Analysis Stand Features

AJ Perez-Luque (@ajpelu) 2018 Jan

Prepare Data

• Two datasets: focal tree and competence

```
# Compute diameter (mm)
tree <- tree %>%
  mutate(dn_mm = (perim_mm / pi))
### - old code 4 sites
# Set levels of eleveation
# sj_lowcode <- paste0('A', str_pad(1:10, 2, pad='0'))
# sj_highcode <- paste0('A', 11:20)
# ca_lowcode <- c(pasteO('B', str_pad(1:10, 2, pad='0')),
              paste0('B', 26:30))
# ca_highcode <- paste0('B', 11:25)
# tree <- tree %>%
   mutate(elevF = ifelse(id_focal %in% sj_lowcode, 'Low',
                          ifelse(id_focal %in% sj_highcode, 'High',
#
#
                                 ifelse(id_focal %in% ca_lowcode, 'Low', 'High')))) %>%
  mutate(site = pasteO(loc, '_', elevF))
#
#
#
sj_code <- paste0('A', str_pad(1:20, 2, pad='0'))</pre>
ca_lowcode <- c(paste0('B', str_pad(1:10, 2, pad='0')), paste0('B', 26:30))</pre>
ca_highcode <- paste0('B', 11:25)</pre>
tree <- tree %>% mutate(
  site = as.factor(case_when(
    id_focal %in% sj_code ~ "sj",
    id_focal %in% ca_highcode ~ "caH",
    id_focal %in% ca_lowcode ~ "caL")))
# Get only focal trees
ft <- tree %>%
  filter(sp=='Focal') %>%
  filter(id_focal!='Fresno')
# Get only no focal trees
nft <- tree %>%
 filter(sp!='Focal')
```

General Variables

Numbers of focal trees by site

```
general_var <- ft %>% group_by(site) %>% count()
general_var %>% kable
```

 $\begin{array}{c|c} \underline{\text{site}} & \underline{n} \\ \hline \\ \underline{\text{caH}} & 15 \\ \underline{\text{caL}} & 15 \\ \underline{\text{sj}} & 20 \\ \end{array}$

Spatial Info

Coordinates of the centroid for each site

```
## Get coordinates of spatial data
sp_ca <- as.data.frame(field_work_ca) %>%
    dplyr::select(ele, name, lat = coords.x2, long = coords.x1)

sp_sj <- as.data.frame(field_work_sj) %>%
    dplyr::select(ele, name, lat = coords.x2, long = coords.x1)

sp_sites <- rbind(sp_sj, sp_ca) %>%
    mutate(site = as.factor(case_when(
        name %in% sj_code ~ "sj",
        name %in% ca_highcode ~ "caH",
        name %in% ca_lowcode ~ "caL")))

coord_sites <- sp_sites %>%
    group_by(site) %>%
    dplyr::summarise(lat_m = mean(lat), long_m = mean(long))

coord_sites %>% kable()
```

site	lat_m	long_m
caH	36.96613	-3.420703
caL	36.95645	-3.424107
sj	37.13121	-3.374908

```
# old code
#
#
#
#
# Add code site and get centroid (see # http://rspatial.org/analysis/rst/8-pointpat.html)
# sp_ca <- sp_ca %>%
# mutate(loc = 'CA',
#
```

```
#
           elevF = ifelse(name %in% ca_lowcode, 'Low', 'High'),
           site = pasteO(loc, '_', elevF))
#
#
# coord_ca <- sp_ca %>%
#
  group_by(site) %>%
#
   summarise(lat_m = mean(lat),
#
              long_m = mean(long)
#
# # plot(sp_ca$long, sp_ca$lat, pch=19, col='gray')
# # points(coord_ca$long_m, coord_ca$lat_m, pch=19, col='blue')
# sp_sj <- sp_sj %>%
   mutate(loc = 'SJ',
#
           elevF = ifelse(name %in% sj_lowcode, 'Low', 'High'),
#
           site = pasteO(loc, '_', elevF))
# coord_sj <- sp_sj %>%
# group_by(site) %>%
#
  summarise(lat_m = mean(lat),
              long_m = mean(long)
#
# coords_sites <- coord_sj %>% rbind(coord_ca)
# #plot(sp_sj$long, sp_sj$lat, pch=19, col='gray')
# #points(coord_sj$long_m, coord_sj$lat_m, pch=19, col='blue')
# coords_sites %>% kable()
```

Competition data

- Read data
- Create a custom function to compare between sites (aov & post hoc)
- Export data into text files (see /out/anovas_competition/)

Distance-Independet Indices

Basal Area

Table 3: Mean values (ba)

site	mean	sd	se	min	max	tukey	variable
caH	1.229	0.7637	0.1972	0.0118	2.817	b	ba
caL	0.5661	0.2235	0.0577	0.2512	0.8633	a	ba
sj	0.3658	0.1717	0.0384	0.1205	0.7658	a	ba

Table 4: ANOVA table (ba)

term	df	sumsq	meansq	statistic	p.value
site Residuals	2 47	6.696 9.424	3.348 0.2005	16.7	0

Stand Density

Table 5: Mean values (std)

site	mean	sd	se	min	max	tukey	variable
caH	348	147.1	37.98	63.66	541.1	a	std
caL	409.6	226	58.35	159.2	1050	a	std
sj	339	130.3	29.14	127.3	636.6	a	std

Table 6: ANOVA table (std)

term	df	sumsq	meansq	statistic	p.value
site Residuals	2 47	47401 1340699	23701 28526	0.8309	0.442

Plot Density

Table 7: Mean values (pd)

site	mean	sd	se	min	max	tukey	variable
caH	0.0348	0.0147	0.0038	0.0064	0.0541	a	pd
caL	0.041	0.0226	0.0058	0.0159	0.105	a	pd
sj	0.0339	0.013	0.0029	0.0127	0.0637	a	pd

Table 8: ANOVA table (pd)

term	df	sumsq	meansq	statistic	p.value
site Residuals	2 47	$0.00047 \\ 0.01341$	0.00024 0.00029	0.8309	0.442

Number of competitors within r meters (10 m)

Table 9: Mean values (n_competitors)

site	mean	sd	se	min	max	tukey	variable
caH	10.93	4.621	1.193	2	17	a	n _competitors
caL	12.87	7.1	1.833	5	33	a	$n_competitors$
sj	10.65	4.095	0.9156	4	20	a	n_competitors

Table 10: ANOVA table (n_competitors)

term	df	sumsq	meansq	statistic	p.value
site Residuals	2 47	46.78 1323	23.39 28.15	0.8309	0.442

Number of competitors within r meters (10 m) such that $\theta = 1$

Table 11: Mean values (n_competitors_higher)

site	mean	sd	se	min	max	tukey	variable
caH	1.2	1.474	0.3805	0	4	a	n_competitors_higher
caL	0.6667	0.8165	0.2108	0	2	a	$n_competitors_higher$
sj	0.5	0.6882	0.1539	0	2	a	$n_competitors_higher$

Table 12: ANOVA table (n_competitors_higher)

term	df	sumsq	meansq	statistic	p.value
site Residuals	2 47	$4.387 \\ 48.73$	2.193 1.037	2.115	0.1319

Sum of size of trees within r meters (10 m)

Table 13: Mean values (sum_sizes)

site n	nean	sd	se	min	max	tukey	variable
caL 2	.374 .549 .077		0.373 0.2771 0.1936	0.1735 1.275 0.8324	6.201 5.28 4.269	b ab a	sum_sizes sum_sizes sum_sizes

Table 14: ANOVA table (sum_sizes)

term	df	sumsq	meansq	statistic	p.value
site Residuals	2 47	$14.5 \\ 59.58$	7.249 1.268	5.718	0.00599

Size ratio

Table 15: Mean values (sr)

site	mean	sd	se	min	max	tukey	variable
caH	0.2153	0.1957	0.0505	0.0794	0.876	a	sr
caL	0.1705	0.0682	0.0176	0.0648	0.3309	a	sr
sj	0.1512	0.0643	0.0144	0.0662	0.2961	a	sr

Table 16: ANOVA table (sr)

term	df	sumsq	meansq	statistic	p.value
site Residuals	2 47	0.03592 0.6797	0.01796 0.01446	1.242	0.2982

Distance-Dependet Indices

Distance to nearest tree

Table 17: Mean values (dnn)

site	mean	sd	se	min	max	tukey	variable
caH	3.412	1.859	0.4801	0.88	6.75	a	dnn
caL	3.123	1.308	0.3377	1.44	5.53	a	dnn
sj	2.4	1.328	0.2969	0.67	4.99	a	dnn

Table 18: ANOVA table (dnn)

term	df	sumsq	meansq	statistic	p.value
site Residuals	2 47	9.665 105.8	4.833 2.252	2.146	0.1283

Crowding

Table 19: Mean values (crowding)

site	mean	sd	se	min	max	tukey	variable
caH	0.7169	0.4719	0.1219	0.0215	1.64	a	crowding
caL	0.4818	0.1844	0.0476	0.2535	0.9069	a	crowding
$_{ m sj}$	0.4681	0.2521	0.0564	0.1922	1.026	a	crowding

Table 20: ANOVA table (crowding)

term	df	sumsq	meansq	statistic	p.value
site Residuals	2 47	0.6212 4.802	$0.3106 \\ 0.1022$	3.04	0.05732

Lorimer

Table 21: Mean values (lorimer)

site	mean	sd	se	min	max	tukey	variable
caH	7.664	4.711	1.216	0.1569	18.62	a	lorimer

site	mean	sd	se	min	max	tukey	variable
caL	7.779	3.937	1.017	2.749	18.51	a	lorimer
$_{ m sj}$	9.345	4.069	0.91	3.796	19.29	\mathbf{a}	lorimer

Table 22: ANOVA table (lorimer)

term	df	sumsq	meansq	statistic	p.value
site Residuals	2 47	31.72 842.3	15.86 17.92	0.8849	0.4195

Negative Exponential size ratio

Table 23: Mean values (nesr)

site	mean	sd	se	min	max	tukey	variable
caH	0.0586	0.085	0.0219	0	0.2509	a	nesr
caL	0.0348	0.0325	0.0084	0.0013	0.1035	\mathbf{a}	nesr
sj	0.0771	0.0946	0.0211	0.0034	0.3422	a	nesr

Table 24: ANOVA table (nesr)

term	df	sumsq	meansq	statistic	p.value
site Residuals	2 47	0.01534 0.2858	0.00767 0.00608	1.261	0.2927

Negative Exponential Weighted size ratio

Table 25: Mean values (newsr)

site	mean	sd	se	min	max	tukey	variable
caH	0.4838	0.6224	0.1607	9e-04	1.681	a	newsr
caL	0.1792	0.2233	0.0576	2e-04	0.7879	a	newsr
sj	0.3965	0.6886	0.154	5e-04	2.57	\mathbf{a}	newsr

Table 26: ANOVA table (newsr)

term	df	sumsq	meansq	statistic	p.value
site Residuals	$\begin{array}{c} 2\\47\end{array}$	0.7463 15.13	$0.3731 \\ 0.3219$	1.159	0.3226

Size ratio proportional to distance

Table 27: Mean values (srd)

site	mean	sd	se	min	max	tukey	variable
caH	0.9085	0.629	0.1624	0.0156	2.379	a	srd
caL	0.8896	0.4385	0.1132	0.3213	2.06	a	srd
sj	1.111	0.5199	0.1163	0.4794	2.247	a	srd

Table 28: ANOVA table (srd)

term	df	sumsq	meansq	statistic	p.value
site Residuals	2 47	0.5441 13.37	0.272 0.2844	0.9565	0.3916

Size difference proportional to distance

Table 29: Mean values (sdd)

site	mean	sd	se	min	max	tukey	variable
caH	-0.4931	0.4018	0.1037	-1.226	-0.0625	a	sdd
caL	-0.4143	0.2291	0.0592	-1.022	-0.0853	ab	sdd
sj	-0.2091	0.0972	0.0217	-0.4064	-0.0826	b	sdd

Table 30: ANOVA table (sdd)

term	df	sumsq	meansq	statistic	p.value
site Residuals	2 47	$0.7649 \\ 3.175$	$0.3825 \\ 0.06755$	5.662	0.00626

Topographic data

• Read data

```
# Read topo data
topo <- read.csv(file=paste(di, "/data/topo/topo.csv", sep=""), header=TRUE, sep=',')
# topo <- topo %>%
    mutate(loc = ifelse(str_detect(name, "A"), 'SJ', 'CA'),
#
           elevF = ifelse(name %in% sj_lowcode, 'Low',
                          ifelse(name %in% sj_highcode, 'High',
#
                                ifelse(name %in% ca_lowcode, 'Low', 'High')))) %>%
#
  mutate(site = pasteO(loc, '_', elevF)) %>%
#
#
   mutate(site = as.factor(site),
#
          loc = as.factor(loc),
           elevF = as.factor(elevF))
topo <- topo %>%
mutate(site = as.factor(case_when(
```

```
name %in% sj_code ~ "sj",
name %in% ca_highcode ~ "caH",
name %in% ca_lowcode ~ "caL")))
```

• Compare data and export data into text files (see /out/anovas_topo/)

Elevation

Table 31: Mean values (mde)

site	mean	sd	se	min	max	tukey	variable
caH	1865	12.14	3.135	1846	1884	c	mde
caL	1719	21.9	5.655	1691	1751	b	mde
sj	1395	59.68	13.35	1322	1474	a	mde

Table 32: ANOVA table (mde)

term	df	sumsq	meansq	statistic	p.value
site Residuals	2 47	2044877 76459	1022439 1627	628.5	0

Slope

Table 33: Mean values (slope)

site	mean	sd	se	min	max	tukey	variable
caH	12.11	3.275	0.8457	6.853	18.23	a	slope
caL	12.86	2.984	0.7705	8.669	18.04	a	slope
sj	27.33	5.593	1.251	16.88	34.27	b	slope

Table 34: ANOVA table (slope)

term	df	sumsq	meansq	statistic	p.value
site	2	2647	1323	71.57	0
Residuals	47	869.1	18.49		

Focal tree summary

```
# Get vector with variables
variables <- c('dn','h')</pre>
for (i in variables){
  # apply comparison
  out_compara <- compara(df=ft_sel, mivariable = i)</pre>
  out_name <- paste0('aov_', i)</pre>
  assign(out_name, out_compara)
}
# Loop to export into txt files (see ./out/anovas_ft ... )
for (i in variables){
  out <- get(paste0('aov_', i))</pre>
  file_out <- file(paste0(di,'out/anovas_ft/aov_', i, '.txt'), "w")</pre>
  sink(file_out)
  cat("MODEL \n")
  print(out$mymodel)
  cat("\n")
  cat("MODEL pretty \n")
  print(out$tm)
  cat("\n")
  cat("POST HOC \n")
  print(out$mymult)
  cat("\n")
  cat("SUMMARY VALUES \n")
  print(as.data.frame(out$summ_comparison))
  cat("\n")
  while (sink.number()>0) sink()
  # close(file_out)
}
while (sink.number()>0) sink()
```

dn Focal tree

Table 35: Mean values (dn)

site	mean	sd	se	min	max	tukey	variable
caH	69.75	20.51	5.297	44.56	122.5	c	dn

site	mean	sd	se	min	max	tukey	variable
caL	45.9	8.6	2.221	35.97	63.66	b	dn
sj	31.86	3.728	0.8335	26.42	39.79	a	dn

Table 36: ANOVA table (dn)

term	df	sumsq	meansq	statistic	p.value
site Residuals	2 47	12356 7191	6178 153	40.38	0

height Focal tree

Table 37: Mean values (h)

site	mean	sd	se	min	max	tukey	variable
caH	15.42	1.784	0.4606	11.9	18	b	h
caL	12.61	1.575	0.4065	9.5	14.7	a	h
sj	11.81	2.304	0.5153	5.7	16.2	a	h

Table 38: ANOVA table (h)

term	df	sumsq	meansq	statistic	p.value
site Residuals	2 47	117.4 180.1	58.68 3.833	15.31	1e-05

```
# Join all data and export as table

# Get name of variables
variables <- compe %>% dplyr::select(ba:dnn) %>% names() %>% rbind()

# Add topo and focal tree variables
nombres <- c(variables, 'mde','slope', 'dn', 'h')

out <- c()

for (i in nombres){
    # name of aov object
    aov_name <- paste0('aov_',i)
    # get aov_object
    aux <- get(aov_name)
    # get summ comparison dataframe
    aux2 <- aux$summ_comparison
    out <- rbind(out, aux2)
}

out2 <- out %>% dplyr::select(site, mean, sd, tukey, mivar = variable)
```

```
# See this solution
# http://stackoverflow.com/questions/39066811/long-to-wide-with-dplyr
# http://garrettgman.github.io/tidying/
out3 <- gather(out2, variable, value, mean, sd, tukey) %>%
  unite(var, variable, site) %>%
  spread(var, value, convert=TRUE)
# out4 <- out3 %>%
   transmute(variables = mivar,
#
              CA_High_m = round(mean_CA_High, 3),
#
              CA\_High\_sd = round(sd\_CA\_High, 3),
#
              CA_High_l = tukey_CA_High,
#
              CA_Low_m = round(mean_CA_Low, 3),
#
              CA\_Low\_sd = round(sd\_CA\_Low, 3),
#
              CA\_Low\_l = tukey\_CA\_Low,
#
              SJ_High_m = round(mean_SJ_High, 3),
#
              SJ_High_sd = round(sd_SJ_High, 3),
#
              SJ_High_l = tukey_SJ_High,
#
              SJ_Low_m = round(mean_SJ_Low, 3),
#
              SJ_Low_sd = round(sd_SJ_Low, 3),
#
              SJ_Low_l = tukey_SJ_Low)
out4 <- out3 %>%
  transmute(variables = mivar,
            caH_m = round(mean_caH, 3),
            caH_sd = round(sd_caH, 3),
            caH_1 = tukey_caH,
            caL_m = round(mean_caL, 3),
            caL_sd = round(sd_caL, 3),
            caL_1 = tukey_caL,
            sj_m = round(mean_sj, 3),
            sj_sd = round(sd_sj, 3),
            sj_1 = tukey_sj)
# Export data
# write.csv(out4, file=paste(di, "data/proto_tables/site_features.csv", sep=""), row.names = FALSE)
write.csv(out4, file=paste(di, "data/competence/resumen_medias_indices_competencia.csv", sep=""), row.n
pander(out4, caption='Summary Values')
```

Table 39: Summary Values (continued below)

variables	caH_m	caH_sd	caH_l	caL_m	caL_sd	caL_l	sj_m
ba	1.229	0.764	b	0.566	0.223	a	0.366
crowding	0.717	0.472	\mathbf{a}	0.482	0.184	\mathbf{a}	0.468
dn	69.75	20.51	\mathbf{c}	45.9	8.6	b	31.86
dnn	3.412	1.859	\mathbf{a}	3.123	1.308	\mathbf{a}	2.4
h	15.42	1.784	b	12.61	1.575	\mathbf{a}	11.81
lorimer	7.664	4.711	\mathbf{a}	7.779	3.937	\mathbf{a}	9.345
mde	1865	12.14	\mathbf{c}	1719	21.9	b	1395
n_competitors	10.93	4.621	a	12.87	7.1	\mathbf{a}	10.65

caH_m	caH_sd	caH_l	caL_m	caL_sd	caL_l	sj_m
1.2	1.474	a	0.667	0.816	a	0.5
0.059	0.085	a	0.035	0.032	a	0.077
0.484	0.622	a	0.179	0.223	a	0.397
0.035	0.015	a	0.041	0.023	a	0.034
-0.493	0.402	a	-0.414	0.229	ab	-0.209
12.11	3.275	a	12.86	2.984	a	27.32
0.215	0.196	a	0.171	0.068	a	0.151
0.908	0.629	a	0.89	0.438	a	1.111
348	147.1	a	409.6	226	a	339
3.374	1.444	b	2.549	1.073	ab	2.077
	1.2 0.059 0.484 0.035 -0.493 12.11 0.215 0.908 348	1.2 1.474 0.059 0.085 0.484 0.622 0.035 0.015 -0.493 0.402 12.11 3.275 0.215 0.196 0.908 0.629 348 147.1	1.2 1.474 a 0.059 0.085 a 0.484 0.622 a 0.035 0.015 a -0.493 0.402 a 12.11 3.275 a 0.215 0.196 a 0.908 0.629 a 348 147.1 a	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

sj sd	sj_l
	~3
0.172	a
0.252	a
3.728	a
1.328	a
2.304	\mathbf{a}
4.07	a
59.68	\mathbf{a}
4.095	a
0.688	a
0.095	a
0.689	a
0.013	a
0.097	b
5.593	b
0.064	a
0.52	a
130.3	\mathbf{a}
0.866	a

General topo of the sites

```
topo_site <- topo %>% group_by(site) %>% summarise(
    elev_mean = mean(mde),
    elev_min = min(mde),
    elev_max = max(mde),
    slope_mean = mean(slope)
)

site_general <- general_var %>%
    left_join(coord_sites, by='site') %>%
    left_join(topo_site, by='site')
write.csv(site_general, file=paste(di, "data/sites_summary/site_general.csv", sep=""), row.names = FALS
```