Physics 410 Quiz #6 – Thursday, April 17, 2025

Name:

- Consider a photon gas undergoing a reversible Carnot cycle: step 1 is an isothermal 1. expansion at τ_h from V_1 to V_2 ; step 2 is an isentropic expansion to τ_l , V_3 ; step 3 is an isothermal compression at τ_l to V_4 ; and step 4 is an isentropic compression to τ_h , V_1 .
 - a. [1 point] Sketch a representation of this cycle on a PV-diagram.

b. [5 points] Calculate the work done by the gas, and the heat exchanged with the

$$Q = \int \tau_{k} d\sigma = \tau_{k} \left(\sigma_{f_{inl}} - \sigma_{inl_{inl}} \right) = \left[\frac{4A\tau_{k}^{4}(V_{2} - V_{1})}{4A\tau_{k}^{4}(V_{2} - V_{1})} \right]$$

c. [5 points] Calculate the work done by the gas, and the heat exchanged with the environment, during step 2. (Do not leave V_3 in your answer; you should only have the volumes V_1 and/or V_2 in your result.)

$$W = (\mathcal{T}_{-\Delta}^{0}U) = -3A(V_{3}T_{\ell}^{4} - V_{2}T_{h}^{4})$$

$$= \left[3AV_{2}T_{h}^{3}(T_{h} - T_{\ell})\right]$$

d. [4 points] What are ΔU , and $\Delta \sigma$, for the entire cycle? Explain.

Entropy : energy are state functions. Show this is a neurible gold. final
$$i$$
 initial states are identical. \rightarrow U , σ return to their original value: $\Delta U = 0$, $\Delta \sigma = 0$

- 2. Consider a reaction involving the ionization of hydrogen: $H \leftrightarrow e + H^+$ at temperature τ . The ionization energy of hydrogen is I. The net charge of the entire gas is zero.
 - a. [3 points] Write down the equilibrium constant $K(\tau)$ for this reaction, treating all species as an ideal gas. You may assume that the mass of H and the mass of H⁺ are equal. You may leave the result in terms of the electron mass m_e .

$$K(\tau) = \frac{n_{Q_i} \cdot n_{QH^+}}{n_{QH}} e^{-\frac{T}{2}\tau} \approx n_{Q_i} e^{-\frac{T}{2}\tau} = \left(\frac{m_i \tau'}{2\pi t_i^2}\right)^{\frac{3}{2}} e^{-\frac{T}{2}\tau}$$

b. [2 points] Suppose the concentration of H is doubled. By what factor does the concentration of e change? Show your work.

$$\frac{[e][H^{+}]}{[H]} = K(\tau) . \quad \text{Nevtral} \rightarrow [e] = [H^{+}]$$