## DYNAMISCHE DATENSTRUKTUREN: BÄUME



Eine der wichtigsten dynamischen Datenstrukturen in der Informatik ist der *Baum*. Mit Bäumen kann man Daten nämlich wunderbar hierarchisch ordnen.

Das heißt: Es gibt übergeordnete und untergeordnete Elemente. Ein konkretes Anwendungsbeispiel für eine Datenorganisation in Form eines Baums ist die Dateistruktur eines Computers:





 $Im\ Folgenden\ zitieren\ wir\ Auszüge\ aus\ der\ offiziellen\ Handreichung\ des\ Landes\ Baden-W\"urttemberg.\ Diese\ Materialien\ finden\ sich\ hier: \underline{tinyurl.com/schule-bw-informatik}$ 

An einigen Stellen haben wir diese Materialien angepasst. Im Wesentlichen geben wir die Ausführungen der Handreichung aber wortgetreu wieder.

## **Definition:**

Ein Baum besteht aus Knoten, die durch Kanten verbunden sind. In dem abgebildeten Beispiel werden z.B. die Knoten *Musik* und *Pop* durch eine Kante verbunden.



Es handelt sich nur dann um einen Baum, wenn es zwischen zwei beliebig wählbaren Knoten nur einen Weg gibt.



## **Bestandteile eines Baums**

| Wurzel       | Knoten, der keine Eltern hat (= oberster<br>Knoten im Baum)                                     |
|--------------|-------------------------------------------------------------------------------------------------|
| Elternknoten | Vorgänger eines bestimmten Knotens                                                              |
| Kind         | Nachfolger eines Knotens.                                                                       |
| Blatt        | Knoten, die keine Kinder haben (=<br>unterste Knoten)                                           |
| Teilbaum     | Knoten und alle seine Kinder                                                                    |
| Höhe         | Anzahl der Knoten von der Wurzel bis<br>zum Knoten. Auch Wurzel und Blatt<br>werden mitgezählt. |

