

planetmath.org

Math for the people, by the people.

Gelfand-Tornheim theorem

Canonical name GelfandTornheimTheorem

Date of creation 2013-03-22 14:11:49 Last modified on 2013-03-22 14:11:49

Owner pahio (2872) Last modified by pahio (2872)

Numerical id 40

Author pahio (2872) Entry type Theorem Classification msc 12J05

Synonym Gelfand-Tornheim theorem Related topic ExtensionOfKrullValuation Related topic TopicEntryOnRealNumbers

Related topic BanachAlgebra Related topic NormedAlgebra

Related topic ArchimedeanOrderedFieldsAreReal

Defines normed field

Theorem. Any normed field is isomorphic either to the field \mathbb{R} of real numbers or to the field \mathbb{C} of complex numbers.

The normed field means a field K having a subfield R isomorphic to \mathbb{R} and satisfying the following: There is a mapping $\|\cdot\|$ from K to the set of non-negative reals such that

- ||a|| = 0 iff a = 0
- $\bullet \|ab\| \le \|a\| \cdot \|b\|$
- $||a+b|| \le ||a|| + ||b||$
- $||ab|| = |a| \cdot ||b||$ when $a \in R$ and $b \in K$

Using the Gelfand–Tornheim theorem, it can be shown that the only fields with archimedean valuation are isomorphic to subfields of \mathbb{C} and that the valuation is the usual absolute value (modulus) or some positive power of the absolute value.

References

[1] Emil Artin: Lecture notes. Mathematisches Institut, Göttingen (1959).