微积分 第一次辅学

一、数列极限和函数极限

数列极限的定义

给定一个数列 $\{a_n\}$,如果存在实数 L ,对于 $\forall \varepsilon>0$,都 $\exists N$,使得当 n>N 时, $|a_n-L|<\varepsilon$ 成立,那么我们说数列 $\{a_n\}$ 的极限是 L ,并写作:

$$\lim_{n\to\infty}a_n=L$$

(例题) 证明
$$\lim_{n o\infty}rac{2n^2-n+1}{n^2+2}=2$$
 。

解析: 放缩成尽可能简单的形式。

$$\left|\frac{2n^2-n+1}{n^2+2}-2\right|=\left|-\frac{n+1}{n^2+2}\right|<\frac{n+1}{n^2}\leq\frac{2}{n}\text{ 。对任意 }\epsilon>0\text{ ,取 }N=\left\lceil\frac{1}{2\epsilon}\right\rceil\text{ ,则对任意 }n>N\text{ 均有}$$

$$\frac{2}{n}<\epsilon\text{ 。因此 }\lim_{n\to\infty}\frac{2n^2-n+1}{n^2+2}=2\text{ 。}$$

(例题) 证明
$$\lim_{x o rac{\pi}{2}}\sin x=1$$
 。

解析:和差化积。

数列极限的四则运算

假设 $\lim_{n \to \infty} a_n = A$ 且 $\lim_{n \to \infty} b_n = B$,则以下运算成立:

$$\lim_{n o \infty} (a_n + b_n) = A + B$$
 $\lim_{n o \infty} (a_n - b_n) = A - B$
 $\lim_{n o \infty} (a_n \cdot b_n) = A \cdot B$
 $\lim_{n o \infty} \left(\frac{a_n}{b_n} \right) = \frac{A}{B}$

单调有界定理

如果一个实数数列 $\{a_n\}$ 是单调递增的并且有上界,或者是单调递减的并且有下界,那么这个数列收敛。

(例题)
$$x_n>0, x_{n+1}+rac{4}{x_n}<4$$
 , 证明 x_n 收敛, 并求 $\lim_{n o\infty}x_n$ 。

解析: 均值不等式 $x_n+\frac{4}{x_n}\geq 2\sqrt{x_n\cdot\frac{4}{x_n}}=4>x_{n+1}+\frac{4}{x_n}$,因此 $x_n>x_{n+1}$,数列单调递减,又因为 $0< x_{n+1}< x_{n+1}+\frac{4}{x_n}<4$ 。所以 x_n 有界,所以 $\{x_n\}$ 收敛。设极限为 A ,则有 $4\leq A+\frac{4}{A}\leq 4$,所以 A=2 。

(例题) (1)
$$a_1=\sqrt{C}, a_{n+1}=\sqrt{a_n+C}$$
 ,求 $\lim_{n o\infty}a_n$;

(2) 证明
$$a_n=\sqrt{1+\sqrt{2+\cdots+\sqrt{n}}}$$
 收敛。

解析:

(1) 利用数学归纳法可以证明 a_n 单调递增。令 $a=\sqrt{a+C}$,那么 $a=rac{1+\sqrt{1+4C}}{2}>a_1$,

若 $a_n < a$,那么 $a_{n+1} = \sqrt{a_n + C} < \sqrt{a + C} = a$,所以可以得知 $\forall n \geq 1, a_n < a$ 。根据单调收敛定理,极限存在。

两边求极限可知
$$\lim_{n o\infty}a_n=rac{1+\sqrt{a+4C}}{2}$$
 。

(2)显然 a_n 单调递增。注意到 $n < 2^{2^n}$,所以

$$a_n < \sqrt{2^{2^1} + \sqrt{2^{2^2} + \sqrt{2^{2^3} + \cdots + \sqrt{2^{2^n}}}}} = 2\sqrt{1 + \sqrt{1 + \cdots + \sqrt{1}}} < 2 imes rac{\sqrt{5} + 1}{2}$$
 有界。故 $\{a_n\}$ 收敛。

Cauchy 收敛原理

数列 $\{a_n\}$ 收敛的充分必要条件是:对于任何 $\varepsilon>0$,存在一个正整数 N ,使得对 $\forall m,n>N$, $|a_m-a_n|<\varepsilon$ 成立。我们也称收敛的数列为**柯西列(或基本列)**。

我们如何选择证明极限存在的方法呢?

定义法是明确需要知道(或者猜到)极限是多少的。

如果要证明一个不知道极限是什么的数列收敛,优先考虑 Cauchy 收敛原理。

(**例题**) 若存在 C>0 使得 $|x_1|+|x_2-x_1|+|x_3-x_2|+...+|x_n-x_{n-1}|< C$,则称 $\{x_n\}$ 有界变差。证明:有界变差数列收敛。

解析: 设 $S_n=\sum_{i=1}^n|x_i-x_{i-1}|$,则 $\left\{S_n\right\}$ 是单调有界数列,故收敛。因此存在 N 使得任意 n>m>N 均有 $|S_n-S_m|<\epsilon$ 。

所以 $|x_n-x_m| \leq \sum_{i=m+1}^n |x_i-x_{i-1}| = S_n-S_m < \epsilon$ 。根据柯西收敛原理, $\{x_n\}$ 收敛。

(真题) 设 f(x) 在 $\mathbb R$ 上严格单调有界, $\{x_n\}$ 为实数列,则下列陈述中错误的是:

- A.若 $\{x_n\}$ 发散,则 $\{f(x_n)\}$ 必发散
- B.若 $\{x_n\}$ 单调,则 $\{f(x_n)\}$ 必收敛
- C.若 $\{f(x_n)\}$ 发散,则 $\{x_n\}$ 必发散
- D.若 $\{f(x_n)\}$ 单调,则 $\{x_n\}$ 必收敛。

解析

A. 错,取
$$f(x)=f(x)=\left\{egin{array}{ll} 1-e^{-x},x\geq 0\ e^x-1,x<0 \end{array}
ight.$$
,取 $x_n=n o\infty$ 发散,但 $f(x_n) o 1$ 。

B. 对, 根据单调有界定理可得。

C. 错,取
$$f(x) = \begin{cases} 2 - e^{-x}, x \ge 0 \\ e^x - 2, x < 0 \end{cases}$$
, $x_n = \begin{cases} \frac{1}{n} & \mathbf{n}$ 为偶数, x_n 收敛,但 $f(x_n)$ 振荡。

D. 错, 反例同 (1)。

(真题) 下列陈述不正确的是:

A.若数列 $\{a_n\}$ 收敛, $\{b_n\}$ 发散,则 $\{a_n+b_n\}$ 必发散;

B.若数列 $\{a_n\}$ 收敛, $\{b_n\}$ 发散,则 $\{a_nb_n\}$ 必发散;

C.若正项数列 $\{a_n\},\{b_n\}$ 均发散,则 $\{a_nb_n\}$ 必发散;

D.若数列 $\{a_n\}$ 满足 $\displaystyle \lim_{x o +\infty} |a_{n+1}-a_n|=0$,则数列 $\{a_n\}$ 必收敛。

解析

A. 对,
$$\{b_n\}$$
 发散 \Rightarrow $\exists \epsilon_0>0, orall N, \exists n,m>N, |b_n-b_m|>\epsilon_0$

$$\{a_n\}$$
 收敛 $\Rightarrow \forall \epsilon > 0, \exists N_\epsilon, \forall n, m > N, |a_n - a_m| < \epsilon$

$$\therefore \forall N, \exists n,m > \max\{N,N_{\frac{\epsilon_0}{2}}\}, |(a_n+b_n)-(a_m+b_m)| > ||b_n-b_m|-|a_n-a_m|| > \frac{\epsilon_0}{2}, \ \ \{a_n+b_n\} \ \$$
 收敛。

B. 错,
$$a_n=n, b_n=rac{1}{n}$$
 。

C. 错,
$$a_n=egin{cases} 1 & ext{n}$$
为奇数, $b_n=egin{cases} 1 & ext{n}$ 为奇数。 n 为偶数。

D. 错,取
$$a_n = \sum_{k=n}^n rac{1}{k}$$
 , $\lim_{n o +\infty} |a_{n+1} - a_n| = \lim_{n o \infty} rac{1}{n+1} = 0$,但 $\{a_n\}$ 发散。

二、极限的计算

基本极限

设 a>0, b>1 ,基本极限关系为 $\log n < n^a < b^n < n! < n^n$ 。

• 根式:
$$(1)a>0, \lim_{n\to\infty} \sqrt[n]{a}=1; \quad (2)\lim_{n\to\infty} \sqrt[n]{n}=1; \quad (3)\lim_{n\to\infty} \sqrt[n]{n!}=+\infty;$$

• 比式:
$$(1) \forall k > 0, \lim_{n \to \infty} \frac{\ln n}{n^k} = 0 \; (k > 0); \quad (2) \forall k > 0, a > 1, \lim_{n \to \infty} \frac{n^k}{a^n} = 0 \; (k > 0);$$

• 对数:
$$(1) orall k > 0, \lim_{x o \infty} rac{\ln x}{x^k} = 0; \quad (2) orall k > 0, \lim_{x o 0^+} x^k \ln x = 0;$$

• 指数:
$$(1)\forall k>0, \lim_{x\to\infty}\frac{x^k}{e^x}=0;$$

两个重要极限

•
$$\lim_{x \to 0} \frac{\sin x}{x} = 1;$$

•
$$\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^n = e;$$

。 变式:
$$\ \, orall k, \lim_{n o\infty} \left(1+rac{k}{n}
ight)^n = e^k, \quad ext{e.g.} \ \, \lim_{n o\infty} \left(1-rac{1}{n}
ight)^n = rac{1}{e}.$$

$$\circ \quad \lim_{n o\infty} \left(1+rac{1}{n}+rac{1}{n^2}
ight)^n = \lim_{x o0} \left[\left(1+rac{1+x}{x^2}
ight)^{rac{x^2}{1+x}}
ight]^{rac{x^2}{x}} = e \enspace .$$

(真题) 下列关于极限的说法正确的是:

A.
$$\lim_{x o +\infty} (1+x)^{rac{1}{x}} = e$$

B.
$$\lim_{x o +\infty}(1+2x)^{rac{2}{x}}=e^2$$

C.
$$\lim_{x \to +\infty} (1 - \frac{1}{x})^{2x} = e^2$$

D.
$$\lim_{x \to +\infty} (1+rac{2}{x})^x = e^2$$

解析

A.
$$\lim_{x o \infty} (1+x)^x = e^{\lim_{x o \infty} \frac{\ln(1+x)}{x}} = e^0 = 1$$

B.
$$\lim_{x \to \infty} (1+2x)^{rac{2}{x}} = 1$$
 (同A)

C.
$$\lim_{x \to \infty} (1 - \frac{1}{x})^{2x} = \lim_{x \to \infty} (1 - \frac{1}{x})^{-x \cdot (-2)} = e^{-2}$$

D.
$$\lim_{x o\infty}(1+rac{2}{x})^x=\lim_{x o\infty}(1+rac{2}{x})^{rac{x}{2}\cdot 2}=e^2$$

夹逼准则

 a_n,b_n,c_n 为三个序列,若 $\exists N$ 使得 $n\geq N$ 时 $a_n\leq b_n\leq c_n$,且 $\lim_{n o\infty}a_n=\lim_{n o\infty}c_n=A$,则 $\lim_{n o\infty}b_n=A$ 。

(例题) 求: (1)
$$\lim_{n \to \infty} \left(\frac{1}{\sqrt{n^2+1}} + \frac{1}{\sqrt{n^2+2}} + \dots + \frac{1}{\sqrt{n^2+n}} \right)$$
 , (2) $\lim_{n \to \infty} (1 + \frac{1}{2} + \dots + \frac{1}{n})^{\frac{1}{n}}$ 。

解析

$$(1) \quad 1 = \sum_{i=1}^n \frac{1}{n} > \sum_{i=1}^n \frac{1}{\sqrt{n^2 + i}} > \sum_{i=1}^n \frac{1}{\sqrt{n^2 + n}} = \sqrt{\frac{n}{n+1}} \;\; , \;\; 后者趋向于 \;\; 1 \;\; , \;\; 因此原极限也趋向于 \;\; 1 \;\; 。$$

(2) 取对数得
$$\frac{1}{n}\ln(1+\frac{1}{2}+\cdots+\frac{1}{n})$$
 。因为

$$0 = \frac{1}{n}\ln(\frac{1}{n} + \frac{1}{n} + \dots + \frac{1}{n}) < \frac{1}{n}\ln(1 + \frac{1}{2} + \dots + \frac{1}{n}) < \frac{1}{n}\ln(1 + 1 + \dots + 1) = \frac{\ln n}{n} \text{ , 后者趋向于 } 0 \text{ , 因此取对数后的极限为 } 0 \text{ , 原极限为 } 1 \text{ .}$$

海涅定理 (归结原理)

(因为要讲计算,就把这一部分放到前面了)

 $\lim_{x o x_0}f(x)=A$ 的充分必要条件是: 对于任意满足条件 $\lim_{n o\infty}x_n=x_0$ 且 $x_n
eq x_0$ ($n=1,2,3,\cdots$) 的数列 $\{x_n\}$,相应的函数值数列 $\{f(x_n)\}$ 成立: $\lim_{n o\infty}f(x_n)=A$ 。

这样,我们就可以把一些数列极限转化成(连续)函数的极限了。

平均值相关

有限项幂次根号平均

$$a_1,a_2,\cdots,a_m$$
 是 m 个正数,则 $\lim_{n o\infty}\sqrt[n]{a_1^n+a_2^n+\cdots+a_m^n}=\max\{a_1,\cdots,a_m\}$ 。

证明: 设
$$A=\max\{a_1,a_2,\cdots,a_m\}$$
 , $\sqrt[n]{A^n}\leq \sqrt[n]{a_1^n+a_2^n+\cdots+a_m^n}\leq \sqrt[n]{mA^n}$ 。

推论: (1) 若正数列 a_n 收敛到 a>0 , $\lim_{n \to \infty} \sqrt[n]{a_n} = 1$ 。

$$(2)$$
 若数列 $\{a_n\}$ 非负有界,则 $\lim_{n o\infty}\sqrt[n]{a_1^n+a_2^n+\cdots+a_n^n}=\sup_{n\geq 1}a_n$ 。

平均值定理

已知 $\lim_{n o \infty} a_n = a$ (有限 or $+\infty$ or $-\infty$),则:

- 算数平均值: $\lim_{n \to \infty} \frac{a_1 + a_2 + \dots + a_n}{n} = a$;
- 几何平均值: 若 $a_n>0$, $\lim_{n o\infty}\sqrt[n]{a_1a_2\cdots a_n}=a$ 。

推论: (1) 若
$$\lim_{n\to\infty}(a_n-a_{n-1})=a$$
 , 则 $\lim_{n\to\infty}\frac{a_n}{n}=a$;

$$(2)$$
 若 $\lim_{n o\infty}rac{a_n}{a_{n-1}}=a$,则 $\lim_{n o\infty}\sqrt[n]{a_n}=a$ 。

复杂的指数和底数 (重要极限)

对于这一类题目,我们一般用两种方法解:一是直接套用 e 的定义式(一般在底数有明显的 1+0 形式时使用),二是直接取对数转化为零比零型极限后用等价无穷小。

(例题) 求
$$\lim_{n o\infty}(rac{2+\sqrt[n]{64}}{3})^{2n-2}$$
 。

解析: 等价无穷小 $a^x-1\sim x\ln a$ 。

$$egin{aligned} &\lim_{n o\infty}(rac{2+\sqrt[n]{64}}{3})^{2n-2}\ &=\lim_{n o\infty}(1+rac{64^{rac{1}{n}}-1}{3})^{2n-2}\ &=\lim_{n o\infty}(1+rac{\ln 64}{3n})^{2n-2}\ &=e^{4\ln 2}=16 \end{aligned}$$

(例题) 求
$$\lim_{x o rac{\pi}{4}} (an x)^{ an 2x}$$
 。

解析:

这是 1^{∞} 型极限, 因此先取对数。

$$\lim_{x \to \frac{\pi}{4}} \tan 2x \ln(\tan x) = \lim_{t \to 1} \frac{2t}{1-t^2} \ln t = \lim_{t \to 1} \frac{2t}{1+t} \cdot \frac{\ln t}{1-t} = 1 \times (-1) = -1.$$

故答案为 $\frac{1}{e}$ 。

等价无穷小(重点)

等价、高阶和低阶无穷小

设
$$\lim_{x o x_0}f(x)=\lim_{x o x_0}g(x)=0, \lim_{x o x_0}rac{f(x)}{g(x)}=A$$
 。

当 A=1 时,称 f(x) 是 g(x) 在 $x=x_0$ 处的等价无穷小,记作 $f(x)\sim g(x)$;

当 A=0 时,称 f(x) 是 g(x) 在 $x=x_0$ 处的高价无穷小,记作 f(x)=o(g(x)) ;

当 $A=\infty$ 时,称 f(x) 是 g(x) 在 $x=x_0$ 处的低价无穷小。

同阶无穷小

设 $\lim_{x \to x_0} f(x) = \lim_{x \to x_0} g(x) = 0$,在 x_0 的一个邻域 $(x_0 - \delta, x_0 + \delta)$ 中恒有 $0 \le |\frac{f(x)}{g(x)}| \le M < \infty$,且 f(x) 不为 g(x) 的高阶无穷小,则称 f(x) 是 g(x) 在 $x = x_0$ 处的同阶无穷小,记作 f(x) = O(g(x)) 。注意,这里并不要求 $\lim_{x \to x_0} \frac{f(x)}{g(x)}$ 存在。

若 f(x) 是 g(x) 的同阶或高阶无穷小,则记 f(x) = O(g(x)) 。

以上定义中 f(x) 和 g(x) 理论上可以是任意函数,但在使用时, g(x) 一般都取 x 的整数次幂。

常用等价无穷小

在 x=0 处:

$$\ln(1+x)\sim x \quad e^x-1\sim x$$
 $\sin x\sim x \quad \cos x\sim 1-rac{1}{2}x^2 \quad an x\sim x$ $(1+x)^{lpha}-1\sim lpha x$ $rcsin x\sim x \quad rctan x\sim x$ $a^x-1\sim x\ln a\ (a>0)$

等价无穷小在求极限中的应用

等价无穷小常在极限题目中出现乘积或比式时使用。

例如我们要求 $f(x)g(x), rac{f(x)}{h(x)}$ 的极限,我们已知 $f(x) \sim x$,那么我们就能直接用 x 替换 f(x) 。

但如果题目中出现和差时,使用等价无穷小就需要格外小心。我们后面会学到,**等价无穷小的本质是泰勒展开后仅保留最低次项,而忽略了更高次项。**因此在使用等价无穷小替换时,如果替换后的和差是 0 ,则意味着最低次项被消掉,但更高次项并不一定会消掉。一个简单的例子是求 $\lim_{x\to 0} \frac{x-\sin x}{x^3}$,如果简单地用 x 替换 $\sin x$,则二者抵消,答案为 0 。但事实上 $\sin x = x - \frac{1}{6}x^3 + O(x^5)$,因此答案为 $\frac{1}{6}$ 。简单来说,在题目中有和差式时,使用等价无穷小需要保证在和差运算时最低次项不被消掉。

题型一:直接应用

(真题) 求
$$\lim_{x o 0} rac{\sqrt[4]{1 + 12x^2} - \cos x}{x^2}$$
 。

解析:

$$egin{aligned} &\lim_{x o 0} rac{\sqrt[4]{1+12x^2}-\cos x}{x^2} \ =&\lim_{x o 0} rac{\left(\sqrt[4]{1+12x^2}-1
ight)+\left(1-\cos x
ight)}{x^2} \ =&\lim_{x o 0} rac{rac{1}{4}\cdot 12x^2+rac{1}{2}x^2+o(x^2)}{x^2} \ =&rac{7}{2}. \end{aligned}$$

题型二、利用定义求系数

(真题) 当 x o 1 时, $lpha(x) = \cos \frac{\pi}{2} x$ 与 $eta(x) = A(x-1)^n$ 为等价无穷小量,求 A 和 n 的值。

解析:
$$A = -\frac{\pi}{2}, n = 1$$

$$\lim_{x \to 1} \frac{\cos \frac{\pi}{2} x}{A(x-1)^n}$$

$$= \lim_{y \to 0} \frac{\cos \frac{\pi}{2} (y+1)}{Ay^n}$$

$$= \lim_{y \to 0} \frac{-\sin \frac{\pi}{2} y}{Ay^n}$$

$$= \lim_{y \to 0} \frac{-\frac{\pi}{2}}{Ay^{n-1}} = 1$$

题型三、等价无穷小的判断

(真题) 设 $lpha(x)=rac{8-x}{4+x}, eta(x)=2-\sqrt[3]{x}$,当 x o 8 时,下列陈述正确的是:

- A. $\alpha(x)$ 与 $\beta(x)$ 为同阶非等价无穷小量;
- B. $\alpha(x)$ 与 $\beta(x)$ 为等价无穷小量;
- C. $\alpha(x)$ 是比 $\beta(x)$ 更高阶的无穷小量;
- D. $\alpha(x)$ 是比 $\beta(x)$ 更低阶的无穷小量。

解析:

$$\begin{split} &\lim_{x\to 8} \frac{\frac{8-x}{4+x}}{2-\sqrt[3]{x}} \\ &= \lim_{y\to 0} \frac{y}{(12-y)(2-\sqrt[3]{8-y})} \\ &= \frac{1}{12} \lim_{y\to 0} \frac{y}{2(1-\sqrt[3]{1-\frac{y}{8}})} \\ &= \frac{1}{24} \lim_{y\to 0} \frac{y}{\frac{1}{3}\cdot\frac{y}{8}} = 1 \end{split}$$

因此是等价无穷小。

题型四、未知函数的等价替换

(真题) 设
$$f(x)$$
 在 $x=2$ 处连续,且 $\lim_{x \to 2} \frac{f(x)}{x-2} = 2$,求 $\lim_{x \to 0} \frac{f(e^{x^2} + \cos 2x)}{\ln(1+x^2)}$ 。

解析: 因为,而当 $\lim_{x\to 2} \frac{f(x)}{x-2} = 2$,而当 x=2 时 x-2=0 ,所以 f(x) 在 x=2 处是 2(x-2) 的等价无穷小。又因为 x=0 时 $e^{x^2}+\cos 2x=2$,所以 $\lim_{x\to 0} \frac{f(e^{x^2}+\cos 2x)}{\ln(1+x^2)} = \lim_{x\to 0} \frac{2(e^{x^2}+\cos 2x-2)}{\ln(1+x^2)} = \lim_{x\to 0} \frac{2((e^{x^2}-1)-(1-\cos 2x)}{x^2} = \lim_{x\to 0} \frac{2(x^2-\frac{1}{2}(2x)^2)+o(x^2)}{x^2} = -2$

含根式差的极限问题的常用策略: 有理化

遇到趋向于无穷的两个根式作差的极限问题时,我们常采用有理化的方法将它转化为两个同阶无穷大量的比值。

例如:
$$\lim_{x \to +\infty} \sqrt{(x+a)(x+b)} - x$$

解:

$$\lim_{x\to +\infty} \sqrt{(x+a)(x+b)} - x = \lim_{x\to +\infty} \frac{(x+a)(x+b) - x^2}{\sqrt{(x+a)(x+b)} + x} = \lim_{x\to +\infty} \frac{(a+b)x + ab}{\sqrt{(x+a)(x+b)} + x} = \frac{a+b}{2}$$

(真题) 求
$$\lim_{x o\infty}x(\sqrt[3]{x^3+2x}-\sqrt[3]{x^3-x})$$
 。

解析: 利用公式
$$a^n-b^n=(a-b)\sum_{i=0}^{n-1}a^ib^{n-1-i}$$

$$\lim_{x\to\infty}x(\sqrt[3]{x^3+2x}-\sqrt[3]{x^3-x})$$

$$=\lim_{x\to\infty}\frac{x[(x^3+2x)-(x^3-x)]}{(x^3+2x)^{\frac{2}{3}}+[(x^3+2x)(x^3-x)]^{\frac{1}{3}}+(x^3-x)^{\frac{2}{3}}}$$

$$=\lim_{x\to\infty}\frac{3x^2}{x^2+x^2+x^2}=1$$

(真题) 若
$$\lim_{x o -\infty} \left(\sqrt{9x^2 + 6x + 8} - (ax + b)
ight) = 1$$
 , 求 a,b 的值。

解析:

$$\begin{split} &\lim_{x\to -\infty} \left(\sqrt{9x^2+6x+8}-(ax+b)\right)\\ &=\lim_{x\to -\infty} \frac{(9x^2+6x+8)^2-(ax+b)^2}{\sqrt{9x^2+6x+8}+(ax+b)}\\ &=\lim_{x\to -\infty} \frac{(9-a^2)x^2+(6-2ab)x+(8-b^2)}{\sqrt{9x^2+6x+8}+(ax+b)}=1 \end{split}$$

观察分子分母的阶数, $9-a^2=0, a=\pm 3$ 。

(1)
$$a=3$$
 ,原式 $\lim_{x o -\infty}\left(\sqrt{9x^2+6x+8}-(ax+b)
ight)$ 发散。

$$(2) \quad a=-3 \ \ , \quad \lim_{x\to -\infty} \frac{(6+6b)x+(8-b^2)}{\sqrt{9x^2+6x+8}-3x+b} = \lim_{x\to -\infty} \frac{(6+6b)x+(8-b^2)}{-3x-3x+b} = 1 \Rightarrow 6+6b = -6, b=-2 \ \ .$$

含三角函数的极限问题的常用策略

添项后利用倍角公式

(例题) 求
$$\lim_{n o\infty}\cosrac{arphi}{2}\cosrac{arphi}{2^2}\cdots\cosrac{arphi}{2^n}$$
 。

解析:

$$\lim_{n\to\infty}\cos\frac{\varphi}{2}\cos\frac{\varphi}{2}\cdots\cos\frac{\varphi}{2^n}=\lim_{n\to\infty}\frac{2^n\sin\frac{\varphi}{2^n}\cos\frac{\varphi}{2}\cos\frac{\varphi}{2^2}\cdots\cos\frac{\varphi}{2^n}}{2^n\sin\frac{\varphi}{2^n}}=\lim_{n\to\infty}\frac{\sin\varphi}{2^n\sin\frac{\varphi}{2^n}}=\frac{\sin\varphi}{\varphi}$$

周期性加减 $n\pi$ 或 $2n\pi$ / 有理化

(例题) 求
$$\lim_{n o \infty} \sin(\pi \sqrt{n^2 + 1})$$
 。

解析:

当
$$n$$
 为奇数时, $\lim_{n \to \infty} \sin(\pi \sqrt{n^2 + 1}) = \lim_{n \to \infty} \sin(n\pi - \pi \sqrt{n^2 + 1}) = \lim_{n \to \infty} \sin(\frac{-\pi}{n + \sqrt{n^2 + 1}}) = 0$

当
$$n$$
 为偶数时, $\lim_{n \to \infty} \sin(\pi \sqrt{n^2+1}) = \lim_{n \to \infty} \sin(\pi \sqrt{n^2+1} - n\pi) = \lim_{n \to \infty} \sin(\frac{\pi}{n+\sqrt{n^2+1}}) = 0$

奇偶项极限相等,故原极限为 0。

含阶乘极限问题的常用策略:大胆猜测和放缩

Stirling 公式

当 $n o\infty$ 时, $n!\simeq\sqrt{2\pi n}\left(rac{n}{e}
ight)^n$,进一步地, $\sqrt[n]{n!}\simrac{n}{e}$ 。

我们由此可以估计出 n! 的增长速度。

(例题) 求
$$\lim_{n \to \infty} \frac{n!}{n^n}$$
 。

解析:
$$\lim_{n \to \infty} \frac{n!}{n^n} = \lim_{n \to \infty} \frac{\sqrt{2\pi n} (\frac{n}{e})^n}{n^n} = \lim_{n \to \infty} \frac{\sqrt{2\pi n}}{e^n} = 0.$$

(例题) 求
$$\lim_{n\to\infty} \sqrt[n]{\frac{1}{n!}}$$
 。

解析:
$$\lim_{n \to \infty} \sqrt[n]{\frac{1}{n!}} = \lim_{n \to \infty} \sqrt[n]{\frac{1}{\sqrt{2\pi n}(\frac{n}{e})^n}} = \lim_{n \to \infty} \frac{e}{n} \sqrt[n]{\frac{1}{\sqrt{2\pi n}}} = 0$$

(当然, 也可以用前面的平均值定理)

数列递推:不动点猜解

这种题的一般形式是: $x_{n+1} = f(x_n)$, 求 $\lim_{n \to \infty} x_n$ 。

因为在有极限的时候极限点一定满足 x=f(x) 即极限点是 f 的不动点,所以我们可以提前知道答案来为后面的证明提供一个方向(如果是小题甚至可以直接算前几项看出答案)。一般在证明时需要结合单调有界定理,证明 x_n 以不动点为上界或下界。

(例题)
$$x_{n+1}=rac{10}{x_n-3}$$
 ,当 $x_1=2$ 时求 $\lim_{n o\infty}x_n$ 。

解析:

$$\therefore x_n < 0 \Rightarrow x_{n+1} < 0, \quad \therefore \forall n \ge 2, x_n \le 0$$

$$x_{n+2} = rac{10}{rac{10}{x_n - 3} - 3} = rac{10(x_n - 3)}{19 - 3x_n}$$

$$x_{n+2}-x_n=rac{10x_n-30}{19-3x_n}-x_n=rac{10x_n-30-19x_n+3x_n^2}{19-3x_n}=rac{3(x_n+2)(x_n-5)}{19-3x_n}$$

当
$$x_n > -2$$
 时, $x_{n+2} < x_n$,并且 $x_{n+2} + 2 = \frac{10x_n - 30 + 38 - 6x_n}{19 - 3x_n} = \frac{4(x_n + 2)}{19 - 3x_n} > 0$,所以

$$x_{n+2} > -2$$

当
$$x_n < -2$$
 时, $x_{n+2} > x_n$ 并且 $x_{n+2} + 2 = \dfrac{4(x_n + 2)}{19 - 3x_n} < 0$,所以 $x_{n+2} < -2$;

因为
$$x_2=-10, x_3=-rac{10}{13}$$
 ,所以 $\{x_{2n}\}(n\geq 1), \{x_{2n+1}\}$ 分别单调有界,均收敛

根据
$$x=rac{10x-30}{19-3x} \Rightarrow x=-2,5$$
(舍) ,得知奇偶子列极限相同,所以 $\lim_{n o\infty}x_n=-2$

三、函数的连续性

连续的定义

若 f(x) 在 x_0 的开邻域 $(x_0-\delta,x_0+\delta)$ 有定义,且 $\lim_{x o x_0}f(x)=f(x_0)$,则称 x_0 为 f(x) 的连续点。

若 f(x) 在 $[x_0,x_0+\delta)$ 【 $(x_0-\delta,x_0]$ 】中有定义,且 $\lim_{x\to x_0^+}f(x)=f(x_0)$ 【 $\lim_{x\to x_0^-}f(x)=f(x_0)$ 】,则称 x_0 为 f(x) 的右【左】连续点。

海涅定理

见上文。

四则运算

若 f,g 在 x_0 处连续,则 $f+g,f-g,f imes g,rac{f}{g}$ 都在 x_0 处连续(对于除法要求 $g(x_0)
eq 0$)

复合运算

若 f 在 x_0 处连续, g 在 $f(x_0)$ 处连续,则 g(f(x)) 在 x_0 处连续。

初等函数的连续性

幂函数: 当 a>0 时, $f(x)=x^a$ 在 $\mathbb R$ 上连续; 当 a<0 时, $f(x)=x^a$ 在 $(-\infty,0)$ 和 $(0,+\infty)$ 上均连续。

指数函数: 当 a>0 时, $f(x)=x^a$ 在 $\mathbb R$ 上连续。

对数函数: 当 a>0 时, $f(x)=\log_a x$ 在 \mathbb{R} 上连续。

三角函数: $\sin x$ 和 $\cos x$ 在 \mathbb{R} 上连续, $\tan x$ 在它的每个最小正周期上都连续。

反三角函数: $\arcsin x, \arccos x$ 在 (-1,1) 上连续, $\arctan x$ 在 \mathbb{R} 上连续。

根据初等函数的连续性和四则运算、复合运算的性质,可以推导出绝大多数函数的连续性和连续区间。

例如:若 f,g 连续,则 $|f|=\sqrt{f^2}$ 连续, $\max\{f,g\}=\frac{1}{2}(|f+g|+|f-g|),\min\{f,g\}=\frac{1}{2}(|f+g|-|f-g|)$ 连续。

间断点

函数值在某个点处 没有定义 或 有定义但不连续。分为四种情况。

• 一类间断点

可去间断点:间断点处左右极限相等

跳跃间断点:间断点处左右极限不相等

• 二类间断点

无穷间断点:间断点处左右极限至少有一个是 ∞

震荡间断点:间断点处左右极限至少有一个不存在

间断点的判断

先找到不在函数定义域上的孤立点(例如:分母为 0 ,对数的真数为 0 ,正切函数内为 $\frac{\pi}{2}$ 的奇数倍等)、函数两种表达式交界处的点(例如绝对值函数),然后依次求出这些点处的函数极限。

(真题) 函数 $f(x) = rac{x^2 - 4}{(x+1)(x+2)\ln|x-1|}$ 的可去间断点共有______个。

解析:

考虑
$$x = -1, -2, 1, 0, 2$$

$$egin{aligned} \lim_{x o -1} f(x) &= \lim_{x o -1} rac{-3}{(x+1) \ln 2} = \infty \ \lim_{x o -2} f(x) &= \lim_{x o -2} rac{x-2}{(x+1) \ln |x-1|} = rac{4}{\ln 3} \ \lim_{x o 1} f(x) &= \lim_{x o 1} rac{-3}{2 \cdot 3 \cdot \ln |x-1|} = 0 \ \lim_{x o 0} f(x) &= \lim_{x o 0} rac{-4}{1 \cdot 2 \cdot \ln |x-1|} = \infty \ \lim_{x o 0} f(x) &= \lim_{x o 0} rac{4(x-2)}{3 \cdot 4 \cdot \ln |x-1|} = rac{1}{3} \end{aligned}$$

答案为 3

四、习题

1.
$$\lim_{n o\infty}a_n=a,\lim_{n o\infty}b_n=b$$
 ,证明: $\lim_{n o\infty}rac{a_1b_n+a_2b_n+\cdots+a_nb_1}{n}=ab$

$$2. \quad \lim_{n \to \infty} \frac{\sqrt[n]{n(n+1)\cdots(2n-1)}}{n}$$

3.
$$0 < a_n < 2, (2-a_n)a_{n+1} \geq 1$$
 , 证明 a_n 收敛, 并求其极限。

4.
$$\lim_{n \to \infty} \frac{\prod_{i=1}^{n} (2i-1)}{\prod_{i=1}^{n} (2i)}$$

5.
$$\lim_{n\to\infty}\sin^2(\pi\sqrt{n^2+n})$$

6.
$$\lim_{x\to 0} \left(\frac{3^x+5^x+7^x}{3}\right)^{\frac{1}{x}}$$

7.
$$\lim_{n \to \infty} \frac{n^3 \sqrt[n]{2} (1 - \cos \frac{1}{n^2})}{\sqrt{n^2 + 1} - n}$$

8.
$$\lim_{n \to \infty} \sum_{i=1}^{n} (\frac{i}{n^2})^{1 + \frac{i}{n^2}}$$

9.
$$\lim_{n\to\infty} n^2 \left(\sin\frac{\pi}{n} - \sin\frac{\pi}{n+1}\right)$$

10. 已知数列满足
$$x_1>0, x_{n+1}=1+rac{x_n}{x_n+1}$$
 ,求 $\lim_{n o\infty}x_n$

参考答案:

1. 由于
$$\lim_{n \to \infty} a_n = a$$
 因此 a_n 有界,所以 $\exists M, \mathrm{s.t.} \ |a_n| < M$,所以

$$\begin{split} |a_k b_{n-k+1} - ab| &< |a_k| \cdot |b_{n-k+1} - b| + |b| \cdot |a_k - a| \leq M |b_{n-k+1} - b| + |b| \cdot |a_k - a| \\ & \left| \frac{a_1 b_n + \dots + a_n b_1}{n} - ab \right| \\ & \boxtimes \mathbb{H}$$
 因此得到: $\leq \frac{|a_1 b_n - ab| + \dots + |b_1 - b|}{n} \\ &\leq M \cdot \frac{|b_n - b| + \dots + |b_1 - b|}{n} + |b| \cdot \frac{|a_1 - a| + \dots + |a_n - a|}{n} \end{split}$

根据平均值定理,
$$\lim_{n o\infty}rac{|a_1-a|+\cdots|a_n-a|}{n}=\lim_{n o\infty}rac{|b_1-b|+\cdots|b_n-b|}{n}=0$$

所以
$$\lim_{n o\infty}rac{a_1b_n+a_2b_n+\cdots+a_nb_1}{n}=ab$$

2.
$$a_n=rac{n(n+1)\cdots(2n-1)}{n^n}$$
 , 因此

$$\lim_{n\to\infty}\frac{a_n}{a_{n-1}}=\lim_{n\to\infty}\frac{2(2n-1)(n-1)^{n-1}}{n^n}=(4-\frac{2}{n})((1-\frac{1}{n})^n)^{\frac{n-1}{n}}=\frac{4}{e}$$

- 3. 根据不等式 $a_n(2-a_n) \leq \left[rac{a_n + (2-a_n)^2}{2}
 ight] = 1 \leq a_{n+1}(2-a_n)$,因此 $a_n < a_{n+1}$,根据单调有界定理可知,数列收敛,两侧取极限得到 $\lim_{n o \infty} a_n = 1$
- 4. 法一: 拆项后错位分组

$$\begin{split} \frac{\prod_{i=1}^{n}(2i-1)}{\prod_{i=1}^{n}(2i)} &= \frac{1 \times \sqrt{3} \times \sqrt{3} \times \sqrt{5} \times \sqrt{5} \times \cdots \times \sqrt{2n-1} \times \sqrt{2n-1}}{2 \times 4 \times 6 \times \cdots \times 2n} \\ &= \frac{1 \times \sqrt{3}}{2} \times \frac{\sqrt{3} \times \sqrt{5}}{4} \times \cdots \frac{\sqrt{2n-3} \times \sqrt{2n-1}}{2n-2} \times \frac{\sqrt{2n-1} \times \sqrt{2n+1}}{2n} \times \frac{1}{\sqrt{2n+1}} \\ &\leq \frac{1}{\sqrt{2n+1}} \end{split}$$

所以
$$\lim_{n o\infty}rac{\prod_{i=1}^n(2i-1)}{\prod_{i=1}^n}=0$$

法二(可以了解一下Wallis公式):

Wallis公式:当
$$n o \infty$$
 时, $\dfrac{(2n)!!}{(2n-1)!!} \sim \sqrt{n\pi}$,更具体地, $\lim_{n o \infty} \left[\dfrac{(2n)!!}{(2n-1)!!}\right]^2 \dfrac{1}{2n+1} = \dfrac{\pi}{2}$

证明: 根据 $\sin^{2k+1}x \leq \sin^{2k}x \leq \sin^{2k-1}x, 0 \leq x \leq \pi$, 所以

$$\int_{0}^{\frac{\pi}{2}} sin^{2k+1}x \mathrm{d}x \leq \int_{0}^{\frac{\pi}{2}} sin^{2k}x \mathrm{d}x \leq \int_{0}^{\frac{\pi}{2}} sin^{2k-1}x \mathrm{d}x$$

得到
$$\frac{(2n)!!}{(2n+1)!!} \le \frac{(2n-1)!!}{(2n)!!} \frac{\pi}{2} \le \frac{(2n-2)!!}{(2n-1)!!}$$

构造
$$a_n = \left\lceil \frac{(2n)!!}{(2n-1)!!} \right\rceil^2 \frac{1}{2n+1}, b_n = \left\lceil \frac{(2n)!!}{(2n-1)!!} \right\rceil^2 \frac{1}{2n}$$
 ,则 $a_n < \frac{\pi}{2} < b_n$

又
$$b_n - a_n = \left[\frac{(2n)!!}{(2n-1)!!} \right]^2 \frac{1}{2n(2n+1)} = a_n \cdot \frac{1}{2n} < \frac{\pi}{2} < \frac{\pi}{2} \frac{1}{2n} \to 0, n \to \infty$$
 所以 $\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n = \frac{\pi}{2}$

所以答案为 0。

备注: $\sin^n x$ 的积分公式

$$\begin{split} I_n &= \int_0^{\frac{\pi}{2}} \sin^n x \mathrm{d}x = \begin{cases} \frac{(n-1)!!}{n!!!} \frac{\pi}{2} & \text{n} \ \text{是偶数} \\ \frac{(n-1)!!}{n!!} & \text{n} \ \text{是奇数} \end{cases} \\ &I_n &= -\int_0^{\frac{\pi}{2}} \sin^{n-1} x \mathrm{d}(\cos x) = -\cos x \sin^{n-1} x \big|_0^{\frac{\pi}{2}} + (n-1) \int_0^{\frac{\pi}{2}} \sin^{n-2} x \cos^2 x \mathrm{d}x \\ &= (n-1) \int_0^{\frac{\pi}{2}} \sin^{n-2} x \mathrm{d}x - (n-1) \int_0^{\frac{\pi}{2}} \sin^{n-2} x \sin^2 x \mathrm{d}x = (n-1) I_{n-2} - (n-1) I_n \end{cases} \\ & \Rightarrow I_n &= \frac{n-1}{n} I_{n-2} \qquad (I_0 = \frac{\pi}{2}, I_1 = 1) \end{split}$$

5. 利用等价无穷小。

$$\lim_{x \to 0} \left(\frac{3^x + 5^x + 7^x}{3} \right)^{\frac{1}{x}}$$

$$= \lim_{x \to 0} \left(\frac{1 + x \ln 3 + 1 + x \ln 5 + 1 + x \ln 7}{3} + O(x^2) \right)^{\frac{1}{x}}$$

$$= \lim_{x \to 0} \left(1 + \frac{x \ln 105}{3} + O(x^2) \right)^{\frac{1}{x}}$$

$$= e^{\frac{\ln 105}{3}} = \sqrt[3]{105}$$

6. 有理化+等价无穷小

$$egin{aligned} &\lim_{n o\infty}rac{n^3\sqrt[n]{2}(1-\cosrac{1}{n^2})}{\sqrt{n^2+1}-n}\ &=\sqrt[n]{2}\cdotrac{n^3(1-\cosrac{1}{n^2})(\sqrt{n^2+1}+n)}{(n^2+1)-n^2}\ &=1\cdot n^3(\sqrt{n^2+1}+n)(rac{1}{2n^4}+O(rac{1}{n^6}))\ &=\lim_{n o\infty}rac{\sqrt{n^2+1}+n}{2n}=1 \end{aligned}$$

7. 放缩

$$\begin{split} &\lim_{n\to\infty}(\frac{1}{n})^{\frac{1}{n^2}} = \lim_{n\to\infty}e^{\frac{1}{n^2}\ln(\frac{1}{n})} = e^0 = 1, \lim_{n\to\infty}(\frac{1}{n^2})^{\frac{1}{n}} = \lim_{n\to\infty}e^{2\frac{1}{n}\ln(\frac{1}{n})} = e^0 = 1\\ &\lim_{n\to\infty}\sum_{i=1}^n(\frac{i}{n^2})(\frac{1}{n^2})^{\frac{1}{n}} \leq \lim_{n\to\infty}\sum_{i=1}^n(\frac{i}{n^2})^{1+\frac{i}{n^2}} \leq \lim_{n\to\infty}\sum_{i=1}^n(\frac{i}{n^2})(\frac{1}{n})^{\frac{1}{n^2}}\\ & \mathbb{Z} \ \lim_{n\to\infty}\sum_{i=1}^n(\frac{i}{n^2})(\frac{1}{n^2})^{\frac{1}{n}} = \lim_{n\to\infty}\sum_{i=1}^n(\frac{i}{n^2})(\frac{1}{n})^{\frac{1}{n^2}} = \lim_{n\to\infty}\frac{\sum_{i=1}^ni}{n^2} = \lim_{n\to\infty}\frac{n(n+1)}{2n^2} = \frac{1}{2} \end{split}$$

所以
$$\lim_{n o\infty}\sum_{i=1}^n(rac{i}{n^2})^{1+rac{i}{n^2}}=rac{1}{2}$$

8. 和差化积

$$\begin{split} &\lim_{n\to\infty} n^2 (\sin\frac{\pi}{n} - \sin\frac{\pi}{n+1}) \\ &= \lim_{n\to\infty} n^2 \cdot 2\cos\left(\frac{1}{2}\left(\frac{\pi}{n} + \frac{\pi}{n+1}\right)\right) \sin\left(\frac{1}{2}\left(\frac{\pi}{n} - \frac{\pi}{n+1}\right)\right) \\ &= \lim_{n\to\infty} n^2 \cdot 2\cos\left(\frac{\pi(2n+1)}{2n(n+1)}\right) \sin\left(\frac{\pi}{2n(n+1)}\right) \\ &= \lim_{n\to\infty} n^2 \cdot 2 \cdot \frac{\pi}{2n(n+1)} \\ &= \pi \end{split}$$

9. 不动点猜解+单调收敛定理证明。注意要去掉第一项。

(不动点猜解:
$$x=1+rac{x}{x+1}$$
 得到 $x^2-x-2=0$,不动点为 $-1,2$)

因为
$$x_n>0$$
 时 $x_{n+1}>0$, $x_1>0$, 所以 $x_n>0, orall n$ 。

对任意
$$x_1>0$$
 ,均有 $x_2=1+rac{x_1}{x_1+1}<1+1=2$ 。

因为
$$x_n < 2$$
 时 $x_{n+1} - 2 = rac{x_n}{x_n + 1} - 1 = -rac{1}{x_n + 1} < 0$ 。所以 $x_n < 2, orall n \geq 2$ 。

因为
$$x_n < 2$$
 时 $x_{n+1} - x_n = 1 + rac{x_n}{x_n + 1} - x_n = rac{(x_n + 1)(2 - x_n)}{x_n + 1} > 0$,所以 $x_{n+1} > x_n$ 。

所以
$$\{x_n\}_{n\geq 2}$$
 单调增有上界,故收敛。设极限为 x 则 $x=1+rac{x}{x+1}$,解得 $x=-1,2$ 。舍去负解得 $x=2$

0