LATEX submissions are mandatory. The template for this problem can be found on the Piazza resource page for this course.

Problem 1

True or false

- 1. If vectors v_1, v_2, \ldots, v_n generate (span) the vector space V, then every vector in V can be written as a linear combination of vector v_1, v_2, \ldots, v_n in only one way;
- 2. If V is a vector space having dimension n, then V has exactly one subspace of dimension 0 and exactly one subspace of dimension n.
- 3. If columns of $m \times n$ matrix A span \mathbb{R}^m , then Ax = b is consistent (i.e., has a solution) for every b.
- 4. If A is a 6×4 matrix with 4 pivotal rows, then Ax = 0 has infinitely many solutions.
- 5. It is possible that $n \times n$ matrix A has a pivot in every row and the system Ax = b is inconsistent, where a and b are vectors in \mathbb{R}^n .
- 6. If the homogeneous system Ax = 0 corresponding to a given system of a linear equations Ax = b has a solution, then the given system has a solution;
- 7. If the coefficient matrix of a homogeneous system of n linear equations in n unknowns is invertible, then the system has no non-zero solution;
- 8. The solution set of any system of m equations in n unknowns is a subspace in \mathbb{R}^n .

Solution:

Problem 2

Find a 2×3 system (2 equations with 3 unknowns) Ax = b, such that its general solution has a form:

$$x = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} + s \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}, \quad s \in \mathbb{R}$$

Solution:

Problem 3

Find all vectors that are perpendicular to $[1, 4, 4, 1]^t$ and $[2, 9, 8, 2]^t$.

Solution:

Problem 4

Apply the Gram-Schmidt process to vectors a_1 , a_2 , a_3 and find orthonormal vectors q_1 , q_2 , q_3 .

$$oldsymbol{a}_1 = egin{bmatrix} 1 \ 1 \ 0 \end{bmatrix}, oldsymbol{a}_2 = egin{bmatrix} 1 \ 0 \ 1 \end{bmatrix}, oldsymbol{a}_3 = egin{bmatrix} 0 \ 1 \ 1 \end{bmatrix},$$

Write matrix A as QR decomposition A = QR.

Solution:

Problem 5

Let A be a real symmetric matrix (i.e. $A^t = A$). An eigenvector of matrix A is a non-zero vector x such that $Ax = \lambda x$ for some number λ which is called the eigenvalue corresponding to the eigenvector x.

Prove that if x_1 and x_2 are eigenvectors corresponding to distinct real eigenvalues λ_1 and λ_2 , respectively, then x_1 and x_2 are orthogonal. (Distinct means $\lambda_1 \neq \lambda_2$.)

Solution:

Problem 6

Let u and v are two column vectors in \mathbb{R}^n . The matrix $A = I + uv^t$ is known as a rank-one perturbation of the identity. Check that A has the inverse $A^{-1} = I + \alpha uv^t$ for some scalar α provided that A is non-singular and give an expression for α . For what u and v is A singular? If it is singular, what is nullspace(A)?

Solution:

Problem 7

Prove or disprove: If the columns of a square $(n \times n)$ matrix A are linearly independent, so are the columns of $A^2 = AA$.

Solution: