CHEN 425 ASPEN Simulation Report

Title: Use of the ASPEN RADFRAC Design Spec

Workshop: #4

Date: February 22, 2023

Prepared by: Mark Levchenko

To: Professor Mahmoud El-Halwagi

1 Summary of Results

1.1 Part A

In order to meet the required distillate and bottoms specifications, the reflux ratio was

1.2037 and the distillate rate was 56504.8 lb/hr. In order to meet these rates, the condenser

duty was $5.8383 \cdot 10^7$ Btu/hr and the reboiler duty was $6.10364 \cdot 10^7$ Btu/hr.

1.2 Part B

In order to meet the required distillate and bottoms specifications with the 65% efficient

trays, the reflux ratio was 1.58658 and the distillate rate was 56504.8 lb/hr. In order to

meet these rates, the condenser duty was $6.85269 \cdot 10^7$ Btu/hr and the reboiler duty was

 $7.11795 \cdot 10^7 \text{ Btu/hr}.$

1.3 Part C

1. The single section column with sieve trays requires a diameter of 9.86464 ft.

2. In the two-section column, the diameter of the section below the feed tray is 9.26729 ft,

and the diameter of the section above the feed tray is 9.86485 ft. The smaller diameter

of the lower section will allow the column to be built for less money. The multi-section

design should be selected if savings in capital costs are desired.

3. The multi-section column allows for one section to be smaller. With a smaller diameter, less material is needed for the shell and smaller trays are required. The need for less material decreases the capital costs of the column. However, the smaller diameter of the lower section may decrease the structural integrity of the column.

1.4 Part D

The packed column is half the height of the column with trays, but its diameter is much larger. The diameter of the packed column is 14.3397 ft. The column itself will be much cheaper; however, packing is much more expensive than trays. The trays may also require less maintenance.

2 Discussion of Simulation Results

2.1 Part A

The distillate flow rate combined with the purity of the distillate means that almost all of the Methanol is being recovered in the distillate stream. The condenser and reboiler duties seem reasonably achievable in an industrial setting. The operation of the column can probably be achieved economically provided that the price of methanol is high enough.

2.2 Part B

Clearly the efficiency of the stages has a major impact on the operation of the column. The reflux ratio had to be increased significantly in order to meet the required purity in the distillate. The flow rate of the distillate is almost identical as a result of the methanol and water specifications. Furthermore, notice that the reboiler and condenser duties increased significantly. As a result, the efficiency of the stages will have a major impact on the operating costs of the column.

2.3 Part C

The height of the single section and the two-section column are the same. The diameter of the lower section of the two-section column is less than the diameter of the single section column. The smaller diameter of the lower section of the two-section column will lead to a lower capital cost of the column and the trays as smaller trays are required.

2.4 Part D

The height of the packed column is much smaller which will result in a lower capital cost of the column shell. However, in packed columns, almost the entire inside of the column needs to be filled with material as opposed to columns with trays which only need sheet metal spaced every few feet. The higher material costs combined with the added complexity of packing result in a much higher overall capital cost of installing a packed column. Packed columns also require more work during installation and additional structures inside the column to support the packing and ensure even distribution of the fluid into the packing. However, packing generally is more efficient than trays are, and the increased efficiency can offset the capital costs by lowering operating costs. In the right situation, using packing inside a distillation column can have tremendous benefits.

The condenser and reboiler duties for the packed column and both columns with trays are the same. In every design, the same amount of fluid is heated and cooled, and so the amount of heat transfer required is identical. However, it is possible for the packing to be much more efficient than the trays. If the higher efficiency is accounted for, the packed column would require less heat transfer overall as it would be more efficient than the column with trays.

3 Simulation Screenshots

Main flowsheet:

Part A Reflux ratio design spec results:

Туре	MASS REFLUX RATIO	
Lower bound	0.8	▼
Upper bound	2	₩
Final value	1.2037	▼

Part A Distillate rate design spec results:

Туре	MASS DISTILLATE RATE	
Lower bound	25000	lb/hr ▼
Upper bound	85000	lb/hr ▼
Final value	56504.8	lb/hr ▼

Part B Reflux ratio design spec results:

Туре	MASS REFLUX RATIO		
Lower bound	0.8	_	
Upper bound	2	~	
Final value	1.58658	▼	

Part B Distillate rate design spec results:

Туре	MASS DISTILLATE RATE	
Lower bound	25000	lb/hr ▼
Upper bound	85000	lb/hr ▼
Final value	56504.8	lb/hr ▼

Stream results showing specification mass fractions:

4		Units	BTM ▼	DIST →	FEED -
	Molar Vapor Fraction		0	0	0
	Molar Liquid Fraction		1	1	1
	Molar Solid Fraction		0	0	0
	Mass Vapor Fraction		0	0	0
	Mass Liquid Fraction		1	1	1
	Mass Solid Fraction		0	0	0
	Molar Enthalpy	Btu/lbmol	-119950	-100593	-115026
	Mass Enthalpy	Btu/lb	-6655.3	-3140.6	-5255.7
	Molar Entropy	Btu/lbmol-R	-34.2457	-54.1608	-39.4504
	Mass Entropy	Btu/lb-R	-1.90009	-1.69096	-1.80254
	Molar Density	lbmol/cuft	3.13363	1.43658	2.35415
	Mass Density	lb/cuft	56.478	46.0132	51.5228
	Enthalpy Flow	Btu/hr	-5.55686e+08	-1.77459e+08	-7.35798e+08
	Average MW		18.0232	32.0297	21.8859
	+ Mole Flows	lbmol/hr	4632.66	1764.14	6396.8
	+ Mole Fractions				
	+ Mass Flows	lb/hr	83495.2	56504.8	140000
	 Mass Fractions 				
	WATER		0.999	0.000500043	0.596
	МЕОН		0.00100003	0.9995	0.404
	Volume Flow	cuft/hr	1478.37	1228.01	2717.25
-	+ Liquid Phase				

Part A RADFRAC block results:

	Name	Value	Units
	Temperature	157.892	F
	Subcooled temperature		
	Heat duty	-5.83838e+07	Btu/hr
	Subcooled duty		
	Distillate rate	1764.14	lbmol/hr
	Reflux rate	2123.49	lbmol/hr
	Reflux ratio	1.2037	
	Free water distillate rate		
	Free water reflux ratio		
۵h	poiler / Bottom stage performance		
	Name	Value	Units
			F
	Temperature	234.399	r
	Temperature Heat duty	234.399 6.10364e+07	Btu/hr
	Heat duty	6.10364e+07	Btu/hr
	Heat duty Bottoms rate	6.10364e+07 4632.66	Btu/hr Ibmol/hr

Part B RADFRAC block results:

	Name	Value	Units
	Temperature	157.892	F
	Subcooled temperature		
	Heat duty	-6.85269e+07	Btu/hr
	Subcooled duty		
	Distillate rate	1764.14	lbmol/hr
	Reflux rate	2798.94	lbmol/hr
	Reflux ratio	1.58658	
	Free water distillate rate		
	Free water reflux ratio		
a k	poiler / Bottom stage performance		
	Name	Value	Units
	Temperature	234.399	F
	Temperature Heat duty	234.399 7.11795e+07	F Btu/hr
			•
	Heat duty	7.11795e+07	Btu/hr
	Heat duty Bottoms rate	7.11795e+07 4632.66	Btu/hr Ibmol/hr

Part C Sieve tray results for a uniform diameter:

	D		Value		Heite
	Property Tray type	CIE	SIEVE		Units
	Diameter	310	9.86464 ft		
	Tray spacing		9.00404	ft	
	Number of passes		1	11.	
	Hole diameter		0.0416667	ft	
				π	
	Hole area / Active area		0.1		
	Deck gauge thickness	10	GAUGE		
	Deck gauge thickness value		0.133858	in	
	Cross-sectional area		76.428		
	Active area		61.1424 so		
	Net area		68.7852 sqf		ft
owi	ncomer geometry				
	Property		Side		Units
	Downcomer clearance		0.1	125	ft
	Downcomer width top		18.52	229	in
	Downcomer width bottom		18.52	229	in
	Downcomer area top		7.64	128	sqft
	Downcomer area bottom		7.64	128	sqft
/eir	geometry				
	Property		Side		Units
	Weir height		0.166667	ft	
	Weir length		7.16776	ft	
ane	ls				
	Property		А		Units
			6.77749 ft		
	Flow path length		6.77749	ft	
	Flow path length Bubbling area		6.77749 61.1424		ft

Property	Value	Units
Section starting stage	2	
Section ending stage	45	
Calculation Mode	Sizing	
Tray type	SIEVE	
Number of passes	1	
Tray spacing	2	ft
Section diameter	9.86485	ft
Section height	88	ft
Section pressure drop	5.01223	psi
Section head loss (Hot liquid height)	177.307	in
Trays with weeping	None	
Section residence time	0.0669895	hr

Limiting conditions

Property	Value	Units	Tray	Location
Maximum % jet flood	80.0003		2	
Maximum % downcomer backup (aerated)	38.9411		26	
Maximum downcomer loading	64.3602	gpm/sqft	29	Side
Maximum % downcomer choke flood	25.744		29	Side
Maximum weir loading	68.6263	gpm/ft	29	Side
Maximum aerated height over weir	0.417183	ft	26	
Maximum % approach to system limit	51.727		2	
Maximum Cs based on bubbling area	0.327166	ft/sec	2	

Part C Sieve tray results for a two-section column:

Upper section of the column:

	Property	Val	ue		Units	
	Tray type	SIEVE	SIEVE			
	Diameter	9	.86485	ft		
	Tray spacing		2	ft		
	Number of passes		1			
	Hole diameter	0.04	16667	ft		
	Hole area / Active area		0.1			
	Deck gauge thickness	10 GAU	IGE			
	Deck gauge thickness value	0.1	33858	in		
	Cross-sectional area	7	6.4313	sqf	t	
	Active area		61.145	sqf	it	
	Net area	6	68.7881		sqft	
ow	ncomer geometry					
	Property		Side		Units	
	Downcomer clearance		0.1	125	ft	
	Downcomer width top		18.52	233	in	
	Downcomer width bottom		18.52	233	in	
	Downcomer area top		7.643	313	sqft	
	Downcomer area bottom		7.643	313	sqft	
eir	geometry					
	Property	Sic	ie		Units	
	Weir height	0.1	66667	ft		
	Weir length	7.	.16791	ft		
ane	ls					
					Units	
	Property	Α			Onits	
	Property Flow path length		77764	ft	Onits	

Property	Value	Units
Section starting stage	2	
Section ending stage	26	
Calculation Mode	Sizing	
Tray type	SIEVE	
Number of passes	1	
Tray spacing	2	ft
Section diameter	9.86485	ft
Section height	50	ft
Section pressure drop	2.94723	psi
Section head loss (Hot liquid height)	109.238	in
Trays with weeping	None	
Section residence time	0.04751	hr

Limiting conditions

Property	Value	Units	Tray	Location
Maximum % jet flood	80.0003		2	
Maximum % downcomer backup (aerated)	38.9411		26	
Maximum downcomer loading	64.3158	gpm/sqft	26	Side
Maximum % downcomer choke flood	25.7262		26	Side
Maximum weir loading	68.5789	gpm/ft	26	Side
Maximum aerated height over weir	0.417183	ft	26	
Maximum % approach to system limit	51.727		2	
Maximum Cs based on bubbling area	0.327166	ft/sec	2	

Lower section of the column:

		_			
	Property		Value		Units
	Tray type	SIE	:VE		
	Diameter		9.26729	ft	
	Tray spacing		2	ft	
	Number of passes		1		
	Hole diameter		0.0416667	ft	
	Hole area / Active area		0.1		
	Deck gauge thickness	10	GAUGE		
	Deck gauge thickness value		0.133858	in	
	Cross-sectional area		67.4521	sqf	ft
	Active area		53.9617	sqf	ft
	Net area		60.7069	sqf	ft
ow	ncomer geometry				
	Property		Side		Units
	Downcomer clearance		0.1	25	ft
	Downcomer width top		17.40	13	in
	Downcomer width bottom		17.40	13	in
	Downcomer width bottom Downcomer area top		17.40 6.745		in sqft
				21	
	Downcomer area top		6.749	21	sqft
	Downcomer area top Downcomer area bottom		6.749	21	sqft
	Downcomer area top Downcomer area bottom geometry		6.745 6.745	21	sqft sqft
/eir	Downcomer area top Downcomer area bottom geometry Property		6.745 6.745 Side	i21	sqft sqft
/eir	Downcomer area top Downcomer area bottom geometry Property Weir height Weir length		6.745 6.745 Side 0.166667	521 521 ft	sqft sqft
/eir	Downcomer area top Downcomer area bottom geometry Property Weir height Weir length		6.745 6.745 Side 0.166667	521 521 ft	sqft sqft
/eir	Downcomer area top Downcomer area bottom geometry Property Weir height Weir length		6.745 6.745 Side 0.166667 6.73372	521 521 ft	sqft sqft Units
/eir	Downcomer area top Downcomer area bottom geometry Property Weir height Weir length Property		6.745 6.745 Side 0.166667 6.73372	ft ft	sqft sqft Units Units

Property	Value	Units
Section starting stage	27	
Section ending stage	45	
Calculation Mode	Sizing	
Tray type	SIEVE	
Number of passes	1	
Tray spacing	2	ft
Section diameter	9.26729	ft
Section height	38	ft
Section pressure drop	2.32575	psi
Section head loss (Hot liquid height)	76.7159	in
Trays with weeping	None	
Section residence time	0.0185723	hr

Limiting conditions

Property	Value	Units	Tray	Location
Maximum % jet flood	80.0005		27	
Maximum % downcomer backup (aerated)	42.7338		27	
Maximum downcomer loading	72.9279	gpm/sqft	29	Side
Maximum % downcomer choke flood	29.171		29	Side
Maximum weir loading	73.0514	gpm/ft	29	Side
Maximum aerated height over weir	0.464558	ft	27	
Maximum % approach to system limit	37.7583		27	
Maximum Cs based on bubbling area	0.293834	ft/sec	27	

Part D Packed column results:

Property	Value	Units
Section starting stage	2	
Section ending stage	45	
Calculation Mode	Sizing	
Column diameter	14.3397	ft
Packed height per stage	1	ft
Section height	44	ft
Maximum % capacity (constant L/V)	80	
Maximum % capacity (constant L)	75.8122	
Maximum capacity factor (Cs)	0.123873	ft/sec
Section pressure drop	0.654531	psi
Average pressure drop / Height	0.411758	in-water/ft
Average pressure drop / Height (Frictional)	0.395642	in-water/ft
Maximum stage liquid holdup	6.03799	cuft
Maximum liquid superficial velocity	3.046	gpm/sqft
Maximum Fs	0.839355	ft/s-sqrt(lb/cuft)
Maximum % approach to system limit	22.0084	

4 Conclusions

The reflux ratio, reboiler duty, and condenser duty seem practically achievable. Given that the rest of the process for producing methanol is profitable, this distillation column can be economically viable.

The efficiency of the stages in the column could negate any econmic viability. Part B illustrated that a much larger amount of reflux is necessary to maintain the purity specification. The higher reflux leads to more fluid in the column which requires more heat transfer. Higher heat transfer increases the operating cost of the column. If the stages are too inefficient, the column may become unprofitable.

Depending on the type of column internals, the geometry of the column will change.

The packed column requires a larger diameter but is shorter compared to the column with trays. In Part C, a column was designed in two sections. The upper section of the column had approximately the same diameter as the single section column, the lower section had a smaller diameter. Splitting the column into sections allowed for a part of the column to be smaller requiring less material. Generally, buying a smaller column will cost less, decreasing the capital cost of the column. However, one consideration is that packing can be more expensive than trays. It is necessary to obtain an accurate estimate of the cost of the necessary trays compared to the cost of packing in order to determine whether the increased cost of packing outweighs the decreased cost of the shell. If maximum efficiency and the smallest column are desired, the packed column should be selected. If a column with trays is sufficient, then the multisection column is the better, more cost effective option.