

Introduction to Mobile Networks and Services

Fundamentals of Wireless Channels

Three components of wireless channels

1. Transmit antenna

Antennas

- An antenna is an electrical conductor or system of conductors
 - Transmission: radiates electromagnetic energy into space
 - Reception: collects electromagnetic energy from space

In two-way communications, the same antenna can be used for transmission

and reception

Three Wireless Propagation Phenomena

Free-space pathloss (attenuation)

- Transmit power P_t
 - Received power:

$$P_r = P_t \frac{A_e}{4\pi d^2} = \frac{P_t}{L}$$

Pathloss:

$$L = \frac{4\pi d^2}{A_e}$$

Example: Isotropic antenna

$$A_{\rm iso} = \frac{\lambda^2}{4\pi}$$
, $L_{\rm iso} = \frac{4\pi d^2}{A_{\rm iso}} = \left(\frac{4\pi d}{\lambda}\right)^2$

 $\lambda = 0.1 \text{ m (3 GHz)}$ 0.006% received at 1 m (L = 42 dB) 0.00006% received at 10 m (L = 62 dB)

Only a tiny fraction of transmit power is received!

Directive antennas

- Larger area A_e : Higher maximum gain
 - Directional transmission
 - Effective area ≤ Physical area

Antenna gain

(compared to isotropic antenna):

$$G = \frac{A_e}{A_{iso}} = \frac{4\pi A_e}{\lambda^2}$$

Often reported as $10 \log_{10}(G)$ dBi

Free-space pathloss with antenna gains

- Transmitter gain towards receiver: $G_t = \frac{4\pi A_t}{\lambda^2}$
- Receiver gain towards transmitter: $G_r = \frac{4\pi A_r}{\lambda^2}$

Free-space pathloss with isotropic antennas

$$L_{\rm iso} = \left(\frac{4\pi d}{\lambda}\right)^2$$

$$L = \frac{L_{\rm iso}}{G_t G_r} = \frac{(4\pi d)^2}{G_t G_r \lambda^2} = \frac{(\lambda d)^2}{A_t A_r}$$

Reducing the wavelength λ

- G_t , G_r fixed: Larger pathloss
- A_t , A_r fixed: Smaller pathloss

7

Antenna arrays: Adaptive directivity

Evolution of base station antennas

9

Thank you for watching!

