

Engenharia de Computação Computação Evolucionista Relatório 4

Problem Definitions and Evaluation Criteria for the CEC 2020-MMO

Professor: Samuel Costa Alves Basilio.
Relator: Lorenzo Jordani Bertozzi Luz.

Leopoldina, MG

Em problemas de otimização multiobjetivo, podem existir dois ou mais Pareto globais ou locais conjuntos ótimos (PSs) e alguns deles podem corresponder à mesma Frente de Pareto (PF). Estes os problemas são definidos como problemas de otimização multiobjetivo multimodal (MMOPs). Indiscutivelmente, encontrar um desses vários PSs pode ser suficiente para obter uma solução aceitável para alguns problemas. No entanto, a não identificação de mais de um dos PSs pode impedir a decisão do fabricante de considerar opções de solução que poderiam trazer melhor desempenho. Recentemente muitos pesquisadores propuseram diferentes algoritmos de otimização multi-objetivo multimodais (MMO), portanto, há definitivamente uma necessidade de avaliar esses algoritmos de forma mais sistemática de maneira em uma plataforma de concorrência aberta e justa.

No conjunto de testes MMO do CEC'2020, um conjunto de problemas de teste MMO com diferentes personagens são projetados, tais como problemas com diferentes formas de PSs e PFs, coexistência de PSs, número escalável de PSs, variáveis de decisão e objetivos. Além disso, foi possível uma avaliação justa e adequada critérios de avaliação e dados de referência para avaliar o desempenho de diferentes MMO Algoritmos.

I Introdução aos problemas testes

I.I Algumas definições

Dado um problema de otimização multiobjetivo da forma:

$$\min f(x) = [f_1(x), f_2(x), \dots, f_n(x)]$$

uma solução viável x_1 domina outra solução viável x_2 se as seguintes condições forem satisfeitas:

1. x_1 não é pior que x_2 em todos os objetivos:

$$f_i(x_1) \le f_i(x_2), \quad \forall i \in [1, n]$$

2. x_1 é estritamente melhor que x_2 em pelo menos um objetivo:

$$f_m(x_1) < f_m(x_2)$$
, para algum $m \in [1, n]$

Uma solução que não é dominada por nenhuma outra é chamada de **solução não dominada**. O conjunto de todas as soluções não dominadas forma o **conjunto Pareto ótimo** (PS), e o conjunto correspondente no espaço objetivo é chamado de **fronteira de Pareto** (PF).

Para uma solução x pertencente a um conjunto P_L , se não existir uma solução vizinha y tal que

CEFET-MG.

$$||y - x||_{\infty} < \sigma$$

(onde σ é um pequeno valor positivo) e que domine qualquer solução em P_L , então P_L é chamado de **conjunto Pareto ótimo local**.

Para uma solução pertencente a um conjunto P_G , se não existir nenhuma outra solução dominando qualquer solução em P_G , então P_G é chamado de **conjunto Pareto ótimo global**.

- Fronteira de Pareto local (Local PF): O conjunto de todos os vetores no espaço objetivo correspondentes ao Local PS.
- Fronteira de Pareto global (Global PF): O conjunto de todos os vetores no espaço objetivo correspondentes ao Global PS.

Em problemas multiobjetivo multimodais (MMO), podem existir múltiplos conjuntos ótimos globais e locais. Um problema é classificado como MMO se satisfizer pelo menos uma das condições:

- 1. Possui pelo menos uma solução Pareto ótima local.
- 2. Possui pelo menos dois conjuntos Pareto ótimos globais correspondendo ao mesmo ponto na fronteira de Pareto.

O problema é transformado no seguinte formato:

Minimizar:
$$f(\mathbf{x})$$
, $\mathbf{x} = [x_1, x_2, \dots, x_n]$

sujeito a:
$$g_i(\mathbf{x}) \leq 0$$
, $i = 1, \dots, q$
 $h_j(\mathbf{x}) = 0$, $j = q + 1, \dots, m$

Normalmente, as restrições de igualdade são transformadas em desigualdades da seguinte forma:

$$|h_j(\mathbf{x})| - \epsilon \le 0$$
, para $j = q + 1, \dots, m$

Uma solução \mathbf{x} é considerada viável se:

$$g_i(\mathbf{x}) \le 0$$
, para $i = 1, \dots, q$
 $|h_j(\mathbf{x})| - \epsilon \le 0$, para $j = q + 1, \dots, m$

Nesta sessão especial, o valor de ϵ é definido como 0.0001.

CEFET-MG.

I.II Sumario de problemas para problemas de test

A Tabela I apresenta as características das funções de teste do CEC'2020 MMO. Na última coluna, N_{ops} representa o número total de **conjuntos Pareto ótimos (PS)** a serem obtidos, onde:

$$N_{ops} = N_{global} + N_{local}$$

onde N_{global} é o número de **conjuntos Pareto ótimos globais** e N_{local} é o número de **conjuntos Pareto ótimos locais**. Apenas os problemas **sombreados** requerem a obtenção dos conjuntos locais de Pareto.

No caso do problema MMF12_l, ele possui a mesma equação que o MMF12, mas os dados de referência diferem. Enquanto MMF12 inclui apenas os conjuntos e fronteiras de Pareto globais (PS e PF globais), MMF12_l considera tanto os conjuntos globais quanto locais. Esse mesmo critério se aplica a outros problemas, como MMF10_l, MMF11_l, MMF13_l, MMF15_l e MMF15_a_l.

#	MMO test problem name	Scalable number of variables	Scalable number of objectives	Pareto optima known	Pareto front geometry	Pareto set geometry	Scalable number of Pareto set	$N_{ops}(N_{global} + N_{local})$
18	MMF12_l	X	X	V	Convexo	Não linear	X	1 + 1

Tabela 1: Information and features of the MMO test problems suite

 N_{ops} representa o número de PS a serem obtidos. $N_{ops} = N_{global} + N_{local}$ onde N_{global} representa o número de PS globais que precisam ser obtidos e N_{local} representa o número de PS locais PSs precisam ser obtidos.

I.III Definição do problema MMF12_1

$$\mathbf{Min} \begin{cases} f_1 = x_1 \\ f_2 = g(x_2) \cdot h(f_1, g) \end{cases}$$

CEFET-MG.

Entrega: 31/01/2025

onde g(x) = 2 - exp $\left[-2\log\left(2\right)\left(\frac{x-0.1}{0.8}\right)^2\right]$ sin⁶ (n_pxx) , n_p é o número total de PSs globais e locais, h(f_i, g) = 1 - $\left(\frac{f_i}{g}\right)^2 - \frac{f_i}{g}\sin(2\pi q f_i)$, e q é o número de peças descontínuas em cada PF (PS).

Seu espaço de busca é $x_i \in [0, 1], x_s \in [0, 1].$

Seu PS global são peças descontínuas em $x_2 = \frac{1}{2n_p}$.

Seus PS
s locais $i^{\rm \acute{e}simos}$ são peças descontínuas em

$$x_2 = \frac{1}{2n_p} + \frac{1}{n_p} \cdot (i-1),$$

onde $i=2,3,\ldots,n_p$.. Seu PF global são peças descontínuas em

$$f_2 = g^* \cdot h(f_i, g^*),$$

onde g^* é o ótimo global de g(x).. Seus PFs locais são peças descontínuas em

$$f_2 = g_i^* \cdot h(f_i, g_i^*),$$

onde g_i^* são os ótimos locais de g(x).

Os intervalos das peças descontínuas dependem dos mínimos de $f_2 = g^* \cdot h(f_i, g^*)$.

Quando $n_p=2$, seus PSs e PFs verdadeiros são mostrados na Fig. 11.

Figura 1: The true PSs and PFs of MMF12.

II Critérios de Avaliação

II.I indicadores de performasse

Quatro indicadores de desempenho, o reciprocal of Pareto Sets Proximity (1/PSP), Inverted Generational Distance (IGD) no espaço de decisão (IGDX) [13], o reciprocal of Hypervolume (1/HV) e IGD no espaço objetivo (IGDF) [13] são empregados para comparar os desempenhos de diferentes algoritmos. Dentre os indicadores, 1/PSP e IGDX são utilizados para comparar o desempenho no espaço de decisão, enquanto 1/HV e IGDF são usados para comparar o desempenho em espaço objetivo. Para todos os quatro indicadores, o valor menor significa melhor desempenho.

II.II Performance de método de comparação

Os algoritmos são classificados através dos algoritmos de Friedman de k sobre N problemas de caso. Cada algoritmo é atribuído quatro fileiras de acordo com os quatro indicadores (1/PSP, IGDX, 1/HV e IGDF). O valor médio das quatro classificações atua como a pontuação final. O algoritmo com a menor pontuação ocupa o primeiro lugar.

II.III Configurações Experimentais

- Número de execuções: 21 vezes
- Tamanho da população: $200 \times N_{ops}$
- Número máximo de avaliações de aptidão (MaxFES): $10000 \times N_{ops}$

Onde: N_{var} representa o número de variáveis e N_{ops} significa o número de PS locais e globais a serem obtidos.

III Resultados

foram fornecidos nas seguintes tabelas os melhores, piores, média, mediana e valores de desvio padrão de cada valor de indicador para as 21 corridas para cada um dos metodos.

CEFET-MG.

Matriz de Informação para 1/PSP

Run	1/PSP
Run 1	3.956616
Run 2	3.960923
Run 3	3.95944
Run 4	3.958157
Run 5	3.954841
Run 6	3.955601
Run 7	3.960889
Run 8	3.953703
Run 9	3.955855
Run 10	3.957256
Run 11	3.955731
Run 12	3.956645
Run 13	3.953191
Run 14	3.955897
Run 15	3.957135
Run 16	3.965535
Run 17	3.957675
Run 18	3.959853
Run 19	3.953717
Run 20	3.95689
Run 21	3.960247
Best	3.953191
Worst	3.965535
Mean	3.957419
Median	3.95689
STD	0.002874

1/PSP (Inverso do Ponto de Set Point):

- A métrica 1/PSP apresenta valores consistentes, com uma média de 3.957419 e um desvio padrão (STD) de 0.002874, indicando uma baixa variabilidade entre as execuções.
- O melhor valor foi 3.953191, e o pior foi 3.965535, mostrando que os resultados estão próximos da média.

CEFET-MG.

Tabela de Resultados - IGDX

Run	IGDX Value
Run 1	0.00403
Run 2	0.00382
Run 3	0.00414
Run 4	0.00399
Run 5	0.00387
Run 6	0.00399
Run 7	0.00382
Run 8	0.00392
Run 9	0.00381
Run 10	0.00401
Run 11	0.00396
Run 12	0.00396
Run 13	0.00397
Run 14	0.00419
Run 15	0.00379
Run 16	0.00429
Run 17	0.00411
Run 18	0.00387
Run 19	0.00403
Run 20	0.00388
Run 21	0.00406
Best	0.00379
Worst	0.00429
Mean	0.00398
Median	0.00397
STD	0.00013

IGDX (Inverted Generational Distance to the X-axis):

- \bullet O IGDX também mostra consistência, com uma média de 0.00398 e um desvio padrão de 0.00013.
- O melhor valor foi 0.00379, e o pior foi 0.00429, indicando que a maioria das execuções está próxima da média.

CEFET-MG.

Tabela de Resultados - 1/HV

Run	1/HV
Run 1	1.09587
Run 2	1.095928
Run 3	1.095889
Run 4	1.095892
Run 5	1.095871
Run 6	1.095919
Run 7	1.095883
Run 8	1.095868
Run 9	1.095874
Run 10	1.095926
Run 11	1.095885
Run 12	1.095886
Run 13	1.095893
Run 14	1.095876
Run 15	1.09587
Run 16	1.095887
Run 17	1.095893
Run 18	1.095921
Run 19	1.095871
Run 20	1.095889
Run 21	1.095899
Best	1.09587
Worst	1.09593
Mean	1.09589
Median	1.09589
STD	0.00002

1/HV (Inverso do Hipervolume):

- \bullet A métrica 1/HV apresenta valores muito próximos, com uma média de 1.09589 e um desvio padrão de 0.00002.
- O melhor valor foi 1.09587, e o pior foi 1.09593, mostrando uma variação mínima entre as execuções.

CEFET-MG.

Matriz de Informação para IGDF

Run	IGDF
Run 1	0.990561
Run 2	0.990394
Run 3	0.990681
Run 4	0.990413
Run 5	0.990514
Run 6	0.984519
Run 7	0.990352
Run 8	0.990377
Run 9	0.99038
Run 10	0.990205
Run 11	0.9905
Run 12	0.990184
Run 13	0.99071
Run 14	0.990075
Run 15	0.990971
Run 16	0.98886
Run 17	0.990324
Run 18	0.990211
Run 19	0.990399
Run 20	0.990235
Run 21	0.990421
Best	0.98452
Worst	0.99097
Mean	0.99006
Median	0.99038
STD	0.00130

IGDF (Inverted Generational Distance to the Front):

- O IGDF tem uma média de 0.99006 e um desvio padrão de 0.00130.
- O melhor valor foi 0.98452, e o pior foi 0.99097, com uma variação um pouco maior em comparação com as outras métricas, mas ainda dentro de um intervalo aceitável.

CEFET-MG.

Entrega: 31/01/2025

CEFET-MG.

Conclusão IV

Os resultados indicam que as execuções são consistentes e estáveis, com baixa variabilidade entre as métricas avaliadas. A consistência nos valores de 1/PSP, IGDX, 1/HV e IGDF sugere que o método ou algoritmo utilizado é robusto e confiável para as condições testadas. A pequena diferença entre os melhores e piores valores, juntamente com os baixos desvios padrão, reforça a confiabilidade dos resultados obtidos.

\mathbf{V} Referências

- [1] Liang, Jing & Suganthan, Ponnuthurai & Qu, B & Gong, D & Yue, Cai. (2019). Problem Definitions and Evaluation Criteria for the CEC 2020 Special Session on Multimodal Multiobjective Optimization. 10.13140/RG.2.2.31746.02247. .
- [2] Repositório do projeto:https://github.com/LorenzoBertozzi/CEC-2020-MMF12₁