

The state of the state of

NPS61-78-002

NAVAL POSTGRADUATE SCHOOL

Monterey, California

EXPERIMENTAL INVESTIGATION
OF THE MARINE BOUNDARY LAYER
IN SUPPORT OF AIR POLLUTION STUDIES
IN THE LOS ANGELES AIR BASIN

G. E. Schacher, C. W. Fairall, K. L. Davidson, and T. M. Houlihan

February 1978

Approved for public release; distribution unlimited

Prepared for: California Air Resources Board Sacramento, California 95814

NAVAL POSTGRADUATE SCHOOL Monterey, California

Rear Admiral I. W. Linder Superintendent

J. R. Borsting Provost

The work reported herein was supported in part by the California Air Resources Board, Sacramento, California.

Reproduction of all or part of this report is authorized.

This report was prepared by:

G. E. Schacher

Associate Professor of Physics

C. W. Fairall

Assistant Professor of Physics

k. L. Davidson

Associate Professor of Meteorology

T. M. Houlikar

Associate Professor of Mechanical Engineering

Approved by:

K. E. Woehler, Chairman

Department of Physics and Chemistry

William M Tolles

Acting Dean of Research

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

	PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
REPORT NUMBER	2. GOVT ACCESSION NO	3. RECIPIENT'S CATALOG NUMBER
NPS61-78-002		
. TITLE (and Subtitle)		5. TYPE OF REPORT & PERIOD COVERE
Experimental Investigation of th	e Marine Boun-	h
dary Layer in Support of Air Pol	lution Studies	Technical Report
in the Los Angeles Air Basin		6. PERFORMING ORG. REPORT NUMBER
. AUTHOR(•)		8. CONTRACT OR GRANT NUMBER(*)
G.E. Schacher, C.W. Fairall, K.L T.M. Houlihan	. Davidson, and	
PERFORMING ORGANIZATION NAME AND ADDRES	\$	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
V1 D111		
Naval Postgraduate School Monterey, CA 93940		N 622717WE70081
. CONTROLLING OFFICE NAME AND ADDRESS		12. REPORT DATE
California Air Resources Board	(1)	February 1978
1709 11th Street	Comme	13. NUMBER OF BAGES
Sacramento, CA 95814		257 (12/233p
MONITORING AGENCY NAME & ADDRESS(If different	ent from Controlling Office)	18. SECURITY CLASS. (of this report)
		UNCLASSIFIED
		15a. DECLASSIFICATION/DOWNGRADING
		SCHEDULE
Approved for public release; dis	tribution unlimi	ted.
Approved for public release; dis		
Approved for public release; dis		
Approved for public release; dis	d in Block 20, il different fr	om Report)
Approved for public release; dis	d in Block 20, if different fr displayed the second	om Report)
Approved for public release; dis	d in Block 20, if different fr displayed the second	om Report)
Approved for public release; dis	d in Block 20, if different fr displayed the second	om Report)
Approved for public release; dis	d in Block 20, if different fr displayed the second	om Report)
Approved for public release; dis	d in Block 20, if different from the state of the state o	om Report)
Approved for public release; dis 7. DISTRIBUTION STATEMENT (of the abetract entered 8. SUPPLEMENTARY NOTES	and identify by block number, as been used to oo obtain distribudata have been u	btain profiles of mean wind tions of temperature and sed to characterize the

DD , FORM 1473

EDITION OF 1 NOV 65 IS OBSOLETE S/N 0102-014-6601 |

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

been obtained which can be used as inputs for the land-sea boundary descriptions involved in current air pollution analyses.

"The statements and conclusions in this report are those of the contractor and not necessarily those of the California Air Resources Board. The mention of commercial products, their source or their use in connection with material reported herein is not to be construed as either and actual or implied endorsement of such products."

TABLE OF CONTENTS

		Page
I	Introduction	7
II	Participants, Experiments Performed	9
III	Equipment and Data Acquisition	11
IV	Data Reduction	15
v	Results	19
	A. Acoustic Sounder and Radiosonde	19
	B. Calculated Results	22
	C. Diurnal Variation and Land Influence	25
	D. Pollution Model Parameters	27
	E. Stability Corrections	29
Appe	andix A - Basic Data	A-1
	A. Ship Course	A-1
	B. Wind Speed and Direction	A-1
	C. Acoustic Sounder	A-3:
	D. Radiosonde	A-69
	E. Temperature and Humidity	A-9:
Appe	endix B - Calculated Results	B-1
Appe	endix C - Aerosol Results	C-1

ACCESSION	for		
NTIS	White	Section	×
DOC	Suff	Section	
MANHOUND	ED		
JUSTIFICAT	IOR		
DISTRIBUT	TIOR/AVAILAS		
	TIOR/AVAILAB		

LIST OF TABLES

- I Height and Strength of the Marine Inversion taken from Shipboard Radiosonde Data
- II Changes in Ship's Speed and/or Course
- III Relative and True Wind
- IV Summary of Acoustic Sounder Results
- V Sea Surface Temperature and Atmosphere Temperature and Relative Himmidity
- VI Calculated Results

LIST OF FIGURES

- a j Ship's Charts
- 2. a d Acoustic Sounder Recordings
- 3. a u Temperature vs. Height from Radiosonde
- 4. a b Richardson's Number and Momentum Flux vs. Time.

 The heavy solid curve is an estimated average of the data. The codes on the time axis refer to experiments listed in Section II.
- 5. Diurnal variation of Momentum Flux.

 The solid points are averages from all data. The open points are averages for data taken 30 miles at sea in the neighborhood of Catalina Island.
- 6. Momentum Flux vs. Wind Speed.

 The solid points are averages from data obtained near land. The open points are averages from at sea data.

 The solid lines are theoretical curves assuming roughness lengths of 0.01 and 0.1 cm.

I. Introduction

In July 1977 the Naval Postgraduate School (NPS) conducted a cruise aboard the R/V Acania of approximately two weeks duration (7/17 to 7/28) to the Los Angeles air basin. The basin is of great interest for meteorological studies because of its configuration, which, in conjunction with the prevalent marine inversion causes a severe air pollution problem. The purpose of this cruise was to conduct initial overwater studies of the area within 40 nautical miles of shore from Santa Barbara to Long Beach. There is a need for this type of work since very little data has been collected on the seaward boundary of the air basin. This means that there is insufficient data available to establish boundary conditions for current air pollution models. Since the westward boundary of the area is far out to sea, data must be collected from some type of overwater platform.

One of the main purposes of this cruise was to collect turbulence data on the boundaries of the California Air Resources Board (CARB) numerical air pollution diffusion model and at several locations within the boundary. This data was to be collected at several different times of day, and if possible, under different meteorological conditions. At the same time a fairly complete set of parameters were measured in order to specify the local atmospheric conditions. These data will be used to adjust the parameterization of the CARB model.

The second main endeavor of the NPS effort was to participate in an air flow trajectory experiment conducted by the California Institute of Technology (CIT). In this experiment a tracer gas (SF₆) was released from the smoke stacks of the El Segundo power plant and the air flow was traced by monitoring stations along the shore and by the R/V Acania. Thus, the ship

provided a portion of the tracer effort and the overwater meteorological support. Of course, the meteorological data was also used to expand the data base for the model studies.

A complete list of the various activities performed on the cruise is given in Section II.

This report will describe in detail, and report the results for the NPS effort on this cruise. Other groups, in particular the Air Resources Board, were major participants in the cruise and their results are reported elsewhere. Here we describe the other projects only very briefly, and no results are reported. Of course, the R/V Acania was the vehicle for all overwater experiments.

This was planned as the first of a number of cruises whose purpose would be to collect overwater data which would directly relate to air pollution studies. The period of time chosen was not necessarily the best for performing some of the studies (in particular the release of SF₆ from the power plant) but was a target of opportunity. However, since we hope to conduct several such cruises during different times of the year in order to test a wide range of conditions, the dates used are entirely appropriate. Also, as shall be seen below, the prevailing conditions were excellent for all of the experiments planned.

II. Participants, Experiments Performed

The various organizations other than NPS which participated in this cruise were:

California Air Resources Board (CARB)

Calspan Corporation

California Institute of Technology (CIT)

Naval Weather Service Facility (NWS)

Science Application, Inc. (SAI)

Western Oil & Gas Association (WOGA)

The principal activities of these groups were as follows:

CARB: Collect data on air pollutants, coordination between

shipboard and shore personnel, logistic support in

the Southern California area.

Calspan: Collect aerosol data, maintain meteorological conditions

log.

CIT: Conduct release and collection of tracer gases both on

ship and shore.

NWS: Perform radiosonde releases twice daily.

SAI: Observe shipboard operations and maintain a log for WOGA.

WOGA: Coordinate with oil tankers and drilling platforms.

The various experiments and the dates and times on which they were performed were:

17/0900 - 18/0230 Monitor open ocean aerosol and pollutant back-

ground levels.

18/0300 - 18/1000 Monitor aerosol and pollutants in Santa Barbara

Channel, measure oil platform emission levels.

	18/1945 - 19/0345	Near shore turbulence studies in Santa Monica Bay.
Tl	19/1100 - 19/1200	Monitor tanker emissions during non-transfer
		period.
	19/1430 - 19/1500	Cross check ship and shore instruments at Catalina.
Ml	19/1545 - 19/1730	At sea turbulence data.
T 2	20/0430 - 20/0820	Monitor emissions during tanker transfer operation.
P	20/1710 - 20/1800	Monitor drilling platforms.
M2	20/1820 - 20/2200	Turbulence data on Southern edge of CARB model.
мз	21/0000 - 21/2115	Santa Monica Bay CARB model studies.
Gl	21/2300 - 22/1100	Track tracer gas released from power plant on
		shore.
Т3	22/1700 - 22/2100	Monitor emissions during tanker transfer operation.
	22/2100 - 23/0830	Monitor pollutants and aerosols along coast from
		Del Mar area to Long Beach area.
s	23/1400 - 23/1800	Check turbulence results for various ship maneuvers.
G2	23/2300 - 24/1030	Track tracer gas released from power plant on shore.
	25/2100 - 26/0320	Turbulence study during light wind conditions.
G3	26/0530 - 26/1730	Release of tracer gas from ship along shipping
		lanes west of Los Angeles up to Santa Barbara area.
	27/0000 - 27/0445	Monitor oil drilling platforms in Santa Barbara
		Channel.
	27/2030 - 27/2230	Monitor aerosols and natural pollutants in
		vicinity of coal oil point.
	28/0500 - 28/0715	Release of tracer gas from ship west of Santa
		Barbara.

The letters and numbers preceding some of the times are codes used below for easy reference to the various experiments.

III. Equipment and Data Acquisition

The R/V ACANIA is 126 ft. long, and of narrow beam and low profile, which makes it ideal for meteorological work since disturbance of the local air flow is minimal. Sensors are located at four levels on two masts, one at the tip of the bow, and the second 15 ft. aft of bow. The forward mast has sensors located at 4.2 meters and 7 meters, those on the rearward mast are at 14.7 meters and 20.5 meters, where all heights are measured above the mean water line. Each level contains sensors for detecting both mean and fluctuating parameters, and on the top two levels the mean sensors are 0.7 meters below the fluctuation sensors.

A sea surface temperature sensor was suspended from a pole which extended 10 ft. beyond the tip of the bow. This sensor is mounted in a 300 gram brass plug in the end of a 6 ft. long by 3/4 inch piece of tygon tubing. The tubing floats and keeps the sensor on the surface (a depth of approximately 1 ft. is averaged because of bobbing caused by the ship's motion) and also protects the sensor from the sea water. The brass plug has a high heat capacity and smooths fluctuations in temperature that would be caused by the bobbing of the sensor.

An acoustic sounder for monitoring the temperature inversion was mounted on the ship's fantail. A special enclosure and mounting were constructed to attenuate the rather severe shipboard acoustic noise, which limits the usefulness of the device when the ship is underway. The normal range of the sounder is 1 kilometer, which is limited to approximately 500 meters when the ship is at full speed.

The mean sensors at the four levels above the surface are for wind speed, temperature and humidity. Wind speed is measured with cup anemometers

which have a threshold of 0.5 knots. Humidity sensors are Li Cl cells which have an accuracy of 3%. The temperature sensors are quartz thermometers (including the sea surface) which have an accuracy of 0.01°C. The temperature and humidity sensors are placed in aspirators which protect them from the environment. The aspirators include radiation shields so that the temperature sensors are protected from both direct and reflected radiation from the sun and also from heat radiated from the ship. With this system the precision of temperature measurements is about 0.07°C.

Fluctuations of temperature and wind speed are detected with cold wires and hot wires respectively. The cold wires are 2.5 μ x 2 mm platinum. The hot wires are 60 μ x 2 mm platinum film on a quartz substrate and are operated at 20% overheat, which is high enough to make them insensitive to temperature fluctuations. The wind speed bridges are constant temperature anemometers. The temperature bridges are operated at 3 kHz and very low current so that the wires are not heated, thus, they are not sensitive to wind speed fluctuations. The hot wires are aligned with their axes vertical so that they are sensitive only to the horizontal component of the wind.

The mean signals are averaged for times that are determined by the conditions (usually either 10 or 20 min.). Acquisition, averaging, and recording on a teletype and magnetic tape are accomplished by an NPS developed system, designated MIDAS.

Fluctuation data was acquired in two forms, using either a single sensor, or paired sensors at a separation of 0.3 meters. We used paired sensors for temperature and a single sensor for wind speed. Paired sensors result in spatial filtering of the signal. When a single sensor was used, the resulting signal was attenuated above 200 Hz and below 5 Hz giving temporal filtering which is equivalent to the spatial filtering with paired sensors.

The resultant signals were recorded on magnetic tape for later processing in the laboratory. The signals were also processed to give the RMS values which were acquired and recorded by MIDAS and also recorded on strip charts. The strip charts are used on shipboard to obtain real time ϵ and C_m^2 values.

The acoustic sounder output is a strip chart record of the height from which the return echo occurs, giving a real time presentation of the inversion height. This height is compared with the twice a day radiosonde results which identify both the height and strength of the inversion. Agreement to within 20 meters was consistently obtained.

Even though the R/V ACANIA is very well suited to meteorological measurements its presence can disturb the local air flow sufficiently to compromise acquired data. This effect can be reduced sufficiently to be negligible by keeping the ship pointed into the wind. Of course, this cannot always be done so we acquire data only when the relative wind is within 30° of the bow. The second problem with a ship platform is motion due to roll. Roll can cause two adverse effects: introducing an extra component to the wind speed fluctuations and increasing the rotation rate of the cup anemometers. Since fluctuation signals are analyzed only at frequencies above 5 Hz and ship motions are much less than 1 Hz, there is no observable affect on the fluctuation signal. Under conditions of severe roll (20° roll, 4 sec. period) the mean wind speed measured at level 4 is elevated by about 1 knot when the relative wind is from the bow. When the relative wind is from 90° off the bow this effect is reduced to zero. The wind speed results given in this report are not corrected for this effect.

Complete descriptions of the NPS shipboard equipment and the analysis methods can be found in the references.

IV. Data Reduction

As described in the previous section the data acquired includes:

Profiles of temperature, humidity, and wind speed, sea surface temperature,
and records of the temperature and wind speed fluctuations. This data is
reduced to obtain the following parameters:

U, Friction velocity

ε Dissipation rate of turbulent kinetic energy

C_m² Temperature structure function

D Diffusivity

Ri Richardson Number

F_u Sensible Heat Flux

F. Momentum Flux

There are several possible methods to evaluate these parameters by utilizing both the profile and fluctuation data. Here we describe only the method used to process the data presented in this report.

All of the data collected have not been analyzed. There were many time periods when the relative wind was from an unfavorable direction, and these data were not analyzed. Also, there are periods when the results obtained are obviously in error and they have been discarded. These errors are due to extraneous noise, such as ship radio transmission and power surges.

We use the profiles to obtain potential temperature (°C)

$$\theta = T + 0.0098 Z \qquad , \tag{1}$$

and the virtual potential temperature

$$\theta_{x} = \theta + 0.61 q T , \qquad (2)$$

and their gradients with height. T is the absolute temperature, Z the height above the mean sea surface in meters, and q the specific humidity in grams of water vapor per gram of dry air. The gradients are obtained by fitting θ and $\theta_{_{\bf V}}$ with a log profile and then evaluating the gradients at a height of 10 meters.

The specific humidity is found from

$$q = 6.5 \times 10^{-6} \text{ H exp}_{10}[A - \frac{B}{T} - C \log T]$$
 , (3)

where H is the relative humidity (%), A = 23.84, B = 2984, and C = 5.03.

In calculating q for the various heights we use a single value of H which is the average of the four measured values. Thus, the dependence of q on height comes from the temperature variation. This is done because the humidity sensors are not accurate enough to allow a profile to be specified.

Three methods have been used to analyze the fluctuation data: difference, RMS, and spectral. The structure functions C_T^2 and C_U^2 are obtained directly from the analysis, and ϵ is found from

$$c_{rr}^2 = 2 \varepsilon^{2/3}$$
 (4)

In the difference method the structure function is found by measuring the variance of the difference in the variable x at two points separated a known distance, d:

$$C_y^2 = \langle [x(r) - x(r+d)]^2 \rangle d^{-2/3}$$
 (5)

The spectral method is based upon the assumption of "local isotropy" and the Kolmogorov -5/3 slope of the one-dimensional power spectral density, $\varphi_{\mathbf{x}}(\mathbf{k}):$

$$\phi_{x}(k) = 0.25 c_{x}^{2} k^{-5/3} , \qquad (6)$$

where k is the wave number. Using Taylor's "frozen turbulence" hypothesis $(k = 2 \pi f/\overline{U})$ we can find C_{χ} by performing a fourier spectrum analysis of a signal in the frequency domain (f):

$$f \phi_{x}(f) = k \phi_{x}(k) = 0.25 C_{x}^{2} \left(\frac{2 \pi f}{0}\right)^{-2/3}$$
 (7)

Therefore,

$$c_x^2 = 4 \left(\frac{2\pi}{0}\right)^{2/3} \left[f^{5/3} \phi_x(f)\right]$$
 (8)

Here \overline{U} is the mean wind speed averaged over the analysis time to perform the spectral analysis. This expression is expected to be valid in the inertial subrange, which covers a frequency range of approximately 0.1 to 100 Hz.

The RMS method is based upon measuring the variance of the signal fluctuations between selected frequency limits:

$$\int_{k_{\underline{x}}}^{k_{u}} \phi_{x}(k) dk = \overline{x'^{2}} = (x'_{rms})^{2}$$
(9)

where x' is the fluctuating component of x. The upper and lower frequency limits, f_u and f_ℓ , are determined by a filter, and are related to the respective wave numbers by Taylor's hypothesis. Using equations (6) and (9):

$$C_{x}^{2} = \frac{8}{3} \left(\frac{2 \pi}{U} \right)^{2/3} \frac{\left(x'_{rms} \right)^{2}}{\left(f_{0}^{-2/3} - f_{0}^{-2/3} \right)}$$
 (10)

The advantages of the difference and RMS methods are that the output voltage can be presented and averaged on a strip chart for real time analysis. The spectral method is more time consuming and is normally performed in the laboratory from tape recorded signals. However, it has one distinct advantage in that the spectrum can be viewed and obvious noise can be ignored (such as 60 Hz and its harmonics).

For the data presented in this report $C_T^{\ 2}$ was found using the difference method, and ϵ was found both from the RMS and spectral methods.

Using ϵ , θ_{\star} , and $\theta_{v^{\star}}$ the other parameters are obtained from the following equations:

$$U_{+} = (k Z \varepsilon)^{1/3} \qquad , \tag{11}$$

$$D = k Z U_{\star}$$
 (neutral stability) , (12)

$$R_{i} = \frac{g}{T} k Z \frac{\theta_{v^{*}}}{U_{+}^{2}} , \qquad (13)$$

$$F_{H} = \rho C \left(\theta_{\star} U_{\star}\right) , \qquad (14)$$

and

$$F_{M} = \rho \left(U_{\star}\right)^{2} , \qquad (15)$$

where ρ is the density of air at STP (1.29 kg/m³), C the heat capacity of air (ρ C = 1.31 x 10³ Joule/K m³), g the acceleration of gravity (9.8 m/sec²), and k is Von Karmans constant (0.35).

Most of the above parameters depend on height. We arrive at final values for all of the parameters for an assumed height of 10 meters. To be specific, θ and $\theta_{_{\bf V}}$ are fitted by a log profile, $C_{_{\bf T}}^{\ \ 2}$ is fitted by ${\bf z}^{-2/3}$, and ϵ by ${\bf z}^{-1}$. The 10 meter values for ϵ , $\theta_{_{\bf X}}$ and $\theta_{_{_{\bf V}}}$ are calculated, then D, $R_{_{\dot{\bf I}}}$, $F_{_{\dot{\bf H}}}$ and $F_{_{\dot{\bf M}}}$ are calculated directly.

V. Results

A. Acoustic Sounder and Radiosonde

The acoustic sounder and radiosonde soundings show the presence of a strong marine inversion for the full cruise. The height and strength of the inversion varied with time and/or location. The bottom of each acoustic sounder strip chart (Figures 2a - 2d) is marked with letters which correspond to radiosonde graphs (Figures 3a - 3u) to show the times at which the radiosondes were released. Examination of both sets of data shows good agreement, except for 0200 PDT on 7/24, for which the radiosonde shows the inversion base approximately 150 m higher than the sounder. The reason for the discrepancy is not known but we assume that an error was made in reducing the radiosonde data.

In Table I we list the height of the base of the inversion and the strength of the inversion, taken from the radiosonde data. The data are coded with letters A thru U. Examination of the graphs shows that it is difficult, in many cases, to identify accurately the height and strength of the inversion since temperature changes occur gradually. In general the base of the inversion is taken to be the height at which the minimum temperature occurs; the strength is from minimum to maximum temperature regardless of the height difference, unless there is a subsequent increase in temperature identifying a second inversion. Good examples of difficult to interpret profiles are Figures 3b and 3c. There are several inflections on each profile and interpretation is very subjective.

The acoustic sounder is most useful for continually monitoring the inversion height, and hence the mixing depth. Figure 2a shows the beginning portion of the cruise, including the initial investigation of the Santa Barbara Channel. The inversion was quite stable for the entire time,

TABLE I

Height and Strength of the Marine Inversion taken from Shipboard Radiosonde Data

Times are PDT

Code	Date/Time	Inversion Height (m)	Inversion Strength (°C)
A	7/17/1700	360	14.5
В	7/18/0500	0	0.5
		240	13.
C	7/19/0200	280	6.7
	estad establishment od	850	2.5
D	7/19/1900	450 640	0.4 9.3
E	7/20/0200	0	0.5
E	7/20/0200	680	9.3
F	7/20/1900	200	2.1
		650	1.8
G	7/21/0200	450	10. +
Н	7/21/1900	200	7.8
	The deligner of	470	4.2
I	7/21/2300	330 440	0.2 7.1
		610	4.6
J	7/22/0200	240	13.3
K	7/22/1900	380	11.9
L	7/23/0200	360	13.4
M	7/23/1900	360	9.5
N	7/23/2300	520	5.8
		700	3.0
0	7/24/0200	650	~ 8.
P	7/26/0200	170	8.3
Q	7/27/1900	100	12.6
		530	1.2
R	7/28/0200	110	14.8
s	7/28/0500	20	2.8
		180	10.5
T	7/28/1700	230	16.3
U	7/29/0500	120 ~ 500	13.5
		~ 500	1.8

varying from 200 m to 400 m. The exception was when the ship rounded Pt. Conception at 0230 on 7/18. The presence of very intense thermal plumes indicates the region of mixing of marine air and air that has passed over land and been warmed. The region of disturbed air extends well into the channel from Pt. Conception.

From approximately 0900 to 1300 on 7/19 an oil tanker which was not in the process of transfering oil was monitored. The inversion height was approximately 600 m for the first 3 hours, then dropped to 200 m during the last hour. At 2130 of the same day the monitoring was resumed, but during lightering operation, and continued until 0930 on 7/20. The inversion height was 600 m to 800 m. The lightering operation was approximately 50 kmi from shore and the inversion was much higher than that found near shore.

During the monitoring of platform Eva the inversion was below 100 m. The change in inversion height appears to have been a geographical effect since the height was greater both as the ship approached and left the shoreline.

We then proceeded to do a thorough study of the turbulence in the Santa Monica Bay, the study taking approximately 24 hours. The inversion was at 200 m to 400 m during all but the last 5 hours, when it dropped to the surface, split into more than one level, and became difficult to interpret, (around 1900 on 7/21).

The first power plant SF_6 release at 0100 on 7/22 occurred when the inversion was 150 m high and not sharp. (See Figure 2a). Multiple returns were obtained from complex thermal structure up to 700 m. At 0400 the inversion either dropped to the surface or a new inversion rose from the surface, reaching an elevation of 250 m by 0600. This variation in the inversion

height appears to be a change with time rather than position since the ship was in the same locations at different times, with different inversion heights being obtained. The height and intensity of the inversion remained stable through the remainder of the $\rm SF_6$ tracer experiment, which ended at ~ 1200 .

The sounder was not in operation during the period when data was being taken along the coast from Del Mar to Long Beach. The one radio-sonde taken during this period (Figure 2e) shows an inversion height of approximately 450 m.

When SF_6 was released from the power plant the second time the inversion height was approximately 600 m (\sim 0200 on 7/24). The inversion remained fairly high until 0800, at which time it was \sim 500 m, thereupon it dropped to 200 m by the end of the experiment at 1100. Again the changes that occurred were temporal rather than spatial.

The remainder of the experiments were performed under similar conditions. The inversion was near the surface (within 200 m) and for much of the time it was difficult to distinguish an inversion from thermal plumes.

B. Calculated Results

Appendix B presents a table of the results that were computed from the basic data (Table VI). The data includes dissipation rate, temperature structure function, turbulent eddy diffusivity, Richardson's number, momentum flux, and heat flux. Figures 4a and 4b show plots of Richardson's number and the momentum flux versus time for most of the cruise. The codes on the time axis refer to the various experiments listed in Section II. It must be emphasized that these numbers give estimates of flux parameters,

based on measurements of inertial subrange parameters, not direct measurements.

Difficulty can be encountered in evaluating temperature profiles to obtain θ_{\star} and $\theta_{v^{\star}}$. The following two examples for temperatures obtained from the four levels have been taken from Table V and illustrate the problem.

T ₁	^T 2	2 ^T 3	
17.85	17.79	17.70	17.54
17.72	17.52	17.85	17.46

The first set of temperatures shows a good profile and it is easy to fit θ with a log profile to obtain θ_{*} . T_3 for the second set (underlined) appears to be in error since it certainly does match the gradient shown by the other temperatures. The reason for this discrepancy could be ship influence, or it could be real, this is unknown but ship influence is most likely. However, it would be inappropriate to include the value when fitting the log profile, so the point was discarded. Level 3 temperature data was not used for calculations for a large percentage of the data.

Discarding experimental data is a hazardous thing to do and raises questions about the validity of the final results. To this point we must recall that we are trying to make flux estimates, and determine the stability of the atmosphere in a land sea boundary region. The data we have taken indicates that the land influence extends well out to sea in this area. We did not encounter the homogenous, equilibrium atmosphere on which the theory, and hence data evaluation methods are based. However, reasonable estimates can be obtained by fitting an averaged profile, and this is what we have done by discarding level 3. We expect a 50% error in the final result for measurements made this close to land, and on a non-stationary platform.

A few general conclusions can be drawn for the cruise as a whole. The Z = 10 m value of Richardson's number varied from slightly positive to as low as -1.3, and was in the range of -.1 to -.5 the majority of the time. Hence, conditions were generally slightly unstable (the sea surface was warmer than the air within the first 20 meters for the full time the ship was in the Southern California area). Since small temperature gradients were present small errors in temperature measurements, such as those due to ship influence, could have resulted in large perturbations in the final results. This could account for some of the fluctuations evident in Figure 4.

Note that Table VI contains a dashed line at 0420 on 7/26. This is due to the poor quality of the data that was obtained at subsequent times. The waves were extremely high during this period; part of level 1 had been destroyed by waves breaking over the bow, and all of level 1 was removed. The table shows positive Richardson's numbers from 0725 to 1030, but the numbers are undoubtedly too large. The zeroes indicated for heat flux are due to the fact that for Ri > 0.2 heat flux will be zero. The numbers given for momentum flux for this period are good estimates.

Because of the variations in the data Figure 4 shows two superimposed representations of the data. Individual data points are shown, which are fit by an average curve (heavy lines), and are also fit by a curve which shows fluctuations about the average (light lines). Note that the curve for fluctuations is only used in those regions of the graphs where fluctuations were quite rapid. Where the fluctuations can be easily identified from the individual points no curve is included to reduce the clutter on the graph. The average is an estimate, not a computed curve.

Referring to Equations 11 through 15 we see that all of the calculated results depend on two parameters, θ_{\star} and ϵ . (In actuality $C_{\rm T}^{-2}$ was derived directly from fluctuation data, not from θ_{\star} , although it would have been possible to do so). Examination of Figure 4 illustrates the manner in which Ri and F are related. A large temperature gradient (unstable case) results in a large negative Richardson's number (Ri α $\theta_{v\star}$), whereas a large momentum flux (F α α α results in a small Richardson's number (Ri α α α α). Thus, when the flux is large Ri will be small unless compensated by large temperature or humidity gradients. This behavior is evident in the figures.

Not all of the fluctuation evident in the results are measurements effects. The most striking example is shown from 0400 to 1100 on 7/21. Ri and F_m vary in somewhat of an oscillatory manner, the variations being almost a factor of 4. The values obtained during this time are reasonable estimates, for 20 minutes averages. However, a more reasonable estimate of the flux, for example, would be obtained from an hourly average. As has been pointed out by others, any averaging time shorter than one hour is probably too short for processing atmospheric turbulence data. We use the shorter averaging time out of necessity because of the shipboard platform and changes in course, position, and conditions. Longer averaging times could be used for those periods when conditions remain constant. Because of the short experimental averaging time it is more appropriate to use the average curve +hrough the data shown in Figures 4, than the individual points in order to obtain final results.

C. Diurnal Variation and Land Influence

In Figure 5 we have plotted momentum flux versus time for the 24 hour day, where data from all time periods of the cruise have been averaged. The

numbers that were used to obtain this figure were obtained from the average curves in Figures 4, not from the individual data points.

One expects very little diurnal variation for open ocean conditions, and this has been confirmed on previous cruises. In Figure 5 we see a significant diurnal variation of the flux.

Data was taken on this cruise for a wide range of distances from shore, as close as 1/2 mile and as far as 30 miles when the ship was south of Catalina Island. In Figure 5 we divide the averaged data into two groups, all data, and at sea data. The at sea data is that taken in the neighborhood of Catalina Island. The at sea data shows a much smaller diurnal variation, but the variation is large enough to indicate significant land influence in the area.

In Figure 6 we show the variation of momentum flux with wind speed. The points on the graph were computed directly from the data in Table VI and then averaged. When there was not much data available at a particular wind speed, data from more than one speed were averaged in order to improve the statistics. The error bars were obtained from the square root of the number of points in each sample. The solid points are for data near the shore, the open points are for at sea (south of Catalina Island). The two solid lines are theoretical curves obtained from

$$F_{m} = \rho \left[kU/\ln (Z/Z_{o}) \right]^{2} , \qquad (16)$$

for values of the roughness length $Z_0 = 0.01$ and $Z_0 = 0.1$ cm. Previous measurements over the open ocean give values of Z_0 near 0.1 cm and the results presented in Figure 6 are somewhat in agreement with this value.

The data is much higher than the prediction for wind speeds below 5 knots. Obviously the shear produced momentum flux would be zero at zero wind speed, but we measure values of the order 10^{-2} kg/msec². The measurements can be partially explained by convective flow and the roll of the ship. The convective flow could be enhanced by the ship's presence since its mean temperature is greater than the water temperature. Quantitative comparison with the results are not feasible.

Careful evaluation of the results shows that some, but not all, of the diurnal effect is due to an increased wind speed near land during those periods when high values of $\mathbf{F}_{\mathbf{m}}$ were obtained. The data base reported here is not sufficiently large to separate the effect of wind speed from the influence of the nearby land mass.

It is interesting to note that these data imply that the "Los Angeles air basin" is an area that extends at least 30 miles to sea.

D. Pollution Model Parameters

Figure 1d shows the course followed by the ship to obtain parameters for the CARB air pollution model. Data taken on the westward leg on the lower part of the figure is labeled M2 on Figure 4a. The remainder of the data is labeled M3. In addition the data labeled M1 was obtained in the neighborhood of Catalina Island in the hope of finding open ocean conditions for comparison purposes. The model experiment was performed on 7/21. On 7/22 and 7/24 we performed the tracer experiments in the same area and the parameters presented here are averages for all of the data. Comparing all of the data shows that the variations in the parameters which we observed were temporal rather than spatial.

We cannot stress too strongly that the parameters presented below are averages that were obtained during a particular time of the year, under a particular set of circumstances. As the weather changes the parameters will change. The following are our best estimates:

- Ri: The water was warmer than the air leading to slightly unstable conditions. Expected values are in the range $-0.3 \le Ri \le -0.05$. This is consistent with the Richardson's numbers obtained for other overwater experiments which average to $\overline{Ri} = -0.08$ (open ocean).
- F_m : Figures 5 and 6 can be used, recalling that the solid curve in Figure 5 includes at sea data and that values as high as 6×10^{-2} kg/msec² were obtained near land in the late afternoon. The diurnal/wind speed variation is significant and should be taken into account. For simplification one could use $F_m = 1.5 \times 10^{-2}$ for all periods except 1400-1800 where a value of 4×10^{-2} would be appropriate. Alternately, Figure 6 can be used to obtain F_m as a function of wind speed.
- D: The turbulent eddy diffusivity can be found from $F_{\rm m}$ using Equations 12 and 15 (assuming near neutral stability and a height of 10 meters). We obtain:

$$D = (F_{m}/0.105)^{1/2} (17)$$

Near land this gives the range $0.3 \le D \le 0.8 \text{ m}^2/\text{sec}$. This is much lower than overland values.

 ϵ : The dissipation rate can also be found easily from F_m . Using Equations 11 and 15, for a height of 10 meters, we obtain:

$$\varepsilon = (F_{\rm m}/2.97)^{3/2}$$
 (18)

F_H: The sensible heat flux varies quite widely since it depends both on the turbulence and on the temperature profile. Of course F_H can be either positive or negative depending on the direction of the gradient. We obtained values that ranged from -50 to +20 watts/m². A reasonable average would be -4 watt/m² for F_m ~ 1.5 x 10⁻² and Ri ~ -.3. For the same stability a momentum flux of 6 x 10⁻² will give a heat flux of ~ -20 watt/m². For a much larger thermal gradient (Ri ~ -3) a momentum flux of ~ 1 x 10⁻² will produce the same heat flux. Further extrapolations can be made but it is best to refer to Table VI.

E. Stability Corrections

As has been described above, the data was reduced assuming neutral stability. Conditions were slightly unstable, the average Richardson's number being -0.3. This value of Richardson's number leads to a stability correction of 20 to 30% for the calculated results, depending on the parameter. This correction is within the errors associated with the measurements and has, hence, not been applied.

Acknowledgements:

This work was supported by the California Air Resources Board. We wish to thank Mr. Jeff Phillips who accompanied us on the cruise and participated in collecting the data. Miss Estelle Garner and Mr. Derek Porter did much of the initial data reduction. The aerosol results presented in Appendix C were evaluated by LT Alan Simoncek, USN from data gathered by Calspan Corporation.

APPENDIX A: BASIC DATA

In this appendix we present data on a) the ship's speed and course and cruise charts, b) wind speed and direction, c) acoustic sounder strip charts and interpretation, d) radiosonde results, e) sea surface temperature and air temperature and humidity.

A. Ship Course

Table II lists changes in the ship's heading and speed, the information being obtained from the ship's log and the NPS scientific log. The ship's normal cruising speed is approximately 9 1/4 knots and is designated as full ahead in the table. No correction is made for currents or winds. Charts of the ship's position are shown in Figures la - lj. Small course changes which are occasionally necessary for maneuvering purposes are not shown in either the table or the charts.

Changes in Ship's Speed and/or Course

TABLE II

7/17/77	0815	Departed
	0850	c/c 210°
	0924	c/c 168°
	1126	c/c 150°
	1400	c/c 148°
	1500	c/c 143°
	1655	c/c 144°
7/18/77	0100	c/c 126°
	0220	c/c 079°
	0335	Downwind leg of platform Helen run
	0345	Start 360° pass of platform
	0355	Underway to Holly c 100°
	0615	Stop for true wind, maneuvering near Holly
	0654	c/c 105° Depart Holly
	0815	Stop for true wind, 1.5 mi from platform C
	0822	c 090°, 1/2 ahead near platforms
	0835	c/c 145° into clean air
	0855	c/c 070°, 1/2 ahead run by platform
	0915	c 133°, full ahead
	1135	c/c 115°
	1230	c/c 110°
	1355	c/c 104°
	1550	Drifting
	1630	Head into wind, 1 engine dead slow
	1845	c/c 060°
	1930	c/c 270°, port engine slow ahead
	2242	c/c 080°
	2350	c/c 270°, starboard engine slow ahead
7/19/77	0215	Underway to beach
	0255	Drifting
	0345	Underway to Catalina
	0500	c/c 148°
	0750	c/c 205°
	0900	maneuvering near Edinburgh
	0945	c/c 345°, full ahead
	1120	Downwind Edinburgh, 160° at 2 knots
	1140	Finished downwind leg
	1149	Upwind, 160° at 2 knots
	1205	Finished tanker data, underway to Isthmus
	1425	In fisherman's cove
	1455	Underway easterly
	1545	Heading into wind
	1730	Underway to tanker
	1800	c 133°, full ahead
	1935	c/c 165°
	2120	Drift neighborhood of tanker
		0

7/20/77	0820 1015 1445 1710 1800 1815 2200 2205 2300 2325	c 348°, full ahead c/c 345° Underway to platform Eva Arrive at Eva c 210°, half ahead c/c 270° Stop for true wind c 030°, full ahead Stop for true wind c 000°, full ahead
7/21/77	0010 0100 0250 0315 0345 0410 0445 0510 0540 0606 0635 0640 0700 0810 0900 1110 1245 1410 1440 1515 1555 1620 1700 1725 1800 1823 1925 1947 2011 2038 2110 2135 2212 2217 2305 2310 2333 2350	c/c 345° Stopped for true wind Stopped Underway, c 180° Stopped Underway, c 177° Stopped Underway, c 175° Stopped C 180°, full ahead Stopped c 240°, dead slow Stopped c 090°, 2/3 ahead c/c 000° Stopped Underway, c 265°, 1/2 ahead c/c 182°, full ahead At position, head into wind Underway to new position, full ahead At new position, head into wind Underway to new position, full ahead At position, head into wind Underway to new position, full ahead At position Underway, c 078° At position Underway, c 078° At position, dead slow into wind, c 270° Underway, c 000°, full ahead At position, c 235°, dead slow into wind Full ahead, c 010° At position Full ahead, c 053° Stop for true wind Resume course and speed Stop for true wind c 000°, full ahead c/c 180°, 1/2 ahead Stopped
7/22/77	0001 0050 0 05 5	c 350° c 009° c 026°
	0115 0150 0200	c/c 168° c/c 208° c 200°

```
c/c 336°
                0211
                             Underway, c 336°
                0222
                             c/c 023°
                0258
                             c/c 012°
                0330
                             c/c 270°
                0350
                0415
                             Stop for true wind
                0420
                             Underway, c 216°, full ahead
                0450
                             c/c 200°
                0510
                             Stop for true wind
                0530
                             Underway, c 135°
                             Stop for true wind
                0615
                             c 000°, full ahead
                0634
                             Stop for true wind
                0710
                0756
                             Stop for true wind
                             c 000°, 1/2 ahead
c/c 150°, full ahe
                0759
                             c/c 150°, full ahead
c/c 170°
                0805
                0818
                0831
                             2/3 ahead
                             c/c 090°, 1/2 ahead
                0835
                0845
                             Full ahead
                0850
                             c/c 180°
7/22/77
                0910
                             c/c 270°
(cont'd)
                0945
                             Stop for true wind
                             c 260°, full ahead
                0948
                1005
                             Stop for true wind
                1040
                             Stop for true wind
                             c 122°, full ahead
                1044
                1130
                             Stop for true wind
                             c 085°
                1150
                1305
                             Rendevous at Redondo Beach
                             Underway to Catalina, c 215°
                1315
                1405
                             c/c 155
                1700
                             c/c 180°
                1800
                             Drifting near Edinburgh
                2100
                             Underway, c 100°, full ahead
                             c 095°
7/23/77
                0100
                0200
                             c/c 085°
                0235
                             Stop for true wind
                0245
                             Underway, c 325°, full ahead
                0500
                             c 300°
                0530
                             a/c 304°
                0625
                             c/c 292°
                0845
                             c/c. 240°
                0915
                             c/c 305°
                1130
                             Reduce speed to slow ahead
                1150
                             Drifting
                1420
                             Ship stationary pointing into wind
                             Underway, c 215°, 1/2 speed into wind
                1450
                             Full ahead into wind
                1510
                             c 035°, full ahead c 000°
                1530
                1550
                1630
                             Stop for true wind
                1650
                             No motion, point into wind
```

	1720 1745 1810 1812 1820 1932 1943 2315	c 265°, 1/2 ahead into wind c 265°, full ahead into wind Stop for true wind c 025°, full ahead c/c 100° c/c 090° Stopped Underway, c 316°, 1/2 ahead
7/24/77	0100 0110 0150 0210 0240 0300 0450 0455 0530 0548 0600 0707 0745 0855 0905 0946 0951 1112 1130 1140 1150 1245 1330 1800	Drifting Underway, c 092°, 1/2 ahead Dead in water Move closer to beach Underway, c 245°, 1/2 ahead c 245°, full ahead Stop for true wind Underway, c 050°, full ahead c/c 038° Stop for true wind c 150°, full ahead Stop for true wind Underway, c 150°, full ahead Stop for true wind Underway, c 150°, full ahead Stop for true wind c 055°, full ahead Stop for true wind Underway, c 330° Stop for true wind Underway, c 265°, full ahead c/c 220° c/c 100° Drifting Underway to LA Seabuoy Maneuvering in LA harbor
7/25/77	1900 1938 2027	Depart pier LA harbor Clear harbor entrance, c 198° Stop engines
7/26/77	0100 0345 0445 0530 0630 0930 1200 1210 1310 1330 1425 1430 1501 1530 1645 1650 1700 1735 1800 2312 2400	Drifting Underway to Pt Fermin Arrive at station Underway, c 270°, full ahead c/c 300° Stop for true wind c 298°, speed 9 knots c/c 285° Stop for true wind c/c 278° Reduce speed to 1/2 ahead Resume speed Stop for true wind Reduce speed to 8 knots Dead slow Resume full ahead Speed 8 knots c/c 080°, 1/2 ahead c 075°, slow ahead 1/2 ahead for oil platforms Nearing platforms

7/27/77	0448	Complete working platforms Underway, c 185°, full ahead
	0535	Drifting
	1145	Underway, c 122°, full ahead
	1345	Arrive channel island harbor
	1630	Underway for Coal Oil Point
	1800	c 292°, full ahead
	2020	Stop for true wind, near Holly
	2235	Leave Coal Oil Point area, c 180°, slow ahead
7/28/77	0100	Drifting
	0420	Underway to station, c 245°
	0500	Drifting on station
	0719	Underway, c 292°
	1055	c/c 303°
	1225	c/c 330°
	1255	Heavy seas, 3/4 ahead
	1435	Heavy seas, 1/2 ahead
7/29/77	0245	c/c 320°
	0340	c/c 325°, speed 5 knots
	0600	c/c 349°
	1200	At Cypress Point

Figure lc A-9

B. Wind Speed and Direction

Table III lists ship's heading and speed, relative wind direction and speed, and true wind direction and speed. All speeds are in knots, and directions are in degrees measured clockwise from true North for the ship heading and true wind, and clockwise from the ship's bow for the relative wind. The ship speed was obtained from the bridge and is based on the speed of the ship's screws. Relative wind was measured both from the ship's anemometer and from the cups on level 4 of the NPS scientific equipment. True wind was calculated from the other data and is no more accurate than \pm 1 knot and \pm 20°, especially at low wind speeds.

TABLE III
Relative and True Wind

	Shi	p	Relative	Wind	True Wind		
Time	Heading	Speed	Direction	Speed	Direction	Speed	
7/17							
1000	168	10	013	12.5	220	4	
1100	168	10	010	9.5	279	2	
1200	150	10	010	6	316	4	
1300	150	10	030	5	306	6	
1400	148	10	020	5	310	6	
1500	143	9	038	3	307	7	
1600	143	9	087	2	310	9	
1700	144	9	092	3.5	303	10	
1800	144	9	082	4.5	296	9.5	
1900	144	9	090	4	300	9.8	
2000	·144	9	006	2	322	7.0	
2100	144	9	349	1.5	326	7.5	
2200	144	9	011	3	319	6	
7/10							
7/18	144	•	700		001	•	
0000	144	9	300	5.5	001	8	
0300	079	9	001	4	258	5	
0330					295	4	
0400	100	9	012	8.5	211	2	
0500	102	9	028	9	206	4	
0600	075	9	000	16.5	075	7.5	
0630	-				075	9	
0800	097	9	023	13.5	154	6	
0830	095	2.5	020	7	125	5	

7/18						
0900	070	3	020	6.5	106	4
1000	133	9	032	6.2	272	5
1100	133	9.5	047	3	297	8
1200	113	9.5	047	4	270	7
1300	111	9.5	019	6	264	4
1400	104	9.5	031	2	276	8
1600	-				265	7
1700	277	2	063	10	351	9
1800	275	2	075	8.5	004	8
1900	073	9	079	3	234	9
2000	264	2	345	8	244	6
2100	265	2	340	3.5	222	2
2120	265	2	000	4	265	2
2140	265	2	000	5	265	3
2220	260	2	315	4	186	3
7/19						
0000	265	2	010	4.5	283	3
0020	270	2	020	4	308	2
0040	270	2	018	3	317	1
0100	270	2	018	3	317	1
0120	265 .	2	060	2	025	2
0140	275	2	012	2	011	0.5
0200	270	2	350	3	241	1
0220	090	9	270	8	312	1
0300	-212				194	3

7/19						
0400	180	9	000	11	180	2
0440	180	9	355	12	161	3
0500	150	9	000	10	150	1
0520	148	9	004	11.5	166	3
0600	140	9	350	9	045	2
0700	140	9	355	9	048	1
0900	-				200	4
1000	353	2	226	3	201	5
1100	175	9	357	11.5	161	3
1140	155	2	017	3.5	192	2
1200	168	2	000	5	168	3
1330	305	9	000	0	125	9
1430	254	0	340	9	234	9
1540	-				328	4
1550	320	2	000	7	320	5
1610	320	2	340	8	294	6
1630	290	2	355	8	283	6
1650	285	2	350	9.5	272	7.5
1710	275	2	000	9	275	7.0
1800	133	9	058	2	301	8
1900	133	9	327	4.5	338	6
2000	167	9	053	10	277	8.5
2100	147	9	028	6	290	5
2120	-04				005	3
2140	350	0	328	3	318	3
2300	-191				315	~ 0

7/20						
0000	-				183	1.5
0100	-				067	4
0200	•				290	4
0300					090	6
0400	-				280	7
0500	-				280	6
0555	-				270	5
0640	295	0	000	6	295	6
0700	-				285	7
0830	345	9	340	7	210	3
0850	350	9	340	9	250	3
0920	350	9	335	9	248	4
1000	350	9	315	10	245	7
1020	345	9	340	7.5	218	3
1100	343	9	040	6.5	117	6
1200	340	9	345	5	177	4
1220	340	9	340	6	193	4
1300	332	9	338	7.5	206	3.5
1400	-407				280	4
1500	152	9	068	9.5	274	10
1600	102	9	181	6.5	· 282	15
1700	094	9	146	5.5	261	14
1710	-0-7				260	12
1720	187	0	068	4	255	4
1740	350	0	285	11.5	275	11.5

7/20						
1800	210	5	342	19	186	14
1820	270	5	000	17	270	12
1840	275	5	359	16	274	11
1900	275	5	000	17	275	12
1920	250	5	000	14	250	14
1940	270	5	000	14	270	14
2000	270	5	000	16	270	11
2020	270	5	000	15	270	10
2045	-		600		280	7
2050	270	5	000	11	270	6
2100	270	5	000	14	270	9
2120	270	5	000	12	270	7
2200	-				280	4
2300	- 332				302	4.5
2325	000	9	000	6	180	3
7/01						
7/21						
0000	000	9	330	9	255	5
0040	345	9	333	10.5	259	5
0100	TORSE !				305	3.5
0120	270	9	350	8 .	141	2
0140	270	9	348	6	112	3
0200	270	9	350	5	102	4
0215	-585				120	5
0250	1885				100	5
0345	100	2	000	7	100	5
0350	095	0	350	6	085	6
0447	•				142	5

0500					125	4
0545					160	3
0635					calm	,
	005	_	7-0			
0830	095	7	350	12	072	5
0850	095	7	360	13	095	6
0900	360	7	030	8	091	4
0930	360	9	010	8	129	2
1000	360	9	020	7	135	3
1030	330	9	000	9		~0
1050	330	9	350	9	235	1.6
1115	-				270	7
1220	-				270	· 10
1245	265	5	000	16	265	11
1300	265	5	355	19	258	14
1400	.260	5	018	18	285	13
1445	-				280	15
1600	-				260	14
1700	-				270	11
1800	-				265	11
1925	-				250	8
2010	•				225	9
2115	. •				220	2
2215	-				120	4
2300					100	3
2320	000	9	015	10	076	3
2350	-				050	2

7/22						
0004					040	2
0030	-				010	1
0045	- 1110				025	2
0100					020	2
0130	170	9	340	10	087	3
0211	- 190				180	1
0215	- 821			0.10	calm	
0245	- 251				095	7
0300	025	9	035	10	123	6
0330	-				122	5
0415	- 014				015	3
0515	-				120	4.5
0615	- 65			600	130	3
0645	.000	9	010	8.5	113	2
0715	-			č.	calm	
0800	•				calm	
0825	170	5	004	9	179	4
0910	180	9	011	8	307	2
0930	270	9	000	10	270	1
0950	- 200				260	3
1010	- 200				260	5
1045	-				240	4
1055	105	9	000	8	305	1
	125					
1130	-				230	3
	- 052	0	126	alo 4	230 178	3

7/22						
1430	155	9	052	7.5	278	10
1500	155	9	066	9	278	10
1600	155	9	006	3.5	331	5.5
1640	155	9	341	6.5	012	4
1700	179	9	036	9.5	282	6
1910	-				145	7.5
1950	<u>-</u>				150	4.5
2120	100	9	033	11.5	184	6
2200	100	9	015	16.5	132	8
2220	100	9	042	17	172	12
2300	100	9	035	13.5	175	8
2320	100	9	047	16	181	12
7/27						
7/23		•	075	17.5	175	•
0000	100	9	035	13.5	175	8
0100	095	9	040	12	184	8
0200	090	9	045	9.5	199	7
0235	-		225		160	4
0315	325	9	005	5	139	4
0400	324	9	016	5.5	122	4
0450	325	9	353	4.5	152	5
0630	300	9	025	4.5	099	5
0730	300	9	010	4	112	5
0830	290	9	025	5	085	5
0900	335	9	030	3.5	139	6
1000	300	9	030	5	092	5
1100	320	9.1	290	3	159	9

7/23									
1200	-							200	7
1300	-							290	9
1400								250	6.5
1425	-							260	6
. 1450	215		5		000		9	215	4
1510	215		4.5		000		12	215	7.5
1540	-							240	7.5
1600	000		9		300		8.5	237	9
1630	-							275	9
1650	-							255	9
1720	270		5		355		14.5	262	9.5
1745	260		9		355		13	244	4
1805	-							205	4.5
1815	025		9		000		3.5	205	5.5
1900	102		9	8.3.	028		6	245	5
2000	-							250	3
2002	-							240	3.5
2100	-							calm	
2200	-					71.		330	1
2300	-							200	3
7/24						2.62			
7/24	71/				~ ~			201	
0000	316		4	N	343	914	7.5	281	4
0030	316		4	ė	344		7	281	3
0100	-	62.1		1.6		958		270	3.5
0115	090		7		022	120	4.7	236	3
0150	-	200						180	3.5
0210	-	1.53				0.98		170	4

7/24							
0300	24	45	9	340	8.5	136	3
0330						135	3.5
0400	24	45	9	345	7.5	113	3
0430	24	46	9	354	10.5	209	2
0450						210	2
0500	0	50	9	.010	6.5	207	3
0530	0.	38	9	347	5.5	237	4
0550						310	4.5
0600	1	50	9	025	9	253	4
0630	1	47	9	023	8	265	3.5
0700	10	67	9	353	9.5	097	1
0720		-				130	2
0800	1	50	9	350	10	086	2
0825	1	50	9	000	8	330	1
090 0		- 218				075	4
0945		- 0.12				300	2
1000	3:	25	9	350	10	261	2
1100	3.	30	9	350	13	299	4.5
1200	10	00	9	035	3	265	7
1300	ar ·	- 210				275	9.5
1400	19	95	2.5	060	10	269	9
1500	19	93	2.5	307	10	127	9
1600	1:	15	4	185	4.5	298	8.5
1700	08	80	8	205	11	275	18.5
7/25							
2100	29	95	1	340	13	273	12
2200	28	35	1	340	8	262	7

7/25						
2300	- 321				280	12
7/26						
0000	285	1	000	8	285	7
0100	_	3,41			045	1
0200	_ V34				225	1
0300	102		010		240	3
0400	340	9	000	11	340	2
0500	678				300	4
0530	270	9	000	11	270	2
0600	270	9.4	000	7	090	2
0700	297	9.4	333	7	162	4.5
0730	295	9.4	000	7	115	2
0800	295	9.4	020	10.5	018	4
0900	295	9.2	005	12	315	3
0930	- 470				315	4
1000	295	9.2	005	13.5	310	4
1100	295	9.4	005	13.5	311	4
1200	295	9	355	18.5	285	10
1305	_ 305				285	11.5
1400	280	9		18.5	265	10
1500	- 06	1			245	16.5
1600	278	8	317	13.5	200	9
1700	278	8		23	251	15.5
1800	298		201		315	18
1900	070	2	235	16	300	17

7/26						
2000	070	2	235	13	298	14
2100	070	3	255	14	314	15
2200	080	3	245	10	311	11.5
2300	080	3	245	5	302	7
7/27						
0000	090	2	060	4.5		
0100	-				130	5.5
0156	-				210	3
0218	<u>-</u>				240	3
0300	-				calm	
0412	-				030	3
0500	•				275	6
0600	-				270	4
0700	-				255	4
0800	-				250	4
0900	-				225	6
1000	-				250	5
1100	-				260	3
1200	117	9	038	7	246	5.5
1300	113	9	047	8.5	230	7
1400	-				230	4
1500	-				160	5.5
1600	-				260	1
1700	295	9	015	12.5	341	4.5
1800					260	5
1900	290	9.2	325	8.5	175	5
2000	280	9	005	5	094	4

7/27								
2045		-					10	0 4
2115		-					08	5 3.5
2155		-				315	08	5 9
2230		-				-1	09	5 7
2300		180	3.5		325	7.5	12	2 5
7/28								
0000	2.2	180	3.5		025	5.5	23	7 3
0100							21	
0200		_					21	
0300							21	
0400							25	
0500		_					25	
0600		-					26	
0700							23	
0800		290	9.2		000	9	11	0 ~ 0
0900		290	9		355	8	14	4 1
1000		290	9		350	5	12	2 4
1100		290	9		005	19	29	9 10
1200		300	7.5		030	14	35	7 8
1300		330	5.5	1.3	015	15	35	3 10
1400		330	6		345	25	31	0 19
1700		330	4		345	27	31	2 23
2200		330	4.2		010	22	34	2 18

7/29						
0600	325	8	355	19	316	11
0700	325	8.2	355	23	317	15
0900	325	8.8	000	19	325	10
1000	347	8.8	343	18	315	10
1100	347	9	353	15	330	6
1200	022	9	323	15	310	9.5

C. Acoustic Sounder

Reproductions of the acoustic sounder strip charts are shown in Figures 2a - 2d. Each strip in the photographs shows a 24 hour period and the vertical span is 1000 meters. Return echos are readily apparent and in most cases one strong return identifies the presence of a temperature inversion. The height of the base of the inversion is identified on the charts from the lower most portion of the return echo signal (dark horizontal band on chart). The vertical dark areas on the charts are caused by the increased noise when the ship is in motion. Thermal plumes are evident on many of the charts and can be identified by a return at the surface and extending upward, at times to heights of nearly 300 meters. The times at which radiosondes were launched are shown at the bottom of each chart by a letter, which corresponds to the letter designation on the radiosonde graphs. Experiment codes are also shown.

Table IV is a compilation of data taken from the acoustic sounder charts. We present this table because it is much more difficult to identify weak returns on the reproductions of the charts than on the originals, and at times as many as 5 or 6 distinct returns can be identified. The table lists the height of top of thermal plumes, when present, and the height of the base of non-surface return regions, all heights being in meters. There are also code letters associated with the listed heights. The letters "W" and "S" refer to weak and strong return echos, respectively, when they precede a number. A "W" following the listed height for a return height indicates that echos are obtained over a wide band. "Dark" means that there is too much background noise, giving a dark trace, to allow determination of the presence of a return.

Figure 2b A-34

TABLE IV
SUMMARY OF ACOUSTIC SOUNDER RESULTS

DATE/	THERMAL		RETURN	HEIGHTS		
TIME	PLUMES	1	2	3	4	COMMENTS
7/16/77						
1120		S290				no thermal plumes untl 1400
1140		S360				
1200		S370				
1220		S340	460			divides
1240		S380	420			
1300		S40 0	460			
1320		W300	380	480		return at 300m appears - 2nd return
1340		W300	W400	480		getting weak - 3rd return rising, weak
1400	260	S360	?	480		return 1 & 2 merge
1420	200	380	?	510		can't tell where #2 begins
1440	W160	360	?	520		
1500	220	300	?	W520		seems to be 4 returns but can't tell where it starts
1520	160	300	?	540		
1540	200	260	?	520		
1600	160	S320	420			return 3 & 4 merge together
1620	160	S300	400	500		
1640	W130	280	merged	W480	W580	
1700	250	320	500	600		
1720	240	300	merged	520	580	
1740	260	~ 290	~ 360	VW540		plumes merge with 1st return
1800	240	320	~ 400	530		return #2 merges with 1 around 400 m

1820	290	360	dark	560	620	
1840	120	180	300	~ 360	560	
1900	S100	160	320		VW580-600	
1920	S100	180	300	340	₩ - 580	may be another return at 460 m
1940	140	~200	260			#3 merges with 2
2000	140	260	merged		340	
2020	VW 100	140	280	320	VW420	inversion rising from surface
2040	"	140	260	320	"	return 3 seems to have split
2100	~120	240	300	340	400	
2120		150	200		410	may have 5 return heights
2140		240	combined		VW450	3 is combined with 2 and another one
2200		160	290	340	~ 420-460	return 4 is hazy - not clear
2220		160	290	~ 340	440	
2240		260	~ 310 me:	~330 rged	W460	no plumes
2300	VW200	290	~ 300 _ /	100	460	
2720	100	240			•	2.7.4
2320	180	260				return 2,3,4 merged
2340	220	260				
2400	180	S270			360	
7/17/77						
0020		W200	280		400	inversion rising from surfaces
0040		230	S280		380	no plumes
0100			280		400	

0120	W80		320		420	can't discern return 1 & 3
0140	W100	280	310		~ 410(?)	
0200		260	280	merged		
0220	W100	290			460	there are now 4 returns - all merging
0240	W120	260	no	t clear		
0300	W160	240				no 5 returns
0320	W140	220		300		
0340		240	280	320	~400	
0400		220	460			
0420		240	mer	ged	330	inversion from surface
0440	80	220		280	320	#5 hazy
0500	120	220		270	310	4 & 5 merged together
0520	140	250		310		
0540	160	260		340		
0600	60	260	310	420		
0620	80	280	mer	ged		can't tell #3 & 4
0640	160	280	320			
0700		200				
0720		260		300		no plumes
0740	100	S200			340	
0800	160	210	. 390	350		
0820	200	300	350			
0840	~210	300	340			
0900		240				getting too dark to
0920		320				see much
0940						
1000						

1020		280	340				
1040							
1100		300					
1120		200W			may ha	ave 2nd ret	urn
1140	W80	200					
1200	100	180W	240				
1220	100	160W					
1240	120	180					
1300	120	220			very i	faint secon	d return
1320	120	210					
1340	130	220					
1400	120	220					
1420	140	210					
1440	215	260		*			
1500	130	240	300				
1520	90	240	300				
1540	110	240	305				
1600	120	210	300				
1620	140	270	320				
1640	110	280					
1700	140	280			344		
1720	110	300				2nd return - too dark	
1740	130	300	380				
1800	120	260	360				
1820	140	280	380				
1840	160	300					
1900	140	320					

1920	140	300
1940	140	280
2000	150	300
2020	140	300
2040	260	280
2100	160	320
2120	120	310
2140	200	300
2200	160	300
2220	150	300
2240	130	280
2300	180	280
2320	120	300
2340	200	290
2400	160	280
7/18/77		
0020	140	260W
0040	120	260
0100	120	255
0120	125	145
0140	can't te	11 - too dark
0200		
0220		
0240	1/0/0	2201
0240	160(?)	220W
0300		

return 1 descending to surface

may be 2 or 3 returns

inversion - going to surface - plumes become darker, rising up blotch so can't tell which is which

may have 2 or 3 returns

0320	140	160W			10 to	
0340	140	180	400			
0400		100	180	360	inversion rising from surface	
0420	120	140	240		plumes rising to combine with inversion at 120-14	Om
0440	80	110W	240		too dark to see 3rd	
0500	160	220				
0520	120	160	•			
0540	80	100	250			
0600	140	220				
0620	120	200				
0640	180	200	310			
0700					too dark to see anything	
0720						
0740						
0800						
0820	120	160				
0840	130	200				
0900	100	240	340		240	
0920	90	210	340			
0940	100	240			2nd return may have combined with 1st	
1000	100	220				
1020	120	200				
1040	140	160W			653	
1100	130	180				
1120	150	200				
1140	160	230				
1200	150	260				

1220		220
1240	160	230
1300	100	250
1320	120	210
1340	170	240
1400	160	240
1420	160	260
1440	160	240
1500	130	320
1520	140	300
1540	100	320
1600	180	330
1620	100	360
1640	120	340
1700	100	360
1720	120	340
1740	120	340
1800	120	350
1820	160	360
1840	130	360
1900	100	390
1920	120	400
1940	180	390
2000	W100	380
2020		400
2040	W100	410
2100	W120	400

2120	W100	420					
2140	W100	420					
2200	120	380					
2220	120	380					
2240	100	380					
2300	110	340					
2320		320					
2340	140	340					
2400	160	280					
7/19/77							
0020	140	330					
0040		300					
0100		320				dividing int	o 3 returns
0120	W150	270W				plumes are v	ery faint
0140	W150	190W.	360		. 100	can't tell w	here 3 returns
0200	120	240W	480	520			
0220	160	240W	DARK				
0240	100	DA	RK			. 44	
0300	120	180	380			144	
0320	130	140	340W	460	540	inversion de surface	scending to
0340	140	~145	370W			3 4 4 merged	with 2
0400	100	*	360	DARK			
0420		тоо	DARK			too dark to	see until 0850
0440							
0500							
0520							
0540							
				A-44			

0600						
0620						
0640						
0700						
0720						
0740						
0800						
0820						
0820						
0840						
0900	220	S580		only	1 inversion now	
0920	220	590				
0940	240	620				
1000	240	370	580	anoth at 37	er return appea 0 m	red
1020	160	300	620			
1040		DARK				
1100		DARK				
1120	140	W240	610			
1140	210	at surface	600	lst r	eturn at surfac	е
1200	180	"	600			
1220	180	"	580			
1240	160	disappeared	420	#2 dr	opping	
1300	200	260		almos	t at surface	
1320	200	220				
1340	160	300				
1400	140	340				

1420	170	200W
1440	190	200W
1500	180	TOO DARK
1520	160	"
1540	180	~ 500
1600	190	500
1620	210	470 600
1640	220	500
1700	220	500
1720	220	480 560
1740	240	420 510
1800	220	410 BASK
1820	160	460
1840	160	510
1900	160	540
1920	160	DARK
1940	180	500
2000	220	500
2020	240	510
2040	200	540
2100	160	560
2120	180	500
2140	200	600
2200	180	590
2220	140	600
2240	200	580
2300	130	650

inversion very wide not
sure if it's part of
plume or inversion (200-660)

2nd return appeared

#2 merged with #1

2320	150	650	
2340	200	640	
2400	,		
7/20/77			
0000	140	620	
0020	140	635	
0040	180	630	
0100	180	620	
0120	140	640	
0140	140	640	
0200	120	690	
0220	200	720	
0240	320	750	
0300	380	760	
0320	380	790	
0340	400	760	
0400	380	740	
0420	360	720	
0440	360	740	
0500	300	720	
0520	320	700	
0540	280	280	690
0600	plume er	ell where nds & on begins	708
0620	180	120	690
0640	?	160	620
0700	?	160	615

another return appears at \sim 280 m

very faint - may have merged with plumes

0720	160	220	615			
0740	180	230	600			
0800	200	280	640			
0820	140	200W	660			
0840	140	DARK	700			
0900	120	W160	700			
0920	140	180	DARK			
0940	120	160	DARK			
1000	140	210	"			
1020	?	?	n.			plumes are there but inversion is overlapping with it
1040	180	disappeared				
1100	140		"			
1120	120	DARK	"			may have 2 or 3 returns between 300-500 m
1140	140	?	•			
1200	130	?	**			
1220	160	360	11			
1240	180	360	11			
1300	100	360	420	TOO DARK		return became clear at 420 m
1320	100	280	440	TOO DARK		
1340	110	260	400	700		may have another return at 360 m and another
						between 520-610 m
1400	W90	320	440	570W	700	
1420	110	260	450	560	620	
1440	100	DARK				
1500	100	280	440	DARK	?	

1520	160	200	240	420	?			
1540	120	120		300			lapping with th #3 & #4	#1
1600	100	120			300	#2 & 3	overlapping w	with #1
1620	90	100		235				
1640	80	120W					dropped to su one big retur	
1700	70	80W						
1720	?	70W				inversi plumes	on - overlapp	ing with
1740	?	80W						
1800	?	80W						
1820	100	120W						
1840	100	130W						
1900	100	140W				may hav	e 2 wide retu ping	ırns
1920	100	160W						
1940	120	260W						
2000	120	280W						
2020	200	W240	380			another at 240	return appea m	red
2040	120	W200	360					
2100	140	W220	300					
2120	150	240					lapping with	#1
2140	160	240						
2200	120	280						
2220	140	340						
2240	140	320						
2300	130	300						
2320	200	270						
2340	140	300						

7/21/77			
0000	140	280	
0020	150	290	
0040	160	310	
0100	160	290	
0120	130	270	
0140	120	270	
0200	140	280	
0220	150	280	
0240	160	300	
0300	320	200	
0320	320	220	
0340	?	260	
0400	?	240	
0420	?	320	
0440	?	380	
0500	210	360	
0520	dark band	450	
0540	"	455	
0600	320	460	
0620	150	dark band	
0640	120	480	640
0700	260	460	560
0720	260	460	560
0740	300	460	520W
0800	320	420	

dark band covering plumes
inversion covering plumes
band covering plumes
band covering plumes

0820	220	460					
0840	240	475					
0900	200	430					
0920	160	420					
0940	160	360					
1000	200	310					
1020	210	300					
1040	180	280					
1100	100	260					
1120	200	220	340				
1140	200	220	360				
1200	210	220	~ 300	400	#1 split	into 2 retur	ms
1220	200	230	~ 330	400			
1240	180	200	320	400			
1300	140	180W	blotch	dark			
1320	140	210	ended	ended			
1340	140	200					
1400	100	200					
1420	100	280					
1440	140	220					
1500	200	200					
1520	140	200					
1540	120	220	290				
1600	150	220	290				
1620	140	200	280				
1640	140	160			#2 overla	pping	
1700	120	140					

1720	90	120	220			
1740	100	~110	220	420		
1800		100	250			return at surface over- lapping with plumes
1820		80	240	overlapping with #2	440	
1840	120	140	overlappin with #1	g "	440	
1900	140	200	"	. "	440	
1920	160	240	ended	ended	380	
1940	140	250W				#2 & 3 combined (?) with #1 - so did 4
2000	140	200W				may have another return ~ 400 & ~ 540 m
2020	140	160W	390W			
2040	130	140	~ 500	400	500	#1 stopped
2100	100	300	DARK	DARK		
2120	140	310	460			
2140	100	320W				#2 combined with #1
2200	110	330W				
2220	100	340W				
2240		DARK				
2300		DARK				may have 2 returns
2320	110	290	480W			
2340	140	190	290	440W		
7/22/77						
0000	160	200	370	480W		
0020	110	140	380	470W		
0040	100	140	?	460W		

0100		120	320	460W				
0120	100	120	DARK	DARK				
0140		160	320	DARK				
0200		180	DARK	500W				
0220	80	250	340	410	510W	ar	nother return a	at 410 m
0240		200	340	390	480W			
0300		180	DARK					
0320		80 ·	DARK					
0340	100	140	DARK					
0400	110	220	DARK					
0420		at surface	290	400	580			
0440		"	240	DARK				
0500	100	120	300	380		# 4	combined with	n #3
0520	130	140	290	360				
0540	100	190	280	DARK				
0600	130	220	DARK					
0620	110	220				#2	combined with	n #1
0640	100	240	DARK					
0700	110	240	DARK					
0720	100	240	DARK					
0740	110	240	DARK					
0800	160	260	360					
0820	110	230	DARK					
0840	100	230						
0900	100	200						
0920	80	220						
0940	100	220						
1000	120	220						

1020	100	260						
1040	100	260						
1100	120	250						
1120	140	220			19.48			
1140	140	220						
1200	140	210						
1220	150	210						
1240	150	200						
1300	160	180						
1320	110	160						
7/23/77								
1400		160	260	530				
1420		210		560		#2 1	combined wit	:h #1
1440		280	580					
1500		310	580					
1520		DARK						
1540	S260	290	?	560		may	have 2 more	returns
1600	90	260	combined with #1	640				
1620								
	120	300W	DARK					
1640	120 160	300W 320	DARK					
			DARK			100		
1640	160	320	DARK					
1640 1700	160 140	320 320	DARK					
1640 1700 1720	160 140 120	320 320 355	DARK					

5-14

275W

ABC:

186

1920		480			
1940		400			
2000	240	390	W610		
2020	110	360	W410	W610	
2040		260	combined with #3	500	
2100		210	540		
2120		170	520		
2140		100W	500		
2200		80	500		
2220		80W at surface	300	555	
2240		at surface	390	500	580
2300		"	460	620	
2320	160	490			
2340	260	500			
2400	160	weak			
7/24/77					
0020	150	too weak			
0040		155	580		
0100		120	560		
0120	100	170	550		
0140	100	140	560		
0200	120	~125	560		
0220	120	?	550	cai	
0240	100	120	240	570	
0300	120	160	?	540	
0320	100	at surface	DARK	540	

0340	100	120	DARK				
0400	120	140	"	500			
0420	100	140	"	DARK			
0440		at surface	stopped	"		overlappi	ng with plumes
0500		"	560				
0520		"	DARK				
0540		"	"				
0600		"	480				
0620	120	DARK	500				
0640	100		500				
0700	90	· ·	540				
0720	100	140	520				
0740	150	175	500				
0800	DARK	DARK	DARK				
0820	110	**	"	•			
0840	120	"	490				
0900	120	"	400W				
0920	110	"	DARK				
0940	105	"	"				
1000	160	~165	300	400	550		
1020	100	DARK					
1040	110	"	280		in in		
1100	100	"	"				
1120	120	200W	460				
1140	120	260W	500				
1200	140	220W					
1220	140	180W					

1240		weak						
1300		W250						
1320	160	220	350	640				
1340	180	220	320	580				
1400	160	200	320	580				
1420	140	220	320					
1440	120	160	300			return be	etween	160-300 m
1500	140	160	260	~ 305				
1520	160	240						
1540	160	260						
1600	180	220						
1620	140	200						
1640	120	180	260	350				
1700 1	?	100	200	310				
1720		at surface	?	DARK				
1740		"	?	220	360			
1800		"	?	340				
1820	180	200	DARK					
1840	S200	300						
1900	S180	340	400					
1920	S210	220	340					
1940	S220	220	360					
2000	S240	280	360	DARK				
2020	120	140	280	500				
2040	S200	240	340	465				
2100	S260	280	380	440				
2120	S280	320	?	480				
2140	S280	340	?	470				
2200	S240	260	380	460				

A-57

2220	S200	?	7	400	480	
2240	S200	~ 195	300	420	~ 500	
2300	~ 140	~100W	300	420	~ 500	
2320	~ 100	at surface	240	440	?	
2340	90	120W	~240	440	?	
2400	120	130	220	300	380	6 returns here
				5 460	6 560	
7/25/77						
0020	140	160	240	380	420	
					5	
		144	2441	440	560	
0040	110	160	240W	440	540	
0100	110	at surface	260W	480	560	
0120	140	"	260	340	480	#5 return at 560
0140	140	u	260	445		
0200	150	"	280			
0220	110	"	2 160	3 260	4 350	may have as many as 6 or 7 returns
				_		
				5 400	460	
0240	120	"	180			#4 & 5 combined with #3
0300	120 180	"	180 260	400	460	#4 & 5 combined with #3
				400 360	460 450	#4 & 5 combined with #3 #4 combined with #3
0300	180	"	260	400 360 360	460 450 440	
0300 0320	180 140	"	260 320	400 360 360 370	460 450 440 ?	
0300 0320 0340	180 140 140	" "	260 320 260	400 360 360 370 330W	460 450 440 ?	
0300 0320 0340 0400	180 140 140 110	" "	260 320 260 280	400 360 360 370 330W 310W	460 450 440 ?	
0300 0320 0340 0400 0420	180 140 140 110 160	" " "	260 320 260 280 280W	400 360 360 370 330W 310W 465	460 450 440 ? ? 480	

0520	90	at surfac	e 200	300W	460		
0540	100		~ 200	280	360	#5 return at 460	
0600	150	220	280W	480			
0620	120	145	230	290			
0640	100	120	230 ov	verlapping with #2			
0700	90	at surfac	e 160	**	W340		
0720	120	11	180	330		#3 combined with #2	
0740	130	"	180	300	420	#5 return at 500	
0800	140(?)	11	180	320	400		
0820	200	DARK	200	380	500	plumes covering #1 return	
0840	200	DARK	240	300	440		
					5 660		
0900	220	DARK	240	300	430		
					5 640		
0920	240	240	300	400W			
0940	260	~ 240	360W				
1000	?	160	270	380			
1020	220	260	overlapping	400			
1040	280	360	"	combined with #2			
1100	260	380	420				
1120	320	420					
1140	260	400					
1200	260	360					
1220	240	~ 380					
1240	200	400					

1300	280	400					
1320	~ 300	400					
1340	~ 200						
1400	. 190	W320					
1420	200	W260	W440				
1440	200	W300W					
1500	180	₩300					
1520	200	W240					
1540	?					plumes and re lapping	turn over-
1600	?	at surface					
1620	180						
1640	220	W44 0					
1700	240	W360					
1720	220	at surface	360				
1740	180	340					
1800	150	300					
1820	160	340					
1840	160	360					
1900	140	320					
1920	200(?)	260				may be plume not sure	or return -
1940	?	at surface	DARK				
2000		90				no plumes	
2020		140	220	310			
2040		100	220	320			
2100		~110	210	340			
2120		100	250	380			
2140		90	230	370			

2200		170	240	380			
2220		160	?	340			
2240		140	?	340			
2300	110	140	300				
2320	W100	160	300				
2340		160	260W				
2400		160	280				
7/26/77							
0020		at surface	S150	~260			
0040		"	S150	250			
0100		"	S160	?		return #2 & become 1	4 may have
0120	100	"	S140	?			
0140		11	S85				
0200		"	580	200	320		
0220		at surface	180	280			
0240		"	?	~ 220			
0300		"	240 €	/			
0320		"	260				
0340		110	250				
	100						
0400	100	110	270				
0420	•	90	DARK				
0440	90	160					
0500		at surface	180	280	340	420	
0520		90	160	280			
0540		stopped	DARK	DARK			
0600		200	DARK				

0620		DARK	DARK		
0640		220	. 11		
0700		80	**		
0720		90	200		
0740		240			
0800	90	200			
0820	110	200			
0840	110	140	260		
0900	120	160			
0920	130	~ 140			
0940	100	110			
1000	120	at surface			
1020		"			
1040		"			
1100		n- BSE			
1120		80			
1140		at surface			
1200		"	110		
1220		"			
1240		u			
1300		n .			
1320		u			
1340		"			
1400		m 852			
1420		"		10.	
1440		n			
1500		"	120		
1520			DARK		

1540		at surface	180				
1600							
1620	100	110					
1640		at surface					
1700		**					
1720	120						
1740	120						
1740	120						
1800	140	160					
1820	120	at surface			may hav	e another	return
1840	120	11					
1900	?	"	440				
1920	?	**	380				
1940	?	?	300			now which	is
		~			return	or plume	
2000	160	170					
2020	120	140					
2040		at surface					
2100		"					
2120		100					
2140		at surface					
2200		ac Juliuco					
2200		"					
2220		"					
		"					
2220		"					
2220 2240		" "					
2220 2240 2300		" " "					

7/27/77		
0020	at surface	
0040	S90	may have another return
0100	S80 260	
0120	S80 250	
0140	S80 DARK	
0200	S80 W250	
0220	S70 too weak	
0240	S90 W300	
0300	S90 200	
0320	S80 overlapping	
0340	S 60 140	
0400	S70 120	another return above #2 but is overlapping
0420	S70W ? S150	
0440	at surface 200W	#2 seems to have merged with #1
0500	80W 180	
0520	100 S120 210	
0540	80 90 110 200	901
0600	80 200	#2 is too low - seems to be at surface
0620	90 100 220	
0640	at surface ~ 210	
0700	" ~ 220	
0720	\$80 200	
0740	at surface 220	
0800	S80 220	

0820		80	160	210		may have another return under #1
0840		90	150	200		
0900		80	100	160	W400	
0920		90	~ 140	? overlapping	W300	
0940		90	~ 120	190	W250	
1000		70	?	. 150	200	<pre>#2 is partly under #1, #5 at 300</pre>
1020		70	?	160	200	#5 at 320
1040		70		overlapping		
1100		70		200		
1120		80	120	230		
1140		100	120	220		
1200		at surface	~100	DARK		
1220		"	DARK	DARK		
1240		80	11	"		
1300		90	"	. "		
1320		90	160	DES " NOS,		
1340		at surface	100	190	W340	
1400		80 .	140	220	W380	
1420		90	130	200	W380	
1440		S80	S230			
1500		90	S200W			
1520	100	110	260W	W400		
1540	110	130	290	W400		
1600	120	150	210	400		

1620	150	180	250	400				
1640	160	DARK	260	340				
1700	160	180	300					
1720	140	DARK	300					
1740	100	120	200W					
1800		80	190W				inversion rising surface	from
1000		00	100				surrace	
1820		80	190					
1840		80	180	260W				
1900		at surface	130	240				
1920		80	120	240				
1940		100	S160W					
2000		at surface	S140W					
2020		**	S120W					
2040		"	S120W					
2100		"	S100W					
2120		"	S100W				may have another	return
2140		**	S90W	220			~200 m	
2200		"	S95W	210				
2220			S100W	DARK				
2240		"	S100W	DARK				
2300		80	110	220		000		
2320		at surface.	200				may have return	between
							110-200 m	
2540		100						
2400		at surface	110	200				
7/28/77								
0020		at surface	DARK	200	~ 400			

0040		at surface	160	280		
0100		n	200	270		
0120		" 33	160	260		
0140		100	180	280		
0200		80W	~ 240	300		
0220		80W	260	overlapping		
0240		80	190	290	380	
0300		at surface	~200	280	380	
0320		Ü	160	280	~ 400	5 returns
0340		"	150	290	380	6 returns
	•				5 5 60	
0400		"	140	280	320	
				5 380	6 560	
0420		"	120	240	320	
0420			120	5	6	
				440	560	
0440		"	170	260 5	380 6	
				480	560	
0500		"	200	340	400	
					5 580	
0520		80	200	280	360	
					5 580	
0540		80	190	280	340	
					5	
					580	
0600		80	210	300		
0620	80	100	230	300	360	

0640	90	100	200	300	380
0700		80	200	270	400
0720		80	210	260	400
0740		80	200	300	
0800		100	250	99500	
0820	110			990 085	
0840	90	120	200		
0900		90			
0920	100				
0940	90	100			
1000	90				
1020	80	100			
1040	110	160	240		
1100	120	140			
1120	100	180			
1140	140	160			
1200	180	overlapping			
1220	90	180			

300

D. Radiosonde

Figures 3a - 3u show the radiosonde results up to elevation of 1000 meters. Results are not shown above this height because we are primarily interested in the marine inversion. These figures were derived directly from the radiosonde readout strip chart presentation so that fine detail can be observed. A good example is shown in Figure 3b where the results show a surface inversion, an elevated inversion with a 230 m base, and 10 changes in slope above the inversion. Detail of this type is not available in the normal presentation of radiosonde results where only major features are plotted on a much larger height scale.

Figure 3b A-71

E. Temperature and Humidity Data

Table V lists sea surface temperature, air temperature at the four shipboard levels and the average relative humidity from the four levels. Due to inherent inaccuracies in the humidity sensors it would be inappropriate to list the four values obtained from the levels. All temperatures are in °C. The only data presented in Table IV is for those time periods when it was possible to obtain good profiles and fluctuation data (those times when the relative wind was from a favorable direction). Data entries are missing for some times due to malfunctions of the teletype or, in the case of the sea surface and level 1 for the latter part of the cruise, due to system damage by high waves.

TABLE V
Sea Surface Temperature and Atmospheric Temperature and Relative Humidity

Time	Ts	T ₁	T ₂	T ₃	T 4	H
7/18			91 - 6/13 - (9/23 	haninada.	290 Inv 2000	B17 2012 02 01425
2025		16.41	16.37	16.34	16.25	90
2120	17.11	16.45	16.42	16.36	16.27	90
2145	16.49	16.49	16.47	16.42	16.33	90
2200		16.56	16.53	16.49	16.40	89
2220	16.42	16.51	16.47	16.42	16.34	90
2245			16.47	16.42	16.33	90
7/19						
0000	19.11		16.53	16.44	16.36	90
0020	18.54	16.34	16.47		16.28	90
0100		16.13	16.08	16.06	16.01	92
0140	16.70	15.80	15.89	15.94	15.90	93
0245	16.06	16.03	15.98	15.95	15.92	100
0420	17.04	16.58	16.56	16.51	16.43	90
0440	17.4	16.7	16.67	16.62	16.53	90
0500	17.70	16.71		16.63	16.33	89
0520	17.7	16.8	16.73	16.67	16.58	87
0600	16.81	16.92	16.90	16.89	16.80	85
0620	19.20	17.31	17.08			84
0640	19.00	17.51	17.40	17.34	17.24	. 83
0700	18.80	17.63	17.59	17.55	17.44	83
0720		17.82	17.76	17.75	17.62	92
0740	19.40	17.55	17.71	17.70	17.53	83
1350	20.4	18.46		18.36		82
1410	21.8		18.58	18.77	18.58	79
1620	21.1	18.7	18.59	19.12	18.71	79
1650	21.07	18.69	18.44	18.83	18.50	79
1710	20.99	18.56	18.35	18.58	18.27	79
1730			18.25	18.43	18.13	79

Time	T _S	T ₁	^T 2	т3	^T 4	н	
7/19							
1940		18.5	18.47	18.42	18.31	86	
2000	18.76	18.03			18.17	84	
2040		17.85	17.79	17.70	17.54	87	
2120		17.76	17.71	17.64	17.54	87	
2140	19.88	17.77	17.70	17.65	17.55	87	
2200			17.78		17.60	87	
7/20							
0700	18.70	17.41	17.32	17.29	17.03	86	
0740	19.2		17.51	17.47	17.27	86	
0840	19.22	17.76	17.70	17.72	17.48	85	
0900	19.3	18.02	18.02	17.98	17.84	85	
0920	19.3	18.08	18.07	18.19	17.88	85	
1020	19.63	18.33	18.33	18.40	18.12	84	
1040	19.92		18.77	18.92	18.61	80	
1240	20.2	19.1	19.19	19.25	19.0	78	
1300	19.81	19.12	19.24	19.22	19.03	79	
1320	19.67	19.08	19.22	19.24	19.04	88	
1800	18.24	18.80	18.84	19.16	18.80	84	
1900	17.80	18.86	18.78	18.87	18.28	83	
1920	17.70	18.77	18.70	18.79	18.35	84	
1940	18.40	18.70		18.65	18.28	84	
2000		18.30	18.32	18.38	18.21	85	
2020		18.40	13.27	18.18	17.74	86	
2040			18.14	18.06	17.85	87	
2120	18.24	18.11	18.08	18.00	17.83	88	
2140			17.97	17.90	17.71	89	
2200	18.63	17.91	17.84	17.79	17.64	89	
2220	19.00	17.89	17.83		17.62	90	
2230			17.71	17.71	17.55	91	
2300	18.23		17.38	17.39	17.23	91	
2400	17.20	16.59	16.59	16.58	16.57	94	

Time	T _S	T 1	^T 2	^T 3	T4	H	
7/21							
0040	16.9	16.39	16.37	16.32	16.20	94	
0100	16.6		16.01	16.04	15.88	93	
0120	16.1	15.83	15.67	15.66	15.58	96	
0405	17.7	16.42	16.47	16.38	16.24	98	
0425		16.62	16.61	16.52	16.40	97	
0445	18.4	17.04	17.08	16.97	16.83	96	
0505	18.4	17.19	17.20	17.13	17.07	94	
0545	18.2	17.55	17.57	17.51	17.39	91	
0605		17.67	17.65	17.59	17.41	89	
0625		16.75	16.69			89	
0645	18.3	17.59	17.56	17.53	17.34	89	
0705	18.19		17.52	17.48	17.33	89	
0725			17.60	17.56	17.43	89	
0745		17.87	17.79	17.77	17.63	89	
0805			17.73	17.75	17.64	89	
0825		*	17.71	17.72	17.57	90	
0845	19.04	4:	17.93	17.93	17.73	91	
0905			17.99	18.03	17.76	89	
0945	18.75	17.75	17.67	17.75	17.49	89	
1005	18.16	17.63	17.53	17.73	17.44	88	
1025	18.46		17.60	17.92	17.58	88	
1045	18.4	17.76	17.63	17.97	17.60	88	
1105	17.72	17.44	17.42	17.79	17.39	89	
1305		17.66	17.51	17.94	17.66	90	
1325	17.7	17.72	17.52	17.85	17.46	90	
1345	17.86	17.97	17.80	17.97	17.46	90	
1405	18.23	18.06	18.05	18.14	17.69	90	
1505	18.9	18.53	18.29	18.60	18.22	88	
1620			18.40	18.79	18.34	86	
1720	18.72	18.51	18.26	18.55	18.03	85	
1945	19.93	19.93	18.69	18.86	18.63	79	
2030	19.84	18.45	18.39	18.31	18.18	85	

7/21 2110	Time	T _S	^T 1	^T 2	^T 3	^T 4	н
2130 19.5 18.49 18.46 18.40 18.29 85 2150 18.59 18.52 18.41 84 2250 18.28 18.21 18.15 89 2350 17.95 17.95 17.89 91 7/22 7/22 7/22 7/22 7/22 7/22 7/22 7/22 7/22 7/22 7/22 7/22 7/24 7/29 7/29 92 91 91 91 91 92 91 92 <td>7/21</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	7/21						
2150 18.59 18.52 18.41 84 2250 18.28 18.21 18.15 89 2350 17.95 17.95 17.89 91 7/22 17.22 18.02 18.02 18.01 17.93 91 0150 17.2 18.02 18.02 18.01 17.93 91 0450 17.4 17.41 17.29 17.31 17.27 92 0550 17.24 17.21 17.12 93 0610 17.22 16.83 17.03 16.98 16.88 94 0710 16.61 16.60 16.48 96 0730 16.70 16.70 16.57 97 0750 18.86 16.67 16.65 16.68 16.54 97 0810 16.72 16.64 16.74 16.58 96 0910 16.66 16.54 16.65 16.58 96 0910 16.66 16.54 16.65 16.59 97 1010 18.02 16.75 16	2110			18.50	18.42	18.32	84
2250 18.28 18.21 18.15 89 2350 17.95 17.95 17.89 91 7/22 17.22 18.02 18.02 18.01 17.93 92 0150 17.2 18.02 18.02 18.01 17.93 91 0450 17.4 17.41 17.29 17.31 17.27 92 0550 17.24 17.21 17.12 93 0610 17.22 16.83 17.03 16.98 16.88 94 0710 16.61 16.60 16.48 96 0730 16.70 16.57 97 0750 18.86 16.67 16.65 16.68 16.54 97 0810 16.72 16.64 16.74 16.58 96 0830 16.72 16.64 16.74 16.58 96 0910 16.66 16.54 16.65 16.52 97 0930 17.3 16.74 16.69 16.49 97 1010 18.02 16.75 16.	2130	19.5	18.49	18.46	18.40	18.29	85
2350 17.95 17.95 17.89 91 7/22 18.14 18.11 18.03 92 0150 17.2 18.02 18.02 18.01 17.93 91 0450 17.4 17.41 17.29 17.31 17.27 92 0550 17.24 17.21 17.12 93 0610 17.22 16.83 17.03 16.98 16.88 94 0710 16.61 16.60 16.48 96 0730 16.70 16.57 97 0750 18.86 16.67 16.65 16.68 16.54 97 0810 16.72 16.64 16.74 16.58 96 0830 16.72 16.64 16.74 16.58 96 0910 16.66 16.54 16.65 16.52 97 0930 17.3 16.74 16.63 16.77 16.59 97 1010 18.02 16.75 16.91 16.66 97 1030 18.51 17.15 17.	2150			18.59	18.52	18.41	84
7/22 0130 18.14 18.11 18.03 92 0150 17.2 18.02 18.02 18.01 17.93 91 0450 17.4 17.41 17.29 17.31 17.27 92 0550 17.24 17.21 17.12 93 0610 17.22 16.83 17.03 16.98 16.88 94 0710 16.61 16.60 16.48 96 0730 16.70 16.70 16.57 97 0750 18.86 16.67 16.65 16.68 16.54 97 0810 16.72 16.64 16.74 16.58 96 0830 16.72 16.64 16.74 16.58 96 0910 16.66 16.54 16.65 16.52 97 0930 17.3 16.74 16.63 16.77 16.59 97 1010 18.02 16.75 16.91 16.66 97 1030 18.51 17.15 17.18 17.33 17.05	2250			18.28	18.21	18.15	89
0130 18.14 18.11 18.03 92 0150 17.2 18.02 18.02 18.01 17.93 91 0450 17.4 17.41 17.29 17.31 17.27 92 0550 17.24 17.21 17.12 93 0610 17.22 16.83 17.03 16.98 16.88 94 0710 16.661 16.60 16.48 96 0730 16.70 16.57 97 0750 18.86 16.67 16.65 16.68 16.54 96 0810 16.72 16.64 16.74 16.58 96 0830 16.72 16.64 16.74 16.58 96 0910 16.66 16.54 16.65 16.59 97 0930 17.3 16.74 16.63 16.77 16.59 97 1010 18.02 16.75 16.91 16.66 97 1030 18.6 17.15 17.18 17.33 17.05 96 1050 18.	2350			17.95	17.95	17.89	91
0150 17.2 18.02 18.02 18.01 17.93 91 0450 17.4 17.41 17.29 17.31 17.27 92 0550 17.24 17.21 17.12 93 0610 17.22 16.83 17.03 16.98 16.88 94 0710 16.61 16.60 16.48 96 0730 16.70 16.57 97 0750 18.86 16.67 16.65 16.68 16.54 97 0810 16.72 16.64 16.74 16.58 96 0830 16.72 16.64 16.74 16.58 96 0910 16.66 16.54 16.65 16.52 97 0930 17.3 16.74 16.63 16.77 16.59 97 1010 18.02 16.75 16.91 16.66 97 1030 18.51 17.15 17.18 17.33 17.05 96 1050 18.6 17.54 17.64 17.81 17.51 94	7/22			14:51			
0450 17.4 17.41 17.29 17.31 17.27 92 0550 17.24 17.21 17.12 93 0610 17.22 16.83 17.03 16.98 16.88 94 0710 16.81 16.61 16.60 16.48 96 0730 16.70 16.70 16.57 97 0750 18.86 16.67 16.65 16.68 16.54 97 0810 16.72 16.64 16.74 16.58 96 0830 16.72 16.64 16.74 16.58 96 0910 16.66 16.54 16.65 16.52 97 0930 17.3 16.74 16.63 16.77 16.59 97 1010 18.02 16.75 16.91 16.66 97 1030 18.51 17.15 17.18 17.33 17.05 96 1050 18.6 17.54 17.64 17.81 17.51 94 1210 17.24 17.13 17.27 17.01 <	0130			18.14	18.11	18.03	92
0550 17.24 17.21 17.12 93 0610 17.22 16.83 17.03 16.98 16.88 94 0710 16.61 16.60 16.48 96 0730 16.70 16.57 97 0750 18.86 16.67 16.65 16.68 16.54 97 0810 16.72 16.65 16.86 16.58 96 0830 16.72 16.64 16.74 16.58 96 0910 16.66 16.54 16.65 16.52 97 0930 17.3 16.74 16.63 16.77 16.59 97 0950 16.53 16.72 16.49 97 1010 18.02 16.75 16.91 16.66 97 1030 18.51 17.15 17.18 17.33 17.05 96 1050 18.6 17.54 17.64 17.81 17.51 94 1210 17.24 17.13 17.27 17.01 90 1230 17.19 17	0150	17.2	18.02	18.02	18.01	17.93	91
0610 17.22 16.83 17.03 16.98 16.88 94 0710 16.61 16.60 16.48 96 0730 16.70 16.57 97 0750 18.86 16.67 16.65 16.68 16.54 97 0810 16.72 16.64 16.74 16.58 96 0830 16.72 16.64 16.74 16.58 96 0910 16.66 16.54 16.65 16.52 97 0930 17.3 16.74 16.63 16.77 16.59 97 1010 18.02 16.75 16.91 16.66 97 1030 18.51 17.15 17.18 17.33 17.05 96 1050 18.6 17.54 17.64 17.81 17.51 94 1210 17.24 17.13 17.27 17.01 90 1230 17.83 17.80 17.22 92 1333 17.83 17.80 17.22 92 1350 18.01 17	0450	17.4	17.41	17.29	17.31	17.27	92
0710 16.61 16.60 16.48 96 0730 16.70 16.70 16.57 97 0750 18.86 16.67 16.65 16.68 16.54 97 0810 16.85 16.86 16.68 96 0830 16.72 16.64 16.74 16.58 96 0910 16.66 16.54 16.65 16.52 97 0930 17.3 16.74 16.63 16.77 16.59 97 0950 16.53 16.72 16.49 97 1010 18.02 16.75 16.91 16.66 97 1030 18.51 17.15 17.18 17.33 17.05 96 1050 18.6 17.54 17.64 17.81 17.51 94 1210 17.24 17.13 17.27 17.01 90 1230 17.19 17.41 17.18 91 1333 17.83 17.80 17.22 92 1350 18.01 17.92 18.15 17	0550			17.24	17.21	17.12	93
0730 16.70 16.70 16.57 97 0750 18.86 16.67 16.65 16.68 16.54 97 0810 16.85 16.86 16.68 96 0830 16.72 16.64 16.74 16.58 96 0910 16.66 16.54 16.65 16.52 97 0930 17.3 16.74 16.63 16.77 16.59 97 0950 16.53 16.72 16.49 97 1010 18.02 16.75 16.91 16.66 97 1030 18.51 17.15 17.18 17.33 17.05 96 1050 18.6 17.54 17.64 17.81 17.51 94 1210 17.24 17.13 17.27 17.01 90 1230 17.19 17.41 17.18 91 1333 17.83 17.80 17.22 92 1350 18.01 17.92 18.15 17.59 91 1610 19.81 19.64 19	0610	17.22	16.83	17.03	16.98	16.88	94
0750 18.86 16.67 16.65 16.68 16.54 97 0810 16.85 16.86 16.68 96 0830 16.72 16.64 16.74 16.58 96 0910 16.66 16.54 16.65 16.52 97 0930 17.3 16.74 16.63 16.77 16.59 97 0950 16.53 16.72 16.49 97 1010 18.02 16.75 16.91 16.66 97 1030 18.51 17.15 17.18 17.33 17.05 96 1050 18.6 17.54 17.64 17.81 17.51 94 1210 17.24 17.13 17.27 17.01 90 1230 17.19 17.41 17.18 91 1333 17.83 17.80 17.22 92 1350 18.01 17.92 18.15 17.59 91 1610 19.81 19.64 19.90 19.40 87 1630 19.77 20	0710			16.61	16.60	16.48	96
0810 16.85 16.86 16.68 96 0830 16.72 16.64 16.74 16.58 96 0910 16.66 16.54 16.65 16.52 97 0930 17.3 16.74 16.63 16.77 16.59 97 0950 16.53 16.72 16.49 97 1010 18.02 16.75 16.91 16.66 97 1030 18.51 17.15 17.18 17.33 17.05 96 1050 18.6 17.54 17.64 17.81 17.51 94 1210 17.24 17.13 17.27 17.01 90 1230 17.19 17.41 17.18 91 1333 17.83 17.80 17.22 92 1350 18.01 17.92 18.15 17.59 91 1610 19.81 19.64 19.90 19.40 87 1630 19.77 20.51 19.94 87	0730			16.70	16.70	16.57	97
0830 16.72 16.64 16.74 16.58 96 0910 16.66 16.54 16.65 16.52 97 0930 17.3 16.74 16.63 16.77 16.59 97 0950 16.53 16.72 16.49 97 1010 18.02 16.75 16.91 16.66 97 1030 18.51 17.15 17.18 17.33 17.05 96 1050 18.6 17.54 17.64 17.81 17.51 94 1210 17.24 17.13 17.27 17.01 90 1230 17.19 17.41 17.18 91 1333 17.83 17.80 17.22 92 1350 18.01 17.92 18.15 17.59 91 1610 19.81 19.64 19.90 19.40 87 1630 19.77 20.51 19.94 87	0750	18.86	16.67	16.65	16.68	16.54	97
0910 16.66 16.54 16.65 16.52 97 0930 17.3 16.74 16.63 16.77 16.59 97 0950 16.53 16.72 16.49 97 1010 18.02 16.75 16.91 16.66 97 1030 18.51 17.15 17.18 17.33 17.05 96 1050 18.6 17.54 17.64 17.81 17.51 94 1210 17.24 17.13 17.27 17.01 90 1230 17.19 17.41 17.18 91 1333 17.83 17.80 17.22 92 1350 18.01 17.92 18.15 17.59 91 1610 19.81 19.64 19.90 19.40 87 1630 19.77 20.51 19.94 87	0810			16.85	16.86	16.68	96
0930 17.3 16.74 16.63 16.77 16.59 97 0950 16.53 16.72 16.49 97 1010 18.02 16.75 16.91 16.66 97 1030 18.51 17.15 17.18 17.33 17.05 96 1050 18.6 17.54 17.64 17.81 17.51 94 1210 17.24 17.13 17.27 17.01 90 1230 17.19 17.41 17.18 91 1333 17.83 17.80 17.22 92 1350 18.01 17.92 18.15 17.59 91 1610 19.81 19.64 19.90 19.40 87 1630 19.77 20.51 19.94 87	0830		16.72	16.64	16.74	16.58	96
0950 16.53 16.72 16.49 97 1010 18.02 16.75 16.91 16.66 97 1030 18.51 17.15 17.18 17.33 17.05 96 1050 18.6 17.54 17.64 17.81 17.51 94 1210 17.24 17.13 17.27 17.01 90 1230 17.19 17.41 17.18 91 1333 17.83 17.80 17.22 92 1350 18.01 17.92 18.15 17.59 91 1610 19.81 19.64 19.90 19.40 87 1630 19.77 20.51 19.94 87	0910		16.66	16.54	16.65	16.52	97
1010 18.02 16.75 16.91 16.66 97 1030 18.51 17.15 17.18 17.33 17.05 96 1050 18.6 17.54 17.64 17.81 17.51 94 1210 17.24 17.13 17.27 17.01 90 1230 17.19 17.41 17.18 91 1333 17.83 17.80 17.22 92 1350 18.01 17.92 18.15 17.59 91 1610 19.81 19.64 19.90 19.40 87 1630 19.77 20.51 19.94 87	0930	17.3	16.74	16.63	16.77	16.59	97
1030 18.51 17.15 17.18 17.33 17.05 96 1050 18.6 17.54 17.64 17.81 17.51 94 1210 17.24 17.13 17.27 17.01 90 1230 17.19 17.41 17.18 91 1333 17.83 17.80 17.22 92 1350 18.01 17.92 18.15 17.59 91 1610 19.81 19.64 19.90 19.40 87 1630 19.77 20.51 19.94 87	0950			16.53	16.72	16.49	97
1050 18.6 17.54 17.64 17.81 17.51 94 1210 17.24 17.13 17.27 17.01 90 1230 17.19 17.41 17.18 91 1333 17.83 17.80 17.22 92 1350 18.01 17.92 18.15 17.59 91 1610 19.81 19.64 19.90 19.40 87 1630 19.77 20.51 19.94 87	1010	18.02		16.75	16.91	16.66	97
1210 17.24 17.13 17.27 17.01 90 1230 17.19 17.41 17.18 91 1333 17.83 17.80 17.22 92 1350 18.01 17.92 18.15 17.59 91 1610 19.81 19.64 19.90 19.40 87 1630 19.77 20.51 19.94 87	1030	18.51	17.15	17.18	17.33	17.05	96
1230 17.19 17.41 17.18 91 1333 17.83 17.80 17.22 92 1350 18.01 17.92 18.15 17.59 91 1610 19.81 19.64 19.90 19.40 87 1630 19.77 20.51 19.94 87	1050	18.6	17.54	17.64	17.81	17.51	94
1333 17.83 17.80 17.22 92 1350 18.01 17.92 18.15 17.59 91 1610 19.81 19.64 19.90 19.40 87 1630 19.77 20.51 19.94 87	1210		17.24	17.13	17.27	17.01	90
1350 18.01 17.92 18.15 17.59 91 1610 19.81 19.64 19.90 19.40 87 1630 19.77 20.51 19.94 87	1230			17.19	17.41	17.18	91
1610 19.81 19.64 19.90 19.40 87 1630 19.77 20.51 19.94 87	1333		17.83		17.80	17.22	92
1630 19.77 20.51 19.94 87	1350		18.01	17.92	18.15	17.59	91
	1610		19.81	19.64	19.90	19.40	87
1650 19.58 20.35 19.83 86	1630			19.77	20.51	19.94	87
	1650			19.58	20.35	19.83	86

Time	T _S	T 1	^T 2	T ₃	T ₄	н	
7/22							
1710			19.68	20.20	19.85	85	
1910		19.34	19.19	19.29	19.15	90	
1950	19.9		18.78	18.73	18.53	91	
2130		17.97	17.87	17.82	17.60	93	
2150		17.78	17.64	17.58	17.33	94	
7/23							
0310			18.19		17.83	94	
0330			18.17	18.11	17.85	94	
0350			18.24	18.19	17.91	94	
0410			18.23	18.18	17.99	94	
0430		18.25	18.19	18.15	17.93	94	
0450		18.44	18.39	18.31	18.09	94	
0630		18.56	18.55	18.49	18.28	91	
0730	18.40	18.60	18.61	18.58	18.30	90	
0750			18.67	18.65	18.42	89	
0810		18.9	18.80	18.79	18.58	89	
0910		19.06	19.04	18.97	18.78	88	
0930			19.05	18.96	18.70	88	
1410	18.2		19.25	19.36	18.95	86	
1430	18.2	19.40	19.33		19.22	86	
1440	18.23	19.51	19.38	19.58	19.15	87	
1450	18.49	19.69	19.58	19.75	19.35	86	
1505			19.69	19.83	19.46	85	
1515			19.79	19.91	19.50	84	
1525	19.1	20.02	19.86	20.10	19.57	84	
1535			19.83	19.97	19.49	83	
1645	20.36		19.87	20.29	19.93	83	
1655		19.83	19.63	19.90	19.51	83	
1705		19.62	19.47	19.68	19.34	83	
1715			19.33	19.55	19.21	84	

Time	T _S	T 1	T 2	^T 3	^T 4	Н
7/23						
1725	19.2	19.23	19.18	19.43	19.12	85
1735	19.17	19.18	• 19.01	19.28	18.95	85
1745		19.10	18.93	19.11	18.82	87
1755	19.03	18.97	18.80	18.95	18.65	88
1805	19.2	18.86	18.74	18.87	18.59	88
2020	17.7	18.71	18.68	18.66	18.31	89
2040	17.7		18.67	18.64	18.27	89
2340		18.79	18.78	18.82	18.53	90
2400	18.4	19.05	18.91	18.89	18.60	90
7/24						
0020		19.09	19.06	19.04	18.86	91
0040			19.12	19.10	18.95	91
0100		19.19	19.16	19.15	18.99	90
0120	18.70	19.08	19.15	19.15	18.98	90
0240			19.18	19.13	18.95	87
0300		19.1	19.17	19.15	18.98	86
0320		19.04	18.99	19.00	18.84	87
0420		18.97	18.93	18.92	18.76	88
0440		18.81	18.75	18.75	18.61	88
0500			18.72	18.70	18.57	88
0520	18.7	18.81	18.77	18.73	18.59	89
0540			18.89	18.83	18.68	89
0600	19.2	18.98	18.95	18.91	18.74	88
0620			19.05	19.00	18.81	88
0640		19.01	18.99	18.95	18.77	87
0700			18.94	18.94	18.74	86
0820		19.03	18.96	19.26	18.91	81
0840		19.22	19.07	19.40	19.07	79
0900			19.15	19.63	19.23	77
0920			19.14	19.47	19.18	77
0940		19.32	19.07	19.46	19.05	78

Time	T _S	T 1	^T 2	т ₃	T ₄	Н
7/24						
1000		19.39	19.26	19.66	19.26	78
1020	19.15		19.28	20.01	19.41	79
1040			19.32	19.92	19.35	80
1100	18.75		19.58	19.87	19.45	80
7/25						
2220	17.7	19.77	19.82	19.82	19.27	83
2320	17.86	19.45	19.46	19.43	19.13	84
7/26						
0020	17.71	19.39	19.40	19.37	18.71	85
0120	18.22	19.05	19.07	19.13	18.80	87
0320	17.7	18.96	18.98	18.98	18.71	89
0420	18.1	18.86	18.82	18.84	18.59	90
0440			18.28	18.41	18.25	91
0500			17.99	18.26	18.12	89
0600	17.2	18.23	18.38	18.42	18.09	91
0620	17.8	18.17		18.51	18.21	93
0640			19.05	19.01	18.60	93
0700			19.76	19.91	18.58	87
0715			19.92	20.18	19.76	86
0725			19.79	20.27	19.76	86
0805			19.39	19.86	19.42	85
0815			19.33	19.81	19.38	83
0830			19.43	19.89	19.48	81
0840			19.32	19.85	19.38	81
0850			19.26	19.78	19.29	81
0940			18.86	19.01	18.68	83
1005			18.83	19.07	18.74	84
1015			18.77	19.03	18.70	84
1030			18.80	18.96	18.71	84
1040			18.98	18.99	18.81	83
1050			19.11	19.02	18.96	81

Time	T _S	T ₁	^T 2	^Т 3	T 4	Н
7/26						
1105			19.12	19.06	19.02	81
1115			19.16	19.04	18.92	80
1130			19.23	19.10	18.88	78
1140			19.22	19.10	18.83	77
1155			19.11	19.05	18.79	78
1210			18.91	18.88	18.68	80
1235			18.60	18.58	18.35	80
1245			18.57	18.52	18.29	80
1300			18.55	18.53	18.29	78
1310			18.49	18.54	18.20	78
1320			18.47	18.57	18.22	77
1335			18.37	18.53	18.20	77
1350			18.12	18.31	17.95	76
1410			17.56	17.80	17.40	76
1420						77
1435			16.97	17.18	16.87	78
1450			16.92	17.16	16.83	79
1500			16.95	17.19	16.81	78
1515			16.81	17,09	16.69	78
1525			16.89	17.27	16.85	77
1540				17.61	17.17	76
1550			17.32	17.92	17.43	75

APPENDIX B: COMPUTED RESULTS

This section includes computed values of Richardson's number, the momentum and heat flux, diffusivity, and the dissipation rate and temperature structure function. The mean wind speed is included for convenience. Figures showing the temporal variation of Richardson's number and momentum flux, and the dependence of momentum flux on wind speed are also included.

FH	Watt/m ²		- 3.1		.87		1.5	.28	15	- 5.6	- 2.3	2.4		.21	62	59		14					.65	1.7 -	.63	66		- 8.5	- 3.1	- 2.3	- 4.7
FM	kg n sec ²		1.1	.95	.24		г.	.24	.51	.95	.88	.95		1.5	1.2	.77	1.6	2.2	2.3		2.0		2.2	2.2	2.1	1.4		1.8	1.4	.95	1.4
Ri	10_2		34	90.	80		0	56	36	02	39	10.		10	18	28		07					90	24	90	16		36	25	35	30
Д	m²/sec		.32	.30	.15	.25	.24	.15	.22	.30	.29	.30		.38	.34	.27	.39	.46	.47		.44		.46	.46	.45	.37	.34	.41	.36	.30	.37
c_{T}^{-2}	10 ⁻³ °C ² m ^{2/3}			2.3	۳.	7		5.			6.		1.3			1.4		5.2		4.0		4.3	4.5	20.	23.						
ω	knots $10^{-4} \cdot \frac{m^2}{\text{sec}^3} 10^{-3} \cdot \frac{\circ C^2}{m^2/3}$		2.2	1.8	7.	1.1	1.3	.2	98.	2.0	1.7	1.8		2.9	2.3	1.3	4.1	6.4	7.1		5.7		6.9	7.1	6.3	3.4	2.7	4.6	3.3	1.8	3.4
ID	knots		e	7	1	.5	e		e	7	6	7			7			6	6	9		9	7.5	7.0		9	8.5	S	e	e	
	Time	91/1	0000	0000	0100	0140	0245	0420	0440	0200	0520	0090	0620	040	0000	0720	0740	1350	1410	1610	1620	1630	1650	1710	1730	1940	2000	2040	2120	2140	2200

ω	s n i	4.3	2.5	2.2		2.1	1.9	5.1	5.3	1.8	.5 1.4	1.4	15	32	22	15	15	18	4.6	4.1	4.8	2.5	3.0	3.7	3.7	4.0	5.7		3.7	3.7	7.6
c_{T}^2					6.4	2.0									1.3	2.1		3.6	3.1	3.2	2.9						ω.				
Ω		.39	.33	.32		.32	.31	.42	.43	.30	.27	.27	09.	.78	69.	.61	.61	.65	.41	.39	.42	.33	.36	.38	.38	.39	44.		.38	.38	55.
Ri		46	54	36		17	35	22	17	90	90.			26	21	21		40	50		30	99	28	04	15	10			12	12	ř.
F.		1.6	1.1	1.1		1.1	1.0	1.9	1.9	.95	77.	.77	3.8	6.3	5.0	3.7	3.9	3.9	1.8		1.7	1.1	1.4	1.4	1.5	1.6	2.0		1.5	1.5	7:7
F		-10	6.9 -	- 3.2		28	- 2.7	- 4.5	- 3.5	1.5	2.7			- 5.5	-30	-14		-37	-14		- 5.9	- 9.3	- 3.6	- 6.5	- 1.2	2			1	4. (1 3.2

F. H	2.7		- 1.2	- 3.7	- 3.4	1.8	7.	- 4.1	- 5.1	73	- 3.2	- 1.7	28	84	- 7.2	-11-	- 5.9	- 1.2					- 9.7	-41.	-26.	15.	11.	-22.	-11.	- 5.3	- 4.0	- 1.5	- 3.4	48	
X Li			1.8	2.4	1.7	1.7	1.6	1.1	1.1	2.1	.88	.56	1.5	1.9	1.8	2.2	1.4	1.1	1.1	1.3	1.4	4.8	6.7	5,9	5.4	6.2	5.7	2.3	1.6	1.4	1.3	1.2	1.2	3.2	1.1
Ri			13	14	20	04	60	38	44	\$0. -	47	58	11	10	30	31	39	23					90	22	17	80	40.	51	50	35	32	22	33	05	
Q			.44	.48	.40	.40	.39	.33	.33	.45	.29	.29	.38	.42	.41	.46	.36	.33	.33	.35	.36	.68	.80	.75	.72	.77	17.	.47	.39	.39	.35	.34	.36	.55	.33
C ₁ 2		1.2				2.1									3.9	3.9	2.0	1.4	2.3	3.4	2.4	1.4	2.4	3.2			7.2	7.4	9.5	8.9		4.3			
ω	0 20 To		5.7	7.4	4.2	4.2	4.0	2.4	2.5	6.2	1.2	6.	3.7	5.0	4.6	9.9	3.3	2.3	2.5	2.8	3.3	21	34	58	25	31	24	6.7	3.8	4.2	2.9	2.6	3.1	77	2.3
lp	21 ft	S			2	4	8		0	0					9	4		3	0~	1.6		14			13	15		11	8		7			8	7
Time	1/21	0240	0405	0425	0445	0505	0545	9090	0625	0645	0705	0725	9805	0825	0845	9060	0945	1005	1025	1045	1105	1305	1325	1345	1405	1505	1620	1720	1945	2030	2110	2130	2150	2250	2350

H		1.2	4.3	1.3	.83	1.4	99.	.80	- 1.0	4.4	34	2.5	1.6		3.5	2.8		- 4.2		-22.	- 9.3	-11-				61	4.6 -	-20.	-13.		-24.	-15.	-14.
M H		1.0	1.9	.77	1.1	1.5	1.3	1.3	1.3	1.9	1.8	2.3	2.4	2.9	1.8	1.8	2.4	1.8	1.4	.95	.51	.82				.95	1.1	1.4	77.		1.6	1.4	1.4
Ri		05	.03	04	60	16	80	80	18	21	10	02	03		.02	0		22		-1.8	-2.1	-1.2				- :22	72	93	-1.3		86	72	72
Q		.32	.43	.33	.30	.38	.38	.39	.35	.42	.41	.47	.48	.53	.42	.41	.48	.41	.36	.30	.22	.28	.28	.29	.32	.30	.32	.37	.27		.42	.38	.36
C _T 2				.95													1.9	-															
ω		2.2	5.3	2.5	1.8	3.6	3.6	4.0	2.9	5.1	4.6	7.1	7.3	10	5.0	4.7	7.3	4.6	3.0	1.8	.7	1.4	1.4	1.6	2.1	1.8	2.1	3.4	1.3		4.8	3.7	3.1
ID		e				e .	0	0	0		4	7	1	3	25		e	•				5.5		4	9	7.5	4.5	9	80		4		
Time	7/22	0130	0150	0450	0550	0610	0710	0730	0750	0810	0830	0160	0830	0950	1010	1030	1050	1210	1230	1330	1350	1610	1630	1650	1710	1910	1950	2130	2150	7/23	0310	0330	0320

ີ _. ມີ												7.		7.		r.			1.2	1.5				1.1		1.5				
υ ^F																			1.	1.				-		1.				
ر الم												7.		4.		٦.			1.2	1.5				1.1		1.5				
۵	.39	.42	.38	.36	.39	.44	.39	.58	.58	34	.38	.34	.38	.35	.32	9.	₽.	.47	.50	.47	.37	.42	.39	.39	.40	.34	.31	.28	.39	.36
Ri	1 .40	32	47	32	34	31	31	14	32	81		72	52	54	93	99	65		- :18	22	60		21	32	40	43	-1.1	-1.6	35	99
¥ £	1.6	1.8	1.5	1.5	1.4	2.0	1.8	3.5	3.5	1.2	1.5	1.2	1.5	1.3	1.1	1.68	1.9		2.6	2.3	1.4	1.9	1.6	1.6	1.7	1.2	1.0	.82	1.6	1.4
H	- 8.4	- 7.0	- 9.3	- 5.1	- 5.0	1.6 -	4.9 -	- 8.9	-26.	-14.		-11-	-11-	- 8.6	-12.	-18.	-22.		- 7.7	- 8.1	74		- 3.2	- 6.5	- 9.3	- 5.6	-13.	-15.	- 7.3	-12.

Time	al	ω	C. H. 7	۵	.E	H M		H
1/24	8			100				
0030	e	2.7		.34	24	1.2		2.1
0040		2.4		.33	26			2.0
0100	3.5	1.8		.30	22		•	.53
0120	3	1.9	٦,	.31				
0240		2.2		.32	55		1	6.3
0300	3	2.0		.31	0			1.6
0320		8.0		64.	90			3.6
0420	~	22	1.4	69.	04			.22
0440		=======================================		.54	90		1	.83
0200	e	2.1		.32	20		1	.68
0520		1.9	80.	.31	DE		•	2.0
0540		2.4		.33	45		1	5.3
0090	•	1.4		.27	46		•	2.3
0620		1.6		.28	79		•	0.9
0640		1.8		.30	37		•	5.6
0000	7	2.1		.32	38		•	3.5
0820	1	1.8		.39	03			2.0
0840		3.5		.37	10			1.7
0060	•	2.5		.33				
0920		5.7		.44				
0940	2	2.4		.33	37		•	4.0
1000	7	3.5		.37	90	1.4		1.3
1020		5.2		.43				
1040	4.5	7.2		.48				
1100	4.5	6.9		.47	80	2.3	•	.50
7/75								
54/1								
2220		26	1.2	.73	16	5.6	-2	7.
2320	12	17	1.3	.63	18	4.2	-19.	.6

Ri		72	- :26	49	99			18			13	12	.15	.35	.54	.42	.47	.34	26	.05	90.	.03	04	• .05	0	13	12	- ,14	10	90	90	07
Q		.44	.42	.31	.29	.26	.30	.25	.29	64.	.56	.38	.45	.33	.36	4.	.40	.42	.40	.40	87.	.56	.73	.70	.65	17.	.93	.93	.93	.87	1.05	1.07
C _T 5		2.8		2.7	2.0																											
ω	23	5.8	6.4	2.0	1.6	1.2	1.8	1.0	1.6	7.6	12	3.7	6.2	2.3	3.1	4.7	4.4	6.4	4.4	4.4	7.4	12	26	23	18	24	54	54	54	43	77	81
								~			1.5		7	4				3	4	4					4				10			
IÞ		7	7				4	••			•																		7			

Time	7/26	1300	1310	1320	1335	1350	1410	1420	1435	1450	1500	1515	1525	1540	1550	
In		11.5				10					16.5				6	
ω		19	61	35	61	67	54	48	115	113	133	138	125	47	7.1	
C _H 5																
Д		99.	.97	.81	.97	1.0	.93	06.	1.2	1.2	1.3	1.3	1.2	68.	.47	
Ri		18	60	11	03	63	03		•	.01	.01	0	.03			
Σ μ		4.6	6.6	6.9	8.6	11.	9.1		15.	15.	15.	18.	15.		2.3	
F H		-21.	-37.	-24.	-10.	-10.	- 7.6		7.1	7.5	13.	16.	24.			

Figure 4c B-12

APPENDIX C: AEROSOL RESULTS

This section is excerpted from a Masters Thesis written by LT Alan Simoncek, USN. It includes data and analysis for the cruise reported here and also for data obtained off the Florida Coast. Both are included for comparison purposes. All of the data was gathered by personnel from Calspan Corporation, Buffalo, New York.

TABLE OF CONTENTS

I.	INT	RODUC	rion	-			-	-	-	-	-	-	-	-	-	-	-	-	-	11
II.	BACI	KGROUI	4D -	-			-	-	-	-	-	-	-	-	-	-	-	-	-	13
	Α.	THE A	OMTA	SPH	ER:	IC A	AEI	ROS	SOI		-	-	-	-	-	-	-	-	_	13
	В.	CHARA	ACTE	RIS	TI	cs (OF	TF	ΙE	MA	ARI	NE	E A	Æ	305	SOI	_	-	-	14
	c.	RELA	rive	HU	MI	DIT	Y I	EFF	EC	CTS	3	_	-	-	-	-	-	_	-	25
	D.	PRODU	JCTI	ОИ	OF	AI	RBC	ORN	ΙE	SE	CA-	SA	LI		-	-	-	_	-	28
	E.	AEROS	SOL 1	MOD	EL	-	-	-	-	-	-	-	_	-	-	-	_	_	-	37
III.	TURE	BULEN	CE TH	HEO	RY	-	-	_	-	-	_	-	-	-	-	_	-	_	-	39
	Α.	BOUNI	DARY	LA	YE	R C	SNC	SII	EF	rA9	CIC	NS	3	_	-	_	_	_	_	39
	в.	MOMEN	NTUM	TR	ANS	SFE	R,	U.,	,	RE	ELA	TI	01	IS	-	_	_	_	-	41
IV.	DATA	A COLI	LECT	ION			-	-	_	-	_	-	-	-	-	_	_	_	-	44
	Α.	DURAT	rion	AN	D I	LOCA	AT]	ON	1	_	-	-	_	-	-	_	_	_	_	44
	В.	PANAN	IA C	ITY	I	NST	RUN	1EN	ITA	TI	ON	I	-	_	_	_	-	_	-	47
	С.	SOUTH	HERN	CA	LII	FORI	NIA	A I	NS	TF	RUM	IEN	ITA	T	101	1	_	_	-	51
٧.	ANAI	LYSES	PROG	CED	URI	ES	-	_	_	-	_	-	_	_	-	_	_	_	_	54
	Α.	VELO	CITY	FL	UC:	rua:	ric	N	AN	IAL	YS	SIS	3	_	_	_	_	_	_	54
	В.	AEROS	SOL A	ANA	LYS	SIS	_	_	_	-	-	-	-	_	_	_	-	_	_	55
	c.	ERROF	R ANA	ALY	SIS	S -	_	_	_	_	_	_	_	_	_	_	_	_	_	58
VI.	RESU	JLTS		_			_	_	_	_	_	_	_	_	_	_	_	_	_	63
VII.	CONC	LUSIC	ONS	_			-	_	_	_	-	_	_	_	_	_	_	_	_	95
REFERE																				
INITIA	L DI	STRIE	SUTTO	ON	1.15	ST	_	_	_	_	_	_	_	_	_	_	_	_	_	111

LIST OF TABLES

I.	Residence Times of Sea-Salt Particles over the Oceans 33
II.	Correlation Coefficients for the SC Experiment 70
III.	Correlation Coefficients for 19 July and 26 July 73
IV.	Correlation Coefficients for the PC Experiment 86
٧.	Panama City Data 97
VI.	Southern California Data 101

LIST OF FIGURES

1.	Idealized Size Distributions of Continental and Marine Aerosols	-	-	-	-	15
2.	Size Distribution at 15 Meters, 250 km West of Santa Barbara	-	-	-	-	17
3.	Results of the R/V Meteor Cruise. Measurement Systems Used: —— Combination of CCN Counter, Optical Counter, and Impactors: ——— Double Stage Impactor (Junge and Jaenicke, 1971) ————————————————————————————————————		•	-		19
4.	Size Distributions over Remote Ocean Areas (—— All Particles; NaCl Particles) -		-	-	-	20
5.	The Size Distribution of Moore and Mason's Type I and Type II Nuclei	-	-	-	-	24
6.	Equilibrium Relative Humidity and Corresponding Radii (Mason, 1975)	-	-	-	-	27
7.	Size Scale and Average Size Distribution of Sea-Salt Nuclei Measured by A. H. Woodcock (Mason, 1975)	-	-	-	-	30
8.	The Formation of Sea-Salt Droplets by the Bursting of Bubbles (Mason, 1975)	-	-	-	-	33
9.	Distribution Curves over Alaskan and Hawaiian Waters (Woodcock, 1972)	-	-	-	-	36
.0.	Location of NCSL Offshore Platform "Stage	I"	•	-	-	45
1.	Location of Southern California Cruise -	-	-	-	-	46
.2.	Royco 225 Particle Counter and Sensor	-	-	-	-	49
.3.	Near Forward Scattering Optical System -	-	-	-	-	50
4.	Sensor Locations on Board the R/V Acania	-	-	-	-	52
.5.	Theoretical Response Curve and Experimental Results for a Forward Scattering System	-	-	-	-	59
6.	Dependency of the Response of a Forward Scattering System on Refractive Index	_	_	_	_	60

17.	Average Aerosol Size Distribution for the SC Experiment and Distribution Predicted by Fitzgerald's Model 64
18.	Synoptic Situation during the SC Experiment66
19.	Variation of SC Size Distribution with Wind Speed67
20.	Variation of SC Size Distribution with Relative Humidity 68
21.	Variation of SC Size Distribution with Friction Velocity 69
22.	Average Size Distributions on 19 July and 26 July 72
23.	Average SC Diurnal Variations of Wind Speed and Relative Humidity 75
24.	Average SC Diurnal Variation of Friction Velocity 76
25.	Average SC Diurnal Variations of Particle Concentrations 77
26.	Average SC Wind Direction 78
27.	Average SC Diurnal Variation of the Aerosol Size Distribution 80
28.	Synoptic Situation during the PC Experiment81
29.	Average Aerosol Size Distribution for the PC Experiment and Distribution Predicted by Fitzgerald's Model 83
30.	Variation of PC Size Distribution with Wind Speed84
31.	Variation of PC Size Distribution with Relative Humidity 85
32.	Correlation Coefficients and Variation of the Size Distribution with Wind Speed, 18 February 88
33.	Correlation Coefficients and Variation of the Size Distribution with Wind

34.	Average PC Diurnal Variations of Wind Speed and Relative Humidity 91
35.	Average PC Diurnal Variations of Particle Concentrations 92
36.	Average PC Diurnal Variation of the Aerosol Size Distribution 93

ACKNOWLEDGEMENTS

Appreciation and thanks are extended to Dr. Kenneth L. Davidson for his support and guidance throughout this study. Dr. Chris Fairall and Dr. Gordon Schacher aided immeasurably by offering technical assistance and advice. Many thanks also to Mr. Gene Mack for providing the aerosol and meteorological data used in this investigation.

A special and heartfelt appreciation must go to my wife, Sue, and sons, David and Adam, for their constant expression of encouragement and understanding.

I. INTRODUCTION

The military is currently very interested in the performance of electro-optical weapons systems in an atmosphere of varying turbidity. For example, a number of electro-optical systems which utilize the visible as well as IR wavelengths are being developed by the Navy for use in surveillance and intelligence gathering operations in the marine boundary layer. These systems are limited by the extinction of the propagated energy due to absorption and scattering by aerosols. The effect of absorption depends on the composition of the particulates and wavelength of the energy and the effect of scattering depends on the concentration and size of the scatterers. For most applications the scattering processes in the atmosphere are caused by particles of size comparable to the wavelength of the radiation.

The size distribution of the marine aerosol is known to depend upon the wind speed, relative humidity, stability, and air mass trajectory. In order to evaluate accurately and predict the atmospheric effects on these electro-optic systems, it is necessary to know the dependence of the aerosol size distribution on the foregoing meteorological parameters.

The nature of the aerosol size distribution in a coastal marine environment is investigated in this study. Data from aerosol observations off the coast of Panama City, Florida and off the Southern California coast near the Channel Islands

were analyzed. These coastal regimes, which represent a mixture of continental and marine aerosols, should contain aerosol distributions somewhat different from the typical marine environment. The relationship of the coastal marine aerosol to wind speed, relative humidity, stability, and sub-synoptic circulation is examined. Furthermore, an attempt is made to evaluate the use of the friction velocity as a valid aerosol distribution predictor.

II. BACKGROUND

A. THE ATMOSPHERIC AEROSOL

With the recent increasing concern over the pollution of our atmospheric environment, the examination of the tropospheric aerosols has also increased. Particulate matter enters the atmosphere through either natural or man-made processes; approximately 10% of the total concentration is believed to originate from combustion and industrial processes while the natural sources, including soil dust, volcanoes, and oceans account for the remaining 90%. The size range of aerosols observed by current methods extends from $10^{-3}~\mu$ to $10^3~\mu$ radius (1 μ = 10^{-6} m = micron). Depending on their size, amount of soluble matter, and the relative humidity, these particles may act as condensation nuclei and aid in the precipitation process.

Mason (1975) classified condensation nuclei into three groups according to radius: Aitken (< 0.1 μ), Large (0.1 μ - 1 μ), and Giant (> 1 μ) particles. Essentially, Aitken nuclei are produced by man-made sources and larger nuclei by natural processes. Therefore, it is not surprising to see Aitken nuclei dominate the size distribution spectrum over continents. The marine aerosol above .1 μ is composed of sea-salt particles produced by spray and bubble bursting mechanisms on the water surface. These mechanisms are quite complex and their contribution to the size distribution will be discussed in detail later.

The vertical profiles of trace constituents that are produced over the continents have been shown to be rather uniform in space and time above 5 km. This "background" aerosol is affected slightly by anthropogenic activities and is far away from local natural sources. Its number concentration is almost identical with the concentration of Aitken nuclei over ocean areas. Past experiments have shown the concentration of the background aerosol to be about 300 cm⁻³ over remote ocean areas. However, a recent experimental cruise (R/V Meteor) by Junge and Jaenicke, 1971 in the mid Atlantic yielded observed concentrations of 600 cm⁻³. Measurements by Hidy, et al. (1973) on San Nicolas Island, 130 km, westsouthwest of Los Angeles, have shown the background aerosol to be a mixture of material from both marine and continental sources with an average concentration of 2400 cm⁻³. Samples taken over oceans of the South Atlantic (Meszaros and Vissy, 1974) resulted in Aitken particle counts of between 300- 450 cm^{-3} .

B. CHARACTERISTICS OF THE MARINE AEROSOL

An idealized size distribution of the continental and marine aerosol is supplied by Junge (1972) in Figure 1. The significant feature is the shift of the maximum of particles as a function of total particle concentration. Over the ocean the sea-salt aerosol, which is usually confined to the lower 2 km, is superimposed on the background aerosol. Junge reasoned that the concentration of the background

Figure 1. Idealized Size Distributions of Continental and Marine Aerosols

cloud nuclei decreases below the marine inversion due to the effect of washout, or coalescence, due to the larger water droplets in the cumulus clouds.

Another aspect of the aerosol distribution is the slope of the number density versus radius curve. Friedlander (1961) proposed a theory of self-preserving size distributions which helps to explain why all atmospheric size distributions are similar. He proposed that the similarities can be explained by solutions to the kinetic equation which describe the relationship between particle size distribution and time. Experimental results have indicated that the size distribution over a particular range of sizes of continental aerosol has a -4 slope and follows the relation

$$\frac{dN}{dr} = C\phi r^{-4} \tag{1}$$

where N is the number of particles/cm 3 , r the particle radius, C a constant, and ϕ the volume of particles per unit volume of aerosol.

Blifford (1970) measured the size and number distributions of atmospheric aerosols at various altitudes over the ocean 250 km west of Santa Barbara, California. Samples were taken by an aircraft equipped with a jet impactor and the data was obtained from direct microscopic counting techniques in the laboratory. The aerosol distribution at approximately 15 meters above the sea surface is presented in Figure 2. The curve has a rather steep negative slope at

Figure 2. Size Distribution at 15 Meters, 250 km West of Santa Barbara

the small particle end which becomes slightly positive at around .4 μ radius. For particles larger than .8 μ , a fairly constant slope of about -2 to -3 is observed.

The results of the R/V Meteor experiment, where several aerosol counters were used, are shown in Figure 3. Above 10 μ the exponent of a power function fit to the data is approximately -6 and between 0.3 μ and 10 μ it is variable but on the average around -3. The maximum of the size distribution occurred at 0.3 μ with a secondary maximum at 0.03 μ .

It is possible that, due to increased human activity in the Northern Hemisphere, Junge and Jaenicke's Atlantic experiment did not explore the undisturbed marine environment. Meszaros and Vissy (1974) describe the results of aerosol samples taken over the oceans of the Southern Hemisphere by means of membrane filters. An example of the number concentration and size distribution over the Atlantic between (a) 0° and 20° South and (b) 40° and 60° South can be found in Figure 4. Chemical analyses were performed and it was observed that the maxima in the concentrations of all particles and of sodium chloride particles occur at approximately .1 μ radius in both cases. Up to .5 μ radius the slope of the distribution is approximately -5. Between 0.5 μ and 1.5 μ , however, the decrease of the concentration with increasing particle size is very moderate (-1 to -2), while for radii larger than 1.5 μ the slope is close to -3. This has been interpreted to indicate that the form of the

Figure 3. Results of the R/V Meter Cruise. Measurement Systems Used: Combination of CCN Counter, Optical Counter, and Impactors: --- Double Stage Impactor (Junge and Jaenicke, 1971)

Figure 4. Size Distributions over Remote Ocean Areas (— All Particles; — NaCl Particles)

distribution is produced by the combined effect of particles formed in different ways.

Oceanic measurements have shown that the concentration of sea-salt particles decreases exponentially with height, with little variation of the size distribution. Ericksson (1959) reported that there exists a level a few hundred feet above the surface where the concentration decreases with height in periods of high wind force and increases with height in lower wind forces. He reasoned that there is little or no production of sea-salt in regions of light winds and that coagulation and fallout in the lower evels combined with horizontal transport due to vertical shear produce a maximum concentration at some upper level.

Toba (1965a and b) proposed that the average decrease in concentration with height can be explained by a combination of sedimentation, diffusion, convective processes and the humidity distribution. He suggested that the line between the aerosol vertical distribution and the process of production of sea-salt particles at the sea surface is found within the lowest layer of the atmosphere where the eddy diffusivity and relative humidity sharply change.

The distribution of eddy diffusivity near the sea surface is closely related to the wind speed. The larger the eddy diffusivity near the surface the more sea-salt particles that will be supplied. Toba considered eddy diffusivity in the form

$$D = kU_*(Z + Z_0)$$
 (2)

where k is the von Karman constant, Z the height above the sea surface, Z_0 the roughness length, and U_{\star} the friction velocity which is a function of the momentum transfer over the sea.

The relative humidity in the first few meters over the ocean is known to decrease rapidly with height. The particles produced near the surface in a region of high humidity grow larger and thus have a greater terminal velocity due to gravity than those at the top of this layer.

During light winds the number concentration near the sea surface increases with height. Since it results from a non-steady state, an inversion of vertical gradient of the particle concentration is most likely to be found in small particles which have a longer residence time. Ericksson (1959) computed the fall velocities for given relative humidities, salinity, and radius. During high wind periods, giant size sea-salt particles are produced at the surface and through the diffusion process are mixed throughout the atmosphere. The largest particles may fall back into the ocean due to excessive terminal velocity or be entrained in the wave crests. Smaller particles are free to rise to cloud height where coalescence with larger cloud drops and washout usually occur.

Measurements of salt nuclei greater than 10⁻¹⁴ gm over the North Atlantic by Moore and Mason (1954) revealed the existence of two distinct types of size distributions (Type I and II). The curves for the observed Type I and Type II nuclei distributions are reproduced in Figure 5. Type I distributions were observed for wind speeds between 6-15 m/sec and were thought to be residuals of spray droplets produced by breaking waves. The presence of a discontinuity or a sharp change of slope in the Type I distribution was explained in terms of a loss of the larger nuclei by sedimentation. In strong winds, the part of the curve to the right of the discontinuity probably represents a state of equilibrium between production and loss by sedimentation. In light winds and stable conditions the slope should be steeper due to the fact that the loss by sedimentation is greater than production and larger nuclei are not easily transported vertically under stable conditions. The Type II distributions were only observed when the wind speeds were less than 7 m/sec and resembled a high concentration continental aerosol. In winds of up to 15 m/sec the measured concentrations of large sea-salt nuclei rarely exceeded 10 cm^{-3} .

The effect of stability on the concentration of atmospheric condensation nuclei was well documented by Moore (1952). He used an Aitken counter to measure the relationship between concentration of nuclei and the intensity of vertical mixing over the North Atlantic. The results indicated a decrease by as much as a factor of 4 in the number of Aitken particles near the surface on days with cumulus clouds as compared to days with stratus clouds. This would indicate that convection plays an important role, at least in the transport of smaller particles.

Figure 5. The Size Distribution of Moore and Mason's Type I and Type II Nuclei

Chemical analyses by various investigators have indicated that between 0.1 u and 1.0 u radius the marine aerosol is composed of a background component of continental origin and a sea-salt component. Sodium chloride was found to predominate above 1 µ radius while particles of continental origin predominate below 0.1 µ radius. Results of a cruise off the Grand Banks in the North Atlantic (Ruskin, et al., 1976) indicated that the continental particles are composed of sulfate compounds and a smaller amount of sulfuric acid. Aerosols over remote ocean areas (Meszaros and Vissy, 1974) were shown to be comprised of variable concentrations of ammonium sulfate, sulfuric acid, sodium chloride, and particles similar in structure to ammonium sulfate. sum of these four types of identified particles accounted for 75-95 percent of all particles greater than .3 μ radius. In other words, practically all the particles in a pure marine atmosphere, undisturbed by continental particle sources, are soluble in water.

C. RELATIVE HUMIDITY EFFECTS

A solid particle which is composed wholly, or in part, of a pure water-soluble substance will undergo a sudden transition to a saturated solution droplet when some critical value of relative humidity, less than 100%, is reached. The relative humidity at which this transition occurs depends on the size and chemical composition of the particle. The smaller the particle, the lower the critical humidity. Below the transition point, solid particles acquire small amounts

of water by the process of adsorption. At relative humidities above the transition point, a particle (or, more properly, an aqueous solution droplet) grows by the absorption of water vapor (Fitzgerald, 1975).

A pure water droplet is said to be in equilibrium with its surroundings if it neither evaporates nor grows. This only occurs when the equilibrium vapor pressure over the surface of the droplet is equal to the vapor pressure of the surrounding air. Winkler (1973) describes the equilibrium growth of aerosol particles due to humidity as complex and depending on the relative proportion of soluble and insoluble material in the particles and on the chemical composition of the soluble component. Complex ionic mixtures, similar to those present in atmospheric aerosols, show material influences and lower the water vapor pressure to a much less degree than the same amount of pure salts. In such complex mixtures the various salts become dissolved only gradually with increasing relative humidity until at a sufficiently high humidity all soluble material is in solution.

Measurements have shown that with increasing humidity a sodium chloride crystal undergoes a phase transition to a saturated solution droplet at a relative humidity of approximately 78%. Figure 6 describes how the equilibrium radii of droplets containing specified masses of sodium chloride vary with the relative humidity. The equilibrium radius of the droplet increases with increasing humidity until the air becomes supersaturated by a critical amount, corresponding to

Figure 6. Equilibrium Relative Humidity and Corresponding Radii (Mason, 1975)

(This page intentionally blank)

the maximum of the curve in this figure. If this supersaturation were maintained, theoretically the droplet will grow without bound. With decreasing humidity a sodium chloride solution droplet crystallizes at a humidity between 35-45%. Since the relative humidity at a height of about 15 meters over the ocean surface goes below 40% very infrequently, seasalt droplets will have little opportunity to crystallize (Fitzgerald and Ruskin, 1977).

Since the later discussion refers to the distribution of sea-salt particles by bolt mass weight of salt (grams), radius of dry crystals (μ) or radius at ambient humidity (μ), the scale in figure 7 is furnished as a reference.

D. THE PRODUCTION OF AIRBORNE SEA-SALT

Although the spectrum of the marine aerosol above .1 μ radius is known to consist of sea-salt particles, very little is certain about the concentration and mechanisms of production. Because of the smallness of the particles and limitations of the sampling equipment, earlier experiments did not measure the quantity of sea-salt particles much less than 10^{-12} gm.

Woodcock (1953) determined that the mass distribution of "giant" (> 10⁻¹² gm) sea-salt nuclei varies with wind speed. Increases in the amount of air-borne salt near cloud bases were shown to be related to increases in wind speed at the sea surface, with the greatest proportionate increase in particle number occurring at the large end of the weight range. The results of Woodcock's measurements for wind forces of 1,

3, 5, and 7 on the Beaufort scale are shown in Figure 7. The line (a) gives the size distribution of continental aerosol for comparison. The line (b) is an extrapolated size distribution of the marine aerosol. Chemical analysis of Woodcock's bulk aerosol samples between .1 μ and 1 μ indicated a maximum of sea-salt around 0.3 μ and a lower limit in the vicinity of .1 μ radius. These distributions indicate total concentrations of all sea-salt particles of no higher than a few per cubic centimeter (Junge, 1972). According to Mason (1975), over a rough sea the concentration of sea-salt particles greater than 2 μ radius rarely exceeds 1 cm⁻³ and the total concentration of all salt particles rarely exceeds 10 cm⁻³.

Moore (1952) observed a distinct correlation between wind speed and concentration of sea-salt larger than 10^{-11} gm up to wind speeds of 15 m/sec. He also found a linear increase in concentration of particles larger than 10^{-9} gm with increase in wave height. Results of experiments by Monahan (1968) reveal an abrupt increase in concentration of sea water droplets larger than 45 μ radius at a wind speed of approximately 9 m/sec, measured 47 cm above the sea surface.

Moore (1952) also analyzed the visibility observations at two ocean weather ships and determined that the opacity for a given humidity increases with wind speed. He attributed this increase to an observed increase in the concentration of large nuclei. Another result indicated that at lower humidities, the increase in opacity was more pronounced, and Moore believed this was due to the dehydration of larger droplets. These conclusions would indicate that the aerosol

Figure 7. Size Scale and Average Size Distribution of Sea-Salt Nuclei Measured by A.H. Woodcock (Mason, 1975)

distribution is more variable and sensitive to wind speed in drier air, and this feature should be most noticeable in the larger size ranges.

As the wind speed increases over the ocean, gravity waves are generated and begin to break at a critical wind speed generally agreed upon to be near 7 m/sec. Air that is entrained by these breaking "whitecaps" rises to the surface sometime later in the form of bubbles. The principal mechanisms of sea-salt production are thought to be the direct spraying of droplets off the crests of breaking waves and the bursting of bubbles in areas of whitecaps and foam. Droplets produced by direct spraying are generally larger than 45 µ and, due to large fall velocities, are not airborne long enough to evaporate and become light enough to be transported upward (Monahan, 1968). Toba's model (1965b) showed that the net production of sea-salt particles at the sea surface seems to increase with particle mass even beyond 10^{-8} gm (20 μ), but that the transport by eddy diffusion is not sufficient to carry the particles upward against gravity beyond this size. The presence of particles larger than 10-8 gm in the atmosphere is generally attributed to coalescence of sea-salt droplets within and below clouds.

Some examples of residence times for different sea-salt particle sizes taken from Junge (1972) are found in Table I. It would seem then that particles in the .1 μ - 20 μ range, at least, are produced by the bursting of bubbles.

In efforts to photograph the rupture of the surface bubble film, Kientzler, et al. (1954) found that their camera

exposure was too long to capture this rapid phenomenon. However, they were able to see the formation of the "Rayleigh" jet which projects upward, continues to rise as a thin column, and then breaks into droplets of varying sizes. Day (1964) describes this process in the following manner. Each bubble, as it reaches the surface, develops a spherical film-cap which drains, thins, and bursts. Fragments of the film are thrown out and are dragged upward by the air which escapes from the bubble orifice. Water, rushing down the sides of the bubble cavity, emerges from the center as a narrow jet. A schematic of this process is shown in Figure 8. The larger drops (L) are formed by disintegration of the jet (J). Smaller particles (S) are formed by bursting of the bubble film.

Kientzler's experiment was significant in that no droplets of large enough size to be resolved by the film and optical system were observed from .2-1.8 mm diameter bubbles until after the jet formation. This was interpreted to indicate that the larger droplets are not produced when the bubble film is broken. On the average, the droplets produced by the jet mechanism were approximately 1/10 of the original bubble size. 1 mm diameter bubbles were observed to produce droplets of approximately $50~\mu$ radius. The smallest observed were of $2~\mu$ radius and deduced to have been formed by a bubble of approximately $.04~\mu$ mm diameter. Therefore, the jet mechanism can be considered a source of salt particles greater than $10^{-12}~\rm gm$ (1 μ).

	Residence Time v, days							
	M 10 ^{ss} grams	<i>M -</i> 10 ⁻¹¹ grams	M = 10 ⁻¹⁰ grams	M = 10 ⁻⁰ grams				
Toba's value w ₁ for 80% relative humidity	86	17	2.9	0.32				
Toba's value w _i for 91.4% relative humidity	59	11	2.1	0.23				
Eriksson's estimate from sedimentation	82	16	2.6	0.4				
Eriksson's estimate from production	3.5	1.0	0.6	0.5				
Our estimate*	1.9	1.6	1.0	0.26				

Table is taken from Toba [1965a, Table 2]. The variable M is the mass of particles.

Table I. Residence Times of Sea-Salt Particles over the Oceans

Figure 8. The Formation of Sea-Salt Droplets by the Bursting of Bubbles (Mason, 1975)

Mason (1954) utilized a cloud chamber to study bubble behavior in both distilled and salt water. After expansion, a dense cloud of tiny droplets was observed rising vertically in the space above the salt water, but not above the distilled water. Bubbles of 3 mm diameter produced 100-200 of these condensation nuclei, the majority of which are estimated to have salt contents between 10^{-15} gm and 2 x 10^{-14} gm. This would correspond to droplets of approximately .1 μ to .3 μ radius at 80% relative humidity. Mason also observed a second group of droplets produced by the shattering of the bubble film. These were projected sideways at an angle of ten to 15 degrees above the horizontal and slightly larger, containing between 2 x 10^{-12} - 5 x 10^{-10} gms of salt. However, the numbers of these droplets were always small, on the average, there was only about one droplet in this size range.

The number of droplets which rise vertically from a bursting bubble is strongly related to the state of compression of the film of organic material on the water surface. Paterson and Spillane (1969) have shown that with an increase of film pressure the number of nuclei produced decreases markedly. This would indicate that the production of seasalt droplets originating from the bubble film mechanism would be suppressed in regions of high organic activity on the seasurface. Aerosol samples taken by Woodcock (1972) over Hawaiian and Alaskan seas may help explain where the transition between the jet and film sea-salt production mechanisms occurs. His observations, using an improved slide collection

technique, show an increased average particle production for sea salt particles less than 2 x 10^{-14} gm (.3 μ radius) in Hawaii where marine organic productivity is low. In contrast, the mean distribution curve for particles over the organically rich Gulf of Alaska fails to indicate an increased slope of the concentration curve among particles of the same size range. These curves are shown in Figure 9. The presence of surface active films arising from the biologically productive Alaskan waters is thought to suppress the production of film droplets.

Statistical analysis by Meszaros and Vissy (1974) showed that with increasing particle radius the correlation between wind speed and chloride concentration increased. This meant that smaller chloride particles are formed by the bubble film mechanism than by direct spraying. The distribution curve gives evidence that the transition between these two chloride formation mechanisms lies between .2 μ and .4 μ . Thus the maximum at .1 μ gives the maximum of chloride particles formed by the bubble film process.

Moore (1952) found evidence that the particle concentrations below 1 μ are not correlated with wind speed. This would indicate that most of the particles between .1 μ and 1 μ are not produced by bursting bubbles. Other experiments using the effects of relative humidity on particle growth indicate that a considerable proportion of marine particles between .1 μ and 1 μ must differ in composition from seasalt (Junge, 1972). Meszaros and Vissy (1974) found that, in this size range, sodium chloride varied from 4-50% of the

Figure 9. Distribution Curves over Alaskan and Hawaiian Waters (Woodcock, 1972)

concentration for all particles. The observations by Hidy et al. (1974) off the coast of Southern California revealed that 11% of the aerosol sampled contained sea-salt, the remainder being a combination of sulfates, nitrates and soil dust.

E. AEROSOL MODEL

Recently, various aerosol models have been developed in an attempt to accurately describe marine aerosol distributions as a function of one or more parameters. This is essential for the calculation of optical propagation through the atmosphere as aerosols scatter and absorb energy. Since the aerosol distribution is known to be dependent on relative humidity and wind speed, these two variables usually are the key parameters of each model.

One model in particular has been developed by Fitzgerald and Ruskin (1977) on the basis of the North Atlantic observations. They applied the effects of relative humidity on the equilibrium growth of aerosol particles to the sea-salt mass distribution determined by Lovett (1975) in the North Atlantic. Lovett presents empirical log radius mass distributions in the form of the following power law:

$$\frac{dN}{d \log r_d} = C r_d^{-\nu}$$
 (3)

where r_d is the dry particle radius and C and ν depend on the wind speed V in the following manner:

$$v = 3.317 - .03 V$$
 (4)

and
$$C = 0.2 - 0.0196 V + 0.0121 V^2$$
 (5)

These expressions are valid only over a wind speed range of $3-17 \text{ m/sec}^{-1}$.

Formulae have been derived (Fitzgerald, 1975) for the equilibrium size of aerosol particles composed of a single pure salt as a function of relative humidity. For a sodium chloride particle the relationship between particle radius and relative humidity may be expressed as

$$r = \alpha r_d^{\beta}$$
 (6)

where α and β are functions of the relative humidity as described by Fitzgerald (1975). Equations (3) and (6) are combined to describe the aerosol size distribution as a function of relative humidity and wind speed, giving

$$\frac{dN}{d \log r} = \frac{c}{\beta} (\alpha^{\nu/\beta}) (r^{-\nu/\beta}) . \tag{7}$$

Comparison between the aerosol distributions derived from the above model and those observed in two coastal marine environments is made within this study.

III. TURBULENCE THEORY

A. BOUNDARY LAYER CONSIDERATIONS

The importance of turbulent exchange processes in the surface boundary layer has long been recognized. Panofsky (1969) describes atmospheric turbulence as consisting of horizontal and vertical eddies by which the air is mixed. The two mechanisms by which eddies are formed in the atmosphere are heating from below and wind shear. Heating produces convection and the change in wind speed with height produces mechanical turbulence. Because there is no wind at ground level, and there is usually some wind above the ground, mechanical turbulence is common. This type of turbulence increases with increasing wind speed (at a given height) and is greater over rough terrain than over smooth terrain. The terrain roughness is usually characterized by a roughness length, Zo, which is proportional to the size of the eddies that can exist. The relative importance of heat convection and mechanical turbulence is characterized by the Richardson number, R_{i} . The Richardson number is a measure of the relative rate of conversion of convective to mechanical energy. For example, negative Richardson numbers of large magnitude indicate that convection predominates resulting in strong vertical motion. As the mechanical turbulence increases, the Richardson number approaches zero.

Finally, as the Richardson number becomes positive, the thermal stratification becomes stable and damps the mechanical turbulence. For R_i > 0.25, vertical mixing disappears.

The effect of the wind on the underlying surface is termed the shearing or Reynolds stress, τ , and is characterized by a downward momentum transfer. The Reynolds stress may be represented by

$$\tau = -\rho < u'w' > \tag{8}$$

where u' = fluctuating horizontal wind velocity

w' = fluctuating vertical wind velocity

 ρ = density of air

It is convenient to express Reynolds stress in terms of the friction velocity $\mathbf{U}_{\mathbf{x}}$ so that

$$\tau = \rho U_{\star}^{2} \tag{9}$$

where U_{*} is constant throughout a region of constant momentum flux. Hence, U_{*} is a measure of the downward transfer of momentum in the lower 50 meters of the atmosphere. Over the ocean an increase in the near surface winds would lead to a greater momentum and energy transfer for surface wave and sea-salt aerosol production. The relationship between the turbulent transfer of heat and moisture in the marine boundary layer and the generation and transfer of aerosols is not well known and, unfortunately, is not investigated in this study.

B. MOMENTUM TRANSFER, U, RELATIONS

A thorough discussion of the boundary layer expressions is presented in several references, e.g. Lumley and Panofsky (1964). The similarity approach of Monin and Obukhov (1954) is used to define a representative length scale, L , for the surface layer of the atmosphere,

$$L = \frac{-U_*^3 \cdot T_0}{\text{kg } \overline{\text{w'T'}}}$$
 (10)

where g = gravitational acceleration

T = ambient temperature

k = von Karman constant = 0.35

The selection of the Monin-Obukhov length as a stability scaling parameter is based on the assumption that friction velocity, $U_{\dot{x}}$, and vertical heat flux $(\overline{w^{\dagger}T^{\dagger}})$ are constant in the surface layer. This scaling length, using dimensional analysis, leads to the development of a dimensionless function, $\phi_{m}(Z/L)$, which can be used to represent the mean horizontal wind variation with height, $d\bar{u}/dZ$, in the surface layer. The following expression is the empirical relationship for the wind shear in this development,

$$\frac{d\bar{u}}{dZ} = \frac{U_*}{kZ} \phi_m(Z/L) \tag{11}$$

As vertical turbulent heat flux ($\overline{w^1T^1}$) decreases to zero, indicating neutral stability, $\phi_m(Z/L)$ must approach 1 if Equation (11) is to take on its expected form under neutral conditions. Assuming that convective mixing is negligible

under neutral conditions it follows that for values of ϕ_m (Z/L) near 1 or Z << 1 mechanical turbulence is of primary importance. Thus, the absolute magnitude of \underline{L} becomes an indicator of the vertical extent to which mechanical turbulence controls the turbulent regime.

Observational experiments by Businger $\underline{\text{et}}$ $\underline{\text{al}}$. (1971) produced a definite relationship between the Richardson number, R_{i} ,

$$R_{i} = \frac{g(\partial \theta_{v}/\partial Z)}{\overline{\theta}(\partial u/\partial Z)^{2}}$$
 (12)

and the Monin-Obukhov length, L , where $\theta_{_{\mathbf{V}}}$ is the virtual temperature. The following expressions are approximations for the unstable and stable conditions respectively,

$$Z/L = R_{i}$$
 (13)

$$Z/L = \frac{R_{i}}{1-\alpha R_{i}}$$
 (14)

where α is an empirically derived constant equal to 0.5.

Of interest in this study is the rate of viscous molecular turbulent kinetic energy dissipation, ϵ . Wyngaard, <u>et al</u>. (1971) considered the dependence of ϵ on momentum fluxes and height in deriving the following empirical expression

$$\varepsilon = U_{\star}^{3}/kZ \phi_{\varepsilon} (Z/L)$$
 (15)

Since $\mathrm{Z/L}$ and R_{i} are functionally related, equations (11) and (15) can be rewritten as

$$\frac{d\bar{u}}{dZ} = \frac{U_*}{kZ} f_m (R_i)$$
 (16)

and
$$\varepsilon = U_{*}^{3}/kZ f_{\varepsilon} (R_{i})$$
 (17)

where f_m and f_ϵ are stability corrections equal to 1 under neutral conditions. In near neutral conditions, the turbulent kinetic energy production is assumed to be equal to the rate of molecular dissipation of turbulent kinetic energy and from equations (16) and (17) the following relation is valid

$$\varepsilon = U_{*}^{2}(\partial \bar{\mathbf{u}}/\partial \mathbf{Z}) \tag{18}$$

Assuming neutral conditions, the combinations of equations (16) and (18) yields

$$U_* = (\varepsilon kZ)^{1/3}$$
 (19)

Now the friction velocity $U_{\hat{\pi}}$ can be estimated from either mean wind profiles using the integrated form of equation (16) or from velocity fluctuation data involving turbulent energy dissipation by using equation (19). The latter approach is used in this study.

IV. DATA COLLECTION

A. DURATION AND LOCATION

Aerosol and meteorological data for this study were made available through Calspan Corporation, Buffalo, New York, from two separate experiments. During a ten day period in February 1977, Calspan Corporation provided limited meteorological and cloud physics support during a study of marine boundary layer phenomena conducted on the Gulf of Mexico (Mack and Katz, 1977). The experiment was performed on the Naval Coastal Systems Laboratory's (NCSL) offshore platform "Stage I" located approximately 20 km SW of Panama City, Florida as depicted in Figure 10.

A second experiment which provided data for this study was conducted along the coastal waters of Southern California (Figure 11) during a 12 day period in July 1977 aboard the Naval Postgraduate School (NPS) R/V Acania. Under contract from NPS, Calspan Corporation provided limited meteorological and aerosol physics support during a study of air quality parameters and marine boundary layer characteristics (Mack, 1977). This region contains primary shipping lanes and a number of drilling platforms all of which contribute to atmospheric contamination.

The following discussion will be limited to equipment used to measure the meteorological parameters actually analyzed in this study. A listing of the Panama City and

Location of NCSL Offshore Platform "Stage I" Figure 10.

Figure 11. Location of Southern California Cruise

Southern California data may be found in Tables V and VI, respectively, at the end of the text.

B. PANAMA CITY INSTRUMENTATION

"Stage I" provided a stable platform for measuring the meteorological parameters necessary to describe and study the aerosol distribution and behavior in the marine boundary layer. The instrumentation installed by Calspan included a Sling Psychrometer, Bechman-Whitley wind system, Gardner small particle detector, and Royco Model 225 Particle Counter. The wind speed and direction was monitored continuously at the 20 meter level while wet and dry bulb temperatures were obtained hourly at the 17 meter level. A Foxboro temperature system (4 sensors) provided continuous temperature measurements at 4 levels; sea surface, 4.5, 9.0 and 24.5 meters. This data was recorded in an hourly log. Ten minute averaged aerosol size spectra were obtained continuously with the Royce counter at the 17 meter level, and a printout of aerosol concentration in 5 size intervals was provided every ten minutes. The Gardner Counter measured the concentration of particles greater than .0025 µ diameter on an hourly basis.

The majority of the time the Royco instrument operated in "threshold" mode where number concentration (per 2.8 liters) of particles greater than the following size ranges were measured: 0.5 μ m, 0.7 μ m, 1.4 μ m, 3.0 μ m, and 5.0 μ m diameter. For a shorter period of time the instrument was operated in the "window" mode producing number concentrations between the

above size ranges. The particle counter and sensor are shown in Figure 12. The environmental air was drawn continuously through a sampling line of 3 meter length and 5 cm inside diameter. The flow rate through the counter's sensing volume was set at 2.8 liters per minute.

The Royco Model 225 sampler utilizes a near forward scattering optical system (Figure 13) which is ideal for monitoring large volumes of ambient gases where suspended particles can vary widely in composition, size, and optical properties. The aerosol is drawn through the sensor into a beam of focused light. As each particle passes through the illuminated volume, it scatters a pulse of light which is then detected by a photomultiplier tube. The photomultiplier output is then processed electronically to produce a pulse height spectrum from which the particle size spectrum is deduced. The height of each pulse is proportional to the square of the diameter of the particle.

Whitby and Liu (1973) note that the important characteristics of an optical counter are the sampling flow rate and the size of the optical viewing volume. The sampling flow rate determines the minimum counting period needed to obtain a statistically accurate count, and the size of the optical viewing volume determines the maximum aerosol concentration the instrument can accept without loss of particle count due to "coincidence", i.e., the loss of particle count due to the presence of more than one particle in the optical viewing volume at the same time. The viewing volume of the Royco 225 is 4.0 mm³ and the collection aperture half angle is 25 degrees.

Figure 12. Royco 225 Particle Counter and Sensor

Figure 13. Near Forward Scattering Optical System

This model is also equipped with a sheath air inlet which diverts part of the aerosol stream through an external filter before reentry to the viewing volume. This sheath improves the performance of the instrument by preventing the recirculation of particles in the optical chamber and by confining the aerosol stream to a narrower region. Thus, the broadening of the pulse spectrum due to variation in illuminating intensity is reduced.

C. SOUTHERN CALIFORNIA INSTRUMENTATION

The location of the sensors aboard the R/V Acania are shown in Figure 14. Again, a Royco Model 225 Optical Particle Counter was used to measure the aerosol concentration of the coastal marine boundary layer. This instrument was operated continuously in the threshold mode where number concentration (per .28 liters) of aerosols greater than the following size ranges were measured: 0.3 μ m, 0.6 μ m, 1.2 μ m, 3.0 μ m, and 5.0 μ m diameter. The mainframe and sensor were located near the bridge of the Acania with the origin of the sampling line positioned forward of the pilot house roof at a height of 7 meters above the sea surface. The sampling line was 6 meters long with an inside diameter of 5 cm. The air was sampled through the viewing volume at a rate of .28 liters per minute. A Gardner small particle detector was again used to measure the Aitken nuclei concentration.

A sling psychrometer was used to measure the wet/dry bulb temperatures and relative humidity determined from psychometric tables for a height of 5 meters. The mean wind

Figure 14. Sensor Locations on Board the R/V Acania

.

measurements were obtained at four levels using cup anemometer wind profile register systems supplied by the NPS.

Calspan recorded the wind, humidity, and aerosol measurements in an hourly log.

Velocity fluctuation measurements were obtained with Thermo-Systems Model 1210 hot wire anemometer probes mounted with hot film sensors (platinum coated, 60 mil quartz fibers) installed by the NPS. The anemometer was a Thermo-Systems Model 1054B. The sensors were small enough to resolve the viscous dissipation scale without making corrections for wire length. Wind fluctuation data were recorded on a 14 channel tape recorder. The placement of these sensors required exceptionally long cable runs. Therefore, adjustments were made in the bridges for resistance and capacitance of the wirelength to insure a correct response.

The mean and fluctuation wind data were logged by the NPS developed MIDAS (Microprogrammable Integrated Data Acquisition System). This system is fully automated to sample the tailored list of sensors every 30 seconds and 20 minute averaged output values were printed.

V. ANALYSES PROCEDURES

A. VELOCITY FLUCTUATION ANALYSIS

The dissipation of turbulent kinetic energy, ϵ , can be related to the mean wind velocity at any given level, \bar{u} , and the RMS value of the velocity fluctuation, $\bar{u^{12}}$, in a frequency band specified by a lower frequency limit, f_{ℓ} , and an upper frequency limit, f_{u} (Fairall, et al., 1977). The relationship is

$$\varepsilon = \frac{(4/3)^{3/2} (u_{RMS}^{\dagger})^3}{(\overline{u}/2\pi)[f_{\ell}^{-2/3} - f_{u}^{-2/3}]^{3/2}}$$
(20)

In this procedure recordings were made of both the cup anemometer wind speed and the corresponding hot wire voltage output. The sensor wind speed is given by

$$v = V_0^2 + B(\bar{u})^{\frac{1}{2}}$$
 (21)

where v is the hot wire voltage output, and V_0^2 and B are constants obtained by laboratory calibration using a TSI Model 1125 Calibrator. Differentiation of equation (21) produces the following relationship between the velocity fluctuation and the voltage fluctuation:

$$u_{RMS}^{\dagger} = \frac{4v(\bar{u})^{\frac{1}{2}}}{B} v_{RMS}^{\dagger}$$
 (22)

Substitution into equation (20) yields

$$\varepsilon = \frac{(4/3)^{3/2} [4v(\bar{u})^{\frac{1}{2}})/B]^{3} (v_{RMS}^{*})^{3}}{(\bar{u}/2\pi) [f_{\ell}^{-2/3} - f_{u}^{-2/3}]^{3/2}}$$
(23)

Values of f_{ℓ} = 5 Hz and f_{u} = 200 Hz were selected for the cruise and since amplifiers with known gains, G, were required, further reduction leads to

$$\varepsilon = (3.53 \times 10^3) [V_0^2 + B(\bar{u})^{\frac{1}{2}}]^{3/2} (\bar{u})^{\frac{1}{2}} [v_{RMS}^* / BG]^3$$
 (24)

The friction velocity, U_{*}, was then calculated from equation (19) for each of three levels and averaged to produce over 400 values from 19-27 July. Voltage fluctuation data from level 3 proved to be erroneous and were not included in the calculations. Obviously erroneous values of U_{*} owing to erratic behavior were also neglected. U_{*} values were then averaged about the aerosol observation times to correspond to a given aerosol distribution.

B. AEROSOL ANALYSIS

Analyses were performed on 215 aerosol samples during the SC cruise which were confined to the time period of the valid velocity fluctuation measurements. The observations included date and time, humidity, relative wind speed and direction, ship's speed and heading, Aitken concentration, and aerosol concentration as determined by the Royco 225 optical counter (Table VI). Wind and ship's speeds were recorded in knots.

The analyzed aerosol observations for the PC experiment were limited to 137 cases during the period 18-23 February. Cold frontal passage at approximately 0000Z, 24 February and subsequent advection of continental dust through 25 February were reasons for neglecting the aerosol samples for these days. Aerosol counts prior to 18 February were determined with the Royco instrument in the window mode and were not included in this study. Observations were generally made hourly and recorded in a log. They included date and time, humidity, wind speed and direction (knots), Aitken concentration, and data from the optical particle counter (Table V).

Computer programs were developed to plot the aerosol size distribution as a function of radius (R) in microns versus dN/d log R (cm⁻³) where N is the number of particles greater than a given radius as measured by the Royco instrument. The program also included provisions to plot size distributions predicted by Fitzgerald's model. For this the observed relative humidity and wind speeds were used with equation (7). Initially the average aerosol distributions for both the SC and PC experiments were computed and compared to the respective predicted model distributions.

Subsequently, the variations in the average aerosol distributions with respect to four different categories of wind speed, relative humidity, and friction velocity were plotted for the SC data. The categories chosen for each of the above respective parameters are as follows: 0-2, 2-5, 5-8, 8-12 m/sec; 90-99, 80-90, 70-80, and 60-70 percent; and 0-.15, .15-.25, .25-.35, .35-.70 m/sec.

Friction velocity data was not available from the PC experiment; therefore, variations in the aerosol distributions were plotted with respect to categories of wind speed and humidity only. Because of essentially different meteorological conditions, the categories were chosen as follows: 0-3, 3-7, 7-10, and 10-15 m/sec; and 85-99, 70-85, 55-70 and 40-55 percent.

Visual inspection of these plots may indicate satisfactory relationships between the aerosol concentration and the above parameters. However, a statistical means of viewing these relationships was also deemed necessary. Wind speed, humidity, and Ux values were cross correlated with number concentration of particles in graduated size ranges. This procedure was accomplished by a Biomed Regression/Correlation computer program which produced corresponding correlation coefficients.

The nature of the diurnal variation of the aerosol concentration during the SC and PC experiments was investigated in this study. A computer program averaged the aerosol concentrations, wind speeds, humidities, and friction velocities about each hour and plots showing variations with time are produced. The aerosol plots depict the number of particles per cm³ within specified size ranges versus time. The SC data produced curves representing the number of particles between the following size ranges: .15-.30 μ , .30-.60 μ , .60-1.5 μ , and 1.5-2.5 μ radius. Diurnal variation of concentration for the PC data utilized the following slightly different size ranges: .25-.35 μ , .35-.70 μ , .70-1.5 μ , and 1.5-2.5 μ radius.

Finally, diurnal variations of the aerosol size distribution for the SC and PC experiments were calculated using techniques similar to those described above. Average size distributions for the following two time periods were plotted: 0000-1200 hrs and 1200-2400 hrs.

C. ERROR ANALYSIS

The optical particle counter has an advantage over the membrane filter or impactor sampling techniques. For example, the latter require the samples to be taken to a lab for microscopic inspections and the aerosols may possibly be disturbed or altered due to contamination. Although the optical counter provides continuous "in situ" aerosol measurements, there are ample causes for counting errors. Because light scattering is a function of size, shape, and refractive index of the particles, careful calibration is necessary.

The Royco 225 model counter used in these experiments was calibrated using monodisperse latex spheres of known refractive index (1.6). Laboratory experiments by Lieberman and Allen (1969) showed a good correlation between the theoretical response curve for a near forward optical system and measurements using latex sphere and glass beads of refractive index 1.6 (Figure 15). Of most significance is the "fold" in the curve or zone of multi-valued response in the region of 1 μ diameter. Figure 16 is provided to illustrate how the response curve varies with particles of different refractive index. It is evident that when measuring particles of refractive index 1.6, a zone of ambiguity exists between

Figure 15. Theoretical Response Curve and Experimental Results for a Forward Scattering System

Figure 16. Dependency of the Response of a Forward Scattering System on Refractive Index

approximately .3 μ and .6 μ radius and may vary with the aerosol refractive index. Lieberman and Allen (1969) state that the instrument will still produce valid data if the zone is encompassed within a size range or channel. Since the SC counter measured between .3 μ and .6 μ radius and the PC counter between .35 μ and .70 μ radius, it is assumed that this multi-valued zone is compensated for.

Counting errors can also arise from flow rate considerations. If the particle sizes are large and the number of particles small, enough particles must be counted to obtain good statistical resolution. When a small random number of particles is counted, the statistical error in counting is equal to the ratio of 1 over the square root of the number of particles counted (Zinky, 1962). The counter should be operated over a longer time period (10 minutes) to sample a larger volume or an increase in the flow rate will reduce the error. It then seems quite possible that the flow rate of the counter used in the SC cruise (.28 liter/min) provided too small of a sampling volume to obtain an accurate count of the larger particles.

Zinky (1962) also states that a vertically aligned inlet tube is recommended to prevent any deposition in the line due to settling. It has already been mentioned that the sampling lines used in each experiment were considerably long and aligned horizontally. Many of the larger particles may not have remained airborne long enough to reach the illuminated volume.

Errors in the calculation of the friction velocity may have come from various sources. Since calculation of U*, from Equation (19) is only valid for near-neutral conditions, any substantial departure of the Richardson number from zero would result in inaccurate values. The measurement of the dissipation of turbulent kinetic energy was large dependent on the accuracy of the voltage output. The signal response is sensitive to electromagnetic energy, and any local radio or radar transmission may introduce noise to the system. Additionally, under the light wind conditions which prevailed on the SC experiment, the lateral motion of the anemometers due to ship pitch and roll may have resulted in erroneously high readings.

VI. RESULTS

The data from the Southern California (SC) cruise proved to represent an atmosphere somewhat different from a typical marine environment. The Aitken particle population averaged almost 8500 cm⁻³ which is about 4 times higher than that observed by Hidy, et al. 130 km west southwest of Los Angeles. This high concentration is suspected to be due to a combination of pollution from merchant ships' exhaust, combustion from the drilling platforms, and offshore flow from the nearby populated coastal cities.

The average wind speed and relative humidity were 3 m/sec and 86 percent, respectively. This data was used to compute the prediction from Fitzgerald's model (Eq. 7) which is compared to the average SC distribution in Figure 17. The vertical bars represent one standard deviation either side of the mean. There is generally good agreement between the two below .4 µ radius, with a larger experimentally observed concentration above this range. Although sea-salt production should have been minimal during this time period because of low wind speeds, the characteristic hump at around 1 µ, to a certain extent, reflects the contribution by sea salt nuclei. A similarity exists here with Moore and Mason's (1954) observation of a discontinuity where the slope changes and becomes rather steep in the region of the larger size range. The larger concentration in this range may be solely

Figure 17. Average Aerosol Size Distribution for the SC Experiment and Distribution Predicted by Fitzgerald's Model

due to the influence of atmospheric contaminants such as combustion by-products, soil dust, or smoke. Considering previous experiments, this range does indeed contain a mixture of both continental and marine aerosols possibly resulting in the increase over Fitzgerald's model.

As previously mentioned, the low flow rate of the optical counter may account for the low concentrations at 2 μ . However, since the wind speed reached 8 m sec⁻¹ only 6 times, this may have been a truly representative concentration of droplets as agreement is also shown with Fitzgerald's curve.

Figure 18 presents the synoptic situation for three days at the beginning, middle, and end of the experiment. A persistent thermal low is located in the desert area of Southern California and the isobaric pattern off the coast reflects a rather weak gradient. Therefore, smaller scale circulations should prevail in this area of little or no synoptic forcing.

Plots showing the variations of the average distributions with respect to wind speed, relative humidity, and friction velocity (U**), are shown separately in Figures 19, 20, 21. The number of observations in each category is placed in parentheses. These figures indicate that the size distribution has a better relationship with the relative humidity than to the wind speed and U**. Correlation coefficients between these parameters and the number concentration of particles in a given size interval are produced in Table II. Since diurnal variations tend to reflect a negative relationship between relative humidity and wind

26 JUL

Figure 18. Synoptic Situation during the SC Experiment

Figure 19. Variation of SC Size Distribution with Wind Speed

Figure 20. Variation of SC Size Distribution with Relative Humidity

Figure 21. Variation of SC Size Distribution with Friction Velocity

INTERVAL	ВН	WIND SPEED	*n
.15 – .30 µ	.375	-,127	162
.3060 д	.383	056	107
.60- 1.5 µ	.376	017	077
$1.5 - 2.5 \mu$	037	022	.132

TOTAL

Correlation Coefficients for the SC Experiment Table II.

speed, the results in this table are not surprising. The negative correlation of relative humidity with the concentrations in the large size range indicates that sedimentation of large droplets, which grow with increasing humidity, is most important when the wind speed and sea surface production of salt nuclei are weak. Although these larger droplets also exhibit a small positive correlation with U_x while the wind speed correlation remains negative, this result does not appear to be significant.

An attempt was made to examine the influence of stability on the size distribution. The summer months are characterized by the occurrence of stratus and fog off-shore below the marine inversion. Two days are compared with the assumption that they represent the unstable and stable atmospheres. According to the daily observation log, stratus clouds in the morning becoming stratocumulus by afternoon were observed on 19 July. 26 July was characterized by clear skies. average distribution for both days is presented in Figure 22. The correlation coefficients between concentration and wind speed and U, show a trend toward positive values from the stable to the unstable day with U, eventually becoming positively correlated in the unstable day (Table III). The increase in the size distribution on 26 July in the size range greater than .3 μ seems to be due to increase in the average wind speed and occasional gustiness as whitecaps were reported during the afternoon. The stable stratification assumed in this case allows generated sea-salt nuclei to accumulate and the concentration to increase at the 7 meter

Figure 22. Average Size Distributions on 19 July and 26 July

SC

INTERVAL	RH	WIND SPEED	U*
.15 – .30 μ	.814	205	.129
.3060 µ	.837	184	.165
.60- 1.5 µ	.792	110	.147
1.5 - 2.5 µ	104	049	.075

19 JUL UNSTABLE

SC

INTERVAL	RH	WIND SPEED	U*
.1530 µ	.610	395	372
.3060 µ	.754	499	535
.60- 1.5 µ	.835	615	634
1.5 - 2.5 µ	.355	413	273

26 JUL STABLE

Table III. Correlation Coefficients for 19 July and 26 July

level. The lower average wind speed associated with the unstable period does not allow for much sea-salt production. An unstable atmosphere can lead to convective processes which may vertically transport aerosols and create higher concentrations at an upper level as proposed by Ericksson (1959) and Toba (1965a & b). Hence, a decrease in the size distribution on 19 July is observed. This evidence gives credence to the possibility that friction velocity is a better indication of aerosol size distribution than wind speed. On both days the correlation of the concentration with humidity is lowest in the largest size interval. This relationship is most pronounced on the unstable days and may be explained by sedimentation due to mixing and resulting increased coalescence.

The averaged diurnal variations of wind speed, relative humidity, friction velocity, and aerosol concentration are shown in Figures 23, 24, and 25. Again the negative relationship of aerosols to wind speed and U_{*} in the size range of generally less than 1 µ is indicated. A satisfactory relationship with relative humidity is not evident and this is probably due to transport by a secondary circulation. A land-sea breeze type of effect could account for the observed decrease in concentration of the particles smaller than 1.5 µ. As the heating over the land generates an on-shore flow along the coast, the wind increases and persists through the afternoon. The average wind direction derived from the observations of five random days during the experiment is shown in Figure 26. A westerly wind is

Figure 23. Average SC Diurnal Variations of Wind Speed and Relative Humidity

Figure 24. Average SC Diurnal Variation of Friction Velocity

Figure 25. Average SC Diurnal Variations of Particle Concentrations

Figure 26. Average SC Wind Direction

seen to dominate during the peak wind periods. The decrease in the aerosol population may be explained by a horizontal divergence effect in the marine boundary layer as largest accelerations are found near the coast. The average size distributions displayed in Figure 27 reflect the decrease in the aerosol population due to this sub-synoptic circulation. Although the relative humidity increases slightly in the early evening hours, the smaller nuclei show a stronger relationship with the wind speed. This again implies that a large part of the coastal marine aerosol is of continental origin. The outflow of circulation aloft is probably responsible for the introduction of continental particulates to the marine environment. The minor peaks in the small particle concentration and also the somewhat greater increase in the large particles during the afternoon should be attributed to sea-salt production.

The Panama City (PC) observations more closely resembled a marine environment. The Aitken particle count was lower and averaged 2600 cm⁻³ while the distribution curve showed a marked change from the Southern California data. Winter time synoptic scale features predominate in this region of the Gulf Coast. Cold frontal passages and an accompanying influx of continental air into the Gulf of Mexico are frequent occurrences. Subsequent movement of the high pressure ridge into Florida and off its eastern seaboard provides the circulation which reestablishes moist southerly flow and return of the marine aerosol. Figure 28 provides the synoptic analyses for the period of the experiment. Stable

Figure 27. Average SC Diurnal Variation of the Aerosol Size Distribution

Figure 28. Synoptic Situation during the PC Experiment

conditions prevailed in the Panama City area at the beginning of the period; but, after frontal passage early on
20 February, south to southeasterly flow developed and persisted for the remainder of the experiment. The influx of
this warm, moist air contributed a destabilizing effect in
the lower levels of the marine boundary layer.

The average wind speed and relative humidity for PC were 8.4 m/sec and 71 percent, respectively. Fitzgerald's curve for these average conditions and the average aerosol distribution for the entire period are shown in Figure 29. Good agreement exists only for particle size range greater than .9 μ radius. The observed concentrations are approximately an order of magnitude lower than Fitzgerald's prediction for aerosols smaller than .5 μ radius. A significant aspect of the distribution is the positive slope observed between approximately .5 μ and 1 μ radius which appears to be the result of sea-salt production. Actually, good agreement is shown with Blifford's (1970) observation off the Pacific coast with respect to both slope and number concentration.

Plots showing the effect on the average distributions due to wind speed and relative humidity separately are shown in Figures 30 and 31. Relatively good correlations seem to exist between these parameters and the aerosol distributions. Correlation coefficients are presented in Table IV. The synoptic scale effects predominate over diurnal variations and wind speed and relative humidity are both positively correlated to the concentration. The highest correlation of

Figure 29. Average Aerosol Size Distribution for the PC Experiment and Distribution Predicted by Fitzgerald's Model

Figure 30. Variation of PC Size Distribution with Wind Speed

Figure 31. Variation of PC Size Distribution with . Relative Humidity

0

INTERVAL	RH	WIND SPEED
.2535µ	.620	559
.3570µ	.726	S
.70 - 1.5 µ	.654	.511
1.5 - 2.5 µ	.729	.442

TOTAL

Correlation Coefficients for the PC Experiment Table IV.

concentration to humidity at Panama City is witnessed in the 1.5 μ to 2.5 μ interval. This result may indicate that equilibrium tends to exist between production and sedimentation in this interval as hypothesized by Moore and Mason (1954). Disagreement exists in that the steeper negative slope is found during periods of strongest wind. The plot showing the effect of relative humidity on the size distributions results in small variations in the .25 μ - .35 μ interval. This probably indicates that the majority of these particles represent a mixture of continental and marine nuclei.

The stability influence was investigated by comparing observations on 18 February and 21 February. Temperature measurements at various levels on the platform made it possible to examine the lapse rates and determine the stability. The average distributions for these days grouped according to wind speed, and respective correlation coefficients are shown in Figures 3.2 and 33. The low humidities on 21 February resulted from the earlier intrusion of continental air, but southeast to southwest flow persisted most of the day. Although this trajectory helped to advect in warmer air, production of sea-salt dropped off as the wind decreased considerably below 7 m/sec. A much larger decrease is observed in the distribution curve on 21 February as compared to 18 February when the wind speed decreased below 7 m/sec. This agrees well with Moore's (1952) finding that the change in opacity is well marked during periods of low humidity. Also the decrease in the slope of the curve between .5 µ and

-	-	٠
-		5

INTERVAL	RH	WIND SPEED
.2535µ	,169	.065
.3570 µ	.104	.334
.70 - 1.5 µ	.279	.605
1.5 - 2.5 µ	.385	.442

18 FEB STABLE

Figure 32. Correlation Coefficients and Variation of the Size Distribution with Wind Speed, 18 February

-	-
-	

INTERVAL	RH	WIND SPEED
.2535µ	.746	.615
.3570 µ	.692	.651
.70 - 1.5 µ	.558	.737
1.5 - 2.5 µ	.253	.571

21 FEB UNSTABLE

Figure 33. Correlation Coefficients and Variation of the Size Distribution with Wind Speed, 21 February

l μ appears to be a function of decreased relative humidity. This again reinforces the premise that sea-salt nuclei predominate in the size range above approximately .7 μ .

The correlation between concentration and wind speed for all size ranges is greatest on the unstable day. As with the SC data, this is consistent with momentum and diffusion theory. Again the small correlation with relative humidity exhibited by the larger nuclei is probable caused by growth and sedimentation in the absence of significant sea-salt production. When generation was occurring on 18 February, the large particles exhibited the largest correlations with humidity and wind speed. This stable stratification evidently was produced by a previous frontal passage and northerly flow of cold air and accompanying continental particulates. Therefore, a large portion of the aerosol at the beginning of the experiment may have been composed of non-hygroscopic material.

Figures 34 and 35 display the average diurnal changes in wind speed, relative humidity, and aerosol concentration. Again positive correlations are noted as relative humidity and wind speed, although containing quite a bit of scatter, tend to vary accordingly. Of most significance would be the obviously high concentration of droplets in the .7 μ - 1.5 μ range. Noting that the average wind seldom went below 7 m/sec, this would indicate that sea-salt nuclei production is greatest in this size range. A diurnal representation of the average aerosol distribution is presented in Figure 36.

Figure 34. Average PC Diurnal Variations of Wind Speed and Relative Humidity

Figure 35. Average PC Diurnal Variations of Particle Concentrations

Figure 36. Average PC Diurnal Variation of the Aerosol Size Distribution

Any transport of aerosols due to a land-sea breeze effect should be ruled out as a satisfactory relationship does not seem to exist.

VII. CONCLUSIONS

The coastal marine aerosol is shown to be a highly variable function of the interaction between synoptic and mesoscale processes. Important meteorological parameters such as wind speed, relative humidity, and stability are dependent upon secondary circulations between land and sea in the absence of large scale forcing.

The minimum concentration in the size distribution curves at .4 μ - .5 μ radius may indicate that this size is indeed the transition zone between the two bubble bursting sea-salt producing mechanisms. Since the slope on either side of this zone is steeper during the Panama City experiment, wind speeds of greater than 7 m/sec result in the generation of sea-salt particles larger than .25 μ radius. Sedimentation of particles larger than 1.5 μ appears to be most significant during periods of low wind speed. During strong winds a state of equilibrium between sedimentation and production exists for these larger particles.

Relative humidity variations have the largest effect on the aerosol size distribution in the absence of sea-salt production. The concentration of the coastal marine aerosol is most sensitive to wind speed effects at low relative humidity. Friction velocity seems to be a better indication of the aerosol size distribution than wind speed under unstable atmospheric conditions. Also during light wind

periods, instability appears to result in a decrease in concentration at the observation height. Enhanced diffusion during periods of sea-salt production causes vertical transport of sea-salt from the sea surface and an increase in concentration.

Any effect of surface organic film possibly suppressing the production of small sea-salt particles could not be examined because of the absence of significant generation off the Southern California coast.

Data
City
Panama
×
Table

CATE & TIME	ž!	MIND CIR & SPEED	AITKEN CON	# PARTICLES / 2.8 L >.5	:1	×1:4	73.0	\$5.0
u	=	28015	3000	21075	11206	1935	1287	200
100		. 28616	2300	21791	12419	8553	1324	216
332	22	11511	2000	18261	10566	1662	1141	179
300	22	. 51082	•	22634	13357	2616	1598	308
904	12	68514	•	23305	13614	16351	1644	592
300		29615	1500	23266	13930	16350	1588	273
239	**	26C14 .	1600	24627	14956	11146	1701	567
331	16	20510	1800	25487	15548	11411	1570	828
000	2	20515	1800	24018	14461	10607	1450	220
305	13	86617	1600	23508	14357	10343	1441	225
3331	20	27515	•	22.152	13351	2443	1317	190
1130	13	51352	•	21002	11973	6585	1161	174
1200	13	20514	1700	19602	10473	1014	1067	144
1300	13	3 992	1600	18450	8917	5471	879	109
3351	2	51357	2100	17104	9510	5505	122	2
7001	£	17092	1900	19002	10300	1259	1068	127
1700	18	28514	2000	18102	10248	1048	1111	150
2100	*	27314	1800	23647	13933	10385	1609	550
2200	*	27514	1700	23440	13872	10274	1655	568
2300	64	51013	1700	55644	13309	\$635	1447	240
•	1	26516	1600	22640	13433	5144	1480	152
100	£2	28018	1500	20363	11832	8320	1236	500
302	£3	28017	0	19567	10848	1658	1163	1 80
300		28015	0	20337	11916	1558	1314	503
904	64	28C13	•	20082	11911	6139	1486	220
900	82	28013	0	17003	5812	7176	1245	212
909	9	28013	1600	15437	8631	9619	1041	174
326	-	21512	1500	15227	8438	6035	1014	194
333	1	27013	1500	13565	1784	5624	1002	190
400	13	26512	3200	12609	9855	4832	100	126
1000	96	26512	1350	12267	6664	5594	181	133
1100	53	26510	0	12084	6339	4314	716	92
1200	£3	25011	•	10293	5103	3405	267	*
1300	£ 5	26511	1300	10085	4824	3057	485	69
1400	11	21882	1500	11280	5547	3568	265	13

×	25	119	115	161	156	184	199	240	37	. 62	11	19	17	16	10	12	•	36	52	35	=	23	91	11	:	*	22	15	23	52	2	20	=	-	
3.0	621	818	825	1100	1134	1060	1206	1448	102	160	85	139	145	130	63	88	51	125	11	135	6	9	2		=	167	92	392	169	524	267	304	5	•	\$
<u>*</u>	3955	4510	4752	6040	6423	5521	1389	9446	1640	1196	922	1067	1125	1153	176	***	1	156	586	637	536	416	451	534	565	684	530	1586	1238	1636	1667	1691	124	276	128
21	+634	7262	1569	1355	8762	1529	5185	12120	2010	2198	1542	1558	5002	2421	1788	1327	1375	1240	572	1027	173	9	112	934	1005	965	659	1558	2076	592	2023	2674	1323	115	1702
# PARTICLES / 2.8 L >.5	11553	13707	13113	14767	15296	16216	12722	27510	9636	6603	1539	1919	6569	10768	€009	1142	. 6429	5225	4256	3006	9155	2532	2671	4168	+33+	3243	3482	1045	6859	6445	\$384	1502	5515	5417	9639
AITKEN CON	1400	1900	1 600	1500	2400	3900	2000	9500	•	•	•	0000	•	•	•	•	•	•	•	•	•	•	•	.0	•	•	0	•	•	•	•	2700	2700	•	•
WIND DIR & SPEED	27516	25015	24014	. +10+2	54514	. 51052	27015	28512	32026	39629	25523	35621	35319	35519	35016	33516	34617	32019	12512	31015	31516	30020	30517	30515	32013	25012	32010	29017	28518	33626	33021	32516	35016	510	1516
#!	11	:	13	83	E¢	2	3	2	69	e e	95	30	15	21	7	3	45	33	35	e,	30	3	35	36	5.	57	33	\$	\$	45	:	45	38	:	\$\$
DATE C TIME	1500	1666	1166	1600	1500	3002	2100	3255	366	300	*	300	237	326	223	356	1000	1166	1200	1366	1466	1500	1666	1766	1600	1860	2000	2100	2266	2366	0	100	300	366	**
DATE	15	15	2	3.5	13	15	15	15	32	20	32	36	32	30	30	32	32	36	32	20	20	53	36	32	32	20	23	20	26	52	21	21	11	21	12

21	53	75	=	•	•	12	•	01	1		2	1	==	1	9	10	•	01	=	=	=	•	1	=	32	42	19	3,	30	82	19	34	45	34	3.8
13.0	135	171	104	57	49	19	96	9	35	•	33	36	11	55	*9	59	16	11	13	11	15	6	112	135	256	278	341	311	162	278	405	336	375	333	335
	1482	1565	15CE	963	688	633	511	454	300	324	392	310	176	405	451	435	467	520	492	485	520	910	166	971	1517	1506	5707	2262	2223	20 50	3010	2545	2663	2225	2207
:1	3161	3144	3463	2086	1385	1212	805	015	567	946	205	257	678	702	808	380	151	888	9.80	958	803	940	1218	1478	2287	2747	1606	3365	3345	3159	4341	3506	4503	3451	3800
FAKILLES / 2.8 L >.5	16227	14496	15751	10451	1110	4515	4143	3550	2672	2650	2465	2643	2585	3040	3282	3133	3124	3321	3356	3404	3260	2502	3556	3135	5366	. 6182	8638	7297	7299	4819	1150	5990	9368	6305	8253
ALIKEN CON	2400	2200	2200	3300	8000	0	0	0009	0006	1000	•	•	4500	4000	2930	3100	2800	3000	3000	2800	2700	2200	•	.0	2000	2000	2000	2000	1600	2100	•	2300	2500	3600	0
מוא ה אבר	5017	9159	. 9158	10511	135 \$	130 8	155 4	175 €	2 5 12	265 8	240 8	346 5	24510	24010	32510	23511	22510	21510	20010	\$ 302	18011	16511	14513	14014	11551	14015	14615	14051	13822	13522	13522	13522	13522	13022	13322
1	52	21	3	25	7	45	45	45	37	Ť	9	38	36	43	7	54	+	7		4.6	55	95	35	•	11	4.6	66	te	F 1	4,2	**	59	*	96	*
	90	009	300	600	335	1000	1100	1266	1366	1466	1500	1666	1366	1800	1866	3000	2100	2266	2366	,	166	366	366	*	355	939	200	333	335	1000	1166	1200	1366	1400	1866
	12	12	12	21	12	17	21	21	21	12	12	12	23	23	2	77	2	17	12	25	25	22	3.5	33	22	22	22	25	??	22	25	22	??	22	33

23.0 25.0	326 34		332 44	421 56	450 60	273 21	508 82	111 879		. 98 989				911 106	1180 158	1297 179			201 6221						1165 234			1312 505		3622 518		915 110
^' *!	2263	2846	2692	3072	3058	1522	3067	3862	4566	2005				1041																34056		
21	3551	4276	3528	4562	4553	3413	4419	5447	6411	1048	1000	\$118	10235	649	14110	19465	10502	11410	16629	19615	20600	21113	10615	22854	28627	25137	31.873	37378	42388	44713	44227	56409
# PARTICLES / 2.8 L >.5	8153	9455	6136	10166	10104	103	1253	10150	11635	12617	14337	17257	18069	18655	24655	27564	34453	34C11	31144	36245	36675	37034	37751	41245	48270	1984	52317	60162	56389	10670	15264	42554
AITKEN CON	2400	3200	3000	3000	2500	3300	2000	1700	2000	1700	2000	•	0	3500	2 800	3200	3100	3300	۰	2 7 0 0	2400	2400	2400	1800	1100	1600	1800	1700	1500	1300	•	1200
HIND CIR & SPEED	14518	. 13625	12026	11826.	14031	15022	1361	12615	12018	11021	12522	13016	11516	11027	11527	11020	11024	11028	11525	11027	11521	13026	12525	11528	. 12625	11526	12528	14025	13325	14026	14528	15520
£ !	\$	=	×	2	36	23	13	~	2	2	7	2	*	:	62	2	2	:	9	£	9	8	5	5	25	15	15	15	3	3	3	3
CATE & TIME	1600	1766	1600	1566	3000	2312	2266	3366	•	100	302	306	704	336	339	326	338	335	1000	1100	1266	1300	1466	1500	1600	1166	1000	1866	3002	2100	2266	2366
=	2	22	2	~	2		22	22	2	2	22		-		•			***	21	•	**	-	7	2	2		=		•		2	2

-	Data
	California
	Southern
TU	• 7 ^
- בין	Table

			E	Table	VI.	outhern	Southern California Data	ď				
CATE & TIME	T INE	# 1	REL WIND CIR & SPD		SHIPS HEAD & SPO	ATTKEN CON	# FARTICLES / .28 L	×.3	>.6	>1.2	>3.0	>5.0
			# 24 W	!	2000		• • • • • • • • • • • • • • • • • • • •	1	1	1		1
15	•	45	287 3		270 0	3000		12344	1555	933	2	•
15	100	25	250 1		270 0	1500		14239	2526	968	10	•
11	300	63	266 1		270 0	1700		15632	2575	1039	•	•
15	300		1 1 1 1		270 0	3500		12690	2660	566	=	•
15	466	2	19010		180 9	•		13914	2475	197	01	•
115	336	£	18010		183 9	0		1444	5482	*	•	•
15	209	9	346 7		140 9	•		1949	1459	576	-	0
118	300	23			140 9	•		6020	1371	950	10	•
15	900	=	360 9		505 9	•		\$612	1673	624	•	•
15	1000	==	1 512		353 2	•		1926	1505	545	•	•
15	1100	36	172 9		175 9	3.00		6753	1305	419	•	•
15	1123	2	172 9		175 9	•		1046	1429	595	=	•
13	1130	2	172 9		175 9	0059		6189	1321	\$25	9	•
16	1140	2	172 2		155 2	2200		6530	1290	495	12	•
15	1150	2	172 2		155 2	3000		6374	1351	694	2	•
15	1500	2	166.3		168 2	1300		6119	1357	979	=	•
16	1300	15	161 3		168 2	1200		6113	1621	503	12	•
15	1400	32	166 3		168 2	1 500		6129	1304	954	•	•
15	1430	2	234.7		254 0	2900		6760	1466	583	22	•
15	1600	16	9 €0€		317 0	2100		1352	1618	588	-	•
15	1766	2	2 487		0 712	1300		6632	1340	204	15	•
15	1 600	28	1 061		133 9	1200		1095	1491	575	*	•
15	3002	-	8 322		167 9	0011		9228	1658	910	9	0
15	2100	96	175 5		147 9	1800		11750	2088	128	•	•
1;	2200	63	1 091		147 0	1400		11950	2139	123	91	•
15	2366	36	315 6		147 0	0		11620	2633	689	12	•
32	v	78	1 6 8 1		147 0	0		\$526	1780	643	-	•
20	100	£2	61 2		147 0	•		9865	1747	637	11	0
36	200	*	2 062		147 0	•		11699	1512	999	01	0
36	300	85	+ 06		147 0	•		12871	4111	1473	•	•
30	400	:	S 392		0	•		23005	4668	1635	•	•
36	336	*	7 082		0 0	0		22081	4185	1431	•	•
9	555	:	275 3		0 0	2100		23114	4664	1628	60	•
32	610	:	270 3		0 0	8000		24115	4836	1784	•	•
50	425	5	270 3		0 0	4830		25023	5273	1922	•	0

12 270 3 0 0 240 12 285 5 0 240 240 12 240 1 0 240 240 12 240 1 0 240 240 12 240 1 0 240 240 12 240 1 0 240 240 12 240 1 0 240 240 12 240 1 0 2400 2400 12 240 342 9 2400 2400 12 240 342 9 2400 2400 2400 12 240 342 9 2400 </th <th>NATE & TIME</th> <th>Z </th> <th>MEL WING LIK & SPO</th> <th>SAIPS HEAD & SPO</th> <th>ATTKEN CON</th> <th>PARTICLES / .28 L</th> <th>: 1</th> <th>1 %</th> <th>7.1</th> <th>23.0</th> <th>1</th>	NATE & TIME	Z	MEL WING LIK & SPO	SAIPS HEAD & SPO	ATTKEN CON	PARTICLES / .28 L	: 1	1 %	7.1	23.0	1
77C 82 285 9 2403 77C 82 285 9 1950 77C 82 285 9 1950 77C 82 310 1 0 2700 77C 82 310 1 0 2700 82C 240 1 0 2400 2400 82C 240 1 0 2400 2400 82C 240 1 0 2400 2400 82C 240 1 0 2400 2400 2400 82C 310 2 345 9 3900 2400 <t< td=""><td>757</td><td>2</td><td>270 3</td><td>0</td><td>•</td><td></td><td>23370</td><td>4675</td><td>1707</td><td>•</td><td>•</td></t<>	757	2	270 3	0	•		23370	4675	1707	•	•
11 12 2 2 2 2 2 2 2	200	~	5 502	0 0	2403		23558	5028	1761	•	•
75C 82 305 2 0 2700 75C 82 310 1 0 600 8CC 82 310 1 0 2000 8CC 82 310 0 2000 8CC 82 315 3 0 2000 8CC 82 315 3 3 3000 1CC 82 315 3 3 3000 1CC 82 310 342 3 3500 1CC 82 310 342 3 3500 13C 82 342 3 3500 3500 13C 82 340 3 3500 3500 13C 82 340 3 3500 3500 13C 82 350 0 0 3500 13C 82 3 0 0 3500 13C 82 3 <t< td=""><td>710</td><td>~</td><td>285 5.</td><td>00</td><td>1950</td><td></td><td>22378</td><td>4658</td><td>1654</td><td>•</td><td>0</td></t<>	710	~	285 5.	00	1950		22378	4658	1654	•	0
74C 82 31D 11 0 0 6000 85C 82 284 1 0 0 2400 85C 82 280 1 0 0 2200 852 82 313 8 342 9 3900 852 82 313 8 342 9 3900 852 82 313 8 342 9 3900 110C 82 313 8 342 9 3900 110C 72 22 4 343 9 3900 110C 72 22 4 343 9 3900 110C 72 310 6 343 9 3600 110C 72 310 6 342 9 3600 110C 72 310 6 342 0 0 110C 8 310 6 342 0 0 0 110C 8 310 7 340 0 0 0 0 110C 8 310 7 340 0 0 <	725	~	305 2	0 0	2700		21453	4445	1564	.0	0
150 62 240 1	740	85	310 1	00	0009		22713	4725	1725	1	0
8.CC 8.C 23.C 3.00 2200 8.CC 8.C 23.C 3.45 9.900 3900 9.CC 8.5 3.5 9.900 3900 1CC 8.5 34.7 34.5 9.900 1CC 8.5 34.0 9.900 14.50 11C 7. 2. 44.9 2.900 13C 7. 31.0 33.2 9 36.0 13C 7. 31.0 33.2 9 36.0 14.00 13C 7. 31.0 33.0 0 14.00	750	2	240 1	000	2400		21528	4536	1665	•	0
6.26 6.2 23.5 3.900 3000 6.26 6.3 34.5 3.45.9 3.900 1106 7. 34.2 3.50.9 1650 1106 2. 4 34.3 9 3.900 1106 2. 4 34.2 9 3.900 1106 2. 3. 3. 9 3.900 1106 2. 3. 3. 3.500 3.000 1116 2. 3. 3. 3.500 3.000 1116 2. 3. 0 0 0 0 1116 2. 3. 0	338	2	1 052	00	2200		22232	4675	1690	-	•
625 62 315 5 345 9 3900 11CC 62 310 350 9 3900 11CC 62 310 350 9 2900 11CC 12 310 350 9 2900 13CC 16 315 3 9 2500 13CC 16 326 0 0 1600 13C 26 326 0 0 0 0 13C 61 350 0 0 0 0 0 13C 61 2751 350 0	125	2	23C 3		3060		24133	4141	1925	91	•
\$6.2 \$1.5 <td< td=""><td>635</td><td>2</td><td>315 5</td><td>345 9</td><td>3900</td><td></td><td>22244</td><td>4640</td><td>1637</td><td>•</td><td>•</td></td<>	635	2	315 5	345 9	3900		22244	4640	1637	•	•
110C C2 313 8 350 9 1650 110C C2 313 8 340 9 1650 130C 130C	195	2	346 7	342 9	2900		22825	4553	1835	12	•
110C	1666	23	310 0	350 9	1650		23006	\$635	1865	*	•
12CC 12 325 340 360 13CC 75 310 6 332 9 250 14CC 8C 26C 0 0 1600 1600 113C 8C 26C 0 0 0 0 0 113C 8C 27510 350 0 <td< td=""><td>1100</td><td>36</td><td>3C 4</td><td>343 9</td><td>5500</td><td></td><td>13184</td><td>2310</td><td>793</td><td>1</td><td>•</td></td<>	1100	36	3C 4	343 9	5500		13184	2310	793	1	•
13CC 75 310 6 332 9 2530 14CC 8C 28C 2 0 0 1600 175C 81 255 3 0 0 0 175C 81 27510 350 0 9200 18615 81 27510 350 0 9200 180C 82 27510 272 4 5800 20C5 87 27510 272 4 5800 22C 82 276 5 0 0 1900 22C 82 28C 5 0 0 1900 22C 85 28C 5 0 0 1900 22C 85 28C 5 0 0 4100 22C 85 28C 5 0 0 4100 22C 85 28C 5 0 0 4100 22C 85 28C 5 0 0 4400 24C 85 22E 5 26E 9 0 24C 85 22E 5 26E 9 0 24C 85 22E 5 26E 9 0 24C 85 23E 6 0 4400 24C 85 24C 85 0 </td <td>1200</td> <td>35</td> <td>325 3</td> <td>340 9</td> <td>3600</td> <td></td> <td>12649</td> <td>2228</td> <td>733</td> <td>•</td> <td>•</td>	1200	35	325 3	340 9	3600		12649	2228	733	•	•
14CC 26C 28C 0 0 1600 173C 18 155 350 0 0 0 175C 81 27510 350 0	1366	75	310 6	332 9	2530		14505	3005	679	•	•
135	1466	20	2 382	0	1600		15433	1917	550	•	•
175C £1 27510 350 0 9200 150C £6 27014 272 4 5800 20C5 £1 27510 272 4 5800 20C5 £1 27510 270 5 7000 22CC £2 28C 5 0 5100 22CC £2 28C 5 0 1900 23CC £3 330 7 360 9 2900 £CC £3 330 7 360 9 2900 £CC £3 330 7 360 9 2900 £CC £3 330 7 360 9 4100 £CC £3 265 9 0 4100 £CC £3 £2 £2 0 4400 £CC £3 £6 0 4400 £45 £3 £6 0 60 5000 £45 £3 £6 0 60 5000 £45 £6 £6 0	1136	:	185 3	•	•		11111	356	1393	1	•
1815 81 2751C 350 0 0 180C 6 27014 272 4 5800 20C5 87 27510 270 5 7000 22CC 89 28C 5 0 5100 22CC 89 28C 5 0 1900 22CC 89 2900 1900 1CO 84 30 7 360 9 2900 1CO 84 30 2 0 4100 2CC 85 22 5 0 4400 2CC 85 100 2 0 4400 2CC 85 100 2 0 600 2CC 80 100 2 0 5000 2CC 80 160 2 0 5000 2CC 80 100 2 0 5000 2CC 80 160 2 0 5000 2CC 80 100 2 0 5000 2CC 80 100	1750	=	27510	350 0	9200		23619	4238	1448	•	•
150C £e 27014 272 4 5800 20C5 £1 27510 270 5 7000 22CC £2 28C 5 0 5100 22CC £2 28C 5 0 1900 22CC £2 20C 3 0 1900 23CC £3 330 7 360 9 2900 1CO \$4 30E 2 0 4100 2CC \$5 25 5 0 4400 2CC \$5 100 2 0 4400 2CC \$5 100 2 0 4400 2CC \$6 100 2 0 5500 2CC \$6 100 2 0 5500 2CC \$6 1400 5000 5000 2CC \$6 100 2 0 5000 2CC \$6 1400 5000 5000 2CC \$6 \$6 \$0 5000 2CC <td< td=""><td>1615</td><td>=</td><td>27510</td><td>350 0</td><td>•</td><td></td><td>15965</td><td>4635</td><td>1371</td><td>7</td><td>٥</td></td<>	1615	=	27510	350 0	•		15965	4635	1371	7	٥
255C 89 28C 5 0 0 5100 225C 89 28C 5 0 0 1900 225C 89 28C 5 0 0 4100 225C 89 28C 5 0 0 4100 225C 89 125 2 265 9 0 4400 245 69 125 2 0 0 6 4900 245 69 125 2 0 0 6 5000 245 69 160 2 0 0 5000 246 60 160 2 0 0 5000 247 61 170 1 0 0 0 2000 1113 50 27C 5 9 90 0 0 0000	1500	*	27014	272 4	2800		21075	4718	1653	*	•
22CC 89 28C 5 0 0 1900 22CC 89 280 2 0 0 1900 23CC 89 280 2 0 0 1900 23CC 89 330 7 340 9 2900 1C0 94 305 2 0 0 4100 2CC 45 225 2 265 9 0 4100 2CC 45 225 2 265 9 0 4400 245 52 1CC 5 0 0 500 245 53 1CC 5 0 0 500 245 61 125 2 0 0 500 246 61 170 1 0 0 500 1113 50 27C 5 0 0 0 220	2005	=	27510	270 \$	7000		26296	5768	2040	91	•
22CC 89 280 2 0 1900 23CC 8 20C 3 0 3100 C 53 330 7 340 9 2900 1C0 94 305 2 0 4100 2CC 45 305 2 0 4100 2CC 45 225 3 265 9 0 3CC 47 135 4 0 4400 345 53 1C0 5 100 2 0 5000 545 50 160 2 0 5000 5000 545 50 160 2 0 5000 5000 545 50 170 1 0 5000 5000 545 50 170 1 0 0 5000 545 50 170 1 0 0 0 546 6 36 0 0 0 0 65C 85 3C 8 360 7 0 1113 50 2C 5 0 0 0 100 0 0	3632	2	286. 5	00	\$100		25881	5519	2436	1	3
23 CC 8 E 20 C 3 100 C 53 33 0 7 340 9 2900 1C0 94 30 5 2 0 0 4100 2CC 45 22 5 2 26 5 9 0 3CC 47 13 5 4 0 0 4400 3CC 40 13 5 4 0 0 4400 3CC 40 12 5 2 0 0 5000 545 50 140 2 0 5000 545 60 170 1 0 2600 6CC 87 170 1 0 0 2600 6CC 85 3C 0 0 2600 6CC 87 170 1 0 0 0 0 1113 50 27C 360 7 0 0 0 0	2255	2	2 092	000	1900		27050	6880	2616	16	•
C 53 330 7 360 9 2900 1C0 94 305 2 0 0 4100 2Cc 55 225 2 265 9 0 3C 6 7 135 4 0 0 4400 345 52 100 2 0 5000 345 50 140 2 0 5000 545 50 140 2 0 5000 647 17 17 1 0 0 2600 8CC 80 3C 6 360 7 0 113 50 27 5 0 0	2366	=	€ 30€	0 0	3100		67724	20710	8710	16	•
1C0 94 305 2 0 0 4100 2Cc 95 225 2 265 9 0 3Cc 97 135 4 0 0 4400 345 92 100 2 0 0 345 92 100 2 0 0 345 92 100 2 0 0 345 92 100 2 0 0 345 93 100 2 0 0 345 93 100 3 0 0 346 93 170 1 0 0 0 346 93 170 1 0 0 0 346 93 1113 50 270 5 0 0		23	330 7	360 9	2900		\$1525	£312	3119	*	•
2CC 45 225 2 265 9 0 3CC 97 135 4 0 0 4400 245 52 1CC 5 100 2 0 0 5CC 50 125 2 0 0 5000 545 50 160 2 0 5000 5000 645 60 170 1 0 0 0 0 8CC 80 3C 6 360 7 0 0 0 0 1113 50 27C 5 0 0 0 0 0 0 0	100	;	305 2	00	4100		45855	12409	4761	•	•
34C 97 135 4 0 0 4400 245 53 100 2 0 0 545 50 125 2 0 0 5000 545 50 140 2 0 0 5000 645 67 170 1 0 0 2600 8CC 87 170 1 0 0 0 8CC 85 3 6 360 7 0 1113 50 270 5 360 9 0	302	\$3	. 225 2	6 592	0		5171C	14480	5750	•	•
245 52 100 2 0 5CC 50 125 2 0 500 545 50 140 2 0 500 645 60 170 0 2600 6CC 87 170 0 0 0 6CC 85 3C 0 0 113 50 20 0 0 113 50 27 0 0	366	•	135 4	0 0	4400		5542C	17560	1350	•	•
5CC 50 125 2 0 5000 545 50 160 2 0 5000 245 67 170 1 0 2600 8CC 87 170 1 0 0 5CC 85 3C 6 360 7 0 113 50 270 5 360 9 0	345	53	100 5	100 2	0		46050	12660	5264	•	•
545 50 540 249 47 176 1 0 2600 8CC 87 170 1 0 0 5CC 85 35 6 360 7 0 1113 50 270 5 360 9 0 1113 50 270 5 0 0	306	20	125 2	0 0	2000		\$1565	16326	1499	19	•
449 47 176 1 00 2600 8CC 87 170 1 00 0 9CC 85 35 6 360 7 0 1113 50 27 5 0 1113 50 27 5 0	545	20	160 2	0	2000		38950	6370	3548	17	•
£CC 65 170 1 0 0 0 \$CC 65 3C 6 360 7 0 \$LCC 67 20 5 360 9 0 \$113 50 27C 5 0 0 0200	643	2	176 1	0 0	2600		25423	1915	2250	16	•
\$CC 65 3C 6 360 7 0 \$LCC 67 20 5 360 9 0 \$L115 50 27C 5 0 0 6200	338	11	1 0 1 1	00	•		34360	1496	2685	2	•
1115 50 27C 5 360 9 0 6200	335	:	36 6	360 7	•		37857	175¢	2730	15	•
1115 50 270 5 0 8200	1000	53	20 5	360 9	•		11734	25760	10098	15	•
	1115	05	275 5	00	8200		96190	32021	13122	23	•

	2	CATE C TIME	£!	MEL WING CIR & SPO	SHIPS HEAD & SPU	ALIKEN CON	# PARTICLES / .28 L >.3	!!	1.5	73.0	
13.50 13.61 (a) 26.5 (b) 25.5 (b) 5000 1107 (c) 37.50 (c) 12.50 (c)<		1215		200 8		1600	101112		15530	=	•
14.6G 55. 73.00 11.67 7. 16.75 31.45 16.75 31.45 16.75 31.55		1300		. 26616	265 5	2000	110540		16729	•	•
1445 E1 24614 0 0 21003 3154 1657 6558 1657 1658 1657 1658 1		1466		27416	254 6	7300	116775		16250	-	•
1400 85 24612 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		1445	=	28014	0 0	21000	45539		6258	5	•
1170 44 430 1134 216 130 <td></td> <td>1000</td> <td>2</td> <td>26612</td> <td>00</td> <td>4200</td> <td>31756</td> <td></td> <td>2589</td> <td>13</td> <td>•</td>		1000	2	26612	00	4200	31756		2589	13	•
14.50 6.5 9.00 9.90 6.90 6.90 17.0 211.5 2.20 0 0 0.00 6.40 6.25 2.64 117.0 211.5 2.20 0 0 9.00 6.20 2.65 1.00 211.5 4 2.25 1 0 4.00 6.25 2.65 1.00 211.5 4 1 0 4.00 6.00 6.57 30.9 1.00 211.5 4 10 0 4.00 6.90 1.00 1.		1166	:	. 5 312	0 0	4300	11364		1257	:	•
1572 E2 250 6 6400 6400 5603 2663 2685 1230 210 525 1 0 6400 6400 6235 2689 1807		1600	69	6 592	0 0	0056	6360		1179	17	0
211 6 5000 500 625 2865 211 4 551 0 5300 625 3689 212 5 400 5300 6581 256 230 5 400 60 6898 256 231 5 60 400 6898 256 232 5 100 1 60 800 1163 256 232 5 10 0 500 100		1525	23	250 6	00	0049	5863		1230		0
2115 64 25 5 1 0 3300 6557 3669 2300 6 4000 9300 6587 2643 2643 2315 64 100 1 0 4400 8930 2560 2315 64 100 4400 800 11634 3649 2326 10 1 60 5400 11636 3649 36 10 1 60 5200 11636 3649 37 1 1 0 5400 5200 11636 3649 36 1 0 5400 5200 1669 3640 3640 3640 16 1 0 5400 5200 3650 3640 3640 16 1 0 1690 1690 3600 3650 3640 16 1 1 0 1690 1690 3650 3650 16 1 0 <td></td> <td>2010</td> <td>63</td> <td></td> <td>00</td> <td>2000</td> <td>6559</td> <td></td> <td></td> <td>12</td> <td>0</td>		2010	63		00	2000	6559			12	0
21C 66 400 4700 6587 25.6 21C 54 100 0 400 8985 225.6 21E 54 100 0 400 8985 225.6 21E 54 116 0 500 1016 10065 35.6 31C 51 0 5200 10065 3569 2214 2214 11C 51 6 5200 10065 3569 2214 2214 11C 51 10 0 5200 1279 3459 3214 11C 51 10 0 1659 1600 3459 3214 1601 21C 51 145 1669 1900 7270 1783 1861 1461 1660 1783 1861 1461 1660 1860 1660 1660 1660 1660 1660 1660 1660 1660 1660 1660 1660 1660		2115	:		00	5300	1559			82	0
231C 54 100 4600 4600 8985 2256 231E 54 100 1 60 4600 8139 206 232E 54 100 5200 1036 3689 3689 31C 51 0 5200 1036 3689 3689 31C 51 0 5200 1050 34751 7888 31C 51 165 9 9000 12790 3885 1288 31C 51 165 9 166 1660 34751 7895 31C 51 165 9 1600 1700 1710 34751 7895 31C 52 160 14000 14000 5258 1725 1760 31C 54 56 1000 14000 5200 1760 1760 31C 54 56 1000 1700 1700 1760 1760		2200	*	6 38	53.9	4100	6587			25	0
2315 54 100 4800 4800 8739 2106 2325 54 15 340 5200 11036 346 360 11036 346 36 26 5200 11036 3500 10065 346 <th< td=""><td></td><td>2366</td><td>3</td><td>1 001</td><td>000</td><td>0084</td><td>8868</td><td></td><td></td><td>22</td><td>•</td></th<>		2366	3	1 001	000	0084	8868			22	•
23.25 54 15 340 5200 116.36 346.8 36 10 1 0 5500 100.65 3569 16 5 0 5200 100.65 3469 14 5 165 9 1650 3471 1700 146 5 165 9 1650 3471 1700 156 165 165 1650 1700 1727 1727 157 166 160		2315	*	1 001	0	0084	9539			16	•
36 3600 3600 100 6 3560 10063 3566 2214 <th< td=""><td></td><td>2325</td><td>*5</td><td>15 6</td><td>360 9</td><td>9500</td><td>11636</td><td></td><td></td><td>*2</td><td>0</td></th<>		2325	*5	15 6	360 9	9500	11636			*2	0
15C 41 2C 1 6 5200 5200 5204		36		101	00	2400	10065			77	•
13f 51 145 9000 12750 34751 7800 14f 51 145 165 9000 14500 34751 7800 15f 52 145 1450 14500 5836 12055 2f 145 160 14500 7730 7772 1785 12055 2f 146 160 160 160 1780 5636 12055 1161 2f 2f 160 160 1600 1780 5636 1161 2f 2f 160 1600 1600 1600 1650 1650 2f 2f 2f 2f 1600 1760 1650 1650 2f 2f 2f 1600 2f 1600 1650 1650 2f 2f 12f 2f 1600 2f 1660 1650 1650 2f 2f 16f 1600 1600 1600		166	-	1 22	00	5200	5586			18	•
14C 51 145 9 18503 34751 7800 15C 5C 145 9 160 9 14500 5838 12055 2CC 5C 145 9 160 9 14500 7272 17835 2CC 5C 146 1 0 7300 7272 17835 12055 23C 2A 160 9 10003 61164 17835 12055 11611 23C 2A 5 10003 10003 61164 14380 1662 11611 24E 5 2B 10003 11003 6586 1560 1660 24C 4 5 2B 2B 2B 1660		136	15	145 9	165 9	0006	12750			35	0
15C 5C 145 160 9 14500 56358 12055 172729 17835 2CC 5G 146 9 14500 72729 17835 17835 2CC 5G 1400 7300 61164 14380 14580		140		5 541	165 9	18500	34791	7800		18	•
2CC 50 19000 72729 17835 23C 18C 18C 19000 73900 77272 11661 23C 22 18C 19000 61164 14380 14580 24C 52 19000 14000 68500 14652 14652 24C 54 55 11003 6586 12405 14600 24C 54 55 11003 7240 12400 12400 24C 54 55 12000 72405 17859 17859 24C 54 120 27003 72800 72800 17860 25C 300 267 9 16000 7280 1786 245 25 15000 16000 7380 1784 1784 245 26 1500 18000 7388 1614 1618 25 25 26 18000 7380 1618 1618 26 <td></td> <td>150</td> <td></td> <td>145 9</td> <td>160 9</td> <td>14500</td> <td>58358</td> <td></td> <td>4711</td> <td>=</td> <td>•</td>		150		145 9	160 9	14500	58358		4711	=	•
236 56 7300 7300 50555 11661 236 236 10000 61164 14380 245 56 25 11000 6586 1450 246 54 120 14000 6586 1450 246 54 25 11000 7240 1240 247 54 25 28000 7240 1240 246 54 25 28000 7240 1240 246 54 260 27000 7240 1240 245 54 14000 7200 7240 1240 245 54 14000 7200 7240 1240 245 52 16000 7360 7348 1240 245 52 1500 7348 1690 7348 1690 245 55 120 2500 7348 1694 7348 1614 245 55 16000		300		145 5	160 9	19000	72729		6963	11	•
23C 52 180 1 0 10000 61164 14380 24E 52 56 16000 66500 14600 2C 54 55 11000 6586 15400 2C 54 55 11000 72405 17859 2F 54 25 9 27000 77405 17859 2F 53 122 3 0 27000 77200 77200 17859 2F 52 300 567 9 16000 42050 8785 17540 445 52 15 0 16000 77300 8785 1754 445 52 15 0 16000 77348 1754 445 52 15 0 16000 77348 15900 512 55 12 0 0 77348 15900 60 15 0 0 0 77348 15940		512		196.1	00	7300	50505		4030	91	•
52 55 0 14000 66500 14652 54 55 25 11003 658EC 1540C 54 65 25 28000 72405 17859 53 122 3 0 27003 768CC 128CC 53 122 3 0 27003 778CC 12400 52 30C 26 14000 42050 8785 1240 52 15 0 16000 2000 73900 8785 1240 52 15 0 16000 73900 8785 1240 52 15 0 0 0 7348 1243 53 12 36 5503 64051 14194 55 1C 36C 9000 78136 2740 1512 54 1C 36C 9000 16000 16000 16000 16000 16000 1600 1600		236	-	1.061	00	10000	61164		5195	16	•
64 \$5 11000 658EC 1240C 54 65 25 28000 72405 17859 53 122 3 0 27000 7760C 128C 128C 52 30C 267 19000 42050 87280 12460 52 15 0 16000 2000 42050 8785 52 15 0 16000 2000 16900 16900 53 12C 3 0 21000 7348 1690 54 13C 36C 9 2000 7348 1694 55 12C 36C 9000 78136 26405 16104 55 20 16000 16000 78136 2740 16194 55 20 16000 16000 16000 16100 16100 16100 53 10 16000 16000 16000 16100 16100 16100 <t< td=""><td></td><td>245</td><td>-</td><td>9 55</td><td>0 0</td><td>14000</td><td>00589</td><td></td><td></td><td>*</td><td>0</td></t<>		245	-	9 55	0 0	14000	00589			*	0
64 65 25 28000 72405 17865 51 122 3 0 27003 76802 16380 52 122 3 0 27003 7780 16380 52 300 267 9 16000 27003 8785 1746 52 15 1 0 16000 2600 73900 1880 53 12C 3 0 21000 7348 16194 54 13C 9 138 5503 64051 16194 55 1C 36C 9000 78136 2640 78136 55 20 16000 16000 78136 2740 17 55 20 16000 9000 78136 2740 17 55 20 16000 16000 16000 2740 2740 2740		335	-	9 55	6 52	11000	0.586.9		5500	*	•
53 122 3 0 0 27003 768CG 1246C 53 122 3 0 0 27003 57280 1246D 52 30C 5 267 9 19000 420 50 8785 52 15 1 0 0 16000 73900 1680 54 12 1 0 0 21000 7348 1680 55 12 2 138 9 550 64051 16194 55 12 7 36 9 9000 78135 20548 55 20 1 0 0 16000 78135 20548 55 20 1 0 0 16000 78135 20548 55 20 1 0 0 16000 78100 81079 21612		315	3	9 59 .	55 9	28000	72405		6259	12	•
345 53 122 3 0 0 27000 57280 12460 355 567 9 19000 42050 8785 415 52 15 1 0 0 16000 26586 7654 445 52 15 1 0 0 0 73900 18800 512 55 12C 3 0 0 21000 74348 15837 6CC 95 13C 9 138 9 5500 64051 16194 445 55 1C 7 36C 9 9000 78135 20548 11 55 20 1 0 0 16000 78136 2740 1 60 53 20 1 0 0 9600 1000 81079 21612		336	•	122 3	0 0	27003	76800		5523	16	0
255 52 300 5 267 9 19000 42050 8785 415 52 15 0 16000 0 20588 7054 445 52 15 0 0 0 73900 18800 512 55 12C 3 0 21000 74348 15837 6CC 95 13C 9000 74348 16194 445 55 1C 36C 9000 78135 20548 115 55 20 16000 16000 7600 78135 20548 20 10 0 16000 16000 81079 21612		345	-	122 3	0 0	27003	57280			10	•
415 52 15 1 0 0 16000 20588 7058 7058 7059 7059 7059 7059 7059 10580 7059 10580 7059 10580 7059 10580 7059 10580 7059 10580 7059 1059 7059 1059 7059 1059 7059		e:	25	300 8	267 9	19000	42050			12	•
445 52 12 1 0 0 0 73900 18800 512 55 12C 3 0 0 21000 74348 15237 6CC 95 13C 9 138 9 5503 64051 16194 445 55 1C 7 36C 9 9000 78135 20548 115 55 20 1 0 0 16000 16000 2010		415	25	191	0 0	16000	30585		2250	15	•
512 55 12C 3 0 0 21000 74348 15837 6CC 95 13C 9 138 9 5503 64051 16194 445 55 1C 7 36C 9 9000 78135 20548 21E 55 20 1 0 0 16000 16000 25740 1 6C 53 20 1 0 0 9600 81079 21612		445	25	151	0	•	73900		1060	*	•
6CC 95 138 9 5503 64051 16194 445 55 1C 7 36C 9 78135 20548 215 55 20 1 0 0 16000 25740 1 60C 53 20 1 0 9600 81079 21612		515	55	126.3	0 0	21000	74348		7487	16	•
645 55 1C 7 36C 9 9000 78135 20548 215 55 20 1 0 0 16000 16000 25740 1 60C 53 20 1 0 0 9600 81079 21612		339	86	130 9	138 9	5500	64051			15	-
\$5 20 1 0 0 16000 20 1 \$3 20 1 0 0 9600 81079 21612		445	55	16.7	96 9	0006	78135			01	•
53 201 00° 9600 81079 21612		115	\$5	20 1	0 0	16000	100065		_	=	•
		209	63	20 1	.00	0096	81079			12	•

31	•	•	•	•	•	•	•	•	•	•	•	0	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	
23.0	15	15	20	•	9	•	•		•	•	36	•	•	8	•	13	20	23	20	15	77	*	10	1	•	•	•	01	11	•	m	•	50	
71.7	11584	12517	14258	8413	10500	10641	12386	1125	1656	12966	502	1137	1546	1328	1182	1127	1242	1266	1257	1220	1453	1295	1251	1093	1065	815	2222	5135	5240	3350	5526	1575	2170	
:1	3676	31147	36450	1552	27513	26583	31062	24125	25340	33457	9749	3333	5464	3778	5546	2676	3114	3151	5364	3145	3562	3471	3245	2697	2751	2710	6773	14772	14840	10112	1335	5441	£897	
# PARTICLES / .28 L >.3	104567	104660	120711	11250	65996	100800	104968	84874	90750	114549	37164	14650	2628\$	17685	9248	10716	11925	12038	12081	12468	15436	14500	14504	11953	11140	13020	33570	63264	35669	46733	36071	25975	35975	
A ITKEN CON	۰	•	•	•	•	•	•	•	•	00+9	79000	9500	3100	10500	4000	3800	0100	0009	9300	14000	00++	4300	10000	11500	2100	4500	3800	2800	2900	4100	3600	•	•	
SHIPS HEAD & SPD	0	0 0	0 0	0 0	00	0 0	0 0	· 0 25	104 9	155 9	155 9	153 9	179 9	00	0 0	00	00	0	0	00	0 0	100 9	100 9	. 100 9	100 9	6 56	6 06	•	325 9	324 9	354 9	300 6	300 9	
REL WING CIR & SPD	26.1	. 20 1	20 1	20 1 .	20 1	. 1 22	20 1	176 2	45 3	100 5	1 522	155 2	215 0	275 5	266.3	146 3	150 3	150 3	150 3	145 6	2 552	120 9	11515	13512	. 13512	13010	135 8	16C 2	336 3	346 4	346 4	325 3	310 2	
41		93			23	3	53	25	35	65	*	98	*	Ç	2	3	15			*.			•	5 8	_	63	25	25	25	25	25	85	25	
			4	*	2	*	36	3	300	3	35	239	22	125	1	335	\$15	SEC	245	555	223	115	3322	356	•	3	266	235	315	234	336	229	700	
CATE & TIPE	2	2	23	3	2	×	=	=	7	-	-	=	-	-	-	-	-	-	-	-	~	~	~	~										

	SATE C TIME		1					;	-	-	
62 250 5 0 7300 63 215 8 215 5 2100 64 225 9 5100 6400 64 262 9 6400 6400 64 262 9 6400 3000 66 300 1 0 3000 51 300 1 0 4100 52 300 1 0 4100 52 300 1 0 4100 52 310 1 0 4100 52 300 1 0 4100 52 310 1 0 1000 52 310 1 0 11500 52 310 1 0 11500 52 310 2 0 11500 54 310 2 0 11500 55 310 2 0 11500 66 225 3 245 9 16000 67 22 4 0 12500 68 310 2	•	1666	35	330 4	\$ 005	0	25258	4480	1253	5	0
65 215 8 215 2700 62 360 310 360 310 66 265 6400 310 66 300 360 310 66 300 360 310 66 300 360 360 67 300 360 400 66 300 360 4100 67 300 360 4100 67 300 360 4100 69 318 4 1300 60 370 4100 4100 60 318 4 1300 60 318 4 1300 60 320 3600 3600 60 320 3600 3600 60 320 3600 3600 60 320 3600 3600 60 320 320 3600 60 320		1466	85	. 250 5	00	7300	18568	4545	1570	11	•
£2 300 7 360 9 \$100 £6 265 8 0 8000 £7 245 8 0 8000 £6 300 1 0 3000 50 300 3000 51 30 1 0 3000 52 30 1 0 3000 52 30 1 0 3000 52 30 1 0 4100 53 160 4 6000 4100 52 30 1 100 0 13500 52 31 6 13600 1600 56 31 6 13600 15500 66 22 7 245 9 15000 66 22 7 245 9 15000 67 24 9 16000 6000 68 24 9 16000 6000 66 24 9 16000 6000 67 24 9 16000 6000 68 24 9 16000		1500	2	215 8	215 5	2700	13656	3353	1327	21	0
£6 265 8 6000 £8 265 6400 6400 £8 250 1 0 6400 £6 300 1 0 2800 51 300 1 0 4100 52 330 1 0 4100 53 305 4 1000 4100 53 305 306 4100 53 305 338 4 11300 54 135 100 17300 17300 55 15C 2 0 17300 56 135 0 17300 17300 56 245 9 16000 66 135 0 17300 67 1200 17300 17300 68 245 9 16000 69 1300 17300 16700 80 160 16700 16700		1666	62	300 T	360 9	5100	16043	3475	1411	12	•
£1 24 g g g g g g g g g g g g g g g g g g g		1650	9	8 592	0 0	0000	40053	9837	3524	11	•
86 250 1 0 3000 50 300 1 0 2800 50 330 1 0 3400 51 300 1 0 3400 53 30 4 0 4100 53 30 6 316 4 1000 50 27 1 0 1500 50 135 6 100 0 1750 60 135 6 100 5 1800 60 135 0 100 0 1750 60 27 1 245 9 1800 60 245 9 1800 1800 60 245 9 1800 1800 60 246 9 1800 1800 60 246 9 1800 1800 61 246 9 1800 1800 61 246 9 1800 1800 62 246 9 1800 1800 64 147 9 1400 1400 66 147 9<	•	1666	13	. 6 542	6 292	0049	15591	18645	6462	12	0
£6 300 1 0 2800 50 330 1 0 4100 53 140 4 6000 53 140 4 6000 53 140 4 6000 50 136 6 136 0 50 135 0 13600 60 17500 17500 60 17500 17500 60 17500 17500 60 17500 17500 60 17500 17500 60 17500 17500 60 17500 17500 60 17500 17500 60 17500 17500 60 17500 17500 60 17000 17000 61 17000 17000 62 17000 17000 63 17000 17000 64 17000 17000 65 17000 17000 66 17000		3332		250 1	0 0	3000	18165	4097	1571	18	•
52 330 1 0 3500 53 140 4 6000 53 140 4 6000 53 318 4 1300 56 135 6 1300 57 136 2 0 15500 56 135 6 100 5 17500 56 135 2 0 17500 56 225 7 245 9 16000 56 236 6 245 9 16000 56 246 9 1600 66 236 6 245 9 1600 67 245 9 1600 68 246 9 1600 69 246 9 1600 60 246 9 1600 61 246 9 1600 62 246 9 1600 63 3100 400 64 147 9 1200 65 147 9 1400 66 147 9 1400 67 140	2	2166	86	300 1	0 0	2800	20170	4 800	1805	16	0
\$1 \$200 1 \$100 \$100 \$2 \$3 \$160 4 \$600 \$3 \$36 6 \$180 \$600 \$6 \$270 1 \$0 \$1500 \$6 \$135 6 \$100 5 \$1800 \$6 \$135 6 \$0 \$1500 \$6 \$135 2 \$0 \$1500 \$6 \$230 6 \$245 9 \$1600 \$6 \$245 9 \$1600 \$6 \$245 9 \$1600 \$6 \$245 9 \$1600 \$6 \$245 9 \$1600 \$6 \$245 9 \$1600 \$6 \$245 9 \$1600 \$6 \$245 9 \$1600 \$6 \$246 9 \$1600 \$6 \$147 9 \$1200 \$6 \$147 9 \$1200 \$6 \$160 8 \$167 9 \$6 \$150 9 \$0 \$7 \$25 9 \$0 \$7 \$25 9 \$0	2	2255	50	330 1.	0 0	3500	21142	4760	1852	12	٥
\$\frac{2}{2}\$ \$\frac{2}{2}\$ \$\frac{1}{160}\$ \$\frac{1}{100}\$ \$\frac{1}{100}		2366	15	200 1	00	4100	22894	9540	2212	23	•
\$3 305 6 318 4 13800 \$C 27C 1 0 0 15500 \$C 135 6 100 5 18000 \$S 186 2 0 0 17500 \$S 15C 2 0 0 17500 \$S 225 7 245 9 16000 \$S 225 7 245 9 16000 \$S 225 6 245 9 16000 \$S 225 7 245 9 16000 \$S 225 6 246 9 10000 \$S 246 9 10000 6200 \$S 310 2 0 6200 \$S 310 2 0 6200 \$S 147 9 12000 \$S 147 9 14000 \$S 147 9 14000 \$S 147 9 14000 \$S 140 9 14000 \$S 150 9 0 \$S 150 9 0 \$S 150 9 0	*	•	53	5.3	160 4	0009	59992	6232	2362	20	0
\$C 27C 1 0 0 15500 \$C 135 6 100 5 18000 \$E5 16C 2 0 0 17500 \$E6 225 7 245 9 16000 \$E6 225 7 245 9 16000 \$E6 236 6 245 9 16000 \$E7 24 9 10000 \$E8 31C 2 0 0 \$E8 110 6 147 9 12000 \$E8 140 9 14000 0 \$E8 140 9 14000 0 \$E8 150 9 0 0 \$E8 147 9 14000 0 \$E8 150 9 0 0 0 \$E8 150 9 0 0 0 <th< td=""><td>*</td><td>30</td><td>53</td><td>305 6</td><td>318 4</td><td>13800</td><td>34046</td><td>8019</td><td>3021</td><td>22</td><td>•</td></th<>	*	30	53	305 6	318 4	13800	34046	8019	3021	22	•
\$C 135 & 100 \$ 18000 \$C 186 2 0 17500 \$C 155 2 0 17500 \$C 225 7 245 9 18000 \$C 236 6 245 9 18000 \$C 246 9 10000 \$C 26 9 6900 \$C 147 9 12000 \$C 147 9 14000	•	100	26	276 1	0	15500	75830	15535	1371	82	0
65 186 2 0 17500 66 225 7 245 9 19500 66 225 7 245 9 16000 66 230 6 245 9 15000 67 246 9 10000 67 246 9 10000 67 246 9 10000 67 246 9 10000 67 246 9 10000 67 246 9 10000 67 246 9 10000 67 246 9 10000 67 246 9 10000 67 246 9 10000 68 310 9 6900 69 6900 6900 69 6900 6900 69 6900 6900 69 6900 6900 69 6900 6900 69 6900 6900 69 6900 6900 69 6900 6900 <	*	130	35	135 €	100 \$	18000	66626	16280	6919	50	•
65 15C 2 0 19500 86 225 7 245 9 16000 66 23C 6 245 9 1500 67 24C 9 17500 67 24C 9 10000 67 24C 9 10000 67 24C 9 24C 9 87 25 4 38 9 6900 87 31C 2 0 6200 89 147 9 12000 84 160 8 167 9 14000 84 160 8 167 9 14000 84 160 9 0 0 85 160 9 0 0 84 160 9 0 0 85 160 9 0 0 86 150 9 0 0 87 320 8 325 9 0 87 320 8 325 9 0 89 0 0 0 89 0 0	*	155	82	180 2	00	17500	31474	5770	2160	23	•
86 225 7 245 9 16000 66 230 6 245 9 17500 66 240 9 10000 67 246 9 10000 67 246 9 10000 67 246 9 10000 67 246 9 10000 67 246 9 10000 67 2500 6903 68 147 9 12000 69 147 9 14000 69 147 9 14000 69 147 9 14000 60 147 9 14000 60 147 9 14000 60 147 9 14000 76 147 9 14000 76 147 9 147 9 14000 76 147 9 14000 0 76 147 9 147 9 14000 76 147 9 147 9 14000 76 147 9 147 9 14000 <t< td=""><td>•</td><td>355</td><td>23</td><td>150 2</td><td>0</td><td>19500</td><td>36998</td><td>11119</td><td>2362</td><td>23</td><td>•</td></t<>	•	355	23	150 2	0	19500	36998	11119	2362	23	•
E6 135 2 0 17500 E6 24C 9 245 9 15500 E7 EC 5 246 9 10000 E7 EC 5 50 9 5000 B7 25 4 38 9 6900 B6 170 c 147 9 12000 B6 167 9 14000 14000 B7 160 9 0 0 B7 15 2 0 0 0 B6 15 2 0 0 0 B7 320 8 325 9 0 0 B7 32011 330 9 0 0 B7 135 1 10C 9 0 0 B7 32011 3400 0 0 B7 32011 3400 0 0	*	300	96	1 525	245 9	16000	35510	6150	2032	=	•
£6 23 ¢ ¢ 245 9 15500 £7 £6 246 9 10000 £7 £6 50 9 5000 £8 31¢ 2 0 6200 £6 170 ¢ 147 9 12000 £6 147 9 14000 £6 147 9 14000 £6 147 9 14000 £6 147 9 14000 £6 150 9 0 £6 150 9 0 £7 2 0 £6 320 8 325 9 £7 32011 330 9 £7 2 0 £7 32011 330 9 £7 285 8 305 1	•	336	93	135 2	0 0	17500	00054	8344	2665	23	•
£6 24C 9 246 9 10000 87 £6 5 50 9 \$000 88 31C 2 0 6900 84 170 6 147 9 12000 84 160 8 167 9 14000 80 14C 8 150 9 0 6 15 2 0 0 76 75 2 0 0 76 75 2 0 0 77 320 8 325 9 0 71 32011 330 9 0 71 135 1 10C 9 0 71 135 1 300 0	**	466	£¢	9 262	545 9	15500	45516	\$150	3090	=	•
67 50 9 5000 87 25 4 38 9 6900 85 310 2 0 6200 84 150 6 150 9 15000 80 167 9 15000 80 167 9 16000 80 167 9 16000 80 167 9 0 76 75 2 0 0 76 75 2 0 0 76 75 2 0 0 77 320 8 325 9 0 77 320 8 325 9 0 71 135 1 10C 9 0 71 135 1 10C 9 0 83 285 8 305 1 3600	*	430	93	6 342	546 9	10000	34785	1334	2560	20	•
87 25 4 38 9 6900 85 316 2 0 6200 84 170 6 147 9 12000 80 146 8 167 9 14000 80 146 8 150 9 0 76 75 2 0 0 76 75 2 0 0 76 75 2 0 0 76 75 2 0 0 77 320 8 325 9 0 71 32011 330 9 0 71 135 1 10C 9 0 71 135 1 10C 9 0 72 285 8 305 1 3600	*	300	63	6 5	80 8	2000	43400	8528	3200	56	•
85 316 2 0 0 6200 84 170 6 147 9 12000 80 146 8 167 9 14000 80 146 8 150 9 0 80 146 8 150 9 0 76 75 2 0 0 0 76 75 2 0 0 0 76 75 2 0 0 0 76 75 2 0 0 0 77 320 8 325 9 0 77 32011 330 9 0 71 135 1 10C 9 0 71 135 1 10C 9 0 83 285 8 305 1 3600	*	530	81	25 4	38 9	6900	46142	2615	3456	19	•
65 170 & 170 & 147 9 12000 84 160 8 167 9 14000 80 140 8 167 9 14000 80 140 8 150 9 0 76 75 2 0 0 0 76 75 2 0 0 0 76 75 2 0 0 0 76 75 2 0 0 0 77 320 8 325 9 0 77 32011 330 9 0 71 135 1 10C 9 0 71 135 1 10C 9 0 72 285 8 305 1 3600	*	550	82	316 2	0 0	9500	95380	14200	5069	19	0
84 160 8 167 9 14000 80 14C 8 150 9 0 16 15 2 0 0 16 75 2 0 0 16 75 2 0 0 17 320 8 325 9 0 17 32011 330 9 0 11 135 1 10C 9 0 22 285 8 305 1 3600	•	630	2	170 €	. 147 9	12000	55820	13200	4600	15	0
80 14C 8 150 9 0 76 15 2 0 0 76 75 2 0 0 76 75 2 0 0 77 320 8 325 9 0 77 320 8 325 9 0 77 32011 330 9 0 71 135 1 10C 9 0 83 285 8 305 1 3600	*	331	:	. 160 8	167 9	14000	45738	\$260	3000	15	•
£C 140 8 150 9 0 76 75 2 0 0 0 76 75 2 0 0 0 77 320 8 325 9 0 77 32011 335 9 0 71 135 1 10C 9 0 82 27511 245 1 3400 63 285 6 305 1 3600	4	223	2	140 8	150 9	•	54537	10550	3285	14	0
76 75 2 0 0 76 320 8 325 9 0 77 320 8 325 9 0 77 32011 330 9 0 71 135 1 10C 9 71 135 1 10C 9 63 285 6 365 1 3600	42	130	2	140 8	150 9	•	37551	6447	2111	01	0
76 75 2 0 0 77 320 8 325 9 0 77 320 8 325 9 0 71 32011 330 9 0 0 71 135 1 10C 9 0 63 285 305 1 3600	*	800	16	75.2	0 0	0	30717	\$212	1866	10	0
77 320 8 325 9 0 77 320 8 325 9 0 71 32011 330 9 0 71 135 1 10C 9 0 63 27511 245 1 3400 63 285 6 305 1 3600	*	365	16	15.2	0 0	0	32532	5142	1557	10	0
77 32C 8 325 9 0 71 32011 330 9 0 71 135 1 10C 9 0 63 225 6 305 1 3600	**	1000	11	320 8	325 9	0	41046	6516	2050	15	0
37 32011 330 9 0 71 135 1 10C 9 0 82 27011 245 1 3600 83 285 6 305 1 3600	**	1030	11	32€ 8	325 9	•	63024	11604	3446	15	0
71 135 1 10C 9 0 9 62 27(11 245 1 3600 1 63 285 6 305 1 3600	42	1100	:	32011	330 9	•	11721	16170	5225	15	0
83 285 8 305 1 3600	54	1200	=	135 1	100 9	0	92097	26256	10170	30	•
63 285 8 305 1 3600	**	2166	2	27611	245 1	3800	10826	\$636	112	~	•
	57	2236	63	285 8	305 1	3600	9284	3261	1161	18	•

5.5	.0				•		•	•		•		•	•		•	•		•		•	•	•		•	•		•	•	3	•			•	0	•
23.0	28	0	20	9	9	9	15	14	55	92	36	8	54	19	12	15	17	15	2	25	52	52	15	92	45	23	54	23	*2	52	25	23	56	15	9
	84	16	0681	0653	66	2300	5663	20	*	88	20	16	56	52	56	2077	1942	2280	1205	950	950	573	452	1601	9051	5121	1041	1384	289	848	2281	0681	1881	0591	10
7.	1378	1531	=	53	2259	23	56	2650	2	2088	56	27	22	1575	502	20	54	22	12	•	•	•	•	2	15	12	2	=	•	18		18	18	2	1807
:1	3630	3784	4147	5317	4661	4600	9540	0636	4829	4167	5851	6119	4776	4365	4545	4605	5280	9805	2452	1517	1320	1446	1007	5654	3094	2455	2358	3697	3650	4300	4147	4505	4253	3556	4025
:1	0546	1185	9846	13584	10170	0965	11768	11050	50501	6225	14336	14455	11144	25631	10057	10952	12162	11940	1640	6275	5391	4700	3186	5005	7280	6134	£321	1694	9253	10586	10122	10280	10808	10212	10383
8				_	_		_	-	_				_	_																		_			
PARTICLES / .28 L																																			
ICLE																																			
PARI											,																								
• 1																																			
8 !							•	9				•	•		9	9	9		0	9				0	0	0	0	0	0	0	0	0	9	0	9
AITKEN CON							10000	26	300	4500	9	730	1220	1050	3	260	3	\$	2000	780			•	1300	10000	8400	760	90	580	6800	710	670	1600	5200	2300
SHIPS HEAD & SPO																																			
HEAD	0	0	0	0	0	340 9	0	270 9	6 162	295 9	6 562	6 562	255 9	562	6 482	278 9	0	278	278	0 0	70 3	80 3	60	90 2	0	0	0	0	253 4	0	0	0	0	0	0
Sal						•••																													
5									,																										
CIR	28010	290 6	45 1	1 523	1 042	6 39	2 00	170 6	275 5	315 •	2000	30012	30012	29017	29016	1777	24514	23512	29021	30514	32512	325 8	325 4	150 3	136 4	115 3	2002	210 1	235 8	246 1	1 242	315 1	310 1	310 1	316 1
REL WING CIR & SPO										<i>.</i>																		,,,							
																-														700.0					
= 1	3			99 3	05 3	35 3	96 3	15 3	98 3	•	93 3	65	C 81	C 62	10 0	11 3	11 3	11 3	55 3	09 3	C 53	29 3	0 62	C 73	4 55	5 5	5 5	C 53	2 52	2 82	2 2	6 84	4 65	06 5	9 50
DATE & TIPE	2300	J	100	300	300	400	226	737	326	800	235	1000	1100	1200	1300	1466	1500	1600	1100	1500	2166	2200	2366		104	115	145	200	212	223	256	366	354	335	356
ATE A	22	26	30	34	56	92	36	92	3¢	97	97	36	36	26	92	36	36	92	36	56	92	36	22	51	27	23	12	12	23	12	23	27	12	2.3	11

\$5.0	35 0	34		15 0	
>3.0 >5.0	35	3.6	25		
1:2	1530	2272	1508	1558	
:1	4320	4915	4105	4014	
31	10864	12414	5864	5895	
# PARTICLES / .28 L >.3					
AITKEN CON	35000	23500	0	•	•
SHIPS HEAD & SPD	0	0 0	00	0 0	
TATE C TIPE PH REL WIND CIR C SPD SHIPS HEAD C SPD AITKEN CON	30 1	. 80 1	4 515	2 0 2 2	256.2
ž!	35	35	63	80	15
1176	35 114	440	300	339	160 75
ATE 6	23	5.5	23	27	23

APPENDIX C:

REFERENCES

- Blifford, I. H., 1970: "Tropospheric Aerosols", J. Geophys. Res., 75, 3099-3103.
- 2. Businger, J. A., J. C. Wyngaard, Y. Izumi, and E. F. Bradley, 1971: "Flux-Profile Relationships in the Atmospheric Surface Layer," J. Atmos. Sci., 28, 181-189.
- 3. Day, J. A., 1964: "Production of Droplets and Salt Nuclei by the Bursting of Air-Bubble Films," Q. J. Roy. Meteor. Soc., 90, 72-78.
- 4. Ericksson, E., 1959: "The Yearly Circulation of Chloride and Sulphur in Nature; Meteorological, Geochemical and Pedological Implications," <u>Tellus</u>, <u>11</u>, 375-403.
- 5. Fairall, C. W., K. L. Davidson, J. Houlihan, and G. E. Schacher, 1977: <u>Turbulence and Drag Coefficient over the Ocean</u>. Unpublished, Environmental Physics Group, Naval Postgraduate School, Monterey, California, 19 pp.
- 6. Fitzgerald, J. W., 1975: "Approximation Formulas for the Equilibrium Size of an Aerosol Particle as a Function of its Dry Size and Composition and the Ambient Relative Humidity," J. Appl. Meteorol., 14, 1044-1049.
- 7. Fitzgerald, J. W. and R. E.Ruskin, 1977: A Marine Aerosol Model for the North Atlantic, Naval Research Laboratory Memorandum Report 3430, Washington, D. C., 104-110.
- 8. Friedlander, S. K., 1961: "Theoretical Considerations for the Particle Size Spectrum of the Stratospheric Aerosol," J. Meteorol., 18, 753-759.
- 9. Hidy, G. M., P. K. Mueller, H. H. Wang, J. Karney, S. Twiss, M. Imada, and A. Alcocer, 1974: "Observations of Aerosols over Southern California Coastal Waters," J. Appl. Meteorol., 13, 96-106.
- 10. Junge, C. E., 1972: "Our Knowledge of the Physico-Chemistry of the Undisturbed Marine Environment,"
 J. Geophys. Res., 77, 5183-5200.
- 11. Junge, C. E. and R. Jaenicke, 1971: "New Results in Background Aerosols Studies from the Atlantic Expedition of the R. V. Meteor, Spring, 1969," <u>Aerosol Sci.</u>, 2, 305-314.

- 12. Kientzler, C. F., A. B. Arons, D. C. Blanchard, and A. H. Woodcock, 1954: "Photographic Investigation of the Projection of Droplets by Bubbles Bursting at a Water Surface," Tellus, 6, 1-7.
- 13. Lieberman, A., and R. J. Allen, 1969: Theoretical and Experimental Light Scattering Data for a Near Forward System. Presented at American Association for Contamination Control, May 19-22, 15 pp.
- 14. Lovett, R. F., 1975: The Occurrence of Airborne Sea Salt and its Meteorological Dependence. M. S. Thesis, Heriot-Watt University, United Kingdom, 194 pp.
- 15. Lumley, J. L. and H. A. Panofsky, 1964: The Structure of Atmospheric Turbulence, Interscience Publishers, John Wiley and Sons, London, 239 pp.
- 16. Mack, E. J., 1977: Measurements of Aerosol Characteristics in the Marine Boundary Layer along the Offshore Margin of Southern California, Calspan Corp., Buffalo, N.Y., Prepared For: Naval Postgraduate School, Monterey, California, 44 pp.
- 17. Mack, E. J. and U. Katz, 1977: Measurements of Aerosol and Micrometeorological Characteristics of the Marine Boundary Layer in the Gulf of Mexico, Calspan Corp., Buffalo, N.Y., Prepared For: Naval Avionics Facility, Indianapolis, Indiana, 58 pp.
- 18. Mason, B. J., 1954: "Bursting of Air Bubbles at the Surface of Sea Water," Nature, 174, 470-471.
- 19. Mason, B. J., 1975: Clouds, Rain and Rainmaking, Cambridge University Press, Cambridge, 189 pp.
- 20. Meszaros, A. and K. Vissy, 1974: "Concentration, Size Distribution and Chemical Nature of Atmospheric Aerosol Particles in Remote Oceanic Areas," <u>Aerosol Sci., 5</u>, 101-109.
- Monahan, E. C., 1968: "Sea Spray as a Function of Low Elevation Wind Speed," J. Geophys. Res., 73, 1127-1137.
- 22. Monin, A. S. and A. M. Obukhov, 1954: "Basic Laws of Turbulent Mixing in the Ground Layer of the Atmosphere,"

 Akademiia Navk SSSR, Leningrad, Geofizicheskii Institut,
 Trudy No. 24 (151), 163-187, English Translation by
 Miller, J., 1959.
- 23. Moore, D. J., 1952: "Measurements of Condensation Nuclei over the North Atlantic," Q. J. Roy. Meteor. Soc., 78, 596-602.

- 24. Moore, D. J. and B. J. Mason, 1954: "The Concentration, Size Distribution and Production Rate of Large Salt Nuclei over the Oceans," Q. J. Roy. Meteor. Soc., 80, 583-590.
- 25. Panofsky, H.A., 1969: "Air Pollution Meteorology," American Scientist, 57, 269-285.
- 26. Panofsky, H. A., A. K. Blackadar, and G. G. McVehil, 1960: "The Diabatic Wind Profile," Q. J. Roy. Meteor. Soc., 86, 390-398.
- 27. Paterson, M. P. and K. T. Spillane, 1969: "Surface Films and the Production of Sea-Salt Aerosol," Q. J. Roy. Meteor. Soc., 95, 526-534.
- 28. Ruskin, R. E., R. K. Jeck, and H. E. Gerber, 1976:

 Progress Report on Sea Salt Measurement September 1975

 January 1976, Naval Research Laboratory Memorandum

 Report 3270, Washington, D. C., 10 pp.
- 29. Toba, Y., 1965a: "On the Giant Sea-Salt Particles in the Atmosphere, 1, General Features of the Distribution," <u>Tellus</u>, 17, 131-145.
- 30. Toba, Y., 1965b: "On the Giant Sea-Salt Particles in the Atmosphere, 2, Theory of the Vertical Distribution in the 10-m Layer over the Ocean," Tellus, 17, 365-382.
- 31. Whitby, K. T. and B. Y. Liu, 1973: Advances in Instrumentation and Techniques for Aerosol Generation and Measurement, P. L. Pub. No. 216, University of Minnesota, 34 pp.
- 32. Winkler, P., 1973: "The Growth of Atmospheric Aerosol Particles as a Function of the Relative Humidity---II. An Improved Concept of Mixed Nuclei," Aerosol Sci., 4, 373-387.
- 33. Woodcock, A. H., 1953: "Salt Nuclei in Marine Air as a Function of Altitude and Wind Force," J. Meteorol., 10, 362-371.
- 34. Woodcock, A. H., 1972: "Smaller Salt Particles in Oceanic Air and Bubble Behavior in the Sea," J. Geophys. Res., 77, 5316-5321.
- 35. Wyngaard, J. C., Y. Szumi, and S. A. Collins, 1971: "Behavior of the Refractive Index Structure Parameter near the Ground," <u>Jour. Opt. Soc. America</u>, 61, 1646-1650.
- 36. Zinky, W. R., 1962: "A New Tool for Air Pollution Control: The Aerosol Particle Counter," J. Air Pollution Control Assoc., 12, 578-583.

References

Equipment:

Houlihan, T., K. L. Davidson, C. W. Fairall, and G. E. Schacher, "Experimental aspects of a shipboard system used in investigation of overwater turbulence and profile relationships", Submitted to J. Applied Meteorology, January 1978.

Fairall, C. W. and G. E. Schacher, "Frequency response of hot wires used for atmospheric turbulence measurements in the marine environment", Rev. Sci. Instrum. 47, 12-17 (1977).

Plunkett, J. R., "A microprogrammable data acquisition and control system (MIDAS II A) with application to mean meteorological data", M.S. Thesis, Naval Postgraduate School, Monterey, California (1976).

Schacher, G. E. and C. W. Fairall, "Use of resistance wires for atmospheric turbulence measurements in the marine environment", Rev. Sci. Instrum. 47, 703-707 (1976).

Corbin, J. H., "Measurements of near surface turbulence and possible wave influence", M.S. Thesis, Naval Postgraduate School, Monterey, California (1977).

Welsh, P. T., "An investigation of ship related motion and its effect on turbulence measurements", M.S. Thesis, Naval Postgraduate School, Monterey, California (1974).

Theory:

Businger, J. A., J. C. Wyngaard, Y. Izumi, and E. F. Bradley, "Flux profile relationships in the atmospheric surface layer", J. Atmos. Sci. <u>28</u>, 181-189 (1971).

Fairall, C. W., K. L. Davidson, T. M. Houlihan, and G. E. Schacher, "Atmospheric turbulence measurements in marine fog during CEWCOM-76", Naval Postgraduate School Report, NPS61-77-004.

Kraus, E. B., Atmosphere-Ocean Interaction, Clarendon Press, Oxford, Ch. 5 (1972).

Lumley, J. L. and H. A. Panofsky, The Structure of Atmospheric Turbulence, Interscience, New York (1964).

Hughes, M. M., "An investigation of optically relevant turbulence parameters in the marine boundary layer", M.S. Thesis, Naval Postgraduate School, Monterey, California (1976).

NPS Theses:

Johnston, W. E., "Estimating boundary layer fluxes from dissipations of turbulent kinetic energy and temperature variance", M.S. Thesis, Naval Postgraduate School, Monterey, California (1974).

Karch, G. W., "An examination of turbulent dissipation in the marine boundary layer", M.S. Thesis, Naval Postgraduate School, Monterey, California (1976).

Lund, A. B., "Spectral estimates of marine turbulence data", M.S. Thesis, Naval Postgraduate School, Monterey, California (1975).

Schutt, W. L., "An investigation of small scale humidity fluctuations in the marine boundary layer", M.S. Thesis, Naval Postgraduate School, Monterey, California (1976).

Smedley, G. W., "Investigations of vertical profiles of mean temperature, wind and humidity", M.S. Thesis, Naval Postgraduate School, Monterey, California (1975).

Cavanaugh, M. P., "Examination of shipboard measurements of the vertical profiles of mean temperature, humidity, and wind speed", M.S. Thesis, Naval Postgraduate School, Monterey, California (1974).

Atkinson, H. E., III, "Turbulent flux estimates from shipboard mean wind and temperature profiles and dissipation rates", M.S. Thesis, Naval Postgraduate School, Monterey, California (1976).