# **CLASSIFICATION**

Classification Algorithms and Support Vector Machines

Critical Thinking: What is *classification*? What is the difference between *regression* and *classification*?

**Regression**: the dependent variable is continuous and we want to predict the expected value given the input features.

**Classification**: the dependent variable is binary or nominal and we want to predict the corect class given the input features.

If we had one input feature as a continuous variable we could **see** the classification.

**Example** Let's imagine we have data for the weights of two different animals and we would like to know whether the *weight* alone may be a good predictor for what type of animal there is.

Based on the weight alone, we want to know if the animal is more likely to be a squirrel or a rabbit.



Based on the weight alone, we want to know if the animal is more likely to be a squirrel or a rabbit.



**Example in 2-D:** Do the exam grades predict an outcome?



#### LOGISTIC REGRESSION

What we want: classify by using a probability model (an estimate of the odds-ratio) such as a **straight** line or a **sigmoid** curve.

**IMPORTANT:** If we divide two probability values we get an output between 0 and  $\infty$  (the infinity is approached when the denominator is very close to 0 and the numerator is very close to 1.

The **odds-ratio** is

$$rac{\mathrm{P}(y_i=1| ext{feature data})}{\mathrm{P}(y_i=0| ext{feature data})}$$

**Critical Thinking**: Can we predict the odds ratio as a regression problem? Why and why not?

#### LOGISTIC REGRESSION

Classification by a straight line is possible but less desirable (as you can see in the picture.)

The concept of the logistic regression in a multivariate setup is to model the log of the odds ratio as a linear function of the features:

$$\log \left(rac{ ext{P}(y_i = 1| ext{feature data})}{ ext{P}(y_i = 0| ext{feature data})}
ight) = eta_0 + eta_1 \cdot x_i$$

where  $y_i$  represents the i-th output (classification) and  $x_{ij}$  represent the features of the i-th observation.

## LOGISTIC REGRESSION

$$P(y_i = \text{rabbit}|\text{weight} = x_i) + P(y_i = \text{squirrel}|\text{weight} = x_i) = 1$$

We get

$$\mathrm{P}(y_i = \mathrm{rabbit}|\mathrm{weight} = x_i) = rac{1}{1 + e^{-eta_0 - eta_1 x_i}}$$

the above function is called the "Logistic Sigmoid" (ref. Thomas Malthus)



#### THE MACHINE LEARNING OF LOGISTIC REGRESSION

The main idea is that we approximate the probability of Class 1 by using a logistic sigmoid:

$$p_i \stackrel{\Delta}{=} \mathrm{P}(y_i = 1 | \mathrm{weight} = x_i) = rac{1}{1 + e^{-eta_0 - x_i \cdot eta}}.$$

The machine is updating the weights  $\beta$  by using the gradient of the following objective function:

$$ext{Loss}(eta_0,eta) \stackrel{\Delta}{=} -rac{1}{n} \sum_{i=1}^n \left[ y_i \cdot \log(p_i) + (1-y_i) \cdot \log(1-p_i) 
ight]$$

Critical Thinking: What else is needed for minimizing the Loss function? How is the algorithm going to work?

## THE MACHINE LEARNING OF LOGISTIC REGRESSION



## **METRICS FOR BINARY CLASSIFICATION**

| Total population<br>(pop.) = 2030                                 | Test outcome <b>positive</b>                                                  | Test outcome <b>negative</b>                                           | = (TP + TN) / pop.<br>= (20 + 1820) / 2030<br>≈ <b>90.64</b> %                                               | = 2 × precision × recall precision + recall ≈ <b>0.174</b>                                             |
|-------------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| Actual condition positive                                         | True positive (TP)<br>= 20<br>(2030 × 1.48% × 67%)                            | False negative (FN)<br>= 10<br>(2030 × 1.48% ×<br>(100% – 67%))        | True positive rate (TPR), recall,<br>sensitivity $= TP / (TP + FN)$ $= 20 / (20 + 10)$ $\approx 66.7\%$      | False negative rate (FNR), miss rate = FN / (TP + FN) = 10 / (20 + 10) ≈ 33.3%                         |
| Actual<br>condition<br>negative                                   | False positive (FP)<br>= 180<br>(2030 × (100% – 1.48%) ×<br>(100% – 91%))     | True negative (TN)<br>= 1820<br>(2030 × (100% – 1.48%)<br>× 91%)       | False positive rate (FPR), fall-out, probability of false alarm = FP / (FP + TN) = 180 / (180 + 1820) = 9.0% | Specificity, selectivity, true negative rate (TNR) = TN / (FP + TN) = 1820 / (180 + 1820) = 91%        |
| Prevalence<br>= (TP + FN) / pop.<br>= (20 + 10) / 2030<br>≈ 1.48% | Positive predictive value (PPV), precision = TP / (TP + FP) = 20 / (20 + 180) | False omission rate<br>(FOR)<br>= FN / (FN + TN)<br>= 10 / (10 + 1820) | Positive likelihood ratio (LR+) = TPR / FPR = (20 / 30) / (180 / 2000) ≈ 7.41                                | Negative likelihood ratio (LR-) = $\frac{FNR}{TNR}$ = (10 / 30) / (1820 / 2000) $\approx$ <b>0.366</b> |

Accuracy (ACC)

F<sub>1</sub> score

False discovery rate (FDR)
$$= FP / (TP + FP)$$

$$= 180 / (20 + 180)$$

$$= 90.0\%$$
Negative predictive value
$$(NPV)$$

$$= TN / (FN + TN)$$

$$= 1820 / (10 + 1820)$$

$$\approx 99.45\%$$
Diagnostic odds ratio (DOR)
$$= \frac{LR+}{LR-}$$

$$\approx 20.2$$

Source: WiKipedia.

#### LOGISTIC REGRESSION WITH MULTIPLE CLASSES

When dealing with multiple classes, logistic regression extends to what is known as **multinomial logistic regression** or **softmax regression**.

#### **Multinomial Logistic Regression:**

Suppose we have an input x and weights W, the probability of class k is given by:

$$P(y = k \mid \mathbf{x}) = rac{\exp(\mathbf{w}_k^ op \mathbf{x})}{\sum\limits_{j=1}^K \exp(\mathbf{w}_j^ op \mathbf{x})}$$

- Goal: Classify observations into one of K possible classes.
- Approach: Use the softmax function to predict the probabilities of each class.
- **Softmax Function**: The softmax function is an extension of the logistic function. It converts raw scores (logits) from the linear model into probabilities that sum to one.

#### **MULTICLASS CROSSENTROPY**

To train a multinomial logistic regression model, we use the **cross-entropy** loss function. Cross-entropy is a measure of the difference between two probability distributions for a given random variable or set of events.

#### 1. Cross-Entropy Loss:

- In the context of multi-class classification, the cross-entropy loss measures the performance of a classification model whose output is a probability value between 0 and 1.
- The loss increases as the predicted probability diverges from the actual label.

#### 2. Formula:

- Suppose we have N samples and K classes. For each sample i, let  $\mathbf{y}_i$  be the one-hot encoded true label, and  $\hat{\mathbf{y}}_i$  be the predicted probability distribution from the softmax function.
- The cross-entropy loss for a single sample i is:

$$L_i = -\sum_{k=1}^K y_{i,k} \log(\hat{y}_{i,k})$$

#### **MULTICLASS CROSSENTROPY**

#### 1. Loss function:

•

$$P(y = k \mid \mathbf{x_i}) = rac{\exp(\mathbf{w}_k^ op \mathbf{x_i})}{\sum\limits_{j=1}^K \exp(\mathbf{w}_j^ op \mathbf{x_i})}$$
  $L_i = -\sum_{k=1}^K y_{i,k} \log(\hat{y}_{i,k})$ 

where  $y_{i,k}$  is 1 if sample i belongs to class k, and 0 otherwise.

• The total cross-entropy loss over all samples is the average of the individual losses:

$$L = -rac{1}{N} \sum_{i=1}^{N} \sum_{k=1}^{K} y_{i,k} \log(\hat{y}_{i,k})$$

## 2. Interpretation:

- The cross-entropy loss function effectively penalizes the model more when the predicted probability of the true class is low.
- Minimizing this loss encourages the model to produce high probabilities for the correct classes.

## **DECISION BOUNDARIES**



## **DECISION BOUNDARIES - KNN**





For this example k=5.

#### **HOW ABOUT DECISION TREES?**



## **HOW ABOUT DECISION TREES?**



## **AND RANDOM FORESTS?**



## **HOW ABOUT ENGINEERING A DECISION BOUNDARY?**

Why do we care about such an idea?

## **Example:**



**Main Idea:** For classification, focus on designing the shape of the boundary between classes. This could sometimes be informed by visualizations of the data in lower dimensions.

Imagine a simple 2D case where we have two classes of points that are linearly separable:

- SVM looks for a **line (hyperplane in higher dimensions)** that best separates these two classes.
- The best hyperplane is the one that maximizes the margin—the
  distance between the hyperplane and the nearest data points from
  each class.
- These nearest points are called **support vectors**, and they are critical in defining the position of the hyperplane.



For this we would need at least one landmark point  $x_0$ . The following is also called a "Gaussian" kernel

$$(x,y) o \left(x,y,z := e^{-\gamma[(x-x_0)^2+(y-y_0)^2]}
ight)$$





For linearly separable data, SVM tries to solve the optimization problem:

$$\min_{w,b} rac{1}{2} ||w||^2 \quad ext{subject to} \quad y_i(w \cdot x_i + b) \geq 1$$

## where:

- w is the weight vector,
- b is the bias,
- $x_i$  are the data points,
- $y_i \in \{-1, +1\}$  are the class labels.



# **LINEAR SVM**



Support Vector Machines Seminal Paper (1992):

http://www.svms.org/training/BOGV92.pdf

Support Vectors is a method used in Machine Learning for both regression and classification problmes. The main idea is to map the input features into a higher dimensional space and then, in that higher dimensional space, address the problem to solve.

For regression, SVM consists of an algorithm that solves a quadratic optimization problem with constraints:

$$ext{minimize} rac{1}{2} |w|^2$$

$$y_i - wx_i - b \leq \epsilon, \ wx_i + b - y_i \leq \epsilon$$