Spatial correlation

Hans Martinez

2023-07-12

1 Summary of the scpc stata output

Description of the stata output from the post-estimation command scpc:

- Coefficient
- S.E.: The scpc post-estimation command displays the standard error as the SCPC estimated variance using eq. 5 modified as follows $\hat{\sigma}_{SCPC}/(\sqrt{n}\sqrt{q})$ (line 559, scpc.ado).
- t: The command reports the t-statistic, using eq. 4, but using the SCPC variance estimator (eq. 5)
- "P>|t|": This value corresponds to the maximum rejection probability for the adjusted t-statistic. The maximum rejection probability, $\mathbb{P}_{c \geq c_{max}}(\cdot)$, is the maximum of the rejection probabilities computed for a range of c values, that go from c_{min} to c_{max} . c_{min} is provided by the researcher as a maximum average pairwise correlation, $\bar{\rho}$. The default is $\bar{\rho} = 0.03$. c_{max} is the maximum value for which size control is checked. In the code, c_{max} corresponds to a minimum average pairwise correlation of 0.00001 (line 478, scpc.ado).
- Confidence interval: The scpc command computes the CI using the critical value that corresponds to a 5% maximum rejection probability. For the range of c values $\in [c_{min}, c_{max}]$, the algorithm searches for the critical value that corresponds to a maximum rejection probability $\alpha = 0.05$, the desired size of the test.

2 Computing rejection probability

 $\mathbb{P}_{c\geq c_{max}}(\cdot)$ computes the maximum rejection probability for a range of c values that go from c_{min} —which corresponds to $\hat{\rho}$ — to c_{max} , a minimum value for which size control is checked. In the code, this value corresponds to a minimum average pairwise correlation of 0.00001 (line 478, scpc.ado).

The rejection probability is computed using a Gaussian quadrature and the eigenvalues of $\Omega(c)$ (pag. 12), for a given critical value.

Then, the critical value is selected such that the rejection probability is the desired, for example, $\alpha=0.05$ (line 144, scpc.ado)

3 Replication (updated)

Here is the second try in replicating Table 1 of Müller and Watson (2022b). In all models, locations are $s_l \sim U(0,1)$ and $\beta_0 = 0$. In most models $e_l \sim \mathcal{G}_{exp}(c_{0.030})$. In model 1, $x_l = 1$. In model 2, $x_l \sim \mathcal{G}_{exp}(c_{0.03}/2)$ and $e_l \sim \mathcal{G}_{exp}(c_{0.03}/2)$. In model 3, x_l is a step function with $x_l = -0.15$ for the 85% of the locations closest to s = 0, and $x_l = 0.85$ for the remaining locations closest to s = 1. In model 4, x_l follows a demeaned random walk.

I ran 1,000 simulations for each model. I used 250 observations for each iteration.

The rejection frequencies are the percentage of times that the t-statistic was above the critical value of 5%. For the heteroskedastic robust (HR), the normal standard critical values were used. For the SCPC, the critical values were estimated as in Müller and Watson (2022b) using the accompanying post-estimation stata command scpc, cvs. The HR method uses the robust method in Stata. The SCPC uses the post-estimation command scpc provided by the authors.

The rejection frequencies in Table 1 are now closer to what Müller and Watson (2022b) show.

Model	HR	SCPC	Mueller_HR	Mueller_SCPC
1	0.23	0.02	0.51	0.05
2	0.30	0.04	0.52	0.08
3	0.24	0.02	0.52	0.15
4	0.22	0.01	0.50	0.08

Table 1: Rejection frequencies

3.1 Drawing from $\mathcal{G}_{exp}(c)$

To draw from $\mathcal{G}_{exp}(c_{0.03})$, first I estimated the covariance matrix $\Sigma(c)$ using the covariance function $cov(e_l, e_{l'}) = \exp(-c||s_l - s_{l'}||)$ for a value of c. Then, I used the covariance matrix to draw from a multivariate normal distribution with mean zero and covariance matrix $\Sigma(c)$.

4 The setting

$$y_l = x_l \beta + e_l$$

 $\mathbb{E}[e_l|x_l]=0$, and (y_l,x_l,e_l) are associated with observed spatial location $s_l\in\mathbb{R}^d$. Spatial location in time is d=1, two dimensions, like in altitude and latitude, d=2, and so on.

 e_l is generated by a Gaussian process with covariance function $cov(e_l,e_{l'})=\exp(-c||s_l-s_{l'}||)$, where s_l and $s_{l'}$ denote the spatial locations of e_l and $e_{l'}$, and c>0 is a parameter that governs the strength of the spatial correlation. The value of c is calibrated to induce a specific average pairwise correlation $\bar{\rho}=[n(n-1)]^{-1}\sum_{l,l'\neq l}cov(e_l,e_{l'})$. In other words, $c=c_{\bar{\rho}}$ solves $[n(n-1)]^{-1}\sum_{l,l'\neq l}\exp(-c_{\bar{\rho}}||s_l-s_{l'}||)=\bar{\rho}$.

Let $\Sigma(c)$ be the covariance matrix of e_l evaluated at the sample locations, so that $\Sigma(c)_{l,l'} = \exp(-c||s_l - s_{l'}||)$, and let $\bar{\rho}(c)$ denote the resulting average pairwise correlation $\bar{\rho}(c) = [n(n-1)]^{-1} \sum_{l,l' \neq l} \Sigma(c)_{l,l'}$. If the researcher desires a test that controls size for values of $\bar{\rho}$ as large as $\bar{\rho}_{max}$, then he can choose c_{min} such that $\bar{\rho}(c_{min}) = \bar{\rho}_{max}$. Then, $\Sigma(c_{min})$ is the **worst case** covariance matrix in the sense that it induces the largest value of σ^2 among all $\Sigma(c)$ with $\bar{\rho} \leq \bar{\rho}_{max}$

5 Literature Review

5.1 Müller and Watson (2022b)

The objective of the paper is to develop a robustified version of their Spatial Correlation Principal Components (SCPC) (Müller and Watson 2022a). In particular, the authors propose modifications to deal with non-stationarities and strong dependence in finite samples (small samples).

According to the authors, the SPCPC method addresses the challenge of spatial correlation robust inference under small samples and *empirically relevant* forms of strong dependence (which ones?).

According to the authors, Conley (1999) doesn't work well in small samples because it relies on the consistency of the estimator of σ^2 , while SCPC (and fixed-b type approaches) rely on the *stationarity* of u_l . Stationarity might break in practice, for example, when x_l is a dummy for treatment, and treatment is more likely in one region than another region.

The SCPC method is based on a principal component estimator of σ^2 based on a pre-specified "worst-case" exponential covariance function conditional on the observed locations.

(On going...)

References

Conley, T G. 1999. "GMM Estimation with Cross Sectional Dependence." *Journal of Econometrics* 92: 1–45.

Müller, Ulrich K, and Mark W Watson. 2022a. "SPATIAL CORRELATION ROBUST INFERENCE." *Econometrica* 90: 2901–35. https://doi.org/10.3982/ECTA19465.

——. 2022b. "Spatial Correlation Robust Inference in Linear Regression and Panel Models." *Journal of Business & Economic Statistics* 00: 1–15. https://doi.org/10.1080/07350015.2022.2127737.