Labs

Optimization for Machine LearningSpring 2019

EPFL

School of Computer and Communication Sciences

Martin Jaggi

github.com/epfml/OptML_course

Problem Set 1 – Solutions (Convexity, Python Setup)

Convexity

Exercise 1. Prove Jensen's inequality (Lemma 1.5)!

Solution: For m=1, there is nothing to prove, and for m=2, the statement holds by convexity of f. For m>2, we proceed by induction. If $\lambda_m=1$ (and hence all other λ_i are zero), the statement is trivial. Otherwise, let $\mathbf{x}=\sum_{i=1}^m \lambda_i \mathbf{x}_i$ and define

$$\mathbf{y} = \sum_{i=1}^{m-1} \frac{\lambda_i}{1 - \lambda_m} \mathbf{x}_i.$$

Thus we have $\mathbf{x} = (1 - \lambda_m)\mathbf{y} + \lambda_m\mathbf{x}_m$. Also observe that $\sum_{i=1}^{m-1} \frac{\lambda_i}{1 - \lambda_m} = 1$. By convexity and Jensens's inequality that we inductively assume to hold for m-1 terms, we get

$$f(\mathbf{x}) = f((1 - \lambda_m)\mathbf{y} + \lambda_m \mathbf{x}_m)$$

$$\leq (1 - \lambda_m)f\left(\sum_{i=1}^{m-1} \frac{\lambda_i}{1 - \lambda_m} \mathbf{x}_i\right) + \lambda_m f(\mathbf{x}_m)$$

$$\leq (1 - \lambda_m)\left(\sum_{i=1}^{m-1} \frac{\lambda_i}{1 - \lambda_m} f(\mathbf{x}_i)\right) + \lambda_m f(\mathbf{x}_m) = \sum_{i=1}^{m} \lambda_i f(\mathbf{x}_i).$$

Exercise 2. Prove that a convex function (with dom(f) open) is continuous (Lemma 1.6)!

Hint: First prove that a convex function f is bounded on any cube $C = [l_1, u_1] \times [l_2, u_2] \times \cdots \times [l_d, u_d] \subseteq \mathbf{dom}(f)$, with the maximum value occurring on some corner of the cube (a point \mathbf{z} such that $z_i \in \{l_i, u_i\}$ for all i). Then use this fact to show that—given $\mathbf{x} \in \mathbf{dom}(f)$ and $\varepsilon > 0$ —all \mathbf{y} in a sufficiently small ball around \mathbf{x} satisfy $|f(\mathbf{y}) - f(\mathbf{x})| < \varepsilon$.

Solution: For a cube $C \subseteq \mathbf{dom}(f)$, let $V = \{v_1, \dots, v_{2^d}\}$ be the set consisting of the 2^d vertices of C, and let $x \in C$. Because C is convex, we know that there exist $\lambda_1, \dots, \lambda_{2^d} \geq 0$ with $\sum_{i=1}^{2^d} \lambda_i = 1$ such that

$$x = \sum_{i=1}^{2^d} \lambda_i v_i.$$

Thus, by Jensen's inequality we get that

$$f(x) \le \sum_{i=1}^{2^d} \lambda_i f(v_i) \le \sum_{i=1}^{2^d} \lambda_i \max_{i=1}^{2^d} \{f(v_i)\} \le \max_{i=1}^{2^d} \{f(v_i)\}.$$

That is, the maximum value of the function is attained at some corner of C. Therefore, we can assume from now on that f is bounded in any cube $C \subseteq \mathbf{dom}(f)$.

Now we can move on to prove the continuity of f. Let $\mathbf{x} \in \mathbf{dom}(f)$ be fixed, and let $C \subseteq \mathbf{dom}(f)$ be some axis-parallel cube of dimension d with \mathbf{x} as its center (such a cube exists as $\mathbf{dom}(f)$ was assumed to be open). By changing the coordinates and shifting the value of f, we can assume without loss of generality that \mathbf{x} coincides with the origin $(\mathbf{x} = \mathbf{0})$, and that $f(\mathbf{x}) = 0$. Moreover, since f is bounded in C, we can also assume without loss of generality that $\max\{f(\mathbf{z}): \mathbf{z} \in C\} = 1$. Let $\mathbf{y} \in C$ such that $\|\mathbf{x} - \mathbf{y}\| = \|\mathbf{y}\| \le \delta$, for some $\delta > 0$ to be defined later. We want to prove that for sufficiently small δ , $|f(\mathbf{x}) - f(\mathbf{y})| < \varepsilon$. We now define

$$\lambda = \max{\{\lambda' \in \mathbb{R}^+ : \lambda' \mathbf{v} \in C\}} > 1,$$

and its corresponding point on the boundary of C

$$\mathbf{z} = \lambda \mathbf{y} = \lambda \mathbf{y} + (1 - \lambda) \mathbf{x}.$$

Let also $\mathbf{z}' = -\mathbf{z}$.

Thus, we can express y as a convex combination of z and x, and we can also express x = 0 as a convex combination of y and z'.

$$\begin{split} \mathbf{y} &=& \frac{1}{\lambda}\mathbf{z} + \frac{\lambda - 1}{\lambda}\mathbf{x}, \\ \mathbf{x} &= \mathbf{0} &=& \mathbf{y} + \frac{1}{\lambda + 1}(\mathbf{z}' - \mathbf{y}) = \frac{\lambda}{\lambda + 1}\mathbf{y} + \frac{1}{\lambda + 1}\mathbf{z}'. \end{split}$$

Hence, by convexity, and the facts that $f(\mathbf{w}) \leq 1$ for all $\mathbf{w} \in C$ and $f(\mathbf{x}) = 0$, we get that

$$f(\mathbf{y}) \leq \frac{1}{\lambda} f(\mathbf{z}) + \frac{\lambda - 1}{\lambda} f(\mathbf{x}) \leq \frac{1}{\lambda},$$

$$0 \leq \frac{\lambda}{\lambda + 1} f(\mathbf{y}) + \frac{1}{\lambda + 1} f(\mathbf{z}') \leq \frac{\lambda}{\lambda + 1} f(\mathbf{y}) + \frac{1}{\lambda + 1}.$$

Rearranging the latter inequality, we get that:

$$f(\mathbf{y}) \ge -\frac{1}{\lambda}.$$

Thus, to get $|f(\mathbf{x}) - f(\mathbf{y})| < \varepsilon$, we need to ensure that $\lambda > 1/\varepsilon$. Let r denote the distance of \mathbf{x} to the boundary of C. Because \mathbf{z} lies on the boundary of C, we get that

$$r \le \|\mathbf{z}\| = \|\lambda\mathbf{y}\| = \lambda\|\mathbf{y}\|,$$

Hence, if $\delta < r\varepsilon$, then $\|\mathbf{y}\| < r\varepsilon$ and hence, $\lambda > 1/\varepsilon$ and $|f(\mathbf{x}) - f(\mathbf{y})| < \varepsilon$, so continuity holds.

Exercise 3. Prove that the function $d_{\mathbf{y}}: \mathbb{R}^d \to \mathbb{R}$, $\mathbf{x} \mapsto \|\mathbf{x} - \mathbf{y}\|^2$ is strictly convex for any $\mathbf{y} \in \mathbb{R}^d$. (Use Lemma 1.19.)

Solution: By Lemma 1.19, it suffices to show that $\nabla^2 d_{\mathbf{y}}(\mathbf{x})$ is positive definite for every $\mathbf{x} \in \mathbb{R}^d$ with $\mathbf{x} \neq \mathbf{0}$. We compute

$$d_{\mathbf{y}}(\mathbf{x}) = (\mathbf{x} - \mathbf{y})^{\top} (\mathbf{x} - \mathbf{y}), \quad \nabla d_{\mathbf{y}}(\mathbf{x}) = 2(\mathbf{x} - \mathbf{y}), \quad \nabla^2 d_{\mathbf{y}}(\mathbf{x}) = 2I \succ 0,$$

where I denotes the identity matrix. The claim follows.

Exercise 4.

Solution:

(i) Let $\mathbf{x}, \mathbf{y} \in \mathbf{dom}(f)$ and $\lambda \in [0,1]$ be arbitrary. We simply compute

$$f(\lambda \mathbf{x} + (1 - \lambda)\mathbf{y}) = \sum_{i=1}^{m} \lambda_{i} f_{i}(\lambda \mathbf{x} + (1 - \lambda)\mathbf{y})$$

$$\leq \sum_{i=1}^{m} \lambda_{i} (\lambda f_{i}(\mathbf{x}) + (1 - \lambda)f_{i}(\mathbf{y}))$$

$$= \lambda \cdot \underbrace{\sum_{i=1}^{m} \lambda_{i} f_{i}(\mathbf{x})}_{f(\mathbf{x})} + (1 - \lambda) \cdot \underbrace{\sum_{i=1}^{m} \lambda_{i} f_{i}(\mathbf{y})}_{f(\mathbf{y})},$$

where the inequality makes use of convexity of the individual f_i and of the fact that the λ_i are non-negative.

(ii) Let $\mathbf{x}, \mathbf{y} \in \mathbf{dom}(f \circ g)$ and $\lambda \in [0,1]$ be arbitrary. We simply compute

$$\begin{split} (f \circ g)(\lambda \mathbf{x} + (1 - \lambda)\mathbf{y}) &= f(A(\lambda \mathbf{x} + (1 - \lambda)\mathbf{y}) + \mathbf{b}) \\ &= f(\lambda \cdot (A\mathbf{x} + \mathbf{b}) + (1 - \lambda) \cdot (A\mathbf{y} + \mathbf{b})) \\ &\leq \lambda \cdot \underbrace{f(A\mathbf{x} + \mathbf{b})}_{(f \circ g)(\mathbf{x})} + (1 - \lambda) \cdot \underbrace{f(A\mathbf{y} + \mathbf{b})}_{(f \circ g)(\mathbf{y})}, \end{split}$$

where the inequality makes use of convexity of f and of the fact that both $g(\mathbf{x}) = A\mathbf{x} + \mathbf{b}$ and $g(\mathbf{y}) = A\mathbf{y} + \mathbf{b}$ are in the domain of f.

If two functions f and g are both convex, then their composition $f \circ g$ is not necessarily also convex. Consider for example convex functions $f(x) = x^2$ and $g(x) = x^2 - 1$. Then, the composition

$$(f \circ g)(x) = x^4 - 2x^2 + 1$$

satisfies $(f \circ g)(-1) = (f \circ g)(1) = 0$ and $(f \circ g)(0) = 1$, which is a clear violation of convexity.

Exercise 7. Prove that the function $f(\mathbf{x}) = \|\mathbf{x}\|_1 = \sum_{i=1}^d |x_i| \ (\ell_1\text{-norm})$ is convex!

Solution: It suffices to prove that $f_i(\mathbf{x}) = |x_i|$ is convex and then use Lemma 1.13. Equivalently, that f(x) = |x| is convex. For $x, y \in \mathbb{R}$ and $\lambda \in [0, 1]$, we compute

$$\begin{array}{lcl} f(\lambda x + (1-\lambda)y) & = & |\lambda x + (1-\lambda)y| \\ & \leq & |\lambda x| + |(1-\lambda)y| \quad \text{(triangle inequality)} \\ & = & |\lambda||x| + |(1-\lambda)||y| \\ & = & \lambda|x| + (1-\lambda)|y| \\ & = & \lambda f(x) + (1-\lambda)f(y). \end{array}$$

Exercise 8. A seminorm is a function $f: \mathbb{R}^d \to \mathbb{R}$ satisfying the following two properties for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^d$ and all $\lambda \in \mathbb{R}$.

- (i) $f(\lambda \mathbf{x}) = |\lambda| f(\mathbf{x})$,
- (ii) $f(\mathbf{x} + \mathbf{y}) \le f(\mathbf{x}) + f(\mathbf{y})$ (triangle inequality).

Prove that every seminorm is convex!

Solution: This just generalizes the previous exercise and shows what is actually going on. For $\lambda \in [0,1]$ we get

$$\begin{array}{lcl} f(\lambda \mathbf{x} + (1 - \lambda)\mathbf{y}) & \leq & f(\lambda \mathbf{x}) + f((1 - \lambda)\mathbf{y}) & \text{(triangle inequality)} \\ & = & |\lambda|f(\mathbf{x}) + |(1 - \lambda)|f(\mathbf{y}) \\ & = & \lambda f(\mathbf{x}) + (1 - \lambda)f(\mathbf{y}). \end{array}$$

Getting Started with Python

Follow the Python setup tutorial python_setup_tutorial.md provided on our github repository here:

 $github.com/epfml/OptML_course/tree/master/labs/ex01/$

After you are set up, clone the repository.

To get familiar with vector and matrix operations using NumPy arrays, you can go through the numpy_primer.ipynb notebook in the folder /labs/ex01. For computational efficiency, explicit for-loops should be avoided in favor of NumPy's built-in commands. These commands are vectorized and thoroughly optimized, and bring the performance of numerical Python code (like for e.g. Matlab) closer to lower-level languages like C.