Answer Set Programming with External Sources

Christoph Redl

redl@kr.tuwien.ac.at

1/14

September 4, 2012

ASP-Programs

Rules:

$$a_1 \vee \cdots \vee a_n \leftarrow b_1, \ldots, b_m, \text{ not } b_{m+1}, \ldots, \text{ not } b_n,$$

Rules:

$$a_1 \vee \cdots \vee a_n \leftarrow b_1, \ldots, b_m, \text{ not } b_{m+1}, \ldots, \text{ not } b_n,$$

External atom:

$$\&p[q_1,\ldots,q_k](t_1,\ldots,t_l)$$

$$\mathcal{E}[q_1,\ldots,q_k](t_1,\ldots,t_l)=\mathit{true} \Leftrightarrow f_{\&p}(\mathbf{A},q_1,\ldots,q_k,t_1,\ldots,t_l)=1$$

&rdf

```
 \begin{array}{l} addr(\texttt{http://.../data1.rdf}). \\ addr(\texttt{http://.../data2.rdf}). \\ bel(X,Y) \leftarrow addr(U), \textit{\&rdf}[U](X,Y,Z). \end{array}
```

&rdf

```
\begin{split} & addr(\texttt{http://.../data1.rdf}). \\ & addr(\texttt{http://.../data2.rdf}). \\ & bel(X,Y) \leftarrow addr(U), \textit{\&rdf}[U](X,Y,Z). \end{split}
```

&diff

```
\begin{aligned} dom(X) &\leftarrow & \#int(X). \\ nsel(X) &\leftarrow & dom(X), \&diff[dom, sel](X). \\ sel(X) &\leftarrow & dom(X), \&diff[dom, nsel](X). \\ &\leftarrow & sel(X1), sel(X2), sel(X3), X1 \neq X2, X1 \neq X3, X2 \neq X3. \end{aligned}
```

Translation

Π:

$$p(c_1). dom(c_1). dom(c_2). dom(c_3).$$

 $p(X) \leftarrow dom(X), \∅[p](X).$

Ĥ:

$$\begin{aligned} p(c_1).\ dom(c_1).\ dom(c_2).\ dom(c_3). \\ p(X) \leftarrow dom(X), e_{\∅[p]}(X). \\ e_{\∅[p]}(X) \lor \neg e_{\∅[p]}(X) \leftarrow dom(X). \end{aligned}$$

8 candidates, e.g.:

$$\begin{aligned} &\{\mathbf{T}p(c_1),\mathbf{T}p(c_2),\mathbf{T}dom(c_1),\mathbf{T}dom(c_2),\mathbf{T}dom(c_3),\\ &\mathbf{F}e_{\∅[p]}(c_1),\mathbf{T}e_{\∅[p]}(c_2),\mathbf{F}e_{\∅[p]}(c_3)\} \end{aligned}$$

Conflict-driven SAT/ASP Solving

$$C = \{C_1 : \{\neg a, b\}, C_2 : \{\neg a, c, i\}, C_3 : \{\neg b, \neg c, d\}, C_4 : \{\neg d, e, j\}, C_5 : \{\neg d, e, k\}, C_6 : \{\neg e, \neg f\}, C_7 : \{a, g, \neg l\}, C_8 : \{a, h\}, C_9 : \{\neg g, \neg h, \neg m\}\}$$

Conflict-driven SAT/ASP Solving

$$C = \{C_1 : \{\neg a, b\}, C_2 : \{\neg a, c, i\}, C_3 : \{\neg b, \neg c, d\}, C_4 : \{\neg d, e, j\}, C_5 : \{\neg d, e, k\}, C_6 : \{\neg e, \neg f\}, C_7 : \{a, g, \neg l\}, C_8 : \{a, h\}, C_9 : \{\neg g, \neg h, \neg m\}\}$$

Conflict-driven SAT/ASP Solving

$$C = \{C_1 : \{\neg a, b\}, C_2 : \{\neg a, c, i\}, C_3 : \{\neg b, \neg c, d\}, C_4 : \{\neg d, e, j\}, C_5 : \{\neg d, e, k\}, C_6 : \{\neg e, \neg f\}, C_7 : \{a, g, \neg l\}, C_8 : \{a, h\}, C_9 : \{\neg g, \neg h, \neg m\}\}$$

Conflict-driven SAT/ASP Solving

$$C = \{C_1 : \{\neg a, b\}, C_2 : \{\neg a, c, i\}, C_3 : \{\neg b, \neg c, d\}, C_4 : \{\neg d, e, j\}, C_5 : \{\neg d, e, k\}, \\ C_6 : \{\neg e, \neg f\}, C_7 : \{a, g, \neg l\}, C_8 : \{a, h\}, C_9 : \{\neg g, \neg h, \neg m\}, \\ C_{10} : \{\neg a, i, j, k\}\}$$

General Case

&diff[p,q](X), ext(p, **A**) = {a,b}, ext(q, **A**) = {a,c}
p(a)
$$\land$$
 p(b) \land ¬p(c) \land q(a) \land ¬q(b) \land q(c) \rightarrow e_{&diff[p,q]}(b)
 \Rightarrow {¬p(a), ¬p(b), p(c), ¬q(a), q(b), ¬q(c), e_{&diff[p,q]}(b)}

Monotonicity

Functionality

&concat[ab, c](X)

$$\Rightarrow \{\neg e_{\&concat[ab,c]}(abc), \neg e_{\&concat[ab,c]}(ab)\}$$

Monotonicity

&diff[p,q](X),
$$ext(p, \mathbf{A}) = \{a, b\}, ext(q, \mathbf{A}) = \{a, c\}$$

 $p(a) \land p(b) \land \neg p(c) \land q(a) \land \neg q(b) \land q(c) \rightarrow e_{\&diff[p,q]}(b)$
 $\Rightarrow \{\neg p(a), \neg p(b), p(c), \neg q(a), q(b), \neg q(c), e_{\&diff[p,q]}(b)\}$

Functionality

&concat[ab, c](X)

$$\Rightarrow \{\neg e_{\&concat[ab,c]}(abc), \neg e_{\&concat[ab,c]}(ab)\}$$

Monotonicity

&diff[p,q](X),
$$ext(p, \mathbf{A}) = \{a, b\}$$
, $ext(q, \mathbf{A}) = \{a, c\}$
 $p(a) \land p(b) \land q(a) \land \neg q(b) \land q(c) \rightarrow e_{\&diff[p,q]}(b)$
 $\Rightarrow \{\neg p(a), \neg p(b), \neg q(a), q(b), \neg q(c), e_{\&diff[p,q]}(b)\}$

Functionality

&concat[ab, c](X) $\Rightarrow \{\neg e_{\&concat[ab,c]}(abc), \neg e_{\&concat[ab,c]}(ab)\}$

Evaluation: Minimality Check

Example

$$dom(a).dom(b).$$
 $p(a) \leftarrow dom(a), \&g[p](a).$
 $p(b) \leftarrow dom(b), \&g[p](b).$

&g:

$$\emptyset \to \{b\}, \{a\} \to \{a\}, \{b\} \to \emptyset, \{a,b\} \to \{a,b\}$$

$$\mathbf{A} = \{\mathbf{T}dom(a), \mathbf{T}dom(b), \mathbf{T}p(a)\} \models \Pi$$

But FLP-reduct
$$f\Pi^{\mathbf{A}} = \{r \in \Pi \mid \mathbf{A} \models B(r)\}$$
: $dom(a).dom(b)$.

$$p(a) \leftarrow dom(a), \&g[p](a).$$

$$\mathbf{A}' = \{\mathbf{T}dom(a), \mathbf{T}dom(b)\} \models \hat{f\Pi^{\mathbf{A}}}$$

Evaluation: Minimality Check

Unfounded Sets

$$b \leftarrow a$$
.

$$c \leftarrow b$$

$$a \leftarrow c$$
.

$$b \leftarrow a$$

$$c \leftarrow b$$

a.

Benchmarks

	n	5	6	7	8	9	10	11	12	13		20
AS	explicit	10.9	94.3	_	_	_	_	_	_	_	_	_
	+EBL	4.3	34.8	266.1	_	_	_	_	_	_	_	_
≡	UFS	0.2	0.3	8.0	1.8	4.5	11.9	32.4	92.1	273.9	_	_
	+EBL	0.1	0.1	0.2	0.2	0.3	0.4	0.6	8.0	1.2		11.1
- (0	explicit	0.7	4.3	26.1	163.1	_	_	_	_	_	_	_
AS	+EBL	0.8	4.9	31.1	192.0	_	_	_	_	_	_	_
first	UFS	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.2		0.5
=	+EBL	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1		0.3

Figure: Set Partitioning

Figure: Argumentation

Benchmarks

n	ехр	olicit	ι	JFS check	
	plain	+EBL	plain	+EBL	+UFL
3	8.61	4.68	7.31	2.44	0.50
4	86.55	48.53	80.31	25.98	1.89
5	188.05	142.61	188.10	94.45	4.62
6	209.34	155.81	207.14	152.32	14.39
7	263.98	227.99	264.00	218.94	49.42
8	293.64	209.41	286.38	189.86	124.23
9	_	281.98	_	260.01	190.56
10	_	274.76	_	247.67	219.83

n			all AS			first AS					
"	explicit		UFS			ехр	licit	UFS			
	plain	+EBL	plain	+EBL	+UFL	plain	+EBL	plain	+EBL	+UFL	
3	9.08	6.11	6.29	2.77	0.85	4.01	2.53	3.41	1.31	0.57	
4	89.71	36.28	80.81	12.63	5.27	53.59	16.99	49.56	6.09	1.07	
5	270.10	234.98	268.90	174.23	18.87	208.62	93.29	224.01	32.85	3.90	
6	236.02	203.13	235.55	179.24	65.49	201.84	200.06	201.24	166.04	28.34	
7	276.94	241.27	267.82	231.08	208.47	241.09	78.72	240.72	66.56	16.41	
8	286.61	153.41	282.96	116.89	69.69	201.10	108.29	210.61	103.11	30.98	
9	_	208.92	—	191.46	175.26	240.75	112.08	229.14	76.56	44.73	
10		_	_	289.87	289.95	_	125.18	_	75.24	27.05	

Figure: MCSs

References

Eiter, T., Ianni, G., Schindlauer, R., and Tompits, H. (2005).

A uniform integration of higher-order reasoning and external evaluations in answer-set programming.

In In Proceedings of the 19th International Joint Conference on Artificial Intelligence (IJCAI-05, pages 90–96. Professional Book.

URL:

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.128.8944.

Faber, W. (2005).

Unfounded sets for disjunctive logic programs with arbitrary aggregates.

In In Logic Programming and Nonmonotonic Reasoning, 8th International Conference (LPNMR'05), 2005, pages 40–52. Springer Verlag.

Faber, W., Leone, N., and Pfeifer, G. (2004).

Recursive aggregates in disjunctive logic programs: Semantics and complexity.

In In Proceedings of European Conference on Logics in Artificial Intelligence (JELIA, pages 200–212. Springer.

Gelfond, M. and Lifschitz, V. (1991).

Classical negation in logic programs and disjunctive databases.

New Generation Computing, 9:365-385.

URL: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.56.7150.