0.1 Linguaggio

possiamo definire un linguaggio L su E un sottoinsieme di E^* tale che $L \subseteq E^*$. Per esempio, preso $E = \{a, b, c\}$, un linguaggio L potrebbe essere $L_1 = \{aa, cbc\}$. Un linguaggio può essere finito (vedi L_1), oppure infiniti (es. $L_2 = \{w \in E^* \mid w \text{ contiene lo stesso numero di } a e c\}$).

Preso un linguaggio $L \subseteq E^*$, possiamo affermare che:

- 1. $\emptyset \subseteq L$;
- 2. $\varepsilon \subset L$;
- 3. $E^{\star} \subseteq L$;

sono tutti linguaggi. La principale caratteristica di un linguaggio è che esso deve essere riconosciuto e interpretato da una macchina (o automa) ed essa deve anche essere in grado di generarlo tramite una *grammatica*.

Problema di Decisione. Il problema di decisione si presenta nel momento in cui, dato un quesito, le possibili risposte sono sempre e sole "si" o "no".

Problema di Membership. Il problema di Memebership è legato al concetto di stringa (come input), di linguaggio e di appartenenza ad un determinato linguaggio. Data una stringa w in input, una determinata macchina deve essere in grado di dire se essa appartiene ad un linguaggio oppure no.

DEFINIZIONI Una forma sentenziale è una stringa di simboli terminali e non terminali: $\gamma \in (V \cup T)^*$

0.2 Grammatica context-free -CFG-

Una grammatica context free è una grammatica che non prevede l'incrocio dei simboli terminali per cui è necessario utilizzare delle regole differenti. Un esempio di linguaggio context free è il seguente:

Stringhe palindrome : le stringhe palindrome sono un esempio semplice di linguaggio che utilizza una grammatica context-free. Abbiamo il l'alfabeto $E = \{0,1\}$ e il linguaggio costruito su esso $L_{pal} \subseteq E^*$. Da questo alfabeto e con questo linguaggio possiamo costruire una stringa w palondroma come

$$w = \{0110\}$$

Essa può essere definita per induzione come segue:

1. Caso base: $\varepsilon, 0, 1 \in L_{pal}$

2. Caso induttivo: se $w \in L_{pal}$, allora $0w0, 1w1, \varepsilon \in L_{pal}$

0.3 Grammatica NON context-free

Il linguaggio di esempio (di tipo 2): $L = \{w \in \{a, b, c\}^* | w = a^n b^n c^n, n \ge 1\}$ è generato dalla seguente grammatica (NON context-free):

$$G = (\{S, X, B, C\}, \{a, b, c\}, P, S)$$

e dove le regole di produzione sono:

1. $S \rightarrow aSBC$

2. $S \rightarrow aBC$

3. $CB \rightarrow XB$

4. $XB \rightarrow XC$

5. $XC \rightarrow BC$

6. $aB \rightarrow ab$

7. $bB \rightarrow bb$

8. $bC \rightarrow bc$

9. $cC \rightarrow cc$

Le grammatuche 3,4,5 possono essere "collassate" in $CB \to BC$ Si può dimostrare , usando il Pumping Lemma per i CFL, che non è context-free.

Esempio di Derivazione:

Deriviamo la stringa abc (corrispondente a n = 1), indicando anche ad ogni passo la regola usata.

$$S(2) \rightarrow aBC(6) \rightarrow abC(8) \rightarrow abc$$

Deriviamo la stringa aabbce (corrispondente a n=1), indicando anche ad ogni passo la regola usata.

$$S(1) \rightarrow aSBC(2) \rightarrow aaBCBC(3) \rightarrow aaBXBC(4) \rightarrow aaBXCC(5) \rightarrow aaACC(5) \rightarrow aaA$$

$$\rightarrow aaBBCC(6) \rightarrow aabBCC(7) \rightarrow aabbCC(8) \rightarrow aabbcC(9) \rightarrow aabbcC$$

In generale, per derivare $a^nb^nc^n$, per n < 1:

$$S(n-1\ volte \to (1))a^{n-1}S(BC)^{n-1} \to (2)a^n(BC)^n(n(n-1)/2\ volte\ la$$

$$sequenza \rightarrow (3), \rightarrow (4), \rightarrow (5))a^nB^nC^n....slide$$

Esercizio: creo una CFG su $L = \{a^{n+m}xc^nyd^m, \ conn, m \geq 0\}$: