Program

Dostępna pamięć: 256 MB. OI, etap III, dzień drugi, 14.04.2016

Klubowicze

Bajtocki Klub Dyskusyjny jest wyjątkowy pod każdym względem. Posiada on 2ⁿ członków, z których każdy zadeklarował, jakie ma poglądy na n fundamentalnych pytań. Konkretne sformulowanie pytań nie jest istotne, wystarczy wiedzieć, że są to pytania, na które można udzielić jednej z dwóch odpowiedzi (np. "kawa czy herbata?"). Poglądy danej osoby możemy kodować za pomocą ciągu bitów, który interpretowany w systemie binarnym da liczbę całkowitą z przedziału od 0 do $2^n - 1$.

W klubie nie ma dwóch osób o jednakowych poglądach. Powiemy, że dwie osoby są prawie zgodne, jeśli ich poglądy różnią się tylko na jednym pytaniu. Ponadto klubowicze to 2^{n-1} panów i 2^{n-1} pań, którzy tworzą 2^{n-1} par. Klubowicze spotykają się przy okrągłym stole. Chcemy ich tak usadzić, żeby każdy klubowicz siedział obok swojej partnerki lub swojego partnera, a obok siebie po drugiej stronie miał osobę prawie zgodną.

Wejście

W pierwszym wierszu standardowego wejścia znajduje się liczba całkowita n oznaczająca liczbę fundamentalnych pytań. W kolejnych 2^{n-1} wierszach znajdują się opisy par klubowiczów: w i-tym z tych w i-rszy znajdują się dw ie liczby calkowite a_i , b_i ($0 \le a_i$, $b_i \le 2^n - 1$) oddzielone pojedynczym odstępem, oznaczające, że klubowicze o zestawie poglądów opisanym liczbami a_i i b_i są parą. Każda liczba reprezentująca klubowicza pojawi się na wejściu dokładnie raz.

Wyjście

Jeśli nie istnieje usadzenie klubowiczów spełniające warunki zadania, to w jedynym wierszu standardowego wyjścia należy wypisać jedno słowo NIE.

Jeśli takie usadzenie istnieje, to w jedynym wierszu standardowego wyjścia należy wypi $sać\ ciąg\ 2^n\ liczb\ całkowitych\ pooddzielanych\ pojedynczymi\ odstępami,\ oznaczający\ poprawne$ usadzenie klubowiczów przy okrągłym stole.

Jeśli istnieje wiele poprawnych odpowiedzi, należy wypisać dowolną z nich.

Przykład

Dla danych wejściowych:

poprawnym wynikiem jest:

0 5 7 2 6 3 1 4

0 5

4 1

3 6

7 2

180 Klubowicze

Testy "ocen":

10cen: n = 4, jeśli i jest parzyste, to klubowicze o numerach i oraz i + 1 są w parze;

2ocen: n = 10, jeśli i jest nieparzyste, to klubowicze o numerach i oraz i + 1 są w parze; wyjątkiem jest klubowicz $2^n - 1$, który jest w parze z klubowiczem 0;

3ocen: n = 15, test losowy, pary na wejściu są posortowane rosnąco względem liczb a_i .

Ocenianie

Zestaw testów dzieli się na 18 grup, z których każda warta jest 5 albo 6 punktów. W grupie numer k znajdują się wyłącznie testy z n=k+1 (a zatem $2 \le n \le 19$).

Rozwiązanie

Opiszemy rozwiązanie w terminach grafów nieskierowanych, cykli Hamiltona i skojarzeń doskonałych. Dla przypomnienia, cykl Hamiltona to cykl przechodzący przez każdy wierzchołek grafu dokładnie raz. Z kolei skojarzenie w grafie to podzbiór krawędzi, w którym żadne dwie krawędzie nie mają wspólnego końca. Skojarzenie nazywamy doskonałym, gdy każdy wierzchołek grafu jest skojarzony (tzn. jest końcem pewnej krawędzi ze skojarzenia).

Rozważmy graf \mathcal{H}_n , którego wierzchołki stanowią liczby $0 \leq i < 2^n$ traktowane jako binarne ciągi n-elementowe, zaś krawędzie łączą pary liczb różniące się na jednym bicie. Taki graf nazywany jest często hiperkostką n-wymiarową jako uogólnienie kwadratu i sześcianu na wyższe wymiary. Natomiast niech \mathcal{K}_n będzie grafem pelnym o tym samym zbiorze wierzchołków co \mathcal{H}_n , w którym każde dwa różne wierzchołki są połączone krawędzią.

Klubowicze z naszego zadania odpowiadają wierzchołkom grafów. W zadaniu mamy dany zbiór par wierzchołków (skojarzenie doskonałe grafu \mathcal{K}_n) i chcemy znaleźć cykl taki, że wierzchołki z każdej pary będą leżały obok siebie na cyklu oraz jeśli wierzchołki leżące obok siebie na cyklu nie są jedną z wejściowych par, to ich numery różnią się dokładnie na jednym bicie (skojarzenie doskonałe grafu \mathcal{H}_n).

W terminach grafowych oryginalny problem jest równoważny następującemu:

Wejście: skojarzenie doskonałe X w grafie \mathcal{K}_n

Wyjście: cykl Hamiltona $C = X \cup Y$ w grafie \mathcal{K}_n taki, że Y jest skojarzeniem w \mathcal{H}_n

Inaczej mówiąc, mając doskonałe skojarzenie w grafie pełnym, chcemy je dopełnić krawędziami z hiperkostki do cyklu Hamiltona. O ile dla grafów niebędących hiperkostką może to być niewykonalne, to w trakcie konstruowania algorytmu przekonamy się, że dzięki specyficznej strukturze grafu \mathcal{H}_n zawsze jesteśmy w stanie znaleźć rozwiązanie.

Głównym pomysłem jest rekurencyjne sprowadzenie problemu do obliczeń na dwóch podhiperkostkach \mathcal{H}_{n-1} . Na rozwiązanie składać się będzie: sprytne dołożenie pomocniczych krawędzi, obliczenie rekurencyjnie cykli w podhiperkostkach, następnie

usunięcie pomocniczych krawędzi i dołożenie krawędzi ze zbioru krawędzi łączących podhiperkostki.

Podobnie jak wierzchołki sześcianu można podzielić na dwie grupy znajdujące się na przeciwległych ścianach, tak hiperkostkę \mathcal{H}_n można podzielić na dwa podgrafy izomorficzne z \mathcal{H}_{n-1} . W tym celu wystarczy ustalić dowolny indeks i oraz pogrupować ciągi bitowe odpowiadające wierzchołkom \mathcal{H}_n w zależności od wartości i-tego bitu.

Pokażemy, że dla każdych danych wejściowych istnieje rozwiązanie. Jak się nierzadko okazuje, od dowodu niedaleka droga do algorytmu. Zaczniemy od jednej przydatnej definicji. Jeśli C jest cyklem oraz Z jest podzbiorem krawędzi C i jednocześnie skojarzeniem, to przez Seq(C,Z) oznaczmy listę krawędzi Z w kolejności i skierowaniu zadanym przez C (wybieramy dowolne skierowanie cyklu). Dla przykładu jeśli C = (1, 2, 4, 3, 6, 5, 1) oraz Z = [(5, 6), (2, 4)], to Seq(C, Z) = [(2, 4), (6, 5)].

Twierdzenie 1. Każde skojarzenie doskonałe w grafie K_n można dopełnić do cyklu Hamiltona skojarzeniem z grafu \mathcal{H}_n .

Dowód: Indukcja po n. Za bazę indukcyjną potraktujemy przypadek dwuwymiarowy. Wtedy graf \mathcal{H}_n jest kwadratem, dla którego teza jest oczywista.

Przypuśćmy, że dla $n \ge 3$ dokonaliśmy podziału hiperkostki \mathcal{H}_n na dwie podhiperkostki H_1 i H_2 , obie izomorficzne z \mathcal{H}_{n-1} . Niech X będzie doskonałym skojarzeniem grafu \mathcal{K}_n i podzielmy krawędzie tego skojarzenia na trzy zbiory:

$$X_1 = X \cap H_1, \qquad X_2 = X \cap H_2, \qquad Z = X - X_1 - X_2.$$

Licząc końce krawędzi w H_1 i H_2 , dostajemy $2 \cdot |X_1| + |Z| = 2 \cdot |X_2| + |Z| = 2^{n-1}$, skąd wnioskujemy, że zbiór Z musi zawierać parzyście wiele krawędzi. Są to niejako łączniki pomiędzy podhiperkostkami, które zostaną użyte do połączenia dwóch cykli, które rekurencyjnie skonstruujemy w podhiperkostkach.

Niech dla i=1,2 zbiór D_i zawiera końce krawędzi ze zbioru Z, które leżą w podhiperkostce H_i . Połączmy elementy D_i w dowolny sposób w pary, uzyskując skojarzenie M_i . Wtedy $X_i \cup M_i$ jest doskonałym skojarzeniem w grafie izomorficznym z \mathcal{K}_{n-1} , zatem z założenia indukcyjnego wynika, że uda nam się znaleźć skojarzenie Y_i w H_i , takie że $C_i = X_i \cup M_i \cup Y_i$ będzie cyklem.

Otrzymamy tym samym dwa rozłączne cykle C_1 i C_2 w \mathcal{H}_n , które chcielibyśmy połączyć przy pomocy krawędzi z Z. Aby jednak to było możliwe, musimy nieco uważniej skonstruować skojarzenia M_i . Niech $\phi \colon D_1 \to D_2$ będzie przyporządkowaniem końcom krawędzi w Z leżących w H_1 ich końców leżących w H_2 . Skojarzenie M_1 możemy wybrać dowolnie, ale skojarzenie M_2 będzie wyznaczone na podstawie cyklu C_1 . A konkretnie: dla $Seq(C_1, M_1) = [(v_1, v_2), (v_3, v_4), \dots, (v_{2k-1}, v_{2k})]$ budujemy cykl $C_2 = X_2 \cup M_2 \cup Y_2$, wybierając

$$M_2 = [(\phi(v_2), \phi(v_3)), (\phi(v_4), \phi(v_5)), \dots, (\phi(v_{2k}), \phi(v_1))].$$

Teraz możemy już połączyć cykle C_1 i C_2 , zastępując zbiór pomocniczych krawędzi $M_1 \cup M_2$ przez krawędzie zbioru Z. Dzięki temu uzyskujemy zbiór $C = X_1 \cup Y_1 \cup X_2 \cup Y_2 \cup Z$. Aby pokazać, że jest on cyklem, wystarczy zauważyć, że powstaje on z C_2 poprzez zastąpienie każdej krawędzi $(\phi(v_i), \phi(v_{i+1})) \in M_2$ przez ścieżkę $\phi(v_i) \to v_i \leadsto v_{i+1} \to \phi(v_{i+1})$, leżącą poza H_2 . Każda taka zamiana jest

Rys. 1: Ilustracja połączenia cykli C_1 i C_2 . Po lewej stronie linie ciągłe oznaczają skojarzenia M_1 i M_2 . Przerywane linie oznaczają ścieżki leżące wewnątrz podhiperkostek H_1 , H_2 . Po prawej stronie skojarzenie $M_1 \cup M_2$ zostało zamienione na Z.

niezależna od pozostałych i żadna nie narusza spójności cyklu. Niniejsza konstrukcja została zobrazowana na rysunku 1.

W powyższym rozumowaniu łatwo przeoczyć jeden detal. Przyjęliśmy mianowicie ciche założenie, że zbiór Z jest niepusty. Jest ono istotne, bo w przeciwnym wypadku nie udałoby się nam połączyć obu cykli. Możemy jednak łatwo skonstruować taki podział \mathcal{H}_n na dwie podhiperkostki, w którym to założenie jest spełnione. Wystarczy wybrać dowolną krawędź $e \in X$ i znaleźć bit, na którym jej końce się różnią, a następnie podzielić \mathcal{H}_n w zależności od wartości tego bitu. W ten sposób zagwarantujemy, że co najmniej krawędź e będzie należeć do zbioru Z.

Dowód twierdzenia łatwo przetłumaczyć na algorytm rekurencyjny. Poniżej przedstawiamy pseudokod funkcji przyjmującej jako argumenty n, hiperkostkę wymiaru n oraz skojarzenie X, i zwracającej szukany cykl Hamiltona.

```
1: function FindCycle(n, H, X)
2:
   begin
      if n=2 then
3:
         return sprawdź oba skojarzenia doskonałe H i wybierz to pasujące do X;
4:
      (H_1, H_2) := \text{podział } H \text{ na podhiperkostki z niepustym łącznikiem};
      X_1 := X \cap H_1, \ X_2 := X \cap H_2, \ Z := X - X_1 - X_2;
6:
      D_1 := zbiór wierzchołków w H_1 będących końcami krawędzi z Z;
7:
      M_1 := dowolne skojarzenie doskonałe w grafie pełnym na zbiorze D_1;
8:
      C_1 := \operatorname{FindCycle}(n-1, H_1, X_1 \cup M_1);
9:
      [(v_1, v_2), (v_3, v_4), \dots, (v_{2k-1}, v_{2k})] := Seq(C_1, M_1);
10:
      M_2 := [(\phi(v_2), \phi(v_3)), (\phi(v_4), \phi(v_5)), \dots, (\phi(v_{2k}), \phi(v_1))];
11:
      C_2 := \text{FindCycle}(n-1, H_2, X_2 \cup M_2);
12:
      return cykl Hamiltona złożony z (C_1-M_1) \cup (C_2-M_2) \cup Z;
13:
14: end
```

Dla ustalonego n wszystkie zbiory występujące w funkcji FindCycle mają co najwyżej $N=2^{n-1}$ elementów, a potrzebne operacje możemy wykonać w czasie liniowym od ich rozmiaru. Złożoność obliczeniową algorytmu można zatem opisać równaniem

$$T(N) = 2 \cdot T(N/2) + O(N),$$

które jest spełnione dla $T(N) = O(N \log N)$. Z rekurencją tego typu można się spotkać na przykład w klasycznym problemie sortowania przez scalanie (ang. mergesort). Jest to szczególny przypadek Twierdzenia o rekurencji uniwersalnej [6]. Tak więc ostatecznie złożoność rozwiązania to $O(2^{n-1} \log 2^{n-1}) = O(n2^n)$.

Istotną częścią implementacji jest interpretacja rozkładu hiperkostki w języku operacji na maskach bitowych. Kod z komentarzami objaśniającymi poszczególne operacje można znaleźć w pliku klu2.cpp.