# CSC429 – Computer Security

LECTURE 6
MALICIOUS PROGRAMS

Mohammed H. Almeshekah, PhD meshekah@ksu.edu.sa

#### Quiz 1

- Marking a Stack to be non-executable prevent the attacker from running code in the Stack where:
  - 1. Attacker can no longer execute an arbitrary sequence of instruction.
  - 2. Attacker can intelligently craft a sequence of function calls to achieve his goals.
  - 3. Attacker can only call one function in libc library.
  - 4. Attacker cannot inject code at all in the Stack as it is non-executable.
- Mark the statement above with True or False.

#### Malicious Programs

- Malware: software designed to infiltrate or damage a computer system without the owner's informed consent
- **Spyware:** software designed to intercept or take partial control over the user's interaction with the computer, without the user's informed consent
  - secretly monitors the user's behavior
  - collect various types of personal information

#### Trapdoor/Back-Door

- Secret entry point into a system
  - Specific user identifier or password that circumvents normal security procedures.
- Presents a security risk
- Could be used for
  - Troubleshooting
  - Maintenance
  - Malicious intent

# Logic Bomb

- Embedded in legitimate programs.
- Activated when specified conditions met
  - E.g., presence/absence of some file; Particular date/time or particular user
- When triggered, typically damages system
  - Modify/delete files/disks
- E.g. Shamoon Virus

#### Trojan Horse

- Program with an overt (expected) and covert (unexpected) effect
  - Appears normal/expected
  - Covert effect violates security policy
- User tricked into executing Trojan horse
  - Expects (and sees) overt behavior
  - Covert effect performed with user's authorization
  - E.g. Pirated software

#### Virus

- Self-replicating code
  - Like replicating Trojan horse
  - Alters normal code with "infected" version
- No overt action
  - Generally tries to remain undetected
- Operates when infected code executed
   If spread condition then
   For target files
  - if not infected then alter to include virus
  - Perform malicious action

### Virus Types

#### Boot Sector

- Problem: How to ensure virus "carrier" executed?
- Solution: Place in boot sector of disk
  - Run on any boot
- Propagate by altering boot disk creation
- Similar concepts now being used for thumb drive

#### Executable

- Malicious code placed at beginning of legitimate program
- Runs when application run
- Application then runs normally

# Virus Types/Properties

- Terminate and Stay Resident
  - Stays active in memory after application complete
- Stealth
  - Encrypt virus
    - Prevents "signature" to detect virus
  - Polymorphism
    - Change virus code to prevent signature

#### Macro Virus

- Infected "executable" isn't machine code
  - Relies on something "executed" inside application data
  - Common example: Macros
- Otherwise similar properties to other viruses
  - Architecture-independent
  - But, Application-dependent

#### Worm

- Runs independently
  - Does not require a host program
- Propagates a fully working version of itself to other machines
- Carrie a payload performing hidden tasks
  - Backdoors, spam relays, DDoS agents; ...
- Phases
  - Probing → Exploitation → Replication → Payload

#### Cost of Worm Attacks

- Morris worm, 1988
  - Infected approximately 6,000 machines
    - 10% of computers connected to the Internet
  - cost ~ \$10 million in downtime and cleanup
- Code Red worm, July 16 2001
  - Direct descendant of Morris' worm.
  - Infected more than 500,000 servers.
  - Caused ~ \$2.6 Billion in damages.
- · Love Bug worm:
  - May 3, 2000, \$8.75 billion
- WannaCry:
  - June 2017, \$10 billion

#### Morris Worm

- What happened to Morris?
  - Robert T. Morris was convicted of violating the computer Fraud and Abuse Act (Title 18), and sentenced to three years of probation, 400 hours of community service, a fine of \$10,050, and the costs of his supervision.
- Where is now Morris?
  - Professor at MIT
- Who was the first to analyze the Morris worm?
  - Prof. Spafford at Purdue
    - "The Internet Worm Program: An Analysis".

# Computer Emergency Response Team (CERT)

- As a result of Morris worm incident, DARPA created CERT, a development center at Carnegie Mellon University in Pittsburgh, Pennsylvania.
- Coordinates communication among experts during security emergencies and to help prevent future incidents.

#### Zombie & Botnet

- Secretly takes over another networked computer by exploiting software flows
- Builds the compromised computers into a zombie network or botnet
  - a collection of compromised machines running programs, usually referred to as worms, Trojan horses, or backdoors, under a common command and control infrastructure.
- Uses it to indirectly launch attacks
  - E.g., DDoS, phishing, spamming, cracking













# Bots are everywhere!

https://uk.norton.com/tools/bots/index.html



#### Rootkits

- Software used after system compromise to:
  - Hide the attacker's presence
  - Provide backdoors for easy reentry
- Simple rootkits:
  - Modify user programs (Is, ps)
  - Detectable by tools like Tripwire
- Sophisticated rootkits:
  - Modify the kernel itself.
  - May also change the boot record.
  - Harder to detect.

### Spyware

- Spyware: software designed to intercept or take partial control over the user's interaction with the computer, without the user's informed consent
  - secretly monitors the user's behavior
  - collect various types of personal information
- Techniques:
  - Log keystrokes
  - Collect web history
  - Scan documents on hard disk.
- Adware: software that display marketing information.

#### Drive-By-Download

- Drive-by download means two things, each concerning the unintended download of computer software from the Internet:
  - Downloads which a person authorized but without understanding the consequences (e.g. ActiveX component, or Java applet).
  - Download that happens without the user's knowledge.

#### Scareware

- Software
  - with malicious payloads
  - Sold by social engineering to cause shock, anxiety, or the perception of a threat
- Rapidly increasing

#### Ransomware

- Holds a computer system, or the data it contains, hostage against its user by demanding a ransom.
  - Disable an essential system service or lock the display at system startup
  - Encrypt some of the user's personal files.
- Victim user has to
  - Enter a code obtainable only after wiring payment to the attacker or sending an SMS message.
  - Buy a decryption or removal tool.

# Malicious Programs

Detection and Prevention

# Malicious Programs Detection

- How to detect a malicious program:
  - Change in executables
    - Length
    - Content
    - Date/time in the directory listing.
  - Unaccounted use of resources (esp. memory)
  - Unusual hardware behavior

 There is always the issue with false positives/negatives.

#### Anti-Viruses

- Types of anti-virus packages:
  - 1. Activity monitors
    - Look for virus-like activity (e.g., write to executable, ...)
  - 2. Scanners
    - Look for known viruses
    - Include virus-removers
  - 3. Authentication or change-detection
    - Compute/store hashes.
    - Later, compute and compare with stored.
    - Can catch unknown viruses, also disinfect.

# Virus Checking Gateways

- Virus-checking gateways
  - Scan incoming and outgoing
    - E-mail attachments
    - Transferred files
- Challenges!
  - Unusual formats, encrypted file, etc.

#### Prevention

- Keep your software up to date
  - Promptly (patch distribution problem).
  - Tools like "Secunia" can help.
- Use only clean software
- If you have to take risks:
  - Do so with least privilege (limits damage)
- File protections
  - Network access rights can protect.

# Cyber Kill Chain



# Understand the Tactics and Techniques



# Layered Defense

| Phase                 | Detect           | Deny            | Disrupt   | Degrade               | Deceive      | Contain               |
|-----------------------|------------------|-----------------|-----------|-----------------------|--------------|-----------------------|
| Reconnaissance        | Web<br>Analytics | Firewall ACL    |           |                       |              | Firewall ACL          |
| Weaponization         | NIDS             | NIPS            |           |                       |              | NIPS                  |
| Delivery              | Vigilant<br>User | Proxy Filter    | Inline AV | Queuing               |              | App-Aware<br>Firewall |
| Exploitation          | HIDS             | Patch           | DEP       |                       |              | Inter-Zone<br>NIPS    |
| Installation          | HIDS             | 'chroot' Jail   | AV        |                       |              | EPP                   |
| Command &<br>Control  | NIDS             | Firewall ACL    | NIPS      | Tarpit                | DNS Redirect | Trust Zones           |
| Actions on<br>Targets | Audit Logs       | Outbound<br>ACL | DLP       | Quality of<br>Service | Honeypot     | Trust Zones           |

#### Next Lecture

- Authentication.
- Readings for next lecture:
  - Anderson's Book section 2.4, 2.5, 15.1, 15.3 and 15.9.