DESIGN AND ANALYSIS OF ALGORITHMS

CS 4120/5120 ELEMENTS OF DYNAMIC PROGRAMMING

AGENDA

- DPVS Divide and conquer
- Elements of DP

DYNAMIC PROGRAMMING

- The process of solving the rod-cutting problem is a technique that is called **dynamic programming** (DP).
 - "Programming" in this context refers to a tabular method, not to writing computer code.
- The key technique is to store the solution to each such problem in case it should reappear.

DP VS. DIVIDE AND CONQUER

- Divide and conquer
 - Constantly cuts a problem into equal parts to make subproblems
 - Solves the original problem by solving closely related subproblems
 - Combine solutions to the subproblems.
 - No overlapping subproblems
 - Same subproblem do not arise repeatedly.

- Dynamic programming
 - Subproblems often arise from making a choice.
 - Solves original problem by solving subproblem of the same form.
 - Combine solutions to the subproblems.
 - Overlapping subproblems
 - Same subproblem may rise from different decisions

WHEN TO APPLY DP?

- Applies to optimization problems in which we make a set of choices in order to arrive at an optimal solution.
 - Many possible solutions with each having a *value*.
 - We wish to find a solution with the optimal value.
 - Maximum or minimum
 - We call such a solution an optimal solution.
 - Rod-cutting problem
 - 2^n solutions, each solution generates a revenue
 - Goal: to find a solution generates maximum revenue

HOW TO APPLY DP ?

- Generally, there are four steps to take for developing a DP solution.
 - Step I: Characterize the structure of an optimal solution
 - **Step 2**: Recursively define the **value** of an optimization.
 - **Step 3**: Compute the **value** of an optimal solution.
 - **Step 4**: Construct the optimal solution from the computed information.

- Step I: Characterize the structure of an optimal solution
 - Discover the **optimal substructure** of the problem.
- Rod-cutting problem with input being an n-inch rod
 - Solution
 - Cut the rod at *i*-inch
 - Then find an optimal way to cut the remaining (n-i)-inch rod
 - The optimal substructure is characterized by optimally cutting up an n-inch rod incorporates optimally cutting up one or more shorter rod.

- Step 2: Recursively define the value of an optimization.
 - Take advantage of the optimal substructure to recursively compute the optimal value.
- Rod-cutting problem with input being an n-inch rod
 - Previous characterization
 - The optimal substructure is characterized by optimally cutting up an n-inch rod incorporates optimally cutting up one or more shorter rod.

$$-r_n = \max_{1 \le i \le n} (p_i + r_{n-i})$$

- Step 3: Compute the *value* of an optimal solution.
 - Design an algorithm to compute the value.
- Rod-cutting problem with input being an n-inch rod
 - Intuitive algorithms. CUT-ROD (p, n) takes $O(2^n)$
 - Top-down solution with memoization costs $O(n^2)$
 - MEMOIZED-CUT-ROD (p, n) and MEMOIZED-CUT-ROD-AUX (p, n, r)
 - The r is a tabular record of solutions to subproblems.
 - Bottom-up solution BOTTOM-UP-CUT-ROD (p, n) costs $O(n^2)$

- **Step 4**: Construct the optimal solution from the computed information.
 - Extended algorithm that not only computes and stores the value, but also records the choices the algorithm makes to obtain the optimal value.
- Rod-cutting problem with input being an n-inch rod
 - The EXTENDED-BOTTOM-UP-CUT-ROD (p, n)
 - The computes the optimal value r while maintaining the solution s.
 - PRINT-CUT-ROD-SOLUTION (p, n)

ELEMENTS OF DP

- The **two key ingredients** that an optimization problem must have in order for dynamic programming to apply:
 - Optimal substructure
 - Overlapping subproblems
- Reconstructing an optimal solution
- Memoization

OPTIMAL SUBSTRUCTURE KEY INGREDIENTS #1

- A problem exhibits *optimal substructure* if an optimal solution to the problem contains within it optimal solutions to subproblems.
 - This is a sign that dynamic programming might be applied.
 - Later in the semester, we will see greedy strategy also utilizes optimal substructure.
- Finding the optimal substructure is the pathway to building an optimal solution to the problem.
 - Helps us recursively compute the optimal value (normally a formula is derived)
 - We can design an algorithm to compute the formula.
- How to find the optimal substructure?

FINDING THE OPTIMAL SUBSTRUCTURE STEP 1

- **Step I**:A solution to the problem consists of making a choice.
- Rod-cutting problem
 - Choosing an initial cut at i, or choosing p_i .

FINDING THE OPTIMAL SUBSTRUCTURE STEP 2

- **Step 2**: Suppose that for a given problem, you are given the choice that leads to an optimal solution.
 - At this point, you do not concern yourself with how to determine this choice.
 - Suppose that initially cutting at i-inch mark would lead to an optimal solution.
- Rod-cutting problem
 - Choosing an initial cut at i, or choosing p_i .

FINDING THE OPTIMAL SUBSTRUCTURE STEP 3

- **Step 3**: Given this choice, you determine which subproblems ensue and how to best characterize the resulting space of subproblems.
- Rod-cutting problem
 - The space of the subproblem would be cutting from the far-left end then dealing with the remaining rod, i.e., I to n i.

FINDING THE OPTIMAL SUBSTRUCTURE STEP 4 (LAST STEP)

- **Step 4**: Show the solutions to the subproblem used within an optimal solution to the problem must themselves be optimal by using a "cut-and-paste" technique.
 - This step is referring to the proof of the optimal substructure.
 - A commonly used technique to prove (very often) the optimal substructure of a problem with a
 possible dynamic programming solution is contradiction.

FINDING THE OPTIMAL SUBSTRUCTURE GENERAL NOTES

- Optimal substructure varies across problem domains in two ways:
 - how many subproblems an optimal solution to the original problem uses, and
 - We shall see in the next example problem that more than one subproblem arises after we make a choice.
 - how many choices we have in determining which subproblem(s) to use in an optimal solution.
 - In the rod-cutting problem for an n-inch rod, obviously, we have $n (1 + \lfloor n/2 \rfloor)$ to be more accurate choices that determine which subproblem to use.

OVERLAPPING SUBPROBLEMS KEY INGREDIENTS #2

- When a recursive algorithm revisits the same problem repeatedly, we say that the optimization problem has **overlapping subproblems**.
 - DP takes advantage by solving each subproblem ONCE and then
 - storing the solution in a table where it can be looked up when needed, using constant time per lookup.
 - The way the recursion works in the CUT-ROD algorithm is very similar to a *depth-first-search* path.

SUBPROBLEM GRAPHS

- A **subproblem graph** describes the set of subproblems involved in solving a problem and <u>how</u> the subproblems depend on one another.
 - It is a directed graph.
 - The vertices in a subproblem graph represent distinct subproblems.
 - A directed edge from the vertex for subproblem x to the vertex for subproblem y if determining an optimal solution for subproblem x involves directly considering an optimal solution for subproblem y.

READING/DRAWING A SUBPROBLEM GRAPH

- A directed edge from the vertex for subproblem x to the vertex for subproblem y if determining an optimal solution for subproblem x involves directly considering an optimal solution for subproblem y.
- Consider the subproblem graph for the rod-cutting problem with n=4.
 - The specific instance start with vertex 4.

READING/DRAWING A SUBPROBLEM GRAPH

- Continue to solve the unresolved (sub)problems are when n = 3, n = 2, and n = 1.
 - For n = 3, we have the following cases.
 - Cut at I inch. Subproblem n = 2 rises. (Overlap)
 - Cut at 2 inch. Subproblem n = 1 rises. (Overlap)
 - No cutting. Subproblem n = 0 rises. (Overlap)

READING/DRAWING A SUBPROBLEM GRAPH

- Continue to solve the unresolved (sub)problems are when n=3, n=2, and n=1.
 - For n = 2, we have the following cases.
 - Cut at I inch, creating subproblem n = 1. (Overlap)
 - No cutting. Subproblem n = 0 rises. (Overlap)
 - For n = 1, we have the following case.
 - No cutting. Subproblem n = 0 rises. (Overlap)

USING THE SUBPROBLEM GRAPH

- The **subproblem graph** can be used to discover overlapping subproblems in a problem.
- As we draw the subproblem graph, we can
 - collect our thoughts
 - realize that we need a *memo* to record the subproblems that have been solved
 - come closer to deriving the recurrence relation between the original problem and the subproblem

RECONSTRUCTING AN OPTIMAL SOLUTION

- Keep in mind the principle of algorithm design
 - The algorithms are meant to be implemented by computer programs to solve a real-world problem.
 - The optimal value might not be the only thing we are looking for.
 - We also need the choices that lead up to the optimal value.

MEMOIZAITON

- Using memoization can **achieve the efficiency** of the bottom-up dynamic programming approach **while maintaining a top-down strategy**.
 - Memoize the natural, but inefficient, recursive algorithm.

NEXT UP MATRIX-CHAIN PARENTHESIZATION

REFERENCE

• Screenshots are taken from the textbook.