Esercizio:

Considerare uno schema di relazione R (E, N, L, C, S, D, M, P, A), con le dipendenze $F = \{E \rightarrow NS, NL \rightarrow EMD, EN \rightarrow LCD, C \rightarrow S, D \rightarrow M, M \rightarrow D, EPD \rightarrow AE NLCP \rightarrow A\}$

Calcolare un ricoprimento minimale.

Soluzione:

Primo step. Trasformiamo le dipendenze con un solo attributo a destra per il lemma della decomposizione:

 $E \rightarrow N$

 $E \rightarrow S$

 $NL \rightarrow E$

 $NL \rightarrow M$

 $NL \rightarrow D$

 $EN \rightarrow L$

 $EN \rightarrow C$

 $EN \rightarrow D$

 $C \rightarrow S$

 $D \rightarrow M$

 $M \rightarrow D$

 $EPD \rightarrow A$

 $\mathsf{EPD} \to \mathsf{E}$

 $\mathsf{NLCP} \to \mathsf{A}$

Secondo step (terzo dell'algoritmo) rimozione degli attributi ridondanti. Fare attenzione al significato del passo 3 dell'algoritmo per la costruzione di un ricoprimento minimale. Si analizza una dipendenza X->Y in F,

sia Z contenuto in X. Verificare se Z->Y è contenuto in F+, ovvero se la dipendenza Z->Y è derivabile da tutte le dipendenza in F. Se il test va a buon fine il nuovo insieme di dipendenze sarà F - {X->Y} U {Z->Y}.
Le tre dipendenze
$EN \rightarrow L$
EN →C
EN →D
hanno l'attributo N ridondante
in quanto ad esempio EN -> L puo' essere ottenuta da E->N per aumento E ->EN e per transitività E-> L.
Le dipendenze
N L -> E
N L -> M
NL -> D
Non presentano attributi ridondanti a sinistra. Infatti, L->E non sta in F+ quindi non può essere derivata da {C L N P \rightarrow A, C \rightarrow S, D E P \rightarrow A E,D \rightarrow M,E N \rightarrow C D L,E \rightarrow N S,L N \rightarrow D E M, M \rightarrow D }, per il lemma fondamentarle L+ = {L}.
La dipendenza EPD -> A ha l'attributo D come ridondante perche' (EP)+={EPNLDASMC}, EP è chiave.
Considerando gli stessi argomenti per le rimanenti dipendenze arriviamo a al seguente insieme ridotto dopo il passo 3:
E -> N
E -> S
N L -> E
N L -> M
N L -> D
E -> L
E->C
E ->D
C -> S
D -> M
M -> D
E P -> A

 $NLP \rightarrow A$

Applicando lo step 2 dell'algoritmo otteniamo:

E -> N

N L -> E

N L -> D

E -> L

E -> C

C -> S

D -> M

M -> D

N L P -> A

La dipendenza E -> S è ridondante in quanto ottenibile da E->C e C->S per transitività. La dipendenza NL-> M è ridondante in quanto ottenibile per transitività da NL->D e D->M. La dipendenza E->D è ridondante in quanto ottenibile da E->LN e da LN -> D per transitività. La dipendenza PE-> A è ridondante in quanto ottenibile da NLP->A (vale anche il viceversa).

Esercizio

Si consideri lo schema di relazione R(A,B,C,D) con le dipendenze funzionali F={AB \rightarrow CD, B \rightarrow C, A \rightarrow B, C \rightarrow D, CB \rightarrow D}: calcolare una copertura minimale.

Esercizio

Si consideri lo schema di relazione R(A,B,C,D) con le dipendenze funzionali F= $\{A \rightarrow C, B \rightarrow D,AC \rightarrow B\}$ calcolare la chiusura di F.

Esercizio

Dato lo schema di relazione R(A,B,C,D,E), con insieme di dipendenze funzionali F={AB \rightarrow CDE, AC \rightarrow BDE, B \rightarrow C, C \rightarrow B, C \rightarrow D, B \rightarrow E) calcolare una sua decomposizione in 3NF.