

Quenching of spectroscopic factors in ^{10,12}Be(d, ³He) reactions

M. Lozano-González, A. Matta, B. Fernández-Domínguez, F. Delaunay, J. Lois-Fuentes

USC-IGFAE and LPC-Caen

ASTRANUCAP and CPAN Days 2024

A recap on spectroscopic factors

Spectroscopic factors shed light on the occupancy of single-particle states:

$$\left.\frac{d\sigma}{d\Omega}\right|_{exp} = C^2S \cdot \left.\frac{d\sigma}{d\Omega}\right|_{s,p}, \quad \sum C^2S = (2j+1) \text{ in IPSM}$$

Experimentally:

Reduction of $\sim 65 \%$!

- Short-range correlations: tensor forces,...
- Long-range: vibrations, giant resonances,...

CPAN | SF quenching

A long-standing puzzle

A trend with asymmetry energy $\Delta S \equiv S_n - S_p$ is found depending on the experimental **probe!**

T. Aumann et al. Prog. Part. Nucl. Phys. 118 (2021)

 \Rightarrow measure towards more exotic nuclei: $|\Delta S| \uparrow$

Importance of GMF

Towards exotic nuclei (loosely bound or halo), a **geometrical mismatch factor** emerges from the very different w.f. in the overlap:

N. K. Timofeyuk, private communication (in E748 proposal)

 \Rightarrow Need to correct C^2S by its value!

Physics case of E748

E748 @ GANIL back in 2017. Using ^{10,12}Be(d, ³He) reactions to:

CPAN | SF quenching

Experimental technique

Tradional solid target experiment @ LISE

CPAN | SF quenching

A glance at the analysis

3 E_x from missing mass technique $E_{\mathrm{beam}} + (E,\theta)_{\mathrm{Lab}} \to E_x$

Results: (In)elastic ^{10,12}Be(d,d)^{10,12}Be

The **ground state** provides a means to test our normalization

First 2^+ is seen in both cases but not yet exploited!

Results: (In)elastic ^{10,12}Be(d,d)^{10,12}Be

Experimental cross-section formula:

$$\frac{d\sigma}{d\Omega} = \frac{N}{N_{\mathsf{beam}} N_{\mathsf{targets}} \epsilon \Delta \Omega} = \frac{N}{N_{\mathsf{beam}} \alpha \epsilon_{\mathsf{sim}} \Delta \Omega}$$

- Target thickness not measured during experiment:
 - Set it from normalization of elastic

- 2 ZDD had a poor performance.
- $\epsilon \sim 20$ –30 %

Agglutination of unknown factors: $\alpha = N_{\text{targets}} \cdot \epsilon_{\text{instrinsic, ZDD}}$

Results: (In)elastic ^{10,12}Be(d,d)^{10,12}Be

The best OMP potentials can also be deduced from the fit quality.

CPAN | SF quenching

Results: transfer

The **ground states** of the heavy recoils are populated.

First state at 2.7 MeV of ⁹Li is seen too!

Results: transfer

Fresco is employed to perform the <code>DWBA</code> calculations.

- OMP:
- In: set from elastic
- Out: Pang or HT1p
 D. Y. Pang et al., PRC 79, 91 (2009, 2015)

Light overlap (d|t, ³He): Accurate GFMC

I. Brida et al., PRC 84 (2011)

Excitation energy spectrum with all data:

Counts per θ_{CM} bin \Rightarrow **Angular distribution** Theo. model: finite-range **DWBA** in *FRESCO* code

Ground state: known $3/2^-$ ($\ell=1$)

2 (d ³He): Accurate GFMC

I. Brida et al., PRC 84 (2011)

OMP:

- In: Haixia H. An et al. PRC 73 (2006)
- Out: Pang and HT1p
 D. Y. Pang et al., PRC 79, 91 (2009, 2015)

$$1 \langle ^{10} \text{Be} | ^{9} \text{Li} \rangle$$

- A standard Wood-Saxon
- The novel source-term approach (STA) N. Timofeyuk PRC 81 (2010)

- stdWS yields twice the STA SF
- Sensitivity to r₀ to be further investigated
 F. Flavigny et al., PRC 97 (2018)

Shell model calculation with SFO-tls interaction: $C^2S = 1.69$

The **first** excited state $1/2^-$ ($\ell = 1$) is also accessible.

- First direct measurement!
- Same trends as for g.s.

Shell model with SFO-tls:

$$C^2S = 0.279$$

The reduction factor $R_S = C^2 S_{\text{exp}}/C^2 S_{\text{SM}}$ is computed:

Compatible with accepted values for R_S in transfer

Systematic $50\,\%$ difference STA-stdWS

Results: ¹²Be(d, ³He)¹¹Li

So far only the **ground state** $3/2^-$ ($\ell=1$) is analyzed.

Much lower cross section!

Expected sizeable contribution of GMF

Results: ¹²Be(d, ³He)¹¹Li

So far only the **ground state** $3/2^-$ ($\ell=1$) is analyzed.

STA not available yet!

Shell model with SFO-tls: $C^2S = 1.642$

Results: ¹²Be(d, ³He)¹¹Li

The reduction factor $R_S = C^2 S_{exp}/C^2 S_{SM}$ is computed:

- **■** 17(3) % reduction!
- Need to correct for GMF (ongoing)

- STA still in development
- **stdWS** requires physical constraints to r_0

Conclusions

Angular distributions for ^{10,12}Be(d, ³He) have been extracted and compared with DWBA

Found strong sensitivity to nuclear overlap: stdWS or newer STA

 R_{S} for $\left<^{10}\text{Be}\right|^{9}\text{Li}\right>$ in agreement with systematics

 R_S for $\left<^{12}Be\right|^{11}Li\right>$ displays a strong reduction linked to GMF

Acknowledgments

The E748 collaboration:

- Santiago:B. FernándezI PC-Caen:
- A. Matta F. Delaunay
 - N. L. Achouri F. Flavigny
 - J. Gibelin
 - M. Marques N Orr
- IJCLab:
 - D. Beaumel M. Assié
 - IVI. ASSIE
 - Y. Blumenfeld
 - S. Franchoo
 - A. Georgiadou
 - V. Girard-Alcindor
 - F. Hammache
 - N. de Séreville
 - A. Meyer
 - I Stefan

- GANIL:
 - B. Jacquot
 - O. Kamalou
 - A. Lemasson
 - M. Rejmund
 - T. Roger
 - O. Sorlin
 - J.C. Thomas
 - M. Vandebrouck
 - B. Bastin
 - F. de Oliveira
 - C. Stodel
- RIKEN:S. Koyama
 - D. Suzuki
- Surrey:N. Timofeyuk

Status with light isotopes

Several experiments allowed for the extraction of C^2S with Li-induced (d, 3 He) reactions:

Several challenges in this region:

Dealing with **unbound** nuclei (¹⁰He)

2 Many-body dynamics and/or core excitations

Elastic cross sections

Normalization of all cross-sections was obtained from fits to the elastic data using the Haixa potential.

Best OMP: new ones DA1p and Haixia!

Crosscheck: 10Be(d,t)Be

Same behaviour as for the other channels

 $\label{eq:matchwith} \begin{array}{l} \text{Match with $\sim \!\! 65\,\%$ reduction} \\ \text{if $C^2S_{\rm SM}=3.1$} \\ \text{Not likely!} \end{array}$

Crosscheck: ¹⁰Be(d,t)⁹Be

Same behaviour as for the other channels

Match with ${\sim}65\,\%$ reduction if $C^2S_{\rm SM}=3.1$ Not likely!

Kinematical lines

