SlimYOLOv3: 更窄、更快、更好的无人机目标检测算法

点击我爱计算机视觉标星,更快获取CVML新技术

无人机因为硬件计算能力较弱,要在其上实现实时的目标检测,需要算法参数量小、占用内存少、推断时间短。常见的算法往往难以直接 应用。

一种比较直接的做法是对模型进行剪枝,尽量减少模型卷积层不必要的通道。

今天arXiv新上论文SlimYOLOv3: Narrower, Faster and Better for Real-Time

UAV Applications,作者对YOLOv3的改进版进行了剪枝,在参数量、占用内存、推断时间大幅减少的情况下,在无人机目标检测数据集上实现了与原算法可比较的检测精度。

作者已将代码开源,包含训练和测试部分,值得从事相关工程开发的朋友参考。

以下是作者信息:

SlimYOLOv3: Narrower, Faster and Better for Real-Time UAV Applications

Pengyi Zhang, Yunxin Zhong, Xiaoqiong Li School of Life Science Beijing Institute of Technology

作者全部来自北京理工大学。

下图为作者发明的三种设置下的SlimYOLOv3 相比较基线版本的YOLOv3的结果:

YOLOv3-tiny 是YOLOv3的一种快速算法,但精度下降太多。

YOLOv3-SPP1 是YOLOv3加上SPP模块的改进,其比原始YOLOv3精度要高。

YOLOv3模型中加入SPP模块的示意图,作者是在原第5和第6卷积层之间加SPP模块

YOLOv3-SPP3 是该文作者YOLOv3-SPP1的改进,其有3个SPP模块,比YOLOv3-SPP1精度更高,是本文模型剪枝的基础模型。 S1imYOLOv3-SPP3-50/90/95,是YOLOv3-SPP3模型剪枝率分别为50%、90%、95%的三个模型。

可见模型剪枝可大幅改善模型在无人机上的部署,有一定的精度损失,但远比YOLOv3-tiny要好。

剪枝过程

什么是深度模型的剪枝?就像论文名字中的更窄(Narrower),它是要减少模型通道数。

去除每个卷积层中不重要的特征通道。所以需要合理地评估特征通道的重要性。

下图可以较为明了地说明整个过程。

YOLOv3经过稀疏训练,得到各通道的尺度因子,然后去除那些尺度因子小的通道,将剪枝得到的模型S1imYOLOv3在数据集上进一步微调,得到检测结果,然后进入下一轮的稀疏训练。以上剪枝过程是迭代重复的,直到满足一定的模型条件,比如模型剪枝率达到一定要求。

实验结果

作者通过上述方法,在配置为 Intel(R) Xeon(R) E5-2683 v3 CPU @ 2.00GHz (56 CPUs), 64GB RAM, 4 个 NVIDIA GTX1080ti GPU的 Linux 机器上训练,得到三个剪枝模型,并在无人机目标检测数据集 VisDrone2018-Det上进行了实验,结果如下:

Model	Input size	Precision	Recall	F1-score	mAP	BFLOPS	FPS	Inference time (ms)	Parameter
YOLOv3-tiny	416	19.5	10.5	13.1	4.9	5.46	134	7.5	8.7M
	608	24.1	16.8	19.1	9.1	11.65	80	12.5	
	832	23.4	20.1	21.0	11.0	21.82	52	19.4	
YOLOv3- SPP1	416	39	24.5	29.5	16.5	65.71	46	21.7	62.6M
	608	44.2	32.4	36.9	22.9	140.36	26	38.6	
	832	42.9	36.7	39.2	25.5	262.84	15	67.9	
YOLOv3- SPP3	416	36.6	24.9	29.1	16.2	71.03	40	24.8	63.9M
	608	43.7	33.7	37.6	23.3	151.72	23	43.1	
	832	43.5	38	40.2	26.4	284.10	14	72.1	
SlimYOLOv3- SPP3-50	416	39.2	23.5	28.7	15.7	30.51	67	14.9	20.8M
	608	45.6	32.1	37.1	22.6	65.17	39	25.6	
	832	45.9	36	39.8	25.8	122	23	44.1	
SlimYOLOv3- SPP3-90	416	32.2	21.6	24.4	14.5	9.97	67	14.8	8.0M
	608	37.9	30.0	32.0	20.6	21.3	40	25.1	
	922	26.0	22.0	240	22.0	20.90	24	41.4	

34.0

22.9

30.1

32.2

23.9

13.3

19.1

21.2

39.89

6.57

14.04

26.29

72

41

28

13.8

24.1

36.4

5.1M

Table 1. Evaluation results of baseline models and pruned models.

36.9

33.8

37.3

36.1

33.8

20.1

28.2

31.6

可见在精度稍有下降的情况下,推断时间(Inference time)、参数量(Parameters)、内存占用(Volume)大幅减少,更适合在无人机部署。

下图为各算法结果比较的柱状图, 更加直观。

SlimYOLOv3-

SPP3-95

832

416

608

832

Figure 6. Comparison of baseline models and our SlimYOLOv3 models in model volume, parameter size, BLOPs, inference time and mAP score when input size is 832×832.

检测结果示例:

(a) YOLOv3-SPP3

(b) SlimYOLOv3-SPP3-95

作者已将代码开源,各位读者可以非常方便地进行训练和测试。

每个步骤仅需要一行命令!

原始模型训练:

./darknet/darknet detector train VisDrone2019/drone.data cfg/yolov3-spp3.cfg darknet53.conv.74.weights

稀疏训练:

python yolov3/train_drone.py --cfg VisDrone2019/yolov3-spp3.cfg --data-cfg VisDrone2019/drone.data -sr --s 0.0001 --alpha 1.0

通道剪枝:

python yolov3/prune.py --cfg VisDrone2019/yolov3-spp3.cfg --data-cfg VisDrone2019/drone.data --weights yolov3-spp3_sparsity.weights --overall_ratio 0.5 --perlayer_ratio 0.1

模型微调:

 $./darknet/darknet\ detector\ train\ VisDrone 2019/drone.\ data\ cfg/prune_0.\ 5.\ cfg\ weights/prune_0.\ 5/prune.\ weights/roune_0.\ 5/prune_0.\ 5/p$

论文地址:

 $https://arxiv.\,org/pdf/1907.\,11093v1.\,pdf$

代码地址:

 $https://github.\,com/PengyiZhang/SlimY0L0v3$

感谢论文作者的分享!

更多阅读:

移动端70+fps! 谷歌新出高效实时视频目标检测

ThunderNet: 国防科大、旷视提出首个在ARM上实时运行的通用目标检测算法

YOLO-LITE:专门面向CPU的实时目标检测

52CV正在组织<u>高科技产品!抽奖送【车萝卜小蜜】</u>活动,27日23点开奖,欢迎参加!

目标检测微信群

关注最新的目标检测技术,欢迎加入目标检测专业交流群,扫码添加CV君拉你入群,

(请务必注明:目标检测)

喜欢在QQ交流的童鞋,可以加52CV官方**QQ群**:805388940。 (不会时时在线,如果没能及时通过验证还请见谅)

长按关注我爱计算机视觉

文章已于修改