ecom.tech

Эволюция Transformer: как меняется самая успешная архитектура в DL

Мурат Апишев, ecom.tech

О чём будет рассказ

- LLM основа современного NLP и AI
- Мультимодальные, мультидоменные, мультиязычные, инструктивные
- Сотни открытых и проприетарных моделей
- Доминирующая нейросетевая архитектура — Transformer
- С 2017 года предложено много архитектурных модификаций и внедрений
- Цель доклада: рассмотреть наиболее значимые и/или интересные из этих идей

О чём будет рассказ

- Токенизация
- Позиционное кодирование
- Нормализация и регуляризация
- Self-Attention
- Полносвязные слои
- State Space Models

Токенизация: базовые алгоритмы

- **Цель**: разбиение текст на структурные единицы для обработки моделью
- Варианты разбиения:
 - ▶ только по словам большой словарь, проблема ООV
 - только по символам низкое качество, очень длинный вход
 - ▶ по символьным N-грамма компромиссный вариант
- Базовые алгоритмы:
 - ► BPE:
 - стартовые токены все символы коллекции
 - 🕨 склейка часто идущих подряд пар токенов до целевого размера словаря
 - ► WordPiece:
 - похож на ВРЕ, но слияние не по частоте, а по правдоподобию
 - Unigram:
 - ▶ стартовые токены все слова, символы и частые символьные N-граммы
 - удаление заданной доли токенов с минимальным ухудшением правдоподобия
- ▶ Претокенизация разбиение текста на фрагменты перед их токенизацией

Токенизация: настройка

- ▶ Выделение цифр в отдельные токены и запрет их слияния
- Запрет на слияние алфавитных символов и цифр/пунктуации
- ▶ Byte-level BPE: стартовый словарь содержит 256 байтов, можно кодировать любые последовательности без UNK-токена
- Варьирование размера словаря:
 - больше ниже фертильность, короче последовательности
 - меньше меньше обучаемых параметров, больше данных на токен
- ightharpoonup Выбираются компромиссные варианты $\sim 10^4 \text{-} 10^5$
- Вариант реализации алгоритма:
 - ▶ SentencePiece построение словаря чисто по BPE
 - ► TikToken предварительный отбор частотных слов в качестве токенов
- ► Входные и выходные эмбеддинги модели могут разделять веса (как в ванильном варианте) или иметь свои собственные (например, Qwen)

Токенизация: настройка

- Размер словаря можно выбирать не только «на глаз»
- Строятся эмпирические оценки оптимального соотношения числа параметров и токенов в словаре (по аналогии с Chinchilla)
- Рост словаря от числа параметров сильно сублинейный
- У многих современных моделей словари слишком малы

Токенизация: разные типа претокенизации

- ▶ Galactica использует разную токенизацию для разных типов данных
- ▶ Обычные слова токенизируются на обычные токены
- Специализированные типы данных (числа, аминокислоты, ДНК, формулы) токенизируются по-символьно
- для этого они:
 - предварительно помечаются спецтокенами
 - обрабатываются регулярным выражением: между каждым символом вставляется спецразделитель
- На претокенизации применяется последовательность обработчиков, первый − по спецразделителю
- Пример токенизации:
 - ightharpoonup QWERTY ightharpoonup QWE RTY
 - ▶ [AMINO_S] QWERTY [AMINO_E] \rightarrow Q W E R T Y

Токенизация: морфология

- ightharpoonup Добавление морфологии для более осмысленной токенизации: undesirable ightharpoonup un desirable ightharpoonup un desirable
- ► FLOTA:
 - ightharpoonup заводится словарь V слов и морфем
 - ightharpoonup слово при токенизации ищется в V
 - если находится оно становится токеном
 - lacktriangle если нет пошагово уменьшается с обеих сторон, пока не найдётся в V
 - ▶ остаток слова проверяется до успеха или до лимита глубины рекурсии
 - всё, что не нашлось, токенизируется обученным ВРЕ
- ▶ MorphPiece
 - ► заводится KV-таблица перевода слов в токены-морфемы
 - ▶ слово ищется в таблице, если есть, токены берутся из неё, нет ВРЕ
 - нетривиальный процесс токенизации с эвристическим алгоритмом
- ▶ Идеи интересные, но реализации сырые и слабо проверенные

Позиционное кодирование: абсолютный подход

- ► Без дополнительной информации о позициях токенов любая модель на основе Transformer работает плохо
- ▶ В оригинальной реализации для позиционного кодирования
 - ightharpoonup каждой позиции i токена сопоставляется либо фиксированный вектор, содержащий различные значения синусов и косинусов от i, либо обучаемый вектор

ightharpoonup этот вектор добавляется к вектору эмбеддинга токена на позиции i перед отправкой в модель

- Просто, но есть проблемы:
 - ightharpoonup низкое качество кодирования \Rightarrow хуже результаты
 - низкое качество экстраполяции
 нет обобщения на больший контекст

https://wikidocs.net/167225

9 / 52

Позиционное кодирование: относительный подход

▶ Вместо позиции токена кодируется расстояние между парой токенов, входной эмбеддинга заменяется модификацией подсчёта self-attention:

$$e_{ij} \propto (x_i W^Q) (x_j W^K + a_{ij}^K)^T, \qquad z_i = \sum_{j=1}^n \operatorname{sm}(e)_{ij} (x_{ij} W^V + a_{ij}^V)$$

 e_{ij} – веса до нормировки, x_i, z_i – входной и выходной векторы токена

- lacktriangle Для всех голов внимания обучаются общие векторы $a^K_{ij}, a^V_{ij} \in \mathbb{R}^{d_z}$ на каждое расстояние i-j
- ightharpoonup В общем случае формулу e_{ij} для абсолютного случая можно переписать:
 - lacktriangle представим x_i как сумму позиционной x_i^p и смысловой x_i^e информации
 - ightharpoonup репараметризуем и избавимся от зависимости от x_i^p
 - новые параметры описывают относительную позиционную информацию
- ► Transformer-XL и DeBERTA используют разный вид и части репараметризованной формулы

Позиционное кодирование: сдвиги

- Встроить позиционную информацию можно просто сдвигом e_{ij} перед нормировкой для получения весов α_{ij} внимания
- В Т5 сдвиги − это 32 скаляра, распределённых в логарифмической шкале по 128 отступам (всё, что дальше − кодируется одним)
- ▶ Скаляры свои у каждой головы внимания, но общие для всех слоёв
- ▶ В AliBi скаляры для i-j не обучаются, а считаются как m(i-j), m-1 заданное на старте число, своё для каждой головы и общее для слоёв:

Позиционное кодирование: вращения

- RoPE самый популярный метод позиционного кодирования, почти все современные LLM обучаются с ним или его модификациями
- ightharpoonup Обощённая формула для e_{ij} (без учёта позиционных эмбеддингов):

$$e_{ij} \propto \langle f_q(x_i, i), f_k(x_j, j) \rangle$$

lacktriangle Можно подобрать такие функции g, f_q, f_k , что будет верно равенство

$$\langle f_q(x_i,i), f_k(x_j,j) \rangle = g(x_i,x_j,i-j)$$

ightharpoonup Можно доказать, что для $d_z=2$ подойдёт

$$f_q(x_i, i) = \begin{pmatrix} \cos i\theta & -\sin i\theta \\ \sin i\theta & \cos i\theta \end{pmatrix} \begin{pmatrix} W_{11}^Q & W_{12}^Q \\ W_{21}^Q & W_{22}^Q \end{pmatrix} \begin{pmatrix} x_i^1 \\ x_i^2 \end{pmatrix}$$

▶ Преобразование легко обобщается на любое чётное d_z — достаточно применить его к каждой паре координат x_i

Позиционное кодирование: вращения

- Применение RoPE заключается в повороте вектора запроса/ключа на угол, зависящий от индекса его позиции
- Поворот обоих векторов на один угол, т.е. смещение позиций без изменения расстояния, сохранит значение скалярного произведения

Позиционное кодирование: вращения с интерполяциями

- ▶ RoPE, как и прочие методы, слабо адаптируется к росту длины контекста
- ▶ Идея PI RoPE и SuperHOT RoPE: обучить модель с RoPE и вложить увеличенный контекст в тот же диапазон с минимальным дообучением
- ▶ Модификации PI RoPE точнее настраивают сжатие диапазона для каждой пары признаков в RoPE, улучшают качество и не требуют дообучения

Нормализация: LayerNorm

- Нормализация повышает скорость и стабильность обучения
- ▶ В моделях CV распространена более старая Batch-нормализация, но в Transformer её использовать неудобно:
 - нужны большие батчи для сбора статистики
 - lacktriangle в NLP у последовательностей разная длина ightarrow флуктуации статистик
- ▶ Альтернатива Layer-нормализация вектора каждого токена

Нормализация: порядок встраивания

- ▶ В оригинальном Transformer слои нормализации идут после MHSA и FFN с residual connections (Post-LN)
- Это вариант менее стабилен и больше подвержен влиянию LR и warmup, в современных моделях доминирует Pre-LN
- ➤ Вариации типа Sub-LN в Magneto (Pre-LN + дополнительный LayerNorm внутри блоков MHSA и FFN) пока не получили широкого распространения

Нормализация: RMSNorm

- ► LayerNorm борется с проблемой сдвига весов и входов путём центрирования и нормирования на отклонение активаций а
- ▶ Изначально считалось, что обе операции существенно важны
- ▶ RMSNorm модификация LayerNorm, в которой нет центрирования:

$$\hat{a}_i = \frac{a_i - \chi_i}{\sigma}, \quad \mu = 1 \sum_{i=1}^n a_i, \quad \sigma = \sqrt{\frac{1}{n} \sum_{i=1}^n (a_i - \chi_i)^2} = \text{RMS}(a)$$

- Такой вариант сохраняет качество и быстрее считается
- RMSNorm стал стандартом для современных LLM (LLaMA, Qwen, Mistral)

Model	Time
Baseline	315±6.30s
BatchNorm-Everywhere	$348\pm10.5s$
BatchNorm-LSTM	345±11.2s
LayerNorm	$392 \pm 5.70s$
RMSNorm	333±5.20s (15.1%)
pRMSNorm	330±5.50s (15.8%)

Регуляризация: Dropout

- ightharpoonup Базовый вариант применения с $p_{
 m dropout}=0.1$:
 - ▶ к выходу каждого блока MHSA и FFN до residual connection
 - к сумме эмбеддингов токенов и позиций
- ▶ Data Dropout удаление целых токенов
- ► Layer Dropout удаление целых слоёв
- ▶ Feature Dropout обычное удаление нейронов, но в блоках MHSA и FFN
- ► DropHead удаление целых голов MHSA
- ▶ DropAttention удаление весов для последовательности в MHSA
- ► Curriculum Dropout управление долей удаляемых нейронов:
 - на старте обучения лучше удалять меньше, чтобы не мешать переходу весов из случайной инициализации в осмысленные структуры
 - ▶ далее усиление dropout уменьшает взаимозависимость нейронов

Регуляризация: Dropout

- ▶ DropDim:
 - вместо нейронов зануляется часть элементов выходного вектора с перенормировкой оставшихся
 - ▶ применяется к каждому блоку MHSA и FFN после residual connection
 - удалятся могут как отдельные случайные элементы, так и спаны
- ► LayerShuffle развитие Layer Dropout, не просто удаление слоёв на обучении и инференсе, но и их перемешивание:
 - LayerShuffle порядок слоёв случайно меняется для каждого батча
 - ► LayerShuffle-position слой получает эмбеддинг своей текущей позиции
 - ► LayerShuffle-predict предсказывает свою позицию по своему выходу
- ▶ Слои робастных моделей можно извлекать и перемешивать
- ▶ Работ по dropout-регуляризации много, но пока подходы остаются нишевыми за исключением идеи DropAttention

Механизм внимания: базовый MHSA

$$e_{ij} \propto (x_i W^Q) (x_j W^K)^T, \quad z_i = \sum_{j=1}^n \operatorname{sm}(e)_{ij} (x_{ij} W^V)$$

- Основные проблемы:
 - ightharpoonup сложность подсчёта SA $O(n^2)$
 - ightharpoonup потребление памяти при кэшировании векторов K и V
- В результате прямое увеличение длины контекста неэффективно
- ▶ Идеи модификаций MHSA:
 - разреженное и локальное внимание
 - рекуррентная обработка
 - понижение размерностей векторов
 - использование KNN-индексов
 - иерархическая обработка
 - ightharpoonup уменьшение числа наборов K и V

Механизм внимания: разреженность и локальность

- ▶ Матрица весов внимания существенно разреженная
- ► Если вычислять только нужные подмножества, можно существенно уменьшить вычисления с небольшим ухудшением качества
- ▶ Основные варианты подсчёта весов внимания для токена:
 - с непосредственными соседями (внутри групп или SWA)
 - c соседями с заданным Dilation Rate разреживанием (которое можно усиливать на верхних слоях)
 - со случайными токенами последовательности
 - с глобальными токенами (они со всеми, все с ними)
- ▶ Работы: Sparse Transformer, Longformer, Big Bird, LongT5, LongNet
- ▶ Те же идеи используют GPT-3, Qwen, Mistral, Qwen 2

Механизм внимания: рекурентность по сегментам

- Идея: разделить длинную последовательность на сегменты, обрабатывать один за другим и передавать вперёд информацию
- ► Transformer-XL:
 - ▶ выходы self-attention текущего сегмента кэшируются во всех блоках
 - lacktriangle при обработке i-го сегмента из кэша берутся выходы (i-1)-го
 - lacktriangle выходы двух сегментов конкатенируются, по ним считаются K и V
 - ▶ Q только по токенам текущего сегмента, градиенты тоже только по ним

Механизм внимания: рекурентность по сегментам

► RMT:

- ▶ в начало каждого сегмента добавляются М токенов «векторов памяти»
- ightharpoonup если в основе кодировщик выходные векторы i-го сегмента для этих токенов идут первыми на вход для i+1-го сегмента
- lacktriangle если декодировщик векторы памяти есть ещё и в конце, первые несут информацию из i-1-го сегмента, а векторы последних понесут в i+1-й
- механизм добавляется в модель без архитектурных изменений

Механизм внимания: число ключей и значений

- $lackbox{Q}$ должны быть свои для каждой головы внимания, K и V нет, их можно разделять между головами для экономии вычислений и памяти
- ightharpoonup MQA один набор K и V на все головы
- ightharpoonup GQA один набор K и V на каждую группу голов
- ► MLA
 - на токен вычисляется и кэшируется один вектор большей размерности
 - ightharpoonup он проектируется общей весовой матрицей в набор K/V для всех голов

Механизм внимания: иерархическая обработка

▶ Top Down Transformer: локальное внимание + полный Cross-SA

▶ SLED: локальное внимание с контекстом, Cross-SA в декодировщике

Механизм внимания: иерархическая обработка

- Кодировщик:
 - рассчитывает self-attention параллельно для всей последовательности
 - для генерации должен пересчитывать все заново для каждого токена
- Декодировщик:
 - paccчитывает self-attention эффективно каждого для токена
 - должен хранить большие кэши и долго обрабатывает префикс последовательности перед генерацией
- ▶ Полный Transformer:
 - обрабатывает префикс быстро
 - рассчитывает self-attention эффективно каждого для токена
 - при генерации не использует кодировщик и тоже хранит большие кэши
- ▶ Идея: архитектура типа «кодировщик-декодировщик», но с
 - авторегрессионной обработкой префикса
 - использованием кодировщика и для генерируемых токенов
 - уменьшением размеров кэшей в декодировщике

Механизм внимания: иерархическая обработка

- YOCO: декодировщик разбивается на два блока равного размера по слоям, оба обрабатывают весь вход
- Нижний обычный декодировщик, но за счёт эффективного MHSA (SWA, gRetNet) работает быстро и с кэшем размера O(1)
- ► Его выходы кэш К и V для верхнего блока слоёв
- В верхнем полный МНSA, но с Cross-SA, в котором на всех слоях общие K и V из кэша
- ▶ Префикс обрабатывается только нижним блоком — ускорение

Механизм внимания: сегменты и kNN-индексы

- ► Memorizing Transformer:
 - ► Transformer-XL, в последнем блоке добавляется kNN-Augmented Attention
 - ightharpoonup блок памяти для K и V размера M, добавление в конец с вытеснением
 - ightharpoonup для Q ищутся kNN, с ними считается MHSA (блок на голову), результаты складываются с обычными с обучаемым весом
- ► Unlimiformer:
 - **р** полный Transformer, сегмент с контекстом обрабатывается локальным вниманием в кодировщике, кэшируются его выходы h_e
 - слои декодировщика используют kNN-Augmented Attention в Cross-SA
 - lacktriangle хранение h_e (общих для всех слоёв) вместо K и V экономит память

$$QK^{T} = (h_{d}W^{Q})(h_{e}W^{K})^{T} = (h_{d}W^{Q})((W^{K})^{T}h_{e}^{T}) = (h_{d}W^{Q}(W^{K})^{T})h_{e}^{T}$$

► Focused Transformer (LongLLaMA): идея схожа с Memorizing Transformer, упор на технику обучения модели работе с кэшем

Механизм внимания: RetNet

- ► RetNet близок к SSM (будет далее), хотя так не позиционируется
- ightharpoonup Рекуррентная формулировка для одномерных входа и выхода v_n и o_n :

$$s_n = As_{n-1} + K_n^T v_n,$$
 $o_n = Q_n s_n = \sum_{m=1}^n Q_n A^{n-m} K_m^T v_m$

 s_n – вектор состояния, A – матрица перехода, $K_n,\,Q_n$ – векторы, получаемые умножением входа на обучаемые матрицы W_Q и W_K

- ightharpoonup Диагонализация матрицы A и представление её в специальном виде позволяют свести рекурентное вычисление к параллельному
- lacktriangle Для входа x из набора векторов и матрицы параметров W_V для получения v_n

$$Q = (xW_Q) \odot \Theta, \qquad K = (xW_K) \odot \overline{\Theta}, \qquad V = xW_V$$

Retention(
$$x$$
) = ($QK^T \odot D$) V

с поправкой на дополнительные матрицы параметров Θ и D (зависит от γ) получается похоже на MHSA (с xPos – разновидностью RoPE)

Механизм внимания: RetNet

Для инференса Retention сохраняется рекурентное представление:

$$S_n = \gamma S_{n-1} + K_n^T V_n, \quad \text{Retention}(x_n) = Q_n S_n$$

 Q, K, V, γ – те же, что и параллельном варианте

- Гибридное представление для обучения на длинном входе:
 - вход разбивается на части, каждая обрабатывается параллельно
 - между частями обработка рекуррентная (родственно Cross-SA)
- Блок RetNet Multi-Head Retention + LayerNorm + FFN (как в Transformer)

Полносвязные слои: базовый FFN

- ightharpoonup Базовый вариант (без bias): $\max(xW_1,0)W_2$
- ▶ Блоки FFN занимают до 2/3 от общего числа параметров сети
- ► Self-attention определяет важность прочих токенов для текущего
- FFN обрабатывает эту информацию и содержит основные «знания» модели, включая фактологию

- ► FFN может рассматриваться как KV-хранилище, первый слой содержит ключи, второй значения
- Есть попытки редактировать и встраивать факты через изменение весов FFN обученной модели

Полносвязные слои: функции активации

- ► FFN с ReLU не единственный возможный вариант блока с полносвязными слоями
- Пробуют различные активации:
 - ightharpoonup GeLU = $x\Phi(x)$, $\Phi(x)$ функция распределения $\mathcal{N}(0,1)$
 - ightharpoonup Swish = $x\sigma(eta x)$, $\sigma(x)$ сигмоида, eta гиперпараметр (при eta=1 SiLU)
- ▶ Все функции гладкие модификации ReLU без проблемы большого числа нулевых бесполезных нейронов и резкого перехода в нуле
- ▶ Несмотря на эксперименты в разных работах, нет однозначного мнения о том, какая из них лучше
- ▶ GeLU используется в FFN блоках BERT и GPT-2

Полносвязные слои: GLU

► Gated Linear Units:

$$\mathrm{GLU}(x) = \sigma(xW_1) \otimes xW_2$$
,

- \otimes покомпонентное умножение
- ▶ B GLU тоже можно заменять активации, популярные варианты GeGLU (GeLU) и SwiGLU (Swish / SiLU)

- ▶ В блоке FFN можно заменить первый полносвязный слой и функцию активации на GLU
- ▶ Весовых матриц становится 3, для сохранения общего числа параметров внутренняя размерность блока уменьшается на треть
- Модификация показывает хорошие результаты и активно используется в известных моделях (LLaMA, Qwen, Mistral, Griffin)

Полносвязные слои: КАМ

- Основная задача нейронной сети приблизить на основе данных некоторую функцию в многомерном пространстве аргументов
- FFN работают благодаря универсальной теореме аппроксимации:

Сеть прямого распространения с одним слоем с сигмоидальной активацией может приблизить любую функцию многих переменных с заданной точностью, при условии достаточного числа нейронов и оптимально подобранных весов

- ► FFN·
 - рёбра сети обучаемые веса
 - узлы сети фиксированные активации
- Альтернативный подход основан на теореме Колмогорова-Арнольда:

Любая непрерывная функция многих переменных может быть представлена в виде суперпозиции непрерывных функций одной переменной с использованием сложения

Полносвязные слои: КАП

- ► KAN:
 - рёбра сети обучаемые активации
 - узлы сети операция сложения
- lacktriangle Теорема описывает двухслойную KAN с заданной размерностью слоёв n o 2n+1 o 1
- Глубокий КАП строится инженерно путём стекинга слоёв

Полносвязные слои: КАП

- lacktriangle Каждая функция активации имеет вид $\phi(x)=w_b\,b(x)+w_s\,s(x)$, где
 - $b(x) = \mathrm{SiLU}(x)$ по сути residual connection с активацией
 - $ightharpoonup s(x) = \sum_i c_i B_i(x)$ линейная комбинация сплайнов, веса c_i обучаемые
 - w_b, w_s обучаемые веса слагаемых (в целом не очень нужные)
- Кубические В-сплайны локальны и хорошо комбинируются для аппроксимации сложных функций

Полносвязные слои: КАП

- ightharpoonup В сети с L слоями ширины N число параметров у
 - ightharpoonup FFN $O(N^2L)$
 - ightharpoonup KAN со степенью сплайнов k на G интервалах $O(N^2L(G+k))$
- ightharpoonup FFN более эффективен с т.з. числа параметров и учится на порядок быстрее, но KAN для того же качества требует сильно меньшего N
- ▶ Меньше N + сплайны вместо весов = лучше интерпретируемость
- ► KAN выглядит перспективно и активно развивается:
 - работы по модификации сети (полиномы Чебышева, вейвлеты или коэффициенты Фурье вместо сплайнов)
 - ▶ работы по повышению производительности (efficient-kan)
- ▶ Но экспериментальных доказательств превосходства над FFN в общем случае недостаточно, часть результатов противоречивы

Полносвязные слои: Mixture-of-Experts

- Если учить оптимально, то больше весов ⇒ выше качество
- ► Но больше весов ⇒ медленнее инференс
- ► Решение Mixture-of-Experts, «экспертами» становятся FFN-слои
- Вектор слова после self-attention идёт Router, тот направляет его к лучшим экспертам

- ▶ Параметров сильно больше, но при обработке каждого токена активируется небольшая часть
- ▶ Эксперт учится решать свои типы задач, имеет свои доменные знания

Полносвязные слои: проблемы МоЕ

- ► Нагрузка распределяется по экспертам неравномерно, из-за чего сеть вырождается, качество падает
- Изначально подход внедрялся в огромные приватные модели, что замедляло его популяризацию
- Вместо доменной информации эксперты улавливают родственные токены: имена, артикли, спецсимволы, определённые части речи

Punctuation	Layer 2 Layer 6	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Conjunctions and articles	Layer 3	The t
	Layer 6	the the if? a designed does been is not
Verbs	Layer 1	died falling identified fell closed left posted lost felt left said read miss place struggling falling signed died falling designed based disagree submitted develop

Полносвязные слои: развитие MoE, Mixtral

- Регуляризация loss для Router для балансировки распределения и добавление ограничений на ёмкость эксперта
- ▶ Популярная открытая сравнительно небольшая модель Mixtral
 - ▶ 8 экспертов блоков FFN со SwiGLU, 2 активных на токен
 - 47В параметров в целом, 13В активных на токен
 - эффективная реализация за счёт разреженного матричного умножения

```
Question: Solve -42*r + 27*c = -1167 and 130*r

Answer: 4

Question: Calculate -841880142.544 + 411127.

Answer: -841469015.544

Question: Let x(g) = 9*g + 1. Let q(c) = 2*c + 1.
```

A model airplane flies slower when flying into th wind and faster with wind at its back. When launch right angles to the wind, a cross wind, its ground compared with flying in still air is (A) the same (B) greater (C) less (D) either grea or less depending on wind speed

Conf

Полносвязные слои: развитие MoE, DeepSeekMoE

▶ DeepSeekMoE:

- вектор токена разделяется на части, каждая идёт своему эксперту
- экспертов становится больше, у каждого меньшая размерность
- добавляются общие эксперты, в которые части токена попадают всегда
- При том же объёме вычислений и числе параметров качество и скорость инференса выше, чем у обычного МоЕ
- Эксперты более доменные и важные удаление 2-3 ощутимо роняет перплексию
- ► В версии 2 добавляется Multi-Head Latent Attention для уменьшения кэшей

Полносвязные слои: развитие MoE, PEER

- Много небольших узких экспертов может быть лучше, чем мало больших и общих, предположения:
 - выше качество в экспериментах
 - > лучше интерпретируемость
 - возможность обучения на потоках данных без забывания
- ▶ PEER обучения МоЕ с большим числом экспертов из одного нейрона:
 - слой набор из N экспертов

$$e_i(x) = \sigma(u_i^T x) v_i, \quad x, u_i, v_i \in \mathbb{R}^n, \quad i = 1, \dots N$$

и их ключей $k_i \in \mathbb{R}^d, \ i=1,\dots N$

- lacktriangle вектор токена x проектируется в запрос $q(x) \in \mathbb{R}^d$
- ightharpoonup подсчёт как в self-attention, выбираются топ-K лучших экспертов
- ightharpoonup векторы $e_i(x)$ выбранных экспертов складываются с весами из softmax
- ightharpoonup как и в MHSA, можно по x генерировать h>1 запросов q(x)

Полносвязные слои: развитие MoE, PEER

- ightharpoonup Если K=1, то h голов такого MoE равны по размеру одному эксперту обычного MoE с h нейронами
- Но вместо фиксированной матрицы получаются разные комбинации строк для разных токенов и запросных весов
- ► Слой может заменять FFN или встраиваться между обученными блоками

State Space Models: основы

- Основа Transformer Self-Attention, его можно не оптимизировать, а заменить на новый архитектурный компонент
- ► Transformer: качественно, но неэффективно (запоминается весь вход)
- ► RNN: некачественно, но эффективно (запоминается лишь вектор состояния)
- SSM: решение для качественной и быстрой обработки длинных контекстов
- ▶ В обзоре Mamba-360 описывается таксономия из более 20 моделей в 4 группах
- ▶ Пусть h(t) функция состояния, x(t) и y(t) одномерные входной и выходной сигналы, A, B, C, D матрицы параметров, тогда SSM выглядит так:

$$h'(t) = Ah(t) + Bx(t),$$
 $y(t) = Ch(t) + Dx(t)$

lacktriangle Для применения в обработке токенов нужна дискретизация с шагом Δ , пусть $h_t = h(t), \; h_{t+1} = h(t+\Delta), \;$ тогда

$$h_t = \overline{A}h_{t-1} + \overline{B}x_t, \qquad y_t = Ch_t + Dx_t$$

ightharpoons \overline{A} и \overline{B} могут считаться по-разному в зависимости от дискретизации

State Space Models: основы

- Смысл наборов параметров:
 - $ightharpoonup \overline{A}$ что <u>забыть</u> из текущего состояния
 - $ightharpoonup \overline{B}$ что <u>запомнить</u> из текущего входа
 - С как использовать состояние для предсказания
 - D как использовать вход для предсказания

- $h_{t} \quad \bar{A} \quad h_{t-1} \quad \bar{B} \quad x_{t}$ $= \quad \boxed{ } \quad + \quad \boxed{ } \quad \boxed{ } \quad \boxed{ }$ $y_{t} \quad C \quad h_{t} \quad D \quad x_{t}$ $= \quad \boxed{ } \quad + \quad \boxed{ } \quad \boxed{ } \quad \boxed{ }$
- lacktriangle Δ определяет размер шага силу фокуса на текущий вход x_t
- \triangleright D вариант residual connection, легко считается, обычно опускается
- ► Наивная реализация обрабатывает элементы один за другим (как RNN)
- ▶ Для работы с N-мерным входом создаётся N копий базовой модели, обучаемых совместно (расширение состояния, чего нет в RNN)
- ▶ В отличие от обычных RNN и LSTM, в SSM нет нелинейных активаций
- Рекурентные формулы SSM можно переписать в виде дискретной свёртки

State Space Models: S4

▶ В SSM билинейная дискретизация даёт формулы

$$\overline{A} = (I - \Delta/2 \cdot A)^{-1}(I + \Delta/2 \cdot A), \qquad \overline{B} = (I - \Delta/2 \cdot A)^{-1}\Delta B$$

▶ На этапе обучения рекуррентная форма преобразуется в свёрточную

$$y = x * \overline{K}, \qquad \overline{K} = (C\overline{B}, C\overline{AB}, \dots, C\overline{A}^K\overline{B}, \dots)$$

- ► В «чистом» виде такая модель непригодна для работы:
 - матрица А произвольного вида приводит к затуханию/взрыву градиентов
 - ightharpoonup наивное вычисление свертки \overline{K} вычислительно ёмкое
- Проблема с А решается путём инициализации т.н. НіРРО матрицей
- ▶ В S4 предлагается метод Diagonal Plus Low-Rank (DPLR) для эффективного подсчёта свёртки
 - ightharpoonup вводится репараметризация специального вида для A, все матрицы параметров в комплексном пространстве
 - ▶ вместо прямого вычисления свёртки вычисление некоторого ядра DPLR

State Space Models: Mamba

- ▶ Параметры модели в S4 не зависят от входа (Linear Time Invariance):
 - рекурентную формулу можно выразить свёрткой и эффективно обрабатывать последовательность целиком
 - хуже улавливаются сложные зависимости, ниже качество
- ▶ Mamba основана на Selective SSM: параметры B, C и Δ становятся зависимыми от входа (моделирование линейными слоями)
- Качество работы растёт, но исчезает возможность вычисления свёрткой

```
Algorithm 1 SSM (S4)
                                                                                           Algorithm 2 SSM + Selection (S6)
Input: x : (B, L, D)
                                                                                           Input: x : (B, L, D)
Output: y : (B, L, D)
                                                                                           Output: y : (B, L, D)
 1: A:(D,N) \leftarrow Parameter
                                                                                             1: A:(D,N) \leftarrow Parameter
                                      \triangleright Represents structured N \times N matrix
                                                                                                                                 \triangleright Represents structured N \times N matrix
 2: B:(D,N) \leftarrow Parameter
                                                                                             2: \mathbf{B}: (B, L, N) \leftarrow s_B(x)
                                                                                             3: C: (B, L, N) \leftarrow s_C(x)
 3: C: (D, N) \leftarrow Parameter
 4: \Delta : (D) \leftarrow \tau_{\Lambda}(Parameter)
                                                                                             4: \Delta: (B, L, D) \leftarrow \tau_{\Lambda}(Parameter + s_{\Lambda}(x))
  5: \overline{A}, \overline{B}: (D, N) \leftarrow discretize(\Delta, A, B)
                                                                                             5: \overline{A}, \overline{B}: (B, L, D, N) \leftarrow discretize(\Delta, A, B)
 6: y \leftarrow SSM(\overline{A}, \overline{B}, C)(x)
                                                                                             6: y \leftarrow SSM(\overline{A}, \overline{B}, C)(x)
                             ▶ Time-invariant: recurrence or convolution
                                                                                                                                ▶ Time-varying: recurrence (scan) only
 7: return y
                                                                                             7: return y
```

State Space Models: Mamba

- Для массива чисел массив его кумулятивных сумм вычисляется параллельно:
 reduce с сохранением промежуточных значений + обратный проход
- Эта процедура применима для любой последовательности с бинарным оператором, удовлетворяющим ряду условий
- ▶ Mamba SSM схожа с Linear RNN и вычисление последовательности её состояний можно произвести параллельно, правильно задав входы и оператор
- ► Как и FlashAttention для MHSA, SSM в Mamba можно оптимизировать вычислительно и по памяти:
 - ightharpoonup параметры модели (Δ, A, B, C) сразу копируются из HBM в быструю память SRAM, где выполняются и дискретизация, и сканирование
 - ightharpoonup оба шага вместе с умножением на C реализуются одним ядром (fusing)
 - длинный контекст разбивается на части, промежуточные значения после обработки предыдущих частей остаются в SRAM
 - ▶ нужные промежуточные состояния на backward-шаге пересчитываются

State Space Models: Mamba

- ▶ Верхнеуровнево Mamba похожа на Transformer:
 - на входе эмбеддинги токенов (в оригинале без позиционной информации)
 - модель состоит из блоков Mamba
 - каждый блок GLU со вставкой в линейный путь свёрточного слоя, активации и SSM
- ► Сравнения Mamba и Transformer (с Flash Attention 2) равного размера:
 - качество у Mamba во многих задачах выше
 - лучше масштабирование по длине входа
 - потребление памяти и скорость чуть хуже
- В экспериментах Mamba превосходит другие SSM
- Это самый перспективный кандидат для замены Transformer c MHSA

State Space Models: Mamba 2 и Hydra

- ▶ В Mamba 2 существенно развивается теория структурных SSM:
 - доказывается эквивалентность SSM и алгоритмов перемножения матриц специального вида
 - развивается теория Structured Masked Attention на основе Linear Attention
 - ▶ вводится общий теоретический фреймворк Structured State Space Duality
 - ▶ в его рамках показывается близость SSM и SMA
- ▶ На практике Mamba 2
 - учится быстрее первой версии
 - имеет выше качество, в т.ч. за счёт увеличения вектора состояния
- Помимо статьи авторы выпустили набор хороших постов
- SSM могут быть адаптированы для двунаправленной обработки последовательности и конкурировать с кодировщиками Transformer
- ▶ Яркий свежий пример модель Hydra от создателей Mamba

Основные выводы

- ▶ При обучении LLM на основе Transformer выделились общепринятые практики:
 - ► Byte-level BPE
 - ▶ RoPE и его вариации
 - Pre-LayerNorm, RMSNorm
 - Attention Dropout
 - SwiGLU
 - Sparse Attention, SWA, GQA
 - MoE
- ▶ Из множества исследований больше всего выделяются модели типа SSM:
 - рекуррентная природа с возможностью эффективных вычислений соединяет лучшие черты Transformer и RNN
 - активное развитие теории и техник работ с GPU/TPU создаёт фундамент для возможного сдвига парадигмы
- Transformer активно применяется в мультимодальных моделях и в RAG-системах – темы для отдельных докладов

Спасибо за внимание!

Mypaт Апишев, ecom.tech Технический руководитель поиска для «Мегамаркета» mel-lain@yandex.ru

ecom.tech

