Correctness Guarantee for the Composition of Adaptive Cruise Control and Lane Keeping and Adaptive Cruise Control

X. Xu, J.W. Grizle, P. Tabuada, and A.D. Ames

Presented by: Sergio García-Vergara

September 20, 2017

Table of Contents

What are Barrier Certificates?

Definition: Barrier Certificates
General Theorem

Problem Formulation: Dynamics and Safety Constraints Lane Keeping Adaptive Cruise Control

Methodology

Simulation Results

Conclusions

What are Barrier Certificates?

- Also known as barrier functions, are used to verify temporal properties of a set without having to compute the system's reachable set.
- Recall Lyapunov functions: in control theory, these are linear functions used to prove the stability of a dynamical system.
- Let $\dot{x} = f(x)$ be the dynamics of a system with an equilibrium point at x = 0. The existence of a function $V(x) > 0 \, \forall x \neq 0$ such that $\dot{V}(x) \leq 0$, guarantees the stability of the equilibrium point (asymptotical stability if $\dot{V}(x) < 0$).

What are Barrier Certificates?

- Are used to design a family of control solutions that guarantee some nice properties about a set. Namely, its forward invariance.
- ▶ Given dynamics $\dot{x} = f(x)$ and a trajectory $x(t, x_o)$, set S is called *forward invariant* if:

for every
$$x_o \in S$$
 implies that $x(t, x_o) \in S \ \forall t = 0$.

▶ Nice because we can define a *safety set* and guarantee that our system will always meet its constraints.

Definition: Barrier Certificates

▶ Consider a system with dynamics $\dot{x} = f(x)$ and a closed set

$$C = \{x \in \mathbb{R}^n \mid h(x) \ge 0\}$$

for some continuously differentiable function $h : \mathbb{R}^n \to \mathbb{R}$.

▶ If there exists a constant $\gamma > 0$ and a set D with $C \subseteq D \subset \mathbb{R}^n$ such that:

$$\dot{h}(x) \ge -\gamma h(x), \ \forall x \in D$$

then:

the function h(x) is called a **barrier function**.

General Theorem

Consider an affine control system:

$$\dot{x} = f(x) + g(x)u$$

with $x \in \mathbb{R}^n$ and $u \in \mathbb{R}^m$.

▶ Given a set $C = \{x \in \mathbb{R}^n \mid h(x) \geq 0\}$ for a continuously differentiable function h. If h is a control barrier function then any controller $u(x) \in K_{zcbf}(x)$ will render the set C forward invariant.

$$K_{zcbf}(x) = \{u \in U \mid L_f h(x) + L_g h(x)u + \gamma h(x) \ge 0\}$$

Problem Formulation

- Control objectives:
 - ► LK: Control the steering of an autonomous car to maintain lane centering.
 - ► ACC: maintain a safe following distance when a preceeding vehicle is driving at a lower speed.
- Safety constraints for LK and ACC are expressed in terms of set invariance.
- Controlled invariant sets are used to encode both the correct behavior of the closed-loop system and a set of feedback control laws that will achieve it.

Lane Keeping: Dynamics

► Lateral-yaw model:

$$\dot{\mathbf{x}}_1 = f_1(\mathbf{x}_1, v_f) + g_1(\mathbf{x}_1)u_1 + \Delta f_1(d)$$

 $\mathbf{x}_1 := (y, v, \Delta \Psi, r)'$

- ▶ y: lateral displacement from the center of the lane
- ▶ *v*: lateral velocity
- \blacktriangleright $\Delta\Psi$: yaw angle deviation in road-fixed coordinates
- ► r: yaw rate
- $u_1 = \delta_f$: steering angle of the front wheels
- ► d: desired yaw rate (computed from road curvature)

Lane Keeping: Safety Constraints

► Main constraint: Keep the car within its lane (i.e. constrain the lateral displacement):

$$|y| \leq y_m$$

Set of hard constraints for LK:

$$\begin{aligned} \mathcal{X}_{LK} := & \{ \boldsymbol{x}_1 \in \mathbb{R}^4 \mid \\ & |y| \leq y_m, |v| \leq v_m, |\Delta \Psi| \leq \Delta \Psi_m, |r| \leq r_m \} \end{aligned}$$

► Optional soft constraint: set an upper bound for the lateral acceleration to respect the driver's comfort.

Adaptive Cruise Control: Dynamics

► Point-mass model:

$$\dot{\mathbf{x}}_2 = f_2(\mathbf{x}_2) + g_2(\mathbf{x}_2)u_2 + \Delta f_2(vr, a_L)$$

 $\mathbf{x}_2 := (v_f, v_I, D)'$

- ▶ v_f: following car's speed
- ▶ v_I: lead car's speed
- ► D: distance between the two cars
- $u_2 = F_w$: longitudinal force developed by the wheels
- ► F_r: aerodynamic drag
- ► a_L: overall acceleration/deceleration of the lead car

Adaptive Cruise Control: Safety Constraints

► Main constraint: the controlled vehicle should maintain a safe distance from the lead car. Paper uses this formulation:

$$D \ge \tau_d v_f + D_o$$

where τ_d is the desired time headway and D_o is the minimal distance between cars when they are fully stopped.

▶ Soft constraint: achieve a desired speed v_d set by the driver:

$$\lim_{t\to\infty} v_f(t) - v_d = 0$$

Methodology

- ► **GOAL:** Barrier certificates seek a function whose sub-level sets are all invariant, without the difficult task of computing the system's reachable set.
- 1. Construct a controlled invariant set that encodes the safety specifications.
- 2. Construct a feedback law that ensures that trajectories of the controlled system are confined within the set.

Simulation Results

Conclusions

- Longitudinal force and steering angle are generated by solving quadratic programs.
- ► The safety constraints are hard constraints that are enforced by confining the states of the vehicle within determined controlled-invariant sets.
 - ► The performance objectives are soft constraints that can be overridden when they are in conflict with safety.
- Any control laws respecting the contracts given for LK and ADD will guarantee safety of the closed-loop system when the two modules are activated simultaneously.

Questions?

Thank You!

Example: Barrier Certificates

- ► Functions: $h_1(x) = -x^2 + 5$ and $h_2(x) = -0.2x^2 + 3$
- ▶ Partitions: $S_1 = (-\infty, \sqrt{10}/2]$ and $S_2 = [\sqrt{10}/2, \infty)$

Safe set: $C := \{x | h(x) \ge 0\}$ is the shaded area.

Example: Barrier Certificates

12: end while

Algorithm 1 Synthesis of Control Barrier Functions for LK **Input:** $y_m, \nu_m, \Delta \psi_m, r_m, \ddot{\delta}_f, d_{\max}, \bar{v}, \underline{v}, Q, R, \gamma, \varepsilon, \rho_0, p, \alpha, \beta$ **Output:** $\kappa, \hat{h}_{lk}(\mathbf{x}_1), u(\mathbf{x}_1, d, v_f)$ 1: Solve for the LQR gain K and solve (\mathcal{P}_0) 2: **while** (\mathcal{P}_0) is not feasible **do** Modify Q, R, γ, ρ_0 and solve (\mathcal{P}_0) 4: end while 5: converged = false 6: while ¬ converged do Fix \hat{h}_{lk} , find u, s_i, κ and maximize κ by solving (\mathcal{P}_1) Fix u, find h_{lk} , s_i , κ and maximize κ by solving (\mathcal{P}_2) if $|\kappa^{new} - \kappa^{old}| < \text{some threshold then}$ 9. converged = true 10: end if 11.

Figure: Algorithm for the Synthesis of Control Barrier Functions for LK.