Санкт-Петербургский политехнический университет Петра Великого Физико-механический институт

Кафедра прикладной математики и информатики

Математическая статистика

Отчет по лабораторной работе №6

Выполнил студент гр. 5030102/20202

Тишковец С.Е.

Преподаватель

Баженов А.Н.

Санкт-Петербург

2025

Оглавление

1.	Постановка задачи	3
2.	Теоретическая информация	3
	1. Доверительные интервалы для параметров нормального спределения	3
сp	2. Доверительные интервалы для математического ожидания и еднего квадратического отклонения произвольного распределения пьшом объёме выборки. Асимптотический подход	_
	Результаты исследования	
	l. Доверительные интервалы для параметров нормального спределения	5
	2. Доверительные интервалы для параметров произвольного спределения. Асимптотический подход	5
3.3	3. Результаты в виде твинов с порядком по включению	5
4.	Выводы	6

1. Постановка задачи

Для выборок мощностью n = 20 и n = 100

- 1. Найти доверительные интервалы для параметров
 - нормального распределения и
 - произвольного распределения, используя асимптотический подход
- 2. Результаты представить в виде твинов с порядком по включению

2. Теоретическая информация

2.1. Доверительные интервалы для параметров нормального распределения

Математическое ожидание т:

Дана выборка $(x_1, x_2, ..., x_n)$ объёма n из нормальной генеральной совокупности. На её основе строим выборочное среднее \bar{x} и выборочное среднее квадратическое отклонение s. Параметры m и σ нормального распределения неизвестны. Доверительный интервал для m с доверительной вероятностью $\gamma = 1 - \alpha$:

$$P\left(\bar{x} - \frac{sx}{\sqrt{n-1}} < m < \bar{x} + \frac{sx}{\sqrt{n-1}}\right) = 2F_T(x) - 1 = 1 - \alpha$$

Среднеквадратичное отклонение σ :

Дана выборка $(x_1, x_2, ..., x_n)$ объёма n из нормальной генеральной совокупности. На её основе строим выборочную дисперсию s^2 . Параметры m и σ нормального распределения неизвестны. Доверительный интервал для σ с доверительной вероятностью $\gamma = 1 - \alpha$:

$$P\left(\frac{s\sqrt{n}}{\sqrt{\chi_{1-\alpha/2}^2(n-1)}} < \sigma < \frac{s\sqrt{n}}{\sqrt{\chi_{\alpha/2}^2(n-1)}}\right) = 1 - \alpha$$

2.2. Доверительные интервалы для математического ожидания и среднего квадратического отклонения произвольного распределения при большом объёме выборки.

Асимптотический подход

Математическое ожидание т:

Предполагаем, что исследуемое генеральное распределение имеет конечные математическое ожидание m и дисперсию σ^2 .

 $u_{1-\alpha/2}$ - квантиль нормального распределения N(0,1) порядка $1-\alpha/2$.

Доверительный интервал для m с доверительной вероятностью $\gamma=1-\alpha$:

$$P\left(\bar{x} - \frac{su_{1-\alpha/2}}{\sqrt{n}} < m < \bar{x} + \frac{su_{1-\alpha/2}}{\sqrt{n}}\right) \approx \gamma$$

Среднеквадратичное отклонение σ :

Предполагаем, что исследуемая генеральная совокупность имеет конечные первые четыре момента.

 $u_{1-\alpha/2}$ - квантиль нормального распределения N(0,1) порядка $1-\alpha/2$.

 $E=rac{\mu^4}{\sigma^4}-3$ - эксцесс генерального распределения, $e=rac{m_4}{s^4}-3$ - выборочный эксцесс; $m_4=rac{1}{n}\sum_{i=1}^n(x_i-\overline{x})^4$ - четвёртый выборочный центральный момент.

$$s(1+U)^{-1/2} < \sigma < s(1-U)^{-1/2}$$
 где $U = u_{1-lpha/2} \sqrt{(e+2)/n}$

3. Результаты исследования

3.1. Доверительные интервалы для параметров нормального распределения

n	m	σ
20	-0.62 < m < 0.28	$0.73 < \sigma < 1.40$
100	-0.24 < m < 0.12	$0.81 < \sigma < 1.07$

 Таблица 1. Доверительные интервалы для параметров нормального распределения

3.2. Доверительные интервалы для параметров произвольного распределения. Асимптотический подход

n	m	σ
20	-0.59 < m < 0.25	$0.79 < \sigma < 1.34$
100	-0.24 < m < 0.12	$0.80 < \sigma < 1.09$

Таблица 2. Доверительные интервалы для параметров произвольного распределения. Асимптотический подход

3.3. Результаты в виде твинов с порядком по включению n=20:

$$T_{\rm m}^{(20)} = ([-0.62, 0.28], [-0.59, 0.25])$$

 $T_{\sigma}^{(20)} = ([0.73, 1.40], [0.79, 1.34])$

n=100:

$$T_{\rm m}^{(100)} = ([-0.24, 0.12], [-0.24, 0.12])$$

$$T_{\sigma}^{(100)} = ([0.81, 1.07], [0.80, 1.09])$$

4. Выводы

Построенные доверительные интервалы показывают, что при увеличении объёма выборки интервалы становятся уже, что повышает точность оценок. Асимптотический подход даёт более узкие интервалы по сравнению с нормальным распределением, особенно для дисперсии. При n = 100 результаты двух методов для оценки m практически совпадают, что подтверждает эффективность асимптотического подхода при больших выборках.