Chapter 9: Logistic Regression

CZ

Fall, 2014

Categorical Response

- So far: We learned how to fit simple/multiple regression model with categorical/indicator variables as predictors.
- In this chapter: Consider the case that our response is a categorical variable.

Binary Logistic Regression

We first introduce the **Binary** Logistic Regression model, where the response has only two levels. The objective is to

- determine how one or more predictors affect the probability that an observation falls into one category of the response;
- and predict the probabilities (and label) for a new observation.

Уi	Probability
1	$P(y_i=1)=\pi_i$
0	$P(y_i=0)=1-\pi_i$

- We may want to predict **the probability** that a student will go to the graduate school using data on college GPA, SAT score and major.
- Response variable: "go to graduate school" and "not go to graduate school" (can be coded as 1 and 0).
- Predictors: college GPA, SAT score, and major (categorical predictor).

Binary Response

Note: What we are interested in is the **probability** that the response y taking some value, e.g., $\pi = P(y = 1)$.

Compare this to the continuous regression model: We are interested in predicting E(y).

Regression: estimate E(y), where y is the (transformed) response variable.

Binary Response

For a given predictor vector \mathbf{x} , if response variable y falls into one category (coded as 1) with probability $\pi(\mathbf{x})$ and into the other (coded as 0) with probability $1 - \pi(\mathbf{x})$, then y follows a Bernoulli distribution with parameter $\pi(\mathbf{x})$.

• In this case, the mean/expectation of Y is:

$$E(y) = 1 \cdot \pi(x) + 0 \cdot (1 - \pi(x)) = \pi(x).$$

That is, the probability of the response falling into the category of interest just equals to the mean of response.

• Here $\pi(x)$ depends on x.

Problems

 Is the following ordinary regression model still reasonable if the response is binary?

$$y = \beta_0 + \beta_1 x_1 + \ldots + \beta_p x_p + \epsilon$$
 or
$$E(y) = \beta_0 + \beta_1 x_1 + \ldots + \beta_p x_p$$

- Two main problems of fitting ordinary regression model for binary response:
 - $E(y) = \pi(x) \in (0,1)$. But fitting ordinary regression models cannot guarantee this.
 - 2 $Var(y) = \pi(x)(1 \pi(x)) = E(y)(1 E(y))$ The error ϵ is no longer normally distributed and the variance of error terms are not constant (depends on the mean of y).

New Response Variable

Solution: Model the probability $\pi(x)$, instead of the 0-1 label vector!

- $\pi(x)$: **probability** of the unit falling into one category of interest. $\pi(x) = E(y) = P(y = 1) \in (0, 1)$ for given x.
- $\frac{\pi(\mathbf{x})}{1-\pi(\mathbf{x})}$: **odds**, refers to the fraction of the probability of falling into one category versus not. $\pi(\mathbf{x}) \in (0,1) \Rightarrow \frac{\pi(\mathbf{x})}{1-\pi(\mathbf{x})} \in (0,+\infty)$.
- $\log \frac{\pi(x)}{1-\pi(x)}$: log odds. This transformation is called logit link, denoted by $logit(\pi(x))$. $\frac{\pi(x)}{1-\pi(x)} \in (0,\infty) \Rightarrow \log(\frac{\pi(x)}{1-\pi(x)}) \in (-\infty,+\infty).$

Model Setup

The multiple binary logistic regression model is the following:

$$logit(\pi(\mathbf{x})) = \log(\frac{\pi(\mathbf{x})}{1 - \pi(\mathbf{x})}) = \beta_0 + \beta_1 x_1 + \dots + \beta_p x_p$$

In terms of odds:

$$\frac{\pi(\mathbf{x})}{1-\pi(\mathbf{x})}=e^{\beta_0+\beta_1x_1+\ldots+\beta_px_p},$$

which describes the **odds** of being in the category of interest.

In terms of probability:

$$\pi(x) = E(y) = \frac{e^{\beta_0 + \beta_1 x_1 + \dots + \beta_p x_p}}{1 + e^{\beta_0 + \beta_1 x_1 + \dots + \beta_p x_p}}$$

Different from before, now the relation between $E(y) = \pi(x)$ and x is **non-linear!**

Important

We are **NOT** assuming that

$$logit(\pi(\mathbf{x})) = \log(\frac{\pi(\mathbf{x})}{1 - \pi(\mathbf{x})}) = \beta_0 + \beta_1 x_1 + \dots + \beta_p x_p + \epsilon.$$

Where does the randomness come from?

Relationship between E(y) and x

Interpretation

- β_j : the change in the log odds when x_j is increased by one unit (and other predictors are held constant).
- e^{β_j} : the multiplicative factor on the odds when x_j is increased by one unit (and other predictors are held constant).

Estimation

After fitting the logistic model, we can estimate π_i for subject i:

$$\hat{\pi}_i = rac{e^{\hat{eta}_0 + \hat{eta}_1 x_{i1} + \cdots + \hat{eta}_p x_{ip}}}{1 + e^{\hat{eta}_0 + \hat{eta}_1 x_{i1} + \cdots + \hat{eta}_p x_{ip}}} \in (0,1).$$

Coefficients Estimation

How do we estimate the coefficients?

• Before: Least squares criterion:

$$\hat{oldsymbol{eta}} = (\mathbf{X}^\mathsf{T}\mathbf{X})^{-1}\mathbf{X}^\mathsf{T}\mathbf{Y}$$

• Now: for logistic regression model, β is estimated by **Maximum Likelihood Method**.

Coefficients Estimation

Let $\mathbf{x}_i = (1, x_{i1}, \dots, x_{ip})^T$. The likelihood function for Bernoulli distribution is:

$$L(\beta) = \prod_{i=1}^{n} \pi_{i}^{y_{i}} (1 - \pi_{i})^{1 - y_{i}}$$
$$= \prod_{i=1}^{n} (\frac{e^{\mathbf{x}_{i}^{T} \beta}}{1 + e^{\mathbf{x}_{i}^{T} \beta}})^{y_{i}} (\frac{1}{1 + e^{\mathbf{x}_{i}^{T} \beta}})^{1 - y_{i}}.$$

 $\hat{\beta}$ is solved by maximizing $L(\beta)$ or $\log L(\beta)$ via iterative numerical algorithms (Newton-Raphson method).

Significance Test

To test whether a specific predictor x_j , j = 1, ..., p is important to predict the probability of y falling into the category of interest,

$$H_0: \ \beta_j = 0 \ H_a: \ \beta_j \neq 0.$$

Wald Test:

$$Z = rac{\hat{eta}_j}{\mathsf{se}(\hat{eta}_j)} \sim \mathsf{N}(0,1)$$
 approximately, under H_0 .

- If $|Z_0| > Z_{\alpha/2}$, reject H_0 .
- If p-value= $P(|Z| > |Z_0|) < \alpha$, reject H_0 .

Note: How to test individual coefficient is another difference between logistic regression model and ordinary regression model.

<ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > の < (や)

A group of people were asked if they have ever DUI (y). They also were asked "How many days per month do you drink at least two beers?"

Define

$$y = \begin{cases} 1, & \text{if the person says "yes";} \\ 0, & \text{if the person says "no".} \end{cases}$$

 $\pi(x) = P(y = 1)$, x = days per month of drinking at least two beers.

CZ U Waterloo Fall, 2014

- $\hat{\beta}_0 = -1.55136$, and $\hat{\beta}_1 = 0.190306$.
- \bullet The model for estimating $\pi=$ probability of ever having driven after drinking is

$$\hat{\pi}_i = \frac{e^{-1.55136 + 0.190306x_i}}{1 + e^{-1.55136 + 0.190306x_i}}$$

Q: What is the probability of never driving after drinking?

• The variable x = DaysBeer is statistically significant.

Plot $\hat{\pi}_i$ versus x_i

Some estimated probabilities calculated from the fitted model:

DaysBeer	4	20	28
$\hat{\pi}(x)$	0.312	0.905	0.978

• For example, if x = 4 days per month of drinking two beer,

$$\hat{\pi}(4) = \frac{e^{-1.55136 + 0.190306 \times 4}}{1 + e^{-1.55136 + 0.190306 \times 4}} = 0.312$$

Odds Ratios in Logistic Regression

- When x = 4, the predicted odds of ever driving after drinking is 0.312/(1-0.312) = 0.453.
- Recall $e^{\hat{\beta}_1}$ is interpreted as the predicted multiplicative factor on the odds when that predictor is increased by one unit (and other predictors are held constant).
- Thus, when x=6, the predicted odds of ever driving after drinking is $0.453 \times e^{0.190306 \times (6-4)} = 0.663$

Example: Multiple Logistic Regression

We now include **Gender** (male or female) as an predictor (along with **DaysBeer**). "Gender" is an indicator variable with a value= 1 if male and= 0 if female.

24

- The *p*-values are less than 0.05 for both **DaysBeer** and **Gender**. This is evidence that both *x*-variables are useful for predicting the probability of ever having driven after drinking.
- For **DaysBeer**, the odds ratio is estimated to equal 1.21 (calculated as $e^{0.18693}$).
- For **Gender**, odds ratio= 1.85 (calculated as $e^{0.6172}$). For males, the odds of ever having driven after drinking is 1.85 times the odds for females, assuming **DaysBeer** is held constant.

25

$100(1-\alpha)\%$ Confidence Interval

• Approximate $100(1-\alpha)\%$ confidence interval for β_j (log odds ratio) is:

$$(\hat{eta}_j - Z_{lpha/2} se(\hat{eta}_j), \quad \hat{eta}_j + Z_{lpha/2} se(\hat{eta}_j))$$

where $Z_{\alpha/2}$ is the upper $100(\alpha/2)$ th percentile of N(0,1).

• Approximate 100(1-lpha)% confidence interval for e^{eta_j} (odds ratio) is:

$$(e^{\hat{eta}_j-Z_{lpha/2}se(\hat{eta}_j)}, \quad e^{\hat{eta}_j+Z_{lpha/2}se(\hat{eta}_j)})$$

Likelihood Ratio Test

To test the significance of two or more predictors,

- Ordinary Regression: General Linear F-test
- Now:

LR test statistic =
$$2\{\log L(Full) - \log L(Restricted)\}$$

Under H_0 , the test statistic follows $\chi^2(I)$, where I is the number of independent constraints.

Likelihood Ratio Test

A special case: to test

$$H_0: \beta_1 = \beta_2 = \cdots = \beta_p = 0$$

• Ordinary Regression:

$$F = \frac{MSR}{MSE}$$

Under $H_0: F \sim F(p, n-p-1)$

Now: Likelihood ratio test

Likelihood Ratio Test

• Under H_0 ,

$$\pi(\mathbf{x}) = \frac{e^{\beta_0}}{1 + e^{\beta_0}}$$

• The maximum likelihood estimator of π and β_0 under H_0 is:

$$\hat{\pi}(\mathbf{x}) = \frac{\sum_{i} y_{i}}{n} = \bar{y}$$

$$\hat{eta}_0 = \log rac{ar{y}}{1 - ar{y}}$$

- The maximum log-likelihood under H_0 is $\log L_0 = \sum y_i \log \bar{y} + \sum (1 y_i) \log (1 \bar{y})$
- The likelihood ratio test statistic is: $2(\log L(full) \log L_0)$
- We reject H_0 if $LR > \chi^2_{\alpha}(p)$


```
> fit=glm(DrivDrnk~DaysBeer+Gender,family="binomial",
data=drinking)
> summary(fit)
Coefficients:
          Estimate Std. Error z value Pr(>|z|)
DaysBeer 0.18693 0.03004 6.223 4.87e-10 ***
Gendermale 0.61724 0.29538 2.090 0.0366 *
Null deviance: 345.09 on 248 degrees of freedom
Residual deviance: 279.96 on 246 degrees of freedom
ATC: 285.96
```

The 95% confidence interval for β_1 is:

$$\hat{\beta}_1 \pm Z_{\alpha/2} se(\hat{\beta}_1) = 0.18693 \pm 1.96 \times 0.03004$$

= (0.128, 0.246)

The 95% confidence interval for e^{β_1} is:

$$(e^{0.128}, e^{0.246}) = (1.137, 1.279)$$

To test $H_0: \beta_1 = \beta_2 = 0$

- Null Deviance: $-2\log L(Restricted) = 345.09$
- Residual Deviance: $-2\log L(Full) = 279.96$
- LR test statistic= $2\{\log L(Full) \log L(Restricted)\} = 345.09 279.96 = 65.13$
- We reject H_0 because $\chi^2_{0.05}(2) = 5.99$ and 65.13 > 5.99.

Logistic Regression with More than Two Categories

• $y \sim Multinomial(\pi_1, \pi_2, ..., \pi_k)$, the response is a categorical variable with k levels (y has probability π_i to fall into category i). In this case, we consider a form similar as the logit link:

$$\log(\frac{\pi_1}{\pi_k}) = \beta_{1,0} + \beta_{1,1}x_1 + \dots + \beta_{1,p}x_p$$

$$\log(\frac{\pi_2}{\pi_k}) = \beta_{2,0} + \beta_{2,1}x_1 + \dots + \beta_{1,p}x_p$$

$$\dots$$

$$\log(\frac{\pi_{k-1}}{\pi_k}) = \beta_{k-1,0} + \beta_{k-1,1}x_1 + \dots + \beta_{k-1,p}x_p$$

Logistic Regression with More than Two Categories

- **1** By estimating all the β -coefficients in the above equations, we can have estimated probability for y falling into each category.
- ② Note that there is a hidden restriction: $\sum_{i=1}^{k} \pi_i(\mathbf{x}) = 1$. And the above formulation assumes level k as the baseline.
- **3** Note that when k = 2, the formulation is the same as the binary logistic regression model.