2 Fundamental Concepts of Machine Learning: Learning

Leon Herrmann

Stefan Kollmannsberger

Chair of Data Engineering in Construction

Bauhaus-Universität Weimar

Deep Learning in Computational Mechanics – an introductory course,

Herrmann et al. 2025

Contents

- 2.1 Definition
- 2.2 Data Structure
- 2.3 Types of Learning
- 2.4 Machine Learning Tasks
- 2.5 Linear Regression
- 2.8.1 Gradient Descent
- 2.8.1 Stochastic Gradient Descent
- 2.8 Optimization Techniques
- 2.6 Overfitting versus Underfitting
- 2.7 Regularization
- 3 Neural Networks

2.5 Linear Regression – Optimization

$$\min_{\mathbf{w},b} C(\mathbf{w},b) = \min_{\mathbf{w},b} \frac{1}{m} \sum_{i=1}^{m} (y_i - (\mathbf{w} \cdot \mathbf{x}_i + b))^2$$

Note that X requires a column of ones for the bias b

For a more concise notation let us denote all learnable parameters in a vector $\mathbf{\Theta} = (\mathbf{w}, b)^T$

All predictions \hat{y}_i are collected in

This allows to write the model function $\hat{y}_i = \mathbf{w}^T \mathbf{x}_i + b$ as $\hat{\mathbf{y}} = \mathbf{X}\mathbf{0}$ yielding the minimization the vector $\hat{\mathbf{y}}$.

$$\min_{\mathbf{\Theta}} C(\mathbf{\Theta}) = \min_{\mathbf{\Theta}} (\widetilde{\mathbf{y}} - \mathbf{X}\mathbf{\Theta})(\widetilde{\mathbf{y}} - \mathbf{X}\mathbf{\Theta}) = \min_{\mathbf{\Theta}} (\widetilde{\mathbf{y}}^T \widetilde{\mathbf{y}} - 2\widetilde{\mathbf{y}}^T \mathbf{X}\mathbf{\Theta} + (\mathbf{X}\mathbf{\Theta})^T \mathbf{X}\mathbf{\Theta})$$

The minimization is solved by setting the first derivative of C with respect to Θ to zero (using $r = \widetilde{y} - X\Theta$)

$$\frac{1}{2} \frac{\partial \mathbf{r}(\mathbf{\Theta})^2}{\partial \mathbf{\Theta}} = \frac{1}{2} (-2\mathbf{X}^T \widetilde{\mathbf{y}} + 2\mathbf{X}^T \mathbf{X} \mathbf{\Theta}) = -\mathbf{X}^T \widetilde{\mathbf{y}} + \mathbf{X}^T \mathbf{X} \mathbf{\Theta} = 0$$

$$\mathbf{X}^T \mathbf{X} \mathbf{\Theta} = \mathbf{X}^T \widetilde{\mathbf{y}}$$

$$\mathbf{\Theta} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \widetilde{\mathbf{y}}$$

Such a closed form solution is only possible if \hat{y} (or rather $\partial C/\partial \Theta$) is **linear** with respect to Θ

2.8.1 Gradient Descent

Improve prediction $\hat{y}_i = \boldsymbol{w} \cdot \boldsymbol{x}_i + b$ via (iterative) cost function minimization

$$\min_{\mathbf{w},b} C(\mathbf{w},b) = \min_{\mathbf{w},b} \frac{1}{m} \sum_{i=1}^{m} (\widetilde{\mathbf{y}}_i - (\mathbf{w} \cdot \mathbf{x}_i + b))^2$$

Partial derivatives of cost function with respect to each parameter

$$\frac{\partial C}{\partial \mathbf{w}} = \frac{1}{m} \sum_{i=1}^{m} -2x_i (\widetilde{\mathbf{y}}_i - (\mathbf{w} \cdot \mathbf{x}_i + b))$$

$$\frac{\partial C}{\partial b} = \frac{1}{m} \sum_{i=1}^{m} -2(\widetilde{\mathbf{y}}_i - (\mathbf{w} \cdot \mathbf{x}_i + b))$$

Each gradient descent iteration updates the parameters, such that the cost function decreases

$$\mathbf{w} \leftarrow \mathbf{w} - \alpha \frac{\partial C}{\partial \mathbf{w}}$$

$$b \leftarrow b - \alpha \frac{\partial C}{\partial B}$$

 α (the **learning rate**) controls the step size

2.8.1 Gradient Descent

- Generalized gradient descent algorithm
- In machine learning:
 - Number of iterations is called number of epochs
 - Step size is called **learning rate**

Algorithm 1 Gradient descent

Require: dataset \tilde{x}, \tilde{y} , number of epochs n, step size α , model f initialize the model $f(x; \Theta)$

for all n do

Compute the cost function $C(f(\tilde{x}; \Theta), \tilde{y})$

Compute the gradient $\nabla_{\Theta}C$

Update the model parameters $\Theta \leftarrow \Theta - \alpha \nabla_{\Theta} C$

end for

Exercises

- E.4 Linear Regression (P & C)
 - Perform a linear regression once by computing the weights directly and once using gradient descent. Do this by hand calculation and with a Python implementation.

2.8.1 Gradient Descent – Stochastic Gradient Descent

Gradient Descent = Full-Batch Gradient Descent

- All samples are considered during the gradient computation
- Accurate but expensive

Stochastic Gradient Descent (SGD)

- Only one (randomly selected) sample is used to compute the gradient
- Cheap but inaccurate gradients
- Inaccuracy induces stochasticity, enabling escape of local minima

Mini-Batch Stochastic Gradient Descent

ullet Samples are grouped in small batches of size k to approximate gradients more accurately

$$\frac{\partial C}{\partial \mathbf{w}} = \frac{1}{k} \sum_{i=1}^{k} -2\mathbf{x}_{i} (\tilde{\mathbf{y}}_{i} - (\mathbf{w} \cdot \mathbf{x}_{i} + b))$$

$$\frac{\partial C}{\partial b} = \frac{1}{k} \sum_{i=1}^{k} -2(\tilde{y}_i - (\mathbf{w} \cdot \mathbf{x}_i + b))$$

stochastic gradient descent full-batch gradient descent

Is it fair to compare the quality of a model after 100 iterations of Full-Batch, Mini-Batch, and Stochastic Gradient Descent?

• Batch size k is a hyperparameter, typically chosen as large as the GPU memory allows

2.8 Optimization Techniques

- 2.8.1 Gradient Descent
 - Stochastic Gradient Descent
 - Mini-Batch Stochastic Gradient Descent
- 2.8.2.1 Gradient Descent with Momentum
 - Uses a moving average of the gradient to improve the gradient estimation and avoid local minima
- 2.8.2.2 AdaGrad
 - Uses an accumulation of the squared gradients to normalize the updates and improve convergence
- 2.8.2.3 **RMSprop**
 - Extension of AdaGrad to avoid premature convergence by considering a moving average of the squared gradients
- 2.8.2.4 **Adam**
 - Combination of Gradient Descent with Momentum and RMSprop
- 2.8.3 L-BFGS
 - Leverages second order derivatives (Hessian) to improve convergence

2.8 Optimization Techniques – GD with Momentum

Extension of update rule with **momentum** term v_t

$$\mathbf{v}_{t+1} = \eta \mathbf{v}_t + \nabla_{\mathbf{\Theta}} C(\mathbf{\Theta})$$

$$\mathbf{\Theta}_{t+1} = \mathbf{\Theta}_t - \alpha \mathbf{v}_{t+1}$$

 η is a hyperparameter, controlling the influence of previous gradients

 v_t is analogous to the velocity towards the solution, and η is analogous to friction slowing that motion

Optimization Techniques - AdaGrad

Adaptive Subgradient Methods for Online Learning and Stochastic Optimization, Duchi et al. 2011

AdaGrad introduces an adaptive learning rate to better reach optima

Achieved by tracking the accumulated squared gradients

$$\begin{aligned} \overline{\boldsymbol{g}}_t &= \sum_{\tau=1}^t \left[\nabla_{\boldsymbol{\Theta}_{\tau}} \mathcal{C}(\boldsymbol{\Theta}_{\tau}) \right]^2 \\ \boldsymbol{\Theta}_{t+1} &= \boldsymbol{\Theta}_t - \frac{\alpha}{\sqrt{\overline{\boldsymbol{g}}_t^2 + \varepsilon}} \nabla_{\boldsymbol{\Theta}_t} \mathcal{C}(\boldsymbol{\Theta}_t) \end{aligned}$$

Each parameter is scaled individually

arepsilon is small and prevents division by zero

- (Consistently) small gradients are amplified (indicates closeness to optimum)
- (Consistently) large gradients are supressed (indicates distance to optimum, instability, overshooting)

2.8 Optimization Techniques – RMSprop

- AdaGrad can lead to a fast reduction in the learning rate → can prevent convergence
- RMSprop relies on a moving average of the squared gradients (via exponentially decaying average)

$$\widetilde{\boldsymbol{g}}_{t}^{2} = \rho \widetilde{\boldsymbol{g}}_{t-1}^{2} + (1 - \rho) \left[\nabla_{\boldsymbol{\Theta}_{t}} \mathcal{C}(\boldsymbol{\Theta}_{t}) \right]^{2}$$

$$\boldsymbol{\Theta}_{t+1} = \boldsymbol{\Theta}_{t} - \frac{\alpha}{\sqrt{\widetilde{\boldsymbol{g}}_{t}^{2} + \varepsilon}} \nabla_{\boldsymbol{\Theta}_{t}} \mathcal{C}(\boldsymbol{\Theta}_{t})$$

 ρ is a hyperparameter controlling the decay rate

arepsilon is small and prevents division by zero

• Again each parameter is scaled individually, effectively yielding an individual learning rate for each parameter

2.8 Optimization Techniques – Adam

Adam: A Method for Stochastic Optimization, Kingma et al. 2014

Adam combines the strengths of gradient descent with momentum and RMSprop

Momentum via first statistical moment

$$\boldsymbol{m}_t = \beta_1 \boldsymbol{m}_{t-1} + (1 - \beta_1) \nabla_{\boldsymbol{\Theta}_t} \mathcal{C}(\boldsymbol{\Theta}_t)$$

Moving average of squared gradients via second statistical moment

$$\boldsymbol{n}_{t} = \beta_{2} \boldsymbol{n}_{t-1} + (1 - \beta_{2}) \left[\nabla_{\boldsymbol{\Theta}_{t}} C(\boldsymbol{\Theta}_{t}) \right]^{2}$$

• Bias correction due to initialization via $m{m}_0 = m{n}_0 = 0$

$$\widetilde{\boldsymbol{m}}_t = \frac{\boldsymbol{m}_t}{1 - \beta_1^t}$$

$$\widetilde{\boldsymbol{n}}_t = \frac{\boldsymbol{n}_t}{1 - \beta_2^t}$$

Gradient update via corrected statistical moments

$$\mathbf{\Theta}_{t+1} = \mathbf{\Theta}_t - \frac{\alpha \widetilde{m}_t}{\sqrt{\widetilde{n}}_t + \varepsilon}$$

• β_1, β_2 are hyperparameters, typically chosen as $\beta_1 = 0.9, \beta_2 = 0.999$

Exercises

- E.6 Adam Optimizer (C)
 - Implement the Adam optimizer and find the optimum of the Rosenbrock function.

2.6 Overfitting Versus Underfitting

Underfitting: model capacity is too low

Unable to fit the data

Overfitting: model capacity is too high

- Unable to generalize
- Is monitored with the test data, that is not used during training (and tuning)

2.6 Overfitting Versus Underfitting

- Underfitting: model capacity is too low
- **Overfitting**: model capacity is too great
- Remedies (see Chapter 3 for more)
 - Cross-validation
 - More data
 - Data augmentation
 - Regularization
 - Early stopping
- Variance is related to the generalization error
- Bias is related to the training error

What is preferable:

- A high bias and low variance?
- Or a high variance and a low bias?

2.6 Overfitting Versus Underfitting

Low variance and high bias is preferable

Noise: a Flaw in Human Judgement, Kahneman et al. 2021

- A model/human should rather be consistently (but predictably) wrong, than inconsistent (and unpredictable).
- This is even worse in a machine learning model, where the best predictions are on datapoints close to the training data.

2.7 Regularization

Regularization is any modification we make to a learning algorithm that is intended to reduce its generalization error (low variance) but <u>ideally</u> not its training error (low bias)

- Regularization is always a trade-off between bias and variance
- For linear regression $\hat{y} = w \cdot x + b$
 - *L*¹-regularization

$$\tilde{C}(\mathbf{w}, b) = C(\mathbf{w}, b) + \lambda ||\mathbf{w}||_{1}$$

• L²-regularization

$$\tilde{C}(\mathbf{w},b) = C(\mathbf{w},b) + \lambda \mathbf{w}^T \mathbf{w}$$

- Penalty factor λ is a hyperparameter that controls the penalty term
 - Punishes large coefficients, as seen in oscillations, where large slope coefficients occur
 - A small λ converges towards the initial regression
 - A large λ returns a simple or sparse model

In L^1 : the derivative of $||w||_1$ is constant pushing the unimportant weights to zero. In L^2 : the derivative of w^Tw is proportional to w resulting in small but non-zero unimportant weights.

2.7 Regularization

L^2 -regularization

Exercises

- E.5 Higher-Order Regression (C)
 - Extend the linear regression Python implementation to higher-order regression. Experiment with underfitting, overfitting, and regularization.

Contents

- 2.1 Definition
- 2.2 Data Structure
- 2.3 Types of Learning
- 2.4 Machine Learning Tasks
- 2.5 Linear Regression
- 2.8.1 Gradient Descent
- 2.8.1 Stochastic Gradient Descent
- 2.8 Optimization Techniques
- 2.6 Overfitting versus Underfitting
- 2.7 Regularization
- 3 Neural Networks

2 Fundamental Concepts of Machine Learning: Learning

Leon Herrmann

Stefan Kollmannsberger

Chair of Data Engineering in Construction

Bauhaus-Universität Weimar

Deep Learning in Computational Mechanics – an introductory course,

Herrmann et al. 2025

