## Chapter 13 -Acid-Base Reactions

Michael Brodskiy

Instructor: Mr. Morgan

February 18, 2021

- Bronsted-Løwry acid donates H<sup>+</sup>, base takes H<sup>+</sup>
- Arrhenius Acids take OH<sup>-</sup>, bases gives off OH<sup>-</sup>
- $H_3PO_4 + C_2H_3O_2 \longleftrightarrow H_2PO_4^- + HC_2H_3O_2^+$  conjugate acid/base example
  - 1.  $\rm H_2PO_4^-$  is the conjugate base pair of  $\rm H_3PO_4$ , while  $\rm HC_2H_3O_2^+$  is the conjugate acid pair of  $\rm C_2H_3O_2$
  - 2. Conjugate acid/base pairs differ by one H<sup>+</sup> (nothing else)
- Ion Product  $(k_w)$ 
  - 1. For water,  $k_w = [H^+][OH^-] = 1 \cdot 10^{-14}$
- Acid-Base Determination
  - 1.  $[H^+] > [OH^-]$  acidic
  - 2.  $[H^+] < [OH^-]$  basic
  - 3.  $[H^+] = [OH^-]$  neutral
- pH formulas
  - 1.  $pH = -\log[H^+]$
  - 2.  $pOH = -\log [OH^{-}]$
  - 3. pH + pOH = 14
  - 4. acidic  $0 \leftrightarrow 7 \leftrightarrow 14$  basic
- Logarithms without a calculator:
  - 1.  $-\log(m \cdot 10^{-n}) = n 0.m$
  - 2. ex.  $-\log(3 \cdot 10^{-5}) = 5 0.3 = 4.7$

- Strong Acid Completely dissociates (HCl, H<sub>2</sub>SO<sub>4</sub>, HNO<sub>3</sub>, HClO<sub>4</sub>, HBr, and HI)
- Strong Base Completely dissociates, hydroxides of columns I and II
- Weak Acids and Bases Set up equilibriums
- $k_w = k_a \cdot k_b \ (k_w = 1 \cdot 10^{-14})$
- $pk_a = -\log_{10}(k_a)$ , higher  $k_a$  means stronger acid
- $\bullet$  Polyprotic acids Give up more than one  $[\mathrm{H}^+]$  (ex.  $\mathrm{H_2C_2O_4})$
- Stronger Acid,  $[H^+] \uparrow$ ,  $pH \downarrow$ ,  $k_a \downarrow$ ,  $pk_a \uparrow$
- $k_w$  is different at different temperatures



Figure 1: pH Flow Chart