

http://hanwenjuan.com hanwj@shanghaitech.edu.cn | (+86)15221317971

EDUCATION

SHANGHAITECH UNIVERSITY

DS IN COMPUTER SCIENCE

Joint Supervision of Shanghai Institute of Microsystem

And Information Technology Expected July 2019

Cum. GPA: N/A

MS IN COMPUTER SCIENCE

Grad. July 2016 Cum. GPA: 3.51 / 4.0

NANJING UNIVERSITY OF POSTS AND TELECOMMUNICA-TIONS

BS IN OPTICAL INFORMATION SCIENCE AND TECHNOLOGY

Grad. July 2014 Cum. GPA: 3.44 / 4.0

LINKS

Github:// WinnieHAN LinkedIn:// wenjuan-han Personal Website:// hanwenjuan

COURSEWORK

GRADUATE

Artificial Intelligence Computer Graphics Computer Version Mobile Robotics Compressive Sensing

UNDERGRADUATE

Probability and Stochastic Processes Software Design Signals and Systems Analysis

SKILLS

PROGRAMMING

Advanced:

Python • Java • Pytorch

Intermediate:

Keras • Tensorflow • LATEX

Familiar:

Shell • C • C++

PUBLICATIONS

LATENT VARIABLE AUTOENCODER

2018 (submitted)

KNOWLEDGE SHARING FOR MULTILINGUAL GRAMMAR INDUCTION

2018 (submitted)

ENHANCING UNSUPERVISED GENERATIVE DEPENDENCY PARSER WITH

CONTEXTUAL INFORMATION

2018 (submitted)

DEPENDENCY GRAMMAR INDUCTION WITH NEURAL LEXICALIZATION AND

BIG TRAINING DATA

Wenjuan Han, Yong Jiang, Kewei Tu | EMNLP 2017

Conducted a systematic study regarding the impact of the degree of lexicalization and the training data size on the accuracy of grammar induction approaches

COMBINING GENERATIVE AND DISCRIMINATIVE APPROACHES TO UNSUPERVISED DEPENDENCY PARSING VIA DUAL DECOMPOSITION

Yong Jiang, Wenjuan Han, Kewei Tu | EMNLP 2017

Proposed a new learning strategy that can learn a generative model and a discriminative model jointly based on the dual decomposition method

Unsupervised Neural Dependency Parsing

Yong Jiang, Wenjuan Han, Kewei Tu | EMNLP 2016

Proposed the first neural probabilistic model to unsupervised dependency parsing

OPTICAL FIBER ENERGY TRANSMISSION SYSTEM INTERLOCKING

PROTECTION DEVICE

Publication number: CN104009451A | PATENT 2014

RESEARCH INTERESTS

My research interest is in natural language processing and machine learning. My current research focuses on the study of **probabilistic/neural models and parsers** for modeling different aspects of intelligence: (1) grammar-based representation, inference, and unsupervised learning; and (2) the application of unsupervised learning approaches with hidden variables in a variety of Al areas including grammar induction and clustering.

EXPERIENCE

TA CS281 COURSE | ARTIFICIAL INTELLIGENCE
TA SUMMER COURSE | WEB TECHNOLOGY
PRESIDENT MACHINE LEARNING READING CLUB

AWARDS

2015-2017 Learning Scholarship 2015-2017 Excellent Student

2017 3th Place

China Post-Graduate Mathematical Contest in Modeling

2015 Outstanding Volunteer Award

ShanghaiTech Symposium on Data Science