МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Физтех-школа аэрокосмических технологий

Отчёт о выполнении лабораторной работы 1.2.1

Определение скорости полёта пули при помощи баллистического маятника

Соболевский Фёдор Александрович Б03-109

1 Аннотация

В данной работе измерена скорость пуль, вылетающих из духового ружья, при помощи двух баллистических маятников разных типов. В ходе измерений и вычислений исследованы погрешности прямых и косвенных измерений, а также изучены отклонения значений скорости от средних с целью определить факторы, влияющие на скорость пуль.

2 Теоретические сведения

2.1 Метод баллистического маятника, совершающего поступательное движение

Рис. 1: Схема установки для измерения скорости полёта пули

В первом опыте использовалась установка, изображенная на рисунке 1. Пусть масса маятника равна M, пули - m, причём m << M. Тогда из закона сохранения импульса и скорости системы V сразу после столкновения можно найти скорость пули u

$$mu = (M+m)V, \ u = \frac{M+m}{m}V \approx \frac{M}{m}V$$
 (1)

При попадании пули маятник приобретает некоторую кинетическую энергию, которая при отклонении переходит в потенциальную. Пренебрегая потерями энергии, запишем закон сохранения механической энергии для маятника, где h - максимальная высота подъёма маятника, L - длина нитей подвеса:

$$\frac{MV^2}{2} = Mgh, V^2 = 2gh \tag{2}$$

Высота подъёма маятника определяется через угол φ его отклонения от вертикали и величину Δx сдвига по горизонтальной оси как

$$h=L(1-\cosarphi)=2L\sin^2rac{arphi}{2},$$
 где $arphipproxrac{\Delta x}{L}$

Из (2) и (1) скорость выражается, как

$$v = \sqrt{\frac{g}{L}} \frac{M}{m} \Delta x.$$

Рис. 2: Поступательное движение баллистического маятника при попадании в него пули

2.2 Метод крутильного баллистического маятника

Во втором опыте использовалась установка, изображенная на рисунке 3. Пуля массой m попадает в мишень, закреплённую на стержне, которая вместе с дополнительным грузом массой M и проволокой Π образует крутильный маятник. Считая удар пули абсолютно неупругим, для определения скорости u пули можно воспользоваться законом сохранения момента импульса

$$mur = I\Omega \tag{3}$$

где I — момент инерции системы маятника, Ω - его угловая скорость сразу после удара. Если k — модуль кручения проволоки, то из закона сохранения энергии следует, что

$$k\frac{\varphi^2}{2} = I\frac{\Omega^2}{2},\tag{4}$$

где φ — максимальный угол поворота маятника.

Из уравнений (3) и (4) можно выразить скорость u

$$u = \varphi \frac{\sqrt{kI}}{mr}. ag{5}$$

Угол φ в данном опыте вычислялся из величины x смещения изображения нити осветителя на измерительной шкале и расстояния d от шкалы до оси вращения маятника

$$\varphi \approx \frac{x}{2d}$$

Величину \sqrt{kI} из формулы (5) можно определить из периодов колебаний маятника с грузами М и без них. В первом случае период колебаний маятника равен

$$T_1 = 2\pi \sqrt{\frac{I}{k}},\tag{6}$$

во втором случае

Рис. 3: Схема установки для измерения скорости полёта пули с крутильным баллистическим маятником

$$T_2 = 2\pi \sqrt{\frac{I - 2MR^2}{k}}\tag{7}$$

где R - расстояние от центров масс грузов до проволоки. Из (6) и (7) следует

$$\sqrt{kI} = \frac{4\pi M R^2 T_1}{T_1^2 - T_2^2},$$

3 Оборудование и инстументальные погрешности

Оборудование: духовое ружьё на штативе, осветитель, оптическая система для измерения отклонений маятника, баллистические маятники, пули.

Измерительные приборы:

• **Весы:** $\Delta_{\text{Bec}} = 0.005 \text{ г};$

• Линейка: $\Delta_{\text{лин}} = 1 \text{ мм};$

• Измерительная шкала установки 1: $\Delta_{\text{mк1}} = 0.5 \text{ мм};$

• Измерительная шкала установки 2: $\Delta_{\text{шк2}} = 1 \text{ мм};$

• Секундомер: $\Delta_{\text{сек}} = 0.1 \text{ c.}$

4 Результаты измерений и обработка экспериментальных данных

4.1 Измерение масс и длин

Массы пуль представлены в таблице 4.1:

№ пули	1	2	3	4	5	6	7	8
m, Γ	0.500	0.514	0.500	0.518	0.500	0.505	0.503	0.499

Таблица 1: Массы пуль

Измерены величины $L=(2200\pm1)$ мм, $M=(2925\pm5)$ г для первого опыта и величины $R=335\pm1$ мм, $r=220\pm1$ мм, $d=500\pm1$ мм, $M=729,5\pm5$ г.

Предварительное изучение установок показало, что затухание колебаний

4.2 Результаты опыта с установкой 1

Величины смещения Δx , соответствующие скорости пулей и их отклонения от среднего значения представлены в таблице 4.2:

Δx , mm	u, м/с	$u - \overline{u}$, м/с
9,0	112,25	1,37
9,5	115,26	1,67
9,5	118,49	4,90
9,0	108,35	5,24

Таблица 2: Результаты измерения скорости пуль в первом опыте

Среднее значение $\bar{u} = 113,6$ м/с. Систематическая погрешность определения скорости

$$\sigma_{u1} = u \sqrt{(\frac{\Delta_{\text{Bec}}}{M})^2 + (\frac{\Delta_{\text{Bec}}}{m})^2 + \frac{1}{4}(\frac{\Delta_{\text{лин}}}{l})^2 + (\frac{\Delta_{\text{mк1}}}{\Delta x})^2} \approx 6.4 \text{ m/c}$$

Итоговый результат:

• $\overline{u_1} = 113.6 \pm 6.4 \text{ m/c}$

4.3 Результаты опыта с установкой 2

Периоды колебаний без грузов и с грузами составили $T_1=15,3$ с и $T_2=17,4$ с. Отсюда найдено значение

$$\sqrt{kI} = \frac{4\pi M R^2 T_1}{T_1^2 - T_2^2} = 64.8 \cdot 10^{-2} \,\mathrm{kg \cdot m^2/c}$$

Отсюда найдены значения скоростей, представленные в таблице 4.3, по формуле

$$v = \varphi \frac{\sqrt{kI}}{mr} = \frac{x}{2d} \frac{\sqrt{kI}}{mr}$$

Систематическая погрешность вычисления скорости найдена по формуле

x, MM	u, м/с	$u - \overline{u}$, м/с
18,5	108,97	2,53
20,5	119,56	8,05
19,0	111,25	0,25
18,0	106,24	5,27

Таблица 3: Результаты измерения скорости пуль во втором опыте

$$\sigma_{u1} = u \sqrt{(\frac{\Delta_{\text{вес}}}{m})^2 + (\frac{\Delta_{\text{лин}}}{r})^2 + (\frac{\Delta_{\text{лин}}}{d})^2 + (\frac{\Delta_{\sqrt{kI}}}{\sqrt{kl}})^2 + (\frac{\Delta_{\text{шк2}}}{x})^2} \approx 8.9 \text{ m/c}$$

Итоговый результат:

• $\overline{u_2} = 111.5 \pm 8.9 \text{ m/c}$

5 Обсуждение результатов и вывод

В ходе данной работы получены значения скорости пуль с точностью до 5-8 %, причём погрешеность измерений при использовании второй установки оказалась заметно больше из-за большего объёма вычислений. Полученной точности достаточно, чтобы убедиться в применимости использованных методов измерения скоростей. Однако наблюдается существенный разброс скоростей (около 10~M/c), причём между скоростями пуль и их массами невозможно установить однозначное соответствие. Это говорит о том, что на скорость пуль влияют внешние факторы, как то: сопротивление воздуха, начальное положение в духовом ружье и т.п.