Secure Multiparty Computation

Lucian-Dan Neștian

Supervisor: Lect. Dr. Sorin Iftene

"Alexandru Ioan Cuza" University, Iași

July 2019

Outline

- Secure Multiparty Computation
- 2 SMC primitives
 - Homomorphic Encryption
 - Oblivious Transfer
 - Garbled Circuits
- 3 Application : Privacy-Preserving Clustering
- 4 Future work

Secure Multiparty Computation Context

- n parties
- each party i has a private input, x_i
- collaboratively compute a function, $f(x_1, ..., x_n)$

SMC Proprieties

- Privacy
- Correctness

Main SMC primitives

- Homomorphic Encryption
- Oblivious transfer
- Garbled Circuits

Homomorphic Encryption

$$E(x_1) \bullet E(x_2) = E(x_1 \bullet x_2)$$

RSA:

$$E(x_1) \bullet E(x_2) = x_1^e x_2^e \mod n = (x_1 x_2)^e \mod n = E(x_1 x_2)$$

Oblivious Transfer

FIGURE – 1-out-of-n Oblivious Transfer

- Alice should not know the value of k
- ullet Bob should not know more than the value he requested, p_k

Garbled Circuits Construction

Garbled Circuits Construction

Vitaly Shmatikov, University of Texas, Austin, CS 380S www.cs.utexas.edu/~shmat/courses/cs380s_fall09/17yao.ppt

Privacy-Preserving KMeans Clustering classic approach

- Initialize the k means $\mu_1...\mu_k$ to 0.
- Arbitrarily select k starting points $\mu'_1...\mu'_k$
- repeat
 - Assign $\mu'_1...\mu'_k$ to $\mu_1...\mu_k$ respectively
 - for all points i
 - put point *i* in the *closest cluster* (given a distance function)
 - end for
 - Calculate new means $\mu_1...\mu_k$
- until the difference between $\mu'_1...\mu'_k$ and $\mu_1...\mu_k$ an arbitrary threshold

Vertically partitioned data and clustering

Privacy-Preserving KMeans Clustering secure approach

$$P_1 \text{ has } X_1 = \begin{bmatrix} x_{11} \\ x_{21} \\ \vdots \\ x_{k1} \end{bmatrix}, P_2 \text{ has } X_2 = \begin{bmatrix} x_{12} \\ x_{22} \\ \vdots \\ x_{k2} \end{bmatrix} \dots P_r \text{ has } X_r = \begin{bmatrix} x_{1r} \\ x_{2r} \\ \vdots \\ x_{kr} \end{bmatrix}$$

$$\underset{i=1...k}{\operatorname{argmin}} (\sum_{j=1..r} x_{ij})$$

- Disguise the components of the distance with random values that cancel out when combined.
- Compare distances so only the comparison result is learned.
- Permute the order of clusters.

closest cluster

 $T_1 = \pi(X_1 + V_1)$ Stage 2

with $V_{k \times r}$ such that $\sum_{i=1}^{r} \overrightarrow{V}_{i} = \overrightarrow{0}$

closest cluster retrieving the minimum

Stage 3

$$Y = T_1 + \sum_{i=3}^{r} T_i$$

check termination threshold

Jaideep Vaidya, Privacy — preserving kmeans clustering over vertically partitioned data

Future work

Directions for further study:

- Reduce computational and communication cost
- Other clustering solutions with the privacy-preserving property