Worksheet 3: Binary Classification

Name:

Due September 27, 2022

Recall for model $\tilde{y}:\mathcal{X}\to\mathbb{R}$, we obtain prediction model with thresholding: for $t\in\mathbb{R}$, we define $\overline{y}_t:=\mathbb{1}_{\tilde{y}\geq t}$. Typically, $\tilde{y}(\mathbb{R})\subset[0,1]$, because we may like to interpret $\tilde{y}(x)$ as (something like) $\mathbb{P}_{\mathcal{Y}|\mathcal{X}}(y=1|x)$, but it isn't strictly necessary.

1. Consider joint probability space $\mathcal{X} \times \mathcal{Y} = \mathbb{R} \times \{0,1\}$ with measure

$$\mathbb{P}_{\mathcal{X}\times\mathcal{Y}}\big((\mathfrak{a},\mathfrak{b})\times\{\mathfrak{j}\}\big)=\alpha_{\mathfrak{j}}\cdot\int_{\mathfrak{a}}^{\mathfrak{b}}f_{\mathfrak{j}}(x)dx,$$

where $\alpha_0 + \alpha_1 = 1$, both nonnegative, and $f_j(x) = \gamma_j e^{-\gamma_j t} \cdot \mathbb{1}_{t \ge 0}$ with $\gamma_j > 0$. Express both marginals $\mathbb{P}_{\mathcal{X}}((a,b))$ and $\mathbb{P}_{\mathcal{Y}}(y=j)$. You may use (properties of) this density for problems 2-4 as well.

- 2. Show that $\mathbb{P}_{\mathcal{Y}|\mathcal{X}}(y=1|x) = \frac{\alpha_1 f_1(x)}{\alpha_0 f_0(x) + \alpha_1 f_1(x)}$. You may wish to recall the Fundamental Theorem of Calculus, and use continuity of measure (which you may suppose without proof for both arguments of $\mathbb{P}(\cdot|\cdot)$).
- 3. We may treat input data $x \in \mathcal{X} = \mathbb{R}$ as a score itself. For threshold predictor $\overline{y}_t : \mathcal{X} \to \mathcal{Y}$ defined by $\overline{y}_t(x) := \mathbb{1}_{x > t}$, express the true positive rate, false positive rate, and precision of \overline{y}_t defined as

$$tpr(t) := \mathbb{P}_{\mathcal{X}|\mathcal{Y}}(\overline{y}_t = 1|y = 1), \ fpr(t) := \mathbb{P}_{\mathcal{X}|\mathcal{Y}}(\overline{y}_t = 1|y = 0) \text{ and } prec(t) := \mathbb{P}_{\mathcal{Y}|\mathcal{X}}(y = 1|\overline{y}_t = 1).$$

4. It is typically impossible to maximally satisfy all desired objectives. For example, optimal tpr = 1 may be realized for minimal threshold at the expense of inducing undesirable fpr = 1 (the other extreme realizes fpr = 0 at the expense of tpr = 0). Suppose you are given objective function

$$f(t) := \lambda tpr(t) + (1 - \lambda)prec(t).$$

Explain how you would solve for $t^* = \arg\max_{t \in \mathcal{X}} f(t)$, and compute the steps–as much as you can–to do so. Simplify expressions as much as possible and use 1st order Taylor expansion of exp to obtain candidate approximation for t^* . Interpret whether this is a good approximation and justfy why if so/hypothesize why not if not.

5. Define equal error rate (eer) as false positive rate $eer := \mathbb{P}_{\mathcal{X}|\mathcal{Y}}(\overline{y}_{t^e} = 1|y = 0)$ at

$$t^e := arg \min_{t \in \tilde{\mathfrak{y}}(\mathbb{R})} |1 - fpr(t) - tpr(t)|.$$

Express accuracy $\mathbb{P}_{\mathcal{X} \times \mathcal{Y}}(\overline{y}_{t^e} = y)$ at eer in terms of $\mathit{only}\ \mathsf{tpr}(t^e)$ and $\mathsf{fpr}(t^e)$. Simplify as much as you can.*

- 6. For loss function $\ell_{\tilde{y}}(x,y) \coloneqq -\log\left(\tilde{y}(x)^y(1-\tilde{y}(x))^{(1-y)}\right)$, show that the optimal model $y^*: \mathcal{X} \to [0,1]$ is calibrated.
- 7. Suppose model score $\tilde{y}: \mathcal{X} \to [0,1]$ has the relation $\tilde{y}(p) = \sigma(p) = \frac{1}{1+e^{-c(2p-1)}}$ for $p(x) := \mathbb{P}_{\mathcal{Y}|\mathcal{X}}(y=1|x)$ and c>0. Define calibrated model $\overline{y}: \mathcal{X} \to [0,1]$ in terms of \tilde{y} , i.e. map $\phi: [0,1] \to [0,1]$ for which $\overline{y} := \phi \circ \tilde{y} = p$.

 $^{^{*}}$ Your expression should have a minimal number of terms and arithmetic operations.