Sınıflandırma (Classification)

- Eğiticili (supervised) sınıflandırma:
 Sınıflandırma: Sınıf sayısı ve bir grup örneğin hangi sınıfa ait olduğunu bilinir
- Eğiticisiz (unsupervised) sınıflandırma:
 Kümeleme: Hangi nesnenin hangi sınıfa ait olduğu ve grup sayısı belirsizdir.

Kümeleme (Clustering)

- Kümeleme, eğiticisiz öğrenme ile gerçekleştirilir.
- Küme: Birbirine benzeyen nesnelerden oluşan gruptur.
 - Aynı kümedeki örnekler birbirine daha çok benzer
 - Farklı kümedeki örnekler birbirine daha az benzer

Benzerlik İlişkisi: Örnek

Benzerlik Ölçüsü: Nümerik

- Veri kümesi içindeki nümerik örneklerin birbirine olan benzerliğini ölçmek için mesafe ölçüsü kullanılabilir.
- Ancak mesafe ölçüsü benzerlikle ters orantılıdır.
 - L1 Norm (City Block / Manhattan Distance)
 - L2 Norm (Euclidean Distance)
 - L3 Norm (Minkowski distance)

Mesafe Ölçüsü: L1 Norm

- L1 Norm: City Block / Manhattan Distance
- p boyutlu uzayda verilen i ve j noktalarının birbirine olan uzaklığı:

$$d(i,j) = |x_{i_1} - x_{j_1}| + |x_{i_2} - x_{j_2}| + \dots + |x_{i_p} - x_{j_p}|$$

Mesafe Ölçüsü: L2 Norm

- L2 Norm: Euclidean Distance
- p boyutlu uzayda verilen i ve j noktalarının birbirine olan uzaklığı:

$$d(i,j) = \sqrt{(|x_{i1} - x_{j1}|^2 + |x_{i2} - x_{j2}|^2 + ... + |x_{ip} - x_{jp}|^2)}$$

Mesafe Ölçüsü: L3 Norm

- L3 Norm: Minkowski distance
- p boyutlu uzayda verilen i ve j noktalarının birbirine olan uzaklığı:

$$d(i,j) = q / (|x_{i1} - x_{j1}|^q + |x_{i2} - x_{j2}|^q + ... + |x_{ip} - x_{jp}|^q)$$

NOT: q=2 için Euclidean uzaklığını verir

Mesafe Ölçüsü

- Mesafe ölçüsü ile ilgili özellikler:
 - $d(i,j) \geq 0$
 - d(i,i) = 0
 - d(i,j) = d(j,i)
 - $d(i,j) \leq d(i,k) + d(k,j)$

Benzerlik Ölçüsü: Binary

i ve j örneklerine ait binary (ikili) özellikler bir olasılık tablosu (contingency table) ile gösterilir:

	j Örneği		
i		0	1
Örneği	0	а	b
	1	С	d

a: i örneğinde 0, j örneğinde 0 olan özelliklerin sayısı

b: i örneğinde 0, j örneğinde 1 olan özelliklerin sayısı

c: i örneğinde 1, j örneğinde 0 olan özelliklerin sayısı

d: i örneğinde 1, j örneğinde 1 olan özelliklerin sayısı

Simple Matching Coefficient (SMA):

İkili değişkenin simetrik olduğu durumlarda

$$sim(i,j) = \frac{a+d}{a+b+c+d}$$

Jaccard coefficient: İkili değişkenin asimetrik olduğu durumlarda

$$sim_{Jaccard}(i,j) = \frac{d}{b+c+d}$$

Benzerlik Ölçüsü: Binary

- i=10011011 ve j=11000110
- i ve j örneklerinin birbirlerine olan benzerlikleri;
- a=1, b=2, c=3, d=2 olduğuna göre
 - $Sim_{SMC}(i,j) = 3/8$
 - $Sim_{iaccard}(i,j) = 2/7 olur.$

Kümeleme Yöntemleri

- K-Means Kümeleme
- Hiyerarşik Kümeleme
- Yapay Sinir Ağları (SOM-Self Organized Feature Map)
- Genetik Algoritmalar

K-Means Kümeleme

- K-means algoritması basit ve etkin bir istatistiki kümeleme yöntemidir.
- K-means algoritması veri kümesini birbirinden ayrık kümelere böler.
- K küme sayısının başlangıçta bilinmesi gerekir.

K-Means Kümeleme

Algoritmanın adımları;

- 1. Belirlenecek küme sayısı (k) seçilir.
- 2. k adet rastgele başlangıç küme merkezi belirlenir. (Veri kümesindeki örneklerden de seçilebilir)
- Öklid mesafesi kullanılarak kalan örneklerin en yakın olduğu küme merkezleri belirlenir.
- 4. Her küme için yeni örneklerle küme merkezleri hesaplanır.
- 5. Eğer kümelerin yeni merkez noktaları bir önceki merkez noktaları ile aynı ise işlem bitirilir.
 - Değilse yeni küme merkezleri ile **3. adımdan itibaren** işlemler tekrarlanır.

Rastgele belirlenen başlangıç merkezleri: her merkez için en yakın noktaları belirle

Küme merkezleri yeniden hesaplanır

Yeni küme merkezlerine en yakın noktaları belirle

Küme merkezlerini yeniden hesapla

Merkezlerin yerleri değişmedi

=> DUR

K-means: sorunları

- Kümeler, farklı
 - Büyüklük,
 - Yoğunluk ve
 - Dairesel olmayan şekillerde olduğunda
- Veride aykırı örnekler (outlier) ya da gürültü (noise) bulunduğunda

Farklı büyüklükteki kümeler

Orijinal kümeler

K-means (3 küme)

Farklı yoğunluktaki kümeler

Orijinal kümeler

K-means (3 küme)

Dairesel olmayan kümeler

Orijinal kümeler

K-means (2 küme)

Çözüm

Orijinal kümeler

K-means kümeleri

- Gereğinden fazla kümeye ayrıştırmak:
 - Ancak sonunda birleştirmek gerek (nasıl?)

Fazladan kümeleme (bölme)

Kümeleme Yöntemleri

- K-Means Kümeleme
- Hiyerarşik Kümeleme
- Yapay Sinir Ağları (SOM-Self Organized Feature Map)
- Genetik Algoritmalar

Hiyerarşik Kümeleme

 Küme sayısının bilinmesine gerek yoktur ancak bir sonlanma kriterine ihtiyaç duyar.

Hiyerarşik Kümeleme: AGNES (Agglomerative Nesting)

- Başlangıçta her nesne bir küme olarak alınır.
- Aralarında en az uzaklık bulunan kümeler birleştirilir.
- Kümeler arasında mesafe tek bağ metodu (single linkage method) ile hesaplanır
- Bütün örnekler tek bir demet içinde kalana kadar birleştirme işlemi devam eder.

Hiyerarşik Kümeleme: DIANA (Divisive Analysis)

- AGNES'in yaptığı işlemlerin tersini yapar.
- Başlangıçta bütün örnekler bir demet içindeyken işlem sonunda her örnek bir demet oluşturur.

Hiyerarşik Kümeleme: Dendrogram

Dendrogram: Kümelerin nasıl birleştiğini gösterir.

