Übungsblatt 9 Diskrete Strukturen, Prof. Dr. Gerhard Hiß, WS 2018/19

Für Matrikelnummer: 399191

Abgabezeitpunkt: Fr 21 Dez 2018 14:00:00 CET Dieses Blatt wurde erstellt: Mo 21 Jan 2019 13:08:50 CET

Die	Die Lösungen der ersten drei Aufgaben sind online abzugeben.			
48	Es seien $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 3 & 5 & 9 & 4 & 1 & 2 & 6 & 7 & 8 \end{pmatrix}$ und $\pi = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 5 & 8 & 3 & 1 \end{pmatrix}$	$\begin{pmatrix} 6 & 7 & 8 & 9 \\ 4 & 7 & 6 & 9 \end{pmatrix} \in S_9.$		
	Wieviele Zykel hat $(\pi \circ \sigma)^3$?			
	Wieviele Elemente enthält der Träger der Permutation $(\pi \circ \sigma \circ \pi)^5$?			
	Was ist das Bild von 4 unter der Permutation $\sigma \circ \sigma \circ \pi$?			
	Für welches $i \in 9$ gilt $(9 \ 8) \circ (2 \ 5) \circ (3 \ 8) \circ (1 \ 8) \circ (8 \ 7) \circ (5 \ 7) \circ (6 \ i) = \sigma$?			
	Welches ist das kleinste $k \in \mathbb{N}$ mit $\sigma^k = id$?			
49	Berechnen Sie das Signum der folgenden Permutationen aus S_{12} .			
	1 2 3 4 5 6 7 8 9 10 11 12 4 8 9 5 7 11 12 6 3 1 10 2	○ +1 / ○ -1		
	1 2 3 4 5 6 7 8 9 10 11 12 5 2 4 10 7 1 3 8 12 9 11 6	○ +1 / ○ -1		
	1 2 3 4 5 6 7 8 9 10 11 12 9 1 10 4 11 5 8 7 6 12 3 2	○ +1 / ○ -1		
	1 2 3 4 5 6 7 8 9 10 11 12 8 3 4 1 11 12 6 9 5 2 10 7	○ +1 / ○ -1		
	$ \left(\begin{array}{cccccccccccccccccccccccccccccccccccc$	○ +1 / ○ -1		
50	Betrachten Sie die folgenden Matrizen mit reellen Koeffizienten.			
	$A := \begin{pmatrix} 14 & -13 \\ 1 & -19 \\ 5 & 6 \end{pmatrix}, B := \begin{pmatrix} 14 & -13 & 2 \\ 1 & -19 & 5 \end{pmatrix}, C := \begin{pmatrix} 4 & 3 & 2 \\ -1 & -2 & -3 \\ 9 & 12 & -24 \end{pmatrix}, D := \begin{pmatrix} 1 \\ -1 \end{pmatrix}$	$\begin{pmatrix} -6 \\ 7 \end{pmatrix}$.		
	Entscheiden Sie für jeden der folgenden Ausdrücke, ob er sinnvoll ist und eine Matrix $X =$ definiert. Falls nein, kreuzen Sie Q an (für <i>Quatsch</i>) und sonst kreuzen sie den Eintrag x_{11} an.			
	$X = DBA - D^3$	○ Q / ○ 79 / ○ 18		
	$X = C^3 A - D$	○ Q / ○ 326 / ○ 388		
	X = ABA - 170A	○ Q / ○ 180 / ○ 62		
	X = CAC	○ Q / ○ -97 / ○ 188		

Umfrage zur Bearbeitungszeit. Wieviele Stunden haben Sie für die Lösung dieses Übungsblattes aufgewendet? (Bitte auf ganze Stunden runden und nur diese ganze Zahl eintra-	$Q / \bigcirc 0 / \bigcirc 1$
gen.) Diese Angabe ist freiwillig. Es gibt keine Punkte für die Beantwortung.	

Bitte werfen Sie Ihre Lösungen zu den schriftlich zu bearbeitenden Aufgaben in das Ihrer Gruppennummer entsprechende Fach im Abgabekasten des Lehrstuhl D für Mathematik (Flur 2.OG im Hauptgebäude, neben der Mathematischen Bibliothek).

Denken Sie daran, dass Sie bei den schriftlichen Aufgaben Ihre Aussagen auch immer begründen.

- 52 | Sei $n \in \mathbb{N}$ und S_n die symmetrische Gruppe auf \underline{n} .
 - (a) Sei $\pi \in S_n$ und z die Anzahl der disjunkten Zykel von π (hier werden die 1-Zykel mitgezählt). Zeigen Sie, dass dann

$$\operatorname{sgn}(\pi) = (-1)^{n-z}$$

ist.

(b) Zeigen Sie, dass die Teilmenge

$$A_n := \{ \pi \in S_n \mid \operatorname{sgn}(\pi) = 1 \} \subseteq S_n$$

eine Untergruppe von S_n ist.

- (c) Bestimmen Sie die Anzahl der Elemente $|A_n|$ der Untergruppe A_n aus Teil (b).
- Seien R ein kommutativer Ring und $a, b, c, d \in R$. Sei $A := \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in R^{2 \times 2}$.

Sei weiter
$$B := \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \in R^{2 \times 2}$$
.

- (a) Berechnen Sie die Matrizen AB und BA.
- (b) Zeigen Sie, dass A eine Inverse hat, wenn $ad bc \in R^{\times}$ ist.
- (c) Sei umgekehrt $C = \begin{pmatrix} s & t \\ u & v \end{pmatrix} \in R^{2\times 2}$ Inverse von A. Zeigen Sie, dass dann (ad bc)(sv tu) = 1 ist. (Insbesondere ist also $ad bc \in R^{\times}$.)

Tipp: Schreiben Sie das Matrixprodukt AC mit Hilfe der Einträge von A und C hin. Nutzen Sie dann aus, dass für die Einheitsmatrix $E_2 = (\delta_{ij})$ gilt $\delta_{11}\delta_{22} - \delta_{12}\delta_{21} = 1$.

Abgabe bis spätestens Freitag, dem 21. Dezember 2018, 14 Uhr, sowohl am Abgabekasten als auch online.