Cardinality and Countability

Section 1.1: Countable Sets

Definition (Denumerable Set). A set S is denumerable if there exists a function $f : S \to \mathbb{N}$ with f a bijection. We also say S is countably infinite.

Definition (Countable Set). We say S is countable if S is either finite or denumerable.

Theorem (Countability of Unions). *If* A *and* B *are countable sets, then* $A \cup B$ *is countable.*

Theorem (Countability of Subsets). *If* $A \subseteq B$, *then if* B *is countable, then* A *is countable.*

Theorem (Union of Finite Sets). *If* A *and* B *are finite, then* $A \cup B$ *is finite.*

Proof. If A is finite and B has one element, then we show that $A \cup B$ is finite (with two cases).

Afterward, for |B| > 1, we use induction on |B|.

Definition (Finite Set). A set A is finite if there exists a bijection $f: S \to \{1, 2, ..., n\}$ for some $n \in \mathbb{N} = \{0, 1, ...\}$.

We write |A| = n.

Theorem (Disjoint Union of Countable Sets). *If* A *is denumerable,* B *is finite, and* $A \cap B = \emptyset$ *, then* $A \cup B$ *is denumerable.*

Proof. There exists a bijection $f : A \to \mathbb{N}$ (since A is denumerable), and a bijection $g : B \to \{1, 2, ..., n\}$ for some $n \in \mathbb{N}$ (since B is finite).

We create a new bijection $h : A \cup B \rightarrow \mathbb{N}$ by:

$$h(x) = \begin{cases} g(x) - 1 & x \in B \\ f(x) + n & x \in A \end{cases}.$$

Since $A \cap B = \emptyset$, we know that h is well-defined.

Now, we must show that h is a bijection.

Suppose h(x) = h(y).

Case 1: If $x, y \in B$, then h(x) = g(x) - 1, and h(y) = g(y) - 1, meaning g(x) - 1 = g(y) - 1, meaning g(x) = g(y). Since g is a bijection, x = y.

Case 2: If $x, y \in A$, a similar argument yields that x = y

Case 3: Without loss of generality, let $x \in A$ and $y \in B$. If $x \in A$, then h(x) = f(x) + n and h(y) = g(y) - 1. Thus, f(x) + n = g(y) - 1. However, since $f(x) + n \ge n$ and $0 \le g(y) - 1 \le n - 1$. Thus, we get that $0 \le n \le n - 1$, which is a contradiction.

Thus, we have shown that h is injective.

Theorem (Cartesian Product of Natural Numbers). $\mathbb{N} \times \mathbb{N}$ is denumerable.

Proof. We consider $\mathbb{N} \times \mathbb{N}$ as

$$\mathbb{N} \times \mathbb{N} = \mathbb{N} \times \{0\} \cup \mathbb{N} \times \{1\} \cup \cdots$$

Then, we can find an (informal) bijection as follows:

$$\mathbb{N} \times \{0\} : (0,0)^{-0} (1,0)^{-2} (2,0)^{-5} (3,0)^{-9} \cdots$$
 $\mathbb{N} \times \{1\} : (0,1)^{-1} (1,1)^{-4} (2,1)^{-8} (3,1) \cdots$
 $\mathbb{N} \times \{2\} : (0,2)^{-3} (1,2)^{-7} (2,2) (3,2) \cdots$
 $\mathbb{N} \times \{3\} : (0,3)^{-6} (1,3) (2,3) (3,3) \cdots$
 $\vdots \vdots \vdots \vdots \vdots \vdots \cdots$

We can also find a bijection $P : \mathbb{N} \times \mathbb{N} \to \mathbb{N}$, with

$$P(x,y) = \frac{(x+y)(x+y+1)}{2} + x$$

A fun challenge is to prove that P is a bijection.

Theorem (Countability of the Rationals). \mathbb{Q} *is denumerable.*

Theorem (Countability of the Integers). *The set* \mathbb{Z} *is denumerable.*

Proof. Let $f: \mathbb{Z} \to \mathbb{N}$ be defined by

$$f(x) = \begin{cases} 2x & x \ge 0 \\ -2x - 1 & x < 0 \end{cases}$$

Definition (Cardinality). We say two sets, A and B, have the same cardinality if there exists a bijection $f: A \to B$.

Theorem (Finite Subset Cardinality). *If* $m, n \in \mathbb{N}$ *and* $m \neq n$, *then* $\{1, 2, ..., m\}$ *and* $\{1, 2, ..., n\}$ *do not have the same cardinality.*

Theorem (Infinitude of the Natural Numbers). N is not finite.

Example. If $A \subseteq B$ and |A| = |B|, then both A and B are infinite.

In order to prove this, we need to show that every injection from a finite set to itself is a bijection.

Section 1.2

Definition (Uncountable Set). A set is uncountable if it is not countable.

Theorem (Uncountability of \mathbb{R}). \mathbb{R} *is uncountable.*

Proof. For all $x \in \mathbb{R}$, and for all $j \in \mathbb{N}$, we define $[x]_j$ to denote the j + 1-th digit after the decimal point in the decimal expansion of x.

For example, $[\pi]_0 = 1$, $[\pi]_1 = 4$, etc.

Let $f : \mathbb{N} \to \mathbb{R}$. We will show that f is not surjective.

Let $y \in [0,1) \subseteq \mathbb{R}$ defined by $\forall j \in \mathbb{N}$,

$$[y]_j = \begin{cases} 0 & [f(j)]_j = 1\\ 1 & [f(j)]_j \neq 1 \end{cases}.$$

We claim that $y \notin f(\mathbb{N})$. We will show that $\forall j \in \mathbb{N}$, $f(j) \neq y$.

We can see that if $[f(j)]_j = 1$, then $[y]_j = 0$. Similarly, if $[f(j)]_j \neq 1$, then $[y]_j = 1$. Either way, $[f(j)]_j \neq [y]_j$ for all $j \in \mathbb{N}$.

Remark: The above proof is an example of a diagonalization proof. It can be imagined as

Note: A substantial problem that we might need to deal with is that a real number does not necessarily have a unique decimal representation. For instance, $3.999 \cdots = 4.000 \ldots$

In order to resolve this issue, we can default to the option with trailing 0 over trailing 9.

Definition (Power Set). The power set of a set S is

$$P(S) = \{A \mid A \subseteq S\}.$$

Theorem (Power Set Surjection). Let $f: S \to P(S)$. Then, f is not surjective.

Proof. Let $T = \{x \in S \mid x \notin f(x)\}$. Then, $T \notin f(S)$.

Let $y \in S$. We want to show that $f(y) \neq T$. Suppose toward contradiction that f(y) = T. Then, if $y \in T$, then $y \in f(y)$, which implies that $y \notin T$.

If $y \notin T$, then $y \notin f(y)$, which implies that $y \in T$.

Thus, it cannot be the case that f(y) = T.

Definition (Cardinality Comparison). Let A and B be sets. Then, we write $card(A) \le card(B)$ if there exists an injective map $f: A \hookrightarrow B$.

We write card(A) < card(B) if there exists an injection $f : A \hookrightarrow B$ but no bijection.

Example (Cardinality of the Power Set). For every set,

$$card(S) < card(P(S))$$
.

(1) We know that $card(S) \le card(P(S))$, defining $f: S \hookrightarrow P(S)$, $f(a) = \{a\}$, since if f(x) = f(y), then $\{x\} = \{y\}$, meaning $x \in \{y\}$, so x = y.

In the case of $f: \emptyset \to \{\emptyset\}$, we define $\emptyset = f \subseteq \emptyset \times \{\emptyset\}$.

(2) Since there exists no bijection $f: S \to P(S)$, it is the case that $card(S) \neq card(P(S))$.

Example (Decimal Expansion). We know that for some decimal expansion

$$3.14159... = 3 + \frac{1}{10} + \frac{4}{100} + \cdots$$
$$= \sum_{i=0}^{\infty} \frac{n_i}{10^i},$$

with $0 \le n_i \le 9$ for $i \ge 1$.

However, we can also write any real number as

$$\sum_{i=0}^{\infty} \frac{n_i}{3^i}$$

with $0 \le n_i \le 2$ for all $i \ge 1$.

Example (Finite Strings). Let S be the set of all finite strings of 0 and 1. S is countable.

Proof 1: We define $f: S \to \mathbb{N}$ by, for a string $x \in S$, x starts with n_1 zeroes, then has n_2 ones, then n_3 zeroes, etc. We define $f(x) := 2^{n_1} \times 3^{n_2} \times 5^{n_3} \times 7^{n_4} \times 11^{n_5} \cdots$, or

$$f(x) = \prod_{i}^{\infty} p_{i}^{n_{i}},$$

where p_i denotes the ith prime number. We can see that f is an injection.

Since S is infinite (proof omitted), we can see that f(S) is also infinite.^I Since f(S) is an infinite subset of \mathbb{N} , f(S) is denumerable, meaning there exists a bijection $q:f(S)\to\mathbb{N}$. Therefore, we have $q\circ f:S\to\mathbb{N}$ is a bijection, meaning S is denumerable.

Proof 2: List the elements of S by length and lexicographic order: short strings come before long strings, and 0s come before 1s.

Rank	String
0	0
1	1
2	00
3	01
4	10
5	11
:	:

This pattern yields a systematic way to map S to the natural numbers.

Proof 3: We can see that

$$S = \bigcup_{i=1}^{\infty} S_i,$$

where S_i is the set of all strings of length i, each of which contains 2^i elements.

Since each S_i is finite, and $S_i \cap S_j = \emptyset$ (by definition). Thus, S is a countable union of pairwise disjoint countable sets, so S is countable.

If f(S) is finite, then there exists a bijection $g: f(S) \to \{1, ..., n\}$. Composing g and f, we find S is finite as $g \circ f|_S$ is a bijection.

Example (All Possible Writings). Let W be the set of all possible writings in English. We let W_n denote the writing with n characters. Then,

$$W = \bigcup_{n=1}^{\infty} W_n,$$

which is a countable union of disjoint finite sets, which is countable.

Similarly, we can list all the writings by length and lexicographic order.

This result implies that "almost all" real numbers, in a sense, are unable to be described.

Section 1.3: Cantor-Schröder-Bernstein Theorem

Example. If we have $|A| \le |B|$ and $|B| \le |A|$, it does not necessarily imply |A| = |B|.

This is because the \leq in the cardinality comparison implies there exist injections $f: A \hookrightarrow B$ and $g: B \hookrightarrow A$, not that the cardinalities are necessarily "less than or equal to" each other.

However, at the same time, this fact is true — this is what is known as the Cantor–Schröder–Bernstein Theorem.

Theorem (Cantor–Schröder–Bernstein). *Let* $f: C \hookrightarrow D$ *and* $g: D \hookrightarrow C$ *be injective maps. Then,* |C| = |D|.

An Informal Proof Sketch. Consider C to be a set of cats and D to be a set of dogs. Every cat chases a dog, and every dog chases a cat, with different cats chasing different dogs and vice versa.

There are four potential arrangements:

- (1) A set of cats and dogs are chasing each other in a circle.
- (2) A chain of dogs chasing cats that starts with a dog.
- (3) A chain of cats chasing dogs that starts with a cat.
- (4) An endless chain of cats chasing dogs with no discernible start or end point.

These four cases create a bijection from C to D:

- (1) Pair each cat with the dog that it is chasing.
- (2) Pair each cat with the dog that it is chasing.
- (3) Pair each cat with the dog that is chasing it.
- (4) Pair each cat with the dog that it is chasing.

A More Formal Proof Sketch. For $C = \{c_i\}_{i \in I}$ and $D = \{d_i\}_i$, we have four types of sequences.

- (i) Circular sequence: for some $m \in \mathbb{N}$, there exist c_1, \ldots, c_m and d_1, \ldots, d_m such that $f(c_i) = d_i$ and $g(d_i) = c_{i+1}$, where $c_{m+1} = c_1$.
- (ii) Cat sequence: there is c_1, c_2, \ldots and d_1, d_2, \ldots such that $f(c_i) = d_i$ and $g(d_i) = c_{i+1}$.
- (iii) Dog sequence: there is c_1, c_2, \ldots and d_1, d_2, \ldots such that $f(c_i) = d_{i+1}$ and $g(d_i) = c_i$.
- (iv) Bi-infinite sequence: $\{c_i\}_{i\in\mathbb{Z}}$ and $\{d_i\}_{i\in\mathbb{Z}}$ such that $f(c_i) = d_i$ and $g(d_i) = c_{i+1}$.

Claim 1: For every $c \in C$, c is in exactly one sequence that is either a circular sequence, a cat sequence, a dog sequence, or a bi-infinite sequence.

We define our bijection $h: C \to D$ by

$$h(c) = \begin{cases} g^{-1}(c) & c \text{ in a dog sequence} \\ f(c) & else \end{cases}.$$

Claim 2: h is well-defined.

Claim 3: h is a bijection.

Theorem. For every set A, B, either $|A| \le |B|$ or $|B| \le |A|$.

In order to prove this, we need the axiom of choice.

Example (Cardinality of the Reals). Recall that $|\mathbb{N}| < |P(\mathbb{N})|$ and $|\mathbb{N}| < |\mathbb{R}|$. According to the previous theorem, it is the case that either $|P(\mathbb{N})| \le |\mathbb{R}|$ or $|\mathbb{R}| \le |P(\mathbb{N})|$.

In particular, $|P(\mathbb{N})| = |\mathbb{R}|$.

An Informal Proof. Let S be the set of all functions $f : \mathbb{N} \to \{0,1\}$. We will show that $|S| = |P(\mathbb{N})|$ and $|S| = |\mathbb{R}|$. This will show that $|P(\mathbb{N})| = |\mathbb{R}|$ (by composing bijections).

To show that $|S| = |P(\mathbb{N})|$, define a subset of \mathbb{N} by the support^{II} of some element of S. This is a bijection between $P(\mathbb{N})$ and S.

To show $|S| = |\mathbb{R}|$, we place a decimal point in front of the string, and consider it as a real number in base 2, which yields a bijection between S and [0,1].

Next, we show that |[0,1]| = |(0,1)|.

Finally, we show that $|(0,1)| = \mathbb{R}$. Take $f:(0,1) \to \mathbb{R}$ to be $\cot(\pi x)$ — or $\tan(\pi x - \pi/2)$. These are bijections from (0,1) to \mathbb{R} .

Definition (Continuum Hypothesis). We are aware that

$$|\mathbb{N}| < |\mathbb{R}| = |P(\mathbb{N})|.$$

The continuum hypothesis states that there exists no set S such that

$$|\mathbb{N}| < |S| < |\mathbb{R}|$$
.

The continuum hypothesis is independent of the ZFC axioms.^{III}

Exercise (Challenge Problem). Let $T = \{(a_0, a_1, a_2, \dots) \mid a_i \in \mathbb{N}; \text{ finitely many nonzero } a_i\}$. Is T countable?

^{II}The elements that f does not map to 0 for some $f \in S$.

 $^{^{\}hspace{-0.1cm}\text{I\hspace{-0.1cm}I}} Zermelo–Frankel Axioms with the Axiom of Choice.$