6 Recorrências

6.1 Funções Iteradas

- 89[®]. Para cada uma das funções f(x) abaixo, dê uma expressão para $f^n(x)$. Em cada caso, prove por indução em n que sua resposta está correta.
 - (a) f(x) = x + 1.
 - (b) f(x) = x + 2.
 - (c) f(x) = x + 3.
 - (d) f(x) = x + s.
 - (e) f(x) = 2x.
 - (f) f(x) = 3x.
 - (g) f(x) = mx.
 - (h) f(x) = s + mx.
- 90*. Para cada função $h\colon \mathbb{R} \to \mathbb{R}$ abaixo, dê uma expressão para a função h^n , onde $n\in \mathbb{N}$.
 - (a) h(x) = x 2,
 - (b) h(x) = x s, com $s \in \mathbb{R}$,
 - (c) h(x) = 3x
 - (d) h(x) = mx, com $m \in \mathbb{R}$,
 - (e) h(x) = x/2,
 - (f) $h(x) = \lceil x/k \rceil$, com $k \in \mathbb{Z}^+$,
 - (g) $h(x) = \lfloor \sqrt[k]{x} \rfloor$, com $k \in \mathbb{N}$,
- 91⁻. Considere a seguinte função.

$$C(n) = \begin{cases} \frac{n}{2} & \text{se } n \text{ \'e par} \\ 3n+1 & \text{se } n \text{ \'e impar} \end{cases}$$

A Conjectura de Collatz é a seguinte proposição.

Para todo $n \in \mathbb{N}$ existe $k \in \mathbb{N}$ tal que $C^k(n) = 1$.

Desde que foi formulada em 1937, esta conjectura permanece em aberto. Prove que se for verdade que para todo $n \in \mathbb{N}$ existe $k \in \mathbb{N}$ tal que $C^k(n) < n$, então a Conjectura de Collatz é verdadeira.

6.2 Recorrências Iteradas

92[®]. Resolva a seguinte recorrência.

$$f(n) = f(n-2) + 1$$
, para todo $n \ge 2$.

93[®]. Resolva a seguinte recorrência.

$$f(n) = \begin{cases} 1, & \text{se } n = 1, \\ f\left(\left\lfloor \frac{n}{2} \right\rfloor\right) + 1, & \text{se } n \ge 2. \end{cases}$$

94[®]. Resolva a seguinte recorrência.

$$f(n) = \begin{cases} 0, & \text{se } n = 0, \\ f\left(\left\lfloor \frac{n}{2} \right\rfloor\right) + (n \bmod 2) & \text{se } n \ge 1. \end{cases}$$

95*. Seja $f: \mathbb{N} \to \mathbb{N}$ satisfazendo

$$f(n) = f(n-2) + 1$$
, para todo $n > 1$.

Prove, por indução em n, que

(a)
$$f(n) = f(n \mod 2) + \left\lfloor \frac{n}{2} \right\rfloor$$
, para todo $n \in \mathbb{N}$.

(b)
$$f(n) = (-1)^n a + b + cn$$
, para todo $n \in \mathbb{N}$, onde

$$a = \frac{f(0) - f(1)}{2} + \frac{1}{4},$$

$$b = \frac{f(0) + f(1)}{2} - \frac{1}{4},$$

$$c = \frac{1}{2}.$$

(c)
$$f(n) = f(4 + n \mod 2) + \left\lceil \frac{k-5}{2} \right\rceil$$
, para $n \ge 5$.

- 96*. Seja f(n) o número de sequências binárias de comprimento n.
 - (a) Descreva f(n) como uma recorrência.
 - (b) Resolva esta recorrência.
- 97*. Uma função $f\colon \mathbb{N} \to \mathbb{C}$ é uma progressão aritmética se existe $r\in \mathbb{C}$ tal que

$$f(n+1) - f(n) = r$$
 para todo $n \in \mathbb{N}$.

- (a) Expresse a função f como acima por meio de uma recorrência.
- (b) Resolva esta recorrência, obtendo assim uma expressão para o termo geral da progressão aritmética.
- 98*. Seja m(n, k) o número de multiplicações/divisões efetuadas na execução de B(n, k), o algoritmo do Exercício 85.
 - (a) Formule uma recorrência para m(n,k) $(0 \le k \le n)$.
 - (b) Resolva esta recorrência.
- 99*. Resolva a recorrência do Exercício 84.
- 100*. O Algoritmo de Strassen é um algoritmo recursivo para multiplicação de matrizes quadradas que, para matrizes suficientemente grandes, faz menos operações aritméticas do que o algoritmo usual.

A função M(n), abaixo, estabelece um limitante superior para o número S(n) de operações aritméticas na execução do Algoritmo de Strassen com duas matrizes quadradas de ordem n como entrada, isto é, $S(n) \leq M(n)$, para todo $n \in \mathbb{N}$.

$$M(n) = \begin{cases} 1, & \text{se } n = 1, \\ 7M\left(\left\lceil \frac{n}{2} \right\rceil\right) + 18\left\lceil \frac{n}{2} \right\rceil^2, & \text{se } n \geq 2. \end{cases}$$

Resolva esta recorrência.

101*. O Algoritmo de Karatsuba é um algoritmo recursivo para multiplicação de inteiros que, para números suficientemente grandes, faz menos operações aritméticas do que o algoritmo usual.

A função A(n), abaixo, descreve o número de operações aritméticas na execução do Algoritmo de Karatsuba com dois inteiros de n dígitos em sua representação binária.

Resolva esta recorrência.

$$A(n) = \begin{cases} 1, & \text{se } n = 1, \\ 5, & \text{se } n = 2, \\ 3A\left(\left\lceil \frac{n+1}{2} \right\rceil\right) + 20\left\lceil \frac{n+1}{2} \right\rceil, & \text{se } n > 2. \end{cases}$$

102[©]. Dado $q \in \mathbb{C}$, uma progressão geométrica de razão q é uma função $f \colon \mathbb{N} \to \mathbb{C}$ satisfazendo

$$\frac{f(n+1)}{f(n)}=q, \text{ para todo } n\in\mathbb{N}.$$

- (a) Expresse a função f acima por meio de uma recorrência.
- (b) Resolva esta recorrência.

103[®]. Resolva as seguintes recorrências

(a)
$$f(n) = \begin{cases} n-1, & \text{se } 2 \leq n \leq 3, \\ 2f(n-1), & \text{se } n \geq 4. \end{cases}$$

(b)
$$f(n) = \begin{cases} n-1, & \text{se } 2 \le n \le 3, \\ 2f(n-2), & \text{se } n \ge 4. \end{cases}$$

104*. Resolva as seguintes recorrências.

(a)
$$f(n) = 2f\left(\left\lfloor \frac{n}{2} \right\rfloor\right) + 6n - 1$$
, para todo $n > 1$,

(b)
$$f(n) = 6f\left(\left\lfloor \frac{n}{6} \right\rfloor\right) + 2n + 3$$
, para todo $n > 1$,

(c)
$$f(n) = 4f\left(\left\lfloor \frac{n}{3} \right\rfloor\right) + 2n - 1$$
, para todo $n > 1$,

(d)
$$f(n) = 3f\left(\left\lfloor \frac{n}{2} \right\rfloor\right) + n^2 - 2n + 1$$
, para todo $n > 1$,

(e)
$$f(n) = 4f(\left|\frac{n}{3}\right|) + n^2 - 7n + 5$$
, para todo $n > 1$,

(f)
$$f(n) = 4f\left(\left\lfloor \frac{n}{3} \right\rfloor\right) + \left\lfloor \sqrt{n} \right\rfloor + 1$$
, para todo $n > 3$,

(g)
$$f(n) = 2f\left(\left\lfloor \frac{n}{5} \right\rfloor\right) + n - 1$$
, para todo $n > 1$,

(h)
$$f(n) = 2f\left(\left\lceil \frac{n}{2}\right\rceil\right) + 1$$
, para todo $n > 1$,

(i)
$$f(n) = f\left(\left\lceil \frac{2n}{3}\right\rceil\right) + k$$
, para todo $n > 1$ e para todo $k \in \mathbb{N}$,

105[⋆]. Resolva as seguintes recorrências.

(a)
$$f(n) = f(n-1) + n$$
, para todo $n > 0$.

(b)
$$f(n) = 2f(n-1) + n^2$$
, para todo $n \ge 1$

(c)
$$f(n) = f(n-1) + 2n - 3$$
, para todo $n > 1$,

(d)
$$f(n) = 2f(n-1) + 3n + 1$$
, para todo $n > 1$,

(e)
$$f(n) = 2f(n-1) + n^2$$
, para todo $n > 1$,

$$({\bf f}) \ f(n) = f(n-2) + 3n + 4, \ {\sf para \ todo} \ n > 1,$$

(g)
$$f(n) = f(n-3) + 5n - 9$$
, para todo $n > 3$,

(h)
$$f(n) = 2f(n-1) + n^2 - 2n + 1$$
, para todo $n > 1$,

106*. O seguinte algoritmo resolve o conhecido quebra-cabeça das Torres de Hanói. A execução de Hanoi(n,a,b,c) move n discos da torre a para a torre b usando a torre c como torre auxiliar, de acordo com as regras do jogo.

 $\mathsf{Hanoi}(n,a,b,c)$

Se n=0

Termine

 $\mathsf{Hanoi}(n-1,a,c,b)$

mova o disco no topo da torre a para o topo da torre b

 $\mathsf{Hanoi}(n-1,c,b,a)$

Seja M(n) o número de movimentos (passagem de um disco de uma torre para outra) na execução de $\mathsf{Hanoi}(n,a,b,c)$.

- (a) Descreva M(n) por meio de uma recorrência.
- (b) Resolva esta recorrência.

- 107*. Resolva as seguintes recorrências.
 - (a) f(n) = nf(n-1) + n, para todo n > 1,
 - (b) $f(n) = f(|\sqrt{n}|) + n^2$, para todo n > 1,
 - (c) $f(n) = 2f(\lfloor \sqrt[3]{n} \rfloor) + n$, para todo n > 1.
- $108^{@}$. O número de comparações no pior caso de uma execução do algoritmo MergeSort para um vetor de n elementos é dado pela recorrência

$$T(n) = \begin{cases} 0, & \text{se } n < 2, \\ T\left(\left\lfloor \frac{n}{2} \right\rfloor\right) + T\left(\left\lceil \frac{n}{2} \right\rceil\right) + n - 1, & \text{se } n \geq 2. \end{cases}$$

Do Exercício 56 temos que $T^-(n) \le T(n) \le T^+(n)$, onde

$$T^-(n) = \begin{cases} 0, & \text{se } n < 2, \\ 2T^-\left(\left\lfloor \frac{n}{2} \right\rfloor\right) + n - 1, & \text{se } n \geq 2. \end{cases}$$

е

$$T^{+}(n) = \begin{cases} 0, & \text{se } n < 2, \\ 2T^{+}\left(\left\lceil \frac{n}{2}\right\rceil\right) + n - 1, & \text{se } n \ge 2. \end{cases}$$

- (a) Resolva as recorrências de $T^-(n)$ e $T^+(n)$.
- (b) Use as soluções obtidas e o Exercício ?? para concluir que $T(n) \sim n \lg n$.
- 109[®]. O "Master Method" ou "Master Theorem" ¹¹ é um método para obtenção de soluções assintóticas para recorrências que surgem naturalmente na análise de "algoritmos de divisão e conquista".

Tais recorrências tem a forma geral

$$T(n) = aT(n/b) + f(n),$$

onde $a \ge 1$ e $b \ge 1$, a expressão n/b pode significar tanto $\lfloor n/b \rfloor$ como $\lceil n/b \rceil$ e f() é uma função genérica. A recorrência do Exercício 108 é um exemplo de caso particular desta recorrência.

¹¹Popularizado com este nome por Cormen, Leiserson, Rivest, and Stein (2009).

Sejam $a, b \in f()$ como acima e sejam $n_0 \in \mathbb{N} \in T^+, T^- : \mathbb{N} \to \mathbb{R}$ tais que

$$T^{-}(n) = aT^{-}(\lfloor n/b \rfloor) + f(n),$$

$$T^{+}(n) = aT^{+}(\lceil n/b \rceil) + f(n),$$

para todo $n \ge n_0$.

Resolva estas recorrências.

- 110*. Considere o algoritmo Exp do exercício 76.
 - (a) Expresse o número de multiplicações efetuadas na execução de $\mathsf{Exp}(x,n)$) por meio de uma recorrência.
 - (b) Resolva essa recorrência.
- 111*. O Algoritmo $\mathsf{MinMax}(v,a,b)$ (abaixo), devolve um par de índices $(m,M) \in [a..b]^2$ tal que $v[m] \leq v[i] \leq v[M]$, para todo $i \in [a..b]$. O Algoritmo $\mathsf{Ordena}(v,a,b)$ ordena o vetor v[a..b] em ordem não-decrescente.

MinMax(v,a,b)	Ordena(v,a,b)
$ Se \ a = b $	Se $a \ge b$
Devolva (a,a)	Termine
Se $a = b - 1$	$(m,M) \leftarrow$
Se $v[a] \leq v[b]$	MinMax(v,a,b)
Devolva (a,b)	Troca(v,a,m)
Devolva (b,a)	Troca(v,b,M)
$(m,M) \leftarrow$	Ordena(v, a+1, b-1)
MinMax(v,a,a+1)	
$(m',M') \leftarrow$	
MinMax(v, a+2, b)	
Se $v[m'] < v[m]$	
$m \leftarrow m'$	
Se $v[M'] > v[M]$	
$M \leftarrow M'$	
Devolva (m,M)	

- (a) Seja C(n) o número de comparações entre elementos de v efetuadas na execução de $\mathsf{MinMax}(v,a,a+n-1)$. Expresse C(n) por meio de uma recorrência.
- (b) Resolva esta recorrência.

- (c) Seja K(n) o número de comparações entre elementos de v efetuadas na execução de $\mathsf{Ordena}(v,a,a+n-1)$. Expresse K(n) por meio de uma recorrência.
- (d) Resolva esta recorrência.
- (e) O conhecido "método da seleção" para ordenação de vetor faz $\binom{n}{2}$ comparações ao processar um vetor de n posições. O algoritmo Ordena faz mais ou menos comparações assintoticamente?

6.3 Recorrências Lineares Homogêneas

112*. Resolva as seguintes recorrências.

(a)
$$f(n) = \begin{cases} n, & \text{se } n \le 1, \\ 5f(n-1) - 6f(n-2), & \text{se } n > 1. \end{cases}$$
 ex:rlh+4+3

(b)

$$f(n) = \begin{cases} 0, & \text{se } n = 0 \\ 2^n, & \text{se } n = 1 \text{ ou } n = 2 \\ 6f(n-1) - 11f(n-2) + 6f(n-3), & \text{se } n \geq 3. \end{cases}$$

ex:rlh+2-1

(c)

$$f(n) = \begin{cases} n, & \text{se } n < 1, \\ 1, & \text{se } 1 \le n \le 2, \\ 8f(n-1) - 19f(n-2) + 12f(n-3), & \text{se } n \ge 3. \end{cases}$$

ex:rlh+72-72+1

113⁻. Seja $\mathbb{C}^{\mathbb{N}}$ o conjunto das funções $\mathbb{N} \to \mathbb{C}$. Dados $f,g \in \mathbb{C}^{\mathbb{N}}$ e $z \in \mathbb{C}$, definimos $f+g \in \mathbb{C}^{\mathbb{N}}$ e $zf \in \mathbb{C}^{\mathbb{N}}$ como as funções dadas por

$$(f+g)(n) = f(n) + g(n),$$

$$(zf)(n) = zf(n).$$

- (a) Prove que $(\mathbb{C}^{\mathbb{N}}, +)$ é um grupo comutativo.
- (b) Prove que $(\mathbb{C}^{\mathbb{N}}, +)$ é um espaço vetorial sobre \mathbb{C} .
- 114⁻. Sejam $r_1, r_2 \in \mathbb{C} \{0\}$. Prove que as funções $f_1, f_2 \colon \mathbb{N} \to \mathbb{C}$ dadas por

$$f_1(n) = r_1^n,$$

$$f_2(n) = r_2^n,$$

são linearmente independentes em $(\mathbb{C}^{\mathbb{N}}, +)$ se e somente se $r_1 \neq r_2$.

- 115⁻. Sejam¹² $a_1, \ldots, a_k \in \mathbb{C}$.
 - (a) Prove que se $g,h\colon \mathbb{N} \to \mathbb{C}$ satisfazem a recorrência

$$f(n) = a_1 f(n-1) + a_2 f(n-2) + \ldots + a_k f(n-k)$$
, para todo $n \ge k$,

então a função g+h também satisfaz a mesma recorrência para todo $n \geq k$.

(b) Prove que se $f\colon \mathbb{N} \to \mathbb{C}$ satisfaz a recorrência

$$f(n) = a_1 f(n-1) + a_2 f(n-2) + \ldots + a_k f(n-k)$$
, para todo $n \ge k$,

então para todo $z \in \mathbb{C}$, a função zf também satisfaz a mesma recorrência para todo $n \geq k$.

(c) Prove que o conjunto das funções $f\colon \mathbb{N} \to \mathbb{C}$ que satisfazem a recorrência

$$f(n) = a_1 f(n-1) + a_2 f(n-2) + \ldots + a_k f(n-k)$$
, para todo $n \ge k$, é um subespaço vetorial de $(\mathbb{C}^{\mathbb{N}}, +)$.

116[®]. Resolva a seguinte recorrência.

$$f(n) = \begin{cases} n, & \text{se } n < 2, \\ 2f(n-1) - f(n-2), & \text{se } n \ge 2. \end{cases}$$

117[@]. Resolva as seguintes recorrências.

 $^{^{12} \}mathrm{Este}$ exercício usa a notação do Exercício 113

(a)
$$f(n) = \begin{cases} n, & \text{se } n \leq 2 \\ 5f(n-1) - 7f(n-2) + 3f(n-3), & \text{se } n \geq 3. \end{cases}$$

(b)

$$f(n) = \begin{cases} 1, & \text{se } n = 0 \\ 9, & \text{se } n = 1 \text{ ou } n = 2 \\ 9f(n-1) - 27f(n-2) + 27f(n-3), & \text{se } n \geq 3. \end{cases}$$

(c)

$$f(n) = \begin{cases} n, & \text{se } n \leq 1 \\ 3, & \text{se } n = 2 \\ 7f(n-1) - 16f(n-2) + 12f(n-3), & \text{se } n \geq 3. \end{cases}$$

118*. Resolva as seguintes recorrências.

(a)

$$f(n) = \begin{cases} 3, & \text{se } n \le 1, \\ 7, & \text{se } n = 2, \\ 3f(n-1) - f(n-2) + 3f(n-3), & \text{se } n \ge 3. \end{cases}$$

(b)

$$2f(n) = 3f(n-1) - 3f(n-2) + f(n-3)$$
, para todo $n \ge 3$, com

$$f(n) = n$$
, para todo $n < 3$.

(c)

$$f(n) = \begin{cases} 1, & \text{se } n = 0 \\ 4, & \text{se } n = 1 \text{ ou } n = 2, \\ 6f(n-1) - 12f(n-2) + 8f(n-3), & \text{se } n \geq 3. \end{cases}$$

(d)

$$f(n) = \begin{cases} 1, & \text{se } n = 0 \\ \sqrt{5} + 2^n, & \text{se } n = 1 \text{ ou } n = 2 \\ 3f(n-1) - f(n-2) - 2f(n-3), & \text{se } n \geq 3. \end{cases}$$

$$f(n) = \begin{cases} 0, & \text{se } n = 0 \\ 3^n, & \text{se } n = 1 \text{ ou } n = 2 \\ 10f(n-1) - 31f(n-2) + 30f(n-3), & \text{se } n \geq 3. \end{cases}$$

(f)
$$f(n) = \begin{cases} n, & \text{se } n \leq 2 \\ 8f(n-1) - 21f(n-2) + 18f(n-3), & \text{se } n \geq 3. \end{cases}$$

(g)
$$f(n) = \begin{cases} 1, & \text{se } n = 0, \\ 2, & \text{se } n = 1, \\ 2f(n-1) + 4f(n-2), & \text{se } n \ge 2. \end{cases}$$

(h)
$$f(n) = \begin{cases} n, & \text{se } n \leq 1, \\ f(n-1) - f(n-2), & \text{se } n \geq 2. \end{cases}$$

(i)
$$f(n) = \begin{cases} 1, & \text{se } n \leq 1 \\ 4f(n-1) - 4f(n-2), & \text{se } n \geq 2. \end{cases}$$

$$f(n) = \begin{cases} 4n, & \text{se } n < 2, \\ 4f(n-2), & \text{se } n \geq 2. \end{cases}$$

(k)
$$f(n) = \begin{cases} 1, & \text{se } n = 0 \\ 6, & \text{se } n = 1 \\ 6f(n-1) - 9f(n-2), & \text{se } n \ge 2. \end{cases}$$

(1)
$$f(n) = \begin{cases} 2n, & \text{se } n < 2, \\ f(n-2), & \text{se } n \geq 2. \end{cases}$$

119*. Resolva as seguintes recorrências.

(a) 13
$$f(n) = \begin{cases} n, & \text{se } n \leq 1, \\ nf(n-1) + n(n-1)f(n-2), & \text{se } n \geq 2. \end{cases}$$

(b) ¹⁴
$$f(n) = \begin{cases} n+1, & \text{se } n \leq 1, \\ \sqrt{f(n-1)f(n-2)}, & \text{se } n \geq 2. \end{cases}$$

(c) 15
$$f(n) = \begin{cases} 0, & \text{se } n = 0, \\ \sqrt{1 + f(n-1)^2}, & \text{se } n \geq 1. \end{cases}$$

(d) ¹⁶
$$f(n) = \begin{cases} n+1, & \text{se } n \leq 1, \\ f(n-1)f(n-2), & \text{se } n \geq 2. \end{cases}$$

120*. Resolva a recorrência

$$f(n) = \begin{cases} n, & \text{se } n \le 4, \\ 7f(n-1) - 19f(n-2) + 25f(n-3) - 16f(n-4) + 4f(n-5), & \text{se } n > 4. \end{cases}$$

¹³Sugestão: Considere a função

$$g(n) = \frac{f(n)}{n!}.$$

¹⁴Sugestão: Considere a função

$$g(n) = \lg f(n)$$
.

¹⁵Sugestão: Considere a função

$$q(n) = f(n)^2$$
.

¹⁶Sugestão: Considere a função

$$q(n) = \lg f(n)$$
.

6.4 Recorrências Lineares não Homogêneas

121[®]. Resolva as seguintes recorrências.

(a)
$$f(n) = \begin{cases} 0, & \text{se } n = 0, \\ f(n-1) + 1, & \text{se } n > 0. \end{cases}$$

(b)
$$f(n) = \begin{cases} 0, & \text{se } n = 0, \\ 2f(n-1) + 1, & \text{se } n > 0. \end{cases}$$

(c)
$$f(n) = \begin{cases} 0, & \text{se } n = 0, \\ f(n-1) + n, & \text{se } n > 0 \end{cases}$$

(d)
$$f(n) = \begin{cases} n, & \text{se } n < 1, \\ 2f(n-1) + n, & \text{se } n \geq 1. \end{cases}$$

(e)
$$f(n) = 2f(n-1) + n^2, \text{ para todo } n \ge 1$$

$$f(n) = \begin{cases} 1, & \text{se } n \leq 1, \\ 2f(n-2) + \frac{1}{2^n}, & \text{se } n > 1. \end{cases}$$

(g)
$$f(n) = \begin{cases} n, & \text{se } n < 1 \\ 2f(n-1) + 2n - 1, & \text{se } n \geq 1 \end{cases}$$

(h)
$$f(n) = \begin{cases} n, & \text{se } n < 1 \\ 2f(n-1) + n^2 + n, & \text{se } n \geq 1 \end{cases}$$

(i)
$$f(n) = \begin{cases} n, & \text{se } n < 2, \\ f(n-1) + f(n-2) + 1, & \text{se } n \geq 2. \end{cases}$$

(j)
$$f(n) = \begin{cases} n, & \text{se } n < 2, \\ 7f(n-1) - 12f(n-2) + 2n, & \text{se } n \geq 2. \end{cases}$$

(k)
$$f(n) = \begin{cases} n, & \text{se } n < 2, \\ 5f(n-1) - 6f(n-2) + n.3^n, & \text{se } n \geq 2. \end{cases}$$

(l)
$$f(n) = \begin{cases} n, & \text{se } n < 2, \\ 5f(n-1) - 4f(n-2) + 2n \cdot 5^n + 2, & \text{se } n \geq 2. \end{cases}$$

122*. O "Triângulo de Cantor", (batizado em homenagem ao Georg Cantor), é uma "tabela infinita" triangular em que cada par $(i,j) \in \mathbb{N}^2$ ocupa uma posição de maneira que, para todo $n \in \mathbb{N}$, a n-ésima linha do triângulo é formada por todos os pares $(i,j) \in \mathbb{N}^2$ satisfazendo i+j=n.

As linhas, colunas e posições começam a contar a partir de 0, de cima para baixo e da esquerda para direita. Assim, por exemplo, (0,0) ocupa a posição 0 (linha 0, coluna 0); (0,1) ocupa a posição 1 (linha 1, coluna 0); (1,0) ocupa a posição 2 (linha 1, coluna 1); (0,2) ocupa a posição 3 (linha 2, coluna 0) e assim por diante. As 7 primeiras linhas do Triângulo de Cantor são

- (a) Seja l(n) o número de pares na n-ésima linha do Triângulo de Cantor
 - i. Descreva l(n) como uma recorrência.
 - ii. Resolva essa recorrência.
- (b) Seja t(n) o número de pares no Triângulo de Cantor até a n-ésima
 - i. Descreva t(n) como uma recorrência.

- ii. Resolva essa recorrência.
- (c) Seja p(i, j) a posição ocupada pelo par (i, j) no Triângulo de Cantor. Dê uma expressão não recorrente para p(i, j).
- 123*. Para cada $n \in \mathbb{N}$, seja S(n) o número de somas efetuado na execução de $\mathsf{F}(n)$, o algoritmo do Exercício 81.
 - (a) Expresse S(n) por uma recorrência.
 - (b) Resolva essa recorrência.
- 124*. Para todo $n \geq 0$, um n-cubo é um diagrama composto por pontos e linhas que ligam pares de pontos entre si (ou seja, um grafo). O 0-cubo tem um ponto e nenhuma linha. Para todo n > 0, o n-cubo é o diagrama obtido desenhando-se lado a lado duas cópias do (n-1)-cubo e ligando cada ponto de uma das cópias ao seu correspondente na outra cópia por uma linha.
 - (a) Descreva o número de pontos de um n-cubo através de uma recorrência.
 - (b) Resolva esta recorrência.
 - (c) Descreva o número de linhas de um n-cubo através de uma recorrência.
 - (d) Resolva esta recorrência.

6.5 Somatórios

125®. Dado $q\in\mathbb{C}-\{0\}$, uma progressão geométrica de razão q é uma função $f\colon\mathbb{N}\to\mathbb{C}$ satisfazendo

$$\frac{f(n+1)}{f(n)}=q, \text{ para todo } n\in \mathbb{N}.$$

Assim, a soma dos n termos iniciais de uma progressão geométrica é dada por

$$s(n) = \sum_{i=0}^{n-1} f(i).$$

 $^{^{17}{}m cfr.}$ Exercício 102

- (a) Expresse a função f acima por meio de uma recorrência linear homogênea.
- (b) Resolva esta recorrência, obtendo assim uma expressão para o termo geral da progressão geométrica.
- (c) Dê uma expressão livre de somatórios para s(n).
- 126®. Uma função $f\colon \mathbb{N} \to \mathbb{C}$ é uma progressão aritmética^18 se existe $r\in \mathbb{C}$ tal que

$$f(n+1) - f(n) = r$$
 para todo $n \in \mathbb{N}$.

Assim, a soma dos n termos iniciais de uma progressão aritmética é dada por

$$s(n) = \sum_{i=0}^{n-1} f(i).$$

- (a) Expresse a função f acima por meio de uma recorrência linear não homogênea.
- (b) Resolva esta recorrência, obtendo assim uma expressão para o termo geral da progressão aritmética.
- (c) Dê uma expressão livre de somatórios para s(n).
- 127[®]. Dê uma expressão livre de somatórios para $\sum_{i=0}^{n} i$.
- 128[®]. Dê uma expressão¹⁹ livre de somatórios para $\sum_{i=0}^{n} i2^{i}$.
- 129*. Calcule o valor dos seguintes somatórios.

$$\sum_{i=0}^{n} i^2.$$

ex:somatorios:i3

 $^{^{18}}$ cfr. Exercício 97

 $^{^{19}}$ cfr. Exercício 47

(b)
$$\sum_{i=0}^{n} i(i-1).$$

ex:somatorios:2i

(c) $\sum_{i=0}^{n} i^2 3^i.$

ex:somatorios:i256i

 $\sum_{i=0}^{n} \frac{i^2}{5^i}.$

ex:somatorios:i2i-1

(e) $\sum_{i=0}^{n} i^2 (i-1).$

ex:somatorios:i(2i-i)

130*. A $m\acute{e}dia^{20}$ do número de comparações efetuadas na execução do algoritmo de busca binária em um vetor de n posições é dada por²¹

$$\mu(n) = 1 \times \frac{1}{n} + 2 \times \frac{2}{n} + 3 \times \frac{4}{n} + 4 \times \frac{8}{n} + \dots$$
$$+ \lfloor \lg n \rfloor \times \frac{2^{\lfloor \lg n \rfloor - 1}}{n} + (\lfloor \lg n \rfloor + 1) \times \frac{(n - \sum_{i=1}^{\lfloor \lg n \rfloor} 2^{i-1})}{n}$$

- (a) Dê uma expressão livre de somatórios 22 para $\mu(n).$
- (b) Conclua do item anterior que $\mu(n) \sim \lfloor \lg n \rfloor$.

²⁰Também chamada *número esperado* ou *esperança*.

 $^{^{21}\}mathrm{Assume}\text{-se}$ aqui que a busca por qualquer dos n elementos do vetor é equiprovável e bem-sucedida.

²²Sugestão: use os resultados dos Exercícios 46 e 47

131*. Dê uma expressão livre de somatórios para

$$s(n) = \sum_{i=0}^{n} F(i),$$

onde F(n) é a sequência de Fibonacci²³.

 $132^{@}$. Em muitas situações de cálculo numérico trabalha-se com matrizes triangulares inferiores, isto é, matrizes quadradas cujos elementos acima da diagonal principal são todos nulos. Nesses casos é comum representar uma matriz triangular inferior de n linhas por um vetor contendo somente as posições não-nulas da matriz, o que resulta numa economia de espaço de quase 50%.

Suponha que a matriz triangular inferior M, de n linhas indexadas de 1 a n, será representada por um vetor v[0..N(n)-1], onde N(n) é o tamanho do vetor necessário para representar uma matriz triangular inferior de n linhas.

- (a) Descreva N(n) através de uma recorrência.
- (b) Resolva esta recorrência.
- (c) Qual o índice de v que corresponde à posição M[i, j]?
- 133[®]. Resolva a seguinte recorrência que expressa o número médio de comparações na execução do algoritmo QuickSort.

$$C(n) = \begin{cases} 0, & \text{se } n < 2, \\ \frac{(n+1)}{n}C(n-1) + \frac{2(n-1)}{n}, & \text{se } n \geq 2. \end{cases}$$

134[®]. Uma árvore binária T é uma árvore vazia, denotada por λ ou é um par (E(T), D(T)) onde E(T) e D(T) são árvores binárias, chamadas respectivamente de subárvore esquerda e subárvore direita de T. Vamos denotar por $\mathcal B$ o conjunto das árvores binárias.

O tamanho de uma árvore T é dado por

$$|T| = \begin{cases} 0, & \text{se } T = \lambda, \\ |E(T)| + |D(T)| + 1, & \text{caso contrário }. \end{cases}$$

²³Veja o Exercício 53.

A árvore de tamanho um é chamada de árvore trivial.

A altura de uma árvore T é dada por

$$h(T) = \begin{cases} 0, & \text{se } T = \lambda, \\ \max\left\{h(E(T)), h(D(T))\right\} + 1, & \text{se } T \neq \lambda. \end{cases}$$

Para cada $n \in \mathbb{N}$, seja $h^+(n)$ a maior altura possível de uma árvore binária de tamanho n.

- (a) Expresse $h^+(n)$ como uma recorrência.
- (b) Resolva esta recorrência.

135[®]. Para cada $n \in \mathbb{N}$, seja $t^+(n)$ o maior tamanho possível de uma árvore binária²⁴ de altura n.

- (a) Expresse $t^+(n)$ como uma recorrência.
- (b) Resolva esta recorrência.

136[®]. Seja AVL o conjunto das árvores binárias²⁵ T satisfazendo

$$\lambda \in \mathsf{AVL} \; \mathsf{e} \; E(T) \in \mathsf{AVL} \; \mathsf{e} \; D(T) \in \mathsf{AVL}.$$

 \mathbf{e}

$$|h(E(T)) - h(D(T))| \le 1.$$

Seja $t^-(n)$ o menor tamanho possível de uma árvore AVL de altura n.

- (a) Expresse $t^-(n)$ como uma recorrência.
- (b) Resolva esta recorrência.

²⁴Veja o Exercício 134.

²⁵Veja o Exercício 134.

Referências

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. *Introduction to Algorithms*. MIT Press, 3 edition, 2009. ISBN 978-0-262-03384-8. URL http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid=11866. 31