TTK4155

Industrial and Embedded Computer Systems Design

Lab lecture 6

- CAN bus & transceiver
- Node 2

Exercise 6: CAN bus and communication between nodes

- In this exercise, you will
 - Create a CAN communication driver
 - Connect CAN transceiver to controller on node 1
 - Program and test communication with node 2 and I/O card

Communication bus

CAN Physical Layer

Two wires, denoted CANH and CANL

Two states

- Logical 1: Recessive state CANH = CANL = Vcc/2
- Logical 0: Dominant state CANH ≈ Vcc and CANL ≈ Gnd

R=120

Node 2

Node 3

Node 4

CANH

CANL

R=120

Figure 3. CAN Bus Signals

CAN Frame

Standard CAN data frame:

http://en.wikipedia.org/wiki/Controller_area_network

CAN Transceiver MCP2551

PDIP/SOIC

- Handles the physical layer
- Detects line errors
- Protects against transients
- Controlled by the CAN controller
- End node termination of 120Ω
- Read AN228; A CAN Physical Layer Discussion

Node 2

- Arduino mega 2560 with expansion card.
- Programming => JTAG interface via expansion card.
- I/O card => provides CAN interface, DAC etc.
- See datasheet/schematics.

Things to do...

- Connect CAN transceiver MCP2551 to node 1.
- Program Node 2 e.g. for CAN reception, sending data on UART etc.
- Test CAN transmission between node 1 & 2.
- Try to send joystick position from Node 1 to Node 2 over CAN bus and display it on UART (Node 2).
- You should be able to reuse most of the drivers
 (UART, CAN etc.) created previosuly.
 NTNU Trondheim Norwegian University of Science and Technology

Questions?

Auf wiedersehen

