Stampede Hardware Overview

John Cazes May 4, 2015

Texas Advanced Computing Center The University of Texas at Austin

About this Talk

- As an applications programmer you may not care about hardware details, but...
 - We need to consider performance issues
 - Better performance means faster turnaround and/or larger problems
 - We will focus on the most relevant architecture characteristics
- Do not hesitate to ask questions as we go

High Performance Computing

- In our context, it refers to hardware and software tools dedicated to computationally intensive tasks
- Distinction between HPC center (throughput focused) and Data center (data focused) is becoming fuzzy
- High bandwidth, low latency
 - Memory
 - Network

Stampede

- NSF 11-511: "High Performance Computing System Acquisition: Enhancing the Petascale Computing Environment for Science and Engineering"
- Enable sustained petascale computational and datadriven science and engineering and provide an "innovative component"

Dell/Intel Partnership

- TACC Partnered with Dell and Intel to design Stampede
- Intel MIC (Intel Xeon Phi) is the innovative component
 - High performance and low power per operation
 - Highly programmable

Datacenter Expansion

TEXAS ADVANCED COMPUTING FACILITY THE UNIVERSITY OF TEXAS

2x footprint, 2x power, 20x Capability (Stampede vs. Ranger)

Cooling and Electrical Infrastructure

Stampede Performance

Stampede debuted at #7 on the Top 500

Stampede Overview

- \$27.5M acquisition
- 10 petaflops (PF) peak performance
- 2+ PF Linux cluster
 - 6400 Dell DCS C8220X nodes
 - 2.7GHz 8 core Intel Xeon E5 (Sandy Bridge)
 - 102,400 total cores
 - 56Gb/s FDR Mellanox InfiniBand
 - 7+ PF Intel Xeon Phi Coprocessor
 - TACC has a special release: Intel Xeon Phi SE10P
 - 14+ PB disk, 150GB/s
 - 16 1TB shared memory nodes
 - 128 NVIDIA Tesla K20 GPUs

Processor Specs

Arch. Features	Xeon E5	Xeon Phi SE10P
Frequency	2.7GHz +turbo	1.0GHz +turbo
Cores	8	61
HW threads/core	2	4
Vector size	256 bits 4 doubles 8 singles	512 bits 8 doubles 16 singles
Instr. Pipeline	Out of Order	In Order
Registers	16	32
Caches	L1:32KB L2:256KB L3:20MB	L132KB L2:512KB
Memory	2 GB/core	128 MB/core
Sustained Memory BW	75 GB/s	170 GB/s
Sustain Peak FLOPS	1 thread/core	2 threads/core
Instruction Set	x86 + AVX	x86 + new vector instructions

MIC Details

What is a MIC

- Basic Design Ideas
 - Leverage x86 architecture (CPU with many cores)
 - X86 cores are simpler, but allow for more compute throughput
 - Leverage existing x86 programming models
 - Dedicate much of the silicon to floating point ops
 - Cache coherent
 - Increase floating-point throughput
 - Implement as a separate device
 - Strip expensive features (out-of-order execution, branch prediction, etc.)
 - Widen SIMD registers for more throughput
 - Fast (GDDR5) memory on card
 - Runs a full Linux operating system (BusyBox)

MIC Architecture

- Many cores on the die
- L1 and L2 cache
- Bidirectional ring network
- Memory and PCle connection

Dell DCS C8220z Compute Node

Component	Technology
Sockets per Node/Cores per Socket Coprocessors/Cores	2/8 Xeon E5-2680 2.7GHz (turbo, 3.5) 1/61 Xeon Phi SE10P 1.1GHz
Motherboard	Dell C8220, Intel PQI, C610 Chipset
Memory Per Host Memory per Coprocessor	32GB 8x4GB 4 channels DDR3-1600MHz 8GB DDR5
Interconnect Processor-Processor Processor-Coprocessor	QPI 8.0 GT/s PCI-e
PCI Express Processor PCI Express Coprocessor	x40 lanes, Gen 3 x16 lanes, Gen 2 (extended)
250GB Disk	7.5 RPM SATA

Compute Node Configuration

CPUs and MIC appear as separate HOSTS ("symmetric" computing)

Stampede Filesystems

Storage Class	Size	Architecture	Features
Local (each node)	Login: 1TB Compute: 250GB Big Mem: 600 GB	SATA SATA	432GB on /tmp 80GB on /tmp 398GB on /tmp
Parallel	Total: 8 PB \$HOME: .5 PB \$SCRATCH: 7.4 PB	Lustre	372 OST 72 OST 300 OST
Parallel(Center wide)	\$WORK: 19 PB	Lustre	672 OST 112 OSS 2 MDS

Stampede Filesystems

\$HOME

- Quota : 5GB, 150K files
- Filesystem is backed up

\$WORK

- Quota: 1 TB, 3M files
- NOT backed up
- Use cdw to change to \$WORK

\$SCRATCH

- No Quota
- Total size 7.4 PB
- NOT backed up
- Use cds to change to \$SCRATCH
- Files older than 10 days are subject to purge policy

/tmp

- Local disk
- − ~80GB

Large Memory & Visualization Nodes

- 16 Large Memory Nodes
 - 32 cores
 - 1TB of memory
 - Used for data-intense applications requiring disk caching and large memory methods
- 128 Visualization Nodes
 - 16 cores
 - NVIDIA Tesla K20 with 8GB GDDR5 memory

Queue Structure

Queue Name	Max Runtime	Max Nodes/Procs	Max Jobs in Queue	SU Charge Rate	Purpose
normal	48 hrs	256 / 4K	50	1	normal production
development	2 hrs	16 / 256	1	1	development nodes
largemem	48 hrs	4 / 128	4	2	large memory 32 cores/node
serial	12 hrs	1 / 16	8	1	serial/shared_memory
large	24 hrs	1024 / 16K	50	1	large core counts (access by request)
request	24 hrs		50	1	special requests
normal-mic	48 hrs	256 / 4k	50	1	production MIC nodes
normal-2mic	24 hrs	128 / 2k	50	1	production MIC nodes with two co- processors
gpu	24 hrs	32 / 512	50	1	GPU nodes
gpudev	4 hrs	4 / 64	5	1	GPU development nodes
vis	8 hrs	32 / 512	50	1	GPU nodes + VNC service
visdev	4 hrs	4 / 64	5	1	Vis development nodes (GPUs + VNC)

John Cazes

cazes@tacc.utexas.edu

For more information:

www.tacc.utexas.edu

