$
 iff $||x|| = ||y||$.

- 7. Orthonormalize the following set of vectors in \mathbb{R}^4 , using the Gram-Schmidt process.
 - (i) $\{(1,0,0,0),(1,1,0,0),(1,1,1,1)\};$
 - (ii) $\{(1,-1,2,0),(1,0,1,0),(1,0,0,1)\}.$

- 8. Let V be an inner product space and $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ be an orthonormal set in V.
 - (a) Show that for all $\mathbf{v} \in V$, $\langle \mathbf{v}, \mathbf{v} \rangle \geq \sum_{i=1}^{n} |\langle \mathbf{v}, \mathbf{v}_i \rangle|^2$, (Bessel's inequality)
 - (b) If $\{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ is also a basis, show $\langle \mathbf{v}, \mathbf{v} \rangle = \sum_{i=1}^n |\langle \mathbf{v}, \mathbf{v}_i \rangle|^2$. (Parseval's identity)