Cours Diagonalisation

par Pierre Veuillez

1 Objectif

Pour une matrice A donnée, déterminer une matrice D diagonale et une matrice P inversible telle que $A = P \cdot D \cdot P^{-1}$.

Interprètation : Quelle relation reconnaît-on ? Que doit-on déterminer pour arriver à un tel résultat ?

Dans toute la suite, E sera un espace vectoriel de dimension finie.

2 Diagonalisation d'endomorphisme

2.1 Eléments propres

Définition: Soient $f \in \mathcal{L}(E)$ et $u \in E$

u est un vecteur propre de f si $u \neq 0$ et s'il existe $\alpha \in \mathbb{R}$ tel que $f(u) = \alpha u$.

Méthode : u étant donné, comment montrer que α existe ?

Exercice 1 : Soit f définie par f(P) = (X + 1) P'.

Montrer que $f \in \mathcal{L}(\mathbb{R}_2[X])$ et que $(X+1)^2$ est un vecteur propre de f.

Définition : $f \in \mathcal{L}(E)$ est diagonalisable s'il existe une base de E dans laquelle la matrice de

f est diagonale

f est diagonalisable s'il il existe une base de vecteurs propres.

Définition: Soient $f \in \mathcal{L}(E)$ et $u \in E$ et $\alpha \in \mathbb{R}$.

u est un vecteur propre de f associé à la valeur propre α si $u \neq 0$ et $f(u) = \alpha u$.

Exercice 2: Soit $f \in \mathcal{L}(\mathbb{R}^2)$ de matrice $A = \begin{pmatrix} 1 & 2 \\ 3 & 2 \end{pmatrix}$ dans la base canonique.

Montrer que (1, -1) est vecteur propre de f associé à la valeur propre -1.

Définition: Soient $f \in \mathcal{L}(E)$ et $\alpha \in \mathbb{R}$.

 α est une valeur propre de f si il existe $u \neq 0$ tel que $f(u) = \alpha u$.

Méthode: Comment trouver u pour α donné? Quelle est son image par $f - \alpha \operatorname{Id}$?

Exercice 3: Soit $A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ et $f: M \to AM$.

Montrer que f est un endomorphisme de $\mathcal{M}_2(\mathbb{R})$. Montrer que 1 est valeur propre de f.

Théorème Soient $f \in \mathcal{L}(E)$ et $\alpha \in \mathbb{R}$.

 α est une valeur propre de f si et seulement $\operatorname{mat}_{\mathcal{B}}(f) - \alpha I$ non inversible ce qui équivaut auusi à $\ker(f - \alpha \operatorname{Id}) \neq \{0\}$

Exercice: le démontrer

Définition: $f \in \mathcal{L}(E)$ et α une valeur propre de f.

Le sous espace propre de f associé à la valeur propre α est $E_{\alpha} = \{u \in E \ / \ f(u) = \alpha u\} = \ker (f - \alpha \operatorname{Id})$.

Exercice 4: Soit f définie par f(x,y) = (x+2y, 2x+y) pour tout $(x,y) \in \mathbb{R}^2$.

Montrer que $f \in \mathcal{L}(\mathbb{R}^2)$ et déterminer sa matrice dans la base canonique.

Montrer que u = u(1,1) est vecteur propre de f et déterminer la valeur propre associée.

Montrer que $\alpha = -1$ est valeur propre de f et déterminer le sous espace propre E_{-1} associé. Montrer que $v = (1, -1) \in E_{-1}$.

Montrer que (u, v) est une base de \mathbb{R}^2 et déterminer la matrice de f dans cette base.

En déduire une matrice D diagonale et une matrice P inversible telle que $\begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} = P \cdot D \cdot P^{-1}$

Théorème : $f \in \mathcal{L}(E)$ et E de dimension finie alors

f bijective \iff 0 n'est pas valeur propre de f

Exercice 5 : le démontrer !

2.2 Spectre d'un endomorphisme.

Définition: $f \in \mathcal{L}(E)$.

Le spectre de f est l'ensemble de ses valeurs propres.

Méthode matricielle : M la matrice de f dans une base de E.

A quelle condition sur M, α est-il valeur propre de f?

Exercice 1 : Soit $f \in \mathcal{L}(\mathbb{R}^3)$ de matrice $M = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$.. Déterminer les valeurs propres de f.

Par résolution de système : On détermine, en discutant suivant la valeur de α , les solutions de $(f - \alpha \operatorname{Id})(u) = 0$

Quand on trouve des solutions non nulles, α est valeur propre et les solutions sont le sous espace propre associé.

Exercice 2 Soit $f \in \mathcal{L}(\mathbb{R}^3)$ de matrice $M = \begin{pmatrix} 3 & -1 & -1 \\ 1 & 1 & -1 \\ 1 & -1 & 1 \end{pmatrix}$ dans la base canonique.

Déterminer les sous espaces propres de f ainsi qu'une base de chacun.

2.3 Conditions de diagonalisabilité

Théorème : Des vecteurs propres associés à des valeurs propres distinctes forment une famille libre.

Preuve : Par récurrence, en prenant l'image par f et en combinant pour éliminer u_{n+1} .

Conséquence : Combien peut-il y avoir de valeurs propres distinctes au plus ?

Exercice 1 : Soit f définie par f(P) = (X+1) P' endomorphisme de $\mathbb{R}_2[X]$ (Exercice 1) Montrer que P = 1, Q = X+1 et $R = (X+1)^2$ sont des vecteurs propre de f. En déduire (toutes) les valeurs propres de f.

Théorème (Condition suffisante) : Soit $f \in \mathcal{L}(E)$ et E.de dimension n.

Si f a n valeurs propres distinctes alors

la concaténation d'un vecteur propre associé à chaque valeur propre forme une base de vecteurs propres de E et f est donc diagonalisable

Exercice 2 : Soit f de matrice $M = \begin{pmatrix} 0 & -1 & 1 \\ -1 & 0 & 1 \\ 1 & -1 & 0 \end{pmatrix}$ dans la base canonique de \mathbb{R}^3 .

Montrer que 0, 1 et -1 sont valeurs propres de f.

 $(f \text{ est-elle bijective }? \text{ Montrer que } (1,0,1) \in \text{Im } (f))$

En déduire une matrice P inversible telle que $M = P \cdot D \cdot P^{-1}$ avec D de diagonale 0, 1 et -1.

Lemme (rare) : La concaténation de familles de vecteurs libres associés à des valeurs propres distinctes forme une famille libre.

Preuve : Regrouper une combinaison nulle suivant chaque sous-espace propre et appliquer le théorème précédent.

Conséquence : Quelle peut être la somme des dimensions des sous espaces propres ?

Théorème (CNS) Soit $f \in \mathcal{L}(E)$ et E.de dimension n.

f est diagonalisable **si et seulement si**

la somme des dimensions des sous espaces propres est n.

La concaténation des bases des sous espaces propres

forme alors une base de vecteurs propres de l'espace.

La matrice de f dans cette base est donc diagonale.

Exercice 3: Soit $f \in \mathcal{L}(\mathbb{R}^4)$ de matrice $M = \begin{pmatrix} 4 & -1 & -1 & 0 \\ 0 & 3 & -1 & 0 \\ 0 & -1 & 3 & 0 \\ 2 & -1 & -1 & 2 \end{pmatrix}$ dans la base canonique de \mathbb{R}^4 .

Montrer que 2 et 4 sont valeurs propres de f et déterminer les sous espaces propres associés.

En déduire que f est diagonalisable ainsi qu'une base de vecteurs propres.

Déterminer enfin une matrice D diagonale et une matrice P inversible telles que $M=P\cdot D\cdot P^{-1}$

3 Diagonalisation d'une matrice.

3.1 Méthode générale

Définition: $M \in \mathcal{M}_n(\mathbb{R})$ est diagonalisable s'il existe une matrice P inversible et une matrice D diagonale telle que

$$M = P \cdot D \cdot P^{-1}$$

Eléments propres : Soit $M \in \mathcal{M}_n(\mathbb{R})$ une matrice carrée.

Les éléments propres de M sont ceux de l'endomorphisme f de \mathbb{R}^n associé à M dans la base canonique.

Traduction :
$$u=(x,y)$$
 est vecteur propre de $M=\begin{pmatrix}1&2\\2&4\end{pmatrix}$ signifie que ? (On dira aussi que $\begin{pmatrix}x\\y\end{pmatrix}$ est colonne propre)

Diagonalisation : Comment interpréter la relation $M = P \cdot D \cdot P^{-1}$ pour f?

Que représente P?

Que trouve-t-on sur la diagonale de D ?

A quelle condition sur f, la matrice M est-elle diagonalisable?

Thérème : Conditions de diagonalisabilité On retrouve les théorèmes précédents :

• Si M matrice d'ordre n, possède n vecteurs propres associés à n valeurs propres distinctes, alors elle est diagonalisable.

Des vecteurs propres associés à ces n valeurs propres distinctes forment une base de vecteurs propres.

Avec P la matrice des coordonnées des vecteurs propres associés (=les vecteurs propres eux mêmes) en colonne et D la matrice diagonale des valeurs propres dans le même ordre que les vecteurs propres on a $M = P \cdot D \cdot P^{-1}$

• Une matrice M d'ordre n est diagonalisable **si et seulement si** Si la somme des dimensions des sous espace propres est égale à n.

En concaténant les bases des sous espaces propres on forme une base de vecteurs propres.

Soit P la matrice des coordonnées de ces vecteurs (=les vecteurs eux mêmes).

Soit D la matrice diagonale des valeurs propres dans le même ordre que les vecteurs propres.

On a alors $M = P \cdot D \cdot P^{-1}$

Exercice 1: Diagonalisez
$$\begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix}$$

Exercice 2: Diagonaliser
$$\begin{pmatrix} -2 & 0 & 0 \\ -3 & 1 & 3 \\ -3 & 3 & 1 \end{pmatrix}$$

3.2 Cas particuliers

Matrices triangulaires : Soit T une matrice triangulaire.

Pour quelles valeurs de α est-ce que la matrice $T-\alpha I$ sera-t-elle non inversible ? Quelles sont les valeurs propres de T ?

Exercice 1 : Soit
$$T = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$
. Quelles sont les valeurs propres de T . Est-elle diagonalisable ?

Relation polynômiale : Pour un polynôme de degré 2, $aM^2 + bM + cI = 0$.

Qu'est-ce que signifie que α est valeur propre de M?

Comment le mettre en rapport avec la relation précédente?

Que peut on en déduire pour α , si α est valeur propre de M?

Que peut on dire des solutions de $ax^2 = bx + c = 0$?

Théorème: Soit P un polynôme, $M \in \mathcal{M}_n(\mathbb{R})$ et α une valeur propre de M

Si
$$P(M) = 0$$
 alors $P(\alpha) = 0$

On dit que P est un polynôme annulateur de M.

(et de même si P(f) = 0 où f est un endomorphisme de E, avec $f^n = f \circ \cdots \circ f$) La réciproque est fausse.

Exercice 2 : Soit
$$M=\begin{pmatrix}2&-1&-1\\1&0&-1\\1&-1&0\end{pmatrix}$$
 Calculer M^3-3M^2+2M . En déduire les valeurs propres de M et diagonaliser M .

Définition (rare) : La transposée de M est tM dont les colonnes sont les lignes de M.

Théorème (rare): ${}^t(M \cdot N) = {}^tN \cdot {}^tM$: l'ordre du produit est inversé.

Théorème (rare): Si M est inversible alors tM également et $({}^tM)^{-1} = {}^t(M^{-1})$

Preuve: Comment démontrer qu'une matrice est l'inverse d'une autre?

Définition: M est symétrique si ${}^tM = M$.

C'est à dire si ses lignes sont égales à ses colonnes.

Ses coefficients sont symétriques par rapport à sa diagonale.

Théorème (fréquent): Si M est une matrice symétrique alors M est diagonalisable.

Exercice 3 : Soit
$$M = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}$$
. Montrer que M est diagonalisable.

Applications 4

4.1 Puissances de matrice

Situations: Quels exercices usuels conduisent à une relation $U_{n+1} = A \cdot U_n$ où U_n est une matrice colonne.

Comment se résout cette relation?

4.2 Changement d'inconnue

Une matrice A étant diagonalisée $A = P \cdot D \cdot P^{-1}$, les relations l'utilisant se transforment. Et la relation obtenue est plus facile à résoudre du fait des coefficients nuls dans D.

Exemples: Transformer $A \cdot M = M \cdot A$ par le changement de matrice $N = P^{-1} \cdot M \cdot P$ Transformer l'équation $A \cdot M = M$ par le changement de matrice $M = P \cdot N$..