# **Assignment 10: Biomaterials and Host Integration**

### **Cell and Tissue Engineering**

#### **Problems**

- 1. The company Baxter received approval for its Fibrin Sealant (Tisseel®) in July, 2000 for application in surgical procedures. Features of this produce can be found at the website (<a href="http://tisseel.com/us/index.html">http://tisseel.com/us/index.html</a>). This material is being evaluated for a number of tissue engineering applications. Consider its use as a possible material in which to deliver tendon cells to a defect between bone and avulsed tendon. With regard to this prospective biomaterial application, please answer the following questions. Remember to give references when appropriate.
  - a. What type of biomaterial is Tisseel® and what are its components?
  - b. What reaction does Tisseel® undergo to form a sealant?
  - c. How quickly does Tisseel® degrade?
  - d. What surface properties would be desirable for such an application? Does the product have such properties?
  - e. What bulk properties would be desirable for such an application? Does the product have such properties?
- 2. In lecture 1 we discuss the use of lithographic methods for tailoring biomaterials at the cellular level. Please briefly describe one technique each for tailoring biomaterials at the subcellular and supracellular length scales. 2-3 sentences each MAX.
- 3. Name the immunomodulatory strategy based on the description:
  - a. Encapsulation of cells with semipermeable material
  - b. Blocking co-stimulators of T-cell activation
  - c. Use of corticosteroids
  - d. Forced expression of human proteins in xenograft cells

#### References:

Question 1 adapted from Tissue Engineering, Palsson and Bhatia



## **Rubric**

| Question | Component     | Total Point<br>Value |
|----------|---------------|----------------------|
| 1        | а             | 2                    |
|          | b             | 2                    |
|          | С             | 2                    |
|          | D             | 2                    |
|          | E             | 2                    |
| 2        | Subcellular   | 6                    |
|          | Supracellular | 6                    |
| 3        | Α             | 2                    |
|          | В             | 2                    |
|          | С             | 2                    |
|          | D             | 2                    |

