Estudo de caso: Grupo D 3

Gilmar Pereira, Maressa Tavares e Victor Ruela 11 de Novembro, 2019

1 Summary

O presente trabalho realizou o delineamento e executou os testes estatísticos para avaliar o desempenho médio do algoritmo conhecido como Evolução Diferencial [1]. O algoritmo foi desenvolvido no ano de 1997 por Storn e Price e é um algoritmo simples de otimização multimodal, primeiramente desenvolvido para otimização de funções contínuas e variáveis numéricas discretas [2].

Para o desenvolvimento do trabalho o algoritmo DE (Differential Evolution) foi ajustado com duas configurações alterando a forma de recombinação e mutação dos algoritmos. As classes de funções para este experimento foi composta pela função Rosenbrock [3] de dimensões entre 2 e 150. Para analisar os dados utilizou-se a técnica de blocagem determinando a quantidade de blocos e seus tamanhos, assim como o número de amostras por instância.

Realizou-se o cálculo do número de blocos de acordo com [4] e o número de instâncias de acordo com [5]. Foram realizados os testes das premissas, porém não foi possível de validar completamente todas elas. Assim, foi realizado teste paramétrico e não paramétrico e comparados os resultados. Os dois testes levaram a conclusões diferentes, que serão apresentados nas seções deste relatório.

2 Planejamento do Experimento

Nesta seção é apresentado o planejamento do experimento, descrevendo os objetivos e o delineamento do experimento.

2.1 Objetivo do Experimento

O objetivo deste experimento é analisar se exite alguma diferença entre duas configuração do algoritmo DE dentre as classes de funções, determinando a configuração de melhor desempenho e ressaltando as magnitudes das diferenças encontradas.

2.2 Delineamento

Para execução do experimento foram realizadas as seguintes etapas, as quais estão detalhadas nas próximas seções.

- Formulação das hipóteses de teste;
- Cálculo dos tamanhos amostrais, estabelecimento das quantidades de instâncias e número de iterações do algoritmo;
- Coleta e tabulação dos dados,
- Realização dos testes de hipóteses;
- Estimação da magnitude das diferenças;
- Validação das premissas;
- Resultados e Conclusões.

2.3 Hipóteses

Para a análise comparativa entre as configurações do algoritmo DE, determinou-se as seguintes hipóteses a serem testadas.

$$\begin{cases} H_0: \mu_1 = \mu_2 \\ H_1: \mu_1 \neq \mu_2 \end{cases}$$

Onde μ_1 e μ_2 são as médias amostrais das configurações 1 e 2 dos algoritmos, respectivamente.

Além disso, foram definidos os seguintes parâmetros experimentais:

- Significância desejada: $\alpha = 0.05$.
- Mínima diferença de importância prática (padronizada): $d^* = \delta^*/\sigma = 0.5$
- Potência mínima desejada $\pi = 1 \beta = 0.8$

2.4 Coleta dos Dados

Neste trabalho, cada amostra consiste em uma execução do algoritmo DE, para cada instância (dimensão da função objetivo) e configuração do algoritmo em questão (níveis). Foram escolhidas N=30 repetições de cada par instância-configuração, recomendado como suficiente por Campelo e Takahashi [5]. A coleta de dados foi dividida em duas etapas, descritas nas seções a seguir. O código utilizado para a coleta de dados está disponível no Apêndice A.

2.4.1 Geração do arquivo de configuração do experimento

Esta etapa consiste em permitir que seja gerada um arquivo .csv contendo a configuração descrita a seguir. As rotinas foram implementadas de forma a permitir que seja criada a configuração para qualquer número de repetições N, instâncias I e níveis a. Um último passo consiste em randomizar o arquivo de configuração e dividí-lo em 3 arquivos separados, executados por cada membro do grupo. Isso garante que as amostras geradas sejam independentes e que o experimento seja completamente randomizado. Como o algoritmo demora um tempo considerável para sua execução, a divisão entre os participantes permitiu a sua execução em paralelo para otimizar o tempo necessário para gerar todos os dados. A tabela abaixo exibe um exemplo de arquivo de configuração gerado.

algorithm	replicate	instance	result
1	30	94	-1
1	29	140	-1
2	8	113	-1
2	16	7	-1
1	5	118	-1

Table 1: Exemplo de arquivo de configuração

2.4.2 Execução de arquivo de configuração

Com o arquivo de configuração disponível, o experimento está pronto para ser executado. A rotina desenvolvida carrega um arquivo de configuração (.csv) e executa cada linha em sequência, para os seus respectivos parâmetros. À medida em que uma amostra é finalizada, o resultado é salvo no próprio arquivo de configuração, na coluna result. Isso garante que seja possível continuar a execução do arquivo sem perder as amostras realizadas anteriormente, caso ocorra algum problema.

2.5 Análise Exploratória dos Dados

Nesta seção é apresentado uma análise exploratória dos dados, a fim de verificar as premissas de normalidade, homocedasticidade, independência, que devem ser validadas antes da realização dos testes estatísticos.

Como o estudo consiste na comparação entre os resultados da execução de duas configurações de um algoritmo de otimização, a dimensão da função objetivo é um fator importante. Logo, a análise exploratória foi feita considerando amostras de instâncias de baixa, média e alta dimensão. Inicialmente, os dados do experimento foram carregados, sendo as instâncias 4, 50 e 100 escolhidas para avaliação, e um gráfico boxplot foi criado para a análise preliminar (Figura 1).

```
sample.all <- read.csv('data.all.instances.csv', header = TRUE)
sample.all$configuration <- as.factor(sample.all$algorithm)
sample.all <- sample.all %>% mutate(logresult = log(result))

sample.all.eda <- sample.all %>% filter(instance == 100 | instance == 50 | instance == 4)

ggplot(sample.all.eda, aes(x=configuration, y=result)) +
   geom_boxplot() + facet_grid(rows = vars(instance), scales = "free_y")
```


Figure 1: Boxplot dos dados

Através da figura 1, as seguintes observações podem ser feitas:

- Os valores da função objetivo final possuem magnitudes muito diferentes dependendo da dimensão.
 Portanto, uma normalização dos dados para uma escala comum pode ser necessária para a correta análise dos experimentos.
- Há algumas repetições do algoritmo que poderiam ser considerados outliers. Elas devem ser removidas de forma a não prejudicar os testes de hipótese e validação das premissas.
- A configuração 2 parece obter melhores resultados para dimensões baixas, quase sempre chegando ao mínimo da função. Entretnato, o mesmo não pode ser afirmado para dimensões maiores.

2.6 Cálculo do número de blocos

De acordo com [4], o número de blocos ideal é calculado variando a quantidade de blocos enquanto a relação

$$F(1-\alpha) \le F(\beta,\phi)$$

é respeitada. Onde ϕ é o parâmetro de não-centralidade, definido por:

$$\phi = \frac{b\sum_{i=1}^{a} \tau_i}{a\sigma^2}$$

De acordo com a definição do experimento, temos que a=2, tamanho de efeito normalizado d=0.5, potência desejada de $\pi=0.8$ e significância $\alpha=0.05$. Logo, é possível calcular o número de blocos b de acordo com a rotina abaixo.

```
a <- 2
d <- 0.5
alpha <- 0.05
beta <- 0.2

tau <- c(-d, d, rep(0, a - 2)) # define tau vector
b <- 5

tb <- data.frame(b = rep(-1, 50), ratio = rep(-1,50), phi = rep(-1,50))

for(i in seq(1,40,by=2)){

   b <- i + 5
   f1 <- qf(1 - alpha, a - 1, (a - 1)*(b - 1))
   f2 <- qf(beta, a - 1, (a - 1)*(b - 1), (b*sum(tau^2)/a))
   phi <- b*sum(tau^2)/a

   tb[i, ] = c(b, f1/f2, phi)
}

b <- min((tb %>% filter(ratio <= 1 & ratio > 0))$b)
```

Portanto, o número mínimo de blocos necessários b é de 34. As iterações podem ser vistas na tabela 2.

Table 2: Iterações para cálculo do número de blocos

Blocos	Razão	Phi
6	22.3119377	1.5
10	8.3089036	2.5
14	4.3118995	3.5
18	2.7150544	4.5
22	1.9226732	5.5
26	1.4656488	6.5
30	1.1734386	7.5
34	0.9725686	8.5
38	0.8269777	9.5
42	0.7171273	10.5

Portanto, devemos escolher b blocos aleatoriamente das instâncias disponíveis.

```
data.all.instances.log <- sample.all %>% group_by(instance) %>%
  mutate(Max = max(result), Min = min(result), Std = sd(result), Avg = mean(result)) %>%
  mutate(resultLog = log(result))
```

```
set.seed(1234)
random.blocks <- sample(5:150, b)
data.block.instances <- data.all.instances.log %>% filter(instance %in% random.blocks)

data.block.instances$instance = as.factor(data.block.instances$instance)
data.block.instances$algorithm = as.factor(data.block.instances$algorithm)
```

A figura 2 exibe os valores obtidos para as instâncias selecionadas. Na figura 3 é possível ver o respectivo gráfico de Ridge.

Figure 2: Instâncias selecionadas

Figure 3: Ridge plot dos dados

Analisando as figuras percebe-se claramente a influência do número de instância no desempenho do algoritmo, porém, o mesmo não se pode afirmar para as diferentes configurações.

2.7 Validação das premissas

Para realizar as inferências estatísticas sobre as duas configurações do algoritmo de otimização é necessário validar as premissas antes de executar o teste. Neste caso, como tratam-se de duas configurações em um espectro amplo de dimensões, existe um fator conhecido e controlável que pode influenciar no resultado do teste. Então, para eliminar o efeito desse fator indesejável uma opção é realizar a blocagem [6]. A seguir são apresentados os testes realizados para validar as premissas exigidas pela blocagem (ANOVA).

A - Normalidade

Para a validação desta premissa, aplicou-se o teste ANOVA aos dados e depois foram avaliados os resíduos obtidos pelo moddelo. O gráfico quantil-quantil e teste de shapiro-wilk também foram utilizados nessa validação, como apresentados a seguir.

```
res.aov <- aov(result ~ algorithm + instance, data = data.block.instances)
par(mfrow=c(2,2))
plot(res.aov)</pre>
```


Figure 4: Resultados do ANOVA

```
shapiro.test(res.aov$residuals)

##
## Shapiro-Wilk normality test
##
## data: res.aov$residuals
## W = 0.97513, p-value < 2.2e-16</pre>
```

Pelo gráfico quantil-quantil e o teste de Shapiro-Wilk, é possível ver que a premissa de normalidade é violada com o p-valor muito abaixo da significância estabelecida. Nota-se que o gráfico quantil-quantil apresenta um desvio da normalidade maior à esquerda, o que pode ser explicado pela grande variabilidade das amostras em dimensões menores, conforme visto na figura 3. Logo, uma transformação logarítmica foi aplicada aos dados como forma de tentar levá-los à normalidade e também reduzir os efeitos da diferença de magnitude dos resultados de cada instância.

```
res.aov <- aov(resultLog ~ algorithm + instance, data = data.block.instances)
par(mfrow=c(2,2))
plot(res.aov)</pre>
```


Figure 5: Resultados do ANOVA para transformação logarítmica

```
shapiro.test(res.aov$residuals)

##
## Shapiro-Wilk normality test
##
## data: res.aov$residuals
## W = 0.76544, p-value < 2.2e-16</pre>
```

Aplicando essa transformação, é possível notar que o desvio da normalidade é ainda mais evidenciado, conforme pode ser visto no gráfico quantil-quantil. Portanto, a premissa é novamente violada (p-valor baixo) e testes de hipótese não-paramétricos deverão ser utilizados para se obter resultados mais confiáveis.

B - Igualdade de Variâncias

Para validação dessa premissa utilizou-se o teste de homogeniedade de variâncias no qual a hipótese nula considera que razão entre as variâncias é igual 1. Para isso, analisou-se as duas configurações com as instâncias selecionadas anteriormente. O resultado por ser visto na tabela 3.

```
sw.test.result <- data.frame("p.value" = rep(0,b), instance = rep(0,b))
for (i in seq(1,b)){
  bi <- sort(random.blocks)[i]
  data.block.algo1 <- data.block.instances %>% filter(instance == bi & algorithm == 1)
  data.block.algo2 <- data.block.instances %>% filter(instance == bi & algorithm == 2)
```

Table 3: p-valores do teste F

Instância	p-valor
7	0.0000000
8	0.0000000
9	0.0000000
18	0.0000011
32	0.0037336
44	0.6960527
51	0.0008317
52	0.0026071
60	0.0517480
66	0.1617131
70	0.3310122
71	0.7763353
74	0.2420485
83	0.2707051
84	0.1903662
88	0.3409592
91	0.6956770
94	0.4077931
97	0.9429186
99	0.5718182
102	0.0403736
104	0.3576964
105	0.3539264
107	0.1641992
112	0.7748390
115	0.9801664
120	0.9651509
126	0.6185635
130	0.1419264
132	0.2281559
133	0.0343971
136	0.6794527
137	0.1266789
141	0.8248179

Verifica-se que para diferentes valores de instâncias, dimensões, o p-valor é maior que o nível de significancia pré-estabelecido. Observa-se que a igualdade de variâncias é em sua maioria respeitada para dimensões maiores. Desta forma não se pode rejeitar a hipótese nula de que as variâncias são iguais. Analisando de forma geral verifica-se que é possível que as variancias entre as duas configurações são iguais, conforme pode ser visto no gráfico Residuals vs Fitted na figura 4.

C - Independência

Como descrito anteriormente, a coleta de dados foi meticulosamente planejada de forma a garantir a

independência entre as amostras. As características de cada amostra foram geradas e coletadas de modo aleatório, a fim de evnitar qualquer iterção entre a amostra e a instância avaliada. Desse modo, pode-se garantir a independância entre as amostras.

3 Resultados

Nesta seção são apresentados os resultados realizando os testes de hipóteses e a determinação da melhor configuração juntamente com a estimação das magnitudes das diferenças.

Como as premissas do teste paramétrico (ANOVA) foram parcialmente validadas, optou-se por realizar os testes paramétricos e não-paramétricos a fim de comparar os resultados. Os resultados das duas aborgagens são apresentados e discutidos nas próximas seções.

3.1 Teste de Hipótese - Paramétrico

O teste paramétrico usado para avaliar a blocagem é o ANOVA

```
model <- aov(result~algorithm+instance,</pre>
             data = data.block.instances)
summary(model)
##
                 Df
                       Sum Sq
                                Mean Sq F value
                                                  Pr(>F)
## algorithm
                  1 5.429e+12 5.429e+12
                                          17.03 3.83e-05 ***
## instance
                 33 2.195e+16 6.651e+14 2086.29 < 2e-16 ***
## Residuals
               2005 6.392e+14 3.188e+11
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
summary.lm(model)$r.squared
```

```
## [1] 0.9717086
```

De acordo com o resultado do teste (p-valor < 0.05) existem evidências de que a média dos dois algoritmos não são iguais. Além disso, o modelo obteve um ajuste satisfatório com o $r^2 = 0.971$, isto é, o modelo explica mais de 97% dos resultados dos dois algoritmos.

Assim como na validação, foi realizado o teste de hipótese considerando uma transformação logarítmica dos resultados.

```
model_log <- aov(resultLog~algorithm+instance,</pre>
             data = data.block.instances)
summary(model log)
##
                 Df Sum Sq Mean Sq F value Pr(>F)
## algorithm
                  1
                       362
                              362.0
                                      278.4 <2e-16 ***
## instance
                 33
                     20996
                              636.2
                                      489.3 <2e-16 ***
## Residuals
               2005
                      2607
                                1.3
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
summary.lm(model_log)$r.squared
```

```
## [1] 0.8912031
```

Pela análise dos resultados, pode-se concluir que o modelo também ajusta bem aos dados, porém o modelo com os dados originais obteve melhor ajuste. Apesar dos bons resultados de correlação foi realizado também o teste não paramétrico, devido às falhas na validação das premissas.

3.2 Teste de Hipótese - Não Paramétrico

Verificando que os dados gerados pelas duas configurações não são normais e que não há a garantia de homegeniedade entre as variâncias, utilizou-se também um teste não paramétrico. O teste utilizado para verificar a igualdade das médias entre as duas configurações foi o teste de Kruskal-Wallis [7].

```
(krus.test <- kruskal.test(result~algorithm,data=data.block.instances))

##
## Kruskal-Wallis rank sum test
##
## data: result by algorithm</pre>
```

É importante ressaltar que o teste de Kruskal-Wallis não inclui os efeitos da blocagem. Pelos resultados obtidos (p-valor > 0.05), é possível concluir que a hipótese nula não pode ser rejeitada. Logo, diferente da conclusão obtida com a utilização do ANOVA, neste caso podemos afirmar que a mediana da diferença dos algoritmos é similar.

3.3 Estimação das magnitudes das diferenças

Kruskal-Wallis chi-squared = 0.55331, df = 1, p-value = 0.457

Para a estimativa do intervalo de confiança, utilizou-se o teste de Dunnet, sobre os resultados do ANOVA. Note que o intervalo obtido não contém o valor 0, ou seja, a hipótese nula é rejeitada.

```
duntest <- glht(model, linfct = mcp(algorithm = "Dunnett"))
duntestCI <- confint(duntest)
par(mar = c(5, 8, 4, 2), las = 1)
plot(duntestCI, xlab = "Diferença das médias")</pre>
```

95% family-wise confidence level

Diferença das médias

O teste de Wilcoxon [8], por ser não-paramétrico e válido para o caso da comparação entre duas populações, é aplicado para a estimativa de intervalo de confiança.

data: result by algorithm

##

```
## W = 530095, p-value = 0.457
## alternative hypothesis: true location shift is not equal to 0
## 95 percent confidence interval:
## -167924.6 298979.6
## sample estimates:
## difference in location
## 15874.11
```

Note que, conforme esperado, o intervalo de confiança contém o valor 0, ou seja, não podemos rejeitar a hipótese nula de que as médias são iguais.

4 Conclusão

O presente trabalho realizou o delineamento do experimento que testou o desempenho de duas configurações diferentes de um algoritmo DE. Como não foi possível validar todas as premissas com convição, optou-se por realizar os testes paramétricos e comparar os resultados com os de testes não paramétricos, que não precisam das premissas serem respeitadas.

Após a realização dos testes verificou-se que, provavelemente, devido à não validação das premissas e à influência das instâncias nos resultados, não foi possível chegar à mesma conclusão pelos testes paramétrico e não paramétrico.

Enquanto o teste paramétrico apresenta evidências de rejeição da igualdade das médias (p-valor < 0.05), o teste não paramétrico leva a concluir que não há diferença entre os resultados dos dois algoritmos (p-valor = 0.4569679) para a significância especificada.

5 Divisão das Atividades

- Victor Coordenador
- Maressa Verificador e Monitor
- Gilmar Relator

6 Apêndice A

6.1 Geração de configuração

```
# Load packages
if (!require(ExpDE, quietly = TRUE)){
  install.packages("ExpDE")
}

if (!require(smoof, quietly = TRUE)){
  install.packages("smoof")
}

if (!require(CAISEr, quietly = TRUE)){
  install.packages("CAISEr")
}

# RCBD functions
set.seed(15632) # set a random seed
```

```
instances <- seq(2, 150) # number of instances
N <- 30 # number of replicates per instance
rcbd.configuration.generator <- function(level, b, instances, N){</pre>
  nrows <- length(instances) * N</pre>
  n.instances <- length(instances)</pre>
  instance <- sort(rep(instances, N))</pre>
 groups <- sapply(instance, function(i){ ceiling(i/(n.instances/b)) })</pre>
 X <- data.frame("algorithm" = rep(level, nrows),</pre>
                  "replicate" = rep(seq(1,N), n.instances),
                   "instance" = instance,
                   "group" = groups,
                   "result" = rep(-1, nrows))
  return(X)
}
x.config.1 <- rcbd.configuration.generator(1, b, instances, N)</pre>
x.config.2 <- rcbd.configuration.generator(2, b, instances, N)
x.config.all <- rbind(x.config.1, x.config.2)</pre>
x.config.all.shuffled <- x.config.all[sample(nrow(x.config.all)), ]</pre>
split.size <- (nrow(x.config.all.shuffled)/3)</pre>
x.config.all.shuffled$member <- ceiling((1:nrow(x.config.all.shuffled))/split.size)
x.config.all.shuffled.victor <- x.config.all.shuffled[x.config.all.shuffledsmember == 1,1:5]
x.config.all.shuffled.gilmar <- x.config.all.shuffled(x.config.all.shuffled\member == 2,1:5)
x.config.all.shuffled.maressa <- x.config.all.shuffled[x.config.all.shuffledsmember == 3,1:5]
write.csv(x.config.all.shuffled.victor, 'rcbd.config.victor.csv', row.names=FALSE)
write.csv(x.config.all.shuffled.gilmar, 'rcbd.config.gilmar.csv', row.names=FALSE)
write.csv(x.config.all.shuffled.maressa, 'rcbd.config.maressa.csv', row.names=FALSE)
```

6.2 Execução de configuração

```
}
## Equipe D
## Config 1
recpars1 <- list(name = "recombination_blxAlphaBeta", alpha = 0.4, beta = 0.4)
mutpars1 <- list(name = "mutation_rand", f = 4)</pre>
## Config 2
recpars2 <- list(name = "recombination_eigen", othername = "recombination_bin", cr = 0.9)
mutpars2 <- list(name = "mutation_best", f = 2.8)</pre>
config.1 <- level.config(mutpars1, recpars1, 1)</pre>
config.2 <- level.config(mutpars2, recpars2, 2)</pre>
fname = 'rcbd.config.victor.csv'
Z <- read.csv(fname)</pre>
set.seed(15632) # set a random seed
my.ExpDE <- function(mutp, recp, dim){</pre>
  fn.current <- function(X){</pre>
    if(!is.matrix(X)) X <- matrix(X, nrow = 1) # <- if a single vector is passed as Z</pre>
    Y <- apply(X, MARGIN = 1, FUN = smoof::makeRosenbrockFunction(dimensions = dim))
    return(Y)
  }
  assign("fn", fn.current, envir = .GlobalEnv)
  selpars <- list(name = "selection_standard")</pre>
  stopcrit <- list(names = "stop_maxeval", maxevals = 5000 * dim, maxiter = 100 * dim)</pre>
  probpars <- list(name = "fn", xmin = rep(-5, dim), xmax = rep(10, dim))</pre>
  popsize = 5 * dim
  out <- ExpDE(mutpars = mutp,</pre>
                recpars = recp,
                popsize = popsize,
                selpars = selpars,
                stopcrit = stopcrit,
                probpars = probpars,
                showpars = list(show.iters = "none"))
  return(list(value = out$Fbest))
for (row in 1:nrow(Z)){
  if(Z[row, "result"] == -1){ # start from the last execution
    dim <- Z[row, "instance"]</pre>
    algo <- Z[row, "algorithm"]</pre>
    replicate <- Z[row, "replicate"]</pre>
```

Referências

- [1] R. Storn and K. Price, "Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces," *Journal of global optimization*, vol. 11, no. 4, pp. 341–359, 1997.
- [2] K. V. Price, "Differential evolution," in Handbook of optimization, Springer, 2013, pp. 187–214.
- [3] H. Rosenbrock, "An automatic method for finding the greatest or least value of a function," *The Computer Journal*, vol. 3, no. 3, pp. 175–184, 1960.
- [4] F. Campelo, "Lecture notes on design and analysis of experiments." https://github.com/fcampelo/Design-and-Analysis-of-Experiments, 2018.
- [5] F. Campelo and F. C. Takahashi, "Sample size estimation for power and accuracy in the experimental comparison of algorithms," *CoRR*, vol. abs/1808.02997, 2018.
- [6] D. C. Montgomery and G. C. Runger, Applied statistics and probability for engineers, (with cd). John Wiley & Sons, 2007.
- [7] "Kruskal.test function | r documentation." https://www.rdocumentation.org/packages/stats/versions/3.6. 1/topics/kruskal.test.
- [8] "Wilcox.test function | r documentation." https://www.rdocumentation.org/packages/stats/versions/3.6. 1/topics/wilcox.test.