Nome	RA	Curso/Turma
Vitor Hugo Ferrari Ribeiro	112481	Física / 34

Experimento I

Resistência nominal e utilização do multímetro

I. Resistência Nominal (R_n) ;

Figura 1. Código de cores para a leitura da resistência nominal (R_n) de um resistor.

Tabela 1. Código de cores para a leitura da resistência nominal (R_n) .

Cor	Dígito	Tolerância
Preta	0	
Marrom	1	
Vermelha	2	
Laranja	3	
Amarela	4	
Verde	5	
Azul	6	
Violeta	7	
Cinza	8	
Branca	9	
Dourada		5%
Prateada		10%
Sem cor		20%

a) Insira o valor da resistência nominal (R_n) para cada um dos resistores apresentados na tabela abaixo de acordo com seu padrão de cores.

Resistor	$R_n = (AB \times 10^C \pm D\%)(\Omega)$
	$220\Omega\pm5\%$
-(1110)-	$470\Omega\pm5\%$

-(-1:0) -	$2.2~\mathrm{k}\Omega\pm5\%$
-(1111)-	$4.7~\mathrm{k}\Omega\pm5\%$
-():11)-	$10~\mathrm{k}\Omega\pm5\%$
-(): <u> </u> -	$22 \text{ k}\Omega \pm 5\%$
-(imb)-	$47~\mathrm{k}\Omega\pm5\%$
	$100~\mathrm{k}\Omega\pm5\%$

II. Multimetro

a. Ohmímetro – Medida da resistência elétrica (R)

Selecione a função ohmímetro no multímetro, se houver seleção de escala, selecione também a escala adequada, conecte os cabos em COM e V/Ω no multímetro e nas extremidades do resistor, conforme ilustra a Fig. 2.

Obtenha o valor da resistência nominal e meça as resistências, dos mesmos, utilizando os multímetros, na função ohmímetro, de escala automática e selecionável, dos resistores R_1 , R_2 e R_3 . Anote seus resultados na Tabela 2.

Tabela 2. Dados das resistências obtidas para os resistores R_1 , R_2 e R_3 .

	$R_{n}\left(\Omega\right)$	$\left(R_{\exp(sel.)} \pm \Delta R_{\exp(sel.)}\right)(\Omega)$
R_1	100 Ω	$(99,69 \pm 0,01) \Omega$
R ₂	1,8 $k\Omega$	$(1.878,2 \pm 0,1) \Omega$
R_3	$2,2~k\Omega$	$(2.215 \pm 1) \Omega$

 R_n : resistência nominal; $R_{EXP(sel.)}$: resistência medida no multímetro com seleção de escala; $\Delta R_{EXP(auto)}$: erro experimental na medida com o multímetro de escala automática; $\Delta R_{EXP(sel.)}$: erro experimental na medida com o multímetro de escala analógica.

Para cada uma das medidas de resistência conduzidas, realize o mesmo procedimento experimental utilizando a plataforma *Tinkercad*TM e anexe as imagens dos valores de resistência obtidos. Utilize os valores **nominais** das resistências para atribuir seu valor na plataforma *Tinkercad*TM.

b. Voltímetro - Medida de diferença de Potencial (d.d.p.)

Conecte o multímetro na função voltímetro (V=== ou DC) e ajuste a fonte de alimentação contínua para uma tensão $V_{fonte} = (6.8 \pm 0.1) \ Volts \ (V)$, conforme ilustra a Fig.3.

Utilizando a placa de *bornes* monte o circuito conectando o resistor R_1 e a fonte de alimentação contínua, conforme mostra a Fig. 4. Conecte o multímetro, na função voltímetro, para a medida da diferença de potencial no resistor (V_R), veja novamente a Fig.4. Repita a mesma medida trocando o resistor R_1 por R_2 e depois por R_3 , e anote os dados obtidos na Tabela 3.

Para cada uma das medidas de diferença de potencial conduzidas, realize o mesmo procedimento experimental utilizando a plataforma *TinkercadTM* e anexe as imagens dos valores obtidos. Utilize os valores **nominais** das resistências para atribuir seu valor na plataforma *TinkercadTM*. Na plataforma *TinkercadTM*, utilize o mesmo valor de diferença de potencial fornecida para fonte para simular os circuitos.

c. Amperimetro - Medida de corrente elétrica (I)

No mesmo circuito utilizado para a medida da diferença de potencial no resistor, desconecte o multímetro do circuito, e o conecte novamente, na função amperímetro (A=== ou DC), para a medida da corrente elétrica que atravessa o resistor, conforme ilustra a Fig. 5. Realize a medida da corrente elétrica para os resistores R_1 , R_2 e R_3 e anote os dados obtidos na Tabela 3.

Para cada uma das medidas de corrente conduzidas, realize o mesmo procedimento experimental utilizando a plataforma *TinkercadTM* e anexe as imagens dos valores obtidos. Utilize os valores **nominais** das resistências para atribuir seu valor na plataforma *TinkercadTM*. Na plataforma *TinkercadTM*, utilize o mesmo valor de diferença de potencial fornecida pela fonte para simular os circuitos.

Tabela 3. Dados obtidos para as medidas de d.d.p., corrente elétrica e cálculo da razão V_R/I_R para os resistores R_1 , R_2 e R_3 .

	$(R_{exp} \pm \Delta R_{exp}) \Omega$	$(V_R \pm \Delta V) V$	$(I_R \pm \Delta I) mA$	$(V_R/I_R) \pm \delta$
R_1	$(99,69 \pm 0,01) \Omega$	$(6,751 \pm 0,005) V$	$(65,66 \pm 0,01) mA$	$(102,82 \pm 0,001)$
R_2	$(1.878,2 \pm 0,1) \Omega$	$(6,774 \pm 0,005) V$	$(3,591 \pm 0,001) mA$	$(1.886,38 \pm 0,01)$
R_3	$(2.215 \pm 1) \Omega$	$(6,778 \pm 0,005) V$	$(3,049 \pm 0,001) mA$	$(2.223,02 \pm 0,01)$

 R_{exp} : resistência medida; V_R : diferença de potencial no resistor; I_R : corrente elétrica que atravessa o resistor; ΔV : erro na medida de V_R ; ΔI : erro na medida de I_R ; δ : erro associado à razão V_R/I_R .

Figura 2. Esquema da montagem do ohmímetro com um resistor (R).

Fonte de alimentação contínua (V_{fonte})

Figura 3. Esquema da montagem para a medida da d.d.p. de uma fonte de tensão contínua.

Figura 4. Esquema da montagem para a medida da d.d.p. em um resistor em um circuito.

Figura 5. Esquema da montagem para a medida da corrente em um circuito.

III. Medidas em Circuito com Três Resistores

Monte o circuito da Fig. 6, e utilizando o multímetro nas funções ohmímetro, voltímetro e amperímetro, realize as medidas necessárias para o preenchimento da Tabela 4.

A tensão da fonte deve ser ajustada para $V_{fonte} = (10.3 \pm 0.1) \ Volts \ (V)$.

Figura 6. Esquema da montagem do circuito com os resistores R_1 , R_2 e R_3 .

Tabela 4. Dados obtidos para as medidas de resistência, d.d.p. e corrente elétrica nos resistores R_1 e R_2 do circuito esquematizado na Fig.6.

	$\left(R_{exp} \pm \Delta R_{exp}\right) \Omega$	$(V_R \pm \Delta V) V$	$(I_R \pm \Delta I) mA$	$(V_R/I_R) \pm \delta$
R_1	$(99,69 \pm 0,01) \Omega$	$(0,423 \pm 0,001) V$	$(4,224 \pm 0,002) mA$	100,14 ± 0,01
R_2	$(1.878,2 \pm 0,1) \Omega$	$(0,423 \pm 0,001) V$	$(0,224 \pm 0,002) mA$	1.888,39 ± 0,01
R_3	$(2.215 \pm 1) \Omega$	$(9,920 \pm 0,001) V$	$(4,474 \pm 0,002) mA$	$2.217,25 \pm 0,01$

Anotações		
·	 	

$$\begin{split} \sigma_z &= z \cdot \left(\frac{\sigma_x}{x} + \frac{\sigma_y}{y}\right) = \frac{x}{y} \cdot \left(\frac{flutuação\ da\ Tensão}{Tensão} + \frac{flutuação\ da\ Corrente}{Corrente}\right) \\ &= \frac{tensão}{corrente} \cdot \left(\frac{flutuação\ da\ Tensão}{Tensão} + \frac{flutuação\ da\ Corrente}{Corrente}\right) \end{split}$$

