Задание №1. Найти начальное условие (ρ_L , ρ_R , u_L , u_R) и точное решение задачи Римана для политропного газа, соответствующей заданному течению.

- **1.** Дозвуковая волна разрежения. Массовая скорость течения меньше скорости звука во всей расчетной области. ($\rho_L > \rho_R$, $\mathbf{u}_L < \mathbf{u}_R$, $\mathbf{u} < \mathbf{c}$).
- **2.** Трансзвуковая волна разрежения. В расчетном объеме имеются области, как дозвукового течения, так и сверхзвук. ($\rho_L > \rho_R$, $\mathbf{u}_L < \mathbf{u}_R$).
- **3.** Сверхзвуковая волна разрежения. Массовая скорость течения больше скорости звука во всей расчетной области. ($\rho_L > \rho_R$, $\mathbf{u}_L < \mathbf{u}_R$, $\mathbf{u} > \mathbf{c}$).
- **4.** Разлет газа в пустоту. (здесь начальные условия задаются произвольно, но. $\rho_L > \rho_R$ = 10^{-6} , $u_L < u_R$).
- **5.** Дозвуковая ударная волна и волна разрежения. ($\rho_L > \rho_R$, $\mathbf{u}_L = \mathbf{u}_R = \mathbf{0}$, $\mathbf{C}_{SW} < \mathbf{c}_L$ $\mathbf{C}_{SW} \mathbf{c}_{K}$ скорость ударной волны).
- **6.** Сверхзвуковая ударная волна и волна разрежения. ($\rho_L > \rho_R$, $\mathbf{u}_L = \mathbf{u}_R = \mathbf{0}$, $\mathbf{C}_{SW} > \mathbf{c}_L$ \mathbf{C}_{SW} скорость ударной волны).
- 7. Две дозвуковые волны разрежения ($\rho_L = \rho_R$, $u_L < u_R$, u < c).

Задание №2. Провести расчет течения из задания 1 с помощью метода КАБАРЕ для системы уравнений политропного газа. Сопоставить полученные решения.