Résolution numérique de certains problèmes de Poisson avec conditions de Dirichlet et conditions périodiques

28 septembre 2017

1 Problème de Poisson avec conditions de Dirichlet et coefficients variables

Soit Ω un ouvert borné à frontière polygonale de \mathbb{R}^2 , A un tenseur qui est uniformément borné et satisfait l'hypothèse de coercivité uniforme et $f \in L^2(\Omega)$. On s'intéresse à la résolution numérique du problème de Poisson avec condition aux limites de Dirichlet : $Trouver\ u \in H^1(\Omega)\ telle\ que$

(1)
$$\begin{cases} u - \nabla \cdot (A\nabla u) = f & \text{dans } \Omega \\ u = 0 & \text{sur } \partial \Omega \end{cases}.$$

Question 1. Ecrire la formulation variationnelle du problème et montrer que le problème est bien posé dans $H_0^1(\Omega)$.

1.1 Maillages

On veillera à donner une référence particulière aux nœuds du bord.

1.2 Discrétisation

Soit \mathcal{T}_h une triangulation du domaine Ω , et V_h l'approximation de $H^1(\Omega)$ par des éléments finis P^1 associés à la triangulation \mathcal{T}_h . On note $(T_\ell)_{\ell=1,L}$ les triangles de \mathcal{T}_h , $(M_I)_{I=1,N}$ les sommets des triangles et $(w_I)_{I=1,N}$ la base de V_h définie par $w_I(M_J) = \delta_{IJ}$, $1 \leq I, J \leq N$.

Pour définir une approximation interne de $H_0^1(\Omega)$, on procède de la façon suivante. On suppose que les nœuds de la frontière $\partial\Omega$ ont une référence de 1 (M_I est sur le bord si Refneu(I) = 1) et que les nœuds à l'intérieur ont une référence 0 (M_I est à l'intérieur si Refneu(I) = 0). On introduit :

$$V_h^0 = \text{Vect}(w_I, \text{ tel que Refneu}(M_I) = 0).$$

Soit N_0 la dimension de V_h^0 . Par construction, $V_h^0 \subset H_0^1(\Omega)$.

Question 2. Quelle est la formulation variationnelle discrète vérifiée par la solution approchée u_h ?

Question 3. La solution approchée u_h s'écrit sous la forme

$$u_h(x,y) = \sum_{I, \text{Refneu}(M_I)=0} u_h(M_I) w_I(x,y), \quad \forall (x,y) \in \overline{\Omega}.$$

Exprimer la formulation variationnelle discrète sous la forme d'un système linéaire équivalent :

$$\mathbb{A}^0 \vec{U}^0 = \vec{L}^0 \,,$$

où la $I^{\text{ème}}$ composante du vecteur $\vec{U}^0 \in \mathbb{R}^{N_0}$ vaut $u_h(M_I)$ et où on écrira $\mathbb{A}^0 = \mathbb{M}^0 + \mathbb{K}^0$, avec \mathbb{M}^0 la matrice de masse, et \mathbb{K}^0 la matrice de rigidité.

Dans la pratique, on ne peut pas assembler directement la matrice intervenant dans (2). Voici comment nous procédons pour arriver à la résolution du système linéaire (2).

1.3 Assemblage des matrices et vecteur second membre

La routine principal_dirichlet.m est le programme principal pour résoudre le problème (1).

Question 4. Reprendre la partie assemblage du TP précédent, permettant de construire la matrice $\mathbb{A} = \mathbb{M} + \mathbb{K}$ et le vecteur \vec{L} où on a pris en compte toutes les fonctions de base (même celles qui ne sont pas nulles au bord).

Question 5. On introduit une matrice de projection \mathbb{P} de V_h dans V_h^0 , de taille $N_0 \times N$ (qui ne contient que des 1 et des 0). On pourra valider la construction de cette matrice numériquement (il suffira de représenter sur le maillage, \mathbb{PV} pour un vecteur \mathbb{V} quelconque et vérifier que le résultat est bien nul au bord)

Question 6. Il suffira ensuite d'écrire

$$\mathbb{A}^0 = \mathbb{P} \mathbb{A} \mathbb{P}^t, \quad \text{et } \vec{L}^0 = \mathbb{P} \vec{L}$$

et résoudre (2) pour avoir \vec{U}^0 . Pour retrouver la solution en chaque point du maillage (et un vecteur associé de taille N), il suffira d'écrire

$$\vec{U} = \mathbb{P}^t \vec{U}^0$$

1.4 Validation du code

On veut vérifier que le code calcule une solution approchée u_h correcte. On veut vérifier que le code calcule une solution approchée u_h correcte. Pour cela, on résout le problème (1) avec un tenseur A et une solution u que vous choisirez.

Question 7. Calculer la donnée f correspondante et modifier la routine f.m.

Question 8. En assimilant u à son interpolée $\pi_h u$, tracer $\log(1/h) \mapsto \log(\|u-u_h\|_{L^2(\Omega)}/\|u\|_{L^2(\Omega)})$ et $\log(1/h) \mapsto \log(|u-u_h|_1/|u|_1)$ pour différentes valeurs de h.

2 Problème de Poisson dans un carré avec conditions périodiques et coefficients variables

Soit $\Omega = [0, L]^2$ un carré de taille L, A un tenseur qui uniformément borné et satisfait l'hypothèse de coercivité uniforme et $f \in L^2(\Omega)$. On s'intéresse à la résolution numérique du problème de Poisson avec condition aux limites périodique et coefficients variables : $Trouver\ u \in H^1(\Omega)\ telle\ que$

$$\begin{cases} u - \nabla \cdot \left(A(x, y) \nabla u \right) = f & \text{dans } \Omega \\ u|_{x=0} = u|_{x=L} \text{ et } u|_{y=0} = u|_{y=L} \\ A(x, y) \nabla u \cdot e_x \Big|_{x=0} = A(x, y) \nabla u \cdot e_x \Big|_{x=L} \text{ et } A(x, y) \nabla u \cdot e_y \Big|_{y=0} = A(x, y) \nabla u \cdot e_y \Big|_{y=L} \end{cases}$$

Question 1. Ecrire la formulation variationnelle du problème et montrer que le problème est bien posé dans $H^1_\#(\Omega)$.

2.1 Discrétisation

Soit \mathcal{T}_h une triangulation **périodique** du domaine Ω , et V_h l'approximation de $H^1(\Omega)$ par des éléments finis P^1 associés à la triangulation \mathcal{T}_h . On note $(T_\ell)_{\ell=1,L}$ les triangles de \mathcal{T}_h , $(M_I)_{I=1,N}$ les sommets des triangles et $(w_I)_{I=1,N}$ la base de V_h définie par $w_I(M_J) = \delta_{IJ}$, $1 \leq I, J \leq N$. La triangulation est **périodique** si

- M_I est un noeud appartenant au bord droit si et seulement si il existe un noeud M_J appartenant au bord gauche ayant la même ordonnée;
- M_I est un noeud appartenant au bord bas si et seulement si il existe un noeud M_J appartenant au bord haut ayant la même abscisse.

Pour définir une approximation interne de $H^1_{\#}(\Omega)$, on procède de la façon suivante (c'est un peu plus compliqué que pour $H^1_0(\Omega)$).

- 1. Tout d'abord, toutes les fonctions de base correspondant à des nœuds intérieurs sont dans l'espace d'approximation $V_h^\#$ (elles sont nulles au bord donc en particulier périodiques);
- 2. ensuite pour tout noeud M_I de la frontière x=0, on sait qu'il existe un nœud M_J de la frontière x=L ayant la même ordonnée: la somme des 2 fonctions de base correspondantes est dans l'espace d'approximation $V_h^{\#}$;
- 3. et pour tout noeud M_I de la frontière y=0, on sait qu'il existe un nœud M_J de la frontière y=L ayant la même abscisse : la somme des 2 fonctions de base correspondantes est dans l'espace d'approximation $V_h^{\#}$;
- 4. signalons enfin le cas particulier des noeuds du coin pour lequel c'est la somme des 4 fonctions de base correspondantes qui est dans l'espace d'approximation $V_h^{\#}$;

Par construction, $V_h^{\#} \subset H_{\#}^1(\Omega)$.

Question 2. Quelle est la formulation variationnelle discrète vérifiée par la solution approchée u_h et le système linéaire équivalent.

Question 3. Etendre la technique vue pour les conditions de dirichlet aux conditions périodiques. Pour cela on créera une matrice de projection de V_h dans $V_h^{\#}$.

La routine principal_periodique.m est le programme principal pour résoudre le problème (3).

2.2 Validation du code

On veut vérifier que le code calcule une solution approchée u_h correcte. Pour cela, on résout le problème (3) avec une matrice A et une solution u que vous choisirez.

Question 4. Calculer la donnée f correspondante et modifier la routine f.m.

Question 5. En assimilant u à son interpolée $\pi_h u$, tracer $\log(1/h) \mapsto \log(\|u-u_h\|_{L^2(\Omega)}/\|u\|_{L^2(\Omega)})$ et $\log(1/h) \mapsto \log(|u-u_h|_1/|u|_1)$ pour différentes valeurs de h.