Step-1

To find all solutions to the equation $e^{i\alpha} = -1$, and all solutions to the equation $e^{i\theta} = i$

It is known that;

$$e^{i\theta} = \cos\theta + i\sin\theta$$

Where, θ is arbitrary angle;

$$\cos\theta = -1$$
 For $\theta = (2k+1)\pi$

$$\sin \theta = 1$$
 For $\theta = (2k+1)\frac{\pi}{2}$, where k is even that is $k = 0, 2, 4, ...$

Step-2

Now, consider the equation $e^{ix} = -1$

This implies;

$$e^{ix} = \cos(2k+1)\pi + i\sin(2k+1)\pi$$
 for $k = 0,1,2,...$

$$e^{ix} = e^{i(2k+1)\pi}$$
 for $k = 0, 1, 2, ...$

$$ix = i(2k+1)\pi$$
 or $k = 0,1,2,...$

This implies;

$$x = (2k+1)\pi$$
 for $k = 0,1,2,...$

Step-3

Now, consider another equation $e^{i\theta} = i$

This implies;

$$e^{i\theta} = 0 + 1i$$

$$e^{i\theta} = \cos(2k+1)\frac{\pi}{2} + i\sin(2k+1)\frac{\pi}{2}$$
 for $k = 0, 2, 4, ...$

$$e^{i\theta} = e^{i(2k+1)\frac{\pi}{2}}$$
 for $k = 0, 2, 4, ...$

$$i\theta = i(2k+1)\frac{\pi}{2}$$
 or $k = 0, 2, 4, ...$

This implies;

 $\theta = (2k+1)\frac{\pi}{2} \text{ for } k = 0, 2, 4, \dots$