Problème du rectangle inscrit

Emanuel Morille

1 Janvier 1980

Table des matières

1.	Bases de théorie des catégories	2
	1.1. Catégories · · · · · · · · · · · · · · · · · · ·	2
	1.2. Foncteurs · · · · · · · · · · · · · · · · · · ·	3
	1.3. Transformations naturelles · · · · · · · · · · · · · · · · · · ·	3
2.	Catégorie Comp des complexes de chaînes	4
	2.1. Complexes de chaînes · · · · · · · · · · · · · · · · · · ·	2
	2.2. Morphismes de complexes · · · · · · · · · · · · · · · · · · ·	4
	2.3. La catégorie Comp · · · · · · · · · · · · · · · · · · ·	5
	2.4. Premières propriétés · · · · · · · · · · · · · · · · · · ·	5
3.	Homologie singulière	9
	3.1. Simplexes · · · · · · · · · · · · · · · · · · ·	ç
	3.2. Chaînes singulières · · · · · · · · · · · · · · · · · · ·	10
	3.3. Définitions de l'homologie singulière · · · · · · · · · · · · · · · · · · ·	12
	3.3.1. D'un espace topologique · · · · · · · · · · · · · · · · · · ·	12
	3.3.2. D'une paire d'espace topologique	13
Bi	bliographie	13

13858

1. Bases de théorie des catégories

1.1. Catégories

Définition 1.1. Une *catégorie* \mathcal{C} est la donnée de :

- Une classe $ob(\mathcal{C})$ dont les éléments sont appelés les *objets de* \mathcal{C} .
- Une classe hom(*C*) dont les éléments sont appelés les *morphismes de C*.
 Un morphisme *f* ∈ hom(*C*) a un *domaine X* ∈ ob(*C*) et un *codomaine Y* ∈ ob(*C*). On note alors ce morphisme *f* : *X* → *Y* et hom(*X*, *Y*) l'ensemble des morphismes de *X* dans *Y*.
- Pour tout objets $X, Y, Z \in ob(\mathcal{C})$, une *composition*:

$$\circ$$
: hom $(Y, Z) \times \text{hom}(X, Y) \rightarrow \text{hom}(X, Z)$.

• Pour tout objet $X \in ob(\mathcal{C})$, un morphisme *identité* :

$$id_X: X \to X$$
.

Vérifiant les propriétés suivantes pour tout objets $X, Y, Z, T \in ob(\mathcal{C})$:

• Associativité: Pour tout morphismes $f: X \to Y, g: Y \to Z$ et $h: Z \to T$, on a:

$$h \circ (g \circ f) = (h \circ g) \circ f$$
.

• *Identité* : Pour tout morphisme $f: X \to Y$, on a :

$$id_Y \circ f = f = f \circ id_X$$
.

Exemple 1.2. La catégorie Ab des groupes abéliens :

- Les objets de Ab sont les groupes abéliens.
- Les morphismes de Ab sont les morphismes de groupes.

Exemple 1.3. Un groupe gradué est un groupe G muni d'une famille de sous-groupes $(G_i)_{i \in I}$ telle que $G = \bigoplus_{i \in I} G_i$. Pour tout $i \in I$, un élément non-nul de G_i est dit homogène de degré i.

Soit $G \coloneqq \bigoplus_{i \in I} G_i$ et $H \coloneqq \bigoplus_{i \in I} H_i$ deux groupes gradués. Un morphisme de groupes gradués est un morphisme de groupes $\varphi : G \to H$ tel que pour tout $i \in I$, on a $\varphi(G_i) \subset H_i$.

On définit ainsi la catégorie GrAb des groupes abéliens gradués :

- Les objets de GrAb sont les groupes abéliens gradués.
- Les morphismes de GrAb sont les morphismes de groupes gradués.

Exemple 1.4. La catégorie Top des espaces topologiques :

- Les objets de Top sont les espaces topologiques.
- Les morphismes de Top sont les applications continues.

Exemple 1.5. Une paire d'espaces topologiques est un espace topologique X muni d'une partie A de lui-même. On la note (X,A).

Soit (X, A) et (Y, B) deux paires d'espaces topologiques. Un *morphisme de paires* est une application continue $f: X \to Y$ telle que $f(A) \subset B$. On le note $f: (X, A) \to (Y, B)$.

On définit ainsi catégorie Top₂ des paires d'espaces topologiques :

- Les objets de Top₂ sont les paires d'espaces topologiques.
- Les morphismes de Top₂ sont les morphismes de paires.

Exemple 1.6. Soit (X, \leq) un ensemble partiellement ordonné. On définit la catégorie $\mathcal{C}(X, \leq)$:

- Les objets de $\mathcal{C}(X, \leq)$ sont les éléments de X.
- Pour tout $x, y \in X$, si $x \le y$, on a un morphisme $f_{x,y} : x \to y$.
- Pour tout $x, y, z \in X$, si $x \le y$ et $y \le z$, on a bien $x \le z$ et une composition $f_{y,z} \circ f_{x,y} = f_{x,z}$.
- Pour tout $x \in X$, on a bien $x \le x$ et un morphisme identité $f_{x,x}$.

Définition 1.7. Soit \mathcal{C} une catégorie. La *catégorie opposée* (ou duale) de \mathcal{C} , notée \mathcal{C}^{op} , est la catégorie dont les objets sont les objets \mathcal{C} et dont les morphismes sont les morphismes de \mathcal{C} dont le domaine et le codomaine sont inversés.

Exemple 1.8. Soit (X, \leq) un ensemble partiellement ordonné. Alors on a $\mathcal{C}(X, \leq)^{\mathsf{op}} = \mathcal{C}(X, \leq)$ où pour tout $x, y \in X$, on a $x \leq y$ si et seulement si $y \leq x$.

1.2. Foncteurs

Définition 1.9. Soit $\mathcal C$ et $\mathcal D$ deux catégories. Un *foncteur (covariant) F de* $\mathcal C$ *vers* $\mathcal D$ est la donnée :

- Pour tout objet $X \in ob(\mathcal{C})$, d'un objet $F(X) \in ob(\mathcal{D})$.
- Pour tout objets $X, Y \in ob(C)$ et morphisme $f: X \to Y$, d'un morphisme $F(f): F(X) \to F(Y)$.

Vérifiant les propriétés suivantes pour tout objets $X, Y, Z \in ob(\mathcal{C})$:

• Composition : Pour tout morphismes $f: X \to Y$ et $g: Y \to Z$, on a :

$$F(g \circ f) = F(g) \circ F(f)$$
.

• Identité : On a :

$$F(\mathrm{id}_X) = \mathrm{id}_{F(X)}$$
.

Exemple 1.10. Soit \mathcal{C} et \mathcal{D} deux catégories. On définit le foncteur covariant constant $\mathcal{C}:\mathcal{C}\to\mathcal{D}$:

- On prend $D \in \mathcal{D}$, pour tout objet $X \in ob(\mathcal{C})$, on a C(X) := D.
- Pour tout objets $X, Y \in ob(\mathcal{C})$ et morphisme $f: X \to Y$, on a $C(f) := id_D$.

Exemple 1.11. Soit \mathcal{C} une catégorie. On définit le foncteur covariant identité $\mathrm{id}_{\mathcal{C}}:\mathcal{C}\to\mathcal{C}:$

- Pour tout objet $X \in ob(\mathcal{C})$, on a $id_{\mathcal{C}}(X) := X$.
- Pour tout objets $X, Y \in ob(\mathcal{C})$ et morphisme $f: X \to Y$, on a $id_{\mathcal{C}}(f) := f$.

Définition 1.12. Soit \mathcal{C} et \mathcal{D} deux catégories. Un *foncteur contravariant* est un foncteur covariant de la catégorie opposée \mathcal{C}^{op} vers \mathcal{D} .

Exemple 1.13. Soit \mathbb{K} un corps et Vect la catégorie des \mathbb{K} -espaces vectoriels. On définit un foncteur contravariant $F: \mathsf{Vect}^\mathsf{op} \to \mathsf{Vect}:$

- Pour tout \mathbb{K} -espace vectoriel $E \in \text{Vect}$, on a $F(E) := E^*$.
- Pour tout \mathbb{K} -espaces vectoriels $E, F \in \mathsf{Vect}$ et application linéaire $u : E \to F$, on a :

$$F(u) := u^{\mathrm{T}} : F^* \to E^*.$$

1.3. Transformations naturelles

Définition 1.14. Soit \mathcal{C} et \mathcal{D} deux catégories, $F:\mathcal{C}\to\mathcal{D}$ et $G:\mathcal{C}\to\mathcal{D}$ deux foncteurs covariants. Une *transformation naturelle* ∂ *de* F *vers* G est la donnée pour tout objet $X\in \mathrm{ob}(\mathcal{C})$, d'un morphisme $\partial_X:F(X)\to G(X)$, vérifiant la propriété suivante pour tout objet $Y\in \mathrm{ob}(\mathcal{C})$ et pour tout morphisme $f:X\to Y$, on a :

$$\partial_Y \circ F(f) = G(f) \circ \partial_X$$

c'est-à-dire que le diagramme suivant est commutatif :

$$F(X) \xrightarrow{F(f)} F(Y)$$

$$\partial_X \downarrow \qquad \qquad \downarrow \partial_Y$$

$$G(X) \xrightarrow{G(f)} G(Y)$$

2. Catégorie Comp des complexes de chaînes

2.1. Complexes de chaînes

Définition 2.1. On appelle *complexe de chaînes*, noté C_{\bullet} , une suite de groupes abéliens $(C_n)_{n\in\mathbb{Z}}$ munie de morphismes de groupes $(d_n:C_n\to C_{n-1})_{n\in\mathbb{Z}}$ tels que pour tout $n\in\mathbb{Z}$, on a $d_nd_{n+1}=0$.

Définition 2.2. Soit C_{\bullet} un complexe de chaînes et $n \in \mathbb{Z}$.

- On appelle *n-cycle* un élément de $Z_n(C_{\bullet}) := \ker(d_n)$.
- On appelle *n-bord* un élément de $B_n(C_{\bullet}) := \operatorname{im}(d_{n+1})$.

Proposition 2.3. Soit C_{\bullet} un complexe de chaînes. Alors pour tout $n \in \mathbb{Z}$, on a $B_n(C_{\bullet}) \subset Z_n(C_{\bullet})$.

Démonstration. Soit $n \in \mathbb{Z}$. Alors $d_n d_{n+1} = 0$, donc $B_n(C_{\bullet}) = \operatorname{im}(d_{n+1}) \subset \ker(d_n) = Z_n(C_{\bullet})$. □

Définition 2.4. Soit C_{\bullet} un complexe de chaînes et $n \in \mathbb{Z}$.

- On appelle n^e groupe d'homologie le groupe quotient $H_n(C_{\bullet}) := Z_n(C_{\bullet})/B_n(C_{\bullet})$.
- On appelle *homologie* la somme directe des groupes $H_{\bullet}(C_{\bullet}) := \bigoplus_{n \in \mathbb{Z}} H_n(C_{\bullet})$.

Définition 2.5. Soit C_{\bullet} un complexe de chaînes et $n \in \mathbb{Z}$.

- On dit que C_{\bullet} est exact en C_n si $H_n(C_{\bullet})$ est trivial, c'est-à-dire, im $(d_{n+1}) = \ker(d_n)$.
- On dit que C_{\bullet} est *exact* si pour tout $n \in \mathbb{Z}$, il est exact en C_n .
- On dit que C_{\bullet} est *acyclique* si pour tout $n \in \mathbb{Z} \setminus \{0\}$, il est exact en C_n .

2.2. Morphismes de complexes

Définition 2.6. Soit C_{\bullet} et D_{\bullet} deux complexes de chaînes. On appelle *morphisme de complexes*, noté $\varphi_{\bullet}: C_{\bullet} \to D_{\bullet}$, une suite de morphismes de groupes $(\varphi_n: C_n \to D_n)_{n \in \mathbb{Z}}$ telle que pour tout $n \in \mathbb{Z}$, on a $d_n \varphi_n = \varphi_{n-1} d_n$.

Proposition 2.7. Soit C_{\bullet} , D_{\bullet} et E_{\bullet} trois complexes de chaînes, $\varphi_{\bullet}: C_{\bullet} \to D_{\bullet}$ et $\psi_{\bullet}: D_{\bullet} \to E_{\bullet}$ deux morphismes de complexes. Alors la composition $\psi_{\bullet} \circ \varphi_{\bullet}: C_{\bullet} \to E_{\bullet}$ est un morphisme de complexes.

Démonstration. Soit $n \in \mathbb{Z}$. Alors on a :

$$\mathrm{d}_n(\psi_n\circ\varphi_n)=\psi_{n-1}\mathrm{d}_n\varphi_n=(\psi_{n-1}\circ\varphi_{n-1})\mathrm{d}_n.$$

Donc $(\psi_n \circ \varphi_n)_{n \in \mathbb{Z}}$ est bien un morphisme de complexes.

Proposition 2.8. Soit C_{\bullet} un complexe de chaînes. Alors le morphisme identité $\mathrm{id}_{C_{\bullet}}: C_{\bullet} \to C_{\bullet}$ est un morphisme de complexes.

Démonstration. Soit $n \in \mathbb{Z}$. Alors on a :

$$d_n id_n = d_n = id_{n-1} d_n$$
.

Donc $(id_{C_n})_{n\in\mathbb{Z}}$ est bien un morphisme de complexes.

Proposition 2.9. Soit C_{\bullet} et D_{\bullet} deux complexes de chaînes, $\varphi_{\bullet}: C_{\bullet} \to D_{\bullet}$ un morphisme de complexes. Alors pour tout $n \in \mathbb{Z}$, φ_n induit un morphisme de groupes de $H_n(C_{\bullet})$ dans $H_n(D_{\bullet})$.

Démonstration. Soit $n \in \mathbb{Z}$.

Soit $z \in Z_n(C_{\bullet})$. Alors on a $\mathrm{d}_n \varphi_n(z) = \varphi_{n-1}(\mathrm{d}_n z) = \varphi_{n-1}(0) = 0$, donc $\varphi_n(z) \in Z_n(D_{\bullet})$.

Soit $b \in B_n(C_{\bullet})$. Alors il existe $c \in C_{n+1}$ tel que $b = d_{n+1}c$, et on a :

$$\varphi_n(b) = \varphi_n(\mathbf{d}_{n+1}c) = \mathbf{d}_{n+1}\varphi_{n+1}(c)$$

donc $\varphi_n(b) \in B_n(D_{\bullet})$.

On considère $\overline{\varphi_n}: Z_n(C_{\bullet}) \to H_n(D_{\bullet})$, alors $B_n(C_{\bullet}) \subset \ker(\overline{\varphi_n})$ et d'après la propriété universelle du groupe quotient le morphisme $\overline{\varphi_n}$ induit bien un morphisme de $H_n(C_{\bullet})$ dans $H_n(D_{\bullet})$.

Définition 2.10. Soit C_{\bullet} et D_{\bullet} deux complexes de chaînes, $\varphi_{\bullet}: C_{\bullet} \to D_{\bullet}$ un morphisme de complexes. Pour tout $n \in \mathbb{Z}$, on note $H_n(\varphi): H_n(C_{\bullet}) \to H_n(D_{\bullet})$ le morphisme de groupes induit par φ_n .

2.3. La catégorie Comp

Définition 2.11. On appelle Comp la catégorie des complexes de chaînes :

- Les objets de Comp sont les complexes de chaînes.
- Les morphismes de Comp sont les morphismes de complexes.
- La composition de Comp découle de la Proposition 2.7.
- Le morphisme identité de Comp découle de Proposition 2.8.

Théorème 2.12. Pour tout $n \in \mathbb{Z}$, le n^e groupe d'homologie H_n est un foncteur de Comp vers Ab.

Démonstration. Soit $n \in \mathbb{Z}$.

- Soit $C_{\bullet} \in \text{ob}(\mathsf{Comp})$ un complexe de chaînes. Alors le n^{e} groupe d'homologie $H_n(C_{\bullet})$ est bien un groupe abélien.
- Soit $C_{\bullet}, D_{\bullet} \in \text{ob}(\mathsf{Comp})$ deux complexes de chaînes et $\varphi_{\bullet} : C_{\bullet} \to D_{\bullet}$ un morphisme de complexes. Alors le morphisme induit $H_n(\varphi) : H_n(C_{\bullet}) \to H_n(D_{\bullet})$ est bien un morphisme de groupes.

La propriété de composition découle de la Proposition 2.7 et la propriété d'identité découle de la Proposition 2.8, donc H_n est bien un foncteur de Comp vers Ab.

Corollaire 2.13. L'homologie H_{\bullet} est un foncteur de Comp vers GrAb.

Démonstration.

- Soit $C_{\bullet} \in \text{ob}(\mathsf{Comp})$ un complexe de chaînes. Alors l'homologie $H_{\bullet}(C_{\bullet}) \coloneqq \bigoplus_{n \in \mathbb{Z}} H_n(C_{\bullet})$ définit bien un groupe abélien gradué.
- Soit C_{\bullet} , $D_{\bullet} \in \text{ob}(\mathsf{Comp})$ deux complexes de chaînes et $\varphi_{\bullet} : C_{\bullet} \to D_{\bullet}$ un morphisme de complexes. Alors la somme directe des morphismes induits $H_{\bullet}(\varphi) \coloneqq \bigoplus_{n \in \mathbb{Z}} H_n(\varphi)$ définit bien un morphisme de groupes abéliens gradués.

Les propriétés de composition et d'identité découlent du Théorème 2.12, donc H_{\bullet} est bien un foncteur de Comp vers GrAb.

2.4. Premières propriétés

Définition 2.14. Soit C_{\bullet} et D_{\bullet} deux complexes de chaînes, $\varphi_{\bullet}: C_{\bullet} \to D_{\bullet}$ et $\psi_{\bullet}: C_{\bullet} \to D_{\bullet}$ deux morphismes de complexes. On dit que φ_{\bullet} et ψ_{\bullet} sont *homotopes* s'il existe une suite de morphismes de groupes $(h_n: C_n \to D_{n+1})_{n \in \mathbb{Z}}$ telle que pour tout $n \in \mathbb{Z}$, on a $\varphi_n - \psi_n = h_{n-1}d_n + d_nh_n$.

Proposition 2.15. L'homotopie est une relation d'équivalence sur les morphismes de complexes.

Démonstration. Notons ~ la relation d'homotopie. Soit C_{\bullet} et D_{\bullet} deux complexes de chaînes.

- Réflexivité: Soit $\varphi_{\bullet}: C_{\bullet} \to D_{\bullet}$ un morphisme de complexes. Alors pour tout $n \in \mathbb{Z}$, on peut écrire $\varphi_n \varphi_n = 0 = 0 d_n + d_n 0$. Donc on a bien $\varphi_{\bullet} \sim \varphi_{\bullet}$.
- *Symétrie*: Soit $\varphi_{\bullet}: C_{\bullet} \to D_{\bullet}$ et $\psi_{\bullet}: C_{\bullet} \to D_{\bullet}$ deux morphismes de complexes tels que $\varphi_{\bullet} \sim \psi_{\bullet}$. Alors pour tout $n \in \mathbb{Z}$, on a $\psi_n \varphi_n = -(\varphi_n \psi_n)$. On en déduit bien $\psi_{\bullet} \sim \varphi_{\bullet}$.
- Transitivité: Soit $\varphi_{\bullet}: C_{\bullet} \to D_{\bullet}$, $\psi_{\bullet}: C_{\bullet} \to D_{\bullet}$ et $\xi_{\bullet}: C_{\bullet} \to D_{\bullet}$ trois morphismes de complexes tels que $\varphi_{\bullet} \sim \psi_{\bullet}$ et $\psi_{\bullet} \sim \xi_{\bullet}$. Alors pour tout $n \in \mathbb{Z}$, on a $\varphi_n \xi_n = \varphi_n \psi_n + \psi_n \xi_n$. On en déduit bien que $\varphi_{\bullet} \sim \xi_{\bullet}$.

Donc l'homotopie est bien une relation d'équivalence sur les morphismes de complexes.

Proposition 2.16. Soit A_{\bullet} , B_{\bullet} et C_{\bullet} trois complexes de chaînes, $\varphi_{\bullet}: A_{\bullet} \to B_{\bullet}$ et $\psi_{\bullet}: A_{\bullet} \to B_{\bullet}$, ainsi que $\alpha_{\bullet}: B_{\bullet} \to C_{\bullet}$ et $\beta_{\bullet}: B_{\bullet} \to C_{\bullet}$ deux paires de morphismes de complexes homotopes. Alors les compositions $\alpha_{\bullet} \circ \varphi_{\bullet}: A_{\bullet} \to C_{\bullet}$ et $\beta_{\bullet} \circ \psi_{\bullet}: A_{\bullet} \to C_{\bullet}$ sont homotopes.

Démonstration. Par définition il existe deux suites de morphismes de groupes $(f_n: A_n \to B_{n+1})_{n \in \mathbb{Z}}$ et $(g_n: B_n \to C_{n+1})_{n \in \mathbb{Z}}$ telles que pour tout $n \in \mathbb{Z}$, on a $\varphi_n - \psi_n = f_{n-1} d_n + d_n f_n$ et $\alpha_n - \beta_n = g_{n-1} d_n + d_n g_n$. Soit $n \in \mathbb{Z}$. Alors on a:

$$\begin{aligned} \alpha_n \circ \varphi_n - \beta_n \circ \psi_n &= \alpha_n \circ \varphi_n - \alpha_n \circ \psi_n + \alpha_n \circ \psi_n - \beta_n \circ \psi_n \\ &= \alpha_n \circ (\varphi_n - \psi_n) + (\alpha_n - \beta_n) \circ \psi_n \\ &= \alpha_n \circ (f_{n-1} \mathbf{d}_n + \mathbf{d}_n f_n) + (g_{n-1} \mathbf{d}_n + \mathbf{d}_n f_n) \circ \psi_n \\ &= (a_n \circ f_{n-1}) \mathbf{d}_n + \mathbf{d}_n (a_{n+1} \circ f_n) + (g_{n-1} \circ \psi_{n-1}) \mathbf{d}_n + \mathbf{d}_n (f_n \circ \psi_n) \\ &= (a_n \circ f_{n-1} + g_{n-1} \circ \psi_{n-1}) \mathbf{d}_n + \mathbf{d}_n (a_{n+1} \circ f_n + f_n \circ \psi_n) \end{aligned}$$

En posant $h_n := a_{n+1} \circ f_n + g_n \circ \psi_n$, on obtient l'égalité voulue $\alpha_n \circ \varphi_n - \beta_n \circ \psi_n = h_{n-1} d_n + d_n h_n$. Donc $\alpha_{\bullet} \circ \varphi_{\bullet}$ et $\beta_{\bullet} \circ \psi_{\bullet}$ sont bien homotopes.

Lemme 2.17. Soit C_{\bullet} et D_{\bullet} deux complexes de chaînes, $\varphi_{\bullet}: C_{\bullet} \to D_{\bullet}$ et $\psi_{\bullet}: C_{\bullet} \to D_{\bullet}$ deux morphismes de complexes homotopes. Alors pour tout $n \in \mathbb{Z}$, on a $H_n(\varphi) = H_n(\psi)$.

Démonstration. Par définition il existe une suite de morphismes de groupes $(h_n: C_n \to D_{n+1})_{n \in \mathbb{Z}}$ telle que pour tout $n \in \mathbb{Z}$, on a $\varphi_n - \psi_n = h_{n-1} d_n + d_n h_n$.

Soit
$$n \in \mathbb{Z}$$
 et $\overline{c} \in H_n(C_{\bullet})$. Alors on a $\varphi_n(c) - \psi_n(c) = h_{n-1}(d_nc) + d_nh_n(c) = d_nh_n(c) \in B_n(D_{\bullet})$, on en déduit $H_n(\varphi)(c) - H_n(\psi)(c) = 0 \in H_n(D_{\bullet})$. Donc $H_n(\varphi) = H_n(\psi)$.

Définition 2.18. On dit qu'une suite courte de complexes de chaînes est exacte, notée :

$$0 \longrightarrow A_{\bullet} \xrightarrow{\varphi_{\bullet}} B_{\bullet} \xrightarrow{\psi_{\bullet}} C_{\bullet} \longrightarrow 0$$

si pour tout $n \in \mathbb{Z}$, la suite courte suivante est exacte :

$$0 \longrightarrow A_n \xrightarrow{\varphi_n} B_n \xrightarrow{\psi_n} C_n \longrightarrow 0$$

c'est-à-dire que φ_n est injectif, $\operatorname{im}(\varphi_n) = \ker(\psi_n)$ et ψ_n est surjectif.

Lemme 2.19. Soit une suite exacte courte de complexes de chaînes :

$$0 \longrightarrow A_{\bullet} \xrightarrow{\varphi_{\bullet}} B_{\bullet} \xrightarrow{\psi_{\bullet}} C_{\bullet} \longrightarrow 0$$

Alors pour tout $n \in \mathbb{Z}$, il existe un morphisme de groupes $\partial_n : H_n(C_{\bullet}) \to H_{n-1}(A_{\bullet})$ telle que la suite longue des groupes d'homologie est exacte :

$$\cdots \xrightarrow{\partial_{n+1}} H_n(A_{\bullet}) \xrightarrow{H_n(\varphi)} H_n(B_{\bullet}) \xrightarrow{H_n(\psi)} H_n(C_{\bullet})$$

$$H_{n-1}(A_{\bullet}) \xrightarrow{H_{n-1}(\varphi)} H_{n-1}(B_{\bullet}) \xrightarrow{H_{n-1}(\psi)} H_{n-1}(C_{\bullet}) \xrightarrow{\partial_{n-1}} \cdots$$

De plus pour tout diagramme commutatif:

$$0 \longrightarrow A_{\bullet} \xrightarrow{\varphi_{\bullet}} B_{\bullet} \xrightarrow{\psi_{\bullet}} C_{\bullet} \longrightarrow 0$$

$$\downarrow f_{\bullet} \qquad \downarrow g_{\bullet} \qquad \downarrow h_{\bullet}$$

$$0 \longrightarrow A'_{\bullet} \xrightarrow{\varphi'_{\bullet}} B'_{\bullet} \xrightarrow{\psi'_{\bullet}} C'_{\bullet} \longrightarrow 0$$

la transformation ∂_n est naturelle dans le sens où le diagramme suivant est commutatif :

$$H_{n}(C_{\bullet}) \xrightarrow{\mathcal{O}_{n}} H_{n-1}(A_{\bullet})$$

$$H_{n}(h) \downarrow \qquad \qquad \downarrow H_{n-1}(f)$$

$$H_{n}(C'_{\bullet}) \xrightarrow{\partial_{n}} H_{n-1}(A'_{\bullet})$$

Démonstration. Soit $n \in \mathbb{Z}$. On commence par faire un diagramme en 3 dimensions pour la suite :

Soit $\overline{c} \in H_n(C_{\bullet})$. Puisque ψ_n est surjective par exactitude, il existe $b \in B_n$ tel que $\psi_n(b) = c$. De plus on a $\psi_{n-1}(\operatorname{d}_n b) = \operatorname{d}_n \psi_n(b) = \operatorname{d}_n c = 0$, donc $\operatorname{d}_n b \in \ker(\psi_{n-1})$ et par exactitude il existe $a \in A_{n-1}$ tel que $\varphi_{n-1}(a) = \operatorname{d}_n b$. De plus on a $\varphi_{n-2}(\operatorname{d}_{n-1}a) = \operatorname{d}_{n-1}\varphi_{n-1}(a) = \operatorname{d}_{n-1}\operatorname{d}_n b = 0$, puisque φ_{n-2} est injective par exactitude, on a $\operatorname{d}_{n-1}a = 0$, donc $a \in Z_{n-1}(A_{\bullet})$. Donc on pose $\partial_n \overline{c} := \overline{a} \in H_{n-1}(A_{\bullet})$.

Vérifions que $\partial_n \overline{c}$ ne dépend pas des choix réalisés. Soit $b' \in B_n$ tel que $\psi_n(b') = c$ et $a' \in A_{n-1}$ tel que $d_n b' = \varphi_{n-1}(a')$. Alors on a $\psi_n(b-b') = c - c = 0$, donc $b-b' \in \ker(\psi_n)$ et par exactitude il existe $\hat{a} \in A_n$ tel que $\varphi_n(\hat{a}) = b - b'$. Alors $\varphi_{n-1}(d_n \hat{a}) = d_n b - d_n b' = \varphi_{n-1}(a-a')$, puisque φ_{n-1} est injective par exactitude, on a $d_n \hat{a} = a - a'$, donc $a - a' \in B_{n-1}(A_{\bullet})$ et $\overline{a} = \overline{a'} \in H_{n-1}(A_{\bullet})$.

Vérifions que la suite longue est exacte.

• Soit $\overline{a} \in \operatorname{im}(\partial_{n+1})$. Par construction il existe $b \in B_{n+1}$ tel que $\varphi_n(a) = \operatorname{d}_{n+1}b$, d'où $\varphi_n(a) \in B_n(B_{\bullet})$ et $H_n(\varphi)(\overline{a}) = 0 \in H_n(B_{\bullet})$. Donc $\overline{a} \in \ker(H_n(\varphi))$.

Soit $\overline{a} \in \ker(H_n(\varphi))$. Alors $\varphi_n(a) \in B_n(B_{\bullet})$ et il existe $b \in B_{n+1}$ tel que $\varphi_n(a) = \mathrm{d}_{n+1}b$. De plus par exactitude on a $d_{n+1}\psi_{n+1}(b) = \psi_n(\mathrm{d}_{n+1}(b)) = \psi_n(\varphi_n(a)) = 0$, d'où $\psi_{n+1}(b) \in Z_{n+1}(C_{\bullet})$, et par construction on retrouve bien $\partial_n \overline{\psi_{n+1}}(b) = \overline{a} \in H_n(A_{\bullet})$. Donc $\overline{a} \in \operatorname{im}(\partial_{n+1})$.

• Soit $\overline{b} \in \operatorname{im}(H_n(\varphi))$. Il existe $a \in A_n$ tel que $\varphi_n(a) = b$. Alors on a $b \in \operatorname{im}(\varphi_n)$ et par exactitude $b \in \ker(\psi_n)$. Donc $\overline{b} \in \ker(H_n(\psi))$.

Soit $b \in \ker(H_n(\psi))$. Alors $\psi_n(b) \in B_n(C_{\bullet})$ et il existe $c \in C_{n+1}$ tel que $\psi_n(b) = \mathrm{d}_{n+1}c$. Puisque ψ_{n+1} est surjective par exactitude, il existe $b' \in B_{n+1}$ tel que $\psi_{n+1}(b') = c$. De plus on a $\psi_n(d_{n+1}b') = \mathrm{d}_{n+1}\psi_{n+1}(b') = \mathrm{d}_{n+1}c = \psi_n(b)$, donc $b - \mathrm{d}_{n+1}b' \in \ker(\psi_n)$ et par exactitude il existe $a \in A_n$ tel que $\varphi_n(a) = b - \mathrm{d}_{n+1}b'$. Alors $\varphi_{n-1}(\mathrm{d}_n a) = \mathrm{d}_n b - \mathrm{d}_n \mathrm{d}_{n+1}b' = \mathrm{d}_n b = 0$, puisque φ_{n-1} est injective par exactitude, on a $\mathrm{d}_n a = 0$, donc $a \in Z_n(A_{\bullet})$. De plus $H_n(\varphi)(\overline{a}) = \overline{b} \in H_n(B_{\bullet})$. Donc $\overline{b} \in \operatorname{im}(H_n(\varphi))$.

• Soit $\overline{c} \in \operatorname{im}(H_n(\psi))$. Il existe $b \in Z_n(B_{\bullet})$ tel que $\psi_n(b) = c$. De plus on a $d_n b = 0 \in \ker(\psi_{n-1})$, par exactitude il existe $a \in A_{n-1}$ tel que $\varphi_{n-1}(a) = d_n b = 0$, puisque φ_{n-1} est injective par exactitude, on a a = 0 et par construction $\partial_n \overline{c} = \overline{a} = 0 \in H_{n-1}(A_{\bullet})$. Donc $\overline{c} \in \ker(\partial_n)$.

Soit $\overline{c} \in \ker(\partial_n)$. Alors $c \in Z_n(C_{\bullet})$, puisque ψ_n est surjective par exactitude, il existe $b \in B_n$ tel que $\psi_n(b) = c$, d'où $H_n(\psi)(\overline{b}) = \overline{c}$. Donc $\overline{c} \in \operatorname{im}(H_n(\psi))$.

Donc la suite longue est bien exacte.

Vérifions que ∂_n est naturelle. Soit $\overline{c} \in H_n(C_{\bullet})$.

Par construction il existe $b \in B_n$ tel que $\psi_n(b) = c$ et il existe $a \in Z_{n-1}(A_{\bullet})$ tel que $\varphi_{n-1}(a) = \mathrm{d}_n b$ et $\partial_n \overline{c} = \overline{a} \in H_{n-1}(A_{\bullet})$. Donc on a $H_{n-1}(f)(\partial_n \overline{c}) = \overline{f_{n-1}(a)} \in H_{n-1}(A_{\bullet}')$.

De plus $h_n(c) = h_n(\psi_n(b)) = \psi_n'(g_n(b))$ et $\varphi_{n-1}'(f_{n-1}(a)) = g_{n-1}(\varphi_{n-1}(a)) = g_{n-1}(d_nb) = d_ng_n(b)$, alors par construction on a $\partial_n H_n(h)(\overline{c}) = \overline{f_{n-1}(a)} \in H_{n-1}(A_{\bullet}')$. Donc $H_{n-1}(f)(\partial_n) = \partial_n H_n(h)$.

Définition 2.20. Soit C_{\bullet} et D_{\bullet} deux complexes de chaînes. On dit que D_{\bullet} est un *sous-complexe de chaînes de* C_{\bullet} si pour tout $n \in \mathbb{Z}$, on a $D_n \subset C_n$.

TODO: Complexe quotient.

3. Homologie singulière

3.1. Simplexes

Définition 3.1. Soit E un \mathbb{R} -espace vectoriel et A un sous-ensemble de E. On dit que A est *convexe* si :

$$\forall p, q \in A, [p, q] := \{(1 - t)p + tq \mid t \in [0, 1]\} \subset A.$$

Définition 3.2. Soit E un \mathbb{R} -espace vectoriel, A un sous-ensemble de E et $p_0, ..., p_n$ des éléments de A. On appelle *combinaison convexe* une combinaison linéaire de la forme $t_0p_0 + \cdots + t_np_n$ où $t_0, ..., t_n \in [0, 1]$ et $t_0 + \cdots + t_n = 1$.

Proposition 3.3. Soit E un \mathbb{R} -espace vectoriel, A un sous-ensemble de E et $p_0, ..., p_n$ des éléments de A. Si A est convexe, alors toute combinaison convexe de $p_0, ..., p_n$ appartient à A.

Démonstration. Soit $t_0, ..., t_n \in [0,1]$ tels que $t_0 + \cdots + t_n = 1$. Notons $H(n): t_0p_0 + \cdots + t_np_n \in A$. Pour n=1. On pose $t:=t_1$, alors puisque A est convexe $t_0p_0 + t_1p_1 = (1-t)p_0 + tp_1 \in A$. Pour n>1. On suppose que H(n-1) est vérifiée. Sans perte de généralité, on suppose que $t_n \neq 0$, et on pose :

$$p \coloneqq \frac{t_0}{1 - t_n} p_0 + \dots + \frac{t_{n-1}}{1 - t_n} p_{n-1}$$

alors d'après H(n-1) on a $p \in A$. Par convexité on a $t_0p_0 + \cdots + t_np_n = (1-t_n)p + t_np_n \in A$. \square

Définition 3.4. Soit E un \mathbb{R} -espace vectoriel et A un sous-ensemble de E. On appelle *enveloppe convexe de A*, notée $\operatorname{Conv}(A)$, l'ensemble des combinaisons convexes d'éléments de A.

Proposition 3.5. Soit E un \mathbb{R} -espace vectoriel et A un sous-ensemble de E. Alors l'enveloppe convexe de A est le plus petit ensemble convexe contenant A.

Démonstration. Soit $p, q \in \text{Conv}(A)$ et $t \in [0, 1]$. Puisque p et q sont des combinaisons convexes d'éléments de A, d'après la Proposition 3.3 on a $(1 - t)p + tq \in \text{Conv}(A)$. Donc l'ensemble Conv(A) est convexe.

Soit B un sous-ensemble convexe de E contenant A. Soit $x \in \text{Conv}(A)$. Puisque x est une combinaison convexe d'éléments de $A \subset B$, d'après la Proposition 3.3 on a $x \in B$. Donc $\text{Conv}(A) \subset B$. \square

Définition 3.6. Soit E un \mathbb{R} -espace vectoriel et F une famille libre de n+1 éléments de E. On appelle n-simplexe généré par F l'enveloppe convexe de F. On dit que les éléments de F sont les sommets de F0 et que F1 est la dimension de F2.

Définition 3.7. On appelle *n-simplexe standard*, noté Δ^n , le *n-*simplexe généré par la base canonique de \mathbb{R}^{n+1} .

Proposition 3.8. Soit E un \mathbb{R} -espace vectoriel et $F := (f_0, ..., f_n)$ une famille libre de n+1 éléments de E. Alors l'application :

$$\langle f_0, ..., f_n \rangle : \Delta^n \to \operatorname{Conv}(F); (t_0, ..., t_n) \mapsto t_0 f_0 + ... + t_n f_n$$

est un homéomorphisme.

Démonstration. Soit $(s_0,...,s_n), (t_0,...,t_n) \in \Delta^n$ tels que $s_0f_0 + ... + s_nf_n = t_0f_0 + ... + t_nf_n$. En particulier on a $(s_0 - t_0)f_0 + ... + (s_n - t_n)f_n = 0$, et puisque la famille $(f_0,...,f_n)$ est libre, on obtient $s_0 - t_0 = ... = s_n - t_n = 0$, c'est-à-dire $(s_0,...,s_n) = (t_0,...,t_n)$. Donc $\langle f_0,...,f_n \rangle$ est injective. Soit $x \in \text{Conv}(F)$. Alors il existe $(t_0,...,t_n) \in \Delta^n$ tels que $x := t_0f_0 + ... + t_nf_n$. Donc $\langle f_0,...,f_n \rangle$ est surjective. Puisque $\langle f_0,...,f_n \rangle$ est une application linéaire et que Δ^n est de dimension finie, $\langle f_0,...,f_n \rangle$ est continue. De plus Δ^n est compact et Conv(F) est séparé, donc $\langle f_0,...,f_n \rangle$ est un homéomorphisme.

Définition 3.9. Soit E un \mathbb{R} -espace vectoriel, $F := (f_0, ..., f_n)$ une famille libre de n+1 éléments de E et $x := t_0 f_0 + ... + t_n f_n$ un élément de $\operatorname{Conv}(F)$. On appelle *coordonnées barycentriques de x* les coefficients $t_0, ..., t_n \in [0, 1]$.

Définition 3.10. Soit E un \mathbb{R} -espace vectoriel, F une famille libre de n+1 éléments de E et G une famille non-vide d'éléments de m+1 éléments de F. On dit que $\operatorname{Conv}(G)$ est une m-face de $\operatorname{Conv}(F)$.

Exemple 3.11. Un 2-simplexe standard, il s'agit d'un triangle, les arêtes en vert sont des 1-faces du triangle, les sommets en rouge sont des 0-faces du triangle et des arêtes :

3.2. Chaînes singulières

Définition 3.12. Soit X un espace topologique. On appelle *n-simplexe singulier sur* X une application continue de Δ^n dans X.

Exemple 3.13. L'application $\langle e_0, ..., e_n \rangle$ de la Proposition 3.8, où $(e_0, ..., e_n)$ est la base canonique de \mathbb{R}^{n+1} , est un *n*-simplexe singulier sur \mathbb{R}^{n+1} .

Proposition 3.14. Soit X et Y deux espaces topologiques, $\sigma: \Delta^n \to X$ un n-simplexe singulier sur X et $f: X \to Y$ une application continue. Alors la composition $f \circ \sigma: \Delta^n \to Y$ est un n-simplexe singulier sur Y.

Définition 3.15. Soit X un espace topologique. Pour tout $n \in \mathbb{Z}$, on appelle *groupe des n-chaînes singulières*, noté $C_n(X)$, le groupe abélien libre engendré par les n-simplexes singuliers sur X.

Démonstration. Puisque f est continue sur X et σ est continue sur Δ^n , par composition $f \circ \sigma$ est continue de Δ^n dans Y. Donc $f \circ \sigma$ est un n-simplexe singulier sur X.

Définition 3.16. Soit X et Y deux espaces topologiques et $f: X \to Y$ une application continue. Pour tout $n \in \mathbb{N}$, on appelle *application induite par* f, notée $C_n(f)$, le morphisme de groupes :

$$C_n(f): C_n(X) \to C_n(Y); \sum_{k=0}^m \lambda_k \sigma_k \mapsto \sum_{k=0}^m \lambda_k (f \circ \sigma_k).$$

Proposition 3.17. Soit X, Y et Z trois espaces topologiques, $f: X \to Y$ et $g: Y \to Z$ deux applications continues. Alors pour tout $n \in \mathbb{N}$, on a $C_n(g \circ f) = C_n(g) \circ C_n(f)$.

Démonstration. Soit $n \in \mathbb{N}$. Puisque les n-chaînes singulières sont engendrées par les n-simplexes singuliers, il suffit de montrer le résultat pour un n-simplexe singulier $\sigma : \Delta^n \to X$. Alors on a :

$$C_n(g \circ f)(\sigma) = (g \circ f) \circ \sigma = g \circ (f \circ \sigma) = g \circ C_n(f)(\sigma) = C_n(g)(C_n(f)(\sigma))$$

Proposition 3.18. Pour tout $n \in \mathbb{N}$, le groupe des n-chaînes singulières C_n est un foncteur de Top vers Ab.

Démonstration. Soit $n \in \mathbb{N}$.

- Soit X un espace topologique. Alors le groupe des n-chaînes singulières $C_n(X)$ est bien un groupe abélien.
- Soit X et Y deux espaces topologiques, $f: X \to Y$ une application continue. Alors l'application induite $C_n(f): C_n(X) \to C_n(Y)$ est bien un morphisme de groupes.

La propriété de composition découle de la Proposition 3.17 et la propriété d'identité découle directement de la définition, donc C_n est bien un foncteur de Top vers Ab.

Définition 3.19. Soit X un espace topologique et $\sigma: \Delta^n \to X$ un n-simplexe singulier sur X. On appelle *bord de* σ , noté $d_n\sigma$, la (n-1)-chaîne singulière sur X définie par :

$$\mathbf{d}_n \sigma := \sum_{k=0}^n (-1)^k \left(\sigma \circ \left\langle e_0, ..., \overline{e_k}, ... e_n \right\rangle \right).$$

où le symbole - signifie que l'élément est enlevé.

Remarque 3.20. Le bord d'un n-simplexe singulier est la somme alternée de ses (n-1)-faces.

Définition 3.21. Soit X un espace topologique et $n \in \mathbb{N}$. On appelle *morphisme de bord*, noté d_n , le morphisme de groupes induit :

$$d_n: C_n(X) \to C_{n-1}(X); \sum_{k=0}^m \lambda_k \sigma_k \mapsto \sum_{k=0}^m \lambda_k d_n \sigma_k.$$

Proposition 3.22. Soit X et Y deux espaces topologiques et $f: X \to Y$ une application continue. Alors pour tout $n \in \mathbb{N}$, on a $d_n C_n(f) = C_{n-1}(f) d_n$.

Démonstration. Soit $n \in \mathbb{N}$. Puisque les n-chaînes singulières sont engendrées par les n-simplexes singuliers, il suffit de montrer le résultat pour un n-simplexe singulier $\sigma : \Delta^n \to X$. Alors on a :

$$d_n C_n(f)(\sigma) = \sum_{k=0}^n (-1)^k \left((f \circ \sigma) \circ \left\langle e_0, ..., \overline{e_k}, ..., e_n \right\rangle \right)$$

$$= \sum_{k=0}^n (-1)^k \left(f \circ \left(\sigma \circ \left\langle e_0, ..., \overline{e_k}, ..., e_n \right\rangle \right) \right)$$

$$= C_{n-1}(f)(d_n \sigma).$$

Proposition 3.23. Soit *X* un espace topologique. Alors pour tout $n \in \mathbb{N}$, on a $d_n d_{n+1} = 0$.

Démonstration. Soit $n \in \mathbb{N}$. Puisque les n-chaînes singulières sont engendrées par les n-simplexes singuliers, il suffit de montrer le résultat pour un n-simplexe singulier $\sigma : \Delta^n \to X$. Alors on a :

$$d_{n+1}\sigma = \sum_{k=0}^{n+1} (-1)^k (\sigma \circ \langle e_0, ..., e_k, ..., e_n \rangle)$$

donc en appliquant d_n , on obtient :

$$\mathbf{d}_{n}\mathbf{d}_{n+1}\sigma = \mathbf{d}_{n}\left(\sum_{k=0}^{n+1} (-1)^{k} \left(\sigma \circ \left\langle e_{0}, ..., \overrightarrow{e_{k}}, ..., e_{n} \right\rangle \right)\right)$$
$$= \sum_{k=0}^{n+1} (-1)^{k} \mathbf{d}_{n} \left(\sigma \circ \left\langle e_{0}, ..., \overrightarrow{e_{k}}, ..., e_{n} \right\rangle \right)$$

on sépare la somme en deux selon les éléments enlevés :

$$\begin{split} \mathbf{d}_n \mathbf{d}_{n+1} \sigma &= \sum_{0 \leq k < l \leq n+1} \left(-1 \right)^{k+l} \! \left(\sigma \circ \left\langle e_0, ..., \overline{e_k}, ..., \overline{e_l}, ..., e_n \right\rangle \right) \\ &+ \sum_{0 \leq l < k \leq n+1} \left(-1 \right)^{k+l-1} \! \left(\sigma \circ \left\langle e_0, ..., \overline{e_l}, ..., \overline{e_k}, ..., e_n \right\rangle \right) \\ &= \sum_{0 \leq k < l \leq n+1} \! \left(\left(-1 \right)^{k+l} + \left(-1 \right)^{k+l+1} \right) \! \left(\sigma \circ \left\langle e_0, ..., \overline{e_k}, ..., \overline{e_l}, ..., e_n \right\rangle \right) \\ &= 0 \end{split}$$

car les puissances de −1 s'annulent.

Proposition 3.24. La suite $(C_n)_{n\in\mathbb{Z}}$ où pour tout n<0, on pose $C_n:=0$, munie des morphismes des bords $(d_n:C_n\to C_{n-1})_{n\in\mathbb{Z}}$ est un foncteur de Top vers Comp.

Démonstration. Soit $n \in \mathbb{Z}$.

- Soit X un espace topologique. Alors la suite $(C_n(X))_{n\in\mathbb{Z}}$ munie des morphismes de bords $(d_n:C_n(X)\to C_{n-1}(X))_{n\in\mathbb{Z}}$ est bien un complexe de chaînes d'après la Proposition 3.23.
- Soit X et Y deux espaces topologiques, $f: X \to Y$ une application continue. Alors la suite des applications induites $(C_n(f): C_n(X) \to C_n(Y))_{n \in \mathbb{Z}}$ est bien un morphisme de complexes d'après la Proposition 3.22.

La propriété de composition découle de la Proposition 3.17 et la propriété d'identité découle directement de la définition, donc C_n est bien un foncteur de Top vers Ab.

3.3. Définitions de l'homologie singulière

3.3.1. D'un espace topologique

Définition 3.25. Soit X un espace topologique. On appelle *complexe de chaînes singulières de* X, noté $C_{\bullet}(X)$, le complexe de chaînes déterminé par la suite $(C_n(X))_{n \in \mathbb{N}}$ munie des morphismes de bords $(d_n : C_n(X) \to C_{n-1}(X))_{n \in \mathbb{N}}$.

Définition 3.26. Soit $C_{\bullet}(X)$ un complexe de chaînes singulières et $n \in \mathbb{Z}$.

- On appelle *n*-cycle singulier un élément de $Z_n(X) := Z_n(C_{\bullet}(X))$.
- On appelle *n*-bord singulier un élément de $B_n(X) := B_n(C_{\bullet}(X))$.
- On appelle n^e groupe d'homologie singulière de X le groupe $H_n(X) := H_n(C_{\bullet}(X))$.
- On appelle homologie singulière de X le groupe $H_{\bullet}(X) := H_{\bullet}(C_{\bullet}(X))$.

Corollaire 3.27. Pour tout $n \in \mathbb{Z}$, le n^e groupe d'homologie singulière H_n est un foncteur de Top vers Ab

Démonstration. Soit $n \in \mathbb{Z}$. D'après la Proposition 3.24 C_{\bullet} est un foncteur de Top vers Comp et d'après le Théorème 2.12 H_n est un foncteur de Comp vers Ab, par composition $H_n = H_n(C_{\bullet})$ est bien un foncteur de Top vers Ab. □

Corollaire 3.28. L'homologie singulière H_{\bullet} est un foncteur de Top vers GrAb.

Démonstration. D'après la Proposition 3.24 C_{\bullet} est un foncteur de Top vers Comp et d'après le Corollaire 2.13 H_{\bullet} est un foncteur de Comp vers GrAb, par composition $H_{\bullet} = H_{\bullet}(C_{\bullet})$ est bien un foncteur de Top vers Ab.

Théorème 3.29 (Axiome de dimension). Soit P un espace topologie constitué d'un unique point. Alors le groupe $H_n(P)$ est non-trivial si et seulement n=0.

Démonstration. Si n < 0, on a clairement $H_n(P) \simeq \{0\}$. Si $n \ge 0$, il existe un unique n-simplexe singulier $\sigma_n : \Delta^n \to P$, alors on a :

$$d_n \sigma_n = \sum_{k=0}^n (-1)^k \sigma_{n-1} = \begin{cases} 0 & \text{si } n = 0 \text{ ou } n \text{ est impair} \\ \sigma_{n-1} & \text{si } n \neq 0 \text{ et } n \text{ est pair} \end{cases}$$

dans le cas n=0, alors $H_0(P)=\langle\sigma_0\rangle/\{0\}\simeq\mathbb{Z}$, dans le cas $n\neq 0$ et n est impair, alors $H_n(P)=\langle\sigma_n\rangle/\langle\sigma_n\rangle\simeq\{0\}$, dans le cas $n\neq 0$ et n est pair, alors $H_n(P)=\{0\}/\{0\}\simeq\{0\}$.

TODO

3.3.2. D'une paire d'espace topologique

Définition 3.30. Soit $C_{\bullet}(X)$ et $C_{\bullet}(Y)$ deux complexes de chaînes singulières, et $f: X \to Y$ une application continue. Pour tout $n \in \mathbb{Z}$, on note $H_n(f): H_n(X) \to H_n(Y)$ le morphisme de groupes induit par $C_n(f)$.

Bibliographie

[1] Eduard Looijenga, Algebraic Topology - an introduction. 2010.