Chapter 2 Bayesian Decision Theory

Bayesian Decision Theory

Pattern Recognition is a decision process in essence

Bayesian decision theory is a **statistical approach** to pattern recognition

Basic Assumptions

- The decision problem is posed (formalized) in probabilistic terms
- All the relevant probability values are known

Key Principle: Bayes Theorem

$$P(H|X) = \frac{P(H)P(X|H)}{P(X)}$$

$$P\left(\omega_{j}|x
ight)=rac{p\left(x|\omega_{j}
ight)\cdot P\left(\omega_{j}
ight)}{p(x)}$$

$$posterior = \frac{likelihood \times prior}{evidence}$$

- *X*: the observed sample / **evidence** e.g. the length of a fish
- H: the **hypothesis**

e.g. the fish belongs to the "salmon" category

- P(H): the **prior probability** (先验概率) that H holds e.g. the probability of catching a salmon
- P(X|H): the **likelihood** (似然度) of observing X given that H holds e.g. the probability of observing a 3-inch length fish which is salmon
- P(X): the evidence probability that X is observed
 e.g. the probability of observing a fish with 3-inch length
- P(H|X): the **posterior probability** (后验概率) that H holds given X e.g. the probability of X being salmon given its length is 3-inch

State of Nature

- Future events that might occur
- State of nature is unpredictable
- Regarded as a random variable

e.g. let w denote the (discrete) random variable representing the **state of nature (class)** of fish types

$$w=w_1$$
: sea bass / $w=w_2$: salmon

Prior Probability

Prior probability is the probability distribution which **reflects one's prior knowledge on the random variable**

- ullet the catch produced as much sea bass as salmon $o P(w_1) = P(w_2) = rac{1}{2}$
- ullet the catch produced more sea bass than salmon $o P(w_1) = rac{2}{3}; P(w_2) = rac{1}{3}$

Class-conditional probability density function

It is a probability density function (pdf) for x given that the state of nature (class) is ω

$$p(x|\omega) \geq 0 \quad \int_{-\infty}^{\infty} p(x|\omega) dx = 1$$

The class-conditional pdf describes the difference in the distribution of observations under different classes

$$p(x|\omega_1)$$
 should be different to $p(x|\omega_2)$

Decision After Observation

Bayes Decision Rule

if
$$P(\omega_i|x) > P(\omega_i|x), \forall i \neq j \Longrightarrow \text{ Decide } \omega_i$$

- $P(\omega_i)$ and $p(x|\omega_i)$ are assumed to be known
- p(x) is **irrelevant** for Bayesian decision but **serving as a normalization factor** and not related to any state of nature)

Two Special Cases

ullet Equal prior probability: Depends on the likelihood $P\left(x|\omega_{j}
ight)$

$$P\left(\omega_{1}
ight)=P\left(\omega_{2}
ight)=\cdots=P\left(\omega_{c}
ight)=rac{1}{c}$$

• Equal likelihood: Degenerate to naïve decision rule

$$p\left(x|\omega_{1}
ight)=p\left(x|\omega_{2}
ight)=\cdots=p\left(x|\omega_{c}
ight)$$

Example: Cancer or not?

Problem statement

- A new medical test is used to detect whether a patient has a certain cancer or not, whose test result is either + positive) or negative
- For patient with this cancer, the probability of returning positive test result is 0.98

- For patient without this cancer, the probability of returning negative test result is 0.97
- The probability for any person to have this cancer is 0.008

Q: If positive test result is returned for some person, does he/she have this kind of cancer or not?

Solution:

Define the notation:

$$\omega_1$$
: cancer ω_2 : no cancer $x \in \{+, -\}$

Calculate likelihood:

$$P(\omega_1) = 0.008$$
 $P(\omega_2) = 1 - P(\omega_1) = 0.992$
 $P(+ | \omega_1) = 0.98$ $P(- | \omega_1) = 1 - P(+ | \omega_1) = 0.02$
 $P(- | \omega_2) = 0.97$ $P(+ | \omega_2) = 1 - P(- | \omega_2) = 0.03$

Calculate posterior probability:

$$P\left(\omega_{1}\mid+
ight)=rac{P\left(\omega_{1}
ight)P\left(+\mid\omega_{1}
ight)}{P(+)}=rac{P\left(\omega_{1}
ight)P\left(+\mid\omega_{1}
ight)}{P\left(\omega_{1}
ight)P\left(+\mid\omega_{1}
ight)+P\left(\omega_{2}
ight)P\left(+\mid\omega_{2}
ight)}=0.2085$$

$$P\left(\omega_{2}\mid+
ight)=1-P\left(\omega_{1}\mid+
ight)=0.7915$$

We find out that

$$P(\omega_2 \mid +) > P(\omega_1 \mid +)$$

So he/she have no cancer!

Feasibility of Bayes Formula

Get to know the Prior probability P(w) and likelihood $p(x \mid w)$

Counting relative frequencies (相对频率)
 e.g. Suppose we have randomly picked 1209 cars in the campus, got prices from their owners, and measured their heights

$$cars\ in\ w_1 = 221 \longrightarrow P\left(\omega_1
ight) = rac{221}{1209} = 0.183 \ cars\ in\ w_2 = 988 \longrightarrow P\left(\omega_1
ight) = rac{988}{1209} = 0.817$$

• Conduct density estimation (概率密度估计)

Discretize the height spectrum (say [0.5m, 2.5m]) into 20 intervals each with length 0.1m, and then count the number of cars falling into each interval for either class

Suppose x=1.05 , and x falls into interval $I_x=[1.0m,1.1m]For\omega{1}, carsinl{x} is 46; For\omega{2}, carsinl{x}$ is 59 So$

$$p(x = 1.05 \mid w_1) = \frac{46}{221} = 0.2081$$

 $p(x = 1.05 \mid w_2) = \frac{59}{988} = 0.0597$

Is Bayes Decision Rule Optimal?

Bayes Decision Rule (In case of two classes)

if
$$P(\omega_1 \mid x) > P(\omega_2 \mid x)$$
, Decide ω_1 ; Otherwise ω_2

Whenever we observe a particular x, the probability of error is:

$$P(ext{ error } \mid x) = egin{cases} P\left(\omega_1 \mid x
ight) & ext{ if we decide } \omega_2 \ P\left(\omega_2 \mid x
ight) & ext{ if we decide } \omega_1 \end{cases}$$

Under Bayes decision rule, we have

$$P(\text{ error } \mid x) = \min \left[P(\omega_1 \mid x), P(\omega_2 \mid x) \right]$$

The average probability of error over all possible x must be as small as possible

The General Case of Bays Decision Rule

• By allowing to use more than one feature (d-dimensional Euclidean space)

$$x \in \mathbf{R} \Longrightarrow \mathbf{x} \in \mathbf{R}^d$$

• By allowing more than two states of nature (finite set of c states of nature)

$$\Omega = \{\omega_1, \omega_2, \dots, \omega_c\}$$

• By **allowing actions other than merely deciding the state of nature** (finite set of a possible actions)

$$\mathcal{A} = \{\alpha_1, \alpha_2, \dots, \alpha_a\}$$

Note that $c \neq a$

Loss function

 $\lambda(w_j, \alpha_j)$ [also written as $\lambda(\alpha_i \mid w_j)$] is the loss incurred for taking action α_i when the state of nature is w_j

$$\lambda:\Omega imes\mathcal{A} o R$$

A simple loss function

Action Class	$\alpha_1 =$ "Recipe A"	$\alpha_2 =$ "Recipe B"	$lpha_3=$ "No Recipe"
ω_1 = "cancer"	5	50	10,000
ω_2 = "no cancer"	60	3	0

Action

Given a particular x, we have to decide which **action** to take.

With the loss of taking each action α_i , to minimize the loss $\lambda(\alpha_i \mid w_i)$

However, the true state of nature is uncertain: **Expected (average) loss**

Expected loss (Conditional risk)

Average by enumerating over all possible states of nature

$$R\left(lpha_{i}\mid\mathbf{x}
ight)=\sum_{j=1}^{c}\lambda\left(lpha_{i}\mid\omega_{j}
ight)\cdot P\left(\omega_{j}\mid\mathbf{x}
ight)$$

where $\lambda\left(\alpha_i\mid\omega_j\right)$ is the incurred loss of taking action α_i in case of true state of nature being w_j , and $P\left(\omega_j\mid\mathbf{x}\right)$ is the probability of w_j being the true state of nature.

e.g.

$$egin{aligned} R\left(lpha_1\mid\mathbf{x}
ight) &= \sum_{j=1}^2 \lambda\left(lpha_1\mid\omega_j
ight)\cdot P\left(\omega_j\mid\mathbf{x}
ight) \ &= \lambda\left(lpha_1\mid\omega_1
ight)\cdot P\left(\omega_1\mid\mathbf{x}
ight) + \lambda\left(lpha_1\mid\omega_2
ight)\cdot P\left(\omega_2\mid\mathbf{x}
ight) \ &= 5 imes 0.01 + 60 imes 0.99 = 59.45 \end{aligned}$$

Task

find a mapping form patterns to actions

$$\alpha: \mathbf{R}^d \to \mathcal{A}$$
 (decision function)

In other words, for every \mathbf{x} , the decision function $\alpha(\mathbf{x})$ assumes one of the a actions $\{\alpha_1, \ldots, \alpha_a\}$

Overall risk R

expected loss with decision function $\alpha(\cdot)$

$$R = \int R(lpha(\mathbf{x}) \mid \mathbf{x}) \cdot p(\mathbf{x}) d\mathbf{x}$$

where $p(\mathbf{x})$ is the pdf for pattern

For every \mathbf{x} , we ensure that the conditional risk $R(\alpha(\mathbf{x}) \mid \mathbf{x})$ is as small as possible, so the risk over all possible \mathbf{x} must be as small as possible.

$$\begin{split} \alpha(\mathbf{x}) &= \arg\min_{\alpha_i \in \mathcal{A}} R\left(\alpha_i \mid \mathbf{x}\right) \\ &= \arg\min_{\alpha_i \in \mathcal{A}} \sum_{j=1}^{c} \lambda\left(\alpha_i \mid \omega_j\right) \cdot P\left(\omega_j \mid \mathbf{x}\right) \end{split}$$

The resulting overall risk is called the **Bayes risk** (denoted as R^*), which is the **best performance** achievable given $p(\mathbf{x})$ and loss function.

Example 1: Two-Category Classification

Classification setting

- $\Omega = \{w_1, w_2\}$: two states of nature
- $\mathcal{A} = \{\alpha_1, \alpha_2\}$: α_1 means decide w_1 , α_2 means decide w_2
- $\lambda_{ij} = \lambda(\alpha_i \mid w_j)$: the loss incurred for deciding w_i when the true state of nature is w_j

The conditional risk

$$R(\alpha_1 \mid \mathbf{x}) = \lambda_{11} \cdot P(\omega_1 \mid \mathbf{x}) + \lambda_{12} \cdot P(\omega_2 \mid \mathbf{x})$$

$$R(\alpha_2 \mid \mathbf{x}) = \lambda_{21} \cdot P(\omega_1 \mid \mathbf{x}) + \lambda_{22} \cdot P(\omega_2 \mid \mathbf{x})$$

If we assume that

$$R\left(\alpha_{1} \mid \mathbf{x}\right) < R\left(\alpha_{2} \mid \mathbf{x}\right)$$

by definition we get

$$\lambda_{11} \cdot P(\omega_1 \mid \mathbf{x}) + \lambda_{12} \cdot P(\omega_2 \mid \mathbf{x}) < \lambda_{21} \cdot P(\omega_1 \mid \mathbf{x}) + \lambda_{22} \cdot P(\omega_2 \mid \mathbf{x})$$

by rearrangement we get

$$(\lambda_{21} - \lambda_{11}) P(\omega_1 \mid \mathbf{x}) > (\lambda_{12} - \lambda_{22}) P(\omega_2 \mid \mathbf{x})$$

by Bayes theorem we get

$$(\lambda_{21} - \lambda_{11}) p(\mathbf{x} \mid \omega_1) \cdot P(\omega_1) > (\lambda_{12} - \lambda_{22}) p(\mathbf{x} \mid \omega_2) \cdot P(\omega_2)$$

because $\lambda_{21} - \lambda_{11} > 0$, which means the loss for being error is ordinarily greater than the loss for being correct, we get

$$\frac{p\left(\mathbf{x}\mid\omega_{1}\right)}{p\left(\mathbf{x}\mid\omega_{2}\right)}>\frac{\lambda_{12}-\lambda_{22}}{\lambda_{21}-\lambda_{11}}\cdot\frac{P\left(\omega_{2}\right)}{P\left(\omega_{1}\right)}$$

where $\frac{p(\mathbf{x}|\omega_1)}{p(\mathbf{x}|\omega_2)}$ is the **likelihood ratio** and $\frac{\lambda_{12}-\lambda_{22}}{\lambda_{21}-\lambda_{11}}\cdot\frac{P(\omega_2)}{P(\omega_1)}$ is a **constant** independent of \mathbf{x}

Example 2: Minimum-Error-Rate Classification

Classification setting

- $\Omega = \{\omega_1, \omega_2, \ldots, \omega_c\}$: c possible states of nature
- $A = {\alpha_1, \alpha_2, \dots, \alpha_c}$: $\alpha_i = \operatorname{decide} \omega_i, 1 \le i \le c$

Zero-one (symmetrical) loss function

$$\lambda\left(lpha_i\mid\omega_j
ight)=\left\{egin{array}{ll} 0 & i=j \ 1 & i
eq j \end{array}
ight. \ 1\leq i,j\leq c$$

- Assign no loss (e.g. 0) to a correct decision
- Assign a unit loss (e.g. 1) to any incorrect decision (equal cost)

Proof

$$egin{aligned} R\left(lpha_i\mid\mathbf{x}
ight) &= \sum_{j=1}^c \lambda\left(lpha_i\mid\omega_j
ight)\cdot P\left(\omega_j\mid\mathbf{x}
ight) \ &= \sum_{j
eq i} \lambda\left(lpha_i\mid\omega_j
ight)\cdot P\left(\omega_j\mid\mathbf{x}
ight) + \lambda\left(lpha_i\mid\omega_i
ight)\cdot P\left(\omega_i\mid\mathbf{x}
ight) \ &= \sum_{j
eq i} P\left(\omega_j\mid\mathbf{x}
ight) \ &= 1 - P\left(\omega_i\mid\mathbf{x}
ight) \end{aligned}$$

 $1 - P(\omega_i \mid \mathbf{x})$ is the **error rate**, the probability that action α_i is wrong

To **minimum error rate**, decide ω_i if $P(\omega_i \mid \mathbf{x}) > P(\omega_i \mid \mathbf{x})$ for all $j \neq i$

Minimax Criterion (最小最大化准则)

Generally, we assume that the **prior probabilities** over the states of nature $\Omega = \{\omega_1, \omega_2, \dots, \omega_c\}$ are fixed.

Nonetheless, in some cases we need to design classifiers which can perform well under **varying prior probabilities**.

e.g. the prior probabilities of catching a sea bass or salmon fish might vary in different regions

The **minimax criterion** aims to find the classifier which can **minimize the worst overall risk** for **any value of the priors**

Example of Two-category classification

Suppose the two-category classifier $\alpha(\cdot)$ decides the feature of ω_1 in region \mathcal{R}_1 and decides the feature of ω_2 in region \mathcal{R}_2 . Here, $\mathcal{R}_1 \cup \mathcal{R}_2 = \mathbf{R}^d$ and $\mathcal{R}_1 \cap \mathcal{R}_2 = \emptyset$

$$egin{aligned} R &= \int R(lpha(\mathbf{x}) \mid \mathbf{x}) \cdot p(\mathbf{x}) d\mathbf{x} \ &= \int_{\mathcal{R}_1} R(lpha_1 \mid \mathbf{x}) \cdot p(\mathbf{x}) d\mathbf{x} + \int_{\mathcal{R}_2} R(lpha_2 \mid \mathbf{x}) \cdot p(\mathbf{x}) d\mathbf{x} \end{aligned}$$

where

$$\begin{split} \int_{\mathcal{R}_{1}} R(\alpha_{1} \mid \mathbf{x}) \cdot p(\mathbf{x}) d\mathbf{x} &= \int_{\mathcal{R}_{1}} \sum_{j=1}^{2} R\left(\alpha_{1} \mid \omega_{j}\right) \cdot P\left(\omega_{j} \mid \mathbf{x}\right) \cdot p(\mathbf{x}) d\mathbf{x} \\ &= \int_{\mathcal{R}_{1}} \sum_{j=1}^{2} \lambda_{1j} \cdot P\left(\omega_{j}\right) \cdot p\left(\mathbf{x} \mid \omega_{j}\right) d\mathbf{x} \\ &= \int_{\mathcal{R}_{1}} \left[\lambda_{11} \cdot P\left(\omega_{1}\right) \cdot p\left(\mathbf{x} \mid \omega_{1}\right) + \lambda_{12} \cdot P\left(\omega_{2}\right) \cdot p\left(\mathbf{x} \mid \omega_{2}\right)\right] d\mathbf{x} \end{split}$$

the same

$$\int_{\mathcal{R}_{2}}R(\alpha_{2}\mid\mathbf{x})\cdot p(\mathbf{x})d\mathbf{x}=\int_{\mathcal{R}_{2}}\left[\lambda_{21}\cdot P\left(\omega_{1}\right)\cdot p\left(\mathbf{x}\mid\omega_{1}\right)+\lambda_{22}\cdot P\left(\omega_{2}\right)\cdot p\left(\mathbf{x}\mid\omega_{2}\right)\right]d\mathbf{x}$$

Rewrite the overall risk R as a function of $P(\omega_1)$ via

$$egin{aligned} P\left(\omega_{1}
ight) &= 1 - P\left(\omega_{2}
ight) \ \int_{\mathcal{R}_{1}} p\left(\mathbf{x}\mid\omega_{1}
ight) d\mathbf{x} &= 1 - \int_{\mathcal{R}_{2}} p\left(\mathbf{x}\mid\omega_{1}
ight) d\mathbf{x} \end{aligned}$$

[In the second equation, $\int_{\mathcal{R}_1} p\left(\mathbf{x} \mid \omega_1\right) d\mathbf{x}$ stands for the ratio of the sample \mathbf{x} (its true state of nature is w_1)have been classified as w_1 (view as True Positive); while $\int_{\mathcal{R}_2} p\left(\mathbf{x} \mid \omega_1\right) d\mathbf{x}$ stands for the ratio of the sample \mathbf{x} (its true state of nature is w_1)have been classified as w_2 (view as False Positive);]

we get

$$egin{aligned} R = & \lambda_{22} + (\lambda_{12} - \lambda_{22}) \int_{\mathcal{R}_1} p\left(\mathbf{x} \mid \omega_2
ight) d\mathbf{x} \ & + P\left(\omega_1
ight) \left[(\lambda_{11} - \lambda_{22}) + (\lambda_{21} - \lambda_{11}) \int_{\mathcal{R}_2} p\left(\mathbf{x} \mid \omega_1
ight) d\mathbf{x} - (\lambda_{12} - \lambda_{22}) \int_{\mathcal{R}_1} p\left(\mathbf{x} \mid \omega_2
ight) d\mathbf{x}
ight] \end{aligned}$$

where R_{mm} stands for minimax risk

$$egin{aligned} R_{mm} &= \lambda_{22} + \left(\lambda_{12} - \lambda_{22}
ight) \int_{\mathcal{R}_1} p\left(\mathbf{x} \mid \omega_2
ight) d\mathbf{x} \ &= \lambda_{11} + \left(\lambda_{21} - \lambda_{11}
ight) \int_{\mathcal{R}_2} p\left(\mathbf{x} \mid \omega_1
ight) d\mathbf{x} \end{aligned}$$

so for minimax solution we required:

$$\left[\left(\lambda_{11}-\lambda_{22}
ight)+\left(\lambda_{21}-\lambda_{11}
ight)\int_{\mathcal{R}_{2}}p\left(\mathbf{x}\mid\omega_{1}
ight)d\mathbf{x}-\left(\lambda_{12}-\lambda_{22}
ight)\int_{\mathcal{R}_{1}}p\left(\mathbf{x}\mid\omega_{2}
ight)d\mathbf{x}
ight]=0$$

Discriminant Function (判别函数)

$$g_i: \mathbf{R}^d o \mathbf{R} \quad (1 \leq i \leq c)$$

Decide ω_i if $g_i(\mathbf{x}) > g_j(\mathbf{x})$ for all $j \neq i$

- Useful way to represent classifiers
- One function per category
- Various **discriminant functions** may leads to **Identical classification results** $f(\cdot)$ is a monotonically increasing function (单调递增函数), then

$$f(g_i(\mathbf{x})) \iff g_i(\mathbf{x})$$

which means they are equivalent in decision

Type

Minimum risk

$$g_i(\mathbf{x}) = -R(\alpha_i \mid \mathbf{x}) \quad (1 \le i \le c)$$

• Minimum-error-rate

$$g_i(\mathbf{x}) = P(\omega_i \mid \mathbf{x}) \quad (1 \le i \le c)$$

Decision region (决策区域)

From c discriminant functions, get c decision regions

$$g_i(\cdot)(1 \leq i \leq c) o \mathcal{R}_i \subset \mathbf{R}^d (1 \leq i \leq c)$$

Definition

$$egin{aligned} \mathcal{R}_i &= \left\{ \mathbf{x} \mid \mathbf{x} \in \mathbf{R}^d : g_i(\mathbf{x}) > g_j(\mathbf{x}) orall j
eq i
ight\} \ & ext{where } \mathcal{R}_i \cap \mathcal{R}_j = \emptyset (i
eq j) ext{ and } igcup_{i=1}^c \mathcal{R}_i = \mathbf{R}^d \end{aligned}$$

Decision boundary (决策边界)

Surface in feature space where ties occur among several largest discriminant functions On decision boundaries, more than one $g_i(\cdot)$ is maximum

Some Probability

Expected Value μ

 \sim stands for has the distribution

Discrete

$$egin{aligned} x \in \mathcal{X} &= \left\{ x_1, x_2, \dots, x_c
ight\} \ x \sim P(\cdot) \ \mathcal{E}[x] &= \sum_{x \in \mathcal{X}} x \cdot P(x) = \sum_{i=1}^c x_i \cdot P\left(x_i
ight) \end{aligned}$$

Continuous

$$egin{aligned} x \in \mathbf{R} \ x \sim p(\cdot) \ \mathcal{E}[x] = \int_{-\infty}^{\infty} x \cdot p(x) dx \end{aligned}$$

Variance σ^2

$$\operatorname{Var}[x] = \mathcal{E}\left[(x - \mathcal{E}[x])^2\right]$$

Discrete

$$ext{Var}[x] = \sum_{i=1}^{c} \left(x_i - \mu\right)^2 \cdot P\left(x_i
ight)$$

Continuous

$$\mathrm{Var}[x] = \int_{-\infty}^{\infty} (x-\mu)^2 \cdot p(x) dx$$

Vector Random Variables

• joint pdf

$$\mathbf{x} \sim p(\mathbf{x}) = p\left(x_1, x_2, \dots, x_d
ight)$$

• marginal pdf

$$egin{aligned} p\left(\mathbf{x}_{1}
ight) &= \int p\left(\mathbf{x}_{1},\mathbf{x}_{2}
ight) d\mathbf{x}_{2} \ \left(\mathbf{x}_{1} \cap \mathbf{x}_{2} = \emptyset; \mathbf{x}_{1} \cup \mathbf{x}_{2} = \mathbf{x}
ight) \end{aligned}$$

Expected vector

$$\mathcal{E}\left[x_{i}
ight]=\int_{-\infty}^{\infty}x_{i}\cdot p\left(x_{i}
ight)dx_{i}\quad\left(1\leq i\leq d
ight)$$

Covariance Matrix

Symmetric & Positive semidefinite

$$oldsymbol{\Sigma} = \left[\sigma_{ij}
ight]_{1 \leq i,j \leq d} = egin{pmatrix} \sigma_{11} & \sigma_{12} & \dots & \sigma_{1d} \ \sigma_{21} & \sigma_{22} & \dots & \sigma_{2d} \ dots & dots & \ddots & dots \ \sigma_{d1} & \sigma_{d2} & \dots & \sigma_{dd} \end{pmatrix}$$

$$egin{aligned} \sigma_{ij} &= \sigma_{ji} = \mathcal{E}\left[\left(x_i - \mu_i\right)\left(x_j - \mu_j
ight)
ight] \ &= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \left(x_i - \mu_i\right)\left(x_j - \mu_j
ight) \cdot p\left(x_i, x_j
ight) dx_i dx_j \end{aligned}$$

$$\sigma_{ii} = \mathrm{Var}[x_i] = \sigma_i^2$$

where $p(x_i, x_i)$ is **marginal pdf** on a pair of random variables (x_i, x_i) , exported from **joint pdf**.

Gaussian Density in Multivariate Case

$$p(\mathbf{x}) = rac{1}{(2\pi)^{d/2} |\mathbf{\Sigma}|^{1/2}} \mathrm{exp}igg[-rac{1}{2} (\mathbf{x} - oldsymbol{\mu})^t \mathbf{\Sigma}^{-1} (\mathbf{x} - oldsymbol{\mu}) igg]$$

where

$$\mu_{i} = \mathcal{E}\left[x_{i}
ight] \quad \sigma_{ij} = \sigma_{ji} = \mathcal{E}\left[\left(x_{i} - \mu_{i}
ight)\left(x_{j} - \mu_{j}
ight)
ight]$$

and

$$\mathbf{x} = (x_1, x_2, \dots, x_d)^t : d$$
 -dimensional column vector $\mu = (\mu_1, \mu_2, \dots, \mu_d)^t : d$ -dimensional mean vector

$$(\mathbf{x} - \boldsymbol{\mu})^t : 1 \times d \text{ matrix}$$
 $\mathbf{\Sigma}^{-1} : d \times d \text{ matrix}$
 $(\mathbf{x} - \boldsymbol{\mu}) : d \times 1 \text{ matrix}$
 $(\mathbf{x} - \boldsymbol{\mu})^t \mathbf{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu}) : scalar \ (1 \times 1 \ matrix)$

because Σ^{-1} is positive definite

$$(\mathbf{x} - \boldsymbol{\mu})^t \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu}) \geq 0$$

Minimum-error-rate classification

$$g_i(\mathbf{x}) = P(\omega_i \mid \mathbf{x})$$

which the same as

$$g_i(\mathbf{x}) = \ln P(w_i \mid \mathbf{x}) = \ln p(\mathbf{x} \mid w_i) + \ln P(w_i)$$

assume that

$$p\left(\mathbf{x}\mid\omega_{i}
ight)\sim N\left(oldsymbol{\mu}_{i},oldsymbol{\Sigma}_{i}
ight)$$

so we have

$$g_i(\mathbf{x}) = -rac{1}{2}(\mathbf{x}-oldsymbol{\mu}_i)^toldsymbol{\Sigma}_i^{-1}\left(\mathbf{x}-oldsymbol{\mu}_i
ight) - rac{d}{2} ext{ln}\,2\pi - rac{1}{2} ext{ln}|oldsymbol{\Sigma}_i| + ext{ln}\,P\left(\omega_i
ight)$$

where $\frac{d}{2} \ln 2\pi$ is a constant that could be ignored

Case 1: $\mathbf{\Sigma}_i = \sigma^2 \mathbf{I}$

so we get

$$g_i(\mathbf{x}) = -rac{\left\|\mathbf{x}-oldsymbol{\mu}_i
ight\|^2}{2\sigma^2} + \ln P\left(\omega_i
ight) = -rac{(\mathbf{x}-oldsymbol{\mu}_i)^t(\mathbf{x}-oldsymbol{\mu}_i)}{2\sigma^2} + \ln P\left(\omega_i
ight)$$

rearrange

$$g_i(\mathbf{x}) = -rac{1}{2\sigma^2}ig[\mathbf{x}^t\mathbf{x} - 2oldsymbol{\mu}_i^t\mathbf{x} + oldsymbol{\mu}_i^toldsymbol{\mu}_iig] + \ln P\left(\omega_i
ight)$$

where $\mathbf{x}^t\mathbf{x}$ is the same for all states of nature which could be ignored

Finally we get a Linear discriminant functions (线性判别函数)

$$g_i(\mathbf{x}) = \mathbf{w}_i^t \mathbf{x} + w_{i0}$$

where $\mathbf{w}_i=rac{1}{\sigma^2}m{\mu}_i$ is weight vector and $w_{i0}=-rac{1}{2\sigma^2}m{\mu}_i^tm{\mu}_i+\ln P\left(\omega_i
ight)$ is threshold/bias

Case 2: $\Sigma_i = \Sigma$

 $(\mathbf{x}-oldsymbol{\mu}_i)^t \mathbf{\Sigma}^{-1} \, (\mathbf{x}-oldsymbol{\mu}_i)$ is call squared **Mahalanobis distance** (马氏距离)

when $oldsymbol{\Sigma} = \mathbf{I}$ it reduces to Euclidean distance

$$g_i(\mathbf{x}) = -rac{1}{2}ig[\mathbf{x}^t\mathbf{\Sigma}^{-1}\mathbf{x} - 2oldsymbol{\mu}_i^t\mathbf{\Sigma}^{-1}\mathbf{x} + oldsymbol{\mu}_i^t\mathbf{\Sigma}^{-1}oldsymbol{\mu}_iig] + \ln P\left(\omega_i
ight)$$

where $\mathbf{x}^t \mathbf{\Sigma}^{-1} \mathbf{x}$ is the same for all states of nature which could be ignored

Finally we get a Linear discriminant functions

$$g_i(\mathbf{x}) = \mathbf{w}_i^t \mathbf{x} + w_{i0}$$

where $\mathbf{w}_i = \mathbf{\Sigma}^{-1} \boldsymbol{\mu}_i$ is weight vector and $w_{i0} = -\frac{1}{2} \boldsymbol{\mu}_i^t \mathbf{\Sigma}^{-1} \boldsymbol{\mu}_i + \ln P\left(\omega_i\right)$ is threshold/bias

Case 3: \$\boldsymbol{\Sigma}_{i}=Arbitrary (任意的)\$

Using quadratic discriminant function (二次判别函数)

$$g_i(\mathbf{x}) = \mathbf{x}^t \mathbf{W}_i \mathbf{x} + \mathbf{w}_i^t \mathbf{x} + w_{i0}$$

where

$$\mathbf{W}_i = -rac{1}{2}\mathbf{\Sigma}_i^{-1}$$
 quadratic matrix $\mathbf{w}_i = \mathbf{\Sigma}_i^{-1}oldsymbol{\mu}_i$ weight vector $w_{i0} = -rac{1}{2}oldsymbol{\mu}_i^t\mathbf{\Sigma}_i^{-1}oldsymbol{\mu}_i - rac{1}{2}\mathrm{ln}|\mathbf{\Sigma}_i| + \mathrm{ln}\,P\left(\omega_i
ight)$ threshold/bias