

19 BUNDESREPUBLIK **DEUTSCHLAND**

DEUTSCHES PATENTAMT

Offenlegungsschrift [®] DE 196 48 164 A 1

(7) Aktenzeichen:

196 48 164.3

(2) Anmeldetag: 21.11.96 (3) Offenlegungstag:

28. 5.98

⑤ Int. Cl.⁶: B 62 D 25/00

> B 62 D 21/15 B 62 D 29/04 B 60 R 21/13 // B62D 25/02

(1) Anmelder:

Wilhelm Karmann GmbH, 49084 Osnabrück, DE

(7) Vertreter:

Busse & Busse Patentanwälte, 49084 Osnabrück

(12) Erfinder:

Emmelmann, Hans-Joachim, Dr., 49074 Osnabrück, DE; Seeliger, Hans-Wolfgang, 49074 Osnabrück, DE

56 Entgegenhaltungen:

DE	1 95 46 352 A1
DE	1 95 18 946 A1
DE	43 26 175 A1
DE	40 16 730 A1
DE	93 13 546 U1

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

Prüfungsantrag gem. § 44 PatG ist gestellt

- (3) Karosserieteil, insbesondere Profilrahmenträger
- Ein Profilrahmenträger 2 oder sonstiges Karosserieteil 2' für Karosserien 1 von Kraftfahrzeugen, insbesondere Cabriolets, wobei der Profilrahmenträger 2 bzw. das Karosserieteil 2' einen mit einem aufgeschäumten metallischen Schaumwerkstoff 5, 5' ausgesteiften Hohlraum 3, 3' umgrenzt, wird derart ausgebildet, daß im Innern des Hohlraums 3, 3' ein sich in dessen Längsrichtung erstrekkendes Strukturbauteil 4 angeordnet ist und daß der aufgeschäumte metallische Schaumwerkstoff 5 den Raum zwischen der Innenwand des Profilrahmenträgers 2 und dem darin liegenden Strukturbauteil 4 einnimmt, bzw. daß der innenliegende Hohlraum 3' in Längsrichtung mit Aussteifungsteilen aus metallischem Schaumwerkstoff 5' angefüllte Teilbereiche und zwischen einzelnen ausgesteiften Bereichen verbleibende Hohlbereiche aufweist, wobei die Aussteifungsteile mit Innenwandungen des Karosserieteils 2' über metallische Bindung verbunden sind. Zudem wird ein Verfahren angegeben zur Aussteifung von Bereichen von Karosserieteilen, insbesondere von Bauteilen der oben genannten Art (Fig. 2).

Beschreibung

Die Erfindung bezieht sich auf einen Profilrahmenträger für Karosserien von Kraftfahrzeugen nach dem Oherbegriff des Anspruchs 1 sowie auf ein Karosserieteil nach dem 5 Oberbegriff des Anspruchs 5 und ein Verfahren nach dem Oberbegriff des Anspruchs 9.

Die DE 195 46 352 A1 offenbart Profifrahmenträger für Karosserien von Fahrzeugen, wobei ein von dem Profilrahmenträger umgrenzter Hohlraum mit einem Aluminium- 10 schaumwerkstoff angefüllt und dadurch ausgesteift ist. Der Aluminiumschaumwerkstoff wird dahei entweder als Schmelze in den von dem Profilrahmenträger gebildeten Hohlraum eingegossen und in diesem aufgeschäumt, oder es wird außerhalb des Profilrahmenträgers zunächst der Aufschäumvorgang durchgeführt und aus dem fertig aufgeschäumten Block aus Schaumwerkstoff ein Stück in passender Größe zum Einsatz in den Profilrahmenträger ausgeschnitten.

Das Aufschäumen einer Schmelze in dem Profilrahmen- 20 träger erforden jedoch eine hierfür geeignete rage dieses Bauteils, das für das Ausgießen zumindest einseitig verschlossen sein muß. Ein Anfüllen eines bereits montierten oder in einer Baugruppe vormontierten Profilrahmenträgers im laufenden Produktionsverfahren mit Aluminiumschaum 25 ist damit nicht möglich.

Das Einbringen vorgefertigter, einen Festkörper bildenden Aluminiumschaumblöcke in den Profilrahmenträger erfordert erstens ein paßgenaues Zurechtschneiden dieser Blöcke, so daß als Profilrahmenträger nur einfache Formen, 30 wie etwa Vierkamprofile, in Frage kommen, zudem ist eine zusätzliche Festlegung der Schaumblöcke in dem Profilrahmenträger erforderlich, was den Montageaufwand und das Gewicht erhöht.

Demgegenüber liegt der Erfindung das Problem zu- 35 grunde. Profilrahmenträger bzw. andere, einen Hohlraum umgrenzende Karosserieteile derart auszubilden, daß einerseits eine maximale Flexibilität bei ihrer Herstellung und andererseits die Erfüllung eines breiten Spektrums von statirosseriebereich auftreten, von den Bauteilen erfüllt werden kann.

Die Erfindung löst diese Problem mit einem Gegenstand mit den Merkmalen des Anspruches 1 bzw. des Anspruches 5 sowie mit einem Verfahren mit den Merkmalen des An- 45 spruches 9.

Durch die Anordnung eines Strukturbauteils im Innem eines Profilrahmenträgers und die Ausschäumung des Zwischenraumes zwischen dem Strukturbauteil und dem Profilrahmenträger ist ein Bauteil gebildet, das sich als Rahmen- 50 nes Cabriolets mit Überrollbügel. oder Versteitungselement im Kraftfahrzeug einsetzen läßt, beispielsweise als Windschutzscheibenrahmen oder Überrollbügel, insbesondere jedoch als tragendes Teil der Grundstruktur, etwa als Seitenschweller, wo schon bisher im Cabrioletbau in dem Profilrahmenträger angeordnete Rohre 55 o. ä. zur Erhaltung der Torsionssteifigkeit unverzichtbar waren. Solche innenliegenden Strukturbauteile sind bisher vorzugsweise über stegartige Anformungen gegenüber dem äußeren Profilrahmentrager abgestützt.

Die Ausschäumung des Zwischenraumes ermöglicht eine 60 flächige Abstützung des innenliegenden Strukturbauteils, so daß über den gesamten Verlauf des Profilrahmenträgers eine gleichmäßige Widerstandsfähigken gegen von außen auftretende Deformationen, insbesondere Knickdeformationen, wie sie bei einem Unfall auftreten, erreicht ist.

Durch den Einsatzleines metallischen Schaumwerkstoffes zur Anfüllung dieses Zwischenraumes ist gleichzeitig das Gewicht gesenkt, gegenüber bisherigen Bauteilen kann die

Wandstärke des innenliegenden Strukturbauteils, insbesondere Rohres, gesenkt werden.

Ein Karosseriebauteil, das neben den mit metallischem Schaumwerkstoff, insbesondere Aluminiumschaumwerkstoff, angefüllten Bereichen noch Hohlräume enthält, die freibleiben, bietet die Möglichkeit, nur diejenigen Bereiche des Karosseriebauteils auszusteifen, die einer besonderen Belastung unterliegen. Dies können beispielsweise bei einem Windschutzscheibenrahmen die seitlich aufragenden Profile sein, die im Falle eines Überschlages vertikale Kraftkomponenien abzulangen haben.

Auch im Bereich von beispielsweise seitlichen Hohlräumen in Türen können solche teilweise ausgeschäumten Karosserieteile Verwendung finden, wobei die Ausschäumung jeweils an die Art der zu erwartenden Krafteinleitung angepaßt ist. Dadurch, daß nach der Erfindung Teilbereiche der Karosserieteile freibleiben können neben ausgeschäumten Bereichen des von dem Karosserieteil umgrenzten Hohlraums, wird die Möglichkeit einer erheblichen Gewichtseinsparung eröffnet. Besondere Anforderungen an die Lage und Anordnung des mit metallischem Schaumwerkstoff anzufüllenden Bauteils werden dabei nicht gestellt.

Mit dem Verfahren nach Anspruch 9 wird es ermöglicht, die Schaumwerkstoffieile soweit vorzubereiten, daß sie in verschiedenartigst geformten Karosserieteilen und Profilrahmenträgern eingesetzt und darin fertiggeschäumt werden können. Eine Einschränkung an den Innenquerschnitt eines Profilrahmenträgers ist daher nicht mehr erforderlich. Ebensowenig ist eine vertikale, einseitig geschlossene Einbaulage eines auszuschäumenden Profilträgers oder Karosserieteils notwendig, vielmehr kann das Einbringen der Schaumwerkstoffieile in dem laufenden Produktionsprozeß erfolgen, ohne eine Vorabfertigung der auszuschäumenden Bauteile durchführen zu müssen.

Weitere Vorteile und Einzelheiten ergeben sich aus der Zeichnung sowie der nachfolgenden Beschreibung mehrerer Ausführungsbeispiele des Gegenstandes der Erfindung.

In der Zeichnung zeigen:

Fig. 1 die abgebrochene Seitenansicht einer Kraftfahrschen und dynamischen Beanspruchungen, wie sie im Ka- 40 zeugkarosserie mit einem erfindungsgemäßen Profilrahmenträger im Schwellerbereich,

Fig. 2 einen Schnitt entlang der Linie II-II aus Fig. 1,

Fig. 3 eine abgebrochene Seitenansicht einer Kraftfahrzeugkarosserie mit einem erfindungsgemäßen Karosserieteil als Windschutzscheibenrahmen,

Fig. 4 einen Schnitt entlang der Linie IV-IV aus Fig. 3.

Fig. 5 eine ähnliche Darstellung zu Fig. 4,

Fig. 6 eine abgebrochene schaubildliche Darstellung ei-

Fig. 7 einen Schnitt entlang der Linie VII-VII aus Fig. 6. Im einzelnen weist ein erfindungsgemäßer Profilrahmenträger 2. der Teil einer Kraftfahrzeugkarosserie 1 ist und beispielsweise einen Seitenschweller (Fig. 1 und 2) oder einen Windschutzscheibenrahmen oder Überrollbügel (Fig. 6 und Fig. 7) ausbilder, einen innenliegenden Hohlraum 3 auf, in dem ein tragendes Rohr 4 angeordnet ist. Dieses Rohr 4 bildet ein Strukturbauteil der Karosserie und erstreckt sich in Längsrichtung des äußeren Profilrahmenträgers 2.

Der Hohlraum 3 zwischen dem innenliegenden Rohr 4 und dem ihn umgebenden Profilrahmenträger 2 ist im Endzustand der Teile von einem aufgeschäumten metallischen Schaumwerkstoff 5 eingenommen. Dadurch ist, etwa bei der seitlichen Einleitung einer Kraft in Richtung des Pfeiles F, eine großflächige Abstützung des Profilrahmenträgers 2 gegenüber dem innenliegenden Strukturbauteil 4 erreicht, so daß die auftretenden Kräfte besser als bei einer stegartigen Anhindung des Strukturbauteils 4 an den Profilrahmenträger

4

2 verteilt werden können und eine Knickdeformation des Bauteils erst bei erheblich größeren Kräften einsetzt bzw. bei gleicher Kraft geringer ausfällt. Sowohl die Steifigkeit des Seitenschwellers oder anderen Rahmenteils als auch seine Knickstabilität sind damit deutlich erhöht, gleichzeitig ist durch die gleichmäßige Ausschäumung des Hohlraums 3 die Widerstandsfähigkeit des Bauteiles gegen eine Krafteinleitung aus beliebiger Richtung erhöht.

Das innenliegende Strukturbauteil 4 kann verschiedenartig ausgeführt sein, beispielsweise als in Längsrichtung abgekantete Blech, als Massivkörper oder als Hohlprofil, insbesondere als Rohr. Auch kann es in Einzelfällen in Frage kommen, daß das innenliegende Strukturbauteil 4 ein Zugteil ausbildet, das verschiedene Bereiche eines Profilrahmenträgers 2, beispielsweise wenn dieser Knickstellen auf weist, zusammenhält.

Ein in dem Seitenschweller angeordnetes Rohr 4 erfüllt einerseits die Funktion, den Seitenschweller auszusteifen und gegen Knickdeformationen zu stabilisieren sowie die Torsionsfestigkeit der Karosserie 1 insgesamt zu erhöhen. 20 andererseits kann der innenliegende Hohlbereich 5 des Rohres 4 als Führungskanal für Leitungen, insbesondere als Kabelkanal, genutzt werden.

Die Fig. 3 bis 5 zeigen die Ausbildung eines Karesserieteils 2', das als Windschutzscheibenrahmen und daher ebenfalls als Profilträger ausgebildet ist und einen innenliegenden Hohlraum 3' ausbildet, der bereichsweise mit Aussteifungsteilen 5' aus metallischem Schaumwerkstoff, insbesondere Aluminiumschaum, angefüllt ist.

Für eine solche Ausbildung von Karosserieteilen 2' kommen nicht nur Profilrahmenträger in Frage, sondern es können auch andere Karosseriebereiche, insbesondere Hohlräume zwischen einem Innen- und einem Außenblech, wie beispielsweise in Türen oder in vorderen Bereichen der Motorhaube, ausgeschäumt werden, um hierdurch in aufprallgefährdeten Bereichen eine Verstärkung der Karosserie 1 zu bewirken, ohne einen Hohlbereich 3' vollständig ausschäumen zu müssen und dadurch das Gewicht der Karosserie 1 erheblich zu erhöhen.

Der ausgeschäumte Bereich 5' nimmt dabei nur einen Teil 40 des Hohlraumes 3' ein, zwischen ausgeschäumten Bereichen 5' verbleiben signifikante Hohlbereiche, beispielsweise 20% des Hohlraumes 3', so daß insgesamt nur die Teile eines Karosserieteils 2', beispielsweise eines Windschutzscheibenrahmens oder Überrollbügels, mit metallischem Schaumwerkstoff angefüllt sind, die bei Einleitung von Kräften, wie sie bei einem Unfall auftreten, besonders beansprucht sind. Die verbleibenden Hohlbereiche bewirken gegenüber der Vollausschäumung eine Gewichtsreduzierung.

Wenn das Karosserieteil 2' als Windschutzscheibenrahmen oder Überrollbügel ausgebildet ist, sind die Teile, die bei einem Überschlag mit vertikaler Krafteinleitung beansprucht werden, insbesondere die seitlichen Holme.

Hin solches Karosserieteil 2', das bereichsweise Aussteifungen aus metalfischem Schaumwerkstoff aufweist, kann 55 auch zusätzlich ein innenliegendes Strukturbauteil 4 aufweisen, so daß sich in ausgeschäumten Teilbereichen eine ähnliche Querschnittsdarstellung wie in Fig. 2 bzw. Fig. 7 ergibt. Damit kann einerseits die hohe Stabilitätsreserve aus dem innenliegenden Strukturbauteil 4, beispielsweise einem 60 Rohr, genutzt werden, andererseits kann sich die großflächige Abstützung eines Profilrahmenträgers 2' an dem Rohr 4 auf die Bereiche beschränken, die Kräfte aufzunchmen haben. Eine Gesamtausschäumung des Zwischenraumes zwischen dem Rohr 4 und dem Profilrahmenträger 2' ist dabei 65 nicht notwendig, so daß Gewicht eingespart werden kann. Eine solche bereichsweise Ausschäumung mit innenliegendem Strukturbauteil 4 bietet sich beispielsweise in Türen an.

bei denen es eine hohe Gewichtszunahme bedeuten würde, einen großflächigen Zwischenraum zwischen einem Innenund einem Außenbereich auszuschäumen.

Zur Bildung der beschriebenen Bauteile 2. 2' werden in den Hohlraum 3 des Profilrahmenträgers 2 bzw. Karosserieteils 2' Halbzeuge aus metallischem Schaumwerkstoff eingesetzt, die in den Profilrahmenträger 2 bzw. Karosserieteil 2' durch Erhitzen auf ihre Endgestalt fertiggeschäumt werden.

Die Endgestalt wird dabei zumindest von den Innenwandungen des Karosserieteils 2, 2' begrenzt. Das Halbzeug kann als primitiver Körper ausgebildet sein oder bereits eine Anpassung an die Form des Hohlraumes 3, 3' aufweisen, also endkonturnah vorbearbeitet sein. Das so eingebracht Halbzeug wird innerhalb des Karosserieteils 2, 2' auf seine Endgestalt fertiggeschäumt, indem es dort erhitzt wird.

Dieses Erhitzen kann auf verschiedene Weisen erfolgen, beispielsweise durch Induktion, Strahlungswärmte, Wärmeleitung oder Konvektion und durch den Einsatz elektromagnetischer Wellen, wie sie beispielsweise in der Lasertechnik verwendet werden. Wenn in dem Profilrahmenträger 2 oder sonstigen Karosserieteil 2' ein innenliegendes Strukturbauteil 4 mit einem darin enthaltenden Hohlraum 6 angeordnet ist, so kann auch durch diesen Hohlraum 6 ein erhitztes Medium geleitet werden, wodurch der Zwischenraum zwischen dem Strukturbauteil 4 und dem äußeren Bauteil 2, 2' erwärmt wird, so daß hier eine Schaumbildung des eingebrachten Halbzeuges erreicht wird.

Ein solches innenliegendes Strukturbauteil 4 kann auf seiner dem Hohlraum 3 zugewandten Außenseite mit einer Lage 7 aus aufzuschäumendem metallischem Werkstoff versehen sein. Diese Lage 7 muß sich nicht über die gesamte Länge des Strukturbauteils 4 erstrecken, sondern es ist möglich, auf diese Weise nur Bereiche des Hohlraumes 3 zwischen dem Profilrahmenträger 2 und dem innenliegenden Strukturbauteil 4 auszuschäumen, zwischen denen Hohlräume verbleiben, wie dies in Anspruch 8 dargestellt ist. Beim Erhitzen dieser Lage 7 sorgen dann die in dem Schaumwerkstoff enthaltenen Schaumbildner für ein Aufschäumen dieser Lage, so daß, wie im linken Teil der Fig. 2 dargestellt ist, am Ende des Erwärmungsvorgangs im Querschnitt der gesamte Hohlraum 3 dem Profilrahmenträger 2 und den innenliegenden Strukturbauteil 4 mit aufgeschäumtem Schaumwerkstoff 5 angefüllt ist, wobei der Schaumwerkstoff 5 metallische Bindungen zu dem ihn umgebenden Karosserieteil 2, 2' ausgebildet. Damit ist eine Ausschäumung eines beliebigen Hohlraumquerschnitts ermöglicht. Eine Einschränkung an die Karosserieteilform entfällt. Eine endkonturnahe Vortertigung der einzubringenden Halbzeuge ist nicht erforderlich.

Analog kann zusätzlich oder statt dessen die Innenwandung des Profilrahmenträgers 2 oder sonstigen Karosserieteils 2 mit einer Lage aus aufzuschäumenden metallischem Werkstoff versehen sein, wobei der Aufschäumvorgang dieses Werkstoffes dann durch das innenliegende Strukturbauteil 4 begrenzt wird.

Alternativ ist auch möglich, in den Hohlraum 3 einen oder mehrere einzelne Körper aus aufzuschäumendem metallischem Schaumwerkstoff einzubringen, die während des Erhitzens den Hohlraum 3 zumindest bereichsweise so weit ausschäumen, daß das Aufschäumen von der Innenwandung des Karosserieteils 2 bzw. 2' und des innenliegenden Strukturbauteils 4 begrenzt wird.

ben. Eine Gesamtausschäumung des Zwischenraumes zwischen dem Rohr 4 und dem Profilrahmenträger 2' ist dabei nicht notwendig, so daß Gewicht eingespart werden kann. Eine solche bereichsweise Ausschäumung mit innenliegendem Strukturbauteil 4 bietet sich beispielsweise in Türen an.

15

5

des Bauteils kann zudem durch ein innenliegendes Strukturbauteil 4 erhöht werden, das durch den metallischen Schaumwerkstoff flächig mit dem äußeren Karosserieteil 2, 2' verhunden ist und daher einem großen Bereich von Krafteinleitungsrichtungen und Einleitungspunkten eine sehr 5 hohe Knick- und Biegesteitigkeit entgegensetzt.

Neben der Anpassungsfähigkeit der einzubringenden Aussteilungselemente an die Anforderungen der statischen und dynamischen Belastung der Karosserieteile ist durch das erfindungsgemäße Verfahren gleichzeitig die Montage deran vereinfacht, daß verschiedenste Bereiche der Fahrzeugkarosserie flexibel im Montageprozeß mit innenliegenden Schaumwerkstoffen ausgesteift werden können.

Patentansprüche

- 1. Profilrahmenträger (2) für Karosserien (1) von Kraftfahrzeugen, insbesondere Cabriolets, wobei der Profilrahmenträger (2) einen mit einem aufgeschäumten metallischen Schaumwerkstoff (5) ausgesteiften 20 Hohlraum (3) umgrenzt, dadurch gekennzeichnet, daß im Innern des Hohlraums (3) ein sich in dessen Längsrichtung erstreckendes Strukturbauteil (4) angeordnet ist und daß der aufgeschäumte metallische Schaumwerkstoff (5) den Raum zwischen der Innenvand des Profilrahmenträgers (2) und dem darin liegenden Strukturbauteil (4) einnimmt.
- 2. Profilrahmenträger nach Anspruch 1. dadurch gekennzeichnet, daß das innenliegende Strukturbauteil (4) einen inneren Hohlbereich (6) ausbildet, der im wesentlichen dem Längsverlauf des Strukturbauteils (4) folgt.
- 3. Profilrahmenträger nach Anspruch 2, dadurch gekennzeichnet, daß das Strukturbauteil (4) im wesentlichen rohrförmige Gestalt hat.
- 4. Profilrahmenträger nach einem der Ansprüche 2 oder 3, dadurch gekennzeichnet, daß der Hohlbereich (6) des Strukturbauteils (4) derart ausgebildet ist, daß er als Kabelkanal nutzbar ist.
- 5. Karosserieteil (2') für Karosserien (1) von Kraftfahrzeugen, insbesondere Cabriolets, wobei das Karosserieteil (2') einen innenliegenden, metallischen
 Schaumwerkstoff (5') aufnehmenden Hohlraum (3')
 umgrenzt, dadurch gekennzeichnet, daß der innenliegende Hohlraum (3') in Längsrichtung mit Aussteifungsteilen aus metallischem Schaumwerkstoff (5') angefüllte Teilbereiche und zwischen einzelnen ausgesteiften Bereichen verbleibende Hohlbereiche aufweist, wobei die Aussteifungsteile mit Innenwandungen des Karosserieteils (2') über metallische Bindung 50
 verbunden sind.
- 6. Karosserieteil nach Anspruch 5. dadurch gekennzeichnet, daß die verbleibenden Hohlbereiche in Anpassung an die statischen und dynamischen Beanspruchungen einen signifikanten Anteil des von dem Karosserieteil (2) umgrenzten Hohlraumes (3) einnehmen.
- 7. Karosserieteil nach einem der Ansprüche 5 oder 6 bei Verwendung als Windschutzscheibenrahmen oder Überrollbügel, dadurch gekennzeichnet, daß die eingebrachten Aussteifungsteile aus metallischem Schaumwerkstoff (5') einen bei vertikaler Krafteinleitung beanspruchten Bereich des Windschutzscheibenrahmens oder Überrollbügels einnehmen.
- Karosserieteil nach einem der Ansprüche 5 bis 7, dadurch gekennzeichnet, daß das Karosserieteil (2) als 65 Profilrahmenträger (2) ausgebildet ist und im Innern des Hohlraums (3) ein sien in dessen Längsrichtung erstreckendes Strukturbauteil (4) angeordnet ist.

6

- 9. Verfahren zur Aussteifung von Bereichen von Karosserieteilen, insbesondere von Profilrahmenträgem von Kfz-Karosserien, wobei die auszusteifenden Karosserieteile einen innenliegenden Hohlraum umgrenzen, dadurch gekennzeichnet, daß in einen Teilbereich des innenliegenden Hohlraums ein vorbereitetes Halbzeug aus metallischem Schaumwerkstoff eingesetzt und dann durch Erhitzen auf seine von zumindest den Innenwandungen des Karosserieteils begrenzte Endgestalt fertiggeschäumt wird.
- Verfahren nach Anspruch 9, dadurch gekennzeichnet, daß das einzubringende Halbzeug in Anpassung an die Form des Hohlraumes endkonturnah ausgebildet ist.
- 11. Verfahren nach einem der Ansprüche 9 oder 10, dadurch gekennzeichnet, daß in den innenliegenden Hohlraum ein Strukturbauteil eingebracht und der Zwischenraum zwischen diesem und den Innenwandungen des umgebenden Karosserieteils ausgeschäumt wird. 12. Verfahren nach Anspruch 11. dadurch gekennzeichnet, daß vor Einführung des innenliegenden Strukturbauteils dieses außenseitig zumindest bereichsweise nut einer Lage aus aufzuschäumendem metallischem Werkstoff versehen wird.
- 13. Verfahren nach einem der Ansprüche 9 bis 12, dadurch gekennzeichnet, daß die den innenliegenden Hohlraum umgrenzenden Karosserieteile vor ihrer Montage zumindest bereichsweise mit einer Lage aus aufzuschäumendem metallischem Werkstoff versehen werden.
- 14. Verfahren nach einem der Ansprüche 11 bis 13 zur Herstellung von Bauteilen nach einem der Ansprüche 1 bis 4. dadurch gekennzeichnet, daß in den Zwischenraum zwischen dem Strukturbauteil und Innenwandungen des Profilrahmenträgers ein einen metallischen Schaumwerkstoff enthaltender Körper eingebracht und aufgeschäumt wird, wobei das innenliegende Strukturbauteil und Innenwandungen des Profilrahmenträgers als den Aufschäumvorgang begrenzende Aufschäumform verwendet werden.

Hierzu 6 Seite(n) Zeichnungen

Nummer:

Nummer: Int. Cl.⁶: Offenlegungstag:

Nummer: Int. CI.⁶: Offenlegungstag:

ZEICHNUNGEN SEITE 3

Nummer: Int. Cl.⁶: Offenlegungstag:

Nummer: Int. Cl.⁶: Offenlegungstag:

Nummer: Int. Cl.⁶: Offenlegungstag:

ZEICHNUNGEN SEITE 6

Nummer: Int. Cl.⁶: Offenlegungstag:

