Project 3: Riemann Sums of a Double Integral

Kurt Kremitzki Calculus III Spring 2014

April 20, 2014

My objective in this project is to explore double integrals as a limit of Riemann prisms. In particular, I will be examining a function over a region defined as:

$$f(x,y) = 4 - x^2 + y$$
 $R = [-2, 2] \times [0, 2]$

These are expressible as the limit of Riemann prisms:

$$\lim_{m,n\to\infty} \sum_{i=1}^{m} \sum_{j=1}^{n} f(x_{ij}^*, y_{ij}^*) \Delta x \Delta y \tag{1}$$

where $\Delta x = \frac{b-a}{m}$ and $\Delta y = \frac{d-c}{n}$. Additionally, $x \in [a,b]$ and $y \in [c,d]$. Lookie here:

1 Approximation with Rectangular Prisms

text				
x	<u>1</u>	<u>3</u>	<u>5</u>	7
у	4	4	4	4
-1	2.9375	2.4375	1.4375	-0.0625
1	4.9375	4.4375	3.4375	1.9375

Figure 1: Awesome Image

2 Volume as a Double Integral

Because our particular function $f(x,y) \ge 0$ over the region of integration $R = [-2,2] \times [0,2]$, we can interpret the double integral over this region as the volume under the surface z = f(x,y). Therefore,

$$V = \int_{-2}^{2} \int_{0}^{2} (4 - x^{2} + y) dx dy = \int_{-2}^{2} \left[4x - \frac{x^{3}}{3} + xy \right]_{x=0}^{x=2} dy$$
$$= \int_{-2}^{2} \left(\frac{16}{3} + 2y \right) dy = \frac{16}{3}y + y^{2} \Big|_{-2}^{2} = \left[\left(\frac{16}{3} (2) + 4 \right) - \left(\frac{16}{3} (-2) + 4 \right) \right]$$
$$= \frac{64}{3} = 21.\overline{3}$$

3 Varying Approximations of Volume

 $\dots \text{text} \dots$