Beyond Classical Search

Professor Marie Roch Chapter 4, Russell & Norvig

Local search

- Single state node
 - paths not usually retained
 - typically move only to neighbors of state
- The good
 - Low memory usage
 - Appropriate for large (possibly infinite) state spaces
- The bad
 - Lose advantages from search-tree retention (e.g. backtracking)

Optimization problems • Find best state – find extrema of objective function f(state)• Find best state – find extrema of objective function f(state)• Find best state – find extrema of objective function f(state)• Find best state – find extrema of objective function f(state)• Find best state – find extrema of objective function f(state)• Find best state – find extrema of objective function f(state)• Find best state – find extrema of objective function f(state)

Optimization problems • Optimal solutions (global extrema) can be problematic • Complete search → local extrema easy to get stuck • Optimal search → global extrema state • State space

Hill-climbing (aka greedy) search

```
def hillclimb(state):
  done = False
  while not done:
    next = successors of state
    find s in next such that maximizes f(s) - f(state)
    if f(s) - f(state) > 0 then state = s
       else done = True
  return state
```


Troublesome for hill climbing...

- Local extrema trapped!
- Ridges no real way out
- Plateaus what should we do for sideways moves?
 Continue?

Hill-climbing variants

- Stochastic Assign probabilities related to steepness of choice and pick randomly (slow convergence).
- First-choice Generate successors randomly, pick the first one that's better than current state.
- Random-restart Pick a new initial state if we don't find what we are looking for.

Speed at which search converges to a "good" state?

- Annealing
 - · Process to harden metals
 - Subject to high heat
 - metals enter high energy state
 - · slowly cool
 - allows molecules to realign, reducing stress
- Simulated annealing
 - Simulate temperature
 - Volatility of action choices is related to temperature
 - high temperature more likely to pick "risky" decisions
 - low temperature more likely to pick "good" decisions

- Simulated annealing
 - "temperature" starts hot and cools (function of time)
 - A successor state is chosen at random
 - improvement + or degradation of state fitness ΔE=fitness(child)-fitness(current)
 - If \(\Delta > 0 \)
 then update state
 otherwise
 update based on odds of

picking a bad node

 $1 + e^{\Delta E/Temp}$

Beam search

- Differs in treatment of successors from standard search
 - Only keep the k most successful children
 - May add stochastic component to increase diversity of population
- Frequently used to explore multiple hypotheses while keeping frontier set small
- Example: Speech recognition systems often use this

Genetic algorithms

- Search-state nodes are measured by a fitness function
- Successors
 - Generated from random pair in frontier (called population)
 - new state from crossover (mixture of parent states)
 - new state may be further mutated
 - Only fittest nodes are retained (beam search)

Genetic algorithms

 States need to be represented in a way that parameters can be mixed

- Example
 - 8 queens with all queens placed
 - state row # of queen (1,6,2,5,7,4,8,3) or 16257483
 - fitness function:# non-attacking pairs

Genetic algorithm example

How are random pairs selected?
 Assigned probabilities

$$P(node) = \frac{fitness(node)}{\sum_{i \in population} fitness(i)}$$

• Population of four nodes

fitness(24748552)= 24 \rightarrow 31% (24/(24+23+20+11))

fitness(32752411)= 23 → 29%

fitness(24415124)= $20 \rightarrow 26\%$

fitness(32543213)= 11 → 14%

Place three airports to minimize distance to nearest city Place three airports to minimize distance to nearest city Neant Nea

Local search in continuous spaces

Possible approaches

- Discretize the search space
 - increment state by $\pm\epsilon$
 - with 6 variables, 12 possible successors (if constrained to one direction)
 - what size ε?
- Compute the gradient
 - Gives us the direction of steepest ascent.

$$\nabla f = \left(\frac{\delta f}{\delta x_1}, \frac{\delta f}{\delta y_1}, \frac{\delta f}{\delta x_2}, \frac{\delta f}{\delta y_2}, \frac{\delta f}{\delta x_3}, \frac{\delta f}{\delta y_3}\right)$$

Local search in continuous space

Gradient approaches

- If gradient exists in closed form, may be able to solve for maximum: $\nabla f = 0$
- Many objective functions cannot be solved in closed form, e.g.

$$f(x_1, y_1, x_2, y_2, x_3, y_3) = \sum_{i=1}^{3} \sum_{c \in C_i} (x_i - x_c)^2 + (y_i - y_c)^2$$

has discontinuities as cities change C_i membership.

Local search in continuous space

• Local gradient might be possible

$$\nabla f(x_1, y_1, x_2, y_2, x_3, y_3) = \left(2\sum_{c \in C_1} (x_1 - x_c), 2\sum_{c \in C_1} (y_1 - y_c), \ldots\right)$$

- If objective function not differentiable evaluate f in the neighborhood and compute *empirical gradient*.
- Update requires step size α

 $state \leftarrow state + \alpha \nabla f(state)$

Local search in continuous space

- ullet Choice of α
 - too small... learning slow
 - too large... might overshoot extrema or gradient change

- Line search
 - double α repeatedly until objective function ${\bf f}$ starts to decrease
 - · choose new direction

Newton-Raphson method

- Method for finding roots f(x) = 0
- Find root x:
 - start with a "good" estimate x₀
 - improve it iteratively
- Suppose we pick $x_0=a$ and actual root is r; f(r)=0
- Let a + h = r

Newton-Raphson method

• So, we have

$$f(r) = 0$$
, $x_0 = a$ and let $r = a + h$
 $f(r) = f(a+h)$

- Consider the line tangent to f(a) given by $\nabla f(a)$.
- It intercepts the x axis at b

Newton-Raphson method

tangent line through (b,0) and (a,f(a)): $y = (x-a)\nabla f(a) + f(a)$ Let's find b's value by setting y=0

$$0 = (x-a)\nabla f(a) + f(a) \rightarrow$$

$$x = a - \frac{f(a)}{\nabla f(a)}$$

Newton-Raphson method

• Linear approximation $x_{i+1} = a - \frac{f(a)}{\nabla f(a)}$ provides a new approximation of the root.

- Iterate until convergence
- Very good with good starting points, not so good with bad ones...

Newton-Raphson and local search

- We want to find states where gradient of optimization function is zero: $\nabla f(x) = 0$
- Newton-Raphson lets us find this, but we use the derivative of the gradient, or second derivative

Newton-Raphson method

- In airport optimization, we computed ${}^{\partial f}\!\!/_{\partial x_i}$ and ${}^{\partial f}\!\!/_{\partial y_i}$
- As we find the roots of the derivative, we need to find $\frac{\partial^2 f}{\partial x_i \partial x_j}$ and $\frac{\partial^2 f}{\partial y_i \partial y_j}$ and $\frac{\partial^2 f}{\partial x_i \partial y_j}$

$$\frac{\partial^{2} f_{\partial x_{1} \partial y_{2}}}{\partial x_{1} \partial y_{2}} \sum_{i=1}^{3} \sum_{c \in C_{i}} (x_{i} - x_{c})^{2} + (y_{i} - y_{c})^{2} \qquad \frac{\partial^{2} f_{\partial x_{1} \partial x_{1}}}{\partial x_{1} \partial x_{1}} \sum_{i=1}^{3} \sum_{c \in C_{i}} (x_{i} - x_{c})^{2} + (y_{i} - y_{c})^{2}$$

$$= \frac{\partial^{2} f_{\partial x_{1} \partial y_{2}}}{\partial x_{1} \partial x_{2}} \left(2 \sum_{c \in C_{1}} (x_{1} - x_{c}) \right) \frac{\partial^{2} f_{\partial x_{1} \partial x_{1}}}{\partial x_{1}} = 0$$

$$= \frac{\partial^{2} f_{\partial x_{1} \partial y_{2}}}{\partial x_{1} \partial x_{2}} \sum_{i=1}^{3} \sum_{c \in C_{i}} (x_{1} - x_{c})^{2} + (y_{i} - y_{c})^{2}$$

$$= \frac{\partial^{2} f_{\partial x_{1} \partial y_{2}}}{\partial x_{1} \partial x_{2}} \sum_{i=1}^{3} \sum_{c \in C_{i}} (x_{1} - x_{c})^{2} + (y_{i} - y_{c})^{2}$$

$$= \frac{\partial^{2} f_{\partial x_{1} \partial y_{2}}}{\partial x_{2} \partial x_{2}} \sum_{i=1}^{3} \sum_{c \in C_{i}} (x_{1} - x_{c})^{2} + (y_{i} - y_{c})^{2}$$

$$= \frac{\partial^{2} f_{\partial x_{1} \partial y_{2}}}{\partial x_{2} \partial x_{2}} \sum_{i=1}^{3} \sum_{c \in C_{i}} (x_{1} - x_{c})^{2} + (y_{i} - y_{c})^{2}$$

$$= \frac{\partial^{2} f_{\partial x_{1} \partial y_{2}}}{\partial x_{2} \partial x_{2}} \sum_{c \in C_{i}} (x_{1} - x_{c}) \frac{\partial^{2} f_{\partial x_{1} \partial x_{1}}}{\partial x_{2} \partial x_{2}} \sum_{c \in C_{i}} (x_{1} - x_{c}) \frac{\partial^{2} f_{\partial x_{1} \partial x_{2}}}{\partial x_{2} \partial x_{2}} \sum_{c \in C_{i}} (x_{1} - x_{c}) \frac{\partial^{2} f_{\partial x_{1} \partial x_{2}}}{\partial x_{2} \partial x_{2}} \sum_{c \in C_{i}} (x_{1} - x_{c}) \frac{\partial^{2} f_{\partial x_{1} \partial x_{2}}}{\partial x_{2} \partial x_{2}} \sum_{c \in C_{i}} (x_{1} - x_{c}) \frac{\partial^{2} f_{\partial x_{2} \partial x_{2}}}{\partial x_{2} \partial x_{2}} \sum_{c \in C_{i}} (x_{1} - x_{c}) \frac{\partial^{2} f_{\partial x_{2} \partial x_{2}}}{\partial x_{2}} \sum_{c \in C_{i}} (x_{1} - x_{c}) \frac{\partial^{2} f_{\partial x_{2} \partial x_{2}}}{\partial x_{2} \partial x_{2}} \sum_{c \in C_{i}} (x_{1} - x_{c}) \frac{\partial^{2} f_{\partial x_{2} \partial x_{2}}}{\partial x_{2} \partial x_{2}} \sum_{c \in C_{i}} (x_{1} - x_{c}) \frac{\partial^{2} f_{\partial x_{2} \partial x_{2}}}{\partial x_{2} \partial x_{2}} \sum_{c \in C_{i}} (x_{1} - x_{c}) \frac{\partial^{2} f_{\partial x_{2} \partial x_{2}}}{\partial x_{2} \partial x_{2}} \sum_{c \in C_{i}} (x_{1} - x_{c}) \frac{\partial^{2} f_{\partial x_{2} \partial x_{2}}}{\partial x_{2} \partial x_{2}} \sum_{c \in C_{i}} (x_{1} - x_{c}) \frac{\partial^{2} f_{\partial x_{2} \partial x_{2}}}{\partial x_{2} \partial x_{2}} \sum_{c \in C_{i}} (x_{1} - x_{c}) \frac{\partial^{2} f_{\partial x_{2} \partial x_{2}}}{\partial x_{2} \partial x_{2}} \sum_{c \in C_{i}} (x_{1} - x_{c}) \frac{\partial^{2} f_{\partial x_{2} \partial x_{2}}}{\partial x_{2} \partial x_{2}} \sum_{c \in C_{i}} (x_{1} - x_{c}) \frac{\partial^{2} f_{\partial x_{2}}}{\partial x_{2}} \sum_{c \in C_{i}} (x_{1} - x_{c}) \frac{\partial$$

Newton-Raphson method

Derivatives can be arranged in Hessian matrix

• Derivatives can be arranged in Hessian matrix
$$H_f(x) = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1 \partial x_1} & \frac{\partial^2 f}{\partial x_2 \partial x_2} & \frac{\partial^2 f}{\partial x_3 \partial x_1} & \dots & \frac{\partial^2 f}{\partial x_3 \partial x_3} \\ \frac{\partial^2 f}{\partial x_2 \partial x_1} & \frac{\partial^2 f}{\partial x_2 \partial x_2} & \frac{\partial^2 f}{\partial x_3 \partial x_2} & \dots \\ & & & \frac{\partial^2 f}{\partial x_3 \partial x_3} & \dots \\ \vdots & \vdots & \frac{\partial^2 f}{\partial x_3 \partial x_1} & \frac{\partial^2 f}{\partial x_3 \partial x_2} & \dots \\ \frac{\partial^2 f}{\partial x_3 \partial x_2} & \dots & \frac{\partial^2 f}{\partial x_3 \partial x_2} & \dots \\ \frac{\partial^2 f}{\partial x_3 \partial x_3} & \dots & \frac{\partial^2 f}{\partial x_3 \partial x_2} & \dots \\ \frac{\partial^2 f}{\partial x_3 \partial x_3} & \dots & \frac{\partial^2 f}{\partial x_3 \partial x_2} & \dots \\ \frac{\partial^2 f}{\partial x_3 \partial x_3} & \dots & \frac{\partial^2 f}{\partial x_3 \partial x_2} & \dots \\ \frac{\partial^2 f}{\partial x_3 \partial x_3} & \dots & \frac{\partial^2 f}{\partial x_3 \partial x_2} & \dots \\ \frac{\partial^2 f}{\partial x_3 \partial x_3} & \dots & \frac{\partial^2 f}{\partial x_3 \partial x_2} & \dots \\ \frac{\partial^2 f}{\partial x_3 \partial x_3} & \dots & \frac{\partial^2 f}{\partial x_3 \partial x_2} & \dots \\ \frac{\partial^2 f}{\partial x_3 \partial x_3} & \dots & \frac{\partial^2 f}{\partial x_3 \partial x_2} & \dots \\ \frac{\partial^2 f}{\partial x_3 \partial x_3} & \dots & \frac{\partial^2 f}{\partial x_3 \partial x_2} & \dots \\ \frac{\partial^2 f}{\partial x_3 \partial x_3} & \dots & \frac{\partial^2 f}{\partial x_3 \partial x_2} & \dots \\ \frac{\partial^2 f}{\partial x_3 \partial x_3} & \dots & \frac{\partial^2 f}{\partial x_3 \partial x_2} & \dots \\ \frac{\partial^2 f}{\partial x_3 \partial x_3} & \dots & \frac{\partial^2 f}{\partial x_3 \partial x_2} & \dots \\ \frac{\partial^2 f}{\partial x_3 \partial x_3} & \dots & \frac{\partial^2 f}{\partial x_3 \partial x_3} & \dots \\ \frac{\partial^2 f}{\partial x_3 \partial x_3} & \dots & \frac{\partial^2 f}{\partial x_3 \partial x_3} & \dots \\ \frac{\partial^2 f}{\partial x_3 \partial x_3} & \dots & \frac{\partial^2 f}{\partial x_3 \partial x_3} & \dots \\ \frac{\partial^2 f}{\partial x_3 \partial x_3} & \dots & \frac{\partial^2 f}{\partial x_3 \partial x_3} & \dots \\ \frac{\partial^2 f}{\partial x_3 \partial x_3} & \dots & \frac{\partial^2 f}{\partial x_3 \partial x_3} & \dots \\ \frac{\partial^2 f}{\partial x_3 \partial x_3} & \dots & \frac{\partial^2 f}{\partial x_3 \partial x_3} & \dots \\ \frac{\partial^2 f}{\partial x_3 \partial x_3} & \dots & \frac{\partial^2 f}{\partial x_3 \partial x_3} & \dots \\ \frac{\partial^2 f}{\partial x_3 \partial x_3} & \dots & \frac{\partial^2 f}{\partial x_3 \partial x_3} & \dots \\ \frac{\partial^2 f}{\partial x_3 \partial x_3} & \dots & \frac{\partial^2 f}{\partial x_3 \partial x_3} & \dots \\ \frac{\partial^2 f}{\partial x_3 \partial x_3} & \dots & \frac{\partial^2 f}{\partial x_3 \partial x_3} & \dots \\ \frac{\partial^2 f}{\partial x_3 \partial x_3} & \dots & \frac{\partial^2 f}{\partial x_3 \partial x_3} & \dots \\ \frac{\partial^2 f}{\partial x_3 \partial x_3} & \dots & \frac{\partial^2 f}{\partial x_3 \partial x_3} & \dots \\ \frac{\partial^2 f}{\partial x_3 \partial x_3} & \dots & \frac{\partial^2 f}{\partial x_3 \partial x_3} & \dots \\ \frac{\partial^2 f}{\partial x_3 \partial x_3} & \dots & \frac{\partial^2 f}{\partial x_3 \partial x_3} & \dots \\ \frac{\partial^2 f}{\partial x_3 \partial x_3} & \dots & \frac{\partial^2 f}{\partial x_3 \partial x_3} & \dots \\ \frac{\partial^2 f}{\partial x_3 \partial x_3} & \dots & \frac{\partial^2 f}{\partial x_3 \partial x_3} & \dots \\ \frac{\partial^2 f}{\partial x_3 \partial x_3} & \dots & \frac{\partial^2 f}{\partial x_3 \partial x_3} & \dots \\ \frac{\partial^2 f}{\partial x_3 \partial x_3} & \dots & \frac{\partial^2 f}{\partial x_3 \partial x_3} & \dots \\ \frac{\partial^2 f}{\partial x_3 \partial x_3} & \dots & \frac{\partial^2 f$$

Newton-Raphson method

Update function becomes

$$x_{i+1} = x - H_f^{-1}(x_i) \nabla f(x_i)$$

where $H_f^{-1}(x_i)$ is the inverse of the Hessian matrix $H_f(x_i)$

We will not cover constrained optimization which lets us add conditions that must hold, e.g.:

> (x_i, y_i) cannot be on a mountain (x_i, y_i) cannot be in a lake

Actions and contingency plans

- Deterministic
 - Percepts only needed for initial state
 - We know the results of every action
- Non-deterministic
 - No longer sure what the next state is
- Partially observable
 - Might not be certain of initial state

Non-deterministic/partially observable environments require *contingency plans* (aka strategies)

Contingency plans

• We redefine the result of an action such that it returns multiple possible states.

Example for a partially observable environment result(state(xy(32,45), ok), deltaxy_m(0,3)) ← { state(xy(32,48), falling), state(xy(32,48), ok) }

See erratic vacuum world section 4.3.1 for a more developed example

And-or search

- To simplify, assume a single start state
- Expand the node and take actions
 - or nodes represent deterministic choices
 - and nodes environment decides outcome of an action (nondeterministic as far as agent is concerned)
- With or nodes, we continue searching for a solution.
- With and nodes, there needs to be a solution along every node of the and.

And-or search

 $\begin{tabular}{ll} \textbf{function} & \texttt{AND-OR-GRAPH-SEARCH}(problem) & \textbf{returns} & a & conditional & plan, & or & failure \\ & \texttt{OR-SEARCH}(problem.Initial-State, problem, [\,]) \\ \end{tabular}$

function OR-SEARCH(state, problem, path) returns a conditional plan, or failure if problem. GOAL-TEST(state) then return the empty plan if state is on path then return failure for each action in problem. ACTIONS(state) do $plan \leftarrow \text{AND-SEARCH}(\text{RESULTS}(state, action), problem, [state \mid path])$ if $plan \neq failure$ then return $[action \mid plan]$ return failure

function AND-SEARCH(states, problem, path) returns a conditional plan, or failure for each s_i in states do

 $plan_i \leftarrow \text{OR-SEARCH}(s_i, problem, path)$

if $plan_i = failure$ then return failure

return [if s_1 then $plan_1$ else if s_2 then $plan_2$ else . . . if s_{n-1} then $plan_{n-1}$ else $plan_n$]

Figure 4.11, R&N