```
\documentclass[12pt,twoside,a4paper]{article}
\usepackage{fullpage}
\usepackage{graphicx}
\usepackage{enumerate}
\usepackage{float}
\usepackage{url} % Better display of ~ tilde
\usepackage{amsmath}
\usepackage{amsthm}
\usepackage{nccmath}
\usepackage{amssymb}
\usepackage[english]{babel}
\usepackage{arcs}
\usepackage{mathabx}
\usepackage[plmath,MeX]{polski}
\usepackage[utf8]{inputenc}
\usepackage[font=footnotesize,format=plain,labelfont=bf,up,textfont=it,up]{caption}
\usepackage{mathtools}
\usepackage{listings}
\lstset{basicstyle=\tiny, language=Matlab}
\def\emptyline{\vspace{12pt}}
\pagenumbering{arabic}
\graphicspath\{./../\} % A path to the graphics directory
\numberwithin{equation}{subsection}
\numberwithin{figure}{subsection}
\selectlanguage{english} % We choose the auto-generated texts' language to be English
\addtolength{\voffset}{-1.0cm}
\inputencoding{utf8}
\pagestyle{plain}
\title{Numerical evaluation of the Hilbert transform in~nonlinear optics}
\author{Krzysztof Parjaszewski}
\date{}
\def\Xint#1{\mathchoice
{\XXint\displaystyle\textstyle{#1}}%
{\XXint\textstyle\scriptstyle{#1}}%
{\XXint\scriptstyle\scriptscriptstyle{#1}}%
{\XXint\scriptscriptstyle\scriptscriptstyle{#1}}%
\label{lint} \
\def\XXint#1#2#3{\setbox0=\hbox{$#1{#2#3}\int}$ }\vcenter{\hbox{$#2#3$ }}\kern-.6\wd0}}
\def\ddashint{\Xint=}
\def\dashint{\Xint-}
\newcommand{\ket}[1]{|#1\rangle}
\newcommand{\BigO}[1]{\ensuremath{\operatorname{O}\bigI(#1\bigr)}}
\newtheorem{thm}{Theorem}
\begin{document}
% \setlength{\parindent}{1\zw}
% \setlength{\baselineskip}{1.7\zw}
```

\maketitle

\begin{figure}[h]
\begin{center}
\includegraphics{img/title.png}
\end{center}
\end{figure}

\section*{} \label{chap:preamble} \subsection*{Dedication} \label{chap:pre_dedication}

To my Family.

\section*{Abstract} \label{chap:abstract}

The application of different Hilbert transform numerical algorithms in the area of nonlinear optics is presented. We have implemented, described and tested six different algorithms and compared them together with two additional methods taken from the out-of-the-box numerical libraries. All methods are compared in terms of their efficiency, accuracy and applicability in practice. Finally we drew the conclusions for their practical usage. Algorithms are mainly prepared for the the one-dimensional models, but we assume that they may need to be extended to multi-dimensional models.

\subsection*{Keywords} \label{chap:abstract_keywords} numerical integration, Cauchy principal value integral, Hilbert transform, nonlinear optics, Kramers-Kronig relations, optical dispersion relations

\subsection*{Promoters} \label{chap:abstract promotors}

\subsubsection*{Nonlinear optics}

\textbf{Professor Marek SamoÄ} \\
Institute of Physical and Theoretical Chemistry \\
WrocÅaw University of Technology, PL-50-370 WrocÅaw \\
WybrzeÅŒe WyspiaÅskiego 27, Poland \\
+48-71-320-4466 I E-mail: Marek.Samoc@pwr.wroc.pl

\subsubsection*{Numerical analysis}

\textbf{PaweÅ Keller PhD} \\
Numerical Analysis Research Group, Institute of Computer Science \\
University of WrocÅaw, PL-50-383 WrocÅaw \\
Joliot-Curie 15, Poland \\
+48-71-375-7813 | E-mail: Pawel.Keller@ii.uni.wroc.pl

\subsection*{Reviewer} \label{chap:abstract_reviewer}

\textbf{Professor Ryszard Szwarc} \\
Institute of Mathematics, University of Wroclaw \\
pl. Grunwaldzki 2/4, PL-50-384 Wroclaw, Poland \\
+48-71-375-7429 I Ryszard.Szwarc@math.uni.wroc.pl

\subsection*{Author} \label{chap:abstract_author}

\textbf{Krzysztof Parjaszewski} \\

Institute of Computer Science \\
University of WrocÅaw, PL-50-383 WrocÅaw \\
Joliot-Curie 15, Poland \\
+48-660-070-043 | E-mail: krzysztof.parjaszewski@gmail.com

\section{Introduction} \label{chap:introduction}

The motivation for this work comes from the real problem stated by physicists and chemists employing theoretical models to describe the interaction between light and matter due to the low-level and intense light irradiation. We are interested in the light behaviour both in the frequency and time domains. In the frequency domain the behaviour of light can be described with the Hilbert transform, but to build a valid models - we need to handle two important problems. The first problem concerns the numerical evaluation of the Hilbert Transform, which is defined with the singular and improper integral. The second problem concerns the question stated by physicists: How to properly apply mathematical tools in a typical experiment and in the construction of a model useful in optical research? We present comparison of several implementations of the numerical calculations of the Hilbert transform:

\begin{itemize} \label{used_methods}

\item Numerical trapezoidal rule mixed with the Simpson's rule and the cubic interpolation,

\item Newton-Cotes quadrature of the sixth degree,

\item Clenshaw-Curtis quadrature,

\item Hilbert transform based on fast Hartley transforms,

\item a method based on approximation with the orthonormal Hermite polynomials and Hermite functions.

\item a method based on approximation with the Fourier series. \end{itemize}

We also test two out-of-the-box MATLAB-implemented routines \texttt{quadgk} and \texttt{hil\-bert} - based on the fast Fourier transform. The given physical models for both linear and nonlinear optics are analyzed and validated. We formulate hints for good practises for scientists interested in the subject of optical experiments. Finally, we make conclusions about the numerical stability, advantages and disadvantages of the developed implementations in further research on nonlinear optics.

\emptyline

\section{Practical motivations} \label{chap:practical_motivations}

Nonlinear optics is a relatively new and quickly developing branch of science. In order to compete with the best scientific teams from round the world - a typical group of nonlinear scientists should consist of good physicists, chemists, computer scientists and mathematicians. In order to falsify or prove the hyphothesis stated by engineers, there should be a well founded mathematical or numerical tools to be used. The typical scientific workflow in the nonlinear optics has been presented on the Figure (\ref{fig:practical_nlo}). In this Thesis we will try to build a small, but well analysed and discussed numerical tool for further usage.

\begin{figure}

\includegraphics{img/nlo.png}

\caption{Nonlinear optics derives from many fundamental disciplines: biology, chemistry, maths, physics and computer science. \label{fig:practical_nlo}} \end{figure}

The first motivation for this thesis was the problem stated by physicians and chemists about the complex physical quantity called the optical susceptibility denoted with \$\chi\$:

\begin{equation} \label{eq:pra_susceptibility}
 \chi = \Re (\chi) + i \, \Im (\chi) .
\end{equation}

The real part of the optical susceptibility is related with an optical phenomena - the refraction of light. The imaginary part of the susceptibility is connected with the absorption of light. In many models these two physical quantities are connected to each other with the modified Hilbert transform called the Kramers-Kronig relations:

```
\label{eq:pra_hilbert_connection} $$ \end{eq:pra_hilbert_connection} \end{eq:pra_hilbert_connection} \end{eq:pra_hilbert_connection} $$ \end{eq:pra_hilber
```

The scientists require both mathematical and numerical tools to better understand the properties of the light beam interaction with matter.

In this thesis we have prepared and discussed several tools that evaluates the Hilbert transform, which together with the proper physical models, help to find a connection between the real and imaginary part of the optical susceptibility.

The subject of this thesis is not only an academic exercise - in the last twenty years the global interest in photonics, and especially application of light in modern devices for information transfer, storage and processing - including the construction of super-fast all-optical computers - is steadily increasing. Recent years have seen much focus on the science and technology of photonics on nano scale.

This thesis consists of three important fragments. In the first fragment we have prepared the introduction into the mathematical calculations (Chapter \ref{chap:mathematical_calculations}) and the overview of the theoretical physical models we will be using to check the prepared numerical methods (Chapter \ref{chap:physical_models}). In the second fragment of this thesis we have prepared the short description of each Hilbert transform evaluating methods (Chapters \ref{chap:htran} - \ref{chap:matlab}). In the last fragment we have compared the obtained results (Chapter \ref{chap:comparison}) and drew the final conclusions (Chapter \ref{chap:conclusion}). You can also find the attached source code in the Appendix A.

The second motivation for this Thesis was to prepare a set of numerical tools for the advanced optical experiment called the Z-Scan experiment, which has been described in the Appendix B.

\section{Mathematical calculations} \label{chap:mathematical_calculations}

\subsection{Hilbert transform - introduction} \label{chap:mathematical_hilbert}

To define the Hilbert transform, first, we will need to define the convolution operator \sim \cite{bracewell_fourier}. If we have two functions f = f(x) and g = g(x), the convolution f = f(x) and g = g(x), the convolution g = g(x).

\begin{equation} \label{eh:mth convolution}

The result is a third function \$h\$ than can be described as the area overlap. The example has been presented on Figure~(\ref{fig:mathematical_convolution}).

\begin{figure}

\begin{center}

\includegraphics[width=150mm]{img/nlo1.png}

\caption{The example of convolution: the rectangle-like function overlaps another, equal rectangle-like function to create a triangle-like convolution as the result. In fact - the result is the modified trapezoid for the general case. On the picture - the peak of the triangle relates to a situation, where integral of two functions is maximal. \label{fig:mathematical_convolution}}

It is important to stress that the dashed integral: $\$ in the equation $\$ (\ref{eq:mathematical_hilbert}) means the Cauchy principal value integral. It is the integration method for certain improper integrals like $h(x) = \frac{1}{x}$. The Cauchy principal value was designed to omit the singularity and it is a less rigorous integration method than the Riemann integral. For the example singular h(x):

```
\label{eq:mathematical_cvp} $$ \displaystyle \frac{- \inf }^{\left(\infty\right)}(x - \omega)} \, d\omega = \lim_{a \to \infty}, \int_{a \to \infty} {(x - \omega)} \, d\omega = \lim_{a \to \infty}, \int_{a \to \infty} {(x - \omega)} \, d\omega . $$ \end{equation}
```

More information about the Cauchy principal value integral can be easily found in the literature \cite{henrici_applied}.

We have presented several pairs of functions and their Hilbert transforms in the Table~(\ref{tab:mathematical_hexample})~\cite{weisstein_hilbert}.

\end{equation}

```
\begin{table}
 \centering
 \begin{tabular}{c | c}
  \hline \hline
                 & $ \mathcal{H}[f(x)] $ \\
   $ f(x) $
  \hline \hline
   $ sin(x) $
                  & \cos(x)  \\
  \hline
   \cos(x)
                   & $ - sin(x) $ \\
  \hline
   \frac{1}{1+x^2}  & $ - \\frac{x}{1 + x^2} $ \\
  \hline
   $ e^{-x^2} $
                    & $ e^{-x^2} \, \frac{-2}{\sin_{0}^{x}} e^{t^2} \, dt
  \hline
   $ \frac{\sin(x)}{x} $ & $ \frac{\cos(x)-1}{x} $ \\
   $\Pi(x) \equiv % case equation of the rectangle function
   \begin{cases}
    0 \ \text{start} 
    \frac{1\{2\}\, \text{for} |x| = \frac{1\{2\}\\
    1\ \text{for}\, |x| < \frac{1}{2}
   \end{cases}
                   \hline
   \ \delta(x) \equiv \frac{1}{\pi} \, \lim_{\epsilon \to 0} \frac{\epsilon}{x ^ 2 + \epsilon ^ 2}
              $ & $ - \frac{1}{\pi \, x} $ \\
  \hline
 \end{tabular}
```

```
\caption{The table presents example pair of functions with their Hilbert transforms.} \label{tab:mathematical_hexample} \end{table}
```

\subsection{Fourier transform and its application}

In this thesis we will very often use the description of a function in the time or in the frequency domain. The Fourier transform is a mathematical translation tool between those two domains and therefore is has many applications in modern physics and of course in optics.

Let $f : \mathbb{R} \to \mathbb{R}$ be a function of time. We can also call this function a signal. When we will search for the frequency function, also named the frequency spectrum, we can apply the Fourier transform on the time-domain $f = \mathbb{R}$ function: $\mathbb{R} = \mathbb{R}$

The one-dimensional Fourier transform is defined in the equation~(\ref{eq:mathematical_fourier}):

```
\label{eq:mathematical_fourier} $$ \operatorname{f}(\omega) = \mathcal{F}[f(t)] \operatorname{def}_{=} \int_{-\infty} ^{\int_{-\infty}^{\infty} f(t) e^{-2 \pi t} def}_{-\infty} \ dt . $$ \end{equation}
```

We will also use the inverse Fourier transform as defined in the equation~(\ref{eq:mathematical_invfourier}):

```
\label{eq:mathematical_invfourier} $$ f(t) = \mathcal{F}^{-1}[\operatorname{cong}] \operatorname{cong} \end{0.05cm} $$ f(t) = \mathcal{F}^{-1}[\operatorname{cong}] \operatorname{cong} \end{0.05cm} $$ f(t) = \mathcal{F}^{-1}[\operatorname{cong} \end{0.05cm} $$ f(t) = \mathcal{F}^{-1}[\operatorname{cong} \end{0.05cm} $$ \circ ^{-2 \pi i} \end{0.05cm} $$ \operatorname{cong} \end{0.05cm} $$ e^{-2 \pi i} \end{0.05cm} $$
```

A typical example of a implemented Fourier transform can be find in the typical radio display called the equalizer as in the Figure~(\ref{fig:mathematical_equalizer}).

```
\begin{figure}
\begin{center}
\includegraphics[width=60mm]{img/equalizer.png}
\caption{The typical radio display - showing the proper wavelengths used in the current fragment of a music track. \label{fig:mathematical_equalizer}}
\end{center}
\end{figure}
```

The sound wave behaves in a similar way to the the light wave. We can investigate properties of a light in the time domain - but we can also ask a question what different wavelengths is the investigated light beam created of. We will easily find the Fourier transform a good mathematical tool for answering such question. More information about the Fourier transform and its application can be easily found in the literature, for instance in Trott-\cite{trott_mathematica}.

\subsection{Lebesgue and Hardy spaces}

We will now define the Lebesgue space and the Hardy space. The Lebesgue space is denoted as \$L^p\$ and is a discussed in functional analysis. Let's define a function \$f : \mathbb{S} \to \mathbb{D}\$:

```
\begin{equation} \label{eq:mathematical_first_lebesgue}
```

f \in L^p(\mathbb{S}, \mu) \Leftarrow \text{\$f\$ is measurable with measure \$ \mu \$ and \$ f^p \$ has a finite integral on $\infty \$ \end{equation}

The formal definition:

Instead of \$\mathbb{S}\$ we will often use the set of real numbers. The \$L^2\$ space, also named the set of quadratically integrable functions, is commonly used in physics. When we have the frequency domain of a light signal it must belongs to the \$L^2\$ space. Otherwise its energy would be considered as infinite. The Hardy spaces are a part of research interests in the complex analysis. They can be defined on domains like discs or circles, but they can also be defined for domains like the upper-half plane. We will take a closer look only for the third case.

The upper-half plane \$ \mathbb{H} \$ is the set of complex numbers defined as in equation (\ref{eq:mathematical_upperhalfplane}):

```
\label{eq:mathematical_upperhalfplane} $$ \mathbb{H} = \{ x + i \}, y \}; y > 0; x, y \in \mathbb{R} \}. $$ \end{equation}
```

The complex analysis very often investigates properties of the holomorphic functions. We say a function $f : \mathcal{C} \to \mathcal{C}$ is holomorphic when it has a complex derivative in each point of its domain and also in a small neighbourhood for each of domain points. For the complex function $f \to \mathcal{C}$ the complex derivative is defined with a limit - very similar as for the real function - as in equation (\text{ref} = \mathref{e} = \mathre{

```
\label{eq:mathematical_complexed} $$ f(z_0)^{'} \star \{c_1, c_2, c_3\} \leq z_0 \le f(z_0)^{'} \star \{c_1, c_2, c_3\} \le z_0 \le z
```

The Hardy space $H^{p} \$ defined on the upper-half plane $\$ mathbb{H} $\$ is a class of holomorphic functions for which the norm $\|H^{p} \$ is finite. The required norm satisfies the equation (ref{eq:mathematical_hardynorm}):

```
\label{eq:mathematical_hardynorm} $$ \footnote{M^p} = \sup_{y>0} \left[ \inf |f(x+i), y|^{p} \right]^{\frac{1}{p}} \, < \, \inf (x+i), y|^{p} \, dx \right]^{\frac{1}{p}} \, < \, \in \. $$ \end{equation} $$
```

\subsection{The causality principle} \label{chap:mathematical causality}

The causality is the important hypothesis not only in physics, but also in philosophy and statistics. Causality in physics links the cause with its effect. The first and easy example can be a force acting on a mass. The mass starts to accelerate because of the applied force. Therefore the force is here the cause and the mass acceleration is the effect.

In the field of optical research - we will be interested in both light and matter properties. When a light signal is passing through a matter, from the time-domain perspective - we can extract the input and the output signals, as presented on Figure (\ref{fig:mathematical_inoutput}). From now on we will consistently use the

\begin{itemize}

\item \textbf{input} - the time-domain signal \textbf{before} the interaction with the investigated matter, \item \textbf{output} - the time-domain signal \textbf{after} the interaction with the investigated matter, \end{itemize}

Some scientists creates the models which does not obey causality~\cite{mukamel_causal}, but in this

thesis we will assume the causality applies to all models being investigated by us.

```
\begin{figure} \includegraphics[width=150mm]{img/opt_phenom3.png} \caption{Schematic diagram of the nonlinear phenomenon -- the input beam(s') wavelength(s) may differ from the output signal(s). This happens only in case of the strong optical signals. \label{fig:mathematical_inoutput}} \end{figure}
```

\subsection{The Titchmarsh theorem}

The central part of this thesis is the Titchmarsh theorem. It links the Fourier transform with the causality principle. We will focus on the output signal $a(t) : \mathbb{R}$ to \mathbb{R} to \mathbb{R} and assume that the interaction with matter happens in the time t = 0. As the causal output signal - for time t = 0 it's value equals zero. Our second assumption will be that the output signal is quadratically integrable. We will also assume that the Fourier transform of the output signal $\frac{1}{\mathbb{R}}$ (\text{\text{omega}}) = \text{\text{mathbb}{H}} \text{\text{omega}} \text{\text{belongs}} \text{\text{to the Hardy space of the second order in the upperhalf plane } \text{\text{mathbb}{H}} \text{\text{With such assumptions the Titchmarsh theorem states for the } \text{\text{chi}} \text{\text{function that it's real and imaginary values are Hilbert transform of each other.}

We have prepared the more formal notation of the Titchmarsh theorem in the following equations:

\textbf{We assume that:}

```
\begin{equation} \label{eq:mathematical | 12output}
    a(t) \ln L^{2} (\mathbb{R}),
\end{equation}
\begin{equation} \label{eq:mathematical faoutput}
   \text{text{For all } \ \ \ t < 0 \ \ \ text{ : } \ \ a (t) = 0,}
\end{equation}
\begin{equation} \label{eq:mathematical_ttisfourier}
   \end{equation}
\begin{equation} \label{eq:mathematical tth2fourier}
   \ch(\Omega) \in H^2(\mathbb{H}).
\end{equation}
\textbf{The Titchmarsh theorem states that:}
\begin{subequations} \label{eq:mathematical_titchmarsh_relations}
    \begin{equation} \label{eq:mathematical titchmarsh real}
       \frac {\lm (\mathrm{\chi}(\Omega ))}{\Omega - \omega }\,d\Omega ,
    \end{equation}
    \begin{equation} \label{eq:mathematical titchmarsh imag}
       \frac{\ensuremath{\mbox{Ne} (\mbox{\mbox{$\mbox{\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{}\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox
    \end{equation}
\end{subequations}
```

The Titchmarsh theorem states that every pair of the following conditions:

```
\begin{itemize}
\item conditions (\ref{eq:mathematical_l2output}) and (\ref{eq:mathematical_faoutput}),
\item conditions (\ref{eq:mathematical_ttisfourier}) and (\ref{eq:mathematical_tth2fourier}),
\item conditions (\ref{eq:mathematical_titchmarsh_real}) and
(\ref{eq:mathematical_titchmarsh_imag}),
```

\end{itemize}

is mathematically equivalent to any other pair.

Proof with an exhausting review of both the Fourier and Hilbert transforms was described by Edward Charles Titchmarsh in \cite{titchmarsh_introduction} - the theory is described through all book chapters, but the theorem and its proof has been stated in Chapter (5) of the book.

\section{Physical models to be used} \label{chap:physical_models}

\subsection{The linear and the nonlinear optics} \label{chap:physical_linearnonlinear}

From now on we will focus on the application of the Hilbert transform in the optical research. The central interest of the optical research is the interaction of light and matter.

The light, also called the electromagnetic radiation, is a form of energy which travels between particles in a wave manner. From the microscopic point of view, light is also a beam of photons. The photon is the elementary massless particle that transport the special quantities of energy. The energy E of a single photon is inversely proportional to its wavelength α as described in the equation (ref{eq:photon_frequency}). The a-4.135667516(91) times a-4.135667516(91) times

```
\begin{equation} \label{eq:photon_frequency} 
 E(\lambda) = \frac {h\,c} {\lambda}. 
\end{equation}
```

When the light interacts with matter the energy transfer occurs. If the light or more precisely the photon is absorbed - the matter increases its energy by the quantum of energy transported by that photon. When the light is emitted, some portion of the matter's energy is converted into a newly generated photon. In the optical research we are interested in both processes, the absorption and the generation of light. We are also interested in the theory behind these two effects - which will help us understand the nature of light in general. The good introduction into the theory of optics can be found in the McGraw-Hill encyclopedia~\cite{mcgraw_encyclopedia}, starting from the~\$ 12^{\texttext{th}}} \$ volume.

Optics is divided in the two main areas -- the linear and the nonlinear optics. Only the linear phenomena don't infringe the superposition principle. The superposition principle states the system fulfill the additivity (\ref{eq:physical_additivity}) and the homogeneity (\ref{eq:physical_homogeneity}) properties. The additivity describes a property of a function \sim f: \mathbb{X} \to \mathbb{Y}\\$, which preserves the addition operation:

```
\begin{equation} \label{eq:physical_additivity} \forall x, y \in X : f(x + y) = f(x) + f(y). \end{equation}
```

The homogeneity describes that argument and the result of a function can be multiplied by a scalarL:

So when a optical system start to behave nonlinear? It happens when photons transfers energy to and from the mass much more often and the system starts to ``saturate", so photons cannot be processed in the same way and some new optical phenomena take place.

\subsection{The response of a system} \label{chap:physical_systemresponse}

To better understand the relation between the light~\textbf{input} and~\textbf{output} we shall once more use the convolution. Given the input signal in the time-domain: \$ x(t) \$ and the linear systems

response function described as h(t) we can easily get the output signal y(t) as the convolution x(t) convolution h(t):

```
\label{eq:physical_response} $$ y(t) = x(t) \cdot h(t) \cdot h(t
```

This definition gives no new information because we know nothing about the response function \$ h(t) \$. But from the convolution theorem~\cite{katznelson_introduction} we know that the Fourier transform applied to the convolution of two given functions equals the simple multiplication of two Fourier transforms:

```
\label{eq:physical_convolution} $$ \operatorname{F}(a(x) \cdot convolution \cdot chi(x)) = \operatorname{F}(a(x)) \cdot ch(x)) . $$ \end{equation} $$
```

The proof to the convolution theorem (\ref{eq:physical_convolution}) can be found in \cite{titchmarsh_introduction}.

The definition of the system's response (\ref{eq:physical_response}) is true for the linear case. For the nonlinear systems we must provide the more complicated mathematical tool called the Volterra series model well described in the PhD thesis of AntonÃn Novák~\cite{thesis_novak}. The output signal \$ y(t) \$ equals the sum of components, each of which is the~ $n ^{\star}$ order Volterra operator \$ \mathbf{K_n} \$ of the input signal \$ x(t) \$:

```
\label{eq:physical_volterraseries} $$ y(t) = \sum_{n} \, \mathcal{K}_n}[x(t)]. $$ \end{equation}
```

The \$ n ^ {\text{th}} \$ order Volterra operator \$ \mathbf{K_n} \$ is defined as the multidimensional convolution:

The $k_n : \mathbb{X}^{n} \rightarrow \mathbb{X}^{n} \$ sorder Volterra-kernel.

We notice the output function for the linear case (\ref{eq:physical_response}) is equal to the nonlinear output function assuming that all the Volterra-kernels of orders higher than one are equal to zero. We say the kernel is causal if it equals zero for any negative argument. The matter \sim \textbf{response} function for the interaction of the \$ n^{\text{th}}} \$ order is the \$ n^{\text{th}}} \$ order Volterra-kernel.

\subsection{The linear system} \label{chap:physical linearsystem}

Imagine an input single pulse-like signal ``shots" the matter. We expect the matter to response with a short, fading response signal. The $\$ \Theta (t) : \mathbb{R} \rightarrow \{0, \, 1 \} \$ function will state the Heaviside function defined as in the equation (\ref{eq:physical_heaviside}):

```
\label{eq:physical_heaviside} $$ \Theta(t) = \begin{cases} 0 \, \text{for} \, t < 0, \ 1 \, \text{otherwise}.
```

```
\end{cases} \end{equation}
```

Not getting into the theory of the linear optical response, we can create our first simple response function \$ h_{text{lin}} as the fading sinusoidal exponent:

```
\label{eq:physical_linear_response} $$h_{\text{lin}}(t) = e^{(-t)}\,\mathrm{sin}(20\,t)\,\\text{tin}$$ . \end{equation}
```

The plot is given on Figure (\ref{fig:physical_linplot}).

```
\begin{figure}[H] \includegraphics[width=150mm]{img/lin_plot1.png} \caption{A typical linear response signal in time domain \label{fig:physical_linplot}} \end{figure}
```

If we would like to know the response signal in the frequency domain, we will apply the Fourier transform on the $\$ h_{\text{lin}} \$:

```
\label{eq:physical_frequency_linear} $$ \operatorname{F}[h_{\left(in\right)}] = \left(in\right)^{\operatorname{eq:physical_frequency_linear}} \arrangle - 10 \, \operatorname{frac}{2}{\pi}})^{\circ} + 2 \, i_{\operatorname{equation}} \arrangle - 401, \end{equation}
```

The calculated \$\chi_{\text{lin}} \$ is called the linear optical susceptibility. We are interested in the function \$\chi_{\text{lin}} = \chi_{\text{lin}}(\omega)\$ in frequency domain. More theoretical background about the optical susceptibility can be found in Boyd~\cite{boyd_nlo}.

As You can see - the time domain linear response signal $h_{\star}\$ and the corresponding linear optical susceptibility- $\$ \chi_{\text{lin}} \$ pass the assumptions of the Titchmarsh theorem. In the further numerical calculations we will put the- $\$ \chi_{\text{lin}} \$ into tests.

\subsection{Nonlinear models} \label{chap:physical simnlo}

In this subsection we will shortly describe the time-resolved processes which allow to determine the origin of two important nonlinear processes: the pump-and-probe and the frequency mixing process.

\subsubsection*{Pump-and-probe process} \label{chap:physical_pnp}

The laser is typically a source of a high-energy input signal. In a typical pump-and-probe process we use two laser beams. One of them is a strong input and we name it the 'pump'. The second input, the 'probe', is much less intense. We try to synchronise these two laser beams in the following way -- firstly a pump input hits the matter sample with its strong intensity, causing modifications in the matter properties. Shortly after that, within a time period \$\Delta \, t\$, a low-intensity probe input hits the modified sample and its properties are measured through a detector. In a typical experiment the \$\Delta \, t\$ time period should be adjustable. There are various types of pump-probe experiments, for example one can detect changes of the amplitude of the matter response signal. The schematic diagram of a pump-and-probe experiment is shown in Figure (\ref{fig:physical_pnp_fig}).

```
\begin{figure}
  \begin{center}
    \includegraphics{img/pnp.png}
    \caption{The pump-and-probe experiment\label{fig:physical_pnp_fig}}
\end{center}
\end{figure}
```

The key assumption in the pump-and-probe experiment is that separated and independent probe

inputs cannot introduce a nonlinear response of the system alone \c ite{boyd_nlo}. The probe signal should be sufficiently weak. In the so-called two-level model the investigated atomic system is characterized for both the pump and the probe inputs by two different relaxation times:~ $\{T_{1}\}\$ and $\{T_{2}\}\$ respectively. A more detailed model is defined by H. N. Yum et al. \c ite{yum_pump} for the nonlinear susceptibility in case of the pump-probe process:

In the equation ($ref{eq:physical_pnp_equation}$) we have introduced a whole branch of new variables. The \$\delta \$ is the probe input frequency, the \$\Delta \$ means the pump input frequency. Other variables are related with the pump T_{1} relaxation time:

```
\begin{tabular} \{rclrcl\} \\ $ \emptyset_{1} $ & $= $ & \emptyset_{1} ( T_{1} ) $, \\ $ G $ & $= $ & G ( T_{1} ) $, \\ $ n^{0} $ & $= $ & n^{0} ( T_{1} ) $, \\ $ \Sgamma_{ba} $ & $= $ & \Sgamma_{ba} ( T_{1} ) $, \\ $ \theta $ & $= $ & \Sgamma_{ba} ( T_{1} ) $, \\ $ \theta $ & $= $ & \Sgamma_{ba} ( T_{1} ) $, \\ $ \theta $ & $= $ & \Sgamma_{ba} ( T_{1} ) $, \\ $ \theta $ & $= $ & \Sgamma_{ba} ( T_{1} ) $, \\ $ \theta $ & $= $ & \Sgamma_{ba} ( T_{1} ) $, \\ $ \theta $ & $= $ & \Sgamma_{ba} ( T_{1} ) $, \\ $ \theta $ & $= $ & \Sgamma_{ba} ( T_{1} ) $, \\ $ \theta $ & $= $ & \Sgamma_{a} ( T_{1} ) $, \\ $ \theta $ & $= $ & \Sgamma_{a} ( T_{1} ) $, \\ $ \theta $ & $= $ & \Sgamma_{a} ( T_{1} ) $, \\ $ \theta $ & $= $ & \Sgamma_{a} ( T_{1} ) $, \\ $ \theta $ & $= $ & \Sgamma_{a} ( T_{1} ) $, \\ $ \theta $ & $= $ & \Sgamma_{a} ( T_{1} ) $, \\ $ \theta $ & $= $ & \Sgamma_{a} ( T_{1} ) $, \\ $ \theta $ & $= $ & \Sgamma_{a} ( T_{1} ) $, \\ $ \theta $ & $= $ & \Sgamma_{a} ( T_{1} ) $, \\ $ \theta $ & $= $ & \Sgamma_{a} ( T_{1} ) $, \\ $ \theta $ & $= $ & \Sgamma_{a} ( T_{1} ) $, \\ $ \theta $ & $= $ & \Sgamma_{a} ( T_{1} ) $, \\ $ \theta $ & $= $ & \Sgamma_{a} ( T_{1} ) $, \\ $ \theta $ & $= $ & \Sgamma_{a} ( T_{1} ) $, \\ $ \theta $ & $= $ & \Sgamma_{a} ( T_{1} ) $, \\ $ \theta $ & $= $ & \Sgamma_{a} ( T_{1} ) $, \\ $ \theta $ & $= $ & \Sgamma_{a} ( T_{1} ) $, \\ $ \theta $ & $= $ & \Sgamma_{a} ( T_{1} ) $, \\ $ \theta $ & $= $ & \Sgamma_{a} ( T_{1} ) $, \\ $ \theta $ & $= $ & \Sgamma_{a} ( T_{1} ) $, \\ $ \theta $ & $= $ & \Sgamma_{a} ( T_{1} ) $, \\ $ \theta $ & $= $ & \Sgamma_{a} ( T_{1} ) $, \\ $ \theta $ & $= $ & \Sgamma_{a} ( T_{1} ) $, \\ $ \theta $ & $= $ & \Sgamma_{a} ( T_{1} ) $, \\ $ \theta $ & $= $ & \Sgamma_{a} ( T_{1} ) $, \\ $ \theta $ & $= $ & \Sgamma_{a} ( T_{1} ) $, \\ $ \theta $ & $= $ & \Sgamma_{a} ( T_{1} ) $, \\ $ \theta $ & $= $ & \Sgamma_{a} ( T_{1} ) $, \\ $ \theta $ & $= $ & \Sgamma_{a} ( T_{1} ) $, \\ $ \theta $ & $= $ & \Sgamma_{a} ( T_{1} ) $, \\ $ \theta $ & $= $ & \Sgamma_{a} ( T_{1} ) $, \\ $ \theta $ & $= $ & \Sgamma_{a} ( T_{1} ) $, \\ $ \theta $ & $= $ & \Sgamma_{a} ( T_{1} ) $, \\ $ \theta $ & $= $ & \Sgamma_{a} ( T_{1} ) $, \\ $ \theta $ & $= $ & \Sgamma_{a} ( T_{1} ) $, \\ $ \theta $ & $= $ & \Sgamma_{a} ( T_{1} ) $, \\ $ \theta $ & $= $ & \Sgamma_{a} ( T_{1} ) $, \\ $ \theta $ & $= $ & \Sgamma_{a} ( T_{1} ) $, \\ $
```

The pump relaxation time depends on the time period \$(\Delta 1 \, t)\$ between input pulses:

```
\label{eq:physical_periodtime} $$T_{1} = T_{1} ( \Delta_1 \setminus, t). $$ \end{equation}
```

We can now easily deduce that also the pump-and-probe nonlinear susceptibility depends on the \$ \Delta_1 \, t \$ as presented in the equation (\ref{eq:physical_pnp_susceptibility}):

```
\begin{equation} \label{eq:physical_pnp_susceptibility}
\chi_{pp} = \chi_{pp} \(\delta , \Delta_1 \, t).
\end{equation}
```

In sense of the response theory this observation leads us to the conclusion, that the susceptibility of the nonlinear process depends not only on the input signal frequency (energy) - but also on the time delay between the moments, when two or more photons arrive at the molecule. We are talking about an important problem in nonlinear optics which is to construct a valid model for the pump-and-probe process - to allow us to use the Titchmarsh theorem.

In \cite{christodoulides_nonlinear} we can find results showing that the probe signal absorbance depends not only on the pump signal properties, but also on the time delay between the pump and probe - see Figure (\ref{physical_fig:pnp_absorption}).

```
\begin{figure}
   \begin{center}
     \includegraphics{img/pnp_abs.png}
     \caption{The pump-and-probe absorption change due to time delay between the pump and probe signal. The figure taken from \cite{christodoulides_nonlinear}.
\label{physical_fig:pnp_absorption} }
   \end{center}
```

\end{figure}

More interesting results come when we assume that susceptibility is a complex function of two parameters, both the pump and probe signal frequency:

```
\label{eq:pnp_2args} $$  \chi_{pp} = \chi_{pp}(\delta, \Delta_1 \ t \ \lambda), \\Delta_1 \ t \ \end{equation} $$  \end{equation} $$
```

Therefore we obtain the three dimensional plots presented on Figures (\ref{fig:physical_pnp_2d}) and (\ref{fig:physical_pnp_3d}).

\begin{figure}

\includegraphics[width=150mm]{img/pnp_2d.png}

\caption{2-Dimensional plots of both a) real and b) imaginary parts of the nonlinear susceptibility treated as a bi-argumental function, where the colour means the function value \label{fig:physical_pnp_2d}} \end{figure}

\begin{figure}

\includegraphics[width=150mm]{img/pnp_3d.png}

\caption{3-Dimensional plots of both a) real and b) imaginary parts of nonlinear susceptibility treated as a bi-argumental function, where the colour means the function value \label{fig:physical_pnp_3d}} \end{figure}

\subsubsection*{Frequency Mixing Process} \label{chap:physical fm}

```
\begin{figure}
  \begin{center}
  \includegraphics{img/fmix_sch.png}
  \caption{The pump-and-probe frequency mixing process from chapter 6.6 Boyd
\cite{boyd_nlo}. \label{fig:fmix_sch}}
  \end{center}
\end{figure}
```

For such a process the model for the linear susceptibilities has been defined by Boyd for both \$\omega + \delta \$ and \$\omega - \delta \$ frequencies:

```
\label{eq:fmix_eff1} $$ \left\{ eq:fmix_eff1 \right\} \equation} \label{eq:feff1_plus} $$ \left\{ eff, 1 \right\} \equation \right\} \equation} \label{eq:feff1_plus} $$ \left\{ ff, 1 \right\} \equation \right\} \equation \equatio
```

```
\Omega \{2}\\delta \{2 (\Delta - \frac \{i\{T \{2\}}\}) \right),
  \end{equation}
\end{subequations}
where we assume $T_1, T_2, \Delta $ to be constant.
Boyd also derives the third-order nonlinear susceptibilities for both $\omega + \delta $ and $\omega -
\delta $ frequencies (we assume $T 1$, $T 2$ and $\Delta$ to be constant time variables).
\begin{subequations} \label{eq:fmix_eff3}
  \begin{equation} \label{eq:feff3_plus}
     \frac { ( - \delta - \Delta - \frac {i}{{T_{2}}})\,(\delta + \frac {2\,i}{{T_{2}}}) \times \text{ const }}
{(\Delta
       + \frac \{i\{\tau_{2}\}\\, \ \Delta + \delta + \frac \{i\{\tau_{2}\}\\, \mathrm{D}\\^*\\\delta\},
  \end{equation}
  \begin{equation} \label{eq:feff3_minus}
     \chi_{eff, \,3} (\omega - \delta = \omega + \omega - (\omega + \delta )) = \frac { (\delta -
     \label{eq:local_local_to_the_local_to_the_local_to_the_local_to_the_local_to_the_local_to_the_local_to_the_local_to_the_local_to_the_local_to_the_local_to_the_local_to_the_local_to_the_local_to_the_local_to_the_local_to_the_local_to_the_local_to_the_local_to_the_local_to_the_local_to_the_local_to_the_local_to_the_local_to_the_local_to_the_local_to_the_local_to_the_local_to_the_local_to_the_local_to_the_local_to_the_local_to_the_local_to_the_local_to_the_local_to_the_local_to_the_local_to_the_local_to_the_local_to_the_local_to_the_local_to_the_local_to_the_local_to_the_local_to_the_local_to_the_local_to_the_local_to_the_local_to_the_local_to_the_local_to_the_local_to_the_local_to_the_local_to_the_local_to_the_local_to_the_local_to_the_local_to_the_local_to_the_local_to_the_local_to_the_local_to_the_local_to_the_local_to_the_local_to_the_local_to_the_local_to_the_local_to_the_local_to_the_local_to_the_local_to_the_local_to_the_local_to_the_local_to_the_local_to_the_local_to_the_local_to_the_local_to_the_local_to_the_local_to_the_local_to_the_local_to_the_local_to_the_local_to_the_local_to_the_local_to_the_local_to_the_local_to_the_local_to_the_local_to_the_local_to_the_local_to_the_local_to_the_local_to_the_local_to_the_local_to_the_local_to_the_local_to_the_local_to_the_local_to_the_local_to_the_local_to_the_local_to_the_local_to_the_local_to_the_local_to_the_local_to_the_local_to_the_local_to_the_local_to_the_local_to_the_local_to_the_local_to_the_local_to_the_local_to_the_local_to_the_local_to_the_local_to_the_local_to_the_local_to_the_local_to_the_local_to_the_local_to_the_local_to_the_local_to_the_local_to_the_local_to_the_local_to_the_local_to_the_local_to_the_local_to_the_local_to_the_local_to_the_local_to_the_local_to_the_local_to_the_local_to_the_local_to_the_local_to_the_local_to_the_local_to_the_local_to_the_local_to_the_local_to_the_local_to_the_local_to_the_local_to_the_local_to_the_local_to_the_local_to_the_local_to_the_local_to_the_local_to_the_local_to_the_local_to_the_local_to_the_local_to_the_
{{T_{{2}}}})
      \c - \det + \frac{i}{T_{2}}}\
  \end{equation}
\end{subequations}
We have used the symbol of $\\mathrm{D}\\frac{1}{3}\\delta \$ to describe the conjugate function of D. The D
functions is defined as in the equation (\ref{eq:fwm_ddefinition}):
\begin{equation} \label{eq:fwm ddefinition}
  \mathcal{D}(\delta)=(\delta + \frac{1}{T_{1}}) \, (\delta - \delta + \frac{i}{T_{2}}))
   \c \ \,(\delta + \Delta + \frac {i}{T_{2}}}) - \Omega \(^2\,(\delta + \frac {i}{T_{2}}}).
\end{equation}
The test 3-dimensional plot is presented in Figures (\ref{fig:fmix 2d}) and (\ref{fig:fmix 3d}).
\begin{figure}
         \begin{center}
                   \includegraphics[width=150mm]{img/fmix_2d.png}
                   \caption{2-Dimensional plots of both a) real and b) imaginary parts of nonlinear susceptibility
treated as a bi-argumental function, where the colour means the function value \label{fig:fmix 2d}
         \end{center}
\end{figure}
\begin{figure}
         \begin{center}
                   \includegraphics[width=150mm]{img/fmix 3d.png}
                   \caption{3-Dimensional plots of both a) real and b) imaginary parts of nonlinear susceptibility
treated as a bi-argumental function, where the colour means the function value \label{fig:fmix 3d}}
         \end{center}
\end{figure}
We will shortly review the derivation of the Hilbert transform for nonlinear models. As proposed by
Lucarini~\cite{lucarini_kramers}, we connect the imaginary and the real part of the nonlinear optical
susceptibility with the higher-level Hilbert transform:
```

\begin{subequations} \label{eq:derivation_lucarini} \begin{multline} \label{eq:dlucarini_imag}

\delta - \Delta + \frac

```
\lm({\chi {n, \,i, \,{j 1}, \,\ldots,\,{j n}}}\\sum {|=1}\f\n}\,\omega |}, \,\omega 1}, \,\ldots, \,
\{\langle n \rangle = 1\}
     \ \frac { \Re({\chi_{n, i, i, i_1}, \ldots,{i_n}}}(\sum_{l=1}^n)_{n}, \Omega_l}, \, \) \} (\Sum_{l=1}^n)_{n}, \Sum_{l=1}^n)_{n}, \Sum_{l=
     \d{\Omega_1}\,\d{\Omega_n},\d{\Omega_n},\d{\Omega_n},\d{\Omega_n},\d{\Omega_n},\d{\Omega_n}
   \end{multline}
   \begin{multline} \label{eq:dlucarini_real}
     \Re({\chi_{n, \,i, \,{j_1}, \,\ldots, \,{j_n}}}\\sum_{l=1}^{n}\,\omega_l}, \,\omega_1},\,\ldots,\,
{\omega_n} = {\omega_n} = {\omega_n}
     \frac {1}{\pi^{n}} \dashint_{ - \infty }^{\infty }\,\\dashint_{ - \infty }^{\infty }
     \frac { \lm ({\chi_{n, \,i, \,{i_1}, \,\ldots, \,{i_n}}}\(\sum_{l=1}^{n}\,\Omega_l}, \,\Omega_1}, \, \ldots,
     {\omega_n}}\d{\omega_n}.
   \end{multline}
\end{subequations}
These integrals are hard to solve numerically and they go beyond the subject of this thesis. Here we
will assume a great simplification and we will take only one frequency $\omega_{1}$ into
consideration:
\begin{subequations} \label{eq:derivation_conclude}
  \begin{multline} \label{eq:dconclude imag}
     \{\langle n\} \} = \langle n \rangle
     \frac \{-1}\\pi \\ \dashint_\{ - \infty \\frac \\Re (\\chi_\{n, \,i, \,\{i_\1}\}, \, \\dots,
     \[ = 1^{n}}\) \
{{\Omega_1} - {
     \omega_1}\,d{\Omega_1},
   \end{multline}
   \begin{multline} \label{eq:dconclude_real}
     {\omega_n})) = \\
     \frac {1}{\pi } \dashint_{ - \infty }^\infty }\frac {\lm ({\chi_{n, \,i, \,{j_1}, \, \ldots,
     \{j_{n}}}\\sum_{l=1}^{n}\,{\Omega_l}, \,{\Omega_1}, \,{\omega_2}, \, \ldots, \,{\omega_n}))}
{{\Omega_1} - {
     \omega_1}\,d{\Omega_1}.
   \end{multline}
\end{subequations}
But we know that the signal response does not only depend on the input frequencies $\omega {1},
\dotsc,\omega_{n}$, but also on the time delays between them $T_{1},\dotsc, ,T_{n-1}$:
\begin{equation} \label{eq:derive_withdelay}
    \chi_{n, \,i, \,j_{1},\dotsc,j_{n}} (\sum_{l=1}^n,\omega_{l},\omega_{1},\dotsc,\ n}) \\
    \omega_{n} = {\cosh_{n, i, i, j_{1}, dotsc, j_{n}}}(\sum_{l=1}^n), \omega_{l}, \omega_{1}, \ome
    \n, \omega_{n}, T_{1}, \omega_{n}.
 \end{equation}
Automatically we expand equation (\ref{eq:derivation conclude}) into (\ref{eq:dexpand imaq}) and
(\ref{eq:dcexpand_real}):
\begin{subequations} \label{eq:dconlude_expand}
  \begin{multline} \label{eq:dcexpand_imag}
     \omega \{2\}
     \, \\dots, \,\omega_{n}, \,T_{1}, \,T_{2}, \, \\dots, \, T_{n - 1})) = \\
     \frac{-1}{\pi} \dashint_{ - \infty }^\infty } \frac {\Re
```

```
 \begin{multine} $$ \left( \frac{n, i, i, j_{1}, i, j_{2}, \ldots, j_{n}}(\sum_{l=1}^n , \omega_{l}, \omega_{l}, i, j_{2}, \ldots, j_{n}}(\sum_{l=1}^n , \omega_{l}, \omega_{l},
```

The evaluation of the higher order Hilbert transforms will be a key to understand the mathematical model of the nonlinear optics. In this thesis we make only a one little step forward.

\subsection{The quantum-perturbation models} \label{chap:problem_quantum} The quantum mechanics is a part of physics where the microscopic particles and energies are described. We can call the quantum mechanics also the quantum physics or the quantum theory. The main focus of the quantum physics is on the vectors describing the properties of indicated physical system at a given time. These vectors are the sets of properties and physical values which are time and space dependent. Such vectors are also named the complex wave functions. The values of such vectors are not unrestricted due to the main assumption that any physical action must be a multiple of a small physical quantity - called the Planck constant: \$h = 6.62606957(29) \times 10^{-34} \, \text{ Joule times second } \$.

The maths used to describe the quantum world is far more complicated than one used in the classical physics and we will not get into the details in this thesis. We will shortly introduce the two physical models of the quantum linear and nonlinear susceptibility described by Kuzyk \cite{kuzyk_nlo} and Boyd \cite{boyd_nlo}. The calculations used in both cited works are based on the time-dependent perturbation. The introduced concept of the perturbation is an interesting mathematical idea to solve difficult, differential equations.

\subsubsection*{The sum-over-states model}

The first model is named the sum-over-states. In this model we will sum all possible excited states and transitions between such states for a single atom. In the linear case we assume that the atom can only be in \$m\$ excited states with no other option for atom than transition from the ground state to one of the \$m\$ exited states and forth. The reason for such a prohibition is simple - we will assume only one photon is interacting with the atom. You may associate the excited state with a situation when a single photon is absorbed by the atom and its energy is added to the energy of the whole system.

In the nonlinear cases - we will assume that the number of possible atom states and inner-states transitions is increasing. To describe the second-order nonlinear susceptibility we will assume there are \$m\$ possible troikas - so the combination of three possible states with an option for transition between each state in a troika. To describe the third-order nonlinear susceptibility - we will assume that there are \$m\$ possible fours of states.

We name this model the sum-over-states, because we will perform summation over all possible excited states for the theoretical model of an atom. We have already introduced the Planck constant \$h\$. We will also used the \$N\$ constant to describe the number density of atoms - which describe the concentration of any countable objects in a given, three-dimensional volume. We shall also introduce the vacuum permittivity constant \$\epsilon_0 \approx 8.854187817620 \times 10^{-12} \, \text{ Farad per meter } \$.

There are two more physical values to be discussed. First of them is \mu_{i, ab}\ and the second is \lambda \mu_{i, ab}\ is a matrix-like value, and the \mu_{i, ab}\ is a vector-like value. There are many situations in physics, when a value is described by the vector, two-dimensional matrix or a matrices of higher order. Such values are called \textbf{tensors}. \mu_{ab}\ is a vector-like value. There are many situations in physics, when a value is described by the vector, two-dimensional matrix or a matrices of higher order. Such values are called \textbf{tensors}. \mu_{ab}\ is tensor is described as the electric dipole moment with the Coulomb-meter SI unit. The electric dipole moment in physics describes the separation of the negative and the positive charges in a systems consisting of charges. It is also called the system's polarity. It describes the polarity of a system between a state ``a" and the state ``b". The order of indices also matters, so \mu_{i, ab}\ is a different value from \mu_{i, ab}\. In our calculations this value will be a two-dimensional tensor - so a matrix - because one dimension will be related with the ``ab" or ``ba" direction and the second dimension will be related with \mi\ i\. the indicated spatial property of an atom. The atom ``shotted" with a photon in the direction of the axis OX may behave different that ``shotted" from the OY axis. This is also a simplification and in general case the more photons are we taking into consideration, the higher order of a tensor need to be introduced.

The last value is an amount of energy related with a frequency \$\omega_{cd}\$ required for an atom to make a transition between state ``c" and state ``d". We will use a one-dimensional tensor to describe this value. \$P_{I}\$ is the intrinsic permutation operator, in general it is used not to repeat the very same summands again and again just with slight modification of \$+\$ and \$-\$ signs - but please see details in \cite{boyd_nlo}.

The \$\omega_{p}\$ is the frequency of the input photon and it will be a variable in our equations. The final equations are taken from Boyd \cite{boyd_nlo}. They describe the linear (first order) optical susceptibility and the nonlinear (second and third order) optical susceptibilities as a functions of \$\omega_{p}\$:

```
% Quantum-perturbation - result model equation - linear case
\begin{equation} \label{eq:sresults_linear}
     { \cdot (1, i, i, i, i) } ({\omega(p) } ) = \frac{N}{{ \cdot (i, i, i, i, i, i, i) } ({\omega(p) } ), h}
             \sum_{m} \,
                  (\frac { \mu_{i, \, gm} } \, \\mu_{j, \, mg} } } { \omega_{mg} } - {\omega_{p} } }
                   + \frac { \\mu_{j, \, gm} } \, \\mu_{i, \, mg} } } { \\omega_{mg} } + \\omega_{p} } } ),
\end{equation}
% Quantum-perturbation - result model equation - second-order case
\begin{equation} \label{eq:sresults_quadratical}
      \begin{split}
             \ \c \{2, i, j, k\}(\omega_{p}) + \omega_{q}\}, \ \c \{q\}\}, \ \c \{q\}
                        \frac{N}{{\tilde{0}}\,h^{2}}P_{I}, \sum_{m}{mn},
   \\ & ( \frac{\\mu_{i, \, gn}} \, {\\mu_{j,\\,nm}} \, {\\mu_{k, \, mg}}}
                                      {(\omega_{q})} - \omega_{p} - \omega_{p} - \omega_{p}} - 
   \ + \frac{j, \ gn}} \ , {\mu_{i}, \ mu_{i}, \ mu_{k} \ , \ mg}}
                                      {(\omega_{q})}, \omega_{q} - \omega_{p}}
   \\ & + \frac{{\mu_{i, \, gn}} \, {\mu_{k,\,nm}} \, {\mu_{i, \, mg}}}
                                      {(\omega_{q}),(\omega_{q}) + \omega_{q})} + \omega_{q}} + \omega_{q}} + \omega_{q}} + \omega_{q}}
      \end{split}
\end{equation}
% Quantum-perturbation - result model equation - third-order case
\begin{equation} \label{eq:sresults_cubic}
     \begin{split}
             & \chi_{3, \,k, \,i, \,h} ({\omega_{\sigma }}, \,{\omega_{\r}}, \,{\omega_{\r}}})
                   = \frac{N}{{\operatorname{N}}{\operatorname{N}}} \ P_{I}} \ \
   \\ & ( \frac {\\mu_{k, \,gv}} \, {\\mu_{j, \,vn}} \, {\\mu_{i,\,nm}} \, {\\mu_{h, \,mg}}}
                                          {((\omega_{vg}) - (\omega_{r}) - (\omega_{p})),}
                                            ({\omega_{ng}} - {\omega_{q}} - {\omega_{p}}) \,
```

```
({\omega_{mg}} - {\omega_{p}}))
{((\{\omega_{r}\}) + \{\omega_{r}\}) \setminus ,}
          ({\omega_{ng}} - {\omega_{q}} - {\omega_{p}}) \,
          ({\omega_{ mg}} - {\omega_{p}})}
\ + \frac{{\{\mu_{j, \,gv}\} \, \{\mu_{i, \,vn}\} \, \{\mu_{k, \,nm}\} \, \{\mu_{h, \,mg}\}\}}}{\ }
         {((\{\omega_{r}\}) + \{\omega_{r}\}) \setminus ,}
          ({\omega_{q}} + {\omega_{q}}) + {\omega_{q}} + {\omega_{q}}) \
          ({\omega_{mg}} - {\omega_{p}})}
\\ & + \frac {{\mu_{j, \,gv}} \, {\mu_{i, \,vn}} \, {\mu_{h,\,nm}} \, {\mu_{k, \,mg}}}
         {((\omega_{vg}) + (\omega_{r})) \setminus, }
          ({\omega_{q}} + {\omega_{r}} + {\omega_{q}}) + {\omega_{q}} 
          ({\omega_{q}} + {\omega_{r}} + {\omega_{r}} + {\omega_{r}} + {\omega_{r}} + {\omega_{r}})}).
 \end{split}
\end{equation}
```

\subsubsection*{The density matrix model}

Starting from the models described in the (\ref{eq:sresults_linear}), (\ref{eq:sresults_quadratical}) and (\ref{eq:sresults_cubic}) equations we can easily jump to the density matrix operator models. Not getting into the theoretical background - we will introduce a new term \$\gamma_{ab}\\$ which will be the imaginary tensor describing the so called dumping rate, which is an element of the density matrix, describing the coherence between states \$a\$ and \$b\$. The models have been described in the following equations:

```
% Quantum-perturbation density matrix - result model equation - linear case
\begin{equation} \label{eq:ssmods_linear}
         {\chi_{1}}{\omega_{p}}) = \frac {N}{\varepsilon_{0}}\,h}\sum_{n}\,(\frac {\mu_{i, \,an}}\,\mu_{j,
\n,na}}{{\omega_{na}} -
        {\omega_{p}} - i\,\gamma_{na}}} + \frac {\\mu_{i, \,na}}\,\\mu_{j, \,an}}}{\\omega_{na}} - \\omega_{p}}
+ i\,{\gamma_{na}}}),
\end{equation}
% Quantum-perturbation density matrix - result model equation - second-order case
\begin{equation} \label{eq:ssmods_quadratical}
    \begin{split}
         & {\chi_{2, \,i, \,j, \,k}}({\omega_{p}}) + {\omega_{q}}, \,{\omega_{q}}, \,{\omega_{p}})
            = \frac{N}{2 \cdot \frac{N}{2}}
                ({\omega_{ml}} - {\omega_{p}} - i\setminus,{\gamma_{mma_{ml}}}) )
   \{(\{\nega_{nl}\}\} - \{\nega_{p}\} - \{\nega_{p}\}\} - i\setminus \{\nega_{nl}\}\}) \setminus, 
                                (\{\omega_{q}\} - i\setminus q_{m}\}) - \{\omega_{q}\} - i\setminus q_{m}\}) 
  \ + \frac{{\mu_{k, l, n}},{\mu_{i, l, nm}},{\mu_{i, l, nm}}}{\mu_{i, l, nm}}}
                             {((\omega_{mn}) - (\oomega_{p}) - (\oomega_{q}) - i\,(\ogamma_{mn})) \setminus ((\oomega_{mn}) - (\oomega_{mn})) \setminus (\oomega_{mn}) - (\oomeg
                               ({\omega_{q}} + i) + {\omega_{q}} + i,{\omega_{n}}
  \ + \frac{{\{\mu_{i, n, n}},{\mu_{i, n, n}}},{\mu_{i, n, n}}}
                              \{(\{\omega_{mn}\} - \{\omega_{p}\} - \{\omega_{q}\} - i\setminus, \{\gamma_{mn}\}\}) \setminus, \\
                               ({\omega_{q}} + i\,{\gamma_{nl}}) + {\omega_{q}} + i\,{\gamma_{nl}})
 \ + \frac{{\mu_{j, ,n}},{\mu_{i, ,nm}},{\mu_{k,,ml}}}{\mu_{i, ,nm}},{\mu_{k,,ml}}}
                             {((\omega_{nm}) + (\oomega_{p}) + i\,(\ogamma_{nm})) \setminus }
                               ({\omega_{m}} - {\omega_{p}} - i,{\gamma_{m}})
  \\ & + \frac {\\mu_{k, \,l, \,n}}\,{\\mu_{j, \,nm}}\,{\\mu_{i, \,ml}}\}
                             {((\omega_{nm})) + (\oomega_{p}) + (\oomega_{q}) + i\,(\ogamma_{nm})) \setminus ((\oomega_{nm})) + (\oomega_{nm})) + (\oomega_{nm}) + (\oomega_{nm})) + (\oomega_{nm}) + (\oomega_{n
                               (\\omega_\{ml\}\) - \\omega_\{p\}\ - i\,\\\gamma_\{ml\}\)\\
  \\ & + \frac {{\mu_{k, \,l, \,n}}\,{\mu_{j, \,nm}}\,{\mu_{i, \,ml}}}
```

```
{((\omega_{ml}) + (\oomega_{p}) + (\oomega_{q}) + i\,(\ogamma_{ml})) \setminus,}
                                         ({\omega_{nl}} + {\omega_{p}} + i\,{\gamma_{nl}}))
   {((\omega_{ml}) + (\oomega_{p}) + i\,(\ogamma_{ml})) \setminus }
                                         ({\omega_{q}} + i\) + {\omega_{q}} + i\)
      \end{split}
\end{equation}
% Quantum-perturbation density matrix - result model equation - third-order case
\begin{equation} \label{eq:ssmods_cubic}
     \begin{split}
            & \c _{g, \,k, \,j, \,i, \,h}({\omega_{p}} + \omega_{q}) + \c _{r}, \, \)
\omega_{q}}, \,\omega_{p}})
                    = \frac {N} {{\varepsilon_{0}}\,h^{3}} \, \cdot \, \sum_{\vnml}\,{\vno_{0, \,ll}} \,
  \\ & ( \frac {{\mu_{k,\,lv}}\,{\mu_{j,\,vn}}\,{\mu_{i,\,nm}}\,{\mu_{h,\,ml}}}
                                                  {((\omega_{vl}} - {\omega_{p}} - {\omega_{q}} - {\omega_{r}} - i\,{\gamma_{vl}}) \,
                                                     ({\omega_{q}} - i) - {\omega_{q}} - i,{\gamma_{q}} - i,{\gamma_{q}} 
                                                     ({\omega_{mi}} - {\omega_{p}} - i,{\gamma_{mi}})
  {((\omega_{nv}) - (\omega_{p}) - (\omega_{r}) - i\,nv) \setminus }
                                         (\{\omega_{p}\} - \{\omega_{p}\} - \omega_{p}\} - \omega_{p} - \omega_{p}\} 
                                         ({\omega_{p}} + {\omega_{p}} + i,{\omega_{v}}) + {\omega_{v}} + i,{\omega_{v}}
   \ + \frac{{\mu_{i,\,lv}},{\mu_{k,\,vn}},{\mu_{j,\,nm}},{\mu_{h,\,ml}}}
                                      {((\omega_{nv}) - (\omega_{p}) - (\omega_{r}) - i,{\circmega_{nv}}) \setminus ((\omega_{nv}) - (\omega_{nv}) - i,{\circmega_{nv}}) \setminus ((\omega_{nv}) - (\omega_{nv}) - i))}
                                          ({\omega_{p}} + {\omega_{p}} + {\omega_{p}} + {\omega_{p}} + i,{\gamma_{p}} 
                                         ({\omega_{m}} - {\omega_{p}} - i,{\gamma_{m}})
    \{(\{\oega_{mn}\} - \{\oega_{p}\} - \{\oega_{q}\} - \{\oega_{r}\} - i\setminus_{q}amma_{mn}\}) \setminus_{q} \} 
                                         ({\omega_{p}} - {\omega_{p}} - {\omega_{p}} - {\omega_{p}} - {\omega_{p}} + i,{\gamma_{p}} \setminus {\omega_{p}} 
                                         ({\omega_{p}} + i,{\gamma_{v}} + {\omega_{p}} + i,{\gamma_{v}})
  ({\omega_{nl}} - {\omega_{p}} - {\omega_{q}} - i\,{\gamma_{nl}}}) \,
                                         (\\omega_\{ml\}\) - \\omega_\{p\}\ - i\,\\gamma_\{ml\}\)\}
   \ + \frac{{\mu_{h,\,vn}},{\mu_{i,\,vn}},{\mu_{i,\,nm}}}{\mu_{i,\,nm}}}
                                      {((\omega_{p}) + \omega_{p}) + (\omega_{p}) + (\omega_
                                         (\omega_{p}) - \omega_{p} - \omega_
                                         ({\omega_{p}} + {\omega_{p}} + i,{\gamma_{p}}) + i
   ((\omega_{p}) + \omega_{p}) + (\omega_{p}) + (\omega_{p}) + (\omega_{p}) + (\omega_{p}) 
                                         (\{\omega_{q}\} + \omega_{p}\} + \omega_{p}\} + \omega_{q}\} + i,\{\omega_{q}\} + i,\{\omega_{q}\}\} + i,\{\omega_{q}\}\}
                                         ({\omega_{ml}} - {\omega_{p}} - i,{\gamma_{ml}})
   \ + \frac{{\mu_{h, ,|v}},{\mu_{i, ,vn}},{\mu_{j, ,mn}},{\mu_{k, ,ml}}}
                                       (\{\omega_{p}\} + \{\omega_{p}\} + \{\omega_{q}\} + i \} + i \} ) \setminus (\{\omega_{p}\} + i \} ) 
                                         ({\omega_{vi}} + {\omega_{p}} + i,{\gamma_{vi}})).
     \end{split}
\end{equation}
```

What is interesting, after expanding all the permutations in (\ref{eq:ssmods_cubic}) we will get the 48 different summands - which show how the quantum mechanical approach is hard to apply.

In further calculations we will use both the presented equations in simplified version - with just a few summands. The visualization of the results for a typical quantum-perturbative model obtained with equation (\ref{eq:ssmods_cubic}) are shown in Figure (\ref{fig:qp_plot}).

\begin{figure}

\includegraphics[width=150mm]{img/gp_plot.png}

\caption{Quantum-perturbative plot for 3-level model of with arbitrary (non-physical) parameters.

Red plot is for the imaginary and the blue plot is for the real part of the linear susceptibility. \label{fig:qp_plot}}

\end{figure}

\begin{figure}

\includegraphics[width=150mm]{img/qp_3da.png} \\

\includegraphics[width=150mm]{img/qp_3db.png}

\caption{Three dimensional quantum-perturbative plot for 3-level model of with arbitrary (non-physical) parameters. Upper plot is for the imaginary and the lower plot is for the real part of the second-order susceptibility.

\label{fig:qp_3d}}

\end{figure}

\section{Simpson and trapezoidal quadrature based Hilbert transform - HTRAN} \label{chap:htran}

In Chapter (\ref{chap:physical_models}) we have defined the:

\begin{itemize}

\item simple linear model,

\item pump-and-probe model,

\item frequency mixing model,

\item sum-over-states models of 1st, 2nd and 3rd order,

\item density matrix models of 1st, 2nd and 3rd order.

\end{itemize}

In Chapters (\ref{chap:htran}-\ref{chap:matlab}) we will now put some of these models into numerical calculations to test the methods constructed.

\subsection{Overview of the HTRAN} \label{chap:htran_overview}

In this chapter we present the simplest possible but still nice working numerical calculation of the Hilbert transform based on the report by I. J. Weinberg \cite{weinberg_hilbert}. It uses the Simpson and trapezoidal quadrature. We have slightly modified author's algorithm and it no longer requires the input to be an even function.

The algorithm is presented in two parts. In the first part, we present how the Hilbert transform equation can be modified, with one strict assumption, from the singular integral to the non-singular one. In the second part, we will work on the new set of input function values based on the interpolation method.

\begin{figure}

\includegraphics[width=150mm]{img/htran_illustration.png}

\caption{A sample input plot (ordered pairs of OX abscissae - F - and the OY ordinates - R) with the sample output plot HT for the HTRAN algorithm. \label{fig:htran_illustration}} \end{figure}

We assume that the input function R is defined for a discrete set of arguments:

```
\label{eq:htran_arguments} F = \frac{F_1, F_2, \label{eq:htran_arguments}} \frac{F_i < F_j \, \text{ for } i < j) \ .} \end{equation}
```

We will calculate the Hilbert transform of \$R\$ for the same discrete set of arguments \$F\$. An example has been presented on Figure (\ref{fig:htran_illustration}), where the blue plot represents the input function \$R\$ and the green plot represents the output function \$H_T\$.

```
We start from reminding the definition of the Hilbert transform:
```

```
\begin{equation} \label{eq:htran_basic_representation}
\mathrm{H_T}(\omega)
 = \frac{1}{\pi} {\Lambda } - \frac{1}{\pi} {\Lambda } - \frac{1}{\eta} {\Lambda } - \frac{1}{\eta} {\Lambda } \
\Omega }
\end{equation}
We transform the basic representation (\ref{eq:htran_basic_representation}) into a limit of two
integrals:
\begin{equation} \label{eq:htran_first_modification}
\frac{1}{\pi } {\dashint_{ - \infty }^\\infty } \frac {\mathrm{R}(\Omega )}(\Omega - \omega }\,d\Omega }
 = {\lim_{\varepsilon \rightarrow 0}}
    \left(\int_{ - \infty }^{\omega - \varepsilon } \frac {\mathrm{R}}(\Omega )}{\Omega - \omega }\,d
\Omega
       + \int_{ \omega + \varepsilon }^{\ \infty } \frac {\mathrm{R}(\Omega )}_\Omega - \omega }\,d
\Omega \right) .
\end{equation}
Now for each frequency $\omega$ we observe the following property:
\begin{equation} \label{eq:htran_cpv_property}
    \end{equation}
We use the observation (\ref{eq:htran_cpv_property}) and modify the equation
(\ref{eq:htran_first_modification}):
\begin{equation} \label{eq:htran_newintegral}
\mathrm{H_T}(\omega)
 = \frac{1}{\pi } {\dashint_{ - \infty }^{\infty } \frac {\mathrm{R}(\Omega ) - \mathrm{R}(\omega )}
{\Omega - \omega }\,d\Omega }
 + \frac{1}{\pi } {\dashint_{ - \infty }^\infty } \frac {\mathrm{R}(\Omega )}\Omega - \omega }\,d
\Omega }
                {int_{ - \infty }^\infty } \frac {\mathrm{R}(\Omega ) - \mathrm{R}(\Omega )}\Omega -
 = \frac{1}{\pi}
\omega \\,d\Omega\ .
\end{equation}
We can easily transform the result of the (\ref{eq:htran_newintegral}) as follows:
\begin{equation} \label{eq:htran_ht_three}
 \operatorname{M-T}(\omega) = \frac{1}{\pi} \operatorname{M-T}(\omega)
  \Omega
 + \int_{ F_N }^{ \infty} \frac {\mathrm{R}(\Omega ) - \mathrm{R}(\Omega )},\d
\Omega
\right].
\end{equation}
As the input function R is assumed to be square-integrable, we will put even more strict assumption:
\begin{equation} \label{eq:htran_vanishes}
\operatorname{R}(\omega) = 0 \ \text{for } \omega < F_1 \ \text{or } \ \text{onega} > F_N.
\end{equation}
```

```
With the strict-vanishing assumption (\ref{eq:htran_vanishes}) for $R(\omega)$, we can simplify the equation (\ref{eq:htran_ht_three}) as follows:
```

```
\begin{equation} \label{eq:htran_ht}
     \operatorname{H_T}(\omega) = \operatorname{I}_{\pi} \
          \int_{-\infty} \frac{\pi_{R}(\omega_{R}(\omega))}{\Omega_{R}} - \frac{\pi_{R}(\omega)}{\Omega_{R}} d\Omega_{R} 
     + \int_{F_1}^{F_1} {F_N} \ \frac{\pi_R}{\Omega} - \frac{R}{\Omega} } \
\Omega
     + \inf_{F_N}^{\infty} - \frac{\mathrm{R}(\Omega)}{\Omega} - \frac{\mathrm{R}(\Omega)}{\Omega} - \Omega }
     \right].
\end{equation}
As $\omega \in [F_1, \,F_N]$ we will now consider two cases - that takes into account the position of
$\omega $ in relation to $F_1$ and $F_N$ We have two possibilities:
\begin{equation} \label{eq:htran_twoposibilities}
                      \omega - F_1 < F_N - \omega \, text{ and } F_N - \omega \
\end{equation}
We shall also notice the symmetry property of the the function $\frac {1}\Omega - \omega }\$ for any
M > 0:
\begin{equation} \label{eq:htran_forallm}
          \int_{-\infty}^{\infty} \frac{1}{\Omega - \infty} \
     \end{equation}
Together with the observation (\ref{eq:htran_forallm}) each of two cases from
(\ref{eq:htran_twoposibilities}) leads to results obtained in equations (\ref{eq:htran_htres1}) and
(\ref{eq:htran_htres2}) respectively:
\begin{subequations} \label{eq:htran_htresults}
     \begin{multline} \label{eq:htran_htres1}
          \mathcal{H}(\omega) = \frac{1}{\pi}
          \left[
                     \int_{2\,\omega - F_N}^{F_1} - \frac \mathrm{R}(\omega )\{\Omega - \omega }\,d\Omega
                + \int_{F_1}^{F_N} \frac{\mathrm{R}(\Omega ) - \mathrm{R}(\Omega)}{\Gamma_N} \frac{1}{\Gamma_N} \frac
\Omega
          \right] \\
          = \frac{1}{\pi}
          \left[
               - \mathrm{R}(\omega )\,\mathrm{In}(\frac {F_1 - \omega }\omega - F_N})
                + \int_{F_1}^{F_1}^{F_N}\frac{1}{\sqrt{F_N}}\frac{1}{\sqrt{F_N}}\frac{1}{\sqrt{E_N}}\frac{1}{\sqrt{E_N}}\frac{1}{\sqrt{E_N}}\frac{1}{\sqrt{E_N}}\frac{1}{\sqrt{E_N}}\frac{1}{\sqrt{E_N}}\frac{1}{\sqrt{E_N}}\frac{1}{\sqrt{E_N}}\frac{1}{\sqrt{E_N}}\frac{1}{\sqrt{E_N}}\frac{1}{\sqrt{E_N}}\frac{1}{\sqrt{E_N}}\frac{1}{\sqrt{E_N}}\frac{1}{\sqrt{E_N}}\frac{1}{\sqrt{E_N}}\frac{1}{\sqrt{E_N}}\frac{1}{\sqrt{E_N}}\frac{1}{\sqrt{E_N}}\frac{1}{\sqrt{E_N}}\frac{1}{\sqrt{E_N}}\frac{1}{\sqrt{E_N}}\frac{1}{\sqrt{E_N}}\frac{1}{\sqrt{E_N}}\frac{1}{\sqrt{E_N}}\frac{1}{\sqrt{E_N}}\frac{1}{\sqrt{E_N}}\frac{1}{\sqrt{E_N}}\frac{1}{\sqrt{E_N}}\frac{1}{\sqrt{E_N}}\frac{1}{\sqrt{E_N}}\frac{1}{\sqrt{E_N}}\frac{1}{\sqrt{E_N}}\frac{1}{\sqrt{E_N}}\frac{1}{\sqrt{E_N}}\frac{1}{\sqrt{E_N}}\frac{1}{\sqrt{E_N}}\frac{1}{\sqrt{E_N}}\frac{1}{\sqrt{E_N}}\frac{1}{\sqrt{E_N}}\frac{1}{\sqrt{E_N}}\frac{1}{\sqrt{E_N}}\frac{1}{\sqrt{E_N}}\frac{1}{\sqrt{E_N}}\frac{1}{\sqrt{E_N}}\frac{1}{\sqrt{E_N}}\frac{1}{\sqrt{E_N}}\frac{1}{\sqrt{E_N}}\frac{1}{\sqrt{E_N}}\frac{1}{\sqrt{E_N}}\frac{1}{\sqrt{E_N}}\frac{1}{\sqrt{E_N}}\frac{1}{\sqrt{E_N}}\frac{1}{\sqrt{E_N}}\frac{1}{\sqrt{E_N}}\frac{1}{\sqrt{E_N}}\frac{1}{\sqrt{E_N}}\frac{1}{\sqrt{E_N}}\frac{1}{\sqrt{E_N}}\frac{1}{\sqrt{E_N}}\frac{1}{\sqrt{E_N}}\frac{1}{\sqrt{E_N}}\frac{1}{\sqrt{E_N}}\frac{1}{\sqrt{E_N}}\frac{1}{\sqrt{E_N}}\frac{1}{\sqrt{E_N}}\frac{1}{\sqrt{E_N}}\frac{1}{\sqrt{E_N}}\frac{1}{\sqrt{E_N}}\frac{1}{\sqrt{E_N}}\frac{1}{\sqrt{E_N}}\frac{1}{\sqrt{E_N}}\frac{1}{\sqrt{E_N}}\frac{1}{\sqrt{E_N}}\frac{1}{\sqrt{E_N}}\frac{1}{\sqrt{E_N}}\frac{1}{\sqrt{E_N}}\frac{1}{\sqrt{E_N}}\frac{1}{\sqrt{E_N}}\frac{1}{\sqrt{E_N}}\frac{1}{\sqrt{E_N}}\frac{1}{\sqrt{E_N}}\frac{1}{\sqrt{E_N}}\frac{1}{\sqrt{E_N}}\frac{1}{\sqrt{E_N}}\frac{1}{\sqrt{E_N}}\frac{1}{\sqrt{E_N}}\frac{1}{\sqrt{E_N}}\frac{1}{\sqrt{E_N}}\frac{1}{\sqrt{E_N}}\frac{1}{\sqrt{E_N}}\frac{1}{\sqrt{E_N}}\frac{1}{\sqrt{E_N}}\frac{1}{\sqrt{E_N}}\frac{1}{\sqrt{E_N}}\frac{1}{\sqrt{E_N}}\frac{1}{\sqrt{E_N}}\frac{1}{\sqrt{E_N}}\frac{1}{\sqrt{E_N}}\frac{1}{\sqrt{E_N}}\frac{1}{\sqrt{E_N}}\frac{1}{\sqrt{E_N}}\frac{1}{\sqrt{E_N}}\frac{1}{\sqrt{E_N}}\frac{1}{\sqrt{E_N}}\frac{1}{\sqrt{E_N}}\frac{1}{\sqrt{E_N}}\frac{1}{\sqrt{E_N}}\frac{1}{\sqrt{E_N}}\frac{1}{\sqrt{E_N}}\frac{1}{\sqrt{E_N}}\frac{1}{\sqrt{E_N}}\frac{1}{\sqrt{E_N}}\frac{1}{\sqrt{E_N}}\frac{1}{\sqrt{E_N}}\frac{1}{\sqrt{E_N}}\frac{1}{\sqrt{E_N}}\frac{1}{\sqrt{E_N}}\frac{1}{\sqrt{E_N}}\frac{1}{\sqrt{E_N}}\frac{1}{\sqrt{E_N}}\frac{1}{\sqrt{E_N}}\frac{1}{\sqrt{E_N}}\frac{1}{\sqrt{E_N}}\frac{1}{\sqrt{E_N}}\frac{1}{\sqrt{E_N}}\frac{1}{\sqrt{E_N}}\frac{1}{\sqrt{E_N}}\frac{1}{\sqrt{E_N}}\frac{1}{\sqrt{E_N}}\frac{1}{\sqrt{E_N}}\frac{1}{\sqrt{E_N}}\frac{1}{\sqrt{E_N}}\frac{1}{\sqrt{E_N}}\frac{1}{\sqrt{E_N}}\frac{1}{\sqrt{E_N}}\frac{1}{\sqrt{E_N}}\frac{1}{\sqrt{E_N}}\frac{1}{\sqrt{E_N}}\frac{1}{\sqrt{E_N}}\frac{1}{\sqrt{E_N}}\frac{1}{\sqrt{E_N}}\frac{1}{\sqrt{E_N}}\frac{1}{\sqrt{E_N}}\frac{1}{\sqrt{E_N}}\frac{1}{\sqrt{E_N}}\frac{1}{\sqrt{E_N}}\frac{1}{\sqrt{E_N}}\frac{1}{\sqrt{E_N}}\frac{1}{\sqrt{E_N}}\frac{1}{\sqrt{E_N}}\frac{1}{\sqrt{E_N}}\frac{1}{\sqrt{E_N}}\frac{1}{\sqrt{E_N}}\frac{1}{\sqrt{E_N}}\frac{1}{\sqrt{E_N}}\frac{1}{\sqrt{E_N}}\frac{1}{\sqrt{E_N}}\frac{1}{\sqrt{E_N}}\frac{1}{\sqrt{E_N}}\frac{1}{\sqrt{E_N}}\frac{1}{\sqrt{E_N}}\frac{1}{\sqrt{E_N}}\frac{1}{\sqrt{E_N}}\frac{1}{\sqrt{E_N}}\frac{1}{\sqrt{E_N}}\frac{1}{\sqrt{E_N}}\frac{1}{\sqrt{
\Omega
          \right]
     \end{multline}
     \begin{multline} \label{eq:htran_htres2}
          \mathcal{H}(\omega) = \mathcal{H}(\omega)
          \left[
                     \int_{F_1}^{F_N}\frac {\mathrm{R}(\Omega )- \mathrm{R}(\omega)}{\Omega - \omega }\,d\Omega
                + \int_{F_N}^2\\omega - F_1\\omega - \omega }\\omega - \omega .
          \right] \\
          = \frac{1}{\pi}
          \left[
                     \int_{F_1}^{F_N}\frac {\mathrm{R}\(\Omega ) - \mathrm{R}(\omega )}\{\Omega - \omega }\,d
\Omega
               - \mathrm{R}( \omega )\,\mathrm{In}(\frac {\omega - F_1}{F_N - \omega })
```

```
\right] .
\end{multline}
\end{subequations}
```

And we can see that both the (\ref{eq:htran_htresults}) derivations lead to the same result:

```
\begin{equation} \label{eq:htran_sameresult}
\mathrm{H_T}(\omega) = \frac {1}{\pi} \\
\left[
- \mathrm{R}(\omega)\, \mathrm{In}( \frac {\omega - F_1}{F_N - \omega}) + \int_{F_1}^{ F_N}\frac {\mathrm{R}(\Omega) - \mathrm{R}(\omega)}\,d \Omega \\
\right]
\end{equation}
```

We also observe that for any \$\omega\$ inside the range $[F_1, \F_N]$ both values \$\omega - F_1\$ and \$F_N - \omega\$ are non-negative. That leads to a simple observation that condition \$0 < \frac {\omega - F_1}{F_N - \omega} }\$ is satisfied and therefore the logarithm argument is well defined. What now interests us the most, is the integral:

```
\label{eq:htran_interestint} $$ \operatorname{Y}(\omega) = \int_{F_1}^{F_N} \frac{ \operatorname{R}(\Omega) - \operatorname{R}(\Omega) } - \operatorname{R}(\Omega) } \end{equation} $$ \operatorname{Quation} $$ \end{equation} $$ \end{equation
```

We would like the denominator in the (\ref{eq:htran_interestint}) equation never equals zero, so we can calculate the whole integral numerically. For this reason we are preparing a new set of values, which are just a simple midways of \$F\$:

```
\label{eq:htran_newpoints} $$ \operatorname{F_k}=\frac{F_k+F_{k+1}}{2} \mbox{ for } \, k=1 \, \dots \, {N-1} \end{equation}
```

We will also need to approximate the values of a new $\hat{R} = \hat{R} = 1 \cdot N-1$ points. We will do this by a simple cubic interpolation:

```
\label{eq:htran_r3interp} $$ \left\{ eq:htran_r3interp \right\} $$ \left\{ eq:hr3inp_first \right\} $$ \left\{ eq:hr3inp_first \right\} $$ \left\{ eq:hr3inp_first \right\} $$ \left\{ eq:hr3inp_next \right\} $$ \left\{ eq:hr3inp_next
```

The calculation of the \$\mathrm{Y}\$ function from the (\ref{eq:htran_interestint}) equation will be performed by a simple quadrature integration. The introduced \$\widehat{Y_{i}}\$ symbol describes the numerical approximation of the \$\mathrm{Y}\$ function calculated with the following equation:

```
\label{eq:htran_simplequadrature} $$ \left(Y_{i}\right) = \sum_{j=1}^{N} \  \  \\ F_j - \left(F_i\right) \  \  \\ F_i - \left(F_i\right) \  \  \\ \left(F_i\right) \
```

```
To do such an integration we will hire the Simpson's rule. If N is odd, we have:
```

```
\begin{subequations} \label{eq:htran_nodd}
  \begin{equation} \label{eq:hnodd_fnlast}
     h_1 = h_N = \frac{F_2 - F_1}{3} = \frac{\Delta , F}{3}
  \end{equation}
  \begin{equation} \label{eq:hnodd_even}
     h_j = \frac{4 \, \text{Delta }, F}{3} \, \text{mbox} for \, , j = 2, , 4 \, \text{dots }, \{N - 1\}
  \end{equation}
  \begin{equation} \label{eq:hnodd_odd}
     h\_j = \frac{2 \, , \, Delta \, , \, F}{3} \, \, , \, mbox{ for } \, , \, j = 3, \, , \, 5 \, , \, ldots \, , \, \{N-2\}
  \end{equation}
\end{subequations}
If N is even, the last interval should be obtained using the trapezoidal rule:
\begin{subequations} \label{eq:htran_neven}
  \begin{equation} \label{eq:hneven_first}
     h_1 = \frac{h_1 = \frac{h_1}{3}}{h_1 = \frac{F_2 - F_1}{3}}
  \end{equation}
  \begin{equation} \label{eq:hneven even}
     h j = \frac{4 \cdot F}{3} \cdot mbox{ for } , j = 2, , 4 \cdot Mots \cdot N - 2}
  \end{equation}
  \begin{equation} \label{eq:hneven odd}
     h_j = \frac{2 \, \text{Delta }, F}{3} \, \text{mbox} for \, , j = 3, , 5 \, \text{dots }, \{N - 3\}
  \end{equation}
    \begin{equation} \label{eq:hneven prelast}
     h_{N - 1} = \frac{5 \, \text{Delta }, F}{6}
  \end{equation}
    \begin{equation} \label{eq:hneven_last}
     h_N = \frac{\langle Delta \rangle, F}{2}
  \end{equation}
\end{subequations}
In the next step, we calculate the Hilbert transform at points \hat{F_j} \ (j = 1, V, j 
\begin{equation} \label{eq:htran_htpoints}
  \widetilde{H_{T_i}} = \frac{1}{\pi}
  \left[ - \widehat{R_i}
           \mbox{\mathrm{In}(\frac{F_i} - F_1){F_N - \mbox{\modehat{F_i} })}
            + \widehat{Y i}
  \right].
\end{equation}
Finally we need to undo the cubic interpolation. H_T(F_i) = H_{T_i} \, so:
\begin{align}
  \label{eq:htundo first}
     H_{T_1}
                                & = \frac {15 \, \widehat{H {T 1}} - 10 \, \widehat{H {T 2}} + 3 \, \widehat{H {T 3}}}{8}
  \label{eq:htundo_second}
     H_{T_2}
                                & = \frac{3 \ \text{Midehat}(H_{T_1}) + 6 \ \text{Midehat}(H_{T_2}) - 1 \ \text{Midehat}(H_{T_3})}{8}
     //
  \label{eq:htundo next}
                               & = \frac{- \text{H}_{T_i}} + 9 \, \quad H_{T_i} + 1}
     H \{T i\}
- \widehat{ \mathit{H_{T_ii} + 1}}} }
                         \{16\} \setminus \text{mbox} \{ \text{for } \} \setminus i = 3, \setminus, 4, \setminus, \text{dots } \setminus, \{N - 2\} \}
```

```
\\ \label{eq:htundo_prelast} 
 \ \Label{eq:htundo_prelast} 
 \ \Label{T_{N - 1}} & = \frac { - \widehat{\L_{T_{N - 3}}} + 6 \, \widehat{\L_{T_{N - 2}}} + 3 \, \widehat{\L_{T_{N - 1}}}{8} \\ \label{eq:htundo_last} 
 \Label{eq:htundo_last} 
 \Label{\Label_{T_N} & = \frac {3 \, \widehat{\L_{T_{N - 3}}} - 10 \, \widehat{\L_{T_{N - 2}}} + 15 \, \widehat{\L_{T_{N - 1}}}{8} \end{align}
```

In the following chapters we will show the results obtained with this method.

\subsection{HTRAN for simple linear model -- results} \label{chap:htran_lin}

In this chapter we will present the results of HTRAN algorithm applied on the simple linear model defined in the equation (\ref{eq:physical_frequency_linear}). The real part of \$\chi_{\text{lin}}\$ will be used as the input function \$R\$ in the equation (\ref{eq:htran_first_modification}). The output function \$H_T\$ calculated with the HTRAN algorithm is compared to the imaginary part of the \$\chi_{\text{lin}}\$ \$.

We have presented the results in Figure (\ref{eq:htran_lin}). In this and in the following chapters we would like the error function represented with the yellow colour to be as close to zero as possible.

\begin{figure}

\includegraphics[width=150mm]{img/htran_lin.png}

\caption{The Figure presents the results of the HTRAN method applied for the simple linear model. We have used 500 points (N = 500). Results are plotted together

- a) The plot of the real part of \$\chi (\omega)\$
- b) absolute error plot (c-plot minus d-plot)
- c) imaginary part of \$\chi (\omega)\$ obtained with the Hilbert transform of a-plot
- d) imaginary part of \$\chi (\omega)\$ calculated analytically. \label{eq:htran_lin}} \end{figure}

\subsection{HTRAN for simple nonlinear model -- results} \label{chap:htran nlo}

In this chapter we will test the pump-and-probe susceptibility model (\ref{eq:physical_pnp_equation}) with the following values for the constants:

```
\begin{equation} \label{eq:htran_pnpparameters}
 \begin{tabular}{rrlrrlrrlrrl}
  $G$
            & $=$ & $1$,
  $\gamma_{ba}$ & $=$ & $1$,
  $n 0$
             & $=$ & $1$,
  $\Delta$
             & $=$ & $1.3$, \\
  $\eta$
             & $=$ & $1$,
  $\theta$
             & $=$ & $1.4$,
  $\Omega {1}$ & $=$ & $4.3$. \\
 \end{tabular}
\end{equation}
```

The results for such set of parameters are shown on Figure (\ref{fig:htran_pnp_2d}).

\begin{figure}

```
\includegraphics[width=150mm]{img/htran_pnp_2d.png}
```

 \color{Model} The Figure presents the results of the HTRAN method applied for the pump-and-probe model. We have used 500 points (N =

500). Results are plotted together

```
a) The plot of the real part of $\chi_{pp} (\omega)$
b) absolute error plot (c-plot minus d-plot)
c) imaginary part of $\chi_{pp} (\omega)$
d) imaginary part of $\chi_{pp}}(\omega)$ calculated analytically. \label{fig:htran_pnp_2d}}
\end{figure}
```

The resulted b-plot seems to differ from zero near the main amplitude.

We have provided a quick overview of three-dimensional analysis for pump-probe model. As mentioned in Chapter (\ref{chap:physical_simnlo}), Lucarini~\cite{lucarini_kramers} has presented a multidimensional Kramers Kronig relation, see Equations (\ref{eq:dlucarini_imag} - \ref{eq:dlucarini_real}) by using a multidimensional Hilbert transform. As such advanced analytics is far beyond the scope of this thesis, we would like the simplified equations - see Equations (\ref{eq:dconclude_imag}) and \ref{eq:dconclude_real}). The result for the assumed simplification is not promising. While obtained three-dimensional shapes are similar to the original ones, the received relative error is huge as presented in Figure (\ref{fig:htran_pnp_3derr}).

```
\begin{figure}
\begin{center}
\includegraphics{img/htran_pnp_3derr.png}
\caption{The Figure presents the combined relative error for the results of the HTRAN method
```

applied for the two-dimensional pump-and-probe model. The light-cyan colour shows the area of error below 100\%. \label{fig:htran_pnp_3derr}}

\end{center}

\end{figure} % which is not very bad, but there are areas with error more above 100

Let us remind and simplify the wave-mixing model stated in the Chapter (\ref{chap:physical_fm}):

```
\label{eq:htran_fm} $$ \left(\frac{\min} \left(\det \right) = \frac{\left(T_{2}\right)}{T_{2}}, (\delta - \Delta - \beta - \frac{i}{T_{2}}), (\delta + \frac{2 \, i}{T_{2}})}, (\delta + \frac{i}{T_{2}})), (\delta + \frac{i}{T_{2}})
```

We perform the evaluation for the wave-mixing model as stated in the model described by (\ref{eq:feff3_plus}). We expand this equation to resolve the complex conjugate of the function D, and the resulting function is:

```
\begin{equation} \label{eq:htran feffexp}
 \  \mbox{\chi } \{\mbox{\chix}\}(\mbox{\chiz}) =
  \frac{ \text{ const }
        ( - \delta - \Delta - \frac {i}{ T_{2}})
        (\delta + \frac{2 \, i}{ T_{2}})
           ( \Delta + \frac{i}{T_{2}} ) ^{-1}
           ( \Delta + \delta + \frac {i}{ T_{2}}) ^ {-1}}
         { ( \delta^{3}}
           `\frac{2 \, i \, \delta^{2} } { T_{2} }
           - \delta \,\Delta^{2}
           - \frac {2\,i\,\delta } { T_{1} \, T_{2} }
           - \frac{ \delta }{ {T_{2} } ^ {2} }
           + \frac { \delta^{2} } { T_{1} }
           - \frac { \Delta^{2} } { T_{1} }
           - \frac {1}{ { T_{1}} } \, {T_{2}}^{2}}
           - {\Omega_{2}}\,\delta
           + \frac { \Omega_{2} \, i} { T_{2} } ) }
```

```
\end{equation}
```

We have used the following set of constant parameters:

```
\begin{equation} \label{eq:htran_mix_parameters}
\begin{tabular}{rr| rr| rr|rr|}
    $T_1$ & = & $1$,
    $T_2$ & = & $2$,
    $\Omega_2$ & = & $1$,
    ($\Delta$ & = & $1.3$ \ \text {for 2D model} .} \\
\end{tabular}
\end{equation}
```

With such a complex function we obtain the two and three dimensional results presented on Figure (\ref{fig:htran_mix_2d}).

\begin{figure}

\includegraphics[width=150mm]{img/htran_fmix_2d.png}

\caption{The Figure presents the combined relative error for the results of the HTRAN method applied for the two-dimensional wave-mixing model.

- a) The plot of the real part of ${\phi}(\sin_{mix})(\omega)$
- b) absolute error plot (c-plot minus d-plot)
- c) (red) imaginary part of \${\chi_{mix}}(\omega)\$
- d) (grey) imaginary part of \${\chi_{mix}}{\omega})\$ calculated analytically.

\label{fig:htran_mix_2d} }

\end{figure}

While the obtained three-dimensional shape looks very similar to those obtained analytically, the relative error still remains huge for some areas - see Figure (\ref{fig:htran_fmix_3derr}).

```
\begin{figure}
```

\begin{center}

\includegraphics{img/htran_fmix_3derr.png}

\caption{The Figure presents the combined relative error for the real part of nonlinear susceptibility \$ {\chi_{mix}}(\delta)\$ describing the wave-mixing process. \label{fig:htran_fmix_3derr}} \end{figure}

\subsection{HTRAN for simple quantum-perturbative model -- results} \label{chap:htran_quantum}

We will use the models already prepared for both linear, Equation (\ref{eq:ssmods_linear}), and second-order, Equation (\ref{eq:ssmods_quadratical}), nonlinear susceptibilities defined in Chapter (\ref{chap:problem_quantum}). For the linear model we have used the following constant values:

```
\begin{equation} \label{eq:htran_qp1_const}
\mu = \begin{bmatrix}
    1 & 3 \\
    -1 & -2
    \end{bmatrix},
\Omega = \begin{bmatrix}
    3 \\ 16
    \end{bmatrix},
\gamma = \begin{bmatrix}
    1 \\ 2
    \end{bmatrix},

N = 5,
\varepsilon_0 = 1,
h = -1.
```

\end{equation}

Results are gathered on Figure (\ref{fig:htran_qp_2d}). As we can see - the absolute error is quite huge, but on the other hand the pairs of plots (a.c) with (a.d) and (b.c) with (b.d) have at least similar shapes. As for the simplest applied method these results can be satisfactory in case we only would like to initially reject or accept the investigated model. In case we need much higher accuracy, we will need to search for more precise methods.

```
\begin{figure}
 \includegraphics[width=70mm]{img/htran_qp_2da.png}
 \includegraphics[width=70mm]{img/htran_qp_2db.png}
 \caption{The Figure presents the results of the HTRAN method applied for the linear quantum-
perturbative model. The results for both real and imaginary values are plotted together on Figures a
and b:
 a.a) The plot of the imaginary part of {\phi}_{1, \ qp}(\omega)
 a.b) absolute error plot (a.d-plot minus a.c-plot)
 a.c) real part of ${\chi_{1, \, qp}}(\omega )$ calculated analytically
 a.d) real part of ${\chi_{1, \, qp}}(\omega )$ obtained with the Hilbert transform of a-plot
 b.a) The plot of the real part of {\phi_1, qp}(\omega)
 b.b) absolute error plot (b.d-plot minus b.c-plot)
 b.c) imaginary part of ${\chi_{1, \, qp}}{\omega )$ calculated analytically
 b.d) imaginary part of ${\chi_{1, \, qp}}(\omega )$ obtained with the Hilbert transform of a-plot
 \label{fig:htran qp 2d}}
\end{figure}
For the second order model, we have applied the following constants' values:
\begin{equation} \label{eq:htran_qp_constant}
 \mu = \begin{bmatrix}
      1, & 3 \\
     -1, & -2
     \end{bmatrix}, \,
 \Omega = \begin{bmatrix}
      3, & 16 \\
      4, & 12
     \end{bmatrix}, \,
 \gamma = \begin{bmatrix}
      1, & 2 \\
     -1, & 3
     \end{bmatrix}, \,
 \varepsilon 0 = 1, \
 h = -1.
\end{equation}
\begin{figure}
```

nonlinear quantum-perturbative model. Results in the three-dimensional-like plot are plotted together.
a) - The calculated real part of \${\chi_{2}, \, qp}}\$

b) The calculated imaginary part of ${\phi, qp}$

\includegraphics[width=150mm]{img/htran qp 3d.png}

c) The real part of nonlinear susceptibility \${\chi_{2, \, qp}}\$ calculated analytically

\caption{The Figure presents the results of the HTRAN method applied for the second-order

d) The imaginary part of the nonlinear susceptibility \${\chi_{2, \, qp}}\$ \label{fig:htran qp 3d}}

\end{figure}

As the equations (\ref{eq:dlucarini_imag}) and (\ref{eq:dlucarini_real}) are symmetric, in the 3-dimensional model we treated the real and imaginary parts as input and performed the 2-dimensional Hilbert transform in a simplified ``stripe by stripe" way. Results are presented in Figure (\ref{fig:htran_qp_3d}). We can see that there is a similarity in obtained plots, but both the relative and absolute error do not satisfy us at all. Those obtained with 2-dimensional model were more satisfying see Figure (\ref{fig:htran_qp_2d}).

In terms of the three-dimensional models, as we can see huge error in each case and as we know that we using only a simplified equation, we will not continue to use the three-dimensional model in next Chapters. We have implemented the HTRAN method in the MATLAB \textsuperscript{\textsuperscript

\section{Newton-Cotes based Hilbert transform (HNC)} \label{chap:nc}

\subsection{Overview of the Newton-Cotes (NC) quadrature of arbitrary degree} \label{chap:nc_quadrature}

Newton-Cotes formula for numerical integration is taken into consideration. We compare formula for an arbitrary degree - having in our mind that the choice between formulas of high and low degree must be undertaken with the awareness of numerical errors which may arise. Newton-Cotes quadrature is a method for numerical integration with equispaced vertices. As we would like to integrate function f = f(x) within the range f(a, b) we introduce the following symbols:

```
\begin{subequations} \label{eq:nc_parameters}
 \begin{equation} \label{eq:ncparms x}
  {x_{n, k}}=a + \frac{(b - a)}{n}\k \mbox{ for }\k = 0, \1,\\n
 \end{equation}
 \begin{equation} \label{eq:ncparms omega}
  {\omega_{n}}(x) = (x - {x_{n, ,0}})(x - {x_{n, ,1}}),\dots,\(x - {x_{n, ,n}})
 \end{equation}
 \begin{equation} \label{eq:ncparms_lambda}
  \label{lambda_n, \k}(x) = \frac{n}{x}, \k}(x) = \frac{n}{x}
(x - \{x_{n,\k}\})
  \end{equation}
 \begin{equation} \label{eq:ncparms a}
  A_{n, \k}=\int_{a}^{b}\langle a^{n, \k}(n - k), (-1)^{(n - k)}, (n - k)} (n - k)
\mathrm{!}}
  \end{equation}
\end{subequations}
```

With parameters defined in this way, the quadrature in sense of Newton-Cotes is defined as following:

```
\label{eq:nc_mainequation} $$NC_{n} (f) = { A_{n, \ k} } \sum_{k = 0 }^{n} \ , f \ , (a + \frac{(b - a)}{n} \ , k) . $$\end{equation}
```

\subsection{Our implementation of the Hilbert Transform HNC} \label{chap:nc_hilbert_transform}

We would like to apply the Newton-Cotes quadrature to calculate the Hilbert transform. Prepared algorithm will consist of two main steps. In the first step we modify the region under the integral to omit singularities and deal with infinities. To omit the singularities as the NC quadrature was not designed to be used on singular functions, we will set a small constant value c_s and perform the integration without including a short region $x_v - c_s$ near the singularity. To deal with the infinities we observe that near infinities our input function vanishes so without much loss, we will integrate from a finite, starting point \$a\$ to the ending point \$b\$:

In the second step, important in our implementation, we are pre\-calculating the $A_{n, k}\$ matrix described in equation (\ref{eq:ncparms_a}). We will perform the symbolic calculations by applying the \texttt{maple} function that connects MATLAB with Maple and gives us the power of both tools. Once we know the $A_{n, k}\$ matrix, the function \texttt{doStep(fun, a, b, nosteps, tab)} function is called in a loop. In every iteration the funcion is called twice, each time with different number of steps. We will denote the result of first run by $a_{n, k}\$ and $a_{n, k}\$ as the result of second run. The loops end, when the $a_{n, k}\$ parameter is smalled than $a_{n, k}\$

As long as we demand better precision, we can demand a smaller tolerance parameter.

The full algorithm is presented in the Appendix A.2 with the additional comments.

\subsection{NC for simple linear model -- results} \label{chap:nc_lin}

As You can see in the full source code, the algorithm has got many technical parameters. We have tried to run it with many combinations of these parameters. We have used the same model, see Equation (\ref{eq:physical_frequency_linear}), as in Chapter (\ref{chap:htran_lin}).

Some results has been presented on Figures (\ref{fig:nc_lin1}), (\ref{fig:nc_lin2}), (\ref{fig:nc_lin2}) and (\ref{fig:nc_lin4})

```
\begin{figure}
```

\includegraphics[width=150mm]{img/nc_lin1.png}

\caption{ The Figure presents the first of four results of the NC Hilbert Transform method applied for the simple linear model. Results are plotted together. Calculations were performed with the parameters $(n = 8, c_s = \mathbb{Z})$. Tol - parameter describes the error tolerance:

```
a.a) The plot of the real part of $\chi (\omega )$
a.b) absolute error plot (a.d-plot minus a.c-plot)
a.c) imaginary part of $\chi (\omega )$ calculated analytically
a.d) imaginary part of $\chi (\omega )$ obtained with the NC Hilbert transform of a.a-plot,
b.a) The plot of the imaginary part of $\chi (\omega )$
b.b) absolute error plot (b.d-plot minus b.c-plot)
b.c) real part of $\chi (\omega )$ calculated analytically
b.d) real part of $\chi (\omega )$ obtained with the NC Hilbert transform of b.a-plot \label{fig:nc_lin1}
}
\end{figure}
```

\begin{figure}

\includegraphics[width=150mm]{img/nc lin2.png}

\caption{ The Figure presents the second of four results of the NC Hilbert Transform method applied for the simple linear model. Results are plotted together. Calculations were performed with the parameters $(n = 3, c_s = \mbox{.1e-1}, \ tol = \mbox{.2e-1})$ \$

- a.a) The plot of the imaginary part of \$\chi (\omega)\$
- a.b) absolute error plot (a.d-plot minus a.c-plot)
- a.c) real part of \$\chi (\omega)\$ calculated analytically
- a.d) real part of \$\chi (\omega)\$ obtained with the NC Hilbert transform of a.a-plot,
- b.a) The plot of the real part of \$\chi (\omega)\$

```
b.b) absolute error plot (b.d-plot minus b.c-plot)
   b.c) imaginary part of $\chi (\omega )$ calculated analytically
   b.d) imaginary part of $\chi (\omega )$ obtained with the NC Hilbert transform of b.a-plot
   \label{fig:nc_lin2}
\end{figure}
\begin{figure}
 \includegraphics[width=150mm]{img/nc lin3.png}
 \caption{ The Figure presents the third of four results of the NC Hilbert Transform method applied for
the simple linear model. Results are plotted together. Calculations were performed with the parameters
\$n = 13, \  \  , tol = \mbox{.5e-2}, \  \  , c_s = \mbox{.5e-1})$
  a.a) The plot of the real part of $\chi (\omega)$
  a.b) absolute error plot (a.d-plot minus a.c-plot)
  a.c) imaginary part of $\chi (\omega )$ calculated analytically
  a.d) imaginary part of $\chi (\omega )$ obtained with the NC Hilbert transform of a.a-plot,
  b.a) The plot of the imaginary part of $\chi (\omega )$
  b.b) absolute error plot (b.d-plot minus b.c-plot)
  b.c) real part of $\chi (\omega )$ calculated analytically
  b.d) real part of $\chi (\omega )$ obtained with the NC Hilbert transform of b.a-plot
  \label{fig:nc lin3}
\end{figure}
\begin{figure}
 \includegraphics[width=150mm]{img/nc lin4.png}
 \caption{The Figure presents the fourth of four results of the NC Hilbert Transform method applied for
the simple linear model. Results are plotted together. Calculations were performed with the parameters
(n = 33, \cdot, tol = \mbox{.2e-2}, \cdot, c_s = \mbox{.5e-1})
  a.a) The plot of the real part of $\chi (\omega )$
  a.b) absolute error plot (a.d-plot minus a.c-plot)
  a.c) imaginary part of $\chi (\omega )$ calculated analytically
  a.d) imaginary part of $\chi (\omega )$ obtained with the NC Hilbert transform of a.a-plot,
  b.a) The plot of the imaginary part of $\chi (\omega )$
  b.b) absolute error plot (b.d-plot minus b.c-plot)
  b.c) real part of $\chi (\omega )$ calculated analytically
  b.d) real part of $\chi (\omega )$ obtained with the NC Hilbert transform of b.a-plot
  \label{fig:nc_lin4}
\end{figure}
```

We cannot tell with a hundred percent confidence which set of parameters will fit the best any given function and the user will need to try many combinations before obtaining the final plot, but what we gave is the opportunity to set each one parameter manually, which may lead to better results in the particular cases.

\subsection{NC for simple nonlinear model -- results} \label{chap:nc_nlo}

We have performed calculations for the same both nonlinear pump-probe, see Equation (\ref{eq:physical_pnp_equation}) and wave-mixing, see Equation (\ref{eq:htran_feffexp}), models. We have used the same set of parameters as in Chapter (\ref{chap:htran_lin}), see Equations (\ref{eq:htran_pnpparameters}) and \ref{eq:htran_mix_parameters} respectively.

Results for pump-and-probe model has been presented in Figure (\ref{fig:nc_pnp}). Results for the frequency mixing model has been presented in Figure (\ref{fig:nc_fmix1}).

```
\begin{figure}
```

\includegraphics[width=150mm]{img/nc_pnp.png}

\caption{ The Figure presents results of the NC Hilbert Transform method applied for the pump-and-probe model. Results are plotted together. Calculations were performed with the parameters (n = 4, \, n = mbox(.1e-1), \, tol = \mbox{.1e-1})\$

- a.a) The plot of the real part of ${\phi}(\phi)$
- a.b) absolute error plot (a.d-plot minus a.c-plot)
- a.c) imaginary part of \${\chi_{pp}}(\omega)\$ calculated analytically
- a.d) imaginary part of \${\chi_{pp}}(\omega)\$ obtained with the NC Hilbert transform of a.a-plot,
- b.b) absolute error plot (b.d-plot minus b.c-plot)
- b.c) real part of \$\chi_{pp} (\omega)\$ calculated analytically
- b.d) real part of \$\\chi_{pp}}(\omega)\$ obtained with the NC Hilbert transform of b.a-plot.

With so few points and relatively long execution time the HNC method seems to be not a best fit for the analysis. We can see only the first sketch of calculated plot and based on that result we can initially falsify the investigated model. In this case the model seems to be correct.

```
\label{fig:nc_pnp}
}
\end{figure}
```

\begin{figure}

\includegraphics[width=150mm]{img/nc_fmix1.png}

\caption{ The Figure presents results of the NC Hilbert Transform method applied for the frequency mixing model. Results are plotted together. Calculations were performed with the parameters (n = 8, \, c s = \mbox{.3e-2}, \, tol = \mbox{.1e-1})\$

- a.a) The plot of the real part of ${\phi}(\sin_{mix})(\omega)$
- a.b) absolute error plot (a.d-plot minus a.c-plot)
- a.c) imaginary part of \${\chi_{mix}}(\omega)\$ calculated analytically
- a.d) imaginary part of \${\chi_{mix}}(\omega)\$ obtained with the Hilbert transform of a.a-plot,
- b.a) The plot of the imaginary part of \${\chi {mix}}(\omega)\$
- b.b) absolute error plot (b.d-plot minus b.c-plot)
- b.c) real part of \$\chi_{mix} (\omega)\$ calculated analytically
- b.d) real part of \${\chi_{mix}}(\omega)\$ obtained with the Hilbert transform of b.a-plot

We managed to use more points than in Figure (\ref{fig:nc_pnp}). We have received quite low error, but still in some areas the method seems to generate large error.

```
\label{fig:nc_fmix1}
}
\end{figure}
```

\subsection{NC for simple quantum-perturbative model -- results} \label{chap:nc_quantum}

\subsubsection*{Linear model - results:}

For the linear susceptibility we have used the model (\ref{eq:ssmods_linear}) with the parameters from Equation (\ref{eq:htran_qp1_const}).

Evaluation time of two plots given in Figure (\ref{fig:nc_qp1}) was 615 seconds.

\begin{figure}

\includegraphics[width=150mm]{img/nc qp1.png}

\caption{ The Figure presents results of the NC Hilbert Transform method applied for the simple quantum-perturbative model. Results are plotted together.

- a.a) The plot of the imaginary part of ${\phi_1, \q p}}(\omega)$
- a.b) absolute error plot (d-plot minus c-plot)
- a.c) real part of \${\chi_{1, \, qp}}(\omega)\$ obtained with the NC Hilbert transform of a-plot
- a.d) real part of ${\phi }(\n \1, \n \p)$ (\omega)\$ calculated analytically
- b.b) The plot of the real part of ${\phi}_{1, \, qp}(\omega)$
- b.b) absolute error plot (d-plot minus c-plot)
- b.c) imaginary part of ${\phi }$ obtained with the NC Hilbert transform of a-plot
- b.d) imaginary part of ${\phi}$ (\omega) scalculated analytically

```
We can see a good fit, but still in some areas results are with high error. 
\label{fig:nc_qp1} 
\end{figure}
```

\subsubsection*{Second-order model - results:}

For the second-order susceptibility we used the model (\ref{eq:ssmods_quadratical}) with constant paremeters from Equation (\ref{eq:htran_qp_constant}).

Results are presented in Figure (\ref{fig:nc_quantum2}). We can see a very large relative error reaching up to the 100\%. We may also suspect this model is invalid. This will be checked with another methods in next chapters.

\begin{figure}

\includegraphics[width=150mm]{img/nc_quantum2.png}

\caption{The Figure presents the results of the NC Hilbert Transform method applied for the second-order quantum-perturbative model. Results are plotted together. Calculations were performed with the parameters $(n = 4, \ c_s = \mbox{.1e-1}), \cite{1e-1}$ a.a) The plot of the real part of $\cite{1e-1}$ (\chi_{2, \qp}}\omega)

- a.b) absolute error plot (a.d-plot minus a.c-plot)
- a.c) imaginary part of ${\phi}$ (\omega) scalculated analytically
- a.d) imaginary part of \$\\chi_{2, \,qp}}(\omega)\$ obtained with the NC Hilbert transform of a.a-plot,
- b.a) The plot of the imaginary part of ${\phi}_{2, qp}}(\omega)$
- b.b) absolute error plot (b.d-plot minus b.c-plot)
- b.c) real part of \$\chi_{2, \, qp} (\omega)\$ calculated analytically
- b.d) real part of $\hat{2}$, qp (\omega)\$ obtained with the NC Hilbert transform of b.a-plot \label{fig:nc_quantum2}

\end{figure}

\section{Clenshaw-Curtis based Hilbert transform} \label{chap:hcc}

\subsection{Overview of the Clenshaw-Curtis based Hilbert transform implementation} \label{chap:hcc_overview}

The algorithm for the Hilbert transform using the modified Clenshaw-Curtis quadrature is presented.

\subsubsection*{Clenshaw Curtis quadrature: }

The heart of the calculation has been presented by T. Hasegawa and T. Torri in \cite{Hasegawa1991}. First we will need to calculate the Cauchy principal value integral on the interval \$[-1, 1]\$:

```
\label{eq:hcc_cpvint} $$ \ \c _{-1} ^{1} \frac{f(x)}{(x-c)} \; d \, x \quad \c _{-1, 1) . } \end{equation} $$ \c _{-1, 1) . } $$
```

The first step suggested by the authors is to remove the singularity from the integral:

```
\label{eq:hcc_singularity} $$ \operatorname{f(x)}_{(x-c)} d \ x = \operatorname{f(x)-f(c)}_{(x-c)} + f(c) \ \ \end{equation} $$ \operatorname{d}_{-1}^{1} \operatorname{f(x)-f(c)}_{(x-c)} + f(c) \ \end{equation} $$ \operatorname{d}_{-1}^{1} \operatorname{d}_{-1}^{1} \operatorname{f(x)-f(c)}_{(x-c)} + f(c) \ \end{equation} $$ \end
```

After some transformation authors finally obtain the iterative formula presented in equations (\ref{eq:hccformula_sum}) and (\ref{eq:hccformula_rec}). The formula (\ref{eq:hccformula_sum}) depends on the parameter \$N\$, which will be used in the adaptive algorithm. The recursive equation (\ref{eq:hccformula_rec}) should be solved with the starting values: $d_N = d_{N+1} = 0$

```
\label{eq:hcc_formula} $$ \left( \frac{-1}{1} \right) \left( \frac{-1}
```

The remaining issue is to calculate the coefficients \$a_k ^ N\$, that have been described in equation (\ref{eq:hcc_akn}). The term \$a_k ^ N\$ is also known as the discrete cosine transform of the first type (DCT-I):

```
\label{eq:hcc_akn} $$a_k^N = \frac{2}{N} {\sideset}{"}\sum_{j=0}^{N}} f\left(\cos\left(\frac{\pi \zeta}{N}\right), o \leq k \leq N .$$ \end{equation}
```

In order to calculate the DCT-I, we will use the FFT, which reduces the computational complexity from $\Phi_{N}^2\$ to $\Phi_{N}^2\$

\subsubsection*{Hilbert transform using the Clenshaw-Curtis quadrature:}

```
\begin{equation} \label{eq:hcc_adapt}
\frac{f(x)}{x-c} d \, x
\end{equation}
```

decreases rapidly and, for relatively large values of x, this integrand will be omitted. Therefore, we will not be changing the integration range from interval to real line. Instead of that we will enlarge the interval being the area if interest. For example - if the investigated values are described in interval \$[a, b]\$, we can enlarge it to the following interval:

```
\begin{equation} \label{eq:hcc_interval} 

[A, B] = [a - 2lb-al, b + 2lb-al] 

\end{equation}
```

As this was only an example, the specific choice of integration interval should be done during the numerical calculations. As default in our algorithm, we have set the integration interval to be based on the (\ref{eq:hcc_interval}), but simply \$5\$ times longer. For all investigated models it gave us satisfactory results.

\subsubsection*{Our implementation of the Hilbert Clenshaw-Curtis iterations:}

So far we have presented the overview of procedures responsible for evaluation of the Clenshaw-Curtis qua\-dra\-tu\-re and the Hil\-bert transform using the Clenshaw-Curtis qua\-dra\-ture at one point. But in the typical situation we have the whole vector of function values for a given range of

abscissas - so what is left - we perform the single-point Hil\-bert transform based on the Clenshaw-Curtis qua\-dra\-ture for each given point. But to omit the problems with singularities, we will add some post- and precalculations - using the cubic interpolation.

```
\begin\figure\\ \includegraphics[width=150mm]\fimg/cci_bigger_interval.png\\ \caption\{While the input range of abscissas is given shortly, we will proceed with calculations on an interval that is 5 times longer. \label\fig:cci_bigger_interval\}\\ \end\figure\}
```

Initially the input function was defined on the interval \$[a, b]\$. Firstly we would like to transform the function to match the wider range \$[A, B]\$. Secondly, we must transform it into the \$[-1, 1]\$ range, which comes by the Clenshaw-Curtis definition. Therefore, we define a new function \$f_{cc}\$, described as below:

```
\begin{equation} \label{eq:cci_period}
    P = B - A,
\end{equation}
\begin{equation} \label{eq:cci_center}
    C = \frac{B + A}{2},
\end{equation}
\begin{equation}
\begin{equation} \label{eq:cci_cecfun}
    f_{cc}(x) = f \left( \frac{x \cdot P}{2} + C \right).
\end{equation}
```

Based on the input interval we construct the \$N\$-element equispaced array of points named \$X\$:

```
 \label{eq:X} $$X = \left(\frac{b-a}{N-1}, a + \frac{2 \ (b - a)}{N-1}, \ldots, b \right) \\ = \frac{a, a + \frac{b-a}{N-1}, a + \frac{2 \ (b - a)}{N-1}, \ldots, b \\ end{bmatrix}. $$\end{equation}
```

In order to omit division by zero, based on the \$X\$ array, we create \$N-1\$ element array named \$Xp\$ as follows:

We would also like to precalculate the constant values as defined in Equations (\ref{eq:hccformula_rec}) and (\ref{eq:hcc_akn}). We will calculate these values once, and then use them in following calculations. Hereby we use the fact that the values of array \$a_N\$ do not depend on the point in which there is the singularity, so we can use the same array \$a_N\$ for the whole input array \$X\$, which reduced the complexity of the whole Clenshaw-Curtis based Hilbert Transform

method from $<table-cell>\S G(N^2 \setminus \log\{N)\}\$ to $\S G(N \setminus \log\{N)\}\$.

To calculate the total algorithms complexity, we must remember about the tolerance-related stop condition. For every input array point we perform a loop that tries to minimize the error. Let's denote the value of the $k^{th}\$ iteration by $v_{k}\$, and the value of $(k+1)^{th}\$ iteration by $v_{k+1}\$. Iteration stops, if:

With a little simplification, we will assume the total algorithm's complexity equals $\beta \$ \log{N}{t_{ol}} }\$.

As the central part, we calculate the \$N-1\$ values for each on of inner points:

```
 \label{eq:cci_newd} $$ c_k = \frac{2 \ (Xp_k - C) }{P}, \quad \text{for } \quad k = 1, \quad N-1 \ \end{equation} $$ \ \equation} \ \equation} $$ \ \equation} $$ \equation} $$ \equation} $$ \equation} $$ \equation} $$ \equation} \ \equation} $$ \equation} $$
```

The Equation (\ref{eq:cci_approx}) is calculated as described in Equation (\ref{eq:hccformula_sum}).

As we received the \$N-1\$ element array, we should now proceed with the reverse cubic interpolation for \$Hh\$, so we receive final result \$H\$.

```
\begin{subequations} \label{eq:cci_revcubicinterp}
 \begin{equation} \label{eq:ccircinterp_first}
  H_1 = \frac{15 \, \text{Hh}_1 - 10}{Hh_{2}} + 3,{Hh_{3}}{8}
 \end{equation}
 \begin{equation} \label{eq:ccircinterp_second}
  H_2 = \frac{3 \cdot H_1 + 6 \cdot H_2}{- H_3}}{8}
 \end{equation}
 \begin{equation} \label{eq:ccircinterp_next}
  \end{equation}
 \begin{equation} \label{eq:ccircinterp prelast}
  H_{N-1} = \frac{1}{3}{8}
 \end{equation}
 \begin{equation} \label{eq:ccircinterp last}
  H_N = \frac{3 \cdot H_{N - 3} - 10 \cdot H_{N - 2} + 15 \cdot H_{N - 1}}{8}
 \end{equation}
\end{subequations}
```

Our result is the \$H\$ array, which is the \$N\$-length Hilbert transform for given function values at \$X\$ abscissas.

\emptyline

The algorithm's full source has been presented in the Appendix A.3. Please review it for more details and comments.

\subsection{HCCI for simple linear model -- results} \label{chap:hcc lin}

Figures (\ref{fig:cci_lin1}) and (\ref{fig:cci_lin2}) presents the results obtained with the method for the model defined in model (\ref{eq:physical_frequency_linear}). As we can see - the Hilbert Clenshaw-Curtis iterations gives us much better accuracy than HTRAN or Newton-Cotes quadrature. In next chapters we will check what happens for another models.

```
\begin{figure}
 \includegraphics[width=150mm]{img/hcc lin1.png}
 \caption{The Figure presents the results of the Hilbert Clenshaw-Curtis iterations method applied to
the real part of the simple linear model. Results are plotted together.
 a) The plot of the real part of $\chi (\omega )$
 b) absolute error plot (c-plot minus d-plot)
 c) imaginary part of $\chi (\omega )$ obtained with the Hilbert transform of a-plot
 d) imaginary part of $\chi (\omega )$ calculated analytically. \label{fig:cci_lin1}
\end{figure}
\begin{figure}
 \includegraphics[width=150mm]{img/hcc_lin2.png}
 \caption{The Figure presents the results of the Hilbert Clenshaw-Curtis iterations method applied to
the imaginary part of the simple linear model. Results are plotted together.
 a) The plot of the imaginary part of $\chi (\omega )$
 b) absolute error plot (c-plot minus d-plot)
 c) real part of $\chi (\omega )$ obtained with the Hilbert transform of a-plot
 d) real part of $\chi (\omega )$ calculated analytically. \label{fig:cci lin2}
\end{figure}
\subsection{HCCI for simple nonlinear model -- results} \label{chap:hcc nlo}
For the pump-probe and frequency mixing models we have used the same models and parameters as
in Chapter (\ref{chap:nc_nlo}). The results obtained with the Hilbert Clenshaw-Curtis iterations has
been presented in Figures (\ref{fig:hcci_pnp}) and (\ref{fig:hcci_fmix}) respectively.
\begin{figure}
 \includegraphics[width=150mm]{img/hcc pnp.png}
 \caption{Results for the pump-probe model using the Hilbert Clenshaw-Curtis iterations
   a.a) The plot of the real part of {\phi}
   a.b) absolute error plot (a.d-plot minus a.c-plot)
   a.c) imaginary part of ${\chi_{pp}}(\delta )$ calculated analytically
   a.d) imaginary part of ${\chi {pp}}(\delta )$ obtained with the Hilbert transform of a.a-plot,
   b.a) The plot of the imaginary part of {\phi }
   b.b) absolute error plot (b.d-plot minus b.c-plot)
   b.c) real part of $\chi_{pp} (\omega )$ calculated analytically
   b.d) real part of ${\chi_{pp}}{\delta )$ obtained with the Hilbert transform of b.a-plot
   \label{fig:hcci_pnp}
\end{figure}
\begin{figure}
 \includegraphics[width=150mm]{img/hcc fmix.png}
 \caption{Results for the frequency mixing model using the Hilbert Clenshaw-Curtis iterations
   a.a) The plot of the real part of ${\chi_{mix}}(\delta )$
   a.b) absolute error plot (a.d-plot minus a.c-plot)
   a.c) imaginary part of {\phi} (\delta) scalculated analytically
   a.d) imaginary part of ${\chi_{mix}}{\delta )$ obtained with the Hilbert transform of a.a-plot,
   b.a) The plot of the imaginary part of ${\chi {mix}}(\delta )$
```

b.b) absolute error plot (b.d-plot minus b.c-plot)

```
b.c) real part of $\chi_{mix} (\omega )$ calculated analytically b.d) real part of $\chi_{mix}}(\delta )$ obtained with the Hilbert transform of b.a-plot \label{fig:hcci_fmix} \} \end{figure}

As we can see here - once again the results come with quite well accuracy.

\subsection{HCCI for simple quantum-perturbative model -- results} \label{chap:hcc_quantum} \subsubsection*{Linear model - results:}
```

As in the Chapter (\ref{chap:nc_nlo}), we have used the same model to describe the simple linear quantum-perturbative model.

Results are presented in Figure (\ref{fig:hcc_qp1}). We can see a perfect match here!

```
\begin{figure} \includegraphics[width=150mm]{img/hcc_qp1.png} \caption{Results for the linear quantum perturbative model for HCCl quadrature a.a) The plot of the imaginary part of ${\chi_{1, \, qp}}{\omega )$} (d-plot minus c-plot) a.b) absolute error plot (d-plot minus c-plot) a.c) real part of ${\chi_{1, \, qp}}{\omega )$} (bomega )$ calculated analytically b.b) The plot of the real part of ${\chi_{1, \, qp}}{\omega )$} (bomega )$ b.b) absolute error plot (d-plot minus c-plot) b.c) imaginary part of ${\chi_{1, \, qp}}{\omega )$} (bomega )$ obtained with the Hilbert transform of a-plot b.d) imaginary part of ${\chi_{1, \, qp}}{\omega )$} (bomega )$ calculated analytically \label{fig:hcc_qp1}} \end{figure}
```

We have used the second-order susceptibility model (\ref{eq:ssmods_quadratical}) with the constant parameters as in (\ref{eq:htran_qp_constant}). Results are presented in Figure (\ref{fig:hcc_qp2}). Arisen errors reach up to 100\%, so as for the Newton-Cotes calculations in Chapter (\ref{chap:nc_quantum}), we can assume the model can be invalid.

```
\begin{figure} \includegraphics[width=150mm]{img/hcc_qp2.png} \caption{Results for the second-order quantum perturbative model for HCCI quadrature a.a) The plot of the real part of $\chi_{2}, \, qp} (\omega)$ a.b) absolute error plot (a.d-plot minus a.c-plot) a.c) imaginary part of $\chi_{2}, \, qp} (\omega)$ calculated analytically a.d) imaginary part of $\chi_{2}, \, qp} (\omega)$ obtained with the Hilbert transform of a.a-plot, b.a) The plot of the imaginary part of $\chi_{2}, \, qp} (\omega)$\(\omega)$\(\omega)$\(\omega)$\(\omega)$\(\omega)$\(\omega)$\(\omega)$\(\omega)$\(\omega)$\(\omega)$\(\omega)$\(\omega)$\(\omega)$\(\omega)$\(\omega)$\(\omega)$\(\omega)$\(\omega)$\(\omega)$\(\omega)$\(\omega)$\(\omega)$\(\omega)$\(\omega)$\(\omega)$\(\omega)$\(\omega)$\(\omega)$\(\omega)$\(\omega)$\(\omega)$\(\omega)$\(\omega)$\(\omega)$\(\omega)$\(\omega)$\(\omega)$\(\omega)$\(\omega)$\(\omega)$\(\omega)$\(\omega)$\(\omega)$\(\omega)$\(\omega)$\(\omega)$\(\omega)$\(\omega)$\(\omega)$\(\omega)$\(\omega)$\(\omega)$\(\omega)$\(\omega)$\(\omega)$\(\omega)$\(\omega)$\(\omega)$\(\omega)$\(\omega)$\(\omega)$\(\omega)$\(\omega)$\(\omega)$\(\omega)$\(\omega)$\(\omega)$\(\omega)$\(\omega)$\(\omega)$\(\omega)$\(\omega)$\(\omega)$\(\omega)$\(\omega)$\(\omega)$\(\omega)$\(\omega)$\(\omega)$\(\omega)$\(\omega)$\(\omega)$\(\omega)$\(\omega)$\(\omega)$\(\omega)$\(\omega)$\(\omega)$\(\omega)$\(\omega)$\(\omega)$\(\omega)$\(\omega)$\(\omega)$\(\omega)$\(\omega)$\(\omega)$\(\omega)$\(\omega)$\(\omega)$\(\omega)$\(\omega)$\(\omega)$\(\omega)$\(\omega)$\(\omega)$\(\omega)$\(\omega)$\(\omega)$\(\omega)$\(\omega)$\(\omega)$\(\omega)$\(\omega)$\(\omega)$\(\omega)$\(\omega)$\(\omega)$\(\omega)$\(\omega)$\(\omega)$\(\omega)$\(\omega)$\(\omega)$\(\omega)$\(\omega)$\(\omega)$\(\omega)$\(\omega)$\(\omega)$\(\omega)$\(\omega)$\(\omega)$\(\omega)$\(\omega)$\(\omega)$\(\omega)$\(\omega)$\(\omega)$\(\omega)$\(\omega)$\(\omega)$\(\omega)$\(\omega)$\(\omega)$\(\omega)$\(\omega)$\(\omega)$\(\omega)$\(\omega)$\(\omega)$\(\omega)$\(\omega)$\(\omega)$\(\om
```

\section{Fast Hartley transform based Hilbert transform (FRTHT)} \label{chap:hartley}

\subsection{Overview of the FRTHT} \label{chap:hartley_overview}

\subsubsection*{Second-order model - results:}

The Fast Hartley transform based Hilbert transform applies two efficient \$\BigO{n \log n}\$ discrete Hartley transforms described by Soo-Chang Pei in \cite{chang_computation}. The Hilbert transform is defined by the mathematical convolution - see convolution definition (\ref{eh:mth_convolution}) - as stated in the following equation:

```
\label{eq:frtht_convolution} $$ \mathcal{H}[f(x)] = \frac{1}{x \, , \pi} \convolution f(x) . $$ \end{equation}
```

Due to the observation (\ref{eq:physical_convolution}), the Hilbert transform can be presented with Fourier transform and the inverse Fourier transform:

The FRTHT computation is carried using only real numbers, which is faster than time consuming Fourier computation using complex numbers.

\subsubsection*{Discrete Hartley transform (DRT)}

For a given vector \$X \in \mathbb{R} ^ N\$ the discrete Hartley transform (DRT) and the inverse discrete Hartley transform (IDRT) are defined as follows:

```
\begin{subequations} \label{eq:frtht definition}
\begin{equation} \label{eq:frthtdef drt}
  R_k = \sum_{n = 0}^{N - 1} \ X_n \ \left( 
      \mbox{mathrm{cos} \left(\frac{2 \, , \, pi \, , \, k \, , \, n}{N} \right) }
     + \mathrm{sin} \left(\frac {2 \, \pi \, k \, n}{N} \right) \right), \, \,
  k = 0 \setminus N-1,
 \end{equation}
 \begin{equation} \label{eq:frthtdef_idrt}
  \mathbf{cos} \left( \frac{2 \, , \dot k \, , \, n}{N} \right)
   + \mathrm{sin} \left( \frac {2 \, \pi \, k \, n}{N} \right) \right), \, \,
  k = 0 \setminus N-1.
 \end{equation}
\end{subequations}
```

\subsubsection*{Hartley transform convolution theorem}

Now we will introduce the Hartley transform convolution theorem. We define the vector $z \in \mathbb{R}^{n} \$ as convolution of two vectors $x, v \in \mathbb{R}^{n} \$ as follows:

```
\label{eq:hartley_convolution} $$ \left\{ eq:hartley\_convolution \right\} $$ \left\{ eq:hartley\_z \right\} $$ z = x \ \convolution \ v , $$ \left\{ eq:hartley\_z \right\} $$ z = x \ \convolution \ v , $$ \left\{ eq:hartley\_xv \right\} $$ z_n = \sum_{k=0}^{N-1} \ x_k \ v_{n-k} . $$ \left\{ eq:hartley\_xv \right\} . $$ \left\{ eq:hartley\_z \right\} . $$ \left\{ eq:hartley\_xv \right\}
```

We have used the negative indexes for vector \$v\$, defined with the time reversal notation:

```
\begin{equation} \label{eq:hartley negindex}
 v \{(-k)\} \ \{(N - k) \ N)\}.
\end{equation}
For the vector X \in \mathbb{R}^N \ we define the \m and \m and \m mathrm{odd}(X) $
functions - so we can distract the even and the odd parts of $X$:
\begin{subequations} \label{eq:hartley_oddeven}
    \begin{equation} \label{eq:hartley_odd}
         \mathrm{Mod}(X_k) = \frac{(X_k) - (X_{(-k)})}{2}
    \end{equation}
    \begin{equation} \label{eq:hartley_even}
         \mathrm{Mathrm}\{\mathrm{even}\}(X_k) = \mathrm{frac}\{(X_k) + (X_{(-k)})\}\{2\}.
    \end{equation}
\end{subequations}
For vector $z$ defined in equation (\ref{eq:hartley_xv}), we calculate the $D_Z$, $D_X$ and $D_V$
vectors:
\begin{subequations}
    \begin{equation}
         D Z = \mathrm{T}(z),
  \end{equation}
  \begin{equation}
         D_X = \mathrm{T}(x),
    \end{equation}
  \begin{equation}
         D V = \mathrm{T}(v).
    \end{equation}
\end{subequations}
Finally, the Hartley transform convolution theorem is stated:
\begin{thm} \label{eq:hartley_theorem}
 \begin{equation}
              \end{equation}
\end{thm}
The proof of Theorem (\ref{eq:hartley theorem}) can be found in \cite{chang computation}.
\subsubsection*{Relation between discrete Fourier and discrete Hilbert transform}
To better understand the relation between the discrete Fourier and discrete Hilbert transform we will
remind the discrete Hilbert kernel:
\begin{equation} \label{eq:hdfttps smallh}
    h k = \frac{1}{\pi c} \frac{1}{\pi i} \ , \ \ \ \ .
\end{equation}
The discrete Fourier transform of the discrete Hilbert kernel will be marked with the symbol $
\mathrm{H}$:
\begin{equation} \label{eq:hdfttps bigh}
  \mathrm{T}_{H} = \mathrm{DFT}(h),
\end{equation}
```

```
and the $\mathrm{H}$ has the following properties:
```

 $= R_{X_{(-k)}} \setminus R_{H_k}$

\end{equation}

```
\begin{subequations} \label{eq:hartley_defh}
    \begin{equation} \label{eq:hdefh_fhalf}
       \mathbf{H_k} =
       \begin{cases}
                0 \setminus mbox{for } \setminus k = 0, \setminus frac \{N\}{2}, \setminus
                 -i \ \ for \ \ \ k = \frac{N}{2} + 1, \ \ frac \ \{N\}_{2} + 2, \ \ \ \ N - 1.
       \end{cases}
    \end{equation}
\end{subequations}
We derive the discrete Fourier transform of the Hilbert transform for vector $x \in \mathbb{R}^ N$:
\begin{subequations} \label{eq:hartley_dfttheorem}
                \begin{equation}
                                 F_{HX} = \mathrm{DFT} \cdot \mathrm{DHT}(x) 
                \end{equation}
                \begin{equation}
                                 F_{X} = \mathrm{DFT}(x)
                \end{equation}
                \begin{equation}
                         F_{HX_k} = H_k \setminus \cdot \cdot F_{X_k} = (-i) \setminus \cdot \cdot F_k .
                \end{equation}
\end{subequations}
\subsubsection*{Application of the discrete Hartley transform to calculate the discrete Hilbert
transform:}
Using the Theorem (\ref{eq:hartley_theorem}) for vector $x \in \mathbb{R} ^ N$ we obtain:
\begin{subequations} \label{eq:hartley_fullconvolution}
                \begin{equation}
                                 R_{HX} = \mathrm{DHT}(x) \cdot H
                \end{equation}
                \begin{equation}
                                 R_{X} = \mathrm{DRT}(x)
                \end{equation}
                \begin{equation}
                                 R \{H\} = \mathbf{DRT}(h),
                \end{equation}
                \begin{equation}
                        R_{HX_k} = R_{X_{(k)}} \setminus \operatorname{Mathrm}\{even\}(R_{H_k})
                                         + R_{X_{(-k)}} \setminus M_{Odd} (R_{H_k}).
                \end{equation}
\end{subequations}
Now we should notice, that the discrete Hilbert transform kernel defined in (\ref{eq:hdfttps smallh}) is
an odd function, so its even part equals zero. Therefore (\ref{eq:hartley fullconvolution}) simplifies now
into a product of two separate Hartley transforms:
\begin{equation} \label{eq:hartley_simpleconvolution}
                 R_{HX_k} = R_{X_{(-k)}} \setminus \text{mathrm}\{odd\}(R_{H_k})
```

By \cite{chang computation} the second transform is defined:

```
\label{eq:hartley_strans} $$ R_{H_k} = \begin{cases} $$ 1 \ \mbox{ for } \ k = 1, \ 2, \ \mbox{, \frac $N}{2} - 1, \ 0 \ \mbox{ for } \ k = 0, \ \mbox{, \frac $N}{2}, \ -1 \ \mbox{ for } \ k = \frac $N}{2} + 1, \ \mbox{ for } \ . \ N - 1 \ \end{cases} $$ \end{equation} $$ \end{equation} $$ \end{equation} $$ $$ \mbox{ for } \ \mbox{ for } \mbox{ for
```

In order to calculate the Hilbert transform of vector $x \in \mathbb{R} ^n \$ the last thing to do is to apply the inverse discrete Hartley transform on the very right side of (\ref{eq:hartley simpleconvolution}) equation:

\subsubsection*{Fast Hartley Transform algorithm}

Ronald F. Ullmann has showed the fast algorithm for the discrete Hartley transform in~ \cite{ullmann_algorithm}. The important assumption is fact, that in general, the fast Hartley transform algorithm is defined for \$x \in \mathbb{R} ^ K\$, where K is the power-of-two:

The condition ($ref{eq:ullmand_existp}$) and the further possibilities to modify the algorithm are discussed further. We will start with the very same thing as in the fast Fourier algorithm - we split vector x into two smaller vectors x_1 , x_2 :

```
\label{eq:hartley_smallervectors} $$ \left\{ eq:hartley_smallervectors \right\} $$ \left\{ eq:hsvs\_oddeven \right\}
```

Taking into account the initial definition of the discrete Hartley transform (\ref{eq:frthtdef_drt}), we obtain:

In \cite{ullmann_algorithm} the following ``shift rule" for the discrete Hartley transform is stated :

```
\begin{equation} \label{eq:hartley shiftrule}
 R_{X_{(k+c)}} = R_{X_k} \setminus \text{mathrm}(\cos)(c)
        + R_{X_{(-k)}} \, \mathrm{sin}(c) .
\end{equation}
If we apply the Hartley shift rule (\ref{eq:hartley_shiftrule}) to equation (\ref{eq:hartley_longdht}) we
obtain:
\begin{subequations}
    \begin{equation}
         R_{X_1} = \mathrm{DRT}(x_1)
    \end{equation}
    \begin{equation}
         R_{X_2} = \mathrm{DRT}(x_2)
    \end{equation}
    \begin{multline} \label{eq:hartley_srapplied}
      R_{X_k} = R_{X_1, k}
         + \mathrm{cos} \left( \frac {2 \, \pi \, k}{N} \right) \, R_{X_{2, \, k}} +
        \mbox{ for } \, k = 0, \, 1, \, 3, \, \ldots, \, \Big\floor \frac{N}{2} - 1 \Big\rfloor .
    \end{multline}
\end{subequations}
The rule (\ref{eq:hartley_srapplied}) can be applied only for the half of the possible k values ($k <
\frac{N\{2\$}). Now we will use the periodic properties of the discrete Hartley transform kernel:
\begin{subequations} \label{eq:hartley kernel}
 \begin{equation} \label{eq:hkern plus}
  \mathcal{L} \
 + \mathrm{sin} \left(\\frac {2 \, \pi \, k \, 2 \, (n + N) \}\N\\right)
 = \operatorname{mathrm}\{\cos\} \left( \frac{2 \, \, \sin \, k \, \, (2 \, \, n) \, \, N} \right) 
 \end{equation}
 \begin{equation} \label{eq:hkern minus}
  = - \mathrm{\cos} \left( \frac {2 \, \pi \, k \, (2 \, n) \}{N} \right)
  - \mathrm{sin} \left( \frac {2 \, \pi \, k \, ( 2 \, n ) }{N} \right) .
 \end{equation}
\end{subequations}
The rule (\ref{eq:hartley srapplied}) using the periodicity property from (\ref{eq:hartley kernel}) can be
now used for all k indices:
\begin{subequations} \label{eq:hartley_periodicity}
 \begin{equation} \label{eq:hperiod fhalf}
  R \{X \ k\} = R \{X \{1, \setminus, k\}\}
    + \mathrm{cos} \left( \frac {2 \, \pi \, k}{N} \right) \, R_{X_{2, \, k}}
   + \mathrm{sin} \left( \frac {2 \, \pi \, k}{N} \right) \, R_{X_{2, \, (- k)}}
 \end{equation}
 for \ \ k = 0, \ 1, \ \ \
 \begin{multline} \label{eq:hperiod shalf}
  R \{X \ k\} = R \{X \{1, \ (k - \frac{N}{2})\}\}
      - \mathrm{cos} \left( \frac {2\,\pi \,(k - \frac{N\{2}\)}\N \right) \, R_{X_{2, \, (k - \frac {N\{2}\)}}
```

```
 - \mathrm{Sin} \left( \frac{2\\pi (k - \frac{N}{2})}{N} \right) \ R_{X_{2}, \ (-k + \frac{N}{2})} \right) \\ = \mathrm{Sig}\left( \frac{N}{2} \right) \ R_{X_{2}, \ (-k + \frac{N}{2})} \\  for \, $k = \Big\floor \\ frac\{N}{2} \Big\rfloor, \, \Big\floor \\ frac\{N}{2} + 1 \Big\rfloor, \, \ \Idots \, , \, N - 1$ . \end{subequations}
```

The definition of the negative index has been already explained in (\ref{eq:hartley_negindex}). Of course this is a typical divide-and-conquer approach, where the complexity is reduced from \$ \BigO{n^2} \$ to \$\BigO{n \log n}\$, very similar to the approach used in the Cooley-Tukey FFT algorithm \cite{Tukey_algorithm}.

\subsubsection*{Non-power-of-two case}

There are several approaches when calculating the fast Fourier transform for a non-power-of-two case length of the input x vector. One approach was described in Good-Thomas \cite{Good_interaction} as the prime-factor algorithm (PFA) for non-prime K:

```
\label{eq:hartley_goodk} $$K = K_1 \setminus K_2 , $$ \end{equation}
```

Where \$K_1\$ and \$K_2\$ are relatively prime numbers. Another approach, named the chirp z-transform algorithm, was presented by Leo Bluestein in \cite{bluestein_linear}. Other author, George Bruun, has invented the approach based on the recursive polynomial-factorization and described it in \cite{bruun_ztransform}. Rader has prepared the special FFT algorithm especially for vectors of prime size in \cite{rader_dicrete}.

But we will use the simplest possible approach - called the zero-padding. So in case of input vector with the size of non-power-of-two, we add the suffix vector filled with zeros to fit the next possible power-of-two size. In the worst case, the input vector size will be doubled, which has no influence on the asymptotic complexity, which remains \$\BigO{n \log n}\$. While the discrete signal analysis is the domain of scientists, we will end with conclusion stated by M. Lamb in \cite{lamb_issues} that he is uncertain, if zero padding has an influence on the spectral resolution, but in most cases it has a little influence on the results obtained in the discrete transforms.

Our source code of the discrete Hilbert transform using both the fast Hartley transform and inverse fast Hartley transform has been presented in Appendix A.4. In our future research we can switch to another solution for the non power-of-two \$N\$, as listed before.

\subsection{FRTHT for simple linear model -- results} \label{chap:hartley_lin}

In Figure (\ref{fig:fht_lin}) we have presented the results obtained with the Fast Hartley Hilbert Transform for the simple linear model defined in model (\ref{eq:physical_frequency_linear}). As we can see - the Fast Hartley Hilbert Transform gives us quite well accuracy, similar to HCCI and much better than HTRAN or Newton-Cotes quadrature.

\begin{figure}

\includegraphics[width=150mm]{img/fht lin.png}

\caption{The Figure presents the results of the FRTHT method applied to the simple linear model. Results are plotted together.

- a.a) The plot of the real part of \$\chi (\omega)\$
- a.b) absolute error plot (c-plot minus d-plot)
- a.c) imaginary part of \$\chi (\omega)\$ obtained with the Hilbert transform of a-plot
- a.d) imaginary part of \$\chi (\omega)\$ calculated analytically.
- b.a) The plot of the imaginary part of \$\chi (\omega)\$
- b.b) absolute error plot (c-plot minus d-plot)

```
b.c) real part of $\chi (\omega )$ obtained with the Hilbert transform of a-plot
 b.d) real part of $\chi (\omega )$ calculated analytically. \label{fig:fht lin}
\end{figure}
\subsection{FRTHT for simple nonlinear model -- results} \label{chap:hartley_nlo}
For the pump-probe and frequency mixing models we have used the models
(\ref{eq:physical_pnp_equation}) and (\ref{eq:feff3_plus}) respectively, with the constant parameters
from (\ref{eq:htran_pnpparameters}) and (\ref{eq:htran_mix_parameters}). The results obtained with
the Fast Hartley Hilbert Transform has been presented in Figures (\ref{fig:fht_pnp}) and
(\ref{fig:fht_fmix}) respectively.
\begin{figure}
 \includegraphics[width=150mm]{img/fht pnp.png}
 \caption{The Figure presents the results of the FRTHT method applied to the pump-and-probe model.
Results are plotted together.
   a.a) The plot of the real part of ${\chi_{pp}}(\omega)$
   a.b) absolute error plot (a.d-plot minus a.c-plot)
   a.c) imaginary part of $\chi_{pp}(\omega )$ calculated analytically
   a.d) imaginary part of $\chi {pp}(\omega )$ obtained with the Hilbert transform of a.a-plot,
   b.a) The plot of the imaginary part of $\chi_{pp}(\omega)$
   b.b) absolute error plot (b.d-plot minus b.c-plot)
   b.c) real part of $\chi_{pp} (\omega )$ calculated analytically
   b.d) real part of $\chi_{pp} (\omega )$ obtained with the Hilbert transform of b.a-plot
   \label{fig:fht_pnp}
\end{figure}
\begin{figure}
 \includegraphics[width=150mm]{img/fht_fmix.png}
 \caption{The Figure presents the results of the FRTHT method applied to the frequency mixing
model. Results are plotted together.
   a.a) The plot of the real part of ${\chi_{mix}}(\delta )$
   a.b) absolute error plot (a.d-plot minus a.c-plot)
   a.c) imaginary part of $\chi_{mix}(\omega )$ calculated analytically
   a.d) imaginary part of $\chi_{mix}{\omega} )$ obtained with the Hilbert transform of a.a-plot,
   b.a) The plot of the imaginary part of $\chi_{mix}(\omega)$
   b.b) absolute error plot (b.d-plot minus b.c-plot)
   b.c) real part of $\chi_{mix} (\omega )$ calculated analytically
   b.d) real part of $\chi \{mix\} (\omega )\$ obtained with the Hilbert transform of b.a-plot
   \label{fig:fht fmix}
\end{figure}
Once again we can see a very good accuracy, better than for HTRAN or Newton-Cotes, and similar to
\subsection{FRTHT for simple quantum-perturbative model -- results} \label{chap:hartley quantum}
\subsubsection*{Linear model - results:}
We have used the model (\ref{eq:ssmods_linear}) with constant parameters (\ref{eq:htran_qp1_const})
to describe the simple linear quantum-perturbative model. Results are presented in Figure
(\ref{fig:fht qp1}). We can see a perfect match here!
\begin{figure}
```

\includegraphics[width=150mm]{img/fht_qp1.png}

```
\caption{Results for the linear quantum perturbative model for FRTHT method
  a.a) The plot of the imaginary part of {\phi_{1, qp}}(\omega)
  a.b) absolute error plot (d-plot minus c-plot)
  a.c) real part of \hat{1, \, qp} (\omega) obtained with the Hilbert transform of a-plot
  a.d) real part of $\chi_{1, \, qp} (\omega )$ calculated analytically
  b.b) The plot of the real part of $ \chi_{1, \, qp} (\omega )$
  b.b) absolute error plot (d-plot minus c-plot)
  b.c) imaginary part of $\chi_{1, \, qp} (\omega )$ obtained with the Hilbert transform of a-plot
  b.d) imaginary part of $\chi_{1, \, qp} (\omega )$ calculated analytically
  \label{fig:fht_qp1}
\end{figure}
\subsubsection*{Second-order model - results:}
We have also used the second-order susceptibility model (\ref{eq:ssmods_quadratical}) with
parameters (\ref{eq:htran_qp_constant}). Results are presented in Figure (\ref{fig:fht_qp2}). As for the
previous calculations, we can see the model could be invalid because of the raised errors reach up to
$ 100 \% $.
\begin{figure}
 \includegraphics[width=150mm]{img/fht qp2.png}
 \caption{Results for the second-order quantum perturbative model for FRTHT method
   a.a) The plot of the real part of $\chi {2, \, qp}{\omega )$
   a.b) absolute error plot (a.d-plot minus a.c-plot)
   a.c) imaginary part of $\chi_{2, \, qp}(\omega )$ calculated analytically
   a.d) imaginary part of $\chi_{2, \, qp}{\omega )$ obtained with the Hilbert transform of a.a-plot,
   b.a) The plot of the imaginary part of $\chi {2, \, qp}{\omega )$
   b.b) absolute error plot (b.d-plot minus b.c-plot)
   b.c) real part of $\chi_{2, \, qp} (\omega )$ calculated analytically
   b.d) real part of $\chi_{2, \, qp} (\omega )$ obtained with the Hilbert transform of b.a-plot
   \label{fig:fht_qp2}
\end{figure}
\section{Hermite polynomials based Hilbert transform - HHT} \label{chap:hermite}
\subsection{Overview of the HHT} \label{chap:hermite_overview}
Hermite polynomials based Hilbert transform approach is based on the precalculation of already-
known Hermite polynomials and Hermite base of orthogonal functions. The algorithm is based on the
master thesis of Mathias Johansson \cite{johansson hilbert}.
\subsubsection*{Hermite polynomials and Hermite functions:}
Hermite polynomial of an arbitrary n degree is defined as follows:
\begin{equation} \label{eq:hermite definition}
     H n(x) = (-1)^n \ e^x ^2 \frac{d^n}{(dx)^n} \ e^x - x^2
\end{equation}
There is also an recursive equation for Hermite polynomials:
\begin{subequations} \label{eq:hermite_recursive}
 \begin{equation} \label{eq:hrec first}
  H \ 0 (x) = 1
 \end{equation}
 \begin{equation} \label{eq:hrec_second}
```

```
H_1(x) = 2 \setminus x
 \end{equation}
 \begin{equation} \label{eq:hrec next}
  H_n(x) = 2 \setminus x \setminus H_{n-1}(x) - 2 \setminus (n-1) \setminus H_{n-2}(x)
 \end{equation}
\end{subequations}
Using the Hermite polynomial we would like to derive a set of orthogonal polynomials in $L ^ 2$.
Therefore we introduce the weight function and the norm function:
\begin{subequations} \label{eq:hermite_weight}
 \begin{equation} \label{eq:hwht_weight}
  \mathrm{mathrm}\{w\}(x) = e^{(-\frac{x^2}{2})}
 \end{equation}
 \begin{equation} \label{eq:hwht_iter}
  N_n = \sqrt{2^n} \, n\mathbf{!} \, \sqrt{pi}
 \end{equation}
\end{subequations}
If we multiply the n-th Hermite polynomial with the weight function $w(x)$ and divide it by the n-th norm
function $N n$ we obtain a n-th orthogonal Hermite function:
\begin{equation} \label{eq:hermite orthogonal}
 \phi n (x) = \frac {\mathrm{w}(x) \, H n (x)} {N n}
     = \frac{e^{( - \frac{x ^2}{2})} \, H_n(x)}{\sqrt{2^{n} \, n\mathbb{!} \, \sqrt{!} \}}
\end{equation}
Based on the recursive equation in (\ref{eq:hermite recursive}) we also obtain:
\begin{subequations} \label{eq:hermite recresult}
 \begin{equation} \label{eq:hrr_iter}
  \phi_0(x) = \frac{e^{(-\frac{x^2}{2})}}{\phi_0(\frac{1}{4})}
 \end{equation}
 \begin{equation} \label{eq:hrr_iter_plus1}
  \phi_1 (x) = \frac{e^{(-\frac{x^2}{2})} \, \sqrt{2} \, x} {\phi_1 (\frac{1}{4})}
 \end{equation}
```

Example orthogonal Hermite functions are presented on Figure (\ref{fig:her_plots}).

```
\begin{figure}
```

\end{equation} \end{subequations}

\includegraphics[width=150mm]{img/her plots.png}

\begin{equation} \label{eq:hrr weight}

\caption{ The Figure presents the orthogonal Hermite functions of degree 2 (green), 4 (blue) and 40 (red) drawn together. } \label{fig:her_plots} \end{figure}

 $\label{eq:phi_n (x) = \frac {2}{n}} \, x \, {\phi_n - 1}(x) - (n - 1) \, \sqrt{frac {1} {(n - 1) \, n}} \, \phi_n - 2}$

\subsubsection*{Hilbert transform of Hermite functions:}

Johansson after polish mathematician Stefan L. Hahn \cite{hahn_hilbert} states that for any function f(x) and its Hilbert transform $\frac{H}{\mbox{mathcal}{H}(\mbox{mathrm}{f}(x))}$ that both are integrable - therefore belonging to Lebesgue space L_1 - we have:

```
\begin{equation} \label{eg:hermite_hproperty} \mathcal{H}(x \, \mathrm{f}(x)) = x \, \mathcal{H}(\mathrm{f}(x))
```

```
\end{equation}
The proof of the Theorem stated in (\ref{eg:hermite_hproperty}) is short:
\begin{proof}
                   \begin{equation} \label{eq:hermite_hpropproof}
                                        \mathcal{H}(x \setminus \mathcal{H}(x \setminus \mathcal{H}(x)) =
                                                           \tau.
                    \end{equation}
                   Let's make a substitution:
                   \begin{equation}
                                        s = x - \lambda tau
                   \end{equation}
                   so now:
                   \begin{equation}
                                        \begin{split}
                                                 = x \setminus \text{mathcal}(H)(\text{mathrm}(f)(x))
                                             - \frac{1}{\pi } \, \dashint_{ - \infty }^{ \infty } \mathrm{f}(\tau ) \, d\tau \qedhere
                                        \end{split}
                   \end{equation}
\end{proof}
From both equations (\ref{eq:hermite_hproperty}) and (\ref{eq:hermite_recresult}) we now obtain the
important result:
\begin{subequations} \label{eq:hermite_impresult}
    \begin{equation} \label{eq:hir_phinext}
         \mathcal{H}( \phi(x)) = \operatorname{sqrt}(f(x)) 
                   \eta \right)
                    -(n-1) \, \sqrt{h-1} \, \n - 1)} \, \mathcal{H}(\phi_{n-2}(x))
     \end{equation}
     \begin{equation} \label{eq:hir_phifirst}
         \mathcal{H}( \phi(x)) = 2 \, \sqrt{2} \, \phi ^{ (\frac{1}{4} ) } \,
                   \label{lem:line_sin} $$ \left( - \frac \alpha ^2 {2} \right) \, \mathbf{sin} (\omega \, x) \, d\omega \, x) \,
    \end{equation}
\end{subequations}
\subsubsection*{Hilbert transform based on the Hermite functions:}
Now we can derive the Hilbert transform of an arbitrary function. We start with expanding f = f(x) into
following series:
\begin{subequations} \label{eq:hermite_fexpand}
    \begin{equation} \label{eq:hfe f}
           \mathbf{f}(x) = \sum_{n \in \mathbb{N}} \left( \inf y \right) \setminus a_{n, f(x)} \setminus \phi(x)
     \end{equation}
     \begin{equation} \label{eq:hfe_an}
```

- \frac {1}{\pi } \, \int_{ - \infty } ^ {\infty}\mathrm{f}(\tau) \, d\tau

```
 a_{n, f(x)} = \inf_{- \inf y }^{\inf y } \operatorname{f}(x) \, \phi(x) \, dx \end{equation} \end{subequations}
```

For each function that has a limited series expansion at infinity we can provide an estimation used in further numerical algorithm:

```
\label{eq:hermite_estimate} $$ \left\{ \begin{array}{ll} \additions \\ \a
```

\subsection*{Short description of the numerical algorithm:}

We have prepared the numerical algorithm that calculates the Hilbert transform based on presented properties of Hermite polynomials.

Firstly we observe Hermite functions and their Hilbert transforms do not depend on the investigated function, so we can calculate them once and hard-code into the algorithm. The results of the precalculation stage has been applied directly to the to speed up the algorithm.

\subsubsection*{Precalculation stage:}

We have calculated the orthogonal Hermite functions from equation (\ref{eq:hermite_orthogonal}) and the Hilbert transforms of these functions from the recursive equation (\ref{eq:hir_phinext} - \ref{eq:hir_phifirst}). We have used built-in Maple toolbox for MATLAB.

The important observation we have made in this precalculations is that:

```
\label{eq:hermite_hexp} $$ \mathbf{H}[e^{-x^2}] = - e^{-x^2} \, \mathbf{erfi}(x) \ . \ \end{equation}
```

The $\infty \$ function is the Imaginary Error Function end it is defined by the $\$ $\$ $\$ hathop{\mathrm{erf}}(x)\$ - the Error Function:

```
\label{eq:hermite_erfi} $$ \mathbf{eq:hermite_erfi} \ \mathbb{sqrt}\pi_{erfi}(x) = -i \ \mathop{\mathbf i \ x} = \frac{2}{\sqrt{pi}} \int_0^x e^{t^2} \ dt . $$ \end{equation}
```

The mentioned (\ref{eq:hermite_hexp}) observation is important, because many of numerical libraries has got the \$\mathop{\mathrm{erf}}(x)\$ already implemented, we have used built-in MATLAB function.

 $\subsubsection*{Calculation of $a_{n, f(x)}$ coefficients:}$

The next step to describe is the calculation of a_n , f(x) coefficients from Equation (\ref{eq:hfe_an}). We have applied the Clenshaw Curtis integration routine based on FFT. The only issue we shall describe here is the modification of the integration range for the equation~(\ref{eq:hfe_an}) from \$(-\infty, \infty)\$ to \$[-1, 1]\$. Therefore we state the substitution:

\begin{subequations} \label{eq:her_substitution}

```
\label{eq:her_subst_x} $$x = \frac{t} {1 - t^2}, $$ \end{equation} \begin{equation} \abel{eq:her_subst_dx} \dx = \frac{1 + t^2}{(t^2 - 1)^2} \dt, \end{equation} \end{subequation} \end{subequation}
```

So for the integral similar to the one defined in equation (\ref{eq:hfe an}) we obtain:

```
\label{eq:her_intsubst} $$ \inf_{-\infty} f(x) \ dx = \inf_{-1}^{1} f(\frac{t} {1 - t^2}) \ f(x^2 - 1)^2 \ dt . $$ \end{equation}
```

 $\subsubsection*{Calculation of $\mathbb{H} (\mathbb{H} (\mathbb{H}))$:}$

Once we have already calculated the orthogonal Hermite functions, their Hilbert transforms and the $a_{n, f(x)}$ coefficients, we can proceed to the main Hilbert transform calculation. We will proceed in a loop with a stop condition. In every loop step we calculating the iterative sums as defined in equations (\ref{eq:hest_fapprox}) and (\ref{eq:hest_happrox}) for a given vector $X \in \mathbb{R}^{n}$ in \mathbb{R} \ M \\$:

Once we already now the exact formula for function f(x) in every point of vector x, we can determine the stop condition based on the proximity between f(x) and $f_N(x)$. We will calculate the difference in each point of vector x and compare that error with the previously set tolerance. The error mathop is defined as follows:

```
\label{eq:her_stopcondition} $$ \left\{ eq:her\_stopcondition \right\} $$ D = \max \left( \left\| f(X_0) \right\|, \left\| f(X_1) \right\|,
```

So now the stop condition is simply comparison $\mathrm{mathrm\{err\}} < \mathrm{mathop\{mathrm\{tol\}\}}$. After the algorithm quits the main loop after $N\$ steps - we obtain the final result for the Hilbert transform: $\mathrm{mathrm\{f_N\}}(X_k)$.

\subsection{HHT for simple linear model -- results} \label{chap:hermite_lin}

In Figure (\ref{fig:hht_lin}) we have presented the results obtained with the Hermite-Hilbert transform for the simple linear model defined in model (\ref{eq:physical_frequency_linear}). As we can see - the Hermite-Hilbert transform comes with poor accuracy, but we would like to put this method into examination with all models defined in Chapter (\ref{chap:physical_models}).

```
\begin{figure}
```

\includegraphics[width=150mm]{img/hht_lin.png}

\caption{ The Figure presents the results of the Hermite-Hilbert transform method applied to the simple linear model. Results are plotted together:

- a.a) The plot of the real part of \$\chi (\omega)\$
- a.b) absolute error plot (c-plot minus d-plot)
- a.c) imaginary part of \$\chi (\omega)\$ obtained with the Hilbert transform of a-plot
- a.d) imaginary part of \$\chi (\omega)\$ calculated analytically.
- b.a) The plot of the imaginary part of \$\chi (\omega)\$
- b.b) absolute error plot (c-plot minus d-plot)
- b.c) real part of \$\chi (\omega)\$ obtained with the Hilbert transform of a-plot
- b.d) real part of \$\chi (\omega)\$ calculated analytically. \label{fig:hht_lin}

\end{figure}

\subsection{HHT for simple nonlinear model -- results} \label{chap:hermite_nlo}

For the pump-probe and frequency mixing models we have used the models from Equation (\ref{eq:physical_pnp_equation}) and (\ref{eq:feff3_plus}) with constant parameters (\ref{eq:htran_pnpparameters}) and (\ref{eq:htran_mix_parameters}). The results obtained with the Hermite-Hilbert transform has been presented in Figures (\ref{fig:hht_pnp}) and (\ref{fig:hht_fmix}) respectively.

\begin{figure}

\includegraphics[width=150mm]{img/hht_pnp.png}

\caption{ The Figure presents the results of the Hermite-Hilbert transform method applied to the pump-and-probe model. Results are plotted together:

- a.a) The plot of the real part of \${\chi {pp}}{\omega)\$
- a.b) absolute error plot (a.d-plot minus a.c-plot)
- a.c) imaginary part of \${\chi_{pp}}(\omega)\$ obtained with the Hermite-Hilbert transform of a.a-plot,
- a.d) imaginary part of \${\chi_{pp}}(\omega)\$ calculated analytically
- b.a) The plot of the imaginary part of ${\phi}$ (\omega)
- b.b) absolute error plot (b.d-plot minus b.c-plot)
- b.c) real part of \$\chi {pp}}\omega)\$ obtained with the Hermite-Hilbert transform of b.a-plot
- b.d) real part of \$\chi_{pp} (\omega)\$ calculated analytically

\label{fig:hht_pnp}

\end{figure}

\begin{figure}

\includegraphics[width=150mm]{img/hht fmix.png}

\caption{The Figure presents the results of the Hermite-Hilbert transform method applied to the frequency mixing model. Results are plotted together:

- a.a) The plot of the real part of \${\chi_{mix}}(\omega)\$
- a.b) absolute error plot (a.d-plot minus a.c-plot)
- a.c) imaginary part of ${\phi}(\infty)$ obtained with the Hermite-Hilbert transform of a.a-plot.
 - a.d) imaginary part of \${\chi_{mix}}(\omega)\$ calculated analytically
 - b.a) The plot of the imaginary part of ${\phi}$
 - b.b) absolute error plot (b.d-plot minus b.c-plot)
 - b.c) real part of ${\phi \in \mathcal{N}}(\infty)$ obtained with the Hermite-Hilbert transform of b.a-plot

```
b.d) real part of $\chi_{mix} (\omega )$ calculated analytically
\label{fig:hht_fmix}
  }
\end{figure}
```

In these results we can draw two conclusions. The method based on the periodical polynomials as Hilbert polynomials will give us ``zig-zag" like results. The other conclusion is that results obtained seems to be close, but much worst that those obtained with HCCI or FHT.

\subsection{HHT for simple quantum-perturbative model -- results} \label{chap:hermite quantum}

\subsubsection*{Linear model - results:}

As in the Chapter (\ref{chap:nc_nlo}), we have used the same model, see Equation (\ref{eq:ssmods_linear}), to describe the simple linear quantum-perturbative model with the constant parameters as in Equation (\ref{eq:htran_qp1_const}).

Results are presented in Figure (\ref{fig:hht_qp1}).

```
\begin\{\text{figure}\} \includegraphics[\width=150mm]\{\text{img/hht_qp1.png}\} \caption\{\text{Results for the linear quantum perturbative model for Hermite-Hilbert transform a.a) The plot of the imaginary part of $\chi_{1, \,qp}\\omega \) \( \text{a.b} \) absolute error plot (d-plot minus c-plot) \( \text{a.c} \) real part of $\chi_{1, \, qp}\\omega \) \( \text{botationed} \) \( \text{botationed} \) the plot of the real part of $\chi_{1, \, qp}\\omega \) \( \text{conega} \) \( \text{b.b} \) The plot of the real part of $\chi_{1, \, qp}\\omega \) \( \text{b.b} \) absolute error plot (d-plot minus c-plot) \( \text{b.c} \) imaginary part of $\chi_{1, \, qp}\\omega \) \( \text{botationed} \) \( \text{b.d} \) imaginary part of $\chi_{1, \, qp}\\\omega \) \( \text{conega} \) \( \text{calculated analytically } \) \( \text{label}\{\text{figure}} \) \( \text{lonega} \) \( \text{calculated analytically } \) \( \text{label}\{\text{figure}} \) \( \text{lonega} \) \( \text{lonega}
```

We have also used the same model (\ref{eq:ssmods_quadratical}) as in previous Chapters with the constants parameters from Equation (\ref{eq:htran_qp_constant}).

Results are presented in Figure (\ref{fig:hht_qp2}). Still we observe that the second\--order qu\-antum \--pertur\-bative model is invalid.

```
\begin{figure}
```

```
\includegraphics[width=150mm]{img/hht_qp2.png}
```

\caption{Results for the second-order quantum perturbative model for Hermite-Hilbert transform transform

- a.a) The plot of the real part of \${\chi {2, \,qp}}(\omega)\$
- a.b) absolute error plot (a.d-plot minus a.c-plot)
- a.c) imaginary part of ${\phi}_{2, qp}}(\omega)$ obtained with the Hermite-Hilbert transformof a.a-plot,
 - a.d) imaginary part of ${\phi}$ (\chi_{2, \,qp}}(\omega) \square calculated analytically
 - b.a) The plot of the imaginary part of ${\phi}$ (\omega)
 - b.b) absolute error plot (b.d-plot minus b.c-plot)
 - b.c) real part of ${\phi }(\phi)$ obtained with the Hermite-Hilbert transform of b.a-plot
 - b.d) real part of $\ \phi \$ (\omega) \\$ calculated analytically \label{fig:hht qp2}

}

\end{figure}

We have tested the HHT method with many different parameters, but none of them has gave us better accuracy. We also observed that when using more steps in the main loop of the algorithm, the numerical errors grow faster - so this is not a very stable algorithm. We encourage the reader to carry out their own calculations with source code given in Appendix A.5.

\section{Fourier-series} \label{chap:fourier}

\subsection{Overview of the Fourier-series based method} \label{chap:fourier_overview}

The concept of the Hilbert transform evaluation based on the Fourier series also comes from the master thesis by Mathias Johansson \cite{johansson_hilbert}. There is an important drawback in this approach - in general it should be applied to the periodic functions, but we will further assume they have a relatively long period.

\subsubsection*{Fourier series:}

Each periodical function can be decomposed into a infinite Fourier series. For a given periodic function f(x) with a given period $2 \$, p, we will introduce the Fourier coefficients:

```
\label{eq:fourier_coeffs} $$ \left( \frac{eq\cdot fourier\_coeffs} \right) = \left( \frac{eq\cdot f(x) \cdot f(x) \cdot eq\cdot f(x) \cdot \frac{eq\cdot
```

We define the sequence of partial sums:

```
\label{eq:fourier_partialsums} $S_{f, \N}(x) = \frac{\{a_{f, \,0}\}}{2} + \sum_{n=1}^{N} \ \left(a_{f, \,0}\right)}{2} + \sum_{n=1}^{N} \ \left(a_{f, \,n}\right) \ \left(\frac{a_{f, \,n}}{n}\right) \ \left
```

Not getting deeply into harmonic analysis - we assume that $S_{f, \N}(x)$ converges to $f \ \in L_{2}(-P, P)$ almost everywhere. The statement `almost everywhere' means that the set $W = t \in N$ in $N \in N$ in $t \in M$

\subsubsection*{Hilbert transform based on the Fourier series:}

After Johansson \cite{johansson_hilbert} we state that for any given function $f.\$ \in \,{L_{2}}(- P, \p)\$ we can calculate the Hilbert transform using the form of Fourier series for this function. All we need to do, is to make a swap in the (\ref{eq:fourier_partialsums}) equation - the a_n } coefficients should be swapped with f_n } coefficients:

\end{equation}

and this statement is true almost everywhere in \$(-P, P)\$.

\subsubsection*{Algorithm overview:}

As mentioned before, we will prepare the algorithm as for the periodic function, but we will try to imply that the period is much longer than the area of interest. We would like to calculate the Hilbert transform for periodical and non-periodical function f. The first step is to calculate the properties of the input X interval, which is the region in which we are interested of both input function f values and the values of its Hilbert transform. The second step is to calculate sequence of the Fourier coefficients, see Equations (\ref{eq:fcoeffs_an}-\ref{eq:fcoeffs_bn}). In the same loop we calculate the consecutive partial sums. The last step is to extract the inner interval from the extended interval, to omit the numerical errors near the interval edges.

The full source code of this algorithm, has been presented in the appendix A.6.

\subsection{Fourier-series for simple linear model -- results} \label{chap:fourier_lin}

In Figure (\ref{fig:four_lin}) we have presented the results obtained with the Fourier-Hilbert transform for the simple linear model defined in model (\ref{eq:physical_frequency_linear}). As we can see - the Fourier-Hilbert transform comes with poor accuracy, but we would like to put this method into examination with defined models.

\begin{figure}

\includegraphics[width=150mm]{img/four_lin.png}

\caption{ The Figure presents the results of the Hilbert transform based on the Fourier series method applied to the simple linear model. Results are plotted together:

- a.a) The plot of the real part of \$\chi (\omega)\$
- a.b) absolute error plot (c-plot minus d-plot)
- a.c) imaginary part of \$\chi (\omega)\$ obtained with the Fourier-Hilbert transform of a-plot
- a.d) imaginary part of \$\chi (\omega)\$ calculated analytically.
- b.a) The plot of the imaginary part of \$\chi (\omega)\$
- b.b) absolute error plot (c-plot minus d-plot)
- b.c) real part of \$\chi (\omega)\$ obtained with the Fourier-Hilbert transform of a-plot
- b.d) real part of \$\chi (\omega)\$ calculated analytically. \label{fig:four_lin}

\end{figure}

\subsection{Fourier-series for simple nonlinear model -- results} \label{chap:fourier_nlo}

For the pump-probe and frequency mixing models we have used the same parameters and constant parameters as in previous Chapters. The results obtained with the Fourier-Hilbert transform has been presented in Figures (\ref{fig:four_pnp}) and (\ref{fig:four_fmix}) respectively.

\begin{figure}

\includegraphics[width=150mm]{img/four_pnp.png}

\caption{The Figure presents the results of the Hilbert transform based on the Fourier series method applied to the pump-and-probe model. Results are plotted together:

- a.a) The plot of the real part of ${\phi }$
- a.b) absolute error plot (a.d-plot minus a.c-plot)
- a.c) imaginary part of \${\chi_{pp}}(\delta)\$ obtained with the Fourier-Hilbert transform of a.a-plot,
- a.d) imaginary part of \${\chi_{pp}}(\delta)\$ calculated analytically
- b.a) The plot of the imaginary part of ${\phi}(\phi)$
- b.b) absolute error plot (b.d-plot minus b.c-plot)
- b.c) real part of ${\phi}$ (delta)\$ obtained with the Fourier-Hilbert transform of b.a-plot
- b.d) real part of \$\chi_{pp} (\omega)\$ calculated analytically

\label{fig:four_pnp}

```
\end{figure}
\begin{figure}
 \includegraphics[width=150mm]{img/four fmix.png}
 \caption{ The Figure presents the results of the Hilbert transform based on the Fourier series method
applied to the frequency mixing model. Results are plotted together:
   a.a) The plot of the real part of {\phi}(\sin_{mix})(\omega)
   a.b) absolute error plot (a.d-plot minus a.c-plot)
   a.c) imaginary part of ${\chi_{mix}}(\omega )$ obtained with the Fourier-Hilbert transform of a.a-plot,
   a.d) imaginary part of ${\chi_{mix}}(\omega )$ calculated analytically
   b.a) The plot of the imaginary part of ${\chi_{mix}}(\omega)$
   b.b) absolute error plot (b.d-plot minus b.c-plot)
   b.c) real part of ${\chi_{mix}}{\omega} )$ obtained with the Fourier-Hilbert transform of b.a-plot
   b.d) real part of $\chi_{mix} (\omega )$ calculated analytically
   \label{fig:four_fmix}
   }
\end{figure}
In these results we can draw two conclusions. The method based on the periodical polynomials as
Fourier series will give us "zig-zag" like results. The other conclusion is that results obtained seems to
be poor and much worst that those obtained with HCCI or FHT.
\subsection{Fourier-series for simple quantum-perturbative model -- results}
\label{chap:fourier_quantum}
\subsubsection*{Linear model - results:}
We have used the linear model, see Equation (\ref{eq:ssmods linear}), with the constant parameters
from (\ref{eq:htran_qp1_const}).
Results are presented in Figure (\ref{fig:four_qp1}).
\begin{figure}
 \includegraphics[width=150mm]{img/four qp1.png}
 \caption{Results for the linear quantum perturbative model for Fourier-Hilbert transform
  a.a) The plot of the imaginary part of {\phi_1, \q p}(\omega)
  a.b) absolute error plot (d-plot minus c-plot)
  a.c) real part of {\phi_1, qp}(\omega) obtained with the Fourier-Hilbert transform of a-plot
  a.d) real part of ${\chi_{1, \, qp}}(\omega )$ calculated analytically
  b.b) The plot of the real part of {\phi}_{1, q}}(\omega)
  b.b) absolute error plot (d-plot minus c-plot)
  b.c) imaginary part of $\chi_{1, \, qp}}\omega )$ obtained with the Fourier-Hilbert transform of a-
plot
  b.d) imaginary part of ${\chi_{1, \, qp}}(\omega )$ calculated analytically
  \label{fig:four_qp1}
\end{figure}
```

We have used the second-order model (\ref{eq:ssmods_quadratical}) with the constant parameters from (\ref{eq:htran_qp_constant}).

Results are presented in Figure (\ref{fig:four_qp2}). We can see, that the first model could be valid, while the second model seems to be invalid for consecutively for all Hilbert transform implementations.

\begin{figure}

\subsubsection*{Second-order model - results:}

```
\includegraphics[width=150mm]{img/four_qp2.png} \caption{Results for the second-order quantum perturbative model for Fourier-Hilbert transform transform

a.a) The plot of the real part of ${\chi_{2}, \,qp}}(\omega)$ a.b) absolute error plot (a.d-plot minus a.c-plot)

a.c) imaginary part of $\chi_{2}, \,qp} (\omega)$ obtained with the Fourier-Hilbert transformof a.a-plot,

a.d) imaginary part of $\chi_{2}, \,qp} (\omega)$ calculated analytically

b.a) The plot of the imaginary part of ${\chi_{2}, \,qp}}(\omega)$ b.b) absolute error plot (b.d-plot minus b.c-plot)

b.c) real part of $\chi_{2}, \,qp} (\omega)$ obtained with the Fourier-Hilbert transform of b.a-plot b.d) real part of $\chi_{2}, \,qp} (\omega)$ calculated analytically \label{fig:four_qp2}
} end{figure}
```

We have checked the Fourier-Hilbert method for various parameters, but none of them has gave us better accuracy. We encourage the reader to carry out their own calculations with source code given in Appendix A.6.

\section{MATLAB ® out-of-the-box functions} \label{chap:matlab}

\subsection{Overview of the MATLAB ® interior functions - MIF} \label{chap:matlab_overview}

Once we prepared, presented and tested a bunch of Hilbert transform algorithms, why cannot we take into consideration the already built-in numerical methods from MATLAB? In this Chapter we will compare the results obtained with:

```
\begin{tabular}{I I}
- quadgk() &- adaptive Gauss-Kronrod quadrature; \\
- hilbert() &- fast Hilbert transform based on both FFT and IFFT. \\
\end{tabular}
```

\subsubsection*{Adaptive Gauss-Kronrod quadrature - theory:}

The source code of the adaptive Gauss-Kronrod quadrature has been published in the popular Fortran 77 numerical integration QUADPACK library and has been also translated into the MATLAB core language. It is also based on the ``quadva" routine described by Lawrence F. Shampine in \cite{shampine_vectorized}. The crucial idea of this numerical integration algorithm is that the more accurate quadrature approximation is calculated from the less accurate one. The algorithm is adaptive and the error estimation is based on the (G-K7,15) pair of the quadrature rules, less and more accurate, the 7-point Gauss rule and the 15-point Kronrod rule with a share nodes. For more information about the theory beneath this algorithm -- please read D. Calvetti et al \cite{calvetti_computation} or the chapter 5.5 from the book by David Kahaner \cite{kahaner_numerical}.

\subsubsection*{Adaptive Gauss-Kronrod quadrature - short tutorial:}

We have used the MATLAB \textregistered R2009b. It comes with built-in quadgk function with four parameters:

```
'Waypoints' & - vector of integration waypoints \\
'MaxIntervalCount' & - maximum number of intervals allowed (default: 650) \\
\end{tabular}
```

The defined models used within the Hilbert transform comes with one, but strong singularity. While the quadgk() method comes with copes with infinities, we have suggested to split the integral into two parts, but not including the small area nearby singularity.

If the models singularity \$c\$ is taken from the range \$[a, b]\$, we will divide the range \$lb-al\$ by \$10000\$ and calculate the value as defined in equation (\ref{eq:mat_quadadd}).

```
\label{eq:mat_quadadd} $$ \arrangle a lignat $1$ \arrangle eq:mat_quadadd $$ \arrangle a lignat $1$ \arrangle eq:mat_quadadd $$ \arrangle a lignat $-\infty, \arrangle eq:mat_quadadd $$ \arrangle eq:mat_quadgk $$ \arrangle eq: $$ \
```

\subsubsection*{Fast Hilbert transform routine - theory:}

The discrete Hilbert transform (DHT) is given by definition after \cite{kak_multilayeredarray} - for a given vector \$X \in \mathbb{R} ^ N\$:

The other definition by \cite{calvetti computation} uses the convolution:

```
\label{eq:matlab_convolution} $$ \left\{ eq: matlab_convolution \right. \\ \left\{ eq: matlab_conv_dht \right\} \\ \left\{ mathrm{D_X}_k = X * h = \sum_{s=0}^{n - 1}, h_{k - s} \right\} \\ \left\{ equation \right\} \\ \left\{ eq: mconv_hk \right\} \\ h_k = \left\{ 1\right\} \\ \left\{ n \right\} \\ \left\{ mathrm{cot}(\frac{n}{k}n) - \frac{mathrm{cos}(\pi athrm{cos}(\pi k))}{mathrm{sin}(\frac{n}{k}n)} \right\} \\ \left\{ eq: mconv_hk \right\} \\ \left\{ n \right\} \\ \left\{ eq: mconv_hk \right\} \\ \left\{ n \right\} \\
```

The important issue is that the DHT is closely related to the discrete Fourier transform - DFT. In order to evaluate the DHT(X), for $X \in \mathbb{R}^n \mathbb{R}^n$, we can hire the DFT routine. To start, we must remember that in the continuous case:

```
\label{eq:linear_condition} $$\operatorname{F}(\frac{1}{\pi c {1}_{\pi sgn}(k), \hdots {1}_{\pi sgn}(k), \hdots {1}_{\pi sgn}(k), \hdots {1}_{\pi sgn}(k)) \hdots {1}_{\pi sgn}(k)
```

Therefore, in the discrete case we find the similar equation to (\ref{eq:matlab_issue}) relating the DHT and DFT:

```
\label{eq:matlab_reldhtdft} $$ \begin{array}{ll} \label{eq:matlab_reldhtdft} & \begin{array}{ll} \label{eq:matlab_reldhtdft} \\ \label{eq:mathrm} & \begin{array}{ll} \label{eq:matlab_reldhtdft} \\ \label{eq:mathrm} & \begin{array}{ll} \label{eq:mathrm} & \label{eq:mathrm} & \begin{array}{ll} \label{eq:mathrm} & \begin{array}{ll} \label{eq:mathrm} & \label{eq:mathrm} & \begin{array}{ll} \label{eq:mathrm} & \label{eq:m
```

From the (\ref{eq:matlab_reldhtdft}) we can see, that it is quite easy to operate within the Fourier/ frequency domain - because the quite complicate convolution is transformed to a simple algebraic operations. Also - if we have the quick algorithm to perform both the DFT and inverse-DFT - for example with the fast Fourier transform - FFT and the inverse fast Fourier transform - IFFT, the DHT operation will be calculated as follows:

```
\label{eq:matlab_fulldhthdf} $$ \left( ases \right) \quad \mathcal{L}(NN)_k = (-i) \ \mathrm{sgn}(\frac{n}{2}-k) \ \mathrm{sgn}(k) \ \mathrm{DFX}_k \ \mathrm{DFX}_k \ \mathrm{DHT}(X) = \mathcal{L}(NN)_k \ \mathrm{DHT}(X) = \mathcal{L}(NN)_k \ \mathrm{def(X)}_k \
```

\subsubsection*{Fast Hilbert transform routine - short tutorial:}

While the hired DFT and IDFT routines are evaluated in complex domain, for a given input n-length X vector we have that:

```
\begin{equation} \label{eq:matlab_implication} \mathcal{H}(X) \Rightarrow X + i \, \mathrm{DHT}(X) \end{equation}
```

In order to obtain the final result we need to take the imaginary part of the MATLAB hilbert() function output. The other important issue is that the $\text{textit}\{MATLAB\hat{A}^{\text{\tiny{B}}}\}\$ hilbert() function has one optional parameter called N - to computer the N-point Hilbert transform. If the input vector X is too short, it will be padded with zeros, otherwise it will be truncated.

\subsection{MIF for simple linear model -- results} \label{chap:matlab_lin}

In two Figures (\ref{fig:quadgk_lin}) and (\ref{fig:hilb_lin}) we have ga\-thered the results ob\-tained with the MATLAB quadgk() and hilbert() functions based Hil\-bert trans\-forms for the simple linear model defined in model (\ref{eq:physical_frequency_linear}). For each method we can see a accep\-table accu\-racy.

```
\begin{figure}
```

\includegraphics[width=150mm]{img/quadgk_lin.png}

\caption{The Figure presents the results of the quadgk() method applied to the simple linear model. Results are plotted together:

- a.a) The plot of the real part of \$\chi (\omega)\$
- a.b) absolute error plot (c-plot minus d-plot)

```
a.c) imaginary part of $\chi (\omega )$ obtained with the guadgk()-Hilbert transform of a-plot
 a.d) imaginary part of $\chi (\omega )$ calculated analytically.
 b.a) The plot of the imaginary part of $\chi (\omega )$
 b.b) absolute error plot (c-plot minus d-plot)
 b.c) real part of $\chi (\omega )$ obtained with the quadqk()-Hilbert transform of a-plot
 b.d) real part of $\chi (\omega )$ calculated analytically. \label{fig:quadgk_lin}
\end{figure}
\begin{figure}
 \includegraphics[width=150mm]{img/hilb_lin.png}
 \caption{The Figure presents the results of the hilbert() method applied to the simple linear model.
Results are plotted together:
 a.a) The plot of the real part of $\chi (\omega )$
 a.b) absolute error plot (c-plot minus d-plot)
 a.c) imaginary part of $\chi (\omega )$ obtained with the hilbert() transform of a-plot
 a.d) imaginary part of $\chi (\omega )$ calculated analytically.
 b.a) The plot of the imaginary part of $\chi (\omega )$
 b.b) absolute error plot (c-plot minus d-plot)
 b.c) real part of $\chi (\omega )$ obtained with the hilbert() transform of a-plot
 b.d) real part of $\chi (\omega )$ calculated analytically. \label{fig:hilb lin}
\end{figure}
\subsection{MIF for simple nonlinear model -- results} \label{chap:matlab_nlo}
In the next four Figures: (\ref{fig:quadgk_pnp}), (\ref{fig:quadgk_fmix}), (\ref{fig:hilb_pnp}) and
(\ref{fig:hilb fmix}) we have gathered the results obtained with the MATLAB® guadgk() and hilbert()
functions based Hilbert transforms for the pump-probe and frequency mixing models with the same
parameters as in Chapter (\ref{chap:nc nlo}).
\begin{figure}
 \includegraphics[width=150mm]{img/quadgk_pnp.png}
 \caption{Results for the pump-probe model using the quadgk() Hilbert transform
   a.a) The plot of the real part of ${\chi {pp}}{\omega )$
   a.b) absolute error plot (a.d-plot minus a.c-plot)
   a.c) imaginary part of ${\chi_{pp}}{\omega} )$ obtained with the quadgk() Hilbert transform of a.a-
plot,
   a.d) imaginary part of ${\chi_{pp}}(\omega )$ calculated analytically
   b.a) The plot of the imaginary part of {\phi}
   b.b) absolute error plot (b.d-plot minus b.c-plot)
   b.c) real part of $\chi {pp} (\omega )$ obtained with the quadgk() Hilbert transform of b.a-plot
   b.d) real part of $\chi_{pp} (\omega )$ calculated analytically
   \label{fig:quadgk_pnp}
\end{figure}
\begin{figure}
 \includegraphics[width=150mm]{img/quadgk fmix.png}
 \caption{Results for the frequency model using the quadgk() Hilbert transform
   a.a) The plot of the real part of ${\chi {pp}}{\omega )$
   a.b) absolute error plot (a.d-plot minus a.c-plot)
   a.c) imaginary part of ${\chi_{pp}}{\omega} )$ obtained with the quadgk() Hilbert transform of a.a-
plot.
   a.d) imaginary part of {\phi} (\omega) scalculated analytically
   b.a) The plot of the imaginary part of {\phi }
   b.b) absolute error plot (b.d-plot minus b.c-plot)
   b.c) real part of ${\chi_{pp}}{\omega )$ obtained with the quadgk() Hilbert transform of b.a-plot
```

```
b.d) real part of $\chi {pp} (\omega )$ calculated analytically
   \label{fig:quadgk fmix}
   }
\end{figure}
\begin{figure}
 \includegraphics[width=150mm]{img/hilb_pnp.png}
 \caption{Results for the pump-probe model using the hilbert() transform
   a.a) The plot of the real part of {\phi}(\sin_{mix})(\omega)
   a.b) absolute error plot (a.d-plot minus a.c-plot)
   a.c) imaginary part of $\\chi_{mix}}(\omega )$ obtained with the hilbert() transform of a.a-plot,
   a.d) imaginary part of ${\chi_{mix}}(\omega )$ calculated analytically
   b.a) The plot of the imaginary part of ${\chi_{mix}}(\omega)$
   b.b) absolute error plot (b.d-plot minus b.c-plot)
   b.c) real part of ${\chi_{mix}}(\omega )$ obtained with the hilbert() transform of b.a-plot
   b.d) real part of $\chi_{mix} (\omega )$ calculated analytically
   \label{fig:hilb_pnp}
\end{figure}
\begin{figure}
 \includegraphics[width=150mm]{img/hilb fmix.png}
 \caption{Results for the frequency mixing model using the hilbert() transform
   a.a) The plot of the real part of ${\chi {pp}}(\omega)$
   a.b) absolute error plot (a.d-plot minus a.c-plot)
   a.c) imaginary part of ${\chi_{pp}}{\omega )$ obtained with the hilbert() transform of a.a-plot,
   a.d) imaginary part of ${\chi_{pp}}(\omega )$ calculated analytically
   b.a) The plot of the imaginary part of ${\chi {pp}}{\omega }$
   b.b) absolute error plot (b.d-plot minus b.c-plot)
   b.c) real part of {\phi}(\infty) sobtained with the hilbert() transform of b.a-plot
   b.d) real part of $\chi_{pp} (\omega )$ calculated analytically
   \label{fig:hilb_fmix}
\end{figure}
```

For each method we can once again see the acceptable accuracy for each method, but we can also observe, that each method comes with noticeable error.

\subsection{MIF for simple quantum-perturbative model -- results} \label{chap:matlab_quantum}

We have also put the determined methods onto test with quantum-perturbative models taken from Chapter (\ref{chap:nc_nlo}).

\subsubsection*{Linear model -- results:}

In Figures: (\ref{fig:quadgk_qp1}) and (\ref{fig:hilb_qp1}) we have gathered the results ob\-tained with the MATLAB quadgk() and hilbert() functions based Hil\-bert tran\-sforms for the linear qua\-ntum\-per \-tur\-ba\-tive model taken with the same para\-meters as in Chapter (\ref{chap:nc_nlo}).

```
\begin{figure}
```

```
\includegraphics[width=150mm]{img/quadgk_qp1.png}
```

\caption{Results for the linear quantum perturbative model for quadgk() Hilbert transform

- a.a) The plot of the imaginary part of \${\chi_{1, \, qp}}(\omega)\$
- a.b) absolute error plot (d-plot minus c-plot)
- a.c) real part of ${\phi } = 1, \, qp}(\omega)$ obtained with the quadgk() Hilbert transform of a-plot
- a.d) real part of \${\chi_{1, \, qp}}(\omega)\$ calculated analytically
- b.b) The plot of the real part of ${\phi_{,, qp}}(\omega)$
- b.b) absolute error plot (d-plot minus c-plot)

```
b.c) imaginary part of ${\chi {1, \, qp}}{\omega )$ obtained with the quadqk() Hilbert transform of a-
plot
  b.d) imaginary part of ${\chi_{1, \, qp}}(\omega )$ calculated analytically
  \label{fig:quadgk_qp1}
\end{figure}
\begin{figure}
 \includegraphics[width=150mm]{img/hilb qp1.png}
 \caption{Results for the linear quantum perturbative model for hilbert() transform
  a.a) The plot of the imaginary part of {\phi }_{1, \, qp}(\omega )
  a.b) absolute error plot (d-plot minus c-plot)
  a.c) real part of {\phi } (\omega) $ obtained with the hilbert() transform of a-plot
  a.d) real part of ${\chi_{1, \, qp}}(\omega )$ calculated analytically
  b.b) The plot of the real part of {\phi_{1, q}}(\sigma)
  b.b) absolute error plot (d-plot minus c-plot)
  b.c) imaginary part of $\chi_{1, \, qp}}\(delta )$ obtained with the hilbert() transform of a-plot
  b.d) imaginary part of ${\chi_{1, \, qp}}(\delta )$ calculated analytically
  \label{fig:hilb_qp1}
\end{figure}
We observe guite large error in the results for the investigated model, for both methods applied.
\subsubsection*{Second-order model -- results:}
In Figures: (\ref{fig:quadgk_qp2}) and (\ref{fig:hilb_qp2}) we have ga\-thered the results ob\-tained with
the MATLAB quadgk() and hilbert() func\-tions based Hil\-bert transforms for the se\-cond\--order quan
\-tum\--per\-tur\-bative model taken with the same para\-meters as in Chapter (\ref{chap:nc nlo}).
\begin{figure}
 \includegraphics[width=150mm]{img/quadgk_qp2.png}
 \caption{Results for the second-order quantum perturbative model for quadgk() Hilbert transform
  a.a) The plot of the imaginary part of {\phi }
  a.b) absolute error plot (d-plot minus c-plot)
  a.c) real part of {\phi }\ (\mathbb{m}, \, qp)}(\mathbb{m}) obtained with the quadgk() Hilbert transform of a-plot
  a.d) real part of ${\chi_{1, \, qp}}(\omega )$ calculated analytically
  b.b) The plot of the real part of {\phi_1, qp}}(\sigma)
  b.b) absolute error plot (d-plot minus c-plot)
  b.c) imaginary part of ${\chi_{1, \, qp}}(\omega )$ obtained with the quadgk() Hilbert transform of a-
  b.d) imaginary part of {\phi} (\omega) calculated analytically
  \label{fig:quadgk_qp2}
\end{figure}
\begin{figure}
 \includegraphics[width=150mm]{img/hilb qp2.png}
 \caption{Results for the second-order quantum perturbative model for hilbert() transform
  a.a) The plot of the imaginary part of {\phi }_{1, \ p}(\sigma )
  a.b) absolute error plot (d-plot minus c-plot)
  a.c) real part of ${\chi_{1, \, qp}}{\omega )$ obtained with the hilbert() transform of a-plot
  a.d) real part of ${\chi_{1, \, qp}}(\omega )$ calculated analytically
  b.b) The plot of the real part of {\phi}_{1, q}}(\omega)
  b.b) absolute error plot (d-plot minus c-plot)
  b.c) imaginary part of {\phi }  obtained with the hilbert() transform of a-plot
  b.d) imaginary part of {\phi} (\omega )$ calculated analytically
  \label{fig:hilb gp2}
```

```
}
\end{figure}
```

We observe a huge error as in all previously chapters for the investigated model, for both methods applied.

\section{General comparison of numerical methods used} \label{chap:comparison}

\subsection{Time comparison conclusions:} \label{chap:gencom_time}

Until now we have not mention how much time does it take for each of investigated methods to calculate desired results. In the Table (\ref{gencom_time}) we have showed how much time does it take to perform the calculations for all 5 investigated models.

```
\begin{table}
 \caption{Time comparison} \label{gencom_time}
 \begin{tabular}{I}
  method name & time used for all 5 models \\
  \hline
  HTRAN & 1.8095s \\
  Newton-Cotes & 122.1465s \\
  Clenshaw-Curtis & 59.3621s \\
  Hartley & 9.5106s \\
  Hermite & 6.7423s \\
  Fourier & 443.3777s \\
  quadqk() & 325.0274s \\
  hilbert() & 0.46756s \\
  \hline
 \end{tabular}
\end{table}
```

As we can see - the investigated methods come with important timing differences. When preparing experiment data analysis we should choose the appropriate method reasonably.

\subsection{Accuracy comparison conclusions:} \label{chap:gencom_accuracy}

We have prepare the subjective summary of the accuracy obtained with investigated methods with the zero (bad accuracy) to ten (good accuracy). It is presented in the Table~(\ref{gencom_accuracy}).

```
\begin{table}
 \caption{Accuracy comparison} \label{gencom accuracy}
 \begin{tabular}{||c|c|c|c|c}
  method name & linear & pump-probe & freq. mix. & quant. linear & quant. $2^\text{nd}}$-
order \\
  \hline
               & 7 & 5 & 5 & 5 & 2 \\
  HTRAN
  Newton-Cotes & 7 & 4 & 4 & 3 & 2 \\
  Clenshaw-Curtis & 9 & 9 & 8 & 7 & 3 \\
  Hartley
          & 8 & 8 & 7 & 6 & 3 \\
  Hermite
             & 6 & 5 & 3 & 3 & 0 \\
  Fourier
            & 6 & 5 & 3 & 3 & 0 \\
  quadgk() & 7 & 7 & 6 & 5 & 3 \\
  hilbert()
            & 7 & 7 & 6 & 5 & 3 \\
  \hline
 \end{tabular}
\end{table}
```

\subsection{Application comparison conclusions:} \label{chap:gencom_application}

There are two main types of methods - those, than can perform a full-vector calculation (like HTRAN, Hartley-Hilbert transform, hilbert()) and those, which require calculation for each point (Newton-Cotes, Clenshaw-Curtis, Hermite-Hilbert, Fourier-Hilbert, quadgk()). The first group comes with relative acceptable accuracy, but still not negligible one. On the other side we can use the Clenshaw-Curtis based implementation of the Hilbert transform - which has showed as the method with the best accuracy from all investigated methods.

When we would analyze data that has been collected in one dimension - it would be a good idea to hire the accurate Clenshaw-Curtis Hilbert transform implementation. But we should also prepare a good method for two-dimensional calculation and for such case we should use the fast methods like Hartley-Hilbert transform or built-in MATLAB~\textregistered hilbert() method.

But what is a good information - all methods can be used in the model analysis and validation process.

\section{Conclusion} \label{chap:conclusion}

We have presented a valid implementation of several different approaches to calculate the improper and singular integral used in the linear Hilbert transform. We believe that the next step to answer important answers in nonlinear optics is to prepare efficient algorithms for multi-level Hilbert transform. Once the multi-level numerical methods will be prepared, we will need to set up en experiment, where at least two light beams are interfering and will have got varying wavelengths.

\subsection{Model conclusion} \label{chap:conclusion model}

During work on this thesis we have found at least one invalid model - such as second-order quantum-perturbative model. For none of implemented method this model has shown any acceptable type of accuracy. There were more such models, not taken into scope - but with described tools - an experienced research will be able to validate model with the Hilbert transform relations.

The one hypothetical proposal of explanation the failure of the second-order quantum-perturbative model is that this model as the only investigate one - depends on two input frequencies. The theory of multi-dimensional Hilbert transform states, that one point depends on the whole multi-dimensional spectra. What we have done here - was the false assumption - that for such a model we can simple strike on dimension out. This assumption proved to be false.

The multi-dimensional Hilbert transform is beyond the scope of this work and requires the better knowledge of implementation the multi-dimensional singular quadratures.

\subsection{Numerical conclusion} \label{chap:conclusion_numerical}

- 1. We have presented several methods and the comparison of their accuracy, convergency and speed. Which method is the best and why? This set of tools should be treated as a numerical tool box the choice is always depends on the user's choice.
- 2. The speed-leading methods are based on the full-vector calculations. There are a good candidates for the multi-dimensional hilbert transform integration.

\subsection{Z-scan* technique conclusion} \label{chap:conclusion_zscan}

* - the Z-scan technique is presented in the Appendix B.

In our opinion the data collected from the Z-scan experiment can be put into test with all prepared methods. We should also remember, that the phenomena occurring during this experiment - due to strong energy - shows the complicated nonlinearity, so the multi-dimensional Hilbert transform methods may be required.

\subsection{General conclusion} \label{chap:conclusion_general}

The aim of this work was to:

\begin{itemize}

\item Development of numerical methods of the Hilbert transform. It succeeded and the methods are available altogether with their source code and the testing routines. Users can choose among a wide range of methods with described parameters.

\item Validation of models given in literature. This succeeded only for the most popular models. There is a wide range of models given in literature for which the Hilbert transform rule simple does not work.

\item Carrying out the calculations on multi-dimensional models. It failed. It turned out that such calculations require much more complex numerical methods. \end{itemize}

Other conclusions:

- 1. This thesis in only an introduction into the important, but still not well described, hardly-investigated interdisciplinary problem concerning the investigation of light and matter interaction in area of nonlinear optics.
- 2. This topic should be continued as the cooperation between various disciplines is the key role to solve many questions stated by nowadays nonlinear optics scientists so the strong mathematical, numerical, chemical and quantum-mechanical background skills are together required, one person is unable to have it all, so a team should be created (here in WrocÅaw).
- ``A major challenge for researchers working in a multidisciplinary area is the need to learn relevant concepts outside their expertise. This may require searching through a vast amount of literature, often leading to frustrations of not being able to extract pertinent information quickly. " P. Prasad \cite{prasad nanophotonics}
- 3. We can find many papers in area of Kramers-Kronig for nonlinear optics, but in my opinion in case of nonlinear optics many of them are false and not properly argued, with wrong or improper mathematical assumptions, numerical errors and sometimes even tendential optimism and non-scepticism, which especially in area of modern physics is incomprehensible.
- 4. We are all in a long run for a Nobel prize :) It's a huge motivation :)

\subsection{Further questions and research direction} \label{chap:conclusion_further}

What should be the continuation of this work?

\begin{itemize}

\item The theory which is linking the Hilbert transform with nonlinear optical models should be more deeply investigated. How can the influence of subsequent photons shooting the investigated sample be described with only one equation?

\item Many literature models should be validated and a list of both valid and invalid models should be publicated.

\item The valid and proper tools for multi-dimensional Hilbert transform should be prepared \end{itemize}

Other open questions:

- 1. Should we always use the Fourier transform when translating between the time-domain and the frequency domain?
- 2. As the linear model in optical research is quite well described, we need to prepare tools for the nonlinear calculations, which involve operating on the two-dimensional data sets. There are algorithms like 2D-FFT, 2D-FHT, maybe there also can be an algorithm for 2D-hilbert transform.
- 3. How to efficiently perform calculations for higher dimensional data (f.e. third-order or fifth-order nonlinear phenomena)?
- 4. We need to make a further research on the topic of the harmonic analysis and Fourier analysis and its application to the spectral analysis.

\section{Acknowledgements} \label{chap:acknowledgements}

I would mostly thank Professor Marek SamoÄ for introducing me into the magical world of the nonlinear optics. In my opinion there is an important niche between this scientific domain and the numerical analysis, there are also many questions that I am asking now myself (beyond the scope of this thesis) and I would like to find answers in the future.

I would give my acknowledgements for many people from the WrocÅaw University of Technology, especially:

```
\begin{tabular}{I |}
Katarzyna Matczyszyn, PhD & for inspirations to work between two or \\
& more scientific domains and to work for \\
& others \\
Dr. Marcin Nyk, PhD & for a very good mood each time I needed \\
& it and for introducing me into the world \\
& of real chemical experiments \\
Chris Corkey, PhD & for Your great smile, great mood and \\
& inspiration to travel \\
All OM-IN-NANO Great TEAM! & I would like to thank You all guys for \\
& your hard work and for the great time \\\
& and experience not only in the real and \\\
& hard research, but also in a top-science \\
```

& simple) questions. \\

\end{tabular}

Great honours should be also given for the research staff of the University of WrocÅaw. I would like to give my acknowledgements for:

& You are coping with guys! Thank also You \\ & for all Your answers to all my (usually \\

```
\begin{tabular}{I |}
PaweÅ Keller, PhD & for supervising me through the hard area \\
& of quadratures with singularities \\
Professor StanisÅaw Lewanowicz & for the review of this work, useful comments \\
& and inspiration to think outside the cubicle \\
Grzegorz Karch, Phd & for introducing me into the world of advanced \\
& differential and integral calculus \\
\end{tabular}
```

I would also give my thanks for Professor Takemitsu Hasegawa (Fukui, Japan) for useful hints in calculations.

I would also like to thank all those, who has motivated me to finish this thesis.

\section{Published Results} \label{chap:published_results}

K. Parjaszewski, M. SamoÄ, "\textit{Understanding the Kramers-Kronig relations in nonlinear optics}", PANIC 2010 Conference, WrocÅaw University of Technology

K. Parjaszewski, M. SamoÄ,"\textit{Understanding and solving the Kramers-Kronig relations in nonlinear optics}", PANIC 2011 Conference, WrocÅaw University of Technology

More info: http://www.organometallics.pwr.wroc.pl/

%% The algorithm:

```
\section{References}
\nocite{*}
\bibliographystyle{plain}
\bibliography{biblio}
\section*{Appendix A - The source code}
\subsection*{Appendix A.1 - HTRAN}
\begin{Istlisting}
     function [HT,F] = htran(F,R)
  %% Description:
  % Hilbert transform for discrete value vector. This is a fast and quite satisfactory
  % algorithm based on the important assumption that R disappears out of the F region.
  %% Based on:
  % 1. "Hilbert Transform by Numerical Integration" by I.J. Weinbert,
  % RADC-TR-79-3, January 1979, Rome Aire Development Center
  % ERRATA:
  % In the original publication there was an typo error - the Hilbert
  % transform is not the
  % 1/pi*int(u(tau)/(tau-t),tau=-inf..inf)
  % but should rather be:
  % 1/pi*int(u(tau)/(t-tau),tau=-inf..inf)
  %% INPUT:
  % F - an array of points (abscissas)
  % R - an array of values (ordinates)
  %% OUTPUT:
  % HT - an array of Hilbert Transform values * (ordinates)
  % F - an array of points *
                                        (abscissas)
  % * - corrected, so size(F,1) <= size(F,2)
  % We also do not assume that the input signal R is even or odd - because
  % the original Hilbert Transform was prepared for all type of possible
  % functions.
```

```
% Correcing the input size:
  if(size(R.1)>size(R.2)), R=R':end:
  if(size(F,1)>size(F,2)), F=F';end;
  N = size(R,2);
  % Calculating the F middlepoint array:
  Fp(1,1:N-1) = 0.5 \cdot (F(1,1:N-1)+F(1,2:N));
  step = F(2)-F(1);
  % Build h array (step array for faster calculation)
  % - Simpson's rule combined with the trapezoidal rule
  h(1) = step/3;
  h(1,2:N-1) = 2.*step./3 + mod(1:N-2,2).*2.*step./3;
  h(N) = step/3;
  if (mod(N,2)==1), h(N-1) = 5*step/6; h(N) = step/2; end;
  % Cubic interpolation for the interior values and parabolic
  % interpolation for the end values we obtain
  % new set of ordinates, to omit the singularity:
  Rp = zeros(1,N-1);
  Rp(1)
            = 0.375*R(1)
                              + 0.75*R(2)
                                              - 0.125*R(3);
  Rp(1,N-1) = -0.125*R(1,N-2) + 0.75*R(1,N-1) + 0.375*R(1,N);
  Rp(1,2:N-2) = -0.0625*R(1,1:N-3)+0.5625*R(1,2:N-2)+0.5625*R(1,3:N-1)-0.0625*R(1,4:N);
  % Build Yp array - the heart and first step in integration:
  Yp = zeros(1,N-1);
  for i=1:N-1, Yp(i) = sum(h.*(R-Rp(i))./(F-Fp(i))); end;
  % Build Xp array - the second step in integration:
  Xp = -Rp./pi.* log((Fp-Fp(1))./(Fp(N-1)-Fp)) + Yp./pi;
  % Build Xres array - translating the Xp array into Xres array (cubic
  % interpolation, as previous) - but this time Xp is smaller than Xres:
  Xres = zeros(1,N);
  Xres(1) = 1.875 *Xp(1)

Xres(1,2) = 0.375 *Xp(1)
                                  - 1.25 *Xp(2)
                                                    + 0.375 *Xp(3);
                                  + 0.75 *Xp(2)
                                                   - 0.125 *Xp(3);
  Xres(1,3:N-2) = -0.0625*Xp(1,1:N-4) + 0.5625*Xp(1,2:N-3) + 0.5625*Xp(1,3:N-2) ...
            - 0.0625*Xp(1,4:N-1);
  Xres(1,N-1) = -0.125 *Xp(1,N-3) + 0.75 *Xp(1,N-2) + 0.375 *Xp(1,N-1);
  Xres(1,N) = 0.375 * Xp(1,N-3) - 1.25 * Xp(1,N-2) + 1.875 * Xp(1,N-1);
  % We take the real/imag separately:
  % Orig = imag(Xres);
  HT = Xres;
     end
\end{Istlisting}
\subsection*{Appendix A.2 - HNCX}
\begin{Istlisting}
     function [H, F] = hncX(fun, a, b, tol, n, cs, pts, wrn, inh)
  %% Description:
  % This algorithm is a simple implementation of the Hilbert transform
  % based on the Newton-Cotes quadrature
  % of an arbitrary degree with getting close, but just omitting the singularity
  % We do not like to use Newton-Cotes of much higher degree, instead we use the
  % complex quadrature of lower degree for many small steps
  %% INPUT:
```

```
% fun - real-valued function to transform (function-handle)
 % a - integration starting point
                                         (scalar)
       - integration ending point
 % b
                                         (scalar)
                                        (scalar) [optional, default: 10^(-5)]
 % tol - required tolerance
 % n - degree of Newton-Cotes quadrature (scalar) [optional, default: 8]
 % cs - how close to singularity
                                          (scalar) [optional, default: 0.01]
 % pts - #points to perform Hilbert transform (scalar) [optional, default: 200]
                                        (boolean) [optional, default: true]
 % wrn - warning on flag
 % inh - the external waitbar handle
                                            (handle) [optional, default: new waitbar]
 %% OUTPUT:
 % H - calculated Hilbert transform values
                                              (ordinates)
 % F - an array of points
                                       (abscissas)
 %% The algorithm:
 % Preparation of arguments
 if nargin < 3, error('QUADNCX:ParamErr', ...
   'Wrong number of parameter given: fun, a, b are mandatory'); end;
 if nargin < 4, tol = 10^{(-3)}; end;
 if nargin < 5, n = 8; end;
 if nargin < 6, cs = 0.1; end;
 if nargin < 7, pts = 200; end;
 if nargin < 8, wrn = true; end;
 if nargin < 9, h = waitbar(0, 'Please Wait'); closewb= true;
 else h = inh; closewb = false; end;
 % We would like to integrate within 5 times bigger region
 d = b - a:
 aMax = a - 2 * d; bMax = b + 2 * d; PTS = 5 * pts;
 F = linspace(a, b, PTS); X = linspace(a,b,pts);
 Hp = zeros(1, PTS);
 % The main hilbert transform loop
 for k=1:PTS
  waitbar(k/PTS, h);
  innerfun = @(x) fun(x) ./ (x - F(k));
  Hp(k) = quadncX(@(x) innerfun(x),
                                         aMax, F(k) - cs, tol, n, wrn) ...
      + quadncX(@(x) innerfun(x), F(k) + cs,
                                                bMax, tol, n, wrn);
 end
 % finally we are closing the waitbar
 if(true==closewb), close(h); end;
 Hp = Hp./pi; H = interp1(F, Hp, X, 'pchip');
function res = quadncX(fun, a, b, tol, n, wrn)
 %% Description:
 % Newton-Cotes quadrature of an arbitrary degree
 %% More info:
 % While this method does not shows very good accuraccy, a set of
 % arbitrary set parameters has been prepared, but they may be changed
 % in case of different quadratures.
 %% INPUT:
 % fun - real-valued function to integrate
                                             (function-handle)
 % a - integration starting point
                                         (scalar)
```

```
% b
        - integration ending point
                                          (scalar)
 % tol - required tolerance
                                        (scalar) [optional, default: 10^(-5)]
 % n - degree of the Newton-Cotes quadrature (scalar) [optional, default: 8]
 % wrn - warning on flag
                                        (boolean) [optional, default: true]
 %% OUTPUT:
 % res - an quadrature result point
                                            (scalar)
 nosteps = 100; maxNoSteps = 256*32;
 iterates = 1; maxIterate = 256;
 M = 1.1;
 tab = prevaluateNCTab(n, a, b);
 while (iterates < maxIterate);
  nStep = ceil(nosteps * M);
  step1 = doStep(fun, a, b, nosteps, tab);
  step2 = doStep(fun, a, b, nStep, tab);
  res = (4*step2-step1)/3;
  err = abs((step1-res)/max(abs([step1, res, tol])));
  if (err<tol), break;
  else nosteps = nStep; M = M*1.3; end;
  if (nosteps >=maxNoSteps), break; end;
  iterates = iterates + 1;
 end
 if (wrn == true)
  if (iterates >= maxIterate), warning('QUADNCX:MaxIterReached', ...
   'maximum number of iterations reached - the integral seems to be singular');
  elseif (nosteps >=maxNoSteps), warning('QUADNCX:MaNoSteps', ...
   'maximum number of steps reached - the integral seems to be singular');
  end;
 end
end
function tab = prevaluateNCTab(n, a, b)
 %% Description:
 % A routine to pre-evalute the Newton-Cotes coefficients
 %% More info:
 % The table of NC coefficient is calculated using Maple syntax:
 % Digits:=100;n:=(n);evalf(seq(1/n^*(-1)^n(n-k)^*1/(factorial(k)))
               * factorial(n-k))*int(product(t-j,
 %
               j = 0..n/(t-k), t=0..n), k=0..n));
 %% INPUT:
 % n - degree of the Newton-Cotes quadrature (scalar)
       - integration starting point
                                         (scalar)
 % b
       - integration ending point
                                          (scalar)
 %% OUTPUT:
 % tab - Newton-Cotes coefficients
                                             (vector)
 %% The algorithm:
 maplestr = [
  'Digits:=40:n:=' num2str(n) ':tab:=evalf(seq(((' num2str(b) ')' ...
```

```
'-('num2str(a)'))' ...
      '/ n*(-1)^(n-k)*1/(factorial(k)*factorial(n-k))' ...
      '* int(product(t-jj,jj=0..n)/(t-k),t=0..n),k=0..n));'];
  maple string:
  tab = str2num(maple(maplestr))'; %#ok<ST2NM>
 end
 function res = doStep(fun, a, b, nosteps, tab)
  %% Description:
  % Simple numerical quadrature for given coefficients' table is performed
  %% INPUT:
  % fun - the real-valued function we will like to integrate (function-handle)
  % a
          - integration starting point
                                                    (scalar)
  % b
          - integration ending point
                                                     (scalar)
  % nosteps - number of points to divine the integration range (scalar)
  % tab - vector of Newton-Cotes coefficits
                                                          (vector)
  %% OUTPUT:
  % res - calculated quadrature value
                                                        (scalar)
  %% The algorithm:
  nc = size(tab, 1);
  intervals = linspace(a, b, nosteps);
  % Quadrature is divided into small steps:
  M = zeros(nc, nosteps-1);
  M(1, :) = intervals(1:nosteps-1);
  M(nc, :) = intervals(2:nosteps);
  h = (M(nc, :) - M(1, :)) ./ nc;
  % Final calculation in two lines using the matrix multiplication:
  for k=2:(nc-1), M(k, :) = M(1, :) + (k-1) .* h; end;
  res = sum(fun(M') * tab) / nosteps;
 end
\end{Istlisting}
\subsection*{Appendix A.3 - HTRANCC}
\begin{lstlisting}
 function H = htrancc(fun, Xinterval, tol, inh)
  %% Description:
  % Hilbert transform based on the Clenshaw-Curtis quadrature modified
  % to work on infinite integral which is used in the Hilbert transform formula
  %% Based on:
  % [1] T. Hasegawa and T. Torii. An automatic quadrature for Cauchy principal value integrals.
  % Mathematics of Computation, 56:741-754, April 1991.
  %% INPUT:
  % fun

    an function handle

                                              (function-handle)
  % Xinterval - interval of abscissas to operate with (abscissas)
  % tol

    deserved tolerance

                                             (scalar)
  % inh
            - inner waitbar
                                           (waitbar-handle)
  %% OUTPUT:
  % H - the Hilbert transform on the desired interval (ordinates)
  %% The algorithm:
```

```
% We set the default tolerance if not given:
  if nargin<3, tol=10^{(-3)}; end;
  if nargin<4, h = waitbar(0, 'Please wait', 'Name', 'Hilbert Transform with Clenshaw-Curtis'); else h =
inh; end;
  a = min(Xinterval); b = max(Xinterval);
  NX = length(Xinterval); T = abs(b - a);
  A = a - 2 * T; B = b + 2 * T;
  Hh = zeros(1, NX); X = linspace(a, b, NX);
  % Cubic interpolation rutine (N->N-1 points):
  Xp(1)
            = 0.375*X(1)
                               + 0.75*X(2)
                                                    - 0.125*X(3);
  Xp(1, NX-1) = -0.125*X(1, NX-2) + 0.75*X(1, NX-1) + 0.375*X(1, NX);
  Xp(1, 2:NX-2) = -0.0625*X(1, 1:(NX-3)) + 0.5625*X(1, 2:(NX-2)) + 0.5625*X(1, 3:(NX-1)) -
0.0625*X(1, 4:NX);
  % Precalculation of ccFun
  Period = B - A;
  Center = (B + A) / 2;
  ccFun = @(t) (fun(t .* Period ./2 + Center));
  % Preparation of constant values
  AKN = precalculateAKN(ccFun);
                                       %see eq. (1.7) from [1]
  DCK = precalculateDCK(AKN, Xp, A, B); %see eq. (1.11) from [1]
  % Main application loop with the waitbar:
  for n = 1:1:NX-1
    dck = squeeze(DCK(n, :, :));
     Hh(n) = hcc(ccFun, Xp(n), tol, A, B, dck);
    waitbar(n/(NX-1), h, 'Please wait');
  end;
  if nargin<4, close(h); end;
  % Reverse cubic interpolation rutine (N-1->N points):
  H = zeros(1,NX);
                               - 1.25 *Hh(2)
                                                 + 0.375 *Hh(3);
  H(1) = 1.875 *Hh(1)
  H(1,2) = 0.375 *Hh(1)
                              + 0.75 *Hh(2)
                                                 - 0.125 *Hh(3);
  H(1,3:NX-2) = -0.0625*Hh(1,1:NX-4) + 0.5625*Hh(1,2:NX-3) + 0.5625*Hh(1,3:NX-2) -
0.0625*Hh(1,4:NX-1);
  H(1,NX-1) = -0.125 *Hh(1,NX-3) + 0.75 *Hh(1,NX-2) + 0.375 *Hh(1,NX-1);
  H(1,NX) = 0.375 *Hh(1,NX-3) - 1.25 *Hh(1,NX-2) + 1.875 *Hh(1,NX-1);
  end
 function h = hcc(ccFun, c, tol, a, b, dck)
  %% Hilbert transform using the Clenshaw-Curtis quadrature
  %% INPUT:
  % ccFun - an function handle
                                             (function-handle)
  % c - abscissa to operate with
                                            (scalar)
  % tol - deserved tolerance
                                           (scalar)
  % a - investigated range minimum
                                               (scalar)
  % b - investigated range minimum
                                               (scalar)
  % dck - precalculated 2d matrix of DCK(n) params (2d matrix)
  %% OUTPUT:
```

```
% h - the Hilbert transform in the desired point (scalar)
 % We will split the indefinite integral into three main parts:
 % hcc = int(ccFun(x)/(x-c), x = -inf..a) ...
 % + int(ccFun(x)/(x-c), x = a..b) ...
      + int(ccFun(x)/(x-c), x = b..inf)
 % Due to small values ouf of the [a,b] range, we will skip left and
 % right summand.
 % Central integral
 h = hccside2side(ccFun, c, tol, a, b, dck);
 % Left integral - for now we assume 0
 leftIntVal = 0;
 % Right integral - for now we assume 0
 rightIntVal = 0;
 % Final summation
 h = leftIntVal + h + rightIntVal;
function h = hccside2side(ccFun, c, tol, a, b, dck)
 %% Description:
 % Hilbert transform using the Clenshaw-Curtis quadrature for a
 % definite interval
 %% INPUT:
 % ccFun - an function_handle
                                             (function-handle)
 % c - abscissa to operate with
                                            (scalar)
 % tol - deserved tolerance
                                           (scalar)
 % a - investigated range minimum
                                               (scalar)
      - investigated range minimum
                                               (scalar)
 % dck - precalculated 2d matrix of DCK(n) params (2d matrix)
 %% OUTPUT:
 % h - the Hilbert transform in the desired point (scalar)
 % calculation of cx (based on a, b and c)
 Period = b - a;
 Center = (b + a) / 2;
 cx = (c - Center) .* 2 ./ Period;
 % main calculation
 h = 1 / pi * newdocc(@(t) ccFun(t), cx, tol, dck);
end
function val = newdocc(ccFun, cx, tol, dck)
 %% Description:
 % Clenshaw-Curtis quadrature to calculate cauchy-principal value
 % integral of the form int(ccFun(t)/(t-cx),-1,1);
 %% INPUT:
 % ccFun - input function, scaled to [-1, 1] (function-handle)
 % cx - point within the denominator
                                          (scalar)
 % dck - precalculated mx of cc params (2d matrix)
```

```
% tol - required tolerance
                                       (scalar) [default: 10^(-3)]
  %% OUTPUT:
  % val - integral value (scalar)
  %% The algorithm:
  if nargin < 4, tol = 10^{(-3)}; end;
  if (abs(cx) >= 1), error('newdocc:argChk', ['Second argument must be from range (-1,1), but given: ',
num2str(cx)]); end;
  N = 8;
  lastVal = dosinglecc(ccFun, cx, N/2, dck);
  maxIter = getHtranccMaxIter;
  while (N < 2 ^ maxIter)
     val = dosinglecc(ccFun, cx, N, dck);
     N = N .* 2;
     if( abs((val - lastVal) / max(abs([tol, val, lastVal]))) < tol), break; end;
     lastVal = val;
  end
 end
 function val = dosinglecc(ccFun, cx, N, dck)
  I = log2(N);
                                     % current iteration count, see eq. (1.12) from [1]
  d = squeeze(dck(1:N, I))';
                                           % get d_k coefficients, see eq. (1.11) from [1]
  ks = 0:1:N/2-1;
  kd = 1 ./ (1 - 4 .* ks .^2);
                                        % denominator in summand value
  ds = d(2 .* ks + 1) .* kd;
                                         % calculation of d coefficients
  sum1 = sum([0.5, ones(1,N/2-1)].* ds);
                                                % sumation
  val = 2 * sum1 + ccFun(cx) * log((1-cx)/(1+cx)); % general computation, see eq. (1.10) from [1]
 end
 function AKN = precalculateAKN(ccFun) % modification of (2.1) equation from [1] to 2d matrix style
  %% Description:
  % Precalculation of AKN params as described in eq. (2.1) from [1]
  %% INPUT:
  % ccFun - an function_handle (function-handle)
  %% OUTPUT:
  % AKN - desired matrix
                               (2d matrix)
  % prealocation of memory
  maxIter = getHtranccMaxIter;
  AKN = zeros(2 ^ maxIter + 1, maxIter);
  % main loop
  for n=1:maxIter
   N = 2 ^n;
   akn = precalculateAN(ccFun, N);
   AKN(1:N+1, n) = akn';
  end;
 end
```

```
to 3d matrix style
  %% Description:
  % Precalculation of DCK params as described in eq. (1.11) from [1]
  %% INPUT:
  % AKN - 2d matrix of AKN coefficients
                                                (2d matrix) [see 1.7 equation from [1]]
  % Xp - investigated vector of abcissas
                                                (1d vector)
  % a - investigated range minimum
                                                (scalar)
        - investigated range minimum
  % b
                                                (scalar)
  %% OUTPUT:
  % DCK - desired matrix
                                           (3d matrix)
  % prealocation of memory
  maxIter = getHtranccMaxIter;
  DCK = zeros(length(Xp), 2 ^ maxlter + 2, maxlter);
  Period = b - a;
  Center = (b + a) / 2;
  Cp = ((Xp - Center) .* 2 ./ Period)';
  % main loop
  for n=1:maxIter
   N = 2 ^n;
   a = AKN(1:N+1, n)';
   dck = precalculateDCKN(a, Cp, N);
   DCK(1:length(Cp), 1:N+2, n) = dck;
  end:
 end
 function a = precalculateAN(ccFun, N) % modification of (2.1) equation from [1] to vector-style
  %% Description:
  % Precalculation of AKN params as described in eq. (2.1) from [1]
  %% INPUT:
  % ccFun - an function_handle
                                     (function-handle)
  % N - abscissa to operate with (scalar)
  %% OUTPUT:
  % a - desired vector
                                (1d vector)
  jN = 0:1:N;
                                                 % N+1 points for the last point
  jN1 = 0:1:N-1;
                                                  % N points (the last point will be calculated
separately)
  args = cos(pi .* jN1 ./ N);
                                                     % precalculation of arguments
  vals = [0.5, ones(1, N-1), zeros(1,N)] .* [ccFun(args), zeros(1,N)]; % double prime - first&last
element is halved and N additional zeros are added
  ap = 2 / N .* real(fft(vals));
                                                    % DCT-I done with fft
                                                        % FFT has not calculated the last summand
  al = 1 / N .* ccFun(-1) .* cos(pi .* jN);
  a = ap(1:N) + al(1:N);
                                                    % first N values are calculated
  % Last a value:
  argsN = cos(pi .* jN ./ N);
                                                     % N + 1 range of arguments
  valsN = [0.5, ones(1, N-1), 0.5] .* ccFun(argsN) .* cos(pi .* jN); % N + 1 summands
  a(N+1) = 2 / N .* sum(valsN);
                                                        % N + 1 th value
 end
```

function d = precalculateDCKN(a, Cp, N) % modification of (1.11) recursive equation from [1] to

```
vector-style
  %% Description:
  % Precalculation of DCK params as described in eq. (1.11) from [1]
  %% INPUT:
  % a - vector taken from AKN matrix
                                              (1d vector)
  % Cp - abscissas vector scaled to [-1, 1]
                                              (1d vector)
  % N - number of approximation points
                                               (scalar)
  %% OUTPUT:
  % d - desired matrix
                                       (2d matrix)
  I = length(Cp);
                                                % vector length
  d = zeros(I, N+2);
                                                 % matrix memory prelocation
  d(:, N+2) = 0; d(:, N+1) = 0;
                                                    % last and prelast value zeroes
                                                 % first one is simple
  d(:, N) = a(N+1);
  for n = N-1:-1:1
   d(:, n) = 2 * a(n+1) + 2 * Cp .* d(:, n+1) - d(:, n+2);
                                                          % recursive equation solving
 end
\end{Istlisting}
\subsection*{Appendix A.4 - HFTHILBERT}
\begin{Istlisting}
 function HY = frthilbert(Y)
  %% Description:
  % This is a standard and efficient algorithm ferforming the discrete
  % Hilbert transform based on two discrete Hartley transforms in O(n log
  % n) with zero padding
  %% INPUT:
  % Y - an discrete array of values (ordinates)
  %% OUTPUT:
  % HY - an array of Hilbert Transform values * (ordinates)
  %% Based on:
  % 1. Soo-Chang Pei and Sy-Been Jaw - "Computation of Discrete Hilbert
  % Transform through Fast Hartley Transform"
  % 2. http://en.wikipedia.org/wiki/Discrete_Hartley_transform
  %% The algorithm:
  % We perform the zero padding to the next power-of-two length
  N = max(size(Y));
  M = 2 \cdot ceil(log2(N));
  Y = [Y,zeros(1,M-N)];
  % Discrete Hartley transform boosted-up to O(n log n)
  HF = frt(Y);
  % Defining the HH vector
  O1 = ones(1,floor(M/2)-1);O2 = -ones(1,ceil(M/2)-1);HH = [0, O1, 0, O2];
  % Defining the time reversal of HF
  TRHF = HF([1, M:-1:2]);
  % Based on the convolution theorem we get the Hartley-Hilbert transform
```

```
% of X, so in the last step we need to perform the inverse Hartley
 % transform
 IHX = TRHF .* HH;
 % Inverse Hartley transform boosted-up to O(n log n)
 HY = -1/M .* frt(IHX);
 % The final output vector
 HY = HY(1:N);
end
function res = frt(X)
 %% Description:
 % Fast Hartley Transform algorithm. This algorithm is faster than simple
 % FFT because it works only in real domain, which involves half the
 % number of multiplications
 %% INPUT:
 % X - an discrete array of values (ordinates)
 %% OUTPUT:
 % HY - an array of Discrete Hartley Transform values * (ordinates)
 %% Based on:
 % 1. Ronald F. Ullman - "An algorithm for the Fast Hartley Transform"
 % 2. Krzysztof Lorys - polish notes to the lecture of "Algorithms and
 % Data Structures" held in the Institute of Computer Science,
 % University of Wroclaw
 %% The algorithm:
 N = length(X);
 % We precalculate the CAS table for vectors of length less or equal 8:
 CAS = cell(8);
 CAS\{1\} = cas(0);
 for k=2:8, CAS\{k\} = cas(2*pi*((0:(k-1)))*(0:(k-1)))/k); end
 % Now we are sure, that X vector is of size M which is a power value of 2.
 DHT = dofrt(X,N,CAS);
 % The final vector must be truncated because it was arbitrary enlarged
 % to be with length of power of two
 res = DHT(1:N);
end
function HY = dofrt(X, N, CAS)
 %% Recursive, divide & conquer radix-2 Fast Hartley Transform
 %% INPUT:
 % X - an discrete array of values (ordinates)
 % D - the length of X vector
 % CAS - the precalculated cell of 1:8-8 matrix for performing the instant FRT
 %% OUTPUT:
 % HY - an array of Discrete Hartley Transform values * (ordinates)
 % Fast Hartley Trasform for N lower than 8
 if N<=8,
```

```
HY=X * CAS{N}; % Instant FRT for 8-element array
   return:
  end:
  % We split the input vector into two equal vectors
  X1 = X(1:2:end); X2 = X(2:2:end);
  % In MATLAB first index equals 1, not 0 -
  % but in literature X1 is called even, X2 - odd indices.
  % Divide & conquer approach
  HT1 = dofrt(X1,N/2,CAS); %FRT of even
  HT2 = dofrt(X2,N/2,CAS); %FRT of odd
  % We precalculate the lower and upper part of the output array
  low = 1:1:N/2;
  revlow = [1, N/2:-1:2];
  arg = (2*pi/N) .* (low-1);
  CS = cos(arg) .* HT2(low) + sin(arg) .* HT2(revlow);
       = HT1(low);
  % The lower and upper part of DHT is combined with the following
  % radix-2 way
  HY = [H + CS, H - CS];
 function res = cas(X), res = cos(X) + sin(X); end
\end{Istlisting}
\subsection*{Appendix A.5 - HERHTRANS}
\begin{Istlisting}
 function [YH, YFun] = herhtrans(fun, X, tol, maxN)
  %% Description:
  % This is a Hilbert transform function based on the orthonormal Hermite polynomials
  % and Hermite functions. They have been previously precalculated with
  % MATLAB-Maple toolbox
  %% INPUT:
  % fun - an discrete array of values (function handle)
  % X (abscissas)
  % tol (scalar)
  % maxN (scalar)
  %% OUTPUT:
  % YH - an array of Hilbert Transform values (ordinates)
  % YFun - calculated fun(X) approximation
  %% Based on:
  % 1. M. Johansson - "The Hilbert transform"
  % 2. http://en.wikipedia.org/wiki/Hermite_polynomial
  % 3. http://en.wikipedia.org/wiki/Hilbert transform
  %% The algorithm:
  if nargin < 3, tol = 10 ^{(-4)}; end;
  if nargin < 4, maxN = 18; end;
  % We set the initial multipliers count on 4, but it shall/may rise
  MaxN = min(maxN, 27); InitN = 4; N = InitN;
  sum = 0; val = 0;
```

```
% Main loop
 i = 1; AN = zeros(1, N);
 Fval = fun(X);
 while (i \le N)
  n = i - 1; % Select proper Hermite function
  AN(i) = getAN(fun, n, tol);
  HphiVal = hphin(X, n);
  phiVal = phin(X, n);
  sum = sum + AN(i) .* HphiVal;
  val = val + AN(i) .* phiVal;
  % If the current multiplier is not negligable - we need to search further
  err = max(abs((val - Fval)/max(abs([val, Fval, tol]))));
  if ((i > (N - 2)) \&\& (err >= tol) \&\& (N < MaxN)), N = N+1; end;
  i = i + 1;
 end
 YH = -real(sum);
 YFun = val;
end
function an = getAN(fun, n, tol)
 pFun = phiFun(n);
 funphi = @(t) (fun(t)) .* pFun(t);
 % We change the integration range from -inf .. inf to -1 .. 1
 ccFun = @(t) ((abs(t)<1) .* funphi(-t ./ (t .^ 2-1)) ...
         .* (1 + t .^2) ./ (-1 + t .^2) .^2);
 % Main numerical integration
 N = 128;
 prev = docc(ccFun, N/2);
 while (N < 1024*1024)
  an = docc(ccFun, N);
  if (abs(an-prev)<tol), ...
     break;
  else N = 2 * N;
  end;
  prev = an;
 end
end
%% phin, hphin, phiFun, hPhiFun - cached/precalculated function procedures
function PHI = phin(X, n)
 % We would not get further than through 30th Hermite function:
 if n>30, error('Do you realy mean such large n coefficient? '); end
 % We are precomputing the most reduntant element
 EXPX = exp(-1./2.*X.^2); EXPX(isnan(EXPX))=0; EXPX(isinf(EXPX))=0;
 % Array of precomputed Hermite functions
 phi = cell(1, 2);
 phi\{1\} = @(t)EXPX./pi.^{(1./4)};
 phi{2} = @(t)EXPX.*t./pi.^{(1./4).*2.^{(1./2)}};
 % [...] phi{3}-phi{31} ommitted
```

% We are selecting the current n Hermite function (with indexing shifted by one):

```
funChoosen = phi{n+1};
 % Main calculation - may be very long:
 PHI = funChoosen(X); PHI(isnan(PHI))=0; PHI(isinf(PHI))=0;
end
function HPHI = hphin(X, n)
 if n>26, error('Do you realy mean such large n coefficient? '); end
    % We are precomputing the most reduntant element
 EXPX = \exp(-1./2.*X.^2).*erfz(1./2.*1i.*X.*2.^(1./2));
 EXPX(isnan(EXPX))=0; EXPX(isinf(EXPX))=0;
 % Cell Array of precomputed functions
 hphin = cell(1, 21);
 hphin\{1\} = @(t) -1i./pi.^(1./4).*EXPX;
 hphin{2} = @(t) -1./pi.^{(3./4).*}(2+t.*pi.^{(1./2).*2.^{(1./2).*EXPX.*1i)};
 % [...] hphin{3}-hphin{27} ommitted
 % We are concatenating a large values;
 funChoosen = hphin{n+1};
 % main calculation - may be very long;
 HPHI = funChoosen(X); HPHI(isnan(HPHI))=0; HPHI(isinf(HPHI))=0;
 % figure, plot(X, real(HPHI)), title(['HPHI: 'num2str(n)]);
end
function fun = phiFun(n)
 % We would not get further than through 30th Hermite function:
 if n>30, error('Do you realy mean such large n coefficient? '); end
 % We exclue the important integrand
 EXPX = @(t)exp(-1./2.*t.^2);
 % Array of precomputed Hermite functions
 phi = cell(1, 2);
 phi{1} = @(t)EXPX(t)./pi.^{(1./4)};
 phi{2} = @(t)EXPX(t).*t./pi.^(1./4).*2.^(1./2);
 % [...] phi{3}-phi{31} ommitted
 fun = phi\{n+1\};
end
function fun = hPhiFun(n)
 if n>26, error('Do you realy mean such large n coefficient?'); end
    % We are precomputing the most reduntant element
 EXPX = @(t) \exp(-1./2.*t.^2).*erfz(1./2.*1i.*t.*2.^(1./2));
 % Cell Array of precomputed functions
 hphin = cell(1, 21);
 hphin{1} = @(t) -1i./pi.^{(1./4).*EXPX(t)};
 hphin{2} = @(t) -1./pi.^{(3./4).*}(2+t.*pi.^{(1./2).*}2.^{(1./2).*}EXPX(t).*1i);
```

```
% [...] hphin{3}-hphin{27} ommitted
 % Finally, we select the proper function
 fun = hphin\{n+1\};
end
function f = erfz(zz)
 %ERFZ Error function for complex inputs
 % f = erfz(z) is the error function for the elements of z.
 % Z may be complex and of any size.
 % Accuracy is better than 12 significant digits.
 %
 % Usage: f = erfz(z)
 %
 % Ref: Abramowitz & Stegun section 7.1
 % equations 7.1.9, 7.1.23, and 7.1.29
 %
 % Tested under version 5.3.1
 %
 % See also erf, erfc, erfcx, erfinc, erfcore
 % Main author Paul Godfrey <pgodfrey@intersil.com>
 % Small changes by Peter J. Acklam < jacklam@math.uio.no>
 % 09-26-01
 error(nargchk(1, 1, nargin));
 % quick exit for empty input
 if isempty(zz)
  f = zz;
  return;
 end
 sqrtpi=1.77245385090551602729816748334114518279754945612238;
 f = zeros(size(zz));
 ff=f;
 az=abs(zz);
 p1=find(az <= 8);
 p2=find(az>8);
 if ~isempty(p1)
  z=zz(p1);
  nn = 32;
  x=real(z);y=imag(z);
  k1=2/pi*exp(-x.*x);
  k2=exp(-1i*2*x.*y);
  s1=erf(x);
  s2=zeros(size(x));
  k=(x\sim=0);
                  % when x is non-zero
  s2(k) = k1(k)./(4*x(k)).*(1 - k2(k));
                % when x is zero
  k = \sim k;
```

```
s2(k) = 1i/pi*y(k);
  f = s1 + s2:
  k = y \sim = 0;
                   % when y is non-zero
  xk = x(k);
  yk = y(k);
  s5 = 0;
  for n = 1 : nn
   s3 = \exp(-n^*n/4) ./ (n^*n + 4^*xk.^*xk);
   s4 = 2*xk - k2(k).*(2*xk.*cosh(n*yk) - 1i*n*sinh(n*yk));
   s5 = s5 + s3.*s4;
  end
  s6 = k1(k) .* s5;
  f(k) = f(k) + s6;
  ff(p1)=f;
 end
 if ~isempty(p2)
  z=zz(p2);
  pn=find(real(z)<0);
  if ~isempty(pn), z(pn)=-z(pn); end
  nmax=193;
  s=1;
  y=2*z.*z;
  for n=nmax:-2:1, s=1-n.*(s./y); end
  f=1.0-s.*exp(-z.*z)./(sqrtpi*z);
  if ~isempty(pn), f(pn)=-f(pn); end
  pa=find(real(z)==0);
  % fix along i axis problem
  if ~isempty(pa), f(pa)=f(pa)-1; end
  ff(p2)=f;
 end
 f=ff;
end
function val = docc(fun, N, a, b)
 %% Description:
 % This is one point algorithm and should be used in algorithms that
 % need to determine the full vector values
 % Look precisely:
 % abcde -> abcdedcb ( there is no second 'a' )
 %% INPUT:
 % fun - an function handle
 % N - number of points to operate with tolerance (scalar) [optional, default:256]
 % a - the lower integration bound (scalar) [optional, default: -1]
 % b - the upper integration bound (scalar) [optional, default: 1]
 %% OUTPUT:
 % val - value of integral
 %% Based on:
 % 1. http://fourier.eng.hmc.edu/e161/lectures/dct/node2.html
 % (unfortunatelly this is DCT-II, so another type)
```

```
% 2. http://en.wikipedia.org/wiki/Clenshaw-Curtis quadrature
  % The very important quote:
  % "For example, a DCT-I of N=5 real numbers abcde is exactly equivalent
  % to a DFT of eight real numbers abcdedcb (even symmetry), divided by
  % two."
  %% The algorithm:
  if nargin<4, b = 1; end;
  if nargin<3, a = -1; end;
  if nargin<2, N = 256; end;
  % Mapping [a, b] into [-1, 1]
  C = (b+a)/2;
  T = (b-a)/2;
  % A new function to be integrated from -1 to 1
  newfun = @(x) fun((x \cdot T) + C);
  % Getting the value with standard -1,1 Clenshaw Curtis integration routine
  val = onetoonecc(newfun,N);
 end
 function val = onetoonecc(fun, N)
  %% CC integration from -1 to 1:
  % We make this division once, for faster computation
  N2 = N/2;
  % Array of N/2+1 points (where N2 = N/2)
  ps = 0:1:N2;
  % N2+1 abscissaas from the 0..pi range
  xn = cos(ps.*pi./N);
  % N2+1 ordinates for fun(cos(n*pi/N))
  yn = fun(xn) + fun(-xn);
  % We shall set all NaNs and Infs to zero
  yn(isnan(yn) | (isfinite(yn)==0)) = 0;
  % Look at quote in the base description about the connection
  % of DCT-I and DFT/FFT
  g = real(fft(yn(1+[0:N2 (N2-1):-1:1])))./2;
  % We take symmetrical values and add them together
  % (ommiting first and last)
  cn = [g(1), g(2:N2)+g(N:-1:N2+2), g(N2+1)];
  % This is the final vector for multiplying
  dn = [2, 2./(1-(2.*(1:1:(N2-1))).^2), 2./(1-N^2)];
  % Final cc integral calculation
  val = (dn * cn')/N;
 end
\end{Istlisting}
\subsection*{Appendix A.6 - FOURHTRANS}
```

```
\beain{Istlistina}
 function [HY, Y] = fourhtrans(fun, X, m, doccN, inh)
  %% Description:
  % This is a hilbert transform function based on the Fouries series
  % approximation of the given function.
  %% INPUT:
  % fun - an discrete array of values
                                         (function handle)
  % X - interval to perform Hilbert transform (abscissas)
  % m - order of Fourier series expantions (scalar) [optional, default:30]
  % doccN - number of points for CC integral (scalar) [optional, default:1024]
  % inh - the output waitbar
                                       (handle) [optional, new created]
  %% OUTPUT:
  % HY - an array of Hilbert Transform values (ordinates)
  % Y - an array of fun(X) approximation (ordinates)
  %% Based on:
  % 1. M. Johansson - "The Hilbert transform"
  % 2. http://en.wikipedia.org/wiki/Fourier_series
  % 3. http://en.wikipedia.org/wiki/Hilbert_transform
  %% The algorithm:
  if nargin<3,m=1024; end;
  if nargin<4,doccN=4096; end;
  if nargin<5,h=waitbar(0,'Calculations - Please wait...','Name', ...
     'Hilbert transform based on the Fouries series'); closewb = true;
  else h = inh; closewb = false; end;
  % First we calculate the X boundaries
  a = min(X):
  b = max(X);
  n = length(X);
  % Then we enlarge 5 times the investigated interval:
  down = a-(b-a)*2;
  up = b+(b-a)*2;
  XX = linspace(down, up, 5*n);
  % We measure the important values
  T = (up-down);
                     % period
                  % halfperiod
  L = T/2;
  % Calculation of the first component
  Yp = 1/2 .* docc(fun, doccN, down, up);
  HYp = 0;
  % Main loop:
  for k=1:1:m
   an = docc(@(x) fun(x) .* cos(k*pi/L .* x), doccN, down, up);
   bn = docc(@(x) fun(x) .* sin(k*pi/L .* x), doccN, down, up);
   cs = cos(k*pi/L .* XX);
   sn = sin(k*pi/L .* XX);
   % Function approximation (on the NX interval)
   Yp = Yp + an .* cs + bn .* sn;
   % Hilbert transform approximation (on the NX interval)
```

```
HYp = HYp + bn .* cs + an .* sn;
  waitbar(k/m,h);
 end:
 if (true==closewb), close(h); end;
 % Finally, we extract the [a, b] part from the [up, down] interval
 INN = (2*n+1):1:3*n;
 Y = Yp(INN);
 HY = HYp(INN);
end
function val = docc(fun, N, a, b)
 %% Description:
 % This is one point algorithm and should be used in algorithms that
 % need to determine the full vector values
 % Look precisely:
 % abcde -> abcdedcb (there is no second 'a')
 %% INPUT:
 % fun - an function_handle
 % N - number of points to operate with tolerance (scalar) [optional, default:256]
 % a - the lower integration bound (scalar) [optional, default: -1]
 % b - the upper integration bound (scalar) [optional, default: 1]
 %% OUTPUT:
 % val - value of integral
 %% Based on:
 % 1. http://fourier.eng.hmc.edu/e161/lectures/dct/node2.html
 % (unfortunatelly this is DCT-II, so another type)
 % 2. http://en.wikipedia.org/wiki/Clenshaw-Curtis_quadrature
 % The very important quote:
 % "For example, a DCT-I of N=5 real numbers abcde is exactly equivalent
 % to a DFT of eight real numbers abcdedcb (even symmetry), divided by
 % two."
 %% The algorithm:
 if nargin<4, b = 1; end;
 if nargin<3, a = -1; end;
 if nargin<2, N = 256; end;
 % Mapping [a, b] into [-1, 1]
 C = (b+a)/2;
 T = (b-a)/2;
 % A new function to be integrated from -1 to 1
 newfun = @(x) fun((x \cdot T) + C);
 % Getting the value with standard -1,1 Clenshaw Curtis integration routine
 val = onetoonecc(newfun,N);
end
function val = onetoonecc(fun, N)
 %% CC integration from -1 to 1:
 % We make this division once, for faster computation
 N2 = N/2;
```

```
% Array of N/2+1 points (where N2 = N/2)
  ps = 0:1:N2:
  % N2+1 abscissaas from the 0..pi range
  xn = cos(ps.*pi./N);
  % N2+1 ordinates for fun(cos(n*pi/N))
  yn = fun(xn) + fun(-xn);
  % We shall set all NaNs and Infs to zero
  yn(isnan(yn) | (isfinite(yn)==0)) = 0;
  % Look at quote in the base description about the connection of DCT-I and DFT/FFT
  g = real(fft(yn(1+[0:N2 (N2-1):-1:1])))./2;
  % We take symmetrical values and add them together (ommiting first and last)
  cn = [g(1), g(2:N2)+g(N:-1:N2+2), g(N2+1)];
  % This is the final vector for multiplying
  dn = [2, 2./(1-(2.*(1:1:(N2-1))).^2), 2./(1-N^2)];
  % Final cc integral calculation
  val = (dn * cn')/N;
 end
\end{Istlisting}
\section*{Appendix B - ZScan Measurements} \label{chap:zscan}
\subsection*{Appendix B.1 - Overview of the z-scan technique} \label{chap:zscan overview}
```

One of the most important questions being the major motivation of this thesis is how the theory of Hilbert transform or the Kramers-Kronig relations can be applied to the data measured with the standard "open aperture" and "closed aperture" z-scan technique. In this chapter we will describe the process of data collection and its translation into the nonlinear absorption coefficient spectra and nonlinear refraction index spectra. As mentioned before, since summer 2010 we have set up the femto-second ($$1$ fs = 10^{-15} s) z$ -scan system using a Quantronix Integra regenerative amplifier operating at 1 kHz and providing approximately 1 mJ, 100 fs, 800 nanometer ($$1$ nm = 10^{-9} m)$ pulses. It is used as a pump to the Palitra optical parametric amplifier, which, using several different frequency mixing schemes, can provide the coverage of the 450 - 2000 nm wavelength range. The best way to describe this set up will be to use Figure (\ref{fig:zscan_sch}) and Figure (\ref{fig:zscan_diag}).

```
\begin{figure}
\includegraphics{img/zscan_sch.png}
\caption{ The schematic diagram of the main measurement part of the z-scan experiment
\label{fig:zscan_sch}}
\end{figure}
\begin{figure}
\includegraphics{img/zscan_diag.png}
\caption{The photographic diagram of the main measurement part of the z-scan experiment
\label{fig:zscan_diag}}
\end{figure}
\subsubsection*{Legend for Figures (\ref{fig:zscan_sch}) and (\ref{fig:zscan_diag})}}
```

Overview of the main measurement part of the z-scan set-up built at the WrocÅaw University of Technology and being used since summer 2010.

```
\begin{enumerate}[(a)]
\item FOCUSING LENS - A laser beam goes through focusing a lens.
\item SAMPLE IN A CUVETTE - Investigate sample is put into a silica cuvette.
\item DYNAMIC (MOBILE) STAGE - During experiment the sample changes its relative position from the lens
\item DETECTOR 1 - Finally the beam reaches the ``open-aperture" detector
\item DEFOCUSING LENS - ``Open-aperture" defocusing lens before detector
\item BEAM SPLITTER - Laser beam is split to pass both through "open-aperture" and "closed aperture" with a beam splitter
\item APERTURE - This is the aperture before the ``closed-aperture" detector
\item DETECTOR 2 - Finally the beam reaches the ``closed-aperture" detector
\end{enumerate}
```

The inventor of the z-scan technique was the Professor Mansoor Sheik-Bahae in 1989 \cite{bahae_sensitive} and since then many variants of this technique have been deployed ``EZ-Scan", ``White Light z-scan", ``Excite-Probe z-scan" \cite{newport_application}. In a short description - the z-scan technique uses a single laser beam, a mobile stage and two detectors - for the open and closed aperture. Using physical model - we can relate the open-aperture results with the nonlinear absorption and the closed-aperture with the nonlinear refraction index. The mobile stage moves the sample through the position focal point of the focusing lens. We therefore obtain two diagrams - shown on (\ref{fig:zscan sch}) and (\ref{fig:zscan diag}).

```
\begin{figure}
 \includegraphics{img/oa plot.png}
 \caption{A typical open-aperture transmittance $\Delta \,\mathrm{T}(Z)$ plot in a z-scan experiment,
where \\
 $Z$ - the position of the stage/sample \\
 $0$ position - the focal point of focusing lens
 \label{fig:oa_plot}}
\end{figure}
\begin{figure}
 \includegraphics{img/ca_plot.png}
 \caption{A typical closed-aperture transmittance $\Delta \,\mathrm{T}(Z)$ plots in a z-scan
experiment, where: \\
  $Z$ - the position of the stage/sample, \\
  $0$ position - the focal point of focusing lens \\
  red (dashed) plot - material with a positive (negative) refractive index
  \label{fig:ca_plot}}
\end{figure}
```

We must hereby stress that what we obtain with one z-scan measurement is only half a way to calculate one point in the nonlinear spectrum plot - because a typical sample is held inside a silica cuvette and is soluted in some solution (for example chloroform or toluene). So firstly we must measure the solution and an empty silica cuvette z-scan transmittance plots for each monochromatic wavelength and after so - perform the z-scan experiment on the investigated sample.

\subsection*{Appendix B.2 - Overview of the derivation of nonlinear cooefficients} \label{chap:zscan_derivation}

\subsubsection*{Calculation of the nonlinear absorption coefficient:}

As shown on Figure (\ref{fig:oa_plot}) the open-aperture transmittance can be described with the approximation equation:

```
\begin{equation}
 \left( 1 + \frac{Z^{2}}{(\frac{n\p \, w_{0}}\, 2}{\lambda }\right) , \  \right) , \  \
\end{equation}
with the following parameters used:
\begin{tabular}{ r I }
 \Delta \T = T_{Z} \  \  
 ${I_{0}}$ & - peak on-axis irradiance at focus \\
 $L$ & - sample length \\
 $\beta $ & - two-photon absorption coefficient \\
 $\alpha $ & - absorption coefficient \\
 $n$ & - index of refraction \\
 \{w_{0}\} & - spot size at focus (radius at \frac{1}{e^{2}}) \\
 $\lambda $ & - laser wavelength \\
 $Z$ & - position of sample with respect to the focal position \\
\end{tabular}
```

We obtain the two-photon absorption coefficient while standard (f.e. least squares) fitting the measured open-aperture \$\beta \$ plot. This is of course also not the complete truth, because with some advanced models we can obtain other absorptive nonlinearities. In a short description - the multiphoton absorption can be assumed when the closed-aperture peak is suppressed, but unfortunately the absorption saturation has just got the opposite effect. So the z-scan technique gives only the simple information about the nonlinear absorption processes.

\subsubsection*{Calculation of the nonlinear refraction index:}

\begin{equation} \label{eq:nlo onaxisshift}

On Figure (\ref{fig:ca_plot}) we can see the closed-aperture transmittance plot with respect to the sample position Z. It has a characteristic shape of peak trailing the valley or the valley trailing the peak if the n_{2} sign is negative. What now interests us, is the difference between the peak and valley amplitude - we will call it ρ . From this difference we can calculate the on-axis peak nonlinear phase shift with sample at focus ρ .

```
\left| \!\,\Delta \,{\Phi_{0}}\, \!\right| =\frac {\Delta \,{T_{pv}}}\\(0.407\)\,\(1 - S)^{0.27}\,
\end{equation}
where:
\begin{tabular}{ r l}
 $S$ & - fraction of beam transmitted by the aperture \\
 $\Delta \,{T_{pv}}$ & - change in normalised transmittance between peak and valley. \\
\end{tabular}
Now we can estimate the refraction index from equation:
\begin{equation} \label{eq:nlo estrefindex}
 n_{2}=\frac{1 - e^{( - \alpha )},L_{\alpha }}{2}=\frac{1 - e^{( - \alpha )},L_{\alpha }}{2}
\end{equation}
where:
\begin{tabular} r I}
 $\Delta \,{\Phi_{0}}$ & - on-axis peak nonlinear phase shift with sample at focus \\
 ${I_{0}}$ & - peak on-axis irradiance at focus \\
 $L$ & - sample length \\
 $\alpha $ & - absorption coefficient \\
 $\lambda $ & - laser wavelength \\
\end{tabular}
```

With data points collected for each wavelength we may obtain the full spectral plot for both nonlinear absorption coefficient and nonlinear refraction index - due to the z-scan measurements.

\subsection*{Appendix B.3 - Definition of the main problems} \label{chap:zscan_problems}

A typical z-scan experiment consists of the measurement routines with number of more or less around 15-20 different wavelength. One z-scan measurement usually takes between 5 to 10 minutes and together with:

\begin{enumerate}[(a)]

\item long laser calibration process after each change of wavelength

\item silica and empty-solution measurement

\item measurement of a typical set of 10-20 measured cuvette samples

\end{enumerate}

The main problems in the z-scan technique concerns the huge amount of time required for one experiment and a dozen factors of uncertainty for each measurement. Tt may take many days or even weeks to complete one measurement - so even a simple one routine is a time-demanding process and therefore we would like to get as more information from one experiment as possible. Scientists are very interested in optimization of the z-scan method. The physical theory requires better understanding of the process and results requires the better numerical precision, because the general error cumulates with the laser non stability, method approximation error, fitting and numerical calculations error.

A typical plot containing the z-scan measurement for the close aperture, open aperture and the laser reference is shown in Figure (\ref{fig:zscan_both}).

\begin{figure}

\includegraphics{img/zscan_both.png}

\caption{A typical plot for both close and open aperture with respect to the sample position Z and with the fit spline line \label{fig:zscan_both}} \end{figure}

\end{document}