Investigating the Impact of Local Demographic and Personal Factors on Hypertension Diagnosis: A Data Science Study

Ben Pfeffer

Introduction

- Uncontrolled Hypertension
 - Over 140/90
- Can lead to heart attack, stroke, aneurysm, kidney disease, etc. [1]
- Global
 - 30% of adults have hypertension, ~80% uncontrolled [2,3]
- USA
 - 50% of adults have hypertension, ~80% uncontrolled [4]
- Need increased identification of uncontrolled hypertension
- May be disparity in at-risk populations by granularity
 - Local analysis important

Problem

- Hospital has collected data
 - Patient information
 - Demographics
 - Habits
 - Blood pressure readings
 - HIPAA
- Need
 - Optimize care based on patient demographics
 - Aimed at <u>uncontrolled</u> hypertension
 - Ex. Provide additional screening

Process Diagram

Methodology – Develop Hypotheses

- Develop hypotheses from mass-studies
 - Black/African American = higher risk [5]
 - Lower income = higher risk [6]
 - Higher age = higher risk [7]
 - Male = higher risk [7]
 - Smoking = higher risk [8]
 - Alcohol = higher risk [8]

Methodology – Data Engineering

- Utilized 6 hospital data sets
 - 4 BP Readings March to November 2022
 - Patient Information / Demographic data
 - Questionnaire results / Personal data
- Calculated "Uncontrolled" as over 140 systolic or over 90 diastolic
- Cleaned and merged datasets
- Result:
 - People
 - Personal/demographic info
 - Diagnosis

Methodology – External Data Processing

- IRS Income Tax Statistics 2020 [9]
 - Number of individuals
 - Number of returns
 - Total income
 - Grouped by zip code
 - -> Average income by zip code
- Replaced zip code in hospital data
 - Hypothesis: income affects hypertension diagnosis
 - Easier for model to understand
 - Continuous vs multiple dummy columns

Methodology – Data Merging/Finalization

- Dummies
- 0-1 scale
- Cleaned up final data set for ML Modeling
- ~50,000 patients
- 107 columns
- ~50% of the patients had uncontrolled hypertension

Methodology – Modeling

- Classification
- Models:
 - Logistic Regression *
 - Random Forest *
 - SVC
 - KNN
- Train/Val/Test split: 0.7/0.15/0.15
- Hyperparameter optimization
- Best model -> Random Forest -> Feature importance
 - Top n features in model
 - Best n: 46

Model Metric	Accuracy	Precision	Recall	F1 Score
Random Forest 2	?	Ş	?	Ş
Random Forest	0.7782	0.7537	0.8265	0.7884
KNN	0.7303	0.6816	0.8642	0.7621
SVC	0.7184	0.6848	0.8095	0.7420
Logistic Regression	0.7254	0.7021	0.7829	0.7403

Hyperparameter	Best Model
Max_depth	10
Max_features	log2
Min_samples_split	10
N_estimators	198

Methodology – Insight Extraction

- Most impactful features extracted:
 - Age
 - Income
 - Sex
 - Smoking/Alcohol habits
- Led to accuracy of 0.8228
 - Precision: 0.7837
 - Recall: 0.8956 *
 - F1: 0.8360
- Ability to determine a health factor without any confirmed health indicators

Methodology – Simplified Results

Methodology – Support/Reject Hypotheses

- Black/African American = higher risk *Not supported* X
- Lower income = higher risk − *Supported*
- Higher age = higher risk − *Supported*
- Male = higher risk − *Supported*
- Smoking = higher risk − *Supported*
- Alcohol = higher risk − *Supported*

Ranked by Significance

Rank	Factor
1	Age
2	Income
3	Alcohol
4	Sex
5	Smoking
6	Race

Conclusion

- Hypotheses supported:
 - Age is biggest factor
 - Income is an important factor
 - Being male leads to higher prevalence of UHT
 - Smoking history leads to increased risk for UHT
 - Alcohol history leads to increased risk for UHT
- Hypotheses not supported:
 - Race being Black/African American leads to highest rate of UHT
- Hospital can modify care based on results

Future work

- Implement recommendation of additional screening
- Upon implementation, watch out for:
 - Unmonitored, inequivalent care can lead to severe biases
 - Need to be constantly monitored and updated
- Optimize care for other health factors
 - Diabetes
- Determine factors that impact the return to normal blood pressure
 - Will be continued in the coming weeks
- More data on the way

References

- [1] "How high blood pressure can affect the body," *Mayo Clinic*, 14-Jan-2022. [Online]. Available: https://www.mayoclinic.org/diseases-conditions/high-blood-pressure/in-depth/high-blood-pressure/art-20045868.
- [2] "World Hypertension Day 2020," *PAHO/WHO | Pan American Health Organization*. [Online]. Available: https://www.paho.org/en/campaigns/world-hypertension-day-2020.
- [3] "Hypertension," World Health Organization. [Online]. Available: https://www.who.int/news-room/fact-sheets/detail/hypertension.
- [4] Cdc, "Hypertension prevalence in the U.S.: Million hearts®," *Centers for Disease Control and Prevention*, 22-Mar-2021. [Online]. Available: https://millionhearts.hhs.gov/data-reports/hypertension-prevalence.html.
- [5] O. M. O. C.-M. Y. F. KC; "Race, ethnicity, hypertension, and heart disease: Jacc focus seminar 1/9," *Journal of the American College of Cardiology*. [Online]. Available: https://pubmed.ncbi.nlm.nih.gov/34886968/.
- [6] A. Laxmaiah, I. I. Meshram, N. Arlappa, N. Balakrishna, K. M. Rao, C. G. Reddy, M. Ravindranath, S. Kumar, H. Kumar, and G. N. V. Brahmam, "Socio-Economic & Demographic Determinants of Hypertension & knowledge, practices & risk behaviour of tribals in India," *The Indian journal of medical research*, May-2015. [Online]. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4510771/.
- [7] M. Khajedaluee, T. Hassannia, A. Rezaee, M. Ziadi, and M. Dadgarmoghaddam, "The prevalence of hypertension and its relationship with demographic factors, biochemical, and anthropometric indicators: A population-based study," *ARYA atherosclerosis*, Nov-2016. [Online]. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5455324/.
- [8] Primatesta P; Falaschetti E; Gupta S; Marmot MG; Poulter NR; "Association between smoking and blood pressure: Evidence from the Health Survey for England," *Hypertension* (Dallas, Tex.: 1979). [Online]. Available: https://pubmed.ncbi.nlm.nih.gov/11230269/.
- [9] "Soi tax stats individual income tax statistics 2020 ZIP code data (SOI)," *Internal Revenue Service*. [Online]. Available: https://www.irs.gov/statistics/soi-tax-stats-individual-income-tax-statistics-2020-zip-code-data-soi.