# REVIEW OF LOGISTIC REGRESSION

Dr. Aric LaBarr
Institute for Advanced Analytics

# MATH REVIEW

#### Odds vs. Probability

Odds is the ratio of events to non-events:

$$Odds = \frac{\#yes}{\#no}$$

Probability is the ratio of event to the total number of outcomes:

$$p = \frac{\#yes}{\#yes + \#no}$$

Odds and Probability are related:

$$Odds = \frac{p}{1 - p} \qquad \qquad p = \frac{Odds}{1 + Odds}$$

|                | No Buy | Buy | Total |
|----------------|--------|-----|-------|
| No<br>Checking | 30     | 54  | 84    |
| Checking       | 291    | 125 | 416   |
| Total          | 321    | 179 | 500   |

|                | No Buy | Buy | Total |
|----------------|--------|-----|-------|
| No<br>Checking | 30     | 54  | 84    |
| Checking       | 291    | 125 | 416   |
| Total          | 321    | 179 | 500   |

Probability of **NO BUY** in **Checking** account customers 
$$= \frac{291}{416} = 0.70$$

|                | No Buy | Buy | Total |
|----------------|--------|-----|-------|
| No<br>Checking | 30     | 54  | 84    |
| Checking       | 291    | 125 | 416   |
| Total          | 321    | 179 | 500   |

$$=\frac{125}{416}=0.30$$

|                | No Buy | Buy | Total |
|----------------|--------|-----|-------|
| No<br>Checking | 30     | 54  | 84    |
| Checking       | 291    | 125 | 416   |
| Total          | 321    | 179 | 500   |

Odds of BUY in Checking account customers 
$$=\frac{\text{Prob.}}{\text{Prob.}}$$

$$=\frac{\text{Prob. of Buy}}{\text{Prob. of No Buy}} = \frac{0.30}{0.70} = 0.43$$

#### Odds Ratio

 Odds Ratio indicates how likely (in terms of odds) an event is for one group relative to another:

$$OR = \frac{Odds_A}{Odds_B}$$

- Since odds are always non-negative, so are odds ratios
  - OR > 1 → Event more likely for A than for B
  - OR < 1 → Event more likely for B than for A</li>
  - OR = 1 → Event equally likely in each group

|                | No Buy | Buy | Total |
|----------------|--------|-----|-------|
| No<br>Checking | 30     | 54  | 84    |
| Checking       | 291    | 125 | 416   |
| Total          | 321    | 179 | 500   |

Odds of BUY in Checking 
$$= 0.43$$

**Odds Ratio:** No Checking to Checking 
$$=\frac{1.77}{0.43}=4.12$$

#### Odds Ratio

Odds of BUY in No Checking 
$$= 1.77$$

Odds of BUY in Checking 
$$= 0.43$$

**Odds Ratio:** No Checking to Checking 
$$=\frac{1.77}{0.43}=4.12$$

Non-Checking account customers have **4.12 times the odds** of buying the insurance product as compared to checking account customers.

#### Relative Risk

 Relative Risk indicates how likely (in terms of probability) an event is for one group relative to another:

$$RR = \frac{p_A}{p_B}$$

- Since probabilites are always non-negative, so are relative risks
  - RR > 1 → Event more likely for A than for B
  - RR < 1 → Event more likely for B than for A</li>
  - RR = 1 → Event equally likely in each group

#### Math for Logistic Regression

- The following are rules involving the exponential function and natural logarithm:
  - $e^a > 0$  for any number a
  - $e^{a+b} = e^a e^b$ , and  $e^{a-b} = \frac{e^a}{e^b}$
  - log(a) can be any number, but a > 0
    - $\log(a) = -\infty$  if a = 0
    - $\log(a)$  does not exist if a < 0
  - $\log(a \times b) = \log(a) + \log(b)$ , and  $\log\left(\frac{a}{b}\right) = \log(a) \log(b)$
  - $\log(e^a) = a$ , and  $e^{\log(a)} = a$
  - $a^{-1} = \frac{1}{a}$

# BINARY LOGISTIC REGRESSION REVIEW

#### Assumptions for OLS Regression

- The random error term has a Normal distribution with a mean of zero.
- The random error term has constant variance.
- The error terms are independent.
- Linearity of the mean.
- No perfect collinearity.

#### Why Not Least Squares Regression?

$$y_i = \beta_0 + \beta_1 x_{1,i} + \varepsilon_i$$

- If the response variable is categorical, then how do you code the response numerically?
- If the response is coded (1=Yes and 0=No) and your regression equation predicts 0.5 or 1.1 or -0.4, what does that mean practically?
- If there are only two (or a few) possible response levels, is it reasonable to assume constant variance and normality?

#### Linear Probability Model

$$p_i = \beta_0 + \beta_1 x_{1,i} + \cdots + \beta_k x_{k,i}$$

#### Problems:

- Probabilities are bounded, but linear functions can take on any value. (How do you interpret a predicted value of -0.4 or 1.1?)
- The relationship between probabilities and X is usually nonlinear. Example, one unit change in X will have different effects when the probability is near 1 or 0.5.

#### Logistic Regression Model

$$p_{i} = \frac{1}{1 + e^{-(\beta_{0} + \beta_{1} x_{1,i} + \cdots + \beta_{k} x_{k,i})}}$$

- Has desired properties:
  - The predicted probability will always be between 0 and 1.
  - The parameter estimates do not enter the model equation linearly.
  - The rate of change of the probability varies as the X's vary.

## Logistic Regression Curve



#### The Logit Link Transformation

$$\log\left(\frac{p_i}{1-p_i}\right) = \beta_0 + \beta_1 x_{1,i} + \cdots + \beta_k x_{k,i}$$

- To create a linear model, a link function (logit) is applied to the probabilities.
- The relationship between the parameters and the logits are linear.
- Logits unbounded.

### The Logit Link Transformation



## CATEGORICAL INPUTS

#### Reference Coding

- Categorical variables need to be coded differently because they are not numerical in nature.
- Reference coding is a common way to code categorical variables.
- 2 Category Example (A, B):

$$x = \begin{cases} 1 & \text{if A} \\ 0 & \text{if B} \end{cases}$$

3 Category Example (A, B, C):

|   | $x_1$ | $x_2$ |
|---|-------|-------|
| А | 1     | 0     |
| В | 0     | 1     |
| С | 0     | 0     |

#### Reference Coding

- Categorical variables need to be coded differently because they are not numerical in nature.
- Reference coding is a common way to code categorical variables.
- 3 Category Example (A, B, C):

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2$$

Average difference between category A and C.

|   | $x_1$ | $x_2$ |
|---|-------|-------|
| Α | 1     | 0     |
| В | 0     | 1     |
| С | 0     | 0     |

#### Reference Coding

- Categorical variables need to be coded differently because they are not numerical in nature.
- Reference coding is a common way to code categorical variables.
- 3 Category Example (A, B, C):

| $\hat{y} = \hat{\beta}_0$ | $+\hat{\beta}_1x_1$ | $+\hat{\beta}_2x_2$ |
|---------------------------|---------------------|---------------------|
|                           |                     |                     |

Average difference between category B and C.

|   | $x_1$ | $x_2$ |
|---|-------|-------|
| Α | 1     | 0     |
| В | 0     | 1     |
| С | 0     | 0     |

#### **Effects Coding**

- Categorical variables need to be coded differently because they are not numerical in nature.
- Effects coding is another common way to code categorical variables.
- 2 Category Example (A, B):

$$x = \begin{cases} 1 & \text{if A} \\ -\mathbf{1} & \text{if B} \end{cases}$$

3 Category Example (A, B, C):

|   | $x_1$ | $x_2$ |
|---|-------|-------|
| Α | 1     | 0     |
| В | 0     | 1     |
| С | -1    | -1    |

#### **Effects Coding**

- Categorical variables need to be coded differently because they are not numerical in nature.
- Effects coding is another common way to code categorical variables.
- 3 Category Example (A, B, C):

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2$$

Average difference between category A and the overall average of categories A, B, & C.

|   | $x_1$ | $x_2$ |
|---|-------|-------|
| Α | 1     | 0     |
| В | 0     | 1     |
| С | -1    | -1    |

#### **Effects Coding**

- Categorical variables need to be coded differently because they are not numerical in nature.
- Effects coding is another common way to code categorical variables.
- 3 Category Example (A, B, C):

| $\hat{y} = \hat{\beta}_0 + \mu$ | $\hat{\beta}_1 x_1 + \hat{\beta}_2 x_2$ |
|---------------------------------|-----------------------------------------|
|                                 |                                         |
|                                 |                                         |

Average difference between category B and the overall average of categories A, B, & C.

|   | $x_1$ | $x_2$ |
|---|-------|-------|
| А | 1     | 0     |
| В | 0     | 1     |
| С | -1    | -1    |