IT-Sicherheit

Vertrauen, Zertifikate, PKI

Schlüsselmanagement und Vertrauen

 Schlüssel (Keys) und ihre Verwaltung sind ein besonders sicherheitskritischer Aspekt in jedem kryptographisch gesicherten System

Zwei Kernprobleme

- Private Schlüssel dürfen nicht in falsche Hände geraten
- Man muss sicher sein, den richtigen Schlüssel zu haben
 - wg. Man-in-the-Middle-Angriffe (MITM)
- Mögliche Lösungen
 - Web of Trust
 - Trusted Third Party

Web of Trust

- Die Echtheit von Schlüsseln wird durch ein Netz von gegenseitigen Bestätigungen (Signaturen), kombiniert mit dem individuell zugewiesenen Vertrauen in die Bestätigungen der anderen ("Owner Trust") bestätigt.
 - Schlüssel werden individuell gespeichert ("Key-Rings")
 - Schlüssel werden verifiziert durch Überprüfung von Hashes
 - z.B. PGP, ssh, oder Threema-Messenger (mit QR-Codes)
- Vorteil
 - Vertrauen kann individuell gemanagt werden
- Nachteile
 - Keine authentifizierte Kommunikation mit Unbekannten
 - Viel Sachverstand erforderlich

Trusted Third Party

- Wenn Schlüssel nicht in einem Web of Trust Peer-to-Peer ausgetauscht werden können, verwendet man i.d.R. eine vertrauenswürdige dritte Partei ("Trusted Third Party", TTP)
- Der Grad des Vertrauens kann variieren
 - Beispiel symmetrische Verschlüsselung (Kerberos als TTP)
 - Der TGS kennt jeden Shared Secret Key und kann somit jede Nachricht entschlüsseln
 - Beispiel asymmetrische Verschlüsselung (Public Key-Verfahren)
 - Hier vertraut man der TTP "nur", dass der richtige Public Key bereit gestellt wird, der Private Key ist der TTP i.d.R. nicht bekannt.
- TTPs können auch noch andere Aufgaben übernehmen
 - Time-Stamping-Server, Beweishüter, Datentreuhänder, Zustellungsagent und "vollstreckendes" Organ
 - Vergl. Notar im analogen Leben

Public Key Infrastructure (PKI)

- Was ist PKI?
 - Eine PKI ist eine TTP für die Nutzung von Public-Key Kryptographie
 - Eine Public Key Infrastructure stellt Komponenten und Dienste zur Verfügung, um digitale Zertifikate zu verwalten, d.h.
 - Ausstellen
 - Verteilen
 - Prüfen
 - Zurückziehen

PKI Anwendungen (1)

- Gegenseitige Authentifizierung und Verschlüsselung
 - Web-Dienste
 - HTTPS
 - Authentifizierung von Bürgern für Verwaltungs- und Geschäftszwecke
 - eID (Personalausweis)
 - Benutzer und Geräte
 - Remote User: VPN
 - Internes Netzwerk: 802.1x (LAN, WLAN)
 - 2-Faktor-Authentifizierung (Smart Cards)
- Starke Verschlüsselung
 - Datenträger und Dateien
 - z.B. EFS

PKI Anwendungen (2)

- Sichere E-Mails
 - S/MIME
 - Innerhalb des Unternehmens
 - Kommunikation mit externen Geschäftspartnern
- Signierung von Dokumenten
 - Signaturgesetz: z.B. Rechnungen
 - Intern: z.B. Audit-Logs
- Signierung von Code, Macros, urheberrechtlich geschütztem Material

Digital Signaturen

 Digital Signatur mit einem Public-Key Verfahren und einer Hash-Funktion

Was ist ein Zertifikat?

PKI Komponenten (1)

- Root CA (Certificate Authority)
 - Oberste Instanz der Vertrauenskette
 - Jeder vertraut dieser Instanz
 - Stellt Zertifikate aus
- Subordinate CA
 - CA innerhalb einer mehrstufigen CA-Hierarchie
- Registration Authority (RA)
 - Authentifizierung der zu zertifizierenden Benutzer/Geräte, bevor eine Zertifizierung erfolgen darf
 - Die Stärke der Authentifizierung kann als Klassifizierung für Zertifikate dienen

PKI Komponenten (2)

- Directory
 - Speichert Identitäten und deren öffentliche Schlüssel
- Ggf. Validation Authority
 - Erhält Listen von gesperrten Zertifikaten von CA
 - Beantwortet online Anfragen bei der Überprüfung
- Personal Security Environment
 - Speichert privaten Schlüssel eines Teilnehmers

Prozess der Erstellung eines Zertifikats

Standard: X.509

ITU-T-Standard für eine Public-Key-Infrastruktur

- Seit 1998, aktuell Version 3
- Bestandteile eines Zertifikats

```
Zertifikat
  Version
  Seriennummer
  Algorithmen-ID
  Aussteller
  Gültigkeit
    von
    bis
  Zertifikatinhaber
  Zertifikatinhaber-Schlüsselinformationen
    Public-Key-Algorithmus
    Public Key des Zertifikatinhabers
  Eindeutige ID des Ausstellers (optional)
  Eindeutige ID des Inhabers (optional)
  Erweiterungen
Zertifikat-Signaturalgorithmus
Zertifikat-Signatur
```

In den Erweiterungen
Alles durch die Signatur bestätigt
Alternativer Name (z.B. Email-Adresse)
Zweck (z.B. Server-Authentifikation, Email, CA)
URI der CRL
URI des OCSP-Responders
URI von CP/CPS

Weitere Public-Key Cryptography Standards (PKCS)

PKCS#7

- Cryptographic Message Syntax Standard (RFC 5652)
- Bildet die Basis für S/MIME und wird zum Signieren und/oder Verschlüsseln von Nachrichten einer PKI genutzt.

PKCS#10

- Certification Request Standard (RFC 2986)
- Format der Nachrichten, die zu einer CA gesendet werden, um die Zertifizierung eines Schlüsselpaares zu erfragen.

PKCS#12

- Personal Information Exchange Syntax Standard (RFC 7292)
- Dateiformat, das dazu benutzt wird, private Schlüssel mit dem zugehörigen Zertifikat passwortgeschützt zu speichern.

Zertifizierungspfad

Root CA
Certificate Info

Root Signature

Subordinate CA Certificate Info

Root Signature

Subscriber Certificate Info

SubCA's Signature

Root CA's Private Key

Root CA's Private Key

Subordinate CA's Private Key

Prüfung eines Zertifikates

Vertrauensprüfung

- Vertraut man der Root CA oder explizit einer Subordinate CA
- Steht eine der CAs auf dem Pfad eventuell auf einer Black-List

Gültigkeitszeitraum

- Alle Zertifikate auf dem Pfad müssen noch gültig sein
 - D.h. kein Zertifikat läuft länger als das seiner ausstellenden CA
 - Root-CA haben typische Gültigkeiten von 10-20 Jahren

Zweck

Muss dem intendierten entsprechen

Widerruf

Wurde die Seriennummer in der Zwischenzeit widerrufen

Signaturprüfung

Aller Zertifikate auf dem Pfad

Vertrauen durch vorinstallierte Root CAs

Folie: 17

Zertifizierungsrichtlinien

- Vertrauen soll durch Auditierung der Policy und Prozesse der CA gesichert werden
- CP Certificate Policy
 - Zertifizierungsrichtlinien
- CPS Certification Practise Statement
 - Ausführungsbestimmungen der Zertifizierungsrichtlinien
- Nach RFC 3647
 - Legen die Prozesse der PKI und die zugesicherten Eigenschaften der Zertifikate fest

eIDAS-Verordnung (1)

- electronic IDentification, Authentication and trust Services
 - EU-Verordnung seit 2016
 - https://www.bsi.bund.de/DE/Themen/DigitaleGesellschaft/eIDAS/eIDAS_node.html
 - Somit unmittelbar geltendes Recht in allen 28 EU-Mitgliedstaaten sowie im Europäischen Wirtschaftsraum
- Deutsches Vertrauensdienstegesetz (VDG) ergänzt 2017 die elDAS-Verordnung (EU) Nr. 910/2014
 - löste das alte (und impraktikable) Signaturgesetz (SigG) von 2001 ab
 - bestimmt die Mitwirkungspflichten der Anbieter
 - Erstellung, Überprüfung und Validierung von elektronischen Signaturen
 - legt die zuständige nationale Aufsicht fest
 - Regelt Aufsichten
 - **Bundesnetzagentur**: elektronische Signaturen, Siegel, Zeitstempel und Einschreiben-Zustelldienste
 - **BSI**: Webseiten-Zertifikate

eIDAS-Verordnung (2)

Elektronische Identifizierung

- zur Identifizierung von natürlichen oder juristischen Personen
- keine Harmonisierung von nationalen elD-Systemen
- aber Interoperabilität zwischen den Systemen
- nationalen Systeme k\u00f6nnen bei der Kommission notifiziert werden
- Notifizierung auf freiwillig, aber Anerkennung notifizierter elDs ist verpflichtend
- Vertrauensniveaus "niedrig", "substanziell" und "hoch"
- "substanziell" oder "hoch" wird nur anerkannt, wenn auf dem entsprechenden Vertrauensniveau notifiziert ist

eIDAS-Verordnung (3)

elDAS-Verordnung sieht Vertrauensdienste vor für

- Erstellung, Überprüfung und Validierung von elektronischen Signaturen, elektronischen Siegeln oder elektronischen Zeitstempeln
- Zustellung elektronischer Einschreiben
- Erstellung, Überprüfung und Validierung von Zertifikaten für die Website-Authentifizierung
- Bewahrung von diese Dienste betreffenden elektronischen Signaturen, Siegeln oder Zertifikaten

Widerruf von Zertifikaten (1)

- "Certificate Revocation", erforderlich wenn
 - ein privater Schlüssel kompromittiert wurde
 - ein Benutzer oder Gerät gesperrt werden soll
- CA stellt signierte Certificate Revocation List (CRL) aus
 - Beinhaltet Seriennummern der widerrufenen Zertifikate
 - Typische Ablageorte: Active Directory, FTP- oder Webserver
- CRLs haben eine Gültigkeit
 - Typisch: Tage
 - Können beim Validierer gecachet werden
 - Nachteil: keine kurzfristige Sperrung möglich

Widerruf von Zertifikaten (2)

- Online Certificate Status Protocol (OCSP, RFC 6960)
 - Netzwerkprotokoll, um den Status von X.509-Zertifikaten bei einem Validierungsdienst abzufragen
 - "OCSP-Responder" erhält aktuelle CRL der CA und beantwortet nur, gesperrt oder nicht
 - Keine weitere Prüfung
- Online-Sperrinformationen
 - Erfordert Netzwerkverbindung
 - Kann auch bei "OCSP Stapling" über den Webserver ausgeliefert werden (aktuell signiert vom OCSP-Responder)

Vertrauensmodelle

- Hierarchisch
 - Klassisches Modell einer Unternehmens-PKI
- Cross-Zertifizierung
 - Zertifizierung über PKI-Grenzen hinweg
 - z.B. zwischen PKI verschiedener
 Unternehmen oder Länder
 - Bridge CA als Lösung für quadratisch wachsende Zahl von Cross-Zertifikaten

Problem: Schlüsselverlust

- Im klassischen Modell der PKI kennt nur der Subscriber den Private Key
 - Was passiert, wenn der verloren geht (z.B. SmartCard defekt)?
 - Wenn das Unternehmen die Daten eines Mitarbeiters entschlüsseln muss (z.B. Revision)
- Lösung 1: Neues Zertifikat
 - Akzeptabel für alle Authentifizierungs-Zertifikate
 - Nutzlos, wenn Daten mit dem Public Key verschlüsselt wurden
 - Z.B. Festplatten- oder Emailverschlüssselung
- Lösung 2: Schlüssel-Backup
 - Bei der CA
 - aber CA kennt dann alle Schlüssel
 - Verschlüsselt mit Recovery-Schlüssel
 - Recovery-Prozess erforderlich (ggf. 4-Augen-Prinzip)

Problem: Kompromittierte CA

- CA Private Key gestohlen oder CA-Betreiber nicht mehr vertrauenswürdig
 - Ist in der Vergangenheit bereits öfter passiert (z.B. "DigiNotar")
 - Root CA/Subordinate CA kommt auf Blacklist
- Was, wenn das nicht bekannt ist (ggf. staatliche Eingriffe)?
 - CA stellt absichtlich falsche neue Zertifikate aus
 - Dienen zur Authentifikation eines MITM
 - Abhören, Code Injection
 - Auch Web-Proxies können das, um TLS-Verbindungen aufzubrechen und zu scannen.
 - Dann muss die eingebaute CA des Proxies als vertrauenswürdig eingetragen sein

Folie: 26

http://www.heise.de/security/meldung/Neuer-Burp-Proxy-knackt-auch-Android-SSL-1662408.html

HTTP Public Key Pinning (1)

- Vorschlag von Google, definiert in RFC 7469
 - Unterstützt in Chrome und Firefox
- Schutz gegen den unbemerkten Austausch von Zertifikaten
 - Im HTTP-Header werden genannt
 - Key-Hashes von gültigen Keys (mind. 2)
 - Maximales Alter
 - Eine URL zum Melden von Fehlern (Angriffen?)
 - Beim ersten Zugriff werden diese im Browser gecachet
 - Kann Schlüssel des Zertifikats oder einer ausstellenden CA sein

```
Public-Key-Pins: max-age=5184000;
pin-sha256="jYEKhFo1FULVqIk/Nph3hu1SDWhifZamgYGxnk3Zuys=";
pin-sha256="h0h88SscIXy94RvNI7O2CDUpuCwXL1WvX1jH8Hb1/9A=";
includeSubdomains;
report-uri="https://example.com/hpkp.php"
```

HTTP Public Key Pinning (2)

Probleme

- Funktioniert nicht, wenn MITM schon beim ersten Zugriff aktiv ist
- Probleme beim Schlüsselwechsel
 - z.B. wg. Verlust/Korrumpierung des Private Keys
 - Deswegen mind. 2 Keys oder CA-Key
- Fehler/Angriffs-Meldung kann vom MITM abgefangen werden