

Introduction to Image Processing

Lecture 4
Nonlinear Filters & Thresholding

Learning Outcomes

- 1. Median Filtering
- 2. Anisotropic Diffusion
- 3. Bilateral Filtering
- 4. What is Thresholding
- 5. Adaptive Thresholding

Part 1

Nonlinear Filters

Non-Linear Filters

- Convolution with a mask of weights compute a linear function of a set of pixel values
- Many operations can be implemented this way, but not all:
- Median filtering
- Anisotropic diffusion/Bilateral filtering

Linear filters smooth sharp image changes, nonlinear filters tend to preserve or even enhance them

Difference

Gaussian Smoothing

Median Filtering

Salt and Pepper Noise

Sometimes sensors either fail to respond or saturate in error

- A false saturation gives a white spot in the image (salt)
- A failed response gives a black spot in the image (pepper)
- Sometimes called speckle noise

1%

10%

20%

ACK: Prof. Tony Pridmore, UNUK

An image with varying amounts of salt and pepper noise added

Reducing Salt and Pepper Noise

ACK: Prof. Tony Pridmore, UNUK

COMP 2032

Mean Filtering

Gaussian Filtering

Nonlinear Filters & Thresholding

The Median Filter

Alternative: Median Filter

- Statistically the median is the middle value in a set
- Each pixel is set to the median value in a local window
- Result is a real pixel value, not a combination
- Noise pixels are outliers
- Noise would have to affect >1/2 the pixels to appear in the output

123	124	125
129	127	9
126	123	131

|--|

Find the values in a local window

9 | 123 | 123 | 124 | 125 | 126 | 127 | 129 | 131

Sort them

9 | 123 | 123 | 124 <mark>125</mark> | 126 | 127 | 129 | 131

Pick the middle one

The Median Filter

Salt & Pepper

Gaussian

ACK: Prof. Tony Pridmore, UNUK

- Median filtering is good given small regions of speckle noise, <u>less good</u> <u>if edges are important</u>
- There exist explicit edgepreserving smoothing ops

Diffusion

- Spreading out
- Mean and Gaussian filters can be seen as diffusion processes

Anisotropic

Not the same in all directions

Basic IDEA

- Mean and Gaussian filters make each pixel more like its neighbours
- Anisotropic diffusion makes each pixel more like those neighbours that it is already similar to

We have a similar function, s(p,q)

- s(p,q) has values in the range from 0 to 1
- If the pixels p and q are similar then s(p,q) is close to 1
- If the pixel p and q are different then s(p,q) is close to 0

We use s(p,q) to compute a weighted average of pixel values

 The new value at a pixel p, is based on all its neighbours, q

$$p' = \frac{\sum q \times s(p,q)}{\sum s(p,q)}$$

The Similarity Function

- The smoothing function, s(p,q) needs to be found
- If d is the difference between p and q and D is the maximum possible difference we can use:

$$\frac{D-d}{D}$$

$$s(p,q) = e^{\left(\frac{p-q}{K}\right)^2}$$

Other functions often used include:

$$S(p,q) = \frac{1}{1 + \left(\frac{p-q}{\kappa}\right)^2}$$
 K determines the amount of smoothing

The examples here used the similarity function:

$$s(p,q) = \frac{1}{1 + \left(\frac{p-q}{K}\right)^2}$$

With K = 25

Salt & Pepper

Gaussian

A higher value of K gives greater smoothing, but edges are still (quite) sharp

K = 25

K = 50

K = 100

! We can apply the filter repeatedly to give greater smoothing

ACK: Prof. Tony Pridmore, UNUK

COMP 2032 Nonlinear Filters & Thresholding 16

Reducing Noise near Edges

Mean

Median

Gaussian

Anisotropic Diffusion

Anisotropic diffusion is to mean filtering as ???? Is to Gaussian filtering...

ACK: Prof. Tony Pridmore, UNUK

COMP 2032 Nonlinear Filters & Thresholding

Bilateral Filtering

Bilateral Filtering

- Anisotropic Diffusion is related to mean filtering
- If the similarity function is always 1 we get a mean filter

$$p' = \frac{\sum q \times s(p,q)}{\sum s(p,q)}$$
Sums pixel values in a region

Counts pixel values in a region

19

Bilateral filters modify Gaussian smoothing in a similar way

- One Gaussian weights pixels that are near the source
- Another Gaussian weights pixels that have similar intensity to the source pixel

Gaussian Smoothing Again

$$GB[I]_{\mathbf{p}} = \sum_{\mathbf{q} \in S} G_{\sigma}(\|\mathbf{p} - \mathbf{q}\|) I_{\mathbf{q}}$$

Bilateral Filtering

ACK: Prof. Tony Pridmore, UNUK

COMP 2032 Nonlinear Filters & Thresholding

21

A One Dimensional Example

Gaussian & Bilateral Smoothing

COMP 2032 Nonlinear Filters & Thresho

In 2D: Gaussian Smoothing

ACK: Prof. Tony Pridmore, UNUK

COMP 2032 Nonlinear Filters & Thresholding 24

In 2D: Bilateral Filtering

Break

Part 2

Thresholding

What is Thresholding?

Binary Images

Many image processing operations make a decision:

Is this the colour/object/edge I am interested in?

The result is a binary image

- Pixels can have only two values: 0 or 1
- Binary images also need noise removal, enhancement, etc.

ACK: Prof. Tony Pridmore, UNUK

Nonlinear Filters & Thresholding

Binarisation: Thresholding

- A dark object on a light background in a grey-level image
- Choose a threshold value, T
- Consider each pixel in turn
 - If the brightness at a pixel is less than T, that pixel is object
 - Otherwise, it is part of the background

Basic idea extends to colour; define sets of colour values that correspond to objects

Threshold, T = 96

Too Simple?

The value of the threshold is very important

- If it is too high, background pixels will be classified as foreground
- If it is too low, object pixels will be considered background

Assumes there are exactly two regions, with no overlap in their brightness – *is that true*?

T = 64

Adaptive Thresholds

- If the user chooses t for each of a set of images, there is no guarantee the results will be consistent
- Automatic methods choose a threshold based on image properties: histogram are commonly used

ACK: Prof. Tony Pridmore, UNUK

32

Adaptive Thresholding

Otsu Thresholding

- Assumes histograms are bimodal; two regions can be separated by one threshold
- Think of the histrogram as made of two normal (Gaussian) distributions, described by their means and deviations

If a threshold is wrong, it will include histogram bins from peak A in peak B

- Peak A's deviation will be too small
- Peak B's deviation will be too big
- Peak A's size (area) will be too small
- Peak B's size will be too big

COMP 2032

Otsu Thresholding

- Find the threshold which minimises a weighted sum of the variations of the two regions that threshold produce
- Weights are the areas of the histogram assigned to each region

$$\sigma_w^2(t) = q_1(t)\sigma_1^2(t) + q_2(t)\sigma_2^2(t)$$

$$q_1(t) = \sum_{i=1}^{t} P(i)$$
 $q_2(t) = \sum_{i=t+1}^{I} P(i)$

This is small when the two regions are **both physically small and have low deviations**

ACK: Prof. Tony Pridmore, UNUK

35

Otsu Thresholding

- Consider all possible threshold values (0 255)
- Compute weighted sum
- Pick t with the smallest value

Algorithm

A recursive version exists that is very efficient

Unimodal Thresholding

Many histograms are not bimodal, there is often only one peak e.g., text is mainly white, with a small amount of black

- Finds the peak
- Draws a line from there to the top of the furthest bin
- Finds the top of the bin that is furthest from this line; that bin value is the threshold

Rosin's unimodal method

Bin Value

Unimodal Thresholding

Can be applied to any suitable image, e.g., intensity gradients

Edge of magnitudes (inverted for display)

Histogram of edge magnitudes

Unimodal Thresholding

Otsu vs Rosin

40

Local Adaptive Methods

- Imaging conditions and object properties can vary within a single image as well as across sets of images
- Histograms can be too complex for any method's assumption to be true

Otsu

ACK: Prof. Tony Pridmore, UNUK

COMP 2032

Nonlinear Filters & Thresholding

Local Adaptive Methods

- Assumptions about histograms may, however, be true for local areas of the image
- Divide image into sub-regions, apply a threshold selection method independently to each

- The histograms of each vertical strip of this image are bimodal
- Otsu can be applied to each strip

ACK: Prof. Tony Pridmore, UNUK

COMP 2032 Nonlinear Filters & Thresholding 42

Summary

- 1. Median Filtering
- 2. Anisotropic Diffusion
- 3. Bilateral Filtering
- 4. What is Thresholding
- 5. Adaptive Thresholding

Questions

One last thing...

LET'S PLAY KAHOOT

Get Ready Everyone!

NEXT:

Using and Processing Binary Images