

NPTEL ONLINE CERTIFICATION COURSES

Course Name: Hardware Security
Faculty Name: Prof Debdeep Mukhopadhyay
Department: Computer Science and Engineering

Topic

Lecture 43: Power Analysis Countermeasures

CONCEPTS COVERED

Concepts Covered:

□Masking

☐Properties of TI

☐ Some Constructions

☐ Experimental Evaluations and Results

Countering DPA

- Two broad approaches are taken
 - Make the power consumption of the device independent of the data processed
 - Detached power supplies
 - Logic styles with a data independent power consumption
 - Noise generators
 - Insertion of random delays
 - Methods are costly and not in tune with normal CAD methodologies

Countering DPA (Second Approach)

- Second Approach is to randomize the intermediate results
- Based on the principle that the power consumption of the device processing randomized data is uncorrelated to the actual intermediate results
- Masking:Can be applied at the algorithm level or at the gate level

Gate Level Masking

- No wire stores a value that is correlated to an intermediate result of the algorithm.
- Process of converting an unmasked digital circuit to a masked version can be automated

Masked AND Gate

$$a_{m} = a \oplus m_{a}$$

$$b_{m} = b \oplus m_{b}$$

$$q_{m} = q \oplus m_{q}$$

$$q = f(a,b)$$

$$q_{m} = \hat{f}(a_{m}, m_{a}, b_{m}, m_{b}, m_{q})$$

Masked AND Gate

$$q_{m} = (a \cdot b) \oplus m_{q}$$

$$= (a_{m} \oplus m_{a}) \cdot (b_{m} \oplus m_{b}) \oplus m_{q}$$

$$= (((a_{m} \cdot b_{m} \oplus b_{m} \cdot m_{a}) \oplus (m_{b} \cdot a_{m})) \oplus m_{a} \cdot m_{b}) \oplus m_{q}$$

Masked AND Gate

- There are 4⁵=1024 possible input transmissions that can occur.
- It turns out that the expected value of the energy required for the processing of q=0 and q=1 are identical.
- Thus protected against DPA, under the assumption that the CMOS gates switch only once in one clock cycles.
- But we know there are glitches, and so the output of gates swing a number of times before reaching a steady state. Hence... the argument continues.

Masked Multiplier

Same Principle may be applied for multiplier circuits.

Masking and 1st order Analysis

- In these masking designs, the intermediate variable X is split into two random variables X_1 and X_2 , st. $X_1 \oplus X_2 = X$.
- Assume the leakage $L(X) = HW(X_1, X_2)$, we have the following:

x	x_1	x_2	L(X)	Mean($L(X)$)	Var(L(X))
0	0	0	0		
0	1	1	2	1	1
1	0	1	1		
1	1	0	1	1	0

Masking does not reveal any information from 1^{st} -order analysis, as the mean is constant for different values of x. However, a 2^{nd} –order analysis can reveal because of the dependence of variance on x.

Higher Order Masking

• Thus in a dth order masking aims to randomize intermediate sensitive data X by splitting into d+1 uniformly distributed variables X_1, \dots, X_d, X_{d+1} , st:

$$X = X_1 \perp X_2 \perp \cdots \perp X_d \perp X_{d+1}$$

- Depending on the exact ⊥ operator, we can have multiplicative, additive masking.
- When the ⊥ operator is XORing, we call it Boolean Masking.
- Each variable X_i is referred to as a secret share and the secret sharing can be done by randomly generating X_1, X_2, \dots, X_d , and calculating X_{d+1} .

Hiding within the Mask

- Given an input sharing, all the cipher operations are done inside a mask:
 - Linear Transformations
 - S-Box computations
- Linear transformations are easy:
 - Thus, $l(X) = l(X_1 \oplus X_2 \oplus \cdots \oplus X_{d+1}) = l(X_1) \oplus \cdots \oplus l(X_{d+1})$
- So, we can perform the linear operations on the masks.

Nonlinear Masking

- It is challenging for nonlinear functions.
- Example: $f(X,Y) = Z \oplus XY$
- Masked Circuit:
 - $f_1(X_1, Y_1) = Z_1 \oplus X_1 Y_1$
 - $f_2(X_1, X_2, Y_1, Y_2) = ((Z_2 \oplus X_1 Y_2) \oplus X_2 Y_1) \oplus X_2 Y_2$
- Note again the ordering of the operations is very important!
 - Don't do, $f_2(X_1,X_2,Y_1,Y_2)=(Z_2\oplus X_1Y_2)\oplus (X_2Y_1\oplus X_2Y_2)$...as the second parenthesis is dependent on Y
- However, this is not secure against higher order attacks.
- Actually, not even 1st order attacks if there are glitches.

NPTEL ONLINE CERTIFICATION COURSES

Thank you!