Multiple Choice Questions

IMHT-CET 2022] (online shift) (Memory Based Questions)

- The domain of the definition of the function F (x) = $\frac{1}{4-x^2} + \log_{10}(x^3 x)$ is 1.
 - a) (-1,0) U (1,2) U (3,∞)

b) $(-2, -1) \cup (-1, 0) \cup (2, \infty)$

c) (-1,0) ∪ (1,2) ∪ (2,∞)

- Let $f: \mathbb{R} \longrightarrow \mathbb{R}$ be a differentiable function with f(0) = 1 and satisfying the equation 2. $f(x+y) = f(x). f^{1}(y) + f^{1}(x). f(y), | + x| y \in \mathbb{R}$, then the value of $\log (f(4))$ is

b) 2

- The domain of the derivative of the function $f(x) = \begin{cases} \tan^{-1} x & \text{if } |x| \le 1 \\ \frac{1}{2} (|x|-1) & \text{if } |x| > 1 \end{cases}$
 - a) $R \{-1, 1\}$
- b) $R \{-1\}$
- c) $R \{0\}$
- If $f(x) = [x] \left\lceil \frac{x}{4} \right\rceil$, $x \in \mathbb{R}$, where [x] denotes the greatest integer less than or equal to x,
 - a) Both $\lim_{x \to 4^{-}} f(x)$ and $\lim_{x \to 4^{+}} f(x)$ exist but are not equal
 - b) $\lim_{x \to 4^+} f(x)$ exists but $\lim_{x \to 4^-} f(x)$ does not exist.
 - c) f(x) continuous at x = 4
 - d) $\lim_{x \to 4^{-}} f(x)$ exists, but $\lim_{x \to 4^{+}} f(x)$ does not exist.
- The function $f(x) = \frac{\log (\pi + x)}{\log (e + x)}$ is 5.
 - a) decreasing on (0, ∞)
 - b) decreasing on $\left(0, \frac{\pi}{e}\right)$, increasing on $\left(\frac{\pi}{e}, \infty\right)$
 - c) increasing on (0, ∞)
 - d) increasing on $\left(0, \frac{\pi}{e}\right)$, decreasing on $\left(\frac{\pi}{e}, \infty\right)$
 - For a suitable real constant a, let a function $f: R \{-a\} \longrightarrow R$ be defined by
 - $f(x) = \frac{a-x}{a+x}$. Further, suppose that for any real number $x \neq -a$ and $f(x) \neq -a$, for f(x) = a. Then
 - $f\left(-\frac{1}{2}\right)$ is equal to
 - a)

b) 3

- c) -3
- d) $-\frac{1}{3}$

The domain of the function

$$f(x) = \sqrt{x-1} + \sqrt{6-x}$$
 is

- b) [1, 6]

15. If $f(x) = \frac{x}{2x+1}$ and $g(x) = \frac{x}{x+1}$ then (fog) x = ...

- b) $\frac{x}{3x+1}$

If $f(x) = 2\{x\} + 5x$, where $\{x\}$ is fractional part function, then f(-1.4) is

- b) -8.2
- c) -5.8

17. If $f(x) = \sin^2 x + \sin^2 \left(x + \frac{\pi}{3}\right) + \cos x \cos \left(x + \frac{\pi}{3}\right)$ and $g\left(\frac{5}{4}\right) = 1$, then $(g \circ f)x$ is equal to

a) 1

- b) -1

Range of the function $f(x) = \frac{x}{1+x^2}$ is

- a) $(-\infty, \infty)$
- b) [-1, 1]
- c) $\left[-\frac{1}{2}, \frac{1}{2}\right]$ d) $\left[-\sqrt{2}, \sqrt{2}\right]$

The domain of $f(x) = \sin^{-1} \left[\log_2 \left(\frac{x}{2} \right) \right]$ is

- a) $0 \le x \le 1$ b) $0 \le x \le 4$
- c) $1 \le x \le 4$ d) $4 \le x \le 6$

The inverse of $f(x) = \frac{2}{3} \left(\frac{10^x - 10^{-x}}{10^x + 10^{-x}} \right)$ is

- a) $\frac{1}{3} \log_{10} \frac{1+x}{1-x}$ b) $\frac{1}{2} \log_{10} \frac{2+3x}{2-3x}$ c) $\frac{1}{3} \log_{10} \frac{2+3x}{2-3x}$ d) $\frac{1}{6} \log_{10} \frac{2-3x}{2+3x}$

[MHT-CET 2020]

(online shift)

(Memory Based Questions)

If $f: \mathbb{R} \longrightarrow \mathbb{R}$ is given by f(x) = 7x + 8 and $f^{-1}(12) = \frac{K}{7}$, then the value of K is

If $f(x) = \frac{4x+7}{7x-4}$ then the value of $f\left\{f\left[f(2)\right]\right\} = \dots$

a) $\frac{35}{30}$

- b) $\frac{2}{3}$
- c) $\frac{3}{2}$

If $f: \mathbb{R} \longrightarrow \mathbb{R}$, $g: \mathbb{R} \longrightarrow \mathbb{R}$ are two functions defined by f(x) = 2x - 3, $g(x) = x^3 + 5$, then $(fog)^{-1} x = \dots$

- a) $\left(\frac{2x+3}{2}\right)^2$ b) $\left(\frac{x-7}{2}\right)^3$ c) $\left(\frac{x+7}{2}\right)^3$
- d) $\left(\frac{x-7}{2}\right)^2$

- The domain of the real valued function $f(x) = \sqrt{\frac{x-2}{3-x}}$ is
 - a) [2, 3]
- b) (2, 3]
- () [2, 3)
- d) (2, 3)

- The range of function $f(x) = \sin x + \csc x$ is
 - a) [-1, 1]
- b) (-1, 1)
- c) R [-2, 2] d) R (-2, 2)
- Function $f: \mathbb{R} \longrightarrow \mathbb{R}$ defined by $f(x) = x^2 + 5$ is
 - a) many one and onto

b) one - one and onto

c) onto

- d) many one and into
- Function $f: \mathbb{R} \longrightarrow \mathbb{R}$ is defined by f(x) = |x| + x. Which of the following statements is 37.
 - a) f is many one

b) f is constant function

c) fis one - one

- d) f is onto
- If $f(x) = x^2 + 1$, then f(f(x)) =38.
 - a) $x^4 x^2 2$
- b) $x^4 + 1$
- c) $x^4 + 2x^2 + 2$ d) $x^4 + x^2 + 2$
- The range of the function $f(x) = \frac{1}{\sqrt{x^2 9}}$, $x \in (3, \infty)$ is
 - a) (-3, 3)
- b) [-3, 3)
- c) (3, ∞)
- d) $(0, \infty)$

[MHT-CET 2018]

- If $f: \mathbb{R} \{2\} \longrightarrow \mathbb{R}$ is a function defined by $f(x) = \frac{x^2 4}{x 2}$, then its image is
 - a) R

- b) $R \{2\}$
- c) $R \{4\}$
- d) $R \{-2, 2\}$

[MHT-CET 2023]

- If $f = \{ (ab, a + b) : a, b \in Z \}$, then 41.
 - a) f is surjective function from Z to Z
- b) f is injective function from Z to Z
- c) f is a function from Z to Z
- d) f is not a function from Z to Z
- 42. If $3f(x) f\left(\frac{1}{x}\right) = 8 \log_2 x^3$, x > 0, then f(2), f(4), f(8) are in
 - a) AP

b) GP

- c) HP
- d) AGP
- The domain of the function $f(x) = \sin^{-1}\left(\frac{|x|+5}{x^2+1}\right)$ is $(-\infty, -a] \cup [a, \infty)$. Then a =
 - a) $\frac{\sqrt{17}-1}{2}$
- b) $\frac{\sqrt{17}+1}{2}$ c) $\frac{\sqrt{17}}{2}-1$ d) $\frac{\sqrt{17}}{2}+1$

- The range of the function $f(x) = \frac{x^2}{x^2 + 1}$ is
 - a) (0, 1)

- b) (0, 1]
- c) [0, 1)
- d) [0, 1]

57. If the domain of the function
$$f(x) = \frac{\sqrt{x^2 - 25}}{4 - x^2} + \log_{10}(x^2 + 2x - 15)$$
 is $(-\infty, \alpha) \cup [\beta, \infty)$, then

- a) 125
- b) 150
- d) 175
- The domain of definition of $f(x) = \frac{\log_2(x+3)}{x^2+3x+2}$ is
 - a) (-2, ∞)
- b) $R \{-1, -2, -3\}$ c) $R \{1, 2\}$
- The range of the function $f(x) = \frac{x^2 + x + 2}{x^2 + x + 1}$, $x \in \mathbb{R}$ is
 - a) $\left(1,\frac{7}{3}\right)$
- b) $(1, \frac{7}{3}]$ c) $[1, \frac{7}{3}]$
- d) $\left[1,\frac{7}{3}\right]$
- Let $f(x) = \frac{1}{7 \sin 5x}$ be a function defined on R. Then the range of the function f(x) is
 - a) $\left[\frac{1}{8}, \frac{1}{5}\right]$

- b) $\left[\frac{1}{7}, \frac{1}{6}\right]$ c) $\left[\frac{1}{7}, \frac{1}{5}\right]$ d) $\left[\frac{1}{8}, \frac{1}{6}\right]$
- Let the range of the function $f(x) = \frac{1}{2 + \sin 3x + \cos 3x}$, $x \in \mathbb{R}$ be [a, b]. If α and β are respectively the A.M. and the G.M. of a and b, then $\frac{\alpha}{\beta}$ =

Tog

- 62. If $f(x) = \frac{x}{2-x}$, $g(x) = \frac{x+1}{x+2}$, then $(g \circ g \circ f)(x) = \frac{x}{x+2}$

- a) $\frac{6-x}{10-2x}$ b) $\frac{6-x}{10+2x}$ c) $\frac{6+x}{10-2x}$ d) $\frac{6+x}{10+2x}$
- If $f(x) = \frac{ax}{x+1}$, $x \ne 1$ and f(f(x)) = x, then a = 4]
 - a) 1

- For a suitable chosen real constant a, let a function $f: R \{-a\} \rightarrow R$ be defined by f(x) $=\frac{a-x}{a+x}$. Further, suppose that for any real number $x \neq -a$ and $f(x) \neq -a$, for f(x) = x. Then
 - $f\left(-\frac{1}{2}\right) =$
 - a) 3

b) 3

- c) $-\frac{1}{3}$
- d) $\frac{1}{3}$
- 65. If $g(x) = x^2 + x 1$ and $gof(x) = 4x^2 10x + 5$, then f(2) = a, f(2) = a, f(3) = a,

- d) 2
- 66. If $f: [1, \infty) \to [2, \infty)$ is given by $f(x) = x + \frac{1}{x}$, then $f^{-1}(x) = x + \frac{1}{x}$
 - a) $1+\sqrt{x^2-4}$
- b) $\frac{2}{1+x^2}$
- c) $\frac{x+\sqrt{x^2-4}}{2}$ d) $\frac{x-\sqrt{x^2-4}}{2}$