L12 - 12/09/2024

4. Circling a sq.

A. From our knowledge, $\pi R^2 = a^2 \implies R = \frac{a}{\sqrt{\pi}}$

But, if R is constructible by rule ℓ compass, so is π .

And we know from Galois Theory that TT isn't constructible.

Hence, such an R is <u>not</u> constructible.

Since the problem can't be solved exactly by ruler & compass

Thus, we seek approximate solns.

Note The no. IT isn't defined explicitly. in the Sulva Sutras.

Appron. Soln -

Consider a sq. of length 2a

1. Mark E on OL

s.t OC = OE

2. Trisect LE

radius OM gives approximate soln

the problem

Trisection of line segment

$$an(\Omega) = \pi (oM)^2$$

= $\pi (oE - ME)^2 = \pi (\Omega a)$

$$= \pi a^2 \left(\frac{\sqrt{2}+2}{3}\right)^2$$

$$\sim 1.29 a^2$$

This gives us an approximation of TT.

Expected as: = $4a^2$ $\Rightarrow \pi \left(\frac{\sqrt{2}+2}{3}\right)^2 \sim 4a^2$ Approx. as: = $\pi \left(\frac{\sqrt{2}+2}{3}\right)^2$

$$\pi \sim 18(3-2\sqrt{2})$$

 $-\frac{2}{7}(\sqrt{2}-1)a)^{2}$

~ 3.088

For squaring a circle one can try to reverse the constan.

Brick Constructions

diff sizes

Altar consists of various layers of bricks. Each layer consisted of bricks of

This led to mathematical problems involving integer solms to poly. egms.

eg - 1. Garhipatyagni : 5 layers of 21 bricks each.

Each layer has some ar. - 1 sq. vyam

There are 2 types of bricks of length 1/m & 1/n vyam.

Let n: # type I bricks

y: # type I bricks

$$\frac{x}{m^{2}} + \frac{y}{n^{2}} = 1, \quad x, y \ge 0$$

$$m > n$$

$$\Rightarrow \quad \frac{x}{m^{2}} + \frac{(21-x)}{n^{2}} = 1$$

$$\Rightarrow \quad x = \frac{m^{2}(21-n^{2})}{(m^{2}-n^{2})}$$

$$\forall = \frac{n^{2}(21-m^{2})}{(n^{2}-m^{2})}$$

$$\therefore \quad m > n$$

$$\therefore \quad for \quad x \ge 0, \quad n^{2} < 21 \quad \Rightarrow \quad n = 1, 2, 3, 4$$

$$\text{By sub } \quad n \quad \text{k finding corresponding } m,$$
we get:
$$\text{config } \quad \text{contig } 2$$

$$\text{(m,n) = (6,3), (6,4)}$$

$$\Rightarrow \quad (x,y) = (16,5), (9,12)$$
Thus, we get 3 types of bricks - 1/3, 1/4, 1/6.

x + y = 21

Constraints:

following constra a suggested cs - Config 1 LY - Config 2 - Config 1 12 - Config 2 LI - Config 1 2. Garud Chayan: 5 layers Each layer consists of 200 bricks & has area 15/2 sq. vyani There are 4 types of bricks with area 1/ai for type i ni: # bricks of type i het Const ? : $\sum \pi_i = 200$ $\sum \pi i/\alpha_i = |S/2|$ Soln: $(a_1, a_2, a_3, a_4) = (16, 25, 36, 100)$ (M1, M2, M3, M4) = (2,120,36,20), (12,125,63,0)

For stability of layers placed atop others,