SEQUENCE LISTING

<110> Genentech, Inc. Ashkenazi, Avi Botstein, David Desnoyers, Luc Eaton, Dan L. Ferrara \ Napoleone Filvarof\f, Ellen Fong, Sherman Gao, Wei-Qiang Gerber, Hanspeter Gerritsen, Mary E. Goddard, A. Godowski, Paul J. Grimaldi, Christopher J. Gurney, Austin L. Hillan, Kenneth, J. Kljavin, Ivar Mather, Jennie Pan, James Paoni, Nicholas P Roy, Margaret Ann' Stewart, Timothy A Tumas, Daniel Williams, P. Mickey Wood, William, I.

<120> Secreted and Transmembrane Polypeptides and Nucleic Acids Encoding the Same

<130> 10466-14

<140> 09/665,350

<141> 2000-09-18

<150> PCT/US00/04414

<151> 2000-02-22

<150> US 60/143,048

<151> 1999-07-07

<150> US 60/145,698

<151> 1999-07-26

<150> US 60/146,222

<151> 1999-07-28

<150> PCT/US99/20594

<151> 1999-09-08

<150> PCT/US99/20944

<151> 1999-09-13

The first time of the control of the first time of the control of

```
<150> PCT/US99/21090
 <151> 1999-09-15
 <150> PCT/US99/21547
 <151> 1999-09-15
<150> PCT/US99/23089
<151> 1999-10-05
<150> PCT/US99/28214
<151> 1999-11-29
<150> PCT/US99/28313
<151> 1999-11-30
<150> PCT/US99/28564
<151> 1999-12-02
<150> PCT/US99/28565
<151> 1999-12-02
<150> PCT/US99/30095
<151> 1999-12-16
<150> PCT/US99/30911
<151> 1999-12-20
<150> PCT/US99/30999
<151> 1999-12-20
<150> PCT/US00/00219
<151> 2000-01-05
<160> 423
<210> 1
<211> 1825
<212> DNA
<213> Homo sapiens
<400> 1
actgcacctc ggttctatcg attgaattcc ccggggatcc tctagagatc cctcgacctc 60
gacccacgcg tccgggccgg agcagcacgg ccgcaggacc tggagctccg gctgcgtctt 120
cccgcagcgc tacccgccat gcgcctgccg cgccgggccg cgctggggct cctgccgctt 180
ctgctgctgc tgccgcccgc gccggaggcc gccaagaagc cgacgccctg ccaccggtgc 240
cgggggctgg tggacaagtt taaccagggg atggtggaca ccgcaaagaa gaactttggc 300
ggcgggaaca cggcttggga ggaaaagacg ctgtccaagt acgagtccag cgagattcgc 360
ctgctggaga tcctggaggg gctgtgcgag agcagcgact tcgaatgcaa tcagatgcta 420
gaggcgcagg aggagcacct ggaggcctgg tggctgcagc tgaagagcga atatcctgac 480
ttattcgagt ggttttgtgt gaagacactg aaagtgtgct gctctccagg aacctacggt 540
cccgactgtc tcgcatgcca gggcggatcc cagaggccct gcagcgggaa tggccactgc 600
ageggagatg ggageagaca gggegaeggg teetgeeggt gecaeatggg gtaceaggge 660
```

ccgctgtgca	ctgactgcat	ggacggctac	ttcagctcgc	tccggaacga	gacccacagc	720
atctgcacag	cctgtgacga	gtcctgcaag	acgtgctcgg	gcctgaccaa	cagagactgc	780
ggcgagtgtg	aagtgggctg	ggtgctggac	gagggcgcct	gtgtggatgt	ggacgagtgt	840
gcggccgagc	cgcctccctg	cagcgctgcg	cagttctgta	agaacgccaa	cggctcctac	900
acgtgcgaag	agtgtgactc	cagctgtgtg	ggctgcacag	gggaaggccc	aggaaactgt	960
aaagagtgta	tctctggcta	cgcgagggag	cacggacagt	gtgcagatgt	ggacgagtgc	1020
tcactagcag	aaaaaacctg	tgtgaggaaa	aacgaaaact	gctacaatac	tccagggagc	1080
tacgtctgtg	tgtgtcctga	cggcttcgaa	gaaacggaag	atgcctgtgt	gccgccggca	1140
gaggctgaag	ccacagaagg	agaaagcccg	acacagctgc	cctcccgcga	agacctgtaa	1200
tgtgccggac	ttacccttta	aattattcag	aaggatgtcc	cgtggaaaat	gtggccctga	1260
ggatgccgtc	tcctgcagtg	gacagcggcg	gggagaggct	gcctgctctc	taacggttga	1320
ttctcatttg	tcccttaaac	agctgcattt	cttggttgtt	cttaaacaga	cttgtatatt	1380
ttgatacagt	tctttgtaat	aaaattgacc	attgtaggta	atcaggagga	aaaaaaaaa	1440
aaaaaaaaa	aaagggcggc	cgcgactcta	gagtcgacct	gcagaagctt	ggccgccatg	1500
gcccaacttg	tttattgcag	cttataatgg	ttacaaataa	agcaatagca	tcacaaattt	1560
cacaaataaa	gcatttttt	cactgcattc	tagttgtggt	ttgtccaaac	tcatcaatgt	1620
atcttatcat	gtctggatcg	ggaattaatt	cggcgcagca	ccatggcctg	aaataacctc	1680
tgaaagagga	acttggttag	gtaccttctg	aggcggaaag	aaccagctgt	ggaatgtgtg	1740
tcagttaggg	tgtggaaagt	ccccaggctc	cccagcaggc	agaagtatgc	aagcatgcat	1800
ctcaattagt	cagcaaccca	gtttt				1825

<211> 353

<212> PRT

<213> Homo sapiens

<400> 2

Met Arg Leu Pro Arg Arg Ala Ala Leu Gly Leu Leu Pro Leu Leu 1 5 10

Leu Leu Pro Pro Ala Pro Glu Ala Ala Lys Lys Pro Thr Pro Cys His

Arg Cys Arg Gly Leu Val Asp Lys Phe Asn Gln Gly Met Val Asp Thr
35 40

Ala Lys Lys Asn Phe Gly Gly Gly Asn Thr Ala Trp Glu Glu Lys Thr
50 60

Leu Ser Lys Tyr Glu Ser Ser Glu Ile Arg Leu Leu Glu Ile Leu Glu 65 70 75 80

Gly Leu Cys Glu Ser Ser Asp Phe Glu Cys Asn Gln Met Leu Glu Ala 85 90 95

Gln Glu Glu His Leu Glu Ala Trp Trp Leu Gln Leu Lys Ser Glu Tyr
100 105 110

Pro Asp Leu Phe Glu Trp Phe Cys Val Lys Thr Leu Lys Val Cys Cys
115 120 125

Ser Pro Gly Thr Tyr Gly Pro Asp Cys Leu Ala Cys Gln Gly Gly Ser 130 135 140

Gln Arg Pro Cys Ser Gly Asn Gly His Cys Ser Gly Asp Gly Ser Arg Gln Gly Asp Gly Ser Cys Arg Cys His Met Gly Tyr Gln Gly Pro Leu 170 Cys Thr Asp Cys Met Asp Gly Tyr Phe Ser Ser Leu Arg Asn Glu Thr His Ser Ile Cys Thr Ala Cys Asp Glu Ser Cys Lys Thr Cys Ser Gly 200 Leu Thr Asn Arg Asp Cys Gly Glu Cys Glu Val Gly Trp Val Leu Asp 210 Glu Gly Ala Cys Val Asp Val Asp Glu Cys Ala Ala Glu Pro Pro 230 Cys Ser Ala Ala Gln Phe Cys Lys Asn Ala Asn Gly Ser Tyr Thr Cys 245 250 Glu Glu Cys Asp Ser Ser Cys Val Gly Cys Thr Gly Glu Gly Pro Gly 265 Asn Cys Lys Glu Cys Ile Ser Gly Tyr Ala Arg Glu His Gly Gln Cys Ala Asp Val Asp Glu Cys Ser Leu Ala Glu Lys Thr Cys Val Arg Lys Asn Glu Asn Cys Tyr Asn Thr Pro Gly Ser Tyr Val Cys Val Cys Pro Asp Gly Phe Glu Glu Thr Glu Asp Ala Cys Val Pro Pro Ala Glu Ala Glu Ala Thr Glu Gly Glu Ser Pro Thr Gln Leu Pro Ser Arg Glu Asp 340

Leu

<210> 3 <211> 2206 <212> DNA

<213> Homo sapiens

<400> 3

caggtecaac tgcacetegg ttetategat tgaatteece ggggateete tagagateec 60 tegacetega eecaegegte egecageeg ggaggegaeg egecageeg tetaaacggg 120 aacageeete getgaggag etgeagega geagagtate tgaeggegee aggttgegta 180 ggtgeggeae gaggagtttt eeeggeageg aggaggteet gageageatg geeeggagga 240

```
gegeetteee tgeegeegeg etetggetet ggageateet eetgtgeetg etggeaetge 300
gggcggaggc cgggccgccg caggaggaga gcctgtacct atggatcgat gctcaccagg 360
caagagtact cataggattt gaagaagata tcctgattgt ttcagagggg aaaatggcac 420
cttttacaca tgatttcaga aaagcgcaac agagaatgcc agctattcct gtcaatatcc 480
attccatgaa ttttacctgg caagctgcag ggcaggcaga atacttctat gaattcctgt 540
ccttgcgctc cctggataaa ggcatcatgg cagatccaac cgtcaatgtc cctctgctgg 600
gaacagtgcc tcacaaggca tcagttgttc aagttggttt cccatgtctt ggaaaacagg 660
atggggtggc agcatttgaa gtggatgtga ttgttatgaa ttctgaaggc aacaccattc 720
tccaaacacc tcaaaatgct atcttcttta aaacatgtca acaagctgag tgcccaggcg 780
ggtgccgaaa tggaggcttt tgtaatgaaa gacgcatctg cgagtgtcct gatgggttcc 840
acqqacctca ctqtqaqaaa qccctttqta ccccacqatq tatqaatqqt qqactttqtq 900
tgactcctqq tttctqcatc tqcccacctq qattctatqq aqtqaactqt qacaaaqcaa 960
actgeteaac cacctgettt aatggaggga eetgttteta eeetggaaaa tgtatttgee 1020
ctccaqqact aqaqqqaqaq caqtqtqaaa tcaqcaaatq cccacaaccc tqtcqaaatq 1080
gaggtaaatg cattggtaaa agcaaatgta agtgttccaa aggttaccag ggagacctct 1140
gttcaaagcc tgtctgcgag cctggctgtg gtgcacatgg aacctgccat gaacccaaca 1200
aatgccaatg tcaagaaggt tggcatggaa gacactgcaa taaaaggtac gaagccagcc 1260
teatacatge cetgaggeca geaggegece ageteaggea geacaegeet teaettaaaa 1320
aggccgagga gcggcgggat ccacctgaat ccaattacat ctggtgaact ccgacatctg 1380
aaacgtttta agttacacca agttcatagc ctttgttaac ctttcatgtg ttgaatgttc 1440
aaataatgtt cattacactt aagaatactg gcctgaattt tattagcttc attataaatc 1500
actgagctga tatttactct tccttttaag ttttctaagt acgtctgtag catgatggta 1560
tagattttct tgtttcagtg ctttgggaca gattttatat tatgtcaatt gatcaggtta 1620
aaattttcag tgtgtagttg gcagatattt tcaaaattac aatgcattta tggtgtctgg 1680
gggcagggga acatcagaaa ggttaaattg ggcaaaaatg cgtaagtcac aagaatttgg 1740
atggtgcagt taatgttgaa gttacagcat ttcagatttt attgtcagat atttagatgt 1800
ttaaacaata taatatatto taaacacaat gaaataggga atataatgta tgaacttttt 1980
aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa gggcggccgc gactctagag tcgacctgca 2160
gaagettgge egecatggee caacttgttt attgeagett ataatg
                                                          2206
```

<211> 379

<212> PRT

<213> Homo sapiens

<400> 4

Met Ala Arg Arg Ser Ala Phe Pro Ala Ala Ala Leu Trp Leu Trp Ser 1 5 10 15

Ile Leu Leu Cys Leu Leu Ala Leu Arg Ala Glu Ala Gly Pro Pro Gln
20 25 30

Glu Glu Ser Leu Tyr Leu Trp Ile Asp Ala His Gln Ala Arg Val Leu 35 40 45

Ile Gly Phe Glu Glu Asp Ile Leu Ile Val Ser Glu Gly Lys Met Ala 50 55 60

Pro Phe Thr His Asp Phe Arg Lys Ala Gln Gln Arg Met Pro Ala Ile

65					70					75					80
Pro	Val	Asn	Ile	His 85	Ser	Met	Asn	Phe	Thr 90	Trp	Gln	Ala	Ala	Gly 95	Gln
Ala	Glu	Tyr	Phe 100	Tyr	Glu	Phe	Leu	Ser 105	Leu	Arg	Ser	Leu	Asp 110	Lys	Gly
Ile	Met	Ala 115	Asp	Pro	Thr	Val	Asn 120	Val	Pro	Leu	Leu	Gly 125	Thr	Val	Pro
His	Lys 130	Ala	Ser	Val	Val	Gln 135	Val	Gly	Phe	Pro	Cys 140	Leu	Gly	Lys	Gln
Asp 145	Gly	Val	Ala	Ala	Phe 150	Glu	Val	Asp	Val	Ile 155	Val	Met	Asn	Ser	Glu 160
Gly	Asn	Thr	Ile	Leu 165	Gln	Thr	Pro	Gln	Asn 170	Ala	Ile	Phe	Phe	Lys 175	Thr
Cys	Gln	Gln	Ala 180	Glu	Cys	Pro	Gly	Gly 185	Cys	Arg	Asn	Gly	Gly 190	Phe	Cys
Asn	Glu	Arg 195	Arg	Ile	Cys	Glu	Cys 200	Pro	Asp	Gly	Phe	His 205	Gly	Pro	His
Cys	Glu 210	Lys	Ala	Leu	Cys	Thr 215	Pro	Arg	Cys	Met	Asn 220	Gly	Gly	Leu	Cys
Val 225	Thr	Pro	Gly	Phe	Cys 230	Ile	Cys	Pro	Pro	Gly 235	Phe	Tyr	Gly	Val	Asn 240
Cys	Asp	Lys	Ala	Asn 245	Cys	Ser	Thr	Thr	Cys 250	Phe	Asn	Gly	Gly	Thr 255	Cys
Phe	Tyr	Pro	Gly 260	Lys	Cys	Ile	Cys	Pro 265	Pro	Gly	Leu	Glu	Gly 270	Glu	Gln
Cys	Glu	Ile 275	Ser	Lys	Cys	Pro	Gln 280	Pro	Cys	Arg	Asn	Gly 285	Gly	Lys	Cys
Ile	Gly 290	Lys	Ser	Lys	Cys	Lys 295	Суѕ	Ser	Lys	Gly	Tyr 300	Gln	Gly	Asp	Leu
Cys 305	Ser	Lys	Pro	Val	Cys 310	Glu	Pro	Gly	Сув	Gly 315	Ala	His	Gly	Thr	Cys 320
His	Glu	Pro	Asn	Lys 325	Cys	Gln	Cys		Glu 330	Gly	Trp	His	Gly	Arg 335	His
Сув	Asn	Lys	Arg 340	Tyr	Glu	Ala	Ser	Leu 345	Ile	His	Ala	Leu	Arg 350	Pro	Ala

Gly Ala Gln Leu Arg Gln His Thr Pro Ser Leu Lys Lys Ala Glu Glu 355 360 365	ì
Arg Arg Asp Pro Pro Glu Ser Asn Tyr Ile Trp 370 375	
<210> 5 <211> 45 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 5 agggagcacg gacagtgtgc agatgtggac gagtgctcac tagca	45
<210> 6 <211> 21 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 6 agagtgtatc tctggctacg c	21
<210> 7 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 7 taagtccggc acattacagg tc	22
<210> 8 <211> 49 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 8 cccacgatgt atgaatggtg gactttgtgt gactcctggt ttctgcatc	49

```
<210> 9
 <211> 22
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
 <400> 9
 aaagacgcat ctgcgagtgt cc
                                                                 22
 <210> 10
 <211> 23
 <212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 10
tgctgatttc acactgctct ccc
                                                                 23
<210> 11
<211> 2197
<212> DNA
<213> Homo sapiens
<400> 11
cggacgcgtg ggcgtccggc ggtcgcagag ccaggaggcg gaggcgcgcg ggccagcctg 60
ggccccagcc cacaccttca ccagggccca ggagccacca tgtggcgatg tccactgggg 120
ctactgctgt tgctgccgct ggctggccac ttggctctgg gtgcccagca gggtcgtggg 180
cgccgggagc tagcaccggg tctgcacctg cggggcatcc gggacgcggg aggccggtac 240
tgccaggage aggacetgtg etgeegegge egtgeegaeg aetgtgeeet geeetacetg 300
ggcgccatct gttactgtga cctcttctgc aaccgcacgg tctccgactg ctgccctgac 360
ttctgggact tctgcctcgg cgtgccaccc ccttttcccc cgatccaagg atgtatgcat 420
ggaggtcgta tctatccagt cttgggaacg tactgggaca actgtaaccg ttgcacctgc 480
caggagaaca ggcagtggca tggtggatcc agacatgatc aaagccatca accagggcaa 540
ctatggctgg caggctggga accacagcgc cttctggggc atgaccctgg atgagggcat 600
tegetacege etgggeacea teegeceate tteeteggte atgaacatge atgaaattta 660
tacagtgctg aacccagggg aggtgcttcc cacagccttc gaggcctctg agaagtggcc 720
caacctgatt catgageete ttgaccaagg caactgtgca ggeteetggg cettetecae 780
agcagctgtg gcatccgatc gtgtctcaat ccattctctg ggacacatga cgcctgtcct 840
gtcgccccag aacctgctgt cttgtgacac ccaccagcag cagggctgcc gcggtgggcg 900
tctcgatggt gcctggtggt tcctgcgtcg ccgaggggtg gtgtctgacc actgctaccc 960
cttctcgggc cgtgaacgag acgaggctgg ccctgcgccc ccctgtatga tgcacagccg 1020
agccatgggt cggggcaagc gccaggccac tgcccactgc cccaacagct atgttaataa 1080
caatgacatc taccaggtca ctcctgtcta ccgcctcggc tccaacgaca aggagatcat 1140
gaaggagetg atggagaatg geeetgteea ageeeteatg gaggtgeatg aggaettett 1200
cctatacaag ggaggcatct acagccacac gccagtgagc cttgggaggc cagagagata 1260
```

<210> 12

<211> 164

<212> PRT

<213> Homo sapiens

<400> 12

Met Trp Arg Cys Pro Leu Gly Leu Leu Leu Leu Pro Leu Ala Gly

1 5 10 15

His Leu Ala Leu Gly Ala Gln Gln Gly Arg Gly Arg Glu Leu Ala
20 25 30

Pro Gly Leu His Leu Arg Gly Ile Arg Asp Ala Gly Gly Arg Tyr Cys
35 40 45

Gln Glu Gln Asp Leu Cys Cys Arg Gly Arg Ala Asp Asp Cys Ala Leu
50 55 60

Pro Tyr Leu Gly Ala Ile Cys Tyr Cys Asp Leu Phe Cys Asn Arg Thr 65 70 75 80

Val Ser Asp Cys Cys Pro Asp Phe Trp Asp Phe Cys Leu Gly Val Pro
85 90 95

Pro Pro Phe Pro Pro Ile Gln Gly Cys Met His Gly Gly Arg Ile Tyr 100 105 110

Pro Val Leu Gly Thr Tyr Trp Asp Asn Cys Asn Arg Cys Thr Cys Gln
115 120 125

Glu Asn Arg Gln Trp His Gly Gly Ser Arg His Asp Gln Ser His Gln 130 135 140

Pro Gly Gln Leu Trp Leu Ala Gly Trp Glu Pro Gln Arg Leu Leu Gly 145 150 155 160

His Asp Pro Gly

```
<210> 13
 <211> 533
 <212> DNA
 <213> Homo sapiens
<220>
<221> modified base
<222> (33)
<223> a, t, c or g
<220>
<221> modified_base
<222> (80)
<223> a, t, c or g
<220>
<221> modified base
<222> (94)
<223> a, t, c or g
<220>
<221> modified_base
<222> (144)
<223> a, t, c or g
<220>
<221> modified_base
<222> (188)
<223> a, t, c or g
<400> 13
aggeteettg geeettttte cacageaage tintgenate eegattegtt gieteaaate 60
caattetett gggacacatn acgeetgtee tttngceeca gaacetgetg tettgtacae 120
ccaccagcag cagggctgcc gcgntgggcg tctcgatggt gcctggtggt tcctgcgtcg 180
ccgagggntg gtgtctgacc actgctaccc cttctcgggc cgtgaacgag acgaggctgg 240
ccctgcgccc ccctgtatga tgcacagccg agccatgggt cggggcaagc gccaggccac 300
tgcccactgc cccaacagct atgttaataa caatgacatc taccaggtca ctcctgtcta 360
ccgcctcggc tccaacgaca aggagatcat gaaggagctg atggagaatg gccctgtcca 420
agccctcatg gaggtgcatg aggacttctt cctatacaag ggaggcatct acagccacac 480
gccagtgagc cttgggaggc cagagagata ccgccggcat gggacccact cag
<210> 14
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 14
```

ttcgaggcct ctgagaagtg gccc	24
<210> 15	
<211> 22	
<212> DNA	
<213> Artificial Sequence	
1	
<220>	
<223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 15	
ggcggtatet etetggeete ee	22
	22
<210> 16	
<211> 50	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
gondoreotide prope	
<400> 16	
ttetecacag cagetgtgge atcegategt gteteaatee attetetggg	50
	50
<210> 17	
<211> 960 <212> DNA	
<213> Homo sapiens	
(213) Homo sapiens	
<400> 17	
getgettgee etgttgatgg caggettgge cetgeageca ggeactgeee tgetgtgeta	60
cteetgeada geecaggiga geaacqaqqa eigeetgeag giggagaact geaccaggi	120
gygygageag tgetggaeeg egegeateeg egeagttgge etectgaeeg teatcageaa	180
aggorgeage regarded togate act acadeact acadeaca acadeacat	240
cacguages gacaccgact totocaacoc caccoggoe catgooctor accoggoes	200
egocatocti gegetgetee etqeacteqq cetqetqete tqqqqacccq qccaqetata	260
generally generated agencias and the second	420
tcctcacaga cctggcccag tgggagcctg tcctggttcc tgaggcacat cctaacgcaa	480
gtetgaccat gtatgtetge acceetgtee eccaecetga eccteecatg geceteteca	540
ggacteccae eeggeagate agetetagtg acacagatee geetgeagat ggeeeteea accetetetg etgetgttte eatggeecag cattetecae cettaaceet gtgeteagge	600
acctettece ccaggaagee tteeetgee acceateta tgaettgage caggtetggt	720
cegriging eccegeacce ageaggggae aggeacteag gagggeegag taaaggetga	780
gargaagrigg actgagtaga actggaggac aaqaqtcqac qtgagttcct gggagtctcc	840
ayayacyyyy cerggaggee tggaggaagg ggccaggeet cacattegta gggeteesta	900
aatggcagcc tgagcacagc gtaggccctt aataaacacc tgttggataa gccaaaaaaa	960
	-
<210> 18 <211> 189	
<212> PRT	
<213> Homo sapiens	
£ =	

<400> 18 Met Thr His Arg Thr Thr Thr Trp Ala Arg Arg Thr Ser Arg Ala Val Thr Pro Thr Cys Ala Thr Pro Ala Gly Pro Met Pro Cys Ser Arg Leu 20 Pro Pro Ser Leu Arg Cys Ser Leu His Ser Ala Cys Cys Ser Gly Asp Pro Ala Ser Tyr Arg Leu Trp Gly Ala Pro Leu Gln Pro Thr Leu Gly Val Val Pro Gln Ala Ser Val Pro Leu Leu Thr Asp Leu Ala Gln Trp Glu Pro Val Leu Val Pro Glu Ala His Pro Asn Ala Ser Leu Thr Met 90 Tyr Val Cys Thr Pro Val Pro His Pro Asp Pro Pro Met Ala Leu Ser 105 Arg Thr Pro Thr Arg Gln Ile Ser Ser Ser Asp Thr Asp Pro Pro Ala 120 Asp Gly Pro Ser Asn Pro Leu Cys Cys Cys Phe His Gly Pro Ala Phe 135 Ser Thr Leu Asn Pro Val Leu Arg His Leu Phe Pro Gln Glu Ala Phe 155 Pro Ala His Pro Ile Tyr Asp Leu Ser Gln Val Trp Ser Val Val Ser 170 Pro Ala Pro Ser Arg Gly Gln Ala Leu Arg Arg Ala Gln <210> 19 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe <400> 19

tgctgtgcta ctcctgcaaa gccc

<210> 20 <211> 24 <212> DNA

```
<213> Artificial Sequence
 <220>
 <223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
tgcacaagtc ggtgtcacag cacq
                                                                   24
<210> 21
<211> 44
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
agcaacgagg actgcctgca ggtggagaac tgcacccagc tggg
                                                                   44
<210> 22
<211> 1200
<212> DNA
<213> Homo sapiens
<400> 22
cccacgcgtc cgaacctctc cagcgatggg agccgcccgc ctgctgccca acctcactct 60
gtgcttacag ctgctgattc tctgctgtca aactcagtac gtgagggacc agggcgccat 120
gaccgaccag ctgagcaggc ggcagatccg cgagtaccaa ctctacagca ggaccagtgg 180
caagcacgtg caggtcaccg ggcgtcgcat ctccgccacc gccgaggacg gcaacaagtt 240
tgccaagete atagtggaga eggacaegtt tggcageegg gttegeatea aaggggetga 300
gagtgagaag tacatctgta tgaacaagag gggcaagctc atcgggaagc ccagcgggaa 360
gagcaaagac tgcgtgttca cggagatcgt gctggagaac aactatacgg ccttccagaa 420
cgcccggcac gagggctggt tcatggcctt cacgcggcag gggcggcccc gccaggcttc 480
cegcageege cagaaceage gegaggeeca etteateaag egeetetace aaqqeeaqet 540
gecetteece aaccaegeeg agaageagaa geagttegag tttgtggget cegeeceae 600
ccgccggacc aagcgcacac ggcggcccca gcccctcacg tagtctggga ggcagggggc 660
agcagecect gggeegeete eccaeceett teeettetta atccaaggae tgggetgggg 720
tggcgggagg ggagccagat ccccgaggga ggaccctgag ggccgcgaag catccgagcc 780
cccagctggg aaggggcagg ccggtgcccc aggggcggct ggcacagtgc ccccttcccg 840
gacgggtggc aggccctgga gaggaactga gtgtcaccct gatctcaggc caccaqcctc 900
tgccggcctc ccagccgggc tcctgaagcc cgctgaaagg tcagcgactg aaggccttgc 960
agacaaccgt ctggaggtgg ctgtcctcaa aatctgcttc tcggatctcc ctcagtctgc 1020
ccccagcccc caaactcctc ctggctagac tgtaggaagg gacttttgtt tgtttgtttg 1080
tttcaggaaa aaagaaaggg agagaggga aaatagaggg ttgtccactc ctcacattcc 1140
acgacccagg cctgcacccc acccccaact cccagccccg gaataaaacc attttcctgc 1200
<210> 23
<211> 205
<212> PRT
<213> Homo sapiens
```

<40	0 > 2	3													
Met 1	Gly	Ala	Ala	Arg 5	Leu	Leu	Pro	Asn	Leu 10	Thr	Leu	Cys	Leu	Gln 15	Leu
Leu	Ile	Leu	Cys 20	Cys	Gln	Thr	Gln	Tyr 25	Val	Arg	Asp	Gln	Gly 30	Ala	Met
Thr	Asp	Gln 35	Leu	Ser	Arg	Arg	Gln 40	Ile	Arg	Glu	Tyr	Gln 45	Leu	Tyr	Ser
Arg	Thr 50	Ser	Gly	Lys	His	Val 55	Gln	Val	Thr	Gly	Arg 60	Arg	Ile	Ser	Ala
Thr 65	Ala	Glu	Asp	Gly	Asn 70	Lys	Phe	Ala	Lys	Leu 75	Ile	Val	Glu	Thr	Asp 80
Thr	Phe	Gly	Ser	Arg 85	Val	Arg	Ile	Lys	Gly 90	Ala	Glu	Ser	Glu	Lys 95	Tyr
Ile	Cys	Met	Asn 100	Lys	Arg	Gly	Lys	Leu 105	Ile	Gly	Lys	Pro	Ser 110	Gly	Lys
Ser	Lys	Asp 115	Cys	Val	Phe	Thr	Glu 120	Ile	Val	Leu	Glu	Asn 125	Asn	Tyr	Thr
Ala	Phe 130	Gln	Asn	Ala	Arg	His 135	Glu	Gly	Trp	Phe	Met 140	Ala	Phe	Thr	Arg
Gln 145	Gly	Arg	Pro	Arg	Gln 150	Ala	Ser	Arg	Ser	Arg 155	Gln	Asn	Gln	Arg	Glu 160
Ala	His	Phe	Ile	Lys 165	Arg	Leu	Tyr	Gln	Gly 170	Gln	Leu	Pro	Phe	Pro 175	Asn
His	Ala	Glu	Lys 180	Gln	Lys	Gln	Phe	Glu 185	Phe	Val	Gly	Ser	Ala 190	Pro	Thr
Arg	Arg	Thr 195	Lys	Arg	Thr	Arg	Arg 200	Pro	Gln	Pro	Leu	Thr 205			
<211 <212)> 24 L> 28 2> DN 3> Ar	IA	cial	. Sec	quenc	:e									
	<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe														
	> 24 acgt		ggac	cagg	ıg cg	ıccat	.ga								

```
<211> 24
 <212> DNA
 <213> Artificial Sequence
 <223> Description of Artificial Sequence: Synthetic
       oligonucleotide probe
 <400> 25
 ccggtgacct gcacgtgctt qcca
                                                                    24
 <210> 26
 <211> 41
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Description of Artificial Sequence: Synthetic
       oligonucleotide probe
<220>
<221> modified_base
<222> (21)
<223> a, t, c or g
<400> 26
gcggatctgc cgcctgctca nctggtcggt catggcgccc t
                                                                   41
<210> 27
<211> 2479
<212> DNA
<213> Homo sapiens
<400> 27
acttgccatc acctgttgcc agtgtggaaa aattctccct gttgaatttt ttgcacatgg 60
aggacagcag caaagagggc aacacaggct gataagacca gagacagcag ggagattatt 120
ttaccatacg ccctcaggac gttccctcta gctggagttc tggacttcaa cagaacccca 180
tccagtcatt ttgattttgc tgtttatttt ttttttcttt ttcttttcc caccacattg 240
tattttattt ccgtacttca gaaatgggcc tacagaccac aaagtggccc agccatgggg 300
cttttttcct gaagtcttgg cttatcattt ccctggggct ctactcacag gtgtccaaac 360
teetggeetg eeetagtgtg tgeegetgeg acaggaactt tgtetactgt aatgagegaa 420
gettgaeete agtgeetett gggateeegg agggegtaae egtaetetae etecacaaca 480
accaaattaa taatgctgga tttcctgcag aactgcacaa tgtacagtcg gtgcacacgg 540
tctacctgta tggcaaccaa ctggacgaat tccccatgaa ccttcccaag aatgtcagag 600
ttctccattt gcaggaaaac aatattcaga ccatttcacg ggctgctctt gcccagctct 660
tgaagcttga agagctgcac ctggatgaca actccatatc cacagtgggg gtggaagacg 720
gggccttccg ggaggctatt agcctcaaat tgttgttttt gtctaagaat cacctgagca 780
gtgtgcctgt tgggcttcct gtggacttgc aagagctgag agtggatgaa aatcgaattg 840
ctgtcatatc cgacatggcc ttccagaatc tcacgagctt ggagcgtctt attgtggacg 900
ggaacctcct gaccaacaag ggtatcgccg agggcacctt cagccatctc accaagctca 960
aggaattttc aattgtacgt aattcgctgt cccaccctcc tcccgatctc ccaggtacgc 1020
atctgatcag gctctatttg caggacaacc agataaacca cattcctttg acagccttct 1080
caaatctgcg taagctggaa cggctggata tatccaacaa ccaactgcgg atgctgactc 1140
```

```
aaggggtttt tgataatctc tccaacctga agcagctcac tgctcggaat aacccttggt 1200
tttgtgactg cagtattaaa tgggtcacag aatggctcaa atatatccct tcatctctca 1260
acgtgcgggg tttcatgtgc caaggtcctg aacaagtccg ggggatggcc gtcagggaat 1320
taaatatgaa tettttgtee tgteecacca egaceeeegg eetgeetete tteaceeeag 1380
ccccaagtac agetteteeg accaeteage eteceaecet etetatteea aaccetagea 1440
gaagctacac gcctccaact cctaccacat cgaaacttcc cacgattcct gactgggatg 1500
gcagagaaag agtgacccca cctatttctg aacggatcca gctctctatc cattttgtga 1560
atgatacttc cattcaagtc agctggctct ctctcttcac cgtgatggca tacaaactca 1620
catgggtgaa aatgggccac agtttagtag ggggcatcgt tcaggagcgc atagtcagcg 1680
gtgagaagca acacctgagc ctggttaact tagagccccg atccacctat cggatttgtt 1740
tagtgccact ggatgctttt aactaccgcg cggtagaaga caccatttgt tcagaggcca 1800
ccacccatgc ctcctatctg aacaacggca gcaacacagc gtccagccat gagcagacga 1860
cgtcccacag catgggctcc ccctttctgc tggcgggctt gatcgggggc gcggtgatat 1920
ttgtgctggt ggtcttgctc agcgtctttt gctggcatat gcacaaaaag gggcgctaca 1980
cctcccagaa gtggaaatac aaccggggcc ggcggaaaga tgattattgc gaggcaggca 2040
ccaagaagga caactccatc ctggagatga cagaaaccag ttttcagatc gtctccttaa 2100
ataacgatca acteettaaa ggagatttea gaetgeagee eatttacaee eeaaatgggg 2160
gcattaatta cacagactgc catatcccca acaacatgcg atactgcaac agcagcgtgc 2220
cagacctgga gcactgccat acgtgacagc cagaggccca gcgttatcaa ggcggacaat 2280
tagactettg agaacacact egtgtgtgca cataaagaca egcagattae atttgataaa 2340
tgttacacag atgcatttgt gcatttgaat actctgtaat ttatacggtg tactatataa 2400
tgggatttaa aaaaagtgct atcttttcta tttcaagtta attacaaaca gttttgtaac 2460
tctttgcttt ttaaatctt
```

<211> 660

<212> PRT

<213> Homo sapiens

<400> 28

Met Gly Leu Gln Thr Thr Lys Trp Pro Ser His Gly Ala Phe Phe Leu

1 10 15

Lys Ser Trp Leu Ile Ile Ser Leu Gly Leu Tyr Ser Gln Val Ser Lys
20 25 30

Leu Leu Ala Cys Pro Ser Val Cys Arg Cys Asp Arg Asn Phe Val Tyr 35 40 45

Cys Asn Glu Arg Ser Leu Thr Ser Val Pro Leu Gly Ile Pro Glu Gly 50 55 60

Val Thr Val Leu Tyr Leu His Asn Asn Gln Ile Asn Asn Ala Gly Phe 65 70 75 80

Pro Ala Glu Leu His Asn Val Gln Ser Val His Thr Val Tyr Leu Tyr 85 90 95

Gly Asn Gln Leu Asp Glu Phe Pro Met Asn Leu Pro Lys Asn Val Arg
100 105 110

Val Leu His Leu Gln Glu Asn Asn Ile Gln Thr Ile Ser Arg Ala Ala 115 120 125

Leu Ala Gln Leu Lys Leu Glu Glu Leu His Leu Asp Asp Asn Ser Ile Ser Thr Val Gly Val Glu Asp Gly Ala Phe Arg Glu Ala Ile Ser Leu Lys Leu Leu Phe Leu Ser Lys Asn His Leu Ser Ser Val Pro Val 170 Gly Leu Pro Val Asp Leu Gln Glu Leu Arg Val Asp Glu Asn Arg Ile Ala Val Ile Ser Asp Met Ala Phe Gln Asn Leu Thr Ser Leu Glu Arg 200 Leu Ile Val Asp Gly Asn Leu Leu Thr Asn Lys Gly Ile Ala Glu Gly 215 Thr Phe Ser His Leu Thr Lys Leu Lys Glu Phe Ser Ile Val Arg Asn 230 Ser Leu Ser His Pro Pro Pro Asp Leu Pro Gly Thr His Leu Ile Arg 250 Leu Tyr Leu Gln Asp Asn Gln Ile Asn His Ile Pro Leu Thr Ala Phe 260 265 Ser Asn Leu Arg Lys Leu Glu Arg Leu Asp Ile Ser Asn Asn Gln Leu 280 Arg Met Leu Thr Gln Gly Val Phe Asp Asn Leu Ser Asn Leu Lys Gln Leu Thr Ala Arg Asn Asn Pro Trp Phe Cys Asp Cys Ser Ile Lys Trp Val Thr Glu Trp Leu Lys Tyr Ile Pro Ser Ser Leu Asn Val Arq Gly Phe Met Cys Gln Gly Pro Glu Gln Val Arg Gly Met Ala Val Arg Glu Leu Asn Met Asn Leu Leu Ser Cys Pro Thr Thr Pro Gly Leu Pro Leu Phe Thr Pro Ala Pro Ser Thr Ala Ser Pro Thr Thr Gln Pro Pro 370 Thr Leu Ser Ile Pro Asn Pro Ser Arg Ser Tyr Thr Pro Pro Thr Pro Thr Thr Ser Lys Leu Pro Thr Ile Pro Asp Trp Asp Gly Arg Glu Arg

				405	5				410)				415	
Va]	Thi	Pro	Pro 420	Ile	e Ser	Glu	Arg	1le 425		Leu	Ser	Ile	His		Val
Asr	a Asp	Thr 435	Ser	· Ile	Gln	. Val	Ser 440		Leu	Ser	Leu	Phe 445	Thr	Val	Met
Ala	Tyr 450	Lys	Leu	Thr	Trp	Val 455		Met	Gly	His	Ser 460	Leu	Val	Gly	Gly
Ile 465	Val	Gln	Glu	Arg	Ile 470	Val	Ser	Gly	Glu	Lys 475	Gln	His	Leu	Ser	Leu 480
Val	Asn	Leu	Glu	Pro 485	Arg	Ser	Thr	Tyr	Arg 490	Ile	Cys	Leu	Val	Pro 495	Leu
Asp	Ala	Phe	Asn 500	Tyr	Arg	Ala	Val	Glu 505	Asp	Thr	Ile	Cys	Ser 510	Glu	Ala
Thr	Thr	His 515	Ala	Ser	Tyr	Leu	Asn 520	Asn	Gly	Ser	Asn	Thr 525	Ala	Ser	Ser
His	Glu 530	Gln	Thr	Thr	Ser	His 535	Ser	Met	Gly	Ser	Pro 540	Phe	Leu	Leu	Ala
Gly 545	Leu	Ile	Gly	Gly	Ala 550	Val	Ile	Phe	Val	Leu 555	Val	Val	Leu	Leu	Ser 560
Val	Phe	Cys	Trp	His 565	Met	His	Lys	Lys	Gly 570	Arg	Tyr	Thr	Ser	Gln 575	Lys
Trp	Lys	Tyr	Asn 580	Arg	Gly	Arg	Arg	Lys 585	Asp	Asp	Tyr	Cys	Glu 590	Ala	Gly
Thr	Lys	Lys 595	Asp	Asn	Ser	Ile	Leu 600	Glu	Met	Thr	Glu	Thr 605	Ser	Phe	Gln
Ile	Val 610	Ser	Leu	Asn	Asn	Asp 615	Gln	Leu	Leu	Lys	Gly 620	Asp	Phe	Arg	Leu
Gln 625	Pro	Ile	Tyr	Thr	Pro 630	Asn	Gly	Gly	Ile	Asn 635	Tyr	Thr	Asp	Cys	His 640
Ile	Pro	Asn	Asn	Met 645	Arg	Tyr	Cys		Ser 650	Ser	Val	Pro	Asp	Leu 655	Glu
His	Cys	His	Thr 660												
<210	> 29														
<211	> 21														
<212	> DN	Α													

<213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 29 cggtctacct gtatggcaac c	21
<210> 30 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 30 gcaggacaac cagataaacc ac	
<210> 31 <211> 22 <212> DNA <213> Artificial Sequence	22
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 31 acgcagattt gagaaggctg tc	22
<210> 32 <211> 46 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 32 ttcacgggct gctcttgccc agctcttgaa gcttgaagag ctgcac	46
<210> 33 <211> 3449 <212> DNA <213> Homo sapiens	
<400> 33 acttggagca ageggeggeg geggagacag aggcagagge agaagetggg geteegteet egeeteecae gagegateee egeggeeete ggegaggega agaggeegae	60 120

gaggaagacc cgggtggctg cgcccctgcc tcgcttccca ggcgccggcg gctgcagcct 180 tgcccctctt gctcgccttg aaaatggaaa agatgctcgc aggctgcttt ctgctgatcc 240 teggacagat egteeteete eetgeegagg eeagggageg gteaegtggg aggteeatet 300 ctaggggcag acacgctcgg acccacccgc agacggccct tctggagagt tcctgtgaga 360 acaagcgggc agacctggtt ttcatcattg acagctctcg cagtgtcaac acccatgact 420 atgcaaaggt caaggagttc atcgtggaca tcttgcaatt cttggacatt ggtcctgatg 480 tcacccgagt gggcctgctc caatatggca gcactgtcaa gaatgagttc tccctcaaga 540 cettcaagag gaagteegag gtggagegtg etgtcaagag gatgeggeat etgtceaegg 600 geaccatgae tgggetggee atceagtatg ceetgaacat egeattetea gaagcagagg 660 gggcccggcc cctgagggag aatgtgccac gggtcataat gatcgtgaca gatgggagac 720 ctcaggactc cgtggccgag gtggctgcta aggcacggga cacgggcatc ctaatctttg 780 ccattggtgt gggccaggta gacttcaaca ccttgaagtc cattgggagt gagccccatg 840 aggaccatgt cttccttgtg gccaatttca gccagattga gacgctgacc tccgtgttcc 900 agaagaagtt gtgcacggcc cacatgtgca gcaccctgga gcataactgt gcccacttct 960 gcatcaacat ccctggctca tacgtctgca ggtgcaaaca aggctacatt ctcaactcgg 1020 atcagacgac ttgcagaatc caggatctgt gtgccatgga ggaccacaac tgtgagcagc 1080 tetgtgtgaa tgtgeeggge teettegtet geeagtgeta eagtggetae geeetggetg 1140 aggatgggaa gaggtgtgtg gctgtggact actgtgcctc agaaaaccac ggatgtgaac 1200 atgagtgtgt aaatgctgat ggctcctacc tttgccagtg ccatgaagga tttgctctta 1260 acccagatga aaaaacgtgc acaaggatca actactgtgc actgaacaaa ccgggctgtg 1320 agcatgagtg cgtcaacatg gaggagaget actactgeeg etgecacegt ggetacaete 1380 tggaccccaa tggcaaaacc tgcagccgag tggaccactg tgcacagcag gaccatggct 1440 gtgagcagct gtgtctgaac acggaggatt ccttcgtctg ccagtgctca gaaggcttcc 1500 teateaaega ggaceteaag acetgeteee gggtggatta etgeetgetg agtgaceatg 1560 gttgtgaata ctcctgtgtc aacatggaca gatcctttgc ctgtcagtgt cctgagggac 1620 acgtgctccg cagcgatggg aagacgtgtg caaaattgga ctcttgtgct ctgggggacc 1680 acggttgtga acattcgtgt gtaagcagtg aagattcgtt tgtgtgccag tgctttgaag 1740 gttatatact ccgtgaagat ggaaaaacct gcagaaggaa agatgtctgc caagctatag 1800 accatggctg tgaacacatt tgtgtgaaca gtgacgactc atacacgtgc gagtgcttgg 1860 agggattccg gctcgctgag gatgggaaac gctgccgaag gaaggatgtc tgcaaatcaa 1920 cccaccatgg ctgcgaacac atttgtgtta ataatgggaa ttcctacatc tgcaaatgct 1980 cagagggatt tgttctagct gaggacggaa gacggtgcaa gaaatgcact gaaggcccaa 2040 ttgacctggt ctttgtgatc gatggatcca agagtcttgg agaagagaat tttgaggtcg 2100 tgaagcagtt tgtcactgga attatagatt ccttgacaat ttcccccaaa gccgctcgag 2160 tggggctgct ccagtattcc acacaggtcc acacagagtt cactctgaga aacttcaact 2220 cagccaaaga catgaaaaaa gccgtggccc acatgaaata catgggaaag ggctctatga 2280 ctgggctggc cctgaaacac atgtttgaga gaagttttac ccaaggagaa ggggccaggc 2340 ccctttccac aagggtgccc agagcagcca ttgtgttcac cgacggacgg gctcaggatg 2400 acgteteega gtgggeeagt aaageeaagg eeaatggtat cactatgtat getgttgggg 2460 taggaaaagc cattgaggag gaactacaag agattgcctc tgagcccaca aacaagcatc 2520 tettetatge egaagaette ageacaatgg atgagataag tgaaaaaete aagaaaggea 2580 tetgtgaage tetagaagae teegatggaa gacaggaete teeageaggg gaactgeeaa 2640 aaacggtcca acagccaaca gaatctgagc cagtcaccat aaatatccaa gacctacttt 2700 cctgttctaa ttttgcagtg caacacagat atctgtttga agaagacaat cttttacggt 2760 ctacacaaaa gctttcccat tcaacaaaac cttcaggaag ccctttggaa gaaaaacacg 2820 atcaatgcaa atgtgaaaac cttataatgt tccagaacct tgcaaacgaa gaagtaagaa 2880 aattaacaca gcgcttagaa gaaatgacac agagaatgga agccctggaa aatcgcctga 2940 gatacagatg aagattagaa atcgcgacac atttgtagtc attgtatcac ggattacaat 3000 gaacgcagtg cagagcccca aagctcaggc tattgttaaa tcaataatgt tgtgaagtaa 3060 aacaatcagt actgagaaac ctggtttgcc acagaacaaa gacaagaagt atacactaac 3120 ttgtataaat ttatctagga aaaaaatcct tcagaattct aagatgaatt taccaggtga 3180 gaatgaataa gctatgcaag gtattttgta atatactgtg gacacaactt gcttctgcct 3240 catcctgcct tagtgtgcaa tctcatttga ctatacgata aagtttgcac agtcttactt 3300

ctgtagaaca ctggccatag gaaatgctgt ttttttgtac tggactttac cttgatatat 3360 gtatatggat gtatgcataa aatcatagga catatgtact tgtggaacaa gttggatttt 3420 ttatacaata ttaaaattca ccacttcag 3449

<21U> 34

<211> 915

<212> PRT

<213> Homo sapiens

<400> 34

Met Glu Lys Met Leu Ala Gly Cys Phe Leu Leu Ile Leu Gly Gln Ile 1 5 10

Val Leu Leu Pro Ala Glu Ala Arg Glu Arg Ser Arg Gly Arg Ser Ile
20 25 30

Ser Arg Gly Arg His Ala Arg Thr His Pro Gln Thr Ala Leu Leu Glu 35 40 45

Ser Ser Cys Glu Asn Lys Arg Ala Asp Leu Val Phe Ile Ile Asp Ser 50 55 60

Ser Arg Ser Val Asn Thr His Asp Tyr Ala Lys Val Lys Glu Phe Ile 65 70 75 80

Val Asp Ile Leu Gln Phe Leu Asp Ile Gly Pro Asp Val Thr Arg Val
85 90 95

Gly Leu Leu Gln Tyr Gly Ser Thr Val Lys Asn Glu Phe Ser Leu Lys 100 105 110

Thr Phe Lys Arg Lys Ser Glu Val Glu Arg Ala Val Lys Arg Met Arg 115 120 125

His Leu Ser Thr Gly Thr Met Thr Gly Leu Ala Ile Gln Tyr Ala Leu 130 135 140

Val Pro Arg Val Ile Met Ile Val Thr Asp Gly Arg Pro Gln Asp Ser 165 170 175

Val Ala Glu Val Ala Ala Lys Ala Arg Asp Thr Gly Ile Leu Ile Phe 180 185 190

Ala Ile Gly Val Gly Gln Val Asp Phe Asn Thr Leu Lys Ser Ile Gly 195 200 205

Ser Glu Pro His Glu Asp His Val Phe Leu Val Ala Asn Phe Ser Gln 210 215 220

Ile Glu Thr Leu Thr Ser Val Phe Gln Lys Lys Leu Cys Thr Ala His

225	5				230)				235	5				240
Met	Cys	s Sei	r Thi	Let 245		1 His	s Asr	о Суя	250		Phe	e Cys	: Ile	Asn 255	Ile
Pro	Gly	/ Sei	260	Val	l Cys	Arg	g Cys	Lys 265		Gly	Tyr	: Ile	Leu 270		Ser
Asp	Glr	Thi 275	Thr	Суя	Arg	ılle	280		Leu	Cys	Ala	Met 285		Asp	His
Asr	290	Glı	ı Glr	Let	Cys	Val 295		Val	Pro	Gly	Ser 300		· Val	Cys	Gln
Cys 305	туг	Ser	Gly	Tyr	Ala 310		Ala	Glu	Asp	Gly 315		Arg	Cys	Val	Ala 320
Val	Asp	Туг	Cys	Ala 325	Ser	Glu	Asn	His	Gly 330		Glu	His	Glu	Cys 335	Val
Asn	Ala	Asp	Gly 340		Tyr	Leu	Cys	Gln 345	Cys	His	Glu	Gly	Phe 350	Ala	Leu
Asn	Pro	Asp 355	Glu	Lys	Thr	Cys	Thr 360	Arg	Ile	Asn	Tyr	Cys 365	Ala	Leu	Asn
Lys	Pro 370	Gly	Cys	Glu	His	Glu 375	Cys	Val	Asn	Met	Glu 380	Glu	Ser	Tyr	Tyr
Cys 385	Arg	Cys	His	Arg	Gly 390	Tyr	Thr	Leu	Asp	Pro 395	Asn	Gly	Lys	Thr	Cys 400
Ser	Arg	Val	Asp	His 405	Cys	Ala	Gln	 Gln	Asp 410	His	Gly	Cys	Glu	Gln 415	Leu
Cys	Leu	Asn	Thr 420	Glu	Asp	Ser	Phe	Val 425	Cys	Gln	Cys	Ser	Glu 430	Gly	Phe
Leu	Ile	Asn 435	Glu	Asp	Leu	Lys	Thr 440	Cys	Ser	Arg	Val	Asp 445	Tyr	Cys	Leu
Leu	Ser 450	Asp	His	Gly	Cys	Glu 455	Tyr	Ser	Cys	Val	Asn 460	Met	Asp	Arg	Ser
Phe 465	Ala	Cys	Gln	Cys	Pro 470	Glu	Gly	His	Val	Leu 475	Arg	Ser	Asp	Gly	Lys 480
Thr	Суз	Ala	Lys	Leu 485	Asp	Ser	Cys	Ala	Leu 490	Gly	Asp	His	Gly	Cys 495	Glu
His	Ser	Cys	Val 500	Ser	Ser	Glu	Asp	Ser 505	Phe	Val	Cys	Gln	Cys 510	Phe	Glu

Gly Tyr Ile Leu Arg Glu Asp Gly Lys Thr Cys Arg Arg Lys Asp Val Cys Gln Ala Ile Asp His Gly Cys Glu His Ile Cys Val Asn Ser Asp Asp Ser Tyr Thr Cys Glu Cys Leu Glu Gly Phe Arg Leu Ala Glu Asp Gly Lys Arg Cys Arg Arg Lys Asp Val Cys Lys Ser Thr His His Gly 570 Cys Glu His Ile Cys Val Asn Asn Gly Asn Ser Tyr Ile Cys Lys Cys 585 Ser Glu Gly Phe Val Leu Ala Glu Asp Gly Arg Arg Cys Lys Lys Cys 600 605 Thr Glu Gly Pro Ile Asp Leu Val Phe Val Ile Asp Gly Ser Lys Ser Leu Gly Glu Glu Asn Phe Glu Val Val Lys Gln Phe Val Thr Gly Ile 625 630 Ile Asp Ser Leu Thr Ile Ser Pro Lys Ala Ala Arg Val Gly Leu Leu 650 Gln Tyr Ser Thr Gln Val His Thr Glu Phe Thr Leu Arg Asn Phe Asn Ser Ala Lys Asp Met Lys Lys Ala Val Ala His Met Lys Tyr Met Gly Lys Gly Ser Met Thr Gly Leu Ala Leu Lys His Met Phe Glu Arg Ser 695 Phe Thr Gln Gly Glu Gly Ala Arg Pro Leu Ser Thr Arg Val Pro Arg 715 Ala Ala Ile Val Phe Thr Asp Gly Arg Ala Gln Asp Asp Val Ser Glu Trp Ala Ser Lys Ala Lys Ala Asn Gly Ile Thr Met Tyr Ala Val Gly Val Gly Lys Ala Ile Glu Glu Glu Leu Gln Glu Ile Ala Ser Glu Pro Thr Asn Lys His Leu Phe Tyr Ala Glu Asp Phe Ser Thr Met Asp Glu 775 Ile Ser Glu Lys Leu Lys Lys Gly Ile Cys Glu Ala Leu Glu Asp Ser 790 795

Asp Gly Arg Gln Asp Ser Pro Ala Gly Glu Leu Pro Lys Thr Val Gln 810 Gln Pro Thr Glu Ser Glu Pro Val Thr Ile Asn Ile Gln Asp Leu Leu 825 Ser Cys Ser Asn Phe Ala Val Gln His Arg Tyr Leu Phe Glu Glu Asp 840 Asn Leu Leu Arg Ser Thr Gln Lys Leu Ser His Ser Thr Lys Pro Ser 855 Gly Ser Pro Leu Glu Glu Lys His Asp Gln Cys Lys Cys Glu Asn Leu 870 Ile Met Phe Gln Asn Leu Ala Asn Glu Glu Val Arg Lys Leu Thr Gln Arg Leu Glu Glu Met Thr Gln Arg Met Glu Ala Leu Glu Asn Arg Leu 905 Arg Tyr Arg 915 <210> 35 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe <400> 35 gtgaccctgg ttgtgaatac tcc 23 <210> 36 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe <400> 36 acagccatgg tctatagctt gg 22 <210> 37 <211> 45 <212> DNA

<213> Artificial Sequence

```
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 37
                                                                  45
qcctqtcaqt qtcctgaggg acacgtgctc cgcagcgatg ggaag
<210> 38
<211> 1813
<212> DNA
<213> Homo sapiens
<400> 38
ggagccgccc tgggtgtcag cggctcggct cccgcgcacg ctccggccgt cgcgcagcct 60
cggcacctgc aggtccgtgc gtcccgcggc tggcgcccct gactccgtcc cggccaggga 120
gggccatgat ttccctcccg gggcccctgg tgaccaactt gctgcggttt ttgttcctgg 180
ggctgagtgc cctcgcgccc ccctcgcggg cccagctgca actgcacttg cccgccaacc 240
ggttgcaggc ggtggaggga ggggaagtgg tgcttccagc gtggtacacc ttgcacgggg 300
aggtgtcttc atcccagcca tgggaggtgc cctttgtgat gtggttcttc aaacagaaag 360
aaaaggagga tcaggtgttg tcctacatca atggggtcac aacaagcaaa cctggagtat 420
ccttggtcta ctccatgccc tcccggaacc tgtccctgcg gctggagggt ctccaggaga 480
aagactctgg cccctacagc tgctccgtga atgtgcaaga caaacaaggc aaatctaggg 540
gccacagcat caaaacctta gaactcaatg tactggttcc tccagctcct ccatcctgcc 600
gtctccaggg tgtgccccat gtgggggcaa acgtgaccct gagctgccag tctccaagga 660
qtaaqcccqc tqtccaatac cagtgggatc ggcagcttcc atccttccag actttctttg 720
caccagcatt agatgtcatc cgtgggtctt taagcctcac caacctttcg tcttccatgg 780
ctggagtcta tgtctgcaag gcccacaatg aggtgggcac tgcccaatgt aatgtgacgc 840
tggaagtgag cacagggcct ggagctgcag tggttgctgg agctgttgtg ggtaccctgg 900
ttggactggg gttgctggtt gggctggtcc tcttgtacca ccgccggggc aaggccctgg 960
aggagecage caatgatate aaggaggatg ceattgetee eeggaceetg eeetggeeca 1020
agageteaga cacaatetee aagaatggga ecettteete tgteacetee geaegageee 1080
teeggeeace ceatggeest eccaggeetg gtgeattgae ecceaegees agtetetesa 1140
gccaggccct gccctcacca agactgccca cgacagatgg ggcccaccct caaccaatat 1200
cccccatccc tggtggggtt tcttcctctg gcttgagccg catgggtgct gtgcctgtga 1260
tggtgcctgc ccagagtcaa gctggctctc tggtatgatg accccaccac tcattggcta 1320
aaggatttgg ggtctctcct tcctataagg gtcacctcta gcacagaggc ctgagtcatg 1380
ggaaagagtc acactcctga cccttagtac tctgccccca cctctcttta ctgtgggaaa 1440
accateteaq taaqaeetaa gtgteeagga gacagaagga gaagaggaag tggatetgga 1500
attgggagga geetecacce acceetgact ceteettatg aageeagetg etgaaattag 1560
ctactcacca agagtgaggg gcagagactt ccagtcactg agtctcccag gcccccttga 1620
totgtacccc acccctatot aacaccaccc ttggctccca ctccagctcc ctgtattgat 1680
ataacctgtc aggctggctt ggttaggttt tactggggca gaggataggg aatctcttat 1740
taaaactaac atgaaatatg tgttgttttc atttgcaaat ttaaataaag atacataatg 1800
tttgtatgaa aaa
<210> 39
<211> 390
<212> PRT
<213> Homo sapiens
<400> 39
```

Met Ile Ser Leu Pro Gly Pro Leu Val Thr Asn Leu Leu Arg Phe Leu

1				5					10					15	
Phe	Leu	Gly	Leu 20	Ser	Ala	Leu	Ala	Pro 25	Pro	Ser	Arg	Ala	Gln 30	Leu	Gln
Leu	His	Leu 35	Pro	Ala	Asn	Arg	Leu 40	Gln	Ala	Val	Glu	Gly 45	Gly	Glu	Val
Val	Leu 50	Pro	Ala	Trp	Tyr	Thr 55	Leu	His	Gly	Glu	Val 60	Ser	Ser	Ser	Gln
Pro 65	Trp	Glu	Val	Pro	Phe 70	Val	Met	Trp	Phe	Phe 75	Lys	Gln	Lys	Glu	Lys 80
Glu	Asp	Gln	Val	Leu 85	Ser	Tyr	Ile	Asn	Gly 90	Val	Thr	Thr	Ser	Lys 95	Pro
Gly	Val	Ser	Leu 100	Val	Tyr	Ser	Met	Pro 105	Ser	Arg	Asn	Leu	Ser 110	Leu	Arg
Leu	Glu	Gly 115	Leu	Gln	Glu	Lys	Asp 120	Ser	Gly	Pro	Tyr	Ser 125	Cys	Ser	Val
Asn	Val 130	Gln	Asp	Lys	Gln	Gly 135	Lys	Ser	Arg	Gly	His 140	Ser	Ile	Lys	Thr
Leu 145	Glu	Leu	Asn	Val	Leu 150	Val	Pro	Pro	Ala	Pro 155	Pro	Ser	Cys	Arg	Leu 160
Gln	Gly	Val	Pro	His 165	Va1	Gly	Ala	Asn	Val 170	Thr	Leu	Ser	Cys	Gln 175	Ser
Pro	Arg	Ser	Lys 180	Pro	Ala	Val	Gln	Tyr 185	Gln	Trp	Asp	Arg	Gln 190	Leu	Pro
Ser	Phe	Gln 195	Thr	Phe	Phe	Ala	Pro 200	Ala	Leu	Asp	Val	Ile 205	Arg	Gly	Ser
Leu	Ser 210	Leu	Thr	Asn	Leu	Ser 215	Ser	Ser	Met	Ala	Gly 220	Val	Tyr	Val	Cys
Lys 225	Ala	His	Asn	Glu	Val 230	Gly	Thr	Ala		Cys 235		Val	Thr	Leu	Glu 240
Val	Ser	Thr	Gly	Pro 245	Gly	Ala	Ala	Val	Val 250	Ala	Gly	Ala	Val	Val 255	Gly
Thr	Leu	Val	Gly 260	Leu	Gly	Leu	Leu	Ala 265	Gly	Leu	Val	Leu	Leu 270	Tyr	His
Arg	Arg	Gly 275	Lys	Ala	Leu	Glu	Glu 280	Pro	Ala	Asn	Asp	Ile 285	Lys	Glu	Asp

Ala	Ile 290	Ala	Pro	Arg	Thr	Leu 295	Pro	Trp	Pro	Lys	Ser 300	Ser	Asp	Thr	Ile	
Ser 305	Lys	Asn	Gly	Thr	Leu 310	Ser	Ser	Val	Thr	Ser 315	Ala	Arg	Ala	Leu	Arg 320	
Pro	Pro	His	Gly	Pro 325	Pro	Arg	Pro	Gly	Ala 330	Leu	Thr	Pro	Thr	Pro 335	Ser	
Leu	Ser	Ser	Gln 340	Ala	Leu	Pro	Ser	Pro 345	Arg	Leu	Pro	Thr	Thr 350	Asp	Gly	
Ala	His	Pro 355	Gln	Pro	Ile	Ser	Pro 360	Ile	Pro	Gly	Gly	Val 365	Ser	Ser	Ser	
Gly	Leu 370	Ser	Arg	Met	Gly	Ala 375	Val	Pro	Val	Met	Val 380	Pro	Ala	Gln	Ser	
Gln 385	Ala	Gly	Ser	Leu	Val 390											
<211 <212)> 40 -> 22 !> DI	ia Ia														
<213	8> A1	rtif:	icia:	l Sed	quen	ce										
	<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe															
)> 4(
aggg	gtete	ca c	ggaga	aaaga	ac to	2										22
<211 <212)> 41 .> 24 ?> DI 8> A1	I IA	icia:	l Sed	quenc	ce										
<220 <223	> De				E Art le pi	cific cobe	cial	Sequ	uence	e: Sy	ynthe	etic				
)> 41 stggg		tgca	agaca	at ag	gac										24
<211 <212)> 42 .> 50 !> DN !> Ar) IA	icial	L Sec	quenc	ce										
<220 <223	> De				E Art	cific	cial	Seqı	ıence	e: Sy	ynthe	etic				

<400> 42	
ggccacagea teaaaacett agaacteaat gtactggtte etecagetee	50
<210> 43	
<211> 18	
<212> DNA	
<213> Artificial Sequence	
<220>	
<pre><223> Description of Artificial Sequence: Synthetic oligonucleotide probe</pre>	
<400> 43	
gtgtgacaca gcgtgggc	18
<210> 44	
<211> 18	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 44	
gaccggcagg cttctgcg	18
<210> 45	
<211> 25	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 45	
cagcagcttc agccaccagg agtgg	25
<210> 46	
<211> 24	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 46	
ctgagecgtg ggetgeagte tege	24
<210> 47	

```
<211> 45
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
                                                                  45
ccgactacga ctggttcttc atcatgcagg atgacacata tgtgc
<210> 48
<211> 2822
<212> DNA
<213> Homo sapiens
<400> 48
cgccaccact gcggccaccg ccaatgaaac gcctcccgct cctagtggtt ttttccactt 60
tgttgaattg ttcctatact caaaattgca ccaagacacc ttgtctccca aatgcaaaat 120
gtgaaatacg caatggaatt gaageetget attgcaacat gggattttca ggaaatggtg 180
tcacaatttq tqaaqatqat aatqaatqtg gaaatttaac tcagtcctgt ggcgaaaatg 240
ctaattqcac taacacaqaa qqaaqttatt attgtatgtg tgtacctggc ttcagatcca 300
gcagtaacca agacaggttt atcactaatg atggaaccgt ctgtatagaa aatgtgaatg 360
caaactgcca tttagataat gtctgtatag ctgcaaatat taataaaact ttaacaaaaa 420
tcagatccat aaaagaacct gtggctttgc tacaagaagt ctatagaaat tctgtgacag 480
atctttcacc aacagatata attacatata tagaaatatt agctgaatca tcttcattac 540
taggttacaa gaacaacact atctcagcca aggacaccct ttctaactca actcttactg 600
aatttgtaaa aaccgtgaat aattttgttc aaagggatac atttgtagtt tgggacaagt 660
tatctgtgaa tcataggaga acacatctta caaaactcat gcacactgtt gaacaagcta 720
ctttaaggat atcccagagc ttccaaaaga ccacagagtt tgatacaaat tcaacggata 780
tageteteaa agttttettt tttgatteat ataacatgaa acatatteat ceteatatga 840
atatqqatqq aqactacata aatatatttc caaaqaqaaa aqctqcatat gattcaaatg 900
qcaatqttqc aqttqcattt ttatattata agagtattgg tcctttgctt tcatcatctg 960
acaacttctt attgaaacct caaaattatg ataattctga agaggaggaa agagtcatat 1020
cttcagtaat ttcagtctca atgagctcaa acccacccac attatatgaa cttgaaaaaa 1080
taacatttac attaagtcat cgaaaggtca cagataggta taggagtcta tgtgcatttt 1140
ggaattactc acctgatacc atgaatggca gctggtcttc agagggctgt gagctgacat 1200
actcaaatga gacccacacc tcatgccgct gtaatcacct gacacatttt gcaattttga 1260
tgtcctctgg tccttccatt ggtattaaag attataatat tcttacaagg atcactcaac 1320
taggaataat tatttcactg atttgtcttg ccatatgcat ttttaccttc tggttcttca 1380
gtgaaattca aagcaccagg acaacaattc acaaaaatct ttgctgtagc ctatttcttg 1440
ctgaacttgt ttttcttgtt gggatcaata caaatactaa taagctcttc tgttcaatca 1500
ttgccggact gctacactac ttctttttag ctgcttttgc atggatgtgc attgaaggca 1560
tacatctcta tctcattgtt gtgggtgtca tctacaacaa gggatttttg cacaagaatt 1620
tttatatett tggetateta ageceageeg tggtagttgg atttteggea geactaggat 1680
acagatatta tggcacaacc aaagtatgtt ggcttagcac cgaaaacaac tttatttgga 1740
gttttatagg accagcatgc ctaatcattc ttgttaatct cttggctttt ggagtcatca 1800
tatacaaagt ttttcgtcac actgcagggt tgaaaccaga agttagttgc tttgagaaca 1860
taaggtettg tgcaagagga geeetegete ttetgtteet teteggeace acetggatet 1920
ttggggttct ccatgttgtg cacgcatcag tggttacagc ttacctcttc acagtcagca 1980
atgettteca ggggatgtte atttttttat teetgtgtgt tttatetaga aagatteaag 2040
aagaatatta cagattgttc aaaaatgtcc cctgttgttt tggatgttta aggtaaacat 2100
agagaatggt ggataattac aactgcacaa aaataaaaat tccaagctgt ggatgaccaa 2160
```

<210> 49

<211> 690

<212> PRT

<213> Homo sapiens

<400> 49

Met Lys Arg Leu Pro Leu Leu Val Val Phe Ser Thr Leu Leu Asn Cys

1 10 15

Ser Tyr Thr Gln Asn Cys Thr Lys Thr Pro Cys Leu Pro Asn Ala Lys 20 25 30

Cys Glu Ile Arg Asn Gly Ile Glu Ala Cys Tyr Cys Asn Met Gly Phe 35 40 45

Ser Gly Asn Gly Val Thr Ile Cys Glu Asp Asp Asn Glu Cys Gly Asn 50 55 60

Leu Thr Gln Ser Cys Gly Glu Asn Ala Asn Cys Thr Asn Thr Glu Gly 65 70 75 80

Ser Tyr Tyr Cys Met Cys Val Pro Gly Phe Arg Ser Ser Ser Asn Gln 85 90 95

Asp Arg Phe Ile Thr Asn Asp Gly Thr Val Cys Ile Glu Asn Val Asn 100 105 110

Ala Asn Cys His Leu Asp Asn Val Cys Ile Ala Ala Asn Ile Asn Lys 115 120 125

Thr Leu Thr Lys Ile Arg Ser Ile Lys Glu Pro Val Ala Leu Leu Gln 130 135 140

Glu Val Tyr Arg Asn Ser Val Thr Asp Leu Ser Pro Thr Asp Ile Ile 145 150 155 160

Thr Tyr Ile Glu Ile Leu Ala Glu Ser Ser Leu Leu Gly Tyr Lys 165 170 175

Asn Asn Thr Ile Ser Ala Lys Asp Thr Leu Ser Asn Ser Thr Leu Thr

			180					185					190		
Glu	Phe	Val 195	Lys	Thr	Val	Asn	Asn 200	Phe	Val	Gln	Arg	Asp 205	Thr	Phe	Val
Val	Trp 210	Asp	Lys	Leu	Ser	Val 215	Asn	His	Arg	Arg	Thr 220	His	Leu	Thr	Lys
Leu 225	Met	His	Thr	Val	Glu 230	Gln	Ala	Thr	Leu	Arg 235	Ile	Ser	Gln	Ser	Phe 240
Gln	Lys	Thr	Thr	Glu 245	Phe	Asp	Thr	Asn	Ser 250	Thr	Asp	Ile	Ala	Leu 255	Lys
Val	Phe	Phe	Phe 260	Asp	Ser	Tyr	Asn	Met 265	Lys	His	Ile	His	Pro 270	His	Met
Asn	Met	Asp 275	Gly	Asp	Tyr	Ile	Asn 280	Ile	Phe	Pro	Lys	Arg 285	Lys	Ala	Ala
Tyr	Asp 290	Ser	Asn	Gly	Asn	Val 295	Ala	Val	Ala	Phe	Leu 300	Tyr	Tyr	Lys	Ser
Ile 305	Gly	Pro	Leu	Leu	Ser 310	Ser	Ser	Asp		Phe 315	Leu	Leu	Lys	Pro	Gln 320
Asn	Tyr	Asp	Asn	Ser 325	Glu	Glu	Glu	Glu	Arg 330	Val	Ile	Ser	Ser	Val 335	Ile
Ser	Val	Ser	Met 340	Ser	Ser	Asn	Pro	Pro 345	Thr	Leu	Tyr	Glu	Leu 350	Glu	Lys
Ile	Thr	Phe 355	Thr	Leu	Ser	His	Arg 360	Lys	Val	Thr	Asp	Arg 365	Tyr	Arg	Ser
Leu	Cys 370	Ala	Phe	Trp	Asn	Tyr 375	Ser	Pro	Asp	Thr	Met 380	Asn	Gly	Ser	Trp
Ser 385	Ser	Glu	Gly	Cys	Glu 390	Leu	Thr	Tyr	Ser	Asn 395	Glu	Thr	His	Thr	Ser 400
Cys	Arg	Cys	Asn	His 405	Leu	Thr	His	Phe	Ala 410	Ile	Leu	Met	Ser	Ser 415	Gly
Pro	Ser	Ile	Gly 420	Ile	Lys	Asp	Tyr	Asn 425	Ile	Leu	Thr	Arg	Ile 430	Thr	Gln
Leu	Gly	Ile 435	Ile	Ile	Ser	Leu	Ile 440	Cys	Leu	Ala	Ile	Cys 445	Ile	Phe	Thr
Phe	Trp	Phe	Phe	Ser		Ile 455	Gln	Ser	Thr	Arg	Thr	Thr	Ile	His	Lys

<211> 589 <212> DNA

<222> (61)

<220>

<213> Homo sapiens

<221> modified base

Asn Leu Cys Cys Ser Leu Phe Leu Ala Glu Leu Val Phe Leu Val Gly 470 475 Ile Asn Thr Asn Thr Asn Lys Leu Phe Cys Ser Ile Ile Ala Gly Leu 485 490 Leu His Tyr Phe Phe Leu Ala Ala Phe Ala Trp Met Cys Ile Glu Gly 505 Ile His Leu Tyr Leu Ile Val Val Gly Val Ile Tyr Asn Lys Gly Phe 520 Leu His Lys Asn Phe Tyr Ile Phe Gly Tyr Leu Ser Pro Ala Val Val Val Gly Phe Ser Ala Ala Leu Gly Tyr Arg Tyr Tyr Gly Thr Thr Lys Val Cys Trp Leu Ser Thr Glu Asn Asn Phe Ile Trp Ser Phe Ile Gly 570 Pro Ala Cys Leu Ile Ile Leu Val Asn Leu Leu Ala Phe Gly Val Ile Ile Tyr Lys Val Phe Arg His Thr Ala Gly Leu Lys Pro Glu Val Ser Cys Phe Glu Asn Ile Arg Ser Cys Ala Arg Gly Ala Leu Ala Leu Leu 615 Phe Leu Leu Gly Thr Thr Trp Ile Phe Gly Val Leu His Val Val His 625 630 635 Ala Ser Val Val Thr Ala Tyr Leu Phe Thr Val Ser Asn Ala Phe Gln Gly Met Phe Ile Phe Leu Phe Leu Cys Val Leu Ser Arg Lys Ile Gln Glu Glu Tyr Tyr Arg Leu Phe Lys Asn Val Pro Cys Cys Phe Gly Cys 680 Leu Arg 690 <210> 50

```
<223> a, t, c or g
<400> 50
tggaaacata tcctccctca tatgaatatg gatggagact acataaatat atttccaaag 60
ngaaaagccg gcatatggat tcaaatggca atgttgcagt tgcattttta tattataaga 120
gtattggtcc ctttgctttc atcatctgac aacttcttat tgaaacctca aaattatgat 180
aattctgaag aggaggaaag agtcatatct tcagtaattt cagtctcaat gagctcaaac 240
ccacccacat tatatgaact tgaaaaaata acatttacat taagtcatcg aaaggtcaca 300
gataggtata ggagtetatg tggcattttg gaatactcac ctgataccat gaatggcage 360
tggtcttcag agggctgtga gctgacatac tcaaatgaga cccacacctc atgccgctgt 420
aatcacctga cacattttgc aattttgatg teetetggte ettecattgg tattaaagat 480
tataatattc ttacaaggat cactcaacta ggaataatta tttcactgat ttgtcttgcc 540
atatgcattt ttaccttctg gttcttcagt gaaattcaaa gcaccagga
<210> 51
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 51
ggtaatgagc tccattacag
                                                                    20
<210> 52
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 52
ggagtagaaa gcgcatgg
                                                                   18
<210> 53
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 53
cacctgatac catgaatggc ag
                                                                   22
<210> 54
<211> 18
<212> DNA
```

<213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe <400> 54 cgagctcgaa ttaattcg 18 <210> 55 <211> 18 <212> DNA <213> Artificial Sequence <223> Description of Artificial Sequence: Synthetic oligonucleotide probe <400> 55 ggatctcctg agctcagg 18 <210> 56 <211> 23 <212> DNA <213> Artificial Sequence <223> Description of Artificial Sequence: Synthetic oligonucleotide probe <400> 56 cctagttgag tgatccttgt aag 23 <210> 57 <211> 50 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe <400> 57 atgagaccca cacctcatgc cgctgtaatc acctgacaca ttttgcaatt 50 <210> 58 <211> 2137 <212> DNA <213> Homo sapiens <400> 58 gctcccagcc aagaacctcg gggccgctgc gcggtgggga ggagttcccc gaaacccggc 60 cgctaagcga ggcctcctcc tcccgcagat ccgaacggcc tgggcggggt caccccggct 120

```
gggacaagaa geegeeget geetgeeegg geeeggggag ggggetgggg etggggeegg 180
aggegggtg tgagtgggtg tgtgeggggg geggaggett gatgeaatee egataagaaa 240
tgctcgggtg tcttgggcac ctacccgtgg ggcccgtaag gcgctactat ataaggctgc 300
cggcccggag ccgccgcgcc gtcagagcag gagcgctgcg tccaggatct agggccacga 360
ccatcccaac ccggcactca cagccccgca gcgcatcccg gtcgccgccc agcctcccgc 420
acceccateg ceggagetge geeggagage ceagggaggt geeatgegga gegggtgtgt 480
ggtggtecae gtatggatec tggeeggeet etggetggee gtggeeggge geeceetege 540
cttctcggac geggggcccc acgtgcacta cggctggggc gaccccatcc gcctgcggca 600
cctgtacacc tccggccccc acgggctctc cagctgcttc ctgcgcatcc gtgccgacgg 660
cgtcgtggac tgcgcgggg gccagagcgc gcacagtttg ctggagatca aggcagtcgc 720
tetgeggace gtggceatea agggegtgea eagegtgegg tacetetgea tgggegeega 780
cggcaagatg caggggctgc ttcagtactc ggaggaagac tgtgctttcg aggaggagat 840
ccgcccagat ggctacaatg tgtaccgatc cgagaagcac cgcctcccgg tctccctgag 900
cagtgccaaa cagcggcagc tgtacaagaa cagaggcttt cttccactct ctcatttcct 960
gcccatgctg cccatggtcc cagaggagcc tgaggacctc aggggccact tggaatctga 1020
catgttetet tegeceetgg agacegaeag catggaecea tttgggettg teaceggaet 1080
ggaggccgtg aggagtccca gctttgagaa gtaactgaga ccatgcccgg gcctcttcac 1140
tgctgccagg ggctgtggta cctgcagcgt gggggacgtg cttctacaag aacagtcctg 1200
agtccacgtt ctgtttagct ttaggaagaa acatctagaa gttgtacata ttcagagttt 1260
tccattggca gtgccagttt ctagccaata gacttgtctg atcataacat tgtaagcctg 1320
tagettgeec agetgetgee tgggeececa ttetgeteec tegaggttge tggacaaget 1380
gctgcactgt ctcagttctg cttgaatacc tccatcgatg gggaactcac ttcctttgga 1440
aaaattetta tyteaayety aaatteteta atttttete ateaetteee caggageage 1500
caqaaqacaq qcaqtaqttt taatttcaqq aacaqqtqat ccactctgta aaacagcagg 1560
taaatttcac tcaaccccat gtgggaattg atctatatct ctacttccag ggaccatttg 1620
ccetteccaa atccetecag gecagaactg actggageag geatggeeca ecaggettea 1680
ggagtagggg aagcetggag ceceaeteea geeetgggae aacttgagaa tteeeeetga 1740
ggccagttct gtcatggatg ctgtcctgag aataacttgc tgtcccggtg tcacctgctt 1800
ccatctccca gcccaccagc cctctgccca cctcacatgc ctccccatgg attggggcct 1860
atttgaagac cccaagtctt gtcaataact tgctgtgtgg aagcagcggg ggaagaccta 1980
gaaccettte cecageaett ggttttecaa catgatattt atgagtaatt tattttgata 2040
tqtacatctc ttattttctt acattattta tqcccccaaa ttatatttat qtatqtaaqt 2100
gaggtttgtt ttgtatatta aaatggagtt tgtttgt
                                                                2137
```

```
<210> 59
```

<400> 59

```
Met Arg Ser Gly Cys Val Val Val His Val Trp Ile Leu Ala Gly Leu

1 10 15
```

Trp Leu Ala Val Ala Gly Arg Pro Leu Ala Phe Ser Asp Ala Gly Pro 20 25 30

His Val His Tyr Gly Trp Gly Asp Pro Ile Arg Leu Arg His Leu Tyr 35 40 45

Thr Ser Gly Pro His Gly Leu Ser Ser Cys Phe Leu Arg Ile Arg Ala 50 55 60

<211> 216

<212> PRT

<213> Homo sapiens

Asp 65	Gly	Val	Val	Asp	Cys 70	Ala	Arg	Gly	Gln	Ser 75	Ala	His	Ser	Leu	Leu 80	
Glu	Ile	Lys	Ala	Val 85	Ala	Leu	Arg	Thr	Val 90	Ala	Ile	Lys	Gly	Val 95	His	
Ser	Val	Arg	Tyr 100	Leu	Cys	Met	Gly	Ala 105	Asp	Gly	Lys	Met	Gln 110	Gly	Leu	
Leu	Gln	Tyr 115	Ser	Glu	Glu	Asp	Cys 120	Ala	Phe	Glu	Glu	Glu 125	Ile	Arg	Pro	
Asp	Gly 130	Tyr	Asn	Val	Tyr	Arg 135	Ser	Glu	Lys	His	Arg 140	Leu	Pro	Val	Ser	
Leu 145	Ser	Ser	Ala	Lys	Gln 150	Arg	Gln	Leu	Tyr	Lys 155	Asn	Arg	Gly	Phe	Leu 160	
Pro	Leu	Ser	His	Phe 165	Leu	Pro	Met	Leu	Pro 170	Met	Val	Pro	Glu	Glu 175	Pro	
Glu	Asp	Leu	Arg 180	Gly	His	Leu	Glu	Ser 185	Asp	Met	Phe	Ser	Ser 190	Pro	Leu	
Glu	Thr	Asp 195	Ser	Met	Asp	Pro	Phe 200	Gly	Leu	Val	Thr	Gly 205	Leu	Glu	Ala	
Val	Arg 210	Ser	Pro	Ser	Phe	Glu 215	Lys									
<210> 60 <211> 26 <212> DNA <213> Artificial Sequence																
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe																
	<400> 60 atccgcccag atggctacaa tgtgta															26
<211 <212	<210> 61 <211> 42 <212> DNA <213> Artificial Sequence															
	<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe															
)> 61		ctccc	ctgag	gc ac	gtgco	caaac	e ago	eggea	agtg	ta					42

```
<210> 62
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 62
ccagtccggt gacaagccca aa
                                                                 22
<210> 63
<211> 1295
<212> DNA
<213> Homo sapiens
<400> 63
eccagaagtt caagggeece eggeeteetg egeteetgee geegggaece tegaceteet 60
cagagcagcc ggctgccgcc ccgggaagat ggcgaggagg agccgccacc gcctcctcct 120
getgetgetg egetacetgg tggtegecet gggetateat aaggeetatg ggttttetge 180
cccaaaagac caacaagtag tcacagcagt agagtaccaa gaggetattt tagcctgcaa 240
aaccccaaag aagactgttt cctccagatt agagtggaag aaactgggtc ggagtgtctc 300
ctttgtctac tatcaacaga ctcttcaagg tgattttaaa aatcgagctg agatgataga 360
tttcaatatc cggatcaaaa atgtgacaag aagtgatgcg gggaaatatc gttgtgaagt 420
tagtgcccca tctgagcaag gccaaaacct ggaagaggat acagtcactc tggaagtatt 480
agtggctcca gcagttccat catgtgaagt accetettet getetgagtg gaactgtggt 540
agagctacga tgtcaagaca aagaagggaa tccagctcct gaatacacat ggtttaagga 600
tggcatccgt ttgctagaaa atcccagact tggctcccaa aqcaccaaca qctcatacac 660
aatgaataca aaaactggaa ctctgcaatt taatactgtt tccaaactgg acactggaga 720
atatteetgt gaageeegea attetgttgg atategeagg tgteetggga aaegaatgea 780
agtagatgat ctcaacataa gtggcatcat agcagccgta gtagttgtgg ccttagtgat 840
ttccgtttgt ggccttggtg tatgctatgc tcagaggaaa ggctactttt caaaagaaac 900
ctccttccag aagagtaatt cttcatctaa agccacgaca atgagtgaaa atgtqcaqtq 960
gctcacgcct gtaatcccag cactttggaa ggccgcggcg ggcggatcac gaggtcagga 1020
gttctagacc agtctggcca atatggtgaa accccatctc tactaaaata caaaaattag 1080
ctgggcatgg tggcatgtgc ctgcagttcc agctgcttgg gagacaggag aatcacttga 1140
accegggagg eggaggttge agtgagetga gateaegeea etgeagteea geetgggtaa 1200
tgtagaattc ttacaataaa tatagcttga tattc
<210> 64
<211> 312
<212> PRT
<213> Homo sapiens
<400> 64
Met Ala Arg Arg Ser Arg His Arg Leu Leu Leu Leu Leu Arg Tyr
  1
Leu Val Val Ala Leu Gly Tyr His Lys Ala Tyr Gly Phe Ser Ala Pro
```

Lys Asp Gln Gln Val Val Thr Ala Val Glu Tyr Gln Glu Ala Ile Leu Ala Cys Lys Thr Pro Lys Lys Thr Val Ser Ser Arg Leu Glu Trp Lys Lys Leu Gly Arg Ser Val Ser Phe Val Tyr Tyr Gln Gln Thr Leu Gln 70 Gly Asp Phe Lys Asn Arg Ala Glu Met Ile Asp Phe Asn Ile Arg Ile 90 Lys Asn Val Thr Arg Ser Asp Ala Gly Lys Tyr Arg Cys Glu Val Ser Ala Pro Ser Glu Gln Gly Gln Asn Leu Glu Glu Asp Thr Val Thr Leu 120 Glu Val Leu Val Ala Pro Ala Val Pro Ser Cys Glu Val Pro Ser Ser Ala Leu Ser Gly Thr Val Val Glu Leu Arg Cys Gln Asp Lys Glu Gly Asn Pro Ala Pro Glu Tyr Thr Trp Phe Lys Asp Gly Ile Arg Leu Leu 170 Glu Asn Pro Arg Leu Gly Ser Gln Ser Thr Asn Ser Ser Tyr Thr Met 190 Asn Thr Lys Thr Gly Thr Leu Gln Phe Asn Thr Val Ser Lys Leu Asp 200 Thr Gly Glu Tyr Ser Cys Glu Ala Arg Asn Ser Val Gly Tyr Arg Arg 215 Cys Pro Gly Lys Arg Met Gln Val Asp Asp Leu Asn Ile Ser Gly Ile 230 Ile Ala Ala Val Val Val Ala Leu Val Ile Ser Val Cys Gly Leu Gly Val Cys Tyr Ala Gln Arg Lys Gly Tyr Phe Ser Lys Glu Thr Ser Phe Gln Lys Ser Asn Ser Ser Ser Lys Ala Thr Thr Met Ser Glu Asn 280 Val Gln Trp Leu Thr Pro Val Ile Pro Ala Leu Trp Lys Ala Ala Ala 295 Gly Gly Ser Arg Gly Gln Glu Phe

```
310
305
<210> 65
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 65
                                                                   22
atcgttgtga agttagtgcc cc
<210> 66
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 66
                                                                   23
acctgcgata tccaacagaa ttg
<210> 67
<211> 48
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 67
ggaagaggat acagtcactc tggaagtatt agtggctcca gcagttcc
                                                                   48
<210> 68
<211> 2639
<212> DNA
<213> Homo sapiens
<400> 68
gacatcggag gtgggctagc actgaaactg cttttcaaga cgaggaagag gaggagaaag 60
agaaagaaga ggaagatgtt gggcaacatt tatttaacat gctccacagc ccggaccctg 120
gcatcatgct gctattcctg caaatactga agaagcatgg gatttaaata ttttacttct 180
aaataaatga attactcaat ctcctatgac catctataca tactccacct tcaaaaagta 240
catcaatatt atatcattaa ggaaatagta accttctctt ctccaatatg catgacattt 300
ttggacaatg caattgtggc actggcactt atttcagtga agaaaaactt tgtggttcta 360
tggcattcat catttgacaa atgcaagcat cttccttatc aatcagctcc tattgaactt 420
actagcactg actgtggaat ccttaagggc ccattacatt tctgaagaag aaagctaaga 480
tgaaggacat gccactccga attcatgtgc tacttggcct agctatcact acactagtac 540
```

aaqctgtaga taaaaaagtg gattgtccac ggttatgtac gtgtgaaatc aggccttggt 600 ttacacccag atccatttat atggaagcat ctacagtgga ttgtaatgat ttaggtcttt 660 taactttccc agccagattg ccagctaaca cacagattct tctcctacag actaacaata 720 ttgcaaaaat tgaatactcc acagactttc cagtaaacct tactggcctg gatttatctc 780 aaaacaattt atcttcagtc accaatatta atgtaaaaaa gatgcctcag ctcctttctg 840 tgtacctaga ggaaaacaaa cttactgaac tgcctgaaaa atgtctgtcc gaactgagca 900 acttacaaga actctatatt aatcacaact tgctttctac aatttcacct ggagccttta 960 ttggcctaca taatcttctt cgacttcatc tcaattcaaa tagattgcag atgatcaaca 1020 gtaagtggtt tgatgctctt ccaaatctag agattctgat gattggggaa aatccaatta 1080 tcagaatcaa agacatgaac tttaagcctc ttatcaatct tcgcagcctg gttatagctg 1140 gtataaacct cacagaaata ccagataacg ccttggttgg actggaaaac ttagaaagca 1200 tctcttttta cgataacagg cttattaaag taccccatgt tgctcttcaa aaagttgtaa 1260 atctcaaatt tttggatcta aataaaaatc ctattaatag aatacgaagg ggtgatttta 1320 gcaatatgct acacttaaaa gagttgggga taaataatat gcctgagctg atttccatcg 1380 atagtettge tgtggataac etgecagatt taagaaaaat agaagetaet aacaaceeta 1440 gattgtetta catteacece aatgeatttt teagacteee caagetggaa teacteatge 1500 tgaacagcaa tgctctcagt gccctgtacc atggtaccat tgagtctctg ccaaacctca 1560 aggaaatcaq catacacagt aaccccatca ggtgtgactg tgtcatccgt tggatgaaca 1620 tgaacaaaac caacattega tteatggage cagatteact gttttgegtg gacceacetg 1680 aattccaagg tcagaatgtt cggcaagtgc atttcaggga catgatggaa atttgtctcc 1740 ctcttatagc tcctgagagc tttccttcta atctaaatgt agaagctggg agctatgttt 1800 cctttcactg tagagctact gcagaaccac agcctgaaat ctactggata acaccttctg 1860 gtcaaaaact cttgcctaat accetgacag acaagttcta tgtccattct gagggaacac 1920 tagatataaa tggcgtaact cccaaagaag ggggtttata tacttgtata gcaactaacc 1980 tagttggcgc tgacttgaag tctgttatga tcaaagtgga tggatctttt ccacaagata 2040 acaatggctc tttgaatatt aaaataagag atattcaggc caattcagtt ttggtgtcct 2100 ggaaagcaag ttctaaaatt ctcaaatcta gtqttaaatg gacagccttt gtcaagactg 2160 aaaattetea tgetgegeaa agtgetegaa taceatetga tgteaaggta tataatetta 2220 ctcatctgaa tccatcaact gagtataaaa tttgtattga tattcccacc atctatcaga 2280 aaaacagaaa aaaatgtgta aatgtcacca ccaaaggttt gcaccctgat caaaaagagt 2340 atgaaaagaa taataccaca acacttatgg cctgtcttgg aggccttctg gggattattg 2400 gtgtgatatg tettateage tgeetetete cagaaatgaa etgtgatggt ggacacaget 2460 atgtgaggaa ttacttacag aaaccaacct ttgcattagg tgagctttat cctcctctga 2520 taaatctctg ggaagcagga aaagaaaaa gtacatcact gaaagtaaaa gcaactgtta 2580 taggtttacc aacaaatatg tcctaaaaac caccaaggaa acctactcca aaaatgaac 2639

```
<210> 69
```

<400> 69

Met Lys Asp Met Pro Leu Arg Ile His Val Leu Leu Gly Leu Ala Ile 1 5 10 15

Thr Thr Leu Val Gln Ala Val Asp Lys Lys Val Asp Cys Pro Arg Leu 20 25 30

Cys Thr Cys Glu Ile Arg Pro Trp Phe Thr Pro Arg Ser Ile Tyr Met 35 40 45

Glu Ala Ser Thr Val Asp Cys Asn Asp Leu Gly Leu Leu Thr Phe Pro 50 55 60

<211> 708

<212> PRT

<213> Homo sapiens

Ala Arg Leu Pro Ala Asn Thr Gln Ile Leu Leu Gln Thr Asn Asn Ile Ala Lys Ile Glu Tyr Ser Thr Asp Phe Pro Val Asn Leu Thr Gly Leu Asp Leu Ser Gln Asn Asn Leu Ser Ser Val Thr Asn Ile Asn Val 105 Lys Lys Met Pro Gln Leu Leu Ser Val Tyr Leu Glu Glu Asn Lys Leu 120 Thr Glu Leu Pro Glu Lys Cys Leu Ser Glu Leu Ser Asn Leu Gln Glu 135 Leu Tyr Ile Asn His Asn Leu Leu Ser Thr Ile Ser Pro Gly Ala Phe 155 150 Ile Gly Leu His Asn Leu Leu Arg Leu His Leu Asn Ser Asn Arg Leu 165 Gln Met Ile Asn Ser Lys Trp Phe Asp Ala Leu Pro Asn Leu Glu Ile Leu Met Ile Gly Glu Asn Pro Ile Ile Arg Ile Lys Asp Met Asn Phe Lys Pro Leu Ile Asn Leu Arg Ser Leu Val Ile Ala Gly Ile Asn Leu 215 Thr Glu Ile Pro Asp Asn Ala Leu Val Gly Leu Glu Asn Leu Glu Ser Ile Ser Phe Tyr Asp Asn Arg Leu Ile Lys Val Pro His Val Ala Leu Gln Lys Val Val Asn Leu Lys Phe Leu Asp Leu Asn Lys Asn Pro Ile Asn Arg Ile Arg Arg Gly Asp Phe Ser Asn Met Leu His Leu Lys Glu 280 Leu Gly Ile Asn Asn Met Pro Glu Leu Ile Ser Ile Asp Ser Leu Ala Val Asp Asn Leu Pro Asp Leu Arg Lys Ile Glu Ala Thr Asn Asn Pro Arg Leu Ser Tyr Ile His Pro Asn Ala Phe Phe Arg Leu Pro Lys Leu 330 Glu Ser Leu Met Leu Asn Ser Asn Ala Leu Ser Ala Leu Tyr His Gly

			340					345					350		
Thr	Ile	Glu 355	Ser	Leu	Pro	Asn	Leu 360	Lys	Glu	Ile	Ser	Ile 365	His	Ser	Asn
Pro	Ile 370	Arg	Cys	Asp	Cys	Val 375	Ile	Arg	Trp	Met	Asn 380	Met	Asn	Lys	Thr
Asn 385	Ile	Arg	Phe	Met	Glu 390	Pro	Asp	Ser	Leu	Phe 395	Cys	Val	Asp	Pro	Pro 400
Glu	Phe	Gln	Gly	Gln 405	Asn	Val	Arg	Gln	Val 410	His	Phe	Arg	Asp	Met 415	Met
Glu	Ile	Cys	Leu 420	Pro	Leu	Ile	Ala	Pro 425	Glu	Ser	Phe	Pro	Ser 430	Asn	Leu
Asn	Val	Glu 435	Ala	Gly	Ser	Tyr	Val 440	Ser	Phe	His	Cys	Arg 445	Ala	Thr	Ala
Glu	Pro 450	Gln	Pro	Glu	Ile	Tyr 455	Trp	Ile	Thr	Pro	Ser 460	Gly	Gln	Lys	Leu
Leu 465	Pro	Asn	Thr	Leu	Thr 470	Asp	Lys	Phe	Tyr	Val 475	His	Ser	Glu	Gly	Thr 480
Leu	Asp	Ile	Asn	Gly 485	Val	Thr	Pro	Lys	Glu 490	Gly	Gly	Leu	Tyr	Thr 495	Cys
Ile	Ala	Thr	Asn 500	Leu	Val	Gly	Ala	Asp 505	Leu	Lys	Ser	Val	Met 510	Ile	Lys
Val	Asp	Gly 515	Ser	Phe	Pro	Gln	Asp 520	Asn	Asn	Gly	Ser	Leu 525	Asn	Ile	Lys
Ile	Arg 530	Asp	Ile	Gln	Ala	Asn 535	Ser	Val	Leu	Val	Ser 540	Trp	Lys	Ala	Ser
Ser 545	Lys	Ile	Leu	Lys	Ser 550	Ser	Val	Lys	Trp	Thr 555	Ala	Phe	Val	Lys	Thr 560
Glu	Asn	Ser	His	Ala 565	Ala	Gln	Ser		Arg 570	Ile	Pro	Ser	Asp	Val 575	
Val	Tyr	Asn	Leu 580	Thr	His	Leu	Asn	Pro 585	Ser	Thr	Glu	Tyr	Lys 590	Ile	Cys
Ile	Asp	Ile 595	Pro	Thr	Ile	Tyr	Gln 600	Lys	Asn	Arg	Lys	Lys 605	Cys	Val	Asn
Val	Thr 610	Thr	Lys	Gly	Leu	His 615	Pro	Asp	Gln	Lys	Glu 620	Tyr	Glu	Lys	Asn

<400> 71

Asn Thr Thr Leu Met Ala Cys Leu Gly Gly Leu Leu Gly Ile Ile 630 Gly Val Ile Cys Leu Ile Ser Cys Leu Ser Pro Glu Met Asn Cys Asp 650 Gly Gly His Ser Tyr Val Arg Asn Tyr Leu Gln Lys Pro Thr Phe Ala 665 Leu Gly Glu Leu Tyr Pro Pro Leu Ile Asn Leu Trp Glu Ala Gly Lys 675 680 Glu Lys Ser Thr Ser Leu Lys Val Lys Ala Thr Val Ile Gly Leu Pro 695 Thr Asn Met Ser 705 <210> 70 <211> 1305 <212> DNA <213> Homo sapiens <400> 70 gcccgggact ggcgcaaggt gcccaagcaa ggaaagaaat aatgaagaga cacatgtgtt 60 agctgcagcc ttttgaaaca cgcaagaagg aaatcaatag tgtggacagg gctggaacct 120 ttaccacgct tgttggagta gatgaggaat gggctcgtga ttatgctgac attccagcat 180 gaatctggta gacctgtggt taacccgttc cctctccatg tgtctcctcc tacaaagttt 240 tgttcttatg atactgtgct ttcattctgc cagtatgtgt cccaagggct gtctttgttc 300 ttcctctggg ggtttaaatg tcacctgtag caatgcaaat ctcaaggaaa tacctagaga 360 tetteeteet gaaacagtet taetgtatet ggaeteeaat eagateacat etatteecaa 420 tgaaattttt aaggacctcc atcaactgag agttctcaac ctgtccaaaa atggcattga 480 gtttatcgat gagcatgcct tcaaaggagt agctgaaacc ttgcagactc tggacttgtc 540 cgacaatcgg attcaaagtg tgcacaaaaa tgccttcaat aacctgaagg ccagggccag 600 aattgccaac aacccctggc actgcgactg tactctacag caagttctga ggagcatggc 660 gtccaatcat gagacagccc acaacgtgat ctgtaaaacg tccgtgttgg atgaacatgc 720 tggcagacca ttcctcaatg ctgccaacga cgctgacctt tgtaacctcc ctaaaaaaaac 780 taccgattat gccatgctgg tcaccatgtt tggctggttc actatggtga tctcatatgt 840 ggtatattat gtgaggcaaa atcaggagga tgcccggaga cacctcgaat acttgaaatc 900 cctgccaagc aggcagaaga aagcagatga acctgatgat attagcactg tggtatagtg 960 tccaaactga ctgtcattga gaaagaaaga aagtagtttg cgattgcagt agaaataagt 1020 ggtttacttc tcccatccat tgtaaacatt tgaaactttg tatttcagtt ttttttgaat 1080 tatgccactg ctgaactttt aacaaacact acaacataaa taatttgagt ttaggtgatc 1140 caccccttaa ttgtaccccc gatggtatat ttctgagtaa gctactatct gaacattagt 1200 tagatccatc tcactattta ataatgaaat ttattttttt aatttaaaag caaataaaag 1260 cttaactttg aaccatggga aaaaaaaaaa aaaaaaaaa aaaca 1305 <210> 71 <211> 259 <212> PRT <213> Homo sapiens

Met Asn Leu Val Asp Leu Trp Leu Thr Arg Ser Leu Ser Met Cys Leu 1 5 10 15

Leu Leu Gln Ser Phe Val Leu Met Ile Leu Cys Phe His Ser Ala Ser 20 25 30

Met Cys Pro Lys Gly Cys Leu Cys Ser Ser Ser Gly Gly Leu Asn Val

Thr Cys Ser Asn Ala Asn Leu Lys Glu Ile Pro Arg Asp Leu Pro Pro 50 55 60

Glu Thr Val Leu Leu Tyr Leu Asp Ser Asn Gln Ile Thr Ser Ile Pro
65 70 75 80

Asn Glu Ile Phe Lys Asp Leu His Gln Leu Arg Val Leu Asn Leu Ser 85 90 95

Lys Asn Gly Ile Glu Phe Ile Asp Glu His Ala Phe Lys Gly Val Ala 100 105 110

Glu Thr Leu Gln Thr Leu Asp Leu Ser Asp Asn Arg Ile Gln Ser Val 115 120 125

His Lys Asn Ala Phe Asn Asn Leu Lys Ala Arg Ala Arg Ile Ala Asn 130 135 140

Asn Pro Trp His Cys Asp Cys Thr Leu Gln Gln Val Leu Arg Ser Met 145 150 155 160

Ala Ser Asn His Glu Thr Ala His Asn Val Ile Cys Lys Thr Ser Val 165 170 175

Leu Asp Glu His Ala Gly Arg Pro Phe Leu Asn Ala Ala Asn Asp Ala 180 185 190

Asp Leu Cys Asn Leu Pro Lys Lys Thr Thr Asp Tyr Ala Met Leu Val

Thr Met Phe Gly Trp Phe Thr Met Val Ile Ser Tyr Val Val Tyr Tyr 210 215 220

Val Arg Gln Asn Gln Glu Asp Ala Arg Arg His Leu Glu Tyr Leu Lys 225 230 235 240

Ser Leu Pro Ser Arg Gln Lys Lys Ala Asp Glu Pro Asp Asp Ile Ser 245 250 255

Thr Val Val

<210> 72 <211> 2290

<212> DNA <213> Homo sapiens <400> 72 accgagccga gcggaccgaa ggcgccccg agatgcaggt gagcaagagg atgctggcgg 60 ggggcgtgag gagcatgccc agccccctcc tggcctgctg gcagcccatc ctcctgctgg 120 tgctgggctc agtgctgtca ggctcggcca cgggctgccc gccccgctgc gagtgctccg 180 cccaggaccg cgctgtgctg tgccaccgca agtgctttgt ggcagtcccc gagggcatcc 240 ccaccgagac gcgcctgctg gacctaggca agaaccgcat caaaacgctc aaccaggacg 300 agttegecag ettecegeae etggaggage tggageteaa egagaacate gtgagegeeg 360 tggageeegg egeetteaae aacetettea aeeteeggae getgggtete egeageaaee 420 geetgaaget cateeegeta ggegtettea etggeeteag caacetgace aageaggaca 480 tcagcgagaa caagatcgtt atcctactgg actacatgtt tcaggacctg tacaacctca 540 agteactgga ggttggegae aatgaeeteg tetaeatete teaeegegee tteageggee 600 tcaacagcct ggagcagctg acgctggaga aatgcaacct gacctccatc cccaccgagg 660 egetgteeca cetgeaegge etcategtee tgaggeteeg geaecteaae atcaatgeea 720 teegggaeta eteetteaag aggetgtace gaeteaaggt ettggagate teecaetgge 780 cctacttgga caccatgaca cccaactgcc tctacggcct caacctgacg tccctgtcca 840 teacacactg caatetgace getgtgeect acetggeegt cegecaceta gtetatetee 900 getteeteaa eeteteetae aacceeatea geaceattga gggeteeatg ttgeatgage 960 tgctccggct gcaggagatc cagctggtgg gcgggcagct ggccgtggtg gagccctatg 1020 cetteegegg ceteaactac etgegegtge teaatgtete tggcaaccag etgaccaca 1080 tggaggaatc agtcttccac tcggtgggca acctggagac actcatcctg gactccaacc 1140 cgctggcctg cgactgtcgg ctcctgtggg tgttccggcg ccgctggcgg ctcaacttca 1200 accggcagca gcccacgtgc gccacgcccg agtttgtcca gggcaaggag ttcaaggact 1260 tecetgatgt getaetgeee aactaettea eetgeegeeg egeeegeate eggqaeegea 1320 aggeceagea ggtgtttgtg gaegagggee acaeggtgea gtttgtgtge eqggeeqatg 1380 gegaceegee geeegeeate etetggetet caeeeegaaa geaeetggte teageeaaga 1440 gcaatgggcg gctcacagtc ttccctgatg gcacgctgga ggtgcgctac gcccaggtac 1500 aggacaacgg cacgtacctg tgcatcgcgg ccaacgcggg cggcaacgac tccatgcccg 1560 cccacctgca tgtgcgcagc tactcgcccg actggcccca tcagcccaac aagaccttcg 1620 ctttcatctc caaccagccg ggcgagggag aggccaacag cacccgcgcc actgtgcctt 1680 teccettega cateaagace etcateateg ecaceaceat gggetteate tettteetgg 1740 gegtegteet ettetgeetg gtgetgetgt ttetetggag eeggggeaag ggeaacacaa 1800 agcacaacat cgagatcgag tatgtgcccc gaaagtcgga cgcaggcatc agctccgccg 1860 acgcgccccg caagttcaac atgaagatga tatgaggccg gggcgggggg cagggacccc 1920 cgggcggccg ggcaggggaa ggggcctggt cgccacctgc tcactctcca gtccttccca 1980 cetectecet accettetae acacettete tittetecete cegeeteegt eccetgetge 2040 cccccgccag ccctcaccac ctgccctcct tctaccagga cctcagaagc ccagacctgg 2100 ggaccccacc tacacagggg cattgacaga ctggagttga aagccgacga accgacacqc 2160 ggcagagtca ataattcaat aaaaaagtta cgaactttct ctgtaacttg ggtttcaata 2220 aaaaaaaaa 2290 <210> 73 <211> 620 <212> PRT <213> Homo sapiens <400> 73 Met Gln Val Ser Lys Arg Met Leu Ala Gly Gly Val Arg Ser Met Pro

290

Ser Pro Leu Leu Ala Cys Trp Gln Pro Ile Leu Leu Leu Val Leu Gly Ser Val Leu Ser Gly Ser Ala Thr Gly Cys Pro Pro Arg Cys Glu Cys Ser Ala Gln Asp Arg Ala Val Leu Cys His Arg Lys Cys Phe Val Ala Val Pro Glu Gly Ile Pro Thr Glu Thr Arg Leu Leu Asp Leu Gly Lys Asn Arg Ile Lys Thr Leu Asn Gln Asp Glu Phe Ala Ser Phe Pro His 90 Leu Glu Glu Leu Glu Leu Asn Glu Asn Ile Val Ser Ala Val Glu Pro 105 100 Gly Ala Phe Asn Asn Leu Phe Asn Leu Arg Thr Leu Gly Leu Arg Ser 120 Asn Arg Leu Lys Leu Ile Pro Leu Gly Val Phe Thr Gly Leu Ser Asn Leu Thr Lys Gln Asp Ile Ser Glu Asn Lys Ile Val Ile Leu Leu Asp 150 155 Tyr Met Phe Gln Asp Leu Tyr Asn Leu Lys Ser Leu Glu Val Gly Asp Asn Asp Leu Val Tyr Ile Ser His Arg Ala Phe Ser Gly Leu Asn Ser Leu Glu Gln Leu Thr Leu Glu Lys Cys Asn Leu Thr Ser Ile Pro Thr Glu Ala Leu Ser His Leu His Gly Leu Ile Val Leu Arg Leu Arg His 210 215 Leu Asn Ile Asn Ala Ile Arg Asp Tyr Ser Phe Lys Arg Leu Tyr Arg Leu Lys Val Leu Glu Ile Ser His Trp Pro Tyr Leu Asp Thr Met Thr Pro Asn Cys Leu Tyr Gly Leu Asn Leu Thr Ser Leu Ser Ile Thr His Cys Asn Leu Thr Ala Val Pro Tyr Leu Ala Val Arg His Leu Val Tyr Leu Arg Phe Leu Asn Leu Ser Tyr Asn Pro Ile Ser Thr Ile Glu Gly

295

Ser Met Leu His Glu Leu Leu Arg Leu Gln Glu Ile Gln Leu Val Gly Gly Gln Leu Ala Val Val Glu Pro Tyr Ala Phe Arg Gly Leu Asn Tyr 325 330 Leu Arg Val Leu Asn Val Ser Gly Asn Gln Leu Thr Thr Leu Glu Glu 345 Ser Val Phe His Ser Val Gly Asn Leu Glu Thr Leu Ile Leu Asp Ser 360 Asn Pro Leu Ala Cys Asp Cys Arg Leu Leu Trp Val Phe Arg Arg Arg Trp Arg Leu Asn Phe Asn Arg Gln Gln Pro Thr Cys Ala Thr Pro Glu 395 Phe Val Gln Gly Lys Glu Phe Lys Asp Phe Pro Asp Val Leu Leu Pro Asn Tyr Phe Thr Cys Arg Arg Ala Arg Ile Arg Asp Arg Lys Ala Gln Gln Val Phe Val Asp Glu Gly His Thr Val Gln Phe Val Cys Arq Ala Asp Gly Asp Pro Pro Pro Ala Ile Leu Trp Leu Ser Pro Arg Lys His 450 Leu Val Ser Ala Lys Ser Asn Gly Arg Leu Thr Val Phe Pro Asp Gly Thr Leu Glu Val Arg Tyr Ala Gln Val Gln Asp Asn Gly Thr Tyr Leu 490 Cys Ile Ala Ala Asn Ala Gly Gly Asn Asp Ser Met Pro Ala His Leu His Val Arg Ser Tyr Ser Pro Asp Trp Pro His Gln Pro Asn Lys Thr Phe Ala Phe Ile Ser Asn Gln Pro Gly Glu Gly Glu Ala Asn Ser Thr 535 Arg Ala Thr Val Pro Phe Pro Phe Asp Ile Lys Thr Leu Ile Ile Ala 545 550 Thr Thr Met Gly Phe Ile Ser Phe Leu Gly Val Val Leu Phe Cys Leu 570 Val Leu Leu Phe Leu Trp Ser Arg Gly Lys Gly Asn Thr Lys His Asn

		580					585					590			
Ile G	lu Ile 595	Glu	Tyr	Val	Pro	Arg 600	Lys	Ser	Asp	Ala	Gly 605	Ile	Ser	Ser	
	sp Ala 10	Pro	Arg	Lys	Phe 615	Asn	Met	Lys	Met	Ile 620					
<210><211><212><212><213>	22	icial	l Sec	quenc	ce										
<220> <223>	Descri	_				cial	Seqı	ience	e: Sy	/nthe	etic				
<400> tcacct	74 tggag	cctt1	tatto	gg co	2										22
<210><211><212><212><213>	23	ic i a:	l Sed	quenc	ce										
<220> <223>	Descr oligo	_				cial	Seqi	uence	e: S	ynthe	etic				
<400> atacca	75 agcta	taac	caggo	ct go	eg										23
<210><211><212><212><213>	52	icia:	l Sed	quenc	ce										
<220> <223>	Descr oligo					cial	Seq	uence	e: Sy	ynthe	etic				
<400> caacag	76 gtaag	tggt	ttgal	tg cl	tctt	ccaa	a tc	taga	gatt	ctg	atga	ttg			50 52
<210><211><211><212><213>	22	icia	l Sed	quen	ce										
<220> <223>	Descr oligo					cial	Seq	uenc	e: S	ynth	etic				

<400> 77 ccatgtgtct cctcctacaa ag	22
<210> 78 <211> 23 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 78 gggaatagat gtgatctgat tgg	23
<210> 79 <211> 50 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 79 cacctgtagc aatgcaaatc tcaaggaaat acctagagat cttcctcctg	50
<210> 80 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 80 agcaaccgcc tgaagctcat cc	22
<210> 81 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 81 aaggcgcggt gaaagatgta gacg	24
~210× 82	

```
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
     oligonucleotide probe
<400> 82
gactacatgt ttcaggacct gtacaacctc aagtcactgg aggttggcga
                                                                50
<210> 83
<211> 1685
<212> DNA
<213> Homo sapiens
cccacgcgtc cgcacctcgg ccccgggctc cgaagcggct cgggggcgcc ctttcggtca 60
acateqtaqt ccaccecte eccatececa qeeceeqqqq atteaqqete gecagegece 120
agccagggag ccggccggga agcgcgatgg gggccccagc cgcctcgctc ctgctcctgc 180
tectgetgtt egeetgetge tgggegeeeg geggggeeaa eeteteeeag gaegaeagee 240
agccctggac atctgatgaa acagtggtgg ctggtggcac cgtggtgctc aagtgccaag 300
tgaaagatca cgaggactca tccctgcaat ggtctaaccc tgctcagcag actctctact 360
ttggggagaa gagagccctt cgagataatc gaattcagct ggttacctct acgccccacg 420
ageteageat cageateage aatgtggeee tggeagaega gggegagtae acetgeteaa 480
tetteactat geetgtgega aetgeeaagt eeetegteae tgtgetagga atteeaeaga 540
agcccatcat cactggttat aaatcttcat tacgggaaaa agacacagcc accctaaact 600
gtcagtcttc tgggagcaag cctgcagccc ggctcacctg gagaaagggt gaccaagaac 660
tccacggaga accaacccgc atacaggaag atcccaatgg taaaaccttc actgtcagca 720
gctcggtgac attccaggtt acccgggagg atgatggggc gagcatcgtg tgctctgtga 780
accatgaatc tctaaaggga gctgacagat ccacctctca acgcattgaa gttttataca 840
caccaactgc gatgattagg ccagaccctc cccatcctcg tgagggccag aagctgttgc 900
tacactgtga gggtcgcggc aatccagtcc cccagcagta cctatgggag aaggagggca 960
gtgtgccacc cctgaagatg acccaggaga gtgccctgat cttccctttc ctcaacaaga 1020
gtgacagtgg cacctacggc tgcacagcca ccagcaacat gggcagctac aaggcctact 1080
acacceteaa tgttaatgae eecagteegg tgeeeteete etecageace taccaegeca 1140
tcatcggtgg gatcgtggct ttcattgtct tcctgctgct catcatgctc atcttccttg 1200
gccactactt gatccggcac aaaggaacct acctgacaca tgaggcaaaa ggctccgacg 1260
atgctccaga cgcggacacg gccatcatca atgcagaagg cgggcagtca ggaggggacg 1320
acaagaagga atatttcatc tagaggegec tgeceactte etgegeeece caggggeeet 1380
gtggggactg ctggggccgt caccaacccg gacttgtaca gagcaaccgc agggccgccc 1440
ctcccqcttq ctccccaqcc cacccaccc cctgtacaga atgtctgctt tgggtgcggt 1500
ccctttccqt qqcttctctq catttqqqtt attattattt ttqtaacaat cccaaatcaa 1620
atctgtctcc aggctggaga ggcaggagcc ctggggtgag aaaagcaaaa aacaaacaaa 1680
                                                                1685
aaaca
<210> 84
<211> 398
<212> PRT
<213> Homo sapiens
<400> 84
```


Leu	Asn 290	Lys	Ser	Asp	Ser	Gly 295	Thr	Tyr	Gly	Cys	Thr 300	Ala	Thr	Ser	Asn	
Met 305	Gly	Ser	Tyr	Lys	Ala 310	Tyr	Tyr	Thr	Leu	Asn 315	Val	Asn	Asp	Pro	Ser 320	
Pro	Val	Pro	Ser	Ser 325	Ser	Ser	Thr	Tyr	His 330	Ala	Ile	Ile	Gly	Gly 335	Ile	
Val	Ala	Phe	Ile 340	Val	Phe	Leu	Leu	Leu 345	Ile	Met	Leu	Ile	Phe 350	Leu	Gly	
His	Tyr	Leu 355	Ile	Arg	His	Lys	Gly 360	Thr	Tyr	Leu	Thr	His 365	Glu	Ala	Lys	
Gly	Ser 370	Asp	Asp	Ala	Pro	Asp 375	Ala	Asp	Thr	Ala	Ile 380	Ile	Asn	Ala	Glu	
Gly 385	Gly	Gln	Ser	Gly	Gly 390	Asp	Asp	Lys	Lys	Glu 395	Tyr	Phe	Ile			
<211 <212	0> 85 L> 22 2> DN B> An	2 VA	icia:	l Sed	quenc	ce										
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe																
)> 85 aggaa		ccaca	agaag	gc co	2										22
<211 <212	0> 86 L> 22 2> DN B> An	IA S	icia:	l Sed	quenc	ce										
<220 <223	3> De		-	on of			cial	Seq	ience	e: Sy	ynthe	etic				
)> 86 etgga		gtcad	ccgag	gc to	3										22
<211 <212	0> 87 L> 26 2> DN B> An	5 1A	icial	l Sed	quen	ce										
<220		escr.	iptio	on of	E Ari	ific	cial	Sea	ience	e: S:	vnt.he	etic				

•	
<400> 87 cctagcacag tgacgaggga cttggc 26	
<210> 88 <211> 50 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 88 aagacacagc caccctaaac tgtcagtctt ctgggagcaa gcctgcagcc 50	
<210> 89 <211> 50 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 89 gccctggcag acgagggcga gtacacctgc tcaatcttca ctatgcctgt 50	
<210> 90 <211> 2755 <212> DNA <213> Homo sapiens	
gggggttagg gaggaaggaa tccacccca ccccccaaa cccttttett ctctttcct 60 ggcttcggac attggagcac taaatgaact tgaattgtgt ctgtggggag caggatggtc 120 gctgttactt tgtgatgaga tcggggatga attgctcgct ttaaaaatgc tgctttggat 180 tctgttgctg gagacgtctc tttgttttgc cgctggaaac gttacagggg acgtttgcaa 240 agagaagatc tgttcctgca atgagataga aggggaccta cacgtagact gtgaaaaaaa 300 gggcttcaca agtctgcagc gtttcactgc cccgacttcc cagttttacc atttattct 360 gcatggcaat tccctcactc gactttccc taatgagttc gctaactttt ataatgcggt 420 tagtttgcac atggaaaaca atggcttgca tgaaatcgtt ccgggggctt ttctggggct 480 gcagctggtg aaaaggctgc acatcaacaa caacaagatc acgtctttcc gaaagcagac 540 tttctgggg gccttccagg acttgaacaa gctggaggtg ctcattttaa atgacaatct 660 catcagcacc ctacctgca acgtgttcca gtatgtgcc atcacccacc tcgacctccg 720 gggtaacagg ctgaaaacgc tgccctatga ggaggtcttg gagcaaatcc ctggtattgc 780 ggggatctga aacattcca agaatgccct gatcggcga gtggtctgcg aagccccac 900 cagactgcag tctaatgacac cacaagaac caccaagaac gagggtggt tctttgaaaaa 960 ccgagtggat tctagtctc ccgtgcaccc tcgaccccc tcgacccac tcgacccac 102 cctgccaact cctttcaaga caaatgggca agaggatcat gccacacca ggtctttc ccctgaaaaa 960 ccgagtggat tctagtctc cccttcaaga caaatgggca agaggatcat gccacacca ggtctgccc 102 cctgccaact cctttcaaga caaatgggca agaggatcat gccacacca ggtctgccc 102 cctgccaact cctttcaaga caaatgggca agaggatcat gccacaccag ggtctgctcc 108	0

aaacggaggt acaaagatcc caggcaactg gcagatcaaa atcagaccca cagcagcgat 1140 agcgacgggt agctccagga acaaaccctt agctaacagt ttaccctgcc ctgggggctg 1200 cagctgcgac cacatcccag ggtcgggttt aaagatgaac tgcaacaaca ggaacgtgag 1260 caqcttqqct qatttqaaqc ccaaqctctc taacqtgcag gagcttttcc tacgagataa 1320 caaqatccac aqcatccqaa aatcqcactt tgtggattac aagaacctca ttctgttgga 1380 tctqqqcaac aataacatcq ctactgtaga gaacaacact ttcaagaacc ttttggacct 1440 caqqtqqcta tacatqqata qcaattacct ggacacgctg tcccgggaga aattcgcggg 1500 gctgcaaaac ctagagtacc tgaacgtgga gtacaacgct atccagctca tcctcccggg 1560 cactttcaat gccatgccca aactgaggat cctcattctc aacaacaacc tgctgaggtc 1620 cctgcctgtg gacgtgttcg ctggggtctc gctctctaaa ctcagcctgc acaacaatta 1680 cttcatgtac ctcccggtgg caggggtgct ggaccagtta acctccatca tccagataga 1740 cctccacgga aacccctggg agtgctcctg cacaattgtg cctttcaagc agtgggcaga 1800 acgettgggt teegaagtge tgatgagega eeteaagtgt gagaegeegg tgaaettett 1860 tagaaaggat ttcatgctcc tctccaatga cgagatctgc cctcagctgt acgctaggat 1920 ctcgcccacg ttaacttcgc acagtaaaaa cagcactggg ttggcggaga ccgggacgca 1980 ctccaactcc tacctagaca ccagcagggt gtccatctcg gtgttggtcc cgggactgct 2040 qctqqtqttt qtcacctccq ccttcaccgt ggtgggcatg ctcgtgttta tcctgaggaa 2100 ccgaaagcgg tccaagagac gagatgccaa ctcctccgcg tccgagatta attccctaca 2160 gacagtetgt gactetteet aetggeacaa tgggeettae aaegeagatg gggeecacag 2220 agtgtatgac tgtggctctc actcgctctc agactaagac cccaacccca ataggggagg 2280 gcagagggaa ggcgatacat ccttccccac cgcaggcacc ccgggggctg gaggggcgtg 2340 tacccaaatc cccgcgccat cagcctggat gggcataagt agataaataa ctgtgagctc 2400 gcacaaccga aagggcctga ccccttactt agctccctcc ttgaaacaaa gagcagactg 2460 tggagagctg ggagagcgca gccagctcgc tctttgctga gagccccttt tgacagaaag 2520 cccagcacga ccctgctgga agaactgaca gtgccctcgc cctcggcccc ggggcctgtg 2580 gggttggatg ccgcggttct atacatatat acatatatcc acatctatat agagagatag 2640 atatctattt ttcccctgtg gattagcccc gtgatggctc cctgttggct acgcagggat 2700 gggcagttgc acgaaggcat gaatgtattg taaataagta actttgactt ctgac

```
<210> 91 <211> 696
```

<212> PRT

<213> Homo sapiens

<400> 91

Met Leu Leu Trp Ile Leu Leu Leu Glu Thr Ser Leu Cys Phe Ala Ala 1 5 10 15

Gly Asn Val Thr Gly Asp Val Cys Lys Glu Lys Ile Cys Ser Cys Asn

Glu Ile Glu Gly Asp Leu His Val Asp Cys Glu Lys Lys Gly Phe Thr 35 40 45

Ser Leu Gln Arg Phe Thr Ala Pro Thr Ser Gln Phe Tyr His Leu Phe 50 55 60

Leu His Gly Asn Ser Leu Thr Arg Leu Phe Pro Asn Glu Phe Ala Asn 65 70 75 80

Phe Tyr Asn Ala Val Ser Leu His Met Glu Asn Asn Gly Leu His Glu 85 90 95

Ile Val Pro Gly Ala Phe Leu Gly Leu Gln Leu Val Lys Arg Leu His Ile Asn Asn Asn Lys Ile Lys Ser Phe Arg Lys Gln Thr Phe Leu Gly Leu Asp Asp Leu Glu Tyr Leu Gln Ala Asp Phe Asn Leu Leu Arg Asp 140 Ile Asp Pro Gly Ala Phe Gln Asp Leu Asn Lys Leu Glu Val Leu Ile 150 Leu Asn Asp Asn Leu Ile Ser Thr Leu Pro Ala Asn Val Phe Gln Tyr 165 170 Val Pro Ile Thr His Leu Asp Leu Arg Gly Asn Arg Leu Lys Thr Leu 185 180 Pro Tyr Glu Glu Val Leu Glu Gln Ile Pro Gly Ile Ala Glu Ile Leu 200 Leu Glu Asp Asn Pro Trp Asp Cys Thr Cys Asp Leu Leu Ser Leu Lys Glu Trp Leu Glu Asn Ile Pro Lys Asn Ala Leu Ile Gly Arg Val Val Cys Glu Ala Pro Thr Arg Leu Gln Gly Lys Asp Leu Asn Glu Thr Thr Glu Gln Asp Leu Cys Pro Leu Lys Asn Arg Val Asp Ser Ser Leu Pro 270 Ala Pro Pro Ala Gln Glu Glu Thr Phe Ala Pro Gly Pro Leu Pro Thr 280 Pro Phe Lys Thr Asn Gly Gln Glu Asp His Ala Thr Pro Gly Ser Ala 295 Pro Asn Gly Gly Thr Lys Ile Pro Gly Asn Trp Gln Ile Lys Ile Arg Pro Thr Ala Ala Ile Ala Thr Gly Ser Ser Arg Asn Lys Pro Leu Ala Asn Ser Leu Pro Cys Pro Gly Gly Cys Ser Cys Asp His Ile Pro Gly Ser Gly Leu Lys Met Asn Cys Asn Asn Arg Asn Val Ser Ser Leu Ala Asp Leu Lys Pro Lys Leu Ser Asn Val Gln Glu Leu Phe Leu Arg Asp 380 375

Asn Lys Ile His Ser Ile Arg Lys Ser His Phe Val Asp Tyr Lys Asn 385 390 Leu Ile Leu Leu Asp Leu Gly Asn Asn Ile Ala Thr Val Glu Asn 405 410 Asn Thr Phe Lys Asn Leu Leu Asp Leu Arg Trp Leu Tyr Met Asp Ser Asn Tyr Leu Asp Thr Leu Ser Arg Glu Lys Phe Ala Gly Leu Gln Asn Leu Glu Tyr Leu Asn Val Glu Tyr Asn Ala Ile Gln Leu Ile Leu Pro 455 Gly Thr Phe Asn Ala Met Pro Lys Leu Arg Ile Leu Ile Leu Asn Asn 475 470 Asn Leu Leu Arg Ser Leu Pro Val Asp Val Phe Ala Gly Val Ser Leu 485 Ser Lys Leu Ser Leu His Asn Asn Tyr Phe Met Tyr Leu Pro Val Ala Gly Val Leu Asp Gln Leu Thr Ser Ile Ile Gln Ile Asp Leu His Gly 520 Asn Pro Trp Glu Cys Ser Cys Thr Ile Val Pro Phe Lys Gln Trp Ala Glu Arg Leu Gly Ser Glu Val Leu Met Ser Asp Leu Lys Cys Glu Thr Pro Val Asn Phe Phe Arg Lys Asp Phe Met Leu Leu Ser Asn Asp Glu Ile Cys Pro Gln Leu Tyr Ala Arg Ile Ser Pro Thr Leu Thr Ser His Ser Lys Asn Ser Thr Gly Leu Ala Glu Thr Gly Thr His Ser Asn Ser Tyr Leu Asp Thr Ser Arg Val Ser Ile Ser Val Leu Val Pro Gly Leu Leu Leu Val Phe Val Thr Ser Ala Phe Thr Val Val Gly Met Leu Val 625 630 Phe Ile Leu Arg Asn Arg Lys Arg Ser Lys Arg Arg Asp Ala Asn Ser Ser Ala Ser Glu Ile Asn Ser Leu Gln Thr Val Cys Asp Ser Ser Tyr

660 665 670 Trp His Asn Gly Pro Tyr Asn Ala Asp Gly Ala His Arg Val Tyr Asp 680 Cys Gly Ser His Ser Leu Ser Asp <210> 92 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe <400> 92 22 gttggatctg ggcaacaata ac <210> 93 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe <400> 93 attgttgtgc aggctgagtt taag 24 <210> 94 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe <400> 94 ggtggctata catggatagc aattacctgg acacgctgtc ccggg 45 <210> 95 <211> 2226 <212> DNA <213> Homo sapiens <400> 95 agtegactge gteccetgta eeeggegeea getgtgttee tgaeeecaga ataaeteagg 60 gctgcaccgg gcctggcagc gctccgcaca catttcctgt cgcggcctaa gggaaactgt 120 tggccgctgg gcccgcgggg ggattcttgg cagttggggg gtccgtcggg agcgagggcg 180

```
gaggggaagg gagggggaac cgggttgggg aagccagctg tagagggcgg tgaccgcgct 240
ccagacacag ctctgcgtcc tcgagcggga cagatccaag ttgggagcag ctctgcgtgc 300
ggggcctcag agaatgaggc cggcgttcgc cctgtgcctc ctctggcagg cgctctggcc 360
cgggccgggc ggcggcgaac accccactgc cgaccgtgct ggctgctcgg cctcgggggc 420
ctqctacaqc ctqcaccacg ctaccatgaa gcggcaggcg gccgaggagg cctgcatcct 480
gcgaggtggg gcgctcagca ccgtgcgtgc gggcgccgag ctgcgcgctg tgctcgcgct 540
cctqcqqqca qqcccaqggc ccggaggggg ctccaaagac ctgctgttct gggtcgcact 600
qqaqcqcaqq cqttcccact gcaccctgga gaacgagcct ttgcggggtt tctcctggct 660
qtcctccqac cccggcgqtc tcgaaagcga cacgctgcag tgggtggagg agccccaacg 720
ctcctgcacc gcgcggagat gcgcggtact ccaggccacc ggtggggtcg agcccgcagg 780
ctggaaggag atgcgatgcc acctgcgcgc caacggctac ctgtgcaagt accagtttga 840
ggtcttgtgt cctgcgccgc gccccggggc cgcctctaac ttgagctatc gcgcgccctt 900
ccagctgcac agegeegete tggaetteag tecacetggg acegaggtga gtgegetetg 960
ccggggacag ctcccgatct cagttacttg catcgcggac gaaatcggcg ctcgctggga 1020
caaactctcq qqcqatqtqt tqtqtccctq ccccgggagg tacctccgtg ctggcaaatg 1080
cqcaqaqctc cctaactgcc tagacgactt gggaggcttt gcctgcgaat gtgctacggg 1140
cttcqaqctq qqqaagqacq gccgctcttg tgtgaccagt ggggaaggac agccgaccct 1200
tggggggacc ggggtgccca ccaggcgccc gccggccact gcaaccagcc ccgtgccgca 1260
gagaacatgg ccaatcaggg tcgacgagaa gctgggagag acaccacttg tccctgaaca 1320
agacaattca gtaacatcta ttcctgagat tcctcgatgg ggatcacaga gcacgatgtc 1380
taccettcaa atgteeette aageegagte aaaggeeact ateaceeeat cagggagegt 1440
qatttccaaq tttaattcta cgacttcctc tgccactcct caggctttcg actcctcctc 1500
tgccgtggtc ttcatatttg tgagcacagc agtagtagtg ttggtgatct tgaccatgac 1560
agtactgggg cttgtcaagc tctgctttca cgaaagcccc tcttcccagc caaggaagga 1620
gtctatgggc ccgccgggcc tggagagtga tcctgagccc gctgctttgg gctccagttc 1680
tgcacattgc acaaacaatg gggtgaaagt cggggactgt gatctgcggg acagagcaga 1740
gggtgccttg ctggcggagt cccctcttgg ctctagtgat gcatagggaa acaggggaca 1800
tgggcactcc tgtgaacagt ttttcacttt tgatgaaacg gggaaccaag aggaacttac 1860
ttgtgtaact gacaatttct gcagaaatcc cccttcctct aaattccctt tactccactg 1920
aggagctaaa tcagaactgc acactccttc cctgatgata gaggaagtgg aagtgccttt 1980
aggatggtga tactggggga ccgggtagtg ctggggagag atattttctt atgtttattc 2040
ggagaatttg gagaagtgat tgaacttttc aagacattgg aaacaaatag aacacaatat 2100
aatttacatt aaaaaataat ttctaccaaa atggaaagga aatgttctat gttgttcagg 2160
ctaggagtat attggttcga aatcccaggg aaaaaaataa aaataaaaaa ttaaaggatt 2220
                                                                  2226
gttgat
```

```
<210> 96
```

<400> 96

Met Arg Pro Ala Phe Ala Leu Cys Leu Leu Trp Gln Ala Leu Trp Pro 1 5 10 15

Gly Pro Gly Gly Glu His Pro Thr Ala Asp Arg Ala Gly Cys Ser 20 25 30

Ala Ser Gly Ala Cys Tyr Ser Leu His His Ala Thr Met Lys Arg Gln $_{35}$ $_{40}$

Ala Ala Glu Glu Ala Cys Ile Leu Arg Gly Gly Ala Leu Ser Thr Val

<211> 490

<212> PRT

<213> Homo sapiens

Arg Ala Gly Ala Glu Leu Arg Ala Val Leu Ala Leu Leu Arg Ala Gly Pro Gly Pro Gly Gly Gly Ser Lys Asp Leu Leu Phe Trp Val Ala Leu 90 Glu Arg Arg Arg Ser His Cys Thr Leu Glu Asn Glu Pro Leu Arg Gly Phe Ser Trp Leu Ser Ser Asp Pro Gly Gly Leu Glu Ser Asp Thr Leu 120 Gln Trp Val Glu Glu Pro Gln Arg Ser Cys Thr Ala Arg Arg Cys Ala Val Leu Gln Ala Thr Gly Gly Val Glu Pro Ala Gly Trp Lys Glu Met Arg Cys His Leu Arg Ala Asn Gly Tyr Leu Cys Lys Tyr Gln Phe Glu Val Leu Cys Pro Ala Pro Arg Pro Gly Ala Ala Ser Asn Leu Ser Tyr 185 Arg Ala Pro Phe Gln Leu His Ser Ala Ala Leu Asp Phe Ser Pro Pro 200 Gly Thr Glu Val Ser Ala Leu Cys Arg Gly Gln Leu Pro Ile Ser Val Thr Cys Ile Ala Asp Glu Ile Gly Ala Arg Trp Asp Lys Leu Ser Gly Asp Val Leu Cys Pro Cys Pro Gly Arg Tyr Leu Arg Ala Gly Lys Cys Ala Glu Leu Pro Asn Cys Leu Asp Asp Leu Gly Gly Phe Ala Cys Glu Cys Ala Thr Gly Phe Glu Leu Gly Lys Asp Gly Arg Ser Cys Val Thr Ser Gly Glu Gly Gln Pro Thr Leu Gly Gly Thr Gly Val Pro Thr Arg Arg Pro Pro Ala Thr Ala Thr Ser Pro Val Pro Gln Arg Thr Trp Pro 305 310 315 Ile Arg Val Asp Glu Lys Leu Gly Glu Thr Pro Leu Val Pro Glu Gln 330 Asp Asn Ser Val Thr Ser Ile Pro Glu Ile Pro Arg Trp Gly Ser Gln

	340		345			350							
Ser Thr Me	et Ser Thi 55	Leu Gln	Met Ser 360	Leu Gln	Ala Glu 365	_	Ala						
Thr Ile Th	nr Pro Sei	Gly Ser 375	Val Ile	Ser Lys	Phe Asn 380	Ser Thr	Thr						
Ser Ser Al 385	la Thr Pro	Gln Ala 390	Phe Asp	Ser Ser 395	Ser Ala	Val Val	Phe 400						
Ile Phe Va	al Ser Thr 405		Val Val	Leu Val 410	Ile Leu	Thr Met	Thr						
Val Leu Gl	y Leu Val 420	Lys Leu	Cys Phe 425	His Glu	Ser Pro	Ser Ser 430	Gln						
Pro Arg Ly 43		Met Gly	Pro Pro 440	Gly Leu	Glu Ser 445	Asp Pro	Glu						
Pro Ala Al 450	a Leu Gly	Ser Ser 455	Ser Ala	His Cys	Thr Asn 460	Asn Gly	Val						
Lys Val Gl 465	y Asp Cys	Asp Leu 470	Arg Asp	Arg Ala 475	Glu Gly	Ala Leu	Leu 480						
Ala Glu Se	r Pro Leu 485	Gly Ser	Ser Asp	Ala 490									
<210> 97 <211> 24 <212> DNA <213> Arti	<210> 97 <211> 24												
<220>													
<223> Desc olig	ription o onucleoti	f Artific de probe	ial Sequ	ence: Sy	nthetic								
<400> 97 tggaaggaga	tgcgatgc	ca cctg					24						
<210> 98 <211> 20 <212> DNA <213> Arti:	ficial Se	quence											
<2213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe													
<400> 98 tgaccagtgg ggaaggacag													

<210><211><212><213>	20	
<220> <223>	Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> acagag	99 gcaga gggtgccttg	20
<210><211><212><212><213>	24	
	Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> tcaggg	100 gacaa gtggtgtete teee	24
<210><211><212><212><213>	24	-
	Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> tcaggg	101 Haagg agtgtgcagt tctg	24
<210><211><211><212><212>	50	
<220> <223>	Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> acagct		50
<210> :<211> :<212> :<213> :	2026	

```
<400> 103
cggacgcgtg ggattcagca gtggcctgtg gctgccagag cagctcctca ggggaaacta 60
agegtegagt cagaeggeae cataategee tttaaaagtg ceteegeeet geeggeegeg 120
tatececegg etacetggge egeceegegg eggtgegege gtgagaggga gegegegge 180
ageegagege eggtgtgage eagegetget geeagtgtga geggeggtgt gagegeggtg 240
ggtgcggagg ggcgtgtgtg ccggcgcgcg cgccgtgggg tgcaaacccc gagcgtctac 300
gctgccatga ggggcgcgaa cgcctgggcg ccactctgcc tgctgctggc tgccgccacc 360
cagetetege ggeageagte cecagagaga cetgttttea catgtggtgg cattettact 420
ggagagtctg gatttattgg cagtgaaggt tttcctggag tgtaccctcc aaatagcaaa 480
tgtacttgga aaatcacagt tcccgaagga aaagtagtcg ttctcaattt ccgattcata 540
gacctcgaga gtgacaacct gtgccgctat gactttgtgg atgtgtacaa tggccatgcc 600
aatggccagc gcattggccg cttctgtggc actttccggc ctggagccct tgtgtccagt 660
ggcaacaaga tgatggtgca gatgatttct gatgccaaca cagctggcaa tggcttcatg 720
gccatgttct ccgctgctga accaaacgaa agaggggatc agtattgtgg aggactcctt 780
gacagacett ceggetettt taaaaceece aactggeeag acegggatta eeetgeagga 840
gtcacttgtg tgtggcacat tgtagcccca aagaatcagc ttatagaatt aaagtttgag 900
aaqtttqatq tqqaqcqaqa taactactqc cqatatqatt atqtqqctgt gtttaatggc 960
ggggaagtea acgatgetag aagaattgga aagtattgtg gtgatagtee acctgegeca 1020
attgtgtctg agagaaatga acttcttatt cagtttttat cagacttaag tttaactgca 1080
gatgggttta ttggtcacta catattcagg ccaaaaaaac tgcctacaac tacagaacag 1140
cctgtcacca ccacattccc tgtaaccacg ggtttaaaaac ccaccgtggc cttgtgtcaa 1200
caaaagtgta gacggacggg gactctggag ggcaattatt gttcaagtga ctttgtatta 1260
geeggeactg ttatcacaac catcactege gatgggagtt tgcacgecac agtctegate 1320
atcaacatct acaaagaggg aaatttggcg attcagcagg cgggcaagaa catgagtgcc 1380
aggetgactg tegtetgeaa geagtgeeet eteeteagaa gaggtetaaa ttacattatt 1440
atgggccaag taggtgaaga tgggcgaggc aaaatcatgc caaacagctt tatcatgatg 1500
ttcaagacca agaatcagaa gctcctqqat gccttaaaaa ataagcaatg ttaacagtga 1560
actgtgtcca tttaagetgt attctgccat tgcctttgaa agatctatgt tctctcagta 1620
gaaaaaaaaa tacttataaa attacatatt ctgaaagagg attccgaaag atgggactgg 1680
ttgactette acatgatgga ggtatgagge eteegagata getgagggaa gttetttgee 1740
tgctgtcaga ggagcagcta tctgattgga aacctgccga cttagtgcgg tgataggaag 1800
ctaaaagtgt caagcgttga cagcttggaa gcgtttattt atacatctct gtaaaaggat 1860
attttagaat tgagttgtgt gaagatgtca aaaaaagatt ttagaagtgc aatatttata 1920
gtgttatttg tttcaccttc aagcctttgc cctgaggtgt tacaatcttg tcttgcgttt 1980
                                                                  2026
tctaaatcaa tgcttaataa aatattttta aaggaaaaaa aaaaaa
```

<210> 104

<211> 415

<212> PRT

<213> Homo sapiens

<400> 104

Met Arg Gly Ala Asn Ala Trp Ala Pro Leu Cys Leu Leu Leu Ala Ala 1 5 10 15

Ala Thr Gln Leu Ser Arg Gln Gln Ser Pro Glu Arg Pro Val Phe Thr 20 25 30

Cys Gly Gly Ile Leu Thr Gly Glu Ser Gly Phe Ile Gly Ser Glu Gly
35 40 45

Phe Pro Gly Val Tyr Pro Pro Asn Ser Lys Cys Thr Trp Lys Ile Thr 50 55 60

Val Pro Glu Gly Lys Val Val Leu Asn Phe Arg Phe Ile Asp Leu Glu Ser Asp Asn Leu Cys Arg Tyr Asp Phe Val Asp Val Tyr Asn Gly His Ala Asn Gly Gln Arg Ile Gly Arg Phe Cys Gly Thr Phe Arg Pro Gly Ala Leu Val Ser Ser Gly Asn Lys Met Met Val Gln Met Ile Ser 120 Asp Ala Asn Thr Ala Gly Asn Gly Phe Met Ala Met Phe Ser Ala Ala Glu Pro Asn Glu Arg Gly Asp Gln Tyr Cys Gly Gly Leu Leu Asp Arg Pro Ser Gly Ser Phe Lys Thr Pro Asn Trp Pro Asp Arg Asp Tyr Pro Ala Gly Val Thr Cys Val Trp His Ile Val Ala Pro Lys Asn Gln Leu 185 Ile Glu Leu Lys Phe Glu Lys Phe Asp Val Glu Arg Asp Asn Tyr Cys 200 Arg Tyr Asp Tyr Val Ala Val Phe Asn Gly Gly Glu Val Asn Asp Ala 215 Arg Arg Ile Gly Lys Tyr Cys Gly Asp Ser Pro Pro Ala Pro Ile Val Ser Glu Arg Asn Glu Leu Leu Ile Gln Phe Leu Ser Asp Leu Ser Leu 250 Thr Ala Asp Gly Phe Ile Gly His Tyr Ile Phe Arg Pro Lys Lys Leu Pro Thr Thr Glu Gln Pro Val Thr Thr Phe Pro Val Thr Thr Gly Leu Lys Pro Thr Val Ala Leu Cys Gln Gln Lys Cys Arg Arg Thr Gly Thr Leu Glu Gly Asn Tyr Cys Ser Ser Asp Phe Val Leu Ala Gly 305 310 315 Thr Val Ile Thr Thr Ile Thr Arg Asp Gly Ser Leu His Ala Thr Val 330 Ser Ile Ile Asn Ile Tyr Lys Glu Gly Asn Leu Ala Ile Gln Gln Ala

		340					345					350			
Gly I	Lys As 35		Ser	Ala	Arg	Leu 360	Thr	Val	Val	Cys	Lys 365	Gln	Cys	Pro	
	Leu Ar 370	g Arg	Gly	Leu	Asn 375	Tyr	Ile	Ile	Met	Gly 380	Gln	Val	Gly	Glu	
Asp G 385	Sly Ar	g Gly	Lys	Ile 390	Met	Pro	Asn	Ser	Phe 395	Ile	Met	Met	Phe	Lys 400	
Thr L	ys As	n Gln	Lys 405	Leu	Leu	Asp	Ala	Leu 410	Lys	Asn	Lys	Gln	Cys 415		
<210><211><211><212><213>	22	ficia	l Sec	quenc	ce										
<220> <223>	Desc	riptionucle				cial	Sequ	ience	e: Sy	nthe	etic				
<400> ccgat	105 tcata	gacct	cgaç	ja gt											22
<210><211><211><212><213>	22	icial	L Seg	uenc	e										
<220> <223>		iptic onucle				ial	Sequ	ence	: Sy	nthe	tic				
<400> gtcaag		cctcc	acaa	t ac											22
<210><211><211><212><213>	45 DNA	icial	. Seq	uenc	e										
<220> <223>	Descr oligo	iptic nucle	n of otid	Art e pr	ific obe	ial	Sequ	ence	: Sy	nthe	tic				
<400> gtgtac		gccat	gcca	a tg	gcca	gcgc	att	ggcc	gct ·	tctg	t				45
<210><211><211>	1838														

<213> Homo sapiens

50

```
103
cggacgcgtg ggcggacgcg tgggcggccc acggcgcccg cgggctgggg cggtcgcttc 60
tteettetee gtggeetaeg agggteecea geetgggtaa agatggeece atggeeceeg 120
aagggcctag teceagetgt getetgggge eteageetet teeteaaeet eeeaggaeet 180
atetggetee agecetetee aceteeceag tetteteece egecteagee ceateegtgt 240
catacctgcc ggggactggt tgacagcttt aacaagggcc tggagagaac catccgggac 300
aactttggag gtggaaacac tgcctgggag gaagagaatt tgtccaaata caaaqacaqt 360
gagaccegee tggtagaggt getggagggt gtgtgeagea agteagaett egagtgeeae 420
cgcctgctgg agctgagtga ggagctggtg gagagctggt ggtttcacaa gcagcagqag 480
gccccggacc tettecagtg gctgtgctca gattecetga agetetgctg ccccgcagge 540
accttcgggc cctcctgcct tccctgtcct gggggaacag agaggccctg cggtggctac 600
gggcagtgtg aaggagaagg gacacgaggg ggcagcgggc actgtgactg ccaagccggc 660
tacgggggtg aggcctgtgg ccagtgtggc cttggctact ttgaggcaga acgcaacgcc 720
agccatctgg tatgttcggc ttgttttggc ccctgtgccc gatgctcaqq acctqaqqaa 780
tcaaactgtt tgcaatgcaa gaagggctgg gccctgcatc acctcaagtg tgtagacatt 840
gatgagtgtg gcacagaggg agccaactgt ggagctgacc aattctgcgt gaacactgag 900
ggctcctatg agtgccgaga ctgtgccaag gcctgcctag gctgcatggg ggcagggcca 960
ggtcgctgta agaagtgtag ccctggctat cagcaggtgg gctccaagtg tctcgatgtg 1020
gatgagtgtg agacagaggt gtgtccggga gagaacaagc agtgtgaaaa caccgagggc 1080
ggttatcgct gcatctgtgc cgagggctac aagcagatgg aaggcatctg tgtgaaggag 1140
cagateceag agteageagg ettettetea gagatgacag aagaegagft ggtggtgetg 1200
cagcagatgt tetttggcat catcatetgt geactggeca egetggetge taagggegae 1260
ttggtgttca ccgccatctt cattggggct gtggcggcca tqactqqcta ctqqttqtca 1320
gagegeagtg acceptgtget ggagggetté atcaagggea gataategeg gecaceaect 1380
gtaggacete etcecaceca egetgecece agagettggg etgeceteet getggacaet 1440
caggacaget tggtttattt ttgagagtgg ggtaageace ectaeetgee ttaeagagea 1500
gcccaggtac ccaggcccgg gcagacaagg cccctggggt aaaaagtagc cctgaaggtg 1560
gataccatga getetteace tggegggae tggeaggett cacaatgtgt gaattteaaa 1620
agtttttcct taatggtggc tgctagagct ttggcccctg cttaggatta ggtggtcctc 1680
acaggggtgg ggccatcaca gctccctcct gccagctgca tgctgccagt tcctgttctg 1740
tgttcaccac atccccacac cccattgcca cttatttatt catctcagga aataaagaaa 1800
ggtcttggaa agttaaaaaa aaaaaaaaa aaaaaaaa
<210> 109
<211> 420
<212> PRT
<213> Homo sapiens
<400> 109
Met Ala Pro Trp Pro Pro Lys Gly Leu Val Pro Ala Val Leu Trp Gly
Leu Ser Leu Phe Leu Asn Leu Pro Gly Pro Ile Trp Leu Gln Pro Ser
Pro Pro Pro Gln Ser Ser Pro Pro Pro Gln Pro His Pro Cys His Thr
```

Cys Arg Gly Leu Val Asp Ser Phe Asn Lys Gly Leu Glu Arg Thr Ile

Arg Asp Asn Phe Gly Gly Gly Asn Thr Ala Trp Glu Glu Glu Asn Leu Ser Lys Tyr Lys Asp Ser Glu Thr Arg Leu Val Glu Val Leu Glu Gly Val Cys Ser Lys Ser Asp Phe Glu Cys His Arg Leu Leu Glu Leu Ser 105 Glu Glu Leu Val Glu Ser Trp Trp Phe His Lys Gln Gln Glu Ala Pro 120 Asp Leu Phe Gln Trp Leu Cys Ser Asp Ser Leu Lys Leu Cys Cys Pro 135 Ala Gly Thr Phe Gly Pro Ser Cys Leu Pro Cys Pro Gly Gly Thr Glu Arg Pro Cys Gly Gly Tyr Gly Gln Cys Glu Gly Glu Gly Thr Arg Gly Gly Ser Gly His Cys Asp Cys Gln Ala Gly Tyr Gly Glu Ala Cys Gly Gln Cys Gly Leu Gly Tyr Phe Glu Ala Glu Arg Asn Ala Ser His 200 Leu Val Cys Ser Ala Cys Phe Gly Pro Cys Ala Arg Cys Ser Gly Pro Glu Glu Ser Asn Cys Leu Gln Cys Lys Lys Gly Trp Ala Leu His His Leu Lys Cys Val Asp Ile Asp Glu Cys Gly Thr Glu Gly Ala Asn Cys Gly Ala Asp Gln Phe Cys Val Asn Thr Glu Gly Ser Tyr Glu Cys Arg Asp Cys Ala Lys Ala Cys Leu Gly Cys Met Gly Ala Gly Pro Gly Arg Cys Lys Lys Cys Ser Pro Gly Tyr Gln Gln Val Gly Ser Lys Cys Leu Asp Val Asp Glu Cys Glu Thr Glu Val Cys Pro Gly Glu Asn Lys Gln Cys Glu Asn Thr Glu Gly Gly Tyr Arg Cys Ile Cys Ala Glu Gly Tyr 330 Lys Gln Met Glu Gly Ile Cys Val Lys Glu Gln Ile Pro Glu Ser Ala 345 340

Gly	Phe	Phe 355	Ser	Glu	Met	Thr	Glu 360	Asp	Glu	Leu	Val	Val 365	Leu	Gln	Gln	
Met	Phe 370	Phe	Gly	Ile	Ile	Ile 375	Cys	Ala	Leu	Ala	Thr 380	Leu	Ala	Ala	Lys	
Gly 385	Asp	Leu	Val	Phe	Thr 390	Ala	Ile	Phe	Ile	Gly 395	Ala	Val	Ala	Ala	Met 400	
Thr	Gly	Tyr	Trp	Leu 405	Ser	Glu	Arg	Ser	Asp 410	Arg	Val	Leu	Glu	Gly 415	Phe	
Ile	Lys	Gly	Arg 420													
<210> 110 <211> 50 <212> DNA <213> Artificial Sequence																
<220 <223	> De				Art le pi	ific cobe	cial	Sequ	ıence	e: Sy	nthe	etic				
<400> 110 cctggctatc agcaggtggg ctccaagtgt ctcgatgtgg atgagtgtga													50			
<210> 111 <211> 22 <212> DNA <213> Artificial Sequence																
<220 <223	> De				Art le pr	ific cobe	cial	Seqı	ience	e: Sy	nthe	etic				
	> 11 tgcg		acac	tgaç	ia ad	:										22
<211 <212	> 11 > 22 > DN > Ar	: IA	lcial	. Sec	_{[uenc}	:e										
<220 <223	> De				Art le pr	ific cobe	ial	Sequ	ience	e: Sy	nthe	etic				
	> 11 gctt		gccc	tegg	jc ac	:										22
<210	> 11	.3														

```
<211> 1616
 <212> DNA
 <213> Homo sapiens
<220>
<221> modified_base
<222> (1461)
<223> a, t, c or g
<400> 113
tgagaccete etgeageett eteaagggae ageeceaete tgeetettge teeteeaggg 60
cagcaccatg cagcccctgt ggctctgctg ggcactctgg gtgttgcccc tggccagccc 120
cggggccgcc ctgaccgggg agcagctcet gggcagcctg ctgcggcagc tgcagctcaa 180
agaggtgece accetggaca gggccgacat ggaggagetg gtcatcccca cccacqtgaq 240
ggcccagtac gtggccctgc tgcagcgcag ccacggggac cgctcccgcg gaaagaggtt 300
cagccagage ttccgagagg tggccggcag gttcctggcg ttggaggcca gcacacact 360
gctggtgttc ggcatggagc agcggctgcc gcccaacagc gagctggtgc aggccgtgct 420
geggetette caggageegg teececaagge egegetgeac aggeaeggge ggetgteece 480
gcgcagcgcc cgggcccggg tgaccgtcga gtggctgcgc gtccgcgacg acggctccaa 540
ccgcacctcc ctcatcgact ccaggctggt gtccgtccac gagagcggct ggaaggcctt 600
cgacgtgacc gaggccgtga acttctggca gcagctgagc cggccccggc agccgctgct 660
gctacaggtg teggtgcaga gggagcatet gggecegetg gegteeggeg eecacaaget 720
ggtccgcttt gcctcgcagg gggcgccagc cgggcttggg gagccccagc tggagctgca 780
caccetggae ettggggaet atggagetea gggegaetgt gaeeetgaag caccaatgae 840
cgagggcacc cgctgctgcc gccaggagat gtacattgac ctgcagggga tgaagtgggc 900
cgagaactgg gtgctggagc ccccgggctt cctggcttat gagtgtgtgg gcacctgccg 960
gcagcccccg gaggccctgg ccttcaagtg gccgtttctg gggcctcgac agtgcatcgc 1020
ctcggagact gactcgctgc ccatgatcgt cagcatcaag gagggaggca ggaccaggcc 1080
ccaggtggtc agcctgccca acatgagggt gcagaagtgc agctgtgcct cggatggtgc 1140
gtgtgtgttt ctgaagtgtt cgagggtacc aggagagctg gcgatgactg aactqctqat 1260
ggacaaatgc tctgtgctct ctagtgagcc ctgaatttgc ttcctctgac aagttacctc 1320
acctaatttt tgcttctcag gaatgagaat ctttggccac tggagagccc ttgctcagtt 1380
ttctctattc ttattattca ctgcactata ttctaagcac ttacatgtgg agatactgta 1440
acctgagggc agaaagccca ntgtgtcatt gtttacttgt cctgtcactg gatctgggct 1500
aaagtcctcc accaccactc tggacctaag acctggggtt aagtgtgggt tgtgcatccc 1560
caatccagat aataaagact ttgtaaaaca tgaataaaac acattttatt ctaaaa
<210> 114
<211> 366
<212> PRT
<213> Homo sapiens
<400> 114
Met Gln Pro Leu Trp Leu Cys Trp Ala Leu Trp Val Leu Pro Leu Ala
 1
Ser Pro Gly Ala Ala Leu Thr Gly Glu Gln Leu Leu Gly Ser Leu Leu
                                25
Arg Gln Leu Gln Leu Lys Glu Val Pro Thr Leu Asp Arg Ala Asp Met
```

40

Glu Glu Leu Val Ile Pro Thr His Val Arg Ala Gln Tyr Val Ala Leu Leu Gln Arg Ser His Gly Asp Arg Ser Arg Gly Lys Arg Phe Ser Gln Ser Phe Arg Glu Val Ala Gly Arg Phe Leu Ala Leu Glu Ala Ser Thr His Leu Leu Val Phe Gly Met Glu Gln Arg Leu Pro Pro Asn Ser Glu Leu Val Gln Ala Val Leu Arg Leu Phe Gln Glu Pro Val Pro Lys Ala 120 Ala Leu His Arg His Gly Arg Leu Ser Pro Arg Ser Ala Arg Ala Arg Val Thr Val Glu Trp Leu Arg Val Arg Asp Asp Gly Ser Asn Arg Thr Ser Leu Ile Asp Ser Arg Leu Val Ser Val His Glu Ser Gly Trp Lys Ala Phe Asp Val Thr Glu Ala Val Asn Phe Trp Gln Gln Leu Ser Arg 180 185 Pro Arq Gln Pro Leu Leu Gln Val Ser Val Gln Arg Glu His Leu 200 Gly Pro Leu Ala Ser Gly Ala His Lys Leu Val Arg Phe Ala Ser Gln Gly Ala Pro Ala Gly Leu Gly Glu Pro Gln Leu Glu Leu His Thr Leu Asp Leu Gly Asp Tyr Gly Ala Gln Gly Asp Cys Asp Pro Glu Ala Pro Met Thr Glu Gly Thr Arg Cys Cys Arg Gln Glu Met Tyr Ile Asp Leu Gln Gly Met Lys Trp Ala Glu Asn Trp Val Leu Glu Pro Pro Gly Phe Leu Ala Tyr Glu Cys Val Gly Thr Cys Arg Gln Pro Pro Glu Ala Leu

Ala Phe Lys Trp Pro Phe Leu Gly Pro Arg Gln Cys Ile Ala Ser Glu

Thr Asp Ser Leu Pro Met Ile Val Ser Ile Lys Glu Gly Gly Arg Thr

330

Arg Pro Gln Val Val Ser Leu Pro Asn Met Arg Val Gln Lys Cys Ser 340 345 Cys Ala Ser Asp Gly Ala Leu Val Pro Arg Arg Leu Gln Pro 360 <210> 115 <211> 21 <212> DNA <213> Artificial Sequence <223> Description of Artificial Sequence: Synthetic oligonucleotide probe <400> 115 aggactgcca taacttgcct g 21 <210> 116 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe <400> 116 ataggagttg aagcagcgct gc 22 <210> 117 <211> 45 <212> DNA <213> Artificial Sequence <223> Description of Artificial Sequence: Synthetic oligonucleotide probe <400> 117 tgtgtggaca tagacgagtg ccgctaccgc tactgccagc accgc 45 <210> 118 <211> 1857 <212> DNA <213> Homo sapiens <400> 118 gtctgttccc aggagtcctt cggcggctgt tgtgtcagtg gcctgatcgc gatggggaca 60 aaggcgcaag tcgagaggaa actgttgtgc ctcttcatat tggcgatcct gttgtgctcc 120 ctggcattgg gcagtgttac agtgcactct tctgaacctg aagtcagaat tcctgagaat 180

aateetgtga agttgteetg tgeetacteg ggettttett etceeegtgt ggagtggaag 240 tttgaccaag gagacaccac cagactcgtt tgctataata acaagatcac agcttcctat 300 gaggaccggg tgaccttctt gccaactggt atcaccttca agtccgtgac acgggaagac 360 actgggacat acacttgtat ggtctctgag gaaggcggca acagctatgg ggaggtcaag 420 gtcaagctca tegtgettgt geetecatee aageetacag ttaacateee etectetgee 480 accattggga accgggcagt gctgacatgc tcagaacaag atggttcccc accttctgaa 540 tacacctggt tcaaagatgg gatagtgatg cctacgaatc ccaaaagcac ccgtgccttc 600 agcaactett cetatgteet gaateeeaca acaggagage tggtetttga teeeetgtea 660 geetetgata etggagaata eagetgtgag geaeggaatg ggtatgggae acceatgaet 720 tcaaatgctg tgcgcatgga agctgtggag cggaatgtgg gggtcatcgt ggcagccgtc 780 cttgtaaccc tgattctcct gggaatcttg gtttttggca tctggtttgc ctatagccga 840 ggccactttg acagaacaaa gaaagggact tcgagtaaga aggtgattta cagccagcct 900 agtgcccgaa gtgaaggaga attcaaacag acctcgtcat tcctggtgtg agcctggtcg 960 geteacegee tateatetge atttgeetta eteaggtget aceggaetet ggeceetgat 1020 gtctgtagtt tcacaggatg ccttatttgt cttctacacc ccacagggcc ccctacttct 1080 teggatgtgt ttttaataat gteagetatg tgeeceatee teetteatge ceteecteee 1140 tttcctacca ctgctgagtg gcctggaact tgtttaaagt gtttattccc catttctttq 1200 agggatcagg aaggaatcct gggtatgcca ttgacttccc ttctaagtag acagcaaaaa 1260 tggcgggggt cgcaggaatc tgcactcaac tgcccacctg gctggcaggg atctttgaat 1320 aggtatettg agettggtte tgggetettt cettgtgtae tgaegaecag ggeeagetgt 1380 tctagagcgg gaattagagg ctagagcggc tgaaatggtt gtttggtgat gacactgggg 1440 teettecate tetggggece actetettet gtetteceat gggaagtgee actgggatee 1500 ctctgccctg tcctcctgaa tacaagctga ctgacattga ctgtgtctgt ggaaaatggg 1560 agctcttgtt gtggagagca tagtaaattt tcagagaact tgaagccaaa aggatttaaa 1620 accyctyctc taaagaaaag aaaactygag gctyggcyca gtyggctcacg cctytaatcc 1680 cagaggctga ggcaggcgga tcacctgagg tcgggagttc gggatcagcc tgaccaacat 1740 ggagaaaccc tactggaaat acaaagttag ccaggcatgg tggtgcatgc ctgtagtccc 1800 agctgctcag gagcctggca acaagagcaa aactccagct caaaaaaaaa aaaaaaa

```
<210> 119
```

<400> 119

Met Gly Thr Lys Ala Gln Val Glu Arg Lys Leu Leu Cys Leu Phe Ile 1 5 10 15

Leu Ala Ile Leu Cys Ser Leu Ala Leu Gly Ser Val Thr Val His
20 25 30

Ser Ser Glu Pro Glu Val Arg Ile Pro Glu Asn Asn Pro Val Lys Leu 35 40 45

Ser Cys Ala Tyr Ser Gly Phe Ser Ser Pro Arg Val Glu Trp Lys Phe
50 60

Asp Gln Gly Asp Thr Thr Arg Leu Val Cys Tyr Asn Asn Lys Ile Thr 65 70 75 80

Ala Ser Tyr Glu Asp Arg Val Thr Phe Leu Pro Thr Gly Ile Thr Phe
85 90 95

<211> 299

<212> PRT

<213> Homo sapiens

Lys Ser Val Thr Arg Glu Asp Thr Gly Thr Tyr Thr Cys Met Val Ser 105 Glu Glu Gly Gly Asn Ser Tyr Gly Glu Val Lys Val Lys Leu Ile Val Leu Val Pro Pro Ser Lys Pro Thr Val Asn Ile Pro Ser Ser Ala Thr 135 Ile Gly Asn Arg Ala Val Leu Thr Cys Ser Glu Gln Asp Gly Ser Pro Pro Ser Glu Tyr Thr Trp Phe Lys Asp Gly Ile Val Met Pro Thr Asn Pro Lys Ser Thr Arg Ala Phe Ser Asn Ser Ser Tyr Val Leu Asn Pro 180 185 Thr Thr Gly Glu Leu Val Phe Asp Pro Leu Ser Ala Ser Asp Thr Gly 200 Glu Tyr Ser Cys Glu Ala Arg Asn Gly Tyr Gly Thr Pro Met Thr Ser 215 Asn Ala Val Arg Met Glu Ala Val Glu Arg Asn Val Gly Val Ile Val Ala Ala Val Leu Val Thr Leu Ile Leu Leu Gly Ile Leu Val Phe Gly Ile Trp Phe Ala Tyr Ser Arg Gly His Phe Asp Arg Thr Lys Lys Gly Thr Ser Ser Lys Lys Val Ile Tyr Ser Gln Pro Ser Ala Arg Ser Glu Gly Glu Phe Lys Gln Thr Ser Ser Phe Leu Val 295 <210> 120 <211> 24 <212> DNA <213> Artificial Sequence <223> Description of Artificial Sequence: Synthetic

<210> 121 <211> 50

<400> 120

oligonucleotide probe

tcgcggagct gtgttctgtt tccc

<212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 121 tgatcgcgat ggggacaaag gcgcaagctc gagaggaaac tgttgtgcct	50
<210> 122 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 122 acacctggtt caaagatggg	20
<210> 123 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 123 taggaagagt tgctgaaggc acgg	24
<210> 124 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 124 ttgccttact caggtgctac	20
<210> 125 <211> 20 <212> DNA <213> Artificial Sequence	
<220>	

oligonucleotide probe

```
<400> 125
actcagcagt ggtaggaaag
                                                                   20
<210> 126
<211> 1210
<212> DNA
<213> Homo sapiens
<400> 126
cagcgcgtgg ccggcgccgc tgtggggaca gcatgagcgg cggttggatg gcgcaggttg 60
gagogtggcg aacaggggct ctgggcctgg cgctqctqct qctqctcqqc ctcqqactaq 120
gcctggaggc cgccgcgagc ccgctttcca ccccgacctc tgcccaggcc gcaggcccca 180
getcaggete gtgeccacce accaagttee agtgeegeac cagtggetta tgegtgeece 240
teacetggeg etgegacagg gaettggaet geagegatgg cagegatgag gaggagtgea 300
ggattgagcc atgtacccag aaagggcaat gcccaccgcc ccctggcctc ccctqcccct 360
gcaccggcgt cagtgactgc tctgggggaa ctgacaagaa actgcgcaac tgcagccgcc 420
tggcctgcct agcaggcgag ctccgttgca cgctgagcga tgactgcatt ccactcacgt 480
ggcgctgcga cggccaccca gactgtcccg actccagcga cgagctcggc tgtggaacca 540
atgagateet eeeggaaggg gatgeeacaa eeatggggee eeetgtgaee etggagagtg 600
tracetetet caggaatgee acaaccatgg ggeeceetgt gaeeetggag agtgteeeet 660
ctgtcgggaa tgccacatcc tcctctgccg gagaccagtc tggaagccca actgcctatg 720
gggttattgc agctgctgcg gtgctcagtg caagcctggt caccgccacc ctcctccttt 780
tgtcctggct ccgagcccag gagcgcctcc gcccactggg gttactggtg gccatgaagg 840
agtecetget getgteagaa cagaagaeet egetgeeetg aggacaagea ettgeeacea 900
ccgtcactca gccctgggcg tagccggaca ggaggagagc agtgatgcgg atgggtaccc 960
gggcacacca gccctcagag acctgagttc ttctggccac gtggaacctc gaacccgagc 1020
teetgeagaa gtggeeetgg agattgaggg teeetggaca eteeetatgg agateeggg 1080
agctaggatg gggaacctgc cacagccaga actgaggggc tggccccagg cagctcccag 1140
ggggtagaac ggccctgtgc ttaagacact ccctgctgcc ccgtctgagg gtggcgatta 1200
aagttgcttc
                                                                  1210
<210> 127
<211> 282
<212> PRT
<213> Homo sapiens
<400> 127
Met Ser Gly Gly Trp Met Ala Gln Val Gly Ala Trp Arg Thr Gly Ala
Leu Gly Leu Ala Leu Leu Leu Leu Gly Leu Gly Leu Glu
                                                     30
Ala Ala Ala Ser Pro Leu Ser Thr Pro Thr Ser Ala Gln Ala Ala Gly
                             40
Pro Ser Ser Gly Ser Cys Pro Pro Thr Lys Phe Gln Cys Arg Thr Ser
Gly Leu Cys Val Pro Leu Thr Trp Arg Cys Asp Arg Asp Leu Asp Cys
```

<400> 128

<210> 129

aagttccagt gccgcaccag tggc

Ser Asp Gly Ser Asp Glu Glu Glu Cys Arg Ile Glu Pro Cys Thr Gln Lys Gly Gln Cys Pro Pro Pro Gly Leu Pro Cys Pro Cys Thr Gly Val Ser Asp Cys Ser Gly Gly Thr Asp Lys Leu Arg Asn Cys Ser 120 Arg Leu Ala Cys Leu Ala Gly Glu Leu Arg Cys Thr Leu Ser Asp Asp Cys Ile Pro Leu Thr Trp Arg Cys Asp Gly His Pro Asp Cys Pro Asp 155 Ser Ser Asp Glu Leu Gly Cys Gly Thr Asn Glu Ile Leu Pro Glu Gly 170 Asp Ala Thr Thr Met Gly Pro Pro Val Thr Leu Glu Ser Val Thr Ser Leu Arg Asn Ala Thr Thr Met Gly Pro Pro Val Thr Leu Glu Ser Val 200 Pro Ser Val Gly Asn Ala Thr Ser Ser Ser Ala Gly Asp Gln Ser Gly Ser Pro Thr Ala Tyr Gly Val Ile Ala Ala Ala Ala Val Leu Ser Ala 225 Ser Leu Val Thr Ala Thr Leu Leu Leu Ser Trp Leu Arg Ala Gln Glu Arg Leu Arg Pro Leu Gly Leu Leu Val Ala Met Lys Glu Ser Leu 260 265 Leu Leu Ser Glu Gln Lys Thr Ser Leu Pro 280 <210> 128 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe

```
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 129
                                                                  24
ttggttccac agccgagctc gtcg
<210> 130
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
                                                                  50
gaggaggagt gcaggattga gccatgtacc cagaaagggc aatgcccacc
<210> 131
<211> 1843
<212> DNA
<213> Homo sapiens
<220>
<221> modified base
<222> (1837)
<223> a, t, c or g
<400> 131
cccacgcgtc cggtctcgct cgctcgcgca gcggcggcag cagaggtcgc gcacagatgc 60
gggttagact ggcggggga ggaggcggag gagggaagga agctgcatgc atgagaccca 120
cagactettg caagetggat geeetetgtg gatgaaagat gtateatgga atgaaceega 180
gcaatggaga tggatttcta gagcagcagc agcagcagca gcaacctcag tccccccaga 240
gactettgge egtgateetg tggttteage tggegetgtg etteggeeet geacagetea 300
egggegggtt egatgacett caagtgtgtg etgaceeegg catteeegag aatggettea 360
ggacccccag cggagggtt ttctttgaag gctctgtagc ccgatttcac tgccaagacg 420
gattcaagct gaagggcgct acaaagagac tgtgtttgaa gcattttaat ggaaccctag 480
gctqqatccc aaqtqataat tccatctgtg tgcaagaaga ttgccgtatc cctcaaatcg 540
aagatgctga gattcataac aagacatata gacatggaga gaagctaatc atcacttgtc 600
atgaaggatt caagatccgg taccccgacc tacacaatat ggtttcatta tgtcgcgatg 660
atggaacgtg gaataatctg cccatctgtc aaggctgcct gagacctcta gcctcttcta 720
atggctatgt aaacatetet gageteeaga eeteetteee ggtggggaet gtgateteet 780
atcgctgctt tcccggattt aaacttgatg ggtctgcgta tcttgagtgc ttacaaaacc 840
ttatctggtc gtccagccca ccccggtgcc ttgctctgga agcccaagtc tgtccactac 900
ctccaatggt gagtcacgga gatttcgtct gccacccgcg gccttgtgag cgctacaacc 960
acggaactgt ggtggagttt tactgcgatc ctggctacag cctcaccagc gactacaagt 1020
acatcacctg ccagtatgga gagtggtttc cttcttatca agtctactgc atcaaatcag 1080
agcaaacqtq qcccagcacc catgagaccc tcctgaccac gtggaagatt gtggcgttca 1140
```

cggcaaccag tgtgctgctg gtgctgctgc tcgtcatcct ggccaggatg ttccagacca 1200 agttcaaggc ccactttccc cccaggggc ctccccggag ttccagcagt gaccctgact 1260 ttgtggtggt agacggcgtg cccgtcatgc tcccgtccta tgacgaagct gtgagtggcg 1320 gcttgagtgc cttaggcccc gggtacatgg cctctgtggg ccagggctgc cccttacccg 1380 tggacgacca gagccccca gcataccccg gctcagggga cacggacaca ggcccagggg 1440 agtcagaac ctgtgacagc gtctcaggct cttctgagct gctccaaagt ctgtattcac 1500 ctcccaggtg ccaagagag acccacctg cttcggacaa ccctgacata attgccagca 1560 cggcagagga ggtggcatcc accagcccag gcatccatca tgcccactgg gtgttgttcc 1620 taagaaactg attgattaaa aaatttccca aagtgtcctg aagtgtctct tcaaatacat 1680 gttgatcctt ggagttgatt cctttccttc tcttggttt agacaaatgt atcaagtcct 1800 gtttcttctt gacacagact gattaaaaat taaaagnaaa aaa 1843	
<210> 132 <211> 490 <212> PRT <213> Homo sapiens	
<pre><400> 132 Met Tyr His Gly Met Asn Pro Ser Asn Gly Asp Gly Phe Leu Glu Gln 1 5 10 15</pre>	
Gln Gln Gln Gln Gln Pro Gln Ser Pro Gln Arg Leu Leu Ala Val 20 25 30	
Ile Leu Trp Phe Gln Leu Ala Leu Cys Phe Gly Pro Ala Gln Leu Thr 35 40 45	
Gly Gly Phe Asp Asp Leu Gln Val Cys Ala Asp Pro Gly Ile Pro Glu 50 55 60	
Asn Gly Phe Arg Thr Pro Ser Gly Gly Val Phe Phe Glu Gly Ser Val 65 70 75 80	
Ala Arg Phe His Cys Gln Asp Gly Phe Lys Leu Lys Gly Ala Thr Lys 85 90 95	
Arg Leu Cys Leu Lys His Phe Asn Gly Thr Leu Gly Trp Ile Pro Ser 100 105 110	
Asp Asn Ser Ile Cys Val Gln Glu Asp Cys Arg Ile Pro Gln Ile Glu 115 120 125	
Asp Ala Glu Ile His Asn Lys Thr Tyr Arg His Gly Glu Lys Leu Ile 130 135 140	
Ile Thr Cys His Glu Gly Phe Lys Ile Arg Tyr Pro Asp Leu His Asn 145 150 155 160	
Met Val Ser Leu Cys Arg Asp Asp Gly Thr Trp Asn Asn Leu Pro Ile	

Cys Gln Gly Cys Leu Arg Pro Leu Ala Ser Ser Asn Gly Tyr Val Asn

			180					185					190		
Ile	Ser	Glu 195	Leu	Gln	Thr	Ser	Phe 200	Pro	Val	Gly	Thr	Val 205	Ile	Ser	Tyr
Arg	Cys 210	Phe	Pro	Gly	Phe	Lys 215	Leu	Asp	Gly	Ser	Ala 220	Tyr	Leu	Glu	Cys
Leu 225	Gln	Asn	Leu	Ile	Trp 230	Ser	Ser	Ser	Pro	Pro 235	Arg	Cys	Leu	Ala	Leu 240
Glu	Ala	Gln	Val	Cys 245	Pro	Leu	Pro	Pro	Met 250	Val	Ser	His	Gly	Asp 255	Phe
Val	Cys	His	Pro 260	Arg	Pro	Cys	Glu	Arg 265	Tyr	Asn	His	Gly	Thr 270	Val	Val
Glu	Phe	Tyr 275	Cys	Asp	Pro	Gly	Tyr 280	Ser	Leu	Thr	Ser	Asp 285	Tyr	Lys	Tyr
Ile	Thr 290	Cys	Gln	Tyr	Gly	Glu 295	Trp	Phe	Pro	Ser	Tyr 300	Gln	Val	Tyr	Cys
Ile 305	Lys	Ser	Glu	Gln	Thr 310	Trp	Pro	Ser	Thr	His 315	Glu	Thr	Leu	Leu	Thr 320
Thr	Trp	Lys	Ile	Val 325	Ala	Phe	Thr	Ala	Thr 330	Ser	Val	Leu	Leu	Val 335	Leu
Leu	Leu	Val	Ile 340	Leu	Ala	Arg	Met	Phe 345	Gln	Thr	Lys	Phe	Lys 350	Ala	His
Phe	Pro	Pro 355	Arg	Gly	Pro	Pro	Arg 360	Ser	Ser	Ser	Ser	Asp 365	Pro	Asp	Phe
Val	Val 370	Val	Asp	Gly	Val	Pro 375	Val	Met	Leu	Pro	Ser 380	Tyr	Asp	Glu	Ala
Val 385	Ser	Gly	Gly	Leu	Ser 390	Ala	Leu	Gly	Pro	Gly 395	Tyr	Met	Ala	Ser	Val 400
Gly	Gln	Gly	Cys	Pro 405	Leu	Pro	Val	Asp	Asp 410		Ser	Pro	Pro	Ala 415	_
Pro	Gly	Ser	Gly 420	Asp	Thr	Asp	Thr	Gly 425	Pro	Gly	Glu	Ser	Glu 430	Thr	Cys
Asp	Ser	Val 435	Ser	Gly	Ser	Ser	Glu 440	Leu	Leu	Gln	Ser	Leu 445	Tyr	Ser	Pro
Pro	Arg 450	Cys	Gln	Glu	Ser	Thr 455	His	Pro	Ala	Ser	Asp 460	Asn	Pro	Asp	Ile

```
Ile Ala Ser Thr Ala Glu Glu Val Ala Ser Thr Ser Pro Gly Ile His
465
                                         475
His Ala His Trp Val Leu Phe Leu Arg Asn
                 485
<210> 133
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 133
atctcctatc gctgctttcc cgg
                                                                    23
<210> 134
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 134
agccaggatc gcagtaaaac tcc
                                                                    23
<210> 135
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 135
atttaaactt gatgggtctg cgtatcttga gtgcttacaa aaccttatct
                                                                   50
<210> 136
<211> 1815
<212> DNA
<213> Homo sapiens
<400> 136
cccacgcgtc cgctccgcgc cctcccccc gcctcccgtg cggtccgtcg gtggcctaga 60
gatgctgctg ccgcggttgc agttgtcgcg cacgcctctg cccgccagcc cgctccaccg 120
ccgtagcgcc cgagtgtcgg ggggcgcacc cgagtcgggc catgaggccg ggaaccgcgc 180
tacaggccgt gctgctggcc gtgctgctgg tggggctgcg ggccgcgacg ggtcgcctgc 240
tgagtgcctc ggatttggac ctcagaggag ggcagccagt ctgccgggga gggacacaga 300
```

```
ggccttgtta taaagtcatt tacttccatg atacttctcg aagactgaac tttgaggaag 360
ccaaagaagc ctgcaggagg gatggaggcc agctagtcag catcgagtct gaagatgaac 420
agaaactgat agaaaagttc attgaaaacc tcttgccatc tgatggtgac ttctggattg 480
ggctcaggag gcgtgaggag aaacaaagca atagcacagc ctgccaggac ctttatgctt 540
ggactgatgg cagcatatca caatttagga actggtatgt ggatgagccg tcctgcggca 600
gcgaggtctg cgtggtcatg taccatcagc catcggcacc cgctggcatc ggaggcccct 660
acatgttcca gtggaatgat gaccggtgca acatgaagaa caatttcatt tgcaaatatt 720
ctgatgagaa accagcagtt ccttctagag aagctgaagg tgaggaaaca gagctgacaa 780
cacctgtact tccagaagaa acacaggaag aagatgccaa aaaaacattt aaagaaagta 840
gagaagetge ettgaatetg geetacatee taateeecag catteeectt etecteetee 900
ttgtggtcac cacagttgta tgttgggttt ggatctgtag aaaaagaaaa cgggagcagc 960
cagaccctag cacaaagaag caacacacca tctggccctc tcctcaccag ggaaacagcc 1020
cggacctaga ggtctacaat gtcataagaa aacaaagcga agctgactta gctgagaccc 1080
ggccagacct gaagaatatt tcattccgag tgtgttcggg agaagccact cccgatgaca 1140
tgtcttgtga ctatgacaac atggctgtga acccatcaga aagtgggttt gtgactctgg 1200
tgagcgtgga gagtggattt gtgaccaatg acatttatga gttctcccca gaccaaatgg 1260
ggaggagtaa ggagtctgga tgggtggaaa atgaaatata tggttattag gacatataaa 1320
aaactgaaac tgacaacaat ggaaaagaaa tgataagcaa aatcctctta ttttctataa 1380
ggaaaataca cagaaggtct atgaacaagc ttagatcagg teetgtggat gagcatgtgg 1440
tccccacgac ctcctgttgg acccccacgt tttggctgta tcctttatcc cagccagtca 1500
tccagctcga ccttatgaga aggtaccttg cccaggtctg gcacatagta gagtctcaat 1560
aaatgtcact tggttggttg tatctaactt ttaagggaca gagctttacc tggcagtgat 1620
aaagatgggc tgtggagctt ggaaaaccac ctctgttttc cttgctctat acagcagcac 1680
atattatcat acagacagaa aatccagaat cttttcaaag cccacatatg gtagcacagg 1740
ttggcctgtg catcggcaat tctcatatct gtttttttca aagaataaaa tcaaataaag 1800
agcaggaaaa aaaaa
```

```
<210> 137
```

<400> 137

Met Arg Pro Gly Thr Ala Leu Gln Ala Val Leu Leu Ala Val Leu Leu 1 5 10 15

Val Gly Leu Arg Ala Ala Thr Gly Arg Leu Leu Ser Ala Ser Asp Leu 20 25 30

Asp Leu Arg Gly Gly Gln Pro Val Cys Arg Gly Gly Thr Gln Arg Pro 35 40 45

Cys Tyr Lys Val Ile Tyr Phe His Asp Thr Ser Arg Arg Leu Asn Phe 50 55 60

Glu Glu Ala Lys Glu Ala Cys Arg Arg Asp Gly Gly Gln Leu Val Ser 65 70 75 80

Ile Glu Ser Glu Asp Glu Gln Lys Leu Ile Glu Lys Phe Ile Glu Asn 85 90 95

Leu Leu Pro Ser Asp Gly Asp Phe Trp Ile Gly Leu Arg Arg Glu
100 105 110

<211> 382

<212> PRT

<213> Homo sapiens

<210> 138

Glu Lys Gln Ser Asn Ser Thr Ala Cys Gln Asp Leu Tyr Ala Trp Thr Asp Gly Ser Ile Ser Gln Phe Arg Asn Trp Tyr Val Asp Glu Pro Ser 135 Cys Gly Ser Glu Val Cys Val Val Met Tyr His Gln Pro Ser Ala Pro Ala Gly Ile Gly Gly Pro Tyr Met Phe Gln Trp Asn Asp Asp Arg Cys 170 Asn Met Lys Asn Asn Phe Ile Cys Lys Tyr Ser Asp Glu Lys Pro Ala Val Pro Ser Arg Glu Ala Glu Gly Glu Glu Thr Glu Leu Thr Thr Pro 200 Val Leu Pro Glu Glu Thr Gln Glu Glu Asp Ala Lys Lys Thr Phe Lys Glu Ser Arg Glu Ala Ala Leu Asn Leu Ala Tyr Ile Leu Ile Pro Ser 230 Ile Pro Leu Leu Leu Leu Val Val Thr Thr Val Val Cys Trp Val Trp Ile Cys Arg Lys Arg Lys Arg Glu Gln Pro Asp Pro Ser Thr Lys 260 Lys Gln His Thr Ile Trp Pro Ser Pro His Gln Gly Asn Ser Pro Asp Leu Glu Val Tyr Asn Val Ile Arg Lys Gln Ser Glu Ala Asp Leu Ala 295 Glu Thr Arg Pro Asp Leu Lys Asn Ile Ser Phe Arg Val Cys Ser Gly Glu Ala Thr Pro Asp Asp Met Ser Cys Asp Tyr Asp Asn Met Ala Val 330 Asn Pro Ser Glu Ser Gly Phe Val Thr Leu Val Ser Val Glu Ser Gly Phe Val Thr Asn Asp Ile Tyr Glu Phe Ser Pro Asp Gln Met Gly Arg 355 Ser Lys Glu Ser Gly Trp Val Glu Asn Glu Ile Tyr Gly Tyr 375

<211> 50 <212> DNA <213> Artificial Sequence	
<pre><220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe</pre>	
<400> 138 gttcattgaa aacctettge catetgatgg tgaettetgg attgggetea	50
<210> 139 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 139 aagccaaaga agcctgcagg aggg	24
<210> 140 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 140 cagtccaagc ataaaggtcc tggc	24
<210> 141 <211> 1514 <212> DNA <213> Homo sapiens	
<400> 141 ggggtctccc tcagggccgg gaggcacagc ggtccctgct tgctgaaggg ctggatgtac gcatccgcag gttcccgcgg acttgggggc gcccgctgag ccccggcgcc cgcagaagac ttgtgtttgc ctcctgcagc ctcaacccgg agggcagcga gggcctacca tggtgtgttc agcatgcgct tgtggacccc agtgggcgtc ctgaccagc cctgcaccag cggcgggtgg ccctggccga gccgaggag cgaccgcagc ctgctgaagt tgaaaatggt gcaggtcgtg tcctctcaag ccgctcccgc tggaggagca ccaccccaa actcagtttg attacacagt caccatgagag caccatgagag ggggcatgt cgaagagagag gggggcatgt cgaagagagag gggggaagagagagag gggggaagagagagagagagagagagagagagagagag	2 120 2 180 2 240 2 300 3 360 2 420 4 480 4 540
gctgaccaag gtgggcatgc agcaaatgtt tgccttggga gagagactga ggaagaactg tgtggaagac attccctttc tttcaccaac cttcaaccca caggaggtct ttattcgttc	2 660

tcagaaagaa ggacccatca tcatccacac tgatgaagca gattcagaag tcttgtatcc 780 caactaccaa agctgctgga gcctgaggca gagaaccaga ggccggaggc agactgcctc 840 tttacagcca ggaatctcag aggatttgaa aaaggtgaag gacaggatgg gcattgacag 900 tagtgataaa gtggacttct tcatcctcct ggacaacgtg gctgccgagc aggcacacaa 960 cctcccaagc tgccccatgc tgaagagatt tgcacggatg atcgaacaga gagctgtgga 1020 cacatecttg tacatactge ecaaggaaga cagggaaagt etteagatgg cagtaggeee 1080 attectecae atectagaga geaacetget gaaageeatg gaetetgeea etgeeeeega 1140 caagatcaga aagctgtatc tctatgcggc tcatgatgtg accttcatac cgctcttaat 1200 gaccctgggg atttttgacc acaaatggcc accgtttgct gttgacctga ccatggaact 1260 ttaccagcac ctggaatcta aggagtggtt tgtgcagctc tattaccacg ggaaggagca 1320 ggtgccgaga ggttgccctg atgggctctg cccgctggac atgttcttga atgccatgtc 1380 agtttatacc ttaagcccag aaaaatacca tgcactctgc tctcaaactc aggtgatgga 1440 agttggaaat gaagagtaac tgatttataa aagcaggatg tgttgatttt aaaataaagt 1500 gcctttatac aatg <210> 142 <211> 428 <212> PRT <213> Homo sapiens <400> 142 Met Ile Thr Gly Val Phe Ser Met Arg Leu Trp Thr Pro Val Gly Val 10 Leu Thr Ser Leu Ala Tyr Cys Leu His Gln Arg Arg Val Ala Leu Ala Glu Leu Gln Glu Ala Asp Gly Gln Cys Pro Val Asp Arg Ser Leu Leu 40 Lys Leu Lys Met Val Gln Val Val Phe Arg His Gly Ala Arg Ser Pro Leu Lys Pro Leu Pro Leu Glu Glu Gln Val Glu Trp Asn Pro Gln Leu Leu Glu Val Pro Pro Gln Thr Gln Phe Asp Tyr Thr Val Thr Asn Leu Ala Gly Gly Pro Lys Pro Tyr Ser Pro Tyr Asp Ser Gln Tyr His Glu Thr Thr Leu Lys Gly Gly Met Phe Ala Gly Gln Leu Thr Lys Val Gly Met Gln Gln Met Phe Ala Leu Gly Glu Arg Leu Arg Lys Asn Tyr Val 140 Glu Asp Ile Pro Phe Leu Ser Pro Thr Phe Asn Pro Gln Glu Val Phe Ile Arg Ser Thr Asn Ile Phe Arg Asn Leu Glu Ser Thr Arg Cys Leu

170

Leu Ala Gly Leu Phe Gln Cys Gln Lys Glu Gly Pro Ile Ile His 180 185 190

Thr Asp Glu Ala Asp Ser Glu Val Leu Tyr Pro Asn Tyr Gln Ser Cys 195 200 205

Trp Ser Leu Arg Gln Arg Thr Arg Gly Arg Arg Gln Thr Ala Ser Leu 210 215 220

Gln Pro Gly Ile Ser Glu Asp Leu Lys Lys Val Lys Asp Arg Met Gly 225 230 235 240

Ile Asp Ser Ser Asp Lys Val Asp Phe Phe Ile Leu Leu Asp Asn Val 245 250

Ala Ala Glu Gln Ala His Asn Leu Pro Ser Cys Pro Met Leu Lys Arg 260 265 270

Phe Ala Arg Met Ile Glu Gln Arg Ala Val Asp Thr Ser Leu Tyr Ile 275 280 285

Leu Pro Lys Glu Asp Arg Glu Ser Leu Gln Met Ala Val Gly Pro Phe 290 295 300

Leu His Ile Leu Glu Ser Asn Leu Leu Lys Ala Met Asp Ser Ala Thr 305 310 315 320

Ala Pro Asp Lys Ile Arg Lys Leu Tyr Leu Tyr Ala Ala His Asp Val

Thr Phe Ile Pro Leu Leu Met Thr Leu Gly Ile Phe Asp His Lys Trp 340 345 350

Pro Pro Phe Ala Val Asp Leu Thr Met Glu Leu Tyr Gln His Leu Glu 355 360 365

Ser Lys Glu Trp Phe Val Gln Leu Tyr Tyr His Gly Lys Glu Gln Val 370 375 380

Pro Arg Gly Cys Pro Asp Gly Leu Cys Pro Leu Asp Met Phe Leu Asn 385 390 395 400

Ala Met Ser Val Tyr Thr Leu Ser Pro Glu Lys Tyr His Ala Leu Cys 405 410 415

Ser Gln Thr Gln Val Met Glu Val Gly Asn Glu Glu
420 425

<210> 143

<211> 24

<212> DNA

<213> Artificial Sequence

	Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> ccaact	143 acca aagetgetgg agee	24
<210><211><212><212><213>	24	
	Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> gcagct	144 .ctat taccacggga agga	24
<210><211><212><213>	24	
<220> <223>	Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400>	145 cccgt ggtaatagag ctgc	24
<210><211><211><212><213>	45	
<220> <223>	Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> ggcaga	146 agaac cagaggeegg aggagaetge etetttaeag eeagg	45
<210><211><211><212><213>	1686	
cttaaa	147 cttaa catacttgca gctaaaacta aatattgctg cttggggacc tecttctage atttc agctcatcac cttcacctgc cttggtcatg gctctgctat tctccttgat ccatt tgcaccagac ctggattcct agcgtctcca tctggagtgc ggctggtggg	120

```
gggcctccac cgctgtgaag ggcgggtgga ggtggaacag aaaggccagt ggggcaccgt 240
gtgtgatgac ggctgggaca ttaaggacgt ggctgtgttg tgccgggagc tgggctgtgg 300
agctgccagc ggaaccccta gtggtatttt gtatgagcca ccagcagaaa aagagcaaaa 360
ggtcctcatc caatcagtca gttgcacagg aacagaagat acattggctc agtgtgagca 420
agaagaagtt tatgattgtt cacatgatga agatgctggg gcatcgtgtg agaacccaga 480
gagetettte tecceagtee cagagggtgt caggetgget gaeggeeetg ggeattgcaa 540
gggacgcgtg gaagtgaagc accagaacca gtggtatacc gtgtgccaga caggctggag 600
cctccgggcc gcaaaggtgg tgtgccggca gctgggatgt gggagggctg tactgactca 660
aaaacgctgc aacaagcatg cctatggccg aaaacccatc tggctgagcc agatgtcatg 720
ctcaggacga gaagcaaccc ttcaggattg cccttctggg ccttggggga agaacacctg 780
caaccatgat gaagacacgt gggtcgaatg tgaagatccc tttgacttga gactagtagg 840
aggagacaac ctctgctctg ggcgactgga ggtgctgcac aagggcgtat ggggctctgt 900
ctgtgatgac aactggggag aaaaggagga ccaggtggta tgcaagcaac tgggctgtgg 960
gaagtccctc tctccctcct tcagagaccg gaaatgctat ggccctgggg ttggccgcat 1020
ctggctggat aatgttcgtt gctcagggga ggagcagtcc ctggagcagt gccagcacag 1080
attttggggg tttcacgact gcacccacca ggaagatgtg gctgtcatct gctcagtgta 1140
ggtgggcatc atctaatctg ttgagtgcct gaatagaaga aaaacacaga agaagggagc 1200
atttactgtc tacatgactg catgggatga acactgatct tcttctgccc ttggactggg 1260
acttatactt ggtgcccctg attctcaggc cttcagagtt ggatcagaac ttacaacatc 1320
aggtctagtt ctcaggccat cagacatagt ttggaactac atcaccacct ttcctatgtc 1380
tccacattgc acacagcaga ttcccagcct ccataattgt gtgtatcaac tacttaaata 1440
tgtttctctg aagaactctg acaaaataca gattttggta ctgaaagaga ttctagagga 1560
acggaatttt aaggataaat tttctgaatt ggttatgggg tttctgaaat tggctctata 1620
atctaattag atataaaatt ctggtaactt tatttacaat aataaagata gcactatgtg 1680
ttcaaa
```

<210> 148 <211> 347

<212> PRT

<213> Homo sapiens

<400> 148

Met Ala Leu Leu Phe Ser Leu Ile Leu Ala Ile Cys Thr Arg Pro Gly
1 5 10 15

Phe Leu Ala Ser Pro Ser Gly Val Arg Leu Val Gly Gly Leu His Arg

Cys Glu Gly Arg Val Glu Val Glu Gln Lys Gly Gln Trp Gly Thr Val

Cys Asp Asp Gly Trp Asp Ile Lys Asp Val Ala Val Leu Cys Arg Glu
50 60

Leu Gly Cys Gly Ala Ala Ser Gly Thr Pro Ser Gly Ile Leu Tyr Glu 65 70 75 80

Pro Pro Ala Glu Lys Glu Gln Lys Val Leu Ile Gln Ser Val Ser Cys
85 90 95

Thr Gly Thr Glu Asp Thr Leu Ala Gln Cys Glu Gln Glu Glu Val Tyr
100 105 110

Asp Cys Ser His Asp Glu Asp Ala Gly Ala Ser Cys Glu Asn Pro Glu Ser Ser Phe Ser Pro Val Pro Glu Gly Val Arg Leu Ala Asp Gly Pro Gly His Cys Lys Gly Arg Val Glu Val Lys His Gln Asn Gln Trp Tyr 155 Thr Val Cys Gln Thr Gly Trp Ser Leu Arg Ala Ala Lys Val Val Cys Arg Gln Leu Gly Cys Gly Arg Ala Val Leu Thr Gln Lys Arg Cys Asn 185 Lys His Ala Tyr Gly Arg Lys Pro Ile Trp Leu Ser Gln Met Ser Cys 200 Ser Gly Arg Glu Ala Thr Leu Gln Asp Cys Pro Ser Gly Pro Trp Gly Lys Asn Thr Cys Asn His Asp Glu Asp Thr Trp Val Glu Cys Glu Asp Pro Phe Asp Leu Arg Leu Val Gly Gly Asp Asn Leu Cys Ser Gly Arg Leu Glu Val Leu His Lys Gly Val Trp Gly Ser Val Cys Asp Asp Asn Trp Gly Glu Lys Glu Asp Gln Val Val Cys Lys Gln Leu Gly Cys Gly Lys Ser Leu Ser Pro Ser Phe Arg Asp Arg Lys Cys Tyr Gly Pro Gly Val Gly Arg Ile Trp Leu Asp Asn Val Arg Cys Ser Gly Glu Gln 310 Ser Leu Glu Gln Cys Gln His Arg Phe Trp Gly Phe His Asp Cys Thr His Gln Glu Asp Val Ala Val Ile Cys Ser Val

<210> 149

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic

oligonucleotide probe

<400> 149 ttcagctcat caccttcacc tgcc	24
<210> 150 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 150 ggctcataca aaataccact aggg	24
<210> 151 <211> 50 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 151 gggcctccac cgctgtgaag ggcgggtgga ggtggaacag aaaggccagt	50
<210> 152 <211> 1427 <212> DNA <213> Homo sapiens	
<400> 152	60
actgcactcg gttctatcga ttgaattccc cggggatcct ctagagatcc ctcgacctcg	120
acceacgest cegeggacge gtgggeggac gegtgggeeg getaccagga agagtetgee	120
gaaggtgaag gccatggact tcatcacctc cacagccatc ctgcccctgc tgttcggctg	240
cctgggcgtc ttcggcctct tccggctgct gcagtgggtg cgcgggaagg cctacctgcg	300
gaatgetgtg gtggtgatea caggegeeae eteagggetg ggeaaagaat gtgeaaaagt	360
cttctatgct gegggtgcta aactggtgct ctgtggccgg aatggtgggg ccctagaaga	420
geteateaga gaacttaceg etteteatge caccaaggtg cagacacaca ageettactt	480
ggtgaccttc gacctcacag actctggggc catagttgca gcagcagctg agatcctgca	540
gtgetttgge tatgtegaca tacttgteaa caatgetggg atcagetace gtggtaceat	600
catggacace acagtggatg tggacaagag ggtcatggag acaaactact ttggcccagt tgctctaacg aaagcactcc tgccctccat gatcaagagg aggcaaggcc acattgtcgc	660
catcagcagc atccagggca agatgagcat teettttega teageatatg cageeteesa	720
gcacgcaacc caggetttet ttgactgtet gcgtgccgag atggaacagt atgaaattga	780
ggtgaccgtc atcagccccg gctacatcca caccaacctc tctgtaaatg ccatcaccgc	840
ggatggatct aggtatggag ttatggacac caccacagce cagggeegaa geeetgtgga	900
gatagcccag gatattetta etaetataga gaagaagaag aaagatataa teetagetaa	960
cttactgcct teettggetg tttatetteg aactetgget eetgggetet tetteageet	1020
catggcctcc agggccaqaa aagagcggaa atccaagaac tcctagtact ctgaccagcc	1080

agggccaggg cagagaagca gcactcttag gcttgcttac tctacaaggg acagttgcat 114 ttgttgagac tttaatggag atttgtctca caagtgggaa agactgaaga aacacatctc 120 gtgcagatct gctggcagag gacaatcaaa aacgacaaca agcttcttcc cagggtgagg 126 ggaaacactt aaggaataaa tatggagctg gggtttaaca ctaaaaacat gaaataaaca 132 tctcaaacag taaaaaaaaa aaaaaagggc ggccgcgact ctagagtcga cctgcagaag 138 cttggccgcc atggcccaac ttgtttattg cagcttataa tggttac 142	0 0 0
<211> 310 <212> PRT <213> Homo sapiens	
<pre><400> 153 Met Asp Phe Ile Thr Ser Thr Ala Ile Leu Pro Leu Leu Phe Gly Cys 1 5 10 15</pre>	
Leu Gly Val Phe Gly Leu Phe Arg Leu Leu Gln Trp Val Arg Gly Lys 20 25 30	
Ala Tyr Leu Arg Asn Ala Val Val Val Ile Thr Gly Ala Thr Ser Gly 35 40 45	
Leu Gly Lys Glu Cys Ala Lys Val Phe Tyr Ala Ala Gly Ala Lys Leu 50 55 60	
Val Leu Cys Gly Arg Asn Gly Gly Ala Leu Glu Glu Leu Ile Arg Glu 65 70 75 80	
Leu Thr Ala Ser His Ala Thr Lys Val Gln Thr His Lys Pro Tyr Leu 85 90 95	
Val Thr Phe Asp Leu Thr Asp Ser Gly Ala Ile Val Ala Ala Ala Ala 100 105 110	
Glu Ile Leu Gln Cys Phe Gly Tyr Val Asp Ile Leu Val Asn Asn Ala 115 120 125	
Gly Ile Ser Tyr Arg Gly Thr Ile Met Asp Thr Thr Val Asp Val Asp 130 135 140	
Lys Arg Val Met Glu Thr Asn Tyr Phe Gly Pro Val Ala Leu Thr Lys 145 150 155 160	
Ala Leu Leu Pro Ser Met Ile Lys Arg Arg Gln Gly His Ile Val Ala 165 170 175	
Ile Ser Ser Ile Gln Gly Lys Met Ser Ile Pro Phe Arg Ser Ala Tyr 180 185 190	
Ala Ala Ser Lys His Ala Thr Gln Ala Phe Phe Asp Cys Leu Arg Ala 195 200 205	
Glu Met Glu Gln Tyr Glu Ile Glu Val Thr Val Ile Ser Pro Gly Tyr	

21	0				215					220					
Ile Hi 225	s Thr	Asn	Leu	Ser 230	Val	Asn	Ala	Ile	Thr 235	Ala	Asp	Gly	Ser	Arg 240	
Tyr Gl	y Val	Met	Asp 245	Thr	Thr	Thr	Ala	Gln 250	Gly	Arg	Ser	Pro	Val 255	Glu	
Val Al	a Gln	Asp 260	Val	Leu	Ala	Ala	Val 265	Gly	Lys	Lys	Lys	Lys 270	Asp	Val	
Ile Le	u Ala 275		Leu	Leu	Pro	Ser 280	Leu	Ala	Val	Tyr	Leu 285	Arg	Thr	Leu	
Ala Pr 29		Leu	Phe	Phe	Ser 295	Leu	Met	Ala	Ser	Arg 300	Ala	Arg	Lys	Glu	
Arg Ly 305	s Ser	Lys	Asn	Ser 310											
<210><211><211><212><213>	24 DNA	icia	l Se	quen	ce										
<220> <223>	Descr oligo	_					Seq	uenc	e: S	ynth	etic				
<400> ggtgct		tggt	gctc	tg t	ggc										24
<210><211><211><212><213>	20 D NA	icia	l Se	quen	ce										
<220> <223>	Descr oligo						Seq	uenc	e: S	ynth	etic				
<400> caggg		tgag	catt	cc											20
<210><211><212><212><213>	24 DNA	icia	ıl Se	quen	ce										
<220> <223>	Desci oligo	ripti onucl	on c	f Ar de p	tifi robe	cial	Seg	uenc	e: S	ynth	etic	!			

```
<400> 156
                                                                24
tcatactgtt ccatctcggc acgc
<210> 157
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
     oligonucleotide probe
<400> 157
aatggtgggg ccctagaaga gctcatcaga gaactcaccg cttctcatgc
                                                                50
<210> 158
<211> 1771
<212> DNA
<213> Homo sapiens
<400> 158
cccacgcgtc cgctggtgtt agatcgagca accctctaaa agcagtttag agtggtaaaa 60
aaaaaaaaaa acacaccaaa cgctcgcagc cacaaaaggg atgaaatttc ttctggacat 120
cctcctqctt ctcccqttac tgatcgtctg ctccctagag tccttcgtga agctttttat 180
tcctaagagg agaaaatcag tcaccggcga aatcgtgctg attacaggag ctgggcatgg 240
aattgggaga ctgactgcct atgaatttgc taaacttaaa agcaagctgg ttctctggga 300
tataaataag catggactgg aggaaacagc tgccaaatgc aagggactgg gtgccaaggt 360
tcataccttt gtggtagact gcagcaaccg agaagatatt tacagctctg caaagaaggt 420
gaaggcagaa attggagatg ttagtatttt agtaaataat gctggtgtag tctatacatc 480
agatttgttt gctacacaag atcctcagat tgaaaagact tttgaagtta atgtacttgc 540
acatttctgg actacaaagg catttcttcc tgcaatgacg aagaataacc atggccatat 600
tgtcactgtg gcttcggcag ctggacatgt ctcggtcccc ttcttactgg cttactgttc 660
aagcaagttt gctgctgttg gatttcataa aactttgaca gatgaactgg ctgccttaca 720
aataactgga gtcaaaacaa catgtctgtg tcctaatttc gtaaacactg gcttcatcaa 780
aaatccaagt acaagtttgg gacccactct ggaacctgag gaagtggtaa acaggctgat 840
gcatgggatt ctgactgagc agaagatgat ttttattcca tcttctatag cttttttaac 900
aacattggaa aggatccttc ctgagcgttt cctggcagtt ttaaaacgaa aaatcagtgt 960
taagtttgat gcagttattg gatataaaat gaaagcgcaa taagcaccta gttttctgaa 1020
aactgattta ccaggtttag gttgatgtca tctaatagtg ccagaatttt aatgtttgaa 1080
cttctgtttt ttctaattat ccccatttct tcaatatcat ttttgaggct ttggcagtct 1140
tcatttacta ccacttgttc tttagccaaa agctgattac atatgatata aacagagaaa 1200
tacctttaga ggtgacttta aggaaaatga agaaaaagaa ccaaaatgac tttattaaaa 1260
taatttccaa gattatttgt ggctcacctg aaggctttgc aaaatttgta ccataaccgt 1320
ttatttaaca tatattttta tttttgattg cacttaaatt ttgtataatt tgtgtttctt 1380
tttctgttct acataaaatc agaaacttca agctctctaa ataaaatgaa ggactatatc 1440
tagtggtatt tcacaatgaa tatcatgaac tctcaatggg taggtttcat cctacccatt 1500
gccactctgt ttcctgagag atacctcaca ttccaatgcc aaacatttct gcacagggaa 1560
gctagaggtg gatacacgtg ttgcaagtat aaaagcatca ctgggattta aggagaattg 1620
agagaatgta cccacaaatg gcagcaataa taaatggatc acacttaaaa aaaaaaaaa 1680
1771
aaaaaaaaaa aaaaaaaaaa a
```

<211> 300 <212> PRT

<213> Homo sapiens

<400> 159

Met Lys Phe Leu Leu Asp Ile Leu Leu Leu Leu Pro Leu Leu Ile Val

Cys Ser Leu Glu Ser Phe Val Lys Leu Phe Ile Pro Lys Arg Arg Lys

Ser Val Thr Gly Glu Ile Val Leu Ile Thr Gly Ala Gly His Gly Ile
35 40 45

Gly Arg Leu Thr Ala Tyr Glu Phe Ala Lys Leu Lys Ser Lys Leu Val
50 55 60

Leu Trp Asp Ile Asn Lys His Gly Leu Glu Glu Thr Ala Ala Lys Cys 65 70 75 80

Lys Gly Leu Gly Ala Lys Val His Thr Phe Val Val Asp Cys Ser Asn 85 90 95

Arg Glu Asp Ile Tyr Ser Ser Ala Lys Lys Val Lys Ala Glu Ile Gly
100 105 110

Asp Val Ser Ile Leu Val Asn Asn Ala Gly Val Val Tyr Thr Ser Asp 115 120 125

Leu Phe Ala Thr Gln Asp Pro Gln Ile Glu Lys Thr Phe Glu Val Asn

Val Leu Ala His Phe Trp Thr Thr Lys Ala Phe Leu Pro Ala Met Thr 145 150 155 160

Lys Asn Asn His Gly His Ile Val Thr Val Ala Ser Ala Ala Gly His 165 170 175

Val Ser Val Pro Phe Leu Leu Ala Tyr Cys Ser Ser Lys Phe Ala Ala 180 185 190

Val Gly Phe His Lys Thr Leu Thr Asp Glu Leu Ala Ala Leu Gln Ile 195 200 205

Thr Gly Val Lys Thr Thr Cys Leu Cys Pro Asn Phe Val Asn Thr Gly 210 215 220

Phe Ile Lys Asn Pro Ser Thr Ser Leu Gly Pro Thr Leu Glu Pro Glu 225 230 235 240

Glu Val Val Asn Arg Leu Met His Gly Ile Leu Thr Glu Gln Lys Met 245 250 255

Ile Phe Ile Pro Ser Ser Ile Ala Phe Leu Thr Thr Leu Glu Arg Ile 265 Leu Pro Glu Arg Phe Leu Ala Val Leu Lys Arg Lys Ile Ser Val Lys 280 Phe Asp Ala Val Ile Gly Tyr Lys Met Lys Ala Gln 295 <210> 160 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe <400> 160 ggtgaaggca gaaattggag atg 23 <210> 161 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe <400> 161 atcccatgca tcagcctgtt tacc 24 <210> 162 <211> 48 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe gctggtgtag tctatacatc agatttgttt gctacacaag atcctcag 48 <210> 163 <211> 2076 <212> DNA <213> Homo sapiens <400> 163 cccacgcgtc cgcggacgcg tgggtcgact agttctagat cgcgagcggc cgcccgcggc 60 tcagggagga gcaccgactg cgccgcaccc tgagagatgg ttggtgccat gtggaaggtg 120

```
attgtttcgc tggtcctgtt gatgcctggc ccctgtgatg ggctgtttcg ctccctatac 180
agaagtgttt ccatgccacc taagggagac tcaggacagc cattatttct caccccttac 240
attgaagctg ggaagatcca aaaaggaaga gaattgagtt tggtcggccc tttcccagga 300
ctgaacatga agagttatgc cggcttcctc accgtgaata agacttacaa cagcaacctc 360
ttettetggt tetteecage teagatacag ecagaagatg ecceagtagt tetetggeta 420
cagggtgggc cgggaggttc atccatgttt ggactctttg tggaacatgg gccttatgtt 480
gtcacaagta acatgacctt gcgtgacaga gacttcccct ggaccacaac gctctccatg 540
ctttacattg acaatccagt gggcacaggc ttcagtttta ctgatgatac ccacggatat 600
gcagtcaatg aggacgatgt agcacgggat ttatacagtg cactaattca gtttttccag 660
atatttcctg aatataaaaa taatgacttt tatgtcactg gggagtctta tgcagggaaa 720
tatgtgccag ccattgcaca cctcatccat tccctcaacc ctgtgagaga ggtgaagatc 780
aacctgaacg gaattgctat tggagatgga tattctgatc ccgaatcaat tatagggggc 840
tatgcagaat tcctgtacca aattggcttg ttggatgaga agcaaaaaaa gtacttccag 900
aagcagtgcc atgaatgcat agaacacatc aggaagcaga actggtttga ggcctttgaa 960
atactggata aactactaga tggcgactta acaagtgatc cttcttactt ccagaatgtt 1020
acaggatgta gtaattacta taactttttg cggtgcacgg aacctgagga tcagctttac 1080
tatgtgaaat ttttgtcact cccagaggtg agacaagcca tccacgtggg gaatcagact 1140
tttaatgatg gaactatagt tgaaaagtac ttgcgagaag atacagtaca gtcagttaag 1200
ccatggttaa ctgaaatcat gaataattat aaggttctga tctacaatgg ccaactggac 1260
atcategtgg cagetgeect gacagagege teettgatgg geatggactg gaaaggatee 1320
caggaataca agaaggcaga aaaaaaagtt tggaagatct ttaaatctga cagtgaagtg 1380
gctggttaca tccggcaagc gggtgacttc catcaggtaa ttattcgagg tggaggacat 1440
attttaccct atgaccagcc tctgagaget tttgacatga ttaatcgatt catttatgga 1500
aaaggatggg atccttatgt tggataaact accttcccaa aagagaacat cagaggtttt 1560
cattgctgaa aagaaaatcg taaaaacaga aaatgtcata ggaataaaaa aattatcttt 1620
tcatatctgc aagatttttt tcatcaataa aaattatcct tgaaacaagt gagcttttgt 1680
ttttgggggg agatgtttac tacaaaatta acatgagtac atgagtaaga attacattat 1740
ttaacttaaa ggatgaaagg tatggatgat gtgacactga gacaagatgt ataaatgaaa 1800
ttttagggtc ttgaatagga agttttaatt tcttctaaga gtaagtgaaa agtgcagttg 1860
taacaaacaa agctgtaaca tctttttctg ccaataacag aagtttggca tgccgtgaag 1920
gtgtttggaa atattattgg ataagaatag ctcaattatc ccaaataaat ggatgaagct 1980
ataatagttt tggggaaaag attctcaaat gtataaagtc ttagaacaaa agaattcttt 2040
gaaataaaaa tattatatat aaaagtaaaa aaaaaa
                                                                  2076
```

```
<210> 164
```

<400> 164

Met Val Gly Ala Met Trp Lys Val Ile Val Ser Leu Val Leu Leu Met

1 10 15

Pro Gly Pro Cys Asp Gly Leu Phe Arg Ser Leu Tyr Arg Ser Val Ser 20 25 30

Met Pro Pro Lys Gly Asp Ser Gly Gln Pro Leu Phe Leu Thr Pro Tyr 35 40 45

Ile Glu Ala Gly Lys Ile Gln Lys Gly Arg Glu Leu Ser Leu Val Gly 50 55 60

Pro Phe Pro Gly Leu Asn Met Lys Ser Tyr Ala Gly Phe Leu Thr Val

<211> 476

<212> PRT

<213> Homo sapiens

65					70					75					80
Asn	Lys	Thr	Tyr	Asn 85	Ser	Asn	Leu	Phe	Phe 90	Trp	Phe	Phe	Pro	Ala 95	Gln
Ile	Gln	Pro	Glu 100	Asp	Ala	Pro	Val	Val 105	Leu	Trp	Leu	Gln	Gly 110	Gly	Pro
Gly	Gly	Ser 115	Ser	Met	Phe	Gly	Leu 120	Phe	Val	Glu	His	Gly 125	Pro	Tyr	Val
Val	Thr 130	Ser	Asn	Met	Thr	Leu 135	Arg	Asp	Arg	Asp	Phe 140	Pro	Trp	Thr	Thr
Thr 145	Leu	Ser	Met	Leu	Tyr 150	Ile	Asp	Asn	Pro	Val 155	Gly	Thr	Gly	Phe	Ser 160
Phe	Thr	Asp	Asp	Thr 165	His	Gly	Tyr	Ala	Val 170	Asn	Glu	Asp	Asp	Val 175	Ala
Arg	Asp	Leu	Tyr 180	Ser	Ala	Leu	Ile	Gln 185	Phe	Phe	Gln	Ile	Phe 190	Pro	Glu
Tyr	Lys	Asn 195	Asn	Asp	Phe	Tyr	Val 200	Thr	Gly	Glu	Ser	Tyr 205	Ala	Gly	Lys
Tyr	Val 210	Pro	Ala	Ile	Ala	His 215	Leu	Ile	His	Ser	Leu 220	Asn	Pro	Val	Arg
Glu 225	Val	Lys	Ile	Asn	Leu 230	Asn	Gly	Ile	Ala	Ile 235	Gly	Asp	Gly	Tyr	Ser 240
Asp	Pro	Glu	Ser	Ile 245	Ile	Gly	Gly	Tyr	Ala 250	Glu	Phe	Leu	Tyr	Gln 255	Ile
Gly	Leu	Leu	Asp 260	Glu	Lys	Gln	Lys	Lys 265	Tyr	Phe	Gln	Lys	Gln 270	Cys	His
Glu	Cys	Ile 275	Glu	His	Ile	Arg	Lys 280	Gln	Asn	Trp	Phe	Glu 285	Ala	Phe	Glu
Ile	Leu 290	Asp	Lys	Leu	Leu	Asp 295	Gly	Asp	Leu	Thr	Ser 300	Asp	Pro	Ser	Tyr
Phe 305	Gln	Asn	Val	Thr	Gly 310		Ser	Asn	Tyr	Tyr 315		Phe	Leu	Arg	Cys 320
Thr	Glu	Pro	Glu	Asp 325	Gln	Leu	Tyr	Tyr	Val 330		Phe	Leu	Ser	Leu 335	Pro
Glu	Val	Arg	Gln 340		Ile	His	Val	Gly 345		Gln	Thr	Phe	Asn 350		Gly

Thr	Ile	Val 355	Glu	Lys	Tyr	Leu	Arg 360	Glu	Asp	Thr	Val	Gln 365	Ser	Val	Lys	
Pro	Trp 370	Leu	Thr	Glu	Ile	Met 375	Asn	Asn	Tyr	Lys	Val 380	Leu	Ile	Tyr	Asn	
Gly 385	Gln	Leu	Asp	Ile	Ile 390	Val	Ala	Ala	Ala	Leu 395	Thr	Glu	Arg	Ser	Leu 400	
Met	Gly	Met	Asp	Trp 405	Lys	Gly	Ser	Gln	Glu 410	Tyr	Lys	Lys	Ala	Glu 415	Lys	
Lys	Val	Trp	Lys 420	Ile	Phe	Lys	Ser	Asp 425	Ser	Glu	Val	Ala	Gly 430	Tyr	Ile	
Arg	Gln	Ala 435	Gly	Asp	Phe	His	Gln 440	Val	Ile	Ile	Arg	Gly 445	Gly	Gly	His	
Ile	Leu 450	Pro	Tyr	Asp	Gln	Pro 455	Leu	Arg	Ala	Phe	Asp 460	Met	Ile	Asn	Arg	
Phe 465	Ile	Tyr	Gly	Lys	Gly 470	Trp	Asp	Pro	Tyr	Val 475	Gly					
<21 <21	0> 1 1> 2 2> D 3> A	4 NA	icia	l Se	quen	ce						-				
<22 <22	3> D			on o eoti				Seq	uenc	e: S	ynth	etic				
	0> 1 catg		ccta	aggg.	ag a	ctc										24
<21 <21	0> 1 1> 2 2> D 3> A	4 NA	icia	l Se	quen	ce										
<22 <22	3> D			on o eoti				Seq	uenc	e: S	ynth	etic				
	0> 1 atga		gtgc	aatg	gc t	ggc										24
<21 <21	0> 1 1> 2 2> D 3> A	4 NA	icia	l Se	quen	.ce	,									

```
<220>
<223> Description of Artificial Sequence: Synthetic
     oligonucleotide probe
<400> 167
                                                                24
ageteteaga ggetggteat aggg
<210> 168
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
     oligonucleotide probe
                                                                50
gtcggccctt tcccaggact gaacatgaag agttatgccg gcttcctcac
<210> 169
<211> 2477
<212> DNA
<213> Homo sapiens
<400> 169
cgagggcttt tccggctccg gaatggcaca tgtgggaatc ccagtcttgt tggctacaac 60
atttttccct ttcctaacaa gttctaacag ctgttctaac agctagtgat caggggttct 120
tcttgctgga gaagaaaggg ctgagggcag agcagggcac tctcactcag ggtgaccagc 180
teettgeete tetgtggata acagageatg agaaagtgaa gagatgeage ggagtgaggt 240
gatggaagtc taaaatagga aggaattttg tgtgcaatat cagactctgg gagcagttga 300
cctggagagc ctgggggagg gcctgcctaa caagctttca aaaaacagga gcgacttcca 360
ctgggctggg ataagacgtg ccggtaggat agggaagact gggtttagtc ctaatatcaa 420
attgactggc tgggtgaact tcaacagcct tttaacctct ctgggagatg aaaacgatgg 480
tatagcataa aggctagaga ccaaaataga taacaggatt ccctgaacat tcctaagagg 600
gagaaagtat gttaaaaata gaaaaaccaa aatgcagaag gaggagactc acagagctaa 660
accaggatgg ggaccctggg tcaggccagc ctctttgctc ctcccggaaa ttatttttgg 720
tctgaccact ctgccttgtg ttttgcagaa tcatgtgagg gccaaccggg gaaggtggag 780
cagatgagca cacacaggag ccgtctcctc accgccgccc ctctcagcat ggaacagagg 840
cagecetgge ecegggeeet ggaggtggae ageegetetg tggteetget eteagtggte 900
tgggtgctgc tggccccccc agcagccggc atgcctcagt tcagcacctt ccactctgag 960
aatcgtgact ggaccttcaa ccacttgacc gtccaccaag ggacgggggc cgtctatgtg 1020
ggggccatca accgggtcta taagctgaca ggcaacctga ccatccaggt ggctcataag 1080
acagggccag aagaggacaa caagtctcgt tacccgcccc tcatcgtgca gccctgcagc 1140
gaagtgctca ccctcaccaa caatgtcaac aagctgctca tcattgacta ctctgagaac 1200
cgcctgctgg cctgtgggag cctctaccag ggggtctgca agctgctgcg gctggatgac 1260
ctcttcatcc tggtggagcc atcccacaag aaggagcact acctgtccag tgtcaacaag 1320
acgggcacca tgtacggggt gattgtgcgc tctgagggtg aggatggcaa gctcttcatc 1380
ggcacggctg tggatgggaa gcaggattac ttcccgaccc tgtccagccg gaagctgccc 1440
cgagaccctg agtcctcagc catgctcgac tatgagctac acagcgattt tgtctcctct 1500
ctcatcaaga teeetteaga caecetggee etggteteee aetttgacat ettetacate 1560
tacggctttg ctagtggggg ctttgtctac tttctcactg tccagcccga gacccctgag 1620
ggtgtggcca tcaactccgc tggagacctc ttctacacct cacgcatcgt gcggctctgc 1680
```

aaggatgacc ccaagttcca ctcatacgtg tccctgcct tcggctgcac ccgggccggg)))))))
<213> Homo sapiens	
<400> 170 Met Gly Thr Leu Gly Gln Ala Ser Leu Phe Ala Pro Pro Gly Asn Tyr 1 5 10 15	
Phe Trp Ser Asp His Ser Ala Leu Cys Phe Ala Glu Ser Cys Glu Gly 20 25 30	
Gln Pro Gly Lys Val Glu Gln Met Ser Thr His Arg Ser Arg Leu Leu 35 40 45	
Thr Ala Ala Pro Leu Ser Met Glu Gln Arg Gln Pro Trp Pro Arg Ala 50 55 60	
Leu Glu Val Asp Ser Arg Ser Val Val Leu Leu Ser Val Val Trp Val 65 70 75 80	
Leu Leu Ala Pro Pro Ala Ala Gly Met Pro Gln Phe Ser Thr Phe His 85 90 95	
Ser Glu Asn Arg Asp Trp Thr Phe Asn His Leu Thr Val His Gln Gly 100 105 110	
Thr Gly Ala Val Tyr Val Gly Ala Ile Asn Arg Val Tyr Lys Leu Thr 115 120 125	
Gly Asn Leu Thr Ile Gln Val Ala His Lys Thr Gly Pro Glu Glu Asp 130 135 140	
Asn Lys Ser Arg Tyr Pro Pro Leu Ile Val Gln Pro Cys Ser Glu Val 145 150 155 160	
Leu Thr Leu Thr Asn Asn Val Asn Lys Leu Leu Ile Ile Asp Tyr Ser	

Glu Asn Arg Leu Leu Ala Cys Gly Ser Leu Tyr Gln Gly Val Cys Lys Leu Leu Arg Leu Asp Asp Leu Phe Ile Leu Val Glu Pro Ser His Lys Lys Glu His Tyr Leu Ser Ser Val Asn Lys Thr Gly Thr Met Tyr Gly Val Ile Val Arg Ser Glu Gly Glu Asp Gly Lys Leu Phe Ile Gly Thr Ala Val Asp Gly Lys Gln Asp Tyr Phe Pro Thr Leu Ser Ser Arg Lys Leu Pro Arg Asp Pro Glu Ser Ser Ala Met Leu Asp Tyr Glu Leu His 265 Ser Asp Phe Val Ser Ser Leu Ile Lys Ile Pro Ser Asp Thr Leu Ala Leu Val Ser His Phe Asp Ile Phe Tyr Ile Tyr Gly Phe Ala Ser Gly 295 Gly Phe Val Tyr Phe Leu Thr Val Gln Pro Glu Thr Pro Glu Gly Val 310 Ala Ile Asn Ser Ala Gly Asp Leu Phe Tyr Thr Ser Arg Ile Val Arg Leu Cys Lys Asp Asp Pro Lys Phe His Ser Tyr Val Ser Leu Pro Phe Gly Cys Thr Arg Ala Gly Val Glu Tyr Arg Leu Leu Gln Ala Ala Tyr Leu Ala Lys Pro Gly Asp Ser Leu Ala Gln Ala Phe Asn Ile Thr Ser 375 Gln Asp Asp Val Leu Phe Ala Ile Phe Ser Lys Gly Gln Lys Gln Tyr His His Pro Pro Asp Asp Ser Ala Leu Cys Ala Phe Pro Ile Arg Ala Ile Asn Leu Gln Ile Lys Glu Arg Leu Gln Ser Cys Tyr Gln Gly Glu 425 Gly Asn Leu Glu Leu Asn Trp Leu Leu Gly Lys Asp Val Gln Cys Thr

Lys Ala Pro Val Pro Ile Asp Asp Asn Phe Cys Gly Leu Asp Ile Asn

Ü
T.
9 m/s 2 m/s
Į,
u
1
T
3
أيوز
-
224
1

4	50				455					460					
Gln P	ro Leu	Gly	Gly	Ser 470	Thr	Pro	Val	Glu	Gly 475	Leu	Thr	Leu	Tyr	Thr 480	
Thr S	er Arg	Asp	Arg 485	Met	Thr	Ser	Val	Ala 490	Ser	Tyr	Val	Tyr	Asn 495	Gly	
Tyr S	er Val	Val 500	Phe	Val	Gly	Thr	Lys 505	Ser	Gly	Lys	Leu	Lys 510	Lys	Val	
Arg V	al Tyr 515	Glu	Phe	Arg	Cys	Ser 520	Asn	Ala	Ile	His	Leu 525	Leu	Ser	Lys	
	er Leu 30	Leu	Glu	Gly	Ser 535	Tyr	Trp	Trp	Arg	Phe 540	Asn	Tyr	Arg	Gln	
Leu T	yr Phe	Leu	Gly	Glu 550	Gln	Arg									
<220><223> <400> tggaa <210><211><212><213>	Descroligo 171 taccg 172 24 DNA Artif	iptionuclo	on o eotic ctgc	f Ar de p ag quen	tific robe										20
	Descr oligo						Seq	uenc	e: S	yntn	etic				
<400> cttct	172 gccct	ttgg	agaa	ga t	ggc										24
<210><211><211><212><213>	43	icia	l Se	quen	ce										
<220> <223>	Descr oligo						Seq	uenc	e: S	ynth	etic				

```
<400> 173
                                                                  42
ggactcactg gcccaggcct tcaatatcac cagccaggac gat
<210> 174
<211> 3106
<212> DNA
<213> Homo sapiens
<220>
<221> modified base
<222> (1683)
<223> a, t, c or g
<400> 174
aggeteeege gegeggetga gtgeggaetg gagtgggaac cegggteeee gegettagag 60
aacacgcgat gaccacgtgg agcctccggc ggaggccggc ccgcacgctg ggactcctgc 120
tgctggtcgt cttgggcttc ctggtgctcc gcaggctgga ctggagcacc ctggtccctc 180
tgcggctccg ccatcgacag ctggggctgc aggccaaggg ctggaacttc atgctggagg 240
attocacctt ctggatcttc gggggctcca tccactattt ccgtgtgccc agggagtact 300
ggagggaccg cctgctgaag atgaaggcct gtggcttgaa caccctcacc acctatgttc 360
cgtggaacct gcatgagcca gaaagaggca aatttgactt ctctgggaac ctggacctgg 420
aggeettegt eetgatggee geagagateg ggetgtgggt gattetgegt eeaggeeeet 480
acatetgeag tgagatggae eteggggget tgeecagetg getaeteeaa gaecetggea 540
tgaggctgag gacaacttac aagggcttca ccgaagcagt ggacctttat tttgaccacc 600
tgatgtccag ggtggtgcca ctccagtaca agcgtggggg acctatcatt gccgtgcagg 660
tggagaatga atatggttcc tataataaag accccgcata catgccctac gtcaagaagg 720
cactggagga ccgtggcatt gtggaactgc tcctgacttc agacaacaag gatgggctga 780
gcaaggggat tgtccaggga gtcttggcca ccatcaactt gcagtcaaca cacgagctgc 840
agctactgac cacctttctc ttcaacgtcc aggggactca gcccaagatg gtgatggagt 900
actggacggg gtggtttgac tcgtggggag gccctcacaa tatcttggat tcttctgagg 960
ttttgaaaac cgtgtctgcc attgtggacg ccggctcctc catcaacctc tacatgttcc 1020
acggaggcac caactttggc ttcatgaatg gagccatgca cttccatgac tacaagtcag 1080
atgtcaccaq ctatgactat gatgctgtgc tgacagaagc cggcgattac acggccaagt 1140
acatgaaget tegagaette tteggeteea teteaggeat eceteteeet ececeacetg 1200
accttcttcc caagatgccg tatgagccct taacgccagt cttgtacctg tctctgtggg 1260
acgccctcaa gtacctgggg gagccaatca agtctgaaaa gcccatcaac atggagaacc 1320
tgccagtcaa tgggggaaat ggacagtcct tcgggtacat tctctatgag accagcatca 1380
cctcgtctgg catcctcagt ggccacgtgc atgatcgggg gcaggtgttt gtgaacacag 1440
tatccatagg attcttggac tacaagacaa cgaagattgc tgtccccctg atccagggtt 1500
acaccgtgct gaggatcttg gtggagaatc gtgggcgagt caactatggg gagaatattg 1560
atgaccagcg caaaggctta attggaaatc tctatctgaa tgattcaccc ctgaaaaaact 1620
tcagaatcta tagcctggat atgaagaaga gcttctttca gaggttcggc ctggacaaat 1680
ggngttccct cccagaaaca cccacattac ctgctttctt cttgggtagc ttgtccatca 1740
gctccacgcc ttgtgacacc tttctgaagc tggagggctg ggagaagggg gttgtattca 1800
tcaatggcca gaaccttgga cgttactgga acattggacc ccagaagacg ctttacctcc 1860
caggtccctg gttgagcagc ggaatcaacc aggtcatcgt ttttgaggag acgatggcgg 1920
gccctgcatt acagttcacg gaaacccccc acctgggcag gaaccagtać attaagtgag 1980
eggtggcace ceeteetget ggtgeeagtg ggagaetgee geeteetett gaeetgaage 2040
ctggtggctg ctgccccacc cctcactgca aaagcatctc cttaagtagc aacctcaggg 2100
actggggget acagtetgee cetgteteag etcaaaacce taageetgea gggaaaggtg 2160
ggatggctct gggcctggct ttgttgatga tggctttcct acagccctgc tcttgtgccg 2220
aggetgtegg getgteteta gggtgggage agetaateag ategeceage etttggeeet 2280
```

```
cagaaaaaagt gctgaaacgt gcccttgcac cggacgtcac agccctgcga gcatctgctg 2340
gactcaggcg tgctctttgc tggttcctgg gaggcttggc cacatccctc atggccccat 2400
tttatccccg aaatcctggg tgtgtcacca gtgtagaggg tggggaaggg gtgtctcacc 2460
tgagctgact ttgttcttcc ttcacaacct tctgagcctt ctttgggatt ctggaaggaa 2520
ctcggcgtga gaaacatgtg acttcccctt tcccttccca ctcgctgctt cccacagggt 2580
gacaggctgg gctggagaaa cagaaatcct caccctgcgt cttcccaagt tagcaggtgt 2640
ctctggtgtt cagtgaggag gacatgtgag tcctggcaga agccatggcc catgtctgca 2700
catccaggga ggaggacaga aggcccagct cacatgtgag tcctggcaga agccatggcc 2760
catgtctgca catccaggga ggaggacaga aggcccagct cacatgtgag tcctggcaga 2820
agccatggcc catgtctgca catccaggga ggaggacaga aggcccagct cacatgtgag 2880
teetggeaga agecatggee catgtetgea catecaggga ggaggacaga aggeceaget 2940
cagtggcccc cgctccccac cccccacgcc cgaacagcag gggcagagca gccctccttc 3000
gaagtgtgtc caagtccgca tttgagcctt gttctggggc ccagcccaac acctggcttg 3060
ggctcactgt cctgagttgc agtaaagcta taaccttgaa tcacaa
<210> 175
<211> 636
<212> PRT
<213> Homo sapiens
<220>
<221> MOD RES
<222> (539)
<223> Any amino acid
<400> 175
Met Thr Trp Ser Leu Arg Arg Pro Ala Arg Thr Leu Gly Leu
  1
Leu Leu Val Val Leu Gly Phe Leu Val Leu Arg Arg Leu Asp Trp
Ser Thr Leu Val Pro Leu Arg Leu Arg His Arg Gln Leu Gly Leu Gln
Ala Lys Gly Trp Asn Phe Met Leu Glu Asp Ser Thr Phe Trp Ile Phe
Gly Gly Ser Ile His Tyr Phe Arg Val Pro Arg Glu Tyr Trp Arg Asp
Arg Leu Leu Lys Met Lys Ala Cys Gly Leu Asn Thr Leu Thr Tyr
Val Pro Trp Asn Leu His Glu Pro Glu Arg Gly Lys Phe Asp Phe Ser
            100
Gly Asn Leu Asp Leu Glu Ala Phe Val Leu Met Ala Ala Glu Ile Gly
                            120
Leu Trp Val Ile Leu Arg Pro Gly Pro Tyr Ile Cys Ser Glu Met Asp
```

Leu 145	Gly	Gly	Leu	Pro	Ser 150	Trp	Leu	Leu	Gln	Asp 155	Pro	Gly	Met	Arg	Leu 160
Arg	Thr	Thr	Tyr	Lys 165	Gly	Phe	Thr	Glu	Ala 170	Val	Asp	Leu	Tyr	Phe 175	Asp
His	Leu	Met	Ser 180	Arg	Val	Val	Pro	Leu 185	Gln	Tyr	Lys	Arg	Gly 190	Gly	Pro
Ile	Ile	Ala 195	Val	Gln	Val	Glu	Asn 200	Glu	Tyr	Gly	Ser	Tyr 205	Asn	Lys	Asp
Pro	Ala 210	Tyr	Met	Pro	Tyr	Val 215	Lys	Lys	Ala	Leu	Glu 220	Asp	Arg	Gly	Ile
Val 225	Glu	Leu	Leu	Leu	Thr 230	Ser	Asp	Asn	Lys	Asp 235	Gly	Leu	Ser	Lys	Gly 240
Ile	Val	Gln	Gly	Val 245	Leu	Ala	Thr	Ile	Asn 250	Leu	Gln	Ser	Thr	His 255	Glu
Leu	Gln	Leu	Leu 260	Thr	Thr	Phe	Leu	Phe 265	Asn	Val	Gln	Gly	Thr 270	Gln	Pro
Lys	Met	Val 275	Met	Glu	Tyr	Trp	Thr 280	Gly	Trp	Phe	Asp	Ser 285	Trp	Gly	Gly
Pro	His 290	Asn	Ile	Leu	Asp	Ser 295	Ser	Glu	Val	Leu	Lys 300	Thr	Val	Ser	Ala
Ile 305	Val	Asp	Ala	Gly	Ser 310	Ser	Ile	Asn	Leu	Tyr 315	Met	Phe	His	Gly	Gly 320
Thr	Asn	Phe	Gly	Phe 325	Met	Asn	Gly	Ala	Met 330	His	Phe	His	Asp	Tyr 335	Lys
Ser	Asp	Val	Thr 340	Ser	Tyr	Asp	Tyr	Asp 345	Ala	Val	Leu	Thr	Glu 350	Ala	Gly
Asp	Tyr	Thr 355	Ala	Lys	Tyr	Met	Lys 360	Leu	Arg	Asp	Phe	Phe 365	Gly	Ser	Ile
Ser	Gly 370	Ile	Pro	Leu	Pro	Pro 375	Pro	Pro	Asp	Leu	Leu 380	Pro	Lys	Met	Pro
Tyr 385	Glu	Pro	Leu	Thr	Pro 390	Val	Leu	Tyr	Leu	Ser 395	Leu	Trp	Asp	Ala	Leu 400
Lys	Tyr	Leu	Gly	Glu 405	Pro	Ile	Lys	Ser	Glu 410	Lys	Pro	Ile	Asn	Met 415	Glu
Asn	Leu	Pro	Val 420	Asn	Gly	Gly	Asn	Gly 425	Gln	Ser	Phe	Gly	Tyr 430	Ile	Leu

Tyr Glu Thr Ser Ile Thr Ser Ser Gly Ile Leu Ser Gly His Val His 440 Asp Arg Gly Gln Val Phe Val Asn Thr Val Ser Ile Gly Phe Leu Asp 455 Tyr Lys Thr Thr Lys Ile Ala Val Pro Leu Ile Gln Gly Tyr Thr Val 470 Leu Arg Ile Leu Val Glu Asn Arg Gly Arg Val Asn Tyr Gly Glu Asn 485 490 Ile Asp Asp Gln Arg Lys Gly Leu Ile Gly Asn Leu Tyr Leu Asn Asp 500 505 Ser Pro Leu Lys Asn Phe Arg Ile Tyr Ser Leu Asp Met Lys Lys Ser 520 Phe Phe Gln Arg Phe Gly Leu Asp Lys Trp Xaa Ser Leu Pro Glu Thr Pro Thr Leu Pro Ala Phe Phe Leu Gly Ser Leu Ser Ile Ser Ser Thr Pro Cys Asp Thr Phe Leu Lys Leu Glu Gly Trp Glu Lys Gly Val Val Phe Ile Asn Gly Gln Asn Leu Gly Arg Tyr Trp Asn Ile Gly Pro Gln Lys Thr Leu Tyr Leu Pro Gly Pro Trp Leu Ser Ser Gly Ile Asn Gln Val Ile Val Phe Glu Glu Thr Met Ala Gly Pro Ala Leu Gln Phe Thr 610 615 Glu Thr Pro His Leu Gly Arg Asn Gln Tyr Ile Lys 625 630 <210> 176 <211> 2505 <212> DNA <213> Homo sapiens <400> 176 ggggacgcgg agctgagagg ctccgggcta gctaggtgta ggggtggacg ggtcccagga 60 ccctggtgag ggttctctac ttggccttcg gtgggggtca agacgcaqqc acctacqcca 120

aaggggagca aagccgggct cggcccgagg cccccaggac ctccatctcc caatgttgga 180 ggaatccgac acgtgacggt ctgtccgccg tctcagacta gaggagcgct gtaaacgcca 240 tggctcccaa gaagctgtcc tgccttcgtt ccctgctgct gccgctcagc ctgacgctac 300 tgctgcccca ggcagacact cggtcgttcg tagtggatag gggtcatgac cggtttctcc 360 tagacggggc cccgttccgc tatgtgtctg gcagcctgca ctactttcgg gtaccgcggg 420

```
tgctttgggc cgaccggctt ttgaagatgc gatggagcgg cctcaacgcc atacagtttt 480
atgtgccctg gaactaccac gagccacagc ctggggtcta taactttaat ggcagccggg 540
acctcattgc ctttctgaat gaggcagctc tagcgaacct gttggtcata ctgagaccag 600
gaccttacat ctgtgcagag tgggagatgg ggggtctccc atcctggttg cttcgaaaac 660
ctgaaattca tctaagaacc tcagatccag acttccttgc cgcagtggac tcctggttca 720
aggtettget geccaagata tatecatgge tttateacaa tgggggeaac ateattagea 780
ttcaggtgga gaatgaatat ggtagctaca gagcctgtga cttcagctac atgaggcact 840
tggctgggct cttccgtgca ctgctaggag aaaagatctt gctcttcacc acagatgggc 900
ctgaaggact caagtgtggc tccctccggg gactctatac cactgtagat tttggcccag 960
ctgacaacat gaccaaaatc tttaccctgc ttcggaagta tgaaccccat gggccattgg 1020
taaactctga gtactacaca ggctggctgg attactgggg ccagaatcac tccacacggt 1080
ctgtgtcagc tgtaaccaaa ggactagaga acatgctcaa gttgggagcc agtgtgaaca 1140
tgtacatgtt ccatggaggt accaactttg gatattggaa tggtgccgat aagaagggac 1200
gcttccttcc gattactacc agctatgact atgatgcacc tatatctgaa gcaggggacc 1260
ccacacctaa gctttttgct cttcgagatg tcatcagcaa gttccaggaa gttcctttgg 1320
qacctttacc tcccccgagc cccaagatga tgcttggacc tgtgactctg cacctggttg 1380
ggcatttact ggctttccta gacttgcttt gcccccgtgg gcccattcat tcaatcttgc 1440
caatgacett tgaggetgte aageaggace atggetteat gttgtaeega aeetatatga 1500
cccataccat ttttgagcca acaccattct gggtgccaaa taatggagtc catgaccgtg 1560
cctatgtgat ggtggatggg gtgttccagg gtgttgtgga gcgaaatatg agagacaaac 1620
tatttttgac ggggaaactg gggtccaaac tggatatctt ggtggagaac atggggaggc 1680
tcagctttgg gtctaacagc agtgacttca agggcctgtt gaagccacca attctggggc 1740
aaacaatcct tacccagtgg atgatgttcc ctctgaaaat tgataacctt gtgaagtggt 1800
ggtttcccct ccagttgcca aaatggccat atcctcaagc tccttctggc cccacattct 1860
actccaaaac atttccaatt ttaggctcag ttggggacac atttctatat ctacctggat 1920
ggaccaaggg ccaagtctgg atcaatgggt ttaacttggg ccggtactgg acaaagcagg 1980
ggccacaaca gaccctctac gtgccaagat tcctgctgtt tcctagggga gccctcaaca 2040
aaattacatt getggaacta gaagatgtae eteteeagee eeaagteeaa tttttggata 2100
agcctatcct caatagcact agtactttgc acaggacaca tatcaattcc ctttcagctg 2160
atacactgag tgcctctgaa ccaatggagt taagtgggca ctgaaaggta ggccgggcat 2220
ggtggctcat gcctgtaatc ccagcacttt gggaggctga gacgggtgga ttacctgagg 2280
tcaggacttc aagaccagcc tggccaacat ggtgaaaccc cgtctccact aaaaatacaa 2340
aaattagccg ggcgtgatgg tgggcacctc taatcccagc tacttgggag gctgagggca 2400
ggagaattgc ttgaatccag gaggcagagg ttgcagtgag tggaggttgt accactgcac 2460
tccagcctgg ctgacagtga gacactccat ctcaaaaaaa aaaaa
                                                                  2505
```

<210> 177

<211> 654

<212> PRT

<213> Homo sapiens

<400> 177

Met Ala Pro Lys Lys Leu Ser Cys Leu Arg Ser Leu Leu Leu Pro Leu 1 5 10 15

Ser Leu Thr Leu Leu Leu Pro Gln Ala Asp Thr Arg Ser Phe Val Val 20 25 30

Asp Arg Gly His Asp Arg Phe Leu Leu Asp Gly Ala Pro Phe Arg Tyr

Val Ser Gly Ser Leu His Tyr Phe Arg Val Pro Arg Val Leu Trp Ala 50 55 60

Asp Arg Leu Leu Lys Met Arg Trp Ser Gly Leu Asn Ala Ile Gln Phe Tyr Val Pro Trp Asn Tyr His Glu Pro Gln Pro Gly Val Tyr Asn Phe Asn Gly Ser Arq Asp Leu Ile Ala Phe Leu Asn Glu Ala Ala Leu Ala 105 Asn Leu Leu Val Ile Leu Arg Pro Gly Pro Tyr Ile Cys Ala Glu Trp 120 Glu Met Gly Gly Leu Pro Ser Trp Leu Leu Arg Lys Pro Glu Ile His 135 Leu Arg Thr Ser Asp Pro Asp Phe Leu Ala Ala Val Asp Ser Trp Phe 150 Lys Val Leu Leu Pro Lys Ile Tyr Pro Trp Leu Tyr His Asn Gly Gly Asn Ile Ile Ser Ile Gln Val Glu Asn Glu Tyr Gly Ser Tyr Arg Ala Cys Asp Phe Ser Tyr Met Arg His Leu Ala Gly Leu Phe Arg Ala Leu Leu Gly Glu Lys Ile Leu Leu Phe Thr Thr Asp Gly Pro Glu Gly Leu Lys Cys Gly Ser Leu Arg Gly Leu Tyr Thr Thr Val Asp Phe Gly Pro Ala Asp Asn Met Thr Lys Ile Phe Thr Leu Leu Arg Lys Tyr Glu Pro 250 His Gly Pro Leu Val Asn Ser Glu Tyr Tyr Thr Gly Trp Leu Asp Tyr 265 Trp Gly Gln Asn His Ser Thr Arg Ser Val Ser Ala Val Thr Lys Gly Leu Glu Asn Met Leu Lys Leu Gly Ala Ser Val Asn Met Tyr Met Phe His Gly Gly Thr Asn Phe Gly Tyr Trp Asn Gly Ala Asp Lys Lys Gly 305 Arg Phe Leu Pro Ile Thr Thr Ser Tyr Asp Tyr Asp Ala Pro Ile Ser

Glu Ala Gly Asp Pro Thr Pro Lys Leu Phe Ala Leu Arg Asp Val Ile

350 345 Ser Lys Phe Gln Glu Val Pro Leu Gly Pro Leu Pro Pro Pro Ser Pro 360 Lys Met Met Leu Gly Pro Val Thr Leu His Leu Val Gly His Leu Leu 375 Ala Phe Leu Asp Leu Leu Cys Pro Arg Gly Pro Ile His Ser Ile Leu 395 390 Pro Met Thr Phe Glu Ala Val Lys Gln Asp His Gly Phe Met Leu Tyr Arg Thr Tyr Met Thr His Thr Ile Phe Glu Pro Thr Pro Phe Trp Val 425 Pro Asn Asn Gly Val His Asp Arg Ala Tyr Val Met Val Asp Gly Val Phe Gln Gly Val Val Glu Arg Asn Met Arg Asp Lys Leu Phe Leu Thr 455 Gly Lys Leu Gly Ser Lys Leu Asp Ile Leu Val Glu Asn Met Gly Arg Leu Ser Phe Gly Ser Asn Ser Ser Asp Phe Lys Gly Leu Leu Lys Pro Pro Ile Leu Gly Gln Thr Ile Leu Thr Gln Trp Met Met Phe Pro Leu Lys Ile Asp Asn Leu Val Lys Trp Trp Phe Pro Leu Gln Leu Pro Lys Trp Pro Tyr Pro Gln Ala Pro Ser Gly Pro Thr Phe Tyr Ser Lys Thr Phe Pro Ile Leu Gly Ser Val Gly Asp Thr Phe Leu Tyr Leu Pro Gly Trp Thr Lys Gly Gln Val Trp Ile Asn Gly Phe Asn Leu Gly Arg Tyr Trp Thr Lys Gln Gly Pro Gln Gln Thr Leu Tyr Val Pro Arg Phe Leu 585 Leu Phe Pro Arg Gly Ala Leu Asn Lys Ile Thr Leu Leu Glu Leu Glu Asp Val Pro Leu Gln Pro Gln Val Gln Phe Leu Asp Lys Pro Ile Leu 615 610

Asn Ser Thr Ser Thr Leu His Arg Thr His Ile Asn Ser Leu Ser Ala 625 630 635 640	
Asp Thr Leu Ser Ala Ser Glu Pro Met Glu Leu Ser Gly His 645 650	
<210> 178 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 178 tggctactcc aagaccctgg catg	24
<210> 179 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 179 tggacaaatc cccttgctca gccc	24
<210> 180 <211> 50 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 180 gggcttcacc gaagcagtgg acctttattt tgaccacctg atgtccaggg	50
<210> 181 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 181 ccagctatga ctatgatgca cc	22

```
<210> 182
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 182
                                                                  24
tggcacccag aatggtgttg gctc
<210> 183
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
                                                                  50
cgagatgtca tcagcaagtt ccaggaagtt cctttgggac ctttacctcc
<210> 184
<211> 1947
<212> DNA
<213> Homo sapiens
<400> 184
gctttgaaca cgtctgcaag cccaaagttg agcatctgat tggttatgag gtatttgagt 60
qcacccacaa tatqqcttac atqttqaaaa aqcttctcat cagttacata tccattattt 120
gtgtttatgg ctttatctgc ctctacactc tcttctggtt attcaggata cctttgaagg 180
aatattettt egaaaaagte agagaagaga geagttttag tgacatteea gatgteaaaa 240
acgattttgc gttccttctt cacatggtag accagtatga ccagctatat tccaagcgtt 300
ttggtgtgtt cttgtcagaa gttagtgaaa ataaacttag ggaaattagt ttgaaccatg 360
agtggacatt tgaaaaactc aggcagcaca tttcacgcaa cgcccaggac aagcaggagt 420
tgcatctgtt catgctgtcg ggggtgcccg atgctgtctt tgacctcaca gacctggatg 480
tgctaaagct tgaactaatt ccagaagcta aaattcctgc taagatttct caaatgacta 540
acctccaaga getecacete tgccaetgce etgcaaaagt tgaacagaet gettttaget 600
ttcttcgcga tcacttgaga tgccttcacg tgaagttcac tgatgtggct gaaattcctg 660
cctgggtgta tttgctcaaa aaccttcgag agttgtactt aataggcaat ttgaactctg 720
aaaacaataa gatgatagga cttgaatctc tccgagagtt gcggcacctt aagattctcc 780
acgtgaagag caatttgacc aaagttccct ccaacattac agatgtggct ccacatctta 840
caaagttagt cattcataat gacggcacta aactcttggt actgaacagc cttaagaaaa 900
tqatqaatqt cqctqaqctq gaactccaga actgtgagct agagagaatc ccacatgcta 960
ttttcagcct ctctaattta caggaactgg atttaaagtc caataacatt cgcacaattg 1020
aggaaatcat cagtttccag catttaaaac gactgacttg tttaaaaatta tggcataaca 1080
aaattgttac tattcctccc tctattaccc atgtcaaaaa cttggagtca ctttatttct 1140
ctaacaacaa gctcgaatcc ttaccagtgg cagtatttag tttacagaaa ctcagatgct 1200
tagatgtgag ctacaacaac atttcaatga ttccaataga aataggattg cttcagaacc 1260
tgcagcattt gcatatcact gggaacaaag tggacattct gccaaaacaa ttgtttaaat 1320
```

gcataaagtt gaggactttg aatctgggac agaactgcat cacctcactc ccagagaaag 1380 ttqqtcaqct ctcccaqctc actcaqctgg agctgaaggg gaactgcttg gaccgcctgc 1440 caqcccagct gggccagtgt cggatgctca agaaaagcgg gcttgttgtg gaagatcacc 1500 tttttgatac cctgccactc gaagtcaaag aggcattgaa tcaagacata aatattccct 1560 ttqcaaatgg gatttaaact aagataatat atgcacagtg atgtgcagga acaacttcct 1620 agattgcaag tgctcacgta caagttatta caagataatg cattttagga gtagatacat 1680 cttttaaaat aaaacaqaqa qqatqcataq aaggctgata gaagacataa ctgaatgttc 1740 aatgtttgta gggttttaag tcattcattt ccaaatcatt tttttttttc ttttggggaa 1800 agggaaggaa aaattataat cactaatctt ggttcttttt aaattgtttg taacttggat 1860 gctgccgcta ctgaatgttt acaaattgct tgcctgctaa agtaaatgat taaattgaca 1920 ttttcttact aaaaaaaaa aaaaaaa <210> 185 <211> 501 <212> PRT <213> Homo sapiens <400> 185 Met Ala Tyr Met Leu Lys Lys Leu Leu Ile Ser Tyr Ile Ser Ile Ile Cys Val Tyr Gly Phe Ile Cys Leu Tyr Thr Leu Phe Trp Leu Phe Arg Ile Pro Leu Lys Glu Tyr Ser Phe Glu Lys Val Arg Glu Glu Ser Ser Phe Ser Asp Ile Pro Asp Val Lys Asn Asp Phe Ala Phe Leu Leu His Met Val Asp Gln Tyr Asp Gln Leu Tyr Ser Lys Arg Phe Gly Val Phe Leu Ser Glu Val Ser Glu Asn Lys Leu Arg Glu Ile Ser Leu Asn His Glu Trp Thr Phe Glu Lys Leu Arg Gln His Ile Ser Arg Asn Ala Gln 105 100 Asp Lys Gln Glu Leu His Leu Phe Met Leu Ser Gly Val Pro Asp Ala Val Phe Asp Leu Thr Asp Leu Asp Val Leu Lys Leu Glu Leu Ile Pro 130 Glu Ala Lys Ile Pro Ala Lys Ile Ser Gln Met Thr Asn Leu Gln Glu 155 Leu His Leu Cys His Cys Pro Ala Lys Val Glu Gln Thr Ala Phe Ser

Phe Leu Arg Asp His Leu Arg Cys Leu His Val Lys Phe Thr Asp Val 185

180

Ala Glu Ile Pro Ala Trp Val Tyr Leu Leu Lys Asn Leu Arg Glu Leu Tyr Leu Ile Gly Asn Leu Asn Ser Glu Asn Asn Lys Met Ile Gly Leu 215 Glu Ser Leu Arg Glu Leu Arg His Leu Lys Ile Leu His Val Lys Ser Asn Leu Thr Lys Val Pro Ser Asn Ile Thr Asp Val Ala Pro His Leu 250 Thr Lys Leu Val Ile His Asn Asp Gly Thr Lys Leu Leu Val Leu Asn Ser Leu Lys Lys Met Met Asn Val Ala Glu Leu Glu Leu Gln Asn Cys 280 Glu Leu Glu Arg Ile Pro His Ala Ile Phe Ser Leu Ser Asn Leu Gln 295 Glu Leu Asp Leu Lys Ser Asn Asn Ile Arg Thr Ile Glu Glu Ile Ile Ser Phe Gln His Leu Lys Arg Leu Thr Cys Leu Lys Leu Trp His Asn Lys Ile Val Thr Ile Pro Pro Ser Ile Thr His Val Lys Asn Leu Glu Ser Leu Tyr Phe Ser Asn Asn Lys Leu Glu Ser Leu Pro Val Ala Val Phe Ser Leu Gln Lys Leu Arg Cys Leu Asp Val Ser Tyr Asn Asn Ile Ser Met Ile Pro Ile Glu Ile Gly Leu Leu Gln Asn Leu Gln His Leu His Ile Thr Gly Asn Lys Val Asp Ile Leu Pro Lys Gln Leu Phe Lys 405 Cys Ile Lys Leu Arg Thr Leu Asn Leu Gly Gln Asn Cys Ile Thr Ser Leu Pro Glu Lys Val Gly Gln Leu Ser Gln Leu Thr Gln Leu Glu Leu Lys Gly Asn Cys Leu Asp Arg Leu Pro Ala Gln Leu Gly Gln Cys Arg Met Leu Lys Lys Ser Gly Leu Val Val Glu Asp His Leu Phe Asp Thr

465 470 475 480 Leu Pro Leu Glu Val Lys Glu Ala Leu Asn Gln Asp Ile Asn Ile Pro 485 490 Phe Ala Asn Gly Ile 500 <210> 186 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe <400> 186 cctccctcta ttacccatgt c 21 <210> 187 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe <400> 187 gaccaacttt ctctgggagt gagg 24 <210> 188 <211> 47 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe <400> 188 gtcactttat ttctctaaca acaagctcga atccttacca gtggcag 47 <210> 189 <211> 2917 <212> DNA <213> Homo sapiens <400> 189 cccacgcgtc cggccttctc tctggacttt gcatttccat tccttttcat tgacaaactg 60 acttttttta tttcttttt tccatctctg ggccagcttg ggatcctagg ccgccctggg 120 aagacatttg tgttttacac acataaggat ctgtgtttgg ggtttcttct tcctcccctg 180

acattqqcat	tgcttagtgg	ttgtgtgggg	agggagacca	cgtgggctca	gtgcttgctt	240
gcacttatct	gcctaggtac	atcgaagtct	tttgacctcc	atacagtgat	tatgcctgtc	300
atcgctggtg	gtatcctggc	ggccttgctc	ctgctgatag	ttgtcgtgct	ctgtctttac	360
ttcaaaatac	acaacgcgct	aaaagctgca	aaggaacctg	aagctgtggc	tgtaaaaaat	420
cacaacccag	acaaggtgtg	gtgggccaag	aacagccagg	ccaaaaccat	tgccacggag	480
tcttgtcctg	ccctgcagtg	ctgtgaagga	tatagaatgt	gtgccagttt	tgattccctg	540
ccaccttgct	gttgcgacat	aaatgagggc	ctctgagtta	ggaaaggctc	ccttctcaaa	600
gcagagccct	gaagacttca	atgatgtcaa	tgaggccacc	tgtttgtgat	gtgcaggcac	660
agaagaaagg	cacageteee	catcagtttc	atggaaaata	actcagtgcc	tgctgggaac	720
cagctgctgg	agatccctac	agagagcttc	cactgggggc	aacccttcca	ggaaggagtt	780
ggggagagag	aaccctcact	gtggggaatg	ctgataaacc	agtcacacag	ctgctctatt	840
ctcacacaaa	tctacccctt	gcgtggctgg	aactgacgtt	tccctggagg	tgtccagaaa	900
gctgatgtaa	cacagageet	ataaaagctg	tcggtcctta	aggctgccca	gcgccttgcc	960
aaaatggagc	ttgtaagaag	gctcatgcca	ttgaccctct	taattctctc	ctgtttggcg	1020
gagctgacaa	tggcggaggc	tgaaggcaat	gcaagctgca	cagtcagtct	agggggtgcc	1080
aatatggcag	agacccacaa	agccatgatc	ctgcaactca	atcccagtga	gaactgcacc	1140
tggacaatag	aaagaccaga	aaacaaaagc	atcagaatta	tcttttccta	tgtccagctt	1200
gatccagatg	gaagctgtga	aagtgaaaac	attaaagtct	ttgacggaac	ctccagcaat	1260
gggcctctgc	tagggcaagt	ctgcagtaaa	aacgactatg	ttcctgtatt	tgaatcatca	1320
tccagtacat	tgacgtttca	aatagttact	gactcagcaa	gaattcaaag	aactgtcttt	1380
gtcttctact	acttcttctc	tcctaacatc	tctattccaa	actgtggcgg	ttacctggat	1440
accttggaag	gatccttcac	cagccccaat	tacccaaagc	cgcatcctga	gctggcttat	1500
tgtgtgtggc	acatacaagt	ggagaaagat	tacaagataa	aactaaactt	caaagagatt	1560
ttcctagaaa	tagacaaaca	gtgcaaattt	gattttcttg	ccatctatga	tggcccctcc	1620
accaactctg	gcctgattgg	acaagtctgt	ggccgtgtga	ctcccacctt	cgaatcgtca	1680
tcaaactctc	tgactgtcgt	gttgtctaca	gattatgcca	attettaceg	gggattttct	1/40
gcttcctaca	cctcaattta	tgcagaaaac	atcaacacta	catctttaac	ttgctcttct	1800
gacaggatga	gagttattat	aagcaaatcc	tacctagagg	CTTTTAACTC	taatgggaat	1000
aacttgcaac	taaaagaccc	aacttgcaga	ccaaaattat	caaatgttgt	ggaattttet	1920
gtccctctta	atggatgtgg	tacaatcaga	aaggtagaag	accagtcaat	gaaagaagtg	1900
aatataatca	ccttttctgc	atcctcaact	tetgaagtga	teaccegica	gaaacaaccc	2100
cagattattg	tgaagtgtga	aatgggacat	aattetaeag	tggagataat	acacacaca	2160
gaagatgatg	taatacaaag	tcaaaatgca	ettesstess	acadaccay	ggatttgaac	2220
tttgaatcca	attcatttga	aaagactata	agataagata	gasatttagt	agtattatt	2280
caaactcttt	cegeedage	tagtctgcac	tttggatgt	caaacctacga	cctaatcaag	2340
gatacetgta	gageetetee	cacctctgac aacttgtaag	gtgtatcct	tatttqqaca	ctatoggaga	2400
agiggaigia	gregagarga	attettgaga	agtatgaggt	ctatatatat	gcagtgtaaa	2460
attta	atgeetteaa	tgaccaccag	tetegetgea	atcaacatta	tatataaa	2520
gittigatat	greatageag	atataaatgg	aaaacacatt	ccatcatagg	accenticgt	2580
agcaaacgag	atagaagtag	aagtggcaat	traccatttr	agcatgaaac	acatgcggaa	2640
cigaaaaggg	accepangetet	caacagtgtg	catctattt	ccttcatagt	totagetetg	2700
aatataataa	ctatagecee	aatcacagtg	aggcattttg	taaatcaaco	ggcagactac	2760
aaataccaca	agetgeagae	ctattaacta	acaggtccaa	ccctaagtga	gacatgtttc	2820
tracaratra	caaaccaaat	gctacctcgt	ggctacacat	attatgaata	aatgaggaag	2880
		gcctgcatgt			. 5 -55	2917
ggcccgaaag	cgacacacag	5000500050				

<210> 190 <211> 607 <212> PRT <213> Homo sapiens

Met Glu Leu Val Arg Arg Leu Met Pro Leu Thr Leu Leu Ile Leu Ser Cys Leu Ala Glu Leu Thr Met Ala Glu Ala Glu Gly Asn Ala Ser Cys Thr Val Ser Leu Gly Gly Ala Asn Met Ala Glu Thr His Lys Ala Met Ile Leu Gln Leu Asn Pro Ser Glu Asn Cys Thr Trp Thr Ile Glu Arg Pro Glu Asn Lys Ser Ile Arg Ile Ile Phe Ser Tyr Val Gln Leu Asp 75 Pro Asp Gly Ser Cys Glu Ser Glu Asn Ile Lys Val Phe Asp Gly Thr Ser Ser Asn Gly Pro Leu Leu Gly Gln Val Cys Ser Lys Asn Asp Tyr 105 Val Pro Val Phe Glu Ser Ser Ser Ser Thr Leu Thr Phe Gln Ile Val 120 Thr Asp Ser Ala Arg Ile Gln Arg Thr Val Phe Val Phe Tyr Tyr Phe 135 Phe Ser Pro Asn Ile Ser Ile Pro Asn Cys Gly Gly Tyr Leu Asp Thr Leu Glu Gly Ser Phe Thr Ser Pro Asn Tyr Pro Lys Pro His Pro Glu Leu Ala Tyr Cys Val Trp His Ile Gln Val Glu Lys Asp Tyr Lys Ile Lys Leu Asn Phe Lys Glu Ile Phe Leu Glu Ile Asp Lys Gln Cys Lys Phe Asp Phe Leu Ala Ile Tyr Asp Gly Pro Ser Thr Asn Ser Gly Leu Ile Gly Gln Val Cys Gly Arg Val Thr Pro Thr Phe Glu Ser Ser Asn Ser Leu Thr Val Val Leu Ser Thr Asp Tyr Ala Asn Ser Tyr Arg Gly Phe Ser Ala Ser Tyr Thr Ser Ile Tyr Ala Glu Asn Ile Asn Thr Thr Ser Leu Thr Cys Ser Ser Asp Arg Met Arg Val Ile Ile Ser Lys 280

Ser Tyr Leu Glu Ala Phe Asn Ser Asn Gly Asn Asn Leu Gln Leu Lys 295 Asp Pro Thr Cys Arg Pro Lys Leu Ser Asn Val Val Glu Phe Ser Val 310 Pro Leu Asn Gly Cys Gly Thr Ile Arg Lys Val Glu Asp Gln Ser Ile Thr Tyr Thr Asn Ile Ile Thr Phe Ser Ala Ser Ser Thr Ser Glu Val 345 Ile Thr Arg Gln Lys Gln Leu Gln Ile Ile Val Lys Cys Glu Met Gly 360 His Asn Ser Thr Val Glu Ile Ile Tyr Ile Thr Glu Asp Asp Val Ile 375 Gln Ser Gln Asn Ala Leu Gly Lys Tyr Asn Thr Ser Met Ala Leu Phe 390 Glu Ser Asn Ser Phe Glu Lys Thr Ile Leu Glu Ser Pro Tyr Tyr Val Asp Leu Asn Gln Thr Leu Phe Val Gln Val Ser Leu His Thr Ser Asp 425 Pro Asn Leu Val Val Phe Leu Asp Thr Cys Arg Ala Ser Pro Thr Ser Asp Phe Ala Ser Pro Thr Tyr Asp Leu Ile Lys Ser Gly Cys Ser Arg Asp Glu Thr Cys Lys Val Tyr Pro Leu Phe Gly His Tyr Gly Arg Phe 475 Gln Phe Asn Ala Phe Lys Phe Leu Arg Ser Met Ser Ser Val Tyr Leu 490 Gln Cys Lys Val Leu Ile Cys Asp Ser Ser Asp His Gln Ser Arg Cys 505 500 Asn Gln Gly Cys Val Ser Arg Ser Lys Arg Asp Ile Ser Ser Tyr Lys 520 Trp Lys Thr Asp Ser Ile Ile Gly Pro Ile Arg Leu Lys Arg Asp Arg 530 Ser Ala Ser Gly Asn Ser Gly Phe Gln His Glu Thr His Ala Glu Glu 555 Thr Pro Asn Gln Pro Phe Asn Ser Val His Leu Phe Ser Phe Met Val

				565					570					575		
Leu	Ala	Leu	Asn 580	Val	Val	Thr	Val	Ala 585	Thr	Ile	Thr	Val	Arg 590	His	Phe	
Val	Asn	Gln 595	Arg	Ala	Asp	Tyr	Lys 600	Tyr	Gln	Lys	Leu	Gln 605	Asn	Tyr		
	> 21 > Di	L NA	icial	l Seq	uenc	ce								-		
<220 <223	> De			on of eotid			cial	Sequ	ience	e: S <u>y</u>	/nthe	etic				
<400 tctc			aaact	gtgg	ıc g											21
<210 <211 <212 <213	> 22 > DI	1 A	icial	. Seq	uenc	ce										
<220 <223	> De			on of eotid			cial	Sequ	ience	e: Sy	/nthe	etic				
<400 tttg			attcg	jaagg	t gg	ł										22
<210 <211 <212 <213	> 47 > DN	7 NA	icial	. Seq	uenc	:e										
<220 <223	> De		_	on of eotid			cial	Sequ	ience	e: Sy	nthe	etic				
<400 ggaa			tcac	cagc	c cc	aatt	acco	aaa	ıgccg	ıcat	ccts	gagc				47
<210 <211 <212 <213	> 23 > DN	862 IA	sapie	ens												
cggg	gaag acat	gaa c gc g	gccc	cagg	a go	tccc	cagg	gctc	gcgt	tcc	cgtt	gctg	ict g	gttgc	tgege tgttg	120

```
gagteeetgg aegeeegeea getgeeegeg tggtttgaee aggeeaagtt eggeatette 240
atccactggg gagtgttttc cgtgcccagc ttcggtagcg agtggttctg gtggtattgg 300
caaaaggaaa agataccgaa gtatgtggaa tttatgaaag ataattaccc tcctagtttc 360
aaatatgaag attttggacc actatttaca gcaaaatttt ttaatgccaa ccagtgggca 420
gatatttttc aggcctctgg tgccaaatac attgtcttaa cttccaaaca tcatgaaggc 480
tttaccttgt gggggtcaga atattcgtgg aactggaatg ccatagatga ggggcccaag 540
agggacattg tcaaggaact tgaggtagcc attaggaaca gaactgacct gcgttttgga 600
ctqtactatt ccctttttqa atggtttcat ccgctcttcc ttgaggatga atccagttca 660
ttccataagc ggcaatttcc agtttctaag acattgccag agctctatga gttagtgaac 720
aactatcagc ctgaggttct gtggtcggat ggtgacggag gagcaccgga tcaatactgg 780
aacagcacag gettettgge etggttatat aatgaaagee eagttegggg eacagtagte 840
accaatgate gttggggage tggtageate tgtaageatg gtggetteta tacetgeagt 900
gatcgttata acccaggaca tcttttgcca cataaatggg aaaactgcat gacaatagac 960
aaactgtcct ggggctatag gagggaagct ggaatctctg actatcttac aattgaagaa 1020
ttggtgaagc aacttgtaga gacagtttca tgtggaggaa atcttttgat gaatattggg 1080
cccacactaq atqqcaccat ttctqtagtt tttgaggagc gactgaggca agtggggtcc 1140
tggctaaaag tcaatggaga agctatttat gaaacctata cctggcgatc ccagaatgac 1200
actqtcaccc caqatgtgtg gtacacatcc aagcctaaag aaaaattagt ctatgccatt 1260
tttcttaaat ggcccacatc aggacagctg ttccttggcc atcccaaagc tattctgggg 1320
gcaacagagg tgaaactact gggccatgga cagccactta actggatttc tttggagcaa 1380
aatggcatta tggtagaact gccacagcta accattcatc agatgccgtg taaatggggc 1440
tgggctctag ccctaactaa tgtgatctaa agtgcagcag agtggctgat gctgcaagtt 1500
atgtctaagg ctaggaacta tcaggtgtct ataattgtag cacatggaga aagcaatgta 1560
aactggataa gaaaattatt tggcagttca gccctttccc tttttcccac taaatttttc 1620
ttaaattacc catgtaacca ttttaactct ccagtgcact ttgccattaa agtctcttca 1680
cattgatttg tttccatgtg tgactcagag gtgagaattt tttcacatta tagtagcaag 1740
gaattggtgg tattatggac cgaactgaaa attttatgtt gaagccatat cccccatgat 1800
tatatagtta tgcatcactt aatatgggga tattttctgg gaaatgcatt gctagtcaat 1860
ttttttttgt gccaacatca tagagtgtat ttacaaaatc ctagatggca tagcctacta 1920
cacacctaat gtgtatggta tagactgttg ctcctaggct acagacatat acagcatgtt 1980
actgaatact gtaggcaata gtaacagtgg tatttgtata tcgaaacata tggaaacata 2040
gagaaggtac agtaaaaata ctgtaaaata aatggtgcac ctgtataggg cacttaccac 2100
gaatggagct tacaggactg gaagttgctc tgggtgagtc agtgagtgaa tgtgaaggcc 2160
taggacatta ttgaacactg ccagacgtta taaatactgt atgcttaggc tacactacat 2220
ttataaaaaa aagtttttct ttcttcaatt ataaattaac ataagtgtac tgtaacttta 2280
caaacgtttt aatttttaaa acctttttgg ctcttttgta ataacactta gcttaaaaca 2340
                                                                  2362
taaactcatt gtgcaaatgt aa
```

```
<210> 195
```

<400> 195

Met Arg Pro Gln Glu Leu Pro Arg Leu Ala Phe Pro Leu Leu Leu 1 5 10 15

Leu Leu Leu Leu Pro Pro Pro Pro Cys Pro Ala His Ser Ala Thr

Arg Phe Asp Pro Thr Trp Glu Ser Leu Asp Ala Arg Gln Leu Pro Ala 35 40 45

<211> 467

<212> PRT

<213> Homo sapiens

Trp Phe Asp Gln Ala Lys Phe Gly Ile Phe Ile His Trp Gly Val Phe Ser Val Pro Ser Phe Gly Ser Glu Trp Phe Trp Trp Tyr Trp Gln Lys Glu Lys Ile Pro Lys Tyr Val Glu Phe Met Lys Asp Asn Tyr Pro Pro 90 Ser Phe Lys Tyr Glu Asp Phe Gly Pro Leu Phe Thr Ala Lys Phe Phe 105 Asn Ala Asn Gln Trp Ala Asp Ile Phe Gln Ala Ser Gly Ala Lys Tyr 120 Ile Val Leu Thr Ser Lys His His Glu Gly Phe Thr Leu Trp Gly Ser 135 Glu Tyr Ser Trp Asn Trp Asn Ala Ile Asp Glu Gly Pro Lys Arg Asp Ile Val Lys Glu Leu Glu Val Ala Ile Arg Asn Arg Thr Asp Leu Arg Phe Gly Leu Tyr Tyr Ser Leu Phe Glu Trp Phe His Pro Leu Phe Leu Glu Asp Glu Ser Ser Phe His Lys Arg Gln Phe Pro Val Ser Lys Thr Leu Pro Glu Leu Tyr Glu Leu Val Asn Asn Tyr Gln Pro Glu Val Leu Trp Ser Asp Gly Asp Gly Gly Ala Pro Asp Gln Tyr Trp Asn Ser Thr Gly Phe Leu Ala Trp Leu Tyr Asn Glu Ser Pro Val Arg Gly Thr Val Val Thr Asn Asp Arg Trp Gly Ala Gly Ser Ile Cys Lys His Gly Gly Phe Tyr Thr Cys Ser Asp Arg Tyr Asn Pro Gly His Leu Leu Pro His Lys Trp Glu Asn Cys Met Thr Ile Asp Lys Leu Ser Trp Gly Tyr Arg Arg Glu Ala Gly Ile Ser Asp Tyr Leu Thr Ile Glu Glu Leu Val 305 310 Lys Gln Leu Val Glu Thr Val Ser Cys Gly Gly Asn Leu Leu Met Asn

330

325

Ile G	ly Pi	ro Thi		Asp	Gly	Thr	Ile 345	Ser	Val	Val	Phe	Glu 350	Glu	Arg	
Leu Ai	_	ln Val	Gly	Ser	Trp	Leu 360	Lys	Val	Asn	Gly	Glu 365	Ala	Ile	Tyr	
Glu Th	hr Ty 70	yr Thi	Trp	Arg	Ser 375	Gln	Asn	Asp	Thr	Val 380	Thr	Pro	Asp	Val	
Trp Ty 385	yr Tì	hr Sei	. Lys	Pro 390	Lys	Glu	Lys	Leu	Val 395	Tyr	Ala	Ile	Phe	Leu 400	
Lys T	rp Pi	ro Thi	Ser 405	Gly	Gln	Leu	Phe	Leu 410	Gly	His	Pro	Lys	Ala 415	Ile	
Leu G	ly A	la Thi 420		Val	Lys	Leu	Leu 425	Gly	His	Gly	Gln	Pro 430	Leu	Asn	
Trp II		er Leu 35	ı Glu	Gln	Asn	Gly 440	Ile	Met	Val	Glu	Leu 445	Pro	Gln	Leu	
Thr II	le H: 50	is Glr	n Met	Pro	Cys 455	Lys	Trp	Gly	Trp	Ala 460	Leu	Ala	Leu	Thr	
Asn Va	al II	le													
<210><211><212><213>	23 DNA	ificia	al Se	quen	ce										
<220> <223>		cript: gonucl				cial	Sequ	ıence	e: Sy	ynthe	etic				
<400> tggttt		c aggo	caag	tt c	39										23
<210><211><212><213>	24 DNA	ificia	al Se	quenc	ce										
<220> <223>		cript: gonucl				cial	Sequ	ience	e: Sy	ynthe	etic				
<400> ggatto		c tcaa	aggaa	ga go	egg										24
<210>	198														

```
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 198
                                                                   24
aacttgcagc atcagccact ctgc
<210> 199
<211> 45
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
ttccgtgccc agcttcggta gcgagtggtt ctggtggtat tggca
                                                                   45
<210> 200
<211> 2372
<212> DNA
<213> Homo sapiens
<400> 200
agcagggaaa tccggatgtc tcggttatga agtggagcag tgagtgtgag cctcaacata 60
gttccagaac tctccatccg gactagttat tgagcatctg cctctcatat caccagtggc 120
catctgaggt gtttccctgg ctctgaaggg gtaggcacga tggccaggtg cttcagcctg 180
qtqttqcttc tcacttccat ctggaccacg aggctcctgg tccaaggctc tttgcgtgca 240
gaagagettt ceatecaggt gteatgeaga attatgggga teaccettgt gageaaaaag 300
gcgaaccagc agctgaattt cacagaagct aaggaggcct gtaggctgct gggactaagt 360
ttggccggca aggaccaagt tgaaacagcc ttgaaagcta gctttgaaac ttgcagctat 420
ggctgggttg gagatggatt cgtggtcatc tctaggatta gcccaaaccc caagtgtggg 480
aaaaatgggg tgggtgtcct gatttggaag gttccagtga gccgacagtt tgcagcctat 540
tgttacaact catctgatac ttggactaac tcgtgcattc cagaaattat caccaccaaa 600
gatcccatat tcaacactca aactgcaaca caaacaacag aatttattgt cagtgacagt 660
acctactegg tggcatecee ttactetaca atacetgeee etactactae teeteetget 720
ccagcttcca cttctattcc acggagaaaa aaattgattt gtgtcacaga agtttttatg 780
gaaactagca ccatgtctac agaaactgaa ccatttgttg aaaataaagc agcattcaag 840
aatgaagctg ctgggtttgg aggtgtcccc acggctctgc tagtgcttgc tctcctcttc 900
tttggtgctg cagctggtct tggattttgc tatgtcaaaa ggtatgtgaa ggccttccct 960
tttacaaaca agaatcagca gaaggaaatg atcgaaacca aagtagtaaa ggaggagaag 1020
gccaatgata gcaaccctaa tgaggaatca aagaaaactg ataaaaaccc agaagagtcc 1080
aagagtecaa geaaaaetae egtgegatge etggaagetg aagtttagat gagacagaaa 1140
tgaggagaca cacctgaggc tggtttcttt catgctcctt accctgcccc agctggggaa 1200
atcaaaaggg ccaaagaacc aaagaagaaa gtccaccctt ggttcctaac tggaatcagc 1260
tcaggactgc cattggacta tggagtgcac caaagagaat gcccttctcc ttattgtaac 1320
cctgtctgga tcctatcctc ctacctccaa agcttcccac ggcctttcta gcctggctat 1380
gtoctaataa tatoocactg ggagaaagga gttttgcaaa gtgcaaggac ctaaaacatc 1440
```

tcatcagtat	ccagtggtaa	aaaggcctcc	tggctgtctg	aggctaggtg	ggttgaaagc	1500
		ggctttctct				
gctctgaaag	agaaacacgt	atcccacctg	acatgtcctt	ctgagcccgg	taagagcaaa	1620
		cccctgaaag				
		agaaatagaa				
		cagggtcaaa				
		cttactttt				
		taacaaaaat				
		aaggaagatt				
		tagctactat				
		caaaaaattg				
		ctagcttatc				
		tctaatatgg				
atacctaaga	agtacattgt	tacctctata	taccaaagca	cattttaaaa	gtgccattaa	2280
caaatgtatc	actagccctc	ctttttccaa	caagaaggga	ctgagagatg	cagaaatatt	2340
tgtgacaaaa	aattaaagca	tttagaaaac	tt			2372
×210× 201						

<210> 201

<211> 322

<212> PRT

<213> Artificial sequence

<220>

<223> Synthetic protein

<400> 201

Met Ala Arg Cys Phe Ser Leu Val Leu Leu Leu Thr Ser Ile Trp Thr 1 5 10 15

Thr Arg Leu Leu Val Gln Gly Ser Leu Arg Ala Glu Glu Leu Ser Ile 20 25 30

Gln Val Ser Cys Arg Ile Met Gly Ile Thr Leu Val Ser Lys Lys Ala 35 40 45

Asn Gln Gln Leu Asn Phe Thr Glu Ala Lys Glu Ala Cys Arg Leu Leu 50 55 60

Gly Leu Ser Leu Ala Gly Lys Asp Gln Val Glu Thr Ala Leu Lys Ala 65 70 75 80

Ser Phe Glu Thr Cys Ser Tyr Gly Trp Val Gly Asp Gly Phe Val Val 85 90 95

Ile Ser Arg Ile Ser Pro Asn Pro Lys Cys Gly Lys Asn Gly Val Gly
100 105 110

Val Leu Ile Trp Lys Val Pro Val Ser Arg Gln Phe Ala Ala Tyr Cys 115 120 125

Tyr Asn Ser Ser Asp Thr Trp Thr Asn Ser Cys Ile Pro Glu Ile Ile 130 135 140 Thr Thr Lys Asp Pro Ile Phe Asn Thr Gln Thr Ala Thr Gln Thr Thr

Glu Phe Ile Val Ser Asp Ser Thr Tyr Ser Val Ala Ser Pro Tyr Ser

145

<211> 22 <212> DNA

<213> Artificial Sequence

				165					170					175		
Thr	Ile	Pro	Ala 180	Pro	Thr	Thr	Thr	Pro 185	Pro	Ala	Pro	Ala	Ser 190	Thr	Ser	
Ile	Pro	Arg 195	Arg	Lys	Lys	Leu	Ile 200	Cys	Val	Thr	Glu	Val 205	Phe	Met	Glu	
Thr	Ser 210	Thr	Met	Ser	Thr	Glu 215	Thr	Glu	Pro	Phe	Val 220	Glu	Asn	Lys	Ala	
Ala 225	Phe	Lys	Asn	Glu	Ala 230	Ala	Gly	Phe	Gly	Gly 235	Val	Pro	Thr	Ala	Leu 240	
Leu	Val	Leu	Ala	Leu 245	Leu	Phe	Phe	Gly	Ala 250	Ala	Ala	Gly	Leu	Gly 255	Phe	
Cys	Tyr	Val	Lys 260	Arg	Tyr	Val	Lys	Ala 265	Phe	Pro	Phe	Thr	Asn 270	Lys	Asn	
Gln	Gln	Lys 275	Glu	Met	Ile	Glu	Thr 280	Lys	Val	Val	Lys	Glu 285	Glu	Lys	Ala	
Asn	Asp 290	Ser	Asn	Pro	Asn	Glu 295	Glu	Ser	Lys	Lys	Thr 300	Asp	Lys	Asn	Pro	
Glu 305	Glu	Ser	Lys	Ser	Pro 310	Ser	Lys	Thr	Thr	Val 315	Arg	Сув	Leu	Glu	Ala 320	
Glu	Val															
<21 <21	0> 20 1> 24 2> Di 3> Ai	1 NA	icia	l Sed	quen	ce										
<22 <22	3 > De		_	on o			cial	Seqi	uence	e: S	ynthe	etic				
	0> 20 cttt		tcca	ggtgi	tc a	tgc										2
-21	0 > 20	าว														

```
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 203
                                                                    22
gtcagtgaca gtacctactc gg
<210> 204
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 204
                                                                    24
tggagcagga ggagtagtag tagg
<210> 205
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 205
aggaggeetg taggetgetg ggaetaagtt tggeeggeaa ggaecaagtt
                                                                    50
<210> 206
<211> 1620
<212> DNA
<213> Homo sapiens
<220>
<221> modified_base
<222> (973)
<223> a, t, c or g
<220>
<221> modified_base
<222> (977)
<223> a, t, c or g
<220>
<221> modified_base
<222> (996)
<223> a, t, c or g
<220>
<221> modified_base
```

<222> (1003) <223> a, t, c or g <400> 206 agatggeggt ettggeacet etaattgete tegtgtatte ggtgeegega ettteaegat 60 ggctcgccca accttactac cttctgtcgg ccctgctctc tgctgccttc ctactcgtga 120 ggaaactgcc gccgctctgc cacggtctgc ccacccaacg cgaagacggt aacccgtgtg 180 actttgactg gagagaagtg gagatcctga tgtttctcag tgccattgtg atgatgaaga 240 accgcagatc catcactgtg gagcaacata taggcaacat tttcatgttt agtaaagtgg 300 ccaacacaat tetttette egettggata ttegeatggg cetaetttae ateacaetet 360 gcatagtgtt cctgatgacg tgcaaacccc ccctatatat gggccctgag tatatcaagt 420 acttcaatga taaaaccatt gatgaggaac tagaacggga caagagggtc acttggattg 480 tggagttctt tgccaattgg tctaatgact gccaatcatt tgcccctatc tatgctgacc 540 tctcccttaa atacaactgt acagggctaa attttgggaa ggtggatgtt ggacgctata 600 ctgatgttag tacgcggtac aaagtgagca catcaccct caccaagcaa ctccctaccc 660 tgatcctgtt ccaaggtggc aaggaggcaa tgcggcggcc acagattgac, aagaaaggac 720 gggctgtctc atggaccttc tctgaggaga atgtgatccg agaatttaac ttaaatgagc 780 tataccageg ggccaagaaa ctatcaaagg ctggagacaa tatccctgag gagcagectg 840 tggcttcaac ccccaccaca gtgtcagatg gggaaaacaa gaaggataaa taagatcctc 900 actttggcag tgcttcctct cctgtcaatt ccaggctctt tccataacca caagcctgag 960 gctgcagcct ttnattnatg ttttcccttt ggctgngact ggntggggca gcatgcagct 1020 tetgatttta aagaggeate tagggaattg teaggeacee tacaggaagg cetgecatge 1080 tgtggccaac tgtttcactg gagcaagaaa gagatctcat aggacggagg gggaaatggt 1140 ttccctccaa gcttgggtca gtgtgttaac tgcttatcag ctattcagac atctccatgg 1200 tttctccatg aaactctgtg gtttcatcat tccttcttag ttgacctgca cagcttggtt 1260 agacctagat ttaaccctaa qqtaagatgc tggggtatag aacgctaaga attttccccc 1320 aaggactett getteettaa geeettetgg ettegtttat ggtetteatt aaaagtataa 1380 gcctaacttt gtcgctagtc ctaaggagaa acctttaacc acaaagtttt tatcattgaa 1440 gacaatattg aacaacccc tattttgtgg ggattgagaa ggggtgaata gaggcttgag 1500 actttccttt gtgtggtagg acttggagga gaaatcccct ggactttcac taaccctctg 1560 acatactccc cacacccagt tgatggcttt ccgtaataaa aagattggga tttccttttg 1620 <210> 207 <211> 296 <212> PRT <213> Homo sapiens <400> 207 Met Ala Val Leu Ala Pro Leu Ile Ala Leu Val Tyr Ser Val Pro Arg 1 5 Leu Ser Arg Trp Leu Ala Gln Pro Tyr Tyr Leu Leu Ser Ala Leu Leu Ser Ala Ala Phe Leu Leu Val Arg Lys Leu Pro Pro Leu Cys His Gly 40 Leu Pro Thr Gln Arg Glu Asp Gly Asn Pro Cys Asp Phe Asp Trp Arg Glu Val Glu Ile Leu Met Phe Leu Ser Ala Ile Val Met Met Lys Asn 75

<220>

<400> 208

Arg Arg Ser Ile Thr Val Glu Gln His Ile Gly Asn Ile Phe Met Phe Ser Lys Val Ala Asn Thr Ile Leu Phe Phe Arg Leu Asp Ile Arg Met Gly Leu Leu Tyr Ile Thr Leu Cys Ile Val Phe Leu Met Thr Cys Lys Pro Pro Leu Tyr Met Gly Pro Glu Tyr Ile Lys Tyr Phe Asn Asp Lys Thr Ile Asp Glu Glu Leu Glu Arg Asp Lys Arg Val Thr Trp Ile Val Glu Phe Phe Ala Asn Trp Ser Asn Asp Cys Gln Ser Phe Ala Pro Ile 165 Tyr Ala Asp Leu Ser Leu Lys Tyr Asn Cys Thr Gly Leu Asn Phe Gly 185 Lys Val Asp Val Gly Arg Tyr Thr Asp Val Ser Thr Arg Tyr Lys Val Ser Thr Ser Pro Leu Thr Lys Gln Leu Pro Thr Leu Ile Leu Phe Gln Gly Gly Lys Glu Ala Met Arg Arg Pro Gln Ile Asp Lys Lys Gly Arg Ala Val Ser Trp Thr Phe Ser Glu Glu Asn Val Ile Arg Glu Phe Asn Leu Asn Glu Leu Tyr Gln Arg Ala Lys Lys Leu Ser Lys Ala Gly Asp Asn Ile Pro Glu Glu Gln Pro Val Ala Ser Thr Pro Thr Thr Val Ser Asp Gly Glu Asn Lys Lys Asp Lys 290 295 <210> 208 <211> 24 <212> DNA <213> Artificial Sequence

<223> Description of Artificial Sequence: Synthetic

oligonucleotide probe

gcttggatat tcgcatgggc ctac

<210> 209 <211> 20 <212> DNA <213> Artificial Sequence	
<pre><220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe</pre>	
<400> 209 tggagacaat atccctgagg	20
<210> 210 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 210 aacagttggc cacagcatgg cagg	24
<210> 211 <211> 50 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 211 ccattgatga ggaactagaa cgggacaaga gggtcacttg gattgtggag	50
<210> 212 <211> 1985 <212> DNA <213> Homo sapiens	
<pre><400> 212 ggacageteg cggccccga gagetetage cgtcgaggag ctgcctgggg acgtttgccc tggggccca gcctggccg ggtcaccctg gcatgaggag atgggccttt tgctcctggt cccattgctc ctgctgcccg gctcctacgg actgcccttc tacaacggct tctactactc caacagcgcc aacgaccaga acctaggcaa cggtcatggc aaagacctcc ttaatggagt gaagetggtg gtggagacac ccgaggagac cctgttcacc taccaagggg ccagtgtgat cctgccctgc cgctaccgct acgagccgc cctggtctcc ccgcggcgtg tgcgtgtcaa atggtggaag ctgtcggaga acggggcccc agagaaggac gtgctggtgg ccatcgggct gaggcaccgc tcctttgggg actaccaagg ccgcgtgcac ctgcggcagg acaaagagca tgacgtctcg ctggagatcc aggatctgcg gctggaggac tatgggcgtt accgctgtga ggtcattgac gggctggagg atgaaagcgg tctggtggag ctggagctgc ggggtgtggt</pre>	120 180 240 300 360 420 480 540

```
ctttccttac cagtccccca acgggcgcta ccagttcaac ttccacgagg gccagcaggt 660
ctgtgcagag caggctgcgg tggtggcctc ctttgagcag ctcttccggg cctgggagga 720
gggcctggac tggtgcaacg cgggctggct gcaggatgct acggtgcagt accccatcat 780
gttgccccgg cagccctgcg gtggcccagg cctggcacct ggcgtgcgaa gctacggccc 840
ccgccaccgc cgcctgcacc gctatgatgt attctgcttc gctactgccc tcaaggggcg 900
ggtgtactac ctggagcacc ctgagaagct gacgctgaca gaggcaaggg aggcctgcca 960
ggaagatgat gccacgatcg ccaaggtggg acagctcttt gccgcctgga agttccatgg 1020
cctggaccgc tgcgacgctg gctggctggc agatggcagc gtccgctacc ctgtggttca 1080
cccqcatcct aactgtgggc ccccagagcc tggggtccga agetttggct tccccgaccc 1140
gcagagccgc ttgtacggtg tttactgcta ccgccagcac taggacctgg ggccctcccc 1200
tgccgcattc cctcactggc tgtgtattta ttgagtggtt cgttttccct tgtgggttgg 1260
agccatttta actgttttta tacttctcaa tttaaatttt ctttaaacat ttttttacta 1320
ttttttgtaa agcaaacaga acccaatgcc tccctttgct cctggatgcc ccactccagg 1380
aatcatgett geteeeetgg geeatttgeg gttttgtggg ettetggagg gtteeeegee 1440
atccaggetg gtetecetee ettaaggagg ttggtgeeca gagtgggegg tggcetgtet 1500
agaatgccgc cgggagtccg ggcatggtgg gcacagttct ccctgcccct cagcctgggg 1560
gaagaagagg geeteggggg eeteeggage tgggetttgg geeteteetg eecaceteta 1620
cttctctgtg aagccgctga ccccagtctg cccactgagg ggctagggct ggaagccagt 1680
tctaggcttc caggcgaaat ctgagggaag gaagaaactc ccctccccgt tccccttccc 1740
ctctcggttc caaagaatct gttttgttgt catttgtttc tcctgtttcc ctgtgtgggg 1800
aggggccctc aggtgtgtgt actttggaca ataaatggtg ctatgactgc cttccgccaa 1860
aaaaa
```

```
<210> 213
```

<213> Homo sapiens

<400> 213

Met Gly Leu Leu Leu Val Pro Leu Leu Leu Pro Gly Ser Tyr
1 5 10 15

Gly Leu Pro Phe Tyr Asn Gly Phe Tyr Tyr Ser Asn Ser Ala Asn Asp 20 25 30

Gln Asn Leu Gly Asn Gly His Gly Lys Asp Leu Leu Asn Gly Val Lys

Leu Val Val Glu Thr Pro Glu Glu Thr Leu Phe Thr Tyr Gln Gly Ala
50 55 60

Ser Val Ile Leu Pro Cys Arg Tyr Arg Tyr Glu Pro Ala Leu Val Ser 65 70 75 80

Pro Arg Arg Val Arg Val Lys Trp Trp Lys Leu Ser Glu Asn Gly Ala 85 90 95

Pro Glu Lys Asp Val Leu Val Ala Ile Gly Leu Arg His Arg Ser Phe 100 105 110

Gly Asp Tyr Gln Gly Arg Val His Leu Arg Gln Asp Lys Glu His Asp

<211> 360

<212> PRT

<220>

128

		115					120					125			
Val	Ser 130	Leu	Glu	Ile	Gln	Asp 135	Leu	Arg	Leu	Glu	Asp 140	Tyr	Gly	Arg	туг
Arg 145	Cys	Glu	Val	Ile	Asp 150	Gly	Leu	Glu	Asp	Glu 155	Ser	Gly	Leu	Val	Glu 160
Leu	Glu	Leu	Arg	Gly 165	Val	Val	Phe	Pro	Tyr 170	Gln	Ser	Pro	Asn	Gly 175	Arg
Tyr	Gln	Phe	Asn 180	Phe	His	Glu	Gly	Gln 185	Gln	Val	Cys	Ala	Glu 190	Gln	Ala
Ala	Val	Val 195	Ala	Ser	Phe	Glu	Gln 200	Leu	Phe	Arg	Ala	Trp 205	Glu	Glu	Gly
Leu	Asp 210	Trp	Cys	Asn	Ala	Gly 215	Trp	Leu	Gln	Asp	Ala 220	Thr	Val	Gln	Tyr
Pro 225	Ile	Met	Leu	Pro	Arg 230	Gln	Pro	Cys	Gly	Gly 235	Pro	Gly	Leu	Ala	Pro 240
Gly	Val	Arg	Ser	Tyr 245	Gly	Pro	Arg	His	Arg 250	Arg	Leu	His	Arg	T yr 255	Asp
Val	Phe	Cys	Phe 260	Ala	Thr	Ala	Leu	Lys 265	Gly	Arg	Val	Tyr	Tyr 270	Leu	Glu
His	Pro	Glu 275	Lys	Leu	Thr	Leu	Thr 280	Glu	Ala	Arg	Glu	Ala 285	Cys	Gln	Glu
Asp	Asp 290	Ala	Thr	Ile	Ala	Lys 295	Val	Gly	Gln	Leu	Phe 300	Ala	Ala	Trp	Lys
Phe 305	His	Gly	Leu	Asp	Arg 310	Сув	Asp	Ala	Gly	Trp 315	Leu	Ala	Asp	Gly	Ser 320
Val	Arg	Tyr	Pro	Val 325	Val	His	Pro	His	Pro 330	Asn	Cys	Gly	Pro	Pro 335	Glu
Pro	Gly	Val	Arg 340	Ser	Phe	Gly	Phe	Pro 345	Asp	Pro	Gln	Ser	Arg 350	Leu	Tyr
Gly	Val	Tyr 355	Cys	Tyr	Arg	Gln	His 360								
<211 <212)> 21 l> 18 l> DN l> Ar	B IA	cial	. Sec	quenc	:e									

<223>	Description of Artificial oligonucleotide probe	Sequence:	Synthetic
<400>	214		
tgctt	egeta etgeeete		18
<210>	215		
<211>			
<212>	DNA		
<213>	Artificial Sequence		•
<220>			
	Description of Artificial	Sequence:	Synthetic
	oligonucleotide probe	-	
<400>	215		
	zis tigtg ggttggag		18
	20303 33003343		
<210>			
<211>			
<212>	•		
\213 >	Artificial Sequence		
<220>			
<223>	Description of Artificial oligonucleotide probe	Sequence:	Synthetic
<400>	216		
	iggaa gccagttc		.18
010	0.15		
<210><211>			
<211>			
	Artificial Sequence		
<220>	Description of Artificial	Comiondo	Completie
(223)	oligonucleotide probe	bequence:	Synchecic
	.		
<400>			
agccag	gtgag gaaatgcg		18
<210>	218		
<211>	24		
<212>			
<213>	Artificial Sequence		
<220>			
<223>	Description of Artificial	Sequence:	Synthetic
	oligonucleotide probe		
<400>	218		
	aaagt acacacacct gagg		24

```
<210> 219
<211> 45
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 219
                                                                45
gatgccacga tcgccaaggt gggacagctc tttgccgcct ggaag
<210> 220
<211> 1503
<212> DNA
<213> Homo sapiens
<400> 220
qqaqaqcqqa qcgaagctgg ataacagggg accgatgatg tggcgaccat cagttctgct 60
gcttctgttg ctactgaggc acggggccca ggggaagcca tccccagacg caggccctca 120
tggccagggg agggtgcacc aggcggcccc cctgagcgac gctccccatg atgacgccca 180
cgggaacttc cagtacgacc atgaggcttt cctgggacgg gaagtggcca aggaattcga 240
ccaactcacc ccagaggaaa gccaggcccg tctggggcgg atcgtggacc gcatggaccg 300
cgcgggggac ggcgacggct gggtgtcgct ggccgagctt cgcgcgtgga tcgcgcacac 360
gcagcagegg cacataeggg acteggtgag egeggeetgg gacaegtaeg acaeggaeeg 420
cgacgggcgt gtgggttggg aggagctgcg caacgccacc tatggccact acgcgcccgg 480
tgaagaattt catgacgtgg aggatgcaga gacctacaaa aagatgctgg ctcgggacga 540
gcggcgtttc cgggtggccg accaggatgg ggactcgatg gccactcgag aggagctgac 600
agcetteetg caceeegagg agtteeetea catgegggae ategtgattg etgaaaceet 660
ggaggacctg gacagaaaca aagatggcta tgtccaggtg gaggagtaca tcgcggatct 720
gtactcagcc gagcctgggg aggaggagcc ggcgtgggtg cagacggaga ggcagcagtt 780
ccgggacttc cgggatctga acaaggatgg gcacctggat gggagtgagg tgggccactg 840
ggtgctgccc cctgcccagg accagcccct ggtggaagcc aaccacctgc tgcacgagag 900
cgacacggac aaggatgggc ggctgagcaa agcggaaatc ctgggtaatt ggaacatgtt 960
tgtgggcagt caggccacca actatggcga ggacctgacc cggcaccacg atgagctgtg 1020
agcaccgcgc acctgccaca gcctcagagg cccgcacaat gaccggagga ggggccgctg 1080
tggtctggcc ccctccctgt ccaggccccg caggaggcag atgcagtccc aggcatcctc 1140
ctgcccctgg gctctcaggg accccctggg tcggcttctg tccctgtcac acccccaacc 1200
ccagggaggg gctgtcatag tcccagagga taagcaatac ctatttctga ctgagtctcc 1260
cageceagae ecagggaeee ttggeeecaa geteagetet aagaacegee ecaacecete 1320
cagetecaaa tetgageete caecacatag aetgaaacte eeetggeeee ageeetetee 1380
tgcctggcct ggcctgggac acctectete tgccaggagg caataaaage cagegeeggg 1440
1503
aaa
<210> 221
<211> 328
<212> PRT
<213> Homo sapiens
<400> 221
```

Met Met Trp Arg Pro Ser Val Leu Leu Leu Leu Leu Leu Leu Arg His

新 前 前 前 前 前 前 有 有 前 前 前 前 前 前 前 前 前 前 前
1
1
324
1.
ø
U
ž
224
224

1				5					10					15	
Gly	Ala	Gln	Gly 20	Lys	Pro	Ser	Pro	Asp 25	Ala	Gly	Pro	His	Gly 30	Gln	Gly
Arg	Val	His 35	Gln	Ala	Ala	Pro	Leu 40	Ser	Asp	Ala	Pro	His 45	Asp	Asp	Ala ·
His	Gly 50	Asn	Phe	Gln	Tyr	Asp 55	His	Glu	Ala	Phe	Leu 60	Gly	Arg	Glu	Val
Ala 65	Lys	Glu	Phe	Asp	Gln 70	Leu	Thr	Pro	Glu	Glu 75	Ser	Gln	Ala	Arg	Leu 80
Gly	Arg	Ile	Val	Asp 85	Arg	Met	Asp	Arg	Ala 90	Gly	Asp	Gly	Asp	Gly 95	Trp
Val	Ser	Leu	Ala 100	Glu	Leu	Arg	Ala	Trp 105	Ile	Ala	His	Thr	Gln 110	Gln	Arg
His	Ile	Arg 115	Asp	Ser	Val	Ser	Ala 120	Ala	Trp	Asp	Thr	Tyr 125	Asp	Thr	Asp
Arg	Asp 130	Gly	Arg	Val	Gly	Trp 135	Glu	Glu	Leu	Arg	Asn 140	Ala	Thr	Tyr	Gly
His 145	Tyr	Ala	Pro	Gly	Glu 150	Glu	Phe	His	Asp	Val 155	Glu	Asp	Ala	Glu	Thr 160
Tyr	Lys	Lys	Met	Leu 165	Ala	Arg	Asp	Glu	Arg 170	Arg	Phe	Arg	Val	Ala 175	Asp
Gln	Asp	Gly	Asp 180	Ser	Met	Ala	Thr	Arg 185	Glu	Glu	Leu	Thr	Ala 190	Phe	Leu
His	Pro	Glu 195	Glu	Phe	Pro	His	Met 200	Arg	Asp	Ile	Val	Ile 205	Ala	Glu	Thr
Leu	Glu 210	Asp	Leu	Asp	Arg	Asn 215	Lys	Asp	Gly	Tyr	Val 220	Gln	Val	Glu	Glu
Tyr 225	Ile	Ala	Asp		Tyr 230		Ala	Glu		Gly 235		Glu	Glu	Pro	Ala 240
Trp	Val	Gln	Thr	Glu 245	Arg	Gln	Gln	Phe	Arg 250	Asp	Phe	Arg	Asp	Leu 255	Asn
Lys	Asp	Gly	His 260	Leu	Asp	Gly	Ser	Glu 265	Val	Gly	His	Trp	Val 270	Leu	Pro
Pro	Ala	Gln 275	Asp	Gln	Pro	Leu	Val 280	Glu	Ala	Asn	His	Leu 285	Leu	His	Glu

Ser Asp Thr Asp Lys Asp Gly Arg Leu Ser Ly 290 295	ys Ala Glu Ile Leu Gly 300
Asn Trp Asn Met Phe Val Gly Ser Gln Ala Th 305 310 31	
Leu Thr Arg His His Asp Glu Leu 325	
<210> 222 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: oligonucleotide probe	Synthetic
<400> 222 cgcaggccct catggccagg	20
<210> 223 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: oligonucleotide probe	Synthetic
<400> 223 gaaatcctgg gtaattgg	18
<210> 224 <211> 23 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: oligonucleotide probe	Synthetic
<400> 224 gtgcgcggtg ctcacagctc atc	23
<210> 225 <211> 44 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: oligonucleotide probe	Synthetic

<400> 225 cccccctgag	cgacgctccc	ccatgatgac	gcccacggga	actt		44
<210> 226 <211> 2403 <212> DNA <213> Homo	sapiens					
<400> 226						
ggggccttgc	cttccgcact	cgggcgcagc	cgggtggatc	tcgagcaggt	gcggagcccc	60
gggcggcggg	cgcgggtgcg	agggatccct	gacgcctctg	tccctgtttc	tttgtcgctc	120
ccagcctgtc	tgtcgtcgtt	ttggcgcccc	cgcctccccg	cggtgcgggg	ttgcacaccg	180
atcctgggct	tcgctcgatt	tgccgccgag	gcgcctccca	gacctagagg	ggcgctggcc	240
tggagcagcg	ggtcgtctgt	gtcctctctc	ctctgcgccg	cgcccgggga	tccgaagggt	300
gcggggctct	gaggaggtga	cgcgcggggc	ctcccgcacc	ctggccttgc	ccgcattctc	360
cctctctccc	aggtgtgagc	agcctatcag	tcaccatgtc	cgcagcctgg	atcccggctc	420
tcggcctcgg	tgtgtgtctg	ctgctgctgc	cggggcccgc	gggcagcgag	ggagccgctc	480
ccattgctat	cacatgtttt	accagaggct	tggacatcag	gaaagagaaa	gcagatgtcc	540
tctgcccagg	gggctgccct	cttgaggaat	tctctgtgta	tgggaacata	gtatatgctt	600
ctgtatcgag	catatgtggg	gctgctgtcc	acaggggagt	aatcagcaac	tcagggggac	660
ctgtacgagt	ctatagccta	cctggtcgag	aaaactattc	ctcagtagat	gccaatggca	720
tccagtctca	aatgctttct	agatggtctg	cttctttcac	agtaactaaa	ggcaaaagta	780
gtacacagga	ggccacagga	caagcagtgt	ccacagcaca	tccaccaaca	ggtaaacgac	840
taaagaaaac	acccgagaag	aaaactggca	ataaagattg	taaagcagac	attgcatttc	900
tgattgatgg	aagctttaat	attgggcagc	gccgatttaa	tttacagaag	aattttgttg	960
gaaaagtggc	tctaatgttg	ggaattggaa	cagaaggacc	acatgtgggc	cttgttcaag	1020
ccagtgaaca	tcccaaaata	gaattttact	tgaaaaactt	tacatcagcc	aaagatgttt	1080
tgtttgccat	aaaggaagta	ggtttcagag	ggggtaattc	caatacagga	aaagccttga	1140
agcatactgc	tcagaaattc	ttcacggtag	atgctggagt	aagaaaaggg	atccccaaag	1200
tggtggtggt	atttattgat	ggttggcctt	ctgatgacat	cgaggaagca	ggcattgtgg	1260
ccagagagtt	tggtgtcaat	gtatttatag	tttctgtggc	caagcctatc	cctgaagaac	1320
tggggatggt	tcaggatgtc	acatttgttg	acaaggctgt	ctgtcggaat	aatggcttct	1380
tctcttacca	catgcccaac	tggtttggca	ccacaaaata	cgtaaagcct	ctggtacaga	1440
agctgtgcac	tcatgaacaa	atgatgtgca	gcaagacctg	ttataactca	gtgaacattg	1500
cctttctaat	tgatggctcc	agcagtgttg	gagatagcaa	tttccgcctc	atgcttgaat	1560
ttgtttccaa	catagccaag	acttttgaaa	tctcggacat	tggtgccaag	atagctgctg	1620
tacagtttac	ttatgatcag	cgcacggagt	tcagtttcac	tgactatagc	accaaagaga	1680
atgtcctagc	tgtcatcaga	aacatccgct	atatgagtgg	tggaacagct	actggtgatg	1740
ccatttcctt	cactgttaga	aatgtgtttg	gccctataag	ggagagcccc	aacaagaact	1800
tcctagtaat	tgtcacagat	gggcagtcct	atgatgatgt	ccaaggccct	gcagctgctg	1860
cacatgatgc	aggaatcact	atcttctctg	ttggtgtggc	ttgggcacct	ctggatgacc	1920
tgaaagatat	ggcttctaaa	ccgaaggagt	ctcacgcttt	cttcacaaga	gagttcacag	1980
gattagaacc	aattgtttct	gatgtcatca	gaggcatttg	tagagatttc	ttagaatccc	2040
agcaataatg	gtaacatttt	gacaactgaa	agaaaaagta	caaggggatc	cagtgtgtaa	2100
attgtattct	cataatactg	aaatgcttta	gcatactaga	atcagataca	aaactattaa	5100
gtatgtcaac	agccatttag	gcaaataagc	actcctttaa	agccgctgcc	ttctggttac	2220
aatttacagt	gtactttgtt	aaaaacactg	ctgaggcttc	ataatcatgg	ctcttagaaa	2280
ctcaggaaag	aggagataat	gtggattaaa	accttaagag	ttctaaccat	gcctactaaa	2340
tgtacagata	tgcaaattcc	atagctcaat	aaaagaatct	gatacttaga	ccaaaaaaaa	
aaa						2403

<211> 550

<212> PRT

<213> Homo sapiens

<400> 227

Met Ser Ala Ala Trp Ile Pro Ala Leu Gly Leu Gly Val Cys Leu Leu

1 5 10 15

Leu Leu Pro Gly Pro Ala Gly Ser Glu Gly Ala Ala Pro Ile Ala Ile 20 25 30

Thr Cys Phe Thr Arg Gly Leu Asp Ile Arg Lys Glu Lys Ala Asp Val\$35\$ 40 45

Leu Cys Pro Gly Gly Cys Pro Leu Glu Glu Phe Ser Val Tyr Gly Asn 50 55 60

Ile Val Tyr Ala Ser Val Ser Ser Ile Cys Gly Ala Ala Val His Arg
65 70 75 80

Gly Val Ile Ser Asn Ser Gly Gly Pro Val Arg Val Tyr Ser Leu Pro 85 90 95

Gly Arg Glu Asn Tyr Ser Ser Val Asp Ala Asn Gly Ile Gln Ser Gln
100 105 110

Met Leu Ser Arg Trp Ser Ala Ser Phe Thr Val Thr Lys Gly Lys Ser 115 120 125

Ser Thr Gln Glu Ala Thr Gly Gln Ala Val Ser Thr Ala His Pro Pro 130 135 140

Thr Gly Lys Arg Leu Lys Lys Thr Pro Glu Lys Lys Thr Gly Asn Lys 145 150 155 160

Asp Cys Lys Ala Asp Ile Ala Phe Leu Ile Asp Gly Ser Phe Asn Ile 165 170 175

Gly Gln Arg Arg Phe Asn Leu Gln Lys Asn Phe Val Gly Lys Val Ala 180 185 190

Leu Met Leu Gly Ile Gly Thr Glu Gly Pro His Val Gly Leu Val Gln
195 200 205

Ala Ser Glu His Pro Lys Ile Glu Phe Tyr Leu Lys Asn Phe Thr Ser 210 215 220

Ala Lys Asp Val Leu Phe Ala Ile Lys Glu Val Gly Phe Arg Gly Gly 225 230 235 240

Asn Ser Asn Thr Gly Lys Ala Leu Lys His Thr Ala Gln Lys Phe Phe 245 250 255

Thr Val Asp Ala Gly Val Arg Lys Gly Ile Pro Lys Val Val Val Val 260 Phe Ile Asp Gly Trp Pro Ser Asp Asp Ile Glu Glu Ala Gly Ile Val Ala Arg Glu Phe Gly Val Asn Val Phe Ile Val Ser Val Ala Lys Pro 295 Ile Pro Glu Glu Leu Gly Met Val Gln Asp Val Thr Phe Val Asp Lys 315 Ala Val Cys Arg Asn Asn Gly Phe Phe Ser Tyr His Met Pro Asn Trp 330 Phe Gly Thr Thr Lys Tyr Val Lys Pro Leu Val Gln Lys Leu Cys Thr 345 His Glu Gln Met Met Cys Ser Lys Thr Cys Tyr Asn Ser Val Asn Ile Ala Phe Leu Ile Asp Gly Ser Ser Ser Val Gly Asp Ser Asn Phe Arg Leu Met Leu Glu Phe Val Ser Asn Ile Ala Lys Thr Phe Glu Ile Ser Asp Ile Gly Ala Lys Ile Ala Ala Val Gln Phe Thr Tyr Asp Gln Arg Thr Glu Phe Ser Phe Thr Asp Tyr Ser Thr Lys Glu Asn Val Leu Ala 420 425 Val Ile Arg Asn Ile Arg Tyr Met Ser Gly Gly Thr Ala Thr Gly Asp Ala Ile Ser Phe Thr Val Arg Asn Val Phe Gly Pro Ile Arg Glu Ser Pro Asn Lys Asn Phe Leu Val Ile Val Thr Asp Gly Gln Ser Tyr Asp Asp Val Gln Gly Pro Ala Ala Ala Ala His Asp Ala Gly Ile Thr Ile Phe Ser Val Gly Val Ala Trp Ala Pro Leu Asp Asp Leu Lys Asp Met 505 Ala Ser Lys Pro Lys Glu Ser His Ala Phe Phe Thr Arg Glu Phe Thr Gly Leu Glu Pro Ile Val Ser Asp Val Ile Arg Gly Ile Cys Arg Asp 535 540

Phe Leu Glu Ser Gln Gln 545 550	
<210> 228 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 228 tggtctcgca caccgatc	18
<210> 229 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 229 ctgctgtcca caggggag	18
<210> 230 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 230 cettgaagea tactgete	18
<210> 231 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 231 gagatagcaa tttccgcc	18
<210> 232	

```
<211> 18
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 232
                                                                   18
ttcctcaaga gggcagcc
<210> 233
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 233
cttggcacca atgtccgaga tttc
                                                                   24
<210> 234
<211> 45
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
                                                                   45
gctctgagga aggtgacgcg cggggcctcc gaacccttgg ccttg
<210> 235
<211> 2586
<212> DNA
<213> Homo sapiens
<400> 235
egeogegete eegeaceege ggeeegeeea eegegeeget eeegeatetg eaceegeage 60
ccggcggcct cccggcggga gcgagcagat ccagtccggc ccgcagcgca actcggtcca 120
gtcggggcgg cggctgcggg cgcagagcgg agatgcagcg gcttggggcc accctgctgt 180
geetgetget ggeggeggeg gteeceaegg ceeeeggee egeteegaeg gegaeetegg 240
ctccagtcaa gcccggcccg gctctcagct acccgcagga ggaggccacc ctcaatgaga 300
tgttccgcga ggttgaggaa ctgatggagg acacgcagca caaattgcgc agcgcggtgg 360
aagagatgga ggcagaagaa gctgctgcta aagcatcatc agaagtgaac ctggcaaact 420
tacctcccag ctatcacaat gagaccaaca cagacacgaa ggttggaaat aataccatcc 480
atgtgcaccg agaaattcac aagataacca acaaccagac tggacaaatg gtcttttcag 540
agacagttat cacatetgtg ggagacgaag aaggcagaag gagecacgag tgcateateg 600
acgaggactg tgggcccagc atgtactgcc agtttgccag cttccagtac acctgccagc 660
catgoogggg ccagaggatg ctctgcaccc gggacagtga gtgctgtgga gaccagctgt 720
```

```
qtqtctqqqq tcactgcacc aaaatggcca ccaggggcag caatgggacc atctgtgaca 780
accagaggga ctgccagccg gggctgtgct gtgccttcca gagaggcctg ctgttccctg 840
tgtgcacacc cctgcccgtg gagggcgagc tttgccatga ccccgccagc cggcttctgg 900
acctcatcac ctgggagcta gagcctgatg gagccttgga ccgatgccct tgtgccagtg 960
qcctcctctg ccagccccac agccacagcc tggtgtatgt gtgcaagccg accttcgtgg 1020
ggagccgtga ccaagatggg gagatcctgc tgcccagaga ggtccccgat gagtatgaag 1080
ttggcagctt catggaggag gtgcgccagg agctggagga cctggagagg agcctgactg 1140
aagagatggc gctgggggag cctgcggctg ccgccgctgc actgctggga ggggaagaga 1200
tttagatctg gaccaggctg tgggtagatg tgcaatagaa atagctaatt tatttcccca 1260
ggtgtgtgct ttaggcgtgg gctgaccagg cttcttccta catcttcttc ccagtaagtt 1320
tcccctctgg cttgacagca tgaggtgttg tgcatttgtt cagctccccc aggctgttct 1380
ccaggcttca cagtctggtg cttgggagag tcaggcaggg ttaaactgca ggagcagttt 1440
gccacccctg tccagattat tggctgcttt gcctctacca gttggcagac agccgtttgt 1500
tctacatggc tttgataatt gtttgagggg aggagatgga aacaatgtgg agtctccctc 1560
tgattggttt tggggaaatg tggagaagag tgccctgctt tgcaaacatc aacctggcaa 1620
aaatgcaaca aatgaatttt ccacgcagtt ctttccatgg gcataggtaa gctgtgcctt 1680
cagctgttgc agatgaaatg ttctgttcac cctgcattac atgtgtttat tcatccagca 1740
gtgttgctca gctcctacct ctgtgccagg gcagcatttt catatccaag atcaattccc 1800
teteteagea cageetgggg agggggteat tgtteteete gteeateagg gateteagag 1860
gctcagagac tgcaagctgc ttgcccaagt cacacagcta gtgaagacca gagcagtttc 1920
atctggttgt gactctaagc tcagtgctct ctccactacc ccacaccagc cttggtgcca 1980
ccaaaagtgc tccccaaaag gaaggagaat gggatttttc ttgaggcatg cacatctgga 2040
attaaggtca aactaattct cacatccctc taaaagtaaa ctactgttag gaacagcagt 2100
gttctcacag tgtggggcag ccgtccttct aatgaagaca atgatattga cactgtccct 2160
ctttggcagt tgcattagta actttgaaag gtatatgact gagcgtagca tacaggttaa 2220
cctgcagaaa cagtacttag gtaattgtag ggcgaggatt ataaatgaaa tttgcaaaat 2280
cacttagcag caactgaaga caattatcaa ccacgtggag aaaatcaaac cgagcagggc 2340
tgtgtgaaac atggttgtaa tatgcgactg cgaacactga actctacgcc actccacaaa 2400
tgatgttttc aggtgtcatg gactgttgcc accatgtatt catccagagt tcttaaagtt 2460
taaagttgca catgattgta taagcatgct ttctttgagt tttaaattat gtataaacat 2520
aaaaaa
```

```
<210> 236
```

<400> 236

```
Met Gln Arg Leu Gly Ala Thr Leu Leu Cys Leu Leu Leu Ala Ala Ala 1 5 10 15
```

<211> 350

<212> PRT

<213> Homo sapiens

Val Pro Thr Ala Pro Ala Pro Ala Pro Thr Ala Thr Ser Ala Pro Val 20 25 30

Lys Pro Gly Pro Ala Leu Ser Tyr Pro Gln Glu Glu Ala Thr Leu Asn 35 40 45

Glu Met Phe Arg Glu Val Glu Glu Leu Met Glu Asp Thr Gln His Lys
50 60

Leu Arg Ser Ala Val Glu Glu Met Glu Ala Glu Glu Ala Ala Ala Lys
65 70 75 80

<210> 237

Ala	Ser	Ser	Glu	Val 85	Asn	Leu	Ala	Asn	Leu 90	Pro	Pro	Ser	Tyr	His 95	Asn
Glu	Thr	Asn	Thr 100	Asp	Thr	Lys	Val	Gly 105	Asn	Asn	Thr	Ile	His 110	Val	His
Arg	Glu	Ile 115	His	Lys	Ile	Thr	Asn 120	Asn	Gln	Thr	Gly	Gln 125	Met	Val	Phe
Ser	Glu 130	Thr	Val	Ile	Thr	Ser 135	Val	Gly	Asp	Glu	Glu 140	Gly	Arg	Arg	Ser
His 145	Glu	Cys	Ile	Ile	Asp 150	Glu	Asp	Cys	Gly	Pro 155	Ser	Met	Tyr	Cys	Gln 160
Phe	Ala	Ser	Phe	Gln 165	Tyr	Thr	Cys	Gln	Pro 170	Cys	Arg	Gly	Gln	Arg 175	Met
Leu	Cys	Thr	Arg 180	Asp	Ser	Glu	Cys	Cys 185	Gly	Asp	Gln	Leu	Cys 190	Val	Trp
Gly	His	Cys 195	Thr	Lys	Met	Ala	Thr 200	Arg	Gly	Ser	Asn	Gly 205	Thr	Ile	Cys
Asp	Asn 210	Gln	Arg	Asp	Cys	Gln 215	Pro	Gly	Leu	Cys	Cys 220	Ala	Phe	Gln	Arg
Gly 225	Leu	Leu	Phe	Pro	Val 230	Cys	Thr	Pro	Leu	Pro 235	Val	Glu	Gly	Glu	Leu 240
Cys	His	Asp	Pro	Ala 245	Ser	Arg	Leu	Leu	Asp 250	Leu	Ile	Thr	Trp	Glu 255	Leu
Glu	Pro	Asp	Gly 260	Ala	Leu	Asp	Arg	Cys 265	Pro	Cys	Ala	Ser	Gly 270	Leu	Leu
Суз	Gln	Pro 275	His	Ser	His	Ser	Leu 280	Val	Tyr	Val	Cys	Lys 285	Pro	Thr	Phe
Val	Gly 290	Ser	Arg	Asp	Gln	Asp 295	Gly	Glu	Ile	Leu	Leu 300	Pro	Arg	Glu	Val
Pro 305	Asp ·	Glu	Tyr	Glu	Val 310	Gly	Ser	Phe	Met	Glu 315	Glu	Val	Arg	Gln	Glu 320
Leu	Glu	Asp	Leu	Glu 325	Arg	Ser	Leu	Thr	Glu 330	Glu	Met	Ala	Leu	Gly 335	Glu
Pro	Ala	Ala	Ala 340	Ala	Ala	Ala	Leu	Leu 345	Gly	Gly	Glu	Glu	Ile 350		

<211> 17 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic oligonucleotide probe	
<400> 237 ggagctgcac cccttgc	17
<210> 238 <211> 49 <212> DNA	
<213> Artificial Sequence	
<220> <223> Synthetic Oligonucleotide Probe	
<400> 238 ggaggactgt gccaccatga gagactcttc aaacccaagg caaaattgg	49
<210> 239 <211> 24	
<211> 24 <212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Oligonucleotide Probe	
<400> 239	
gcagagegga gatgeagegg ettg	24
<210> 240	
<211> 18	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Oligonucleotide Probe	
<400> 240	
ttggcagctt catggagg	18
<210> 241	
<211> 18	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synthetic Oligonucleotide Probe	
<400> 241 cctgggcaaa aatgcaac	18
-	

<210> 242 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Oligonucleotide Probe	
<400> 242 ctccagetee tggegeacet cete	24
<210> 243 <211> 45 <212> DNA <213> Artificial Sequence	
<220> <223> Synthetic Oligonucleotide Probe	
<400> 243 ggctctcagc taccgcgcag gagcgaggcc accctcaatg agatg	45
<210> 244 <211> 3679 <212> DNA <213> Homo Sapien	
<400> 244	
aaggaggctg ggaggaaaga ggtaagaaag gttagagaac ctacctcaca	50
tetetetggg eteagaagga etetgaagat aacaataatt teageceate	100
cacteteett eeeteecaaa cacacatgtg catgtacaca cacacataca	150
cacacataca cetteetete etteaetgaa gaeteaeagt caeteaetet	200
gtgagcaggt catagaaaag gacactaaag ccttaaggac aggcctggcc	250
attacctctg cagctccttt ggcttgttga gtcaaaaaac atgggagggg	300
ccaggcacgg tgactcacac ctgtaatccc agcattttgg gagaccgagg	350
tgagcagatc acttgaggtc aggagttcga gaccagcctg gccaacatgg	400
agaaaccccc atctctacta aaaatacaaa aattagccag gagtggtggc	
aggtgcctgt aatcccagct actcaggtgg ctgagccagg agaatcgctt	
gaatccagga ggcggaggat gcagtcagct gagtgcaccg ctgcactcca	
gertagataa cagaatgaga etetatetea aacaaacaaa cacqqqaqqa	

ggggtagata ctgcttctct gcaacctcct taactctgca tcctcttctt 650 ccagggctgc ccctgatggg gcctggcaat gactgagcag gcccagcccc 700 agaggacaag gaagagaagg catattgagg agggcaagaa gtgacgcccg 750 gtgtagaatg actgccctgg gagggtggtt ccttgggccc tggcagggtt 800 gctgaccctt accctgcaaa acacaaagag caggactcca gactctcctt 850 gtgaatggtc ccctgccctg cagctccacc atgaggcttc tcgtggcccc 900 actettgeta gettgggtgg etggtgecae tgecaetgtg eeegtggtae 950 cctggcatgt tccctgcccc cctcagtgtg cctgccagat ccggccctgg 1000 tatacgcccc gctcgtccta ccgcgaggct accactgtgg actgcaatga 1050 cctattcctg acggcagtcc ccccggcact ccccgcaggc acacagaccc 1100 tgctcctgca gagcaacagc attgtccgtg tggaccagag tgagctgggc 1150 tacctggcca atctcacaga gctggacctg tcccagaaca gcttttcgga 1200 tgcccgagac tgtgatttcc atgccctgcc ccagctgctg agcctgcacc 1250 tagaggagaa ccagctgacc cggctggagg accacagctt tgcagggctg 1300 gccagcctac aggaactcta tctcaaccac aaccagctct accgcatcgc 1350 ccccagggcc ttttctggcc tcagcaactt gctgcggctg cacctcaact 1400 ccaacctcct gagggccatt gacagccgct ggtttgaaat gctgcccaac 1450 ttggagatac tcatgattgg cggcaacaag gtagatgcca tcctggacat 1500 gaacttccgg cccctggcca acctgcgtag cctggtgcta gcaggcatga 1550 acctgcggga gatctccgac tatgccctgg aggggctgca aagcctggag 1600 agcctctcct tctatgacaa ccagctggcc cgggtgccca ggcgggcact 1650 ggaacaggtg cccgggctca agttcctaga cctcaacaag aacccgctcc 1700 agegggtagg geegggggae tttgeeaaca tgetgeaect taaggagetg 1750 ggactgaaca acatggagga gctggtctcc atcgacaagt ttgccctggt 1800 gaacctcccc gagctgacca agctggacat caccaataac ccacggctgt 1850 cetteateca eccegegee ttecaceace tgececagat ggagacecte 1900 atgctcaaca acaacgctct cagtgccttg caccagcaga cggtggagtc 1950

cctgcccaac ctgcaggagg taggtctcca cggcaacccc atccgctgtg 2000 actgtgtcat ccgctgggcc aatgccacgg gcacccgtgt ccgcttcatc 2050 gageegeaat ecaecetgtg tgeggageet eeggacetee agegeeteee 2100 ggtccgtgag gtgcccttcc gggagatgac ggaccactgt ttgcccctca 2150 tetececaeg aagetteece eeaageetee aggtageeag tggagagage 2200 atggtgctgc attgccgggc actggccgaa cccgaacccg agatctactg 2250 ggtcactcca gctgggcttc gactgacacc tgcccatgca ggcaggaggt 2300 accgggtgta ccccgagggg accctggagc tgcggagggt gacagcagaa 2350 gaggcagggc tatacacctg tgtggcccag aacctggtgg gggctgacac 2400 taagacggtt agtgtggttg tgggccgtgc tctcctccag ccaggcaggg 2450 acgaaggaca ggggctggag ctccgggtgc aggagaccca cccctatcac 2500 atcctgctat cttgggtcac cccacccaac acagtgtcca ccaacctcac 2550 ctggtccagt gcctcctccc tccggggcca gggggccaca gctctggccc 2600 gcctgcctcg gggaacccac agctacaaca ttacccgcct ccttcaggcc 2650 acggagtact gggcctgcct gcaagtggcc tttgctgatg cccacaccca 2700 gttggcttgt gtatgggcca ggaccaaaga ggccacttct tgccacagag 2750 ccttagggga tcgtcctggg ctcattgcca tcctggctct cgctgtcctt 2800 ctcctggcag ctgggctagc ggcccacctt ggcacaggcc aacccaggaa 2850 gggtgtgggt gggaggcggc ctctccctcc agcctgggct ttctggggct 2900 ggagtgcccc ttctgtccgg gttgtgtctg ctcccctcgt cctgccctgg 2950 aatccaggga ggaagctgcc cagatcctca gaaggggaga cactgttgcc 3000 accattgtct caaaattctt gaagctcagc ctgttctcag cagtagagaa 3050 atcactagga ctacttttta ccaaaagaga agcagtctgg gccagatgcc 3100 ctgccaggaa agggacatgg acccacgtgc ttgaggcctg gcagctgggc 3150 caagacagat ggggctttgt ggccctgggg gtgcttctgc agccttgaaa 3200 aagttgccct tacctcctag ggtcacctct gctgccattc tgaggaacat 3250

ctccaaggaa caggaggac tttggctaga gcctcctgcc tccccatctt 3300 ctctctgccc agaggctcct gggcctggct tggctgtccc ctacctgtgt 3350 ccccgggctg caccccttcc tcttctttt ctctgtacag tctcagttgc 3400 ttgctcttgt gcctcctggg caagggctga aggaggccac tccatctcac 3450 ctcggggggc tgccctcaat gtgggagtga ccccagccag atctgaagga 3500 catttgggag agggatgcc aggaacgcct catctcagca gcctgggctc 3550 ggcattccga agctgacttt ctataggcaa ttttgtacct ttgtggagaa 3600 atgtgtcacc tcccccaacc cgattcactc ttttctcctg ttttgtaaaa 3650 aataaaaata aataataaca ataaaaaaa 3679

<210> 245

<211> 713

<212> PRT

<213> Homo Sapien

<400> 245

Met Arg Leu Leu Val Ala Pro Leu Leu Leu Ala Trp Val Ala Gly
1 5 10 15

Ala Thr Ala Thr Val Pro Val Val Pro Trp His Val Pro Cys Pro
20 25 30

Pro Gln Cys Ala Cys Gln Ile Arg Pro Trp Tyr Thr Pro Arg Ser 35 40 45

Ser Tyr Arg Glu Ala Thr Thr Val Asp Cys Asn Asp Leu Phe Leu
50 55 60

Thr Ala Val Pro Pro Ala Leu Pro Ala Gly Thr Gln Thr Leu Leu 65 70 75

Leu Gln Ser Asn Ser Ile Val Arg Val Asp Gln Ser Glu Leu Gly
80 85 90

Tyr Leu Ala Asn Leu Thr Glu Leu Asp Leu Ser Gln Asn Ser Phe
95 100 105

Ser Asp Ala Arg Asp Cys Asp Phe His Ala Leu Pro Gln Leu Leu 110 115 120

Ser Leu His Leu Glu Glu Asn Gln Leu Thr Arg Leu Glu Asp His 125 130 135

Ser Phe Ala Gly Leu Ala Ser Leu Gln Glu Leu Tyr Leu Asn His 140 145 150

Asn	Gln	Leu	Tyr	Arg 155	Ile	Ala	Pro	Arg	Ala 160	Phe	Ser	Gly	Leu	Ser 165
Asn	Leu	Leu	Arg	Leu 170	His	Leu	Asn	Ser	Asn 175	Leu	Leu	Arg	Ala	Ile 180
Asp	Ser	Arg	Trp	Phe 185	Glu	Met	Leu	Pro	Asn 190	Leu	Glu	Ile	Leu	Met 195
Ile	Gly	Gly	Asn	Lys 200	Val	Asp	Ala	Ile	Leu 205	Asp	Met	Asn	Phe	Arg 210
Pro	Leu	Ala	Asn	Leu 215	Arg	Ser	Leu	Val	Leu 220	Ala	Gly	Met	Asn	Leu 225
Arg	Glu	Ile	Ser	Asp 230	Tyr	Ala	Leu	Glu	Gly 235	Leu	Gln	Ser	Leu	Glu 240
Ser	Leu	Ser	Phe	Tyr 245	Asp	Asn	Gln	Leu	Ala 250	Arg	Val	Pro	Arg	Arg 255
Ala	Leu	Glu	Gln	Val 260	Pro	Gly	Leu	Lys	Phe 265	Leu	Asp	Leu	Asn	Lys 270
Asn	Pro	Leu	Gln	Arg 275	Val	Gly	Pro	Gly	Asp 280	Phe	Ala	Asn	Met	Leu 285
His	Leu	Lys	Glu	Leu 290	Gly	Leu	Asn	Asn	Met 295	Glu	Glu	Leu	Val	Ser 300
Ile	Asp	Lys	Phe	Ala 305	Leu	Val	Asn	Leu	Pro 310	Glu	Leu	Thr	Lys	Leu 315
Asp	Ile	Thr	Asn	Asn 320	Pro	Arg	Leu	Ser	Phe 325	Ile	His	Pro	Arg	Ala 330
Phe	His	His	Leu	Pro 335	Gln	Met	Glu	Thr	Leu 340	Met	Leu	Asn	Asn	Asn 345
Ala	Leu	Ser	Ala	Leu 350	His	Gln	Gln	Thr	Val 355	Glu	Ser	Leu	Pro	Asn 360
Leu	Gln	Glu	Val	Gly 365	Leu	His	Gly	Asn	Pro 370	Ile	Arg	Cys	Asp	Cys 375
Val	Ile	Arg	Trp	Ala 380	Asn	Ala	Thr	Gly	Thr 385	Arg	Val	Arg	Phe	Ile 390
Glu	Pro	Gln	Ser	Thr 395	Leu	Cys	Ala	Glu	Pro 400	Pro	Asp	Leu	Gln	Arg 405
Leu	Pro	Val	Arg	Glu	Val	Pro	Phe	Arg	Glu	Met	Thr	Asp	His	Cys

	410		415		420
Leu Pro Leu I		Arg Ser F	Phe Pro Pro 430	Ser Leu Gln	Val 435
Ala Ser Gly G	lu Ser Met 440	Val Leu H	His Cys Arg 445	Ala Leu Ala	Glu 450
Pro Glu Pro G	lu Ile Tyr 455	Trp Val T	Thr Pro Ala 460	Gly Leu Arg	Leu 465
Thr Pro Ala H	is Ala Gly 470	Arg Arg T	Tyr Arg Val 475	Tyr Pro Glu	Gly 480
Thr Leu Glu L	eu Arg Arg 485	Val Thr A	Ala Glu Glu 490	Ala Gly Leu	Tyr 495
Thr Cys Val A	la Gln Asn 500	Leu Val (Gly Ala Asp 505	Thr Lys Thr	Val 510
Ser Val Val V	al Gly Arg 515	Ala Leu I	Leu Gln Pro 520	Gly Arg Asp	Glu 525
Gly Gln Gly L	eu Glu Leu 530	Arg Val (Gln Glu Thr 535	His Pro Tyr	His 540
Ile Leu Leu S	er Trp Val 545	Thr Pro I	Pro Asn Thr 550	Val Ser Thr	Asn 555
Leu Thr Trp S	er Ser Ala 560	Ser Ser I	Leu Arg Gly 565	Gln Gly Ala	Thr 570
Ala Leu Ala A	rg Leu Pro 575	Arg Gly T	Thr His Ser 580	Tyr Asn Ile	Thr 585
Arg Leu Leu G	ln Ala Thr 590	Glu Tyr 1	Frp Ala Cys 595	Leu Gln Val	Ala 600
Phe Ala Asp A	la His Thr 605	Gln Leu A	Ala Cys Val 610	Trp Ala Arg	Thr 615
Lys Glu Ala T	hr Ser Cys 620	His Arg A	Ala Leu Gly 625	Asp Arg Pro	Gly 630
Leu Ile Ala I	le Leu Ala 635	Leu Ala V	Val Leu Leu 640	Leu Ala Ala	Gly 645
Leu Ala Ala H	is Leu Gly 650	Thr Gly (Gln Pro Arg 655	Lys Gly Val	Gly 660
Gly Arg Arg P	ro Leu Pro 665	Pro Ala 1	Trp Ala Phe 670	Trp Gly Trp	Ser 675

Ala Pro Ser Val Arg Val Val Ser Ala Pro Leu Val Leu Pro Trp
680 685 690

Asn Pro Gly Arg Lys Leu Pro Arg Ser Ser Glu Gly Glu Thr Leu 695 700 705

Leu Pro Pro Leu Ser Gln Asn Ser 710

<210> 246

<211> 22

<212> DNA

<213> Artificial Sequence

<220s

<223> Synthetic Oligonucleotide Probe

<400> 246

aacaaggtaa gatgccatcc tg 22

<210> 247

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 247

aaacttgtcg atggagacca gctc 24

<210> 248

<211> 45

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 248

aggggctgca aagcctggag agcctctcct tctatgacaa ccagc 45

<210> 249

<211> 3401

<212> DNA

<213> Homo Sapien

<400> 249

gcaagccaag gcgctgtttg agaaggtgaa gaagttccgg acccatgtgg 50 aggagggga cattgtgtac cgcctctaca tgcggcagac catcatcaag 100

gtgatcaagt tcatcctcat catctgctac accgtctact acgtgcacaa 150

catcaagttc gacgtggact gcaccgtgga cattgagagc ctgacgggct 200 accgcaccta ccgctgtgcc caccccctgg ccacactctt caagatcctg 250 gegteettet acateageet agteatette taeggeetea tetgeatgta 300 cacactgtgg tggatgctac ggcgctccct caagaagtac tcgtttgagt 350 cgatccgtga ggagagcagc tacagcgaca tccccgacgt caagaacgac 400 ttcgccttca tgctgcacct cattgaccaa tacgacccgc tctactccaa 450 gegettegee gtetteetgt eggaggtgag tgagaacaag etgeggeage 500 tgaacctcaa caacgagtgg acgctggaca agctccggca gcggctcacc 550 aagaacgcgc aggacaagct ggagctgcac ctgttcatgc tcagtggcat 600 ccctgacact gtgtttgacc tggtggagct ggaggtcctc aagctggagc 650 tgatccccga cgtgaccatc ccgcccagca ttgcccagct cacgggcctc 700 aaggagetgt ggetetacea eacageggee aagattgaag egeetgeget 750 ggccttcctg cgcgagaacc tgcgggcgct gcacatcaag ttcaccgaca 800 tcaaggagat cccgctgtgg atctatagcc tgaagacact ggaggagctg 850 cacctgacgg gcaacctgag cgcggagaac aaccgctaca tcgtcatcga 900 cgggctgcgg gagctcaaac gcctcaaggt gctgcggctc aagagcaacc 950 taagcaagct gccacaggtg gtcacagatg tgggcgtgca cctgcagaag 1000 ctgtccatca acaatgaggg caccaagctc atcgtcctca acagcctcaa 1050 gaagatggcg aacctgactg agctggagct gatccgctgc gacctggagc 1100 gcatccccca ctccatcttc agcctccaca acctgcagga gattgacctc 1150 aaggacaaca acctcaagac catcgaggag atcatcagct tccagcacct 1200 gcaccgcctc acctgcctta agctgtggta caaccacatc gcctacatcc 1250 ccatccagat cggcaacctc accaacctgg agcgcctcta cctgaaccgc 1300 aacaagatcg agaagatccc cacccagctc ttctactgcc gcaagctgcg 1350 ctacctggac ctcagccaca acaacctgac cttcctccct gccgacatcg 1400 gcctcctgca gaacctccag aacctagcca tcacggccaa ccggatcgag 1450

acgctccctc	cggagctctt	ccagtgccgg	aagctgcggg	ccctgcacct	1500
gggcaacaac	gtgctgcagt	cactgccctc	cagggtgggc	gagctgacca	1550
acctgacgca	gatcgagctg	cggggcaacc	ggctggagtg	cctgcctgtg	1600
gagctgggcg	agtgcccact	gctcaagcgc	agcggcttgg	tggtggagga	1650
ggacctgttc	aacacactgc	cacccgaggt	gaaggagcgg	ctgtggaggg	1700
ctgacaagga	gcaggcctga	gcgaggccgg	cccagcacag	caagcagcag	1750
gaccgctgcc	cagtcctcag	gcccggaggg	gcaggcctag	cttctcccag	1800
aactcccgga	cagccaggac	agcctcgcgg	ctgggcagga	gcctggggcc	1850
gcttgtgagt	caggccagag	cgagaggaca	gtatctgtgg	ggctggcccc	1900
ttttctccct	ctgagactca	cgtcccccag	ggcaagtgct	tgtggaggag	1950
agcaagtctc	aagagcgcag	tatttggata	atcagggtct	cctccctgga	2000
ggccagctct	gccccagggg	ctgagctgcc	accagaggtc	ctgggaccct	2050
cactttagtt	cttggtattt	atttttctcc	atctcccacc	tccttcatcc	2100
agataactta	tacattccca	agaaagttca	gcccagatgg	aaggtgttca	2150
gggaaaggtg	ggctgccttt	tccccttgtc	cttatttagc	gatgccgccg	2200
ggcatttaac	acccacctgg	acttcagcag	agtggtccgg	ggcgaaccag	2250
ccatgggacg	gtcacccagc	agtgccgggc	tgggctctgc	ggtgcggtcc	2300
acgggagagc	aggcctccag	ctggaaaggc	caggcctgga	gcttgcctct	2350
tcagtttttg	tggcagtttt	agttttttgt	tttttttt	tttaatcaaa	2400
aaacaatttt	ttttaaaaaa	aagctttgaa	aatggatggt	ttgggtatta	2450
aaaagaaaaa	aaaaacttaa	aaaaaaaaag	acactaacgg	ccagtgagtt	2500
ggagtctcag	ggcagggtgg	cagtttccct	tgagcaaagc	agccagacgt	2550
tgaactgtgt	ttcctttccc	tgggcgcagg	gtgcagggtg	tcttccggat	2600
ctggtgtgac	cttggtccag	gagttctatt	tgttcctggg	gagggaggtt	2650
tttttgtttg	ttttttgggt	ttttttggtg	tcttgttttc	tttctcctcc	2700
atgtgtcttg	gcaggcactc	atttctgtgg	ctgtcggcca	gagggaatgt	2750
tctggagctg	ccaaggaggg	aggagactcg	ggttggctaa	tccccggatg	2800

aacggtgete cattegeace tecectecte gtgeetgeee tgeeteteea 2850 egeacagtgt taaggageea agaggageea ettegeeeag actttgttte 2900 eecaceteet geggeatggg tgtgteeagt geeacegetg geeteegetg 2950 ettecateag eectgtegee acetggteet teatgaagag eagacaetta 3000 gaggetggte gggaatgggg aggtegeeee tgggaaggea ggegttggtt 3050 eeaageeggt teeegteeet ggegeetgga gtgeacaeag eecagtegge 3100 acetggtgge tggaageeaa eetgetttag ateaeteggg teeecacett 3150 agaagggtee eegeettaga teaateaegt ggacaetaag geacgtttta 3200 gagtetettg tettaatgat tatgteeate egtetgteeg teeatttgtg 3250 ttttetgegt egtgteattg gatataatee teagaaataa tgeacaetag 3300 eetetgacaa eeatgaagea aaaateegtt acatgtgggt etgaacttgt 3350 agaeteegte acagtateaa ataaaateta taacagaaaa aaaaaaaaa 3400 a 3401

<210> 250

<211> 546

<212> PRT

<213> Homo Sapien

<400> 250

Met Arg Gln Thr Ile Ile Lys Val Ile Lys Phe Ile Leu Ile Ile 1 5 10 15

Cys Tyr Thr Val Tyr Tyr Val His Asn Ile Lys Phe Asp Val Asp 20 25 30

Cys Thr Val Asp Ile Glu Ser Leu Thr Gly Tyr Arg Thr Tyr Arg
35 40 45

Cys Ala His Pro Leu Ala Thr Leu Phe Lys Ile Leu Ala Ser Phe 50 55 60

Tyr Ile Ser Leu Val Ile Phe Tyr Gly Leu Ile Cys Met Tyr Thr
65 70 75

Leu Trp Trp Met Leu Arg Arg Ser Leu Lys Lys Tyr Ser Phe Glu 80 85 90

Ser Ile Arg Glu Glu Ser Ser Tyr Ser Asp Ile Pro Asp Val Lys

				95					100					105
Asn	Asp	Phe	Ala	Phe 110	Met	Leu	His	Leu	Ile 115	Asp	Gln	Tyr	Asp	Pro 120
Leu	Tyr	Ser	Lys	Arg 125	Phe	Ala	Val	Phe	Leu 130	Ser	Glu	Val	Ser	Glu 135
Asn	Lys	Leu	Arg	Gln 140	Leu	Asn	Leu	Asn	Asn 145	Glu	Trp	Thr	Leu	Asp 150
Lys	Leu	Arg	Gln	Arg 155	Leu	Thr	Lys	Asn	Ala 160	Gln	Asp	Lys	Leu	Glu 165
Leu	His	Leu	Phe	Met 170	Leu	Ser	Gly	Ile	Pro 175	Asp	Thr	Val	Phe	Asp 180
Leu	Val	Glu	Leu	Glu 185	Val	Leu	Lys	Leu	Glu 190	Leu	Ile	Pro	Asp	Val 195
Thr	Ile	Pro	Pro	Ser 200	Ile	Ala	Gln	Leu	Thr 205	Gly	Leu	Lys	Glu	Leu 210
Trp	Leu	Tyr	His	Thr 215	Ala	Ala	Lys	Ile	Glu 220	Ala	Pro	Ala	Leu	Ala 225
Phe	Leu	Arg	Glu	Asn 230	Leu	Arg	Ala	Leu	His 235	Ile	Lys	Phe	Thr	Asp 240
Ile	Lys	Glu	Ile	Pro 245	Leu	Trp	Ile	Tyr	Ser 250	Leu	Lys	Thr	Leu	Glu 255
Glu	Leu	His	Leu	Thr 260	Gly	Asn	Leu	Ser	Ala 265	Glu	Asn	Asn	Arg	Tyr 270
Ile	Val	Ile	Asp	Gly 275	Leu	Arg	Glu	Leu	Lys 280	Arg	Leu	Lys	Val	Leu 285
Arg	Leu	Lys	Ser	Asn	Leu	Ser	Lys	Leu	Pro	Gln	Val	Val	Thr	Asp
				290					295					300
Val	Gly	Val	His	Leu 305	Gln	Lys	Leu	Ser	Ile 310	Asn	Asn	Glu	Gly	Thr 315
Lys	Leu	Ile	Val	Leu 320	Asn	Ser	Leu	Lys	Lys 325	Met	Ala	Asn	Leu	Thr 330
Glu	Leu	Glu	Leu	Ile 335	Arg	Cys	Asp	Leu	Glu 340	Arg	Ile	Pro	His	Ser 345
Ile	Phe	Ser	Leu	His 350	Asn	Leu	Gln	Glu	Ile 355	Asp	Leu	Lys	Asp	Asn 360

Asn Leu	Lys	Thr	Ile 365	Glu	Glu	Ile	Ile	Ser 370	Phe	Gln	His	Leu	His 375
Arg Leu	Thr	Cys	Leu 380	Lys	Leu	Trp	Tyr	Asn 385	His	Ile	Ala	Tyr	Ile 390
Pro Ile	Gln	Ile	Gly 395	Asn	Leu	Thr	Asn	Leu 400	Glu	Arg	Leu	Tyr	Leu 405
Asn Arg	Asn	Lys	Ile 410	Glu	Lys	Ile	Pro	Thr 415	Gln	Leu	Phe	Tyr	Cys 420
Arg Lys	Leu	Arg	Tyr 425	Leu	Asp	Leu	Ser	His 430	Asn	Asn	Leu	Thr	Phe 435
Leu Pro	Ala	Asp	Ile 440	Gly	Leu	Leu	Gln	Asn 445	Leu	Gln	Asn	Leu	Ala 450
Ile Thr	Ala	Asn	Arg 455	Ile	Glu	Thr	Leu	Pro 460	Pro	Glu	Leu	Phe	Gln 465
Cys Arg	Lys	Leu	Arg 470	Ala	Leu	His	Leu	Gly 475	Asn	Asn	Val	Leu	Gln 480
Ser Leu	Pro	Ser	Arg 485	Val	Gly	Glu	Leu	Thr 490	Asn	Leu	Thr	Gln	Ile 495
Glu Leu	Arg	Gly	Asn 500	Arg	Leu	Glu	Cys	Leu 505	Pro	Val	Glu	Leu	Gly 510
Glu Cys	Pro	Leu	Leu 515	Lys	Arg	Ser	Gly	Leu 520	Val	Val	Glu	Glu	Asp 525
Leu Phe	Asn	Thr	Leu 530	Pro	Pro	Glu	Val	Lys 535	Glu	Arg	Leu	Trp	Arg 540
Ala Asp	Lys	Glu	Gln 545	Ala									

<210> 251

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 251

caacaatgag ggcaccaagc 20

<210> 252

<211> 24

```
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 252
gatggctagg ttctggaggt tctg 24
<210> 253
<211> 47
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 253
caacctgcag gagattgacc tcaaggacaa caacctcaag accatcg 47
<210> 254
<211> 1650
<212> DNA
<213> Homo Sapien
<400> 254
gcctgttgct gatgctgccg tgcggtactt gtcatggagc tggcactgcg 50
gegetetece gteeegeggt ggttgetget getgeegetg etgetgggee 100
 tgaacgcagg agctgtcatt gactggccca cagaggaggg caaggaagta 150
 tgggattatg tgacggtccg caaggatgcc tacatgttct ggtggctcta 200
 ttatgccacc aactectgca agaacttete agaactgccc ctggtcatgt 250
ggcttcaggg cggtccaggc ggttctagca ctggatttgg aaactttgag 300
gaaattgggc cccttgacag tgatctcaaa ccacggaaaa ccacctggct 350
ccaggetgee agteteetat ttgtggataa tecegtggge actgggttea 400
gttatgtgaa tggtagtggt gcctatgcca aggacctggc tatggtggct 450
 tcagacatga tggttctcct gaagaccttc ttcagttgcc acaaagaatt 500
ccagacagtt ccattctaca ttttctcaga gtcctatgga ggaaaaatgg 550
cagetggcat tggtctagag ctttataagg ccattcageg agggaccatc 600
aagtgcaact ttgcgggggt tgccttgggt gattcctgga tctcccctgt 650
 tgatteggtg eteteetggg gaeettaeet gtacageatg tetetteteg 700
```

aagacaaagg tctggcagag gtgtctaagg ttgcagagca agtactgaat 750 gccgtaaata aggggctcta cagagaggcc acagagctgt gggggaaagc 800 agaaatgatc attgaacaga acacagatgg ggtgaacttc tataacatct 850 taactaaaag cactcccacg tctacaatgg agtcgagtct agaattcaca 900 cagagecace tagtttgtet ttgtcagege caegtgagae acetacaaeg 950 agatgcctta agccagctca tgaatggccc catcagaaag aagctcaaaa 1000 ttattcctga ggatcaatcc tggggaggcc aggctaccaa cgtctttgtg 1050 aacatggagg aggacttcat gaagccagtc attagcattg tggacgagtt 1100 gctggaggca gggatcaacg tgacggtgta taatggacag ctggatctca 1150 tcgtagatac catgggtcag gaggcctggg tgcggaaact gaagtggcca 1200 gaactgccta aattcagtca gctgaagtgg aaggccctgt acagtgaccc 1250 taaatctttg gaaacatctg cttttgtcaa gtcctacaag aaccttgctt 1300 tctactggat tctgaaagct ggtcatatgg ttccttctga ccaaggggac 1350 atggctctga agatgatgag actggtgact cagcaagaat aggatggatg 1400 gggctggaga tgagctggtt tggccttggg gcacagagct gagctgaggc 1450 cgctgaagct gtaggaagcg ccattcttcc ctgtatctaa ctggggctgt 1500 gatcaagaag gttctgacca gcttctgcag aggataaaat cattgtctct 1550 ggaggcaatt tggaaattat ttctgcttct taaaaaaacc taagattttt 1600 taaaaaattg atttgttttg atcaaaataa aggatgataa tagatattaa 1650

<210> 255

<211> 452

<212> PRT

<213> Homo Sapien

<400> 255

Met Glu Leu Ala Leu Arg Arg Ser Pro Val Pro Arg Trp Leu Leu 1 5 10 15

Leu Leu Pro Leu Leu Gly Leu Asn Ala Gly Ala Val Ile Asp 20 25 30

Trp Pro Thr Glu Glu Gly Lys Glu Val Trp Asp Tyr Val Thr Val
35 40 45

Arg	Lys	Asp	Ala	Tyr 50	Met	Phe	Trp	Trp	Leu 55	Tyr	Tyr	Ala	Thr	Asn 60
Ser	Cys	Lys	Asn	Phe 65	Ser	Glu	Leu	Pro	Leu 70	Val	Met	Trp	Leu	Gln 75
Gly	Gly	Pro	Gly	Gly 80	Ser	Ser	Thr	Gly	Phe 85	Gly	Asn	Phe	Glu	Glu 90
Ile	Gly	Pro	Leu	Asp 95	Ser	Asp	Leu	Lys	Pro 100	Arg	Lys	Thr	Thr	Trp 105
Leu	Gln	Ala	Ala	Ser 110	Leu	Leu	Phe	Val	Asp 115	Asn	Pro	Val	Gly	Thr 120
Gly	Phe	Ser	Tyr	Val 125	Asn	Gly	Ser	Gly	Ala 130	Tyr	Ala	Lys	Asp	Leu 135
Ala	Met	Val	Ala	Ser 140	Asp	Met	Met	Val	Leu 145	Leu	Lys	Thr	Phe	Phe 150
Ser	Cys	His	Lys	Glu 155	Phe	Gln	Thr	Val	Pro 160	Phe	Tyr	Ile	Phe	Ser 165
Glu	Ser	Tyr	Gly	Gly 170	Lys	Met	Ala	Ala	Gly 175	Ile	Gly	Leu	Glu	Leu 180
Tyr	Lys	Ala	Ile	Gln 185	Arg	Gly	Thr	Ile	Lys 190	Cys	Asn	Phe	Ala	Gly 195
Val	Ala	Leu	Gly	Asp 200	Ser	Trp	Ile	Ser	Pro 205	Val	Asp	Ser	Val	Leu 210
Ser	Trp	Gly	Pro	Tyr 215	Leu	Tyr	Ser	Met	Ser 220	Leu	Leu	Glu	Asp	Lys 225
Gly	Leu	Ala	Glu	Val 230	Ser	Lys	Val	Ala	Glu 235	Gln	Val	Leu	Asn	Ala 240
Val	Asn	Lys	Gly	Leu 245	Tyr	Arg	Glu	Ala	Thr 250	Glu	Leu	Trp	Gly	Lys 255
Ala	Glu	Met	Ile	Ile 260	Glu	Gln	Asn	Thr	Asp 265	Gly	Val	Asn	Phe	Tyr 270
Asn	Ile	Leu	Thr	Lys 275	Ser	Thr	Pro	Thr	Ser 280	Thr	Met	Glu	Ser	Ser 285
Leu	Glu	Phe	Thr	Gln 290	Ser	His	Leu	Val	Cys 295	Leu	Cys	Gln	Arg	His 300
Val	Arg	His	Leu	Gln	Arg	Asp	Ala	Leu	Ser	Gln	Leu	Met	Asn	Gly

<212> DNA

<213> Homo Sapien

				305					310					315
Pro	Ile	Arg	Lys	Lys 320	Leu	Lys	Ile	Ile	Pro 325	Glu	Asp	Gln	Ser	Trp 330
Gly	Gly	Gln	Ala	Thr 335	Asn	Val	Phe	Val	Asn 340	Met	Glu	Glu	Asp	Phe 345
Met	Lys	Pro	Val	Ile 350	Ser	Ile	Val	Asp	Glu 355	Leu	Leu	Glu	Ala	Gly 360
Ile	Asn	Val	Thr	Val 365	Tyr	Asn	Gly	Gln	Leu 370	Asp	Leu	Ile	Val	Asp 375
Thr	Met	Gly	Gln	Glu 380	Ala	Trp	Val	Arg	Lys 385	Leu	Lys	Trp	Pro	Glu 390
Leu	Pro	Lys	Phe	Ser 395	Gln	Leu	Lys	Trp	Lys 400	Ala	Leu	Tyr	Ser	Asp 405
Pro	Lys	Ser	Leu	Glu 410	Thr	Ser	Ala	Phe	Val 415	Lys	Ser	Tyr	Lys	Asn 420
Leu	Ala	Phe	Tyr	Trp 425	Ile	Leu	Lys	Ala	Gly 430	His	Met	Val	Pro	Ser 435
Asp	Gln	Gly	Asp	Met 440	Ala	Leu	Lys	Met	Met 445	Arg	Leu	Val	Thr	Gln 450
Gln	Glu													
<210: <211:														

<400> 256
ggccgcggga gaggaggcca tgggcgcgg cggggggcgctg ctgctggcgc 50

tgctgctggc tcgggctgga ctcaggaagc cggagtcgca ggaggcggcg 100

ccgttatcag gaccatgcgg ccgacgggtc atcacgtcgc gcatcgtggg 150

tggagaggac gccgaactcg ggcgttggcc gtggcagggg agcctgcgcc 200

tgtgggattc ccacgtatgc ggagtgagcc tgctcagcca ccgctgggca 250

ctcacggcgg cgcactgctt tgaaacctat agtgacctta gtgatccctc 300

cgggtggatg gtccagtttg gccagctgac ttccatgcca tccttctgga 350

gcctgcaggc ctactacacc cgttacttcg tatcgaatat ctatctgagc 400

tgcacctgtc acctacacta aacacatca gccatctgg tgaagctgc 500 ccacatttga gtttgagaac cggacagact gctgggtgac tggctggggg 550 tacatcaaag aggatgaggc actgccatct cccacaccc tccaggaagt 600 tcaggtcgc atcataaaca actctatggg caaccacct ttcctcaagt 650 acagtttccg caaggacatc tttggagaca tggcttggc 700 caaggcggga aggatgcctg cttcggtgac tcaggtggac tcgggggag 800 gctgtggtcg gcccaatcgg cccggtgtct accacacta tcaggaggga 800 gctgtggtcg gcccaatcgg cccggtgtct acaccacata caggcacac 850 tttggagtga tccagaagct gatggccag agtggcag aggatgcct tttcccaaga agtggcatg cccacacac 850 tttgggggcgg ccactactct ttttccctct tctctgggc cccactcc 950 tgggggccggt ctgagcctac ctgagcccat gcagccaca gcagcccag gccactcc 1000 agtcaggccc tggttctct cttcaaaaaa aaaaaaaa aaaaaaaaa 1100

<210> 257

<211> 314

<212> PRT

<213> Homo Sapien

<400> 257

Met Gly Ala Arg Gly Ala Leu Leu Leu Ala Leu Leu Leu Ala Arg

1 5 10 15

Ala Gly Leu Arg Lys Pro Glu Ser Gln Glu Ala Ala Pro Leu Ser

20 25 30

Gly Pro Cys Gly Arg Arg Val Ile Thr Ser Arg Ile Val Gly Gly
35 40 45

Glu Asp Ala Glu Leu Gly Arg Trp Pro Trp Gln Gly Ser Leu Arg
50 55 60

Leu Trp Asp Ser His Val Cys Gly Val Ser Leu Leu Ser His Arg
65 70 75

Trp Ala Leu Thr Ala Ala His Cys Phe Glu Thr Tyr Ser Asp Leu
80 85 90

158

Ser	Asp	Pro	Ser	Gly 95	Trp	Met	Val	Gln	Phe 100	Gly	Gln	Leu	Thr	Ser 105
Met	Pro	Ser	Phe	Trp 110	Ser	Leu	Gln	Ala	Tyr 115	Tyr	Thr	Arg	Tyr	Phe 120
Val	Ser	Asn	Ile	Tyr 125	Leu	Ser	Pro	Arg	Tyr 130	Leu	Gly	Asn	Ser	Pro 135
Tyr	Asp	Ile	Ala	Leu 140	Val	Lys	Leu	Ser	Ala 145	Pro	Val	Thr	Tyr	Thr 150
Lys	His	Ile	Gln	Pro 155	Ile	Cys	Leu	Gln	Ala 160	Ser	Thr	Phe	Glu	Phe 165
Glu	Asn	Arg	Thr	Asp 170	Cys	Trp	Val	Thr	Gly 175	Trp	Gly	Tyr	Ile	Lys 180
Glu	Asp	Glu	Ala	Leu 185	Pro	Ser	Pro	His	Thr 190	Leu	Gln	Glu	Val	Gln 195
Val	Ala	Ile	Ile	Asn 200	Asn	Ser	Met	Cys	Asn 205	His	Leu	Phe	Leu	Lys 210
Tyr	Ser	Phe	Arg	Lys 215	Asp	Ile	Phe	Gly	Asp 220	Met	Val	Cys	Ala	Gly 225
Asn	Ala	Gln	Gly	Gly 230	Lys	Asp	Ala	Cys	Phe 235	Gly	Asp	Ser	Gly	Gly 240
Pro	Leu	Ala	Cys	Asn 245	Lys	Asn	Gly	Leu	Trp 250	Tyr	Gln	Ile	Gly	Val 255
Val	Ser	Trp	Gly	Val 260	Gly	Cys	Gly	Arg	Pro 265	Asn	Arg	Pro	Gly	Val 270
Tyr	Thr	Asn	Ile	Ser 275	His	His	Phe	Glu	Trp 280	Ile	Gln	Lys	Leu	Met 285
Ala	Gln	Ser	Gly	Met 290	Ser	Gln	Pro	Asp	Pro 295	Ser	Trp	Pro	Leu	Leu 300
Phe	Phe	Pro	Leu	Leu 305	Trp	Ala	Leu	Pro	Leu 310	Leu	Gly	Pro	Val	

<210> 258

<211> 2427

<212> DNA

<213> Homo Sapien

<400> 258

cccacgcgtc cgcggacgcg tgggaagggc agaatgggac tccaagcctg 50

ř.

cctcctaggg ctctttgccc tcatcctctc tggcaaatgc agttacagcc 100 cggagcccga ccagcggagg acgctgccc caggctgggt gtccctgggc 150 cgtgcggacc ctgaggaaga gctgagtctc acctttgccc tgagacagca 200 gaatgtggaa agactetegg agetggtgea ggetgtgteg gateeeaget 250 ctcctcaata cggaaaatac ctgaccctag agaatgtggc tgatctggtg 300 aggccatccc cactgaccct ccacacggtg caaaaatggc tcttggcagc 350 cggagcccag aagtgccatt ctgtgatcac acaggacttt ctgacttgct 400 ggctgagcat ccgacaagca gagctgctgc tccctggggc tgagtttcat 450 cactatgtgg gaggacctac ggaaacccat gttgtaaggt ccccacatcc 500 ctaccagett ccacaggeet tggcccccca tgtggaettt gtggggggac 550 tgcaccgttt tcccccaaca tcatccctga ggcaacgtcc tgagccgcag 600 gtgacaggga ctgtaggcct gcatctgggg gtaaccccct ctgtgatccg 650 taagcgatac aacttgacct cacaagacgt gggctctggc accagcaata 700 acagecaage etgtgeeeag tteetggage agtattteea tgaeteagae 750 ctggctcagt tcatgcgcct cttcggtggc aactttgcac atcaggcatc 800 agtagecegt gtggttggae aacagggeeg gggeegggee gggattgagg 850 ccagtctaga tgtgcagtac ctgatgagtg ctggtgccaa catctccacc 900 tgggtctaca gtagccctgg ccggcatgag ggacaggagc ccttcctgca 950 gtggctcatg ctgctcagta atgagtcagc cctgccacat gtgcatactg 1000 tgagctatgg agatgatgag gactccctca gcagcgccta catccagcgg 1050 gtcaacactg agctcatgaa ggctgccgct cggggtctca ccctgctctt 1100 cgcctcaggt gacagtgggg ccgggtgttg gtctgtctct ggaagacacc 1150 agttccgccc taccttccct gcctccagcc cctatgtcac cacagtggga 1200 ggcacatect tecaggaace ttteeteate acaaatgaaa ttgttgaeta 1250 tatcagtggt ggtggcttca gcaatgtgtt cccacggcct tcataccagg 1300 aggaagetgt aacgaagtte etgageteta gececeacet gecaceatee 1350 agttacttca atgccagtgg ccgtgcctac ccagatgtgg ctgcactttc 1400

tgatggctac tgggtggtca gcaacagagt gcccattcca tgggtgtccg 1450 gaacctcggc ctctactcca gtgtttgggg ggatcctatc cttgatcaat 1500 gagcacagga teettagtgg eegeeeeet ettggettte teaacccaag 1550 gctctaccag cagcatgggg caggtctctt tgatgtaacc cgtggctgcc 1600 atgagtcctg tctggatgaa gaggtagagg gccagggttt ctgctctggt 1650 cctggctggg atcctgtaac aggctgggga acaccaactt cccagctttg 1700 ctgaagactc tactcaaccc ctgacccttt cctatcagga gagatggctt 1750 gtcccctgcc ctgaagctgg cagttcagtc ccttattctg ccctgttgga 1800 agecetgetg aacceteaac tattgactge tgeagacage ttateteect 1850 aaccetgaaa tgetgtgage ttgaettgae teecaaccet accatgetee 1900 atcatactca ggtctcccta ctcctgcctt agattcctca ataagatgct 1950 qtaactagca ttttttgaat gcctctccct ccgcatctca tctttctctt 2000 ttcaatcagg cttttccaaa gggttgtata cagactctgt gcactatttc 2050 acttgatatt cattccccaa ttcactgcaa ggagacctct actgtcaccg 2100 tttactcttt cctaccctga catccagaaa caatggcctc cagtgcatac 2150 ttctcaatct ttgctttatg gcctttccat catagttgcc cactccctct 2200 ccttacttag cttccaggtc ttaacttctc tgactactct tgtcttcctc 2250 tctcatcaat ttctgcttct tcatggaatg ctgaccttca ttgctccatt 2300 tgtagatttt tgctcttctc agtttactca ttgtcccctg gaacaaatca 2350 ctgacatcta caaccattac catctcacta aataagactt tctatccaat 2400 aatgattgat acctcaaatg taaaaaa 2427

Ser Gly Lys Cys Ser Tyr Ser Pro Glu Pro Asp Gln Arg Arg Thr

<210> 259

<211> 556

<212> PRT

<213> Homo Sapien

<400> 259

Met Gly Leu Gln Ala Cys Leu Leu Gly Leu Phe Ala Leu Ile Leu 1 5 10

				20					25					30
Leu	Pro	Pro	Gly	Trp 35	Val	Ser	Leu	Gly	Arg 40	Ala	Asp	Pro	Glu	Glu 45
Glu	Leu	Ser	Leu	Thr 50	Phe	Ala	Leu	Arg	Gln 55	Gln	Asn	Val	Glu	Arg 60
Leu	Ser	Glu	Leu	Val 65	Gln	Ala	Val	Ser	Asp 70	Pro	Ser	Ser	Pro	Gln 75
Tyr	Gly	Lys	Tyr	Leu 80	Thr	Leu	Glu	Asn	Val 85	Ala	Asp	Leu	Val	Arg 90
Pro	Ser	Pro	Leu	Thr 95	Leu	His	Thr	Val	Gln 100	Lys	Trp	Leu	Leu	Ala 105
Ala	Gly	Ala	Gln	Lys 110	Cys	His	Ser	Val	Ile 115	Thr	Gln	Asp	Phe	Leu 120
Thr	Cys	Trp	Leu	Ser 125	Ile	Arg	Gln	Ala	Glu 130	Leu	Leu	Leu	Pro	Gly 135
Ala	Glu	Phe	His	His 140	Tyr	Val	Gly	Gly	Pro 145	Thr	Glu	Thr	His	Val 150
Val	Arg	Ser	Pro	His 155	Pro	Tyr	Gln	Leu	Pro 160	Gln	Ala	Leu	Ala	Pro 165
His	Val	Asp	Phe	Val 170	Gly	Gly	Leu	His	Arg 175	Phe	Pro	Pro	Thr	Ser 180
Ser	Leu	Arg	Gln	Arg 185	Pro	Glu	Pro	Gln	Val 190	Thr	Gly	Thr	Val	Gly 195
Leu	His	Leu	Gly	Val 200	Thr	Pro	Ser	Val	11e 205	Arg	Lys	Arg	Tyr	Asn 210
Leu	Thr	Ser	Gln	Asp 215	Val	Gly	Ser	Gly	Thr 220	Ser	Asn	Asn	Ser	Gln 225
Ala	Cys	Ala	Gln	Phe 230	Leu	Glu	Gln	Tyr	Phe 235	His	Asp	Ser	Asp	Leu 240
Ala	Gln	Phe	Met	Arg 245	Leu	Phe	Gly	Gly	Asn 250	Phe	Ala	His	Gln	Ala 255
Ser	Val	Ala	Arg	Val 260	Val	Gly	Gln	Gln	Gly 265	Arg	Gly	Arg	Ala	Gly 270
Ile	Glu	Ala	Ser	Leu 275	Asp	Val	Gln	Tyr	Leu 280	Met	Ser	Ala	Gly	Ala 285

Asn	Ile	Ser	Thr	Trp 290	Val	Tyr	Ser	Ser	Pro 295	Gly	Arg	His	Glu	Gly 300
Gln	Glu	Pro	Phe	Leu 305	Gln	Trp	Leu	Met	Leu 310	Leu	Ser	Asn	Glu	Ser 315
Ala	Leu	Pro	His	Val 320	His	Thr	Val	Ser	T yr 325	Gly	Asp	Asp	Glu	Asp 330
Ser	Leu	Ser	Ser	Ala 335	Tyr	Ile	Gln	Arg	Val 340	Asn	Thr	Glu	Leu	Met 345
Lys	Ala	Ala	Ala	Arg 350	Gly	Leu	Thr	Leu	Leu 355	Phe	Ala	Ser	Gly	Asp 360
Ser	Gly	Ala	Gly	Cys 365	Trp	Ser	Val	Ser	Gly 370	Arg	His	Gln	Phe	Arg 375
Pro	Thr	Phe	Pro	Ala 380	Ser	Ser	Pro	Tyr	Val 385	Thr	Thr	Val	Gly	Gly 390
Thr	Ser	Phe	Gln	Glu 395	Pro	Phe	Leu	Ile	Thr 400	Asn	Glu	Ile	Val	Asp 405
Tyr	Ile	Ser	Gly	Gly 410	Gly	Phe	Ser	Asn	Val 415	Phe	Pro	Arg	Pro	Ser 420
Tyr	Gln	Glu	Glu	Ala 425	Val	Thr	Lys	Phe	Leu 430	Ser	Ser	Ser	Pro	His 435
Leu	Pro	Pro	Ser	Ser 440	Tyr	Phe	Asn	Ala	Ser 445	Gly	Arg	Ala	Tyr	Pro 450
Asp	Val	Ala	Ala	Leu 455	Ser	Asp	Gly	Tyr	Trp 460	Val	Val	Ser	Asn	Arg 465
Val	Pro	Ile	Pro	Trp 470	Val	Ser	Gly	Thr	Ser 475	Ala	Ser	Thr	Pro	Val 480
Phe	Gly	Gly	Ile	Leu 485	Ser	Leu	Ile	Asn	Glu 490	His	Arg	Ile	Leu	Ser 495
Gly	Arg	Pro	Pro	Leu 500	Gly	Phe	Leu	Asn	Pro 505	Arg	Leu	Tyr	Gln	Gln 510
His	Gly	Ala	Gly	Leu 515	Phe	Asp	Val	Thr	Arg 520	Gly	Cys	His	Glu	Ser 525
Сув	Leu	Asp	Glu	Glu 530	Val	Glu	Gly	Gln	Gly 535	Phe	Cys	Ser	Gly	Pro 540
Gly	Trp	Asp	Pro	Val 545	Thr	Gly	Trp	Gly	Thr 550	Pro	Thr	Ser	Gln	Leu 555

Cys

<210> 260 <211> 1638 <212> DNA <213> Homo Sapien

<400> 260 geogegeget etetecegge geocacacet gtetgagegg egeagegage 50 cgcggcccgg gcgggctgct cggcgcggaa cagtgctcgg catggcaggg 100 attecaggge teetetteet tetettett etgetetgtg etgttgggea 150 agtgageeet tacagtgeee eetggaaace caettggeet geatacegee 200 tccctgtcgt cttgccccag tctaccctca atttagccaa gccagacttt 250 ggagccgaag ccaaattaga agtatcttct tcatgtggac cccagtgtca 300 taagggaact ccactgccca cttacgaaga ggccaagcaa tatctgtctt 350 atgaaacgct ctatgccaat ggcagccgca cagagacgca ggtgggcatc 400 tacatectea geagtagtgg agatggggee caacacegag acteagggte 450 ttcaggaaag tctcgaagga agcggcagat ttatggctat gacagcaggt 500 tcagcatttt tgggaaggac ttcctgctca actacccttt ctcaacatca 550 gtgaagttat ccacgggctg caccggcacc ctggtggcag agaagcatgt 600 cctcacagct gcccactgca tacacgatgg aaaaacctat gtgaaaggaa 650 cccagaaget tegagtggge tteetaaage ccaagtttaa agatggtggt 700 cgaggggcca acgactccac ttcagccatg cccgagcaga tgaaatttca 750 gtggatccgg gtgaaacgca cccatgtgcc caagggttgg atcaagggca 800 atgccaatga catcggcatg gattatgatt atgccctcct ggaactcaaa 850 aagccccaca agagaaaatt tatgaagatt ggggtgagcc ctcctgctaa 900 gcagctgcca gggggcagaa ttcacttctc tggttatgac aatgaccgac 950 caggcaattt ggtgtatcgc ttctgtgacg tcaaagacga gacctatgac 1000 ttgctctacc agcaatgcga tgcccagcca ggggccagcg ggtctggggt 1050 ctatgtgagg atgtggaaga gacagcagca gaagtgggag cgaaaaatta 1100 ttggcatttt ttcagggcac cagtgggtgg acatgaatgg ttccccacag 1150 gatttcaacg tggctgtcag aatcactcct ctcaaatatg cccagatttg 1200 ctattggatt aaaggaaact acctggattg tagggagggg tgacacagtg 1250 ttccctcctg gcagcaatta agggtcttca tgttcttatt ttaggagagg 1300 ccaaattgtt ttttgtcatt ggcgtgcaca cgtgtgtgtg tgtgtgtgg 1350 tgtgtgtaag gtgtcttata atcttttacc tatttcttac aattgcaaga 1400 tgactggctt tactatttga aaactggttt gtgtatcata tcatataca 1450 tttaagcagt ttgaaggcat acttttgcat agaaataaaa aaaatactga 1500 tttggggcaa tgaggaatat ttgacaatta agttaatctt cacgtttttg 1550 caaactttga ttttattc atctgaactt gtttcaaaga tttatattaa 1600 atatttggca tacaagagat atgaaaaaaa aaaaaaaa 1638

<210> 261

<211> 383

<212> PRT

<213> Homo Sapien

<400> 261

Met Ala	Gly Ile	Pro	Gly	Leu	Leu	Phe	Leu	Leu	Phe	Phe	Leu	Leu
1		5					10					15

Cys Ala Val Gly Gln Val Ser Pro Tyr Ser Ala Pro Trp Lys Pro
20 25 30

Thr Trp Pro Ala Tyr Arg Leu Pro Val Val Leu Pro Gln Ser Thr 35 40 45

Leu Asn Leu Ala Lys Pro Asp Phe Gly Ala Glu Ala Lys Leu Glu
50 55 60

Val Ser Ser Ser Cys Gly Pro Gln Cys His Lys Gly Thr Pro Leu 65 70 75

Pro Thr Tyr Glu Glu Ala Lys Gln Tyr Leu Ser Tyr Glu Thr Leu 80 85 90

Tyr Ala Asn Gly Ser Arg Thr Glu Thr Gln Val Gly Ile Tyr Ile

95 100 105

Leu Ser Ser Ser Gly Asp Gly Ala Gln His Arg Asp Ser Gly Ser 110 115 120

Ser	Gly	Lys	Ser	Arg 125	Arg	Lys	Arg	Gln	Ile 130	Tyr	Gly	Tyr	Asp	Ser 135
Arg	Phe	Ser	Ile	Phe 140	Gly	Lys	Asp	Phe	Leu 145	Leu	Asn	Tyr	Pro	Phe 150
Ser	Thr	Ser	Val	Lys 155	Leu	Ser	Thr	Gly	Cys 160	Thr	Gly	Thr	Leu	Val 165
Ala	Glu	Lys	His	Val 170	Leu	Thr	Ala	Ala	His 175	Cys	Ile	His	Asp	Gly 180
Lys	Thr	Tyr	Val	Lys 185	Gly	Thr	Gln	Lys	Leu 190	Arg	Val	Gly	Phe	Leu 195
Lys	Pro	Lys	Phe	Lys 200	Asp	Gly	Gly	Arg	Gly 205	Ala	Asn	Asp	Ser	Thr 210
Ser	Ala	Met	Pro	Glu 215	Gln	Met	Lys	Phe	Gln 220	Trp	Ile	Arg	Val	Lys 225
Arg	Thr	His	Val	Pro 230	Lys	Gly	Trp	Ile	Lys 235	Gly	Asn	Ala	Asn	Asp 240
Ile	Gly	Met	Asp	Tyr 245	Asp	Tyr	Ala	Leu	Leu 250	Glu	Leu	Lys	Lys	Pro 255
His	Lys	Arg	Lys	Phe 260	Met	Lys	Ile	Gly	Val 265	Ser	Pro	Pro	Ala	Lys 270
Gln	Leu	Pro	Gly	Gly 275	Arg	Ile	His	Phe	Ser 280	Gly	Tyr	Asp	Asn	Asp 285
Arg	Pro	Gly	Asn	Leu 290	Val	Tyr	Arg	Phe	Cys 295	Asp	Val	Lys	Asp	Gl·u 300
Thr	Tyr	Asp	Leu	Leu 305	Tyr	Gln	Gln	Cys	Asp 310	Ala	Gln	Pro	Gly	Ala 315
Ser	Gly	Ser	Gly	Val 320	Tyr	Val	Arg	Met	Trp 325	Lys	Arg	Gln	Gln	Gln 330
Lys	Trp	Glu	Arg	Lys 335	Ile	Ile	Gly	Ile	Phe 340	Ser	Gly	His	Gln	Trp 345
Val	Asp	Met	Asn	Gly 350	Ser	Pro	Gln	Asp	Phe 355	Asn	Val	Ala	Val	Arg 360
Ile	Thr	Pro	Leu	Lys 365	Tyr	Ala	Gln	Ile	Cys 370	Tyr	Trp	Ile	Lys	Gly 375
Asn	Tyr	Leu	Asp	Cys 380	Arg	Glu	Gly							

<210> 262 <211> 1378 <212> DNA <213> Homo Sapien

<400> 262 gcatcgccct gggtctctcg agcctgctgc ctgctccccc gccccaccag 50 ccatggtggt ttctggagcg cccccagccc tgggtggggg ctgtctcggc 100 accttcacct ccctgctgct gctggcgtcg acagccatcc tcaatgcggc 150 caggatacct gttcccccag cctgtgggaa gccccagcag ctgaaccggg 200 ttgtgggcgg cgaggacagc actgacagcg agtggccctg gatcgtgagc 250 atccagaaga atgggaccca ccactgcgca ggttctctgc tcaccagccg 300 ctgggtgatc actgctgccc actgtttcaa ggacaacctg aacaaaccat 350 acctgttctc tgtgctgctg ggggcctggc agctggggaa ccctggctct 400 cggtcccaga aggtgggtgt tgcctgggtg gagccccacc ctgtgtattc 450 ctggaaggaa ggtgcctgtg cagacattgc cctggtgcgt ctcgagcgct 500 ccatacagtt ctcagagcgg gtcctgccca tctgcctacc tgatgcctct 550 atccacctcc ctccaaacac ccactgctgg atctcaggct gggggagcat 600 ccaagatgga gttcccttgc cccaccctca gaccctgcag aagctgaagg 650 ttcctatcat cgactcggaa gtctgcagcc atctgtactg gcggggagca 700 ggacagggac ccatcactga ggacatgctg tgtgccggct acttggaggg 750 ggagcgggat gcttgtctgg gcgactccgg gggccccctc atgtgccagg 800 tggacggcgc ctggctgctg gccggcatca tcagctgggg cgagggctgt 850 geogagegea acaggeoegg ggtetacate ageotetetg egeacegete 900 ctgggtggag aagatcgtgc aaggggtgca gctccgcggg cgcgctcagg 950 ggggtgggc cctcagggca ccgagccagg gctctggggc cgccgcgcgc 1000 tcctagggcg cagcgggacg cggggctcgg atctgaaagg cggccagatc 1050 cacatetgga tetggatetg eggeggeete gggeggttte eecegeegta 1100 aataggetea tetaceteta eetetggggg eeeggaegge tgetgeggaa 1150 aggaaacccc ctccccgacc cgcccgacgg cctcaggccc ccctccaagg 1200 catcaggccc cgcccaacgg cctcatgtcc ccgccccac gacttccggc 1250 cccgcccccg ggccccagcg cttttgtgta tataaatgtt aatgatttt 1300 ataggtattt gtaaccctgc ccacatatct tatttattcc tccaatttca 1350 ataaattatt tattctccaa aaaaaaaa 1378

<210> 263

<211> 317

<212> PRT

<213> Homo Sapien

<400> 263

Met Val Val Ser Gly Ala Pro Pro Ala Leu Gly Gly Cys Leu
1 5 10 15

Gly Thr Phe Thr Ser Leu Leu Leu Leu Ala Ser Thr Ala Ile Leu 20 25 30

Asn Ala Ala Arg Ile Pro Val Pro Pro Ala Cys Gly Lys Pro Gln 35 40 45

Gln Leu Asn Arg Val Val Gly Gly Glu Asp Ser Thr Asp Ser Glu
50 55 60

Trp Pro Trp Ile Val Ser Ile Gln Lys Asn Gly Thr His His Cys
65 70 75

Ala Gly Ser Leu Leu Thr Ser Arg Trp Val Ile Thr Ala Ala His
80 85 90

Cys Phe Lys Asp Asn Leu Asn Lys Pro Tyr Leu Phe Ser Val Leu 95 100 105

Leu Gly Ala Trp Gln Leu Gly Asn Pro Gly Ser Arg Ser Gln Lys 110 115 120

Val Gly Val Ala Trp Val Glu Pro His Pro Val Tyr Ser Trp Lys 125 130 135

Glu Gly Ala Cys Ala Asp Ile Ala Leu Val Arg Leu Glu Arg Ser 140 145 150

Ile Gln Phe Ser Glu Arg Val Leu Pro Ile Cys Leu Pro Asp Ala 155 160 165

Ser Ile His Leu Pro Pro Asn Thr His Cys Trp Ile Ser Gly Trp
170 175 180

Gly	Ser	Ile	Gln	Asp 185	Gly	Val	Pro	Leu	Pro 190	His	Pro	Gln	Thr	Leu 195
Gln	Lys	Leu	Lys	Val 200	Pro	Ile	Ile	Asp	Ser 205	Glu	Val	Cys	Ser	His 210
Leu	Tyr	Trp	Arg	Gly 215	Ala	Gly	Gln	Gly	Pro 220	Ile	Thr	Glu	Asp	Met 225
Leu	Cys	Ala	Gly	Tyr 230	Leu	Glu	Gly	Glu	Arg 235	Asp	Ala	Cys	Leu	Gly 240
Asp	Ser	Gly	Gly	Pro 245	Leu	Met	Cys	Gln	Val 250	Asp	Gly	Ala	Trp	Leu 255
Leu	Ala	Gly	Ile	Ile 260	Ser	Trp	Gly	Glu	Gly 265	Cys	Ala	Glu	Arg	Asn 270
Arg	Pro	Gly	Val	Tyr 275	Ile	Ser	Leu	Ser	Ala 280	His	Arg	Ser	Trp	Val 285
Glu	Lys	Ile	Val	Gln 290	Gly	Val	Gln	Leu	Arg 295	Gly	Arg	Ala	Gln	Gly 300
Gly	Gly	Ala	Leu	Arg 305	Ala	Pro	Ser	Gln	Gly 310	Ser	Gly	Ala	Ala	Ala 315
Arg	Ser													
<210> 264 <211> 24 <212> DNA <213> Artificial Sequence														

<210> 265

<400> 264

<211> 19

<212> DNA

<213> Artificial Sequence

<220>

<220>

<223> Synthetic Oligonucleotide Probe

<223> Synthetic Oligonucleotide Probe

gtccgcaagg atgcctacat gttc 24

<400> 265

gcagaggtgt ctaaggttg 19

<210> 266

<211> 24

```
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 266
agetetagae caatgeeage ttee 24
<210> 267
<211> 45
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 267
gccaccaact cctgcaagaa cttctcagaa ctgcccctgg tcatg 45
<210> 268
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 268
ggggaattca ccctatgaca ttgcc 25
<210> 269
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 269
gaatgccctg caagcatcaa ctgg 24
<210> 270
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
gcacctgtca cctacactaa acacatccag cccatctgtc tccaggcctc 50
```

```
<210> 271
<211> 26
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 271
 gcggaagggc agaatgggac tccaag 26
<210> 272
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 272
cagccctgcc acatgtgc 18
<210> 273
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 273
tactgggtgg tcagcaac 18
<210> 274
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 274
ggcgaagagc agggtgagac cccg 24
<210> 275
<211> 45
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
```

```
<400> 275
gccctcatcc tctctggcaa atgcagttac agcccggagc ccgac 45
<210> 276
<211> 21
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 276
gggcagggat tccagggctc c 21
<210> 277
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 277
ggctatgaca gcaggttc 18
<210> 278
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 278
tgacaatgac cgaccagg 18
<210> 279
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 279
 gcatcgcatt gctggtagag caag 24
<210> 280
<211> 45
<212> DNA
<213> Artificial Sequence
<220>
```

```
<223> Synthetic Oligonucleotide Probe
<400> 280
ttacagtgcc ccctggaaac ccacttggcc tgcataccgc ctccc 45
<210> 281
<211> 34
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 281
cgtctcgagc gctccataca gttcccttgc ccca 34
<210> 282
<211> 61
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 282
tggagggga gcgggatgct tgtctgggcg actccggggg ccccctcatg 50
tgccaggtgg a 61
<210> 283
<211> 119
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 283
ccctcagacc ctgcagaagc tgaaggttcc tatcatcgac tcggaagtct 50
gcagccatct gtactggcgg ggagcaggac agggacccat cactgaggac 100
atgctgtgtg ccggctact 119
<210> 284
<211> 1875
<212> DNA
<213> Homo Sapien
<400> 284
gacggctggc caccatgcac ggctcctgca gtttcctgat gcttctgctg 50
ccgctactgc tactgctggt ggccaccaca ggccccgttg gagccctcac 100
```

agatgaggag aaacgtttga tggtggagct gcacaacctc taccgggccc 150 aggtatcccc gacggcctca gacatgctgc acatgagatg ggacgaggag 200 ctggccgcct tcgccaaggc ctacgcacgg cagtgcgtgt ggggccacaa 250 caaggagege gggegeegeg gegagaatet gttegeeate acagaegagg 300 gcatggacgt gccgctggcc atggaggagt ggcaccacga gcgtgagcac 350 tacaacctca gcgccgccac ctgcagccca ggccagatgt gcggccacta 400 cacgcaggtg gtatgggcca agacagagag gatcggctgt ggttcccact 450 tctgtgagaa gctccagggt gttgaggaga ccaacatcga attactggtg 500 tgcaactatg agcctccggg gaacgtgaag gggaaacggc cctaccagga 550 ggggactccg tgctcccaat gtccctctgg ctaccactgc aagaactccc 600 tetgtgaace categgaage eeggaagatg eteaggattt geettacetg 650 gtaactgagg ccccatcctt ccgggcgact gaagcatcag actctaggaa 700 aatgggtact ccttcttccc tagcaacggg gattccggct ttcttggtaa 750 cagaggtete aggeteeetg geaaceaagg etetgeetge tgtggaaace 800 caggccccaa cttccttagc aacgaaagac ccgccctcca tggcaacaga 850 ggctccacct tgcgtaacaa ctgaggtccc ttccattttg gcagctcaca 900 gcctgccctc cttggatgag gagccagtta ccttccccaa atcgacccat 950 gttcctatcc caaaatcagc agacaaagtg acagacaaaa caaaagtgcc 1000 etctaggage ccagagaact etctggacee caagatgtee ctgacagggg 1050 caagggaact cctaccccat gcccaggagg aggctgaggc tgaggctgag 1100 ttgcctcctt ccagtgaggt cttggcctca gtttttccag cccaggacaa 1150 gccaggtgag ctgcaggcca cactggacca cacggggcac acctcctcca 1200 agtccctgcc caatttcccc aatacctctg ccaccgctaa tgccacgggt 1250 gggcgtgccc tggctctgca gtcgtccttg ccaggtgcag agggccctga 1300 caageetage gttgtgteag ggetgaaete gggeeetggt catgtgtggg 1350 geceteteet gggaetaetg eteetgeete etetggtgtt ggetggaate 1400

ttctgaatgg gataccactc aaagggtgaa gaggtcagct gtcctctgt 1450 catcttcccc accetgtccc cagcccctaa acaagatact tcttggttaa 1500 ggccctccgg aagggaaagg ctacggggca tgtgcctcat cacaccatcc 1550 atcctggagg cacaaggcct ggctggctgc gagctcagga ggccgcctga 1600 ggactgcaca ccgggcccac acctctcctg cccctccctc ctgagtcctg 1650 ggggtgggag gatttgaggg agctcactgc ctacctggcc tgggggtgt 1700 tgcccacaca gcatgtgcgc tctccctgag tgcctgtta gctggggatg 1750 gggattccta ggggcagatg aaggacaagc cccactggag tggggttctt 1800 tgagtggggg aggcagggac gagggaagga aagtaactcc tgactctcca 1850 ataaaaacct gtccaacctg tgaaa 1875

<210> 285

<211> 463

<212> PRT

<213> Homo Sapien

<400> 285

Met His Gly Ser Cys Ser Phe Leu Met Leu Leu Leu Pro Leu Leu 1 5 10 15

Leu Leu Leu Val Ala Thr Thr Gly Pro Val Gly Ala Leu Thr Asp 20 25 30

Glu Glu Lys Arg Leu Met Val Glu Leu His Asn Leu Tyr Arg Ala 35 40 45

Gln Val Ser Pro Thr Ala Ser Asp Met Leu His Met Arg Trp Asp 50 55

Glu Glu Leu Ala Ala Phe Ala Lys Ala Tyr Ala Arg Gln Cys Val 65 70 75

Trp Gly His Asn Lys Glu Arg Gly Arg Gly Glu Asn Leu Phe 80 85 90

Ala Ile Thr Asp Glu Gly Met Asp Val Pro Leu Ala Met Glu Glu 95 100 105

Trp His His Glu Arg Glu His Tyr Asn Leu Ser Ala Ala Thr Cys
110 115 120

Ser Pro Gly Gln Met Cys Gly His Tyr Thr Gln Val Val Trp Ala 125 130 135

Lys	Thr	Glu	Arg	Ile 140	Gly	Cys	Gly	Ser	His 145	Phe	Cys	Glu	Lys	Leu 150
Gln	Gly	Val	Glu	Glu 155	Thr	Asn	Ile	Glu	Leu 160	Leu	Val	Cys	Asn	Tyr 165
Glu	Pro	Pro	Gly	Asn 170	Val	Lys	Gly	Lys	Arg 175	Pro	Tyr	Gln	Glu	Gly 180
Thr	Pro	Cys	Ser	Gln 185	Cys	Pro	Ser	Gly	Tyr 190	His	Cys	Lys	Asn	Ser 195
Leu	Cys	Glu	Pro	Ile 200	Gly	Ser	Pro	Glu	Asp 205	Ala	Gln	Asp	Leu	Pro 210
Tyr	Leu	Val	Thr	Glu 215	Ala	Pro	Ser	Phe	Arg 220	Ala	Thr	Glu	Ala	Ser 225
Asp	Ser	Arg	Lys	Met 230	Gly	Thr	Pro	Ser	Ser 235	Leu	Ala	Thr	Gly	Ile 240
Pro	Ala	Phe	Leu	Val 245	Thr	Glu	Val	Ser	Gly 250	Ser	Leu	Ala	Thr	Lys 255
Ala	Leu	Pro	Ala	Val 260	Glu	Thr	Gln	Ala	Pro 265	Thr	Ser	Leu	Ala	Thr 270
Lys	Asp	Pro	Pro	Ser 275	Met	Ala	Thr	Glu	Ala 280	Pro	Pro	Cys	Val	Thr 285
Thr	Glu	Val	Pro	Ser 290	Ile	Leu	Ala	Ala	His 295	Ser	Leu	Pro	Ser	Leu 300
Asp	Glu	Glu	Pro	Val 305	Thr	Phe	Pro	Lys	Ser 310	Thr	His	Val	Pro	Ile 315
Pro	Lys	Ser	Ala	Asp 320	Lys	Val	Thr	Asp	Lys 325	Thr	Lys	Val	Pro	Ser 330
Arg	Ser	Pro	Glu	Asn 335	Ser	Leu	Asp	Pro	Lys 340	Met	Ser	Leu	Thr	Gly 345
Ala	Arg	Glu	Leu	Leu 350	Pro	His	Ala	Gln	Glu 355	Glu	Ala	Glu	Ala	Glu 360
Ala	Glu	Leu	Pro	Pro 365	Ser	Ser	Glu	Val	Leu 370	Ala	Ser	Val	Phe	Pro 375
Ala	Gln	Asp	Lys	Pro 380	Gly	Glu	Leu	Gln	Ala 385	Thr	Leu	Asp	His	Thr 390
Gly	His	Thr	Ser	Ser 395	Lys	Ser	Leu	Pro	Asn 400	Phe	Pro	Asn	Thr	Ser 405

Ala Thr Ala Asn Ala Thr Gly Gly Arg Ala Leu Ala Leu Gln Ser 410 Ser Leu Pro Gly Ala Glu Gly Pro Asp Lys Pro Ser Val Val Ser Gly Leu Asn Ser Gly Pro Gly His Val Trp Gly Pro Leu Leu Gly Leu Leu Leu Pro Pro Leu Val Leu Ala Gly Ile Phe 455 <210> 286 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 286 tcctgcagtt tcctgatgc 19 <210> 287 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 287 ctcatattgc acaccagtaa ttcg 24 <210> 288 <211> 45 <212> DNA <213> Artificial Sequence <223> Synthetic Oligonucleotide Probe <400> 288 atgaggagaa acgtttgatg gtggagctgc acaacctcta ccggg 45 <210> 289 <211> 3662 <212> DNA <213> Homo Sapien <400> 289 gtaactgaag tcaggctttt catttgggaa gccccctcaa cagaattcgg 50

tcattctcca agttatggtg gacgtacttc tgttgttctc cctctgcttg 100 ctttttcaca ttagcagacc ggacttaagt cacaacagat tatctttcat 150 caaggcaagt tccatgagcc accttcaaag ccttcgagaa gtgaaactga 200 acaacaatga attggagacc attccaaatc tgggaccagt ctcggcaaat 250 attacacttc tctccttggc tggaaacagg attgttgaaa tactccctga 300 acatctgaaa gagtttcagt cccttgaaac tttggacctt agcagcaaca 350 atatttcaga gctccaaact gcatttccag ccctacagct caaatatctg 400 tatctcaaca gcaaccgagt cacatcaatg gaacctgggt attttgacaa 450 tttggccaac acactccttg tgttaaagct gaacaggaac cgaatctcag 500 ctatcccacc caagatgttt aaactgcccc aactgcaaca tctcgaattg 550 aaccgaaaca agattaaaaa tgtagatgga ctgacattcc aaggccttgg 600 tgctctgaag tctctgaaaa tgcaaagaaa tggagtaacg aaacttatgg 650 atggagettt ttgggggetg ageaacatgg aaattttgea getggaeeat 700 aacaacctaa cagagattac caaaggctgg ctttacggct tgctgatgct 750 gcaggaactt catctcagcc aaaatgccat caacaggatc agccctgatg 800 cctgggagtt ctgccagaag ctcagtgagc tggacctaac tttcaatcac 850 ttatcaaggt tagatgattc aagctteett ggeetaaget tactaaatac 900 actgcacatt gggaacaaca gagtcagcta cattgctgat tgtgccttcc 950 gggggctttc cagtttaaag actttggatc tgaagaacaa tgaaatttcc 1000 tggactattg aagacatgaa tggtgctttc tctgggcttg acaaactgag 1050 gcgactgata ctccaaggaa atcggatccg ttctattact aaaaaagcct 1100 tcactggttt ggatgcattg gagcatctag acctgagtga caacgcaatc 1150 atgtctttac aaggcaatgc attttcacaa atgaagaaac tgcaacaatt 1200 gcatttaaat acatcaagcc ttttgtgcga ttgccagcta aaatggctcc 1250 cacagtgggt ggcggaaaac aactttcaga gctttgtaaa tgccagttgt 1300 gcccatcctc agctgctaaa aggaagaagc atttttgctg ttagcccaga 1350

tggctttgtg tgtgatgatt ttcccaaacc ccagatcacg gttcagccag 1400 aaacacagtc ggcaataaaa ggttccaatt tgagtttcat ctgctcagct 1450 gccagcagca gtgattcccc aatgactttt gcttggaaaa aagacaatga 1500 actactgcat gatgctgaaa tggaaaatta tgcacacctc cgggcccaag 1550 gtggcgaggt gatggagtat accaccatcc ttcggctgcg cgaggtggaa 1600 tttgccagtg aggggaaata tcagtgtgtc atctccaatc actttggttc 1650 atcctactct gtcaaagcca agcttacagt aaatatgctt ccctcattca 1700 ccaagacccc catggatete accateegag etggggeeat ggeaegettg 1750 gagtgtgetg etgtggggea eecageeeee eagatageet ggeagaagga 1800 tgggggcaca gacttcccag ctgcacggga gagacgcatg catgtgatgc 1850 ccgaggatga cgtgttcttt atcgtggatg tgaagataga ggacattggg 1900 gtatacagct gcacagctca gaacagtgca ggaagtattt cagcaaatgc 1950 aactctgact gtcctagaaa caccatcatt tttgcggcca ctgttggacc 2000 gaactgtaac caagggagaa acagccgtcc tacagtgcat tgctggagga 2050 agccctcccc ctaaactgaa ctggaccaaa gatgatagcc cattggtggt 2100 aaccgagagg cacttttttg cagcaggcaa tcagcttctg attattgtgg 2150 actcagatgt cagtgatgct gggaaataca catgtgagat gtctaacacc 2200 cttggcactg agagaggaaa cgtgcgcctc agtgtgatcc ccactccaac 2250 ctgcgactcc cctcagatga cagccccatc gttagacgat gacggatggg 2300 ccactgtggg tgtcgtgatc atagccgtgg tttgctgtgt ggtgggcacg 2350 tcactcgtgt gggtggtcat catataccac acaaggcgga ggaatgaaga 2400 ttgcagcatt accaacacag atgagaccaa cttgccagca gatattccta 2450 gttatttgtc atctcaggga acgttagctg acaggcagga tgggtacgtg 2500 tcttcagaaa gtggaagcca ccaccagttt gtcacatctt caggtgctgg 2550 atttttctta ccacaacatg acagtagtgg gacctgccat attgacaata 2600 gcagtgaagc tgatgtggaa gctgccacag atctgttcct ttgtccgttt 2650 ttgggatcca caggccctat gtatttgaag ggaaatgtgt atggctcaga 2700 tccttttqaa acatatcata caggttgcag tcctgaccca agaacagttt 2750 taatqqacca ctatgagccc agttacataa agaaaaagga gtgctaccca 2800 tgttctcatc cttcagaaga atcctgcgaa cggagcttca gtaatatatc 2850 gtggccttca catgtgagga agctacttaa cactagttac tctcacaatg 2900 aaggacctgg aatgaaaaat ctgtgtctaa acaagtcctc tttagatttt 2950 agtgcaaatc cagagccagc gtcggttgcc tcgagtaatt ctttcatggg 3000 tacctttgga aaagctctca ggagacctca cctagatgcc tattcaagct 3050 ttqqacagcc atcagattgt cagccaagag ccttttattt gaaagctcat 3100 tettececag acttggaete tgggteagag gaagatggga aagaaaggae 3150 agattttcag gaagaaaatc acatttgtac ctttaaacag actttagaaa 3200 actacaggac tccaaatttt cagtcttatg acttggacac atagactgaa 3250 tgagaccaaa ggaaaagctt aacatactac ctcaagtgaa cttttattta 3300 aaaqaqaqaq aatcttatqt tttttaaatg gagttatgaa ttttaaaagg 3350 ataaaaatgc tttatttata cagatgaacc aaaattacaa aaagttatga 3400 aaatttttat actgggaatg atgctcatat aagaatacct ttttaaacta 3450 ttttttaact ttqttttatg caaaaaagta tcttacgtaa attaatgata 3500 taaatcatga ttattttatg tatttttata atgccagatt tctttttatg 3550 gaaaatgagt tactaaagca ttttaaataa tacctgcctt gtaccatttt 3600 ttaaatagaa gttacttcat tatattttgc acattatatt taataaaatg 3650 tgtcaatttg aa 3662

<210> 290

<211> 1059

<212> PRT

<213> Homo Sapien

<400> 290

Met Val Asp Val Leu Leu Leu Phe Ser Leu Cys Leu Leu Phe His 1 5 10 15

Ile Ser Arg Pro Asp Leu Ser His Asn Arg Leu Ser Phe Ile Lys 20 25 30

Ala	Ser	Ser	Met	Ser 35	His	Leu	Gln	Ser	Leu 40	Arg	Glu	Val	Lys	Leu 45
Asn	Asn	Asn	Glu	Leu 50	Glu	Thr	Ile	Pro	Asn 55	Leu	Gly	Pro	Val	Ser 60
Ala	Asn	Ile	Thr	Leu 65	Leu	Ser	Leu	Ala	Gly 70	Asn	Arg	Ile	Val	Glu 75
Ile	Leu	Pro	Glu	His 80	Leu	Lys	Glu	Phe	Gln 85	Ser	Leu	Glu	Thr	Leu 90
Asp	Leu	Ser	Ser	Asn 95	Asn	Ile	Ser	Glu	Leu 100	Gln	Thr	Ala	Phe	Pro 105
Ala	Leu	Gln	Leu	Lys 110	Tyr	Leu	Tyr	Leu	Asn 115	Ser	Asn	Arg	Val	Thr 120
Ser	Met	Glu	Pro	Gly 125	Tyr	Phe	Asp	Asn	Leu 130	Ala	Asn	Thr	Leu	Leu 135
Val	Leu	Lys	Leu	Asn 140	Arg	Asn	Arg	Ile	Ser 145	Ala	Ile	Pro	Pro	Lys 150
Met	Phe	Lys	Leu	Pro	Gln	Leu	Gln	His	Leu	Glu	Leu	Asn	Arg	Asn
				155					160					165
Lys	Ile	Lys	Asn	Val 170	Asp	Gly	Leu	Thr	Phe 175	Gln	Gly	Leu	Gly	Ala 180
Leu	Lys	Ser	Leu	Lys 185	Met	Gln	Arg	Asn	Gly 190	Val	Thr	Lys	Leu	Met 195
Asp	Gly	Ala	Phe	Trp 200	Gly	Leu	Ser	Asn	Met 205	Glu	Ile	Leu	Gln	Leu 210
Asp	His	Asn	Asn	Leu 215	Thr	Glu	Ile	Thr	Lys 220	Gly	Trp	Leu	Tyr	Gly 225
Leu	Leu	Met	Leu	Gln 230	Glu	Leu	His	Leu	Ser 235	Gln	Asn	Ala	Ile	Asn 240
Arg	Ile	Ser	Pro	Asp 245	Ala	Trp	Glu	Phe	Cys 250	Gln	Lys	Leu	Ser	Glu 255
Leu	Asp	Leu	Thr	Phe 260	Asn	His	Leu	Ser	Arg 265	Leu	Asp	Asp	Ser	Ser 270
Phe	Leu	Gly	Leu	Ser 275	Leu	Leu	Asn	Thr	Leu 280	His	Ile	Gly	Asn	Asn 285
Arg	Val	Ser	Tyr	Ile	Ala	Asp	Cys	Ala	Phe	Arg	Gly	Leu	Ser	Ser

181

				290					295					300
Leu	Lys	Thr	Leu	Asp 305	Leu	Lys	Asn	Asn	Glu 310	Ile	Ser	Trp	Thr	Ile 315
Glu	Asp	Met	Asn	Gly 320	Ala	Phe	Ser	Gly	Leu 325	Asp	Lys	Leu	Arg	Arg 330
Leu	Ile	Leu	Gln	Gly 335	Asn	Arg	Ile	Arg	Ser 340	Ile	Thr	Lys	Lys	Ala 345
Phe	Thr	Gly	Leu	Asp 350	Ala	Leu	Glu	His	Leu 355	Asp	Leu	Ser	Asp	Asn 360
Ala	Ile	Met	Ser	Leu 365	Gln	Gly	Asn	Ala	Phe 370	Ser	Gln	Met	Lys	Lys 3 7 5
Leu	Gln	Gln	Leu	His 380	Leu	Asn	Thr	Ser	Ser 385	Leu	Leu	Cys	Asp	Cys 390
Gln	Leu	Lys	Trp	Leu 395	Pro	Gln	Trp	Val	Ala 400	Glu	Asn	Asn	Phe	Gln 405
Ser	Phe	Val	Asn	Ala 410	Ser	Cys	Ala	His	Pro 415	Gln	Leu	Leu	Lys	Gly 420
Arg	Ser	Ile	Phe	Ala 425	Val	Ser	Pro	Asp	Gly 430	Phe	Val	Cys	Asp	Asp 435
Phe	Pro	Lys	Pro	Gln 440	Ile	Thr	Val	Gln	Pro 445	Glu	Thr	Gln	Ser	Ala 450
Ile	Lys	Gly	Ser	Asn 455	Leu	Ser	Phe	Ile	Cys 460	Ser	Ala	Ala	Ser	Ser 465
Ser	Asp	Ser	Pro	Met 470	Thr	Phe	Ala	Trp	Lys 475	Lys	Asp	Asn	Glu	Leu 480
Leu	His	Asp	Ala		Met	Glu	Asn	Tyr		His	Leu	Arg	Ala	
				485					490					495
Gly	Gly	Glu	Val	Met 500	Glu	Tyr	Thr	Thr	Ile 505	Leu	Arg	Leu	Arg	Glu 510
Val	Glu	Phe	Ala	Ser 515	Glu	Gly	Lys	Tyr	Gln 520	Cys	Val	Ile	Ser	Asn 525
His	Phe	Gly	Ser	Ser 530	Tyr	Ser	Val	Lys	Ala 535	Lys	Leu	Thr	Val	Asn 540
Met	Leu	Pro	Ser	Phe 545	Thr	Lys	Thr	Pro	Met 550	Asp	Leu	Thr	Ile	Arg 555

Ala Gly	Ala	Met	Ala 560	Arg	Leu	Glu	Cys	Ala 565	Ala	Val	Gly	His	Pro 570
Ala Pro	Gln	Ile	Ala 575	Trp	Gln	Lys	Asp	Gly 580	Gly	Thr	Asp	Phe	Pro 585
Ala Ala	Arg	Glu	Arg 590	Arg	Met	His	Val	Met 595	Pro	Glu	Asp	Asp	Val 600
Phe Phe	Ile	Val	Asp 605	Val	Lys	Ile	Glu	Asp 610	Ile	Gly	Val	Tyr	Ser 615
Cys Thr	Ala	Gln	Asn 620	Ser	Ala	Gly	Ser	Ile 625	Ser	Ala	Asn	Ala	Thr 630
Leu Thr	Val	Leu	Glu 635	Thr	Pro	Ser	Phe	Leu 640	Arg	Pro	Leu	Leu	Asp 645
Arg Thr	Val	Thr	Lys 650	Gly	Glu	Thr	Ala	Val 655	Leu	Gln	Cys	Ile	Ala 660
Gly Gly	Ser	Pro	Pro 665	Pro	Lys	Leu	Asn	Trp 670	Thr	Lys	Asp	Asp	Ser 675
Pro Leu	Val	Val	Thr 680	Glu	Arg	His	Phe	Phe 685	Ala	Ala	Gly	Asn	Gln 690
Leu Leu	Ile	Ile	Val 695	Asp	Ser	Asp	Val	Ser 700	Asp	Ala	Gly	Lys	Tyr 705
Thr Cys	Glu	Met	Ser 710	Asn	Thr	Leu	Gly	Thr 715	Glu	Arg	Gly	Asn	Val 720
Arg Leu	Ser	Val	Ile 725	Pro	Thr	Pro	Thr	Cys 730	Asp	Ser	Pro	Gln	Met 735
Thr Ala	Pro	Ser	Leu 740	Asp	Asp	Asp	Gly	Trp 745	Ala	Thr	Val	Gly	Val 750
Val Ile	Ile	Ala	Val 755	Val	Cys	Cys	Val	Val 760	Gly	Thr	Ser	Leu	Val 765
Trp Val	Val	Ile	Ile 770	Tyr	His	Thr	Arg	Arg 775	Arg	Asn	Glu	Asp	Cys 780
Ser Ile	Thr	Asn		Asp	Glu	Thr	Asn		Pro	Ala	Asp	Ile	
			785					790					795
Ser Tyr	Leu	Ser	Ser 800	Gln	Gly	Thr	Leu	Ala 805	Asp	Arg	Gln	Asp	Gly 810

Tyr	Val	Ser	Ser	Glu 815	Ser	Gly	Ser	His	His 820	Gln	Phe	Val	Thr	Ser 825
Ser	Gly	Ala	Gly	Phe 830	Phe	Leu	Pro	Gln	His 835	Asp	Ser	Ser	Gly	Thr 840
Cys	His	Ile	Asp	Asn 845	Ser	Ser	Glu	Ala	Asp 850	Val	Glu	Ala	Ala	Thr 855
Asp	Leu	Phe	Leu	Cys 860	Pro	Phe	Leu	Gly	Ser 865	Thr	Gly	Pro	Met	Tyr 870
Leu	Lys	Gly	Asn	Val 875	Tyr	Gly	Ser	Asp	Pro 880	Phe	Glu	Thr	Tyr	His 885
Thr	Gly	Cys	Ser	Pro 890	Asp	Pro	Arg	Thr	Val 895	Leu	Met	Asp	His	Tyr 900
Glu	Pro	Ser	Tyr	Ile 905	Lys	Lys	Lys	Glu	Cys 910	Tyr	Pro	Cys	Ser	His 915
Pro	Ser	Glu	Glu	Ser 920	Cys	Glu	Arg	Ser	Phe 925	Ser	Asn	Ile	Ser	Trp 930
Pro	Ser	His	Val	Arg 935	Lys	Leu	Leu	Asn	Thr 940	Ser	Tyr	Ser	His	Asn 945
Glu	Gly	Pro	Gly	Met 950	Lys	Asn	Leu	Cys	Leu 955	Asn	Lys	Ser	Ser	Leu 960
Asp	Phe	Ser	Ala	Asn 965	Pro	Glu	Pro	Ala	Ser 970	Val	Ala	Ser	Ser	Asn 9 7 5
Ser	Phe	Met	Gly	Thr 980	Phe	Gly	Lys	Ala	Leu 985	Arg	Arg	Pro	His	Leu 990
Asp	Ala	Tyr	Ser	Ser 995	Phe	Gly	Gln		Ser .000	Asp	Сув	Gln	Pro	Arg .005
Ala	Phe	Tyr		Lys .010	Ala	His	Ser		Pro .015	Asp	Leu	Asp	Ser 1	Gly .020
Ser	Glu	Glu		Gly .025	Lys	Glu	Arg		Asp .030	Phe	Gln	Glu	Glu 1	Asn .035
His	Ile	Cys		Phe .040	Lys	Gln	Thr		Glu .045	Asn	Tyr	Arg	Thr 1	Pro .050
Asn	Phe	Gln	Ser 1	Tyr .055	Asp	Leu	Asp	Thr						

<210> 291 <211> 2906

<212> DNA <213> Homo Sapien

<400> 291 ggggagagga attgaccatg taaaaggaga ctttttttt tggtggtggt 50 ggctgttggg tgccttgcaa aaatgaagga tgcaggacgc agctttctcc 100. tggaaccgaa cgcaatggat aaactgattg tgcaagagag aaggaagaac 150 gaagettttt ettgtgagee etggatetta acacaaatgt gtatatgtge 200 acacagggag cattcaagaa tgaaataaac cagagttaga cccgcggggg 250 ttggtgtgtt ctgacataaa taaataatct taaagcagct gttcccctcc 300 ccacccccaa aaaaaaggat gattggaaat gaagaaccga ggattcacaa 350 agaaaaaagt atgttcattt ttctctataa aggagaaagt gagccaagga 400 gatatttttg gaatgaaaag tttggggctt ttttagtaaa gtaaagaact 450 aattaataat acatctgcaa agaaatttca gagaagaaaa gttgaccgcg 550 gcagattgag gcattgattg ggggagagaa accagcagag cacagttgga 600 tttgtgccta tgttgactaa aattgacgga taattgcagt tggatttttc 650 ttcatcaacc tcctttttt taaattttta ttccttttgg tatcaagatc 700 atgcgttttc tcttgttctt aaccacctgg atttccatct ggatgttgct 750 gtgatcagtc tgaaatacaa ctgtttgaat tccagaagga ccaacaccag 800 ataaattatg aatgttgaac aagatgacct tacatccaca gcagataatg 850 ataggtccta ggtttaacag ggccctattt gaccccctgc ttgtggtgct 900 getggetett caacttettg tggtggetgg tetggtgegg geteagacet 950 gecettetgt gtgeteetge ageaaceagt teageaaggt gatttgtgtt 1000 cggaaaaacc tgcgtgaggt tccggatggc atctccacca acacacggct 1050 gctgaacctc catgagaacc aaatccagat catcaaagtg aacagcttca 1100 agcacttgag gcacttggaa atcctacagt tgagtaggaa ccatatcaga 1150 accattgaaa ttggggcttt caatggtctg gcgaacctca acactctgga 1200 actctttgac aatcgtctta ctaccatccc gaatggagct tttgtatact 1250 tgtctaaact gaaggagctc tggttgcgaa acaaccccat tgaaagcatc 1300 ccttcttatg cttttaacag aattccttct ttgcgccgac tagacttagg 1350 ggaattgaaa agactttcat acatctcaga aggtgccttt gaaggtctgt 1400 ccaacttgag gtatttgaac cttgccatgt gcaaccttcg ggaaatccct 1450 aacctcacac cgctcataaa actagatgag ctggatcttt ctgggaatca 1500 tttatctgcc atcaggcctg gctctttcca gggtttgatg caccttcaaa 1550 aactgtggat gatacagtcc cagattcaag tgattgaacg gaatgccttt 1600 gacaaccttc agtcactagt ggagatcaac ctggcacaca ataatctaac 1650 attactgcct catgacctct tcactccctt gcatcatcta gagcggatac 1700 atttacatca caaccettgg aactgtaact gtgacatact gtggctcagc 1750 tggtggataa aagacatggc cccctcgaac acagcttgtt gtgcccggtg 1800 taacactcct cccaatctaa aggggaggta cattggagag ctcgaccaga 1850 attacttcac atgctatgct ccggtgattg tggagccccc tgcagacctc 1900 aatgtcactg aaggcatggc agctgagctg aaatgtcggg cctccacatc 1950 cctgacatct gtatcttgga ttactccaaa tggaacagtc atgacacatg 2000 gggcgtacaa agtgcggata gctgtgctca gtgatggtac gttaaatttc 2050 acaaatgtaa ctgtgcaaga tacaggcatg tacacatgta tggtgagtaa 2100 ttccgttggg aatactactg cttcagccac cctgaatgtt actgcagcaa 2150 ccactactcc tttctcttac ttttcaaccg tcacagtaga gactatggaa 2200 ccgtctcagg atgaggcacg gaccacagat aacaatgtgg gtcccactcc 2250 agtggtcgac tgggagacca ccaatgtgac cacctctctc acaccacaga 2300 gcacaaggtc gacagagaaa accttcacca tcccagtgac tgatataaac 2350 agtgggatcc caggaattga tgaggtcatg aagactacca aaatcatcat 2400 tgggtgtttt gtggccatca cactcatggc tgcagtgatg ctggtcattt 2450 tctacaagat gaggaagcag caccatcggc aaaaccatca cgccccaaca 2500 aggactgttg aaattattaa tgtggatgat gagattacgg gagacacacc 2550 catggaaagc cacctgcca tgcctgctat cgagcatgag cacctaaatc 2600 actataactc atacaaatct cccttcaacc acacaacaac agttaacaca 2650 ataaattcaa tacacagttc agtgcatgaa ccgttattga tccgaatgaa 2700 ctctaaagac aatgtacaag agactcaaat ctaaaacatt tacagagtta 2750 caaaaaacaa acaatcaaaa aaaaagacag tttattaaaa atgacacaaa 2800 tgactgggct aaatctactg tttcaaaaaa gtgtctttac aaaaaaacaa 2850 aaaagaaaag aaatttattt attaaaaatt ctattgtgat ctaaagcaga 2900 caaaaa 2906

<210> 292

<211> 640

<212> PRT

<213> Homo Sapien

<400> 292

Met Leu Asn Lys Met Thr Leu His Pro Gln Gln Ile Met Ile Gly
1 5 10 15

Pro Arg Phe Asn Arg Ala Leu Phe Asp Pro Leu Leu Val Val Leu 20 .25 .30

Leu Ala Leu Gl
n Leu Leu Val Val Ala Gly Leu Val Arg Ala Gl
n \$35\$ 40 45

Thr Cys Pro Ser Val Cys Ser Cys Ser Asn Gln Phe Ser Lys Val
50 55 60

Ile Cys Val Arg Lys Asn Leu Arg Glu Val Pro Asp Gly Ile Ser
65 70 75

Thr Asn Thr Arg Leu Leu Asn Leu His Glu Asn Gln Ile Gln Ile 80 85 90

Ile Lys Val Asn Ser Phe Lys His Leu Arg His Leu Glu Ile Leu
95 100 105

Gln Leu Ser Arg Asn His Ile Arg Thr Ile Glu Ile Gly Ala Phe
110 115 120

Asn Gly Leu Ala Asn Leu Asn Thr Leu Glu Leu Phe Asp Asn Arg
125 130 135

Leu Thr Thr Ile Pro Asn Gly Ala Phe Val Tyr Leu Ser Lys Leu 140 145 150

Lys Glu Leu Trp Leu Arg Asn Asn Pro Ile Glu Ser Ile Pro Ser

	155		160			165
Tyr Ala Phe A	sn Arg Ile 170	Pro Ser	Leu Arg . 175	Arg Leu	Asp Leu	Gly 180
Glu Leu Lys A	rg Leu Ser 185	Tyr Ile	Ser Glu	Gly Ala	Phe Glu	Gly 195
Leu Ser Asn L	eu Arg Tyr 200	Leu Asn	Leu Ala 205	Met Cys	Asn Leu	Arg 210
Glu Ile Pro A	sn Leu Thr 215	Pro Leu	Ile Lys	Leu Asp	Glu Leu	Asp 225
Leu Ser Gly A	sn His Leu 230	Ser Ala	Ile Arg 235	Pro Gly	Ser Phe	Gln 240
Gly Leu Met H	is Leu Gln 245	Lys Leu	Trp Met 250	Ile Gln	Ser Gln	Ile 255
Gln Val Ile G	lu Arg Asn 260	Ala Phe	Asp Asn 265	Leu Gln	Ser Leu	Val 270
Glu Ile Asn L	eu Ala His 275	Asn Asn	Leu Thr	Leu Leu	Pro His	Asp 285
Leu Phe Thr P	ro Leu His 290	His Leu	Glu Arg 295	Ile His	Leu His	His 300
Asn Pro Trp A	sn Cys Asn 305	. Cys Asp	Ile Leu 310	Trp Leu	Ser Trp	Trp 315
Ile Lys Asp M	et Ala Pro 320	Ser Asn	Thr Ala 325	Cys Cys	Ala Arg	Cys 330
Asn Thr Pro P	ro Asn Leu 335	Lys Gly	Arg Tyr 340	Ile Gly	Glu Leu	Asp 345
Gln Asn Tyr P	he Thr Cys 350	Tyr Ala	Pro Val 355	Ile Val	Glu Pro	Pro 360
Ala Asp Leu A	sn Val Thr 365	Glu Gly	Met Ala . 370		Leu Lys	Cys 375
Arg Ala Ser T	hr Ser Leu 380	Thr Ser	Val Ser 385	Trp Ile	Thr Pro	Asn 390
Gly Thr Val M	let Thr His 395	Gly Ala	Tyr Lys 400	Val Arg	Ile Ala	Val 405
Leu Ser Asp G	Sly Thr Leu 410	Asn Phe	Thr Asn 415	Val Thr	Val Gln	Asp 420

Thr Gly Met	Tyr Th	Met	Val	Ser	Asn 430	Ser	Val	Gly	Asn	Thr 435
Thr Ala Ser	Ala Th	Asn	Val	Thr	Ala 445	Ala	Thr	Thr	Thr	Pro 450
Phe Ser Tyr	Phe Se	Val	Thr	Val	Glu 460	Thr	Met	Glu	Pro	Ser 465
Gln Asp Glu	Ala Ai	Thr	Asp	Asn	Asn 475	Val	Gly	Pro	Thr	Pro 480
Val Val Asp	Trp Gl	Thr	Asn	Val	Thr 490	Thr	Ser	Leu	Thr	Pro 495
Gln Ser Thr	Arg Se	Glu	Lys	Thr	Phe 505	Thr	Ile	Pro	Val	Thr 510
Asp Ile Asn	Ser Gl	Pro	Gly	Ile	Asp 520	Glu	Val	Met	Lys	Thr 525
Thr Lys Ile	Ile II	Cys	Phe	Val	Ala 535	Ile	Thr	Leu	Met	Ala 540
Ala Val Met	Leu Va	Phe	Tyr	Lys	Met 550	Arg	Lys	Gln	His	His 555
Arg Gln Asn	His H:	Pro	Thr	Arg	Thr 565	Val	Glu	Ile	Ile	Asn 570
Val Asp Asp	Glu I	Gly	Asp	Thr	Pro 580	Met	Glu	Ser	His	Leu 585
Pro Met Pro	Ala I	His	Glu	His	Leu 595	Asn	His	Tyr	Asn	Ser 600
Tyr Lys Ser	Pro Pl	His	Thr	Thr	Thr 610	Val	Asn	Thr	Ile	Asn 615
Ser Ile His	Ser Se	His	Glu	Pro	Leu 625	Leu	Ile	Arg	Met	Asn 630
Ser Lys Asp	Asn Va	Glu	Thr	Gln	Ile 640					

<210> 293

<211> 4053

<212> DNA

<213> Homo Sapien

<400> 293

agccgacgct gctcaagctg caactctgtt gcagttggca gttcttttcg 50

gtttccctcc tgctgtttgg gggcatgaaa gggcttcgcc gccgggagta 100 aaagaaggaa ttgaccgggc agcgcgaggg aggagcgccc acgcgaccgc 150 gagggcgggc gtgcaccctc ggctggaagt ttgtgccggg ccccgagcgc 200 gegeeggetg ggagettegg gtagagaeet aggeegetgg acegegatga 250 gegegeegag ceteegtgeg egegeegegg ggttgggget getgetgtge 300 geggtgetgg ggegegetgg ceggtcegac ageggeggtc geggggaact 350 cgggcagccc tctggggtag ccgccgagcg cccatgcccc actacctgcc 400 gctgcctcgg ggacctgctg gactgcagtc gtaagcggct agcgcgtctt 450 cccgagccac tcccgtcctg ggtcgctcgg ctggacttaa gtcacaacag 500 attatettte ateaaggeaa gtteeatgag eeacetteaa ageettegag 550 aagtgaaact gaacaacaat gaattggaga ccattccaaa tctgggacca 600 gtctcggcaa atattacact tctctccttg gctggaaaca ggattgttga 650 aatactccct gaacatctga aagagtttca gtcccttgaa actttggacc 700 ttagcagcaa caatatttca gagctccaaa ctgcatttcc agccctacag 750 ctcaaatatc tgtatctcaa cagcaaccga gtcacatcaa tggaacctgg 800 gtattttgac aatttggcca acacactcct tgtgttaaag ctgaacagga 850 accgaatete agetateeca eccaagatgt ttaaactgee ecaactgeaa 900 catctcgaat tgaaccgaaa caagattaaa aatgtagatg gactgacatt 950 ccaaggcctt ggtgctctga agtctctgaa aatgcaaaga aatggagtaa 1000 cgaaacttat ggatggagct ttttgggggc tgagcaacat ggaaattttg 1050 cagctggacc ataacaacct aacagagatt accaaaggct ggctttacgg 1100 cttgctgatg ctgcaggaac ttcatctcag ccaaaatgcc atcaacagga 1150 tcagccctga tgcctgggag ttctgccaga agctcagtga gctggaccta 1200 actttcaatc acttatcaag gttagatgat tcaagcttcc ttggcctaag 1250 cttactaaat acactgcaca ttgggaacaa cagagtcagc tacattgctg 1300 attgtgcctt ccgggggctt tccagtttaa agactttgga tctgaagaac 1350

aatgaaattt cctggactat tgaagacatg aatggtgctt tctctgggct 1400 tgacaaactg aggcgactga tactccaagg aaatcggatc cgttctatta 1450 ctaaaaaagc cttcactggt ttggatgcat tggagcatct agacctgagt 1500 gacaacgcaa tcatgtcttt acaaggcaat gcattttcac aaatgaagaa 1550 actgcaacaa ttgcatttaa atacatcaag ccttttgtgc gattgccagc 1600 taaaatggct cccacagtgg gtggcggaaa acaactttca gagctttgta 1650 aatgccagtt gtgcccatcc tcagctgcta aaaggaagaa gcatttttgc 1700 tgttagccca gatggctttg tgtgtgatga ttttcccaaa ccccagatca 1750 cggttcagcc agaaacacag tcggcaataa aaggttccaa tttgagtttc 1800 atctgctcag ctgccagcag cagtgattcc ccaatgactt ttgcttggaa 1850 aaaagacaat gaactactgc atgatgctga aatggaaaat tatgcacacc 1900 teegggeeca aggtggegag gtgatggagt ataccaccat cetteggetg 1950 cgcgaggtgg aatttgccag tgaggggaaa tatcagtgtg tcatctccaa 2000 tcactttggt tcatcctact ctgtcaaagc caagcttaca gtaaatatgc 2050 ttccctcatt caccaagacc cccatggatc tcaccatccg agctggggcc 2100 atggcacgct tggagtgtgc tgctgtgggg cacccagccc cccagatagc 2150 ctggcagaag gatgggggca cagacttccc agctgcacgg gagagacgca 2200 tgcatgtgat gcccgaggat gacgtgttct ttatcgtgga tgtgaagata 2250 gaggacattg gggtatacag ctgcacagct cagaacagtg caggaagtat 2300 ttcagcaaat gcaactctga ctgtcctaga aacaccatca tttttgcggc 2350 cactgttgga ccgaactgta accaagggag aaacagccgt cctacagtgc 2400 attgctggag gaagccctcc ccctaaactg aactggacca aagatgatag 2450 cccattggtg gtaaccgaga ggcacttttt tgcagcaggc aatcagcttc 2500 tgattattgt ggactcagat gtcagtgatg ctgggaaata cacatgtgag 2550 atgtctaaca cccttggcac tgagagagga aacgtgcgcc tcagtgtgat 2600 ccccactcca acctgcgact cccctcagat gacagcccca tcgttagacg 2650 atgacggatg ggccactgtg ggtgtcgtga tcatagccgt ggtttgctgt 2700 gtggtgggca cgtcactcgt gtgggtggtc atcatatacc acacaaggcg 2750 gaggaatgaa gattgcagca ttaccaacac agatgagacc aacttgccag 2800 cagatattcc tagttatttg tcatctcagg gaacgttagc tgacaggcag 2850 gatgggtacg tgtcttcaga aagtggaagc caccaccagt ttgtcacatc 2900 ttcaggtgct ggatttttct taccacaaca tgacagtagt gggacctgcc 2950 atattgacaa tagcagtgaa gctgatgtgg aagctgccac agatctgttc 3000 ctttgtccgt ttttgggatc cacaggccct atgtatttga agggaaatgt 3050 gtatggctca gatccttttg aaacatatca tacaggttgc agtcctgacc 3100 caagaacagt tttaatggac cactatgagc ccagttacat aaagaaaaag 3150 gagtgctacc catgttctca tccttcagaa gaatcctgcg aacggagctt 3200 cagtaatata tcgtggcctt cacatgtgag gaagctactt aacactagtt 3250 actctcacaa tgaaggacct ggaatgaaaa atctgtgtct aaacaagtcc 3300 tctttagatt ttagtgcaaa tccagagcca gcgtcggttg cctcgagtaa 3350 ttctttcatg ggtacctttg gaaaagctct caggagacct cacctagatg 3400 cctattcaag ctttggacag ccatcagatt gtcagccaag agccttttat 3450 ttgaaagete attetteece agaettggae tetgggteag aggaagatgg 3500 gaaagaaagg acagattttc aggaagaaaa tcacatttgt acctttaaac 3550 agactttaga aaactacagg actccaaatt ttcagtctta tgacttggac 3600 acatagactg aatgagacca aaggaaaagc ttaacatact acctcaagtg 3650 aacttttatt taaaagagag agaatcttat gttttttaaa tggagttatg 3700 aattttaaaa ggataaaaat gctttattta tacagatgaa ccaaaattac 3750 aaaaagttat gaaaattttt atactgggaa tgatgctcat ataagaatac 3800 ctttttaaac tatttttaa ctttgtttta tgcaaaaaag tatcttacgt 3850 aaattaatga tataaatcat gattatttta tgtattttta taatgccaga 3900 tttcttttta tggaaaatga gttactaaag cattttaaat aatacctgcc 3950 ttgtaccatt ttttaaatag aagttacttc attatatttt gcacattata 4000

tttaataaaa tgtgtcaatt tgaaaaaaaa aaaaaaaaa aaaaaaaaa 4050

aaa 4053

<210> 294

<211> 1119

<212> PRT

<213> Homo Sapien

<400> 294

Met Ser Ala Pro Ser Leu Arg Ala Arg Ala Ala Gly Leu Gly Leu 1 5 10 15

Leu Leu Cys Ala Val Leu Gly Arg Ala Gly Arg Ser Asp Ser Gly 20 25 30

Gly Arg Gly Glu Leu Gly Gln Pro Ser Gly Val Ala Ala Glu Arg 35 40 45

Pro Cys Pro Thr Thr Cys Arg Cys Leu Gly Asp Leu Leu Asp Cys
50 55 60

Ser Arg Lys Arg Leu Ala Arg Leu Pro Glu Pro Leu Pro Ser Trp
65 70 75

Val Ala Arg Leu Asp Leu Ser His Asn Arg Leu Ser Phe Ile Lys 80 85 90

Ala Ser Ser Met Ser His Leu Gln Ser Leu Arg Glu Val Lys Leu 95 100 105

Asn Asn Asn Glu Leu Glu Thr Ile Pro Asn Leu Gly Pro Val Ser 110 115 120

Ala Asn Ile Thr Leu Leu Ser Leu Ala Gly Asn Arg Ile Val Glu 125 130 135

Ile Leu Pro Glu His Leu Lys Glu Phe Gln Ser Leu Glu Thr Leu 140 145 150

Asp Leu Ser Ser Asn Asn Ile Ser Glu Leu Gln Thr Ala Phe Pro 155 160 165

Ala Leu Gln Leu Lys Tyr Leu Tyr Leu Asn Ser Asn Arg Val Thr
170 175 180

Ser Met Glu Pro Gly Tyr Phe Asp Asn Leu Ala Asn Thr Leu Leu 185 190 195

Val Leu Lys Leu Asn Arg Asn Arg Ile Ser Ala Ile Pro Pro Lys 200 205 210

Met Phe Lys Leu Pro Gln Leu Gln His Leu Glu Leu Asn Arg Asn

				215					220					225
Lys	Ile	Lys	Asn	Val 230	Asp	Gly	Leu	Thr	Phe 235	Gln	Gly	Leu	Gly	Ala 240
Leu	Lys	Ser	Leu	Lys 245	Met	Gln	Arg	Asn	Gly 250	Val	Thr	Lys	Leu	Met 255
Asp	Gly	Ala	Phe	Trp 260	Gly	Leu	Ser	Asn	Met 265	Glu	Ile	Leu	Gln	Leu 270
Asp	His	Asn	Asn	Leu 275	Thr	Glu	Ile	Thr	Lys 280	Gly	Trp	Leu	Tyr	Gly 285
Leu	Leu	Met	Leu	Gln 290	Glu	Leu	His	Leu	Ser 295	Gln	Asn	Ala	Ile	Asn 300
Arg	Ile	Ser	Pro	Asp 305	Ala	Trp	Glu	Phe	Cys 310	Gln	Lys	Leu	Ser	Glu 315
Leu	Asp	Leu	Thr	Phe 320	Asn	His	Leu	Ser	Arg 325	Leu	Asp	Asp	Ser	Ser 330
Phe	Leu	Gly	Leu	Ser 335	Leu	Leu	Asn	Thr	Leu 340	His	Ile	Gly	Asn	Asn 345
Arg	Val	Ser	Tyr	11e 350	Ala	Asp	Cys		Phe 355	Arg	Gly	Leu	Ser	Ser 360
Leu	Lys	Thr	Leu	Asp 365	Leu	Lys	Asn	Asn	Glu 370	Ile	Ser	Trp	Thr	Ile 375
Glu	Asp	Met	Asn	Gly 380	Ala	Phe	Ser	Gly	Leu 385	Asp	Lys	Leu	Arg	Arg 390
Leu	Ile	Leu	Gln	Gly 395	Asn	Arg	Ile	Arg	Ser 400	Ile	Thr	Lys	Lys	Ala 405
Phe	Thr	Gly	Leu	Asp 410	Ala	Leu	Glu	His	Leu 415	Asp	Leu	Ser	Asp	Asn 420
Ala	Ile	Met	Ser	Leu 425	Gln	Gly	Asn	Ala	Phe 430	Ser	Gln	Met	Lys	Lys 435
Leu	Gln	Gln	Leu	His 440	Leu	Asn	Thr	Ser	Ser 445	Leu	Leu	Cys	Asp	Cys 450
Gln	Leu	Lys	Trp	Leu 455	Pro	Gln	Trp	Val	Ala 460	Glu	Asn	Asn	Phe	Gln 465
Ser	Phe	Val	Asn	Ala 470	Ser	Cys	Ala	His	Pro 475	Gln	Leu	Leu	Lys	Gly 480

Arg	Ser	Ile	Phe	Ala 485	Val	Ser	Pro	Asp	Gly 490	Phe	Val	Cys	Asp	Asp 495
Phe	Pro	Lys	Pro	Gln 500	Ile	Thr	Val	Gln	Pro 505	Glu	Thr	Gln	Ser	Ala 510
Ile	Lys	Gly	Ser	Asn 515	Leu	Ser	Phe	Ile	Cys 520	Ser	Ala	Ala	Ser	Ser 525
Ser	Asp	Ser	Pro	Met 530	Thr	Phe	Ala	Trp	Lys 535	Lys	Asp	Asn	Glu	Leu 540
Leu	His	Asp	Ala	Glu 545	Met	Glu	Asn	Tyr	Ala 550	His	Leu	Arg	Ala	Gln 555
Gly	Gly	Glu	Val	Met 560	Glu	Tyr	Thr	Thr	Ile 565	Leu	Arg	Leu	Arg	Glu 570
Val	Glu	Phe	Ala	Ser 575	Glu	Gly	Lys	Tyr	Gln 580	Cys	Val	Ile	Ser	Asn 585
His	Phe	Gly	Ser	Ser 590	Tyr	Ser	Val	Lys	Ala 595	Lys	Leu	Thr	Val	Asn 600
Met	Leu	Pro	Ser	Phe 605	Thr	Lys	Thr	Pro	Met 610	Asp	Leu	Thr	Ile	Arg 615
Ala	Gly	Ala	Met	Ala 620	Arg	Leu	Glu	Cys	Ala 625	Ala	Val	Gly	His	Pro 630
Ala	Pro	Gln	Ile	Ala 635	Trp	Gln	Lys	Asp	Gly 640	Gly	Thr	Asp	Phe	Pro 645
Ala	Ala	Arg	Glu	Arg 650	Arg	Met	His	Val	Met 655	Pro	Glu	Asp	Asp	Val 660
Phe	Phe	Ile	Val	Asp 665	Val	Lys	Ile	Glu	Asp 670	Ile	Gly	Val	Tyr	Ser 675
Cys	Thr	Ala	Gln	Asn 680	Ser	Ala	Gly	Ser	Ile 685	Ser	Ala	Asn	Ala	Thr 690
Leu	Thr	Val	Leu	Glu 695	Thr	Pro	Ser	Phe	Leu 700	Arg	Pro	Leu	Leu	Asp 705
Arg	Thr	Val	Thr	Lys 710	Gly	Glu	Thr	Ala	Val 715	Leu	Gln	Cys	Ile	Ala 720
Gly	Gly	Ser	Pro	Pro 725	Pro	Lys	Leu	Asn	Trp 730	Thr	Lys	Asp	Asp	Ser 735
Pro	Leu	Val	Val	Thr 740	Glu	Arg	His	Phe	Phe 745	Ala	Ala	Gly	Asn	Gln 750

Leu	Leu	Ile	Ile	Val 755	Asp	Ser	Asp	Val	Ser 760	Asp	Ala	Gly	Lys	Tyr 765
Thr	Cys	Glu	Met	Ser 770	Asn	Thr	Leu	Gly	Thr 775	Glu	Arg	Gly	Asn	Val 780
Arg	Leu	Ser	Val	Ile 785	Pro	Thr	Pro	Thr	Cys 790	Asp	Ser	Pro	Gln	Met 795
Thr	Ala	Pro	Ser	Leu 800	Asp	Asp	Asp	Gly	Trp 805	Ala	Thr	Val	Gly	Val 810
Val	Ile	Ile	Ala	Val 815	Val	Cys	Cys	Val	Val 820	Gly	Thr	Ser	Leu	Val 825
Trp	Val	Val	Ile	Ile 830	Tyr	His	Thr	Arg	Arg 835	Arg	Asn	Glu	Asp	Cys 840
Ser	Ile	Thr	Asn	Thr 845	Asp	Glu	Thr	Asn	Leu 850	Pro	Ala	Asp	Ile	Pro 855
Ser	Tyr	Leu	Ser	Ser 860	Gln	Gly	Thr	Leu	Ala 865	Asp	Arg	Gln	Asp	Gly 870
Tyr	Val	Ser	Ser	Glu 875	Ser	Gly	Ser	His	His 880	Gln	Phe	Val	Thr	Ser 885
Ser	Gly	Ala	Gly	Phe 890	Phe	Leu	Pro	Gln	His 895	Asp	Ser	Ser	Gly	Thr 900
Cys	His	Ile	Asp	Asn 905	Ser	Ser	Glu	Ala	Asp 910	Val	Glu	Ala	Ala	Thr 915
Asp	Leu	Phe	Leu	Cys 920	Pro	Phe	Leu	Gly	Ser 925	Thr	Gly	Pro	Met	Tyr 930
Leu	Lys	Gly	Asn	Val 935	Tyr	Gly	Ser	Asp	Pro 940	Phe	Glu	Thr	Tyr	His 945
Thr	Gly	Cys	Ser	Pro 950	Asp	Pro	Arg	Thr	Val 955	Leu	Met	Asp	His	Tyr 960
Glu	Pro	Ser	Tyr	Ile 965	Lys	Lys	Lys	Glu	Cys 970	Tyr	Pro	Cys	Ser	His 975
Pro	Ser	Glu	Glu	Ser 980	Cys	Glu	Arg	Ser	Phe 985	Ser	Asn	Ile	Ser	Trp 990
Pro	Ser	His	Val	Arg 995	Lys	Leu	Leu	Asn	Thr L000	Ser	Tyr	Ser		Asn 1005
Glu	Gly	Pro	Gly	Met	Lys	Asn	Leu	Cys	Leu	Asn	Lys	Ser	Ser	Leu

the first three the first three thre

1020 1010 1015 Asp Phe Ser Ala Asn Pro Glu Pro Ala Ser Val Ala Ser Ser Asn Ser Phe Met Gly Thr Phe Gly Lys Ala Leu Arg Arg Pro His Leu 1040 1045 Asp Ala Tyr Ser Ser Phe Gly Gln Pro Ser Asp Cys Gln Pro Arg 1055 1060 Ala Phe Tyr Leu Lys Ala His Ser Ser Pro Asp Leu Asp Ser Gly 1075 1070 Ser Glu Glu Asp Gly Lys Glu Arg Thr Asp Phe Gln Glu Glu Asn 1085 His Ile Cys Thr Phe Lys Gln Thr Leu Glu Asn Tyr Arg Thr Pro 1105 1100 Asn Phe Gln Ser Tyr Asp Leu Asp Thr <210> 295 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 295 ggaaccgaat ctcagcta 18 <210> 296 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 296 cctaaactga actggacca 19 <210> 297 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe

```
<400> 297
ggctggagac actgaacct 19
<210> 298
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 298
acagctgcac agctcagaac agtg 24
<210> 299
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 299
cattcccagt ataaaaattt tc 22
<210> 300
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 300
gggtcttggt gaatgagg 18
<210> 301
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 301
gtgcctctcg gttaccacca atgg 24
<210> 302
<211> 50
<212> DNA
<213> Artificial Sequence
```

```
<220>
<223> Synthetic Oligonucleotide Probe
<400> 302
geggecactg ttggaccgaa ctgtaaccaa gggagaaaca geegteetac 50
<210> 303
<211> 28
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 303
gcctttgaca accttcagtc actagtgg 28
<210> 304
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 304
ccccatgtgt ccatgactgt tccc 24
<210> 305
<211> 45
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 305
tactgcctca tgacctcttc actcccttgc atcatcttag agcgg 45
<210> 306
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 306
actccaagga aatcggatcc gttc 24
<210> 307
<211> 24
```

```
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 307
ttagcagctg aggatgggca caac 24
<210> 308
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 308
actccaagga aatcggatcc gttc 24
<210> 309
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 309
gccttcactg gtttggatgc attggagcat ctagacctga gtgacaacgc 50
<210> 310
<211> 3296
<212> DNA
<213> Homo Sapien
<400> 310
caaaacttgc gtcgcggaga gcgcccagct tgacttgaat ggaaggagcc 50
cgagcccgcg gagcgcagct gagactgggg gagcgcgttc ggcctgtggg 100
gcgccgctcg gcgccggggc gcagcaggga aggggaagct gtggtctgcc 150
ctgctccacg aggcgccact ggtgtgaacc gggagagccc ctgggtggtc 200
ccgtccccta tccctccttt atatagaaac cttccacact gggaaggcag 250
cggcgaggca ggagggctca tggtgagcaa ggaggccggc tgatctgcag 300
gegeacagea tteegagttt acagattttt acagatacea aatggaagge 350
gaggaggcag aacagcctgc ctggttccat cagccctggc gcccaggcgc 400
```

atctgactcg gcacccctg caggcaccat ggcccagagc cgggtgctgc 450 tgctcctgct gctgctgccg ccacagctgc acctgggacc tgtgcttgcc 500 gtgagggccc caggatttgg ccgaagtggc ggccacagcc tgagccccga 550 agagaacgaa tttgcggagg aggagccggt gctggtactg agccctgagg 600 agecegggee tggeceagee geggteaget geceegaga etgtgeetgt 650 tcccaggagg gcgtcgtgga ctgtggcggt attgacctgc gtgagttccc 700 gggggacetg cetgageaca ceaaceacet atetetgeag aacaaceage 750 tggaaaagat ctaccctgag gagctctccc ggctgcaccg gctggagaca 800 ctgaacctgc aaaacaaccg cctgacttcc cgagggctcc cagagaaggc 850 gtttgagcat ctgaccaacc tcaattacct gtacttggcc aataacaagc 900 tgaccttggc accccgcttc ctgccaaacg ccctgatcag tgtggacttt 950 gctgccaact atctcaccaa gatctatggg ctcacctttg gccagaagcc 1000 aaacttgagg tctgtgtacc tgcacaacaa caagctggca gacgccgggc 1050 tgccggacaa catgttcaac ggctccagca acgtcgaggt cctcatcctg 1100 tocagoaact tootgogoca ogtgoocaag cacotgoogo otgoootgta 1150 caagctgcac ctcaagaaca acaagctgga gaagatcccc ccgggggcct 1200 tcagegaget gageageetg egegagetat acetgeagaa caactacetg 1250 actgacgagg gcctggacaa cgagaccttc tggaagctct ccagcctgga 1300 gtacctggat ctgtccagca acaacctgtc tcgggtccca gctgggctgc 1350 cgcgcagcct ggtgctgctg cacttggaga agaacgccat ccggagcgtg 1400 gacgcgaatg tgctgacccc catccgcagc ctggagtacc tgctgctgca 1450 cagcaaccag ctgcgggagc agggcatcca cccactggcc ttccagggcc 1500 tcaageggtt geacaeggtg caeetgtaca acaaegeget ggagegegtg 1550 cccagtggcc tgcctcgccg cgtgcgcacc ctcatgatcc tgcacaacca 1600 gatcacagge attggccgcg aagactttgc caccacctac ttcctggagg 1650 ageteaacet cagetacaac egeateacea geecacaggt geacegegae 1700

gccttccgca agctgcgcct gctgcgctcg ctggacctgt cgggcaaccg 1750 gctgcacacg ctgccacctg ggctgcctcg aaatgtccat gtgctgaagg 1800 tcaagegeaa tgagetgget geettggeae gaggggeget ggegggeatg 1850 gctcagctgc gtgagctgta cctcaccagc aaccgactgc gcagccgagc 1900 cctgggcccc cgtgcctggg tggacctcgc ccatctgcag ctgctggaca 1950 tegeegggaa teageteaca gagateeeeg aggggeteee egagteaett 2000 gagtacctgt acctgcagaa caacaagatt agtgcggtgc ccgccaatgc 2050 cttcgactcc acgcccaacc tcaaggggat ctttctcagg tttaacaagc 2100 tggctgtggg ctccgtggtg gacagtgcct tccggaggct gaagcacctg 2150 caggtettgg acattgaagg caacttagag tttggtgaca tttccaagga 2200 aggaagagga aacaagatag tgacaaggtg atgcagatgt gacctaggat 2300 gatggaccgc cggactcttt tctgcagcac acgcctgtgt gctgtgagcc 2350 ccccactctg ccgtgctcac acagacacac ccagctgcac acatgaggca 2400 teccaeatga caegggetga caeagtetea tateceeace cetteceaeg 2450 gegtgteeca eggeeagaea catgeacaea cateacaeee teaaacaeee 2500 ageteageea cacacaacta ecetecaaac caccacagte tetgteacac 2550 ccccactacc gctgccacgc cctctgaatc atgcagggaa gggtctgccc 2600 ctgccctggc acacacaggc acccattccc tccccctgct gacatgtgta 2650 tgcgtatgca tacacaccac acacacacac atgcacaagt catgtgcgaa 2700 cageceteca aageetatge cacagacage tettgeeeca gecagaatea 2750 gecatageag etegeogtet gecetgteea tetgteegte egtteeetgg 2800 agaagacaca agggtatcca tgctctgtgg ccaggtgcct gccaccctct 2850 ggaactcaca aaagctggct tttattcctt tcccatccta tggggacagg 2900 agectteagg actgetggee tggeetggee caccetgete etceaggtge 2950 tgggcagtca ctctgctaag agtccctccc tgccacgccc tggcaggaca 3000 caggcacttt tccaatgggc aagcccagtg gaggcaggat gggagagccc 3050

cctgggtgct gctggggcct tggggcagga gtgaagcaga ggtgatgggg 3100 ctgggctgag ccagggagga aggacccagc tgcacctagg agacaccttt 3150 gttcttcagg cctgtggggg aagttccggg tgcctttatt ttttattctt 3200 ttctaaggaa aaaaatgata aaaatctcaa agctgatttt tcttgttata 3250 gaaaaactaa tataaaagca ttatccctat ccctgcaaaa aaaaaa 3296 <210> 311 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 311 gcattggccg cgagactttg cc 22 <210> 312 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 312 gcggccacgg tccttggaaa tg 22 <210> 313 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 313 tggaggagct caacctcagc tacaaccgca tcaccagccc acagg 45 <210> 314 <211> 3003 <212> DNA <213> Homo Sapien <400> 314 gggaggggc teegggegee gegeageaga cetgeteegg eegegeeet 50

cgccgctgtc ctccgggagc ggcagcagta gcccgggcgg cgagggctgg 100

gggttcctcg agactctcag aggggcgcct cccatcggcg cccaccaccc 150 caacctgttc ctcgcgcgcc actgcgctgc gccccaggac ccgctgccca 200 acatggattt teteetggeg etggtgetgg tateeteget etaeetgeag 250 geggeegeeg agttegaegg gaggtggeee aggeaaatag tgteategat 300 tggcctatgt cgttatggtg ggaggattga ctgctgctgg ggctgggctc 350 gccagtcttg gggacagtgt cagcctgtgt gccaaccacg atgcaaacat 400 ggtgaatgta tcgggccaaa caagtgcaag tgtcatcctg gttatgctgg 450 aaaaacctgt aatcaagatc taaatgagtg tggcctgaag ccccggccct 500 gtaagcacag gtgcatgaac acttacggca gctacaagtg ctactgtctc 550 aacggatata tgctcatgcc ggatggttcc tgctcaagtg ccctgacctg 600 ctccatggca aactgtcagt atggctgtga tgttgttaaa ggacaaatac 650 ggtgccagtg cccatccct ggcctgcacc tggctcctga tgggaggacc 700 tgtgtagatg ttgatgaatg tgctacagga agagcctcct gccctagatt 750 taggcaatgt gtcaacactt ttgggagcta catctgcaag tgtcataaag 800 gcttcgatct catgtatatt ggaggcaaat atcaatgtca tgacatagac 850 gaatgctcac ttggtcagta tcagtgcagc agctttgctc gatgttataa 900 cgtacgtggg tcctacaagt gcaaatgtaa agaaggatac cagggtgatg 950 gactgacttg tgtgtatatc ccaaaagtta tgattgaacc ttcaggtcca 1000 attcatgtac caaagggaaa tggtaccatt ttaaagggtg acacaggaaa 1050 taataattgg atteetgatg ttggaagtae ttggtggeet eegaagaeae 1100 catatattcc tcctatcatt accaacaggc ctacttctaa gccaacaaca 1150 agacctacac caaagccaac accaattcct actccaccac caccaccacc 1200 cctgccaaca gagctcagaa cacctctacc acctacaacc ccagaaaggc 1250° caaccaccgg actgacaact atagcaccag ctgccagtac acctccagga 1300 gggattacag ttgacaacag ggtacagaca gaccctcaga aacccagagg 1350 agatgtgttc agtgttctgg tacacagttg taattttgac catggacttt 1400

gtggatggat cagggagaaa gacaatgact tgcactggga accaatcagg 1450 gacccagcag gtggacaata tctgacagtg tcggcagcca aagccccagg 1500 gggaaaagct gcacgcttgg tgctacctct cggccgcctc atgcattcag 1550 gggacctgtg cctgtcattc aggcacaagg tgacggggct gcactctggc 1600 acactccagg tgtttgtgag aaaacacggt gcccacggag cagccctgtg 1650 gggaagaaat ggtggccatg gctggaggca aacacagatc accttgcgag 1700 gggctgacat caagagcgaa tcacaaagat gattaaaggg ttggaaaaaa 1750 agatctatga tggaaaatta aaggaactgg gattattgag cctggagaag 1800 agaagactga ggggcaaacc attgatggtt ttcaagtata tgaagggttg 1850 gcacagagag ggtggcgacc agctgttctc catatgcact aagaatagaa 1900 caagaggaaa ctggcttaga ctagagtata agggagcatt tcttggcagg 1950 ggccattgtt agaatacttc ataaaaaaag aagtgtgaaa atctcagtat 2000 ctctctctt ttctaaaaaa ttagataaaa atttgtctat ttaagatggt 2050 taaagatgtt cttacccaag gaaaagtaac aaattataga atttcccaaa 2100 agatgttttg atcctactag tagtatgcag tgaaaatctt tagaactaaa 2150 taatttggac aaggettaat ttaggeattt eeetettgae eteetaatgg 2200 agagggattg aaaggggaag agcccaccaa atgctgagct cactgaaata 2250 tctctccctt atggcaatcc tagcagtatt aaagaaaaaa ggaaactatt 2300 tattccaaat gagagtatga tggacagata ttttagtatc tcagtaatgt 2350 cctagtgtgg cggtggtttt caatgtttct tcatggtaaa ggtataagcc 2400 tttcatttgt tcaatggatg atgtttcaga ttttttttt tttaagagat 2450 ccttcaagga acacagttca gagagatttt catcgggtgc attctctctg 2500 cttcgtgtgt gacaagttat cttggctgct gagaaagagt gccctgcccc 2550 acaccggcag acctttcctt cacctcatca gtatgattca gtttctctta 2600 tcaattggac tctcccaggt tccacagaac agtaatattt tttgaacaat 2650 aggtacaata gaaggtette tgteatttaa eetggtaaag geagggetgg 2700 agggggaaaa taaatcatta agcctttgag taacggcaga atatatggct 2750

gtagatccat ttttaatggt tcatttcctt tatggtcata taactgcaca 2800 gctgaagatg aaaggggaaa ataaatgaaa attttacttt tcgatgccaa 2850 tgatacattg cactaaactg atggaagaag ttatccaaag tactgtataa 2900 catcttgttt attatttaat gttttctaaa ataaaaaatg ttagtggttt 2950 tccaaatggc ctaataaaaa caattatttg taaataaaaa cactgttagt 3000

aat 3003

<210> 315

<211> 509

<212> PRT

<213> Homo Sapien

<400>														
Met 1	Asp	Phe	Leu	Leu 5	Ala	Leu	Val	Leu	Val 10	Ser	Ser	Leu	Tyr	Leu 15
Gln	Ala	Ala	Ala	Glu 20	Phe	Asp	Gly	Arg	Trp 25	Pro	Arg	Gln	Ile	Val 30
Ser	Ser	Ile	Gly	Leu 35	Cys	Arg	Tyr	Gly	Gly 40	Arg	Ile	Asp	Cys	Cys 45
Trp	Gly	Trp	Ala	Arg 50	Gln	Ser	Trp	Gly	Gln 55	Cys	Gln	Pro	Val	Cys 60
Gln	Pro	Arg	Cys	Lys 65	His	Gly	Glu	Cys	Ile 70	Gly	Pro	Asn	Lys	Cys 75
Lys	Cys	His	Pro	Gly 80	Tyr	Ala	Gly	Lys	Thr 85	Cys	Asn	Gln	Asp	Leu 90
Asn	Glu	Cys	Gly	Leu	Lys	Pro	Arg	Pro	Cys	Lys	His	Arg	Cys	Met
				95					100					105

Asn Thr Tyr Gly Ser Tyr Lys Cys Tyr Cys Leu Asn Gly Tyr Met

Leu Met Pro Asp Gly Ser Cys Ser Ser Ala Leu Thr Cys Ser Met 125

Ala Asn Cys Gln Tyr Gly Cys Asp Val Val Lys Gly Gln Ile Arg

Cys Gln Cys Pro Ser Pro Gly Leu His Leu Ala Pro Asp Gly Arg

Thr	Cys	Val	Asp	Val 170	Asp	Glu	Cys	Ala	Thr 175	Gly	Arg	Ala	Ser	Cys 180
Pro	Arg	Phe	Arg	Gln 185	Cys	Val	Asn	Thr	Phe 190	Gly	Ser	Tyr	Ile	Cys 195
Lys	Cys	His	Lys	Gly 200	Phe	Asp	Leu	Met	Tyr 205	Ile	Gly	Gly	Lys	Tyr 210
Gln	Cys	His	Asp	Ile 215	Asp	Glu	Cys	Ser	Leu 220	Gly	Gln	Tyr	Gln	Cys 225
Ser	Ser	Phe	Ala	Arg 230	Cys	Tyr	Asn	Val	Arg 235	Gly	Ser	Tyr	Lys	Cys 240
Lys	Cys	Lys	Glu	Gly 245	Tyr	Gln	Gly	Asp	Gly 250	Leu	Thr	Cys	Val	Tyr 255
Ile	Pro	Lys	Val	Met 260	Ile	Glu	Pro	Ser	Gly 265	Pro	Ile	His	Val	Pro 270
Lys	Gly	Asn	Gly	Thr 275	Ile	Leu	Lys	Gly	Asp 280	Thr	Gly	Asn	Asn	Asn 285
Trp	Ile	Pro	Asp	Val 290	Gly	Ser	Thr	Trp	Trp 295	Pro	Pro	Lys	Thr	Pro 300
Tyr	Ile	Pro	Pro	Ile 305	Ile	Thr	Asn	Arg	Pro 310	Thr	Ser	Lys	Pro	Thr 315
Thr	Arg	Pro	Thr	Pro 320	Lys	Pro	Thr	Pro	Ile 325	Pro	Thr	Pro	Pro	Pro 330
Pro	Pro	Pro	Leu	Pro 335	Thr	Glu	Leu	Arg	Thr 340	Pro	Leu	Pro	Pro	Thr 345
Thr	Pro	Glu	Arg	Pro 350	Thr	Thr	Gly	Leu	Thr 355	Thr	Ile	Ala	Pro	Ala 360
Ala	Ser	Thr	Pro	Pro 365	Gly	Gly	Ile	Thr	Val 370	Asp	Asn	Arg	Val	Gln 375
Thr	Asp	Pro	Gln	Lys 380	Pro	Arg	Gly	Asp	Val 385	Phe	Ser	Val	Leu	Val 390
His	Ser	Cys	Asn	Phe 395	Asp	His	Gly	Leu	Cys 400	Gly	Trp	Ile	Arg	Glu 405
Lys	Asp	Asn	Asp	Leu	His	Trp	Glu	Pro	Ile	Arg	Asp	Pro	Ala	Gly
				410					415					420
Gly	Gln	Tyr	Leu	Thr	Val	Ser	Ala	Ala	Lys	Ala	Pro	Gly	Gly	Lys

ű
4
200
Į,j
Ü
Ü
¥
C.
300

				425					430					435
Ala A	Ala	Arg	Leu	Val 440	Leu	Pro	Leu	Gly	Arg 445	Leu	Met	His	Ser	Gly 450
Asp I	Leu	Cys	Leu	Ser 455	Phe	Arg	His	Lys	Val 460	Thr	Gly	Leu	His	Ser 465
Gly 1	Thr	Leu	Gln	Val 470	Phe	Val	Arg	Lys	His 475	Gly	Ala	His	Gly	Ala 480
Ala I	Leu	Trp	Gly	Arg 485	Asn	Gly	Gly	His	Gly 490	Trp	Arg	Gln	Thr	Gln 495
Ile 7	Thr	Leu	Arg	Gly 500	Ala	Asp	Ile	Lys	Ser 505	Glu	Ser	Gln	Arg	
<210><211><211><212><213>	24 DNA	1	cial	Sequ	ience	e								
<220> <223>	Syr	nthet	cic (Oligo	onucl	leot:	ide 1	?robe	.					
	223> Synthetic Oligonucleotide Probe 400> 316 gatggttcct gctcaagtgc cctg 24													
<210><211><211><212><213>	24 DNA	Ā	cial	Sequ	ience	e								
<220> <223>	Syr	nthet	cic (Oligo	onuc]	leot:	ide 1	Probe	e					
<400> ttgca			agga	ccac	g ta	acg 2	24							
<210><211><212>	50													
<213>	Art	ific	cial	Sequ	ience	e								
<220> <223>	Syr	nthet	tic (Oligo	onuc:	leot:	ide 1	Probe	e					
<400> ctgat			gacci	tgtgt	ca ga	atgti	tgat	g aat	tgtg	ctac	agg	aaga	gcc !	50
<210><211><212>	211	LO												

<213> Homo Sapien

<400> 319 cttctttgaa aaggattatc acctgatcag gttctctctg catttgcccc 50 tttagattgt gaaatgtggc tcaaggtctt cacaactttc ctttcctttg 100 caacaggtgc ttgctcgggg ctgaaggtga cagtgccatc acacactgtc 150 catggcgtca gaggtcaggc cctctaccta cccgtccact atggcttcca 200 cactccagca tcagacatcc agatcatatg gctatttgag agaccccaca 250 caatgcccaa atacttactg ggctctgtga ataagtctgt ggttcctgac 300 ttggaatacc aacacaagtt caccatgatg ccacccaatg catctctgct 350 tatcaaccca ctgcagttcc ctgatgaagg caattacatc gtgaaggtca 400 acattcaggg aaatggaact ctatctgcca gtcagaagat acaagtcacg 450 gttgatgatc ctgtcacaaa gccagtggtg cagattcatc ctccctctgg 500 ggctgtggag tatgtgggga acatgaccet gacatgccat gtggaagggg 550 gcactcggct agcttaccaa tggctaaaaa atgggagacc tgtccacacc 600 agetecacet acteettte tecceaaaac aataceette atattgetee 650 agtaaccaag gaagacattg ggaattacag ctgcctggtg aggaaccctg 700 tcagtgaaat ggaaagtgat atcattatgc ccatcatata ttatggacct 750 tatggacttc aagtgaattc tgataaaggg ctaaaagtag gggaagtgtt 800 tactgttgac cttggagagg ccatcctatt tgattgttct gctgattctc 850 atcccccaa cacctactcc tggattagga ggactgacaa tactacatat 900 atcattaagc atgggcctcg cttagaagtt gcatctgaga aagtagccca 950 gaagacaatg gactatgtgt gctgtgctta caacaacata accggcaggc 1000 aagatgaaac tcatttcaca gttatcatca cttccgtagg actggagaag 1050 cttgcacaga aaggaaaatc attgtcacct ttagcaagta taactggaat 1100 atcactattt ttgattatat ccatgtgtct tctcttccta tggaaaaaat 1150 atcaacccta caaagttata aaacagaaac tagaaggcag gccagaaaca 1200 gaatacagga aagctcaaac attttcaggc catgaagatg ctctggatga 1250

cttcggaata tatgaatttg ttgcttttcc agatgtttct ggtgtttcca 1300 ggattccaag caggtctgtt ccagcctctg attgtgtatc ggggcaagat 1350 ttgcacagta cagtgtatga agttattcag cacatccctg cccagcagca 1400 agaccatcca gagtgaactt tcatgggcta aacagtacat tcgagtgaaa 1450 ttctgaagaa acattttaag gaaaaacagt ggaaaagtat attaatctgg 1500 aatcagtgaa gaaaccagga ccaacacctc ttactcatta ttcctttaca 1550 tgcagaatag aggcatttat gcaaattgaa ctgcaggttt ttcagcatat 1600 acacaatgtc ttgtgcaaca gaaaaacatg ttggggaaat attcctcagt 1650 ggagagtcgt tctcatgctg acggggagaa cgaaagtgac aggggtttcc 1700 tcataagttt tgtatgaaat atctctacaa acctcaatta gttctactct 1750 acactttcac tatcatcaac actgagacta tcctgtctca cctacaaatg 1800 tggaaacttt acattgttcg atttttcagc agactttgtt ttattaaatt 1850 tttattagtg ttaagaatgc taaatttatg tttcaatttt atttccaaat 1900 ttctatcttq ttatttqtac aacaaaqtaa taaggatggt tgtcacaaaa 1950 acaaaactat gccttctctt ttttttcaat caccagtagt atttttgaga 2000 agacttgtga acacttaagg aaatgactat taaagtctta tttttatttt 2050 tttcaaggaa agatggattc aaataaatta ttctgttttt gcttttaaaa 2100 aaaaaaaaa 2110

<210> 320

<211> 450

<212> PRT

<213> Homo Sapien

<400> 320

Met Trp Leu Lys Val Phe Thr Thr Phe Leu Ser Phe Ala Thr Gly
1 5 10 15

Ala Cys Ser Gly Leu Lys Val Thr Val Pro Ser His Thr Val His
20 25 30

Gly Val Arg Gly Gln Ala Leu Tyr Leu Pro Val His Tyr Gly Phe
35 40 45

His Thr Pro Ala Ser Asp Ile Gln Ile Ile Trp Leu Phe Glu Arg

Pro His	Thr	Met	Pro 65	Lys	Tyr	Leu	Leu	Gly 70	Ser	Val	Asn	Lys	Ser 75
Val Val	Pro	Asp	Leu 80	Glu	Tyr	Gln	His	Lys 85	Phe	Thr	Met	Met	Pro 90
Pro Asn	Ala	Ser	Leu 95	Leu	Ile	Asn	Pro	Leu 100	Gln	Phe	Pro	Asp	Glu 105
Gly Asn	Tyr	Ile	Val 110	Lys	Val	Asn	Ile	Gln 115	Gly	Asn	Gly	Thr	Leu 120
Ser Ala	Ser	Gln	Lys 125	Ile	Gln	Val	Thr	Val 130	Asp	Asp	Pro	Val	Thr 135
Lys Pro	Val	Val	Gln 140	Ile	His	Pro	Pro	Ser 145	Gly	Ala	Val	Glu	Tyr 150
Val Gly	Asn	Met	Thr 155	Leu	Thr	Cys	His	Val 160	Glu	Gly	Gly	Thr	Arg 165
Leu Ala	Tyr	Gln	Trp 170	Leu	Lys	Asn	Gly	Arg 175	Pro	Val	His	Thr	Ser 180
Ser Thr	Tyr	Ser	Phe 185	Ser	Pro	Gln	Asn	Asn 190	Thr	Leu	His	Ile	Ala 195
Pro Val	Thr	Lys	Glu 200	Asp	Ile	Gly	Asn	Tyr 205	Ser	Cys	Leu	Val	Arg 210
Asn Pro	Val	Ser	Glu 215	Met	Glu	Ser	Asp	Ile 220	Ile	Met	Pro	Ile	Ile 225
Tyr Tyr	Gly	Pro	Tyr 230	Gly	Leu	Gln	Val	Asn 235	Ser	Asp	Lys	Gly	Leu 240
Lys Val	Gly	Glu	Val 245	Phe	Thr	Val	Asp	Leu 250	Gly	Glu	Ala	Ile	Leu 255
Phe Asp	Cys	Ser	Ala 260	Asp	Ser	His	Pro	Pro 265	Asn	Thr	Tyr	Ser	Trp 270
Ile Arg	Arg	Thr	Asp 275	Asn	Thr	Thr	Tyr	Ile 280	Ile	Lys	His	Gly	Pro 285
Arg Leu	Glu	Val	Ala 290	Ser	Glu	Lys	Val	Ala 295	Gln	Lys	Thr	Met	Asp 300
Tyr Val	Cys	Cys	Ala 305	Tyr	Asn	Asn	Ile	Thr 310	Gly	Arg	Gln	Asp	Glu 315
Thr His	Phe	Thr	Val	Ile	Ile	Thr	Ser	Val	Gly	Leu	Glu	Lys	Leu

				320					325					330
Ala	Gln	Lys	Gly	Lys 335	Ser	Leu	Ser	Pro	Leu 340	Ala	Ser	Ile	Thr	Gly 345
Ile	Ser	Leu	Phe	L eu 350	Ile	Ile	Ser	Met	Cys 355	Leu	Leu	Phe	Leu	Trp 360
Lys	Lys	Tyr	Gln	Pro 365	Tyr	Lys	Val	Ile	Lys 370	Gln	Lys	Leu	Glu	Gly 375
Arg	Pro	Glu	Thr	Glu 380	Tyr	Arg	Lys	Ala	Gln 385	Thr	Phe	Ser	Gly	His 390
Glu	Asp	Ala	Leu	Asp 395	Asp	Phe	Gly	Ile	Tyr 400	Glu	Phe	Val	Ala	Phe 405
Pro	Asp	Val	Ser	Gly 410	Val	Ser	Arg	Ile	Pro 415	Ser	Arg	Ser	Val	Pro 420
Ala	Ser	Asp	Cys	Val 425	Ser	Gly	Gln	Asp	Leu 430	His	Ser	Thr	Val	Tyr 435
Glu	Val	Ile	Gln	His 440	Ile	Pro	Ala	Gln	Gln 445	Gln	Asp	His	Pro	Glu 450
<210> 321 <211> 25 <212> DNA <213> Artificial Sequence														
<220:		nthe	tic (Oligo	onuc:	leot:	ide 1	Probe	e					
<400> 321 gatcctgtca caaagccagt ggtgc 25														
<210> 322														
<211> 24 <212> DNA <213> Artificial Sequence														
<220> <223> Synthetic Oligonucleotide Probe														
<400> 322 cactgacagg gttcctcacc cagg 24														
<210> 323 <211> 45 <212> DNA <213> Artificial Sequence														

<220> <223> Synthetic Oligonucleotide Probe

<400> 323 ctccctctgg gctgtggagt atgtggggaa catgaccctg acatg 45

<210> 324 <211> 2397 <212> DNA

<213> Homo Sapien

<400> 324 gcaageggeg aaatggegee eteegggagt ettgeagtte eeetggeagt 50 cctggtgctg ttgctttggg gtgctccctg gacgcacggg cggcggagca 100 acgttcgcgt catcacggac gagaactgga gagaactgct ggaaggagac 150 tggatgatag aattttatgc cccgtggtgc cctgcttgtc aaaatcttca 200 accggaatgg gaaagttttg ctgaatgggg agaagatctt gaggttaata 250 ttgcgaaagt agatgtcaca gagcagccag gactgagtgg acggtttatc 300 ataactgctc ttcctactat ttatcattgt aaagatggtg aatttaggcg 350 ctatcagggt ccaaggacta agaaggactt cataaacttt ataagtgata 400 aagagtggaa gagtattgag cccgtttcat catggtttgg tccaggttct 450 qttctqatqa qtaqtatqtc agcactcttt cagctatcta tgtggatcag 500 gacgtgccat aactacttta ttgaagacct tggattgcca gtgtggggat 550 catatactgt ttttgcttta gcaactctgt tttccggact gttattagga 600 ctctgtatga tatttgtggc agattgcctt tgtccttcaa aaaggcgcag 650 accacagoca tacccataco ottoaaaaaa attattatoa gaatotgoac 700 aacctttgaa aaaagtggag gaggaacaag aggcggatga agaagatgtt 750 tcagaagaag aagctgaaag taaagaagga acaaacaaag actttccaca 800 gaatgccata agacaacgct ctctgggtcc atcattggcc acagataaat 850 cctagttaaa ttttatagtt atcttaatat tatgattttg ataaaaacag 900 aagattgatc attttgtttg gtttgaagtg aactgtgact tttttgaata 950 ttgcagggtt cagtctagat tgtcattaaa ttgaagagtc tacattcaga 1000

acataaaagc actaggtata caagtttgaa atatgattta agcacagtat 1050 gatggtttaa atagttctct aatttttgaa aaatcgtgcc aagcaataag 1100 atttatgtat atttgtttaa taataaccta tttcaagtct gagttttgaa 1150 aatttacatt tcccaagtat tgcattattg aggtatttaa gaagattatt 1200 ttagagaaaa atatttctca tttgatataa tttttctctg tttcactgtg 1250 tgaaaaaaag aagatatttc ccataaatgg gaagtttgcc cattgtctca 1300 agaaatgtgt atttcagtga caatttcgtg gtctttttag aggtatattc 1350 caaaatttcc ttgtattttt aggttatgca actaataaaa actaccttac 1400 attaattaat tacagttttc tacacatggt aatacaggat atgctactga 1450 tttaggaagt ttttaagttc atggtattct cttgattcca acaaagtttg 1500 attttctctt gtatttttct tacttactat gggttacatt ttttattttt 1550 caaattggat gataatttct tggaaacatt ttttatgttt tagtaaacag 1600 tatttttttg ttgtttcaaa ctgaagttta ctgagagatc catcaaattg 1650 aacaatctgt tgtaatttaa aattttggcc acttttttca gattttacat 1700 cattettget gaactteaac ttgaaattgt ttttttttt tttttggatg 1750 tgaaggtgaa cattcctgat ttttgtctga tgtgaaaaag ccttggtatt 1800 ttacattttg aaaattcaaa gaagcttaat ataaaagttt gcattctact 1850 caggaaaaag catcttcttg tatatgtctt aaatgtattt ttgtcctcat 1900 atacagaaag ttcttaattg attttacagt ctgtaatgct tgatgtttta 1950 aaataataac atttttatat tttttaaaag acaaacttca tattatcctg 2000 tgttctttcc tgactggtaa tattgtgtgg gatttcacag gtaaaagtca 2050 gtaggatgga acattttagt gtatttttac tccttaaaga gctagaatac 2100 atagttttca ccttaaaaga agggggaaaa tcataaatac aatgaatcaa 2150 ctgaccatta cgtagtagac aatttctgta atgtcccctt ctttctaggc 2200 tctgttgctg tgtgaatcca ttagatttac agtatcgtaa tatacaagtt 2250 ttotttaaag coototoott tagaatttaa aatattgtao cattaaagag 2300 tttggatgtg taacttgtga tgccttagaa aaatatccta agcacaaaat 2350

aaacctttct aaccacttca ttaaagctga aaaaaaaaa aaaaaaa 2397

<2	1	o	>	3	2	5
- 4	-	v	_		~	_

<211> 280

<212> PRT

<213> Homo Sapien

<400> 325

Met Ala Pro Ser Gly Ser Leu Ala Val Pro Leu Ala Val Leu Val 1 5 10 15

Leu Leu Leu Trp Gly Ala Pro Trp Thr His Gly Arg Arg Ser Asn
20 25 30

Val Arg Val Ile Thr Asp Glu Asn Trp Arg Glu Leu Leu Glu Gly
35 40 45

Asp Trp Met Ile Glu Phe Tyr Ala Pro Trp Cys Pro Ala Cys Gln 50 55

Asn Leu Gln Pro Glu Trp Glu Ser Phe Ala Glu Trp Gly Glu Asp
65 70 75

Leu Glu Val Asn Ile Ala Lys Val Asp Val Thr Glu Gln Pro Gly 80 85 90

Leu Ser Gly Arg Phe Ile Ile Thr Ala Leu Pro Thr Ile Tyr His
95 100 105

Cys Lys Asp Gly Glu Phe Arg Arg Tyr Gln Gly Pro Arg Thr Lys 110 115 120

Lys Asp Phe Ile Asn Phe Ile Ser Asp Lys Glu Trp Lys Ser Ile 125 130 135

Glu Pro Val Ser Ser Trp Phe Gly Pro Gly Ser Val Leu Met Ser 140 145 150

Ser Met Ser Ala Leu Phe Gln Leu Ser Met Trp Ile Arg Thr Cys 155 160 165

His Asn Tyr Phe Ile Glu Asp Leu Gly Leu Pro Val Trp Gly Ser 170 175 180

Tyr Thr Val Phe Ala Leu Ala Thr Leu Phe Ser Gly Leu Leu Leu 185 190 195

Gly Leu Cys Met Ile Phe Val Ala Asp Cys Leu Cys Pro Ser Lys 200 205 210

Arg Arg Pro Gln Pro Tyr Pro Tyr Pro Ser Lys Lys Leu Leu

	215	220		225					
Ser Glu Ser Ala	Gln Pro Leu 230	Lys Lys Val		Gln Glu 240					
Ala Asp Glu Glu	Asp Val Ser 245	Glu Glu Glu 250		Lys Glu 255					
Gly Thr Asn Lys	Asp Phe Pro 260	Gln Asn Ala 265		Arg Ser 270					
Leu Gly Pro Ser	Leu Ala Thr 275	Asp Lys Ser 280							
<210> 326 <211> 23 <212> DNA									
<213> Artificial S	Sequence								
<220> <223> Synthetic O	ligonucleoti	de Probe							
<400> 326 tgaggtgggc aagcggcgaa atg 23									
<210> 327									
<211> 20 <212> DNA									
<213> Artificial S	Sequence		•						
<220> <223> Synthetic Oligonucleotide Probe									
<400> 327 tatgtggatc aggacg	gtgcc 20								
<210> 328									
<211> 21 <212> DNA									
<212> DNA <213> Artificial Sequence									
<220> <223> Synthetic Oligonucleotide Probe									
<400> 328 tgcagggttc agtctagatt g 21									
<210> 329									
<211> 25 <212> DNA	•								
<213> Artificial S	equence								

```
<220>
<223> Synthetic Oligonucleotide Probe
<400> 329
ttgaaggaca aaggcaatct gccac 25
<210> 330
<211> 45
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 330
ggagtettge agtteeettg geagteetgg tgetgttget ttggg 45
<210> 331
<211> 2168
<212> DNA
<213> Homo Sapien
<400> 331
 gegagtgtee agetgeggag accegtgata attegttaac taattcaaca 50
 aacgggaccc ttctgtgtgc cagaaaccgc aagcagttgc taacccagtg 100
 ggacaggegg attggaagag egggaaggte etggeecaga geagtgtgae 150
 acttccctct gtgaccatga aactctgggt gtctgcattg ctgatggcct 200
 ggtttggtgt cctgagctgt gtgcaggccg aattetteac ctetattggg 250
 cacatgactg acctgattta tgcagagaaa gagctggtgc agtctctgaa 300
 agagtacatc cttgtggagg aagccaagct ttccaagatt aagagctggg 350
 ccaacaaaat ggaagcettg actagcaagt cagetgetga tgetgaggge 400
 tacctggctc accctgtgaa tgcctacaaa ctggtgaagc ggctaaacac 450
 agactggcct gcgctggagg accttgtcct gcaggactca gctgcaggtt 500
 ttatcgccaa cctctctgtg cagcggcagt tcttccccac tgatgaggac 550
 gagataggag ctgccaaagc cctgatgaga cttcaggaca catacaggct 600
 ggacccaggc acaatttcca gaggggaact tccaggaacc aagtaccagg 650
 caatgctgag tgtggatgac tgctttggga tgggccgctc ggcctacaat 700
 gaaggggact attatcatac ggtgttgtgg atggagcagg tgctaaagca 750
```

gcttgatgcc ggggaggagg ccaccacaac caagtcacag gtgctggact 800 acctcagcta tgctgtcttc cagttgggtg atctgcaccg tgccctggag 850 ctcaccegec geetgetete cettgaceca agecacgaac gagetggagg 900 gaatctgcgg tactttgagc agttattgga ggaagagaga gaaaaaacgt 950 taacaaatca gacagaagct gagctagcaa ccccagaagg catctatgag 1000 aggcctgtgg actacctgcc tgagagggat gtttacgaga gcctctgtcg 1050 tggggagggt gtcaaactga cacccgtag acagaagagg cttttctgta 1100 ggtaccacca tggcaacagg gccccacagc tgctcattgc ccccttcaaa 1150 gaggaggacg agtgggacag cccgcacatc gtcaggtact acgatgtcat 1200 gtctgatgag gaaatcgaga ggatcaagga gatcgcaaaa cctaaacttg 1250 cacgagccac cgttcgtgat cccaagacag gagtcctcac tgtcgccagc 1300 taccgggttt ccaaaagctc ctggctagag gaagatgatg accctgttgt 1350 ggcccgagta aatcgtcgga tgcagcatat cacagggtta acagtaaaga 1400 ctgcagaatt gttacaggtt gcaaattatg gagtgggagg acagtatgaa 1450 ccgcacttcg acttctctag gcgacctttt gacagcggcc tcaaaacaga 1500 ggggaatagg ttagcgacgt ttcttaacta catgagtgat gtagaagctg 1550 gtggtgccac cgtcttccct gatctggggg ctgcaatttg gcctaagaag 1600 ggtacagctg tgttctggta caacctcttg cggagcgggg aaggtgacta 1650 ccgaacaaga catgctgcct gccctgtgct tgtgggctgc aagtgggtct 1700 ccaataagtg gttccatgaa cgaggacagg agttcttgag accttgtgga 1750 tcaacagaag ttgactgaca tccttttctg tccttcccct tcctggtcct 1800 tcagcccatg tcaacgtgac agacaccttt gtatgttcct ttgtatgttc 1850 ctatcaggct gatttttgga gaaatgaatg tttgtctgga gcagagggag 1900 accatactag ggcgactcct gtgtgactga agtcccagcc cttccattca 1950 gcctgtgcca tccctggccc caaggctagg atcaaagtgg ctgcagcaga 2000 gttagctgtc tagcgcctag caaggtgcct ttgtacctca ggtgttttag 2050 gtgtgagatg tttcagtgaa ccaaagttct gataccttgt ttacatgttt 2100 gtttttatgg catttctatc tattgtggct ttaccaaaaa ataaaatgtc 2150 cctaccagaa aaaaaaaa 2168

<210>	332	
<211>	533	
<212>	PRT	
<213>	Homo	Sapien

<400> 332 Met Lys Leu Trp Val Ser Ala Leu Leu Met Ala Trp Phe Gly Val Leu Ser Cys Val Gln Ala Glu Phe Phe Thr Ser Ile Gly His Met Thr Asp Leu Ile Tyr Ala Glu Lys Glu Leu Val Gln Ser Leu Lys Glu Tyr Ile Leu Val Glu Glu Ala Lys Leu Ser Lys Ile Lys Ser Trp Ala Asn Lys Met Glu Ala Leu Thr Ser Lys Ser Ala Ala Asp Ala Glu Gly Tyr Leu Ala His Pro Val Asn Ala Tyr Lys Leu Val Lys Arg Leu Asn Thr Asp Trp Pro Ala Leu Glu Asp Leu Val Leu Gln Asp Ser Ala Ala Gly Phe Ile Ala Asn Leu Ser Val Gln Arg 110 Gln Phe Phe Pro Thr Asp Glu Asp Glu Ile Gly Ala Ala Lys Ala Leu Met Arg Leu Gln Asp Thr Tyr Arg Leu Asp Pro Gly Thr Ile Ser Arg Gly Glu Leu Pro Gly Thr Lys Tyr Gln Ala Met Leu Ser Val Asp Asp Cys Phe Gly Met Gly Arg Ser Ala Tyr Asn Glu Gly 175 Asp Tyr Tyr His Thr Val Leu Trp Met Glu Gln Val Leu Lys Gln 190

Leu Asp Ala Gly Glu Glu Ala Thr Thr Thr Lys Ser Gln Val Leu

200

Asp	Tyr	Leu	Ser	T yr 215	Ala	Val	Phe	Gln	Leu 220	Gly	Asp	Leu	His	Arg 225
Ala	Leu	Glu	Leu	Thr 230	Arg	Arg	Leu	Leu	Ser 235	Leu	Asp	Pro	Ser	His 240
Glu	Arg	Ala	Gly	Gly 245	Asn	Leu	Arg	Tyr	Phe 250	Glu	Gln	Leu	Leu	Glu 255
Glu	Glu	Arg	Glu	Lys 260	Thr	Leu	Thr	Asn	Gln 265	Thr	Glu	Ala	Glu	Leu 270
Ala	Thr	Pro	Glu	Gly 275	Ile	Tyr	Glu	Arg	Pro 280	Val	Asp	Tyr	Leu	Pro 285
Glu	Arg	Asp	Val	Tyr 290	Glu	Ser	Leu	Cys	Arg 295	Gly	Glu	Gly	Val	Lys 300
Leu	Thr	Pro	Arg	Arg 305	Gln	Lys	Arg	Leu	Phe 310	Cys	Arg	Tyr	His	His 315
Gly	Asn	Arg	Ala	Pro 320	Gln	Leu	Leu	Ile	Ala 325	Pro	Phe	Lys	Glu	Glu 330
Asp	Glu	Trp	Asp	Ser 335	Pro	His	Ile	Val	Arg 340	Tyr	Tyr	Asp	Val	Met 345
Ser	Asp	Glu	Glu	Ile 350	Glu	Arg	Ile	Lys	Glu 355	Ile	Ala	Lys	Pro	Lys 360
Leu	Ala	Arg	Ala	Thr 365	Val	Arg	Asp	Pro	Lys 370	Thr	Gly	Val	Leu	Thr 375
Val	Ala	Ser	Tyr	Arg 380	Val	Ser	Lys	Ser	Ser 385	Trp	Leu	Glu	Glu	Asp 390
Asp	Asp	Pro	Val	Val 395	Ala	Arg	Val	Asn	Arg 400	Arg	Met	Gln	His	Ile 405
Thr	Gly	Leu	Thr	Val 410	Lys	Thr	Ala	Glu	Leu 415	Leu	Gln	Val	Ala	Asn 420
Tyr	Gly	Val	Gly	Gly 425	Gln	Tyr	Glu	Pro	His 430	Phe	Asp	Phe	Ser	Arg 435
Arg	Pro	Phe	Asp	Ser 440	Gly	Leu	Lys	Thr	Glu 445	Gly	Asn	Arg	Leu	Ala 450
Thr	Phe	Leu	Asn	Tyr 455	Met	Ser	Asp	Val	Glu 460	Ala	Gly	Gly	Ala	Thr 465
Val	Phe	Pro	Asp	Leu 470	Gly	Ala	Ala	Ile	Trp 475	Pro	Lys	Lys	Gly	Thr 480

Ala Val Phe Trp Tyr Asn Leu Leu Arg Ser Gly Glu Gly Asp Tyr 485 Arg Thr Arg His Ala Ala Cys Pro Val Leu Val Gly Cys Lys Trp Val Ser Asn Lys Trp Phe His Glu Arg Gly Gln Glu Phe Leu Arg Pro Cys Gly Ser Thr Glu Val Asp <210> 333 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 333 ccaggcacaa tttccaga 18 <210> 334 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 334 ggacccttct gtgtgccag 19 <210> 335 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 335 ggtctcaaga actcctgtc 19 <210> 336 <211> 24 <212> DNA <213> Artificial Sequence <220>

<223> Synthetic Oligonucleotide Probe

```
<400> 336
acactcagca ttgcctggta cttg 24
<210> 337
<211> 45
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 337
gggcacatga ctgacctgat ttatgcagag aaagagctgg tgcag 45
<210> 338
<211> 2789
<212> DNA
<213> Homo Sapien
<400> 338
gcagtattga gttttacttc ctcctctttt tagtggaaga cagaccataa 50
 tcccaqtgtg agtgaaattg attgtttcat ttattaccgt tttggctggg 100
ggttagttcc gacaccttca cagttgaaga gcaggcagaa ggagttgtga 150
 agacaggaca atcttcttgg ggatgctggt cctggaagcc agcgggcctt 200
gctctgtctt tggcctcatt gaccccaggt tctctggtta aaactgaaag 250
 cctactactg gcctggtgcc catcaatcca ttgatccttg aggctgtgcc 300
 cctggggcac ccacctggca gggcctacca ccatgcgact gagctccctg 350
 ttggctctgc tgcggccagc gcttcccctc atcttagggc tgtctctggg 400
gtgcagcctg agcctcctgc gggtttcctg gatccagggg gagggagaag 450
 atccctgtgt cgaggctgta ggggagcgag gagggccaca gaatccagat 500
 tcgagagctc ggctagacca aagtgatgaa gacttcaaac cccggattgt 550
 cccctactac agggacccca acaagcccta caagaaggtg ctcaggactc 600
 ggtacatcca gacagagctg ggctcccgtg agcggttgct ggtggctgtc 650
 ctgacctccc gagetacact gtecaetttg geegtggetg tgaacegtae 700
ggtggcccat cacttccctc ggttactcta cttcactggg cagcgggggg 750
 cccgggctcc agcagggatg caggtggtgt ctcatgggga tgagcggccc 800
```

gcctggctca tgtcagagac cctgcgccac cttcacacac actttggggc 850 cgactacgac tggttcttca tcatgcagga tgacacatat gtgcaggccc 900 ecegeetgge agecettget ggeeacetea geateaacea agacetgtae 950 ttaggccggg cagaggagtt cattggcgca ggcgagcagg cccggtactg 1000 tcatgggggc tttggctacc tgttgtcacg gagtctcctg cttcgtctgc 1050 ggccacatct ggatggctgc cgaggagaca ttctcagtgc ccgtcctgac 1100 gagtggcttg gacgctgcct cattgactct ctgggcgtcg gctgtgtctc 1150 acagcaccag gggcagcagt atcgctcatt tgaactggcc aaaaataggg 1200 accetgagaa ggaagggage teggetttee tgagtgeett egeegtgeae 1250 cctgtctccg aaggtaccct catgtaccgg ctccacaaac gcttcagcgc 1300 tctggagttg gagcgggctt acagtgaaat agaacaactg caggctcaga 1350 teeggaaeet gaeegtgetg acceeegaag gggaggeagg getgagetgg 1400 cccgttgggc tccctgctcc tttcacacca cactctcgct ttgaggtgct 1450 gggctgggac tacttcacag agcagcacac cttctcctgt gcagatgggg 1500 ctcccaagtg cccactacag ggggctagca gggcggacgt gggtgatgcg 1550 ttggagactg ccctggagca gctcaatcgg cgctatcagc cccgcctgcg 1600 cttccagaag cagcgactgc tcaacggcta tcggcgcttc gacccagcac 1650 ggggcatgga gtacaccctg gacctgctgt tggaatgtgt gacacagcgt 1700 gggcaccggc gggccctggc tcgcagggtc agcctgctgc ggccactgag 1750 ccgggtggaa atcctaccta tgccctatgt cactgaggcc acccgagtgc 1800 agetggtgct gecacteetg gtggetgaag etgetgeage eeeggettte 1850 ctcgaggcgt ttgcagccaa tgtcctggag ccacgagaac atgcattgct 1900 caccetgttg ctggtctacg ggccacgaga aggtggccgt ggagctccag 1950 acccatttct tggggtgaag gctgcagcag cggagttaga gcgacggtac 2000 cctgggacga ggctggcctg gctcgctgtg cgagcagagg ccccttccca 2050 ggtgcgactc atggacgtgg tctcgaagaa gcaccctgtg gacactctct 2100 tettecttac caccgtgtgg acaaggeetg ggcccgaagt ceteaaccgc 2150
tgtegcatga atgecatete tggctggcag gccttette cagtecattt 2200
ccaggagtte aatectgcce tgteaccaca gagateacce ccagggccce 2250
cgggggctgg ccctgaccce ccctccccte ctggtgctga cccctcccgg 2300
ggggctccta taggggggag atttgaccgg caggettetg cggagggctg 2350
cttetacaac gctgactace tggcggcccg agcccggctg gcaggtgaac 2400
tggcaggcca ggaagaggag gaagccctgg agggctgga ggtgatggat 2450
gtttectce ggttetcagg gctccaccte tttegggccg tagagccagg 2500
gctggtgcag aagttetece tgcgagactg cagcccacgg ctcagtgaag 2550
aactetacca ccgctgccg ctcagcaacc tggaggggct agggggccgt 2600
gcccagctgg ctatggctct ctttgagcag gagcaggcca atagcactta 2650
gcccgcctgg gggccctaac ctcattacct ttcctttgte tgcctcagce 2700
ccaggaaggg caaggcaaga tggtgacag atagagaatt gttgctgtat 2750
tttttaaata tgaaaatgtt attaaacatg tcttctgcc 2789

<210> 339

<211> 772

<212> PRT

<213> Homo Sapien

<400> 339

Met Arg Leu Ser Ser Leu Leu Ala Leu Leu Arg Pro Ala Leu Pro 1 5 10

Leu Ile Leu Gly Leu Ser Leu Gly Cys Ser Leu Ser Leu Leu Arg
20 25 30

Val Ser Trp Ile Gln Gly Glu Gly Glu Asp Pro Cys Val Glu Ala 35 40 45

Val Gly Glu Arg Gly Gly Pro Gln Asn Pro Asp Ser Arg Ala Arg
50 55 60

Leu Asp Gln Ser Asp Glu Asp Phe Lys Pro Arg Ile Val Pro Tyr
65 70 75

Tyr Arg Asp Pro Asn Lys Pro Tyr Lys Lys Val Leu Arg Thr Arg 80 85 90

Tyr Ile Gln Thr Glu Leu Gly Ser Arg Glu Arg Leu Leu Val Ala

٠				95					100					105
Val	Leu	Thr	Ser	Arg 110	Ala	Thr	Leu	Ser	Thr 115	Leu	Ala	Val	Ala	Val 120
Asn	Arg	Thr	Val	Ala 125	His	His	Phe	Pro	Arg 130	Leu	Leu	Tyr	Phe	Thr 135
Gly	Gln	Arg	Gly	Ala 140	Arg	Ala	Pro	Ala	Gly 145	Met	Gln	Val	Val	Ser 150
His	Gly	Asp	Glu	Arg 155	Pro	Ala	Trp	Leu	Met 160	Ser	Glu	Thr	Leu	Arg 165
His	Leu	His	Thr	His 170	Phe	Gly	Ala	Asp	Tyr 175	Asp	Trp	Phe	Phe	Ile 180
Met	Gln	Asp	Asp	Thr 185	Tyr	Val	Gln	Ala	Pro 190	Arg	Leu	Ala	Ala	Leu 195
Ala	Gly	His	Leu	Ser 200	Ile	Asn	Gln	Asp	Leu 205	Tyr	Leu	Gly	Arg	Ala 210
Glu	Glu	Phe	Ile	Gly 215	Ala	Gly	Glu	Gln	Ala 220	Arg	Tyr	Cys	His	Gly 225
Gly	Phe	Gly	Tyr	Leu 230	Leu	Ser	Arg	Ser	Leu 235	Leu	Leu	Arg	Leu	Arg 240
Pro	His	Leu	Asp	Gly 245	Cys	Arg	Gly	Asp	Ile 250	Leu	Ser	Ala	Arg	Pro 255
Asp	Glu	Trp	Leu	Gly 260	Arg	Cys	Leu	Ile	Asp 265	Ser	Leu	Gly	Val	Gly 270
Cys	Val	Ser	Gln	His 275	Gln	Gly	Gln	Gln	Tyr 280	Arg	Ser	Phe	Glu	Leu 285
Ala	Lys	Asn	Arg	Asp 290	Pro	Glu	Lys	Glu	Gly 295	Ser	Ser	Ala	Phe	Leu 300
Ser	Ala	Phe	Ala	Val 305	His	Pro	Val	Ser	Glu 310	Gly	Thr	Leu	Met	Tyr 315
Arg	Leu	His	Lys	Arg 320	Phe	Ser	Ala	Leu	Glu 325	Leu	Glu	Arg	Ala	Tyr 330
Ser	Glu	Ile	Glu	Gln 335	Leu	Gln	Ala	Gln	Ile 340	Arg	Asn	Leu	Thr	Val 345
Leu	Thr	Pro	Glu	Gly 350	Glu	Ala	Gly	Leu	Ser 355	Trp	Pro	Val	Gly	Leu 360

Pro Ala	Pro	Phe	Thr 365	Pro	His	Ser	Arg	Phe 370	Glu	Val	Leu	Gly	Trp 375
Asp Tyr	Phe '	Thr	Glu 380	Gln	His	Thr	Phe	Ser 385	Cys	Ala	Asp	Gly	Ala 390
Pro Lys	Cys 1	Pro	Leu 395	Gln	Gly	Ala	Ser	Arg 400	Ala	Asp	Val	Gly	Asp 405
Ala Leu	Glu '	Thr	Ala 410	Leu	Glu	Gln	Leu	Asn 415	Arg	Arg	Tyr	Gln	Pro 420
Arg Leu	Arg 1	Phe	Gln 425	Lys	Gln	Arg	Leu	Leu 430	Asn	Gly	Tyr	Arg	Arg 435
Phe Asp	Pro I	Ala	Arg 440	Gly	Met	Glu	Tyr	Thr 445	Leu	Asp	Leu	Leu	Leu 450
Glu Cys	Val'	Thr	Gln 4 55	Arg	Gly	His	Arg	Arg 460	Ala	Leu	Ala	Arg	Arg 465
Val Ser	Leu :	Leu	Arg 470	Pro	Leu	Ser	Arg	Val 475	Glu	Ile	Leu	Pro	Met 480
Pro Tyr	Val '	Thr	Glu 485	Ala	Thr	Arg	Val	Gln 490	Leu	Val	Leu	Pro	Leu 495
Leu Val	Ala	Glu	Ala 500	Ala	Ala	Ala	Pro	Ala 505	Phe	Leu	Glu	Ala	Phe 510
Ala Ala	Asn '	Val	Leu 515	Glu	Pro	Arg	Glu	His 520	Ala	Leu	Leu	Thr	Leu 525
Leu Leu	Val '	Tyr	Gly 530	Pro	Arg	Glu	Gly	Gly 535	Arg	Gly	Ala	Pro	Asp 540
Pro Phe	Leu	Gly	Val 545	Lys	Ala	Ala	Ala	Ala 550	Glu	Leu	Glu	Arg	Arg 555
Tyr Pro	Gly '	Thr	Arg 560	Leu	Ala	Trp	Leu	Ala 565	Val	Arg	Ala	Glu	Ala 570
Pro Ser	Gln '	Val	Arg 575	Leu	Met	Asp	Val	Val 580	Ser	Lys	Lys	His	Pro 585
Val Asp	Thr :	Leu	Phe 590	Phe	Leu	Thr	Thr	Val 595	Trp	Thr	Arg	Pro	Gly 600
						_		-	77-	~ 3 -	_		_
Pro Glu	Val :	Leu	Asn 605	Arg	Cys	Arg	Met	610	Ата	11e	Ser	Gly	1rp 615

Ser	Pro	Gln	Arg	Ser 635	Pro	Pro	Gly	Pro	Pro 640	Gly	Ala	Gly	Pro	Asp 645
Pro	Pro	Ser	Pro	Pro 650	Gly	Ala	Asp	Pro	Ser 655	Arg	Gly	Ala	Pro	Ile 660
Gly	Gly	Arg	Phe	Asp 665	Arg	Gln	Ala	Ser	Ala 670	Glu	Gly	Cys	Phe	Tyr 675
Asn	Ala	Asp	Tyr	Leu 680	Ala	Ala	Arg	Ala	Arg 685	Leu	Ala	Gly	Glu	Leu 690
Ala	Gly	Gln	Glu	Glu 695	Glu	Glu	Ala	Leu	Glu 700	Gly	Leu	Glu	Val	Met 705
Asp	Val	Phe	Leu	Arg 710	Phe	Ser	Gly	Leu	His 715	Leu	Phe	Arg	Ala	Val 720
Glu	Pro	Gly	Leu	Val 725	Gln	Lys	Phe	Ser	Leu 730	Arg	Asp	Cys	Ser	Pro 735
Arg	Leu	Ser	Glu	Glu 740	Leu	Tyr	His	Arg	Cys 745	Arg	Leu	Ser	Asn	Leu 750
Glu	Gly	Leu	Gly	Gly 755	Arg	Ala	Gln	Leu	Ala 760	Met	Ala	Leu	Phe	Glu 765
Gln	Glu	Gln	Ala	Asn 770	Ser	Thr								

<210> 340 <211> 1572

<212> DNA

<213> Homo Sapien

<400> 340

cggagtggtg cgccaacgtg agaggaaacc cgtgcgggc tgcgctttcc 50
tgtccccaag ccgttctaga cgcgggaaaa atgctttctg aaagcagctc 100
ctttttgaag ggtgtgatgc ttggaagcat tttctgtgct ttgatcacta 150
tgctaggaca cattaggatt ggtcatggaa atagaatgca ccaccatgag 200
catcatcacc tacaagctcc taacaaagaa gatatcttga aaatttcaga 250
ggatgagcgc atggagctca gtaagagctt tcgagtatac tgtattatcc 300
ttgtaaaacc caaagatgtg agtctttggg ctgcagtaaa ggagacttgg 350
accaaacact gtgacaaagc agagttcttc agttctgaaa atgttaaagt 400

gtttgagtca attaatatgg acacaaatga catgtggtta atgatgagaa 450 aagcttacaa atacgccttt gataagtata gagaccaata caactggttc 500 ttccttgcac gccccactac gtttgctatc attgaaaacc taaagtattt 550 tttgttaaaa aaggatccat cacagccttt ctatctaggc cacactataa 600 aatctggaga ccttgaatat gtgggtatgg aaggaggaat tgtcttaagt 650 gtagaatcaa tgaaaagact taacagcctt ctcaatatcc cagaaaagtg 700 tcctgaacag ggagggatga tttggaagat atctgaagat aaacagctag 750 cagtttgcct gaaatatgct ggagtatttg cagaaaatgc agaagatgct 800 gatggaaaag atgtatttaa taccaaatct gttgggcttt ctattaaaga 850 ggcaatgact tatcacccca accaggtagt agaaggctgt tgttcagata 900 tggctgttac ttttaatgga ctgactccaa atcagatgca tgtgatgatg 950 tatggggtat accgccttag ggcatttggg catattttca atgatgcatt 1000 ggttttctta cctccaaatg gttctgacaa tgactgagaa gtggtagaaa 1050 agcgtgaata tgatctttgt ataggacgtg tgttgtcatt atttgtagta 1100 gtaactacat atccaataca gctgtatgtt tctttttctt ttctaatttg 1150 gtggcactgg tataaccaca cattaaagtc agtagtacat ttttaaatga 1200 gggtggtttt tttctttaaa acacatgaac attgtaaatg tgttggaaag 1250 aagtgtttta agaataataa ttttgcaaat aaactattaa taaatattat 1300 atgtgataaa ttctaaatta tgaacattag aaatctgtgg ggcacatatt 1350 tttgctgatt ggttaaaaaa ttttaacagg tctttagcgt tctaagatat 1400 gcaaatgata tototagttg tgaatttgtg attaaagtaa aacttttagc 1450 tgtgtgttcc ctttacttct aatactgatt tatgttctaa gcctccccaa 1500 gttccaatgg atttgccttc tcaaaatgta caactaagca actaaagaaa 1550 attaaagtga aagttgaaaa at 1572

<210> 341

<211> 318

<212> PRT

<213> Homo Sapien

<400	> 341	1												
Met 1	Leu	Ser	Glu	Ser 5	Ser	Ser	Phe	Leu	Lys 10	Gly	Val	Met	Leu	Gly 15
Ser	Ile	Phe	Cys	Ala 20	Leu	Ile	Thr	Met	Leu 25	Gly	His	Ile	Arg	Ile 30
Gly	His	Gly	Asn	Arg 35	Met	His	His	His	Glu 40	His	His	His	Leu	Gln 45
Ala	Pro	Asn	Lys	Glu 50	Asp	Ile	Leu	Lys	Ile 55	Ser	Glu	Asp	Glu	Arg 60
Met	Glu	Leu	Ser	Lys 65	Ser	Phe	Arg	Val	Туг 70	Cys	Ile	Ile	Leu	Val 75
Lys	Pro	Lys	Asp	Val 80	Ser	Leu	Trp	Ala	Ala 85	Val	Lys	Glu	Thr	Trp 90
Thr	Lys	His	Cys	Asp 95	Lys	Ala	Glu	Phe	Phe 100	Ser	Ser	Glu	Asn	Val 105
Lys	Val	Phe	Glu	Ser 110	Ile	Asn	Met	Asp	Thr 115	Asn	Asp	Met	Trp	Leu 120
Met	Met	Arg	Lys	Ala 125	Tyr	Lys	Tyr	Ala	Phe 130	Asp	Lys	Tyr	Arg	Asp 135
Gln	Tyr	Asn	Trp	Phe 140	Phe	Leu	Ala	Arg	Pro 145	Thr	Thr	Phe	Ala	Ile 150
Ile	Glu	Asn	Leu	Lys 155	Tyr	Phe	Leu	Leu	Lys 160	Lys	Asp	Pro	Ser	Gln 165
Pro	Phe	Tyr	Leu	Gly 170	His	Thr	Ile	Lys	Ser 175	Gly	Asp	Leu	Glu	Tyr 180
Val	Gly	Met	Glu	Gly 185	Gly	Ile	Val	Leu	Ser 190	Val	Glu	Ser	Met	Lys 195
Arg	Leu	Asn	Ser	Leu 200	Leu	Asn	Ile	Pro	Glu 205	Lys	Cys	Pro	Glu	Gln 210
Gly	Gly	Met	Ile	Trp 215	Lys	Ile	Ser	Glu	Asp 220	Lys	Gln	Leu	Ala	Val 225
Cys	Leu	Lys	Tyr	Ala 230	Gly	Val	Phe	Ala	Glu 235	Asn	Ala	Glu	Asp	Ala 240
Asp	Gly	Lys	Asp	Val 245	Phe	Asn	Thr	Lys	Ser 250	Val	Gly	Leu	Ser	Ile 255
Lys	Glu	Ala	Met	Thr	Tyr	His	Pro	Asn	Gln	Val	Val	Glu	Gly	Сув

270

<220>

265 260 Cys Ser Asp Met Ala Val Thr Phe Asn Gly Leu Thr Pro Asn Gln Met His Val Met Met Tyr Gly Val Tyr Arg Leu Arg Ala Phe Gly His Ile Phe Asn Asp Ala Leu Val Phe Leu Pro Pro Asn Gly Ser Asp Asn Asp <210> 342 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 342 tececaagee gttetagaeg egg 23 <210> 343 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 343 ctggttcttc cttgcacg 18 <210> 344 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 344 gcccaaatgc cctaaggcgg tatacccc 28 <210> 345 <211> 50 <212> DNA <213> Artificial Sequence

```
<223> Synthetic Oligonucleotide Probe
<400> 345
gggtgtgatg cttggaagca ttttctgtgc tttgatcact atgctaggac 50
<210> 346
<211> 25
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 346
gggatgcagg tggtgtctca tgggg 25
<210> 347
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 347
ccctcatgta ccggctcc 18
<210> 348
<211> 48
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 348
ggattctaat acgactcact atagggctca gaaaagcgca acagagaa 48
<210> 349
<211> 47
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
ctatgaaatt aaccctcact aaagggatgt cttccatgcc aaccttc 47
<210> 350
<211> 48
<212> DNA
<213> Artificial Sequence
```

```
<220>
<223> Synthetic Oligonucleotide Probe
ggattctaat acgactcact atagggcggc gatgtccact ggggctac 48
<210> 351
<211> 48
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 351
ctatgaaatt aaccctcact aaagggacga ggaagatggg cggatggt 48
<210> 352
<211> 47
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 352
ggattctaat acgactcact atagggcacc cacgcgtccg gctgctt 47
<210> 353
<211> 48
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 353
ctatgaaatt aaccctcact aaagggacgg gggacaccac ggaccaga 48
<210> 354
<211> 48
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
ggattctaat acgactcact atagggcttg ctgcggtttt tgttcctg 48
<210> 355
<211> 48
```

```
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 355
ctatgaaatt aaccctcact aaagggagct gccgatccca ctggtatt 48
<210> 356
<211> 46
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 356
ggattctaat acgactcact atagggcgga tcctggccgg cctctg 46
<210> 357
<211> 48
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
ctatgaaatt aaccctcact aaagggagcc cgggcatggt ctcagtta 48
<210> 358
<211> 47
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
ggattctaat acgactcact atagggcggg aagatggcga ggaggag 47
<210> 359
<211> 48
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 359
ctatgaaatt aaccctcact aaagggacca aggccacaaa cggaaatc 48
```

```
<210> 360
<211> 48
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
ggattctaat acgactcact atagggctgt gctttcattc tgccagta 48
<210> 361
<211> 48
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 361
ctatgaaatt aaccctcact aaagggaggg tacaattaag gggtggat 48
<210> 362
<211> 47
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
ggattctaat acgactcact atagggcccg cctcgctcct gctcctg 47
<210> 363
<211> 48
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 363
ctatgaaatt aaccctcact aaagggagga ttgccgcgac cctcacag 48
<210> 364
<211> 47
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 364
```

```
ggattctaat acgactcact atagggcccc tectgecttc cetgtec 47
<210> 365
<211> 48
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 365
ctatgaaatt aaccctcact aaagggagtg gtggccgcga ttatctgc 48
<210> 366
<211> 48
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 366
ggattctaat acgactcact atagggcgca gcgatggcag cgatgagg 48
<210> 367
<211> 47
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 367
ctatgaaatt aaccctcact aaagggacag acggggcaga gggagtg 47
<210> 368
<211> 47
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 368
 ggattctaat acgactcact atagggccag gaggcgtgag gagaaac 47
<210> 369
<211> 48
<212> DNA
<213> Artificial Sequence
<220>
```

```
<223> Synthetic Oligonucleotide Probe
<400> 369
ctatgaaatt aaccctcact aaagggaaag acatgtcatc gggagtgg 48
<210> 370
<211> 48
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 370
ggattctaat acgactcact atagggccgg gtggaggtgg aacagaaa 48
<210> 371
<211> 48
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 371
ctatgaaatt aaccctcact aaagggacac agacagagcc ccatacgc 48
<210> 372
<211> 47
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 372
ggattctaat acgactcact atagggccag ggaaatccgg atgtctc 47
<210> 373
<211> 48
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 373
ctatgaaatt aaccctcact aaagggagta aggggatgcc accgagta 48
<210> 374
<211> 47
<212> DNA
<213> Artificial Sequence
```

```
<220>
<223> Synthetic Oligonucleotide Probe
<400> 374
ggattctaat acgactcact atagggccag ctacccgcag gaggagg 47
<210> 375
<211> 48
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 375
ctatgaaatt aaccctcact aaagggatcc caggtgatga ggtccaga 48
<210> 376
<211> 997
<212> DNA
<213> Homo Sapien
<400> 376
cccacgcgtc cgatcttacc aacaaaacac tcctgaggag aaagaaagag 50
aaaaaatgaa ttcatctaaa tcatctgaaa cacaatgcac agagagagga 150
tgcttctctt cccaaatgtt cttatggact gttgctggga tccccatcct 200
attteteagt geetgtttea teaceagatg tgttgtgaea tttegeatet 250
ttcaaacctg tgatgagaaa aagtttcagc tacctgagaa tttcacagag 300
ctctcctgct acaattatgg atcaggttca gtcaagaatt gttgtccatt 350
gaactgggaa tattttcaat ccagctgcta cttcttttct actgacacca 400
tttcctgggc gttaagttta aagaactgct cagccatggg ggctcacctg 450
taaaatgaga gagttttta ttggactgtc agaccaggtt gtcgagggtc 550
agtggcaatg ggtggacggc acacctttga caaagtctct gagcttctgg 600
gatgtagggg agcccaacaa catagctacc ctggaggact gtgccaccat 650
gagagactct tcaaacccaa ggcaaaattg gaatgatgta acctgtttcc 700
tcaattattt tcggatttgt gaaatggtag gaataaatcc tttgaacaaa 750
```

<210> 377

<211> 219

<212> PRT

<213> Homo Sapien

<400> 377

Met Asn Ser Ser Lys Ser Ser Glu Thr Gln Cys Thr Glu Arg Gly
1 5 10 15

Cys Phe Ser Ser Gln Met Phe Leu Trp Thr Val Ala Gly Ile Pro 20 25 30

Ile Leu Phe Leu Ser Ala Cys Phe Ile Thr Arg Cys Val Val Thr 35 40 45

Phe Arg Ile Phe Gln Thr Cys Asp Glu Lys Lys Phe Gln Leu Pro 50 55 60

Glu Asn Phe Thr Glu Leu Ser Cys Tyr Asn Tyr Gly Ser Gly Ser 65 70 75

Val Lys Asn Cys Cys Pro Leu Asn Trp Glu Tyr Phe Gln Ser Ser 80 85 90

Cys Tyr Phe Phe Ser Thr Asp Thr Ile Ser Trp Ala Leu Ser Leu 95 100 105

Lys Asn Cys Ser Ala Met Gly Ala His Leu Val Val Ile Asn Ser

Gln Glu Glu Glu Phe Leu Ser Tyr Lys Lys Pro Lys Met Arg 125 130 135

Glu Phe Phe Ile Gly Leu Ser Asp Gln Val Val Glu Gly Gln Trp
140 145 150

Gln Trp Val Asp Gly Thr Pro Leu Thr Lys Ser Leu Ser Phe Trp 155 160 165

Asp Val Gly Glu Pro Asn Asn Ile Ala Thr Leu Glu Asp Cys Ala 170 175 180

<400> 381

gcagattttg aggacagcca cctcca 26

Thr Met Arg Asp Ser Ser Asn Pro Arg Gln Asn Trp Asn Asp Val 185 190 Thr Cys Phe Leu Asn Tyr Phe Arg Ile Cys Glu Met Val Gly Ile 200 Asn Pro Leu Asn Lys Gly Lys Ser Leu 215 <210> 378 <211> 21 <212> DNA <213> Artificial Sequence <223> Synthetic Oligonucleotide Probe <400> 378 ttcagcttct gggatgtagg g 21 <210> 379 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 379 tattcctacc atttcacaaa tccg 24 <210> 380 <211> 49 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide probe <400> 380 ggaggactgt gccaccatga gagactcttc aaacccaagg caaaattgg 49 <210> 381 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide probe

```
<210> 382
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 382
ggccttgcag acaaccgt 18
<210> 383
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 383
cagactgagg gagatccgag a 21
<210> 384
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 384
cagctgccct tccccaacca 20
<210> 385
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 385
catcaagcgc ctctacca 18
<210> 386
<211> 21
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 386
```

```
cacaaactcg aactgcttct g 21
<210> 387
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 387
gggccatcac agctccct 18
<210> 388
<211> 22
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 388
gggatgtggt gaacacagaa ca 22
<210> 389
<211> 22
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 389
tgccagctgc atgctgccag tt 22
<210> 390
<211> 20
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 390
cagaaggatg tcccgtggaa 20
<210> 391
<211> 17
<212> DNA
<213> Artificial Sequence
<220>
```

```
<223> Synthetic oligonucleotide probe
<400> 391
 gccgctgtcc actgcag 17
<210> 392
<211> 21
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 392
gacggcatcc tcagggccac a 21
<210> 393
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 393
atgtcctcca tgcccacgcg 20
<210> 394
<211> 20
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 394
gagtgcgaca tcgagagctt 20
<210> 395
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 395
ccgcagcctc agtgatga 18
<210> 396
<211> 21
<212> DNA
<213> Artificial Sequence
```

```
<220>
<223> Synthetic oligonucleotide probe
<400> 396
 gaagagcaca gctgcagatc c 21
<210> 397
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 397
 gaggtgtcct ggctttggta gt 22
<210> 398
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 398
cctctggcgc ccccactcaa 20
<210> 399
<211> 18
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 399
ccaggagagc tggcgatg 18
<210> 400
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 400
gcaaattcag ggctcactag aga 23
<210> 401
<211> 29
```

```
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 401
cacagagcat ttgtccatca gcagttcag 29
<210> 402
<211> 22
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 402
ggcagagact tccagtcact ga 22
<210> 403
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 403
gccaagggtg gtgttagata gg 22
<210> 404
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 404
caggccccct tgatctgtac ccca 24
<210> 405
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 405
gggacgtgct tctacaagaa cag 23
```

```
<210> 406
<211> 26
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 406
caggettaca atgttatgat cagaca 26
<210> 407
<211> 31
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 407
tattcagagt tttccattgg cagtgccagt t 31
<210> 408
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 408
tctacatcag cctctctgcg c 21
<210> 409
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 409
 cgatcttctc cacccaggag cgg 23
<210> 410
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 410
```

```
gccaggcctc acattcgt 18
<210> 411
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 411
 ctccctgaat ggcagcctga gca 23
<210> 412
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 412
aggtgtttat taagggccta cgct 24
<210> 413
<211> 19
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 413
cagagcagag ggtgccttg 19
<210> 414
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 414
tggcggagtc ccctcttggc t 21
<210> 415
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
```

```
<223> Synthetic oligonucleotide probe
<400> 415
 ccctgtttcc ctatgcatca ct 22
<210> 416
<211> 21
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 416
tcaacccctg accctttcct a 21
<210> 417
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 417
ggcaggggac aagccatctc tcct 24
<210> 418
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 418
gggactgaac tgccagcttc 20
<210> 419
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 419
gggccctaac ctcattacct tt 22
<210> 420
<211> 23
<212> DNA
<213> Artificial Sequence
```


<220> <223> Synthetic oligonucleotide probe <400> 420 tgtctgcctc agccccagga agg 23 <210> 421 <211> 21 <212> DNA <213> Artificial Sequence <220>

<223> Synthetic oligonucleotide probe

<400> 421 tctgtccacc atcttgcctt g 21

<210> 422 <211> 3554 <212> DNA

<213> Homo Sapien

<400> 422 gggactacaa gccgcgccgc gctgccgctg gcccctcagc aaccctcgac 50 atggcgctga ggcggccacc gcgactccgg ctctgcgctc ggctgcctga 100 cttcttcctg ctgctgcttt tcaggggctg cctgataggg gctgtaaatc 150 tcaaatccag caatcgaacc ccagtggtac aggaatttga aagtgtggaa 200 ctgtcttgca tcattacgga ttcgcagaca agtgacccca ggatcgagtg 250 gaagaaaatt caagatgaac aaaccacata tgtgtttttt gacaacaaaa 300 ttcagggaga cttggcgggt cgtgcagaaa tactggggaa gacatccctg 350 aagatetgga atgtgacacg gagagaetea geeetttate getgtgaggt 400 cgttgctcga aatgaccgca aggaaattga tgagattgtg atcgagttaa 450 ctgtgcaagt gaagccagtg acccctgtct gtagagtgcc gaaggctgta 500 ccagtaggca agatggcaac actgcactgc caggagagtg agggccaccc 550 ccggcctcac tacagctggt atcgcaatga tgtaccactg cccacggatt 600 ccagagccaa tcccagattt cgcaattctt ctttccactt aaactctgaa 650 acaggcaett tggtgtteae tgetgtteae aaggaegaet etgggeagta 700 ctactgcatt gcttccaatg acgcaggctc agccaggtgt gaggagcagg 750

agatggaagt ctatgacctg aacattggcg gaattattgg gggggttctg 800 gttgtccttg ctgtactggc cctgatcacg ttgggcatct gctgtgcata 850 cagacgtggc tacttcatca acaataaaca ggatggagaa agttacaaga 900 acccagggaa accagatgga gttaactaca tccgcactga cgaggagggc 950 gaetteagae acaagteate gtttgtgate tgagaeeege ggtgtggetg 1000 agagegeaca gagegeacgt geacatacet etgetagaaa eteetgteaa 1050 ggcagcgaga gctgatgcac tcggacagag ctagacactc attcagaagc 1100 ttttcgtttt ggccaaagtt gaccactact cttcttactc taacaagcca 1150 catgaataga agaattttcc tcaagatgga cccggtaaat ataaccacaa 1200 ggaagcgaaa etgggtgegt teaetgagtt gggtteetaa tetgtttetg 1250 gcctgattcc cgcatgagta ttagggtgat cttaaagagt ttgctcacgt 1300 aaacgcccgt gctgggccct gtgaagccag catgttcacc actggtcgtt 1350 cagcagccac gacagcacca tgtgagatgg cgaggtggct ggacagcacc 1400 agcagegeat eeeggeggga acceagaaaa ggettettae acageageet 1450 tacttcatcg gcccacagac accaccgcag tttcttctta aaggetctgc 1500 tgatcggtgt tgcagtgtcc attgtggaga agctttttgg atcagcattt 1550 tgtaaaaaca accaaaatca ggaaggtaaa ttggttgctg gaagagggat 1600 cttgcctgag gaaccctgct tgtccaacag ggtgtcagga tttaaggaaa 1650 accttcgtct taggctaagt ctgaaatggt actgaaatat gcttttctat 1700 gggtcttgtt tattttataa aattttacat ctaaattttt gctaaggatg 1750 tattttgatt attgaaaaga aaatttctat ttaaactgta aatatattgt 1800 catacaatgt taaataacct atttttttaa aaaagttcaa cttaaggtag 1850 aagttccaag ctactagtgt taaattggaa aatatcaata attaagagta 1900 ttttacccaa ggaatcctct catggaagtt tactgtgatg ttccttttct 1950 cacacaagtt ttagcctttt tcacaaggga actcatactg tctacacatc 2000 agaccatagt tgcttaggaa acctttaaaa attccagtta agcaatgttg 2050

aaatcagttt gcatctcttc aaaagaaacc tctcaggtta gctttgaact 2100 gcctcttcct gagatgacta ggacagtctg tacccagagg ccacccagaa 2150 gccctcagat gtacatacac agatgccagt cagctcctgg ggttgcgcca 2200 ggcgcccccg ctctagctca ctgttgcctc gctgtctgcc aggaggccct 2250 gccatccttg ggccctggca gtggctgtgt cccagtgagc tttactcacg 2300 tggcccttgc ttcatccagc acagctctca ggtgggcact gcagggacac 2350 tggtgtcttc catgtagcgt cccagctttg ggctcctgta acagacctct 2400 ttttggttat ggatggctca caaaataggg cccccaatgc tattttttt 2450 ttttaagttt gtttaattat ttgttaagat tgtctaaggc caaaggcaat 2500 tgcgaaatca agtctgtcaa gtacaataac atttttaaaa gaaaatggat 2550 cccactgttc ctctttgcca cagagaaagc acccagacgc cacaggctct 2600 gtcgcatttc aaaacaaacc atgatggagt ggcggccagt ccagcctttt 2650 aaagaacgtc aggtggagca gccaggtgaa aggcctggcg gggaggaaag 2700 tgaaacgcct gaatcaaaag cagttttcta attttgactt taaatttttc 2750 atccgccgga gacactgctc ccatttgtgg ggggacatta gcaacatcac 2800 tcagaagcct gtgttcttca agagcaggtg ttctcagcct cacatgccct 2850 gccgtgctgg actcaggact gaagtgctgt aaagcaagga gctgctgaga 2900 aggagcactc cactgtgtgc ctggagaatg gctctcacta ctcaccttgt 2950 ctttcagctt ccagtgtctt gggtttttta tactttgaca gcttttttt 3000 aattgcatac atgagactgt gttgactttt tttagttatg tgaaacactt 3050 tgccgcaggc cgcctggcag aggcaggaaa tgctccagca gtggctcagt 3100 gctccctggt gtctgctgca tggcatcctg gatgcttagc atgcaagttc 3150 cctccatcat tgccaccttg gtagagaggg atggctcccc accctcagcg 3200 ttggggattc acgctccagc ctccttcttg gttgtcatag tgatagggta 3250 gccttattgc cccctcttct tataccctaa aaccttctac actagtgcca 3300 tgggaaccag gtctgaaaaa gtagagagaa gtgaaagtag agtctgggaa 3350 gtagctgcct ataactgaga ctagacggaa aaggaatact cgtgtatttt 3400

<210> 423

<210> 425 <211> 310

<212> PRT

<213> Homo Sapien

<400> 423

Met Ala Leu Arg Arg Pro Pro Arg Leu Arg Leu Cys Ala Arg Leu

1 10 15

Pro Asp Phe Phe Leu Leu Leu Phe Arg Gly Cys Leu Ile Gly 20 25 30

Ala Val Asn Leu Lys Ser Ser Asn Arg Thr Pro Val Val Gln Glu
35 40 45

Phe Glu Ser Val Glu Leu Ser Cys Ile Ile Thr Asp Ser Gln Thr 50 60

Ser Asp Pro Arg Ile Glu Trp Lys Lys Ile Gln Asp Glu Gln Thr
65 70 75

Thr Tyr Val Phe Phe Asp Asn Lys Ile Gln Gly Asp Leu Ala Gly 80 85 90

Arg Ala Glu Ile Leu Gly Lys Thr Ser Leu Lys Ile Trp Asn Val 95 100 105

Thr Arg Arg Asp Ser Ala Leu Tyr Arg Cys Glu Val Val Ala Arg
110 115 120

Asn Asp Arg Lys Glu Ile Asp Glu Ile Val Ile Glu Leu Thr Val 125 130 130

Gln Val Lys Pro Val Thr Pro Val Cys Arg Val Pro Lys Ala Val 140 145 150

Pro Val Gly Lys Met Ala Thr Leu His Cys Gln Glu Ser Glu Gly
155 160 165

His Pro Arg Pro His Tyr Ser Trp Tyr Arg Asn Asp Val Pro Leu 170 175 180

Pro Thr Asp Ser Arg Ala Asn Pro Arg Phe Arg Asn Ser Ser Phe 185 190 195