Infinite Mixture Models with Dirichlet Process

Rémi Emonet - 2015-04-30 Université Jean Monnet - Laboratoire Hubert Curien

Just Some Reminders (Probably Almost Surely)

Probability Rules, Measure Theory

- Product rule
 - $\blacksquare p(X,Y) = p(X|Y) p(Y) = p(Y|X) p(X)$

- Marginalization, Sum rule
- · Bayes rule
- - $\blacksquare p(X) = \sum p(X|Y) p(Y)$

Gaussian/Normal Distribution

Gaussian/Normal Distribution (10)

Gaussian/Normal Distribution (10)

- Normal Distribution or Gaussian Distribution

 - Is-a probability density
 - $lacksquare \int_{-\infty}^{+\infty} \!\! \mathcal{N}\left(\mathrm{x}|\mu,\sigma^2
 ight) \mathrm{d}\,\mathrm{x} = 1$
- Parameters
 - lacksquare μ : mean, $\mathrm{E}\left[\mathrm{X}
 ight]=\mu$
 - lacksquare σ^2 : variance, $\mathrm{E}\left[\left(\mathrm{X}-\mathrm{E}\left[\mathrm{X}\right]\right)^2\right]=\sigma^2$

Multivariate Normal Distribution

- ullet D-dimensional space: $x=x_1,...,x_D$
- · Probability distribution

 \blacksquare Σ : covariance matrix

Gaussian Mixture Models

Gaussian Mixture Model (10)

ullet Density: $p\left(x\; heta
ight) = \sum_{k=1}^{K} w_k \;\; \mathscr{N}\left(x\; \mu_k, \sigma_k^2
ight)$

ullet Parameters: $heta = \left(w_k, \mu_k, {\sigma_k}^2 \right)_{k=1..\,\mathrm{K}}$

Sampling from a 20 GMM

■ Density:

$$\mathrm{p}\left(\mathrm{x}|\theta
ight) = \sum_{\mathrm{k}=1}^{\mathrm{K}} \mathrm{w}_{\mathrm{k}} \;\; \mathscr{N}\left(\mathrm{x}|\mu_{\mathrm{k}}, \Sigma_{\mathrm{k}}
ight)$$

■ Parameters:

$$\theta = (\mathbf{w}_{\mathbf{k}}, \mathbf{\mu}_{\mathbf{k}}, \mathbf{\Sigma}_{\mathbf{k}})_{\mathbf{k} = 1...\mathbf{K}}$$

- For each point i to be generated
 - lacktriangle draw a component index (i.e., a color): $z_i \sim {
 m Categorical} \ (w)$
 - lacktriangle draw its position from the component: $x_i \sim \mathcal{N}\left(x \; \mu_{z_i}, \Sigma_{z_i}\right)$

Only Positions are Observed

- For each point i
 - lacktriangle draw a component/color: $z_i \sim {
 m Categorical} \; (w)$
 - lacksquare draw a position: $x_i \sim \mathcal{N}\left(x \; \mu_{z_i}, \Sigma_{z_i}
 ight)$
- Finding z seems impossible, finding the "best" θ might be feasible?

GMM: Probabilistic Graphical Model

- Renamed
 - \blacksquare w $\rightarrow \beta$ (vector of component weights)
 - $lackbox{\ } (\mu_k, \Sigma_k)
 ightarrow \phi_k$ (parameters of component k)
- Reminder: for each point i
 - lacktriangle draw a component/color: $\mathbf{z_i} \sim \mathrm{Categorical}\;(eta)$
 - \blacksquare draw a position: $x_{i} \sim \mathcal{N}\left(x \; \phi_{z_{i}}\right)$

Learning/Inference finding the best θ

Maximum Likehood in GMM

- ullet From a set of observed points $x = \{x_i\}_{i=1..N}$
- · Maximize the likelihood of the model
 - \blacksquare Nb: $\mathscr{L}(\theta|\mathbf{x}) = \mathbf{p}(\mathbf{x}|\theta)$
 - NB: $\arg \max_{\theta} \mathscr{L}(\theta|\mathbf{x}) = \arg \max_{\theta} \log \mathscr{L}(\theta|\mathbf{x})$
 - $lacksquare ext{indep: } \log p\left(x| heta
 ight) = \log \prod_{i=1}^N p\left(x_i| heta
 ight) = \sum_{i=1\dots N} \log p\left(x_i| heta
 ight)$
 - lacksquare wixture: $\log p\left(x|\theta
 ight) = \sum_{i=1}^{N} \log \sum_{k=1}^{K} w_{k} \;\; \mathscr{N}\left(x_{i}|\phi_{k}
 ight)$
- ullet No closed form expression o need to approximate

Expectation Maximization

Expectation-Maximization

- Approximate inference by local optimization
 - converges to local optimum
 - needs à "good" initialization
- Handling parameters and latent variables differently
 - \blacksquare single (point) estimate of the parameters θ
 - distribution estimate of the latent variables z
- Two-step iterative algorithm
 - \blacksquare init: select a value for the parameters θ^0
 - E step:
 - compute the distribution over the latent variables
 - lacksquare i.e., $\forall i, k \quad p\left(z_i = k \ \theta^t\right)$
 - these probabilities are called the "responsibilities"
 - M step:
 - \blacksquare find the best parameters θ given the responsibilities
 - \blacksquare i.e., $\theta^{t+1} = \operatorname{arg} \max_{\theta}$

EM iterations

EM iterations

EM iterations

EM, Gibbs Sampling, Variational Inference

Parameters:
$$\theta$$

EM θ
M step

$$\theta$$
 M step $p(z \mid \theta)$

Latent Variables: z

Beyond EM, Using prior

Prior on GMM

- It's all about prior
- Intution in EM
 - disappearing component"minimal" weight"minimal" variance

- We virtually add a few observations to each component
- \bullet α : causes the weights β to never be zero
 - Dirichlet distribution: $\beta \sim \text{Dirichlet}(\alpha)$
- ullet H: adds some regularization on the variances $\Sigma_{
 m k}$

... Unfold

Divichlet Processes

From GMM to DPGMM

- Plain GMM
 - the number of component K needs to be know
 - need to try multiple ones and do model selection
 - (prior are not handled by EM)
- Dirichlet Process GMM
 - a GMM with an infinity of components
 - with a proper prior
 - cannot use EM for inference (infinite vectors)

What is a Dirichlet Process, Finally

Divichlet Process

- What?
 - a distribution over distributions
 - a prior over distributions
 - two parameters
 - \blacksquare a scalar α , the "concentration"
 - a "base" distribution H (any type)
 - a draw from a DP is a countably infinite sum of Diracs
- Related formulations
 - Definition: complicated :)
 - Stick breaking process (GEM)
 as shown on the graphical model
 e.g., a prior on the values of the weights
 - Chinesé Restaurant Process (CRP)
 - lacktriangle how to generate the z_i , one by one, in sequence
 - Polya Urn

Definition Example (Wikipedia)

Oraws from the Dirichlet process OP(N(O,I), alpha). Each row uses a different alpha: I, IO, IOO and IOOO. A row contains 3 repetitions of the same experiment.

Stick breaking process (GEM)

- Each "atom" drawn from H
- Infinite vector drawn from a GEM process
- $oldsymbol{ ext{Process}} oldsymbol{ ext{p}}_1 \sim \operatorname{Beta}\left(1, lpha
 ight) \; ; \; eta_1 = \operatorname{p}_1$
 - lacksquare $\mathrm{p}_2 \sim \mathrm{B}\,\mathrm{e}\,\mathrm{t}\,\mathrm{a}\,(1,lpha)$, $eta_2 = (1-eta_1) * \mathrm{p}_2$
 - lacksquare $p_3 \sim Beta\left(1,lpha
 ight)$; $eta_3 = \left(1-eta_1-eta_2
 ight)*p_3$
 - lacksquare ... lacksquare and orall k $\Phi_{f k}\sim H$
- ullet Denoted $eta\sim\mathrm{G\,E\,M\,}(lpha)$
- \bullet then $G = \sum_{k=1} \beta_k \, \delta_{\Phi_k}$ is a draw from $D\, P \left(H, \alpha \right)$

Polya Urn?

Chinese Restaurant Process (CRP)

- Gibbs sampling friendly
 - lacksquare easy to get $p\left(\mathbf{z}_{i}\;\mathbf{z}^{-i},...\right)$
 - $\blacksquare p(\mathbf{z}_i \ \mathbf{z}^{-i}) = ...$