Math 535 - General Topology Fall 2012 Homework 4 Solutions

Problem 1. Let $\{\Lambda_{\alpha}\}_{{\alpha}\in A}$ be a family of directed set. Show that the product $\prod_{{\alpha}\in A}\Lambda_{\alpha}$ becomes a directed set by defining the relation

$$\lambda \leq \lambda'$$
 if $\lambda_{\alpha} \leq \lambda'_{\alpha}$ in Λ_{α} for all $\alpha \in A$

i.e. the componentwise preorder. (First check that this is indeed a preorder.)

Solution. We check that the relation is a preorder.

- 1. Reflexivity: $\lambda \leq \lambda$ for all $\lambda \in \prod_{\alpha \in A} \Lambda_{\alpha}$ since $\lambda_{\alpha} \leq \lambda_{\alpha}$ for all $\alpha \in A$.
- 2. Transitivity: $\lambda \leq \lambda'$ and $\lambda' \leq \lambda''$ implies $\lambda \leq \lambda''$. Indeed, we have $\lambda_{\alpha} \leq \lambda'_{\alpha}$ and $\lambda'_{\alpha} \leq \lambda''_{\alpha}$ for all $\alpha \in A$, so that $\lambda_{\alpha} \leq \lambda''_{\alpha}$ holds for all $\alpha \in A$.

Next, for any $\lambda, \lambda' \in \prod_{\alpha \in A} \Lambda_{\alpha}$, take "componentwise" upper bounds, i.e. for every index $\alpha \in A$, pick $\lambda''_{\alpha} \in \Lambda_{\alpha}$ satisfying $\lambda_{\alpha} \leq \lambda''_{\alpha}$ and $\lambda'_{\alpha} \leq \lambda''_{\alpha}$. Then the element $\lambda'' \in \prod_{\alpha \in A} \Lambda_{\alpha}$ with components λ''_{α} is an upper bound for λ and λ' , i.e. it satisfies $\lambda \leq \lambda''$ and $\lambda' \leq \lambda''$.

Problem 2. Consider the space $\mathbb{R}^{\mathbb{N}}$ with the *box* topology. Consider the subset

$$Z = \{ x \in \mathbb{R}^{\mathbb{N}} \mid x_i > 0 \text{ for all } i \in \mathbb{N} \}$$

and the point $\underline{0} = (0, 0, ...)$. We know $\underline{0} \in \overline{Z}$, but now we will find an explicit net in Z that converges to $\underline{0}$.

Consider the directed set $\Lambda := \mathbb{N}^{\mathbb{N}} \cong \prod_{i \in \mathbb{N}} \mathbb{N} = \{(n_1, n_2, \ldots) \mid n_i \in \mathbb{N}\}$ with the componentwise preorder (as in Problem 1).

Consider the net φ in Z indexed by Λ which assigns to the list $\lambda = (n_1, n_2, ...)$ the point

$$\varphi(\lambda) = \left(\frac{1}{n_1}, \frac{1}{n_2}, \ldots\right) \in Z.$$

Show that this net φ converges to 0.

Solution. Let $U = \prod_{i \in N} U_i$ be a (basic) open neighborhood of $\underline{0}$, i.e. an "open box" around that point. Since $U_i \subseteq \mathbb{R}$ is an open neighborhood of 0, there is a small radius $\epsilon_i > 0$ satisfying $(-\epsilon_i, \epsilon_i) \subseteq U_i$. For each $i \in \mathbb{N}$, pick $M_i \in \mathbb{N}$ large enough so that $\frac{1}{M_i} < \epsilon_i$.

For every index

$$\lambda = (n_1, n_2, \ldots) \ge (M_1, M_2, \ldots) \in \Lambda$$

the net φ has value

$$\varphi(\lambda) = (\frac{1}{n_1}, \frac{1}{n_2}, \ldots) \in U.$$

Indeed, the components satisfy $\frac{1}{n_i} \leq \frac{1}{M_i} < \epsilon_i$ which guarantees $\frac{1}{n_i} \in (-\epsilon_i, \epsilon_i) \subseteq U_i$ for all $i \in \mathbb{N}$.

Problem 3. Let $\{X_{\alpha}\}_{{\alpha}\in A}$ be a family of topological spaces. Show that a net $(x_{\lambda})_{{\lambda}\in \Lambda}$ in the product $\prod_{{\alpha}\in A} X_{\alpha}$ converges to a point x if and only if for each index ${\alpha}\in A$, the net $(p_{\alpha}(x_{\lambda}))_{{\lambda}\in \Lambda}$ in X_{α} converges to $p_{\alpha}(x)$.

Here $p_{\beta} : \prod_{\alpha \in A} X_{\alpha} \to X_{\beta}$ denotes the canonical projection.

Solution. (\Rightarrow) Each projection p_{α} is continuous, so that convergence $x_{\lambda} \to x$ in the product guarantees convergence $p_{\alpha}(x_{\lambda}) \to p_{\alpha}(x)$ in each factor.

(\Leftarrow) Let $U = \prod_{\alpha \in A} U_{\alpha}$ be a (basic) open neighborhood of $x \in \prod_{\alpha \in A} X_{\alpha}$, which means $U_{\alpha} \subseteq X_{\alpha}$ is open, and $U_{\alpha} \neq X_{\alpha}$ for at most finitely many indices, say $\alpha_1, \ldots, \alpha_k$.

For i = 1, ..., k, the net $(p_{\alpha_i}(x_{\lambda}))_{{\lambda} \in {\Lambda}}$ in X_{α_i} converges to $p_{\alpha_i}(x)$. Since U_{α_i} is a neighborhood of $p_{\alpha_i}(x)$, convergence of the net guarantees that there is some $\lambda_i \in {\Lambda}$ satisfying $p_{\alpha_i}(x_{\lambda}) \in U_{\alpha_i}$ for all ${\lambda} \geq {\lambda_i}$.

Let $\lambda' \in \Lambda$ be an upper bound for $\{\lambda_1, \ldots, \lambda_k\}$. Then for all $\lambda \geq \lambda'$, we have $p_{\alpha_i}(x_{\lambda}) \in U_{\alpha_i}$ for $i = 1, \ldots, k$. Moreover, for all other indices $\alpha \in A$, we automatically have $p_{\alpha}(x_{\lambda}) \in U_{\alpha} = X_{\alpha}$. Therefore, we have $x_{\lambda} \in U$ for all $\lambda \geq \lambda'$.

Problem 4. (Brown Exercise 3.5.3) Prove that a discrete space is compact if and only if it is finite.

Solution. (\Leftarrow) Every finite space X is compact. Indeed, let $\{U_{\alpha}\}$ be an open cover of X. For each point $x \in X$, choose some $U_{\alpha(x)}$ containing x. Then we obtain a finite subcover

$$X = \bigcup_{x \in X} U_{\alpha(x)}.$$

 (\Rightarrow) Since the space X is discrete, each singleton $\{x\}$ is open in X. The equality

$$X = \bigcup_{x \in X} \{x\}$$

means that the collection $\{\{x\}\}_{x\in X}$ of all singletons is an open cover of X. Since X is compact, there is a finite subcover $\{\{x_1\},\ldots,\{x_n\}\}$, which means

$$X = \{x_1\} \cup \ldots \cup \{x_n\} = \{x_1, \ldots, x_n\}$$

is finite. \Box

Problem 5. (Munkres Exercise 3.26.2) Let X be a set endowed with the cofinite topology. Show that every subspace $A \subseteq X$ is compact.

Solution. Let $\{U_{\alpha}\}$ be a collection of open subsets of X that cover A, meaning $A \subseteq \bigcup_{\alpha} U_{\alpha}$. Pick any index α_0 . Since U_{α_0} is open in X (and non-empty), it is

$$U_{\alpha_0} = X \setminus F$$

for some finite set $F \subset X$. In particular, U_{α_0} contains all of A except at most finitely many points, say a_1, \ldots, a_k . For $i = 1, \ldots, k$ respectively, pick an open U_{α_i} containing the point a_i . Then we have

$$A \subseteq U_{\alpha_0} \cup U_{\alpha_1} \cup \ldots \cup U_{\alpha_k}$$

so that A is compact.

Problem 6. (Munkres Exercise 3.26.5) (Willard Exercise 6.17B.5) Let X be a *Hausdorff* topological space.

a. Let $A \subset X$ be a *compact* subspace and $x_0 \in X \setminus A$ a point outside A. Show that A and x_0 can be separated by neighborhoods, i.e. there exist open subsets $U, V \subset X$ satisfying $A \subseteq U$, $x_0 \in V$, and $U \cap V = \emptyset$.

Solution. For each $a \in A$, choose open subsets U_a and V_a that separate a and x_0 , i.e. $a \in U_a$, $x_0 \in V_x$ and $U_a \cap V_a = \emptyset$.

The collection of open subsets $\{U_a\}_{a\in A}$ covers A, and A is compact, so that there is a finite subcover

$$A \subseteq U_{a_1} \cup \ldots \cup U_{a_n} =: U.$$

Note that U is an open neighborhood of A.

Now take $V := V_{a_1} \cap \ldots \cap V_{a_n}$, which is an open neighborhood of x_0 . The equality $V \cap U_{a_i} = \emptyset$ for all $i = 1, \ldots, n$ guarantees

$$V \cap (U_{a_1} \cup \ldots \cup U_{a_n}) = \emptyset$$

i.e.
$$V \cap U = \emptyset$$
.

b. Let $A, B \subset X$ be disjoint *compact* subspaces. Show that A and B can be separated by neighborhoods, i.e. there exist open subsets $U, V \subset X$ satisfying $A \subseteq U$, $B \subseteq V$ and $U \cap V = \emptyset$.

Solution. For each $b \in B$, the point b is outside A, since A and B are disjoint. Because A is compact, part (a) applies and we can separate A and b by neighborhoods. In other words, there are open subsets U_b and V_b satisfying $A \subseteq U_b$, $b \in V_b$, and $U_b \cap V_b = \emptyset$.

The collection of open subsets $\{V_b\}_{b\in B}$ covers B, and B is compact, so that there is a finite subcover

$$B \subseteq V_{b_1} \cup \ldots \cup V_{b_n} =: V.$$

Note that V is an open neighborhood of B.

Now take $U := U_{b_1} \cap \ldots \cap U_{b_n}$, which is an open neighborhood of A. The equality $U \cap V_{b_i} = \emptyset$ for all $i = 1, \ldots, n$ guarantees

$$U \cap (V_{b_1} \cup \ldots \cup V_{b_n}) = \emptyset$$

i.e.
$$U \cap V = \emptyset$$
.

Problem 7. Let D^n denote the unit disc in \mathbb{R}^n (with the usual Euclidean norm)

$$D^n := \{ x \in \mathbb{R}^n \mid ||x|| \le 1 \}$$

and let S^n denote the unit sphere in \mathbb{R}^{n+1}

$$S^n := \{ x \in \mathbb{R}^{n+1} \mid ||x|| = 1 \}.$$

Show that there is a homeomorphism

$$(D^n \coprod D^n)/\sim \cong S^n$$

where the two discs are glued along their edges, i.e. the equivalence relation \sim is generated by $x^{(1)} \sim x^{(2)}$ for all $x \in D^n$ with ||x|| = 1. Here the superscript denotes that $x^{(1)} \in D^n \coprod D^n$ lives in the first summand while $x^{(2)}$ lives in the second summand.

Solution. Writing $\mathbb{R}^{n+1} \cong \mathbb{R}^n \times \mathbb{R}$, consider the map $f_U \colon D^n \to S^n$ sending the disc to the upper hemisphere:

$$f_U(x) = (x, \sqrt{1 - ||x||^2}).$$

Then f_U is continuous since its n+1 components are continuous, and in fact f_U is a homeomorphism onto the upper hemisphere, with inverse the projection $p_{\mathbb{R}^n} \colon S^n_{\text{upper}} \to D^n$ onto the first n coordinates. Indeed, a point $(x_1, \ldots, x_n, x_{n+1}) = (x, x_{n+1})$, where x denotes (x_1, \ldots, x_n) , is in the upper hemisphere S^n_{upper} if and only if it satisfies

$$\begin{cases} x_1^2 + \dots + x_n^2 + x_{n+1}^2 = 1 = ||x||^2 + x_{n+1}^2 \\ x_{n+1} \ge 0 \end{cases}$$

so that it is of the form $(x, \sqrt{1-||x||^2})$ for some $x \in D^n$.

Likewise, consider the map $f_L \colon D^n \to S^n$ sending the disc homeomorphically onto the lower hemisphere:

$$f_L(x) = (x, -\sqrt{1 - ||x||^2}).$$

Consider the map $f: D^n \coprod D^n \to S^n$ whose restrictions to the first and second summands are f_U and f_L respectively. Then f is continuous, since its restriction to each summand is continuous. Moreover, f is surjective, because of $S^n = S^n_{\text{upper}} \cup S^n_{\text{lower}}$.

However, f is not injective. Because the restrictions f_U and f_L are injective, non-injectivity can only happen when taking inputs from different summands:

$$f(x^{(1)}) = f(y^{(2)}) \Leftrightarrow f_U(x) = f_L(y)$$

$$\Leftrightarrow \left(x, \sqrt{1 - \|x\|^2}\right) = \left(y, -\sqrt{1 - \|y\|^2}\right)$$

$$\Leftrightarrow x = y \text{ and } \|x\| = \|y\| = 1$$

$$\Leftrightarrow x^{(1)} \sim y^{(2)}.$$

Therefore f induces a continuous map on the quotient

$$\overline{f}: (D^n \coprod D^n)/\sim \cong S^n$$

which is surjective (because f is) and injective (because $f(x) = f(x') \Rightarrow x \sim x'$).

Since the disc $D^n \subset \mathbb{R}^n$ is closed and bounded, it is compact. Therefore the finite union $D^n \coprod D^n$ is compact, and so is its quotient $(D^n \coprod D^n)/\sim$. Since S^n is a metric space, it is Hausdorff. Now \overline{f} is a continuous bijection from a compact space to a Hausdorff space, and is therefore a homeomorphism.

Problem 8. (Munkres Exercise 3.26.4)

a. Let (X, d) be a metric space, and $K \subseteq X$ a compact subspace. Show that K is closed (in X) and bounded.

Solution. Since X is Hausdorff, K is closed in X.

For boundedness, pick any point $x \in X$ and consider the open cover by increasingly large open balls

$$K \subseteq \bigcup_{n \in \mathbb{N}} B_n(x).$$

Since K is compact, there is a finite subcover

$$K \subseteq B_{n_1}(x) \cup \ldots \cup B_{n_k}(x) = B_N(x)$$

where $N = \max\{n_1, \dots, n_k\}$. Therefore K is bounded.

Now we show that the converse does not hold.

b. Find a metric space (X, d) and a subset $C \subseteq X$ which is closed and bounded, but such that C is *not* compact.

Solution. Let X be an infinite set equipped with the discrete metric

$$d(x,y) = \begin{cases} 0 & \text{if } x = y \\ 1 & \text{if } x \neq y, \end{cases}$$

which induces the discrete topology. Consider the subset $C := X \subseteq X$, which is closed in X. Moreover X is bounded: $\operatorname{diam}(X) = 1$.

However, X is an infinite discrete space, hence not compact.