MA1522: Linear Algebra for Computing

Tutorial 2

Revision

Scalar Multiplication and Matrix Addition

- ▶ Scalar multiplication: $c\mathbf{A} = c(a_{ij}) = (ca_{ij})$.
- Matrix addition: $\mathbf{A} + \mathbf{B} = (a_{ij})_{m \times n} + (b_{ij})_{m \times n} = (a_{ij} + b_{ij})_{m \times n}$.

Theorem (Properties of matrix addition and scalar multiplication)

For matrices $\mathbf{A} = (a_{ij})_{m \times n}$, $\mathbf{B} = (b_{ij})_{m \times n}$, $\mathbf{C} = (c_{ij})_{m \times n}$, and real numbers $a, b \in \mathbb{R}$,

- (i) (Commutative) $\mathbf{A} + \mathbf{B} = \mathbf{B} + \mathbf{A}$,
- (ii) (Associative) $\mathbf{A} + (\mathbf{B} + \mathbf{C}) = (\mathbf{A} + \mathbf{B}) + \mathbf{C}$,
- (iii) (Additive identity) $\mathbf{0}_{m \times n} + \mathbf{A} = \mathbf{A}$,
- (iv) (Additive inverse) $\mathbf{A} + (-\mathbf{A}) = \mathbf{0}_{m \times n}$,
- (v) (Distributive law) $a(\mathbf{A} + \mathbf{B}) = a\mathbf{A} + a\mathbf{B}$,
- (vi) (Scalar addition) $(a + b)\mathbf{A} = a\mathbf{A} + b\mathbf{A}$,
- (vii) (Associative) (ab) $\mathbf{A} = a(b\mathbf{A})$,
- (viii) If $a\mathbf{A} = \mathbf{0}_{m \times n}$, then either a = 0 or $\mathbf{A} = \mathbf{0}$.

Matrix Multiplication

$$\mathsf{AB} = (a_{ij})_{m \times p} (b_{ij})_{p \times n} = (\sum_{k=1}^p a_{ik} b_{kj})_{m \times n}$$

Theorem (Properties of matrix multiplication)

- (i) (Associative) (AB)C = A(BC).
- (ii) (Left distributive law) A(B + C) = AB + AC.
- (iii) (Right distributive law) (A + B)C = AC + BC.
- (iv) (Commute with scalar multiplication) c(AB) = (cA)B = A(cB).
- (v) (Multiplicative identity) $I_m A = A = A I_n$.
- (vi) (Zero divisor) There exists $\mathbf{A} \neq \mathbf{0}_{m \times p}$ and $\mathbf{B} \neq \mathbf{0}_{p \times n}$ such that $\mathbf{A}\mathbf{B} = \mathbf{0}_{m \times n}$.
- (vii) (Zero matrix) $\mathbf{A}\mathbf{0}_{n imes p}=\mathbf{0}_{m imes p}$ and $\mathbf{0}_{p imes m}\mathbf{A}=\mathbf{0}_{p imes n}$

Homogeneous Linear System

- ▶ Homogeneous linear system: Ax = 0.
- ▶ The trivial solution x = 0 is always a solution.
- ▶ If there is a solution $x \neq 0$, then the homogeneous linear system admits nontrivial solutions.
- ▶ Homogeneous system has infinitely many solutions if and only if it has a nontrivial solution.

Transpose

$$\mathbf{A} = (a_{ij})_{m \times n}, \ \mathbf{A}^T = (b_{ij})_{n \times m}, \ b_{ij} = a_{ji}.$$

Theorem (Properties of transpose)

(i)
$$({\bf A}^T)^T = {\bf A}$$
.

(ii)
$$(c\mathbf{A})^T = c\mathbf{A}^T$$
.

(iii)
$$(A + B)^T = A^T + B^T$$
.

(iv)
$$(AB)^T = B^T A^T$$
.

Block Multiplication

let \mathbf{b}_i be the j-th column of \mathbf{B} . Then the j-th column of the product \mathbf{AB} is \mathbf{Ab}_j ,

$$AB = A \begin{pmatrix} b_1 & b_2 & \cdots & b_n \end{pmatrix} = \begin{pmatrix} Ab_1 & Ab_2 & \cdots & Ab_n \end{pmatrix}.$$

Also, if a_i is the *i*-th row of **A**, then the *i*-row of the product **AB** is a_i **B**,

$$\mathbf{AB} = \begin{pmatrix} \mathbf{a}_1 \\ \mathbf{a}_2 \\ \vdots \\ \mathbf{a}_m \end{pmatrix} \mathbf{B} = \begin{pmatrix} \mathbf{a}_1 \mathbf{B} \\ \mathbf{a}_2 \mathbf{B} \\ \vdots \\ \mathbf{a}_m \mathbf{B} \end{pmatrix}.$$

Combining Augmented Matrices

In general: p linear systems with the same coefficient matrix $\mathbf{A}=(a_{ij})_{m\times n}$, for k=1,...,p,

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n = b_{1k} \\ a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n = b_{2k} \\ \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n = b_{mk} \end{cases}$$

Combined augmented matrix:

$$\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} & b_{11} & b_{12} \\ a_{21} & a_{22} & \cdots & a_{2n} & b_{21} & b_{22} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} & b_{m1} & b_{m2} & \cdots & b_{mp} \end{pmatrix}$$

Elementary Matrices

A square matrix of order $n \in I$ is called an elementary matrix if it can be obtained from the identity matrix I_n by performing a single elementary row operation

$$I_n \xrightarrow{r} E$$
,

where r is an elementary row operation.

Let **A** be an $n \times m$ matrix and let **E** be the elementary matrix corresponding to the elementary row operation r. Then the product **EA** is the resultant of the row operation r on **A**,

$$\mathbf{A} \xrightarrow{r} \mathbf{E} \mathbf{A}$$
.

Here, the order of the elementary matrix is determined by the number of rows of the matrix **A**.

Row Equivalent Matrices

Suppose the matrix **B** is obtained from **A** by performing row operations $r_1, r_2, ..., r_k$,

$$\mathbf{A} \xrightarrow{r_1} \xrightarrow{r_2} \cdots \xrightarrow{r_k} \mathbf{B}.$$

Let $\mathbf{E}_1, \mathbf{E}_2, ..., \mathbf{E}_k$ be the corresponding elementary matrices. Then

$$\mathbf{B} = \mathbf{E}_k \cdots \mathbf{E}_2 \mathbf{E}_1 \mathbf{A}.$$

That is, if **A** and **B** are row equivalent matrices, then there exists elementary matrices $\mathbf{E}_1, \mathbf{E}_2, ..., \mathbf{E}_k$ such that the above equation holds.

Inverse of a Matrix

A square matrix **A** of order n is invertible if there exists a square matrix **B** of order n such that

$$AB = I_n = BA$$
.

- Only square matrices are invertible.
- ▶ A is invertible \Leftrightarrow there is a B such that $AB = I \Leftrightarrow$ there is a B such that BA = I.
- For any square matrix **B**, $BA = I_n \Leftrightarrow AB = I_n$.
- ▶ If **B** and **C** are both inverses of a square matrix **A**, then $\mathbf{B} = \mathbf{C}$.

Denote the (unique) inverse of \mathbf{A} as \mathbf{A}^{-1}

Algorithm to Determine Invertibility and Finding Inverse

Let \mathbf{A} be a square matrix of order n.

- Step 1: Form a new $n \times 2n$ matrix ($\mathbf{A} \mid \mathbf{I}_n$).
- Step 2: Reduce the matrix $(A \mid I) \longrightarrow (R \mid B)$ to its REF or RREF.
- Step 3: If RREF $\mathbf{R} \neq \mathbf{I}$ or REF has a zero row, then \mathbf{A} is not invertible. If RREF $\mathbf{R} = \mathbf{I}$ or REF has no zero row, \mathbf{A} is invertible with inverse $\mathbf{A}^{-1} = \mathbf{B}$.

Equivalent Statements for Invertibility

Let A be a square matrix of order n. The following statements are equivalent.

- (i) **A** is invertible.
- (ii) (left inverse) There is a matrix ${\bf B}$ such that ${\bf B}{\bf A}={\bf I}.$
- (iii) (right inverse) There is a matrix B such that AB = I.
- (iv) The reduced row-echelon form of A is the identity matrix.
- (v) A can be expressed as a product of elementary matrices.
- (vi) The homogeneous system $\mathbf{A}\mathbf{x} = \mathbf{0}$ has only the trivial solution.
- (vii) For any **b**, the system $\mathbf{A}\mathbf{x} = \mathbf{b}$ has a unique solution.

Tutorial 2 Solutions

Question 1(a)

Let **A** and **B** be $m \times n$ and $n \times p$ matrices respectively. Suppose the homogeneous linear system $\mathbf{B}\mathbf{x} = \mathbf{0}$ has infinitely many solutions. How many solutions does the system $\mathbf{A}\mathbf{B}\mathbf{x} = \mathbf{0}$ have?

Claim: Any solution of $\mathbf{B}\mathbf{x} = \mathbf{0}$ is a solution to $\mathbf{A}\mathbf{B}\mathbf{x} = \mathbf{0}$, that is,

 $\{\text{all solutions to } \mathbf{Bx} = \mathbf{0}\} \subseteq \{\text{all solutions to } \mathbf{ABx} = \mathbf{0}\}.$

Suppose u is a solution to Bx = 0, that is, Bu = 0. Premultiplying both sides of Bu = 0 by A, we have ABu = 0, which shows that u is also a solution to ABx = 0.

This shows that the set of solutions to ABx = 0 contains the set of solutions to Bx = 0, which is an infinite set. Hence, {all solutions to ABx = 0} is an infinite set too.

Question 1(b)

Suppose Bx = 0 has only the trivial solution. Can we tell how many solutions are there for ABx = 0.

No, for example, let $\mathbf{B} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$. Then $\mathbf{B}\mathbf{x} = \mathbf{0}$ has only the trivial solution. Now consider two cases

- (i) $\mathbf{A} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$. Then $\mathbf{AB} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ so $\mathbf{ABx} = \mathbf{0}$ has only the trivial solution.
- (ii) $\mathbf{A} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$. Then $\mathbf{AB} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ so $\mathbf{ABx} = \mathbf{0}$ has infinitely many solutions.

Question 2(a)

Let
$$\mathbf{A} = \begin{pmatrix} 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \end{pmatrix}$$
. Find a 4×3 matrix \mathbf{X} such that $\mathbf{AX} = \mathbf{I}_3$.

By block multiplication,

$$\mathbf{AX} = \mathbf{I} = \mathbf{A} \begin{pmatrix} \mathbf{x}_1 & \mathbf{x}_2 & \mathbf{x}_3 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \quad \Leftrightarrow \quad \mathbf{Ax}_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \quad \mathbf{Ax}_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \quad \mathbf{Ax}_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0 & 0 & 1 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 0 & 0 & 2 & 1 & -1 & 1 \\ 0 & 1 & 0 & -1 & 0 & 1 & -1 \\ 0 & 0 & 1 & 1 & 0 & 0 & 1 \end{pmatrix}$$

General solution:
$$\mathbf{x}_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} + s_1 \begin{pmatrix} -2 \\ 1 \\ -1 \\ 1 \end{pmatrix}, \ \mathbf{x}_2 = \begin{pmatrix} -1 \\ 1 \\ 0 \\ 0 \end{pmatrix} + s_2 \begin{pmatrix} -2 \\ 1 \\ -1 \\ 1 \end{pmatrix}, \ \mathbf{x}_3 = \begin{pmatrix} 1 \\ -1 \\ 1 \\ 0 \end{pmatrix} + s_3 \begin{pmatrix} -2 \\ 1 \\ -1 \\ 1 \end{pmatrix}, \quad s_1, s_2, s_3 \in \mathbb{R}.$$

A=[1 1 0 1;0 1 1 0;0 0 1 1], rref([A eye(3)])

Question 2(b)

Let
$$\mathbf{B} = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$
. Find a 3×4 matrix \mathbf{Y} such that $\mathbf{YB} = \mathbf{I}_3$.

Solve
$$\mathbf{B}^T \mathbf{Y}^T = (\mathbf{Y} \mathbf{B})^T = \mathbf{I}_3^T = \mathbf{I}_3$$
 instead. Then by part (a), we may let $\mathbf{Y}^T = (\mathbf{y}_1 \quad \mathbf{y}_1 \quad \mathbf{y}_3)$.

$$\left(\begin{array}{ccc|c} 1 & 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 & 0 & 0 & 1 \end{array} \right) \longrightarrow \left(\begin{array}{ccc|c} 1 & 0 & 0 & 1/2 & 1/2 & -1/2 & 1/2 \\ 0 & 1 & 0 & -1/2 & 1/2 & 1/2 & -1/2 \\ 0 & 0 & 1 & 1/2 & -1/2 & 1/2 & 1/2 \end{array} \right)$$

General solution:

$$\mathbf{y}_{1} = \begin{pmatrix} 1/2 \\ 1/2 \\ -1/2 \\ 0 \end{pmatrix} + s_{1} \begin{pmatrix} -1/2 \\ 1/2 \\ -1/2 \\ 1 \end{pmatrix}, \ \mathbf{y}_{2} = \begin{pmatrix} -1/2 \\ 1/2 \\ 1/2 \\ 0 \end{pmatrix} + s_{2} \begin{pmatrix} -1/2 \\ 1/2 \\ -1/2 \\ 1 \end{pmatrix}, \ \mathbf{y}_{3} = \begin{pmatrix} 1/2 \\ -1/2 \\ 1/2 \\ 0 \end{pmatrix} + s_{3} \begin{pmatrix} -1/2 \\ 1/2 \\ -1/2 \\ 1 \end{pmatrix}, \quad s_{1}, s_{2}, s_{3} \in \mathbb{R}.$$

$$\mathbf{B} = \begin{bmatrix} 1 & 0 & 1; 1 & 1 & 0; 0 & 1 & 1; 0 & 0 & 1 \end{bmatrix}; \ \mathbf{rref}(\begin{bmatrix} \mathbf{B}^{*} & \text{eye}(3) \end{bmatrix})$$

Question 3(a)

$$\mathbf{A} = \begin{pmatrix} 5 & -2 & 6 & 0 \\ -2 & 1 & 3 & 1 \end{pmatrix}.$$

- (i) Reduce the following matrices **A** to its reduced row-echelon form **R**.
- (ii) For each of the elementary row operation, write the corresponding elementary matrix.
- (iii) Write the matrices **A** in the form $\mathbf{E}_1\mathbf{E}_2\dots\mathbf{E}_n\mathbf{R}$ where $\mathbf{E}_1,\mathbf{E}_2,\dots,\mathbf{E}_n$ are elementary matrices and **R** is the reduced row-echelon form of **A**.

Question 3(a)

$$\mathbf{A} = \begin{pmatrix} 5 & -2 & 6 & 0 \\ -2 & 1 & 3 & 1 \end{pmatrix}.$$

- (i) Reduce the following matrices **A** to its reduced row-echelon form **R**.
- (ii) For each of the elementary row operation, write the corresponding elementary matrix.
- (iii) Write the matrices **A** in the form $\mathbf{E}_1\mathbf{E}_2\dots\mathbf{E}_n\mathbf{R}$ where $\mathbf{E}_1,\mathbf{E}_2,\dots,\mathbf{E}_n$ are elementary matrices and **R** is the reduced row-echelon form of **A**.

(i)
$$\mathbf{A} \xrightarrow{r_1:R_2+\frac{2}{5}R_1} \xrightarrow{r_2:\frac{1}{5}R_1} \xrightarrow{r_2:\frac{1}{5}R_2} \xrightarrow{r_4:R_1+\frac{2}{5}R_2} \mathbf{R} = \begin{pmatrix} 1 & 0 & 12 & 2 \\ 0 & 1 & 27 & 5 \end{pmatrix}.$$

Question 3(a)

$$\mathbf{A} = \begin{pmatrix} 5 & -2 & 6 & 0 \\ -2 & 1 & 3 & 1 \end{pmatrix}.$$

- (i) Reduce the following matrices **A** to its reduced row-echelon form **R**.
- (ii) For each of the elementary row operation, write the corresponding elementary matrix.
- (iii) Write the matrices **A** in the form $\mathbf{E}_1\mathbf{E}_2\dots\mathbf{E}_n\mathbf{R}$ where $\mathbf{E}_1,\mathbf{E}_2,\dots,\mathbf{E}_n$ are elementary matrices and **R** is the reduced row-echelon form of **A**.

(i) **A**
$$\xrightarrow{r_1:R_2+\frac{2}{5}R_1} \xrightarrow{r_2:\frac{1}{5}R_1} \xrightarrow{r_3:5R_2} \xrightarrow{r_4:R_1+\frac{2}{5}R_2} \mathbf{R} = \begin{pmatrix} 1 & 0 & 12 & 2 \\ 0 & 1 & 27 & 5 \end{pmatrix}.$$

$$\text{(ii)} \ \, \textbf{E}_1 = \begin{pmatrix} 1 & 0 \\ \frac{2}{5} & 1 \end{pmatrix} \!, \, \textbf{E}_2 = \begin{pmatrix} \frac{1}{5} & 0 \\ 0 & 1 \end{pmatrix} \!, \, \textbf{E}_3 = \begin{pmatrix} 1 & 0 \\ 0 & 5 \end{pmatrix} \!, \, \textbf{E}_4 = \begin{pmatrix} 1 & \frac{2}{5} \\ 0 & 1 \end{pmatrix} \!.$$

$$\mathbf{A} = \begin{pmatrix} 1 & 0 \\ -\frac{2}{5} & 1 \end{pmatrix} \begin{pmatrix} 5 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & \frac{1}{5} \end{pmatrix} \begin{pmatrix} 1 & -\frac{2}{5} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 12 & 2 \\ 0 & 1 & 27 & 5 \end{pmatrix}.$$

Question 3(b)

$$\mathbf{A} = \begin{pmatrix} -1 & 3 & -4 \\ 2 & 4 & 1 \\ -4 & 2 & -9 \end{pmatrix}.$$

$$\text{(i)} \ \ \textbf{A} \xrightarrow{r_1:R_2+2R_1} \xrightarrow{r_2:R_3-4R_1} \xrightarrow{r_3:R_3+R_2} \xrightarrow{r_4:-R_1} \xrightarrow{r_5:\frac{1}{10}R_2} \xrightarrow{r_6:R_1+3R_2} \textbf{R}$$

Question 3(b)

$$\mathbf{A} = \begin{pmatrix} -1 & 3 & -4 \\ 2 & 4 & 1 \\ -4 & 2 & -9 \end{pmatrix}.$$

(i)
$$\mathbf{A} \xrightarrow{r_1:R_2+2R_1} \xrightarrow{r_2:R_3-4R_1} \xrightarrow{r_3:R_3+R_2} \xrightarrow{r_4:-R_1} \xrightarrow{r_5:\frac{1}{10}R_2} \xrightarrow{r_6:R_1+3R_2} \mathbf{R}$$

(i)
$$\mathbf{A} \xrightarrow{r_1:R_2+2R_1} \xrightarrow{r_2:R_3-4R_1} \xrightarrow{r_3:R_3+R_2} \xrightarrow{r_4:-R_1} \xrightarrow{r_5:\frac{1}{10}R_2} \xrightarrow{r_6:R_1+3R_2} \mathbf{R}$$

(ii) $\mathbf{E}_1 = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$, $\mathbf{E}_2 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 0 & 1 \end{pmatrix}$, $\mathbf{E}_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}$, $\mathbf{E}_4 = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$, $\mathbf{E}_5 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{10} & 0 \\ 0 & 0 & 1 \end{pmatrix}$, $\mathbf{E}_6 = \begin{pmatrix} 1 & 3 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$.

(iii)

$$\mathbf{A} = \begin{pmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 4 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -1 & 1 \end{pmatrix} \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 10 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & -3 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & \frac{19}{10} \\ 0 & 1 & -\frac{7}{10} \\ 0 & 0 & 0 \end{pmatrix}.$$

Question 3(c)

$$\mathbf{A} = \begin{pmatrix} 1 & -1 & 0 \\ 2 & -2 & 1 \\ 1 & 2 & 3 \end{pmatrix}.$$

(i) **A**
$$\xrightarrow{r_1:R_2-2R_1} \xrightarrow{r_2:R_3-R_1} \xrightarrow{r_3:R_2\leftrightarrow R_3} \xrightarrow{r_4:\frac{1}{3}R_2} \xrightarrow{r_5:R_2-R_3} \xrightarrow{r_6:R_1+R_2} \mathbf{R}$$

$$\text{(ii)} \ \ \textbf{E}_1 = \begin{pmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \text{, } \ \textbf{E}_2 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -1 & 0 & 1 \end{pmatrix} \text{, } \ \textbf{E}_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \text{, } \ \textbf{E}_4 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{3} & 0 \\ 0 & 0 & 1 \end{pmatrix} \text{, } \ \textbf{E}_5 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix} \text{, } \ \textbf{E}_6 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix} \text{, } \ \textbf{E}_8 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix} \text{, } \ \textbf{E}_8 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix} \text{, } \ \textbf{E}_8 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix} \text{, } \ \textbf{E}_8 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix} \text{, } \ \textbf{E}_9 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix} \text{, } \ \textbf{E}_9 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix} \text{, } \ \textbf{E}_9 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix} \text{, } \ \textbf{E}_9 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix} \text{, } \ \textbf{E}_9 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix} \text{, } \ \textbf{E}_9 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix} \text{, } \ \textbf{E}_9 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix} \text{, } \ \textbf{E}_9 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix} \text{, } \ \textbf{E}_9 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix} \text{, } \ \textbf{E}_9 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix} \text{, } \ \textbf{E}_9 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix} \text{, } \ \textbf{E}_9 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix} \text{, } \ \textbf{E}_9 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix} \text{, } \ \textbf{E}_9 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix} \text{, } \ \textbf{E}_9 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix} \text{, } \ \textbf{E}_9 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix} \text{, } \ \textbf{E}_9 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix} \text{, } \ \textbf{E}_9 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix} \text{, } \ \textbf{E}_9 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix} \text{, } \ \textbf{E}_9 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix} \text{, } \ \textbf{E}_9 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} \text{, } \ \textbf{E}_9 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} \text{, } \ \textbf{E}_9 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} \text{, } \ \textbf{E}_9 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} \text{, } \ \textbf{E}_9 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} \text{, } \ \textbf{E}_9 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} \text{, } \ \textbf{E}_9 = \begin{pmatrix} 1 & 0$$

$$\mathbf{E}_6 = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

(iii)
$$\mathbf{A} = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

Question 4(a)

Determine if the matrix $\begin{pmatrix} -1 & 3 \\ 3 & -2 \end{pmatrix}$ is invertible. If it is invertible, find its inverse.

$$\left(\begin{array}{cc|c} -1 & 3 & 1 & 0 \\ 3 & -2 & 0 & 1 \end{array}\right) \xrightarrow{R_2 + 3R_1, \ -R_1, \ \frac{1}{7}R_2, \ R_1 + 3R_2} \left(\begin{array}{cc|c} 1 & 0 & \frac{2}{7} & \frac{3}{7} \\ 0 & 1 & \frac{3}{7} & \frac{1}{7} \end{array}\right).$$

Hence the matrix is invertible and its inverse is $\frac{1}{7}\begin{pmatrix} 2 & 3 \\ 3 & 1 \end{pmatrix}$.

Alternatively, may use

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$

Question 4(b)

Determine if the matrix
$$\begin{pmatrix} -1 & 3 & -4 \\ 2 & 4 & 1 \\ -4 & 2 & -9 \end{pmatrix}$$
 is invertible. If it is invertible, find its inverse.

$$\begin{pmatrix} -1 & 3 & -4 & 1 & 0 & 0 \\ 2 & 4 & 1 & 0 & 1 & 0 \\ -4 & 2 & -9 & 0 & 0 & 1 \end{pmatrix} \xrightarrow{R_2 + 2R_1, R_3 - 4R_1, R_3 + R_2} \begin{pmatrix} -1 & 3 & -4 & 1 & 0 & 0 \\ 0 & 10 & -7 & 2 & 1 & 0 \\ 0 & 0 & 0 & -2 & 1 & 1 \end{pmatrix}.$$

The matrix is not invertible.

Question 5

Write down the conditions so that the matrix $\begin{pmatrix} 1 & 1 & 1 \\ a & b & c \\ a^2 & b^2 & c^2 \end{pmatrix}$ is invertible.

- ► syms a b c; A=[1 1 1;a b c;a^2 b^2 c^2];
- $A(2,:)=A(2,:)-a*A(1,:); A(3,:)=A(3,:)-a^2*A(1,:)$
- \blacktriangleright A(3,:)=A(3,:)-(b+a)*A(2,:)
- ► A=simplify(A)

Alternatively, may use det(A).

Question 5

Write down the conditions so that the matrix $\begin{pmatrix} 1 & 1 & 1 \\ a & b & c \\ a^2 & b^2 & c^2 \end{pmatrix}$ is invertible.

$$\begin{pmatrix} 1 & 1 & 1 \\ a & b & c \\ a^2 & b^2 & c^2 \end{pmatrix} \xrightarrow{R_2 - aR_1} \begin{pmatrix} 1 & 1 & 1 \\ 0 & b - a & c - a \\ 0 & b^2 - a^2 & c^2 - a^2 \end{pmatrix} \xrightarrow{R_3 - (b+a)R_2} \begin{pmatrix} 1 & 1 & 1 \\ 0 & b - a & c - a \\ 0 & 0 & (c-a)(c-b) \end{pmatrix}$$

So we need $c \neq a$ and $c \neq b$ for the last row to be nonzero. Suppose so, we proceed,

$$\xrightarrow{\frac{1}{(c-a)(b-a)}R_3} \begin{pmatrix} 1 & 1 & 1 \\ 0 & b-a & c-a \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{R_2-(c-a)R_3} \begin{pmatrix} 1 & 1 & 0 \\ 0 & b-a & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

If $b \neq a$, then it is clear that the matrix can be reduced to the identity matrix. Thus the conditions are $a \neq b$, $b \neq c$, $c \neq a$, that is, they are distinct points.

Question 6(a)

Suppose **A** is a square matrix such that $\mathbf{A}^2 = \mathbf{0}$. Show that $\mathbf{I} - \mathbf{A}$ is invertible, with inverse $\mathbf{I} + \mathbf{A}$.

To show that I - A, suffice to check that it has a left inverse. Indeed,

$$(I - A)(I + A) = I^2 - A^2 = I.$$

Question 6(b)

Suppose $\mathbf{A}^3 = \mathbf{0}$. Is $\mathbf{I} - \mathbf{A}$ invertible?

Substituting **A** into the polynomial identity $(1-x)(1+x+x^2)=1-x^3$, we get

$$(I - A)(I + A + A^2) = I - A^3 = I.$$

Question 6(c)

A square matrix **A** is said to be *nilpotent* if there is a positive integer n such that $\mathbf{A}^n = \mathbf{0}$. Show that if **A** is nilpotent, then $\mathbf{I} - \mathbf{A}$ is invertible.

Substituting **A** into the polynomial identity $(1-x)(1+x+x^2+\cdots+x^{n-1})=1-x^n$, we get

$$(\mathbf{I} - \mathbf{A})(\mathbf{I} + \mathbf{A} + \cdots + \mathbf{A}^{n-1}) = \mathbf{I} - \mathbf{A}^n = \mathbf{I}.$$

Hence the inverse matrix of I - A is $(I + A + \cdots + A^{n-1})$.

Remark: The inverse could be derived from the formula for the sum of a geometric progression,

$$\sum_{k=1}^{n} x^{k-1} = \frac{1 - x^n}{1 - x},$$

which is equivalent to $(1-x)\sum_{k=1}^{n} x^{k-1} = 1-x^n$.

Extra: Show that every strictly upper or lower triangular matrix is nilpotent.

