Introduction to Linear Algebra

Uday N. Gaitonde

IIT Bombay IIT Dharwad

August 27, 2018

Numbers and More Numbers

- Simple numbers: scalars 0, 2.4, π , 4/3, ...
- ► Ordered pairs of numbers: *e.g.* complex numbers (1.2, 0.8)
- ► Ordered triplets of numbers: *e.g.* vectors (1.2, 3.4, -1)

Other Ordered Sets of Numbers

- ► Lists
- Arrays
- ► Images
- Matrices
- **.**..

Visual Confusion

- ▶ Ordered pair of numbers: $A = (a_1, a_2), B = (b_1, b_2).$ Complex numbers? 2-D vectors?
- ightharpoonup Visually similar on a 2-D plane (xy).
- ▶ In either case, $A + B = (a_1 + b_1, a_2 + b_2)$.
- ▶ If they are complex numbers, then $AB = (a_1b_1 a_2b_2, a_1b_2 + a_2b_1).$
- If they are vectors, then $A \cdot B = a_1 b_1 + a_2 b_2$ (scalar), and $A \times B = (0, 0, a_1 b_2 a_2 b_1)$ (vector).

MATRICES - 1

Elementary Topics

Matrices

- Rectangular arrays of numbers
- Obey certain rules of operations on them
- Come in various sizes
- Come in various types (diagonal, banded, sparse, triangular, ...)

Matrix A of size $m \times n$

$$\mathbf{A} = \begin{bmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m,1} & a_{m,2} & \cdots & a_{m,n} \end{bmatrix} \right\} m \text{ rows}$$

$$n \text{ columns}$$

- ▶ If m = n, then **A** is a square matrix, and it has a (main/primary) diagonal, and, a cross or secondary diagonal.
- Square matrices are special.

Some Types of Matrices

- ightharpoonup Row matrix: just one row: $1 \times n$: aka 'row vector'
- lacktriangle Column matrix: just one column: n imes 1: aka 'column vector'
- ► Note: 'Vector' here has a different meaning! These are linear-algebra-vectors!
- ► Triangular matrices:
 - upper triangular
 - lower triangular

Equality of Matrices

Two matrices, A and B are equal iff:

- ightharpoonup size of A =size of B.
- $ightharpoonup a_{ij} = b_{ij}$, for each **appropriate** i and j.

We then write: A = B.

Note:

- ightharpoonup Equality is a symmetric property: $A = B \implies B = A$.
- ightharpoonup It is also transitive: A = B and $B = C \implies A = C$.

(Remember the Zeroth Law of Thermodynamics?)

Addition of Matrices

Two matrices ${\bf A}$ and ${\bf B}$ can be added iff they are of the same size. In that case:

- ightharpoonup C = A + B
- $ightharpoonup c_{ij} = a_{ij} + b_{ij}$ for each i, j
- ▶ The operation is commutative: A + B = B + A.

Multiplication by a Scalar

A matrix A can be multiplied by a scalar, α , and we obtain a matrix D of the same size.

- $ightharpoonup \mathbf{D} = \alpha \mathbf{A}$
- $ightharpoonup d_{ij} = \alpha \ a_{ij} \ \text{for each} \ i,j$
- ▶ If $\alpha = -1$, then $\mathbf{D} = (-1)\mathbf{A} \equiv -\mathbf{A}$ is the negative of matrix \mathbf{A} .
 - We can now define $\mathbf{A} \mathbf{B} \equiv \mathbf{A} + (-1)\mathbf{B}$
- ▶ If $\alpha = 0$ then $0\mathbf{A} = \mathbf{0}$, where $\mathbf{0}$ is the zero matrix of the size of \mathbf{A} , each element of which is 0.

Some Rules

$$\mathbf{A} + \mathbf{B} = \mathbf{B} + \mathbf{A}$$
 (commutative)
 $(\mathbf{A} + \mathbf{B}) + \mathbf{C} = \mathbf{A} + (\mathbf{B} + \mathbf{C})$ (associative)
 $= \mathbf{A} + \mathbf{B} + \mathbf{C}$ (no confusion!)
 $\mathbf{A} + \mathbf{0} = \mathbf{A} = \mathbf{0} + \mathbf{A}$
 $\mathbf{A} + (-\mathbf{A}) = \mathbf{A} - \mathbf{A} = \mathbf{0}$
 $\alpha(\mathbf{A} + \mathbf{B}) = \alpha \mathbf{A} + \alpha \mathbf{B}$ (distributive)
 $(\alpha + \beta)\mathbf{A} = \alpha \mathbf{A} + \beta \mathbf{A}$ (distributive)
 $\alpha(\beta \mathbf{A}) = (\alpha \beta)\mathbf{A}$
 $= \alpha \beta \mathbf{A}$ (no confusion!)
 $0\mathbf{A} = \mathbf{0}$
 $1\mathbf{A} = \mathbf{A}$

Column Matrix, Row Matrix

Column Matrix: Size: $m \times 1$.

$$\mathbf{a} = \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_m \end{bmatrix}$$

Also known as a column **vector** of length m.

Row Matrix: Size: $1 \times n$.

$$\mathbf{b} = \begin{bmatrix} b_1 & b_2 & \cdots & b_n \end{bmatrix}$$

Also known as a row **vector** of length n.

Inner Product

The inner product of two 'vectors' ${\bf a}$ and ${\bf b}$ of the same length n is a scalar:

$$c = a_1b_1 + a_2b_2 + \dots + a_nb_n$$
$$= \sum_{i=1}^n a_ib_i$$

The inner product is sometimes represented as $a \cdot b^1$. It is a generalisation of the dot product of (real-world) vectors.

¹In tensor notation, this is simply written as a_ib_i .

Multiplication of Matrices

- ► This is restrictive, compared to our old ideas of multiplication.
- ► AB is defined iff the sizes of A and B are compatible.
- ► The number of columns A must equal the number of rows of B.
- ► That is, if the size of **A** is $m \times n$, then that of **B** should be $n \times p$.
- ▶ The product matrix, C = AB will be of size $m \times p$.

Multiplication – Definition

- ▶ Let **A** be of size $m \times n$, and **B** of size $n \times p$.
- ightharpoonup Then C = AB has elements

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$$

for $i = 1, \dots, m$ and $j = 1, \dots, p$.

Visual Depiction

 c_{ij} is the inner product of (row i of A) and (column j of B). Note: their sizes are equal.

Matrix Product

- Generalisation of the inner product to matrices.
- ▶ The first matrix (A) is considered a vertical stack of row vectors.
- ► The second matrix (**B**) is considered a horizontal stack of column vectors.
- The product matrix (C) is an array of the inner products of corresponding vectors.

Matrix Product: Commutation?

If
$$\underbrace{\mathbf{A}}_{m\times n}\times\underbrace{\mathbf{B}}_{n\times p}=\underbrace{\mathbf{C}}_{m\times p}$$
 is possible then $\underbrace{\mathbf{B}}_{n\times p}\times\underbrace{\mathbf{A}}_{m\times n}$ is not possible, unless $p=m$.

Matrix Product - Properties 1

Matrix Product - Properties 2

- For both AB and BA to exist, the shapes of A and B must be 'flipped'. If A is $m \times n$, then B must be $n \times m$.
- ▶ **AB** will be $m \times m$, **BA** will be $n \times n$. Unless m = n, their sizes will be different.

Matrix Product is Not Commutative

If m=n, i.e. if **A** and **B** are square, even then $\mathbf{AB} \neq \mathbf{BA}$, in general.

$$\mathbf{A} = \begin{bmatrix} 2 & 1 \\ 0 & 0 \end{bmatrix}, \mathbf{B} = \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix}.$$

$$\mathbf{AB} = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}, \mathbf{BA} = \begin{bmatrix} 0 & 0 \\ 2 & 1 \end{bmatrix}.$$

Matrix Product - Illustration

If ${\bf A}$ and ${\bf B}$ are square and ${\bf A}{\bf B}={\bf 0}$, then this does not imply that ${\bf A}={\bf 0}$ or ${\bf B}={\bf 0}$ or ${\bf B}{\bf A}={\bf 0}$ in general.

$$\mathbf{A} = \begin{bmatrix} 4 & 2 \\ 2 & 1 \end{bmatrix}, \mathbf{B} = \begin{bmatrix} 2 & -1 \\ -4 & 2 \end{bmatrix}.$$

$$\mathbf{AB} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}, \mathbf{BA} = \begin{bmatrix} 6 & 3 \\ -12 & -6 \end{bmatrix}.$$

Some More Rules

$$(\alpha \mathbf{A})\mathbf{B} = \alpha(\mathbf{A}\mathbf{B}) = \mathbf{A}(\alpha \mathbf{B}) = \alpha \mathbf{A}\mathbf{B}$$
 (maintain order of matrices) $\mathbf{A}(\mathbf{B}\mathbf{C}) = (\mathbf{A}\mathbf{B})\mathbf{C} = \mathbf{A}\mathbf{B}\mathbf{C}$ (associative) $(\mathbf{A} + \mathbf{B})\mathbf{C} = \mathbf{A}\mathbf{C} + \mathbf{B}\mathbf{C}$ (distributive) $\mathbf{C}(\mathbf{A} + \mathbf{B}) = \mathbf{C}\mathbf{A} + \mathbf{C}\mathbf{B}$ (distributive)

Matrix and Vector

A matrix and vector (of appropriate sizes) can be multiplied. For example:

$$\begin{array}{cccc} \mathbf{A} & \mathbf{x} & \rightarrow & \mathbf{b} \\ (m \times n) & (n \times 1) & & (m \times 1) \end{array}$$

$$\begin{array}{ccc} \mathbf{y} & \mathbf{B} & \rightarrow & \mathbf{c} \\ (1 \times m) & (m \times n) & & (1 \times n) \end{array}$$

A Shopping List

		Tok	en No. 122
BIII No. : BCKSC20185426	Dat	te: 21/04	/201818:12
	Qty.	Rate	Amount
HSN/SAC Code			June 200 Control of the State o
AKHROT BARFI	0.500	495.24	247.62
BOUNTY PEDA 5.00 %	0.500	419.05	209.53
21069099 5 00 % METHI PAKODA (200 GM	1.000	44.64	44.64
21069000 12.00 METHI BHAKARWADI (20	% 1.000	44.64	44.64
21069000 12 00	%	e dutamentale sur e para describiración de partir de describiración de la compansión de la compansión de la co	
GROSS AN	TOUNT		546.43

A Shopping List - Inner Product

	Price
AB	495.24
BP	419.05
MP	44.64
MB	44.64

	AB	BP	MP	MB
Quantity	0.5	0.5	1	1

546.43

Matrix Multiplication Example

Bread Meat Veg Fruit

Price	Matrix
GWS	GES
5	3
5	4
3	4
2	4

Req Matrix	Bread	Meat	Veg	Fruit
Α	4	3	2	1
В	2	1	4	3
C	4	1	2	3

Cost	Matrix
43	36
33	38
37	36

Coordinate Transformations

- $ightharpoonup x_2 = Ax_1$ represents a linear transformation.
- ▶ It can scale, rotate, shear a set of points (or a figure).
- $ightharpoonup x_1$ is the original point in a column-vector format.
- ► A is the transformation matrix.
- x₂ is the transformed location of the point (in a column-vector format).

Some examples follow.

The original figure - a unit square

 $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ does not change anything!

Scaling - Uniform

 $\begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$ scales by 2 in each direction.

Scaling - Nonuniform

 $\begin{bmatrix} 2.5 & 0 \\ 0 & 1.5 \end{bmatrix}$ does unequal scaling.

Rotation

$$\begin{bmatrix} 0.8 & -0.6 \\ 0.6 & 0.8 \end{bmatrix}$$
 rotates by $\arctan(\mathbf{0.6/0.8})$.

Arbitrary Transformation

 $\begin{bmatrix} 2.0 & 0.4 \\ 0.6 & 0.8 \end{bmatrix}$ does rotation, shear, stretch!

Can you set up *reflections* of various kinds?

Homework

Go through the examples in Kreyszig, 10th Ed, pp 269–270.

Create your own examples.

Transpose of a Matrix

- Transposition is a **unary** operation.
- ▶ If **A** is of size $(m \times n)$, then **B** = **A**^T is of size $(n \times m)$, and
- $ightharpoonup b_{ij} = a_{ji}$ for all appropriate (i,j).
- ► The transpose operation is similar to a reflection across the diagonal.
- ► Transpose of a row vector is a column vector of the same length.
- ► Transpose of a column vector is a row vector of the same length.

Illustration

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix}; \qquad \mathbf{B} = \mathbf{A}^\mathsf{T} = \begin{bmatrix} a_{11} & a_{21} \\ a_{12} & a_{22} \\ a_{13} & a_{23} \end{bmatrix}$$

Rules for Transposition

$$(\mathbf{A}^{\mathsf{T}})^{\mathsf{T}} = \mathbf{A}$$
 $(\mathbf{A} + \mathbf{B})^{\mathsf{T}} = \mathbf{A}^{\mathsf{T}} + \mathbf{B}^{\mathsf{T}}$
 $(\alpha \mathbf{A})^{\mathsf{T}} = \alpha \mathbf{A}^{\mathsf{T}}$
 $(\mathbf{A} \mathbf{B})^{\mathsf{T}} = \mathbf{B}^{\mathsf{T}} \mathbf{A}^{\mathsf{T}}$ (note order-reversal)

Special Type of Square Matrices

- ▶ If a matrix A is square, then A and A^T have the same size.
- ightharpoonup A is called symmetric iff $A = A^T$.
- ightharpoonup A is called skew-symmetric iff $A = -A^T$.

Some Properties

Show that:

- ► The diagonal elements of any skew-symmetric matrix are zero.
- ► Any square matrix can be shown to be the sum of two matrices, a symmetric one, and a skew-symmetric one. Derive expressions for these matrices.