STATS 235: Modern Data Analysis Model Assessment and Selection

Babak Shahbaba

Department of Statistics, UCI

Modeling objectives

- We now focus on supervised learning methods.
- We discuss statistical model where the main objective is predicting the values of a response variable for future observations (or in general those that we haven't seen yet).
- Theoretically, we can search among all possible models (e.g., with different predictors) and choose the one with the best prediction accuracy (i.e., model selection).
- When we find the best model, we need to estimate its prediction accuracy for future data (i.e., model assessment).

Prediction error

 We typically evaluate predictive models based on their prediction error presented as the expectation of an assumed loss function, L,

$$Err = E[L(y, \hat{y})]$$

where y is the observed value of the response variable, and \hat{y}

- For regression models, we usually set $L(y, \hat{y}) = (y \hat{y})^2$
- For classification models, we usually set $L(y, \hat{y}) = 1$ when $y \neq \hat{y}$, and zero otherwise; this is known the 0-1 loss function

Prediction error

- We use the observed data to estimate error
- Building a predictive model based on the observed data and evaluating it based on the same data will provide optimistic estimates of prediction error
- The optimistic prediction error on the the training data set itself is called the "apparent error"
- To avoid this issue, we usually use an independent test set to estimate prediction error
- If the sample size is large enough, we can divide the observed data into two independent training and test sets

Cross-validation

- When the sample size is relatively small, we recycle the data using K-fold cross-validation (CV)
 - Split the data into K roughly equal parts
 - For $k=1,\ldots,K$, treat the kth part as the test set to evaluate the model trained on the remaining K-1 parts
 - Obtain the CV estimate of prediction error as

$$\widehat{\mathrm{Err}}_{CV} = \frac{1}{n} \sum_{i=1}^n L(y_i, \hat{y}_i)$$

where $\hat{y_i}$ is the prediction using the parts that do not include the *i*th observation

• Setting K = n is called "leave-one-out"

Training, validation, and test

- Many model building strategies involve fine tuning a set of parameters, whose values affect model performance.
- For example, the tuning parameter could be a vector of p binary indicators r_1, \ldots, r_p such that if $r_j = 1$, we include the j^{th} predictor in our model.
- We usually choose an appropriate values for such parameters based on the performance of the model on a third dataset (usually a subset of the training set) called the *validation* set.
- After we decided the values of these tuning parameters, and fix the model, we evaluate its performance on the test set.

Model selection as a decision problem

- As we discussed before, model comparison is more appropriately discussed as a decision problems.
- This is specially true in the Bayesian paradigm.
- In this setting, our decision to accept model M_1 over the alternative model M_0 depends not only on the posterior probability of M_1 and M_0 , but also on the assumed loss function for such decision.

Model selection as a decision problem

- Recall that we use $\mathcal V$ to denote the set of all possible values, v, we need to predict. We refer to $\mathcal V$ as the *outcome space*.
- When choosing between two different models, $V = \{M_0, M_1\}$.
- We present the set of all possible actions, a, as A. We refer to A as the action space, which in our case is related to the act of selecting a model.
- When choosing between two models, $A = \{M_0, M_1\}$.

Model selection as a decision problem

- For model selection problems, we could use the 0-1 loss function:
- $L(M_0, M_0) = L(M_1, M_1) = 0, L(M_0, M_1) = L(M_1, M_0) = 1.$
- In this case, the formal Bayes rule based on choosing the model with a smaller posterior risk is the same as choosing the model with a higher posterior probability.

Posterior odds

- Suppose that we believe the model probabilities are $P(M_0)$ and $P(M_1)$ a priori.
- We could compare posterior probabilities by presenting them in the form of a posterior odds $P(M_0|y)/P(M_1|y)$ as follows:

$$\frac{P(M_0|y)}{P(M_1|y)} = \frac{P(M_0)P(y|M_0)/P(y)}{P(M_1)P(y|M_1)/P(y)} = \frac{P(M_0)P(y|M_0)}{P(M_1)P(y|M_1)}$$

• That is, the posterior odds is the prior odds, $P(M_0)/P(M_1)$, multiplied by the likelihood ratio, $P(y|M_0)/P(y|M_1)$.

Bayes factor

- Traditionally, statisticians avoid expressing prior odds in favor of one
 of the alternatives (especially if we are not making a decision, rather,
 we are reporting our findings).
- Therefore, $P(M_0)/P(M_1) = 1$ so we rely only on

$$P(y|M_0)/P(y|M_1)$$

which is known as Bayes factor (BF).

- This is analogous (but not the same) to the likelihood ratio test that is commonly used in the frequentist framework.
- Jeffreys (1961) provided interpretive ranges for the BF analogous to what frequentists use for *p*-values.

Bayesian information criterion

- A related, yet simpler, approach for model selection is based on Bayesian information criterion (BIC).
- Using Laplace's approximation (see Ripley, 1996, page 64), we have

$$\log[P(y|M)] \approx \log[P(y|\hat{\theta}, M)] - \frac{k}{2} \log n$$

where, $\hat{\theta}$ is the maximum likelihood estimate of the parameters of model M, k is the number of free parameters in the model, and n is the sample size.

We define Bayesian information criterion (BIC) as follows

BIC =
$$-2 \log[P(y|\hat{\theta}, M)] + k \log n$$

and choose the model with the lowest BIC.

Deviance

- The first term in BIC is known as the deviance.
- The deviance is a common measure of discrepancy (i.e., lack of fit) between the data and the model (i.e., the lower deviance, the better the model), and it is defined as follows

$$D(y,\theta) = -2\log[P(y|\theta)] = -2\ell(\theta,y)$$

For the normal probability distribution, for example, we have

$$P(y|\mu, \sigma^2) = \exp\{\frac{-(y-\mu)^2}{2\sigma^2} - \frac{\log(2\pi\sigma^2)}{2}\}$$

Therefore,

$$D(y, \hat{\mu}) = \sum_{i} \{(y_i - \hat{\mu})^2 / (\sigma^2)\}$$

Akaike's information criterion

- The second term in BIC can be considered as a penalty for model complexity.
- Akaike proposed to set the penalty to 2k and use the following criterion for model comparison instead:

$$AIC = -2\log[P(y|\hat{\theta}, M)] + 2k$$

Among different models, we choose the one with the lowest AIC.