General Stuff

- Density $\rho = \frac{\Delta m}{\Delta V}$
 - Uniform Density $\rho = \frac{m}{V}$
- Pressure $p = \frac{\Delta F}{\Delta A}$
 - Uniform Force on Flat Area $\rho = \frac{F}{A}$
 - Conversions $1atm = 1.01 \times 10^5 Pa = 760 torr = 14.7 lb/in^2$

Fluids

We must satisfy several parameters to make life easier, and to use most of these formulae.

- 1. Incompressible Density of the fluid is constant
- 2. Non-turbulent Flow Think of fluids swirling around an object
- 3. Isostatic Pressure Pressure inside the fluid is the same in all directions
- Pressure at Some Depth $p_2 = p_1 + \rho g (y_1 y_2)$
 - Pressure at Depth $h \to p = p_0 + \rho g h$
- Pascal's Principle 2 Parts

 - 1. $\vec{F_o} = \vec{F_i} \frac{A_o}{A_i}$ 2. $d_o = d_i \frac{A_i}{A_o}$
- Archimede's Principle $\vec{F}_{Up} = \vec{F}_{Down}$
 - $\ \vec{F}_{Bouyant} = m_{Floating}g$
- Continuity $A_1v_1 = A_2v_2$
- Bernoulli's Equation $p_1 + \frac{1}{2}\rho v_1^2 + \rho g y_1 = p_2 + \frac{1}{2}\rho v_2^2 + \rho g y_2$

 - Fluids at Rest $p_2=p_1+\rho g\left(y_1-y_2\right)$ Fluids not Changing Height $p_1+\frac{1}{2}\rho v_1^2=p_2+\frac{1}{2}\rho v_2^2$

Waves

Thermodynamics

Quantum Mechanics