

Ingeniería Informática, 5-6-2009

Tema 6

Cálculo para la Computación

Apellidos y Nombre:	 	
DNI:		

- 1. (1,5 p.) Demuestre que $a_n=\sqrt[7]{n+1}-\sqrt[7]{n}$ y $b_n=\frac{1}{7\sqrt[7]{n^6}}$ son infinitésimos equivalentes.
- 2. (1,5 p.) Determine para qué valores de $p \in \mathbb{N}$ y $q \in \mathbb{N}$, la serie $\sum \frac{(\log n)^p}{n^q}$ es convergente.
- 3. (1,5 p.) Determine para qué valores de a>0 la serie $\sum \frac{(an)^n}{n!}$ es convergente.
- 4. (2 p.) Use el método de la sección 6.3.4 de los apuntes para sumar la serie $\sum_{n=2}^{\infty} \frac{n^2}{(n-2)!}$
- 5. a) (1,5 p.) Halle la "serie de cosenos" de la función $f(x)=x(\pi-x)$, $x\in[0,\pi]$.
 - b) $(0,5\,\mathrm{p.})$ A partir de la serie del apartado anterior, construya una serie numérica cuya suma sea π^2 .
 - c) (1,5 p.) Utilizando los métodos estudiados para series numéricas, determine el número de sumandos necesarios para aproximar π^2 con un error menor que 10^{-3} .