Report

Nunzia Cerrato, Giuseppe Catalano

Problem 3

Suppose that $A \in \mathbb{R}^{n \times n}$ is a nonsingular matrix and the LU factorization of A exists and has been computed. Consider two given vectors $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$, we can define the matrix $\tilde{A} = A + \mathbf{u}\mathbf{v}^T$

(1a) Prove that \tilde{A} is nonsingular if and only if $\mathbf{v}^T A^{-1} \mathbf{u} \neq 1$.

Proof: We start proving that $\det(\tilde{A}) \neq 0$ implies that $\mathbf{v}^T A^{-1} \mathbf{u} \neq 1$. We can choose an orthonormal basis $\mathcal{B} = \{\mathbf{e}_i\}_{i=1,\dots,n}$ of \mathbb{R}^n such that $\mathbf{u} = \alpha_1 \mathbf{e}_1$ and $\mathbf{v} = \beta_1 \mathbf{e}_1 + \beta_2 \mathbf{e}_2$ with $\alpha_1, \beta_1, \beta_2 \in \mathbb{R}$. We can represent the matrix A with respect to the basis \mathcal{B} , denoting with $a_{ij} = \mathbf{e}_i^T A \mathbf{e}_j$ the element of the i-th row and j-th column of the matrix A written in the basis \mathcal{B} . We can represent the matrix $\mathbf{u}\mathbf{v}^T$ with respect to the basis \mathcal{B} , obtaining $\mathbf{u}\mathbf{v}^T = \alpha_1\beta_1\mathbf{e}_1\mathbf{e}_1^T + \alpha_1\beta_2\mathbf{e}_1\mathbf{e}_2^T$. Knowing that we can compute the determinant of a matrix M $n \times n$ using the formula:

$$\det(M) = \sum_{j=1}^{n} m_{ij} C_{ij}(M), \tag{0.1}$$

where C_{ij} is the cofactor of the element (i,j) of the matrix M, the determinant of \tilde{A} is:

$$\det(\tilde{A}) = \det(A) + \alpha_1 \beta_1 C_{11}(A) + \alpha_1 \beta_2 C_{12}(A). \tag{0.2}$$

Since we know that $\det(\tilde{A}) \neq 0$, we can write:

$$\det(A) + \alpha_1 \beta_1 C_{11}(A) + \alpha_1 \beta_2 C_{12}(A) \neq 0, \tag{0.3}$$

and, therefore:

$$\alpha_1 \beta_1 \frac{C_{11}(A)}{\det(A)} + \alpha_1 \beta_2 \frac{C_{12}(A)}{\det(A)} \neq -1,$$
(0.4)

where we divided for det(A) both sides of the equation, knowing that $det(A) \neq 0$. At this point, it is straightforward to verify that

$$\mathbf{v}^{T} A^{-1} \mathbf{u} = \alpha_1 \beta_1 \frac{C_{11}(A)}{\det(A)} + \alpha_1 \beta_2 \frac{C_{12}(A)}{\det(A)}$$
(0.5)

writing **u** and **v** in terms of \mathbf{e}_1 and \mathbf{e}_2 and $A^{-1} = \frac{1}{\det(A)}(cof(A))^T$, where cof(A) is the matrix of cofactors of A. This proves that:

$$\mathbf{v}^T A^{-1} \mathbf{u} \neq -1. \tag{0.6}$$

In order to prove the converse implication, we consider again the expression for the determinant of \tilde{A} :

$$\det(\tilde{A}) = \det(A) + \alpha_1 \beta_1 C_{11}(A) + \alpha_1 \beta_2 C_{12}(A) = \det(A) \left(1 + \alpha_1 \beta_1 \frac{C_{11}(A)}{\det(A)} + \alpha_1 \beta_2 \frac{C_{12}(A)}{\det(A)} \right). \tag{0.7}$$

Here we can recognize the expression of $\mathbf{v}^T A^{-1} \mathbf{u}$, obtaining:

$$\det(\tilde{A}) = \det(A)(1 + \mathbf{v}^T A^{-1}\mathbf{u}). \tag{0.8}$$

Now, knowing that $det(A) \neq 0$ and $\mathbf{v}^T A^{-1} \mathbf{u} \neq -1$, we obtain

$$\det(\tilde{A}) \neq 0 \tag{0.9}$$

and this concludes the proof.

(1b) Show that:

$$\tilde{A}^{-1} = A^{-1} - \alpha A^{-1} \mathbf{u} \mathbf{v}^T A^{-1}, \text{ where } \alpha = \frac{1}{\mathbf{v}^T A^{-1} \mathbf{v} + 1}.$$
 (0.10)

Proof: We start noticing that the last expression is well defined since \tilde{A} invertible implies $\mathbf{v}^T A^{-1} \mathbf{u} + 1 \neq 0$. Now we can manipulate the (0.10) multiplying both sides to the left for A and to the right for \tilde{A} , obtaining:

$$A = \tilde{A} - \alpha \mathbf{u} \mathbf{v}^{T} A^{-1} \tilde{A}$$

$$= A + \mathbf{u} \mathbf{v}^{T} - \alpha \mathbf{u} \mathbf{v}^{T} A^{-1} (A + \mathbf{u} \mathbf{v}^{T})$$

$$= A + (1 - \alpha) \mathbf{u} \mathbf{v}^{T} - \alpha \mathbf{u} \mathbf{v}^{T} A^{-1} \mathbf{u} \mathbf{v}^{T}.$$

$$(0.11)$$

Subtracting A from each side and dividing both sides for α (that is nonzero $\forall \mathbf{v}^T A^{-1} \mathbf{u} \in \mathbb{R}$) we obtain:

$$\mathbf{u}\mathbf{v}^T A^{-1} \mathbf{u}\mathbf{v}^T = \mathbf{u}\mathbf{v}^T (\alpha^{-1} - 1). \tag{0.12}$$

Finally, since $\mathbf{v}^T A^{-1} \mathbf{u} = \alpha^{-1} - 1$, the identity (0.12) is verified and this concludes the proof.

(1c) Assuming that LU factorization of A is already available, describe an $\mathcal{O}(n^2)$ algorithm to solve $\tilde{A}\tilde{\mathbf{x}} = \tilde{\mathbf{b}}$ for any right-hand side $\tilde{\mathbf{b}}$.

Supposing that A is invertible, we can write the solution $\tilde{\mathbf{x}}$ using the Sherman-Morrison formula for \tilde{A} :

$$\tilde{\mathbf{x}} = \tilde{A}^{-1}\tilde{\mathbf{b}} = A^{-1}\tilde{\mathbf{b}} - \frac{A^{-1}\mathbf{u}\mathbf{v}^T A^{-1}\tilde{\mathbf{b}}}{\mathbf{v}^T A^{-1}\mathbf{u} + 1}$$

$$(0.13)$$

Algorithm:

- Compute \mathbf{x} s.t. $A\mathbf{x} = \tilde{\mathbf{b}}$ and \mathbf{y} s.t. $A\mathbf{y} = \mathbf{u}$ using backward and forward substitutions. This requires $\mathcal{O}(n^2)$ operations.
- Compute $\gamma = \frac{\mathbf{v}^T \mathbf{x}}{\mathbf{v}^T \mathbf{y} + 1}$. This requires $\mathcal{O}(n)$ operations.
- Compute $\tilde{\mathbf{x}} = \mathbf{x} \gamma \mathbf{y}$. This requires $\mathcal{O}(n)$ operations.
- (2) Assuming again that the LU factorization of A exists and has been computed, describe an efficient algorithm for solving the bordered system

$$\begin{bmatrix} A & \mathbf{u} \\ \mathbf{v}^T & \beta \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ z \end{bmatrix} = \begin{bmatrix} \mathbf{b} \\ c \end{bmatrix}, \tag{0.14}$$

where z is unknown and β and c are given scalars. When does this system have a unique solution? Solution:

Putting

$$A' = \begin{bmatrix} A & \mathbf{u} \\ \mathbf{v}^T & \beta \end{bmatrix}, \mathbf{x}' = \begin{bmatrix} \mathbf{x} \\ z \end{bmatrix}, \mathbf{b}' = \begin{bmatrix} \mathbf{b} \\ c \end{bmatrix}, \tag{0.15}$$

the system above rewrites as:

$$A'\mathbf{x}' = \mathbf{b}'. \tag{0.16}$$

The LU factorization of the matrix A' = L'U' exists and the matrices L' and U' take the following form:

$$L' = \begin{bmatrix} L & \mathbf{0} \\ \mathbf{f}^T & 1 \end{bmatrix}, U' = \begin{bmatrix} U & \mathbf{g} \\ \mathbf{0} & \gamma \end{bmatrix}. \tag{0.17}$$

In order to get the values of $\mathbf{f}, \mathbf{g} \in \mathbb{R}^n$ and $\gamma \in \mathbb{R}$, we impose A' = L'U', obtaining the following system:

$$\begin{cases} L\mathbf{g} = \mathbf{u} \\ U^T \mathbf{f} = \mathbf{v} \\ \mathbf{f}^T \mathbf{g} + \gamma = \beta \end{cases}$$
 (0.18)

Here we can find \mathbf{f} and \mathbf{g} with forward substitutions with $\mathcal{O}(n^2)$ operations. Therefore, we can rewrite the last equation as:

$$\gamma = \beta - \mathbf{v}^T A^{-1} \mathbf{u}. \tag{0.19}$$

In order to impose that the bordered system has a unique solution, we have to require that $\det(A') \neq 0$, that is true if and only if all the diagonal elements of U' are nonzero and, given that $\det(A) \neq 0$, this means requiring that $\gamma \neq 0$. Therefore, the condition for ne uniquenes of the solution becomes:

$$\gamma = \beta - \mathbf{v}^T A^{-1} \mathbf{u} \neq 0 \Rightarrow \quad \mathbf{v}^T A^{-1} \mathbf{u} \neq \beta. \tag{0.20}$$