Density (ρ)= $\frac{\text{mass (m)}}{\text{volume (v)}}$

- unit= ka/m³
- density of water=1000 kg / m³=1g/cc
- for same mass

$$\rho_1 \mathbf{v}_1 = \rho_2 \mathbf{v}_2$$
if $\rho_1 > \rho_2$

$$\mathbf{v}_1 < \mathbf{v}_2$$

Mixing of liquid

Calculation of resultant/final density

1) Volumes are equal

$$d = \frac{d_1 + d_2}{2}$$

2) Masses are equal

For 2- liquid
$$\Rightarrow$$
 d = $\frac{2d_1d_2}{d_1 + d_2}$

For 3- liquid
$$\Rightarrow$$
 d =
$$\frac{3d_1d_2d_3}{d_1d_2+d_2d_3+d_1d_3}$$

3) Masses and volumes are different

$$d = \frac{\text{Total mass}}{\text{Total volume}} = \frac{m_1 + m_2}{v_1 + v_2}$$

 $m_1 = \rho_1 V_1 \& m_2 = \rho_2 V_2$

$$V_1 = \frac{m_1}{\rho_1} \& V_2 = \frac{m_2}{\rho_2}$$

Relative density (R.D)/Specific gravity

1) Relative density of a body

$$(R.D)_s = \frac{d_S}{d_W} = \frac{w_a}{w_a - w_w}$$

2) Relative density of liquid

$$(R.D)_{L} = \frac{d_{L}}{d_{W}}$$
$$= \frac{w_{a} - w_{L}}{w_{a} - w_{w}}$$

3) Relative density of a solid to that of liquid

$$\frac{(R.D)_{s}}{(R.D)_{L}} = \frac{w_{a}}{w_{a}-w_{L}}$$

Pressure

Normal force or thrust exerted by liquid at rest per unit area

$$P = \frac{F}{A}$$

Pressure depth relation

$$P = h \rho g$$

Hydrostatic paradox

Whatever the shape or width the pressure at any particular depth is same

- Gauge pressure = P-P_{atm}
- Patm = $1.01325 \times 10^5 Pa$

Inclined barometer

if θ =angle with vertical

$$Cos\theta = \frac{h}{L^{l}}$$

$$L^{1} = \frac{h}{Cos\theta}$$

Bubble rising up at constant temperature

radius 'r' becomes 'R' when bubble rises in liquid from bottom to the surface

$$\rho gh = p_{atm} [n^3-1] R= nr$$

Conditions for equal forces on wall and bottom in a cylinder

If L=R then, F1=F2

Manometer

 $P_x = P_o + h_{P_m}g$

$$h_{\rho_m g} = P_x - P_o$$

1) U-Tube manometer

2) U-Tube type

3) The third liquid is in level with other

U - tube accelerating

MECHANICS OT & PHYSICS WALLAH

Pascals Law

If gravity effect is neglected, the pressure at every point of liquid in static equilibrium is same

Application

Hydraulic Lift
As A>> a therefore

$$\frac{F}{A} = \frac{F}{a}$$

If the cylinders are connected

$$\frac{F_1}{\pi R_1^2} = \frac{F_2}{\pi R_2^2}$$

$$\frac{\mathsf{F}_1}{\mathsf{R}_1^2} = \frac{\mathsf{F}_2}{\mathsf{R}_2^2}$$

$$\frac{\mathsf{F}_1}{\mathsf{D}_1^2} = \frac{\mathsf{F}_2}{\mathsf{D}_2^2}$$

WECH ANGS

Archimedes principle

upthrust=weight of the liquid displaced=V ρ g Apparent weight=Actual weight-upthrust

$$W_{app} = W_{air} - U$$
$$= W_{air} \left[1 - \frac{G}{O} \right]$$

net force acting upward= $V_{\times} P_{L} \times g$

Unit of Coefficient of viscosity

- 1) The CGS Unit of η is dyne s cm⁻² and is called poise.
- 2) The SI unit of $\boldsymbol{\eta}$ is $Nsm^{\text{--}2}$ or decapoise or poiseuille
- 1 poiseuille = 10 poise

Poiseuille's formula

$$Q = \frac{\pi P r^4}{8 \eta I}$$

Law of floatation

 $W \Rightarrow Weight$ $U \Rightarrow Upthrust$

Stoke's law

F=6nπrv

F_{not}=Apparent weight-viscous force

Terminal velocity

$$V_{t} = \frac{2r^{2}}{9n} (\rho - \sigma)g$$

- 1) If ρ > σ , the body will attain terminal velocity in the downward direction.
- 2) If $\rho < \sigma$ the terminal velocity will be negative and the body will move in the upward direction.
- 3) $\rho = \sigma$, the body remain suspended in the fluid.

Fractional submerged volume

 $\frac{\text{Displaced volume}(V_d)}{\text{Total volume}(V)} = \frac{\sigma}{\rho}$ (submerged fraction)

 $\frac{\text{Exposed volume(V)}}{\text{Total volume(V)}} = 1 - \frac{O}{\rho} \text{ (Exposed fraction)}$

Relative density of a solid= $\frac{\text{weight of solid in air}}{\text{Loss of weight in water}} = \frac{W_a}{W_a - W_w} = \frac{\rho_b}{\rho_W}$

Relative density of a liquid= $\frac{\text{Loss of weight in liquid}}{\text{Loss of weight in water}} = \frac{W_a - W_L}{W_a - W_w} = \frac{\rho_L}{\rho_W}$

Critical velocity

Reynold number

$$R_e = \frac{\rho vD}{\eta}$$

Significances of Reynold number.

- If R lies between 0 and 2000 the follow is stream lined or laminar.
- If R,>3000, the liquid in turbulent.
- \bullet If R $_{\!\!\!\! e}$ lies between 2000 & 3000 the flow of liquid is unstable.It may change from laminar to turbulent and vice versa.

Velocity gradient

Velocity gradient= $\frac{dv}{dx}$

$$F \propto A \frac{d_v}{d_x} \Longrightarrow F = -\eta A \frac{dv}{dx}$$

 $\eta = \frac{F}{Adv/dx} \implies \text{coefficent of viscosity} \implies \eta = \frac{F/A}{dv/dx} = \frac{F/A}{v/l} = \frac{F/A}{\frac{d}{dt}(x/l)}$

 $\Rightarrow \eta = \frac{\text{snearing stress}}{\text{strain rate}}$

Equation of continuity

 $V_1A_1\Delta t\rho_1 = V_2A_2\Delta t\rho_2$

since the liquid is incompressable $\rho_1 = \rho_2$

$$V_{1}A_{1}=V_{2}A_{2}$$

Av=constant.

 $Av = \frac{dv}{dt} = Q \Longrightarrow Volume rate of flow$

https://t.me/neetwallahpw

Energy of fluid in a study flow

kinetic Energy =
$$\frac{1}{2}$$
 mv²

kinetic energy per unit mass =
$$\frac{1}{2}v^2$$

kinetic energy per unit volume =
$$\frac{1}{2} \rho v^2$$

Potential Energy = mgh

Potential energy per unit mass = gh

Potential energy per unit volume = ρgh

Pressure energy = PV

Pressure energy per unit mass = $\frac{P}{Q}$

Pressure energy per unit volume = P

BERNOULLI'S PRINCIPLE

$$P_1V_1 - P_2V_2 = \frac{1}{2}m (v_2^2 - v_1^2) + mg (h_2 - h_1)$$

$$(P_1 - P_2) V = \frac{1}{2} m (v_2^2 - v_1^2) + mg (h_2 - h_1)$$

$$(P_1 - P_2) V = \frac{1}{2} \frac{m}{V} (v_2^2 - v_1^2) + \frac{mg}{V} (h_2 - h_1)$$

$$\Rightarrow$$
 P + $\frac{1}{2}$ ρ v² + ρ gh = constant

$$\frac{P}{\rho g} + \frac{v^2}{2g} + h = constant$$

 $\frac{P}{\rho g}$ = pressure head

$$\frac{v^2}{2g}$$
 = velocity head

h = Gravitational head

VENTURIMETER

Device to measure the flow of speed of incompressible fluid

$$v_1 = \sqrt{\frac{2hg}{(A_1^2/A_2^2)-1}}$$

SURFACE TENSION

Surface tension
$$T = \frac{Force}{Length} = \frac{F}{I}$$

Unit in SI system =
$$\frac{N}{m}$$

Unit in CGS system = dyne / cm

SURFACE ENERGY

Energy of the additional surface = W = 2TLx $= T (2LX) = T\Delta A$

PRESSURE DIFFERENCE ACROSS A CURVED LIQUID SURFACE

Pressure on concave side> pressure on convex side

$$P_{concave} - P_{convex} = \frac{2T}{R}$$

 $P_{\text{inside}} - P_{\text{outside}} = \frac{2T}{R}$ [Liquid drop or air bubble]

 $P_{\text{inside}} - P_{\text{outside}} = \frac{4T}{R}$ [Soup bubble] Two surfaces

APPLICATIONS OF BERNOULLI'S PRINCIPLE

Torricelli's Law of Efflux

$$v = \sqrt{\frac{2(P - P_a)}{\rho} + 2gh}$$

If tank is open, P = P

Then $v = \sqrt{2gh}$

Time of fall, $t = \sqrt{\frac{2(H-h)}{a}}$

Range R =
$$v_x x_t$$

= $\sqrt{2gh} \times \sqrt{2(H-h)/g}$

v = Horizontal component of velocity

R is max. when $h = \frac{H}{2}$

Excess pressure inside a liquid drop

PHYSICS WALLAH

$$P_i - P_o = \frac{2T}{R}$$

Excess pressure inside a soap bubble

$$P_i - P_o = \frac{4T}{R}$$

MECHANICS

Shape of liquid meniscus

Consider the equilibrium of at line of contact

$$F_a = O_{LV} \sin \theta$$

$$Q^{2} = Q^{2} + Q^{2} \cos \theta$$

$$\cos\theta = \frac{\sigma_{sv} - \sigma_{sL}}{\sigma_{LV}}$$

() = Angle of contact.

Capillarity

Ascent formula:

$$h = \frac{2T}{R\rho g}$$

$$h > 0 (\theta < 90^{\circ})$$

$$h < 0 (\theta > 90^{\circ})$$

$$h = \frac{2T\cos\theta}{r\rho g}$$