Bayesian regression modeling: Theory & practice

Part X: Beyond regression modeling | Theory-driven Bayesian modeling

Michael Franke

Case study: natural use of quantifier some motivation

- inform debate of what to infer from experimental data
 - 1. what does a task measure?
 - 2. how is that related to established theoretical notions?

Truth-value judgement task

"Some of the circles are black"

Is the sentence true or false in this picture?

Truth-value judgement task

"Some of the circles are black"

Is the sentence true or false in this picture?

Truth-value judgement task

"Some of the circles are black"

Is the sentence true or false in this picture?

Felicity rating task

"Some of the circles are black"

How well does the sentence describe the picture?

Felicity rating task

"Some of the circles are black"

How well does the sentence describe the picture?

Felicity rating task

"Some of the circles are black"

How well does the sentence describe the picture?

Felicity rating task

How well does the sentence describe the picture?

Felicity rating task

"Some of the circles are black"

How well does the sentence describe the picture?

Felicity rating task

"Some of the circles are black"

How well does the sentence describe the picture?

Felicity rating task

"Some of the circles are black"

How well does the sentence describe the picture?

Experimental data

- two task types
 - 7-point rating scale
 - binary truth-value judgement task
- filler sentences with most and many

	A	В	C	D
task type	7-point	7-point	binary	binary
fillers?	yes	no	yes	no
N	119	114	109	107

Case study: natural use of quantifier some motivation

- inform debate of what to infer from experimental data
 - 1. what does a task measure?
 - 2. how is that related to established theoretical notions?

Case study: natural use of quantifier some motivation

- inform debate of what to infer from experimental data
 - 1. what does a task measure?
 - 2. how is that related to established theoretical notions?

approach

combine:

- 1. theory-driven probabilistic pragmatics models
- 2. link function (from regression modeling)

 $\frac{1}{\pi} \sim \text{Gamma}(0.5, 0.5)$

$$F_c^{+/-} = F(c; \tilde{s}^{+/-}, \pi)$$

$$\sigma \sim \mathsf{Uniform}(\mathsf{0},\mathsf{0.4})$$

$$\delta_{d \in \{1,...,6\}} \sim \text{Normal}(d/7, 14)$$

 $\delta_0 = -\infty; \ \delta_7 = \infty$

$$\theta \sim \text{Normal}(0.5, 0.2)$$

$$\frac{1}{\gamma} \sim \text{Gamma}(1, 1)$$

$$p_{cd}^{A/B} = \int_{\delta_{cd}-1}^{\delta_{cd}} \text{Normal}(x, F_c^{+/-}, \sigma) \, dx$$

$$p_c^{C/D} = (1 + \exp(-\gamma (F_c^{+/-} - \theta)))^{-1}$$

$$k_{cd}^{A/B} \sim \mathsf{Multinomial}(p_{cd}^{A/B}, n_c^{A/B})$$

$$k_c^{C/D} \sim \mathsf{Binomial}(p_c^{C/D}, n_c^{C/D})$$

data

$$s_i^{+/-} \sim \mathsf{Beta}(\mathsf{1},\mathsf{1})$$

 $\frac{1}{\pi}\sim \text{Gamma}(0.5,0.5)$

$$F_c^{+/-} = F(c; \tilde{s}^{+/-}, \pi)$$

$$\sigma \sim \mathsf{Uniform}(\mathsf{0}, \mathsf{0.4})$$

$$\delta_{d \in \{1,...,6\}} \sim \text{Normal}(d/7, 14)$$

 $\delta_0 = -\infty; \ \delta_7 = \infty$

$$\theta \sim \text{Normal}(0.5, 0.2)$$

$$\frac{1}{\gamma} \sim \text{Gamma}(1, 1)$$

$$p_{cd}^{A/B} = \int_{\delta_{cd}-1}^{\delta_{cd}} \text{Normal}(x, F_c^{+/-}, \sigma) \, dx$$

$$p_c^{C/D} = (1 + \exp(-\gamma (F_c^{+/-} - \theta)))^{-1}$$

$$k_{cd}^{A/B} \sim \text{Multinomial}(p_{cd}^{A/B}, n_c^{A/B})$$

$$k_c^{C/D} \sim \mathsf{Binomial}(p_c^{C/D}, n_c^{C/D})$$

choice

probabilities

$$s_i^{+/-} \sim \mathrm{Beta}(1,1)$$

$$\frac{1}{\pi}\sim \mathsf{Gamma}(0.5,0.5)$$

$$F_c^{+/-} = F(c; \tilde{s}^{+/-}, \pi)$$

$$\sigma \sim \text{Uniform}(0, 0.4)$$

$$\delta_{d \in \{1,...,6\}} \sim \text{Normal}(d/7, 14)$$

 $\delta_0 = -\infty; \ \delta_7 = \infty$

$$\theta \sim \text{Normal}(0.5, 0.2)$$

$$\frac{1}{\gamma} \sim \text{Gamma}(1, 1)$$

$$p_{cd}^{A/B} = \int_{\delta_{cd}-1}^{\delta_{cd}} \text{Normal}(x, F_c^{+/-}, \sigma) dx$$

$$p_c^{C/D} = (1 + \exp(-\gamma (F_c^{+/-} - \theta)))^{-1}$$

$$k_{cd}^{A/B} \sim \text{Multinomial}(p_{cd}^{A/B}, n_c^{A/B})$$

$$k_c^{C/D} \sim \mathsf{Binomial}(p_c^{C/D}, n_c^{C/D})$$

logistic linking function

$$s_i^{+/-} \sim \mathrm{Beta}(1,1)$$

 $\frac{1}{\pi}\sim \mathsf{Gamma}(0.5,0.5)$

$$F_c^{+/-} = F(c; \tilde{s}^{+/-}, \pi)$$

$$\sigma \sim \mathsf{Uniform}(\mathsf{0}, \mathsf{0.4})$$

$$\delta_{d \in \{1,...,6\}} \sim \text{Normal}(d/7, 14)$$

 $\delta_0 = -\infty; \ \delta_7 = \infty$

$$\theta \sim \text{Normal}(0.5, 0.2)$$

$$\frac{1}{\gamma} \sim \text{Gamma}(1, 1)$$

$$\rho_{cd}^{A/B} = \int_{\delta_{cd}-1}^{\delta_{cd}} \text{Normal}(x, F_c^{+/-}, \sigma) dx$$

$$p_c^{C/D} = (1 + \exp(-\gamma (F_c^{+/-} - \theta)))^{-1}$$

$$k_{cd}^{A/B} \sim \text{Multinomial}(p_{cd}^{A/B}, n_c^{A/B})$$

$$k_c^{C/D} \sim \mathsf{Binomial}(p_c^{C/D}, n_c^{C/D})$$

inverse Gaussian linking function

$$s_i^{+/-} \sim \mathsf{Beta}(\mathsf{1},\mathsf{1})$$

 $\frac{1}{\pi} \sim \text{Gamma}(0.5, 0.5)$

$$F_c^{+/-} = F(c; \tilde{s}^{+/-}, \pi)$$

$$\sigma \sim \mathsf{Uniform}(\mathsf{0}, \mathsf{0.4})$$

$$\delta_{d \in \{1,...,6\}} \sim \text{Normal}(d/7, 14)$$

 $\delta_0 = -\infty; \ \delta_7 = \infty$

$$\theta \sim \text{Normal}(0.5, 0.2)$$

$$\frac{1}{\gamma} \sim \text{Gamma}(1, 1)$$

$$p_{cd}^{A/B} = \int_{\delta_{cd}-1}^{\delta_{cd}} \text{Normal}(x, F_c^{+/-}, \sigma) dx$$

$$p_c^{C/D} = (1 + \exp(-\gamma (F_c^{+/-} - \theta)))^{-1}$$

$$k_{cd}^{A/B} \sim \text{Multinomial}(p_{cd}^{A/B}, n_c^{A/B})$$

$$k_c^{C/D} \sim \mathsf{Binomial}(p_c^{C/D}, n_c^{C/D})$$

$$s_i^{+/-} \sim \operatorname{Beta}(1,1)$$

 $\frac{1}{\pi} \sim \text{Gamma}(0.5, 0.5)$

$$F_c^{+/-} = F(c; \tilde{s}^{+/-}, \pi)$$

$$\sigma \sim \text{Uniform}(0, 0.4)$$

$$\delta_{d \in \{1,...,6\}} \sim \text{Normal}(d/7, 14)$$

 $\delta_0 = -\infty; \ \delta_7 = \infty$

$$\theta \sim \text{Normal}(0.5, 0.2)$$

$$\frac{1}{\gamma} \sim \text{Gamma}(1, 1)$$

$$p_{cd}^{A/B} = \int_{\delta_{cd}-1}^{\delta_{cd}} \text{Normal}(x, F_c^{+/-}, \sigma) \, dx$$

$$p_c^{C/D} = (1 + \exp(-\gamma (F_c^{+/-} - \theta)))^{-1}$$

$$k_{cd}^{A/B} \sim \text{Multinomial}(p_{cd}^{A/B}, n_c^{A/B})$$

$$k_c^{C/D} \sim \mathsf{Binomial}(p_c^{C/D}, n_c^{C/D})$$

Pragmatic felicity

how good a description is "some" (numerically)

literal listener

$$P_{LL}(t \mid m) \propto P_{prior}(t) \times B(m, t)$$

speaker's expected utility

$$\mathsf{EU}_{\mathcal{S}}(m,t,P_{LL}\;;\;\pi) = \sum_{t'} P_{LL}(t'\mid m) \times \mathsf{U}(t,m,t'\;;\;\pi)$$

EU relative to alternatives X

$$\mathsf{EU}^*(m,t,X\;;\;\pi) = \frac{\mathsf{EU}(m,t,P_{LL}\;;\;\pi) - \mathsf{min}_{m'\in X} \mathsf{EU}(m',t,P_{LL}\;;\;\pi)}{\mathsf{max}_{m'\in X} \mathsf{EU}(m',tP_{LL}\;;\;\pi) - \mathsf{min}_{m'\in X} \mathsf{EU}(m',t,P_{LL}\;;\;\pi)}$$

probability of entertaining X

$$P(X \mid \overrightarrow{s}) = \prod_{m \in X} s_m \prod_{m \in M \setminus X} (1 - s_m)$$

pragmatic felicity

$$F(m, t; \overrightarrow{s}, \pi) = \sum_{X} P(X \mid \overrightarrow{s}) EU^{*}(m, t, X; \pi)$$

pragmatic felicity

measures how good "some" is as a description of t, relative to other quantifiers, weighed by how salient these quantifiers are

Posterior pragmatic felicity F+/-

CSP-Subheading

Posterior predictive checks

Conclusions of case study

- 7-point and binary tasks could measure the same thing
- full data-generating model identifies what a task measures
- theory-driven Bayesian data analysis is powerful and insightful