TP 2: Boucles for et while

Vous pouvez accéder à ce TP sur CAPYTALE avec le code : 0212-4191505

I Boucle for

Exercice 1. Écrire un script qui calcule le n-ième terme d'une suite géométrique de raison 2 et de premier terme 3, ainsi que la somme des n+1 premiers termes de cette suite.

Réponse :

Exercice 2. Écrire une fonction produit qui prend en argument deux entiers naturels n>0 et p et qui calcule (et renvoie) le produit $P=\prod_{k=1}^p \frac{n+1-k}{n}$ si $p\in [\![1,n]\!]$ et qui renvoie "Il faut que p soit compris entre 1 et n" sinon.

Réponse :

Exercice 3. Pour $n \in \mathbb{N}^*$, on pose

$$R(n) = \sqrt{1 + \sqrt{2 + \dots + \sqrt{n - 1 + \sqrt{n}}}}.$$

Écrire une fonction qui prend en argument un entier n et qui renvoie R(n).

Réponse :

Exercice 4. Écrire un script Python qui prend en argument un nombre naturel $n \in \mathbb{N}^*$ et permet de calculer le terme général des suites suivantes :

$$a_n = \left(\sum_{k=1}^n \frac{1}{k}\right)^2$$
, $b_n = \sum_{k=1}^n \frac{1}{k^2}$ et $c_n = \sum_{k=1}^{n^2} \frac{1}{k}$

Réponse :	
reponse.	

Exercice 5. La suite de Fibonacci est la suite définie par $u_0 = u_1 = 1$ et pour tout $n \in \mathbb{N}$, $u_{n+2} = u_{n+1} + u_n$.

Écrire une fonction Fibonacci qui prend en argument un entier n et qui renvoie le n-ième terme de la suite de Fibonacci.

<u>Réponse</u> :		

II Boucles imbriquées

Exercice 6. 1. Écrire une fonction somme 1 qui prend en argument deux entiers j et n et renvoie la somme $\sum_{k=1}^{n} k^{j}$.

- 2. Utiliser la fonction précédente pour calculer la somme $S = \sum_{j=1}^{n} \sum_{k=1}^{n} k^{j}$ pour n = 10.
- 3. Donner une formule simple pour la somme $\sum_{j=1}^{n} k^{j}$. On distinguera bien le cas k=1 et $k \neq 1$.

 4. En déduire une fonction somme2 qui prend en argument deux entiers k et n et qui renvoie la
- 4. En déduire une fonction somme qui prend en argument deux entiers k et n et qui renvoie la somme $\sum_{j=1}^{n} k^{j}$ sans utiliser de boucle.
- 5. Utiliser la fonction précédente pour recalculer la somme S.

<u>Réponse</u> :	

Exercice 7. Écrire un script Python qui prend en argument un nombre naturel $n \in \mathbb{N}^*$ et permet de calculer le terme général des suites suivantes :

$$a_n = \sum_{i=1}^n \sum_{j=1}^n \frac{i-j}{i+j}, \qquad b_n = \sum_{k=1}^n \sum_{j=1}^k \frac{\cos(k)}{j^2}$$
 et $c_n = \sum_{i=1}^n \sum_{j=i}^n \min(i,j)$

<u>Réponse</u> :	

III Boucle while

Exercice 8. Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie par $u_0 = \frac{1}{2}$ et $u_{n+1} = u_n^2 - u_n + 1$ pour tout $n \in \mathbb{N}$. On peut montrer que cette suite tend vers $\ell = 1$.

On souhaite écrire un script qui calcule les termes de la suite $(u_n)_{n\in\mathbb{N}}$ jusqu'à ce que u_n soit proche de sa limite à 10^{-4} près, puis qui affiche le dernier terme de la suite calculé ainsi que le nombre de termes qu'il a fallu calculer.

- 1. Quel sont le test d'arrêt et test d'exécution.
- 2. Écrire le script.

<u>Réponse</u> :		·

Exercice 9. Étude de la série harmonique alternée.

On considère la suite $(u_n)_{n\geq 1}$ définie par : $\forall n\in\mathbb{N}^*,\ u_n=\sum_{k=1}^n\frac{(-1)^{k+1}}{k}.$

On peut montrer que cette suite converge vers une limite S, et que $\forall n \in \mathbb{N}^* : |u_n - S| \le |u_n - u_{n-1}| \le \frac{1}{n}$.

- 1. Écrire une fonction qui calcule S à 10^{-4} près.
- 2. On peut montrer que $S=\ln(2).$ Vérifier le résultat obtenu en comparant la valeur trouvée cette valeur.

Exercice 10. Un peu de pliage

On plie plusieurs fois une feuille de papier de format A4 ($21~\mathrm{cm} \times 29.7~\mathrm{cm}$) et d'épaisseur 0.01 cm, et on veut calculer les dimensions de cette feuille après un certain nombre de pliages. Les pliages sont faits de façon à plier en deux la feuille toujours selon la plus grande dimension.

- 1. Écrire un script qui prend en argument le nombre n de pliages qu'il souhaite effectuer, puis qui renvoie les dimensions (longueur, largeur et épaisseur) de la feuille après n pliages. Tester pour 5 pliages, puis pour 10 pliages.
- 2. Écrire un nouveau script qui prend en argument la hauteur h en cm, qui calcule combien de pliages sont nécessaires pour que l'épaisseur finale du papier soit supérieure à h, et qui affiche les dimensions de la feuille après ces pliages. Tester pour une hauteur de 2.5 m, puis pour la distance Terre-Lune (environ 380 400 km).

<u>Réponse</u> :		

Exercice 11. Conjecture de Syracuse

L'algorithme de Syracuse consiste à itérer l'opération suivante : à un nombre entier n, on associe $\frac{n}{2}$ si n est pair et 3n+1 si n est impair. On conjecture (on ne sait toujours pas si c'est vrai) que quel que soit l'entier considéré initialement dans cet algorithme, on arrive toujours à 1 après un certain nombre d'itérations. C'est en tout cas vrai pour tous les entiers avec lesquels l'algorithme a été testé. Écrire un programme qui prend un entier n, effectue l'algorithme de Syracuse, puis affiche tous les nombres obtenus jusqu'au premier 1 et donne le nombre d'itérations effectuées jusqu'à l'obtention du premier 1. Le tester sur différentes valeurs.

<u>Réponse</u> :		