

# North South University Department of Electrical & Computer Engineering

# **LAB REPORT**

Course Name: CSE332L

Experiment Number: 03

Experiment Name: Design of a 4-bit Universal Shift Register

Experiment Date: 22/03/2021

Report Submission Date: 17/03/2021

Faculty: SFM

Submitted to: Md Saidur Rahman

Section: 06

| Student Name: Koushik Banerjee | Score |  |  |  |
|--------------------------------|-------|--|--|--|
| Student ID: 1812171642         |       |  |  |  |
| Domontro                       |       |  |  |  |
| Remarks:                       |       |  |  |  |

# **<u>Title:</u>** Design of a 4-bit Universal Shift Register

#### **Objectives:**

- Designing a Design of a 4-bit Universal Shift Register by using Logisim software.
- Learn how to work with Shift Register.

#### **Types of equipment:**

- \*Four D Flip Flops (Two 7474 ICs)
- \* Four 4X1 MUX (Two 74153 ICs)
- \* Trainer Board
- \* Wires
- \* Power Supply

## **Function Table:**

| S1 | S0 | Operation        | I4 | I3 | I2 | I1 | A4    | A3 | A2 | A1    |
|----|----|------------------|----|----|----|----|-------|----|----|-------|
| 0  | 0  | No<br>change     | 0  | 1  | 1  | 0  | A4    | A3 | A2 | A1    |
| 0  | 1  | SHR              | 1  | 1  | 0  | 0  | S1(R) | A4 | A3 | A2    |
| 1  | 0  | SHL              | 1  | 1  | 0  | 0  | A3    | A2 | A1 | S1(L) |
| 1  | 1  | Parallel<br>load | 1  | 1  | 0  | 0  | 1     | 1  | 0  | 0     |

## Logic Diagram:



#### **Procedure:**

- 1) Place the ICs on the trainer board.
- 2) Connect Vcc and ground to the respective pins of IC.
- 3) Connect the inputs with the switches and the outputs (A1-A4) with LEDs.
- 4) Apply various combinations of inputs and observe the outputs.
- 5) Verify the experimental outputs with the Function Table.

## **Logisim works screenshot(s):**



## **Discussion:**

In lab 3, I construct a 4-bit Universal Shift Register. In Universal shift register there have an option to perform Shift Right when select bits are 01. When we do shift right it actually dividing by  $2^n$ . When we shift three times present bits are dividing by  $2^3$ . For left shift the current bits are multiplying by  $2^n$ . If we shift left 3 times, it means current bits multiplying by  $2^3$ . In this lab I face some theoretical problem. After understanding how this circuit works, I figure out how to do it. It took some time but finally I found out where the problem was fix the circuit and then solved it properly. By the help of our class lab instructor I fix that problem also.