Homework 12

Christophe Hunt April 22, 2017

Contents

1	Page 529: problem 1	2
2	Page 529: problem 6	3
3	Page 546: problem 1	3
4	Page 566: problem 1	3

1 Page 529: problem 1

Verify that the given function pair is a solution to the first-order system.

$$x = -e^t$$
, $y = e^t$

$$x=-e^t$$
, $y=e^t$ $\frac{dx}{dt}=-y$, $\frac{dy}{dt}=-x$

$$\frac{dx}{dt} = \frac{d}{dt}(-e^t) = e^t = y$$
 ; $\frac{dx}{dt} = -y$

$$\frac{dy}{dt} = \frac{d}{dt}(e^t) = -e^t = x; \frac{dy}{dt} = -x$$

2 Page 529: problem 6

Find and classify the rest points of the given autonomous system.

$$\frac{dx}{dt} = -(y-1)$$
, $\frac{dy}{dt} = x-2$

The rest point of the system is a point in the phase plane for which f(x,y)=0 and g(x,y)=0, then both the derivatives $\frac{dx}{dt}=0$ and $\frac{dy}{dt}=0$.

$$\begin{array}{l} \text{when } y=1\text{, } \frac{dx}{dt}=-(1-1)\text{; } \frac{dx}{dt}=0 \\ \text{when } x=2\text{, } \frac{dy}{dt}=2-2\text{; } \frac{dy}{dt}=0 \end{array}$$

(2,1) is the rest point of the autonomous system $rac{dx}{dt}=-(y-1)$, $rac{dy}{dt}=x-2$

3 Page 546: problem 1

Apply the first and second derivative tests to the function

$$f(y)=y^a/e^{by}$$
 to show that $f(y)=y^a/e^{by}$

4 Page 566: problem 1

Use Euler's method to solve the first-order system subject to the specificed intial conditions. Use the given step size Δt and calculate the first three approximateions $(x_1,y_1),(x_2,y_2),and(x_3,y_3)$. Then repeat your calculations for $\Delta t/2$. Compare your approximations with the values of the given analytic solutions