Outline

Single Source Shortest Path Problem

Input: A directed graph G=(V,E); an edge weight function $w:E\to R$, and a start vertex $s\in V$.

Find: for each vertex $u \in V$, $\delta(s, u) =$ the length of the shortest path from s to u, and the shortest $s \to u$ path.

Single Source Shortest Path Problem

Input: A directed graph G=(V,E); an edge weight function $w:E\to R$, and a start vertex $s\in V$.

Find: for each vertex $u \in V$, $\delta(s, u) =$ the length of the shortest path from s to u, and the shortest $s \to u$ path.

There are several different versions:

G can be directed or undirected.

Single Source Shortest Path Problem

Input: A directed graph G=(V,E); an edge weight function $w:E\to R$, and a start vertex $s\in V$.

Find: for each vertex $u \in V$, $\delta(s, u) =$ the length of the shortest path from s to u, and the shortest $s \to u$ path.

There are several different versions:

- G can be directed or undirected.
- All edge weights are 1.

Single Source Shortest Path Problem

Input: A directed graph G=(V,E); an edge weight function $w:E\to R$, and a start vertex $s\in V$.

Find: for each vertex $u \in V$, $\delta(s, u) =$ the length of the shortest path from s to u, and the shortest $s \to u$ path.

There are several different versions:

- G can be directed or undirected.
- All edge weights are 1.
- All edge weights are positive.

Single Source Shortest Path Problem

Input: A directed graph G=(V,E); an edge weight function $w:E\to R$, and a start vertex $s\in V$.

Find: for each vertex $u \in V$, $\delta(s, u) =$ the length of the shortest path from s to u, and the shortest $s \to u$ path.

There are several different versions:

- G can be directed or undirected.
- All edge weights are 1.
- All edge weights are positive.
- Edge weights can be positive or negative, but there are no cycles with negative total weight.

 Note 1: There are natural applications where edge weights can be negative.

- Note 1: There are natural applications where edge weights can be negative.
- Note 2: If G has a cycle C with negative total weight, then we can just go around C to decrease the $\delta(s,*)$ indefinitely.

- Note 1: There are natural applications where edge weights can be negative.
- Note 2: If G has a cycle C with negative total weight, then we can just go around C to decrease the $\delta(s,*)$ indefinitely.
- Then the problem is not well defined. We will need an algorithm to detect such condition.

- Note 1: There are natural applications where edge weights can be negative.
- Note 2: If G has a cycle C with negative total weight, then we can just go around C to decrease the $\delta(s,*)$ indefinitely.
- Then the problem is not well defined. We will need an algorithm to detect such condition.
- For the case when w(e) = 1 for all edges, we have shown that the problem can be solved by BFS in $\Theta(n+m)$ time.

- Note 1: There are natural applications where edge weights can be negative.
- Note 2: If G has a cycle C with negative total weight, then we can just go around C to decrease the $\delta(s,*)$ indefinitely.
- Then the problem is not well defined. We will need an algorithm to detect such condition.
- For the case when w(e) = 1 for all edges, we have shown that the problem can be solved by BFS in $\Theta(n+m)$ time.
- We next discuss algorithms for more general cases.

We consider the case where G is directed and $w(e) \ge 0$ for all $e \in E$. If G is undirected, the algorithm is almost identical.

We consider the case where G is directed and $w(e) \ge 0$ for all $e \in E$. If G is undirected, the algorithm is almost identical.

General Description:

• Each vertex $u \in V$ has a variable d[u], which is an upper bound of $\delta(s, u)$.

We consider the case where G is directed and $w(e) \ge 0$ for all $e \in E$. If G is undirected, the algorithm is almost identical.

- Each vertex $u \in V$ has a variable d[u], which is an upper bound of $\delta(s, u)$.
- During the execution, we keep a set $S \subseteq V$.

We consider the case where G is directed and $w(e) \ge 0$ for all $e \in E$. If G is undirected, the algorithm is almost identical.

- Each vertex $u \in V$ has a variable d[u], which is an upper bound of $\delta(s, u)$.
- During the execution, we keep a set $S \subseteq V$.
- For each $u \in S$, $d[u] = \delta(s, u)$ has been computed. Initially S contains s only and $d[s] = \delta(s, s) = 0$.

We consider the case where G is directed and $w(e) \ge 0$ for all $e \in E$. If G is undirected, the algorithm is almost identical.

- Each vertex $u \in V$ has a variable d[u], which is an upper bound of $\delta(s, u)$.
- During the execution, we keep a set $S \subseteq V$.
- For each $u \in S$, $d[u] = \delta(s, u)$ has been computed. Initially S contains s only and $d[s] = \delta(s, s) = 0$.
- The vertices in V-S are stored in a priority queue Q. d[u] is the key value for Q.

We consider the case where G is directed and $w(e) \ge 0$ for all $e \in E$. If G is undirected, the algorithm is almost identical.

- Each vertex $u \in V$ has a variable d[u], which is an upper bound of $\delta(s, u)$.
- During the execution, we keep a set $S \subseteq V$.
- For each $u \in S$, $d[u] = \delta(s, u)$ has been computed. Initially S contains s only and $d[s] = \delta(s, s) = 0$.
- The vertices in V-S are stored in a priority queue Q. d[u] is the key value for Q.
- In each iteration, the vertex in Q with min d[u] value is included into S.

We consider the case where G is directed and $w(e) \ge 0$ for all $e \in E$. If G is undirected, the algorithm is almost identical.

- Each vertex $u \in V$ has a variable d[u], which is an upper bound of $\delta(s, u)$.
- During the execution, we keep a set $S \subseteq V$.
- For each $u \in S$, $d[u] = \delta(s, u)$ has been computed. Initially S contains s only and $d[s] = \delta(s, s) = 0$.
- The vertices in V-S are stored in a priority queue Q. d[u] is the key value for Q.
- In each iteration, the vertex in Q with min d[u] value is included into S.
- For vertex $v \in Q$ where $u \to v \in E$, d[v] is updated.

We consider the case where G is directed and $w(e) \ge 0$ for all $e \in E$. If G is undirected, the algorithm is almost identical.

- Each vertex $u \in V$ has a variable d[u], which is an upper bound of $\delta(s, u)$.
- During the execution, we keep a set $S \subseteq V$.
- For each $u \in S$, $d[u] = \delta(s, u)$ has been computed. Initially S contains s only and $d[s] = \delta(s, s) = 0$.
- The vertices in V-S are stored in a priority queue Q. d[u] is the key value for Q.
- In each iteration, the vertex in Q with min d[u] value is included into S.
- For vertex $v \in Q$ where $u \to v \in E$, d[v] is updated.
- When Q is empty, the algorithm stops.

Priority Queue

To implement the algorithm, we need a data structure.

Priority Queue

A Priority Queue is a data structure \mathcal{Q} . It consists of a set of items. Each item has a key. The data structure supports the following operations.

Priority Queue

To implement the algorithm, we need a data structure.

Priority Queue

A Priority Queue is a data structure Q. It consists of a set of items. Each item has a key. The data structure supports the following operations.

- Insert(Q, x): insert an item x into Q.
- Extract-Min(Q): remove and return the item with minimum key value.
- Min(Q): return the item with minimum key value.
- Decrease-Key(Q, x, k): decrease the key value of an item x to k.

Priority Queue

To implement the algorithm, we need a data structure.

Priority Queue

A Priority Queue is a data structure Q. It consists of a set of items. Each item has a key. The data structure supports the following operations.

- Insert(Q, x): insert an item x into Q.
- Extract-Min(Q): remove and return the item with minimum key value.
- Min(Q): return the item with minimum key value.
- Decrease-Key(Q, x, k): decrease the key value of an item x to k.

By using a Heap data structure, priority queue can be implemented so that:

- Min(Q) takes O(1) time.
- All other three operations take $O(\log n)$ time (n is the number of items in Q.)

Outline

Main Data structures:

• *G*: Adjacency List Representation.

Main Data structures:

- G: Adjacency List Representation.
- For Each vertex $u \in V$:
 - Adj[u]: the adjacency list for u
 - d[u]: An upper bound for $\delta(s, u)$
 - $\pi[u]$: indicates the shortest $s \to u$ path
- S: A set that holds the finished vertices.

Main Data structures:

- G: Adjacency List Representation.
- For Each vertex $u \in V$:
 - Adj[u]: the adjacency list for u
 - d[u]: An upper bound for $\delta(s, u)$
 - $\pi[u]$: indicates the shortest $s \to u$ path
- S: A set that holds the finished vertices.
- Q: A priority queue that holds the vertices not in S.

Main Data structures:

- G: Adjacency List Representation.
- For Each vertex $u \in V$:
 - Adj[u]: the adjacency list for u
 - d[u]: An upper bound for $\delta(s, u)$
 - $\pi[u]$: indicates the shortest $s \to u$ path
- S: A set that holds the finished vertices.
- Q: A priority queue that holds the vertices not in S.

Initialize (G, s)

- for each $u \in V$ do
- $d[u] = \infty; \pi[u] = \mathsf{NIL};$
- 0 d[s] = 0

Relax(u, v, w(*))

1 if
$$d[v] > d[u] + w(u \to v)$$
 do

$$d[v] = d[u] + w(u \to v)$$

```
Dijkstra(G, s, w(*))
```

- **1** Initialize (G, s)
- $S \leftarrow \emptyset$
- $\bigcirc Q \leftarrow V$
- **4** while $Q \neq \emptyset$ do
- $u \leftarrow \mathsf{Extract}\text{-Min}(Q)$
- for each $v \in Adj[u]$ do
- 8 Relax(u, v, w(*))
- end for
- end while

Dijkstra's Algorithm: Example

Dijkstra's Algorithm: Analysis

- Initialize: $\Theta(n)$
- **Relax** This is actually the decrease-key operation of the priority queue, which takes $O(\log n)$ time.
- Line 1: Θ(n)
- Line 2: Initialize an empty set takes O(1) time.
- Line 3: Insert n items into Q, $\Theta(n \log n)$ time.
- Line 4: While loop (not counting the time for the for loop, lines 7-9):
 - The loop iterates n times. (Q has n items in it initially. Each iteration removes one item from Q. Nothing is added into it. The loop stops when Q is empty.)
 - In the loop body, Extract-Min takes $O(\log n)$ time. The line 6 takes O(1) time.
 - Thus the total run time of the while loop (not counting lines 7-9) is $O(n \log n)$.

Dijkstra's Algorithm: Analysis

The total runtime of the lines 7-9:

- Each entry in Adj[u] is processed once.
- When it is processed, we call Relax once.
- Thus the processing of each entry takes $O(\log n)$ time.
- There are a total of $\Theta(m)$ entries in all Adj[u]'s (m) is the number of edges in G).
- So the the total run time for lines 7-9 is: $O(m \log n)$ time.

Dijkstra's Algorithm: Analysis

The total runtime of the lines 7-9:

- Each entry in Adj[u] is processed once.
- When it is processed, we call Relax once.
- Thus the processing of each entry takes $O(\log n)$ time.
- There are a total of $\Theta(m)$ entries in all Adj[u]'s (m) is the number of edges in G).
- So the the total run time for lines 7-9 is: $O(m \log n)$ time.

Since this term $(O(m \log n))$ dominates all other terms, the whole algorithm takes $O(m \log n)$ time.

SSSP Problem: Negative Edge Weight

If the edge weight of *G* can be negative, Dijkstra's algorithm doesn't work:

Outline

Bellman-Ford Algorithm

Bellman-Ford(G, s, w(*))

- **1** Initialize (G, s)
- of for i = 1 to n do
- of for each $e = (u, v) \in E$ do
- $\mathbf{A} \qquad \qquad \mathbf{Relax}(u, v, w(*))$
- **5 for** each $e = (u, v) \in E$ **do**
- if $d[v] > d[u] + w(u \rightarrow v)$ output "G has a negative cycle"
- 0 d[u] is the length of the shortest $s \to u$ path for each $u \in V$

Bellman-Ford Algorithm

Bellman-Ford(G, s, w(*))

- 1 Initialize (G, s)
- of for i = 1 to n do
- of for each $e = (u, v) \in E$ do
- $\mathbf{Relax}(u, v, w(*))$
- **5 for** each $e = (u, v) \in E$ **do**
- if $d[v] > d[u] + w(u \rightarrow v)$ output "G has a negative cycle"
- **1** d[u] is the length of the shortest $s \to u$ path for each $u \in V$

Analysis:

• This time, we don't need Extract-Min operation. So we don't need priority queue anymore. **Relax** now takes O(1) time.

Bellman-Ford Algorithm

Bellman-Ford(G, s, w(*))

- **1** Initialize (G, s)
- of for i = 1 to n do
- for each $e = (u, v) \in E$ do
- $\mathbf{A} \qquad \qquad \mathbf{Relax}(u, v, w(*))$
- **5 for** each $e = (u, v) \in E$ **do**
- if $d[v] > d[u] + w(u \rightarrow v)$ output "G has a negative cycle"
- $oldsymbol{0}$ d[u] is the length of the shortest $s \to u$ path for each $u \in V$

Analysis:

- This time, we don't need Extract-Min operation. So we don't need priority queue anymore. **Relax** now takes O(1) time.
- The loop iterates $n \cdot m$ times. The loop body takes O(1) time. Thus the algorithm takes $\Theta(nm)$ time.

Why Bellman-Ford algorithm works?

Path-Relaxation Property

Let G=(V,E) be a directed graph with edge weight function w(*) and the starting vertex s. Consider any shortest path $P=\langle v_0,v_1,\ldots,v_k\rangle$ from $s=v_0$ to a vertex v_k . If G is initialized by Initialize(G,s) and then a sequence of relaxation steps occurs that includes, in order, relaxations of the edges $v_0\to v_1,\,v_1\to v_2,\ldots,v_{k-1}\to v_k$, then $d[v_k]=\delta(s,v_k)$ after these relaxations and at all times afterward. This property holds no matter what other edge relaxations occur.

Why Bellman-Ford algorithm works?

Path-Relaxation Property

Let G=(V,E) be a directed graph with edge weight function w(*) and the starting vertex s. Consider any shortest path $P=\langle v_0,v_1,\ldots,v_k\rangle$ from $s=v_0$ to a vertex v_k . If G is initialized by Initialize(G,s) and then a sequence of relaxation steps occurs that includes, in order, relaxations of the edges $v_0\to v_1,\,v_1\to v_2,\ldots,v_{k-1}\to v_k$, then $d[v_k]=\delta(s,v_k)$ after these relaxations and at all times afterward. This property holds no matter what other edge relaxations occur.

Proof: We show by induction that after the *i*th edge of path *P* is relaxed, we have $d[v_i] = \delta(s, v_i)$.

Why Bellman-Ford algorithm works?

Path-Relaxation Property

Let G=(V,E) be a directed graph with edge weight function w(*) and the starting vertex s. Consider any shortest path $P=\langle v_0,v_1,\ldots,v_k\rangle$ from $s=v_0$ to a vertex v_k . If G is initialized by Initialize(G,s) and then a sequence of relaxation steps occurs that includes, in order, relaxations of the edges $v_0\to v_1,\,v_1\to v_2,\ldots,v_{k-1}\to v_k$, then $d[v_k]=\delta(s,v_k)$ after these relaxations and at all times afterward. This property holds no matter what other edge relaxations occur.

Proof: We show by induction that after the *i*th edge of path *P* is relaxed, we have $d[v_i] = \delta(s, v_i)$.

Base case i=0: Before any edges of P have been relaxed, from the Initialization, we have $d[v_0]=d[s]=0=\delta(s,s)$. Because the relaxation never increases the d[*] value, d[s]=0 always holds. So the statement is true for the base case.

Proof (continued):

Induction step: Assume $d[v_{i-1}] = \delta(s, v_{i-1})$, and we examine the relaxation of the edge $v_{i-1} \to v_i$. Because P is the shortest $s \to v_i$ path, after the relaxation of the edge $v_{i-1} \to v_i$, we will have $d[v_i] = \delta(s, v_i)$. Again, because relaxation never increases d[*] value, $d[v_i] = \delta(s, v_i)$ remains valid afterward.

Lemma 24.2

Let G = (V, E) be an directed graph with edge weight function w(*) and the starting vertex s. Assuming G has no negative-weight cycles. Then after |V|-1 iterations of the for loop of Bellman-Ford algorithm, we have $d[v] = \delta(s, v)$ for all vertices in v that are reachable from s.

Lemma 24.2

Let G=(V,E) be an directed graph with edge weight function w(*) and the starting vertex s. Assuming G has no negative-weight cycles. Then after |V|-1 iterations of the for loop of Bellman-Ford algorithm, we have $d[v]=\delta(s,v)$ for all vertices in v that are reachable from s.

Proof: Consider any vertex v that is reachable from s. Let $P = \langle v_0, v_1, \dots, v_k \rangle$ be the shortest path from $s = v_0$ to $v = v_k$. Because G has no negative-weight cycles, P contains no cycles. Thus P has at most |V| - 1 edges, namely $k \leq |V| - 1$.

Lemma 24.2

Let G=(V,E) be an directed graph with edge weight function w(*) and the starting vertex s. Assuming G has no negative-weight cycles. Then after |V|-1 iterations of the for loop of Bellman-Ford algorithm, we have $d[v]=\delta(s,v)$ for all vertices in v that are reachable from s.

Proof: Consider any vertex v that is reachable from s. Let $P = \langle v_0, v_1, \dots, v_k \rangle$ be the shortest path from $s = v_0$ to $v = v_k$. Because G has no negative-weight cycles, P contains no cycles. Thus P has at most |V| - 1 edges, namely $k \leq |V| - 1$.

Each of the |V|-1 iterations of the for loop relaxes all |E| edges. Among the edges relaxed in the ith iteration is the edge $v_{i-1} \to v_i$. According to the Path-Relaxation Property, $d[v] = d[v_k] = \delta(s, v_k) = \delta(s, v)$.

Correctness of Bellman-Ford Algorithm:

• If G contains no negative cycle, then by Lemma 24.2, the algorithm computes $\delta(s, v)$ for all v reachable from s.

Correctness of Bellman-Ford Algorithm:

- If G contains no negative cycle, then by Lemma 24.2, the algorithm computes $\delta(s, v)$ for all v reachable from s.
- If G has a negative-weight cycle C that is reachable from s, then for any vertex v on C, $\delta(s,v)=-\infty$. So the condition of the **if** statement at line 6 will be true for such vertex v. The algorithm will correctly **output** "G has a negative cycle".

Outline

All Pairs Shortest Path (APSP) Problem

Input: A directed graph G = (V, E) and a weight function $w : E \to R$. Output: for each pair $u, v \in V$, find $\delta(u, v) =$ the length of the shortest path from u to v, and the shortest $u \to v$ path.

All Pairs Shortest Path (APSP) Problem

Input: A directed graph G=(V,E) and a weight function $w:E\to R$. Output: for each pair $u,v\in V$, find $\delta(u,v)=$ the length of the shortest path from u to v, and the shortest $u\to v$ path.

- If w(e) = 1 for all $e \in E$:
 - Call BFS *n* times, once for each vertex *u*.
 - Total runtime: $\Theta(n(n+m))$.

All Pairs Shortest Path (APSP) Problem

Input: A directed graph G=(V,E) and a weight function $w:E\to R$. Output: for each pair $u,v\in V$, find $\delta(u,v)=$ the length of the shortest path from u to v, and the shortest $u\to v$ path.

- If w(e) = 1 for all $e \in E$:
 - Call BFS *n* times, once for each vertex *u*.
 - Total runtime: $\Theta(n(n+m))$.
- If $w(e) \ge 0$ for all $e \in E$:
 - Call Dijkstra's algorithm *n* times, once for each vertex *u*.
 - Total runtime: $\Theta(nm \log n)$.

All Pairs Shortest Path (APSP) Problem

Input: A directed graph G=(V,E) and a weight function $w:E\to R$. Output: for each pair $u,v\in V$, find $\delta(u,v)=$ the length of the shortest path from u to v, and the shortest $u\to v$ path.

- If w(e) = 1 for all $e \in E$:
 - Call BFS *n* times, once for each vertex *u*.
 - Total runtime: $\Theta(n(n+m))$.
- If $w(e) \ge 0$ for all $e \in E$:
 - Call Dijkstra's algorithm n times, once for each vertex u.
 - Total runtime: $\Theta(nm \log n)$.
- If w(e) can be negative:
 - Call Bellman-Ford algorithm n times, once for each vertex u.
 - Total runtime: $\Theta(n^2m)$. Since $m = \Theta(n^2)$ in the worst case, the runtime can be $\Theta(n^4)$.

• We will try to improve the algorithm for the last case.

- We will try to improve the algorithm for the last case.
- Since we need to compute $\delta(u, v)$ for all $u, v \in V$, we will use adjacency matrix representation for G.

Let w[1..n, 1..n] be a 2D array:

$$w[i,j] = w_{ij} = \begin{cases} 0 & \text{if } i = j \\ w[i,j] & \text{if } i \neq j \text{ and } i \to j \in E \\ \infty & \text{if } i \neq j \text{ and } i \to j \notin E \end{cases}$$

- We will try to improve the algorithm for the last case.
- Since we need to compute $\delta(u, v)$ for all $u, v \in V$, we will use adjacency matrix representation for G.

Let w[1..n, 1..n] be a 2D array:

$$w[i,j] = w_{ij} = \begin{cases} 0 & \text{if } i = j \\ w[i,j] & \text{if } i \neq j \text{ and } i \to j \in E \\ \infty & \text{if } i \neq j \text{ and } i \to j \notin E \end{cases}$$

We want to compute an array D[1..n, 1..n] such that:

$$D[i,j] = d_{ij} = \delta(i,j)$$

We assume *G* contains no negative cycles for now.

We assume *G* contains no negative cycles for now.

Define: $d_{ij}^{(t)} =$ the length of the shortest $i \rightarrow j$ path that contains at most t edges.

We assume *G* contains no negative cycles for now.

Define: $d_{ij}^{(t)}$ = the length of the shortest $i \rightarrow j$ path that contains at most t edges.

Then:

$$d_{ij}^{(0)} = \begin{cases} 0 & \text{if } i = j \\ \infty & \text{if } i \neq j \end{cases}$$

We assume *G* contains no negative cycles for now.

Define: $d_{ij}^{(t)}$ = the length of the shortest $i \rightarrow j$ path that contains at most t edges.

Then:

$$d_{ij}^{(0)} = \begin{cases} 0 & \text{if } i = j \\ \infty & \text{if } i \neq j \end{cases}$$

$$d_{ij}^{(1)} = w[i,j] = \begin{cases} 0 & \text{if } i = j \\ w[i,j] & \text{if } i \neq j \text{ and } i \to j \in E \\ \infty & \text{if } i \neq j \text{ and } i \to j \notin E \end{cases}$$

Since *G* contains no negative cycles, we have:

$$\delta(i,j) = d_{ij}^{(n-1)} = d_{ij}^{(n)} = d_{ij}^{(n+1)} \dots$$

Since *G* contains no negative cycles, we have:

$$\delta(i,j) = d_{ij}^{(n-1)} = d_{ij}^{(n)} = d_{ij}^{(n+1)} \dots$$

This is because:

- If the shortest $i \to j$ path P contains $\ge n$ edges, it must contains a cycle C (since G has only n vertices).
- Since G has no negative cycles, we can delete C from P, without increasing the length, to get another $i \to j$ path P' with fewer edges.

Since *G* contains no negative cycles, we have:

$$\delta(i,j) = d_{ij}^{(n-1)} = d_{ij}^{(n)} = d_{ij}^{(n+1)} \dots$$

This is because:

- If the shortest $i \to j$ path P contains $\ge n$ edges, it must contains a cycle C (since G has only n vertices).
- Since G has no negative cycles, we can delete C from P, without increasing the length, to get another i → j path P' with fewer edges.
- So the shortest path contains at most n-1 edges.

• All we have to do is to compute $d_{ij}^{(n-1)}$.

- All we have to do is to compute $d_{ij}^{(n-1)}$.
- We need to find a recursive formula for $d_{ij}^{(n-1)}$:

- All we have to do is to compute $d_{ij}^{(n-1)}$.
- We need to find a recursive formula for $d_{ij}^{(n-1)}$:

$$d_{ij}^{(t)} = \min\{\underbrace{d_{ij}^{(t-1)}}_{(1)}, \underbrace{\min\{\ d_{ik}^{(t-1)} + W[k,j] \mid 1 \le k \le n\}}_{(2)}\}$$

- All we have to do is to compute $d_{ij}^{(n-1)}$.
- We need to find a recursive formula for $d_{ij}^{(n-1)}$:

$$d_{ij}^{(t)} = \min\{\underbrace{d_{ij}^{(t-1)}}_{(1)}, \underbrace{\min\{\ d_{ik}^{(t-1)} + W[k,j] \mid 1 \le k \le n\}}_{(2)}\}$$

Case (1) The shortest $i \to j$ path actually only contains t-1 edges, so its length is $d_{ij}^{(t-1)}$.

Case (2) The shortest $i \rightarrow j$ path P contains t edges, Let k be the vertex on P right before reaching j.

The weight of the last edge is W[k,j]. The portion P' of P from i to k is the shortest $i \to k$ path containing at most t-1 edges. The length of P' is $d_{ik}^{(t-1)}$. (Do you realize that this is the Optical Substructure Property for this problem? We are using dynamic programming!)

Case (2) The shortest $i \rightarrow j$ path P contains t edges, Let k be the vertex on P right before reaching j.

The weight of the last edge is W[k,j]. The portion P' of P from i to k is the shortest $i \to k$ path containing at most t-1 edges. The length of P' is $d_{ik}^{(t-1)}$. (Do you realize that this is the Optical Substructure Property for this problem? We are using dynamic programming!)

The term (1) can be re-written as $d_{ij}^{(t-1)} + 0 = d_{ij}^{(t-1)} + W[j,j]$. It can be included into the term (2). Thus:

$$d_{ij}^{(t)} = \min_{1 \le k \le n} \{ d_{ik}^{(t-1)} + W[k,j] \}$$

For $t = 1, 2, \dots$ define:

$$D^{(t)} = (d_{ij}^{(t)})_{1 \le i, j \le n}$$

Then $D^{(1)} = (d_{ij}^{(1)})_{1 \le i,j \le n} = W[1..n, 1..n]$ = the input adjacency matrix.

For $t = 1, 2, \dots$ define:

$$D^{(t)} = (d_{ij}^{(t)})_{1 \le i, j \le n}$$

Then $D^{(1)} = (d_{ij}^{(1)})_{1 \le i,j \le n} = W[1..n, 1..n]$ = the input adjacency matrix.

Matrix Operator ⊗

Let $A = (a_{ij})$ and $B = (b_{ij})$ be two $n \times n$ matrices. Define:

$$C = (c_{ij}) = A \otimes B$$

where

$$c_{ij} = \min_{1 \le k \le n} \{a_{ik} + b_{kj}\}$$

For $t = 1, 2, \dots$ define:

$$D^{(t)} = (d_{ij}^{(t)})_{1 \le i, j \le n}$$

Then $D^{(1)} = (d_{ij}^{(1)})_{1 \le i,j \le n} = W[1..n, 1..n]$ = the input adjacency matrix.

Matrix Operator ⊗

Let $A = (a_{ij})$ and $B = (b_{ij})$ be two $n \times n$ matrices. Define:

$$C = (c_{ij}) = A \otimes B$$

where

$$c_{ij} = \min_{1 \le k \le n} \{a_{ik} + b_{kj}\}$$

It is easy to see:

$$D^{(t)} = D^{(t-1)} \otimes W$$

Observations

• If G has no negative cycles, then $D^{(n-1)} = D^{(n)} = D^{(n+1)} \dots$

Observations

- If G has no negative cycles, then $D^{(n-1)} = D^{(n)} = D^{(n+1)} \dots$
- If $D^{(n-1)}=D^{(n)}$, then $D^{(n+1)}=D^{(n)}\otimes W=D^{(n-1)}\otimes W=D^{(n)}$. Thus: $D^{(n-1)}=D^{(n)}=D^{(n+1)}\dots$

Observations

- If G has no negative cycles, then $D^{(n-1)} = D^{(n)} = D^{(n+1)} \dots$
- If $D^{(n-1)}=D^{(n)}$, then $D^{(n+1)}=D^{(n)}\otimes W=D^{(n-1)}\otimes W=D^{(n)}$. Thus: $D^{(n-1)}=D^{(n)}=D^{(n+1)}\dots$
- If G has a negative cycle C, let i,j be two vertices in on C. Then $\delta(i,j)=-\infty$. Therefore, $D_{ij}^{(t)}$ will go to $-\infty$ when $t\to\infty$. Thus, in this case $D^{(n-1)}\neq D^{(n)}$.

Observations

- If G has no negative cycles, then $D^{(n-1)} = D^{(n)} = D^{(n+1)} \dots$
- If $D^{(n-1)} = D^{(n)}$, then $D^{(n+1)} = D^{(n)} \otimes W = D^{(n-1)} \otimes W = D^{(n)}$. Thus: $D^{(n-1)} = D^{(n)} = D^{(n+1)} \dots$
- If G has a negative cycle C, let i,j be two vertices in on C. Then $\delta(i,j)=-\infty$. Therefore, $D_{ij}^{(t)}$ will go to $-\infty$ when $t\to\infty$. Thus, in this case $D^{(n-1)}\neq D^{(n)}$.
- Hence *G* contains a negative cycle if and only if $D^{(n-1)} \neq D^{(n)}$.

SimpleAPSA(W) (W is the input adjacency matrix.)

- $D^{(1)} = W$
- ② for t = 2 to n do
- ompute $D^{(t)} = D^{(t-1)} \otimes W$
- **4** if $D^{(n-1)} = D^{(n)}$ output solution matrix $D^{(n-1)}$
- else output "G contains negative cycles"

SimpleAPSA(W) (W is the input adjacency matrix.)

- $D^{(1)} = W$
- of for t = 2 to n do
- ompute $D^{(t)} = D^{(t-1)} \otimes W$
- **4** if $D^{(n-1)} = D^{(n)}$ output solution matrix $D^{(n-1)}$
- else output "G contains negative cycles"

Analysis:

• \otimes takes $\Theta(n^3)$ time.

SimpleAPSA(W) (W is the input adjacency matrix.)

- $D^{(1)} = W$
- of for t = 2 to n do
- **4** if $D^{(n-1)} = D^{(n)}$ output solution matrix $D^{(n-1)}$
- \bullet else output "G contains negative cycles"

- \otimes takes $\Theta(n^3)$ time.
- The loop iterates n times. So total runtime is $\Theta(n^4)$.

We can do better than this. It can be shown \otimes is associative. Namely:

$$A\otimes (B\otimes C)=(A\otimes B)\otimes C$$

We can do better than this. It can be shown \otimes is associative. Namely:

$$A\otimes (B\otimes C)=(A\otimes B)\otimes C$$

So we can compute $D^{(t)}$ by repeated squaring: $D^{(2)} = D^{(1)} \otimes D^{(1)}$, $D^{(4)} = D^{(2)} \otimes D^{(2)}$, $D^{(8)} = D^{(4)} \otimes D^{(4)} \dots$

We can do better than this. It can be shown \otimes is associative. Namely:

$$A\otimes (B\otimes C)=(A\otimes B)\otimes C$$

So we can compute $D^{(t)}$ by repeated squaring: $D^{(2)} = D^{(1)} \otimes D^{(1)}$, $D^{(4)} = D^{(2)} \otimes D^{(2)}$, $D^{(8)} = D^{(4)} \otimes D^{(4)} \dots$

FasterAPSA(W)

- $k = \lceil \log_2(n-1) \rceil$ (k is the smallest integer such that $2^k \ge (n-1)$.)
- ② Compute $D^{(2)}$, $D^{(4)}$, $D^{(8)} \dots D^{(2^k)}$, $D^{(2^{k+1})}$ by repeated squaring.
- **3** if $D^{(2^k)} = D^{(2^{k+1})}$ output solution matrix $D^{(2^k)}$
- else output "G contains negative cycles"

Analysis:

• $D^{(2^k)} = D^{(2^{k+1})}$ implies $D^{(n-1)} = D^{(n)} = \cdots = D^{(2^k)} = \cdots = D^{(2^{k+1})}$. So in this case $D^{(2^k)} = D^{(n-1)}$ is the solution matrix.

- $D^{(2^k)} = D^{(2^{k+1})}$ implies $D^{(n-1)} = D^{(n)} = \cdots = D^{(2^k)} = \cdots = D^{(2^{k+1})}$. So in this case $D^{(2^k)} = D^{(n-1)}$ is the solution matrix.
- $D^{(2^k)} \neq D^{(2^{k+1})}$ implies $D^{(n-1)} \neq D^{(n)}$ and hence G has negative cycles.

- $D^{(2^k)} = D^{(2^{k+1})}$ implies $D^{(n-1)} = D^{(n)} = \cdots = D^{(2^k)} = \cdots = D^{(2^{k+1})}$. So in this case $D^{(2^k)} = D^{(n-1)}$ is the solution matrix.
- $D^{(2^k)} \neq D^{(2^{k+1})}$ implies $D^{(n-1)} \neq D^{(n)}$ and hence G has negative cycles.
- We call $\otimes k = \log_2 n$ times. So this algorithm takes $\Theta(n^3 \log n)$ time.

Analysis:

- $D^{(2^k)} = D^{(2^{k+1})}$ implies $D^{(n-1)} = D^{(n)} = \cdots = D^{(2^k)} = \cdots = D^{(2^{k+1})}$. So in this case $D^{(2^k)} = D^{(n-1)}$ is the solution matrix.
- $D^{(2^k)} \neq D^{(2^{k+1})}$ implies $D^{(n-1)} \neq D^{(n)}$ and hence G has negative cycles.
- We call $\otimes k = \log_2 n$ times. So this algorithm takes $\Theta(n^3 \log n)$ time.

Can we do better?

Observations

The matrix operator \otimes is very similar to the matrix multiplication operator \times :

- replace the scalar multiplication in MM by +
- replace the + operator in MM by min

Observations

The matrix operator \otimes is very similar to the matrix multiplication operator \times :

- replace the scalar multiplication in MM by +
- replace the + operator in MM by min

Question

Since \otimes is so similar to the matrix multiplication, can we use Strassen's algorithm to compute \otimes , and improve the above algorithm?

Observations

The matrix operator \otimes is very similar to the matrix multiplication operator \times :

- replace the scalar multiplication in MM by +
- replace the + operator in MM by min

Question

Since \otimes is so similar to the matrix multiplication, can we use Strassen's algorithm to compute \otimes , and improve the above algorithm?

Unfortunately, NO

 The MM is defined by the scalar multiplication and +. However, for Strassen's algorithm to work, we need an inverse operator — of +.

Observations

The matrix operator \otimes is very similar to the matrix multiplication operator \times :

- replace the scalar multiplication in MM by +
- replace the + operator in MM by min

Question

Since \otimes is so similar to the matrix multiplication, can we use Strassen's algorithm to compute \otimes , and improve the above algorithm?

Unfortunately, NO

- The MM is defined by the scalar multiplication and +. However, for Strassen's algorithm to work, we need an inverse operator — of +.
- For ⊗, the operator that corresponds to + is min. There is no inverse operator for min.

Observations

The matrix operator \otimes is very similar to the matrix multiplication operator \times :

- replace the scalar multiplication in MM by +
- replace the + operator in MM by min

Question

Since \otimes is so similar to the matrix multiplication, can we use Strassen's algorithm to compute \otimes , and improve the above algorithm?

Unfortunately, NO

- The MM is defined by the scalar multiplication and +. However, for Strassen's algorithm to work, we need an inverse operator – of +.
- For ⊗, the operator that corresponds to + is min. There is no inverse operator for min.
- Strassen's algorithm does not work for ⊗.

Outline

We can improve by other ideas. We redefine:

```
d_{ij}^{(t)} = the length of the shortest i \rightarrow j path with all intermediate vertices in \{1, 2, \dots, t\}
```

We can improve by other ideas. We redefine:

$$d_{ij}^{(t)} = ext{ the length of the shortest } i o j ext{ path with all intermediate vertices in } \{1, 2, \dots, t\}$$

Then

$$d_{ij}^{(0)} = W[i,j]$$

We can improve by other ideas. We redefine:

$$d_{ij}^{(t)} =$$
 the length of the shortest $i \rightarrow j$ path with all intermediate vertices in $\{1, 2, \dots, t\}$

Then

$$d_{ij}^{(0)} = W[i,j]$$

• $d_{ij}^{(0)}$ is the length of the shortest $i \to j$ path with all intermediate vertices in $\{1,2,\ldots,0\} = \emptyset$. So such path has no any intermediate vertices, and must be the edge $i \to j$ (if it exists.)

We can improve by other ideas. We redefine:

$$d_{ij}^{(t)} =$$
 the length of the shortest $i \rightarrow j$ path with all intermediate vertices in $\{1, 2, \dots, t\}$

Then

$$d_{ij}^{(0)} = W[i,j]$$

• $d_{ij}^{(0)}$ is the length of the shortest $i \to j$ path with all intermediate vertices in $\{1, 2, \dots, 0\} = \emptyset$. So such path has no any intermediate vertices, and must be the edge $i \to j$ (if it exists.)

As before, we need to derive a recursive formula.

$$d_{ij}^{(t)} = \min\{\underbrace{d_{ij}^{(t-1)}}_{(1)}, \underbrace{d_{it}^{(t-1)} + d_{tj}^{(t-1)}}_{(2)}\}$$

$$d_{ij}^{(t)} = \min\{\underbrace{d_{ij}^{(t-1)}}_{(1)}, \underbrace{d_{it}^{(t-1)} + d_{tj}^{(t-1)}}_{(2)}\}$$

• Case (1): The shortest $i \to j$ path P with all intermediate vertices in $\{1,2,\ldots,t\}$ does not pass the vertex t. So all its intermediate vertices are in $\{1,2,\ldots(t-1)\}$. Thus the length of P is $d_{ij}^{(t-1)}$

$$d_{ij}^{(t)} = \min\{\underbrace{d_{ij}^{(t-1)}}_{(1)}, \underbrace{d_{it}^{(t-1)} + d_{tj}^{(t-1)}}_{(2)}\}$$

- Case (1): The shortest $i \to j$ path P with all intermediate vertices in $\{1,2,\ldots,t\}$ does not pass the vertex t. So all its intermediate vertices are in $\{1,2,\ldots(t-1)\}$. Thus the length of P is $d_{ij}^{(t-1)}$
- Case (2): The shortest $i \to j$ path P with all intermediate vertices in $\{1,2,\ldots,t\}$ does pass the vertex t. The first part of P is the shortest $i \to t$ path with all intermediate vertices in $\{1,2,\ldots,(t-1)\}$. The length is $d_{it}^{(t-1)}$. Similarly the length of the second part of P is $d_{ij}^{(t-1)}$.

Floyd-Warshall(W)

- O(0) = W
- **2** for t = 1 to n do
- Ompute $D^{(t)}$ from $D^{(t-1)}$ by using the above formula.
- return $D^{(n)}$

Floyd-Warshall(W)

- O(0) = W
- 2 for t = 1 to n do
- Occupate $D^{(t)}$ from $D^{(t-1)}$ by using the above formula.
- o return $D^{(n)}$

Analysis:

• By definition, $d_{ij}^{(n)}$ is the length of the shortest $i \to j$ path with all intermediate vertices in $\{1,2,\ldots,n\}$. This is really not a restriction. So $d_{ij}^{(n)}$ is the length of the shortest $i \to j$ path.

Floyd-Warshall(W)

- O(0) = W
- 2 for t = 1 to n do
- Occupate $D^{(t)}$ from $D^{(t-1)}$ by using the above formula.
- o return $D^{(n)}$

- By definition, $d_{ij}^{(n)}$ is the length of the shortest $i \to j$ path with all intermediate vertices in $\{1,2,\ldots,n\}$. This is really not a restriction. So $d_{ij}^{(n)}$ is the length of the shortest $i \to j$ path.
- Thus $D^{(n)}$ is the solution matrix.

Floyd-Warshall(W)

- O(0) = W
- 2 for t = 1 to n do
- Occupate $D^{(t)}$ from $D^{(t-1)}$ by using the above formula.
- 4 return $D^{(n)}$

- By definition, $d_{ij}^{(n)}$ is the length of the shortest $i \to j$ path with all intermediate vertices in $\{1,2,\ldots,n\}$. This is really not a restriction. So $d_{ij}^{(n)}$ is the length of the shortest $i \to j$ path.
- Thus $D^{(n)}$ is the solution matrix.
- $D^{(t)}$ has n^2 entries in it. Each entry is min of two terms. So each entry of $D^{(t)}$ takes O(1) time.

Floyd-Warshall(W)

- O(0) = W
- 2 for t = 1 to n do
- Compute $D^{(t)}$ from $D^{(t-1)}$ by using the above formula.
- o return $D^{(n)}$

- By definition, $d_{ij}^{(n)}$ is the length of the shortest $i \to j$ path with all intermediate vertices in $\{1,2,\ldots,n\}$. This is really not a restriction. So $d_{ij}^{(n)}$ is the length of the shortest $i \to j$ path.
- Thus $D^{(n)}$ is the solution matrix.
- $D^{(t)}$ has n^2 entries in it. Each entry is min of two terms. So each entry of $D^{(t)}$ takes O(1) time.
- $D^{(t)}$ can be computed from $D^{(t-1)}$ in $\Theta(n^2)$ time.

Floyd-Warshall(W)

- O(0) = W
- 2 for t = 1 to n do
- Compute $D^{(t)}$ from $D^{(t-1)}$ by using the above formula.
- 4 return $D^{(n)}$

- By definition, $d_{ij}^{(n)}$ is the length of the shortest $i \to j$ path with all intermediate vertices in $\{1,2,\ldots,n\}$. This is really not a restriction. So $d_{ij}^{(n)}$ is the length of the shortest $i \to j$ path.
- Thus $D^{(n)}$ is the solution matrix.
- $D^{(t)}$ has n^2 entries in it. Each entry is min of two terms. So each entry of $D^{(t)}$ takes O(1) time.
- $D^{(t)}$ can be computed from $D^{(t-1)}$ in $\Theta(n^2)$ time.
- The whole algorithm takes $\Theta(n^3)$ time.

