Algebraic Geometry 2

Labix

January 20, 2025

Abstract

Algebraic Geometry is such a messy subject in a sense that a different books and lecture notes introduce different materials in a different orders, as well as having different prerequisites. After understanding a bit more in the subject, I believe that there is the need to give a clear distinction between traditional algebraic geometry and contemporary algebraic geometry. Although there are undoubtedly many overlapping between the two, I attempt to separate them to make clear their motivations as well as their results.

This book will mainly cover traditional algebraic geometry in the sense that the construction of affine and projective varieties will be covered, as well as the Hilbert Nullstellensatz theorems, morphisms, tangent maps and smoothness as well as classical constructions of some varieties. Affine schemes and sheaf theory are left for another time where they attempt to reinvent the fundamentals of algebraic geometry.

Knowledge on commutative algebra is required as a prerequisite. These set of notes make use of

- Algebraic Geometry I by I. R. Shafarevich and V. I. Danilov
- Algebraic Geometry by R. Hartshorne
- An Invitation to Algebraic Geometry by Karen. S, Pekka. K, Lauri .K, William .T

Contents

1	The	Tangent Space and Smooth Points	3
	1.1	The Tangent Space of Affine Varieties	3
	1.2	Smooth Points of an Affine Variety	3
	1.3	The Tangent Space of Varieties in General	4
	1.4	Smooth Points of a Variety in General	4
2	Birational Geometry		
		Birational Maps	5
	2.2	Categorical Equivalence with Finitely Generated Field Extensions	5
	2.3	Categorical Equivalence with Finitely Generated Field Extensions	5
3	Theory of Divisors		7
		Divisors of a Variety	7
		The Linear System of a Divisor	
4	Inte	ersection Theory	9

1 The Tangent Space and Smooth Points

1.1 The Tangent Space of Affine Varieties

Definition 1.1.1: The Tangent Space of an Affine Variety

Let k be a field. Let $V=\mathbb{V}(f_1,\ldots,f_r)$ be an affine variety over k. Define the tangent space of V at $p\in V$ to be the zero set

$$T_p V = \mathbb{V}\left(\sum_{k=1}^n \frac{\partial f_1}{\partial x_k}\bigg|_p (x_k - p_k), \dots, \sum_{k=1}^n \frac{\partial f_r}{\partial x_k}\bigg|_p (x_k - p_k)\right)$$

It should first be made sense that the definition is independent of the choice of polynomials f_1, \ldots, f_r of the zero set.

Proposition 1.1.2

Let V be a closed affine variety over \mathbb{C} . Let $p \in V$. Let m_p denote the corresponding maximal ideal. Then there is an isomorphism

$$T_p V \cong \left(\frac{m_p}{m_p^2}\right)^*$$

given by ?????. In particular, we have the identity

$$\dim(T_p V) = \dim_{\mathbb{C}[V]/m_p} (m_p / m_p^2)$$

Definition 1.1.3: The Jacobian Matrix

Let k be a field. Let $V=\mathbb{V}(f_1,\ldots,f_m)\subseteq\mathbb{A}^n_k$ be an affine variety. Let $p\in V$. Define the Jacobian matrix of V at p to be the $m\times n$ matrix

$$J_{V,p} = \begin{pmatrix} \frac{\partial f_1}{\partial x_1} \Big|_p & \cdots & \frac{\partial f_1}{\partial x_n} \Big|_p \\ \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1} \Big|_p & \cdots & \frac{\partial f_m}{\partial x_n} \Big|_p \end{pmatrix}$$

Proposition 1.1.4

Let k be a field. Let $V = \mathbb{V}(f_1, \dots, f_m) \subseteq \mathbb{A}^n_k$ be an affine variety. Let $p = (p_1, \dots, p_n) \in V$. Then

$$T_p V = \left\{ (x_1, \dots, x_n) \in \mathbb{A}_k^n \mid J_{V,p} \cdot \begin{pmatrix} x_1 - p_1 \\ \vdots \\ x_n - p_n \end{pmatrix} = 0 \right\}$$

1.2 Smooth Points of an Affine Variety

We continue to restrict our attention to affine varieties.

Definition 1.2.1: Smooth and Singular Points of Affine Varieties

Let k be a field. Let X be an irreducible affine variety over k. Let $p \in X$ be a point. We say that p is a smooth point of X if

$$\dim(T_p(X)) = \dim(X)$$

Otherwise, we say that p is a singular point of X.

Proposition 1.2.2

Let $V = \mathbb{V}(f_1, \dots, f_m) \subseteq \mathbb{A}^n_{\mathbb{C}}$ be an irreducible affine variety. Let $p \in V$. Then the following are equivalent.

- p is a smooth point of V.
- $\operatorname{rank}(J_{V,p}) = n \dim(V)$.
- $\mathcal{O}_{V,p}$ is a regular local ring.

In particular, this shows that smoothness is independent of the choice of generators of V, because we have given a characterization in terms of a property of the local ring $\mathcal{O}_{V,p}$.

Hard to prove: smoothness is preserved by isomorphisms.

1.3 The Tangent Space of Varieties in General

Definition 1.3.1: The Tangent Space of a Quasi-Projective Variety

Let k be a field. Let V be a quasi-projective variety over k. Let $p \in V$. Define the tangent space of V at p to be

$$T_p V = \left(\frac{m_p}{m_p}\right)^*$$

where m_p is the unique maximal ideal of the local ring $\mathcal{O}_{V,p}$.

1.4 Smooth Points of a Variety in General

We can now motivate the definition of a smooth point using the purely algebraic characterization.

Definition 1.4.1: Smooth and Singular Points of A General Variety

Let X be a variety. We say $p \in X$ is a smooth point of X if the local ring $\mathcal{O}_{X,p}$ is a regular local ring. Otherwise, we say that p is a singular point of X.

Theorem 1.4.2

Let X be a variety. Then the set of singular points of X is a proper closed subset of X.

Proposition 1.4.3

Let *X* be a variety. If $p \in X$ is a smooth point, then $\mathcal{O}_{X,p}$ is a UFD.

Proposition 1.4.4

Let X be a variety and let $Y \subseteq X$ be an irreducible subvariety of X. If $p \in X$ is non-singular, then there exists an affine neighbourhood $U \subseteq X$ of x together with $f_1, \ldots, f_k \in k[U]$

2 Birational Geometry

2.1 Blowing Ups

Definition 2.1.1: Blowing Up at \mathbb{A}^n

Define the blowing up of \mathbb{A}^n at the point 0 to be the closed subset X of $\mathbb{A}^n \times \mathbb{P}^{n-1}$ defined by the equations $\{x_iy_j = x_jy_i | 0 \leq i, j \leq n\}$. Restricting the projection $\mathbb{A}^n \times \mathbb{P}^{n-1} \to \mathbb{A}^n$ to the first factor gives a natural morphism $\phi: X \to \mathbb{A}^n$.

Theorem 2.1.2

The following are true with regards to blowing up at \mathbb{A}^n .

- *X* is a quasiprojective variety
- ϕ is an isomorphism for the sets $X \setminus \phi^{-1}(0)$ and $\mathbb{A}^n \setminus \{0\}$
- \bullet $\phi^{-1}(0) \cong \mathbb{P}^{n-1}$

Definition 2.1.3: Blowing Up at a Point

Let Y be a closed subvariety of \mathbb{A}^n passing through 0. Define the blowing up of Y at 0 to be the closure of $Z = \phi^{-1}(Y \setminus \{0\})$, where $\phi : X \to \mathbb{A}^n$ is obtained from the above blowing up at \mathbb{A}^n . Also denote $\phi : \overline{Z} \to Z$ the morphism obtained by further restricting ϕ to \overline{Z} .

To blow up any point other than 0, perform a linear change in coordinates sending P to 0.

Definition 2.1.4: Blowup along an Ideal

Let F_1,\ldots,F_r be functions in the coordinate ring $\mathbb{C}[x]$ of an affine algebraic variety X, and let I be the ideal they generate. Assume that I is a proper nonzero ideal of $\mathbb{C}[x]$. The blowup of the variety X along the ideal I is the graph B of the rational map $F:X\to\mathbb{P}^{r-1}$ defined by

$$F(x) = [F_1(x) : \cdots : F_r(x)]$$

amd the natural projection $\pi: X \times \mathbb{P}^{r-1} \to X$.

3 Theory of Divisors

3.1 Divisors of a Variety

Definition 3.1.1: Divisors of a Variety

Let X be a variety. Let C_1, \ldots, C_r be irreducible closed subvarieties of X of codimension 1. A divisor of X is of the form

$$D = \sum_{i=1}^{r} k_i C_i$$

for $k_i \in \mathbb{Z}$. We say that k_i is the multiplicity of C_i in D. Define the free group of all divisors of X by

$$\operatorname{Div}(X) = \mathbb{Z} \left\langle C \mid C_{\text{subvariety of codimension } 1} \right\rangle$$

Generators of Div(X) are called prime divisors.

Definition 3.1.2: Effective Divisor

Let X be a variety. We say that a divisor

$$D = \sum_{i=1}^{r} k_i C_i$$

of *X* is effective if $k_i \ge 0$ for all *i*. In this case we write D > 0.

Definition 3.1.3: Divisor of a Function

Let X be a variety such that the set of singular points of X has codimension ≥ 2 . Let $f \in K(X)$. Let C be a prime divisor of X.

Definition 3.1.4: Principal Divisors

Let X be a variety. A divisor of the form $D=\operatorname{div}(f)$ for some $f\in K(X)$ is called a principal divisor.

Define the set of all principal divisors by P(X).

Proposition 3.1.5

Let X be a variety. The set of all principal divisors P(X) is a group.

Definition 3.1.6: Divisor Class Group

Let *X* be a variety. Define the divisor class group of *X* to be

$$\operatorname{Cl}(X) = \frac{\operatorname{Div}(X)}{P(X)}$$

We say that two divisors D_1 and D_2 are linearly equivalent if they lie in the same coset of Cl(X), written as $D_1 \sim D_2$.

Definition 3.1.7: Degree of a Divisor

Proposition 3.1.8

Let X be a variety. Then D is a principal divisor if and only if deg(D) = 0.

3.2 The Linear System of a Divisor

Definition 3.2.1: Associated Vector Space of a Divisor

Let X be a nonsingular variety. Define the associated vector space of a divisor D of X to be

$$\mathcal{L}(D) = \{ f \in K(X) \mid \text{div}(f) + D \ge 0 \} \cup \{ 0 \}$$

Lemma 3.2.2

Let X be a nonsingular variety. Then $\mathcal{L}(D)$ is a vector space over the field k.

Definition 3.2.3: Dimension of the Associated Vector Space

Let X be a nonsingular variety. Denote $\ell(D)$ the dimension of $\mathcal{L}(D)$, which is also called the dimension of D.

Theorem 3 2 4

Linearly equivalent divisors have the same dimension.

4 Intersection Theory