Lecture 8

In linear algebra we learn that if

A is a symmetric nxn matrix then

there are vectors $V_1, V_2, ..., V_n$ in \mathbb{R}^n such that

 $(v_i,v_j) = \delta_{ij}$ and $Av_i = \lambda_i v_i$ for some $\lambda_i \in \mathbb{R}$

In parh'ader, $dV_1, ..., V_n$ is on orthonord fair of \mathbb{R}^n and this among other things means that if $x \in \mathbb{R}^n$, then

 $X = (\chi_1 V_1) V_1 + (\chi_1 V_2) V_2 + \dots + (\chi_1 V_n) V_n$ $AX = \lambda_1 (\chi_1 V_1) V_1 + \lambda_2 (\chi_1 V_2) V_2 + \dots + \lambda_n (\chi_1 V_n) V_n$

Remark In the context of Fourier series, one have on analogous situation in a vector space of functions, for, we saw that if $f \in L^2(0,1)$, Then

 $f(z) = \sum_{\mathbf{u} \in \mathbb{Z}} (f, e^{2\pi i \mathbf{v} \cdot \mathbf{v}}) e^{2\pi i \mathbf{v} \cdot \mathbf{v}}$

where $(f,9) := \int_0^1 f(y) \frac{1}{9(y)} dy$ as discussed last weeks.

The role of the matrix A in this analogy is played by the defferential aparah $\frac{d^2}{dx^2}$, since

$$\frac{d^2}{dx^2} e^{2\pi i Kx} = -(2\pi)^2 K^2 e^{2\pi i Kx}$$

Finite divensional Fourier series

From vow on let

 $G_{N} = \left\{ \left(\cos \left(\kappa h_{N} \right), \sin \left(\kappa h_{N} \right) \right) \middle| \kappa = 1, 2, ..., N \right\}$

where $h_N = \frac{2\pi}{N}$

let us dente by C(GN) the space of all C-valued functions in GN, M once we fix a born of C(GN) there is a clear isomorphism between C(GN) out C^N

Non ue introduce the operator
L: C(GN) - C(GN)

$$(Lf)(x_K) = \frac{f(x_{K+1}) + f(x_{K-1}) - 2f(x_K)}{h_N^2}$$

Observation: For each l = 0,1,..., N-1define the function $e_l \in CCGN)$ by

Obsume, for couth K and I,

Gathering These, we see That

writing
$$\lambda := \frac{\left(e^{il\frac{\pi}{N}-il\frac{\pi}{N}}\right)}{h_{k}^{2}}$$

vee have

Since
$$e^{il\frac{2\pi}{N}} = cos(\frac{2\pi l}{N}) + i sin(\frac{2\pi l}{N}),$$

$$\lambda_{l} = \frac{2(cos(\frac{2\pi l}{N}) - 1)}{(\frac{2\pi l}{N})^{2}}$$

Using L'Hoppital's rule, one can see that

$$\lambda = -\int_{-\infty}^{2} + (\text{small error})$$
for $\ell=0,1,...,N$

AS $N \rightarrow \infty$, The functions $e^{il}(ETK)$ correspond to $e^{il\theta}$, $e^{il\theta}$,

$$\frac{d^2}{d\theta^2}e^{il\theta} = -l^2e^{il\theta}$$