

UCZENIE GŁĘBOKIE I SZTUCZNA INTELIGENCJA

Interaktywny przewodnik ilustrowany

JON KROHN

GRANT BEYLEVELD, AGLAÉ BASSENS

Tytuł oryginału: Deep Learning Illustrated A Visual, Interactive Guide to Artificial Intelligence (Addison-Wesley Data & Analytics Series)

Tłumaczenie: Andrzej Watrak

ISBN: 978-83-283-7914-5

Authorized translation from the English language edition, entitled DEEP LEARNING ILLUSTRATED: A VISUAL, INTERACTIVE GUIDE TO ARTIFICIAL INTELLIGENCE, by Jon Krohn published by Pearson Education, Inc, publishing as Addison Wesley Professional, Copyright © 2020 Pearson Education, Inc.

All rights reserved. No part of this book may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording or by any information storage retrieval system, without permission from Pearson Education, Inc.

POLISH language edition published by HELION S.A., Copyright © 2021.

Wszelkie prawa zastrzeżone. Nieautoryzowane rozpowszechnianie całości lub fragmentu niniejszej publikacji w jakiejkolwiek postaci jest zabronione. Wykonywanie kopii metodą kserograficzną, fotograficzną, a także kopiowanie książki na nośniku filmowym, magnetycznym lub innym powoduje naruszenie praw autorskich niniejszej publikacji.

Wszystkie znaki występujące w tekście są zastrzeżonymi znakami firmowymi bądź towarowymi ich właścicieli.

Autor oraz wydawca dołożyli wszelkich starań, by zawarte w tej książce informacje były kompletne i rzetelne. Nie biorą jednak żadnej odpowiedzialności ani za ich wykorzystanie, ani za związane z tym ewentualne naruszenie praw patentowych lub autorskich. Autor oraz wydawca nie ponoszą również żadnej odpowiedzialności za ewentualne szkody wynikłe z wykorzystania informacji zawartych w książce.

Helion S.A.

ul. Kościuszki 1c, 44-100 Gliwice tel. 32 231 22 19, 32 230 98 63

e-mail: helion@helion.pl

WWW: http://helion.pl (księgarnia internetowa, katalog książek)

Drogi Czytelniku!

Jeżeli chcesz ocenić tę książkę, zajrzyj pod adres http://helion.pl/user/opinie/uczgsi Możesz tam wpisać swoje uwagi, spostrzeżenia, recenzję.

Printed in Poland.

- Kup książkę
- Poleć książkę
- Oceń książkę

- Księgarnia internetowa
- Lubię to! » Nasza społeczność

Spis treści

Spi	s ilustracji	xvii
Spi	s tabel	. xxvii
Prz	ykłady kodu	xxix
	, , , , , , , , , , , , , , , , , , ,	
	tep	
	· ·	
	dziękowania	
O a	utorach	xli
ı	Wprowadzenie do głębokiego uczenia	1
	1. Widzenie biologiczne i maszynowe	3
	Widzenie biologiczne	
	Widzenie maszynowe	8
	Neocognitron	8
	LeNet-5	9
	Tradycyjne podejście w uczeniu maszynowym	12
	Sieć ImageNet i konkurs ILSVRC	
	AlexNet	
	Plac zabaw TensorFlow	
	Quick, Draw!	
	Podsumowanie	19
	2. Języki ludzki i maszynowy	21
	Przetwarzanie języka naturalnego przy użyciu głębokiego uczenia	21
	Sieci głębokiego uczenia automatycznie uczą się reprezentacji danych	
	Przetwarzanie języka naturalnego	23
	Krótka historia wykorzystania głębokiego uczenia w przetwarzaniu	2.4
	języka naturalnego	
	Matematyczne reprezentacje języka	
	Wektory słów	
	Działania na wektorach słów	
	word2viz	
	Reprezentacje lokalne i rozproszone	
	Elementy naturalnego języka ludzi	
	בובוויבוייק וומנמומוויבשט זקב זומ וממבו	

x Spis treści

Google Duplex	
Podsumowanie	
3. Sztuka maszynowa	
Zakrapiana impreza	
Arytmetyka nieprawdziwych twarzy	
Transfer stylu: konwersja zdjęcia na obraz Moneta (i odwrotnie)	44
Tworzenie własnych, fotograficznie realistycznych rysunków	
Tworzenie realistycznych obrazów na podstawie tekstu	45
Przetwarzanie obrazów przy użyciu głębokiego uczenia	
Podsumowanie	47
4. Maszyny i gry	49
Głębokie uczenie, sztuczna inteligencja i inne bestie	49
Sztuczna inteligencja	49
Uczenie maszynowe	50
Uczenie się reprezentacji	51
Sztuczne sieci neuronowe	51
Głębokie uczenie	51
Widzenie maszynowe	52
Przetwarzanie języka naturalnego	53
Trzy kategorie problemów uczenia maszynowego	53
Uczenie nadzorowane	53
Uczenie nienadzorowane	54
Uczenie przez wzmacnianie	54
Głębokie uczenie przez wzmacnianie	56
Gry wideo	57
Gry planszowe	60
AlphaGo	60
AlphaGo Zero	62
AlphaZero	64
Manipulowanie obiektami	66
Popularne środowiska dla głębokiego uczenia przez wzmacnianie	68
OpenAl Gym	68
DeepMind Lab	68
Unity ML-Agents	71
Trzy kategorie sztucznej inteligencji	71
Sztuczna wąska inteligencja	71
Sztuczna ogólna inteligencja	71
Sztuczna superinteligencja	72
Podsumowanie	72

Podstawy teoretyczne w ilustracjach	
5. Wóz (kodu) przed koniem (teorii)	
Wymagania	
Instalacja	76
Prosta sieć i biblioteka Keras	76
Baza MNIST odręcznych cyfr	76
Schemat sieci	78
Załadowanie danych	
Przeformatowanie danych	81
Zaprojektowanie architektury sieci neuronowej	82
Trenowanie modelu sieci neuronowej	83
Podsumowanie	84
6. Sztuczny neuron wykrywający hot dogi	85
Biologiczna neuroanatomia	85
Perceptron	86
Wykrywacz: "hot dog" — "nie hot dog"	86
Najważniejsza formuła w tej książce	90
Współczesne neurony i funkcje aktywacji	91
Neuron sigmoidalny	92
Neuron tangensowy	
Neuron ReLU	94
Wybór neuronu	96
Podsumowanie	96
Kluczowe pojęcia	97
7. Sztuczne sieci neuronowe	99
Warstwa wejściowa	99
Warstwa zagęszczona	99
Zagęszczona sieć wykrywająca hot dogi	101
Propagacja w przód w pierwszej warstwie ukrytej	102
Propagacja w przód w kolejnych warstwach	103
Warstwa softmax w sieci wykrywającej hot dogi	105
Nowe spojrzenie na naszą płytką sieć	107
Podsumowanie	
Kluczowe pojęcia	109
8. Trenowanie głębokich sieci	111
Funkcja kosztu	
Kwadratowa funkcja straty	112
Wysycenie neuronu	112
Entropia skrośna	113

Ш

Optymalizacja — uczenie się minimalizowania kosztu	115
Gradient prosty	115
Szybkość uczenia się	117
Wielkość paczki i stochastyczny gradient prosty	119
Ucieczka z lokalnego minimum	121
Propagacja wstecz	123
Dobór liczby warstw ukrytych i liczby neuronów	124
Średniogłęboka sieć w Keras	126
Podsumowanie	129
Kluczowe pojęcia	129
9. Usprawnianie głębokich sieci	131
Inicjalizacja wag	
Rozkłady Xaviera Glorota	134
Niestabilne gradienty	
Zanikające gradienty	
Eksplodujące gradienty	
Normalizacja paczki	138
Uogólnianie modelu (zapobieganie nadmiernemu dopasowaniu)	139
Regularyzacja L1 i L2	141
Dropout	141
Powiększenie danych	144
Pomysłowe optymalizatory	144
Impet	144
Impet Nesterowa	145
AdaGrad	145
AdaDelta i RMSprop	146
Adam	146
Głęboka sieć neuronowa w Keras	147
Regresja	148
TensorBoard	151
Podsumowanie	153
Kluczowe pojęcia	154
Interaktywne zastosowania głębokiego uczenia	155
10. Widzenie maszynowe	157
Konwolucyjne sieci neuronowe	
Dwuwymiarowa struktura obrazów	157
Złożoność obliczeniowa	158
Warstwy konwolucyjne	158
Wielokrotne filtry	
Konwolucyjny przykład	161
Hiperparametry filtru konwolucyjnego	165

Warstwy redukujące	. 166
Sieć LeNet-5 w Keras	
Sieci AlexNet i VGGNet w Keras	
Sieci rezydualne	. 176
Zanikający gradient — zmora głębokiej sieci konwolucyjnej	. 176
Połączenia rezydualne	. 177
Sieć ResNet	. 178
Zastosowania widzenia maszynowego	. 180
Wykrywanie obiektów	. 180
Segmentacja obrazów	. 183
Uczenie transferowe	. 185
Sieci kapsułowe	. 189
Podsumowanie	. 190
Kluczowe pojęcia	. 191
11. Przetwarzanie języka naturalnego	193
Wstępne przetwarzanie danych języka naturalnego	. 193
Tokenizacja	
Zamiana wszystkich znaków na małe litery	. 198
Usunięcie stop-słów i interpunkcji	. 198
Stemming	. 199
Przetwarzanie n-gramów	. 200
Wstępne przetworzenie całego korpusu	. 202
Osadzanie słów przy użyciu techniki word2vec	. 205
Teoretyczne podstawy techniki word2vec	. 206
Ocenianie wektorów słów	. 208
Stosowanie techniki word2vec	. 208
Tworzenie wykresów wektorów słów	. 212
Pole pod krzywą ROC	. 215
Macierz pomyłek	. 217
Wyliczanie pola pod krzywą ROC	. 218
Klasyfikowanie języka naturalnego za pomocą znanych sieci	. 220
Załadowanie recenzji filmów z bazy IMDb	. 221
Badanie bazy IMDb	. 224
Ujednolicenie długości recenzji	. 227
Sieć zagęszczona	. 227
Sieci konwolucyjne	. 234
Sieci przystosowane do danych sekwencyjnych	. 238
Rekurencyjne sieci neuronowe	. 238
Jednostka LSTM	. 242
Dwukierunkowa jednostka LSTM	. 245
Spiętrzone modele rekurencyjne	. 246

Techniki sekwencja-sekwencja i atencja	248
Uczenie transferowe w przetwarzaniu języka naturalnego	249
Modele niesekwencyjne: funkcyjny interfejs API biblioteki Keras	249
Podsumowanie	254
Kluczowe pojęcia	255
12. Sieci GAN	257
Teoretyczne podstawy sieci GAN	
Zbiór rysunków Quick, Draw!	
Sieć dyskryminatora	
Sieć generatora	
Sieć antagonistyczna	
Trening sieci GAN	271
Podsumowanie	
Kluczowe pojęcia	279
13. Głębokie uczenie przez wzmacnianie	281
Podstawy teoretyczne uczenia przez wzmacnianie	
Gra Cart-Pole	
Proces decyzyjny Markowa	
Optymalna polityka	
Podstawy teoretyczne sieci głębokiego Q-uczenia	
Funkcja wartości	
Funkcja Q-wartości	
Szacowanie optymalnej Q-wartości	
Definiowanie agenta sieci DQN	
Parametry inicjalizacyjne	
Tworzenie sieci neuronowej agenta	294
Rejestrowanie przebiegu gry	295
Trening poprzez odtwarzanie zapisanych informacji	295
Wybór czynności do wykonania	297
Zapisywanie i ładowanie parametrów modelu	
Interakcja ze środowiskiem OpenAI Gym	297
Optymalizacja hiperparametrów za pomocą narzędzia SLM Lab	301
Agenci nie tylko DQN	303
Algorytmy gradientu polityki i REINFORCE	304
Algorytm aktor-krytyk	304
Podsumowanie	305
Kluczowe pojecia	306

IV	Ty i sztuczna inteligencja	307
	14. Rozwijanie własnych projektów głębokiego uczenia	309
	Pomysły na projekty głębokiego uczenia	
	Widzenie maszynowe i sieci GAN	309
	Przetwarzanie języka naturalnego	311
	Głębokie uczenie przez wzmacnianie	312
	Przekształcanie istniejących projektów uczenia maszynowego	312
	Materiały do kolejnych projektów	313
	Projekty pożytku publicznego	314
	Proces modelowania i strojenie hiperparametrów	314
	Automatyzacja strojenia hiperparametrów	316
	Biblioteki głębokiego uczenia	317
	Keras i TensorFlow	317
	PyTorch	319
	MXNet, CNTK, Caffe i inne biblioteki	320
	Software 2.0	320
	Nadejście ogólnej sztucznej inteligencji	322
	Podsumowanie	324
Dod	latki	327
	A Formalna notacja sieci neuronowych	329
	B Propagacja wstecz	331
	C Biblioteka PyTorch	335
	Funkcjonalności biblioteki PyTorch	
	System autograd	
	Zasada "definiowanie przez działanie"	
	Biblioteka PyTorch kontra TensorFlow	336
	PyTorch w praktyce	337
	Instalacja	337
	Podstawowe jednostki	
	Tworzenie głębokiej sieci neuronowej	339
Źró	dła ilustracii	341

Sztuczny neuron wykrywający hot dogi

Po zachwytach nad świetlanymi wizjami zastosowań głębokiego uczenia i po zakodowaniu w pełni funkcjonalnej sieci neuronowej w rozdziale 5., przyszedł czas na zagłębienie się w teorię leżącą u podstaw tej dziedziny nauki. Zaczniemy od rozłożenia na czynniki pierwsze sztucznych neuronów, czyli podstawowych jednostek, które połączone ze sobą tworzą sieć neuronową.

Biologiczna neuroanatomia

Jak napisaliśmy w początkowych akapitach tej książki, inspiracją do opracowania sztucznych neuronów były neurony biologiczne. Spójrzmy więc na rysunek 6.1 i przyswójmy sobie zawiłości pierwszego wykładu z neuroanatomii. Biologiczny neuron odbiera sygnały wejściowe za pomocą licznych (zazwyczaj tysięcy) **dendrytów**, przy czym każdy dendryt odbiera sygnały od innego neuronu w układzie nerwowym, czyli w biologicznej sieci neuronowej. Gdy sygnał poprzez dendryt dotrze do **ciała komórki**, wprowadza niewielką zmianę w panującym w niej napięciu elektrycznym¹. Niektóre dendryty nieznacznie zwiększają, a inne zmniejszają to napięcie. Jeżeli sumaryczny efekt tych zmian spowoduje wzrost napięcia z poziomu spoczynkowego –70 mV do krytycznego progu –50 mV, neuron wyzwala tzw. **potencjał czynnościowy**, który wędruje przez akson do innych neuronów w sieci.

Podsumowując, biologiczny neuron wykonuje sekwencje następujących trzech czynności:

- 1. Odbiera informacje od innych neuronów.
- 2. Przekształca otrzymane informacje w zmiany napięcia w ciele komórki.
- Jeżeli zmiana jest większa niż określona wartość progowa, neuron wysyła sygnał do innych neuronów w sieci.

Kup ksi k Pole ksi k

Ściślej, zmienia różnicę potencjałów między wnętrzem komórki a jej otoczeniem.

Rysunek 6.1. Anatomia biologicznego neuronu

Kolory tekstu odpowiadają kolorom na rysunku 6.1 oznaczającym odpowiednio dendryt, ciało komórki i akson. Technikę tę będziemy stosować wielokrotnie w tej książce, również podczas opisywania kluczowych równań i użytych w nich zmiennych.

Perceptron

Pod koniec lat 50. ubiegłego wieku amerykański neurobiolog Frank Rosenblatt (rysunek 6.2) opublikował artykuł na temat opracowanego przez siebie **perceptronu** — algorytmu inspirowanego funkcjonowaniem biologicznych neuronów. Była to pierwsza formuła sztucznego neuronu². Perceptron (rysunek 6.3), podobnie jak jego biologiczny pierwowzór, wykonuje następujące czynności:

- 1. Odbiera sygnały wejściowe od wielu innych neuronów.
- Agreguje sygnały wejściowe wykonując proste działanie zwane sumowaniem ważonym.
- 3. Generuje sygnał wyjściowy, jeżeli suma ważona przekroczy zadany poziom. Sygnał wysyła do wielu innych neuronów w sieci.

Wykrywacz: "hot dog" — "nie hot dog"

Aby zrozumieć działanie perceptronu przeanalizujmy przyjemny przykład. Będzie to perceptron specjalizujący się w rozróżnianiu, czy dany przedmiot jest hot dogiem, czy nim nie jest.

Najważniejszą cechą perceptronu jest możliwość odbierania na wejściu i generowania na wyjściu wyłącznie danych binarnych. Dlatego nasz perceptron wykrywający hot dogi

² F. Rosenblatt, *The perceptron: A probabilistic model for information storage and the organization in the brain*, "Psychological Review", 1958, nr 65, s. 386 – 408.

Rysunek 6.2. Frank Rosenblatt, amerykański neurobiolog i badacz zachowań. Większość swoich prac wykonał w Cornell Aeronautical Laboratory, m.in. skonstruował tam swój perceptron Mark I. To urządzenie, najstarszy relikt sztucznej inteligencji, można dziś oglądać w Smithsonian Institution w Waszyngtonie

Rysunek 6.3. Schemat perceptronu, czyli pierwszego sztucznego neuronu. Zwróć uwagę na podobieństwo do biologicznego neuronu pokazanego na rysunku 6.1

musi na swoich trzech wejściach, wskazujących odpowiednio, czy przedmiot zawiera keczup, musztardę lub bułkę, odbierać wartości 0 lub 1. Spójrzmy na rysunek 6.4:

- Pierwsze wejście (fioletowa jedynka) oznacza, że obiekt prezentowany perceptronowi zawiera keczup.
- Drugie wejście (również fioletowa jedynka) oznacza, że obiekt zawiera musztardę.
- Trzecie wejście (fioletowe zero) oznacza, że obiekt nie zawiera bułki.

Aby określić, czy obiekt jest hot dogiem, czy nie, perceptron niezależnie *waży* każdą z trzech wartości wejściowych³. W tym całkowicie wymyślonym przykładzie wagi dobraliśmy dowolnie. Waga 6 przypisana bułce oznacza, że jest to najistotniejszy czynnik decydujący o tym, czy obiekt jest hot dogiem, czy nim nie jest. Wagę równą 3 ma keczup, a najmniejszą, równą 2, musztarda.

³ Jeśli potrafisz modelować regresję, ten paradygmat powinien brzmieć znajomo.

Rysunek 6.4. Pierwszy przykład perceptronu wykrywającego hot dogi. W tym przypadku odpowiedź perceptronu brzmi, że obiekt rzeczywiście jest hot dogiem

Wyliczmy ważoną sumę wartości wejściowych. Każdą wartość osobno mnożymy przez jej wagę, a uzyskane wyniki sumujemy. Najpierw wyliczmy ważone wejścia:

- 1. $keczup: 3 \cdot 1 = 3$
- 2. musztarda: $2 \cdot 1 = 2$
- 3. $bułka: 6 \cdot 0 = 0$

Na podstawie powyższych iloczynów możemy wyliczyć ważoną sumę wartości wejściowych 3+2+0=5. Uogólniając powyższy przykład, formuła ważonej sumy wartości wejściowych jest następująca:

$$\sum_{i=1}^{n} w_i \, x_i \tag{6.1}$$

gdzie:

- w_i oznacza wagę *i*-tej wartości wejściowej (w naszym przykładzie $w_1 = 3$, $w_2 = 2$, $w_3 = 0$),
- x_i oznacza *i*-tą wartość wejściową (w naszym przykładzie $x_i = 1, x_2 = 1, x_3 = 0$),
- $w_i x_i$ oznacza iloczyn w_i i x_i , czyli ważoną i-tą wartość,
- $\Sigma_{i=1}^n$ oznacza sumę wszystkich ważonych wartości wejściowych $w_i x_i$, gdzie n jest całkowitą liczbą wartości wejściowych (w naszym przykładzie są trzy wartości, ale w sztucznym neuronie może ich być dowolnie dużo).

Ostatnią operacją wykonywaną przez algorytm perceptronu jest sprawdzenie, czy ważona suma wartości wejściowych jest większa od *wartości progowej*. Tak jak wcześniej w tym przykładzie, tutaj również odgórnie wybraliśmy wartość 4 (czerwona cyfra w środku neuronu na rysunku 6.4). Algorytm perceptronu wygląda następująco:

$$\sum_{i=1}^{n} w_i x_i \le \frac{\text{vartość progowa}}{\text{progowa}}, \text{wyjście 1}$$

$$(6.2)$$

Przy czym:

- jeżeli ważona suma wartości wejściowych jest większa od wartości progowej, na wyjściu pojawia się liczba 1 oznaczająca, że według perceptronu dany obiekt jest hot dogiem,
- jeżeli ważona suma wartości wejściowych jest mniejsza lub równa wartości
 progowej, na wyjściu pojawia się liczba 0 oznaczająca, że według perceptronu dany
 obiekt nie jest hot dogiem.

Podsumowując przykład z rysunku 6.4: ważona suma równa 5 jest większa od wartości progowej równej 4, więc na wyjściu naszego perceptronu wykrywającego hot dogi pojawia się liczba 1.

Zmieńmy teraz nieco nasz przykład. Na rysunku 6.5 obiekt oceniany przez perceptron zawiera tylko musztardę; nie ma keczupu ani bułki. W tym przypadku ważona suma wartości wejściowych jest równa 2. Ponieważ jest ona mniejsza od wartości progowej perceptronu, na jego wyjściu pojawia się liczba 0 oznaczająca, że dany obiekt *nie* jest hot dogiem.

Rysunek 6.5. Drugi przykład perceptronu wykrywającego hot dogi. W tym przypadku perceptron prognozuje, że dany obiekt nie jest hot dogiem

W trzecim, ostatnim przykładzie, pokazanym na rysunku 6.6, neuron ocenia obiekt, który nie ma keczupu ani musztardy, ale *ma* bułkę. W tym przypadku ważona suma wartości wejściowych jest równa 6. Ponieważ jest większa od wartości progowej, algorytm prognozuje, że obiekt jest hot dogiem i zwraca liczbę 1.

Rysunek 6.6. Trzeci przykład perceptronu wykrywającego hot dogi. W tym przypadku perceptron prognozuje, że dany obiekt jest hot dogiem

Najważniejsza formuła w tej książce

Aby sformułować uproszczone, uniwersalne równanie perceptronu, musimy wprowadzić termin **odchylenie** (ang. bias), które oznaczymy jako b, równe ujemnej wartości progowej sztucznego neuronu:

$$b \equiv -wartość progowa$$
 (6.3)

Odchylenie i wagi to wszystkie parametry neuronu decydujące o tym, co neuron generuje na wyjściu w odpowiedzi na dane wejściowe.

Po wyjaśnieniu pojęcia odchylenia, możemy sformułować najczęściej przytaczaną formułę perceptronu:

wyjście
$$\begin{cases} 1, \text{ jeżeli } wx + b > 0 \\ 0 \text{ w przeciwnym wypadku} \end{cases}$$
 (6.4)

Zwróć uwagę, że do pierwotnej formuły 6.2 perceptronu wprowadziliśmy pięć zmian:

- 1. W miejscu *wartości progowej* umieściliśmy odchylenie *b*.
- 2. Odchylenie *b* przenieśliśmy na tę samą stronę formuły, na której znajdują się pozostałe zmienne.
- 3. Użyliśmy macierzy w reprezentującej wszystkie wagi w_i od w_j do w_i .
- 4. Analogicznie, użyliśmy macierzy x reprezentującej wszystkie wagi x_i od x_j do x_j .
- 5. Użyliśmy **iloczynu skalarnego** wx upraszczającego zapis ważonej sumy wartości wejściowych (bardziej rozbudowaną postać przedstawia formuła 6.1: $\sum_{i=1}^{n} W_i x_i$).

Sercem formuły 6.4 perceptronu jest zapis wx + b, który dla podkreślenia jego wagi wycięliśmy i umieściliśmy na rysunku 6.7. *Jeżeli z tego rozdziału zapamiętasz tylko jedną rzecz, niech będzie to formuła z trzema zmiennymi, opisująca działanie sztucznego neuronu w ogólności.* W tej książce będziemy się do niej odwoływać wielokrotnie.

Rysunek 6.7. Ogólna formuła opisująca działanie sztucznego neuronu, do której będziemy wracać od czasu do czasu. Jest to najważniejsza formuła w tej książce

Aby możliwie uprościć arytmetykę w perceptronie wykrywającym hot dogi, wszystkie parametry, które zdefiniowaliśmy — wagi i odchylenie — przyjmowały wartości dodatnie. W praktyce parametry mogą jednak mieć również ujemne wartości, a do tego rzadko są liczbami całkowitymi. Parametry są zgrabniejszymi wartościami zmiennoprzecinkowymi.

Ponadto, w opisanych przykładach wartości parametrów zostały przyjęte odgórnie. W rzeczywistości są one wyliczane podczas trenowania sieci na danych. W rozdziale 8. opiszemy, jak taki trening parametrów neuronów wygląda w praktyce.

Współczesne neurony i funkcje aktywacji

Współczesne sztuczne neurony, takie jak tworzące ukrytą warstwę płytkiej sieci, którą zbudowaliśmy w rozdziale 5. (patrz rysunek 5.4 oraz notatnik *Płytka sieć w Keras*), nie są perceptronami. Perceptron stanowi wprawdzie stosunkowo proste wprowadzenie do sztucznych neuronów, ale obecnie nie jest powszechnie używany. Jego największy mankament polega na tym, że odbiera on wyłącznie binarne dane wejściowe i generuje tylko binarne dane wyjściowe. W praktyce często zdarza się, że trzeba prognozować wyniki na podstawie ciągłych danych wejściowych, a nie liczb binarnych. Sam ten fakt sprawia, że perceptrony nie są przydatne.

Mniej oczywistym, za to jeszcze istotniejszym skutkiem powyższego ograniczenia jest to, że trenowanie perceptronu jest trudne. Przeanalizujmy rysunek 6.8, na którym wprowadziliśmy nową zmienną z, stanowiącą skróconą formę zacnej formuły $w \cdot x + b$ z rysunku 6.7. Jeżeli zmienna ta ma wartość mniejszą lub równą zeru, perceptron generuje najmniejszą możliwą wartość wyjściową, czyli 0. Jeżeli wartość z jest choćby minimalnie dodatnia, perceptron zwraca największą możliwą wartość równą 1. Takie gwałtowne i ekstremalne przejście nie jest pożądane podczas treningu. W rzeczywistości zmienne w i b są nieznacznie modyfikowane, jeżeli wydaje się, że spowoduje to poprawę wartości

Rysunek 6.8. Przejście wartości wyjściowej perceptronu z zera do jedynki jest gwałtowne, przez co trudno jest precyzyjnie manipulować zmiennymi w i b, aby uzyskać pożądaną wartość wyjściową

wyjściowej⁴. W przypadku perceptronu większość niewielkich korekt *w* i *b* nie ma żadnego wpływu na jego skuteczność. Zmienna *z* przyjmuje zazwyczaj wartości znacznie mniejsze lub znacznie większe od zera. Już samo takie działanie jest niekorzystne, ale sytuacja jest jeszcze gorsza: od czasu do czasu niewielka korekta *w* i *b* powoduje zmianę wartości *z* z ujemnej na dodatnią lub odwrotnie, skutkując drastycznymi zmianami wartości wyjściowej z 0 do 1 (lub odwrotnie). Z definicji perceptron nie jest finezyjnym wynalazkiem — albo krzyczy, albo milczy.

Neuron sigmoidalny

Rysunek 6.9 przedstawia alternatywę dla problematycznie działającego perceptronu: krzywą łagodnie wznoszącą się od 0 do 1. Jest to **sigmoida** o równaniu $\sigma(z) = \frac{1}{1+e^{-z}}$, gdzie:

- z jest odpowiednikiem wyrażenia $w \cdot x + b$,
- *e* oznacza zaczynającą się od 2,718 stałą matematyczną, najbardziej znaną ze swojej głównej roli odgrywanej w naturalnej funkcji wykładniczej,
- σ jest grecką literą *sigma*, od której pochodzi nazwa krzywej.

Sigmoida jest naszym pierwszym przykładem funkcji aktywacji sztucznych neuronów. Być może ją kojarzysz, ponieważ w rozdziałe 5. była użyta w neuronach tworzących ukrytą warstwę w notatniku *Płytka sieć w Keras*. Jak się przekonasz w tym podrozdziałe, sigmoida jest kanoniczną funkcją aktywacji. Jest tak podstawowa, że tradycyjnie litera σ jest używana na oznaczenie każdej funkcji aktywacji. Sygnał wyjściowy funkcji aktywacji dowolnego neuronu jest nazywany po prostu jego aktywacją. W tej książce oznaczamy go literą a, jak na pionowej osi na rysunku 6.9.

Naszym zdaniem nie trzeba znać równania sigmoidy ani żadnej innej funkcji aktywacji. Łatwiej jest zrozumieć działanie danej funkcji eksperymentując z nią. Dlatego prześledź

⁴ Poprawa w tym przypadku oznacza przybliżenie wyjścia do faktycznej wartości y dla danej wartości wejściowej x. Zajmiemy się tym dokładniej w rozdziale 8.

Rysunek 6.9. Sigmoida jako funkcja aktywacji

z nami kod załączonego do książki notatnika *Sigmoida*. Jedyną zależnością w tym notatniku jest stała *e*, którą ładujemy za pomocą instrukcji from math import e. Dalej następuje ciekawa część, w której definiujemy sigmoidę:

```
def sigmoid(z):
    return 1/(1+e**-z)
```

Jak pokazuje rysunek 6.9 i wynik wyrażenia sigmoid (0.00001), wartość wejściowa bliska zeru powoduje, że funkcja zwraca wynik równy mniej więcej 0.5. Coraz większe dodatnie wartości wejściowe skutkują generowaniem wartości wyjściowych coraz bliższych jedności. W ekstremalnym przypadku wartość wejściowa równa 10000 powoduje uzyskanie wartości wyjściowej równej 1.0. Dla coraz mniejszych ujemnych wartości wejściowych funkcja zwraca wyniki łagodnie zbliżające się do zera. Na przykład wyrażenie sigmoid (-1) zwraca wynik 0.2689, a sigmoid (-10) wynik 4.5398e-05⁵.

Sztuczny neuron, którego funkcją aktywacji jest sigmoida, jest nazywany **neuronem sigmoidalnym**. Jego przewaga nad perceptronem jest oczywista: niewielkie, stopniowe zmiany parametru *w* lub *b* skutkują niewielkimi, stopniowymi zmianami wartości *z* i równie niewielkimi, stopniowymi zmianami aktywacji *a*. Wyjątkiem są duże ujemne lub dodatnie zmiany *z*. Dla ekstremalnych ujemnych wartości *z* neuron sigmoidalny, podobnie jak perceptron, zwraca wynik 0, a dla dodatnich — 1. Podobnie, niewielkie modyfikacje wag i odchylenia wprowadzane podczas treningu mają niewielki lub żaden wpływ na wartość wyjściową i w efekcie trening kończy się. To zjawisko nosi nazwę **wysycenia** neuronu i jest typowe dla większości funkcji aktywacji. Na szczęście, są metody zapobiegania wysyceniu, które poznasz w rozdziale 9.

⁵ Nie należy mylić litery e w zapisie 4 . 5398 e − 05 z podstawą logarytmu naturalnego. W wynikach generowanych przez kod litera ta oznacza wykładnik dziesiętny, w tym przypadku jest to liczba 4,5398 · 10⁻⁵.

Neuron tangensowy

Znanym kuzynem neuronu sigmoidalnego jest neuron tangensowy. Jego funkcja aktywacji jest opisana równaniem $\sigma(z) = \frac{e^z - e^{-z}1}{e^z + e^{-z}}$ i pokazana na rysunku 6.10. Kształtem przypomina sigmoidę, ale różni się od niej tym, że wartości sigmoidy zawierają się w przedziale [0; 1], a tangensa hiperbolicznego w zakresie [-1; 1]. Wbrew pozorom, nie jest to jedynie kosmetyczna różnica. Ujemne wartości wejściowe z odpowiadają ujemnym wartościom aktywacji a, wartość wejściowa z=0 odpowiada a=0, natomiast dodatnie wartości wejściowe z odpowiadają dodatnim wartościom aktywacji a. Średnio, wartości wyjściowe neuronu tangensowego oscylują w granicach zera. Jak się dowiesz dokładniej w rozdziałach 7. – 9., wartości bliskie zera są zazwyczaj wartościami wejściowymi z0 la innych sztucznych neuronów. Oznacza to z kolei, że prawdopodobieństwo wysycenia neuronu jest mniejsze, a cała sieć może się uczyć skuteczniej.

Rysunek 6.10. Tangens hiperboliczny jako funkcja aktywacji

Neuron ReLU

Ostatnim typem neuronu, który szczegółowo opisujemy w tej książce, jest **ReLU** (ang. *rectified linear unit* — **rektyfikowana jednostka liniowa**), którego funkcję aktywacji przedstawia rysunek 6.11. Funkcja ta, daleko odbiegająca kształtem od sigmoidy i tangensa hiperbolicznego, została spopularyzowana przez Vinoda Naira i Geoffa Hintona⁶ (rysunek 1.16), zainspirowanych właściwościami biologicznych neuronów⁷. Równanie funkcji ReLU ma postać a = max(0, z).

⁶ V. Nair, G. Hinton, Rectified linear units improve restricted Boltzmann machines, materiały z konferencji International Conference on Machine Learning, 2010.

⁷ Potencjał czynnościowy biologicznych neuronów jest wyzwalany tylko w trybie "dodatnim" — nie ma trybu "ujemnego". Patrz R. Hahnloser i H. Seung, *Permitted and forbidden sets in symmetric threshold-linear networks*, "Advances in Neural Information Processing Systems", 2000, nr 13.

Rysunek 6.11. ReLU jako funkcja aktywacji

Funkcja ReLU nie jest skomplikowana:

- Jeżeli wartość z jest dodatnia, funkcja zwraca nietknieta wartość wyjściową a=z.
- Jeżeli z jest równe zero lub mniejsze od tej wartości, wtedy aktywacja a = 0.

ReLU jest jedną z najprostszych *nieliniowych* funkcji, jaką można sobie wyobrazić. Podobnie jak w przypadku sigmoidy i tangensa hiperbolicznego, jej wyjście *a* nie zmienia się liniowo wraz ze zmianami *z*. ReLU to w rzeczywistości dwie połączone ze sobą różne funkcje liniowe: jedna zwraca wartość 0 dla ujemnych wartości wejściowych, a druga wartość *z* dla wartości dodatnich. Nieliniowość jest krytyczną cechą wszystkich funkcji aktywacji stosowanych w modelach głębokiego uczenia. Jak to pokazał Michael Nielsen w serii ciekawych interaktywnych apletów w e-booku *Neural Networks and Deep Learning*⁸, dzięki nieliniowości można w modelu głębokiego uczenia przybliżyć każdą funkcję ciągłą. Uniwersalna możliwość przybliżania danych wyjściowych *y* w zależności od danych wejściowych *x* jest jedną z charakterystycznych właściwości głębokiego uczenia. Podejście to okazuje się bardzo skuteczne w szerokim zakresie zastosowań.

Stosunkowo prosta nieliniowość funkcji ReLU jest jej zaletą. Jak się dowiesz w rozdziale 8., opisanie procesu uczenia się wartości w i b wymaga użycia równań różniczkowych cząstkowych, których wyliczenie jest o wiele prostsze w przypadku liniowych części funkcji ReLU niż nieliniowych, np. sigmoidy lub tangensa hiperbolicznego⁹. Potwierdzeniem użyteczności neuronów ReLU była oparta na nich sieć AlexNet (rysunek 1.17), która w 2012 r. przyczyniła się to tego, że istniejące wzorce widzenia maszynowego legły w gruzach i rozpoczęła się era głębokiego uczenia. Obecnie ReLU są najczęściej stosowanym typem neuronu w ukrytych warstwach sieci głębokiego uczenia. Pojawia się również w większości dołączonych do tej książki notatników Jupyter.

⁸ neuralnetworksanddeeplearning.com/chap4.html

⁹ Ponadto, jak coraz częściej potwierdzają badania, aktywacje ReLU sprzyjają rozrzedzaniu parametrów. Oznacza to, że mniej skomplikowane funkcje wykazują tendencję do lepszego uogólniania danych weryfikacyjnych. Więcej o uogólnianiu modeli dowiesz się w rozdziale 9.

Wybór neuronu

W każdej ukrytej warstwie sztucznej sieci neuronowej można zastosować taką funkcję aktywacji, jaka się żywnie podoba. Zważywszy, że najlepiej jest wybrać funkcję nieliniową, aby przybliżyć funkcję ciągłą, pole wyboru jest dość szerokie. Aby Ci ułatwić podjęcie decyzji, uszeregowaliśmy opisane w tym rozdziale neurony od najmniej do najbardziej polecanych.

- Perceptron, ze swoimi binarnymi wejściami i radykalnymi, binarnymi skokami na wyjściu, nie ma praktycznego zastosowania w modelach głębokiego uczenia.
- 2. Neuron *sigmoidalny* to opcja do przyjęcia, ale oparta na nim sieć zazwyczaj uczy się wolniej niż w przypadku użycia neuronu tangensowego lub ReLU. Dlatego użycie neuronów sigmoidalnych zalecamy tylko w sytuacjach, w których pożądane są dane wyjściowe z zakresu [0; 1]¹⁰.
- 3. Neuron tangensowy to racjonalny wybór. Jak pisaliśmy wcześniej, wartości wyjściowe oscylujące w okolicach zera sprawiają, że sieć uczy się szybko.
- 4. Preferowanym przez nas neuronem jest ReLU, ponieważ dzięki niemu wydajność obliczeń w algorytmach uczenia jest wysoka. Z naszego doświadczenia wynika, że oparta na tego typu neuronie sztuczna sieć dobrze się kalibruje w krótkim czasie.

Oprócz neuronów omówionych w tym rozdziale, istnieje szerokie spektrum funkcji aktywacyjnych, których lista stale się powiększa. W chwili pisania tej książki biblioteka Keras¹¹ oferowała kilka zaawansowanych funkcji, m.in. *nieszczelną ReLU*, *parametryczną ReLU* i *wykładniczą liniową*. Wszystkie trzy wywodzą się z funkcji ReLU. Zachęcamy Cię do zapoznania się w wolnej chwili z ich opisem w dokumentacji biblioteki. Ponadto, możesz wymieniać neurony stosowane w notatnikach Jupyter na dowolne inne i porównywać wyniki. Będzie nam miło, jeżeli się okaże, że Twoje sieci neuronowe będą dokładniejsze i bardziej wydajne od naszych.

Podsumowanie

W tym rozdziale opisaliśmy podstawy matematyczne jednostek tworzących sztuczną sieć neuronową, w tym modele głębokiego uczenia. Podsumowaliśmy zalety i wady najpopularniejszych typów neuronów i przedstawiliśmy zalecenia, które z nich należy stosować w modelach głębokiego uczenia. W rozdziale 7. opiszemy, jak łączy się sztuczne neurony w sieć, która może się uczyć surowych danych, i jak przybliża się skomplikowane funkcje.

¹⁰ W rozdziałach 7. i 11. opiszemy kilka takich przypadków, przede wszystkim sieć klasyfikatora binarnego, w której warstwa wyjściowa składa się z pojedynczego neuronu sigmoidalnego.

Dokumentacja jest dostępna pod adresem keras.io/layers/advanced-activations.

Kluczowe pojęcia

W kolejnych rozdziałach książki będziemy stopniowo rozszerzać listę kluczowych pojęć. Jeżeli je zapamiętasz, bez trudności zrozumiesz kolejne rozdziały, a po zakończeniu lektury tej książki będziesz posiadał solidną wiedzę o teorii i zastosowaniach głębokiego uczenia. Opisane dotychczas najbardziej krytyczne pojęcia są następujące:

- parametry:
 - o waga w
 - o odchylenie *b*
- aktywacja a
- sztuczne neurony:
 - o sigmoidalny
 - o tangensowy
 - o ReLU

Kup ksi k Pole ksi k

PROGRAM PARTNERSKI

GRUPY HELION -

- 1. ZAREJESTRUJ SIĘ 2. PREZENTUJ KSIĄŻKI

Zmień swoją stronę WWW w działający bankomat!

Dowiedz się więcej i dołącz już dzisiaj!

http://program-partnerski.helion.pl

UCZENIE GŁĘBOKIE: PRZEKONAJ SIĘ NA WŁASNE OCZY!

Uczenie maszynowe jest przyszłością naszej cywilizacji. Już dziś wywiera ogromny wpływ na nasze życie. Odmieniło kształt wielu sektorów: usług konsumenckich, inżynierii, bankowości, medycyny czy produkcji. Trudno też przewidzieć zmiany, jakie potęga sieci neuronowych przyniesie nam w nadchodzących latach. Osoby zajmujące się zawodowo uczeniem głębokim i sieciami neuronowymi mogą liczyć na ekscytujące możliwości, jednak zaawansowana matematyka i teoria stanowiące podstawę uczenia maszynowego mogą zniechęcać do prób poważnego zajęcia się tą dziedziną.

Ta książka jest nowatorskim podręcznikiem, w którym w zrozumiały, intuicyjny sposób opisano techniki sztucznej inteligencji. Została wzbogacona kolorowymi ilustracjami i zrozumiałym kodem, dzięki czemu pozwala o wiele łatwiej zagłębić się w złożoność modeli głebokiego uczenia. Trudniejsze zagadnienia matematyczne zostały ograniczone do niezbędnego minimum, przedstawiono je jednak w sposób maksymalnie przystępny. Po lekturze zrozumiesz, czym jest głębokie uczenie, dlaczego stało się tak popularne i jak się ma do innych dziedzin uczenia maszynowego. W pragmatyczny sposób opisano takie aspekty zastosowań głębokiego uczenia jak widzenie maszynowe. przetwarzanie jezyka naturalnego, generowanie obrazów, a nawet gra w różne gry. Prezentowane treści uzupełnia praktyczny kod i szereg wskazówek dotyczących korzystania z bibliotek Keras i TensorFlow.

W książce między innymi:

- teoretyczne podstawy sztucznej inteligencji, w tym sieci neuronowe i ich trening oraz optymalizacja
- sieci konwolucyjne, rekurencyjne, GAN, głębokie uczenie przez wzmacnianie
- potencjał systemów głębokiego uczenia
- narzędzia do tworzenia, stosowania i usprawniania modeli głębokiego uczenia
- tworzenie interaktywnych aplikacji opartych na głębokim uczeniu

JON KROHN kieruje zespołem badaczy danych w firmie untapt. Jest wykładowcą akademickim i autorem uznanej serii podręczników.

GRANT BEYLEVELD zajmuje się zastosowaniem głębokiego uczenia w przetwarzaniu języka naturalnego. AGLAÉ BASSENS jest belgijską artystką: ilustratorką, malarką i autorką murali.

