Automorphism Groups:

Theorems 2.10 and 2.11

Stefano Fochesatto

University of Alaska Fairbanks

April 5, 2020

Review

- Automorphism: An isomorphism from a graph G to itself.
 - ▶ A permutation of V(G) that preserves adjacency and non-adjacency

• Automorphism Group: The set of all automorphisms on G, form a group (denoted Aut(G)) under function composition.

Theorem 2.10: For every graph G, $Aut(G) \cong Aut(\overline{G})$

• How do we prove this?

- **Direct** : WTS: For every $i \in Aut(G)$, that $i \in Aut(\overline{G})$.
 - ▶ Consider an automorphism $i \in Aut(G)$.
 - ▶ By definition $i: V(G) \rightarrow V(G)$ that preserves adjacency and non-adjacency.
 - ▶ We can apply *i* to the set $V(\overline{G})$ since $V(G) = V(\overline{G})$.
 - Note a function that preserves adjacency in G will preserve non-adjacency in \overline{G} .
 - ▶ Similarly a function that preserves non-adjacency in G will preserve adjacency in \overline{G} .
 - ▶ Therefore by definition i is an automorphism for \overline{G} .
 - ▶ Thus $i \in Aut(\overline{G})$.

Theorem 2.10 Example:

$$i:(ABCD) \rightarrow (BADC)$$

Theorem 2.11: The order of the automorphism group of a graph G with order n is a divisor of n! and equals n! if and only if $G = K_n$ or $G = \overline{K}_n$

• What does that even mean?

- if |V(G)| = n then |Aut(G)| |n!
- ▶ If $G = K_n$ or $G = \overline{K}_n$ then |Aut(G)| = n!

Recall

• **Symmetric Group**: The symmetric group S_n is the group of all permutations on n elements. Thus $|S_n| = n!$

$$S_3 = \begin{pmatrix} (1)(2)(3) & (1)(23) \\ (123) & (2)(13) \\ (132) & (3)(12) \end{pmatrix}$$

- Lagrange's Theorem : If H is a subgroup of G, then |G| = n|H| for some $n \in \mathbb{Z}$.
 - ▶ This implies $H \mid G$.

- **Direct**: WTS: if |V(G)| = n then |Aut(G)| | n!
 - ▶ Suppose a graph G such that |V(G)| = n.
 - By definition the of an Automorphism Group (permutation) we know that Aut(G) is a group of permutations on n elements that preserves (non)-adjacency,
 - ▶ Note that S_n is the group of **all** permutation on a set of n elements.
 - ▶ Thus $Aut(G) \triangleright S_n$.
 - ▶ By Lagrange's Theorem we know that $|Aut(G)| ||S_n|$, and by substitution we get |Aut(G)| |n!.

- **Direct**: WTS: If $G = K_n$ or $G = \overline{K}_n$ then |Aut(G)| = n!
 - ▶ Suppose K_n,
 - ▶ By definition the of an Automorphism Group (permutation) we know that $Aut(K_n)$ is a group of permutations on n elements that preserves (non)-adjacency.
 - ▶ Since every vertex in K_n is adjacent with the rest of the vertices, **every** permutation of $V(K_n)$ preserves (non)-adjacency.
 - ▶ Therefore $Aut(K_n) \cong S_n$
 - ▶ By Theorem 2.10 $Aut(K_n) \cong Aut(\overline{K}_n)$
 - ▶ Thus $|Aut(G)| = |Aut(\overline{K}_n| = n!$.

Theorem 2.11 Example:

Graph G:

• •

•

$$Aut(G) = \{(a)(b)(c), (a)(bc)\}$$

0

Theorem 2.11 Example:

Graph G:

