Deep Learning for Object Detection

Lluis Gomez i Bigorda

Object detection pipeline (recap of previous class)

Given the unbalanced nature of detection. What do we need?

OverFeat

R-CNN

R-CNN

Deep learning for object detection: Outline

- Introduction
- Basic blocks and concepts
- Models (i)
- Models (ii)
 - Single Stage Object Detectors
 - Feature Pyramid Networks
 - Focal Loss
 - Mask R-CNN
 - DETR
 - Other ideas

You Only Look Once - YOLO (2015, CVPR2016)

YOLO

YOLO: Key idea

YOLO: Architecture

YOLO: Training

- 1. Pre-train network on Imagenet classification task
- 2. Train the model with joint loss (quite engineered loss function)

YOLO: Training tricks

- 1. Use 448×448 input for detection, instead of 224×224 ,
- 2. Use Leaky ReLU for all layers,
- 3. Dropout after the first fully connected layer,
- 4. Normalize bounding boxes parameters in [0, 1],
- 5. Use a quadratic loss not only for the bounding box coordinates, but also for the confidence and the class scores,
- 1. Reduce the weight of large bounding boxes by using the square roots of the size in the loss,
- 2. Reduce the importance of empty cells by weighting less the confidence-related loss on them,
- 1. Use momentum 0.9, decay 5e 4,
- 2. Data augmentation with scaling, translation, and HSV transformation.

YOLO: Inference

Single pass through the network.

Inference is very fast.

YOLO: Results

	Pascal 2007 mAP	Speed		
DPM v5	33.7	.07 FPS	14 s/img	
R-CNN	66.0	.05 FPS	20 s/img	
Fast R-CNN	70.0	.5 FPS	2 s/img	
Faster R-CNN	73.2	7 FPS	140 ms/img	
YOLO	63.4	45 FPS	22 ms/img	

YOLOv2 (2016)

	YOLO								YOLOv2
batch norm?		√	√	√	√	√	√	√	√
hi-res classifier?			\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	✓
convolutional?				\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	✓
anchor boxes?				\checkmark	\checkmark				
new network?					\checkmark	\checkmark	\checkmark	\checkmark	✓
dimension priors?						\checkmark	\checkmark	\checkmark	✓
location prediction?						\checkmark	\checkmark	\checkmark	✓
passthrough?							\checkmark	\checkmark	✓
multi-scale?								\checkmark	✓
hi-res detector?									✓
VOC2007 mAP	63.4	65.8	69.5	69.2	69.6	74.4	75.4	76.8	78.6

There are a lot of tricks to get a good architecture for object detection...

Single Shot Detector / SSD (ECCV 2016)

Single Shot Detector / SSD (ECCV 2016)

(a) Image with GT boxes

(b) 8×8 feature map

(c) 4×4 feature map

(remember) Common component to all Object Detection architectures!

Before non-max suppression

Non-Max Suppression

After non-max suppression


```
Input : \mathcal{B} = \{b_1, ..., b_N\}, \mathcal{S} = \{s_1, ..., s_N\}, N_t
                  \mathcal{B} is the list of initial detection boxes
                  S contains corresponding detection scores
                  N_t is the NMS threshold
begin
       \mathcal{D} \leftarrow \{\}
       while \mathcal{B} \neq empty do
              m \leftarrow \operatorname{argmax} \mathcal{S}
              \mathcal{M} \leftarrow b_m
              \mathcal{D} \leftarrow \mathcal{D} \bigcup \mathcal{M}; \mathcal{B} \leftarrow \mathcal{B} - \mathcal{M}
              for b_i in \mathcal{B} do
                    if iou(\mathcal{M}, b_i) \geq N_t then \mid \mathcal{B} \leftarrow \mathcal{B} - b_i; \mathcal{S} \leftarrow \mathcal{S} - s_i
               end
       end
       return \mathcal{D}, \mathcal{S}
end
```


NMS: https://github.com/rbgirshick/fast-

rcnn/blob/master/lib/utils/nms.py

Soft-NMS:

https://github.com/DocF/Soft-NMS/blob/master/soft_nms.py

Comparison

Feature Pyramid Networks (CVPR 2017)

Feature Pyramid Networks

Faster R-CNN	proposals	feature	head	lateral?	top-down?	AP@0.5	AP	AP_s	AP_m	AP_l
(*) baseline from He <i>et al</i> . $[16]^{\dagger}$	RPN, C_4	C_4	conv5			47.3	26.3	-	-	-
(a) baseline on conv4	RPN, C_4	C_4	conv5			53.1	31.6	13.2	35.6	47.1
(b) baseline on conv5	RPN, C_5	C_5	2fc			51.7	28.0	9.6	31.9	43.1
(c) FPN	RPN, $\{P_k\}$	$\{P_k\}$	2fc	✓	✓	56.9	33.9	17.8	37.7	45.8

RetinaNet (ICCV 2017)

4 Conv Layers with 256 3x3 filters

A=9 **anchor boxes** K=80 object class labels (COCO)

Focal Loss

$$CE(p_t) = -\log(p_t)$$

$$FL(p_t) = -(1 - p_t)^{\gamma} \log(p_t)$$

$$p_{\mathrm{t}} = egin{cases} p & ext{if } y = 1 \\ 1 - p & ext{otherwise,} \end{cases}$$

The unbalanced nature of detection. Hard Negative Mining vs. Focal Loss

Why putting more focus on hard, misclassified examples?

Positive Negative Hard negative

1 70 6

Focal Loss / RetinaNet

Mask R-CNN (ICCV 2017)

Mask R-CNN

Mask R-CNN for instance segmentation

ROI Align

Input activation

Region projection and pooling sections

Sampling locations

Bilinear interpolated values

 2×2 values per cell.

Max pooling output

ROI Align / Bilinear interpolation

Bilinear interpolation for RoIAlign.

Mask R-CNN Bounding Box Detection Results

	backbone	AP ^{bb}	$\mathrm{AP^{bb}_{50}}$	$\mathrm{AP^{bb}_{75}}$	AP^bb_S	$\mathrm{AP}^{\mathrm{bb}}_{M}$	$\mathrm{AP}^{\mathrm{bb}}_{L}$
Faster R-CNN+++ [19]	ResNet-101-C4	34.9	55.7	37.4	15.6	38.7	50.9
Faster R-CNN w FPN [27]	ResNet-101-FPN	36.2	59.1	39.0	18.2	39.0	48.2
Faster R-CNN by G-RMI [21]	Inception-ResNet-v2 [41]	34.7	55.5	36.7	13.5	38.1	52.0
Faster R-CNN w TDM [39]	Inception-ResNet-v2-TDM	36.8	57.7	39.2	16.2	39.8	52.1
Faster R-CNN, RoIAlign	ResNet-101-FPN	37.3	59.6	40.3	19.8	40.2	48.8
Mask R-CNN	ResNet-101-FPN	38.2	60.3	41.7	20.1	41.1	50.2
Mask R-CNN	ResNeXt-101-FPN	39.8	62.3	43.4	22.1	43.2	51.2

DETR (ECCV 2020)

End-to-End Object Detection with Transformers

- DETR directly predicts (in parallel) the final set of detections by combining a CNN with a transformer architecture. No need of NMS!
- During training, bipartite matching uniquely assigns predictions with ground truth boxes. Prediction with no match should yield a "no object" (Ø) class prediction.

DETR (ECCV 2020)

End-to-End Object Detection with Transformers

- Encoder input: CNN features + positional encoding.
- Decoder input:
 - a fixed number N of learned positional embeddings (N=100), object queries.
 - o also attends to the encoder output.
- Output embeddings of the decoder go to a shared feed forward network (FFN) that predicts a detection (class and bbox) or a "no object" class.

DETR (ECCV 2020)

-								
Model	GFLOPS/FPS	#params	AP	AP_{50}	AP_{75}	AP_{S}	AP_{M}	$\mathrm{AP_L}$
Faster RCNN-DC5	320/16	166M	39.0	60.5	42.3	21.4	43.5	52.5
Faster RCNN-FPN	180/26	42M	40.2	61.0	43.8	24.2	43.5	52.0
Faster RCNN-R101-FPN	246/20	60M	42.0	62.5	45.9	25.2	45.6	54.6
Faster RCNN-DC5+	320/16	166M	41.1	61.4	44.3	22.9	45.9	55.0
Faster RCNN-FPN+	180/26	42M	42.0	62.1	45.5	26.6	45.4	53.4
Faster RCNN-R101-FPN+	246/20	60M	44.0	63.9	47.8	27.2	48.1	56.0
DETR	86/28	41M	42.0	62.4	44.2	20.5	45.8	61.1
DETR-DC5	187/12	41M	43.3	63.1	45.9	22.5	47.3	61.1
DETR-R101	152/20	60M	43.5	63.8	46.4	21.9	48.0	61.8
DETR-DC5-R101	253/10	60M	44.9	64.7	47.7	23.7	49.5	62.3

Other ideas in Object Detection: Rotated objects

Other ideas in Object Detection: STR

One-hot classification

How many classes?

Label Embedding (PHOC)

Text strings are embedded into a d-dimensional binary space: Pyramidal Histogram Of Characters (PHOC)

PHOC encodes if a particular character appears in a particular region of the string

Label Embeddings

Attribute-based recognition

Comparison of:

- **Direct Attribute Prediction (DAP):** compute attribute probabilities + combine scores Lampert, Nickisch, Harmeling, "Learning To Detect Unseen Object Classes by Between-Class Attribute Transfer", CVPR'09
- Attribute Label Embedding (ALE): embed classes + bilinear compatibility Akata, Perronnin, Harchaoui, Schmid, "Label-embedding for attribute-based classification", CVPR'13
- → ALE outperforms DAP by large margin on zero-shot bird recognition

 See also: Alabdulmohsin, Cissé, Zhang, "Is attribute-based zero-shot learning an ill-posed strategy?", EACL'16.

Single Shot Text Detection and Recognition

References

- Ross B. Girshick, Jeff Donahue, Trevor Darrell and Jitendra Malik; Rich feature hierarchies for accurate object detection and semantic segmentation.
- Pierre Sermanet, David Eigen, Xiang Zhang, Michael Mathieu, Rob Fergus, Yann LeCun; OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks.
- Kaiming He and Xiangyu Zhang and Shaoqing Ren and Jian Sun; Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition.
- Ross B. Girshick; Fast R-CNN.
- Shaoqing Ren, Kaiming He, Ross B. Girshick and Jian Sun; Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks.
- Joseph Redmon, Santosh Kumar Divvala, Ross B. Girshick, Ali Farhadi; You Only Look Once: Unified, Real-Time Object Detection.
- Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun; Deep Residual Learning for Image Recognition.
- Joseph Redmon and Ali Farhadi; YOLO9000: Better, Faster, Stronger.
- M. Oquab and L. Bottou and I. Laptev and J. Sivic; Is object localization for free? Weakly-supervised learning with convolutional neural networks.

References

- Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C. Y., & Berg, A. C. (2016, October). SSD: Single shot multibox detector. ECCV 2016.
- Bodla, N., Singh, B., Chellappa, R., & Davis, L. S. Soft-NMS--improving object detection with one line of code. ICCV 2017.
- Lin, T. Y., Dollár, P., Girshick, R., He, K., Hariharan, B., & Belongie, S. (2017). Feature pyramid networks for object detection. CVPR 2017.
- Lin, T. Y., Goyal, P., Girshick, R., He, K., & Dollár, P. Focal loss for dense object detection. ICCV 2017.
- He, K., Gkioxari, G., Dollár, P., & Girshick, R. Mask R-CNN. ICCV 2017.
- Carion et al. "End-to-end object detection with transformers. ECCV, 2020.
- Zhou, X., Yao, C., Wen, H., Wang, Y., Zhou, S., He, W., & Liang, J. EAST: an efficient and accurate scene text detector. CVPR 2017.
- L.Gomez, A. Mafla, M. Rusiñol, D. Karatzas. Single Shot Scene Text Retrieval, ECCV 2018.

