Intro to deep learning report

For original model we obtained accuracy of **96,8** % and a test loss (Categorical cross-entropy used) of **31,8**. The first task was to increase the size and depth of the inner layers and examine the resulting models' accuracies. The following table represents the results we got for the inner layer sizes tested. Overlooking epochs and batch sizes (as in the tasks we were instructed to experiment with different epochs and batch sizes across all variations), all other hyperparameters were kept the same as in the original models.

Model	Inner Layer Sizes	Batch Size	Epochs	Test Accuracy	Test Loss
1	[256, 128]	32	2	0.947	43.32
2	[256, 128, 64]	32	2	0.967	23.45
3	[256, 128]	32	5	0.870	205.84
4	[256, 128, 64]	32	5	0.929	96.01
5	[256, 128]	32	10	0.909	187.53
6	[256, 128, 64]	32	10	0.945	145.31
7	[256, 128]	64	2	0.957	31.06
8	[256, 128, 64]	64	2	0.972	19.16
9	[256, 128]	64	5	0.965	32.62
10	[256, 128, 64]	64	5	0.950	59.15
11	[256, 128]	64	10	0.942	86.74
12	[256, 128, 64]	64	10	0.825	435.09

From the values we can see that based on accuracy the models performed quite well. Epochs seem to have significant impact on the model's performance as for same inner layer structure we get very different loss values and accuracies. In the 12th model the model is already most likely overfitting as the test loss is so high and the accuracy has clearly decreased. Additionally, with this hyperparameter tuning we already obtain a better accuracy and test loss values with model (8th model).

Next, we examine the impacts of changing the activation function in the inner layers. The activation function used for the original model was relu. In this part we tested the model with following activation functions: softmax, sigmoid, tanh. The following table represents the results we got from this test.

Model	Activation	Batch Size	Epochs	Test Accuracy	Test Loss
1	Softmax	32	2	0.662	0.78
2	Sigmoid	32	2	0.946	0.17
3	Tanh	32	2	0.915	0.30
4	Softmax	64	2	0.577	1.09
5	Sigmoid	64	2	0.950	0.16
6	Tanh	64	2	0.945	0.17
7	Softmax	32	5	0.721	1.02
8	Sigmoid	32	5	0.944	0.19
9	Tanh	32	5	0.862	0.52
10	Softmax	64	5	0.588	1.63
11	Sigmoid	64	5	0.938	0.19
12	Tanh	64	5	0.946	0.20
13	Softmax	32	10	0.684	2.60
14	Sigmoid	32	10	0.948	0.22
15	Tanh	32	10	0.883	0.59
16	Softmax	64	10	0.337	3.92
17	Sigmoid	64	10	0.930	0.25
18	Tanh	64	10	0.953	0.18

Changing relu to other activation functions clearly had a large impact on the test loss; the values are significantly lower than. Softmax has really low accuracies which most likely caused by the fact that softmax produces floating probability predictions and accuracy does not correspond best to the performance of softmax predictions; test loss value does indicate that the model should be performing relatively well. As we get a lot better test loss values with this experiment, we can conclude that we should consider using some other activation function in the inner layers than relu.

In the next part we examine the combined affect of changing the inner layer sizes and depths with different activation functions. The activation functions and the inner layer sizes and depths are the same as in the previous parts, we just combine these tests. The results can be seen in the following table:

Model	Inner Layer Sizes	Activation	Batch Size	Epochs	Test Accur	Test Loss
1	[256, 128]	Softmax	32	2	0.768	0.58
2	[256, 128]	Sigmoid	32	2	0.970	0.09
3	[256, 128]	Tanh	32	2	0.844	0.55
4	[256, 128, 64]	Softmax	32	2	0.310	1.43
5	[256, 128, 64]	Sigmoid	32	2	0.940	0.19
6	[256, 128, 64]	Tanh	32	2	0.902	0.35
7	[256, 128]	Softmax	64	2	0.405	1.22
8	[256, 128]	Sigmoid	64	2	0.966	0.11
9	[256, 128]	Tanh	64	2	0.951	0.17
10	[256, 128, 64]	Softmax	64	2	0.310	1.46
11	[256, 128, 64]	Sigmoid	64	2	0.972	0.09
12	[256, 128, 64]	Tanh	64	2	0.820	0.68
13	[256, 128]	Softmax	32	5	0.712	0.99
14	[256, 128]	Sigmoid	32	5	0.93	0.25
15	[256, 128]	Tanh	32	5	0.691	1.95
16	[256, 128, 64]	Softmax	32	5	0.756	1.12
17	[256, 128, 64]	Sigmoid	32	5	0.955	0.16
18	[256, 128, 64]	Tanh	32	5	0.913	0.32
19	[256, 128]	Softmax	64	5	0.735	0.67
20	[256, 128]	Sigmoid	64	5	0.976	0.08
21	[256, 128]	Tanh	64	5	0.932	0.25
22	[256, 128, 64]	Softmax	64	5	0.489	1.17
23	[256, 128, 64]	Sigmoid	64	5	0.956	0.15
24	[256, 128, 64]	Tanh	64	5	0.9	0.37
25	[256, 128]	Softmax	32	10	0.449	4.42
26	[256, 128]	Sigmoid	32	10	0.956	0.17
27	[256, 128]	Tanh	32	10	0.883	0.53
28	[256, 128, 64]	Softmax	32	10	0.538	2.37
29	[256, 128, 64]	Sigmoid	32	10	0.916	0.42
30	[256, 128, 64]	Tanh	32	10	0.843	0.98
31	[256, 128]	Softmax	64	10	0.521	2.59
32	[256, 128]	Sigmoid	64	10	0.964	0.13
33	[256, 128]	Tanh	64	10	0.922	0.33
34	[256, 128, 64]	Softmax	64	10	0.567	0.97
35	[256, 128, 64]	Sigmoid	64	10	0.961	0.16
36	[256, 128, 64]	Tanh	64	10	0.9	0.45

Again, we get very low test loss values which verifies our observations from the previous part; relu should be changed to some other activation function. We also get the highest accuracy yet, combined with very low test loss (20^{th} model).

In the last hyperparameter testing part we test the impact of changing the optimizer and learning rate. The inner layer architecture is the same as in the original model as well as the activation function. The optimizer used for the original model was adam. As I wanted to test different learning rates with the adam optimizer without making the runtime too long at this point, only other optimizer tested is SGD (stochastic gradient descent). The below table represents the results we got from this test:

Model	Optimizer	Learning Rate	Batch Size	Epochs	Test Accuracy	Test Loss
1	Adam	0.001	32	2	0.9559	31.9789
2	Adam	0.01	32	2	0.9631	46.7357
3	Adam	0.1	32	2	0.1030	3.5978
4	SGD	0.001	32	2	0.8889	38.1795
5	SGD	0.01	32	2	0.9400	26.9257
6	SGD	0.1	32	2	0.9734	18.4387
7	Adam	0.001	64	2	0.9572	24.0497
8	Adam	0.01	64	2	0.9635	38.2071
9	Adam	0.1	64	2	0.1073	665.5694
10	SGD	0.001	64	2	0.8023	33.2287
11	SGD	0.01	64	2	0.9320	29.8881
12	SGD	0.1	64	2	0.9736	12.0171
13	Adam	0.001	32	5	0.9352	85.6303
14	Adam	0.01	32	5	0.951	81.0061
15	Adam	0.1	32	5	0.1368	11032.0732
16	SGD	0.001	32	5	0.9165	35.7277
17	SGD	0.01	32	5	0.9653	15.5511
18	SGD	0.1	32	5	0.9712	28.525
19	Adam	0.001	64	5	0.9694	25.1107
20	Adam	0.01	64	5	0.954	71.2262
21	Adam	0.1	64	5	0.1135	18277.4141
22	SGD	0.001	64	5	0.8905	37.7249
23	SGD	0.01	64	5	0.9588	18.4686
24	SGD	0.1	64	5	0.975	17.4872
26	Adam	0.01	32	10	0.9798	66.2185
27	Adam	0.1	32	10	0.101	19307.1191
28	SGD	0.001	32	10	0.9277	31.1182
29	SGD	0.01	32	10	0.9744	12.5546
30	SGD	0.1	32	10	0.9692	37.3403
31	Adam	0.001	64	10	0.9474	77.0032
32	Adam	0.01	64	10	0.942	163.7097
33	Adam	0.1	64	10	0.0979	11259.1504
34	SGD	0.001	64	10	0.9129	36.9093
35	SGD	0.01	64	10	0.9644	17.2982
36	SGD	0.1	64	10	0.984	13.4324

As we used relu again as the activation function, we can see that the test loss scores have increased significantly. Interestingly we get very different accuracy results from this part: the Adam optimizer performs poorly with a learning rate of 0.1, whereas SGD works very well in contrast. Based on the

result of this test we should consider using SGD as our optimizer as it seems to perform very well with all hyperparameter combinations.

Finally, we tested the impact of removing the convolution-, and max-pooling layers. The hyperparameters used were otherwise the same as in the original model; the only difference was the layer architecture. Surprisingly we got very good scores with this model; we obtained accuracy of 97,2 % with a loss value of 15,65. The most probable reason for this is that the data is actually quite simple, and the neural network with hidden layers only is capable of capturing the patterns of the data.