

Concepção de uma Base de Conhecimento para Adaptação de Protótipo de Altafidelidade

Márcia ALVES (1); Bernardo LULA (2); Karolyne OLIVEIRA (3); Raphael PORTO (4); Jackeline GOMES (5);

(1)Centro Federal de Educação Tecnológica da Paraíba (CEFET-PB), João Pessoa, Paraíba, Brasil, (0xx83) 3208.3000, (0xx83) 3208.3058 e-mail: profes.marcia@gmail.com

(2) Universidade Federal de Campina Grande (UFCG), e-mail: lula@dsc.ufcg.edu.br
(3) Universidade Federal de Campina Grande (UFCG), e-mail: karolyne@dsc.ufcg.edu.br
(4)Centro Federal de Educação Tecnológica da Paraíba (CEFET-PB), e-mail: porto.raphael@gmail.com
(5)Centro Federal de Educação Tecnológica da Paraíba (CEFET-PB), e-mail: maryjack@hotmail.com

Resumo

No processo de desenvolvimento de projeto de interface o uso de protótipo permite a instanciação do domínio do problema para que se possa avaliar antes da implementação funcional a viabilidade da interface final evitando com isso um possível re-trabalho que consumiria mais tempo e recursos alocados no projeto. A classificação de protótipo pode se dar em termos de fidelidade, isto é, o detalhamento do protótipo, o grau de funcionalidade, a similaridade e o refinamento estético são dimensões que definem a fidelidade de um modelo. Mediante essas dimensões, os protótipos estão divididos em três categorias distintas: baixa, média e alta-fidelidade. Atualmente, vários ambientes de suporte ao desenvolvimento de projeto de interface utilizam técnicas de prototipagem em seus processos como forma de representação da interface concreta. Este artigo é o resultado de um estudo bibliográfico sobre alguns desses ambientes, bem como uma análise dos protótipos concebidos pelos mesmos. Ao final deste trabalho, pretende-se propor a adaptação do protótipo de altafidelidade a partir de uma base de conhecimento a ser integrada em ambiente de desenvolvimento de interface, base essa, deverá reunir tanto os conhecimentos ergonômicos, heurísticos e de padrões de Interface, quanto conhecimento oriundo do modelo do usuário.

Palavras-chave: protótipo, ambiente de desenvolvimento de projeto de interface, base de conhecimento.

1. INTRODUÇÃO

O contexto tecnológico do século XXI retomou a necessidade ímpar de um estudo mais significativo na área de Interação-Homem-Computador (IHC). Os atuais sistemas computacionais necessitam ser mais usáveis, mais interativos, mais simples, mais fáceis de serem manipulados, ou seja, necessitam contemplar os requisitos mínimos de usabilidade e de acessibilidade.

Diante desse novo paradigma de desenvolvimento, a fase de projeto de interface vem absorvendo uma atenção especial pela comunidade acadêmica de IHC. A fim de minimizar o tempo consumido nessa fase do processo de desenvolvimento de software, alguns ambientes foram propostos para dar suporte a este processo, dentre estes ambientes pode-se destacar: TERESA [MPS04], Teallach [GMP+01], TADEUS [Sta00] e FastInterface [Oli07]. Baseados em modelos, eles propiciam ao desenvolvedor, dispor e organizar os vários elementos de uma interface gráfica do usuário, pois, exploram informações contidas em modelos que visam gerar interface representada por protótipos.

O uso de protótipo nessa etapa permite a instanciação do domínio do problema possibilitando avaliar a viabilidade da interface final antes da sua implementação funcional, evitando assim um possível re-trabalho que demandaria mais tempo e recursos alocados no projeto.

O objetivo desse artigo é, de uma maneira geral, analisar os protótipos de alta-fidelidade gerados pelos ambientes acima citados e propor a adaptação do protótipo de alta-fidelidade gerado por um destes ambientes, o FastInterface.

Para tanto, o presente documento foi estruturado da seguinte forma: Primeiramente será apresentada uma breve revisão bibliográfica sobre Prototipagem e Ambiente de desenvolvimento de interface, em seguida discute-se acerca da caracterização do problema e da metodologia a ser utilizada, fechando com as considerações finais.

2. PROTOTIPAGEM

Segundo Pressman [Pre00], o uso de prototipagem pela engenharia de software vem sendo amplamente utilizado como um processo de desenvolvimento de software indicada à criação de um modelo do sistema a ser desenvolvido antes da implementação. Como definição, protótipo é uma versão inicial, ou seja, um sistema de demonstração do sistema final que está disponível da desde a fase inicial do processo de desenvolvimento [KS98].

De acordo com estudos realizados por Aguiar [Agu07], a utilização de protótipos pode seguir várias abordagens, a saber: a prototipagem exploratória, a prototipagem experimental e a prototipagem evolutiva. Cada uma dessa abordagem trata a técnica de prototipagem sobre diferentes aspectos.

Na prototipagem exploratória o objetivo é esclarecer os requisitos funcionais e os requisitos do usuário de um sistema computacional. Uma visão mais clara de como será o software e como as tarefas devem ser realizadas pelos usuários será uma das opções deste tipo de prototipagem disponível para a equipe de projeto.

A prototipagem experimental está centrada na técnica de implementação, nesta abordagem o objetivo é experimentar, comparar e avaliar as alternativas de projeto que utilizam diferentes tecnologias de implementação.

A prototipagem evolutiva direciona a uma visão de utilização da técnica de prototipagem sob a ótica incremental. Pré-supõem uma constante evolução dos requisitos funcionais e a possibilidade de análise e controle dessa evolução.

Mediante cada abordagem dessas, a classificação de protótipo pode se dar em termos de fidelidade. Para Mayhew [May99], são quatro as dimensões que definem a fidelidade de um modelo: o detalhamento, grau de funcionalidade, a similaridade de interação e o refinamento estético. A partir dessas dimensões são considerados os seguintes níveis de prototipagem: baixa-fidelidade, média-fidelidade e alta-fidelidade.

Os Protótipos de baixa-fidelidade são utilizados durante a especificação de requisitos. Para Landay e Myers [LM01] os Protótipos de baixa-fidelidade são representações gráficas rudimentares do objeto em desenvolvimento, construídas com baixo investimento de tempo e recursos e sem requerer grande habilidade

técnica, normalmente consistem de desenhos a mão livre utilizando ferramentas simples como lápis, papel e material de escritório [Agu07]. Alguns exemplos desse tipo de protótipo são os esboços e os *Storyboards*.

Os Protótipos de média-fidelidade foram recentemente categorizados pela comunidade acadêmica, consiste na implementação computadorizada de uma aplicação limitada funcionalmente, abordando aspectos relativos a alguns cenários específicos. Um protótipo de média fidelidade faz parte de uma *ponte* entre a baixa fidelidade e a alta fidelidade e guarda algumas vantagens e algumas desvantagens de cada um dos outros níveis. De forma geral, é uma versão aprimorada do protótipo de baixa fidelidade e é criado já no computador. Esse tipo de alternativa se assemelha mais ao produto final que o de baixa fidelidade e demanda menos esforço do que o de alta fidelidade.

Os Protótipos de Alta-fidelidade são representações executáveis que contém as principais funcionalidades presentes na interface do sistema proposto. Os protótipos de alta fidelidade são aqueles que se assemelham com o produto final. Esses protótipos utilizam as mesmas técnicas e materiais que o sistema final na premissa de desenvolver um material que possibilite a interação do usuário como se fosse o produto final [RSH02].

3. AMBIENTES DE DESENVOLVIMENTO DE INTERFACE

Vários ambientes de desenvolvimento de projeto de interface utilizam a prototipagem para representar a Interface do Usuário Abstrata e a Interface do Usuário Concreta. A ferramenta **TERESA** é um ambiente de desenvolvimento de interfaces Multi-Plataforma baseada em Múltiplos Descritores Lógicos, foi concebido para apoiar a concepção de interfaces de sistemas multi-plataforma, convertendo-os em aplicações nômades [CCT+03]. Essa ferramenta permite ao projetista construir e analisar seus projetos em diferentes níveis de abstração e conseqüentemente gerar a interface concreta para tipos específicos de plataforma.

Fig. 1 Fluxo de TERESA

TADEUS corresponde a uma metodologia apoiada por um suporte computacional que apresenta um *framework* para sua representação. Disponível para especificação e prototipação contextual, TADEUS está centrado no contexto de uso do sistema. [SE96].

Fig. 2 Fluxo de TADEUS

A ferramenta **Teallach** consiste em um ambiente voltado ao desenvolvimento de interfaces para banco de dados. Composto pelos modelos de: Domínio, Tarefa e de Apresentação, permite através da pré-existência de uma aplicação funcional a geração final da interface do usuário [Oli07].

Fig. 3 Fluxo do Teallach

O **FastInterface** é um ambiente baseado em modelos que encapsula todas as ferramentas de suporte às fases existentes em MEDITE¹. Esse ambiente utiliza múltipla prototipagem para representação da Interface do Usuário Abstrata e a Interface do Usuário Concreta [Oli07].

¹ Metodologia baseada na tarefa do usuário, orientada a modelos para geração de Interfaces do Usuário [MLB02]

Uma visão geral dos ambientes e dos protótipos gerados pelos mesmos é apresentada na tabela 1.

Ambientes	Interface Abstrata	Interface Concreta
Teresa	Script	Protótipo de Hi-Fi
TADEUS	Script	Protótipo de Hi-Fi
Teallach	Script	Protótipo de Hi-Fi
- Curiucii	Бепре	Trototipo de III I I
FastInterface	Protótipo de Low-Fi	Protótipo de Hi-Fi

Tabela 1. Visão dos Ambientes de desenvolvimento & Protótipos gerados.

A geração de Protótipos é apoiada por diversos métodos de implementação, a revisão bibliográfica realizada, revelou que a Inteligência Artificial (IA) está presente em diversos trabalhos bastante significativos nesta área.

4. CARACTERIZAÇÃO DO PROBLEMA

O FastInterface é uma ambiente que integra os resultados de diversos trabalhos de dissertação de Mestrado do Grupo de Pesquisa em Engenharia de Software do Centro de Engenharia Elétrica e Informática da Universidade Federal de Campina Grande em parceria com o Centro Federal de Educação Tecnológica da Paraíba.

Como citado anteriormente, este ambiente encapsula todas as ferramentas de suporte às fases existentes em MEDITE. O processo de desenvolvimento definido por MEDITE inclui a geração de protótipos de média e de alta-fidelidade para representação visual da AUI e CUI respectivamente e, sugere o uso de protótipos de baixa-fidelidade como ferramenta de apoio para o levantamento de requisitos. Seu fluxo pode ser observado na Figura 4, onde as circunferências descrevem os processos utilizados e os retângulos os artefatos gerados.

Fig. 4 - Fluxo de MEDITE

Como os demais ambientes, o FastInterface gera protótipos para representar a Interface do Usuário Abstrata (AUI) e a Interface do Usuário Concreta (CUI) especificada no projeto. O protótipo de media-fidelidade é gerado pela ferramenta SMILE [Agu07] e o de alta pela ferramenta Hi-Fy [Oli07]. A entrada do Hi-fy consiste em um arquivo XML que representa o protótipo de média-fidelidade gerado e manipulado em SMILE,

de posse dessa entrada ele mapeia seus elementos em elementos gráficos específicos para plataforma web obtendo assim um protótipo de alta-fidelidade.

Mesmo estando preconizado em MEDITE a utilização de regras ergonômicas, heurísticas, experiências, perfil do usuário e padrões de Interface, o Hi-fy aplica apenas um estilo padrão a este protótipo. Atender os critérios ergonômicos bem como os padrões de interface proporcionariam a geração de um protótipo mais funcional, usável e acessível.

Diante do exposto, o presente trabalho visa propor e implementar uma base de conhecimento que deverá compor o FastInterface para adaptação automática do protótipo de alta-fidelidade, o MAXIMUM. A proposta é sanar a limitação atual da ferramenta consistindo-a integralmente com MEDITE. Para tanto, essa base de conhecimento será composta por: (i) conhecimentos pertinentes à geração de interface de caráter geral, ou seja, de caráter especialista tais como regras ergonômicas, heurísticas de usabilidade, heurísticas de acessibilidade, dentre outras; (ii) conhecimento de caráter particular, isto é, perfil do usuário. Como proposta de agregação das informações pertinentes ao perfil do usuário, deverá ser concebido um Modelo de Usuário (MU).

A prerrogativa de utilizar uma base de conhecimento partiu da premissa de poder modelar as informações necessárias para gerar um protótipo de alta-fidelidade que agregue um maior número possível de informações que permita contemplar os padrões de um projeto de interface. Segundo Nogueira *et at* [NSA⁺96] uma base de conhecimento é a representação, no computador, do conhecimento humano. A base de conhecimento proposta deverá conter dois grupos de conhecimentos: (*i*) Conhecimentos referentes a regras, padrões e guias para projeto de Interface; (*ii*) conhecimentos pertinentes ao perfil do usuário, estruturados em um Modelo do Usuário (MU). O conhecimento manipulado em uma base de conhecimento pode ser representado por diversos formalismos: sistemas de regras de produção, raciocínio baseado em casos, redes neurais, redes probabilísticas, ontologias. Especificamente, neste trabalho, será utilizada regra de produção.

O primeiro grupo de conhecimento (i) terá como fontes guias de usabilidade e de acessibilidade e a norma ISO 9241 [ISO98], o segundo grupo de conhecimento (ii) terá como fontes questionários e *checklists* que permitirão abstrair informações do perfil do usuário que deverão compor o MU. O entrelaçamento dos conhecimentos dessas fontes deverá permitirá a obtenção de um protótipo que atenda a recomendação de MEDITE.

5. METODOLOGIA

A fim de validar a problemática levantada foi realizada uma pesquisa bibliográfica acerca de ambiente de desenvolvimento de interface, das técnicas para geração de protótipo e das informações utilizadas na geração dos mesmos. Atualmente este trabalho se encontra em fase de identificação, leitura e interpretação dos guias, dos padrões, e das heurísticas de projeto para classificação e mapeamento das regras.

A Ferramenta concebida neste trabalho deverá ser validada primordialmente através da realização de testes de usabilidade e de acessibilidade a partir das duas versões de protótipos gerados pelo ambiente FastInterface: a primeira versão concebida pelo Hi-fy e a segunda versão concebida pelo MAXIMUM. Esse teste deverá ser aplicado para um determinado estereótipo de usuário conforme projeto proposto.

6. CONSIDERAÇÕES FINAIS

Os ambientes de desenvolvimento de projeto de interface propostos pela comunidade de IHC geram protótipo de alta-fidelidade fundamentado muitas vezes em informações voltadas apenas à representação da CUI para uma determinada plataforma.

O foco desse trabalho não é questionar os protótipos de alta-fidelidade gerados pelos ambientes apresentados. A contribuição vem de agregar a um ambiente de desenvolvimento de projeto de interface um módulo que proporcione a geração de um protótipo que contemple questões que hoje são muitos importantes à garantia da qualidade de um software: usabilidade e acessibilidade.

Para tanto o MAXIMUM proporcionará:

- Identificação, classificação e mapeamento de informações sobre o usuário em tempo de projeto;
- Inserção de heurísticas de usabilidade em tempo de projeto.

- Inserção de heurísticas de acessibilidade em tempo de projeto.
- Criação de uma base de conhecimento para adaptação do protótipo de alta-fidelidade em tempo de projeto.
- Consolidação do Projeto FastInterface como ambiente que dá suporte aos processos definidos em MEDITE.

7. REFERÊNCIAS

- [Agu07] Y. P. Aguiar, *SMILE Uma Ferramenta para Geração Automática, Edição e Simulação de Protótipos de Interface do Usuário*, Dissertação (Mestrado em Computação), Universidade Federal de Campina Grande, Campina Grande, junho 2007.
- [CCT⁺03] G. Calvary, J. Coutaz, D. Thevenin, Q. Limbourg, L. Bouillon, J. Vanderdonckt *A unifying reference framework for multitarget user interfaces*. In *Interacting with Computer*, Orlando, Florida, 15(3) 289-308, june 2003.
- [GMP⁺01] T. Griffiths; J. Mckirdy; N. W. Paton; P. D. Gray; J. Kennedy; R. Cooper.; C. A. Goble.; A. West. and M. Smyth. *Teallach: A model-based user interface development environment for object databases.* In. *Interacting with Computers*, P. 31-68. Janeiro, 2001.
- [ISO98] INTERNATIONAL ORGANIZATION FOR STANDARDIZATION, ISO 9241 Ergonomic requirements for office work with visual display terminals. Geneva, 1998.
- [KS98] G. Kotonya; I. Sommerville. *Requirements Engineering*: Processes and Techniques. New York: John Wiley & Sons Inc, 1998.
- [LM01] J. A. Landay, B. A. Myers. 2001. Sketching Interfaces: toward more human interface design. IEEE Computer. v.34, n.3, p. 56-64.
- [May99] D. J. Mayhew, *The usability engineering lifecycle*: a practitioner's handbook foruser interface design. Morgan Kaufmann Publishers. Março, 1999.
- [MLB02] F. P. A. Medeiros, B. Jr. Lula, Cordeiro, P. C. Barbosa, *A Graphical Tool to Support Task Description Using TAOS Formalism for UI Design*. In Proceeding of the 7th ERCIM Workshop, p. 45-51, 2002
- [MPS04] G. Mori; F. Paternò; C. Santoro. *Design and development of multidevice user interfaces through multiple logical descriptions*. IEEE Transactions on Software Engineering, 30(8), 2004.
- [NSA⁺96] J.H.M Nogueira, R.B.A Silva, J.F.L. Alcântara, R.C. Andrade *Expert SINTA*, In. XII Simpósio Brasileiro de Engenharia de Software, 1996, São Carlos, SP, 1996, *Anais*, Maringá, PR, Ed. SBC, 1998.
- [Oli07] K. M. A. Oliveira, FastInterface Ambiente para Desenvolvimento de Interface do Usuário Ergonômicas Baseado em Modelos, Proposta de Dissertação (Mestrado em Computação), Universidade Federal de Campina Grande, Campina Grande, abril 2007.
- [Pre00] R. Pressman, Engenharia de Software. Editora McGraw-Hill, 2000.
- [Sch06] D. Scherer, *Proposta de um Modelo de Comportamento do Usuário para o Método de Concepção de Interfaces MCIE*, Relatório Técnico (Doutorado em Computação), Universidade Federal de Campina Grande, Campina Grande, novembro 2006.
- [SE96] E. Schlungbaum, T. Elwert Automatic User Interface Generation from Declarative Models, In: J. Vanderdonckt (ed.): Computer-Aided Design of User Interfaces. Namur: Presses Universitaires de Namur, 1996, 77-94.
- [Sta00] C. Stary. Contextual prototyping of user interface. In DIS, Brooklyn, New York, 2000.
- [RSH02] Y. Rogers; H. Sharp; J. Preece. *Interaction Design: Beyond Human*. In *computer Interaction*. New Delphi: Wiley India. 2002.