OT2 Pipetting Robots & Reinforcement Learning

REinforced Automaton Learning (REAL) Pipetting

William Ballengee, Huat Chiang, Ahmed Eshaq, Samantha Tetef

Overview

- 1. Background and Motivation
 - a. Robots in the lab
 - b. Reinforcement learning
- 2. Methods
 - a. Virtual Testing
 - b. In-lab Testing
- 3. Results
 - a. Genetic Algorithm
 - b. Gaussian Process Batch Upper Confidence Bound
- 4. Future directions

Robots are being increasingly used in the lab

HTE + Reinforcement learning

Quantum Dots

Perovskites

Nanoparticles

We will demonstrate these concept by combining food dyes to reach a desired UV/ Vis spectra

- Incorporated reinforcement learning algorithms that
 - 1. Interface with the OT2 robot
 - 2. Can be implemented in any high-throughput experiments
 - 3. Autonomously plan and execute experiments in batch mode
- All code (and preliminary results) are available on GitHub

REinforced-Automaton-Learning-REAL-Pipetting

This project integrates reinforcement learning with the open source pipetting robots from Opentrons (OT2) to guide future batched trials in high throughput experiments. We utilize two reinforcement learning algorithms:

Virtual Testing

Gaussian Process Batch Upper Confidence Bound (GP-BUCB)

Strengths:

- Has "memory"
- Converges to a final solution
- Takes only a few batches to arrive at answer

Weaknesses:

- Discrete experimental space that scales exponentially
- Slower computation time

Genetic Algorithm (GA)

Strengths:

- Operates in continuous space
- Faster computation time
- Iterations are independent of each other

Weaknesses:

- Converges to local minimum
- May take too long to converge

Results

Results: In the lab

Genetic Algorithm

Results: In the lab

GP-BUCB

Conclusion & Future directions

- Develop stopping criteria instead of relying on human interference to end
- Full integration with OT2 Pipetting Robot
 - Currently relies on file I/O
- GP-BUCB Optimization
 - Sequential Gaussian Process Regression
 - Lazy Variance Calculation
 - Optimize parameter space and constraints
- Parallel Deep Learners
- Use on discrete and continuous variables
- Continuous experimentation

Check out our Github at: https://github.com/REAL-Pipetting/REInforced-Automaton-Learning-REAL-Pipetting

Conclusion: It works!

The algorithms

The Algorithms

 Gaussian Process Batch Upper Confidence Bound (GP-BUCB)

The Algorithms

1. Gaussian Process Batch Upper Confidence Bound (GP-BUCB)

Major limitation:

- 1. Parameter space is discretized
 - a. Scales with complexity
 - b. Not all options available

Upper Confidence Sampling

					Į.					
-22.8	-21.2	-18.6	-15.2	-11.4	-7.6	-4.5	-2.8	-3.1	-6.1	-11.6
-31.7	-29.0	-24.9	-19.8	-14.1	-8.6	-4.0	-1.3	-1.0	-3.6	-9.1
-42.7	-39.3	-33.9	-27.0	-19.3	-11.9	-5.5	-1.3	0.0	-1.8	-6.7
-55.1	-51.4	-45.0	-36.6	-27.1	-17.6	-9.4	-3.6	-0.8	-1.3	-4.9
-67.5	-64.0	-57.2	-47.7	-36.7	-25.6	-15.8	-8.2	-3.7	-2.5	-4.5
-78.6	-75.7	-69.0	-59.0	-47.3	-35.1	-23.9	-14.8	-8.6	-5.5	-5.6
-86.7	-84.8	-78.7	-69.1	-57.3	-44.8	-32.8	-22.6	-14.9	-10.2	-8.3
-90.8	-90.0	-85.0	-76.4	-65.3	-53.1	-41.1	-30.4	-21.9	-15.6	-12.0
-90.3	-90.7	-87.1	-79.9	-70.2	-59.0	-47.6	-37.1	-28.3	-21.1	-16.1
-85.5	-86.9	-84.7	-79.3	-71.2	-61.6	-51.4	-41.7	-33.0	-25.5	-19.8
-77.1	-79.4	-78.5	-74.6	-68.4	-60.6	-52.0	-43.4	-35.4	-28.2	-22.3

The Algorithms

2. Genetic algorithm

Limitations of the Genetic Algorithm

Can get stuck in local optimums

Can take many iterations to converge

Hyperparameter Tree Search Example

Gaussian Process Assisted Genetic Algorithm

Algorithm comparison

Algorithm Comparison

Algorithm Comparison

Algorithm Comparison

