

MECHANICAL DATA

Dimensions in mm (inches)

Underside View

PIN1 – EMITER

PIN 2 - BASE

PIN 3 - COLLECTOR

PNP SILICON TRANSISTOR

FEATURES

- SILICON PNP TRANSISTOR
- HIGH SPEED, LOW SATURATION SWITCH

APPLICATIONS:

GENERAL PURPOSE SWITCHING APPLICATIONS

ABSOLUTE MAXIMUM RATINGS (T_A = 25°C unless otherwise stated)

V_{CBO}	Collector – Base Voltage	12V			
V_{CEO}	Collector – Emitter Voltage	12V			
V_{EBO}	Emitter – Base Voltage	4V			
I _C	Collector Current	200mA			
P_{D}	Total Device Dissipation @ T _A =25°C	360mW			
	Derate above 25°C	2.06mW / °C			
P_{D}	Total Device Dissipation @ T _C =25°C	12W			
	Derate above 25°C	6.85mW / °C			
T_{STG} , T_{J}	Operating and Storage Temperature Range	−65 to +200°C			

Semelab plc. Telephone +44(0)1455) 556565. Fax +44(0)1455) 552612.

E-mail: sales@semelab.co.uk Website: http://www.semelab.co.uk

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise stated)

	Parameter	Test Conditions		Min.	Тур.	Max.	Unit
BV _{CEO(SUS)}	Collector – Base BreakdownVoltage	$I_C = 10mA$	$I_B = 0$	12			
BV _{CES}	Collector – Emitter Breakdown Voltage	$I_C = 10\mu A$	$V_{BE} = 0$	12			
BV _{CBO}	Collector – Base Breakdown Voltage	$I_C = 10\mu A$	I _E = 0	12			V
BV _{EBO}	Emitter Base Breakdown Voltage	I _E = 100μA	I _C = 0	4			
I _{CBO}	Collector Cut-off Current	$V_{CB} = 6V$	T _{amb} = 125°C			10	μΑ
I _{CES}	Collector Cut-off Current	$V_{CE} = 6V$	$V_{BE} = 0$			80	nA
I _B	Base Current	$V_{CE} = 6V$	$V_{BE} = 0$			80	
V _{CE(sat)}	Collector – Emitter Saturation Voltage	$I_C = 10mA$	I _B = 1mA			0.15	V
		$I_C = 30 \text{mA}$	$I_B = 3mA$			0.2	
		$I_C = 100 \text{mA}$	I _B = 10mA			0.5	
V _{BE(sat)}	Base – Emitter On Voltage	I _C = 10mA	I _B = 1mA	0.78		0.98	V
		$I_C = 30 \text{mA}$	$I_B = 3mA$	0.85		1.2.	
		I _C = 100mA	I _B = 10mA			1.7	
h _{FE}	DC Current Gain	$I_C = 10mA$	$V_{CE} = 0.3V$	30			_
		$I_C = 30 \text{mA}$	$V_{CE} = 0.5V$	40		150	
		$I_C = 30mA$	$V_{CE} = 0.5V$	17			
			T _{amb} = -55°C				
		$I_C = -30 \text{mA}$	$V_{CE} = -0.5V$	25			
f _T	Current Gain Bandwidth Product	V _{CE} = 10V	f = 100MHz	400			MHz
		$I_C = 30mA$					
C _{ob}	Output Capacitance	$V_{CB} = 5V$	I _E = 0			6	pF
		f = 140KHz					
C _{ib}	Input Capacitance	$V_{BE} = 0.5V$	I _C = 0			6	
		f = 140KHz					
t _{on}	Turn on Time					60	ns
		$V_{CC} = 2V$	$I_C = 30mA$				
t _{off}	Turn off Time	$I_{B1} = -I_{B2} = 1.5 \text{mA}$				90	113

^{*} Pulse Test: $t_p \leq 300 \mu s, \ \delta \leq 1\%.$

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.