Modelos Lineales

Función de Potencia de una Prueba

Ana María López

Definición de la Prueba

Sea $X_1, X_2, ..., X_n$ independientes e identicamente distribuidas $\mathcal{N}(\mu, \sigma^2)$, con σ^2 conocida y μ desconocida. Se desea evaluar si $\mu = \mu_0$ para algunos valores μ_0 específicos. Entonces las hipotesis nula y alternativa son:

$$H_0: \mu = \mu_0, H_1: \mu \neq \mu_0$$

Se desea construir la función de potencia de esta prueba para lo cual se calculara $1 - \beta$, que indica la probabilidad de rechazar la hipotesis nula cuando debe de ser rechazada:

		Verdad	Verdad
		H_0	H_1
Decisión	H_0	1 - α	β
Decisión	H_1	α	1 - β

Se define $\sigma^2 = 1$ y se construye una poblacion de tamaño 2500 distribuida $\mathcal{N}(0,1)$:

```
set.seed(123)
Datos=2500
sigma=1
mu_0=0
poblacion=rnorm(n,mu_0,sigma)
n=100
xn <- sample(poblacion,n,replace = TRUE)
head(Xn)</pre>
```

[1] 0.7521000 0.0264046 0.6883121 -0.6412270 1.1385448 -1.4964272

Una prueba equivalente a una prueba de razón de verosimilitud puede basarse en $(\bar{X} - \mu_0)^2$, se tiene el resultado de que bajo la hipotesis mula el estadistico $\frac{n(\bar{X}-\mu_0)^2}{\sigma^2}$ es distribuido χ_1^2 , alternativamente, la raiz cuadrada de esta expresión $\frac{n^{1/2}(\bar{X}-\mu_0)}{\sigma}$ tiene una distribución normal estandar. Usando χ^2 de el estadistico, la region critica sera valores excediendo un nivel critico Z_c , donde Z_c es seleccionado como un nivel de significancia α que satisface $\chi_1^2(Z_c) = 1 - \alpha$. Vamos a tomar $\alpha = 0.05$ tenemos:

```
alpha=0.05
Zc <- qchisq(1-alpha,1)
Zc</pre>
```

[1] 3.841459

Entonces tenemos que H_0 rechaza cuando:

1)
$$\frac{n(\bar{X}-\mu_0)}{\sigma^2} > Z_c = 3.841459$$

Considere el poder de la prueba del χ^2 contra una alternativa tal como $\mu = \mu_1 \neq \mu_0$. El parametro de no centralidad es:

2)
$$\delta = n(\mu_1 - \mu_0)^2 / \sigma^2$$

Para el ejemplo trabajado, se desea entonces calcular el poder que tiene la prueba si se varia el valor de

 μ_1 , sabemos que $\mu_0 = 0$ ya que la muestra fue construida con esta definición por lo cual vamos a simular diferentes valores de μ_1 cercanos a 0, para un nivel de significancia $\alpha = 0.05$, nuestra grafica de potencia es:

Ahora se desea validar que sucede con la curva de potencia con diferentes tamaños de muestra:

Curva de Potencia

Para este grafico de potencia con el mismo nivel de significancia $\alpha=0.05$ con diferentes tamaños de muestra: n=100, n=1000, n=2000, encontramos que a medida de que la muestra es más grande, la probabilidad de rechazar la hipotesis nula cuando debe ser rechazada es mayor.