

Ministerul Educatiei și Cercetării – Serviciul National de Evaluare și Examinare

EXAMENUL DE BACALAUREAT - 2007

Proba scrisă la Fizică

Proba E: Specializarea: matematică -informatică, stiinte ale naturii

Proba F: Profil: tehnic – toate specializările

◆ Sunt obligatorii toti itemii din două arii tematice dintre cele patru prevăzute în programă, adică: A.MECANICĂ, B.ELECTRICITATE ȘI MAGNETISM, C. ELEMENTE DE TERMODINAMICĂ ȘI FIZICĂ MOLECULARĂ, D. OPTICĂ

♦Se acordă 10 puncte din oficiu.

◆Timpul efectiv de lucru este de 3 ore.

Varianta 69

A. MECANICĂ

Se consideră accelerația gravitațională $g = 10 \text{ m/s}^2$; $\pi^2 \cong 10$.

I. Pentru itemii 1-5 scrieti pe foaia de răspuns litera corespunzătoare răspunsului considerat corect.

15 puncte

1. Coeficientul de frecare la alunecarea unui corp pe o suprafață orizontală este μ . O forță orizontală F deplasează corpul de masă m aflat inițial în repaus, pe distanța d. Variația impulsului corpului în timpul acestei deplasări este:

a.
$$\sqrt{2mFd}$$

b.
$$\sqrt{2m(F + \mu mg)d}$$

c.
$$\sqrt{2m(F-\mu mg)d}$$

d.
$$2md\sqrt{F-\mu mg}$$

2. Un corp este menținut în repaus pe un plan înclinat cu unghiul $\alpha = 30^\circ$ față de orizontală, la înălțimea h = 50 cm față de baza planului. La un moment dat corpul este lasat liber. Dacă valoarea coeficientul de frecare la alunecare dintre corp și plan este

, atunci viteza cu care corpul ajunge la baza planului are mărimea de aproximativ:

c. 6,66 m/s

d. 9,33 m/s

3. Frecvența minimă cu care trebuie rotită uniform în plan vertical o găleată cu apă, legată cu o sfoară rezistentă de lungime $\ell = 25 \, cm$, astfel încât apa să nu curgă are valoarea:

a. 1 rot/s

c. 3 rot/s

d. 4 rot/s 4. Dependența de timp a accelerației unui punct material care pornește din repaus este reprezentată în figura alăturată. Distanta pe care o străbate în cele 30 s cât durează mișcarea este:

b. 200*m*

c. 300 m

d. 400 m

0

5. Unitatea de măsură exprimată în S.I. prin kgms-1 exprimă mărimea fizică a cărei variație este egală cu:

a.
$$\overrightarrow{m\omega}\Delta t$$

b.
$$m \frac{a_{CP}}{\Delta t}$$

$$\vec{\mathbf{c}}. m \vec{\mathbf{v}} \Delta t$$

 $\mathbf{d}. \overrightarrow{F} \wedge t$

II. Rezolvati următoarele probleme:

1. Un corp cu masa m = 10 kg este suspendat (vezi figura alăturată) printr-un fir de lungime l =1m într-un punct S aflat la înăltimea h = 4m fată de sol și i se comunică în poziția de echilibru energia necesară efectuării unei mișcări circulare și uniforme în plan orizontal astfel încât firul să formeze unghiul $\alpha = 60^{\circ}$ cu verticala care trece prin punctul de suspensie. Determinati:

- **a.** energia cinetică inițială primită de corp în poziția de echilibru, E_{c0} ;
- b. viteza v' cu care corpul ajunge pe sol dacă la un moment dat, în timpul mișcării circulare, se rupe firul de suspensie;
- c. distanța d față de verticala care trece prin punctul în care se rupe firul la care corpul atinge solul.

15 puncte

2. Ca urmare a unui accident de circulatie în care sunt implicate două automobile este necesară o expertiză care să stabilească printre altele dacă cei doi conducători auto au respectat limita legală de viteză. În condițiile respective, viteza maximă admisă era v_{max} = 90 km/h. Datele obținute pe teren au fost: ciocnire perfect plastică frontală fără urme de frânare înainte de impact; lungimea dârei lăsate de mașinile avariate pe asfalt d = 20 m, corespunzătoare unui coeficient de frecare $\mu = 0.25$. Masele celor două automobile $m_1 = m_2 = 1$ t iar distrugerile produse presupun o energie potentială de deformație Q = 0.9 MJ. Determinați:

a. vitezele v_1 şi v_2 ale maşinilor în momentul imediat anterior accidentului;

b. care ar fi fost energia de deformare *Q'* dacă ar fi fost respectată viteza legală;

c. distanta în care s-ar produce oprirea unui vehicul căruia i s-au defectat frânele după oprirea motorului dacă vehiculul se deplasează cu v_{max} = 90 km/h pe o șosea umedă cu coeficientul de frecare μ = 0,25.

15 puncte

Proba scrisă la Fizică Proba E: Specializarea : matematică -informatică, ştiințe ale naturii

Proba F: Profil: tehnic - toate specializările

Varianta 69

Ministerul Educatiei și Cercetării – Serviciul National de Evaluare și Examinare

EXAMENUL DE BACALAUREAT - 2007

Proba scrisă la Fizică

Proba E: Specializarea: matematică -informatică, stiinte ale naturii

Proba F: Profil: tehnic - toate specializările

◆ Sunt obligatorii toți itemii din două arii tematice dintre cele patru prevăzute în programă, adică: A.MECANICĂ, B.ELECTRICITATE ȘI MAGNETISM, C. ELEMENTE DE TERMODINAMICĂ ȘI FIZICĂ MOLECULARĂ, D. OPTICĂ

♦Se acordă 10 puncte din oficiu.

♦Timpul efectiv de lucru este de 3 ore.

Varianta 69

B. ELECTRICITATE ŞI MAGNETISM

Permeabilitatea magnetică a vidului are valoarea $\mu_0 = 4\pi \cdot 10^{-7} \frac{N}{A^2}$

I. Pentru itemii 1-5 scrieți pe foaia de răspuns litera corespunzătoare răspunsului considerat corect.

15 puncte

1. Fluxul magnetic propriu prin miezul unui solenoid cu inductanța $L = 1 \mu H$ străbătut de un curent cu intensitatea I = 1,5 A are valoarea:

a. 1,5 mWb

b. 1,67 mWb

c. 1,5 μWb

d. 1,67 µWb

2. Intensitatea maximă a curentului electric generat de o baterie formată prin gruparea a N = 24 de generatoare identice, având fiecare tem E=2V și rezistența internă $r=0.75 \Omega$ în 3 serii legate în paralel la bornele unui rezistor cu rezistența $R=6 \Omega$ este:

a. 1A

b. 2 A

c. 3 A

d. 4A

3. Tensiunea U măsurată la bornele unei surse cu tem E și rezistența internă r variază în funcție de rezistența R a circuitului exterior conform reprezentării:

4. Coeficientul termic al rezistivității unui metal care prin încălzire cu $\Delta t = 700^{\circ}C$ își modifică rezistența electrică cu f = 35% are valoarea:

a. $\alpha = 2 \cdot 10^{-4} K^{-1}$

b. $\alpha = 5 \cdot 10^{-4} K^{-1}$

c. $\alpha = 2 \cdot 10^{-3} K^{-1}$

d. 5 10-3K-1

5. Unitatea de măsură exprimată în S I prin kg s-2 A-1 se folosește pentru mărimea fizică

a. flux magnetic

b. inductantă

c. inductie electromagnetică d. inductie magnetică

II. Rezolvați următoarele probleme:

1. În circuitul din figură se cunosc: $E_1 = 8 V$, $r_1 = 0.3 \Omega$, $R_1 = 19.7 \Omega$, $E_2 = 4V$, $r_2 = 0.5 \ \Omega$, $R_2 = 19.5 \ \Omega$, $E_3 = 5 \ V$, $r_3 = 0.4 \ \Omega$, $R_3 = 24.6 \ \Omega$ şi $R = 50 \ \Omega$. Determinati:

- a. intensitățile curenților din fiecare ramură: I1, I2, I3, I;
- b. diferența de potențial de la bornele rezistorului R.
- c. rezistența R' a consumatorului care, înlocuind dispozitivele din ramura a treia
- a circuitului, nu modifică intensitatea I prin R;

15 puncte

2. În circuitul din figură, conductorul MN de lungime l = 5cm și rezistență electrică $r = 0.4 \Omega$ se poate deplasa uniform, fără frecare, cu viteza v = 10 m/sperpendicular pe conductoarele MP și NQ de rezistență neglijabilă între care se află un generator cu tem E = 1,85 V cu rezistența internă neglijabilă și un rezistor cu rezistența $R = 0.5 \Omega$. Perpendicular pe planul circuitului acționează un câmp magnetic uniform cu inducția $B = 100 \, mT$. Determinați:

- a. valorile minimă și maximă ale intensității curentului din circuit;
- b. forța mecanică folosită pentru realizarea mișcării uniforme a conductorului în cele două situații;
- c. căldura disipată prin efect Joule de către rezistorul R în timpul în care fluxul magnetic prin suprafața circuitului crește cu $\Delta \Phi = 5$ *mWb*.

15 puncte

Varianta 69

Ministerul Educației și Cercetării - Serviciul Național de Evaluare și Examinare

EXAMENUL DE BACALAUREAT - 2007 Proba scrisă la Fizică

PIODA SCIISA IA

Proba E: Specializarea : matematică -informatică, științe ale naturii

Proba F: Profil: tehnic – toate specializările

♦ Sunt obligatorii toți itemii din două arii tematice dintre cele patru prevăzute în programă, adică: A.MECANICĂ, B.ELECTRICITATE ŞI MAGNETISM, C. ELEMENTE DE TERMODINAMICĂ ŞI FIZICĂ MOLECULARĂ, D. OPTICĂ

♦Se acordă 10 puncte din oficiu.

◆Timpul efectiv de lucru este de 3 ore.

Varianta 69

C. ELEMENTE DE TERMODINAMICĂ ȘI FIZICĂ MOLECULARĂ

Se pot folosi:
$$R \cong 8,31 \frac{J}{mol K}$$
; $3^{\frac{5}{7}} \cong 2.16$; $8,31 \cdot 3 \cong 25$

I. Pentru itemii 1-5 scrieți pe foaia de răspuns litera corespunzătoare răspunsului considerat corect.

15 puncte

1. Presiunea unui gaz ideal cu exponentul adiabatic $\gamma = 1.5$ scade de n = 8 ori în timpul unei destinderi adiabatice în care temperatura:

a. scade de 4 ori

b. crește de 4 ori

c. crește de 2 ori

d. scade de 2 ori

2. Randamentul unui ciclu ideal și reversibil Carnot în cursul căruia viteza termică a moleculelor de gaz variază în raportul $v_{T1}/v_{T2}=2$ este:

a. 25%

b. 50%

c. 75%

d. 80%

3. Densitatea unei cantități date de gaz ideal variază cu presiunea conform graficului din figura alăturată într-o:

- a. comprimare izotermă
- b. destindere adiabatică
- c. destindere izotermă
- d. destindere izobară

4. Lucrul mecanic efectuat de un gaz ideal care suportă aceeași creștere de volum ΔV dintro stare inițială dată, prin procese diferite are valoare maximă în transformarea

a. izocoră

- **b.** izobară
- c. izotermă
- d. adiabatică

5. Despre masa moleculară relativă a unei substante se poate afirma că:

- a. unitatea ei de măsură în S I este unitatea atomică de masă u
- b. unitatea ei de măsură în S I este kg
- c. unitatea ei de măsură în S I este kg/mol
- d. este o mărime adimensională

II. Rezolvați următoarele probleme:

- a. Reprezentați grafic ciclul celor patru transformări în coordonate (p, V).
- **b.** Determinați valorile parametrilor de stare p, V, T corespunzătoare stării 4.
- c. Calculați lucrul mecanic și căldura schimbate de gaz cu exteriorul în cursul transformării ciclice.

15 puncte

2. Două baloane de sticlă cu volumele V_1 = 5 I, V_2 = 8 I conțin V_1 = 2mol, V_2 = 3mol de gaz ideal monoatomic (μ = 4 g/mol) la aceeași temperatură t = 27 $^{\circ}C$. Baloanele comunică printr-un tub de volum neglijabil prevăzut cu un robinet, inițial închis.

- a. Calculati masa totală a gazului din cele două incinte.
- **b.** Determinați valorile presiunilor p_1 , p_2 în cele două incinte în starea inițială.
- c. Se deschide robinetul, se termostatează primul balon şi se încălzeşte al doilea cu $\Delta t = 100$ $^{\circ}C$. Calculați valoarea presiunii care se stabileşte în cele două baloane.

15 puncte

Ministerul Educatiei și Cercetării – Serviciul Național de Evaluare și Examinare

EXAMENUL DE BACALAUREAT - 2007 Proba scrisă la Fizică

Proba E: Specializarea: matematică -informatică, stiinte ale naturii

Proba F: Profil: tehnic - toate specializările

◆ Sunt obligatorii toți itemii din două arii tematice dintre cele patru prevăzute în programă, adică: A.MECANICĂ, B.ELECTRICITATE ȘI MAGNETISM, C. ELEMENTE DE TERMODINAMICĂ ȘI FIZICĂ MOLECULARĂ, D. OPTICĂ

♦Se acordă 10 puncte din oficiu.

♦Timpul efectiv de lucru este de 3 ore.

Varianta 69

D. OPTICĂ

Viteza luminii în vid, $c = 3.10^8 \text{ m/s}$

I. Pentru itemii 1-5 scrieți pe foaia de răspuns litera corespunzătoare răspunsului considerat corect.

15 puncte

1. Dispozitivul optic conținut în "cutia neagră" din figură poate fi

- a. oglindă plană
- b. lentilă convergentă
- c. sistem afocal
- d. lentilă divergentă

2. Raza unei oglinzi concave care produce o imagine egală în mărime cu obiectul aflat la distanta de 25 cm de vârful oglinzii este:

b. – 0,25 *m*

c. 25 cm

3. Constanta n a retelei de difractie care permite observarea unui număr maxim de franje de difractie N_{max} = 21 fiind iluminată la incidență normală cu o radiație cu lungimea de undă $\lambda = 500 \text{ nm}$ are valoarea

a. 2 10³ cm⁻¹

b. 95 10³ m⁻¹

4. Intervalul de frecvențe corespunzător luminii vizibile cu $\lambda \in [0, 4\mu m - 0, 75\mu m]$ este:

a.
$$v \in [7,5\cdot10^{14}Hz-4\cdot10^{14}Hz]$$
 b. $v \in (10^{14}-10^{15})Hz$ **c.** $v \in [7,5GHz-4GHz]$ **d.** $v \in [10^{14}-10^{15}]Hz$

b.
$$\nu \in \left(10^{14} - 10^{15}\right) H$$

$$\mathbf{c}.\,\nu\in\left[7,5GHz-4GHz\right.$$

2,5 cm

d.
$$v \in \left[10^{14} - 10^{15}\right] Hz$$

5. Prin acolarea a două lentile subțiri cu distanțele focale $f_1 = 5$ cm și $f_2 = -5$ cm rezultă un sistem optic cu distanța focală:

a. -2,5 cm

C.

d. ∞

II. Rezolvați următoarele probleme:

- 1. Fantele unui dispozitiv Young sunt iluminate de o sursă punctiformă S care emite o radiație monocromatică cu lungimea de undă $\lambda = 0.5 \ \mu m$, aflată pe axa de simetrie a dispozitivului la distanța $d = 25 \ cm$ de paravanul cu fante. Distanța măsurată pe ecran care separă a 10-a franjă luminoasă de a 4-a franjă întunecoasă este $\Delta x = 13$ mm. Considerați că franjele la care se face referire sunt situate de aceeași parte a ecranului, în raport cu centrul acestuia.
- a. Calculați mărimea interfranjei.
- **b.** Cunoscând distanța dintre fantele Young $a = 0.5 \ mm$, determinați distanța D de la paravanul cu fante la ecran.
- c. Se deplasează sursa S de pe axa de simetrie a dispozitivului, lateral, cu y = 1 cm către fanta F_1 . Determinați valoarea z a deplasării sistemului de franje pe ecran.

15 puncte

- 2. Perpendicular pe axa optică principală a unei lentile cu convergenta C = 10 dioptrii se află un obiect liniar cu înăltimea $y_1 = 5$ mm, la distanța de 30 cm față de centrul ei optic.
- a. Determinați poziția, natura și mărimea imaginii date de lentilă.
- b. Realizați un desen prin care să evidențiați construcția imaginii prin lentilă, pentru obiectul considerat.
- c. Se așează în planul focal imagine al lentilei, perpendicular pe axa optică principală, o oglindă plană cu fata reflectătoare către lentilă. Construiți imaginea obiectului obtinută de oglindă în aceste condiții și stabiliți natura acesteia.

15 puncte

Proba scrisă la Fizică Proba E: Specializarea : matematică -informatică, științe ale naturii

Proba F: Profil: tehnic - toate specializările