Test 2 R Script

Alexander Hernandez

11/22/2022

library(MASS)

1) Fuel Consumption by Weight

a) Import the data in R and display with scatterplot

MPG of Car vs Weight

b) Fit a simple linear regression model and state equation. Provide interpretation of parameter B1 to determine the relationship between weight and fuel consumption.

```
model1 = lm(mpg ~ weight)
summary(model1)
##
## Call:
## lm(formula = mpg ~ weight)
## Residuals:
##
      Min
               1Q Median
                               3Q
                                      Max
                            2.114 16.480
## -12.012 -2.801 -0.351
##
## Coefficients:
                Estimate Std. Error t value Pr(>|t|)
## (Intercept) 46.3173644 0.7952452
                                      58.24
                                              <2e-16 ***
## weight
              -0.0076766 0.0002575 -29.81
                                              <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4.345 on 396 degrees of freedom
## Multiple R-squared: 0.6918, Adjusted R-squared: 0.691
## F-statistic: 888.9 on 1 and 396 DF, p-value: < 2.2e-16
              BO +
# y =
                         B1(x)
\# mpg = 46.317364 - 0.007677(weight)
# As B1 (weight) increases, the mpg decreases.
```

c) Determine the coefficient of determination of the model and provide its interpretation.

```
# According to the summary, the R**2 is 0.6918.
```

d) Use the model to predict the mpg if the car is 2100 lbs. 90% conf interval

```
predict(model1, data.frame(weight=2100), interval="conf", level=0.95)

## fit lwr upr
## 1 30.19648 29.58211 30.81085

# Predicted MPG: 30.19648
# Conf Interval: (29.58211, 30.81085)
```

e) Perform the residual analysis of the model

par(mfrow=c(2,2))
plot(model1)

The residual plots seem valid enough, but they could be better.

2) Loblolly

a) Extract the variable names and dimensions of the data

```
names(Loblolly)
## [1] "height" "age" "Seed"
dim(Loblolly)
## [1] 84 3
# There are 84 observations with 3 variables, "height, "age", and "seed".
```

b)Does the relationship between age and height of the tree appear linear? If so, please determine the linear model and display with scatterplot

```
attach(Loblolly)
plot(height ~ age,
    main="Height of Loblolly Pine Trees vs Age")
# The relationship appears linear
model2b= lm(height ~ age)
model2b
##
## Call:
## lm(formula = height ~ age)
##
## Coefficients:
## (Intercept)
                       age
       -1.312
                     2.591
##
# 	 y = B0 + B1(x)
\# height = -1.312 + 2.591(age)
abline(model2b, col=2)
```

Height of Loblolly Pine Trees vs Age

c) Perform the residual analysis to check whether a transformation is needed. If so, what is the appropriate value of the transformations?

```
par(mfrow=c(2,2))
plot(model2b)
```


par(mfrow=c(1,1))
boxcox(model2b)

Lambda value of 1.25 may be useful

d) Is the transformation worth it?

```
model2c = lm(height**1.25 ~ age)
par(mfrow=c(2,2))
plot(model2c)
```


Residuals are more balanced so,

the transformation slightly improved the model.

3) Leukemia Remission

a) Import the data to determine how many remission cases of leukemia are in the dataset

b) Display the variable REMISS as a response variable using LI as a predictor variable

Leukemia Remmisions (REMISS) vs LI

c) Fit a simple logistic regression model and write the equation of the model

d) Display the probability curve along with the scatterplot

Leukemia Remmisions (REMISS) vs LI

e) Calculate the probability Leukemia Remission if percentage labeling index of the bone marrow leukemia cells (LI) is 1.7

4) Effect of Drug in Reduction of Excess Body Weight

a) Fit a multiple linear regression model reflecting the effect of gender

```
drug = read.table("C:\\repos\\STAT 50001\\Test 2\\drug.txt",
                 header=TRUE)
attach(drug)
## The following object is masked from Loblolly:
##
      age
model4 = lm(EWL ~ age + gender)
summary(model4)
##
## Call:
## lm(formula = EWL ~ age + gender)
## Residuals:
##
                 1Q
                     Median
                                   3Q
       Min
                                           Max
## -12.5271 -4.2876 -0.0284 4.0873 12.4007
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 15.49515 5.76280
                                    2.689
                                            0.0118 *
                          0.12255
                                    0.692
               0.08482
                                            0.4944
## gender
              -2.97968
                          2.15070 -1.385
                                           0.1765
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 6.053 on 29 degrees of freedom
## Multiple R-squared: 0.07139,
                                 Adjusted R-squared: 0.007347
## F-statistic: 1.115 on 2 and 29 DF, p-value: 0.3417
             BO +
                       B1(x) + B3*(0 \text{ or } 1)
# EWL = 15.49515 + 0.08482
                               if "gender" is 0 / Female
# EWL = 12.51547 + 0.08482
                               if "gender" is 1 / Male
```

b) Display the scatterplot with the superimposed lines

Excess Body Weight Loss (EWL) vs age (by Male and Female)

c) Determine the coefficient of determination

```
# According to the above summary in 4.a., the R**2 is 0.07139.
# This says that there is not a strong correlation between the EWL and age.
```

d) Predict the excess body weight (EWL) for 47 years old male

```
predict(model4, data.frame(age=47, gender=1), interval="conf")

## fit lwr upr
## 1 16.5019 13.40691 19.59689

# Predicted EWL for a 47-year old Male: 16.5019
```