Subspace

Et subspace av \mathbb{R}^n er et subset V av \mathbb{R}^n , som oppfyller:

- 1. Nonemptiness: $\overrightarrow{\mathbf{0}} \in V$
- 2. Closure under addition: $\overrightarrow{\mathbf{u}}, \overrightarrow{\mathbf{k}} \in V \Leftrightarrow \overrightarrow{\mathbf{u}} + \overrightarrow{\mathbf{k}} \in V$
- 3. Closure under multiplication: $\overrightarrow{\mathbf{u}} \in V \Leftrightarrow c\overrightarrow{\mathbf{u}} \in V$ Alle subspaces er et span og alle span er et subspace

Finne ut om et subset er et subspace

- Er subsettet et span? Kan det skrives som et span?
- Kan det bli skrevet som et columnspace til en matrise?
- Kan det bli skrevet som nullspacet til en matrise
- Er det hele \mathbb{R}^n eller $\{\overrightarrow{\mathbf{0}}\}$
- Kan det skrives som en type subspace?
 - Eigenspace
 - Ortogonal complement etc...
- Kan en bekrefte de tre kravene til et subspaces er oppfylt?

Basis:

La V være et subspace av \mathbb{R}^n . En basis til V vil da være et sett av vektorer $\{\overrightarrow{\mathbf{v_1}}, \overrightarrow{\mathbf{v_2}}, \dots \overrightarrow{\mathbf{v_n}}\}$ slik at:

- 1. $V = Span\{\overrightarrow{\mathbf{v_1}}, \overrightarrow{\mathbf{v_2}}, \dots \overrightarrow{\mathbf{v_n}}\}$
- 2. $\{\overrightarrow{\mathbf{v_1}}, \overrightarrow{\mathbf{v_2}}, \dots \overrightarrow{\mathbf{v_n}}\}$ Er lineært uavhengig.

Rank Theorem:

- $\bullet \ Rank(A) = Dim(Col(A)) = Dim(Row(A))$
- Nullity(A) = Dim(Null(A))

Hvis A er en $m \times n$ matrise, Da:

Rank(A) + Nullity(A) = n

Invertibel matrise teorem:

La A være en kvadratisk matrise. Følgende utsagn er ekvivalent:

- 1. A er invertibel
- 2. Redusert trappeform til A er identitetsmatrisen
- 3. $\overrightarrow{Ax} = 0$ Har ingen løsninger annet en den trivielle
- 4. $Nul(A) = \{\overrightarrow{\mathbf{0}}\}$ Nullity(A) = 0
- 5. Kolonnene til A er lineært uavhengig
- 6. Kolonnene til A former en basis for \mathbb{R}^n
- 7. $Col(A) = \mathbb{R}^n$
- 8. Rank(A) = n
- 9. $A\vec{\mathbf{x}} = b$ er konsistent for alle b i \mathbb{R}^n
- 10. $\overrightarrow{Ax} = b$ har en unik løsning for alle b i \mathbb{R}^n
- 11. $det(A) \neq 0$
- 12. $\overrightarrow{\mathbf{0}}$ er ikke en egenvektor til A

Determinant:

Definisjon:

Determinanten er en funksjon:

 $det: \{n \times nmatrise\} \rightarrow \mathbb{R}$

Som oppfyller følgende atributter:

- 1. Å legge til en multippel av en rad til en annen rad, endrer ikke determinanten
- 2. Skalere en av radene til A med en skalar c multipliserer determinanten med c
- 3. Bytte to rader av en matrise, multipliserer determinanten med -1
- 4. Determinanten til identitetsmatrisen er 1

Atributter til determinanten:

- \bullet Hvis Ahar en 0 kollone eller 0 rad så er determinanten 0
- ullet Hvis A er triangulær, så er determinanten produktet av elementene langs diagonalen
- $det(A^{-1} = \frac{1}{\det(A)})$
- det(AB) = det(A)det(B)
- $det(A^T) = det(A)$
- Hvis en matrise A har to like rader, så er det(A) = 0
- Determinanten er volumet til paralellepipeden spent ut av kolonnene til en matrise

Egenvektor og egenverdier:

La A være en $n \times n$ matrise:

- 1. En egenvektor av A er en ikkenull vektor $\overrightarrow{\mathbf{v}}$ i \mathbb{R}^n slik at $A\overrightarrow{\mathbf{v}} = \lambda \overrightarrow{\mathbf{v}}$
- 2. En egenverdi av A er en skalar λ , slik at likningen $A\overrightarrow{\mathbf{v}} = \lambda \overrightarrow{\mathbf{v}}$, har en ikketriviell løsning.

Obs! Egenvektor er ved definisjon ikkenull, men egenverdier kan være $\boldsymbol{0}$

Det karakteristiske polynomet:

Definisjon:

Karakteristiske polynomet til en matrise A er funksjonen:

$$f(\lambda) = det(A - \lambda I_n)$$

Theorem:

La A være en kvadratisk matrise, og la $f(\lambda) = det(A - \lambda I_n)$ være dens karakteristiske polynom. Da er λ en egenverdi til A hviss $f(\lambda) = 0$

Similære matriser:

Definisjon:

To kvadratiske matriser A og B er similære, hvis det finnes en ivertibel matrise C slik at $A = CBC^{-1}$

Atributter til similære matriser:

- Refleksivitet: A er similær med seg selv
- ullet Symmetri: A er similær med B \Leftrightarrow B er similær med A

- Transitivitet: A er similær med B, og B er similær | Komplekse Matriser: med C, da er A similær med C
- $\bullet \ A = CBC^{-1} \to A^n = CB^nC^{-1}$
- $A = CBC^{-1}$: $\overrightarrow{\mathbf{v_1}}$ er en egenvektor til $\mathbf{A} \Rightarrow C^{-1}\overrightarrow{\mathbf{v_1}}$ er en egenvektor til B
- $A = CBC^{-1}$: $\overrightarrow{\mathbf{v_2}}$ er en egenvektor til $B \Rightarrow C\overrightarrow{\mathbf{v_2}}$ er en egenvektor til A

Diagonalisering:

Definisjon:

En kvadratisk matrise A er diagonaliserbar hvis den er similær til en diagonal matrise.

Theorem:

En kvadratisk matrise A er diagonaliserbar hviss A har n lineært uavhengige egenvektorer. $A = CDC^{-1}$ så gjelder:

$$C = [v_1, v_2, \dots, v_n] D = \begin{bmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \ddots & 0 \\ 0 & 0 & 0 & \lambda_n \end{bmatrix}$$

Hvor $v_1, v_2 \dots v_n$ og λ_1, λ_2 torene/verdiene til A

Ortogonal kompliment:

La V være et underrom i \mathbb{R}^n , da er det ortogonale komplimentet til V, alle vektorer som står ortogonalt på V $V^{\perp} = \{ \vec{x} | x \cdot \vec{y} = 0, y \in V \}$

OBS! Må ikke forveksles med ortogonal basis!

Ortogonal basis:

En ortogonal basis, er en basis $\{\vec{v_1}, \vec{v_2}, \dots, \vec{v_n}\}$ for et subspace V, der $\vec{v_i} \cdot \vec{v_i} = 0$. Altså alle vektorene i basisen, er ortogonale.

Ortonormal basis:

I en ortonormal basis er alle vektorene av lengde 1.

Gram-Schmidt:

Brukes for å finne ortogonal basis til et underrom: Gitt en basis $\{\vec{v_1}, \vec{v_2}, \dots, \vec{v_m}\}$ for et underrom $V \subseteq \mathbb{R}^n$. Er en ortogonal basis vektorene $\{\vec{u_1}, \vec{u_2}, \dots, \vec{u_n}\}$ hvor:

- 1. $\vec{u_1} = \vec{v_1}$
- 2. $\vec{u_2} = \vec{v_2} Proj_{\vec{u_1}}\vec{v_2}$
- 3. $\vec{u_3} = \vec{v_3} Proj_{\vec{u_1}}\vec{v_3} Proj_{\vec{u_2}}\vec{v_3}$
- 4. $\vec{u_m} = \vec{v_m} \sum_{i=1}^m Proj_{\vec{u_m}} \vec{v_m}$

Ortogonal diagonalisering:

En matrise A er ortogonal diagonaliserbar hviss:

- A er symmetrisk om diagonalen.
- $A = PDP^{-1}$, hvor P er en ortogonal matrise.
 - En ortogonal matrise er en matrise, hvor kolonnene er ortogonale enhetsvektorer

$$-Q^T = Q^{-1} \Leftrightarrow Q^T Q = I$$

- En kompleks matrise A er Hermitsk hviss $A = A^T$
- En komplex matrise A er unitær hviss $A \cdot A = I$
 - Kolonnene til A er en ortonormal basis til $\mathbb C$