Statistical Finite Element Analysis for Bone Modeling

 $u^{"}$

UNIVERSITÄ BERN

S. Bonaretti¹, N. Reimers², D. Rueckert³, M. Reyes¹, M. González¹, P. Büchler¹

¹ MEM Research Center – ISTB, University of Bern, Bern, Switzerland

² Stryker Osteosynthesis, Kiel, Germany

³ Visual Information Processing, Department of Computing, Imperial College London, United Kingdom

Introduction

Current implant design techniques in orthopedics are based on manual fitting and fixation procedures applied on cadaver bones; in this way it is difficult to assess whether implants will fit most of the population.

Here a framework is proposed to evaluate biomechanical performances of an implant across a given population: after the creation of a statistical model that describes bone shape and mechanical properties in a given population, the 41-B1 tibia fracture (A.O. classification) was propagated from the mean bone to each new instance. Subsequently the implant was fitted to the bone in a semi-automatic way and finally biomechanical simulations were performed to evaluate the implant design.

Methods

Results

	Caucasian	Asian
von Mises stress in the plate (MPa)	61	69 (+12%)
Max principle stress in the screws (MPa)	61	80 (+31%)

Finite Element Model

Both in plate and screws stresses are significantly higher (p<0.05) for Asian than for Caucasian.

Discussion

We presented a framework for statistical biomechanics assessment including a combined statistical model of shape and finite element analysis. Future developments will combine shape and intensity information into the statistical model; moreover different implant positions and loading conditions will be evaluated.