COMPSCI/SFWRENG 2FA3

Discrete Mathematics with Applications II Winter 2020

Week 04 Exercises

Dr. William M. Farmer McMaster University

Revised: January 25, 2020

Background Definitions

Let (S, <) be a strict partial order. (S, <) is *dense* if, for all $x, y \in S$ with x < y, there is some $z \in S$ such that x < z < y. The strict total order $(\mathbb{Q}, <_{\text{rat}})$ of the rationals and the strict total order $(\mathbb{R}, <_{\text{real}})$ of the real numbers are both dense.

Exercises

- 1. Prove that $(\mathcal{P}(S), \subset)$ is a strict partial order where S is a nonempty set and $\mathcal{P}(S)$ is the power set of S.
- 2. Consider the weak partial order

$$P = (\{\{1\}, \{2\}, \{4\}, \{1, 2\}, \{1, 4\}, \{2, 4\}, \{3, 4\}, \{1, 3, 4\}, \{2, 3, 4\}\}, \subseteq).$$

- a. Find the maximal elements in P.
- b. Find the minimal elements in P.
- c. Find the maximum element in P if it exists.
- d. Find the minimum element in P if it exists.
- e. Find all the upper bounds of $\{\{2\}, \{4\}\}$ in P.
- f. Find the least upper bound of $\{\{2\}, \{4\}\}\$ in P if it exists.
- g. Find all the lower bounds of $\{\{1,3,4\},\{2,3,4\}\}\$ in P.
- h. Find the greater lower bound of $\{\{1,3,4\},\{2,3,4\}\}$ in P if it exists.
- 3. Let (U, I) where I is the *identity relation*, i.e., the binary relation such that $a \ I \ b$ iff a = b. Show that (U, I) is a weak partial order and not a weak total order.

4. Let $(\mathbb{Q} \cup \{-\infty, +\infty\}, <)$ be the strict total order such that < is the same as $<_{\text{rat}}$ on \mathbb{Q} and $-\infty$ and $+\infty$ are minimum and maximum elements, respectively, of $(\mathbb{Q} \cup \{-\infty, +\infty\}, <)$. Prove that

$$(\mathbb{Q} \cup \{-\infty, +\infty\}, <)$$

is dense. (Do not assume that $(\mathbb{Q}, <_{\text{rat}})$ is dense.)

- 5. Let (S, <) be a strict total order such that there exist $a, b \in S$ with a < b (i.e., S has at least two members). Show that, if (S, <) is dense, then (S, <) is not a well-order.
- 6. Consider the mathematical structure $(L, <_L)$ where L is a list of integers and $<_L$ is the binary relation on L defined by:

$$[a_0, a_1, \dots, a_n] <_L [b_0, b_1, \dots, b_n] \text{ iff } \left(\sum_{i=0}^n a_i\right) < \left(\sum_{i=0}^n b_i\right).$$

Prove that $(L, <_L)$ is a strict partial order that is not a strict total order.

- 7. Construct a strict partial order (U, <) such that U is infinite, < is well founded, and (U, <) is not a total order (and thus $(L, <_L)$ is not a well-order).
- 8. Let Type be the inductive set (representing \mathcal{B} -types) defined in the lectures. Define $a(\alpha)$ be the number of \mathbb{B} and Base constructors occurring in α and $b(\alpha)$ be the number of Function and Product constructors occurring in α . Prove by structural induction that, for all $\alpha \in \mathsf{Type}$,

$$a(\alpha) \le b(\alpha) + 1.$$

9. Construct a signature of MSFOL that is suitable for formalizing real number arithmetic.