Overview of Security Risks

- **Importance**: Understanding that security risks are diverse and attackers constantly seek ways to gain unauthorized access to systems.
- **Scope**: Protection extends beyond data to include physical systems, buildings, people, and the entire organization.

Categories of Security Controls

1. Technical Controls

- Definition: Implemented through technical systems.
- Examples:
 - Operating system policies (allow/disallow functions).
 - Firewalls, antivirus software.
- Role: Create technical safeguards against unauthorized access.

2. Managerial Controls

- Definition: Policies and procedures guiding the management of IT security.
- Examples:
 - Security policy documentation.
 - Best practices for data management.
- Role: Provide a framework for operationalizing security measures.

3. Operational Controls

- Definition: Involve human actions to enforce security.
- Examples:
 - Security guards, training sessions, awareness programs.
- Role: Engage personnel in maintaining security protocols.

4. Physical Controls

- Definition: Limit physical access to buildings, rooms, or devices.
- Examples:
 - Guard shacks, fences, badge readers.
- Role: Prevent unauthorized physical entry into secure areas.

Types of Security Controls

1. Preventive Controls

Definition: Aim to prevent security incidents before they occur.

• Examples:

Firewall rules, guard shacks.

Classification:

- Technical: Firewall rules.
- Managerial: Onboarding policies.
- Operational: Guard shack operations.
- Physical: Door locks.

2. Deterrent Controls

Definition: Discourage potential attackers from attempting unauthorized access.

Examples:

Splash screens with security messages, disciplinary threats.

Classification:

- Technical: Splash screens.
- Managerial: Demotion warnings.
- Operational: Reception desk.
- Physical: Warning signs.

3. Detective Controls

Definition: Identify and log security breaches.

• Examples:

Reviewing system logs, patrolling premises, motion detectors.

Classification:

- Technical: System logs.
- Managerial: Log-in report reviews.
- Operational: Property patrols.
- Physical: Motion detectors.

4. Corrective Controls

Definition: Respond to incidents after detection to minimize impact.

Examples:

Restoring from backups, reporting policies.

Classification:

- Technical: Backup recovery.
- Managerial: Reporting issue policies.
- Operational: Contacting authorities.
- Physical: Fire extinguishers.

5. Compensating Controls

- Definition: Temporary measures used until a permanent solution is in place.
- Examples:

Blocking traffic, separating duties.

Classification:

- Technical: Firewall rules as temporary fixes.
- Managerial: Separation of duties.
- · Operational: Multiple security staff.
- Physical: Generators during power outages.

6. Directive Controls

- Definition: Direct users to follow security practices rather than enforcing them.
- Examples:
 - Compliance training, signage.

Classification:

- Technical: File storage policies.
- Managerial: Compliance policies.
- Operational: Security training.
- Physical: Authorized personnel signs.

Detailed Notes on the CIA Triad in IT Security

Overview

- CIA Triad: Stands for Confidentiality, Integrity, and Availability. It represents the core principles of IT security.
- Sometimes referred to as the AIC Triad to avoid confusion with the US Central Intelligence Agency.
- Purpose: To provide a foundational framework for securing systems and information in IT environments.

Components of the CIA Triad

1. Confidentiality

- Definition: Ensuring that sensitive information is not accessed by unauthorized individuals.
- Techniques:
 - Encryption: Scrambles data so only authorized parties can decode it.
 - Access Controls: Limits the access to information based on roles, e.g.,
 marketing staff can access marketing documents but not accounting data.

 Multi-Factor Authentication (MFA): Adds extra layers of security, requiring more than just a password to gain access, increasing confidentiality.

• Examples:

- Encrypted data remains unreadable to anyone without the proper key.
- Limiting access to sensitive information based on user roles.
- Authentication mechanisms to verify user identity.

2. Integrity

• **Definition**: Ensuring the data received is exactly the same as the data sent, without any unauthorized alterations.

Techniques:

- Hashing: A mathematical function that creates a unique value (hash) from the original data. The sender sends the hash with the data. The receiver verifies it by generating a hash and comparing.
- **Digital Signatures**: Uses asymmetric encryption to validate the sender and ensure the integrity of the message.
- **Certificates**: Used to confirm the identity of devices or users and ensure data is not tampered with.
- Nonrepudiation: Provides proof that the sender sent the data and ensures they cannot deny sending it.

Examples:

- Verifying data integrity using hashes.
- Using digital signatures for added security and authenticity.
- Certificates ensuring secure device-to-device communication.

3. Availability

• **Definition**: Ensuring that systems and data are accessible to authorized users when needed.

• Techniques:

- **Fault Tolerance**: Having backup systems or components that take over in case one component fails, ensuring continuous operation.
- System Patching and Updates: Regular maintenance, such as applying patches, ensures that systems remain secure and operational, preventing downtime from attacks.

• Examples:

- Systems with built-in redundancy that maintain operations even during component failure.
- Regular updates and patches to fix vulnerabilities that could lead to downtime or data breaches.

Importance

- Confidentiality protects against unauthorized access.
- Integrity ensures that data remains accurate and unchanged.
- Availability guarantees that users can access the systems and data they need, even during technical failures.

Table: CIA Triad Summary

Component	Definition	Key Techniques	Examples
Confidentiality	Protecting information from unauthorized access.	EncryptionAccess ControlMulti-FactorAuthentication(MFA)	- Encryptedcommunication- Role-based access- MFA for logging into sensitive systems
Integrity	Ensuring data remains unchanged and accurate.	 Hashing Digital Signatures Certificates Nonrepudiation	Verifying data with hashesSigned emails to ensure authenticityDevice certificates
Availability	Ensuring systems and data are available when needed.	- Fault Tolerance - System Patching and Updates	Redundant systemsfor continuityRegular securitypatching to avoidexploits