Math Computing

NCERT 9.7.1.6

This question is from class 9 NCERT chapter 7.triangles

1. AC = AE , AB = AD and $\angle BAD = \angle EAC$. Show that BC = DE.

Figure 1: $\triangle ABC$ and $\triangle ADE$

Construction steps:

(i) Let assume, the input parameters are,

Parameter	Value	Description
θ	60°	$\angle BAD = \angle CAE$
В	$\begin{pmatrix} 0 \\ 0 \end{pmatrix}$	Reference point at origin
D	$\begin{pmatrix} 6 \\ 0 \end{pmatrix}$	point ${\bf D}$ on the same axis of ${\bf B}$
C	$\binom{8}{0}$	point C on the same axis of B

Table 1: Input Parameters

 \therefore the output can be calculated as,

Parameter	Value	Description
BD	$\ \mathbf{B} - \mathbf{D}\ $	Length of BD
CD	$\ \mathbf{C} - \mathbf{D}\ $	Length of CD
α	$\left(\frac{180-\theta}{2}\right)$	$\angle ABD$
AB	$BD\left(\frac{\sin\alpha}{\sin\theta}\right)$	Length of AB
A	$\mathbf{B} + \begin{pmatrix} AB\cos\alpha\\ AB\sin\alpha \end{pmatrix}$	point B makes an angle α with line (AB, BD)
AD	$\ \mathbf{A} - \mathbf{D}\ $	Length of AD
AC	$\ \mathbf{A} - \mathbf{C}\ $	Length of AC
β_1	$\cos^{-1}\left(\frac{AC^2+CD^2-AD^2}{2ACCD}\right)$	$\angle ACD$
CE	$AC\left(\frac{\sin\theta}{\sin\alpha}\right)$	Length of CE
β	$\alpha + \beta_1$	∠ECB
E	$\mathbf{C} + \begin{pmatrix} -CE\cos\beta \\ CE\sin\beta \end{pmatrix}$	point C makes an angle β with line (BC, CE)

Table 2: Output Parameters

 \therefore By, joining these points the required figure will be formed.

Figure 2: $\triangle ABC$ and $\triangle ADE$