Generalized Prompt Tuning: Adapting Frozen Univariate Time Series Foundation Models for Multivariate Healthcare Time Series

Carnegie Mellon University

Mingzhu Liu ¹

Angela H. Chen ¹

George H. Chen ²

¹ CMU School of Computer Science, ² CMU Heinz College of Information Systems and Public Policy

Introduction

- Q: How do you adapt univariate time series foundation models to your healthcare data?
- A: Just fine-tune it like LLMs, for example:
 - Full fine-tuning
 - LoRA
 - Linear probing
 - Prompt tuning (P-Tuning v2)

Or try our fine-tuning strategy for multivariate time series that we call **Generalized Prompt Tuning (Gen-P-Tuning)**

Contributions

- First benchmark on fine-tuning univariate time series foundation models on multivariate time series tasks
 - Classify in MIMIC-III:
 - in-hospital mortality
 - phenotype
 - Forecast influenza-like illness
- We propose Gen-P-Tuning
 - Parameter-efficient
 - Performs well in practice
 - Special cases: linear probing, standard prompt tuning

Background

Pre-trained univariate foundation model:

Can use multiple transformer layers (for simplicity, in this poster we use 1 transformer layer)

Example models:

T = # time stepsP = # patches

MOMENT, GPT4TS, ... D = embedding dimension

Handle multivariate time series with "channel independence":

We call this "linear probing"

Generalized Prompt Tuning (Gen-P-Tuning)

Behaves like adding $C \cdot K$ initial fictitious patches as a prefix

MIMIC Mortality # Trainable Parameters

0.1%

0.2%

Full LoRA Linear Probing Prompt Tuning

Fine-Tuning Method

0.2%

2.1%

- ullet The prompt ${f P}$ is a **summary across channels** that we attach as a prefix to each channel's embedding representation
- ullet The prompt is learned through **Prompt Module** $f_{
 m prompt}$
 - Can be any neural net for sequential data (eg., transformer, RNN, ...)
 - If Prompt Module does not depend on inputs: get standard Prompt Tuning
 - If prompt size hyperparameter K=0: get standard linear probing
- Only the Prompt Module and prediction head need to be trained

Model (# params)

MOMENT (342k)

GPT4TS (61.0k)

100% 0.2%

100% 1.9%

For more detailed results, see the paper

Experimental Results

iviliviic iviortality classification					
Model	Fine-Tuning Method	AUROC	AUPRC		
MOMENT	Full	0.687 ± 0.020	0.255 ± 0.038		
	LoRA	0.720 ± 0.019	0.272 ± 0.025		
	Linear Probing	0.730 ± 0.035	0.260 ± 0.018		
	Prompt Tuning	0.724 ± 0.035	0.274 ± 0.020		
	Gen-P-Tuning	0.754 ± 0.021	0.292 ± 0.026		
GPT4TS	Full	0.743 ± 0.018	0.309 ± 0.023		
	LoRA	0.708 ± 0.056	0.254 ± 0.024		
	Linear Probing	0.737 ± 0.033	0.265 ± 0.037		
	Prompt Tuning	0.689 ± 0.062	0.236 ± 0.022		
	Gen-P-Tuning	0.708 ± 0.025	0.255 ± 0.038		
STraTS	N/A	0.601 ± 0.039	0.159 ± 0.039		

MIMIC Mortality Classification

Willviic Phenotype Classification					
Model	Fine-Tuning Method	AUROC	AUPRC		
MOMENT	Full	<u>0.643</u> ± 0.019	<u>0.276</u> ± 0.021		
	LoRA	0.640 ± 0.025	0.273 ± 0.027		
	Linear Probing	0.631 ± 0.026	0.264 ± 0.022		
	Prompt Tuning	0.634 ± 0.012	0.268 ± 0.015		
	Gen-P-Tuning	0.666 ± 0.015	0.294 ± 0.012		
GPT4TS	Full	0.593 ± 0.014	<u>0.234</u> ± 0.014		
	LoRA	0.596 ± 0.023	0.241 ± 0.015		
	Linear Probing	0.555 ± 0.016	0.213 ± 0.015		
	Prompt Tuning	0.581 ± 0.012	0.227 ± 0.014		
	Gen-P-Tuning	0.599 ± 0.010	0.231 ± 0.010		
STraTS	N/A	0.573 ± 0.020	0.217 ± 0.016		

Influenza-Like Illness Forecasting				
Model	Fine-Tuning Method	MSE		
MOMENT	Full	3.199 ± 0.102		
	LoRA	3.109 ± 0.021		
	Linear Probing	2.622 ± 0.036		
	Prompt Tuning	2.918 ± 0.047		
	Gen-P-Tuning	3.083 ± 0.080		
GPT4TS	Full	3.219 ± 0.093		
	LoRA	3.247 ± 0.337		
	Linear Probing	3.202 ± 0.303		
	Prompt Tuning	3.105 ± 0.429		
	Gen-P-Tuning	2.939 ± 0.378		

Gen-P-Tuning

0.2%

2.7%

In these tables, Gen-P-Tuning uses a nontrivial Prompt Module

Findings

- Gen-P-Tuning often performs the best
- Linear probing sometimes perform well, suggesting that channel-independence is sometimes sufficient
- Keep in mind that Gen-P-Tuning includes linear probing and Prompt Tuning as special cases: can choose between special cases by tuning on a validation set

This work was supported in part by NSF CAREER award #2047981