MSO201: PROBABILITY & STATISTICS Problem Set #11

[1] Find minimal sufficient statistic based on a random sample $X_1,...,X_n$ in each of the following cases

(a)
$$f_{\alpha}(x) = \begin{cases} \frac{1}{\alpha} \exp\left(-\frac{x}{\alpha}\right) & \text{if } x > 0 \\ 0 & \text{otherwise.} \end{cases}$$

(b) $f_{\beta}(x) = \begin{cases} \exp\left(-\left(x - \beta\right)\right) & \text{if } x > \beta \\ 0 & \text{otherwise.} \end{cases}$ $\beta \in \mathbb{R}$.

(b)
$$f_{\beta}(x) = \begin{cases} \exp(-(x-\beta)) & \text{if } x > \beta \\ 0 & \text{otherwise.} \end{cases} \beta \in \mathbb{R}.$$

(c)
$$f_{\alpha,\beta}(x) = \begin{cases} \frac{1}{\alpha} \exp\left(-\frac{(x-\beta)}{\alpha}\right) & \text{if } x > \beta \\ 0 & \text{otherwise.} \end{cases}$$
 $\alpha > 0, \beta \in \mathbb{R}.$

(c)
$$f_{\alpha,\beta}(x) = \begin{cases} \frac{1}{\alpha} \exp\left(-\frac{(x-\beta)}{\alpha}\right) & \text{if } x > \beta \\ 0 & \text{otherwise.} \end{cases}$$
 $\alpha > 0, \beta \in \mathbb{R}.$
(d) $f_{\mu,\sigma}(x) = \begin{cases} \frac{1}{x \sigma \sqrt{2\pi}} \exp\left(-\frac{(\log x_i - \mu)^2}{2\sigma^2}\right) & \text{if } x > 0 \\ 0 & \text{otherwise.} \end{cases}$ $\mu \in \mathbb{R}; \sigma > 0.$

(e)
$$f_{\theta}(x) = \begin{cases} \frac{1}{\theta} & -\theta/2 \le x \le \theta/2 \\ 0 & \text{otherwise} \end{cases} \theta > 0.$$

(f)
$$f(x) = \begin{cases} \frac{\alpha + \beta}{\alpha \beta} x^{\alpha - 1} (1 - x)^{\beta - 1} & 0 < x < 1 \\ 0 & \text{otherwise.} \end{cases} \quad \alpha > 0, \beta > 0.$$

- [2] Let $X_1,...,X_n$ be a random sample from $P(\theta),\theta\in(0,\infty)$. Show that $T=\sum_{i=1}^n X_i$ is complete sufficient statistic. Find the Uniformly Minimum Variance Unbiased Estimator (UMVUE) of the following parametric functions: (a) $g(\theta) = \theta$, (b) $g(\theta) = e^{-\theta}$ and (c) $g(\theta) = e^{-\theta} (1 + \theta)$.
- [3] Suppose $X_1,...,X_n$ be a random sample from $B(1,\theta),\theta\in(0,1)$. Show that $T=\sum_{i=1}^n X_i$ is complete sufficient statistic and hence find the UMVUE for each of the following parametric functions: (a) $g(\theta) = \theta$, (b) $g(\theta) = \theta^4$ and (c) $g(\theta) = \theta(1-\theta)^2$.
- [4] Let $X_1,...,X_n$ be a random sample from $Exp(\theta,1)$, i.e.

$$f(x \mid \theta) = \begin{cases} e^{-(x-\theta)} & \text{if } x > \theta \\ 0 & \text{otherwise} \end{cases}$$

Show that $T = X_{(1)} = \min\{X_1, ..., X_n\}$ is a complete sufficient statistic and hence find the UMVUE of $g(\theta) = \theta$.

- [5] $X_1,...,X_n$ is a random sample from $U(0,\theta),\theta>0$. Show that $T=X_{(n)}=\max\{X_1,...,X_n\}$ is a complete sufficient statistic and find the UMVUE of $g(\theta)=\theta^2$.
- [6] $X_1, ..., X_n$ is a random sample from $Gamma(2, \theta), \theta > 0$, i.e.

$$f(x \mid \theta) = \begin{cases} \frac{1}{\overline{|2|}} e^{-x/\theta} x & \text{if } x > 0\\ 0 & \text{otherwise} \end{cases}$$

Show that $T = \sum_{i=1}^{n} X_i$ is complete sufficient statistic and find the UMVUE of θ .

- [7] Let $X_1,...,X_n$ be a random sample from $U(\theta-1/2, \theta+1/2)$. Show that the minimal sufficient statistic is not complete.
- [8] Let $X_1,...,X_n$ be a random sample from $N(0,\theta)$. Find the UMVUE of θ^2 .
- [9] Let $X_1,...,X_n$ be a random sample from $N(\mu,\theta)$. Find the UMVUE of (a) θ when μ is known, (b) θ when μ is not known and (c) δ such that $P(X \le \delta) = p$; p is a known fixed constant, both μ and θ are unknown parameters.
- [10] Let $X_1,...,X_n$ be a random sample from $U(0,\theta),\theta>0$. Of the following three estimators given below, which one would you prefer and why?

$$T_1(\bar{X}) = \frac{n+1}{n} X_{(n)}, T_2(\bar{X}) = 2\bar{X} \text{ and } T_3(\bar{X}) = X_{(1)} + X_{(n)}.$$

- [11] $X_1,...,X_n$ be a random sample from $N(\mu,\sigma^2),\mu\in\Re,\sigma\in\Re^+$. Assuming completeness of the associated minimal sufficient statistic find the UMVUE of μ^2 and $\mu+\sigma$.
- [12] $X_1,...,X_n$ be a random sample from $N(\mu, \sigma^2)$ distribution. Find the Cramer-Rao Lower Bounds (CRLB) on the variances of unbiased estimators of μ and σ^2 . Can you find unbiased estimators μ and σ^2 whose variances attain the respective CRLB?
- [13] $X_1,...,X_n$ is a random sample from $Gamma(\alpha,\beta)$

$$f(x \mid \alpha, \beta) = \begin{cases} \frac{1}{|\overline{\alpha}|} e^{-x/\beta} x^{\alpha - 1} & \text{if } x > 0\\ 0 & \text{otherwise} \end{cases}$$

 α is assumed to be known. Find the Fisher Information $I(\beta)$ and the CRLB on the variances of unbiased estimators of β .

- [14] $X_1,...,X_n$ be a random sample from $P(\theta),\theta \in (0,\infty)$. Find the CRLB on the variances of unbiased estimators of the following estimands: (a) $g(\theta) = \theta$, (b) $g(\theta) = \theta^2$ and (c) $g(\theta) = e^{-\theta}$.
- [15] Suppose $X_1,...,X_n$ be a random sample from $B(1,\theta),\theta \in (0,1)$. Find the CRLB on the variances of unbiased estimators of the following estimands: (a) $g(\theta) = \theta^4$ (b) $g(\theta) = \theta(1-\theta)$.