Phân tích thiết kế hướng đối tượng

Bài 1: Giới thiệu môn học

TS. Nguyễn Hiếu Cường Bộ môn CNPM, Khoa CNTT Trường ĐH GTVT cuongqt@qmail.com

Giới thiệu môn học

- Mục đích
 - Nắm được qui trình phân tích, thiết kế hướng đối tượng
 - Sử dụng UML trong phân tích, thiết kế
- Đánh giá
 - Quá trình (chuyên cần + kiểm tra): 30%
 - Kết thúc học phần (thi viết) : 70%

Giới thiệu môn học

- Tài liệu tham khảo chính
 - Slides bài giảng (Nguyễn Hiếu Cường)
 https://sites.google.com/site/cuonggt/uml
 - System Analysis and Design with UML (Dennis et al.)
- Tài liệu đọc thêm
 - Applying UML and Patterns (Larman)
 - UML Distilled (Fowler)
- Phần mềm
 - Rational ROSE (\$\$\$)
 - StarUML (free)
 - **.** . . .

Nội dung chính

- Giới thiệu về phát triển hệ thống, mô hình hóa, UML
- Các khái niệm cơ bản về hướng đối tượng
- Quy trình phát triển phần mềm
- Khảo sát, xác định yêu cầu
- Các loại mô hình hóa: tĩnh và động
- Các biểu đồ UML: lớp, trình tự, hành động, trạng thái...
- Thiết kế, các qui tắc và mẫu thiết kế
- . . .

Khái niệm về hệ thống

 Hệ thống là tập hợp các phần tử có liên hệ và cùng hướng tới một mục đích

Phát triển hệ thống thông tin

- Xây dựng một hệ thống tốt
 - Đáp ứng được các yêu cầu của NSD và tạo ra các giá trị cho tổ chức
- Phát triển hệ thống thông tin cần?
 - Hiểu được quy trình nghiệp vụ của hệ thống
 - Hiểu nhu cầu của người dùng
 - Có phương pháp, quy trình để phân tích và thiết kế các giải pháp

Vòng đời phát triển hệ thống (SDLC)

- Lập kế hoạch (Planning)
 - → Tại sao xây dựng hệ thống này (Why build the system?)
- Phân tích (Analysis)
 - → Hệ thống cần *làm gì*? (Who, what, when, where will the system be?)
- Thiết kế (Design)
 - → Hệ thống cần thực hiện *như thế nào*? (How will the system work?)
- Cài đặt (Implementation)
 - → Xây dựng chương trình, triển khai, bảo trì, ...

Mô hình hóa

- Mô hình (Model)
 - Một dạng trừu tượng hóa (Abstraction) của thế giới thực
 - Mục đích: hiểu, trao đổi, hoàn chỉnh...
- Mô hình hóa (Modeling)?
 - Mô phỏng được hình ảnh tương tự của hệ thống
 - Đơn giản hóa hệ thống
 - Làm sáng tỏ vấn đề
 - Tập trung vào các khía cạnh cần quan tâm

Mô hình hóa

- Để giải quyết vấn đề cần
 - Mô hình hóa = Phân tích và thiết kế (Analysis and Design)
 - Giải quyết vấn đề qua mô hình = Lập trình (Coding)

Mô hình hóa hướng đối tượng

- Ý tưởng: Thế giới thực gồm các đối tượng có tương tác với nhau
- Cần mô hình hóa bài toán thành các đối tượng

Biểu diễn mô hình

- Mỗi đối tượng có thể có nhiều loại mô hình (góc nhìn khác nhau)
- Cần có các công cụ để biểu diễn các mô hình

Ngôn ngữ mô hình hóa UML

- UML là một ngôn ngữ để mô hình hóa
 - Các nguyên tắc và ký hiệu đã chuẩn hóa
 - Biểu diễn và lưu trữ các mô hình
- Các đặc điểm của UML
 - Phù hợp với mô hình hóa hướng đối tượng
 - Mô hình trực quan
 - Đặc tả rõ ràng, chính xác
 - Làm tài liệu: mô tả yêu cầu, đặc tả
 - ...

UML trong các giai đoạn phát triển

- Xác định nhu cầu (Requirement determination)
 - Các ca sử dụng (use case) để xác định các yêu cầu
 - Biểu đồ ca sử dụng
- Phân tích (Analysis)
 - Biểu đồ lớp thể hiện cấu trúc tĩnh của hệ thống
 - Các biểu đồ trình tự, biểu đồ trạng thái thể hiện cấu trúc động
- Thiết kế (Design)
 - Các lớp được mô hình hóa chi tiết với các phương thức
- Cài đặt (Implementation)
 - Các mô hình UML có thể ánh xạ sang code

Lịch sử phát triển của UML

Các tác giả chính

The three amigos:

Grady Booch, Jim Rumbaugh, Ivar Jacobson

Các biểu đồ trong UML

- Các biểu đồ cấu trúc (structured diagrams)
 - Lóp (class)
 - Đối tượng (object)
 - Thành phần (component)
 - Bố trí (deployment)
- Các biểu đồ ứng xử (behavioral diagrams)
 - Ca sử dụng (use case)
 - Tuần tự (sequence)
 - Công tác (collaboration)/ UML 2.0 communication
 - Trạng thái (statechart)/ UML 2.0 state machine
 - Hoạt động (activity)

Ví dụ một biểu đô lớp

Phát triển dự án

Thực tế phát triển một dự án thường theo nhiều vòng lặp (iteration)...