Подготовка к экзамену.

Лекции: Пересецкий А.А.

Семинары: Погорелова П.В.

1. В задаче используются данные (Mroz, 1975). Пуассоновская регрессия для моделирования количества детей в семье:

$$P(Nkids = k_i) = e^{\lambda_i} \frac{\lambda_i^{k_i}}{k_i!},$$

где $\lambda_i = exp(\beta_1 + \beta_2 AGE_i + \beta_3 AGE_i^2 + \beta_4 WE_i + \beta_5 INCOME_i),$

k – количество детей в семье,

AGE — возраст женщины (в годах),

AGE2 – квадрат возраста женщины,

WE – образование женщины (в годах),

INCOME – доход семьи в \$10000.

Ниже в таблице приведены результаты оценивания меотодом максимального правдоподобия.

Iterations Log likelih Number of p Restricted	variable observations completed nood function parameters log likelihood	7 -1083.397 5 i -1279.522	+		
		Standard Error			
+			+	+	-+
Constant	-7.64180956	1.14268278	-6.688	.0000	
		.05663388			42.5378486
AGE2	00686403	.00069963	-9.811	.0000	1874.54847
WE	03430021	.01448182	-2.369	.0179	12.2868526
		.02569902			
+	+-		+	+	-++
Matrix Cov.Mat. has 5 rows and 5 columns. 1 2 3 4 5					
+	0.6272	.00078	0031		00204
		3948059D-04			
2 06373 3 .00078	.00321	-04 .4894781D-0	6 - 34600	68D=06	12160400-05
		-043460068D-0			
		.1216040D-05			.00066
+					

- (a) Оцените эффект увеличения возраста на 1 год на среднее (expected) количество детей.
- (b) Покажите, что выборочное среднее оценок $\hat{\lambda_i}$ равно выборочному среднему k_i .
- (c) Протестируйте на 5% уровне значимости гипотезу о совместной незначимости всех регрессоров $AGE, AGE^2, WE, INCOME$ при помощи теста отношения правдоподобия (LR-тест).
- (d) Укажите ограничения Пуассоновской регрессии. Какие модели Вы можете предложить для преодоления этих ограничений.

2. Рассмотрим следующую модель для панельных данных

$$y_{it} = \beta_0 + \beta_1 x_{it} + \alpha_i + u_{it}.$$

Лекции: Пересецкий А.А.

Семинары: Погорелова П.В.

Обозначим
$$\bar{y_i} = \frac{1}{T} \sum_{t=1}^{T} y_{it}$$
, $\varepsilon_{it} = \alpha_i + u_{it}$.

Рассмотрим следующее преобразование модели

$$y_{it} - \lambda \bar{y}_i = \beta_0 (1 - \lambda) + \beta_1 (x_{it} - \lambda \bar{x}_i) + (\varepsilon_{it} - \lambda \bar{\varepsilon}_i).$$

- (a) Какие модели получатся при $\lambda = 0$ и $\lambda = 1$?
- (b) Пусть $\alpha_i \sim i.i.d.(0, \sigma_{\alpha}^2)$, $u_{it} \sim i.i.d.(0, \sigma_{u}^2)$, $Cov(\alpha_i, u_{jt}) = 0$ для всех i и j. Определим $\lambda = 1 \left[\frac{\sigma_{u}^2}{\sigma_{u}^2 + T\sigma_{\alpha}^2}\right]^{1/2}$. Покажите, что $\varepsilon_{it} \lambda \bar{\varepsilon}_{i}$ имеют нулевое математическое ожидание, постоянную дисперсию и серийно некоррелированы.
- 3. Пусть $y_t^* = \beta_1 + \beta_2 x_{t2} + \beta_3 x_{t3} + u_t$, где $u_t \sim N(0, \sigma^2)$ и u_t независимы. Бинарная переменная d определяется следующим образом:

$$d_t = \begin{cases} 1, & y_t^* > 0, \\ 0 & y_t^* \le 0. \end{cases}$$

- (a) Выпишите верятность того, что $d_t = 1$, как функцию от переменных x_{ti} .
- (b) Какие параметры вы можете оценить по наблюдениям (x_{ti}, d_t) ?

Пусть

$$y_t = \begin{cases} y_t^*, & y_t^* > 0, \\ 0 & y_t^* \le 0. \end{cases}$$

- (a) Какие параметры можно оценить по наблюдениям (x_t, y_t) ?
- (b) Найдите выражение для предельного эффекта фактора x_{t3} для y_t^* и y_t .