2008 PAPER 1: SOLUTIONS AND MARK SCHEME

Students who obtain 20, or more, marks receive a merit certificate

 $0 = a(T_1 - T_2) + b(T_1 - T_2)(T_1 + T_2)$

i.e.

with solution
$$T_1 = T_2$$
 (trivial) or $T_1 + T_2 = -a/b$
i.e. $T_1 + T_2 = 7.985$ °C (1)
and with $T_1 = 0$ °C then $T_2 = 7.895$ °C

and this is the range over which the readings are not single valued.

(d)
$$\frac{dV}{dt} = a + 2bT$$

$$So \ 0 = a + 2bT_d$$

$$T_d = -\frac{a}{2b} = 3.95 \, ^{\circ}C$$

$$V = 1 + aT + bT^2 = b(T + a/2b)^2 + 1 - a^2/(4b)$$
So V shortest when
$$T_d = -a/(2b) = 3.95 \, ^{\circ}C$$
(2)

[TOTAL 10]

(1)

Substituting into R^2 = $N\lambda^2$ We obtain 25 x 10^{40} = N x 9 x 10^{36} N = 2.8 x 10^4 changes of direction as it crosses the galaxy

time =
$$\frac{dis \tan ce}{speed}$$
 = $\frac{N\lambda}{c} = \frac{2.8x10^4 \, x3x10^{18}}{3x10^8} = 2.8x10^{14} \, \text{sec onds}$ (3)

ITOTAL 41

7. (a) R_2 in parallel with $R(R_2/\!/R)$ has the value $\frac{R_2R}{R_2+R}$ $V = E \frac{(R_2 // R)}{R_1 + (R_2 // R)}$

$$V = E \frac{R_1 + (R_2 // R)}{(R_1 + R_2 R)}$$

$$V = E \frac{R_2 R}{(R_2 + R) \left(R_1 + \frac{R_2 R}{(R_2 + R)}\right)}$$

$$\frac{V}{E} = \frac{R_2 R}{R_1 (R_2 + R) + R_2 R} = \frac{R_2 R}{R_1 R_2 + R(R_1 + R_2)}$$
(4)

(b)
$$I = \frac{V}{R_2} = E \frac{R}{R_1 R_2 + R(R_1 + R_2)}$$

$$\frac{1}{I} = \frac{1}{ER} (R_1 R_2 + R(R_1 + R_2))$$
(2)

(c)
$$\frac{1}{I} = \frac{1}{ER} \left[\rho^2 \ell(L - \ell) + R\rho L \right]$$
 (2)

(d) Which is at a max imum when $\ell(L-\ell)$ is a max imum i.e. when $l = \frac{L}{2}$ either by observation or symmetry arg unent or by calculus or by completing the square: $l(L-l) = L^2/4 - (L/2-l)^2$. (2)

[TOTAL 10]

8. $E = \frac{hc}{\lambda} = \frac{6.6 \times 10^{-34} \times 3 \times 10^{8}}{120 \times 10^{-9}} = 1.65 \times 10^{-18} J$ Number of photons = $\frac{20}{1.65 \times 10^{-18}} \times 3600 = 4.4 \times 10^{22}$ photons per hour (b) momentum of a sin gle photon = $E/c = \frac{1.65 \times 10^{-18}}{3 \times 10^8} = 5.5 \times 10^{-27} \, \text{kg m s}^{-1}$ momentum change per sec ond = $5.5 \times 10^{-27} \, \text{x} \, \frac{4.4 \times 10^{22}}{3600} = 6.7 \times 10^{-8} \, \text{kg m s}^{-1}$ This is equal to the force on the bulb i.e. $6.7 \times 10^{-8} \, \text{N}$

(2)

(c) $acceleration = \frac{F}{m} = \frac{6.7x10^{-8}}{0.20} = 3.3x10^{-7} \, m \, s^{-2}$

(1)

(d)
Only the number of photons per sec and changes
So Power of bulb = $20x \frac{9.81}{3.3x10^{-7}} = 0.59 \, GW$

(1)

[TOTAL 6]

(a) This is partly an exercise in setting out the work in a tabular form so that the data
can be referred to in support of the later comment. Marks for setting out the
calculations in a systematic manner should be awarded.

(2)

for 450 nm

$$9 \times 450 \times 10^{-9} = 0.2 \times 10^{-3} \times \sin \theta_9$$
 $\theta_9 = 1.160^{\circ}$

$$10 \times 450 \times 10^{-9} = 0.2 \times 10^{-3} \times \sin \theta_{10} \ \theta_{10} = 1.289^{\circ}$$

for 495 nm

$$9 \times 495 \times 10^{-9} = 0.2 \times 10^{-3} \times \sin \theta_9$$
 $\theta_9 = 1.276^\circ$

$$10 \times 495 \times 10^{-9} = 0.2 \times 10^{-3} \times \sin \theta_{10} \ \theta_{10} = 1.418^{\circ}$$

For 450 nm the angular separation is 0.13° (0.129°)

(2)

For 495 nm the angular separation is 0.14° (0.142°)

(2)

(b)

 θ_9 increases by 10% θ_{10} increases by 10%

and the difference between θ_9 and θ_{10} increases by 10%

Because both θ_9 and θ_{10} are small angles then $sin(\theta)$ can be approximated by θ (in radians).

It is not the small difference that makes the small angle approximation.

(2)

[TOTAL 8]

BPhO PAPER 1 MERIT CERTIFICATES

Students who obtain 20 or more marks in this paper are entitled to receive a merit certificate.
NO. OF MERIT CERTIFICATES REQUESTED
NAME OF TEACHER
NAME OF SCHOOL
ADDRESS OF SCHOOL
Please return to: Dr C. Isenberg, BPhO Secretary, Electronics Laboratory, UKC, Canterbury, Kent CT2 7NT