

FIDO U2F Raw Message Formats

FIDO Alliance Review Draft 15 September 2016

This version:

https://fidoalliance.org/specs/fido-u2f-v1.1-rd-20160915/fido-u2f-raw-message-formats-v1.1-v1.1-rd-20160915.html

Previous version:

https://fidoalliance.org/specs/fido-u2f-raw-message-formats-v1.1-RD-20140209.html

Editors:

Dirk Balfanz, Google, Inc. Jakob Ehrensvard, Yubico, Inc. Juan Lang, Google, Inc.

Copyright © 2013-2016 FIDO Alliance All Rights Reserved.

Abstract

Status of This Document

This section describes the status of this document at the time of its publication. Other documents may supersede this document. A list of current FIDO Alliance publications and the latest revision of this technical report can be found in the <u>FIDO Alliance specifications index</u> at https://www.fidoalliance.org/specifications/.

This document was published by the <u>FIDO Alliance</u> as a Review Draft. This document is intended to become a FIDO Alliance Proposed Standard. If you wish to make comments regarding this document, please <u>Contact Us</u>. All comments are welcome.

This is a Review Draft Specification and is not intended to be a basis for any implementations as the Specification may change. Permission is hereby granted to use the Specification solely for the purpose of reviewing the Specification. No rights are granted to prepare derivative works of this Specification. Entities seeking permission to reproduce portions of this Specification for other uses must contact the FIDO Alliance to determine whether an appropriate license for such use is available.

Implementation of certain elements of this Specification may require licenses under third party intellectual property rights, including without limitation, patent rights. The FIDO Alliance, Inc. and its Members and any other contributors to the Specification are not, and shall not be held, responsible in any manner for identifying or failing to identify any or all such third party intellectual property rights.

THIS FIDO ALLIANCE SPECIFICATION IS PROVIDED "AS IS" AND WITHOUT ANY WARRANTY OF ANY KIND, INCLUDING, WITHOUT LIMITATION, ANY EXPRESS OR IMPLIED WARRANTY OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Table of Contents

- 1. Notation
 - 1.1 Key Words
- 2. Introduction
- 3. U2F message framing
 - 3.1 Request Message Framing
 - 3.1.1 Short Encoding
 - 3.1.2 Extended Length Encoding
 - 3.2 Response Message Framing
 - 3.3 Status Codes
- 4. Registration Messages
 - 4.1 Registration Request Message U2F_REGISTER
 - 4.2 Registration Response Message: Error: Test-of-User-Presence Required
 - 4.3 Registration Response Message: Success
- 5. Authentication Messages
 - 5.1 Authentication Request Message U2F_AUTHENTICATE
 - 5.2 Authentication Response Message: Error: Test-of-User-Presence Required
 - 5.3 Authentication Response Message: Error: Bad Key Handle
 - 5.4 Authentication Response Message: Success
- 6. Other Messages
 - 6.1 GetVersion Request and Response U2F_VERSION
 - 6.2 Extensions and vendor-specific messages
- 7. Client Data
 - 7.1 Dictionary ClientData Members
 - 7.2 Dictionary Jwkkey Members
- 8. Examples

- 8.1 Registration Example
- 8.2 Authentication Example
- 9. Implementation Considerations
- A. References
 - A.1 Normative references
 - A.2 Informative references

Notation

Type names, attribute names and element names are written ascode.

String literals are enclosed in "", e.g. "UAF-TLV".

In formulas we use "I" to denote byte wise concatenation operations.

DOM APIs are described using the ECMAScript ECMA-262] bindings for WebIDL [WebIDL].

U2F specific terminology used in this document is defined in [FIDOGlossary].

Symbolic constants such as **U2F_REGISTER** which are referred to when defining messages in this documents have their values defined in (See [U2FHeader] in bibliography].

1.1 Key Words

The key words "must", "must not", "required", "shall", "shall not", "should", "should not", "recommended", "may", and "optional" in this document are to be interpreted as described in [RFC2119].

2. Introduction

Note: Reading the 'FIDO U2F Overview' (see [U2FOverview] in bibliography) is recommended as a background for this document.

U2F Tokens provide cryptographic assertions that can be verified by relying parties. Typically, the relying party is a web server, and the cryptographic assertions are used as second-factors (in addition to passwords) during user authentication.

U2F Tokens are typically small special-purpose devices that aren't directly connected to the Internet (and hence, able to talk directly to the relying party). Therefore, they rely on a FIDO Client to relay messages between the token and the relying party. Typically, the FIDO Client is a web browser.

The U2F protocol supports two operations, registration and authentication. The registration operation introduces the relying party to a freshly-minted keypair that is under control of the U2F token. The authentication operation proves possession of a previously-registered keypair to the relying party. Both the registration and authentication operation consist of three phases:

- 1. Setup: In this phase, the FIDO Client contacts the relying party and obtains a challenge. Using the challenge (and possibly other data obtained from the relying party and/or prepared by the FIDO Client itself), the FIDO Client prepares a request message for the U2F Token.
- 2. Processing: In this phase, the FIDO Client sends the request message to the token, and the token performs some cryptographic operations on the message, creating a response message. This response message is sent to the FIDO Client.
- 3. Verification: In this phase, the FIDO Client transmits the token's response message, along with other data necessary for the relying party to verify the token response, to the relying party. The relying party then processes the token response and verifies its correctness. A correct registration response will cause the relying party to register a new public key for a user, while a correct authentication response will cause the relying party to accept that the client is in possession of the corresponding private key.

Fig. 1 Three phases of Registration and Authentication

Above is a picture illustrating the three phases.

At the heart of the U2F protocol are the request messages sent to the U2F token, and the response messages received from the U2F token.1

Note that the request message is usually obtained by the FIDO client from the relying party during the setup phase, and therefore reaches the FIDO client as part of an HTTP response. Similarly, the response message that is processed by the relying party during the verification phase is sent by the FIDO Client to the relying party in an HTTP request. Beware the possibility of confusion when talking about requests and responses!

Request messages are created by the relying party and consumed by the U2F token. Response messages are created by the U2F token and consumed by the relying party.

As the messages flow from relying party (through the FIDO Client) to the U2F token and back, they undergo various transformations and encodings. Some of these transformations and encodings are up to the individual implementations and are not standardized as part of FIDO U2F. For example, FIDO U2F does not prescribe how request and response messages are encoded between the FIDO Client and the relying party.

However, to ensure that U2F tokens from different vendors can work across U2F-compliant web sites certain encodings are standardized:

- 1. FIDO U2F standardizes a Javascript API that prescribes how a web application can pass request messages into the FIDO Client (in the case where the web browser is the FIDO Client), and what the encoding of the response messages is.
- 2. FIDO U2F standardizes how request and response messages are to be encoded when sent over from the client over the USB transport to U2F tokens. In addition to specifying the encoding, the transport level specification also specifies the format for control messages to the

tokens and the format for the error responses from the tokens. We anticipate that FIDO U2F will standardize how request and response messages are encoded over other non-USB transports such as NFC or Bluetooth.

In this document we describe the "raw", or canonical, format of the messages, i.e., without regard to the various encodings that are prescribed in U2F standards or that implementors might choose when sending messages around. The raw format of the messages is important to know for two reasons:

- The encoding of messages and parameters described elsewhere may refer to the raw messages described in this document. For example, a
 Javascript API might refer to a parameter of a function as the Base64-encoding of a raw registration response message. It is this document
 that describes what the raw registration response message looks like.
- 2. Cryptographic signatures are calculated over raw data. For example, the standard might prescribe that a certain cryptographic signature is taken over bytes 5 through 60 of a certain raw message. The implementor therefore has to know how what the raw message looks like.

3. U2F message framing

The U2F protocol is based on a request-response mechanism, where a requester sends a request message to a U2F device, which always results in a response message being sent back from the U2F device to the requester.

The request message has to be "framed" to send to the lower layer. Taking the signature request as an example, the "framing" is a way for the FIDO client to tell the lower transport layer that it is sending a signature request and then send the raw message contents. The framing also specifies how the transport will carry back the response raw message and any meta-information such as an error code if the command failed.

Framing is defined based on the ISO7816-4:2005 APDU format.

3.1 Request Message Framing

The raw request message is framed as a command APDU. At a high level, APDUs are framed in the following way:

CLA INS P1 P2 [L_c <request-data>] [L_e]

Where:

- CLA: Reserved to be used by the underlying transport protocol (if applicable). The host application shall set this byte to zero.
- INS: U2F command code, defined in the following sections.
- P1, P2: Parameter 1 and 2, defined by each command.
- Lc: The length of the request-data. If there are no request data bytes, Lc is omitted.
- Le: The maximum expected length of the response data. If no response data are expected, Le may be omitted.

The precise format of the APDU depends on the encoding choice. There are two different encodings allowed for an APDU: **short** and **extended length**. The differences are in the way the length of the request data, L_c , and the maximum length of the expected response, L_c , are encoded.

The choice of encoding varies depending on the needs of the individual transport. Refer to the transport-specific encoding documents for which encodings are allowed with each transport.

3.1.1 Short Encoding

In **short encoding**, the maximum length of request-data is 255 bytes. L_c is encoded in the following way:

```
Let N_c = 1 -request-data> I. If N_c is 0, L_c is omitted. Otherwise, L_c is encoded as a single byte containing the value of N_c.
```

If the instruction is not expected to yield any response bytes, Le may be omitted. Otherwise, in **short encoding**, Le is encoded in the following way:

Let N_e = the maximum length of the response data. In short encoding, the maximum value of N_e is 256 bytes.

For values of N_e between 1 and 255, L_c contains the value of N_c . When N_e = 256, L_c contains the value 0.

3.1.2 Extended Length Encoding

In extended length encoding, the maximum length of request-data is 65 535 bytes. L₆ is encoded in the following way:

Let $N_c = I < request-data > I$. If N_c is 0, L_c is omitted. Otherwise, L_c is encoded as:

0 MSB(N_c) LSB(N_c)

Where MSB(N_c) is the most significant byte of N_c, and LSB(N_c) is the least significant byte of N_c.

In other words, the request-data are preceded by three length bytes, a byte with value 0 followed by the length of request-data, in big-endian order.

If the instruction is not expected to yield any response bytes, L_e may be omitted. Otherwise, in **extended length encoding**, L_e is encoded in the following way:

Let N_e = the maximum length of the response data. In **extended length encoding**, the maximum value of N_e is 65 536 bytes.

For values of N_e between 1 and 65 535, inclusive, let $L_{e1} = MSB(N_e)$, and $L_{e2} = LSB(N_e)$, where $MSB(N_e)$ is the most significant byte of N_e , and $LSB(N_e)$ is the least significant byte of N_e .

When $N_e = 65 536$, let $L_{e1} = 0$ and $L_{e2} = 0$.

When L_c is present, i.e. if $N_c > 0$, L_e is encoded as:

Le1 Le2

When $\mathbf{L_c}$ is absent, i.e. if $\mathbf{N_c} = 0$, $\mathbf{L_e}$ is encoded as:

0 L_{e1} L_{e2}

In other words, L_e has a single-byte prefix of 0 when L_c is absent.

3.2 Response Message Framing

The raw response data is framed as a response APDU:

<response-data> SW₁ SW₂

Where SW_1 and SW_2 are the status word bytes 1 and 2, respectively, forming a 16-bit status word, defined below. SW_1 is the most-significant byte, and SW_2 is the least-significant byte.

3.3 Status Codes

The following ISO7816-4 defined status words have a special meaning in U2F:

- SW_NO_ERROR: The command completed successfully without error.
- SW_CONDITIONS_NOT_SATISFIED: The request was rejected due to test-of-user-presence being required.
- SW_WRONG_DATA: The request was rejected due to an invalid key handle.

Each implementation may define any other vendor-specific status codes, providing additional information about an error condition. Only the error codes listed above will be handled by U2F FIDO Client, where others will be seen as general errors and logging of these is optional.

4. Registration Messages

4.1 Registration Request Message - U2F_REGISTER

Fig. 2 Registration Request Message

This message is used to initiate a U2F token registration. The FIDO Client first contacts the relying party to obtain a challenge, and then constructs the registration request message. The registration request message has two parts:

- The challenge parameter [32 bytes]. The challenge parameter is the SHA-256 hash of the Client Data, a stringified JSON data structure
 that the FIDO Client prepares. Among other things, the Client Data contains the challenge from the relying party (hence the name of the
 parameter). See below for a detailed explanation of Client Data.
- The application parameter [32 bytes]. The application parameter is the SHA-256 hash of the UTF-8 encoding of the application identity of the application requesting the registration. (See [FIDOApplDAndFacets] in bibliography for details.)

4.2 Registration Response Message: Error: Test-of-User-Presence Required

This is an error message that is output by the U2F token if no test-of-user-presence could be obtained by the U2F token. The error message details are specified in the framing for the underlying transport (see Section "U2F Message Framing" above).

4.3 Registration Response Message: Success

Fig. 3 Registration Response Message

This message is output by the U2F token once it created a new keypair in response to the registration request message. Note that U2F tokens should verify user presence before returning a registration response success message (otherwise they should return a test-of-user-presence-required message - see above). Its raw representation is the concatenation of the following:

- A reserved byte [1 byte], which for legacy reasons has the value 0x05.
- A user public key [65 bytes]. This is the (uncompressed) x,y-representation of a curve point on the P-256 NIST elliptic curve.
- A key handle length byte [1 byte], which specifies the length of the key handle (see below). The value is unsigned (range 0-255).
- A **key handle** [length specified in previous field]. This a handle that allows the U2F token to identify the generated key pair. U2F tokens may wrap the generated private key and the application id it was generated for, and output that as the key handle.
- An attestation certificate [variable length]. This is a certificate in X.509 DER format. Parsing of the X.509 certificate unambiguously establishes its ending. The remaining bytes in the message are
- a signature. This is a ECDSA signature (on P-256) over the following byte string:
 - A byte reserved for future use [1 byte] with the value 0x00. This will evolve into a byte that will allow RPs to track known-good applet version of U2F tokens from specific vendors.
 - The application parameter [32 bytes] from the registration request message.
 - The challenge parameter [32 bytes] from the registration request message.
 - The above key handle [variable length]. (Note that the key handle length is not included in the signature base string.
 This doesn't cause confusion in the signature base string, since all other parameters in the signature base string are fixed-length.)
 - The above user public key [65 bytes].

The signature is encoded in ANSI X9.62 format (see [ECDSA-ANSI] in bibliography).

The signature is to be verified by the relying party using the public key certified in the attestation certificate. The relying party should also verify that the attestation certificate was issued by a trusted certification authority. The exact process of setting up trusted certification authorities is to be defined by the FIDO Alliance and is outside the scope of this document.

Once the relying party verifies the signature, it should store the public key and key handle so that they can be used in future authentication operations.

Authentication Messages

5.1 Authentication Request Message - U2F_AUTHENTICATE

Fig. 4 Authentication Request Message

This message is used to initiate a U2F token authentication. The FIDO Client first contacts the relying party to obtain a challenge, and then constructs the authentication request message. The authentication request message has five parts:

- Control byte (P1). The control byte is determined by the FIDO Client the relying party cannot specify its value. The FIDO Client will set the control byte to one of the following values:
 - 0x07 ("check-only"): if the control byte is set to 0x07 by the FIDO Client, the U2F token is supposed to simply check whether the
 provided key handle was originally created by this token, and whether it was created for the provided application parameter. If so, the
 U2F token must respond with an authentication response
 message:error:test-of-user-presence-required (note that despite the name this signals a success condition). If the key handle was not
 created by this U2F token, or if it was created for a different application parameter, the token must respond with an authentication
 response message:error:bad-key-handle.
 - 0x03 ("enforce-user-presence-and-sign"): If the FIDO client sets the control byte to 0x03, then the U2F token is supposed to
 perform a real signature and respond with either an authentication response message:success or an appropriate error response (see
 below). The signature should only be provided if user presence could be validated.

Other control byte values are reserved for future use.

During registration, the FIDO Client may send authentication request messages to the U2F token to figure out whether the U2F token has already been registered. In this case, the FIDO client will use the check-only value for the control byte. In all other cases (i.e., during authentication, the FIDO Client must use the enforce-user-presence-and-sign value).

- The **challenge parameter** [32 bytes]. The challenge parameter is the SHA-256 hash of the Client Data, a stringified JSON data structure that the FIDO Client prepares. Among other things, the Client Data contains the challenge from the relying party (hence the name of the parameter). See below for a detailed explanation of Client Data.
- The application parameter [32 bytes]. The application parameter is the SHA-256 hash of the UTF-8 encoding of the application identity of the application requesting the authentication as provided by the relying party.
- A key handle length byte [1 byte], which specifies the length of the key handle (see below). The value is unsigned (range 0-255).
- A **key handle** [length specified in previous field]. The key handle. This is provided by the relying party, and was obtained by the relying party during registration.

5.2 Authentication Response Message: Error: Test-of-User-Presence Required

This is an error message that is output by the U2F token if no test-of-user-presence could be obtained by the U2F token. The error message details are specified in the framing for the underlying transport (see Section "U2F Message Framing" above).

5.3 Authentication Response Message: Error: Bad Key Handle

This is an error message that is output by the U2F token if the provided key handle was not originally created by this token, or if the provided key handle was created by this token, but for a different application parameter. The error message details are specified in the framing for the underlying transport (see Section "U2F Message Framing" above).

5.4 Authentication Response Message: Success

Fig. 5 Authentication Response Message: Success

This message is output by the U2F token after processing/signing the authentication request message described above. Its raw representation is the concatenation of the following:

• A user presence byte [1 byte]. Bit 0 is set to 1, which means that user presence was verified. (This version of the protocol doesn't specify a way to request authentication responses without requiring user presence.) A different value of Bit 0, as well as Bits 1 through 7, are reserved for future use. The values of Bit 1 through 7 should be 0:

Fig. 6 User Presence Byte Layout

- A **counter** [4 bytes]. This is the big-endian representation of a counter value that the U2F token increments every time it performs an authentication operation. (See Implementation Considerations [U2FImplCons] for more detail.)
- a signature. This is a ECDSA signature (on P-256) over the following byte string:
 - The application parameter [32 bytes] from the authentication request message.
 - · The above user presence byte [1 byte].
 - The above counter [4 bytes].
 - The challenge parameter [32 bytes] from the authentication request message.

The signature is encoded in ANSI X9.62 format (see [ECDSA-ANSI] in bibliography).

The signature is to be verified by the relying party using the public key obtained during registration.

Other Messages

6.1 GetVersion Request and Response - U2F_VERSION

The FIDO Client can query the U2F token about the U2F protocol version that it implements. The protocol version described in this document is

The response message's raw representation is the ASCII representation of the string 'U2F V2' (without quotes, and without any NUL terminator).

The command takes no flags, i.e. P1 and P2 are 0, and takes no data as input. As a result, the complete layout of this command in **short** encoding is, in hexadecimal form:

CLA INS P1 P2 Le

00 03 00 00 00

The layout of this command in extended length encoding is, in hexadecimal form:

CLA INS P1 P2 Le

00 03 00 00 00 00 00

6.2 Extensions and vendor-specific messages

Command codes in the range between U2F_VENDOR_FIRST and U2F_VENDOR_LAST may be used for vendor-specific implementations. For example, the vendor may choose to put in some testing commands. Note that the FIDO client will never generate these commands. All other command codes are RFU and may not be used.

7. Client Data

Term	Definition
websafe- base64 encoding	This is the "Base 64 Encoding with URL and Filename Safe Alphabet" from Section 5 in [RFC4648] without padding.
stringified javascript object	This is the JSON object (i.e., a string starting with "{" and ending with "}") whose keys are the property names of the javascript object, and whose values are the corresponding property values. Only "data objects" can be stringified, i.e., only objects whose property names and values are supported in JSON .

The registration and authentication request messages contain a challenge parameter, which is defined as the SHA-256 hash of a (UTF8 representation of a) stringified JSON data structure that the FIDO client has to prepare. The FIDO Client must send the Client Data (rather than its hash - the challenge parameter) to the relying party during the verification phase, where the relying party can re-generate the challenge parameter (by hashing the client data), which is necessary in order to verify the signature both on the registration response message and authentication response message.

In the case where the FIDO Client is a web browser, the client data is defined as follows (in WebIDL):

```
WebIDL
  dictionary ClientData {
     DOMString
     DOMString
                            challenge;
     DOMString
      (DOMString or JwkKey) cid pubkey;
 };
```

7.1 Dictionary ClientData Members

typ of type DOMString the constant 'navigator.id.getAssertion' for authentication, and 'navigator.id.finishEnrollment' for registration

challenge of type DOMString

the websafe-base64-encoded challenge provided by the relying party

origin of type DOMString

the facet id of the caller, i.e., the web origin of the relying party.

(Note: this might be more accurately called 'facet_id', but for compatibility with existing implementations within Chrome we keep the legacy name.

cid_pubkey of type (DOMString or JwkKey)

The Channel ID public key used by this browser to communicate with the above origin. This parameter is optional, and missing if the browser doesn't support Channel ID. It is present and set to the constant 'unused' if the browser supports Channel ID, but is not using Channel ID to talk to the above origin (presumably because the origin server didn't signal support for the Channel ID TLS extension).

Otherwise (i.e., both browser and origin server at the above origin support Channel ID), it is present and of type JwkKey.

The JwkKey is a dictionary representing the public key used by a browser for the Channel ID TLS extension. The current version of the Channel ID draft prescribes the algorithm ([ECDSA-ANSI] in bibliography) and curve used, so the dictionary will have the following parameters

```
dictionary JwkKey {
     DOMString kty;
DOMString crv;
     DOMString x;
     DOMString y;
};
```

7.2 Dictionary JwkKey Members

```
kty of type DOMString
      signature algorithm used for Channel ID, i.e., the constant 'EC'
crv of type DOMString
Elliptic curve on which this public key is defined, i.e., the constant 'P-256'
x of type DOMString
      websafe-base64-encoding of the x coordinate of the public key (big-endian, 32-byte value)
y of type DOMString
      websafe-base64-encoding of the y coordinate of the public key (big-endian, 32-byte value)
```

8. Examples

8.1 Registration Example

Assume we have a U2F token with the following private attestation key:

f3fccc0d00d8031954f90864d43c247f4bf5f0665c6b50cc17749a27d1cf7664

the corresponding public key:

and the following attestation cert:

```
Subject: CN=PilotGnubby-0.4.1-47901280001155957352 Signature Algorithm: SHA256withECDSA, OID = 1.2.840.10045.4.3.2
Key: EC Public Key
8d617e65c9508e64bcc5673ac82a6799da3c1446682c258c463fffdf58dfd2fa Y: 3e6c378b53d795c4a4dffb4199edd7862f23abaf0203b4b8911ba0569994e101
Validity: [From: Tue Aug 14 11:29:32 PDT 2012, To: Wed Aug 14 11:29:32 PDT 2013]
Issuer: CN=Gnubby Pilot
SerialNumber: [ 47901280 00115595 7352] ]
Algorithm: [SHA256withECDSA]
```

The attestation cert in hex form:

Now let's assume that we use the following client data

```
"typ":"navigator.id.finishEnrollment","challenge":"vqrS6WXDelJUs5_c3i4-LkKIHRr-3XVb3azuA5TifHo","cid_pubkey":{"kty":"EC","crv":"P-
     x":"HzQwlfXX7Q4S5MtCCnZUNBw3RMzPO9t0yWjBqRl4tJ8","y":"XVguGFLIZx1fXg3wNqfdbn75hi4-_7"
BxhMljw42Ht4"}, "origin": "http://example.com"}
```

4142d21c00d94ffb9d504ada8f99b721f4b191ae4e37ca0140f696b6983cfacb

and application id:

http://example.com

with hash:

f0e6a6a97042a4f1f1c87f5f7d44315b2d852c2df5c7991cc66241bf7072d1c4

to construct a registration request message.

Let's say the U2F token generates the following key pair:

Private key:

9a9684b127c5e3a706d618c86401c7cf6fd827fd0bc18d24b0eb842e36d16df1

Public key:

Associated key handle:

2a552dfdb7477ed65fd84133f86196010b2215b57da75d315b7b9e8fe2e3925a6019551bab61d16591659cbaf00b4950f7abfe6660e2e006f76868b772d70c25

The signature base string for the registration response message is therefore:

A possible signature over the base string with the above private attestation key is:

304502201471899 bcc 3987 e62 e8202 c9b39 c33 c19033 f7340352 dba80 f cab 017 db9230 e402210082677 d673 d891933 ade6f617 e5db de2e247 e70423 fd5 ad7804 a6d3 d3992 dba80 fcab 017 db9230 e402210082677 d673 d891933 ade6f617 e5db de2e247 e70423 fd5 ad7804 a6d3 d3992 dba80 fcab 017 db9230 e402210082677 d673 d891933 ade6f617 e5db de2e247 e70423 fd5 ad7804 a6d3 d3992 dba80 fcab 017 db9230 e402210082677 d673 d891933 ade6f617 e5db de2e247 e70423 fd5 ad7804 a6d3 d3992 dba80 fcab 017 db9230 e402210082677 d673 d891933 ade6f617 e5db de2e247 e70423 fd5 ad7804 a6d3 d3992 dba80 fcab 017 db9230 e402210082677 d673 d891933 ade6f617 e5db de2e247 e70423 fd5 ad7804 a6d3 d3992 db820 e70420 fd5 ad7804 a6d3 d67804 a6

Which means the whole registration response message is:

from which (together with challenge and application parameters) the signature base string and signature can be extracted, and verified with the public key from the attestation cert

8.2 Authentication Example

Let's assume we have a U2F device with private key:

and corresponding public key:

04d368f1b665bade3c33a20f1e429c7750d5033660c019119d29aa4ba7abc04aa7c80a46bbe11ca8cb5674d74f31f8a903f6bad105fb6ab74aefef4db8b0025e1ca8cb5674d74f36f8ab74aefef4db8b0025e1ca8cb5674d74f36f8ab74aefef4db8b0025e1ca8cb5674d74f36f8ab74aefef4db8b0025e1ca8cb5674d74f36f8ab74aefef4db8b0025e1ca8cb5674d74f36f8ab74aefef4db8b0025e1ca8cb5674d74f8ab74aefef4db8b0025e1ca8cb5674d74f8ab74aefef4db8b0025e1ca8cb5674d74f8ab74aefef4db8b0025e1ca8cb5674d74f8ab74aefef4db8b0025e1ca8cb5674d74f8ab74aefef4db8b0025e1ca8cb5674d74f8ab74aefef4db8b0025e1ca8cb5674d74f8ab74aefef4db8b0025e1ca8cb6674d74f8ab74aefef4db8b0025e1ca8cb6674d74f8ab74aefef4db8b0025e1ca8cb6674d674d674db8b0025e1ca8cb6674d674db8b0025e1ca8cb6674db8b0025e1ca8cb6674db8b0025e1ca8cb6674db8b0025e1ca8cb6674db8b0025e1ca8cb6674db8b0025e1ca8cb6674db8b0025e1ca8cb6674db8

Example application id:

https://gstatic.com/securitykey/a/example.com

Example client data:

{"typ":"navigator.id.getAssertion","challenge":"opsXqUifDriAAmWclinfbS0e-USY0CgyJHe_Otd7z8o","cid_pubkey":{"kty":"EC 256","x":"HzQwlfXX7Q4S5MtCCnZUNBw3RMzPO9tOyWjBqR14tJ8","y":"XVguGFLIZx1fXg3wNqfdbn75hi4-_7-BxhMljw42Ht4"}, "origin": "http://example.com"]

Hash of the above client data (challenge parameter):

ccd6ee2e47baef244d49a222db496bad0ef5b6f93aa7cc4d30c4821b3b9dbc57

Hash of the above application id (application parameter):

4b0be934baebb5d12d26011b69227fa5e86df94e7d94aa2949a89f2d493992ca

Assuming counter = 1 and user_presence = 1, signature base string is:

A possible signature with above private key is:

Authentication Response Message:

The above signature and signature base string can be reconstructed from the authentication response message and the challenge and application parameters, and can be verified with the above public key.

9. Implementation Considerations

Earlier revisions of the FIDO U2F specifications defined the U2F_VERSION command with the following byte layout:

CL IN P1 P2 L0 L1 L2 Le

00 03 00 00 00 00 00 00 00

This is not compatible with ISO 7816-4. (Compatible encodings are defined earlier in this document.)

For maximum compatibility with U2F Authenticators that followed the earlier specification for the U2F VERSION command. U2F Clients may choose to support this older encoding over the HID protocol, the only protocol defined which used this encoding.

A. References

A.1 Normative references

[ECDSA-ANSI]

Public Key Cryptography for the Financial Services Industry: The Elliptic Curve Digital Signature Algorithm (ECDSA), AN American National Standards Institute, November 2005, URL: http://webstore.ansi.org/RecordDetail.aspx?sku=ANSI+X9 [ECMA-262]

ript Language Specification. URL: https://tc39.github.io/ecma262/

[FIDOAppIDAndFacets]

D. Balfanz, B. Hill, R. Lindemann, D. Baghdasaryan, FIDO AppID and Facets v1.0 FIDO Alliance Proposed Standard. URLs:

HTML: fido-appid-and-facets-v1.1-rd-20160915.html PDF: fido-appid-and-facets-v1.1-rd-20160915.pdf [FIDOGlossary]

R. Lindemann, D. Baghdasaryan, B. Hill, J. Hodges, *FIDO Technical Glossary*. FIDO Alliance Proposed Standard. URLs: HTML: fido-glossary-v1.1-rd-20160915.html
PDF: fido-glossary-v1.1-rd-20160915.pdf

[RFC2119]

S. Bradner. Key words for use in RFCs to Indicate Requirement Levels March 1997. Best Current Practice. URL:

https://tools.ietf.org/html/rfc2119

[RFC4648]

S. Josefsson, The Base16, Base32, and Base64 Data Encodings (RFC 4648), IETF, October 2006, URL: http://www.ietf.org/rfc/rfc4648.txt

J. Ehrensvard, FIDO U2F HID Header Files v1.0 FIDO Alliance Review Draft (Work in progress.) URL: https://github.com/fido-alliance/u2f-specs/blob/master/inc/u2f.h

[WebIDL]

Cameron McCormack; Boris Zbarsky. WebIDL Level 1. 15 September 2016. W3C Proposed Recommendation. URL: https://www.w3.org/TR/WebIDL-1/

A.2 Informative references

[U2FImplCons]

D. Balfanz, FIDO U2F Implementation Considerations v1.0 FIDO Alliance Review Draft (Work in progress.) URL: //fido-u2f-implementation-considerations-v1.1-rd-20160915.pdf

[U2FOverview]
S. Srinivas, D. Balfanz, E. Tiffany, FIDO U2F Overview v1.0 FIDO Alliance Review Draft (Work in progress.) URL: //fido-u2f-overview-v1.1-u2f-overview-v

rd-20160915.pdf