General Purpose Transistors NPN and PNP Silicon

These transistors are designed for general purpose amplifier applications. They are housed in the SOT–323/SC–70 which is designed for low power surface mount applications.

NPN MMBT3904WT1 PNP MMBT3906WT1

MAXIMUM RATINGS

Rating		Symbol	Value	Unit
Collector-Emitter Voltage	MMBT3904WT1 MMBT3906WT1	VCEO	40 –40	Vdc
Collector-Base Voltage	MMBT3904WT1 MMBT3906WT1	Vсво	60 –40	Vdc
Emitter-Base Voltage	MMBT3904WT1 MMBT3906WT1	VEBO	6.0 -5.0	Vdc
Collector Current — Continuous	MMBT3904WT1 MMBT3906WT1	lC	200 –200	mAdc

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Total Device Dissipation ⁽¹⁾ T _A = 25°C	PD	150	mW
Thermal Resistance, Junction to Ambient	$R_{\theta JA}$	833	°C/W
Junction and Storage Temperature	TJ, T _{stg}	-55 to +150	°C

GENERAL PURPOSE AMPLIFIER TRANSISTORS SURFACE MOUNT

CASE 419-02, STYLE 3 SOT-323/SC-70

DEVICE MARKING

MMBT3904WT1 = AMMMBT3906WT1 = 2A

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage ⁽²⁾ (I _C = 1.0 mAdc, I _B = 0) (I _C = -1.0 mAdc, I _B = 0)	MMBT3904WT1 MMBT3906WT1	V(BR)CEO	40 -40		Vdc
Collector-Base Breakdown Voltage (I _C = 10 μAdc, I _E = 0) (I _C = -10 μAdc, I _E = 0)	MMBT3904WT1 MMBT3906WT1	V(BR)CBO	60 -40		Vdc
Emitter-Base Breakdown Voltage (IE = 10 μ Adc, IC = 0) (IE = -10 μ Adc, IC = 0)	MMBT3904WT1 MMBT3906WT1	V(BR)EBO	6.0 -5.0	_ _	Vdc
Base Cutoff Current (V _{CE} = 30 Vdc, V _{EB} = 3.0 Vdc) (V _{CE} = -30 Vdc, V _{EB} = -3.0 Vdc)	MMBT3904WT1 MMBT3906WT1	I _{BL}		50 –50	nAdc
Collector Cutoff Current (VCE = 30 Vdc, VEB = 3.0 Vdc) (VCE = -30 Vdc, VEB = -3.0 Vdc)	MMBT3904WT1 MMBT3906WT1	ICEX	<u>-</u>	50 –50	nAdc

- 1. Device mounted on FR4 glass epoxy printed circuit board using the minimum recommended footprint.
- 2. Pulse Test: Pulse Width \leq 300 µs; Duty Cycle \leq 2.0%.

Thermal Clad is a trademark of the Bergquist Company.

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted) (Continued)

Characteristic		Symbol	Min	Max	Unit	
ON CHARACTERIST	CS(2)					
DC Current Gain (IC = 0.1 mAdc, VCE (IC = 1.0 mAdc, VCE (IC = 10 mAdc, VCE = (IC = 50 mAdc, VCE = (IC = 100 mAdc, VCE))	= 1.0 Vdc) = 1.0 Vdc) = 1.0 Vdc) = 1.0 Vdc)	MMBT3904WT1	h _{FE}	40 70 100 60 30	 300 	_
(I _C = -0.1 mAdc, V _{CE} (I _C = -1.0 mAdc, V _{CE} (I _C = -10 mAdc, V _{CE} (I _C = -50 mAdc, V _{CE} (I _C = -100 mAdc, V _C	= -1.0 Vdc) = -1.0 Vdc) = -1.0 Vdc) = -1.0 Vdc)	MMBT3906WT1		60 80 100 60 30	 300 	
Collector-Emitter Satur (I _C = 10 mAdc, I _B = 1 (I _C = 50 mAdc, I _B = 5	.0 mAdc)	MMBT3904WT1	VCE(sat)		0.2 0.3	Vdc
$(I_C = -10 \text{ mAdc}, I_B = -50 \text{ mAdc}, I_B = -60 \text{ mAdc}$	·	MMBT3906WT1			-0.25 -0.4	
Base-Emitter Saturation ($I_C = 10 \text{ mAdc}$, $I_B = 1 \text{ (}I_C = 50 \text{ mAdc}$, $I_B = 5 \text{ mAdc}$)	.0 mAdc)	MMBT3904WT1	V _{BE} (sat)	0.65 —	0.85 0.95	Vdc
$(I_C = -10 \text{ mAdc}, I_B = -50 \text{ mAdc}, I_B = -60 \text{ mAdc}$		MMBT3906WT1		-0.65 	-0.85 -0.95	
SMALL-SIGNAL CH	ARACTERISTICS					
	vidth Product = 20 Vdc, f = 100 MHz) = -20 Vdc, f = 100 MHz)	MMBT3904WT1 MMBT3906WT1	fT	300 250	_	MHz
Output Capacitance (V _{CB} = 5.0 Vdc, I _E = (V _{CB} = -5.0 Vdc, I _E =		MMBT3904WT1 MMBT3906WT1	C _{obo}		4.0 4.5	pF
Input Capacitance (V _{EB} = 0.5 Vdc, I _C = 0.5		MMBT3904WT1 MMBT3906WT1	C _{ibo}	_ _	8.0 10.0	pF
Input Impedance ($V_{CE} = 10 \text{ Vdc}$, $I_{C} = 10 \text{ Vdc}$, $I_{C} = 10 \text{ Vdc}$, $I_{C} = 10 \text{ Vdc}$	1.0 mAdc, f = 1.0 kHz) -1.0 mAdc, f = 1.0 kHz)	MMBT3904WT1 MMBT3906WT1	h _{ie}	1.0 2.0	10 12	kΩ
Voltage Feedback Ratio (VCE = 10 Vdc, IC = 1 (VCE = -10 Vdc, IC =		MMBT3904WT1 MMBT3906WT1	h _{re}	0.5 0.1	8.0 10	X 10 ⁻⁴
Small-Signal Current G (VCE = 10 Vdc, I _C = 1 (VCE = -10 Vdc, I _C =		MMBT3904WT1 MMBT3906WT1	h _{fe}	100 100	400 400	_
Output Admittance ($V_{CE} = 10 \text{ Vdc}$, $I_{C} = 10 \text{ Vdc}$, $I_{C} = 10 \text{ Vdc}$, $I_{C} = 10 \text{ Vdc}$	1.0 mAdc, f = 1.0 kHz) -1.0 mAdc, f = 1.0 kHz)	MMBT3904WT1 MMBT3906WT1	h _{oe}	1.0 3.0	40 60	μmhos
	100 μAdc, R _S = 1.0 k Ω, f = 1.0 kHz) = -100 μAdc, R _S = 1.0 k Ω, f = 1.0 kHz)	MMBT3904WT1 MMBT3906WT1	NF		5.0 4.0	dB
SWITCHING CHARA	CTERISTICS					
Delay Time	(V _{CC} = 3.0 Vdc, V _{BE} = -0.5 Vdc) (V _{CC} = -3.0 Vdc, V _{BE} = 0.5 Vdc)	MMBT3904WT1 MMBT3906WT1	^t d		35 35	ns
Rise Time	$(I_C = 10 \text{ mAdc}, I_{B1} = 1.0 \text{ mAdc})$ $(I_C = -10 \text{ mAdc}, I_{B1} = -1.0 \text{ mAdc})$	MMBT3904WT1 MMBT3906WT1	t _r	_ 	35 35	
Storage Time	$(V_{CC} = 3.0 \text{ Vdc}, I_{C} = 10 \text{ mAdc})$ $(V_{CC} = -3.0 \text{ Vdc}, I_{C} = -10 \text{ mAdc})$	MMBT3904WT1 MMBT3906WT1	t _S		200 225	ns
Fall Time	$(I_{B1} = I_{B2} = 1.0 \text{ mAdc})$ $(I_{B1} = I_{B2} = -1.0 \text{ mAdc})$	MMBT3904WT1 MMBT3906WT1	t _f	_ 	50 75	

^{2.} Pulse Test: Pulse Width \leq 300 $\mu\text{s},$ Duty Cycle \leq 2.0%.

MMBT3904WT1

* Total shunt capacitance of test jig and connectors

Figure 1. Delay and Rise Time Equivalent Test Circuit

Figure 2. Storage and Fall Time Equivalent Test Circuit

TYPICAL TRANSIENT CHARACTERISTICS

Figure 4. Charge Data

MMBT3904WT1

Figure 5. Turn-On Time

Figure 6. Rise Time

Figure 7. Storage Time

Figure 8. Fall Time

TYPICAL AUDIO SMALL-SIGNAL CHARACTERISTICS NOISE FIGURE VARIATIONS

 $(VCE = 5.0 \text{ Vdc}, T_A = 25^{\circ}\text{C}, Bandwidth = 1.0 \text{ Hz})$

Figure 9. Noise Figure

Figure 10. Noise Figure

MMBT3904WT1

h PARAMETERS

(V_{CE} = 10 Vdc, f = 1.0 kHz, T_A = 25°C)

Figure 11. Current Gain

Figure 12. Output Admittance

Figure 13. Input Impedance

Figure 14. Voltage Feedback Ratio

MMBT3904WT1

TYPICAL STATIC CHARACTERISTICS

Figure 15. DC Current Gain

Figure 16. Collector Saturation Region

Figure 17. "ON" Voltages

Figure 18. Temperature Coefficients

MMBT3906WT1

* Total shunt capacitance of test jig and connectors

Figure 19. Delay and Rise Time Equivalent Test Circuit

Figure 20. Storage and Fall Time Equivalent Test Circuit

TYPICAL TRANSIENT CHARACTERISTICS

500

Figure 21. Capacitance

Figure 22. Charge Data

Figure 23. Turn-On Time

Figure 24. Fall Time

MMBT3906WT1

TYPICAL AUDIO SMALL-SIGNAL CHARACTERISTICS NOISE FIGURE VARIATIONS

 $(V_{CE} = -5.0 \text{ Vdc}, T_A = 25^{\circ}\text{C}, Bandwidth} = 1.0 \text{ Hz})$

Figure 25.

Figure 26.

h PARAMETERS

 $(V_{CE} = -10 \text{ Vdc}, f = 1.0 \text{ kHz}, T_A = 25^{\circ}\text{C})$

10

Figure 27. Current Gain

Figure 28. Output Admittance

Figure 29. Input Impedance

Figure 30. Voltage Feedback Ratio

MMBT3906WT1

STATIC CHARACTERISTICS

Figure 31. DC Current Gain

Figure 32. Collector Saturation Region

Figure 33. "ON" Voltages

Figure 34. Temperature Coefficients

INFORMATION FOR USING THE SOT-323/SC-70 SURFACE MOUNT PACKAGE

MINIMUM RECOMMENDED FOOTPRINT FOR SURFACE MOUNTED APPLICATIONS

Surface mount board layout is a critical portion of the total design. The footprint for the semiconductor packages must be the correct size to insure proper solder connection interface between the board and the package. With the correct pad geometry, the packages will self align when subjected to a solder reflow process.

SOT-323/SC-70

SOT-323/SC-70 POWER DISSIPATION

The power dissipation of the SOT–323/SC–70 is a function of the pad size. This can vary from the minimum pad size for soldering to a pad size given for maximum power dissipation. Power dissipation for a surface mount device is determined by $\mathsf{T}_{J(max)}$, the maximum rated junction temperature of the die, $\mathsf{R}_{\theta JA}$, the thermal resistance from the device junction to ambient, and the operating temperature, T_A . Using the values provided on the data sheet for the SOT–323/SC–70 package, P_D can be calculated as follows:

$$P_D = \frac{T_{J(max)} - T_{A}}{R_{\theta, JA}}$$

The values for the equation are found in the maximum ratings table on the data sheet. Substituting these values into the equation for an ambient temperature T_A of 25°C, one can calculate the power dissipation of the device which in this case is 150 milliwatts.

$$P_D = \frac{150^{\circ}C - 25^{\circ}C}{833^{\circ}C/W} = 150 \text{ milliwatts}$$

The 833°C/W for the SOT-323/SC-70 package assumes the use of the recommended footprint on a glass epoxy printed circuit board to achieve a power dissipation of 150 milliwatts. There are other alternatives to achieving higher power dissipation from the SOT-323/SC-70 package. Another alternative would be to use a ceramic substrate or an aluminum core board such as Thermal Clad™. Using a board material such as Thermal Clad, an aluminum core board, the power dissipation can be doubled using the same footprint.

SOLDERING PRECAUTIONS

The melting temperature of solder is higher than the rated temperature of the device. When the entire device is heated to a high temperature, failure to complete soldering within a short time could result in device failure. Therefore, the following items should always be observed in order to minimize the thermal stress to which the devices are subjected.

- Always preheat the device.
- The delta temperature between the preheat and soldering should be 100°C or less.*
- When preheating and soldering, the temperature of the leads and the case must not exceed the maximum temperature ratings as shown on the data sheet. When using infrared heating with the reflow soldering method, the difference shall be a maximum of 10°C.
- The soldering temperature and time shall not exceed 260°C for more than 10 seconds.
- When shifting from preheating to soldering, the maximum temperature gradient shall be 5°C or less.
- After soldering has been completed, the device should be allowed to cool naturally for at least three minutes.
 Gradual cooling should be used as the use of forced cooling will increase the temperature gradient and result in latent failure due to mechanical stress.
- Mechanical stress or shock should not be applied during cooling.
- * Soldering a device without preheating can cause excessive thermal shock and stress which can result in damage to the device.

PACKAGE DIMENSIONS

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters can and do vary in different applications. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and (A) are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

How to reach us:

USA/EUROPE: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447

MFAX: RMFAX0@email.sps.mot.com – TOUCHTONE (602) 244–6609 INTERNET: http://Design_NET.com

JAPAN: Nippon Motorola Ltd.; Tatsumi-SPD-JLDC, Toshikatsu Otsuki, 6F Seibu-Butsuryu-Center, 3-14-2 Tatsumi Koto-Ku, Tokyo 135, Japan. 03-3521-8315

HONG KONG: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298

