DATATHON 4TA EDICIÓN

Anticipando elfuturo financiero con Hey Banco

Presentado por el equipo dinamita conformado por Anna Galilea Restrepo Martínez, Jorge Eduardo Avila Montoya y Diego Villarreal

Problemas detectados

- 1 99% de los usuarios tienen patrones de gasto repetitivos, pero la app no los aprovecha.
- No existe un espacio en la app que muestre próximos pagos estimados ni acción sugerida.
- No se aprovecha el historial transaccional para personalizar la experiencia del usuario.

Solución propuesta

- Módulo "Próximos movimientos" integrado al navbar.
- Predice:
 - Qué gasto hará el cliente
 - Cuándo lo hará
 - Cuánto gastará
- Se despliega como una tabla tipo dashboard con la información de: comercio, fecha estimada y monto esperado.
- También se puede implementar una racha o mecánicas de gamificación.
- Mejora la experiencia del usuario y promueve el uso de la tarjeta.

Además, según el uso frecuente del cliente con su tarjeta, se muestra una acción de negocio sugerida personalizada:

- Ultra constantes (12/12 meses): Premios exclusivos, upgrades de cuenta, cashback, lealtad
- Regularmente frecuentes (cada 2–3 meses): Automatización de pagos, promociones por recurrencia
- Gastos erráticos o casi nulos: Alertas personalizadas, campañas de retención, análisis de fuga

hey.

Próximos movimientos

Comercio	Monto	Fecha
Spotify	\$129	3 junio
Amazon	\$240	9 junio
YouTube	\$ 119	28 mayo

Activa esta opción para evitar olvidos y retrasos.

Activar

Promociones por recurrencia

Desbloquea anuncios de ofertas y descuentos.

Alexis

Buzón

hey.

Alexis

Próximos movimientos

Comercio	Monto	Fecha
Spotify	\$129	3 junio
Amazon	\$240	9 junio
YouTube	\$ 119	28 mayo

Notamos que no has hecho tu pago de Amazon este mes.

¿Necesitas ayuda para reactivarlo?

Activar

Campañas de retención

Obtén ofertas exclusivas y consejos especiales.

Consumo

Cómo funciona

Para construir el módulo de "Próximos movimientos", seguimos una metodología estructurada en distintas fases, combinando reglas, visualizaciones y modelos predictivos.

- Limpieza de datos
 - Unificación de las bases de datos
 - Variable año-mes
- Detección de recurrencias cliente-comercio
 - Conteo de meses distintos de incidencia por negocio
 - Decisión de la regla e histograma
- Clasificación de clientes acorde a sus transacciones
 - Regla para elegir si un cliente es recurrente
 - Histograma y decisión
- Modelos de predicción
 - Siguiente comercio
 - Siguiente monto por comercioSiguiente fecha por comercio


```
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestRegressor
from sklearn.metrics import mean_absolute_error
from sklearn.metrics import median_absolute_error

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=49)

rf = RandomForestRegressor(n_estimators=100, n_jobs=-1, random_state=49)

rf.fit(X_train, y_train)

preds = rf.predict(X_test)
mae = mean_absolute_error(y_test, preds)
medae = median_absolute_error(y_test, preds)
print(f"MAE mejorado: {mae:.2f} dias")
print(f"Median Absolute Error: {medae:.2f}")

r2 = r2_score(y_test, preds)

print(f"R2 del modelo: {r2:.4f}")

MAE mejorado: 5.63 días
```

```
from sklearn.ensemble import RandomForestRegressor
   from sklearn.metrics import mean_squared_error
   import numpy as np
   from sklearn.metrics import r2 score
   import pandas as pd
   y_monto = base_modelo['monto_siguiente']
   X_train_m, X_test_m, y_train_m, y_test_m = train_test_split(X, y_monto, test_size=0.2, random_state=42)
   reg = RandomForestRegressor(n_estimators=100, random_state=42)
   reg.fit(X_train_m, y_train_m)
   preds = reg.predict(X_test_m)
   mse = mean_squared_error(y_test_m, preds)
   rmse = np.sqrt(mse)
   print(f"RMSE del monto siguiente: {rmse:.2f}")
   r2 = r2_score(y_test_m, preds)
   print(f"R2 del modelo: {r2:.4f}")
RMSE del monto siguiente: 38.56
```

Median Absolute Error: 2.43

R² del modelo: 0.3631

R² del modelo: 0.2818

```
from sklearn.preprocessing import OneHotEncoder
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split

# One-hot para giro_comercio (o comercio actual)

X = base_no_recurrente[['giro_comercio', 'monto']].copy()

X = pd.get_dummies(X, columns=['giro_comercio'])

y = base_no_recurrente['comercio_siguiente']

# Split

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# Modelo

clf = RandomForestClassifier(n_estimators=100, random_state=42)

clf.fit(X_train, y_train)

y_pred = clf.predict(X_test)
print(f"Accuracy en test: {clf.score(X_test, y_test):.2f}")
```

Accuracy en test: 0.53

Comercio

Predicted	Actual	
FARMACIAS GUADALAJARA	FARMACIAS GUADALAJARA	128212
UBER EATS	UBER EATS	273458
RAPPI	RAPPI	77981
AMAZON	AMAZON	266340
AMAZON	AMAZON	223167
		•••
DIDI RIDES	DIDI	29454
ОХХО	ОХХО	60611
SPOTIFY	SPOTIFY	183420
7 ELEVEN	SORIANA	320984
UBER EATS	DIDI FOOD	112648

Monto

	Actual	Predicted
128212	9.32	20.578472
273458	18.51	25.669300
77981	37.08	60.218740
266340	34.59	17.070088
223167	34.71	51.910100
•••		
29454	6.33	14.028623
60611	15.18	8.972482
183420	23.10	22.568760
320984	39.34	35.108900
112648	17.85	20.276910

Dias

	Actual	Predicted
21593	1.0	1.140000
7483	30.0	25.605000
7250	1.0	2.515333
30338	0.0	4.731500
1174	13.0	16.460000
7606	17.0	14.798000
32549	1.0	3.692667
20862	12.0	4.263333
28532	34.0	3.742667
22021	28.0	28.020000

		Recurrentes Fuertes	Recurrentes	No recurrentes
Siguiente Comercio	Precisión	0.53	0.31	0.21
Siguiente Monto	RMSE	38.56	38.15	136.72
	R2	0.2818	0.1449	0.1013
Siguiente Fecha	MAE	6	5.63	17.57
	Median AE	3.61	2.43	7.42
	R2	0.4026	0.3631	0.4259

Valor para el negocio

- Genera oportunidades de venta cruzada (Hey Pro, Hey Coins)
- Reduce el riesgo de fuga en perfiles inactivos
- Mejora el uso de la tarjeta como método de pago principal

Extensiones futuras

- Integración con HAVI (asistente virtual): "Havi, ¿cuándo pagaré Amazon?"
- Activación de recordatorios o pagos automáticos
- Gamificación: badges por comportamiento financiero ejemplar
- Dashboards para usuarios o analistas internos

