

亚马逊2023创新技术: PEFA框架——向量召回中针对GPT模型的高效快速黑盒微调策略

1 人特同了该文章

原文《PEFA: Parameter-Free Adapters for Large-scale Embedding-based Retrieval Models》

Introduction

在搜索引擎^{*}中,使用大规模文本库检索相关文档。通常使用双向编码器等基于向量嵌入的模型,这些模型将Query和文档映射到一个语义嵌入空间,使相关的Query和文档彼此接近。推理时,通过找到与Query最相似的文档,搜索过程转化为最大内积检索问题。借助适当的索引数据结构,如Faiss、ScaNN或HNSWLIB,可以高效地解决MIPS问题,其时间复杂度^{*}为线性。

为了适应下游检索任务,通常使用全参数微调*的方法,该方法涉及计算梯度并更新Transformer编码器的参数。然而,在工业环境中实现全参数微调面临着挑战,因为计算量巨大。例如,在现代电子商务商店中,与Query相关的(Query,产品)对可能有数十亿或更多。对于这样的大规模全参数微调,BERT模型可能需要数千个GPU小时的时间,因为它涉及到多个步骤:预训练、第1阶段的随机负样本和BM25候选人的微调、第2阶段的硬挖掘的负样本的微调以及第3阶段的从昂贵的跨注意力模型中提取的知识的微调。此外,这些微调方法还需要访问模型的梯度信息,而许多黑盒语言模型,如GPT-3*和更远,无法访问这些信息。

针对这一问题,本文提出了一种名为PEFA的框架,即参数自由的适配器,用于快速微调黑盒BERT模型,无需访问任何梯度信息。PEFA框架中的得分函数是BERT模型和新的非参数化*的最近邻模型 (KNN) 之间的凸组合。通过学习新KNN模型,可以减少为构建ann索引所需的过程,该索引存储Query向量及其学习信号的键值对。在推理时间,KNN模型将在邻域中查找与训练Query相似的Query,并将相关的文档作为其评分函数。在PEFA框架下,我们引入了两种KNN模型:一种是本地KNN,另一种是全局KNN。这两种模型分别用于不同的场景。

对于文档检索任务,PEFA可以提高TriviaQA中预训练的ERMs在Recall\@100上的性能13.2%,以及提高NQ中微调的ERMs在Recall\@100上的性能5.5%。对于NQ数据集,将PEFA应用于微调的GTR模型可以达到新的最先进水平(SOTA),在相同模型大小的情况下,Recall\@10为88.71%超过了之前的SOTA基于Seq2Seq的NCI中的Recall\@10的85.20%。对于包含十亿级数据的产品搜索任务,PEFA可以提高微调的ERMs在Recall\@100上的性能5.3%和14.5%。

Dense Text Retrieval

密集文本检索通常采用Embedding-based Retrieval Model (ERM) 架构,也称为双编码器。为了让文章更简洁,我们将passage和document互换使用。 给定Query $q\in\mathcal{X}$ 和一个段落 $p\in\mathcal{X}$, ERM的关联得分函数 $f_{\mathrm{ERM}}(q,p)$ 是

$$f_{ ext{ERM}}(q,p) = E_{p \sim q}(f(p)) = E_p[\log P(q|p)]$$

$$f_{ ext{ERM}\setminus ext{xspace}}(q,p; heta) = raket{E(q; heta),E(p; heta)}$$

定义 \mathcal{D} 为一个样本集,其中每个元素是一个Query q_i 和对应的段落 p_i 。 编码器参数 θ 通常通过最大化似然损失函数 $^+$ 学习,即最大化

$$\max_{ heta} \sum_{(q,p) \in \mathcal{D}} \log p_{ heta}(p|q)$$

这个最大化的任务通常通过反向传播算法 † 来实现,其中 Softmax函数被用来计算条件概率 † $p_{\theta}(p|q)$ 。

$$p_{ heta}(p|q) = rac{\expig(f_{ ext{ERM}\setminus ext{xspace}}(q,p; heta)ig)}{\sum_{p'\in\mathcal{D}} \expig(f_{ ext{ERM}\setminus ext{xspace}}(q,p'; heta)ig)}$$

在实际应用中,为了减少计算复杂度,可以使用负采样技术来近似昂贵的条件Softmax部分函数。

Problem Statement

我们提出了一种名为PEFA的参数自由适配器,用于使用ERM。它通过采用非参数化的KNN组件来实现。这种模型的学习是无约束的,避免了对ERM进行任何优化步骤以调整参数。PEFA主要在推理阶段构建ANN索引,这使得它可用于预训练和微调的ERM,甚至是那些初始化为黑盒LLMs的ERM。

需要注意的是,虽然PEFA与其他旨在在学习阶段获得更好预先训练或微调的ERM的研究文献相关,但它们之间互不依赖且具有互补性,包括最近关于ERM参数效率微调的研究。最后,尽管我们假设从ERM获取的嵌入是单位范数(即 ℓ_2 归一化),但我们提出的PEFA技术可以轻松地扩展到非单位范数的情况,只需更改用于KNN的距离度量⁺即可。

Proposed Framework

$$f_{\text{PEFA} \setminus \text{xspace}}(\hat{\boldsymbol{q}}, \boldsymbol{p}_i) = \lambda \cdot f_{\text{ERM} \setminus \text{xspace}}(\hat{\boldsymbol{q}}, \boldsymbol{p}_i) + (1 - \lambda) \cdot f_{\text{kNN} \setminus \text{xspace}}(\hat{\boldsymbol{q}}, \boldsymbol{p}_i)$$

 $\lambda \in [0,1]$ 是插值超参数,用于平衡ERM和KNN模型的重要性。PEFA是一种学习自由的框架,这意味着heta不会被改变,而公式只在推理时应用。

$$f_{ ext{kNN}\setminus ext{xspace}}(\hat{oldsymbol{q}},oldsymbol{p}_j) = \left\langle \hat{oldsymbol{q}}, \mathbf{Q}^ op \mathbf{D}(\hat{oldsymbol{q}}, \mathbf{Q}) \mathbf{Y}_{:,j}
ight
angle$$

其中

$$\mathbf{D}(\hat{oldsymbol{q}},\mathbf{Q}) \in \mathbb{R}^{n imes n}$$

的归一化对角矩阵,它像一个门机制,控制当前测试Query $\hat{m q}$ 应该关注的训练Query集。在给定这个矩阵的情况下,我们可以将其代入公式中,得到PEFA的具体评分函数。

$$f_{\text{PEFA} \backslash \text{xspace}}(\hat{\boldsymbol{q}}, \boldsymbol{p}_j) = \lambda \big\langle \hat{\boldsymbol{q}}, \boldsymbol{p}_j \big\rangle + (1 - \lambda) \big\langle \hat{\boldsymbol{q}}, \mathbf{Q}^\top \mathbf{D}(\hat{\boldsymbol{q}}, \mathbf{Q}) \mathbf{Y}_{:,j} \big\rangle$$

其中,基于设计的对角矩阵 $^+$ $\mathbf{D}(\hat{q},\mathbf{Q})$

这种实现方式有两种,分别是PEFA-XL (第3节)和PEFA-XS (第4节)。

PEFA-XL

KNN模型的一个标准实现是,测试查询 \hat{q} 只关注Q中最相似的前k个训练查询。 具体来说,如果某个训练Queryi在

$\mathrm{NN}(\hat{oldsymbol{q}},\mathbf{Q};k)$

中,则其在对角矩阵 $\mathbf{D}(\hat{q},\mathbf{Q})$

中的元素为1,否则为0。因此,可以由上述定义得到式中的KNN模型。

$$f_{ ext{kNN}\setminus ext{xspace}}(\hat{m{q}},m{p}_j) = \left\langle \hat{m{q}},\sum_{i=1}^n (\mathbf{D}_{i,i}\mathbf{Y}_{i,j})\cdotm{q}_i
ight
angle = \sum_{i\in ext{NN}(\hat{m{q}},\mathbf{Q}:k)} \left\langle \hat{m{q}},m{q}_i
ight
angle \cdot \mathbf{Y}_{i,j}$$

通过将式中带有查询感知的KNN模型插值+到式中,

$$f_{ ext{PEFA-XL}\setminus ext{xspace}}(\hat{m{q}},m{p}_j) = \lambda ig\langle \hat{m{q}},m{p}_j ig
angle + (1-\lambda) \sum_{i \in ext{NN}(\hat{m{q}},\mathbf{Q};k)} ig\langle \hat{m{q}},m{q}_i ig
angle \cdot \mathbf{Y}_{i,j}$$

在这个过程中,,KNN模型通过聚合训练Query的相关段落来生成匹配集。需要注意的是,式中 $f_{\mathrm{ERM}\setminus\mathrm{xspace}}$ 的评分函数在内积两个单位形式嵌入时被限制在[-1,1]范围内,这是因为余弦相似性 $^+$ 的内积范围是有限的。另一方面,式中 $f_{\mathrm{kNN}\setminus\mathrm{xspace}}$ 的评分函数需要额外的归一化以便其分数能够调整为 $f_{\mathrm{ERM}\setminus\mathrm{xspace}}$ 。

为了达到这个目的,建议将 $f_{
m kNN\backslash xspace}$ 归一化为k,即将某些点的权值设置为k/1。这样可以使 $f_{
m kNN\backslash xspace}$ 的值调整为与 $f_{
m ERM\backslash xspace}$ 相同,但不会超出[0,1]的范围。

PEFA-XS

知平

PEFAxl通过近似地使用目标段落 $oldsymbol{p_i} \in \mathcal{P}$

的相应Query集 $\mathcal{I}(\pmb{p}_j, \mathbf{Y})$

来代替 $\mathbf{NN}(\hat{q}, \mathcal{Q}; k)$

结果的对角矩阵 $\mathbf{D}_{i,i} = 1$ 如果 $i \in \mathcal{I}(p_i, \mathbf{Y})$

其他 $\mathbf{D}_{i,i}=0$ 。

$$f_{ ext{kNN}\setminus ext{xspace}}(\hat{m{q}},m{p}_j) = \left\langle \hat{m{q}},\sum_{i\in\mathcal{I}(m{p}_i,\mathbf{Y})}\mathbf{Y}_{i,j}\cdotm{q}_i
ight
angle = \left\langle \hat{m{q}},\mathbf{Q}^{ op}\mathbf{Y}_{:,j}
ight
angle$$

通过近似地使用Query独立的kNN模型插入到PEFAxl评分函数中,提出了PEFAxs的评价函数。

$$f_{\text{PEFA-XS}\backslash \text{xspace}}(\hat{\boldsymbol{q}},\boldsymbol{p}_j) = \lambda \big\langle \hat{\boldsymbol{q}},\boldsymbol{p}_j \big\rangle + (1-\lambda) \big\langle \hat{\boldsymbol{q}},\mathbf{Q}^\top \mathbf{Y}_{:,j} \big\rangle$$

在实现时,图形显示了PEFAxs的方法。与PEFAxl的实现相似,需要对评分函数 $f_{kNN\setminus xspace}$ 进行归一化,使其得分为1。为此,引入了 ℓ_2 归一化操作器

$$\Pi(oldsymbol{x}) = rac{oldsymbol{x}}{\|oldsymbol{x}\|}$$

它将嵌入映射⁺回单位球上。然后,可以将PEFAxs的评分函数重写为

$$ilde{f}_{ ext{kNN}\setminus ext{xspace}} = \Pi(f_{ ext{kNN}\setminus ext{xspace}} + rac{1}{n}\sum_{i}^{n}(\Pi^{-1}\mathbf{e}_{i})^{T}\mathbf{x})$$

$$egin{aligned} f_{ ext{PEFA-XS}\setminus ext{xspace}}(\hat{oldsymbol{q}}, oldsymbol{p}_j) &= \left\langle \hat{oldsymbol{q}},
ight. \ \lambda \cdot oldsymbol{p}_j + (1-\lambda) \cdot \Pi(\mathbf{Q}^ op \mathbf{Y}_{:,j})
ight
angle \end{aligned}$$

Experiments on Document Retrieval

Datasets & Evaluation Protocols

本节将讨论两个用于文档检索的公共基准数据集,分别是Natural Questions和TriviaQA。

- Natural Questions: 这是开放领域问答数据集,有320k个Query-文档对,其中包含答案的文档是从维基百科收集的,而Query是用自然语言提出的。我们使用的是通常称为NQ的数据集。
- TriviaQA: 这是一个阅读理解数据集,有来自维基百科*域的78k个Query-文档对。我们使用与相同版本的数据集。

知平

是通过召回率 $^{+}$ 来衡量性能,这是在检索社区中广泛使用的。具体来说,对于一个预测得分向量 $\hat{\pmb{y}} \in \mathbb{R}^n$

和一个真实的标签向量 $\boldsymbol{y} \in \{0,1\}^n$, Recall\@k定义为

Recall@
$$k = rac{1}{|m{y}|} \sum_{j \in \mathrm{top}_k(\hat{m{y}})} m{y}_j$$

其中 $\mathrm{top}_k(\hat{m{y}})$

表示具有第水大预测得分的标签。

Implementation Details

我们的PEFA框架可以应用于任何黑箱无监督学习方法。我们将PEFA应用到各种竞争性无监督学习模型,如超大规模预训练语言模型BERT、大规模自注意力机制⁺模型DPR、微调网络模型MPNet、搜索五点模型STfive以及不同寻常的搜索(Graph Transformer)模型GTR。此外,本段话还讨论了超参数设置。PEFA有两个超参数,即插值系数**》**和近邻数**k**。我们在第4部分进行了超参数选择的分析,在

$$\lambda = \{0.1, 0.3, 0.5, 0.7, 0.9\}$$

和 $k=\{16,32,64\}$ 的情况下进行了比较。当 $\lambda=1.0$ 时,PEFA退化回其基础无监督学习模型。对于无监督索引搜索,我们考虑HNSW作为搜索算法 $^+$,并根据现有工作进行超参数设置。在索引构建阶段,最大边每节点的数量为M=32,优先队列 $^+$ 大小为构造图的最大优先级为efC=500。在线服务阶段,图搜索的beam宽度为efS=300。

Main Results

Methods	Recall@10	Recall@100
BM-25	32.48	50.54
DSI (base) [53]	56.60	-
NCI (base) [56]	85.20	92.42
SEAL (large) [2]	81.24	90.93
Sent-BERT _{distill} [45]	67.08	81.40
+PEFA-XS (ours)	80.52	92.22
+PEFA-XL (ours)	85.26	92.53
DPR _{base} [29]	70.68	85.19
+PEFA-XS (ours)	83.45	92.22
+PEFA-XL (ours)	84.65	92.07
MPNet _{base} [50]	80.82	92.39
+PEFA-XS (ours)	86.67	94.53
+PEFA-XL (ours)	88.72	95.13
Sentence-T5 _{base} [41]	73.63	88.16
+PEFA-XS (ours)	82.52	92.18
+PEFA-XL (ours)	83.69	92.55
GTR _{base} [42]	79.74	90.91
+PEFA-XS (ours)	84.90	93.28
+PEFA-XL (ours)	88.71	94.36
Avg. Gain of PEFA-XS over ERM	+9.22	+5.28
Avg. Gain of PEFA-XL over ERM	+11/327	@Smart45.72

、 $\mathbf{DPR_{base}}$ 、 $\mathbf{MPNet_{base}}$ 、 $\mathbf{GTR_{base}}$)进行微调,并在。。10和召回\@100方面的平均增益达9.22%和5.29%,而%和5.20%。对于竞争性强的ERMs,如 $\mathbf{GTR_{base}}$,2Seq方法-----NCI。当添加,使用10和召回\@100分别为88.72%和94.13%,远高于之前最先进的方法-----NCI。

在表中,对比使用-文档对进行微调的情况。通过这种方法,我们评估了。结果显示,在召回\@20的情况下,,其中18.67%的平均增益,而17.07%的平均增益。需要注意的是,这两种模型都没有针对下游任务进行微调。

Ablation Studies

ERM	PEFA	Recall@100 of various λ				
EKW		0.1	0.3	0.5	0.7	0.9
	PEFA-XS	91.48	92.22	91.71	89.87	87.08
DPR_{base}	PEFA-XL (k=16)	91.98	90.66	89.72	88.54	87.62
	PEFA-XL (k=32)	92.07	90.50	89.20	88.62	87.46
	PEFA-XL (k=64)	91.93	89.89	88.95	88.39	87.04
Sentence-T5 _{base}	PEFA-XS	91.23	92.16	92.20	91.61	89.72
	PEFA-XL (k=16)	92.53	91.25	90.82	90.69	90.24
	PEFA-XL (k=32)	92.34	91.20	90.96	90.77	90.11
	PEFA-XL (k=64)	92.22	91.26	91.03	90.70	89.90
	PEFA-XS	92.11	93.07	93.31	92.85	91.74
GTR_{base}	PEFA-XL (k=16)	94.36	93.32	92.81	92.53	91.93
	PEFA-XL (k=32)	94.32	93.23	92.82	92.44	91.79
	PEFA-XL (k=64)	93.93	93.14	52.76	92.29	91.62

在表中,对: λ 是平衡 $f_{(erm)}$ 和 $f_{(km)}$ 的系数 k是用于控制 $f_{(km)}$ 中的最近邻数量。研究发现,当 $0.0 < \lambda < 1.0$ 时,无论1.0为,100始终较高。对于PEFA-XL,当 $\lambda = 0.5$ 和 $\lambda = 0.1$ 时,平均增益大多达到最大值。此外,线性插值⁺,因此不会增加任何推理延迟开销相对于。而对于PEFA-XL,除了超参数 $^*\lambda$ 之外,还有一个超参数 $^*\lambda$,当 $^*k=32$ 时,性能通常达到饱和。

Experiments on Product Search

我们在大规模产品搜索系统上做了实验,证明了,不仅能提供多种预训练的,还能提供全参数微调 的

Datasets & Evaluation Protocols

根据目录大小 $n = | \mathcal{P}$, 我们构造三个子集。

- ProdSearch-5M: 大约包含3千万条相关Query-产品对,涵盖了约1千万个Query和5百万个产品。
- ProdSearch-15M: 大约包含1.5亿条相关Query-产品对,涵盖了约4千万个Query和15百万个产品。
- ProdSearch-30M: 大约包含5亿条相关Query-产品对,涵盖了约1亿个Query和30百万个产品。

对于所有的ProdSearch数据集,数据统计并不反映实际的电子商务系统的流量,因为涉及隐私问题。所有相关的Query-产品对是匿名汇总搜索日志中的随机样例。我们进一步将这些对分为训练集和测试集⁺,通过时间范围进行划分,在这里,我们使用前十二个⁺月的搜索日志作为训练集,最后一个月的搜索日志作为评估测试集。

为了消除对我们,所有的测试Query在训练集中都是未见的。为了避免透露生产系统的确切性能,我们报告了在基线。我们还报告了离线索引阶段的ANN索引大小(GiB)和索引构建时间(小时)。在线推理阶段,按照ANN基准协议 ,我们考虑单线程设置,并报告了Query延迟(毫秒/Query)。

Methods	ProdSearch-5M		ProdSearch-15M		ProdSearch-30M	
Methous	Recall@100	Recall@1000	Recall@100	Recall@1000	Recall@100	Recall@1000
MPNet _{base} [50]	0.00	0.00	0.00	0.00	0.00	0.00
+PEFA-XS (ours)	11.23	13.14	5.05	11.79	9.67	17.47
+PEFA-XL (ours)	22.83	12.31	23.48	21.56	27.22	18.96
Sentence-T5 _{base} [41]	0.44	3.42	1.32	3.44	1.89	5.17
+PEFA-XS (ours)	13.63	17.13	10.39	16.34	13.18	21.28
+PEFA-XL (ours)	23.09	13.43	23.91	23.72	30.10	21.25
GTR _{base} [42]	7.85	9.23	6.75	10.33	8.35	9.83
+PEFA-XS (ours)	17.32	19.55	16.83	25.00	18.49	24.38
+PEFA-XL (ours)	27.79	19.23	27.87	28.75	31.71	24.28
E5 _{base} [54]	9.93	9.75	9.98	12.98	12.01	12.61
+PEFA-XS (ours)	19.23	19.18	17.21	27.78	20.11	26.08
+PEFA-XL (ours)	26.83	17.75	30.48	31.07	31.91	25.49
FT-ERM [40]	21.32	20.87	21.74	30.04	18.49	24.11
+PEFA-XS (ours)	23.42	22.17	26.34	34.84	23.79	29.61
+PEFA-XL (ours)	29.32	22.87	36.54	37.24	32.99	30.01
Avg. Gain of PEFA-XS	16.97	18.23	15.16	23.15	F @3705	rtMinc2A.76
Avg. Gain of PEFA-XL	25.97	17.12	28.46	28.47	30.79	24.00

在表中,我们将ERMs(例如MPNetbase、

Sentence-T5_{base}

、 $\mathbf{E5}_{\mathrm{base}}$)和微调后的ERMs(FT-ERM)。由于对专有产品搜索数据集的隐私考虑,我们只报告了与其他基线(即 $\mathbf{MPNet}_{\mathrm{base}}$)相比绝对召回率的提高。 如果没有PEFA,预训练的FT-ERM,后者经过精心预训练和微调。添加,使其与甚至优于微调后的。以最大的数据集。向

Sentence- $T5_{base}$

、100的30.10%、31.71%和31.91%。这些召回率\@100的提升已经超过了微调后的FTERM。另一方面,。只有 $\mathbf{E5}_{\mathrm{base}}$ +

100比微调后的。类似于,我们也发现。例如,在最大的数据集,100分别提高了

5.3\%和14.50\%

发布于 2024-03-26 12:37 · IP 属地北京

还没有评论,发表第一个评论吧

推荐阅读