UNIVERSIDADE FEDERAL DO ABC

Lista 7 - Introdução à Probabilidade e Estatística

Variáveis Aleatórias Multidimensionais

Variáveis Aleatórias Multidimensionais Discretas

1 — Lança-se, simultaneamente, uma moeda e um dado. Os resultados possíveis são dados pela tabela abaixo:

$\operatorname{Moeda} \backslash \operatorname{Dado}$	1	2	3	4	5	6
cara	(cara,1)	(cara,2)	(cara,3)	(cara,4)	(cara,5)	(cara,6)
coroa	(coroa,1)	(coroa,2)	(coroa,3)	(coroa,4)	(coroa,5)	(coroa,6)

Considere que tanto a moeda quanto o dado são honestos e, portanto, este espaço amostral é equiprovável.

- a) Obtenha a distribuição conjunta das variáveis aleatórias X (número de caras no lançamento da moeda) e Y (número da face do dado voltada para cima);
- b) Obtenha as distribuições marginais de X e de Y.
- c) Verifique se X e Y são independentes;
- d) Calcule, através das tabelas, P(X=2,Y=3), P(X=1), P(X<2), P(X>-1,Y<5), P(X=0,Y>0). (0, 1/2, 1, 2/3, 1/2)
- 2 Considere a distribuição conjunta de X e Y.

$$\begin{array}{c|c|cccc} Y\backslash X & 1 & 2 & 3 \\ \hline 0 & 0,1 & 0,1 & 0,1 \\ 1 & 0,2 & 0 & 0,3 \\ 2 & 0 & 0,1 & 0,1 \\ \end{array}$$

- a) Determine as distribuições marginais de X e Y.
- b) Obtenha as esperanças e variâncias de X e Y.
- c) Verifique se X e Y são independentes.
- d) Calcule P(X=1|Y=0) e P(Y=2|X=3)
- 3 Suponha que 3 bolas sejam sorteadas de uma urna contendo 3 bolas vermelhas, 4 bolas brancas e 5 bolas azuis. Se X e Y representam, respectivamente, o número de bolas vermelhas e brancas escolhidas, calcule:
 - a) a distribuição conjunta das variáveis aleatórias X e Y;

- b) a distribuição marginal de cada variável aleatória X e Y;
- c) todas as distribuições condicionais entre X e Y.
- 4 Com base nas tabelas obtidas nos itens anteriores, calcule:
 - a) a probabilidade de sortearmos 1 vermelha e 2 brancas;
 - b) a probabilidade de sortearmos 1 vermelha;
 - c) a probabilidade de sortearmos 2 brancas. As variáveis X e Y são independentes?
 - d) a probabilidade de sortearmos 1 vermelha e 2 brancas ou 1 branca e 2 vermelhas;
 - e) a probabilidade de sortearmos 1 vermelha ou 2 brancas;
 - f) a probabilidade de sortearmos 1 vermelha, dado que as outras 2 bolas sorteadas são brancas;
 - g) a probabilidade de sortearmos 2 brancas, dado que a outra bola sorteadas é vermelha;
 - h) o valor esperado de sortearmos bolas vermelhas;
 - i) o valor esperado de sortearmos bolas brancas;
 - j) o valor esperado de sortearmos bolas vermelhas, dado que sorteamos 2 brancas;
 - k) o valor esperado de sortearmos bolas brancas, dado que sorteamos 1 bola vermelha. Definimos a variável aleatória S que é a soma do número de bolas vermelhas com o número de bolas brancas e a variável P que é o produto do número de bolas vermelhas com o número de bolas brancas. Calcule
 - 1) o valor esperado da variável aleatória S;
 - m) o valor esperado da variável aleatória P;
 - n) a distribuição da variável aleatória S;
 - o) a distribuição da variável aleatória P.
 - p) Verifique que E[S] = E[X] + E[Y]
 - q) Verifique que $E[P] \neq E[X]E[Y]$. Porque isso já era esperado?
 - r) Calcule a correlação entre X e Y. X e Y se relacionam de forma linear?
- 5 Suponha que X e Y tenham a seguinte distribuição conjunta

$Y \backslash X$	1	2	3
1	0,1	0,1	0,0
2	0,1	0,2	0,3
3	0,1	0,1	0,0

- a) Determine a distribuição da variável S = X + Y e calcule E(S). Pode-se obter a mesma resposta de outra maneira?
- b) Determine a distribuição da variável P = XY e, em seguida, calcule E[P].
- c) Mostre que, embora E(XY) = E., X e Y não são independentes.
- d) Lançam-se dois dados perfeitos. X indica o número obtido no primeiro dado e Y o maior ou o número comum nos dois dados.
- e) Determine a distribuição conjunta de X e Y.
- f) As duas variáveis são independentes? Porque?

- g) As duas variáveis são correlacionadas? Porque?
- ${f 6}$ O exemplo a seguir ilustra que correlação nula NÃO implica independência. Suponha que X e Y tenham a seguinte distribuição conjunta

$Y\backslash X$	-1	0	1
-1	1/8	1/8	1/8
0	1/8	0	1/8
1	1/8	1/8	1/8

- a) Mostre que E[XY] = E[X]E[Y], o que implica que corr[X,Y] = 0.
- b) Justifique porque X e Y não são independentes.

Variáveis Aleatórias Multidimensionais Contínuas

7 — A função densidade de probabilidade conjunta de X e Y é dada por $f(x,y)=c(x^2-y^2)e^{-y}$ $-y\leq x\leq y$ $0< y<\infty$

- a) Determine c.
- b) Determine as densidades marginais de X e Y.
- c) Determine E[X]

8 — A função densidade de probabilidade conjunta de X e Y é dada por

$$f(x,y)=e^{-(x+y)}\quad 0\leq x\leq \infty,\quad 0\leq y\leq \infty$$

Determine

- a) P[X < Y]
- b) P[X < a]

9 — O vetor aleatório (X,Y) é chamado de uniformemente distribuído em uma região R do plano se, para alguma constante c, sua densidade conjunta é

$$f(x,y) = \begin{cases} c & \text{se}(x,y) \in R \\ 0 & \text{caso contrário} \end{cases}$$

caso contrário

- a) Mostre que 1; área da região R. Suponha que (X, Y) seja uniformemente distribuído ao longo do quadrado centrado em (O, O) e com lados de comprimento 2.
- b) Mostre que X e Y são independentes, com cada um sendo uniformemente distribuído ao longo de (-1,l).
 (c) Qual é a probabilidade de que (X, Y) esteja contido no círculo de raio 1 centrado na origem? Isto é, determine

$$P[x^2 + y^2 < 1]$$

10 — A pontuação de Carlos no boliche é normalmente distribuída com média 170 e desvio padrão 20, enquanto a de Sebastião é normalmente distribuída com média 160 e desvio padrão 15. Se Carlos e Sebastião jogam um jogo cada, obtenha, supondo que suas pontuações sejam variáveis aleatórias independentes, a probabilidade aproximada de que

- a) a pontuação de Carlos seja maior.
- b) o total de seus pontos supere 350.

Covariância

11 — Sejam X e Y duas variáveis aleatórias com $\mathbb{E}[X^2], \mathbb{E}[Y^2] < \infty$. Definimos a covariância entre X e Y por $Cov(X,Y) = \mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])]$. Mostre que

- 1.Cov(X,Y) = Cov(Y,X).
- $2 \operatorname{Cov}(X, X) \geq 0.$
- 3.Cov(aX, bY) = abCov(X, Y).
- 4.Cov(X + Y, Z) = Cov(X, Z) + Cov(Y, Z).
- 5.Var(X + Y) = Var(X) + Var(Y) + 2Cov(X, Y).
- 6. Se X e Y são independentes, então Cov(X,Y) = 0
- $7.\text{Cov}(X, Y) = \mathbb{E}[XY] \mathbb{E}[X]\mathbb{E}[Y].$

12 — Sejam X e Y duas variáveis aleatórias com $\mathbb{E}[X^2]$, $\mathbb{E}[Y^2]$ < ∞. Definimos o índice de correlação entre X e Y por

$$\rho\left(X,Y\right) = \mathbb{E}\left[\frac{\left(X - \mathbb{E}\left[X\right]\right)}{\sqrt{Var(X)}} \frac{\left(Y - \mathbb{E}\left[Y\right]\right)}{\sqrt{Var(Y)}}\right].$$

O índice correlação tem a seguinte propriedade

$$-1 \leq \rho\left(X,Y\right) \leq 1$$

Mostre que
$$\rho\left(X,Y\right)=\frac{Cov\left(X,Y\right)}{\sqrt{Var\left(X\right)}\sqrt{Var\left(Y\right)}}$$

a)

b)

j	1	2	3	4	5	6	P(X=i)
0	$\frac{1}{2} \cdot \frac{1}{6}$	$\frac{1}{2}$					
1	$\frac{1}{2} \cdot \frac{1}{6}$	$\frac{1}{2}$					
P(Y=j)	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	

c) Como pode-se perceber no gráfico, $p_X(x)p_Y(y) = p(x,y)$ para todo x,y. Portanto, X e Y são variáveis aleatórias **independentes**.

d)
$$P(X = 2, Y = 3) = P(X = 2)P(Y = 3)$$

$$= \sum_{j} p(X = 2, Y = j) \sum_{i} p(X = i, Y = 3) = 0 \cdot \frac{1}{6} = 0$$

$$P(X = 1) = \sum_{j} p(X = 1, Y = j) = \frac{1}{2}$$

$$P(X < 2) = P(X = 0) + P(X = 1) = \frac{1}{2} + \frac{1}{2} = 1$$

$$P(X > -1, Y < 5) = P(Y < 5) = 1 - P(Y \ge 5) = 1 - [P(Y = 5) + P(Y = 6)]$$

$$= 1 - \left(\frac{1}{6} + \frac{1}{6}\right) = \frac{4}{6} = \frac{2}{3}$$

$$P(X = 0, Y > 0) = P(X = 0) = \frac{1}{2}$$

a)

X	1	2	3	P(Y)
0	0,1	0,1	0,1	0,3
1	0,2	0	0,3	0,5
2	0	0,1	0,1	0,2
P(X)	0,3	0,2	0,5	

b)

$$E[X] = \sum_{x=1}^{3} xp(x) = 1 \cdot 0.3 + 2 \cdot 0.2 + 3 \cdot 0.5 = \boxed{2.2}$$

$$VAR[X] = E[X^{2}] - (E[X])^{2} = (1^{2} \cdot 0.3 + 2^{2} \cdot 0.2 + 3^{2} \cdot 0.5) - 2.2^{2} = \boxed{0.76}$$

$$E[Y] = \sum_{y=0}^{2} yp(y) = 0 \cdot 0.3 + 1 \cdot 0.5 + 2 \cdot 0.2 = \boxed{0.9}$$

$$VAR[Y] = E[Y^{2}] - (E[Y])^{2} = (0^{2} \cdot 0.3 + 1^{2} \cdot 0.5 + 2^{2} \cdot 0.2) - 0.9^{2} = \boxed{0.49}$$

c) Como $P(X = 2, Y = 1) = 0 \neq P(X = 2)P(Y = 1) = 0, 2 \cdot 0, 5 = 0, 1$, segue que as variáveis aleatórias X e Y são **depententes**.

d)

$$P(X = 1|Y = 0) = \frac{P(X = 1, Y = 0)}{P(Y = 0)} = \frac{0,1}{0,3} = \frac{1}{3}$$

$$P(Y = 2|X = 3) = \frac{P(Y = 2, X = 3)}{P(X = 3)} = \frac{0,1}{0,5} = \frac{1}{5}$$

a) b)

Y	0	1	2	3	P(Y)
0	$\binom{5}{3} / \binom{12}{3} = 1/22$	$\binom{3}{1} \binom{5}{2} / \binom{12}{3} = 3/22$	$\binom{3}{2}\binom{5}{1}/\binom{12}{3} = 3/44$	$\binom{3}{3} / \binom{12}{3} = 1/220$	14/55
1	$\binom{4}{1}\binom{5}{2}/\binom{12}{3} = 2/11$	$\binom{3}{1}\binom{4}{1}\binom{5}{1}/\binom{12}{3} = 3/11$	$\binom{3}{2}\binom{4}{1}/\binom{12}{3} = 3/55$	0	28/55
2	$\binom{4}{2}\binom{5}{1}/\binom{12}{3} = 3/22$	$\binom{3}{1}\binom{4}{2}/\binom{12}{3} = 9/110$	0	0	12/55
3	$\binom{4}{3} / \binom{12}{3} = 1/55$	0	0	0	1/55
4	0	0	0	0	0
P(X)	21/55	27/55	27/220	1/220	

c)

P(X Y)	0	1	2	3
0	5/28	15/28	15/56	1/56
1	5/14	15/28	3/28	0
2	5/8	3/8	0	0
3	1	0	0	0
4	0	0	0	0

P(Y)	0	1	2	3
0	5/42	5/18	5/9	1
1	10/21	5/9	4/9	0
2	5/14	1/6	0	0
3	1/21	0	0	0
4	0	0	0	0

a)
$$P(X = 1, Y = 2) = 9/110$$

b)
$$P(X = 1) = 27/55$$

c)
$$P(Y=2) = 12/55$$

$$X \ e \ Y \ s\~{ao} \ depentes \rightarrow P(X=1,Y=3) = 0 \neq P(X=1)P(Y=3) = \frac{27}{55} \cdot \frac{1}{55} = \frac{1}{112}$$

d)
$$P({X = 1, Y = 2} \cup {X = 2, Y = 1}) = P(X = 1, Y = 2) + (X = 2, Y = 1) = 3/22$$

e)
$$P(X = 1 \cup Y = 2) = P(X = 1) + P(Y = 2) - P(X = 1, Y = 2) = 69/110$$

f)
$$P(X = 1|Y = 2) = 3/8$$

g)
$$P(Y = 2|X = 1) = 1/6$$

h)
$$E[X] = 0.21/55 + 1.27/55 + 2.27/220 + 3.1/220 = 3/4 = 0.75$$

i)
$$E[Y] = 0.14/55 + 1.28/55 + 2.12/55 + 3.1/55 + 4.0 = 1$$

j)
$$E[X|Y=2] = 0 \cdot P(X=0|Y=2) + 1 \cdot P(X=1|Y=2) = 3/8$$

k)
$$E[Y|X=1] = 0 \cdot P(Y=0|X=1) + 1 \cdot P(Y=1|X=1) + 2 \cdot P(Y=2|X=1)$$

= 8/9

I)
$$E[S] = E[X + Y] = 0 \cdot 1/22 + 1 \cdot 7/22 + 2 \cdot 21/44 + 3 \cdot 7/44 = 7/4 = 1,75$$

m)
$$E[P] = E[XY] = 0 \cdot \frac{13}{22} + 1 \cdot \frac{3}{11} + 2 \cdot \frac{3}{22} + 3 \cdot 0 + 4 \cdot 0 + 6 \cdot 0 + 9 \cdot 0 = \frac{6}{11}$$

= $0,\overline{54}$

n)

S	P(S)
0	1/22
1	7/22
2	21/44
3	7/44

0)

Р	P(P)
0	13/22
1	3/11
2	3/22
3	0
4	0
6	0
9	0

- *p)* E[X] + E[Y] = 0.75 + 1 = 1.75 = E[S]
- q) $E[X]E[Y] = 0.75 \cdot 1 = 0.75 \neq 0.\overline{54} = E[P]$

Isso já era esperado pois as variáveis aleatórias X e Y são depentes.

r)
$$\rho_{X,Y} = corr[X,Y] = \frac{E[XY] - E[X]E[Y]}{DP[X]DP[Y]} = \frac{E[P] - E[X]E[Y]}{DP[X]DP[Y]}$$

$$= \frac{\frac{6}{11} - 0,75 \cdot 1}{\sqrt{0^2 \cdot \frac{21}{55} + 1^2 \cdot \frac{27}{55} + 2^2 \cdot \frac{27}{220} + 3^2 \cdot \frac{1}{220} - 0,75^2}} \sqrt{0^2 \cdot \frac{14}{55} + 1^2 \cdot \frac{28}{55} + 2^2 \cdot \frac{12}{55} + 3^2 \cdot \frac{1}{55} + 4^2 \cdot 0 - 1^2}}$$

 ≈ -0.41

Pelo fato do módulo do valor do resultado não estar tão próximo de 1, podemos dizer que as variáveis aleatórias X e Y possuem uma fraca dependência linear.

X	1	2	3	P(Y)
1	0,1	0,1	0	0,2
2	0,1	0,2	0,3	0,6
3	0,1	0,1	0	0,2
P(X)	0,3	0,4	0,3	

a)
$$E[S] = 2 \cdot 0.1 + 3 \cdot 0.2 + 4 \cdot 0.3 + 5 \cdot 0.4 + 6 \cdot 0 = \boxed{4}$$

 $E[S] = E[X + Y] = E[X] + E[Y]$
 $= (1 \cdot 0.3 + 2 \cdot 0.4 + 3 \cdot 0.3) + (1 \cdot 0.2 + 2 \cdot 0.6 + 3 \cdot 0.2) = 2 + 2$
 $= \boxed{4}$

S	P(S)
2	0,1
3	0,2
4	0,3
5	0,4
6	0

b)
$$E[P] = 1 \cdot 0.1 + 2 \cdot 0.2 + 3 \cdot 0.1 + 4 \cdot 0.2 + 6 \cdot 0.4 + 9 \cdot 0 = 4$$

Р	P(P)
1	0,1
2	0,2
3	0,1
4	0,2
6	0,4
9	0

c) E[P] = E[XY] = E[X]E[Y]

No entanto:

$$P(X = 3, Y = 3) = 0 \neq P(X = 3)P(Y = 3) = 0.3 \cdot 0.2 = 0.06$$

Logo, X e Y não são independentes, mesmo quando E[XY] = E[X]E[Y].

d)

e)

Y	1	2	3	4	5	6	P(Y)
1	1/36	0	0	0	0	0	1/36
2	1/36	1/18	0	0	0	0	1/12
3	1/36	1/36	1/12	0	0	0	5/36
4	1/36	1/36	1/36	1/9	0	0	7/36
5	1/36	1/36	1/36	1/36	5/36	0	1/4
6	1/36	1/36	1/36	1/36	1/36	1/6	11/36
P(X)	1/6	1/6	1/6	1/6	1/6	1/6	

f) Como temos que $P(X=2,Y=1)=0 \neq P(X=2)P(Y=1)=\frac{1}{6}\cdot\frac{1}{36}=\frac{1}{216}$, as variáveis X e Y são dependentes.

g)
$$corr[X,Y] = \frac{E[XY] - E[X]E[Y]}{DP[X]DP[Y]}$$

$$E[XY] = (1+2+3+4+5+6) \cdot \frac{1}{6} = \frac{21}{6} = 3,5$$

$$E[X] = (1+2+3+4+5+6) \cdot \frac{1}{6} = \frac{21}{6} = 3,5$$

$$DP[X] = \sqrt{VAR[X]} = \sqrt{E[X^2] - (E[X])^2}$$

$$= \sqrt{(1^2+2^2+3^2+4^2+5^2+6^2) \cdot \frac{1}{6} - 3,5^2} \approx 1,708$$

$$E[Y] = 1 \cdot \frac{1}{36} + 2 \cdot \frac{1}{12} + 3 \cdot \frac{5}{36} + 4 \cdot \frac{7}{36} + 5 \cdot \frac{1}{4} + 6 \cdot \frac{11}{36} = 4,47\overline{2}$$

$$DP[Y] = \sqrt{VAR[Y]} = \sqrt{E[Y^2] - (E[Y])^2}$$

$$= 1^2 \cdot \frac{1}{36} + 2^2 \cdot \frac{1}{12} + 3^2 \cdot \frac{5}{36} + 4^2 \cdot \frac{7}{36} + 5^2 \cdot \frac{1}{4} + 6^2 \cdot \frac{11}{36} - 4,47\overline{2}^2$$

$$\approx 1,404$$

$$E[XY] = E[P] = 1 \cdot \frac{1}{36} + 2 \cdot \frac{1}{36} + 3 \cdot \frac{1}{36} + 4 \cdot \frac{1}{12} + 5 \cdot \frac{1}{36} + 6 \cdot \frac{1}{18}$$

$$+ 8 \cdot \frac{1}{36} + 9 \cdot \frac{1}{12} + 10 \cdot \frac{1}{36} + 12 \cdot \frac{1}{18} + 15 \cdot \frac{1}{36} + 16 \cdot \frac{1}{9}$$

$$+ 18 \cdot \frac{1}{36} + 20 \cdot \frac{1}{36} + 24 \cdot \frac{1}{36} + 25 \cdot \frac{5}{36} + 30 \cdot \frac{1}{36} + 36 \cdot \frac{1}{6} =$$

$$= 17, \overline{1}$$

$$P \qquad P(P) \qquad P \qquad P(P)$$

 Р	P(P)	Р	P(P)	Р	P(P)
1	1/36	8	1/18	18	7/36
2	1/36	9	5/36	20	1/9
3	1/36	10	5/36	24	1/9
4	1/12	12	1/12	25	1/4
5	1/12	15	1/12	30	5/36
6	1/18	16	7/36	36	11/36

$$corr[X,Y] = \frac{E[XY] - E[X]E[Y]}{DP[X]DP[Y]}$$
$$= \frac{17, \bar{1} - 3, 5 \cdot 4,47\bar{2}}{1,708 \cdot 1,404}$$
$$\approx \boxed{0,61}$$

Pelo valor obtido, podemos dizer que as variáveis possuem correlação linear positiva.

X	-1	0	1	P(Y)
-1	1/8	1/8	1/8	3/8
0	1/8	0	1/8	1/4
1	1/8	1/8	1/8	3/8
P(X)	3/8	1/4	3/8	

$$E[X] = -1 \cdot \frac{3}{8} + 0 \cdot \frac{1}{4} + 1 \cdot \frac{3}{8} = 0$$

$$E[Y] = -1 \cdot \frac{3}{8} + 0 \cdot \frac{1}{4} + 1 \cdot \frac{3}{8} = 0$$

$$E[X]E[Y] = 0 \cdot 0 = 0$$

$$E[XY] = E[P] = -1 \cdot \frac{1}{4} + 0 \cdot \frac{1}{2} + 1 \cdot \frac{1}{4} = 0$$

$$\therefore E[XY] = E[X]E[Y]$$

$$corr[X, Y] = \frac{E[XY] - E[X]E[Y]}{DP[X]DP[Y]} = \frac{E[XY] - E[XY]}{DP[X]DP[Y]} = 0$$

Р	P(P)
-1	1/4
0	1/2
1	1/4

b) $X e Y s\~ao dependentes pois <math>P(X, = 0, Y = 0) = 0 \neq P(X = 0)P(Y = 0) = \frac{1}{4} = \frac{1}{16}$.

7.

BC0406: Intr. à Prob. e à Estatística	UFABC	Resolução da Lista 07 v2
8.		
9.		
10.		
11.		
12.		