Support Vector Machines (SVM)

Data Intelligence and Learning (<u>DIAL</u>) Lab

Prof. Jongwuk Lee

Linear SVM with Soft Margin

Non-Linearly Separable Data

> It is impossible to find a linear boundary without errors.

How to Maximize the Margin?

- Allow some samples to be in the margin or misclassified.
 - Correct: $y^{(i)}(\mathbf{w}^T\mathbf{x}^{(i)} + b) \ge 1$
 - Incorrect: $0 < y^{(i)}(\mathbf{w}^T \mathbf{x}^{(i)} + b) < 1, y^{(i)}(\mathbf{w}^T \mathbf{x}^{(i)} + b) < 0$
- \triangleright We introduce a slack variable ξ_i .

Besides, penalize the sum of slack variables.

Introducing Soft Margins

- > Allow some samples to be in the margin or misclassified.
- \triangleright We introduce a slack variable ξ_i .

$$\xi_i \ge 0$$

$$y^{(i)}(\mathbf{w}^T\mathbf{x}^{(i)} + b) \ge 1$$

$$y^{(i)}(\mathbf{w}^T\mathbf{x}^{(i)} + b) \ge 1 - \xi_i$$

Soft Margin SVM

 \succ Assume that an error $\xi_i \ge 0$ for each sample $\mathbf{x}^{(i)}$.

$$y^{(i)}(\mathbf{w}^T\mathbf{x}^{(i)}+b) \ge 1-\xi_i$$
, for $i=1,2,\cdots,n$

Let ξ_i be a slack variable for $\mathbf{x}^{(i)}$.

 \triangleright Penalize $\sum_{i} \xi_{i}$.

Finding a linear boundary that maximizes the margin and minimizes the error.

$$f(\mathbf{x}) = \mathbf{w}^{\mathrm{T}}\mathbf{x} + b = 0$$

Soft Margin SVM

> Objective function

Margin Error

$$\min_{\mathbf{w},b} \left(\frac{1}{2} \mathbf{w}^{\mathsf{T}} \mathbf{w} + C \sum_{i=1}^{n} \xi_{i} \right)$$

subject to
$$\begin{cases} y^{(i)}(\mathbf{w}^{\mathrm{T}}\mathbf{x}^{(i)} + b) \ge 1 - \xi_i \text{ for } i = 1, \dots, n \\ \xi_i \ge 0 \text{ for } i = 1, \dots, n \end{cases}$$

Slack variable

> How to control C?

Effect of C

- \triangleright When C becomes ∞ ,
 - No allowance for errors → Narrow margin
 - It is close to hard margin SVM.
 - Over-fitting
- \triangleright When C=0,
 - Maximum allowance for errors → Maximum margin
 - Over-generalization

$$\min_{\mathbf{w},b} \left(\frac{1}{2} \mathbf{w}^{\mathsf{T}} \mathbf{w} + C \sum_{i=1}^{n} \xi_{i} \right)$$

Effect of C

- \triangleright When \mathcal{C} becomes ∞ ,
 - No allowance for errors → Narrow margin

- ➤ When *C* is some value,
 - Some allowance for errors

Understanding Sort Margin SVM

 \succ Simplifying the soft margin constraint by eliminating ξ_i

$$y^{(i)}(\mathbf{w}^{\mathrm{T}}\mathbf{x}^{(i)} + b) \ge 1 - \xi_{i} \quad \text{for } i = 1, \dots, n$$
$$\xi_{i} \ge 0 \quad \text{for } i = 1, \dots, n$$

$$\Rightarrow \qquad \xi_i \ge 1 - y^{(i)}(\mathbf{w}^{\mathrm{T}}\mathbf{x}^{(i)} + b)$$

- > Case 1: $1 y^{(i)} (\mathbf{w}^{\mathrm{T}} \mathbf{x}^{(i)} + b) \le 0$
 - The smallest ξ_i that satisfies the constraint is $\xi_i = 0$.
- > Case 2: $1 y^{(i)}(\mathbf{w}^{\mathrm{T}}\mathbf{x}^{(i)} + b) > 0$
 - The smallest ξ_i satisfies the constraint is $\xi_i = y^{(i)} (\mathbf{w}^T \mathbf{x}^{(i)} + b)$.

Understanding Sort Margin SVM

\blacktriangleright What is an optimal value as a function of w and b?

Case 1: If $y^{(i)}(\mathbf{w}^{\mathrm{T}}\mathbf{x}^{(i)} + b) \ge 1$, then $\xi_i = 0$.

Case 2: If
$$y^{(i)}(\mathbf{w}^{\mathrm{T}}\mathbf{x}^{(i)} + b) < 1$$
, then $\xi_i = 1 - y^{(i)}(\mathbf{w}^{\mathrm{T}}\mathbf{x}^{(i)} + b)$.

$$\Rightarrow \quad \xi_i = \max\left(\mathbf{0}, 1 - y^{(i)} (\mathbf{w}^{\mathrm{T}} \mathbf{x}^{(i)} + b)\right)$$

The slack penalty

$$\sum_{i=1}^{n} \xi_{i} = \sum_{i=1}^{n} \max \left(0, 1 - y^{(i)} (\mathbf{w}^{\mathsf{T}} \mathbf{x}^{(i)} + b) \right)$$

Equivalent Hinge Loss Formulation

> Substituting $\xi_i = \max\left(0, 1 - y^{(i)}(\mathbf{w}^T\mathbf{x}^{(i)} + b)\right)$ into the objective function, we can get

$$\min_{\mathbf{w},b} \left(\frac{1}{2} \mathbf{w}^{\mathsf{T}} \mathbf{w} + C \sum_{i=1}^{n} \xi_{i} \right)$$

subject to
$$\begin{cases} y^{(i)}(\mathbf{w}^{\mathrm{T}}\mathbf{x}^{(i)} + b) \ge 1 - \xi_i \text{ for } i = 1, \dots, n \\ \xi_i \ge 0 \text{ for } i = 1, \dots, n \end{cases}$$

$$\min_{\mathbf{w},b} \left(\frac{1}{2} \mathbf{w}^{\mathsf{T}} \mathbf{w} + C \sum_{i=1}^{n} \max \left(0, 1 - y^{(i)} (\mathbf{w}^{\mathsf{T}} \mathbf{x}^{(i)} + b) \right) \right)$$

The hinge loss is defined as $\mathcal{L}(y, \hat{y}) = \max(0, 1 - y^{(i)}\hat{y}^{(i)})$.

Equivalent to the Hinge Loss Function

Objective function of soft margin SVM

$$\min_{\mathbf{w},b} \left(\frac{1}{2} \mathbf{w}^{\mathsf{T}} \mathbf{w} + C \sum_{i=1}^{n} \max \left(0.1 - y^{(i)} (\mathbf{w}^{\mathsf{T}} \mathbf{x}^{(i)} + b) \right) \right)$$

$$\min_{\mathbf{w},b} \left(\sum_{i=1}^{n} \max \left(0, 1 - y^{(i)} (\mathbf{w}^{\mathsf{T}} \mathbf{x}^{(i)} + b) \right) + \frac{1}{2C} \mathbf{w}^{\mathsf{T}} \mathbf{w} \right)$$

This first part is empirical risk minimization using a hinge loss.

This second term is the L2-regularization. It is used to prevent overfitting.

> The soft margin SVM can be trained with a hinge loss function.

Hinge Loss

> Hinge loss is upper bound of 0/1 loss!

Dual Formulation of SVM

What is the Constrained Optimization?

 $\min_{x} x^2$ such that $x \ge b$

How to solve with constraints? → **Lagrange Multiplier**

Lagrange Multiplier: Dual Variables

$$\min_{x} x^2$$
 subject to $x \ge b$

Objective function: Introduce a Lagrange multiplier.

$$L(x,\alpha) = x^2 - \alpha(x - b)$$

We will solve:

 $\min_{x} \max_{\alpha} L(x, \alpha) \text{ subject to } \alpha \geq 0$

Add a new constraint.

> Why is it equivalent?

•
$$x < b \to (x - b) < 0 \to \max_{\alpha} -\alpha(x - b) = \infty$$

Because min fights max, it does not happen.

•
$$x > b \to (x - b) > 0 \to \max_{\alpha} -\alpha(x - b) = 0, \ \alpha^* = 0$$

• Min is cooled with 0, and $\mathcal{L}(x,\alpha) = x^2$

•
$$x = b \to \alpha$$
 can be anything, and $\mathcal{L}(x, \alpha) = x^2$ $\therefore x^* = \max(b, 0)$

Dual Form of Hard-Margin SVM

> For simplicity, we mainly consider hard-margin SVM.

Original optimization problem

$$\min_{\mathbf{w},\mathbf{b}} \frac{1}{2} \mathbf{w}^{\mathsf{T}} \mathbf{w} \text{ such that } (\mathbf{w}^{\mathsf{T}} \mathbf{x}^{(i)} + b) y^{(i)} \ge 1 \text{ for } i = 1, 2, \dots, n$$

Rewrite constraints

One Lagrange multiplier per sample

Lagrangian form:

$$L(\mathbf{w}, b, \alpha) = \frac{1}{2} \mathbf{w}^{\mathsf{T}} \mathbf{w} - \sum_{i=1}^{n} \alpha_{i} \left[\left(\mathbf{w}^{\mathsf{T}} \mathbf{x}^{(i)} + b \right) y^{(i)} - 1 \right], \forall \alpha_{i} \geq 0$$

> Now, our goal is to solve

 $\min_{\mathbf{w},b} \max_{\alpha} L(\mathbf{w},b,\alpha)$ subject to $\forall \alpha_i \geq 0$

Dual Form of Hard-Margin SVM

> The dual form is more convenient to solve the objective function of SVM.

First, compute the derivative of \mathbf{w} and b, and it represents $L(\mathbf{w}, b, \alpha)$ as the function of α .

Dual SVM Derivation

> Given the following Lagrangian function,

$$L(\mathbf{w}, b, \alpha) = \frac{1}{2} \mathbf{w}^{\mathsf{T}} \mathbf{w} - \sum_{i=1}^{n} \alpha_{i} \left[\left(\mathbf{w}^{\mathsf{T}} \mathbf{x}^{(i)} + b \right) y^{(i)} - 1 \right], \forall \alpha_{i} \geq 0$$

 \succ Compute the derivative of w and b and set them to zero.

$$\frac{\partial L}{\partial \mathbf{w}} = \mathbf{w} - \sum_{i=1}^{n} \alpha_i \, \mathbf{x}^{(i)} y^{(i)} = 0 \qquad \Longrightarrow \qquad \mathbf{w} = \sum_{i=1}^{n} \alpha_i \, \mathbf{x}^{(i)} y^{(i)}$$

$$\frac{\partial L}{\partial b} = -\sum_{i} \alpha_{i} y^{(i)} = 0 \qquad \Longrightarrow \qquad \sum_{i} \alpha_{i} y^{(i)} = 0$$

Dual SVM Derivation

- \triangleright What is the meaning of $\alpha_i = 0$ and $\alpha_i > 0$?
 - For $(\mathbf{x}^{(i)}, y^{(i)})$ corresponding to support vectors, $\alpha_i > 0$.
 - Otherwise, $\alpha_i = 0$.

$$L(\mathbf{w}, b, \alpha) = \frac{1}{2} \mathbf{w}^{\mathsf{T}} \mathbf{w} - \sum_{i=1}^{n} \alpha_{i} \left[\left(\mathbf{w}^{\mathsf{T}} \mathbf{x}^{(i)} + b \right) y^{(i)} - 1 \right], \forall \alpha_{i} \geq 0$$

$$\frac{1}{2}\mathbf{w}^{\mathsf{T}}\mathbf{w} = \frac{1}{2}\sum_{i=1}^{n}\sum_{j=1}^{n}\alpha_{i}\alpha_{j}y^{(i)}y^{(j)}(\mathbf{x}^{(i)})^{\mathsf{T}}(\mathbf{x}^{(j)})$$

$$\sum_{i=1}^{n}\alpha_{i}(\mathbf{w}^{\mathsf{T}}\mathbf{x}^{(i)})y^{(i)} = \sum_{i=1}^{n}\sum_{j=1}^{n}\alpha_{i}\alpha_{j}y^{(i)}y^{(j)}(\mathbf{x}^{(i)})^{\mathsf{T}}(\mathbf{x}^{(j)})$$

Eliminating w and b using $\mathbf{w} = \sum_{i=1}^{n} \alpha_i \mathbf{x}^{(i)} \mathbf{y}^{(i)}, \sum_i \alpha_i \mathbf{y}^{(i)} = 0$

$$L(\boldsymbol{\alpha}) = \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j y^{(i)} y^{(j)} (\mathbf{x}^{(i)})^{\mathrm{T}} (\mathbf{x}^{(j)}), \forall \alpha_i \ge 0$$

Dual SVM Derivation

> Substituting these values, we can obtain the following form.

$$\max_{\alpha \geq 0} \min_{\mathbf{w}, b} \frac{1}{2} \mathbf{w}^{\mathsf{T}} \mathbf{w} - \sum_{i=1}^{n} \alpha_{i} \left[\left(\mathbf{w}^{\mathsf{T}} \mathbf{x}^{(i)} + b \right) y^{(i)} - 1 \right]$$

Scalars Dot product

$$\max_{\alpha \geq \mathbf{0}, \sum_{i} \alpha_{i} y^{(i)} = 0} \sum_{i=1}^{n} \alpha_{i} - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} y^{(i)} y^{(j)} (\mathbf{x}^{(i)})^{\mathrm{T}} (\mathbf{x}^{(j)})$$

Sums over all the training samples.

Finding Parameters from α

> We determine w as follows.

$$\mathbf{w} = \sum_{i=1}^{n} \alpha_i \, \mathbf{x}^{(i)} y^{(i)}$$

- \triangleright How do we determine b?
 - Given $\alpha_i [(\mathbf{w}^T \mathbf{x}^{(i)} + b) y^{(i)} 1] = 0$,
 - Support vectors: $(\mathbf{w}^{\mathsf{T}}\mathbf{x}^{(i)} + b)y^{(i)} 1 = 0$ and $\alpha_i > 0$.
 - Otherwise, $\alpha_i = 0$.

$$\alpha_i > 0$$
 implies the constraint is tight, i.e., $y^{(i)}(\mathbf{w}^T\mathbf{x}^{(i)} + b) = 1$.

$$b = y^{(i)} - \mathbf{w}^{\mathrm{T}} \mathbf{x}^{(i)}$$
 for any $\mathbf{x}^{(i)}$ such that $\alpha_i > 0$

Solving Hard-Margin SVM

ightharpoonup Given $\mathcal{D} = \{(\mathbf{x}^{(i)}, y^{(i)}): 1 \le i \le n\}$, where $y^{(i)} \in \{-1, +1\}$,

$$\max_{\alpha_1, \dots, \alpha_n} \left(\sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n \alpha_i \alpha_j y^{(i)} y^{(j)} (\mathbf{x}^{(i)} \cdot \mathbf{x}^{(j)}) \right)$$
subject to
$$\begin{cases} \sum_{i=1}^n \alpha_i y^{(i)} = 0 \\ \alpha_i \ge 0 \text{ for } i = 1, \dots, n \end{cases}$$

> Solution

$$\mathbf{w} = \sum_{i=1}^{n} \alpha_i y^{(i)} \mathbf{x}^{(i)}$$

$$b = y^{(i)} - \mathbf{w}^{\mathrm{T}} \mathbf{x}^{(i)} \text{ for any } \mathbf{x}^{(i)} \text{ such that } \alpha_i > 0$$

Prediction for Test Samples

> The solution of SVM is as follows.

$$\hat{y} = \operatorname{sign}(\mathbf{w}^{\mathrm{T}}\mathbf{x} + b)$$

$$\mathbf{w} = \sum_{i=1}^{n} \alpha_i y^{(i)} \mathbf{x}^{(i)}$$

$$b = y^{(i)} - \mathbf{w}^{\mathrm{T}} \mathbf{x}^{(i)} \text{ for any } \mathbf{x}^{(i)} \text{ such that } \alpha_i > 0$$

 \triangleright Given a new sample \mathbf{x}_{new} ,

$$\hat{y} = \operatorname{sign}(\mathbf{w}^{\mathsf{T}}\mathbf{x}_{new} + b)$$

Example: Training Linear SVM

$$\triangleright$$
 Let $\mathcal{D} = \{(1, 1, -1), (2, 2, +1)\}.$

$$\max_{\alpha_1, \dots, \alpha_n} \left(\sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n \alpha_i \alpha_j y^{(i)} y^{(j)} (\mathbf{x}^{(i)} \cdot \mathbf{x}^{(j)}) \right)$$
subject to
$$\begin{cases} \sum_{i=1}^n \alpha_i y^{(i)} = 0 \\ \alpha_i \ge 0 \text{ for } i = 1, \dots, n \end{cases}$$

$$\max_{\alpha_{1},\alpha_{2}} \left((\alpha_{1} + \alpha_{2}) - \frac{1}{2} \begin{pmatrix} \alpha_{1}\alpha_{1}y^{(1)}y^{(1)}\mathbf{x}^{(1)} \cdot \mathbf{x}^{(1)} + \alpha_{1}\alpha_{2}y^{(1)}y^{(2)}\mathbf{x}^{(1)} \cdot \mathbf{x}^{(2)} \\ + \alpha_{2}\alpha_{1}y^{(2)}y^{(1)}\mathbf{x}^{(2)} \cdot \mathbf{x}^{(1)} + \alpha_{2}\alpha_{2}y^{(2)}y^{(2)}\mathbf{x}^{(2)} \cdot \mathbf{x}^{(2)} \end{pmatrix} \right)$$
subject to
$$\begin{cases} \alpha_{1}y^{(1)} + \alpha_{2}y^{(2)} = 0 \\ \alpha_{i} \geq 0 \text{ for } i = 1,2 \end{cases}$$

Example: Training Linear SVM

$$\triangleright$$
 Let $\mathcal{D} = \{(1, 1, -1), (2, 2, +1)\}.$

$$\max_{\alpha_1, \alpha_2} \left((\alpha_1 + \alpha_2) - (\alpha_1^2 - 4\alpha_1\alpha_2 + 4\alpha_2^2) \right) \text{ s.t. } \begin{cases} -\alpha_1 + \alpha_2 = 0 \\ \alpha_i \ge 0 \text{ for } i = 1, 2 \end{cases}$$

Since $\alpha_1 = \alpha_2$

$$\max_{\alpha_1} (\alpha_1^2 - 2\alpha_1) \text{ s.t. } \alpha_i \ge 0 \text{ for } i = 1,2$$

$$\alpha_1 = \alpha_2 = 1$$

 \succ Using the solution, we can determine w and b.

Example: Training Linear SVM

► Let
$$\mathcal{D} = \{(1, 1, -1), (2, 2, +1)\}$$
 and $\alpha_1 = \alpha_2 = 1$

> Solution

$$\mathbf{w} = \sum_{i=1}^{n} \alpha_i y^{(i)} \mathbf{x}^{(i)}$$

$$b = y^{(i)} - \mathbf{w}^{\mathrm{T}} \mathbf{x}^{(i)} \text{ for any } \mathbf{x}^{(i)} \text{ such that } \alpha_i > 0$$

$$\mathbf{w} = (1)(-1)\begin{bmatrix} 1 \\ 1 \end{bmatrix} + (1)(+1)\begin{bmatrix} 2 \\ 2 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$b = (+1) - \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 2 \\ 2 \end{bmatrix} = -3$$

> Two samples are support vectors.

Dual Form of Soft-Margin SVM

> Soft-margin SVM also considers slack variables.

Original optimization problem

$$\min_{\mathbf{w}, \mathbf{b}} \frac{1}{2} \mathbf{w}^{\mathrm{T}} \mathbf{w} + C \sum_{i=1}^{n} \xi_{i} \text{ s.t.} (\mathbf{w}^{\mathrm{T}} \mathbf{x}^{(i)} + b) y^{(i)} \ge 1 - \xi_{i}, \forall \alpha_{i} \ge 0, \forall \xi_{i} \ge 0$$

Lagrangian form:

$$L(\mathbf{w}, b, \boldsymbol{\xi}, \boldsymbol{\alpha}) = \frac{1}{2} \mathbf{w}^{\mathrm{T}} \mathbf{w} + C \sum_{i=1}^{n} \xi_{i} - \sum_{i=1}^{n} \alpha_{i} \left[\left(\mathbf{w}^{\mathrm{T}} \mathbf{x}^{(i)} + b \right) y^{(i)} - 1 + \xi_{i} \right], \forall \alpha_{i} \geq 0$$

> Now, our goal is to solve

 $\min_{\mathbf{w},b,\boldsymbol{\xi}} \max_{\boldsymbol{\alpha}} L(\mathbf{w},b,\boldsymbol{\xi},\boldsymbol{\alpha})$ subject to $\forall \alpha \geq 0$

Solving Soft-Margin SVM

ightharpoonup Given $\mathcal{D} = \{(\mathbf{x}^{(i)}, y^{(i)}): 1 \le i \le n\}$, where $y^{(i)} \in \{-1, +1\}$,

$$\max_{\alpha_1, \dots, \alpha_n} \left(\sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n \alpha_i \alpha_j y^{(i)} y^{(j)} (\mathbf{x}^{(i)} \cdot \mathbf{x}^{(j)}) \right)$$
subject to
$$\begin{cases} \sum_{i=1}^n \alpha_i y^{(i)} = 0 \\ 0 \le \alpha_i \le C \quad i = 1, \dots, n \end{cases}$$

It considers slack variables.

> Solution

$$\mathbf{w} = \sum_{i=1}^{n} \alpha_i y^{(i)} \mathbf{x}^{(i)}$$

$$b = y^{(i)} - \mathbf{w}^{\mathsf{T}} \mathbf{x}^{(i)} \text{ for any } \mathbf{x}^{(i)} \text{ such that } 0 < \alpha_i < C$$

Q&A

