

CS 372 Lecture #36

MAC addresses Address Resolution Protocol (ARP)

Note: Many of the lecture slides are based on presentations that accompany *Computer Networking: A Top Down Approach,* 6th edition, by Jim Kurose & Keith Ross, Addison-Wesley, 2013.

MAC Addresses

- IP address is a <u>virtual address</u>:
 - network-layer address
 - gets datagram to destination IP subnet
- MAC (Media Access Control) address is a <u>physical address</u>:
 - function: get frame from one interface to another physicallyconnected interface (same network)
 - NOTE: Every communication at the physical layer is sent to a MAC address!
- MAC address allocation administered by IEEE
 - manufacturer buys portion of MAC address space
 - assures uniqueness
 - 48 bit MAC address (for most LANs)
 - burned in NIC ROM by manufacturer
- MAC addresses are portable
 - can move LAN card from one LAN to another
 - not true for IP address

MAC Addresses

Each NIC (adapter) on LAN has unique MAC address

MAC Addresses

Given:

- A knows B's MAC address
- A wants to send a frame to B

- **1. A** encapsulates **B**'s MAC into the frame
- **2.** A sends the frame into the medium
- **3.** All nodes' NICs check the frame
 - Is this for me?
- **4.** Only **B** accepts the frame
 - All other nodes discard the frame

ARP: Address Resolution Protocol

Given:

- A knows B's IP address
- A does not know B's MAC address
- •A wants to send a frame to B

ARP

- Each IP node (host, router) on LAN has ARP table
- ARP table: maps IP, MAC address for <u>some</u> LAN nodes
 - < IP address; MAC address; TTL>
 - remove mapping after TTL (typically 20 min)
- **1.** A looks up **B**'s MAC address in its ARP table
- **2.** A encapsulates **B**'s MAC into the frame
- 58-23-b7-FA-20-B0 **3.** A sends the frame into the medium
 - **4.** Only **B** accepts the frame

ARP: Case 1—Same LAN

Given:

- •A knows B's IP address
- •B's MAC address is not in A's ARP table
- A wants to send a frame to B
- A broadcasts ARP query packet, containing B's IP address
 - broadcast MAC address isFF-FF-FF-FF-FF
 - all machines on LAN receive
 ARP query
- 2. **B** receives ARP packet, replies to **A** with **B**'s MAC address
- A sends frame to B since it now knows its MAC address

- A caches IP-to-MAC address pair in its ARP table until information times out (TTL)
- ARP is plug-and-play
 - nodes create their ARP tables without intervention from network administrator

ARP: Case 2—routing to another LAN

Given:

- •A knows B's IP address
- •B is in a separate LAN, so MAC address is not in A's ARP table
- •A wants to send a frame to B
- A knows that B belongs to a different subnet by checking B's IP address (222.222.222.222)
- A also knows IP address of router R (111.111.111.110)
- 1. If necessary, A uses ARP to get R's MAC address (E6-E9-00-17-BB-4B)
- 2. A creates frame with R's MAC address as destination
 - frame contains A-to-B IP datagram

- **3.** A's NIC sends frame and R's NIC receives it
- **4. R** removes IP datagram from Ethernet frame, sees its destination is **B**
- 5. R uses ARP to get B's MAC address (49-BD-D2-C7-56-2A)
- **6. R** creates frame containing **A**-to-**B** IP datagram and sends it to **B**

Summary Lecture #36

- MAC addresses
 - MAC broadcast
- Address Resolution Protocol (ARP)
- ARP scenarios
 - creating/using ARP internal LAN tables
 - routing to external IP address