TERMOSTAT PENTRU CENTRALĂ TERMICĂ DE APARTAMENT

Iftene Ioan-Florin
Facultatea de Automatică și Calculatoare
Specializarea: Calculatoare și Tehnologia Informației
Grupa 30211

Profesor îndrumător: Diana Pop

Cuprins

1. Specificația proiectului	3
2. Proiectare	
2.1 Schema bloc	3
2.2 Descompunerea în Unitate de Control (U.C.) și Unitate de Execuție (U.E.)	
2.3 Resursele U.E. și U.C.	5
2.4 Organigrama Unității de Control	14
3. Justificarea soluției alese	15
4. Manual de utilizare și întreținere	16
5. Posibilități de dezvoltări ulterioare	17
6. Bibliografie	17

1. Specificația proiectului

Să se proiecteze un termostat pentru o centrală termică de apartament. Termostatul este prevăzut cu un termistor pentru măsurarea temperaturii. Există un ceas pentru afișarea timpului (oră, minute) și un afișaj pentru temperatură. Se pot programa o valoare minimă și una maximă de temperatură a apartamentului. Aceste valori pot fi apoi asociate pentru fiecare oră (din cele 24 de ore ale zilei). În funcție de programare, termostatul trebuie să comande pornirea sau oprirea încălzirii. Adițional termistorul va primi date de la o unitate de simulare, care va simula încălzirea cu 1° pentru fiecare 3 secunde cu elementul de încălzire pornit și similar pentru răcire.

2. Proiectare

2.1 Schema bloc

Iesirile de care voi avea nevoie pentru a realiza proiectul sunt un led și 6 afișaje BCD-7 segmente. Led-ul va semnaliza dacă încălzirea este pornită, iar cele 6 afișaje vor fi folosite astfel:

- 2 afișaje pentru a indica ora (unul pentru cifra zecilor și unul pentru cifra unităților)
- 2 afișaje pentru a indica minutele
- 2 afișaje pentru a indica temperatura

Intrările sunt reprezentate de temperatura curentă, numar pe 5 biti, 2 butoane, 5 switch-uri și un semnal de tact. Semnalul de tact va fi folosit pentru afisarea orei curente, iar butoanele și switch-urile vor fi utilizate astfel:

- un switch va fi folosit pentru a incepe procesul de setare a unei temperaturi extreme, proces ce incepe prin alegerea intervalului orar. (SW_ALEG_ORA)
- un buton pentru a alege ora pentru care se dorește setarea temperaturii minime/maxime (BTN_ALEG_ORA). La prima apăsare a acestui buton, cand SW_ALEG_ORA este activat, pe afișoarele pentru oră se va afișa ora 00, corespunzătoare pentru intervalul orar (00-00⁵⁹). La următoarea apăsare se afișează 01 ș.a.m.d.;
- Pentru a seta temperaturile extreme pentru ora afișată în urma apăsării butonului de alegere a orei, se activează switch-ul SW_SET_ORA;
- Butonul BTN_ALEG_T este folosit pentru a alege temperatura minima/maxima pentru ora selectată. Temperatura fi vizibila utilizatorului pe cele 2 afișoare corespunzătoare. Dacă se dorește setarea temperaturii afișate ca și valoare extremă pentru ora selectată, se va activa switch-ul SW_SET_T. Pentru a specifica dacă este vorba de valoare maximă sau minimă, utilizatorul va activa switch-ul SW_MIN_MAX, pentru valoare maxima, sau il va lasa oprit, pentru valoare minima;
- Pentru a salva temperatura selectata ca și valoare extremă pentru ora aleasă, utilizatorul activează switch-ul SW_SAVE.

2.2 Descompunerea în Unitate de Control (U.C.) și Unitate de Execuție (U.E.)

2.3 Resursele U.E. și U.C.

Unitatea de execuție:

În unitatea de execuție avem următoarele resurse:

- Nr_ora, resursă formată din 2 numărătoare prin care se vor genera semnalele pe 4 biti Ora_U și Ora_Z, care se vor folosi pentru afișarea orei pe care utilizatorul o alege pentru a seta temperaturile extreme. Inițial, ambele numărătoare vor fi resetate prin semnalul Reset_Ora. Primul numarator va genera unitățile orei și va număra de fiecare data când este apăsat butonul de alegere a orei, în buclă 0-9. Cel de-al doilea numărător numără cifra zecilor, în buclă 0-2. Valoarea de pe ieșirile celui de-al doilea numărător se modifică daor atunci când numărătorul pentru unități a ajuns la cifra 9 și este apăsat butonul de alegere a orei. Când este atinsă valoarea 2 pe numărătorul pentru zeci și 3 pe numărătorul pentru unități, la următoarea apăsare a butonului, ambele numărătoare se resetează.

- Nr_temp, resursă formată din 2 numărătoare prin care se vor genera semnalele pe 4 biti T_U și T_Z, care se vor folosi pentru afișarea temperaturii pe care utilizatorul o alege. Inițial, ambele numărătoare vor fi resetate prin semnalul Reset_Temp. Primul numarator va genera cifra unităților și va număra de fiecare data când este apăsat butonul de alegere a temperaturii, în buclă 0-9. Cel de-al doilea numărător numără cifra

zecilor, în buclă 0-3. Valoarea de pe ieșirile celui de-al doilea numărător se modifică daor atunci când numărătorul pentru unități a ajuns la cifra 9 și este apăsat butonul de alegere a orei sau atunci când este atinsă valoarea 3 pe numărătorul pentru zeci și 1 pe numărătorul pentru unități, situașie în care, la următoarea apăsare a butonului, ambele numărătoare se resetează.

Afișor, resursă prin care se transmite la decodificator, pe 4 biți, informația care se dorește a fi afișată. Este formată dintr-un multiplexor 8:1 pe 4 biți. Pe intrarea 0 a multiplexorului, în funcție de semnalul "Aleg", care reprezinta selecția pentru un multiplexoar 2:1 pe 4 biti, se află cifra zecilor orei curentei (dacă Aleg=0) sau a celei pe care o alege utilizatorul (Aleg=1). Similar, pe intrarea 1 se afla cifra unităților pentru ora care va fi afisată, iar pe următoarele 2 intrări se află cifra zecilor si cea a unitătilor pentru minutele orei care trebuie afișată. Pe intrările 4 și 5 sunt cifra zecilor și cea a unităților a temperaturii care urmează a fi afișată (Temperatura din cameră dacă Set Ora = 0, respectiv temperatura pe care o alege utilizatorul dacă Set Ora=1). Întrucât selecțiile multiplexorului 8:1 sunt reprezentate de o valoare întreagă din intervalul [0,5] (valoare echivalentă cu indexul afișorului care va fi activ), valoarea de pe intrările 6 și 7 nu contează. Selecțiile sunt determinate în funcție de informația de pe anod. Se folosește un decodificator pentru a transforma informația pe 6 biți de pe anod într-una pe 3 biți, pentru selecții. Informația de pe anod este generată cu ajutorului unui "registru-inel". Acesta schimbă bitul activ (0) al anodului cu o poziție la stânga la fiecare front ascendent al semnalului de tact.

DCD_7, resursă care preia informația pe 4 biți de pe ieșirea multiplexorului 8:1, din cadrul resursei Afișor, și generează ieșirea Catod, pe 7 biți, care va conține șirul de biți corespunzător afișării informației primite pe afișajul pe 7 segmente.

	INFO(3)	(S)OFINI	info(1)	INFO(0)	a	Ь	С	d	e	f	9	_
0	0	0	0	0	0	0	0	Ø	0	0	1	1 13
1	\bigcirc	0	O	1	1	0	0	1	1	1	1	'1
2	0	0	1	0	0	0	1	0	0	1	0	1 2
3 4	0	0	1	1	0	0	0	0	1	1	0	=
45	© 0	1	0	O	1	0	0	1	1	0	Ö	1
6	$\stackrel{\circ}{\triangle}$	1	0	1	0	X.	0	0	1	0	0	5
7	0	1	4	0	0	1	0	0	0	0	0	15
8	<i>S</i>	7	1	1	0	0	0	٨	1	1	1	7
9	1	Ö	0	1	0	0	0	0	0	0	0	
105	· · · · · · · · ·			1	0	0	0	0	1	0	0	

Comp5, comparator pentru 2 numere pe 5 biți, prin care se vor genera semnalele T<Tmin și T>Tmax către unitatea de control. Comparatorul utilizeaza un comparator pe 4 biți (care este format din 2 comparatoare pe 2 biți care au la baza comparatore pe un bit) și un comparator pe un bit.

Comparator de 2 mr. pe 4 bits · Comparator de 2 mr. pe 5 biti

$$(F_5 = F_5(3:2) + F_6(3:2) \cdot F_5(1:0)$$
 $F_5 = F_5(4:1) + F_6(4:1) \cdot F_6(6)$
 $F_6 = F_6(3:2) \cdot F_6(1:0)$ $F_7 = F_7(4:1) \cdot F_7(6)$
 $F_8 = F_8(3:2) + F_8(3:2) \cdot F_8(1:0)$ $F_8 = F_8(4:1) + F_8(4:1) \cdot F_8(6)$

-Ceas, resursă responsabilă cu ora și minutele curente. Este formată din 6 numărătoare, 2 pentru secunde, 2 pentru minute și 2 pentru oră (pentru cifra zecilor și cea a unităților). Semnalul de tact al numărătoarelor provine de la divizorul de frecvență și are frecvența de 1Hz (o secundă).

Divizor, responsabil cu divizarea frecvenței clock-ului de pe placa FPGA. Are ca ieșire un semnal de tact cu frecvența de 1 Hz (o secunda), semnal folosit pentru a număra când trece o secunda. Am considerat că frecveța clock-ului de pe placă este de 100Mhz (1e8 Hz). Astfel, pentru a obține o frecvență de 1 Hz am gândit un algoritm care să numere până la (1e8)/2=5e7, moment în care se modifică frontul semnalului de tact de pe ieșire.

Pseudocod:

```
Clk1: intrare
Clk2: ieșire
ct: variabilă întreagă pe 33 biți; ct=0
front: variabilă de tip std_logic; front='0'
process(Clk1)
    if(front_ascendent(clk1))
        ct++;
    if(ct==5e7)
    {
        front=not(front);
        ct=0;
    }
    Clk2=front;
```

- M_RAM, memorie RAM în care vor fi memorate temperaturile extreme pentru fiecare oră. Temperatura minimă va fi salvată la adresa "Ora_curentă", iar temperatura maximă la adresa "Ora_curentă+24", astfel:

Dacă MEM este memoria, MEM(Ora_curentă)=Tmin, MEM(Ora_curentă+24)=Tmax; Vom avea nevoie de 48 de adrese pentru a salva temperaturile extreme. Astfel, calea de date pentru adrese (A_RAM) va fi pe 6 biți. I_RAM reprezintă magistrala de date și va fi folosită pentru a scrie temperaturile pe memoria RAM. Dimensiunea unui cuvânt de memorie este egală cu dimensiunea în biți a temperaturii, adică 5. CS_RAM va avea mereu valoarea 1 pentru ca memoria să functționeze, iar WE este 1 atunci când Set_Tmin sau Set_Tmax sunt 1.

Capacitatea memoriei este de 2^6*5 biți = 64x5.

- DCD_5B_2_4B, resursă care preia informația pe 5 biți legată de temperatura curentă și o descompune în 2 componente pe 4 biți (zeci și unități);

	TEMP	T_Z	T_U
		-	
0	00000	0000	0000
1	00001	0000	0001
2	00010	0000	0010
3	00011	0000	0011
4	00100	0000	0100
5	00101	0000	0101
6	00110	0000	0110
7	00111	0000	0111
8	01000	0000	1000
9	01001	0000	1001
10	01010	0001	0000
11	01011	0001	0001
12	01100	0001	0010
13	01101	0001	0011
14	01110	0001	0100
15	01111	0001	0101
16	10000	0001	0110
17	10001	0001	0111
18	10010	0001	1000
19	10011	0001	1001
20	10100	0010	0000
21	10101	0010	0001
22	10110	0010	0010
23	10111	0010	0011
24	11000	0010	0100
25	11001	0010	0101
26	11010	0010	0110
27	11011	0010	0111
28	11100	0010	1000
29	11101	0010	1001
30	11110	0011	0000
31	11111	0011	0001

- DCD_2_4B_to_6B, resursă care preia informațiile legate de ora aleasă (zeci și unități pe 4 biți) și le compune într-un număr pe 6 biți, care va fi folosit pentru a forma o adresă de intrare pentru memoria RAM;

	Z	U	REZ
0	0000	0000	000000
1	0000	0001	000001
2	0000	0010	000010
3	0000	0011	000011
4	0000	0100	000100
5	0000	0101	000101
6	0000	0110	000110
7	0000	0111	000111
8	0000	1000	001000
9	0000	1001	001001
10	0001	0000	001010
11	0001	0001	001011
12	0001	0010	001100
13	0001	0011	001101
14	0001	0100	001110
15	0001	0101	001111
16	0001	0110	010000
17	0001	0111	010001
18	0001	1000	010010
19	0001	1001	010011
20	0010	0000	010100
21	0010	0001	010101
22	0010	0010	010110
23	0010	0011	010111
24	0010	0100	011000
25	0010	0101	011001
26	0010	0110	011010
27	0010	0111	011011
28	0010	1000	011100
29	0010	1001	011101
30	0011	0000	011110
31	0011	0001	011111

- Sumator6B, sumator complet pentru 2 numere pe 6 biți, folosit pentru a adăuga 24 la ora curentă și a forma adresa la care se va salva temperatura maximă în memorie.

Unitatea de comandă:

În unitatea de comandă avem următoarele intrări:

- SW_ALEG_ORA switch acționat de către utilizator. Reprezită o intrare asincronă întrucât poate fi acționat oricând de către utilizator;
- BTN_ALEG_ORA- buton extern acționat de către utilizator. Apăsarea acestui buton are efect numai când SW_ALEG_ORA=1;
- SW_SET_ORA switch acționat de către utilizator pentru a alege ora afișată ca și oră pentru care se dorește setarea unei temperaturi
- BTN_ALEG_T buton extern acționat de către utilizator. Apăsarea acestui buton are efect numai când SW_SET_ORA=1;
- SW_SET_T switch acționat de către utilizator pentru a seta temperatura afișată ca și extremă pentru ora aleasă anterior;
- SW_MIN_MAX- switch acționat de către utilizator pentru a indica dacă se dorește ca temperatura aleasă să fie minimă sau maximă;
- SW_SAVE switch acționat de către utilizator pentru a salva valoarea extremă aleasă pentru ora selectată;
- T<Tmin, intrare provenită din U.E. care indică dacă temperatura curentă e mai mică decât temperatura minimă pentru ora curentă;
- T>Tmax, intrare provenită din U.E. care indică dacă temperatura curentă e mai mare decât temperatura maximă pentru ora curentă;

Din U.C. avem următoarele ieșiri:

- LED_ÎNCĂLZIRE_PORNITĂ, ieșire vizibilă utilizatorului, care indică faptul că încălzirea este pornită, când led-ul este aprins, sau oprită, când led-ul e stins;
- Reset_Ora și Reset_Temp ieșiri care resetează numărătoarele din Nr_Ora și Nr_Temp;
- Aleg, ieșire care indică faptul că SW ALEG ORA e activat;
- en_ora, ieșire care furnizează semnalul de tact pentru numărătorul cifrei unităților din Nr_ora. Valoarea acestei ieșiri este egală cu (SW_ALEG_ORA AND BTN_ALEG_ORA);
- Set_Ora, ieșire care indică faptul că SW_SET_ORA e activ și urmează a se alege o temperatură;
- en_temp ieșire care furnizează semnalul de tact pentru numărătorul cifrei unităților din Nr_temp. Valoarea acestei ieșiri este egală cu (SW_SET_ORA AND BTN_ALEG_T);
- Set_Tmin ieșire care indică faptul că temperatura aleasă trebuie salvată ca și temperatură minimă;
- Set_Tmin ieșire care indică faptul că temperatura aleasă trebuie salvată ca și temperatură maximă;

2.4 Organigrama Unității de Control

A - stare inițială: Led-ul este stins, numărătoarele pentru alegerea orei și temperaturii se resetează

B – Se verifică dacă trebuie pornită încălzirea

H – Încălzirea este pornită

C – Se alege ora

D – Butonul de alegere a orei nu e apăsat

 $E-Se\ alege\ temperatura$

F – Butonul de alegere a temperaturii nu e apăsat

G – Temperatură aleasă; se identifică dacă este temperatură minimă sau maximă și se salvează

Datorită faptului că organigrama conține 8 stări distincte, putem codifica stările pe 3 biți astfel: A-000; B-001; C-011; D-010; E-110; F-111; G-101; H-100. Am ales să implementez organigrama cu o memorie ROM, un multiplexor 8:1 și 3 bistabile D.

Diagrama Karnaugh pentru variabilele de stare, pe baza organigramei este următoarea:

Q_1 Q_0 Q_2	00	01	11	10
0	0(SW_ALEG_ORA)1	(T <tmin)00< th=""><th>01(BTN_ALEG_ORA)</th><th>(SwSetOra)1(SwSetOra)</th></tmin)00<>	01(BTN_ALEG_ORA)	(SwSetOra)1(SwSetOra)
1	(T>Tmax)00	(Salvez)0(Salvez)	$1(\overline{\text{SwSetTemp}})(\text{SwSetTemp})$	11(BTN_TEMP)

Salvez=(SW_MIN_MAX and SW_SAVE) or (SW_MIN_MAX and SW_SAVE)

Harta memoriei ROM folosită pentru implementare:

A3	A2	A1	A0	D3	D2	D1	D0
0	0	0	0	X	0	0	1
1	0	0	0	X	0	1	1
0	0	0	1	X	0	0	0
1	0	0	1	X	1	0	0
0	0	1	0	X	0	1	1
1	0	1	0	X	1	1	0
0	0	1	1	X	0	1	0
1	0	1	1	X	0	1	1
0	1	0	0	X	1	0	0
1	1	0	0	X	0	0	0
0	1	0	1	X	1	0	1
1	1	0	1	X	0	0	0
0	1	1	0	X	1	1	1
1	1	1	0	X	1	1	0
0	1	1	1	X	1	1	0
1	1	1	1	X	1	0	1

3. Justificarea soluției alese

Am ales această soluție deoarece am considerat că este una ușor de înțeles de către oricine, fie că are, sau nu, cunoștințe în domeniu. Pentru ca utilizatorului să îi fie mai clar procesul selecției orei și a temperaturii, am ales să folosesc două butoane pentru alegerea lor (unul pentru oră și unul

pentru temperatură), în loc de unul care s-ar fi putut folosi pentru ambele operațiuni. Totodată, am folosit mai multe switch-uri pentru ca trecerea dintr-o faza a selecției temperaturilor extreme în alta să fie cât mai clară: un switch se utilizează pentru a începe selecția, unul pentru a selecta ora, unul pentru a selecta temperatura, unul pentru a preciza dacă temperatura este minimă sau maximă și unul pentru a o salva.

Prin diferențierea clară atât a celor 2 butoane, cât și a switch-urilor care trebuie folosite pentru a selecta temperatura și ora, procesul de setare a temperaturilor extreme pentru o anumită oră devine unul mai logic și mai ușor de urmărit.

Pentru a găsi mai ușor în memorie temperaturile extreme pentru o anumită oră și pentru ca procesul de stocare să aibă o oarecare logică, termostatul stochează temperaturile minime la adresele 0-23 (la adresa x este temperatura pentru intervalul orar [x,x+1), x reprezintă ora aleasă de utilizator, $0 \le x \le 24$), iar temperaturile maxime la adresele 24-47 (Ora aleasă+24).

4. Manual de utilizare și întreținere

Pentru a utiliza corespunzător termostatul, utilizatorul va trebui, mai întâi, să introducă temperaturile extreme pentru fiecare oră. Pentru a raliza acest pas, pentru început, trebuie sa activeze switch-ul care inițiază procesul (SW_ALEG_ORA). Odată activat acest switch, utilizatorul va putea folosi butonul pentru selectarea orei pentru care va seta temperatura (BTN_ALEG_ORA) și va putea vedea pe afișoarele destinate orei ceea ce alege. Când dorește să seteze o temperatură pentru ora afișată, activează switch-ul SW_SET_ORA. Acest lucru îi va permite să folosească butonul de alegere a temperaturii (BTN_ALEG_TEMP) și să vadă pe afișoarele destinate temperaturii ceea ce alege. Dacă ceea ce indică afișoarele este temperatura dorită, utilizatorul activează switch-ul SW_SET_TEMP pentru a o reține și folosește apoi un alt switch (SW_MIN_MAX) pentru a selecta dacă temperatura va reprezenta minima sau maxima pentru ora selectată. În acest moment, toate switch-urile activate anterior se pot aduce în starea lor inițială (0) și apoi se activează switch-ul SAVE pentru a salva și a încheia procesul. Acest proces va fi repetat de fiecare dată când se dorește setarea unei temperaturi minime sau maxime pentru o anumită oră.

Când temperaturile extreme sunt setate pentru ora curentă, termostatul compară automat aceste valori cu valoarea temperaturii din încăpere. Dacă temperatura din cameră este mai mică decât minima reținută de termostat, se va porni încălzirea până când se atinge valoarea maximă+1. Dacă temperatura este între cele două valori sau este mai mare decât temperatura maximă, încălzirea va rămâne oprită.

5. Posibilități de dezvoltări ulterioare

Termostatul ar putea fi îmbunătățit prin adăugarea posibilității de a decrementa atunci când se alege ora sau temperatura. În forma actuală, dacă utilizatorul trece accidental de valoarea dorită, trebuie să apese în continuare pe buton până se reia bucla de numărare și se ajunge din nou la valoarea căutată.

O altă îmbunătățire poate fi opțiunea de a putea seta ora, pentru că în forma actuală utilizatorul nu are această posibilitate.

Nu în ultimul rând, termostatul ar putea primi o mare îmbunătățire dacă s-ar trece de la valori întregi ale temperaturii la valori zecimale. Asfel, utilizatorul ar putea seta mult mai precis temperaturile dorite, mărindu-și gradul de confort din casă.

6. Bibliografie

Suport de curs PL, https://users.utcluj.ro/~vcristian/PL.html

Suport de curs PSN

Documentație Logisim, http://www.cburch.com/logisim/docs.html

Lucia Văcariu, Octavian Cret, Probleme de Proiectare Logică, U.T. Press, Cluj-Napoca, 2013