# Лабораторная работа №5

Модель эпидемии (SIR)

Кадров Виктор Максимович

# Содержание

| 1  | Цел                                     | ь работы                                                 | 4  |  |
|----|-----------------------------------------|----------------------------------------------------------|----|--|
| 2  | Зад                                     | ание                                                     | 5  |  |
| 3  | Выг                                     | олнение лабораторной работы                              | 6  |  |
|    | 3.1                                     | Математическая модель                                    | 6  |  |
|    | 3.2                                     | Реализация модели в xcos                                 | 6  |  |
|    | 3.3                                     | Реализация модели с помощью блока Modelica в xcos        | 10 |  |
|    | 3.4                                     | Реализация модели SIR в OpenModelica                     | 14 |  |
| 4  | Задание для самостоятельного выполнения |                                                          | 16 |  |
|    | 4.1                                     | Модель SIR с учетом демографии                           | 16 |  |
|    | 4.2                                     | Реализация модели в xcos                                 | 16 |  |
|    | 4.3                                     | Реализация модели с использованием блока Modelica в xcos | 18 |  |
|    | 4.4                                     | Реализация модели SIR с учетом демографии в OpenModelica | 21 |  |
|    | 4.5                                     | Анализ графиков при разных параметрах модели             | 22 |  |
| 5  | Выв                                     | оды                                                      | 25 |  |
| Сп | Список литературы                       |                                                          |    |  |

# Список иллюстраций

| 3.1  | Ввод переменных окружения                                          | 7  |
|------|--------------------------------------------------------------------|----|
| 3.2  | Модель SIR в xcos                                                  | 8  |
| 3.3  | Задать начальные значение в блоке интегрирования для S             | 8  |
| 3.4  | Задать начальные значение в блоке интегрирования для I             | 9  |
| 3.5  | Зададим конечное время интегрирования                              | 9  |
| 3.6  | Результат моделирования в xcos                                     | 10 |
| 3.7  | Модель SIR в xcos с применением блока Modelica                     | 11 |
| 3.8  | Параметры блока Modelica                                           | 12 |
| 3.9  | 1 1                                                                | 13 |
| 3.10 | Результат моделирования с помощью блока Modelica в xcos            | 13 |
| 3.11 | Реализация модели SIR в OpenModelica                               | 14 |
| 3.12 | Зададим интервал симуляции                                         | 14 |
| 3.13 | Результат реализации модели SIR в OpenModelica                     | 15 |
| 4.1  | Модель SIR, учитывая демографические процессы, в xcos              | 17 |
| 4.2  | Результат моделирования SIR, учитывая демографические              |    |
|      | процессы, в хсоз                                                   | 18 |
| 4.3  | Модель SIR с учетом демографии в xcos с применением блока Modelica | 19 |
| 4.4  | Параметры блока Modelica. Модель SIR с учетом демографии           | 19 |
| 4.5  | Код на языке Modelica. Модель SIR с учетом демографии              | 20 |
| 4.6  | Результат моделирования SIR с учетом демографии с помощью блока    |    |
|      | Modelica в xcos                                                    | 20 |
| 4.7  | Реализация модели SIR с учетом демографии в OpenModelica           | 21 |
| 4.8  | Результат реализации модели SIR с учетом демографии в OpenModelica | 21 |
| 4.9  | Модель SIR с учетом демографии при $\beta=1, \nu=0.3, \mu=0.8.$    |    |
|      | OpenModelica                                                       | 22 |
| 4.10 | Модель SIR с учетом демографии при $\beta=1, \nu=0.4, \mu=0.1.$    |    |
|      | OpenModelica                                                       | 22 |
| 4.11 | Модель SIR с учетом демографии при $\beta=1, \nu=0.3, \mu=0.05.$   |    |
|      | OpenModelica                                                       | 23 |
| 4.12 | Модель SIR с учетом демографии при $\beta=4, \nu=0.3, \mu=0.1.$    |    |
|      | OpenModelica                                                       | 23 |
| 4.13 | Модель SIR с учетом демографии при $\beta=1, \nu=0.3, \mu=0.4.$    |    |
|      | OpenModelica                                                       | 24 |

# 1 Цель работы

Исслеодвать модель эпидемии(SIR) с помощью программы xcos и OpenModelica.

#### 2 Задание

- рассмотреть модель SIR в xcos (в том числе и с использованием блока Modelica), а также в OpenModelica;
- реализовать модель SIR с учётом процесса рождения / гибели особей в хсоз (в том числе и с использованием блока Modelica), а также в OpenModelica;
- построить графики эпидемического порога при различных значениях параметров модели (в частности изменяя параметр µ);
- сделать анализ полученных графиков в зависимости от выбранных значений параметров модели.

### 3 Выполнение лабораторной работы

#### 3.1 Математическая модель

$$\begin{cases} \frac{dS}{dt} = -\frac{\beta IS}{N}, \\ \frac{dI}{dt} = \frac{\beta IS}{N} - \gamma I, \\ \frac{dR}{dt} = \gamma I, \end{cases}$$

где S – численность восприимчивой популяции, I – численность инфицированных, R – численность удаленной популяции (в результате смерти или выздоровления), и N – это сумма этих трёх, а  $\beta$  и  $\gamma$  - это коэффициенты заболеваемости и выздоровления соответственно[1].

#### 3.2 Реализация модели в хсоѕ

В меню Моделирование, Задать переменные окружения зададим значения переменных. (рис. 3.1).



Рис. 3.1: Ввод переменных окружения

В модели, изображённой на рис. 3.2, использованы следующие блоки хсоs: - CLOCK\_c — запуск часов модельного времени; - CSCOPE — регистрирующее устройство для построения графика; - TEXT\_f — задаёт текст примечаний; - MUX — мультиплексер, позволяющий в данном случае вывести на графике сразу несколько кривых; - INTEGRAL\_m — блок интегрирования; - GAINBLK\_f — в данном случае позволяет задать значения коэффициентов  $\beta$  и  $\nu$ ; - SUMMATION — блок суммирования; - PROD\_f — поэлементное произведение двух векторов на входе блока.

Первое уравнение модели задано верхним блоком интегрирования, блоком произведения и блоком задания коэффициента  $\beta$ . Блок произведения соединён с выходами верхнего и среднего блоков интегрирования и блоком коэффициента  $\beta$ , что реализует математическую конструкцию  $\beta s(t)i(t)$ .

Третье уравнение модели задано нижним блоком интегрирования и блоком задания коэффициента  $\nu$ . Для реализации математической конструкции  $\nu i(t)$  соединяем выход среднего блока интегрирования и вход блока задания коэффициента  $\nu$ , а результат передаём на вход нижнего блока интегрирования.

Средний блок интегрирования и блок суммирования определяют второе

уравнение модели, которое по сути является суммой правых частей первого и третьего уравнений. Для реализации соединяем входы верхнего и нижнего блоков интегрирования с входами блока суммирования, меняя при этом в его параметрах оба знака на минус. Выход блока суммирования соединяем с входом среднего блока интегрирования.



Рис. 3.2: Модель SIR в хсоѕ

Зададим начальные значения в блоках интегрирования. (рис. 3.3, 3.4).



Рис. 3.3: Задать начальные значение в блоке интегрирования для S



Рис. 3.4: Задать начальные значение в блоке интегрирования для I

Зададим конечное время интегрирования. (рис. 3.5).



Рис. 3.5: Зададим конечное время интегрирования

Результат моделирования в хсоз. (рис. 3.6).



Рис. 3.6: Результат моделирования в хсоѕ

# 3.3 Реализация модели с помощью блока Modelica в xcos

Для реализации модели с помощью языка Modelica помимо блоков CLOCK\_c, CSCOPE, TEXT\_f и MUX требуются блоки CONST\_m — задаёт константу; MBLOCK(Modelica generic) — блок реализации кода на языке Modelica(рис. 3.7).



Рис. 3.7: Модель SIR в xcos с применением блока Modelica

Зададим параметры блока Modelica. Переменные на входе ("beta","nu") и выходе ("s", "i", "r") блока заданы как внешние ("E"). (рис. 3.8)



Рис. 3.8: Параметры блока Modelica

Код на языке Modelica. (рис. 3.9)



Рис. 3.9: Параметры блока Modelica

Результат моделирования с помощью блока Modelica в xcos. (рис. 3.10).



Рис. 3.10: Результат моделирования с помощью блока Modelica в хсоя

#### 3.4 Реализация модели SIR в OpenModelica

Создадим файл модели, зададим дифференциальные уравнения и присвоим переменным значения. (рис. 3.11).



Рис. 3.11: Реализация модели SIR в OpenModelica

Зададим интервал симуляции. (рис. 3.12).



Рис. 3.12: Зададим интервал симуляции

Результат реализации модели SIR в OpenModelica (рис. 3.13).



Рис. 3.13: Результат реализации модели SIR в OpenModelica

# 4 Задание для самостоятельного выполнения

#### 4.1 Модель SIR с учетом демографии

В дополнение к предположениям, которые были сделаны для модели SIR, предположим, что учитываются демографические процессы, в частности, что смертность в популяции полностью уравновешивает рождаемость, а все рожденные индивидуумы появляются на свет абсолютно здоровыми. Тогда получим следующую систему уравнений:

$$\begin{cases} \frac{dS}{dt} = -\beta IS + \mu(N - S), \\ \frac{dI}{dt} = \beta IS - \gamma I - \mu I, \\ \frac{dR}{dt} = \gamma I - \mu R, \end{cases}$$

где  $\nu$  – константа, которая равна коэффициенту смертности и рождаемости.

#### 4.2 Реализация модели в хсоѕ

Для начала добавим переменную  $\mu$  в Задать переменные окружения в хсох. Добавим необходимые для реализации модели блоки. (рис. 4.1).



Рис. 4.1: Модель SIR, учитывая демографические процессы, в хсоs

Результат моделирования. (рис. 4.2).



Рис. 4.2: Результат моделирования SIR, учитывая демографические процессы, в xcos

# 4.3 Реализация модели с использованием блока Modelica в xcos

В изначальную реализацию с помощью блока Modelica добавим параметр  $\mu$ (рис. 4.3).



Рис. 4.3: Модель SIR с учетом демографии в xcos с применением блока Modelica

Также изменим данные блока Modelica(рис. 4.4).



Рис. 4.4: Параметры блока Modelica. Модель SIR с учетом демографии

Код на языке Modelica (рис. 4.5).



Рис. 4.5: Код на языке Modelica. Модель SIR с учетом демографии

Результат моделирования SIR с учетом демографии с помощью блока Modelica в xcos. (рис. 4.6).



Рис. 4.6: Результат моделирования SIR с учетом демографии с помощью блока Modelica в xcos

### 4.4 Реализация модели SIR с учетом демографии в OpenModelica

Создадим файл модели, зададим дифференциальные уравнения и присвоим переменным значения. (рис. 4.7).

```
🖶 🊜 🧧 🕦 🛮 Доступный на запись
                          Model Вид Текст SIR /home/openmodelica/
     model SIR
     parameter Real beta = 1;
     parameter Real nu = 0.3;
     parameter Real mu = 0.1;
     Real S(start = 0.999);
     Real I(start = 0.001);
     Real R(start = 0);
10
11
     equation
       der(S) = -beta*S*I + mu*(I + R);
13
       der(I)=beta*S*I-nu*I - mu*I;
14
       der(R)=nu*I - mu*R;
15
16 end SIR;
```

Рис. 4.7: Реализация модели SIR с учетом демографии в OpenModelica

Результат реализации модели SIR с учетом демографии в OpenModelica (рис. 4.8).



Рис. 4.8: Результат реализации модели SIR с учетом демографии в OpenModelica

#### 4.5 Анализ графиков при разных параметрах модели

Построим графики эпидемического порога при различных значениях параметров модели.

Когда параметр  $\mu$  достигает значения 0.8(рис. 4.9) на графике появляются прямые. То есть рождается и умирает столько же здоровых, сколько заражается.



Рис. 4.9: Модель SIR с учетом демографии при  $\beta = 1, \nu = 0.3, \mu = 0.8$ . OpenModelica

При значении параметра  $\nu$  равным 0.4, данный параметр отвечает за скорость выздоравления, мы видим, что все три траектории на пересекаются на 30 секундном интервале, и траектория заразившихся накодится значительно ниже здоровых и выздоровивших. (рис. 4.10).



Рис. 4.10: Модель SIR с учетом демографии при  $\beta=1, \nu=0.4, \mu=0.1.$  OpenModelica

Когда параметр  $\mu$  опускается до значения 0.05 (рис. 4.11) график становится

похожим на первоначальный график, где мы не учитывали это значение.



Рис. 4.11: Модель SIR с учетом демографии при  $\beta=1, \nu=0.3, \mu=0.05.$  OpenModelica

При значении параметра  $\beta$  равным 4, данный параметр отвечает за скорость заражения, мы видим, что пик заражения наступает очень рано, резкая вспышка заболевших. Также можно заметить, что тогда система быстро приходит в стационарный режим (рис. 4.12).



Рис. 4.12: Модель SIR с учетом демографии при  $\beta=4, \nu=0.3, \mu=0.1.$  OpenModelica

Когда параметр  $\mu$  достигает значения 0.4(рис. 4.13) можно заметить, что система быстро стремится к стационарному режиму.



Рис. 4.13: Модель SIR с учетом демографии при  $\beta=1, \nu=0.3, \mu=0.4.$  OpenModelica

# 5 Выводы

Мы исслеодвали модель эпидемии(SIR) с помощью программы xcos и OpenModelica.

## Список литературы

Королькова А. В. К.Д.С. Лабораторная работа №5. Модель эпидемии(SIR)
 [Электронный ресурс].