Ex 2.1.5

(a)

Picking two non-negative integers a,b such that their sum $a+b \leq m$ is the same as picking three non-negative integers a+b+c such that the sum a+b+c=m. To see this, just note that c is completely determined by a,b. I.e the amount of monomials x^ay^b with total degree $\leq m$, is the same as the amount of ordered 3-integer partitions of m, namely $\binom{m+2}{2}$.

(b)

The amount of f,g-monomials $f(t)^ag(t)^b$ with $a,b \leq m$ is given by $\binom{m+2}{2}$ by the previous exercise. These will all be polynomials in $\mathbb{K}[t]$ of degree $\leq nm$. The \mathbb{K} -subspace of $\mathbb{K}[t]$ consisting of polynomials of degree $\leq nm$ has dimension nm+1, and since we pick m large enough that (m+2)(m+1)/2 > nm+1, it follows that the f,g-monomials of degree $\leq m$ for such large enough m are linearly dependent.

(c)

If we pick m large enough as described in (b), the resulting linear dependence on f, g-monomials can be seen as an algebraic dependence F on f, g.

(d)

There are $\binom{k+m}{k}$ f_1, \ldots, f_k -monomials of degree $\leq m$, whilst the there are $\binom{nm+k-1}{k-1}$ t_1, \ldots, t_{k-1} -monomials of degree $\leq nm$. Given any n, for large enough m we have $\binom{k+m}{k} > \binom{nm+k-1}{k-1}$, since the former product has k factors whilst the latter have k-1 factors.