10

15

20

25

30

1

Procédé de fabrication d'un produit plat en alliage de zirconium, produit plat ainsi obtenu et élément d'un assemblage combustible pour réacteur de centrale nucléaire réalisé à partir de ce produit plat.

L'invention concerne la fabrication de produits plats en alliage de zirconium, à partir desquels on fabrique notamment des pièces utilisées dans les assemblages combustibles pour réacteurs de centrales nucléaires à eau légère.

pièces entrant dans la constitution des assemblages Les combustibles pour réacteurs de centrales nucléaires à eau légère, notamment des réacteurs à eau bouillante, et qui doivent avoir une faible capacité d'absorption des neutrons, sont réalisées en un alliage de zirconium pouvant contenir également, entre autres, des éléments tels que Nb, Sn, Fe, Cr et Ni à des teneurs significatives. Les classes d'alliages dits « Zircaloy 2 » et « Zircaloy 4 » sont principalement utilisées. Le Zircaloy 2 renferme les éléments suivants (les teneurs, comme dans toute la description qui va suivre, sont exprimées en % pondéraux) : Sn = 1,2-1,7% ; Fe = 0,07-0,20% ; Cr = 0,05-0,15% ; Ni = 0,03 - 0,08%; O = 900 - 1600ppm. Le Zircaloy 4 renferme les mêmes éléments à l'exception du nickel, et la teneur en Fe peut aller de 0,18% à 0,24%. D'autres classes d'alliages de type Zircaloy 2 avec des teneurs en Fe et/ou Cr et/ou Ni plus élevées, ou d'autres alliages renfermant 0,5 à 2% de Sn, 0,5 à 2% de Nb et 0,1 à 0,5% de Fe, ou 0,5 à 2% de Sn, 0,1 à 1% de Fe et 0,1 à 1,2% de Cr, ou 1,5 à 3,5% de Nb et 0,5 à 2% de Sn peuvent être utilisés. Ces alliages peuvent également renfermer d'autres éléments d'addition, en plus des impuretés habituelles.

Une pièce particulièrement importante du réacteur qui est réalisée avec de tels alliages est le boîtier dans lequel sont installés les tubes renfermant le combustible. Ce boîtier doit avoir une excellente résistance à la corrosion, et aussi une grande stabilité dimensionnelle sous irradiation. Or, les alliages utilisés le plus usuellement pour former les tôles constituant ces boîtiers présentent des propriétés de croissance sous irradiation qui empêchent d'augmenter le taux de combustion du réacteur autant qu'il serait souhaitable.

2

Cette croissance sous irradiation est directement liée à la texture habituellement fortement anisotrope des produits plats à partir desquels sont fabriqués les boîtiers.

D'autres pièces importantes formées à partir de tels produits plats sont les grilles de réacteurs à eau bouillante ou pressurisée, et les tubes centraux délimitant les chemins de circulation de l'eau.

5

10

15

20

25

30

Les produits plats (tôles ou feuillards) à partir desquels ces pièces sont réalisées doivent également posséder des propriétés mécaniques leur assurant une bonne capacité à être mises en forme.

Des propositions d'amélioration des procédés de fabrication de tôles pour boîtiers sont présentées dans les documents EP-A-0 835 330 et EP-A-0 795 618.

EP-A-0 835 330 propose de préparer la tôle à partir d'un alliage de zirconium contenant des teneurs strictement contrôlées en certaines impuretés volatiles, à savoir entre 0,5 et 10ppm de Cl, de 5 à 20ppm d'au moins un élément choisi parmi Mg, Ca, Na et K, de 100 à 270ppm de C, de 50 à 120ppm de Si et de 1 à 30ppm de P. Après les opérations habituelles d'obtention de la tôle de départ, qui comportent notamment une trempe β lorsque la tôle est à son épaisseur finale ou quasi-finale, on pratique après la trempe β un traitement thermique de recuit entre 600 et 800°C dans un four statique ou entre 700 et 800°C dans un four continu. Après quoi, les opérations de pliage de la tôle en vue de la fabrication du boîtier sont effectuées. Grâce notamment à la teneur des impuretés volatiles citées et aux conditions de la trempe β, on obtient après la trempe β une structure aciculaire du type dit « basket weave » (à motif en vannerie), que le traitement thermique ultérieur veille à ne pas supprimer. On obtient ainsi une tôle présentant une bonne ductilité et une faible propension à se fissurer lors des opérations de formage, sans que les propriétés de résistance à la corrosion soient détériorées.

EP-A-0 795 618 décrit des tôles en alliage de zirconium à faible croissance sous irradiation, ne contenant pas plus de 5% de Sn et et/ou pas plus de 5% de Nb et pas moins de 90% de Zr, ayant une orientation cristalline <0001> en sens long FL de 0,2 à 0,35, et ayant une différence ΔFL des valeurs

10

15

20

25

30

de FL entre le milieu dans le sens de la largeur et l'extrémité dans le sens de la largeur de la tôle inférieure ou égale à 0,025. Ces tôles sont obtenues à la suite d'une trempe β , au cours de laquelle on minimise autant que possible les différences de température entre les faces de la tôle lors de la phase de chauffage de la trempe β . Ces tôles ont donc des orientations cristallines particulières isotropes produisant des effets de croissance réduite sous irradiation.

Toutefois, il s'avère que ces procédés ne permettent pas de parvenir à des produits plats possédant d'excellentes propriétés de déformabilité, du point de vue du pliage et de l'emboutissage. Ces propriétés sont pourtant essentielles pour l'obtention aisée de boîtiers dans des conditions optimales.

Le but de l'invention est de proposer un procédé de fabrication de produits plats en alliage de zirconium présentant à la fois de bonnes propriétés mécaniques et une faible croissance sous irradiation, de sorte que ces produits plats puissent être utilisés de manière optimale notamment, mais pas exclusivement, pour la fabrication de boîtiers de réacteurs nucléaires à eau bouillante.

A cet effet, l'invention a pour objet un procédé de fabrication d'un produit plat en alliage de zirconium, caractérisé en ce que :

- on élabore et on coule un lingot d'alliage de zirconium contenant au moins 95% en poids de zirconium, comportant les éléments d'alliage et les impuretés habituels ;
 - on met en forme ledit lingot pour obtenir un produit plat ;
- on soumet ledit produit plat à une opération de trempe β , dont les conditions sont déterminées en vue de l'obtention au sein du produit plat d'une structure aciculaire à l'issue de ladite trempe β ;
- on soumet ledit produit plat, après la trempe β , à une opération de laminage effectuée en une seule séquence de laminage sans recuit intermédiaire, ledit laminage étant effectué à une température comprise entre la température ambiante et 200°C, avec un taux de réduction compris entre 2 et 20%;

25

- et on soumet ledit produit plat laminé à un traitement de recuit dans le domaine α ou α + β effectué entre 500 et 800°C pendant 2 minutes à 10 heures.

Les teneurs pondérales des principaux éléments d'alliage peuvent 5 être Sn = 1,2 - 1,7%; Fe = 0,07 - 0,20%; Cr = 0,05 - 0,15%; Ni = 0,03 - 0,08%; O = 900 - 1600ppm.

Les teneurs pondérales des principaux éléments d'alliage peuvent être Sn = 1,2-1,7%; Fe = 0,18-0,24%; Cr = 0,05-0,15%; O = 900-1600ppm.

Les teneurs pondérales des principaux éléments d'alliage peuvent être Sn = 0.5 - 2%; Nb = 0.5 - 2%; Fe = 0.1 - 0.5%.

Les teneurs pondérales des principaux éléments d'alliage peuvent être Sn = 0.5 - 2%; Fe = 0.1 - 1%; Cr = 0.1 - 1.2%.

Les teneurs pondérales des principaux éléments d'alliage peuvent 15 être Nb = 1.5 - 3.5%; Sn = 0.5 - 2%.

Le laminage suivant la trempe β est effectué de préférence avec un taux de réduction de 5 à 16%, de préférence de 5 à 10%.

De préférence, le refroidissement de la trempe β est effectué à une vitesse d'au moins 1°C/s.

L'invention concerne également un produit plat en alliage de zirconium, caractérisé en ce qu'il est obtenu par le procédé précédent.

L'invention concerne également un élément d'un assemblage combustible pour réacteur de centrale nucléaire à eau légère, caractérisé en ce qu'il est obtenu par mise en forme d'un produit plat du type précédent.

Il peut consister en un boîtier de réacteur nucléaire à eau bouillante.

Il peut consister en une grille de réacteur à eau bouillante.

Il peut consister en une grille de réacteur à eau pressurisée.

Il peut consister en un tube central délimitant les chemins de circulation de l'eau.

Comme on l'aura compris, l'invention consiste en un procédé de fabrication d'un produit plat en alliage de zirconium adapté à l'obtention d'une structure intermédiaire partiellement recristallisée mixte, équiaxe et aciculaire,

5

comportant une étape de laminage à froid (ou à température modérément élevée), placée entre une trempe β et un recuit effectué dans le domaine α ou le domaine $\alpha + \beta$.

Dans le procédé de EP-A-0 835 330, la structure brute de trempe β est généralement une structure grossière à gros grains ex- β de 50 à 500 μ m. Ils sont peu orientés, leur texture est très marquée, avec des pics des figures de pôles très hauts, une bonne isotropie des propriétés, et des orientations cristallines privilégiées. Il apparaît que c'est cette microstructure en gros grains ex- β à texture très marquée qui est à l'origine des difficultés de mise en forme des tôles. Le recuit α ou α + β n'a aucune influence sur cette microstructure.

5

10

15

20

25

30

Les inventeurs ont imaginé qu'un arrangement des cristaux plus aléatoire et moins marqué pourrait conduire à une isotropie comparable des propriétés mécaniques, donc conserver de bonnes propriétés en termes de croissance sous irradiation, tout en s'avérant avantageux quant aux propriétés mécaniques.

Ils ont obtenu une telle structure grâce au laminage à froid ou à température modérément élevée précédant le recuit α ou α + β , laminage qui casse la structure aciculaire et les grains présents après la trempe β , et permet ainsi d'adoucir la texture, la rendant moins marquée, avec des pics moins hauts, avec une isotropie des propriétés qui peut être légèrement plus faible, mais avec des orientations plus aléatoires. Le recuit α ou α + β qui suit génère une recristallisation qui conduit à une texture à isotropie seulement faiblement dégradée, mais avec une microstructure montrant un mélange de grains équiaxes et d'aiguilles. Cette microstructure est affinée, ce qui est favorable à la déformabilité du matériau.

Il s'avère également que la rugosité du produit plat est divisée par 2, ce qui améliore les performances thermohydrauliques des produits finis, ainsi que les propriétés d'emboutissage.

Selon l'invention, le laminage à froid a lieu entre la température ambiante et 200°C. Il est effectué avec un taux de réduction de 2 à 20% (de préférence entre 5 et 15%, mieux entre 5 et 10%). Ce taux de réduction peut être obtenu en une ou plusieurs passes de laminage, mais obligatoirement en

10

15

20

25

30

une seule séquence de laminage, c'est à dire sans recuit intermédiaire entre les différentes passes. Un ou des recuits intermédiaires gêneraient ou empêcheraient la recristallisation lors du recuit α ou $\alpha + \beta$.

Le recuit effectué après le laminage à froid selon l'invention est effectué à une température de 500 à 800°C, c'est à dire soit dans le domaine α , soit dans le domaine $\alpha + \beta$ de l'alliage. Les températures les plus basses de cette gamme sont particulièrement adaptées au cas des alliages à teneur élevée en Nb (supérieure à 0,3% environ). La durée du recuit dépend du niveau de déformation subi par le produit lors du laminage et du type de l'installation de recuit (qui peut être continue ou statique).

L'invention sera mieux comprise à l'aide de la description qui suit, donnée en référence aux figures annexées suivantes :

- la figure 1 qui montre un exemple de structure métallurgique en lumière polarisée d'un échantillon d'alliage de zirconium après trempe β;
- la figure 2 qui montre de la même façon cet échantillon après laminage à froid ;
- la figure 3 qui montre de la même façon cet échantillon après laminage à froid et recuit, ayant donc subi toutes les étapes du procédé selon l'invention ;
- la figure 4 qui montre des figures de pôles d'un échantillon à l'état brut de trempe β (fig. 4a), et après un laminage à froid à 16% de taux de réduction et un recuit (fig. 4b).
 - la figure 5 qui montre des exemples de structure métallurgique en lumière polarisée d'échantillons d'alliage de zirconium après recuit final, un des échantillons ayant subi deux laminages à froid et un recuit intermédiaire (fig.5a), l'autre n'ayant subi qu'une laminage à froid selon l'invention (fig.5b);
 - la figure 6 qui montre des figures de pôles de ces deux échantillons (fig.6a et 6b respectivement).

Pour mettre en œuvre l'invention, on commence par élaborer un produit plat en alliage de zirconium par des étapes classiques de fusion d'un lingot, généralement forgeage du lingot, laminage à chaud, le cas échéant en plusieurs passes éventuellement séparées par des traitements thermiques,

7

généralement laminage(s) à froid et recuit(s), et enfin trempe β du matériau obtenu ; puis selon l'invention on exécute un laminage à froid et un recuit.

La composition de l'alliage peut correspondre, pour ses principaux éléments, à toutes sortes de classes d'alliages de zirconium habituellement utilisés pour fabriquer des éléments d'assemblage combustibles pour réacteurs nucléaires, en particulier des boîtiers de réacteurs à eau bouillante. Des exemples de telles classes ont été définis dans le préambule de la description. De manière générale, l'invention est applicable aux alliages de zirconium renfermant au moins 95% de zirconium. En deçà de 95%, il y a un risque élevé de ne pas obtenir les structures et les propriétés recherchées.

5

10

15

20

25

30

Pour toutes ces classes d'alliages, la trempe β a pour résultat l'obtention d'une structure aciculaire. Selon, en particulier, le niveau des impuretés présentes, cette structure peut présenter un caractère de vannerie plus ou moins marqué. Mais un tel caractère n'est pas particulièrement recherché dans le procédé selon l'invention, puisque de toute façon le laminage à froid qui va suivre modifie considérablement la structure en cassant la structure aciculaire.

La figure 1 montre la microstructure d'un échantillon de Zircaloy 4 de composition Sn = 1,44%, Fe = 0,21%, Cr = 0,11%, O = 0,12%, Si = 40ppm, le reste étant du Zr et les impuretés habituelles, obtenu à partir d'un lingot de 660mm de diamètre ayant subi des traitements de mise en forme classiques (forgeage à 100mm d'épaisseur, laminage à chaud à 5mm d'épaisseur, recuit et plusieurs cycles de laminage à froid-recuit, qui lui ont conféré une épaisseur de 2,50mm, ainsi qu'une trempe β effectuée par chauffage infra-rouges à une température maximale de 1110°C, maintien en phase β pendant 93s et refroidissement à 2-5°C/s jusqu'à la température ambianté.

On voit que cette microstructure est typique d'un état suivant une trempe β , avec un mélange de platelets parallèles et de vannerie. Dans l'exemple représenté, on observe aussi de nombreuses macles, mais cela peut provenir du processus de préparation de l'échantillon, ou du bobinage qui a suivi la trempe β .

10

15

20

Le figure 2 montre l'échantillon de ce même métal trempé β, après qu'il a subi un laminage à froid selon l'invention effectué à température ambiante et avec un taux de réduction de 12% en une passe. Ce laminage à froid à permis de casser les aiguilles de la structure initiale et a augmenté le nombre de macles.

La figure 3 montre un échantillon de ce même métal trempé β , laminé à froid à 12% et recuit à 700°C pendant 1h (recuit α). Il y a eu recristallisation partielle et augmentation du nombre de grains équiaxes (augmentation qui est d'autant plus forte que le taux de réduction est élevé), ainsi qu'une disparition des macles.

Le tableau 1 montre les facteurs de Kearns FR, FT et FL mesurés à la suite d'analyses des textures des différents échantillons à l'état suivant la trempe β , suivant le laminage à froid (LAF) et suivant le recuit α :

Etat	Taux de réduction	FR	FT	FL
métallurgique	au LAF(%)			
après trempe β	0	0.319	0.335	0.346
Après LAF	5	0.367	0.317	0.316
	8	0.415	0.315	0.27
	12	0.475	0.293	0.232
	16	0.471	0.322	0.207
Après LAF et	5	0.444	0.297	0.259
recuit α	8	0.424	0.314	0.262
	12	0.478	0.332	0.19
	16	0.499	0.317	0.184

Tableau 1

On constate que dans cet exemple, l'isotropie de l'échantillon, qui était quasi-parfaite après la trempe β , n'a été que relativement peu dégradée par le laminage à froid et le recuit α qui ont suivi.

Les figures de pôles de ces échantillons montrent quelques pôles accusés, dont deux dans le plan normal-transversal à environ 30° de la direction

normale qui ne disparaissent pas quels que soient le taux de réduction du laminage à froid et les conditions de recuit. En revanche, il y a une diminution significative des pôles sur l'axe C à 90° de la direction normale dès les taux de réduction relativement faibles de 2%, et une disparition totale de ces pôles dès 5% de taux de réduction. La figure 4 montre de telles figures de pôles, obtenues sur les échantillons à l'état suivant la trempe β (figure 4a) et à l'état laminé à froid avec un taux de réduction de 16% et recuit (figure 4b).

La structure des échantillons selon l'invention présente des orientations plus aléatoires que dans l'art antérieur.

Au-delà de 20% de taux de réduction, l'isotropie est trop dégradée. Pour assurer une isotropie satisfaisante dans tous les cas, il est conseillé de ne pas dépasser des taux de réduction de 16%.

Du point de vue des propriétés mécaniques, on a effectué des comparaisons entre :

15

20

5

10

- un échantillon A conforme à l'art antérieur en ce que :
 - sa composition était Sn = 1,33%; Fe = 0,16%; Cr = 0,10%; Ni = 0,065%; O = 0,12%, le reste étant du Zr et les impuretés habituelles;
 - il a subi, après une trempe β , un recuit α à 750°C pendant 3 minutes ; et
- un échantillon B élaboré par le procédé selon l'invention, en ce que :
 - sa composition était la même que celle de l'échantillon A
 - il a subi une trempe β , un laminage à froid à température ambiante avec un taux de réduction de 10%, puis un recuit α à 750°C pendant 3 minutes.

Des tests de caractérisation mécanique ont été pratiqués à température ambiante, et leurs résultats sont regroupés dans le tableau 2.

25

		Echantillon A (référence)	Echantillon B (invention)
Résistance à la	Sens long	520,7	518,0
traction (MPa)	Sens travers	522,3	528,3
Limite d'élasticité conventionnelle	Sens long	394,0	408,7
0,2% (MPa)	Sens travers	411,3	445 ,0
Allongement à la	Sens long	24,0	24,3
rupture (%)	Sens travers	22,1	23,0
Rugosité Ra (µm)	Sens long	0,45	0,21
	Sens travers	0,46	0,19

Tableau 2

10

5

Il ressort de ces résultats que dans le cas de l'utilisation de l'invention, la résistance à la traction en sens travers augmente en même temps que l'allongement à la rupture, alors que l'on observe habituellement une variation inverse de ces deux grandeurs. Par ailleurs, la résistance à la traction en sens long n'est pas affectée de façon réellement significative par le traitement selon l'invention.

L'invention a également permis une diminution de moitié de la rugosité de l'échantillon.

15

20

On note également que la capacité de pliage pour le rayon 3e n'est pas détériorée par le traitement selon l'invention.

D'autres essais ont consisté à préparer des échantillons de composition Sn = 1,46%; Fe = 0,21%; Cr = 0,10%; O = 0,11%, le reste étant du zirconium et des impuretés habituelles, et à leur faire subir les traitements suivants :

- laminage à chaud sous forme d'une tôle de 5,6mm d'épaisseur ;

10

15

20

- recuit sous vide à 700°C pendant 2 heures ;
- laminage à froid à 50% de taux de réduction ;
- trempe β par chauffage sous vide ou en bain de sel à 1030°C suivi soit par un refroidissement relativement lent à l'argon à une vitesse d'environ 4°C/min effectué dans un four statique, soit par une trempe rapide à l'eau, donc à une vitesse supérieure à 100°C/s ;
- laminage à froid en une seule séquence sans recuit intermédiaire avec un taux de réduction jusqu'à 30% selon les essais ;
 - recuit sous vide de durée 2h à 600°C.

A la suite de ces essais on peut observer les phénomènes suivants.

Un taux de réduction de plus de 20% est susceptible de faire apparaı̂tre des criques superficielles, si le refroidissement de la trempe β a été lent.

Les structures obtenues sont, pour les deux modes considérés de refroidissement lors de la trempe β, d'autant plus hétérogènes que le taux de réduction du laminage à froid est élevé. Les échantillons ayant été refroidis rapidement présentent des grains recristallisés plus gros que ceux des échantillons refroidis plus lentement.

Concernant les facteurs de Kearns mesurés sur les divers échantillons (brut de trempe ou après recuit), les résultats sont regroupés dans le tableau 3, où on a également indiqué le rapport R/e mesuré lors d'essais de pliage :

Etat	Taux de	FR	FT	FL	R/e
métallurgique	réduction				
	au LAF				
	(%)				
	0 (brut de	0,429	0,287	0,284	2,55-2,8
	trempe)		•		
Après trempe β	6,2	0,498	0,287	0,215	2,45-2,75
par chauffage					
sous vide et	10,4	0,548	0,257	0,195	2,85-3,15
refroidissement	15,4	0,493	0,303	0,204	3,55-4,1
à l'argon	20,8	0,445	0,382	0,174	3,6-4,2
	29,3	0,604	0,260	0,136	3-3,5
	0 (brut de	0,352	0,324	0,324	2,17-2,36
Après trempe β	trempe)				
par chauffage	5,9	0,371	0,336	0,294	2,04-2,24
en bain de sel	8,9	0,425	0,352	0,222	1,91-2,02
et	13,7	0,338	0,193	0,193	0,92-1,06
refroidissement	20,5	0,474	0,373	0,153	1,10-1,20
à l'eau	27,1	0,437	0,415	0,148	0,78-0,91
	·	Tables	. 2	'	

Tableau 3

On constate que, pour les deux types de trempe, le facteur FL évolue de façon similaire, à savoir qu'il traduit une isotropie se dégradant progressivement lorsque le taux de réduction du laminage à froid augmente. Audelà de 20%, on considère qu'elle n'est plus satisfaisante, et il est préférable, pour assurer dans tous les cas une isotropie correcte, de ne pas dépasser 16%, ou encore mieux 10%. Dans le même temps, les facteurs FR et FT évoluent de manière aléatoire.

5

10

13

On a également pu constater que la résistance à la corrosion nodulaire à 500°C des échantillons n'était pas influencée par le taux de réduction du laminage à froid. En revanche, elle est significativement influencée par le mode de refroidissement pratiqué lors de la trempe β. Les échantillons ayant subi une vitesse de refroidissement élevée (trempe à l'eau) présentent un gain de masse de l'ordre de 50mg/dm², contre environ 175 mg/dm² pour les échantillons ayant subi un refroidissement lent (à l'argon). De ce point de vue, un refroidissement rapide est donc avantageux.

5

10

15

20

25

30

On a également réalisé des essais de pliage des échantillons. Un faible rapport entre R (rayon de courbure à l'apparition de criques) et e (épaisseur de l'échantillon) est l'indice d'une bonne capacité au pliage. De ce point de vue, les échantillons ayant subi un refroidissement rapide lors de la trempe β sont les meilleurs, et leur capacité au pliage augmente avec le taux de réduction au laminage à froid. Les échantillons ayant subi un refroidissement lent lors de la trempe β sont moins satisfaisants et une augmentation du taux de réduction au laminage à froid tend à dégrader leur capacité au pliage.

Cette influence contradictoire du taux de réduction sur la capacité au pliage pour les deux modes de refroidissement pourrait être due aux différences structurales obtenues par ces deux modes. Le refroidissement lent procure des petits grains équiaxes dans une matrice d'aiguilles grossières, alors que le refroidissement rapide procure des gros grains équiaxes dans une matrice d'aiguilles fines, ce qui est plus favorable à une déformation facile de la tôle.

Les effets positifs d'un refroidissement rapide par rapport au refroidissement lent de 4°C/min de l'exemple commencent à être sensibles pour des vitesses de refroidissement de 1°C/s qui sont aisément accessibles industriellement, notamment par un refroidissement à l'argon effectué au défilé par convection forcée, lorsque la tôle sort d'une zone de chauffe.

Par ailleurs, on a réalisé des essais montrant que le laminage à froid suivant la trempe β doit, selon l'invention, être réalisé en une seule séquence, c'est-à-dire sans recuit intermédiaire.

10

15

20

25

Une tôle de composition identique à celle des échantillons A et B précédemment cités laminée à chaud puis à froid jusqu'à une épaisseur de 2,56mm a subi une trempe β par chauffage à 1100°C en 93s et refroidie à une vitesse de 3,6°C/s à l'argon. Puis un échantillon de référence a subi un premier laminage à froid à un taux de réduction de 8%, un recuit intermédiaire de 1h à 700°C, un deuxième laminage à froid à un taux de réduction de 4% et un recuit final à 700°C pendant 1h. Un échantillon de cette même tôle a, lui, subi selon l'invention un unique laminage à froid à un taux de réduction de 12%, pour aboutir en une seule séquence à un produit d'épaisseur quasiment identique au produit de référence. Ce produit a ensuite, lui aussi, été recuit à 700°C pendant 1h.

On peut constater que le produit de référence, après recuit final, présente une moins bonne planéité que le produit élaboré selon l'invention. De ce point de vue, la passe de laminage à faible taux de réduction (moins de 5%) a été dommageable. De manière générale, dans le cadre de l'invention il peut être préférable, pour obtenir une bonne planéité, que la première passe de laminage à froid soit effectuée avec un taux de réduction d'au moins 5%.

La figure 5a montre une micrographie en lumière polarisée de l'échantillon de référence après recuit final. Sa structure est encore aciculaire avec peu de zones suffisamment déformées pour recristalliser, et il y subsiste de grandes plages de platelets parallèles.

La figure 5b montre dans les mêmes conditions l'échantillon selon l'invention après recuit final. On y trouve des zones recristallisées, et pas de plages de platelets parallèles. Ce traitement sans recuit intermédiaire selon l'invention s'est donc montré plus apte à casser la structure aciculaire obtenue après la trempe β .

Les facteurs de Kearns des échantillons après recuit final sont exposés dans le tableau 4.

	FR	FT	FL
Référence	0,458	0,341	0,201
Invention	0,450	0,348	0,202

Tableau 4

On n'observe pas, de ce point de vue, de différences significatives entre les deux échantillons, et ces résultats sont en bon accord avec ceux précédemment présentés.

5

10

15

20

25

30

La figure 6 montre les figures de pôles calculées 002 et 100 après recuit final pour l'échantillon de référence (figure 6a) et l'échantillon selon l'invention (figure 6b). Les textures de ces échantillons sont intermédiaires entre un état trempé et un état recristallisé classique, avec un ou deux pôles très fins et très intenses dans le plan normal-transversal à environ 30° de la direction normale. Il y a également des pôles près de la direction transversale et dans le plan longitudinal-transversal. L'échantillon de référence présente une forte asymétrie, et des textures beaucoup plus intenses que l'échantillon selon l'invention. Ces caractéristiques sont défavorables à l'isotropie et à l'emboutissabilité du matériau. Pour obtenir des produits satisfaisants du point de vue de leurs propriétés mécaniques, il faut donc éviter de procéder à un ou des recuits intermédiaires entre deux passes du laminage à froid suivant la trempe β. Mais un laminage à froid en plusieurs passes sans recuits intermédiaires dont le taux de réduction total demeurerait inférieur ou égal à 20% est possible.

Une possible explication du caractère défavorable des recuits intermédiaires est la suivante. Si on déforme de quelques % un matériau trempé à structure aciculaire, toutes les aiguilles constituant les grains ne sont pas déformées, mais seulement celles qui sont les plus favorablement orientées par rapport à la déformation appliquée. Si on recuit le matériau, ces grains déformés vont être restaurés ou recristallisés, donc redevenir plus déformables. Et lors d'une déformation ultérieure, ils risquent de se déformer préférentiellement et d'empêcher les autres aiguilles de se briser, ce qui gêne donc l'affinement de la structure recherché dans l'invention.

En revanche, si après le premier laminage à froid on effectue un laminage à froid supplémentaire sans recuit intermédiaire, cela permet de briser

16

des aiguilles qui n'avaient pas été affectées par le premier laminage, d'autant plus que les aiguilles déformées lors du premier laminage ont été durcies et sont donc devenues moins déformables.

L'affinement de la structure recherché peut donc être obtenu, à taux de réduction égal, soit par un laminage à froid unique qui va d'emblée briser un relativement grand nombre d'aiguilles, soit par une succession de laminages à froid sans recuits intermédiaire qui briseront plus ou moins précocément les aiguilles selon leurs orientations.

5

10

15

Globalement, les propriétés mécaniques de produits plats (tôles ou feuillards) obtenus par le procédé selon l'invention leur confèrent une meilleure déformabilité et emboutissabilité que les produits plats de l'art antérieur. Ils sont ainsi mieux adaptés, notamment, à la fabrication par différents procédés de formage de pièces entrant dans la composition des assemblages combustibles pour réacteurs de centrales nucléaires, puisque par ailleurs, leur isotropie n'est que peu ou pas dégradée par rapport aux produits plats de l'art antérieur.

Une application privilégiée de l'invention est la réalisation de boîtiers pour réacteurs à eau bouillante. Les grilles et tubes centraux peuvent également avantageusement être obtenus à partir de produits plats élaborés par le procédé selon l'invention.

15

30

REVENDICATIONS

- 1. Procédé de fabrication d'un produit plat en alliage de zirconium, caractérisé en ce que :
- on élabore et on coule un lingot d'alliage de zirconium contenant au
 moins 95% en poids de zirconium, comportant les éléments d'alliage et les impuretés habituels;
 - on met en forme ledit lingot pour obtenir un produit plat ;
 - on soumet ledit produit plat à une opération de trempe β , dont les conditions sont déterminées en vue de l'obtention au sein du produit plat d'une structure aciculaire à l'issue de ladite trempe β ;
 - on soumet ledit produit plat, après la trempe β , à une opération de laminage effectuée en une seule séquence de laminage sans recuit intermédiaire, ledit laminage étant effectué à une température comprise entre la température ambiante et 200°C, avec un taux de réduction compris entre 2 et 20% ;
 - et on soumet ledit produit plat laminé à un traitement de recuit dans le domaine α ou α + β effectué entre 500 et 800°C pendant 2 minutes à 10 heures.
- 2. Procédé selon la revendication 1, caractérisé en ce que ses teneurs pondérales en éléments d'alliage sont Sn = 1,2 1,7%; Fe = 0,07 0,20%; Cr = 0,05 0,15%; Ni = 0,03 0,08%; O = 900 1600ppm.
 - 3. Procédé selon la revendication 1, caractérisé en ce que ses teneurs pondérales en éléments d'alliage sont Sn = 1,2-1,7%; Fe = 0,18-0,24%; Cr = 0,05-0,15%; O = 900-1600ppm.
- 4. Procédé selon la revendication 1, caractérisé en ce que ses teneurs pondérales en éléments d'alliage sont Sn = 0.5 2%; Nb = 0.5 2%; Fe = 0.1 0.5%.
 - 5. Procédé selon la revendication 1, caractérisé en ce que ses teneurs pondérales en éléments d'alliage sont Sn = 0.5 2%; Fe = 0.1 1%; Cr = 0.1 1.2%.
 - 6. Procédé selon la revendication 1, caractérisé en ce que ses teneurs pondérales en éléments d'alliage sont Nb = 1,5 3,5%; Sn = 0,5 2%.

WO 2005/021818

7. Procédé selon l'une des revendications 1 à 6, caractérisé en ce que le laminage suivant la trempe β est effectué avec un taux de réduction de 5 à 16%.

18

PCT/FR2004/001923

- 8. Procédé selon la revendication 7, caractérisé en ce que le laminage suivant la trempe β est effectué avec un taux de réduction de 5 à 10%.
 - 9. Procédé selon l'une des revendications 1 à 8, caractérisé en ce que le refroidissement de la trempe β est effectué à une vitesse d'au moins 1°C/s.
- 10. Produit plat en alliage de zirconium, caractérisée en ce qu'il est obtenu par le procédé suivant l'une des revendications 1 à 9.
 - 11. Elément d'un assemblage combustible pour réacteur de centrale nucléaire à eau légère, caractérisé en ce qu'il est obtenu par mise en forme d'un produit plat selon la revendication 10.
- 12. Elément d'un assemblage combustible pour réacteur de centrale nucléaire selon la revendication 11, caractérisé en ce qu'il consiste en un boîţier de réacteur nucléaire à eau bouillante.
 - 13. Elément d'un assemblage combustible pour réacteur de centrale nucléaire selon la revendication 11, caractérisé en ce qu'il consiste en une grille de réacteur à eau bouillante.

20

- 14. Elément d'un assemblage combustible pour réacteur de centrale nucléaire selon la revendication 11, caractérisé en ce qu'il consiste en une grille de réacteur à eau pressurisée.
- 15. Elément d'un assemblage combustible pour réacteur de centrale
 nucléaire selon la revendication 11, caractérisé en ce qu'il consiste en un tube central délimitant les chemins de circulation de l'eau.

1/5

FIG.1

FIG.2

2/5

<u>FIG.3</u>

Figure de pôle calculée 002

Figure de pôle calculée 100

FIG.4a

Figure de pôle calculée 002

Figure de pôle calculée 100

FIG.4b

4/5

<u>FIG.5a</u>

<u>FIG.5b</u>

FIG.5

Figure de pôle calculée 002

Figure de pôle calculée 100

FIG.6a

Figure de pôle calculée 002

Figure de pôle calculée 100

FIG.6b

FIG.6

INTERNATIONAL SEARCH REPORT

Initiational Application No PCT/FR2004/001923

A. CLASSIFIC	CATION OF SUBJE	CT MATTER
IPC 7	C22F1/18	C22C16/00

According to international Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols) IPC 7 C22F C22C

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data, PAJ, INSPEC

Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No
X	PATENT ABSTRACTS OF JAPAN vol. 1998, no. 02, 30 January 1998 (1998-01-30) & JP 09 257988 A (NUCLEAR FUEL IND LTD), 3 October 1997 (1997-10-03) abstract	1-15
A	WO 97/40659 A (ASEA ATOM AB ;DAHLBAECK MATS (SE)) 6 November 1997 (1997-11-06)	
A	EP 0 795 618 A (HITACHI LTD) 17 September 1997 (1997-09-17)	
A	EP 0 647 724 A (CEZUS CO EUROP ZIRCONIUM) 12 April 1995 (1995-04-12)	
A	FR 2 303 865 A (ASEA ATOM AB) 8 October 1976 (1976-10-08)	

X Further documents are listed in the continuation of box C	Patent family members are listed in annex.
Special categories of cited documents. A' document defining the general state of the art which is not considered to be of particular relevance. E' earlier document but published on or after the international filing date. L' document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified). O' document referring to an oral disclosure, use, exhibition or other means. P' document published prior to the international fitting date but later than the priority date claimed.	 "T" later document published after the international filling date or priority date and not in conflict with the application but cated to understand the principle or theory underlying the invention "X" document of particular relevance, the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevance, the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. "&" document member of the same patent family
Date of the actual completion of the international search	Date of mailing of the international search report
27 January 2005	03/02/2005
Name and mailing address of the ISA European Patent Office, P.B 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel (+31-70) 340-2040, Tx 31 651 epo nl,	Authorized officer
Fax. (+31-70) 340-3016	Chebeleu, A

INTERNATIONAL SEARCH REPORT

Interional Application No PCT/FR2004/001923

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT				
Category *	Cdation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No		
А	FR 2 673 198 A (CEZUS CO EUROP ZIRCONIUM) 28 August 1992 (1992-08-28)			
		·		

INTERNATIONAL SEARCH REPORT

formation on patent family members

Interponal Application No PCT/FR2004/001923

	nt document n search report		Publication date		Patent family member(s)	Publication date
JP 0	9257988	Α	03-10-1997	NONE		
WO 9	740659	Α	06-11-1997	DE	69706623 D1	18-10-2001
				DE	69706623 T2	27-06-2002
				EP	0835330 A1	15-04-1998
				ES	2162287 T3	16-12-2001
				JP	11509634 T	24-08-1999
				WO	9740659 A1	06-11-1997
				US	6149738 A	21-11-2000
EP (795618	A	17-09-1997	JP	9249927 A	22-09-1997
				DE	69702222 D1	13-07-2000
				DE	69702222 T2	26-10-2000
				EP	0795618 A1	17-09-1997
				US	5862194 A	19-01-1999
EP (0647724	Α	12-04-1995	FR	2711147 A1	21-04-1995
				DE	69416071 D1	04-03-1999
				DE	69416071 T2	27-05-1999
				EP	0647724 A1	12-04-1995
				ES	2126729 T3	01-04-1999
				JP	2862484 B2	03-03-1999
				JP	7150315 A	13-06-1995
				KR	264824 B1	01-09-2000
	~=			US 	5478419 A	26-12 - 1995
FR	2303865	Α	08-10-1976	SE	391952 B	07-03-1977
				SE	394201 B	13-06-1977
				BE	839319 A1	01-07-1976
				DE	2608824 A1	23-09-1976
				DK	106376 A	15-09-1976
				ES	445976 A1	16-10-1977
				FI	760638 A ,	
				FR	2303865 A1	08-10-1976
				GB	1537930 A	10-01-1979
				IT	1057731 B	30-03-1982
				JP	51116106 A	13-10-1976
				NL	7602275 A	16-09-1976
				NO	760851 A ,	
				SE	7502865 A	15-09-1976
				SE	7511523 A	16-04-1977
FR	2673198	Α	28-08-1992	FR	2673198 A1	28-08-1992
				US	5256216 A	26-10-1993

RAPPORT DE RECHERCHE INTERNATIONALE

de Internationale No PCT/FR2004/001923

A. CLASSEMENT DE L'OBJET DE LA DEMANDE CIB 7 C22F1/18 C22C16/00

Selon la classification internationale des brevets (CIB) ou à la tois selon la classification nationale et la CIB

B. DOMAINES SUR LESQUELS LA RECHERCHE A PORTE

Documentation minimale consultee (système de classification suivi des symboles de classement) CIB 7 C22F C22C

Documentation consultée autre que la documentation minimale dans la mesure où ces documents relèvent des domaines sur lesquels a porte la recherche

Base de données électronique consultée au cours de la recherche internationale (nom de la base de données, et si réalisable, termes de recherche utilisés) EPO-Internal, WPI Data, PAJ, INSPEC

C. DOCUMENTS CONSIDERES COMME PERTINENTS		
Categorie *	Identification des documents cités, avec, le cas	

Categorie *	Identification des documents cités, avec, le cas echéant, l'indication des passages pertinents	no des revendications visées
X	PATENT ABSTRACTS OF JAPAN vol. 1998, no. 02, 30 janvier 1998 (1998-01-30) & JP 09 257988 A (NUCLEAR FUEL IND LTD), 3 octobre 1997 (1997-10-03) abrégé	1-15
Α	WO 97/40659 A (ASEA ATOM AB ;DAHLBAECK MATS (SE)) 6 novembre 1997 (1997-11-06)	
A	EP 0 795 618 A (HITACHI LTD) 17 septembre 1997 (1997-09-17)	
A	EP 0 647 724 A (CEZUS CO EUROP ZIRCONIUM) 12 avril 1995 (1995-04-12)	
A	FR 2 303 865 A (ASEA ATOM AB) 8 octobre 1976 (1976-10-08)	

Voir la suite du cadre C pour la fin de la liste des documents	Les documents de familles de brevets sont indiqués en annexe		
° Catégones spéciales de documents cités.	T* document ultérieur publié après la date de dépôt international ou la		
"A" document définissant l'état général de la technique, non considéré comme particulierement pertinent	date de pronté et n'apparienenant pas à l'etat de la technique pertinent, mais cité pour comprendre le principe ou la théone constituant la base de l'invention		
	X° document particulièrement pertinent; l'inven tion revendiquée ne peut		
"L" document pouvant jeter un doute sur une revendication de pnorté ou cité pour determiner la date de publication d'une autre citation ou pour une raison spéciale (telle qu'indiquee)	 être considérée comme nouvelle ou comme impliquant une activité inventive par rapport au document considére isolement 'Y' document particulièrement pertinent; l'inven ton revendiquée ne peut être considerée comme impliquant une activité inventive lorsque le document est associé à un ou plusieurs autres documents de même nature, cette combinaison étant évidente pour une personne du mêtier '&' document qui fait partie de la même famille de brevets 		
"O" document se référant à une divulgation orale, a un usage, à une exposition ou tous autres moyens			
'P' document publie avant la date de dépôt international, mais posténeurement à la date de priorité revendiquée			
Date à laquelle la recherche internationale a été effectivement achevée	Date d'expédition du présent rapport de recherche internationale		
27 janvier 2005	03/02/2005		
Nom et adresse postale de l'administration chargée de la recherche internationale Office Europeen des Brevets, P.B. 5818 Patentlaan 2	Fonctionnaire autorisé		
NL - 2280 HV Riswijk Tel. (+31-70) 340-2040, Tx 31 651 epo nl, Fax (+31-70) 340-3016	Chebeleu, A		

RAPPORT DE RECHERCHE INTERNATIONALE

Der e Internationale No PCT/FR2004/001923

C.(suite) DOCUMENTS CONSIDERES COMME PERTINENTS								
Catégorie °		no. des revendications visees						
A	FR 2 673 198 A (CEZUS CO EUROP ZIRCONIUM) 28 août 1992 (1992-08-28)							

RAPPORT DE RECHERCHE INTERNATIONALE

Renselgnements relatifs

membres de familles de brevets

Den e Internationale No PCT/FR2004/001923

						
Document brevet cité lu rapport de recherche			Date de publication	Membre(s) de la famille de brevet(s)		Date de publication
JP (09257988	Α	03-10-1997	AUCUN		
WO 9	 9740659	A	06-11-1997	DE	69706623 D1	18-10-2001
	3. 10003	••	00 11 1337	DE	69706623 T2	27-06-2002
				EP	0835330 A1	15-04-1998
				ES	2162287 T3	16-12-2001
				JP	11509634 T	24-08-1999
				WO	9740659 A1	06-11-1997
				US	6149738 A	21-11-2000
EP (0795618	Α	17-09-1997	JP	9249927 A	22-09-1997
				DE	69702222 D1	13-07-2000
				DE	69702222 T2	26-10-2000
				EP	0795618 A1	17-09-1997
				US	5862194 A	19-01-1999
EP	0647724	A	12-04-1995	FR	2711147 A1	21-04-1995
				DE	69416071 D1	04-03-1999
				DE	69416071 T2	27-05-1999
				ΕP	0647724 A1	12-04-1995
				ES	2126729 T3	01-04-1999
				JP	2862484 B2	03-03-1999
				JP	7150315 A	13-06-1995
				KR	264824 B1	01-09-2000
				US	5478419 A	26-12-1995
FR	2303865	Α	08-10-1976	SE	391952 B	07-03-1977
				SE	394201 B	13-06-1977
				BE	839319 A1	01-07-1976
				DE	2608824 A1	23-09-1976
				DK	106376 A	15-09-1976
				ES	445976 A1	16-10-1977
				FI	760638 A ,B,	15-09-1976
				FR	2303865 A1	08-10-1976
				GB	1537930 A	10-01-1979
				ΙT	1057731 B	30-03-1982
				JP	51116106 A	13-10-1976
				NL	7602275 A	16-09-1976
				NO	760851 A ,B,	15-09-1976
				SE	7502865 A	15-09-1976
				SE	7511523 A	16-04-1977
FR	2673198	A	28-08-1992	FR	2673198 A1	28-08-1992
				US	5256216 A	26-10-1993

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.