PadhAl: 6 Jars of Sigmoid Neuron

One Fourth Labs

Sigmoid Evaluation

How do you check the performance

1. Consider the following test data

	phone1	phone2	phone3	phone4
Launch (within 6 months) x ₁	1	0	0	1
Weight (g) x ₂	0.2	0.73	0.6	0.8
Screen Size (< 5.9in) x ₃	0.2	0.7	0.8	0.9
Dual sim x ₄	0	1	0	0
Internal mem(>= 64gb, 4gb ram) x ₅	1	0	0	0
NFC x ₆	0	0	1	0
Radio x ₇	1	1	1	0
Battery (mAh) x ₈	0.83	0.96	0.9	0.2
Price? (k) x ₉	0.34	0.4	0.6	0.1
Liked (y)	0.17	0.67	0.9	0.3
Predicted(ŷ)	0.24	0.67	0.9	0.3

2. Calculate the Root Mean Square Error

3.
$$RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (y - \hat{y})^2}$$

- 4. Here, RMSE = 0.311, the smaller the better
- 5. For classification problems, set a threshold $\, arepsilon \,$, such that

a.
$$(y|\hat{y} < \varepsilon) = 0$$

b.
$$(y|\hat{y}>=\epsilon)=1$$