MATLAB Behavioural Documentation

Figure 1: Blockdiagram of 1st order modulator

1st Order Modulator Model:

Comprised of:

- sum block (Δ) :
 - $-\,$ one positive and one negativ input
- discrete-time integrator as accumulator:
 - realised as: $\frac{z^{-1}}{1-z^{-1}}$
- comparator (non-linear element):
 - switching threshold defined with 'eps' := $2^{-52} = 2.2204e-16$
 - * essentially switches around '0'-crossovers
 - output either '1' (on) or '-1' (off)

• feedback path from comparator output to sum block (neg. sign)

Figure 2: Behavioural Model of 1st Order Modulator

In-Depth description:

Input signal:

- Analog signal
 - Conveniently a sinusoid
 - * Is non-linear, yet periodicly predictable

Delta (Δ):

• Feedback-node of the system

Integrator/ Loop Filter (Σ)

- Discrete-time implementation of integrator => accumulator
 - also represents a lowpass filter
 - Includes a delay of one time step.
- Serves as the "loop filter" of our system.
 - Accumulates difference ("error") between input and quantized feedback, including a sample delay.
 - Modeled, using the expression:

$$\frac{z^{-1}}{1 - z^{-1}}$$

• System relevance: