Exercises from Chapter 9

Wesley Basener

May 16, 2025

Problem 1.1. Let $p(x, y, z) = 2x^2y - 3xy^3z + 4y^2z^5$ and $q(x, y, z) = 7x^2 + 5x^2y^3z^4 - 3x^2z^3$ be polynomials in $\mathbb{Z}[x, y, z]$.

- (a) Write each p and q as a polynomial in x with coefficients in $\mathbb{Z}[y,z]$.
- (b) Find the degree of each of p and q.
- (c) Find the degree of p and q in each of the three variables x, y, and z.
- (d) Compute pq and find the degree of pq in each of the three variables x, y, and z.
- (e) Write pq as a polynomial in the variable z with coefficients in $\mathbb{Z}[x,y]$

Proof. For part a, $p = (2y)x^2 - (3y^3z)x + (4y^2z^5)x^0$ and $q = (7 + 5y^3z^4 - 3z^3)x^2$. For part b, the degree of p is the degree of the last term 2 + 5 = 7 and the degree of q is the degree of the center second term 2 + 3 + 4 = 9. For part c, x, y, z degrees of p are 2,3,and 5 respectively and for q they are 2,3, and 4 respectively. For part d,

$$pq = (2x^2y - 3xy^3z + 4y^2z^5)(7x^2 + 5x^2y^3z^4 - 3x^2z^3)$$

$$=14x^4y - 21x^3y^3z - 6x^4yz^3 + 9x^3y^3z^4 + 10x^4y^4z^4 + 28x^2y^2z^5 - 15x^3y^6z^5 - 12x^2y^2z^8 + 20x^2y^5z^9$$

The degrees of x, y, and z are 4, 6, and 9 respectively. Lastly, for part e, we have

$$(20x^2y^5)z^9 - (12x^2y^2)z^8 + (28x^2y^2 - 15x^3y^6)z^5 + (9x^3y^3 + 10x^4y^4)z^4 - (6x^4y)z^3 - (21x^3y^3)z + (14x^4y)z^0 + (21x^3y^3)z^2 + (21x^3y^3)z^2$$

Problem 1.2. Repeat the preceding exercise under the assumption that the coefficients are of p and q are in $\mathbb{Z}/3\mathbb{Z}$.

Proof. We can start by rewriting p and q's coefficients in $\mathbb{Z}/3\mathbb{Z}$.

$$p = 2x^2y + y^2z^5$$
 and $q = x^2 + 2x^2y^3z^4$

For part a, we have $p = (2y)x^2 + (y^2z^5)x^0$ and $q = (1 + 3y^3z^4)x^2$. For part b, the degree of p is 7 and the degree of q is 9. For part c, the degree of p in x, y, and z is 2, 2, and 5 respectively and for q it is 2, 3, and 4 respectively. For part d,

$$pq = 2x^4y + x^4y^4z^4 + x^2y^2z^5 + 2x^2y^5z^9$$

The degrees of pq in x, y, and z are 4, 6, and 9 respectively. Finally, for part e,

$$pq = (2x^2y^5)z^9 + (x^2y^2)z^5 + (x^4y^4)z^4 + (2x^4y)z^0$$

Problem 1.3. If R is a commutative ring and and $x_1, x_2, ..., x_n$ are independent variables over R, prove that $R[x_{\pi(1)}, x_{\pi(2)}, ..., x_{\pi(n)}]$ is isomorphic to $R[x_1, x_2, ..., x_n]$ for any permutation of $\{1, 2, ..., n\}$.

Proof. Any element of $R[x_1, x_2, ..., x_n]$ will have the form

$$\alpha = (\Sigma_{i_1=0}^m(\Sigma_{i_2=0}^m...(\Sigma_{i_n=0}^m\alpha_{i_1,i_2,...,i_n}x_1^{i_1}x_2^{i_2}...x_n^{i_n})...))$$

Let α and β be two such polynomials and let $\phi: R[x_1, x_2, ..., x_n] \to R[x_{\pi(1)}, x_{\pi(2)}, ..., x_{\pi(n)}]$ be the variable permutation function. Then, for addition,

$$\phi(\alpha) + \phi(\beta) =$$

$$\phi((\Sigma_{i_1=0}^m(\Sigma_{i_2=0}^m...(\Sigma_{i_n=0}^m\alpha_{i_1,i_2,...,i_n}x_1^{i_1}x_2^{i_2}...x_n^{i_n})...))) + \phi((\Sigma_{i_1=0}^m(\Sigma_{i_2=0}^m...(\Sigma_{i_n=0}^m\beta i_1,i_2,...,i_nx_1^{i_1}x_2^{i_2}...x_n^{i_n})...))) = 0$$

$$\phi((\Sigma_{i_1=0}^m(\Sigma_{i_2=0}^m..(\Sigma_{i_n=0}^m\alpha_{i_1,i_2,...,i_n}x_{\pi(1)}^{i_1}x_{\pi(2)}^{i_2}...x_{\pi(n)}^{i_n})...))) + \phi((\Sigma_{i_1=0}^m(\Sigma_{i_2=0}^m..(\Sigma_{i_n=0}^m\beta i_1,i_2,...,i_nx_{\pi(1)}^{i_1}x_{\pi(2)}^{i_2}...x_{\pi(n)}^{i_n})...))) = 0$$

$$\phi((\Sigma^m_{i_1=0}(\Sigma^m_{i_2=0}...(\Sigma^m_{i_n=0}(\alpha_{i_1,i_2,...,i_n}+\beta i_1,i_2,...,i_n)x^{i_1}_{\pi(1)}x^{i_2}_{\pi(2)}...x^{i_n}_{\pi(n)})...)))=$$

$$\phi(\alpha + \beta)$$

Hence, the function satisfies the homomorphism condition on addition.

For multiplication, the coefficient of the term $x_1^{i_1}x_2^{i_2}...x_n^{i_n}$ in $\phi(\alpha \cdot \beta)$ will be the sum of all $\alpha_{k_1,k_2,...,k_n} \cdot \beta_{j_1,j_2,...,j_n}$ where $k_1+j_1=i_{\pi^{-1}(1)},k_2+j_2=i_{\pi^{-1}(2)},...,k_n+j_n=i_{\pi^{-1}(n)}$ are all true. The coefficients of the $x_1^{i_1}x_2^{i_2}...x_n^{i_n}$ term in $\phi(\alpha)\cdot\phi(\beta)$ will be the sum of all $\alpha_{k_1,k_2,...,k_n}\cdot\beta_{j_1,j_2,...,j_n}$ where $k_{\pi(1)}+j_{\pi(1)}=i_1,k_{\pi(2)}+j_{\pi(2)}=i_2,...,k_{\pi(n)}+j_{\pi(n)}=i_n$ are all true. But $k_{\pi(l)}+j_{\pi(l)}=i_l$ is true for all l in [n] if and only if $k_l+j_l=i_{\pi^{-1}(l)}$ is also true for all l in [n]. So $\phi(\alpha\cdot\beta)$ and $\phi(\alpha)\cdot\phi(\beta)$ have precisely the same coefficients. Since the set of units in $R[x_1,x_2,...,x_n]$ are the set of units in R, and ϕ is the identity element on R, $\phi(1_{R[x_1,x_2,...,x_n]})=1_{R[x_1,x_2,...,x_n]}$.

These three cases prove that ϕ is a homomorphism on $R[x_1, x_2, ..., x_n]$. To show that it is an isomorphism, notice first that for r in R, $\phi(rx_1^{i_1}x_2^{i_2}...x_n^{i_n}) = rx_{\pi(1)}^{i_1}x_{\pi(2)}^{i_2}...x_{\pi(n)}^{i_n}$ is nonzero if and only if r is nonzero. Second, recall that ϕ is the identity function on R. Hence, the inverse of the kernal of ϕ is the 0 element of R. Therefore, ϕ is an isomorphism.

Problem 1.4. Prove that the ideals (x) and (x,y) are prime ideals in $\mathbb{Q}[x,y]$ but only the later ideal is maximal.

Proof. If the second ideal were not prime, then there would exist a, b in R such that $ab = cx^ny^m$ for nonzero c in R. But this would violate the closure of R under multiplication, because cx^ny^m is not in R. Thus, (x, y) is prime. The same result follows for the first ideal (x) by letting a, b, and c be in R[y].

Since $(x) \subset (x,y)$, (x) is not maximal. For any $\alpha = \sum_{i=0,j=0}^{n,m} \alpha_{i,j} x^i y^j$, α is not in (x,y) if and only if $\alpha_{0,0} \neq 0$. For every such α , $(x,y) + (\alpha) = (\alpha_{0,0}) = (1) = \mathbb{Q}[x,y]$. So the only ideal containing (x,y) is $\mathbb{Q}[x,y]$. Hence, (x,y) is maximal.

Problem 1.5. Prove that (x, y) and (2, x, y) are prime ideals in $\mathbb{Z}[x, y]$ but only the latter ideal is a maximal ideal.

Proof. There are no elements not equal to x, y, or 2 in $\mathbb{Z}[x,y]$ that multiply to equal x, y, or 2 respectively. So the ideals generated by these elements are prime.

Since $(x,y) \subset (2,x,y) \subset \mathbb{Z}[x,y]$, where all containment is proper, (x,y) is not maximal. For any polynomial $\alpha = \sum_{i=0,j=0}^{m,n} \alpha_{i,j} x^i y^j$ is not in (2,x,y) if and only if $\alpha_{0,0}$ is not zero and is not divisible by 2. This means that there are a,b in \mathbb{Z} such that $a\alpha_{0,0} + b2 = 1$. Hence, $(2,x,y) + (\alpha) = \mathbb{Z}[x,y]$. So there are no ideals containing (2,x,y) aside from $\mathbb{Z}[x,y]$. Therefore, (2,x,y) is a maximal ideal.

Problem 1.6. Prove that (x,y) is not principle in $\mathbb{Q}[x,y]$.

Proof. The gcd of x and y is 1. So, the only element that could generate (x,y) is 1, which would also generate the rest of $\mathbb{Q}[x,y]$.

Problem 1.7. Let R be a commutative ring with 1. Prove that a polynomial ring in more than one variable over R is not a PID.

Proof. For any R[x,y], the ideal (x,y) is not principle. By induction, this is true for any polynomial ring with more than one variable.

Problem 1.8. Let F be a field and $R = F[x, x^2y, x^3y^2, ..., x^ny^{n-1}, ...]$ be a subring of the polynomial ring F[x, y].

- (a) Prove that the fields of fractions of R and F[x, y] are the same.
- (b) Prove that R contains an ideal that is not finitely generated.

Proof. For any f in the field F, $fx \cdot 1/x = f$ is in the fraction field of R and so are $x^2y \cdot 1/x^2 = y$ and x. Therfore, the fraction field is (F, x, y) = F[x, y].

For part b, consider the ideal of elements fx^my^n , where m > n + 1. Suppose $x^{m+2}y^m$, which is indeed part of the ideal, is not a generator of the ideal. Then this element must be divisible by an element of the ideal. This is impossible because there is no partition a_1, b_1 and a_2, b_2 of the integers m + 2, m such that $a_1 > b_1 + 1$ and $a_2 > b_2$. Therefore, the ideal is not finitely generated.

Problem 1.9. Prove that a polynomial ring in infinitely many variables with coefficients in any commutative ring contains ideals that are not finitely generated.

Proof. In $R[x_1, x_2, ...]$, the ideal of all elements containing variables is not finitely generated, every variable x_i by itself is in the ideal, but is not divisible by other variables.

Problem 1.10. Prove that the ring $\mathbb{Z}[x_1, x_2, x_3, ...]/(x_1x_2, x_3x_4, x_5x_6, ...)$ contains infinitely many minimal prime ideals.

Proof. Consider the ideal $(x_{\beta_1}, x_{\beta_2}, ...)$, where β_1 is either 1 or 2, β_2 is either 3 or 4 and so on. This is a prime ideal, since each of its generators are prime. It contains the 0 ideal of the quotient $(x_1x_2, x_3x_4, x_5x_6, ...)$. And, removing any of its generators would keep it from containing the 0 ideal, so it is minimal. Since there are infinite possibilities of the combinations of β_5 , there are infinite such minimal ideals in the ring.

Problem 1.11. Show that the radical of the ideal $I = (x, y^2)$ in $\mathbb{Q}[x, y]$ is (x, y). Deduce that I is a primary ideal that is not a power of a prime ideal.

Proof. The radical of I is the ideal formed by the square root of all elements in I, if the square root exists. The only elements that have a square root in I are of the form q^2x^{2n} , q^2y^{2n} , and $q^2x^{2m}y^{2n}$. The square root of these elements is qx^n , qy^n , and qx^my^n , which is obviously generated by the elements x, y. Hence, rad(I) = (x, y)

The above works to show (x, y) is any root of I. Simply replace 2 with any other natural number > 0. Therefore, I, which is obviously primary, is not the power of any prime ideal.

Problem 1.12. Let $R = \mathbb{Q}[x,y,z]$ and let bars denote passage to $\mathbb{Q}[x,y,z]/(xy-z^2)$. Prove that $\overline{P} = (\overline{x},\overline{y})$ is a prime ideal. Show that $\overline{xy} \in \overline{P}^2$ but that no power (This shows that \overline{P} is a prime ideal whose square is not a primary ideal).

Proof. Since (x,y) is prime in $\mathbb{Q}[x,y,z]$, it is prime in $\mathbb{Q}[x,y,z]/(xy-z^2)$. Hence, \overline{P} is a prime ideal. In $\mathbb{Q}[x,y,z]/(xy-z^2)$, xy is equivalent to z^2 . This can be seen by noticing that in $\mathbb{Q}[x,y,z]/(xy-z^2)$, $xy = xy + (-1) \cdot (xy-z^2) = xy - xy + z^2 = z^2$. Hence, \overline{xy} is in \overline{P}^2 .

To see that no power of y is in \overline{P}^2 , we consider the quotient ring definition of \overline{y}^n , which is $y^n + (xy - z^2)$. We want to show that no element of the ideal $(xy - z^2)$ adds to y^n to create an element of \overline{P}^2 . Suppose this is not true, then there must be some a in $\mathbb{Q}[x,y,z]/(xy-z^2)$ where $y^n + a(xy-z^2) \in \overline{P}^2 = (x^2,z^2)$. This would require either axy or az^2 to cancel y^n , which is not possible. So, there is no such a. Hence, no power of y is in \overline{P}^2 .

Problem 1.13. Prove that the rings $F[x,y]/(y^2-x)$ and $F[x,y]/(y^2-x^2)$ are not isomorphic for any field F

Proof. For brevity, denote $F[x,y]/(y^2-x)$ as A and $F[x,y]/(y^2-x^2)$ as B.

Notice that $y^2 - x^2 = (y - x) \cdot (y + x)$. Since neither (y - x) nor (y + x) are in $(y^2 - x^2)$, $(y^2 - x^2)$ is not prime. So, B has zero divisors and is not an integral domain. $(y^2 - x)$ however is prime (see exercise 1.14 below). So A has no zero divisors and is an integral domain.

Suppose there is an isomorphism $\phi: B \to A$. Then since $(y-x) \cdot (y+x)$ is in the kernel of B, $\phi((y-x) \cdot (y+x))$ must be in the kernel of A. However $\phi((y-x) \cdot (y+x)) = \phi(y-x) \cdot \phi(x+y)$ is also in the kernel of A.

But since ϕ is an isomorphism and neither (y-x) nor (y+x) are in the kernel of B, neither $\phi((y-x))$ nor $\phi((y+x))$ can be in the kernel of A. This implies that A is not an integral domain, contradicting our earlier results. Therefore, such an isomorphism cannot exist, regardless of the field F.

Problem 1.14. Let R be an integral domain and let i, j be relatively prime integers. Prove that the ideal $(x^i - y^j)$ is a prime ideal in R[x, y]. [Consider the ring homomorphism ϕ from R[x, y] to R[t] defined by mapping x to t^j and mapping y to t^i . Show that an element of R[x, y] differs from an element in $(x^i - y^j)$ by a polynomial f(x) of degree at most j-1 in y and observe that the exponents of $\phi(x^ry^s)$ are distinct for $0 \le s < j$.]

Proof.