Contents

1	Linear Algebra Tools	1
	1.1 Angles and Orthogonality	1
	1.1.1 Orthogonal Projections	1
2	Matrix Decompositions	2
	2.1 Eigenvalues and Eigenvectors	2

1 Linear Algebra Tools

This chapter introduces inner product to give geometric meaning to vectors and vector spaces, enabling calculations of length, distance, and angles.

Definition (Symmetric Positive Definitive Matrix). A symmetric matrix $A \in \mathbb{R}^{n \times n}$ that satisfies

for every nonzero vector
$$x : x^T A x > 0$$
 (1.1)

is called **positive definite**. If only \geq holds in 1.1, then A is called **positive** semidefinite.

These properties helps in identifying positive definite matrices without having to check the definition explicitly:

- 1. The null space of A contains only the null vector;
- 2. The diagonal elements a_{ii} of A are positive;
- 3. The eigenvalues of A are real and positive.

1.1 Angles and Orthogonality

The angle ω between vectors x and y is computed as:

$$\cos \omega = \frac{\langle x, y \rangle}{\|x\|_2 \|y\|_2}$$

Here, $\langle x, y \rangle$ denotes the inner product between x and y. This angle indicated the vectors' similarity in orientation.

Definition (Orthogonal vectors). Two vectors are orthogonal if $\langle x, y \rangle = 0$. If additionally ||x|| = 1 = ||y||, then x and y are orthonormal.

Definition (Orthogonal matrix). A square matrix is an orthogonal matrix if and only if <u>its columns are orthonormal</u> so that

$$AA^T = I = A^T A$$

which implies that

$$A^{-1} = A^T$$

The length of a vector x is not changed when transforming it using an orthogonal matrix A.

$$||Ax||_2^2 = ||x||_2^2$$

Moreover, the angle between any two vectors x, y is also unchanged when transforming both of them using an orthogonal matrix A.

Definition (Orthonormal Basis). In an n-dimensional vector space V with a basis set $\{b_1, \ldots, b_n\}$, if all the basis vectors are orthogonal to each other, the basis is called as an **orthogonal basis**. Additionally, if the length of each basis vector is 1, the basis is referred to as an **orthonormal basis**.

We can also have vector spaces that are orthogonal to each other. Given a vector space V of dimension D, let's consider a subspace U of dimension M such that $U \subseteq V$. Then its **orthogonal complement** U^{\perp} is a D-M dimensional subspace V and contains all vectors in V that are orthogonal to every vector in U.

1.1.1 Orthogonal Projections

Projections are key linear transformations in machine learning and are particularly useful for handling high-dimensional data. Often, only a few dimensions in such data are essential for capturing the most relevant information. By projecting the original high-dimensional data onto a lower dimensional feature space, we can work more efficiently to learn about the dataset and extract significant patterns.

Definition (Projection). Let V be a vector space and $U \subseteq V$ a subspace of V. A linear mapping $\pi: V \to U$ is called **projection** if it satisfies $\pi^2 = \pi \circ \pi = \pi$.

Given that linear mappings can be represented by transformation matrices, the above definition extends naturally to projection matrices P_{π} . These matrices exhibit the property that $P_{\pi}^2 = P_{\pi}$.

The projection $\pi_U(x)$ of a vector $x \in \mathbb{R}^n$ onto a subspace U is the closest point necessarily in U to x.

2 Matrix Decompositions

2.1 Eigenvalues and Eigenvectors

Eigenanalysis helps us understand linear transformations represented by a matrix A. Eigenvectors x are special vectors that only get scaled, not rotated, when multiplied by A. The scaling factor is the eigenvalue λ , which indicated how much x is stretched or shrunk. λ can also be zero.

Definition (Eigenvalue and Eigenvector). Let $A \in \mathbb{R}^{n \times n}$ be a square matrix. Then $\lambda \in \mathbb{R}$ is an **eigenvalue** of A and nonzero vector x is the corresponding **eigenvector** of A if

$$Ax = \lambda x \tag{2.1}$$

We call 2.1 the eigenvalue equation.

The following statements are equivalent:

- λ is an eigenvalue of $A \in \mathbb{R}^{n \times n}$.
- A nonzero vector x exists such that $Ax = \lambda x$ or, equivalently, $(A \lambda I_n)x = 0$ for $x \neq 0$.
- Then $A \lambda I$ is a singular matrix and its determinant is zero.

Each eigenvector x has one unique eigenvalue λ , but each λ can have multiple eigenvectors.

Definition (Eigenspace and Eigenspectrum). For $A \in \mathbb{R}^{n \times n}$, the set of all eigenvectors of A associated with an eigenvalue λ spans a subspace of \mathbb{R}^n , which is called the **eigenspace** of A with respect to λ and is denoted by E_{λ} . The set of all eigenvalues of A is called the **eigenspectrum** of A.

Definition. Let λ_i be an eigenvalue of a square matrix A. Then the **geometric** multiplicity of λ_i is the number of linearly independent eigenvectors associated with λ_i . In other words, it is the dimensionality of the eigenspace spanned by the eigenvectors associated with λ_i .

Theorem. The eigenvectors x_1, \ldots, x_n of a matrix $A \in \mathbb{R}^{n \times n}$ with n distinct eigenvalues $\lambda_1, \ldots, \lambda_n$ are linearly independent.

This theorem states that eigenvectors of a matrix with n distinct eigenvalues form a basis of \mathbb{R}^n .