

Type Inference

Professor: Suman Saha

#### Introduction



- So far when we studied typing, we always assumed that the programmer annotated some types
- Example: We gave types to lambda variables
- But annotating types can be cumbersome.
- Goal of type inference: Automatically deduce the most general type for each expression
- Two key points:
  - Automatically inferring types: This means the programmer has to write no types, but still gets all the benefit from static typing
  - Inferring the most general type: This means we want to infer polymorphic types whenever possible

#### Examples



- Do we actually need these type annotation to infer the type of programs?
- Consider the following examples:
  - let  $f_1 = \lambda x$ . x+2
    - type of  $f_1$  must be  $Int \rightarrow Int$
  - let  $f_2 = \lambda x$ .  $\lambda y$ . x + y
    - type of  $f_2$  must be  $Int \rightarrow Int \rightarrow Int$
  - let  $f_3 = \lambda x$ .  $\lambda y$ . x + 1
    - type of  $f_3$  must be  $\forall \alpha$ . Int  $\rightarrow \alpha \rightarrow$  Int
  - let  $f_4 = \lambda g$ . (g 0)
    - type of  $f_4$  is  $\forall \alpha$ . (Int  $\rightarrow \alpha$ )  $\rightarrow \alpha$

#### Type Inference Overview



- Goal is to develop an algorithm that can compute the most general type for any expression without any type annotation.
- Big Idea: Replace the concrete type Int annotation with a type variable and collect all constraints on this type variable.
- Specifically, pretend that the type of the argument is just some type variable called a

### Example



• Type derivation tree for  $\lambda x$ :int. x+2

 $\bullet$  Type derivation tree for the same expression using type variable  $\boldsymbol{a}$ 

#### Generalizing Typing Rules



The base case stay unchanged:

$$\Gamma \vdash n : \mathtt{int} \ (\mathtt{T-Num}) \quad \Gamma \vdash \mathtt{true} : \mathtt{bool} \ (\mathtt{T-True})$$
 
$$\Gamma \vdash s : \mathit{string} \quad (\mathtt{T-String})$$
 
$$\Gamma \vdash \mathtt{false} : \mathtt{bool} \ (\mathtt{T-False}) \quad \Gamma, x : \tau \vdash x : \tau \ (\mathtt{T-Var})$$

Plus operator

$$rac{\Gamma dash e_1 : \mathtt{int} \quad \Gamma dash e_2 : \mathtt{int}}{\Gamma dash (e_1 + e_2) : \mathtt{int}} \ (\mathtt{T-ADD})$$

### Generalizing Typing Rules



• Concatenation:

$$\frac{\Gamma \vdash e_1 : string \quad \Gamma \vdash e_2 : string}{\Gamma \vdash (e_1 :: e_2) : string} \quad \text{(T-Con)}$$

And operator

$$\frac{\Gamma \vdash e_1 : \mathtt{bool} \quad \Gamma \vdash e_2 : \mathtt{bool}}{\Gamma \vdash (e_1 \land e_2) : \mathtt{bool}} \ (\mathtt{T-AND})$$

### Generalizing Typing Rules



Abstraction:

$$\frac{\Gamma, x : \tau \vdash e : \tau'}{\Gamma \vdash (\lambda x : \tau \cdot e) : \tau \to \tau'} \text{ (T-Abs)}$$

Application

$$\frac{\Gamma \vdash e_1 : \tau \to \tau' \quad \Gamma \vdash e_2 : \tau}{\Gamma \vdash e_1 \ e_2 : \tau'} \ (\text{T-App})$$

# Top Hat



CMPSC 461 - Programming Language Concepts

## Example-1



• ((( $\lambda x.\lambda y.x$ )2)true)

## Example-2



• "duck" + 7