Assignment 9

True/False questions, not to turn in:

- The order of an element modulo n is always 1 or an even number.
- Let p > 2 be a prime. A polynomial of odd degree over \mathbb{Z}_p necessarily has a root.
- If a polynomial f(x) with integer coefficients has no solutions modulo a prime p, then it also has no solution modulo other primes.
- If \bar{a} is a primitive root modulo a prime p, then \bar{a} is also a primitive root modulo other primes.
- If $\bar{a} = \bar{b}^2$ then a cannot be a primitive root.

Questions to turn in:

- 1. Find a primitive root modulo p=53 using the techniques we learned in class. Use it to find at least 2 more primitive roots.
- 2. In normal calculus we have the formula: $\log_a(c) = \frac{\log_b(c)}{\log_b(a)}$. Is the same true when discussing discrete logarithms in \mathbb{Z}_p ? i.e. when a, b are primitive roots modulo p, and \bar{c} is a nonzero element, is it the case that $\log_b(c) = \log_a(c) \log_b(a)$? Either prove or provide a counterexample.
- 3. Suppose that $f: \mathbb{Z}_p^* \to \mathbb{Z}_{p-1}$ is a well-defined, 1-1 function from the set of nonzero residues modulo p to the set of residues modulo p-1 that has the property that f(xy) = f(x) + f(y) for all $x, y \in \mathbb{Z}_p^*$. Show that it is in fact a discrete logarithm function for some primitive root. (All discrete logarithms would have those properties). Here are some steps to help you:
 - Show there must be an a such that f(a) = 1.
 - Show that a is a primitive root, i.e. that the order of a is p-1. The function f and its properties can help you with that.
 - Show that f equals the discrete logarithm with base a.
- 4. Illustrate the Diffie-Hellman protocol for p=53, using the primitive root you found in question 1. You will need to use two randomly selected numbers between 1 and 51=53-2, use the numbers 10 and 14. What is the secret shared key in this instance, and what are the messages that Alice and Bob exchange?
- 5. According to our theory, the polynomial $x^{13} 1$ would have exactly 13 roots in \mathbb{Z}_{53} (make sure you understand why). In other words, there are exactly 13 elements in \mathbb{Z}_{53} such that $x^{13} = 1$. Find those elements. Here are some steps to help you:
 - Find one such element that is not 1. Our technique for finding a primitive root should help.
 - Try powers of that element. Explain why they would also have this property.