ĐẠI HỌC QUỐC GIA THÀNH PHỐ HỒ CHÍ MINH TRƯỜNG ĐẠI HỌC BÁCH KHOA KHOA CƠ KHÍ BỘ MÔN CƠ ĐIỆN TỬ

TRANG BỊ ĐIỆN - ĐIỆN TỬ TRONG MÁY CÔNG NGHIỆP

EXERCISE 1

GVHD: TS. LÊ ĐỨC HẠNH

DANH SÁCH THÀNH VIÊN:

STT	Họ và tên	\mathbf{MSSV}
1	Võ Hữu Dư	2210604
2	Dương Quang Duy	2210497
3	Trần Quang Đạo	2210647

Mục lục

1	Thiết kế mạch khuếch đại dùng opamp tạo sóng ngõ ra và kiểm tra lại		
	bằng proteus		
	1.1 Câu a. $\mathbf{v_o} = 0.5 \cdot \mathbf{v_1} - 3 \cdot \mathbf{v_2} + 4 \cdot \mathbf{v_3}$		
	1.1.1 Tính toán mạch khuếch đại dùng opamp		
	1.1.2 Kiểm tra lại bằng proteus		
	1.2 Câu b. $\mathbf{v_o} = 0.5 \cdot \mathbf{v_1} - 3 \cdot \mathbf{v_2} + 4 \cdot \mathbf{v_3}$		
2	2 Thiết kế mạch schmitt-trigger với $V_{low-threshold} = 1V$, $V_{high-threshold} = 4V$, $V_{ref} = 5V$, $V_{out} = 5V$, và kiểm tra lại bằng proteus		
	2.1 Khi $V_{out} = 0V$		
	2.2 Khi $V_{out} = 5V$		
	2.3 Thiết kế mạch Schmitt-Trigger		
	2.4 Tìm mối quan hệ giữa V_{out} và V_{in}		
	2.5. Kiểm tra lại bằng proteus		

1 Thiết kế mạch khuếch đại dùng opamp tạo sóng ngõ ra và kiểm tra lại bằng proteus

$1.1 \quad \text{Câu a.v}_o = 0.5 \cdot v_1 - 3 \cdot v_2 + 4 \cdot v_3$

1.1.1 Tính toán mạch khuếch đại dùng opamp

Hình 1: Mach khuếch đai dùng opamp

Giả sử KĐTT là lý tưởng

$$\Rightarrow \begin{cases} I^+ = I^- = 0 \\ V_{A1} = V_{B1} = V_{A2} = V_{B2} = 0 \end{cases}$$

Dòng điện đầu ra Opamp thứ nhất là:

$$V_{out1} = -\frac{R_{F1}}{R_1} \cdot V_1 - \frac{R_{F1}}{R_3} \cdot V_3 \tag{1}$$

Dòng điện đầu ra Opamp thứ hai là:

$$V_{out2} = -\frac{R_{F2}}{R_4} \cdot V_{out1} - \frac{R_{F2}}{R_2} \cdot V_2 \tag{2}$$

Thế (1) vào (2) ta được:

$$\begin{split} V_{out2} &= -\frac{R_{F2}}{R_4} \cdot \left(-\frac{R_{F1}}{R_1} \cdot V_1 - \frac{R_{F1}}{R_3} \cdot V_3 \right) - \frac{R_{F2}}{R_2} \cdot V_2 \\ &= \frac{R_{F1} \cdot R_{F2}}{R_1 \cdot R_4} \cdot V_1 + \frac{R_{F1} \cdot R_{F2}}{R_3 \cdot R_4} \cdot V_3 - \frac{R_{F2}}{R_2} \cdot V_2 \end{split}$$

Theo đề bài ta có: $V_{out2} = 0.5 \cdot V_1 - 3 \cdot V_2 + 4 \cdot V_3$

$$\Rightarrow \begin{cases} \frac{R_{F1} \cdot R_{F2}}{R_1 \cdot R_4} = 0.5\\ \frac{R_{F1} \cdot R_{F2}}{R_3 \cdot R_4} = 4\\ \frac{R_{F2}}{R_2} = 3 \end{cases}$$

Chọn $R_2 = 50k\Omega \Rightarrow R_{F2} = 150k\Omega$.

Chọn $R_1 = 200k\Omega$, $R_4 = 150k\Omega \Rightarrow R_{F1} = 100k\Omega \Rightarrow R_3 = 25k\Omega$.

1.1.2 Kiểm tra lại bằng proteus

- Sử dụng Proteus để mô phỏng mạch như hình 1
- Sử dụng các linh kiện: Opamp, Resistor, Voltage Source Sine, Ground
- Gán các giá trị điện trở như giá trị tính được ở trên.
- Cho các giá trị điện áp đầu vào $V_1 = 1V, V_2 = 2V, V_3 = 3V.$
- Kết quả mô phỏng được như hình 2

Hình 2: Mạch khuếch đại dùng opamp

• Ta thấy giá trị điện áp đầu ra $V_{out} = 0.5V_1 - 3V_2 + 4V_3 = 0.5 \cdot 1 - 3 \cdot 2 + 4 \cdot 3 = 6.5V$ giống với đồ thị analog \Rightarrow Kết quả mô phỏng proteus giống với giá trị tính toán.

$\textbf{1.2} \quad \textbf{Câu b.v}_o = 0.5 \cdot v_1 - 3 \cdot v_2 + 4 \cdot v_3$

2 Thiết kế mạch schmitt-trigger với $V_{low-threshold} = 1V$, $V_{high-threshold} = 4V$, $V_{ref} = 5V$, $V_{out} = 5V$, và kiểm tra lại bằng proteus

Hình 3: Mạch schmitt-trigger

2.1 Khi $V_{out} = 0V$

Ta có sơ đồ đấu nối như sau:

Hình 4: Khi $V_{out} = 0V$

- Gọi V_{A1} là điện áp của nút A khi $V_{out} = 0V$.
- Khi đó ta có $V_{A1} = \frac{R_{23}}{R_1 + R_{23}} V_{ref} = V_{low-threshold}$.

2.2 Khi $V_{out} = 5V$

Ta có sơ đồ đấu nối như sau:

Hình 5: Khi $V_{out} = 5V$

- Gọi V_{A2} là điện áp của nút A khi $V_{out} = 5V$.
- Khi đó ta có $V_{A2} = \frac{R_3}{R_1 + R_{12}} V_{ref} = V_{high-threshold}$.

2.3 Thiết kế mạch Schmitt-Trigger

Gọi $R_1=x,\,R_2=y,\,R_3=z.$ Ta có hệ sau:

$$\frac{yz}{xz+yz+zy} = \frac{y}{x+2y} = \frac{V_{A1}}{V_{ref}} = \frac{V_{low-threshold}}{V_{ref}} = \frac{1}{5} \to x = 3y$$
 (3)

$$\frac{xz + zy}{xz + yz + xy} = \frac{V_{A2}}{V_{ref}} = \frac{V_{high-threshold}}{V_{ref}} = \frac{4}{5}$$
 (4)

Thay (3) vào (4) ta được:

$$\frac{4yz}{4yz+y^2} = \frac{4z}{4z+y} = \frac{4}{5} \Rightarrow y = z$$

Chọn $x = R_1 = 60k\Omega$, $y = z = R_2 = R_3 = 20k\Omega$.

Hình 6: Mạch schmitt-trigger sau khi tính toán các giá trị điện trở

2.4 Tìm mối quan hệ giữa V_{out} và V_{in}

Giả sử KĐTT là lý tưởng

$$\Rightarrow \begin{cases} I^+ = I^- = 0 \\ V_N = V_P \end{cases}$$

Áp dụng định luật Kifhoff tại nút P:

$$V_p = V_{in} \tag{5}$$

Áp dụng định luật Kifhoff tại nút N:

$$\frac{V_N - V_{ref}}{60} + \frac{V_N}{20} + \frac{V_N - V_{out}}{20} = 0$$

$$\iff V_N - V_{ref} + 6V_N - 3V_{out} = 0$$

$$\iff 7V_{in} - V_{ref} = V_{out}$$

Với $V_{in} = 5sin(100\pi t), V_{ref} = 4sin(100/pit).$

$$\Rightarrow V_{out} = \frac{7 \cdot 5sin(100\pi t) - 4sin(100\pi t)}{3}$$

$$\Rightarrow V_{out} = 10.333sin(100\pi t) \tag{6}$$

2.5 Kiểm tra lại bằng proteus

Sau khi nhập các giá trị $V_{in}=5V, V_{ref}=4V$ với tần số 50Hz vào mạch schmitt-trigger, ta thu được kết quả như sau:

Hình 7: Kết quả mô phỏng mạch schmitt-trigger

Căn cứ vào đồ thị ta thấy giá trị điện áp đầu ra có biên độ = 10.333 và pha ban đầu giống với $V_{out}=10.333sin(100\pi t)$ đã tìm được ở trên

⇒ Kết quả mô phỏng proteus giống với giá trị tính toán.