Chapitre 1 - Ensembles de mots

Benjamin WACK (cours) - Mica MURPHY (note) - Antoine SAGET (note)

Lundi 1er Octobre 2018

0) Introduction

Discret est l'opposé de continu, et il peut y avoir un nombre fini ou infini de valeurs. On ne fera ni de géométrie ni d'analyse de fonctions (dérivées, etc.).

1) Mots

a) Alphabets et mots

Définition. Un alphabet est un ensemble fini de symboles.

Exemples.

- alphabet de 26 lettres
- code ASCII
- notes de musique

Définition. un mot sur un alphabet A est une suite ordonnée finie de symboles de A.

L'ordre des lettres est important : abba est différent de baab. Il peut y avoir des répétitions.

Si x_1, x_2, x_n sont des symboles de A; on peut parler du mot $x = x_1x_2...x_n$

Cas particulier. Le mot vide à 0 symboles noté ϵ .

 ϵ n'est pas un symbole de A

On note A^n l'ensemble des mots sur A formés de n symboles et A^* l'ensemble de tous les mots sur A.

Définition. On appelle longueur d'un mot le nombre de symboles qui le composent.

$$lg(x_1x_2...x_n) = n$$
$$lg(\epsilon) = 0$$

Dans A^* on retrouve chaque symbole de A sous la forme d'un mot de longueur 1.

Exemples.

• alphabet latin à 26 lettres

Toute suite de lettres est appelée mot (même s'il n'est pas dans le dictionnaire)

- alphabet binaire $B = \{0, 1\}$ Il y a 2^n mots binaires de longueur n.
- alphabet des chiffres $\{0,1,2,\ldots,9\}$ un mot sur cet alphabet représente un nombre entier

Définitions. On appelle **langage** sur A un ensemble (fini ou infini) de mots sur A, autrement dit une partie de A^* .

Exemples.

- Les mots du dictionnaire Larousse 2018
- Les suites de chiffres qui ne commencent pas par un 0.
- Le langage d'un seul mot $\{u\}$
- $\{\epsilon\}$
- Le langage vide : $\{\emptyset\}$ (à ne pas confondre avec ϵ !)
- A*

b) Préfixe, suffixe, facteur

Concaténation

Soient $u = u_1 u_2 \dots u_n$ et $v = v_1 v_2 \dots v_p$ alors le concaténé de u et v noté simplement uv est le mot $u_1 u_2 \dots u_n v_1 v_2 \dots v_p$

Exemple. Si u = 1011 et v = 010 alors uv = 1011010

Préfixe, suffixe, facteur

Soient u et v deux mots sur A. On dit que u est un préfixe de v si il existe un mot w tel que v = uw w peut être le mot vide.

On note $u \sqsubseteq v$ le fait que u est préfixe de v $u \sqsubset v$ le fait que u est préfixe strict de v (cas où $w \neq \epsilon$)

Autre caractérisation : si $u = u_1 u_2 \dots u_n$, $v = v_1 v_2 \dots v_p$ alors $u \sqsubseteq v$ si et seulement si $u_1 = v_1, u_2 = v_2, \dots, u_n = v_n$ et $n \le p$

Propriété. Si $u \sqsubseteq v$ et $v \sqsubseteq u$ alors u = v

Propriété. Si $u \sqsubseteq v$ alors $lg \ u \le lg \ v$ et si $u \sqsubseteq v$ alors $lg \ u < lg \ v$

On dit que u est un :

- suffixe de v s'il existe un mot w tel que v=wu.
- facteur de v si il existe 2 mots x et y tels que v = xuy

Exemples. Soit le mot baaca:

- ses préfixes sont ϵ , b, ba, baa, baac, baaca.
- ses suffixes sont ϵ , a, ca, aca, aca, baaca
- ses facteurs sont ϵ , b, ba, baa, baac, baaca, aa, aa, aa, aac, aaca, ac, aca, c, ca

Propriété. Si u est un mot de longueur n, il admet exactement n+1 préfixes distincts, n+1 suffixes distincts et au moins n+1 facteurs (souvent plus).

Propriétés.

- lg(uv) = lg(u) + lg(v)• $lg(u^n) = n \times lg(u)$ (où u^n est le mot u répeté n fois) $u^0 = \epsilon$

Soit
$$P$$
: " $w = uv$ " et Q : " $lg(w) = lg(u) + lg(v)$ " on a $P \Rightarrow Q$.

La réciproque $(Q \Rightarrow P)$ n'est pas vraie : :white_check_mark: Si w = uv alors lg(w) =lg(u) + lg(v) :negative_squared_cross_mark: Si lg(w) = lg(u) + lg(v) alors W = uvContre-exemple: u = a, v = b, w = aa

En revanche, la contraposée $(!Q \Rightarrow !P)$ est vraie : Si $lg(w) \neq lg(u) + lg(v)$ alors $w \neq uv$

c) Distance entre mots

Soient u et v deux mots sur A de même longueur La **distance** de u à v est le nombre de symboles de u qu'il faut modifier pour obtenir v.

Exemples.

- u = arbre, v = aller, d(u, v) = 4 (seul le a est identique aux 2)
- u = 0101110, v = 0011101, d(u, v) = 4 (seuls 3 sur 7 caractères sont identiques aux 2)

Propriétés. (qui disent que d est bien un distance)

- d(u,v) = 0 ssi u = v
- d(u,v) = d(v,u)
- inégalité triangulaire : $\forall u, v, w,$

$$d(u, v) \le d(u, w) + d(w, v)$$

Preuve. $d(u,v) = \sum_{i=1}^{n} d(u_i,v_i)$, d'où $d(u,w) + d(w,v) = \sum_{i=1}^{n} (d(u_i,w_i) + d(w_i,v_i))$. On peut donc se focaliser sur un seul symbole à la fois : - si $u_i = v_i$ alors $d(u_i, v_i) = 0 \le d(u_i, w_i) + d(w_i, v_i)$ - si $u_i \ne v_i$ alors $d(u_i, v_i) = 1$ et w_i est différent d'au moins un des deux. $d(u_i, w_i) + d(w_i, v_i) = 1 + 0$ ou 0 + 1 ou 1 + 1