The Optimal Transport Problem

Master Thesis

Oscar Ramirez

The Optimal

Transport Problem

Master Thesis

by

Oscar Ramirez

to obtain the degree of Master of Science in Mathematical Modelling and Engineering, to be defended publicly on September, 2018.

Project duration: September, 2016 - September, 2018

Thesis committee: Prof. Juan Enrique Martinez Legaz, UAB, supervisor

Preface

Preface...

Oscar Ramirez Barcelona, September 2018

Contents

1	Preliminaries. 1.1 Notation	1 1
2	Basics in Convex Analysis.	3
3	Linear Programming 3.1 Interior Methods	5
4	Optimal Transport Theory 4.1 Kantorovich formulation as relaxation	7 7
5	Computational Optimal Transport 5.1 Linear Programming Formulation	9 9
6	Applications 6.1 Nash Equilibrium. 6.2 Track of a Dynamic. 6.3 Domain Adaptation. 6.4 Isoperimetric Inequality. 6.5 Barycenter of a Fourier Power Spectrum.	11 11 11
Bi	bliography	13

1

Preliminaries.

Notation

 \sum

Basics in Convex Analysis.

3

Linear Programming

Interior Methods

4

Optimal Transport Theory

Kantorovich formulation as relaxation

Computational Optimal Transport

Linear Programming Formulation. Sinkhorn-Knopp Algorithm.

Nash Equilibrium.
Track of a Dynamic.
Domain Adaptation.
Isoperimetric Inequality.
Barycenter of a Fourier Power Spectrum.

Bibliography