

EXAM QUESTION PAPER

College/ Institute	Engineering, Design and Physical Sciences				
Department	Electronic and Electrical Engineering				
Exam Author(s)	Dr Mingliang Deng				
Module Code	EE2637				
Module Title	Digital Signal Processing				
Month	January	Year	2024/25		
Exam Type	Full/ Resit	Format			
Duration	Two Hours				
Number of questions	Five				
Question Instructions	Answer all FIVE questions				
Are calculators permitted	Yes				
Make/Model number of permitted calculators.	None				
Can students include drawings/ diagrams?	No				
Any permitted reference materials	None				
Required Stationery / Equipment					

By continuing beyond this point, you confirm that you have read the information and instructions above, and understand the conditions of this examination.

1.	Consider a causal LTI system where the input $x[n]$ and the output $y[n]$ are related near constant coefficient difference equation below $y[n] = 0.9y[n-1] + x[n] + 0.9x[n-1]$			
	a) Determine the transfer function H(z) of this system.	[100%]		
	b) Determine the unit sample response h(n) of this system.	[20%]		
	c) Determine the frequency response and plot the magnitude response.	[20%]		
	d) Use the frequency response c) to determine the response to an input of $e^{j\omega n}$.	[40%]		
2.	Assume that there are two four-point sequences x[n] and h[n] as follows $x[n] = \cos\left(\frac{\pi n}{2}\right), n = 0,1,2,3$ $h[n] = 2^n, n = 0,1,2,3$			
	a) Calculate the four-point DFT $X[k]$ for $x[n]$.	[33%]		
	b) Calculate the four-point DFT H[k] for h[n].	[33%]		
	c) Calculate $y[n]$ by multiplying the DFTs of $x[n]$ and $h[n]$ and performing an IDFT.	[33%]		

3. Consider a discrete-time linear causal system defined by the difference equation

$$y[n] - \frac{3}{4}y[n-1] + \frac{1}{8}y[n-2] = x[n] + \frac{1}{3}x[n-1]$$

Draw a signal flow graph to implement this system in each of the following forms

[100%]

a) Direct from I.

[20%]

b) Direct from II (Canonic form).

[20%]

c) Cascade form.

[30%]

d) Parallel form.

[30%]

For the cascade and parallel forms, only use the first-order sections.

4. Write down the features of unit sample response for four types of linear phase FIR filters. Determine whether the following unit sample response corresponds to a linear phase FIR filter. If it is, state its type, explain why and calculate its phase response and group delay.

$$\begin{cases} 1, & 0 \le n \le 3 \\ 0, & \text{others} \end{cases}$$

[100%]

5. Design a causal linear phase FIR system to approximate an ideal low-pass digital filter with a cut-off frequency of 0.3π and satisfying

$$0.95 < H(e^{j\omega}) < 1.05, \qquad 0 \le |\omega| \le 0.25 \,\pi$$

 $-0.1 < H(e^{j\omega}) < 0.1, \qquad 0.35\pi \le |\omega| \le \pi$

$$0 \le |\omega| \le 0.25 \,\pi$$
$$0.35\pi \le |\omega| \le \pi$$

[100%]

a) What kinds of windows can be used to meet this specification and why? Here, Kaiser window is NOT considered.

[20%]

b) For each window obtained in Table 1, give the minimum filter length required.

[25%]

c) Determine the impulse response of the low-pass FIR filter with the minimum design complexity and passband/stopband ripples.

[30%]

d) Calculate the impulse response of a linear phase high-pass FIR filter with a cut-off frequency and a filter length of the low-pass filter obtained in (c). Here, rectangular window is only considered.

[25%]

Appendix

Table 1 Characteristics of Various Window Functions (The filter length is M+1.)

Type of Window	Peak Side-Lobe Amplitude (Relative) (r_p)	Approximate Width of Main Lobe $(\Delta \omega_m)$	Peak Approximation Error $(e_p = 20 \log_{10} \delta)$	Transition Widths (Δω)	Equivalent Kaiser Window (eta)
Rectangular	-13	$4\pi T(M+1)$	-21	1.81π TM	0
Bartlett	-25	$8\pi^{\mathrm{T}}M$	-25	2.37π TM	1.33
Hanning	-31	$8\pi TM$	-44	5.01π TM	3.86
Hamming	-41	8 πTM	-53	6.27π TM	4.86
Blackman	-57	12π TM	-74	9.19π TM	7.04