PES University, Bangalore (Established under Karnataka Act No. 16 of 2013)

UE18MA251

MAY 2020: END SEMESTER ASSESSMENT (ESA) B.TECH. IV SEMESTER

UE18MA251- LINEAR ALGEBRA MODEL QUESTION PAPER

a) Use the method of Gaussian Elimination to decide if the planes $6x - 3y + 3z = -2$, $2x - y + z = 1$, $3x + 2y - 4z = 4$ have a common point of intersection in \mathbb{R}^3 . What happens if the right hand side of the second equation is changed to $-2/3$ instead of the present number 1? What are all the solutions of the system in that case? b) Find the matrices L and U for the matrix $A = \begin{bmatrix} 1 & -1 & 0 & 3 \\ 2 & -2 & 0 & 8 \\ -1 & -1 & 4 & -2 \\ -2 & -2 & 6 & -3 \end{bmatrix}$ Write down the permutation matrices, if any, used in the process of elimination. c) If the inverse of $A = \begin{bmatrix} 1 & a & b \\ 1 & a & 2 \\ 1 & 0 & b \end{bmatrix}$ is known to be $\begin{bmatrix} 1 & -1 & 1 \\ 1 & 0 & -1 \\ -1 & 1 & 0 \end{bmatrix}$, use Gauss – Jordan determine whether or not the values of a and b. If the vectors $(1, 1, 2)$, $(1, 2, 4)$, $(2, 4, 8)$ span the column space of a matrix A, determine whether or not the vector $b = (2, 3, 5)$ is in $C(A)$. What value should replace the third component "5" in the vector b so that the system $Ax = b$ has infinitely many solutions? Express this new vector b as a linear combination of columns of A. b) If the row space of a matrix A is spanned by the vectors $(2, 4, 6, 4)$, $(2, 5, 7, 6)$ and $(2, 3, 5, c)$ find the value of c for which $C(A)$ is (i) a plane in R^3 (ii) the whole of R^3 . For this value of c in case (i), identify the free variable(s) and write down the special solution(s) of $Ax = 0$. c) Find the dimension and a basis for the null space and the left null space of the matrix whose columns are $(1, 2, -1)$, $(3, 6, -3)$, $(3, 9, 3)$ and $(2, 7, 4)$. 3 a) Find a basis for the subspace S spanned by all solutions of $x + y + z - t = 0$ and a basis for the orthogonal complement of S. Find a vector a in S and a vector b in S^{\perp} such that $A + b = (1, 1, 1, 1)$.	Time:	3 Hrs Answer All Questions Max Marks: 10	00
happens if the right hand side of the second equation is changed to -2/3 instead of the present number 1 ? What are all the solutions of the system in that case? b) Find the matrices L and U for the matrix A = Find the dimension and a basis for the null space and the left null space of the matrix whose columns are (1, 2, -1), (3, 6, -3), (3, 9, 3) and (2, 7, 4). Find a basis for the subspace S spanned by all solutions of x + y + z - t = 0 and a basis for the orthogonal complement of S. Find a vector a in S and a vector b in S such that a + b = (1, 1, 1, 1).	1 a)		7
Find the matrices L and U for the matrix A = \begin{array}{c c c c c c c c c c c c c c c c c c c			,
c) If the inverse of A = \begin{bmatrix} 1 & a & b \\ 1 & a & 2 \\ 1 & 0 & b \end{bmatrix} is known to be \begin{bmatrix} 1 & -1 & 1 \\ -1 & 1 & 0 \end{bmatrix}, use Gauss - Jordan \end{bmatrix} 6 \\ 2 a) If the vectors (1, 1, 2), (1, 2, 4), (2, 4, 8) span the column space of a matrix A, determine whether or not the vector b = (2, 3, 5) is in C (A). What value should replace the third component "5" in the vector b so that the system Ax = b has infinitely many solutions? Express this new vector b as a linear combination of columns of A. b) If the row space of a matrix A is spanned by the vectors (2, 4, 6, 4), (2, 5, 7, 6) and (2, 3, 5, c) find the value of c for which C (A) is (i) a plane in R ³ (ii) the whole of R ³ . For this value of c in case (i), identify the free variable(s) and write down the special solution(s) of Ax = 0. c) Find the dimension and a basis for the null space and the left null space of the matrix whose columns are (1, 2, -1), (3, 6, -3), (3, 9, 3) and (2, 7, 4). 3 a) Find a basis for the subspace S spanned by all solutions of x + y + z - t = 0 and a basis for the orthogonal complement of S. Find a vector a in S and a vector b in S such that a + b = (1, 1, 1, 1).	(b)	Find the matrices L and U for the matrix $A = \begin{bmatrix} 2 & -2 & 0 & 8 \\ -1 & -1 & 4 & -2 \\ -2 & -2 & 6 & -3 \end{bmatrix}$.	7
elimination on [A I] to find the values of a and b. 2 a) If the vectors (1, 1, 2), (1, 2, 4), (2, 4, 8) span the column space of a matrix A, determine whether or not the vector b = (2, 3, 5) is in C (A). What value should replace the third component "5" in the vector b so that the system Ax = b has infinitely many solutions? Express this new vector b as a linear combination of columns of A. b) If the row space of a matrix A is spanned by the vectors (2, 4, 6, 4), (2, 5, 7, 6) and (2, 3, 5, c) find the value of c for which C (A) is (i) a plane in R³ (ii) the whole of R³. For this value of c in case (i), identify the free variable(s) and write down the special solution(s) of Ax = 0. c) Find the dimension and a basis for the null space and the left null space of the matrix whose columns are (1, 2, -1), (3, 6, -3), (3, 9, 3) and (2, 7, 4). 3 a) Find a basis for the subspace S spanned by all solutions of x + y + z - t = 0 and a basis for the orthogonal complement of S. Find a vector a in S and a vector b in S such that a + b = (1, 1, 1, 1).	c)		
 a) If the vectors (1, 1, 2), (1, 2, 4), (2, 4, 8) span the column space of a matrix A, determine whether or not the vector b = (2, 3, 5) is in C (A). What value should replace the third component "5" in the vector b so that the system Ax = b has infinitely many solutions? Express this new vector b as a linear combination of columns of A. b) If the row space of a matrix A is spanned by the vectors (2, 4, 6, 4), (2, 5, 7, 6) and (2, 3, 5, c) find the value of c for which C (A) is (i) a plane in R³ (ii) the whole of R³. For this value of c in case (i), identify the free variable(s) and write down the special solution(s) of Ax = 0. c) Find the dimension and a basis for the null space and the left null space of the matrix whose columns are (1, 2, -1), (3, 6, -3), (3, 9, 3) and (2, 7, 4). 3 a) Find a basis for the subspace S spanned by all solutions of x + y + z - t = 0 and a basis for the orthogonal complement of S. Find a vector a in S and a vector b in S[⊥] such that a + b = (1, 1, 1, 1). 		If the inverse of $A = \begin{bmatrix} 1 & a & 2 \\ 1 & 0 & b \end{bmatrix}$ is known to be $\begin{bmatrix} 1 & 0 & -1 \\ -1 & 1 & 0 \end{bmatrix}$, use Gauss – Jordan	6
determine whether or not the vector b = (2, 3, 5) is in C (A). What value should replace the third component "5" in the vector b so that the system Ax = b has infinitely many solutions? Express this new vector b as a linear combination of columns of A. b) If the row space of a matrix A is spanned by the vectors (2, 4, 6, 4), (2, 5, 7, 6) and (2, 3, 5, c) find the value of c for which C (A) is (i) a plane in R³ (ii) the whole of R³. For this value of c in case (i), identify the free variable(s) and write down the special solution(s) of Ax = 0. c) Find the dimension and a basis for the null space and the left null space of the matrix whose columns are (1, 2, -1), (3, 6, -3), (3, 9, 3) and (2, 7, 4). 3 a) Find a basis for the subspace S spanned by all solutions of x + y + z - t = 0 and a basis for the orthogonal complement of S. Find a vector a in S and a vector b in S such that a + b = (1, 1, 1, 1).			
 (2, 3, 5, c) find the value of c for which C (A) is (i) a plane in R³ (ii) the whole of R³. For this value of c in case (i), identify the free variable(s) and write down the special solution(s) of Ax = 0. c) Find the dimension and a basis for the null space and the left null space of the matrix whose columns are (1, 2, -1), (3, 6, -3), (3, 9, 3) and (2, 7, 4). 3 a) Find a basis for the subspace S spanned by all solutions of x + y + z - t = 0 and a basis for the orthogonal complement of S. Find a vector a in S and a vector b in S[⊥] such that a + b = (1, 1, 1, 1). 	2 a)	determine whether or not the vector $b = (2, 3, 5)$ is in C (A). What value should replace the third component "5" in the vector b so that the system $Ax = b$ has infinitely	7
c) Find the dimension and a basis for the null space and the left null space of the matrix whose columns are (1, 2, -1), (3, 6, -3), (3, 9, 3) and (2, 7, 4). 3 a) Find a basis for the subspace S spanned by all solutions of $x + y + z - t = 0$ and a basis for the orthogonal complement of S. Find a vector a in S and a vector b in S^{\perp} such that $a + b = (1, 1, 1, 1)$.	b)	(2, 3, 5, c) find the value of c for which C (A) is (i) a plane in R ³ (ii) the whole of R ³ . For this value of c in case (i), identify the free variable(s) and write down the special	7
Find a basis for the subspace S spanned by all solutions of $x + y + z - t = 0$ and a basis for the orthogonal complement of S. Find a vector a in S and a vector b in S^{\perp} such that $a + b = (1, 1, 1, 1)$.	c)	Find the dimension and a basis for the null space and the left null space of the matrix	6
[1 0] [1]	3 a)	Find a basis for the subspace S spanned by all solutions of $x + y + z - t = 0$ and a basis for the orthogonal complement of S. Find a vector a in S and a vector b in S^{\perp} such that	7
Solve $Ax = b$ by least squares and find $p = A\hat{x}$ if $A = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}$, $b = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$.	b)		7
Let M denote the space of all 2 x 2 matrices and let T : M \rightarrow M be a linear transformation defined by T (X) = BX, the usual product of matrices, where B = $\begin{bmatrix} 2 & -1 \\ 3 & 2 \end{bmatrix}$.	c)		6
		Find the matrix that represents T.	

Please Turn Over.....

4	a)	Apply the Gram – Schmidt process to (1,0,1), (1,0,0) and (2,1,0) and write the	7
		result in the form $A = QR$.	
	b)	Use the power method to compute the numerically largest eigenvalue of A =	
		$\begin{bmatrix} 1 & 3 & -1 \end{bmatrix}$	
		3 2 4 starting with an initial approximation of (0,0,1). Perform 6 iterations	7
		$\begin{bmatrix} 1 & 3 & -1 \\ 3 & 2 & 4 \\ -1 & 4 & 10 \end{bmatrix}$ starting with an initial approximation of $(0, 0, 1)$. Perform 6 iterations	
	c)	Diagonalize $A = \begin{bmatrix} 5 & 4 \\ 4 & 5 \end{bmatrix}$ and find one of its square roots ,a matrix R such that $R^2 = A$.	6
5	a)	Find the matrix A that represents the quadratic form $Q(x) = 5x_1^2 - 4x_1x_2 + 5x_2^2$. Also check if A is positive definite by finding its eigenvalues. Show also that A is orthogonally diagonalizable.	8
	b)	Find the singular value decomposition of $A = \begin{bmatrix} 4 & 11 & 14 \\ 8 & 7 & -2 \end{bmatrix}$.	12