안전한

ESTIVAL

을 제시하다

발표자 : 라허운

를 ::: 2023 알파코 페스티벌 공지사항

반입금지물품 안내

- ▶ 휴대폰을 재외한 전은 촬영장비와 삼작대 및 공연 관광에 방해가 되는 모든 물론은 반입이 제한됨 수 있습니다. 쾌적한 공연관람을 위한 조차이니 넓은 양해 부탁드립니다.
- ▶ 입장 시 제한된 반입금지 물품은 직접 표기하시거나 물품보관소에서 유료로 보관하신 후 입장하시야 합니다.
- ▶ 월쯤보관소 이용요금 : 최초보관 3,000원 / 제보관 1,000

Andrew Strategic Co.			- Trans	
M. M. SAU B WAS SEE D SE D	SOOM B E 2551: 23 E R 28 CENTE, NIEGO PAR	製剤用力型 製剤用力型 製剤原 気が収益 配力 型形 務 4	関係 最小、光数 食べ (ほんだのこ 年秋)、 (現金を4、実功 送計	正司至7 % 無關 医动物性 ((4))人称点
B7(R)H1. 44),	HE. 299	in stemi	(6) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	MORES.
DHE, WEISE, 20 7 21	(第300년 第9世 新報行	TOPA NAME.	自己() 製力
公外学記 報刊、 型は、対象的 報 明数 対象 重量	(참여식 문화)	응흥 모기되지 등을 위한 모든 가스 홍찬식 스트레이	천문적인 활명 및 녹음 장비 (변조 함의 10년의 이상)	

위 내용 숙지 후 페스티벌 참석 부탁드립니다!

댓글(2개)

멍뭉이 귀여워워

멍뭉이는 못데려가네

00

- 01. 주제선정 이유
- 02. 데이터 분석 및 가공
- 03. 모델 및 학습 결과
- 04. 한계점

한국 페스티벌 및 콘서트 추세?

포스트 코로나 시대의 거리두기와 마스크 해제로 인해 오프라인 페스티벌및 콘서트 등이 많이 개최됨

현재 인터파크에서 299개의 콘서트 예매가

이루어지고 있음

'자료 = 인터파크 티켓 (2023.04.18 기준)

우리는 왜 축제를 타겟으로 잡았는가?

- 페스티벌과 같이 많은 사람이 모이는 장소에는 위험이 될 물건을 갖고 들어가지 못하게 함
- 금지물품 검사를 위해 **직원들이 하나씩 가방검사**를 진행
- 시간과 인력이 낭비될 가능성 높음
- 또한 눈속임을 통한 위해 물품 반입을 방지 할 수 없음
 - 실제 페스티벌엣 위해물품 반입으로 인한 본드주스 몰카안
 경 등의 피해사례가 발생한 적 있음

그래서 어떤 모델이라고?

- 객체인식 기술을 이용해 공항에서 x-ray 물품검사를 하는 것처럼
- 페스티벌에서도 물품검사 과정을
 자동화할 수 있는 모델을 만들고자 함
- 제작한 모델은 위해 물품을 자동으로 감지 할 수 있어 보다
 효율적이고 정확한 검사가 가능.
- 이를 통해 검사 대기 시간을 단축하고 사람들이 보다
 안전한 공간에서 축제를 즐길 수 있도록 도움을 주고자 함.

그래서 어떤 모델이라고?

- 객체인식 기술을 이용해 공항에서 x-ray 물품검사를 하는 것처럼
- 페스티벌에서도 물품검사 과정을
 자동화할 수 있는 모델을 만들고자 함
- 제작한 모델은 위해 물품을 자동으로 감지 할 수 있어 보다
 효율적이고 정확한 검사가 가능.
- 이를 통해 검사 대기 시간을 단축하고 사람들이 보다
 안전한 공간에서 축제를 즐길 수 있도록 도움을 주고자 함.

X-Ray 이미지 위해물품 탐지모델

1) 데이터 선정

AI 허브의 위해물품 엑스레이 이미지 사용 공항 검색대에서 물품검사를 자동화할 수 있도록 만들어진 데이터셋

Astrophysics

Rapiscan

Smith

- x-ray 데이터는 Astrophysics, Rapiscan, Smith로 구성 (x-ray 회사).
 - Astrophysics는 이미지당 가방 1개
 - Rapiscan은 이미지당 가방 3개
 - Smith는 이미지당 가방 2개
 - 왼쪽 가방은 객체가 있고 오른쪽가방은 빈가방
 - 즉, 이미지당 가방 1개만 인식 가능
 - Astrophysics랑 차이 없음
 - Smith 사용 X

단일기본

- 가위 한개
- 다른 물품 없음

단일비품목

- 가위 한개
- 다른 물품 있음 (도끼, 양말 등)

복합품목

- 가위 2개 이상으로 구성
- 다른 물품 없음

복합비품목

- 가위 2개 이상으로 구성
- 다른 물품 있음 (도끼, 양말 등)

3) 데이터 분포

구분	품목수	품목명
위해물품	27	에어로졸, 알코올, 송곳, 토 끼, 야구배트. 건전지, 탄약, 끌, 전자담배(액상, 권련), 폭죽, 총, 총기부품, 망치, 수갑, 칼, 라이터 액체, 성 냥, 금속파이프, 손톱깍기, 플라이어, 휴대용가스, 신 나등
저장매체	7	휴대폰, USB, 노트북, 태 블릿 PC, SSD, 하드디스 크, 외장하드
합계	34	

- 위해물품 27개, 저장매체 7개로 총 34개의 class를 가짐
- 페스티벌을 타겟으로 잡기 때문에 실제로 페스티벌에 위해물품으로 분류될 것 같은 물품 총 12개를 선택

3) 데이터 분포

대상물품						
품명	구축데이터	단일 기본 (15%)	단일비품목 (15%)	복합품목 (40%)	복합비품목 (30%)	
에어로졸	9,441	980	1,050	2,788	2,100	
액체(100ml)	15,568	1,875	1,875	5,025	3,750	
송곳	15,263	2,102	2,103	5,580	4,202	
도끼	17,291	2,400	2,401	6,420	4,801	
폭죽	21,756	3,001	3,000	8,025	6,001	
망치	23,124	2,400	2,400	6,418	4,800	
칼	39,016	3,674	3,675	9,765	7,350	
라이터	25,401	3,002	3,001	8,026	6,001	
휴대용 가스	7,680	1,050	1,050	2,790	2,100	
톱	26,941	3,675	3,676	9,765	7,350	
가위	38,225	3,676	3,677	9,761	7,350	
드라이버	16,926	2,250	2,040	6,000	4,500	

- 12가지로 정한 카테고리별 데이터 수를 나타냄.
- 단일기본 및 단일 비품목 (15%),
- 복합품목(40%), 복합비품목(30%)의 비율을 가짐

3) 데이터 분포

데이터 분포가 균일하지 않음

Ţ

UnderSampling 진행

4) UnderSampling

4) UnderSampling

undersampling결과

5) 데이터 검수

bbox 유효성 확인

- 절반 이상의 데이터의 bbox가
 x축으로 대칭되어 뒤집힘
- 위해물품으로 분류하지 않은 카테고리 있음

- x축으로 대칭된 이미지 No 클래스 추가
 - 파이썬 코드로 x축으로 뒤집고 No class 제거
 - 필요없는 카테고리도 제거

1) YOLO v4

모델	YOLO v4			
Train data	Astrophysics	Rapiscan		Astrophysics+Rapiscan
Image Size	640 x 640			
Batch size	16			
Augmentaion(증강)	X		Flip & Rotation	
Zero centering	X		0	

- 모델에 따른 성능 변화보다는
- 데이터 및 파라미터에 따른 성능 변화를 확인하고 싶었음
 - 팀원들이 공통적으로 사용할 수 있는
 - YOLO V4 모델 고정
- 데이터 셋 구성 제조사별로 3가지로 나눔
- Augmentation 적용(Flip & Rotation), 미적용
- Zero centering 적용, 미적용
- 이미지 사이즈는 640 x 640을 기준
- batch size는 16 고정

2-1) 결과

Astrophysics

zero centering: X

증강:0

mAP:?

Rapiscan

zero centering: X

증강 : X

mAP: 94%

Astrophysics + Rapiscan

zero centering: X

증강 : X

mAP: 94%

2-2) 결과_Zero centering

- YOLO v4에서 zero-centering을 적용하려 했으나
- yolo v4는 입력 이미지의 픽셀값을 0에서1범위로 정규화하는 과정이 포함되어 있음
 - zero centering 필요 없음

2-3) Inference (Astrophysics 데이터)

Ground-truth

• Scissors : 가위

• Screwdriver : 스크류드라이버

• Hammer : 망치

Astrophysics

Rapiscan

Astrophysics + Rapiscan

2-3) Inference (Rapiscan 데이터)

Ground-truth

• Axe : 도끼

• Aerosol : 에어로졸

• Saw : 톱

Astrophysics

Rapiscan

Astrophysics + Rapiscan

2-3) Inference 문제점

• Spanner : 스패너

• Saw : 톱

ex) 실제 Saw인데 Spanner라고 라벨링 된 데이터로 인해 Inference는 부정확, mAP Score가 복수정답 때문에 높게 나온 것으로 예상

한계점

부정확한 데이터셋

- 대부분의 이미지의 bbox가 물체와 매핑 X
 - 검수하는데 많은 시간이 소요됨
- Roboflow 이미지 정렬기능 부재
 - bbox 검수 후 페이지 전환시 무작위 배치되어
 - ㅇ 검수하지 못한 데이터가 생김
 - 재검수로 인한 시간 소요
- 또한 라벨 오타가 있었음
 - Portable Gas → P rtable Gas
 <name>PrtableGas
- 라벨링이 잘못 되어 있음
 - 실제 톱인데 스패너
 - inference시 결과 부정

모델을 많이 돌리지 못한 점

- 데이터 검수 작업에 많은 시간 소모함
- 원래 계획했던 파라미터 다양하게 조절해 모델을 돌 리지 못함
- 하드웨어적 문제로 인해 세션이 다운되어
 score을 뽑지 못한 모델이 생김
 지표를 이용해서 모델 간 성능 비교 어려움
- 데이터에 대한 모델의 일반화 부족
 - x-ray 데이터 셋이 바뀌면 카테고리 예측 어려움

< 알파코 미니프로젝트 4조 >

Thank You

팀원 : 라허운, 박지원. 송기훈. 신효섭

