PROJECTE D'EINES DE DISSENY: DISSENY D'UN MALETER

JORDI COMAS RODRÍGUEZ I ELENA SANS GUÀRDIA

OBJECTIUS

- Els objectius del nostre projecte és dissenyar e implementar un sistema digital que controli i accioni integrament el funcionament d'una porta d'un maleter.
- Aquesta porta té les següents funcions:
- Obrir-se de forma automàtica amb l'ajuda d'un sensor de proximitat o amb els botons corresponents.
 - Accionar la calefacció dels vidres del darrera.

ESPECIFICACIONS

2 OUTPUTS: MOTOR I RESISTENCIA CALEFACTABLE

3 INPUTS: 2 BOTONS I 1 SENSORS

BUSOS: I2C,CAN,USART

DIAGRAMA DE BLOCS

- Línies vermelles: Potència
- Línies Negres: Digitals
- Línies Blaves: bus i2c (5V o 3.3V)
- Línea Lila: bus CAN
- Línea verda: bus i2C

COMPONENTS

COMPONENTS	NOM	CONSUM	FUNCIONALITAT
Motor	HG37-200-AA-00	V = 12V I = 1A	Motor que puja i baixa maleter
Shunt	Vishay-WSR-2-0.1	$R = 0.1\Omega$	Resistència per detectar variació de la corrent del motor
Buffer	<u>LM358</u>	Vin = [3-32]V	Connexionat paral.lel shunt, avisa micro de la pujada de corrent
DC/DC Buck converter	<u>TPS630</u>	Vout = $6.5V$, loutm $\dot{a}x=1,5A$	Ajuda a baixar tensió per a que el regulador no es mengi tanta caiguda. DC/DC ajustable
Regulador 1	LM1117	Vout = 5 V Imax=1, 5 A	Reguls de 6.5V a 5V.
Micro Controlador	PIC18F448	V = 5V I = [100-200]mA	Controlar sistema
Transceiver	MCP2551		Converteix les dades del micro en un bus CAN
Sensor Peu	HC-SR04	V = 5V $I = 15mA$	Detecta el peu per sota del maleter per accionar el motor

COMPONENTS

COMPONENTS	NOM	CONSUM	FUNCIONALITAT
Regulador 2	AMS1117-3.3	Vin = [4.3-12]V	El sensor hall treballa a 3.3V i necessitem un altre regulador
Adaptador de nivell bidireccional open drain	PCA9306	loutmàx = 4mA	Passa de un bus de dades i2c generat amb 5V a un amb 3.3V totalment equivalent i al revés.
Sensor Hall	MMC5883MA	V = 3.3V I = 4.7mA	Detecta final de carrera del motor del maleter
Resistència Calefactable	PTC 12V-50W	V = 12V P = 50W	Resistència per la calefacció del vidre del darrere
Mosfet	IRLZ34N	Màx recomanat 4mA per canal	Components principals del pont H i transistor del relé
Relé	PCA9306	Màx recomanat 4mA	Controla i permet el pas a la resistència calefactable

ESQUEMÀTIC COMPLET

ETAPA CONVERSORA

ETAPA REGULADORA

DC-DC CONVERTER 12V6,5V

LM1117- 6.5V-5V

MICROCONTROLADOR PROGRAMACIÓN I CLOCK

CLOCK 4 MHZ
CONECTOR PROGRAMACIÓ
BOTÓ RESET

SENYALS DE CONTROL

ENTRADES:

SCL SDA – SENSOR HALL

TX RX - BUS CAN

BOTONS – ENCENDRE OUTPUTS

S_ENTRADA S_SORTIDA – SENSOR PROXIMITAT

CORRENT

SORTIDES

PUJAR BAIXAR – SENTIT DEL MOTOR

R_ON – ENCENDRE LA RESISTENCIA
CALEFACTABLE

PONT H I SHUNT

PONT H

REGULA EL SENTIT DEL CORRENT MITJANÇANT
ELS SENYALS PUJAR I BAIXAR PROPORCIONATS
PER LA UC

SHUNT

SENYAL CORRENT QUE DETECTA SOBREPICS DE INTENSITAT EN EL MOTOR

RELÉ

RELÉ ACCIONAT

MITJANÇANT UN

TRANSISTOR CONTROLST

PER LA SENYAL R_ON DEL

MICRO

SENSOR HALL

SENSOR QUE DETECTA EL
FINAL DEL MOTOR
CONTROLAT PER 12C
FUNCIONA A 3.3V

LAYOUT

PLACEMENT DE LA PLACA Separació dels diferents blocs, power i digital.

SENSOR HALL INTEGRAT

PLA D'ALIMENTACIÓ

4 ZONES DIFERENTS:

ZONA DC-DC ESPECIFICAT
EN EL DATASHEET
12V - POWER
VCC - DIGITAL
GND - CLOCK

PLA GND

2 ZONES

GND DIGITAL GND POWER

POWER

CONVERSORS DE VOLTATGE: DC/DC i LM1117

PONT H, SORTIDA DELS MOTORS I RESISTENCIA SHUNT

> RELAY I SORTIDA DE LA RESISTENCIA CALEFACTABLE

SENYALS DE
CONTROL:
PIN 2- CORRENT
(SOBREPIC DE I AL
MOTOR)
PIN 4 i 5- PUJADA i
BAIXADA DEL
MOTOR
PIN 6- ENCENDRE EL
RELAY

DIGITAL

CAN

CONECTORS I SENYALS DE ENTRADA

MCLR PROXIMITAT BOTONS USART

BUS CAN

PAR DIFERENCIAL

4-MHZ

SENSOR HALL

SENYALS AL MICRO
SCA (DADES)
SCL (CLOCK)

CONVERSOR 5V-3.3V

CONVERSOR 12C

SENSOR HALL

LAYOUT 3D

EXECUCIÓ DRC

PRESSUPOST

COSTOS

2 EMPRESES DIFERENTS PER DIFERENTS ETAPES
CURTA TIRADA 10x 100x JCLPCB
LLARGA TIRADA PCBWAY 1000x 20000x

PREUS PER PCB DE CADA TIRADA (SENSE IVA)

1 PCB - 30,7

10x - 22,66

100x - 19,6

1000x - 18,8

20000x - 16,1

