

SCF 303 Series

Secured Compact Flash RFiD Coupler LOW TEMPERATURE

Reference Manual

Rev C

At the time of going to press, this guide is as thorough and correct as possible; however, information herein contained may have been updated after this date. AMESYS reserves the right to change the functions and specifications of its products at any time without prior notice.

Document Reference: DP032185MUL001

This document was prepared by AMESYS for both its clients and for its own internal use. Information herein contained is the sole property of AMESYS and shall notunder any circumstances be reproduced without prior consent of the company.

© Copyright AMESYS, 2008.

AMESYS

1030 Avenue Guillibert de la Lauzière

Les Milles - B.P. 20140, 13794 AIX EN PROVENCE CEDEX 03, FRANCE.

Tel: +33 (0) 4.42.60.70.00 Fax: +33 (0) 4.42.60.00.26

CONTENTS

<u>Co</u>	ntents		ii
Lis	t of Tables	5	iii
Lis	t of Figure	es .	iii
<u>1</u>	About Th	his DOCUMENTATION	5
	1.1	Audience	5
	1.2	For more information	5
	1.3	Contact for comments	5
	1.4	Terminology	6
<u>2</u>	<u>Overviev</u>	N	7
	2.1	General Description	7
	2.2	Architecture	9
<u>3</u>	Detailed	Specifications	11
	3.1	Mechanical	11
	3.2	Compact Flash connector	11
	3.3	SAM connector	12
	3.4	Electrical	13
	3.4.1	Operating Conditions	13
	3.4.2	DC Characteristics	14
	3.4.3	Smartcard characteristics	15
	3.4.4	RF dynamic characteristics	17
<u>4</u>	<u>Perform</u>	ances	19
	4.1	Host-Coupler transaction timings	19
	4.2	Radio frequency acquisition distance	19
<u>5</u>	COMPLIA	ANCIES	20
	5.1	CE Declaration of Conformity	20
	5.2	ROHS Declaration of Conformity	21
	5.3	FCC Compliances	22
	5.3.1	Labelling requirements (§ 15.19)	22
	5.3.2	Information to user (§ 15.21)	22
	5.3.3	Information to user (§ 15.105)	22
	5 4	WEEE Declaration of conformity	23

LIST OF TABLES

Table 1: SAM connector	12
Table 2 : Operating Conditions	13
Table 3: DC Characteristics	14
Table 4: Smartcard dynamic characteristics	15
Table 5: RF dynamic characteristics	17
Table 6: RFiD exchange timing	19
Table 7: RFID acquisition distance	19

LIST OF FIGURES

Figure 1 : Stella Compact Flash SCF 303 product	7
Figure 2: Stella Compact Flash SCF 303 architecture	9
Figure 3: Dimensions of the SCF 303	11
Figure 4: SAM slot location	12
Figure 5: Upper view of a each SAM connector	12
Figure 6: Type B10% ASK modulation waveform	17
Figure 7: Type A 100% ASK modulation waveform	18

1 ABOUT THIS DOCUMENTATION

This manual provides technical information about the Compact Flash SCF 303 coupler to use the product into your RFiD solution. It provides in particular information about the hardware specifications of the product, including electronic and mechanical characteristics.

The software description of the product is given in the other documents listed in the paragraph *1.2 For more information*.

1.1 Audience

This manual is intended for electronics engineers.

1.2 For more information

For additional information about the Compact Flash SCF 303 coupler and its software interface, refer to the following document:

Stel'Host Application Programming Interface Specification

For additional information about the associated standards and technology, refer to the following specifications:

- ISO/IEC 14443 Identification cards Contactless integrated Circuit cards Proximity Cards
- ISO/IEC 15693 Identification cards Contactless integrated Circuit cards Vicinity Cards
- ISO/IEC 7816-3 Identification cards Integrated Circuit cards with contacts Part 3 Electronics signals and transmission protocols.
- VBTP Specification Reference 960613/SE/PMO/ProtBdqSP32
- Compact Flash Specification version 3.0

1.3 Contact for comments

We welcome your feedback to help us provide high quality documentation. For technical and documentation comments, contact AMESYS at:

E-mail: <u>stella.support@amesys.fr</u>

Telephone: +33 (0) 4 42 60 70 00

Fax: +33 (0) 4 42 60 00 26

1.4 Terminology

API Application Programming Interface

ASK Amplitude Shift Keying

BPS Bits Per Second
EF Elementary File

LED Luminescent Electronic Diode

MF Master File

N/A Non applicable
NC Not Connected

PDA Personnal Digital Assistant

RH Relatif Humidity

REQA Request A command

RFiD Radio Frequency Identification

RFU Reserved for Future Used

SAM Secured Authentication Module

SIM Subcriber Identity Module

TBD To Be Defined

VBTP Validator Baterryless Tag Protocol

2 OVERVIEW

2.1 General Description

The Stella Compact Flash SCF 303 coupler is an universal RFiD contactless reader/writer providing efficient and secure interface for your 13,56 Mhz contactless applications. Its form factor is a Compact Flash type I Extended Card. The electronic board includes:

- The controller
 - It manages all the exchanges between the terminal and the antenna through a 50 pin Compact Flash interface. It contains also 2 SAM slots. A Stella application firmware is embedded providing a unique independent platform software thanks to the Stel'Host Application Programming Interface (see §1.2 For more information for detailed reference documentation).
- The active antenna
 It provides the RF link between the cards and the controller at 13.56 Mhz frequency.

Figure 1: Stella Compact Flash SCF 303 product

The Stella Compact Flash SCF 303 coupler is able to drive a various of contactless cards, including **Mifare**®¹ and **Calypso**® cards, based on 13.56Mhz RFiD technology (ISO/IEC 14443 A & B and ISO/IEC 15693 standards) using 10% or 100% ASK modulation.

The Stella Compact Flash SCF 303 coupler also manages the 5V electrical interface and communication for two ISO 7816 contact cards, also called Secured Access Module (SAM).

The Stella Compact Flash SCF 303 coupler use an active 45mm x 32mm antenna embedded inside the board. It offers a low cost and useful communication range up to 4 cm^2 .

The Stella Compact Flash coupler has a bi-color green-red LED driven by the terminal application layer.

-

¹ Mifare Classic 1K and Mifare Classic 4K

² Characteristics may variant depending contact less card technology. See §4.2 Radio frequency acquisition distance for detailed performances description.

2.2 Architecture

The Stella Compact Flash SCF 303 coupler is designed with the following architecture splitted in four main blocks:

Figure 2: Stella Compact Flash SCF 303 architecture

1. The **Stel'Core Controller** is a low cost, high-speed 8 bit microprocessor. It is in charge of the main logical communication between terminal, SAMs and RFiD cards.

The software inside the Stel'Core controller handles a Stella secured protocol for communication with the terminal through a dedicated Stella Host API. Thus, it provides:

- An easy-to-use Application Programming Interface available for the terminal part.
- A secured transaction between the host and the coupler.
- A useful upload feature allowing upgradable firmware through the standard host interface.

Thanks to a modular C architecture, this Stella Host API is easily portable on PC platform or any embedded solution. See § 1.2 For more information for the API documentation.

2. The **Smarcard Interface** manages two electrical interfaces and communications compatible with ISO 7816 SIM format. It provides secret key management and cryptographic calculations that enable secured authentification and communication for your application.

The SAM interface has the following characteristics:

- 2 SAM slots
- Smart Card Power supply: 5 V
- Asynchronous ISO 7816-3 T= 0 and T = 1 protocols
- Innovatron proprietary High Speed Protocol (HSP)
- 3. The **Host Interface** is a 50 pin CompactFlash interface which manages the electrical interface and communication with the terminal. This interface emulates as a standard Rx,Tx serial port regarding the terminal.
- 4. The **digital signal interface** with its **active antenna** provides the RF transmitter with it encoding/decoding block. It drives the RF modulation at 10% or 100% with anti-collision mechanism.

It supports the following radio interface with high level scanning mode and power management capabilities:

- ISO 14443 A
- ISO 14443 B
- ISO 14443 B-Innovatron
- ISO 15693

3 DETAILED SPECIFICATIONS

3.1 Mechanical

The mechanic of the Stella Compact Flash SCF 303 coupler is a Compact Flash Type I externed card. It has the following characteristic (in mm):

Figure 3: Dimensions of the SCF 303

3.2 Compact Flash connector

The SCF 303 Compact Flash connector is compliant with the Compact Flash specification as defined in the $\S 1.2$ For more information.

3.3 SAM connector

There is two SAM connectors located inside the plastic extended box. These connectors are directly accessible when the cover of the Compact Flash coupler is removed.

Figure 4: SAM slot location

The SAM connector as shown below corresponds to a mirror's view of a SAM card's

Figure 5 : Upper view of a each SAM connector

Pin #	Туре	Description
1	Power	Vcc
2	In	Reset (RST)
3	In	Clock (CLK)
4	-	Rfu 1

Pin #	Туре	Description
5	Ground	Ground (GND)
6	-	Rfu 3
7	I/O	Bidirectionnal line
8	-	Rfu 2

Table 1 : SAM connector

3.4 Electrical

The Stella SCF 303 reader has an advanced power management mode wich allows 3 differents power consumption level:

- Standby mode wich is the default state when the SCF 303 is inserted into the PDA.
- o **Nominal (active) mode** corresponds to a standard RFiD card exchange mode.
- Scanning mode is an embedded power management mode controlled by the reader which detects RFiD card in its field. Depending duty cycle and delay between two RF card wake-up, the power consumption could be reduced from 50 to 80% compared to the active mode.

See detailed power consumption value in §3.4.2. (Icc, Iccs and Iccm values).

The equipement is powered by a SELV circuit, which is considered as a limited power source. The equipement is not provided with direct connection to main supply.

Die Ausstattung wird durch einen SELV - bestätigt der als begrenzte Energiequelle betracht wird. Man liefert die Ausrüstung ohne direktes Mittel von Verbindung mit einem Ernährung Sektor.

3.4.1 Operating Conditions

Symbol	Parameter	Min	Typical / Typische	Max	Unit / Einheit
T _A	Ambient temperature / Raumtemperatur	-20		+55	°C
Ts	Storage temperature / Lagertemperatur	-30		+60	°C
V _{CC}	Power supply/ Stromversorgung	3,2	3,3	3,6	V

Table 2 : Operating Conditions

Stresses above limit may cause permanent damage to the device.

Die obenstehenden Begrenzungen zu üsersteigen kann zu dauerhaften Schäden an dem Gerät verursachen.

3.4.2 DC Characteristics

If not specified, default environment test conditions are T=+25°C, RH=80%, without SAM consumption.

Wenn nicht angegeben, Standard-Umgebung Prüfbedingungen sind T = ± 25 ° C, RH = $\pm 80\%$, ohne SAM Verbrauch.

Symbol	Parameter	Min	Typical / Typische	Max	Unit / Einheit	Test Conditions / Test Bedingungen
I_{CC}	Standard active mode current with RF exchange / standard aktiv modus strom mit RF austausch		170		mA	
I_{CCS}	150 ms scanning mode current / 150 ms scan-modus strom		23		mA	
I_{SD}	Stand-by mode current / Stand-by mode strom		17		mA	
I _{CCM}	Maximum active curren / Maximumale aktive strom		190		mA	Including 2 SAM consumption / Einschließung 2 SAM Verbrauch
I _{CC1}	active current at +15°C / aktiver strom bei +15°C		170		mA	+15°C, 70 % RH,
I_{SD1}	Stand-by mode current at 15°C / Stand-by modus strom bei 15°C		16		mA	+15°C, 70 % RH,
I _{CC2}	active current at -12°C / aktiver strom bei -12°C		168		mA	-12°C
I_{SD2}	Stand-by mode current at −12°C / Stand-by modus strom bei −12°C		16		mA	-12°C
I _{CC3}	active current at +35°C aktiver strom bei +35°C		174		mA	+35°C, 90 % RH,
I_{SD3}	Stand-by mode current at +35°C / Stand-by modus strom bei +35°C		17		mA	+35°C, 90 % RH,

Table 3 : DC Characteristics

3.4.3 Smartcard characteristics

Symbol	Parameter	Min	Typical / Typische	Max	Unit / Einheit	Test Conditions / Test Bedingungen
V_{SAM}	SAM Vcc Output voltage / SAM Vcc productionsstromspannung	4,7	5	5,2	V	5V SAM
${ m I}_{\sf SAM}$	SAM Output current for each SAM interface / SAM productionsstrom für jede SAM Schnittstelle			50	mA	
F _{SCLK}	Card clock frequency / karte signal frequenz		3,6864		Mhz	
R _{SCLK}	Card clock duty cycle / karte signal duty cycle			55	%	
T _{RCLK}	Clock output rise time / signal Ausgangsanstieg-zeit		30		ns	
T _{FCLK}	Clock output fall time / signal Ausgangsfall-zeit		2		ns	
T _{RVSAM}	SAM Vcc output rise time / SAM Vcc Ausgangsanstieg-zeit		265		ns	
T _{EVSAM}	SAM Vcc output fall time / SAM Vcc Ausgangsfall-zeit		28		μs	

Table 4 : Smartcard dynamic characteristics

3.4.4 RF dynamic characteristics

Temperature test conditions is Ta = 25°C if not specified.

Temperatur test Bedingungen ist Ta = 25°C, wenn nicht angegeben

Symbol	Parameter	Min	Typical	Max	Unit	Test Conditions
F _{CLK}	RF Card clock frequency	13.558	13.56	13.562	Mhz	
R _{CLK}	RF Card clock duty cycle		50	55	%	Ta = 25°C
D ₁	Distance above antenna for 1,5 A/m magnetic field		2.2		cm	Ta = 25°C
MF _{MAX}	Maximum Magnetic Field value		6.75		A/m	Ta = 25°C
ML	14443 Type B Modulation depth		12.5		%	Ta = 25°C

Table 5: RF dynamic characteristics

Communication signal interface Type B

ASK 10% amplitude modulation of the RF operating field.

Figure 6 : Type B10% ASK modulation waveform

Communication signal interface Type A

ASK 100% amplitude modulation of the RF operating field

Figure 7: Type A 100% ASK modulation waveform

4 PERFORMANCES

The Stella Compact Flash SCF 303 performances are given based on the following configuration: PDA PSION Teklogix WorkAbout Pro + SCF 303 + 115200 baud + Stella software API v1.5.

4.1 Host-Coupler transaction timings

 $Ta = 25^{\circ}C$

Symbol	Description	Min	Typical	Max	Unit	Test Conditions
t1	Answer to Request ISO14443-A command (ATQA)		2,3		ms	Mifare 1K card
t2	Read 2 EF files (total 40 bytes)		86		ms	CD21 card
t3	Calypso session including following T=Cl commands: SAM Initialisation Select MF Read 3 records in EFs file Append 16 bytes in 1 record Card deselection		260		ms	CD21 card

Table 6: RFiD exchange timing

4.2 Radio frequency acquisition distance

Distance measurement is performed using an ISO 14443-3 REQA command and from the bottom cover.

 $Ta = 25^{\circ}C$

RF Card type	Distance	Unit
Mifare classic 1k (key A)	40	mm
Mifare classic 1k (key F)	35	mm
Mifare UltraLight	45	mm
Mifare DESFire	40	mm
CTS 512 B	40	mm
CD97	20	mm
GTML2	30	mm

Table 7: RFID acquisition distance

5 COMPLIANCIES

5.1 CE Declaration of Conformity

5.2 ROHS Declaration of Conformity

DECLARATION DE CONFORMITE RoHS

Référence: 060201CC__000200

Nous,

I2E

Avenue Guillibert de la Lauzière ZAC de Pichaury II 13794 AIX EN PROVENCE Cedex 3

Référence: 48551

Déclarons sous notre seule responsabilité que le produit	éclarons so	s notre seule	responsabilité	que le	produit	:
--	-------------	---------------	----------------	--------	---------	---

Désignation: SCF303	 •••••

Auquel se réfère cette déclaration, est composé des matériaux suivants :

Matériaux	Présence Oui/Non	Taux	Observations
Plomb	Non		
Mercure	Non		
Cadmium	Non		
Chrome Hexavalent	Non		
PBB	Non		
PBDE	Non		

Conformément à la DIRECTIVE EUROPEENNE 2002/95/CE retranscrite en droit français par le décret 2005-829 du 20/07/2005.

Aix-en-Provence, 07 septembre 2006

Le Directeur Qualité - JC CLAVEL

numéro de série : 00001 - 00160.....

Signature:

VISA QUALITE 1.2.E

086GIa

5.3 FCC Compliances

5.3.1 Labelling requirements (§ 15.19)

This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesried operation.

5.3.2 Information to user (§ 15.21)

The user's manual or instruction manual for an intentional or unintentional radiator shall caution the user that changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

5.3.3 Information to user (§ 15.105)

NOTE: This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates uses and can radiate radio frequency energy and, if not installed and used in accordance with the instruction, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception which can be determined by turning the equipment off and on, the user is encouraged to try to correct interference by one or more of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver.
- Connect the equipment into an outlet on circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for help.

5.4 WEEE Declaration of conformity

DECLARATION DE CONFORMITE AUX DIRECTIVES EUROPENNES RELATIVE AUX EMBALLAGES ET DECHETS D'EMBALLAGES

Référence: 060201CC__000100

Nous,

I2E

Avenue Guillibert de la Lauzière ZAC de Pichaury II 13794 AIX EN PROVENCE Cedex 3

déclarons sous notre seule responsabilité que l'emballage du produit :

désignation: SCF303

référence: 48551numéro de série : 00001 - 00160......

auquel se réfère cette déclaration, est conforme aux DIRECTIVES EUROPEENNES 94/62/CE et 75/442/CEE concernant la recyclabilité et marquage des emballages et déchets d'emballages.

Les emballages comportent les marquages suivant :

Emballage primaire:

Emballage tertiaire:

Aix-en-Provence, 07 Septembre 2006Le Directeur Qualité - JC CLAVEL

Signature:

