Examen

Exercice 01 (4pts): Grammaires & langages

1. Soit la grammaire G = ({a, b, c}, {S, A,B}, S, P); où P contient les règles suivantes :

$$S \rightarrow aS \mid aA ; A \rightarrow bB \mid \epsilon ; B \rightarrow bA$$

- Donner 4 mots qui sont générés par G (justifier)

Exemple d'un mot : 'aabbbb'

 $S \rightarrow aS \rightarrow aaA \rightarrow aabB \rightarrow aabbA \rightarrow aabbbB \rightarrow aabbbbA \rightarrow aabbbb \in L(G)$

- Trouver le langage généré par G (qu'on note L(G)).

$$L(G)=\{w \in \{a, b,\}^*/w=a^na(bb)^m n, m \ge 0\}$$

- 2. Donner une grammaire pour exprimer le langage suivant :
 - L={ $w \in \{a, b, c\}^*/w = a^{2n}ccb^{n+1} \ n \ge 0 \text{ ou } w = b^n a^m \ n > m \ge 0$ }

L={ $w \in \{a, b, c\}^*/w = (aa)^n ccbb^n \ n \ge 0 \text{ ou } w = b^{i+m}a^m \ i>0, m \ge 0$ }

L={ $w \in \{a, b, c\}^*/w = (aa)^n ccbb^n \ n \ge 0 \text{ ou } w = b^i b^m a^m \ i > 0, m \ge 0$ }

L={w∈{a, b, c}*/w=(aa) n ccb b^n n≥0} \cup {w∈{a, b, c}*/w= $b^ib^ma^m$ i>0, m≥0}

Donc la grammaire comme suit :

$$G = ({a, b, c}, {S, A, B, C}, S, P)$$

Ou P={ S
$$\rightarrow$$
 A | B; A \rightarrow aaAb | ccb; B \rightarrow bB | bC; C \rightarrow bCa | ε ;}

Exercice 02 (5pts): Expressions régulières & Automates

1. Pour chacune des expressions régulières qui suivent, dessinez un automate (sans ε-transitions) reconnaissant le langage qu'elle dénote

$$L1=(c*b+cb*a)*(ac+a*b)$$

1 2 34 5 6 7 8 9

	а	b	С
0	6,8	2,9	1,3
1	ı	2	1
2	6,8	2,9	1,3
3	5	4	-
4	5	4	-
5	6,8	9,2	3,1
6	-	-	7
7			
8	8	9	
9			

On peut dessiner l'automate directement à partir de l'expression

2. Donner l'expression régulière du langage reconnu par chacun des automates suivants :

Automate A

1^{er} méthode

 $EXP_A = b*aa*b ((b+aa*b)* + a(a+bb*a)*)$

2^{ième} méthode (on utilise le système d'équation (lemme de Arden)

$$L_0 = bL_0 + aL_1 = b*aL_1$$

 $L_1 = aL_1 + bL_2 = a*bL_2$
 $L_3 = aL_3 + bL_2 + \epsilon = a*(bL_2 + \epsilon) = a*bL_2 + a*$
 $L_2 = bL_2 + aL_3 + \epsilon = bL_2 + a(a*bL_2 + a*) + \epsilon = (b+aa*b)L_2 + aa* + \epsilon = (b+aa*b)* (aa* + \epsilon)$

On a
$$L_1 = aL_1 + bL_2 = a*bL_2$$
 et $L_2 = (b+aa*b)* (aa*+\epsilon)$
 $L_0 = b*aL_1 = b*aa*bL_2 = b*aa*b(b+aa*b)* (aa*+\epsilon)$

Automate B

$$L_3 = bL_1$$

 $L_2 = aL_1 + aL_3 = aL_1 + abL_1 = (a + ab)L_1$
 $L_1 = bL_1 + aL_2 + bL_3 + \varepsilon = bL_1 + a(a + ab)L_1 + b bL_1 + \varepsilon = (b + a(a + ab) + b b)L_1 + \varepsilon = (b + a(a + ab) + bb)*$

Exercice 03 (4,5pts): Déterminisation & Minimisation

1. Déterminisez l'automate suivant et dessinez le graphe de l'automate obtenu

	0	1
р	p,q	р
p,q	P,q,r,s	p,t
P,q,r,s	P,q,r,s	p,t
p,t	p,q	p,s
p,s	p,q	р

2. Minimisez l'automate suivant et dessinez le graphe de l'automate minimal obtenu.

	а	b
1	2	4
2	3	5
3	6	1
4	3	7
5	8	6
6	3	6
7	8	6
8	8	7

E0 : A={1,2,3,4,5,6,7} B={8}

E1: A={1,2,3,4,6} B={8}C={5,7}

E2 : A={1,3,6} B={8}C={5,7} D={2,4}

E2 : A={3,6} B={8}C={5,7} D={2,4} E={1}

E2 : A={3} B={8}C={5,7} D={2,4} E={1} F={6}

3. Rendre l'automate minimal obtenu complet

L'automate minimal obtenu est complet

Exercice 04 (4pts): opérations sur les automates

- 1. Donner un automate qui accepte chacun des langages suivants :
 - a. L1 = { $w \in \{a, b\}^*$, tel que w contient un nombre impaire de b}
 - b. L2 = { $w \in \{a, b\}^*$, tel que la longueur de \boldsymbol{w} est paire
 - c. L3 = { $w \in \{a, b\}^*$, tel que la longueur de w est un multiple de 3}
 - d. L4 le langage complémentaire de L3.
- 2. <u>Expliquez comment construire</u> un automate d'états fini A qui reconnaît chacun des langages suivants
 - a. L5 = { $w \in \{a, b\}^*$, tel que w contient un nombre impaire de \boldsymbol{b} et la longueur de \boldsymbol{w} est paire }
 - b. L6 = { $w \in \{a, b\}^*$ et w commence par a et ne contient pas 'ba' }

Exercice 05 (2,5pts): Grammaires algébriques

1. Trouver une grammaire réduite (dont tous les non terminaux sont utiles) équivalente à la grammaire suivante :

G = ({a,b}, {S,A,B,C}, S, {S
$$\rightarrow$$
 AB | CA; A \rightarrow a; B \rightarrow BC | AB; C \rightarrow aB | b})
On supprime le symbole B (le symbole B **non-productifs**)

La grammaire devient :

$$G = (\{a,b\}, \{S,A,C\}, S, \{S \rightarrow CA; A \rightarrow a; C \rightarrow b\})$$

tous les non terminaux sont utiles, donc la grammaire est réduite

2. Trouver une grammaire propre équivalente à la grammaire suivante :

```
H = (\{a,b\}, \{S,A,B\}, S, \{S \rightarrow ASB \mid \epsilon; A \rightarrow aAS \mid a; B \rightarrow SbS \mid A \mid bb\})
Render la grammaire propre
```

Correction

1- Ajouter la règle : $S' \rightarrow S$ (S' nouvelle axiome)

```
On obtient
  S' \rightarrow S
  S \rightarrow ASB \mid \epsilon; A \rightarrow aAS \mid a; B \rightarrow SbS \mid A \mid bb
2- Elimination de : S \rightarrow \epsilon
```

La grammaire obtenue est :

 $S' \rightarrow S \mid \epsilon$

 $S \rightarrow ASB \mid AB ; A \rightarrow aA \mid aAS \mid a ; B \rightarrow SbS \mid bS \mid Sb \mid b \mid A \mid bb$

3- Elimination les règles unitaires : $B \rightarrow A$

La grammaire devient :

```
S' \rightarrow S \mid \epsilon
S \rightarrow ASB \mid AB;
A \rightarrow aA \mid aAS \mid a;
B \rightarrow SbS \mid bS \mid Sb \mid b \mid aA \mid aAS \mid a \mid bb
```

La grammaire obtenue est une grammaire propre

Bon courage