ENGG 5501: Foundations of Optimization

2021–22 First Term

Homework Set 4

Instructor: Anthony Man-Cho So

Due: November 22, 2021

SOLVE THE FOLLOWING PROBLEMS. THE PARTS LABELED "EXTRA CREDIT" ARE OPTIONAL.

Problem 1 (20pts). Let $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m_+$ be given. Consider the linear system

$$Ax = b, \ x \ge \mathbf{0} \tag{1}$$

and the related LP

minimize
$$e^T y$$

subject to $Ax + Iy = b$, $x \ge 0, y \ge 0$. (2)

Here, $e = (1, ..., 1) \in \mathbb{R}^m$ is the vector of all ones and I is the $m \times m$ identity matrix. The LP (2) is commonly known as the *Phase One Problem*.

- (a) (5pts). Write down the dual of (2).
- (b) (5pts). Show that (2) always has an optimal solution.
- (c) (10pts). Show that the system (1) has a solution iff the optimal value of (2) is zero.

Problem 2 (15pts). Let $P \in \mathbb{R}^{n \times n}$ be a *stochastic* matrix; i.e., $P_{ij} \geq 0$ for $i, j \in \{1, ..., n\}$ and Pe = e. Show that the system

$$P^T x = x, \quad x \ge \mathbf{0}, \quad x \ne \mathbf{0}$$

is solvable. (Hint: Consider the duality between an appropriate pair of LPs.)

Problem 3 (25pts). Let p, q > 1 be such that 1/p + 1/q = 1. Define

$$C_p = \{(t, x) \in \mathbb{R} \times \mathbb{R}^n : t \ge 0, ||x||_p \le t\}.$$

- (a) (10pts). Show that C_p is a closed pointed cone. (Hint: To establish closedness of C_p , you may use the fact that the function $(t, x) \mapsto ||x||_p t$ is continuous.)
- (b) (15pts). Show that $C_p^* = C_q$ (recall that C_p^* is the dual cone of C_p). (Hint: Hölder's inequality.)
- (c) [Extra Credit (10pts).] Give an explicit expression for $int(C_p)$. Justify your answer.

Problem 4 (15pts). We say that a set $X \subseteq \mathbb{R}^n$ is SOC-representable if there exist matrices $A^j \in \mathbb{R}^{(n_j+1)\times (n+\ell)}$ and vectors $b^j \in \mathbb{R}^{n_j+1}$ for $j=1,\ldots,m$ such that

$$x \in X \iff \exists u \in \mathbb{R}^{\ell} \text{ such that } A^j \begin{bmatrix} x \\ u \end{bmatrix} - b^j \in \mathcal{Q}^{n_j + 1} \text{ for } j = 1, \dots, m.$$

- (a) **(15pts).** Let $Q \in \mathcal{S}^n_+$ be given and $X = \{(t, x) \in \mathbb{R} \times \mathbb{R}^n : x^T Q x \leq t\}$. Show that X is SOC-representable.
- (b) [Extra Credit (10pts).] Show that $X = \{(t, x_1, x_2) \in \mathbb{R} \times \mathbb{R} \times \mathbb{R} : x_1, x_2 \geq 0, t \leq \sqrt{x_1 x_2} \}$ is SOC-representable.

Problem 5 (25pts). Let E be a finite-dimensional Euclidean space equipped with the inner product $\langle \cdot, \cdot \rangle$. Let $K_1, K_2 \subseteq E$ be two closed convex cones. In the spirit of creating new cones from old ones, the purpose of this problem is study the closed convex cone $K_1 \cap K_2$ and its dual.

- (a) **(5pts).** Show that $K_1^* + K_2^* \subseteq (K_1 \cap K_2)^*$ (recall that $K_1^* + K_2^* = \{u + v \in E : u \in K_1^*, v \in K_2^*\}$).
- (b) (10pts). Show that $K_1^* + K_2^*$ is a convex cone.
- (c) [Extra Credit (15pts).] Suppose that there exists a vector $u \in E$ satisfying $u \in \text{int}(K_1) \cap \text{int}(K_2)$. Show that $K_1^* + K_2^*$ is closed.
- (d) (10pts). Using the results in (b) and (c) above, show that if there exists a vector $u \in E$ satisfying $u \in \text{int}(K_1) \cap \text{int}(K_2)$, then $(K_1 \cap K_2)^* \subseteq K_1^* + K_2^*$. (Hint: Proposition 2(b) of Handout 5 and Problem 3 of the Midterm Examination.)