Understanding and Implementing Classification Models

Janani Ravi CO-FOUNDER, LOONYCORN www.loonycorn.com

Overview

Binary vs. multiclass classification Logistic regression intuition Other classification algorithms Support vector classification **Nearest-neighbors classification** Decision trees for classification **Naive Bayes classification**

Types of Classification

Whales: Fish or Mammals?

Mammals

Members of the infraorder Cetacea

Fish

Look like fish, swim like fish, move with fish

Types of Classification Tasks

Binary

"Yes/No", "True/False", "Up/Down"

Output is binary categorical variable

Multilabel

("True", "Female"), ("False", "Female")

Output is tuple of multiple binary variables (not disjoint)

Multiclass

Digit classification

Output variable takes 1 of N (>2) values

Multioutput

("Sunday", "January")

Multiclass + multilabel

Multilabel

Some algorithms are inherently multilabel

- Naive Bayes

Multiclass

Many classification algorithms are inherently binary

- Logistic regression
- Support Vector Machines

Inherently binary classifiers can be generalized for multiclass classification

One vs. All

One-versus-all

Classifying digits 0-9

Train 10 binary classifiers

- O-detector, 1-detector...
- Predicted label = output of detector with highest score

One vs. One

One-versus-one

Train 45 binary classifiers

- One detector for each pair of digits
- For N labels, need N(N-1)/2 classifiers
- Predicted label = output of digit that wins most duels

Logistic Regression: Intuition

Two Approaches to Deadlines

Start 5 minutes before deadline
Good luck with that

Start 1 year before deadline

Maybe overkill

Neither approach is optimal

Starting a Year in Advance

Probability of meeting the deadline

100%

Probability of getting other important work done

Starting Five Minutes in Advance

Probability of meeting the deadline

0%

Probability of getting other important work done

100%

The Goldilocks Solution

Work fast

Start very late and hope for the best

Work smart

Start as late as possible to be sure to make it

Work hard

Start very early and do little else

As usual, the middle path is best

Working Smart

Probability of meeting the deadline

95%

Probability of getting other important work done

95%

Probability of meeting deadline

(1 year,100%)

Start 1 year before deadline

Start 5 minutes before deadline

(5 mins,0%)

Time to deadline

Time to deadline

Logistic Regression helps find how probabilities are changed by actions

Time to deadline

Time to deadline

Start too late, and you'll definitely miss

Time to deadline

Start too early, and you'll definitely make it

Time to deadline

Working smart is knowing when to start

Finding the best fit line through these points

Finding the best fit S-curve through these points

Finding the best fit S-curve through these points

Logistic Regression

Regression Equation:

$$p(y_i) = \frac{1}{1 + e^{-(A+Bx_i)}}$$

Solve for A and B that "best fit" the data

Demo

Building a binary classification model using numeric data

Other Classification Algorithms

Classification Algorithms

Support Vector Machines

Nearest Neighbors

Decision Trees

Naive Bayes

Classification Algorithms

Support Vector Machines

Nearest Neighbors

Decision Trees

Naive Bayes

Classify Reviews

Consider data in one dimension

Classify Reviews

Unidimensional can be separated, or classified, using a point

Consider data in two dimensions

Consider data in two dimensions

Bidimensional data can be separated, or classified, using a line

Consider data in 3 dimensions

3-dimensional data can be separated, or classified, using a 2-D plane

N-dimensional data can be represented in a hypercube, and classified using a hyperplane

Classification Algorithms

Support Vector Machines

Nearest Neighbors

Decision Trees

Naive Bayes

Data Points

Nearest Neighbors Classification uses training data to find what is most similar to the current sample

Nearest Neighbors Classification

K-nearest-neighbors Classification Radius Neighbors Classification

Nearest Neighbors Classification

Voting among K nearest neighbors

Voting among all neighbors within radius

Classify a data point with the same category as the class to which the neighbors belong

Data Points

Nearest Neighbors

Nearest Neighbors

K-nearest-neighbors

K-nearest-neighbors

Radius Neighbors

Radius Neighbors

Classification Algorithms

Support Vector Machines

Nearest Neighbors

Decision Trees

Naive Bayes

Jockey or Basketball Player?

Jockeys

Tend to be light to meet horse carrying limits

Basketball Players

Tend to be tall, strong and heavy

Fit Knowledge into Rules

Decision Based on Weight

Decision Based on Height

Fit Knowledge into Rules

Fit Knowledge into Rules

Decision trees set up a tree structure on training data which helps make decisions based on rules

Random Forest

An ensemble (collection) of decision trees, in which individual trees are trained on different random subsets of training data.

Classification Algorithms

Support Vector Machines

Nearest Neighbors

Decision Trees

Naive Bayes

Binary Classification Problem

Classify a person who jogs past you on the street

A Priori Probabilities

ItemsOccurenceRunners9Police officers1Total10

Observation 1: Today is the city marathon, more runners than police officers out on the streets

A Priori Probabilities

These are *a priori* probabilities: before anything specific about the person is known

Conditional Probabilities

Observation 2: Specific items appear more often with one category than with the other

Conditional Probabilities

Item	Occurrences with Police Officers	Occurrences with Runners
Handcuffs	6	0
Running Shoes	2	8
Gun	9	0
Badge	8	0
Walkie-Talkie	8	3

Upon Closer Examination

The person that zipped past carried these two items

Applying Bayes' Theorem

P(Runner/ = Handcuffs, Badge)

 Probability that a person carrying handcuffs and a badge is a runner

Step 1: Find probability that this person is a runner

Applying Bayes' Theorem

P(Police Officer/ = Handcuffs, Badge) ha

= Probability that a person carrying handcuffs and a badge is a police officer

Step 2: Find probability that this person is a police officer

Applying Bayes' Theorem

```
P(Police Officer/
Handcuffs,Badge)

and

P(Runner/
Handcuffs,Badge) =
```

Step 3: Pick the label with the higher probability

Jogger Is a Police Officer

```
P(Police Officer/ > P(Runner/ Handcuffs,Badge) =
```

Jogger Is a Marathon Runner

```
P(Police Officer/ P(Runner/ Handcuffs,Badge) =
```

Naive Bayes' makes naive (strong) assumptions about independence of features

Demo

Performing classification using multiple techniques

Demo

Building an ensemble classifier using warm start

Demo

Performing multiclass classification on text data

Summary

Binary vs. multiclass classification Logistic regression intuition Other classification algorithms Support vector classification Nearest-neighbors classification Decision trees for classification **Naive Bayes classification**