Project Management CSE 4407

Md. Bakhtiar Hasan

Assistant Professor Department of Computer Science and Engineering Islamic University of Technology

May 21, 2025

The Spark: Origins of Systems Projects

- Project Triggers
 - Problems
 - Opportunities

The Spark: Origins of Systems Projects

- Project Triggers
 - Problems: Things aren't working as they should. Performance gaps, inefficiencies, errors
 - Opportunities

Project Initiation (2/78)

The Spark: Origins of Systems Projects

- Project Triggers
 - Problems: Things aren't working as they should. Performance gaps, inefficiencies, errors
 - Opportunities: Chance to improve, upgrade, or innovate. New tech, changing markets, e-commerce potential

Project Initiation (2/78)

Spotting Troubles: Signs of Underlying Problem

• Where to Look: How do we detect these problems?

Okay, We See Symptoms... Now What? Define the Problem!

• Why: It's the critical first step in any structured approach (like SDLC or O-O). Sets the foundation for the entire project

Uncovering the Real Issues: Analyst Detective Work

• How Analysts Identify Issues (During info gathering - interviews, observation, etc.)

Turning Problems into Goals: Setting Objectives

- Linking Issues and Objectives
 - Objectives should directly address the identified Issues (point-by-point if possible)

⁶/78

Case Study: Catherine's Catering Conundrum

• The Business: Small catering company (meals, receptions, banquets). Started small, good reputation led to growth

Demo: Problem Definition - Catherine's Catering

Catherine's Catering: Translating Objectives to User Requirements

• From Objectives to Action: User requirements specify how objectives will be met from a user perspective

Catherine's Catering: Thinking Ahead - Testing

- Why
 - Helps ensure requirements are clear and testable
 - Starts early, evolves over time

Not All Projects Are Created Equal: Selection Criteria

• Reality Check: Organizations have limited resources (time, money, people)

Project Go/No-Go: The Big Questions (1/2)

• Five Key Criteria for Selection

Project Go/No-Go: Practicality and Worth (2/2)

- Five Key Criteria for Selection
 - 4. Practical in Terms of Resources?
 - Do we (analysts/dev team) have the necessary skills and tools?
 - Does the *organization* have the capacity (staff, infrastructure)?
 - Recognize limitations some projects might require external expertise

Project Initiation (12/78)

Selected the Project... But Is It Doable?

 Recap: We have narrowed down potential projects based on strategic fit, backing, timing, etc.

- Technical Feasibility: Do we have the tech and skills?
- Economic Feasibility: Does it make financial sense?
- Operational Feasibility: Will people actually use it effectively?

- Technical Feasibility: Do we have the tech and skills?
 - Add on to present system
 - Technology available to meet users' needs
- Economic Feasibility: Does it make financial sense?
- Operational Feasibility: Will people actually use it effectively?

- Technical Feasibility: Do we have the tech and skills?
 - Add on to present system
 - Technology available to meet users' needs
- Economic Feasibility: Does it make financial sense?
 - Systems analysts' time
 - Cost of systems study
 - Cost of employees' time for study
 - Estimated cost of hardware
 - Cost of packaged software or software development
- Operational Feasibility: Will people actually use it effectively?

- Technical Feasibility: Do we have the tech and skills?
 - Add on to present system
 - Technology available to meet users' needs
- Economic Feasibility: Does it make financial sense?
 - Systems analysts' time
 - Cost of systems study
 - Cost of employees' time for study
 - Estimated cost of hardware
 - Cost of packaged software or software development
- Operational Feasibility: Will people actually use it effectively?
 - Whether the system will operate when put in service
 - Whether the system will be used

Feasibility Deep Dive: Technical Check

• Key Questions

Feasibility Deep Dive: Economic Check

• Key Questions

Feasibility Deep Dive: Operational Check

• Assumes: Tech is possible, Economics make sense

Supporting Feasibility: Estimating Workloads

- Why?
 - Essential for assessing Technical (Hardware needs) and Economic (Processing costs) feasibility
 - Ensures new hardware can handle *current* AND *future* demands (avoids costly early replacement due to growth)

Feasibility Passed! Now, What Gear Do We Need?

- Next Step: Dive deeper into the specifics of Hardware and Software requirements
 - o Builds upon Technical Feasibility assessment
 - o Involves inventory, estimation, and evaluation

Taking Stock: The Hardware Inventory

- Why?
 - o Can't make good decisions without knowing the starting point
 - Identifies usable existing hardware (potential for reuse/upgrades)
 - Reduces guesswork

Choosing the Right Tools: Evaluating Hardware

- Shared Responsibility: Management, Users, and Systems Analysts
 - Analyst oversees objectively
 - Analyst educates others on pros/cons

Own It or Rent It? Buy vs. Cloud Hardware

- Paths for Acquiring Hardware Infrastructure
 - o Buy
 - Cloud

- Beyond just Hardware
 - Infrastructure as a Service (laaS)
 - Platform as a Service (PaaS)
 - Software as a Service (SaaS)

- Beyond just Hardware
 - Infrastructure as a Service (laaS)
 - Renting the basic building blocks (compute, storage, network)
 - You manage OS, applications
 - Platform as a Service (PaaS)
 - Software as a Service (SaaS)

- Beyond just Hardware
 - \circ Infrastructure as a Service (IaaS) \rightarrow Like renting the land and utilities
 - Renting the basic building blocks (compute, storage, network)
 - You manage OS, applications
 - Platform as a Service (PaaS)
 - Software as a Service (SaaS)

- Beyond just Hardware
 - \circ Infrastructure as a Service (IaaS) \rightarrow Like renting the land and utilities
 - Renting the basic building blocks (compute, storage, network)
 - You manage OS, applications
 - Platform as a Service (PaaS)
 - Renting infrastructure plus operating systems, databases, development tools
 - You manage applications and data
 - Software as a Service (SaaS)

- Beyond just Hardware
 - \circ Infrastructure as a Service (IaaS) \rightarrow Like renting the land and utilities
 - Renting the basic building blocks (compute, storage, network)
 - You manage OS, applications
 - \circ Platform as a Service (PaaS) \rightarrow Like renting a workshop with tools provided
 - Renting infrastructure *plus* operating systems, databases, development tools
 - You manage applications and data
 - Software as a Service (SaaS)

- Beyond just Hardware
 - \circ Infrastructure as a Service (IaaS) \rightarrow Like renting the land and utilities
 - Renting the basic building blocks (compute, storage, network)
 - You manage OS, applications
 - \circ Platform as a Service (PaaS) \rightarrow Like renting a workshop with tools provided
 - Renting infrastructure *plus* operating systems, databases, development tools
 - You manage applications and data
 - Software as a Service (SaaS)
 - Renting ready-to-use software applications over the internet (e.g., Google Workspace, Salesforce, Office 365)
 - · Provider manages everything

- Beyond just Hardware
 - \circ Infrastructure as a Service (IaaS) \rightarrow Like renting the land and utilities
 - Renting the basic building blocks (compute, storage, network)
 - You manage OS, applications
 - \circ Platform as a Service (PaaS) \rightarrow Like renting a workshop with tools provided
 - Renting infrastructure *plus* operating systems, databases, development tools
 - You manage applications and data
 - \circ Software as a Service (SaaS) \rightarrow Like renting a fully furnished apartment
 - Renting ready-to-use software applications over the internet (e.g., Google Workspace, Salesforce, Office 365)
 - Provider manages everything

Beyond the Box: Evaluating Vendor Support

• Key Areas to Evaluate: What happens after the sale?

Trend Watch: Bring Your Own Device (BYOD)

• What: Employees using their personal devices for work

Now for Software: Build, Buy, or Rent?

- Paths for Acquiring Software
 - Create Custom Software
 - Purchase COTS
 - Use SaaS Provider

Now for Software: Build, Buy, or Rent?

- Paths for Acquiring Software
 - Create Custom Software: Develop it in-house or hire developers
 - Purchase COTS: Buy Commercial-Off-The-Shelf packages (e.g., Microsoft Office, SAP)
 - Use SaaS Provider: Subscribe to software delivered over the cloud (e.g., Salesforce, Google Workspace)
- Summary Trade-offs

Option	Advantages	Disadvantages
Custom Software	Customization, Innovation, In-house support, Ownership	High cost, Dev team, Maintenance

Now for Software: Build, Buy, or Rent?

- Paths for Acquiring Software
 - Create Custom Software: Develop it in-house or hire developers
 - Purchase COTS: Buy Commercial-Off-The-Shelf packages (e.g., Microsoft Office, SAP)
 - Use SaaS Provider: Subscribe to software delivered over the cloud (e.g., Salesforce, Google Workspace)

• Summary Trade-offs

Option	Advantages	Disadvantages
Custom Software	Customization, Innovation, In-house support, Ownership	High cost, Dev team, Maintenance
COTS Software SaaS Provider	Low cost, Functionality, Reliability, Proven, Documentation No IT, Focus, Quick setup, Scalability, Auto-updates	Generic, Rigid, Vendor risk, Common, Integration Less control, Security, Provider risk, Lock-in, Missing features

Judging Software Quality and Support

• Objective Evaluation: Don't rely solely on vendor claims your demos! Use your data, involve users

Weighing the Scales: Costs vs. Benefits

- The Deciding Factor
 - While meeting requirements is key, the final 'Go/No-Go' often hinges on Cost-Benefit Analysis
 - o Does the value justify the expense?

Predicting the Future (Sort Of): Forecasting Basics

Why: Needed for credible cost-benefit analysis over the system's life

What's the Upside? Identifying Benefits

- Two Types of Benefits
 - o Tangible Benefits
 - Intangible Benefits

What's the Upside? Identifying Benefits

- Two Types of Benefits
 - Tangible Benefits: Measurable in dollars
 - Increased processing speed \rightarrow Reduced labor time
 - Access to new information → Better decisions leading to profit/savings
 - ullet Timelier information o Faster response to opportunities/threats
 - ullet Superior calculation power o Complex analysis possible
 - Decreased employee time on tasks o Labor cost savings
 - Reduced errors \rightarrow Lower correction costs
 - Intangible Benefits

What's the Upside? Identifying Benefits

- Two Types of Benefits
 - Tangible Benefits: Measurable in dollars
 - Increased processing speed \rightarrow Reduced labor time
 - Access to new information → Better decisions leading to profit/savings
 - ullet Timelier information o Faster response to opportunities/threats
 - ullet Superior calculation power o Complex analysis possible
 - ullet Decreased employee time on tasks o Labor cost savings
 - Reduced errors → Lower correction costs
 - Intangible Benefits: Difficult to quantify, but still important!
 - · Improved decision-making process
 - · Enhanced data accuracy
 - Improved customer service
 - Reputation
 - Increased employee job satisfaction

What's the Downside? Identifying Costs

- Two Types of Costs (Parallel to Benefits)
 - Tangible Costs
 - Intangible Costs

What's the Downside? Identifying Costs

- Two Types of Costs (Parallel to Benefits)
 - Tangible Costs: Can be accurately projected and quantified
 - Hardware/Software purchase cost
 - Analyst and Developer time (salaries/fees)
 - · Business user time (participation in study, training)
 - Operational costs (maintenance contracts, cloud subscription fees, electricity)
 - Intangible Costs

What's the Downside? Identifying Costs

- Two Types of Costs (Parallel to Benefits)
 - Tangible Costs: Can be accurately projected and quantified
 - Hardware/Software purchase cost
 - Analyst and Developer time (salaries/fees)
 - Business user time (participation in study, training)
 - Operational costs (maintenance contracts, cloud subscription fees, electricity)
 - Intangible Costs: Difficult to estimate, but represent real risks
 - ullet Losing competitive edge o If the system fails or is delayed
 - Damaged company image \rightarrow Due to system errors/outages
 - ullet Reduce employee morale o Due to difficulty/frustrating system
 - Ineffective decisions ightarrow Due to system providing poor/untimely information

Technique 1: Break-Even Analysis

 Purpose: Determines the point where a new system becomes more cost-effective than the current system based on volume

Technique 2: Payback Analysis (and Break-Even Limits)

- Break-Even Analysis Limitations
 - Primarily focuses on costs, assuming benefits remain constant (often not true!)
 - Doesn't explicitly show when the initial investment is recouped

From Big Idea to Done Deal: Managing Time and Activities

• Challenge: Systems projects, especially large ones, can get complex and unwieldy

Divide and Conquer: The Work Breakdown Structure (WBS)

 What: A hierarchical decomposition of the total scope of work to be carried out by the project team

Ways to Structure the WBS

- Two Common Approaches
 - Product-Oriented WBS
 - Process-Oriented WBS

Ways to Structure the WBS

- Two Common Approaches
 - Product-Oriented WBS
 - Breaks down the work based on the components of the final product
 - \bullet Example: Website \to Home Page, Product Pages, FAQ Page, Contact Page, E-commerce Module
 - Each component has sub-tasks
 - Process-Oriented WBS

Ways to Structure the WBS

- Two Common Approaches
 - Product-Oriented WBS
 - Breaks down the work based on the components of the final product
 - \bullet Example: Website \to Home Page, Product Pages, FAQ Page, Contact Page, E-commerce Module
 - Each component has sub-tasks
 - Process-Oriented WBS
 - Breaks down the work based on the phases or processes involved (e.g., SDLC phases)
 - \bullet Example: Website \to Emphasizes on what to do in Initiation, Planning, Analysis, Design, and Launch

Demo: Sample Process Oriented WBS

How Long Will It Really Take?

• Goal: Arrive at realistic estimates for each task in the WBS

Estimation Techniques: Drawing From The Past

Relying on Experience

- o Best approach if you have done the same tasks before
- Providers estimates based on real-world knowledge (including potential pitfalls)
- o Gives "most likely" and "pessimistic" estimates

Estimation Techniques: Three-Point Method

- Concept
 - o Combines optimistic, pessimistic, and most likely estimates to get a weighted average
 - Accounts for uncertainty

Estimation Techniques: Specialized

Function Point Analysis (FPA)

- Estimates effort based on the system's functional size and complexity, NOT lines of code initially
- Measures five components: External Inputs, External Outputs, External Queries, Internal Logical Files, External Interface Files
- Complexity ratings are applied
- Can be used to compare estimated effort across different Programming languages
- Resource: International Function Point Users Group (IFPUG)

Scheduling the Work: Planning and Control

 Planning: Selecting the team, assigning tasks, estimating time, creating the schedule

Scheduling the Work: Planning and Control

- Planning: Selecting the team, assigning tasks, estimating time, creating the schedule
- Control: Monitoring progress against the plan, using feedback, taking corrective action (expediting, rescheduling), motivating the team
- Foundation: A detailed WBS

Phase	Activity
Analysis	Data gathering Data flow and decision analysis Proposal preparation
Design	Data entry design Input design Output design Data organization
Implementation	Implementation Evaluation
·	

Scheduling the Work: Planning and Control

- Planning: Selecting the team, assigning tasks, estimating time, creating the schedule
- Control: Monitoring progress against the plan, using feedback, taking corrective action (expediting, rescheduling), motivating the team
- Foundation: A detailed WBS
- Key
 - Detail must be sufficient for scheduling and control
 - o Time estimates are added

Phase	Activity	Detailed Activity	Wk.
		Conduct interviews	3
	Data gathering	Administer questionnaires	4
	Data gathering	Read company reports	4
Analysis		Introduce prototype	
		Observe reactions to prototype	5 3
	Data flow and decision analysis	Analyze data flow	8
	Proposal preparation	Perform cost-benefit analysis	3
	.,,	Prepare proposal	2
		Present proposal	2
	Data entry design	-	-
Design	Input design	-	-
Design	Output design	-	-
	Data organization	-	-
Implementation	Implementation	-	-
Implementation	Evaluation	-	-/

Visualizing the Time: Gantt Charts

 What: A horizontal bar chart showing project tasks against a timeline

Gantt Chart Limits and A More Powerful Tool: PERT

- Gantt Chart Weakness Doesn't clearly show dependencies or precedence
 - Can't easily tell why a task starts after another one finishes. Is it required, or just coincidence?
 - Doesn't highlight which tasks are critical to the overall project duration

⁴³/78

Visualizing Dependencies: Gantt vs. PERT

- Gantt Chart: Represents the tasks as bars against time
- PERT Diagram: Represents the same tasks as a network

44/₇₈

PERT Concepts: Critical Path

- Path: A sequence of connected activities from the start event to the end event
- Path Length: Sum of the durations of all activities on a path

45/₇₈

PERT Concepts: Critical Path

- Path: A sequence of connected activities from the start event to the end event
- Path Length: Sum of the durations of all activities on a path
- Critical Path: The longest path through the PERT Enetwork
 - Determines the shortest possible completion time for the entire project
 - Any delay on a critical path activity directly delays the project completion date
- Example
 - $\circ~$ Path 1 (A-C-E): 10 \rightarrow 20 \rightarrow 40 \rightarrow 50 (15 weeks)
 - $\circ~$ Path 2 (B-D-E): 10 \rightarrow 30 \rightarrow 40 \rightarrow 50 (11 weeks)

⁴⁵/78

PERT Concepts: Critical Path

- Path: A sequence of connected activities from the start event to the end event
- Path Length: Sum of the durations of all activities on a path
- Critical Path: The longest path through the PERT Enetwork
 - Determines the shortest possible completion time for the entire project
 - Any delay on a critical path activity directly delays the project completion date
- Example
 - $\circ~$ Path 1 (A-C-E): 10 \rightarrow 20 \rightarrow 40 \rightarrow 50 (15 weeks)
 - $\circ~$ Path 2 (B-D-E): 10 \rightarrow 30 \rightarrow 40 \rightarrow 50 (11 weeks)

45 / 78

PERT Concepts: Slack Time

- The amount of time a task or path can be delayed without delaying the entire project
- Exists only on non-critical paths

46/₇₈

PERT Concept: Dummy Activities

What: Activities with ZERO duration, usually shown as dashed lines

PERT Example: Data Gathering and Proposal

• Scenario: Scheduling the initial phases of a systems project

Act	tivity	Predecessor(s)	Duration (Weeks)
Α	Conduct interviews	None	3
В	Administer questionnaires	Α	4
C	Read company reports	None	4
D	Analyze data flow	В, С	8
Ε	Introduce prototype	В, С	5
F	Observe reactions prototype	E	3
G	Perform cost-benefit	D	3
Н	Prepare proposal	F, G	2
	Present proposal	Н	2

⁴⁸/78

PERT Example: Constructing the Network

• Process: Start with activities having no predecessors. Add activities sequentially based on their listed predecessors. Ensure all dependencies are represented.

Acti	vity	Predecessor(s)	Duration (Weeks)
Α	Conduct interviews	None	3
В	Administer questionnaires	Α	4
С	Read company reports	None	4
D	Analyze data flow	B, C	8
E	Introduce prototype	В, С	5
F	Observe reactions prototype	Ē	3
G	Perform cost-benefit	D	3
Н	Prepare proposal	F, G	2
I	Present proposal	H	2

PERT Example: Identifying the Critical Path

 Method: Calculate the total duration of every possible path from start (10) to end (80). The longest one is critical.

⁵⁰/₇₈

Staying on Track: Controlling the Project

• Reality Check: Things go wrong! Scope changes, delays happen, costs fluctuate

Builds on WBS and Schedule: Need cost estimates for each activity

- Builds on WBS and Schedule: Need cost estimates for each activity
- Main Resource Cost: Project team time! (Also special equipment/tools)
- Cost Estimation Approaches: Similar to Time Estimation
 - o Top-Down
 - Base estimates on similar past projects (experience driven)
 - Adjust for known differences
 - o Bottom-Up
 - Parametric Modeling

- Builds on WBS and Schedule: Need cost estimates for each activity
- Main Resource Cost: Project team time! (Also special equipment/tools)
- Cost Estimation Approaches: Similar to Time Estimation
 - Top-Down
 - Base estimates on similar past projects (experience driven)
 - Adjust for known differences
 - o Bottom-Up
 - Get estimates from team members responsible for each WBS task
 - Analyst reviews/aggregates
 - Can be time-consuming, variable
 - Parametric Modeling

- Builds on WBS and Schedule: Need cost estimates for each activity
- Main Resource Cost: Project team time! (Also special equipment/tools)
- Cost Estimation Approaches: Similar to Time Estimation
 - Top-Down
 - Base estimates on similar past projects (experience driven)
 - Adjust for known differences
 - o Bottom-Up
 - Get estimates from team members responsible for each WBS task
 - Analyst reviews/aggregates
 - Can be time-consuming, variable
 - Parametric Modeling
 - Use parameters/formulas (e.g., cost per line of code, cost per hour) + Project size estimates
 - Software like COCOMO II can assist

Controlling Costs: Pitfalls and Budgeting

- Why Cost Estimates Often Fail
 - Over-Optimism
 - Rushing

Demo: Sample Budget

Controlling Costs: Pitfalls and Budgeting

- Why Cost Estimates Often Fail
 - Over-Optimism
 - Believing everything will go perfectly
 - Underestimating effort/complexity (e.g., lines of code)
 - "Happy path" estimating
 - Rushing

Demo: Sample Budget

Managing Risk: Looking Out for Trouble

• Best Defense: Thorough initial analysis, feasibility studies, understanding motivations, experience!

Need for Speed? Expediting Activities

- Crashing: Speeding up project activities to finish earlier
- Why
 - Potential bonus for early completion
 - Free up resources/team members for other projects sooner
 - Recover from earlier delays

Need for Speed? Expediting Activities

- Crashing: Speeding up project activities to finish earlier
 - Crash Time: Absolute minimum time an activity can take
 - Cost/Week: The additional cost incurred to reduce the activity duration by one week
- Why
 - Potential bonus for early completion
 - Free up resources/team members for other projects sooner
 - Recover from earlier delays

- Rule #1: Only expedite critical-path activities
- Rule #2: Pick the cheapest critical-path activity per time saved
- Rule #3: Never expedite an activity below its minimum (crash) duration

- Rule #1: Only expedite critical-path activities
- Rule #2: Pick the cheapest critical-path activity per time saved
- Rule #3: Never expedite an activity below its minimum (crash) duration

Eligible	Activity		e for E	Cost	Cu.		
Activities	Chosen	(22)	19	19	16		Cost
A, B, D, <mark>G,</mark> H, or I							

- Rule #1: Only expedite critical-path activities
- Rule #2: Pick the cheapest critical-path activity per time saved
- Rule #3: Never expedite an activity below its minimum (crash) duration

Eligible	Activity	Tim	Time for Each Path				Cu.
Activities	Chosen	(22)	19	19	16		Cost
A, B, D, or I							

- Rule #1: Only expedite critical-path activities
- Rule #2: Pick the cheapest of critical-path activity per time saved
- Rule #3: Never expedite an activity below its minimum (crash) duration

Eligible	Activity	Tim	Cost	Cu.			
Activities	Chosen	(22)	19	19	16		Cost
A, B, D, or I A, B, D, or I	В	(21)	18	19	16	\$500	\$500

- Rule #1: Only expedite critical-path activities
- Rule #2: Pick the cheapest critical-path activity per time saved
- Rule #3: Never expedite an activity below its minimum (crash) duration

Eligible	Activity	Tim	e for E	ach Pa	ıth	Cost	Cu.
Activities	Chosen	(22)	19	19	16		Cost
A, B, D, or I	В	(21)	18	19	16	\$500	\$500
A, B, D, or I	В	(20)	17	19	16	500	1,000
A R D or I							

- Rule #1: Only expedite critical-path activities
- Rule #2: Pick the cheapest critical-path activity per time saved
- Rule #3: Never expedite an activity below its minimum (crash) duration

Eligible	Activity	Tim	e for E	ach Pa	ath	Cost	Cu.
Activities	Chosen	(22)	19	19	16		Cost
A, B, D, or I	В	(21)	18	19	16	\$500	\$500
A, B, D, or I	В	(20)	17	19	16	500	1,000
A D or I							

- Rule #1: Only expedite critical-path activities
- Rule #2: Pick the cheapest oritical-path activity per time saved
- Rule #3: Never expedite an activity below its minimum (crash) duration

Eligible	Activity	Tim	e for E	Cost	Cu.		
Activities	Chosen	(22)	19	19	16		Cost
A, B, D, or I	В	(21)	18	19	16	\$500	\$500
A, B, D, or I	В	(20)	17	19	16	500	1,000
A, D, or I	1	(19)	17	18	15	600	1,600
A D or I							

- Rule #1: Only expedite critical-path activities
- Rule #2: Pick the cheapest oritical-path activity per time saved
- Rule #3: Never expedite an activity below its minimum (crash) duration

Eligible	Activity	Tim	e for E	Cost	Cu.		
Activities	Chosen	(22)	19	19	16		Cost
A, B, D, or I	В	(21)	18	19	16	\$500	\$500
A, B, D, or I	В	(20)	17	19	16	500	1,000
A, D, or I	1	(19)	17	18	15	600	1,600

- Rule #1: Only expedite critical-path activities
- Rule #2: Pick the cheapest critical-path activity per time saved
- Rule #3: Never expedite an activity below its minimum (crash) duration

Eligible	Activity		e for E	Cost	Cu.		
Activities	Chosen	(22)	19	19	16		Cost
A, B, D, or I	В	(21)	18	19	16	\$500	\$500
A, B, D, or I	В	(20)	17	19	16	500	1,000
A, D, or I	1	(19)	17	18	15	600	1,600
A or D	Α	(18)	16	(18)	15	800	2,400
A and C, or D	D	(17)	16	17	15	1,000	3,400
A and C, or D	D	(16)	(16)	(16)	15	1,000	4,400
A and C, or D							

- Rule #1: Only expedite critical-path activities
- Rule #2: Pick the cheapest critical-path activity per time saved
- Rule #3: Never expedite an activity below its minimum (crash) duration

Eligible						Cost	Cu.
Activities	Chosen	(22)	19	19	16		Cost
A, B, D, or I	В	(21)	18	19	16	\$500	\$500
A, B, D, or I	В	(20)	17	19	16	500	1,000
A, D, or I	ı	(19)	17	18	15	600	1,600
A or D	Α	(18)	16	(18)	15	800	2,400
A and C, or D	D	(17)	16	17	15	1,000	3,400
A and C, or D A and C	D	(16)	(16)	(16)	15	1,000	4,400

Comprehensive Control: Earned Value Management (EVM)

 Purpose: Integrates project scope (work done), schedule (time), and cost (\$\$\$) into a unified framework to measure performance and predict outcomes

EVM in Action: Website Example

Project Budget: \$18,000

At the End of	Stage	Estimated Cost	Cu. Estimate	Estimated Duration	Stage Completed	Actual Cost of Stage to Date	Actual Cost of Project to Date
Month 1	1	\$6,000	\$6,000	1 month	100%	\$6,000	\$6,000
Month 2	2	3,000	9,000	1 month	100%	3,000	9,000
Month 3	3	3,000	12,000	1 month	100%	3,000	12,000
Month 4	4	3,000	15,000	1 month	50%	5,000	17,000
Month 5	5	3,000	18,000	1 month	0%	Not yet begun	Not yet begun

• EVM at End of Month 4

- \circ BAC = \$18,000
- PV = \$15,000 (Cumulative Estimated Cost)
- \circ AC = \$17,000
- EV =? (Needs to be calculated)

EVM Calculations: Where Do We Stand?

After 4 months,

• Calculate % Work done so far (p): $\frac{100\%+100\%+100\%+50\%}{100\%+100\%+100\%+100\%} = \frac{350}{400} = 0.875$

EVM Forecasting: Where Are We Headed?

• Purpose: Use CPI to predict future costs

EVM Visualization: Key Takeaway

• Analyst's Role: Balance Cost, Time, and Scope based on this information

51/78

It's About People: Managing the Project Team

• Equally Important: Managing the people doing the work

Who's On the Team? Assembling the Right Mix

Core Values: Look for shared values (teamwork, quality, on-time/on-budget delivery)

The Right Skills for the Job: Team Composition

- Essential Roles/Skills
 - Business Knowledge: At least one person who deeply understands the business area/domain (e.g., Marketing expert for e-commerce site)

Making the Team Tick: Communication and Dynamics

• Team Personality: Each team develops a unique interaction style

Unwritten Rules: Understanding Team Norms

• What: Collective expectations, values, and standard ways of behaving within a specific team (Can be explicit or implicit)

Aiming High: Setting Goals and Motivating the Team

- Setting Productivity Goals
 - o Based on team expertise, past performance, project nature
 - Goals should be challenging, but achievable
 - o Team participation in goal-setting increases buy-in

Unique Challenges: Managing E-commerce Projects

- Key Differences
 - Scattered Data
 - Cross-department (Marking, Sales, Inventory, Finance)
 - Increases complexity and dept. politics

Getting It In Writing: The Project Charter

- Purpose
 - A written document clarifying project scope, objectives, and expectations
 - Acts as a contract between the team, users, and management

The Grand Finale (of Analysis): The Systems Proposal

- What: A formal written document detailing
 - systems study
 - findings
 - o alternatives, and
 - recommendations

What Goes Inside? The 10 Proposal Sections

- Standard Structure: Preliminary Materials
 - 1. Cover Letter
 - Friendly intro
 - Study objectives
 - Team members

⁷¹/78

What Goes Inside? The 10 Proposal Sections

- Standard Structure: Study and Analysis
 - 5. Outlines of Systems Study
 - Methods used (interviews, surveys, observation, etc.)
 - Who/what was studied

⁷²/78

What Goes Inside? The 10 Proposal Sections

- Standard Structure: Conclusion and Support
 - 9. Proposal Summary
 - Brief recap mirroring Executive Summary (objectives, recommendation, importance)
 - Positive conclusion

⁷³/₇₈

Getting the Word Out: Delivery and Presentation

- Distribution
 - Carefully select recipients (key decision-makers)
 - Hand-deliver copies if possible (increases visibility)

⁷⁴/78

A Picture is Worth... Supporting Your Words with Figures

- Why?
 - o People absorb information differently; visuals help
 - Demonstrate responsiveness to audience needs
 - Capture and communicate complex data effectively

⁷⁵/78

Organizing Data: Effective Use of Tables

• Purpose: Present statistical or alphabetical data in an organized, structured way

Visualizing Trends and Comparisons: Effective Graphs

• Purpose: Illustrate comparisons (Line, Column, Bar) or composition (Pie, Area)

References I

- D. Cearley and D. Reeves, "Cloud computing innovation key initiative overview," Gartner, Inc., Stamford, CT, Tech. Rep. 2718918, 2011. [Online]. Available: https://www.gartner.com/en/documents/2718918 (cit. on pp. 102–109).
- [2] R. Blair and J. Hewitt, "Market guide for disaster recovery as a service," Gartner, Inc., Stamford, CT, Tech. Rep. Document No. 4364899, 2024. [Online]. Available: https://www.gartner.com/en/documents/4364899 (cit. on pp. 110–118).
- [3] PM Editorial, "Diversity drives better decisions," (2017), [Online]. Available: https://www.peoplemanagement.co.uk/article/1742040/diversity-drives-better-decisions (cit. on pp. 290–292).
- [4] A. Reynolds and D. Lewis, "Teams solve problems faster when they're more cognitively diverse," (2017), [Online]. Available: https://hbr.org/2017/03/teams-solve-problems-faster-when-theyre-more-cognitively-diverse (cit. on pp. 290-292).
- [5] M. Alexander, "How to build more diverse and inclusive project teams," (2021), [Online]. Available: https://www.techrepublic.com/article/how-to-build-more-diverse-and-inclusive-project-teams/(cit. on pp. 290-292).

⁷⁸/₇₈