WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

US

(51) International Patent Classification 6: C12N 15/10, 15/90, C07K 14/395 **A1**

(11) International Publication Number:

WO 97/37011

(43) International Publication Date:

9 October 1997 (09.10.97)

(21) International Application Number:

PCT/GB97/00875

(22) International Filing Date:

27 March 1997 (27.03.97)

Published

With international search report.

(81) Designated States: JP, US, European patent (AT, BE, CH, DE,

DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

(30) Priority Data:

60/014,490

1 April 1996 (01.04.96)

(71) Applicant (for all designated States except US): SETRATECH S.A.R.L. [FR/FR]; 31, rue de la Liberté, F-75019 Paris (FR).

(72) Inventors: and

- (75) Inventors/Applicants (for US only): BORTS, Rhona, Harriet [US/GB]; 4 Eynsham Road, Sutton nr. Witney, Oxfordshire OX8 1RZ (GB). LOUIS, Edward, John [US/GB]; 4 Eynsham Road, Sutton nr. Witney, Oxfordshire OX8 1RZ (GB).
- (74) Agent: PENNANT, Pyers; Stevens Hewlett & Perkins, 1 Serjeants' Inn, Fleet Street, London EC4Y ILL (GB).

(54) Title: MEIOTIC RECOMBINATION IN VIVO OF PARTIALLY HOMOLOGOUS DNA SEQUENCES

(57) Abstract

Process for the meiotic recombination in vivo of partially homologous DNA sequences having up to 30 % of base mismatches, wherein eukaryotic cells containing the sequences and in which an enzymatic mismatch repair system is defective, are maintained under conditions to effect meiosis. Preferably the enzymatic mismatch repair systems of the eukaryotic cells are defective by virtue of at least one mutS protein and/or at least one mutL protein being defective or missing. The eukaryotic cells may be unicellular organisms such as yeasts.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Larvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TŦ	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	\\Iceland	MW	Malawi	US	United States of America
CA	Canada	ΙT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
Cl	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	ΚZ	Kazakatan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

MEIOTIC RECOMINATION IN VIVO OF PARTIALLY HOMOLOGOUS DNA SEQUENCES

Introduction

10

15

20

25

Genetic recombination is dependent on the formation of a near perfectly paired heteroduplex joint molecule containing complementary strands from two homologous DNA duplexes. Reduced homology between substrate molecules decreases the efficiency of recombination. A striking example of this can be seen during interspecific crosses between Escherichia coli and Salmonella typhymurium. The genomes of these two bacterial species are diverged by approximately 16%. At this level of heterology the frequency of recombination during conjugational crosses is reduced by up to 5 orders of magnitude. The barrier to recombination is largely dependent on the activity of the mismatch repair system. The "disrupted species barrier" and "chromosomal instability" phenotypes, seen in bacterial mismatch repair mutants, are thought to result from a failure to prevent interactions between homeologous (closely related but non-identical) DNA sequences. This process has been termed antirecombination, although its molecular basis remains unclear. The existence of this activity has led to the proposal that the mismatch repair system is involved in controlling the fidelity of genetic exchanges. By only permitting crossovers between truly homologous sequences, such a process would suppress ectopic interactions between dispersed homologous sequences and thereby avoid potentially lethal chromosome rearrangements. Hence, the recognition of mismatches in duplex DNA may play a role in maintaining the structural integrity of chromosomes.

Many of the elements of the long-patch mismatch repair

system that are believed to be involved in antirecombination have been

10

15

20

25

30

conserved throughout evolution. Multiple homologues to the bacterial genes *MutS* and *MutL* have been identified in organisms ranging from yeast to man. To date six *MutS* and three *MutL* homologues have been identified in S. cerevisiae. *PMS1* and *MSH2* are yeast homologues of the bacterial mismatch repair genes *MutL* and *MutS* respectively. A dramatic increase in the frequency of the post-meiotic segregation of genetic markers is observed in *pms1* and *msh2* mutants. This is indicative of unrepaired heteroduplex, suggesting a role for these genes in the process of gene conversion. *pms1* and *msh2* mutants also have a mutator phenotype similar to that of bacterial mismatch repair mutants. This reflects a deficiency in repair of DNA synthesis errors and spontaneous DNA lesions. Both gene products have also been shown to form part of a ternary complex that assembles *in vitro* at mismatched base-pairs in duplex DNA.

Antirecombination has profound implications for the process of meiosis. During meiotic prophase the formation of a physical connection between homologues, in the form of a crossover, allows correct orientation on the meiosis I spindle. This ensures the faithful disjunction of chromosomes to produce viable, haploid gametes. Mutations that reduce or abolish meiotic crossing over cause low spore viability, presumably due to extensive chromosomal nondisjunction. In yeast, as in bacteria, reduced chromosomal identity (~10-30% DNA sequence divergence) acts as a barrier to recombination and during meiosis, dramatically reduces exchange between homologues. The repression of recombination between homologous chromosomes during meiosis may lead to the reproductive isolation of populations in the form of sterility.

European patent specification 449 923 of Setratech is directed to a process of intergeneric recombination *in vivo* of partially homologous DNA sequences having up to 30% of base mismatches, characterized in that the sequences are placed together in cells or an

10

15

20

25

organism of which the enzymatic mismatch repair system is defective or has been inactivated transitorily, particularly by saturation, for a time to obtain recombination between the DNA sequences. Although the specification envisages the possibility of performing such recombinations in bacteria, yeasts, plant or animal cells, in fact the experimental data provided only demonstrate such recombinations in bacteria of different genera, where the recombinations are achieved by a process of mitotic recombination.

In eukaryotes, the enzymatic mismatch repair systems are more complex than in prokaryotes. Also, the enzymatic mismatch repair systems involved in meiosis are to some extent different from those involved in mitosis. It was therefore not predictable that the technique generally described in the aforesaid European patent specification could be successfully applied to eukaryotic cells undergoing meiosis.

The present invention provides process for the meiotic recombination *in vivo* of partially homologous DNA sequences having up to 30% of base mismatches, wherein eukaryotic cells containing the sequences and in which an enzymatic mismatch repair system is defective, are maintained under conditions to effect meiosis. Preferably hybrid genes and their coded proteins are formed by the process.

Preferably the process is performed for making hybrid eukaryotic species by: providing a set of first eukaryote cells containing a first DNA sequence and in which an enzymatic mismatch repair system is defective; providing a set of second eukaryotic cells containing a second DNA sequence that is partially homologous by having up to 30% base mismatches with the first DNA sequence and in which an enzymatic mismatch repair system is defective; mixing the two sets of cells to form diploids, maintaining the mixture under conditions to effect meiosis, and recovering cells of a hybrid eukaryotic species.

Although the method is applicable in principle to eukaryotes

generally, it is expected to be of particular interest in relation to plants and unicellular organisms, such as protozoa, fungi, and particularly yeasts.

The invention provides a quick and convenient way of making hybrid eukaryotic species. By suitable marking and selection, it should be possible to make hybrids having improved characteristics, e.g. the desired characteristics of both parents. For example, current brewing yeasts are difficult to work with, and the process of the present invention may result in the production of hybrid strains that are easier to work with.

S. cerevisiae and its sibling species Saccharomyces paradoxus has been utilized. S. paradoxus (also described as Saccharomyces douglasii) is the closest relative of S. cerevisiae isolated to date. Electrophoretic karyotyping and hybridization analysis reveal that the genomes of the two species are very similar in terms of chromosome number, size and the location of genes. The weak hybridization of many cloned S. cerevisiae genes with S. paradoxus chromosomes demonstrates that DNA divergence exists between the two species. From the limited DNA sequence data available, divergence has been estimated to be ~11% and ~20% in coding and non-coding regions respectively. A hybrid of S. cerevisiae and S. paradoxus therefore comprises genome-wide homology but appears to lack major structural differences in karyotype.

The following experimental report examines meiotic recombination and chromosome disjunction in this hybrid and the effects of the mismatch repair genes *PMS1* and *MSH2* on these processes.

Results

Experimental Rationale

The model depicted in Figure 1 predicts that meiosis in nuclei containing divergent parental genomes will be associated with both low frequencies of reciprocal exchange and high frequencies of chromosome

30

20

10

15

10

13

20

25

30

nondisjunction. This will lead to low viability of the meiotic products (reduced fertility). In the absence of mismatch recognition, crossovers will be permitted between homologous chromosomes, disjunction will be improved and a greater number of viable, euploid gametes will be produced.

The S. cerevisiae/S. paradoxus Hybrid

A wild-type, homothallic isolate of *S. paradoxus*, NI7, has been engineered into a genetically tractable organism (see Materials and Methods). Hybrids of N17 and the *S. cerevisiae* strain Y55 produce only 1% viable spores (Table I and II. strain NHD47). Many of these are have abnormal cell and colony morphologies and are slow growing, often producing only a microcolony. This sterility has been noted in similar hybrids and forms the basis of the biological species definition of yeast taxonomy.

The low spore viability of the hybrid is expected to be associated with high rates of chromosome nondisjunction. To test this prediction meiotic chromosome nondisjunction was monitored by physical analysis of the karyotypes of random spores. Separation of the yeast chromosomes by Clamped Homogenous Electric Field (CHEF) gel electrophoresis allows the assignment of disomy for the ten smallest *Saccharomyces* chromosomes. In the hybrid the frequency of disomy is high for all the chromosomes analyzed (Table III) with the exception of chromosome VI, which is always monosomic (see Discussion).

Nondisjunction rates are up to 500-fold higher than that of a *S. cerevisiae* intraspecic diploid. The meiosis I nondisjunction rates of chromosomes IV and XI have been measured by a genetic analysis of random spores in a *S. cerevisiae* Y55 strain at 1.4 x10-4 and 5.0 x 10-4 per meiosis, respectively. Chromosome II exhibited the highest rate of nondisjunction in the wild-type hybrid at 2.7 x 10⁻¹ per meiosis. The distribution of disomes

10

15

20

25

30

closely fits that expected from an average nondisjunction rate of 12.2%, for the nine chromosomes examined (see Data Analysis). If this calculation is extended to all sixteen *Saccharomyces* chromosomes we expect 12.5% of spores to have no disomes, 27.7% to have one, 22.9% two and 36.9% to have three or more disomes.

The primary cause of chromosome nondisjunction is proposed to be low frequencies of genetic exchange. To ascertain recombination frequencies random spores were monitored for recombination in four genetic intervals: HIS4-LEU2 and LEU2-MAT on chromosome III, TRPI-ADE8 on IV and CYH2-MET13 on VII (Table IV). The frequency of recombination is 11.5 to 79-fold reduced relative to the intraspecific control *S. cerevisiae* diploids (NHD50, 53 and 94). The TRPI to ADE8 interval demonstrates a profound reduction in map distance. This large genetic interval is 270 cM in *S. cerevisiae*. In the hybrid the markers are tightly linked, with a map distance of approximately 2 cM.

Mismatch-Repair Deficient Hybrids

To examine the effect of the mismatch repair system on meiosis in *S. cerevisiae /S. paradoxus* hybrids, we disrupted the *PMS1* and *MSH2* genes in haploids of both species to produce the hybrid diploids NHD45 and NHD94.

Spore viability is significantly improved in the *pms1* and *msh2* hybrids by 6.1 and 8.7-fold respectively (Table II). Moreover, the accumulation of haplo-lethal mutations due to the mutator phenotypes of *pms1* or *msh2* produce ~ 21% spore death in intraspecific diploids (Table II, strains Y55-518, Y55-512, NHPD1 and NHPD2). Therefore, correcting for the death induced by mutation, the viability of the hybrids can be estimated to be 7.4 and 11.5-fold greater than that of the wild-type hybrid. The difference between the viability of the *pms1* and *msh2* hybrids is also significant. Additionally, it was noted that viable spores from *msh2* hybrids

25

30

are less abnormal in colony morphology and are faster growing, forming fewer microcolonies. This may be a direct phenotypic manifestation of lower levels of aneuploidy.

Reduced Aneuploidy in Mismatch Repair Mutants

The improvement in spore viability in the mismatch repair deficient hybrids is concomitant with significant reductions in disomy. In both the mutant hybrids there is an improvement in the disjunction of all the chromosomes analyzed (Table III). In the *pms1* hybrid the total frequency of disomes is reduced 1.8-fold over the wild type hybrid. The improvement in disjunction is even greater in the *msh2* hybrid, with a further 1.8 fold reduction in total disomes. This indicates a significant disparity between the *pms1* and *msh2* mutants with respect to chromosome disjunction. In addition, the distribution of disomes between the three hybrid diploids is significantly different. In the wild-type hybrid only 32% of spores are not disomic for any of the nine chromosomes analyzed and nearly 12% contain three or more disomes. By comparison, 70% of the spores from the *msh2* hybrid have zero disomes and no spores contain more than two disomes.

20 Recombination is Increased in pms1 and msh2 Hybrids

Genetic analysis of random spores from the *pms1* mutant hybrid reveals a 2.3 to 10-fold increase in recombinants for the four intervals monitored. As might be expected from the disjunction data, the effect of the *msh2* disruption is greater, producing a 6.0 to 16.5-fold increase in recombinant frequency. Again this reflects a significant difference between the two mutant hybrids. No change in recombinant frequency is observed in the *pms1* and *msh2*, intraspecifc *S. cerevisiae* diploids (NHD53 and NHD95), demonstrating that the observed effects are specific to the hybrids. The improved spore viability of the *msh2* hybrid permitted limited "tetrad analysis" to be performed. Out of 53 tetrads with one or more viable

15

20

25

30

spores, 3.9% have a recombination event in the interval *HIS4-LEU2*, 19.6% between *LEU2-MAT*, 41.2% in *TRPI-ADE8* and 3.8% between *CYH2-MET13*. These frequencies are not statistically different to those obtained from the analysis of random spores. In addition, *bona fide* reciprocal events in three of the four intervals analyzed (*LEU2-MAT*, *TRPI-ADE8* and *CYH2-MET13*) were represented in the tetrads with two or more viable spores.

Meiotic crossing over is reduced between homeologous chromosomes.

Meiotic recombination in the partial hybrid can be monitored in four genetic intervals, covering approximately 250 kb of the 320-kb chromosome III. The frequency of exchange between the divergent chromosomes was determined by tetrad analysis. Recombination data were calculated from tetrads with four viable spores and from asci which yielded only three viable spores. For this latter class of tetrad, it is possible to predict the genotype of the dead spore from the segregation pattern of genetic markers observed in the remaining viable spores. Data from these two classes of tetrad are presented in Table V, and map distances are shown in Table VI. Recombination data for homologous mismatch repairdeficient strains were not determined, because previous control experiments have demonstrated that pms1 and msh2 mutants do not affect the rates of intergenic, meiotic recombination in a perfectly homologous diploid. Crossing over in the partial hybrid is suppressed in each of the four genetic intervals monitored. The HML-to-HIS4 map distance is contracted 60-fold when compared with that of the control Y55 homozygous diploids. A 47-fold reduction in exchange is observed in the MAT-THR4 interval. Only one event is observed in the HIS4-LEU2 region. in the 440 tetrads analysed. The smallest reduction is in the LEU2-MAT interval, which exhibits a nine-fold reduction in exchange. The average

reduction over the entire interval from *HML* to *THR4* is 25-fold. The overall reduction is even more extreme, 40-fold, if we consider only the four-viable-spore tetrad class (Table V).

Mismatch repair mutant partial hybrids are predicted to show elevated frequencies of recombination. A partial-hybrid diploid, homozygous for a deletion of the pms1 gene, was constructed and tetrads were analysed (Tables V and VI). Reciprocal exchange is increased in three of the four intervals monitored; over the combined HML-to-THR4 region, there is a 2.5-fold increase over that in the wild-type partial hybrid. However, no stimulation of recombination is observed in the MAT-THR4 region. Overall, the HML-to-THR4 map distance remains more than 10fold reduced relative to the homologous controls. An msh2 partial hybrid was also constructed (Tables V and VI). Recombination in this strain is affected to a greater extent than in the pmsl diploid. The map distance is expanded 5.5-fold in the HML-THR4 interval relative to that in the wild-type partial hybrid. This represents a 4.5-fold reduction in recombination relative to the homologous controls. The frequency of exchange observed in the msh2 mutant is significantly greater than in the pmsl partial hybrid. Genetic exchange in a pms1 msh2 double mutant (Tables V and VI) increases significantly compared with that in the pms1 and msh2 partial hybrids (P < 0.001 and P < 0.01, respectively) over the whole HML-THR4 interval. The map distance increases by 7-fold in the double mutant relative to the wild-type partial hybrid and is only 3.5-fold reduced from the homologous control. The increase in map distance in the double mutant is the sum of the increases in the single mutants. The map distance of HML-THR4 is 34.7 centimorgans (cM) in the double mutant compared with 11.8 and 26.6 cM in the pms1 and msh2 single mutants respectively. These properties of the double mutant, compared to the single mutants, are completely unexpected.

5

10

15

20

Discussion

WO 97/37011

5

10

15

20

25

30

The Meiotic Behavior of an Interspecific Yeast Hybrid Satisfies the Predictions of the Antirecombination Model

The frequency of meiotic recombinants are reduced to between 1.3% and 8.7% of intraspecies frequencies over four genetic intervals that vary from 11 to 270 cM. The reduction is greatest over the largest region, TRP1 to ADE8. The map distance is reduced ~136-fold. predicting that a crossover in this interval will occur in less than 4% of meioses. The low recombination rates confer a several hundred-fold increase in the frequency of nondisjunction. However, we would have expected such low frequencies of recombination to be associated with an greater nondisjunction rate. For example, a 20-fold reduction in map distance for a 200 cM chromosome will result in a frequency of homologue pairs without reciprocal exchange (E_a) of 82% (see Data Analysis). If E_a homologues then segregate randomly at meiosis I, 41 % will nondisjoin. Such a high frequency of disomy is not seen for any of the chromosomes analyzed, although greater than 20-fold reductions in recombination do occur. There are a number of explanations which could account for this observation. Firstly, the viable random spores may be underrepresented for an euploidy because particular combinations of disomes are either lethal or produce slow growing colonies. In this study chromosome VI was never found to be disomic in over three hundred CHEF karyotypes. This could be because VI disomy is lethal. While this is not the case for intraspecific S. cerevisiae cells, in which VI disomy is tolerated, it is possible the S. cerevisiae and S. paradoxus chromosomes could be incompatible. Alternatively, it is possible that chromosome VI always disjoins correctly. The existence of a distributive pairing mechanism may also account for lower than expected levels of aneuploidy. Distributive pairing improves the segregation of E_o and heterologous chromosomes. For example, a pair of

DAISDOCID: JUO 079701141

15

20

25

30

heterologous yeast artificial chromosomes (YACs) do not recombine at detectable frequencies but only missegregate in 25% of meioses, not the expected 50%. Finally, the divergence between the two yeast species may be mosaic in nature. The degree of identity along the chromosomes and between different chromosomes may vary widely. Regions of high homology, that frequently recombine to ensure disjunction, could be present.

The Mismatch Repair Proteins PMS1 and MSH2 Reduce Meiotic Homologous Recombination

The pms1 mutation restores meiotic recombination in the hybrid to between 9% and 27% of intraspecies frequencies. In msh2 hybrids the frequency of recombinants is 20% to 69% of the homologous controls. The increase in TRP1-ADE8 map distance in the msh2 hybrid predicts a crossover will occur in nearly 50% of meioses. However, this is still a low frequency when compared to the intraspecies S. cerevisiae interval which has approximately 5 crossovers per meiosis. Recombinants are observed in spores from tetrad dissection at frequencies equivalent to those from random spore analysis. It is important to note that both products of reciprocal exchange events are recovered in the tetrads with two or more viable spores from this analysis. This indicates that random spore recombinants represent true crossover products. The pms1 and msh2 Y55 intraspecific, control diploids have no increase in the frequency of meiotic recombination. These controls rule out the possibility that the increase in recombinants in the mutant hybrids is due to a general hyperrecombination phenotype or to marker reversion. We conclude that the mismatch repair system actively inhibits meiotic exchange between highly divergent chromosomes.

The observation that recombination is never fully restored in mismatch repair deficient hybrids could be due to several factors. Other

WO 97/37011 PCT/GB97/00875

- 12 -

mismatch repair proteins, that inhibit homologous recombination, may still be active in these mutants. Also, the degree of initiation of meiotic recombination may be reduced between homologous chromosomes. This "trans effect" of heterozygosity has been observed at two loci in S. cerevisiae. Also some regions of the chromosomes may be so diverged that homology is no longer recognized at the strand exchange stage of recombination (see also below).

To determine if *PMS1* and *MSH2* are operating in the same or different pathways during homeologous exchanges, a *pms1 msh2* double-mutant strain was constructed. Because Pms1p and Msh2p are proposed to act in concert, we would have predicted that a double mutant would be no more severe than either mutant alone. Analysis of post-meiotic segregation frequencies and rates of mitotic mutation support this proposal. However, with respect to meiotic homeologous recombination, the phenotype of the double mutant is more severe. The total increase in homeologous recombination in the double mutant significantly exceeds the rates of exchange observed in either the *pms1* or *msh2* strain (P < 0.001 and P < 0.01, respectively). In fact, the rates of exchange in the double mutant are additive

20

25

30

10

15

Crossovers Ensure Disjunction

The correlation between greater crossing over and decreased aneuploidy indicates that many of the crossovers restored in the mutant hybrids can ensure disjunction, that is, can form functional chiasmata (a cytological manifestation of crossing over). This relationship between crossover frequency and chromosome disjunction is not linear. From a comparison with *S. cerevisiae* recombination mutants we propose that the deficiency of recombination is the major reason for nondisjunction in the hybrid. For example, the *med1* mutation, an allele of the *DMCI* gene, has a 2-fold decrease in meiotic crossovers, 4.3% chromosome III and 6.6%

10

15

20

25

30

chromosome VIII disomes, and 20% spore viability. This is similar to the *msh2* hybrid which has approximately a 3-fold decrease in exchange, 6% chromosome III and 3% chromosome VIII disomes, and 10% spore viability.

It must also be considered that the reduced fidelity of recombination in mismatch repair deficient hybrids may increase the frequency of crossovers between related, ectopic loci. Ectopic crossovers are known to interfere with homologue disjunction and are likely to produce lethal, unbalanced translocations. One such translocation, giving rise to a unique sized chromosomal species has been observed in a segregant from the *msh2* hybrid (not shown).

Spore Viability is Improved in pms1 and msh2 Hybrids

The increased spore viability appears to be a direct consequence of improved chromosome disjunction which in turn is the result of increased frequencies of meiotic recombination. The spore viability of the hybrids are lower than expected from the patterns of disomy observed. The average frequency of disomes in random spores from the msh2 hybrid is 3.7% per chromosome. The observed frequency of 70% spores with no disomes, for the nine chromosomes examined, closely fits the expected frequency. If this rate of disomy is assumed for all sixteen Saccharomyces chromosomes, the expected number of spores with no disomes is 55%. Therefore the minimum expected spore viability for the msh2 hybrid is 55%. The fact that spore viability is not restored to this level indicates that other factors probably contribute to the meiotic sterility of the S. cerevisiae/S. paradoxus hybrid. The observation that some S. paradoxus chromosomes are haplo-insufficient in an otherwise S. cerevisiae genetic background, suggests that chromosomal rearrangements or incompatibilities, that could contribute significantly to spore inviability, may be present between the two species.

In summary, an active mismatch repair system reduces meiotic exchange between divergent chromosomes, increases their rate of nondisjunction and reduces spore viability.

5 Processing of Mismatched Recombination Intermediates

10

15

20

25

30

PMSDOCID- -MO 077701141-

How the mismatch repair system processes mismatched recombination intermediates at the molecular level is not clear. Several models have been proposed. The "killer mechanism" causes the destruction of intermediates which could potentially lead to chromosomal loss. Mismatch repair-induced recombination may lead to chromosomal rearrangement or loss. Lastly, antirecombination and the similar "heteroduplex rejection" models propose that intermediates are aborted via disassembly, or resolution without exchange. From the data presented here none of these possibilities can be excluded. However, the low frequencies of meiotic exchange and high levels of aneuploidy are most consistent with an antirecombination mechanism.

Several observations, from a variety of experimental approaches, suggest that recombination intermediates are disrupted at an early stage, prior to the formation of a stable heteroduplex junction. Firstly, individual components of the bacterial mismatch repair system can block *in vitro* homologous strand exchange catalyzed by the *E. coli* RecA protein. Also recombination intermediates that have been detected during meiotic prophase I, in *S. cerevisiae*, were not observed to form between homologous chromosomes. Finally, F1 hybrids between species of *Allium* that lack gross chromosomal rearrangements have a substantial reduction in the frequency of chiasma and an increased number of univalents at pachytene.

Mutations in the mismatch repair genes MSH2 and MSH3 have been shown to increase the frequency of mitotic homologous recombination, in *S. cerevisiae*, between substrates with 73% identity.

15

20

25

30

Mutation of *PMS1* had no significant effect on recombination, an observation made by other workers utilizing mitotic recombination assays with similarly diverged substrate DNA (~80% identity). However in a recent mitotic study, a 10-fold effect of *pms1* was observed with 92% identical substrates. In the data presented here, *pms1* produces up to a 10-fold enrichment in meiotic recombinants. The effect of *msh2 is* significantly greater, not only in terms of recombination, but also for disomy and spore viability. This observation suggests that the method of processing recombination intermediates depends upon the degree of divergence between the participating molecules. At relatively high levels of divergence (10-30%) *MSH2* appears to have a greater role than *PMS1* in preventing homologous recombination.

From the known biochemical properties of the *E. coli* MutS and *S cerevisiae* MSH2 proteins it is assumed that DNA divergence will be recognized when mismatches form in heteroduplex DNA. A number of features of meiotic homologous recombination follow from this assumption. The fact that reasonable frequencies of recombination are observed in *pms1* and *msh2* hybrids suggests that the induction of meiotic recombination is still high. Also, consistent with the *in vitro* properties of *E. coli* RecA protein, high densities of mismatches are not normally inhibitory to strand exchange *per se* in yeast. However, very high divergence (greater than 30% mismatches) may act as a structural barrier to strand exchange.

Materials and Methods

Strains

All *S. cerevisiae* and *S. paradoxus* strains used in this study are isogenic derivatives of Y55 and N17 respectively. Genotypes are described in Table I. The *ho-ochre* mutation was isolated by UV-mutagenesis but was found to have a slightly leaky phenotype.

10

15

Subsequently, heterothallic strains were obtained by creating a 100 bp PstI deletion of the coding sequence of the HO gene. The \$\Delta\$ pms1 mutation is a 2.6 kb deletion of the PMS1 coding sequence. Both ho \$\Delta\$ Pst and \$\Delta\$ pms1 were cloned into a URA3 selectable, integrative vector and introduced via two-step gene replacement. The pms1 \$\Delta\$::URA3 mutation is a URA3 replacement of 2.6 kb of the PMS1 coding sequence. msh2 :: LEU2 is an insertion of LEU2 at a Sna BI site of the wild-type gene in plasmid plI-2. Both were introduced by one-step gene transplacement. his4-RI, trpI-bsu36 and ura3-nco are restriction site fill-in mutations. leu2 \$\Delta\$ is a deletion of most of the LEU2 coding region. All were introduced by two-step gene replacement. Other auxotrophic markers were spontaneous or UV-induced. All transformations were verified by Southern blot analysis using the digoxigenin, nonradioactive system as recommended by the manufacture (Boehringer Mannheim).

A pms1 msh2 double mutant was created by two-step gene replacement with the BstXI fragment of pWK4 Δ pms1 followed by one-step gene transplacement of the *SpeI* fragment of pll-2-7.

The resulting strain had this genotype.

20 MATa HML::ADE1 his4-r leu2-r thr4-a^b KAR1

MATα HML HIS4 LEU2 THR4^c kar1-Δ13

ade1-1 can1-1 ura3-n pmslΔ msh2::URA3 CYH2 lys2-d

ade1-1 CAN1 ura3-n pmslΔ msh2::URA3 cyh2-1 LYS2

25 Genetic Procedures

Yeast manipulations and media were as described in the literature. Strains were grown on YPD and synthetic complete media lacking one or more amino acids, at 30°C. Sporulation was performed at room temperature on KAc plates: 2% potassium acetate, 0.22% yeast extract, 0.05% glucose, 2.5% agar 0.09% complete amino-acid mixture.

30

Dissected tetrads were grown for 3-7 days at 30°C. Germination was scored microscopically after 3 days. Only spores that formed microcolonies were scored as being viable. Random spores were prepared and grown on synthetic complete media lacking arginine, containing cycloheximide (10 mg/L) and canavanine (40 mg/L) for 3-6 days at 30°C. One and two-step gene replacement was performed. Yeast transformation was carried out using a modification of the lithium acetate method.

Chromosome transfer by karl

Strains that were partially hybrid for chromosome III were created by *karl*-mediated single-chromosome transfer from N17 into Y55-2395 by a modification of previously described methods. Chromosome transfer events were selected on synthetic medium lacking leucine and supplemented with cycloheximide (10 mg/litre). Strains disomic for chromosome III, which arise from the chromosome transfer event, were confirmed physically by the appearance of a band of double intensity by CHEF gel analysis and genetically by a nonmating sporulation-deficient phenotype.

20

25

10

15

Selection for loss of the resident Y55 chromosome III

S. cerevisiae strains monosomic for the N17 chromosome III were constructed by transplacing the EcoRI fragment of pGEM7.10 Δ CXURA3 (a URA3 disruption of the MSH3 open reading frame) into the disomic strains obtained from chromosome transfer.

Transplacement occurs preferentially into the Y55 copy of the MSH3 gene because of reduced homology with the S. paradoxus chromosome.

Subsequently, 5-fluoroorotic acid selection for ura3 strains was used to obtain haploids which had lost the resident Y55 chromosome. The

10

15

resulting monosomic strains are α maters with the *S. paradoxus* III genotype.

Karyotyping of Segregants

Random spore segregants were karyotyped. Disomy was assigned via band intensity or the presence of two bands for co-migrating and polymorphic chromosomes respectively.

Data Analysis

Data sets were analyzed using the standard normal, nonparametric sign and G-tests. The G-test is an equivalent to the X^2 contingency test. Values of P<0.05 were considered significant. Expected distributions of disomes were calculated using the average disomy frequencies in a binomial expansion involving 9 or 16 chromosomes. E_o values were calculated assuming recombination rates in random spores are equivalent to map distance and a poisson distribution of the number of crossovers per chromosome.

10

15

Figure Leg nds

Figure 1. A model of the biological consequences of antirecombination during meiosis

- A. Homologous chromosomes recombine and undergo crossing over. The homologues become physically connected by a chiasmata and consequently orientate correctly on the meiosis I spindle. Correct disjunction in the first division is followed by an equational division to produce four euploid spores. Spores b. and c. contain recombinant chromosomes.
- B. The mismatch repair proteins will prevent a crossover between homologous chromosomes. Apposition of the centromeres is not ensured and the resultant univalents segregate randomly with respect to each other at meiosis I. If both univalents attach to the same spindle nondisjunction will result. After meiosis n two disomic and two nullosomic spores will be produced. None of the chromosomes will be recombinant. The nullosomic cells tack essential genetic information and will be dead. The disomic cells contain unbalanced genomes and may have reduced fitness.

Strain	Genotype	Reference
Y55	S.c. HÔ wild type	(McCusker, 1988)
71N	S.p. HO wild type	(Naumov, 1990)
Y55-518	YSS-S18 <u>S.c., hodPst MAT a. arg4-1 HIS6_leu2-1 trp5-1 ura3-nca doms1</u> S.c. hodPst MATa_arg4-1 his6-1 leu2-1 TRP5_ura3-1_dpms1	This study
Y55-512	YSS-512 <u>S.c. ho-ochre MATα arg4-1 HIS6 leu2-1 trp5-1 ura3-1 msh2::LEU2</u> S.c. ho-ochre MATα arg4-1 his6-1 leu2-1 TRP5 ura3-1 msh2::LEU2	This study
NHPD1	S.p. hoΔPst MATa CANL cyh2-l lys2-l LYS5 wra3-l pmslΔ::URA3 S.p. hoΔPst MATα canl-l CYH2 LYS2 lys5-l wra3-l pmslΔ::URA3	This study
NHPD2	S.p. hodest MATa CANI_cyh2-1 lvs2-1 LXSS ura3-1 msh2:URA3 S.p. hodest MATa can1-1 CYH2 LYS2 lys5-1 ura3-1 msh2:URA3	This study
NHD50	S.c. hodfist MATa adeb-1 canl CYH2 his4-RI leu2d met13-4 trp1-bsu36 ura3-nco S.c. hodfist MATa ADE8 CANI cyh2-1 HIS4 LEU2 MET13 TRP1 ura3-nco	This study

S.c. hoΔPst MATa ADE8 CANI cyh2·1 HIS4 LEU2 METI3 TRPI ura3·1 pms1Δ::URA3	<u>h2:URA3</u> This study h2:URA3	This study	ade8-1 canl CYH2 his4-RI leu2Ame113-4 trp1-bsu36 ura3-nco.pms1A::URA3 This study ADE8 CANI cyh2-1 HIS4 LEU2 METI3 TRP1 ura3-1 pms1A::URA3	h2:URA3 This study
ADE8 CANI cyh2-1 HIS4 LEU2 METI3 TRPI ura3-1 pms1A::URA3	ade8-1 <u>canl</u> CXH2 his4-RI leu2A metl3-4 trp1-bsu36 ura3-nco.msh2:URA3	ade8-1 canl CXH2 his4-RI leu2A metl3-4 1rpl-bsu36 ura3-nca	6_ura3-nco pms1A::URA3	ade8-1 canl CYH2 his4-RI leu2Amet13-4 trp1-bsu36 ura3-nco msh2:URA3
	ADE8 CANI cyh2-1 HIS4 LEU2 METI3 TRP1 ura3-1 msh2:URA3	ADE8 CANI cyh2-1 HIS4 LEU2 METI3 TRPI ura3-1	ura3-1_pms1∆::URA3	ADE8 CANI cyh2-1 HIS4 LEU2 MET13 TRP1 ura3-1 msh2:URA3
3 TRPI	4 irpl-bsu 3 TRP i	4 upl-bsu 1 TRP1	iml-bsuð	trpl-bsu3
UZ METI	2A metl3-	2 <u>A metl3-</u>	2dmeil3-4	2 <u>Ametl3-4</u>
	U2 METI	12 METI3	U2 METI3	U2 METI3
HIS4 LE	his4-RI lei	ade8-1 canl CXH2 his4-RI leu2A met13-4 11701-bsu36 ura3-nc	ade8-1 canl CYH2 his4-RI leu2Ame113-4 trp1-bsu36	ade8-1 canl CYH2 his4-Rl leu2Ametl3-4 trpl-bsu36
	HIS4 LE	ADE8 CANI cyh2-1 HIS4 LEU2 METI3 TRPI ura3-1	ADE8 CAN1 cyh2-1 HIS4 LEU2 MET13 TRP1	ADE8 CANI cyh2-1 HIS4 LEU2 METI3 TRP1
VI cyh2-I	J CYHZ	1 CYH2	1 CXH2	1_CYH2
	VI cyh2-1	VI cyh2-1	VI cyh2-1	v1_cyh2-1
DE8 CAI	te8-1 can	te8-1 can	de8.1 can DE8 CAN	de8-1 can DE8 CAN
S.c. hodPst MATa A	NHD95 <u>S.c. hoΔPst MATa_ad</u>	NHD47 <u>S.c. hoΔPsi MATa ad</u>	NHD45 <u>S.c. hoΔPsi MATa_au</u>	NHD94 <u>S.c. haΔPst MATa_at</u>
	S.c. hoΔPst MATα A	S.p. hoΔPsi MATα A	S.p. hoΔPsi MATα A	S.p. hoΔPst MATα A
	NHD95	NHD47	NHD45	NHD94

Abbreviations: S. c., Saccharomyces cerevisiae; S. p., Saccharomyces paradoxus. All S. c. and S. p. strains are isogenic to the wild-type isolates Y55 and N17 resectively. Strains were constructed as described in Methods and Materials.

Table II Spore viabilities of intraspecific and hybrid yeast diploids

Strain	Genotype	Percentage spore Viability
Y55	S. c. wi	97.8 (841/860)
N17 '	S. p. wi	97.0 (194/200)
Y55-518	S. c. pms1	80.5 (679/844)
NHPD1	S.p. pmsl	71.3 (117/164)
Y55-512	S. c. msh2	84.0 (776/924)
NHPD2	S. p. msh2	80.42 (193/240)
NHD47	Hybrid wt	1.2 (10/852)
NHD45	Hybrid pms1	7.2 (63/880)
NHD94	Hybrid msh2	10.2 (147/1440)

Diploids were sporulated and tetrad ascospores dissected. To reduce the spore death caused by the mutator phenotypes of pmsl and msh2, vegetative growth as a diploid was minimised. Haploid strains were mated for only 6 hrs at 30°C, and the diploids were not selected prior to sporulation. All strains were treated in this way. The spore viability of all three hybrids is significantly different from all intraspecific diploids as determined by standard normal test (P << 0.001). The pmsl and msh2 hybrid viabilities are different from the wild-type hybrid (P <0.01 and P << 0.001 respectively), and the msh2 hybrid is different from the pmsl hybrid (P <0.01).

Table III Frequency of disomes in hybrid segregants

- ----

				Perce	ercentage Of Spores	ores With [With Disome			
Strain	1	7		XI	E	ΙX	×	XIV	п	Total
NHD47 (wr)	18.4 (19/103)	0.0	9.7 (10/103)	12.6 (13/103)	21.4 (22/103)	5.8 (6/103)	13.6 (14/103)	1.0 (1/103)	27.2 (28/103)	12.2 (113/927)
NHD45 (pms1)	13.3 (14/105)	0.0	7.6 (8/103)	5.7 (6/105)	7.6 (8/105)	1.9 (2/105)	8.6 (9/105)	0.0	14.3 (15/103)	6.6 (62/945)
NHD94 (msh2)	4.0 (4/100)	0.0	6.0 (6/100)	4.0 (4/100)	3.0 (3/100)	5.0 (\$/100)	7.0 (5/100)	0.0	4.0 (4/100)	3.7

between all three data sets as defined by a standard normal test (P< 0.01 to P<<0.001) and the individual data sets are different by non-parametric sign test (P<0.05 to P<0.01). The data sets for chromsomes VIII and II are different between NHD47 and Random segregants were karyotyped by CHEF gel electrophoresis. The total numbers of disomes are significantly different NHD45 (P<0.01 and P<0.05 respectively). Chromsome I, IX, VII, X, and II data sets are different between NHD47 and NHD94 (P<0.05 to P<<0.001). The frequency of disomes for chromsomes I and II are significantly different between NHD45 and NHD94 (P<0.01).

Table IV Meioitic recombination	ombination			
Strain	HIS4-LEU2	Percentage R LEU2-MAT	Percentage Recombinants 12-MAT TRP1-ADE8	CYH2-MET13
NHD50	18.33	21.67	46.39	11.94
(S.c. w1)	(092/99)	(78/360)	(167/400)	(43/360)
NHD53	17.22	24.72	49.44	11.94
(S.c. pms1)	(62/360)	(89/360)	(178/360)	(43/360)
NHD95	23.8	22.78	47.5	9.17
(S.c. msh2)	(86/360)	(82/360)	(171/360)	(33/360)
NHD47	0.25	2	2	0.25
(Hybrid wt)	(1/400)	(8/400)	(8/400)	(1/400)
NHD45	1.75	4.5	13	2.5
(Hybrid pms1)	(7/400)	(18/400)	(52/400)	(10/400)

NHD94	4	12	33	3.5
(Hybrid msh2)	(16/400)	(48/400)	(132/400)	(14/400)
Random spores were analysed for recombination in the four intervals shown. Map distance is equivalent to the	ysed for recombinatio	n in the four interval	s shown. Map distance	is equivalent to the
frequency of recombinants. None of the intervals in the control diploids, NHD50, 53 and 95 are statistically	ints. None of the inter	rvals in the control dip	loids, NHD50, 53 and 9	95 are statistically
different by standard normal test. Therefore a pool of these data sets was used for companison to data for the	rmal test. Therefore	a pool of these data set	s was used for compari	son to data for the
hybrid diploids. All intervals in the three hybrid diploids are significantly different to intraspecific controls	ervals in the three hyb	orid diploids are signific	cantly different to intras	specific controls
(P << 0.001). The recombinant frequency in all four intervals in the pms1 hybrid is statistically different to the	nbinant frequency in a	all four intervals in the	pms1 hybrid is statistic	ally different to the
wild-type hybrid (P<0.05 to P<<0.001). Likewise all intervals are different between msh2 and wild-type)5 to P<<0.001). Lik	cewise all intervals are	different between msh2	and wild-type
hybrids ($P<0.001$ to $P<<0.001$). Additionally, the LEU2-MAT and TRP1-ADE8 data sets are different between	:<0.001). Additional	ly, the $\it LEU2-MAT$ and	TRP1-ADE8 data sets	are different between
pms1 and msh2 hybrids ($P << 0.001$) and the HIS4-LEU2 data is suggestive of a difference ($P = 0.056$). The	(P<<0.001) and the	HIS4-LEU2 data is su	ggestive of a difference	: (P=0.056). The
total number of recombinants is also significantly different between the three hybrids (P<<0) (001)	entities also significa	nily different between	the three hybrids (P<	(1001)

10

Table V. Total meiotic recombination in tetrads with three and four viable spores.

	% Recombination	n in tetrad class
Strain	Total recom	ibination %
	4 spores	3 spores
Wild-type homozygote	200° (665/333)	185° (24/13)
Wild-type partial hybrid	5.04 (18/357)	28.9 (24/83)
pms1 partial hybrid	22.1 (31/140)	26.3 (20/76)
msh2 partial hybrid	47.4 (65/137)	66.1 (39/59)
pms1 msh2 partial hybrid	63.2 (72/114)	78.0 (64/82)

^a Recombination data are pooled from two independent diploids for each cross. Numbers in parentheses represent total numbers of reciprocal exchange events including twice the number of nonparental ditypes (nonparental diploids were observed only in the wild-type homologous diploids.

^b Each tetrad in the wild-type homologous control had more than one crossover across the whole interval monitored, hence the >100% total recombination observed.

Table VI. Genetic Map Distances

	Map distance (cM) of genetic interval	
Strain	Total <i>HML-THR4</i>	Fold Reduction
Wild-type homozygous control	120	1.0
Wild-type partial hybrid	4.8	25.0
pms1 partial hybrid	11.8°	10.2
msh2 partial hybrid	26.6 ^b	4.51
pms1 msh2 partial hybrid	34.7 ^b	3.46

^a Map distance in centimorgans (cM) is calculated as described in Materials and Methods.

^b Values significantly deviating from those for the wild-type partial hybrid (P<0.001).

CLAIMS

- Process for the meiotic recombination in vivo of partially 5 1. homologous DNA sequences having up to 30% of base mismatches. wherein eukaryotic cells containing the sequences and in which an enzymatic mismatch repair system is defective, are maintained under conditions to effect meiosis.
- 2. Process according to claim 1 wherein hybrid genes and their 10 coded proteins are formed.
- 3. Process according to claim 1 for making hybrid eukaryotic species, comprising providing a set of first eukaryotic cells containing a first DNA sequence and in which an enzymatic mismatch repair system is defective; providing a set of second eukaryotic cells containing a second 15 DNA sequence that is partly homologous by having up to 30% base mismatches with the first DNA sequence and in which an enzymatic mismatch repair system is defective; mixing the two sets of cells, to form diploids maintaining the mixture under conditions to effect meiosis, and recovering cells of a hybrid eukaryotic species.
 - 4. Process according to claim 1, wherein the eukaryotic cells are of unicellular organisms.
 - 5. Process according to claim 4, wherein the unicellular organisms are yeasts.
- 6. 25 Process according to claim 1, wherein the enzymatic mismatch repair systems of the eukaryotic cells are defective by virtue of at least one mutS protein and/or at least one mutL protein being defective or missing.

20

- 7. Process according to claim 6, wherein the eukaryotic cells containing the partially homologous DNA sequences have *mutS* proteins defective or missing.
- 8. Process according to claim 7, wherein yeast cells containing the partially homologous DNA sequences have *MLH* genes defective or missing.
 - 9. Process according to claim 1, wherein the eukaryotic cells are of plants.
- 10. Process according to claim 5, wherein the cells are *pms1* mutants or *msh2* mutants or *pms1* msh2 double mutants.

מונכת ביות ואום המחבריים

Figure 1

INTERNATIONAL SEARCH REPORT

Internat Application No PCT/GB 97/00875

A. CLASSIFICATION OF SUBJECT MATTER 1PC 6 C12N15/10 C12N15/90 C07K14/395 According to International Patent Classification (IPC) or to both national classification and IPC **B. FIELDS SEARCHED** Minimum documentation searched (classification system followed by classification symbols) C12N C07K IPC 6 Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Category Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. X GENETICS. 1,4-10 vol. 137, no. 1, May 1994, pages 19-39, XP000675490 ALANI, E. ET AL.: "Interaction between mismatch repair and genetic recombination in Saccharomyces cerevisiae" Y see page 34, column 1, paragraph 3 1-10 Х MOLECULAR AND CELLULAR BIOLOGY, 1,4-6,8, vol. 14, no. 1, January 1994, WASHINGTON pages 407-415, XP000675393 PROLLA, T.A. ET AL.: "Dual requirement in yeast DNA mismatch repair for MLH1 and PMS1, two homologs of the bacterial mutL gene" Y see page 413, column 2 1 - 10-/--Further documents are listed in the continuation of box C. X Patent family members are listed in annex. Special categories of cited documents: T later document published after the international filing date or priority date and not in conflict with the application but "A" document defining the general state of the art which is not considered to be of particular relevance cited to understand the principle or theory underlying the "E" earlier document but published on or after the international 'X' document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) involve an inventive step when the document is taken alone document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled 'O' document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filing date but later than the priority date claimed in the art. '&' document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report 01.07.97 17 June 1997 Name and mailing address of the ISA Authorized officer European Patent Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016 Chambonnet, F

Form PCT/ISA/210 (second sheet) (July 1992)

1

INTERNATIONAL SEARCH REPORT

Internation Application No PCT/GB 97/00875

	Citation of document, with indication, where appearance of the relevant normal	0.1
ategory *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	GENETICS, vol. 139, no. 3, 1 March 1995, pages 1175-1188, XP000572769 SELVA E M ET AL: "MISMATCH CORRECTION ACTS AS A BARRIER TO HOMEOLOGOUS RECOMBINATION IN SACCHAROMYCES CEREVISIAE" see the whole document	1-10
Y	WO 90 07576 A (SETRATECH) 12 July 1990 cited in the application see the whole document	1-10
P,X	EMBO JOURNAL, vol. 15, no. 7, 1 April 1996, EYNSHAM, OXFORD GB, pages 1726-1733, XP000675560 HUNTER, N. ET AL.: "The mismatch repair system contributes to meiotic sterility in an interspecific yeast hybrid" see the whole document	1-10
P,X	MOLECULAR AND CELLULAR BIOLOGY, vol. 16, no. 11, November 1996, WASHINGTON US, pages 6110-6120, XP000675394 CHAMBERS, S.R. ET AL.: "The mismatch repair system reduces meiotic homeologous recombination and stimulates recombination-dependent chromosome loss" see the whole document	

1

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT

Insurnation on patent family members

Internatic Application No
PCT/GB 97/00875

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
WO 9007576 A	12-07-90	FR 2641793 A AT 127519 T AU 4834390 A CA 2006549 A DE 68924174 D DE 68924174 T EP 0449923 A ES 2077058 T JP 4503601 T	20-07-90 15-09-95 01-08-90 26-06-90 12-10-95 14-03-96 09-10-91 16-11-95 02-07-92

Form PCT/ISA/210 (patent family annex) (July 1992)