# Signály a informace

Přednáška č.11

Praktický návrh filtrů FIR

### Připomenutí předchozí přednášky

- Frekvenční charakteristiky jsou důležité pro popis činnosti mnoha číslicových systémů.
- Udávají závislost modulu a fáze přenosové funkce na frekvenci.
- Lze je zjistit buď postupným měřením na jednotlivých frekvencích nebo odvodit z popisu systému.
- Výpočet spočívá v dosazení konkrétních hodnot frekvencí do vztahu odvozeného z přenosové funkce zvlášť pro modul a fázi.
- V MATLABU lze tento výpočet získat spolu s grafem prostřednictvím funkce freqz.

### **Filtry**

#### Systémy upravující signál požadovaným způsobem

- Např. typ DP, HP, PP, PZ, zpožďovač, atd.
- Zasahují <u>vždy do časového i frekvenčního</u> průběhu signálu (zásah pouze do časové nebo pouze do frekvenční charakteristiky není možný).
- U spojitých signálů je lze realizovat obvodově (s pas. součástkami RLC nebo s operačními zesilovači).
- U číslicových signálů pomocí speciálních číslicových obvodů a signálových procesorů (DSP – digital signal processor) či čistě programově na běžné výp. technice.
- Návrh číslicového filtru spočívá v navržení jeho impulzní odezvy, případně přenosové funkce (mezi nimi existuje jednoznačný vztah).

### Lineární filtry

Číslicové LTI systémy



4 základní popisy činnosti filtru:

Časový popis pomocí diferenční rovnice:

$$y[n] + A_1 y[n-1] \cdot \cdot \cdot A_N y[n-N] = B_0 x[n] + B_1 x[n-1] \cdot \cdot \cdot B_M x[n-M]$$

Časový popis pomocí impulzní odezvy:

$$y[n] = h[n] * x[n] = \sum_{k=-\infty}^{\infty} h[k]x[n-k]$$

Systémový popis pomocí přenosové funkce:

$$H(z) = \frac{B_0 + B_1 z^{-1} \cdots B_M z^{-M}}{1 + A_1 z^{-1} \cdots A_N z^{-N}}$$

Frekvenční přenosová charakteristika (za z dosazeno e<sup>j2πF</sup>)

$$H(F) = \frac{B_0 + B_1 e^{-j2\pi F} \cdots B_M e^{-j2\pi FM}}{1 + A_1 e^{-j2\pi F} \cdots A_N e^{-j2\pi FN}}$$

### Vztahy mezi jednotlivými popisy

V časové doméně je klíčový popis pomocí impulzní odezvy:

$$y[n] = h[n] * x[n]$$

Ve frekvenční doméně pak popis pomocí Fourier. transf.

$$Y(F) = H(F)X(F)$$

kde Y(F) je DFT výstupního signálu

X(F) je DFT vstupního signálu

H(F) je DFT impulzní odezvy sytému a zároveň

$$H(F) = \frac{B_0 + B_1 e^{-j2\pi F} \cdots B_M e^{-j2\pi FM}}{1 + A_1 e^{-j2\pi F} \cdots A_N e^{-j2\pi FN}}$$

#### Platí:

- 1. Frekv. charakteristika je Fourier. transf. impulzní odezvy
- 2. Konvoluce v čase se transformuje na součin ve frekvencích

## Ideální filtry

Základní typy podle frekvenční charakteristiky







Horní propust (DP)

Highpass (HP)



Pásmová propust (PP) Bandpass (BP)

Pásmová zádrž(PZ) Bandstop (BS)

Fázový posouvač (FP) Allpass (AP)

### Filtry typu FIR

FIR (Finite Impulse Reponse) – f. s konečnou imp. odezvou

Časový popis pomocí diferenční rovnice:

$$y[n] = B_0 x[n] + B_1 x[n-1] \cdot \cdot \cdot B_M x[n-M]$$

Časový popis pomocí impulzní odezvy:

$$y[n] = h[n] * x[n] = \sum_{k=0}^{\infty} h[k]x[n-k]$$

Popis pomocí přenosové funkce a frekvenční charakteristiky

$$H(z) = B_0 + B_1 z^{-1} \cdots B_M z^{-M}$$
  $H(F) = B_0 + B_1 e^{-j2\pi F} \cdots B_M e^{-j2\pi FM}$   
platí že  $B_k = h[k]$ 

IIR (Infinite Impulse Reponse) – s nekonečnou imp. odezvou platí pro ně obecné vztahy uvedené na předchozí stránce

### Příklady metod návrhu filtru FIR (1)

#### Metoda vzorkování frekvenční charakteristiky

Princip: Frekvenční charakteristika je Fourierovým obrazem impulzní odezvy a tedy naopak impulzní odezva je inverzním obrazem frekvenční charakteristiky.

#### Princip použití:

- V obrazu dvoustranného spektra si stanovíme průběh frekvenční charakteristiky (modulové i fázové).
- 2. Charakteristiku navzorkujeme ve frekv. pásmu –Fs/2 až Fs/2 vhodným počtem bodů N (nejlépe mocnina 2).
- 3. Provedeme inverzní DFT, kterou získáme impulzní odezvu o N koeficientech. (Koeficienty jsou obecně komplexní).

### Příklady metod návrhu filtru FIR (2)

#### Metoda váhových oken

Princip: Frekvenční charakteristiky ideálních filtrů jsou tvořeny obdélníkovými funkcemi a tedy impulzní odezva je inverzním obrazem obdélníkové funkce, která je založena na funkci sinc (x) = sin (x) / x

#### Postup při použití (příklad DP):

- $H(f) = 1 \quad \text{pro } f_c > f$   $= 0 \quad \text{pro } f_c < f < F_S / 2$
- 1. vymezení frekvenčního pásma
- 2. převedení na normalizovanou (číslicovou) frekvenci  $F_c = f_c / F_s$
- 3. získání imp. odezvy pomocí IDFT  $h(n) = IDFT(H(F)) = 2F_c \operatorname{sinc}(2nF_c)$
- 4. vybrání konečného počtu N vzorků symetricky rozložených kolem 0  $-\frac{1}{2}(N-1) \le n \le \frac{1}{2}(N-1)$
- 5. násobení vhodnou okénkovací funkcí kvůli potlačení zvlnění h(n) = h(n).w(n)
- 6. posunutí impulzní odezvy o (N-1)/2 vzorků doprava, abychom dostali kauzální filtr h(n) = h(n-(N-1)/2)

### Příklady metod návrhu filtru FIR (3)

#### Metoda váhových oken - příklad

Zadání: Navrhnout DP s pásmem 0 až 5 kHz a vzorkovací frekvencí 20 kHz.

- 1. vymezení frekvenčního pásma  $f_c = 5kHz$
- 2. převedení na normalizovanou frekvenci  $F_c = 5/20 = 0.25$
- 3.+ 4. **získání imp. odezvy pomocí IDFT** h(n) = 0.5 sinc (0.5 n), zvolíme např. N = 9, tj, -4 < n < 4 dosazením h(n) = (0, -0.11, 0, 0.32, 0.5, 0.32, 0, -0.11, 0)
- 5. **vážení okénkovací funkcí zvolíme např. trojúhelníkovou** w(n) = (0, 1, 2, 3, 4, 3, 2, 1, 0)/4 h(n) = h(n).w(n) = (0, -0.03, 0, 0.24, 0.5, 0.24, 0, -0.03, 0)
- 6. posunutí impulzní odezvy o (N-1)/2 vzorků doprava  $H(z) = -0.03 z^{-1} + 0.24 z^{-3} + 0.5 z^{-4} + 0.24 z^{-5} 0.03 z^{-7}$  vektor koeficientů B [0 -0.03 0 0.24 0.5 0.24 0 -0.03 0]
- 7. Použití v Matlabu y = filter(B, 1, x)

### Příklady metod návrhu filtru FIR (4)

#### Metoda váhových oken - ilustrace k příkladu



Normalized frequency (Nyquist == 1)

### Příklady metod návrhu filtru FIR (5)

#### Metoda váhových oken - stejné zadání, N=41, hamming



impulzní odezva z funkce h(n) = 0.5 sinc (0.5n), spočítána pro 41 bodů po vynásobení hammingovým oknem,



0.4

Normalized frequency (Nyquist == 1)

0.6

0.8

Phase (degrees)

-1000

-2000

-3000

0.2

#### Můžeme si všimnout, že

- a) zvýšením délky filtru se zvýšila strmost filtru a odstup mezi propustným a nepropustným pásmem (cca -50dB)
- b) v nepropustném pásmu dochází ke zvlnění v amplitudovém spektru,
- c) protože N je velké, filtr bude mít též velké zpoždění.

### Příklady metod návrhu filtru FIR (6)

#### Metoda váhových oken – ostatní typy filtrů



$$\mathbf{HP} \ H_{HP}(F) = \mathbf{1} - H_{DP}$$

$$\mathbf{PP} \ H_{PP}(F) = rect((F + F_0) / 2 F_c) + rect((F - F_0) / 2 F_c)$$

$$PZ H_{pZ}(F) = 1 - H_{pp}$$

$$h_{DP}(n) = 2 F_c \operatorname{sinc}(2nF_c)$$

$$h_{HP} = \mathcal{S}(n) - h_{DP}(n)$$

$$h_{PP}(n) = 2\cos(2nF_0)h_{DP}(n)$$

$$h_{PZ} = \mathcal{S}(n) - h_{PP}(n)$$

### Příklady metod návrhu filtru FIR (7)

#### Metoda váhových oken - ilustrace



Originál



Filtr o délce 9



Filtr o délce 41



#### Nástroje pro návrh filtrů FIR v MATLABu

- Metoda váhových oken funkce FIR1 – umožňuje návrh DP, HP, PP, PZ
- 2. Metoda vzorkování funkce FIR2 umožňuje návrh DP, HP, PP, PZ
- Remezův algoritmus
   (výpočet filtrů se zvlněnou frekvenční charakteristikou)
   funkce REMEZORD určí pomocné parametry
   funkce REMEZ vypočte koeficienty filtru
- 4. Výpočet a vykreslení charakteristiky filtru funkce FREQZ

### Výhody a nevýhody filtrů FIR

- 1. Poměrně **jednoduchý** a **intuitivní** návrh
- 2. Filtr je **nerekursivní** (bez zpětných vazeb), je tudíž vždy **stabilní** (nemůže způsobit kmitání)
- Filtry FIR mohou zajistit lineární průběh fázové charakteristiky
- 4. S filtry FIR se hůře dosahuje velká strmost přechodu mezi propustným a nepropustným pásmem
- Pro dosažení velké strmosti jsou třeba filtry s mnoha koeficienty, takové filtry mají dlouhé zpoždění

### Dvourozměrné filtry FIR pro zprac. obrazu (1)

Ve statickém obraze nehraje při filtrování roli čas, ale prostor - okolí jednotlivých bodů.

Obrazové filtry rovněž pracují **na principu konvoluce**, tj. novou hodnotu v daném bodě určí z lineární kombinace hodnot v okolních bodech.

$$I_k(x,y) = \sum_{i,j \in okoli} h(i,j).I_{k-1}(x+i,y+j)$$

**Nová** hodnota v bodu

konvoluční jádro předchozí hodnoty v okolí

#### Poznámka:

Operace s obrazy se dělají v iteračních krocích. Při výpočtu nové iterace je třeba nové hodnoty ukládat do jiné matice než té, v níž byly uloženy původní hodnoty.

### Dvourozměrné filtry FIR pro zprac. obrazu (2)

Příklady konvolučního jádra pro **DP** (dolní propust) (provádí potlačení šumu a detailů)

$$h_{DP1} = \frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \qquad h_{DP2} = \frac{1}{10} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 1 \end{bmatrix} \qquad h_{DP3} = \frac{1}{16} \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix}$$

Příklady konvolučního jádra pro **HP** (horní propust) (zvýrazňuje rychlé změny, zejména hrany)

$$h_{HP1} = \begin{bmatrix} 0 & -1 & 0 \\ -1 & 5 & -1 \\ 0 & -1 & 0 \end{bmatrix} \qquad h_{HP2} = \begin{bmatrix} -1 & -1 & -1 \\ -1 & 9 & -1 \\ -1 & -1 & -1 \end{bmatrix} \qquad h_{HP3} = \begin{bmatrix} 1 & -2 & 1 \\ -2 & 5 & -2 \\ 1 & -2 & 1 \end{bmatrix}$$

## Dvourozměrné filtry FIR – příklady (1) Originál, DP1, DP2, DP3









## Dvourozměrné filtry FIR – příklady (2) Originál, HP1, HP2, HP3









#### **Shrnutí**

- Ideální filtry DP, HP, PP a PZ mají jednotkový přenos v propustném pásmu a nulový přenos v nepropustném pásmu. Přechod mezi pásmy je dokonale strmý.
- Reálné filtry toto neumožňují charakteristiky jsou více či méně zvlněné, přechody jsou pozvolné.
- Filtry FIR jsou jednodušší pro návrh a realizaci, jejich průběhy jsou však vzdálené ideálním filtrům.
- V Matlabu je k dispozici několik funkcí pro návrh a analýzu filtrů.

## Konec přednášky

Děkuji za pozornost.