

# DATA STRUCTURES & ALGORITHMS

**Lecture 5: Hash Table** 

Lecturer: Dr. Nguyen Hai Minh





- □ The ADT Dictionary
- Hash tables
  - Direct-address Tables
  - Hash Table
  - Hash Functions
- More Reading





#### Introduction

- □ Lecture 2 Sorting: the notion of a sort key.
- □ Lecture 3 Searching: the notion of a search key.
- Applications that require value-oriented operations are extremely prevalent.
- Example: the tasks involve values instead of positions.
  - Find the phone number of John Smith
  - Delete all information about the employee with ID number 12908.

**Dictionary: A value-oriented ADT** 



# **The ADT Dictionary – Example**

- Data of some major cities in the world in alphabetical order.
- How to get the population of London?
  - → Binary Search
- How to find out which cities are in Spain?
  - Sequential Search

| City                | Country      | <u>Population</u> |
|---------------------|--------------|-------------------|
| <b>Buenos Aires</b> | Argentina    | 13,170,000        |
| Cairo               | Egypt        | 14,450,000        |
| Cape Town           | South Africa | 3,092,000         |
| London              | England      | 12,875,000        |
| Madrid              | Spain        | 4,072,000         |
| Mexico City         | Mexico       | 20,450,000        |
| Mumbai              | India        | 19,200,000        |
| New York City       | U.S.A.       | 19,750,000        |
| Paris               | France       | 9,638,000         |
| Sydney              | Australia    | 3,665,000         |
| Tokyo               | Japan        | 32,450,000        |
| Toronto             | Canada       | 4,657,000         |
|                     |              |                   |



# **The ADT Dictionary**

The **ADT** dictionary, or map, or table allows us to look up information easily based on a specified search key.

- □ For simplicity, we assume that all items in the dictionary have distinct search keys.
- Example:
  - In Dictionary of Cities, City is designed as the search key

# **ADT Dictionary Data & Operations**

Data: A finite number of objects, each associated with a search key.

#### Operations:

- 1. Check whether a dictionary is empty
- Get the number of items in a dictionary
- Insert a new item into a dictionary
- 4. Remove the item with a given search key from a dictionary
- 5. Remove all items from a dictionary
- Search for an item with a given search key from a dictionary
- Traverse the items in a dictionary in sorted search-key order

6/21/2023 nhminh@FIT 7



### **Possible Implementations**

- Linear implementations:
  - Sorted (by search key), array-based
  - Sorted (by search key), link-list-based
  - Unsorted, array-based
  - Unsorted, link-list-based
- Non-linear implementations:
  - Binary Search Tree (Lecture 6)

Which implementation should you choose?



#### Which implementation should be chosen?

- Consider several factors:
  - What operations are needed for your application?
  - How often the application will perform each operation?
- Example: in dictionary of cities, many more retrieval operations than additions or removals
- The average-case of the ADT dictionary operations:

|                      | Insertion | Removal | Retrieval   | Traversal |
|----------------------|-----------|---------|-------------|-----------|
| Unsorted array-based | 0(1)      | O(n)    | O(n)        | O(n)      |
| Unsorted link-based  | 0(1)      | O(n)    | O(n)        | O(n)      |
| Sorted array-based   | O(n)      | O(n)    | $O(\log n)$ | O(n)      |
| Sorted link-based    | O(n)      | O(n)    | O(n)        | O(n)      |



#### Which implementation should be chosen?

- New data structure to implement the ADT dictionary:
  - Hash Table

# **HASH TABLES Direct-Adress Table Hash Tables Definition** Hash Functions

ក្នាhminh@FIT



#### **Direct-address table**

- Generalizes a simpler notion of an ordinary array:
  - Directly addressing into an array takes advantage of the O(1) access time for any array element.
- A dynamic set implemented by a direct-address table T





#### **Direct-address table**

□ IDEA: Suppose that the keys are drawn from the set  $U \in \{0, 1, ..., m - 1\}$ , and keys are distinct. Set up an array T[0, 1, ..., m - 1] so that:

```
T[k] \begin{cases} x & \text{if } x \in K \text{ and } key[x] = k, \\ \text{NIL} & \text{otherwise.} \end{cases}
```

 $\square$  Then, all operations take O(1) time:

```
DIRECT-ADDRESS-SEARCH(T, k)
    return T[k]
DIRECT-ADDRESS-INSERT(T, x)
    T[x.key] = x
DIRECT-ADDRESS-DELETE(T, x)
    T[x.key] = NIL
```



#### **Direct-access table**

□ To use direct addressing, you must be able to allocate an array that contains a position for every possible key.

#### Problem:

- The range of keys can be large:
  - □ 64-bit numbers (which represent 18,446,744,073,709,551,616 different keys),
  - □ character strings (even larger!).
- When *K* is much smaller than *U*, most of the space allocated for *T* would be wasted.



#### **Solution: Hash tables**

Solution: Use a hash function h to map the universe U of

all keys into {0, 1, ..., *m*–1}:



□ When a record to be inserted maps to an already occupied slot in *T*, a *collision* occurs.



# Resolving collisions by chaining

Link records in the same slot into a list.



#### Worst case:

- Every key
   hashes to the
   same slot.
- Access time:

(similar to a linked list)



# Resolving collisions by chaining



LIST-DELETE(T[h(x.key)], x) //remove x from a linked list

# Analysis of hashing with chaining

- Average case: depends on how well the hash function *h* distributes the set of keys to be stored among the *m* slots.
- → We make the assumption of simple uniform hashing
  - Each key  $k \in K$  is equally likely to be hashed to any slot of table T, independent of where other keys are hashed.
  - Let *n* be the number of keys in the table, and let *m* be the number of slots. Define the *load factor* of *T* to be

 $\alpha = n/m$  = average number of keys per slot.

6/21/2023 nhminh@FIT 18



#### Search cost

The expected time for an *unsuccessful* search for a record with a given key is  $O(1 + \alpha)$ 

apply hash function and access slot

search the

- Expected search time: O(1) if  $\alpha = O(1)$ , or equivalently, if n = O(m).
- □ A successful search has same asymptotic bound, but a rigorous argument is a little more complicated.
   (See textbook 1.)



#### **Hash functions**

- What is a good hash function?
- A good hash function should distribute the keys uniformly into the slots of the table.
- However, it is difficult to check as we don't know the key distribution.
- Sometimes, we do know:
  - Ex: keys are random real numbers drawn independently and uniformly from [0,1)
  - $\rightarrow$  Hash function:  $h(k) = \lfloor km \rfloor$  satisfies the simple uniform hashing





#### **Hash functions**

- What is a good hash function?
- In practice, we use heuristics to create hash functions
  - May not satisfy simple uniform hashing, but perform well.
- General idea: avoid the hash value to be dependent on the patterns that might exist in the key.

#### Hash functions - Division method

Assume all keys are integers, and define

$$h(k) = k \bmod m$$

- **Example:** m = 12, k = 100 h(k) = 4
- Deficiency: Don't pick an m that has a small divisor d. A preponderance of keys that are congruent modulo d can adversely affect uniformity.
- □ Extreme deficiency: If  $m = 2^r$ , then the hash doesn't even depend on all the bits of k:
  - $\Box$  If k = 10110001110110102 and r = 6, then h(k) = 0110102. h(k)

# Hash functions - Division method

- □ Pick *m* to be a prime not too close to a power of 2 and not otherwise used prominently in the computing environment.
  - Example: n = 2000, we may choose m = 701
- Annoyance: Sometimes, making the table size a prime is inconvenient.
- However, this method is popular, although the next method we'll see is usually superior.

# Hash functions - Multiplication method

$$h(k) = \lfloor m(kA \bmod 1) \rfloor$$

- Where:
  - 0 < A < 1
  - $\blacksquare$  (kA mod 1): fractional part of kA (kA \[ kA \])
  - $\blacksquare$   $\lfloor x \rfloor$ : floor(x)
- Advantage:
  - $\blacksquare$  The value of m is not critical.
  - Typically:  $m = 2^l$  (for some integer l)
- Knuth suggests that:

$$A \approx \frac{(\sqrt{5} - 1)}{2} = 0.6180339887 \dots$$

6/21/2023

# Hash functions - Multiplication method

- Suppose that the word size of the machine is w bits and k fits into a single word.
- $\square$  Restrict  $A = a/2^w$ , where a is an integer  $0 < a < 2^w$



☐ In C++:

$$h_a(k) = (ka \mod 2^w) > (w - l);$$

# Hash functions - Multiplication method

#### Example:

- $k = 123456, l = 14, m = 2^{14} = 16384, w = 32$
- We choose a = 2654435769 which is the integer closet to Ax232
- We choose ka = 327706022297664=  $76300 \cdot 2^{32} + 17612864$
- So,  $r_1 = 76300$  and  $r_0 = 17612864$
- The 14 most significant bits of  $r_0$  is  $h_a(k) = 67$

# Resolving collisions by open addressing

- □ No storage is used outside of the hash table itself.
- Insertion systematically probes the table until an empty slot is found.
- The hash function depends on both the key and probe number:
- $\square \ h: \ U \times \{0, 1, ..., m-1\} \rightarrow \{0, 1, ..., m-1\}.$ 
  - → The probe sequence  $\langle h(k,0), h(k,1), ..., h(k,m-1) \rangle$  should be a permutation of  $\{0,1,...,m-1\}$ .
  - The table may fill up, and deletion is difficult (but not impossible).

6/21/2023 nhminh@FIT 27







Insert key k = 496:

- 0. Probe *h*(496,0)
- 1. Probe *h*(496,1)







- 0. Probe *h*(496,0)
- 1. Probe *h*(496,1)
- 2. Probe *h*(496,2)







and unsuccessfully if it encounters an empty slot.

6/21/2023 nhminh@FIT 31



# **Probing strategies**

#### Linear probing:

Given an ordinary hash function  $h_1(k)$ , linear probing uses the hash function

$$h(k, i) = (h_1(k) + i) \mod m \text{ for } i = 0, 1, 2, ..., m - 1$$

- This method, though simple, suffers from primary clustering
- → Long runs of occupied slots build up, increasing the average search time.
- → Moreover, the long runs of occupied slots tend to get longer.



# **Probing strategies**

#### Quadratic probing:

$$h(k,i) = (h_1(k) + c_1i + c_2i^2) \mod m$$

- Where  $h_1(k)$  is an auxiliary hash function,  $c_1$  and  $c_2 \neq 0$  are auxiliary constants.
  - $\square$  To make full use of the hash table,  $c_1, c_2$ , and m are constrained.
- This method, works much better than linear probing, but it suffers from secondary clustering.
  - 2 keys have the same collision chain if their initial position is the same.



# **Probing strategies**

#### Double hashing:

Given two ordinary hash functions  $h_1(k)$  and  $h_2(k)$ , double hashing uses the hash function

$$h(k,i) = (h_1(k) + ih_2(k)) \bmod m$$

This method generally produces excellent results, but  $h_2(k)$  must be relatively prime to m. One way is to make m a power of 2 and design  $h_2(k)$  to produce only odd numbers.



# **Double hashing – Example**



Insert 14 to the hash table T by double hashing

- m = 13
- $h_1(k) = k \mod 13$
- $h_2(k) = 1 + (k \mod 11)$



# **Double hashing – Example**



Insert 14 to the hash table T by double hashing

- m = 13
- $h_1(k) = k \mod 13$
- $h_2(k) = 1 + (k \mod 11)$
- Since 14 ≡ 1 (mod 13) and 14 ≡ 3 (mod 11), the key 14 is inserted into empty slot 9, after slots 1 and 5 are examined and found to be occupied.



## **Probing strategies**

### Double hashing:

- More examples:
  - $\square h_1(k) = k \mod m$ ;  $h_2(k) = 1 + (k \mod m')$  where m' is slightly less than m (eg, m-1):
    - m = 701, m' = 700, k = 123456
    - $h_1(k) = 80, h_2(k) = 257$
    - 1st position: 80, next every 257th slot (mod m) is examined



## **Probing strategies**

### Double hashing:

- $O(m^2)$  probe sequence are used, rather than O(m) (linear/quadratic probing)
  - □ Each possible  $(h_1(k), h_2(k))$  pair yields a distinct probe sequence.
- The performance of double hashing appears to be very close to the performance of the "ideal" scheme of uniform hashing.



### Analysis of open addressing

- We make the assumption of uniform hashing:
  - Each key is equally likely to have any one of the m! permutations as its probe sequence.
- Theorem. Given an open-addressed hash table with load factor  $\alpha = n/m < 1$ , the expected number of probes in an unsuccessful search is at most  $1/(1-\alpha)$ .



### **Proof of the theorem (1)**

- At least one probe is always necessary.
- With probability n/m, the first probe hits an occupied slot, and a second probe is necessary.
- With probability (n-1)/(m-1), the second probe hits an occupied slot, and a third probe is necessary.
- With probability (n-2)/(m-2), the third probe hits an occupied slot, etc.

Observe that 
$$\frac{n-i}{m-i} < \frac{n}{m} = \alpha$$
 for  $i = 1, 2, ..., n$ .





## **Proof of the theorem (2)**

#### Therefore, the expected number of probes is:

$$1 + \frac{n}{m} \left( 1 + \frac{n-1}{m-1} \left( 1 + \frac{n-2}{m-2} \left( \dots \left( 1 + \frac{1}{m-n+1} \right) \dots \right) \right) \right)$$

$$\leq 1 + \alpha \left( 1 + \alpha \left( 1 + \alpha \left( \dots \left( 1 + \alpha \right) \dots \right) \right) \right)$$

$$\leq 1 + \alpha + \alpha^2 + \alpha^3 + \dots$$

$$= \sum_{i=0}^{\infty} \alpha^i$$
The textbook has a more rigorous proof and an analysis of

The textbook has a more rigorous proof and an analysis of successful searches.



### Implications of the theorem

- If α is constant, then accessing an openaddressed hash table takes constant time.
- If the table is half full, then the expected number of probes is 1/(1–0.5) = 2.
- If the table is 90% full, then the expected number of probes is 1/(1–0.9) = 10.



### Hash table applications

- Dictionary problems:
  - Problems that usually need only 2 operations:
    Insert & Search
  - Example:



- Passwords storing and matching
  - Example: MD5 checksum (128 bit 16 bytes hash value)





### A weakness of hashing

**Problem:** For any hash function *h*, a set of keys exists that can cause the average access time of a hash table to skyrocket.

- An adversary can pick all keys from{k ∈ U: h(k) =
   i) for some slot i.
- Example:  $h(k) = k \mod m$

 $\rightarrow$  Set of keys:  $\{k, k+m, k+2m, \ldots\}$ 



### A weakness of hashing

**IDEA:** Choose the hash function at <u>random</u>, independently of the keys.

- Even if an adversary can see your code, he or she cannot find a bad set of keys, since he or she doesn't know exactly which hash function will be chosen.
- This approach is called universal hashing.



### **Universal hashing**

**Definition.** Let U be a universe of keys, and let  $\mathcal{H}$  be a finite collection of hash functions, each mapping U to  $\{0, 1, ..., m - 1\}$ . We say  $\mathcal{H}$  is *universal* if for all  $x, y \in U$ , where  $x \neq y$ , we have  $|\{h \in \mathcal{H}: h(x) = h(y)\}| = |\mathcal{H}|/m$ .

That is, the chance of a collision between x and y is 1/m if we choose h randomly from  $\mathcal{H}$ 





### Universality is good

**Theorem.** Let *h* be a hash function chosen (uniformly) at random from a universal set of hash functions. Suppose *h* is fused to hash *n* arbitrary keys into the *m* slots of a table *T*. Then, for a given key *x*, we have

E[#collisions with x] < n/m.



### **Proof of theorem**

**Proof.** Let  $C_x$  be the random variable denoting the total number of collisions of keys in T with x, and let

$$c_{xy} = \begin{cases} 1 & \text{if } h(x) = h(y) \\ 0 & \text{otherwise} \end{cases}$$

Note: 
$$E[c_{xy}] = 1/m$$
 and  $C_x = \sum_{y \in T - \{x\}} c_{xy}$ 



### **Proof of theorem**

$$E[C_x] = E\left[\sum_{y \in T - \{x\}} c_{xy}\right]$$
 • Take expectation of both sides.
$$= \sum_{y \in T - \{x\}} E[c_{xy}]$$
 • Linearity of expectation.
$$= \sum_{y \in T - \{x\}} 1/m$$
 •  $E[c_{xy}] = 1/m$ .
$$= \frac{n-1}{m}$$
 • Algebra.

- Linearity of expectation.
- $\bullet \ E[c_{xy}] = 1/m.$ 
  - Algebra.



### Constructing a set of universal hash functions

Choose a prime number p large enough: every key k is in the range 0 to p-1. We have p>m.

Let 
$$Z_p = \{0, 1, ..., p-1\}, Z_p^* = \{1, 2, ..., p-1\},$$

#### Carter and Wegman' strategy:

For any  $a \in Z_p^*$  and  $b \in Z_p$ , define:

$$h_{a,b}(k) = ((ak + b) \bmod p) \bmod m.$$

How big is 
$$\mathcal{H} = \{h_{a,b}\}$$
?

$$|\mathcal{H}| = p(p-1)$$



### Universality of dot-product hash functions

**Theorem.** The set  $\mathcal{H} = \{h_{a,b}\}$  is universal.

*Proof.* Suppose that x and y be distinct keys. For a given hash function  $h_{a,b}$ , we let  $r = (ax + b) \mod p$  and  $s = (ay + b) \mod p$ . Then,

$$r - s \equiv a(x - y) \bmod p$$

p is prime, a and (x - y) are both nonzero

$$\rightarrow a(x-y) \bmod p \neq 0.$$

Therefore,  $r \neq s$ , which means there are no collisions yet at the "mod p" level.



## **Proof (continued)**

$$r - s \equiv a(x - y) \mod p$$

We can solve for *a* and *b* given *r* and *s*:

$$a = ((r - s)((x - y)^{-1} \bmod p)) \bmod p$$
$$b = (r - ax) \bmod p$$

 $(x - y)^{-1} \mod p$  is unique multiplicative inverse, modulo p, of (x - y).

The number of pairs (r, s) with  $r \neq s$ : p(p - 1)

The number of pairs (a, b) with  $a \neq 0$ : p(p - 1)

Therefore, there is a one-to-one correspondence between pairs (a, b) with  $a \neq 0$  and pairs (r, s) with  $r \neq s$ .

Thus, each of the pair (a, b) picked randomly from  $Z_p^* \times Z_p$  yields a different resulting pair (r, s) with  $r \neq s$ .



## **Proof (continued)**

 $Pr\{x, y \text{ collide}\} = Pr\{r \equiv s \mod m\}$ 

For a given value of r, of the p-1 possible values for s, the number of values s such that  $s \neq r$  and  $s \equiv r \mod m$  is at most

$$\lceil p/m \rceil - 1 \le ((p+m-1)/m) - 1 \quad \text{(inequality)}$$
$$= (p-1)/m$$

Therefore, 
$$\Pr\{r \equiv s \bmod m\} \le \frac{\frac{(p-1)}{m}}{p-1} = \frac{1}{m}$$
.

Thus, for any pair of distinct values  $x, y \in \mathbb{Z}_p$ :

$$\Pr\{h_{a,b}(x) = h_{a,b}(y)\} \le 1/m$$

so that,  $\mathcal{H}$  is indeed universal.



- ☐ Given a set of n keys, construct a static hash table of size m = O(n) such that SEARCH takes O(1) time in the worst case.
- IDEA: Two-level scheme with universal hashing at both levels.
  - Level 1: Hashing with chaining
  - Level 2: For  $n_j$  keys hashing to slot j, use a secondary hash table  $S_j$  with an associated hash function  $h_i$ .

**No collisions at level 2!** if  $m_j = n_j^2$ 





- Using perfect hashing to store the set *K*={10, 22, 37, 40, 60, 70, 75}.
- Level 1 hash function is  $h(k)=((ak+b) \mod p) \mod m$ , where a=3, b=42, p=101, m=9.

$$\rightarrow$$
 { $h(k)$ } = {0, 7, 7, 7, 2, 5, 2}

Level 2 hash function is  $h_j(k) = ((a_j k + b_j) \mod p) \mod m_j$ , for each hash table  $S_j$  of slot j.

$$\rightarrow m_0 = m_5 = 0^2 = 1, m_2 = 2^2 = 4, m_7 = 3^2 = 9$$















#### Second level

$$m_0 = 0^2 = 1$$

$$m_2 = 2^2 = 4$$

$$m_5 = 0^2 = 1$$

$$m_7 = 3^2 = 2$$







### **Collisions at level 2**

**Theorem.** Let  $\mathcal{H}$  be a class of universal hash functions for a table of size  $m=n^2$ . Then, if we use a random  $h \in \mathcal{H}$  to hash n keys into the table, the probability of there being any collisions is less than 1/2.

*Proof.* By the definition of universality, the probability that 2 given keys in the table collide under h is  $\frac{1}{m} = \frac{1}{n^2}$ . Since there are pairs  $\binom{n}{2}$  of keys that can possibly collide, the expected number of collisions is

$$E[\#\text{collisions}] = {n \choose 2} \cdot \frac{1}{n^2} = \frac{n(n-1)}{2} \cdot \frac{1}{n^2} < \frac{1}{2}$$



## **Proof (continued)**

*Markov's inequality* says that for any nonnegative random variable *X*, we have

$$\Pr\{X \ge t\} \le E[X]/t$$

Applying this inequality with t = 1, we find that the probability of 1 or more collisions is at most 1/2.

Thus, just by testing random hash functions in H, we'll quickly find one that works.



## **Analysis of storage**

For the level-1 hash table T, choose m = n, and let  $n_i$  be random variable for the number of keys that hash to slot i in T. By using  $n_i^2$  slots for the level-2 hash table  $S_i$ , the expected total storage required for the two-level scheme is therefore

$$E[\text{total storage}] = n + E\left[\sum_{i=0}^{m-1} O(n_i^2)\right] < n + 2n = O(n)$$



#### What's next?

- □ After today:
  - Read textbook 1 Chapter 11 (page 368~)
  - Read textbook 2 Chapter 18 (page 552~)
  - Do Homework 5
- Next class:
  - Individual Assignment 3 (topic: Hash Tables)
  - Lecture 6: Tree Data Structures

