Cheat Sheet - Part 3

Introduction to Data Analysis with Python https://github.com/janekfleper/Workshop-Konstanz-2025

Basics

ord("a") len([0, 1, 2])	A <i>function</i> is called with (optional) arguments
<pre>y.count("a") "abc".upper()</pre>	A <i>method</i> is called on a value or on a variable
# a comment	A # starts a <i>comment</i> that will not be evaluated
type(x)	Get the <i>type</i> of a value or of a variable
del x	Delete a variable
<pre>def square(x): return x**2</pre>	Define a function with a parameter x and a return value

Data types

Butu types	
"hello", 'abc', "0.9", str(123)	A <i>string</i> is a sequence of characters in quotes
12, -4, int("5")	An <i>integer</i> is a number without a decimal part
0.9, -3.1415, float("-0.1")	A <i>float</i> is a number with a decimal part
<pre>True, False, bool(0), x < 1</pre>	A <i>boolean</i> can only take the values True or False
[0, "abc", 0.1] list("hello")	A <i>list</i> is a mutable, sorted collection of values
{"a": 1, "b": 2} dict(a=1, b=2)	A <i>dictionary</i> is a mutable collection of key-value pairs
(0, "0.9", True) tuple([0, 1, 2])	A <i>tuple</i> is an immutable, sorted collection of values

Files

<pre>with open("a.txt"</pre>	') as f: Ope	en a file
# do somethin	ng for	reading
<pre>for line in f: print(line)</pre>	Iterate over all lines	s in a file
f.read()	Read a file as a strir	ng

Arrays

<pre>import numpy as np</pre>	
n = [1, 1, 2, 3] a = np.array(n)	Initialize an array
a[0], a[0:-3]	Get values from an array
a[0] = 4 a[0:-3] = 0	Set values in an array
a[a == 1]	Filter data in an array
np.unique(a)	Get unique values in an array (and their counts)
np.average(a)	Compute the (weighted) average of an array
np.sort(a)	Get a sorted copy of an array
np.argsort(a)	Get the indices that would sort an array
<pre>a.sum(), a.prod() a.mean(), a.std() a.min(), a.max()</pre>	Run computations on all values in an array
a.shape	Get the shape of an array
a.dtype	Get the data type of an array
a.astype(t)	Get a copy of an array with a specific data type t

Data frames

<pre>import pandas as pd</pre>	
<pre>df = pd.DataFrame()</pre>	Initialize a data frame

<pre>df.iloc[1] df.iloc[2:-4]</pre>	Access a row (or multiple rows) by the position
<pre>df.loc["a"] df.loc["a":"z"]</pre>	Access a row (or multiple rows) by the index
<pre>df["col"] df[["col1","col2"]]</pre>	Access a column (or multiple columns)
df.at["row","col"]	Read a single value from a data frame
<pre>df.set_index("col")</pre>	Move a column to index
<pre>df.assign(col=data)</pre>	Assign a (new) column
df.sort_values("col") Sort based on a column	
<pre>df.query("col > 2")</pre>	Query/filter a data frame
df.plot("x", "y")	Create a plot from columns in a data frame
<pre>pd.read_csv() pd.read_excel() etc</pre>	Open a file and read the content into a data frame

Jupyter shortcuts

Enter / Esc	Start/exit the edit mode
Shift + Enter	Run cell(s) and select next
A/B	Insert new cell above/below
\uparrow , K/ \downarrow , J	Select cell above/below
X,C,V	Cut, copy or paste cell(s)
D+D	Delete cell(s)
Z/Shift+Z	Undo/redo cell operation
Shift + Tab	Open the documentation