ACH 2147 — Desenvolvimento de Sistemas de Informação Distribuídos

Aula 20: Nomeação (parte 3)

Prof. Renan Alves

Escola de Artes, Ciências e Humanidades — EACH — USP

13/05/2024

Anteriormente...

- Nomeação plana: nomes arbitrários, sem semântica
- Nomeação estruturada: nome dividido em partes, dentro de um espaço de nomes (representado por uma árvore)

Porém, é preciso saber o nome da entidade

• Se as entidades tiverem uma conjunto de pares (atributo, valor)...

Nomeação baseada em atributos

Abordagem alternativa

Em muitos casos, seria mais conveniente nomear e procurar entidades pelos seus atributos \Rightarrow serviços tradicionais de diretórios (ex: páginas amarelas).

Espaços de Nomes 13/05/2024 3 /

Nomeação baseada em atributos

Abordagem alternativa

Em muitos casos, seria mais conveniente nomear e procurar entidades pelos seus atributos \Rightarrow serviços tradicionais de diretórios (ex: páginas amarelas).

Pequeno problema:

Designar o conjunto de atributos disponíveis e seus possíveis valores (e fazer com que os usuários usem os valores de maneira consistente) não é trivial.

Espaços de Nomes 13/05/2024

Nomeação baseada em atributos

Abordagem alternativa

Em muitos casos, seria mais conveniente nomear e procurar entidades pelos seus atributos \Rightarrow serviços tradicionais de diretórios (ex: páginas amarelas).

Pequeno problema:

Designar o conjunto de atributos disponíveis e seus possíveis valores (e fazer com que os usuários usem os valores de maneira consistente) não é trivial.

Grande problema:

Operações de consulta pode ser muito caras, já que necessitam que os valores dos atributos procurados correspondam aos valores reais das entidades. Em princípio, teríamos que inspecionar todas as entidades => particularmente ruim se o sistema for distribuído.

Espaços de Nomes 13/05/2024

Implementando serviços de diretório

Solução para busca escalável

Implementar um serviço de diretório básico como um banco de dados, e combiná-lo com um sistema de nomes estruturado tradicional.

Lightweight Directory Access Protocol (LDAP)

Cada entrada de diretório consiste um par (atributo, valor), nomeada de forma única para facilitar buscas.

Exemplo de uma entrada de diretório:

Attribute	Abbr.	Value
Country	С	NL
Locality	L	Amsterdam
Organization	0	VU University
OrganizationalUnit	OU	Computer Science
CommonName	CN	Main server
Mail_Servers	_	137.37.20.3, 130.37.24.6, 137.37.20.10
FTP_Server	-	130.37.20.20
WWW_Server	_	130.37.20.20

LDAP

Essência

- Directory Information Base (DIB): coleção de todas as entradas de diretório de um serviço LDAP.
- Cada registro é nomeado de forma única como uma sequência de atributos nomeados (chamados de Relative Distinguished Name – RDN), de forma que possa ser buscado
- Directory Information Tree: o grafo que representa um serviço LDAP; cada nó representa uma entrada de diretório

Parte de uma árvore de diretório LDAP

LDAP

Exemplo de busca

Attribute	Value	Attribute	Value
Locality	Amsterdam	Locality	Amsterdam
Organization	VU University	Organization	VU University
OrganizationalUnit	Computer Science	OrganizationalUnit	Computer Science
CommonName	Main server	CommonName	Main server
HostName	star	HostName	zephyr
HostAddress	192.31.231.42	HostAddress	137.37.20.10

Resultado de search ("(C=NL) (O=VU University) (OU=Computer Science) (CN=Main server)")

Distribuição pode ser obtida de forma semelhante ao DNS

 Operações com wildcards continuam custosas, e.g search (" (C=NL) (O=VU University) (OU=*) (CN=Main server)")

Nomeação baseada em atributos

Busca por atributos em sistemas P2P

- Sistemas P2P geralmente armazenam arquivos
- Sistemas P2P primitivos: é preciso conhecer a chave (hash) do arquivo
- Busca por atributos seria mais conveniente
- Uso de índices para tornar mais eficiente

Soluções descentralizadas 13/05/2024 7 /

Nomeação baseada em atributos

Índice distribuído

Nomeação

Ideia geral

- Por hipótese, há um conjunto de atributos {a¹,...,a^N}
- Cada atributo pode possuir valores a^k de um dado conjunto R^k
- Para cada atributo a^k , associe um conjunto de n_k servidores $\mathbf{S}^k = \{S_1^k, \dots, S_{n_k}^k\}$
- Mapa global $F: F(a^k, v) = S_j^k \text{ com } S_j^k \in \mathbf{S^k} \text{ e } v \in R^k$

Observação

Se $L(a^k, v)$ é o conjunto de chaves de arquivos retornado por $F(a^k, v)$, então uma consulta pode ser formulada como uma expressão lógica, e.g.,

$$(F(a^1, v^1) \wedge F(a^2, v^2)) \vee F(a^3, v^3)$$

que pode ser processada no cliente construindo o conjunto

$$(L(a^1, v^1) \cap L(a^2, v^2)) \cup L(a^3, v^3)$$

Soluções descentralizadas 13/05/2024 8

Problemas com índices distribuídos

Vários

- Uma consulta envolvendo k atributos requer contato com k servidores
- Suponha uma consulta "lastName = Silva \(\) firstName = Baltasar":
 muitos registros deverão ser processados, pois há muitas pessoas com o
 sobrenome Silva.
- Não dá para implementar (facilmente) consultas com intervalos, como "price = [1000 – 2500]."

Soluções descentralizadas 13/05/2024

Alternativa: mapear atributos para um espaço unidimensional Space-filling curves

- 1. Mapear o espaço N-dimensional definido pelos N atributos $\{a^1, \dots, a^N\}$ para um espaço unidimensional
- Preserva localidade
- Usar hash para distribuir o espaço unidimensional entre os servidores de índice.

Hilbert space-filling curve de (a) ordem 1, e (b) ordem 4

Soluções descentralizadas 13/05/2024

Nomeação baseada em atributos

Space-filling curve

Uma vez que curva seja definida

Considerando o caso de duas dimensões

- Uma curva de Hilbert de ordem k conecta 2^{2k} quadrantes \Rightarrow tem 2^{2k} índices.
- Um intervalo de busca equivale a um retângulo R (no caso bidimensional)
- O retângulo R faz intersecção com um conjunto de quadrantes, cada um se referindo a um índice ⇒ temos os indices necessários para fazer a busca

Acessando as entidades

Cada índice é mapeado para um servidor, que mantém uma referência para as entidades associadas. Possível solução: DHT

Soluções descentralizadas 13/05/2024

Named-data networking

Pontos principais

- Obter uma entidade através da rede utilizando seu nome, sem a necessidade de um endereço
- A rede deve usar o nome da entidade como entrada, roteando a requisição para a localidade da entidade
- NDN substitui o papel do IP numa arquitetura alternativa da internet

Exemplo de nome

/distributed-systems.net/books/Distributed Systems/4/01/Naming

Introdução 13/05/2024 12

Roteamento em NDN

Questão

Há alguma diferença fundamental entre rotear uma requisição como distributed-systems.net/books/Distributed Systems/4/01/Naming

e rotear uma requisição para um endereço IPv6 como 2001:610:508:108:192:87:108:15 ?

Observação

Não há diferença fundamental.

De uma forma ou de outra, uma parte do nome (normalmente um prefixo) é anunciado e usado para encaminhamento.

Roteamento 13/05/2024 13

Roteamento em NDN

Elementos principais

- Content store: basicamente um cache para agilizar buscas já feitas anteriormente
- Pending interest table: tabela que associa interesses em dados às interfaces do roteador
- Forwarding information base: lida com o roteamento em si, e com a decisão do que fazer se um dado não estiver na base

Roteamento 13/05/2024 14

Roteamento em NDN

Enviando uma requisição em direção ao seu destino destino

Retorno da resposta em direção ao requisitante

Roteamento 13/05/202