Buying Integers

Buying Integers

Let's assume that you have n integers, A_1 , A_2 , A_3 ... A_n

Let's define,

 $E = \text{Number of pairs } (i,j) \text{ such that } i < j \text{ and } (A_i + A_j) \text{ are even }.$

 $O = Number of pairs (i,j) such that i < j and (<math>A_i + A_j$) are odd.

D = | E-O |

That means, D = (E-O) if $(E-O) \ge 0$, -(E-O) otherwise.

Unfortunately, you do have \mathbf{n} but those \mathbf{n} integers are lost. You will have to buy them again. Before going to the market, you have decided that you will buy \mathbf{n} integers in such a way that the value of \mathbf{D} will be as small as possible, as you will have to pay \mathbf{D} golden coins, to buy them.

Now,you are wondering, what that minimum D [Let's say it $\textbf{D}_{\boldsymbol{min}}$] will be .

Input

First line of the input file will contain the number of test cases, $T \le 1000000$, followed by T lines, each containing an integer n ($1 \le n \le 10^9$).

Output

For each case, print the case number starting from 1 and D_{min} for the value of n in that particular case. See the sample output for exact formatting.

Sample Input	Output for Sample Input
3	Case 1:1
3	Case 2: 0
4	Case 3: 2
5	

 $\textbf{Warning}: \text{Input file is huge, please use faster input and output methods (e.g. printf and scanf in C++)} \; .$

Problem Setter: Momontho Mashak Monmoy

Special Thanks: Muhammad Ridowan