

Modern Optimization Techniques

2. Unconstrained Optimization / 2.5. Subgradient Methods

Lars Schmidt-Thieme

Information Systems and Machine Learning Lab (ISMLL)
Institute for Computer Science
University of Hildesheim, Germany

Syllabus

Mon. 30.10.	(1)	0. Overview
Mon. 6.11.	(2)	 Theory Convex Sets and Functions
Mon. 13.11. Mon. 20.11. Mon. 27.11. Mon. 4.12. Mon. 11.12. Mon. 18.12.	(3) (4) (5) (6) (7) (8)	 Unconstrained Optimization Gradient Descent Stochastic Gradient Descent Newton's Method Quasi-Newton Methods Subgradient Methods Coordinate Descent Christmas Break
Mon. 8.01. Mon. 15.01.	(9) (10)	3. Equality Constrained Optimization3.1 Duality3.2 Methods
Mon. 22.01. Mon. 29.01. Mon. 5.02.	(11) (12) (13)	4. Inequality Constrained Optimization4.1 Primal Methods4.2 Barrier and Penalty Methods4.3 Cutting Plane Methods
Mon. 12.02.	(14)	Q & A

Outline

1. Subgradients

2. Subgradient Calculus

3. The Subgradient Method

4. Convergence

Outline

1. Subgradients

2. Subgradient Calculus

3. The Subgradient Method

4. Convergence

Motivation

- ► If a function is once differentiable we can optimize it using
 - ► Gradient Descent,
 - ► Stochastic Gradient Descent,
 - Quasi-Newton Methods (1st order information)
- ► If a function is twice differentiable we can optimize it using
 - ► Newton's method (2nd order information)
- ▶ What if the objective function is not differentiable?

1st-Order Condition for Convexity (Review)

1st-order condition: a differentiable function f is convex iff

- ▶ dom f is a convex set and
- ▶ for all $\mathbf{x}, \mathbf{y} \in \text{dom } f$

$$f(\mathbf{y}) \geq f(\mathbf{x}) + \nabla f(\mathbf{x})^T (\mathbf{y} - \mathbf{x})$$

▶ i.e., the tangent (= first order Taylor approximation) of f at x is a global underestimator

Tangent as a global underestimator

Tangent as a global underestimator

Tangent as a global underestimator

What happens if f is not differentiable?

Given a function f and a point $\mathbf{x} \in \text{dom } f$, $\mathbf{g} \in \mathbb{R}^N$ is called a **subgradient** of f at \mathbf{x} if: the hypersurface with slopes \mathbf{g} through $(\mathbf{x}, f(\mathbf{x}))$ is a global underestimator of f, i.e.

$$f(\mathbf{y}) \ge f(\mathbf{x}) + \mathbf{g}^T(\mathbf{y} - \mathbf{x}), \quad \text{for all } \mathbf{y} \in \text{dom } f$$

Given a function f and a point $\mathbf{x} \in \text{dom } f$, $\mathbf{g} \in \mathbb{R}^N$ is called a **subgradient** of f at \mathbf{x} if: the hypersurface with slopes \mathbf{g} through $(\mathbf{x}, f(\mathbf{x}))$ is a global underestimator of f, i.e.

$$f(\mathbf{y}) \ge f(\mathbf{x}) + \mathbf{g}^T(\mathbf{y} - \mathbf{x}), \quad \text{for all } \mathbf{y} \in \text{dom } f$$

Given a function f and a point $\mathbf{x} \in \text{dom } f$, $\mathbf{g} \in \mathbb{R}^N$ is called a **subgradient** of f at \mathbf{x} if: the hypersurface with slopes \mathbf{g} through $(\mathbf{x}, f(\mathbf{x}))$ is a global underestimator of f, i.e.

$$f(\mathbf{y}) \ge f(\mathbf{x}) + \mathbf{g}^T(\mathbf{y} - \mathbf{x}), \quad \text{for all } \mathbf{y} \in \text{dom } f$$

Given a function f and a point $\mathbf{x} \in \text{dom } f$, $\mathbf{g} \in \mathbb{R}^N$ is called a **subgradient** of f at \mathbf{x} if: the hypersurface with slopes \mathbf{g} through $(\mathbf{x}, f(\mathbf{x}))$ is a global underestimator of f, i.e.

$$f(\mathbf{y}) \ge f(\mathbf{x}) + \mathbf{g}^T(\mathbf{y} - \mathbf{x}), \quad \text{for all } \mathbf{y} \in \text{dom } f$$

2. Unconstrained Optimization / 2.5. Subgradient Methods 1. Subgradien

For $f: \mathbb{R} \to \mathbb{R}$ and f(x) = |x|:

- ▶ For $x \neq 0$ there is one subgradient: $g = \nabla f(x) = \text{sign}(x)$
- ► For x = 0 the subgradients are: $g \in [-1, 1]$

For $f: \mathbb{R} \to \mathbb{R}$ and f(x) = |x|:

- ▶ For $x \neq 0$ there is one subgradient: $g = \nabla f(x) = \text{sign}(x)$
- ► For x = 0 the subgradients are: $g \in [-1, 1]$

For $f: \mathbb{R} \to \mathbb{R}$ and f(x) = |x|:

- ▶ For $x \neq 0$ there is one subgradient: $g = \nabla f(x) = \text{sign}(x)$
- ▶ For x = 0 the subgradients are: $g \in [-1, 1]$

Subdifferential

Subdifferential $\partial f(\mathbf{x})$: set of all subgradients of f at \mathbf{x}

$$\partial f(\mathbf{x}) := \{ \mathbf{g} \in \mathbb{R}^N \mid f(\mathbf{y}) \geq f(\mathbf{x}) + \mathbf{g}^T(\mathbf{y} - \mathbf{x}) \ \forall \mathbf{y} \in \text{dom } f \}$$

▶ the subdifferential $\partial f(\mathbf{x})$ is a convex set.

$$\begin{aligned} (\alpha \mathbf{g} + (1 - \alpha)\mathbf{h})^{\mathsf{T}}(\mathbf{y} - \mathbf{x}) &= \alpha \mathbf{g}^{\mathsf{T}}(\mathbf{y} - \mathbf{x}) + (1 - \alpha)\mathbf{h}^{\mathsf{T}}(\mathbf{y} - \mathbf{x}) \\ &\leq \alpha (f(\mathbf{y}) - f(\mathbf{x})) + (1 - \alpha)(f(\mathbf{y}) - f(\mathbf{x})) \\ &= f(\mathbf{y}) - f(\mathbf{x}) \quad \leadsto (\alpha \mathbf{g} + (1 - \alpha)\mathbf{h}) \in \partial f(\mathbf{x}) \end{aligned}$$

- ▶ for a **convex** function *f*:
 - ▶ subgradients always exist: $\partial f(\mathbf{x}) \neq \emptyset$
 - ► f is differentiable at x iff the subdifferential contains a single element (the gradient)

$$f$$
 differentiable at $x \Longleftrightarrow \partial f(x) = \{\nabla f(x)\}$

For f(x) = |x|:

ightharpoonup remember, ∂f is set valued:

$$\partial f(x) = \{1\}, \quad \forall x > 0, \quad \partial f(x) = \{-1\}, \quad \forall x < 0, \quad \partial f(0) = [-1, +1]$$

Subdifferential

For a **non-convex** function f:

- ► subgradients make less sense
 - ▶ see "generalized subgradients", defined on local information

Outline

1. Subgradients

2. Subgradient Calculus

3. The Subgradient Method

4. Convergence

Subgradient Calculus

- ▶ Assume f convex and $\mathbf{x} \in \text{dom } f$.
- ► Some algorithms require only **one** subgradient for optimizing nondifferentiable functions *f*.
- Other algorithms and optimality conditions require the whole subdifferential at x.
- ► Tools for finding subgradients:
 - ▶ Weak subgradient calculus: finding one subgradient $\mathbf{g} \in \partial f(\mathbf{x})$
 - lacktriangle Strong subgradient calculus: finding the whole subdifferential $\partial f(\mathbf{x})$

Subgradient Calculus

If f is differentiable at \mathbf{x} : $\partial f(\mathbf{x}) = {\nabla f(\mathbf{x})}$.

Additional rules:

- ▶ **Scaling**: for a > 0: $\partial(a \cdot f) = a \cdot \partial f = \{a \cdot \mathbf{g} \mid \mathbf{g} \in \partial(f)\}$
- ▶ Addition: $\partial(f_1 + f_2) = \partial f_1 + \partial f_2$
- ▶ Affine composition: for h(x) = f(Ax + b) then

$$\partial h(\mathbf{x}) = A^T \partial f(A\mathbf{x} + \mathbf{b})$$

► Finite pointwise maximum: if $f(\mathbf{x}) = \max_{m=1,...M} f_m(\mathbf{x})$ then

$$\partial f(\mathbf{x}) = \operatorname{conv}(\bigcup_{m:f_m(\mathbf{x})=f(\mathbf{x})} \partial f_m(\mathbf{x}))$$

The subdifferential is the convex hull of the union of subdifferentials of all active functions at x.

Subgradient Calculus / Pointwise Supremum

▶ Pointwise Supremum: if $f(x) = \sup_{a \in A} f_a(x)$ then

$$\partial f(\mathbf{x}) \supseteq \operatorname{conv}(\bigcup_{a \in A: f_a(\mathbf{x}) = f(\mathbf{x})} \partial f_a(\mathbf{x}))$$

• "=" if A is compact and f continuous in x and a.

Subgradient Calculus / Function Composition

▶ Function Composition: if $f(x) = h(g_1(x), g_2(x), \dots, g_M(x))$, then

$$\begin{split} \partial f(\mathbf{x}) \supseteq \mathsf{conv}\{(b_1,b_2,\ldots,b_M) a \mid b_m \in \partial g_m(x), m = 1:M, \\ a \in (\partial h)(g_1(x),g_2(x),\ldots,g_M(x))\} \end{split}$$

- ► chain rule
- \blacktriangleright for differentiable g_m and h:

 - ▶ $(\nabla h)(g(x)) = a$ gradient of h at g(x)

Subgradients / More Examples

$$f(x) := ||x||_2$$

$$\partial f(x) =$$

Subgradients / More Examples

$$f(x) := ||x||_2$$

$$\partial f(x) = \begin{cases} \{\frac{x}{||x||_2}\}, & \text{if } x \neq 0_N \\ \{g \in \mathbb{R}^N \mid ||g||_2 \leq 1\}. & \text{if } x = 0_N \end{cases}$$
 proof: use $||x||_2 = \max_{z:||z||_2 \leq 1} z^T x$
$$\text{``} \leq \text{``} : z := \frac{x}{||x||_2}, & \text{``} \geq \text{``} : z^T x \leq ||z||_2 ||x||_2 \text{ Cauchy-Schwarz}$$

$$\partial (||x||_2) = \partial (\max_{z:||z||_2 \leq 1} z^T x)$$

$$= \text{conv} \bigcup_{z:||z||_2 \leq 1, z^T x \text{ max.}} \{z\}, & \text{for } x = 0$$

$$= \text{conv} \bigcup_{z:||z||_2 \leq 1} \{z\} = \{z \in \mathbb{R}^N \mid ||z||_2 \leq 1\}$$

Outline

1. Subgradients

2. Subgradient Calculus

3. The Subgradient Method

4. Convergence

- ► idea:
 - ightharpoonup choose an arbitrary subgradient $g \in \partial f$
 - ightharpoonup use its negative -g as next direction
- negative subgradients are in general no descent directions
 - example:

$$f(x_1,x_2) := |x_1| + 3|x_2|$$

negative subgradients at $x := \begin{pmatrix} 1 \\ 0 \end{pmatrix}$:

- ► idea:
 - ▶ choose an arbitrary subgradient $g \in \partial f$
 - ightharpoonup use its negative -g as next direction
- negative subgradients are in general no descent directions
 - example:

$$f(x_1, x_2) := |x_1| + 3|x_2|$$

at $x := \begin{pmatrix} 1 \\ \end{pmatrix}$:

- ► idea:
 - ▶ choose an arbitrary subgradient $g \in \partial f$
 - ightharpoonup use its negative -g as next direction
- negative subgradients are in general no descent directions
 - example:

$$f\big(x_1,x_2\big):=|x_1|+3|x_2|$$
 negative subgradients at $x:=\left(\begin{array}{c}1\\0\end{array}\right)$:

- ► idea:
 - ▶ choose an arbitrary subgradient $g \in \partial f$
 - ightharpoonup use its negative -g as next direction
- negative subgradients are in general no descent directionsexample:

$$f\big(x_1,x_2\big):=|x_1|+3|x_2|$$
 negative subgradients at $x:=\begin{pmatrix}1\\0\end{pmatrix}$:
$$-g_1:=-\begin{pmatrix}1\\0\end{pmatrix} \quad \text{descent direction}$$

$$-g_2:=-\begin{pmatrix}1\\3\end{pmatrix} \quad \text{not a descent direction}$$

▶ thus cannot use stepsize controllers such as backtracking.

Optimality Condition

For a convex $f: \mathbb{R}^N \to \mathbb{R}$:

$$\mathbf{x}^*$$
 is a global minimizer \Leftrightarrow $\mathbf{0}$ is a subgradient of f at \mathbf{x}^*

$$f(\mathbf{x}^*) = \min_{\mathbf{x} \in \text{dom } f} f(\mathbf{x}) \qquad \mathbf{0} \in \partial f(\mathbf{x}^*)$$

Proof:

If **0** is a subgradient of f at \mathbf{x}^* , then for all $\mathbf{y} \in \mathbb{R}^N$:

$$f(\mathbf{y}) \ge f(\mathbf{x}^*) + \mathbf{0}^T (\mathbf{y} - \mathbf{x}^*)$$

 $f(\mathbf{y}) \ge f(\mathbf{x}^*)$

Gradient Descent (Review)

```
1 min-gd(f, \nabla f, x^{(0)}, \mu, \epsilon, K):

2 for k := 1, \dots, K:

3 \Delta x^{(k-1)} := -\nabla f(x^{(k-1)})

4 if ||\nabla f(x^{(k-1)})||_2 < \epsilon:

5 return x^{(k-1)}

6 \mu^{(k-1)} := \mu(f, x^{(k-1)}, \Delta x^{(k-1)})

7 x^{(k)} := x^{(k-1)} + \mu^{(k-1)} \Delta x^{(k-1)}

8 return "not converged"
```

where

- ► f objective function
- ightharpoonup ∇f gradient of objective function f
- $ightharpoonup x^{(0)}$ starting value
- \blacktriangleright μ step length controller
- ightharpoonup ϵ convergence threshold for gradient norm
- ► K maximal number of iterations

Subgradient Method

```
1 min-subgrad(f, \partial f, x^{(0)}, \mu, K):
x_{hart}^{(0)} := x^{(0)}
 s for k := 1, ..., K:
 4 if 0 \in \partial f(x^{(k-1)}):
              return x_{\text{best}}^{(k-1)}
   choose g \in \partial f(x^{(k-1)}) arbitrarily
    \Delta x^{(k-1)} := -g
8 \mu^{(k-1)} := \mu_{k-1}
9 x^{(k)} := x^{(k-1)} + \mu^{(k-1)} \Delta x^{(k-1)}
          x_{\text{best}}^{(k)} := \begin{cases} x^{(k)}, & \text{if } f(x^{(k)}) < f(x_{\text{best}}^{(k-1)}) \\ x_{\text{best}}^{(k-1)}, & \text{else} \end{cases}
        return "not converged"
11
```

where

 $\blacktriangleright \ \mu \in \mathbb{R}^*$ step length schedule

Outline

1. Subgradients

2. Subgradient Calculus

3. The Subgradient Method

4. Convergence

Slowly Diminishing Stepsizes

Proof of convergence requires slowly diminishing stepsizes:

$$\lim_{k \to \infty} \mu^{(k)} = 0, \quad \sum_{k=0}^{\infty} \mu^{(k)} = \infty, \quad \sum_{k=0}^{\infty} (\mu^{(k)})^2 < \infty$$

Q: Which of the following stepsizes are slowly diminishing?

- ightharpoonup constant $\mu^{(k)} := \mu_0$
- $\blacktriangleright \ \mu^{(k)} := \frac{1}{k+1}$
- $\blacktriangleright \ \mu^{(k)} := \frac{1}{(k+1)^2}$

Slowly Diminishing Stepsizes

Proof of convergence requires slowly diminishing stepsizes:

$$\lim_{k \to \infty} \mu^{(k)} = 0, \quad \sum_{k=0}^{\infty} \mu^{(k)} = \infty, \quad \sum_{k=0}^{\infty} (\mu^{(k)})^2 < \infty$$

for example:

$$\mu^{(k)} := \frac{1}{k+1}$$

but not:

- ightharpoonup constant stepsizes $\mu^{(k)} := \mu \in \mathbb{R}$
- ▶ too fast shrinking stepsizes, e.g., $\mu^{(k)} := \frac{1}{(k+1)^2}$
- ▶ adaptive stepsize chosen by a step length controller

Theorem (convergence of subgradient method)

Under the assumptions

- 1. $f: X \to \mathbb{R}$ is convex, $X \subseteq \mathbb{R}^N$ is open
- II. f is Lipschitz-continuous with constant G > 0, i.e.

$$|f(\mathbf{x}) - f(\mathbf{y})| \le G||\mathbf{x} - \mathbf{y}||_2, \quad \forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^N$$

- Equivalently: $||\mathbf{g}||_2 \leq G$ for any subgradient \mathbf{g} of f at any \mathbf{x}

III. slowly diminishing stepsizes
$$\mu^{(k)}$$
, i.e.,
$$\lim_{k\to\infty}\mu^{(k)}=0,\quad \sum_{k=0}^\infty\mu^{(k)}=\infty,\quad \sum_{k=0}^\infty(\mu^{(k)})^2<\infty$$

the subgradient method converges and

$$f(\mathbf{x}_{best}^{(k)}) - f(\mathbf{x}^*) \le \frac{||\mathbf{x}^{(0)} - \mathbf{x}^*||^2 + G^2 \sum_{j=0}^k (\mu^{(j)})^2}{2 \sum_{j=0}^k \mu^{(j)}}$$

Convergence / Proof (1/2)

$$\begin{split} ||\mathbf{x}^{(k+1)} - \mathbf{x}^*||_2^2 \\ &= ||\mathbf{x}^{(k)} - \mu^{(k)}\mathbf{g}^{(k)} - \mathbf{x}^*||_2^2 \\ &= ||\mathbf{x}^{(k)} - \mathbf{x}^*||_2^2 - 2\mu^{(k)}(\mathbf{g}^{(k)})^T(\mathbf{x}^{(k)} - \mathbf{x}^*) + (\mu^{(k)})^2||\mathbf{g}^{(k)}||_2^2 \\ &\leq ||\mathbf{x}^{(k)} - \mathbf{x}^*||_2^2 - 2\mu^{(k)}(f(\mathbf{x}^{(k)}) - f(\mathbf{x}^*)) + (\mu^{(k)})^2||\mathbf{g}^{(k)}||_2^2 \\ &\leq ||\mathbf{x}^{(0)} - \mathbf{x}^*||_2^2 - 2\sum_{j=0}^k \mu^{(j)}(f(\mathbf{x}^{(j)}) - f(\mathbf{x}^*)) + \sum_{j=0}^k (\mu^{(j)})^2||\mathbf{g}^{(j)}||_2^2 \\ &\leq ||\mathbf{x}^{(0)} - \mathbf{x}^*||_2^2 - 2\sum_{j=0}^k \mu^{(j)}(f(\mathbf{x}^{(j)}) - f(\mathbf{x}^*)) + G^2\sum_{j=0}^k (\mu^{(j)})^2 \end{aligned}$$

Convergence / Proof (2/2)

$$f(\mathbf{x}_{\text{best}}^{(k)}) - f(\mathbf{x}^*) = \frac{\sum_{j=0}^{k} (f(\mathbf{x}_{\text{best}}^{(k)}) - f(\mathbf{x}^*))\mu^{(j)}}{\sum_{j=0}^{k} \mu^{(j)}}$$

$$\leq \frac{\sum_{j=0}^{k} (f(\mathbf{x}^{(j)}) - f(\mathbf{x}^*))\mu^{(j)}}{\sum_{j=0}^{k} \mu^{(j)}}$$

$$\leq \frac{2\sum_{j=0}^{k} (f(\mathbf{x}^{(j)}) - f(\mathbf{x}^*))\mu^{(j)} + ||\mathbf{x}^{(k+1)} - \mathbf{x}^*||_2^2}{2\sum_{j=0}^{k} \mu^{(j)}}$$

$$\leq \frac{||\mathbf{x}^{(0)} - \mathbf{x}^*||_2^2 + G^2\sum_{j=0}^{k} (\mu^{(j)})^2}{2\sum_{j=0}^{k} \mu^{(j)}}$$

$$\lim_{k \to \infty} f(\mathbf{x}_{\mathsf{best}}^{(k)}) - f(\mathbf{x}^*) \le \lim_{k \to \infty} \frac{||\mathbf{x}^{(0)} - \mathbf{x}^*||_2^2 + G^2 \sum_{j=0}^k (\mu^{(j)})^2}{2 \sum_{i=0}^k \mu^{(j)}} \quad = 0$$

Summary

- ► **Subgradients** generalize gradients (for convex functions):
 - ▶ any slope of a hypersurface that is global underestimator.
 - ▶ at a differentiable location: the gradient is the only subgradient.
- ► Example absolute value: $\partial(|x|)|(0) = [-1, +1]$
- subgradient calculus:
 - scalar multiplication, addition, affine composition, pointwise maximum
- ► The subgradient method generalizes gradient descent:
 - use an arbitrary subgradient
 - ► stop if 0 is among the subgradients
 - as subgradients generally are no descent direction, the best location so far has to be tracked.
- ► The subgradient method is converging.
 - ▶ for Lipschitz-continuous functions and slowly diminishing stepsizes.

Further Readings

► Subgradient methods are not covered by Boyd and Vandenberghe, 2004

- ► Subgradients:
 - ► Bertsekas, 1999, ch. B.5 and 6.1
- ► Subgradient methods:
 - ► Bertsekas, 1999, ch. 6.3.1

References

Bertsekas, Dimitri P. (1999). Nonlinear Programming. Springer.

Boyd, Stephen and Lieven Vandenberghe (2004). *Convex Optimization*. Cambridge University Press.

Example: Text Classification

Features A: normalized word frequecies in text documents

Category y: topic of the text documents

$$A_{m,n} = \begin{pmatrix} 1 & a_{1,1} & a_{1,2} & a_{1,3} & a_{1,4} \\ 1 & a_{2,1} & a_{2,2} & a_{2,3} & a_{2,4} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & a_{m,1} & a_{m,2} & a_{m,3} & a_{m,4} \end{pmatrix} \mathbf{y} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{pmatrix}$$

$$\hat{y}_i = \sigma(\mathbf{x}^T \mathbf{a_i})$$

Text Classification: L1-Regularized Logistic Regression

For $\mathbf{x} \in \mathbb{R}^N$, $\mathbf{y} \in \mathbb{R}^m$ and $\mathbf{A} \in \mathbb{R}^{m \times n}$ we have the following problem

minimize
$$-\sum_{i=1}^{m} y_i \log \sigma(\mathbf{x}^T \mathbf{a_i}) + (1 - y_i) \log (1 - \sigma(\mathbf{x}^T \mathbf{a_i})) + \lambda ||\mathbf{x}||_1$$

Which can be rewritten as:

minimize
$$-\sum_{i=1}^{m} y_{i} \log \sigma(\mathbf{x}^{T} \mathbf{a_{i}}) + (1 - y_{i}) \log(1 - \sigma(\mathbf{x}^{T} \mathbf{a_{i}})) + \lambda \sum_{k=1}^{N} |x_{k}|$$

f is convex and non-smooth

Example: L1-Regularized Logistic Regression

The subgradients of

$$f(\mathbf{x}) = -\sum_{i=1}^{m} y_i \log \sigma(\mathbf{x}^T \mathbf{a_i}) + (1 - y_i) \log(1 - \sigma(\mathbf{x}^T \mathbf{a_i})) + \lambda ||\mathbf{x}||_1 \text{ are:}$$

$$\mathbf{g} = -\mathbf{A}^T(\mathbf{y} - \hat{\mathbf{y}}) + \lambda \mathbf{s}$$

where $\mathbf{s} \in \partial ||\mathbf{x}||_1$, i.e.:

- ► $s_k = sign(\mathbf{x}_k)$ if $\mathbf{x}_k \neq 0$
- ► $s_k \in [-1, 1]$ if $\mathbf{x}_k = 0$

Example - The algorithm

For $\mathbf{x} \in \mathbb{R}^N$, $\mathbf{y} \in \mathbb{R}^m$ and $\mathbf{A} \in \mathbb{R}^{m \times n}$ we have the following the problem

$$\text{minimize} \quad -\sum_{i=1}^m y_i \log \sigma(\mathbf{x}^T \mathbf{a_i}) + (1-y_i) \log(1-\sigma(\mathbf{x}^T \mathbf{a_i})) + \lambda \sum_{k=1}^N |x_k|$$

- 1. Start with an initial solution $\mathbf{x}^{(0)}$
- 2. $t \leftarrow 0$
- 3. $f_{\text{hest}} \leftarrow f(\mathbf{x}^{(0)})$

4. Repeat until convergence

4.1
$$\mathbf{x}^{(k+1)} \leftarrow \mathbf{x}^{(k)} - \mu^{(k)} (-\mathbf{A}^T (\mathbf{y} - \hat{\mathbf{y}}) + \lambda \mathbf{s})$$

- $4.2 \ t \leftarrow t + 1$
- 4.3 $f_{\text{hest}} \leftarrow \min(f(\mathbf{x}^{(k)}), f_{\text{hest}})$

where $\mathbf{s} \in \partial ||\mathbf{x}||_1$, i.e.:

$$ightharpoonup s_k \in [-1,1] ext{ if } \mathbf{x}_k = 0$$

5. Return f_{hest}