Instructor(s): Panagiotis E. Souganidis

Agustín Esteva aesteva@uchicago.edu

Due Date: 2024-27-01

Problem 1

Prove Hölder's inequality. Suppose that $n \in \mathbb{N}$ and $\frac{1}{q} + \frac{1}{p} = 1$ with $1 \leq p < \infty$. Let $(a_k), (b_k) \in \mathbb{R}$ with $1 \leq k \leq n$, then

$$\sum_{k=1}^{\infty} [a_k b_k] \le \left(\sum_{k=1}^{\infty} [a_k]^p\right)^{\frac{1}{p}} \left(\sum_{k=1}^{\infty} [b_k]^q\right)^{\frac{1}{q}}$$

Solution: Consider the degenerate case when

$$\sum_{k=1}^{n} [a_k]^p = \sum_{k=1}^{n} [a_k]^q = 1 \tag{1}$$

By properties of log, it is obvious that

$$\log(a_k b_k) = \frac{1}{p} \log([a_k]^p) + \frac{1}{q} \log([b_k]^q).$$

By the convexity of log (I talk more about this later), we have that

$$\frac{1}{p}\log([a_k]^p) + \frac{1}{q}\log([b_k]^q) \le \log\left(\frac{1}{p}[a_k]^p + \frac{1}{q}[b_k]^q\right).$$

By monotonocity of log, we thus have that

$$a_k b_k \le \frac{1}{p} [a_k]^p + \frac{1}{q} [b_k]^q \implies \sum_{k=1}^n [a_k b_k] \le \sum_{k=1}^n \left[\frac{1}{p} [a_k]^p + \frac{1}{q} [b_k]^q \right] = \frac{1}{p} \sum_{k=1}^n [a_k]^p + \frac{1}{q} \sum_{k=1}^n [b_k]^q = 1.$$

Thus, we get the result that when (1) holds, we have that

$$\sum_{k=1}^{n} [a_k b_k] \le 1. \tag{2}$$

Consider now any (a_k) and (b_k) . Consider

$$c_k = \frac{a_k}{\left(\sum_{k=1}^n [a_k]^p\right)^{\frac{1}{p}}}, \implies \sum_{k=1}^n [c_k]^p = \frac{\sum_{k=1}^n [a_k]^p}{\sum_{k=1}^n [a_k]} = 1.$$

$$d_k = \frac{b_k}{(\sum_{k=1}^n [b_k]^q)^{\frac{1}{q}}} \implies \sum_{k=1}^n [b_k]^q = 1.$$

Thus, we see that c_k and d_k satisfy (1) and thus use (2), which yields

$$\sum_{k=1}^{n} [c_k d_k] = \sum_{k=1}^{n} \left[\frac{a_k}{\left(\sum_{k=1}^{n} [a_k]^p\right)^{\frac{1}{p}}} \right] \left[\frac{b_k}{\left(\sum_{k=1}^{n} [b_k]^q\right)^{\frac{1}{q}}} \right] \le 1.$$

Multipying by the denominator (and taking $n \to \infty$) yields Hölder's Inequality.

For the case when $p = \infty$, we will show that

$$\lim_{p \to \infty} ||a||_p = ||a||_{\infty} = A$$

Consider that for any n, we have that by taking limits

$$\sum_{k=1}^{\infty} |a_k|^p \ge |a_n|^p \implies ||a||_{\infty} \le ||a||_p.$$

On the other hand, we have that since $a \in \ell^p$, then

$$\sum_{k=1}^{\infty} |a_k|^p < \infty,$$

Thus, there must exist some C such that

$$\sum_{k=1}^{\infty} \left| \frac{a_k}{A} \right|^p \le C \implies \left(\sum_{k=1}^{\infty} \left| \frac{a_k}{A} \right|^p \right)^{\frac{1}{p}} = C^{\frac{1}{p}}.$$

By homogeneity, we have that

$$||a||_p \le C^{\frac{1}{p}} ||a||_{\infty}.$$

Since for large p, we have that $|C^{\frac{1}{p}} - 1| < \epsilon$, then

$$||a||_p \le C^{\frac{1}{p}} ||a||_{\infty} \to ||a||_{\infty}$$

Thus, as $p \to \infty$, we have that $||a||_p = ||a||_{\infty}$. Moreover, as $p \to \infty$, we have that $q \to 1$, and thus

$$\left(\sum_{k=1}^{\infty} |b_k|^q\right)^{\frac{1}{q}} = \sum_{k=1}^{\infty} |b_k|.$$

so it suffices to show that

$$\sum_{k=1}^{n} a_k b_k \le ||a||_{\infty} ||b||_1,$$

which is obvious, since

$$a_k b_k \le ||a||_{\infty} b_k \implies \sum_{k=1}^{\infty} a_k b_k \le ||a||_{\infty} \sum_{k=1}^{\infty} b_k.$$

Reflections: Here we use the fact that if f is convex, then for all x, y and for all $0 < \alpha < 1$, we have that

$$f(\alpha x + (1 - \alpha)y) \ge \alpha f(x) + (1 - \alpha)f(y).$$

To see that $f(x) = \log(x)$ is convex, take the second derivative:

$$f'(x) = \frac{1}{x}$$
, $f''(x) = \frac{-1}{x^2} < 0 \ \forall x \in \mathbb{R} \setminus 0$

Prove Minkowski's Inequality. Suppose that $(a_k), (b_k) \in \mathbb{R}$ and that $n \in \mathbb{N}$ and $1 \leq k \leq n$. If $1 \leq p < \infty$, then

$$\left(\sum_{k=1}^{n} |a_k + b_k|^p\right)^{\frac{1}{p}} \le \left(\sum_{k=1}^{n} |a_k|^p\right)^{\frac{1}{p}} + \left(\sum_{k=1}^{n} |b_k|^p\right)^{\frac{1}{p}}$$

SOLUTION: By the triangle inequality, we have that

$$|a_k + b_k|^p = |a_k + b_k||a_k + b_k|^{p-1} \le |a_k||a_k + b_k|^{p-1} + |b_k||a_k + b_k|^{p-1},$$

and thus

$$\sum_{k=1}^{n} |a_k + b_k|^p \le \sum_{k=1}^{n} |a_k| |a_k + b_k|^{p-1} + \sum_{k=1}^{n} |b_k| |a_k + b_k|^{p-1}.$$
(3)

Applying Hölder's inequality to both terms using $\frac{1}{p}$ and $\frac{p-1}{p}$:

$$\sum_{k=1}^{n} |a_k| |a_k + b_k|^{p-1} \le \left(\sum_{k=1}^{n} |a_k|^p\right)^{\frac{1}{p}} \left(\sum_{k=1}^{n} |a_k + b_k|^p\right)^{\frac{p-1}{p}}$$

$$\sum_{k=1}^{n} |b_k| |a_k + b_k|^{p-1} \le \left(\sum_{k=1}^{n} |b_k|^p \right)^{\frac{1}{p}} \left(\sum_{k=1}^{n} |a_k + b_k|^p \right)^{\frac{p-1}{p}}.$$

Putting those back into (3):

$$\sum_{k=1}^{n} |a_k + b_k|^p \le \left(\left(\sum_{k=1}^{n} |a_k|^p \right)^{\frac{1}{p}} + \left(\sum_{k=1}^{n} |b_k|^p \right)^{\frac{1}{p}} \right) \left(\sum_{k=1}^{n} |a_k + b_k|^p \right)^{\frac{p-1}{p}}$$

$$= \left(\left(\sum_{k=1}^{n} |a_k|^p \right)^{\frac{1}{p}} + \left(\sum_{k=1}^{n} |b_k|^p \right)^{\frac{1}{p}} \right) \frac{\left(\sum_{k=1}^{n} |a_k + b_k|^p \right)}{\left(\sum_{k=1}^{n} |a_k + b_k|^p \right)^{\frac{1}{p}}}$$

Multiplying both sides by

$$\left(\frac{\left(\sum_{k=1}^{n}|a_k+b_k|^p\right)}{\left(\sum_{k=1}^{n}|a_k+b_k|^p\right)^{\frac{1}{p}}}\right)^{-1}$$

yields Minkowski's inequality.

For the case when $p = \infty$, we have seen that

$$||a+b||_p = ||a+b||_{\infty},$$

and thus since (we will prove this in a later problem)

$$\sup_{n} |a_n + b_n| \le \sup_{n} |a_n| + \sup_{n} |b_n|,$$

then

$$||a+b||_{\infty} \le ||a||_{\infty} + ||b||_{\infty},$$

and so the inequality does hold.

Show that ℓ^p is a Banach Space with the p-norm from above when $p \in [1, \infty)$ and when $p = \infty$, show it is a Banach space with $||a||_{\infty} = \sup_{n} |a_n|$

SOLUTION: For the following, let $a=(a_n)=(a_1,a_2,\dots)\in \ell^p$. Starting when $p\in [1,\infty)$, we have that if $a_n\neq (0,0,0,\dots)$, then there exists some $a_i\in (a_n)$ such that $|a_i|>0$, and thus

$$||a_n|| = \left(\sum_{i=1}^{\infty} |a_i|^p\right)^{\frac{1}{p}} > 0.$$

By the absolute value, we obviously have that $||a_n|| = 0$ if and only if $a_n = (0, 0, ...)$. Let $\lambda \in \mathbb{R}$.

$$\|\lambda a\| = \left(\sum_{n=1}^{\infty} |\lambda a_n|^p\right)^{\frac{1}{p}} = \left(\sum_{n=1}^{\infty} |\lambda|^p |a_n|^p\right)^{\frac{1}{p}} = \left(|\lambda|^p \sum_{n=1}^{\infty} |a_n|^p\right)^{\frac{1}{p}} = |\lambda| \left(\sum_{n=1}^{\infty} |a_n|^p\right)^{\frac{1}{p}} = |\lambda| \|a\|$$

Using problem 2 (Minkowski's inequality), we have inmediately that

$$||a+b|| = \left(\sum_{k=1}^{n} |a_k + b_k|^p\right)^{\frac{1}{p}} \le \left(\sum_{k=1}^{n} |a_k|^p\right)^{\frac{1}{p}} + \left(\sum_{k=1}^{n} |b_k|^p\right)^{\frac{1}{p}} = ||a|| + ||b||$$

To show it is complete, take a Cauchy sequence $(a_n) = (a_n^{(i)})_{n \in \mathbb{N}} \in \ell^p$. That is,

$$(a_n^{(i)})_{n\in\mathbb{N}} = (a_1^{(i)}, a_2^{(i)}, \dots)_{i\in\mathbb{N}}$$

such that for all $\epsilon > 0$, there exists an N such that if $n, m \geq N$, then

$$||a_n - a_m|| = \left(\sum_{i=1}^{\infty} |a_n^{(i)} - a_m^{(i)}|^p\right)^{\frac{1}{p}} < \epsilon$$

We claim that for each fixed i, $(a_n^{(i)})$ converges to some $a^{(i)}$. To see this, we claim that $(a_n^{(i)})$ is/are Cauchy. Take i = 1, then for any $n, m \ge N$, we have that

$$\left(\sum_{i=1}^{\infty} |a_n^{(i)} - a_m^{(i)}|^p\right)^{\frac{1}{p}} = \left(|a_n^{(1)} - a_m^{(1)}|^p + \sum_{i=2}^{\infty} |a_n^{(i)} - a_m^{(i)}|^p\right)^{\frac{1}{p}} < \epsilon,$$

and thus

$$|a_n^{(1)} - a_m^{(1)}| < \left(\epsilon^p - \sum_{i=2}^n |a_n^{(i)} - a_m^{(i)}|^p\right)^{\frac{1}{p}} \to 0.$$

Thus, we have that for $n, m \ge N$ (notice how this choice of has not at any point depended on our choice of i = 1), then

$$|a_n^{(1)} - a_m^{(1)}| < \epsilon,$$

and thus $(a_n^{(1)})$ is a Cauchy sequence of reals. Thus, it converges, $(a_{n,1}) \to a^{(1)}$. Because there was nothing special about i = 1, we have that for all $i \in \mathbb{N}$, there exists a limit $a^{(i)} \in \mathbb{R}$ such that for each fixed i,

$$a_n^{(i)} \to a^{(i)}$$
.

Let $(A_n) = (a^{(1)}, a^{(2)}, \dots) = (a^{(i)})_{i \in \mathbb{N}}$. We claim that $(a_n^{(i)})_{n \in \mathbb{N}} \to (A_n)$. Let $\epsilon > 0$. Since each $a_n^{(i)} \to a^{(i)}$ (in a 'uniform' sense, as we have a single N controlling the convergence of all i, as seen by the indifference of choosing N in the i = 1 calculation above) we let $n \geq N$ such that

$$|a_{n,i} - a^{(i)}| < \frac{\epsilon}{2^{\frac{i}{p}}},$$

then

$$\|(a_n) - A_n\| = \left(\sum_{i=1}^{\infty} |a_{n,i} - a^{(i)}|^p\right)^{\frac{1}{p}}$$

$$< \left(\sum_{i=1}^{\infty} \frac{\epsilon^p}{2^i}\right)^{\frac{1}{p}}$$

$$= (\epsilon^p)^{\frac{1}{p}}$$

$$= \epsilon.$$

In the case when $p = \infty$, I think that the positive definiteness of ||a|| is obvious.

Homogeneity is also kinda obvious, noting that

$$\|\lambda a\| = \sup_{n \in \mathbb{N}} |\lambda a_n| = |\lambda| \sup_{n \in \mathbb{N}} |a_n| = \lambda \|a\|$$

Triangle inequality follows from triangle inequality since for any n:

$$|a_n + b_n| \le |a_n| + |b_n| \implies \sup_{n \in \mathbb{N}} |a_n + b_n| \le |a_n| + |b_n| \le \sup_{n \in \mathbb{N}} |a_n| + \sup_{n \in \mathbb{N}} |b_n|.$$

Thus, we have that

$$||a+b|| = \sup_{n \in \mathbb{N}} |a_n + b_n| \le \sup_{n \in \mathbb{N}} |a_n| + \sup_{n \in \mathbb{N}} |b_n| = ||a|| + ||b||$$

Let $(a_n) = (a_n^{(i)})_{n \in \mathbb{N}} = (a_{1,i}, a_{2,i}, \dots) \in \ell^{\infty}$ be Cauchy. That is, for all $\epsilon > 0$, there exists an $N \in \mathbb{N}$ such that if $n, m \geq N$, then

$$||a_n^{(i)} - a_m^{(i)}|| = \sup_{i \in \mathbb{N}} |a_n^{(i)} - a_m^{(i)}| < \epsilon.$$

Fix i. Then we have that there exists an $N \in \mathbb{N}$ such that if $n, m \geq N$, then

$$|a_n^{(i)} - a_m^{(i)}| \le \sup_{i \in \mathbb{N}} |a_n^{(i)} - a_m^{(i)}| < \epsilon,$$

which implies that for fixed i, $(a_n^{(i)})_{n\in\mathbb{N}}$ is Cauchy sequence of reals, and thus converges to something. For each i, let

$$a_n^{(i)} \rightarrow a^{(i)}$$
.

Then we have that if $(A_n) = (a^{(1)}, a^{(2)}, \dots)$, then for all $\epsilon > 0$, there exists an $N \in \mathbb{N}$ such that if $n \geq N$, then

$$|a_n^{(i)} - a^{(i)}| < \epsilon$$
 $\forall \epsilon \implies ||a_n^{(i)} - A_n|| = \sup_{i \in \mathbb{N}} |a_{n,i} - a^{(i)}| \le \epsilon.$

It suffices to show that $(A_n) \in \ell^p$. To see this, it will suffice to see that $||(A_n)||_p < \infty$ for any $p \in [1, \infty]$. Using Minkowski's inequality (which we have seen in valid for all $p \ge 1$,) we see that for large enough n,

$$\|(A_n)\|_p \le \|(A_n) - a_n^{(i)}\|_p + \|a_n^{(i)}\|_p < \epsilon + \|a_n^{(i)}\|_p.$$

Since for each n, we have that $a_n^{(i)} \in \ell^p$, then $||a_n^{(i)}||_p < \infty$, and thus $||(A_n)||_p < \infty$, and thus $||(A_n)||_p < \infty$.

Prove that $c_0 = \{(a_n)_{n \in \mathbb{N}} \in l^{\infty} : \lim_{n \to \infty} a_n = 0\}$ is a Banach space with norm $||a||_{\infty}$.

SOLUTION: We claim that it suffices to show that c_0 is closed. Why? Let $W \subset V$, where V is Banach and W is closed. The $(x_n) \in W$ be Cauchy, then it inherits from the subspace vector space to the super space Banach space, and thus (x_n) is Cauchy in W, implying that (x_n) converges to some $x_n \to x$. Since W is closed, we have that $x \in W$, and thus W is Banach.

Let $(a_n^i)_{n\in\mathbb{N}}^{i\in\mathbb{N}}=(a_1^i,a_2^2,\dots)\in c_0$ such that $(a_n^i)\to a^i=(a^{(1)},a^{(2)},\dots)$. We want to show that $a^i\in c_0$, so it suffices that $\lim_{i\to\infty}a^i=0$. Since $(a_n^i)\to a^i$, we have that there exists an $N_1\in\mathbb{N}$ such that if $m\geq N_1$, then

$$||a_m^i - a^i|| < \frac{\epsilon}{2}.$$

Since $(a_n^i) \in c_0$, then there exists an N_2 such that if $m \geq N_2$, then

$$||a_m^i|| < \frac{\epsilon}{2}.$$

Thus, take $N = \max\{N_1, N_2\}$, and we have that if $m \geq N$, then

$$||a^i|| \le ||a^i - a_m^i|| + |a_m^i| < \epsilon$$

Thus, $a^i \in c_0$ and so c_0 is closed and so c_0 is Banach.

Let $p \in [1, \infty)$ and 1/p + 1/q = 1. Show that, for any $b \in l^q$, the map $F_b : l^p \to \mathbb{R}$ given by

$$F_b(a) = \sum_{k=1}^{\infty} a_k b_k$$

is a bounded linear functional on ℓ^p .

Solution: For the following, we let $b \in \ell^q$ be arbitrary, noting that

$$||b||_q = C < \infty$$

by definition of it being the the ℓ^q space.

Evidently, F_b is a functional. To show it is linear, let $a, c \in \ell^p$ and $\lambda \in \mathbb{R}$. We use the linearity of the sum:

$$F_b(\lambda a + c) = \sum_{k=1}^{\infty} (\lambda a_k + c_k)b_k = \sum_{k=1}^{\infty} \lambda a_k b_k + c_k b_k = \lambda \sum_{k=1}^{\infty} a_k b_k + \sum_{k=1}^{\infty} c_k b_k = \lambda \lambda F_b(a) + F_b(c).$$

TO show it is bounded, we use Hölder's inequality. Let $a \in \ell^p$, then

$$|F_b(a)| = |\sum_{k=1}^{\infty} a_k b_k|$$

$$\leq \sum_{k=1}^{\infty} |a_k b_k|$$

$$\leq \left(\sum_{k=1}^{\infty} [a_k]^p\right)^{\frac{1}{p}} \left(\sum_{k=1}^{\infty} [b_k]^q\right)^{\frac{1}{q}}$$

$$= ||a||_p ||b||_q$$

$$= C||a||_p$$