D: インビジブル

原案: 大橋

問題文: 栗田

解答例:大橋、栗田、澤

解説: 大橋

- 2人がカードゲームで対戦
 - 使用するカードは2種類
 - 得点カード: 正の得点が書いてある
 - 妨害カード
 - 各プレイヤーはそれらのカードから なるデッキを持つ

- 2人がカードゲームで対戦
 - 交互に次のいずれかの行動を行う
 - 場のスタックに自分のデッキの 一番上のカードを置く
 - デッキにカードが1枚以上必要
 - パス
 - スタックが空の状態でパスが 2回連続したらゲーム終了

- 2人がカードゲームで対戦
 - パスが行われた時、次の処理を行う
 - 次の条件を満たす得点カードについて、カードの持ち主は得点を得る
 - スタック上にある
 - 対戦相手のどの妨害カードよりも 上に(後で)積まれている
 - スタックを空にする

- 2人がカードゲームで対戦
 - 両方のプレイヤーが (自分の得点) - (相手の得点)を 最大化するように行動するので、 最終的な得点差を求めよ。

制約

- デッキの枚数 n ≤ 50
- 得点カードの数値 a_i ≤ 10⁹

ゲーム

- ICPC でそこそこの頻度で出ます
 - 最近の国内予選ではご無沙汰
 - 地区予選だと0~1問/年
- ルールの記述がややこしいことが多い
 - 正確を期すとそうなりがち

ゲームの基本的な考え方

- 勝敗のみがつくゲーム
 - 「負け状態」で手番を持つと負け
 - 「負け状態」に遷移できる状態は 「勝ち状態」
- 点差がつくゲーム
 - 相手が点数を最大化しようとした時の 点数を最小化する(ミニマックス法)
 - 今回はこっち

ゲームのアルゴリズム

- Nim, Grundy 数
 - 石取りゲームの必勝法
 - 探索せずに「負け状態」の判定が可能
- ミニマックス法
 - 点差を最大化する
 - αβ法による高速化が有名
 - 計算量が読みにくくICPCに出題しにくい
 - ネガマックス法(実装テク的な亜種)

ICPC でゲームを見たら

- 実際にチームメンバーと遊ぶ
 - 次の効果があります
 - 問題の理解を共有できる
 - サンプルを理解できる
 - テストケースが得られる
 - 解法に近づく知見が得られる

解法

- ミニマックス法
 - メモ化した場合、 計算量は O(状態数 * 各状態の計算)
 - メモに map などを使うと O(状態数 log(状態数) + もとの計算量)

解法

- ・状態の取り方
 - 各プレイヤーのデッキは上から順に 使用済み | スタック上 | 未使用 という状態になる。
 - 両プレイヤーの3種の境界の位置を 覚えておけばデッキとスタックが 再現可能
 - O(n^{2*2}) = O(n⁴) 状態

解法

- ・状態の取り方
 - あとは
 - どちらの手番か (2状態)
 - パスが何回続いているか (3状態)
 - これらを考慮すると ゲームの状態が表現できる
 - 全体 O(n⁴) 状態

実装のポイント

- パスの処理
 - パスしたときの得点の変化を 計算する際スタックの中身が必要
 - これを毎回復元すると、各状態で O(n)の計算が必要になり、 全体 O(n⁵)で厳しくなる
 - スタックの中身も状態に持たせると楽
 - 中身は他の状態パラメータで決まるので これで状態が増えることはない

提出状況

- ・ 提出数: 100
- ・ 提出ユーザー: 46
- · AC数: 30
- First AC: snyaudo (39:43)

ジャッジ解

• 大橋 : 89 行 (C++)

・ 栗田 : 69 行 (C++)

· 澤 : 42 行 (C++)

元ネタ

- ・ロックマンエグゼ(カプコン)の 通信対戦
 - 妨害カードはインビジブル
 - 得点カードは暗転チップ