Санкт-Петербургский политехнический университет Петра Великого Физико-механический институт

Высшая школа теоретической механики и математической физики

РАБОТА № 5

Растяжение-сжатие стержней

по дисциплине «Вычислительная механика» Вариант №17

Выполнил студент гр. 5030103/10301	<подпись>		А.Г.Фёдоров	
Руководитель Доцент, к.фм.н.	<подпись>		Е.Ю. Витохи	н
		«	»	2023 г.

Санкт-Петербург 2023

Постановка задачи

Необходимо произвести расчет плоской фермы под действием нагрузки 1кH: определить перемещения в узлах и усилия в стержнях. Нагрузка прикладывает на верхний пояс. Левый и правый нижние углы закреплены по вертикальным и горизонтальным степеням свободы. Модуль Юнга $E=2\cdot 10^{11} \mathrm{M}\Pi$ а, площадь сечения $S=1\cdot 10^{-4} \mathrm{M}^2$

Рис.1 Плоская ферма

Координаты узлов:
$$1 - (0, 0)$$
, $2 - (3, 0)$, $3 - (6, 0)$, $4 - (18, 0)$, $5 - (21, 0)$, $6 - (24, 0)$, $7 - (21, 2.25)$, $8 - (18, 4.5)$, $9 - (12, 9)$, $10 - (6, 4.5)$, $11 - (3, 2.25)$.

Элемент стержень имеет два узла. Стержень 1 связан с узлами 1 и 2, стержень 2—2 и 3, стержень 3—3 и 4, стержень 4—4 и 5, стержень 5—5 и 6, стержень 6—6 и 7, стержень 7—7 и 8, стержень 8—8 и 9, стержень 9—9 и 10, стержень 10—10 и 11, стержень 11—11 и 1, стержень 12—2 и 11, стержень 13—11 и 3, стержень 14—3 и 10, стержень 15—8 и 10, стержень 16—8 и 3, стержень 17—4 и 8, стержень 18—4 и 7, стержень 19—5 и 7.

Метод решения

Будем применять метод конечных элементов, основанный на нахождении минимума функционала потенциальной энергии системы.

Полная потенциальная энергия системы:

$$\Pi = \Lambda - \Omega$$

 Λ — потенциальная энергия внутренних деформаций

 Ω – работа внешних сил

Потенциальная энергия бесконечно малого объема:

$$d\Pi = d\Lambda - d\Omega$$

Потенциальная энергия внутренних сил для бесконечно малого объема:

$$d\Lambda = \frac{1}{2} \{\varepsilon\}^T \{\sigma\} \, dV$$

- $\{\varepsilon\}^T$ вектор-столбец деформаций
- $\{\sigma\}$ вектор-столбец напряжений

Для конечного объема:

$$\Lambda = \frac{1}{2} \int_{V} \{ \varepsilon \}^{T} \{ \sigma \} \, dV$$

 $\{\varepsilon\}$ содержит одну компоненту ε_{χ} , описывающую деформацию вдоль оси стержня и являющейся производной от перемещения вдоль этой оси

$$\{\varepsilon\} = \{\varepsilon_x\} = \left\{\frac{\partial U}{\partial x}\right\}$$

Теперь произведем замену непрерывных перемещений на узловые

$$U = u_i N_i + u_j N_j = [N_i N_j] {u_i \brace u_j} = [N] \{u^e\}$$

Одномерный конечный элемент стержня состоит из двух степеней свободны, поэтому имеет две функции формы. Функции форм — линейные функции, потому что первая степень минимально необходимая степень для элемента с двумя степенями свободы.

$$N_i = A_i + B_i x = 1 - \frac{x}{l_e}$$

$$N_j = A_j + B_j x = \frac{x}{l_e}$$

Введем матрицу градиентов:

$$[B] = \begin{bmatrix} \frac{\partial N_i}{\partial x} & \frac{\partial N_j}{\partial x} \end{bmatrix} = \begin{bmatrix} -\frac{1}{l_e} & \frac{1}{l_e} \end{bmatrix}$$

Подставим в выражение для деформации перемещения и учтем полученную матрицу градиентов:

$$\{\varepsilon\} = [B]\{u^e\}$$

Запишем выражение для напряжения (рассматриваем линейно-упругий изотропный стержень):

$$\{\sigma\} = E\{\varepsilon\} = E[B]\{u^e\}$$

Полученные выражения для деформации и напряжения подставим в выражение для внутренней энергии:

$$\Lambda = \frac{1}{2} \{u^e\}^T E S \int_{0}^{l_e} [B]^T [B] \, dx \, \{u^e\}$$

Подставим матрицу градиентов:

$$\Lambda = \frac{1}{2} \{u^e\}^T ES \int_{0}^{l_e} \begin{bmatrix} -\frac{1}{l_e} \\ \frac{1}{l_e} \end{bmatrix} \begin{bmatrix} -\frac{1}{l_e} & \frac{1}{l_e} \end{bmatrix} dx \{u^e\}$$

Вычисляем произведение матриц и получаем:

$$\Lambda = \frac{1}{2} \{u^e\}^T \frac{ES}{l_e} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \{u^e\}$$

Работа внешних сил включает в себя работу сосредоточенных, объемных и поверхностных сил:

$$\Omega = \Omega_c + \Omega_V + \Omega_l$$

$$\Omega_c = \{u^e\}^T \{P_c\}$$

$$\Omega_V = \int_V \{u^e\}^T [N]^T \{P_V\} dV$$

$$\Omega_l = \int_l \{u^e\}^T [N]^T \{P_l\} dx$$

 $\{P_c\},\ \{P_V\},\ \{P_l\}$ — векторы-столбцы сосредоточенных, объемных и поверхностных сил.

Запишем потенциальную энергию с учетом выражений для внутренней энергии и работы внешних сил:

$$\Pi = \frac{1}{2} \{u^e\}^T \frac{ES}{l_e} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \{u^e\} - \{u^e\}^T \{P_c\} - \int_V \{u^e\}^T [N]^T \{P_V\} dV$$
$$- \int_l \{u^e\}^T [N]^T \{P_l\} dx$$

В задаче статики искомые перемещения деформируемого твердого тела под действием внешних нагрузок отвечают минимуму функционала потенциальной энергии (первая вариация равна нулю):

$$\frac{\delta \Pi}{\delta \{u^e\}} = 0$$

$$\frac{ES}{l_e} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \{u^e\} - \{P_c\} - \int_{V} [N]^T \{P_V\} dV - \int_{I} [N]^T \{P_l\} dx = 0$$

Первое слагаемое будем называть матрицей жесткости:

$$[k^e] = \frac{ES}{l_e} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$$

Остальное будем называть вектором-столбцом усилий:

$$[f^e] = \{P_c\} + \int_V [N]^T \{P_V\} dV + \int_I [N]^T \{P_l\} dx$$

Тогда выражение для первой вариации можем записать так:

$$[k^e]\{u^e\} = [f^e]$$

Эта формула помогает найти удлинение стержня, состоящего из одного конечного элемента, расположенного вдоль оси x, под действием нагрузки, направленной вдоль стержня.

Рассмотрим теперь стержень расположенный под углом α к оси x. Такой стержень имеет 4 степени свободы.

$$\left\{u_{\rho l}^{e}\right\}^{T} = \left\{u_{i}^{x} \ u_{i}^{y} \ u_{j}^{x} \ u_{j}^{y}\right\}$$

Перемещения вдоль оси стержня двух узлов выражаются через перемещения вдоль осей и с помощью углов к осям:

$$u_i = u_i^x \cos \alpha + u_i^y \cos \beta$$

$$u_j = u_j^x \cos \alpha + u_j^y \cos \beta$$

$$\cos\alpha = \frac{x_j - x_i}{l_e}$$

$$\cos\beta = \frac{y_j - y_i}{l_e}$$

Матричная форма записи перемещений:

$$\{u^e\} = \begin{bmatrix} \cos \alpha & \cos \beta & 0 & 0 \\ 0 & 0 & \cos \alpha & \cos \beta \end{bmatrix} \begin{cases} u_i^x \\ u_i^y \\ u_i^x \\ u_i^y \\ u_i^y \end{cases}$$

Матрица трансформации:

$$[T] = \begin{bmatrix} \cos \alpha & \cos \beta & 0 & 0 \\ 0 & 0 & \cos \alpha & \cos \beta \end{bmatrix}$$

Тогда связь перемещений вдоль стержня и перемещений в плоскости примет вид:

$$\{u^e\} = [T]\{u^e_{\rho l}\}$$

Аналогично для усилий:

$$\{f^e\} = [T]\{f^e_{\rho l}\}$$

Распишем $\{f^e\}$ и получим формулу:

$$[k^e][T]\{u^e_{\rho l}\} = [T]\{f^e_{\rho l}\}$$

Умножим слева на $[T]^T$

$$[T]^T[k^e][T]\{u^e_{\rho l}\} = \{f^e_{\rho l}\}$$

Обозначим матрицей жесткости:

$$\left[k_{\rho l}^{e}\right] = [T]^{T}[k^{e}][T]$$

Чтобы решить задачу для системы стержневых конечных элементов нужно собрать глобальную матрицу жесткости [K] (размерность N на N, количество степеней свободы). Нужно привести матрицу элемента к размерности глобальной матрицы и учесть глобальную нумерацию узлов. После матрицы элементов нужно просуммировать:

$$[K] = \sum_{e} \left[k_{\rho l}^{e} \right]$$

Аналогично:

$$\{F\} = \sum_{e} \{f_{\rho l}^e\}$$

Тогда основное уравнение метода конечных элементов:

$$[K]{U} = {F}$$

 $\{U\}$ – глобальный вектор-столбец перемещений

Свойства глобальной матрицы жесткости:

- 1. Ленточная
- 2. Разреженная
- 3. Симметричная
- 4. Вырожденная

Для решения системы надо добавить уравнения, описывающие граничные условия, убрав из системы уравнения для соответствующих степеней свободы.

Результаты

В результате были получены графики перемещений и усилий.

Рис.2 Перемещения вдоль оси X в ParaWiev, м

Рис.3 Перемещения вдоль оси X в Abaqus, м

Рис.4 Перемещения вдоль оси Y в ParaWiev, м

Рис.5 Перемещения вдоль оси Y в Abaqus, м Таблица 1. Перемещения вдоль оси X и Y

	Python		Abaqus	
Узел	U _x , м	U _y , м	U _x , м	U _y , м
1	0,00000	0,00000	0.00000	0.00000
2	0,00005	-0,00270	0.0000497	-0.002691
3	0,00010	-0,00369	0.000943	-0.003691
4	-0,00010	-0,00282	-0.00014	-0.0028164
5	-0,00005	-0,00226	-0,00005	-0.0022558
6	0,00000	0,00000	0.0000	0.0000
7	-0,00072	-0,00226	-0,000716	-0,002256
8	-0,00027	-0,00271	-0,00027	-0,002703
9	0,00000	-0,00286	0.000001	-0,002862
10	0,00093	-0,00358	0,00094	-0,00361

11 0,00104 -0,00270 0,001044 -0,0020	59
--------------------------------------	----

Рис.6 Усилия в ParaWiev, H

Рис.7 Усилия в Abaqus, H Таблица 2. Усилия

	Python	Abaqus
Стержень	Усилия, Н	Усилия, Н
1	341,4051	342,3325
2	334,4433	333,833
3	-333,2799	-332,638
4	333,6829	331,444
5	338,9921	338,3325
6	-4163,1137	-4163,2661
7	-3333,3273	-3331,6504
8	-833,3331	-833,225
9	-833,1057	-833,833

-3333,0420	-3332,476
-4161,1571	-4165,3755
1,9553	1,4134
-832,0053	-832,985
500,3393	500,0727
-1999,9466	-1999,584
0,0680	0.06793
500,0145	500,0727
-832,8571	-832,958
0,8762	0.8763
	-4161,1571 1,9553 -832,0053 500,3393 -1999,9466 0,0680 500,0145 -832,8571

Код программы

```
from calendar import leapdays
import numpy as np
import math
import meshio
import matplotlib.pyplot as plt
from module import save data
S = 1 * 10 ** (-4) \#cross-sectional area (m^2)
E = 2 * 10 ** 11 # Young's module (Pa)
absF = 1 * 10 **(3) # Forse N
forsed hinges = [11,10,9,8,7] #hinges where force impact
sealed hinges = [1, 6] # hinges wich are sealed
####coordinates of nodes in the truss (x, y)
nodes = [
    (0,0),(3,0),(6,0),
    (18,0), (21,0),
    (24,0),(21,2.25),(18,4.5),
    (12,9), (6,4.5), (3,2.25)
    ]
 ###connection between rods and hinges (number of rod, number of first hinge,
number of the second hinge)
elements = [
    (1,1,2), (2,2,3), (3,3,4), (4,4,5),
    (5,5,6), (6,6,7), (7,7,8),
    (8,8,9), (9,9,10), (10,10,11), (11,11,1),
    (12,2,11), (13,11,3), (14,3,10), (15,8,10),
    (16,8,3), (17,4,8), (18,4,7), (19,5,7)
#number degrees of freedom
number = len(nodes) * 2
#array for forses
F = np.zeros(number )
#system stiffness matrix
K = np.zeros((number , number ))
F in = np.zeros((len(elements)))
for node in forsed hinges:
    F[2 * (node-1)+1] = -absF
for element in elements:
    element number, hinge1, hinge2 = element
    x1, y1 = nodes[hinge1-1]
    x2, y2 = nodes[hinge2-1]
   le = np.sqrt((x2 - x1) ** 2 +(y2 - y1) ** 2)
    1 = ((x2 - x1))/1e
   m = ((y2 - y1))/le
   transform matrix = np.array([[1, m, 0, 0],
        [0, 0, 1, m]]
    B = np.array([[1, -1], [-1, 1]])
    k = (transform matrix.T @ B @ transform matrix) * E * S / le
    place = [2 * hinge1-2 , 2 * hinge1 - 1, 2 * hinge2 - 2 , 2 * hinge2 - 1]
    K[np.ix (place, place)] +=k
#hecking the fulfillment of conditions for K
print(np.linalg.det(K), "determinant K")
print(np.amax(abs(K-K.T)))
for node in sealed_hinges:
    F[2 * (node-1)] = 0
    F[2 * (node-1) + 1] = 0
```

```
K[2 * (node-1), :] = 0
   K[2 * (node-1)+1, :] = 0
   K[:, 2 * (node-1)] = 0
   K[:, 2 * (node-1)+1] = 0
   K[2 * (node-1), 2 * (node-1)] = 1
   K[2 * (node-1) + 1, 2 * (node-1) + 1] = 1
print(np.linalg.det(K), "determinant K")
print(np.amax(abs(K-K.T)))
U = np.zeros(number, float)
U = np.linalg.solve(K, F)
print(U)
print("----")
elementnum = np.zeros(len(elements))
nodenum = np.linspace(0,len(nodes)-1, len(nodes))
nodenum += 1
nodenum = nodenum.astype(int)
for i in range(len(elements)):
   elementnum[i] = i+1
for element in elements:
    element_number, hinge1, hinge2 = element
   x1, y1 = nodes[hinge1-1]
   x2, y2 = nodes[hinge2-1]
   le = np.sqrt((x2 - x1) ** 2 +(y2 - y1) ** 2)
   Ux1 = U[2*(hinge1-1)]
   Uy1 = U[2*(hinge1-1)+1]
   Ux2 = U[2*(hinge2-1)]
   Uy2 = U[2*(hinge2-1)+1]
   x1 += Ux1
   x2 += Ux2
   y1 += Uy1
   y2 += Uy2
    L = np.sqrt((x2-x1)**2 + (y2-y1) ** 2)
    F in[element number-1] = E * S * (L/le-1)
print(F in)
save_data(U, F_in, elementnum, nodenum)
```