Projet équipe-action

Méthodes géométriques en combinatoire, algorithmes combinatoires en géométrie

Composition de l'équipe

8 membres, 6 équipes, 3 laboratoires

Laboratoire	Équipe	Nom
G-SCOP	Optimisation Combinatoire	Louis Esperet
G-SCOP	Optimisation Combinatoire	András Sebő
G-SCOP	Optimisation Combinatoire	Gautier Stauffer
G-SCOP	Recherche Opérationelle	Nicolas Catusse
IF	Théorie des Nombres	Roland Bacher
IF	Physique Mathématique	Yves Colin De Verdière
IF	Topologie	François Dahmani
GIPSA	AGPIG	Francis Lazarus

Les objectifs

Rassembler des forces vives éparpillées sur le site grenoblois concernant les aspects discrets de la géométrie/topologie pour

- Mieux maîtriser les modèles inhérents aux simulations informatiques du monde réel.
- S'attaquer à quelques conjectures célèbres du domaine.
- Apporter de nouveaux outils pour l'analyse de problèmes combinatoires de nature topologique.

Un credo : le site grenoblois possède un fort potentiel inexploité qui le restera sans une politique volontariste des tutelles.

Trois thématiques

- Graphes Plongés
- Topologie de dimension supérieure
- Graphes et géométrie

Graphes Plongés

Graphes Plongés

Cycle de partage

Conjecture (Barnette, 1982)

Toute triangulation de $S_{q>1}$ admet un cycle de partage.

Cycle de partage

Conjecture (Barnette, 1982)

Toute triangulation de $S_{q>1}$ admet un cycle de partage.

Il suffit de vérifier la conjecture pour les triangulations irréductibles. Pour g=2 il y en a 396 784.

Un 0-système possède au plus 3g - 3 courbes.

Un 0-système possède au plus 3g - 3 courbes.

Un 0-système possède au plus 3g - 3 courbes.

Un 1-système possède au plus N(1,g) courbes avec

$$g^2 + \frac{5}{2}g \le N(1,g) \le (g-1)(2^{2g}-1)$$

Genre des colorations de Tait

Genre des colorations de Tait

Bibliothèque dédiée aux courbes sur les surfaces

Applications en CAO, modélisation pour la synthèse d'images...

Algorithmique de la théorie des nœuds

Une surface normale dans une triangulation à t tétraèdres se code par un $v \in \mathbb{N}^{7t}$.

Une surface normale dans une triangulation à t tétraèdres se code par un $v \in \mathbb{N}^{7t}$.

Une surface normale dans une triangulation à t tétraèdres se code par un $v \in \mathbb{N}^{7t}$. v doit vérifier des conditions d'appariements (linéaires) et conditions quadrilatèrales de non-croisements (non-linéaires).

v appartient au cône normal de Haken. On peut se restreindre aux éléments d'une base hilbertienne de ce cône.

Graphes et géométrie

Spanners géométriques

Optimiser le facteur d'étirement, le degré maximum, le nombre d'arêtes, la planarité...

Problème de routage avec centres émetteurs et clients.

Graphes et géométrie

Spanners géométriques

Optimiser le facteur d'étirement, le degré maximum, le nombre d'arêtes, la planarité...

Squelette de protéine avec "court-circuits" additionnels.

Graphes et géométrie

Spanners géométriques

Optimiser le facteur d'étirement, le degré maximum, le nombre d'arêtes, la planarité...

Problème : trouver le facteur d'étirement de Delaunay.

Conjecture du coureur solitaire

Activités

- Groupe(s) de lecture (Matveev, Koszlov, Farb et Margalit,...)
- Invitations pour séminaires et cours doctoraux
- colloques
- ...

Diffusion

GT Géométrie Algorithmique ACCUEIL ÉQUIPES MANIFESTATIONS ENSEIGNEMENT **Enseignement** Présentation Les Formations en France La géométrie algorithmique est enseignée dans les Masters suivants : Les membres • au Master Parisien de Recherche en Informatique (MPRI) dans les modules Bases Géométriques de l'Informatique, Algorithmes pour les graphes plongés et Computational Geometry Learning · au Master Grenoblois d'informatique (MOSIG) dans l'UE Computational Geometry Les JGA · au Master Niçois STIMM dans l'UE Algorithmes géométriques, théorie et pratique · au Master Niçois d'Informatique dans l'UE Geometric Algorithms • au Master de l'école Polytechnique dans le cours Géométrie algorithmique : de la théorie aux Formations applications Cours en ligne Ressources documentaires Des notes et transparents de cours proposés sur des sites français (parfois en anglais) · cours de Géométrie Algorithmique par Luca Castelli Aleardi et Steve Oudot · cours "Algorithmes pour les graphes plongés" par Éric Colin de Verdière · cours sur les triangulations de Delaunay par Olivier Devillers · cours de Géométrie et Topologie algorihmique par Francis Lazarus . cours de Computational Geometric Learning par Jean-Daniel Boissonnat, Mariette Yvinec et David Cohen-Steiner On trouvera sur internet un grand nombre de cours en anglais parmi lesquels ceux de Jeff Erickson Vera Sacristán

Demande de moyens

TOTAL demandé:

Financement de thèse :	100.000 €		
Post-doc (1,5 an)	75.000 €		
Gratifications de stage :	12.000 €		
6 stages M2 de 5 mois + stages ENS et Polytechnique non-rémunérés (niveau L3,M1,M2)			
Invitations de chercheurs extérieurs :	40.000 €		
Benjamin Burton, Jens Vygen, Gianpaolo Oriolo, Shalom Eliahou, Bill			
Cook,			
Missions:	30.000 €		
(1200€par personne et par an)			
Matériel :	10.000 €		
Fonctionnement :	4.000 €		
Congrès-colloques :	9.000 €		

280.000 €