Géométrie

 $R = (0, \vec{i}, \vec{j})$ est un repère orthonormé d'un plan \mathcal{P} .

Exercice 1. Soient A, B, C trois points du plan \mathcal{P} et de coordonnées respectivement (1;1),(3;1),(2;2).

- 1. Vérifier que les vecteurs \vec{AB} et \vec{AC} ne sont pas colinéaires.
- 2. Soit D un point de coordonnées (4; -5) dans le repère $R' = (A, \overrightarrow{AB}, \overrightarrow{AC})$. Quelles sont les coordonnées de D dans le repère R?
- 3. Soit M un point du plan \mathcal{P} de coordonnées (m,n) dans $R'=(A, \vec{AB}, \vec{AC})$. Quelles sont les coordonnées de M dans R?
- 4. Considérons la droite δ d'équation cartésienne y=x dans le repère R'. Tracer la droite et donner une équation cartésienne de δ dans le repère R?
- 5. Donner une équation cartésienne de la droite (BC) dans le repère R puis dans le repère R'. Donner les coordonnées du point d'intersection de δ et (AB) dans les repères R et R'.

Exercice 2. 1. Donner une équation paramétrique puis cartésienne de la droite passant par le point A et de vecteur directeur \vec{u} dans les cas suivants :

- (1) A = (1, 2) et $\vec{u} = (2, 3)$.
- (2) A = (-1, 0) et $\vec{u} = (1, 4)$.
- (3) A = (1/2; 3) et $\vec{u} = (2; 5)$.
- 2. Donner les coordonnées des points d'intersection de ces droites.

Exercice 3. Donner une équation paramétrique puis cartésienne de la droite passant par les points A et B dans les cas suivants :

- 1. A = (1, 2), B = (3, 1).
- 2. A = (-2, 3), B = (1, 1).
- 3. A = (1, -2), B = (1, 2).

Exercice 4. Trouver un vecteur directeur des droites suivantes, puis donner une équation paramétrique de ces droites :

$$2x + 3y = 2$$
; $-x - 3y = 0$; $y = 0$; $x = 0$; $4x - 5y = 0$.

Dans la suite on travaille dans le repère $\mathcal{R} = (0, \vec{i}, \vec{j}, \vec{k})$ de l'espace.

Exercice 5. 1. Donner une équation cartésienne (dans \mathcal{R}) du plan de l'espace passant par les points A, B et C dans les cas suivants :

- (1) A = (1, 2, 0), B = (3, 1, -1), C = (1, -1, 1).
- (2) A = (-2, 3, 3), B = (1, 1, 1), C = (-1, 1, 2).
- (3) A = (1; -2; -1), B = (1; 2; 0), C = (1; 0; 1).
- 2. Donner une équation cartésienne des intersections de ces plans.

Exercice 6. Donner un système d'équations cartésiennes de la droite de l'espace passant par les points A et B dans les cas suivants :

- (1) A = (1; 1; 0), B = (-1; 0; 2).
- (2) A = (2; 2; 3), B = (0; 0; 1).
- (3) A = (-1, -2, -1), B = (1, 2, 1).

Vérifier si ces droites ont des points d'intersection.

Exercice 7. Donner les coordonnées du point d'intersection de la droite (AB) avec le plan P dans les cas suivants :

- (1) A = (1, 1, 0), B = (-1, 2, -1), P : 2x + 3y + z = 0.
- (2) A = (0, 0, 1), B = (1, 1, 1), P : x + y + z = 0.
- (3) A = (-1, -2, 1), B = (1, 1, 2), P : x y z = 0.

Exercice 8. Donner une equation paramétrique de la droite (AB) dans les cas (1), (2) et (3) de l'exercice 9.

Exercice 9. Donner un vecteur directeur puis une équation paramétrique de la droite d'intersection des plans P et P' dans les cas suivants :

- (1) P: x + y + z = 2, P': 2x y + z = 1.
- (2) P: x 2y + 3z = -1, P': 3x + y + z = 0.
- (3) P: 2x + y = 0, P': z = 0.

Exercice 10. Extraire une base de vecteurs directeurs des plans d'équation : x+y+z=2; 2x-y+z=1; x-2y+3z=-1; 3x+y+z=0; 2x+y=0; z=0, puis une donner une équation paramétrique de ces plans.