课程模块	研讨主题	相关知识点	研讨过程	备注
	1 从莱布尼兹的梦想到图灵的通用计算机(理论,历史,思想)	普遍语言,符号逻辑,判定问题,	1 提出问题	
	探讨数理逻辑的发展过程中相关思想方法,理解数理逻辑在计算机科学中的	通用计算机模型,思想,方法.	2 学生尝试	
	基础作用.		解决问题	
	主要参考资料:逻辑的引擎(图书).		3 小组组织	
	2 对偶定理 (理论)	命题逻辑:逻辑联结词,命题公式	若干次讨论	
	主要探讨定理的证明,可扩充了解数学中对偶定理.	等值,对偶原理,数学归纳法.	并提交结果	
	参考:		(内容可以	
	https://baike.baidu.com/item/对偶定理		主要是问	
	地大版教材命题逻辑对偶定理一节.		题)	
	3 归结原理 (理论与应用)	命题逻辑,谓词逻辑:析取范式,	4 师生交流	
数	探讨归结原理(包括正确性证明)及其应用.	演绎推理,命题符号化,机器证明,	5 小组写报	
理	扩展:了解逆归结,归纳逻辑程序设计(ILP)	机器学习.	告或小论文	
逻	参考:有关教材,或	可以不深入考虑谓词逻辑中的归	(长短不限,	
星	ILP30 年综述 https://arxiv.org/abs/2008.07912	结.	内容可以是	
翔	戴望州 周志华, 归纳逻辑程序设计综述		综述, 实验,	
	https://crad.ict.ac.cn/CN/10.7544/issn1000-1239.2019.20180759		示例,总结	
	用 Python 实现命题逻辑归结推理系统		等)	
	https://blog.csdn.net/Zhangguohao666/article/details/105471307		6 提交, 反	
	归结原理1条规则		馈	
	https://blog.csdn.net/Suyebiubiu/article/details/103145475			
	Propositional Resolution			

http://logic.stanford.edu/intrologic/notes/chapter_05.html		ı
4 关系演算	数理逻辑,谓词演算,关系数据库	ı
E.F.Codd 提出关系数据库模型是当前主流数据库管理系统的数学基础,而关		ı
系模型中的关系演算以数理逻辑中的谓词演算为基础。本课题拟探讨谓词演		ı
算在关系数据库中的应用。		Ī
参考: 关系演算 https://blog.csdn.net/hpdlzu80100/article/details/90744715		i
几篇论文:谓词逻辑在关系数据库中的应用(卢延鑫),元组关系演算的语		ı
义研究(卢小兵),用关系谓词推演实现复杂全称量词的结构化查询(钱哨)		ı
5 算法/程序逻辑分析 (理论与应用)	1 命题逻辑: 这里的等价定义为有	Ī
(1) 算法/程序等价性验证: 现有 2 个关于判断某年份是否为闰年的算法, 试	相同的合法输入可得到相同的输	Ī
判断其是否等价;	出。将算法关键部分(输入条件转	i
算法 1:	换为命题逻辑),证明其在同同真	1
input: year	假情况下对应有同样的输出。	1
output:"Yes"/ "No"	2 谓词逻辑:循环不变式是程序设	1
if (year=0 (mod 400), or year=0 (mod 4) and (year!=0 (mod 100))	计理论的重要研究内容,可以用来	1
then return "Yes";	辅助验证或证明程序的正确性。	1
else return "No".	程序或算法中循环都可以找到一	1
注: year=0 (mod 400)表示 year 与 0 模 400 同余, 即 year 是 400 的倍数.	个循环不变式 (谓词公式),该循	1
算法 2:	环不变式在初始化 (第一代迭代之	i
input: year	前)时是为真的,且若每次一次迭	i
output:"Yes"/ "No"	代之后也是为真 (特别地, 在循环	i
if (year=0 (mod 400)) then return "Yes";	终止时也真),从而通过这个循环	I

if (year=0 (mod 100)) the return "No"; 不变式证明循环迭代的正确性。 if (year=0 (mod 4)) then return "Yes"; 3 命题逻辑、谓词逻辑在程序优 else return "No". 化、数据库优化中的理论基础作用 (2) 程序/算法中的循环不变式: 与应用。 程序 1: 计算阶乘 def factorial(number): Fact = 1 i = 1 while i<number i=i+1 Fact=Fact*i end while return Fact 程序 2: 求数组元素最大值 def max(A): answer = A[0] for j in range(1,len(A)) if (A[j]>answer): answer = A[j] return answer 参考:程序正确性证明及循环不变式的寻找方法(王彩芬) (3) 逻辑演算与程序优化(理论与应用) 程序优化是高质量软件开发的重要工作,基于命题逻辑等值演算,可以帮助 简化程序逻辑,减小程序复杂度,提升程序性能.

参考: 教材例 3.3.8 6 工程任务计划安排(理论与应用) 命题逻辑,约束可满足问题 某大型建筑公司子公司下有5个建筑工程队,现在为完成一项紧急任务,需 (SAT)。从问题构造命题公式, 要安排其中若干个工程队参加。为达成最佳效益和效率,现在根据各个工程丨并求其主范式,分析求解。若变量 队的平时情况(特别是工程队之间的协调合作情况)来安排一种建设任务组 比较多,最好编写程序实现。 可以扩展应用,如基于 SMT 的 队方案。方案具体要求: (1) 如果甲工程队去,则乙、丙工程队至少要去其一; AWS 的安全证明。 SMT (Satisfiability modulo theories) (2) 丙、丁工程队最多能去其一; (3) 戊、乙工程队有且仅有其一参加; 在形式化验证、程序语言、软件工 (4) 若丁工程队不去,那么甲工程队也不去。 程、以及计算机安全、计算机系统 等领域得到了广泛应用。 扩展: 考虑范式求解的具体实现; 了解 SAT 及其应用. 7 密码锁电路逻辑表达式求解(理论与应用) 命题逻辑:逻辑抽象、真值表、逻 设 P, Q, R, S 为某保密锁的四个按键,当每个按键被单独按下时,锁既不打开 | 辑函数构造、主范式构造、逻辑公 也不报警,只有当有4个或者3个按键分别同时按下时,锁才能被打开;当十式等值演算。具体根据真值函数 不符合上述组合状态时,将发出报警信息,试求解此保密锁电路的逻辑表达 (真值表) 求解范式, 进而求解组 式、并仅用最少的非门、与非门实现。 合电路的逻辑表达式及其物理实 参考: 数字逻辑组合电路设计. 现。 扩展: 考虑求解的具体实现; 了解 SAT 及其应用; 全加器逻辑设计. 命题公式,真值表,公式类型,主 8 命题逻辑演算系统的计算机实现 基本要求:实现一个简单的命题逻辑演算系统,具体包括如下功能: 范式, 命题公式推理, 推理形式化, (1) 命题公式构造与语法判断:输入仅含否定、析取与合取运算的表达式,判计计算机编程.

断其是否为命题公式,并给出其构造过程(用二叉树);		
(2) 计算该命题公式(需要考虑树的遍历问题,并用栈结构进行计算);		
(3) 构造公式真值表;		
(4) 判断公式类型;		
(5) 构造公式主范式;		
(6) 应用上述工作,判断给定的推理形式是否正确.		
9 软件安全与形式化验证	数理逻辑,非经典逻辑,软件/硬	
探讨数理逻辑在软件形式化验证中的应用,如,航空航天软件系统的设计与实	件形式化验证	
现,最为重要的就是如何保证其系统核心模块的正确性.		
参考:形式化方法概貌 (王 戟等,软件学报,2019,30 (1)).		
芯片开发功能验证的形式化方法(姚广宇等,软件学报,2021,32(6)).		