CONSERVATION EQUATIONS

Lumped-parameter formulation

$$\frac{\partial M_{cv}}{\partial t} = \sum_{i} \dot{m}_{i} \tag{mass}$$

$$\frac{\partial (M\vec{V})_{cv}}{\partial t} = \sum_{i} (\dot{m}\vec{V})_{i} + \sum_{i} \vec{F}_{j}$$
 (momentum)

$$\frac{\partial E_{cv}}{\partial t} = \dot{Q} - \dot{W} + \sum_{i} \left[\dot{m} \left(h + \frac{V^2}{2} + gz \right) \right]$$
 (energy)

$$\frac{\partial S_{cv}}{\partial t} = \sum_{j} \left(\frac{\dot{Q}}{T}\right)_{i} + \sum_{i} (\dot{m}s)_{i} + \dot{S}_{gen}$$
 (entropy)

$$\frac{1D formulation}{\frac{\partial \rho}{\partial t} = -\frac{\partial G}{\partial z}}$$
 (mass)

$$\frac{\partial G}{\partial t} = -\frac{\partial}{\partial z} \left[\frac{G^2}{\rho} \right] - \frac{\partial P}{\partial z} - \frac{\tau_w p_w}{A} - \rho g \cos \theta \qquad (momentum)$$

$$\rho \frac{\partial h}{\partial t} = -G \frac{\partial h}{\partial z} + \frac{q'' p_h}{A} + \left[\frac{\partial P}{\partial t} + \frac{G}{\rho} \left(\frac{\partial P}{\partial z} + \frac{\tau_w p_w}{A} \right) \right]$$
 (energy)

Differential (3D) formulation

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \vec{V}) = 0$$
(mass)
$$\rho \left[\frac{\partial \vec{V}}{\partial t} + \vec{V} \cdot \nabla \vec{V} \right] = -\nabla P + \mu \nabla^2 \vec{V} + \rho \vec{g}$$
(momentum, for incompressible fluid)
$$\rho c_p \left[\frac{\partial T}{\partial t} + \vec{V} \cdot \nabla T \right] = -\nabla \cdot \vec{q} + q''' + \beta T \frac{DP}{Dt} + \phi$$
(energy)

Subscripts:

Symbols:

A	Flow Area	cv	Control Volume
c	Specific Heat	gen	Generation
E	Internal Energy	h	heated
F	Force	P	Pressure
g	Gravitational Acceleration	r	Radial
G	Mass Flux	W	Wall or Wetted
h	Enthalpy		
\dot{m}	Mass Flow Rate	Greek Symbols	

β Therm. Expansion (Therm. Expansion Coeff.	
φ Dissipation function	n	
μ Viscosity		
ρ Density		
τ Shear Stress		

Gravitational Acceleration
Mass Flux
Enthalpy
Mass Flow Rate
Mass
Perimeter
Pressure
Rate of Heat Transfer
Entropy
Time
Temperature
Velocity
Rate of Energy Transfer as Work

Elevation

REACTOR THERMAL PERFORMANCE PARAMETERS

Parameter	Name	Typical values		Units
		PWR	BWR	
ģ	Power of fuel rod	67	77	kW (BTU/hr)
q'	Linear heat generation rate (or linear power)	18	20	kW/m (BTU/hr-ft)
q"	Heat flux	600	530	kW/m ² (BTU/hr-ft ²)
q'"	Volumetric heat generation rate	350	240	MW/m ³ (BTU/hr-ft ³)
Q	Core power	*	*	MW

^{*} It varies much from plant to plant

For a fuel rod operating at steady-state conditions, the parameters are related as follows:

$$\dot{q}=q'L=q''2\pi\,R_{co}L=q'''\pi\,R_f^2L=\dot{Q}/N$$

Where R_f is the fuel pellet radius, R_{co} is the fuel rod outer radius, L is the fuel rod active (heated) length and N is the total number of fuel rods in the core.

MIT OpenCourseWare http://ocw.mit.edu

22.06 Engineering of Nuclear Systems Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.