Corrigé du DS n°5 sujet 1

Exercice 1

1. Donnons pour f deux méthodes

Les théorèmes usuels assurent l'existence pour f de deux dérivées partielles en tout point (x,y) de \mathbb{R}^2 et

$$\frac{\partial f}{\partial x}(x,y) = 2x\cos(x^2 - y^2); \frac{\partial f}{\partial y}(x,y) = -2y\cos(x^2 - y^2).$$

les applications

$$\mathbb{R}^2 \to \mathbb{R}$$
; $(x,y) \mapsto x$ ou y

sont continues car linéaires 1 , l'application cosinus et continue. Donc par combinaison linéaire, composition, produit... $\frac{\partial f}{\partial x}$ et $\frac{\partial f}{\partial x}$ sont continues, donc f est de classe \mathcal{C}^1 , donc a fortiori différentiable. Ou bien :

L'application $\mathbb{R}^2 \to \mathbb{R}$; $(x,y) \mapsto x^2 - y^2$ est polynomiale donc différentiable (et même \mathcal{C}^{∞}), l'application sinus est dérivable, donc différentiable et donc par composition de ces deux applications f est différentiable.

L'application g est linéaire, donc, d'après le cours différentiable et en tout point sa différentielle vaut g.

De plus pour tout $(x, y) \in \mathbb{R}^2$.

$$J_f(x,y) = \begin{pmatrix} 2x\cos(x^2 - y^2) & |-2y\cos(x^2 - y^2) \end{pmatrix},$$
$$J_g(x,y) = \operatorname{Mat}_{\mathcal{B}_c}(g) = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix},$$

où \mathcal{B}_c est la base canonique de \mathbb{R}^2 .

2. (a) On a facilement

$$\forall (x,y) \in \mathbb{R}^2, \ f \circ g(x,y) = \sin((x+y)^2 - (x-y)^2) = \sin(4xy)$$

On en déduit que pour tout $(x, y) \in \mathbb{R}^2$,

$$d(f \circ g)(x,y) : (u,v) \mapsto \frac{\partial f \circ g}{\partial x}(x,y)u + \frac{\partial f \circ g}{\partial y}(x,y)v = 4(yu + xv)\cos(4xy)$$

(b) Mais aussi, pour tout $(x, y) \in \mathbb{R}^2$,

$$J_{f \circ g}(x, y) = J_f(g(x, y)) \times J_g(x, y)$$

$$= \left(2(x+y)\cos(4xy) \quad 2(x-y)\cos(4xy) \right) \left(\begin{array}{cc} 1 & 1 \\ 1 & -1 \end{array} \right)$$

$$= \left(4x\cos(4xy) \quad 4y\cos(4xy) \right)$$

On obtient l'image de (u, v) en multipliant la jacobienne par la matrice colonne associée à (u, v). On obtient bien sûr le même résultat.

^{1.} Ou polynomiales.

Exercice 2

- 1. Pour tout $q \in \mathbb{N}^*$, La série de Riemann $\sum_{p\geq 1} \left(\frac{1}{p^2q^2}\right)$ converge (2>1!) et $:\sum_{p=1}^{+\infty} \left(\frac{1}{p^2q^2}\right) = \frac{\pi^2}{6q^2}$;
 - La série de Riemann $\sum_{q>1} \frac{\pi^2}{6q^2}$ converge de somme $\left(\frac{\pi^2}{6}\right)^2$.

Donc la famille $(\frac{1}{p^2q^2})_{(p,q)\in A}$ étant *positive*, elle est par le théorème de Fubini-Tonelli, sommable de somme :

$$\sum_{(p,q)\in A} \frac{1}{p^2 q^2} = \left(\frac{\pi^2}{6}\right)^2$$

- 2. Pour tout entier $k \geq 1$ on pose $I_k = \{(p,q) \in A | p+q=k\}$ Ainsi $\{I_k, k \in \mathbb{N}^*\}$ est-elle une partition de A.
 - Pour tout $k \in \mathbb{N}^*$ la somme finie $\sum_{(p,q) \in I_k} \frac{1}{(p+q)^2}$ vaut $(k-1) \times \frac{1}{k^2}$;
 - La série positive $\sum_{k\geq 1} \frac{k-1}{k^2}$ diverge puisque de terme général équivalent à celui de la série harmonique.

Le théorème de sommation par paquets pour les familles positives vient dire que la famille $\left(\frac{1}{(p+q)^2}\right)_{(p,q)\in A}$ est non sommable.

Mais pour tout $(p,q) \in A$,

$$\frac{1}{p^2+q^2} \ge \frac{1}{p^2+q^2+2pq} = \frac{1}{(p+q)^2},$$

donc par comparaison de familles positives, la famille $\left(\frac{1}{p^2+q^2}\right)_{(p,q)\in A}$ est non sommable.

Problème : séries trigonométriques

Partie 1: exemples

3. On a

$$\forall x \in \mathbb{R}, \ \left| \frac{1}{2^n} \cos(nx) + \frac{1}{3^n} \sin(nx) \right| \le \frac{1}{2^n} + \frac{1}{3^n} \le \frac{1}{2^{n-1}}$$

Le majorant est indépendant de x et est le terme général d'une série convergente. La série de fonctions est donc normalement convergente sur \mathbb{R} .

Soit $x \in \mathbb{R}$. Soit un entier $p \geq 2$, $\left| \frac{e^{ix}}{p} \right| < 1$ (car $p \geq 2$). donc la série géométrique $\sum \left(\frac{e^{ix}}{p} \right)^n$ converge de somme

$$\frac{1}{1 - \frac{e^{ix}}{p}} = \frac{p}{p - e^{ix}}$$

En passant aux parties réelle et imaginaire, on a donc

$$\sum_{n=0}^{\infty} \frac{\cos(nx)}{p^n} = \frac{p^2 - p\cos(x)}{p^2 - 2p\cos(x) + 1} \quad \text{et} \quad \sum_{n=0}^{\infty} \frac{\sin(nx)}{p^n} = \frac{p\sin(x)}{p^2 - 2p\cos(x) + 1}$$

Il reste à combiner les résultats pour p = 2 et p = 3:

$$\sum_{n=0}^{+\infty} \left(\frac{1}{2^n} \cos(nx) + \frac{1}{3^n} \sin(nx) \right) = \frac{4 - 2\cos(x)}{5 - 4\cos(x)} + \frac{3\sin(x)}{10 - 6\cos(x)}.$$

2

4. Soit un réel x.

$$\exp(e^{ix}) = \sum_{n=0}^{\infty} \frac{e^{inx}}{n!}.$$

Or, $\exp(e^{ix}) = \exp(\cos(x)) \exp(i\sin(x))$ et la partie réelle de cette quantité est

$$\exp(\cos(x))\cos(\sin(x)) = \sum_{n=0}^{\infty} \frac{\cos(nx)}{n!},$$

par continuité de l'application partie réelle.

- 5. Posons pour tout $n \in \mathbb{N}$, $a_n = \frac{1}{n+1}$ et $u_n = a_n \cos(n \cdot)$. La suite $(a_n)_{n \in \mathbb{N}}$ est de limite nulle mais $u_n(0) = \frac{1}{n+1}$ est le terme général d'une série divergente. $\sum u_n$ n'est donc pas simplement convergente sur \mathbb{R} .
- 6. La norme infinie sur \mathbb{R} de $x\mapsto \frac{\sin(nx)}{\sqrt{n}}$ est immédiatement égale à $\frac{1}{\sqrt{n}}$ qui est le terme général d'une série divergente. La série de fonction proposée n'est donc pas normalement convergente sur \mathbb{R} .

Partie 2 : propriétés

Une condition suffisante

7. On a pour tout réel x et tout entier $n \geq 0$:

$$|a_n\cos(nx) + b_n\sin(nx)| \le |a_n| + |b_n|$$

Le majorant est indépendant de x et est le terme général d'une série convergente. La série de fonctions est donc normalement convergente sur \mathbb{R} .

Une condition nécessaire

8. Pour tout réel x,

$$a\cos x + b\sin x = \sqrt{a^2 + b^2} \left(\frac{a}{\sqrt{a^2 + b^2}} \cos x + \frac{b}{\sqrt{a^2 + b^2}} \sin x \right).$$

Comme $\frac{a}{\sqrt{a^2+b^2}}+i\frac{b}{\sqrt{a^2+b^2}}$ est de module 1, en notant ϕ un de ses argument on a :

$$\forall x \in \mathbb{R}, \ a\cos x + b\sin x = \sqrt{a^2 + b^2}\left(\cos\phi\cos x + \sin\phi\sin x\right) = \sqrt{a^2 + b^2}\cos(x - \phi)$$

Donc $||a\cos +b\sin||_{\infty} = \sqrt{a^2 + b^2}$.

9. Posons pour tout $n \in \mathbb{N}$, $u_n = a_n \cos(n \cdot) + b_n \sin(n \cdot)$. Par définition de la convergence normale, $\sum \|u_n\|_{\infty}$ converge. On a

$$\forall n \in \mathbb{N}^*, \ \|u_n\|_{\infty} = \sqrt{a_n^2 + b^2} \ge \left\{ \begin{array}{c} |a_n| \\ |b_n| \end{array} \right.$$

Par comparaison des séries positives, $\sum a_n$ et $\sum b_n$ convergent absolument.

Autres propriétés

10. La convergence normale sur \mathbb{R} entraı̂ne la convergence uniforme sur \mathbb{R} et cette dernière conserve la continuité. Les fonctions de la série étant continues sur \mathbb{R} , il en est de même de f. La convergence normale sur \mathbb{R} entraı̂ne la convergence simple sur \mathbb{R} . La convergence simple conserve la 2π -périodicité (soit x un réel, pour tout $n \in \mathbb{N}$, $S_n(x+2\pi) = S_n(x)$, on peut passer à la limite pour obtenir la 2π -périodicité de la limite f). Ici, f est donc 2π -périodique et

$$f \in C_{2\pi}$$

11. Par changement de variable « $y = \frac{\pi}{2} - x$ » et 2π -périodicité :

$$\int_{-\pi}^{\pi} \cos^2(nx) \, \mathrm{d}x = \int_{-\pi}^{\pi} \sin^2(ny) \, \mathrm{d}y$$

Donc

$$\int_{-\pi}^{\pi} \cos^2(nx) dx = \frac{1}{2} \int_{-\pi}^{\pi} \cos^2(nx) + \sin^2(nx) dx = \frac{1}{2} \int_{-\pi}^{\pi} 1 dx = \pi.$$

De même, soient k et n des entiers, $\sin(k \cdot) \cos(n \cdot) = \frac{1}{2}(\sin(k \cdot + n \cdot) + \sin(k \cdot - n \cdot))$. Or $\sin(p \cdot)$ est d'intégrale nulle sur $[-\pi, \pi]$ (évident si p = 0, par primitivation en $-\frac{\cos(p \cdot)}{p}$ sinon). On en déduit que

$$\int_{-\pi}^{\pi} \sin(kx) \cos(nx) \, \mathrm{d}x = 0.$$

12. Soit $n \in \mathbb{N}$. On a

$$\int_{-\pi}^{\pi} f(x)\cos(nx) dx = \int_{-\pi}^{\pi} \sum_{k=0}^{\infty} (a_k \cos(kx)\cos(nx) + b_k \sin(kx)\cos(nx)) dx$$

Notons toujours, pour tout $k \in \mathbb{N}$, $u_k(x) = a_k \cos(k \cdot) + b_k \sin(k \cdot)$. On a

$$\forall x, |u_k(x)\cos(nx)| \le |u_k(x)| \le ||u_k||_{\infty}.$$

Le majorant est indépendant de x et est le terme général d'une série convergente (par l'hypothèse de normale convergence). On a donc l'intégrale d'une série de fonctions normalement convergente donc UNIFORMEMENT convergente sur le SEGMENT $[-\pi, \pi]$, on peut intervertir somme et intégrale :

$$\int_{-\pi}^{\pi} f(x)\cos(nx) dx = \sum_{k=0}^{\infty} \left(a_k \int_{-\pi}^{\pi} \cos(kx)\cos(nx) dx + b_k \int_{-\pi}^{\pi} \sin(kx)\cos(nx) dx \right)$$

Dans la somme, tous les termes sont nuls sauf celui d'indice k = n qui vaut

$$\begin{cases} a_n \pi, & \text{si } n \neq 0 \\ 2\pi a_0, & \text{sinon } . \end{cases}$$

Ainsi, si $n \neq 0$, alors $a_n = \alpha_n(f)$ et $a_0 = \frac{1}{2}\alpha_0(f)$.

13. Il s'agit d'utiliser la question précédente avec $a_0 = \alpha_0(f)/2$, $b_0 = 0$ et pour $n \ge 1$, $a_n = \alpha_n(f)$ et $b_n = \beta_n(f)$. La somme est ici égale à g et on obtient donc

$$\forall n \in \mathbb{N}, \ \alpha_n(f) = \alpha_n(g) \ \text{et} \ \beta_n(f) = \beta_n(g)$$

- 14. $h \mapsto \alpha_n(h)$ et $h \mapsto \beta_n(h)$ étant linéaire, on a ici $\alpha_n(g-f) = \beta_n(g-f) = 0$ et, avec le résultat admis g-f=0.
- 15. Si f est paire, $x \mapsto f(x)\sin(nx)$ est impaire et cette fonction est donc d'intégrale nulle sur un intervalle centré sur 0 (ce que l'on voit par le changement de variable affine t = -x). En particulier,

$$\forall n, \ \beta_n(f) = 0.$$

 $x \mapsto f(x)\cos(nx)$ est paire et

$$\forall n \in \mathbb{N}, \ \alpha_n(f) = \frac{2}{\pi} \int_0^{\pi} f(x) \cos(nx) \, dx.$$