Measure Theory - Overview

1 Starting definitions

Start with a set X. $A \subseteq \mathcal{P}(X)$ is called an algebra if

- \mathcal{A} is non-empty
- $X \in \mathcal{A}$
- ullet A is closed and under complementation
- \bullet A is closed under finite unions and intersections

We obtain a σ -algebra if we also have closure under countable unions and intersections. We say a set $A \in \mathcal{A}$ is \mathcal{A} -measurable.

Note that intersecting σ -algebras obtains a new σ -algebra but taking unions does not necessarily work. A very important σ -algebra is the Borel σ -algebra,

$$\mathcal{B}(\mathbb{R}^d) := \sigma\left(\{\text{open sets in } \mathbb{R}^d\}\right)$$

Note that it can also be formed by all closed sets, closed half-rays or half-open intervals.

Given a σ -algebra \mathcal{A} on a set X, a measure on (X, \mathcal{A}) is a function $\mu : \mathcal{A} \to [0, +\infty]$ such that

- $\mu(\emptyset) = 0$
- Given disjoint $A_1, A_2, \dots \in \mathcal{A}$,

$$\mu\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} \mu(A_i)$$

This gives us a measure space (X, \mathcal{A}, μ) .

We call this measure finite if $\mu(X) < \infty$ and σ -finite if we can write X as a union of finite measure sets.

Note measures are always increasingly monotonous and countably sub-additive. We also have the following very important property:

Proposition 1.1 (Continuity of measure). Given a measure space (X, \mathcal{A}, μ) .

• $A_1 \subseteq A_2 \subseteq \dots$ in \mathcal{A} then

$$\mu\left(\bigcup_{i} A_{i}\right) = \lim_{i} \mu(A_{i})$$

• $A_1 \supseteq A_2 \supseteq \dots$ in \mathcal{A} then

$$\mu\left(\bigcap_{k} A_{k}\right) = \lim_{k} \mu(A_{k})$$

A very important measure is the Lebesgue measure since it coincides with our natural intuition for the measure of subsets of \mathbb{R}^d . First we need to define an outer measure.

An outer measure is a function $\mu^* : \mathcal{P}(X) \to [0, +\infty]$ such that

- $\bullet \ \mu^*(\emptyset) = 0$
- $A \subseteq B \subseteq X \implies \mu^*(A) \le \mu^*(B)$
- Given a countable collection of subsets $A_i \subseteq X$, we have countable sub-additivity

$$\mu^* \left(\bigcup_i A_i \right) \le \sum_i \mu^* (A_u)$$

Notably we require monotonicity as an axiom and also require that the outer measure is defined on every subset. This is a weaker notion than a measure.

Given $A \subseteq \mathbb{R}$, $\mathcal{C}_A := \{\text{Collections }\{(a_i,b_i)\}_{i=1}^{\infty} \mid -\infty < a_i < b_i < \infty, \ \cup_{i=1}^{\infty}(a_i,b_i) \supseteq A\}$. This is the set of collections of finite open intervals which cover the set A. We can then define the Lebesgue outer measure on A to be

$$\lambda^*(A) := \inf \left\{ \sum_i (b_i - a_i) \mid \{(a_i, b_i)_{i=1}^{\infty} \in \mathcal{C}_A \right\}$$

Proposition 1.2. λ^* is an outer measure on \mathbb{R} and $\lambda^*([a,b]) = b - a$, $\forall a,b \in \mathbb{R}$ such that $a \leq b$. *Proof.* The only difficult things to prove are countable sub-additivity and the desired value for intervals.

(i) Given $A_1, A_2, \dots \subseteq \mathbb{R}$ we may assume that $\lambda^*(A_i) < \infty$ for all i else countable sub-additivity holds trivially. Given $\epsilon > 0$ we can pick $\{(a_{i_n}, b_{i_n})\}_{i=1}^{\infty} \in \mathcal{C}_{A_i}$ such that

$$\sum_{n=1}^{\infty} (b_{i_n} - a_{i_n}) < \lambda^*(A_i) + \frac{\epsilon}{2^i}$$

We can union these countably many countable collections to get another countable collection covering $\cup_i A_i$.

$$\lambda^* \left(\bigcup_i A_i \right) \le \sum_j (b_j - a_j)$$

$$= \sum_i \left(\sum_n (b_{i_n} - a_{i_n}) \right)$$

$$\le \sum_i \left(\lambda^* (A_i) + \frac{\epsilon}{2_i} \right)$$

$$\le \left(\sum_i \lambda^* (A_i) \right) + \epsilon$$

Taking $\epsilon \to 0$ yields the result.

(ii) Just think of a nice cover than does the job either exactly or to within ϵ , depending on your philosophy surrounding the set \mathcal{A} .

By taking d-dimensional 'rectangular' intervals we can use the same procedure to define a Lebesgue measure on \mathbb{R}^d which similarly assigns expected 'volumes' to these rectangles. The proof of this is somewhat more involved. Now for a weird definition.

Given an outer measure μ^* on X, $B \subseteq X$ is μ^* -measurable if

$$\forall A \in \mathcal{P}(X) \quad \mu^*(A) = \mu^*(A \cap B) + \mu^*(A \cap B^{\mathsf{c}})$$

Intuitively, B is 'nice' if when we want to measure any other set we just measure the part inside and the part outside B and then add the measures together.

It's easy to show that any set with zero outer measure or who's complement has zero outer measure is outer measurable. Define

$$M_{\mu^*} := \{\mu^*\text{-measurable sets}\}$$

Theorem 1.3. Given an outer measure μ^* , $M = M_{\mu^*}$ is a σ -algebra and μ^* yields a measure when restricted to M_{μ^*} .

Proof. We certainly have $\sigma, X \in M$ and closure under complementation. First lets prove closure under finite union. Take $B_1, B_2 \in M$ and choose $A \subseteq X$ arbitrary.

$$\mu^{*}(A \cap (B_{1} \cup B_{2})) + \mu^{*}(A \cap (B_{1} \cup B_{2})^{c})$$

$$= \mu^{*} [(A \cap (B_{1} \cup B_{2})) \cap B_{1}] + \mu^{*} [(A \cap (B_{1} \cup B_{2})) \cap B_{1}^{c}]$$

$$+ \mu^{*} [A \cap (B_{1} \cap B_{2})^{c}]$$

$$= \mu^{*}(A \cap B_{1}) + \mu^{*}(A \cap B_{1}^{c} \cap B_{2}) + \mu^{*}(A \cap B_{1}^{c} \cap B_{2}^{c})$$

$$= \mu^{*}(A \cap B_{1}) + \mu^{*}(A \cap B_{1}^{c})$$

$$= \mu^{*}(A)$$

$$\downarrow \text{ simplify sets}$$

$$\downarrow B_{2} \text{ measurable}$$

$$\downarrow B_{1} \text{ measurable}$$

$$\downarrow B_{1} \text{ measurable}$$

So M is certainly an algebra. To obtain countable unions we note the following can be proved by induction. Given $B_1, B_2, \dots \in M$ and any $A \subseteq X$.

$$\mu^*(A) = \sum_{i=1}^n \mu^*(A \cap B_i) + \mu^* \left(A \cap \left(\bigcup_{i=1}^n B_i\right)^{\mathsf{c}} \right) \quad \forall n \in \mathbb{N}$$

Letting $n \to \infty$, by monotonicity of the outer measure on right term we get

$$\mu^{*}(A) \geq \underbrace{\sum_{i=1}^{\infty} \mu^{*}(A \cap B_{i})}_{\text{converges since all terms +ve}} + \mu^{*} \left(A \cap \left(\bigcup_{i=1}^{\infty} B_{i} \right)^{\mathsf{c}} \right)$$

$$\geq \mu^{*} \left(A \cap \left(\bigcup_{i=1}^{\infty} B_{i} \right) \right) + \mu^{*} \left(A \cap \left(\bigcup_{i=1}^{\infty} B_{i} \right)^{\mathsf{c}} \right)$$

$$sub-additivity$$

and hence $\cup_i B_i \in M$ because the other inequality is an axiomatic assumption. For arbitrary sets we can just take appropriate complementation to express their union as a union of pairwise disjoint sets.

It remains to show that we get a measure. Again the only thing to really show is the remaining inequality to get countable additivity. Given disjoint B_1, B_2, \ldots in M just take $A = \bigcup_i B_i$ in the above inequality to get

$$\mu^* \left(\bigcup_{i=1}^{\infty} B_i \right) \ge \sum_{i=1}^{\infty} \mu^*(B_i) + \mu^*(\emptyset)$$

1.1 Working with Lebesgue Measures

We are now able to form a measure from the Lebesgue outer measure.

The Lebesgue measurable sets are exactly the λ^* -measurable sets. The resulting σ -algebra is denoted \mathcal{L}^d . Restricting λ^* to \mathcal{L}^d yields the Lebesgue measure λ_d .

Proposition 1.4.

$$\mathcal{B}(\mathbb{R}^d) \subseteq \mathcal{L}(\mathbb{R}^d)$$

Proof. Take $b \in \mathbb{R}$, we will show that $(-\infty, b] \in \mathcal{L}$ so that we can take σ on either side to obtain the result. Pick any $A \subseteq \mathbb{R}$ such that $\lambda^*(A) < \infty$ and take arbitrary $\epsilon > 0$.

Choose $\{(a_i, b_i)\} \in \mathcal{C}_A$ such that $\sum_i (b_i - a_i) < \lambda^*(A) + \epsilon$. Notice that $(a_i, b_i) \cap B$ and $(a_i, b_i) \cap B^c$ are disjoint intervals whose lengths sum to $b_i - a_i$.

$$\lambda^*(A \cap B) + \lambda^*(A \cap B^{\mathsf{c}})$$

$$\leq \lambda^* ([\cup_i(a_i, b_i)] \cap B) + \lambda^* ([\cup_i(a_i, b_i)] \cap B^{\mathsf{c}})$$

$$\leq \sum_i \lambda^*((a_i, b_i) \cap B) + \sum_i \lambda^*((a_i, b_i) \cap B^{\mathsf{c}})$$

$$\leq \sum_i [\operatorname{length} ((a_i, b_i) \cap B) + \operatorname{length} ((a_i, b_i) \cap B^{\mathsf{c}})]$$

$$= \sum_i (b_i - a_i) < \lambda^*(A) + \epsilon$$

$$) monotoncity$$

$$) countable sub-additivity$$

$$rearrange + ve terms$$

Now taking $\epsilon \to 0$ we obtain the troublesome inequality.

It is often useful to be able to approximate the Lebesgue measure from above and from below.

Proposition 1.5 (Regularity of Measure). Let $A \in \mathcal{L}(\mathbb{R}^d)$ then

- (a) $\lambda(A) = \inf \{ \lambda(U) \mid U \text{ open }, U \supseteq A \}$
- (b) $\lambda(A) = \sup \{\lambda(K) \mid K \ compact \ , K \subseteq A\}$
- (c) $RHS(a) = RHS(b) \implies A \in \mathcal{L}(\mathbb{R}^d)$

Proof. Every measure is monotonous so we only have one inequality to prove in each case.

(a) Assume $\lambda(A) < \infty$ else we are already done. Given any $\epsilon > 0$, pick $\{R_i\} \in \mathcal{C}_A$ such that $\sum_i \operatorname{vol}(R_i) \leq \lambda^*(A) + \epsilon < \lambda(A) + \epsilon$. Define $U := \bigcup_i R_i$ which is then an open set such that $A \subseteq U$. Now we have

$$\lambda(U) \le \sum_{i} \lambda(R_i) = \sum_{i} \lambda^*(R_i) = \sum_{i} \operatorname{vol}(R_i) \le \lambda(A) + \epsilon$$

Taking $\epsilon \to 0$ yields the result

(b) Again take $\epsilon > 0$ arbitrarily, we split into cases.

Case 1: A is a bounded set.

Take $C \supseteq A$ which is compact. Now by (a) there is U open with $U \supseteq C \setminus A$ such that

$$\lambda(U) \le \lambda(C \setminus A) + \epsilon$$

Now define $K := C \setminus U$. Then C is closed and U is open so K is closed and K lives within C so is bounded. Hence K is bounded. Also note $K \subseteq A$.

$$\lambda(C) \le \lambda(K) + \lambda(U)$$

$$\le \lambda(K) + \lambda(C \setminus A) + \epsilon$$

Hence

$$\lambda(K) \ge \lambda(C) - \lambda(C \setminus A) - \epsilon = \lambda(A) - \epsilon$$

Taking $\epsilon \to 0$ yields sup $\geq \lambda(A)$.

Case 2: A is an unbounded set.

The issue this time is we can't really choose that C. This time define $A_i := A \cap [-i, i]^d$ and set $A := \bigcup_i A_i$ to see

$$A_1 \subseteq A_2 \subseteq A_3 \subseteq \dots$$

Continuity of measure tells us that $\lim_{n\to\infty} \lambda(A_i) = \lambda(A)$. So given $\epsilon > 0$ there is $n \in \mathbb{N}$ such that $\lambda(A_n) \geq \lambda(A) - \frac{\epsilon}{2}$. Case 1 tells us that there is compact K such that $K \subseteq A_n \subseteq A$ with the property that

$$\lambda(K) \ge \lambda(A_n) - \frac{\epsilon}{2} \ge \lambda(A) - \epsilon$$

Taking $\epsilon \to 0$ yields our result.

One nice property of the Lebesgue measure is translation invariance.

Proposition 1.6 (Translation invariance). Fix $x \in \mathbb{R}^d$ then

- (a) $\forall A \in \mathcal{P}(\mathbb{R}^d) \quad \lambda^*(A) = \lambda^*(A+x)$
- (b) $A \in \mathcal{L} \implies A + x \in \mathcal{L}, \quad \lambda(A + x) = \lambda(A)$

Proof. (a) Given a covering collection $\{(a_i, b_i)\}\in \mathcal{C}_A$ we can just translate these intervals and the volume is preserved.

(b) We first show that A + x is λ^* -measurable.

$$\lambda^*(B \cap (A+x)) + \lambda^*(B \cap (A+x)^{\mathbf{c}}) \quad \text{) using (a)}$$

$$= \lambda^*((B-x) \cap A) + \lambda^*((B-x) \cap A^{\mathbf{c}}) \quad \text{) } A \in \mathcal{L}$$

$$= \lambda^*(B) \quad \text{) using (a)}$$

$$= \lambda^*(B)$$

and hence $A + x \in \mathcal{L}$. Also $\lambda(A + x) = \lambda^*(A + x) = \lambda^*(A) = \lambda(A)$.

The question arises whether there exists a set which cannot be measured by the omnipotent Lebesgue. This depends on your view of the Axiom of Choice.

Theorem 1.7 (Vitali Set). Assuming the axiom of choice, $\exists E \subseteq (0,1)$ such that $E \notin \mathcal{L}(\mathbb{R})$.

Proof. Can't be bothered to do this atm.

2 Extended Real Line

We can extend the real line by adding two points

$$\overline{\mathbb{R}} := \mathbb{R} \cup \{-\infty, \infty\}$$

and abiding by the following conventions

•
$$+\infty + x = +\infty$$
 $\forall x \in (-\infty, +\infty]$

•
$$-\infty + x = -\infty$$
 $\forall x \in [-\infty, +\infty)$

•

$$x \cdot (+\infty) = (+\infty) \cdot x = \begin{cases} -\infty & x \in [-\infty, 0) \\ 0 & x = 0 \\ +\infty & x \in (0, +\infty] \end{cases}$$

•

$$x \cdot (-\infty) = (-\infty) \cdot x = \begin{cases} +\infty & x \in [-\infty, 0) \\ 0 & x = 0 \\ -\infty & x \in (0, +\infty] \end{cases}$$

We need a topology for this by giving a base of open sets

$$\{(a,b) \mid a,b \in \mathbb{R}\} \cup \{[-\infty,a) \mid a \in \mathbb{R}\} \cup \{(a,\infty) \mid a \in \mathbb{R}\}$$

Then a set is closed if and only if all sequences contain their limits (including limits at infinity). Under this topology $\overline{\mathbb{R}}$ is compact.

3 Measurable Functions

Before we can define measurable functions we need to note a few equivalences.

Proposition 3.1. Given a measurable space (X, A). If $Y = \mathbb{R}$ or $\overline{\mathbb{R}}$, $A \in A$ and $f : A \to Y$. The following are equivalent:

(a)
$$\forall t \in \mathbb{R} \quad f^{-1}([-\infty, t]) \in \mathcal{A}$$

(b)
$$\forall t \in \mathbb{R} \quad f^{-1}((t, +\infty]) \in \mathcal{A}$$

(c)
$$\forall t \in \mathbb{R} \quad f^{-1}([-\infty, t)) \in \mathcal{A}$$

$$(d) \ \forall t \in \mathbb{R} \quad f^{-1}([t,+\infty]) \in \mathcal{A}$$

(e)
$$\forall$$
 open $U \subseteq Y$ $f^{-1}(U) \in \mathcal{A}$

$$(f) \ \forall \ closed \ B \subseteq Y \quad f^{-1}(B) \in \mathcal{A}$$

$$(g) \ \forall B \in \mathcal{B}(Y) \quad f^{-1}(B) \in \mathcal{A}$$

Proof. There's an awful lot to prove here.

A function $f: A \to \overline{\mathbb{R}}$ or \mathbb{R} is A-measurable if $\forall t \in \mathbb{R}$,

$$\{f < t\} := \{x \in A \mid f(x) < t\} \in \mathcal{A}$$

A function f is simple if f(A) is finite.

One consequence is that all Borel-measurable functions are Lebesgue-measurable since $\mathcal{B}(\mathbb{R}^d) \subseteq \mathcal{L}(\mathbb{R}^d)$.

Proposition 3.2. If $f, g : A \to \overline{\mathbb{R}}$ are measurable then $\{f < g\}$, $\{f \leq g\}$ and $\{f = g\}$ are in A.

Proof. Notice that we only really need to show the first is in A. We express this as a countable combination of measurable sets:

$$B = \bigcup_{r \in \mathbb{Q}} \left\{ f < r \text{ and } g > r \right\} = \bigcup_{r \in \mathbb{Q}} \left(\left\{ f < r \right\} \cap \left\{ g > r \right\} \right)$$

We can define maximum and minimum functions which by this last proposition are measurable functions themselves.

$$(f \lor g)(x) = \max \{f(x), g(x)\}\$$

$$(f \land g)(x) = \min \{f(x), g(x)\}\$$

Pointwise sup, inf, \limsup , \liminf and \lim of sequences of measurable functions also define measurable functions.

Note: Given $f_n: A \to \overline{\mathbb{R}}$ measurable we can show that $B := \{x \in A \mid \lim_{n \to \infty} f_n(x) \text{ exists }\}$ is measurable and is the domain we use to define the pointwise limit function $\lim_n f_n$. Also, given functions

$$(X, \mathcal{A}) \xrightarrow{f} (\mathbb{R}, \mathcal{B}) \xrightarrow{g} (\mathbb{R}, \mathcal{B})$$

their composition $f \circ g$ is also measurable.

We can also see that the set of measurable functions forms a vector space under appropriate pointwise operations. We can see that f^2 is measurable because

$$\left\{f^2 < t\right\} = \left\{f < \sqrt{t}\right\} \cap \left\{f > -\sqrt{t}\right\}$$

Define the following two very important functions:

$$f^+ := f \lor 0$$
$$f^- := -(f \land 0)$$

We will come to use the following technical proposition very often:

Proposition 3.3. Given $f: A \to [0, +\infty]$ measurable, there exist measurable simple functions $f_n: [0, +\infty)$ such that $f_1 \le f_2 \le f_3 \le ...$ and $f = \lim_n f_n$.

Proof. Given $n \in \mathbb{N}$, for every $k \in (1, \dots, n \cdot 2^n)$ define the set

$$A_{n,k} := \left\{ \frac{k-1}{2^n} \le f < \frac{k}{2^n} \right\} \in \mathcal{A}$$

Then define

$$f_n(x) := \begin{cases} \frac{k-1}{2^n} & \text{if } \exists k \in \{1, \dots, n \cdot 2^n\} \text{ such that } x \in A_{k,n} \\ n & \text{otherwise} \end{cases}$$

Where f has a finite value, the maximum error is $\frac{1}{2^n} \to 0$ as $n \to \infty$. Where f has infinite value $f_n(x) = n \to \infty$ as $n \to \infty$. Certainly $f_1 \le f_2 \le f_3 \le \dots$

By applying this proposition to f^+ and f^- separately and combining the results we can see that any measurable f is the limit of measurable simple functions.

Note: It is possible to construct a set this is Lebesgue measurable but not Borel measurable. Its rather long winded but worth a read.

3.1 Some Generalisations

Given spaces (X, \mathcal{A}) and (Y, \mathcal{C}) we can say that $f: X \to Y$ is (A, \mathcal{C}) -measurable if

$$\forall C \in \mathcal{C} \quad f^{-1}(C) \in \mathcal{A}$$

We can see very clearly that composition of measurable functions yields another measurable function. Checking something is measurable can be quite challenging because we have a lot of sets to check. The following allows us to check a basis of sets rather than there σ -algebra.

Proposition 3.4. Suppose $C = \sigma(C_0)$ for some $C_0 \subseteq \mathcal{P}(Y)$ then

$$fis\ measurable \iff \forall C \in C_0\ f^{-1}(C) \in \mathcal{A}$$

4 Integration

The aim of this section is to define the integral on a measure space (X, \mathcal{A}, μ) . We define this function iteratively on an increasingly large subset of functions.

4.1 Simple Functions

Define

$$S_{+} := \{ f : X \to [0, +\infty \mid f \text{ simple and } \mathcal{A}\text{-measurable} \}$$

So given $f \in S_+$ we can write $f = \sum_i a_i \chi_{A_i}$ for some $a_i \in [0, +\infty)$ and A_1, \ldots, A_m disjoint and measurable. The a_i are not distinct and so this is not a unique presentation.

We can now define the integral to be

$$\int f \, d\mu := \sum_{i=1}^{m} a_i \, \mu(A_i) = \sum_{a \in f(X)} a \, \mu(f^{-1}(a))$$

It can be shown with some ease that this is a linear, increasing function. We also get the desirable property that we can swap limit and integral in certain circumstances.

Proposition 4.1. Let f and $f_1 \leq f_2 \leq f_3 \leq \ldots$ in S_+ with $f = \lim_n f_n \in S_+$, then

$$\int f \, d\mu = \lim_{n} \int f_n \, d\mu$$

Proof. By monotonicity we certainly have

$$\lim_{n} \int f_n \, d\mu \le \int f \, d\mu$$

For the opposite inequality, write $f = \sum_i a_i \chi_{A_i}$. Take some arbitrary $\epsilon > 0$. Define the following sets

$$A_{n,i} := \{ x \in A_i \mid f_n(x) \ge (1 - \epsilon)a_i \} \in \mathcal{A}$$

and notice these are nested sets satisfy

$$A_{1,i} \subseteq A_{2,i} \subseteq A_{3,i} \subseteq \dots$$
 such that $\bigcup_n A_{n,i} = A_i$

Define $g_n := \sum_{i=1}^k (1 - \epsilon) a_i \chi_{A_{n,i}} \le f_n$ which also satisfies $g_1 \le g_2 \le g_3 \le \dots$

$$\lim_{n} \int f_{n} d\mu \ge \lim_{n} \int g_{n} d\mu$$

$$= \sum_{i=1}^{k} (1 - \epsilon) a_{i} \mu(A_{n,i})$$

$$= (1 - \epsilon) \sum_{i=1}^{k} a_{i} \lim_{n} \mu(A_{n,i})$$

$$= (1 - \epsilon) \sum_{i=1}^{k} a_{i} \mu(A_{i})$$

$$= (1 - \epsilon) \int f d\mu$$

$$\min_{n} \mu(A_{n,i})$$

$$= (1 - \epsilon) \int f d\mu$$

Taking $\epsilon \to 0$ yields the remaining inequality.

4.2 Non-negative measurable functions

Define

$$\overline{S_+}:=\{\text{measurable } f:X\to [0,+\infty]\}$$

Given $f \in \overline{S_+}$ we can define the integral by

$$\int f \, d\mu := \sup \left\{ \int g \, d\mu \, \middle| \, g \in S_+, \, g \le f \right\}$$

Note that this is certainly consistent with our original definition for S_{+}

Proposition 4.2. Given $f_1 \leq f_2 \leq \ldots$ in S_+ , and $d := \lim_n f_n$ then $f \in \overline{S_+}$. Moreover, $\int f d\mu = \lim_n \int f_n d\mu$.

Proof. We have already seen that $f \in \overline{S_+}$ because it is the limit of a sequence of measurable functions. By our new definition of the integral we have

$$\int f_1 d\mu \le \int f_2 d\mu \le \dots \le \int f d\mu$$

and hence certainly $\lim_n \int f_n d\mu \leq \int f d\mu$. So if the limit is an upper bound, it is certainly the least such upper bound.

So for the converse inequality it suffices to show that given $g \in S_+$ such that $g \leq f$ we have $\int g \, d\mu \leq \lim_n \int f_n \, d\mu$. Well consider

$$g \wedge f_1 \leq g \wedge f_2 \leq \dots \in S_+$$

We have that $f_n \to f \ge g$ and hence $\lim_{n\to\infty} (g \wedge f_n) = g$. So the previous proposition tells use that

$$\int g \, d\mu = \lim_{n \to \infty} \int (g \wedge f_n) \, d\mu \le \lim_{n \to \infty} \int f_n \, d\mu$$

Again we can show that this new integral is still a linear, increasing operator on $\overline{S_+}$.

4.3 Arbitrary Measurable Functions

Finally given any $f: X \to \overline{\mathbb{R}}$ define the integral to be

$$\int f \, d\mu := \begin{cases} \text{UNDEFINED} & \text{if } \int f^+ \, d\mu = \int f^- \, d\mu = +\infty \\ \int f^+ \, d\mu - \int f^- \, d\mu & \text{otherwise} \end{cases}$$

f is called μ -integrable if $\int f^+ d\mu < +\infty$ and $\int f^- d\mu + \infty$.

In the case $f \in \overline{S_+}$, then $f^- = 0$ and hence the definitions coincide.

4.4 Playing with the Integral

One property we will often use to estimate integrals.

Proposition 4.3. Let $f: X \to \overline{\mathbb{R}}$ be measurable then

$$f integrable \iff |f| integrable$$

Moreover, $|\int f d\mu| \leq \int |f| d\mu$.

We say that a measure space (X, \mathcal{A}, μ) is complete if

$$\forall A \in \mathcal{A} \text{ such that } \mu(A) = 0 \quad \forall B \subseteq A \quad B \in \mathcal{A}$$

i.e. every subset of a 0-measure set is measurable.

The completion of $(X, \mathcal{A}\mu)$ is $(X, \mathcal{A}_{\mu}, \overline{\mu})$ where

$$\mathcal{A}_{\mu}:=\{A\subseteq X\mid \exists E,F\in\mathcal{A} \text{ such that } E\subseteq A\subseteq F,\ \mu(F\setminus E)=0\}\supseteq\mathcal{A}$$
 $\overline{\mu}(A):=\mu(F)=\mu(E)$

The proof that the completion of a measure space is in fact a complete measure space is omitted and non-examinable.

A property $P: X \to \{\text{true}, \text{false}\}\ \text{holds}\ \text{almost}\ \text{everywhere}\ \text{if}$

$$\exists N \in \mathcal{A} \text{ such that } \mu(N) = 0, \ N \supseteq P^{-1}(\text{false})$$

Proposition 4.4. Suppose (X, \mathcal{A}, μ) is complete and $f, g: X \to \overline{\mathbb{R}}$ such that f(x) = g(x) for almost every x. Then f is measurable $\iff g$ is measurable.

Proof. Suppose that f is measurable and $\exists N \in \mathcal{A}$ such that $\mu(N) = 0$ and $\{f \neq g\} \subseteq N$.

$$\{g \le t\} = (\{f \le t\} \cap N^{c}) \cup (\{g \le t\} \cap N)$$

Note $\{f \leq t\} \in \mathcal{A}$ since f is measurable and certainly $N^{\mathsf{c}} \in \mathcal{A}$. The second set is a subset of N and N has 0 measure and hence the second set is measurable by completeness. So $\{g \leq t\} \in \mathcal{A}$ and so g is measurable.

Proposition 4.5. Suppose $f, g: X \to \overline{\mathbb{R}}$ are measurable such that f = g almost everywhere. If f is integrable then g is integrable. Moreover $\int f d\mu = \int g d\mu$.

Proof. Pick $N \in \mathcal{A}$ with $\mu(N) = 0$ such that $\{f \neq g\} \subseteq N$. Define

$$h(x) := \begin{cases} +\infty & x \in N \\ 0 & x \notin N \end{cases}$$

Consider the following sequence of simple measurable, non-negative functions.

$$\chi_N \le 2\chi_N \le 3\chi_N \le \dots \le \lim_n (n\chi_N) = h$$

Hence

$$\int h \, d\mu = \lim_{n \to \infty} \int n \chi_N \, d\mu = \lim_{n \to \infty} n \mu(N) = \lim_{n \to \infty} 0 = 0$$

Certainly $g^+ \leq f^+ + h$ and hence $\int g^+ d\mu \leq \int f^+ d\mu + \int h d\mu \leq \int f^+ d\mu < +\infty$. Similarly we can show that $\int g^- d\mu \leq \int f^- d\mu < +\infty$ and so g is integrable. We can repeat this whole proof in the opposite direction to get the opposite inequalities and hence $\int f d\mu = \int g d\mu$.

4.5 Application to Probability Theory

Suppose we have a random variable Y. We need a measure space with the following structure.

- $X = \{\text{elementary outcomes}\}$
- $\mathcal{A} = \{\text{events}\}\$
- $\mu(A) = \mathbb{P}(A)$
- $\mu(X) = 1$ so that this is a probability space.

Then $Y: X \to \overline{\mathbb{R}}$ is a measurable function. We define the expectation of Y to be

$$\mathbb{E}(Y) := \int Y \, d\mu$$

Proposition 4.6 (Markov's Inequality). Given $f: X \to [0, +\infty]$ measurable and $t \in (0, +\infty)$. Let $A := \{f \ge t\}$. Then

$$\mu(A) \le \frac{1}{t} \int_A f \, d\mu \le \frac{1}{t} \int f \, d\mu$$

Proof.

$$t\chi_A \le f\chi_A \le f \underset{\text{integrate}}{\Longrightarrow} t\mu(A) \le \int_A f \, d\mu \le \int f \, d\mu$$

Phrasing this in terms of random variables we see that given a random variable $Y \geq 0$ then

$$\mathbb{P}(Y \ge t) \le \frac{1}{t}\mathbb{E}(Y) \qquad \forall t \in (0, +\infty)$$

Corollary 4.7. Suppose $f: X \to \overline{\mathbb{R}}$ is a measurable function. Then

$$\int |f| d\mu = 0 \implies f = 0 \text{ almost everywhere}$$

Proof. Given any $n \in \mathbb{N}$

$$\mu\left\{ \left|f\right| \geq \frac{1}{n}\right\} \leq n\int\left|f\right|d\mu = 0$$

Now $\{f \neq 0\} = \bigcup_{n \in \mathbb{N}} \left\{ |f| \geq \frac{1}{n} \right\}$ and $\mu \left(\bigcup_{n \in \mathbb{N}} \left\{ |f| \geq \frac{1}{n} \right\} \right) = 0$.

Corollary 4.8.

$$f: X \to \overline{\mathbb{R}} \quad integrable \quad \Longrightarrow \quad |f| < +\infty \quad a.e.$$

Proof. The proof is very similar to the previous corollary.

The following space will be of vital importance

$$\mathcal{L}^1(X, \mathcal{A}, \mu, \mathbb{R}) := \{ f : X \to \mathbb{R} \mid \text{integrable} \}$$

We will often just refer to this as \mathcal{L}^1 .

Corollary 4.9. Let $f: X \to \overline{\mathbb{R}}$ be a measurable function. Then

$$f$$
 integrable $\iff \exists g \in \mathcal{L}^1$ s.t. $g = f$ a.e.

Proof. Just set g to be the same as f except on a set of 0-measure where f is ∞ where we define g to be 0.

4.6 Limit Theorems

Theorem 4.10 (Monotone Convergence Theorem). Let f and f_1, f_2, \ldots be measurable functions $X \to [0, +\infty]$ such that for almost every x

$$f_1(x) \le f_2(x) \le \dots$$
 and $f(x) = \lim_{n \to \infty} f_n(x)$

then $\int f d\mu = \lim_{n \to \infty} \int f_n d\mu$.

Proof. We will suppose that the inequalities hold for every $x \in X$. This leaves us with one inequality left to prove. We approximate each f_n by an increasing sequence of S_+ functions and then select a subsequence of these.

So for each $n \in \mathbb{N}$ we can pick $g_{n,1} \leq g_{n,2} \leq g_{n,3} \leq \ldots$ in S_+ such that $f_n = \lim_{k \to \infty} g_{n,k}$. Then for each $k \in \mathbb{N}$ we define

$$h_k := \max\{g_{1,k}, g_{2,k}, \dots, g_{k,k}\} \in S_+$$

Figure 1: Visualizing the definition h_k . Each square represents a $g_{n,k}$.

Notice that $h_1 \leq h_2 \leq h_3 \leq \dots$ and $f = \lim_{k \to \infty} h_k$. Hence

$$\int f \, d\mu = \lim_{k \to \infty} \int h_k \, d\mu \le \lim_{n \to \infty} f_n \, d\mu$$

In generality, we can pick $N \in \mathcal{A}$ such that $\mu(N) = 0$ and we have the assumed inequalities $\forall x \in N^{\mathsf{c}}$. We can then apply these previous arguments to N^{c} by considering the functions

$$f\chi_{N^c}, \quad f_1\chi_{N^c} \leq f_2\chi_{N^c} \leq f_3\chi_{N^c} \leq \dots$$

These functions differ on a set contained within a set of measure 0 and hence their integrals must agree with the full integrals. \Box

Corollary 4.11 (Levi's Theorem). Given measurable $g_n: X \to [0, +\infty]$ for each $n \in \mathbb{N}$.

$$\int \left(\sum_{n=1}^{\infty} g_n\right) d\mu = \sum_{n=1}^{\infty} \left(\int g_n d\mu\right)$$

Theorem 4.12 (Fatou's Lemma). Given a sequence $\{f_n\}$ of functions in $\overline{S_+}$,

$$\int \left(\liminf_{n} f_{n} \right) d\mu \leq \liminf_{n} \int f_{n} d\mu$$

Proof. For each $k \in \mathbb{N}$ define $g_k := \inf_{n \geq k} f_n \in \overline{S_+}$.

$$g_1 \le g_2 \le g_3 \le \dots$$
 and $\liminf_n f_n = \lim_n g_n$

Apply the Monotone Convergence Theorem to see

$$\int \left(\liminf_{n} f_{n} \right) d\mu = \int \left(\lim_{n} g_{n} \right) d\mu = \lim_{n} \int g_{n} d\mu$$

So we need to show $\lim_n \int g_n d\mu \le \lim \inf_n \int f_n d\mu$. Notice for each $n \in \mathbb{N}$ that $g_n \le f_n \le f_{n+1} \le \dots$ and hence

$$\lim_{n} g_n \, d\mu \le \liminf_{n} \int f_n \, d\mu$$

Theorem 4.13 (Dominated Convergence Theorem). Suppose:

- (i) $g: X \to [0, +\infty]$ is integrable
- (ii) $f, f_1, f_2, \dots : X \to \overline{\mathbb{R}}$ are measurable such that for almost every $x \in X$

$$f(x) = \lim_{n \to \infty} f_n(x)$$
 and $\forall n \in \mathbb{N} |f_n(x)| \le g(x)$

Then:

- 1. f and each f_i are integrable
- 2. $\int f d\mu = \lim_{n \to \infty} \int f_n d\mu$

Proof. We may assume that (ii) holds for every $x \in X$ since this won't change any integrals. Likewise we may assume that $g(x) \neq +\infty$ for all $x \in X$.

- 1. Given $n \in \mathbb{N}$, $|f_n| \leq g \implies \int |f_n| < \int g < +\infty \implies f_n$ integrable. Then $|f| = \lim_n |f_n| \leq \lim_n g = g \implies f$ integrable.
- 2. Claim: $\int (g+f) d\mu \leq \liminf_n \int (g+f_n) d\mu$ This follows by Fatou's Lemma because $g+f_n \geq 0$ is measurable and $g+f=\lim_n (g+f_n)$. Now,

$$\begin{split} \int g \, d\mu + \int f \, d\mu &= \int (g+f) \, d\mu \\ &\leq \liminf_n \left(\int \left(g + f_n \right) \, d\mu \right) \\ &= \int g \, d\mu + \liminf_n \int f_n \, d\mu \end{split}$$
 and hence
$$\int f \, d\mu \leq \liminf_n \int f_n \, d\mu$$

Now applying the same argument to -f and $\{-f_n\}$ yields

$$\int (-f) d\mu \le \liminf_{n} \int (-f_n) d\mu \implies \int f d\mu \ge \limsup_{n} \int f_n d\mu$$

And hence we have $\int f d\mu = \lim_n \int f_n d\mu$.

It's also worth knowing that

Theorem 4.14. Given bounded function $f : [a, b] \to \mathbb{R}$

- (a) f is Riemann integrable \iff for almost every x, f is continuous at x
- (b) In this case $Riemann\ Integral = Lebesgue\ Integral$