Bayesian Statistics III/IV (MATH3361/4071)

Michaelmas term 2019

Problem class 2

Lecturer: Georgios Karagiannis

georgios.karagiannis@durham.ac.uk

Exercise 1. $(\star\star)$ Consider the Bayesian model

$$\begin{cases} x_i | \theta & \stackrel{\text{iid}}{\sim} \text{Ga}(\alpha, \beta), \ \forall i = 1, ..., n \\ (\alpha, \beta) & \sim \Pi(\alpha, \beta) \end{cases}$$

where $Ga(a, \beta)$ is the Gamma distribution with expected value α/β . Specify a Jeffrey's prior for $\theta = (\alpha, \beta)$.

Hint-1: Gamma distr.: $x \sim \operatorname{Ga}(a,b)$ has pdf $f(x) = \frac{b^a}{\Gamma(a)} x^{a-1} \exp(-bx) 1_{(0,+\infty)}(x)$, and Expected value

Hint-2: You may also need that the second derivative of the logarithm of a Gamma function is the 'polygamma function of order 1'. Ie,

- $F^{(0)}(\alpha) = \frac{\mathrm{d}}{\mathrm{d}\alpha} \log(\Gamma(a))$
- $F^{(1)}(\alpha) = \frac{\mathrm{d}^2}{\mathrm{d}\alpha^2} \log(\Gamma(a))$

Hint-3: You may leave your answer in terms of function $F^{(1)}(\alpha)$.

Hints:

- To calculate certain expectations, it may be useful to remember that the gamma family of distributions is an exponential family, with a certain canonical form (So please check again the corresponding Exercise from Homework 1).
- You may also need that the second derivative of the logarithm of a Gamma function is the 'polygamma function of order 1'. Ie,
 - $F^{(0)}(\alpha) = \frac{d}{d\alpha} \log(\Gamma(a))$ $F^{(1)}(\alpha) = \frac{d^2}{d\alpha^2} \log(\Gamma(a))$
- You may leave your answer in terms of function $F^{(1)}(\alpha)$.

Exercise 2. $(\star\star)$ Consider observables $x=(x_1,...,x_n)$. Consider the Bayesian model

$$\begin{cases} x_i | \theta & \stackrel{\text{IID}}{\sim} N(\theta, 1), \quad i = 1, ..., n \\ \theta & \sim d\Pi(\theta) \end{cases}$$

where $\pi(\theta) \propto 1$ and that we have only one observable. Consider the LINEX loss function

$$\ell(\theta, \delta) = \exp(c(\theta - \delta)) - c(\theta - \delta) - 1$$

- 1. Show that $\ell(\theta, \delta) \geq 0$
- 2. Find the Bayes estimator $\hat{\delta}$ under LINEX loss function and under the given Bayesian model.

Hint-1: Random variable B follows a log-normal distribution $B \sim \text{LN}(\mu_A, \sigma_A^2)$ with parameters μ_A, σ_A^2 if $B = \exp(A)$ where $A \sim \text{N}(\mu_A, \sigma_A^2)$.

Hint-2: If $B \sim \text{LN}(\mu_A, \sigma_A^2)$ then $\text{E}_{\text{LN}(\mu_A, \sigma_A^2)}(B) = \exp(\mu_A + \frac{\sigma_A^2}{2})$.

Hint-3: It is

$$-\frac{1}{2}\frac{(\mu-\mu_1)^2}{v_1^2} - \frac{1}{2}\frac{(\mu-\mu_2)^2}{v_2^2} \dots - \frac{1}{2}\frac{(\mu-\mu_n)^2}{v_n^2} = -\frac{1}{2}\frac{(\mu-\hat{\mu})^2}{\hat{v}^2} + C$$

where

$$\hat{v}^2 = \left(\sum_{i=1}^n \frac{1}{v_i^2}\right)^{-1}; \quad \hat{\mu} = \hat{v}^2 \left(\sum_{i=1}^n \frac{\mu_i}{v_i^2}\right); \quad C = \frac{1}{2} \frac{\hat{\mu}^2}{\hat{v}^2} - \frac{1}{2} \sum_{i=1}^n \frac{\mu_i^2}{v_i^2}$$

Exercise 3. (**)Suppose we wish to estimate the values of a collection of discrete random variables $\vec{X} = X_1, \ldots, X_n$. We have a posterior joint probability mass function for these variables, $p(\vec{x}|y) = p(x_1, \ldots, x_n|y)$ based on some data y. We decide to use the following loss function:

$$\ell(\hat{\vec{x}}, \vec{x}) = \sum_{i=1}^{n} (1 - \delta(\hat{x}_i, x_i))$$
 (1)

where $\delta(a, b) = 1$ if a = b and zero otherwise.

- 1. Derive an expression for the estimated values, found by minimizing the expectation of the loss function. [Hint: use linearity of expectation.]
- 2. When the probability distribution is a posterior distribution in some problem, this type of estimate is sometimes called 'maximum posterior marginal' (MPM) estimate. Explain why this name is appropriate.
- 3. Explain in words what the loss function is measuring. Compare with the loss function for MAP estimation.

Exercise 4. (Example from the Lecture's handout) Consider a Bayesian model

$$\begin{cases} y_i | \mu & \stackrel{\text{iid}}{\sim} \mathbf{N}_d(\mu, \Sigma), \qquad i = 1, ..., n \\ \mu & \sim \mathbf{N}_d(\mu_0, \Sigma_0) \end{cases}$$

where uncertain $\mu \in \mathbb{R}^d$, $d \ge 1$, and known Σ , μ_0 , Σ_0 . Find the C_a parametric HPD credible set for μ .

Hint-1: If $z = (z_1, ..., z_d)^{\top}$ such as $z_j \stackrel{\text{iid}}{\sim} N(0, 1)$ for j = 1, ..., d, and $\xi = z^{\top}z = \sum_{j=1}^d z_j^2$, then $\xi \sim \chi_d^2$

Hint-2: It is

$$\begin{split} -\frac{1}{2} \sum_{i=1}^{n} (x - \mu_{i})^{\top} \Sigma_{i}^{-1} (x - \mu_{i})) &= -\frac{1}{2} (x - \hat{\mu})^{\top} \hat{\Sigma}^{-1} (x - \hat{\mu})) + C(\hat{\mu}, \hat{\Sigma}) \quad ; \\ \hat{\Sigma} &= (\sum_{i=1}^{n} \Sigma_{i}^{-1})^{-1}; \quad \hat{\mu} = \hat{\Sigma} (\sum_{i=1}^{n} \Sigma_{i}^{-1} \mu_{i}); \\ C(\hat{\mu}, \hat{\Sigma}) &= \underbrace{\frac{1}{2} (\sum_{i=1}^{n} \Sigma_{i}^{-1} \mu_{i})^{\top} (\sum_{i=1}^{n} \Sigma_{i}^{-1})^{-1} (\sum_{i=1}^{n} \Sigma_{i}^{-1} \mu_{i}) - \frac{1}{2} \sum_{i=1}^{n} \mu_{i}^{\top} \Sigma_{i}^{-1} \mu_{i})}_{= \text{independent of } x} \end{split}$$