VR17	Reg. No:	_	 _	_	_	 -	_

VELAGAPUDI RAMAKRISHNA SIDDHARTHA ENGINEERING COLLEGE

(AUTONOMOUS)

II/IV B.Tech. DEGREE EXAMINATION, NOVEMBER, 2019

Third Semester

INFORMATION TECHNOLOGY

17IT3303 DATA STRUCTURES

Time: 3hours Max. Marks: 70

Part-A is compulsory

Answer One Question from each Unit of Part-B

Answer to any single question or its part shall be written at one place only

PART-A

 $10 \times 1 = 10M$

- 1. a. Define space complexity.
 - b. Illustrate dynamic array.
 - c. What is stack ADT?
 - d. List the different types of queues.
 - e. Write a linked list to store the first 10 prime number.
 - f. Is it advantageous to save the address of last node as well in a single linked list? Comment.
 - g. Define balance factor in AVL tree.
 - h. What are the various tree traversal techniques?
 - i. What is the best sorting method if the elements are already sorted?
 - i. List any two properties of graphs.

17IT3303

PART-B

 $4 \times 15 = 60M$

UNIT-I

2. a. Illustrate the conversion of the following infix expression into postfix as an application of stack:

!(A&&!((B<C)||(C>D))).

9M

5M

b. Give an overview of system life cycle.

6M

(or)

- a. Describe how to perform recursive linear search and comment on the best, average and worst case time complexity and space complexity?
 - b. Justify the need for data abstraction.

UNIT-II

- 4. a. Write an algorithm to any three possible insertions in a double linked list. 9M
 - b. What functions of linked list can be used to implement push and pop operations of stack? Explain with a suitable diagram.

(or)

5. a. What are the advantages of circular linked list over single and double linked list.

VR17

17IT3303

b. Define queue ADT and write an algorithm to implement basic queue perations.

UNIT-III

6. a. Construct the binary tree. Inorder and preorder of the binary tree are as follows:

i) 20, 44, 46, 48, 49, 59, 64, 69, 81, 97

ii) 59, 44, 20, 49, 46, 48, 81, 69, 64, 97

9M

6M

b. How is insertion done in a B tree?

(or)

7. a. Demonstrate single rotations and double rotations in AVL trees.

10M

b. Compare the performance of searching in a height balanced binary search tree and binary search tree. 5M

UNIT-IV

- 8. a. Illustrate deletion of any two elements in a max heap with atleast 10 elements. 9M
 - b. Compare the performance of the following sorting methods:
 - i) Quick
- ii) Merge
- iii) Heap

6**M**

(or)

9. a. Draw a graph of 10 nodes. Represent the graph using adjacency matrix and adjacency list. **8M**

* * *

b. What is Hashing? Explain with an example.

7M