

ESTRUTURA DE DADOS

Análise de Algoritmos e Complexidade

Introdução e Conceitos.

Professor Mestre Igor de Moraes Sampaio igor.sampaio@ifsp.edu.br

Análise de Algoritmos

Análise de Algoritmos

- A Análise de Algoritmos é um campo fundamental da Ciência da Computação.
- É o processo de estudar e prever o desempenho de um algoritmo antes ou depois de sua implementação, focando principalmente em tempo de execução e uso de memória.
- Busca determinar a eficiência de um algoritmo ao processar entradas de diferentes tamanhos.
- Seu principal objetivo é prever a **escalabilidade** e o impacto dos recursos computacionais.

Por que Analisar Algoritmos?

- Escolher a solução mais eficiente para um problema.
- Prever o comportamento em entradas grandes.
- Comparar diferentes abordagens.
- Identificar gargalos e otimizar o código.

Tipos de Complexidade

A complexidade é dividida em dois aspectos principais:

- Complexidade de Tempo
 - Mede a quantidade de operações executadas pelo algoritmo conforme o tamanho da entrada cresce.
- Complexidade de Espaço
 - Mede a quantidade de memória extra necessária para armazenar variáveis, pilhas de recursão e estruturas auxiliares.

Abordagens de Análise

Análise teórica (matemática)

- Modela o algoritmo como uma sequência de passos.
- o Conta o número de operações em função do tamanho da entrada n.
- Usa notação assintótica para simplificar.

Análise empírica (experimental)

- Executa o algoritmo em diferentes tamanhos de entrada.
- o Mede o tempo e o uso de memória na prática.
- Pode variar dependendo do hardware, compilador e linguagem.

Tipos de Análise

Τίρο	Descrição	Exemplo
Pior caso	Tempo máximo que o algoritmo pode levar	Busca por um elemento inexistente na pesquisa sequencial
Melhor caso	Tempo mínimo possível	Encontrar o elemento logo na primeira comparação
Caso médio	Tempo esperado na maioria das vezes	Elemento no meio da lista

Complexidade

Complexidade

- A Complexidade de um algoritmo mede a quantidade de recursos necessários (tempo, memória, largura de banda...) em função do tamanho da entrada.
- Os dois tipos mais comuns:
 - Complexidade de tempo: quantas operações o algoritmo executa.
 - Complexidade de espaço: quanta memória o algoritmo usa.

Notações Assintóticas

- Quando analisamos um algoritmo, não nos preocupamos com o tempo exato (em segundos) ou o número exato de passos, mas sim como esse tempo cresce conforme o tamanho da entrada aumenta.
- Para isso usamos **notações assintóticas**, que representam o **comportamento do algoritmo para valores grandes de n**.

Notação Big-O - O

- Significa: limite superior do crescimento da função.
- Usada para: indicar o pior caso (ou tempo máximo que o algoritmo pode levar).
- Leitura: "A complexidade é no máximo dessa ordem de crescimento".

• Exemplo:

- Pesquisa Sequencial → O(n): no pior caso, percorre todos os elementos.
- Bubble Sort $\rightarrow O(n^2)$: no pior caso, faz n×n comparações.
- Analogia: é como dizer que "vou demorar no máximo 30 minutos para chegar", mesmo que às vezes demore menos.

Notação Ômega – Ω

- Significa: limite inferior do crescimento da função.
- Usada para: indicar o melhor caso (tempo mínimo que o algoritmo pode levar).
- Leitura: "O algoritmo vai levar pelo menos esse tempo".

• Exemplo:

- \circ Pesquisa Sequencial $\to \Omega(1)$ no melhor caso (achou no primeiro elemento).
- Bubble Sort $\rightarrow \Omega(n)$ no melhor caso (ainda percorre pelo menos uma vez a lista).
- Analogia: é como dizer "demoro no mínimo 10 minutos para chegar", nunca menos que isso.

Notação Teta - Θ

- Significa: o crescimento exato (limite superior e inferior são iguais).
- Usada para: indicar o caso médio ou quando melhor e pior caso têm a mesma ordem.
- Leitura: "O tempo de execução cresce exatamente dessa ordem".

Exemplo:

- Algoritmo que sempre percorre a lista exatamente uma vez $\rightarrow \Theta(n)$.
- ∘ Merge Sort $\rightarrow \Theta(n \log n)$ no melhor, pior e caso médio.
- Analogia: é como dizer "sempre levo exatamente 20 minutos para chegar".

Outros

• O pequeno - o

 Significa: crescimento estritamente menor que a função indicada.

Ω pequeno – ω

 Significa: crescimento estritamente maior que a função indicada.

Resumo

Notação	Indica	Representa	
O(g(n))	Limite superior	Pior caso	
$\Omega(g(n))$	Limite inferior	Melhor caso	
Θ(g(n))	Limite exato	Crescimento igual nos casos	
o(g(n))	Crescimento menor	Estritamente mais rápido	
ω(g(n))	Crescimento maior	Estritamente mais lento	

A Importância da Notação Big-O na Complexidade

- O Big-O é uma garantia de desempenho máximo diz:
 - o "No pior cenário, este algoritmo não será mais lento que esta função."
- Isso é útil porque:
 - Evita surpresas desagradáveis em entradas grandes.
 - Permite escolher algoritmos seguros para cenários críticos (como sistemas bancários ou tempo real).
- Exemplo: Pesquisa Sequencial $\rightarrow O(n)$
 - Mesmo que às vezes termine na primeira comparação, sabemos que nunca será pior que percorrer toda a lista.

O Crescimento com Entradas Grandes

- Quando um algoritmo é executado, o tempo exato depende de:
 - Velocidade do processador
 - Linguagem e compilador usados
 - Otimizações do sistema
 - Constantes e termos menores
- Esses fatores variam de máquina para máquina, mas a **taxa de crescimento com o tamanho da entrada** *n* é o que realmente define se um algoritmo vai escalar bem.
- Exemplo:
 - \circ Algoritmo A: 5 n + 3 operações
 - Algoritmo B: $n^2 + 2$ operações
 - \circ Para n = 10, A e B podem ter tempos parecidos.
 - Para n = 1.000, A executa ~5.000 operações e B executa ~1.000.002 → diferença absurda.
 - O Big-O ignora o "+3" e o "5×" e mostra apenas que A é O(n) e B é O(n²).

Complexidade de Tempo

 Quantifica o número de operações básicas realizadas pelo algoritmo.

Notação	Nome	Exemplo típico
O(1)	Constante	Acesso direto em array
O(log n)	Logarítmica	Busca binária
O(n)	Linear	Pesquisa sequencial
O(n log n)	Linearítmica	Merge Sort, Quick Sort (médio caso)
O(n²)	Quadrática	Bubble Sort, Insertion Sort
O(2 ⁿ)	Exponencial	Algoritmos de força bruta em conjuntos
O(n!)	Fatorial	Permutações completas

Constante — O(1)

```
// Executa sempre uma vez, independente de n
void funcConstante(int n) {
   int x = 0; // operação única
}
```

Logarítmica — O(log n)

```
// Loop que cresce dividindo n pela metade a cada passo
void funcLogaritmica(int n) {
   for (int i = 1; i < n; i *= 2) {
        // operação constante
   }
}</pre>
```

Linear — O(n)

```
// Loop que percorre todos os elementos uma vez
void funcLinear(int n) {
   for (int i = 0; i < n; i++) {
        // operação constante
```

Linearítmica — O(n log n)

```
// Loop externo linear e interno logarítmico
void funcLinearLog(int n) {
    for (int i = 0; i < n; i++) {
        for (int j = 1; j < n; j *= 2) {
            // operação constante
```

Quadrática — O(n²)

```
// Dois loops aninhados lineares
void funcQuadratica(int n) {
   for (int i = 0; i < n; i++) {
        for (int j = 0; j < n; j++) {
            // operação constante
```

Exponencial — $O(2^n)$

```
// Função recursiva que chama duas vezes a si mesma
void funcExponencial(int n) {
    if (n <= 1) return;
    funcExponencial(n - 1);
    funcExponencial(n - 1);
```

Fatorial — O(n!)

```
// Exemplo: gera permutações recursivamente (estrutura simplificada)
void funcFatorial(int n, int depth = 0) {
   if (depth == n) return;
   for (int i = depth; i < n; i++) {
        // troca elementos e chama recursivamente
        funcFatorial(n, depth + 1);
       // desfaz troca
```


Exemplo

- Algoritmo: Pesquisa Sequencial
- Entrada: Lista com n elementos
- Passos:
 - Melhor caso → O(1) (primeiro elemento já é o buscado).
 - Pior caso → O(n) (precisa verificar todos)
 - Caso médio → O(n) (em média percorre metade, mas em notação assintótica é O(n))

Algoritmo	Melhor Caso	Médio Caso	Pior Caso
Busca Linear	O(1)	O(n)	O(n)
Busca Binária	O(1)	$O(\log n)$	$O(\log n)$
Bubble Sort	O(n)	$O(n^2)$	$O(n^2)$
Merge Sort	$O(n \log n)$	$O(n \log n)$	$O(n \log n)$

Complexidade de Espaço

- Mede a quantidade de memória usada. Pode incluir:
 - o Memória fixa (variáveis globais, arrays de tamanho fixo).
 - Memória dinâmica (criada durante a execução).
 - Memória de recursão (chamadas empilhadas).

Exemplo:

- Um vetor de tamanho n → ocupa O(n) espaço.
- ∪m algoritmo que apenas troca valores usando uma variável auxiliar → O(1) de espaço.

Desafio

Desafio

Questionário: Questões sobre Análise de Algoritmos e Complexidade

Teste seu entendimento da aula.

Disponível no Classroom.