LaPIS Diagnostic Test Workbook - Mathematics

Name : Dhaanusri B

Class: 7

Section : B

School : AKV Public School

Login ID : AKV155

Dhaanusri B's Performance Report

Score: 12/40 Percentage: 30.0%

Dhaanusri B's Study Planner

Date	Topics Planned	Q. Numbers	Teacher Remark	Teacher Sign	Parent Sign
		Teacher's Fe	edback to Student		
	Class Teacher S	<u> </u>	——————————————————————————————————————	ipal Signature	

Basic arithmetic

	Topics to be Improved
LCM	Finding LCM

Hi, here in this video you will learn LCM

Question: 1

Fill the hexagon with factors and multiples of 10.

.....

Answer:

A _____ (factor/multiple) of a number is an exact divisor of that number.

The factors of 10 are

10 x 1 =	x = 10
2 x = 10	x = 10

Let's find the multiple of 10

10 x 1 =	10 x 4 =
10 x 2 =	10 x 5 =
10 x 3 =	10 x 6 =

Therefore, factors of 10 are _____ and multiples of 10 are ____.

Question: 2

Find the LCM of 50, 100.

Answer:

Complete the division using least common multiple.

50	, 100	

The LCM of 50, 100 is 2 x 2 x ____ x ___.

Question: 3

Every number is the multiple of _____

Answer:

Let's find the first ten multiple of random numbers,

Multiple of $1 = \underline{\hspace{1cm}}$

Multiple of $2 = \underline{\hspace{1cm}}$

Multiple of 13 =

Multiple of 20 = _____

Here, _____ is the common factor of every number.

Mensuration

	Topics to be Improved
Area	Area of rectangle
Perimeter	Perimeter of triangle

 $\mathrm{Hi},\,\mathrm{here}\,\,\mathrm{in}\,\,\mathrm{this}\,\,\mathrm{video}\,\,\mathrm{you}\,\,\mathrm{will}\,\,\mathrm{learn}\,\,\mathbf{Area}$

Question: 4

Find which of the shaded portion in the given shape represent it's area.

......

Answer:

Given figure is ______ in shape.

Area is the _____ (inside/ outside/ boundary) of a shape.

Question: 5

Find the area of a rectangular garden whose dimension is 25 ft in length and 20 ft in breadth.

Answer:

The garden is in ______ shape.

Length of garden is _____ and breadth of garden is _____.

Formula for area of the shape = _____.

The area of garden = $\underline{\hspace{1cm}}$ x $\underline{\hspace{1cm}}$ = $\underline{\hspace{1cm}}$ cm^2

Question: 6

Shade the possible dimension of the door whose area is 500 m^2

50 m >	< 10 m
--------	--------

25~m~ imes~25~m

25	m	×	20	m
1				

 $30~m~\times~20~m$

Answer:
$\boldsymbol{\Lambda}$

Door is _____ in shape. Area of the _____ shaped door is ____.

Dimensions	Length	Breadth	Area
$50 \text{m} \times 10 \text{m}$			
$25 \text{m} \times 25 \text{m}$			
$25 \text{m} \times 20 \text{m}$			
$30 \text{m} \times 20 \text{m}$			

Therefore, 1	possible	dimension	of the	door whose	area is $500 \ m$	n^2 is	/are
THUILDIU,		difficiation	OI UIIC	door whose	arca is ooo n	U 10/	aic

Hi, here in this video you will learn **Perimeter**

Question: 7

Highlight the perimeter in the given image.

|--|

Perimeter is the _____ (outer / inner) boundary of the shape

Question: 8

Find the perimeter of the given figure.

.....

Answer:

Sides of the given shape = _____.

Perimeter of a shape is _____ (sum / difference) of _____ (all/ opposite) sides.

Perimeter of the given shape = _____

Question: 9

Find the length of the rectangular floor if its perimeter is 60 ft and breadth is 3 ft.

Answer:

Shape of the floor is _____ and its perimeter formula is _____. Given:

floor perimeter =
$$_$$
, and breadth = $_$.
Perimeter of the floor = $2(_$.

Therefore, length of the rectangular floor is _____.

Data handling

Topics to be Improved			
Chance of probability Basis of probability, Sample space in probability			
Range	Finding the range		

......

Hi,	here in	this	video	you	will	learn	Basics	of	probabilit	\mathbf{y}
-----	---------	------	-------	-----	------	-------	--------	----	------------	--------------

\sim \cdot \cdot	10
Question:	10
a accomon.	10

Identify the sure events and impossible events

- (i) The sun rises in the west.
- (ii) Water is colourless.
- (iii) Clock rotates in clock wise direction.
- (iv) Ball is square in shape.

Answer:

Events that always occur are called	(sure/ impossible) events.
Events that cannot occur are called	(sure/ impossible) events.
Here, The sun rises in the west is	_ event. Water is colourless is
event.	
Clock rotates in clock wise direction is $___$	event. Ball is square in shape is
event.	
Question: 11	
Probability of sure events is (great	ter / smaller) than probability of impossible events
Answer:	
Probability of sure event = $\underline{\hspace{1cm}}$ (0/ 1/ any n	umber).
Probability of impossible event = $(0/1)$	/ any number).

Question: 12

Raju has pencil, an eraser, a scale, sharpener, colour pencil and protractor in his box. What is the probability of getting a pen from his box.

Therefore, Probability of sure event ______ Probability of impossible event.

Answer:

Things Raju have
Hi, here in this video you will learn Range
Question: 13
Range of the data =
Answer:
The difference between highest value and lowest value is Example: Find the range of 10, 5, 30, 23, 54, 39 and 16 Highest value = , Lowest value = Range = =
Question: 14
Circle the correct range for the following data $31, -20, 35, -38, 29, 0, 43, -25, 51, 14, 9$
$-20+51$ $\frac{-38-51}{2}$ $51+38$ $\frac{51+20}{2}$
Answer: Range =
Question: 15
Find the range of first 10 multiple of 5.
Answer:
First 10 multiple of 5 = Therefore, Highest value = , Lowest value = , Range = – =
Hi, here in this video you will learn Basics of probability
Question: 16
Which of the following contains list of all possible outcomes.
Probability Sample space Sure events Impossible events

Answer:
Probability is the measure of (chance /number) of an events happenings. Sample space consists of (possible/ impossible) outcomes. Sure events always (occurs/don't occurs). Impossible events (occurs/ don't occurs). Therefore, contains list of possible outcomes.
Question: 17
Write the possible outcomes while spinning the given wheel. $\begin{array}{c c} & & & & \\ & & & & \\ & & & & \\ & & & & $
Answer:
Outcomes are (possible/impossible) results of an experiment. The possible outcomes while spinning wheel are ₹0, ₹10,
Question: 18
A bag contains three balss of colour blue, green and red. Write the possible outcomes if two balls are taken out.
Answer:

www.learnbasics.fun

_____ and _____ balls.

If one of the ball is blue in colour, then other ball can be ______ or _____.

If one of the ball is green in colour, then other ball can be ______ or _____.

If one of the ball is red in colour, then other ball can be ______ or _____.

Therefore, if two balls are taken out then possible outcomes are blue + ______,

Geometry

Topics to be Improved				
Angle sum property of triangle	Angle sum property of triangle			
Criteria for congruence of triangle	Idenfication of criteria of congruence of triangles			
Related angles	Complementary angles			
Faces vertex and edges	Idenfication of faces, edges and vertices			
Transversal angle made by transversal	Basics of Transversal angle			
Sum of lengths of two sides of a triangle	Sum of two sides of a triangle			

Hi, here in this video you will learn Angle sum property

Question: 19

Sum of the angles of triangle is _____.

Answer:

$$\angle A + \angle B + \angle C = \underline{\hspace{1cm}}$$

Angle sum formula = $(n-2) \times 180^{\circ}$, n = number of sides

Triangle has _____ sides.

Sum of the angles of triangle = $(\underline{} - 2) \times 180^{\circ} = \underline{}$

 $Question:\ 20$

Which of the following triangle satisfy the angle sum property.

Answer:

Angle sum property of triangle: sum of the angles of a triangle is _	
In $\triangle ABC$, Sum of the angles $= \angle A + \angle B + \angle C =$	=
In $\triangle PQR$, Sum of the angles = =	=
In $\triangle KLM$, Sum of the angles = =	. =
In $\triangle XYZ$, Sum of the angles = =	=
Therefore, the triangles that satisfy the angle sum property are $=$ $_{-}$	

Question: 21

Find the angles of triangle, if their angles are in the ratio 8:6:4.

Answer:

Ratio of angles in the triangle is
Let's consider the angles of triangle be $8x$, and
We know sum of the angles of a triangle is
Therefore, $8x + \underline{\hspace{1cm}} + \underline{\hspace{1cm}} = 180^{\circ}$. The value of $x = \underline{\hspace{1cm}}$
The angles of the triangle are

Hi, here in this video you will learn **Criteria of congruence**

Question: 22

Circle the groups that contain congruent images.

Answer:

Two geometrical shapes are said to be congruent if they are
(identical/non-identical) in shapes and size.
Example: Square and Rectangle are (congruent/not congruent).

Question: 23

If the three sides of the triangle are equal to the corresponding sides of the other triangle, then two triangles are congruent under $____$ (SSS/ASA/SAS) criteria .

4			~~	
\boldsymbol{A}	ns	w	er	:

Two triangle are _____ (congruent/not congruent) if they are identical in shapes and size. Criteria for congruence of triangles are SSS, _____ and ____.

- 1. In SSS Congruence criteria (2/3/5) sides of the triangle are (equal/1) not equal) to the three corresponding sides of the other triangle.
- 2. In SAS Congruence criteria (2/3/5) sides and (one/two) angle between them are equal to the corresponding sides and the included angle of the other triangle.
- 3. In ASA Congruence criteria (2/3/5) angles and (one/two) side between them are equal to the corresponding angles and the included side of the other triangle.

SSS	sides and angles are equal
SAS	sides and angles are equal
ASA	sides and angles are equal

Question: 24

The triangles LNM and PRQ are congruent by SAS criteria. Then find the side PR

......

Answer:

The given two triangles satisfy ______ criteria of congruence. By SAS congruence criteria, MN = _____, ___ and $\angle N$ = _____ The side MN=8 cm in ΔLNM is equal to the side _____ in ΔPRQ The common included angle in Δ LNM and ΔPRQ are _____ The side PR is equal to the side in _____ ΔLNM . Therefore, length of side PR = _____

Hi, here in this video you will learn Related Angles

Question: 25

1. Two angles are complementary if their sum is equal to _____.

2. Two angles are supplementary if their sum is equal to _____.

Answer:

1. When sum of the two angles is equal to 90°, they are called as _____ angle. Example: 45° and 45°, _____, and ____.

2. When sum of the two angles is equal to 180°, they are called as _____ angle. Example: 90° and 90°, _____, and ____.

Question: 26

Shade the complementary angles.

Answer:

Two angles are said be complementary if the sum of their angles are equal to _____.

 $85^{\circ}+95^{\circ}=$ and this is _____ (a / not a) complementary angles.

 $45^{\circ} + 45^{\circ} =$ and this is _____ angles.

 $6^{\circ} + 84^{\circ} =$ and this is _____ angles.

 $73^{\circ} + 107^{\circ} =$ and this is _____ angles.

 $36^{\circ} + 64^{\circ} =$ and this is _____ angles.

 $90^{\circ} + 90^{\circ} =$ _____ and this is ____ angles.

Question: 27

Find the complement and supplement of 15° and 90°

Answer:

One angle is $___$ (complements / supplements) to other angle, when sum of the two angles is equal to 90° .

One angle is _____ (complements / supplements) to other angle, when sum of the two angles is equal to 180°.

Complement of $15^{\circ} = \underline{\hspace{1cm}}$,

Complement of $90^{\circ} = \underline{\hspace{1cm}}$.

Supplement of $15^{\circ} = \underline{\hspace{1cm}}$,

Supplement of $90^{\circ} =$

Hi, here in this video you will learn Basics of 3D model

faces).

Question: 28		
A point at which	two or more lines segments meet is called	(Vertex/ edges/ faces).

Answer:

	has two end point (line/line segment/ray).
Α	is a point where two or more line segments meet(Vertex/ edges,

Mark the vertices in the diagram,

Question: 29

Mark and find the number of vertices, edges and faces in a cube.

Answer:

Mark the vertex, edges and faces in a cube.

	of vertex, edges and faces		
Cube have	vertices, edges a	nd taces.	
$\underline{\textit{Question: } \textit{30}}$			

Answer:

The shape of dice is	3	•	
Dices have	vertices,	edges and	faces.

How many vertices, edges and faces does dices have?

Hi, here in this video you will learn Basics of Transversal angle

Question: 31

Answer:

A line that intersects two or more lines at distinct points is called a _____ (transversal/Intersecting line).

Angle that lies on different vertices and on the opposite sides of transversal is _____ angles.

Angle that lies on different vertices and on the same sides of transversal is _____ angles. Therefore, $\angle 1$ and $\angle 7$ are _____

Question: 32

Find the transversal, alternate angles and corresponding angles in a given diagram.

Answer:

A line that intersects two or more lines at distinct points is called a _____ (transversal/Intersecting line).

In a given diagram, _____ is a transversal line. (BF/AD/CE)

Alternate angles	Corresponding angles
$\angle a$ and $\angle g$, $\angle b$ and $\angle h$,	\angle a and \angle e, \angle b and \angle f,

......

Question: 33

Find $\angle e$ and $\angle g$ if $\angle a = 30^{\circ}$.

Answer:

When parallel lines cut by a transversal,

- (i) Alternate angles are _____ (equal / not equal).
- (ii) Corresponding angles are _____ (equal / not equal).

Here, alternate angle of ∠a is Corresponding angle of ∠a is Hi, here in this video you will l	
of the triangle	source of the length of side

Find the greatest distance to reach C from A in the given diagram.

Answer:

The sides of the given triangle are _____.

The possible way to reach point C from point A are _____ and AB then to

Side AC = _____

Side AB + BC = _____ + ____ = ____

Therefore, the greatest distance to reach C from A in the given diagram is ______.

Question: 35

_____ (Sum of / Difference between) the length of any two sides of a triangle is smaller than the length of the third side.

......

Answer:

There are ______ sides in a triangle.

The sum of the two sides of a triangle is ______ than the other side of the triangle.

The difference of the two sides of a triangle is ______ than the other side of the triangle.

Example: In triangle XYZ,

Question: 36

The lengths of two sides of a triangle are $7~\mathrm{cm}$ and $10~\mathrm{cm}$. Between which two numbers can length of the third side fall?

$\underline{Answer:}$

1.	The sum of the two sides of a triangle is	than the third side of the triangle.
	Therefore, the third side should be	_(less/ greater) than sum of other two sides
	Here, sum of the two sides $=$ $+$ $+$	=
	Therefore, the length of the third side is less than	l
2.	The difference of the two sides of a triangle is	than the third side of the
	triangle.	
	Therefore, the third side should be	_(less/ greater) than sum of other two sides
	Here, difference of the two sides =	=
	Therefore, the length of the third side is greater t	han
Γ her	efore, length of the third side is greater than	but less than

Number system

Topics to be Improved		
Operations on rational numbers	Subtraction of rational numbers, Division of rational numbers	
Integers	Basics of integers	
Positive and negative rational numbers	Identification of positive rational numbers	
Exponents	Solving exponents	
Decimals	Multiplication and division of decimals	
Fractions	Division of fraction	

Hi, here in this video you will learn **Operation on rational numbers**

Question: 37

Solve: $\frac{-3}{3} + \frac{1}{3}$

Answer:

Fractions with same denominators are called ______ (like/ unlike) fractions. Fraction can be added only if they are ______ (like/ unlike) fractions.

$$\frac{-3}{3} + \frac{1}{3} = \frac{-3}{3} = \frac{-3}{3}$$

.....

Question: 38

Find the addition of shaded part of box A and shaded part of box B.

Answer:

Total number of square in box $A = \underline{\hspace{1cm}}$. Number of shaded square in box $A = \underline{\hspace{1cm}}$.

Shaded part of box A in fraction = _____

Total number of square in box $B = \underline{\hspace{1cm}}$.

Number of shaded square in box $B = \underline{\hspace{1cm}}$

Shaded part of box B in fraction = _____.

Shaded part of box A + Shaded part of box B = $___$ + $___$ = $__$

Question: 39

Find the missing values in the given figure.

$$= \begin{array}{c} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c}$$

......

Answer:

Given: $1 = \frac{7}{10} + \underline{}$ Transposing $\frac{7}{10}$ to other sides, $1 = \frac{7}{10} = \underline{}$

Therefore, result is _

Hi, here in this video you will learn **Operation on rational num**bers

Question: 40

Fill in the boxes to make the given expression correct.

$$\frac{1}{5} \div \frac{14}{15} = \frac{1}{\square} \times \square$$

Answer:

When any fraction is divided by a fraction, we multiply the dividend by the _____ (same/reciprocal) of the divisor.

Here, dividend = and divisor = =

$$\frac{1}{5} \div \frac{14}{15} = \frac{1}{\square} \times \square = \square$$

Question: 41

Solve: $\frac{18}{7} \div 0.6$

Answer:

Fraction form of $0.6 = \underline{\hspace{1cm}}$,

when any fraction is divided by a fraction, we multiply the dividend by the ______ (same/reciprocal) of the divisor. Here, dividend = _____ and divisor = _____.

$$\frac{18}{7} \div \boxed{\square} = \frac{18}{7} \times \boxed{\square} = \boxed{\square}$$

Question: 42

Find the missing number in the expression $\frac{8}{3} \div \frac{16}{\square} = 2$

Answer:

$$\frac{8}{3} \div \frac{16}{\square} = 2$$

$$\frac{8}{3} \times \frac{\square}{16} = 2$$

Transposing 8/3 to RHS,

$$\frac{\square}{16} = 2 \square \frac{8}{3}$$

$$\frac{\square}{16} = 2 \times \boxed{\square}$$

$$\frac{\square}{16} = \frac{\square}{\square}$$

Transposing 16 to other side, the result is _____

Hi, here in this video you will learn **Basics of integers**

 $\underline{\textit{Question: 43}}$

Highlight the ring that contains whole numbers.

A	~	-		_	n	
\boldsymbol{A}	n.	S1	"	е:1	r	۰

Answer:
The numbers inside the inner ring $(1, 2, 3, \ldots)$ are numbers.
The numbers inside the middle ring are numbers.
The numbers inside the outer ring are negative numbers, positive numbers and zero and they are
called as
Question: 44
Colour the frame of the box which contains the number $1,4$ and -10
Whole Negative Naturals
numbers Integers
Answer:
Whole number consists of 0,1,2,3,4, Negative number consists of
Natural numbers consists of Integers consists of
Now, 1, 4, -10 are in
Question: 45
State whether the statement is true or false.
Every positive number is an integer.
Answer:
Positive numbers are Integers consists of
Therefore, positive numbers are (in/not in) integers.
Hi, here in this video you will learn Positive and Negative ra-
119/15/24/40
tional numbers
Question: 46
9 40000000 40

Segregate positive and negative rational number.

Answer:

•	If both the numerator and the denominator of a rational number are
	(positive/negative), then it is positive rational number.

•	If either the numerator and the denominator of a rational number are negative,	then i	t is
	(positive/negative) rational number.		

In the given circle, positive rational numbers are and negative rational numbers are
Question: 47
$\frac{-3}{-4}$ is a (positive /negative / neither positive nor negative) rational number.
$\underline{Answer:}$
-3 is a number, -4 is a number.
-3 is a number, -4 is a number. Division of $\frac{-3}{-4} = \boxed{}$ and this rational number.
(Positive / Negative / Neither positive nor negative rational number)

Ougation	10				
Question: 2	40	 	 	 	

The product of a positive rational number and a negative rational number is ______rational number. (Positive/ Negative/ neither positive nor negative)

Answer:

Examples for positive rational numbers: ______ Examples for negative rational numbers: _____ Positive rational number × Negative rational number = ____ × ___ = ___ and this is ____ rational number

Hi, here in this video you will learn **Exponents and power**

Question: 49

Find the exponential form of 1000.
Answer:
(Exponents/Base) tells us how many times a number should be multiplied by itself to get the desired result. Exponents is also called as (Base / Power).
1000 can be written as = $10 \times $ $\times $ 10 is raised to the power of = (10)
Question: 50
Find the value of $(-2)^3$.
$\underline{Answer:}$
(Exponents/Base) tells us how many times a number should be multiplied by itself to get the desired result.
In this exponential form $(-2)^3$, base =, power = $(-2)^3 = \underline{\qquad} \times \underline{\qquad} \times \underline{\qquad} = \underline{\qquad}$.
<u>Question: 51</u>
(i) Tenth power of 100 is $((10)^{100} \text{ or } (100)^{10})$.
(ii) k is raised to the power of 5 is $((k)^5)$ or $(5)^k$.
Answer:
Exponential form = $(Base)$ —
(i) Tenth power of 100 : Base = $__$, Power/Exponents = $__$, exponential form = $__$.
(ii) k is raised to the power of 5 : Base =, Power/Exponent =, exponential form =
Hi, here in this video you will learn Basics of decimals
Question: 52
Shade 0.4 part of the given shape.

Answer:
There are boxes. 0.4 can be expressed as in fraction This fraction represents parts out ofequal parts. So, we need to shade boxes out ofboxes.
<u>Question: 53</u>
Solve the following.
(i) 0.4×1.2
(ii) 0.48×1.2
Answer:
 (i) 0.4 × 1.2 : Multiplication of 0.4 × 1.2 assuming there is no decimal point is The number of digits after decimal point in 0.4 is and 1.2 is Total digits after decimal point in the product of two numbers is Count that digits from the right towards left and place the decimal point, the result is (ii) 0.48 × 1.2: Multiplication of 0.48 × 1.2 assuming there is no decimal point is The number of digits after decimal point in 0.48 is and 1.2 is Total digits after decimal point in the product of two numbers is Count that digits from the right towards left and place the decimal point, the result is
$egin{array}{cccccccccccccccccccccccccccccccccccc$
One box of chocolate costs Rs.20.10. What is the cost of 15 chocolates, if a box contains 10 chocolates?
Answer:
One box contains chocolates. The cost of one box is Then cost of one chocolate = ÷ =
(i) Total digits after decimal point in decimal number =
(ii) Divide the two numbers assuming there is no decimal point.
$\frac{2010}{15} = $

(iii)	Place the decimal point after	digits	counting	from	the	right	in the	e quotient	after
	division.								

Then the cost of one chocolate is _____.

The cost of 15 chocolates = cost of one chocolate \times ____ = __ x ___ = __

Hi, here in this video you will learn Division on fractions

Question: 55

Find the shape which contains the improper fraction of $5\frac{2}{7}$.

Answer:

 $5\frac{2}{7}$ is a _____ (proper/mixed) fraction. Here, 5 is _____ , 2 is _____ and 7 is _____.

To convert mixed fraction into improper fraction, $\frac{\text{(Whole} \times \underline{\hspace{1cm}}) + \text{Numerator}}{\text{Denominator}}$

$$5\frac{2}{7} = \frac{(--- \times ---) + ----}{7} = \frac{\square}{\square}$$

Question: 56

Solve: $\frac{1}{3} \div \frac{14}{3}$

Answer:

To divide a fraction by another fraction, multiply the dividend by _____ (same / reciprocal) of the divisor. Here, dividend = _____ and divisor = ____.

$$\frac{1}{3} \div \frac{14}{3} = \frac{1}{3} \times \boxed{\square} = \boxed{\square}$$

.....

Question: 57

Find the half of the fraction $\frac{12}{40}$.

Answer:

To find half of a number, divide the number by _____

$$\frac{12}{40} \div \underline{} = \frac{12}{40} \times \underline{\underline{}} = \underline{\underline{}}$$

Then the answer is _____

Comparing Quantities

Topics to be Improved					
Percentage	Basic of percentage				
Simple interest	Calculation of simple interest				
Equivalent ratios	Basic of proportion				
Profit and loss	Prediction of loss and profit				
Conversion of fraction into percentage	Conversion of fraction into percentage				

Hi, here in this video you will learn Basics of percentage	age
--	-----

Question:	5	8
-----------	---	---

2% can be written as

Answer:

Percentages are numerators of fractions with denominator_____

$$2\% = \frac{\square}{\square}$$

.....

Question: 59

Arun attended the LaPIS test for 100 marks and got 75% marks. What is the mark scored by Arun?

Answer:

Arun attended LaPIS test for _____ marks. He got ____ marks. 75 % can be written in fraction form ____

Then the mark scored by Arun = Total mark \times 75% = ____ \times ___ = ____

Question: 60

There are 25 apples in a basket in which 10 of them are rotten. Find the percentage of rotten apples.

$\underline{Answer:}$					
There are		apples in a basket.			
		eten apples are			
Fraction	forn	n of rotten apples in a basket	=	_	
Convert it	t int	o a percent= x	% =	=	
		-			milessim.
Hi, here	e in	this video you will learn	Simp	le Interest	
Question	n: 6	1			
Match the		_			
Match the	5 1011	owing.			
		Column A		Column B	
	i	Principle(P)	a	Interest calculated based on the	nis
	ii	Amount (A)	b	Total sum you borrow	
	iii	Rate (R)	c	Number of years	
	iv	Time period (T)	d	Total sum with interest	
Interest ca Total sum	alcul you	alculating simple interest = _ated based onated borrow is known asars is Total s	_· 		
Question					
Sara depo earned.	sited	l Rs.1200 in a bank. After th	ree year	s, she received Rs.1320. Find th	e interest she
Answer:					
Given:					
Amount =	=	, Principle =		$_{}$, Time period = $_{}$	
				calculating interest is	 •
Interest =			_ =		
Question	n: 6	<u>3</u>			
The simpl	le int	terest on Rs.5000 for 3 years i	is Rs.135	50. Find the rate of interest.	
Answer:					
Interest =	·	, Time period =	:	\dots , Principal = \dots	
		st x 100			
Rate of in	itere	$st = {Principal \times }$			

Substituting values in the formula,	
Rate of interest $= \frac{\underline{\qquad} \times 100}{\text{Principal x} \underline{\qquad}}$	
Rate of interest =	
Therefore, the rate of interest is $___$	
Hi, here in this video you will learn Basics of proportion	
Question: 64	
If a:b and c:d are equivalent ratio, then it can be expressed as	
Answer:	
A (proportion / ratio) is used to express (one/two) equivastandard form to express proportion is	alent ratios.
Question: 65	
Find the ratio of shaded part to unshaded part of A and B. Are the two ra	tios equivalent?
	\Box

	-			
Δ				
А				

В

Answer:

Shaded part of $A = \underline{\hspace{1cm}}$, Unshaded part of $A = \underline{\hspace{1cm}}$.
Ratio of shaded to unshaded parts of A is Fractional form =
Shaded part of $B = \underline{\hspace{1cm}}$,
Unshaded part of $B = \underline{\hspace{1cm}}$.
Ratio of shaded to unshaded parts of B is
Fractional form $=$
Fraction form of A (equal/ not equal) to Fraction form of B.

Question: 66

If a:b::c:d is proportion, shade the correct expression

Answer:
Two equivalent ratio which are proportion, it can be written as a : b :: c : d or $\underline{\hspace{1cm}}$ = $\underline{\hspace{1cm}}$ (in fraction) .
First and fourth term are called and second and third term are called In proportion, product of extreme terms is (equal to/ not equal to) product of middle terms.
Therefore, $a \times d = \underline{\hspace{1cm}}$,
then $a = \underline{\hspace{1cm}}$ and $c = \underline{\hspace{1cm}}$
Hi, here in this video you will learn Profit and Loss
$\underline{\textit{Question: } 67}$
Anu bought a book for $\P{100}$ and sold it for $\P{150}$. Here, cost price of a book is and selling price of a book is
Answer:
The price that is paid to buy or purchase a goods is price and the price at which goods ar sold is called price. Therefore, cost price of a book =, selling price of a book =
<u>Question: 68</u>
You bought a bat for ₹50 to play cricket. After one week, you sold that bat for ₹150. Is that a profit or loss for you?
Answer:
In profit, selling price cost price. $(<,>,=)$ In loss, selling price cost price. $(<,>,=)$ Cost price of a bat =, selling price of a bat = Cost price is (greater / smaller) than selling price. Then it is
Question: 69
Janu bought a smart phone for Rs.19,499 and after one week she sold her phone at a loss of Rs.2500 . Find the selling price of the phone.
Answer:
Cost price of a smart phone =, loss = Loss = =
Therefore, selling price =
Hi, here in this video you will learn Converting fraction into percentage
Question: 70

Complete the box in the given equation.
$5\% = \frac{5}{\Box}$
Answer:
Percentage are the fraction with the denominator
Therefore, 5% can be expressed as
Overtime 7/1
Question: 71
Mark the correct conversion form of fraction $\frac{1}{2}$ to percentage.
(i) $\frac{1}{2} \times \frac{50}{50} = \frac{50}{100} = 50\%$
(ii) $\frac{1}{2} \times \frac{100}{100} = \frac{100}{200} = 200\%$
(iii) $\frac{1}{2} \times 100 = \frac{100}{2} = 50\%$
Answer:
To convert fraction into percentage, the value of (denominator / numerator) should be 100 or (multiply / divide) the fraction with 100 $\%$. Therefore, correct conversion form is
Question: 72
Find the percentage of shaded part of square.
Answer:

The square shape is divided into _____ parts.

Number of shaded part of square is _____

Shaded part of square in fraction is -

Algebra

Topics to be Improved				
Monomials, binomials, trinomials and polynomials	Types of algebraic expression			
subtraction of algebraic expressions	subtraction of algebraic expressions			
Basics of simple equation	Solving of simple equation			
Addition and subtraction of algebraic expressions	Like terms and Unlike terms			

Hi, here in this video you will learn T_{i}	ypes of expression
---	--------------------

Question: 73

There are _____ terms in the expression 7x + 3y + m + 5.

Answer:

In algebraic expression, _____ (variables/ terms) are connected together with operations of addition.

.....

......

The terms in the expression are ______, _____, and ______.

Therefore, there are ______ terms in the expression.

Question: 74

Classify the following expression into monomial, binomial and polynomial.

- 1. 7m + n + 2
- 2. $8x^2 + 0$
- 3. 7xy + 4m

Answer:

- 1. The terms in expression $8x^2 + 0$ are _____. Here, expression has _____ term and it is a _____
- 2. The terms in expression 7xy + 4m are _____. Here, expression has _____ term and it is a _____.
- 3. The terms in expression 7m + n + 2 are _____. Here, expression has ____ term and it is a _____.

\overline{Que}	stion: 75				
$5m^2$	+ m + 0 is a	expression	. (Monomial/ l	Binomial/ Trinomia	.1)
\underline{Ans}	wer:				
		on $5m^2 + m + 0$ are ter		lled a	expression.
Hi,	here in this vi	deo you will learn	Subtraction	n on expressio	n 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Que	stion: 76				
Find	the sum of two ex	xpressions a + b + c a	and $b + c + d$		
\underline{Ans}	<u>wer:</u>				
The The	two terms will get sum of two expres answer is	ions are and _ s added only if they ar ssions = +	re(Like	,	
Que	<u>suon: 11</u>				
			School A	School B	
		Number of boys	100b	250b	
		Number of girls	150g	200g	
		Number of teachers	25t	45t	
(i)	Total number of	boys in school A and	B is		
(ii)	Total number of	students in school B i	s		
(iii)	How many more	teachers are there in s	school B than s	school A?	
\underline{Ans}	wer:				
(i)	Number of boys	in school A = in school B = boys in school A and		+ = .	
(ii)	Number of girls i	in school B = in school B = students in school B i	-•	=	

(iii) Number of teachers more in school B than school A = Teachers in school B - Teachers in school A = $_$

Question: 78

Solve the following:

$$\begin{array}{c|c}
 & 13x + \underline{\hspace{1cm}} \\
 & (+) & 12x + 10y \\
 & \underline{\hspace{1cm}} + 25y
\end{array}$$

$$\begin{array}{r}
3a - 5b \\
(-) \quad 5a - 7b \\
\hline
-2a - \underline{\hspace{1cm}}
\end{array}$$

......

......

.....

Answer:

The two terms will get added only if they are _____ (like/unlike) terms.

$$\begin{array}{r}
 3a - 5b \\
 \hline
 (-) \quad 5a - 7b \\
 \hline
 -2a - \underline{\hspace{1cm}}
 \end{array}$$

Hi, here in this video you will learn Solving an equation

Question: 79

If ©=5, then 5 © +5 =

Answer:

The value of the given smiley ② is _____.

Substituting the value in the expression $= 5(\underline{\hspace{1cm}}) + 5 = \underline{\hspace{1cm}} + \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$.

Question: 80

Which of the following number can be placed in the box to make the equation correct (-2, -1, 0, 1, 2)

$$7$$
 $+ 3 = -4$

Answer:

The given equation is $7 \pm 3 = -4$ Substitute the values (-2, -1, 0, 1, 2) in the circle,

$$7 \times \underline{\hspace{1cm}} +3 = \underline{\hspace{1cm}}$$

Therefore, _____ is the number that can be placed in a box to make the equation correct.

Question: 81

Arrange the terms in the descending order when the value of x is 2.

$$2x \qquad 5x \times 1 \qquad x+3 \qquad 2x-4 \qquad \frac{1}{2}x$$

The given expression are _____.

The value of x is _____.

substituting value of x

$$2x = 2 \times \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$$

$$2x - 4 = 2 \times \underline{\qquad} - 4 = \underline{\qquad}$$

$$\frac{1}{2}x = \frac{1}{2} \times \underline{\qquad} = \underline{\qquad}$$

$$x + 3 = \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$$

$$5x \times 1 = 5 \times \underline{\hspace{1cm}} \times 1 = \underline{\hspace{1cm}}$$

Arranging in descending order: $__$, $__$, $__$, $__$, $__$.

Their respective algebraic terms are _____, ____, ____, ____,

Hi, here in this video you will learn Addition on expression

Question: 82

Shade the like terms.

Answer:

Given terms are ______

Two or more term have _____ (same/ different) variables is called like terms.

Here, like terms are ______.

Question: 83

Complete the expression $7r^2 + r \square - 2 \square = \underline{r^2}$

Answer:

_____ (Like / Unlike) terms can be added or subtracted.

$$_{7r^2+ r} \square_{-2} \square = (_{7} + \underline{ } - 2)_{r^2} = \underline{ }$$

Question: 84

Sam have 3a chocolates and 9y icecream. Ram have 7a chocolates and 5y icecream.

(i) Total chocolates Ram and Sam have : _____

(ii)	How many	icecreams ?	Sam h	nave more	than	Ram	:		
------	----------	-------------	-------	-----------	------	-----	---	--	--

Answer:

	Chocolates	Icecream
Sam		
Ram		

(i)	Total chocolates Ram and Sam have:		
	Ram's chocolate + Sam's chocolates -	_	_