

Universidade Estadual da Paraíba Centro de Ciência e Tecnologia Departamento de Computação

Componente Curricular: Cálculo Numérico	
Período: Semestre: 2012.2	
Professor: Alan Barbosa Cavalcanti	
Aluno (a):	Mat.:

LISTA DE EXERCÍCIOS (RAÍZES DE FUNÇÕES)

- 1. Mostre por meio de uma tabela de sinais e por análise gráfica quais os intervalos que contêm as raízes da equação $ln(x) + 2 = 4x^2$. Justifique seu resultando inserindo o gráfico gerado por algum programa computacional, de preferência o MatLab.
- 2. Dada a função $f(x) = x^2 + \ln(x)$, use o método da bissecção e da falsa posição para achar um zero com precisão de 10^{-3} . Calcule o número de iterações para bissecção utilizando a fórmula e compare os resultados e o número de iterações dos dois métodos.
- 3. Determinar, utilizando o método da falsa posição modificado, com um erro absoluto inferior a 5 x 10^{-3} o zero de f(x) = x + e^{x^5} 5 no intervalo [0;1.3].

R: $\xi \sim 1.065$

4. Determinar, utilizando o método do ponto fixo, com um erro absoluto inferior a 5 x 10^{-4} o zero de f(x) = $x^3 - 9x + 3$ com $x_0 = 0.5$. Prove utilizando o Teorema 2 que a função de iteração escolhida é convergente. Para a mesma função de iteração escolhida mostre graficamente se esta é convergente para $x_0 = -2$.

R: $\xi \sim 0.3376$

- 5. É dado o polinômio $p(x) = x^3 0.25x^2 + 0.75x 2$.
 - a) Delimite um intervalo que contenha um único zero real x de p(x).
- b) Calcule, utilizando o método de Newton-Rapson, o zero real de p(x) com precisão de 0.01 a partir de $x_0 = 1$.
- 6. Determinar, utilizando o método da Secante ou de Newton-Rapson, com um erro absoluto inferior a 5 x 10^{-6} o zero de $f(x) = 1 + x + e^x$ no intervalo $[-2;-1] = [x_0; x_1]$.

R: $\xi \sim 1.27846$