

Investigação Operacional

Problema da Designação

(Alocação ou Atribuição)

Introdução

- Um dos casos mais importantes do Problema de Transporte pode ocorrer quando as Ofertas e as Demandas são unitárias.
 - Esta Classe de Problemas é chamada de Problemas de Designação
- O Problema de Designação é um caso específico do Problema de Transporte
- Aplicação directa também em Logística.

Objectivo

 O Problema de Designação consiste em designar cada uma das Origens a cada um dos Destinos, de maneira Óptima.

• Exemplos:

- Designar pessoas para determinadas tarefas (ex: escalar vendedores para regiões de vendas).
- Designar máquinas para localizações.
- Designar produtos para fábricas.

Considerações

- O número de Origens e o número de Destinos são os mesmos (n).
- Cada Origem deve ser Designada para exactamente um Destino.
- Cada Destino deve ser designado para exactamente uma Origem.
- Há um custo C_{ij} associado em designar a Origem i (i = 1,2,3, ..., n) para o Destino j (j = 1,2,3, ..., n).
- O objectivo é determinar como todas as n designações devem ser realizadas para minimizar (ou maximizar) o custo (ou o lucro) total.

O Modelo Matemático Generalizado

$$Z = \sum_{i=1}^{n} \sum_{j=1}^{n} C_{ij} X_{ij}$$

• Sujeito a:

$$\sum_{i=1}^{n} X_{ij} = 1 \qquad para \ i = 1, 2, 3, ..., n$$

$$\sum_{i=1}^{n} X_{ij} = 1 \qquad para \quad j = 1, 2, 3, ..., n$$

e

$$X_{ij} = \begin{cases} 1 & se & i designado para j \\ 0 & caso contrário \end{cases}$$

Algorítmo

• Problema 1:

- Uma companhia de Transportes possui 5 camiões disponíveis localizadas nas cidades A, B, C, D e E.
- Necessita-se de um camião nas cidades C1, C2, C3,
 C4, C5 e C6.
- Qual a designação dos camiões que minimiza a quilometragem percorrida por todos os camiões, dado as quilometragens entre as cidades abaixo?

Origon	Destinos									
Origem	C_1	\mathbf{C}_2	C_3	C_4	C_5	C_6				
A	20	15	26	40	32	12				
В	15	32	46	26	28	20				
С	18	15	2	12	6	14				
D	8	24	12	22	22	20				
Е	12	20	18	10	22	15				

• Sob a forma de uma tabela de Problema de Transporte

Onigon			Dest	inos			Oferta
Origem	C_1	C_2	C_3	C_4	C_5	C_6	Oferta
A	20	15	26	40	32	12	1
В	15	32	46	26	28	20	1
С	18	15	2	12	6	14	1
D	8	24	12	22	22	20	1
Е	12	20	18	10	22	15	1
R	0	0	0	0	0	0	1
Demanda	1	1	1	1	1	1	

Número de Possíveis Soluções

• O Problema de designação envolve a determinação de n! possíveis soluções.

• Exemplo:

- para um problema com 5 trabalhadores e 5 tarefas o número de soluções possíveis é igual a 5! = 120.
- para um problema com 10 trabalhadores e 10 tarefas o número de soluções é igual a 10 ! = 3 628 800.
- •Obter a solução óptima por tentativa é DIFÍCIL!

ALGORÍTMO HÚNGARO

Teorema da Alocação Óptima

Se um número real é somado ou subtraído de todas as entradas de uma linha ou coluna, então uma alocação óptima para a matriz resultante é também uma alocação óptima para a matriz original.

Teorema de König

Se o número mínimo de traços que atravessam todos os zeros for n, temos uma alocação possível para cada linha/coluna.

O Algorítmo

- 1. Para cada linha, subtraia o mínimo da linha.
- 2. Para cada coluna, subtraia o mínimo da coluna.
- 3. Use o mínimo de traços possíveis para cobrir todos os zeros da matriz.
 - Não há receita de bolo para isso (basicamente tentativa e erro). Se usou j traços:
 - Se j = n, temos uma solução óptima.
 - Escolha um 0 por linha e coluna.
 - Se j ≠ n, determine a menor entrada que não tenha sido riscada. Subtraia essa entrada de todas as entradas não riscadas e a some a todas as entradas com 2 riscos (Volta ao passo 3).

• <u>1° Passo:</u>

- Subtrair o menor elemento de cada linha

Orionara			Dest	tinos			Oforto
Origem	C_1	C_2	C_3	C_4	C_5	C_6	Oferta
A	8	3	14	28	20	0	1
В	0	17	31	11	13	5	1
С	16	13	0	10	4	12	1
D	0	16	4	14	14	12	1
Е	2	10	8	0	12	5	1
R	0	0	0	0	0	0	1
Demanda	1	1	1	1	1	1	

• <u>2° Passo</u>

- Subtrair o menor elemento de cada coluna

Origon			Dest	inos			Oforto
Origem	C_1	C_2	C_3	C_4	C_5	C_6	Oferta
A	8	3	14	28	20	0	1
В	0	17	31	11	13	5	1
С	16	13	0	10	4	12	1
D	0	16	4	14	14	12	1
Е	2	10	8	0	12	5	1
R	0	0	0	0	0	0	1
Demanda	1	1	1	1	1	1	

Teste de Optimalidade

• <u>3° Passo</u>

 Testar a Optimalidade traçando um número mínimo de rectas que cubra todos os zeros. Rectas diagonais não são permitidas.

Orrigora			Des	tinos			Oforto
Origem	C_1	C_2	C_3	C_4	C_5	C_6	Oferta
A	8	3	14	23	20	0	1
В		17	31	1	13	5	1
С	15	13	0	10	4	12	1
D		16	4	14	14	12	1
Е	2.	10	8	C	12	4	1
R		0		G	0		1
Demanda	1	1	1	1	1	1	

4° Passo

- Se o número de rectas for igual a n (número de linhas ou colunas), pode-se fazer uma designação óptima (solução óptima).
- Se o número de rectas é menor que n, faz-se necessário realizar uma iteração.
- Isto é feito escolhendo o menor elemento não coberto pelas rectas traçadas e subtraíndo este mesmo elemento de todos os demais elementos não cobertos pelas rectas traçadas.
- Somar depois este elemento aos elementos que se encontram na intersecção das rectas.
- Todos os demais elementos devem permanecer inalterados.

• 4º Passo

Origan			Dest	inos			Oferta
Origem	C_1	C_2	C_3	C_4	C_5	C_6	Olerta
A	8	0	14	28	17	0	1
В	0	14	31	11	10	5	1
С	16	10	0	10	1	12	1
D	0	13	4	14	11	12	1
Е	2	7	8	0	9	5	1
R	3	0	3	3	0	3	1
Demanda	1	1	1	1	1	1	

- Traçando as rectas novamente, tem-se número de rectas = 5.
 - A Solução não é óptima.

Omicsom			Des	tinos			Oferta
Origem	C_1	C_2	C_3	C_4	C_5	C_6	Oferta
A		0	1 4	2.8	17	0	1
В	0	14	31	1.1	10	5	1
С	16	10	0	10	1	12	1
D	0	13	4	14	11	12	1
Е	2	7	8)	9	5	1
R	-1	0	3	k.	0	3	1
Demanda	1	1	1	1	1	1	

- A próxima iteração (feito tudo de uma vez) é:
 - Número de rectas = 5.
 - Solução não é óptima.

Onicom						Dest	inos						Oforto
Origem	C_1		C	2.	C	3	C	4	C	5	C	1 6	Oferta
A			-	0		15		29		17		0	1
		┡											
В	<u> </u>	<u>D</u>		13		31		11		9		4	1
		╀.											
C		10	-	9		Û		10		Û		11	1
		╙											_
D		0		12		4		14		10		11	1
		┖											1
E		<u> </u>		-6		8		0		-8		4	1
E													1
		4		0		4		4		0		3	1
R													1
Demanda	1		1				ĺ]		1		

Algorítmo

• A próxima iteração é: número de rectas = 6. A Solução é óptima. Pode-se fazer uma das duas designações distintas.

Origan	1		Des	tinos			Oforto
Origem	C_1	C_2	C_3	C_4	C_5	C_6	Oferta
A	13		15	29	17	0	1
В		9	27	7		0	1
С	2.0	9	0	10		11	1
D		8	D	10	6	7	1
Е	5_		8	0	8	4	1
R	8_		4	4		3	1
Demanda	1	1	1	1	1	1	

Solução Óptima

• 1^a Solução òptima:

- Da Origem A envie um camião para o destino C₆
- Da Origem B envie um camião para o destino C₁
- − Da Origem C envie um camião para o destino C₅
- − Da Origem D envie um camião para o destino C₃
- − Da Origem E envie um camião para o destino C₄.
- O destino C₂ não recebe camião.
- A quilometragem total para esta designação é:
- 12 + 15 + 6 + 12 + 10 + 0 = 55 Km

Operations Research Solução Optima

• 2ª Solução òptima:

- Da Origem A envie um camião para o destino C₂
- Da Origem B envie um camião para o destino C₆
- Da Origem C envie um camião para o destino C₃
- Da Origem D envie um camião para o destino C₁
- − Da Origem E envie um camião para o destino C₄.
- − O destino C₅ não recebe camião.
- A quilometragem total para esta designação é:
- 15 + 20 + 2 + 8 + 10 + 0 = 55 Km

Observação

Se o problema de Designação for expresso em termos de lucro ou de algum outro critério que requeira maximização, pode-se usar o mesmo método, apenas multiplicando todos os elementos da matriz inicial por (-1).

Exemplo II

 Considere que existem 5 trabalhadores que devem ser designados a 5 tarefas. A matriz dos custos associados à realização de cada tarefa por cada trabalhador é a seguinte:

	1	2	3	4	5
1	17.5	15	9	5.5	12
2	16	16.5	10.5	5	10.5
3	12	15.5	14.5	11	5.5
4	4.5	8	14	17.5	13
5	13	9.5	8.5	12	17.5

Método Húngaro

- **<u>Início</u>**: Redução da Matriz de Custos.
- 1º. Subtrair aos elementos de cada coluna da matriz de custos o mínimo dessa coluna.
- 2°. Na matriz resultante, subtrair a cada linha o respectivo mínimo.
- <u>Iteração</u>:
- 1°. Desenhar o número mínimo de traços que cobrem todos os zeros da matriz
- 2°. Critério de parada: o número mínimo de traços é igual a n?.
 - Sim enquadrar n zeros, um por linha e um por coluna, a solução é óptima. FIM.
 - Não passar a 3.
- 3º. Redução da matriz de custos.
 - Determinar o menor valor não riscado θ .
 - Subtrair θ a todos os elementos não riscados e somar θ a todos os elementos duplamente riscados.
 - Considerar de novo todos os zeros livres e voltar a 1 (<u>Iteração</u>)

Início: Redução da Matriz de Custos.

13

1º: Subtrair o menor elemento de cada coluna de todos os elementos dessa coluna

	1	2	3	4	5
1	17.5	15	9	5.5	12
2	16	16.5	10.5	5	10.5
3	12	15.5	14.5	11	5.5
4	4.5	8	14	17.5	13

9.5

menor elemento da coluna 1

17.5	- 4.5 =	13

$$4.5 - 4.5 = 0$$

	1	2	3	4	5
1	(13)	7	0.5	0.5	6.5
2	(11.5)	8.5	2	0	5
3	7.5	7.5	6	6	0

8.5

17.5

12

Início: Redução da Matriz de Custos.

2º: Subtrair o menor elemento de cada linha de todos os elementos dessa linha

Existe empate na escolha do menor elemento da linha 1 (igual a 0.5). Nas linhas restantes o mínimo é **zero**, sendo que as linhas restantes não vão ser alteradas

	1	2	3	4	5
1	13	7	0.5	0.5	6.5
2	11.5	8.5	2	0	5
3	7.5	7.5	6	6	0
4	0	0	5.5	12.5	7.5
5	8.5	1.5	0	7	12
				·	

10 010 1-10	13	- 0.5	= 12.5
-------------	----	-------	--------

$$7 - 0.5 = 6.5$$

$$0.5 - 0.5 = 0$$

$$6.5 - 0.5 = 6$$

		1	2	3	4	5
	1	12.5	6.5	0	0	6
1	2	11.5	8.5	2	0	5
	3	7.5	7.5	6	6	0
	4	0	0	5.5	12.5	7.5

1.5

Iteração: Critério de parada.

1º. Desenhar o número mínimo de traços que cobrem todos os zeros da matriz.

	1	2	3	4	5
1	12.5	6.5	•	•	6
2	11.5	8.5	2	0	5
3	7.5	7.5	6	6	0
4	0	0	5.5	12.5	7.5
5	8.5	1.5	0	7	12

2º. Critério de parada: o número mínimo de traços é igual a 5?.Não – passar a 3.

Iteração: Redução da Matriz de Custos.

- 1°. min {elementos da submatriz dos elementos não riscados } = 1.5
- 2°. Subtrair 1.5 a todos os elementos não riscados.
- 3°. Somar 1.5 aos elementos na intersecção dos traços.
- 4°. Os restantes elementos não são alterados.

	<u>1</u>	2	3	4	5
1	12.5	6.5	•	0	6
2	11.5	8.5	2	0	5
3	7.5	7.5	6	(6)	0
4	0	0	(5.5)	(12.5)	7.5
5	8.5	1.5	0	7	12
	1	2	3	4	5
1	11	5	0	0	4.5
2	10	7	2	0	3.5
3	7.5	7.5	7.5	7.5	0
4	0	0	7	14	7.5
5	7	0	0	7	10.5

Iteração: Critério de parada.

1º. Desenhar o número mínimo de traços que cobrem todos os zeros da matriz.

г					
	1	2	3	4	5
1	11	5	0	0	4.5
2	10	7	2	•	3.5
3	7.5	7.5	7.5	7.5	0
4	0	0	7	14	7.5
5	7	0	0	7	10.5
				'	•

2º. Critério de parada: o número mínimo de traços é igual a 5?.
Sim – enquadrar 5 zeros, um por linha e um por coluna,
a solução é ótima. FIM

Solução Óptima.

		1	2	3	4	5
Matriz inicial de custos	1	17.5	15	9	5.5	12
	2	16	16.5	10.5	5	10.5
	3	12	15.5	14.5	11	5.5
	4	4.5	8	14	17.5	13
	5	13	9.5	8.5	12	17.5

solução óptima
$$\acute{e}$$
: $x_{13} = 1$, $x_{24} = 1$, $x_{35} = 1$, $x_{41} = 1$, $x_{52} = 1$
com um custo total: $9 + 5 + 5.5 + 4.5 + 9.5 = 33.5$