Introduction Computer Arithmetic

732A90 Computational Statistics

Maryna Prus (maryna.prus@liu.se)

Slides originally by Krzysztof Bartoszek

November 2, 2021 Department of Computer and Information Science Linköping University

Teaching staff for course

Me: Maryna Prus

- Course coordination
- 2 Lectures

Filip Ekström Joel Oskarsson Martynas Lukosevicius Shashi Nagarajan Yifan Ding

- Labs
- Marking of reports
- Support

Lesson structure, examination

- Lesson structure
 - Lectures
 - Computer labs you work in groups
 - Seminars same groups as for computer labs
- Examination
 - Lab reports
 - Seminars
 presentation or opposition
 - Final exam computer based
 - Allowed aids:

printed books and own PDF document (max 100 pages) Exam points:

A: $[18, \infty)$, B: [16, 18), C: [14, 16), D: [12, 14), E: [10, 12), F: [0, 10)

Course materials, software

- Course materials
 - Lecture slides
 - Books
 - James E. Gentle "Computational Statistics", Springer, 2009
 - Geof H. Givens, Jennifer A. Hoeting "Computational Statistics", Wiley, 2013
 - ...
 - Googling...
- Software
 - R

Course contents

- Computer Arithmetic (JG pages 85–105)
- 2 Optimization (JG pages 241–272, handouts)
- 3 Random Number Generation (JG pages 305–312, 325–328, handouts)
- Monte Carlo Methods (JG pages 312–318, 328 417–429, handouts)
- Numerical Model Selection and Hypothesis Testing (JG pages 52–56, 424, 435–467, handouts)
- Expectation Maximization Algorithm and Stochastic Optimization (JG pages 275–284, 296–298, 480–483, handout)

Pages are recommended reading for each lecture, bot not exact lecture content.

Computer Arithmetic: Example

 $x<-0.5^1000$;

$$y < -0.4^1000$$
;
 $x/(x+y)+y/(x+y)$
1
 $x < -0.5^10000$;
 $y < -0.4^10000$;
 $x/(x+y)+y/(x+y)$
NaN
 $x < -0.1^1000$;
 $y < -0.2^1000$;
 $x/(x+y)+y/(x+y)$
NaN
 $\Rightarrow Computer \ arithmetic \ is \ not \ the \ same \ as "usual" \ arithmetic \ \Rightarrow Computations \ can \ be \ affected \ by \ magnitudes \ of \ numbers$

 $\frac{x}{x+y} + \frac{y}{x+y} = 1$?

Computer storage

- Computers store information in binary form
 0
 1
 0
 1
- 1Byte=8bits (typical counting unit)
- 1KB=1024bytes
- 1MB=1024KB
- and so on

 $Storage\ unit\ ({\rm or}\ word)$ - basic grouping of bits in a computer

Typically, length of one $storage\ unit$ - 32 or 64 bits

Fixed-point system (integers)

• We use the base 10 (decimal) system, e.g.

$$1234 = 1 \cdot 10^3 + 2 \cdot 10^2 + 3 \cdot 10^1 + 4 \cdot 10^0$$

- Computers use base 2 (binary) system
- Positive integers
 - \bullet a positive integer. a can be represented as

$$a = a_0 \cdot 2^0 + a_1 \cdot 2^1 + a_2 \cdot 2^2 + \dots, \ a_i \in \{0, 1\}, \ \forall i$$

• Code for a

$$a_k \ldots a_2 a_1 a_0$$

k - number of bits per unit

• Example: code for 5

$$0 \dots 0101$$

Fixed—point system

- \bullet Negative integers $twos\text{-}complement\ representation$
 - b negative integer. Then a=-b positive. Code for a

$$a_k \ldots a_2 a_1 a_0$$

- Code for b: sign bit + opposite of a
- Sign bit for b: 0 ... 001 (same for all negative integers)
- Opposite of a

$$c_k \ldots c_2 c_1 c_0$$

where

$$c_i = \left\{ \begin{array}{ll} 1, & a_i = 0 \\ 0, & a_i = 1 \end{array}, \forall i \right.$$

• Example: code for -5

• Range (approximately): from -2^{k-1} to 2^{k-1}

Fixed-point system: arithmetic operations

- Addition, multiplication: as "usually" but for base 2 instead of base 10
- Subtraction: a b = a + (-b)-b is integer \Rightarrow works well
- **Division**: $a/b = a \cdot 1/b$ but 1/b not integer!
 - \Rightarrow more complicated, another approach needed for division
- Other problems: Overflow
 - \bullet k bits available
 - Operation results in a too large number
 - \Rightarrow more than k bits needed for code
 - Sign bit is missing or not correctly interpreted (dependent on computer architecture)
 adding two large (positive) numbers can result in a
 - negative number (!)
 - \Rightarrow Even addition and multiplication are not always "safe"

Floating-point system (rational, "real")

- Parameters for encoding
 - Base: b, usually b = 2, sometimes 10 or even 16
 - Sign: +/-
 - Exponent: e, integer
 - Number of digits for mantissa (or significand): p
 - Mantissa or significand: $d_1, d_2, \ldots, d_p, d_i$ integer, $0 \le d_i < b, i = 1, \ldots, p$
- Representation of a real number a

$$a \approx \pm 0.d_1 d_2 \dots d_p \cdot b^e$$

• For 64 bits, b = 2, p = 52

sign Exponent Mantissa (1bit) (11bits) (52 bits)	sign (1bit)
--	----------------

Range: $\approx [-10^{300}, 10^{300}] \approx [-b^{e_{max}}, b^{e_{max}}]$

Floating-point system

• Example: Base b = 10, p = 5 (mantissa has 5 digits):

$$1.2345 = +0.12345 \cdot 10^1$$

works well (p large enough)

$$4.0000567 = +0.40000 \cdot 10^{1}$$

Problem: p too small (also for other values of base b)

• For
$$b = 2$$
, $p = 52$

 $\begin{array}{ll} \mathbf{options} \, (\, \mathrm{digits} \! = \! 22) \; \# \! \mathit{max} \; \; p \, \mathit{ossible} \\ 0.1 \end{array}$

0.1000000000000000055511

Reason: Rounding towards the nearest computer float Note that for b=10 no problem: $0.1=0.1\cdot 10^0$

Floating-point system: special "numbers"

- Special numbers
 - \pm Inf: exponent is $e_{\max} + 1$, mantissa is 0
 - NaN: exponent is $e_{\max} + 1$, mantissa is $\neq 0$
- Overflow: number larger than can be represented
- Underflow: number smaller than can be represented using k bits (close to 0)
 - \Rightarrow loss of significant digits
 - \Rightarrow rounding to 0
- Examples

$$10^{\circ}200*10^{\circ}200 = \text{Inf}$$

 $10^{\circ}400/10^{\circ}400 = \text{NaN}$
 $10^{\circ}(-200)/10^{\circ}200 = 0$

Floating-point system: arithmetic operations

Floats are rounded so usual mathematical laws do not hold — floating point arithmetic:

- x + y, $x \cdot y$ can display overflow, underflow
- $a \neq b$ but x + a = b + x
- a + x = x but $a + y \neq y$
- a + x = x but $x x \neq a$
- $x = \sqrt{y}$ but $x \cdot x \neq y$
- ...

Example

options (digits=22)

x < -sqrt(2)

X*X

2.000000000000000444089

(x*x)==2

FALSE

Summation

Underflow problems can occur with any summation Example:

```
options(digits=22)
x<-1:1000000; sum(1/x); sum(1/rev(x))
[1] 14.39272672286572252176
[1] 14.39272672286572429812</pre>
```

Solution A:

- Sort the numbers in order of increasing magnitude
- 2 Sum in this order

Solution B: If numbers have roughly same magnitude

- Sum numbers pairwise, from n obtain n/2 numbers Choose the pairs so that the resulting sums are also of roughly same magnitude
- 2 Continue until 1 number left

More on summing

Example: Computing exponent using Taylor series

$$e^x = 1 + x + x^2/2 + x^3/6 + \dots = \sum_{i=0}^{\infty} \frac{x^i}{i!}$$

```
options (digits=22)
fTaylor < -function(x,N) \{1+sum(sapply(1:N,
   function (i,x) \{x^i / prod(1:i)\}, x=x, simplify=
   TRUE))}
\exp(20) #fine
485165195.4097902774811
fTaylor (20,100)
485165195.4097902774811
fTaylor(20,100)-exp(20)
0
```

More on summing

Example: Computing exponent using Taylor series

$$e^x = 1 + x + x^2/2 + x^3/6 + \dots = \sum_{i=0}^{\infty} \frac{x^i}{i!}$$

$$\begin{array}{l} \exp(-20) \ \#problem \\ 2.061153622438557869942\,\mathrm{e}{-09} \\ \mathrm{fTaylor} \ (-20,\!100) \\ -3.853877217352419393137\,\mathrm{e}{-10} \\ \mathrm{fTaylor} \ (-20,\!200) \\ -3.853877217352419393137\,\mathrm{e}{-10} \end{array}$$

Reason: Varying sign of terms \Rightarrow adding two numbers of almost equal magnitude but of opposite sign because of rounding may result into smaller numbers than "really"

 \Rightarrow this effect is called *cancellation*

Can you explain why?

$$(x-1)^6 = 1 - 6x + 15x^2 - 20x^3 + 15x^4 - 6x^5 + x^6$$

Example due to Thomas Ericsson in his Numerical Analysis course at Chalmers
$$f1 < -\mathbf{function}(\mathbf{x}) \{ (\mathbf{x}-1)^6 \}$$

$$f2 < -\mathbf{function}(\mathbf{x}) \{ 1 - 6 * \mathbf{x} + 15 * \mathbf{x}^2 - 20 * \mathbf{x}^3 + 15 * \mathbf{x}^4 - 6 * \mathbf{x} ^5 + \mathbf{x}^6 \}$$

$$\mathbf{x} < -\mathbf{seq}(\mathbf{from} = 0.995, \mathbf{to} = 1.005, \mathbf{by} = 0.0001)$$

$$\mathbf{y} < -\mathbf{f}(\mathbf{x}); \mathbf{y} < -\mathbf{f}(\mathbf{x}); \mathbf{y}$$

Can you explain why?

Can you explain why?

• • •

Thank you for attention!