第二章 一阶微分方程的初等解法

§ 2.4 一阶隐式微分方程与参数表示

一、 能解出 y (或 x)的方程

(1)
$$y = f(x, \frac{dy}{dx})$$
 (2.4.1)

这里假设函数 $f(x, \frac{dy}{dx})$ 有连续的偏导数。

解法: 引进参数 $\frac{dy}{dx} = p$,则(2.4.1)变为

$$y = f(x, p) \tag{2.4.2}$$

两边关于 x 求导,并把 $p = \frac{dy}{dx}$ 代入,得

$$p = \frac{\partial f}{\partial x} + \frac{\partial f}{\partial p} \frac{dp}{dx}$$
 (2.4.3)

方程 (2.4.3) 是关于 x 和 p 的一阶微分方程

$$p = \frac{\partial f}{\partial x} + \frac{\partial f}{\partial p} \frac{dp}{dx}$$

(2.4.3)

由(2.4.3)得

$$\frac{dp}{dx} = \frac{p - \frac{\partial f}{\partial x}}{\frac{\partial f}{\partial p}}$$

按照变量分离方程、线性方程、恰当方程等求解

$$p = \frac{\partial f}{\partial x} + \frac{\partial f}{\partial p} \frac{dp}{dx}$$

y = f(x, p)

(i) 若已得出(2.4.3)的通解形式为 $p = \phi(x,c)$ 代入(2.4.2)得

 $y = f(x, \phi(x, c))$ 就是(2.4.1)的通解。

(ii) 若得出(2.4.3)通解形式为 $x = \psi(p,c)$, 则原方程(2.4.1)

有参数形式的通解 $\begin{cases} x = \psi(p,c) \\ y = f(\psi(p,c),p) \end{cases}$

其中 p 是参数, c为任意常数。

(iii) 若求得(2.4.3)通解形式 $\Phi(x, p, c) = 0$, 则原方程(2.4.1)

有参数形式通解 $\begin{cases} \Phi(x, p, c) = 0 \\ y = f(x, p) \end{cases}$

其中p是参数,c为任意常数。

一、 能解出 y (或 x)的方程

(2)
$$x = f(y, \frac{dy}{dx})$$
 (2.4.4)

这里假设函数 $f(y, \frac{dy}{dx})$ 有连续的偏导数。

解法: 引进参数 $\frac{dy}{dx} = p$,则(2.4.4)变为

$$x = f(y, p) \tag{2.4.5}$$

两边关于 y 求导,并把 $\frac{dx}{dy} = \frac{1}{p}$ 代入,得

$$\frac{1}{p} = \frac{\partial f}{\partial v} + \frac{\partial f}{\partial p} \frac{dp}{dv} \tag{2.4.6}$$

方程 (2.4.6) 是关于 y 和 p 的一阶微分方程

$$\frac{1}{p} = \frac{\partial f}{\partial y} + \frac{\partial f}{\partial p} \frac{dp}{dy}$$

(2.4.6)

由 (2.4.6) 得

$$\frac{dp}{dy} = \frac{\frac{1}{p} - \frac{\partial f}{\partial y}}{\frac{\partial f}{\partial p}}$$

按照变量分离方程、线性方程、恰当方程等求解

若求得 $p = \psi(y,c)$ 则通解为 $x = f(y,\psi(y,c))$

若求得
$$\Phi(y, p, c) = 0$$
 则通解为
$$\begin{cases} x = f(y, p) \\ \Phi(y, p, c) = 0 \end{cases}$$

例1: 求解方程
$$y = \left(\frac{dy}{dx}\right)^2 - x\frac{dy}{dx} + \frac{x^2}{2}$$

解: 令
$$\frac{dy}{dx} = p$$
 得到

$$y = p^2 - xp + \frac{x^2}{2}$$

两边对 x 求导数,得到

$$\frac{dy}{dx} = 2p\frac{dp}{dx} - x\frac{dp}{dx} - p + x$$

即
$$(\frac{dp}{dx} - 1)(2p - x) = 0$$

(2.4.7)

$$y = p^2 - xp + \frac{x^2}{2}$$
 (2.4.7) $\left(\frac{dp}{dx} - 1\right)(2p - x) = 0$

由
$$\frac{dp}{dx} - 1 = 0$$
 解得 $p = x + c$

将其代入 (2.4.7) 得方程通解
$$y = \frac{x^2}{2} + cx + c^2$$

由
$$2p-x=0$$
解得 $p=\frac{x}{2}$

将其代入 (2.4.7) 又得方程的一个解 $y = \frac{x^2}{4}$

$$y = \frac{x^2}{4}$$

$$y = \frac{x^2}{2} + cx + c^2 \qquad y = \frac{x^2}{4}$$

$$y = \frac{x^2}{4}$$
 与 $y = \frac{x^2}{2} + cx + c^2$ 中的每一条积分曲线均

相切(如图)。这样的解我们称之为奇解,下一章将给出奇解的确切含义。

(3)
$$F(x, y') = 0$$
 (2.4.8)

解法: 引入变换
$$x = \varphi(t)$$
 从(2.4.8)得到 $y' = \frac{dy}{dx} = \psi(t)$

引入变换
$$y' = \psi(t)$$
 从(2.4.8)得到 $x = \varphi(t)$

$$dy = \psi(t)dx = \psi(t)\varphi'(t)dt$$

$$\int dy = \int \psi(t)\varphi'(t)dt \quad \Longrightarrow \quad y = \int \psi(t)\varphi'(t)dt + c$$

则,方程的参数形式通解为

$$\begin{cases} x = \varphi(t) \\ y = \int \psi(t)\varphi'(t)dt + c \end{cases}$$

(3)
$$F(x, y') = 0$$

(2.4.8)

(4)
$$F(y, y') = 0$$
 (2.4.9)

解法: 引入变换
$$y = \varphi(t)$$
 从(2.4.8)得到 $y' = \frac{dy}{dx} = \psi(t)$

引入变换
$$y' = \psi(t)$$
 从(2.4.8)得到 $y = \varphi(t)$

$$dx = \frac{1}{\psi(t)}dy = \frac{1}{\psi(t)}\varphi'(t)dt$$

$$\int dx = \int \frac{1}{\psi(t)} \varphi'(t) dt \quad \Longrightarrow \quad x = \int \frac{\varphi'(t)}{\psi(t)} dt + c$$

则,方程的参数形式通解为 $\begin{cases} x = \int \frac{\varphi'(t)}{\psi(t)} dt + c \\ y = \varphi(t) \end{cases}$

$$y = \varphi(t)$$

(4)
$$F(y, y') = 0$$

(2.4.9)

若F(y,0) = 0有实根 y = k 则 y = k 也是方程的解。

例2: 求解方程 $y^2(1-y')=(2-y')^2$

解: $\Leftrightarrow 2 - y' = yt$

把 y' = 2 - yt 代入原方程, 得 $y^2(yt-1) = y^2t^2$

由此,得 $y = \frac{1}{t} + t$ 且 $y' = 1 - t^2$

$$dx = \frac{dy}{y'} = \frac{1}{1 - t^2} d(\frac{1}{t} + t) = -\frac{1}{t^2} dt \implies x = \frac{1}{t} + c$$

方程的参数形式的通解为

此外, $y = \pm 2$ 也是方程的解。

$$\begin{cases} x = \frac{1}{t} + c \\ y = \frac{1}{t} + t \end{cases}$$

本节总结

一阶隐式微分方程的一般形式 F(x,y,y')=0

本章总结

