Определения по матану, семестр 4

18 февраля 2018 г.

Содержание

1	Свойство, выполняющееся почти везде	2
2	Сходимость почти везде	2
3	Сходимость по мере	2
4	Теорема Егорова о сходимости почти везде и почти равномерной сходимости	2
5	Интеграл ступенчатой функции	2
6	Интеграл неотрицательной измеримой функции	2
7	Суммируемая функция	3
8	Интеграл суммируемой функции	3

1 Свойство, выполняющееся почти везде

 (X, \mathbb{A}, μ) - пространство с мерой, и $\omega(x)$ – утверждение, зависящее от точки x. $E:=\{x:\omega(x)$ — ложно $\}$ и $\mu E=0$. Тогда говорят, что $\omega(x)$ верно при почти всех (п.в.) x.

2 Сходимость почти везде

 (X, \mathbb{A}, μ) - пространство с мерой, и $f_n, f: X \to \overline{\mathbb{R}}$. Говорим, что $f_n \to f(x)$ почти везде, если $\{x: f_n(x) \not\to f(x)\}$ измеримо и имеет меру 0.

3 Сходимость по мере

4 Теорема Егорова о сходимости почти везде и почти равномерной сходимости

5 Интеграл ступенчатой функции

< X, A, $\mu>$ - пространство с мерой $f=\sum_{k=1}^n(\lambda_k\cdot\chi_{E_k})$ - ступенчатая функция, E_k - измеримые дизъюнктные множества, $f\geqslant 0$

Интегралом ступенчатой функции f на множестве X назовём

$$\int_{\mathbb{Y}} f d\mu := \sum_{k=0}^{n} \lambda_k \cdot \mu E_k$$

Будем считать, что $[0 \cdot \infty = 0]$

6 Интеграл неотрицательной измеримой функции

< ${\bf X},$ ${\bf A},$ $\mu>$ - пространство с мерой f - измеримо, $f\geqslant 0$, её интегралом на множестве ${\bf X}$ назовём

$$\int\limits_{\mathbb{X}}fd\mu:=\sup(\int\limits_{\mathbb{X}}g)$$

, где $0\leqslant g\leqslant f, g$ —ступенчатая

7 Суммируемая функция

< X, A, $\mu >$ - пространство с мерой f—измерима, $\int\limits_{X}f^{+}$ или $\int\limits_{X}f^{-}$ конечен (хотя бы один из них). Тогда интегралом f на X назовём

$$\int_{\mathbb{X}} f d\mu := \int_{\mathbb{X}} f^{+} - \int_{\mathbb{X}} f^{+}$$

Тогда если конечен $\int\limits_{\mathbb{X}} f$, (то есть конечны интегралы по обеим срезкам), то f называют суммируемой

8 Интеграл суммируемой функции

< ${\bf X},$ ${\bf A},$ $\mu>$ - пространство с мерой f- измерима, $E\in {\bf A}$ Тогда интегралом f на множестве E назовём

$$\int\limits_{\mathbb{E}} f d\mu := \int\limits_{\mathbb{X}} f \cdot \chi(E) d\mu$$

f суммируемая на E, если $\int\limits_{\mathbb{X}} f^+\chi(E)$ и $\int\limits_{\mathbb{X}} f^-\chi(E)$ конечны