

BEST AVAILABLE COPY

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
12 April 2001 (12.04.2001)

PCT

(10) International Publication Number
WO 01/25466 A1

(51) International Patent Classification⁷: **C12N 15/867,**
15/90, 5/10, 7/01, A61K 48/00

(UK) Limited, Medawar Centre, Robert Robinson Avenue,
The Oxford Science Park, Oxford OX4 4GA (GB).

(21) International Application Number: PCT/GB00/03837

(74) Agents: HARDING, Charles, Thomas et al.; D Young &
Co., 21 New Fetter Lane, London EC4A 1DA (GB).

(22) International Filing Date: 5 October 2000 (05.10.2000)

(81) Designated States (*national*): AE, AG, AL, AM, AT, AU,
AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ,
DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR,
HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR,
LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ,
NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM,
TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

(25) Filing Language: English

(84) Designated States (*regional*): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian
patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European
patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE,
IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG,
CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

(26) Publication Language: English

Published:

(30) Priority Data:
9923558.2 5 October 1999 (05.10.1999) GB

- *With international search report.*
- *Before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments.*

(71) Applicant (*for all designated States except US*): OXFORD
BIOMEDICA (UK) LIMITED [GB/GB]; Medawar Centre,
Robert Robinson Avenue, The Oxford Science Park,
Oxford OX4 4GA (GB).

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(72) Inventors; and

(75) Inventors/Applicants (*for US only*): SLINGSBY, Jason
[GB/GB]; 91 Lacy Road, Putney, London SW15 1NR
(GB). KINGSMAN, Susan, Mary [GB/GB]; Oxford
BioMedica (UK) Limited, Medawar Centre, Robert
Robinson Avenue, The Oxford Science Park, Oxford
OX4 4GA (GB). ROHLL, Jonathan [GB/GB]; Oxford
BioMedica (UK) Limited, Medawar Centre, Robert Robinson
Avenue, The Oxford Science Park, Oxford OX4 4GA
(GB). SLADE, Andrew [GB/GB]; Oxford BioMedica

WO 01/25466 A1

(54) Title: PRODUCER CELL FOR THE PRODUCTION OF RETROVIRAL VECTORS

(57) Abstract: A method is provided for modifying a producer cell which producer cell comprises integrated into its genome a provirus which provirus comprises one or more recombinase recognition sequences within or upstream of its 3'LTR, the method comprising: introducing into the cell a construct comprising a 5' recombinase recognition sequence, an LTR and a 3' recombinase recognition sequence in that order, in the presence of a recombinase which is capable of acting on the recombinase recognition site(s) such that the nucleotide sequence between the 5' and 3' recombinase recognition sequences in the construct is introduced into the provirus.

PRODUCER CELL FOR THE PRODUCTION OF RETROVIRAL VECTORS

FIELD OF THE INVENTION

5

The present invention relates to retroviral vectors, in particular to high titre regulatable retroviral vectors.

BACKGROUND TO THE INVENTION

10

Retroviruses have been proposed as a delivery system (otherwise expressed as a delivery vehicle or delivery vector) for *inter alia* the transfer of a nucleotide sequence of interest (NOI), or a plurality of NOIs, to one or more sites of interest. The transfer can occur *in vitro*, *ex vivo*, *in vivo*, or combinations thereof. When used in this fashion, the retroviruses 15 are typically called retroviral vectors or recombinant retroviral vectors. Retroviral vectors have been exploited to study various aspects of the retrovirus life cycle, including receptor usage, reverse transcription and RNA packaging (reviewed by Miller, 1992 Curr Top Microbiol Immunol 158:1-24).

20 In a typical recombinant retroviral vector for use in gene therapy, at least part of one or more of the *gag*, *pol* and *env* protein coding regions may be removed from the virus. This makes the retroviral vector replication-defective. The removed portions may even be replaced by a NOI in order to generate a virus capable of integrating its genome into a host genome but wherein the modified viral genome is unable to propagate itself due to a 25 lack of structural proteins. When integrated in the host genome, expression of the NOI occurs - resulting in, for example, a therapeutic effect. Thus, the transfer of a NOI into a site of interest is typically achieved by: integrating the NOI into the recombinant viral vector; packaging the modified viral vector into a virion coat; and allowing transduction of a site of interest - such as a targetted cell or a targetted cell population.

30

It is possible to propagate and isolate quantities of retroviral vectors (e.g. to prepare suitable titres of the retroviral vector) for subsequent transduction of, for example, a site of interest by using a combination of a packaging or helper cell line and a recombinant vector.

-2-

- In some instances, propagation and isolation may entail isolation of the retroviral *gag*, *pol* and *env* genes and their separate introduction into a host cell to produce a "packaging cell line". The packaging cell line produces the proteins required for packaging retroviral RNA but it does not produce RNA-containing retroviral vectors. However, when a recombinant vector carrying a NOI and a *psi* region is introduced into the packaging cell line, the helper proteins can package the *psi*-positive recombinant vector to produce the recombinant virus stock. This can be used to infect cells to introduce the NOI into the genome of the cells. The recombinant virus whose genome lacks all genes required to make viral proteins can infect only once and cannot propagate. Hence, the NOI is introduced into the host cell genome without the generation of potentially harmful retrovirus. A summary of the available packaging lines is presented in "Retroviruses" (1997 Cold Spring Harbour Laboratory Press Eds: JM Coffin, SM Hughes, HE Varmus pp 449).
- Retroviral packaging cell lines have been developed to produce retroviral vectors. These cell lines are designed to express three components, which may be located on three separate expression constructs. The *gag/pol* expression construct encodes structural and enzymatic components required in particle formation, maturation, reverse transcription and integration. The envelope (*env*) construct expresses a retroviral or non-retroviral envelope protein, which mediates viral entry into cells by binding to its cognate receptor. The third expression construct produces the retroviral RNA genome containing a *psi* region, which is packaged into mature, enveloped retroviral particles.
- It has been observed that different methods, such as electroporation, transfection and retroviral transduction, which have been used to introduce the retroviral expression construct for the RNA genome, termed "the genome", into packaging cells produce different results. These different results can include different end points or "yield" of retroviral producer lines resulting from the derived cell lines. Moreover, electroporation and transfection methods can be problematic in the sense that the titre levels are not always at a satisfactory level.

By way of example, the transfection of a plasmid DNA construct into packaging cells from a MLV packaging cell line of human origin, called FLYA13, yielded low retroviral

-3-

vector titres even when different transfection reagents such as calcium phosphate precipitation and fugene transfection reagent were used. The average titres from selected stably transfected cell lines clones ranged from about 10^3 to about 10^4 per ml. In addition, clones generated by electroporation of constructs gave similar titres of from 5 about 10^3 to about 10^4 per ml with no clones identified producing at $>10^5$ per ml. However, when MLV vector particles are prepared in a transient transfection system with a different envelope pseudotype to the packaging cell, and used to transduce a retroviral packaging cell, stably transduced cell lines made by this transduction method produce retrovirus at 10^6 to 10^7 per ml. Therefore, these results suggest that retroviral transduction 10 is a preferred method for genome introduction into packaging cell lines in order to generate high titre producer cell lines. However, when retroviral transduction is used to introduce a regulated/inactivated retroviral vector genome into packaging cell lines, the regulated retroviral vectors may not be produced in sufficient quantities from these cell lines.

15

By way of example, some retroviral vectors may comprise (i) internal expression constructs which are themselves regulated or (ii) regulated elements which are present in retroviral 3' LTR sequences, either by design or by their nature. Examples of these regulated vectors include but are not limited to hypoxic regulated vectors and self 20 inactivating (SIN) vectors. If transduced producer cell lines are generated with these regulated vectors, the regulated or inactivated 3' U3 sequence of the LTR is copied to the 5' LTR by the process of retroviral reverse transcription and integration. Therefore, in the producer cell line, the 5' U3 promoter sequence directing expression of retroviral RNA genomes is identical to the regulated or inactivated 3' U3 promoter. This will result in 25 very low levels of retroviral genome production and consequently low titres of functional retrovirus vectors being produced.

One example of such a regulated retroviral system includes MLV and lentivirus vector constructs where the 3' retroviral U3 enhancer element is replaced with a hypoxia 30 responsive element (HRE) or other physiologically regulated, tumour specific or tissue-specific promoters. When these vectors are used to make a transduced producer cell line, the 3' U3 sequence containing the HRE element is copied to the 5' LTR position and retroviral genomes will only be produced under hypoxic conditions or chemical mimics

-4-

of hypoxia, such as heavy metal ions and desferrioxamine. Such a requirement for "induction for retroviral production" is not preferable as the different hypoxia induction protocols negatively affect retroviral producer cell viability.

- 5 By way of further example, lentivector U3 enhancers are dependent on the transactivator TAT for transcriptional activation. Therefore, a lentivector producer cell line generated by transduction requires the presence of TAT for high level expression of the lentivector genome construct. The expression of TAT is not preferable in such a packaging cell line and therefore, in the absence of TAT, only very low titres will be produced from
10 transduced producer cells generated in this way.

Another example of a regulated retroviral systems includes MLV or lentivirus self-inactivating (SIN) vectors. These vectors contain deletions of the elements in their 3' U3 sequences responsible for transcriptional activity. Therefore, on transduction of target
15 cells, the transcriptionally inactive 3' U3 sequence is copied to the 5' LTR position. In standard configurations, an internal expression cassette directs therapeutic or marker gene expression. However, if SIN vectors are used to make a transduced retroviral producer line, there will be no transcriptional elements present to direct high levels of retroviral RNA genome expression.
20

Although it is possible to carry out retroviral transduction with much lower-titre vector stocks, for practical reasons, high-titre retrovirus is desirable, especially when a large number of cells must be infected. In addition, high titres are a requirement for transduction of a large percentage of certain cell types. For example, the frequency of
25 human hematopoietic progenitor cell infection is strongly dependent on vector titre, and useful frequencies of infection occur only with very high-titre stocks (Hock and Miller 1986 Nature 320: 275-277; Hogge and Humphries 1987 Blood 69: 611-617). In these cases, it is not sufficient simply to expose the cells to a larger volume of virus to compensate for a low virus titre. On the contrary, in some cases, the concentration of
30 infectious vector virions may be critical to promote efficient transduction.

-5-

SUMMARY OF THE INVENTION

- We have now shown that it is possible to obtain transduced producer cells capable of producing high titre regulated retroviral vectors by replacing at least the 3'LTR of the integrated provirus using a recombinase based system. Thus whereas with the prior art, the U3 region of the 3'LTR is the same as that of the U3 region of the 5' LTR (and vice versa for the U5 region) in the provirus due to the way in which the viral vector integrates, the introduction of, for example, a replacement 3'LTR results in a provirus that has a 5'LTR and a 3'LTR that differ. The packaged viral vectors produced by transcription of the proviral genome within the producer cells may then ultimately be used to transduce target cells where the regulatable sequences present in the 3'LTR of the provirus in the producer cells are then present in the 5'LTR of the provirus in the target cells and consequently regulate transcription from the provirus as required.
- This allows the introduction of a 3'LTR, for example a regulatable 3'LTR, into the provirus that was not desirable in the original viral vector used to transduce the producer cells since the consequential appearance of the regulatable 3'LTR U3 sequences in the 5'LTR in the provirus may lead to a reduced viral titre.
- Consequently, the present invention allows transduced producer cells to be constructed that are capable of producing high titre regulated retroviral vectors by virtue of comprising a 5'LTR that directs high level expression of the viral genome in the producer cell and a different 3'LTR which as a result of the process of integration into a target cell will then result in a provirus in the target cell genome that exhibits regulatable expression.
- In particular, the present invention allows the modification of a provirus integrated into the genome of the producer cells that have been selected for their high titre virus production such that the resulting packaged viral particles produced from the provirus may be used to transduce target cells resulting in a provirus integrated into the genome of the target cells that has a different, and preferably regulatable 5'LTR to that of the producer cell provirus.

-6-

The present invention is not limited to replacement of the 3'LTR of the provirus in the high titre producer cells, but may also include replacement of the 5'LTR and other viral sequences and/or the introduction of NOIs by the use of suitable constructs, as shown in the Figures.

5

Accordingly, the present invention provides a method of modifying a producer cell which producer cell comprises integrated into its genome a provirus which provirus comprises one or more recombinase recognition sequences within or upstream of its 3' LTR, the method comprising: introducing into the cell a construct comprising a 5' recombinase 10 recognition sequence, an LTR and a 3' recombinase recognition sequence in that order, in the presence of a recombinase which is capable of acting on the recombinase recognition site(s) such that the nucleotide sequence between the 5' and 3' recombinase recognition sequences in the construct is introduced into the provirus.

15 Preferably the LTR is a heterologous regulatable LTR.

The present invention further provides a nucleic acid vector comprising a 5' recombinase recognition sequence, a regulatable LTR and a 3' recombinase recognition sequence in that order.

20

In any of the above aspects and embodiments of the invention, preferably the construct, nucleic acid molecule and/or nucleic acid vector further comprises at least one NOI between the 5' recombinase recognition sequence and the regulatable LTR.

25 Preferably the construct, nucleic acid molecule and/or nucleic acid vector further comprises a 5'LTR and/or a packaging signal

In one embodiment of the invention, the LTR is inactive/transcriptionally quiescent.

30 The construct, nucleic acid molecule and/or nucleic acid vector of the invention may be used in a recombinase assisted method to introduce a regulated LTR into a proviral genome integrated into a producer cell genome.

-7-

The present invention also provides a producer cell obtainable by the method of the invention, preferably a high titre producer cells. Also provided is an infectious retroviral particle obtained by the above method.

- 5 The present invention further provides a high titre producer cell comprising integrated into its genome a provirus, which provirus comprises a recombinase recognition site, a 5' LTR and a 3'LTR which 3'LTR differs from the 5'LTR. Such a producer cell will typically have been produced by the method of the invention.
- 10 Preferably the 5'LTR and the 3'LTR referred to for the purposes of comparison are both "active". The term "active" within the present context means transcriptionally active, that is to say, the 5'LTR comprises a promoter that directs transcription of the viral genome and the 3'LTR comprises a transcriptional stop sequence to terminate transcription. This distinction is relevant since if a provirus produced by the method of the invention 15 comprises more than one 5' LTR or 3'LTR, at least one but not all must be active to allow viral production. Further, if the provirus comprises more than one 3'LTR then it is generally the upstream one that will be active since transcription will tend not to read through to the downstream 3' LTR.
- 20 In addition, where the method of the invention results in an insertion of a 3'LTR upstream of the original 3'LTR, the comparison should be performed between the additional 3'LTR and the original 5'LTR and not the two original LTRs. Thus it is permitted to have a 5'LTR and 3'LTR within the same provirus that are the same provided that there is also a 5'LTR and 3'LTR that differ.
- 25 In another aspect, the present invention provides a derived producer cell comprising integrated into its genome a retroviral vector comprising in the 5' to 3' direction a first 5' LTR; a second NOI operably linked to a second regulatable 3' LTR; and a third 3'LTR; wherein the third 3'LTR is positioned downstream of the second regulatable 3'LTR in the 30 producer cell.

-8-

Preferably the first 5' LTR comprising 5'R and 5' U5 sequences is derivable from a first vector; the second NOI operably linked to a second regulatable 3' LTR is derivable from a second vector; and the third 3'LTR is derivable from the first vector.

- 5 In a preferred embodiment, the first vector further comprises an internal LTR located upstream of the first NOI and downstream of the packaging signal wherein the Internal LTR comprises a heterologous U3 sequence linked to heterologous R and U5 sequences.

Preferably the heterologous R and U5 sequences are lentiviral derivable R and U5 sequences, such as EIAV R and U5 sequences.

In a further preferred embodiment, the third 3'LTR is transcriptionally active but expression is directed away from the second regulatable 3'LTR.

- 15 In another embodiment, the second vector comprises a second NOI operably linked to a second regulatable 3'LTR comprising at least one recombinase recognition sequence. Preferably the second regulatable 3'LTR comprises a deletion in the U3 sequences in the 3'LTR.

- 20 Preferably, the second NOI comprises a discistronic construct, more preferably a discistronic construct comprising a therapeutic gene, an internal ribosomal entry site (IRES) and a reporter gene.

The present invention further provides in another embodiment, a method for producing a high titre regulatable retroviral vector, the method comprising the steps of:

- (i) providing a derived producer cell comprising integrated into its genome a first vector;
(ii) introducing a second vector into the derived producer cell using a recombinase assisted method; wherein the derived producer cell comprises a retroviral vector comprising in the 5' to 3' direction a first 5' LTR; a second NOI operably linked to a second regulatable 3' LTR; and a third 3'LTR; wherein the third 3'LTR is positioned downstream of the second regulatable 3'LTR in the derived producer cell.

-9-

The present invention also provides the use of a recombinase assisted mechanism to introduce a regulated 3'LTR into a derived producer cell line to produce a high titre regulated retroviral vector.

5 Aspects of the present invention are also presented in the accompanying claims and in the following description and discussion.

These aspects are presented under separate section headings. However, it is to be understood that the teachings under each section heading are not necessarily limited to
10 that particular section heading.

DETAILED DESCRIPTION OF THE INVENTION

The present invention is advantageous because:

15

(i) it enables regulated retroviral vectors to be produced at high titres from transduced producer cell lines.

20 20 (ii) it removes the uncertainty associated with the process of producer cell line derivation and the necessity to screen large numbers of producer cell lines each time a new retroviral expression construct is introduced into a producer cell line.

25 (iii) it greatly facilitates the generation of high titre retroviral stocks without the use of marker genes (such as but not limited to β -galactosidase, green fluorescent protein) and antibiotic resistance genes.

(iv) it avoids the derivation of low titre transfected producer cell lines or the use of hypoxic conditions or chemical mimics for production from traditionally derived transduced producer lines.

30

(v) it enables the production of SIN vectors by stable cell line producer technology. Previously, SIN vectors have not been amenable to production by stable cell line producer technology because the deletion of the 3'U3 sequence resulted in at least a tenfold lower

-10-

titre of self-inactivating (SIN) vectors in comparison with vectors having intact LTRs. Consequently, SIN vectors have had to be prepared using transfection-based transient expression systems.

5 PRODUCER CELL

The high titre regulated retroviral vector particles of the present invention are typically generated in a suitable producer cell. Producer cells are generally mammalian cells but can be, for example, insect cells. A producer cell may be a packaging cell containing the 10 virus structural genes, normally integrated into its genome into which the regulated retroviral vectors of the present invention are introduced. Alternatively the producer cell may be transfected with nucleic acid sequences encoding structural components, such as *gag/pol/env* on one or more vectors such as plasmids, adenovirus vectors, herpes viral vectors or any method known to deliver functional DNA into target cells. The vectors 15 according to the present invention are then introduced into the packaging cell by the methods of the present invention.

As used herein, the term "producer cell" or "vector producing cell" refers to a cell which contains all the elements necessary for production of regulated retroviral vector particles 20 and regulated retroviral delivery systems.

Preferably, the producer cell is obtainable from a stable producer cell line.

Preferably, the producer cell is obtainable from a derived stable producer cell line.

25

Preferably, the producer cell is obtainable from a derived producer cell line

As used herein, the term "derived producer cell line" is a transduced producer cell line which has been screened and selected for high expression of a marker gene. Such cell 30 lines contain retroviral insertions in integration sites that support high level expression from the retroviral genome. The term "derived producer cell line" is used interchangeably with the term "derived stable producer cell line" and the term "stable producer cell line"

-11-

Preferably the derived producer cell line includes but is not limited to a retroviral and/or a lentiviral producer cell.

5 Preferably the derived producer cell line is an HIV or EIAV producer cell line, more preferably an EIAV producer cell line.

10 Preferably the envelope protein sequences, and nucleocapsid sequences are all stably integrated in the producer and/or packaging cell. However, one or more of these sequences could also exist in episomal form and gene expression could occur from the episome.

PACKAGING CELL

15 As used herein, the term "packaging cell" refers to a cell which contains those elements necessary for production of infectious recombinant virus which are lacking in a recombinant viral vector. Typically, such packaging cells contain one or more expression cassettes which are capable of expressing viral structural proteins (such as *gag*, *pol* and *env*) but they do not contain a packaging signal.

20 The term "packaging signal" which is referred to interchangeably as "packaging sequence" or "*psi*" is used in reference to the non-coding sequence required for encapsidation of retroviral RNA strands during viral particle formation.

25 Packaging cell lines suitable for use with the above-described vector constructs may be readily prepared (see also WO 92/05266), and utilised to create producer cell lines for the production of retroviral vector particles. As already mentioned, a summary of the available packaging lines is presented in "Retroviruses" (1997 Cold Spring Harbour Laboratory Press Eds: JM Coffin, SM Hughes, HE Varmus pp 449).

30 The packaging cell lines are useful for providing the gene products necessary to encapsidate and provide a membrane protein for a high titre regulated retrovirus vector and regulated nucleic gene delivery vehicle production. When regulated retrovirus sequences are introduced into the packaging cell lines, such sequences are encapsidated

-12-

with the nucleocapsid (*gag/pol*) proteins and these units then bud through the cell membrane to become surrounded in cell membrane and to contain the envelope protein produced in the packaging cell line. These infectious regulated retroviruses are useful as infectious units *per se* or as gene delivery vectors.

5

The packaging cell may be a cell cultured *in vitro* such as a tissue culture cell line. Suitable cell lines include but are not limited to mammalian cells such as murine fibroblast derived cell lines or human cell lines. Preferably the packaging cell line is a human cell line, such as for example: HEK293, 293-T, TE671, HT1080.

10

Alternatively, the packaging cell may be a cell derived from the individual to be treated such as a monocyte, macrophage, blood cell or fibroblast. The cell may be isolated from an individual and the packaging and vector components administered *ex vivo* followed by re-administration of the autologous packaging cells.

15

Methods for introducing retroviral packaging and vector components into packaging/producer cells are described in the present invention.

Preferably the method of the present invention utilises a recombinase assisted mechanism.

20

Preferably the method of the present invention utilises a recombinase assisted mechanism which facilitates the production of high titre regulated retroviral vectors from the producer cells of the present invention.

25 RECOMBINASE ASSISTED MECHANISM

As used herein, the term "recombinase assisted system" includes but is not limited to a system using the Cre recombinase / loxP recognition sites of bacteriophage P1 or the site-specific FLP recombinase of *S. cerevisiae* which catalyses recombination events between

30 34 bp FLP recognition targets (FRTs).

The site-specific FLP recombinase of *S. cerevisiae* which catalyses recombination events between 34 bp FLP recognition targets (FRTs) has been configured into DNA constructs

-13-

in order to generate high level producer cell lines using recombinase-assisted recombination events (Karreman *et al.* (1996) NAR 24, 1616-1624). A similar system has been developed using the Cre recombinase / loxP recognition sites of bacteriophage P1. This was configured into a retroviral genome such that high titre retroviral producer 5 cell lines were generated (Vanin *et al.* (1997) J Virol 71, 7820-7826). However, the use of the second method (Vanin *et al ibid*) has centered around the exchange of the central portions of a retroviral cassette using a recombinase-assisted system. Moreover, these methods have used genes encoding selectable markers such as neo^R and puro^R (Vanin *et al ibid*) and luciferase and puro^R linked by an IRES sequence (Karreman *et al ibid*). 10 Karreman and Vanin do not demonstrate or *suggest* that: (i) a regulated or inactive 3'U3 sequence of the 3'LTR can be introduced into a producer cell via a recombinase-assisted mechanism or (ii) that therapeutic genes under the control of a regulated LTR may be introduced into a producer cell line via a recombinase assisted step. Vanin *et al ibid* suggests that his Cre-mediated recombination approach to retroviral producer cell line 15 production may be used in combination with other modifications which should result in improved vector performance. Vanin *et al ibid* also suggests that his approach provides a means to generate high titre SIN vectors. However, there is no worked example and in fact no enabling disclosure because the skilled person would not have been aware, on the basis of the Vanin *et al* paper, of the necessary modifications to make the suggested 20 approach work. Vanin *et al* makes no reference to hypoxic regulated vectors and/or regulated/inactivated lentiviral vectors.

LTRs

25 As already indicated, each retroviral genome comprises genes called *gag*, *pol* and *env* which code for virion proteins and enzymes. In the provirus, these genes are flanked at both ends by regions called long terminal repeats (LTRs). The LTRs are responsible for proviral integration, and transcription. They also serve as enhancer-promoter sequences. In other words, the LTRs can control the expression of the viral gene. Encapsidation of 30 the retroviral RNAs occurs by virtue of a *psi* sequence located at the 5' end of the viral genome.

-14-

As used herein, the term "long terminal repeat (LTR)" is used in reference to domains of base pairs located at the end of retroviral DNAs.

- The LTRs themselves are identical sequences that can be divided into three elements,
5 which are called U3, R and U5. U3 is derived from the sequence unique to the 3' end of the RNA. R is derived from a sequence repeated at both ends of the RNA and U5 is derived from the sequence unique to the 5' end of the RNA. The sizes of the three elements can vary considerably among different retroviruses.
- 10 For ease of understanding, a simple, generic structures (not to scale) of the RNA and the DNA forms of the MLV retroviral genome is presented in Figure 7 in which the elementary features of the LTRs and the relative positioning of *gag/pol* and *env* are indicated. Please note that (i) *gag/pol* and *env* are normally not spaced apart; and (ii) the overlap normally present between the *pol* and *env* genes and the poly A tail normally
15 present at the 3' end of the RNA transcript are not illustrated in Figure 7.

As shown in Figure 7, the basic molecular organisation of an infectious retroviral RNA genome is (5') R - U5 - *gag/pol*, *env* - U3-R (3'). In a defective retroviral vector genome *gag*, *pol* and *env* may be absent or not functional. The R regions at both ends of the
20 RNA are repeated sequences. U5 and U3 represent unique sequences at the 5' and 3' ends of the RNA genome respectively.

Upon cellular transduction, reverse transcription of the virion RNA into double stranded DNA takes place in the cytoplasm and involves two jumps of the reverse transcriptase from the 5' terminus to the 3' terminus of the template molecule. The result of these jumps is a duplication of sequences located at the 5' and 3' ends of the virion RNA. These sequences then occur fused in tandem on both ends of the viral DNA, forming the long terminal repeats (LTRs) which comprise R U5 and U3 regions. On completion of the reverse transcription, the viral DNA is translocated into the nucleus where the linear
30 copy of the retroviral genome, called a preintegration complex (PIC), is randomly inserted into chromosomal DNA with the aid of the virion integrase to form a stable provirus. The number of possible sites of integration into the host cellular genome is very large and very widely distributed.

-15-

Preferably the retroviral genome is introduced into packaging cell lines using retroviral transduction.

Preferably retroviral vector particles (such as MLV vector particles) are prepared in a
5 transient expression system with a different envelope pseudotype to the packaging cell,
and used to transduce a retroviral packaging cell.

Preferably the retroviral transduction step identifies retroviral insertions in integration
sites that support high level expression of the resulting regulated retroviral genome.

10

Preferably stable transduced producer cell lines made by this initial retroviral transduction
step produce retrovirus at titres of at least 10^6 per ml, such as from about 10^6 to about 10^7
per ml, more preferably at least about 10^7 per ml.

15 HIGH TITRE

As used herein, the term "high titre" means an effective amount of a retroviral vector or
particle which is capable of transducing a target site such as a cell.

20 As used herein, the term "effective amount" means an amount of a regulated retroviral or
lentiviral vector or vector particle which is sufficient to induce expression of an NOI at a
target site.

25 Preferably the titre is from at least 10^6 retrovirus particles per ml, such as from about 10^6
to about 10^7 per ml, more preferably at least about 10^7 retrovirus particles per ml.

TRANSCRIPTIONAL CONTROL

30 The control of proviral transcription remains largely with the noncoding sequences of the
viral LTR. The site of transcription initiation is at the boundary between U3 and R in the
left hand side LTR (as shown in Figure 7) and the site of poly (A) addition (termination)
is at the boundary between R and U5 in the right hand side LTR (as shown in Figure 7).
The 3'U3 sequence contains most of the transcriptional control elements of the provirus,

-16-

which include the promoter and multiple enhancer sequences responsive to cellular and in some cases, viral transcriptional activator proteins.

REGULTABLE LTRs

5

AN LTR present, for example, in the construct of the invention and as a 3'LTR in the provirus of the producer cell of the invention may be a native LTR or a heterologous regulatable LTR. It may also be a transcriptionally quiescent LTR for use in SIN vector technology.

10

As used herein, the terms "regulatable LTR" and "regulatable 3'LTR" include vectors which contain responsive elements which are present in retroviral 3' LTR sequences, either by design or by their nature. As used herein, vectors comprising a "regulatable 3'LTR" are referred to as "regulated retroviral vectors". Within the regulatable 3'LTR region, the 3'U3 sequence contains most of the transcriptional control elements of the provirus, which include the promoter and multiple enhancer sequences responsive to cellular and in some cases, viral transcriptional activator proteins.

15

Responsive elements include but are not limited to elements which comprise, for example, promoter and multiple enhancer sequences responsive to cellular and in some cases, viral transcriptional activator proteins and/or elements which have been modified to render them inactive. As used herein, the term "modified" includes but is not limited to silencing, disabling, mutating, deleting or removing all of the U3 sequence or a part thereof.

20

The term "regulated LTR" also includes an inactive LTR such that the resulting provirus in the target cell can not produce a packagable viral genome (self-inactivating (SIN) vector technology) - see the Examples and Figure 6 for a particular embodiment.

25

30

-17-

ENHANCER

As used herein, the term "enhancer" includes a DNA sequence which binds other protein components of the transcription initiation complex and thus facilitates the initiation of
5 transcription directed by its associated promoter.

In one preferred embodiment of the present invention, the enhancer is an ischaemic like response element (ILRE).

10 ILRE

The term "ischaemia like response element" - otherwise written as ILRE - includes an element that is responsive to or is active under conditions of ischaemia or conditions that are like ischaemia or are caused by ischaemia. By way of example, conditions that are
15 like ischaemia or are caused by ischaemia include hypoxia and/or low glucose concentration(s).

The term "hypoxia" means a condition under which a particular organ or tissue receives an inadequate supply of oxygen.

20

Ischaemia can be an insufficient supply of blood to a specific organ or tissue. A consequence of decreased blood supply is an inadequate supply of oxygen to the organ or tissue (hypoxia). Prolonged hypoxia may result in injury to the affected organ or tissue.

25 A preferred ILRE is an hypoxia response element (HRE).

HRE

In one preferred aspect of the present invention, there is hypoxia or ischaemia regulatable expression of the retroviral vector components. In this regard, hypoxia is a powerful regulator of gene expression in a wide range of different cell types and acts by the induction of the activity of hypoxia-inducible transcription factors such as hypoxia inducible factor-1 (HIF-1; Wang & Semenza 1993 Proc Natl Acad Sci 90:430), which

-18-

bind to cognate DNA recognition sites, the hypoxia-responsive elements (HREs) on various gene promoters. Dachs *et al* (1997 Nature Med 5: 515) have used a multimeric form of the HRE from the mouse phosphoglycerate kinase-1 (PGK-1) gene (Firth *et al* 1994 Proc Natl Acad Sci 91:6496-6500) to control expression of both marker and therapeutic genes by human fibrosarcoma cells in response to hypoxia *in vitro* and within solid tumours *in vivo* (Dachs *et al ibid*).

Hypoxia response enhancer elements (HREEs) have also been found in association with a number of genes including the erythropoietin (EPO) gene (Madan *et al* 1993 Proc Natl Acad Sci 90: 3928; Semenza and Wang 1992 Mol Cell Biol 1992 12: 5447-5454). Other HREEs have been isolated from regulatory regions of both the muscle glycolytic enzyme pyruvate kinase (PKM) gene (Takenaka *et al* 1989 J Biol Chem 264: 2363-2367), the human muscle-specific β-enolase gene (ENO3; Peshavaria and Day 1991 Biochem J 275: 427-433) and the endothelin-1 (ET-1) gene (Inoue *et al* 1989 J Biol Chem 264: 14954-14959).

Preferably the HRE of the present invention is selected from, for example, the erythropoietin HRE element (HREE1), muscle pyruvate kinase (PKM), HRE element, phosphoglycerate kinase (PGK) HRE, B-enolase (enolase 3; ENO3) HRE element, endothelin-1 (ET-1)HRE element and metallothionein II (MTII) HRE element.

RESPONSIVE ELEMENT

Preferably the ILRE is used in combination with a transcriptional regulatory element , such as a promoter, which transcriptional regulatory element is preferably active in one or more selected cell type(s), preferably being only active in one cell type.

As outlined above, this combination aspect of the present invention is called a responsive element.

30

Preferably the responsive element comprises at least the ILRE as herein defined.

-19-

Non-limiting examples of such a responsive element are presented as OBHRE1 and XiaMac. Another non-limiting example includes the ILRE in use in conjunction with an MLV promoter and/or a tissue restricted ischaemic responsive promoter. These responsive elements are disclosed in WO99/15684.

5

Other examples of suitable tissue restricted promoters/enhancers are those which are highly active in tumour cells such as a promoter/enhancer from a *MUC1* gene, a *CEA* gene or a *ST4* antigen gene. The alpha fetoprotein (AFP) promoter is also a tumour-specific promoter. One preferred promoter-enhancer combination is a human 10 cytomegalovirus (hCMV) major immediate early (MIE) promoter/enhancer combination.

PROMOTER

The term "promoter" is used in the normal sense of the art, e.g. an RNA polymerase 15 binding site.

The promoter may be located in the retroviral 5' LTR to control the expression of a cDNA encoding an NOI.

20 Preferably the NOI is capable of being expressed from the retrovirus genome such as from endogenous retroviral promoters in the long terminal repeat (LTR)

Preferably the NOI is expressed from a heterologous promoter to which the heterologous gene or sequence is operably linked.

25

Alternatively, the promoter may be an internal promoter.

Preferably the NOI is expressed from an internal promoter.

30 Vectors containing internal promoters have also been widely used to express multiple genes. An internal promoter makes it possible to exploit promoter/enhancer combinations other than those found in the viral LTR for driving gene expression. Multiple internal promoters can be included in a retroviral vector and it has proved

-20-

possible to express at least three different cDNAs each from its own promoter (Overell *et al* 1988 Mol Cell Biol 8: 1803-1808). Internal ribosomal entry site (IRES) elements have also been used to allow translation of multiple coding regions from either a single mRNA or from fusion proteins that can then be expressed from an open reading frame.

5

TISSUE SPECIFIC PROMOTERS

The promoter of the present invention may be constitutively efficient, or may be tissue or temporally restricted in their activity.

10

Preferably the promoter is a constitutive promoter such as CMV.

Preferably the promoters of the present invention are tissue specific.

15

That is, they are capable of driving transcription of a NOI or NOI(s) in one tissue while remaining largely "silent" in other tissue types.

20

The term "tissue specific" means a promoter which is not restricted in activity to a single tissue type but which nevertheless shows selectivity in that they may be active in one group of tissues and less active or silent in another group.

25

The level of expression of an NOI or NOIs under the control of a particular promoter may be modulated by manipulating the promoter region. For example, different domains within a promoter region may possess different gene regulatory activities. The roles of these different regions are typically assessed using vector constructs having different variants of the promoter with specific regions deleted (that is, deletion analysis). This approach may be used to identify, for example, the smallest region capable of conferring tissue specificity or the smallest region conferring hypoxia sensitivity.

30

A number of tissue specific promoters, described above, may be particularly advantageous in practising the present invention. In most instances, these promoters may be isolated as convenient restriction digestion fragments suitable for cloning in a selected vector. Alternatively, promoter fragments may be isolated using the polymerase chain

-21-

reaction. Cloning of the amplified fragments may be facilitated by incorporating restriction sites at the 5' end of the primers.

5 The NOI or NOIs may be under the expression control of an expression regulatory element, such as a promoter and enhancer.

Preferably the ischaemic responsive promoter is a tissue restricted ischaemic responsive promoter.

10 Preferably the tissue restricted ischaemic responsive promoter is a macrophage specific promoter restricted by repression.

Preferably the tissue restricted ischaemic responsive promoter is an endothelium specific promoter.

15 Preferably the regulated retroviral vector of the present invention is an ILRE regulated retroviral vector.

20 Preferably the regulated retroviral vector of the present invention is an ILRE regulated lentiviral vector.

Preferably the regulated retroviral vector of the present invention is an autoregulated hypoxia responsive lentiviral vector.

25 Preferably the regulated retroviral vector of the present invention is regulated by glucose concentration.

For example, the glucose-regulated proteins (grp's) such as grp78 and grp94 are highly conserved proteins known to be induced by glucose deprivation (Attenello and Lee 1984
30 Science 226 187-190). The grp 78 gene is expressed at low levels in most normal healthy tissues under the influence of basal level promoter elements but has at least two critical "stress inducible regulatory elements" upstream of the TATA element (Attenello 1984 ibid; Gazit *et al* 1995 Cancer Res 55: 1660-1663). Attachment to a truncated 632 base

-22-

pair sequence of the 5' end of the grp78 promoter confers high inducibility to glucose deprivation on reporter genes *in vitro* (Gazit *et al* 1995 *ibid*). Furthermore, this promoter sequence in retroviral vectors was capable of driving a high level expression of a reporter gene in tumour cells in murine fibrosarcomas, particularly in central relatively 5 ischaemic/fibrotic sites (Gazit *et al* 1995 *ibid*).

Preferably the regulated retroviral vector of the present invention is a self-inactivating (SIN) vector.

10 By way of example, self-inactivating retroviral vectors have been constructed by deleting the transcriptional enhancers or the enhancers and promoter in the U3 region of the 3' LTR. After a round of vector reverse transcription and integration, these changes are copied into both the 5' and the 3' LTRs producing a transcriptionally inactive provirus (Yu *et al* 1986 Proc Natl Acad Sci 83: 3194-3198; Dougherty and Temin 1987 Proc Natl
15 Acad Sci 84: 1197-1201; Hawley *et al* 1987 Proc Natl Acad Sci 84: 2406-2410; Yee *et al* 1987 Proc Natl Acad Sci 91: 9564-9568). However, any promoter(s) internal to the LTRs in such vectors will still be transcriptionally active. This strategy has been employed to eliminate effects of the enhancers and promoters in the viral LTRs on transcription from internally placed genes. Such effects include increased transcription (Jolly *et al* 1983
20 Nucleic Acids Res 11: 1855-1872) or suppression of transcription (Emerman and Temin 1984 Cell 39: 449-467). This strategy can also be used to eliminate downstream transcription from the 3' LTR into genomic DNA (Herman and Coffin 1987 Science 236: 845-848). This is of particular concern in human gene therapy where it is of critical importance to prevent the adventitious activation of an endogenous oncogene.

25

RETROVIRAL VECTORS

The regulated retroviral vector of the present invention includes but is not limited to:
murine leukemia virus (MLV), human immunodeficiency virus (HIV), equine infectious
30 anaemia virus (EIAV), feline immunodeficiency virus (FIV), caprine encephalitis-arthritis
virus (CAEV), mouse mammary tumour virus (MMTV), Rous sarcoma virus (RSV),
Fujinami sarcoma virus (FuSV), Moloney murine leukemia virus (Mo-MLV), FBR
murine osteosarcoma virus (FBR MSV), Moloney murine sarcoma virus (Mo-MSV),

-23-

Abelson murine leukemia virus (A-MLV), Avian myelocytomatosis virus-29 (MC29), and Avian erythroblastosis virus (AEV).

5 A detailed list of retroviruses may be found in Coffin *et al* ("Retroviruses" 1997 Cold Spring Harbour Laboratory Press Eds: JM Coffin, SM Hughes, HE Varmus pp 758-763).

Preferred vectors for use in accordance with the present invention are retroviral vectors, such as MLV vectors.

10 Preferably the recombinant retroviral vectors of the present invention are lentiviral vectors, more preferably HIV or EIAV vectors.

LENTIVIRAL VECTORS

15 The lentiviruses can be divided into primate and non-primate groups. Examples of primate lentiviruses include but are not limited to: the human immunodeficiency virus (HIV), the causative agent of human auto-immunodeficiency syndrome (AIDS), and the simian immunodeficiency virus (SIV). The non-primate lentiviral group includes the prototype "slow virus" visna/maedi virus (VMV), as well as the related caprine arthritis-
20 encephalitis virus (CAEV), equine infectious anaemia virus (EIAV) and the more recently described feline immunodeficiency virus (FIV) and bovine immunodeficiency virus (BIV).

A distinction between the lentivirus family and other types of retroviruses is that
25 lentiviruses have the capability to infect both dividing and non-dividing cells (Lewis *et al* 1992 EMBO. J 11: 3053-3058; Lewis and Emerman 1994 J. Virol. 68: 510-516). In contrast, other retroviruses - such as MLV - are unable to infect non-dividing cells such as those that make up, for example, muscle, brain, lung and liver tissue.

30 Preferred vectors for use in accordance with the present invention are recombinant retroviral vectors, in particular recombinant lentiviral vectors, in particular minimal lentiviral vectors which are disclosed in WO 99/32646 and in WO98/17815.

-24-

VECTOR

As used herein, a "vector" denotes a tool that allows or facilitates the transfer of an entity from one environment to another. In accordance with the present invention, and by way 5 of example, some vectors used in recombinant DNA techniques allow entities, such as a segment of DNA (such as a heterologous DNA segment, such as a heterologous cDNA segment), to be transferred into a target cell. Optionally, once within the target cell, the vector may then serve to maintain the heterologous DNA within the cell or may act as a unit of DNA replication. Examples of vectors used in recombinant DNA techniques 10 include plasmids, chromosomes, artificial chromosomes or viruses.

OPERABLY LINKED

The term "operably linked" denotes a relationship between a regulatory region (typically 15 a promoter element, but may include an enhancer element) and the coding region of a gene, whereby the transcription of the coding region is under the control of the regulatory region.

DERIVABLE

20 The term "derivable" is used in its normal sense as meaning a nucleotide sequence such as an LTR or a part thereof which need not necessarily be obtained from a vector such as a retroviral vector but instead could be derived therefrom. By way of example, the sequence may be prepared synthetically or by use of recombinant DNA techniques.

25

VECTOR PARTICLES

In the present invention, several terms are used interchangeably. Thus, "virion", "virus", "viral particle", "retroviral particle", "retrovirus", and "vector particle" mean virus and 30 virus-like particles that are capable of introducing a nucleic acid into a cell through a viral-like entry mechanism. Such vector particles can, under certain circumstances, mediate the transfer of NOIs into the cells they infect. A retrovirus is capable of reverse

-25-

transcribing its genetic material into DNA and incorporating this genetic material into a target cell's DNA upon transduction. Such cells are designated herein as "target cells".

A vector particle includes the following components: a retrovirus nucleic acid, which may
5 contain one or more NOIs, a nucleocapsid encapsidating the nucleic acid, the nucleocapsid comprising nucleocapsid protein of a retrovirus, and a membrane surrounding the nucleocapsid.

NUCLEOCAPSID

10

The term "nucleocapsid" refers to at least the group specific viral core proteins (*gag*) and the viral polymerase (*pol*) of a retrovirus genome. These proteins encapsidate the retrovirus-packagable sequences and themselves are further surrounded by a membrane containing an envelope glycoprotein.

15

Preferably a high titre retroviral vector is produced using a codon optimised gag and a codon optimised pol or a codon optimised env.

CODON OPTIMISATION

20

As used herein, the terms "codon optimised" and "codon optimisation" refer to an improvement in codon usage. By way of example, alterations to the coding sequences for viral components may improve the sequences for codon usage in the mammalian cells or other cells which are to act as the producer cells for retroviral vector particle production.
25 This is referred to as "codon optimisation". Many retroviruses, including HIV and other lentiviruses, use a large number of rare codons and by changing these to correspond to commonly used mammalian codons, increased expression of the packaging components in mammalian producer cells can be achieved. Codon usage tables are known in the art for mammalian cells, as well as for a variety of other organisms.

30 Preferably a high titre lentiviral vector is produced using a codon optimised gag and a codon optimised pol or a codon optimised env.

-26-

Preferably a high titre retroviral vector is produced using a modified and/or extended packaging signal.

PACKAGING SIGNAL

5

As used herein, the term "packaging signal" or "packaging sequence" refers to sequences located within the retroviral genome which are required for insertion of the viral RNA into the viral capsid or particle. Several retroviral vectors use the minimal packaging signal (also referred to as the psi sequence) needed for encapsidation of the viral genome.

- 10 By way of example, this minimal packaging signal encompasses bases 212 to 563 of the Mo-MLV genome (Mann et al 1983: Cell 33: 153).

As used herein, the term "extended packaging signal" or "extended packaging sequence" refers to the use of sequences around the psi sequence with further extension into the gag 15 gene. The inclusion of these additional packaging sequences may increase the efficiency of insertion of vector RNA into viral particles.

Preferably a high titre lentiviral vector is produced using a modified packaging signal.

- 20 Preferably the lentiviral construct is a based on an EIAV vector genome where all the accessory genes are removed except Rev.

ACCESSORY GENES

- 25 As used herein, the term "accessory genes" refer to a variety of virally encoded accessory proteins capable of modulating various aspects of retroviral replication and infectivity. These proteins are discussed in Coffin et al (ibid) (Chapters 6 and 7). Examples of accessory proteins in lentiviral vectors include but are not limited to tat, rev, nef, vpr, vpu, vif, vpx. An example of a lentiviral vector useful in the present invention is one which 30 has all of the accessory genes removed except rev.

Preferably the production of lentiviral vector particles is increased by about 10 fold in the presence of EIAV Rev.

-27-

ENV

If the retroviral component includes an *env* nucleotide sequence, then all or part of that sequence can be optionally replaced with all or part of another *env* nucleotide sequence such as, by way of example, the amphotropic Env protein designated 4070A or the influenza haemagglutinin (HA) or the vesicular stomatitis virus G (VSV-G) protein. Replacement of the *env* gene with a heterologous *env* gene is an example of a technique or strategy called pseudotyping. Pseudotyping is not a new phenomenon and examples may be found in WO-A-98/05759, WO-A-98/05754, WO-A-97/17457, WO-A-96/09400, WO-A-91/00047 and Mebatsion *et al* 1997 Cell 90, 841-847.

In one preferred aspect, the retroviral vector of the present invention has been pseudotyped. In this regard, pseudotyping can confer one or more advantages. For example, with the lentiviral vectors, the *env* gene product of the HIV based vectors would restrict these vectors to infecting only cells that express a protein called CD4. But if the *env* gene in these vectors has been substituted with *env* sequences from other RNA viruses, then they may have a broader infectious spectrum (Verma and Somia 1997 Nature 389:239-242). By way of example, workers have pseudotyped an HIV based vector with the glycoprotein from VSV (Verma and Somia 1997 *ibid*).

20

In another alternative, the Env protein may be a modified Env protein such as a mutant or engineered Env protein. Modifications may be made or selected to introduce targeting ability or to reduce toxicity or for another purpose (Valsesia-Wittman *et al* 1996 J Virol 70: 2056-64; Nilson *et al* 1996 Gene Therapy 3: 280-6; Fielding *et al* 1998 Blood 9: 1802 and references cited therein).

TARGET CELL

As used herein the term "target cell" simply refers to a cell which the regulated retroviral vector of the present invention, whether native or targeted, is capable of infecting or transducing.

-28-

The lentiviral vector particle according to the invention will be capable of transducing cells which are slowly-dividing, and which non-lentiviruses such as MLV would not be able to efficiently transduce. Slowly-dividing cells divide once in about every three to four days including certain tumour cells. Although tumours contain rapidly dividing 5 cells, some tumour cells especially those in the centre of the tumour, divide infrequently.

Alternatively the target cell may be a growth-arrested cell capable of undergoing cell division such as a cell in a central portion of a tumour mass or a stem cell such as a haematopoietic stem cell or a CD34-positive cell.

10

As a further alternative, the target cell may be a precursor of a differentiated cell such as a monocyte precursor, a CD33-positive cell, or a myeloid precursor.

15

As a further alternative, the target cell may be a differentiated cell such as a neuron, astrocyte, glial cell, microglial cell, macrophage, monocyte, epithelial cell, endothelial cell, hepatocyte, spermatocyte, spermatid or spermatozoa.

Target cells may be transduced either *in vitro* after isolation from a human individual or may be transduced directly *in vivo*.

20

NOI

In accordance with the present invention, it is possible to manipulate the viral genome or the regulated retroviral vector nucleotide sequence, so that viral genes are replaced or supplemented with one or more NOIs which may be heterologous NOIs.

25

The term "heterologous" refers to a nucleic acid sequence or protein sequence linked to a nucleic acid or protein sequence which it is not naturally linked.

30

With the present invention, the term NOI (i.e. nucleotide sequence of interest) includes any suitable nucleotide sequence, which need not necessarily be a complete naturally occurring DNA sequence. Thus, the DNA sequence can be, for example, a synthetic DNA sequence, a recombinant DNA sequence (i.e. prepared by use of recombinant DNA techniques), a cDNA sequence or a partial genomic DNA sequence, including

-29-

combinations thereof. The DNA sequence need not be a coding region. If it is a coding region, it need not be an entire coding region. In addition, the DNA sequence can be in a sense orientation or in an anti-sense orientation. Preferably, it is in a sense orientation. Preferably, the DNA is or comprises cDNA.

5

The NOI(s) may be any one or more of selection gene(s), marker gene(s) and therapeutic gene(s). As used herein, the term "selection gene" refers to the use of a NOI which encodes a selectable marker which may have an enzymatic activity that confers resistance to an antibiotic or drug upon the cell in which the selectable marker is expressed.

10

SELECTABLE MARKERS

Many different selectable markers have been used successfully in retroviral vectors. These are reviewed in "Retroviruses" (1997 Cold Spring Harbour Laboratory Press Eds: 15 JM Coffin, SM Hughes, HE Varmus pp 444) and include, but are not limited to, the bacterial neomycin (*neo*) and hygromycin phosphotransferase genes which confer resistance to G418 and hygromycin respectively; a mutant mouse dihydrofolate reductase gene which confers resistance to methotrexate; the bacterial *gpt* gene which allows cells to grow in medium containing mycophenolic acid, xanthine and aminopterin; the bacterial *hisD* gene which allows cells to grow in medium without histidine but containing histidinol; the multidrug resistance gene (*mdr*) which confers resistance to a variety of drugs; and the bacterial genes which confer resistance to puromycin or phleomycin. All of these markers are dominant selectable and allow chemical selection of most cells expressing these genes. Other selectable markers are not dominant in that their use must 20 be in conjunction with a cell line that lacks the relevant enzyme activity. Examples of 25 non-dominant selectable markers include the thymidine kinase (*tk*) gene which is used in conjunction with *tk* cell lines.

Particularly preferred markers are blasticidin and neomycin, optionally operably linked to 30 a thymidine kinase coding sequence typically under the transcriptional control of a strong viral promoter such as the SV40 promoter.

-30-

NOIs WITH THERAPEUTIC AND/OR DIAGNOSTIC APPLICATIONS

In accordance with the present invention, suitable NOI sequences include those that are of therapeutic and/or diagnostic application such as, but are not limited to: sequences 5 encoding cytokines, chemokines, hormones, antibodies, engineered immunoglobulin-like molecules, a single chain antibody, fusion proteins, enzymes, immune co-stimulatory molecules, immunomodulatory molecules, anti-sense RNA, a transdominant negative mutant of a target protein, a toxin, a conditional toxin, an antigen, a tumour suppressor protein and growth factors, membrane proteins, vasoactive proteins and peptides, anti-10 viral proteins and ribozymes, and derivatives therof (such as with an associated reporter group). When included, such coding sequences may be typically operatively linked to a suitable promoter, which may be a promoter driving expression of a ribozyme(s), or a different promoter or promoters, such as in one or more specific cell types.

15 NOIs FOR TREATING CANCER

Suitable NOIs for use in the invention in the treatment or prophylaxis of cancer include NOIs encoding proteins which: destroy the target cell (for example a ribosomal toxin), act as: tumour suppressors (such as wild-type p53); activators of anti-tumour immune 20 mechanisms (such as cytokines, co-stimulatory molecules and immunoglobulins); inhibitors of angiogenesis; or which provide enhanced drug sensitivity (such as pro-drug activation enzymes); indirectly stimulate destruction of target cell by natural effector cells (for example, strong antigen to stimulate the immune system or convert a precursor substance to a toxic substance which destroys the target cell (for example a prodrug 25 activating enzyme).

PRO-DRUG ACTIVATING ENZYMES

Examples of prodrugs include but are not limited to etoposide phosphate (used with 30 alkaline phosphatase; 5-fluorocytosine (with cytosine deaminase); Doxorubicin-N-p-hydroxyphenoxyacetamide (with Penicillin-V-Amidase); Para-N-bis (2-chloroethyl)aminobenzoyl glutamate (with Carboxypeptidase G2); Cephalosporin nitrogen mustard carbamates (with B-lactamase); SR4233 (with p450 reductase);

-31-

Ganciclovir (with HSV thymidine kinase); mustard pro-drugs with nitroreductase and cyclophosphamide or ifosfamide (with cytochrome p450).

NOIs FOR TREATING HEART DISEASE

5

Suitable NOIs for use in the treatment or prevention of ischaemic heart disease include NOIs encoding plasminogen activators. Suitable NOIs for the treatment or prevention of rheumatoid arthritis or cerebral malaria include genes encoding anti-inflammatory proteins, antibodies directed against tumour necrosis factor (TNF) alpha, and anti-10 adhesion molecules (such as antibody molecules or receptors specific for adhesion molecules).

BYSTANDER EFFECT

15 The expression products encoded by the NOIs may be proteins which are secreted from the cell. Alternatively the NOI expression products are not secreted and are active within the cell. In either event, it is preferred for the NOI expression product to demonstrate a bystander effector or a distant bystander effect; that is the production of the expression product in one cell leading to the killing of additional, related cells, either neighbouring or 20 distant (e.g. metastatic), which possess a common phenotype. Encoded proteins could also destroy bystander tumour cells (for example with secreted antitumour antibody-ribosomal toxin fusion protein), indirectly stimulated destruction of bystander tumour cells (for example cytokines to stimulate the immune system or procoagulant proteins causing local vascular occlusion) or convert a precursor substance to a toxic substance 25 which destroys bystander tumour cells (eg an enzyme which activates a prodrug to a diffusible drug). Also, the delivery of NOI(s) encoding antisense transcripts or ribozymes which interfere with expression of cellular genes for tumour persistence (for example against aberrant *myc* transcripts in Burkitts lymphoma or against *bcr-abl* transcripts in chronic myeloid leukemia. The use of combinations of such NOIs is also envisaged.

30

-32-

CYTOKINES

The NOI or NOIs of the present invention may also comprise one or more cytokine-encoding NOIs. Suitable cytokines and growth factors include but are not limited to:

- 5 ApoE, Apo-SAA, BDNF, Cardiotrophin-1, EGF, ENA-78, Eotaxin, Eotaxin-2, Exodus-2, FGF-acidic, FGF-basic, fibroblast growth factor-10 (Marshall 1998 *Nature Biotechnology* 16: 129).FLT3 ligand (Kimura *et al* (1997), Fractalkine (CX3C), GDNF, G-CSF, GM-CSF, GF- β 1, insulin, IFN- γ , IGF-I, IGF-II, IL-1 α , IL-1 β , IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-8 (72 a.a.), IL-8 (77 a.a.), IL-9, IL-10, IL-11, IL-12, IL-13, IL-15, IL-16, IL-17, IL-10 18 (IGIF), Inhibin α , Inhibin β , IP-10, keratinocyte growth factor-2 (KGF-2), KGF, Leptin, LIF, Lymphotactin, Mullerian inhibitory substance, monocyte colony inhibitory factor, monocyte attractant protein (Marshall 1998 *ibid*), M-CSF, MDC (67 a.a.), MDC (69 a.a.), MCP-1 (MCAF), MCP-2, MCP-3, MCP-4, MDC (67 a.a.), MDC (69 a.a.), MIG, MIP-1 α , MIP-1 β , MIP-3 α , MIP-3 β , MIP-4, myeloid progenitor inhibitor factor-1 (MPIF-1), NAP-2, Neurturin, Nerve growth factor, β -NGF, NT-3, NT-4, Oncostatin M, PDGF-AA, PDGF-AB, PDGF-BB, PF-4, RANTES, SDF1 α , SDF1 β , SCF, SCGF, stem cell factor (SCF), TARC, TGF- α , TGF- β , TGF- β 2, TGF- β 3, tumour necrosis factor (TNF), TNF- α , TNF- β , TNIL-1, TPO, VEGF, GCP-2, GRO/MGSA, GRO- β , GRO- γ , HCC1, 1-309.

20

The NOI or NOIs may be under the expression control of an expression regulatory element, such as a promoter and/or a promoter enhancer as known as "responsive elements" in the present invention.

25 VIRAL DELIVERY SYSTEMS

When the regulated retroviral vector particles are used to transfer NOIs into cells which they transduce, such vector particles also designated "viral delivery systems" or "retroviral delivery systems". Viral vectors, including retroviral vectors, have been used 30 to transfer NOIs efficiently by exploiting the viral transduction process. NOIs cloned into the retroviral genome can be delivered efficiently to cells susceptible to transduction by a retrovirus. Through other genetic manipulations, the replicative capacity of the retroviral

-33-

genome can be destroyed. The vectors introduce new genetic material into a cell but are unable to replicate.

The regulated retroviral vector of the present invention can be delivered by viral or non-viral techniques. Non-viral delivery systems include but are not limited to DNA transfection methods. Here, transfection includes a process using a non-viral vector to deliver a gene to a target mammalian cell.

Typical transfection methods include electroporation, DNA biolistics, lipid-mediated transfection, compacted DNA-mediated transfection, liposomes, immunoliposomes, lipofectin, cationic agent-mediated, cationic facial amphiphiles (CFAs) (Nature Biotechnology 1996 14; 556), multivalent cations such as spermine, cationic lipids or polylysine, 1, 2-bis (oleoyloxy)-3-(trimethylammonio) propane (DOTAP)-cholesterol complexes (Wolff and Trubetskoy 1998 Nature Biotechnology 16: 421) and combinations thereof.

Viral delivery systems include but are not limited to adenovirus vector, an adeno-associated viral (AAV) vector, a herpes viral vector, a retroviral vector, a lentiviral vector, or a baculoviral vector. These viral delivery systems may be configured as a split-intron vector. A split intron vector is described in WO 99/15683.

Other examples of vectors include *ex vivo* delivery systems, which include but are not limited to DNA transfection methods such as electroporation, DNA biolistics, lipid-mediated transfection, compacted DNA-mediated transfection.

The vector may be a plasmid DNA vector. Alternatively, the vector may be a recombinant viral vector. Suitable recombinant viral vectors include adenovirus vectors, adeno-associated viral (AAV) vectors, Herpes-virus vectors, or retroviral vectors, lentiviral vectors or a combination of adenoviral and lentiviral vectors. In the case of viral vectors, gene delivery is mediated by viral infection of a target cell.

-34-

If the features of adenoviruses are combined with the genetic stability of retro/lentiviruses then essentially the adenovirus can be used to transduce target cells to become transient retroviral producer cells that could stably infect neighbouring cells.

5 PHARMACEUTICAL COMPOSITION

The present invention also provides a pharmaceutical composition for treating an individual by gene therapy, wherein the composition comprises a therapeutically effective amount of a regulated retroviral vector according to the present invention. The 10 pharmaceutical composition may be for human or animal usage. Typically, a physician will determine the actual dosage which will be most suitable for an individual subject and it will vary with the age, weight and response of the particular patient.

The composition may optionally comprise a pharmaceutically acceptable carrier, diluent, 15 excipient or adjuvant. The choice of pharmaceutical carrier, excipient or diluent can be selected with regard to the intended route of administration and standard pharmaceutical practice. The pharmaceutical compositions may comprise as - or in addition to - the carrier, excipient or diluent any suitable binder(s), lubricant(s), suspending agent(s), coating agent(s), solubilising agent(s), and other carrier agents that may aid or increase 20 the viral entry into the target site (such as for example a lipid delivery system).

Where appropriate, the pharmaceutical compositions can be administered by any one or more of: minipumps, inhalation, in the form of a suppository or pessary, topically in the form of a lotion, solution, cream, ointment or dusting powder, by use of a skin patch, 25 orally in the form of tablets containing excipients such as starch or lactose, or in capsules or ovules either alone or in admixture with excipients, or in the form of elixirs, solutions or suspensions containing flavouring or colouring agents, or they can be injected parenterally, for example intracavernosally, intravenously, intramuscularly or subcutaneously. For parenteral administration, the compositions may be best used in the 30 form of a sterile aqueous solution which may contain other substances, for example enough salts or monosaccharides to make the solution isotonic with blood. For buccal or sublingual administration the compositions may be administered in the form of tablets or lozenges which can be formulated in a conventional manner.

-35-

DISORDERS

The present invention is believed to have a wide therapeutic applicability - depending on *inter alia* the selection of the one or more NOIs.

5

For example, the present invention may be useful in the treatment of the disorders listed in WO-A-98/05635. For ease of reference, part of that list is now provided: cancer, inflammation or inflammatory disease, dermatological disorders, fever, cardiovascular effects, haemorrhage, coagulation and acute phase response, cachexia, anorexia, acute 10 infection, HIV infection, shock states, graft-versus-host reactions, autoimmune disease, reperfusion injury, meningitis, migraine and aspirin-dependent anti-thrombosis; tumour growth, invasion and spread, angiogenesis, metastases, malignant, ascites and malignant pleural effusion; cerebral ischaemia, ischaemic heart disease, osteoarthritis, rheumatoid arthritis, osteoporosis, asthma, multiple sclerosis, neurodegeneration, Alzheimer's disease, 15 atherosclerosis, stroke, vasculitis, Crohn's disease and ulcerative colitis; periodontitis, gingivitis; psoriasis, atopic dermatitis, chronic ulcers, epidermolysis bullosa; corneal ulceration, retinopathy and surgical wound healing; rhinitis, allergic conjunctivitis, eczema, anaphylaxis; restenosis, congestive heart failure, endometriosis, atherosclerosis or endosclerosis.

20

In addition, or in the alternative, the present invention may be useful in the treatment of disorders listed in WO-A-98/07859. For ease of reference, part of that list is now provided: cytokine and cell proliferation/differentiation activity; immunosuppressant or immunostimulant activity (e.g. for treating immune deficiency, including infection with 25 human immune deficiency virus; regulation of lymphocyte growth; treating cancer and many autoimmune diseases, and to prevent transplant rejection or induce tumour immunity); regulation of haematopoiesis, e.g. treatment of myeloid or lymphoid diseases; promoting growth of bone, cartilage, tendon, ligament and nerve tissue, e.g. for healing wounds, treatment of burns, ulcers and periodontal disease and neurodegeneration; 30 inhibition or activation of follicle-stimulating hormone (modulation of fertility); chemotactic/chemokinetic activity (e.g. for mobilising specific cell types to sites of injury or infection); haemostatic and thrombolytic activity (e.g. for treating haemophilia and stroke); antiinflammatory activity (for treating e.g. septic shock or Crohn's disease); as

-36-

antimicrobials; modulators of e.g. metabolism or behaviour; as analgesics; treating specific deficiency disorders; in treatment of e.g. psoriasis, in human or veterinary medicine.

- 5 In addition, or in the alternative, the present invention may be useful in the treatment of disorders listed in WO-A-98/09985. For ease of reference, part of that list is now provided: macrophage inhibitory and/or T cell inhibitory activity and thus, anti-inflammatory activity; anti-immune activity, i.e. inhibitory effects against a cellular and/or humoral immune response, including a response not associated with inflammation;
- 10 inhibit the ability of macrophages and T cells to adhere to extracellular matrix components and fibronectin, as well as up-regulated fas receptor expression in T cells; inhibit unwanted immune reaction and inflammation including arthritis, including rheumatoid arthritis, inflammation associated with hypersensitivity, allergic reactions, asthma, systemic lupus erythematosus, collagen diseases and other autoimmune diseases,
- 15 inflammation associated with atherosclerosis, arteriosclerosis, atherosclerotic heart disease, reperfusion injury, cardiac arrest, myocardial infarction, vascular inflammatory disorders, respiratory distress syndrome or other cardiopulmonary diseases, inflammation associated with peptic ulcer, ulcerative colitis and other diseases of the gastrointestinal tract, hepatic fibrosis, liver cirrhosis or other hepatic diseases, thyroiditis or other glandular diseases, glomerulonephritis or other renal and urologic diseases, otitis or other oto-rhino-laryngological diseases, dermatitis or other dermal diseases, periodontal diseases or other dental diseases, orchitis or epididymo-orchitis, infertility, orchidal trauma or other immune-related testicular diseases, placental dysfunction, placental insufficiency, habitual abortion, eclampsia, pre-eclampsia and other immune and/or
- 20 inflammatory-related gynaecological diseases, posterior uveitis, intermediate uveitis, anterior uveitis, conjunctivitis, chorioretinitis, uveoretinitis, optic neuritis, intraocular inflammation, e.g. retinitis or cystoid macular oedema, sympathetic ophthalmia, scleritis, retinitis pigmentosa, immune and inflammatory components of degenerative fundus disease, inflammatory components of ocular trauma, ocular inflammation caused by
- 25 infection, proliferative vitreo-retinopathies, acute ischaemic optic neuropathy, excessive scarring, e.g. following glaucoma filtration operation, immune and/or inflammation reaction against ocular implants and other immune and inflammatory-related ophthalmic diseases, inflammation associated with autoimmune diseases or conditions or disorders

-37-

where, both in the central nervous system (CNS) or in any other organ, immune and/or inflammation suppression would be beneficial, Parkinson's disease, complication and/or side effects from treatment of Parkinson's disease, AIDS-related dementia complex HIV-related encephalopathy, Devic's disease, Sydenham chorea, Alzheimer's disease and other
5 degenerative diseases, conditions or disorders of the CNS, inflammatory components of stokes, post-polio syndrome, immune and inflammatory components of psychiatric disorders, myelitis, encephalitis, subacute sclerosing pan-encephalitis, encephalomyelitis, acute neuropathy, subacute neuropathy, chronic neuropathy, Guillain-Barre syndrome, Sydenham chora, myasthenia gravis, pseudo-tumour cerebri, Down's Syndrome,
10 Huntington's disease, amyotrophic lateral sclerosis, inflammatory components of CNS compression or CNS trauma or infections of the CNS, inflammatory components of muscular atrophies and dystrophies, and immune and inflammatory related diseases, conditions or disorders of the central and peripheral nervous systems, post-traumatic inflammation, septic shock, infectious diseases, inflammatory complications or side
15 effects of surgery, bone marrow transplantation or other transplantation complications and/or side effects, inflammatory and/or immune complications and side effects of gene therapy, e.g. due to infection with a viral carrier, or inflammation associated with AIDS, to suppress or inhibit a humoral and/or cellular immune response, to treat or ameliorate monocyte or leukocyte proliferative diseases, e.g. leukaemia, by reducing the amount of
20 monocytes or lymphocytes, for the prevention and/or treatment of graft rejection in cases of transplantation of natural or artificial cells, tissue and organs such as cornea, bone marrow, organs, lenses, pacemakers, natural or artificial skin tissue.

INTRODUCTION TO THE EXAMPLES SECTION AND THE FIGURES

25

The present invention will now be described only by way of example in which reference is made to the following Figures:

Figure 1 shows an MLV-based transduction method using a Cre/LoxP system as
30 described by Vanin *et al ibid* (1997);

Figure 2 shows an EIAV-based transduction method using a Cre/Lox system;

-38-

Figure 3 shows an MLV SIN vector construct transduction method with an EIAV/HIV genome insertion using a Cre/Lox system;

5 Figure 4 shows an MLV-based transduction method with HRE 3'LTR using a Cre/Lox P system;

Figure 5 shows an MLV-based transduction method for MLV SIN vector production using a Cre/Lox P system;

10 Figure 6 shows an MLV-based transduction method with integration of a complete second genome construct using a Cre/LoxP system;

Figure 7 shows the basis molecular organisation of an RNA genome and a proviral DNA genome;

15 Figure 8 shows a schematic diagram of pTrap2 and pONY8z-loxP plasmids;

Figure 9 shows an overall summary of the recombinase method;

20 Figure 10a shows a FACS analysis of EV1 packaging cells prior to transduction with Trap2 vector;

Figure 10b shows FACS analysis of EV1 packaging cell line transduced with Trap2 at an MOI of 0.3. A 5% top slice of the highest expressers was carried out;

25 Figure 11 shows a validation of the method for quantitation of GFP mRNA, relative to β -actin. A titration of the total RNA from EV1 clone A was used. The difference in Ct values between the two assays is shown on the y axis. The magnitude of the gradient must be <0.1 for the method to be valid. The gradient is 0.077, so the method is suitable;

30 Figure 12 shows the quantitation of GFP mRNA relative to control β -actin mRNA. EV2 TD cells are transduced with Trap2 at an MOI of 0.3 and are the calibrator sample with the ratio designated 1.0;

-39-

Figure 13 shows FACS analysis of EV1 clone A:

Figure 13A shows original GFP expression of the clone;

- 5 Figure 13B shows GFP expression 7 days after transfection with Cre recombinase (pBS185). Excision frequency is 64%;

Figure 13C shows recombined clone 4 identified as being negative for GFP:

- 10 Figure 14 shows lacZ expression of transfected cells with and without the addition of the Cre recombinase (pBS185). Figure 14 shows EV1A4 and EV2D4 clones with and without the addition of Cre recombinase (pBS185). The efficiency of the insertion event was estimated to be about 12% by computer image analysis;
- 15 Figure 15 shows the structure of pONY8.1Z MLVHyb;

- Figure 16 shows the alignment of leader and gag regions present in vectors pONY4Z, 8Z and ATG mutated 8Z vector. The latter is referred to as pONY8ZA. The sequences aligned are from the NarI site in the leader to the XbaI site between the EIAV gag sequence and the CMV promoter. Sequences in the leader are shown in italic and a space is present upstream of the position of the gag ATG; and

25 Figure 17 shows a schematic representation of the structure of pONY 8.3G +/- vector genome plasmids.

25

EXAMPLES

EXAMPLE 1

- 30 Vanin *et al* (*ibid*) describe a recombinase system whereby an initial retroviral transduction event introduces retroviral LTRs and expressed gene/s flanked by two recombinase target sites (exemplified by loxP) into a cell line. Stable transduced cell lines are selected by resistance to the antibiotic neomycin and screened for high expression of

-40-

the expressed gene(s) (see Figure 1). Such cell lines (Cell Line 1) contain retroviral insertions in integration sites that support high level expression from the retroviral genome.

- 5 The next step involves the transfection of the relevant recombinase expression construct (exemplified here by Cre recombinase) into the identified high expressing cell line. The expressed gene(s) is/are excised and a single loxP site is retained in the construct (Cell Line 2). In this instance, thymidine kinase gene (tk) is used as a negative selectable marker in combination with the drug, gancyclovir. The final step involves the re-
10 insertion of a therapeutic or marker gene of choice into the single loxP site via a Cre-assisted mechanism. Cell lines are identified that have been successfully recombined (Cell Line 3) and they will produce retroviruses at the same titre as the parental Cell Line 1.

15 **EXAMPLE 2**

Figure 2 and Figure 3 describe the production of EIAV or HIV high titre transduced producer cell lines.

- 20 Figure 2 shows a minimal EIAV genome construct with the 3' U3 sequences replaced by a strong constitutive promoter, CMV. A reporter gene such as blasticidin resistance gene (*bsr*) is flanked by loxP sites. Virus is made in a transient system and is transduced into an EIAV producer cell line and clones identified that maximally express the blast marker gene. A line is chosen (termed Cell Line 1) and the marker gene is excised by a Cre recombinase-assisted excision event, generating Cell Line 2.
25

Construct B comprises two loxP sites which flank an internal expression cassette and also the native EIAV 3' LTR. Therefore, this construct is recombined into the cell line such that the 5' R and U5 sequences are inherited from the packaging cell line, whereas the 3'
30 LTR sequences are wholly derived from the recombined construct. The 3' LTR from Cell Line 2 is present downstream of the functional EIAV genome expression construct. This CMV-R-U5 module is still transcriptionally active but expression is directed away from the EIAV genome.

-41-

Figure 3 shows a further aspect of the invention. Construct C is based on an MLV SIN vector, with a deletion in the 3' U3 sequences. The cassette includes an internal CMV promoter linked to EIAV R and U5 sequences. This is followed by a blasticidin resistance gene (*bsr*) flanked by two loxP sites. Virus is made in a transient transfection system and the genome is transduced into a packaging line. Blast-resistant clones are identified and the highest expressing line is chosen for further analysis. This line is transfected with Cre recombinase and the blast gene is excised. The last step involves the insertion of construct B into the single loxP site. Once again, a complete EIAV 3' LTR is introduced into the producer cell line. This leads to a CMV-driven EIAV genome expression cassette with the EIAV 3' LTR still located at the 3' end of the genome. Transcriptionally quiescent MLV SIN LTRs flanks these EIAV sequences.

EXAMPLE 3

Figure 4 shows an additional aspect of the invention. Construct D is an MLV-based vector with a CMV promoter in the 3' LTR in place of the U3 sequences. Virus is made in a transient system and is transduced into a packaging cell line as described previously. The neo and TK genes are excised by the action of Cre recombinase and construct E is recombined into the single loxP target sequence. The modified MLV 3' LTR including the HRE or similarly regulated system is transferred into the packaging cell line by the recombinase mechanism. Therefore, the 5' R and U5 sequences are inherited from the producer cell line whereas the therapeutic and marker gene/s and regulated 3' LTR is inherited from construct E. The final producer cell line is constitutively driven by the 5' CMV promoter and will produce high titre retroviral vectors which are regulated in the transduced target cells. This approach avoids the derivation of low titre transfected producer cell lines or the use of hypoxic conditions or chemical mimics for production from traditionally derived transduced producer lines.

EXAMPLE 4

Figure 5 shows yet another aspect of the invention. Construct D is an MLV-based vector with a CMV promoter in the 3' LTR as previously described. The same process is carried

-12-

out as shown in Figure 4 until the final recombination is performed. Construct F contains a deletion in U3 sequences in the 3' LTR and an internal expression cassette comprising a promoter and gene sequences. The final cell line containing the Cre-mediated recombination will be CMV-driven and will constitutively produce high titre MLV SIN vectors. Previously, SIN vectors have not been amenable to production by stable cell line producer technology. Instead they have been prepared using transfection-based transient expression systems.

EXAMPLE 5

10

Figure 6 shows an MLV-based transduction method with integration of complete second genome construct by Cre/LoxP system. In this approach, construct 1 is called TRAP1) is an MLV vector construct containing an internal CMV promoter operably linked to a marker gene (a truncated form of the human low affinity nerve growth factor receptor, called LNGFR). The enhancer elements in the 3' U3 sequence have been excised and replaced by a 34bp loxP site. Virus stocks are prepared in a transient system and the TRAP1 genome is stably transduced into packaging cell lines.

15 The modified 3'U3 sequences, including the lox P sequence, is copied from the 3'LTR position to the 5'LTR, such that there is little 5' promoter activity. Cell lines are screened for high levels of expression of LNGFR protein by fluorescent activated cell sorter (FACS) analysis and clonal lines are derived by standard techniques. A Cre recombinase expression plasmid is transfected into the derived cell line to excise all sequences between the two loxP sites. Next, cells are negatively selected by FACS for absence of 20 LNGFR expression and clonal lines are derived by standard techniques. Construct 2 in this example comprises a complete HIV or EIAV or also MLV retroviral genome, which is flanked by two minimal 34bp loxP recombinase sites. A strong constitutive promoter such as CMV directs transcription of the genome. On transfection of plasmid 2 and Cre 25 expression plasmid, the complete lentivirus vector or MLV vector genome is inserted in the producer cell line. These sequences are flanked to the 5' by a small portion of MLV U3 sequence and a loxP site and to the 3' by the second loxP site, enhancerless-U3 sequences, R and U5 derived from the MLV construct 1.

-43-

Derivation of Plasmid TRAP1 (Figure 6 - Construct 1)

Oligonucleotides VSAT129 and VSAT130 were synthesised which correspond to the
5 minimal 34bp loxP sites and contain a 5' overhang for NheI and a 3' overhang for XbaI.
The sequences 5' to 3' are as follows: VSAT129 (CTAGCATAACTTCGTATA
ATGTATGCTATACGAAGTTATT) (SEQ ID No 49) and VSAT130
(CTAGAATAACTTCGTATAGC ATACATTATACGAAGTTATG) (SEQ ID No 50).
The two oligonucleotides were treated with T4 polynucleotide kinase and were heated to
10 95°C for 5 minutes, before gradual cooling to room temperature. The annealed and
kinased oligos were ligated to a 2,830 bp NheI/XbaI fragment from LTR plasmid (SEQ
ID No 59). Fragments were ligated and correct clones of LTRloxP were identified by
sequence analysis. Plasmid LTRloxP was then digested with NheI and ScaI and a
2.185bp fragment was prepared for following cloning steps.

15 Plasmids TRAP1 and TRAP1G were derived from LTRloxP and the MLV genome
CGCLNGFR (encodes GFP and LNGFR from an internal CMV promoter – see SEQ ID
No 57). However, the GFP gene was excised by EcoRI/BsmI digestion and the 6,796bp
fragment was filled in by T4 DNA polymerase and re-ligated, in order to generate
20 plasmid CXCLNGFR. Plasmid TRAP1 was generated by ligation of a 2,185bp NheI/ScaI
fragment from LTRloxP (see SEQ ID No 58) to a 4,426bp NheI/ScaI fragment from
CXCLNGFR. Plasmid TRAP1G was generated by ligation of a 2,185bp NheI/ScaI
fragment from LTRloxP to a 5,179bp NheI/ScaI fragment from CGCLNGFR.

25 Derivation of Plasmid pONY8z-lox (Figure 6 - Construct 2)

In this example, the retroviral genome inserted into the loxP site in Figure 6 was based on
the EIAV vector genome, pONY8z (for preparation see pONY8.0Z construction below).
pONY8z was cut with SnaBI and NruI, and the 4358bp fragment purified and self-ligated
30 to form pONY8z-shuttle. This plasmid has unique 5' sites (DraIII and BglII) and unique
3' sites (PvuII and BspLUII). Oligonucleotides encoding the 34bp loxP sites were
inserted with suitable base pair overhangs at the unique 5' DraIII site and then the unique
3' BspLUII, to generate plasmid pONY-8z-shuttleloxP.

-44-

Plasmid pONY8z-loxP was made as follows. Plasmid pONY-8z-shuttleloxP was digested with BsrG I and NspV, and the 3670bp fragment was purified as the vector fragment. The insert for ligation to this fragment was derived from pONY8z by partial digestion with BsrGI (two sites) followed by digestion with NspV. A 7,328bp fragment was purified and ligated to the 3670bp fragment described above.

The Cre recombinase plasmid as used in this system is pBS185 (Gibco).

10 **EXAMPLE 6**

We constructed an MLV self-inactivating (SIN) vector called pTrap2 (see SEQ ID No 56) by replacing the 3' U3 NheI-XbaI fragment with a 34-bp loxP sequence. The vector transcribes the marker gene GFP from an internal CMV promoter. Trap2 vector was used 15 to transduce EIAV packaging cell lines EV1 and EV2. The EV cell lines are based on human TE671 cells and express EIAV gag/pol proteins and VSV-G envelope, regulated by a temperature-sensitive switch. High expressing clones of transduced EV1 and EV2 cells were identified by FACS analysis for GFP. Individual clones expressing high levels 20 of GFP were then selected. The GFP expression cassette was excised following transient transfection with a Cre recombinase expression plasmid. The derived cell line, EV-loxP, contains a single loxP site and minimal sequences derived from the MLV construct pTrap2. An EIAV genome was engineered to contain loxP sites flanking the entire vector genome.

25 This genome construct and Cre recombinase were co-transfected into EV-loxP. Stable cell lines expressing lacZ were selected by FACS and cell lines were cloned by limiting dilution. Therefore, we have introduced an entire EIAV genome expression cassette into a single loxP site. This site was previously identified by MLV transduction as highly permissive for transgene expression. A 5' CMV promoter transcribes the lentiviral 30 genome in the producer cell line but the expression site was originally identified by MLV transduction. This method is adaptable to the generation of transduced producer cell lines for other lentiviral vector systems.

-45-

Materials and Methods

Vector construction: Plasmid pTrap2 was made as follows: A plasmid containing a single MLV LTR plasmid (LTRplasmid – SEQ ID No 59) was digested with *Nhe*I and 5 *Xba*I and a 34 bp minimal loxP site was introduced with relevant sticky ends. This insertion step removes the MLV U3 enhancer elements which lie within the excised *Nhe*I-*Xba*I fragment. The LTR-loxP plasmid was linearised by digestion with *Nhe*I and was ligated to a 6.8kb *Nhe*I fragment from the MLV construct CZCG (See SEQ ID No 55). This construct expresses lacZ from the 5' U3 promoter and GFP from an internal CMV 10 promoter. The resulting pTrap2 construct is shown in Figure 8.

The EIAV genome construct pONY8.0Z and pONY8.1Z were prepared as follows:

pONY8.0Z construction

15 pONY8.0Z was derived from pONY4.0Z (see WO 99/32646) by introducing mutations which 1) prevented expression of TAT by an 83nt deletion in the exon 2 of tat) prevented S2 ORF expression by a 51nt deletion 3) prevented REV expression by deletion of a single base within exon 1 of rev and 4) prevented expression of the N-terminal portion of 20 gag by insertion of T in ATG start codons, thereby changing the sequence to ATTG from ATG. With respect to the wild type EIAV sequence Acc. No. U01866 these correspond to deletion of nt 5234-5316 inclusive, nt 5346-5396 inclusive and nt 5538. The insertion of T residues was after nt 526 and 543.

25 pONY8.1Z construction

pONY8.1Z was obtained directly from pONY8.0Z by digestion with SalI and partial digestion with SapI. Following restriction the overhanging termini of the DNA were made blunt ended by treatment with T4 DNA polymerase. The resulting DNA was then 30 religated. This manipulation results in a deletion of sequence between the LacZ reporter gene and just upstream of the 3'PPT. The 3' border of the deletion is nt 7895 with respect to wild type EIAV, Acc. No. U01866. Thus pONY8.1Z does not contain sequences corresponding to the EIAV RREs.

-46-

Plasmid pONY8z was linearised by *Bg*II, and a single loxP site was cloned into *Bg*II, immediately upstream of the 5' CMV promoter, to produce pONY8z-loxP. Plasmids pONY3.2iresHYG and pHCMV-VSVG were used in the derivation of cell lines EV1 and
5 EV2. The plasmid pONY3.2iresHYG was constructed as follows:

pONY3.2IREShyg

pONY3.IREShyg was derived from pONY3.2. pONY3.2 is a derivative of pONY3.1 in
10 which expression of TAT and S2 are ablated by an 83nt deletion in the exon 2 of tat a
51nt deletion in S2 ORF. With respect to the wild type EIAV sequence Acc. No. U01866
these correspond to deletion of nt 5234-5316 inclusive and nt 5346-5396 inclusive. This
fragment was introduced into the expression vector pHORSE IRES hyg which was made
as follows. pHORSE (see WO 99/32646) was cut with SnaBI and NotI which excises a
15 fragment running from the CMV promoter through EIAV gag/pol and introduced into
pIRES1hyg (Clontech) digested with the same enzymes. This plasmid was then cut with
Sse8387I and BstEII and then ligated with the Sse8387I to BstEII fragment from
pONY3.2. The sequence of the plasmid is set out in SEQ ID No 51.

20 Virus Production

Transient MLV vector preparations pseudotyped with RD114 cat endogenous envelope
were made as described previously (Soneoka et al., 1995). EIAV vector was harvested
from confluent monolayers following 3 days induction of VSV-G expression at 32°C.
25 MLV vector preparations were titred in triplicate on HT1080 fibrosarcoma cells. EIAV
vector preparations were titred by GFP and lacZ on D17 dog osteosarcoma cells.

Flow cytometry of b-galactosidase and GFP activity:

30 1.5x10⁵ cells from a 12-well plate were analysed for lacZ expression using the
FluoReporter lacZ Flow Cytometry kit (Molecular Probes). GFP expression was also
directly assessed using the FACSCalibur flow cytometer (Beckton Dickinson).

Transfection methods

-47-

Calcium phosphate transfactions were carried out using the Protection kit (Promega) according to manufacturer's instructions.

5 **Results**

Figure 8 shows a schematic diagram of pTrap2 and pONY8z-loxP, plasmids used in this study.

10 **Introduction of Trap2 genome into EV1 and EV2**

An overall summary of the process described here is given in Figure 9. Trap2 MLV vector was made in a transient system with the amphotropic 4070A envelope. It gave a GFP titre of 1.7×10^6 T.U. per ml. Trap2 vector however also gave a lacZ titre of 9.4×10^5 T.U. per ml. This shows that replacement of the *NheI-XbaI* fragment from the MLV U3 region with loxP does not completely inactivate the MLV U3 promoter. Therefore Trap2, as constructed, is a partial SIN vector.

EV1 and EV2 cells were transduced with Trap2 vector at a multiplicity of infection (MOI) of 0.3. This was done to insert single copies of the MLV genome into the packaging lines.

Derivation of high expressers of GFP marker gene

25 Transduced EV1 and EV2 cells were analysed by FACS (see Figure 10) and the top 5% of GFP expressing cells were sorted and expanded. Clonal lines were derived by limiting dilution and four clones of EV1 and EV2 were chosen by visual inspection.

A quantitative TaqMan RT-PCR reaction was established in order to identify which of the 30 four clones of EV1 and EV2 were the highest expressors of GFP mRNA. Total RNA was analysed by RT-PCR for GFP and β -actin. Quantitation was calculated by direct comparison of the Ct values (Cycle threshold). This was possible as it was proved that the two individual RT-PCR reactions are of similar efficiency (see Figure 11). By identifying an

-48-

optimal chromosomal location for GFP transgene expression. we can ensure that the inserted loxP site will be highly permissive for expression of an inserted lentiviral genome construct.

5 Figure 5 shows the n-fold difference in GFP : β-actin ratio for clones EV1 A to D and EV2 A to D. All ratios are defined relative to a calibrator sample, defined as a ratio of 1.0. The calibrator sample used was RNA from EV2 cells transduced with Trap2 at an MOI of 0.3.

10 This identified the best expressing lines as:

- EV1 clone A - GFP : β-actin ratio is 22.8
- EV2 clone D - GFP : β-actin ratio is 18.6

These two lines were carried forward for further study.

15

Excision of internal expression cassette by Cre recombinase

20 The process of retroviral integration copies the loxP-containing modified 3' U3 to the 5' position. Therefore, one can excise the majority of the MLV Trap2 integration by the action of Cre recombinase. This will leave a single modified LTR, suitable for lentiviral genome integration.

EV1 clone A and EV2 clone D were transfected by the Cre expression plasmid pBS185 (Life Technologies). After one week, the cells were analysed for GFP by FACS (see 25 Figure 13) to determine the excision frequency. This was measured at 20-70% in all lines.

Recombined clones were identified by limit dilute cloning cells and checking by microscope and FACS for loss of GFP expression.

30

Insertion of EIAV genome into loxP site

-49-

Plasmid pONY8x-loxP and pBS185 were co-transfected using Fugene into EV1 clone A (excised) and EV2 clone D (excised). A control transfection of pONY8z-loxP in the absence of pBS185 was also carried out.

- 5 Figure 14 shows lacZ expression of transfected cells with and without the addition of Cre recombinase (pBS185). The efficiency of the insertion event was estimated to be ~12% by computer image analysis.

We analysed cells for lacZ expression by FACS using the FluoReporter lacZ Flow 10 Cytometry kit. The top 5% of lacZ positive cells were sorted by FACS and clones were derived by limiting dilution. In total, 12 clones of EV1/A/pONY8z-loxP were derived and 13 clones of EV2/D/pONY8z-loxP.

EXAMPLE 7

15

Construction of EIAV vectors with LTR driven open reading frames

The EIAV vector configurations described previously utilise a single promoter - 20 transgene cassette located internally in the vector. For example in pONY8Z the promoter-transgene cassette is CMV-LacZ. However for some uses it would be advantageous to have the option of expressing a gene from the 5'LTR promoter as well. For example a marker gene such as green fluorescent protein (GFP), a resistance marker 25 such as neomycin phosphotransferase (neo) or another protein or a biologically active entity such as a ribozyme. Previous experiments have shown that the EIAV LTR is weakly active in human cells in the absence of EIAV tat. However the transcriptional activity of the LTR can be increased by replacement of the EIAV U3 region with the MLV U3 region or the CMV promoter. This is achieved by introducing these alterations 30 in the 3'LTRs of the vector plasmids. As a result of the replicative strategy of retroviruses the modified 3'LTR becomes positioned at the 5'end of the integrated vector and can thus drive expression of a gene placed downstream of the gag region. To ensure optimal levels of expression there should preferably be no ATG start codons prior to the start codon of the gene to be expressed. In pONY8Z the ATG start codon of gag and the next ATG downstream were mutated to ATTG in order to ablate expression of the

-50-

aminoterminal portion of gag present in the vectors, however there are 7 other ATG codons further downstream of these, within gag, from which translation might be initiated.

- 5 Described below are the replacement of the U3 region of EIAV with MLV or CMV promoters and the mutation of ATG codons in the gag region

Replacement of the EIAV U3 region with MLV U3 or CMV promoters

- 10 The MLV U3 region was introduced into pONY8Z vector by replacement of the 3'LTR with a synthetic MLV/EIAV LTR made by the overlapping PCR technique, using the following primers and templates.

The EIAV PPT/U3 sequence was amplified from pONY8.1Z using primers:

- 15 KM001: CAAAGCATGCCTGCAGGAATTG (SEQ ID No 1)

and

KM003:

- 20 GCCAACCTACAGGTGGGTCTTCATTATAAAACCCCTCATAAAAACCCAC
AG (SEQ ID No 2)

to give the following product:

- 25 CAAAGCATGCCTGCAGGAATTGATCAAGCTTATCGATACCGTCGAATTG
GAAGAGCTTAAATCCTGGCACATCTCATGTATCAATGCCTCAGTATGTTAG
AAAAACAAGGGGGAACTGTGGGTTTATGAGGGGTTTATAATGAAAGA
CCCCACCTGTAGGTTGGC (SEQ ID No 3)

- 30 The MLV U3 region was amplified from pHIT111 (Soneoka et al., (1995) Nucleic Acids Res. 23, 628-633) using KM004:

-51-

CTGTGGGTTTTATGAGGGTTTATAATGAAAGACCCACCTGTAGGTTG

GC (SEQ ID No 4)

and

5 KM005:

GAAGGGACTCAGACCGCAGAATCTGAGTCCCCCGAGTGAGGGTTG

CTCT (SEQ ID No 5) to give the following product:

- 10 CTGTGGGTTTTATGAGGGTTTATAATGAAAGACCCACCTGTAGGTTGCAAGCTAGCT
TAAGTAACGCCATTTGCAAGGCATGGAAAAATACTAAGTCAGATC
AAGTCAGAACAGATGGAACAGCTGAATATGGCCAACAGGATATCTGTGTAAGCAGTT
CCTGCCCCGGCTCAGGGCCAAGAACAGATGGAACAGCTGAATATGGCCAACAGGATATCT
GTGGTAAGCAGTTCTGCCCCGGCTCAGGGCCAAGAACAGATGGTCCCAGATGCGGTCCAGC
15 CCTCAGCAGTTCTAGAGAACCATCAGATGTTCCAGGGTCCCCAAGGACCTGAAATGACCC
TGTGCCTTATTGAACCAATCAGTCGCTTCTGCTTGTTCGCGCGCTTCTGCTCCCCG
AGCTCAATAAAAGAGCCCACAACCCCTCACTCGGGGGGACTCAGATTCTGCGGTCTGAGTCC
CTTC (SEQ ID No 6)
- 20 The MLV U3/EIAV R/U5 was amplified from pONY8.1Z using primers

KM002: GAGCGCAGCGAGTCAGTGAGCGAG (SEQ ID No 7) and

KM006:

- 25 AGAGCCCACAACCCCTCACTCGGGGGGACTCAGATTCTGCGGTCTGAGTCCCTCTGCTG
CTTC (SEQ ID No 8)

to give the following product:

- 30 AGAGCCCACAACCCCTCACTCGGGGGGACTCAGATTCTGCGGTCTGAGTCCCTCTGCTG
GGCTGAAAAGGCCTTGTAAATAATATAATTCTACTCAGTCCTGTCTAGTTGTCTGTT
CGAGATCCTACAGAGCTCATGCCTGGCGTAATCATGGTCATAGCTGTTCTGTGAAATTG
TTATCCGCTACAATTCCACACAACATACGAGCCGAAGCATAAGTGTAAAGCCTGGGTGC
35 CTAATGAGTGAGCTAACTCACATTAATTGCGTTGCGCTCACTGCCGCTTCCAGTCGGAAAC

-52-

CTGTCGTGCCAGCTGCATTAATGAATCGGCCAACGCGCGGGAGAGGGCGGTTTGCCTATTGGG
CGCTCTTCCGCTTCCTCGCTCACTGACTCGCTGCGCTC (SEQ ID No 9)

The PCR products described above were purified and then used as templates in new PCR reactions to link them together to obtain a 992bp product. The final product contains two SapI sites which flank the hybrid LTR. These allow introduction of the PCR product into the corresponding SapI sites present in the pONY8Z or pONY8.1Z vector plasmid, thereby creating pONY8Z MLVHyb and pONY8.1 MLVHyb. The sequence of the hybrid LTR in these plasmids was confirmed by sequencing. The titres obtained from the vectors in transient transfection assays are shown in Table 1. The titres were very similar to the titres from the parental construct pONY8Z and pONY8.1Z indicating that replacement of the EIAV U3 region with that of MLV had little or no detrimental effect on the infectious cycle of the vectors.

Table 1. Titres obtained from MLV hybrid LTR vector plasmids

vector plasmid	#titre (l.f.u./ml)
pONY8Z	3 x 10 ³
pONY8Z MLVHyb	1 x 10 ³
pONY8.1Z	6 x 10 ³
pONY8.1Z MLVHyb	2 x 10 ⁴

Titre was measured on D17 cells and is expressed as LacZ forming units/ml (l.f.u./ml). Transfections were carried out in 293T cells using the vector plasmid shown and pRV67 (VSV-G expression plasmid), and pONY3.1 (EIAV gag/pol expression plasmid).

The structure of pONY8.1Z MLVHyb is shown in Figure 15 and the sequence of this plasmid is shown as SEQ ID No 10.

The EIAV promoter was also replaced by the human cytomegalovirus (CMV) promoter using a similar strategy. The primers and templates were the same except that KM003 was replaced by KM008:

-53-

GGCCATCGTCCTCCCCACTCCTGCAGTTATAAAACCCCTCATAAAAACCCA
CAG (SEQ ID No 11)

KM004 was replaced by KM009:

5

CTGTGGGTTTTATGAGGGGTTTATAAACTGCAGGAGTGGGGAGGCACGA
TGGCC (SEQ ID No 12)

KM005 was replaced by KM010:

10

GAAGGGACTCAGACCGCAGAATCTGAGTGCCCCGGTCACTAAACGAGCTCTG
CTTATATAGACC (SEQ ID No 13) and

KM006 was replaced by KM011:

15

GGTCTATAAGCAGAGCTCGTTAGTGAACCGGGCACTCAGATTCTGCG
GTCTGAGTCCCTTC (SEQ ID No 14)

The template for the PCR reaction with primers KM009 and KM010 was pONY2.1LacZ.
20 This plasmid contains a single CMV promoter. The combined PCR product of 1319 bp
was digested with SapI and introduced into the pONY8Z or pONY8.1Z backbone as
described above for pONY8Z MLVHyb.

Mutation of remaining ATG codons in the gag of pONY8Z to ATTG

25

The alignment of the sequence of the leader and gag region present in vectors pONY4Z
(an earlier generation EIAV vector), pONY8Z and a derivative of pONY8Z in which the
7 remaining ATG codons are mutated to ATTG is shown in Figure 16. These mutations
were created by PCR mutagenesis as follows. The template for the PCR reactions was
30 pONY8Z and the primers were:

F1: CGAGATCCTACAGTTGGCGCCCGAACAG (SEQ ID No 15);

-54-

R1:GAGTTACAATCTTCCAGCAATGGAATGACAATCCCTCAGCTGCCAGTCCTT
TTCTTTACAAAGTTGGTATCAATGAAATAAGTCTACTAGACTTAGC (SEQ ID
No 16);

5 F2:TTCCATTGCTGGAAGATTGTAACTCAGACGCTGTCAAGGACAAGAAAGAGA
GGCCTTGAAAGAACATTGGTGGGCAATTCTGCTGTAAAGATTG (SEQ ID No
17);

10 R2:CAATATTCGCTCTTAGGAGCTGGAATGATGCCTTCCAATCTACTACAAT
TATTAATCTGGAGGCCAATCTTACAGCAGAAATTGCCACCAATG (SEQ ID
No 18);

R3:CCACTAGTTCTAGAGATATTCTCAGAGGGCTCAGACTGCTTTATTAGC
AGTCTTCTTCAATATTCGCTCTAGGAGC (SEQ ID No 19)

15 In the first stage of construction two PCR reactions were set up with primer pairs F1/R1 and F2/R2, respectively. These were purified and then used in a second 'overlapping' reaction in which primers F1 and R3 were added after 10 cycles. This procedure results in a 552bp PCR product (SEQ ID No 20):

20 CGAGATCCTACAGTTGGCGCCCGAACAGGGACCTGAGAGGGGCGCAGACCCCTACCTGTTGAA
CCTGGCTGATCGTAGGATCCCCGGGACAGCAGAGGAGAACTTACAGAAGTCTTCTGGAGGTGT
TCCTGGCCAGAACACAGGGAGGACAGGTAAGATTGGAGACCCCTTGACATTGGAGCAAGGCG
CTCAAGAAGTTAGAGAAGGTGACGGTACAAGGGTCTCAGAAATTAACTACTGGTAACTGTAAT
25 TGGCGCTAAGTCTAGTAGACTTATTCATTGATACCAACTTGTAAAAGAAAAGGACTGGCA
GCTGAGGGATTGTCATTCCATTGCTGGAAGATTGTAACTCAGACGCTGTCAAGGACAAGAAAGA
GAGGCCTTGAAGAACATTGGTGGCAATTCTGCTGTAAAGATTGGCCTCCAGATTAATA
ATTGTAGTAGATTGGAAAGGCATCATTCCAGCTCCTAAGAGCGAAATATTGAAAGAAGACTG
CTAATAAAAGCAGTCTGAGCCCTCTGAAGAATATCTCTAGAACTAGTGG

30 This was digested with *NarI* and *XbaI* and ligated into pONY8Z, pONY8Z MLVHyb and pONY8Z CMVHyb, which had been prepared for ligation by digestion with the same enzymes. These plasmids were designated pONY8ZA or pONY8ZA MLVHyb and pONY8ZA CMVHyb. The sequence for pONY8ZA CMVHyb is provided in SEQ ID No 52. These plasmids have a unique *XbaI* site into which can be inserted genes such as

-55-

GFP or neomycin phosphotransferase or other biologically active entity. This use of the site is demonstrated for GFP. The GFP ORF was obtained from pEGFP-1 (Clontech) by digestion with SmaI and XbaI, and then the ends filled in by treatment with T4 DNA polymerase. This fragment was then ligated into pONY8ZA or pONY8ZA MLVHyb and 5 pONY8ZA CMVHyb prepared for ligation by digestion with XbaI and subsequent filling in with T4DNA polymerase. The resulting vector plasmids were called pONY8GZA or pONY8GZA MLVHyb and pONY8GZA CMVHyb. Other genes can be inserted at this site by manipulations apparent to those skilled in the art.

10 **Creation of EIAV vector genomes containing loxP sites in their LTR's**

The time taken to construct producer cell lines for EIAV vectors would be greatly reduced if it was possible to 1) locate and 2) reutilise a site in the host cell chromosome which was particularly favourable for high levels of transcription of the vector genome. 15 In outline, this can be achieved by engineering loxP sites in the 3'LTR of EIAV vectors, transduction of the packaging cell line with vectors which carry loxP and hybrid LTRs, selection of cells which express the highest levels of vector genome and exchange of the test EIAV vector genome for the vector genome of choice using the cre/loxP recombination system.

20 The proposed scheme was evaluated using a derivative of pONY8GZA CMVHyb in which a loxP site was introduced into the PstI site between the EIAV sequences (required for efficient integration) and the CMV promoter in the 3'LTR. After transduction the integrated vector will thus have a loxP-CMV cassette located in the 5'LTR and 3'LTR's 25 and therefore full length transcripts of the vector genome will be driven by the CMV promoter, which is a powerful promoter. pONY8GZA CMVHyb contains many PstI sites hence it was modified to allow insertion of the loxP site by digestion with XbaI and NheI and religation to create the subclone, pONY CMVHyb. This plasmid has a unique PstI site in the hybrid LTR. The loxP site was inserted into this site using two complimentary 30 oligonucleotides which when annealed formed PstI-compatible termini. These were termed loxP POS

-56-

PSTI [GATAAAC TTCTGTATAATGTATGCTATACGAAGTTATCTGCA] (SEQ ID No 21)] and

5 loxP NEG PstI [GATAACTTCGTATAGCATACATTACGAAGTTATCTGCA]
(SEQ ID No 22)

The sequence and orientation of the loxP site was confirmed by DNA sequencing and the plasmid called pONY CMVHyb loxP. The central part of the vector genome was then reintroduced into this subclone by transfer of the NotI-BstEII fragment from pONY8GZA 10 CMVHyb into pONY CMVHyb cut the same way. The resulting vector was termed pONY8GZA CMVHyb loxP.

Two routes for construction of a producer cell line are available using pONY8GZA CMVHyb loxP. The plasmid can be introduced into a packaging cell line by transfection 15 or vector particles can be made using the 293T and these used to transduce the packaging cell line. Since the vector is derived from EIAV, rather than MLV, it is able to transduce non-dividing cells or slowly dividing cells. In this situation it has been hypothesised that integrations occur at chromosomal sites that are constitutively open; that is, are likely to be sites at which high levels of transcription will be maintained for extended periods. 20 This may be important for the long term usefulness of the producer cell line and thus represents an advantage of strategy using transduction.

Producer cell lines were made by transfection or transduction of a TE671-derived cell line (EV11E) which has stably integrated copies of VSV-G and the synthetic EIAV gag/pol 25 under the control of CMV promoters. Prior to transfection with pONY8GZA CMVHyb loxP it was linearised by digestion with AhdI. Seven days following transfection or transduction cells expressing the highest levels of GFP were selected by FACS and then cloned by limiting dilution. A number of clones were analysed for levels of full length vector RNA using Taqman technology based assays in order to confirm the hypothesis 30 that the highest level of GFP expression correlates with the highest levels of vector RNA.

The cell line which expressed the highest level of RNA was then tested for production of transducing vector particles 5 days after changing the temperature of incubation from 37C

-57-

to 32°C. At 32°C, VSV-G expression is induced however maximal levels of VSV-G are only obtained after 5 days at the permissive temperature (see WO 00/52188). The cell line producing the highest titre, EV11E CMV loxP was selected for further work.

- 5 In order to exchange the vector genome with for another EIAV vector genome with a more suitable configuration for use in the clinical setting EV11EloxP cells were transfected with cre recombinase expression plasmid, pBS185 (Gibco), which results in excision of the EIAV vector between the loxP sites. This leaves a loxP-CMV promoter R-U5 sequence in the cells. Cells from which the EIAV vector genome had been excised
10 were selected on the basis of low levels of GFP expression by FACS and assumed to be clonal on the basis of the clonality of EV11E CMV loxP. These were termed EV11EloxPΔ and used as targets for new EIAV vector genomes.

15 **Construction of EIAV vector genomes with downstream REV expression cassettes and flanking loxP sites**

The production of vector particles from minimal EIAV vectors (those which do not express EIAV REV or any other EIAV proteins) is increased by about 10-fold in the presence of EIAV REV in our 293T transient production system when the codon-
20 optimised EIAV gag/pol expression construct is used to drive production of vector particles as set out in Table 2. This may be improved nuclear to cytoplasmic transport of the vector genome in the presence of REV protein. Packaging/producer cell lines for EIAV vectors may be engineered to express Rev protein. One approach would be to engineer cells to express EIAV REV from an independently transfected expression
25 cassette. However, the cassette and the vector genome may be subject to differential regulation, for example by methylation or chromosome remodelling. Such an effect may limit the useful life of such cell lines.

30 **Table 2. Effect of REV expression on titres obtained from REV-expressing [REV+] and non-expressing [REV-] vectors**

vector plasmid	gag/pol	expression	#titre
----------------	---------	------------	--------

-58-

	plasmids	(l.f.u./ml)
pONY4Z [REV+]	pONY3.1	2.0±0.4 x 10 ⁶
pONY4Z [REV+]	pE SYN GP	0.9±0.2 x 10 ⁶
pONY8Z [REV-]	pONY3.1	1.5±0.2 x 10 ⁶
pONY8Z [REV-]	pE SYN GP	1.9±0.6 x 10 ⁵

* Titre was measured on D17 cells and is expressed as LacZ forming units/ml (l.f.u./ml). Transfections were carried out in 293T cells using the vector plasmid and gag/pol expression plasmid shown and pRV67 (VSV-G expression plasmid) (See WO 00/52188).

5

REV+ and REV- reflect the rev expression status of the vectors. REV+ reflects vectors which express the REV protein. REV- reflects expression vectors which do not express the REV protein.

10 pESYNGP

The gag/pol expression plasmid shown in Figure called called pESYNGP was constructed as follows: The codon-optimised EIAV gag/pol ORF was synthesised by Operon Technologies Inc., Alameda and supplied in a proprietary plasmid backbone, GeneOp. 15 The complete fragment synthesised included sequences flanking the EIAV gag/pol ORF: tctaga**GAATTGCCACCATG**- EIAV gag/pol- **UGAACCCGGGgcggccgc** (SEQ ID No 44). The ATG start and UGA stop codons are shown in bold. XbaI and NotI sites are in lower case. These were used to transfer the gag/pol ORF from GeneOp into pCIneo (Promega) using the NheI and NotI sites in the latter.

20

pESDSYNGP

An alternative expression plasmid for expression of the synthetic EIAV gag/pol could 25 also be used. It is called pESDSYNGP and its construction is described as follows: ESDSYNGP was made from pESYNGP by exchange of the 306bp EcoRI-NheI fragment, from just upstream of the start codon for gag/pol to approximately 300 base pairs inside

-59-

the gag/pol ORF with a 308bp EcoRI-NheI fragment derived by digestion of a PCR made using pESYNGP as template and using the following primers: SD FOR [GGCTAGAGAATTCCAGGTAAAGATGGCGATCCCCTCACCTGG] (SEQ ID No 60) and SD REV [TTGGGTACTCCTCGCTAGGTT] (SEQ ID No 61). This 5 manipulation replaces the Kozak consensus sequence upstream of the ATG in pESYNGP with the splice donor found in EIAV. The sequence between the EcoRI site and the ATG of gag/pol is thus CAGGTAAG (SEQ ID No 62).

10 The sequences for pESYNGP (SEQ ID No 53) and pESDSYNGP (SEQ ID No 54) are provided.

Packaging/Producer cells may be engineered by physically linking the genome and EIAV REV expression cassettes. In this way stable transfectants may be generated which contain the vector genome and the EIAV REV expression cassette in the same chromatin 15 environment. This manipulation may ensure that the relative levels of transcription of the vector genome and the REV expression cassette are maintained leading to an increased duration of vector production from the producer cells.

20 Previous work has suggested that optimisation of the level of REV may be required with respect to the level of vector genome (see WO 98/17815). We have examined the levels of vector production in a transient system in which several different promoters are used to drive REV expression in order to determine which vector genome-rev expression cassette is optimal for use in constructing producer cell lines. The highest titres were obtained 25 with FB29 and PGK promoters driving REV expression.

25 The following describes the construction of EIAV vector genomes plasmids in which there is a downstream expression cassette for synthetic EIAV REV protein. The promoters tested were FB29, PGK, TK, CMV, SV40 and RSV. In addition the loxP sites 30 were engineered into the vector plasmid backbone in such a way that the genome and introduced promoter-REV expression plasmid was flanked. In this way, the complete vector-REV cassette can be recombined into loxP sites in the target cell.

-60-

The complete construction of the FB29 and PGK containing plasmids is described here. The REV expression construct was inserted in the both orientations with respect to the EIAV vector genome. Plasmids in which the FB29 or PGK promoters drive REV expression are being utilised for construction of stable producer cell lines.

5

Construction of plasmids

- In the first step of construction an SfiI site was inserted downstream of the EIAV vector sequence. This site is the insertion site for the promoter REV cassettes. The construction 10 was made as follows. pONY8Z was digested with EheI and NruI, the ends were blunted by treatment with T4 DNA polymerase and religated. The resulting plasmid, pONY8Z delta, is thus deleted with respect to the leader, gag, reporter cassette and most of the Rev/RRE regions.
- 15 pONY8Z delta was mutated to contain loxP sites inserted in the DraII site immediately to the 5' of the CMV promoter and in the BspLU11I site to the 3' of the vector genome. The loxP sites were inserted using complementary nucleotide pairs which when annealed had overhanging termini suitable for cloning into these sites and were inserted in two steps of cloning. The oligonucleotides for insertion into the DraIII site were

20

VSAT 158: [GTGATAACTTCGTATAATGTATGCTACGAAGTTATCACTAC]
(SEQ ID No 23)

and

25

VSAT 155 [GTGATAACTTCGTATAGCATACATTACGAAGTTACCGTA]
(SEQ ID No 24)

For the BspLU11I they were:

- 30 VSAT 156 [CATGTATAACTTCGTATAATGTATGCTACGAAGTTATA] (SEQ ID No 25) and

-61-

VSAT 157 [CATGTATAACTTCGTATAGCATACATTATACGAAGTTATA] (SEQ ID No 26)

Plasmids were selected in which the orientation of the loxP at both sites were the same
5 and the same as the EIAV vector genome. The modified plasmid was called pONY8Z
delta 2xloxP.

pONY8Z delta 2xloxP has a unique PvuII site downstream of the deleted EIAV vector genome into which annealed complementary oligonucleotides encoding SfiI sites were
10 inserted. The oligonucleotides were:

SFI SRFPOS [AGTAGGCCGCCTCGGCCGCCGGCATCA] (SEQ ID No 27) and

SFI SRF NEG [TGATGCCCGGGCGGCCGAGGCAGGCCTACT] (SEQ ID No 28)

15 Clones which had the SfiI – SrfI sites in either orientation were selected for further work.
These were called pONY8Z delta SfiI FOR and REV.

Amplification and cloning of FB29 and PGK promoters

20

The FB29 promoter was amplified from pRDF (Cosset FL, et al. *J Virol* 1995 Dec;69(12):7430-6) using primers:

FB29 POS [TAGCCGAGATCTCAAATTGCTTAGCCTGATAGCC] (SEQ ID No 29) and

25 FB29 NEG [TGCCTAGCTAGCCTCCGGTGGTGGTCGGTG] (SEQ ID No 30)
which introduce

5'BglII and 3'NheI sites.

The PGK promoter was amplified from pPE327 using primers

PGK POS [AGCAGTAGATCTGGCGTTGGGGTTGCGCCTTT] (SEQ ID No 31) and

30 PGK NEG [CGTCATGCTAGCCTGGGAGAGAGGTCGGTG] (SEQ ID No 32)

-62-

The PGK promoter sequence obtained from this plasmid was the same as the sequence of GenBank Acc. No. M11958 except that it has a single mutation: nucleotide 347 of M11958 is changed from G to A. The TK promoter and intron was amplified from pRL-TK (Promega) with:

- 5 TK POS [TACGGAAGATCTAAATGAGTCTTCGGACCT] (SEQ ID No 33) and
TK NEG [CTCAACGCTAGCGTACTCTAGCCTTAAGAGCTG] (SEQ ID No 34)

- The RSV promoter was amplified from pREP7 (Invitrogen) with
10 RSV POS [TACCAGAGATCTCTAGAGTCGACCAATTCTCATG] (SEQ ID No 35)
and
RSV NEG [CATCGAGCTAGCAGCTTGGAGGTGCACACCAATG] (SEQ ID No 36)
and
15 The SV40 promoter was amplified from pCIneo (Promega) with:
SV40 POS [GATGGTAGATCTGCGCAGCACCATGGCCTGAA] (SEQ ID No 37) and
20 SV40 NEG [CTCGAAGCTAGCAGCTTTGCAAAAGCCTAGGC] (SEQ ID No 38)

The PCR fragments were digested with BglII and NheI and ligated into pSL1180 (Pharmacia) which had been prepared by digestion using the same enzymes. Following transformation into E.coli DNA was prepared and the sequence of the promoters checked
25 by DNA sequencing. Clones in which the correct promoter sequence was present were used for further work and were called pSL1180-FB29, pSL1180-PGK, pSL1180-RSV, pSL1180-SV40, pSL1180-TK.

In the next step the promoter fragments were positioned to drive transcription of synthetic
30 EIAV REV in pE syn REV. pE syn REV is a pCIneo based plasmid (Promega) which was made by introducing the EcoRI to SalI fragment from the synthetic EIAV REV plasmid into the polylinker region of the plasmid using the same sites. The synthetic

-63-

EIAV REV plasmid made by Operon contains a codon-optimised EIAV REV open reading frame flanked by EcoRI and SalI. The sequence of this fragment is shown as SEQ ID No 39.

- 5 Prior to replacement of the CMV promoter in pE syn REV it was modified as follows. The SV40 neo region was deleted by digestion with KpnI and BamHI, the ends blunted by treatment with T4 DNA polymerase and then religated. The plasmid was termed pE syn REV delta. Next SfiI sites were introduced into both the BglII site which is just 5' of the CMV promoter and DraIII site downstream of the polyA signal.

10

The oligonucleotides used for this were as follows:

SFI FOR BglII POS [GATCGGCCGCCTCGGCCA] (SEQ ID No 40) and

15 SFI FOR BglII NEG [GATCTGGCCGAGGCGGCC] (SEQ ID No 41)and

SFI FOR DRA POS [GGCCGCCCTCGGCCGTA] (SEQ ID No 42) and

SFI FOR DRA NEG [GGCCGAGGCGGCCTAC] (SEQ ID No 43)

20

Clones in which the SfiI was located 5' of the BglII site were selected were used for further work. The plasmid obtained after this two step manipulation was termed pE syn REV delta 2xSfiI. It has the following features: 5'SfiI sites – BglII site - CMV promoter and intron – NheI site – E syn REV - polyA site – 3'SfiI site. Hence the CMV promoter can be excised by digestion with BglII and NheI and replaced with the promoter of choice obtained from the pSL1180 series of clones by digestion with the same enzymes. Construction details are included from this point for only the constructs which contained FB29 and PGK promoters, however a similar scheme was used for the other promoters, except that a partial SfiI digestion was required for transfer of the SV40-REV cassette.

25

Promoter fragment were obtained from pSL1180 – FB29 and pSL1180 – PGK by digestion with BglII and NheI and ligated into pE syn REV delta 2xSfiI digested with the

-64-

same enzymes. The resulting plasmids were called FB29 E SYN REV and PGK E SYN REV.

In the next stage the internal regions of pONY8G, pONY8.1G SIN MIN and pONY4G
5 were obtained by digestion with SgfI (which has unique site in the CMV promoter driving
the EIAV vector genome) and MunI (which cuts in the 3'LTR) and ligated in to pONY8Z
delta SfiI FOR and REV prepared for ligation by digestion with the same enzymes. The
resulting plasmids were called pONY8G SfiI FOR and REV, pONY8.1G SIN MIN SfiI
FOR and REV and pONY4G SfiI FOR and REV.

10

In the final stage the promoter-REV cassettes were moved from FB29 E SYN REV and
PGK E SYN REV into pONY8G SfiI FOR and REV, pONY8.1G SIN MIN SfiI FOR and
REV and pONY4G SfiI FOR. This manipulation was achieved as follows. FB29 E syn
REV, PGK E syn REV, and the vector plasmids described immediately above were
15 digested with SfiI and ligations set up with appropriate fragments. The promoter-REV
cassettes were orientated in the same or opposite orientations with respect to the EIAV
vector genome in the 'FOR' and 'REV' plasmids. The resulting plasmids were called
pONY8.3G FB29 + or - and pONY8.3G PGK+ and -. A schematic structure of the
pONY 8.3 +/- plasmids is shown in Figure 17.

20

The performance of these constructs was tested in relation to pONY8G in 293T transient
production assays and the results are shown in Table 3.

25

The sequence of the *EcoRI* to *Sall* fragment representing the codon-optimised EIAV
REV open reading frame obtained from the plasmid synthesised by Operon (SEQ
ID No 39)

30

EcoRI and *Sall* sites are in bold. The ATG start and UGA termination codons are underlined

GAATTGCCACCAATGGCTGAGAGCAAGGAGGCCAGGGATCAAGAGATG

-65-

ACCTCAAGGAA
 GAGAGCAAAGAGGAGAAGCGCCGCAACGACTGGTGGAAGATCGACCCA
 AAGGCCCTG
 GAGGGGGACCAGTGGTGCCCGTGCTGAGACAGTCCCTGCCCGAGGAGAAGATTCT
 5 AGC
 CAGACCTGCATGCCAGAACGACACCTCGGCCCCGGTCCCACCCAGCACACACCCCTCC
 AGA
 AGGGATAAGGTGGATTAGGGGCCAGATTGCAAGCCAGGTCTCCAAGAAAGGCTG
 GAA
 10 TGGAGAATTAGGGCGTGCAACAAGCCGCTAAAGAGCTGGAGAGGTGAATCGCGG
 CATC
 TGGAGGGAGCTCTACTTCCGCGAGGACCAGAGGGCGATTCTCCGCATGGGAGGC
 TAC
 CAGAGGGACAAGAAAGGCTGTGGGCGAGCAGAGCAGCCCCCGCTTGAGGCC
 15 CGGA
 GACTCCAAAAGACGCCGAAACACCTGTGAAGTCGAC

Table 3

- 20 Titres obtained from a representative experiment in which the vector-REV constructs were tested by transient 293T production assay. The vector constructs were cotransfected with pE synGP, the synthetic EIAV gag/pol expression plasmid, and pRV67, VSV-G expression plasmid. Titres were measured in D17 cells.

<u>Plasmid</u>	Titre (g.f.u./ml)
pONY8G SfiI FOR	1.6×10^4
#pONY8G SfiI FOR PLUS pE syn REV	5.2×10^5
pONY8.3G FB29 +	8.8×10^3
pONY8.3G FB29 -	7.8×10^3
pONY8.3G PGK +	1.2×10^6
pONY8.3G PGK -	1.2×10^6
pONY8G	9.4×10^3

-66-

Titre was assessed on D17 cells and is expressed as green fluorescent protein cell units/ml (g.f.u./ml). Transfections were carried out with pE syn GP KOZAK and pRV67 as described previously.

- 5 * pONY8G SfiI FOR is identical to the pONY8.3 derivatives except that there is no promoter-REV expression cassette is inserted in the SfiI site

pE syn REV plasmid was also included in this transfection

- 10 pONY8G is a standard EIAV vector genome used for comparative purposes

pONY8.3G FB29 – is shown as SEQ ID No 45

pONY8.3G FB29 + is shown as SEQ ID No 46

- 15 pONY8.3GPGK – is shown as SEQ ID No 47

pONY8.3G PGK + is shown as SEQ ID No 48.

SUMMARY

20

Thus, in summation, the present invention provides high titer regulated retroviral vectors. These regulated retroviral vectors include lentivectors, HRE-regulated vectors and functional SIN vectors which can be produced at high titres from derived producer cell lines.

25

The present invention also provides a method other than retroviral transduction for the transfer of a regulated retroviral vector into a derived producer cell line. This method comprises a recombinase assisted method which allows for the production of high titer regulated retroviral vectors.

30

In one broad aspect, the present invention relates to the selection of cells which express high levels of a retroviral vector genome and exchange of this retroviral genome for the

-67-

vector genome of choice, preferably a regulated retroviral vector genome or a lentiviral vector genome using a cre/loxP recombination system. Thus, the present invention enables regulated retroviral vectors to be produced at high titres from transduced producer cell lines.

5

In another broad aspect, the present invention relates to the selection of cells which express high levels of a retroviral vector genome and exchange of this retroviral genome for the vector genome of choice, preferably a regulated retroviral vector genome or a lentiviral vector genome using a cre/loxP recombination system and a retroviral vector producton system which incorporates a REV protein production system. Thus, the present invention enables regulated retroviral vectors to be produced at high titres from transduced producer cell lines.

All publications mentioned in the above specification are herein incorporated by reference. Various modifications and variations of the described methods and system of the invention will be apparent to those skilled in the art without departing from the scope and spirit of the invention. Although the invention has been described in connection with specific preferred embodiments, it should be understood that the invention as claimed should not be unduly limited to such specific embodiments. Indeed, various modifications of the described modes for carrying out the invention which are obvious to those skilled in molecular biology or related fields are intended to be within the scope of the following claims.

-68-

CLAIMS

1. A method of modifying a producer cell which producer cell comprises integrated into its genome a provirus which provirus comprises one or more recombinase recognition sequences within or upstream of its 3' LTR, the method comprising:
5 introducing into the cell a construct comprising a 5' recombinase recognition sequence, an LTR and a 3' recombinase recognition sequence in that order, in the presence of a recombinase which is capable of acting on the recombinase recognition site(s) such that the nucleotide sequence between the 5' and 3' recombinase recognition sequences in the
10 construct is introduced into the provirus.
2. A method according to claim 1 wherein the construct further comprises at least one nucleotide sequence of interest (NOI) between the 5' recombinase recognition sequence and the LTR, which NOI is operably linked to a transcriptional regulatory
15 sequence.
3. A method according to claim 1 or claim 2 wherein the construct further comprises a 5'LTR and/or a packaging signal.
- 20 4. A method according to any one of claims 1 to 3 wherein the LTR is a heterologous regulatable LTR.
5. A method according to claim 4 wherein the regulatable LTR comprises an ischaemic like response element (ILRE).
25
6. A method according to any one of claims 1 to 3 wherein the LTR is inactive.
7. A method according to any one of the preceding claims wherein the provirus comprises an NOI encoding a selectable marker, which NOI is flanked by recombinase
30 recognition sites
8. A method according to any one of the preceding claims wherein the provirus comprises an internal 5' LTR upstream of the recombinase site or the 5' recombinase site

-69-

where there is more than one site.

9. A method according to any one of the preceding claims wherein the U3 region of the 5' LTR is inactive.

5

10. A method according to any one of the preceding claims wherein the U3 region of the 5' LTR and/or the U3 region of the second internal 5'LTR comprises a heterologous promoter.

10 11. A method according to any one of the preceding claims wherein the provirus comprises two recombinase recognition sites and as a preliminary step, the recombinase is expressed in a host cell such that the nucleotide sequence present between the two sites is excised.

15 12. A method according to any one of the preceding claims wherein the producer cell is a high titre producer cell.

13. A method according to any one of the preceding claims wherein the provirus is a lentivirus.

20

14. A method according to claim 13 wherein the lentivirus is HIV or EIAV.

15. A method according to any one of claims 2-14 wherein the provirus further comprises a second NOI.

25

16. A producer cell obtainable by the method of any one of claims 1 to 15.

17. An infectious retroviral particle obtainable from the producer cell of claim 16.

30 18. A derived producer cell comprising integrated into its genome a retroviral vector comprising in the 5' to 3' direction a first 5' LTR; a second NOI operably linked to a second regulatable 3' LTR; and a third 3'LTR;

-70-

wherein the third 3'LTR is positioned downstream of the second regulatable 3'LTR in the producer cell.

19. A producer cell according to claim 18 wherein the first 5' LTR comprising 5'R and 5' U5 sequences is derivable from a first vector; the second NOI operably linked to a second regulatable 3' LTR is derivable from a second vector; and the third 3'LTR is derivable from the first vector.
5
20. A producer cell according to claim 18 or claim 19 wherein the first vector comprises a retroviral vector wherein the retroviral vector comprises a first NOI flanked by recombinase recognition sequences.
10
21. A producer cell according to claim 19 or claim 20 wherein the retroviral vector further comprises an internal LTR located upstream of the first NOI and downstream of a packaging signal wherein the internal LTR comprises a heterologous U3 sequence linked to heterologous R and U5 sequences.
15
22. A producer cell according to any one of claims 18 to 21 wherein the third 3'LTR is transcriptionally quiescent.
20
23. A producer cell according to claim 22 wherein the third 3' LTR comprises a deletion in the U3 sequence.
24. A producer cell according to any one of claims 18 to 23 wherein the first NOI is a selectable marker.
25
25. A producer cell according to claim 19 wherein the second vector comprises a second NOI operably linked to a second regulatable 3'LTR comprising at least one recombinase recognition sequence.
30
26. A producer cell according to 25 wherein the second regulatable 3'LTR comprises a deletion in the U3 sequences in the 3'LTR.

-71-

27. A producer cell according to claim 25 or claim 26 wherein the second NOI comprises a coding sequence operably linked to a promoter.
28. A producer cell according to claim 27 wherein the second NOI comprises a discistronic construct.
29. A producer cell according to claim 28 wherein the discistronic construct comprises a therapeutic gene, an internal ribosomal entry site (IRES) and a reporter gene.
- 10 30. A method for producing a high titre regulatable retroviral vector, the method comprising the steps of:
- (i) providing a derived producer cell comprising integrated into its genome a first vector;
- 15 (ii) introducing a second vector into the derived producer cell using a recombinase assisted method;
- wherein the derived producer cell comprises a retroviral vector comprising in the 5' to 3' direction a first 5' LTR; a second NOI operably linked to a second regulatable 3' LTR; 20 and a third 3'LTR; wherein the third 3'LTR is positioned downstream of the second regulatable 3'LTR in the derived producer cell.
31. A method according to claim 30 wherein the third 3' LTR is transcriptionally active but expression is directed away from the second regulatable 3'LTR.
- 25
32. A method for introducing a second regulatable 3'LTR into a derived producer cell wherein the method comprises a recombinase assisted method.
33. A method according to claim 32 wherein the recombinase assisted method is a 30 Cre/lox recombinase method.

-72-

34. A process for preparing a regulated retroviral vector as defined in claim 17 comprising performing the method according to any one of claims 30 to 33 and preparing a quantity of the regulated retroviral vector.

5 35. A regulated retroviral vector produced by the process according to claim 34.

36. A regulated retroviral vector according to claim 35 wherein the retroviral vector is capable of transducing a target site.

10 37. A regulated retroviral vector according to claim 36 wherein the retroviral vector is produced in sufficient amounts to effectively transduce a target site.

38. A regulated retroviral vector according to claim 36 or claim 37 wherein the target site is a cell.

15 39. A cell transduced with a regulated retroviral vector according to claim 38.

40. Use of a regulated retroviral vector according to any one of claims 35 to 38 in the manufacture of a pharmaceutical composition to deliver an NOI to a target site.

20 41. Use of a regulated retroviral vector according to any one of claims 35 to 38 in the manufacture of a medicament for diagnostic and/or therapeutic and/or medical applications.

25 42. Use of a recombinase assisted mechanism to introduce a regulated 3'LTR into a derived producer cell line to produce a high titre regulated retroviral vector.

43. A derived stable producer cell capable of expressing regulated retroviral vectors according to claims 35 to 38.

30 44. A derived stable producer cell according to claim 43 wherein the regulated retroviral vector is a high titre regulated retroviral vector.

-73-

49. A nucleic acid molecule according to any one of claims 46 to 48 wherein the LTR
is a heterologous regulatable LTR.

50. A nucleic acid molecule according to any one of claims 46 to 48 wherein the LTR
5 is transcriptionally quiescent.

51. A method and/or a producer cell substantially as described herein and with
reference to the accompanying Figures.

10

15

20

25

30

35

40

45

50

FIG. 1

MLV-based transduction using Cre/loxP system as previously described

FIG. 2

EIAV-based transduction Cre/loxP system

3 / 16

FIG. 3

MLV SIN vector approach, with EIAV components in blue

FIG. 4

MLV-based transduction with HRE 3' LTR using Cre/loxP system

FIG. 5

MLV-based transduction for SIN vector production using Cre/loxP system

6 / 16

FIG. 6

MLV SIN-vector based transduction system. This general approach can be used with EIAV, HIV or MLV genomes

7 / 16

FIG. 7

8 / 16

FIG. 8

FIG. 9

9 / 16

FIG. 10a

FACS analysis of EV1 packaging cells prior to transduction with Trap2 vector

FIG. 10b

FACS analysis of EV1 packaging cell line transduced with Trap2 at an MOI of 0.3. A 5% top-slice of the highest expressers was carried out

10 / 16

FIG. 11

Validation of the $\Delta\Delta Ct$ method for quantitation of GFP mRNA, relative to β -actin. A titration of total RNA from EV1 clone A was used. The difference in Ct values between the two assays is shown on the y-axis. The magnitude of the gradient must be <0.1 for the method to be valid. The gradient is 0.077, so the method is suitable.

FIG. 12

Quantitation of GFP mRNA relative to control β -actin mRNA. EV2 TD cells are transduced with Trap2 at an MOI of 0.3 and are the calibrator sample with the ratio designated 1.0.

FIG. 13

A) Original GFP expression of the clone.

B) GFP expression 7 days after transfection with Cre recombinase (pBS185). Excision frequency is 64%

C) Recombined clone 4 was identified as being negative for GFP

12 / 16

EV1 A4 cre/pONY8Z

EV2 D4 cre/pONY8Z

EV1 A4 pONY8Z

EV2 D4 pONY8Z

FIG. 14

13 / 16

FIG. 15

FIG. 16

Alignment of leader and gag regions present in vectors pONY4Z, 8Z and ATG mutated 8Z vector. The later is referred to as pONY8ZA. The sequence aligned are from the Nari site in the leader to the XbaI site between the EIAV gag sequence and the CMV promoter. Sequences in the leader are shown in italic and a space is present upstream of the position of the gag ATG.

4Z 1 *cgc*ccgaacagggacc*t*gagagggg~~gg~~cg~~c~~agacc*c*tacc*t*gttgaacc*t*gg

8Z 1 *cgc*ccgaacagggacc*t*gagagggg~~gg~~cg~~c~~agacc*c*tacc*t*gttgaacc*t*gg

mutated 8Z 1 *cgc*ccgaacagggacc*t*gagagggg~~gg~~cg~~c~~agacc*c*tacc*t*gttgaacc*t*gg

4Z 51 *c*tgatcgtaggatccccgggacagcagaggagaacttacagaagtcttct

8Z 51 *c*tgatcgtaggatccccgggacagcagaggagaacttacagaagtcttct

mutated 8Z 51 *c*tgatcgtaggatccccgggacagcagaggagaacttacagaagtcttct

4Z 101 *ggagg*gttcc*t*ggccagaacacaggaggacaggtaag.at-~~ggg~~gagaccc

8Z 101 *ggagg*gttcc*t*ggccagaacacaggaggacaggtaag.att~~ggg~~gagaccc

mutated 8Z 101 *ggagg*gttcc*t*ggccagaacacaggaggacaggtaag.att~~ggg~~gagaccc

4Z 150 ttgacat-~~gg~~gcaaggcgctcaagaagttagagaagg~~t~~gacggtaaca

8Z 151 ttgacattggagcaaggcgctcaagaagttagagaagg~~t~~gacggtaaca

mutated 8Z 151 ttgacattggagcaaggcgctcaagaagttagagaagg~~t~~gacggtaaca

4Z 199 gggctcagaaattaactactggtaactgttaatggcgctaa~~gt~~ctag

8Z 201 gggctcagaaattaactactggtaactgttaatggcgctaa~~gt~~ctag

mutated 8Z 201 gggctcagaaattaactactggtaactgttaatggcgctaa~~gt~~ctag

4Z 249 agacttatttcat-gataccaactttgtaaaagaaaaggactggcagctg

8Z 251 agacttatttcat-gataccaactttgtaaaagaaaaggactggcagctg

mutated 8Z 251 agacttatttcat-gataccaacitgtaaaagaaaaggactggcagctg

15 / 16

4Z	298	aggat-gtcattccattgttggaaagat-gtaactcagacgcgtcagga
8Z	300	aggat-gtcattccattgttggaaagat-gtaactcagacgcgtcagga
mutated 8Z	301	aggattgtcattccattgttggaaagattgttaactcagacgcgtcagga
4Z	346	caagaaagagaggcctttgaaagaacat-ggtggccaatttctgcgttaa
8Z	348	caagaaagagaggcctttgaaagaacat-ggtggccaatttctgcgttaa
mutated 8Z	351	caagaaagagaggcctttgaaagaacattggggcaatttctgcgttaa
4Z	395	agat-gggcctccagattaataat-gtagtagat-ggaaaggcatcattc
8Z	397	agat-gggcctccagattaataat-gtagtagat-ggaaaggcatcattc
mutated 8Z	401	agattgggcctccagattaataattgttagtagattggaaaggcatcattc
4Z	442	cagtcctaagagcgaaatat-gaaaagaagactgctaataaaaagcagt
8Z	444	cagtcctaagagcgaaatat-gaaaagaagactgctaataaaaagcagt
mutated 8Z	451	cagtcctaagagcgaaatatgtaaaagaagactgctaataaaaagcagt
4Z	491	ctgagccctctgaagaatatct
8Z	493	ctgagccctctgaagaatatct
mutated 8Z	501	ctgagccctctgaagaatatct

FIG. 16 CONT'D

16 / 16

FIG. 17
Schematic representation of the structure of pONY 8.3G +/- vector genome plasmids

SEQUENCE LISTING PART OF THE DESCRIPTION

pONY8.1Z MLVHyb (SEQ ID NO 10)

5 AGATCTTGAATAATAAAATGTGTGTTGTCGGAAATACCGCTTTGAGATTCTGTCGCCGACTAAATTCAATGTCGCGCG
 ATAGTGGTGTATCCCGATAGAGATGGCGATATTGAAAAATTGATATTGAAAATATGGCATATTGAAAATGTCGC
 CGATGTGAGTTCTGTAACTGATATCGCAATTTCGAAAAGTGATTTGGGCATACGGGATATCTGGCGATAGCGC
 TTATATCGTTACGGGGATGGCGATAGACGACTTTGGTGAATTGGCGATTCTGTGTGCGAAATATCGCAAGTTCGA
 TATAGGTGACAGACGATATGAGGCTATATGCCGATAGAGCGACATCAAGCTGGCACATGGCAATGCAATCGATC
10 TATACATTGAATCAATATTGCCATTAGCCATATTATTCAATTGGTATATAGCATAAAATCAATATTGGCTATTGGCATT
 GCATACGTTGTATCCATATCGTAATATGTACATTATATTGGCTCATGTCAAACATTACGCCATGTTGACATTGATT
 GACTAGTTATTAAATAGTAATCAATTACGGGGTATTAGTCATAGCCATATATGGAGTTCCCGTTACATAACTACGG
 TAAATGGCCCGCCTGGCTGACCGCCAAAGCACCCCCGCCCATTGACGTCAATAATGACGTATGTTCCATAGTAACGCC
 AATAGGGACTTCCATTGACGTCAATTGGTGGAGTTACGGTAAACTGCCACTTGGCAGTACATCAAGTGATCAT
15 ATGCCAAGTCCGGCCCTATTGACGTCAATGACGGTAAATGGCCCGCTGGCATTATGCCAGTACATGACCTTACGGG
 ACTTCCACTTGGCAGTACATCTACGTATTAGTCATCGTATTACCATGGTATGCGGTTTGGCAGTACACCAATGGG
 CGTGGATAGCGGTTGACTCACGGGATTCCAAGTCTCCACCCATTGACGTCAATTGGAGTTGGCAGTACACCAATGGG
 ATCAACGGGACTTCCAAATGCGTAACAACGCGATGCCCGCCCGTTGACGCAAATGGCGGTAGGCGTACCGG
 TGGAGGTCTATAAGCAGAGCTGTTAGTGAACCGGGACTCAGATTCTGGTCTGAGTCCCTCTGCTGGC
20 GAAAAGGCCCTTGTAAATAAAATAATTCTACTCAGTCCCTGTCAGTTGTCTAGTTGTCTGAGATCCTACAGTGGC
 CCGAACAGGGACCTGAGAGGGCGCAGACCCATTGTTGAACCTGGCTATCGTAGGATCCCCGGGACAGCAGAGGA
 GAACCTACAGAAGTCTCTGGAGGTGTTCTGGCAGAACACAGGAGGACAGGTAAAGATTGGAGACCCCTTGACATT
 GGAGCAAGGCGCTCAAGAAGTTAGAGAAGGTGACGGTACAAGGGTCTCAGAAATTAACTACTGTAACTGTAATTGGG
 CCCTAAGTCTAGACTATTATCATGATACCAACTTGTAAAGAAAAGACTGGCAGCTGAGGGATGTCATTCCATT
25 GCTGGAAAGATGTAACTCAGACGCTGTCAGGACAAGAAAGAGAGGCCCTTGAAGAACATGGGGCAATTCTGCTGT
 AAAGATGGGCCTCCAGATTAATAATGAGTATGGAAAGGCATCATTCCAGCTCAAAGAGCGAAATATGAAAAGAA
 GACTGCTAAATAAAAGCAGTCTGAGCCCTCTGAAGAATATCTCTAGAAACTAGTGGATCCCCGGCTGAGGAGTGGG
 GAGGCACGATGCCGTTGGCGAGGGGGATCCGCCATTGCCATATTATGGTTATATAGCATAAAATCAATA
 TTGGCTATTGCCATTGACACGTTGATCCATATCATAATATGTACATTATATTGGCTCATGTCAAACATTACGCCAT
30 GTTGACATTGATTATTGACTAGTTATTAGTAATCAATTACGGGGTATTAGTCATAGCCATATATGGAGTTCCG
 GTTACATAACTACGGTAAATGGCCGCTGGCTGACGCCAAACGACCCCCCATTGACGTCAATAATGACGTATG
 TTCCCATAGTAACGCCAAATAGGACTTCCATTGACGTCAATGGTGGAGTTACGGTAAACTGCCACTTGGCAGT
 ACATCAAGTGTATCATATGCCAAGTACGCCCTTATTGACGTCAATGCGTAAATGGCCGCTGGCATTATGCCAG
 TACATGACCTTATGGACTTCCACTTGGCAGTACATCTACGTATTAGTCATCGCTATTACCATGGTATGCGGTTTG
35 GCAGTACATCAATGGCGTGGATAGCGGTTGACTACGGGGATTCCAAGTCTCCACCCATTGACGTCAATGGAGT
 TTGGTTGGCACCAAAATCAACGGGACTTCCAAAATGCGTAACAACACTCCGCCATTGACGCAAATGGCGGTAGGC
 ATGTACGGTGGAGGTCTATATAAGCAGAGCTCGTTAGTGAACCGTCAGATGCCCTGGAGACGCCATCCACGCTTT
 TGACCTCCATAGAACGACACGGGACCGATCCAGCCTCCGGGGCCAAAGCTCAGCTGCTGAGGATCTGGGATCCGG
 GGAATTCCCCAGTCTCAGGATCCACCATGGGGATCCCGTGTGTTACACGCTGACTGGAAAACCCCTGGCGTAC
40 CCAACTTAATGCCCTTGACGACATCCCCCTTCCGCGACTGGCTAATAGCGAAGAGGGCCGACCGAACAGGGTGGCAAAGCTGGCTG
 CAACAGTTGCGCAGCCTGAATGGCAATGGCGTTGCTGGTTCCGGCACCAGAACAGGGTGGCAAAGCTGGCTG
 GAGTGCAGTCTCTGAGGGCGATACTGCGTGTGCTCCCTCAAACGCGAGATGCACTGGGTTACCGTACGCCCATCTACA
 CCAACGTAACCTATCCCATTACGGTCAATCCGCCGTTGTTCCACGGAGAACCGACGGGTTGTTACTCGTCACATT
 AATGTTGATGAAAGCTGGCTACAGGAAGGCCAGACGCAATTATTTGATGGCGTAACTGGCGTTATCTGCGT
45 GCAACGGGCGTGGCGTTACGGCCAGGACAGTCGTTGCCGCTGAATTGACCTGAGCGCATTTCACGCCGG
 AGAAAACGCCCTCGCGTGTGGCTGCTGGAGTGACGGCAGTTATCTGGAAAGATCAGGATATGCGGCGATGAG
 CGGCATTTCGGTACGTCGTTGCTGCATAAACCGACTACACAAATCAGCGATTCCATGTTGCCACTCGCTTAATG
 ATGATTTCAGCCCGCTGACTGGAGGTGAAGTTCAAGATGTGCGCGAGTGGCGTACTACCTACGGGAAACAGTT
 TTTATGGCAGGGTGAACCCAGGTGCCAGCGCACCAGGCCCTTCCGGCGTGAATTATCGATGAGCGTGGTGTAT

GCCGATCGCGTCACACTACGTCTGAACGTGAAAACCCGAAACTGTGGAGGCCGAATTCCGAATCTTATCGTGC
 TGGTTGAACCTGACACCGCCGACGGCACGCTGATTGAAGCAGAAGCCTGCGATGTCGTTCCGCGAGGTGCGGATTGA
 AAATGGTCTGCTGCTGCTGAAACGGCAAGCCGTTGCTGATTGAGGCCTAACCGTCACGAGCATCATCCTCTGCATGGT
 CAGGTATGGATGAGCAGACGATGGTCAGGATATCCTGCTGATGAAGCAGAACAACTTTAACGCCGTCGCGTGTTC
 5 ATTATCGAACCATCCGCTGTTACACGCTGCGACCGCTACGGCCTGTATGTGGTGGATGAAGCCAATATTGAAAC
 CCACGGCATGGTGCCAATGAATCGTCTGACCGATGATCCCGCTGGCTACCGCGATGAGCGAACCGTAACCGGAAT
 GGTGAGCGCGATCGTAATCACCAGCTGATCATCTGGTCGCTGGGAATGAATCAGGCCACGGCGTAATCACGA
 CGCGCTGATCGCTGGATCAAATCTGCGATCCTCCGCCGGTGCAGTATGAAGCGCGGAGCCGACACCACGGC
 ACCGATATTATTGCCCAGTGTACGCGCGTGGATGAAGACCAGCCCTCCCGCTGCGAAATGGTCCATCAAAA
 10 AATGGCTTCGCTACCTGGAGAGACGCCGCCGCTGATCCTTGCATAACGCCACCGATGGTAACAGTCTTGGCG
 TTTCGCTAAATACTGGCAGCGTTCTGCACTGATCCCCGTTACAGGGCGCTTCGCTGGGACTGGTGGATCAGTC
 TGATTAATATGATGAAAACGGCAACCCGTTGCGTCCGCTACGGCGTGGATTTGGCGATACGCCAACGATGCCAGTT
 CTGATGAACTGGCTGGTCTTGGCAGCCGACGCCATCCAGCGCTGACCGAACAGCAAAACACCAGCAGCAGTTTC
 CAGTCCGTTATCCGGCAAAACCATCGAACTGACCGCAATACCTGTCGCTATAGCGATAACGAGCTCTGCACT
 15 GGATGGTGGCGCTGGATGGTAAGCCGCTGGCAAGCGGTGAAGTGCCTCTGGATGTCGCTCCACAAGTAAACAGTGA
 TTGAACTGCCCTGAACTACCGCAGCCGAGAGCGCCCGCAACTCTGGCTCACAGTACCGTAGTGCACCGAACCG
 CCGCATGGTCAGAAGCCGGCACATCAGCGCTGGCAGCAGTGGCTCTGGCGAACCTCAGTGTGACUCCCTCCCG
 CCCGCTCCACGCCATCCCGATCTGACCAACAGCGAAATGGATTTGCGATCGAGCTGGTAATAAGCGTTGGCAATT
 TAACCGCCAGTCAGGCTTCTTCACAGATGTGGATTGGCGATAAAAAAAACTGCTGACGCCGCTGGCGATCAGTC
 20 ACCCGTGACCCGCTGGATAACGACATTGGCTAAGTGAAGCAGCCGATTGACCCCTAACGCCCTGGTCGAACGCTGG
 AAGGCGCGGGCATTACCGGCCAGCAGCAGCTGGCAGTCAGTGCACGGCAGATAACACTGCTGATGCGGTGCTGATT
 ACGACCGCTACCGCTGGCAGCATCAGGGAAACCTTATTAACGCCGAAACCTACCGGATTGATGGTAGTGGTC
 AAATGGCGATTACCGTTGATGTTGAAGTGGAGCGATAACCCGATCCGGCGGATTGGCTGAACTGCCAGCTGG
 GCAGGTAGCAGAGCGGGTAAACTGGCTCGGATTAGGGCCGCAAGAAAACATACCGCAGCCCTTACTGCCGCTGTTT
 25 GACCGCTGGGATCTGCCATTGTCAGACATGTATAACCCGTAAGTCTTCCCGAGCGAAAACGGCTGCGCTGGGACGC
 CGGAATTGAATTATGCCAACCCAGTGGCGGGGACTTCAAGTCAACATCAGCCCTACAGTCAACAGCAACTGAT
 GGAAACCCAGCCATGCCATCTGCTGACGCCAGAAGGACATGGCTGAATATGACGGTTCCATATGGGATTGG
 TGGCGACGACTCCCTGGAGCCGCTAGTATCGCGGAATTCCAGCTGAGGCCGGCTCGCTACCATTACCAAGTGGTCTGG
 TGTCAAAATAATAAAACCGGGCAGGGGGATCCCGAGATCCGGCTGTGGAATGTGTCAAGTTAGGGTGTGAAAG
 30 TCCCCAGGCTCCCAAGCAGGCGAGAAGTGTCAAAGCATGCCAGGAATTGATATCAAGCTTATGATACCGCTGAA
 TTGGAAGAGCTTAAATCTGGCACATCTCATGTATCAATGCCCTAGTATGTTAGAAAACAGGGGGAACTGTGGG
 GTTTTATGAGGGTTTATAATGAAAAGACCCACCTGAGGTTGGCAAGCTAGCTTAAGTAACCCATTGGCAAGG
 CATGGAAAATACATAACTGAGAATAGAGAAGTTCAGATCAAGTCAGGAACAGATGAAACAGCTGAATATGGCCA
 AACAGGATATCTGTTGTAAGCAGTTCTGCCCGCTCAGGGCAAGAACAGATGGTCCCCAGATGCCAGCCCTCAGC
 35 AGGATATCTGTTGTAAGCAGTTCTGCCCGCTCAGGGCAAGAACAGATGGTCCCCAGATGCCAGCCCTCAGC
 AGTTCTAGAGAACCATCAGATGTTCCAGGGTCCCCAAGGACCTGAAATGACCCCTGTCCTTATTTGAACTAACCAA
 TCAGTTCGCTCTCGCTCTGTTGCCGCTCTGCTCCCCAGCTCAATAAAAGGCCAACACCCCTACTGGGGGG
 CACTCAGATTCTGCCGCTGAGTCCCTCTGCTGGGCTGAAAAGGCCCTTGTAAATAATATAATTCTACTCAGTCC
 CTGTCCTAGTTGTCGAGATCTACAGAGCTCATGCCCTGGCTAATCATGGTCAAGCTGTTCTGTGAA
 40 ATTGTTATCCGCTCACAAATTCCACACAAACATACGAGCCGAAGCATAAGTGTAAAGCCTGGGTOCCTAATGAGTGA
 CTAACCTACATTAATTGCGTTGCCCTACTGCCCTTCCAGTCGGGAAACCTGTCGTCAGCTGCATTAATGAATCG
 GCCAACGCCGGGGAGAGCGGTTTGCATGGCGCTTCCGCTTCCGCTACTGACTCGCTGCCGCTGGCT
 CGGCTGCCGAGCGGTATCAGCTCAACAGCGTAATACGGTTACCCACAGAACAGGATAACGCCAGGAAAG
 AACATGTGAGCAAAAGGCCAGCAAAGGCCAGGAACCGTAAAAGGCCGTTGCTGCCGTTCCATAGGCTCCGC
 45 CCCCTGACGAGCATCACAAAAATGCCGCTCAAGTCAGAGGTGGCGAACCCGACAGGACTATAAGATACCAAGCG
 TTCCCCCTGGAAGCTCCCTGCGCTCTCTGTCGCTGCCGACCCCTGCCGCTAACGGATACCTGTCGCCCTTCTCC
 GGAAGCGTGGCGCTTCTCATAGCTACGCTGAGGTATCTAGTTGGCTGAGGTCGTTGCTCAAGCTGGGTGTT
 GCACGAAACCCCGTCAAGCCGACCCGCTGCCCTTATCCGTAACCTACGGCTTGTGAGTCCAAGCTGGGTGTT
 TTATGCCACTGGCAGCACCCACTGGTAACAGGATTACCGAGCGAGGTATGAGGCGGTGCTACAGAGTTCTGAAAGT

3

GGTGCCCTAACTACGGCTAACACTAGAAGGACAGTATTGGTATCTCGCTCTGCTGAAGCCAGTTACCTTCGGAAAAAG
 AGTTGGTAGCTCTGATCCGGCAACAAACACCACCGCTGGTAGCGGTGTTTTTGTGCAAGCAGCAGATTACGCC
 AGAAAAAAAAGGATCTCAAGAAGATCCTTGATCTTCTACGGGTCTGACGCTCAGTGGAACGAAACUTCACGTTAAG
 GGATTTGGTCACTGAGATTATCAAAGGATCTCACCTAGATCCTTAAATTAAAATGAAGTTTAATCAATCTAA
 5 AGTATATATGACTAAACTTGGTCTGACAGTTACCAATGCTTAATCAGTGGGACCTATCTCAGCGATCTGCTATTGCG
 TTCATCCATAGTGCCTGACTCCCCGTGCTGAGATAACTACGATACGGGAGGGCTTACCATCTGGCCCCAGTGTGCA
 ATGATACCGCGAGACCCACGCTACCGGCTCCAGATTATCAGCAATAACCAAGCCAGCCAGGGGAAGGGCCAGCGCAGA
 AGTGGTCTGCAACTTTATCCGCTCCATCCAGTCTATTAAATTGTCGGGGAGCTAGAGTAAGTAGTTCCUCAGTTAA
 TAGTTGCGAACGTTGTOCCATTGCTACAGGCATCGTGTGACGCTCGTGTGTTGGTATGGCTTCAATTAGCTCC
 10 GTTCCCACAGATCAAGCGAGTTACATGATCCCCATGTTGCAAAAAAGCGGTTAGCTCTTCGGTUCCTCGATCGTT
 GTCAGAAGTAAGTGGCCGAGTGTATCACTCATGTTATGGCAGCACTGCATAATTCTTACTGTCATGCCATCCGT
 AAGATGCTTTCTGTGACTGGTAGTACTCAACCAAGTCATTGAGAAATAGTGTATGGCGACCGAGTTGCTTGGC
 CGGGCTCAATACGGGATAATACCGGCCACATAGCAGAACTTAAAGTGTCTCATTTGAAACCGTCTTGGGGCG
 15 AAAACTCTCAAGGATCTTACCGCTGTTGAGATCCAGTTGATGTAACCCACTCGCACCCAACTGATCTCAGCACTT
 TTACTTCAACAGCGTTCTGGTGAGCAAAAAACAGGAAGGCAAATGCCCAAAAAAGGGAATAAGGGCAACACGGA
 AATGTGAATACTCATACTCTCCTTTCAATTATTGAGCATTATCAGGTTATTGTCATGAGCGGATACATAT
 TTGAATGTATTAGAAAATAAACAAATAGGGTTCCGGCACATTCCCCGAAAGTGCACCTAAATTGTAAGCGTT
 AATATTTGTTAAAATTGGCTTAAATTGTTAAATCAGCTCATTTTAAACCAATAGGGCAATGGCAAATCCC
 TTATAAATCAAAGAATAGACCGAGATAGGGTGAGTGTGTCAGTTGGAAACAAGAGTCCACTATTAAAGAACGTG
 20 GACTCCAACGTCAAAGGGCAAAACCGTCTATCAGGGCAGTGGCCACTACGTGAACCATCACCCTAATCAAGTTT
 TGGGTCGAGGTGCCGTAAGCACTAAATCGAACCTAAAGGGAGCCCCGATTAGAGCTGACGGGGAAAGCCAA
 CCTGGCTTATCGAAATTAAATACGACTCACTATAGGGAGACCGGC

pONY8.3G FB29 – (SEQ ID No 45)

25 AGATCTTGAATAATAAAATGTGTGTTGTCGAAATACGCGTTTGAGATTCTGTCGCC
 GACTAAATTCACTGTCGCCGATAGTGGTGTATCGCGATAGAGATGGCGATATTGAA
 AAATTGATATTGAAATAATGGCATATTGAAAATGTCGCCGATGTGAGTTCTGTGTAAC
 TGATATGCCATTTCACAAAGTGAATTGGCATACGCGATATCTGGCGATAGCGCT
 TATATCGTTACGGGGATGGCGATAGACGACTTGGTGAATTGGCGATTCTGTGTC
 GCAAATATCGCAGTTGATATAGGTGACAGACGATATGAGGCTATATGCCGATAGAGG
 CGACATCAAGCTGGCACATGCCAATGCATATCGATCTACATTGAAATATTGCC
 ATTAGCCATATTATTGTTATAGCATAAATCAATTGGCTATTGGCATGTCACATTACCGCC
 TACGTTGATCCATATCGTATATGTACATTATATTGGCTATGTCACATTACCGCC
 ATGTTGACATTGATTGACTAGTTATTAGTAATCAATTACGGGTCTTGTGTC
 TAGCCCATATATGGAGTTCGGTACATAACTTACGGTAAATGGCCCTGGCTGACC
 GCCCAACGACCCCCGCCATTGACGTCAATAATGACGTATGTTCCATAGTAACGCCAAT
 AGGGACTTCCATTGACGTCAATGGGGAGTATTACGGTAAACTGCCACTGGCAGT
 ACATCAAGTGTATCATATGCCAAGTCCCCCCCTATTGACGTCAATGACGGTAAATGCC
 CGCCCTGGCATTATGCCAAGTACATGACCTTACGGGACTTCTACTTGGCAGTACACCAATGGCGTGG
 CGTATTAGTCATGCCATTACCATGGTATGGGTTGGCAGTACACCAATGGCGTGG
 ATAGCGGTTGACTCACGGGATTCCAAGTCTCACCCATTGACGTCAATGGAGTT
 GTTTGGCACCAAAATCAACGGGACTTCCAAAATGTCGTAACAACTGCGATGCCGCC
 CCGTTGACGCAATGGCGGTAGGCGTGTACGGTGGAGGTCTATATAAGCAGAGCTCGT
 TTAGTGAACCGGGCACTCAGATTCTGGCTCTGAGTCCCTCTGCTGGCTGAAAAGG
 CCTTTGTAATAAAATATAATTCTACTCAGTCCCTGTCTAGTTGTCTGTCAGATC
 CTACAGTTGGGCCCGAACAGGGACCTGAGAGGGCGCAGACCTACCTGTAACCTGG
 CTGATCGTAGGATCCCCGGGACAGCAGAGGAGAACTTACAGAAGTCTCTGGAGGTGTT

CTGCCAGAACACAGGAGGACAGTAAGATTGGGAGACCCCTTGACATTGGAGCAAGGGCG
CTCAAGAAGTTAGAGAAGGTGACGGTACAAGGGTCTCAGAAATTAACACTGGTAACGT
AATTGGGCCTAAGTCTAGTAGACTTATTTCATGATACCAACTTTGTAAAAGAAAAGGAC
TGGCAGCTGAGGGATGTCATTCCATTGCTGAAGATGTAACCTCAGACGCTCTCAGGACAA
GAAAGAGAGGCCCTTGAAAGAACATGGTGGCAATTCTGCTGTAAAGATGGGCCTCCAG
ATTAATAATGTAGTAGATGAAAGGCATCATTCCAGCTCTAAGAGCAAATATGAAAAG
AAGACTGCTAATAAAAGCAGTCTGAGGCCCTCTGAAGAAATATCTCTAGAAACTAGTGGATC
CCCCGGGCTCAGGAGTGGGGAGGCACGATGGCCCTTGGTCAGGGCGATCCGGCCAT
TAGCCATATTTCATTGTTATAGCATAAATCATATTGGCTATTGGCATTGGCATA
CGTTGTATCCATATCATAATATGTACATTATGGCTCATGTCACATTACCCCAT
GTTGACATTGATTATTGACTAGTTATTAAAGTAATCAATTACGGGTCTTACGTTACATA
GCCCATATATGGAGTTCCCGGTTACATAACTTACGGTAATGGCCCTGGCTGACCGC
CCAACGACCCCCCGCCATTGACGTCAATAATGACGTATGTCACATTGGCAGTAC
GGACTTCCATTGACGTCAATGGTGGAGTATTACGGTAACCTGGCACTGGCAGTAC
ATCAAGTGTATCATATGCCAAGTACGCCCTTATTGACGTCAATGACGGTAATGGCCCG
CCTGGCATTATGCCAGTACATGACCTTATGGACTTCTACTGGCAGTACATCTACG
TATTAGTCATCGCTTATTACCATGGTATGCGGTTTGGCAGTACATCAATGGCGTGGAT
ACCGGTTGACTCACGGGATTCCAAGTCTCCACCCATTGACGTCAATGGAGTTGT
TTTGGCACCAAAATCAACGGGACTTCCAAGTGTGTAACAACCTGGCCATTGACGC
AAATGGCGGTAGGCATGTACGGTGGAGGTCTATATAAGCAGAGCTGTTAGTGAACC
GTCAGATCGCTGGAGACCCATCCACGCTGTTTGACCTCCATAGAAGACACCGGGACC
GATCCAGCCTCCGGGGCCCAAGCTTGGGATCCACCGTCGCCACCATGGTGAGCAA
GGCGAGGAGCTTCAACGGGGTGGTGGCCATCTGGTCACTGGGACGGGAGCTAA
CGGCCACAAGTTCAGCGTGTCCGGCGAGGGCGATGCCACCTACGGCAAGCTGAC
CCTGAAGTTCATCTGCACCAACCGCAAGCTGCCCCTGGCCACCTCGTGAAC
CCTGACCTACGGCGTGCAGTCCTCAGCGTACCCGACCATGAAGCAGCACGACTT
CTTCAGTCCGCATGCCAAGGCTACGTCCAGGAGCGCACCACATCTCAAGGACGA
CGGCAACTACAAGACCCGGCCGAGGTGAAGTTGAGGGCGACACCTGGACAGCGCAT
CGAGCTGAAGGGCATGACTTCAGGAGGACGGCAACATCTGGGACAAAGCTGGACTA
CAACTACAACAGCCACAACGTCTATATCATGGCCACAAGCAGAAGAACGGCATCAAGGT
GAACCTCAAGATCCGCACAACATCGAGGACGGCAGCGTGCAGCTGCCGACCAACTACCA
GCAGAACACCCCATCGGGACGGCCCTGCTGCTGCCGACAACCAACTCTGAGCAC
CCAGTCCGCCCTGAGCAAAGACCCAAACGAGAAGCGCGATCACATGGCCTGCTGGAGTT
CGTGACCGCCGGGATCACTCTCGCATGGACGAGCTGTACAAGTAAAGCGGCCGCGA
CTCTAGAGTCACCTGCAGGACATGCAAGCTCAGCTGCTCGAGGGGGGCCGTACCCA
GCTTTGTTCCCTTACTAGTGAAGGTTAATTGCGGGAGTATTATCAATAAGCAC
AAGTAATACATGAGAAACTTTACTACAGCAAGCACAATCTCCAAAAAATTTGTTTT
ACAAAAATCCCTGGTAACATGATTGAGGGACCTACTAGGGTGTGGAAGGGTATG
GTGCACTAGTAGTTAATGAGAAGGAAAGGAATAATTGCTGTACCATTAACCAAGGACTA
AGTTACTAATAAAACCAAATTGAGTATTGTTGAGGAAGCAAGACCCAACTACCAATTGTC
AGCTGTGTTCCCTGACCTCAATATTGTTATAAGGTTGATATGAATCCAGGGGAATC
TCAACCCCTTACCAACAGTCAGAAAAATCTAAGTGTGAGGAGAACACAATGTTCAA
CCTTATTGTTATAATAATGACAGTAAGAACGGCATGGCAGAACATGAAGGAAGCAAGGAC
CAAGAACCTGAAAGAAGAACATCTAAGAAGAAAAAGAACAGAACACAATGTTCAA
TAGGTATGTTCTGTTATGCTTAGCAGGAACACTGGAGGAATACTGGGTGTATGAAG
GACTCCCACAGCAACATTATAGGGTGGCGATAGGGGGAGATTAAACGGATCTG
GCCAATCAAATGCTATAGAATGCTGGGTTCTCCGGGTGTAGACCATTCAAAATT
ACTTCAGTTATGAGACCAATAGAACATGCAATTGATAATAACTGCTACATTATTAG
AAGCTTAAACCAATATAACTGCTCTAAATAACAAAACAGAACATTAGAACATGGAAAGTT

AGTAAAGACTTCTGGCATACTCCTTACCTATTCTCTGAAGCTAACACTGGACTAAT
TAGACATAAGAGAGATTTGGTATAAGTCAATAGTGGCAGCTATTGAGCCGCTACTGC
TATTGCTGCTAGCGCTACTATGTCTTGTGCTCTAAGTGGCTTAACAAAATAATGGA
AGTACAAAATCATACCTTGAGGTAGAAAATAGTACTCTAAATGGTATGGATTAAATAGA
ACGACAATAAAGATATTATGCTATGATTCTCAACACATGCAGATGTCACACTGTT
AAAGGAAAGACAACAGGTAGAGGAGACATTAAATTGATGTTAGAAAGAACACA
TGTATTTGTACTGGTACCCCTGGAATATGTCATGGGACATTAAATGAGTCAC
ACAATGGGATGACTGGGTAAGCAAATGGAAGATTAAATCAAGAGACTAACTACACT
TCATGGAGCCAGGAACAATTGGCACAACTCATGATAACATTCAACACCCAGATAGTAT
AGCTCAATTGAAAAGACCTTGGACTCATATTGAAATTGATTCCCTGGATTGGGAGC
TTCCATTATAAAATATAGTGTGTTTGCTTATTGTTACTAACTCTTCGCC
TAAGATCCTCAGGGCCCTCTGGAGGTGACCAAGTGGTCAGGGCTCCGGCAGTCGTTA
CCTGAAGAAAAAATTCCATACAAACATGCATCGCAGAAGACACCTGGGACCAGGCCA
ACACAAACATACACCTAGCAGCGTGACCCGGTGGATCAGGGACAAATACTACAAGCAGAA
GTACTCCAGGAACGACTGGAATGGAGAATCAGAGGAGTACAACAGGCCAAAGAGCTG
GGTGAAGTCATCGAGGCATTGGAGAGAGCTATATTCCGAGAAAGACCAAGGGGAGAT
TTCTCAGCCTGGGGCGGCTACACGAGCACAAGAACGGCTCTGGGGGAAACAATCCTCA
CCAAGGGCCTTAGACCTGGAGATTGAAGCGAAGGAGAAACATTATGACTGTTGCAT
TAAAGCCAAGAAGGAACCTCGTATCCCTGCTGTTGATTCCCTTATGGCTATTG
GGGACTAGTAATTATAGTAGGACGCATAGCAGGCTATGGATTACGTGGACTCGCTGTTAT
AATAAGGATTGTTAGAGGCTAAATTGATATTGAAATAATCAGAAAAATGCTTGA
TTATATTGGAAGAGCTTAAATCCTGGCACATCTCATGTATCAATGCCTCAGTATGTTA
GAAAAACAAGGGGGAACTGTGGGTTTATGAGGGTTTATAATGATTATAAGAGT
AAAAAGAAAAGTGTGATGCTCTATAACCTGTATAACCCAAAGGACTAGCTCATGTTG
CTAGGCAACTAAACCGCAATAACCGCATTTGTGACCGAGTCCCCATTGGTACCGCGTT
AACTCCTGTTTACAGTATATAAGTGTGTTGTTCTGCTGAAATTGTTATCCGCTCACAATTCCACACAA
CGAGCCGGAAACATAAGTAAAGCCTGGGTGCTAATGAGTGGACTAACATCATT
ATTGCGTTGCGCTACTGCCGCTTCCAGTCGGAAACCTGTCGCGCAGTGTGCCCC
GGCGGCCGAGGGGGCTACGTGAACCATACCCAAATCAAGTTTGCCTGGTGAGGTGC
CGTAAAGCTCTAAATCGAACCCCTAAAGGGAGCCCCGATTAGAGCTTGACGGGGAAAG
CCGGCGAACGTGGCGAGAAAGGAAGGAAGAACCGAAAGGAGCGGGCTAGGGCGCTG
GCAAGTGTAGCGGTACGGCTCGCGTAACCACCCACACCCGCCGCTTAATGCGCCGCTA
CAGGGCGCGTCATTGCCATTCAAGCTCGCAACTGTTGGAAAGGGCGATGGTGC
CCTTCGCTATTACGCCAGCCGGATCGATCCTTATCGGATTTCACACATTGAGAG
GTTTACTTGCTTAAAAACCTCCCACATCTCCCTGAAACCTGAAACATAAAATGAAT
GCAATTGTTGTTAACTGTTATTGAGCTTATAATGGTACAAATAAGCAATAGC
ATCACAAATTTCACAAATAAGCATTTCACACTGCTATTGAGCTTGTGTTGCTCAA
CTCATCAATGTATCTTATCATGTCGCTCGAACGCTTAACCCACTAAAGGGAAGCGGC
CGCCCGGGTGCACCTCACAGGTGTTGCCGCTTTGGAGTCTCCGGCCTCAAGACG
CGGGGGCTGCTGCTGCCACAGCCTTCTGTGCCCTCTGGTAGCCTCCCATGCG
GAGAAATGCCCTCTGGCTCGCGGAAGTAGAGCTCCCTCAGATGCCGATTCA
TCTCCAGCTTTAGCGGTTGTCAGGCCCTAATTCTCCATTCCAGCCTTCTGG
AGGACCTCGGCTGAAAATCTGGCCCTAATCCACCTATCCCTCTGGAGGGTGTG
TGGTGGGACCGGGGCCGAGGTGTTCTCGCGATGCAGGTCTGGTAGGAATCTCTCC
TCGGGAGGGACTGTCTCAGCACCGGCCACACTGGTCCCCCTCAGGGGGCTTGTGG
TCGATCTCCACCACTCGTTGCCGCTTCTCTTGTCTCTCCCTGAGGTTCATC

TCTTGATCCCTGGCCTCCTGCTCTCAGCCATGGTGCAGAATTCTCGAGGCTAGCCTCCC
GGTGGTGGTCGGTGGTCCCTGGCAGGGTCTCCAGATCCCGACGAGCCCCAAATGA
AAGACCCCCGAGACGGTAGTCAATCACTCTGAGGAGACCCCTCCAAGGAACAGCGAGAC
CACGAGTCGGATGCAACACAAGAGGATTATTGGATAACCGGTACCCGGCGACTCAG
TCTATCGGAGGACTGGCGGCCGAGTGAGGGTTGTGAGCTTTATAGAGCTCGGAA
GCAGAAGCGCGCGAACAGAAGCGAGAACCGAGGCTATTGGTAATTCAAATAAGGCACAG
GGTCATTTCAAGTCCTGGGGAGCGCTGGAAACATCTGATGGTCTTAAGAAACTGCTGA
GGGGTGGGCCATATCTGGGACCATCTGTTCTGGCCCCGGGCGGGCGAACCGCGGT
GACCATCTGTTCTGGCCCCGGGCCGGCGAACATGCTCACCCAGATATCCTGTTG
GCCCAACGTTAGCTGTTCTGTAACCCCCCTTGATCTGAACCTCTATTCTGGTTT
GGTATTTTCATGCCCTTGCAAAATGGCCTACTGCGGCTATCAGGCTAAGCAATTGAG
ATCTGGCGAGGGCGCTACTCTGCTTAAATGAATCGCAACCGCGGGGAGAGGCGGT
TTGCGTATTGGCGCTCTCCGCTTCCCGTCACTGACTCGCTCGCTCGTCGGTGGCG
CTGCGGCAGCGGTATCAGCTACTCAAAGCGGTAAACGGTTATCCACAGAACAGGG
GATAACGCAAGGAAAGAACATGTATAACTCGTATAATGTATGCTATACGAAGTTACAT
GTGAGCAAAAGGCCAGCAAAAGGCCAGGAACCGTAAAAGGCCGCGTGTGGCGTTTT
CCATAGGCTCCGCCCCCTGACGAGCATCACAAAATCGACGCTCAAGTCAGAGGTGGCG
AAACCCGACAGGACTATAAAGATACCAGCGTTCCCGTGGAAAGCTCCCTCGTGCCTC
TCCTGTTCCGACCCCTGCCGTTACCGGATACCTGTCGCCCTTCTCCCTCGGAAGCGT
GGCGCTTCTCATAGCTACGCTGAGGTATCTCAGTTCGGTGTAGTCGCTCGCTCCAA
GCTGGGCTGTGACGAACCCCCCGTTCAAGCCGACCGCTGCCCTTATCCCGTAACTA
TCGCTTGAGTCAACCCGTAAGACACGACTTATGCCACTGGCAGCAGCCACTGGTAA
CAGGATTAGCAGAGCGAGGTATGAGCGGTCTACAGAGTTCTGAAGTGGTGGCTAA
CTACGGCTACACTAGAAGGACAGTATTGGTATCTGCGCTCTGCTGAAGCCAGTTACCTT
CGGAAAAAGAGTGGTAGCTTGTGACCGCAAACAAACCCCGCTGGTAGCGGTGGTT
TTTGTGGCAAGCAGCAGATTACGCGCAGAAAAAAAGGATCTAAGAAGATCCTTGAT
CTTTCTACGGGGTCTGACGCTCAGTGGAACGAAAACACGTTAAGGGATTGGTCA
GAGATTATCAAAAGGATCTCACCTAGATCCTTAAATTAAAATGAAGTTAAATC
AACTAAAGTATATGACTAAACCTGGTCTGACAGTTACCAATGCTTAATCAGTGAGGC
ACCTATCTCAGCGATCTGCTATTCGTTACCATAGTTGCTGACTCCCCGTCGTGTA
GATAACTACGATACGGGAGGGCTTACCATCTGGCCCCAGTGCATGAACTACCGCGAGA
CCACGCTCACCGCTCCAGATTACGCAATAAACCAAGCCAGCCAGGGAGGGCGAGCG
CAGAAGTGGCTCTGCAACTTATCCGCTCCATCCAGTCTATTAAATTGTTGCCGGAAAGC
TAGAGTAAGTAGTTCGCCAGTTAATAGTTGCGCAACGTTGCTGCTACAGGCT
CGTGGTGTACGCTCGTGGTATGGCTTCACTCAGCTCCGGTCCACGATCAAG
GCGAGTTACATGATCCCCATGTTGCAAAAAAGCGTTAGCTGCCCTCGTCCTCCGAT
CGTTGTCAGAAGTAAGTGGCCAGTGTATCACTCATGGTTATGGCAGCACTGCATAA
TTCTTACTGTCATGCCATCCGTAAGATGCTTTCTGTAAGTGGTACTGAGTACTCAACCAA
GTCATTCTGAGAATAGTGTATGCCAGGAGTTGCTTGGCCGGCTCAATACGGGA
TAATACCGCCACATAGCAGAACTTTAAAGTGTCTCATTTGGAAACGTTCTCGGG
GCGAAAACCTCAAGGATCTTACCGCTGTTGAGATCCAGTGTAAACCCACTCGTGC
ACCAACTGATCTCAGCATTTTACTTCAACCGCTTCTGGTGAGCAAAACAGG
AAGGCAAAATGCCGAAAAAGGAATAAGGGGACACGGAAATGTTGAATACTCATACT
CTTCTTTTCAATATTATTGAAGCATTATCAGGGTTATTGTCTCATGAGCGGATACAT
ATTGAATGTATTAGAAAATAACAAATAGGGTCCGCGCACATTCCCCAAAAGT
GCCACCTAAATTGTAAGCGTTAATATTGTTAAAATCGCTTAAATTGTTAAATC
AGCTCATTAAACCAATAGGCCAAATCGCAAAATCCCTATAAAATCAAAGAATAG
ACCGAGATAGGGTTAGTGTGTTCCAGTTGGAACAGAGTCCACTATTAAAGAACGTG
GACTCCAACGTCAAAGGGCGAAAACCGTATCAGGGGATGGCCACTACGTGATAAC

TTCGTATAATGTATGCTATACGAAGTTACTACGTGAAACCCTAACCCCTAATCAAGTTT
 TTTGGGGTCGAGGTGCCGTAAAGCACTAAATCGGAACCTAAAGGGAGCCCCCGATTAG
 AGCTTGACGGGAAAGCCAACCTGGCTTATCGAATTAAACGACTCACTATAGGGAGAC
 CGGC

pONY8.3G FB29 + (SEQ ID No 46)

AGATCTTGAATAAATAAAATGTGTGTTGTCGAATAACCGGTTTGAGATTCTGTCGCC
 GACTAAATTATGTCGCCGATAGTGGTTTATCGCCGATAGAGATGGCATAATTGGAA
 AAATTGATATTGAAAAATATGCCATATTGAAATATGTCGCCGATGTGAGATTCTGTAAC
 TGATATGCCATTTCAAAAGTGTGTTGGCATACGCGATATCTGGCGATAGCGCT
 TATATCGTTACGGGGATGGCGATAGACGACTTGGTACTTGGCATTCTGTC
 GCAAATATCGAGTTCGATATAGGTGACAGACGATATGAGGCTATATGCCGATAGAGG
 CGACATCAAGCTGGCACATGCCAATGCATATCGATCTACATTGAATCAATATTGCC
 ATTAGCCATATTATTCAATTGGTATATAGCATAAATCAATATTGGCTATTGCCATTGCA
 TACGTTGATCCATATCGTAATATGACATTATATTGGCTATGCCAAGATTACCGCC
 ATGTTGACATTGATTATTGACTAGTTATTAAAGTAACTTACGGTAACTGGCCATTAGTTCA
 TAGCCCATAATGGAGTCCCGTTACATAACTTACGGTAAATGCCCGCTGGCTGACC
 GCCCAACGACCCCCGCCATTGACGTCAATAATGACGTATGTTCCATAGTAACGCCAAT
 AGGGACTTCCATTGACGTCAATGGGTGGAGTATTACGGTAAACTGCCACTGGCAGT
 ACATCAAGTGTATCATATGCCAAGTCCGGCCCTATTGACGTCAATGACGGTAAATGCC
 CGCCTGGCATTATGCCAGTACATGACCTTACGGACTTCCACTTGGCAGTACATCTA
 CGTATTAGTCATCGTATTACCATGGTGTGCGGTTGGCAGTACACCAATGGCGTGG
 ATAGCGGTTGACTCACGGGATTCCAAAGTCTCCACCCATTGACGTCAATGGAGTTT
 GTTTGGCACAAAATCAACGGACTTCCAAAATGCGTAACAACGTGCGATGCCCGCC
 CCGTGACGCAAATGGCGTAGGGCTGACGGTGGAGGTCTATATAAGCAGAGCTCGT
 TTAGTGACCGGGCACTCAGATTCTGCGTCTGAGTCCCTCTGCTGGCTGAAAAGG
 CCTTTGTAATAAAATAATTCTACTCAGTCCCTGCTCTAGTTGCTGTTGAGATC
 CTACAGTGGCGCCGAACAGGGACTGAGAGGGCGCAGACCTTACCTGTTGAACCTG
 CTGATCGTAGGATCCCCGGGACAGCAGAGGAGAACTTACAGAAGTCTCTGGAGGTGTC
 CTGGCCAGAACACAGGAGGACAGGTAAGATTGGAGACCTTACCTGTTGAGCAAGGCG
 CTCAAGAAGTTAGAGAAGGTGACGGTACAAGGGCTCAGAAATTAAACTACTGGTAAC
 ATTGGCGCTAAGTCTAGTAGACTTATTCTATGATACCAACTTGTAAAAGAAAAGGAC
 TGGCAGCTGAGGGATGTCATTCCATTGCTGGAAGATGTAACCTACAGCGTGTCAAG
 GAAAGAGAGGCCATTGAAAGAACATGGGGCAATTCTGCTGTAAGATGGCCTCCAG
 ATTAATAATGTAGTAGATGAAAGGCATCATTCCAGCTCTGAAGAATATCTAGAACT
 AAGACTGCTAATAAAAGCAGTCTGAGGCCCTCTGAAGAATATCTAGAACTACTGGATC
 CCCCGGCGTGCAGGAGTGGGAGGCACGATGGCCGTTTGGCTGAGGCGGATCCGGCCAT
 TAGCCATATTATTCAATTGGTATATAGCATAAATCAATATTGGCTATTGCCATTGCA
 CGTTGTATCCATATCATAATATGTACATTATATTGGCTATGCCAACATTACGCCAT
 GTTGACATTGATTATTGACTAGTTATTAAAGTAACTCAATTACGGGTCTTACGTTCA
 GCCCATATATGGAGTCCCGTTACATAACTTACGGTAAATGCCCGCTGGCTGACCGC
 CCAACGACCCCCGCCATTGACGTCAATAATGACGTATGTTCCCATAGTAACGCCAATAG
 GGACTTCCATTGACGTCAATGGGTGGAGTATTACGGTAAACTGCCACTTGGCAGTAC
 ATCAAGTGTATCATATGCCAAGTACGCCCCATTGACGTCAATGACGGTAAATGCCCG
 CCTGGCATTATGCCAGTACATGACCTTATGGGACTTCCACTTGGCAGTACATCTACG
 TATTAGTCATCGTATTACCATGGTGTGCGGTTGGCAGTACATCAATGGCGTGGAT
 AGCGGTTGACTCACGGGATTCCAAAGTCTCCACCCATTGACGTCAATGGAGTTGT
 TTTGGCACAAAATCAACGGGACTTCCAAAATGCGTAACAACCTGCCCGCCATTGACGC

AAATGGCGGTAGGCATGTACGGTGGGAGGTCTATAAGCAGAGCTCGTTAGTGAACC
GTCAGATCGCCTGGAGACGCCATCCACGCTGTTGACCTCCATAGAAGACACCGGGACC
GATCCAGCCTCCGGGCCCCAAGCTTGTGGGATCCACCGTCGACCGTGGACGTAAA
GGCGAGGAGCTGTTACCGGGTGGTCCCACCTGTCGAGCTGGACGGCACGTAAA
CGGCCACAAGTTCA CGGTGTCGGCGAGGGCGAGGGCGATGCCACCTACGGCAAGCTGAC
CCTGAAGTTCATCTGCACCACCGCAAGCTGCCGTGCCCTGGCCCACCTCGT GACCAC
CCTGACCTACGGCGTCA GTGTTACGGCTACCCGACCATGAAAGCAGCACGACTT
CTTCAGTCCGCCATGCCGAAGGCTACGTCCAGGAGCGCACATTTCTCAAGGACGA
CGGCAACTACAAGACCCGCGCCAGGTGAAGTTCAGGGCGACACCCCTGGTGAACCGCAT
CGAGCTGAAGGGCATCGACTCAAGGAGGACGGCAACATCTGGGACAAGCTGGAGTA
CAACTACAACAGCCACAAGCTTATATCATGGCCGACAAGCAGAAGAACGGCATCAAGGT
GAACCTCAAGATCCGCCACAACATCGAGGAGCGCAGCGTGCAGCTGCCGACCACCTACCA
GCAGAACACCCCCATCGCGACGGCCCCGTGCTGCTGCCGACAACCAACTACCTGAGCAC
CCAGTCCGCCCTGAGCAAAGACCCCAACGAGAAGCGCGATCACATGGCTCTGGAGTT
CGTGACCGCCGCCGGGATCACTCTGGCATGGACGAGCTGTACAAGTAAAGCGGCCGCA
CTCTAGAGTCGACCTGCAGGCATGCAAGCTTCA GCTGCTGAGGGGGGGCCGGTACCCA
GCTTTGTTCCCTTAGTGGGTTAATTGCGCGGAAGTATTACTAAAGCAC
AAGTAATACATGAGAAACTTTACTACAGCAAGCACAATCTCCAAAAAATTGTTTT
ACAAAATCCCTGGTGAACATGATTGGAGGGACCTACTAGGGTGCTGTGGAAGGGTGATG
GTGCAGTAGTAGTTAATGATGAAGGAAAGGGATAATTGCTGTACCTAACCAAGGACTA
AGTTACTAATAAAACCAATTGAGTATTGTTGAGGAAGCAAGACCCAACTACCAATTGTC
AGCTGTGTTCCCTGACCTCAATATTGTTATAAGGTTGATATGAATCCCAGGGGAATC
TCAACCCCTATTACCCAAACAGTCAGAAAATCTAAGTGTAGGAGAACACAATGTTCAA
CCTTATTGTTATAATAATGACAGTAAGAACAGCATGGCAGAACATGAGAACAGAGAC
CAAGAATGAACCTGAAAGAAGAATCTAAAGAAGAAAAAGAAGAACATGACTGGTGGAAA
TAGGTATGTTCTGTTATGCTTAGCAGGAACACTGGAGGAACACTTGGTGTATGAAG
GAECTCCACAGCAACATTATAGGGTTGGCGATAGGGGGAGATTAAACGGATCTG
GCCAATCAAATGCTATAGAATGCTGGGCTTCCCGGGGTGTAGACCATTCAA
ACTTCAGTTATGAGACCAATAGAACATGCAATGGATAATAACTGCTACATTATTAG
AAGCTTAACCAATATAACTGCTCTATAAAATAACAAAACAGAATTAGAAACATGGAAGTT
AGTAAAGACTCTGGCATAACTCCTTACCTATTCTCTGAGCTAACACTGGACTAAT
TAGACATAAGAGAGATTGGTATAAGTCAATAGTGGCAGCTATTGAGCCCTACTGC
TATTGCTGCTAGCGCTACTATGTCTTATGCTCTAAGTGGTTAACAAAATAATGGA
AGTACAAAATCATACTTTGAGGTAGAAAATAGTACTCTAAATGGTATGGATTAAATAGA
ACGACAAATAAAGATATTATGCTATGATTCTCAAACACATGCAAGTGTCAACTGTT
AAAGGAAAGACAACAGGTAGAGGAGACATTAAATTGATGTATAGAAAGAACACA
TGTATTTGTCATACTGGTCATCCCTGGAAATATGTCATGGGGACATTAAATGAGTCAC
ACAATGGGATGACTGGTAAGCAAAATGGAAGATTAAATCAAGAGATACTAACACT
TCATGGAGCCAGGAACAATTGGCACAATCCATGATAACATTCAATAACCCAGATAGTAT
AGCTCAATTGGAAAAGACCTTGGAGTCATATTGAAATTGGATTCTGGATGGGAGC
TTCCATTATAAAATATAGTGTGTTTGCTTATTTATTGTTACTAACCTCTCGCC
TAAGATCCTCAGGGCCCTCTGGAGGTGACCACTGGTCAGGGTCTCCGGCAGTCGTTA
CCTGAAGAAAAAATTCCATCACAAACATGCACTCGCGAGAACACCTGGGACCAGGCCA
ACACAAACATACACCTAGCAGGCAGCGTACGGGATCAGGGGACAATACTACAAGCAGAA
GTACTCCAGGAACGACTGGAATGGAGAAATCAGAGGAGTACAACAGCGGCCAAAGAGCTG
GGTGAAGTCATCGAGGCATTGGAGAGAGCTATATTCCGAGAAGACCAAAAGGGAGAT
TTCTCAGCCTGGGGCGCTATCAACGAGCACAAGAACGGCTCTGGGGGAACAATCCTCA
CCAAGGGTCTTAGACCTGGAGATTGCAAGCGAAGGAGAAACATTATGACTGTTGCA
TAAAGCCCAAGAAGGAACCTCGCTATCCCTGCTGTGGATTCCCTATGGCTATTG

GGGACTAGTAATTATAGTAGGACGCATAGCAGGCTATGGATTACGTGGACTCGCTGTTAT
AATAAGGATTGTATTAGAGGCTTAAATTGATATTGAATAATCAGAAAAATGCTTGA
TTATATTGGAAGAGCTTAAATCTGGCACATCTCATGTATCAATGCCTCAGTATGTTA
GAAAAACAAGGGGGAACTGTGGGGTTTTATGAGGGTTTATAAATGATTATAAGAGT
AAAAAGAAAGTTGCTGATGCTCTATAACCTGTATAACCCAAAGGACTAGCTCATGTTG
CTAGGCAACTAAACCGCAATAACCGCATTGTGACGCCAGTCCCCAATTGGTGACGCC
AACTTCCTGTTTACAGTATATAAGTGTGTTGACAAATTGGGCACTCAGATTCT
GCGGCTGAGTCCCTCTCTGCTGGGCTGAAAAGGCCCTGTAATAAAATAATTCTCTA
CTCAGTCCCTGTCCTAGTTGCTGTTGAGATCCTACAGAGCTCATGCCTGGCGTAA
TCATGGTCAGCTGTTCTGTTGAAATTGTTATCCGCTACAAATTCCACACAAACATA
CGAGCCGGAAAGCATAAAAGTGTAAAGCCTGGGTGCTAAATGAGTGAGCTAACTCACATT
ATTGCGTTGCGCTACTGCCGCTTCCACTCGGGAAACCTGTCGTGCCAGACTAGGCC
CCTCGGCCAGATCTCAAATTGTTAGCCTGATAGCCGAGTAACGCCATTTCGAAGGCA
TGGAAAAATACCAACCAAGAACAGAATAGAGAAGTTAGATCAAGGGGGTACAGAAAACAG
CTAACGTTGGGCCAACAGGATATCTGCGGTGAGCAGTTCGGCCGGGGGGCCAA
GAACAGATGGTCACCGCGGTTGCCCGGGGGGGCCAAGAACAGATGGTCCCCAGAT
ATGGCCAACCCCTAGCAGTTCTTAAGACCCATCAGATGTTCCAGGCTCCCCAAGGA
CCTGAAATGACCCCTGTCCTTATTGAAATTACCAATCAGCTOCTTCGCTTCTGTT
GCCGCTTCTGCTCCGAGCTCTATAAAAGAGCTACAAACCCCTACTCGGCCGCCAG
TCCTCCGATAGACTGAGTCGCCGGTACCGTGATCCAATAAATCCTTGTGTTGC
ATCCGACTCGTGGTCTCGCTGTTCTGGAGGGTCTCTCAGAGTGTGACTACCCGT
CTCGGGGTCTTCATTGGGGCTCGTCCGGATCTGGAGACCCCTGCCAGGGACCAC
CGACCCACCAACGGGAGGCTAGCCTCGAGAATTGCCACCATGGCTGAGAGCAAGGAGG
CAGGGATCAAGAGATGAACCTCAAGGAAGAGAGCAAAGAGGAGAACGCCGCAACGACTG
GTGGAAGATCGACCCACAAGGCCCCCTGGAGGGGGACCAGTGGTGCCCGTGTGAGACA
GTCCCCTGCCGAGGAGAACAGATTCTAGCCAGACCTGATGCCAGAACACCTCGGCC
CGGTCCCACCCAGCACACACCCCTCAGAACGGGAGATGGGAGATTAGGGCGTGAACAAGCC
AGCCGAGGTCTCCAAGAACGGCTGGAATGGAGAACAGGGCTGTGAGGAGCTAA
AGAGCTGGGAGAGGTGAATCGGGCATCTGGAGGGAGCTACTTCCCGAGGACAGAG
GGGCATTTCTCCGATGGGAGGCTACAGAGGGACAAGAACGGCTGTGGGGAGCA
GAGCAGCCCCCGCGTCTGAGGCCGGAGACTCCAAAAGACGCCAAACACCTGTGAAG
TCGACCCGGCGGCCGCTCCCTTACTGAGGGTAATGCTTCGAGCAGACATGATAAGA
TACATTGATGAGTTGGACAAACCAACTAGAATGCACTGAAATTGCTTATTGTT
GAAATTGATGCTATTGCTTATTGTAACCATTATAAGCTGCAATAAACAGTTAAC
AACACAATTGCAATTCTTATTGTTAGGTTAGGGGAGATGTGGGAGGTTTAA
AGCAAGTAAACCTCTACAAATGTGTTAAATCCGATAAGGATCGATCCGGCTGGCGTA
ATAGCGAAGAGGCCCGCACCGATGCCCTCCAAACAGTTGCGCAGCCTGAATGGCGAAT
GGACGCCCTGTAGCGGCCATTAGCGCGGGTGTGGTGGTACGCGCAGCGTGAC
CGCTACACTGCCAGGCCCTAGCGCCGCTCTTGTCTTCTCCCTTCTCC
CACGTTGCCGGCTTCCCGTCAAGCTCTAAATCGGGGCTCCCTTAGGGTCCGATT
TAGAGCTTACGGCACCTGACCGAAAAACTGATTTGGGTGATGGTCACGTAGGCC
GCCCTGCCGCCGGCATACTGCATTAAATGAATCGGCAACCGCGGGAGAGGCC
TTGCGTATTGGCGCTTCCGCTTCCGCTACTGACTCGCTGCCGCTGGTGTG
CTGCCGGAGCGGTACGCTACTCAAAGCGGTAAACCGTTATCCACAGAACAGG
GATAACGCAGGAAAGAACATGTATAACTCGTATAATGTATGCTACGAAGTTACAT
GTGAGCAAAAGGCCAGCAAAAGGCCAGGAACCGTAAAGGCCGTTGCTGGGTTT
CCATAGGCTCCGCCCTGACGAGCATACAAAAATCGACGCTCAAGTCAGAGGTGGCG
AAACCCGACAGGACTATAAGATACCAAGCGTTCCCTGGAAAGCTCCCTCGCGCTC
TCCTGTTCCGACCCCTGCCGCTTACCGGATACCTGTCGCCCTTCTCCCTGGGAAGCGT

GGCGCTTCTCATAGCTACCGCTGAGGTATCTCAGTCGGTGTAGGTGTTCCAA
 GCTGGGCTGTGCACGAACCCCCCGTCAGCCGACCGCTGCCCTATCCGTAACTA
 TCGTCTTAGTCAACCCGTAAGACACGACTTATGCCACTGGCAGCAGCCACTGGTAA
 CAGGATTAGCAGAGCGAGGTATGAGGGCTGCTACAGAGTTCTGAAGTGGTGGCTAA
 CTACGGCTACACTAGAAGGACAGTATTGGTATCTGCCTCTGCTGAAGCCAGTTACCTT
 CGGAAAAAGAGTTGGTAGCTCTGATCCGCAAACAAACCACCGCTGGTAGGGTGGTTT
 TTTGTTGCAAGCAGCAGATTACGCCAGAAAAAAAAGGATCTCAAGAAGATCCTTGAT
 CTTCCTACGGGCTGACGCCAGTGGAACGAAAACACGTTAACGGGATTTGGTCAT
 GAGATTATCAAAAGGATCTCACCTAGATCCTTAAATTAAAAATGAAGTTAAATC
 AATCTAAAGTATAATGAACTTGGTCACTGAGCTTACCAATGTTAACAGTGGC
 ACCTATCTCAGCGATCTGTCTTTGTCATCCATAGTGCCTGACTCCCCGTCGTGA
 GATAACTACGATAACGGGAGGGCTTACCATCTGGCCCCAGTGCCTGAATGATACCGCGAGA
 CCCACGCTCACCCGCTCCAGATTATCAGCAATAAACCCAGCCAGCCGAAGGGCCGAGCG
 CAGAAGTGGCCTGCAACTTATCCGCCATCCAGTCTATTAAATTGTTGCCATTGCTACAGGCAT
 CGTGGTGTACGCTCGTCTGGTATGGCTTACAGCTCCGGTCCCAACGATCAAG
 GCGAGTTACATGATCCCCATGTTGCAAAAAAGCGGTTAGCTCTTCCGGTCTCCGAT
 CGTGTCAAGTAAGTGGCCAGTGTAACTAGTTGCGCAACGTTGCTACAGGCATGATAA
 TTCTCTTACTGTCATGCCATCCGTAAGATGCTTTCTGTGACTGGTGAATCTAACCAA
 GTCATTCTGAGAATAGTGTATGCGCGACCGAGTTGCTTGGCCGGTCAATACGGGA
 TAATACCGGCCACATAGCAGAACTTAAAGTGCTCATCTGGAAAACGTTCTCGGG
 GCGAAAACCTCAAGGATCTTACCGCTGGTGGATCCAGTTGATGTAACCCACTCGTGC
 ACCCAACTGATCTCAGCATTACTTACCCAGCGTTCTGGGTGAGCAAAAACAGG
 AAGGCAAAATGCCGCAAAAAGGGATAAGGGCGACACGGAAATGTTGAATACTCATACT
 CTTCTTTCAATATTATGAAAGCATTATCAGGGTTATTGTCTCATGAGCGATAACAT
 ATTTGAATGTTAGAAAAATAACAAATAGGGTCCCGCGACATTCCCGAAAAGT
 GCCACCTAAATTGTAAGCGTTAATATTGTTAAATTGCGTTAAATTGTTAAATC
 AGCTCATTAAACCAATAGGCCAAATCGGAAATCCCTTATAATCAAAGAATAG
 ACCGAGATAGGGTTGAGTGTGTTCCAGTTGGAACAGAGTCCACTATTAAAGAACGTG
 GACTCCAACGTAAAGGGCAAAACCGTCTATCAGGGCGATGCCCACTACGTGATAAC
 TTCGTATAATGTTGCTACGAAAGTTACTACGTGAACCATCACCTAATCAAGTTT
 TTTGGGTCGAGGTGGCTAAAGCACTAAACGGAAACCTAAAGGGAGCCCCGATTAG
 AGCTTGACGGGAAAGCCAACCTGGTTATCGAAATTAAATACGACTCACTATAGGGAGAC
 CGGC

pONY8.3GPGK – (SEQ ID No 47)

AGATCTGAATAATAAAATGTGTGTTGCCGAAATACCGTTTGAGATTCTGTCGCC
 GACTAAATTCTGCGCGATAGTGGTTTATGCCGATAGAGATGGCGATATTGAA
 AAATTGATATTGAAAATATGGCATATTGAAAATGCGCCGATGTGAGTTCTGTGTAAC
 TGATATGCCATTTCACAAAGTGTATTGGGATACCGGATATCTGGCGATAGCGCT
 TATATCGTTACGGGGATGGCGATAGCAGACTTGGTGAATTGGCGATTCTGTGTC
 GCAAATATCGCAGTTGATATAGGTGACAGACGATATGAGGCTATATGCCGATAGAGG
 CGACATCAAGCTGGCACATGCCAATGCATATCGATCTACATTGAATCAATATTGCC
 ATTGCGATATTCTATTGTTATAGCATAAAATCAATTGGCTATTGGCATTGCA
 TACGTTGATCCATATCGTAATATGTCATTTATTTGGCTCATGTCAAACATTACCGCC
 ATGTTGACATTGATTGACTAGTTATTAAATAGTAATCAATTACGGGTCATTAGTCA
 TAGCCCATATGGAGTTCCCGTTACATAACTACGGTAATGGCCGCTGGCTGACC
 GCCCAACGACCCCCGCCATTGACGTCAATAATGACGTATGTTCCCATAGTAACGCCAAT

AGGGACTTCCATTGACGTCAATGGGTGGAGTATTTACGGTAAACTGCCACTTGGCAGT
ACATCAAGTGTATCATATGCCAAGTCCGCCCCCTATTGACGTCAATGACGGTAAATGCC
CGCCTGGCATTATGCCAGTACATGACCTTACGGGACTTCCTACTTGGCACTACATCTA
CGTATTAGTCATCGCTATTACCATGGTGATGCCGTTTGGCAGTACACCCAATGGCGTGG
ATAGCGGTTGACTCACGGGGATTTCAGTCTCCACCCCATTGACGTCAATGGGAGTTT
GTTTGGCACCAAAATCAACGGGACTTCAAAATGCGTAACAACGTGCGATGCCCGCC
CCGTTGACGCAAATGGCGTGGCGTACGGTGGAGGTCTATAAAGCAGAGCTCGT
TTAGTGAAACGGGCACTCAGATTCTGCCGCTGAGTCCCTCTCTGCTGGCTGAAAAGG
CTTTGTAAATAATATAATTCTACTCAGTCCCTGCTCTAGTTGTCTGTTGAGATC
CTACAGTGGCCCGAACACAGGACCTGAGAGGGGCCAGACCCCTACCTGTTGAAACCTGG
CTGATCGTAGGATCCCCGGACAGCAGAGGAACCTACAGAAGTCTCTGGAGGTGTT
CTGCCAGAACACAGGAGGACAGGTAAGATTGGGAGACCCCTTGACATTGGAGCAAGGCG
CTCAAGAAGTTAGAGAAGGTGACGGTACAAGGGTCTCAGAAATTAACTACTGGTAACGT
AATTGGCGCTAAGTCTAGTAGACTTATTCATGATACCAACTTTGAAAGAAAAGGAC
TGGCAGCTGAGGGATGTCATTCCATTGCTGGAAGATGTAACTCAGACGCTGTCAGGACAA
GAAAGAGAGGCCTTGAAGAACATGGGGCAATTCTGCTGTAAGATGGCCTCCAG
ATTAATAATGTAAGATGAAAGGCATCATTCCAGCTCTAAGAGCGAAATATGAAAAG
AAGACTGCTAATAAAAGCAGTCTGAGCCCTCTGAAAGAATATCTAGAAACTAGTGGATC
CCCCGGGCTGAGGAGTGGGAGGCACGATGGCCCTTGGTCAGGCGGATCCGGCCAT
TAGCCATATTATTCAATTGTTATAGCATAAAATCAATATTGGCTATTGGCATTGATA
CGTTGTATCCATATCATAATATGTACATTATATTGGCTCATGTCACATTACCGCCAT
GTTGACATTGATTATTGACTAGTTATTAAATAGTAATCAATTACGGGTCATTAGTCATA
GCCCATATATGGAGTCCCGTACATAACTTACGGTAAATGGCCCTGGCTGACCC
CCAACGACCCCCCGCCATTGACGTCAATAATGACGTATGTCCTAGTAACGCCAATAG
GGACTTCCATTGACGTCAATGGTGGAGTATTACGGTAAACTGCCACTTGGCAGTAC
ATCAAGTGTATCATATGCCAAGTACGCCCTATTGACGTCAATGACGGTAAATGGCC
CCTGGCATTATGCCAGTACATGACCTTATGGACTTCCACTTGGCAGTACATCTACG
TATTAGTCATCGCTATTACCATGGTGATGCCGTTTGGCAGTACATCAATGGCGTGGAT
AGCGGTTGACTCACGGGATTCCAAGTCTCCACCCATTGACGTCAATGGGAGTTGT
TTGGCACCAAAATCAACGGGACTTCAAAATGCGTAACAACCTGGCCATTGACGC
AAATGGCGGTAGGCATGTACGGTGGAGGTCTATATAAGCAGAGCTGTTAGTGAACC
GTCAGATGCCCTGGAGACGCCATCCACGCTGTTGACCTCCATAGAAGACACCGGGACC
GATCCAGCCTCCGGGGCCAAGCTTGGGATCCACCGGTGCCACCATGGGAGCAA
GGCGAGGAGCTTCAACGGGGTGGCTGAGCTGGACGGGACGTAA
CGGCCACAAGTTAGCGTGTCCGGCGAGGGCGAGGGCGATGCCACCTACGGCAAGCTGAC
CCTGAAGTTCATCTGCACCAACCGCAAGCTGCCGTGCCCTGGCCACCTCGTGCAC
CCTGACCTACGGCGTGCAGTCTCAGCGCTACCCGACCATGAAGCAGCAGCAGACTT
CTTCAGTCCGCCATGCCGAAGGCTACGTCCAGGAGCGCACCATCTTCAAGGACGA
CGGCAACTACAAGACCCGGCGAGGTGAAGTTCAGGGCGACACCCCTGGTAACCGCAT
CGAGCTGAAGGGCATGACTTCAAGGAGGACGGCAACATCTGGGGCACAAGCTGGAGTA
CAACTACAACAGCCACAACGTCTATATCATGGCCGACAAGCAGAAGAACGGCATCAAGGT
GAACCTCAAGATCCGCCACAACATCGAGGAGCGCAGCGTGCAGCTCGCCGACCAACTACCA
GCAGAACACCCCCATGGCGACGGGGCGTGTGCTGCCGACAACCAACTACCTGAGCAC
CCAGTCCGCCCTGAGCAAAGACCCCAACGAGAAGCGCGATCACATGGCTGTGGAGTT
CGTACCGCCCCGGGATCACTCTGGCATGGACCGAGCTGTACAAGTAAACGGCGCGA
CTCTAGAGTCGACCTGCAGGCATGCAAGCTTACGCTGCTGAGGGGGGCCGGTACCCA
GCTTTGTTCCCTTACTGAGGGTTAATTGCGCGGAAGTATTATCAACTAAAGCAC
AAAGTAATACATGAGAAACTTTACTACAGCAAGCACAATCCTCCAAAAAATTGTTT
ACAAAAATCCCTGGTAAACATGATTGAAAGGGACCTACTAGGGTGTGGAAGGGTGTG

GTCCAGTAGTAGTTAATGATGAAGGAAGGGAAATAATTGCTGTACCATTAACCAGGACTA
ACTTACTAATAAAACCAATTGACTATTGTCAGGAAGCAAGACCCAACCTACCATTC
AGCTGTGTTCTGACCTCAATATTTGTTAAGGTTGATATGAATCCCAGGGGAATC
TCAACCCCTATTACCCAACAGTCAGAAAAATCTAAGTGTGAGGAGAACACAATGTTCAA
CCTTATTGTTATAATAATGACAGTAAGAACAGCATGGCAGAATCGAAGGAAGCAAGAGAC
CAAGAATGAACCTGAAAGAAGAACATCTAAGAAGAAAAAGAAGAACATGACTGGTGGAAA
TAGGTATGTTCTGTTATGCTTAGCAGGAACACTGGAGGAATACTTGGTGGTATGAAG
GACTCCCACAGCAACATTATATAGGGTTGGCGATAGGGGAAGATTAAACGGATCTG
GCCAATCAAATGCTATAGAATGCTGGGGTCCCTCCGGGTGTAGACCATTCAAATT
ACTTCAGTTATGAGACCAATAAGCATGCATATGGATAATAATACTGCTACATTATTAG
AAGCTTAAACCAATAACTGCTCTATAAATAACAAAACAGAACATTAGAACATGGAAGTT
AGTAAGACTCTGGCATAACTCCTTACCTATTCTCTGAAGCCTAACACTGGACTAAT
TAGACATAAGAGAGATTTGGTATAAGTCAATAGTGGCAGCTATTGAGCCCTACTGC
TATTGCTGCTAGCGCTACTATGCTTATGTTGCTCTAACTGAGGTTAACAAAATAATGGA
AGTACAAAATCATACTTTGGTAGAGAACATTAGTACTCTAAATGGTATGGATTAAATAGA
ACGACAAATAAAAGATATTATGCTATGATTCTCAAACACATGCAGATGTTCAACTGTT
AAAGGAAAGACAACAGGTAGAGGAGACATTTAATTAAATTGGATGTATAGAAAGAACACA
TGTATTGTCATACTGGTCATCCCTGGAATATGTCATGGGACATTAAATGAGTCAC
ACAATGGGATGACTGGTAAGCAAATGGAAGATTAAATCAAGAGACTAACTACACT
TCATGGAGCCAGGAACAATTGGCACAATCCATGATAACATTCAATAACACCAGATAGTAT
AGCTCAATTGGAAAAGACCTTGGAGTCATATTGGAATTGGATTCCCTGGATTGGAGC
TTCCATTATAAAATATAGTGTGTTTGCTTATTGTTACTAACCTCTCGCC
TAAGATCCTCAGGGCCCTCTGGAAAGGTGACCGAGTGGTCAGGGTCTCCGGCAGTC
CCTGAAGAAAAAATTCCATCACAAACATGCATCGCAGAACACCTGGGACCAGGCCA
ACACAACATACACCTAGCAGCGTGACCCGTGGATCAGGGGACAAATACTACAAGCAGAA
GTACTCCAGGAACGACTGGATGGAGAACATCAGAGGAGTACAACAGCGGCCAAAGAGCTG
GGTAGAGTCATCGAGGCATTGGAGAGAGCTATATTCCGAGAACACCAAGGGGAGAT
TTCTCAGCCTGGGCGGCTATCAACGAGCACAGAACCGCTCTGGGGGAACAATCCTCA
CCAAGGGTCTTAGACCTGGAGATTGAGCGAACATTTGACTGTTGAT
TAAAGCCAAGAAGGAACCTCGCTATCCCTGCTGGATTCCCTATGGTATTITG
GGGACTAGTAATTATAGTAGGAGCGCATACCGAGCTATGGATTACGTGGACTCGCTGTTAT
ATAAAGGATTGTTATTAGAGGCTTAAATTGATATTGAAATAATCAGAAAATGCTG
TTATATTGGAAGAGCTTAAATCCTGGCACATCTCATGTATCAATGCCCTAGTATGTTA
GAAAAACAAGGGGGAACTGTGGGTTTTATGAGGGTTTATAAATGATTATAAGAGT
AAAAAGAAAGTTGCTGATGCTCTCATACCTGTATAACCCAAAGGACTAGCTCATGTTG
CTAGGCAACTAAACCGCAATAACCGCATTGTGACCGAGTCCCCATTGGTACCGT
AACTCCCTGTTTACAGTATATAAGTGTGTTGATTCTGACAATTGGCACTCAGATTCT
GCGGCTGACTCCCTCTGCTGGCTGAAAGGCCTTGTATAAAATATAATTCTCTA
CTCAGTCCCTGCTCTAGTTGTTGAGATCCTACAGAGCTCATGCCCTGGCTAA
TCATGGTCATAGCTGTTCTGTGAAATTGTTACCGCTCACAAATTCCACACAACATA
CGAGCCGGAAAGCATAAAAGTGTAAAGCCTGGGGGCGCTAATGAGTGAGCTAACACATT
ATTGGCTTGGCTCACTGCCGCTTCCAGTCGGAAACCTGTGTCGCCAGTGATGCCG
GGCGGCCAGGGCGGCTACGTGAACCATCACCCAAATCAAGTTTGCCTGAGGTGC
CGTAAAGCTAAATCGGAACCTAAAGGGAGCCCCGATTTAGAGCTGACGGGGAAAG
CCGGCGAACGTGGCAGAAAGGAAGGGAAAGAACCGAACAGGAGCGGGCGCTAGGGCGCTG
GCAAGTGTAGCGGTACGCTCGCGTAACCACACCCGCCGCTTAATGCCGCTA
CAGGGCGCGTCATTGCCATTAGGCTGCCACTGTTGGAAAGGGGAGTCGGTGC
CCTTCGCTATTACGCCAGCCGGATCGATCCTTATCGGATTACACATTGAGAG
GTTTACTTGCTTAAAAACCTCCCACATCTCCCCCTGAAACCTGAAACATAAAATGAAT

GCATTGTTGTTAACITGTTATTGAGCTTATAATGGTACAAATAAAGCAATAGC
ATCACAAATTCACAAATAAAGCATTTTCACTGCATTCTAGTTGGTTGTCCAAA
CTCATCAATGTATCTTATCATGTCGCTCGAAGCATTAAACCTCACTAAAGGGAAAGCGGC
CGCCCGGGTCGACTTCACAGGTGTTGGCGCTCTTGGAGTCTCCGGGCTCAAGACG
CGGGGGCTGCTGCTGCCACAGCCTTCTGTGCCCTCTGGTAGCCTCCCCATGCG
GAGAAATCGCCCCCTGGTCCTCGCGAAGTAGAGCTCCCTCCAGATGCCGCGATTCA
TCTCCCAGCTTTAGCGGCTGTTGACGCCCTAATTCTCATTCCAGCCTTCTTGG
AGGACCTCGGCTGCAAATCTGGCCCTTAATCCACCTATCCCTCTGGAGGGTGTGC
TGGTGGGACCGGGCGAGGTGTTCTGGCGATGCAGGTCTGGCTAGGAATCTCTCC
TCGGCAGGGACTGTCACCACGCCACCACTGGCCCCCTCAGGGGGCTTGTGGG
TCGATCTCCACCAGTCGTTGGCGCTCTCTCTTGTCTCTCCAGGTTAGGTTCATC
TCTTGATCCCTGGCCTCTGCTCTCACCCATGGTGGCGAATTCTGAGGCTAGCCTGGG
GAGAGAGGTGGTATTGCAACAGGGAGCCACTGCCAGTGCCTCCGGAGGGCT
TGCAGAAATCGGAACACCGCGGGCAGGAACAGGGCCACACTACCGCCCCACACCCCG
CCTCCCGACCCCGCTTCCCGCCGCTGCTCTCGGGCGCCCCCTGAGCAGCCGCTAT
TGGCACAGCCATCGCGGTGGCGCGCTGCCATTGCTCCCTGGCGTGTGGCTCGA
GGGTACTAGTGAAGACGTGGCTTCCGGTTGTACGTCGGCACGCCCGAAGCGAACGG
AACCTCCCGACTTAGGGCGGAGCAGGAAGCGTCCGGGGGGCCACAAGGGTAGCGG
CGAAGATCCGGGTACGCTGCAACGGACGTGAAGAATGTGCGAGACCCAGGGCTGG
CGCTGCGTTCCCGAACACGCCAGAGCAGCCCGTCCCTGGCAAACCCAGGGCTGC
CTTGGAAAAGGCAGAACCCCAACCCAGATCTGGCGAGGCGGCCACTCTGCAATTAG
AATCGGCCAACCGCGGGGAGAGGGCTTGCATTGGCGCTTCCGCTTCCCGCT
CACTGACTCGCTCGCTCGTGGCTCGGCTCGGCCAGCGGTATCAGCTACTCAAAGGC
GGTAATACGGTTATCCACAGAACAGGGATAACGCCAGGAAAGAACATGTATAACTCGT
ATAATGTATGCTATACGAAGTTATACATGTGAGCAAAGGCCAGCAAAGGCCAGGAACC
GTAAAAAGGCCGCTTGTGGCTTCCATAGGCTCCGCCCCCTGACGAGCATCACA
AAAATCGACGCTCAAGTCAGAGGTGGCAAACCCGACAGGACTATAAGATAACCGGCT
TTCCCCCTGGAAGCTCCCTCGCTCGCTCTCCGACCCCTGGCGCTTACCGGATACC
TGTCCGCCTTCCCTCGGAAGCGTGGCTTCTCATAGCTCACGCTGTAGGTATC
TCAGTTGGTGTAGGTGTTGCTCAAGCTGGCTTCTCATAGCTCACGCTGTAGGTATC
CCGACCGCTGCCCTATCGGTAACTATCGTCTGAGTCCAACCCGGTAAGACACGACT
TATGCCACTGGCAGCAGCCACTGGTAACAGGATTAGCAGAGGGAGGTATGTAGGGT
CTACAGAGTTCTGAAGTGGCTTAACACTACGGCTACACTAGAAGGACAGTATTGGTA
TCTGCGCTCTGCTGAAGCCAGTTACCTCGGAAAAGAGTTGGTAGCTTGTATCCGGCA
AACAAACCAACCGCTGGTAGCGTGGTTTTGTITGCAAGCAGCAGATTACCGCAGAA
AAAAAGGATCTCAAGAAGATCCTTGATCTTCTACGGGCTGACGCTCAGTGGAACG
AAAACTCACGTTAGGGATTTGGTATGAGATTATCAAAGGATCTCACCTAGATCC
TTTAAATTAAAAATGAAGTTAAATCAATCTAAAGTATATGAGTAAACTTGGTCTG
ACAGTTACCAATGCTTAATCAGTGGCACCTATCTCAGCAGTGTCTATTGTTCAT
CCATAGTTGCCGACTCCCCCTGCTGAGATAACTACGATACGGGAGGGCTACCGATCTG
GCCCGAGTGCCTGCAATGATACCGCGAGACCCACGCTCACGGGCTCCAGATTATCAGCAA
TAAACCAGCCAGCCGAAGGGCGAGCGCAGAAGTGGCTCTGCAACTTTATCCGCTCCA
TCCAGTCTATTAATTGTTGCCGGGAAGCTAGAGTAAGTAGTTGCCAGTTAATAGTTGC
GCAACGGTTAGCTCCTCGTCCGATCGTGGTGCACGCTCGTCTGGTATGGCTT
CATTCACTCCGGTCCCAACGATCAAGCGAGTTACATGATCCCCATGGTGC
AAGCGGTTAGCTCCTCGTCCGATCGTGGTCAAGAGTAAGTTGGCCGAGTGT
CACTCATGGTATGGCAGCACTGCATAATTCTTACTGTCTGAGAATAGTGT
TTTCTGTACTGGTGAAGTACTCAACCAAGTCATTCTGAGAATAGTGT
GTTGCTCTGCCCGCGTCAATACGGATAATACCGGCCACATAGCAGAACTTTAAAAG

TGCTCATCATTGGAAAAACGTTCTTCGGGGCGAAAACCTCTCAAGGATCTTACCGCTGTTGA
GATCCAGTTCGATGTAACCCACTCGTGCACCCAACTGATCTTCAGCATCTTTACTTTCA
CCAGCGTTCTGGGTGAGAAAAACAGGAAGGCAAAATGCCGAAAAAAGGGATAAGGG
CGACACGGAAATGTTGAATACTCATACTCTTCTTTCAATATTATTGAAGCATTATC
AGGGTTATTGTCATGAGCGGATAACATATTGAATGTATTAGAAAAATAAACAAATAG
GGGTTCCCGCGCACATTCCCCGAAAAGTGCCACCTAAATTGTAAGCGTTAATATTTGTT
AAAATTCCCGTTAAATTGGTAAATCAGCTCATTTTAACCAATAGGCCGAAATCGG
CAAATCCCTTATAAATCAAAAGAATAGACCGAGATAGGGTTGAGTGTGTTCCAGTTG
GAACAAGAGTCCACTATTAAAGAACGTGGACTCCAACGTCAAAGGGCGAAAAACCGTCTA
TCAGGGCGATGCCCACTACGTATAACTCGTATAATGTATGCTATACGAAGTTATCAC
TACGTGAACCATCACCTAATCAAGTTTTGGGGTCGAGGTGCCGAAAGCACTAAATC
GGAACCCCTAAAGGGAGCCCCGATTTAGAGCTTGACGGGAAAGCCAACCTGGCTTATCG
AAATTAAATACGACTCACTATAGGGAGACCGGC

pONY8.3G PGK + (SEQ ID No 48)

AGATCTTGAATAAATAAAATGTGTGTTTGTCCAAATAACGCCTTTGAGATTCTGTGCC
 GACTAAATTATGTCGCGCGATAGTGGTGTTATGCCGATAGAGATGGCGATATTGGAA
 AAATTGATATTGAAAATATGGCATATTGAAAATGTGCCGATGTGAGTTCTGTGTAAC
 TGATATGCCATTTCACAAAGTGTATTTGGCATACCGCATCTGCCGATACCGCT
 TATATCGTTACGGGGATGGCGATAGACGACTTGGTACTTGGCATTCTGTGTC
 GCAAATATCGCAGTCGATATAGGTGACAGACGATATGAGGCTATATGCCGATAGAGG
 CGACATCAAGCTGCACATGCCAATGCAATCGATCTACATTGAATCAATTGGCC
 ATTAGCCATATTATTGTTATAGCATAATCAATTGGCTATTGGCATTGCA
 TACGGTGTATCCATATCGTAATATGTACATTATATTGGCTATGTCAACATTACCGCC
 ATGTTGACATTGATTATTGACTAGTTATTAAATAGTAATCAATTACGGGTCAATTAGTCA
 TAGCCCATAATGGAGTTCCCGTTACATAACTACGTAATGGCCCGCTGGCTGACC
 GCCAACGACCCCCGCCATTGACGTCAAATAATGACGTATGTTCCCATAGTAACGCCAAT
 AGGGACTTCCATTGACGTCAATGGTGGAGTATTACGGTAAACTGCCCACTGGCAGT
 ACATCAAGTGTATCATATGCCAAGTCCCCCCCTATTGACGTCAAATGACGGTAATGGCC
 CGCCTGGCATTATGCCCACTACATGACCTTACGGGACTTCCACTTGGCAGTACATCTA
 CGTATTAGTCATCGCTATTACCATGGTGTGCGGTTGGCAGTACACCAATGGCGTGG
 ATAGCGTTTGTACTACGGGATTTCAGTCTCCACCCATTGACGTCAATGGAGTT
 GTTTGGCACAAAATCAACGGACTTCCAAAATGCGTAACAACGCGATGCCGCG
 CCGTTGACGCAAATGGCGGTAGGCGTGTACGGTGGAGGTCTATATAAGCAGAGCTCGT
 TTAGTGAACCGGGCACTCAGATTCTGCCGTCTGAGTCCCTCTGCTGGCTGAAAAGG
 CCTTGTAAATAAATATAATTCTACTCAGTCCCTGCTTAGTTGTCTGTTGAGATC
 CTACAGTTGGCGCCCGAACAGGGACCTGAGAGGGCGCAGACCTACCTGTTGAAACCTGG
 CTGATCGTAGGATCCCCGGGACAGCAGAGGAGAACCTACAGAAGTCTGGAGGTGTT
 CTGGCCAGAACACAGGAGGACAGGTAAGATTGGAGACCCTTGACATTGGAGCAAGGCG
 CTCAGAAAGTTAGAGAAGGTGACGGTACAAGGTCTCAGAAATTAACTACTCGTAACG
 AATTGGCGCTAAGTCTAGTAGACTTATTGATACCAACTTGTAAAAGAAAAGGAC
 TGGCAGCTGAGGGATGTCATTGCTGGAAAGATGTAACCTACAGACGCTGTCAGGACAA
 GAAAGAGAGGCCATTGAAAGAACATGGGGCAATTCTGCTGAAAGATGGCCTCCAG
 ATTAATAATGTAGTAGATGAAAGGCACTTCCAGCTCTAAGAGCGAAATATGAAAAG
 AAGACTGCTAATAAAAGCAGTCTGAGCCCTCTGAAAGAATATCTAGAAACTAGGATC
 CCCGGGCTGCAGGAGTGGGAGGCACGATGCCGTTGGCGAGGGGGATCCGGCCAT
 TAGCCATATTATTGTTATAGCATAAAATCAATTGGCTATTGGCATTGCATA
 CGTTGTATCCATATCATAATTGACATTATGGCTATGTCCAACATTACCGCCAT
 GTTGACATTGATTGACTAGTTATTAGTAATCAATTACGGGTCAATTAGTTCTA
 GCCCCATATGGAGTCCCGCTTACATAACTTACGGTAAATGCCCGCTGGCTGACCGC
 CCAACGACCCCCGCCATTGACGTCAAATAACGCTATGTTCCATAGTAACGCCAATAG
 GGACTTCCATTGACGTCAAAGGGTGGAGTATTACGGTAAACTGCCCACTGGCAGTAC
 ATCAAGTGTATCATATGCCAAGTACGCCCCATTGACGTCAAATGACGGTAATGGCCCG
 CCTGGCATTATGCCAGTACATGACCTTATGGACTTCCACTTGGCAGTACATCTACG
 TATTAGTCATCGCTATTACCATGGTGTGCGGTTGGCAGTACATCAATGGCGTGGAT
 AGCGGTTGACTCACGGGATTCCAAGTCTCCACCCATTGACGTCAATGGAGTTGT
 TTGGCACAAAATCAACGGACTTCCAAAATGCGTAACAACCGCCATTGACGC
 AAATGGCGGTAGGCATGTACGGTGGAGGTCTATATAAGCAGAGCTGTTAGTGAACC
 GTCAGATGCCCTGGAGACGCCATCCACCGCTGTTGACCTCATAGAAGACACCGGGACC
 GATCCAGCCTCCCGGCCAACGCTTGGGATCCACGGTCCGGCACCATGGTGGAGCAA
 GGGCGAGGAGCTGTTACCCGGGTGGTGCCTGACGGTGGAGGGGAGTGCACCTACGGCAAGCTGAC
 CGGCCACAAGTTCAGCGTGTCCGGCGAGGGGAGGGGAGTGCACCTACGGCAAGCTGAC

CCTGAAGTTCATCTGCACCACCGGCAAGCTGCCGTCCCTGGCCCACCCCTGTGACCAC
 CCTGACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCCGACCACATGAAGCAGCACGACTT
 CTTCAAGTCCGCCATGCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTCAAGGACGA
 CGGCACACTACAAGACCCGCGCGAGGTGAAGTTCAGGGCGACACCCCTGGTAACCCGAT
 CGAGCTGAAGGGCATCGACTTCAGGAGGACGGCAACATCCTGGGGACAAGCTGGAGTA
 CAACTACAACAGCCACAACGTCTATATCATGGCGACAAGCAGAAGAACGGCATCAAGGT
 GAACCTCAAGATCCGCCACACATCGAGGAGGGCACCGTGCAGCTGCCGACCACATCCA
 GCAGAACACCCCCATCGGCAGCGGCCCCGTGCTGCTGCCGACAACCACACTGAGCAC
 CCAGTCCGCCCTGAGCAAAGACCCCAACGAGAAGCGCGATCACATGGTCTGGAGTT
 CGTGAACGCCGCCGGATCCTCGGCATGGACGAGCTGTACAAGTAAAGCGGCCGCA
 CTCTAGAGTCGACCTGCAGGCATGCAAGCTTCAGTGCTCGAGGGGGGCCGGTACCCA
 GCTTTGTTCCCTTAGTGAGGTTAATTGCGGGAAAGTATTTACTAAATCAAGCAC
 AAGTAATACATGAGAAACTTTACTACAGCAAGCACAATCTCCAAAAAATTTGTTTT
 ACAAAATCCCTGGTAACATGATTGAGGGACCTACTAGGGTGTGGAAGGGTGTG
 GTGCAGTAGTGTAAATGATGAAGGAAAGGAATAATTGCTGTACCATTAACCAGGACTA
 AGTTACTAATAAAACCAAATTGAGTATTGCTGCAGGAAGCAAGACCCAACTACCTGTC
 AGCTGTGTTCTGACCTCAATATTGTTAAGGTTGATATGAATCCAGGGGAATC
 TCAACCCCTATTACCAACAGTCAGAAAAATCTAAGTGTGAGGAGAACACAATGTTCAA
 CCTTATTGTTATAATAATGACAGTAAGAACAGCATGGCAGAATCGAAGGAAGCAAGAGAC
 CAAGAATGAACCTGAAAGAAGAATCTAAGAAGAAAAAGAAGAAATGACTGGTGGAAA
 TAGGTATGTTCTGTTATGCTTAGCAGGAACACTTGAGGAATACTTGGTGTATGAAG
 GACTCCCACAGCAACATTATATAGGGTGGCGATAGGGGAAAGATTAACCGGATCTG
 GCCAATCAAATGCTATAGAAATGCTGGGTTCTCCCGGGGTGTAGACCATTCAAATT
 ACTTCAGTTAGAGACCAATAGAACGATGCTATGGATAATAATACTGCTACATTATTAG
 AAGCTTAACCAATATAACTGCTCTATAAAACAAAACAGAATTAGAAACATGGAAGTT
 AGTAAAGACTCTGGATAACTCCTTACCTATTCTGTAAGCTAACACTGGACTAAT
 TAGACATAAGAGAGATTTGGTATAAGTCAATAGTGGCAGCTATTGTTAGCCGCTACTGC
 TATTGCTGCTAGCGCTACTATGTCTTATGCTTAACCTGAGGTTAACAAAATAATGGA
 AGTACAAAATCATACTTTGAGGTAGAAAATAGTACTCTAAATGGTATGGATTAAAGA
 ACGACAAATAAAGATATTATGCTATGTTCTCAACACATCGCAGATGTTCAACTGTT
 AAAGGAAAGACAACAGGTAGAGGAGACATTAAATTAAATTGGATGTATAGAAAAGAACACA
 TGTATTGTCATACTGGTCATCCCTGGAAATATGTCATGGGACATTAAATGAGTCAC
 ACAATGGGATGACTGGTAAGCAAATGGAAGATTAAATCAAGAGATAACTAACACT
 TCATGGGAGCCAGGAACAATTGGCACAATCCATGATAACATTCAATAACACCAGATAGTAT
 AGCTCAATTGGAAAAGACCTTGGAGTCATATTGAAATTGGATTCTGGATTGGAGC
 TTCCATTATAAAATATAGTGTGTTGCTTATTGTTACTAACCTCTCGCC
 TAAGATCCTCAGGGCCCTCTGGAGGTGACCGAGTGGTGCAGGGCTCCGGCAGTCGTTA
 CCTGAAGAAAAAATCCATCACAAACATGCACTCGCAGAAGAACACCTGGGACCAGGCCA
 ACACAACATACACCTAGCAGGCGTACCGGTGGATCAGGGGACAAATACTACAAGCAGAA
 GTACTCCAGGAACGACTGGAATGGAGAATCAGAGGAGTACAACAGGGCGCAAAGAGCTG
 GGTGAAGTCATCGAGGCATTGGAGAGAGCTATATTCCGAGAAGACCAAAGGGGAGAT
 TTCTCAGCCTGGGGCGCTATCAACGAGCACAAGAACGGCTCTGGGGGAAACAATCCTCA
 CCAAGGGCCTTAGACCTGGAGATTGAGAAGGGAAACATTATGACTGTTGCTATTG
 TAAAGCCCAGAAGGAACCTCGCTATCCCTGCTGGATTCCCTTATGCTATTG
 GGGACTAGTAATTATAGTAGGACGCATAGCAGGCTATGGATTACGTGGACTCGCTGTTAT
 AATAAGGATTGTTAGAGGCTAAATTGATATTGAAATAATCAGAAAAATGCTTGA
 TTATATTGGAAGAGCTTAAATCCTGGCACATCTCATGTATCAATGCCTCAGTGTGTTA
 GAAAAACAAGGGGGAACTGTGGGGTTTATGAGGGGTTTATAATGATTATAAGAGT
 AAAAGAAAGTTGCTGATGCTCTATAACCTGTATAACCCAAAGGACTAGCTCATGTTG

CTAGGCAACTAAACCGAATAACCGCATTGTGACGGAGTCCCCATTGGTACCGGTT
 AACTTCCTGTTTACAGTATATAAGTGCTTGATTCTGACAATTGGGACTCAGATTCT
 GCGGTCTGAGTCCTCTCTGGGCTGAAAAGGCCCTTGTAAATAAAATAATTCTTA
 CTCAGTCCCTGTCTCTAGTTGTCTGGAGATCCTACAGAGCTATGCCCTGGCTAA
 TCATGGTCATAGCTGTTCTGTGAAATTGTTACCGCTCACAAATTCCACACACATA
 CGAGCCGAAGCATAAAAGTCTAAAGCCTGGGTGCCTAATGAGTGAGCTAACTCACATTA
 ATTGCCTTGCCTACTGCCCTTCCAGTCGGAAACCTGTCGTGCCAGAGTAGGCCG
 CCTCGGCCAGATCTGGGTTGGGTTGCCCTTCCAAGGCAGCCCTGGGTTGCCAG
 GGACGCCGCTGCTGGCGTGGTCCGGAAACGCAAGCGGCCGACCCTGGGTCTCG
 ACATTCTCACGCCGTTCCAGCGTCACCCGATCTGCCGCTACCCCTGTGGGCCCC
 CGGCCGACGCTTCTGCTCCGCCCTAAGTCGGAAAGGTTCTGCCGTTGCCGCGTGC
 CGGACGTGACAACCGAACGCCAGCTCACTAGTACCCCTCGCAGACGGACAGGCCAG
 GGAGCAATGCCAGCGCCGCCACCGCATGGCTGTGCCAATAGCGGCTGCTCAGCGGG
 CGCGCCGAGAGCAGCGCCGGAGGGCGGTGCCAGGGAGGCGGGGTGTGGGCGGTAGTG
 TGGGCCCCTGTTCTGCCGCCGCGTGTCCGATTCTGCAAGCCTCCGAGCGCACGTC
 GCAGTCGGCTCCCTCGTTACCGAATACCGACCTCTCCCAAGGCTAGCCTGAGAAT
 TCGCCACCATGGCTGAGAGCAAGGAGGCAGGGATCAAGAGATGACCTCAAGGAAGAGA
 GCAAAGAGGAGAACGCCGCAACGACTGGTGAAGATGACCCACAAGGCCCTGGAGG
 GGGACCACTGGTGCCTGCTGAGACAGTCCCTGCCAGGGAGAGGAGAGATTCTAGCCAGA
 CCTGCATGCCAGAACACCTGGCCCCGGTCCCACCCAGCACACACCCCTCAGAAGGG
 ATAGGTGGATTAGGGCCAGATTTGCAAGCCGAGGTCTCCAAGAAAGGCTGGAATGGA
 GAATTAGGGGCGTGCACAAGCCGCTAAAGAGCTGGAGAGGTGAATCGCGCATCTGGA
 GGGAGCTCTACTCCCGAGGACAGAGGGCGATTCTCCGATGGGAGGCTACCAGA
 GGGCACAAGAAAGGCTGTGGGCGAGCAGAGCAGCCCCCGCTTGAGGCCCCGGAGACT
 CCAAAAGACGCCAACACCTGTGAAGTCGACCCGGCGGCCCTCCCTTAGTGAGG
 GTTAATGCTTCGAGCAGACATGATAAGATACATTGATGAGTTGGACAAACACAACAG
 AATGCACTGAAAAAAATGCTTATTGTAAGGATTTGTGATGCTATTGCTTATTGTAAC
 CATTATAAGCTCCAATAAAACAAGTTAACACAACAATTGATTCTATTGTTAGGT
 TCAGGGGGAGATGTGGGAGGTTTTAAAGCAAGTAAACCTCTACAAATGTGGTAAAT
 CCGATAAGGATCGATCCGGCTGGCTAACCGGAAGGGACGCCCTGTAGCGCGCATTAGCGCG
 CAACAGTGCAGCCTGAATGGCAATGGACGCCCTGTAGCGCGCATTAGCGCG
 CGGGTGTGGTGTACCGCAGCGTACACTGCCAGGCCCTAGCGCCGCTC
 CTTCGCTTCTCCCTCTGCCACGTTGCCGGCTTCCCGTCAAGCTCTAA
 ATCGGGGGCTCCCTTAGGGTCCGATTAGGCTTACGGCACCTCGACCGCAAAAAAC
 TTGATTTGGGTGATGGTACGTTAGGCCCTGCCGCCGGCATACTGCATTAAATG
 AATCGGCCAACCGCGGGGAGAGGCCGTTGCGTATTGGCGCTCTCCGCTTCCGCT
 CACTGACTCGCTCGCTCGTGGCTGCCGAGCGGTATAGCTCACTCAAAGGC
 GGTAATACGGTTATCCACAGAATCAGGGATAACCGAGGAAAGAACATGTATAACTCGT
 ATAATGATGCTATACGAAGTTACATGAGCAAAAGGCCAGCAAAAGGCCAGGAACC
 GTAAAAAGGCCGCTGCTGGCTTCCATAGGCTCCGCCCTGACGAGCATCACA
 AAAATCGACGCTCAAGTCAGAGGTGGCAGACAGGACTATAAAAGATACCGGGCT
 TTCCCGCTTCCCTCGGCCCTCCTGTTCCGACCCCTGCCGCTTACCGGATAC
 TGTCGCCCTTCTCCCTCGGAAGCGTGGCGCTTCTCATAGCTCACGCTGTAGGTATC
 TCAGTTCGGTGTAGGTGCTGCCCTCAAGCTGGCTGTGTCAGCAACCCCCGGTAC
 CCGACCGCTGCCCTATCCGTAACATCGTCTTGAGTCCAACCCGGTAAGACACGACT
 TATGCCACTGGCAGCAGCCACTGGTAACAGGATTAGCAGAGCGAGGTATGAGCGGT
 CTACAGAGTTCTGAAGTGGTGGCTAATACGGCTACACTAGAAGGACAGTATTGTA
 TCTGCCCTGCTGTAAGCCAGTTACCTCGAAAAAGAGTTGTAGCTCTGATCCGGCA
 AACAAACCACCGCTGGTAGCGGTGGTTTTGTTGCAACCACGATTACGCGCAGAA

AAAAAGGATCTAAGAAGATCCTTGATCTTCTACGGGTCTGACGCTCAGTGGAAACG
AAAACTCACGTTAAGGGATTTGGTCATGAGATTATCAAAAAGGATCTCACCTAGATCC
TTTAAATTAAAAATGAAGTTTAAATCATTCTAAAGTATATGACTAAACTTGGTCTG
ACAGTTACCAATGCTTAATCAGTGAGGCACCTATCTCACCGATCTGTCTATTCGTTCAT
CCATAGTTGCTGACTCCCCGTCGTAGATAACTACGATACGGGAGGGCTTACCATCTG
GCCCGAGTGTGCAATGATACCGCGAGACCCACGCTACCCGCTCCAGATTTATCAGCAA
TAAACCAGCCAGCCGAAGGGCGAGCCAGAAGTGGTCTGCAACTTATCCGCTCCA
TCCAGTCTATTAAATTGTTGCCATTGCTACAGGCATCGTGGTCACTGCTCGTGGTATGGCTT
GCAACGTTGTTGCCATTGCTACAGGCATCGTGGTCACTGCTCGTGGTATGGCTT
CATTAGCTCCGGTCCCAACGATCAAGGGAGTTACATGATCCCCATGTTGTGCAAAA
AAGCGGTTAGCTCCCGGTCCGATCGTGTCAAGAGTAAGTGGCCGAGTGTAT
CACTCATGGTTATGGCAGCACTGCATAATTCTTACTGTCACTGCCATCCGTAAGATGCT
TTCTGTGACTGGTAGTACTCAACCAAGTCATTGAGAATAGTGTATGCCGACCGA
GTTGCTTTGCCCGGTCAATAACGGATAATACCGGCCACATAGCAGAACTTAAAG
TGCTCATCATTGAAAACGTTCTCGGGCGAAAACCTCAAGGATCTTACCGCTGTTGA
GATCCAGTTCGATGTAACCCACTCGTGCACCCAACTGATCTTACGATCTTACTTCA
CCACCGTTCTGGGTGAGCAAAACAGGAAGGCAAAATGCCGAAAAAGGGATAAGGG
CGACACGGAAATGTTGAATACTCATACTCTTCAATTATTGAAGCATTATC
AGGTTATTGTCTCATGAGCGGATACATATTGAATGTTAGAAAAATAACAAATAG
GGGTTCCCGCACATTCCCGAAAAGTGCACCTAAATTGTAAGCGTTAATTTTGT
AAAATTCCGTTAAATTGTTAAATCAGCTATTAACTTCAATTATTGAAGCATTATC
CAAAATCCCTATAAAATCAAAAAGAATAGACCGAGATAGGGTTGAGTGTGTTCCAGTTG
GAACAAGAGTCCACTATTAAAGAACGTTGACTCCAACGTCAAAGGGCGAAAACCGTCA
TCAGGGCGATGCCCACTACGTGATAACTCGTATAATGTATGCTATACGAAGTTATCAC
TACGTGAACCATCACCTAATCAAGTTTGGGTCGAGGTGCCGTAAAGCACTAAATC
GGAACCCCTAAAGGGAGCCCCGATTAGAGCTTGACGGGAAAGCCAACCTGGTTATCG
AAATTAATACGACTCACTATAGGGAGACCGGC

SEQ ID No 51

pONY3.2IREShyg

AGATCTCCGATCCCCTATGGTCGACTCTCAGTACAATCTGCTCTGATGCCGCATAGTTA
 AGCCAGTATCTGCTCCCTGCTTGTGTTGGAGGTGCGTGAAGTGCAGAAGAAAATT
 5 TAAGCTACAAACAGGCAAGGCTTGACCGACAATTGCAATGAAGAATCTGCTTAAGGGTAGG
 CGTTTGGCGCTGCTTCGCGATGTACGGGCAGATATAACGCGTTGACATTGATTATTGACT
 AGTTATAATAGTAACTAACCGGGTCTTGTGTTGAGCTCATAGCCCCATATGGAGTTCCGC
 GTTACATAACTAACCGTAAATGGCCCGCTGGCTACCCCAACGACCCCCCCCCATTG
 ACGTCATAATGACGTATGTTCCATAGAACGCCAATAGGGACTTCCATTGACGTCAA
 10 TGGTGGACTATTACGGTAAACTGCCCACTGGCAGTACATCAAGTGTATCATATGCCA
 AGTACGCCCTATTGACGTCAATGACGGTAAATGGCCCGCTGGCATTATGCCAGTAC
 ATGACCTTATGGGACTTTCTACTTGGCAGTACATCACTACGTTAGTCATCGCTATTACC
 ATGGTGATCGGGTTTGGCAGTACACCAAATGGCGTGGATACGGGTTGACTACGGGGA
 TTACCAAGTCTCACCCCATGGACGTAACTGGAGTTGTTTGGCACCAAAATCAACGG
 15 GACTTCCAAAATGTCGTAACAACTGCGATGCCGGCCCGTTGACGCAAATGGCGTA
 GGCCTGTACGGTGGGAGGTCTATATAAGCAGAGCTCGTTAGTGAACCGTCAGATCACTA
 GAAGCTTATTGGCGTAGTTACAGTTAAATTGCTAACGCAGTCAGTGCTTCTGACA
 CAACAGTCTCGAACTTAAGCTGCACTGACTCTTAAGGTAGCCTGAGAAGTTGGTGC
 TGAGGCAGTGGGAGGGTAAGTATCAAGGTTAACAGACAGGTTAACGGAGACCAATAGAAA
 20 CTGGCTTGTGAGACAGAGAAGACTCTGGCTTCTGATAGGCACCTATTGGCTTACT
 GACATCCACTTGCCTTCTCCACAGGTGTCACCTCCAGTTCAATTACAGCTTAA
 GGCTAGAGTACTTAATACGACTCACTATAGGCTAGGCTCGAGGTGACGGTATGCCGA
 ACAGGGACCTGAGAGGGGCCAGACCCACCTGTTGAAACCTGGCTGATCGTAGGATCCCC
 25 GGGACAGCAGAGGAGAACTTACAGAAGTCTCTGGAGGTGTTCTGGCCAGAACACAGGA
 GGACAGGTAAGATGGGAGACCCCTTGACATGGAGCAAGGGCTCAAGAAGTTAGAGAAGG
 TGACGGTACAAGGGTCTCAGAAAATACTGTTACTGTAATTGGCGCTAACGTCTAG
 TAGACTTATTTCATGATAACCAACTTGTAAAGAAAAGACTGGCAGCTGAGGGATGTCA
 TTCCATTGCTGAAGATGTAACTCAGACGCTGTCAAGGACAAGAAAAGAGAGGGCTTGA
 30 GAACATGGTGGGCAATTCTGCTGTAAGATGGGCCTCCAGATTAAATGTAAGTAGATG
 AGTCTGAGCCCTGCAAGAAATATCCAATCATGATAGATGGCTGAAACAGAAATTTA
 GACCTCAACACTAGAGGATAACTACTTGGGATATTACAGTAGACTGACTCTGAAGAAA
 TGAATGCATTGGATGTGGTACGGCCAGGCAGGACAAAAGCAGATATTACTTGATG
 35 CAATTGATAAGATAGCAGATGATTGGGATAATAGACATCCATTACCGAATGCTCCACTGG
 TGGCACCACCACAGGGCTTATCCCAGACAGCAAGGTTATTAGAGGTTAGGAGTAC
 CTAGAGAAAGACAGATGGAGGCTGCTTGTCACTGTTAGGAGACATAGACAATGGA
 TAATAGAAGCCATGTCAGAAGGCATCAAAGTGTGATGTTGGAAAACCTAAAGCTCAAATA
 TTAGGCAAGGGAGCTAGGAACCTTACCCAGAATTGTAGACAGACTATTATCCAATAA
 40 AAAGTGAGGGACATCCACAAAGAGATTCAAATCTGACTGATACACTGACTATTGAGA
 ACGCAAATGAGGAATGTAGAAATGCTATGAGACATTAAAGACAGAGGAGTACATTAGAAG
 AGAAAATGTATGCTGAGAGACATTGAACTACAAACAAAAGATGATGTTATTGGCAA
 AAGCACTTCAGACTGCTTGGCAGGCAATTAAAGGTGGAGCCTGAAAGGGAGGGCCAC
 TAAAGGCAGCACAACATGTTATAACTGTGGAGCAAGGACATTATCTAGTCATGTA
 45 GAGCACCTAAAGTGTGTTAAATGTAACAGCCTGGACATTCTCAAAGCAATGCA
 GTGTTCCAAAAAACGGGAAGCAAGGGGCTCAAGGGAGGCCAGAAAACAAACTTCCGA
 TACAACAGAAGAGTCAGCACAACAAACTGTTGTACAAGAGACTCCTCAGACTCAAATC
 TGTACCCAGATCTGAGCGAAATAAAAAGGAATACAATGTCAAGGAGAAGGGATCAAGTAG
 AGGATCTAACCTGGCAGCTTGTGGAGTAACATATACTAGAGAAAAGGCCTACTAC
 50 AATAGTATTAAATGATACTCCCTTAAATGTTACTGTTAGACACAGGAGCAGATACTTC
 AGTGTGACTACTGCACATTATAATAGGTTAAATATAGAGGGAGAAAATCAAGGGAC
 GGGAAATAATAGGAGTGGAGGAATGTGAAACATTCTACGGCTGTGACTATAAGAA
 AAAGGGTAGACACATTAAGACAAGAATGCTAGTGGCAGATATTCCAGTGA
 55 ACAGAGATATTCTCAGGACTTAGGTGCAAATGGTTGGCAGCTCTCCAAGGAAT
 AAAATTAGAAAAATAGAGTTAAAGAGGGCACAATGGGGCAAAAATTCCCAATGGCC
 ACTCAGTAAAGGAGAAAATAGAAGGGGCCAAGAGAGATGTCAGACTATTGTCAGAGGG
 AAAAATATCAGAAGCTAGTGACAATAATCCTTATAATTACCCATATTGTAATAAAAAA
 GAGGTCTGGCAATGGAGGTATTACAAGATCTGAGAGAATTAACAAAACAGTACAAGT
 AGGAACGGAAATATCCAGAGGATTGCCACCCGGAGGATTAATTAAATGTAACACAT
 60 GACTGTATTAGATATTGGAGATGCAATTCACTATACCCCTAGATCCAGAGGTTAGACC
 ATATACAGCTTCACTATTCCCTCATTAAATCATCAAGAAGCAGATAAAAGATATGTGTG
 GAAATGTTTACCCACAAGGATTGTTGAGCCCATATATATCAGAAAACATTACAGGA
 AATTTCACACCTTTAGGAAAGATATCTGAACTACAATTGATCAATATGGATGA

TTTTTCATGGGAAGTAATGGTTCTAAAAAACACACAAAGGTTAATCATAGAATTAAAG
 GGCATCTACTGGAAAAGGGTTTGAGACACCAGATGATAATTACAAGAAGTGCCACC
 TTATAGCTGUCTAGGTATCAACTTGTCTGAAAATTGAAAGTACAAAAATGCAATT
 AGACATGGTAAAGAATCCAACCCCTTAATGATGTGCAAAAATTATGGGAATATAACATG
 5 GATGAGCTCAGGGATCCCAGGGTTGACAGTAAAACACATTGCACTACTAAGGGATG
 TTTAGAGTTGAAATCAAAAAGTAATTGGACGGAAGGGCACAAAAAGAGTTAGAAGAAA
 TAATGAGAAGATTAAAATGCTCAAGGGTTACAATATTATAATCCAGAAGAGAAATGTT
 ATGTGAGGTTGAAATTACAAAAATTATGAGGCAACTTATGTTATAAAACAATCACAAGG
 AATCCTATGGCAGGTAAAAGATTATGAGGCTAATAAGGGATGGTCAACAGTAAAAAA
 10 TTTAATGTTATTGTTGCAACATGTGGCACAGAAAAGTATTACTAGAGTAGGAAAATGTC
 AACGTTAAAGGTACCATTTACCAAAGAGCAAGTAATGTGGGAATGCAAAAAGGATGTTA
 TTATCTGGCTCCAGAAAATAGTATACACATCAACTAGTATTGATGATTGGAGAAT
 GAATTGGTAGAAGAACCTACATCGAGAAACACATACACTGATGGGGAAAACAAAA
 TGGAGAAGGAATAGCAGCTTATGTGACCGTAATGGAGAACTAAACAGAAAAGGTTAGG
 15 ACCTGTCACTCATCAAGTTCGTGAAAGAATGCCAATACAAATGCCATTAGAGGATACCAG
 AGATAACAAAGTAAATATAGTAACGTATGTTATTGTTGAAAAAATATTACAGAAGG
 ATTAGGTTAGAAGGACCAAAAGTCCTGGCTATAATACAAAATATACGAGAAA
 AGAGATAGTTTATTGTTGTTGGTACCTGGTACAAAAGGGATATATGGAATCAATTGGC
 AGATGAAGCCGCAAAAATAAAAGAAGAAATCATGCTAGCATACCAAGGCACACAAATTAA
 20 AGAGAAAAGAGATGAAGATGCAAGGGTTGACTTATGTTCTTATGACATCATGATACC
 TGATCTGACACAAAATCATACCCACAGATGTAAGAAAATTCAAGTTCCTCTAATAGCTT
 TGGATGGGTCACTGGGAAATCATCAATGGCAAAACAGGGTTTAAATTAAATGGAGGAAT
 AATTGATGAAGGATATACAGGAGAAAATACAAGTGTATGTTACTAATATTGGAAGAAAAGTAA
 TATTAATTAATAGAGGGCAAAAATTGCAAAATTAAATTACTACAGCATCACTCAAA
 25 TTCCAGACAGCCTTGGGATGAAAATAAAATATCTCAGAGAGGGATAAAGGATTGGAG
 TACAGGAGTATTCTGGGTAGAAAATATTCAAGGAACCAAGATGAACATGAGAATTGGCA
 TACATCACCAGAAGATATTGCAAGAAAATTATAAGATACCAATTGACTGTAGCAAAACAGAT
 AACTCAAGAATGCTCTCATTGCACTAACAGGATCAGGACCTGCAAGGTTGTCATGAG
 ATCTCCTAATCATTGGCAGGGCAGATTGCAACACATTGGACAATAAGATAATTGACTT
 30 TGAGAGTCAAACTCAGGATACATACATGCTACATTATTGTCAAAAGAAAATGCTATTG
 TACTTCATTGGTATTTAGAATGGCAAGATTGTTTCAACAAAGTCAGGTATTGAGAAGGGCAAAATAG
 TAACGGCACTAATTTGTGGCAGAACCAAGTGTAAATTGTTGAGAAGTTCCTAAAGATAGC
 ACATACCACAGGAATACCATATCATCCAGAAAAGTCAGGTATTGAGAAGGGCAAAATAG
 GACCTGAAAGAGAAGATTCAAAGTCATAGAGAACACACTAACACACTGGAGGGCAGCTT
 35 ACAACTTGTCTCATTAAGTGTGAAACAAGGGAGGGAAACTATGGGAGGGACAGACACCATG
 GGAAGTATTATCACTAACAAGCACAAGTAATCATGAGAAAATTTACTACAGCAAGC
 ACAATCTCCTAAAAAATTGTTTACAAAATCCCTGGTACATGATTGAGGGAC
 TACTAGGGTGTGGAGGGTGTGGTCACTAGTGTAAATGATGAAGGAAAGGGAA
 AATTGCTGTACCATTAACCAAGGACTAAGTTACTAATAAAACCAATTGAGTATTGTC
 40 GGAAGCAAGACCCAACTACCAATTGTCAGCTGTCTGACCTCAATATTGTTATAAG
 GTTGTATGATGAATCCCAGGGGAATCTCAACCCCTATTACCCAACAGTCAGAAAAAATCTA
 AGTGTGAGGAAACACAATGTTCAACCTTATTGTTATAATGACAGTAAGAACAGCA
 TGGCAGAATCAGAACAGAACAGAGAACAGAACATGAACTGAAAGAATCTAAAGAAG
 AAAAGAAGAAATGACTGGGAAATAGGTATGTTCTGTTATGCTAGCAGGAAC
 45 CTGGAGGAATACTTGTGCTATGAAAGGACTCCCACAGCAACATTATAGGGTTGG
 CGATAGGGGAAGATTAACCGGATCTGCGCAATCAAATGCTATAGAATGCTGGGGTTCT
 TCCGGGTGTAGACCATTCAAATTACTTCAGTTGAGACCAATAGAAGCATGCT
 TGATAATAATACTGCTACATTAGAAGCTTAACCAATATAACTGCTCTATAAATA
 50 CAAACAGAAGATTAGAACATGGAGTTAGTAAGACTTCTGGCATAACTCTTACCTA
 TTCTCTGAAGCTAACACTGGACTAATTAGACATAAGAGAGATTGGTATAAGTCAAT
 AGTGGCAGCTATTGAGCCGACTGCTATTGCTGCTAGCGCTACTATGCTTATGTTG
 TCTAAGTGGGTTAACAAAATAATGGAGTACAAAATCATCTTTGAGGTAGAAAATAG
 TACTCTAAATGTTGATGTTAATAGAACGACAAAATAGATATTATGCTATGTTCT
 TCAACACATCAGATGTTCAACTGTTAAGGAAAGACAAACAGGTAGAGGGAGACATTAA
 55 TTAATTGGATGTTAGAACACATGTTTGTCAACTGGTCACTGGTCAAGGAAATGGAAAG
 GTCATGGGACATTAAATGAGTCACACAAATGGGATGACTGGTCAAGGAAATGGAAAG
 TTAATCAAGAGATACTAACACTACATTGAGCCAGGAACAATTGGCACAATCCAT
 GATAACATTCAATACACCAGATAGTATAGCTCAATTGGAAAAGACCTTGGAGTCATA
 TGAAATTGGATTCTGGATTGGGAGCTTCAATTAAAATAATGATGTTTGT
 60 TATTATTTGTTACTAACCTTCGCTTAAGATCCTCAGGGCCCTGGAGGGTACCAAGG
 TGGTGCAGGGCTCTCCGGCAGTCGTTACCTGAAGAAAAATTCCATCACAAACATGCTC
 GCGAGAAGACACCTGGGACCAGGCCAACACAACATACACCTAGCAGCGTACCGGG
 ATCAGGGGACAAATACTACAAGCAGAAGTACTCCAGGAACGACTGGAAATGGAGAATCAGA
 GGAGTACAACAGCGGCCAACAGAGCTGGGTGAAGTCATCGAGGCAATTGGAGAGGCTA
 65 TATTCGGAGAAGACCAAAAGGGAGATTCTCAGGCTGGGGCTATCAACGAGCACA
 GAACGGCTCTGGGGGAACAATCTCACCAGGGCTTCTGGAGGATTGAGGAGGCG
 AGGAGGAAACATTATGACTGTTGATTAAAGCCCAAGGAAACTCTCGCTATCCCTG
 CTGTGGATTCTCTATTGCTATTGGTCACTGGGCGGGCGGACTAGAGGAATT
 CGCCCCCTCTCCCTCCCCCCCCCTAACGTTACTGGCGAAGCCGCTTGGAAATAAGGCG
 70 TGTGTGTTGTTCTATGTTGATTTCACCATATTGCGTCTTGGCAATGAGGGGCC
 CGAAACCTGCCCTGTCTTGTGAGGAGCATTCTAGGGGCTTCTGGAGGATTGAGG
 GGAATGCAAGGCTGTGAGGAGCTGGTGAAGGAGGAGCTTCTGGAGGCTTCTG
 CAAACAACTGCTGTAGCGACCCCTTGCAAGCGAGGGACACCCACCTGGGACAGGTG
 CTCTGGGCCAAAAGCCACGTGTATAAGATAACACTGCAAAGGGGGACAACCCAGTGC

CACGTTGTAGTTGGATAGTTGTGAAAGAGTCAAATGGCTCTCCTCAAGCGTAGTCAC
 AAGGGGCTGAAGGATGCCAGAAGGTACCCATTGATGGAAATCTGATCTGGGCTCG
 GTCACATGCTTACATGTGTTAGTCGAGGTTAAAAAGCTCTAGGCCCCCGAACAC
 GGGGACGTGGTTTCTTGAACAAACAGATGATAAGCTTGCCACAACCCGTACCAAAAG
 5 ATGGATAGATCCGAAAGCCTGAACCTCACCCGACGCTCTGAGAAGTTCTGATCGAA
 AAGTCGACAGCGTCTCGAACCTGATCGCAGCTCTCGGAGGGAAAGAATCTGCTTTC
 AGCTCGATGTAGGAGGGCGTGGATATGCTCTGCGGGTAATAGCTGCGCGATGGTTTC
 TACAAAGATCGTTATCGGACTTGCATGCCCGCTCCGATTCCCGAAGTGT
 CTTGACATTGGGAATTCAAGCGAGAGCCTGACCTATTGCATCTCCGCCGTGCACAGGGT
 10 GTCACGTTGCAAGACCTGCCGAAACCGAACACTGCCGCTGTTCTGAGCCGGTCCGCGGAG
 GCCATGGATCGATCGCTGCCGCGATCTAGCCAGACGAGCGGGTCCGCCCATTGGA
 CGCGAAGGAATCGGTCAATACACTACATGGCGTATTTCATATGCCGATTGCTGATCCC
 CATGTTATCGGAAACTGTGATGGACGACACCGTCACTGCCGTCGGCAGGGCT
 CTCGATGAGCTGATGTTGGGCCGAGGACTGCCCGAACCTCTGACCGG
 15 GATTCCGCTCCAACAATGCTGACGGACATGGCCGATAACAGCGGTCAATTGACTGG
 AGCGAGGGGATGTTCGGGGATTCCCATAACGAGGTGCGAACATCTCTGGAGGGCC
 TGTTGGCTTGTATGGAGCGACAGCGCTACTTCGAGCGGAGGCATCCGAGCTTGA
 GGATCGCCGCGCTCCGGGCTATATGCCGATTGGCTTGAACAACTTATCAGAGC
 TTGGTGAACGCAATTTCGATGATGAGCTGGCCAGGGTCACTGCCGACCG
 20 CGATCCGGAGCCGGACTGCGGGCTACACAAATGCCGAGAACGGCGGCTCTGG
 ACCGATGGCTGTTAGAAGTACTGCCGATAGTGGAAACCGACGCCAACACTCGTCCG
 AGGGCAAAGGAATAGAGTAGATGCCGACCGAACAGAGCTGATTTGAGAACGCCAC
 CAGCAACTCGCGCAGGCTAGCAAGGAAATGCGAGAGAACGCCCTACGCTTGGGCA
 CAGTCTCGTCCACAGTCCACAGTCTGGCTGGCTGGCGAGGGCCGGTCCAG
 25 TGATTCAACGGCCCTGGATGTTGGCTCCAGGGCACGATTGTCATGCCACGCACT
 CGGGTGTACTGATCCCGAGATTGGAGATGCCGCGCTGCCTGCCGATTGGTGC
 AGATCTAGAGCTCGCTGATGCCCTGACTGTGCTCTAGTTGCCAGCCATCTGTT
 GCCCCCTCCCCCTGCTCTTGAACCTGGAGGTGCCACTCCACTGCTCTTCTAA
 AAAATGAGGAATTGATCGCATTGTCAGTGGTAGGTGTCATTCTATTCTGGGGGTTGGG
 30 TGGGCGAGGACAGCAAGGGGGAGGATGGGAAGACAATAGCAGGCACTGCTGGGATGCC
 TGGCTCTATGGCTTGAGGGGAAAAGAACCGCTGGGCTCAGTGCATTCTAGTT
 GGTTTGCTCAAACATCAATGATCTTATCATGTCGTTACCGTCGACCTAGCTAG
 AGCTTGGCGTAATCATGGTCAGTGGTAGCTGTTCTGTGAAATTGTTATCCGCTCACAATT
 CCACACAACATACGAGGCCAACAGTAAAGCTGGGCTTAATGAGTGAC
 35 TAACTCACATTAATTGCGTTGCGTCACTGCCGCTTCCAGTCCGGGAAACCTGCTG
 CAGCTGCTTAAATGAATGCCAACGCCGGGGAGAGGCCGTTGGCTATTGGCGCTCT
 TCCGCTTCCCGCTGACTGCGCTCGCTCGGCTGGCTGCCGAGCGGTATCA
 GCTCACTCAAAGGCCGTAATACGGTTATCCACAGAACAGGGGATAACGCCAGGAAAC
 ATGTGAGCAAAGGCCAACAGGCAACCGTAAAAGGCCGCTGGCTGGCGTT
 40 TTCCATAGGCTCCGCCCCCTGACGAGCATCACAAAAATGACGCTCAAGTCAGGGTGG
 CGAACCCGACAGGACTATAAGATCAGGCGTTCCCTGGAAGGCTCCCTCGTGC
 TCTCTGTTCCGACCCCTGCCCTTACCGGATACCTGCGCTTCTCCCTCGGAAAGC
 GTGGCGCTTCTCAATGTCACGCTGAGGTATCTAGTGGCTGAGGTGGCTCGTCC
 AAGCTGGGCTGTCAGCAGAACCCCCCTCAGCCGACCGCTGCCCTATCCGTAAC
 45 TATCGTCTTGAAGTCAACCCGTAAGACACGACTTATGCCACTGGCAGCAGCCACTGG
 AACAGGATTAGCAGAGCGAGGTATGAGCGGTCTACAGAGTTCTGAAGTGGGCT
 AACTACGGCTACACTAGAAGGACAGTATTGGTATCTGCGCTCTGCTGAAGCCAGTTAC
 TTGGGAAAAAGAGTGGTAGCTCTGACCGCAACAAACCCGGCTGGTAGGGTGG
 50 ATCTTTCTACGGGCTGACGCTCACTGGAACGAAAACAGTCAAGGTTACGGGTTGGTC
 ATGAGATTATCAAAAAGGATCTCACCTAGATCTTAAATTAAAATGAAGTTTAAA
 TCAATCTAAAGTATATGAGTAAACTGGTCTGACAGTACAGTTACGTTAG
 GCACCTATCTCAGCGATGTCATTCTGTCATCCATAGTGGCTGACTCCCCGTC
 TAGATAACTACGATACGGGGCTTACCATCTGGCCCCAGTCTGCAATGATACCGCGA
 55 GACCCACGCTACGGCTCCAGATTACGCAATAAAACCGCCAGGGAAAGGGCCGAG
 CGCAGAAAGTGGCTCTGCAACTTATCCGCTCATCCAGTCTATTAAATTGTC
 GCTAGAGTAAGTAGTCCGAGTTAATAGTTGCCAACGTTGGCTACAGGC
 ATCGTGGTGTACGCTCGTCTGGTATGGCTTACAGCTCCGGTCCCAACGATCA
 AGGGAGGTTACATGATCCCCCATGTTGCAAAAAAGCGGTTAGCTCTGGCTCC
 60 ATCTGTTGTCAGAAGTAAGTACCGCTGTTACGTTACATGTTGACTGGTGA
 GACTCTCTTACTGTCATGCCATCCGTAAGATGCTTCTGTGACTGGTGA
 AAGTCATTCTGAGAATAGTGTATGCCGACCGAGTGTCTTGGCCGGCTCAAC
 GATAATACCCGCCACATAGCAGAACTTAAAAGTGTCTCATCTGGAAAAGCTTCTG
 GGGCAAAAGCTCAAGGATCTTACCGCTGTTGACGATCCAGTCTGATCA
 65 GCAACCAACTGATCTCACCATCTTACTTACCCAGCGTTGGGTGACGAAAAACA
 GGAAGGCAAAATGCCAACAAAAGGGAATAAGGGCGACACGGAAATGTTGA
 ATACTCATCTTCTGTTTCAATATTGAGCATTATCAGGGTTATTGTC
 CTGCCACCTGACGTCGACGGATCGG
 70 pONY8ZA CMVHyb (SEQ ID No 52)

AGATCTTGAATAATAAAATGTGTGTTGTCGAAATACCGGTTTGAGATTCTGCGCC

GACTAAATTATGTCGCCGATAGTGGTGTATCGCCGATAGAGATGCCGATATTGAA
 AAATTGATATTGAAAATATGGCATATTGAAAATGTCGCCGATGTGAGTTCTGTGTAAC
 TGATATGCCATTTCAAAAGTATTGGCATAACGCATATCTGGCAGTAGCGCT
 TATATCGTTACGGGGATGCCGATAGACGACTTTGGTACTTGGCATTCTGTGTC
 5 GCAAATATCGCAGTTCGATATAGGTACAGACAGGATATGAGGCTATATGCCGATAGAGG
 CGACATCAAGCTGGCACATGCCAATGCATATCGATCTATACATTGAATCAAATTGGCC
 ATTAGCCATATTCTATTGGTTATAGCATAAATCAATATTGGCTATTGGCATTGCA
 TACGTTGATCCATATCGAATATGTACATTATATTGGCTATGCCAACATTACCGCC
 ATGGTACATTGATTATGACTAGTTAAATAGTAATCAATTACGGGTCTTACGTTCA
 10 TAGCCCATAATGGAGTTCGCGTTACATAACTTACCGTAAATGCCCGCTGGCTGACC
 GCCCAACGCCCGCCATTGACGTCATAATGACGTATGTCATAGTAACGCCAAT
 AGGGACTTCCATTGACGTCATAATGGTGGAGTTACGGTAAACTGCCACTGGCAGT
 ACATCAAGTGATCATATGCCAAGTCCGCCCTATTGACGTCATGACGGTAAATGCC
 CGCCTGGCATTATGCCAGTACATGACCTTACGGGACTTCTACTTGGCAGTACATCTA
 15 CGTATTAGTCATCGCTATTACATGGTATGCCGTTTGGCAGTACACCAATGGCGTGG
 ATAGCGGTTGACTCACGGGATTCCAAGTCTCACCCATTGACGTCATGGAGTTT
 GTTTGGCACAAAATCAACGGGACTTCCAATGGTGGAGTTACGGTAAACTGCCACTGGCAGT
 CCCTGACGCAATGGCGTAGGGCTGAGCTGGGAGGGTCTATAAAGCAGAGCTGT
 TTAGTGAACGGGCACTCAGATTCTGGCTTGAGTCCCTCTCTGCTGGGTGAAAAGG
 20 CCTTGATAAAATATAATTCTACTCAGTCCCTGCTCTAGTTGCTGTCAGATC
 CTACAGTGGGCCCGAACAGGGACCTGAGAGGGCGCAGACCTACCTGTCAGCTGG
 CTGATCGTAGGATCCCCGGACAGCAGAGGAGAACCTACAGAAGTCTCTGGAGGTT
 CTGCCAGAACACAGGAGGACAGGAAGTGGGAGACCCCTTGCACATTGGAGCAAGGG
 CTCAGAAGTTAGAGAAGGTCAGGTAACAGGTTCTCAGAAAATTAACACTGTAAC
 25 AATTGGCGCTAAGTCTAGTAGACTTATTCTATTGATACCAACTTGTAAAAGAAAAGGA
 CTGGCAGCTGAGGGATTGTCATTCCATTGTAAGATTGTAACTCAGACGCTGTCAGGA
 CAAGAAAAGAGAGGCCCTTGAAGAACATTGGTGGCAATTCTGCTGAAAGATTGGGCC
 TCCAGATTAAATTGTAAGTAGATTGGAAAGGCATCATTCCAGCTCTAAGAGCAGAAATA
 TTGAAAAGAACACTGCTAATAAAAGCAGTCAGGCTCTGAAAGAATATCTAGAACT
 30 ACTGGATCCCCGGGCTGAGGAGTGGGAGGCACGATGGCCCTTGGCTGAGGGGAT
 CGGGCATTAGCATATTATTCTATTGGTATATGACATAATCAATATTGGCTATTGGC
 ATTGACATACGTTGATATTGACTAGTTAAATAGTAATCAATTACGGGCTATT
 ACCGGCATGTTGACATTGATTGACTAGTTAAATAGTAATCAATTACGGGCTATT
 AGTTCATAGCCCATATATGGAGTCCCGCTACATAACTTACGGTAAATGGCCCTGG
 35 CTGACCGCCAAACGACCCCCCATTGACGTCATAATGACGTATGTCATAGTAAC
 GCCAAATGGGACTTCCATTGACGTCATAATGGTGGAGTTACGGTAAACTGCCACTT
 GGCAGTACATCAAGTGATCATGCCAAGTACCCCTTATTGACGTCATGACGGTAA
 ATGGCCCGCTGGCATTATGCCAGTACATGACCTTATGGACTTCTACTGGCAGTA
 CATCTACGTATTAGTCATCGCTATTACCATGGTATGCCGTTTGGCAGTACATCAATGG
 40 GCGTGGATAGCGGTTGACTCACGGGATTCCAAGTCTCACCCATTGACGTCATGG
 GAGTTGGTTGGCACAAAATCAACGGGACTTCCAATGGGAAATGTCGTAACAAC
 ATCCGGCCATTGACGCTGGAGACGCCATCCACGCTGTTTACGCTCAGGATCTGGGATCC
 ATTGACGCAAATGGCGTAGGCATGTCAGGGTCTATATAAGCAGAGCTCGTGG
 45 AGTGAACCGTCAGATCGCTGGAGACGCCATCCACGCTGTTTACACGCTCGTGA
 CCGGGACCGATCCAGCCTCGGGCCCAAGCTTCAGCTGCTGAGGATCTGGGATCC
 GGGAAATCCCCAGTCAGGATCCACCATGGGGATCCCTGAGGATCCCTGGCAGC
 TGCGTAAATCGCAAGAGGCCGACCGATGCCCTTCCAAACAGTGGCAGGCTGAAT
 GGGGAATGGCGCTTGGCTGTTTCCGGCACAGAACGGTGGGAAAGCTGGTGGAG
 50 TGGCATCTCTGAGCGGAACTCTGCTGTCCTCAAACAGTGGCAGATGCAAGGTTAC
 GATGCGCCATCTACACCAACGTAACCTATCCATTACGGTCATCCGCGTTGTC
 ACCGGAGAATCCGACGGTTACTCGCTCACATTAAATGGTATGAAAGCTGGCTACAG
 GAAGGCCAGACGCAATTATTTGATGGGTTAACTCGCTGGCAGCAGTGGCTGCAAC
 GGGCAGTGGCTGGCTGGGAGAAAACCGCCTCGCGGTGATGGTCTGCAATTGAC
 55 TTTTACGCGCCGAGAAAACCGCCTCGCGGTGAGGGTGGAGTACGGCAGTGGCAGT
 TATCTGGAAAGTCAAGGATATGTGGGATGAGCGGCATTTCGCTGACGTCCTGCT
 CATAAAACCGACTACACAAATCAGCATTTCATGTTCCACTCGCTTAATGATGATT
 AGCCGCGCTGTACTGGAGGCTGAAGTTCAAGATGTCGGCGAGGTTGCGTACTAC
 60 GTAACAGTTCTTATGGCAGGGTAAACCGCAGGTGCGCTGGCAGGGCAGCGCT
 GGTGAATTATCGATGAGCGTGGGTTATGCCGATCGCTCACACTACGTCAGTC
 GAAACCCCGGAAACTGTGGAGGCCGAAATCCGAAATCTCTATCGTGCCTGGTT
 65 CACACCGCCGACGGCACGCTGATTGAAGCAGAACGCTGCCAGTGTGGTTCCG
 CGATTGAAAATGGTCTGCTGCTGTAACCGCAAGCCGTTGCTGATTGAGGCGTAAC
 CGTCACGAGCATCATCCTCTGCACTGGTCAAGTCAGGATGGTACGGAGACG
 ATCTCTGCTGATGAAGCAGAACACTTAAACGCCGCTGCGCTGTCAGTC
 70 ATCTCTGCTGATGAAGCAGAACACTTAAACGCCGCTGCGCTGTCAGTC
 CCGCTGCTGTAACCGCTGCGACCCGCTACGCCCTGCTATGTTGGGAGTGAAG
 GAAACCCCGGAAACTGGTCCATTGTCAGGATGACCTGCTGAGTACCCGCT
 ATGAGCGAACCGTAACCCGAATGGTCAAGCGCAGTGTGAAATC
 TGTCAGTGGGAAATGAATCAGGCCACGGCGCTAATACGACGCCGCTGATCGCTGG
 AAATCTGTCGATCCTTCCGCCGGTCAAGTATGAAGGCGGGAGCCGACACCACGCC
 ACCGATATTATGGCCGATGTCAGCGCGCTGGGATGAAGGACAGCCCTTCCGGCT
 CGGAAATGGTCCATTAAACGGTCTGCTACCTGGAGAGACGCCGCTGATCCTT
 TCGGAATACGGCCACGGCAGGGTCAAGGAGAGACGCCGCTGATCGCTG
 TTGTCAGTATCCCGTTACAGGGGGCTTCTGCTGGACTGGCTGGATCGCTG
 ATAAATATGATGAAAACGCCAACCCGCTGGCGCTACGGCGGTGATTGGCGATACG

CCGAACGATCGCCAGTTCTGTATGAACGGTCTGGTCTTCGGCACCGCACGCCCATCCA
 GCGCTGACGGAAGCAAAACACCAGCAGCAGTTTCCAGTTCCGTTATCCGGCAAACC
 ATCGAAGTGACCAGCGAATACTGTTCCGTATAGCGATAACCGAGCTCCTGCACTGGATG
 GTGGCGCTGGATGGTAAGCCGCTGOCAGCGGTGAAGTGCCTCTGGATGTCGCTCCACAA
 5 GTTAACAGTTGAACTGGCTGAACTACCGCAGCGGAGACGCCGGGAACTCTGG
 CTCACAGTAGCGTAGTGCAACCGAACCGACCGCATGGTCAGAACGGGACATCACG
 GCCTGGCAGCAGTGGCGTCTGGCGAAAACCTCACTGTGACGCTCCCAGCGTCCCAC
 GCCATCCCGCAGTGCACCACAGCGAAATGGATTGGCATCGAGCTGGTAATAAGCGT
 TGGCAATTAAACCGCAGTCAGGCTTCTTCACAGATGTGGATTGGCGATAAAAACAA
 10 CTGCTGACGCCGCTGCGCATCAGTTACCCCGTGCACCGCTGGATAACGACATTGGCGTA
 AGTGAAGGACCCCGATTGACCTAACCGCTGGTGAACCGCTGGAGGGCGGGCCAT
 TACCAAGGCGGAAGCAGCGTTGTCAGTGACGGACATACCTGCTGATGCGGTGCTG
 ATTACGACCGCTACGGCGTGGCAGCATCAGGGAAAACCTTATTATCAGCCGAAAACC
 TACCGGATTGATGGTAGTGGCAATGGCGATTACCGTTGATGTTGAAGTGGCGAGCGAT
 15 ACACCGCATCCGGCGGATTGGCTGAACCTGCCAACCGCTTACTGCCGCGAGCTAGCAGACGGGGTA
 AACTGGCTGGATTAGGGCCCAAGAAAACATATCCGACCCGCTTACTGCCGCGTGTG
 GACCGCTGGATTGCACTGGTACAGATGTTACCCGTCAGTCTCCGAGCGAAAAC
 GGTCGCGCTGGCGACCCGGAATTGAAATTGGCCACACCACTGGCGCCCGACTTC
 CAGTTCAACATCAGCGCTACAGTCACAGCAACTGATGAAACCCAGCCATGCCATCTG
 20 CTGCAACCGGAAGAAGGCACATGGCTGAATATGACCGTTTATGGGATTGGTGGC
 GACCACTCTGGAGCCCGTCAGTATCGCGGAATCCAGCTGACCCGGTCTGCTACCAT
 TACCAAGTGGTCTGGTCAAAAATAATAACCGGGCACGGGGATCCOCAGATCCGG
 CTGTTGAATGTTGTCAGTAGGGTGTGAAAGTCCCCAGGCTCCAGCAGGAGAAGT
 ATGCAAAAGCATGCTCGAGGAATTGATCAAGCTTATCGATACCGTCGACCTCGAGGG
 25 GGGCCCGTACCCAGCTTTGTCCTTACTGAGGGTTAATTGCGCGGAAGTATTTA
 TCACTAATCAACCAAGTAATAACATGAGAAAACCTTTACTACAGCAAGCACATCTCCA
 AAAAATTTGTTTACAAAATCCCTGGTAACATGATTGGAAAGGGACCTACTAGGGTGC
 TGTTGAAGGGTGTGAGCTAGTAGTTAATGATGAAAGGAAGGAATAATTGCTGTAC
 CATTAAACAGGACTAAGTTAACCAAAATTGAGTATTGAGGTTGAGGAAGCAAGAC
 30 CCAACTACATTGTCAGCTGTTCTGACCTCAATATTGTTATAAGGTTGATATGA
 ATCCCAGGGGAATCTCAACCCCTATTACCCAAACACTCAGAAAAATCTAAGTGTGAGGAG
 AACACAATGTTCAACCTTATTGTTATAATAATGACAGTAAGAACAGCATGGCAGAATCG
 AAGGAAGCAAGAGACCAAGAATGAACTGAAAGAAGAACATCTAAGAAGAAAAGGAAGAA
 ATGACTGGTGAAGAAATAGGTATGTTCTGTTATGCTTAGCAGGAAACTACTGGAGGAATAC
 35 TTGCTGCTATGAGGACTCCACAGAACATTATAGGGTTGGCGATAGGGGGAA
 GATTAACGGATCTGGCAATCAAATGCTATGAGGTTGGCGCTTCCCGGGGTGTA
 GACCAATTCAAATTACTTCAGTTATGAGACCAATAGAACATGCAATGGATAATAATA
 CTGCTACATTATTAGAAGCTTAACCAATATAACTGCTCTATAAAATAACAAACAGAATT
 AGAAACATGGAAGTTAGTAAGACTTCTGGCATAACTCCTTACCTTCTCTGAAGC
 40 TAACACTGGACTTAATTAGACATAAGAGAGATTGGTATAAGTCAATAGTGGCAGCTAT
 TGTCGGCTACTGCTATTGCTGCTAGCGCTACTATGTTATGTCCTAAGTCTGAGGT
 TAACAAAATAATGGAAGTACAAAATCATACTTTGAGGTTAGAAAATAGTACTCTAAATGG
 TATGGATTAAATAGAAGCACAATAAAGATATTATGCTATGATTCTCAAACACATGC
 AGATGTTCAACTGTTAAAGGAAAGACAACAGGTAGAGGGACATTAAATTGAGGATG
 45 TATAGAAAAGAACATGTTATGGTCACTGGTCTACCCCTGGAAATGTCATGGGACA
 TTAAATAGTCAACACAATGGGATGACTGGGTAAGCAAAATGGAAGGTTAAATCAAGA
 GATACTAATACACTTCATGGAGCCAGAACATTGGCACAATCCATGATAAACATTCAA
 TACACAGATAGTATAGCTAATTGAAAAGACCTTGGAGTCATATTGAAATTGGAT
 TCCTGGATGGGAGCTTCAATTAAATATAGTGTGTTTGTCTATTGTT
 50 ACTAACCTCTCGCTTAAGATCCTCAGGGCCCTCTGGAAAGGTGACCAACTGGTCAGGGTC
 CTCGGCAGTCGTTACCTGAAGAAAAAATCCATCACAAACATGCTCGCAGAACAC
 CTGGGACAGGCCAACACAACATACACCTAGCAGCGTACCCGGTGGATCAGGGGACAA
 ATACTACAAGCAGAAGTACTCCAGGAACGACTGGAAATGGGAAATCAGAGGAGTACAACAG
 GCGGCCAAAGAGCTGGGTGAAGTCATCGAGGCAATTGGAGAGAGCTATATTGAGAA
 55 GACCAAGGGGAGATTCTCAGCTGGCGGTATCAACGAGCACAGAACAGGCTGG
 GGGGAACAATCCTCAGCAAGGGTCTTAGACCTGGAGATTGAGGAACTCTGGCTATGGGATTTCC
 TTATGACTGGCTATTAAAGGCCAAGAAGGAACTCTGGCTATGCTCTCTGGATGGATTACG
 CTTATGGCTATTGGCTTATAATAAGGTTGATATAGGGCTTAAATTGAGGTTTATA
 60 CAGAAAAATGCTGTTATAATAAGGTTGATATAGGGCTTAAATTGAGGTTTATA
 GCCTCAGTATGTTAGAAAAACAAGGGGGAACTGTGGGGTTTATGAGGGGTTTATA
 AACTGCAGGAGTGGGGAGGCACGATGCCGTTGGTCAGGGGAGTCCGCCATTAGCC
 ATATTATTCAATTGTTATAATAGCATAAAATCAATATTGGCTATTGGCATTGCAACATCTG
 TATCCATATCATAATATGTCATTTATTGGCTCATGTCACATTACGGGCTATTAGTT
 65 CATTGATTATTGACTTTAAATAGTAAATCAATTACCGTAAATGGCCCTGGCTGACCGCCAAAC
 TATATGGAGTTCCGCTACATAACTTACCGTAAATGGCCCTGGCTGACCGCCAAAC
 GACCCCGCCCATGACGTCATAATGACGTATGTCCTCATGTAACGCAATAGGGACT
 TTCCATTGACGTCATGGGAGTATTACGGTAAACTGCCCACCTGGCACTACATCAA
 GTGATCATGTCATGGCTTACGGTAAATGGCTCATGTCACATGACGGTAAATGGCCCGCTGG
 CATTATGCCAGTACACATGGTATGGACTTTCTACTTGGCAGTACATCAATTGAGGTT
 70 GTCATGCGCTATTACCATGGTATGGCTTGGCAGTACATCAATTGAGGTT
 TTGACTACGGGAGTTCCAAGTCTCCACCCATTGACGTCATGGAGTTGTTGG
 CACCAAAATCAACGGACTTCCAAAATGCGTAACAACCTCCGCCATTGACGCAAATG
 GCGGTAGGCATGACGGTGGAGGTATATAACGAGCTCGTTAGTGAACCGGGCA

CTCAGATTCTGGGTCTGAGTCCCTCTGCTGGGTGAAAAGGCCCTTGTAATAAATA
 TAATTCTACTCAGTCCCTGCTCTAGTTGTCAGATCTACAGAGCTCATGC
 CTGGCGTAATCATGGTCATACGTTCCCTGTGTGAAATTGTTATCCGCTCACATTCC
 ACACAACATACGAGCCGGAAAGCATAAAGTAAAGCCTGGGTGCTAATGAGTGAGCTA
 5 ACTCACATTAATTGGCTTGCGCTCACTGCCCGCTTCCAGTCGGGAAACCTGTCGTGCCA
 GCTGCATTAATGAATCGGCCAACCGCGGGGAGAGGGCGTTTGGCTATTGGCGCTCTTC
 CGCTTCCCTGCTCACTGACTCGCTCGCTCGGTGCTGGCGAGCGGTATCAGC
 TCACTCAAAGGGTAATACGGTTATCCACAGAATCAGGGGATAACGCAGGAAAGAACAT
 GTGAGCAAAGGCCAGCAAAAGGCCAGGAACCGTAAAAGGCCCGTGTGCTGGCGTTTT
 10 CCATAGGCTCCGCCCCCTGACGAGCATCACAAAATCGACGCTCAAGTCAGAGGTGGCG
 AAACCCGACAGGACTATAAAGATACCAGGCGTTCCCGTGGAGCTCCCTCGTGCCTC
 TCCGTGCTCGGACCTGGCGCTAACCGGATACCTGTCCGCTTCTCCCTCGGAAGCGT
 GGGCTTCTCATAGCTACGCTAGGTATCTCAGTCGGTGTAGGTGCTTCGCTCAA
 GCTGGGCTGTGTCAGCACGCCCGCTTACGGCAGCCGCTGCCCTATCCGTAACTA
 15 TCGTCTTGAAGTCAACCGGTAAGACACGACTTATGCCACTGGCAGCAGCCACTGGTAA
 CAGGATTAGCAGAGCAGGGTATGTAGGGCGTGTACAGAGTTCTGAAGTGGTGGCCTAA
 CTACGGCTACACTAGAAGGACAGTATTGGTATCTGCGCTCTGCTGAAGGCCAGTTACCTT
 CGGAAAAAGACTGCTAGCTCTGATCCGGCAAAACAAACCCAGGCTGGTAGCGGTGGTTT
 TTTGTTGCAACCGCAGGATACCGCAGAAAAAAAGGATCTAAGAAGATCCTTGTAT
 20 CTTTCTACGGGCTGACGCTCACTGGAACGAAAACTCAGCTTAAGGGATTTGGTCA
 GAGATTATCAAAAGGATCTCACCTAGATCCTTTAAATTAAAAATGAAGTTTTAAATC
 AATCTAAAGTATATATGAGTAAACTTGGTCTGACAGTTACCAATGCTTAATCAGTGAGGC
 ACCTATCTCAGCGATCTGCTATTGCTCATCCATAGTGGCTGACTCCCGTCGTGTA
 GATAACTACGATACGGGAGGCTTACATCTGGCCCCAGTGTGCAATGATACCGCGAGA
 25 CCCACGCTCACCGCTCCAGATTATCAGCAATAAACAGCCAGCCGGAAAGGGCGAGCG
 CAGAAGTGGTCTGCAACTTATCGCCTCCATCCAGTCTATTAAATTGGCCGGGAAGC
 TAGAGTAAGTAGTCGCCAGTTAATAGTTGGCGAACGTTGCTGCAATTGCTACAGGCAT
 CGTGGTGTACGCTCGTGTGGTATGGCTTATTAGCTCCGTTCCAAACGATCAAG
 GCGAGTTACATGATCCCCATGTTGTGCAAAAAGCGGTTAGCTCTGGTCTCCCGAT
 30 CGTTGTCAGAAGTAAGTGGCCGACTGTTATCACTCATGGTTATGGCAGCACTGCATAA
 TTCTTACTGTCATGCCATCGTAAAGATGCTTCTGTGACTGGTGTACTCAACCAA
 GTCATTCTGAGAAAGTGTATGCGCGACCGAGTTGCTCTTGCCCCGGCTCAATACGGGA
 TAATACCGGCCACATAGCAGAACCTTAAAGTGTCTCATATTGAAAACGTTCTCGGG
 GCGAAAACCTCTAAGGATCTTACCGTGTGAGATCCAGTTCGATGTAACCCACTCGTGC
 35 ACCCAACTGATCTCAGCATCTTACTTCACCACCGTTCTGGGTGAGGCAAAACAGG
 AAGGAAAATGCGCAAAAAGGGAATAAGGGCAACCGGAATGTTGAATACTCATACT
 CTCCCTTTCAATATTAGGAGCTTACAGGGTATTGCTCATGAGGGATAACAT
 ATTGAATGTATTAGAAAATAACAAATAGGGGTCGGCGCACATTCCCAGAAAGT
 GCCACCTAAATTGTAAGCGTAATATTGTTAAAATTGCGTTAAATTGTTAAATC
 40 AGCTCATTTTAACCAATAGGCCGAAATCGGCAAAATCCCTTATAAATCAAAAGAATAG
 ACCGAGATAGGGTTGAGTTGCTCCAGTTGGAAACAAGAGTCCACTATTAAAGAACGTG
 GACTCCAACGTCAAAGGGCAAAAACCGTCTATCAGGGCGATGGCCCACTACGTTGAAACCA
 TCACCTAATCAAGTTGGGTGAGGTGCGTAAAGCAGTAAATCGGAACCTAA
 GGGAGCCCCGATTAGAGCTTGACGGGAAAGCCAACCTGGCTATCGAAATTACG
 45 ACTCACTATAAGG

5

PEsynGP (SEQ ID No 53)

TCAATATTGGCCATTAGCCATATTATTGATTGTTATATAGCATAAAATCAATATTGGCTA
 TTGGCCATTGCATACGTTGTATCTATATCATAATATGTACATTATATTGGCTCATGTCC
 10 AATATGACCGCCATGTTGGCATTGATTATTGACTAGTTATTAAATAGTAATCAATTACGGG
 GTCATTAGTTCATAGCCCATATATGGAGTCCCGGTTACATAACTTACCGTAATGGCCC
 GCCTGGCTGACGCCAACGACCCCCGCCATTGACGTCAATAATGACGTATGTTCCCAT
 AGTAACGCCAATAGGGACTTACGTTGACGTCAATGGGTGGAGTATTACGGTAAACTGC
 CCATTGGCAGTACATGCAAGTGTATCATATGCCAAGTCCGCCCCCTATTGACGTCAATGA
 15 CGGTAATGGCCGCCCTGGCATTATGCCAGTACATGACCTACGGGACTTTCTACTTG
 GCAGTACATCTACGTATTAGTCATCGCTATTACCATGGTGTGCGGTTTGGCAGTACAC
 CAATGGGCGTGGATAGCGGTTGACTCACGGGGATTTCCAAGTCTCCACCCCATTGACGT
 CAATGGGAGTTTGTGACCAAAATCAACGGGACTTCCAAGTGTGTAACAACGT
 CGATCGCCGCCCGCTTGACGCAAATGGGCGTAGGGTGTACGGTGGGAGGTATATA
 20 AGCAGAGCTCGTTAGTGAACCGTCAGATCACTAGAAAGCTTATTGCGGTAGTTATCAC
 AGTTAAATTGCTAACGCACTGAGTCTGACACAAACAGTCTCGAACTTAAGCTGCAGT
 GACTCTCTAACGGTAGCCTGACAGAAGTTGGTGTGAGGGACTGGCAGGTAAAGTATCAA
 GGTTACAAGACAGGTTAACGGAGACCAATAGAAACTGGGCTTGTGAGACAGAGAAGACT
 CTTGCGTTCTGATAGGCACCTATTGGCTTACTGACATCCACTTGCCTTCTCCAC
 25 AGGTGTCACTCCAGTTCAATTACAGCTCTAACGGCTAGAGTACTTAATACGACTCACT
 ATAGGCTAGAGAACCTGCCACCATGGGCATCCCCCTCACTGGTCAAAGGCCCTGAAGAA
 ACTGGAAAAAGTCACCGTTAGGGTAGCCAAAAGCTTACACAGGCCATTGCAACTGGC
 ATTGTCCTCTGGTGGATTTTCCACGACACTAATTGTTAAGGAGAAAGATTGGCAACT
 CAGAGACGTATCCCCCTTGGAGGACGTGACCCAAACATTGCTGGCAGGAGCGCGA
 30 AGCTTTCGAGCGCACCTGGTGGCCATCAGCGCAGTCAAAATGGGCTGCAAATCAACAA
 CGTGGTGTGACGGTAAAGCTAGCTTCAACTGCTCCGCTAAGTACGAGAACAAACCCG
 CAACAAGAAAACATCCGAAACCTAGCGAGGAGTACCCAAATTGATCGACGGGCCGGCAA
 TAGGAACCTCCGCCCCACTGACTCCCAGGGGCTATACCACCTGGGTCAACACCATCCAGAC
 AAACGGACTTTGAACGAAGCCTCCAGAACCTGTTGGCATCTGTCTGTGGACTGCAC
 35 CTCGAAGAAATGAATGCTTTCTGACGTGGTGCAGGACAGGCTGGACAGAAACAGAT
 CCTGCTCGATGCCATTGACAAGATGCCAGCAGACTGGGATAATGCCACCCCTGCCAAA
 CGCCCCCTCTGGTGGCTCCCCACAGGGGCTATCCCTATGACCGCTAGGTTATTAGGG
 ACTGGGGGTGCCCCCGGAACGCCAGATGGAGGCCAGATTGACCAATTAGGCAGACCTA
 CAGACAGTGGATCATCGAAGCCATGAGCGAGGGATTAAAGTCATGATCGGAAAGGCCAA
 40 GGCACAGAACATCAGGAGGGGCAAGGAACCATACCTGAGTTGTGCAAGGCTTCT
 GTCCCAGATTAAATCCGAGGCCACCCCTCAGGAGATCTCAAGTTGTGACAGACACACT
 GACTATCCAAAATGCAAAATGAAGAGTGCAGAAACGCCATGAGGCCAGCTAACGAAAGATGAT
 TACCCCTGGAGGAGAAAATGTAACGCTGAGTGGCTGGTGTGACCTAACAGCAAAGGACT
 GCTGCTGGCAAGGCTGCAACCCGCTGGTGTGACATTCAAAAGGAGGAGCACTGAA
 45 GGGAGGTCCATTGAAAGCTGCACAAACATGTTATAATTGGAAGGCCAGGACATTATC
 TAGTCATGTAGAGCACCTAAAGTCTGTTAAATGTAACAGCCTGGACATTCTCAA
 GCAATGCGAGAAGTGTCAAAAAACGGGAAGCAAGGGGCTCAAGGGAGGCCAGAAACA
 AACTTTCCCAGTACAACAGAACAGACTCAGCACAACAAATCTGTGTACAAGAGACTCCTCA
 GACTAAAATCTGTACCCAGATCTGAGCGAAATAAAAAGGAATACAATGTCAAGGAGAA
 50 GGATCAAGTAGAGGATCTCACCTGGACAGTTGTGGGAGTAACATACAATCTGAGAAG
 AGGCCCACTACCATCGCTGTGATCAATGACACCCCTTTAATGTGCTGGACACCGGA
 GCCGACACCAAGCGTCTCACTACTGCTCACTATAACAGACTGAAATACAGAGGAAGGAA
 TACCAGGGCACAGGCATCATGGCGTTGGAGGCAACGTGAAACCTTCCACTCCTGTC
 ACCATCAAAAAGAAGGGGAGACACATTAAACCGAAATGCTGGTGTGCGGACATCCCCGTC
 55 ACCATCCTGGCAGAGACATTCTCCAGGACCTGGCGCTAAACTCGTGTGGACAAACTG
 TCTAAGGAAATCAAGTCCGCAAGATCGAGCTGAAAGAGGGCACAATGGGTCCAAAATC
 CCCAGTGGCCCTGACCAAAAGAGAACAGCTGAGGGCCTAAGGAAATCGTGCAGGCCCTG
 CTTCTGAGGGCAAGATTAGCGAGGCCAGCGACAATAACCCCTACACAGCCCCATCTT

GTGATTAAGAAAAGGAGCGGCAAATGGAGACTCCTGCAGGACCTGAGGAACCTAACAAAG
 ACCGTCCAGGTGGAACTGAGATCTCGCGACTGCCTCACCCCGCGGCCCTGATTAAA
 5 TCGAAGCACATGACAGTCTTGACATTGGAGACGCTTATTTACCATCCCCCTCGATCCT
 GAATTTCGCCCTATACTGCTTTACCATCCCCAGCATCAATCACCAAGGAGCCCGATAAA
 CGCTATGTGGAAGTGCCTCCCCCAGGGATTGTGCTTAGCCCTACATTACAGAAG
 ACACCTCAAGAGATCCTCAACCTTCCGAAAGAGATAACCCAGAGGTTCAACTCTACCAAA
 TATATGGACGACCTGTTATGGGGTCCAACGGGTCTAAGAAGCAGCACAAGGAACCTCACT
 ATCGAACTGAGGGCAATCCTCCTGGAGAAAGGCTTCAGACACCCGACGACAAGCTGCAA
 10 GAAGTTCTCCATATAGCTGGCTGGCTACCAGCTTGCCCTGAAAAGTGAAGTCCAG
 AAGATGCAGTTGGATATGGTCAAGAACCCAAACACTGAACGACGTCCAGAAGCTCATGGGC
 AATATTACCTGGATGAGCTCCGGAATCCCTGGCTTACCGTTAACGACATTGCCGCAACT
 ACAAAAGGATGCCTGGAGTTAACCCAGAAGGTCATTGGACAGAGGAAGCTCAGAAGGAA
 CTGGAGGAGAATAATGAAAAGATTAAAGAATGCTCAAGGCTTCAAAACTACATCCCAGA
 15 CAGTCCCAAGGCATCTTGCGGGCGAAAGAAAATCATGAAGGCCAACAAAGGCTGGTCC
 ACCGTTAAAATCTGATGCTCCTGCTCCAGCACGTGCCACCGACTATCACCCGCGTC
 GGCAGTGCCCCACCTTCAAAGTCCCTCACTAAGGAGCAGGTGATGTGGAGATGCAA
 AAAGGCTGGTACTACTCTTGGCTTCCGAGATCGTCTACACCCACCAAGTGGTCACGAC
 20 GACTGGAGAATGAAGCTTGTGAGGAGCCACTAGCGGAATTACAATCTATACCGACGGC
 GGAAAGCAAAACGGAGAGGGAAATCGCTGCATACGTACATCTAACGGCCGACCAAGCAA
 AAGAGGCTCGGCCCTGCACTCACCAAGTGGCTGAGAGGATGGCTATCCAGATGGCCCTT
 GAGGACACTAGAGACAAGCAGGTGAACATTGTAAGTGCACAGCTACTACTGCTGGAAAAAC
 ATCACAGAGGGCTTGGCCTGGAGGGACCCCAGTCTCCCTGGTGGCTATCATCCAGAAAT
 25 ATCCCGAAAAGGAAATTGTCTATTCGCTGGTGGACACAAAGGAATTACGGC
 AACCAACTCGCCGATGAAGGCCAAAATTAAAGAGGAATCATGCTGCTTACCCAGGGC
 ACACAGATTAAGGAGAAGAGAGACGAGGACGCTGGTTGACCTGTGTCACAGATCCAGG
 ATCATGATTCCCGTTAGCGACACAAAGATCATTCAACCGATGTCAGAAGATCCAGGTGCCA
 CCCAATTCAATTGGTGGGTGACCGGAAAGTCCAGCATGGTAAGCAGGGTCTTCTGATT
 AACGGGGGAATCATTGATGAAGGATAACCCCGCAGAATTCAGGTGATCTGCACAAATATC
 30 GGCAAAAGCAATTAAAGCTTATCGAAGGGGAGAAGTTCGCTCAACTCATCCTCCAG
 CACACAGCAATTCAAGAACACCTTGGGAGGAAAAGAACAGATTAGCCAGAGAGGTGACAAG
 GGCTCGGCAGCACAGGTGTTCTGGTGGAGAACATCCAGGAAGCACAGGACGAGCAC
 GAGAATTGGCACACCTCCCTAAGATTGGCCGCAATTACAAGATCCCACACTGACTGTG
 GCTAAGCAGATCACACAGGAATGCCCACTGCAACAAACAGGTTCTGGCCCCGCCG
 35 TGCGTGATGAGGTCCCCAATCACTGGCAGGCAGATTGCACCCACCTGACAACAAAATT
 ATCCTGACCTTCGTGGAGAGCAATTGGCTACATCCACGCAACACTCCTCTCCAAGGAA
 AATGCATTGTGACCTCCCTCGCAATTCTGGAATTGGCAGGCTTCTCTCCAAAATCC
 CTGCACACCGACAACGGCACCAACTTGTGGCTGAACCTGTGATCTGCAAGTTC
 CTGAAAATGCCAACCAACTGGCATTCCCTATCACCTGAAAGCAGGGCATTGCGAG
 40 AGGGCCAACAGAACTCTGAAAGAAAAGATCCAATCTCACAGAGACAATACAGACATTG
 GAGGCCGCACCTCAGCTGCCCCATTACCTGCAACAAAGGAAGGAGAACGATGGCGGC
 CAGACCCCCCTGGGAGGTCTTCACTAACCAAGGCCAGGTGATCTGCAAGGCTGCTC
 TTGCAAGGCCAGTCTCCAAAAAGTTCTGCTTTATAAGATCCCCGGTGAGCACGAC
 TGAAAGGGTCTACAAGAGTTTGTGAAAGAGACGCCAGTTGTGGTGAACGATGAG
 45 GGCAGGGGATCATCGCTGTGCCCTGACACGCCAACAGCTCTCATCAAGCCAAGTGA
 ACCGGGGGGCGCTTCTTACTGAGGGTTAATGCTCGAGCAGACATGATAAGATA
 CATTGATGAGTTGGACAAACCAACTAGAATGCACTGAGGAAAGTCTTATTTGTGA
 AATTGTGATGCTATTGCTTATTGTAACCAATTAAAGCTGCAATAAAACAGTTAACAA
 CAACAATTGCAATTCTTATGTTCAAGGTTAGGGGAGATGTGGAGGTTTTAAAG
 50 CAAGTAAAACCTCTACAAATGTGGTAAATCCGATAAGGATCGATCCGGCTGGCGTAAT
 AGCGAAGAGGCCGACCGATGCCCTCCAAACAGTTGCGCAGCCTGAATGGCAATGG
 ACGCCCTGTAGCGGCCATTAGCGCCCTAGCGCCGCTCTTCTGCTTCTCCCTTCTCGCA
 CTACACTTGCAGGCCCTAGCGCCGCTCTTCTGCTTCTCCCTTCTCGCA
 CGTTCGCCGGCTTCCCCGTCAAGCTCTAAATCGGGGCTCCCTTCTGGTCCGATTTA
 55 GAGCTTACGGCACCTCGACCGCAAAAAACTTGATTGGGTGATGGTACCGTCTTAAAGT
 CATGCCCTGATAGACGGTTTTCGCCCTTGACGTTGAGTCCACGTTCTTAAAGT
 GACTCTGTTCCAAACTGGAACAAACACTCAACCCCTATCTCGCTTATCTTGTGATT
 AAGGGATTTGCCGATTCGGCTATTGGTAAAGGAGGTGATTTAACAAATTTA
 ACGCGAATTAAACAAATTTAACGTTACAATTTCGCTGATGCCGATTTCTCCTT
 60 ACGCATCTGCGGTATTCACACCGCATAACCGGATCGCGCAGCACCATGGCTGAAA
 TAACCTCTGAAGAGGAACCTGGTAGGTACCTTCTGAGGCCAGGAAAGAACCGACTG
 ATGTGTGTCAGTTAGGGTGTGAAAGTCCCAGGCTCCCCAGCAGGCAAGTATGCAA
 GCATGCGATCTCAATTAGTCAGCAACCCAGGTGTTGGAAAGTCCCAGGCTCCCCAGCAGG
 GAAGTATGCAAAGCATGCATCTCAATTAGTCAGCAACCATAGTCCGCCCTA
 CCATCCGCCCTAACTCCGCCAGTTCCGCCATTCTCCGCCATGGCTGACTAATT
 TTTTATTTATGCAAGAGGCCAGGCCCTGGCTCTGAGCTATTCCAGAAGTAGTGAG

GAGGCTTTTGAGGCCTAGGCTTTCGAAAGCTGATTCTCTGACACAACAGTCT
 CGAACTTAAGGCTAGAGCACCATGATTGAAACAGATGGATTGCACCGAGGTTCCGCC
 CGCTGGTGGAGAGGCTATTCCGCTATGACTCGGCACAACAGACAATCGGCTGCTCTGA
 TGCCGCCGTTCGGCTGTCAGCGCAGGGGCCCGGTTCTTTGTCAGAACCGACCT
 5 GTCCGGTGCCTGAATGAACTGCAGGACGAGGCAGCGCGCTATCGTGGCTGGCCACGAC
 GGGCGTCCCTCGCAGCTGTGCTCACGTTGTCAGTGAAGCGGGAAAGGGACTGGCTGCT
 ATTGGCGAAGTGCCTGGGAGGATCTCTGTATCTCACCTGCTCCTGCCGAGAAAGT
 ATCCATCATGGCTATGCAATGCGGGGCTGCATACGCTTGTACCGGCTACCTGCCATT
 CGACCACCAAGCGAACATCGCATCGAGCGAGCACGTACTCGGATGGAAGCGGGCTTGT
 10 CGATCAGGATGATCTGGACGAAGAGCATCAGGGCTCGCGCCAGCCAACTGTTGCCAG
 GCTCAAGGCGCCATGCCGACGGCAGGATCTCGTGTGACCCATGGCGATGCCCTGCTT
 GCCGAATATCATGGTGGAAATGGCCGCTTCTGGATTATCGACTGAGTGGCCGGCTGG
 TGTGGCGGACCGCTATCAGGACATAACGCTGGCTTACGGTATCGCCGCTCCGATTGCCAG
 CGCGAATGGCTGACCCCTCCCTCGTGTGACCCGCTTACGGTATCGCCGCTCCGATTGCCAG
 15 CATCGCCTTCTATCGCCTTGTGACGAGTCTCTGAGCCTGGCTACGGTATCGCCGCTCCGATTGCCAG
 ACCGACCAAGCGACGCCAACCTGCCATACGATGCCGAATAAAATATCTTATTTTCA
 ATTACATCTGTGTGGTTGGTTGGTTGGTTGGTGAATCGATAGCGATAAGGAATCGCGTATGGT
 CACTCTCAGTACAATCTGCTGTGACGGCTTGTCTGCTCCGGCATCGCTTACAGACAAGCTGT
 20 ACCCGCTGACCGCCCTGACGGCTTGTCTGCTCCGGCATCGCTTACAGACAAGCTGT
 GACCGTCTCCGGAGCTGCATGTGTCAGAGGTTTACCGTCATCACCGAAACCGCGAG
 ACGAAAAGGCCTCGTGTACGCCATTGGTTAGGTTAATGTCATGATAATAATGGTT
 TTAGACGTCAAGTGGCACTTTGGGAAATGTGCGCGAACCCCTATTGGTTATTGGTT
 CTAAATACATTCAAATATGATCCGCTCATGAGACAATAACCGTATAATGCTCAATA
 ATATTGAAAAAGGAAGAGTATGAGTATTCAACATTCCGTGTCGCCCTTATTCCCTTTT
 25 TGGCGCATTTGCCCTCTGTTTGTCTCACCGAGAACGCTGGTGAAGTAAAGATGCT
 TGAAGATCAGTGGTGCACGAGTGGTACATCGAACTGGTCTCAACAGCGGTAAAGAT
 CCTTGAGAGTTTCCCGAACAGCTTCCAATGATGAGCAGCTTAAAGTTCTGCT
 ATGTGGCGCGTATTATCCGTATTGACGCCGGAACAGGCAACTCGGTGCCGATACA
 CTATTCTCAGAATGACTGGTGTAGTACTCACAGTCACAGAAAAGCATCTTACGGATGG
 30 CATGACAGTAAGAGAAATTAGCAGTGTCTGCCATTACCGAGAACGCTGGTGAAGTAAAGATGCT
 CTTACTCTGACAACGATCGGAGGAGCGAACGGAGCTAACCGCTTTTGCAACAATGGG
 GGATCATGAACTCGCCTGTACGTTGGGAACCGGAGCTGAATGAAGCCATACCAACGA
 CGAGCGTACACACAGATGCCGTAGCAATGCCAACAGCTTGCCTAACACTATTAACTGG
 CGAACACTTACTCTAGCTCCGGCAACAAATTAAAGACTGGATGGAGGGCGATAAAAGT
 35 TGCAGGACCACTCTGCCCTCCGGCTGGTTATTGCTGATAAAATCTGG
 AGCCGGTAGCGTGGGCTCGCGGTATCATTGCACTGGGAGCTGAATGGTAAGCCCTC
 CCGTATCGTAGTTATCTACAGACGGGAGTCAGGCAACTATGGATGAAACGAAATAGACA
 GATCGCTGAGATAAGGTGCTCACTGATTAAGCATTGGTAACTGTCAGACCAAGTTACTC
 ATATATACTTAGATTGATTAAAACCTCATTTTAATTAAAAGGATCTAGGTGAAGAT
 40 CCTTTTGATAATCTCATGACAAAATCCCTAACGTGAGTTTCTGTTCACTGAGCGTC
 AGACCCCGTAGAAAAGATCAAAGGATCTTCTGAGATCTTCTGAGTCTTCTGCGCTAATCTG
 CTGCTGCAACAAAAACCCACCGCTACCAGCGGTGGTTGTTGCCGATCAAGAGCT
 ACCAACTCTTCCGAAAGTAACTGGCTTACAGCAGAGCCAGATACCAAAATACTGCT
 TCTAGTGTAGCCGTAGTTAGGCCACACTCAAGAACTCTGATGACCCCTACACCT
 45 CGCTCTGCTAATCTGTACCGTAGTGGCTGCTGCCAGTGGCGATAAGTCGTCTTACGG
 GTTGGACTCAAGACGATAGTTACCGATAAGCGCAGCGGTGGCTGAACGGGGGTT
 GTGACACAGCCCCAGCTGGAGCGAACGACCTACACCGAACTGAGATAACCTACAGCGTGA
 GCTATGAGAAAGCGCCACGCCGTTCCGAAGGGAGAAAGCCGACAGGTATCCGGTAAGCGG
 CAGGGTGGAAACAGGGAGAGCGCACGAGGGAGCTTCCAGGGGAAACGCCCTGGTATCTT
 50 TAGTCTGTGGGTTGCCCACCTGACTTGAGCGTCGATTGTCAGAACCGGGCTTT
 GGGCGGAGCCTATGGAAAAACCCAGCAACCGGGCTTTACGTTCTGGCCTT
 CTGGCCTTGTGTCACATGGCTCGACAGATCT

PESDSYNGP (SEQ ID No 54)

55 TCAATATTGGCCATTAGCCATATTATTGTTATAGCATAAAATCAATAATTGGCTA
 TTGGCCATTGCTACGTTGTATCTATATCATATAATGATCATTATATTGGCTCATGTCC
 AAATGACCCCATGTTGGCATTGATTGACTAGTTATAATAGAATCAATTACGGG
 GTCATTTAGTCATGCCATATATGGAGTCCGCGTACATAACTACGGTAATGGCCC
 60 GCCTGGCTGACGCCAACGACCCCCGCCATTGACGTCATAATGACGTATGTTCCCAT
 AGTAACGCAATAGGGACTTCCATTGACGTCATAAGGGGGAGTATTACGGTAAACTGC
 CCACTTGGCAGTACATCAAGTGTATCATATGCCAACGTCGCCCCCTATTGACGTCATGA
 CGTAAATGCCGCCCTGGCATTGCCCAGTACATGACCTTACGGGACTTCTACTTG
 CGAGTACATCTACGTATTAGTCATGCTATTACCATGGTGTGCGGTTGGCACTACAC
 CAATGGCGTGGTAGCGGTTGACTCACGGGATTCCAAGTCTCACCCATTGACGT

CAA TGGGAGTTGTTGGCACCAAATCAACGGACTTCCAAAATGTCGTAAACAAC'TG
 CGATGCCCGCCCCGTGACGAAATGGCGTAGGCCTGACGGTGGGAGGTCTATA
 AGCAGAGCTCGTTAGTGACCGTCAGATCACTAGAAGCTTATTGCGTAGTTATC
 AGTAAATTGCTAACGCACTGAGTCAGTCTCTGACACAACAGTCTGAACCTAACGTCAGT
 5 GACTCTTAAGGTAGCCTGCAGAAGTGGCTGAGGCACCTGGCAGGTAAAGTATCAA
 GTTACAAGACAGGTTAAGGAGACCATAAGAAACTGGCTTGTGAGACAGAGAAGACT
 CTTGCGTTCTGATAGGCACCTA'ITGGTCTTACTGACATCCACTTGCTTCTCCAC
 AGGTGTCACCTCCAGTTCATTACAGCTCTAACGGCTAGAGTACTTAATACGACTC.ACT
 ATAGGCTAGAGAATTCCAGGTAAGATGGCGATCCCCTCACCTGGTCAAAGCCCTGAG
 10 AAACCTGGAAAAAGTCACCGTCAGGGTAGCCAAAAGCTTACCAACAGGCAATTGCAACTGG
 GCATTGTCCTGGTGGATTTCCACGACACTAATTTCGTTAAGGAGAAAGATTGGCAA
 CTCAGAGACGTGATCCCCCTCTTGGAGGACGTGACCCAAACATTGTCCTGGCAGGAGCGC
 GAAGCTTCGAGCGCACCTGGTGGCCATCACGCCAGTCAAATGGGCTGCAAATCAAC
 AACGTGGTGAACGGTAAAGCTAGCTTCAACTGCTCCAGGGCTATACCACCTGGTCAACACCATCCAG
 15 GCCAACAAAGAAACAATCCGAACTTACGGAGGAGTACCCAAATTATGATGACGGCGCCCG
 AATAGGAACCTCCGCCACTGACTCCAGGGCTATACCACCTGGTCAACACCATCCAG
 ACAAACGGACTTTGAACGAAGCCTCCCAGAACCTGTCGGCATCTGTCTGGACTGC
 ACCTCCGAAGAAATGAATGCTTCTGACGTGGTGCAGGACAGGCTGGACAGAAACAG
 ATCTGTCGATGCCATTGACAAGATGCCAGCAGTGGATAATGCCACCCCTGCCA
 20 AACGCCCTCTGGTGGCTCCCCACAGGGGCTATCCCTATGACCGTAGGTTATTAGG
 GGACTGGGGTGCCTGGCAACGCCAGATGGAGCCAGCATTGACCAATTAGGAGACC
 TACAGACAGTGGATCATCGAAGCCATGAGCAGGGATTAAAGTCATGATCGGAAGGCC
 AAGGCACAGAACATCAGGCAAGGGCACCCTCAGGAGATCTCAAGTCTTGACAGACACA
 CTGCCCAGATTAATCCGAAGGCCACCCTCAGGAGATCTCAAGTCTTGACAGACACA
 25 CTGACTATCCAAAATGCAAATGAAGAGTCAGAACGCCATGAGGCACCTCAGACCTGAA
 GATAACCTGGAGGAGAAAATGACCGATGTCGACATTGGCACTACCAAGCAAAAGATG
 ATGCTGTCGCCAAGGCTCTGCAAACCGGCCCTGGCTGGCCATTCAAAAGGAGGAGCACTG
 AAGGGAGGTCCATTGAAAGCTGCACAAACATGTTATAATTGTTGGAAAGGCCAGGACATT
 TCTAGTCATGTAGAGCACCTAAAGTCGTTTAAATGTAACAGCCTGGACATTCTCA
 30 AACCAATGCGAAGTGTCCAAAAAAAGGGAAAGCAAGGGCTCAAGGGAGGCCAGAAA
 CAAACTTCCCAGATACAACAGAACAGTCAGCACAAACAAATCTGTTACAAGAGACTCCT
 CAGACTCAAATCTGTACCCAGATCTGAGCGAAATAAAAAGGAATACAATGTCAGGAG
 AAGGATCAAGTAGAGGATCTCACCTGGACAGTTGTGGAGTAACATACAATCTCGAGA
 AGAGGCCACTACCATCGTCTGATCAATGACACCCCTTAAATGTCGCTGGACACCG
 35 GAGCCGACACCAGCTCTCACTACTGTCACTATAACAGACTGAAATACAGAGGAAGGA
 AATACCAGGGCACAGGCATCATGGCGTTGGAGGCAACGTCGAAACCTTTCACTCCTG
 TCACCATCAAAAGAACGGGAGACACATTAAACCAAGAACATGTCGCGACATCCCCG
 TCACCATCCTGGCAGAGACATTCTCAGGACCTGGGCGCTAAACTGTCGTCAGAAC
 TGCTCAAGGAATCAAGTCCGCAAGATCGAGCTGAAAGAGGGACAATGGTCCAAA
 40 TCCCCAGTGGCCCTGACCAAGAGAGAGCTTGGAGGGCGCTAAGGAAATCGTCAGCGCC
 TGCTTCTGAGGGCAAGATTAGCGAGGCCAGCGACAATAACCCCTACAACAGCCCCATCT
 TTGTGATTAAGAAAAGGAGCGGAAATGGAGACTCCTCGCAGGACCTGAGGGAACTCAACA
 AGACCGTCCAGGTGGAACTGAGATCTCGCGGACTGCTCACCCCCGGGCGCTGATTA
 45 AATGCAAGCACATGACAGTCCTTGACATTGGAGACGCTTACCATCCCCCTCGATC
 CTGAATTTCGCCCCATACTGCTTACCATCCCCAGCATCAATCACCAGGAGCCGATA
 AACGCTATGTTGGAAAGTGCCTCCCCAGGGATTGTGTTAGCCCTACATTACCA
 AGACACTTCAAGAGATCTCCAACCTTCCGAAAGATAACCAAGGGTCAACTCTACC
 AATATATGGACGACCTGTTCATGGGTCAACGGGTCTAAGAACAGCACACAAGGAAC
 50 TCATCGAACTGAGGGCAATCTCTGGAGAACGGCTCAGACACCCGACGACAAGCTGC
 AAGAAGTCTCCATATAGCTGGCTGGCTACCAAGCTTGCCTGAAAACACTGAAAGTCC
 AGAAGATGCGAGTTGGATATGGTCAAGAACCCAAACTGACGACGTCCAGAACGTCATGG
 GCAATATTACCTGGATGAGCTCCGGAATCCCTGGCTTACCGTTAAGCACATTGCC
 55 CTACAAAAGGATGCGCTGGAGTTGAACCAGAACGGTCTTGGACAGAGGAAGCTCAGAAGG
 AACTGGAGGAGAATAATGAAAAGATTAAGAACATGTCAGGGCTCAATACTACAATCCC
 AAGAAGAAATGTTGCGAGGTGAAATCAACTAACGAAACTACGAAAGGCCACCTATGTC
 AACAGTCCCAAGGCATTTGCGGGGAAAGAAAATCATGAAAGGCCAACAAAGGCTGG
 CCACCGTTAAAATCTGATGCTCTGCTCCAGCACGTCGCCACCGAGTCTATCCCCGCG
 TCGGCAAGTGGCCACCTTCAAGGTTCTTACTAACGGAGCAGGTGATGTGGGAGATGC
 AAAAGGCTGGTACTACTCTGGCTTCCCGAGATCGTCTACACCCACCAAGTGGTGCACG
 60 AGCACTGGAGAATGAAGCTTGTGAGGAGGCCACTACGGGAAATTACAATCTATACCGACG
 GCGGAAAGCAAAACGGAGAGGGAAATCGCTGCATACGTCACATCTAACGGCCACCAAGC
 AAAAGAGGCTGGCCCTGTCACTACCAGGTGGCTGAGAGGATGGCTATCCAGATGGCCC
 TTGAGGACACTAGAGACAAGCAGGTGAACATTGTGACTGACAGCTACTACTGCTGGAAA
 ACATCACAGAGGGCCTGGCCTGGAGGGACCCAGTCTCCCTGGTGGCCTATCATCCAGA
 65 ATATCCGCAAAAGGAAATTGCTATTGCGCTGGTGCCTGGACACAAAGGAATTACG
 GCAACCAACTCGCCGATGAAGCCCAAAATTAAAGAGGAAATCATGCTTGCCCTACCAGG

GCACACAGATTAAAGGAGAAGAGAGACGAGGACGCTGGCTTGACCTGTGTGCCATACG
 ACATCATGATTCCCGTTACGCACACAAGATCATTCAACCGATGTCAGATCAGGTGC
 CACCAATTCAATTGGTGGGTGACCGGAAAGTCCAGCATGGTAAGCAGGGCTTCTGA
 TTAACGGGGAAATCATTGATGAAGGATACACCGCGAAATCCAGGTGATCTGCACAAATA
 5 TCGCAAAGCAATATTAAGCTTATCGAAGGGCAGAAGTTCGCTCAACTCATCATCCTCC
 AGCACACAGCAATTCAAGACACCTTGGGACGAAAACAAGATTAGCCAGAGAGGTGACA
 AGGGCTCGGAGCACAGGTGTTCTGGGTGGAGAACATCCAGGAAGCAGGACGAGC
 ACGAGAATTGGCACACCTCCCCTAACAGATTTGGCCCGAACATCAAGATCCCACGTACTG
 10 TGGCTAACAGATCACACAGGAATGCCCAACTGCACCAAACAAGGTTCTGGCCCCGCC
 GCTGCGTGTAGAGGTCCCCAATCACTGGCAGGCAGATTGACCCACCTCGACAAACAAAA
 TTATCCTGACCTTCGTGGAGAGCAATTCCGGCTACATCCACGCAACACTCCTCTCCAAGG
 AAAATGCATTGTGACCTCCCTCGAACATTCTGGAATGGGCCAGGCTGTTCTCTCCAAAAT
 CCCTGCACACCGACACGGCACCACACTTGTGGCTGAACCTGTGGTAATCTGCTGAAGT
 15 TCCTGAAAATCGCCACACCAACTGCAATTCCCTATCACCCCTAACGGCAGGGCATTGCG
 AGAGGGCAACAGAACTCTGAAAGAAAAGATCCAATCTCACAGAGACAATAACAGACAT
 TGGAGGCGCACTTCAGCTGCCATTACCTGCCAACAAAGGAAGAGAAAAGCATGGCG
 GCCAGACCCCTCGGGAGGTCTCATCACTAACAGGCCAGGTACATCATGAAAAGCTGC
 TCTGAGCAGGGCCAGTCTCCAAAAGATTGCTGTTATAAGATCCCCTGAGCAG
 ACTGGAAAGGTCTACAAGAGTTTGTGGAAAGGAGACGGCGCAGTGTGGTAACGATG
 20 AGGGCAAGGGGATCATCGCTGTGCCCTGACACGACCAAGCTCTCATCAAGCCAAACT
 GAACCCGGGGGGGGCCCTCCCTTAGTGGAGGTTATGCTCGAGCAGACATGATAAGA
 TACATTGATGAGTTGGACAAACACAACAGAATGCACTGAAAAAAATGCTTATTTGT
 GAAATTGATGCTATTGCTTATTGTAACCATTATAAGCTGCAATAAAACAAGTTAAC
 ACAACAATTGCAATTCAATTATGTTCAAGGTTAGGGGGAGATGTGGAGGTTTTAA
 25 AGCAAGTAAAACCTCTACAAATGTGGAAAATCCATAAGGATCGATCCGGCTGGCGTA
 ATAGCGAAGAGGCCACCGATGCCCTTCCAACAGTTGCGCAGCCTGAATGGCGAAT
 GGACGCGCCCTGTAGCGCGCATTAGCGCGGGGTGTGGTGGTTACGCGCAGCGTGAC
 CGCTACACTTGCCAGCGCCCTAGCGCCGCTCTTCGCTTCTCCCTTCTCGC
 CACGTTGCCGGCTTCCCGTCAAGCTCTAAATCGGGGGCTCCCTAGGGTCCGATT
 30 TAGAGCTTACGGCACCTCGACCGCAAAAAACTTGTGTTGGGTGATGCTTCACTGAGTGG
 GCCATGCCCTGATAGACGGTTTCGCCCTTGACGTTGGAGTCCACGTTCTTAATAG
 TGGACTCTGTTCCAAACTGGAACAAACACTAACCCCTATCTCGGTCTATTCTTTGATT
 ATAAGGGATTTCGGCATTCCGGCTATTGGTAAAAAAATGAGCTGATTAAACAAATATT
 TAACCGGAATTAAACAAATTAACGTTACAATTCCGCTGATGCGGTATTCTCC
 35 TTACGCATCTGCGGTATTCAACCCGATACCGGATCTGCGCAGCACCATGGCTGA
 AATAACCTCTGAAAGAGGAACCTGGTAGGTACCTCTGAGGCGGAAAGAACAGCTGTG
 GAATGTGTGTCAGTTAGGGTGTGGAAAGTCCCAGGCTCCCAGCAGGAGAAGTATGCA
 AAGCATGCACTCAATTAGTCAGCAACCAGGTGTTAGGAAAGTCCCAGGCTCCCAGCAGG
 CAGAAGTATGCAAAGCATGCACTCAATTAGTCAGCAACCAGTCCGCCACTCC
 40 GCCCATCCCCCCCCTAACCGCCAGTCCGCCATTCTCGCCCATGGCTGACTAAT
 TTTTTTATTATGCAGAGGCCAGGCCCTCGGCCCTGAGCTATTCTGACACAACAGT
 AGGAGGCTTTTGAGGCCCTAGGCTTTGCAAAAAGCTTGTATTCTGACACAACAGT
 CTCGAACCTAAGGCTAGAGCCACCATGATTGACAAGATGGATTGACCGCAGGTTCTCC
 GCCGTTGGTGGAGAGGCTATTCCGCTATGACTGGCACAACAGACAATCGGCTGCT
 45 GATGCCGCCGTGTTCCGGCTGTCAGCGCAGGGCGCCGGCTTGTGTCAGGCGGAAAGGACTGGCT
 ACAGGGCGTTCTGCGCAGCTGTCAGCGCAGGGCGCCGGCTATCGTGGCTGGCCACG
 CTGTCCGGTCCCTGAATGAACTGCAAGGACGGCAGCGGGCTATCGTGGCTGGCT
 CTATTGGGCGAAGTGGCGGGGAGGATCTCTGTCATCTCACCTGCTGCGAGAAA
 GTATCCATCATGGCTGATGCAATGGCGCGCTGCACTGCTGATCCGGCTACCTGCCA
 50 TTCGACCAACAGCAACATCGCATCGAGGGAGCACGTAACGTTGCAAGGCGGCTT
 GTCGATCAGGATGATCTGGACGAAGAGCATAGGGGCTCGGCCAGCGAACGTTGCG
 AGGCTCAAGGCCGATGCCGACGGCGAGGATCTGCTGACCCATGGCGATGCCCTG
 TTGCGAATATCATGGTGGAAAATGGCCGCTTTCTGGATTATGCACTGTGGCCGGCTG
 GGTGTGGCGACCGCTACAGGACATAGCGTTGGTACCCGTGATATTGCTGAAGAGCTT
 55 GGGCGGAATGGGCTGACCGCTTCTCGTGTGTTACGGTATGCCGCTCCGATTGCGAG
 CGCATGCCCTCTATGCCCTCTGACGAGTTCTGAGCGGGACTCTGGGGTTGAAA
 TGACCGACCAAGCGACGCCAACCTGCCATACGATGGCGCAATAAAATATCTTTATT
 TCATTACATCTGTTGTTGGTTGTGATCGATAAGCGATAAGGATCCGGTATGG
 TGCACCTCTCAGTACAATCTGCTGATGCCGATAGTTAAGCCAGCCCCGACACCCGCCA
 60 ACACCCGCTGACGCCCTGACGGGCTGCTGCTCCGGCATCCGTTACAGACAAGCT
 GTGACCGCTCCGGAGGCTGATGTCAGAGGTTTACCGCTCATCACCAGAAACGCCG
 AGACGAAAGGGCCTGATACGGCTATTGTTATAGGTTAATGTCATGATAATAATGGTT
 TCTTAGACGTCAGGTGGCACTTTCGGGAAATGTGCGCGAACCCCTATTGTTATT
 TTCTAAATACATTCAAATATGATCCGCTCATGAGACATAACCCGATATAATGCTCAA
 65 TAATATTGAAAAGGAAGAGTATGAGTATTCAACATTCCGTTGCTGCCCTTATTCCCTT
 TTGCGGCTTGGCTCTGTTGCTCACCCAGAACGCTGGTAAAGTAAAAGAT

GCTGAAGATCAGTGGGTGACGAGTGGTTACATCGAACACTGGATCTAACAGCGGTAA
 ATCCCTGAGACTTCGCCCGAAGAACGTTTCCAATGATGAGCACTTTAAAGTTCTG
 CTATGTGGCGCGTATTATCCCCTATTGACGCCGGCAAGAGCAACTCGGTGCCGCATA
 CACTATTCTCAGAATGACTTGGTTGAGTACTCACCAAGTCACAGAAAAGCATCTTACGGAT
 5 GGCATGACAGTAAGAGAATTATGCACTGCTGCCATAACCAGTGAACACTGCGGCC
 AACTTACTTCTGACAACGATCGGAGGACCGAAGGAGCTAACCGCTTTTGCAACAACATG
 GGGGATCATGTAACTGCCCTGATCGTTGGAACCGGAGCTGAATGAAGCCATACCAAAC
 GACGAGCGTACACCAACGATGCCCTGAGCAATGGCAACAAACGTTGCCAAACTATTAAC
 GCGAAGACTACTTACTCTAGCTCCCCGCAACAAATTAAAGACTGGATGGAGGCGGATAAA
 10 GTTGCAAGGACCACTCTCGCCTGCCGCTTCCGGCTGGCTGGTTATTGCTGATAAAATCT
 GGAGCCGGTGAACGCTGGGCTCGCGGTATCATTGCACTGGGGCAGATGGAAGCCC
 TCCCGTATCGTAGTTATCTACACGACGGGAGTCAGGCAACTATGGATGAACGAAATAGA
 CAGATCGCTGAGATAGGTGCCACTGATTAAGCATTGTAACGTCAAGCCAAGTTAC
 TCATATATACTTAGATTGATTTAAACTCATTTTAATTAAAGGATCTAGGTGAAG
 15 ATCTTTTATAATCTCATGACAAAATCCCTAACGTGAGTTTCGTTCCACTGAGCG
 TCAGACCCCGTAGAAAAGATCAAAGGATCTCTTGAGATCCTTTTCTGCGCGTAATC
 TGCTGTTGCAAACAAAAACACCGCTACCAAGCGGTGGTTGTTGCCGGATCAAGAG
 CTACCAACTCTTTCCGAAGGTAACGGCTTACGAGAGCGCAGATACCAAATACTGTC
 CTTCTAGTGTAGCGTAGTTAGGCCACCACTCAAGAACTCTGTAGCACCGCCTACATAC
 20 CTCGCTCTGCTAACCTGTTACCAAGTGGCTGCTGCCAGTGGCGATAAGTCGTGCTTAC
 GGGTTGGACTCAAGACGATAGTTACCGGATAAGGCGCAGCGGTGGCTGAACGGGGGG
 TCGTGCACACAGCCCAGCTGGAGCGAACGACCTACACCGAAGTGGAGATACCTACAGCGT
 GAGCTATGAGAAAAGCGCACGCTCCCGAAGGGAGAAAGCCGGACAGGTATCCGGTAAGC
 GGCAGGGTCGAAACAGGAGAGCGCACGAGGGAGCTTCCAGGGGAAACGCCCTGGTATCTT
 25 TATAGTCTGTCGGTTTCGCCACCTGACTTGAAGCTGATGCTGATTGATGCTCGTCA
 GGGGGCGGAGCCTATGAAAAACGCCAGCAACGCCGGCTTTACGGTTCTGCCCTT
 TGCTGGCCTTGCTCACATGGCTCGACAGATCT

MLV construct CZCG (SEQ ID No 55)

30 GTTACCTCTGCTCTGCAAGAATGGCCAACCTTAACGTGGATGGCCGGAGACGGCACC
 TTTAACCGAGACCTCATCACCCAGGTTAAGATCAAGGTCTTTCACCTGGCCCGATGG
 CACCCAGACCAGGTCCCTACATCGTGACCTGGGAAGCCTGGCTTTGACCCCCCTCCC
 TGGGTCAAGCCCTTGTACACCTAACGCTCCCTCCCTCCATCCGCCCCGTCT
 CTCCCCCTGAAACCTCCCTCGTCAACCGCTCGATCCTCCCTTATCCAGCCCTCACT
 35 CCTCTCTAGGCGCCGGATTGTTAACTCGAGAGGCCCTGCCACCATGGGACTGCTCCA
 AAGAAGAAGCGTAAGGTAGTCGTTTACAACGTGACTGGAAAACCTGGCTTAC
 CAACTTAATGCCCTTGCAAGCACATCCCCCTTCGCCAGCTGGCTAATAGCGAAAGAGGCC
 CGCACCGATGCCCTCCCAACAGTTGCGCAGCCTGAATGGCAATGGCCTTGCCTGG
 TTTCCGGCACAGAAGCGGTGGGAAAGCTGGCTGGAGTGCATCTCCTGAGGCCGAT
 40 ACTGTCGTCGCCCCCTAAACTGGCAGATGCACTGGTACCGATGCGCCATCTACACCAAC
 GTAACCTATCCCATTACGGTCAATCCGCCGTTGTTCCACGGAGATCCGACGGTTGT
 TACTCGCTCACATTAAATGTTGATGAAAGCTGGCTACAGGAAGGCCAGCGCAATTATT
 TTTGATGGCGTTAACTCGGCGTTCATCTGTGGTCAACGGCGCTGGTGGTACGGC
 CAGGACAGTCGTTGCCGCTGAATTGACCTGAGCGCATTTCACGCCGGAGAAAAC
 45 CGCCCTCGCGGTGATGGTGCCTGGAGTACGGCAGTTATCTGGAAGATCAGGATATG
 TGGCGGATGAGCGGCATTTCCTGACGTCCTGCTGCATAAACCGACTACACAAATC
 AGCGATTCCATGTTGCCACTCGTTAAATGATGATTCACTGGCGCTGTACTGGAGGCT
 GAAGTTCAAGATGTGCCGGAGTTGGTGAACCTACGGGAAACAGTTCTTTATGGCAG
 GGTGAAACGCAGGTCGCCAGCGGCACCGCGCTTCCGGGGTGAATTATCGATGAGCGT
 50 GGTGGTTATGCCGATCGCTCACACTACGTCTGAACGTGAAAACCGAAACTGTGGAGC
 GCCGAAATCCCGAATCTATCGTGGGTGGTGAACCTGACACCGCCGACGGCACGCTG
 ATTGAAGCAGAACGCTGCCGATGTCGGTTCCCGGAGGTGGGATTGAAAATGGTCTG
 CTGCTGAACGCCAGCCGGTGTGATTGAGGGCTTAACCGTCACGAGCATCCTCTG
 CATGGTCAGGTCAATGGATGAGCAGACGATGGTGCAGGATATCCTGCTGATGAGCAGAAC
 55 AACCTTAACGCCGTGCCGTTCGCAATTATCCGAACCATCCGCTGTGGTACACGCTGTG
 GACCGCTACGCCCTGTATGTTGGGATGAAAGCCAATATTGAAACCCACGGCATGGTGC
 ATGAATCGTCTGACCGATGATGCCGCTGGTACCGGCAGTGGCAGACGCGTAACGC
 ATGGTGCAGCGCAGTCGTAATACCCGAGTGTGATCATCTGGTGCCTGGGGAAATGAATCA
 GCCACGGCGCTAACGACGCCGTATCGCTGGATCAAATCTGCGATCCTCCCGC

CCGGTGCAGTATGAAGGGCGGAGCCGACACCACGCCACCGATAATTGCCGATG
 TACCGCGCGTGGATGAAGACCAGCCCTTCCCGCTGCGCAAATGTCATCAAAAAA
 TGGCTTCGTAACCTGGAGAGACGCCCGCTGATCCTTGCAGTACGCCACCGATG
 GTAACAGTCTGGCGTTTCGCTAAATACTGGCAGGGTTTCGTCAGTATCCCCTTA
 5 CAGGGCGGCTTCGCTGGACTGGTGGATCAGTCGCTGATTAAATATGATGAAAACGGC
 AACCGTGGTCGGCTTACGGCGGTGATTTGGCGATACGCCAACGATGCCAGTTCTGT
 ATGAACGGTCTGGTCTTGCCGACCGCACGCCCATCCAGCGTGCAGGAAGCAAAACAC
 CAGCAGCAGTTTCAGTCCGTTATCCGGCAAACCATCGAAGTGACCAGCGAATAC
 CTGTTCCGTATAGCGATAACGAGCTCTGCACTGGATGGTGGCGCTGGATGGTAAGCCG
 10 CTGGCAAGCGGTGAAGTGCCTCTGGATGTCGCTCCACAAGTAAACAGTTGATTGAACTG
 CCTGAACCTACCGCAGCCGGAGAGCGCCGGCACTCTGGCTCACAGTACGCGTAGTGCA
 CGAACCGGACCGCATGGCAGAACGCCGGCACATCAGGCCCTGGCAGCAGTGGCGTCTG
 GCGAAAACCTCAGTGTGACGCTCCCGCCGCTCCACGCCATCCGCATCTGACCAAC
 AGCGAAATGGATTTGCATCGAGCTGGTAATAAGCTTGGCAATTAAACGCCAGTC
 15 GGCTTCTTCACAGATGTTGGATGGCGATAAAAAACAACTGCTGACGCCGCTGCCGAT
 CAGTTACCCCGTGCACCGCTGGATAACGACATTGGCTAAGTGAAGCGACCCGATTGAC
 CCTAACGCGCTGGTCGAACGCTGGAAGGCCGGGCAATTACCAAGGCCGAAGCAGCGTTG
 TTGCACTGCACGGCAGATAACTTGGTGTGCGCTGGATCTGACGCCCTACGCCGTTG
 CAGCATCAGGGAAAACCTTATTTACGCCGAAAACCTACCGGATTGATGGTAGTGGT
 20 CAAATGGCGATTACCGTTGATGTTGAAGTGGCGAGCGATAACCCGATCCGGCGGATT
 GGCGTGAACGCGCAGCTGGCGCAGGTAGCAGAGCGGGTAACACTGGCTCGGATTAGGGCCG
 CAAGAAAACATACCCGACCGCCTACTGCCCTGTTTGACCGCTGGGATCTGCCATTG
 TCAGACATGATAACCCCGTACGTCTCCGAGCGAAAACGGTCTGCCGCTGCCGCG
 GAATTGAATTATGCCACACCAAGTGGCGCGGACTTCCAGTTCAACATCAGCCGCTAC
 25 AGTCAACAGCAACTGATGGAACCCAGCCATGCCATCTGTCACGCCGAAGAAGGCACA
 TGGCTGAATATCGACGGTTCCATATGGGATGGTGGCGACGACTCTGGAGGCCGTCA
 GTATCGCGGAATTCCAGCTGAGGCCGGTCGCTACCATACCAAGTTGGTCTGGTCAA
 AAATAATAATAACCGGGAGGGGGATCCGAGATCCGGCTGGAATGTGTCACTTA
 GGGTGGAAAGTCCCAGGCTCCAGCAGGGAGAAGTATGCAAAGCATGCCCTGCAGGA
 30 GTGGGGAGGCACGATGGCGCTTGGTCAGGGCGATCCGGCATTAGCCATATTATCA
 TTGGTTATATAGCATAAAATCAATATTGGCTATTGGCATTGCACTGTTGATCCATATC
 ATAATATGTACATTATGGCTCATGTCACATTACGCCATGTTGACATTGATTAT
 TGACTAGTTATAATAGTAATCAATTACGGGTCAATTGTCATAGCCATATATGGAGT
 TCCCGCTTACATAACTACGGTAATGGCCGCTGGTCACCGGCCAACGACCCCCGCC
 35 CATGACGTCAATAATGACGTATGGCTTCCATAGTACGCCAATAGGACTTCCATTGAC
 GTCAATGGGTGGAGTATTACGGTAAACTGCCACTTGGCAGTACATCAAGTGTATCATA
 TGCCAAGTACGCCCTATTGACGTCAATGACGGTAAATGGCCGCTGGCATTATGCC
 AGTACATGACCTTATGGACTTCTACTTGGCAGTACATCTACGTATTAGTCATCGCTA
 TTACCATGGTGTGCGGTTGGCAGTACATCAATGGCGTGGATAGCGGTTGACTCAC
 40 GGGGATTTCAAGTCTCCACCCATTGACGTCAATGGAGTTGGCACCAGGATC
 AACGGGACTTCCAAAATGTCGTAACAACCTCCGCCATTGACGAAATGGCGGTAGGC
 ATGTACGGTGGGAGGTCTATATAAGCAGAGCTGTTAGTGAACCGTCAGATGCCCTGG
 GACGCCATCCACGCTGTTGACCTCATAGAAGACACCCGGACCGATCCAGCCTCCGCG
 GCCCAAGCTGGTGGGATCCACCGCTGCCACCATGGTGGAGCAAGGGCGAGGAGCTGTT
 45 CACCGGGGTGGTGCCATCCTGGTCGAGCTGGACGGCAGTAAACGGCACAAGTTCAAGTCTG
 CGTGTCCGGCGAGGGCGAGGGCGATGCCACCTACGGCAAGCTGACCCCTGACCTACGGCGT
 CACCACCGCAAGCTGCCGTGCCCTGGCCACCCCTGTCACCCCTGACCTACGGCG
 GCAGTGCTTCAGCCGCTACCCGACCATGAAGCAGCACGACTCTTCAAGTCCG
 GCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCAAGGACGACGGCAACTACAAGAC
 50 CGCGCCGAGGTGAAGTCGAGGGCGACACCTGGTGAACCGCATCGAGCTGAAGGGCAT
 CGACTTCAAGGAGGACGCCAACATCTGGGACAAGCTGGAGTACAACACTACAACAGCCA
 CAACGTCTATATCATGGCGACAAGCAGAAGAACGGCATCAAGGTGAACCTCAAGATCCG
 CCACAAACATCGAGGACGCCAGCGTGCAGCTGCCGACCACTACCGCAGAACCCCCAT
 CGGCGACGGCCCGTGTGCTGCCGACAACCAACTACCTGAGCACCCAGTCCGCCCTGAG
 55 CAAAGACCCCAACGAGAAGCGCGATCACATGGCTCTGCTGGAGTTGTGACCCGCCGG
 GATCACTCTCGGCATGGACGAGCTGACAAGTAAAGCGGCCGACTCTAGATCATAATC
 AGCCATACCACTTGTAGAGGTTTACTTGTGTTAAAAAACCTCCACACCTCCCCCTG
 AACCTGAAACATAAAATGAATGCAATTGTTGTTAACATCGATAAAATAAAAGATTT
 ATTAGTCTCCAGAAAAGGGGGAAATGAAAGACCCACCTGTAGGTTGGCAAGCTAGC
 60 TTAAGTAACGCCATTGCAAGGCATGGAAAAATACATAACTGAGAATAGAGAAGTTAGC

ATCAAGGT CAGGAACAGATGGAACAGCTGAATATGGGCCAACAGGATATCTGTGGTAAG
 CAGTCCCTGCCCGGCTCAGGGCCAAGAACAGATGGAACAGCTGAATATGGGCCAACAG
 GATATCTGTGGTAAGCAGTTCTGCCCGGCTCAGGGCCAAGAACAGATGGTCCCCAGAT
 GCGGCCAGCCTCAGCAGTTCTAGAGAACCATCAGATGTTCCAGGGTGCCCAAGGA
 5 CCTGAAATGACCTGTGCCTTATTGAACTAACCAATCAGTTGCTTCGCTCTGTTC
 GCGCGCTCTGCTCCCCGAGCTCAATAAAAGAGCCCACAACCCCTCACTGGGGCGCCAG
 TCCTCCGATTGACTGAGTCGCCGGTACCCGTATCCAATAAACCCCTTGCACTTGC
 ATCCGACTTGTGGTCTCGCTGTTCCCTGGGAGGGTCTCCTGTAGTGATTGACTACCCGT
 CAGGGGGGTTCTTCATTGGGGCTCGTCCGGATGGGAGACCCCTGCCAGGGACCA
 10 CCGACCCACCACCGGAGGTAAGCTGCCAGCAACTTATCTGTCTGCTCGATTGCTA
 GTGTCTATGACTGATTATGCGCCTGCGCTGGTACTAGTAGCTAACTAGCTCTGTATC
 TGGGGGACCCGTGGTGGACTGACGGAGTCCGAACACCCGGCCAACCCCTGGGAGAGGA
 ATTCTCATGTTGACAGCTTATCATCGATAAGCTTTGCAAAAGCTAGGCTCCAAA
 AAGCCTCTCACTACTTGTGAATAGCTCAGAGGCCAGGGCCCTGGCCTTGCACTAA
 15 ATAAAAAAAATTAGTCAGCCATGGGGCGGAGAATGGGCGGAATGGGCGGAGTTAGGGC
 GGGATGGGCGGAGTTAGGGGCGGGACTATGGTTGCTGACTAATTGAGATGCATGTTGC
 ATACTTCTGCCTGCTGGGAGCCTGGGACTTTCCACACCCTGGTTGCTGACTAATTGAGA
 TGCACTGCTTGCATACTTCTGCCTGCTGGGAGCCTGGGACTTTCCACACCCTAACTGA
 CACACATTCCACAGCCGATCCTACGCCGGACGCATCGGCCGGCATCACCGCGCC
 20 ACAGGTGCGGTTGCTGGCCCTATATGCCGACATCACCAGTGGGAGATGGGCTCGC
 CACTTCGGGCTCATGAGCGCTTGTGTTGGCGTGGTATGGTGGCAGGGCCCGTGGCCGG
 GGACTGTTGGCGCCATTCCTTGCACTGCACCATTCCTGGCGGGCTGGTGCCTAACCGC
 CTCAACCTACTACTGGGCTGCTTCTAATGCAGGAGTCGCATAAGGGAGAGCGTGCACCG
 ATGCCCTTGAGAGCCTCAACCCAGTCAGCTCCTCCGGTGGCGCCGGCATGACTATC
 25 GTGCCGCACTTATGACTGTCTTCTATCATGCAACTCGTAGGACAGGTGCCGGCAGCG
 CTCTGGGTCACTTTCGGCGAGGACCGCTTCTGCTGGAGCGCAGCGATGATCGGCTGTG
 CTTGCGGTATTCGGAATCTGCACGCCCTCGCTCAAGCCTCGTCACTGGTCCC GCCACC
 AACGTTTGGCAGAAGCAGGCCATTATGCCGGCATGGCGGCGACCGCCTGGCTAC
 GTCTTGCTGGGTTGCGACCGAGGCTGGATGGCTTCCCGATTATGATTCTTCGCT
 30 TCCGGCGGATCgggatGCCGTTGCAAGGCATGCTCGCGCTCTTACAGCCTAACCTCGATCACTGG
 CATCAGGGACAGCTCAAGGATCGCTCGCGCTCTTACAGCCTAACCTCGATCACTGG
 CCGCTGATGTCACGGGATTATGCCGCTCGCGAGCACATGGAACGGGTTGGCATGG
 ATTGTTAGGCGCCGCCATTACCTTGCTGCTCCCGCGTTGCGTCCGGTGCATGGAGC
 CGGGCCACCTGACCTGAATGGAAGGCCGGCGACCTCGCTAACGGATTACCAACTCAA
 35 GAATTGGAGCCAATCAATTCTGGGAGAACGTGAATGCGAACCAACCCCTGGCAGA
 ACATATCCATCGCTCCGCATCTCCAGCAGCCGACGCCGCATCTGGCAGCGTTG
 GGTCCTGGCACGGGTGCGCATGATGCTGCTCTGCTGTTGAGGACCCGGCTAGGCTGG
 GGGTTGCCTACTGGTTAGCAGAATGAATCACCAGATCCGAGCGAACGTGAAGCGACT
 GCTGCTGCAAACGTCGACCTGAGCAACACATGAATGGTCTCGGTTCCGTGTT
 40 CGTAAAGTCTGGAAACGCGGAAGTCAGGCCCTGCACCATATGTTCCGGATCTGCATCG
 CAGGATGCTGCTGGCTACCCCTGTTGAAACACCTACATCTGATTAACCGAAGCGCTGGCATT
 GACCCCTGAGTGTATTCTCTGGTCCCGCCATCCATACCGCCAGTTGTTACCCCTCAC
 AACGTTCCAGTAACCGGGCATGTTCATCATCGTAACCCGTATCGTGGAGCATCCTCTC
 GTTTCATCGGTATCATTACCCCATGAACAGAAATTCCCGTTACACGGAGGCATCAAGT
 45 GACCAAAACAGGAAAAAACCGCCCTTAACATGCCGCTTATCAGAACGCCAGACATTAAC
 GCTCTGGAGAAAACCAACGAGCTGGACCGGATGAACAGGAGCACATCTGTAATCGCT
 TCACGACCACCGTGTAGGAGCTTACCGCAGCTGCCCTCGCGTTCCGGTGTGACGGTGA
 AACCTCTGACACATGCAGCTCCGGAGACGGTACAGCTTGCTGTAAGCGGATGCCGG
 GAGCAGACAAGCCGTCAGGGCGCGTCAGCGGGTGTGGGGGTGTCGGGGCGCAGCCAT
 50 GACCCAGTCACGTAGCGATAGCGGAGTGTATACTGGCTTAACATGCGCAGAGCAG
 ATTGTAAGTGGAGGTGCACTATGGGGTGTGAATACCGCACAGATGCGTAAGGAGAAAA
 TACCGCATCAGGGCGCTTCCGCTCCTCGCTACTGACTCGCTCGCTCGTCTGG
 CTGCGCGAGCGGTATCAGCTACTCAAAGGCGGTATACGGTTATCCACAGAACATCAGGG
 GATAACGCAAGGAAAGAACATGTGAGCAAGAACAGGCCAGCAAAAGGCCAGGAACCGTAAAAG
 55 GCCCGTTGCTGGCTTTCCATAGGCTCCGCCCCCTGACGAGCATCACAAAATCGA
 CGCTCAAGTCAGAGGTGGCAGAACCCGACAGGACTATAAGAACGAGCTTCCCG
 GGAAGCTCCCTCGTGCCTCTCCGTTCCGACCCCTGCCGCTTACCGGATACCTGTCCGCC
 TTTCTCCCTCGGGAAAGCGTGGCGTTCTCATAGCTCACGCTGTAGGTATCTCAGTTG
 GTGTTAGGTCGTTGCTCCAAGCTGGCTGTGCACTGACGAAACCCCGGTTAGCCGACCG
 60 TGCGCCTTATCCGTAACATCGTCTGAGTCCAACCCGGTAAGACACGACTTATCGCCA

CTGGCAGCAGCCACTGGTAACAGGATTAGCAGAGCGAGGTATGTAGCGGTGCTACAGAG
 TTCTGAAGTGGTGGCCTAACTACGGCTACACTAGAAGGCAGATTTGGTATCTGCCT
 CTGCTGAAGCCAGTTACCTCGGAAAAAGAGTTGGTAGCTCTGATCCGGCAAAACAAACC
 ACCGCTGGTAGCGGTGGTTTTTGTGCAAGCAGCAGATTACGCCAGAAAAAAAGGA
 5 TCTCAAGAAGATCCTTGATCTTCTACGGGGTCTGACGCTCAGTGGAACGAAAACCTCA
 CGTTAAGGGATTTGGTCATGAGATTATCAAAAAGGATCTCACCTAGATCCTTTAAAT
 TAAAAATGAAGTTAAATCAATCTAAAGTATATGAGTAAACTGGTAGCTGACAGTTAC
 CAATGCTTAATCAGTGAGGCACCTATCTCAGCGATCTGCTATTCGTTCATCCATAGTT
 10 GCCTGACTCCCCGTCTGTAGATAACTACGATACGGGAGGGCTTACATCTGGCCCCAGT
 GCTGCAATGATACCGCGAGACCCACGCTCACCAGCTCCAGATTATCAGCAATAAACAG
 CCAGCCGGAAGGGCGAGCGCAGAAGTGGTCTGCAACTTATCCGCCATCCAGTCT
 ATTAATTGTTGCCGGAAAGCTAGAGTAAGTAGTCGCCAGTTAATAGTTGCGCAACGTT
 GTGCCATTGCTGCAGGCATCGTGGTGTACGCTCGTCGTTGGTAGGCTTCATTCAAGC
 15 TCCGGTCCCAACGATCAAGGCAGTTACATGATCCCCATGTTGTGCAAAAAGCGGTT
 AGCTCCTCGGTCCCTCGATCGTGTGTCAGAAGTAAGTGGCCGAGTGTATCACTC
 ATGGTTATGCCAGCACTGCATAATTCTTACTGTCATGCCATCCGTAAGATGCTTTCT
 GTGACTGGTAGTACTCAACCAAGTCATTCTGAGAATAGTGTATGGCGGACCGAGTTGC
 TCTTGCCCGGCGTCAATACGGATAATACCGCGCACATAGCAGAACCTTAAAGTGCTC
 ATCATTGGAAAAGCTCTCGGGGGCAAACCTCTCAAGGATCTTACCGCTGTTGAGATCC
 20 AGTTGATGTAACCCACTCGTCACCCAACTGATCTTCAGCATCTTACTTCAACCAGC
 GTTTCTGGGTGAGCAAAAACAGGAAGGCAAATGCCGAAAAAGGAAATAAGGGCGACA
 CGGAAATGTTGAATACTCATACTCTCCTTTCAATATTATTGAAGCATTATCAGGGT
 TATTGTCATGAGCGGATACATATTGAATGTTAGAAAATAACAAATAGGGTT
 CCGCGCACATTCCCCGAAAAGTGCCACCTGACGCTAAGAACCAATTATCATGACA
 25 TTAACCTATAAAAATAGGCGTATCACGAGGCCCTTCGTCGCGCGTTGGTAGGAC
 GGTGAAAACCTCTGACACATGCAGCTCCGGAGACGGTCACAGCTTGTCTGTAAGCGGAT
 GCCGGGAGCAGACAAGCCGTCAAGGGCGTCAGCGGGTTGGCGGGTGTGCGGGCTGG
 CTTAACTATGCGGATCAGAGCAGATTGACTGAGAGTGCACCATATGACGCTCTCCCT
 TATGCGACTCTGCAATTAGGAAGCAGCCCAGTAGTGGTAGGTTGAGGCCGTTGAGCACCGCCG
 30 CCGCAAGGAATGGTCATGCAAGGAGATGGGCCAACAGTCCCCCGGCCACGGGGCTG
 CCACCATACCCACGCCAAAACAAGCGCTCATGAGCCGAAAGTGGCGAGCCGATCTTCCC
 CATCGGTATGTCGGCGATATAGGCCAGCAACCGCACCTGTGGCGCCGGTAGGCCGG
 CCACGATGCGTCCGGCTAGAGGATCTGGCTAGCGATGACCTGCTGATTGGTAGCTGA
 CCATTCCGGGGTGCAGAACGGCTTACCAAGAAAACCTAGAAGGTTGTCCAACAAACCG
 35 ACTCTGACGGCAGTTACGAGAGAGATGATAGGTCTGTTCAAGTAAAGCCAGATGCTACA
 CAATTAGGCTTGACATATTGTCGTTAGAACCGGGCTACAATTAAATACATAACCTTATGT
 ATCATACACATACGATTAGGTGACACTATAGAATAACAGCTGAAAGATCTCCAGCTTG
 GGCTGCAAGTCAGCTAGAGTCCGTTACATAACTTACGGTAAATGGCCGCTGGCTGA
 CCGCCCAACGACCCCCCCCATTGACGTCAATTAGCGCTATGTTCCCATAGTAACGCCA
 40 ATAGGGACTTCCATTGACGTCAATGGGTGGAGTATTACGGTAAACTGCCACTGGCA
 GTACATCAAGTGTATCATATGCCAAGTACGCCCTATGACGTCAATGACGGTAAATGG
 CCCGCCTGGCATATTGCCAGTACATGACCTATGGACTTCCACTTGGCAGTACATCAATGGCGT
 TACGTATTAGTCATCGTATTACCATGGTAGCGGTTGGCAGTACATCAATGGCGT
 GGATAGCGGTTGACTCACGGGATTCCAAGTCTCCACCCATTGACGTCAATGGGAGT
 45 TTGTTTGGCACCAAAATCAACGGGACTTCCAAAATGTCGAACAACACTCCGCCATTG
 ACGCAAATGGCGGTAGCGTGTACGGTGGAGGTCTATATAAGCAGAGCTCGTTAGTG
 AACCGCGCAGTCTCGATAGACTCGTCGCCGGTACCCGTATTCCAATAAGCCT
 CTTGCTGTTGACATCGGAACTCGTGGTCTCGCTGTTCCCTGGAGGGCTCCTGTGAGTGA
 TTGACTACCCACGACGGGGCTTTCATTTGGGGCTCGTCCGGGATTGGAGACCCCTG
 50 CCCAGGGACCACCGACCCACCACCGGGAGGTAAAGCTGGCAGCAACTTATCTGTCTGT
 CCGATTGTCAGTGTCTATGTTGATGTTACGCGCTCGTCTGTAAGTTAGCTAACT
 AGCTCTGTATCTGGCGACCCGTGGAACTGACGAGTTCTGAAACACCCGGCCGCAACC
 CTGGGAGACGTCCCAGGGACTTTGGGGCCCTTTGTGGCCCGACCTGAGGAAGGGAGT
 CGATGTGGAATCCGACCCCGTCAAGGATATGTGGTTCTGTTAGGAGACGAGAACCTAAAAC
 55 AGTTCCCGCCTCCGTCTGAATTGCTTCCGTTGGAACCGAAGCCGCGCTTGTG
 TGCTGCAGCGCTGCAGCATCGTTCTGTTGCTCTGACTGTGTTCTGTATTG
 CTGAAAATAGGGCCAGACTGTTACCACTCCCTTAAGTTGACCTAGGTCACTGGAAAG
 ATGTCGAGCGGATCGCTACAACCAAGTCGGTAGATGTCAAGAAGAGACGTTGG

GTTACCTCTGCTCTGCAGAATGGCCAACCTTAACGTGGATGGCCGAGACGGCACC
 TTTAACCGAGACCTCATCACCCAGGTTAAGATCAAGGTCTTTCACCTGGCCGCATGGA
 CACCCAGACCAGGTCCCCATACATCGTGACCTGGGAAGGCTGGCTTGTACCCCCCTCCC
 5 TGGGTCAGGCCCTTGTACACCCATAAGCCTCCGCCTCTCCCTCCATCCGCCGTCT
 CTCCCCCTTGAACCTCCTCGTGCACCCCGCCTCGATCCTCCCTTATCCAGCCCTCACT
 CCTTCTCTAGGCGCCGGAAATTGTTAACTCGAGAGGCTGCCACCATGGGACTGCTCCA
 AAGAAGAAGCGTAAGGTAGTCGTTTACAACGTGACTGGAAAACCTGGCTTACCC
 10 CAACTTAATCGCCTTGCAGCACATCCCCCTTCGCCAGCTGGCTAATAGCGAAGAGGCC
 CGCACCGATGCCCTTCCAACAGTTGCGCAGCCTGAATGGCGAATGGCGCTTGCCTGG
 TTTCCGGCACAGAACGGTGCAGGAAAGCTGGCTGGAGTGCAGTCTCCTGAGGCCGAT
 ACTGTCGTCGCCCCCAAACGGCAGATGCACGGTTACGATGCGCCATCTACACCAAC
 GTAACCTATCCCATTACGGTCAATCCGCCGTTGTTCCACGGAGAACCGACGGTTGT
 TACTCGCTCACATTTAATGTTGAAAGCTGGCTACAGGAAGGCCAGACCGAATTATT
 15 TTTGATGGCTTAACTCGGCGTTCATCTGTGGTCAACGGGCGCTGGGTACGGC
 CAGGACAGTCGTTGCCGCTGAATTGACCTGAGCGCATTTCACGCCGGAGAAAAC
 CGCCTCGCGGTGATGGTGCCTGGAGTGCAGGCAAGTATCTGGAGATCAGGATATG
 TGGCGGATGAGCGGCATTTCCTGACGTCCTGCTGCATAAACCGACTACACAAATC
 AGCGATTCCATGTTGCCACTCGCTTAATGATGATTTCAGCCGCGCTGACTGGAGGCT
 20 GAAGTTCAGATGTGCGCGAGTTGCGTGACTACCTACGGTAACAGTTCTTATGGCAG
 GGTGAAACGCAGGTCGCCAGCGGCACCGCCCTTCGGCGGTGAAATTATCGATGAGCGT
 GGTGGTTATGCCATCGCGTCACACTACGTCTGAACGTCGAAACCGAAACTGTGGAGC
 GCCGAAATCCGAATCTATCGTGCCTGGTGAACTGCACACGCCGACGGCACGCTG
 ATTGAAGCAGAACGCTCGGATGTCGGTTCCGGAGGGTGCAGGATTGAAAATGGCTGCTG
 25 CTGCTGAACGCAAGCCGTTGCTGATTGAGGCGTTACCGTCACGAGCATCATCCTCTG
 CATGGTCAGGTCAATGGATGAGCAGACGATGGTGCAGGATATCTGCTGATGAAGCAGAAC
 AACCTTAACGCCGTGCGTGTGCAATTATCGAACCATCCGCTGTTGACTACGCTGTG
 GACCGCTACGCCGTGATGTGGTGGATGAAGCCAATTGAAAACCCACGGCATGGTCCA
 ATGAATCGTCTGACCGATGATCCGCGCTGGTACCGCGATGAGCGAACGGCTAACCGA
 30 ATGGTGCAGCGCAGTCGAAATCACCGAGTGTGATCATCTGGTCGCTGGGAATGAATCA
 GCCCACGGCGTAATCACGACGCGCTGATCGTGGATCAAATCTGCGATCCTCCCG
 CCGTGCAGTATGAAGGGCGGAGCCGACACACGCCACCGATATTATGCCGATG
 TAGCGCGCGTGGATGAAGACCAGCCCTCCCGCTGTCGCGAAATGGTCCATCAAAAAA
 TGGCTTCGCTACCTGGAGAGACGCCCGCTGATCCTTGCAGAACGCCCACCGATG
 35 GGTAAACAGTCCTGGCGGTTTCGCTAAATACTGGCAGGCGTTGCTCAGTATCCCCTTA
 CAGGGCGGCTCGTCTGGACTGGGATGAGTCGCTGATTAATATGATGAAAACGGC
 AACCCGTTGGCTGGCTACGGCGGTGATTTGGCGATACGCCAACGATGCCAGTCTG
 ATGAACGGTCTGGTCTTGGCGACCCGACGCCGATCCAGCGCTGACGGAAGCAAAACAC
 CAGCAGCAGTTTCCAGTCCGTTATCGGGCAAACCATCGAAGTGACCAGCGAAC
 40 CTGTTCCGTCATAGCGATAACGAGCTCTGCACTGGATGGTGGCGCTGGATGGTAAGCG
 CTGGCAAGCGGTGAAGTGCCTCTGGATGTCGCTCCACAAAGGTAACAGTTGATTGAACTG
 CCTGAACTACCGCAGCGGGAGAGGCCGGCAACTCTGGCTCACAGTACGCGTAGTGC
 CGAACCGCAGCGCATGGTCAGAACGGCGGGCACATCAGGCCCTGGCAGCAGTGGCGTCTG
 GCGGAAAACCTCAGTGTGACGCTCCCGCCGCTCCACGCCATCCCGCATCTGACCACC
 45 AGCCAAATGGATTTTCAGATGTTGATGGGATGGCGATAACGACATGGCTGAAAGG
 GGCTTTCTTCACAGATGTTGATGGGATGGCGATAACGACATGGCTGAAAGG
 CAGTCACCGTGCACCGCTGGGATAACGACATGGCTGAAAGG
 CCTAACGCCCTGGGTCGAACGCTGGGAGGGCGGGGCAATTACCGGGCAAGCAGCGTTG
 TTGCACTGACGGCAGATAACACTTGCTGATGGCTGCTGATTACCGCTCACCGTGG
 50 CAGCATCAGGGAAAACCTTATTTACGCCGAAAACCTACCGGATTGATGGTAGTGGT
 CAAATGGCGATTACCGTTGATGTTGAGTGGCGAGCGATAACCGCATTCCGGCGG
 GGCCTGAACTGCCAGTGGCGCAGGTTAGCAGAGCGGGTAAACTGGCTGGATTAGGGCG
 CAAGAAAACCTACCGCAGGCCCTACTGCCGCTGTTTGACCGCTGGGATCTGCCATTG
 TCAGACATGTATACCCCGTACGTCTTCCGAGCGAAAACGGTCTGCGCTGCCG
 55 GAATTGAATTATGGCCCACACCAGTGGCGCGACTTCAGTTCAACATCAGCCGCTAC
 AGTCAACAGCAACTGATGGAAACCGCCATGCCATCTGCTGACGCCAGAAGG
 TGGCTGAATATCGACGGTTCCATATGGGATTGGTGGCGACGACTCTGGAGGCC
 GTATGGCGGAATTCCAGCTGAGCGCCGGTGCCTACCATACCGATTGGCTGGTCAA
 AAATAATAATAACCGGGCAGGGGATCCGAGATCCGGCTGTGGAATGTGTCAA
 60 GGGTGTGGAAAGTCCCCAGGCTCCAGCAGGCAGAGTATGCAAAGCATGCC
 TGAGGA

GTGGGGAGGCACGATGGCGCTTGGTCAGGGCGATCGGCCATTAGCCATATTATTCA
 TTGGTTATATAGCATAAAATCAATATTGGCTATTGCCATTGCATACGTTGTATCCATATC
 ATAATATGTACATTTATATTGGCTCATGTCCAACATTACGCCATGTTGACATTGATTAT
 5 TGACTAGTTATTAATAGTAATCAATTACGGGTCAATTAGTCATAGCCCATAATGGAGT
 TCCCGTTACATAACTTACGGTAAATGGCCCGCTGGCTGACCGCCAAACGACCCCCGCC
 CATTGACGTCAATAATGACGTATGTTCCCATAGTAACGCCAATAGGGACTTCCATTGAC
 GTCAATGGGTGGAGTATTTACGGTAAACTGCCACTGGCAGTACATCAAGTGTATCATA
 10 TGCCAAGTACGCCCTATTGACGTCAATGACGGTAAATGGCCCGCTGGCATTATGCC
 AGTACATGACCTATGGGACTTCCCTACTTGGCAGTACATCACGTATTAGTCATCGCTA
 TTACCATGGTATGCGGTTTGGCAGTACATCAATGGGCTGGATAGGGTTTGACTCAC
 GGGGATTCCAAGTCTCCACCCATTGACGTCAATGGGAGTTGTTGGCACCAAAATC
 AACGGGACTTCAAATGCGTAACAACCTGCCATTGACGCAAATGGCCGGTAGGC
 ATGTACGGTGGGAGGTCTATATAAGCAGAGCTGTTAGTGAACCGTCAGATGCCCTGGA
 GACGCCATCCACGCTGTTTGACCTCATAGAACGACACC GGACCCGATCCAGCCTCCGCG
 15 GCCCCAAGCTTGGGATCCACCGTCGCCACCATGGTGAAGCAAGGGGAGGAGCTGTT
 CACCGGGGTGGTGGCCATCCTGGTCGAGCTGGACGGCGACGTAACGCCACAAGTTCA
 CGTGTCCGGCGAGGGCGAGGGCGATGCCACCTACGGCAAGCTGACCCCTGAAGTTCATCTG
 CACCACGGCAAGCTGCCGTGCCCTGGCCACCCCTCGTGAACCCCTGACCTACGGCGT
 GCAGTGCTCAGCCGCTACCCGACCATGAAGCAGCACGACTTCTCAAGTCCGCCAT
 20 GCCCGAAGGCTACGTCAGGAGCGCACCATCTCTCAAGGACGACGGCAACTACAAGAC
 CCGGCCGAGGTGAAGTTGAGGGGACACCCCTGGTGAACCGCATCGAGCTGAAGGGCAT
 CGACTTCAAGGAGGACGGCAACATCCTGGGGACAAGCTGGAGTACAACACTACAACAGCA
 CAACGTCTATATCATGGCGACAAGCAGAACGGCATCAAGGTGAACCTCAAGATCCG
 CCACAACATCGAGGACGGCAGCGTGCAGCTGCCGACCACTACCAGCAGAACACCCCCAT
 25 CGGGCACGGCCCGTGTGCTGCCGACAACCAACTACCTGAGCACCCAGTCCGCCCTGAG
 CAAAGACCCCAACGAGAACGCGATCACATGGTCTGCTGGAGTTCTGACCGCCGGCG
 GATCACTCTCGCATGGACGAGCTGACAAGTAAAGCGGCCGACTCTAGATCATATACT
 AGCCATACCACATTGTAGAGGTTTACTTGCTTAAAAAACCTCCACACCTCCCCCTG
 AACCTGAAACATAAAATGAATGCAATTGTTGTTAACATCGATAAAAATAAGATTT
 30 ATTAGTCTCCAGAAAAAGGGGGATGAAAGACCCCACCTGTAGGTTGGCAAGCTAGC
 ATAACCTCGATAATGTATGCTATACGAAAGTTATTCTAGAGAACCATCAGATGTTCCAG
 GGTGCCCAAGGACCTGAAATGACCTGTGCCTATTGAACTAACCAATCAGTTCGCTT
 CTCGCTTCTGTCGCGCCTCTGCTCCCCGAGCTCAATAAAAGAGCCCACAACCCCTCA
 CTCGGGGCGCCAGTCCCGATTGACTGAGTCGCCGGTACCCGTATCCAATAAAC
 35 CTCTGCAGTTGCATCCGACTTGTGGTCTCGCTTCTGGGAGGGTCTCTGAGTG
 ATTGACTACCCGTAGCGGGGTCTTCATTGGGGCTCGTCCGGATCGGGAGACCCC
 TGCCCAAGGGACCACCGACCCACCACCGGAGGTAAGCTGGTGCCTCGCGCTTCGGTG
 ATGACGGTGAAAACCTCTGACACATGCAGCTCCGGAGACGGTCACAGCTGTGTAAAG
 CGGATGCCGGGAGCAGAACAGCCGTAGGGCCGTAGCGGGTGTGGCGGGTGTCCGG
 40 GCGCAGCCATGACCCAGTCACGTAGCGATAGCGAGTGTATACTGGCTTAACATATGCC
 ATCAGAGCAGATTGACTGAGAGTGACCATATGCCGTGAAATACCGCACAGATCGCT
 AAGGAGAAAATACCGCATAGCGCTTCCGCTCGTCACTGACTCGCTCGCCTC
 GGTCTCGGCTGCGCGAGCGTATCAGTCAGCTCAAAAGCGGTAAATACGGTTATCCAC
 AGAATCAGGGGATAACGCAGGAAAAGAACATGTGAGCAAAGGCCAGCAAAGGCCAGGAA
 45 CCGTAAAAGGCCGCTTGTGGCTTCCATAGGCTCCGCCCTGACGAGCATCA
 CAAAAATCGACGCTCAAGTCAGAGTGGCGAAACCCGACAGGACTATAAGATACCG
 GTTTCCCCCTGGAAGCTCCCTCGTGGCTCTCTGTTCCGACCCCTGCCCTACCGGATA
 CCTGTCGCCCTTCTCCCTCGGAAGCGTGGCGCTTCTCATAGCTACGCTGTAGGTA
 TCTCAGTTCGGTGTAGGTCGTCGCTCCAGCTGGGTGTGTGACGAACCCCCCGTTCA
 50 GCCCGACCGCTGCCATTACCGTAACTATCGCTTGAGTCCAACCCGGTAAGACACGA
 CTTATGCCACTGGCAGCAGCCACTGGTAACAGGATTAGCGAGAGCGAGGTATGAGCGG
 TGCTACAGAGTTCTGAAAGTGGTGGCTAACTACGGCTACACTAGAAGGACAGTATTG
 TATCTGCGCTCTGCTGAAGCCAGTTACCTCGAAAAAGAGTTGGTAGCTCTGATCCGG
 CAAACAAACCCCGCTGGTAGCGGTGTTTTGTTGCAAGCAGCAGATTACCGCAG
 55 AAAAAAAAGGATCTCAAGAAGATCCTTGATCTTCTACGGGGTCTGACGCTCAGTGGAA
 CGAAAAACTCACGTTAAGGGATTGTCATGAGATTATCAAAAGGATCTCACCTAGAT
 CCTTTAAATTAAAATGAAGTTAAATCAATCTAAAGTATATGAGTAAACTGGTC
 TGACAGTTACCAATGCTTAATCAGTGGAGGACCTATCTCAGCGATCTGTCTATTGTT
 ATCCATAGTTGCCCTGACTCCCCGTGTTAGATAACTACGATAACGGAGGGCTTACCATC
 60 TGGCCCCAGTGCATGCAATGATAACCGCGAGACCCACGCTCACCGGCTCAGATTATCAGC

AATAAACCGGCCAGCCGGAAGGGCCGAGCGCAGAAGTGGCTCTGCAACTTTATCCGCCTC
 CATCCAGTCTATTAAATTGTCGCCGGAAAGCTAGAGTAAGTAGTCGCCAGTTAATAGTT
 GCGCAACGTTGTGCCATTGCTGCAGGCATCGTGGTGCACGCTCGTGTGGTATGGC
 TTCATTCAAGCTCCGGTCCCCAACGATCAAGGCAGTTACATGATCCCCCATGTTGTGCA
 5 AAAAGCGGTTAGCTCCTCGGTCCCTCGATCGTGTCAAGAAGTAAGTTGGCCCGAGTGT
 ATCACTCATGGTTATGGCAGCACTGCATAATTCTCTTACTGTCACTGCCATCCGTAAGATG
 CTTTCTGTGACTGGTGAGTACTCAACCAAGTCATTCTGAGAATAGTGTATGCCGACC
 GAGTTGCTCTGCCCGCGTCAACACGGATAATACCGGCCACATAGCAGAACCTTAAA
 AGTGCTCATCATTGGAAAACGTTCTGGGGCGAAAACCTCAAGGATCTTACCGCTGTT
 10 GAGATCCAGTTGATTAACCCACTCGTGCACCCAACTGATCTTCAGCATCTTTACTTT
 CACCAGCGTTCTGGGTGAGCAAAACAGGAAGGCAAAATGCCGAAAAAAGGAATAAG
 GCGCACCGAAATGTTGAATACTCATACTCTCCTTTCAATATTATTGAAGCATTAA
 TCAGGGTTATTGTCTCATGAGCGGATAACATATTGAATGTATTAGAAAATAACAAAT
 AGGGTTCCCGCACATTCCCCGAAAAGTGCCACCTGACGTCAAGAAACCATTATTAT
 15 CATGACATTAACCTATAAAAATAGCGTATCACAGGGCCCTTCGCTTCAAGAATTCA
 ACCAGATCACCGAAAACGTCCCTCAAATGTGCCCCCTCACACTCCAAATTGCCGGGC
 TTCTGCCCTTCTAGACCACTCTACCCATTCCCCACACTCACCGGAGCCAAGCCGGGCC
 CTTCGTTCTTGCTTGAAGACCCCACCCGTAGGTGGCAAGCTAGCGATGACCTG
 CTGATTGGTCGCTGACCATTCCGGGTGCGGAACGGCGTACAGAAACTCAGAAGGT
 20 TCGTCCAACCAAACCGACTCTGACGGCAGTTACGAGAGAGATGATAGGTCTGCTTCAG
 TAAGCCAGATGCTACACAATTAGGCTTGTACATATTGTCGTTAGAACGCGGCTACA
 ATACATAACCTTATGTATCATACACATACGATTAGGTGACACTATAGAATAAGCTGG
 AAGATCTTCCAGCTTGGGCTGCAGGTCGACTCTAGAGTCGTTACATAACTACGGTAAA
 25 TCCCATAGTAACGCCAATAGGACATTCCATTGACGTCAATGGGTGGAGTATTACGGTA
 AACTGCCCACTTGGCAGTACATCAAGTGTATCATATGCCAAGTACGCCCTATTGACGT
 CAATGACGGTAAATGGCCCGCCTGGCATTATGCCAGTACATGACCTTATGGACTTCC
 TACTGGCAGTACATCTACGTATTAGTCATCGTATTACCATGGTATGCCGTTTGGCA
 GTACATCAATGGCGTGGATAGCGGTTGACTCACGGGATTCCAAGTCTCACCCAT
 30 TGACGTCAATGGAGTTTGGCACCAAATCAACGGGACTTCCAAAATGCGTAA
 GAACTCCGCCATTGACGCAAATGGCGGTAGCGTGTACGGTGGGAGGTATATAAG
 CAGAGCTGTTAGTGAACCGCGCCAGTCTTCGATAGACTGCGTCGCCGGGTACCCGT
 ATTCCCAATAAAAGCTTGTCTGTTGATCCGAATCGGGTCTCGCTGTTCTGGAG
 GGTCCTCTGAGTGATTGACTACCCACGACGGGGCTTCAATTGGGGCTCGTCCGG
 35 GATTGGAGACCCCTGCCAGGGACCAACCAACCGGGAGGTAAAGCTGCCAGCA
 ACTTATCTGTCGTCGCGATTGTCAGTGTCTATGTTGATGTTATGCCCTCGCTG
 TACTAGTTAGCTAACTAGCTCTGTATCTGGGGACCCGTGGAACTGACGAGTTCTGA
 ACACCCGGCCGCAACCCCTGGAGACGTCCACGGGACTTGGGGCCGTTTGTGGCCCG
 ACTGAGGAAGGGAGTCGATGGAATCCGACCCCGTCAGGATATGTTGTTCTGGTAGGA
 40 GACGAGAACCTAAACAGTCCCGCTCCGCTGAAATTGCTTGGTTGGAACCGA
 AGCCGCGCGCTTGTCTGCTGCAGCGCTGCAGCATCGTCTGTGTTCTGACT
 GTGTTCTGATTGCTGAAAATTAGGGCAGACTGTTACCACTCCCTTAAGTTGACC
 TTAGGTCACTGGAAAGATGTCGAGCGGATCGCTCACACCAGTCGGTAGATGTC
 AGACGTTGG
 45 PCGCLNGFR (SEQ ID No 57)

GTTACCTCTGCTCTGCAAGATGCCAACCTTAACGTCGGATGCCGAGACGGCACC
 TTTAACCGAGACCTCATCACCCAGGTTAAGATCAAGGTCTTCACTGCCGATGGA
 50 CACCCAGACCAAGGCTCCCTACATCGTGCACCTGGGAAGCCTGGCTTGGACCCCCCTCCC
 TGGGTCAAGCCCTTGACACCCCTAACGCTCCGCTCTTCCCTCATCCGCCCGTCT
 CTCCCCCTGAAACCTCTCGTGCACCCGCTCGATCTCCCTTATCCAGCCCTCACT
 CCTCTCTAGGCGCCGAAATCGTAACCGAGGATCCACCGGTGCCACATGGTGAGC
 AAGGGCGAGGAGCTGTTACCGGGGTGGTGCCATCCTGGTCGAGCTGGACGGCAGCTA
 55 AACGGCCACAAGTTCAGCGTGTCCGGCAGGGCGAGGGCAGGCCACCTACGGCAAGCTG
 ACCCTGAAGTTCATCTGCACCAACCGGAAGCTGCCGTGCCCTGGCCACCCCTCGT
 GACC
 ACCCTGACCTACGGCGTGCAGTGCTCAGCCGCTACCCGACCACATGAAGCAGCACGAC
 TTCTCAAGTCGCCATGCCGAAGGCTACGTCCAGGAGCGCACCACCTCTCAAGGAC
 GACGGCAACTACAAGACCCCGCCGAGGTGAAGTTGAGGGCGACCCCTGGTAACCGC
 60 ATCGAGCTGAAGGGATCGACTTCAGGAGGACGGCAACATCCTGGGCACAAGCTGGAG

TACAACATACAACAGCCACAACGTATATCATGGCGACAAGCAGAAGAACGGCATCAAG
 GTGAACCTCAAGATCCGCCACAACATCGAGGACGGCAGCGTGCAGCTGCCGACCAACTAC
 CAGCAGAACACCCCCATCGCGACGGCCCCGTGCTGCTGCCGACAACCAACTACGTGAGC
 ACCCAGTCCGCCCTGAGCAAAGACCCAAACGAGAAGCGGATCACATGGTCTGCTGGAG
 5 TTCGTGACCGCCGCCGGATCACTCTCGGCATGGACGAGCTGTACAAGTAAAGCGGCCCT
 AGGGGTCTTCCCCCTCTGCCAAAGGAATGCAAGGTCTGTTGAATGCGTAAGGAAGCA
 GTTCTCTGGAAAGCTTCTTGAAGACAACAAACGCTCTGCGGAGCTACCGGAGTTGGTCTAGCTGC
 AACCCCCCCTCTGGCGACAGGTGCCCTGCGGCCAAAGCCACCGAGTTGGTCTAGCTGC
 10 TGCCTGAGGCTGGACGACCTCGCGAGTCTACCGGAGTGCAGTGCAGTGCAGTGC
 GAAACCAGCAGCGGCTATCCGCGATCCATGCCCTGGCGAACATGCAGGAGTGGGAGGCACG
 ATGGCGCTTGGTCAGGGCGATCCGCCATTAGCCATATTATTGATTGGTTATATAGC
 ATAAATCAATATTGGCTATTGCCATTGCATACGTTGATCCATATCATAATATGTACAT
 TTATATTGGCTCATGTCCAACATTACCGCCATTGACATTGATTGACTAGTTATT
 ATAGTAATCAATTACGGGTCTTAGTCTAGCCCATTATGGAGTTCCGCGTACATA
 15 ACTTACGGTAAATGGCCGCCCTGGCTGACGCCAACGACCCCCGCCATTGACGTCAAT
 AATGACGTATGTCCTAGTAACGCCAATAGGGACTTCCATTGACGTCAATGGGTGGA
 GTATTTACGGTAAACTGCCACTTGGCAGTACATCAAGTGTATCATATGCCAAGTACGCC
 CCCTATTGACGTCAATGACGGTAAATGGCCGCCCTGGCATTATGCCAGTACATGACCTT
 ATGGGACTTCTACTTGGCAGTACATCTACGTATTAGTCATCGTATTACCATGGTGT
 20 GCGGTTTGGCAGTACATCAATGGCGTGGATAGCGGTTGACTCACGGGATTCCAAG
 TCTCCACCCCATTGACGTCAATGGGAGTTTGTGTTGGCACC AAAATCAACGGGACTTCC
 AAAATGCGTAACAACCTCCGCCATTGACGCAAATGGCGGTAGGCATGTACGGTGGGA
 GGTCTATATAAGCAGAGCTGTTAGTGAACCGTCAGATGCCCTGGAGACGCCATCCACG
 CTGTTTGACCTCCATAGAAGACACCGGGACCGATCCAGCCTCCGCCGCCAACGTTAC
 25 CATGGGGCAGGTGCCACCGGCCGCGCATGGACGGGCCGCGCTGCTGCTGTTGCTGCT
 TCTGGGGGTGTCCTTGAGGTGCCAAGGAGGCATGCCAACAGGCCGCTGTACACACACAG
 CGGTGAGTGTGCAAAAGCTGCAACCTGGCGAGGGTGTGGCCAGGCTTGTGGAGCCAA
 CCAGACCGTGTGAGCCTGCCAGCGTACGCTGACGTTCTCCGACGTGGTGAGCGCAGC
 CGAGCCGTGCAAGCCGTGACCGAGTGCAGGGCTCCAGAGCATGTCGGCGCCGTGCGT
 30 GGAGGCCGACGCCGTGCGCCTACGGCTACTACCAGGATGAGACGACTGG
 GCGCTGCGAGGCGTGCCTGCGAGGGCTGGGCCCTGTGTTCTCTGCCAGGA
 CAAGCAGAACACCGTGTGCGAGGAGTGCCCGACGGCACGTATTCCGACGAGGCCAACCA
 CGTGGACCCCGTGCCTGCCAGCGTGTGCGAGGACACCGAGGCCAGCTCCGCGAGTG
 CACACGCTGGCCGACGCCGAGTGCAGGGAGATCCCTGGCGTTGGATTACACGGTCCAC
 35 ACCCCCCAGAGGGCTCGGACAGCACGCCAACAGCACCCAGGAGCCTGAGGCACCTCCAGA
 ACAAGACCTCATGCCAGCACGGTGGCAGGTGTTGACCACTGATGGCAGCTCCCA
 GCCCGTGGTACCCGAGGCACCACCGACAAACCTCATCCCTGTCTATTGCTCCATCTGGC
 TGCTGTGGTTGTGGCCCTGTGCTACATAGCCTCAAGAGGTGAAAGCTGCTGAGT
 CGACTCTAGAGGATCCCCAACATCGATAAAAAGATTATTAGTCAGGAAAAAA
 40 GGGGGGAATGAAAGACCCACCTGTAGGTTGGCAAGCTAGCTTAAGTAAACGCCATTG
 CAAGGCATGAAAAAATACATAACTGAGAATAGAGAAGTTCAAGATCAAGGTGAGAACAGA
 TGGAACAGCTGAATATGGCCAAACAGGATATCTGTGGTAAGCAGTCCCTGCCGGCTC
 AGGGCCAAGAACAGATGGAACAGCTGAATATGGCCAAACAGGATATCTGTGGTAAGCAG
 TTCCCTGCCCGGCTCAGGGCCAAGAACAGATGGTCCCCAGATGCCAGCTCAGCA
 45 GTTTCTAGAGAACCATCAGATGTTCCAGGGTGCCTCTGCTTGTGCTGCTCCCG
 CTTATTTGAACTAACCATCAGTTGCTCTCGCTCTGCTGAGTGCAGTCCGACTTGTGGTCTG
 AGCTCAATAAAAGAGCCACAACCCCTCACTGGGGGCCAGTCCGACTTGTGGTCTG
 CGCCCGGGTACCGTGTATCCAATAACCCCTTGTGCTGAGTGCAGTCCGACTTGTGGTCTG
 CTGTTCCCTGGAGGGTCTCCTCTGAGTGAATGACTACCGTCAAGGGGGTCTTCA
 50 TGGGGGCTCGTCCGGGATCGGAGACCCCTGCCAGGGACCCACCGACCCACCCGGGAG
 GTAAGCTGGCTGCCCTCGCGTTGGTGTAGCGGTAAAACCTGTGACACATGCAGCT
 CCCGGAGACGGTCACAGCTTGTGTAAGCGGATGCCGGGAGCAGACAAGCCCGTCA
 CGCGTCAGGGGTGTTGGGGGTGTCGGGGCGCAGCCATGACCCAGTCACGTAGCGATAG
 CGGAGTGTATACTGGCTTAACATAGCGGCATCAGAGCAGATTGACTGAGAGTGCACCAT
 55 ATGCGGTGAAATACCGCACAGATGCGTAAGGAGAAAATACCGCATCAGGGCTCTTCC
 GCTTCCCTCGCTCACTGACTCGCTCGCCTGGCTGGCTGCGGCCAGCGGGTATCAGCT
 CACTCAAAGCGGTAAACGGTTATCCACAGAAATCAGGGGATAACCGCAGGAAAGAACATG
 TGAGCAAAGGCCAGCAAAGGCCAGGAACCGTAAAAGGCCGCTGCTGGCGTTTC
 CATAGGCTCCGCCCCCTGACGAGCATCACAAAATGACGCTCAAGTCAGGGTGGCGA
 60 AACCCGACAGGACTATAAGATACCGCGTTCCCCCTGGAAGCTCCCTCGTGCCTCT

CCTGTTCCGACCCCTGCCGCTTACCGGATACCTGTCGCCCTTCTCCCTCGGGAAAGCGTG
 GCGCTTCTCATAGCTCACGCTGTAGGTATCTCAGTCGGTAGGTCGTCGCTCCAAG
 CTGGGCTGTGCAAGAACCCCCCGTTCAGCCGACCGCTGCGCCTTATCCGTAACATAT
 CGTCTTGAGTCCAACCCGGTAAGACACGACTTATCCCACCTGGCAGCAGCCACTGGTAAC
 5 AGGATTAGCAGAGCAGGATATGTAGGCAGGCTACAGAGTTCTGAAGTGGTGGCCTAAC
 TACGGCTACACTAGAAGGACAGTTGGTATCTGCGCTCTGCTGAAGCCAGTTACCTTC
 GGAAAAAGAGTTGGTAGCTCTGATCCGGCAAACAAACCACCGCTGGTAGCGGTGGTTT
 TTTGTTTGAAGCAGCAGATTACGCGCAGAAAAAAAGGATCTCAAGAAGATCCTTGATC
 10 TTTCTACGGGCTCTGACGCTCAGTGGAACGAAAACCTCACGTTAAGGGATTTGGTATG
 AGATTATCAAAAAGGATCTCACCTAGATCCTTAAATTAAAATGAAGTTAAATCA
 ATCTAAAGTATATATGAGTAAACTTGGTCTGACAGTTACCAATGCTTAATCAGTGAGGCA
 CCTATCTCAGCGATCTGTCTATTGTTCTCATCAGTTGCCTGACTCCCCGTCGTAG
 ATAATACGATAACGGGAGGGCTTACCATCTGGCCCCAGTGCCTGAATGATACCGCGAGAC
 15 CCACGCTCACCCGCTCCAGATTATCAGCAATAAACAGCCAGCCGGAAAGGGCCGAGCGC
 AGAAGTGGTCTGCAACTTATCCGCTCCATCCAGTCTATTAAATTGTTGCCGGGAAGCT
 AGAGTAAGTAGTCGCCAGTTAATAGTTGCGCAACGTTGCTGCCATTGCTGCAGGCATC
 GTGGTGTCAAGCTCGTGTGTTGGTATGGCTTCATTAGCTCCGGTTCCCAACGATCAAGG
 CGAGTTACATGATCCCCATGTTGTGAAAAAAGCGGTTAGCTCCTTCGGTCCTCCGATC
 GTTGTAGAAGTAAGTTGGCCGCAGTGTATCACTCATGTTATGGCAGCAGTCATAAT
 20 TCTCTTACTGTCACTGCATCCGTAAGATGCTTTCTGTGACTGGTAGTACTCAACCAAG
 TCATTCTGAGAAATAGTGTATGCGCGACCGAGTTGCTCTGCCCGCTCAATACGGGAT
 AATACCGGCCACATAGCAGAACTTTAAAGTGTCTCATCATTGGAAAACGTTCTCGGGG
 CGAAAAACTCTAAGGATCTTACCGCTGTGAGATCCAGTGCATGTAACCCACTCGTCA
 CCCAACTGATCTCAGCATTTTACTTACCCAGCGTTCTGGGTGAGCAAAACAGGA
 25 AGGCAAAATGCCGAAAAAAAGGAATAAGGGCGACACGAAAATGTTGAATACTCATACTC
 TTCTCTTCAATATTATTGAAGCATTATCAGGGTTATGTCATGAGCGGATACATA
 TTTGAATGTTAGAAAATAAACAAATAGGGGTTCCGGCACATTCCCGAAAAGTG
 CCACCTGACGCTAAGAAACCATTATTATCAGACATTAACCTATAAAATAGGCGTATC
 ACGAGGCCCTTCGTCGCGTTGGTGTGACGGTGGAAAACCTCTGACACATGCAG
 30 CTCCCGAGACGGTCACAGTTGCTGTAAGCGGATGCCGGAGCAGACAAGCCGTCAG
 GGCCTCAGGGGTGTTGGCGGTGTCGGGCTGGCTTAACATATGCCCATCAGAGCAG
 ATTGTACTGAGAGTGACCATATGGACATATTGCTTAAACGCGCTACAATTAAAC
 ATAACCTTATGTTATCATACACATACGATTAGGTGACACTATAGAAACTCGACTAGAGT
 CCGTTACATAACTTACGTAATGCCGCCTGGCTGACGCCAACGACCCCCGCCAT
 35 TGACGTCAATAATGACGTATGTTCCATAGTACGCCAATAGGGACTTCCATTGACGTC
 AATGGGTGGAGTATTTACGGTAAACTGCCACTTGGCAGTACATCAAGTGTATCATATGC
 CAAGTACGCCCTATTGACGTCATGACGGTAAATGCCGCCTGCATTATGCCAGT
 ACATGACCTTATGGACTTCCCTACTGGCAGTACATCTACGTTAGTCATCGCTATTA
 CCATGGTGTGCGGTTTGGCAGTACATCAATGGCGTGGATAGCGTTGACTCACGGG
 40 GATTTCAAAGTCCACCCATTGACGTCAATGGAGTTGTTTGCACCAAAATCAAC
 GGGACTTCCAAAATGCTGTAACAACCTCCGCCATTGACGCCAATGGCGGTAGCGTG
 TACGGTGGGAGGTCTATATAAGCAGAGCTCGTTAGTGAACCGCGCAGTCTCCGATAG
 ACTGGCTGCCGGGTACCGTATTCCAAATAAACGCTCTTGCTGAGTGTACTACCCACGACGGGGTC
 TGGTCTCGTGTCTGGGAGGGCTGCCAGCAACTTATCTGTTCTGCTGCGATTGCTAGTGTCTATGTT
 45 TTTCATTGGGGCTGCCAGCAACTTATCTGTTCTGCTGCGATTGCTAGTGTCTATGTT
 CCGGGAGGTAAAGCTGCCAGCAACTTATCTGTTCTGCTGCGATTGCTAGTGTCTATGTT
 TGATGTTATGCCCTGCGTGTACTAGTTAGCTAATAGCTCTGTTCTGCTGCGATTGCTAGTGTCTATGTT
 TGGTGGAACTGACGAGTTCTGAACACCCGGCGAACCTGGAGACGTCAGTCCCAGGGACTT
 TGGGGGCCGTTTGTGGCCCGACTGAGGAAGGGAGTCGATGTGAAATCCGACCCCCGTC
 50 AGGATATGTTCTGGTAGGAGACGAGAACCTAAAACAGTCCGCCCTCCGCTGAAATT
 TTTGCTTCGGTTGGAACCGAACGCCGCGCTCTGCTGCTGAGCAGCTGAGCATCGT
 TCTGTTGCTCTGACTGTGTTCTGTTCTGTTCTGAAATAGGGCCAGACTGT
 TACCACTCCCTTAAGTTGACCTTAGGTCACTGGAAAGATGTCGAGCGGATCGCTCACAA
 CCAGTCGGTAGATGTCAGAAGAGACGTTGG
 55

PLTRioxP (SEQ ID No 58)

60 GCTAGCATAACTTCGTATAATGTTGCTATACGAAAGTTATTCTAGAGAACCATCAGATGT
 TTCCAGGGTCCCCAAGGACCTGAAATGACCCCTGTGCCTTATTGAACTAACCAATCAGT

TCGCTTCTCGCTCTGTTCGCGCCTCTGCTCCCCGAGCTCAATAAAAGAGCCCACAAC
 CCCTCACTCGGGCGCCAGTCCTCCATTGACTGAGTCGCCGGGTACCCGTATCCAA
 TAAACCTCTTGCACTCGACTTGTGGTCTCGCTGTTCTGGGAGGGTCTCCTC
 TGAGTGAATTGACTACCCGTCAGGGGGCTTCAATTGGGGCTGTCGGGATCGGGA
 5 GACCCCTGCCAGGGACCACCGACCCACCCAGGGAGGTAAAGCTGGCTGCCTCGCGTT
 TCGGTATGACGGTAAAAACCTCTGACACATGCACTCCGGAGACGGTCACAGCTTGT
 TGTAAGCGGATGCCGGAGCAGACAAGCCGTCAGGGCGCTCAGGGGTGTTGGCGGG
 GTCGGGCGCAGCCATGACCCAGTCACGTAGCGATAGCGGAGGTATACTGGCTTA
 10 TGCGGCATCAGAGCAGATTGACTGAGAGTGCAACCATATGCGGTGAAATACCGCACAG
 ATGCGTAAGGAGAAAATACCGCATCAGGCCTTCCGCTCTCCGCTCCTCGCTCACTGACTCGCT
 GCGCTCGTCGTTCGGCTCGCGAGCGGTATCAGCTACTCAAAGGGGTAATACGGTT
 ATCCACAGAATCAGGGATAACCGAGGAAAGAACATGTGAGCAAAGGCCAGCAAAGGC
 CAGAACCGTAAAAGGCCGCTTGTGGCTTTCCATAGGCTCCGCCCCCTGACGA
 GCATCACAAAATCGACGCTCAAGTCAGAGGTTGGCAAACCCGACAGGACTATAAGATA
 15 CCAGCGTTCCCCCTGGAAGCTCCCTCGTCGCTCTCCGACCCCTGCCGTTAC
 CGGATAACCTGTCGCCCTTCTCCCTCGGAAAGCGTGGCGCTTCTCATAGCTCACGCTG
 TAGGTATCTCAGTCGGTAGGTCTCGCTCCAAGCTGGGCTGTGTCACGAACCCCC
 CGTCAGCCGACCGCTGCCTTATCCGTAACTATCGCTTGAGTCCAACCCGGTAAG
 ACACGACTTATGCCACTGGCAGCAGCCACTGTAACAGGATTAGCAGAGCGAGGTATGT
 20 AGGGGGTCTACAGAGTTGAAGTGGCTAACTACGGCTACACTAGAAGGACAGT
 ATTGGTATCTGCGCTCTGCTGAAGCCAGTTACCTTCGGAAAAAGAGTTGGTAGCTCTG
 ATCCGGAAACAAACACCAGCCTGGTAGCGGTGTTTTGTTGCAAGCAGCAGATTAC
 GCGCAGAAAAAAAGGATCTAAGAAGATCCTTGATTTCTACGGGTCTGACGCTCA
 GTGGAACGAAAACCTACGTTAAGGGATTTGGCATGAGATTATCAAAGGATCTCAC
 25 CTAGATCCTTTAAATTAAAAATGAAGTTTAAATCAATCTAAAGTATATGAGTAAAC
 TTGGTCTGACAGTTACCAATGCTTAACTCAGTGAGGCACCTATCTCAGCGATCTGCTATT
 TCGTTCATCCATAGTGCCTGACTCCCCGTCGTGAGATAACTACGATAACGGAGGGCTT
 ACCATCTGGCCCCAGTGTGCAATGATAACCGCAGACCCACGCTCACCGCTCCAGATT
 ATCAGCAATAAACCAGCCAGCCGGAGGGCCGAGCGCAGAAGTGGTCTGCAACTTATC
 30 CGCCTCCATCAGTCTATTAAATTGTCGGGAAAGCTAGAGTAAGTAGTTGCCAGTTAA
 TAGTTGCGCAACGTTGTCGCACTGCTGAGGATCTGCTGAGGCTACGCTCGTTGG
 TATGGCTTCATTAGCTCCGGTCCACAGTCAAGGCAGTTACATGATCCCCATGTT
 GTGCAAAAAGCGGTTAGCTCCTCGGTCTCGATCGTGTGAGAAGTAAGTTGGCCGC
 AGTTTACACTCATGGTTATGGCAGCACTGCAATAATTCTTACTGTCATGCCATCCGT
 35 AAGATGCTTCTGTGACTGGTAGTACTCAACCAAGTCATTCTGAGAATAGTGTATGCG
 GCGACCGAGTTGCTCTTGGCCAGGCTCAACACGGATAATACCGGCCACATAGCAGAAC
 TTTAAAAGTGCATCATGGAAAAGCTTCTCGGGCGAAAACCTCAAGGATCTTAC
 GCTGTTGAGATCCAGTTGATGTAACCCACTCGTCACCCAAGTGTCTCAGCATCTT
 TACTTCACCAAGCCTCTGGGTGAGCAAAAACAGGAAGGCAAAATGCCGAAAAAGGG
 40 AATAAGGGCAGACGGAAATGTTGAATACTCATACTCTCCCTTTCAATATTATTGAAG
 CATTATCAGGGTTATTGTCATGAGCGGATACATATTGAATGTATTAGAAAATAA
 ACAAAATAGGGTTCCGCGCACATTCCCGAAAAGTGCACCTGACGTCTAAGAAACCAT
 TATTATCATGACATTAACCTATAAAAATAGCGTATCAGGAGCCCTTCGTCTCAAGA
 ATTCAACAGATCAGGAAAAGTGTCTCCAAATGTGTCACACTCCAAATTC
 45 GCGGGCTCTGCCTCTAGACCACTACCCATTCCCCACACTCACCGGAGCCAAAGCC
 GCGGCCCTCCGTTCTGTTGAAAGACCCACCGTAGGTGGCAA

LTR plasmid (SEQ ID No 59)

GCTAGCTTAAGTAACGCCATTGCAAGGCATGGAAAAACATAACTGAGAATAGAGAA
 50 GTTCAGATCAAGGTCAAGGACAGATGGAACAGACTGAATATGGGCAAACAGGGATATCTGT
 GGTAAAGCAGTTCTGCCCGGCTCAGGGCAAGAACAGATGGAACAGACTGAATATGGGCC
 AACACAGGATATCTGTTGAAAGCAGTTCTGCCCGGCTCAGGGCAAGAACAGATGGTCC
 CCAGATGCGGTCCAGCCCTCAGCAGTTCTAGAGAACCATCAGATGTTCCAGGGTGCC
 CAAGGACCTGAAATGACCCGTGCTTATTGAACTAACCAATCAGTTGCTTCTGCTT
 55 CTGTTGCGCGCTCTGCTCCCGAGCTCAATAAAAGAGCCCACACCCCTACTCGGGG
 CGCCAGTCCTCGATTGACTGAGTCGCCGGTACCCGTGTATCCAATAACCCCTTGC
 AGTTGCATCCGACTTGTGGTCTGCTGTTCTGGGAGGGTCTCTGAGTGAATTGACT
 ACCCGTCAGGGGGCTTCAATTGGGGCTCGTCCGGGATCGGGAGACCCCTGCCAG
 GGACCACCGACCCACCAACCGGAGGTAAAGCTGGCTGCCTCGCGTTGGTAGGTGACGG

TGAAAACCTCTGACACATGCAGCTCCGGAGACGGTCACAGCTTGTCTGTAAGCGGATGC
CGGGAGCAGACAAGCCCGTCAGGGCGCTCAGCGGGTGTGGCGGGTGTGGGGCGCAGC
CATGACCCAGTCACGTAGCGATAGCGGAGTGTACTGGCTTAACTATGCCGCATCAGAG
CAGATTGTACTGAGAGTCACCATATGCCGTGTGAAATACCGCACAGATGCGTAAGGAGA
5 AAATACCGCATTAGGCCTCTCCGCTTCCGCTCACTGACTCGCTGCCTCGTCGTT
CGGCTGCGCGAGCGGTATCAGCTCACTCAAAGGCGTAATACGGTTATCCACAGAAC
GGGGATAACGCAAGGAAAGAACATGTGAGCAAAGGCCAGCAAAAGGCCAGGAACCGTAAA
AAGGCCGCGTGTGGCGTTTCCATAGGCTCCGCCCCCTGACGAGCATCACAAAAT
10 CGACGCTCAAGTCAGAGGTGGCGAAACCGACAGGACTATAAGATACCAGGCCTTCCC
CCTGGAAGCTCCCTCGCGCTCTCTGTTCCGACCCCTGCCGCTTACCGGATACCTGTCC
GCCTTCTCCCTCGGGAAAGCGTGGCGTTCTCATAGCTCACGCTGTAGGTATCTCAGT
TCGGTGTAGGTGTTCGCTCCAAGCTGGGCTGTGTGACCGAACCCCCCGTCAAGCCGAC
CGCTGCGCCTTATCCGGTAACTATCGTCTTGAGTCCAACCCGGTAAGACACGACTTATCG
15 CCACTGGCAGCAGCCACTGGTAACAGGATTAGCAGAGCGAGGTATGTAGGCCTGCTACA
GAGTTCTTGAAGTGGTGGCTTAACACTACGGCTACACTAGAAGGACAGTATTGGTATCTGC
GCTCTGCTGAAGCCAGTTACCTTCGAAAAAGAGTTGGTAGCTTGTGATCCGGCAAACAA
ACCACCGCTGGTAGCGGTGGTTTTTGTGCAAGCAGCAGATTACGCGCAGAAAAAAA
GGATCTCAAGAAGATCCTTGATCTTCTACGGGCTGACGCTCAGTGGAACGAAAC
TCACGTTAAGGGATTTGGTATGAGATTATCAAAAAGGATCTCACCTAGATCTTTA
20 AATAAAAATGAAGTTAAATCAATCTAAAGTATATGAGTAAACTTGGTCTGACAGT
TACCAATGCTTAATCAGTGAGGCACCTATCTCAGCGATCTGCTATTCTGTTATCCATA
GTTGCTGACTCCCCGTCGTGTAGATAACTACGATACGGAGGGCTTACCATCTGGCCCC
AGTGTGCAATGATACCGCAGACCCACGCTCACCGCTCCAGATTATCAGCAATAAC
CAGCCAGCCGGAAGGGCGAGCGCAGAAGTGGCTTGCAACTTTATCCGCTCCATCCAG
25 TCTATTAAATTGTTGCCGGAAAGCTAGAGTAAGTAGTTGCGCAGTTAATAGTTGCGCAAC
GTTGTTGCCATTGTCGAGGCATCGTGTGTCACGCTCGTGTGTTATGGCTTCATTC
AGCTCCGGTCCCCAACGATCAAGGCAGTTACATGATCCCCATGTTGTGCAAAAAGCG
GTTAGCTCCTCGGCTCCGATCGTGTGCAAGAGTAAGTTGGCCGAGTGTATCACTC
ATGGTTATGGCAGCACTGCATAATTCTCTACTGTATGCCATCCGTAAGATGCTTTCT
30 GTGACTGGTGAGTACTCAACCAAGTCATTCTGAGAATAGTGTATGCCGACCGAGTTGC
TCTTGCCCGCGTCAACACGGATAATACCGGCCACATAGCAGAACTTTAAAGTGTC
ATCATTGAAAACGTTCTCGGGCGAAAACCTCTCAAGGATCTTACCGCTGTTGAGATCC
AGTTGATGTAACCCACTCGTCACCCAACTGATCTCAGCATCTTACTTACCCAGC
GTTCTGGGTGAGCAAAACAGGAAGGCAAAATGCCGAAAAAGGAATAAGGGCACA
35 CGGAAATGTTGAATACTCATACTCTTCTTTCAATATTATTGAAGCATTATCAGGGT
TATTGTCATGAGCGGATACATATTGAATGTTAGAAAAATAACAAATAGGGGTT
CCGCGCACATTCCCCGAAAAGTGCCACCTGACGTAAAGAAACCATTATTATCATGACA
TTAACCTATAAAATAGCGTATCACGAGGCCCTTCGTCTCAAGAATTATCAGCAT
CACCAGAAACTGTCCTCCTAACATGTTGCCCTCACACTCCAAATTGCCGGCTTGTGCC
40 TCTTAGACCACTCTACCCATTCCCCACACTCACCGGAGCCAAAGCCGCGGCCCTCCGT
TTCTTGCTTTGAAAGACCCACCGTAGGTGGCAA

INTERNATIONAL SEARCH REPORT

Final Application No
PCT/GB 00/03837

A. CLASSIFICATION OF SUBJECT MATTER
 IPC 7 C12N15/867 C12N15/90 C12N5/10 C12N7/01 A61K48/00

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC 7 C12N A61K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the International search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data, PAJ, MEDLINE, BIOSIS

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	VANIN E. F. ET AL.: "Development of high-titer retroviral producer cell lines by using Cre-mediated recombination." JOURNAL OF VIROLOGY, vol. 71, no. 10, 1997, pages 7820-7826, XP002161355 ISSN: 0022-538X cited in the application the whole document --- -/-	1-51

 Further documents are listed in the continuation of box C. Patent family members are listed in annex.

* Special categories of cited documents :

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the International filing date
- *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *O* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the International filing date but later than the priority date claimed

- *T* later document published after the International filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- *X* document of particular relevance; the claimed Invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- *Y* document of particular relevance; the claimed Invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- *&* document member of the same patent family

Date of the actual completion of the International search

26 February 2001

Date of mailing of the International search report

13/03/2001

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
 NL - 2280 HV Rijswijk
 Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
 Fax: (+31-70) 340-3016

Authorized officer

Mandl, B

INTERNATIONAL SEARCH REPORT

	Application No PCT/GB 00/03837
--	-----------------------------------

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	KARREMAN S. ET AL.: "ON THE USE OF DOUBLE FLP RECOGNITION TARGETS (FRTS) IN THE LTR OF RETROVIRUSES FOR THE CONSTRUCTION OF HIGH PRODUCER CELL LINES" NUCLEIC ACIDS RESEARCH, vol. 24, no. 9, 1 May 1996 (1996-05-01), pages 1616-1624, XP000616161 ISSN: 0305-1048 cited in the application the whole document ----	1-51
A	IWAKUMA T. ET AL.: "SELF-INACTIVATING LENITVIRAL VECTORS WITH U3 AND U5 MODIFICATIONS" VIROLOGY, vol. 261, no. 1, 15 August 1999 (1999-08-15), pages 120-132, XP000882897 ISSN: 0042-6822 the whole document ----	1-51
A	BOAST K. ET AL.: "CHARACTERIZATION OF PHYSIOLOGICALLY REGULATED VECTORS OF THE TREATMENT OF ISCHEMIC DISEASE" HUMAN GENE THERAPY, vol. 10, no. 13, 1 September 1999 (1999-09-01), pages 2197-2208, XP000876772 ISSN: 1043-0342 the whole document -----	1-51

FURTHER INFORMATION CONTINUED FROM PCT/SA/ 210

Continuation of Box I.2

Claims Nos.: 45-48

Said claims 45-48 could not be searched because they were not present in the application.

The applicant's attention is drawn to the fact that claims, or parts of claims, relating to inventions in respect of which no international search report has been established need not be the subject of an international preliminary examination (Rule 66.1(e) PCT). The applicant is advised that the EPO policy when acting as an International Preliminary Examining Authority is normally not to carry out a preliminary examination on matter which has not been searched. This is the case irrespective of whether or not the claims are amended following receipt of the search report or during any Chapter II procedure.