Integrierter Kurs IIIb Quantenfeldtheorie

 $Vor lesung\ von$

Prof. Dr. Andreas Schäfer

im Sommersemester 2013

Überarbeitung und Textsatz in LyX von

Andreas Völklein

Stand: 24. April 2013

ACHTUNG

Diese Mitschrift ersetzt *nicht* die Vorlesung.

Es wird daher *dringend* empfohlen, die Vorlesung zu besuchen.

Copyright Notice

Copyright © 2013 Andreas Völklein

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.3 or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.

A copy of the license is included in the document entitled "GFDL".

Disclaimer of Warranty

Unless otherwise mutually agreed to by the parties in writing and to the extent not prohibited by applicable law, the Copyright Holders and any other party, who may distribute the Document as permitted above, provide the Document "as is", without warranty of any kind, expressed, implied, statutory or otherwise, including, but not limited to, the implied warranties of merchantability, fitness for a particular purpose, non-infringement, the absence of latent or other defects, accuracy, or the absence of errors, whether or not discoverable.

Limitation of Liability

In no event unless required by applicable law or agreed to in writing will the Copyright Holders, or any other party, who may distribute the Document as permitted above, be liable to you for any damages, including, but not limited to, any general, special, incidental, consequential, punitive or exemplary damages, however caused, regardless of the theory of liability, arising out of or related to this license or any use of or inability to use the Document, even if they have been advised of the possibility of such damages.

In no event will the Copyright Holders'/Distributor's liability to you, whether in contract, tort (including negligence), or otherwise, exceed the amount you paid the Copyright Holders/Distributor for the document under this agreement.

Links

Der Text der "GNU Free Documentation License" kann auch auf der Seite

https://www.gnu.org/licenses/fdl-1.3.de.html

nachgelesen werden.

Eine transparente Kopie der aktuellen Version dieses Dokuments kann von

https://github.com/andiv/IK3b

heruntergeladen werden.

Literatur

- Andreas Schäfer, Florian Rappl: Quantum electrodynamics; 2010 http://www-nw.uni-regensburg.de/~sca14496/QED/Quantenelektrodynamik.pdf
- Andreas Schäfer: Quantum Chromodynamics; http://www-nw.uni-regensburg.de/~sca14496/index.html
- Elliot Leader, Enrico Predazzi: An introduction to gauge theories and modern particle physics I; Cambridge University Press, 2004; ISBN: 0-521-46840-X
- Elliot Leader, Enrico Predazzi: An introduction to gauge theories and modern particle physics II; Cambridge University Press, 2004; ISBN: 0-521-499510-8

Inhaltsverzeichnis

1	Dirac-Gleichung, Klein-Gordon-Gleichung										
	1.1	Definiti	ion (Dirac-Matrizen)	3							
	1.2	e v									
	1.3	Lorentz-Transformationen der Dirac-Gleichung									
		1.3.1	Erster Spezialfall: Rotation	6							
		1.3.2	Zweiter Spezialfall: Lorentz-Boost	7							
		1.3.3	Der 4-Spinvektor	9							
		1.3.4	Projektions-Operatoren	11							
		1.3.5	Diskrete Lorentz-Transformationen	12							
	1.4		chprinzip	13							
		1.4.1	Lagrangedichte der Quantenelektrodynamik	14							
		1.4.2	Bilinearformen des Dirac-Feldes	15							
		1.4.3	Die Transformationen $\hat{C}, \hat{P}, \hat{T}$	16							
2	Cros	mecho l	Funktion (Fourman Propagator)	20							
4	Greensche Funktion (Feynman-Propagator) 2.1 Greensche Funktion der Klein-Gordon-Gleichung										
	2.1	Ciccis	che i unknon dei ittem-gordon-ordenting	20							
3	Kan	Kanonische Quantisierung $\hat{b}^{\dagger}, \hat{d}^{\dagger}, \hat{b}, \hat{d}$ 23									
4	Feynman-Regeln										
5	Elektron-Myon-Streuung										
6	Paul	Pauli-Villars-Regularisierung (Renormierung)									
7	$SU\left(N ight)$ Eichgruppen										
8	Tiefinelastische Streuung										
9	Lagrangedichte der QCD, Feynman-Regeln										
10	DGI	AP-Gl	eichung	30							
11	Dim	ensiona	lle Regularisierung \overline{MS}	31							
12	Kop	plungsk	$lpha_{S}\left(Q^{2} ight)$	32							
13 Standard-Modell $SU(2) \times U(1) \times SU(3)$, SSB und Higgs-Feld											
	14 Weitere Themen										
14	vveit	ere Th	emen	34							

IK3b - Q	Inhaltsverzeichnis			
Anhang				36
	Danksagungen	 		36

Motivation

Zu Beginn des 20. Jahrhunderts wurden zwei neue fundamentale Theorien entwickelt:

- Quantenmechanik mit Heisenbergscher Unschärferelation¹: $\Delta E \cdot \Delta t \geq \frac{1}{2}$
- Spezielle Relativitätstheorie mit Energie-Impuls-Beziehung: $E = \pm \sqrt{\vec{p}^2 + m^2}$ Die Lösungen mit negativer Energie führen zu Antiteilchen:

$$e^{-\mathbf{i}(-|E|t)} = e^{-\mathbf{i}|E|(-t)}$$

Abbildung 0.1: Antiteilchen

Das Problem ist, dass im Vakuum virtuelle Teilchen-Antiteilchen-Paare entstehen können:

Abbildung 0.2: virtuelles Teilchen-Antiteilchen-Paar

- Das Vakuum wird dadurch ein Medium.
- Bei Rechnungen erhält man Unendlichkeiten.

Die Behandlung der Divergenzen führt zur "Renormierung", dem Kern der Quantenfeldtheorie. Die Idee dabei ist, dass die Quantenfeldtheorie der nieder-energetische Grenzfall einer "Theory of Everything" ist. Da wir diese nicht kennen, fordern wir eine "Entkopplung": Die Physik bei Laborenergien darf nicht von der Theory of Everything abhängen.

Dies wird von Eichtheorien mit oder ohne "spontane Symmetriebrechung" erfüllt. Auf diese Weise erhält man das *Standard-Modell* der Teilchenphysik.

 $^{^1 \}mbox{Wir}$ verwenden natürliche Einheiten mit c=1 und $\hbar=1.$

1 Dirac-Gleichung, Klein-Gordon-Gleichung

Wir verwenden natürliche Einheiten c=1 und $\hbar=\frac{h}{2\pi}=1$. Nützlich für Umrechnungen in das SI-Einheitensystem sind folgende Konstanten:

$$\hbar c = 197,327 \,\text{MeV fm}$$
 $c = 299792458 \,\frac{\text{m}}{\text{s}}$ $1 \,\text{fm} = 10^{-15} \,\text{m}$

$$[\text{Energie}] \; \hat{=} \; [\text{MeV}] \; \hat{=} \; \left[\frac{\text{MeV}}{c}\right] \; \hat{=} \; [\text{Impuls}] \; \hat{=} \; \left[\frac{\text{MeV}}{\hbar c}\right] \; \hat{=} \; \left[\frac{1}{\text{fm}}\right] \; \hat{=} \; \left[\frac{c}{\text{fm}}\right] \; \hat{=} \; \left[\frac{1}{\text{s}}\right] \; \hat{=} \; \left[\frac{1}{$$

Sei t eine Zeit in der Einheit MeV⁻¹ gegeben. Die Umrechnung in Sekunden geht nun wie folgt:

$$t\left[\mathbf{s}\right] = \frac{t\left[\mathrm{MeV}^{-1}\right] \cdot \hbar c}{c}$$

Die Quantenmechanik nutzt die klassische Energie-Impuls-Beziehung (Dispersionsrelation):

$$E_{\rm kin} = \frac{\vec{p}^2}{2m} \tag{1.1}$$

Die Wellenmechanik basiert auf ebenen Wellen:

$$\psi \sim e^{-\mathbf{i}(Et - \overrightarrow{p} \cdot \overrightarrow{x})}$$

$$\mathbf{i}\frac{\partial}{\partial t}e^{-\mathbf{i}(Et-\overrightarrow{p}\cdot\overrightarrow{x})} = Ee^{-\mathbf{i}(Et-\overrightarrow{p}\overrightarrow{x})}$$
$$-\mathbf{i}\overrightarrow{\nabla}e^{-\mathbf{i}(Et-\overrightarrow{p}\cdot\overrightarrow{x})} = \overrightarrow{p}e^{-\mathbf{i}(Et-\overrightarrow{p}\overrightarrow{x})}$$

Ersetze nun die klassische nun durch die relativistische Dispersionsrelation:

$$E^2 - \vec{p}^2 - m^2 = 0 \tag{1.2}$$

Damit erhält man die Klein-Gordon-Gleichung:

$$\left[-\frac{\partial^2}{\partial t^2} + \vec{\nabla}^2 - m^2 \right] \phi(\vec{x}, t) = 0$$
 (1.3)

Wieso verwendet man nicht folgende Gleichung?

$$\left[\mathbf{i}\frac{\partial}{\partial t}\pm\sqrt{-\overrightarrow{\nabla}^{2}+m^{2}}\right]\psi\left(\overrightarrow{x},t\right)=0$$

Die Wurzel lässt sich nur als eine Taylor-Entwicklung mit beliebig hohen Potenzen in $\overrightarrow{\nabla}^2$ berechnen.

$$f(x+y) = f(x) + f'(x)y + \frac{1}{2}f''(x)y^2 + \dots$$

Unendlich hohe Ableitungen können zu einer Verletzung der Kausalität führen. Außerdem ist die Konvergenz nicht gesichert. Die Alternative ist die Linearisierung, also die Zerlegung der Klein-Gordon-Gleichung als Differentialgleichung zweiter Ordnung in zwei Differentialgleichungen erster Ordnung.

1.1 Definition (Dirac-Matrizen)

Seien $\gamma_0, \gamma_1, \gamma_2$ und γ_3 Elemente einer Algebra mit folgender Eigenschaft:

$$\gamma_{\mu}\gamma_{\nu} + \gamma_{\nu}\gamma_{\mu} = 2g_{\mu\nu}\mathbb{1}$$
(1.4)

Die γ_{μ} werden *Dirac-Matrizen* genannt, und sie erzeugen eine *Clifford-Algebra*. Dabei ist

$$(g_{\mu\nu}) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix} = ((g^{-1})_{\mu\nu}) =: (g^{\mu\nu})$$

$$(1.5)$$

die Metrik des Minkowski-Raumes¹. Wir verwenden die Einsteinsche Summenkonvention. Die Multiplikation mit 1 schreiben wir gewöhnlich nicht aus.

$$(\hat{p}^{\mu}\gamma_{\mu} - m) (\hat{p}^{\mu}\gamma_{\mu} + m) = \underbrace{\hat{p}^{\mu}\hat{p}^{\nu}}_{\text{symmetrisch}} \gamma_{\mu}\gamma_{\nu} - m^{2} =$$

$$= \frac{1}{2} (\hat{p}^{\mu}\hat{p}^{\nu}\gamma_{\mu}\gamma_{\nu} + \hat{p}^{\nu}\hat{p}^{\mu}\gamma_{\mu}\gamma_{\nu}) - m^{2} =$$

$$= \frac{1}{2}\hat{p}^{\mu}\hat{p}^{\nu} (\gamma_{\mu}\gamma_{\nu} + \gamma_{\nu}\gamma_{\mu}) - m^{2} =$$

$$= \hat{p}^{\mu}\hat{p}^{\nu}g_{\mu\nu} - m^{2} = \hat{p}^{2} - m^{2}$$

Wenn ψ die Gleichung

$$(\hat{p}^{\mu}\gamma_{\mu} + m)\psi = 0$$

$$(1.6)$$

erfüllt, so erfüllt ψ auch die Klein-Gordon-Gleichung, ist also eine Lösung, die der relativistischen Energie-Impuls-Beziehung genügt. Analoges gilt für:

$$(\hat{p}^{\mu}\gamma_{\mu} - m)\psi = 0$$
(1.7)

Dies sind die zwei Formen der Dirac-Gleichung.

Wir verwenden die Feynman-Slash-Notation:

$$p := p^{\mu} \gamma_{\mu} \tag{1.8}$$

Die Dirac-Darstellung der Gamma-Matrizen lautet:

$$\gamma^{0} = \gamma_{0} = \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{pmatrix}$$

$$\gamma^{1} = -\gamma_{1} = \begin{pmatrix}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & -1 & 0 & 0 \\
-1 & 0 & 0 & 0
\end{pmatrix}$$

$$\gamma^{2} = -\gamma_{2} = \begin{pmatrix}
0 & 0 & 0 & -\mathbf{i} \\
0 & 0 & \mathbf{i} & 0 \\
0 & \mathbf{i} & 0 & 0 \\
-\mathbf{i} & 0 & 0 & 0
\end{pmatrix}$$

$$\gamma^{3} = -\gamma_{3} = \begin{pmatrix}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & -1 \\
-1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{pmatrix}$$
(1.9)

¹Mit der Metrik kann man die Indizes verschieben: $a^{\mu} = g^{\mu\nu}a_{\nu}$, $a_{\mu} = g_{\mu\nu}a^{\nu}$

Beispiel:

$$\gamma_{1}\gamma_{2} + \gamma_{2}\gamma_{1} = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & -1 & 0 & 0 \\ -1 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 & 0 & -\mathbf{i} \\ 0 & 0 & \mathbf{i} & 0 \\ 0 & \mathbf{i} & 0 & 0 \\ -\mathbf{i} & 0 & 0 & 0 \end{pmatrix} + \\ + \begin{pmatrix} 0 & 0 & 0 & -\mathbf{i} \\ 0 & 0 & \mathbf{i} & 0 \\ 0 & \mathbf{i} & 0 & 0 \\ -\mathbf{i} & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & -1 & 0 & 0 \\ -1 & 0 & 0 & 0 \end{pmatrix} = \\ = \begin{pmatrix} -\mathbf{i} & 0 & 0 & 0 \\ 0 & \mathbf{i} & 0 & 0 \\ 0 & 0 & -\mathbf{i} & 0 \\ 0 & 0 & 0 & \mathbf{i} \end{pmatrix} + \begin{pmatrix} \mathbf{i} & 0 & 0 & 0 \\ 0 & -\mathbf{i} & 0 & 0 \\ 0 & 0 & \mathbf{i} & 0 \\ 0 & 0 & 0 & -\mathbf{i} \end{pmatrix} = 0$$

Die Dirac-Darstellung ermöglicht die intuitive Interpretation, dass die ersten beiden Indizes eines $Spinors \ \psi$ einer Teilchenlösung entsprechen und die letzten beiden einer Antiteilchenlösung.

1.2 Die freien Lösungen im Ruhesystem

Wir wollen eine Lösung $\psi(x^0, \vec{x})$ der Diracgleichung im Ruhesystem finden, das heißt für $\vec{p} = 0$ und E = m. Wir machen einen Wellenansatz:

$$\psi\left(x^{0},\overrightarrow{x}\right)=u\left(E,\overrightarrow{p}\right)e^{-\mathbf{i}\left(Et-\overrightarrow{p}\cdot\overrightarrow{x}\right)}=u\left(m,\overrightarrow{0}\right)e^{-\mathbf{i}mt}$$

Die Dirac-Gleichung für Teilchen ist:

$$(m\gamma^{0} - m) \psi = (\vec{p} - m) \psi = 0$$

$$\begin{pmatrix} m - m & 0 \\ m - m & \\ -m - m \\ 0 & -m - m \end{pmatrix} \psi = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

$$u\left(\vec{p}=\vec{0},+\right)=a\begin{pmatrix}1\\0\\0\\0\end{pmatrix}\qquad \qquad u\left(\vec{p}=\vec{0},-\right)=b\begin{pmatrix}0\\1\\0\\0\end{pmatrix}$$
(1.10)

Analog lässt die Dirac-Gleichung für Antiteilchen

$$(\not p + m) \psi = 0$$

folgende Lösungen zu:

$$v\left(\overrightarrow{p} = \overrightarrow{0}, -\right) = c \begin{pmatrix} 0\\0\\1\\0 \end{pmatrix} \qquad \qquad u\left(\overrightarrow{p} = \overrightarrow{0}, +\right) = d \begin{pmatrix} 0\\0\\0\\1 \end{pmatrix} \tag{1.11}$$

1.3 Lorentz-Transformationen der Dirac-Gleichung

Fordere nun die Invarianz der Dirac-Gleichung unter einer Lorentz-Transformationen² Λ^{μ}_{ν} :

$$0 = \left(\mathbf{i}\frac{\partial}{\partial x_{\mu}}\gamma_{\mu} - m\right)\psi(x) = \left(\mathbf{i}\frac{\partial}{\partial x_{\nu}'}\Lambda_{\nu}^{\mu}\gamma_{\mu} - m\right)\underbrace{S^{-1}(\Lambda)\psi'(x')}_{=\psi(x)} /S \cdot$$

$$0 = \left(\mathbf{i}\frac{\partial}{\partial x_{\nu}'}\underbrace{\Lambda_{\nu}^{\mu}S\gamma_{\mu}S^{-1}}_{\stackrel{!}{=}\gamma_{\nu}} - m\right)\psi'(x')$$

$$(1.12)$$

Es genügt, eine infinitesimale Lorentz-Transformation zu betrachten, da man eine endliche Transformation als Hintereinanderausführung von N infinitesimalen darstellen kann.

$$g^{\nu\nu'} \Lambda^{\mu}_{\nu'} \big|_{\text{inf.}} = g^{\nu\mu} + \frac{\omega^{\nu\mu}}{N} + \mathcal{O}\left(\frac{1}{N^2}\right)$$

Wir benutzen dann:

$$\lim_{N \to \infty} \left(1 - \mathbf{i} \frac{a}{N} \right)^N = e^{-\mathbf{i}a}$$

Zur Erinnerung: Die Lorentz-Transformation lässt die Metrik invariant:

$$\Lambda^{\mu}_{\mu'}\Lambda^{\nu}_{\nu'}g_{\mu\nu} = g_{\mu'\nu'}$$

Es folgt:

$$g^{\mu''\mu'} \Lambda^{\mu}_{\mu'} g^{\nu''\nu'} \Lambda^{\nu}_{\nu'} g_{\mu\nu} = g^{\mu''\nu''}$$

$$g^{\mu''\mu} g^{\nu''\nu} g_{\mu\nu} + \frac{\omega^{\mu''\mu}}{N} g^{\nu''\nu} g_{\mu\nu} + g^{\mu''\mu} \frac{\omega^{\nu''\nu}}{N} g_{\mu\nu} = g^{\mu''\nu''}$$

$$\frac{\omega^{\mu''\mu}}{N} g_{\mu\nu''} = -\frac{\omega^{\nu''\nu}}{N} g_{\mu''\nu}$$

$$\Rightarrow \qquad \omega^{\mu''\nu''} = -\omega^{\nu''\mu''}$$
(1.13)

Für S machen wir den Ansatz:

$$S = 1 - \frac{\mathbf{i}}{4} \cdot \frac{\omega^{\mu\nu}}{N} \sigma_{\mu\nu} \tag{1.14}$$

Dabei sind die $\sigma_{\mu\nu}$ beliebige $\mathbb{C}^{4\times 4}$ -Matrizen, ohne Einschränkung mit $\sigma_{\mu\nu} = -\sigma_{\nu\mu}$, da der symmetrische Anteil wegfällt, weil $\omega^{\mu\nu}$ antisymmetrisch ist. Einsetzen liefert:

$$\gamma_{\nu} + \mathcal{O}\left(\frac{1}{N^{2}}\right) \stackrel{!}{=} \left(\mathbb{1} - \frac{\mathbf{i}}{4}\sigma_{\mu'\nu'}\frac{\omega^{\mu'\nu'}}{N}\right) \left(\gamma_{\nu} + \frac{\omega_{\nu\mu}}{N}\gamma^{\mu}\right) \left(\mathbb{1} + \frac{\mathbf{i}}{4}\sigma_{\mu''\nu''}\frac{\omega^{\mu''\nu''}}{N}\right) =$$

$$\Rightarrow \qquad 0 = -\frac{\mathbf{i}}{4}\sigma_{\mu'\nu'}\frac{\omega^{\mu'\nu'}}{N}\gamma_{\nu} + \frac{\omega_{\nu}^{\mu}}{N}\gamma_{\mu} + \frac{\mathbf{i}}{4}\gamma_{\nu}\sigma_{\mu''\nu''}\frac{\omega^{\mu''\nu''}}{N}$$

$$0 = -\frac{\mathbf{i}}{4}\sigma_{\mu'\nu'}\gamma_{\nu}\frac{\omega^{\mu'\nu'}}{N} + g_{\nu\nu'}\gamma_{\mu'}\frac{\omega^{\nu'\mu'}}{N} + \frac{\mathbf{i}}{4}\gamma_{\nu}\sigma_{\mu'\nu'}\frac{\omega^{\mu'\nu'}}{N}$$

²Beachte, dass Λ^{μ}_{ν} sich unter Lorentz-Transformationen nicht ändert, also kein Tensor ist.

$$0 = \frac{\omega^{\mu'\nu'}}{N} \left(-\frac{\mathbf{i}}{4} \sigma_{\mu'\nu'} \gamma_{\nu} - g_{\nu\nu'} \gamma_{\mu'} + \frac{\mathbf{i}}{4} \gamma_{\nu} \sigma_{\mu'\nu'} \right)$$

Es gilt, da $\omega^{\mu'\nu'}$ antisymmetrisch ist:

$$-\omega^{\mu'\nu'}g_{\nu\nu'}\gamma_{\mu'} = \left(-\frac{1}{2}g_{\nu\nu'}\gamma_{\mu'} + \frac{1}{2}g_{\nu\mu'}\gamma_{\nu'}\right)\omega^{\mu'\nu'}$$

Somit folgt:

$$\frac{\mathbf{i}}{4} \left(\sigma_{\mu'\nu'} \gamma_{\nu} - \gamma_{\nu} \sigma_{\mu'\nu'} \right) \frac{\omega^{\mu'\nu'}}{N} = \frac{1}{2} \left(-g_{\nu\nu'} \gamma_{\mu'} + g_{\nu\mu'} \gamma_{\nu'} \right) \frac{\omega^{\mu'\nu'}}{N}
\frac{\mathbf{i}}{2} \left(\sigma_{\mu'\nu'} \gamma_{\nu} - \gamma_{\nu} \sigma_{\mu'\nu'} \right) = g_{\mu'\nu} \gamma_{\nu'} - g_{\nu'\nu} \gamma_{\mu'}$$
(1.15)

Die $\sigma_{\mu'\nu'}$ sind antisymmetrische Tensoren der Stufe 2, die nur von den γ -Matrizen abhängen, das heißt mit $A \in \mathbb{C}$ gilt:

$$\sigma_{\mu'\nu'} = A \cdot \left[\gamma_{\mu'}, \gamma_{\nu'} \right]$$

Die linke Seite von (1.15) ist damit:

$$\begin{split} \frac{\mathbf{i}}{2} A \Big(\gamma_{\mu'} & \underbrace{\gamma_{\nu'} \gamma_{\nu}}_{\text{kommutieren}} & -\gamma_{\nu'} \underbrace{\gamma_{\mu'} \gamma_{\nu}}_{\text{kommutieren}} - \underbrace{\gamma_{\nu} \gamma_{\mu'}}_{\text{kommutieren}} \gamma_{\nu'} + \underbrace{\gamma_{\nu} \gamma_{\nu'}}_{\text{kommutieren}} \gamma_{\mu'} \Big) = \\ & = \frac{\mathbf{i}}{2} A \Big(2g_{\nu'\nu} \gamma_{\mu'} - \underbrace{\gamma_{\mu'} \gamma_{\nu} \gamma_{\nu'}}_{\text{kommutieren}} - 2g_{\mu'\nu} \gamma_{\nu'} + \underbrace{\gamma_{\nu'} \gamma_{\nu} \gamma_{\mu'}}_{\text{kommutieren}} - 2g_{\nu\nu'} \gamma_{\nu'} + \underbrace{\gamma_{\mu'} \gamma_{\nu} \gamma_{\nu'}}_{\text{kommutieren}} + \underbrace{2g_{\nu\nu'} \gamma_{\mu'}}_{\text{kommutieren}} - \underbrace{2g_{\nu\nu'} \gamma_{\mu'}}_{\text{kommutieren}} - 2g_{\nu\nu'} \gamma_{\nu'} + \underbrace{\gamma_{\mu'} \gamma_{\nu} \gamma_{\nu'}}_{\text{kommutieren}} + \underbrace{2g_{\nu\nu'} \gamma_{\mu'}}_{\text{kommutieren}} - \underbrace{2g_{\nu\nu'} \gamma_{\mu'}}_{\text{kommutieren}} - \underbrace{2g_{\nu\nu'} \gamma_{\nu'}}_{\text{kommutieren}} + \underbrace{2g_{\nu\nu'} \gamma_{\nu'}}_{\text{kommutieren}} - \underbrace{2g_{\nu\nu'} \gamma_{\nu'} \gamma_{\nu'}}_{\text{kommutieren}} + \underbrace{2g_{\nu\nu'} \gamma_{\nu'}}_{\text{kommutieren}} - \underbrace{2g_{\nu\nu'} \gamma_{\nu'}}_{\text{kommutieren}} - \underbrace{2g_{\nu\nu'} \gamma_{\nu'}}_{\text{kommutieren}} + \underbrace{2g_{\nu\nu'} \gamma_{\nu'}}_{\text{kommutieren}} - \underbrace{2g_{\nu\nu'} \gamma_{\nu'} \gamma_{\nu'}}_{\text{kommutieren}} + \underbrace{2g_{\nu\nu'} \gamma_{\nu'}}_{\text{kommutieren}} - \underbrace{2g_{\nu\nu'} \gamma_{\nu'} \gamma_{\nu'}}_{\text{kommutieren}} - \underbrace{2g_{\nu\nu'} \gamma_{\nu'} \gamma_{\nu'}}_{\text{kommutieren}} + \underbrace{2g_{\nu\nu'} \gamma_{\nu'} \gamma_{\nu'}}_{\text{kommutieren}} - \underbrace{2g_{\nu\nu'} \gamma_{\nu'} \gamma_{\nu'}}_{\text{kommutieren}} - \underbrace{2g_{\nu\nu'} \gamma_{\nu'} \gamma_{\nu'}}_{\text{kommutieren}} + \underbrace{2g_{\nu\nu'} \gamma_{\nu'} \gamma_{\nu'}}_{\text{kommutieren}} - \underbrace{2g_{\nu\nu'} \gamma_{\nu'} \gamma_{\nu'}}_{\text{kommutieren}} + \underbrace{2g_{\nu\nu'} \gamma_{\nu'} \gamma_{\nu'}}_{\text{kommutieren}} - \underbrace{2g_{\nu\nu'} \gamma_{\nu'} \gamma_{\nu'}}_{\text{kommutieren}} + \underbrace{$$

Aus (1.15) folgt daher:

$$A = \frac{\mathbf{i}}{2} \qquad \qquad \boxed{\sigma_{\mu\nu} = \frac{\mathbf{i}}{2} \left[\gamma_{\mu}, \gamma_{\nu} \right]}$$
 (1.16)

Damit haben wir S bestimmt.

Erinnerung: Kugelflächenfunktionen und Drehimpulsoperator

$$Y_{lm} = \sqrt{\frac{2l+1}{4\pi} \cdot \frac{(l-m)!}{(l+m)!}} P_l^m \left(\cos\left(\theta\right)\right) e^{\mathbf{i}m\varphi}$$
$$\hat{L}_z = \frac{\hbar}{\mathbf{i}} \left(x\frac{\partial}{\partial y} - y\frac{\partial}{\partial x}\right) = \frac{\hbar}{\mathbf{i}} \frac{\partial}{\partial \varphi}$$

1.3.1 Erster Spezialfall: Rotation

Betrachte die infinitesimale Transformation für Drehungen um die z-Achse:

$$(A^{\mu}_{\nu})_{\text{inf. Rot.}} = \begin{pmatrix} 1 & 0 & 0 & 0\\ 0 & 1 & -\frac{\varphi}{N} & 0\\ 0 & \frac{\varphi}{N} & 1 & 0\\ 0 & 0 & 0 & 1 \end{pmatrix} \qquad \frac{\omega^{12}}{N} = -\frac{\omega^{21}}{N} = -\frac{\varphi}{N}$$
 (1.17)

Alle anderen $\omega^{\mu\nu}$ verschwinden. Außerdem gilt:

$$\sigma_{12} = -\sigma_{21} = \frac{\mathbf{i}}{2} (\gamma_{1} \gamma_{2} - \gamma_{2} \gamma_{1}) = \mathbf{i} \gamma_{1} \gamma_{2} =$$

$$= \mathbf{i} \begin{pmatrix} 0 & 0 & 0 & -1 \\ 0 & 0 & -1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 & 0 & \mathbf{i} \\ 0 & 0 & -\mathbf{i} & 0 \\ 0 & -\mathbf{i} & 0 & 0 \\ 0 & -\mathbf{i} & 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}$$

$$S = \exp\left(-\frac{\mathbf{i}}{4}N \cdot 2\frac{\omega^{12}}{N}\sigma_{12}\right) = \exp\left(\frac{\mathbf{i}}{2}\varphi\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}\right) =$$

$$= \begin{pmatrix} 1 & 0 \\ 1 \\ 1 \\ 0 & 1 \end{pmatrix} \cos\left(\frac{\varphi}{2}\right) + \begin{pmatrix} 1 & 0 \\ -1 \\ 0 & -1 \end{pmatrix} \mathbf{i} \sin\left(\frac{\varphi}{2}\right) =$$

$$= \begin{pmatrix} e^{\mathbf{i}\frac{\varphi}{2}} \\ e^{-\mathbf{i}\frac{\varphi}{2}} \\ 0 & e^{-\mathbf{i}\frac{\varphi}{2}} \end{pmatrix}$$

$$(1.18)$$

Also haben die erste und dritte Komponenten Spin $\frac{1}{2}$ und die anderen beiden Spin $-\frac{1}{2}$.

1.3.2 Zweiter Spezialfall: Lorentz-Boost

Für den Lorentz-Boost gilt:

$$(x^{0})' = \gamma \left(x^{0} + \overrightarrow{\beta} \overrightarrow{x}\right)$$

$$(\overrightarrow{x})' = \gamma \left(\overrightarrow{\beta} x^{0} + \overrightarrow{x}\right)$$

$$\gamma^{-1} = \sqrt{1 - \beta^{2}}$$

$$\frac{\omega^{0}_{k}}{N} = \frac{\omega^{k}_{0}}{N} =: \frac{\omega^{k}}{N}$$

$$\omega := \sqrt{(\omega^{1})^{2} + (\omega^{2})^{2} + (\omega^{3})^{2}}$$

$$(A)_{\text{inf. Boost}} = \begin{pmatrix} \frac{1}{N} & \frac{\omega^{1}}{N} & \frac{\omega^{2}}{N} & \frac{\omega^{3}}{N} \\ \frac{\omega^{2}}{N} & 0 & 1 & 0 \\ \frac{\omega^{3}}{N} & 0 & 0 & 1 \end{pmatrix}$$

$$(1.19)$$

Man erhält:

$$\sigma_{10} = \mathbf{i} \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix} \qquad \sigma_{20} = \mathbf{i} \begin{pmatrix} 0 & 0 & 0 & -\mathbf{i} \\ 0 & 0 & \mathbf{i} & 0 \\ 0 & -\mathbf{i} & 0 & 0 \\ \mathbf{i} & 0 & 0 & 0 \end{pmatrix} \qquad \sigma_{30} = \mathbf{i} \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \\ 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \end{pmatrix}$$

(1.20)

$$S = \lim_{N \to \infty} \left(\mathbbm{1} + \frac{1}{2} \cdot \frac{\omega}{N} \underbrace{\begin{pmatrix} 0 & 0 & p^3 & p^1 - \mathbf{i}p^2 \\ 0 & 0 & p^1 + \mathbf{i}p^2 & -p^3 \\ p^3 & p^1 - \mathbf{i}p^2 & 0 & 0 \\ p^1 + \mathbf{i}p^2 & -p^3 & 0 & 0 \end{pmatrix}}_{=:M} \mathbbm{1} \right)^N = e^{\frac{\omega}{2}M}$$

$$M^2 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$\Rightarrow M^{2n+1} = M$$

Wir betrachten jetzt die Λ_{α}^{β} -Matrix, die sich aus N infinitesimalen Transformationen ergibt.

 \Rightarrow $S = \cosh\left(\frac{\omega}{2}\right) \mathbb{1} + \sinh\left(\frac{\omega}{2}\right) M$

$$\left(A_{\alpha}^{\beta}\right) = \lim_{N \to \infty} \left(1 + \frac{\omega}{N} \begin{pmatrix} 0 & \omega^{1} & \omega^{2} & \omega^{3} \\ \omega^{1} & 0 & 0 & 0 \\ \omega^{2} & 0 & 0 & 0 \\ \omega^{3} & 0 & 0 & 0 \end{pmatrix} \frac{1}{\omega} \right)^{N} = e^{\omega \tilde{M}}$$
(1.21)

$$\tilde{M}^2 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \frac{\left(\omega^1\right)^2}{\omega^2} & 0 & 0 \\ 0 & 0 & \frac{\left(\omega^2\right)^2}{\omega^2} & 0 \\ 0 & 0 & 0 & \frac{\left(\omega^3\right)^2}{\omega^2} \end{pmatrix}$$

Damit folgt:

$$\left(\tilde{M}^2\right)_0^0 = 1 = \left(\tilde{M}^{2n}\right)_0^0 \qquad \left(\tilde{M}^{2n+1}\right)_0^0 = 0$$

Somit ergibt sich:

$$\cosh(\omega) = (A)_0^0 \stackrel{!}{=} \gamma = \frac{E}{m} = \sqrt{\frac{\|\vec{p}\|^2 + m^2}{m^2}}$$

$$\cosh\left(\frac{\omega}{2}\right) = \sqrt{\frac{\cosh(\omega) + 1}{2}} = \sqrt{\frac{E + m}{2m}}$$

$$\frac{1}{\|\vec{p}\|} \sinh\left(\frac{\omega}{2}\right) = \frac{1}{\|\vec{p}\|} \sqrt{\frac{\cosh(\omega) - 1}{2}} = \frac{1}{\sqrt{E^2 - m^2}} \sqrt{\frac{E - m}{2m}} =$$

$$= \frac{1}{\sqrt{2m(E + m)}} = \frac{1}{E + m} \sqrt{\frac{E + m}{2m}}$$

$$S = \sqrt{\frac{E+m}{2m}} \begin{pmatrix} 1 & 0 & \frac{p^3}{E+m} & \frac{p^1 - \mathbf{i}p^2}{E+m} \\ 0 & 1 & \frac{p^1 + \mathbf{i}p^2}{E+m} & \frac{-p^3}{E+m} \\ \frac{p^3}{E+m} & \frac{p^1 - \mathbf{i}p^2}{E+m} & 1 & 0 \\ \frac{p^1 + \mathbf{i}p^2}{E+m} & \frac{-p^3}{E+m} & 0 & 1 \end{pmatrix}$$
(1.22)

$$\Rightarrow \qquad u\left(\overrightarrow{p},+\right) = \sqrt{\frac{E+m}{2m}} \left(\begin{array}{c} 1 \\ 0 \\ \frac{p^3}{E+m} \\ \frac{p^1+\mathbf{i}p^2}{E+m} \end{array} \right)$$

Die Lösungen sind also:

$$\begin{split} \psi_1 &= e^{-\mathbf{i}(Et - \overrightarrow{p}\,\overrightarrow{x})} u\left(\overrightarrow{p}, +\right) = e^{-\mathbf{i}px} u\left(\overrightarrow{p}, +\right) & \psi_2 &= e^{-\mathbf{i}(Et - \overrightarrow{p}\,\overrightarrow{x})} u\left(\overrightarrow{p}, -\right) = e^{-\mathbf{i}px} u\left(\overrightarrow{p}, -\right) \\ \psi_3 &= e^{\mathbf{i}(Et - \overrightarrow{p}\,\overrightarrow{x})} v\left(\overrightarrow{p}, +\right) = e^{\mathbf{i}px} v\left(\overrightarrow{p}, +\right) & \psi_4 &= e^{\mathbf{i}(Et - \overrightarrow{p}\,\overrightarrow{x})} v\left(\overrightarrow{p}, -\right) = e^{\mathbf{i}px} v\left(\overrightarrow{p}, -\right) \end{split}$$

$$\psi_{1}(\overrightarrow{x},t) = e^{-\mathbf{i}px} \sqrt{\frac{E+m}{2m}} \begin{pmatrix} 1\\0\\\frac{p^{3}}{E+m}\\\frac{p^{1}+\mathbf{i}p^{2}}{E+m} \end{pmatrix} \qquad \psi_{2}(\overrightarrow{x},t) = e^{-\mathbf{i}px} \sqrt{\frac{E+m}{2m}} \begin{pmatrix} 0\\1\\\frac{p^{1}-\mathbf{i}p^{2}}{E+m}\\\frac{-p^{3}}{E+m} \end{pmatrix}$$

$$\psi_{3}(\overrightarrow{x},t) = e^{\mathbf{i}px} \sqrt{\frac{E+m}{2m}} \begin{pmatrix} \frac{p^{3}}{E+m}\\\frac{p^{1}+\mathbf{i}p^{2}}{E+m}\\1\\0 \end{pmatrix} \qquad \psi_{4}(\overrightarrow{x},t) = e^{\mathbf{i}px} \sqrt{\frac{E+m}{2m}} \begin{pmatrix} \frac{p^{1}-\mathbf{i}p^{2}}{E+m}\\\frac{-p^{3}}{E+m}\\0\\1 \end{pmatrix} \qquad (1.23)$$

1.3.3 Der 4-Spinvektor

Wir suchen nun die relativistische Verallgemeinerung des Spinvektors \vec{s} , den 4-Spinvektor s^{μ} . Im Ruhesystem soll gelten:

$$s^{\mu} = (0, \vec{s}) \qquad \qquad p^{\mu} = \left(E, \vec{0}\right) = \left(m, \vec{0}\right) \tag{1.24}$$

Wir verwenden, dass 4-Skalarprodukte invariant unter Lorentz-Transformationen sind.

$$s^{2} = s_{\mu}s^{\mu} = -\|\vec{s}\|^{2} \stackrel{\|\vec{s}\| = 1}{=} -1 \qquad \qquad s \cdot p = s_{\mu}p^{\mu} = 0 \tag{1.25}$$

Wir machen folgenden Ansatz für s^{μ} , da die einzige ausgezeichnete Raumrichtung \vec{p} ist:

$$s^{\mu} = \left(s^0, \alpha \, \overrightarrow{p}\right)$$

Dabei ist $\alpha \in \mathbb{R}$ ein beliebiger Proportionalitätsfaktor. Einsetzen liefert:

$$s^{0}E - \alpha \vec{p}^{2} = 0$$

$$\Rightarrow s^{0} = \frac{\alpha \vec{p}^{2}}{E}$$

Damit ergibt die andere Gleichung:

$$-1 = (s^0)^2 - \alpha^2 \vec{p}^2 = \left(\frac{\alpha \vec{p}^2}{E}\right)^2 - \alpha^2 \vec{p}^2 =$$

$$\begin{split} &=\alpha^2\left(\overrightarrow{\overline{p}^4}-\overrightarrow{p}^2\right)=\alpha^2\left(\overrightarrow{\overline{p}^4}-\overrightarrow{p}^2\right)=\\ &=-\alpha^2\cdot\overrightarrow{\overline{p}^2m^2}\\ &\Rightarrow\qquad\alpha=\pm\frac{E}{m\,\|\overrightarrow{p}\|} \end{split}$$

Somit ist der Spin 4-Vektor:

$$s^{\mu} = \pm \frac{E}{m} \left(\frac{\|\vec{p}\|}{E}, \frac{\vec{p}}{\|\vec{p}\|} \right)$$
 (1.26)

Eine wichtige Eigenschaft von s^{μ} ist:

$$\lim_{\substack{\parallel \vec{p} \parallel \\ m} \to \infty} s^{\mu} = \pm \frac{1}{m} (E, \vec{p}) = \pm \frac{p^{\mu}}{m}$$
 (1.27)

Was ist das Lorentz-invariante Skalarprodukt (und damit die Norm) für Spinoren? Wir machen folgenden Ansatz:

$$\int d^3x \left(\psi^*\right)^{\mathrm{T}} \left(t, \vec{x}\right) \Gamma \psi \left(t, \vec{x}\right) = 1$$

Dabei ist $\Gamma \in \mathbb{C}^{4 \times 4}$ eine Matrix. Die Lorentz-Invarianz bedeutet:

$$S^{\dagger} \Gamma S \stackrel{!}{=} \Gamma$$

Nebenrechnung:

$$-\frac{\omega^{\mu\nu}}{4}\left(\mathbf{i}\sigma_{\mu\nu}\right)^{\dagger} = \frac{\omega^{\mu\nu}}{8}\left(\gamma_{\mu}\gamma_{\nu} - \gamma_{\nu}\gamma_{\mu}\right)^{\dagger} = \frac{\omega^{\mu\nu}}{8}\left(\gamma_{\nu}^{\dagger}\gamma_{\mu}^{\dagger} - \gamma_{\mu}^{\dagger}\gamma_{\nu}^{\dagger}\right)$$

In der Dirac-Darstellung gilt:

$$\gamma_0 = \gamma_0^{\dagger} \qquad \qquad \gamma_i = -\gamma_i^{\dagger}$$

Dies kann man aufgrund der Antikommutator-Relationen kurz schreiben als:

$$\gamma_{\mu}^{\dagger} = \gamma_0 \gamma_{\mu} \gamma_0$$

Es folgt:

$$-\frac{\omega^{\mu\nu}}{4} \left(\mathbf{i} \sigma_{\mu\nu} \right)^{\dagger} = \gamma_0 \frac{\omega^{\mu\nu}}{8} \left(\gamma_{\nu} \gamma_{\mu} - \gamma_{\mu} \gamma_{\nu} \right) \gamma_0 = \gamma_0 \frac{\mathbf{i}}{4} \omega^{\mu\nu} \sigma_{\mu\nu} \gamma_0$$

Aus (1.14) folgt für eine infinitesimale Transformation:

$$S^{\dagger} = \gamma_0 S^{-1} \gamma_0$$

Bei einer endlichen Transformation ergibt sich dies ebenfalls:

$$(S^N)^{\dagger} = (S^{\dagger})^N = \gamma_0 (S^{-1})^N \gamma_0 = \gamma_0 (S^N)^{-1} \gamma_0$$

Damit erhält man für alle $\omega^{\mu\nu}$:

$$\gamma_0 S^{-1} \gamma_0 \Gamma S \stackrel{!}{=} 0$$

$$\Rightarrow \qquad \Gamma = \gamma_0 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}$$

Die Norm ist also:

$$\|\psi\|^{2} = \int d^{3}x \psi^{\dagger}(t, \vec{x}) \begin{pmatrix} 1 & 0 & 0 & 0\\ 0 & 1 & 0 & 0\\ 0 & 0 & -1 & 0\\ 0 & 0 & 0 & -1 \end{pmatrix} \psi(t, \vec{x})$$
(1.28)

Im Folgenden verwenden wir die Notation:

$$\overline{\psi} = \psi^{\dagger} \gamma_0$$

1.3.4 Projektions-Operatoren

Wir wollen die Lösungen der Dirac-Gleichung jetzt mit Hilfe von Projektions-Operatoren schreiben. Im euklidischen Raum gilt:

$$\overrightarrow{v} = \sum_{i} \overrightarrow{e}_{i} \left(\overrightarrow{e}_{i}^{\mathrm{T}} \cdot \overrightarrow{v} \right) = \sum_{i} \underbrace{\left(\overrightarrow{e}_{i} \overrightarrow{e}_{i}^{\mathrm{T}} \right)}_{=:P} \cdot \overrightarrow{v}$$

Die Projektions-Operatoren im Ruhesystem sind einfach:

$$\hat{P}_{1} = \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\hat{P}_{2} = \begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\hat{P}_{3} = \begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\hat{P}_{4} = \begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}$$
(1.29)

Weiter gilt im Ruhesystem:

Wir definieren:

$$\gamma_5 = \gamma^5 := \mathbf{i} \gamma^0 \gamma^1 \gamma^2 \gamma^3 = -\mathbf{i} \gamma_0 \gamma_1 \gamma_2 \gamma_3 = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$

$$\left. \gamma_5 \gamma_\mu s^\mu \right|_{\overrightarrow{s} = (0,0,1)} = \gamma_5 \gamma_3 = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Analog ergibt sich:

$$\hat{P}_2 = \frac{p + m}{2m} \cdot \frac{1 - \gamma_5 }{2}$$
 (1.31)

$$\hat{P}_3 = \frac{-\not p + m}{2m} \cdot \frac{1 - \gamma_5 \not s}{2} \tag{1.32}$$

$$\hat{P}_{2} = \frac{\not p + m}{2m} \cdot \frac{1 - \gamma_{5} \not s}{2}$$

$$\hat{P}_{3} = \frac{-\not p + m}{2m} \cdot \frac{1 - \gamma_{5} \not s}{2}$$

$$\hat{P}_{4} = \frac{-\not p + m}{2m} \cdot \frac{1 + \gamma_{5} \not s}{2}$$

$$(1.31)$$

$$(1.32)$$

Für $\|\vec{p}\| \gg m$ ist $s \approx p$ und es gilt:

$$(\not p+m)\frac{\not p}{m} = \frac{\not p^2 + \not pm}{m} = \frac{p^2 + m\not p}{m} = \frac{m^2 + m\not p}{m} = m + \not p$$

Helizität (engl. helicity):
$$\frac{1 \pm \gamma_5 \rlap/s}{2} \tag{1.34}$$

Chiralität (engl. chirality):
$$\frac{1 \pm \gamma_5}{2}$$
 (1.35)

Für $\frac{\|\overrightarrow{p}\|}{m} \to \infty$ stimmt beides überein.

1.3.5 Diskrete Lorentz-Transformationen

Zur Lorentz-Gruppe gehören die diskreten Transformationen \hat{P} (Parität) und \hat{T} (Zeitumkehr).

$$\hat{P} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix} \qquad \qquad \hat{T} = \begin{pmatrix} -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \tag{1.36}$$

$$\Lambda^{\mu}_{\mu'} \Lambda^{\nu}_{\nu'} g_{\mu\nu} = g_{\mu'\nu'}$$

$$\Rightarrow (\det(\Lambda))^2 = 1$$

$$\det(\Lambda) = \pm 1 \tag{1.37}$$

Für $\mu' = 0 = \nu'$ gilt:

$$\Lambda_0^0 \Lambda_0^0 - \sum_{i=1}^3 \Lambda_0^i \Lambda_0^i = 1$$

$$\Rightarrow \qquad (\Lambda_0^0)^2 = 1 + \sum_{i=1}^3 (\Lambda_0^i)^2 \ge 1$$

$$\Lambda_0^0 \ge 1 \quad \text{oder} \quad \Lambda_0^0 \le 1 \tag{1.38}$$

Es gibt vier nicht zusammenhängende Teilmengen der Lorentzgruppe:

$$L_{+}^{\uparrow}: \det(\Lambda) = +1, \quad \Lambda_{0}^{0} > 1 \qquad \qquad \stackrel{\hat{T}}{\Rightarrow} \qquad L_{-}^{\downarrow}: \det(\Lambda) = -1, \quad \Lambda_{0}^{0} < 1$$

$$\hat{P} \downarrow \qquad \qquad \hat{P} \hat{T} \searrow \qquad \qquad \hat{P} \downarrow \downarrow$$

$$L_{-}^{\uparrow}: \det(\Lambda) = -1, \quad \Lambda_{0}^{0} > 1 \qquad \qquad \stackrel{\hat{T}}{\Rightarrow} \qquad L_{+}^{\downarrow}: \det(\Lambda) = +1, \quad \Lambda_{0}^{0} < 1 \qquad (1.39)$$

Die schwache Wechselwirkung verletzt die \hat{P} - und die \hat{T} -Symmetrie.

Stetige Transformationen führen nicht aus L_+^{\uparrow} hinaus. Daher muss man sich zusätzlich das Verhalten unter \hat{P} und \hat{T} ansehen.

Nebenbemerkung: $\hat{C}\hat{P}\hat{T}$ ist für jede "vernünftige" Theorie eine Symmetrietransformation, wobei \hat{C} die Ladungskonjugation ist, die Teilchen und Antiteilchen vertauscht. Daher ist $\hat{C} = \hat{P}\hat{T}$.

1.4 Das Eichprinzip

Die Quantenmechanik ist invariant unter globalen Eichtransformationen $\psi(x) \to e^{\mathbf{i}q\Theta}\psi(x)$. In der Quantenelektrodynamik fordert man nun die Invarianz unter den allgemeineren lokalen Eichtransformationen $\psi(x) \to e^{\mathbf{i}q\Theta(x)}$.

Als heuristische Motivation hierfür betrachte zum Beispiel das Aharonov-Bohm-Experiment:

Abbildung 1.1: Aharonov-Bohm-Experiment: aufgesammelte Phase $e^{\mathbf{i} \int_s q A_\mu dx^\mu}$

Das Vektorpotential A^{μ} ist nur bis auf eine Eichtransformation bestimmt. Die Eichphasen dürfen also keine Rolle spielen.

Die freie Dirac-Gleichung

$$(\mathbf{i}\gamma^{\mu}\partial_{\mu} - m)\,\psi(x) = 0$$

ist nicht invariant unter lokalen Eichtransformationen:

$$(\mathbf{i}\gamma^{\mu}\partial_{\mu}-m)e^{\mathbf{i}q\Theta(x)}\psi(x)=e^{\mathbf{i}q\Theta(x)}(-q\gamma^{\mu}(\partial_{\mu}\Theta)+\mathbf{i}\gamma^{\mu}\partial_{\mu}-m)$$

Aus der Forderung nach Invarianz folgt, dass es etwas geben muss, was sich so transformiert, dass die Dirac-Gleichung invariant wird. Da $\partial_{\mu}\Theta(x)$ ein Vektorfeld ist, muss das neue Objekt ebenfalls ein Vektorfeld sein, und zwar A_{μ} mit:

$$(\mathbf{i}\gamma^{\mu}\partial_{\mu} - q\gamma^{\mu}A_{\mu}(x) - m)\psi(x) = 0 \tag{1.40}$$

Unter einer Eichtransformation transformiert A_{μ} wie folgt:

$$A_{\mu}(x) \to A_{\mu}(x) - \partial_{\mu}\Theta(x)$$
 (1.41)

Aus der Forderung nach Eichinvarianz folgt die Existenz des Photons.

1.4.1 Lagrangedichte der Quantenelektrodynamik

Um zum Beispiel die Zeitentwicklung eines Elektronfeldes beschreiben zu können, muss man wissen, wie sich $A_{\mu}(x)$ dynamisch entwickelt, das heißt wir brauchen die Lagrangedichte des Photons $\mathcal{L}_{A}(x)$.

Wir wissen, dass $D_{\mu} = \partial_{\mu} + \mathbf{i}qA_{\mu}$ ein eichinvarianter Ableitungsoperator ist, der kovariante Ableitung genannt wird.

– Für die Dimension von \mathcal{L} gilt:

$$S = \int d^4x \mathcal{L}(x)$$

$$1 \stackrel{\hbar=1}{=} [S] = [x]^4 \cdot [\mathcal{L}]$$

$$\Rightarrow \qquad [\mathcal{L}] = [x]^{-4} \stackrel{\hbar c=1}{=} [E]^4$$
(1.42)

- $-\mathcal{L}(x)$ ist eine Lorentz-Skalardichte.
- $-\mathcal{L}(x)$ ist kein Ableitungsoperator, sondern eine Funktion (ein Multiplikationsoperator).
- $-\mathcal{L}(x)$ muss eichinvariant sein, dass heißt sie muss aus D_{μ} -Operatoren aufgebaut sein.

Man beobachtet, dass $\left[\hat{D}_{\mu},\hat{D}_{\nu}\right]$ ein Multiplikations- und kein Ableitungsoperator ist.

$$(\partial_{\mu} + \mathbf{i}qA_{\mu})(\partial_{\nu} + \mathbf{i}qA_{\nu}) = \partial_{\mu}\partial_{\nu} + \mathbf{i}q(\partial_{\mu}A_{\nu}) + \mathbf{i}qA_{\nu}\partial_{\mu} + \mathbf{i}qA_{\mu}\partial_{\nu} - q^{2}A_{\mu}A_{\nu}$$
$$(\partial_{\nu} + \mathbf{i}qA_{\nu})(\partial_{\mu} + \mathbf{i}qA_{\mu}) = \partial_{\nu}\partial_{\mu} + \mathbf{i}q(\partial_{\nu}A_{\mu}) + \mathbf{i}qA_{\mu}\partial_{\nu} + \mathbf{i}qA_{\nu}\partial_{\mu} - q^{2}A_{\nu}A_{\mu}$$

$$\Rightarrow \qquad \left[\hat{D}_{\mu},\hat{D}_{\nu}\right] = \mathbf{i}q\left(\partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}\right) =: \mathbf{i}qF_{\mu\nu}$$

Wählt man q dimensionslos, so hat A_{μ} die Dimension einer Energie und somit folgt $[F_{\mu\nu}] = [E]^2$.

$$\stackrel{F^{\mu}{}_{\mu}=0}{\Rightarrow} \boxed{\mathcal{L}(x) \sim F_{\mu\nu}F^{\mu\nu}} \tag{1.43}$$

Die Wahl der Konstanten ist willkürlich. Damit die Gleichungen möglichst einfach werden, wählt man folgende Lagrangedichte:

$$\mathcal{L}(x) := -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} \tag{1.44}$$

Die freie Euler-Lagrange-Gleichung ist also:

$$\frac{\partial \mathcal{L}}{\partial A_{\sigma}} - \partial^{\lambda} \frac{\partial \mathcal{L}}{\partial (\partial^{\lambda} A_{\sigma})} = 0$$

$$\Rightarrow \quad \partial^{\lambda} F_{\lambda \sigma} = 0 \tag{1.45}$$

Die Lagrange-Dichte der Quantenelektrodynamik ist somit:

$$\mathcal{L}_{\text{QED}}(x) = \sum_{\text{Fermionen } j} \overline{\psi}_{j}(x) \left(\not p - eQ_{j} \not A(x) - m \right) \psi_{j}(x) - \frac{1}{4} F_{\mu\nu}(x) F^{\mu\nu}(x)$$
(1.46)

Bei der Variation sind $\overline{\psi}$ und ψ als unabhängige Variablen aufzufassen, weil eine komplexe Größe zwei reelle Freiheitsgrade hat. Die Euler-Lagrange-Gleichungen für A_{σ} sind:

$$0 = \frac{\partial \mathcal{L}_{\text{QED}}}{\partial A_{\sigma}} - \partial_{\lambda} \frac{\partial \mathcal{L}_{\text{QED}}}{\partial (\partial_{\lambda} A_{\sigma})} =$$

$$= \sum_{\text{Fermionen } j} \overline{\psi}_{j}(x) \left(-eQ_{j}\gamma^{\sigma}\right) \psi_{j}(x) - \left(\frac{-1}{4} \cdot 4\right) \partial_{\lambda} F^{\lambda \sigma}$$

$$\partial_{\lambda} F^{\lambda \sigma} = eQ_{j} \sum_{\substack{\text{Fermionen } j \\ =j^{\sigma}(x)}} \overline{\psi}_{j}(x) \gamma^{\sigma} \psi_{j}(x)$$

$$(1.47)$$

Die Dirac-Gleichung erhält man als Euler-Lagrange-Gleichung für $\overline{\psi}_i$.

$$0 = \frac{\partial \mathcal{L}_{\text{QED}}}{\partial \overline{\psi}_{j}} - \partial_{\lambda} \underbrace{\frac{\partial \mathcal{L}_{\text{QED}}}{\partial \left(\partial_{\lambda} \overline{\psi}_{j}\right)}}_{=0} = \left(\mathbf{p} - eQ_{j} \mathbf{A}(x) - m \right) \psi_{j}(x)$$

Die Euler-Lagrange-Gleichung für ψ_i ist die konjugierte Dirac-Gleichung:

$$0 = \frac{\partial \mathcal{L}_{\text{QED}}}{\partial \psi_{j}} - \partial_{\lambda} \frac{\partial \mathcal{L}_{\text{QED}}}{\partial (\partial_{\lambda} \psi_{j})} = \overline{\psi}_{j} \left(-eQ_{j} A^{\lambda}(x) - m \right) - \partial_{\lambda} \left(\overline{\psi}_{j} \cdot \mathbf{i} \gamma^{\lambda} \right) =$$

$$= \overline{\psi}_{j} \left(-\overleftarrow{p} - eQ_{j} A(x) - m \right)$$

Dabei bedeutet $\not p$, dass der Ableitungsoperator nach links wirkt, also auf $\overline{\psi}_j$.

1.4.2 Bilinearformen des Dirac-Feldes

Man nennt $\overline{\psi}(x) \gamma^{\sigma} \psi(x)$ eine *Bilinearform*. Physikalische Größen entsprechen Bilinearformen. Wir kennen bereits die Vektordichte:

$$V^{\sigma}(x) = \overline{\psi}(x) \gamma^{\sigma} \psi(x)$$

 $V^{\sigma}(x)$ ist hermitesch:

$$[V^{\sigma}(x)]^{\dagger} = \psi^{\dagger}(x) (\gamma^{\sigma})^{\dagger} (\gamma_{0})^{\dagger} \psi(x) = \psi^{\dagger}(x) (\gamma_{0})^{2} (\gamma^{\sigma})^{\dagger} (\gamma_{0})^{\dagger} \psi(x) =$$

$$= \overline{\psi}(x) \gamma_{0} (\gamma^{\sigma})^{\dagger} \gamma_{0} \psi(x) = \overline{\psi}(x) \gamma^{\sigma} \psi(x)$$

Es muss 16 unabhängige hermitesche Bilinearformen geben. Wir wählen als Basis solche Bilinearformen, die sich aus den γ -Matrizen berechnen lassen:

$$S\left(x\right) = \overline{\psi}\left(x\right)\psi\left(x\right) \qquad \text{Skalardichte (1 Komponenten)} \qquad (1.48)$$

$$V^{\sigma}\left(x\right) = \overline{\psi}\left(x\right)\gamma^{\sigma}\psi\left(x\right) \qquad \text{Vektordichte (4 Komponenten)} \qquad (1.49)$$

$$T^{\mu\nu}\left(x\right) = \overline{\psi}\left(x\right)\sigma^{\mu\nu}\psi\left(x\right) = \psi^{\dagger}\gamma_{0}\frac{\mathbf{i}}{2}\left(\gamma^{\mu}\gamma^{\nu} - \gamma^{\nu}\gamma^{\mu}\right)\psi \qquad \text{Tensordichte (6 Komponenten)} \qquad (1.50)$$

$$A^{\sigma}\left(x\right) = \overline{\psi}\left(x\right)\gamma^{\sigma}\gamma_{5}\psi\left(x\right) \qquad \text{Axialvektordichte (4 Komponenten)} \qquad (1.51)$$

$$P\left(x\right) = \overline{\psi}\left(x\right)\mathbf{i}\gamma_{5}\psi\left(x\right) \qquad \text{Pseudoskalardichte (1 Komponenten)} \qquad (1.52)$$

$$P^{\dagger} = \psi^{\dagger} (-\mathbf{i}) \gamma_5 \gamma_0 \psi (x) = \mathbf{i} \overline{\psi} \gamma_5 \psi$$

$$\begin{split} \left(T^{\mu\nu}\left(x\right)\right)^{\dagger} &= \psi^{\dagger}\left(\gamma^{\nu\dagger}\gamma^{\mu\dagger} - \gamma^{\nu\dagger}\gamma^{\mu\dagger}\right)\left(-\frac{\mathbf{i}}{2}\right)\gamma_{0}\psi = \\ &= \psi^{\dagger}\left(\left(\gamma_{0}\right)^{2}\gamma^{\nu\dagger}\left(\gamma_{0}\right)^{2}\gamma^{\mu\dagger} - \left(\gamma_{0}\right)^{2}\gamma^{\nu\dagger}\left(\gamma_{0}\right)^{2}\gamma^{\mu\dagger}\right)\left(-\frac{\mathbf{i}}{2}\right)\gamma_{0}\psi = \\ &= -\overline{\psi}\frac{\mathbf{i}}{2}\left(\gamma^{\nu}\gamma^{\mu} - \gamma^{\mu}\gamma^{\nu}\right)\psi = \overline{\psi}\sigma^{\mu\nu}\psi \end{split}$$

Die Axialvektordichte und die Pseudoskalardichte transformieren sich unter stetigen Lorentz-Transformationen wie ein Vektor beziehungsweise wie ein Skalar. Allerdings ändern sie unter der Paritätstransformation ihr Vorzeichen.

Es gibt unter diesen 16 keine Bilinearform, die ein symmetrischer Tensor 2. Stufe ist. Daher kann man so nicht an das Gravitationsfeld, dass durch den symmetrischen Metrik-Tensor $g_{\mu\nu}$ beschrieben wird koppeln.

1.4.3 Die Transformationen $\hat{C}, \hat{P}, \hat{T}$

Ladungskonjugation \hat{C}

Die Ladungskonjugation vertauscht Teilchen und Antiteilchen.

Elektron-Dirac-Gleichung:
$$(i\gamma_{\mu}\partial^{\mu} - eA^{\mu}\gamma_{\mu} - m)\psi = 0$$
 (1.53)

Positron-Dirac-Gleichung:
$$(\mathbf{i}\gamma_{\mu}\partial^{\mu} + eA^{\mu}\gamma_{\mu} - m)\psi = 0$$
 (1.54)

Überlegung: Ein Elektron, das mit Energie E>0 und Impuls \overrightarrow{p} vorwärts in der Zeit läuft entspricht einem Positron, dass mit Energie -E<0 und Impuls $-\overrightarrow{p}$ rückwärts in der Zeit läuft.

$$e^{\mathbf{i}(-Et-\overrightarrow{p}\cdot\overrightarrow{x})} = e^{-\mathbf{i}((-E)(-t)+\overrightarrow{p}\cdot\overrightarrow{x})}$$

Abbildung 1.2: In der Zeit vorwärts laufendes Elektron entspricht in der Zeit rückwärts laufendem Positron.

Hieraus motivieren wir den Ansatz:

$$\psi_C(x) = C\psi^*(x) \tag{1.55}$$

Dabei ist $C \in GL_4(\mathbb{C})$ eine beliebige invertierbare Matrix. Komplexe Konjugation der Elektron-Dirac-Gleichung und Einfügen von C liefert:

$$C\left(-\mathbf{i}\gamma_{\mu}^{*}\partial^{\mu} - eA^{\mu}\gamma_{\mu}^{*} - m\right)C^{-1}C\psi^{*} = 0$$

$$\left(-iC\gamma_{\mu}^{*}C^{-1}\partial^{\mu} - eA^{\mu}C\gamma_{\mu}^{*}C^{-1} - m\right)\psi_{C} = 0$$

Damit dies in die Positron-Dirac-Gleichung übergeht, muss

$$C\gamma_{\mu}^*C^{-1} = -\gamma_{\mu}$$

gelten. Die Lösung davon ist:

$$C = \gamma_2 e^{\mathbf{i}\varphi} \qquad \qquad C^{-1} = -\gamma_2 e^{-\mathbf{i}\varphi}$$

$$C\gamma_2^*C^{-1} = \gamma_2 e^{i\varphi} (-\gamma_2) (-\gamma_2) e^{-i\varphi} = \gamma_2^3 = -\gamma_2$$

Für $\mu \neq 2$ gilt:

$$C\gamma_{\mu}^{*}C^{-1} = \gamma_{2}e^{\mathbf{i}\varphi}\gamma_{\mu}\left(-\gamma_{2}\right)e^{-\mathbf{i}\varphi} = -\gamma_{2}\gamma_{\mu}\gamma_{2} = \gamma_{\mu}\gamma_{2}\gamma_{2} = -\gamma_{\mu}$$

Damit folgt:

$$\psi_C = e^{\mathbf{i}\varphi} \begin{pmatrix} 0 & 0 & 0 & \mathbf{i} \\ 0 & 0 & -\mathbf{i} & 0 \\ 0 & -\mathbf{i} & 0 & 0 \\ \mathbf{i} & 0 & 0 & 0 \end{pmatrix} \psi^*$$
 (1.56)

Beispiel:

$$\psi_{4} = v(p, +) e^{\mathbf{i}p \cdot x} = \sqrt{\frac{E + m}{2m}} \begin{pmatrix} \frac{p_{1} - \mathbf{i}p_{2}}{E + m} \\ -\frac{p_{3}}{E + m} \\ 0 \\ 1 \end{pmatrix} e^{\mathbf{i}px}$$

$$\psi_{1} = u(p, +) e^{-\mathbf{i}p \cdot x} = \sqrt{\frac{E + m}{2m}} \begin{pmatrix} 1 \\ 0 \\ \frac{p_{3}}{E + m} \\ \frac{p_{1} + \mathbf{i}p_{2}}{E + m} \end{pmatrix} e^{-\mathbf{i}px}$$

$$\begin{split} (\psi_1)_C &= e^{\mathbf{i}\varphi} \begin{pmatrix} 0 & 0 & 0 & \mathbf{i} \\ 0 & 0 & -\mathbf{i} & 0 \\ 0 & -\mathbf{i} & 0 & 0 \\ \mathbf{i} & 0 & 0 & 0 \end{pmatrix} \sqrt{\frac{E+m}{2m}} \begin{pmatrix} 1 \\ 0 \\ \frac{p_3}{E+m} \\ \frac{p_1-\mathbf{i}p_2}{E+m} \end{pmatrix} e^{\mathbf{i}px} = \\ &= \mathbf{i}e^{\mathbf{i}\varphi} \sqrt{\frac{E+m}{2m}} \begin{pmatrix} \frac{p_1-\mathbf{i}p_2}{E+m} \\ -\frac{p_3}{E+m} \\ 0 \\ 1 \end{pmatrix} e^{-\mathbf{i}px} = \mathbf{i}e^{\mathbf{i}\varphi} \psi_4 \end{split}$$

Ein physikalisches Positron ψ_C mit positiver Energie ist äquivalent zu einer Lösung ψ mit negativer Energie.

Paritätstransformation \hat{P}

Die Paritätstransformation ist eine räumliche Spiegelung am Ursprung:

$$x^{\mu} \to (x')^{\mu} = (x^0, -\vec{x})$$
 (1.57)

Wir machen den Ansatz:

$$\psi_P(x') = \psi(x^0, -\vec{x}) = P\psi(x) \tag{1.58}$$

Die Dirac-Gleichung für x' ist:

$$\left(\mathbf{i}\gamma_{\mu}\frac{\partial}{\partial\left(x^{\prime}\right)^{\mu}}-e\gamma^{\mu}A_{\mu}\left(x^{\prime}\right)-m\right)\psi_{P}\left(x^{\prime}\right)=0$$

Die soll äquivalent sein zu:

$$\left(\mathbf{i}\gamma^{\mu}\frac{\partial}{\partial x^{\mu}} - e\gamma^{\mu}A_{\mu}(x) - m\right)\psi(x) = 0$$

Wegen $\overrightarrow{E} \overset{P}{\to} -\overrightarrow{E}$ und $\overrightarrow{B} \overset{P}{\to} \overrightarrow{B}$ sowie $\nabla \overset{P}{\to} -\nabla$ und $\partial_t \overset{P}{\to} \partial_t$ folgt $A^0 \overset{P}{\to} A^0$ und $A^j \overset{P}{\to} -A^j$.

$$\Rightarrow P^{-1} \left(\mathbf{i} \gamma^0 \frac{\partial}{\partial x^0} - \mathbf{i} \gamma^j \frac{\partial}{\partial x^j} - e \gamma^0 A_0 + e \gamma^j A_j - m \right) P \psi = 0$$

Es muss also gelten:

$$P^{-1}\gamma^{0}P = \gamma^{0}$$

$$P^{-1}\gamma^{j}P = -\gamma^{j}$$

$$\Rightarrow P = e^{i\chi}\gamma_{0}$$

$$P^{-1} = e^{-i\chi}\gamma_{0}$$
(1.59)

Zeitumkehrinvarianz \hat{T}

Wegen $\overrightarrow{E} \xrightarrow{T} \overrightarrow{E}$ und $\overrightarrow{B} \xrightarrow{T} - \overrightarrow{B}$ sowie $\nabla \xrightarrow{T} \nabla$ und $\partial_t \xrightarrow{T} - \partial_t$ folgt $A^0 \xrightarrow{T} A^0$ und $A^j \xrightarrow{T} - A^j$. Wir machen den Ansatz:

$$\psi_T(x') = T\psi^*(x) \tag{1.60}$$

Die Dirac-Gleichung für ψ_T ist:

$$\left(-\mathbf{i}\gamma^{0}\frac{\partial}{\partial x^{0}} + \mathbf{i}\gamma^{j}\frac{\partial}{\partial x^{j}} - e\gamma^{0}A_{0}(x) + e\gamma^{j}A_{j}(x) - m\right)T\psi^{*}(x) = 0 \qquad /^{*}$$
$$(T^{*})^{-1}\left(\mathbf{i}\gamma^{0}\frac{\partial}{\partial x^{0}} - \mathbf{i}\left(\gamma^{j}\right)^{*}\frac{\partial}{\partial x^{j}} - e\gamma^{0}A_{0}(x) + e\left(\gamma^{j}\right)^{*}A_{j}(x) - m\right)T^{*}\psi(x) = 0$$

Nun muss gelten:

$$(T^*)^{-1} \gamma^0 T^* = \gamma^0$$
 $(T^*)^{-1} (\gamma^j)^* T^* = -\gamma^j$

Das bedeutet:

$$(T^*)^{-1} \gamma^0 T^* = \gamma^0$$
 $(T^*)^{-1} \gamma^1 T^* = -\gamma^1$ $(T^*)^{-1} \gamma^2 T^* = \gamma^2$ $(T^*)^{-1} \gamma^3 T^* = -\gamma^3$

Die Lösung ist:

$$T = \gamma^1 \gamma^3 e^{\mathbf{i}\xi} \qquad \qquad T^{-1} = \gamma^3 \gamma^1 e^{-\mathbf{i}\xi} = T^* \tag{1.61}$$

Probe:

$$T^{-1}T = \gamma^3 \gamma^1 \gamma^1 \gamma^3 = -\gamma^3 \gamma^3 = \mathbb{1}$$

$$\begin{split} \gamma^{1}\gamma^{3}\gamma^{0}\gamma^{3}\gamma^{1} &= (-1)^{2}\gamma^{0}\gamma^{1}\gamma^{3}\gamma^{3}\gamma^{1} = \gamma^{0} \\ \gamma^{1}\gamma^{3}\gamma^{1}\gamma^{3}\gamma^{1} &= -\gamma^{1}\gamma^{1}\gamma^{3}\gamma^{3}\gamma^{1} = -\gamma^{1} \\ \gamma^{1}\gamma^{3}\gamma^{2}\gamma^{3}\gamma^{1} &= (-1)^{2}\gamma^{2}\gamma^{1}\gamma^{3}\gamma^{3}\gamma^{1} = \gamma^{2} \\ \gamma^{1}\gamma^{3}\gamma^{3}\gamma^{3}\gamma^{1} &= -\gamma^{1}\gamma^{3}\gamma^{1} = \gamma^{1}\gamma^{1}\gamma^{3} = -\gamma^{3} \end{split}$$

2 Greensche Funktion (Feynman-Propagator)

Erinnerung: Das elektrische Potential ϕ erfüllt in der Elektrostatik die Differentialgleichung:

$$\Delta \phi = 4\pi \rho \tag{2.1}$$

Dabei ist ρ die Ladungsdichte. Die Greensche Funktion G(x, x') ist definiert durch:

$$\Delta_x G\left(x, x'\right) = \delta^{(3)}\left(x - x'\right) \tag{2.2}$$

Damit ergibt sich die Lösung obiger Differentialgleichung zu:

$$\phi(x) = 4\pi \int d^3x' G(x, x') \rho(x')$$
(2.3)

Probe:

$$\Delta_{x}\phi\left(x\right) = 4\pi \int d^{3}x' \delta\left(x - x'\right) \rho\left(x'\right) = 4\pi\rho\left(x\right)$$

2.1 Greensche Funktion der Klein-Gordon-Gleichung

Die definierende Gleichung ist:

$$(\Box_x + m^2) G(x - x') = -\delta^{(4)} (x - x')$$
(2.4)

Das Minus auf der rechten Seite ist Konvention und wird wegen $\Box_x = -\hat{p}^2$ eingefügt. Die Dirac-Greensche Funktion ist einfach:

$$S(x - x') = (\mathbf{i}\gamma^{\mu}\partial_{x,\mu} + m) G(x - x')$$
(2.5)

Es gilt nämlich:

$$(\mathbf{i}\gamma^{\nu}\partial_{x,\nu}-m) S(x-x') = (-\Box_x - m^2) G(x-x') = \delta^{(4)}(x-x')$$

Am einfachsten ist die Bestimmung von G im Impulsraum. Wir führen also eine Fourier-Transformation durch:

$$G(x-x') = \int \frac{\mathrm{d}^4 p}{(2\pi)^4} G(p) e^{-\mathbf{i}p(x-x')}$$
(2.6)

$$\left(\Box_{x}+m^{2}\right)G\left(x-x'\right)=\int\frac{\mathrm{d}^{4}p}{\left(2\pi\right)^{4}}\left(-p^{\mu}p_{\mu}+m^{2}\right)G\left(p\right)e^{-\mathbf{i}p\left(x-x'\right)}\stackrel{!}{=}-\int\frac{\mathrm{d}^{4}p}{\left(2\pi\right)^{4}}e^{-\mathbf{i}p\left(x-x'\right)}$$

Daher muss gelten:

$$(p^2 - m^2) G(p) = 1 (2.7)$$

Ist $p^2 - m^2 \neq 0$, so folgt:

$$G\left(p\right) = \frac{1}{p^2 - m^2}$$

Was passiert für $p^2 = (p^0)^2 - \vec{p}^2 = m^2$?

$$p^0 = \pm \sqrt{\vec{p}^2 + m^2} \tag{2.8}$$

Da für $p^2 = m^2$ Divergenzen auftreten, muss man (2.6) um eine Zusatzvorschrift ergänzen, wie man diese umschiffen soll.

Abbildung 2.1: Die Pole müssen umgangen werden.

Mit $\varepsilon, \eta \in \mathbb{R}_{>0}$ lassen sich die vier Möglichkeiten schreiben als:

1.
$$\frac{1}{p^2 - m^2 - \mathbf{i}\varepsilon\operatorname{sgn}(p^0)}$$
: Pole bei $p^0 = \pm\sqrt{\vec{p}^2 + m^2} + \mathbf{i}\eta$
2.
$$\frac{1}{p^2 - m^2 - \mathbf{i}\varepsilon}$$
: Pole bei $p^0 = \pm\sqrt{\vec{p}^2 + m^2} \pm \mathbf{i}\eta$
3.
$$\frac{1}{p^2 - m^2 + \mathbf{i}\varepsilon}$$
: Pole bei $p^0 = \pm\sqrt{\vec{p}^2 + m^2} \mp \mathbf{i}\eta$
4.
$$\frac{1}{p^2 - m^2 + \mathbf{i}\varepsilon\operatorname{sgn}(p^0)}$$
: Pole bei $p^0 = \pm\sqrt{\vec{p}^2 + m^2} - \mathbf{i}\eta$

Mit Hilfe des Residuuensatzes kann man so das Integral

$$\int \frac{\mathrm{d}^3 p}{(2\pi)^3} \int_{-\infty}^{\infty} \frac{\mathrm{d}p^0}{2\pi} e^{-\mathrm{i}p^0(t-t')+\mathrm{i}\vec{p}(\vec{x}-\vec{x}')} G\left(p^0, \vec{p}\right)$$

ausrechnen. Für t'>t (Propagation von t' nach t rückwärts in der Zeit) kann man oben schließen, da dann der Faktor $e^{-\mathbf{i}^2 \mathrm{Im}\left(p^0\right)(t-t')}$ exponentiell abfällt. Ebenso kann man für t>t'

(vorwärts in der Zeit) unten schließen. Bei der Propagation vorwärts in der Zeit darf der Pol bei $p_0 < 0$ nicht im Integrationsbereich sein und $p_0 > 0$ darf nicht rückwärts in der Zeit propagieren. Daher bleibt nur die 3. Lösung. Diese wird Feynman-Propagator genannt.

3 Kanonische Quantisierung $\hat{b}^{\dagger},\hat{d}^{\dagger},\hat{b},\hat{d}$

4 Feynman-Regeln

5 Elektron-Myon-Streuung

6 Pauli-Villars-Regularisierung (Renormierung)

7 SU(N) Eichgruppen

8 Tiefinelastische Streuung

9 Lagrangedichte der QCD, Feynman-Regeln

10 DGLAP-Gleichung

11 Dimensionale Regularisierung \overline{MS}

12 Kopplungskonstante $\alpha_{S}\left(Q^{2}\right)$

13 Standard-Modell $SU\left(2\right)\times U\left(1\right)\times SU\left(3\right),$ SSB und Higgs-Feld

14 Weitere Themen

- Anomalien \rightarrow ganze Familien

$$\left| \left(\begin{array}{c} \nu_e \\ e \end{array} \right), \left(\begin{array}{c} u \\ d \end{array} \right)_{\rm r,b,g} \right|$$

- Inflation (frühes Universum)
- Supersymmetrie
- Stringtheorie
- ...

Danksagungen

Mein besonderer Dank geht an Professor Schäfer, der diese Vorlesung hielt und es mir gestattete, diese Vorlesungsmitschrift zu veröffentlichen.

Außerdem möchte ich mich ganz herzlich bei allen bedanken, die durch aufmerksames Lesen Fehler gefunden und mir diese mitgeteilt haben.

Andreas Völklein