ΕΠΑΝΑΛΗΨΗ ΔΙΟΔΟΥ ΡΝ

Χωρίς την κατανόηση της διόδου δεν θα καταλάβετε το διπολικό τρανζίστορ

ΔΥΟ ΤΕΜΑΧΙΑ Ρ ΚΑΙ Ν ΗΜΙΑΓΩΓΩΝ ΠΡΙΝ ΤΗ ΔΗΜΙΟΥΡΓΙΑ ΗΛΕΚΤΡΟΣΤΑΤΙΚΟΥ ΔΥΝΑΜΙΚΟΥ

ΛΙΓΟ ΜΕΤΑ ΤΗΝ ΣΥΝΕΝΩΣΗ

ΔΗΜΙΟΥΡΓΙΑ ΗΛΕΚΤΡΟΣΤΑΤΙΚΟΥ ΔΥΝΑΜΙΚΟΥ

ΕΝΕΡΓΕΙΑΚΕΣ ΖΩΝΕΣ ΠΡΙΝ ΤΗ ΔΗΙΜΙΟΥΡΓΙΑ ΤΗΣ ΕΠΑΦΗΣ ΡΝ

ΕΝΕΡΓΕΙΑΚΕΣ ΖΩΝΕΣ ΜΕΤΑ ΤΗ ΔΗΜΙΟΥΡΓΙΑ ΤΗΣ ΕΠΑΦΗΣ

ΟΡΙΣΙΜΟΣ ΤΗΣ ΘΕΤΙΚΗΣ ΠΟΛΩΣΗΣ

ΕΝΕΡΓΕΙΑΚΕΣ ΖΩΝΕΣ ΕΠΑΦΗΣ ΡΝ ΜΕ ΘΕΤΙΚΗ ΤΑΣΗ

ΕΝΕΡΓΕΙΑΚΕΣ ΖΩΝΕΣ ΕΠΑΦΗΣ ΡΝ ΜΕ ΑΡΝΗΤΙΚΗ ΤΑΣΗ

Ιδανική ένωση p-n

$$I_1 = ρεύμα οπών από P περιοχή προς N$$

$$= C_1 p_p e^{\frac{eV_0}{KT}}$$

$$\mathbf{L}$$
 = ρεύμα ηλεκτρονίων από \mathbf{N} περιοχή προς $\mathbf{P} = C_2 n_n e^{\frac{e v_0}{KT}}$

Ι₃= ρεύμα ηλεκτρονίων από P περιοχή προς N
$$= C_3 p_n$$

Ι₄= ρεύμα οπών από P περιοχή προς
$${f N}_{-}=C_4 n_p$$

Για τάση V=0 έχω I=0=>
$$C_3 n_p + C_4 p_n = (C_1 p_p + C_2 n_n) e^{\frac{C \cdot V_0}{KT}}$$
 (A)

Για τάση V>0 έχω:
$$I = -(C_3 + C_4) + (C_1 p_p + C_2 n_n) e^{\frac{eV_0}{KT}} e^{\frac{V}{KT}}$$

Αλλά από την (A) έχω:
$$I_0 = -(C_3 + C_4) \implies I = I_0 + I_0 e^{\frac{\epsilon v}{KT}}$$

$$\Rightarrow I = I_0 (1 - e^{\frac{eV}{KT}})$$