السلسلة 2: الدوال الأصلية لدالة

نہرین ﴿1﴾

حدد دالث أصلبث للدالث f على المجال I في كل حالث:

$$I = \mathbb{R}$$
 $f(x) = x^4 + 4x^3 + \frac{1}{3}x^2 + 1$ (1)

$$I =]-\infty;0[$$
 q $f(x) = -\frac{2}{x^3} + \frac{4}{x^2} + 3$ (2)

$$I =]0; +\infty[$$
 $f(x) = \frac{1}{x^3} - \frac{1}{x^4} + \frac{2}{3x^5}$ (3)

$$I = \mathbb{R}$$
 g $f(x) = (x+1)^3$ (4)

$$I = \mathbb{R}$$
 g $f(x) = 2x(x^2 + 5)^3$ (5)

$$I = \mathbb{R}$$
 g $f(x) = 2x(1+x^2)^7$ (6)

$$I =]-4; +\infty[$$
 $g \quad f(x) = \frac{2}{(x+4)^3}$ (7)

$$I =]-1;3[$$
 $g f(x) = \frac{x-1}{(x^2-2x-3)^4}$ (8)

$$I =]0; +\infty[$$
 $f(x) = (x^2 + x + 1)\sqrt{x}$ (9)

$$I =] - \frac{1}{2}; +\infty[$$
 $q f(x) = \frac{2}{\sqrt{2x+1}}$ (10)

$$I =]0; +\infty[$$
 $g \quad f(x) = \frac{1}{\sqrt{x}} + \frac{4}{3x^2} - \sqrt{2}x$ (11)

$$I =]0; +\infty[$$
 $g \quad f(x) = \frac{3}{\sqrt[3]{x}} + \sqrt[3]{x+1}$ (12)

$$I = \mathbb{R}$$
 g $f(x) = 2x\sqrt{x^2 + 3}$ (13)

$$I =]-1; +\infty[$$
 $g \quad f(x) = \frac{x}{\sqrt{x+1}}$ (14)

$$I =]-2; +\infty[$$
 $g \quad f(x) = \frac{x-2}{\sqrt{x+2}}$ (15)

lacksquareئمرين lacksquare

حدد الدوالُ الْأصلبة للدالة f على المجال I في كل حالة:

$$I = \mathbb{R}$$
 g $f(x) = \cos(3x) + \sin(2x)$ (1)

$$I = [0; \frac{\pi}{2}[$$
 $\mathbf{9} \quad f(x) = 1 - \frac{2}{\cos^2(x)}$ (2)

$$I = \mathbb{R}$$
 g $f(x) = \sin(\frac{\pi}{3} - 2x)$ (3)

$$I = \mathbb{R}$$
 g $f(x) = \cos(x)(\sin^2(x) - 3\sin(x))$ (4)

$$I = \mathbb{R}$$
 g $f(x) = \sin(x)\cos^3(x)$ (5)

$$I = \mathbb{R}$$
 g $f(x) = \sin^3(x)$ (6)

$$I =] - \frac{\pi}{2}; \frac{\pi}{2}[$$
 9 $f(x) = 1 + \sin(x) + \tan^2(x)$ (7)

$$I =]0; \frac{\pi}{2}[$$
 $g \quad f(x) = \tan^2(x)$ (8)

نمرين ﴿3﴾

حدد الدالهُ الْأصلبِهُ للدالهُ f النّي نأخذ القبِمهُ y_0 عند النقطهُ x_0 في كل حالهُ:

$$y_0 = -1$$
 g $x_0 = 1$ g $f(x) = \frac{2}{x^2} + x$ (1)

$$y_0 = 0$$
 \mathbf{g} $x_0 = 0$ \mathbf{g} $f(x) = \frac{1}{(2x+1)^3}$ (2)

$$y_0 = 0$$
 $y_0 = \frac{\pi}{2}$ $y_0 = f(x) = \sin(2x - \frac{\pi}{4})$ (3)

$$y_0 = 1$$
 \mathbf{g} $x_0 = 0$ \mathbf{g} $f(x) = \frac{x}{(x^2 - 2)^2}$ (4)

$$y_0 = -1$$
 \mathbf{g} $x_0 = 2$ \mathbf{g} $f(x) = \sqrt[3]{3x+2}$ (5)

نہرین ﴿4﴾

 $f(x)=rac{2x+3}{(x-1)^3}$:ب $\mathbb{R}\setminus\{1\}$ كنان f داله عددبه معرفه على

يدن
$$x \neq 1$$
 المرينا: \mathbb{R} من b و a من b (1)
$$f(x) = \frac{a}{(x-1)^2} + \frac{b}{(x-1)^3}$$

$$[-\infty;1]$$
 إسنننج داله أصلبه للداله f على المجال (2)

نمرين ﴿5﴾ .

 $g(x)=x\sqrt{x-1}$:بان g دالهٔ عددبهٔ معرفهٔ علی $[1;+\infty[$

$$g(x) = \sqrt{(x-1)^3} + \sqrt{x-1}$$
 لبين أن لَلْ x من $[1; +\infty[$ لمينا: (1)

(2) إستنتج الدالة الأصلبة للدالة
$$g$$
 التي تأخذ القبمة 1 عند 2.

نمرین ﴿6﴾

 $h(x)=x\sin(x)$ بالله عددبهٔ معرفهٔ علی \mathbb{R} بالله عددبهٔ معرفهٔ علی

$$h''(x) + h(x) = 2\cos(x)$$
 ببن أن كلل x من $\mathbb R$ لربنا: (1)

$$-\pi$$
 في الدالة الأصلية للدالة h التي تنعم في (2)

نمرين ﴿7﴾ _

 $f(x)=\sin^4(x)$ بالله عددېنه معرفه على f

$$\mathbb{R}$$
 من x \widetilde{W} $f''(x)$ و $f'(x)$ من $f'(x)$

$$cos(2x)$$
 عبر عن $f(x)$ بدلالهٔ $f(x)$ و (2)

$$\mathbb{R}$$
 على f المنتنج والذ أصلبذ للدالذ f على (3)

نہرین ﴿8﴾

$$\begin{cases} g(x) = x+1 \;; & 0 \leqslant x \leqslant 1 \\ g(x) = x^2 + x \;; & 1 < x \leqslant 3 \end{cases}$$
 : فَلَن g دالهٔ عددبهٔ معرفهٔ ب

$$[0;3]$$
 ببن أن g نفبل دوالا أصلبن على المجال (1)

$$:$$
 حدد علافة ببن a و d للي نلون h المعرفة (2)

$$g$$
 فالم أصلية للدالة أصلية للدالة أصلية للدالة أصلية للدالة أصلية للدالة أصلية للدالة أ $h(x)=rac{x^3}{3}+rac{x^2}{2}+b~;~~1< x \leqslant 3$ على $[0;3]$