Мосты и коммутаторы

<u>Мост</u> запоминает, через какой интерфейс он видит трафик. Анализируя трафик, он строит мостовую таблицу (таблицу коммутации). <u>Мост</u> пересылает трафик только когда это нужно.

MAC	Port	Time
MAC-A	1	t_1
MAC-D	1	t_2
MAC-E	2	t ₃

Learning -- процесс заполнения таблицы коммутации.

Forwarding -- перенаправление трафика мостом/коммутатором.

Если получатель неизвестен (<u>DA</u> не найден) -- рассылка на все интерфейсы, кроме отправителя.

Коммутатор -- по сути многопортовый мост.

При подключении моста/коммутатора коллизионный домен уменьшается (предельный случай -- один интерфейс, одно устройство) -- это **микросезментация**.

Duplex:

- Half -- в моменте передача возможна только в одну сторону
- Full -- одновременно можно передавать в двух направлениях

Режимы работы коммутатора

1. Cut Trough

Сеть надёжная, вероятность ошибки низкая

Как только узнали получателя, начинаем отправлять фрейм. В таких случаях можем пропустить ошибку.

2. Fragment Free

Есть вероятность коллизий

Принимаем первые 64 байта. Если коллизии не обнаружено, отправляем фрейм. Так мы защищаемся от искажения фрейма из-за коллизии.

3. Store and Forward

Сеть ненадёжная, есть вероятность ошибки

Полностью сохраняем кадр, проверяем контрольную сумму. Проанализировав, отправляем фрейм.