(etapas 1 e 2 apenas)

Prof. Ricardo J Ferrari Novembro 2024

1 Tarefa

Quantificação volumétrica das substâncias branca (WM), cinzenta (GM) e líquido cefalorraquidiano (CSF) do cérebro humano em imagens de Ressonância Magnética (MR), utilizando segmentação não supervisionada (K-Médias) e atlas probabilísticos dos tecidos cerebrais.

2 Materiais e Métodos

2.1 Imagens

Esse projeto fará uso de cinco imagens de imagens de RM T1-weighted (se diz, T1-ponderada), pois fornecem uma melhor definição da anatomia do cérebro humano, e de um atlas probabilístico dos 3 principais tecidos cerebrais (GM, WM e CSF). As imagens que compõem o atlas probabilístico estão alinhadas espacialmente com a imagem de referência T1-w e possuem níveis de cinza que variam entre 0 e 1. Os níveis de cinza em cada posição espacial (x,y,z) se completam para a probabilidade de 100%. Ou seja, para uma dada posição espacial (x,y,z) tem-se: $P_{x,y,z}(WM) + P_{x,y,z}(GM) + P_{x,y,z}(CSF) = 1$

2.2 Métodos

O desenvolvimento do projeto deverá ser realizado usando a linguagem python e a entrega deverá ser feita na forma de um arquivo jupyter notebook. O aluno deverá criar e utilizar um ambiente virtual e, juntamente com a entrega do notebook, o aluno deverá também entregar o arquivo requirements.txt ("pip3 freeze > requirements.txt") para que eu possa reproduzir o ambiente virtual e avaliar o projeto. O projeto que não for funcional, ou seja, se os métodos não puderem ser executados por erro, receberá nota ZERO.

A seguir, é indicada a sequência de etapa que deverá ser implementada.

2.3 Sequência de etapas

Com base nas técnicas apresentadas em aula, o aluno deverá implementar funções em python3 para a realização das seguintes etapas do pipeline do projeto:

• 1a Etapa

- Redução de ruído das imagens (denoising).
- O aluno deve avaliar os resultados da redução de ruído nas imagens utilizando os algoritmos Filtro Bilateral, Filtro de Difusão Anisotrópica e Filtro de Média Não-Local. A avaliação deve ser qualitativa, escolhendo o método vitorioso com base na redução de ruído enquanto preserva os detalhes da imagem. Isso pode ser feito analisando o valor absoluto da diferença entre as imagens, ou seja, G = |I_{original} I_{denoised}|. Se a imagem G contiver estruturas nítidas e coerentes com a anatomia do cérebro, isso indica que, além do ruído, o algoritmo também removeu informações importantes da imagem. Por outro lado, se a imagem G contiver visivelmente ruído, isso indica que o algoritmo não foi eficaz na remoção do ruído.

Código da Imagem	Volume (mm³)		
	WM	GM	CSF

Tabela 1: Formato da planilha que deverá ser gerada pelo programa de quantificação dos volumes de tecidos cerebrais.

• 2a Etapa

- Realizar a reorientação e reamostragem das imagens do atlas.
- Alinhamento espacial das imagens (registration) com os atlas probabilísticos dos tecidos cerebrais. As imagens clínicas deverão ser tratadas como imagens fixas (referências) e a imagem de referência do atlas como móvel. A transformação obtida para cada imagem deverá ser aplicada às imagens dos tecidos (GM, WM e CSF) para que estes fiquem espacialmente alinhados com a imagem clínica.
- O aluno deverá apresentar uma breve discussão sobre a escolha das transformações e dos parâmetros utilizados.
- O aluno deve avaliar os resultados do alinhamento espacial dos atlas probabilísticos de maneira visual com base no método checkerboard (sitk.CheckerBoard).

• 3a Etapa

- Segmentação das imagens usando o método K-Médias com a inicialização realizada pelo atlas.
- Os resultados da segmentação devem ser usados para quantificar o volume dos tecidos cerebrais.

3 Cronograma das avaliações

• 1a Etapa: 19/12

• 2a Etapa: 19/12

• 3a Etapa: 09/01

4 Avaliação

A entrega final do projeto deve incluir os códigos organizados e documentados, em pleno funcionamento. Exemplos que comprovem o funcionamento do método devem ser apresentados juntamente com os códigos. Códigos que não funcionem corretamente resultarão em penalização grave.

4.1 Atrasos na entrega

Atraso na entrega das partes específicas do projeto irá gerar uma penalização diária de 2 pontos, além dos descontos devido a erros ou não cumprimento de partes da atividade.