

Цифровые устройства и микропроцессоры I часть

Лекция 13

Лектор: Богаченков Алексей Николаевич

e-mail: microproc@mail.ru

Online-edu.mirea.ru

Темы лекции:

Устройства с программируемой структурой

Архитектура программируемых логических интегральных схем (ПЛИС)

Дополнительная литература

Тарасов И.Е. ПЛИС Xilinx. Языки описания аппаратуры VHDL и Verilog, САПР, приемы проектирования. — М.: Горячая линия — Телеком, 2019 (2020, 2021). — 538 с. — URL: $https://www.techbook.ru/book.php?id_book=1082$.

Максфилд, К. Проектирование на ПЛИС. Курс молодого бойца : учебное пособие / К. Максфилд. — М.: ДМК Пресс, 2010. - 407 с. — URL: https://e.lanbook.com/book/60987 — Режим доступа: для авториз. пользователей.

Ушенина, И. В. Проектирование цифровых устройств на ПЛИС : учебное пособие. / И. В. Ушенина. — СПб.: Лань, 2019. - 408 с. — URL: https://e.lanbook.com/book/119638 — Режим доступа: для авториз. пользователей.

VHDL: Справочное пособие по основам языка: учебное пособие / В. П. Бабак, А. Г. Корченко, Н. П. Тимошенко, С. Ф. Филоненко. — М.: ДМК Пресс, 2010. — 217 с. — URL: https://e.lanbook.com/book/60992. — Режим доступа: для авториз. пользователей.

Типы программируемых логических устройств

ПЗУ ROM	Постоянные запоминающие устройства Read Only Memory	
ПЛМ PLA PLM	Программируемые логические матрицы Programmable Logic Array Programmable Logic Matrix	
ПМЛ PAL	Программируемая матричная логика Programmable Array Logic	
БМК GA	Базовые матричные кристаллы Gate Array	ПЛИС
CPLD	Сложные программируемые логические устройства Complex Programmable Logic Devices	плис —
FPGA	Программируемые пользователем вентильные матрицы Field Programmable Gate Arrays	Программируемые логические интегральные схемы
SoC	Системы на кристалле System-on-Chip	

Программируемые логические матрицы (ПЛМ)

Программируемая матричная логика (ПМЛ)

Базовые матричные кристаллы (БМК)

Программируемые логические интегральные схемы (ПЛИС)

CPLD	FPGA
Низкая стоимость	Высокая стоимость
Содержит относительно небольшое число логических вентилей (до десятков тысяч)	Большое число логических вентилей (до нескольких миллионов)
Логические ячейки типа ПЛМ, малое количество триггеров	Быстродействующие вентили типа Look-up- Tables, большое количество триггеров
Встроенная загрузочная энергонезависимая память	Внутренняя статическая память, загружае- мая из внешнего ПЗУ (имеются также моди- фикации с flash-памятью)
Конфигурация неизменна в процессе работы.	Возможность изменения конфигурации в процессе работы
Отсутствие специальных блоков	В составе: распределенная и блочная па- мять, блоки синхронизации, высокоскорост- ные интерфейсы, блоки цифровой обработ- ки сигналов, процессоры и др.
Используется для проектов малой и средней степени сложности, продукции класса low-end	Используются для сложных проектов, про- дукции класса high-end

Системы на кристалле (SoC)

Организация ПЛИС с архитектурой FPGA

Основа ПЛИС — программируемые логические блоки (элементы), окруженные программируемые внутренними соединениями.

Организация связей

Соединения: локальные, глобальные

Подробнее см. [Тарасов, с. 26–32]

Организация связей – коммутация

На следующих 3 слайдах: фрагменты топологии кристалла ПЛИС в разном масштабе (скриншоты среды разработки)

Рабочий логический блок со связями

Неиспользуемый логический блок

Структура логической ячейки

LUT (Look-Up Table) — таблица перекодировки (другие термины: генератор логических функций, таблица соответствия, таблица преобразования, таблица истинности, ПЗУ и др.), имеет 4 или 6 входов.

Может использоваться как:

- универсальный логический элемент;
- сдвиговый регистр;
- память 16 x 1 (для 4-входовой LUT) или 64 x 1 (для 6-входовой LUT)

Структура логической ячейки

Схема 4-входовой LUT

Организация секций конфигурируемого логического блока (CLB)

В простых устройствах

В сложных устройствах

Организация связей для ускоренного переноса

Пример сумматора

Банк 0 Банк 1 Банк 3 Банк 4

Блоки ввода-вывода

Подробнее см. [Тарасов, с. 50–56]

Блоки ввода-вывода

Некоторые односигнальные стандарты

	V _{cco} , B		V _{REF} , B	Напряжение
Стандарт	для вы- ходов	для входов	для входов*	согласования с платой (V _{TT}), В
GTL	**		0,8	1,2
GTLP			1	1,5
HSTL_I	1,5	-	0,75	0,75
HSTL_III	1,5	1	0,9	1,5
HSTL_I_18	1,8	_	0,9	0,9
HSTL_II_18	1,8	_	0,9	0,9
HSTL_III_18	1,8	-	1,1	1,8
LVCMOS12	1,2	1,2	_	_
LVCMOS15	1,5	1,5	_	_
LVCMOS18	1,8	1,8	_	_
LVCMOS25	2,5	2,5	_	_
LVCMOS33	3,3	3,3	_	_
L∨TTL	3,3	3,3	_	_
PCI33_3	3,0	3,0	-	_
SSTL18_I	1,8	_	0,9	0,9
SSTL2_I	2,5	_	1,25	1,25
SSTL2_II	2,5	_	1,25	1,25

Некоторые дифференциальные стандарты

	V _{cco} , B		V _{REF} , B	V _{OD} , мВ ¹	
Стандарт	для вы- ходов	для вхо- дов	для входов	мин.	макс.
LDT_25	2,5	-	_	430	670
LVDS_25	2,5	-	_	250	400
BLVDS_25	2,5	-	_	250	450
LVDSEXT_25	2,5	_	_	330	700
ULVDS_25	2,5	_	_	430	670
RSDS_25	2,5	_	_	100	400

Задание выходного тока

Standard	HR Bank Current Drive (mA)
LVCMOS12	4, 8, or 12
LVCMOS15	4, 8, 12, or 16
LVCMOS18	4, 8, 12, 16, or 24
LVCMOS25	4, 8, 12, or 16
LVCMOS33	4, 8, 12, or 16
LVTTL	4, 8, 12, 16, or 24

Блоки ввода-вывода

Входной буфер / глобальный буфер

IBUF/IBUFG

Входной буфер с разрешением

IBUF_IBUFDISABLE

Дифференциальные входные буферы

O (Output) into FPGÁ

Двунаправленные буферы с 3-м состоянием

Блоки ввода-вывода

Логика ввода-вывода (SelectIO Logic Resource)

Дополнительные функции:

- триггер-защелка;
- режим IDDR (ODDR) прием-передача с удвоенной скоростью (по фронту и спаду);
- преобразование кода: последовательный ↔ параллельный;
- буферная память FIFO.

Модуль управления синхронизацией (синтезатор частот)

DCM – Digital Clock Manager

Сигнал	Направ- ление	Описание	Поддерживаемые режи- мы		
		Gilucanue		Высокочас- тотный	
CLKIN	Вход	Принимает оригинальный тактовый сигнал.	Да	Да	
CLKFB	Вход	Принимает сигналы с CLK0 или CLK2X (обратная связь).	Да	Да	
CLK0	Выход	Сгенерированный сигнал такой же частоты и фазы, как CLKIN.	Да	Да	
CLK90	Выход	Сгенерированный сигнал такой же частоты, как CLKIN, но отличающийся по фазе на 90°.	Да	Нет	
CLK180	Выход	Сгенерированный сигнал такой же частоты, как CLKIN, но отличающийся по фазе на 180°.	Да	Да	
CLK270	Выход	Сгенерированный сигнал такой же частоты, как CLKIN, но отличающийся по фазе на 270°.	Да	Нет	
CLK2X	Выход	Сгенерированный сигнал такой же фазы, как CLKIN, но в 2 раза большей частоты.	Да	Нет	
CLK2X180	Выход	Сгенерированный сигнал в 2 раза большей частоты и отличающийся по фазе на 180° по отношению к CLKIN.	Да	Нет	
CLKDV	Выход	Сгенерированный сигнал, равный по частоте CLKIN, поделенной на значение атрибута CLKDV_DIVIDE (см. табл. 17)	Да	Да	

Подробнее см. [Тарасов, с. 64–77]

Модуль управления синхронизацией (синтезатор частот)

Модуль формирования многофазных тактовых сигналов с ФАПЧ

Структура тактовой сети

Подробнее см. [Тарасов, с. 64–77]

Блочная память

Типовой объем памяти одного блока: 36 килобит.

Оптимально конфигурируется в:

32K x 1, 16K x 2, ..., 4K x 9, ..., 512 x 72

Распределенная память

Распределенная память строится на LUTблоках. Каждый LUT-блок может быть организован как однопортовая память 16×1, а два блока - как двухпортовая память 16×1 с одним портом для чтения/записи и другим только для чтения.

Рис. 1 Информационные потоки в однопортовых (а) и двухпортовых (б) блоках распределенной памяти

Рис. 2 Схема двухпортового блока распределенной памяти

Блоки цифровой обработки (DSP48)

Подробнее см. [Тарасов, с. 59–64]

Гигабитные приемопередатчики

Другие аппаратные модули

Интерфейс с динамической памятью SDRAM, DDR, DDR2, ...

Интегрированный интерфейс PCI Express

Аналого-цифровые преобразователи

Блоки шифрования, обнаружения ошибок

Видеокодеки

Процессорные модули (ядра: Power PC, ARM)

Модуль чтения уникального номера микросхемы (DNA_PORT)

Блоки интеллектуальной собственности (IP ядра)

Синтезируемые процессоры

Интерфейсы (UART, SPI, I2C, USB, Ethernet, беспроводные и др.)

Организация памяти (RAM, ROM, FIFO)

Мат. обработка (плавающая точка, вычисление функций, цифровая фильтрация, преобразование Фурье и др.)

Обработка изображений и видео

и многое другое