x(t) est un signal déterministe à TC.

Energie (totale)
$$E_x = \int_{-\infty}^{\infty} |x(t)|^2 dt$$
Puissance (moyenne totale)
$$P_x = \lim_{T \to \infty} \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{\pi}{2}} |x(t)|^2 dt$$
Un signal d'énergie finie est de puissance nulle.

Un signal d'énergie finie est de puissance nulle. Les signaux périodiques sont de puissance finie.

Convolution

Le produit de convolution de deux signaux x(t) et y(t) est donné par l'expression:

$$x(t) * y(t) = \int x(\tau)y(t-\tau)d\tau$$

En faisant le changement de variable $\theta = t - \tau$ nous obtenons $x(t) * y(t) = \int x(t - \theta)y(\theta)d\theta$

Le produit de convolution est *commutatif* x(t) * y(t) = y(t) * x(t)De même, le produit de convolution est associatif.

La dirac est l'élément neutre de la convolution. $x(t) * \delta(t) = \delta(t) * x(t) = \int \delta(\tau)x(t-\tau)d\tau = x(t)$

Réponse en fréquence d'un produit de convolution
$$x(t) \stackrel{TF}{\rightarrow} X(f) \qquad y(t) \stackrel{TF}{\rightarrow} Y(f)$$

$$x(t) * y(t) \stackrel{TF}{\rightarrow} A = \int [\int x(\tau)y(t-\tau)d\tau]e^{-2jft}dt$$
 On pose $\theta = t - \tau$
$$A = \int \int x(\tau)y(\theta)e^{-2jf(\theta+\tau)}d\tau d\theta = \int x(\tau)e^{-2jf\tau}d\tau \int y(\theta)e^{-2jf\theta}d\theta$$

$$x(t) * y(t) \stackrel{TF}{\rightarrow} X(f)Y(f)$$

La TF d'un produit de convolution est le produit des TF.

Considérons le produit de convolution $X(f) * Y(f) = \int X(\varphi)Y(f-\varphi)d\varphi$. $X(f) * Y(f) \xrightarrow{(TF)^{-1}} B = \int [\int X(\varphi)Y(f-\varphi)d\varphi]e^{2ift}df$ On pose $\theta = f - \varphi$ $B = \iint X(\varphi)Y(\theta)e^{2j(\theta+\varphi)t}d\varphi d\theta = x(t)y(t)$ X(f) * Y(f)x(t)y(t)

Corrélation

La corrélation d'un signal x(t) (on dit alors auto-corrélation) la fonction $R_x(t)$ telle que: $R_x(t) = x(t) * x^*(-t) = \int x(\tau)x^*(\tau - t)d\tau$

On parle également de *degré de ressemblance* entre x(t) et $x(\tau - t)$.

$$R_x(t) = x(t) * x^*(-t) \xrightarrow{TF} S_x(f) = |X(f)|^2$$

Nous avons:

$$R_x(t) = \int |X(f)|^2 e^{2\pi i f t} df$$

D'où:

$$R_x(0) = \int |X(f)|^2 df$$

 $S_x(f)$ est appelée *Densité Spectrale d'Energie*.

D'après sa définition, nous avons:

$$R_x(0) = \int x(\tau)x^*(\tau)d\tau = \int |x(t)|^2 dt$$

Nous avons alors le théorème de Parseval:
$$E_x = \int_{-\infty}^{\infty} |x(t)|^2 dt = \int_{-\infty}^{\infty} |x(t)|^2 dt$$

$$E_x = \int_{-\infty}^{\infty} |x(t)|^2 dt = \int_{-\infty}^{\infty} |X(f)|^2 df$$

Il y a conservation de l'énergie lorsque l'on passe du domaine temporel au domaine fréquentiel et réciproquement.