"JUST THE MATHS"

UNIT NUMBER

13.2

INTEGRATION APPLICATIONS 2 (Mean values)

&

(Root mean square values)

by

A.J.Hobson

- 13.2.1 Mean values
- 13.2.2 Root mean square values
- 13.2.3 Exercises
- 13.2.4 Answers to exercises

UNIT 13.2 - INTEGRATION APPLICATIONS 2

MEAN AND ROOT MEAN SQUARE VALUES

13.2.1 MEAN VALUES

On the curve whose equation is

$$y = f(x),$$

suppose that $y_1, y_2, y_3, \ldots, y_n$ are the y-coordinates which correspond to n different x-coordinates, $a = x_1, x_2, x_3, \ldots, x_n = b$.

The average (that is, the arithmetic mean) of these n y-coordinates is

$$\frac{y_1+y_2+y_3+\ldots\ldots+y_n}{n}.$$

But now suppose that we wished to determine the average (arithmetic mean) of **all** the y-coordinates, from x = a to x = b on the curve whose equation is y = f(x).

We could make a reasonable approximation by taking a very **large** number, n, of y-coordinates separated in the x-direction by very **small** distances. If these distances are typically represented by δx , then the required mean value could be written

$$\frac{y_1\delta x + y_2\delta x + y_3\delta x + \dots + y_n\delta x}{n\delta x},$$

in which the denominator is equivalent to $(b - a + \delta x)$, since there are only n - 1 spaces between the n y-coordinates.

Allowing the number of y-coordinates to increase indefinitely, δx will to tend to zero and we obtain the formula for the "Mean Value" in the form

$$M.V. = \frac{1}{b-a} \lim_{\delta x \to 0} \sum_{x=a}^{x=b} y \delta x.$$

That is,

$$M.V. = \frac{1}{b-a} \int_a^b f(x) dx.$$

Note:

In cases where the definite integral in this formula represents the area between the curve and the x-axis, the Mean Value provides the height of a rectangle, with base b-a, having the same area as that represented by the definite integral.

EXAMPLE

Determine the Mean Value of the function

$$f(x) \equiv x^2 - 5x$$

from x = 1 to x = 4.

Solution

The Mean Value is given by

M.V. =
$$\frac{1}{4-1} \int_{1}^{4} (x^2 - 5x) dx = \frac{1}{3} \left[\frac{x^3}{3} - \frac{5x^2}{2} \right]_{1}^{4} =$$

$$\frac{1}{3} \left[\left(\frac{64}{3} - 40 \right) - \left(\frac{1}{3} - \frac{5}{2} \right) \right] = -\frac{33}{2}.$$

13.2.2 ROOT MEAN SQUARE VALUES

It is sometimes convenient to use an alternative kind of average for the values of a function, f(x), between x = a and x = b.

The "Root Mean Square Value" provides a measure of "central tendency" for the numerical values of f(x) and is defined to be the square root of the Mean Value of f(x) from x = a to x = b.

Hence,

R.M.S.V. =
$$\sqrt{\frac{1}{b-a} \int_{a}^{b} [f(x)]^{2} dx}$$
.

EXAMPLE

Determine the Root Mean Square Value of the function, $f(x) \equiv x^2 - 5$, from x = 1 to x = 3.

Solution

The Root Mean Square Value is given by

R.M.S.V. =
$$\sqrt{\frac{1}{3-1} \int_{1}^{3} (x^2 - 5)^2} dx$$
.

Temporarily ignoring the square root, we obtain the "Mean Square Value",

M.S.V. =
$$\frac{1}{2} \int_{1}^{3} (x^4 - 10x^2 + 25) dx$$

$$=\frac{1}{2}\left[\frac{x^5}{5} - \frac{10x^3}{3} + 25x\right]_1^3 = \frac{1}{2}\left[\left(\frac{243}{5} - \frac{270}{3} + 75\right) - \left(\frac{1}{5} - \frac{10}{3} + 25\right)\right] = \frac{176}{30}.$$

Thus,

R.M.S.V. =
$$\sqrt{\frac{176}{30}} \simeq 2.422$$

13.2.3 EXERCISES

- 1. (a) Determine the Mean Value of the function, (x-1)(x-2), from x=1 to x=2;
 - (b) Determine, correct to three significant figures, the Mean Value of the function, $\frac{1}{2x+5}$, from x=3 to x=5;
 - (c) Determine the Mean Value of the function, $\sin 2t$, from t=0 to $t=\frac{\pi}{2}$;
 - (d) Determine, correct to three places of decimals, the Mean Value of the function, e^{-x} , from x = 1 to x = 5;
 - (e) Determine, correct to three significant figures, the mean value of the function, xe^{-2x} , from x = 0 to x = 2.
- 2. (a) Determine the Root Mean Square Value of the function, 3x + 1, from x = -2 to x = 2;
 - (b) Determine the Root Mean Square Value, of the function, e^x , from x = 0 to x = 1, correct to three decimal places;
 - (c) Determine the Root Mean Square Value of the function, $\cos x$, from $x = \frac{\pi}{2}$ to $x = \pi$;
 - (d) Determine the Root Mean Square Value of the function, $(4x-5)^{\frac{3}{2}}$, from x=1.25 to x=1.5.

13.2.4 ANSWERS TO EXERCISES

- 1. (a) $-\frac{1}{6}$;
 - (b) 0.0775;
 - (c) $\frac{2}{\pi}$;
 - (d) -0.076;
 - (e) 0.114
- 2. (a) $\sqrt{13} \simeq 3.606$;
 - (b) 1.787;
 - (c) $\frac{1}{\sqrt{2}}$;
 - (d) $\frac{1}{2}$.