

Workshop 12

COMP90051 Machine Learning Semester 2, 2020

Learning Outcomes

By the end of this workshop you should be able to:

- 1. generate data from a GMM
- 2. fit GMMs using scikit-learn
- select an appropriate value for the number of mixture components using a model selection criterion

Gaussian Mixture Model

- A probabilistic model for clustering data in \mathbb{R}^m
- Associated with each cluster $c \in \{1, ..., k\}$ is a multivariate Gaussian distribution with mean vector μ_c and covariance matrix Σ_c
- Assume each data point x_i is generated by:
 - 1. Assigning to a cluster: $z_i \sim \text{Categorical}(\mathbf{w})$
 - 2. Drawing from the Gaussian distribution associated with cluster z_i : $\mathbf{x}_i | z_i, \mathbf{\mu}_{z_i}, \mathbf{\Sigma}_{z_i} \sim \mathrm{Normal}(\mathbf{\mu}_{z_i}, \mathbf{\Sigma}_{z_i})$

Inference

- Observe $\mathbf{X}=(\mathbf{x}_1,\ldots,\mathbf{x}_n)$, but don't observe $\mathbf{Z}=(z_1,\ldots,z_n)$ or parameters $\theta=(w_1,\boldsymbol{\mu}_1,\boldsymbol{\Sigma}_1,\ldots)$
- MLE estimate for heta determined by maximising the marginal likelihood:

$$L(\theta; \mathbf{X}) = p_{\theta}(\mathbf{X}) = \int p_{\theta}(\mathbf{X}, \mathbf{Z}) d\mathbf{Z}$$

- Typically solve optimisation problem using the expectationmaximisation (EM) algorithm
- No guarantee of convergence to global optimum

Worksheet 12