Percepton wielowarstwowy (MLP)

(Multilayer Percepton)

Przemysław Walecki 325245, Mateusz Matukiewicz 325195

Celem zadania jest zaimplementowanie perceptronu wielowarstwowego. Przeznaczony on będzie do aproksymacji zadanej funkcji, co pozwoli na zbadanie wpływu liczby neuronów w warstwie oraz porównanie jakości aproksymacji przy użyciu różnych metod optymalizacyjnych, takich jak metoda gradientowa i metoda ewolucyjna.

Zadana funkcja do aproksymacji:

$$f(x) = x^2 \sin(x) + 100 \sin(x) \cos(x)$$

Wpływ liczby neuronów w warstwie na jakość uzyskanej aproksymacji:

2 warstwy – ilość neuronów 4 oraz 5

Można zauważyć, że do znajdowania wag sieci metoda gradientowa poradziła sobie lepiej niż metoda ewolucyjna, gdyż na przedziale [-3, 3] sieci udało się dokładnie dopasować do wartości zadanej funkcji.

• 5 warstw – ilość neuronów na kolejnych warstwach: 3, 4, 4, 5, 5 (najlepszy wynik)

Dla powyższych ilości neuronów w warstwach aproksymator z metodą gradientową poradził sobie najlepiej, tym samym uzyskując wartość MSE (Mean Squared Error) na poziomie **528.** Natomiast solver używający metody ewolucyjnej w aproksymacji funkcji poradził sobie nieco gorzej osiągając MSE równe **866.**

W tym przypadku jak można zauważyć aproksymator poradził sobie bardzo podobnie używając metody gradientowej jak i metody ewolucyjnej.

Jak możemy zauważyć solver bardzo dobrze dopasował się do funkcji używając metody gradientowej, natomiast przy metodzie ewolucyjnej aproksymator nie poradził sobie zbyt dobrze.

Wnioski:

Dla zbadanych ilości neuronów w warstwie w każdym przypadku metoda gradientowa okazała się bardziej optymalna przy aproksymacji funkcji niż metoda ewolucyjna. Ponadto zwiększenie ilości neuronów w warstwie skutkuje lepszym dopasowaniem się aproksymatora do zadania. (Może znacząco wpłynąć na wynik w bardziej złożonych funkcjach)