

GARDERE & WYNNE, L.L.P.

9-15-00

ATTORNEYS AND COUNSELORS

THANKSGIVING TOWER
ELM STREET
DALLAS, TEXAS 75201-4761
214-999-3000
TOLL FREE 214-999-4667

WRITER'S DIRECT DIAL NUMBER

214-999-4559
Direct Fax: 214-999-3559
Email: eflores@gardere.com

HOUSTON

1000 LOUISIANA, SUITE 3400
HOUSTON, TEXAS 77002-5007
713-276-5500

TULSA

200 ONEOK PLAZA
100 WEST FIFTH STREET
TULSA, OKLAHOMA 74103-3500
918-699-2900

MEXICO CITY

RÍO PÁNUCO No. 10
COL. CUAUHTÉMOC
06500 MÉXICO, D. F.
011 (525) 546-8030

September 14, 2000

VIA EXPRESS MAIL #417462586US

Box Patent Application
Assistant Commissioner for Patents
Washington, D.C. 20231

Re: Patent Application for "ALLOSTERICALLY REGULATED RIBOZYMES"
Our File: 119927-1021

Dear Sir or Madam:

Enclosed for filing are the following papers relating to an ALLOSTERICALLY REGULATED RIBOZYMES, Andrew D. Ellington, Michael P. Robertson and Kristin A. Marshall, inventors.

Specification (52 pages);
Drawings (7 sheets); and
Postcard (1).

This application is a conversion of provisional application serial no. 60/212,097, filed on June 15, 2000. Please assign this application a filing date pursuant to 37 C.F.R. 1.53 and send the notice of missing parts to the undersigned attorney.

Sincerely,

Edwin S. Flores
Registration No. 38,453

ESF/dmt
Enclosures

914153.1

PATENT

Attorney Docket No.: 119927-1021

5

ALLOSTERICALLY REGULATED RIBOZYMES

FIELD OF THE INVENTION

The present invention relates generally to the field of ribozymes and in particular to aptazymes or allosteric, regulatable ribozymes that modulate their kinetic parameters in response to the presence of an effector molecule.

10
09651656 "09651650

BACKGROUND OF THE INVENTION

The United States Government may own certain rights in this invention under DARPA Grant No.: N65236-98-1-5413 and MURI Grant No.: DAAD19-99-1-0207.

5 This patent claims priority from Provisional Patent Application Serial No. 60/212,097, entitled "Aptazymes for Genetic Regulatory Circuits", filed June 15, 2000.

Ribozymes or RNA enzymes are oligonucleotides of RNA that can act like enzymes by catalyzing the cleavage of RNA molecules. Generally, ribozymes have the ability to behave like an endoribonucleases. The location of the cleavage site is highly sequence specific, approaching the sequence specificity of DNA restriction endonucleases. By varying conditions, ribozymes can also act as polymerases or dephosphorylases.

10 Ribozymes were first described in connection with *Tetrahymena thermophila*. The Tetrahymena rRNA was shown to contain an intervening sequence (IVS) capable of excising itself out of a large ribosomal RNA precursor. The IVS is a catalytic RNA molecule that mediates self-splicing out of a precursor, whereupon it converts itself into a circular form. The Tetrahymena IVS is more commonly known now as the Group I Intron.

Regulatable ribozymes have been described, wherein the activity of the ribozyme is regulated by a ligand binding moiety. Upon binding the ligand, the ribozyme activity on a target RNA is changed. The ligand-binding portion is an RNA sequence capable of binding a ligand such as an organic or inorganic molecule, or even a prodrug. The regulatable ribozymes described to date target bind, e.g., a first target sequence and the enzymatic activity is brought to bear on a separate RNA molecule for cleavage.

10
9
8
7
6
5
4
3
2
1

SUMMARY OF THE INVENTION

The present invention provides an allosterically regulatable ribozyme or aptazyme that has the advantage of specific gene recognition with modulation of the enzymatic activity of the gene product typically exploited by pharmaceuticals. The aptazymes of the present invention are, therefore, allosteric ribozymes in that their activity is under the allosteric control of a second portion of the ribozyme. Just as allosteric protein enzymes undergo a change in their kinetic parameters or of their enzymatic activity in response to interactions with an effector molecule, the catalytic abilities of the regulatable aptazymes may similarly be modulated by an allosteric effector(s). Thus, the present invention is directed to allosterically regulatable aptazymes that transduce molecular recognition into catalysis.

The present invention includes an allosterically regulatable aptazyme construct that is inserted into a gene of interest, e.g., a gene targeting expression vector. The regulatable aptazyme sequence provides gene specific recognition as well as modulation of the aptazyme's kinetic parameters. The kinetic parameters of the regulatable aptazyme vary in response to an allosteric effector molecule. Specifically, in the presence of the allosteric effector, the

aptazyme splices itself out of the gene in response to the effector molecule to regulate expression of the gene. An important feature of the present invention is that the regulatable aptazymes disclosed herein only require
5 recognition rather than actual binding.

A key distinction with known systems is that the regulatory domains of the regulatable aptazymes of the present invention may bind targets, but they are engineered and selected without the necessity of knowing anything about their binding target. In the present invention it is the allosteric interaction of an effector molecule with the regulatory domain that transduces interactions into catalysis. Therefore, binding is a concomitant but secondary function of such interactions; that is, the allosteric ribozymes disclosed herein may bind the effector or the target very poorly, but upon their interaction, a synergistic effect is found that could not be detected by screening for each characteristic alone.

In the present invention the effector molecule does not produce a conformational change, but rather will add essential catalytic sites (e.g., residues) for a reaction. That is, both the effector molecule and the regulatable aptazyme contribute a portion of the active site of the ribozyme. For example, using the method of the present invention a ribozyme

and an effector molecule that would be unable to bind and/or perform an enzymatic function independently, may be isolated that act synergistically.

The present invention includes an aptazyme construct with a regulatable aptamer oligonucleotide sequence having a regulatory domain, such that the kinetic parameters of the aptazyme on a target gene vary in response to the interaction of an allosteric effector molecule with the regulatory domain.

The construct of one embodiment of the present invention provides a DNA oligonucleotide coding for an aptazyme domain so that the DNA can be transcribed to RNA (e.g., mRNA), where the RNA contains a self-splicing aptazyme domain that can be activated in the presence of an effector molecule.

Aptazymes are more robust than allosteric protein enzymes in several ways: (1) they can be selected *in vitro*, which facilitates the engineering of particular constructs; (2) the levels of catalytic modulation are much greater for aptazymes than for protein enzymes; and (3) since aptazymes are nucleic acids, they can potentially interact with the genetic machinery in ways that protein molecules may not.

At least part of the utility of the present invention is for use in the identification, isolation and enhancement of allosteric effectors and of the allosterically regulatable

aptazymes with which they interact. Similarly, it is possible to activate or repress a reporter gene (e.g., luciferase) containing an engineered intron in response to an endogenous activator. In this way, luciferase-engineered intron constructs may be used to monitor intracellular levels of proteins or small molecules such as cyclic AMP. Such applications may be used for high-throughput screening.

The present invention includes a regulatable aptazyme construct having an aptamer oligonucleotide sequence with a regulatory domain. A characteristic of the regulatable aptazyme construct of the present invention is that the kinetic parameters of the aptazyme vary in response to an effector molecule. In particular, the kinetic parameters of the aptazyme on a target gene vary in response to the interaction of an allosteric effector molecule with the regulatory domain. For example, the aptazyme splices itself out of a gene in response to the effector molecule interacting with the regulatory domain of the aptazyme to regulate expression of the target gene.

The present invention also contemplates that the regulatable aptazyme construct may be amplified by polymerase chain reaction. Finally, the invention contemplates that the regulatable aptamer oligonucleotide sequence of the construct

may include RNA nucleotides, so that the invention further includes reverse transcription of the RNA using reverse transcriptase to produce an DNA aptamer complementary to the RNA template.

5 Aptazymes, or allosterically activated ribozymes, have been developed that are activated by cyclic nucleotide monophosphates as well as other small molecules like theophylline. In addition to aptazymes activated by small molecules, there are natural ribozymes that are extremely dependent on proteins for their activity.

10 Other methods for aptazyme development using small molecule ligands have proven successful. In particular, it has been possible to add aptamer moieties to ribozymes, without selection, and achieve activation in the presence of ligand (like ATP or theophylline). One of the unique features of the present selection protocol relative to others that have previously been published is that the present invention randomizes not only a domain that is pendant on the catalytic core, but a portion of the catalytic core itself.

15 It should be noted that the method is not limited to RNA pools, but could also encompass DNA pools or modified RNA pools. The method is not limited to ligases, but could also encompass other ribozyme classes.

Nucleic acids are generally less robust than enzymes. However, modified nucleotides may be introduced into the aptazymes that substantially stabilize them from degradation in environments such as sera or urine. Similarly, enzymes generally have higher affinities for analytes than do aptamers, and be inference aptazymes. However, the analytical methods of the present invention do not rely on binding per se, but only on transient interactions. The present invention requires mere recognition rather than actual binding, providing a potential advantage of apatzymes over enzymes.

10
0
9
8
7
6
5
4
3
2
1

BRIEF DESCRIPTION OF THE DRAWINGS

For a more complete understanding of the features and advantages of the present invention, reference is now made to the detailed description of the invention along with the accompanying figures in which corresponding numerals in different figures refer to corresponding parts and in which:

Figure 1 is a depiction of the secondary structure of the Group 1 theophylline-dependent (td) intron of bacteriophage T4 (wild type);

Figure 2a is a photograph of a gel showing activation of the GpITH1P6.131 aptamer construct, together with a graphical representation of the gel, of one embodiment of the present invention;

Figure 2b is a photograph of a gel showing activation of GpITH2P6.133 aptamer construct, together with a graphical representation of the gel of one embodiment of the present invention.

Figure 3a depicts a portion of the P6 region of the Group I ribozyme joined to the anti-theophylline aptamer by a short randomized region to generate a pool of aptazymes of the present invention.

Figure 3b is a schematic depiction of a selection protocol for the Group I P6 Aptazyme Pool of Fig. 3a.

Figure 4 is a diagram of one embodiment of the present invention depicting exogenous or endogenous activation of Group I intron splicing;

5 Figure 5 is a diagram of another embodiment of the present invention depicting a strategy for screening libraries of exogenous activators; and

Figure 6 is a diagram of an alternative embodiment of the present invention for screening libraries of exogenous activators.

DETAILED DESCRIPTION OF THE INVENTION

While the making and using of various embodiments of the present invention are discussed in detail below, it should be appreciated that the present invention provides many applicable inventive concepts that may be embodied in a wide variety of specific contexts. The specific embodiments discussed herein are merely illustrative of specific ways to make and use the invention and do not delimit the scope of the invention.

Definitions

As used herein, the term "regulatable aptazyme" means an allosteric ribozyme. The kinetic parameters of the ribozyme may be varied in response to the amount of an allosteric effector molecule. Just as allosteric protein enzymes undergo a change in their kinetic parameters or of their enzymatic activity in response to interactions with an effector molecule, the catalytic abilities of regulatable aptazymes can similarly be modulated by effectors. Regulatable aptazymes transduce molecular recognition into catalysis upon interaction with an allosteric effector molecule that binds an effector portion of the regulatable aptazyme. Specifically, in the presence of the effector, the aptazyme splices itself

out of a gene in response to the effector molecule to regulate expression of the gene.

As used herein, the term "aptamer" refers to an oligonucleotide having aptazyme activity.

5 As used herein, the term "allosteric effector" or "allosteric effector molecule" means a substance that allosterically changes the kinetic parameters or catalytic activity of an aptazyme, and in particular a substance that activates self-splicing of an aptazyme.

10 As used herein, the term "kinetic parameters" refers to catalytic activity. Changes in the kinetic parameters of a catalytic ribozyme produce changes in the catalytic activity of the ribozyme such as a change in the rate of reaction or a change in substrate specificity. For example, self-splicing of an aptazyme out of a gene environment may result from a change in the kinetic parameters of the aptazyme.

15 As used herein, the term "catalytic" or "catalytic activity" refers to the ability of a substance to affect a change in itself or of a substrate under permissive conditions.

20 As used herein, the term "protein-protein complex" or "protein complex" refers to an association of more than one protein. The proteins of the complex may be associated by a

variety of means, or by any combination of means, including but not limited to functional, stereochemical, conformational, biochemical, or electrostatic association. It is intended that the term encompass associations of any number of

5 proteins.

As used herein the terms "protein", "polypeptide" or "peptide" refer to compounds comprising amino acids joined via peptide bonds and are used interchangeably.

As used herein, the term "endogenous" refers to a substance the source of which is from within a cell. Endogenous substances are produced by the metabolic activity of a cell. Endogenous substances, however, may nevertheless be produced as a result of manipulation of cellular metabolism to, for example, make the cell express the gene encoding the substance.

As used herein, the term "exogenous" refers to a substance the source of which is external to a cell. An exogenous substance may nevertheless be internalized by a cell by any one of a variety of metabolic or induced means known to those skilled in the art.

As used herein, the term "gene" means the coding region of a deoxyribonucleotide sequence encoding the amino acid sequence of a protein. The term includes sequences located

adjacent to the coding region on both the 5', and 3', ends
such that the deoxyribonucleotide sequence corresponds to the
length of the full-length mRNA for the protein. The term
"gene" encompasses both cDNA and genomic forms of a gene. A
5 genomic form or clone of a gene contains the coding region
interrupted with non-coding sequences termed "introns" or
"intervening regions" or "intervening sequences." Introns are
segments of a gene which are transcribed into nuclear RNA
(hnRNA); introns may contain regulatory elements such as
enhancers. Introns are removed, excised or "spliced out" from
the nuclear or primary transcript; introns therefore are
absent in the messenger RNA (mRNA) transcript. The mRNA
functions during translation to specify the sequence or order
of amino acids in a nascent polypeptide.

In addition to containing introns, genomic forms of a
gene may also include sequences located on both the 5' and 3'
end of the sequences which are present on the RNA transcript.
These sequences are referred to as "flanking" sequences or
regions (these flanking sequences are located 5' or 3' to the
20 non-translated sequences present on the mRNA transcript). The
5' flanking region may contain regulatory sequences such as
promoters and enhancers which control or influence the
transcription of the gene. The 3' flanking region may contain

sequences which direct the termination of transcription, post-transcriptional cleavage and polyadenylation.

DNA molecules are said to have "5' ends" and "3' ends" because mononucleotides are reacted to make oligonucleotides
5 in a manner such that the 5' phosphate of one mononucleotide pentose ring is attached to the 3' oxygen of its neighbor in one direction via a phosphodiester linkage. Therefore, an end of an oligonucleotides referred to as the "5' end" if its 5' phosphate is not linked to the 3' oxygen of a mononucleotide pentose ring and as the "3' end" if its 3' oxygen is not linked to a 5' phosphate of a subsequent mononucleotide pentose ring. As used herein, a nucleic acid sequence, even if internal to a larger oligonucleotide, also may be said to have 5' and 3' ends. In either a linear or circular DNA molecule, discrete elements are referred to as being "upstream" or 5' of the "downstream" or 3' elements. This terminology reflects the fact that transcription proceeds in a 5' to 3' fashion along the DNA strand.

The term "gene of interest" as used here refers to a
20 gene, the function and/or expression of which is desired to be investigated, or the expression of which is desired to be regulated, by the present invention. In the present disclosure, the *td* gene of the T4 bacteriophage is an example

of a gene of interest and is described herein to illustrate the invention. The present invention may be useful in regard to any gene of any organism, whether of a prokaryotic or eukaryotic organism.

5 The term "hybridize" as used herein, refers to any process by which a strand of nucleic acid binds with a complementary strand through base pairing. Hybridization and the strength of hybridization (*i.e.*, the strength of the association between the nucleic acid strands) is impacted by such factors as the degree of complementarity between the nucleic acids, stringency of the conditions involved, the melting temperature of the formed hybrid, and the G:C (or U:C for RNA) ratio within the nucleic acids.

10 The terms "complementary" or "complementarity" as used herein, refer to the natural binding of polynucleotides under permissive salt and temperature conditions by base-pairing. For example, for the sequence "A-G-T" binds to the complementary sequence "T-C-A". Complementarity between two single-stranded molecules may be partial, in which only some 20 of the nucleic acids bind, or it may be complete when total complementarity exists between the single stranded molecules. The degree of complementarity between nucleic acid strands has significant effects on the efficiency and strength of

hybridization between nucleic acid strands. This is of particular importance in amplification reactions, which depend upon binding between nucleic acids strands.

The term "homology," as used herein, refers to a degree of complementarity. There may be partial homology or complete homology (*i.e.*, identity). A partially complementary sequence is one that at least partially inhibits an identical sequence from hybridizing to a target nucleic acid; it is referred to using the functional term "substantially homologous." The inhibition of hybridization of the completely complementary sequence to the target sequence may be examined using a hybridization assay (Southern or Northern blot, solution hybridization and the like) under conditions of low stringency. A substantially homologous sequence or probe will compete for and inhibit the binding (*i.e.*, the hybridization) of a completely homologous sequence or probe to the target sequence under conditions of low stringency. This is not to say that conditions of low stringency are such that non-specific binding is permitted; low stringency conditions require that the binding of two sequences to one another be a specific (*i.e.*, selective) interaction. The absence of non-specific binding may be tested by the use of a second target sequence which lacks even a partial degree of complementarity

(e.g., less than about 30% identity); in the absence of non-specific binding, the probe will not hybridize to the second non-complementary target sequence. When used in reference to a single-stranded nucleic acid sequence, the term "substantially homologous" refers to any probe which can hybridize (i.e., it is the complement of) the single-stranded nucleic acid sequence under conditions of low stringency as described.

As known in the art, numerous equivalent conditions may be employed to comprise either low or high stringency conditions. Factors such as the length and nature (DNA, RNA, base composition) of the sequence, nature of the target (DNA, RNA, base composition, presence in solution or immobilization, etc.), and the concentration of the salts and other components (e.g., the presence or absence of formamide, dextran sulfate and/or polyethylene glycol) are considered and the hybridization solution may be varied to generate conditions of either low or high stringency different from, but equivalent to, the above listed conditions.

As used herein the term "stringency" is used in reference to the conditions of temperature, ionic strength, and the presence of other compounds such as organic solvents, under which nucleic acid hybridizations are conducted. With "high

stringency" conditions, nucleic acid base pairing will occur only between nucleic acid fragments that have a high frequency of complementary base sequences. Thus, conditions of "weak" or "low" stringency are often required with nucleic acids that are derived from organisms that are genetically diverse, as the frequency of complementary sequences is usually less.

Low stringency conditions comprise conditions equivalent to binding or hybridization at 42°C in a solution consisting of 5X SSPE (43.8 g/l NaCl, 6.9 g/l NaH₂PO₄•H₂O and 1.85 g/l EDTA, pH adjusted to 7.4 with NaOH), 0.1% SDS, 5X Denhardt's reagent (50X Denhardt's contains per 500 ml: 5 g Ficoll (Type 400, Pharmacia), 5 g BSA [Fraction V; Sigma]) and 100 µg/ml denatured salmon sperm DNA) followed by washing in a solution comprising 5X SSPE, 0.1% SDS at 42°C when a probe of about 500 nucleotides in length is employed.

Numerous equivalent conditions may be employed to comprise low stringency conditions; factors such as the length and nature (DNA, RNA, base composition) of the probe and nature of the target (DNA, RNA, base composition, present in solution or immobilized, etc.) and the concentration of the salts and other components (e.g., the presence or absence of formamide, dextran sulfate, polyethylene glycol) are considered and the hybridization solution may be varied to

generate conditions of low stringency hybridization different from, but equivalent to, the above listed conditions. In addition, the art knows conditions which promote hybridization under conditions of high stringency (e.g., increasing the temperature of the hybridization and/or wash steps, the use of formamide in the hybridization solution, etc.).

The term "antisense," as used herein, refers to nucleotide sequences that are complementary to a specific DNA or RNA sequence. The term "antisense strand" is used in reference to a nucleic acid strand that is complementary to the "sense" strand. Antisense molecules may be produced by any method, including synthesis by ligating the gene(s) of interest in a reverse orientation to a viral promoter which permits the synthesis of a complementary strand. Once introduced into a cell, the transcribed strand combines with natural sequences produced by the cell to form duplexes. These duplexes then block either the further transcription or translation. In this manner, mutant phenotypes may also be generated. The designation "negative" is sometimes used in reference to the antisense strand, and "positive" is sometimes used in reference to the sense strand.

The term also is used in reference to RNA sequences that are complementary to a specific RNA sequence (e.g., mRNA).

Included within this definition are antisense RNA ("asRNA") molecules involved in genetic regulation by bacteria. Antisense RNA may be produced by any method, including synthesis by splicing the gene(s) of interest in a reverse orientation to a viral promoter which permits the synthesis of a coding strand. Once introduced into an embryo, this transcribed strand combines with natural mRNA produced by the embryo to form duplexes. These duplexes then block either the further transcription of the mRNA or its translation. In this manner, mutant phenotypes may be generated. The term "antisense strand" is used in reference to a nucleic acid strand that is complementary to the "sense" strand. The designation. (-) (i.e., "negative") is sometimes used in reference to the antisense strand with the designation (+) sometimes used in reference to the sense (i.e., "positive") strand.

A gene may produce multiple RNA species which are generated by differential splicing of the primary RNA transcript. cDNAs that are splice variants of the same gene will contain regions of sequence identity or complete homology (representing the presence of the same exon or portion of the same exon on both cDNAs) and regions of complete non-identity (for example, representing the presence of exon "A" on cDNA I

wherein cDNA 2 contains exon "B" instead). Because the two cDNAs contain regions of sequence identity they will both hybridize to a probe derived from the entire gene or portions of the gene containing sequences found on both cDNAs; the two splice variants are therefore substantially homologous to such a probe and to each other.

"Transformation," as defined herein, describes a process by which exogenous DNA enters and changes a recipient cell. It may occur under natural or artificial conditions using various methods well known in the art. Transformation may rely on any known method for the insertion of foreign nucleic acid sequences into a prokaryotic or eukaryotic host cell. The method is selected based on the host cell being transformed and may include, but is not limited to, viral infection, electroporation, lipofection, and particle bombardment. Such "transformed" cells include stably transformed cells in which the inserted DNA is capable of replication either as an autonomously replicating plasmid or as part of the host chromosome. The term "transfection" as used herein refers to the introduction of foreign DNA into eukaryotic cells.

Transfection may be accomplished by a variety of means known to the art including, e.g., calcium phosphate-DNA co-

precipitation, DEAE-dextran-mediated transfection, polybrene-mediated transfection, electroporation, microinjection, liposome fusion, lipofection, protoplast fusion, retroviral infection, and biolistics. Thus, the term "stable transfection" or "stably transfected" refers to the introduction and integration of foreign DNA into the genome of the transfected cell. The term "stable transfectant" refers to a cell which has stably integrated foreign DNA into the genomic DNA. The term also encompasses cells which transiently express the inserted DNA or RNA for limited periods of time. Thus, the term "transient transfection" or "transiently transfected" refers to the introduction of foreign DNA into a cell where the foreign DNA fails to integrate into the genome of the transfected cell. The foreign DNA persists in the nucleus of the transfected cell for several days. During this time the foreign DNA is subject to the regulatory controls that govern the expression of endogenous genes in the chromosomes. The term "transient transfectant" refers to cells which have taken up foreign DNA but have failed to integrate this DNA.

As used herein, the term "selectable marker" refers to the use of a gene that encodes an enzymatic activity and which confers the ability to grow in medium lacking what would

otherwise be an essential nutrient (e.g., the HIS3 gene in yeast cells); in addition, a selectable marker may confer resistance to an antibiotic or drug upon the cell in which the selectable marker is expressed. A review of the use of 5 selectable markers in mammalian cell lines is provided in Sambrook, J. et. al., *Molecular Cloning: A Laboratory Manual*, 2nd ed., Cold Spring Harbor Laboratory Press, New York (1989) pp.16.9-16.15.

As used herein, the term "reporter gene" refers to a gene 10 that is expressed in a cell upon satisfaction of one or more contingencies and which, upon expression, confers a detectable phenotype to the cell to indicate that the contingencies for expression have been satisfied. For example, the gene for Luciferase confers a luminescent phenotype to a cell when the 15 gene is expressed inside the cell. In the present invention, the gene for Luciferase may be used as a reporter gene such that the gene is only expressed upon the splicing out of an intron in response to an effector. Those cells in which the effector activates splicing of the intron will express 20 Luciferase and will glow.

As used herein, the term "vector" is used in reference to nucleic acid molecules that transfer DNA segment(s) from one

cell to another. The term "vehicle" is sometimes used interchangeably with "vector."

The term "vector" as used herein also includes expression vectors in reference to a recombinant DNA molecule containing a desired coding sequence and appropriate nucleic acid sequences necessary for the expression of the operably linked coding sequence in a particular host organism. Nucleic acid sequences necessary for expression in prokaryotes usually include a promoter, an operator (optional), and a ribosome binding site, often along with other sequences. Eukaryotic cells are known to utilize promoters, enhancers, and termination and polyadenylation signals.

As used herein, the term "amplify", when used in reference to nucleic acids refers to the production of a large number of copies of a nucleic acid sequence by any method known in the art. Amplification is a special case of nucleic acid replication involving template specificity. Template specificity is frequently described in terms of "target" specificity. Target sequences are "targets" in the sense that they are sought to be sorted out from other nucleic acid. Amplification techniques have been designed primarily for this sorting out.

As used herein, the term "primer" refers to an oligonucleotide, whether occurring naturally as in a purified restriction digest or produced synthetically, which is capable of acting as a point of initiation of synthesis when placed under conditions in which synthesis of a primer extension product which is complementary to a nucleic acid strand is induced, (i.e., in the presence of nucleotides and an inducing agent such as DNA polymerase and at a suitable temperature and pH). The primer may be single stranded for maximum efficiency in amplification but may alternatively be double stranded. If double stranded, the primer is first treated to separate its strands before being used to prepare extension products. The primer must be sufficiently long to prime the synthesis of extension products in the presence of the inducing agent. The exact lengths of the primers will depend on many factors, including temperature, source of primer and the use of the method.

As used herein, the term "probe" refers to an oligonucleotide (i.e., a sequence of nucleotides), whether occurring naturally as in a purified restriction digest or produced synthetically, recombinantly or by PCR amplification, which is capable of hybridizing to another oligonucleotide of interest. A probe may be single-stranded or double-stranded.

Probes are useful in the detection, identification and isolation of particular gene sequences. It is contemplated that any probe used in the present invention will be labeled with any "reporter molecule," so that is detectable in any detection system, including, but not limited to enzyme (e.g. ELISA, as well as enzyme-based histochemical assays), fluorescent, radioactive, and luminescent systems. It is not intended that the present invention be limited to any particular detection system or label.

As used herein, the term "target" when used in reference to the polymerase chain reaction, refers to the region of nucleic acid bounded by the primers used for polymerase chain reaction. Thus, the "target" is sought to be sorted out from other nucleic acid sequences. A "segment" is defined as a region of nucleic acid within the target sequence.

As used herein, the term "polymerase chain reaction" ("PCR") refers to the method of K.B. Mullis U.S. Patent Nos. 4,683,195, 4,683,202, and 4,965,188, hereby incorporated by reference, which describe a method for increasing the concentration of a segment of a target sequence in a mixture of genomic DNA without cloning or purification. This process for amplifying the target sequence consists of introducing a large excess of two oligonucleotide primers to the DNA mixture

containing the desired target sequence, followed by a precise sequence of thermal cycling in the presence of a DNA polymerase. The two primers are complementary to their respective strands of the double stranded target sequence.

To effect amplification, the mixture is denatured and the primers then annealed to their complementary sequences within the target molecule. Following annealing, the primers are extended with a polymerase so as to form a new pair of complementary strands. The steps of denaturation, primer annealing and polymerase extension can be repeated many times (i.e., denaturation, annealing and extension constitute one "cycle"; there can be numerous "cycles") to obtain a high concentration of an amplified segment of the desired target sequence. The length of the amplified segment of the desired target sequence is determined by the relative positions of the primers with respect to each other, and therefore, this length is a controllable parameter. By virtue of the repeating aspect of the process, the method is referred to as the "polymerase chain reaction" (hereinafter "PCR"). Because the desired amplified segments of the target sequence become the predominant sequences (in terms of concentration) in the mixture, they are said to be "PCR amplified".

With PCR, it is possible to amplify a single copy of a specific target sequence in genomic DNA to a level detectable by several different methodologies (e.g., hybridization with a labeled probe; incorporation of biotinylated primers followed by avidin-enzyme conjugate detection; incorporation of ³²P-labeled deoxynucleotide triphosphates, such as DCTP or DATP, into the amplified segment). In addition to genomic DNA, any oligonucleotide sequence can be amplified with the appropriate set of primer molecules. In particular the amplified segments created by the PCR process itself are, themselves, efficient templates for subsequent PCR amplifications.

The invention is now described in detail with the use of the td intron from T4 bacteriophage (Fig. 1) for illustrative purposes. The description is not intended to limit the scope of the invention or the claims appended hereto.

Figure 1 depicts the secondary structure of the td intron from bacteriophage T4 (GenBank # M12742), wherein "td" means theophylline-dependent. The td intron was selected to illustrate the present invention because, among other things, mutational analysis has identified regions of this intron that can be engineered and modified. See Salvo, et al., Deletion-tolerance and trans-splicing of the bacteriophage T4 intron.

Analysis of the P6-L6a region. *J. Mol. Biol.* **211**, 537-549
(1990) and Salvo et al., The P2 element of the td intron is
dispensable despite its normal role in splicing. *J. Mol.*
Biol. **267**, 2845-2848 (1992). Thus, aptamer domains or pools
5 may be engineered into the T4 intron.

An anti-theophylline aptamer has been described by R.D. Jenison, et al., High-resolution molecular discrimination by RNA. *Science* **263**, 1425-1429 (1994). In the present invention, the anti-theophylline aptamer was mounted in two locations in the td intron, shown by the shaded portions of Fig. 1. One location was at the termini of P1 and the other location was within P6. The P1 constructs may enable ligand-dependent conformational changes that alter the conformation or register of the U:G base pair which is critical for splicing. The P6 region was selected because mutational analysis indicated that deletion of the P6 stem destabilizes the intron.

Referring now to Figs 2a and 2b, in the present invention P6 constructs were made so that Group I splicing was activated 20 by the presence of theophylline in the range of approximately 9 to 19 fold over constructs grown in the absence of theophylline, as described in the examples below:

The following examples illustrate the present invention
in the *td* gene system of T4. For a full understanding of the
examples, refer to Figures 2a and 2b. The examples are
provided for illustrative purposes and do not limit the scope
of the present invention or the scope of the appended claims.

5

Example 1: GpITH1P6

Engineering of Group I Aptazymes

The first example illustrates how to make an aptazyme construct and demonstrates self-splicing of the aptazyme out of a gene in response to an effector molecule.

Construction of a regulatable aptazyme

Oligos GpIWt3.129: 5'-TAA TCT TAC CCC GGA ATT ATA TCC AGC
TGC ATG TCA CCA TGC AGA GCA GAC TAT ATC TCC AAC TTG TTA AAG
CAA GTT GTC TAT CGT TTC GAG TCA CTT GAC CCT ACT CCC CAA AGG
GAT AGT CGT TAG-3' (SEQ ID NO: 1) and GpITH1P6.131: 5'-GCC TGA
GTA TAA GGT GAC TTA TAC TTG TAA TCT ATC TAA ACG GGG AAC CTC
TCT AGT AGA CAA TCC CGT GCT AAA TTA TAC CAG CAT CGT CTT GAT
GCC CTT GGC AGA TAA ATG CCT AAC GAC TAT CCC TT-3' (SEQ ID NO:
20 2) were annealed and extended in a 30 μ l reaction containing
100 pmoles of each oligo, 250 mM Tris-HCl (pH 8.3), 40 mM
 $MgCl_2$, 250 mM NaCl, 5 mM DTT, 0.2 mM each dNTP, 45 units of
AMV reverse transcriptase (RT: Amersham Pharmacia Biotech,

D
E
S
I
G
N
E
S
C
O
D
10
15
20

Inc., Piscataway, NJ) at 37° C for 30 minutes. The extension reaction was diluted 1 to 50 in H₂O.

A PCR reaction containing 1 μ l of the extension dilution, 500 mM KCl, 100 mM Tris-HCl, (pH 9.0), 1% Triton® x-100, 15 mM MgCl₂, 0.4 μ M of GpIwt1.75: 5'-GAT AAT ACG ACT CAC TAT AGG GAT CAA CGC TCA GTA GAT GTT TTC TTG GGT TAA TTG AGG CCT GAG TAT AAG GTG-3' (SEQ ID NO:3), 0.4 μ M of GpIwt4.89: 5'-CTT AGC TAC AAT ATG AAC TAA CGT AGC ATA TGA CGC AAT ATT AAA CGG TAG CAT TAT GTT CAG ATA AGG TCG TTA ATC TTA CCC CGG AA-3' (SEQ ID NO:4), 0.2 mM each dNTP and 1.5 units of Taq polymerase (Promega, Madison, WI) was thermocycled 20 times under the following regime: 94° C for 30 seconds, 45° C for 30 seconds, 72° C for 1 minute. The PCR reaction was precipitated in the presence of 0.2 M NaCl and 2.5 volumes of ethanol and then quantitated by comparison with a molecular weight standard using agarose gel electrophoresis.

The aptazyme construct was transcribed in a 10 μ l high yield transcription reaction (AmpliScribe from Epicentre, Madison, WI. The reaction contained 500 ng PCR product, 3.3 pmoles of P³² [α -32 P]UTP (3000 Camel), 1X AmpliScribe transcription buffer, 10 mM DTT, 7.5 mM each NTP, and 1 μ l AmpliScribe T7 polymerase mix. The transcription reaction was incubated at 37° C for 2 hours. One unit of RNase free-DNase

was added and the reaction returned to 37° C for 30 minutes. The transcription was then purified on a 6% denaturing polyacrylamide gel to separate the full length RNA from incomplete transcripts and spliced products, eluted and quantitated spectrophotometrically.

5

In vitro Assay

The RNA (4 pmoles/12 μ l H₂O) was heated to 94° C for 1 minute then cooled to 37° C over 2 minutes in a thermocycler. The RNA was divided into 2 splicing reactions (9 μ l each) containing 100 mM Tris-HCl (pH 7.45), 500 mM KCl and 15 mM MgCl₂, plus or minus theophylline (2 mM). The reactions were immediately placed on ice for 30 minutes. GTP (1 mM) was added to the reactions (final volume of 10 μ l) and the reactions were incubated at 37° C for 2 hours.

The reactions were terminated by the addition of stop dye (10 μ l) (95% formamide, 20 mM EDTA, 0.5% xylene cyanol, and 0.5% bromophenol blue). The reactions were heated to 70° C for 3 minutes and 10 μ l was electrophoresed on a 6% denaturing polyacrylamide gel. The gel was dried, exposed to a phosphor screen and analyzed using a Molecular Dynamics Phosphorimager (Sunnyvale, CA).

Activation was determined from the amount of circular intron in each reaction. Circularized introns migrate slower

than linear RNA and can be seen as the bands above the dark bands of linear RNA in the +Theo lanes of the gels of Figs. 2a and. 2b.

5

Example 2: GpIP6Thpool

In vitro Selection of Group I Aptazymes

Example 2 illustrates how to generate a population of aptazymes so that there is variation in the nucleotide sequence of the aptamers. This example also illustrates how to select for phenotypes that are responsive to an effector molecule from among that population of aptazymes.

Construction of Pool

The construction of the pool was similar to the construction of the individual engineered aptazyme constructs. Oligos GpIWT3.129 and GpITHP6pool: 5'-GCC TGA GTA TAA GGT GAC TTA TAC TAG TAA TCT ATC TAA ACG GGG AAC CTC TCT AGT AGA CAA TCC CGT GCT AAA TN(1-4)A TAC CAG CAT CGT CTT GAT GCC CTT GGC AGN(1-4) TAA ATG CCT AAC GAC TAT CCC TT-3' (SEQ ID NO:5) were extended in the same manner as above. The extension reaction was diluted and used as template for a PCR reaction. The PCR reaction was similar to the reaction described with the following exceptions: the volume was doubled and GpIWT4.89 was replaced with GpIMutG.101: 5'-CTT AGC TAC AAT ATG AAC TAA CGT

AGC ATA TGA CGC AAT ATT AAA CGG TAG TAT TAT GTT CAG ATA AGG
TCG TTA ATC TTA CCC CGG AAT TCT ATC CAG CT-3' (SEQ ID NO:6) in
which there is an G to A mutation at the terminal residue of
the intron. The pool had a diversity of 1.16×10^5 molecules.

5 RNA was made as described above.

In vitro Negative Selection

The RNA (10 pmoles/70 μ l H₂O) was heated to 94° C for 1 minute then cooled to 37° C over 2 minutes in a thermocycler. The splicing reaction (90 μ l) contained 100 mM Tris-HCl (pH 7.45), 500 mM KCl and 15 mM MgCl₂. The reaction was immediately placed on ice for 30 minutes. GTP (1 mM) was added to the reaction (final volume of 100 μ l) and the reaction was incubated at 37° C for 20 hours. The reaction was terminated by the addition 20 mM EDTA and precipitated in the presence of 0.2 M NaCl and 2.5 volumes of ethanol. The reaction was resuspended in 10 μ l H₂O and 10 μ l stop dye and heated to 70° C for 3 minutes and was electrophoresed on a 6% denaturing polyacrylamide gel with Century™ Marker ladder (Ambion, Austin, TX). The gel was exposed to a phosphor screen and analyzed. The unreacted RNA was isolated from the gel, precipitated and resuspended in 10 μ l of H₂O.

P
R
E
P
A
R
A
T
I
O
N
S
U
B
S
T
A
N
D
E
X
P
R
E
S
E
N
T

20

Positive Selection

The RNA (5 μ l of negative selection) was heated to 94° C for 1 minute then cooled to 37° C over 2 minutes in a thermocycler. The positive splicing reaction (45 μ l) contained 100 mM Tris-HCl (pH 7.45), 500 mM KCl, 15 mM MgCl₂ and 1mM theophylline. The reaction was immediately placed on ice for 30 minutes. GTP (1 mM) was added to the reaction (final volume of 50 μ l) and the reaction was incubated at 37° C for 1 hour. The reaction was terminated by the addition of stop dye, heated to 70° C for 3 minutes and was electrophoresed on a 6% denaturing polyacrylamide gel with Century™ Marker ladder. The gel was exposed to a phosphor screen and analyzed. The band corresponding to the linear intron was isolated from the gel and precipitated and resuspended in 20 μ l H₂O.

Amplification and Transcription

The RNA was reverse transcribed in a reaction containing 250 mM Tris-HCl (pH 8.3), 375 mM KCl, 15 mM, MgCl₂, 0.1 M DTT, 0.4 mM of each dNTP 2 μ M GpIMutG.101 and 400 units of SuperScript II reverse transcriptase (Gibco BRL, Rockville, MD). The cDNA was then PCR amplified, transcribed and gel purified as described above.

Figure 3a depicts the critical residues of the P6 region of the Group I ribozyme joined to the anti-theophylline aptamer by a short randomized region to generate a pool of aptazymes of the present invention. The residues shown in bold in Fig. 4a are the P6 critical residues, and the faded residues shown in Fig. 4a are the anti-theophylline aptamer. The randomized regions are designated in Fig. 4a as "N1-4". Approximately 40 random sequence residues are introduced into the N1-4 region of the construct to synthesize a pool of aptazymes, referred to herein as a communication module pool.

Figure 3b shows a selection protocol for the Group I P6 Aptazyme Pool of Fig. 3a. Positive and negative selections are made in vitro to select Group I aptazymes that are dependent on theophylline. The selections are described above in Example 2 for a specific embodiment of the present invention.

A communication module pool can be transformed with the selected aptazymes. The best theophylline-dependent Group I aptazymes that have been derived by any of the methods described herein may undergo further selection by partially randomizing their sequences and selecting for improved performance.

Strategies similar to those depicted in Figs 3a and 3b may be used to develop aptazymes and aptamers dependent on any desired effector molecule. See generally G.A. Soukup, et al., Engineering precision RNA molecular switches. *Proc. Natl. Acad. Sci. U.S.A.* **96**, 3584-3589 (1999) and M. Koizumi, et al., Allosteric selection of ribozymes that respond to the second messengers cGMP and cAMP. *Nature Struct. Biol.* **6**, 1062-1071 (1999). Positive and negative in vitro selection such as depicted in Fig. 3b are described above in Example 2 for a specific embodiment of the present invention. The optimization strategies described herein yield Group I aptazymes that are highly dependent on small molecule effectors.

Figure 4 is a diagrammatic representation of one embodiment of the exogenous or endogenous activation of Group I intron splicing is depicted. A gene of interest 10 is fused to a reporter gene 12 such as luciferase or beta-galactosidase, which also contains the group I intron (td) 14. Splicing-out of the Group I intron is induced by an endogenous effector molecule 16. Alternatively, splicing-out of the Group I intron may be induced by an exogenous effector molecule 18. Activation of the aptazyme and auto-excision of the intron results in expression of the reporter gene encoded

protein 20 that is detect by, e.g., fluorescence 22 or any other desired detectable reaction.

Figure 5 is a diagram of another embodiment of the present invention. Libraries of candidate exogenous activators 30 can be generated from a randomized aptazyme pool indicated by random loop E_{1-n} . As in the embodiment of Fig. 4, a reporter gene 12 is expressed in cells where the exogenous activator 30 activates the aptazyme to release the intron, which may contain a random loop 32, from the gene. In this embodiment, the reaction occurs within cells which are then sorted 34 based on a chromogenic reaction or emission 22, or may even be isolated by, e.g., statistical cell separation cloning. As will be known to those of skill in the art of enzymatic oligonucleotides any number of current and future effector molecule libraries may be used with the present invention.

Figure 6 depicts an alternative embodiment for screening libraries of exogenous activators. Group I introns with length polymorphisms are induced into the construct by trans-splicing with an independent oligonucleotide. Libraries of candidate exogenous activators 30 can be generated from a randomized aptazyme pool indicated by random loop E_{1-n} . As in the embodiment of Fig. 5, a reporter gene 12 is expressed in

cells where the exogenous activator 30 activates the aptazyme
to release the intron, which may contain a random loop 32,
from the gene. In this embodiment, the reaction occurs within
the intron 14 and an independent oligonucleotide 36 by a
trans-splicing reaction and extraction step 38. Extracted
trans-spliced intron reporter gene constructs are then
amplified by, e.g., polymerase chain reaction in step 40,
followed by transformation of cells with the transspliced
construct at step 42. Transformation of the transspliced
construct may be performed by those of skill in the art with
either a negative or positive selection scheme for
identification of the trans-spliced gene.

All publications mentioned in the above specification are
hereby incorporated by reference. Modifications and
variations of the described compositions and methods of the
invention will be apparent to those skilled in the art without
departing from the scope and spirit of the invention.
Although the invention has been described in connection with
specific embodiments, it should be understood that the
invention as claimed should not be unduly limited to such
specific embodiments. Indeed, various modifications of the
described compositions and modes of carrying out the invention
which are obvious to those skilled in molecular biology or

related arts are intended to be within the scope of the following claims.

What is claimed is:

1. An aptazyme construct comprising a regulatable Group I intron aptamer oligonucleotide sequence having a regulatory domain, wherein the kinetic parameters of the aptazyme on a target gene vary in response to the interaction of an allosteric effector molecule with the regulatory domain.
2. The aptazyme construct of claim 1, wherein the aptamer comprises RNA.
3. The aptazyme construct of claim 1, wherein the aptamer comprises DNA.
4. The aptazyme construct of claim 1, wherein the aptazyme is at least partially single stranded.
5. The aptazyme of construct claim 1, wherein the aptazyme is at least partially double stranded.
6. The aptazyme of construct claim 1, wherein the construct comprises the oligonucleotide sequence of

SEQ ID NO:1: TAA TCT TAC CCC GGA ATT ATA TCC AGC TGC ATG
TCA CCA TGC AGA GCA GAC TAT ATC TCC AAC TTG TTA AAG CAA
GTT GTC TAT CGT TTC GAG TCA CTT GAC CCT ACT CCC CAA AGG
GAT AGT CGT TAG or an oligonucleotide sequence that
5 hybridizes under stringent conditions to a hybridization
probe the nucleotide sequence of which comprises the
sequence of SEQ ID NO:1 or an oligonucleotide that is
complementary or antisense to such a probe.

- 10 7. The aptazyme of construct claim 1, wherein the construct
comprises the oligonucleotide sequence of SEQ ID NO:2:
GCC TGA GTA TAA GGT GAC TTA TAC TTG TAA TCT ATC TAA ACG
GGG AAC CTC TCT AGT AGA CAA TCC CGT GCT AAA TTA TAC CAG
CAT CGT CTT GAT GCC CTT GGC AGA TAA ATG CCT AAC GAC TAT
15 CCC TT or an oligonucleotide sequence that hybridizes
under stringent conditions to a hybridization probe the
nucleotide sequence of which comprises the sequence of
SEQ ID NO:2 or an oligonucleotide that is complementary
or antisense to such a probe.

- 20 8. The aptazyme construct of claim 1, wherein the construct
comprises the oligonucleotide sequence of SEQ ID NO:3:
GAT AAT ACG ACT CAC TAT AGG GAT CAA CGC TCA GTA GAT GTT

TTC TTG GGT TAA TTG AGG CCT GAG TAT AAG GTG or an
oligonucleotide sequence that hybridizes under stringent
conditions to a hybridization probe the nucleotide
sequence of which comprises the sequence of SEQ ID NO:3
or an oligonucleotide that is complementary or antisense
to such a probe.

- 5
9. The aptazyme construct of claim 1, wherein the construct
comprises the oligonucleotide sequence of SEQ ID NO:4:

10 CTT AGC TAC AAT ATG AAC TAA CGT AGC ATA TGA CGC AAT ATT
AAA CGG TAG CAT TAT GTT CAG ATA AGG TCG TTA ATC TTA CCC
CGG AA or an oligonucleotide sequence that hybridizes
under stringent conditions to a hybridization probe the
nucleotide sequence of which comprises the sequence of
SEQ ID NO:4 or an oligonucleotide that is complementary
or antisense to such a probe.

- 15
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
105
110
115
120
125
130
135
140
145
150
155
160
165
170
175
180
185
190
195
200
205
210
215
220
225
230
235
240
245
250
255
260
265
270
275
280
285
290
295
300
305
310
315
320
325
330
335
340
345
350
355
360
365
370
375
380
385
390
395
400
405
410
415
420
425
430
435
440
445
450
455
460
465
470
475
480
485
490
495
500
505
510
515
520
525
530
535
540
545
550
555
560
565
570
575
580
585
590
595
600
605
610
615
620
625
630
635
640
645
650
655
660
665
670
675
680
685
690
695
700
705
710
715
720
725
730
735
740
745
750
755
760
765
770
775
780
785
790
795
800
805
810
815
820
825
830
835
840
845
850
855
860
865
870
875
880
885
890
895
900
905
910
915
920
925
930
935
940
945
950
955
960
965
970
975
980
985
990
995
1000
1005
1010
1015
1020
1025
1030
1035
1040
1045
1050
1055
1060
1065
1070
1075
1080
1085
1090
1095
1100
1105
1110
1115
1120
1125
1130
1135
1140
1145
1150
1155
1160
1165
1170
1175
1180
1185
1190
1195
1200
1205
1210
1215
1220
1225
1230
1235
1240
1245
1250
1255
1260
1265
1270
1275
1280
1285
1290
1295
1300
1305
1310
1315
1320
1325
1330
1335
1340
1345
1350
1355
1360
1365
1370
1375
1380
1385
1390
1395
1400
1405
1410
1415
1420
1425
1430
1435
1440
1445
1450
1455
1460
1465
1470
1475
1480
1485
1490
1495
1500
1505
1510
1515
1520
1525
1530
1535
1540
1545
1550
1555
1560
1565
1570
1575
1580
1585
1590
1595
1600
1605
1610
1615
1620
1625
1630
1635
1640
1645
1650
1655
1660
1665
1670
1675
1680
1685
1690
1695
1700
1705
1710
1715
1720
1725
1730
1735
1740
1745
1750
1755
1760
1765
1770
1775
1780
1785
1790
1795
1800
1805
1810
1815
1820
1825
1830
1835
1840
1845
1850
1855
1860
1865
1870
1875
1880
1885
1890
1895
1900
1905
1910
1915
1920
1925
1930
1935
1940
1945
1950
1955
1960
1965
1970
1975
1980
1985
1990
1995
2000
2005
2010
2015
2020
2025
2030
2035
2040
2045
2050
2055
2060
2065
2070
2075
2080
2085
2090
2095
2100
2105
2110
2115
2120
2125
2130
2135
2140
2145
2150
2155
2160
2165
2170
2175
2180
2185
2190
2195
2200
2205
2210
2215
2220
2225
2230
2235
2240
2245
2250
2255
2260
2265
2270
2275
2280
2285
2290
2295
2300
2305
2310
2315
2320
2325
2330
2335
2340
2345
2350
2355
2360
2365
2370
2375
2380
2385
2390
2395
2400
2405
2410
2415
2420
2425
2430
2435
2440
2445
2450
2455
2460
2465
2470
2475
2480
2485
2490
2495
2500
2505
2510
2515
2520
2525
2530
2535
2540
2545
2550
2555
2560
2565
2570
2575
2580
2585
2590
2595
2600
2605
2610
2615
2620
2625
2630
2635
2640
2645
2650
2655
2660
2665
2670
2675
2680
2685
2690
2695
2700
2705
2710
2715
2720
2725
2730
2735
2740
2745
2750
2755
2760
2765
2770
2775
2780
2785
2790
2795
2800
2805
2810
2815
2820
2825
2830
2835
2840
2845
2850
2855
2860
2865
2870
2875
2880
2885
2890
2895
2900
2905
2910
2915
2920
2925
2930
2935
2940
2945
2950
2955
2960
2965
2970
2975
2980
2985
2990
2995
3000
3005
3010
3015
3020
3025
3030
3035
3040
3045
3050
3055
3060
3065
3070
3075
3080
3085
3090
3095
3100
3105
3110
3115
3120
3125
3130
3135
3140
3145
3150
3155
3160
3165
3170
3175
3180
3185
3190
3195
3200
3205
3210
3215
3220
3225
3230
3235
3240
3245
3250
3255
3260
3265
3270
3275
3280
3285
3290
3295
3300
3305
3310
3315
3320
3325
3330
3335
3340
3345
3350
3355
3360
3365
3370
3375
3380
3385
3390
3395
3400
3405
3410
3415
3420
3425
3430
3435
3440
3445
3450
3455
3460
3465
3470
3475
3480
3485
3490
3495
3500
3505
3510
3515
3520
3525
3530
3535
3540
3545
3550
3555
3560
3565
3570
3575
3580
3585
3590
3595
3600
3605
3610
3615
3620
3625
3630
3635
3640
3645
3650
3655
3660
3665
3670
3675
3680
3685
3690
3695
3700
3705
3710
3715
3720
3725
3730
3735
3740
3745
3750
3755
3760
3765
3770
3775
3780
3785
3790
3795
3800
3805
3810
3815
3820
3825
3830
3835
3840
3845
3850
3855
3860
3865
3870
3875
3880
3885
3890
3895
3900
3905
3910
3915
3920
3925
3930
3935
3940
3945
3950
3955
3960
3965
3970
3975
3980
3985
3990
3995
4000
4005
4010
4015
4020
4025
4030
4035
4040
4045
4050
4055
4060
4065
4070
4075
4080
4085
4090
4095
4100
4105
4110
4115
4120
4125
4130
4135
4140
4145
4150
4155
4160
4165
4170
4175
4180
4185
4190
4195
4200
4205
4210
4215
4220
4225
4230
4235
4240
4245
4250
4255
4260
4265
4270
4275
4280
4285
4290
4295
4300
4305
4310
4315
4320
4325
4330
4335
4340
4345
4350
4355
4360
4365
4370
4375
4380
4385
4390
4395
4400
4405
4410
4415
4420
4425
4430
4435
4440
4445
4450
4455
4460
4465
4470
4475
4480
4485
4490
4495
4500
4505
4510
4515
4520
4525
4530
4535
4540
4545
4550
4555
4560
4565
4570
4575
4580
4585
4590
4595
4600
4605
4610
4615
4620
4625
4630
4635
4640
4645
4650
4655
4660
4665
4670
4675
4680
4685
4690
4695
4700
4705
4710
4715
4720
4725
4730
4735
4740
4745
4750
4755
4760
4765
4770
4775
4780
4785
4790
4795
4800
4805
4810
4815
4820
4825
4830
4835
4840
4845
4850
4855
4860
4865
4870
4875
4880
4885
4890
4895
4900
4905
4910
4915
4920
4925
4930
4935
4940
4945
4950
4955
4960
4965
4970
4975
4980
4985
4990
4995
5000
5005
5010
5015
5020
5025
5030
5035
5040
5045
5050
5055
5060
5065
5070
5075
5080
5085
5090
5095
5100
5105
5110
5115
5120
5125
5130
5135
5140
5145
5150
5155
5160
5165
5170
5175
5180
5185
5190
5195
5200
5205
5210
5215
5220
5225
5230
5235
5240
5245
5250
5255
5260
5265
5270
5275
5280
5285
5290
5295
5300
5305
5310
5315
5320
5325
5330
5335
5340
5345
5350
5355
5360
5365
5370
5375
5380
5385
5390
5395
5400
5405
5410
5415
5420
5425
5430
5435
5440
5445
5450
5455
5460
5465
5470
5475
5480
5485
5490
5495
5500
5505
5510
5515
5520
5525
5530
5535
5540
5545
5550
5555
5560
5565
5570
5575
5580
5585
5590
5595
5600
5605
5610
5615
5620
5625
5630
5635
5640
5645
5650
5655
5660
5665
5670
5675
5680
5685
5690
5695
5700
5705
5710
5715
5720
5725
5730
5735
5740
5745
5750
5755
5760
5765
5770
5775
5780
5785
5790
5795
5800
5805
5810
5815
5820
5825
5830
5835
5840
5845
5850
5855
5860
5865
5870
5875
5880
5885
5890
5895
5900
5905
5910
5915
5920
5925
5930
5935
5940
5945
5950
5955
5960
5965
5970
5975
5980
5985
5990
5995
6000
6005
6010
6015
6020
6025
6030
6035
6040
6045
6050
6055
6060
6065
6070
6075
6080
6085
6090
6095
6100
6105
6110
6115
6120
6125
6130
6135
6140
6145
6150
6155
6160
6165
6170
6175
6180
6185
6190
6195
6200
6205
6210
6215
6220
6225
6230
6235
6240
6245
6250
6255
6260
6265
6270
6275
6280
6285
6290
6295
6300
6305
6310
6315
6320
6325
6330
6335
6340
6345
6350
6355
6360
6365
6370
6375
6380
6385
6390
6395
6400
6405
6410
6415
6420
6425
6430
6435
6440
6445
6450
6455
6460
6465
6470
6475
6480
6485
6490
6495
6500
6505
6510
6515
6520
6525
6530
6535
6540
6545
6550
6555
6560
6565
6570
6575
6580
6585
6590
6595
6600
6605
6610
6615
6620
6625
6630
6635
6640
6645
6650
6655
6660
6665
6670
6675
6680
6685
6690
6695
6700
6705
6710
6715
6720
6725
6730
6735
6740
6745
6750
6755
6760
6765
6770
6775
6780
6785
6790
6795
6800
6805
6810
6815
6820
6825
6830
6835
6840
6845
6850
6855
6860
6865
6870
6875
6880
6885
6890
6895
6900
6905
6910
6915
6920
6925
6930
6935
6940
6945
6950
6955
6960
6965
6970
6975
6980
6985
6990
6995
7000
7005
7010
7015
7020
7025
7030
7035
7040
7045
7050
7055
7060
7065
7070
7075
7080
7085
7090
7095
7100
7105
7110
7115
7120
7125
7130
7135
7140
7145
7150
7155
7160
7165
7170
7175
7180
7185
7190
7195
7200
7205
7210
7215
7220
7225
7230
7235
7240
7245
7250
7255
7260
7265
7270
7275
7280
7285
7290
7295
7300
7305
7310
7315
7320
7325
7330
7335
7340
7345
7350
7355
7360
7365
7370
7375
7380
7385
7390
7395
7400
7405
7410
7415
7420
7425
7430
7435
7440
7445
7450
7455
7460
7465
7470
7475
7480
7485
7490
7495
7500
7505
7510
7515
7520
7525
7530
7535
7540
7545
7550
7555
7560
7565
7570
7575
7580
7585
7590
7595
7600
7605
7610
7615
7620
7625
7630
7635
7640
7645
7650
7655
7660
7665
7670
7675
7680
7685
7690
7695
7700
7705
7710
7715
7720
7725
7730
7735
7740
7745
7750
7755
7760
7765
7770
7775
7780
7785
7790
7795
7800
7805
7810
7815
7820
7825
7830
7835
7840
7845
7850
7855
7860
7865
7870
7875
7880
7885
7890
7895
7900
7905
7910
7915
7920
7925
7930
7935
7940
7945
7950
7955
7960
7965
7970
7975
7980
7985
7990
7995
8000
8005
8010
8015
8020
8025
8030
8035
8040
8045
8050
8055
8060
8065
8070
8075
8080
8085
8090
8095
8100
8105
8110
8115
8120
8125
8130
8135
8140
8145
8150
8155
8160
8165
8170
8175
8180
8185
8190
8195
8200
8205
8210
8215
8220
8225
8230
8235
8240
8245
8250
8255
8260
8265
8270
8275
8280
8285
8290
8295
8300
8305
8310
8315
8320
8325
8330
8335
8340
8345
8350
8355
8360
8365
8370
8375
8380
8385
8390
8395
8400
8405
8410
8415
8420
8425
8430
8435
8440
8445
8450
8455
8460
8465
8470
8475
8480
8485
8490
8495
8500
8505
8510
8515
8520
8525
8530
8535
8540
8545
8550
8555
8560
8565
8570
8575
8580
8585
8590
8595
8600
8605
8610
8615
8620
8625
8630
8635
8640
8645
8650
8655
8660
8665
8670
8675
8680
8685
8690
8695
8700
8705
8710
8715
8720
8725
8730
8735
8740
8745
8750
8755
8760
8765
8770
8775
8780
8785
8790
8795
8800
8805
8810
8815
8820
8825
8830
8835
8840
8845
8850
8855
8860
8865
8870
8875
8880
8885
8890
8895
8900
8905
8910
8915
8920
8925
8930
8935
8940
8945
8950
8955
8960
8965
8970
8975
8980
8985
8990
8995
9000
9005
9010
9015
9020
9025
9030
9035
9040
9045
9050
9055
9060
9065
9070
9075
9080
9085
9090
9095
9100
9105
9110
9115
9120
9125
9130
9135
9140
9145
9150
9155
9160
9165
9170
9175
9180
9185
9190
9195
9200
9205
9210
9215
9220
9225
9230
9235
9240
9245
9250
9255
9260
9265
9270
9275
9280
9285
9290
9295
9300
9305
9310
9315
9320
9325
9330
9335
9340
9345
9350
9355
9360
9365
9370
9375

hybridizes under stringent conditions to a hybridization probe the nucleotide sequence of which comprises the sequence of SEQ ID NO:5 or an oligonucleotide that is complementary or antisense to such a probe.

5

11. The aptazyme construct of claim 1, wherein the construct comprises the oligonucleotide sequence of SEQ ID NO: 6:
CTT AGC TAC AAT ATG AAC TAA CGT AGC ATA TGA CGC AAT ATT
AAA CGG TAG TAT TAT GTT CAG ATA AGG TCG TTA ATC TTA CCC
CGG AAT TCT ATC CAG CT or an oligonucleotide sequence
that hybridizes under stringent conditions to a hybridization probe the nucleotide sequence of which comprises the sequence of SEQ ID NO:6 or an oligonucleotide that is complementary or antisense to such a probe.
12. The aptazyme construct of claim 1, wherein the effector molecule is endogenous.
- 20 13. The aptazyme construct of claim 1, wherein the effector molecule is exogenous.

14. The aptazyme construct of claim 1, wherein the effector molecule comprises theophylline.

15. An aptazyme construct comprising a regulatable Group I
5 intron aptamer oligonucleotide having an allosterically regulatable regulatory domain, wherein the kinetic parameters of the aptazyme on a target gene vary in response to the interaction of an allosteric effector molecule with the regulatory domain and the intron splicing reaction occurs in vitro.

16. The aptazyme construct of claim 15, wherein the aptamer comprises RNA.

17. The aptazyme construct of claim 15, wherein the aptamer comprises DNA.

18. The aptazyme construct of claim 15, wherein the aptazyme is at least partially single stranded.

20
19. The aptazyme of construct claim 15, wherein the aptazyme is at least partially double stranded.

20. The aptazyme of construct claim 15, wherein the construct comprises the oligonucleotide sequence of SEQ ID NO:1:
TAA TCT TAC CCC GGA ATT ATA TCC AGC TGC ATG TCA CCA TGC
AGA GCA GAC TAT ATC TCC AAC TTG TTA AAG CAA GTT GTC TAT
5 CGT TTC GAG TCA CTT GAC CCT ACT CCC CAA AGG GAT AGT CGT
TAG or an oligonucleotide sequence that hybridizes under stringent conditions to a hybridization probe the nucleotide sequence of which comprises the sequence of SEQ ID NO:1 or an oligonucleotide that is complementary or antisense to such a probe.

10 21. The aptazyme of construct claim 15, wherein the construct comprises the oligonucleotide sequence of SEQ ID NO:2:
GCC TGA GTA TAA GGT GAC TTA TAC TTG TAA TCT ATC TAA ACG
15 GGG AAC CTC TCT AGT AGA CAA TCC CGT GCT AAA TTA TAC CAG
CAT CGT CTT GAT GCC CTT GGC AGA TAA ATG CCT AAC GAC TAT
CCC TT or an oligonucleotide sequence that hybridizes under stringent conditions to a hybridization probe the nucleotide sequence of which comprises the sequence of SEQ ID NO:2 or an oligonucleotide that is complementary
20 or antisense to such a probe.

22. The aptazyme construct of claim 15, wherein the construct comprises the oligonucleotide sequence of SEQ ID NO:3:
GAT AAT ACG ACT CAC TAT AGG GAT CAA CGC TCA GTA GAT GTT
TTC TTG GGT TAA TTG AGG CCT GAG TAT AAG GTG or an
oligonucleotide sequence that hybridizes under stringent
conditions to a hybridization probe the nucleotide
sequence of which comprises the sequence of SEQ ID NO:3
or an oligonucleotide that is complementary or antisense
to such a probe.

23. The aptazyme construct of claim 15, wherein the construct comprises the oligonucleotide sequence of SEQ ID NO:4:
CTT AGC TAC AAT ATG AAC TAA CGT AGC ATA TGA CGC AAT ATT
AAA CGG TAG CAT TAT GTT CAG ATA AGG TCG TTA ATC TTA CCC
CGG AA or an oligonucleotide sequence that hybridizes
under stringent conditions to a hybridization probe the
nucleotide sequence of which comprises the sequence of
SEQ ID NO:4 or an oligonucleotide that is complementary
or antisense to such a probe.

24. The aptazyme construct of claim 15, wherein the construct comprises the oligonucleotide sequence of SEQ ID NO:5:
GCC TGA GTA TAA GGT GAC TTA TAC TAG TAA TCT ATC TAA ACG

GGG AAC CTC TCT AGT AGA CAA TCC CGT GCT AAA TN(1-4)A TAC
CAG CAT CGT CTT GAT GCC CTT GGC AGN(1-4) TAA ATG CCT AAC
GAC TAT CCC TT or an oligonucleotide sequence that
hybridizes under stringent conditions to a hybridization
probe the nucleotide sequence of which comprises the
sequence of SEQ ID NO:5 or an oligonucleotide that is
complementary or antisense to such a probe.

- 5
- 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320 330 340 350 360 370 380 390 400 410 420 430 440 450 460 470 480 490 500 510 520 530 540 550 560 570 580 590 600 610 620 630 640 650 660 670 680 690 700 710 720 730 740 750 760 770 780 790 800 810 820 830 840 850 860 870 880 890 900 910 920 930 940 950 960 970 980 990 1000 1010 1020 1030 1040 1050 1060 1070 1080 1090 1100 1110 1120 1130 1140 1150 1160 1170 1180 1190 1200 1210 1220 1230 1240 1250 1260 1270 1280 1290 1300 1310 1320 1330 1340 1350 1360 1370 1380 1390 1400 1410 1420 1430 1440 1450 1460 1470 1480 1490 1500 1510 1520 1530 1540 1550 1560 1570 1580 1590 1600 1610 1620 1630 1640 1650 1660 1670 1680 1690 1700 1710 1720 1730 1740 1750 1760 1770 1780 1790 1800 1810 1820 1830 1840 1850 1860 1870 1880 1890 1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100 2110 2120 2130 2140 2150 2160 2170 2180 2190 2200 2210 2220 2230 2240 2250 2260 2270 2280 2290 2300 2310 2320 2330 2340 2350 2360 2370 2380 2390 2400 2410 2420 2430 2440 2450 2460 2470 2480 2490 2500 2510 2520 2530 2540 2550 2560 2570 2580 2590 2595 2600 2605 2610 2615 2620 2625 2630 2635 2640 2645 2650 2655 2660 2665 2670 2675 2680 2685 2690 2695 2700 2705 2710 2715 2720 2725 2730 2735 2740 2745 2750 2755 2760 2765 2770 2775 2780 2785 2790 2795 2800 2805 2810 2815 2820 2825 2830 2835 2840 2845 2850 2855 2860 2865 2870 2875 2880 2885 2890 2895 2900 2905 2910 2915 2920 2925 2930 2935 2940 2945 2950 2955 2960 2965 2970 2975 2980 2985 2990 2995 3000 3005 3010 3015 3020 3025 3030 3035 3040 3045 3050 3055 3060 3065 3070 3075 3080 3085 3090 3095 3100 3105 3110 3115 3120 3125 3130 3135 3140 3145 3150 3155 3160 3165 3170 3175 3180 3185 3190 3195 3200 3205 3210 3215 3220 3225 3230 3235 3240 3245 3250 3255 3260 3265 3270 3275 3280 3285 3290 3295 3300 3305 3310 3315 3320 3325 3330 3335 3340 3345 3350 3355 3360 3365 3370 3375 3380 3385 3390 3395 3400 3405 3410 3415 3420 3425 3430 3435 3440 3445 3450 3455 3460 3465 3470 3475 3480 3485 3490 3495 3500 3505 3510 3515 3520 3525 3530 3535 3540 3545 3550 3555 3560 3565 3570 3575 3580 3585 3590 3595 3600 3605 3610 3615 3620 3625 3630 3635 3640 3645 3650 3655 3660 3665 3670 3675 3680 3685 3690 3695 3700 3705 3710 3715 3720 3725 3730 3735 3740 3745 3750 3755 3760 3765 3770 3775 3780 3785 3790 3795 3800 3805 3810 3815 3820 3825 3830 3835 3840 3845 3850 3855 3860 3865 3870 3875 3880 3885 3890 3895 3900 3905 3910 3915 3920 3925 3930 3935 3940 3945 3950 3955 3960 3965 3970 3975 3980 3985 3990 3995 4000 4005 4010 4015 4020 4025 4030 4035 4040 4045 4050 4055 4060 4065 4070 4075 4080 4085 4090 4095 4010 4020 4030 4040 4050 4060 4070 4080 4090 4100 4110 4120 4130 4140 4150 4160 4170 4180 4190 4110 4120 4130 4140 4150 4160 4170 4180 4190 4200 4210 4220 4230 4240 4250 4260 4270 4280 4290 4210 4220 4230 4240 4250 4260 4270 4280 4290 4300 4310 4320 4330 4340 4350 4360 4370 4380 4390 4310 4320 4330 4340 4350 4360 4370 4380 4390 4400 4410 4420 4430 4440 4450 4460 4470 4480 4490 4410 4420 4430 4440 4450 4460 4470 4480 4490 4500 4510 4520 4530 4540 4550 4560 4570 4580 4590 4510 4520 4530 4540 4550 4560 4570 4580 4590 4600 4610 4620 4630 4640 4650 4660 4670 4680 4690 4610 4620 4630 4640 4650 4660 4670 4680 4690 4700 4710 4720 4730 4740 4750 4760 4770 4780 4790 4710 4720 4730 4740 4750 4760 4770 4780 4790 4800 4810 4820 4830 4840 4850 4860 4870 4880 4890 4810 4820 4830 4840 4850 4860 4870 4880 4890 4900 4910 4920 4930 4940 4950 4960 4970 4980 4990 4910 4920 4930 4940 4950 4960 4970 4980 4990 5000 5010 5020 5030 5040 5050 5060 5070 5080 5090 5010 5020 5030 5040 5050 5060 5070 5080 5090 5100 5110 5120 5130 5140 5150 5160 5170 5180 5190 5110 5120 5130 5140 5150 5160 5170 5180 5190 5200 5210 5220 5230 5240 5250 5260 5270 5280 5290 5210 5220 5230 5240 5250 5260 5270 5280 5290 5300 5310 5320 5330 5340 5350 5360 5370 5380 5390 5310 5320 5330 5340 5350 5360 5370 5380 5390 5400 5410 5420 5430 5440 5450 5460 5470 5480 5490 5410 5420 5430 5440 5450 5460 5470 5480 5490 5500 5510 5520 5530 5540 5550 5560 5570 5580 5590 5510 5520 5530 5540 5550 5560 5570 5580 5590 5600 5610 5620 5630 5640 5650 5660 5670 5680 5690 5610 5620 5630 5640 5650 5660 5670 5680 5690 5700 5710 5720 5730 5740 5750 5760 5770 5780 5790 5710 5720 5730 5740 5750 5760 5770 5780 5790 5800 5810 5820 5830 5840 5850 5860 5870 5880 5890 5810 5820 5830 5840 5850 5860 5870 5880 5890 5900 5910 5920 5930 5940 5950 5960 5970 5980 5990 5910 5920 5930 5940 5950 5960 5970 5980 5990 6000 6010 6020 6030 6040 6050 6060 6070 6080 6090 6010 6020 6030 6040 6050 6060 6070 6080 6090 6100 6110 6120 6130 6140 6150 6160 6170 6180 6190 6110 6120 6130 6140 6150 6160 6170 6180 6190 6200 6210 6220 6230 6240 6250 6260 6270 6280 6290 6210 6220 6230 6240 6250 6260 6270 6280 6290 6300 6310 6320 6330 6340 6350 6360 6370 6380 6390 6310 6320 6330 6340 6350 6360 6370 6380 6390 6400 6410 6420 6430 6440 6450 6460 6470 6480 6490 6410 6420 6430 6440 6450 6460 6470 6480 6490 6500 6510 6520 6530 6540 6550 6560 6570 6580 6590 6510 6520 6530 6540 6550 6560 6570 6580 6590 6600 6610 6620 6630 6640 6650 6660 6670 6680 6690 6610 6620 6630 6640 6650 6660 6670 6680 6690 6700 6710 6720 6730 6740 6750 6760 6770 6780 6790 6710 6720 6730 6740 6750 6760 6770 6780 6790 6800 6810 6820 6830 6840 6850 6860 6870 6880 6890 6810 6820 6830 6840 6850 6860 6870 6880 6890 6900 6910 6920 6930 6940 6950 6960 6970 6980 6990 6910 6920 6930 6940 6950 6960 6970 6980 6990 7000 7010 7020 7030 7040 7050 7060 7070 7080 7090 7010 7020 7030 7040 7050 7060 7070 7080 7090 7100 7110 7120 7130 7140 7150 7160 7170 7180 7190 7110 7120 7130 7140 7150 7160 7170 7180 7190 7200 7210 7220 7230 7240 7250 7260 7270 7280 7290 7210 7220 7230 7240 7250 7260 7270 7280 7290 7300 7310 7320 7330 7340 7350 7360 7370 7380 7390 7310 7320 7330 7340 7350 7360 7370 7380 7390 7400 7410 7420 7430 7440 7450 7460 7470 7480 7490 7410 7420 7430 7440 7450 7460 7470 7480 7490 7500 7510 7520 7530 7540 7550 7560 7570 7580 7590 7510 7520 7530 7540 7550 7560 7570 7580 7590 7600 7610 7620 7630 7640 7650 7660 7670 7680 7690 7610 7620 7630 7640 7650 7660 7670 7680 7690 7700 7710 7720 7730 7740 7750 7760 7770 7780 7790 7710 7720 7730 7740 7750 7760 7770 7780 7790 7800 7810 7820 7830 7840 7850 7860 7870 7880 7890 7810 7820 7830 7840 7850 7860 7870 7880 7890 7900 7910 7920 7930 7940 7950 7960 7970 7980 7990 7910 7920 7930 7940 7950 7960 7970 7980 7990 8000 8010 8020 8030 8040 8050 8060 8070 8080 8090 8010 8020 8030 8040 8050 8060 8070 8080 8090 8100 8110 8120 8130 8140 8150 8160 8170 8180 8190 8110 8120 8130 8140 8150 8160 8170 8180 8190 8200 8210 8220 8230 8240 8250 8260 8270 8280 8290 8210 8220 8230 8240 8250 8260 8270 8280 8290 8300 8310 8320 8330 8340 8350 8360 8370 8380 8390 8310 8320 8330 8340 8350 8360 8370 8380 8390 8400 8410 8420 8430 8440 8450 8460 8470 8480 8490 8410 8420 8430 8440 8450 8460 8470 8480 8490 8500 8510 8520 8530 8540 8550 8560 8570 8580 8590 8510 8520 8530 8540 8550 8560 8570 8580 8590 8600 8610 8620 8630 8640 8650 8660 8670 8680 8690 8610 8620 8630 8640 8650 8660 8670 8680 8690 8700 8710 8720 8730 8740 8750 8760 8770 8780 8790 8710 8720 8730 8740 8750 8760 8770 8780 8790 8800 8810 8820 8830 8840 8850 8860 8870 8880 8890 8810 8820 8830 8840 8850 8860 8870 8880 8890 8900 8910 8920 8930 8940 8950 8960 8970 8980 8990 8910 8920 8930 8940 8950 8960 8970 8980 8990 9000 9010 9020 9030 9040 9050 9060 9070 9080 9090 9010 9020 9030 9040 9050 9060 9070 9080 9090 9100 9110 9120 9130 9140 9150 9160 9170 9180 9190 9110 9120 9130 9140 9150 9160 9170 9180 9190 9200 9210 9220 9230 9240 9250 9260 9270 9280 9290 9210 9220 9230 9240 9250 9260 9270 9280 9290 9300 9310 9320 9330 9340 9350 9360 9370 9380 9390 9310 9320 9330 9340 9350 9360 9370 9380 9390 9400 9410 9420 9430 9440 9450 9460 9470 9480 9490 9410 9420 9430 9440 9450 9460 9470 9480 9490 9500 9510 9520 9530 9540 9550 9560 9570 9580 9590 9510 9520 9530 9540 9550 9560 9570 9580 9590 9600 9610 9620 9630 9640 9650 9660 9670 9680 9690 9610 9620 9630 9640 9650 9660 9670 9680 9690 9700 9710 9720 9730 9740 9750 9760 9770 9780 9790 9710 9720 9730 9740 9750 9760 9770 9780 9790 9800 9810 9820 9830 9840 9850 9860 9870 9880 9890 9810 9820 9830 9840 9850 9860 9870 9880 9890 9900 9910 9920 9930 9940 9950 9960 9970 9980 9990 9910 9920 9930 9940 9950 9960 9970 9980 9990 10000 10010 10020 10030 10040 10050 10060 10070 10080 10090 10010 10020 10030 10040 10050 10060 10070 10080 10090 10100 10110 10120 10130 10140 10150 10160 10170 10180 10190 10110 10120 10130 10140 10150 10160 10170 10180 10190 10200 10210 10220 10230 10240 10250 10260 10270 10280 10290 10210 10220 10230 10240 10250 10260 10270 10280 10290 10300 10310 10320 10330 10340 10350 10360 10370 10380 10390 10310 10320 10330 10340 10350 10360 10370 10380 10390 10400 10410 10420 10430 10440 10450 10460 10470 10480 10490 10410 10420 10430 10440 10450 10460 10470 10480 10490 10500 10510 10520 10530 10540 10550 10560 10570 10580 10590 10510 10520 10530 10540 10550 10560 10570 10580 10590 10600 10610 10620 10630 10640 10650 10660 10670 10680 10690 10610 10620 10630 10640 10650 10660 10670 10680 10690 10700 10710 10720 10730 10740 10750 10760 10770 10780 10790 10710 10720 10730 10740 10750 10760 10770 10780 10790 10800 10810 10820 10830 10840 10850 10860 10870 10880 10890 10810 10820 10830 10840 10850 10860 10870 10880 10890 10900 10910 10920 10930 10940 10950 10960 10970 10980 10990 10910 10920 10930 10940 10950 10960 10970 10980 10990 11000 11010 11020 11030 11040 11050 11060 11070 11080 11090 11010 11020 11030 11040 11050 11060 11070 11080 11090 11100 11110 11120 11130 11140 11150 11160 11170 11180 11190 11110 11120 11130 11140 11150 11160 11170 11180 11190 11200 11210 11220 11230 11240 11250 11260 11270 11280 11290 11210 11220 11230 11240 11250 11260 11270 11280 11290 11300 11310 11320 11330 11340 11350 11360 11370 11380 11390 11310 11320 11330 11340 11350 11360 11370 11380 11390 11400 11410 11420 11430 11440 11450 11460 11470 11480 11490 11410 11420 11430 11440 11450 11460 11470 11480 11490 11500 11510 11520 11530 11540 11550 11560 11570 11580 11590 11510 11520 11530 11540 11550 11560 11570 11580 11590 11600 11610 11620 11630 11640 11650 11660 11670 11680 11690 11610 11620 11630 11640 11650 11660 11670 11680 11690 11700 11710 11720 11730 11740 11750 11760 11770 11780 11790 11710 11720 11730 11740 11750 11760 11770 11780 11790 11800 11810 11820 11830 11840 11850 11860 11870 11880 11890 11810 11820 11830 11840 11850 11860 11870 11880 11890 11900 11910 11920 11930 11940 11950 11960 11970 11980 11990 11910 11920 11930 11940 11950 11960 11970 11980 11990 12000 12010 12020 12030 12040 12050 12060 12070 12080 12090 12010 12020 12030 12040 12050 12060 12070 12080 12090 12100 12110 12120 12130 12140 12150 12160 12170 12180 12190 12110 12120 12130 12140 12150 12160 12170 12180 12190 12200 12210 12220 12230 12240 12250 12260 12270 12280 12290 12210 12220 12230 12240 12250 12260 12270 12280 12290 12300 12310 12320 12330 12340 12350 12360 12370 12380 12390 12310 12320 12330 12340 12350 12360 12370 12380 12390 12400 12410 12420 12430 12440 12450 12460 12470 12480 12490 12410 12420 12430 12440 12450 12460 12470 12480 12490 12500

27. The aptazyme construct of claim 15, wherein the effector molecule is exogenous.
28. The aptazyme construct of claim 15, wherein the effector molecule comprises theophylline.

5

DRAFT EDITION 9/10/06

ALLOSTERICALLY REGULATED RIBOZYMES

ABSTRACT

Regulatable aptazymes are ribozymes that are allosterically regulated by an effector molecule. Compositions and methods are provided to use regulatable aptazymes in assays to detect the presence of ligands or to detect activation of an aptazyme by an effector.

DRAFT FILE - DO NOT CITE

Figure 1.

Figure 2a-

Figure 2b.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

