UnifiedSessionsManager

Virtualisierung und Cloud Computing für den Netz- und Systemadministrator

Virtuelle Maschinen, Clouds und Grids

Der UnifiedSessionsManager fokussiert auf die Integration und vereinheitlichte Bedienung von heterogenen IT-Landschaften. Hierzu eine skalierbare nahtlose Benutzeroberfläche und Administrationsschnittstelle einschließlich eines Administrationsleitstands bereitgestellt. Dadurch ist eine Unterscheidung zwischen Desktop-, Client- und Server-Virtualisierung bzw. physischen Maschinen nicht mehr erforderlich.

Der UnifiedSessionsManager bietet Werkzeuge für die einfache Verwaltung und Handhabung von unterschiedlichsten physischen und virtualisierten Systemen. Das Anwendungsspektrum reicht von Einzelplatz -Systemen bis zu verteilten Data-Centern.

Anwendung und Erweiterung

Der Schwerpunkt der Anwendung liegt im Bereich von Systemadministration, Server-Betrieb, Software-Entwicklung und Test-Automatisierung. Der UnifiedSessionsManager dient hierbei als Integrations-Framework für Standard-Komponenten mit einer flexiblen erweiterbaren Plugin-Struktur.

Das herstellerübergreifende Addressierungs-Konzept einschließlich eines Namensdienstes und die Plattformübergreifende Automatisierung mittels Makros und Standard Script-Schnittstelle ermöglichen die einfache Anwendung. Die System-Sicherheit wird hierbei durch den Einsatz von OpenSSH gewährleistet.

Ergänzt werden die Laufzeitkomponenten durch einen Satz von Werkzeugen zur automatisierten Installation, Verteilung und Konfiguration.

<u>Anwendungsbeispiele</u>

Systemadministration bis zum Datacenter

Die besonderen Vorteile für den Sytemadministrator sind die automatisierte Inventarisierung, einfache und performante Verwaltung von großen Mengen von virtuellen Maschinen. Der einfache Im- und Export z.B. mittels XML-Schnittstelle, ermöglicht die Anbindung an weitere Systeme für das Management und die Kurz- und Langzeit-Analyse. Die Verwaltung von beliebig vielen Bildschirmen mittels Xinerama und einer erweiterten Addressierung ermöglicht das parallele dynamische Arbeiten auf mehreren Servern. Die Verwaltung von Servern wird insbesondere durch die Unterstützung der remote-Ausführung der Tools und die Möglichkeit der Definition von GROUP-Objekten und der Unterstützung von MACROs wesentlich erleichtert. Die Sicherheit auch Internet basierter Verbindungen wird durch die ausschließliche Verwendung von OpenSSH gewährleistet.

Energie-Effizienz

Im Data-Center kommen WoL und IPMI(in Entw.) zur Energie-Ersparnis und Loadbalancing hinzu. Dies wird insbesondere durch das automatisierte Einschalten physischer HOSTs für VMs unterstützt.

Software-Archivierung/Versionierung

Virtuelle Maschinen können durch die Möglichkeit der Definition von Sichten auf bestimmte Mengen an inventarisierten Maschinen einfach und effizient verwaltet werden. Dies kann z.B. zu forensischen Zwecken oder zur Versionierung von verteilten Laufzeitumgebungen erfolgen.

Erweiterte Addressierung

Die erweiterte Addressierung kann zur persistenten Speicherung von dynamischen Addressen in Scripten und MACROs eingesetzt werden. So ist es z.B. möglich über Herstellergrenzen hinweg virtuelle Maschinen mit einem einheitlichen Schema zu addressieren. Hier kann einheitlich neben einem frei zu vergebenden LABEL u.A. auch die UUID, MAC- oder TCP/IP-Addresse verwendet werden.

UnifiedSessionsManager

Virtualisierung und Cloud Computing für den Netz- und Systemadministrator

Technische Daten

Unterstützte Host-Betriebssysteme 1.)

<u>Linux</u>®: CentOS, Debian, Fedora, Mandriva, ScientificLinux, SuSE, OpenSUSE, Ubuntu

BSD®: FreeBSD, OpenBSD SUN®: OpenSolaris, Solaris

VMware®: ESX®
Citrix®: XenServer®

Unterstützte Hypervisor 1.)

KVM®, QEMU®, VirtualBox®, VMware®(Player/Server/Workstation), XEN® VMware ESX®, XenServer®

Unterstützte Gast-Betriebssysteme 1.)

<u>Linux</u>®: CentOS, Debian, Fedora®, Mandriva®, RedHat Enterprise Linux®, Knoppix, ScientificLinux, SuSE, OpenSUSE, Oracle® Unbreakable Linux®, Ubuntu®

BSD®: FreeBSD, OpenBSD
SUN®: OpenSolaris®, Solaris®

Microsoft-Windows®: Windows®: NT, 2000, XP, 2003,

2008, Windows7

DOS: Balder, FreeDOS, MS-DOS

SmartPhones/Netbooks: Android®, MeeGo®

Embedded Systeme: uCLinux, QNX®

Unterstützte Client-Betriebssysteme 1.)

<u>Linux</u>®: CentOS, Debian, Fedora, Mandriva, ScientificLinux, SuSE, OpenSUSE, Ubuntu

BSD®: FreeBSD, OpenBSD
SUN®: OpenSolaris, Solaris

Unterstützte Oberflächen 1.)

X11, Gnome, KDE, fvwm, xfce

Unterstützte Consolen

CLI, XTerm, gnome-terminal, Emacs, RDP, VNC, VMware, VMRC

Installations-Pakete

Aktuell sind tgz(Alle unterstützten Systeme) und rpm(CentOS und weitere) Formate vorhanden.

Lizenzen

BASE-Paket:

•GPL3

Software

•FDL-1.3 - with invariant sections
Basis-Dokumentation, siehe Releasenotes.

DOC-Paket:

CCL-3.0 - NO-DERIV + NO-COMMERCIAL
 Ausführliche Dokumentation einschließlich der beschriebenen Konzepte, Verfahren und Schnittstellen. Kommerzielle - nicht exklusive - Erweiterungen sind möglich.

Entwicklung

Ingenieurbüro Arno-Can Üstünsöz

Zentnerstr. 34 D-80798 München Tel.: +49.89.27817287

WWW: http://www.i4p.com UStID: DE192143924

Mitgliedschaften:

• FSF, GI, IEEE, LinuxVerband e.V., VDE

Veröffentlichung: 01.11.011 - 2010.10.14

Vertrieb

Vertrieb Soft- und Hardware Arno-Can Üstünsöz

Zentnerstr. 34 D-80798 München Tel.: +49.89.27817287

UStID: DE192143924