Kısıtlı En Küçük Kareler

T.C. Trakya Üniversitesi Mühendislik Fakültesi Elektrik - Elektronik Mühendisliği Bölümü Kontrol Anabilim Dalı

Dr. Öğr. Üyesi İşık İlber Sırmatel sirmatel.github.io

Kaynak (source)

Lecture Slides for Introduction to Applied Linear Algebra: Vectors, Matrices, and Least Squares. Stephen Boyd, Lieven Vandenberghe

Konu listesi

- 1. Doğrusal kısıtlı en küçük kareler
- 2. En küçük norm problemi
- 3. Kısıtlı en küçük kareler problemini çözmek
- 4. Problemlerin geometrisi
- Uygulamalar
 Portföy optimizasyonu
 Doğrusal karesel kontrol
 Doğrusal karesel durum kestirme

Bölüm 1

Doğrusal kısıtlı en küçük kareler

Eşitlik kısıtlarıyla en küçük kareler

▶ doğrusal **kısıtlı en küçük kareler** (*constrained least squares*) problemi (CLS)

$$\label{eq:minimize} \begin{aligned} \min_{x} & \|Ax - b\|^2 \\ & \text{bağl} & Cx = d \end{aligned}$$

şeklinde bir optimizasyon problemidir

- $ightharpoonup x \in \mathbb{R}^n$: değerini bulmak/seçmek istediğimiz vektör
- ▶ $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, $C \in \mathbb{R}^{p \times n}$, ve $d \in \mathbb{R}^p$ problem verileridir (yani, bunları biliyoruz)
- ► $||Ax b||^2$: amaç fonksiyonu
- ightharpoonup Cx = d: esitlik kısıtları
- ightharpoonup Cx = d ise x olanaklıdır (feasible)
- ▶ $C\hat{x} = d$ ise ve $\|A\hat{x} b\|^2 \le \|Ax b\|^2$ koşulu Cx = d'yi sağlayan her $x \in \mathbb{R}^n$ için sağlanıyorsa (yani, \hat{x} , olanaklı x'ler arasından $\|Ax b\|^2$ 'nin en küçük değerini almasını sağlayan seçenek ise), \hat{x} CLS'nin bir çözümüdür

Eşitlik kısıtlarıyla en küçük kareler

- ▶ CLS doğrusal denklemlerin (burada, Cx = d) çözülmesi ile en küçük kareler problemini (burada, minimize $||Ax b||^2$) birleştirir
- ► CLS, minimize $\|Ax b\|^2 + \lambda \|Cx d\|^2$

şeklindeki bir **iki-amaçlı** (bi-objective) en küçük kareler probleminde ikincil amacın ağırlığı λ 'yı sonsuz yaptığımızda oluşacak optimizasyon problemi olarak düşünülebilir

En küçük norm problemi

Bölüm 2

En küçük norm problemi

- kısıtlı en küçük kareler probleminin ($A=I,\ b=0$ seçildiğinde oluşan) özel halidir
- ► en küçük norm problemi

şeklinde bir optimizasyon problemidir (yazıyla: "bir doğrusal denklem takımını sağlayan vektörler arasından en küçük normlu olanı bul")

- sürtünmesiz yüzeyde, başlangıçta durgun olan birim kütleli cisim
- ▶ model: F = ma (Newton'un ikinci yasası)
- $lacktriangleright f \in \mathbb{R}^{10}$: her saniye için cisme uygulanan kuvvet
- cismin nihai (yani, 11. saniyedeki) hızı ve konumu:

$$v^{\text{final}} = f_1 + f_2 + \dots + f_{10}$$

$$p^{\text{final}} = \frac{19}{2} f_1 + \frac{17}{2} f_2 + \dots + \frac{1}{2} f_{10}$$

- $\blacktriangleright \ v^{\rm final} = 0$ ve $p^{\rm final} = 1$ olmasını sağlayacak f vektörünü bulmak istiyoruz
- ► $f^{\text{bb}} = \begin{bmatrix} 1 & -1 & 0 & \dots & 0 \end{bmatrix}^T$ bunu sağlar (bu tarz çözümlere **aç-kapa** (*on-off* veya *bang-bang*) denir)

aç-kapa kuvvet **yörünge**si (*trajectory*) ve bunun etkisinde oluşan konum yörüngesi

- $m v^{
 m final}=0$ ve $p^{
 m final}=1$ olmasını sağlayacak en küçük normlu f vektörünü bulalım
- $lackbox{ en küçük normlu }f$, pratikte, istenen işi yapan (yani, $v^{\mathrm{final}}=0$ ve $p^{\mathrm{final}}=1$ olmasını sağlayan) ve minimum enerji harcaması gerektiren çözüme karşılık gelebilir
- ► en küçük norm problemi

$$\label{eq:bagdin} \begin{array}{lll} \text{minimize} & \|f\|^2 \\ \\ \text{bagII} & \begin{bmatrix} 1 & 1 & \cdots & 1 & 1 \\ \frac{19}{2} & \frac{17}{2} & \cdots & \frac{3}{2} & \frac{1}{2} \end{bmatrix} f = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \end{array}$$

ightharpoonup çözüm f^{\ln} için amaç fonksiyonunun değeri $\|f^{\ln}\|^2=0.0121$ olur (karşılaştırın: $\|f^{\text{bb}}\|^2=2$)

en küçük normlu kuvvet yörüngesi ve bunun etkisinde oluşan konum yörüngesi

Bölüm 3

Kısıtlı en küçük kareler problemini çözmek

Diferansiyel hesapla optimalite koşulları

$$\begin{aligned} & \underset{x}{\text{minimize}} & & f(x) = \|Ax - b\|^2 \\ & \text{bağlı} & & c_i^T x = d_i, \quad i = 1, \dots, p \end{aligned}$$

şeklinde verilen kısıtlı optimizasyon problemini çözmek için:

1. Lagrange fonksiyonunu oluştur (Lagrange çarpanları z_1, \ldots, z_p ile)

$$L(x,z) = f(x) + z_1(c_1^T x - d_1) + \dots + z_p(c_p^T x - d_p)$$

2. optimalite koşullarını oluştur

$$\frac{\partial L}{\partial x_i}(\hat{x}, z) = 0, \quad i = 1, \dots, n$$

$$\frac{\partial L}{\partial z_i}(\hat{x}, z) = 0, \quad i = 1, \dots, p$$

Diferansiyel hesapla optimalite koşulları

- $\blacktriangleright \frac{\partial L}{\partial z_i}(\hat{x},z) = c_i^T \hat{x}_i d_i = 0$ (eşitlik kısıtları için olanaklılık)
- ► durağanlık (stationarity)

$$\frac{\partial L}{\partial x_i}(\hat{x}, z) = 2\sum_{j=1}^n (A^T A)_{ij} \hat{x}_j - 2(A^T b)_i + \sum_{j=1}^p z_j c_i = 0$$

- ► matris-vektör formunda: $2(A^TA)\hat{x} 2A^Tb + C^Tz = 0$
- ▶ bunu $C\hat{x} = d$ ile birleştirerek Karush-Kuhn-Tucker (KKT) koşullarını oluşturabiliriz:

$$\underbrace{\begin{bmatrix} 2A^TA & C^T \\ C & 0 \end{bmatrix}}_{\text{KKT matrisi}} \begin{bmatrix} \hat{x} \\ z \end{bmatrix} = \begin{bmatrix} 2A^Tb \\ d \end{bmatrix}$$

bunlar, değişkenleri \hat{x} ve z olan n+p adet denklemden oluşan bir kare denklem takımıdır

bu denklem takımına "KKT sistemi" de denir

CLS probleminin çözümü

KKT matrisi tersi alınabilir ise, KKT sisteminin çözümü

$$\begin{bmatrix} \hat{x} \\ z \end{bmatrix} = \begin{bmatrix} 2A^T A & C^T \\ C & 0 \end{bmatrix}^{-1} \begin{bmatrix} 2A^T b \\ d \end{bmatrix}$$

seklinde bulunur

- \blacktriangleright ancak ve ancak C'nin satırları doğrusal bağımsız ve $\begin{bmatrix} A & C \end{bmatrix}^T$ 'nin sütunları doğrusal bağımsız ise KKT matrisi tersi alınabilirdir
- lacktriangle bu, $m+p\geq n$ ve $p\leq n$ koşullarını gerektirir
- ▶ \hat{x} 'i hesaplamanın maliyeti: $2mn^2 + 2(n+p)^3$ flop (büyük n için yaklaşık maliyet: n^3)

Çözümün doğrudan teyit edilmesi

- $ightharpoonup \hat{x}'$ in çözüm olduğunu göstermek için, Cx=d'yi sağlayan bir x'i ele alalım
- ▶ bu durumda:

$$||Ax - b||^2 = ||(Ax - A\hat{x}) + (A\hat{x} - b)||^2$$

= $||A(x - \hat{x})||^2 + ||A\hat{x} - b||^2 + 2(Ax - A\hat{x})^T(A\hat{x} - b)$

▶ son terimi $(2A^T(A\hat{x} - b) = -C^Tz \text{ ve } Cx = C\hat{x} = d$ eşitliklerini kullanarak) açarsak:

$$2(Ax - A\hat{x})^{T}(A\hat{x} - b) = 2(x - \hat{x})^{T}A^{T}(A\hat{x} - b)$$
$$= -(x - \hat{x})^{T}C^{T}z$$
$$= -(C(x - \hat{x}))^{T}z = 0$$

- $||Ax b||^2 = ||A(x \hat{x})||^2 + ||A\hat{x} b||^2 \ge ||A\hat{x} b||^2$
- **b** buradan \hat{x}' in çözüm olduğu sonucuna varırız

En küçük norm probleminin çözümü

► en küçük norm problemi:

- ► [I C]^T nin sütunları daima doğrusal bağımsızdır

 ► C'nin satırlarının doğrusal bağımsız olduğunu varsayıyoruz
- ▶ optimalite koşulu (KKT sistemi):

$$\begin{bmatrix} 2I & C^T \\ C & 0 \end{bmatrix} \begin{bmatrix} \hat{x} \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ d \end{bmatrix}$$

- **b** burada birinci denklemden $\hat{x} = -(\frac{1}{2})C^Tz$ olduğu görülür. bu halde ikinci denklem $-(\frac{1}{2})CC^Tz = d$ şeklinde oluşur
- $ightharpoonup z = -2(CC^T)^{-1}$ 'i birinci denklemde yerine yazarsak, cözümü

$$\hat{x} = C^T (CC^T)^{-1} d = C^{\dagger} d$$

şeklinde elde ederiz (burada C^{\dagger} , C'nin sözde tersi)

En küçük norm probleminin çözümü

C'nin satırları doğrusal bağımsız ise:

- $ightharpoonup C^{\dagger}$, C'nin bir sağ tersidir
- dolayısıyla her d için $\hat{x} = C^{\dagger}d$ $C\hat{x} = d$ 'yi sağlar
- ▶ (buradaki analizle şunu öğrendik:) \hat{x} , (C geniş matris olduğu için sonsuz adet çözümü olan) Cx = d denkleminin en küçük (normlu) çözümüdür

Bölüm 4

Problemlerin geometrisi

En küçük kareler problemi

örnek: 2 boyutlu veriye düz çizgi uydurma

$$A = \begin{bmatrix} 1 & 1 \\ 1 & 3 \\ 1 & 6 \end{bmatrix} \quad b = \begin{bmatrix} 0 \\ 2 \\ 3 \end{bmatrix} \quad \theta = \begin{bmatrix} \theta_1 \\ \theta_2 \end{bmatrix} \quad f(\theta) = \|A\theta - b\|^2$$

problem: minimize $f(\theta)$ çözüm: $\hat{\theta} = \begin{bmatrix} -0.263 \\ 0.579 \end{bmatrix}$

Kısıtlı en küçük kareler problemi

örnek: 2 boyutlu veriye düz çizgi uydurma (kısıtlı)

$$A = \begin{bmatrix} 1 & 1 \\ 1 & 3 \\ 1 & 6 \end{bmatrix} \quad b = \begin{bmatrix} 0 \\ 2 \\ 3 \end{bmatrix} \quad \theta = \begin{bmatrix} \theta_1 \\ \theta_2 \end{bmatrix} \quad f(\theta) = \|A\theta - b\|^2$$

0.35

problem: minimize
$$f(\theta)$$
 çözüm: $\hat{\theta} = \begin{bmatrix} 0.667 \\ 0.3 \end{bmatrix}$ bağlı $\theta_2 = 0.3$

En küçük norm problemi

örnek: kısıtı sağlayan en küçük normlu vektörü bulma

$$C = \begin{bmatrix} 1 & 2 \end{bmatrix}$$
 $d = 3$ $x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ $f(x) = ||x||^2$

problem: minimize
$$f(x)$$
 çözüm: $\hat{x} = \begin{bmatrix} 0.6 \\ 1.2 \end{bmatrix}$

bağlı
$$Cx = d$$

Uygulamalar

Bölüm 5

Alt Bölüm 1

Portföy optimizasyonu

Portföy paylaştırma ağırlıkları

- lackbox belirli bir periyot (bir gün, hafta, ay vb.) için, n farklı varlığa (hisse, tahvil vb.) toplam V kadar para yatıracağız
- ▶ kısa pozisyon almak (yani, bir varlığı başlangıçta ödünç alıp hemen satmak, sürenin sonunda da ödünç aldığımız yere geri vermek) mümkün
- ▶ portföy paylaştırma (portfolio allocation) ağırlık vektörü w, portföyde bulunan varlıkların toplam portföy değerine oranını içeriyor
- $ightharpoonup V_w_v$, varlık j'ye yatırılmış para
- ▶ $\mathbf{1}^T w = 1$ sağlanır (w_i pozitifse uzun pozisyon, negatifse kısa pozisyon anlamına gelir)
- ▶ örnek: $w = \begin{bmatrix} -0.2 & 0 & 1.2 \end{bmatrix}$ şeklindeki bir ağırlık vektörü, varlık 1 için 0.2V'lik kısa pozisyon aldığımız, varlık 3 için 1.2V'lik uzun pozisyon (bu varlıktan alıp elimizde tuttuğumuz) aldığımız, varlık 2 ile ilgili ise herhangi bir pozisyon almadığımız anlamına gelir

Kaldıraç, sadece uzun portföy ve nakit

- ▶ kaldıraç (leverage): $L = |w_1| + \cdots + |w_n|$
- ► (not: kaldıraç = işlem miktarı/yatırım miktarı)
- ightharpoonup bütün ağırlıklar negatif olmayan ise L=1 olur (buna sadece uzun portföy (long only portfolio) denir)
- ightharpoonup w=1/n'e üniform portföy denir
- ▶ n. varlık genellikle risksiz varlık (örneğin, nakit para veya hazine bonosu) olarak seçilir
- ightharpoonup dolayısıyla, $w=\mathrm{e}_n$ (e_n , n. birim vektör) portföyde sadece nakit para var demektir

Periyot için oluşan getiri

- $ightharpoonup \tilde{r}_j$: varlık j'nin periyot için olan **getiri**si (*return*)
- $lackbox{} ilde{r}_j$, varlığın fiyatonda olan oransal değişim
- \blacktriangleright genellikle yüzde olarak ifade edilir, örneğin +2.3% veya -1.1%
- lacktriangle portföyün getirisi (V^+ periyot sonundaki portföy değeri):

$$\frac{V^+ - V}{V} = \tilde{r}^T w$$

▶ portföyü t periyot için tutarsak (ve getiriler r_1, \ldots, r_t olursa) oluşaral portföy değeri:

$$V_{t+1} = V_1(1+r_1)(1+r_2)\cdots(1+r_t)$$

Getiri matrisi

- ightharpoonup ağırlık w ile T periyot için portföy tutalım
- ightharpoonup (varlık) getiri matrisi tanımlayalım: $R \in \mathbb{R}^{T \times n}$
- ightharpoonup burada R_{ti} , varlık j'nin periyot t'deki getirisi
- ightharpoonup R'nin t. satırı \tilde{r}_t^T (burada \tilde{r}_t periyot t için varlık getiri vektörü)
- ightharpoonup R'nin j. sütunu, varlık j'nin getirilerinin **zaman serisi** (time series)
- ightharpoonup portföy getirileri vektörü (zaman serisi): r=Rw (T-vektör)
- ▶ n. varlık risksiz ise, R'nin son sütunu $\mu^{\rm rs} {\bf 1}$ olur (burada $\mu^{\rm rs}$ periyot-başına risksiz faiz oranı)

Portföy getirisi ve risk

- ► r portföy getirilerinin zaman serisi (vektör)
- ightharpoonup ortalama getiri: avg(r)
- ightharpoonup risk: std(r)
- bunlar periyor-başına getiri ve risk
- ► küçük periyot-başına getiriler için

$$V_{T+1} = V_1(1+r_1)\cdots(1+r_2)$$

 $\approx V_1 + V_1(r_1 + \cdots + r_T)$
 $= V_1 + Tavg(r)V_1$

 dolayısıyla, getiri portföy değerindeki ortalama periyot-başına artışın yaklaşık değerini ifade eder

Yıllık getiri ve risk

- ortalama getiri ve risk genellikle yıllık şekilde (yani, yıl-başına) ifade edilir
- \blacktriangleright her yıl için P adet **işlem** (trading) periyodu varsa:

yıllık getiri =
$$Pavg(r)$$
, yıllık risk = $\sqrt{P}std(r)$

olur (riskin yıllık ifadesindeki karekök, getirinin ortalaması etrafındaki dalgalanmaların bağımsız olduğu varsayımından kaynaklanır)

▶ getiriler günlük olsun ve bir yılda 250 işlem günü olsun. bu durumda yıllık getiri ve risk

yıllık getiri =
$$250 \mathrm{avg}(r),$$
 yıllık risk = $\sqrt{250} \mathrm{std}(r)$ şeklinde yazılır

Portföy optimizasyonu

- ightharpoonup portföy optimizasyonu problemi: portföy ağırlık vektörü w'yi nasıl seçmeliyiz?
- ▶ portföyün (ortalama) getirisi yüksek olsun, riski düşük olsun isteriz
- geçmişte gerçekleşen varlık getirilerini biliyoruz, ancak gelecekte ne olacağını bilmiyoruz
- ▶ w'yi, geçmişteki getiriler için iyi başarım gösterecek şekilde seçeceğiz
- ▶ beklentimiz, bu şekilde seçtiğimiz w'nin gelecekte de iyi başarım göstermesi (tıpkı veri uydurmada yaptığımız gibi)

Portföy optimizasyonu

minimize
$$\operatorname{std}(Rw)^2 = \frac{1}{T}\|Rw - \rho \mathbf{1}\|^2$$
 bağlı $\mathbf{1}^Tw = 1$ $\operatorname{avg}(Rw) = \rho$

- ▶ w: seçmek istediğimiz portföy ağırlık vektörü
- ► R: geçmişteki varlık getirilerinin getiri matrisi
- ► Rw: geçmişteki portföy getirileri zaman serileri
- ightharpoonup: geçmişteki ortalama getiri (kısıt)
- ▶ bu problem formülasyonuyla, belirli (sabit) bir getiri oluşturacak ve riski minimize edecek w'yi seçiyoruz
- çözüm w Pareto optimaldir (yani, çözümden hem getirisi daha yüksek hem de riski daha düşük başka bir vektör bulmak imkansızdır)
- bu problemle aslında "gelecekteki getirileri bilseydik, bunlar için geçerli olacak en iyi sabit paylaştırma hangisi olurdu?" sorusunu soruyoruz

CLS ile portföy optimizasyonu

$$\begin{aligned} & \underset{w}{\text{minimize}} & & \|Rw - \rho \mathbf{1}\|^2 \\ & \text{bağlı} & & \begin{bmatrix} \mathbf{1}^T \\ \mu^T \end{bmatrix} w = \begin{bmatrix} 1 \\ \rho \end{bmatrix} \end{aligned}$$

- $\blacktriangleright \mu = R^T \mathbf{1}/T$ (n-vektör): geçmişteki varlık getirileri
- ▶ ρ: geçmişteki ortalama getiri (kısıt)
- bu bir kısıtlı en küçük kareler (CLS) problemidir ve çözümü

$$\begin{bmatrix} w \\ z_1 \\ z_2 \end{bmatrix} = \begin{bmatrix} 2R^T R & \mathbf{1} & \mu \\ \mathbf{1}^T & 0 & 0 \\ \mu^T & 0 & 0 \end{bmatrix}^{-1} \begin{bmatrix} 2\rho T\mu \\ 1 \\ \rho \end{bmatrix}$$

şeklinde bulunur

Optimal portföyler

- ► tek varlığa kıyasla çok daha yüksek başarım gösterirler
- risk-getiri eğrisi bir düz çizgidir
- ► çizginin bir ucunda risksiz varlık bulunur
- **iki-fon** (*two-fund*) teoremi: optimal portföy w, ρ 'nun afin bir fonksiyonudur:

$$\begin{bmatrix} w \\ z_1 \\ z_2 \end{bmatrix} = \begin{bmatrix} 2R^T R & \mathbf{1} & \mu \\ \mathbf{1}^T & 0 & 0 \\ \mu^T & 0 & 0 \end{bmatrix}^{-1} \left(\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} + \rho \begin{bmatrix} 2T\mu \\ 0 \\ 1 \end{bmatrix} \right)$$

Büyük varsayım

► şimdi bir **büyük varsayım** (*big assumption*) yapıyoruz:

GELECEK GETİRİLER GEÇMİŞ GETİRİLERE

BENZEYECEK

- her yatırım işleminde, bu varsayımın yanlış olduğu uyarısı yapılır
- bu varsayım genellikle makul ölçüde doğrudur
- market kayması (shift) dönemlerinde, varsayım çok daha az doğrudur
- varsayım (yaklaşık olarak da olsa) geçerliyse, geçmişteki getiriler için iyi olan bir ağırlık vektörü w gelecekteki (bilinmeyen) getiriler için de iyi olmalıdır
- ▶ örnek:
 - $-\ w$ 'yi son 2 yılın getirilerin dayanarak hesapla
 - sonraki (gelecek) 6 ay için bu w'yi kullan

veri: 2000 gün boyunca 20 varlık

çözüm: pareto optimal portföyler

farklı tarzda 5 adet portföyün geçerleme analizi

	getiri		risk		
portföy	eğitim	test	eğitim	test	kaldıraç
risksiz	0.01	0.01	0.00	0.00	1.00
$\rho = 10\%$	0.10	0.08	0.09	0.07	1.96
$\rho = 20\%$	0.20	0.15	0.18	0.15	3.03
$\rho = 40\%$	0.40	0.30	0.38	0.31	5.48
1/n (üniform)	0.10	0.21	0.23	0.13	1.00

- ➤ 2000 günlük eğitim periyodu verisini optimal portföyleri hesaplarken kullanıyoruz
- ► (eğitim verisine dahil olmayan) başka bir 500 günlük test periyodu verisini optimal portföyleri sınarken kullanıyoruz

farklı tarzda 5 adet portföyün toplam değeri

Alt Bölüm 2

Doğrusal karesel kontrol

Doğrusal dinamik sistem

$$x_{t+1} = A_t x_t + B_t u_t, y_t = C_t x_t, t = 1, 2, \dots$$

- ► $x_t \in \mathbb{R}^n$: t anındaki **durum** (state)
- $ightharpoonup u_t \in \mathbb{R}^m$: t anındaki **giriş** (input)
- $ightharpoonup y_t \in \mathbb{R}^p$: t anındaki çıkış (output)
- $lackbox{} A_t \in \mathbb{R}^{n imes n}$: t anındaki durum (veya, dinamik) matrisi
- $ightharpoonup B_t \in \mathbb{R}^{n \times m}$: t anındaki giriş matrisi
- $ightharpoonup C_t \in \mathbb{R}^{p imes n}$: t anındaki çıkış matrisi
- $ightharpoonup x_t$, u_t ve y_t genellikle standart bir çalışma koşulundan sapmaları temsil eder

Doğrusal karesel kontrol

$$\begin{split} & \underset{\{u_t\}_{t=1}^{t=T-1}}{\text{minimize}} & J_{\text{çıkış}} + \rho J_{\text{giriş}} \\ & \text{bağlı} & x_{t+1} = A_t x_t + B_t u_t, \quad t = 1, \dots, T-1 \\ & x_1 = x^{\text{başlangıç}}, \quad x_T = x^{\text{istenen}} \end{split}$$

- lacktriangle değişkenler: durum yörüngesi x_1, x_2, \ldots, x_T ve giriş yörüngesi $u_1, u_2, \ldots, u_{T-1}$
- ▶ iki amaç (yörüngelerin karesel fonksiyonları):

$$J_{\mathsf{cikis}} = ||y_1||^2 + \dots + ||y_T||^2 = ||C_1 x_1||^2 + \dots + ||C_T x_T||^2$$

$$J_{\mathsf{giris}} = ||u_1||^2 + \dots + ||u_{T-1}||^2$$

- birinci kısıt yörüngelerin doğrusal dinamik denklemlere uymasını sağlar
- ▶ ikinci kısıtlar başlangıç ve nihai (istenen) durumları belirtir
- $ightharpoonup
 ho \in \mathbb{R}$: iki amaç arasında ödünleşme parametresi (pozitif)

Kısıtlı en küçük kareler formülasyonu

doğrusal karesel kontrol problemi

formunda bir kısıtlı en küçük kareler problemi olarak yazılabilir

lacktriangle bu formülasyondaki değişken vektörü z, Tn+(T-1)m adet değişken içerir:

$$z = \begin{bmatrix} x_1 & x_2 & \dots & x_T & u_1 & u_2 & \dots & u_{T-1} \end{bmatrix}^T$$

Kısıtlı en küçük kareler formülasyonu

$$\tilde{A} = \begin{bmatrix} C_1 & \cdots & 0 & 0 & \cdots & 0 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & C_T & 0 & \cdots & 0 \\ \hline 0 & \cdots & 0 & \sqrt{\rho}I & \cdots & 0 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & 0 & 0 & \cdots & \sqrt{\rho}I \end{bmatrix}, \quad \tilde{b} = 0$$

$$\tilde{C} = \begin{bmatrix} A_1 & -I & 0 & \cdots & 0 & 0 & B_1 & 0 & \cdots & 0 \\ 0 & A_2 & -I & \cdots & 0 & 0 & 0 & B_2 & \cdots & 0 \\ \vdots & \vdots & \vdots & & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & A_{T-1} & -I & 0 & 0 & \cdots & B_{T-1} \\ \hline I & 0 & 0 & \cdots & 0 & 0 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & \cdots & 0 & I & 0 & 0 & \cdots & 0 \end{bmatrix}, \qquad \tilde{d} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ \hline x^{\text{init}} \\ x^{\text{des}} \end{bmatrix}$$

Doğrusal karesel kontrol - Örnek

► sistem **zamanla değişmeyen** (*time-invariant*) (yani, dinamik modeldeki *A*, *B* ve *C* matrisleri sabit):

$$A = \begin{bmatrix} 0.855 & 1.161 & 0.667 \\ 0.015 & 1.073 & 0.053 \\ -0.084 & 0.059 & 1.022 \end{bmatrix} \qquad B = \begin{bmatrix} -0.076 \\ -0.0139 \\ 0.342 \end{bmatrix}$$
$$C = \begin{bmatrix} 0.218 & -3.597 & -1.683 \end{bmatrix}$$

- lacktriangle başlangıç koşulu: $x^{\mathrm{başlangıç}} = \begin{bmatrix} 0.496 & -0.745 & 1.394 \end{bmatrix}^T$
- ▶ istenen (veya hedef) nihai durum: $x^{istenen} = 0$
- ightharpoonup T = 100 (zaman ufku)

Doğrusal karesel kontrol - Örnek

optimal ödünleşim eğrisi

Doğrusal karesel kontrol - Örnek

optimal ödünleşim eğrisi üzerindeki üç nokta için yörüngeler

Doğrusal durum geribeslemeli kontrol

▶ doğrusal durum geribeslemeli kontrolde kontrol girişi

$$u_t = Kx_t, \quad t = 1, 2, \dots$$

şeklinde hesaplanır

- $ightharpoonup K\in\mathbb{R}^{m imes n}$: durum geribesleme kazanç matrisi
- ightharpoonup özellikle x_t 'nin 0'a yakınsamasının istendiği ve T'nin belirtilmediği hallerde yaygın kullanılan bir yöntemdir
- ightharpoonup K'yı seçmek için bir yöntem: $x^{\mathrm{istenen}}=0$ ile doğrusal karesel kontrol problemini çözmek
- ightharpoonup çözüm u_t , $x^{\text{istenen'}}$ in bir doğrusal fonksiyonudur, dolayısıyla u_1 , $u_1 = Kx^{\text{başlangıç}}$ şeklinde yazılabilir
- ightharpoonup K'nın sütunları u_1 'yu $x^{\mathsf{başlangiç}} = \mathbf{e}_1, \dots, \mathbf{e}_n$ için hesaplayarak bulunabilir
- ightharpoonup bu şekilde oluşturulan K durum geribesleme kazanç matrisi olarak kullanılabilir

Doğrusal durum geribeslemeli kontrol

örnek: (önceki örnekten devam)

- ▶ dinamik modelin matrisleri önceki örnek ile aynı
- ightharpoonup mavi eğride optimal doğrusal karesel kontrol (T=100) kullanılıyor
- kırmızı eğride doğrusal durum geribesleme $u_t = Kx_t$ kullanılıyor

Alt Bölüm 3

Doğrusal karesel durum kestirme

Durum kestirme

$$x_{t+1} = A_t x_t + B_t w_t, y_t = C_t x_t + v_t, t = 1, 2, \dots$$

- $ightharpoonup x_t \in \mathbb{R}^n$: t anındaki **durum** (state)
- $ightharpoonup y_t \in \mathbb{R}^p$: t anındaki **ölçüm** (measurement)
- $w_t \in \mathbb{R}^m$: t anındaki süreç gürültüsü (process noise) (veya, giriş gürültüsü)
- $v_t \in \mathbb{R}^p$: t anındaki **ölçüm gürültüsü** (measurement noise) (veya, ölçüm kalıntısı)
- ▶ genellikle pratikte w_t modelleme belirsizliğini (modeling uncertainty), v_t ise işaret belirsizliğini (signal uncertainty) temsil eder
- ▶ $A_t \in \mathbb{R}^{n \times n}$, $B_t \in \mathbb{R}^{n \times m}$, $C_t \in \mathbb{R}^{p \times n}$ matrislerini (dinamik modeli) ve ölçümleri (y_1, y_2, \dots, y_T) biliyoruz
- lacktriangle gürültüleri $(w_t \ {
 m ve} \ v_t)$ bilmiyoruz, ancak bunların küçük olduğunu varsayıyoruz
- **durum kestirme** (*state estimation*) problemi: x_1, x_2, \ldots, x_T 'yi kestirmek/tahmin etmek

En küçük kareler durum kestirme

$$\begin{array}{ll} \underset{\{w_t\}_{t=1}^{t=T-1}}{\text{minimize}} & J_{\text{\"{ol}}\varsigma\ddot{\mathsf{u}}\mathsf{m}} + \lambda J_{\text{s\"{u}re}\varsigma} \\ \text{ba\breve{gli}} & x_{t+1} = A_t x_t + B_t w_t, \quad t = 1, \dots, T-1 \end{array}$$

- lackbox değişkenler: durum yörüngesi x_1, x_2, \ldots, x_T ve süreç gürültüsü yörüngesi $w_1, w_2, \ldots, w_{T-1}$
- ▶ iki amaç (yörüngelerin karesel fonksiyonları):

$$J_{\text{ölçüm}} = \|\underbrace{C_1 x_1 - y_1}_{v_1}\|^2 + \dots + \|\underbrace{C_T x_T - y_T}_{v_T}\|^2$$
$$J_{\text{süreç}} = \|w_1\|^2 + \dots + \|w_{T-1}\|^2$$

- ► J_{ölçüm}: ölçüm kalıntılarının karelerinin toplamı
- $ightharpoonup J_{ ext{surec}}$: süreç gürültülerinin karelerinin toplamı
- lacktriangleright $\lambda \in \mathbb{R}$: iki amaç arasında ödünleşme parametresi (pozitif)

Kısıtlı en küçük kareler formülasyonu

$$\begin{split} \underset{\{w_t\}_{t=1}^{t=T-1}}{\text{minimize}} & & \|C_1x_1-y_1\|^2+\dots+\|C_Tx_T-y_T\|^2+\dots\\ & & & \lambda\left(\|w_1\|^2+\dots+\|w_{T-1}\|^2\right)\\ \text{bağlı} & & x_{t+1}=A_tx_t+B_tw_t, \quad t=1,\dots,T-1 \end{split}$$

► doğrusal karesel durum kestirme problemi

formunda bir kısıtlı en küçük kareler problemi olarak yazılabilir

lacktriangle bu formülasyondaki değişken vektörü z, Tn+(T-1)m adet değişken içerir:

$$z = \begin{bmatrix} x_1 & x_2 & \dots & x_T & w_1 & w_2 & \dots & w_{T-1} \end{bmatrix}^T$$

Kısıtlı en küçük kareler formülasyonu

$$\tilde{A} = \begin{bmatrix} C_1 & 0 & \cdots & 0 & 0 & \cdots & 0 \\ 0 & C_2 & \cdots & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & C_T & 0 & \cdots & 0 \\ \hline 0 & 0 & \cdots & 0 & \sqrt{\lambda}I & \cdots & 0 \\ \vdots & \vdots & & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 & 0 & \cdots & \sqrt{\lambda}I \end{bmatrix}, \qquad \tilde{b} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_T \\ \hline 0 \\ \vdots \\ 0 \end{bmatrix}$$

$$\tilde{C} = \begin{bmatrix} A_1 & -I & 0 & \cdots & 0 & 0 & B_1 & 0 & \cdots & 0 \\ 0 & A_2 & -I & \cdots & 0 & 0 & 0 & B_2 & \cdots & 0 \\ \vdots & \vdots & \vdots & & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & A_{T-1} & -I & 0 & 0 & \cdots & B_{T-1} \end{bmatrix}, \quad \tilde{d} = 0$$

Doğrusal karesel durum kestirme - Örnek

$$A_t = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad B_t = \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix} \quad C_t = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$$

- ▶ 2 boyutlu uzayda hareket eden cismin basit modeli
- $lackbox{} x_t = \begin{bmatrix} p_t & z_t \end{bmatrix}$, $p_t \in \mathbb{R}^2$ konum, $z_t \in \mathbb{R}^2$ hız
- $ightharpoonup y_t = C_t x_t + w_t \ (y_t \in \mathbb{R}^2)$: konumun gürültülü ölçümü
- ightharpoonup T = 100 (zaman ufku)

Doğrusal karesel durum kestirme - Örnek

ölçümlerin ve gerçek konumlar

- ightharpoonup siyah eğri: cismin gerçek konumu $p_t = C_t x_t$
- \blacktriangleright yeşil daireler: (100 adet) gürültülü ölçüm $y_t = C_t x_t + v_t$

Doğrusal karesel durum kestirme - Örnek

konum kestirim (position estimate) yörüngeleri

mavi eğriler: üç farklı λ değeri için konum kestirim yörüngeleri yorum: λ 'yı küçük seçmek "veriye $(y_t$ 'ye) (modele kıyasla daha fazla) güveniyoruz, dolayısıyla ölçüm gürültüsü v_t 'nin $(w_t$ 'ye kıyasla) küçük olacağını tahmin ediyoruz", büyük seçmek ise "modele $(x_{t+1} = A_t x_t$ 'ye) (veriye kıyasla daha fazla) güveniyoruz, dolayısıyla süreç gürültüsü w_t 'nin $(v_t$ 'ye kıyasla) küçük olacağını tahmin ediyoruz" anlamına geliyor

Çapraz geçerleme

durum kestirme için çapraz geçerleme prosedürü:

- ▶ ölçümlerin (örneğin) %20'lik kısmını rastgele çıkaralım ve test veri kümesi olarak, kalan kısmını da eğitim veri kümesi olarak kullanalım
- $ightharpoonup \lambda$ 'nın birçok farklı değeri için eğitim veri kümesi için durum kestirme yapalım
- ightharpoonup her λ değeri için, test veri kümesi için ölçüm kalıntılarının RMS değerini hesaplayalım
- $ightharpoonup \lambda$ 'yı test veri kümesi için kalıntıların RMS değerini minimize edecek şekilde seçelim

Çapraz geçerleme - Örnek

- ▶ önceki örneğe çapraz geçerleme yöntemini uyguladık
- ▶ 100 ölçümden 20 tanesi test veri kümesi olarak ayrıldı
- ightharpoonup grafikten λ 'yı yaklaşık olarak 10^3 seçmenin iyi sonuç vereceği anlaşılıyor