REINVENT ENGINEERING

Sonification de données caractéristiques de micro-organismes

Vincent GALLOT

Encadré par Jean-François PETIOT et Olivier GROVEL

OBJECTIFS

 Associer une empreinte sonore à des échantillons de champignons marins et terrestres.

 Allier sciences biologiques et musicales pour faire découvrir la diversité du vivant à l'aide d'un support auditif.

SOMMAIRE

- I. ÉTAT DE L'ART
- II. DONNÉES
- III. SYNTHÈSE DE SON
- IV. QUALITÉ DU SON
 - V. CONCLUSION

SOMMAIRE

- I. ÉTAT DE L'ART
- II. DONNÉES
- III. SYNTHÈSE DE SON
- IV. QUALITÉ DU SON
- V. CONCLUSION

I. ÉTAT DE L'ART - DÉFINITION

"La sonification est la représentation et l'émission de données sous forme de signaux acoustiques non verbaux aux fins de la transmission ou de la perception d'information"

Définition par Wikipédia

I. ÉTAT DE L'ART - UTILISATION

- Détecteur de métaux
- Compteur Geiger
- Sonar
- Appareils médicaux
- Instruments de cockpit

I. ÉTAT DE L'ART - MUSIQUE

- Encoder les structures moléculaires par la musique :
 Molecular Sonification for Molecule to Music Information Transfer, Babak Mahjour et al.
- Transformer les nombres d'ondes de spectroscopie en notes : The Sound of Chemistry: Translating Infrared Wavenumbers into Musical Notes, Neil Garrido et al.
- La même chose avec les fréquences en spectroscopie : Molecular Music: A Modern Accompaniment to NMR Pedagogy, Srikar Munukutla et al.

SOMMAIRE

- I. ÉTAT DE L'ART
- II. DONNÉES
- III. SYNTHÈSE DE SON
- IV. QUALITÉ DU SON
- V. CONCLUSION

II. DONNÉES - SPECTROMÈTRE DE MASSE

Récupération à l'aide d'un spectromètre de masse.

Source: https://biologie.chu-grenoble.fr/spectrometrie-de-masse

II. DONNÉES - FORMATS

	0	0.0083	0.015	0.0217	0.0283	0.035
100.110349745977	0	0	0	0	0	0
102.010985056559	0	0	0	0	0	0
102.032212189705	0	0	0	0	0	0
102.535130092076	0	0	0	0	0	0
109.012079753573	0	0	0	0	0	0
110.01796305807	0	0	0	0	0	0
110.522608757019	0	0	0	0	0	0
111.019336700439	0	0	0	0	0	0
111.087585449219	0	0	0	0	0	0
111.521388583713	0	0	0	0	0	0
112.015762329102	0	0	0	0	0	0
112.085187639509	0	0	0	0	0	0

Format "matrice"

10

1,110.0203mz,33.73min	4.237833669319229E8
2,610.1809mz,31.62min	6.4338899483418785E7
3,536.1630mz,29.90min	3.386854857488172E7
4,110.0203mz,0.08min	1.1614932346243125E8
5,612.1816mz,31.56min	2.6624892804937005E7
6,111.0205mz,33.40min	3.419963263843984E7
7,102.0343mz,33.76min	2.684549065744685E8
8,182.9852mz,33.66min	6.398189874599744E7
9,131.5335mz,33.40min	2.434192421914481E7
10,135.1016mz,0.97min	1.8132376817084417E7
11,136.1120mz,34.41min	2.2015390026075023E8
12,226.9507mz,33.27min	1.0567302963366274E7
13,164.1431mz,34.67min	1.8171019355812475E8
14,119.0857mz,0.26min	8.133589593461065E7
15,538.1614mz,29.90min	1.1832913865853835E7
16,158.9640mz,33.27min	9597751.248339877

Format "vecteur"

II. DONNÉES - ANALYSE

	Masse (mz)	Temps (min)	2905.mzML
count	953.000000	953.000000	2.570000e+02
mean	401.237266	12.775593	2.848970e+07
std	182.765170	9.082042	1.508230e+08
min	100.076200	0.070000	1.153957e+03
25%	251.090900	3.450000	6.486626e+03
50%	385.221100	12.790000	6.871151e+04
75%	529.268100	17.630000	3.114525e+06
max	799.563300	33.730000	1.377023e+09

II. DONNÉES - ANALYSE

	Masse (mz)	Temps (min)	2905.mzML
count	953.000000	953.000000	257.000000
mean	401.237266	12.775593	11.926353
std	182.765170	9.082042	3.511650
min	100.076200	0.070000	7.050952
25%	251.090900	3.450000	8.777498
50%	385.221100	12.790000	11.137672
75%	529.268100	17.630000	14.951587
max	799.563300	33.730000	21.043190

II. DONNÉES - MÉTHODE

Temps dans les données → Temps dans le son

Masse (rapport m/z) \rightarrow Fréquence

Abondance → Amplitude

II. DONNÉES - MÉTHODE

Temps dans les données → Temps dans le son

Masse (rapport m/z) \rightarrow Fréquence

Abondance → Amplitude

SOMMAIRE

- I. ÉTAT DE L'ART
- II. DONNÉES
- III. SYNTHÈSE DE SON
- IV. QUALITÉ DU SON
- V. CONCLUSION

15

III. SYNTHÈSE - TRANSFORMATION DES DONNÉES

1,110.0203mz,33.73min	4.237833669319229E8
2,610.1809mz,31.62min	6.4338899483418785E7
3,536.1630mz,29.90min	3.386854857488172E7
4,110.0203mz,0.08min	1.1614932346243125E8
5,612.1816mz,31.56min	2.6624892804937005E7
6,111.0205mz,33.40min	3.419963263843984E7
7,102.0343mz,33.76min	2.684549065744685E8
8,182.9852mz,33.66min	6.398189874599744E7
9,131.5335mz,33.40min	2.434192421914481E7
10,135.1016mz,0.97min	1.8132376817084417E7
11,136.1120mz,34.41min	2.2015390026075023E8
12,226.9507mz,33.27min	1.0567302963366274E7
13,164.1431mz,34.67min	1.8171019355812475E8
14,119.0857mz,0.26min	8.133589593461065E7
15,538.1614mz,29.90min	1.1832913865853835E7
16,158.9640mz,33.27min	9597751.248339877

III. SYNTHÈSE - TRANSFORMATION DES DONNÉES

1,110.0203mz,33.73min	4.237833669319229E8
2,610.1809mz,31.62min	6.4338899483418785E7
3,536.1630mz,29.90min	3.386854857488172E7
4,110.0203mz,0.08min	1.1614932346243125E8
5,612.1816mz,31.56min	2.6624892804937005E7
6,111.0205mz,33.40min	3.419963263843984E7
7,102.0343mz,33.76min	2.684549065744685E8
8,182.9852mz,33.66min	6.398189874599744E7
9,131.5335mz,33.40min	2.434192421914481E7
10,135.1016mz,0.97min	1.8132376817084417E7
11,136.1120mz,34.41min	2.2015390026075023E8
12,226.9507mz,33.27min	1.0567302963366274E7
13,164.1431mz,34.67min	1.8171019355812475E8
14,119.0857mz,0.26min	8.133589593461065E7
15,538.1614mz,29.90min	1.1832913865853835E7
16,158.9640mz,33.27min	9597751.248339877

III. SYNTHÈSE - TRANSFORMATION DES DONNÉES

1,110.0203mz,33.73min	4.237833669319229E8
2,610.1809mz,31.62min	6.4338899483418785E7
3,536.1630mz,29.90min	3.386854857488172E7
4,110.0203mz,0.08min	1.1614932346243125E8
5,612.1816mz,31.56min	2.6624892804937005E7
6,111.0205mz,33.40min	3.419963263843984E7
7,102.0343mz,33.76min	2.684549065744685E8
8,182.9852mz,33.66min	6.398189874599744E7
9,131.5335mz,33.40min	2.434192421914481E7
10,135.1016mz,0.97min	1.8132376817084417E7
11,136.1120mz,34.41min	2.2015390026075023E8
12,226.9507mz,33.27min	1.0567302963366274E7
13,164.1431mz,34.67min	1.8171019355812475E8
14,119.0857mz,0.26min	8.133589593461065E7
15,538.1614mz,29.90min	1.1832913865853835E7
16,158.9640mz,33.27min	9597751.248339877

III. SYNTHÈSE - MATRICE D'ABONDANCE

Matrice d'abondance

III. SYNTHÈSE - PREMIER SON

III. SYNTHÈSE - PREMIER SON

III. SYNTHÈSE - PREMIÈRES AMÉLIORATIONS

III. SYNTHÈSE - PREMIÈRES AMÉLIORATIONS

	0	0.0083	0.015	0.0217	0.0283	0.035
100.110349745977	0	0	0	0	0	0
102.010985056559	0	0	0	0	0	0
102.032212189705	0	0	0	0	0	0
102.535130092076	0	0	0	0	0	0
109.012079753573	0	0	0	0	0	0
110.01796305807	0	0	0	0	0	0
110.522608757019	0	0	0	0	0	0
111.019336700439	0	0	0	0	0	0
111.087585449219	0	0	0	0	0	0
111.521388583713	0	0	0	0	0	0
112.015762329102	0	0	0	0	0	0
112.085187639509	0	0	0	0	0	0

SOMMAIRE

- I. ÉTAT DE L'ART
- II. DONNÉES
- III. SYNTHÈSE DE SON
- IV. QUALITÉ DU SON
 - V. CONCLUSION

IV. QUALITÉ - SEUILLAGE

IV. QUALITÉ - SEUILLAGE

www.ec-nantes.fr

IV. QUALITÉ - ADSR

IV. QUALITÉ - ADSR

SOMMAIRE

- I. ÉTAT DE L'ART
- II. DONNÉES
- III. SYNTHÈSE DE SON
- IV. QUALITÉ DU SON
- V. CONCLUSION

V. CONCLUSION

• Si on s'en tient à l'intitulé du projet, on a bien sonifié nos données caractéristiques de micro-organismes.

 On sent bien qu'avec plus de paramétrage on peut obtenir un son meilleur que ça.

Merci pour votre attention!

