Моделирование проводимости a-Si: H тонкопленочного транзистора с барьерами Шоттки

© А.В. Вишняков [¶], М.Д. Ефремов

Институт физики полупроводников Сибирского отделения Российской академии наук, 630090 Новосибирск, Россия

(Получена 11 сентября 2009 г. Принята к печати 3 марта 2010 г.)

Численным моделированием показано, что сток-истоковые контакты Шоттки существенно определяют проводимость тонкопленочного транзистора в надпороговой области. При высоте барьера больше 0.75 эВ проявляется эффект сгущения, причиной которого является увеличение электрического поля на краю истокового электрода при росте тянущего напряжения, что приводит к локальному понижению барьера и росту тока через обратно смещенный барьер Шоттки. Эффективная подвижность тонкопленочного транзистора в области насыщения определяется пленкой и от высоты барьера не зависит.

1. Введение

Тонкопленочный транзистор (ТПТ) на основе аморфного гидрогенизированного кремния является основным элементом жидкокристаллических дисплеев, рентгеновских детекторов и других плоских устройств широкоформатной электроники. Для функционирования в составе схем транзистор должен обладать достаточно высокой эффективной проводимостью открытого канала. Высокая общая проводимость в открытом состоянии обычно создается изготовлением сток-истоковых областей из сильно легированного кремния п-типа, которые обеспечивают омический контакт к электронному каналу. Можно создавать сток-истоковые области нанесением металла. Истоковый контакт Шоттки металл—аморфный кремний смещен в обратном направлении и для обеспечения высокой проводимости ТПТ в открытом состоянии необходимо выбирать металлы с небольшой высотой барьера Шоттки (БШ) ϕ_b , т.е. с малой работой выхода. Для больших $\phi_{\rm b}$ обратный ток БШ исток-кремний будет малым и соответственно будет подавлен ток открытого канала ТПТ.

На рис. 1 представлены вольт-амперные характеристики ТПТ со сток—истоковыми областями из алюминия.

При тянущих напряжениях меньше 1 В наблюдается отклонение от линейности сопротивления канала — сгущение кривых. Эффект сгущения иногда наблюдается в ТПТ и может быть связан с ограничением тока сток—истоковыми контактами как обратного тока БШ [1], или за счет увеличения нелинейного сопротивления контактов при большой толщине пленки кремния [2]. Аналогичные характеристики с эффектом сгущения иногда наблюдались на транзисторах с магниевыми сток—истоковыми контактами и связаны, вероятнее всего, с естественным окислом на поверхности. Пленка естественного окисла на кремнии толщиной 0.25 нм уменьшает обратный ток БШ на порядок, увеличивая тем самым эффективную высоту БШ. Цель работы — численное моделирование проводимости

аморфного ТПТ с БШ. Расчет проводился пакетом TCAD Synopsis.

2. Формулировка модели

Система уравнений состоит из двух уравнений непрерывности для концентраций электронов и дырок n и p и кинетического уравнения для концентрации электронов на локализованных состояниях в запрещенной зоне аморфного кремния n_T :

$$\begin{split} \frac{\partial n}{\partial t} &= -\nabla j_n + G_n - R_n, \\ \frac{\partial p}{\partial t} &= -\nabla j_p + G_p - R_p, \\ \frac{\partial n_T}{\partial t} &= R_n - G_n - R_p + G_p = \sigma V_T^n n(N - n_T) \\ &- \sum_i \sigma V_T^n n_{1i} n_{Ti} - \sigma V_T^p p n_T + \sum_i \sigma V_T^p p_{1i} n_T, \\ n_{1i} &= N_c e^{-\frac{E_c - E_i}{kT}}, \quad p_{1i} = N_v e^{-\frac{F_i - E_v}{kT}}, \end{split}$$

суммирование по всем уровням E_i в запрещенной зоне, потоки носителей даются выражениями

$$j_n = -D_n \nabla n - \mu_n n E, \quad j_p = -D_p \nabla p + \mu_p p E.$$

Подвижности носителей заряда $\mu_n=10~{\rm cm}^2/{\rm B}\cdot{\rm c}$, $\mu_p=1~{\rm cm}^2/{\rm B}\cdot{\rm c}$; $V_T^n=2\cdot 10^7~{\rm cm/c}$, $V_T^p=1.6\cdot 10^7~{\rm cm/c}$ — тепловые скорости электронов и дырок. Сечение захвата σ считается одинаковым для всех ловушек и равным $6\cdot 10^{-15}~{\rm cm}^2$ [3].

В расчете использовалась плотность локализованных состояний из четырех экспонент

$$u(E) = \nu_{\min} \operatorname{ch} \frac{E - E_{\mathrm{F}}}{\varepsilon_{0}} + \nu(E_{c})e^{E - E_{c}/\varepsilon_{c}} + \nu(E_{v})e^{E - E_{v}/\varepsilon_{v}}$$
(1)

с параметрами: $E_c - E_F = 0.7$ эВ, $\nu_{\min} = 1.5 \cdot 10^{16}$ 1/см³ эВ, $\varepsilon_0 = 0.1$ эВ, $\varepsilon_c = 0.027$ эВ, $\varepsilon_v = 0.04$ эВ, $\nu(E_c) = \nu(E_v)$ = $3 \cdot 10^{21}$ 1/см³ эВ, $E_c - E_v = 1.8$ эВ [4], E_F — уровень

[¶] E-mail: vishn@isp.nsc.ru

Рис. 1. Зависимость $I_d(V_d)$ для a-Si:H ТПТ с алюминиевыми сток—истоковыми контактами. На вставке показана геометрия структуры. Ширина канала 300 мкм. Длина истока/стока/канала 300 мкм. Толщина пленок $\mathrm{Si_3N_4}-0.3$ мкм, a-Si:H -0.1 мкм. Напряжение на затворе, B: I-10, I-10,

Ферми. Состояния выше уровня Ферми являются акцепторами, ниже — донорами. Плотность тока БШ дается выражением

$$j=qV_{
m th}(n-n_0), \quad V_{
m th}=2.5\cdot 10^6\,{
m cm/c},$$
 $n_0=N_ce^{-arphi_B/kT}+\deltaarphi_B/kT},$

 n_0 — равновесная плотность электронов на вершине барьера [5].

Понижение высоты БШ $\delta\phi_b$ дается эффектом Шоттки $\delta\phi_b=(qE/4\pi\varepsilon_0\varepsilon)^{1/2}$ и вкладом туннелирования в $\delta\phi_b$, который в квазиклассическом приближении примерно равен $(qE\hbar/kT)^2/24m$, для $m=0.043m_0$ [6] это дает $\delta\phi_b$ (эВ) $_{\rm tunn}=10^{-12}E^2$.

Рассчитывались параметры ТПТ с обратной геометрией (см. вставку на рис. 1). Обратный ток БШ на a-Si:H [7] составляет $10^{-8}-10^{-9}$ A/cm² для Al, $10^{-2}-10^{-3}$ A/cm² для Mg, что дает $\phi_b({\rm Mg})\approx 0.55$ эВ, $\phi_b({\rm Al})\approx 0.85$ эВ.

Электрическое поле на краю прямоугольного металлического электрода обращается в бесконечность $E \propto x^{-1/2}$, поэтому на прямоугольных краях электродов нами вводился эффективный радиус закругления 0.01-0.05 мкм, равный расстоянию, на котором сказывается краевой эффект.

3. Результаты и их обсуждение

Результаты расчета вольт–амперных характеристик показаны на рис. 2. При $\phi_b > 0.75$ эВ в модельном расчете наблюдается высокое сопротивление контакта Шоттки при тянущих напряжениях, меньших ~ 3 В,

Рис. 2. Рассчитанные зависимости $I_d(V_d)$ при различных ϕ_b . Напряжение на затворе 20 В. $\phi_b = 0.85$ (1), 0.8 (2), 0.75 (3), 0.7 (4), 0.5 эВ (5).

Рис. 3. 3, a — распределение квазиуровня Ферми вдоль пленки кремния $V_d=0.1\,\mathrm{B},\ V_g=20\,\mathrm{B}.\ \phi_b=0.8\ (1),\ 0.7\ (2),\ 0.55\,\mathrm{эB}\ (3).$ Вертикальными линиями показаны края электродов. b — распределение квазиуровня Ферми вдоль пленки кремния. $V_d=15\,\mathrm{B},\ V_g=20\,\mathrm{B}.\ \phi_b=0.8\ (1),\ 0.7\ (2),\ 0.55\,\mathrm{эB}\ (3).$

Рис. 4. Линии тока (со стрелками) и линии равной концентрации электронов (указана цифрами) в точке B при $V_g=20\,\mathrm{B},$ $V_d=15\,\mathrm{B}.$ $\phi_b=0.8\,\mathrm{эB}.$ Расстояния в микронах. Густота линий тока пропорциональна плотности тока.

Рис. 5. $I_d^{1/2}(V_g)$ в насыщении. $\phi_b=0.85$ (1), 0.8 (2), 0.75 (3), 0.7 (4), 0.5 эВ (5).

называемое "эффектом сгущения". При увеличении тянущего напряжения эффективный энергетический барьер на краю электрода уменьшается, что приводит к возрастанию тока через барьер в режиме "шнурования" в области высоких значений электрического поля вблизи острого края истокового электрода. Качественно результаты моделирования уменьшения барьера Шоттки в сильном электрическом поле описывают наблюдаемые экспериментальные результаты для тонкопленочного транзистора.

Распределение электронного квазиуровня Ферми $\varphi_n = V + \frac{kT}{q} \ln \left(\frac{n}{n_i} \right)$, V — потенциал вдоль пленки, показано на рис. 3, a и b для $V_d = 0.1$ В (a) и $V_d = 15$ В (b).

При $\phi_b = 0.8$ эВ значительная часть тянущего напряжения падает на обратно смещенном истоковом контакте в точке A, соответственно ток ТПТ в линейной области определяется обратным током БШ. При

 $\phi_b=0.55$ эВ напряжение полностью падает на рабочей области, глубина проникновения поля под исток/сток ~ 15 мкм. При $\phi_b=0.55$ эВ ток через барьер Шоттки не ограничивает тока через рабочую область, что и приводит к линейности характеристик ТПТ при малых тянущих напряжениях. Легко показать аналитически, что глубина проникновения поля λ под сток—истоковые электроды пропорциональна $\lambda \propto e^{\phi_b/kT}$. Длина канала и истока должны быть больше λ , в этом случае падением напряжения на сток—истоковых контактах можно пренебречь. Влияние λ эквивалентно увеличению эффективной длины канала на 2λ .

При $V_d=15\,\mathrm{B}$ и $\phi_b=0.7-0.8$ эВ часть приложенного напряжения падает на истоковой области ТПТ. Увеличение тянущего напряжения приводит к росту поля в этой точке и пробою БШ и росту тока ТПТ. Дальнейшее приращение V_d будет прикладываться к пленке.

На рис. 4 показано распределение тока и концентрации электронов вблизи острого края электрода истока.

На рис. 5 показаны вольт-амперные характеристики в насыщении ($V_d=15\,\mathrm{B}$) для различных значений ϕ_b .

Увеличение ϕ_b увеличивает пороговое напряжение, не изменяя эффективной подвижности в насыщении, как и следовало ожидать, поскольку пробой происходит по краю истока с быстрым ростом тока.

4. Заключение

- 1. Сток—исток из металла с $\phi_b < 0.55\, {\rm 9B}$ не ограничивают ток через ТПТ с каналом из высокоомного гидрогенизированного аморфного кремния.
- 2. При $\phi_b > 0.75$ эВ для малых тянущих напряжения V_d ток лимитируется обратным током БШ, при увеличении V_d барьер открывается на краю, приводя к росту тока ТПТ. Эффективная подвижность в насыщении определяется пленкой и от ϕ_b не зависит.

Список литературы

- [1] M. Matsumura. Y. Nara. J. Appl. Phys., **51** (12), 6443 (1980).
- [2] R. Troutman, A. Kotwal. IEEE Trans. Electron. Dev., 36 (12), 2915 (1989).
- [3] T.D. Moustakas, C.R. Wronski, T. Tiedje. Appl. Phys. Lett., 39 (9), 721 (1981).
- [4] C.Y.-Hyang, S. Guha, S.J. Hudgens. Phys. Rev. B, 27 (12), 7460 (1983).
- [5] С. Зи. Физика полупроводниковых приборов (М., Мир, 1984) т. 1.
- [6] W. Jackson, R. Nemanich, M. Thompson, B. Wacker. Phys. Rev. B, 33 (10), 6936 (1986).
- [7] H. Matsuura, T. Okumo, H. Okushi, S. Yamasaki, A. Matsuda, N. Hata, H. Oheda, K. Tanaka. Jpn. J. Appl. Phys., 22 (3), L197 (1983).

Редактор Л.В. Беляков

Conductance simulation of a-Si:H thin-film transistor with Shottky barriers

A.V. Vishnyakov, M.D. Efremov

Semiconductor Physics Institute, Russian Academy of Sciences, Siberian Branch, 630090 Novosibirsk, Russia