115. Les coordonnées des sommets réels sont :

1.
$$(-1; 0)$$
 et $(-1; \frac{3}{5})$
4. $(0; \frac{\sqrt{2}}{5})$ et $(0; -3\frac{\sqrt{2}}{5})$
2. $(-1; 3\sqrt{2})$ et $(1; -3\sqrt{2})$
5. $(2; \frac{\sqrt{3}}{2})$ et $(2; -\frac{\sqrt{3}}{2})$

3.
$$(0; \frac{\sqrt{2}}{2})$$
 et $(0; -\frac{\sqrt{2}}{2})$ www.ecoles-rdc.net

116. Les axes ont pour équations :

Les axes ont pour équations :
1.
$$y + x + 1 = 0$$
 et $y - x = 0$
2. $x - 2 = y$ et $y - x = 0$
4. $y - x + 3 = 0$ et $x = 3$
5. $x = -1$ et $y + 3x - 1 = 0$

2. x-2 = y et y - x = 03. x = -1 + y et y - 2x = 0

117. Les équations des asymptotes sont : 4. $-x + \sqrt{2}y = 0$ et $-x - \sqrt{2}y = 0$

1.
$$y + 2x-3 = 0$$
 et $y + 3x + 2 = 0$

5. y + x - 1 = 0 et 2y - x + 3 = 02. 2y - x + 1 = 0 et y - x = 0

2.
$$2y - x + 1 = 0$$
 et $y - x = 0$
3. $3y - x = 0$ et $y - 2x + 1 = 0$

3, 3y - x = 0 et y - 2x + 1 = 0

3.
$$3y - x = 0$$
 et $y - 2x + 1 = 0$

118. L'équation réduite de la conique $y^2 + 2xy + x^2 - 6y + 9 = 0$ est :

'équation réduite de la conique

$$2y^2 + 3x = 0$$
 $3.2y^2 + 2x^2$

1. $2y^2 + 3x = 0$ 3. $2y^2 + 2x^2 - 3 = 0$ 5. $11y^2 - x^2 - \sqrt{3} = 0$ 2. $v^2 + x^2 - 1 = 0$ 4. $9v^2 + 2x^2 + 4 = 0$

119. Soit la conique
$$5x^2 - 12xy + 6x - 36y - 36 = 0$$
. Les coordonnées des fovers sont

foyers sont: 1. $(0; \sqrt{3})$ et $(\sqrt{3}; 0)$ 3. (0; 2) et (-2; 0) 5. (0; -4) et (-6; 0)

1. $15x^2 - 3y^2 - 45 = 0$ 3. $x^2 - y^2 - 1 = 0$ 5. $13x^2 - 7y^2 - 91 = 0$ $2.504x^2 - 63y^2 - 392 = 0$ $4.12x^2 - 4y^2 - 48 = 0$ (M.-93)

Soit la conique d'équation
$$y^2 - 10y - 10x + 55 = 0$$
. Les questions 121 et 122 se rapportent à cette équation. (M.-93)-

121. Les coordonnées du foyer sont : 1. (21/2; 0) 2. (11/2; 5) 3. (1/5; 3) 4. (31/5; 5) 5. (41/3; 3)

122. L'équation de la directrice est :
1.
$$2x - 1 = 0$$
 2. $y + 1/2 = 0$ 3. $x - 1 = 0$ 4. $y + 2 = 0$ 5. $3x + 2 = 0$

(B.-93)