BBG Uygulama-1

Bazı terimler

```
1 bit, 1
```

4 bits = 1 nibble, **0111**

8 bits = 1 byte, 0001 0111

16 bits = 2 byte = 1 word, 0001 0111 0001 0111

32 bits = 4 byte = 2 word = 1 double word, 0001 0111 0001 0111 0001 0111

Terim örnekleri

0101 0111 0001 0111 0001 0111 0001 0111

Highest byte:?

Highest nibble: ?

Lowest word:?

Terim örnekleri

0101 0111 0001 0111 0001 0111 0001 0111

Highest byte(the most significant byte): 0101 0111

Highest bit(the most significant bit, MSB): 0

Highest nibble: 0101

Lowest word: 0001 0111 0001 0111

$$(157)_{10} = (?)_2$$

$$(842)_{10} = (?)_8$$

$$(1600)_{10} = (?)_{16}$$

$$(157)_{10} = (10011101)_2$$

$$(842)_{10} = (1512)_8$$

$$(1600)_{10} = (640)_{16}$$

2	157	1
2	78	0
2	39	1
2	19	1
2	9	1
2	4	0
2	2	0
2	1	1

8	842	2	
8	105	1	
8	13	5	
8	1	1	

16	160 0	0
16	100	4
16	6	6

$$(110010)_2 = (?)_{10}$$

$$(3220)_8 = (?)_{10}$$

$$(2FOC)_{16} = (?)_{10}$$

$$(110010)_2 = 2^5 x1 + 2^4 x1 + 2^3 x0 + 2^2 x0 + 2^1 x1 + 2^0 x0 = (50)_{10}$$

$$(3220)_8 = 8^3 x3 + 8^2 x2 + 8^1 x2 + 8^0 x0 = (1680)_{10}$$

$$(2FOC)_{16} = 16^3 x2 + 16^2 xF + 16^1 x0 + 16^0 xC = (12044)_{10}$$

$$(1111110001)_2 = (?)_8$$

$$(1101110010)_2 = (?)_{16}$$

$$(465)_8 = (?)_2$$

```
(111110001)_2 = (761)_8 (1101110010)_2 = (372)_{16} (465)_8 = (100110101)_2

111 110 001 11 0111 0010 4 6 5

7 6 1 3 7 2 100 110 101
```

$$(A1DB)_{16} = (?)_2$$

$$(443)_8 = (?)_{16}$$

$$(BCD)_{16} = (?)_8$$

1'e Tümleyen

1'e tümleme, bit dizisi içerisindeki
 1'lerin 0, 0'ların 1 yapılmasıyla elde edilir.

N bit sayısı olmak üzere,
 Değer aralığı: -(2^(N-1)-1) ... (2^(N-1)-1)

2'ye Tümleyen

2'ye tümleme, bit dizisi içerisindeki 1'lerin
 0, 0'ların 1 yapılması ve sonrasında sayıya
 1 eklenmesiyle olur.

• N bit sayısı olmak üzere, Değer aralığı: $-(2^{(N-1)})$... $(2^{(N-1)}-1)$

2'ye tümleyen örnekler

Decimal (-128,127)	Binary	2's complement
?	1000 0100	0111 1100
?	1111 0110	0000 1010
?	0001 0011	1110 1101
?	0110 0010	1001 1110
?	1111 1111	0000 0001
?	0000 0001	1111 1111

Decimal (-128,127)	Binary	2's complement
13	?	?
48	?	?
32	?	?
-32	?	?
63	?	?
60	?	?

2'ye tümleyen örnekler

Decimal (-128,127)	Binary	2's complement
-124	1000 0100	0111 1100
-10	1111 0110	0000 1010
19	0001 0011	1110 1101
98	0110 0010	1001 1110
-1	1111 1111	0000 0001
1	0000 0001	1111 1111

Decimal (-128,127)	Binary	2's complement
13	0000 1101	1111 0011
48	0011 0000	1101 0000
32	0010 0000	1110 0000
-32	1110 0000	0010 0000
63	0011 1111	0011 1111
60	0011 1100	1100 0100

Excess notation

1) Bir sayıyı Excess-16 formatında ifade edebilmek için kaç bit gereklidir?

1) 29/8 sayısını binary 8-bit floating point olarak yazınız

Excess notation

1) Bir sayıyı Excess-16 formatında ifade edebilmek için kaç bit gereklidir?

$$16 = 2^4 = 2^{N-1} = N = 5$$
 bits

- 1) 29/8 sayısını binary 8-bit floating point olarak yazınız.
 - a) Sayı pozitif olduğu için işaret biti 0 olmalıdır.
 - b) 29/8 = 3 + 5/8 = 011.101
 - c) 0.11101*2²
 - d) 2 = 110 (Excess-4)
 - e) 0 110 1110 =? 3 + 5/8

Truncation Error

$$2\frac{7}{8} = ?$$

Truncation Error

 $2\frac{7}{8} = ?$

0 110 1011

10.111

Logic Gates

A= 0, B=1, C=0 için çıktı ne olur?

Logic Gates

A= 0, B=1, C=0 için çıktı ne olur?

Logic Gates Bitwise Örnekler

```
1010 AND 1100 = ?
```

0011 OR 1100 = ?

1011 XOR 1000 = ?

1001 NAND 0101 = ?

Logic Gates Bitwise Örnekler

1010 AND 1100 = **1000**

0011 OR 1100 = **1111**

1011 XOR 1000 = 0011

1001 NAND 0101 = **1110**

Binary Toplama Çıkarma İşlemi

$$9 + 12 = (?)_2$$

Binary Toplama Çıkarma İşlemi

$$9 + 12 = (00010101)_{2} 9 - 12 = (11111101)_{2} 26 - 12 = (0001110)_{2}$$

$$00001001 9 + (-12) 0011010 0001100$$

$$-12 -> 12 = (00001100) 0001100$$

$$-12 = 11110100$$

$$00001001 + 11110100$$

$$11111101$$

Overflow

01111111+01111110=?

Overflow nasıl tespit edilir?

Overflow

n-bitlik işaretli sayılarla toplama yapılırken sonuç n-bitten daha fazla çıkabilir.

- 8 bitlik (+127, -128 arasındaki sayılar) işaretli sayılardan 127 +126 = 253 sayısı, 8 bitlik işaretli sayı olarak gösterilemez.
- Toplama sonucunda taşma olup olmadığı, toplanan sayıların ve sonucun işaret bitleri değerlendirilerek anlaşılır.

1.sayı	2.sayı	Sonucun işaret biti	110
Pozitif (İşaret biti 0)	Pozitif (İşaret biti 0)	Negatif (1)	Taşma var
Negatif (İşaret biti1)	Negatif (İşaret biti 1)	Pozitif (0)	Taşma var