辐射度量学与渲染方程

NeterOster

2023年1月28日

摘要

本文是 GAMES101 课程 的笔记。

本文将主要探讨如何理解课程中涉及辐射度量学的一个重要概念——Radiance,以及关于渲染方程的数学解释。特别地,将讨论如何理解对光源采样进行的积分变换。如果你有一定的高等数学或数学分析基础,可以阅读本文章。

参考资料: GAMES101 Lecture 15.

1 声明

作者没有学过辐射度量学相关的物理学课程。本文只是以一个具有一定数学基础的 GAMES101 学习者为视角编写的,因此,本文确实可能出现事实性错误,请自行参考。

2 有关 Radiance 的理解

在 GAMES101 课程中, 闫老师对 Flux, Intensity 和 Irradiance 这些概念做了简短而清晰的讲解。然而, 想要深入理解 Radiance,则还需要课程外的进一步思考。

2.1 Radiance 想要表达什么

为了理解 Radiance, 最重要的就是理解 Radiance 希望表达什么。一个我认为比较好的解释就是, Radiance 这个物理量, 就是为了描述光的传播这一种物理过程, 我将在下面具体分析这样说的原因。

具体来说,Radiance 希望表示的是一束特定的光的强度。"特定"是指光的起点(或终点)以及方向是确定的。

Radiance 能通过描述一束光的强度来表达光的传播,是因为 Radiance 在光的发射处的值与接受处的值具有一致性(这非常重要)。

2.2 Radiance 如何表示光的传播

Radiance 必须依赖一个过程表示光的传播。具体来说,这个过程就是,光被某点发射、或被某点接收。

我们以发射处举例,这发射点的 Radiance 就是课件上所写的 Exiting Radiance.

由于 Intensity 已经描述了整个光源向某个方向散发的 flux, 所以如果我们想描述一束特定光的 flux, 只需要确定这一束光的起点,也就是对光源表面面积进行微分。这反映在下式中

$$L(p,\omega) = \frac{\mathrm{d}I(p,\omega)}{\mathrm{d}A\cos\theta}$$

至于为什么会有 $\cos \theta$, 以及它为什么在分母, 将在下面进一步讨论。

类似的,我们以接受光处为例,由于 Irradiance 已经描述了某点接受四面八方的光的 flux,所以我们只需限制方向在一特定值,就可以描述物体接受一束特定光的 flux,也就是

$$L(p,\omega) = \frac{\mathrm{d}E(p)}{\mathrm{d}\omega\cos\theta}$$

通过 Radiance, 我们可以描述"光的发射强度等于光的接受强度"这一基本原理(渲染方程中能进行递归就是因为这个原理)。

2.3 光的能量和 $\cos \theta$

闫老师的视频中,很多人疑惑:问什么上面两个式子的 $\cos\theta$ 是在分母而不是分子。为了解决这个问题,我们又要从 Radiance 的物理意义着手。

上面提到过,Radiance 本质不过是某束光线的 flux,那么我们如何具体定义这个 flux 呢? 方法就是通过光线在某个 $\mathrm{d}A$ 下的能量去描述.

为此,我们需要去统一 Radiance 这个量。因为光线的能量不会因为接受面或者发射面的角度而改变,所以需要在 Radiance 去掉面角度的影响,这自然是要除 $\cos\theta$. 也就是 Radiance 定义为,单位投影面积接受的 Irradiance 或者单位投影面积发射的 Intensity。为了让我们算的 L 符合 Radiance 的定义,需要除 $\cos\theta$,而在 Randering Equation 中,我们是用 L 计算 flux,自然要把这个 $\cos\theta$ 乘回来(因为法线和光确实有夹角)。

3 渲染方程的数学理解

在这一节中, 我们将重点考虑积分

$$\int_{\Omega^{+}} L_{i}(p,\omega_{i}) f_{r}(p,\omega_{i},\omega_{o}) (n \cdot \omega_{i}) d\omega_{i}$$
(1)

的意义。

3.1 方向的微分与立体角

应当认为, $d\omega$ 中的 ω 代表一个方向,而方向的微小变化自然形成一个立体角。所以, $d\omega$ 是一个立体角。

从黎曼积分的角度来看,我们是在划分单位半球的方向,得到了许许多多的立体角。

3.2 立体角与面积微元

根据立体角的定义,我们很清楚,一个立体角的大小,等于它在单位球面上的投影面积。即 $\omega_i = A$. 并且很清楚立体角与单位球上的(投影)曲面有一一对应关系,这也就是说,我们可以将渲染方程积分改写为

$$\int_{\Omega^{+}} L_{i}(p, N) f_{r}(p, N, \omega_{o})(n \cdot N) dS$$
(2)

其中 N=N(x,y,z) 是单位半球上的单位法向量函数,如果 p 是原点,容易得到 N(x,y,z)=(x,y,z)。 通过上面的变换,我们成功的把渲染方程中的积分变成了 (2)。这是一个在单位半球面上的第一型曲面积分,我们对其性质已经有充分的了解。

3.3 对光源采样

基于上一小节的变换, 我们可以来理解对光源采样的数学意义。首先, 我们对 (2) 作进一步的处理。

$$\begin{split} & \int_{\Omega_{+}} L_{i}(p,N) f_{r}(p,N,\omega_{o})(n\cdot N) \mathrm{d}S \\ = & \int_{\Omega_{\mathrm{light}}} L_{i}(p,N) f_{r}(p,N,\omega_{o})(n\cdot N) \mathrm{d}S + \int_{\Omega_{\mathrm{other}}} L_{i}(p,N) f_{r}(p,N,\omega_{o})(n\cdot N) \mathrm{d}S \end{split}$$

我们把积分区域分成两部分,一部分是 Ω_{light} ,即 p 连接这部分中任意一点后得到的光线将命中光源,另一部分 Ω_{other} 则不会这样。

我们重点来讨论前一个积分。如果光源的面积微元法线经过 p 点,很容易知道 Ω_{light} 和光源有一一对应关系(对于 Ω_{light} 中的每一个点,把它与原点连接,并且反向延长到光源处,得到光源的一个对应点,这种对应应当是一一的),所以我们的确可以把原积分变换为光源上的第一型曲面积分。

假设 A 是光源上的面积,很清楚 $A = r^2 S$ 其中 r 是 p 到光源的距离。

这样一来,得到

$$r^{2} \int_{\Omega_{\text{light}}} L_{i}(p, N) f_{r}(p, N, \omega_{o})(n \cdot N) dS = \int_{\text{light}} L_{i}(p, N) f_{r}(p, N, \omega_{o})(n \cdot N) dA$$
 (3)

这就是对光源采样的数学变换原理。