

Dobre praktyki pomiarowe – przewodnik po laboratorium miernictwa

Paweł Bieńkowski

Zajęcia w laboratorium pomiarowym wymagają odpowiedniego przygotowania i przestrzegania pewnych zasad – z jednej strony twardych zasad związanych z regulaminem porządkowym i BHP, z drugiej – tak zwanej dobrej praktyki laboratoryjnej – zasad, które pomiary czynią efektywnymi i przyjemnymi. Poniżej takie "dobre rady":

1. Przygotowanie przed pomiarami

Przed przystąpieniem do jakichkolwiek pomiarów należy określić cel tych pomiarów, wymagany sprzęt pomiarowy i metodykę – czyli zbiór reguł i czynności prowadzących do uzyskania oczekiwanego rezultatu – miarodajnego wyniku.

W tym celu niezbędne jest zapoznanie się z zadaniami do wykonania, zaznajomienie się ze sprzętem pomiarowym (choćby teoretyczne – na podstawie instrukcji obsługi lub ogólnych opisów poszczególnych kategorii sprzętu) oraz określenie najważniejszych źródeł potencjalnych problemów/błędów pomiarowych. Warto również przeanalizować metodyki stosowane dla danej grupy pomiarów i wstępnie wybrać, tę która będzie wykorzystana (oczywiście o ile jest wybór).

2. Przygotowanie pomiarów w laboratorium

Przed rozpoczęciem pomiarów należy zapoznać się ze sprzętem, sprawdzić, czy na stanowisku są wszystkie niezbędne urządzenia i wyposażenie pomocnicze. Sprawdzić, czy typy urządzeń są zgodne z wyspecyfikowanymi w planie pomiarowym – jeżeli nie, czy zamienniki są akceptowalne – zapoznać się z ich parametrami i zasadami obsługi. Ocena sprzętu i oprzyrządowania powinna również obejmować stan wizualny urzadzeń – czy nie widać uszkodzeń mechanicznych lub elektrycznych (np. urwane wtyki, luźne złącza, naderwane przewody itp.). Jeżeli sprzęt jest zasilany z sieci energetycznej – należy sprawdzić, czy wszystkie urządzenia zasilane są z tej samej "fazy" – najlepiej jak wszystkie zasilane są z tego samego panelu zasilającego lub jednego rozgałęźnikaprzedłużacza. Jeżeli jest możliwość, należy sprawdzić działanie urzadzeń pomiarowych przez ich włączenie (bez dołączania układów zewnętrznych – z wyjątkiem niezbędnych wynikających ze specyfiki pracy przyrządu) oraz przeprowadzenie podstawowych testów. Np. zasilacze – można sprawdzić, czy na wyjściu pojawia się napięcie i czy jest możliwość jego regulacji, generatory – działanie poszczególnych regulacji itp., mierniki – przełączanie zakresów, autotesty, zerowanie – czyli wskazywanie wartości zerowej bez sygnału zewnętrznego (czasami do zerowania niezbędne jest zwarcie wejścia miernika). Mierniki w stanie spoczynku powinny być zawsze ustawione na maksymalne zakresy pomiarowe (najmniej czułe), generatory, czy zasilacze ze skręconymi na minimum ustawieniami.

Uwaga ogólna: sprzęt pomiarowy, ale również obiekty badań bardzo często są wrażliwe na wyładowania elektrostatyczne ("kopanie" ładunkami elektrostatycznymi) – w związku z tym zawsze należy wyrównać potencjały przez dotkniecie "masy" –

metalowych części stanowiska pomiarowego, w ostateczności obudowy miernika (najlepiej metalowej). Pod żadnym pozorem przed "rozładowaniem" nie wolno dotykać wejść pomiarowych, czy końcówek kabli pomiarowych, jeżeli te są podłączone do urządzenia.

3. Zestawienie układu pomiarowego

Przy zestawianiu układu pomiarowego należy przestrzegać zasady, że układ zestawia się przy wyłączonym obiekcie badanym i sprzęcie pomiarowym. Łączenie przewodów zaczyna się od przewodów wspólnych, tzw. "masy", a następnie łączy się dopiero przewody sygnałowe "gorące". Dobrze jest stosować określony "kod" przewodów – np. przewody masy koloru czarnego lub niebieskiego, przewody sygnałowe – np. czerwone, czy zielone. W przypadku zasilania – "minus" czarny/niebieski, "plus" czerwony/zielony. Można też przyjąć, że np. zasilanie jest czarne/czerwone, a przewody sygnałowe innych kolorów. Przy połączeniach należy unikać krzyżowania, czy plątania przewodów – jasny układ pozwala szybko wzrokowo sprawdzić poprawność połączeń oraz prześledzić drogę sygnału. Również same obiekty pomiarów warto ułożyć "od wejścia do wyjścia" – żeby łatwo było śledzić przebieg sygnału.

4. Włączenie układu

Przed włączeniem układu należy jeszcze raz bezwzględnie sprawdzić poprawność połączeń oraz ustawienia przyrządów pomiarowych (najwyższe zakresy) i innego osprzętu – "skręcone" na minimum źródła sygnału. Włączenie układu może nastąpić tylko za zgodą prowadzącego (chyba, że ten ustali inaczej). Bezpośrednio po włączeniu układu należy obserwować wszystkie elementy – w przypadku niepokojących zjawisk bądź zachowania układu innego od spodziewanego – natychmiast wyłączyć zasilanie i jeszcze raz przeanalizować połączenia i zastosowane komponenty.

5. Pomiary

Jedna z podstawowych cech pomiarów to ich odtwarzalność – czyli możliwość odtworzenia układu pomiarowego w celu np. późniejszej weryfikacji wyników. Dla zapewnienia odtwarzalności niezbędne jest więc zdokumentowanie całego układu pomiarowego – sprzętu i połączeń. Sprzęt – typ, numer fabryczny (o ile jest to niezbędne) oraz nastawy – zakresy, tryby pracy itp. Schemat połączeń – najlepiej narysować – jeżeli jest niejednoznaczny.

Przy pomiarach należy pamiętać o niepewności pomiarów – niezbędne jest ZAWSZE oszacowanie niepewności – albo bezpośrednio w trakcie wykonywania pomiarów, albo przy ich obróbce – w tym celu należy zdokumentować dane niezbędne do oszacowania niepewności. Przy realizacji pomiarów należy na bieżąco szacować, czy ukałd pomiarowy jest zestawiony optymalnie – w sposób zapewniający minimalizację niepewności (np. dobór zakresu pomiarowego miernika, właściwy tryb pracy itp.).

Wynik pomiaru – powinien być jednoznaczny i odczytany w stanie ustalonym w układzie pomiarowym. Jeżeli wskazanie przyrządu nie jest stabilne – wynik należy zapisać wraz z wahaniami i uwzględnić to w budżecie niepewności. Oczywiście niezbędne jest określenie, czy niestabilność wskazań w ogóle pozwala uznać wynik za

miarodajny. Jeżeli nie – być może trzeba zmienić układ pomiarowy lub zastosowany osprzęt na stanowisku.

6. Opracowanie wyników pomiarów

Wyniki "surowe" są dopiero półproduktem procesu pomiarowego. Po wykonaniu pomiarów (ale też w trakcie pomiarów) należy przeanalizować wyniki, porównać je z wartościami oczekiwanymi – przy czym chodzi tu raczej o rząd wielkości niż dokładną wartość (np. spodziewaliśmy się rezystancji na poziomie k Ω , a z wyników wychodzą M Ω ...) – mogą to być błędy grube, które powinny być wyrugowane, bądź w ostateczności pomiary należy powtórzyć. Należy pamiętać, że w większości przypadków wynikiem jest wartość i jednostka wielkości mierzonej i praktycznie zawsze niezbędne jest oszacowanie niepewności wyniku pomiaru.

Jeżeli wynikiem pomiaru jest seria wskazań – ich analizę ułatwiają wykresy lub tabele. Należy zwracać uwagę na opisy osi wykresów, a także na właściwy dobór skali wykresu – nie zawsze EXCEL wie najlepiej..... Szczególnie istotne jest prawidłowe zobrazowanie danych – czyli wybór rodzaju wykresu – czy będzie to np. wykres ciągły, czy punktowy. Wybór rodzaju wykresu i "prawo do polaczenia punktów linią" wykracza poza ramy tego poradnika – ale ogólna zasad jest taka – punkty pomiarowe wolno łączyć, jeżeli jest uzasadnione domniemanie, że pomiar wykonany miedzy punktami pomiarowymi dałby wynik zgodny z wartością wynikającą z połączenia sąsiednich punktów (np. wykres prąd/napięcie na rezystorze).

Opracowanie wyników pomiarów zawsze powinno się kończyć oceną realizacji celu pomiarów – czyli: czy przeprowadzone pomiary dały nam odpowiedź na pytanie postawione przed ich wykonaniem? I czy wyniki są użyteczne do tego celu? Na przykład, jeżeli z grupy rezystorów chcieliśmy wybrać jeden o określonej wartości z tolerancją 1%, a proces pomiarowy był przeprowadzony z niepewnością 5% to cel pomiarów nie został osiągnięty, ale można było z całej grupy rezystorów wybrać te, które były najbliższe oczekiwanej wartości i tylko te poddać kolejnym pomiarom.

Dla identyfikacji pomiarów dobrą praktyką jest podpisywanie wyników pomiarów wraz z datą ich przeprowadzenia.