Relaciones de orden

Definición. Una relación R sobre un conjunto A que es reflexiva, antisimétrica y transitiva, es llamada una relación de orden parcial.

Un conjunto A y una relación de orden parcial R, son llamados conjunto parcialmente ordenado o *poset* (del inglés, *partially ordered set*). En símbolos escribimos: (A, R).

Dos elementos $a, b \in A$ que están relacionados por una relación de orden parcial, se dice que son comparables. La notación $a \le b$ (es equivalente a $(a, b) \in R$) se usa para indicar que a y b son comparables respecto a una relación de orden parcial.

Definición. Si (A, R) es un *poset* y para todos $a, b \in A$ se tiene que:

 $a \le b$, o bien, $b \le a$ (pero no ambos pues R es antisimétrica)

entonces el conjunto A se dice que es un conjunto totalmente ordenado o linealmente ordenado, y R se dice que es un orden total o un orden lineal.

Ejemplo 1. Sea $A = \{a, b, c\}$ un conjunto y $R = \{(X, Y) : X \subseteq Y\}$ una relación sobre P(A).

- (a) Demuestre que R es una relación de orden parcial.
- (b) Dibuje el grafo dirigido del *poset* (A, R).

a)

Reflexividad: Para todo $X \in P(A)$, $X \subseteq X \rightarrow (X, X) \in R$.

Antisimetria: Para todo par $X, Y \in P(A)$, si $X \neq Y$, entonces $X \subseteq Y$, o bien, $Y \subseteq X$ pero no ambas $\to (X, Y) \notin R \lor (Y, X) \notin R$ o ambas.

Transitividad: Para cualesquiera tres $X, Y, Z \in P(A)$, si $(X, Y) \in R \land (Y, Z) \in R \rightarrow X \subseteq Y \lor Y \subseteq Z \rightarrow X \subseteq Z \rightarrow (X, Z) \in R$.

- :. La relación R es una relación de orden parcial.
- b) Recordemos que el grafo dirigido de una relación:

Muchas aristas del digrafo de un *poset* no tienen que mostrarse, ya que es entendido que deben estar presentes dadas las propiedades de la relación. Esta observación la hizo el matemático alemán Helmut Hasse (1898 - 1979).

Definición. Un **diagrama de Hasse** es una representación gráfica simplificada del grafo dirigido de un conjunto parcialmente ordenado finito.

Supongamos que (A, R) es un poset.

- Reflexividad → no es necesario mostrar los bucles
- Transitividad \rightarrow quitamos toda arista (x, y) para las que exista $z \in A$ tal que $(x, z) \in R$ & $(z, y) \in R$
- Antisimetría → si se dibujan los vértices de «abajo hacia arriba», entonces no es necesario indicar la dirección de las aristas

Luego de quitar aquellas aristas innecesarias obtenemos el siguiente diagrama de Hasse:

Ejemplo 2. Sea $A = \{1, 2, 3, 4, 6, 8, 12\}$ un conjunto y $R = \{(a, b) : a \text{ divide a } b\}$ una relación sobre A. (a) Demuestre que R es una relación de orden parcial. (b) Dibuje el diagrama de Hasse del *poset* (A, R). Se suele representar a la relación de divisibilidad como «». a) Reflexividad: Para todo $a \in A$, $a = 1 \cdot a$ (a divide a a) \rightarrow (a, a) $\in R$. *Antisimetria*: Sean $a,b \in A$ tales que $a \neq b$. Analizamos tres casos: Caso a divide a b: b = ka para $k \neq 1 \in \mathbb{N} \to (a, b) \in R$. Luego a = b/k, pero $1/k \notin \mathbb{N} \to (b, a) \notin R$. Caso b divide a a: a = kb para $k \neq 1 \in \mathbb{N} \to (b, a) \in R$. Luego b = a/k, pero $1/k \notin \mathbb{N} \to (a, b) \notin R$. Caso a no divide a b, ni b divide a $a \rightarrow (a, b) \notin R$ ni $(b, a) \notin R$. Transitividad: Sean $a,b,c \in A$ tales que $(a,b) \in R$ y $(b,c) \in R \rightarrow b = k_1 a \& c = k_2 b$ para $k_1, k_2 \in \mathbb{N}$. Luego, $c = k_2 b = k_2 (k_1 a) = (k_2 k_1) a = ka$ para $k \in \mathbb{N} \to (a, c) \in R$. b) 12 B b Ejercicio 3. Sea D_{50} el conjunto de todos los divisores positivos de 60. Dibuje un diagrama de Hasse del $poset(D_{60'}|).$ $D_{60} = \{1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60\}$ 12 20 30 15 10 6 3 5 體MAC