Na procura por encontrar um modelo que possa explicar razoavelmente bem a percentagem de alunos aprovados no teste de matemática do 4º ano, agrupamos as variáveis em painel para poder mensurar bem seus efeitos na variável dependente. O estimador mais adequado de acordo com estimativa e com as premissas assumidas deve ser escolhido dentre os possíveis a seguir: POLS; Efeitos Fixos (FE); Efeitos Aleatórios (RE).

Das premissas às vantagens e desvantagens de cada um dos estimadores podemos explicitar:

- POOLED OLS Exogeneidade estrita; $cov(U_{it}, U_{js} | X_{it}, X_{js}) = 0$; $var(U_{it} | X_{it}) = \sigma^2 u$; full rank. Utilizar quando os regressores não são correlacionados com a heterogeneidade não observada (C_i), pois dessa forma o estimador é consistente.
- FE Consistente quando há exogeneidade estrita, mas não é eficiente; **full rank.** Utilizar quando os regressores são correlacionados com a heterogeneidade não observada (**C**_i), pois dessa forma o estimador é consistente. Na prática, isso significa fazer uma transformação no modelo e depois aplicação do OLS, resolvendo problema de endogeneidade. Decorre como problema desse método, a estimação das variáveis que não variam ao longo do tempo.

O modelo com efeitos fixos pode consumir muitos graus de liberdade quando há muitas unidades de corte transversal e/ou temporal.

• RE - Exogeneidade estrita; **cov** (U_{it} , U_{js} | X_{it} , X_{js}) = 0; **var** (U_{it} | X_{it}) = $\sigma^2 u$; **full rank.** Utilizar quando os regressores não são correlacionados com a heterogeneidade não observada (C_i), pois dessa forma o estimador é consistente. Esse estimador, diferentemente do FE, permite mensurar variáveis que não variam no tempo, ou mensurar de forma mais precisa, aquelas que variam pouco ao longo do tempo.

As matrizes de variância-covariância utilizadas ao longo desse trabalho visam corrigir eventuais problemas de heterocedasticidade e autocorrelação. Nesse sentido, são usadas as matrizes robustas por clusters, permitindo realizar melhores inferências.

Após definir o modelo mais adequado, que relaciona as variáveis, a escolha entre os diferentes estimadores, de efeitos fixos ou aleatórios, será feita mediante teste de Hausman. Esse teste compara as estimativas de efeitos aleatórios com as de efeitos fixos. Diferenças significativas entre as estimativas sugerem a inconsistência do estimador RE. Na ausência de correlação entre regressores e **C**_i, ambos os estimadores serão consistentes, mas RE será mais eficiente.

Primeiramente, descrevemos as variáveis no anexo que são potenciais na entrada do modelo explicativo, com exceção daquelas dummies. Observamos algumas estatísticas desses atributos que facilitam a compreensão dos dados. O primeiro modelo postulado relaciona a variável dependente com o % de alunos elegíveis a almoço grátis, os gastos por aluno e o log dos gastos com estes, considerando a inflação, além das dummies no tempo.

math4 =
$$\alpha_0$$
 + α_1 lunch+ α_2 exppp + α_3 lrexpp + δ_1 y95 + δ_2 y96 + δ_3 y97 + δ_4 y98

Sob os diferentes estimadores, com uso das variâncias robustas, obtivemos os seguintes coeficientes. É importante ressaltar que alguns desses estimadores não são significativos (ver anexo) e que por isso, sugerem que mudemos a forma funcional do modelo.

Variable	beta_POLS	beta_RE	beta_FE
lunch exppp lrexpp y95 y96 y97 y98 _cons	42608832 .00050263 5.9713034 11.71157 13.248996 10.413762 23.804401 14.829132	37838136 .00020915 5.0333187 11.616944 13.398143 10.723641 24.201507 21.703464	01942969 .00024757 2.6411033 11.817712 13.694357 10.847291 24.248205 28.17641
	I		

O segundo modelo proposto para explicar a variável dependente se diferencia, pois inclui a dummy de escolas pequenas, além de excluir a variável de gastos por aluno. Isso se deve ao fato de que acreditamos que lrexpp e exppp são bem correlacionadas e por isso, a inserção da variável mais completa (lrexpp), que já contempla inflação, permitiria melhores estimações e obtenção de coeficientes mais significativos, como se pode ver no anexo.

math4 =
$$\alpha_0$$
 + α_1 lunch+ α_2 lrexpp + δ_1 small + δ_2 y95 + δ_3 y96 + δ_4 y97 + δ_5 y98

Os coeficientes estimados com os diferentes estimadores são:

Variable	beta_POLS	beta_RE	beta_FE
lunch	42651465	37870805	01950011
lrexpp	7.8705589	5.8173444	3.6326745
small	5.1721261	4.3720591	(omitted)
y95	11.730723	11.624135	11.812404
y96	13.331117	13.429921	13.714798
y97	10.551431	10.77788	10.891048
y98	23.976922	24.27094	24.310102
_cons	.96476883	15.977785	20.916836

Cabe ressaltar ainda que os testes F de significância conjunta nos trazem mais evidência estatística de que as variáveis conjuntamente são estatisticamente significantes.

Posteriormente, realizou-se o teste aos efeitos fixos no tempo no FE para verificar se seria possível retirar as variáveis dummies referentes aos anos. O teste tem como hipótese nula que os coeficientes referentes aos anos são iguais a zero, enquanto que a hipótese alternativa diz que os coeficientes são diferentes de zero. De acordo com o output do teste abaixo, verificou-se que há evidencias de efeitos fixos no tempo, rejeitando-se a hipótese nula, reforçando a utilização das dummies no tempo.

```
. test( y95 y96 y97 y98)

( 1)  y95 = 0
( 2)  y96 = 0
( 3)  y97 = 0
( 4)  y98 = 0

F( 4, 1682) = 555.66
Prob > F = 0.0000
```

Em seguida, houve a realização do teste de Hausman para a proposta do estimador mais adequado. O output do teste de Hausman está abaixo e verificou-se que há evidências para a rejeição da hipótese nula e, portanto, o estimador mais adequado é o estimador de efeitos fixos. O FE ainda tem a vantagem de ser menos restritivo quanto às hipóteses, como por exemplo, não assumir que não haja correlação entre os regressores e C_i . Apesar da matriz de covariâncias da diferenças entre os estimadores do teste de Hausman não ser definida positiva. No entanto, o STATA consegue calcular a estatística através de artifícios computacionais, e também, não há relatos na literatura se a distribuição assintótica sofre alguma distorção.

```
. hausman beta_FE_NR beta_RE_NR
```

	(b)	(B)	(b-B)	sqrt(diag(V_b-V_B))
	beta_FE_NR	beta_RE_NR	Difference	S.E.
lunch	0195001	3787081	.3592079	.0291607
lrexpp	3.632675	5.817344	-2.18467	.9219224
y95	11.8124	11.62414	.1882694	.1594307
y 9 6	13.7148	13.42992	.2848771	.1894086
y 9 7	10.89105	10.77788	.1131677	. 220322
v98	24.3101	24.27094	.0391617	.2264399

b = consistent under Ho and Ha; obtained from xtreg
B = inconsistent under Ha, efficient under Ho; obtained from xtreg

Test: Ho: difference in coefficients not systematic

 $\begin{array}{lll} \text{chi2}\,(6) &=& \text{(b-B)'[(V_b-V_B)^(-1)](b-B)} \\ &=& 146.72 \\ \text{Prob>chi2} &=& 0.0000 \\ \text{(V_b-V_B is not positive definite)} \end{array}$

Anexo

Variable	2	Mean	Std. Dev.	Min	Max	Observations
math4	overall between within	63.57726	20.19047 16.08074 12.37335	2.9 11.75 13.71059	100 98.94 122.3439	N = 7150 n = 1683 T-bar = 4.24837
lunch	overall between within	36.7446	25.10881 25.10869 4.329699	.306 3.244596	100 98.61333 66.3826	N = 7150 n = 1683 T-bar = 4.24837
exppp	overall between within	3972.765	843.9141 669.6237 528.6379	1521 2301.8 -442.2347	13581 9139 9972.765	N = 7150 n = 1683 T-bar = 4.24837
cpi	overall between within	1.571522	.0506793 .0175765 .0481114	1.482 1.525 1.481189	1.63 1.601333 1.656189	N = 7150 n = 1683 T-bar = 4.24837
rexppp	overall between within	4048.838	814.8421 673.4252 472.1131	1539.028 2373.791 -229.745	14708.17 9110.974 10823.15	N = 7150 n = 1683 T-bar = 4.24837
lrexpp	overall between within	8.287368	.1924372 .1543265 .1165782	7.338906 7.763933 7.564195	9.596158 9.043225 9.070365	N = 7150 n = 1683 T-bar = 4.24837

As variáveis da base de dados se referem a:

distid	district identifier
schid	school identifier
lunch	% eligible for free lunch
exppp	expenditure per pupil
math4	4th grade math test
year	1992=school yr 1991-2
срі	consumer price index
rexppp	(exppp/cpi)*1.695: 1997 \$
Irexpp	log(rexpp)
y94	=1 if year == 1994
y95	=1 if year == 1995
y96	=1 if year == 1996
y97	=1 if year == 1997
y98	=1 if year == 1998
small	=1 if the school has less than 100 students enrolled

Pooled OLS Modelo 1

Linear regression Number of obs = 7150

F(7, 1682) = 597.51 Prob > F = 0.0000 R-squared = 0.4012 Root MSE = 15.631

(Std. Err. adjusted for 1683 clusters in schid)

		Robust				
math4	Coef.	Std. Err.	t	P> t	[95% Conf.	<pre>Interval]</pre>
lunch	4260883	.0133935	-31.81	0.000	452358	3998187
exppp	.0005026	.0016997	0.30	0.767	0028311	.0038363
lrexpp	5.971303	7.082661	0.84	0.399	-7.920454	19.86306
у95	11.71157	.5788769	20.23	0.000	10.57617	12.84696
у96	13.249	.6200841	21.37	0.000	12.03278	14.46521
у97	10.41376	.6953555	14.98	0.000	9.049909	11.77762
у98	23.8044	.7608678	31.29	0.000	22.31205	25.29675
_cons	14.82913	52.24064	0.28	0.777	-87.63437	117.2926

Efeitos Aleatórios Modelo 1

Random-effects GLS regression	Number of obs =	7150
Group variable: schid	Number of groups =	1683
R-sq: within = 0.3443	Obs per group: min =	3

R-sq: within = 0.3443 Obs per group: min = 3 between = 0.4267 avg = 4.2 overall = 0.3996 max = 5

math4	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
lunch exppp lrexpp y95 y96 y97 y98 _cons	3783814 .0002091 5.033319 11.61694 13.39814 10.72364 24.20151 21.70346	.0111848 .0011138 4.718923 .5435046 .5384819 .5806352 .6112494 34.88973	-33.83 0.19 1.07 21.37 24.88 18.47 39.59 0.62	0.000 0.851 0.286 0.000 0.000 0.000 0.000 0.534	4003032 0019739 -4.215601 10.55169 12.34274 9.585617 23.00348 -46.67914	3564595 .0023922 14.28224 12.68219 14.45355 11.86167 25.39953 90.08607
sigma_u sigma_e rho	10.727036 11.333623 .47252444	(fraction	of varia	nce due t	:o u_i)	

Efeitos Fixos Modelo 1

Fixed-effects (within) regression Group variable: schid	Number of one	=	7150 1683
R-sq: within = 0.3592 between = 0.0224 overall = 0.1470	Obs per group: min avg max	=	3 4.2 5
corr(u_i, Xb) = 0.0057	F(7,1682) Prob > F	=	431.86 0.0000

(Std. Err. adjusted for 1683 clusters in schid)

				Robust		
Interval	[95% Conf.	P> t	t	Std. Err.	Coef.	math4
.057506	0963662	0.620	-0.50	.0392258	0194297	lunch
.002826	0023315	0.851	0.19	.0013149	.0002476	exppp
13.7691	-8.486954	0.642	0.47	5.673599	2.641103	lrexpp
12.8781	10.75726	0.000	21.86	.5406662	11.81771	y95
14.8204	12.5683	0.000	23.85	.5741153	13.69436	y96
12.0924	9.602152	0.000	17.09	.6348292	10.84729	y 9 7
25.5652	22.93113	0.000	36.11	.6715035	24.2482	y98
110.755	-54.40311	0.503	0.67	42.10287	28.17641	_cons
					15.903173	sigma u
					11.333623	sigma e
	oui)	ice due t	of variar	(fraction	.66317821	rho

Pooled OLS Modelo 2

Linear regression	Number of obs =	7150
	F(7, 1682) =	599.60
	Prob > F =	0.0000
	R-squared =	0.4017
	Root MSE =	15.624

(Std. Err. adjusted for 1683 clusters in schid)

math4	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
lunch	4265147	.0133945	-31.84	0.000	4527862	4002431
lrexpp	7.870559	1.512585	5.20	0.000	4.903813	10.83731
small	5.172126	2.52384	2.05	0.041	.2219283	10.12232
y95	11.73072	.5751393	20.40	0.000	10.60266	12.85879
y96	13.33112	.6041528	22.07	0.000	12.14615	14.51609
y97	10.55143	.6314118	16.71	0.000	9.312995	11.78987
y98	23.97692	.6362909	37.68	0.000	22.72892	25.22493
_cons	.9647688	12.21426	0.08	0.937	-22.99198	24.92152

Efeitos Aleatórios Modelo 2

Random-effects	GLS regress:	ion		Number	of obs	-	7150
Group variable	e: schid			Number	of groups	=	1683
R-sq: within				Obs per	group: mi		3
between = 0.4272			avg =				
overall	L = 0.4001				ma	ax =	5
				Wald ob	12 (7)	_	2010 70
corr(n i V)	Wald chi2(7) =						
COFF (u_I, X)	corr(u_i, X) = 0 (assumed) Prob > chi2 =					0.0000	
		(Std)	Frr adius	sted for	1683 clust	ere	in schid)
		(504	orr. aaja	, oca 101	1005 0145		
		Robust					
math4	Coef.	Std. Err.	Z	P> z	[95% Co	onf.	Interval]
lunch	3787081	.0135219	-28.01	0.000	405210	06	3522055
lrexpp	5.817344	1.352155	4.30	0.000	3.1671	17	8.467519
small	4.372059	2.690631	1.62	0.104	901480	05	9.645599
у95	11.62414	.5164185	22.51	0.000	10.6119	97	12.6363
y96	13.42992	.5419898	24.78	0.000	12.367	64	14.4922
y97	10.77788	.5696456	18.92	0.000	9.66139	95	11.89436
Y98	24.27094	.5694026	42.63	0.000	23.1549	93	25.38695
_cons	15.97779	10.93991	1.46	0.144	-5.46405	52	37.41962
sigma_u	10.720915						
sigma_e	11.332629						
rho	.47228364	(fraction	of variar	ice due t	o u_i)		

Efeitos Fixos Modelo 2

Fixed-effects (within) regression	Number of obs		7150
Group variable: schid	Number of groups		1683
R-sq: within = 0.3592	Obs per group: min	=	3
between = 0.0227	avg		4.2
overall = 0.1471	max		5
corr(u_i, Xb) = 0.0059	F(6,1682) Prob > F	=	504.09 0.0000

(Std. Err. adjusted for 1683 clusters in schid)

		Robust				
math4	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
lunch	0195001	.0392341	-0.50	0.619	096453	.0574527
lrexpp	3.632675	1.733773	2.10	0.036	.2320939	7.033255
small	0	(omitted)				
y95	11.8124	.5384138	21.94	0.000	10.75637	12.86844
y96	13.7148	.569822	24.07	0.000	12.59716	14.83243
y 9 7	10.89105	.6091401	17.88	0.000	9.696295	12.0858
y98	24.3101	.6053166	40.16	0.000	23.12285	25.49736
_cons	20.91684	14.05233	1.49	0.137	-6.645066	48.47874
sigma u	15.90154					
sigma e	11.332629					
rho	.66317151	(fraction	of varia	nce due t	o u_i)	