Title

2-D, 7-story frame building under static and dynamic loads

Description

Assume that each floor of the structure illustrated below acts as a rigid diaphragm. Calculate the natural frequencies.

Perform analyses for static lateral loads, earthquake loads specified as a response spectrum and earthquake loads specified as a base acceleration time history.

Calculate the axial forces and moments.

- · Floor mass(M) = 0.49 kips · sec²/in
- · Rigid diaphragm at each floor
- · Master nodes : 4, 7, 10, 13, 16, 19 and 22

Structural geometry and analysis model

- \cdot Section properties of columns : C1, C2, C3 and C4 \cdot Section properties of beams : B1, B2 and B3

Section properties of 7- story plane frame building

Model

Analysis Type

Response spectrum and time history analyses

Unit System

in, kip

Dimension

Length $L = 60 \times 12 \text{ in}$

Level height $H_1 = 13 \times 12 + 6$ in $(1^{st} \sim 2^{nd}$ floor)

 $H_2 = 13 \times 12 \text{ in } (3^{rd} \sim 7^{th} \text{ floor})$

Floor mass $M = 0.49 \text{ kips} \cdot \text{sec}^2/\text{in}$ Damping ratio $\xi = 0.05 (5 \%)$ Gravitational acceleration $g = 386.4 \text{ in/sec}^2$

Response spectrum data 1941 El Centro N-S component

Element

Beam element

Material

Modulus of elasticity E = 29500 ksi

Section Property

Refer to the figure shown above.

Areas and moments of inertia for columns

 $\begin{array}{lll} \text{C1}: \ A = 51.17 \ \text{in}^2 & I_{yy} = 2150 \ \text{in}^4 \\ \text{C2}: \ A = 62.10 \ \text{in}^2 & I_{yy} = 2670 \ \text{in}^4 \\ \text{C3}: \ A = 72.30 \ \text{in}^2 & I_{yy} = 3230 \ \text{in}^4 \\ \text{C4}: \ A = 84.40 \ \text{in}^2 & I_{yy} = 3910 \ \text{in}^4 \end{array}$

Areas and moments of inertia for beams

```
\begin{array}{lll} B1: \ A=50 \ in^2 & I_{yy} = 3330 \ in^4 \\ B2: \ A=50 \ in^2 & I_{yy} = 4020 \ in^4 \\ B3: \ A=50 \ in^2 & I_{yy} = 5120 \ in^4 \end{array}
```

Boundary Condition

Nodes $1 \sim 3$; Constrain Dy, Dz and Rx.

Nodes $4 \sim 22$; Constrain Dy of all nodes at each floor to these nodes.

(at an increment of 3) (Master nodes)

Load Case

Static vertical loads;

The following loads are applied to each floor in the -Z direction.:

Uniform line load = 0.1 kips/ft = 0.1/12 kips/in

Each span is subjected to two concentrated loads, 20.0 kips each

Static lateral loads;

The following loads are applied to the master nodes on each floor in the Y direction.

Dynamic loads;

Floor masses are assigned to the master nodes at each floor in the Y direction.

The response spectrum data of the El Centro N-S component are applied in the Y direction.

Number of natural frequencies to be computed = 7

Earthquake loads;

The N-S acceleration component of the EL Centro is applied to the entire structure in the Y direction.

Load Case

RS-02-1

Load Case 1 : Static vertical loads Load Case 2 : Static lateral loads Load Case 3 : Dynamic loads

Load Combination 1 : Static vertical loads + Static lateral loads Load Combination 2 : Static vertical loads + (+)Dynamic loads Load Combination 3 : Static vertical loads + (-) Dynamic loads

RS-02-2

Load Case 1 : Time history loads (Earthquake loads)

Results

Eigenvalue Analysis Results

			ΕI	GENV	ALUE	ΑN	ALYS	IS				
Mode		Frequ	ency		Per	iod	Toler	0000				
No	(rad/	(rad/sec) (cycle/sec)		(se	ec)	10161	ance					
1	4	,934908	0	,785415	1	,273212	4,37	65e-016				
2	14	,568672	2	,318676	0	,431281	7,76	67e-015				
3	25	,958788	4	,131469	0	,242045	4,76	10e-013				
4	39	,225914	6	,242998	0	,160179	2,75	60e-013				
5	52	,804465	8	,404092		,118990	2,17	07e-013				
6	66	,094387	10	,519248		,095064	1,96	37e-012				
7	79	0,019124	12	,576284	0	,079515	2,82	68e-011				
			MODAL	PARTIC	IPATION	MASSE	S(%) PR	INTOUT				
Mode	TRA	N-X	TRA		TRA			N-X	ROT		ROT	
No	MASS	SUM	MASS	SUM	MASS	SUM	MASS	SUM	MASS	SUM	MASS	SUM
1	0,00	0,00	79,96	79,96	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
2	0,00	0,00	11,34	91,30	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
3	0,00	0,00	4,18	95,48	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
4	0,00	0,00	2,12	97,59	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
5	0,00	0,00	1,41	99,01	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
6	0,00	0,00	0,68	99,69	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
7	0,00	0,00	0,31	100,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
				ΕI	GENV	ECTO	R					

Displacements of RS-02-1

	Node	Load	DX (in)	DY (in)	DZ (in)	RX ([rad])	RY ([rad])	RZ ([rad])
-	22	LCB1	0.000000	1.450764	-0.028999	-0.001012	0.000000	0.000000
	22	LCB2	0.000000	5.436736	0.022768	0.001434	0.000000	0.000000
	22	LCB3	0.000000	-5.436736	-0.116221	-0.002654	0.000000	0.000000

Member Forces of RS-02-2

	Elem	Load	Part	Axial (kip)	Shear-y (kip)	Shear-z (kip)	Torsion (kip·in)	Moment-y (kip·in)	Moment-z (kip•in)
-	1	CASE2	i	69.99	0.00	20.67	0.00	2324.68	0.00
	1	CASE2	1/4	69.99	0.00	20.67	0.00	1487.46	0.00
	1	CASE2	2/4	69.99	0.00	20.67	0.00	650.24	0.00
	1	CASE2	3/4	69.99	0.00	20.67	0.00	-186.98	0.00
	1	CASE2	j	69.99	0.00	20.67	0.00	-1024.20	0.00

Displacements of RS-02-2

	Node	Load	DX (in)	DY (in)	DZ (in)	RX ([rad])	RY ([rad])	RZ ([rad])
-	22	Time(max)	0.000000	5.487354	0.069371	0.002202	0.000000	0.000000
	23	Time(max)	0.000000	5.487354	0.000000	0.001660	0.000000	0.000000
	24	Time(max)	0.000000	5.487354	0.061678	0.002202	0.000000	0.000000
	22	Time(min)	0.000000	-4.465072	-0.061678	-0.002357	0.000000	0.000000
	23	Time(min)	0.000000	-4.465072	0.000000	-0.001768	0.000000	0.000000
	24	Time(min)	0.000000	-4.465072	-0.069371	-0.002357	0.000000	0.000000
	22	Time(all)	0.000000	5.487354	0.069371	0.002357	0.000000	0.000000
	23	Time(all)	0.000000	5.487354	0.000000	0.001768	0.000000	0.000000
	24	Time(all)	0.000000	5.487354	0.069371	0.002357	0.000000	0.000000

Member Forces of RS-02-2

	Elem	Load	Part	Axial (kip)	Shear-y (kip)	Shear-z (kip)	Torsion (kip·in)	Moment-y (kip·in)	Moment-z (kip·in)
	1	Time(max)	i	263.11	0.00	81.21	0.00	9115.18	0.00
	1	Time(max)	1/4	263.11	0.00	81.21	0.00	5826.09	0.00
	1	Time(max)	2/4	263.11	0.00	81.21	0.00	2536.99	0.00
	1	Time(max)	3/4	263.11	0.00	81.21	0.00	868.26	0.00
	1	Time(max)	j	263.11	0.00	81.21	0.00	3870.02	0.00
	1	Time(min)	i	-215.14	0.00	-74.12	0.00	-8158.17	0.00
	1	Time(min)	1/4	-215.14	0.00	-74.12	0.00	-5158.12	0.00
	1	Time(min)	2/4	-215.14	0.00	-74.12	0.00	-2166.66	0.00
	1	Time(min)	3/4	-215.14	0.00	-74.12	0.00	-780.23	0.00
	1	Time(min)	j	-215.14	0.00	-74.12	0.00	-4049.75	0.00
	1	Time(all)	i	263.11	0.00	81.21	0.00	9115.18	0.00
	1	Time(all)	1/4	263.11	0.00	81.21	0.00	5826.09	0.00
	1	Time(all)	2/4	263.11	0.00	81.21	0.00	2536.99	0.00
	1	Time(all)	3/4	263.11	0.00	81.21	0.00	868.26	0.00
	1	Time(all)	j	263.11	0.00	81.21	0.00	4049.75	0.00

Reaction Forces of RS-02-2

	Node	Load	FX (kip)	FY (kip)	FZ (kip)	MX (kip·in)	MY (kip·in)	MZ (kip·in)
•	1	Time(max)	0.000000	74.117449	215.143958	9115.183952	0.000000	0.000000
	2	Time(max)	0.000000	110.412712	0.000000	12333.753338	0.000000	0.000000
	3	Time(max)	0.000000	74.117449	263.107026	9115.183952	0.000000	0.000000
	1	Time(min)	0.000000	-81.212285	-263.107026	-8158.169754	0.000000	0.000000
	2	Time(min)	0.000000	-122.375965	0.000000	-10995.78548	0.000000	0.000000
	3	Time(min)	0.000000	-81.212285	-215.143958	-8158.169754	0.000000	0.000000
	1	Time(all)	0.000000	81.212285	263.107026	9115.183952	0.000000	0.000000
	2	Time(all)	0.000000	122.375965	0.000000	12333.753338	0.000000	0.000000
	3	Time(all)	0.000000	81.212285	263.107026	9115.183952	0.000000	0.000000
			SL	JMMATION OF REA	CTION FORCES PR	RINTOUT		
		Load	FX (kip)	FY (kip)	FZ (kip)			
		Time(all)	0.000000	284.800534	0.000000			
		Time(max)	0.000000	258.563150	0.000000			
		Time(min)	0.000000	-284.800534	0.000000			

Deformed shape of the structure : Load Case 2

Vibration modes of the structure

(a) Lateral displacements at the node 22

(b) Bending moments at the I-end of the element $\ensuremath{\mathbf{1}}$

Time history analysis results due to earthquake loads

Comparison of Results

Results due to Lateral Loads

				Unit: in, kip-in
Result	Ref. 1	SAP2000	ETABS	MIDAS/Gen
Lateral displacement at the node 22	1.450764	1.450764	1.4508	1.450764
Axial force of the element 1	69.99	69.99	69.99	69.99
Bending moment of the element 1	2324.68	2324.68	2324.68	2324.68

Natural Periods

Unit	:	sec
O	•	

Mode	Natural period							
Midde	Ref. 1	SAP2000	ETABS	MIDAS/Gen				
1 st	1.2732	1.2732	1.2732	1.2732				
2 nd	0.4313	0.4313	0.4313	0.4313				
3 rd	0.2420	0.2420	0.2420	0.2420				
4 th	0.1602	0.1602	0.1602	0.1602				
5 th	0.1190	0.1190	0.1190	0.1190				
6 th	0.0951	0.0951	0.0951	0.0951				
7 th	0.0795	0.0795	0.0795	0.0795				

Response Spectrum Analysis Results (SRSS)

Unit: in, kip Result Ref. 1 SAP2000 **ETABS** MIDAS/Gen Lateral displacement 5.438 5.437 5.431 5.437 at the node 22 Axial force 261.8 261.7 261.5 261.7 of the element **1** Bending moment 9864 9868 9864 9916 of the element **1**

Time History Analysis Result due to Earthquake Loads

				Unit: in, kip
Result	Ref. 1	SAP2000	ETABS	MIDAS/Gen
Lateral displacement at the top (22, 23and 24)	5.48	5.49	5.49	5.49
Base Shear Force	284.0	284.7	285.0	284.8
Axial force of the element 1	258.0	263.0	263.0	263.1
Bending moment of the element 1	8740	9104	9104	9115

References

"Static and Dynamic Analysis of Multistory Frame Structure Using DYNAMIC/ EASE2", Engineering Analysis Corporation and Computers and Structures, Inc., Berkeley, California.

"SAP90, A Series of Computer Programs for the Finite Element Analysis of Structures, Structural Analysis Verification Manual", Computer and Structures, Inc., 1992, Example 1.

"ETABS, Examples Manual", Version 6.0, Computers and Structures, Inc., Berkeley, California, 1994, Example 7.

Ground Acceleration Records

