Concentration de la mesure

Isopérimétrie et

concentration

Question 1/7

Théorème de Brunn-Minkowski affaibli

Réponse 1/7

Si A et B sont deux compacts non vides de \mathbb{R}^n alors pour tout $\lambda \in]0,1[,$ $\operatorname{vol}((1-\lambda)A + \lambda B) \leq \operatorname{vol}(A)^{1-\lambda} + \operatorname{vol}(B)^{\lambda}$

Question 2/7

Inéglaité de Lévy

Réponse 2/7

Si (E, d, μ) est un espace métrique muni d'une mesure de probabilités sur $\mathcal{B}(E)$ alors pour toute fonction $f: E \to \mathbb{R}$ 1-lipschitzienne, $\mu(\{f \geqslant M+t\}) \leqslant \alpha(t)$ où M est une médiane de f et $\alpha(t) = \inf_{A,\mu(A) \geqslant \frac{1}{2}} \left(\mu\left((A_t)^{\complement} \right) \right)$

Question 3/7

Minimisation de la surface du contour pour un volume donné

Réponse 3/7

Si
$$B = B_{\|\cdot\|_2, \mathbb{R}^n}(0, 1)$$
 et $A \in \mathcal{B}(\mathbb{R}^n)$ est tel que $\operatorname{vol}(A) = \operatorname{vol}(B)$ alors $\operatorname{surf}(\partial A) \geqslant \operatorname{surf}(\partial B)$ et $\operatorname{vol}(A_t) \geqslant \operatorname{vol}(B_t)$ où $X_t = \{y, d(y, X) < t\}$

Question 4/7

Réciproque à l'inégalité de Lévy

Réponse 4/7

Si β est une fonction sur \mathbb{R}_+ telle que pour toute fonction $f: E \to \mathbb{R}$ 1-lipschitzienne, $\mu(\{f \geq M+t\}) \leq \beta(t)$ alors $\alpha(t) \leq \beta(t)$

Question 5/7

Inégalité de Prékopa-Leindler

Réponse 5/7

Soient
$$f, g, h: \mathbb{R}^n \to \mathbb{R}_+$$
 mesurables et $\lambda \in]0, 1[$ fixé tel que pour tout $x, y \in \mathbb{R}^n,$ $h((1-\lambda)x + \lambda y) \geqslant (1-\lambda)f(x) + \lambda g(y)$ alors
$$\int_{\mathbb{R}^n} h \geqslant \left(\int_{\mathbb{R}^n} f\right)^{1-\lambda} \left(\int_{\mathbb{R}^n} g\right)^{\lambda}$$

Question 6/7

Théorème de Brunn-Minkowski

Réponse 6/7

Si A et B sont deux compacts non vides de \mathbb{R}^n alors pour tout $\lambda \in]0,1[$, $\operatorname{vol}((1-\lambda)A + \lambda B)^{\frac{1}{n}} \leqslant$ $(1-\lambda)\operatorname{vol}(A)^{\frac{1}{n}} + \lambda\operatorname{vol}(B)^{\frac{1}{n}}$ Ou de manière équivalente, $\operatorname{vol}(A+B)^{\frac{1}{n}} \leqslant \operatorname{vol}(A)^{\frac{1}{n}} + \operatorname{vol}(B)^{\frac{1}{n}}$

Question 7/7

Théorème de Lévy

Réponse 7/7

Si $A \in \mathcal{B}(\mathbb{S}^{n-1})$ et C est une calotte sphérique de même mesure que A alors $\mu(A_t) \geqslant \mu(C_t)$ Ainsi, si $f: \mathbb{S}^{n-1} \to \mathbb{R}$ est 1-lipschitzienne alors $\sigma_{n-1}(f \geqslant M+t) \leqslant e^{-cnt^2}$