

BECKER

III Digilech

harman/kardon'

Understanding IEEE 1722 AVB Transport Protocol - AVBTP

Robert Boatright Chair, IEEE 1722

rboatright@harman.com 9 March 2009

What is the purpose of the AVB Transport Protocol?

- IEEE 1722 enables interoperable streaming by defining:
 - Media formats and encapsulations
 - Raw & compressed audio/video formats
 - Bridging IEEE 1394 LANs over AVB networks
 - Media synchronization mechanisms
 - Media clock reconstruction/synchronization
 - Latency normalization and optimization
 - Multicast address assignment
 - Assigning AVB Stream ID
 - Media clock master

Where does the transport protocol fit?

AVBTP packet components

- Ethernet header plus
- Common frame header
 - Control frames
 - Common control frame header
 - Protocol-specific headers & payload

or

- Streaming frames
 - Common stream data header
 - Streaming data headers & payload

AVBTP packets encapsulated within Ethernet header

AVBTP frame common header fields

cd: control or data packetsubtype: protocol typesv: stream_id valid

version: revision of p1722 standard
subtype_data1/2: protocol specific info
stream_id: IEEE 802.1Qat stream ID

Command/control packet header (cd=1)

control_data1: protocol-specific data
status: status flags, values, etc

control_frame_length: length in bytes of control payload

AVBTP common stream data header

mr: media engine restart

r: reserved

gv: gateway_info field validtv: avbtp timestamp valid

seq_number: sequence number

gm_discontinuity: grandmaster discontinuity

h: holdover

9 March 2009

IEEE 802.1 Plenary

Vancouver, BC

AVBTP subtype field specifies streaming protocol

Hex Value	Function	Meaning
00 ₁₆	61883/IIDC	61883/IIDC over AVBTP
00 ₁₆ -7E ₁₆	-	Rsvd – future protocols
7F ₁₆	Proprietary	Proprietary/experimental

Identify registration authority to administer future assignments?

Support for raw & compressed audio/video i.e. Firewire

- Formats based on IEC 61883 parts 1-8¹
 - 61883-2 SD-DVCR
 - 61883-4 MPEG2-TS Compressed Video
 - 61883-6 Uncompressed Audio
 - 61883-7 Satellite TV MPEG
 - 61883-8 Bt.601/656 Video
 - IIDC Uncompressed Industrial Cameras

61883-n header/streams encapsulated in 1722 packets

P1722 packet format for 61883-6/AM824 (Multi-bit linear audio) 48kHz stereo stream

Example 61883-6 audio packet

Example 61883-8 video packet

P1722 packet format for 61883-8, Source Packet Type=0 (video data)

Bridging IEEE 1394 LANs

"Interworking Units" bridge 61883 between Firewire and AVB LANs

Synchronization mechanisms

- Media clock reconstruction
- Media clock master selection/management
- Presentation Time
- Latency normalization

Media clock info embedded in talker's presentation timestamps

1722 Stream

Presentation Time Stamps and 802.1AS wall time used to recreate media clock 1722 Stream

Timestamps Data 7166667 7333333 **Incoming Stream** 8666667 8833333 802.1AS **Wall Time** 9000000 **AVBTP Timestamp** Comparator **Clock Generator AVBTP timestamps** Generated media clock **Outgoing Analog** D/A Data 9 March 2009 Vancouver, BC **IEEE 802.1 Plenary**

Media clocks are derived from cross-timestamping

A/V stream media clock management²

- 256 addresses for unique media clocks
 - Located at top of p1722 MAAP OUI range
- Each address identifies a unique A/V media clock source
 - Specified on per stream basis i.e.
 - 48 kHz audio word clock
 - 44.1 kHz audio word clock
 - Video genlock source
 - Etc
- Globally pre-assigned or dynamically negotiated?

Latency Normalization

Speaker A buffers audio until Speaker B receives audio and presentation time is reached

Default Presentation Time is 2 ms...

Talker is responsible for setting delay...

Multicast Address Allocation Protocol³

- Stream Addresses must be unique
- Stream Addresses also needed above Layer 2 i.e. IP, RTP, UDP...
- IP Streams
 - Need to use IPv4/IPv6 multicast addresses
 - Established Multicast infrastructure
 - Unique layer 2 multicast not guaranteed
 - Mapping from IP to layer 2 is not reversible
- Layer 2 Streams
 - No current method for dynamic Multicast Allocation
 - Vendors could assign additional MAC addresses to devices

Address Acquisition Algorithm

- Pick random Stream Address(es)
- Probe
- Watch for Reply

Address Defense Algorithm

- Watch for Probe packets
- If a conflict, send a Reply

MAAP Control Frame

MAAP frame format

MAAP message types

Value	FUNCTION	Meaning
(decimal)		
0		Reserved
1	MAAP_PROBE	Probe MAC address(es) frame
2	MAAP_DEFEND	Defend address(es) response frame
3	MAAP_ANNOUNCE	Announce MAC address(es) acquired frame
4	MAAP_RELEASE	Release MAC acquired address(es)
5	MAAP_ASSIGN	Assign MAC address(es) command
6	MAAP_UNASSIGN	Unassign MAC address(es) command

Address Acquisition Packet

- Protocol allows for a single address or a range to be requested
- Reply packets should contain only the conflicting addresses

Destination Address (FF:FF:FF:FF:FF)
Source Address
Ethertype (too be defined)
Type (1 = Probe, 2 = Reply)
Start Address
End Address

256 MAAP addresses reserved for media clocks

Value (hex)	FUNCTION	Meaning
00 ₁₆ to 0F ₁₆		Reserved
1016	MAAP_DEF_AUDIO	Default Audio Clock
1116	MAAP_DEF_VIDEO	Default Video Clock
12 ₁₆ to FF ₁₆		Reserved

Identify Registration Authority to administer MAAP Media Clock addresses?

What's left to finish IEEE 1722?

- Define Maximum Holdover Time
 - Get from 802.1AS maximum convergence time amount or formula
- Finish Media Clock Master algorithm
 - Negotiate clock addresses or pre-assigned?
- Latency
 - Define Class B latency guarantees
 - Define latency measurement points
- RAC requests
 - AVBTP Ethertype, MAAP Ethertype & OUI
- Define ext. variable interface
- Resolve Editor's Notes, inconsistencies, editorial errors, etc.
- Draft version/comment iterations as necessary
 - Aiming to start ratification process in CY2009

More info...

- Website
 - http://grouper.ieee.org/groups/1722/
- Email reflector
 - subscribe avbtp <FirstName> <LastName> to ListServ@ieee.org
- Weekly phone conferences
 - The AVB L2 Transport Protocol Working Group holds weekly phone conferences on Mondays at 2:00 p.m. Pacific/Los Angeles time.
 - Phone bridge: +1.866.888.5021 or +1.630.693.2119, Access code: 8451103#
- Face-to-face meetings every two months
 - Next meeting April 23, 2009 hosted by Xilinx in San Jose, California
 - Send RSVP to <u>rboatright@harman.com</u>

References

- 1. IEC 61883 Parts 1-8, 2003-2008
- 2. Media Clock Distribution in a 1722 Network, Dave Olsen, Oct. 2008 http://grouper.ieee.org/groups/1722/contributions/avbtp-dolsen-Media-Clock-Distribution-v2.pdf
- 3. Stream Address Allocation in Ethernet AVB, Dave Olsen, Mar. 2007 http://www.ieee802.org/1/files/public/docs2007/avb-do-stream-address-allocation-0307.pdf

BECKER

III Digilech

harman/kardon'

exicon

Premium Solutions for Audio and Infotainment