Physics 137B Lecture 12

Keshav Balwant Deoskar

February 12, 2024

These are notes taken from lectures on Quantum Mechanics delivered by Professor Raúl A. Briceño for UC Berekley's Physics 137B class in the Sprng 2024 semester.

Contents

1	Febr	ruary 12 - Spin-Orbit Coupling continued	2
	1.1	Darwin Term	2
	1.2	Fine Structure corrections	3
	1.3	Splitting of Energy Levels	3
	1.4	External Magnetic Fields - Zeeman Effect	3

1 February 12 - Spin-Orbit Coupling continued

Recap

• Earlier, we discussed the three corrections to the Hydrogen-atom Hamiltonian, the second one being the *spin-orbit coupling correction*

$$\hat{H}_{SO} = \frac{e^2}{8m^2\epsilon_0 c^2} \frac{\vec{S} \cdot \vec{L}}{r^3}$$

• We wrote $2\vec{S} \cdot \vec{L} = (J^2 - S^2 - L^2)$ and found the first-order energy correction to be

$$E_{SO}^{(1)} = \frac{e^2}{8m^2\epsilon_0 c^2} \langle \frac{1}{r^3} \rangle_{nl} \cdot [j(j+1) - l(l+1) - s(s+1)]$$

and we can derive

$$\langle \frac{1}{r^3} \rangle_{nl} = \frac{1}{l(l+\frac{1}{2})(l-1)n^3 a^3}$$

• Note that if l = 0 then we have j = s, the energy correction is just zero. So, Spin-Orbit coupling doesn't impact the energies of the zero-angular momentum states.

1.1 Darwin Term

Today, we'll find the correction due to the Darwin Term

$$\hat{H}'_{DAR} = \frac{\pi\hbar^2}{2m^2c^2} \cdot \frac{e^2}{4\pi\epsilon_0} \delta^3(\vec{r})$$

which *only* contributes to the l = 0 states.

Why is this? One way to think about it is to recall that when we solved the Schrodinger Equation for the Coulomb potential, we had

$$V_{eff}(r) = V_{coulomb}(r) + \underbrace{\frac{\hbar}{2m} \frac{l(l+1)}{r^2}}_{centrifugal}$$

[Include picture]

At lower r, the centrifugal potential dominates and is a large positive number whereas for large r the coulomb potential dominates and is a negative number close to zero (negative since it's attractive).

As a result, we required our ormalizable states to go to satisfy $\psi_{nlm}(0) \to 0$ for all l > 0. [Explain more clearly; watch recording]

Now, let's calculate the Darwin Correction.

$$\begin{split} E_{DAR}^{(1)} &= \frac{\pi \hbar^2}{2m^3c^2} \frac{e^2}{4\pi\epsilon_0} \langle n00|\delta^3(\vec{r})|n00\rangle \\ &= \frac{\pi \hbar^2}{2m^3c^2} \frac{e^2}{4\pi\epsilon_0} \frac{1}{\pi n^3a^3} \end{split}$$

Note that

$$E_n^{(0)} = -\frac{m}{2\hbar^2} \left(\frac{e^2}{4\pi\epsilon_0}\right)^2 \frac{1}{n}$$
$$= -\frac{mc^2}{2} \underbrace{\left(\frac{e^2}{4\pi\epsilon_0} \frac{1}{c\hbar}\right)^2}_{\alpha^2} \frac{1}{n^2}$$

and since $\alpha \approx \frac{1}{137} << 1$ we have

$$E_n^{(0)} \approx \frac{E_1^{(0)}}{n^2}$$

1.2 Fine Structure corrections

Now that we've calculate each of the corrections individually, the total Fine Structure Corrections are given by

$$\begin{split} E_n^{(1)} &= E_{rel}^{(1)} + E_{SO}^{(1)} + E_{DAR}^{(1)} \\ &= E_n^{(0)} \frac{\alpha^2}{n^2} \left(\frac{n}{j+1/2} - \frac{3}{4} \right) \end{split}$$

Thus,

$$E^{(0)} \sim \mathcal{O}(\alpha^2)$$

 $E^{(1)} \sim \mathcal{O}(\alpha^4)$

1.3 Splitting of Energy Levels

[Include Image]

1.4 External Magnetic Fields - Zeeman Effect

Everything we've done earlier has been *internal*. Now, we're going to submerge the entire atom i.e. both the electron and proton in an external magnetic field \vec{B}_{ext} .

Then, we have a perturbation to the Hamiltonian given by

$$\hat{H}_z = -(\mu_s + \mu_L) \cdot \vec{B}_{ext}$$

where the z-subscript stands for "Zeeman", not z-axis.

Earlier, we discussed how the magnetic moment of a charged particle is inversely proportional to its mass:

$$\mu_s = \frac{q}{m}\vec{S}, \quad \mu_L = \frac{q}{2m}\vec{L}$$

Because the proton is on the order of 1000 times heavier than the electron, its magnetic moment μ_p is negligible compared to μ_e . Thus, we will neglect the effect due to the proton and only worry about the electron.

$$\implies \hat{H}_z = \frac{e}{2m} \left(\vec{L} + 2\vec{S} \right) \cdot \vec{B}$$

Since we have a uniform magnetic field $\vec{B}(\vec{r}) = \vec{B}_0$. Let's consider a weak field $\vec{B}_{ext} = B_0 \hat{z}$ where B_0 is small relative to the fine-structure corrections.

All we need to do is use J = L + S since it's a good quantum number.

$$E_{zeeman}^{(1)} = \frac{e}{2m} B_0 \langle (L_z + 2S_z) \rangle_{rel}$$

$$= \frac{e}{2m} B_0 \langle (J_z + S_z) \rangle_{rel}$$

$$= \frac{e}{2m} B_0 (m_j \hbar + \langle S_z \rangle_{rel})$$

We can then evaluate the expectation value using the $|l,m\rangle$ -space representation of the stat e $|j=l\pm\frac{1}{2},m_s\rangle$

$$|j=l\pm \frac{1}{2},m_s\rangle =$$

We find the expectation value to be

$$\langle S_z \rangle_{rel} = \pm \frac{m_j \hbar}{2l+1}$$

Thus,

$$E_{zeeman}^{(1)} = \frac{eB_0}{2m} m_j \hbar \left(1 \pm \frac{1}{2l+1} \right)$$