Lane Hemaspaandra¹ Proshanto Mukherji¹ Till Tantau²

¹Department of Computer Science University of Rochester

²Fakultät für Elektrotechnik und Informatik Technical University of Berlin

Developments in Language Theory Conference, 2003

The Standard Model of Linear Space Our Model of Absolutely No Space Overhead

The Power of Overhead-Free Computation

Palindromes
Linear Languages
Context-Free Languages with a Forbidden Subword
Languages Complete for Polynomial Space

Limitations of Overhead-Free Computation

Linear Space is Strictly More Powerful

The Standard Model of Linear Space Our Model of Absolutely No Space Overhead

The Power of Overhead-Free Computation

Palindromes

Linear Languages

Context-Free Languages with a Forbidden Subword

Languages Complete for Polynomial Space

Limitations of Overhead-Free Computation

Linear Space is Strictly More Powerful

The Standard Model of Linear Space

- ► Input fills fixed-size tape
- Input may be modified
- Tape alphabet is larger than input alphabet

- Input fills fixed-size tape
- Input may be modified
- Tape alphabet is larger than input alphabet

The Standard Model of Linear Space

- ► Input fills fixed-size tape
- Input may be modified
- Tape alphabet is larger than input alphabet

Our Model

The Standard Model of Linear Space

The Standard Model of Linear Space

- ► Input fills fixed-size tape
- Input may be modified
- Tape alphabet is larger than input alphabet

- ► Input fills fixed-size tape
- Input may be modified
- Tape alphabet is larger than input alphabet

- ► Input fills fixed-size tape
- Input may be modified
- Tape alphabet is larger than input alphabet

- ► Input fills fixed-size tape
- Input may be modified
- Tape alphabet is larger than input alphabet

Our Model

The Standard Model of Linear Space

- ► Input fills fixed-size tape
- Input may be modified
- Tape alphabet is larger than input alphabet

The Standard Model of Linear Space

- ► Input fills fixed-size tape
- Input may be modified
- Tape alphabet is larger than input alphabet

The Standard Model of Linear Space

tape \$ \$ \$ \$ \$ \$ \$ \$ \$

Characteristics

- ► Input fills fixed-size tape
- Input may be modified
- Tape alphabet is larger than input alphabet

Turing machine

Linear Space is a Powerful Model

Summary

Our Model of Absolutely No Space Overhead

Our Model of "Absolutely No Space Overhead"

Turing machine

- ► Input fills fixed-size tape
- Input may be modified
- Tape alphabet equals input alphabet

Our Model of "Absolutely No Space Overhead"

tape

Turing machine

- Input fills fixed-size tape
- Input may be modified
- Tape alphabet equals input alphabet

Summary

Our Model of Absolutely No Space Overhead

Our Model of "Absolutely No Space Overhead"

tape 1 0 1 0 0 1 0 0

Characteristics

- ► Input fills fixed-size tape
- Input may be modified
- Tape alphabet equals input alphabet

Turing machine

Our Model of "Absolutely No Space Overhead"

- ► Input fills fixed-size tape
- Input may be modified
- Tape alphabet equals input alphabet

Our Model of Absolutely No Space Overhead

Our Model of "Absolutely No Space Overhead"

Turing machine

- Input fills fixed-size tape
- Input may be modified
- Tape alphabet equals input alphabet

Our Model of Absolutely No Space Overhead

Our Model of "Absolutely No Space Overhead"

tape

Turing machine

- Input fills fixed-size tape
- Input may be modified
- Tape alphabet equals input alphabet

Our Model of Absolutely No Space Overhead

Our Model of "Absolutely No Space Overhead"

Turing machine

Intuition

► Tape is used like a RAM module.

Summary

Power of the Model

Our Model of Absolutely No Space Overhead

Definition of Overhead-Free Computations

Definition

A Turing machine is overhead-free if

- it has only a single tape,
- writes only on input cells,
- writes only symbols drawn from the input alphabet.

Our Model of Absolutely No Space Overhead

Overhead-Free Computation Complexity Classes

Definition

A language $L \subseteq \Sigma^*$ is in

DOF if L is accepted by a deterministic overhead-free machine with input alphabet Σ ,

Overhead-Free Computation Complexity Classes

Definition

A language $L \subseteq \Sigma^*$ is in

DOF if L is accepted by a deterministic overhead-free machine with input alphabet Σ ,

 $\mathsf{DOF}_{\mathsf{poly}}$ if L is accepted by a deterministic overhead-free machine with input alphabet Σ in polynomial time. Our Model of Absolutely No Space Overhead

Overhead-Free Computation Complexity Classes

Definition

A language $L \subseteq \Sigma^*$ is in

DOF if L is accepted by a deterministic overhead-free machine with input alphabet Σ ,

 $\mathsf{DOF}_{\mathsf{poly}}$ if L is accepted by a deterministic overhead-free machine with input alphabet Σ in polynomial time.

NOF is the nondeterministic version of DOF,

Our Model of Absolutely No Space Overhead

Overhead-Free Computation Complexity Classes

Definition

A language $L \subseteq \Sigma^*$ is in

DOF if L is accepted by a deterministic overhead-free machine with input alphabet Σ ,

 $\mathsf{DOF}_{\mathsf{poly}}$ if L is accepted by a deterministic overhead-free machine with input alphabet Σ in polynomial time.

NOF is the nondeterministic version of DOF.

NOF_{poly} is the nondeterministic version of DOF_{poly}.

Our Model of Absolutely No Space Overhead

Simple Relationships among Overhead-Free Computation Classes

Summary

Our Model of Absolutely No Space Overhead

The Model of Overhead-Free Computation

The Standard Model of Linear Space Our Model of Absolutely No Space Overhead

The Power of Overhead-Free Computation

Palindromes

Linear Languages

Context-Free Languages with a Forbidden Subword

Languages Complete for Polynomial Space

Limitations of Overhead-Free Computation

Linear Space is Strictly More Powerful

Palindromes Can be Accepted in an Overhead-Free Way

Algorithm

Phase 1:

Compare first and last bit

Place left end marker Place right end marker

Phase 2:

Compare bits next to end markers Find left end marker

Advance left end marker Find right end marker Advance right end marker

Outline

Palindromes Can be Accepted in an Overhead-Free Way

Algorithm

Phase 1:

Compare first and last bit Place left end marker Place right end marker

Phase 2:

Compare bits next to end markers Find left end marker Advance left end marker Find right end marker Advance right end marker

Outline

Palindromes Can be Accepted in an Overhead-Free Way

tape

overhead-free machine

Algorithm

Phase 1:

Compare first and last bit Place left end marker Place right end marker

Phase 2:

Compare bits next to end markers Find left end marker Advance left end marker Find right end marker Advance right end marker

Palindromes Can be Accepted in an Overhead-Free Way

tape 1 0 1 0 0 1 0 1

Algorithm

Phase 1:

Compare first and last bit Place left end marker Place right end marker

Phase 2:

Compare bits next to end markers

Find left end marker
Advance left end marker
Find right end marker
Advance right end marker

overhead-free machine

Palindromes Can be Accepted in an Overhead-Free Way

overhead-free machine

Algorithm

Phase 1:

Compare first and last bit Place left end marker Place right end marker

Phase 2:

Compare bits next to end markers

Find left end marker

Advance left end marker Find right end marker

Advance right end marker

Palindromes Can be Accepted in an Overhead-Free Way

Algorithm

Phase 1:

Compare first and last bit Place left end marker Place right end marker

Phase 2:

Compare bits next to end markers
Find left end marker
Advance left end marker
Find right end marker
Advance right end marker

Outline

Palindromes Can be Accepted in an Overhead-Free Way

tape

Algorithm

Phase 1:

Compare first and last bit Place left end marker Place right end marker

Phase 2:

Compare bits next to end markers Find left end marker Advance left end marker Find right end marker Advance right end marker

overhead-free machine

Palindromes Can be Accepted in an Overhead-Free Way

tape

overhead-free machine

Algorithm

Phase 1:

Compare first and last bit Place left end marker Place right end marker

Phase 2:

Palindromes Can be Accepted in an Overhead-Free Way

tape 0 1 1 0 0 1 1 0 overhead-free machine

Algorithm

Phase 1:

Compare first and last bit Place left end marker Place right end marker

Phase 2:

Compare bits next to end markers
Find left end marker
Advance left end marker
Find right end marker

Advance right end marker

Palindromes Can be Accepted in an Overhead-Free Way

overhead-free machine

Algorithm

Phase 1:

Compare first and last bit Place left end marker Place right end marker

Phase 2:

Palindromes Can be Accepted in an Overhead-Free Way

tape 0 0 1 0 0 1 1 0 overhead-free machine

Algorithm

Phase 1:

Compare first and last bit Place left end marker Place right end marker

Phase 2:

Palindromes Can be Accepted in an Overhead-Free Way

Algorithm

Phase 1:

Compare first and last bit Place left end marker Place right end marker

Phase 2:

Palindromes

Palindromes Can be Accepted in an Overhead-Free Way

Algorithm

Phase 1:

Compare first and last bit Place left end marker Place right end marker

Phase 2:

Palindromes Can be Accepted in an Overhead-Free Way

tape 0 0 1 0 1 0 0

overhead-free machine

Algorithm

Phase 1:

Compare first and last bit Place left end marker Place right end marker

Phase 2:

Palindromes Can be Accepted in an Overhead-Free Way

tape 0 0 1 0 1 0 0 overhead-free machine

Algorithm

Phase 1:

Compare first and last bit Place left end marker Place right end marker

Phase 2:

Palindromes Can be Accepted in an Overhead-Free Way

tape 0 0 1 1 0 0 0 overhead-free machine

Algorithm

Phase 1:

Compare first and last bit Place left end marker Place right end marker

Phase 2:

Relationships among Overhead-Free Computation Classes

Palindromes

Definition

A grammar is linear if it is context-free and there is only one nonterminal per right-hand side.

Example

 $G_1: S \rightarrow 00S0 \mid 1.$

 $G_2 \colon S \to 0S10 \mid 0.$

Outline	Our Model	Power of the Model	Limitations of the Model	Summary
	00 0000	00 •0000 000 00		
Linear Langua	ges			

 G_1 is deterministic.

 G_2 is not deterministic.

A Review of Linear Grammars

Definition

A grammar is linear if it is context-free and there is only one nonterminal per right-hand side.

Example

 $G_1: S \to 00S0 \mid 1.$ $G_2: S \to 0S10 \mid 0.$

Definition

A grammar is deterministic if "there is always only one rule that can be applied."

Example

Linear Languages

 G_1 is deterministic.

 G_2 is not deterministic.

Theorem

Every deterministic linear language is in DOF_{poly}.

Linear Languages

Continued Review of Linear Grammars

Definition

A language is metalinear if it is the concatenation of linear languages.

Linear Languages

Outline

Continued Review of Linear Grammars

Definition

A language is metalinear if it is the concatenation of linear languages.

Example

TRIPLE-PALINDROME = { $uvw \mid u, v, \text{ and } w \text{ are palindromes}$ }.

Metalinear Languages Can Be Accepted in an Overhead-Free Way

Theorem

Every metalinear language is in NOF_{poly}.

Linear Languages

Relationships among Overhead-Free Computation Classes

Linear Languages

Context-Free Languages with a Forbidden Subword

00

Definition of Almost-Overhead-Free Computations

Definition

A Turing machine is almost-overhead-free if

it has only a single tape,

Outline

Context-Free Languages with a Forbidden Subword

Definition of Almost-Overhead-Free Computations

Definition

A Turing machine is almost-overhead-free if

- it has only a single tape,
- writes only on input cells,

Definition of Almost-Overhead-Free Computations

Definition

Outline

A Turing machine is almost-overhead-free if

- it has only a single tape,
- writes only on input cells,
- writes only symbols drawn from the input alphabet plus one special symbol.

Context-Free Languages with a Forbidden Subword Can Be Accepted in an Overhead-Free Way

Theorem

Outline

Let L be a context-free language with a forbidden word. Then $L \in NOF_{poly}$.

The proof is based on the fact that every context-free language can be accepted by a nondeterministic almost-overhead-free machine in polynomial time.

Relationships among Overhead-Free Computation Classes

Context-Free Languages with a Forbidden Subword

Outline

Some PSPACE-complete Languages Can Be Accepted in an Overhead-Free Wav

Theorem

DOF contains languages that are complete for PSPACE.

The proof is based on the fact that for every $L \in DLINSPACE$ there exists an isometric homomorphism h such that $h(L) \in DOF$.

Relationships among Overhead-Free Computation Classes

Languages Complete for Polynomial Space

The Standard Model of Linear Space Our Model of Absolutely No Space Overhead

The Power of Overhead-Free Computation

Palindromes

Linear Languages

Context-Free Languages with a Forbidden Subword Languages Complete for Polynomial Space

Limitations of Overhead-Free Computation Linear Space is Strictly More Powerful

Some Context-Sensitive Languages Cannot be Accepted in an Overhead-Free Way

Theorem

 $\mathsf{DOF} \subsetneq \mathsf{DLINSPACE}.$

Theorem

 $NOF \subseteq NLINSPACE$.

The proofs are based on old diagonalisations due to Feldman, Owings, and Seiferas.

Linear Space is Strictly More Powerful

Relationships among Overhead-Free Computation Classes

Linear Space is Strictly More Powerful

Candidates for Languages that Cannot be Accepted in an Overhead-Free Way

Conjecture

DOUBLE-PALINDROMES ∉ DOF.

Conjecture

 $\{ww \mid w \in \{0,1\}^*\} \notin NOF.$

Proving the first conjecture would show DOF \subsetneq NOF.

Summary

- Overhead-free computation is a more faithful model of fixed-size memory.
- Overhead-free computation is less powerful than linear space.
- Many context-free languages can be accepted by overhead-free machines.
- ▶ We conjecture that all context-free languages are in NOF_{poly}.
- Our results can be seen as new results on the power of linear bounded automata with fixed alphabet size.

Formal Languages.

Academic Press, 1973.

- E. Dijkstra.
 - Smoothsort, an alternative for sorting in situ. Science of Computer Programming, 1(3):223–233, 1982.
- E. Feldman and J. Owings, Jr. A class of universal linear bounded automata. *Information Sciences*, 6:187–190, 1973.

Summary

Further Reading

Outline

P. Jančar, F. Mráz, M. Plátek, and J. Vogel.

Restarting automata.

FCT Conference 1995, LNCS 985, pages 282-292. 1995.