Universidade Federal de Santa Maria Departamento de Engenharia Química DEQ 1016 – Cinética e Cálculo de reatores

Unidade III – Reator batelada com operação isotérmica

Profa. Dra. Gabriela Carvalho Collazzo (gabrielacollazzo@gmail.com)

Exemplo 13-2 Segurança em Plantas Químicas Industriais com Reações Exotérmicas Fora de Controle2

Um sério acidente ocorreu na planta da Monsanto em Sauget, Illinois, na data de 8 de agosto, à 0h18min (veja Figura E13-2.1). A explosão foi ouvida a uma distância de até 10 milhas, em Belleville, Illinois. A explosão ocorreu num reator batelada que era utilizado para produzir nitroanilina a partir de amônia e *o*-nitroclorobenzeno (ONCB):

$$Cl$$
 $+2NH_3$ \rightarrow NO_2 NH_2 $+NH_4Cl$

Esta reação é normalmente conduzida isotermicamente a 175°C e a 500 psi, aproximadamente. A temperatura ambiente da água de refrigeração no trocador de calor é de 25°C. Ajustando-se a vazão do circuito de refrigeração, a temperatura podia ser mantida a 175°C. Na máxima vazão do fluido refrigerante, a temperatura do fluido se mantém a 25°C através do trocador.

Deixe-me lhe contar um caso sobre a operação deste reator. Ao longo dos anos, o trocador de calor costumava falhar de tempo em tempo, mas sempre havia operadores de plantão que atuavam rapidamente dando um jeito de consertar o trocador em uns 10 minutos e assim não havia mais problemas. Acredita-se que, um dia, alguém olhou para o reator e disse: "Parece-me que o seu reator está apenas um terço cheio e você ainda tem espaço para adicionar mais reagentes e, assim, sintetizar mais produtos e ganhar mais dinheiro! O que você acha de carregarmos o reator até o topo e, desta forma, triplicarmos a produção?" O responsável pela planta acatou as ideias, e você pode observar o que aconteceu na Figura E13-2.1.

Uma decisão foi tomada para triplicar a produção.

Figura E13-2.1 Resultado da explosão. (*St. Louis Globe/Democrat* foto de Roy Cook. Cortesia de St. Louis Mercantile Library.)

No dia do acidente, duas alterações da operação normal ocorreram.

- 1.O reator foi carregado com 9.044 kmol de ONBC, 33.0 kmol de NH₃ e 103.7 kmol de H₂O. Normalmente o reator era carregado com 3.17 kmol de ONBC, 103.6 kmol de H₂O e 43 kmol de NH₃.
- 2.A reação é normalmente conduzida isotermicamente a 175°C durante um período de 24 horas. No entanto, aproximadamente 45 minutos após o início da reação, a refrigeração do reator falhou, mas somente por 10 minutos. Interrupções de 10 minutos, ou desta ordem, podem ter acontecido em ocasiões prévias, quando a carga normal de 3.17 kmol de ONCB era usada, sem que tivessem ocorrido efeitos prejudiciais.

O reator tinha uma válvula de segurança, do tipo disco de ruptura, projetado para romper quando a pressão excedesse 700 psi, aproximadamente. Uma vez que o disco se rompesse, a água evaporaria e a mistura reacional seria resfriada (resfriamento rápido) devido à vaporização da água.

Informações sobre a reação:

Nitroaniline Synthesis Reaction

Informação adicional:

Lei de velocidade de reação: $-r_{ONCB} = k C_{ONCB} C_{NH3}$

com
$$k = 0,00017 \frac{\text{m}^3}{\text{kmol} \cdot \text{min}}$$
 a 188°C (461K) e $E = 11.273$ cal/mol

Informações sobre o processo:

Nitroaniline Synthesis Process

Informações sobre a reação com a carga normal:

Nitroaniline Synthesis Reactor

O volume de reação para a carga anterior de 3,17 kmol de ONCB:

$$V = 3,26 \text{ m}^3$$

Nitroaniline Synthesis Reaction

Batch Reactor, 24 hour reaction time

Management said: TRIPLE PRODUCTION

Informações sobre a reação com a carga elevada:

MBA Style Nitroaniline Synthesis Reactor

Condições: 9.044 kmol de ONBC 103.7 kmol de H_2O 33 kmol de NH_3 . $V=5.119 \text{ m}^3$

O volume de reação para a nova carga de 9,0448 kmol de ONCB:

$$V = 3,265 \text{ m}^3 \text{ ONCB/NH}_3 + 1,854 \text{ m}^3 \text{ H}_2\text{O} = 5,119 \text{ m}^3$$

Informações sobre a trajetória tempo x Temperatura no dia do acidente:

Figura E13-2.2 Trajetória temperatura-tempo.

Um exemplo de empresa que tem como produto a ortonitroanilina

http://www.bayichem.com/product_detail_en/id/5.html

安徽八一化工股份有限公司

ANHUI BAYI CHEMICAL INDUSTRY CO., LTD.

National Service Hotline +86-552-4927869, 3017602

Home

About Us

Product

News

Honor

Factory

Order

Contact Us

中文版

Product

	Ortho Nitro Aniline								
Capacity:	20,000mt per year								
Chemical Name:	2-Nitroaniline								
Molecular formula:	C ₆ H ₆ N ₂ O ₂								
Molecular weight:	138.13								
Structure:	No N								
CAS NO:	88-74-4								
UN NO:	1661								
Exterior:	Orange, crystal, flakes.								
Content:	99.5%min.								
Uses:	An important chemical intermediate, widely used to produce Pharma Intermediates, Pigment Intermediates, Agro Chemical Intermediates, Speciality Chemicals ect.								

Informações adicionais:

Lei de velocidade de reação: $-r_{ONCB} = kC_{ONCB}C_{NH3}$

$$k = 0.00017 \frac{m^3}{kmol.min} \ a \ 188^{\circ}C \ (461K) \ e \ E = 11273.00 \frac{cal}{mol}$$

$$\Delta H_{RX} = -5.9.10^5 \ kcal/kmol$$

$$Cp_{ONCB} = Cp_A = 40 \frac{cal}{mol. K}$$

$$Cp_{H2O} = Cp_W = 18 \frac{cal}{mol. K}$$

$$Cp_{NH3} = Cp_B = 8.38 \frac{cal}{mol.K}$$

Assumindo $\Delta Cp \cong 0$

$$UA = \frac{35.85 \, kcal}{min. \, ^{\circ}C} \, com \, T_a = 298 \, K$$

Informações adicionais:

Condições no sistema no dia do acidente:

O reator foi carregado com 9.044 kmol de ONCB, 33.0 kmol de NH₃ e 103.7 kmol de H₂O.

O volume de reação para a nova carga de 9.0448 kmol de ONCB: $5.119 \ m^3$

Condições normais do sistema:

Normalmente o reator era carregado com 3.17 kmol de ONCB, 103.6 kmol de H₂O e 43 kmol de NH₃.

O volume de reação para a carga normal de 3.17 kmol de $ONCB: 3.26 \, m^3$

a) Plote e analise a trajetória temperatura-tempo por um período de até 120 minutos após a mistura de reagentes e o seu aquecimento a 175°C (448K).

Mostre que as seguintes três condições tiveram que estar presentes para que a explosão ocorresse:

- (1) aumento da carga de ONCB : faça os balanços (molar e energia) e avalie os primeiros 45 minutos do processo, identifique X, T, calor gerado e removido. Teria a reação saído de controle?
- (2) parada da refrigeração do reator por 10 minutos, logo no início da reação: avalie a reação de 45 min até 55 min, sem o trocador (operação adiabática), identifique X, T, calor gerado e removido. Teria a reação saído de controle? avalie também o que ocorreu após os 55 min, identifique X, T, calor gerado e removido. Teria a reação saído de controle?
- (3) falha do sistema de alívio de pressão: calcule o calor removido pelo sistema se não tivesse ocorrido a falha, avalie se a falha contribuiu para a explosão. $calor \ removido = (\dot{m}vap * \Delta Hvap) + (UA(T-Ta))$

Informações sobre a reação com a carga elevada:

MBA Style Nitroaniline Synthesis Reactor

Condições: 9.044 kmol de ONBC 103.7 kmol de H_2O 33 kmol de NH_3 . $V=5.119 \text{ m}^3$

O volume de reação para a nova carga de 9,0448 kmol de ONCB:

$$V = 3,265 \text{ m}^3 \text{ ONCB/NH}_3 + 1,854 \text{ m}^3 \text{ H}_2\text{O} = 5,119 \text{ m}^3$$

A. Operação isotérmica até os 45 minutos

	t	×	T		Qg	Qr
93	42.15739	0.0315368	448.	93	3895.262	5374.5
94	42.51739	0.0317995	448.	94	3893.635	5374.5
95	42.87739	0.032062	448.	95	3892.009	5374.5
96	43.23739	0.0323245	448.	96	3890.383	5374.5
97	43.95739	0.0328491	448.	97	3887.136	5374.5
98	44.31739	0.0331112	448.	98	3885.514	5374.5
99	44,67739	0.0333732	448			5074-5
100	45.	0.0336079	448.	100	3881.631	5374.5

X = 0.033

 $T = 448 \text{ K} (\sim 175^{\circ}\text{C})$

Qg = 3881 kcal/min

Qr = 5375 kcal/min

Análise: Via gráfico do tempo 0 até 45 min, aqui a operação é isotérmica dT/dt =0, e o trocador está em funcionamento.

Observado que do start até os 45 min a T se mantém constante e o Qr (calor removido) > Qg (calor gerado).

Conclusão: mesmo com uma sobrecarga de reagente, o trocador conseguiria manter a reação na temperatura de 175° C (448 K), isso se ele não falhar nunca!

Mas se ele falhar????

B. Operação adiabática por 10 minutos

					1001.0001	^ •	
	t	×	T		UA	Qg	Qr
92	50.83311	0.0384788	458.405	92	35.83	5074.064	0
93	51.27311	0.0389072	459.3181	93	35.83	5195.657	0
94	51.71311	0.0393461	460.2534	94	35.83	5322.686	0
95	52.59311	0.0402572	462.1952	95	35.83	5594.516	0
96	53.03311	0.0407306	463,2039	96	35.83	5740.135	0
97	53.47311	0.0412165	464.2394	97	35.83	5892.83	0
98	53.91311	0.0417156	465.3031	98	35.83	6053.11	0
99	54.79311	0.0427562	467.5209	99	35.83	6398.711	0
100	55.	0.0430096	468.0635	100	35.83	6580.088	6093.377

Análise: Via gráfico do tempo 45 até 55 min, neste intervalo de tempo a reação operou sem o trocador de calor, ou seja, operação adiabática, pois o trocador falhou por 10 minutos, $dT/dt \neq 0$ e Qr = 0. Calculando dT/dt = (6591-6093)/2504 = 0.2°C/min

Observado que dos 45 até os 55 min a T aumenta e o Qr (calor removido) < Qg (calor gerado).

Conclusão: com os 10 min de falha do trocador a reação aumenta a temperatura. O que não poderia de forma alguma era T = 265°C (534 K), temperatura para iniciar a reação secundária

Mas se ele o trocador voltar a funcionar o que acontece????

C. Operação batelada com troca de calor

ODE Results Graph, Solution #4

Análise: a partir dos 55 min o Qr (calor removido) < Qg (calor gerado), mesmo com o trocador funcionando ele não conseguiu controlar a T, iniciando a reação secundária, em 120 min ocorreu a explosão.

120 min – momento da explosão

X = 0.60

 $T = 1475 \text{ K } (\sim 1202 ^{\circ}\text{C})$

 $Qg = 7.23*10^6 \text{ kcal/min}$

 $Qr = 1.5*10^4 \text{ kcal/min}$

t	X	T	Nao	Nbo	Theta	٧	k	ra	DeltaHrx	UA	Qg	Qr
111.6854	0.139867	525.0051	9.0448	33.	3.648505	5.119	0.0007254	-0.0065832	-5.9E+05	35.83	1.988E+04	8047.844
112.6614	0.143871	530.3317	9.0448	33.	3.648505	5.119	0.0008031	-0.0072406	-5.9E+05	35.83	2.187E+04	8225.24
113.6374	0.1483349	536,5579	9.0448	33.	3.648505	5.119	0.0009018	-0.0080697	-5.9E+05	35.83	2.437E+04	8431.1
115.5894	0.1592552	552.9536	9.0448	33.	3.648505	5.119	0.0012041	-0.0105817	-5.9E+05	35.83	3.196E+04	8964.826
116.5654	0.1662372	564.1974	9.0448	33.	3.648505	5.119	0.0014494	-0.0125934	-5.9E+05	35.83	3.803E+04	9323.197
117.5202	0.1746778	578.4561	9.0448	33.	3.648505	5.119	0.001813	-0.0155375	-5.9E+05	35.83	4.693E+04	9773.579
119.0022	0.1935295	612.3598	9.0448	33.	3.648505	5.119	0.0030714	-0.0254654	-5.9E+05	35.83	7.691E+04	1.092E+04
119 9952	0.2148558	653 0821	9 0448	33	3 648505	5 119	0.0054317	-0.0433362	-5 9E+05	35.83	1.309F±05	1.231E+04
120.8849	0.252306	727.9653	9.0448	33.	3.648505	5.119	0.0132339	-0.0984929	-5.9E+05	35.83	2.975E+05	1.489E+04
122.	0.6075213	1475.143	9.0448	33.	3.648505	5.119	0.8033049	-2.395239	-5.9E+05	35.83	7.234E+06	4.218E+04

Mas e disco de ruptura?? Ele não rompeu, mas e se ele rompesse??

Informações sobre a trajetória tempo x Temperatura no dia do acidente:

Figura E13-2.2 Trajetória temperatura-tempo.

A explosão ocorreu logo após a meia-noite.

A trajetória temperatura-tempo completa é mostrada na Figura anterior. Observe o longo platô após o sistema de refrigeração ter voltado a funcionar.

Consequentemente, embora dT/dt seja positiva, a temperatura aumenta muito lentamente no início, 0.2° C/min. Próximo ao horário de 23h45min, a temperatura alcançou 240°C e ela estava começando a aumentar mais rapidamente. A reação está ficando fora de controle! Observa-se na Figura que 119 minutos após o início da operação batelada, a temperatura aumenta bruscamente e o reator explode, aproximadamente, à meia-noite. Se a massa e a capacidade calorífica do agitador e do vaso tivessem sido incluídas, o termo NC_p teria aumentado aproximadamente 5% e isto adiaria o momento da explosão em torno de 15 minutos, atrasando a previsão de explosão para 0h18min, que foi o tempo real no qual ela ocorreu.

Quando a temperatura alcançou 300°C, uma reação secundária se iniciou, a decomposição da nitroanilina a gases não condensáveis, tais como CO, N₂ e NO₂, ocorreu liberando ainda mais energia. O total de energia liberada foi estimado em 6,8 × 10⁹ J, o suficiente para erguer todo um edifício de 2500 toneladas a 300 m de altura (o comprimento de três campos de futebol).

Observamos que o disco de alívio de pressão deveria ter se rompido quando a temperatura alcançou 265°C (que corresponde aproximadamente à pressão de saturação de 700 psi), mas isso não aconteceu e a temperatura continuou a subir. Se o disco tivesse se rompido, toda a água teria sido vaporizada, 10⁶ kcal teriam sido removidas da mistura de reagentes, consequentemente reduzindo a temperatura e resfriando rapidamente a reação fora de controle.

Se o disco tivesse se rompido a 265° C (cerca de 700 psi), sabemos, através da mecânica dos fluidos, que a vazão mássica máxima, m_{vap} , através do orifício de 2 polegadas aberto à atmosfera (1 atm), teria sido de 830 kg/min no instante da ruptura.

D. Avaliando o disco de ruptura

O reator tinha uma válvula de segurança, do tipo disco de ruptura, projetado para romper quando a pressão excedesse 700 psi, aproximadamente. O disco de ruptura tinha um orifício de 2 polegadas, esse disco se romperia quando a temperatura atingisse 265°C e pressões 700psi, nestas condições ocorreria uma vazão de vapor de 830 kg/min e o $\Delta H_{VAP} = 540 \frac{kcal}{kg}$.

Uma vez que o disco de rompesse, a água evaporaria e a mistura reacional seria resfriada (resfriamento rápido) devido a vaporização da água. Quanto de calor iria remover somando o que remove o disco rompendo + o que remove com o trocador.

calor removido =
$$(\dot{m}vap * \Delta Hvap) + (UA(T - Ta))$$
 265°C
 $Qr = (830 \ kg/min * 540 \ kcal/kg) + (35.83 \frac{kcal}{min} . K(538 - 298 \ K))$
 $Qr = 4.49 * 10^5 \ kcal/min$

Verifique nas tabelas quando $T = 265^{\circ}C$ (538 K) qual o valor do calor gerado? Qg = 27460 kcal / min

Concluindo Qr > Qg, se o disco tivesse rompido a reação secundária não aconteceria, e não teria ocorrido a explosão.

<u>Análise</u>: Reações fora de controle são as que causam mais morte na indústria química. Medidas de segurança planejadas com cuidado e precisão são geralmente estabelecidas para evitar a ocorrência de acidentes. Porém, como mostramos neste exemplo, o plano de prevenção de acidentes falhou. Se apenas um dos três fatos seguintes não tivesse ocorrido, a explosão não teria acontecido.

- 1. Triplicar a produção
- 2.Falhar o trocador de calor por 10 minutos
- 3. Falhar o dispositivo de alívio de pressão (disco de ruptura)

Em outras palavras, todos os fatos acima tiveram que acontecer para causar a explosão. Se a válvula de alívio tivesse operado adequadamente, não teria evitado o descontrole da reação, mas teria evitado a explosão. Além de usar um disco de ruptura como dispositivo de alívio de pressão, podem-se também utilizar válvulas de alívio de pressão. Em muitos casos não é tomado o devido cuidado para obter dados de uma reação de processo e usar estas informações para projetar adequadamente o dispositivo de alívio. Estes dados podem ser obtidos utilizando um reator batelada projetado especialmente para este fim, chamado de *Advanced Reaction System Screening Tool* (ARSST), ou seja, *Ferramenta de Seleção com Sistema Avançado de Reação*, como mostrado no site da LTC Editora, Capítulo 13, Professional Reference Shelf (Material de Referência Profissional) – Seção 13.1.

b) Avalie nas condições normais de alimentação no sistema reacional até 120 minutos.

- (1) parada da refrigeração por 10 min, identifique X, T, calor gerado e removido. Teria a reação saído de controle?
- (2) Falha no sistema de alívio de pressão. Teria a reação saído de controle?

b) Avalie uma situação onde o reator não estivesse com sobrecarga e sim tivesse nas suas condições normais de carga e simule as duas falhas, o trocador por 10 min e o disco de ruptura.

A. Operação isotérmica até os 45 minutos

	t	×	Т	Qg	Qr
91	41.07541	0.0400932	448.	1783.586	5374.5
92	41.43541	0.0404364	448.	1782.857	5374.5
93	42.15541	0.0411223	448.	1781.402	5374.5
94	42.51541	0.0414651	448.	1780.674	5374.5
95	42.87541	0.0418077	448.	1779.947	5374.5
96	43.23541	0.0421501	448.	1779.221	5374.5
97	43.95541	0.0428347	448.	1777.769	5374.5
98	44.31541	0.0431767	448.	1777.043	5374.5
99	44.67541	0.0435186	448.	1776.318	5374.5
100	45.	0.0438268	448.0028	1775.443	5374.6

$$X = 0.043$$

$$T = 448 \text{ K} (\sim 175^{\circ}\text{C})$$

$$Qg = 1775 \text{ kcal/min}$$

$$Qr = 5374 \text{ kcal/min}$$

Análise: Via gráfico do tempo 0 até 45 min, aqui a operação é isotérmica dT/dt =0, e o trocador está em funcionamento.

Observado que do start até os 45 min a T se mantém constante e o Qr (calor removido) > Qg (calor gerado).

Mas se o trocador falhar????

B. Operação adiabática por 10 minutos

	×	T	Qg	Qr
96	0.0523619	454.7721	2111.049	0
97	0.0528637	455.1708	2132.863	0
98	0.0533707	455,5736	2155.09	0
99	0.053883	455,9807	2177.742	0
100	0.0544092	456.4019	2213.108	5675.541

Análise: Via gráfico do tempo 45 até 55 min, neste intervalo de tempo a reação operou sem o trocador de calor, ou seja, operação adiabática, pois o trocador falhou por 10 minutos, $dT/dt \neq 0$ e Qr = 0. Calculando dT/dt = (2213-5675)/2353 = -1.5° C/min..isso indica que vai resfriar.

Observado que dos 45 até os 55 min a T aumenta e o Qr (calor removido) > Qg (calor gerado).

Conclusão: com os 10 min de falha do trocador a reação aumenta a temperatura. O que não poderia de forma alguma era T = 265°C (534 K), temperatura para iniciar a reação secundária

Mas se o trocador voltar a funcionar o que acontece????

C. Operação batelada com troca de calor

Análise: a partir dos 55 min o Qr (calor removido) > Qg (calor gerado), com o trocador funcionando ele controla a T, não iniciando a reação secundária, do cálculo do dT/dt = -1.5°C/min, a T diminuiria.

Ou seja, com a falha, mesmo voltando o T conseguiria voltar a ser isotérmico

	t	, ×	, т	, Qa_	, Qr ,
95	116.637	0.124361	456,4576	2032.548	5677.534
96	117.613	0.1254202	456,4576	2029.766	5677.534
97	118.589	0.126478	456,4576	2026.989	5677.534
98	119.565	0.1275343	456,4576	2024.216	5677.534
99	121.517	0.1296426	456,4576	2018.684	5677,534
.00	122.	0.1301635	456,4576	2015.939	5677.534

$$X = 0.13$$

 $T = 456 \text{ K} (\sim 180^{\circ}\text{C})$

Qg = 2015 kcal/min

Qr = 5677 kcal/min

D. Avaliando o disco de ruptura

O reator tinha uma válvula de segurança, do tipo disco de ruptura, projetado para romper quando a pressão excedesse 700 psi, aproximadamente. O disco de ruptura tinha um orifício de 2 polegadas, esse disco se romperia quando a temperatura atingisse 265°C e pressões 700psi, nestas condições ocorreria uma vazão de vapor de 830 kg/min e o $\Delta H_{VAP} = 540 \frac{kcal}{ka}$.

Uma vez que o disco de rompesse, a água evaporaria e a mistura reacional seria resfriada (resfriamento rápido) devido a vaporização da água. Quanto de calor iria remover somando o que remove o disco rompendo + o que remove com o trocador.

Análise: Com a carga do reator (normal) não seria necessária a utilização do disco, mesmo assim avaliando o calor removido somente pelo disco de fosse necessária a ruptura

$$calor\ removido = (\dot{m}vap * \Delta H vap)$$

$$Qr = (830 \, kg/min * 540kcal/kg)$$

$$Qr = 448\ 200\ kcal/min$$

