學號: B04901102 系級: 電機三 姓名: 簡仲明

1. (1%) 請說明你實作的 RNN model, 其模型架構、訓練過程和準確率為何? (Collaborators: 無)

答:

summary

(None,	37, 64)	128000
(None,	37, 128)	24704
(None,	128)	98816
(None,	1)	129
	(None,	(None, 37, 64) (None, 37, 128) (None, 128) (None, 1)

accuracy on validation data(%), 橫軸為epoch

參數: epoch = 30(但有patience = 5的early stop, 對象為validation accuracy)

batchsize = 100

Embedding: num_words = 2000(為了配合BOW做比較)

標點符號:移除

padding length = 37(training set和testing set中最長的句子)

單層CNN: activation function = relu, 無drop out

單層Bidirectional LSTM: drop_out = 0.2

單層DNN: activation function = sigmoid,無drop out

loss funciton = binary cross entropy

optimizer = adadelta

validation set :shuffle過後的十分之一training data

validation accuracy	public accuracy	private accuracy	
0.7983	0.79807	0.79936	
(private + public) / 2 = 0.79872			

2. (1%) 請說明你實作的 BOW model, 其模型架構、訓練過程和準確率為何? (Collaborators: 無)

答:

summary

Layer (type)	Output	Shape	Param #
dense_1 (Dense)	(None,	1024)	2049024
dropout_1 (Dropout)	(None,	1024)	0
dense_2 (Dense)	(None,	128)	131200
dropout_2 (Dropout)	(None,	128)	0
dense_3 (Dense)	(None,	16)	2064
dropout_3 (Dropout)	(None,	16)	0
dense_4 (Dense)	(None,	1)	17
Total params: 2,182,305 Trainable params: 2,182,305 Non-trainable params: 0	======		========

accuracy on validation data(%), 橫軸為epoch

參數: epoch、batchsize、Embedding、loss funciton、optimizer、validation set皆 與RNN相同

前三層DNN: activation function = relu, drop out = 0.5

output layer: activation function = sigmoid, 無drop out

validation accuracy	public accuracy	private accuracy	
0.7916	0.78856	0.78910	
(private + public) / 2 = 0.78883			

與RNN相比,雖使用了十倍多的參數,但epoch數大約只用了三分之一,且 training time只有二十分之一(5分鐘vs106分鐘,甚至還未扣除讀檔時間),但 accuracy只差了1%左右,是相當不錯的表現。

3. (1%) 請比較bag of word與RNN兩種不同model對於"today is a good day, but it is hot"與"today is hot, but it is a good day"這兩句的情緒分數,並討論造成差異的原因。

(Collaborators: 無)

答:

	sentence 1 sentence 2	
BOW	0.751442	0.751442
RNN	0.326962	0.935344

一如預期,這兩句話對於BOW model來說是一模一樣的,這兩句話的關鍵字應為good,含有這個單字的句子在預期中應該較可能是正面含意的,而轉折點but對於BOW模型來說應該不具有任何意義(因為沒辦法分辨是 好but壞或是壞but好,兩者情緒相反但用字相同),故應該會被BOW直接忽略,或是只會造成BOW的預測值往中間(0.5)靠攏,來達到減低loss的目標。

而對於RNN來說,but這個字應該會對前半句造成反轉的效果(A but B會造成預測值產生類似not(predict(A)) && predict(B)的效果),因此第一句的good在前半句,造成預測值小於0.5,而第二句的good在後,因此預測值大於0.5。但若忽略but這個字(或是換為and),這兩個句子應該都是正面含意的,因此可以看到兩者的平均值仍然大於0.5。

4. (1%) 請比較"有無"包含標點符號兩種不同tokenize的方式,並討論兩者對準確率的影響。

(Collaborators: 無)

答:

with symbol

validation accuracy	public accuracy	private accuracy	
0.8023	0.80857	0.80634	
(private + public) / 2 = 0.80846			

without symbol

validation accuracy	public accuracy	private accuracy	
0.8111	0.81016 0.81068		
(private + public) / 2 = 0.81042			

令人驚訝地,不刪去標點符號時的準確率居然高了0.196%左右,推測是因為驚嘆號、問號、刪節號等等標點符號某種程度上來說也具有表達情緒的功能。但我仍認為適度刪減標點符號(如縮寫撇、引號或是其他奇怪的符號)可以增加預測的準確度。

5. (1%) 請描述在你的semi-supervised方法是如何標記label,並比較有無 semi-surpervised training對準確率的影響。 (Collaborators: 無)

答:我會先做一個pretrained model,接著對nolabel data做預測,取預測值小於 0.1及大於0.9的部份標記為0和1,接著再對pretrained model做進一步的training來 得到最後版本的model。

由於我是使用glove來做word embedding的,因此再pretrain時就必須先將nolabel data也納入word embedding的corpus中,而在第二階段的training時就不再做: embedding layer的training。

我分別做了兩個semi-supervised及兩個supervised的model來做比較:

semi-supervised

supervised

semi-superv		semi-supervised		vised
validation	0.8147	0.8100	0.8156	0.8162
public	0.81165	0.81387	0.81319	0.81543
private	0.81205	0.81484	0.81280	0.81546
(public+private)/2	0.81185	0.81436	0.81300	0.81545
average	0.81310		0.81	422

從表格中可以看到,semi-supervised model並未得到比較好的結果,有可能是 pretrained data不夠造成pretrained model不夠精準所致。