MAT 5210 Homework 5

- 1. Let $K = \mathbb{Q}(\sqrt[3]{3})$. Show that $\omega = \{1, \sqrt[3]{3}, \sqrt[3]{9}\}$ is an integral basis of \mathcal{O}_K , i.e. $\mathcal{O}_K = \mathbb{Z}[\sqrt[3]{3}]$. (Hint: Use Question 2 and Question 7 of Homework 4).
- 2. Let [I],[J] be ideal classes in C_K . Show that the multiplication

$$[I] * [J] := [IJ]$$

in C_K is well-defined.

- 3. Find the prime ideal factorizations of (3), (5), (7) in $\mathbf{Z}[\sqrt{-5}]$. Show that the prime ideal factors of (7) are not principal.
- 4. Let $K \subseteq L$ be fields and let I be an ideal of \mathcal{O}_K . Define $I \cdot \mathcal{O}_L$ to be the ideal of \mathcal{O}_L generated by the products $i\ell$ with $i \in I$ and $\ell \in \mathcal{O}_L$. Show that, for any ideals I, J of \mathcal{O}_K , any $n \in \mathbb{N}$ and any principal ideal $(a)_K := a\mathcal{O}_K$ of \mathcal{O}_K ,
 - (a) $(IJ) \cdot \mathcal{O}_L = (I \cdot \mathcal{O}_L)(J \cdot \mathcal{O}_L);$
 - (b) $I^n \cdot \mathcal{O}_L = (I \cdot \mathcal{O}_L)^n$; and
 - (c) $(a)_K \cdot \mathcal{O}_L = (a)_L = a\mathcal{O}_L$, i.e., the principal ideal of \mathcal{O}_L generated by the same element.

Let
$$K = \mathbf{Q}(\sqrt{-13})$$
 and let $I = (2, \sqrt{-13} + 1)$.

(d) Show that $I^2 = (2)$ and that I is not principal.

Let
$$L = \mathbf{Q}(\sqrt{-13}, \sqrt{2})$$
.

- (e) Show that $I \cdot \mathcal{O}_L = (\sqrt{2})_L$ is the principal ideal of \mathcal{O}_L generated by $\sqrt{2}$.
- 5. Let P, Q be distinct prime ideals in \mathcal{O}_K . Show that $P + Q = \mathcal{O}_K$ and $P \cap Q = PQ$.
- 6. Let d be a square-free integer not $\equiv 1 \pmod{4}$, so that $K = \mathbf{Q}(\sqrt{d})$ and $\mathcal{O}_K = \mathbf{Z}[\sqrt{d}]$. Let $p \in \mathbf{N}$ be a prime integer such that $d \equiv a^2 \pmod{p}$ for some $a \in \mathbf{Z}$. Consider

$$P:=(p,a+\sqrt{d}),\quad P':=(p,a-\sqrt{d})$$

- (a) Show that P, P' are both prime ideals with N(P) = N(P') = p.
- (b) Show that (p) = PP'.
- (c) Show that P = P' if and only if $p \mid 2d$.