University of Oklahoma Department of Mathematics

Homework #9

Student name: Clayton Curry

Course: Abstract Linear Algebra – Professor: Dr. Gregory Muller Due date: Oct 24, 2021

Problem 5

Suppose $T \in \mathcal{L}(V)$, m is a positive integer, and $v \in V$ is such that $T^{m-1}v \neq 0$ but $T^mv = 0$. Prove that

$$v, Tv, T^2v, \cdots, T^{m-1}v$$

is linearly independent.

Answer. Because $T^m v = 0, T^{m-1} v \in \ker T$ and $V = \ker T \oplus \operatorname{im} T$, First to demonstrate that $\{v\}$ is linearly independent.

$$T^{m-1}v = 0 \implies v \neq 0 \implies \{v\}$$
 is linearly independent

Now to demonstrate that if $T^{m-1}v \neq 0$ and $T^mv = 0$ then .

Suppose $T \in \mathcal{L}(C^3)$ is defined by $T(z_1, z_2, z_3) = (z_2, z_3, 0)$. Prove that T has no square root. More precisely, prove that there does not exist $S \in \mathcal{L}(C^3)$ such that $S^2 = T$.

Suppose $N \in \mathcal{L}(V)$ is nilpotent. Prove that 0 is the only eigenvalue of N.

Suppose $S, T \in \mathcal{L}(V)$ and ST is nilpotent. Prove that TS is nilpotent.

Suppose $N \in \mathcal{L}(V)$ and there exists a basis of V with respect to which N has an upper-triangular matrix with only 0's on the diagonal. Prove that N is nilpotent.