

Segmenting customers of an e-commerce

APRIL 2022

Presentation Outline

- 1. Objectives
- 2. Dataset Preparation
- 3. Modeling options
- 4. Final model overview and associated maintenance time

Objectives

Context

- Olist: Brazilian e-commerce site
- Desire for customer segmentation, for the use of the marketing team

Business Problem

- Understanding the different types of users
- Targeting communication campaigns

Mission

- Provide Olist a segmentation of customers
- Provide an actionable description for each segment
- Analyse the stability of segments over time

Methodology

Objetives

Approach

1- Extract data from the database to characterise customers

2- Use unsupervised machine learning tools to partition clients based on these characteristics

3- Interpret the resulting segments from a business perspective

4- Analyse the stability to evaluate a maintenance frequency

Dataset to model

Dataset

Observations

- A dataset of 9 files detailing customers, orders, products, sellers from end 2016 to end 2018
- Customer, seller, order, product identified by a unique ID
- A well-filled dataset all files < 1% NaN except Order_review with 21% NaN

Methodology

Process followed in 4 steps

Cleaning files

- Correction of types (date)
- Removal of duplicates (geolocation, ...)
- Dealing with missing values (category Unknown, ...)
- Dealing with outliers (payment_installment = 0)

File aggregation

- Merging files to 'order_id' or 'custumer_id'
- Selection of orders with status delivered

Feature Engineering

- Creating variables
- Transforming variables
- Selecting variables

Exploratory Analysis

- Distribution of variables
- Correlation between variables
- Selecting variables

Files aggregation

Feature Engineering

Creating variables per client

Variable	Meaning	
Recency	Number of days between the customer's last order on the site and the last order on the site	
Frequency	Number of orders	
Monetary	Average amount per order spent	
Score Score	Average score	
Delivery	Average delivery time	
Quantity	Average number of products purchased	
Order_value	Average sum of products per order spent	
Freight_value	Average sum of deliveries per order spent	
Freight_per	Average % of freight value on order	
Delivery_acc	Average number of days ahead of delivery compared to the estimated date	
Delivery_per	Average % of delivery advance compared to effective delivery time of the order	
Reaction	Number of days elapsed between receipt of the order and post of the review	
Pay_inst	Average number of payment installs	
Pay_type	Preferred payment type	

Exploratory Analysis

Distribution of variables

Observations

- Many distributions with a strong skewness on the right, hence the consideration of a standardisation of features for better clustering
- Some outliers

Exploratory Analysis

Observations

- No noticeable correlation between score and other variables
- Strong correlation between order_value and monetary

Exploratory Analysis

Principal Component Analysis Eboulis des valeurs propres Cercle des corrélations (F1 et F2) 1.00 50 0.75 delivery_per pourcentage d'inertie 0.50 delivery acc 0.25 20 freight_per -0.2510 -0.500 0.5 1.0 1.5 4.0 2.5 3.0 -0.75 rang de l'axe d'inertie -1.00-1.00-0.75-0.50-0.250.00 0.25 0.50 0.75 1.00 F1 (19.6%) Coefficients des composantes principales 0.75 0.57 Observations 0.098 delivery 0.47 The first 4 0.65 components contain 0.51 0.56 55% of the variance order_value 0.53 freight_per freight_value pay_inst -0.4 PC1 PC2 PC3 PC4

Methodology

Pre-processing

Considered pre-processing options

Dataset	Features	
RFMS	Recency, Frequency, Monetary, Score	
Autre	Other combination of several features	

Model optimisation

Model optimisation

Model optimisation

Final Model

Final model

Dataset Score, Delivery_per, Freight_per, Quantity

Transfo features QuantileTransformer

Kmeans

Silh 9, DB 8, choice of 6 for better interpretation

Observations

Algo clustering

Nb clusters

- Each Customer cluster represents between 5 and 28% of customers
- Visualisation of clusters on PCA PC1 and PC2

Customer segmentation

Customer segmentation

#	Segment	
0	Dissatisfied customers – late delivery	
1	Satisfied customer – small spender	
2	Satisfied customer – big spender	
3	Dissatisfied customers – due to the product?	
4	Satisfied customer – large consumer	
5	Dissatisfied customers – large consumer	

Segment analysis

Marketing actions

C#	Segment	Marketing action
0	Dissatisfied customers – late delivery	Offer discounts
1	Satisfied customer – small spender	Offer other cheap products
2	Satisfied customer – big spender	Offer other expensive products
3	Dissatisfied customers – due to the product?	Dissatisfaction survey
4	Satisfied customer – large consumer	No action. Represents a minority
5	Dissatisfied customers – large consumer	No action. Represents a minority

Maintenance time

Contract maintenance

Observations

- Calculation of the Rand score Adjusted for the first 12 months (baseline), then 13 months, ... up to 24 months corresponding to the whole dataset.
- Proposal to revise the clustering model after 7 months (index < 0.8)

Conclusions

Relevance and axis of improvement

Relevance of clustering

- The final unsupervised model chosen is acceptable
- It makes it possible to identify a correct segmentation of customers and to define marketing actions
- However, some visible limitations to the proposed clustering

Areas for improving clustering

- Dataset with more than one order per customer
- More data knowledge of the customer: age, gender, interests
- Further identification of the most optimal hyperparameters for each model, excluding the number of clusters
- Consideration of other variables for modeling (purchase season, seller-customer distance, rental, purchase category, ...)

Thank you for your attention!