Sudhanshu (Dan) Chanpuriya

Email: schanpuriya@cs.umass.edu GitHub: github.com/schariya

EDUCATION

University of Masachusetts Amherst

Amherst, MA

M.S./Ph.D. in Computer Science, Advisor: Cameron Musco, GPA: 4.0/4.0

2018-Present

Dartmouth College

Hanover, NH

B.S. in Computer Science, B.S. in Engineering Physics, Minor in Mathematics, GPA: 3.9/4.0

2014-2018

RESEARCH INTERESTS

I am broadly interested in machine learning involving network data and graph-based algorithms. My recent work centers around learning or inverting low-dimensional, continuous representations for networks. I am more generally interested in connections between recent, "deep" methods and classical methods and how these connections can inform theoretical understanding of deep learning as well as new simplifications and advancements.

PROJECTS

Network Embeddings for Downstream Tasks and Reconstruction

2019-Present

Research Assistant to Prof. Cameron Musco

- Derived new expressions for the DeepWalk objective in the infinite window-size limit, showing equivalency to
 classical spectral embedding. Showed that addition of a simple nonlinearity to spectral embedding approximates
 DeepWalk and evaluated the performance of this approximation on node classification for real-world networks.
- Responding to prior working showing that node embeddings fail to capture local network structure under certain assumptions, applied a logistic PCA algorithm which, under a slight relaxation of those assumptions, demonstrated exact low-dimensional factorization of several real-world networks.

Adversarial Machine Learning for Malware Identification

Jan. 2018-Jun. 2018

Dartmouth Leave Term Grant / Senior Honors Thesis with Prof. V.S. Subrahmanian.

- Created and evaluated a genetic algorithm for data poisoning attacks on black-box classifiers.

DG Schemes with L1 Regularization in Hyperbolic PDE Solvers

Jun. 2017-Oct. 2017

Dartmouth Leave Term Grant with Prof. Anne Gelb.

Extended then-recent research on regularization-based shock stabilization schemes used to enhance finite
difference and spectral methods. Implemented and evaluated enhanced discontinuous Galerkin (DG) methods
on discontinuous fluid dynamics test problems.

Plot Structure Characterization and Visualization Using Subtitle Files Jun. 2016–Sep. 2016 Neukom Scholars Grant with Prof. Allen Riddell.

Processed subtitle files of television shows to extract n-grams which are semantically characteristic to parts of
episodes. Created continuous visualizations of n-gram frequency distributions across parts of episodes and series
release period using KDE.

PUBLICATIONS

- 1. InfiniteWalk: Deep Network Embeddings as Laplacian Embeddings with a Nonlinearity Sudhanshu Chanpuriya and Cameron Musco. *Knowledge Discovery in Databases (KDD)*, 2020.
- 2. Node Embeddings and Exact Low-Rank Representations of Complex Networks
 Sudhanshu Chanpuriya, Cameron Musco, Konstantinos Sotiropoulos, and Charalampos Tsourakakis. In submission.

TEACHING

• Teaching Assistant at UMass Amherst Computer Systems Principles (COMPSCI 230) $Fall\ 2018-Present$

• Teaching Assistant at UMass Amherst Introduction to Structured Query Language (COMPSCI 197Q) Summer 2019