# PS4

# 1- Uninformed state-space search (6pts)

### a. Breadth first search



# b. Depth first search



# c. Iterative deepening search

| _3 |   |   |
|----|---|---|
| 6  | 5 | 8 |
| _  | 7 | 1 |
| 3  | 4 | 2 |

|   | 4 |   |   |
|---|---|---|---|
| Ī | 6 | 5 | 8 |
| ŀ | 7 | 1 |   |
| ŀ | 3 | 4 | 2 |

| 5 | - |   |  |
|---|---|---|--|
| 6 | _ | 8 |  |
| 7 | 5 | 1 |  |
| 3 | 4 | 2 |  |

|   |   | 6 |   |   |
|---|---|---|---|---|
|   | 8 | 6 | 5 | 8 |
| 5 | 1 | 7 | 4 | 1 |
| 4 | 2 | 3 | _ | 4 |

## 2- Determining the depth of a node (12pts)

### a. Time complexity of binary tree

Tree of n nodes.

#### **Best case:**

```
key is the root
key == root.key at first recursive call.
Time complexity: O(1)
```

#### Worst case:

```
key is not in the tree.

<u>balanced tree:</u>

we have to visit all the nodes

time complexity: O(n)

<u>unbalanced tree:</u>

equivalent to a linked list, and we have to visit all the list.

time complexity: O(n)
```

### b. Revised depthInTree()

```
private static int depthInTree (int key, Node root) {
   if (key == root.key)
      return 0;

if (root.left != null && key < root.key){
      int depthInLeft = depthInTree (key, root.left);
      if (depthInLeft != -1)
          return depthInLeft + 1;
    }

if (root.right != null && key >= root.key) {
    int depthInRight = depthInTree (key, root.right);
    if (depthInRight != -1)
          return depthInRight + 1;
    }

return -1;
}
```

## c. Time complexity of binary SEARCH tree

Tree of n nodes.

#### **Best case:**

key is the root key == root.key at first recursive call. Time complexity: O(1)

## **Worst case:**

key is not in the tree.

#### balanced tree:

we divide the problem in 2 at each recursion time complexity:  $O(log_2n)$ 

## unbalanced tree:

equivalent to a linked list, and we have to visit all the list.

time complexity: O(n)

# 3- Tree traversal puzzle (10pts)

a. inorder: SKBPCJRDME, preorder: PSBKRJCMDE



b. postorder: IBGOZKHNSL, preorder: LOGIBSHKZN



# 4- Huffman encoding (7pts)

#### a. Huffman tree

| Ch | Fq |                                             |
|----|----|---------------------------------------------|
| F  | 8  |                                             |
| С  | 14 | 0-1                                         |
| 0  | 17 |                                             |
| I  | 20 | 0-1                                         |
| Е  | 40 |                                             |
|    |    | O I E 0-1                                   |
|    |    | $\mathbf{F} \stackrel{\perp}{=} \mathbf{C}$ |

# b. Encoding of a string

From the tree, we get the following encoding:

0 = 00

F = 110

I = 01

C = 111

E = 10

Therefore: **office = 00 110 110 01 111 10** 

# 5- Binary search trees (10pts)

## a. preorder, print at right (print if a node is a right child)

28, 53, 62, 80

## b. post order

28, 23, 35, 48, 57, 80, 62, 53, 44

## c. insert 25, insert 51



## d. delete 53, delete 35



#### e. balanced tree

The original tree **is not** balanced because:

The right sub-tree of 35 has a height of 0.

The left sub-tree of 35 has a height of 2.

They differ by more than 1. Therefore, the tree is not balanced.

# 6- "2-3 Trees" and "B-Trees" (10pts)

a. empty 2-3 tree

### 1- insert A



## 2- insert D



#### 3- insert G



### 4- insert B



### 5- insert F



## 6- insert C



## 7- insert H





## 8- insert I



## 9- insert E



## 10- insert J



# b. empty B-tree of order 2

## 1- insert A



## 2- insert D



### 3- insert G



## 4- insert B



## 5- insert F



## 6- insert C



## 7- insert H



## 8- insert I



## 9- insert E



# 10- insert J

