Automatické řízení Semestrální práce

Miroslav Bulka, Jan Cibulka

81.121.1025

AUTOMATICKÉ ŘÍZENÍ- ZADÁNÍ REFERÁTU

I. Model neurčitosti

- 1. Při konstantním přítoku $Q_{10} = 1.5 \cdot 10^{-4} \text{m}^3 \cdot \text{s}^{-1}$ vypočtěte potřebné nastavení přepouštěcího ventilu S_p a výtokového ventilu S_2 tak, aby výšky hladin v nádobách při ustáleném stavu byly $H_{10} = 0$, g m a $H_{20} = 0$, g m (tzv. pracovní bod). Hodnoty známých parametrů: $S = 25 \cdot 10^{-4} \text{m}^2$ (plocha dna nádob), $c_p = c_2 = 0.6$.
- 2. Určete linearizovaný stavový model v daném pracovním bodě a v pracovním bodě, který by odpovídal 20% zvýšení přítoku Q_{10} .
 - (A) Nastavení přepouštěcích ventilů S_p a S_2 zůstane stejné, se zvyšujícím se přítokem Q_1 se mění výšky hladin H_1 a H_2 .
 - (B) Spolu se zvyšujícím se přítokem Q_1 se mění nastavení ventilů S_p a S_2 tak, aby výška hladin zůstala konstantní, tedy $H_1(t) = H_{10}$, $H_2(t) = H_{20}$.
- 3. Určete přenos systému $Q_1(t) \to H_2(t)$ v závislosti na výšce hladiny H_1 a H_2 (případ 2A) či nastavení ventilu S_p, S_2 (případ 2B). Znázorněte pro oba případy v komplexní rovině neurčitost přenosu za předpokladu, že skutečný pracovní bod je libovolně mezi původním pracovním bodem a pracovním bodem při 20 % zvýšeném přítoku.
 - (a) Určete numericky skutečnou neurčitost danou intervalem pro výšky hladin H_1 , H_2 (resp. S_p , S_2) a přítok Q_1 .
 - (b) Definujte model neurčitosti pomocí vhodně zvoleného modelu perturbací, nominálního modelu P_0 a váhové funkce W(s) tak, aby velikost neurčitosti byla minimální a přesto pokrývala skutečnou neurčitost získanou v bodě (b).

Pro zobrazení neurčitosti použijte 10 frekvencí $\omega_1, \ldots, \omega_{10}$, které pokryjí fázové zpoždění $(0, \pi)$ fázové frekvenční charakteristiky procesu.

4. Porovnejte velikosti obou neurčitostí (2A a 2B).

II. Návrh regulátoru

Dále předpokládejte, že přítok $Q_1(t)$ je realizován vodním čerpadlem, které je poháněno stejnosměrným motorem. Chování čerpadla budeme pro jednoduchost aproximovat systémem prvního řádu s časovou konstantou T=0.5s a statickým zesílením $K_s=Q_{10}$. Dále uvažujme PI regulátor, který řídí napětí na kotvě motoru čerpadla s cílem řídit výšku hladiny H_2 . Rovněž předpokládejme, že všechny externí signály regulační smyčky jsou rozumně malé, takže systém není příliš vychýlen ze svého pracovního bodu a může být považován za lineární.

- 1. Navrhněte parametry PI regulátoru s přenosem $C(s) = K(1 + \frac{1}{T_i s})$ tak, aby byly splňeny následující návrhové požadavky pro všechny systémy z modelu neurčitosti získaného v bodě 3(b) pro 2A (mění se výška hladin), tedy pro libovolný pracovní bod, který se nachází mezi původním pracovním bodem a pracovním bodem při zvýšeném přítoku.
 - (a) Vnitřní stabilita uzavřené smyčky ověřte analyticky i graficky (Nyquistovo kritérium).
 - (b) Robustnost ve stabilitě maximální hodnota amplitudy citlivostní funkce $S(j\omega)$ je $M_S < 2$.
 - (c) Předpokládejte, že díky dalším nepřesnostem, šumům a nelinearitám je dostupná šířka pásma omezená na $\Omega_a=10$ [rad/s]. Útlum komplementární citlivostní funkce $T(\mathrm{j}\omega)$ na frekvenci Ω_a musí být alespoň -10 dB.
 - (d) Zajistěte, aby energie libovolného šumu měření n(t) nebyla zesílena více než 1.5 krát.
- 2. Předpokládejte, že měření, tedy senzor hladiny H_2 , je zatíženo harmonickým šumem n(t) s frekvencí 50Hz a výstup soustavy omezenou harmonickou poruchou d(t) s frekvencí 0.1Hz. Ověřte, zda žádný z těchto signálů není na výstupu systému (tedy $H_2(t)$) smyčkou s navrženým PI regulátorem zesílen.
- 3. Předpokládejte, že je systém v rovnovážném stavu a e(t) = 0. Na vstup řízené soustavy začne působit porucha d_i s omezenou energií $||d_i||_2 < 1$. Určet k jakému maximálnímu kolísání hladiny H_2 od požadovaného stavu může dojít.
- 4. Určete signály n(t) a d(t), kde $||n(t)||_{\infty} < 1$, $||d(t)||_{\infty} < 1$, které jsou zpětnovazební smyčkou nejvíce zesíleny ve smyslu
 - (a) maximální hodnoty signálu,
 - (b) energie signálu.

Určete hodnoty těchto zesílení.

Poznámka: K řešení využijte libovolné prostředky Matlabu/Simulinku, Robust Control Toolbox, Symbolic Toolbox, webový applet "PID Control Laboratory".

Obsah

1	Řeš	ešení - Model neurčitosti			
	1.1	První	úkol	5	
2	Určení linearizovaného stavového modelu		earizovaného stavového modelu	5	
	2.1	2.1 Proměnné výšky hladin		5	
	2.2	2.2 Druhý úkol		6	
		2.2.1	Konstantní průtoky - mění se hladina	6	
		2.2.2	Konstantní hladina - mění se průtoky	6	
	2.3	Třetí 1	úkol	7	
		2.3.1	Určení numerické neurčitosti	7	
		2.3.2	Definovaní modelu s pertrubacemi, nominální model, váhová funkce .	7	
	2.4	Čtvrtý	ýúkol	7	
3	Řešení - Návrh regulátoru		Vávrh regulátoru	7	
3.1 První úkol		úkol	7		
		3.1.1	Vnitřní stabilita uzavřené smyčky (Nquistovo kritérium)	7	
		3.1.2	Robustnost ve stabilitě	7	
		3.1.3	Podmínka útlumu komplementrání citlivostní funkce	7	
		3.1.4	Energie šumu omezená.	7	
	3.2	Druhý	úkol	7	
	3.3	Třetí úkol			
	3 4 Čtvrtý úkol		ý úkol	7	

1 Řešení - Model neurčitosti

1.1 První úkol

Výpočet ustáleného stavu.

2 Určení linearizovaného stavového modelu

2.1 Proměnné výšky hladin

Máme konstantní přítok $Q_1=Q_{10}=1.5\cdot 10^{-4}m^3s^{-1}$, přičemž víme, že:

$$\begin{bmatrix} \frac{dV_1}{dt} \\ \frac{dV_2}{dt} \end{bmatrix} = \begin{bmatrix} Q_1 - Q_p \\ Q_p - Q_2 \end{bmatrix} = \begin{bmatrix} Q_1 - c_p S_p v_p \\ c_p S_p v_p - c_2 S_2 v_2 \end{bmatrix}. \tag{1}$$

Z Bernoulliho zákona pak odvodíme:

$$\begin{bmatrix} v_p \\ v_2 \end{bmatrix} = \begin{bmatrix} \sqrt{2g \cdot (H_1 - H_2)} \\ \sqrt{2g \cdot (H_2)} \end{bmatrix}. \tag{2}$$

Daný systém popisují diferenciální rovnice:

$$\begin{bmatrix} \frac{dH_1}{dt} \\ \frac{dH_2}{dt} \end{bmatrix} = \begin{bmatrix} \frac{\frac{1}{S} \cdot Q_1 - \frac{S_p C_p}{S} \cdot \sqrt{2g \cdot (H_1 - H_2)}}{\frac{S_p C_p}{S} \cdot \sqrt{2g \cdot (H_1 - H_2)} - \frac{S_2 C_2}{S} \cdot \sqrt{2g \cdot H_2}} \end{bmatrix}.$$
 (3)

Zavedením $x_1(t) = H_1(t); x_2(t) = H_2(t); u(t) = Q_1(t)$ získáme

$$\begin{bmatrix} \frac{dx_1}{dt} \\ \frac{dx_2}{dt} \end{bmatrix} = \begin{bmatrix} \frac{\frac{1}{S} \cdot u - \frac{S_p C_p}{S} \cdot \sqrt{2g \cdot (x_1 - x_2)}}{\frac{S_p C_p}{S} \cdot \sqrt{2g \cdot (x_1 - x_2)} - \frac{S_2 C_2}{S} \cdot \sqrt{2g \cdot x_2}} \end{bmatrix}. \tag{4}$$

Za předpokladu neměnících se hladin H_1 a H_2 budou obě derivace nulové. Položíme je tedy nulou a díky tomu získáme požadované nastavení přepouštěcího ventilu S_p a výtokového ventilu S_2 :

$$\begin{bmatrix} S_p \\ S_2 \end{bmatrix} = \begin{bmatrix} 7.2864 \cdot 10^{-5} \\ 1.2620 \cdot 10^{-4} \end{bmatrix}. \tag{5}$$

2.2 Druhý úkol

Linearizace ve dvou pracovních bodech.

2.2.1 Konstantní průtoky - mění se hladina

Nejdříve si zavedeme značení:

$$\begin{bmatrix} y_1(t) \\ y_2(t) \end{bmatrix} = \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} = \begin{bmatrix} H_1(t) \\ H_2(t) \end{bmatrix}.$$
 (6)

Chování těchto stavových proměnných je popsáno rovnicí 4. My chceme získat linearizovaný stavový model, a to ve tvaru:

$$\dot{x}(t) = Ax(t) + Bu(t) \tag{7}$$

$$y\left(t\right) = Cx\left(t\right). \tag{8}$$

Pro systém popsaný rovnicí 4 budou parametry linearizovaného stavového modelu, provedemeli klasickou linearizaci, mít následující podobu:

$$A = \begin{bmatrix} -\frac{C_p S_p \sqrt{2g}}{2 \cdot S \sqrt{(H_1 - H_2)}} & \frac{C_p S_p \sqrt{2g}}{2 \cdot S \sqrt{(H_1 - H_2)}} \\ \frac{C_p S_p \sqrt{2g}}{2 \cdot S \sqrt{(H_1 - H_2)}} & -\frac{C_p S_p \sqrt{2g}}{2 \cdot S \sqrt{(H_1 - H_2)}} - \frac{C_2 S_{2g}}{S \sqrt{(2 \cdot g \cdot H_2)}} \end{bmatrix}.$$
(9)

$$B = \begin{bmatrix} \frac{1}{S} \\ 0 \end{bmatrix}. \tag{10}$$

Parametry modelu pro konstantní přítok $Q_1 = Q_{10} = 1.5 \cdot 10^{-4} m^3 s^{-1}$:

$$A = \begin{bmatrix} -0.05 & 0.05 \\ 0.05 & -0.2 \end{bmatrix}; B = \begin{bmatrix} 400 \\ 0 \end{bmatrix}; C = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}.$$

Parametry modelu pro zvýšený přítok $Q_{20}=Q_{10}\cdot 1.2=1.8\cdot 10^{-4}m^3s^{-1}$:

$$A = \begin{bmatrix} -0.06 & 0.06 \\ 0.06 & -0.24 \end{bmatrix}; \ B = \begin{bmatrix} 400 \\ 0 \end{bmatrix}; \ C = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}.$$

2.2.2 Konstantní hladina - mění se průtoky

V tomto případě budeme usilovat o to, aby se hladiny neměnily. Bude tedy platit:

$$\begin{bmatrix} H_1(t) \\ H_2(t) \end{bmatrix} = \begin{bmatrix} H_{10} \\ H_{20} \end{bmatrix}. \tag{11}$$

Naopak budeme měnit nastavení ventilů.

2.3 Třetí úkol

Přenos systému, nyquist asi, oba pracovní body, neurčitost.

2.3.1 Určení numerické neurčitosti

2.3.2 Definovaní modelu s pertrubacemi, nominální model, váhová funkce

2.4 Čtvrtý úkol

Porovnání neurčitostí z 2.2.1 a 2.2.2.

3 Řešení - Návrh regulátoru

3.1 První úkol

Parametry PI regulatoru. Nejsem si jistej jestli tady jde o subukoly nebo jenom podminky pro jeden ukol.

- 3.1.1 Vnitřní stabilita uzavřené smyčky (Nquistovo kritérium)
- 3.1.2 Robustnost ve stabilitě
- 3.1.3 Podmínka útlumu komplementrání citlivostní funkce
- 3.1.4 Energie šumu omezená.

3.2 Druhý úkol

Harmonické poruchy.

3.3 Třetí úkol

Maximální kolísání hladiny.

3.4 Čtvrtý úkol

Určení hodnoty nějakých signálů.