Statistical Data Analysis

Jana de Wiljes

wiljes@uni-potsdam.de
www.dewiljes-lab.com

19. Oktober 2022

Universität Potsdam

Organization

Tutorials and Problem sheets

Passing the problem sheets:

- 50% of the points need to be acquired to be allowed to participate in the exam
- Solutions of Problem sheets have to be handed online on Moodle
- possible to work and hand in in pairs

Tutorials: Martin Nicolaus

(jan.martin.nicolaus@uni-potsdam.de)

- Wednesday 10:15-11:45 room 2.06. 1.01
- Thursday 12:15-13:45 room 2.05. 1.12

Exam: Monday 06.02.2023 at 12:00-14:00

Content

Course content

- Recap foundations of probability theory
- Introduction to concept of learning
- Linear regression
- Batch vs Sequential
- Generalised Linear Regression
- Nonlinear Optimisation -Stochastic gradient descent
- Parametrisation by means of Neural networks
- Classification

- Support Vector Machines
- VC Dimension
- Clustering
- Random Forest models
- Causality
- Principle Component Anaylsis
- Autoencoders
- Gaussian Processes
- Optimal transport
- Generative advisarior networks
- score functions

probability theory

Brief reminder: foundations of

Probability space

Def: A probability space consists of three elements $(\Omega, \mathcal{F}, \mathbb{P})$

- A sample space, Ω which is the set of all possible outcomes.
- An event space, which is a set of events \mathcal{F} (σ algebra), an event being a set $A \subset \Omega$ of outcomes in the sample space
- ullet A probability function $\mathbb{P}:\mathcal{F}\mapsto [0,1]$

Axioms by Kolmogorov

Axioms: For probability function \mathbb{P} the following holds true:

(A1)
$$0 \leq \mathbb{P}(A) \leq 1$$

(A2)
$$\mathbb{P}(\Omega) = 1$$

(A3)
$$\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) \quad \forall A, B \text{ with } A \cap B = \emptyset$$

more general:

$$\mathbb{P}(A_1 \cup A_2 \cup \dots) = \sum_{i \geq 1} \mathbb{P}(A_i) \quad \text{ for } A_k \cap A_l = \emptyset, \ k \neq l$$

5

Independence and conditional probability

Def: Two events A and B are called independent if the following equation holds

$$\mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B)$$

Def: Given two events A and B with $\mathbb{P}(B) > 0$, the conditional probability of A given B is

$$\mathbb{P}(A|B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}$$

Random Variables

Def: A random variable (RV) is measurable function $X : \Omega \to E$, from a set of possible outcomes, Ω , to a measurable space E

Example:

- Discrete RV:
 - Example tossing a coin, dice roll
 - $X(\omega) \in \underbrace{\{X_1, X_2, \ldots\}}_{\text{finite countable}} \text{ for } \omega \in \Omega$
- Continuous RV: Example process of measurement or production.
- The result of an experiment is described by a random variable (r.v)
 X or a set of random variables (X₁, X₂, X₃,) is called a random process

Expectation

Definition: The *expectation* of a discrete RV is defined as follows:

$$\mathbb{E}(X) = \bar{X} = \sum_{i=1}^{n} x_i \, \mathbb{P}(X = x_i)$$

Definition: Analogously the *Expectation* of a continuous RV

$$\mathbb{E}(X) = \bar{X} = \int_{-\infty}^{\infty} x \, f(x) dx$$

Markov Inequality

Proposition: Let X be a positive random variable. Then for any a>0,

$$\mathbb{P}(X \ge a) \le \frac{\mathbb{E}[X]}{a} \tag{1}$$

Proof:

Cumulative distribution function

Definition: The cumulative distribution function of a real-valued random variable X is the function given by

$$F_X(x) = \mathbb{P}(X \leq x)$$

Definition: The probability density function of a continuous random variable can be determined from the cumulative distribution function by differentiating

$$f(x) = \frac{dF(x)}{dx}$$

Bernoulli distribution

A random variable X is distributed according to the Bernoulli distribution with parameter $p \in (0,1)$

$$X = \begin{cases} 1 & \text{with probability p} \\ 0 & \text{with probability } 1 - p \end{cases}$$

Proposition:

$$\mathbb{E}[X] = p \tag{2}$$

$$Var(X) = p(1-p) \tag{3}$$

Notation: $X \sim \text{Bernoulli}$

Normal Distribution

A normal or Gaussian distributed random variable $X:\Omega\to\mathbb{R}$ with parameters $\mu\in\mathbb{R}$ and $\sigma>0$ has the following density

$$f(x) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left\{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right\}$$

and expected value and variance

$$\mathbb{E}[X] = \mu$$
$$Var(X) = \sigma^2$$

$$X \sim \mathcal{N}(\mu, \sigma)$$

Normal Distribution

Abbildung 1: $\mu=$ 0, $\sigma=$ 1 (black), $\mu=$ 0, $\sigma=$ 2 (red), $\mu=$ 0, $\sigma=$ 0.75 (blue) and $\mu=$ 3, $\sigma=$ 1 (green)

Normal Distribution

Abbildung 2: $\mu=0$, $\sigma=1$ (black), $\mu=0$, $\sigma=2$ (red), $\mu=0$, $\sigma=0.75$ (blue) and $\mu=3$, $\sigma=1$ (green)

Quantile

Abbildung 3: 60% of area under the curve (colored in blue) are in the $[\mu-\sigma,\mu+\sigma]$ interval and 95% of the area under the curve are in the interval $[\mu-\sigma,\mu+\sigma]$.

Standard normal distribution

A variable $X:\Omega\to\mathbb{R}$ follows a standard normal distribution, i.e., $X\sim\mathcal{N}(0,1)$ if the associated density has the following form

$$\phi(x) = \frac{1}{\sqrt{2\pi}} \exp\left\{-\left(\frac{x^2}{2}\right)\right\}$$

with the associate cumulative distribution

$$\Phi(x) = \int_{-\infty}^{x} \phi(u) du \tag{4}$$

and quantile

$$z_{\alpha} = \Phi^{-1}(\alpha), \quad \alpha \in (0,1)$$
 (5)

Relationship between standard normal distribution and Normal distribution

$$F(x) = \Phi\left(\frac{x - \mu}{\sigma}\right) \tag{6}$$

Exponential Distribution

A random variable $X:\Omega\to\mathbb{R}$ follows the exponential distribution with parameters $\lambda>0$ has the following density and cdf

$$f(x) = \begin{cases} 0 & x < 0 \\ \lambda \exp(-\lambda x) & x \ge 0 \end{cases}$$
$$F(x) = \begin{cases} 0 & x < 0 \\ 1 - \exp(-\lambda x) & x \ge 0 \end{cases}$$

and expected value and variance

$$\mathbb{E}[X] = \frac{1}{\lambda}$$

$$Var(X) = \frac{1}{\lambda^2}$$

Notation: $X \sim \mathsf{Exp}(\lambda)$ (often used for waiting times and lifetimes)

Exponential Distribution

Abbildung 4: $\lambda = 1$ (black), $\lambda = 2$ (blue) and $\lambda = 1/2$ (red).

Exponential Distribution

Abbildung 5: $\lambda=1$ (black), $\lambda=2$ (blue) and $\lambda=1/2$ (red).

Example

Setting: The lifetime T of a computer chip is exponentially distributed, i.e., $T \sim \text{Exp}(\lambda)$ with expected lifetime of 15 weeks, i.e., parameter $\lambda = \frac{1}{15}$

Question:

 What is the probability that the computer chip is defect within the first 10 weeks?

 What is the probability that the computer chip will last at least 20 weeks?

Beta distribution

For a and b larger than zero and

$$f(x) = \frac{1}{B(a,b)} x^{a-1} (1-x)^{b-1}.$$

where the normalization is given by

$$B(a,b) = \frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)} = \int_0^1 u^{a-1} (1-u)^{b-1} du$$

with $\Gamma(n) = (n-1)!$ being the gamma function.

Transformation

Reminder: for arbitrary g the following holds:

$$\mathbb{E}[g(X)] = \int_{-\infty}^{\infty} g(x) f_X(x) dx \tag{7}$$

Proposition: Let g be a differentiable, strictly monoton function and X and random variable. Then Y = g(X) has the following density

$$f_Y(y) = \left| \frac{1}{g'(g^{-1})(y)} \right| f_X(g^{-1}(y)), y \in E_Y$$
 (8)

 E_Y is given by the value space of X via

$$E_Y = g(E_X) = \{g(x) : x \in E_X\}$$
 (9)

Variants of convergence

Let X be a random variable and $\{X_n\}_{n\in \mathbb{N}}$ a sequence of random variables.

 $\{X_n\}$ converges to X almost surely, $X_n \stackrel{a.s.}{\longrightarrow} X$, if

$$\mathbb{P}(\lim_{n\to\infty} X_n = X) = 1 \tag{10}$$

 $\{X_n\}$ converges to X in probability $X_n \stackrel{P}{\longrightarrow} X$, if for any $\epsilon > 0$,

$$\lim_{n \to \infty} \mathbb{P}[|X_n - X| > \epsilon] = 0 \tag{11}$$

■ $\{X_n\}$ converges to X in law (or in distribution), $X_n \xrightarrow{D} X$, if for any bounded continuous function f

$$\lim_{n \to \infty} \mathbb{E}[f(X_n)] = \mathbb{E}[f(X)] \tag{12}$$

Proposition: $X_n \xrightarrow{a.s.} X \implies X_n \xrightarrow{P} X \implies X_n \xrightarrow{D} X$

Samples

Definition: Let $(\Omega, \mathcal{F}, \mathbb{P})$ a probability space and X_1, \ldots, X_n be associated random variables. Realizations

$$x_1 := X_1(\omega), \dots, x_n := X_n(\omega) \tag{13}$$

are referred to as samples and n the sample size.

Estimator

Definition: A measurable function $\varphi : \mathbb{R}^n \to \mathbb{R}^m$ is referred to as *sample function*, *estimator* or *statistic*.

Note: we will also consider the composition:

$$\varphi(X): \Omega \to \mathbb{R}^m \tag{14}$$

$$\omega \mapsto \varphi(X_1(\omega), \dots, X_n(\omega))$$
 (15)

Monte-Carlo Approximation of a Mean

Def: Let X be a RV with mean $\mu = \mathbb{E}[X]$ and variance $\sigma^2 = \mathbb{V}[X]$ and $x_n \sim X$ be n i.i.d. realizations of X. The empirical mean built on n i.i.d. realizations is defined as

$$\mu_n = \frac{1}{n} \sum_{i=1}^n x_i$$

Understanding the tail probabilities

How accurately is the empirical estimate $\hat{\mu}$ approximating μ based on a set of samples?

Goals:

- lacksquare investigate tail probabilities of $\hat{\mu}-\mu$
- lacksquare derive bounds on $\mathbb{P}(|\hat{\mu} \mu| \geq \epsilon)$

Subgaussian Random Variables

Subgaussianity

A random variable X is σ -subgaussian if for all $\lambda \in \mathbb{R}$, it holds that

$$\mathbb{E}[\exp(\lambda X)] \le \exp\left(\lambda^2 \sigma^2 / 2\right)$$

Theorem: If X is σ -subgaussian, then for any $\epsilon \geq 0$

$$\mathbb{P}(X \ge \epsilon) \le \exp\left(-\frac{\epsilon^2}{2\sigma^2}\right)$$

Proof: Let $\lambda > 0$, then

$$\begin{split} \mathbb{P}(X \geq \epsilon) &= \mathbb{P}(\exp(\lambda X) \geq \exp(\lambda \epsilon)) \\ &\leq \mathbb{E}[\exp(\lambda X)] \exp(-\lambda \epsilon) \quad \text{(Markov's inequality)} \\ &\leq \exp(0.5\lambda^2\sigma^2 - \lambda \epsilon) \quad \text{(subgaussianity)} \\ &= \exp(-0.5\epsilon^2/\sigma^2) \quad \text{(choose } \lambda = \epsilon/\sigma^2) \end{split}$$

Confidence bounds

Corollary: Let $X_i - \mu$ be independent and σ -subgaussian for all i. Then

$$\mathbb{P}(\hat{\mu} \geq \mu + \epsilon) \leq \underbrace{\exp\left(-\frac{n\epsilon^2}{2\sigma^2}\right)}_{\delta}$$

$$\mathbb{P}(\hat{\mu} \le \mu - \epsilon) \le \underbrace{\exp\left(-\frac{n\epsilon^2}{2\sigma^2}\right)}_{\delta}$$

for any $\epsilon \geq 0$.

Then we have

$$\hat{\mu} - \underbrace{\sqrt{\frac{2\sigma^2\log(1/\delta)}{n}}}_{\epsilon} \le \mu \le \hat{\mu} + \underbrace{\sqrt{\frac{2\sigma^2\log(1/\delta)}{n}}}_{\epsilon} \tag{16}$$

with probability at least $1-\delta$

Monte-Carlo Approximation of a Mean

- Unbiased estimator: $\mathbb{E}[\mu_n] = \mu$ (and $\mathbb{V}[\mu_n] = \frac{\mathbb{V}[X]}{n}$)
- Weak law of large numbers: $\mu_n \stackrel{P}{\longrightarrow} \mu$
- Strong law of large numbers: $\mu_n \xrightarrow{a.s.} \mu$
- Central limit theorem (CLT): $\sqrt{n}(\mu_n \mu) \stackrel{D}{\longrightarrow} \mathcal{N}(0, \mathbb{V}[X])$
- Finite sample guarantee:

$$\mathbb{P}\Big[\left|\frac{1}{n}\sum_{t=1}^{n}X_{t}-\mathbb{E}[X_{1}]\right|>\epsilon\Big]\leq 2\exp\Big(-\frac{2n\epsilon^{2}}{(b-a)^{2}}\Big) \qquad (17)$$

Definition: The empirical variance is defined by

$$s_n^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \bar{x}_n)^2$$
 (18)

Note: we will also use an analog notation for the random variables:

$$S_n^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X}_n)^2$$
 (19)

Proposition: Let X_1, \ldots, X_n be independent and identical random variables with $\mathbb{E}[X_i] = \mu$ and $Var[X_i] = \sigma^2$. Then

$$\mathbb{E}[S_n^2] = \sigma^2 \tag{20}$$

Definition: The empirical variance is defined by

$$s_n^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \bar{x}_n)^2$$
 (21)

Note: we will also use an analog notation for the random variables:

$$S_n^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X}_n)^2$$
 (22)

Proposition: Let X_1, \ldots, X_n be independent and identical random variables. Then

$$S_n^2 = \frac{1}{n-1} \left(\left(\sum_{i=1}^n X_i^2 \right) - n \bar{X}_n^2 \right) \tag{23}$$

Proposition: Let X_1, \ldots, X_n be independent and identical random variables with $\mathbb{E}[X_i] = \mu$ and $Var[X_i] = \sigma^2$. Then

$$\mathbb{E}[S_n^2] = \sigma^2 \tag{24}$$

Empirical standard deviation

Def: The empirical standard deviation is defined by

$$s_n = \sqrt{s_n^2} = \sqrt{\frac{1}{n-1} \sum_{i=1}^n (x_i - \bar{x}_n)^2}$$
 (25)

Order statistic

Def: Let $(x_1, \ldots, x_n) \in \mathbb{R}^n$ be a sample set. One can order the elements in an increasing manner:

$$x_{(1)} \le x_{(2)} \le \dots \le x_{(n)}$$
 (26)

Then $x_{(i)}$ is referred to as the i-th order statistic of the sample set.

Sample median

Def: The sample median of a set of samples if given by

$$\mathsf{Med}_n = \mathsf{Med}_n(x_1, \dots, x_n) = \begin{cases} x_{\left(\frac{n+1}{2}\right)} & n \ uneven \\ \frac{1}{2} \left(x_{\left(\frac{n}{2}\right)} + x_{\left(\frac{n}{2}+1\right)}\right) & n \ \mathsf{even} \end{cases}$$

Then $x_{(i)}$ is referred to as the i-th order statistic of the sample set.

Truncated mean

Def: The truncated mean samples $(x_1, \ldots, x_n) \in \mathbb{R}^n$ is defined by

$$\frac{1}{n-2k}\sum_{i=k+1}^{n-k}x_{(i)}$$

Empirische α -Quantile

Def: Let $(x_1, \ldots, x_n) \in \mathbb{R}^n$ be a set of samples and $\alpha \in (0, 1)$. The empirical α Quantil is defined by

$$q_{\alpha} = \begin{cases} x_{\lfloor n\alpha \rfloor + 1} & \text{falls } n\alpha \notin \mathbb{N} \\ \frac{1}{2} (x_{\lfloor n\alpha \rfloor} + x_{\lfloor n\alpha \rfloor + 1}) & \text{falls } n\alpha \in \mathbb{N} \end{cases}$$