

BRILLIANT BHARAT HACKATHON 2025_UTHTHAR Tamil Nadu

- Problem Statements Title: Smart Thermoregulation Bracelet
- Theme: Wearable Health Devices
- Category Software/Hardware: Hardware/Software
- Team Name : Smart Priders
- University Name: Anna University (Kongunadu College of Engineering and Technology)

PROPOSED SOLUTION

General Occurrence of Brain Tumors

- □ Wearable devices are widely used for tracking health, but they often miss critical conditions like strokes.
- Detecting small changes in body temperature, such as a 2% drop, can help prevent strokes with early action.

Problems

- ☐ Most wearables cannot detect small temperature drops or provide real-time alerts for stroke risks.
- ☐ They also lack of proper connection to healthcare systems for quick medical responses.

Solution

- The Smart Thermoregulation Bracelet uses accurate sensors to monitor temperature changes, detects a 2% drop linked to stroke, and sends instant alerts.
- ☐ It also regulates body temperature and shares data with healthcare providers for timely intervention.

TECHNICAL STRATEGY

Hardware Components: Sensors :- PTC thermistors and MLX90614 for accurate temperature monitoring. **Thermal Regulation :-** Peltier module (TEC1-12706) with a heat sink and fan. **Microcontroller:** ARM Cortex or ESP32 for data processing and control. **Power:** Rechargeable Li-Po battery with Battery Management System (BMS). **Connectivity:** BLE(Bluetooth Low Energy) module for communication. **Software Components: Languages :-** Python for AI and C/C++ for microcontroller programming. **Frameworks :-** TensorFlow Lite for AI and FreeRTOS for system control. **Mobile App:** BLE SDKs for alerts and data visualization.

FEASIBILITY

Technical Feasibility:

□ Sensors, microcontrollers, and thermal modules are readily available and integrable.

Developmental Feasibility:

□ AI, embedded systems, and app development are achievable within a clear timeline.

VIABILITY

Market Viability:

☐ High market demand for health monitoring wearables ensures value.

Cost Viability:

□ Affordable components make the device cost-effective and accessible.

IMPACTS

Improved Stroke Prevention:

□ Early detection of small temperature drops reduces stroke risks by enabling timely intervention.

Enhanced Remote Healthcare:

□ Seamless data sharing allows healthcare providers to monitor patients in real-time and provide faster responses.

BENEFITS

User Comfort:

☐ Thermal regulation ensures users remain comfortable in varying environmental conditions.

Versatile Use Cases:

□ Suitable for Mining and Industrial Workers, outdoor workers, athletes, and individuals with chronic conditions, expanding its applicability.

FLOW OF IMPLEMENTATION

ARCHITECTURE DIAGRAM

EXPECTED RESULT

- ☐ The Smart Thermoregulation

 Bracelet monitors temperature, shows

 stroke risk, provides alerts, and offers

 cooling/heating.
- ☐ It connects to an app for easy health tracking and is comfortable for daily use.

REFERENCES

- □ Chen, Sheng-Tao, Lin, Shih-Sung, Lan, Chien-Wu, and Hsu, Hao-Yen. "Design and Development of a Wearable Device for Heat Stroke Detection." 2018. Sensors. <<Link>>>
- □ Javed, Sadia, Ghazala, Samia, and Faseeha, Ummay. "Perspectives of Heat Stroke Shield: An IoT-based Solution for the Detection and Preliminary Treatment of Heat Stroke." 2020. Engineering, Technology & Applied Science Research. <<<<u>Link</u>>>>
- □ Keshavarz Valian, N., and Foroughinia, S. "The Role of Telemedicine in the Management of COVID-19: Evidence from Iran." 2021. International Journal of Travel Medicine and Global Health. <<Link>>>

REFERENCES

- Lazaro, Marc, Lazaro, Antonio, Villarino, Ramon, and Girbau, David. "Smart Face Mask with an Integrated Heat Flux Sensor for Fast and Remote People's Healthcare Monitoring." 2021. Sensors. <<<<u>Link</u>>>>
- □ Xue, Qiuyue (Shirley), Liu, Yujia, Breda, Joseph, Springston, Mastafa, Iyer, Vikram, and Patel, Shwetak.

 "Thermal Earring: Low-power Wireless Earring for Longitudinal Earlobe Temperature Sensing." 2023.

 Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies. <<<<u>Link</u>>>>
- □ Sattar, Maria, Lee, Yoon Jae, Kim, Hyeonseok, Adams, Michael, Guess, Matthew, et al. "Flexible Thermoelectric Wearable Architecture for Wireless Continuous Physiological Monitoring." 2024. ACS Applied Materials & Interfaces. <<Link>>>