Séance n°7 Alternative de Fredholm (suite)

10 Janvier 2006

Exercice 1. Théorème de prolongement unique

L'énoncé de ce théorème est le suivant : Soit Ω un ouvert non vide de \mathbb{R}^n et $u \in H^1(\Omega)$ tel que $\Delta u \in L^2(\Omega)$ et tel qu'il existe une constante K > 0 pour laquelle

$$|\Delta u(x)| \le K(|u(x)| + |\nabla u(x)|)$$
 pour presque tout $x \in \Omega$.

Alors, si u s'annule sur une partie ouverte non vide de Ω , u s'annule sur tout Ω .

Nous allons démontrer ce théorème dans le cas particulier de la dimension 1 de l'espace c.à.d. $\Omega =]a,b[$.

1.1 - Soit $x_0 \in]a, b[$ tel que $u(x_0) = u'(x_0) = 0$ et soit $\varepsilon > 0$ tel que $]x_0 - \varepsilon, x_0 + \varepsilon[\subset]a, b[$. Montrer, en utilisant un développement de Taylor avec reste intégral, que

$$|u(x)|^2 + |u'(x)|^2 \le \left(\varepsilon + \frac{1}{3}\varepsilon^3\right) \int_{x_0 - \varepsilon}^{x_0 + \varepsilon} |u''(t)|^2 dt$$

pour $x \in]x_0 - \varepsilon, x_0 + \varepsilon[.$

1.2 - Déduire qu'il existe $\varepsilon > 0$ tel que u = 0 sur $]x_0 - \varepsilon, x_0 + \varepsilon[$.

1.3 - Conclure!

Exercice 2. Application au problème de vibrations acoustiques

On reprend ici l'exemple de l'exercice 2 du TD6, où l'on suppose qu'une partie du fluide occupant un domaine $D \subset \Omega$ est absorbante. On note $\sigma_0 > 0$ son coefficient d'absorption et on définit la fonction d'absorption σ dans tout Ω par

$$\sigma(x) = \begin{cases} \sigma_0 & \text{si } x \in D \\ 0 & \text{sinon.} \end{cases}$$

La pression $p \in H^1(\Omega)$ vérifie alors

(1)
$$\begin{cases} \Delta p + k^2 p + i\sigma k \, p = 0 & \text{dans } \Omega, \\ \frac{\partial p}{\partial n} = g & \text{sur } \partial \Omega. \end{cases}$$

- **2.1** Réécrire la formulation variationnelle de ce problème (les fonctions sont maintenant à valeurs complexes).
- **2.2** En utilisant le résultat de l'exercice 1, montrer l'unicité de la solution pour tout nombre d'onde $k \neq 0$.
- **2.3** Conclure sur le caractère bien posé du problème pour tout nombre d'onde $k \neq 0$.

Exercice 3. Inégalités de Poincaré

3.1 - Soit Ω un domaine borné régulier de \mathbb{R}^n . En raisonnant par l'absurde et en utilisant l'injection compacte de $H^1(\Omega)$ dans $L^2(\Omega)$, montrer qu'il existe une constante $C_{\Omega} > 0$ telle que

(2)
$$||u||_{L^2(\Omega)} \le C_{\Omega} ||\nabla u||_{L^2(\Omega)} \quad \forall \ u \in H_0^1(\Omega)$$

3.2 - On suppose en plus que Ω est connexe. Montrer (en suivant le même raisonnement) que le résultat reste vrai si $H_0^1(\Omega)$ est remplacé par

$$V = \{ v \in H^1(\Omega) / v = 0 \text{ sur } \Gamma_0 \}$$

où Γ_0 désigne une partie de mesure non nulle de la frontière $\partial\Omega$.

3.3 - Soit ℓ une forme linéaire continue sur $H^1(\Omega)$. Quelle propriété doit vérifier ℓ pour que le résultat de la question 3.1 reste vrai si $H^1_0(\Omega)$ est remplacé par

$$V = \{ v \in H^1(\Omega) \ / \ \ell(v) = 0 \}.$$

Exercice 4. Application aux modes de vibrations propres des membranes

Soit Ω une membrane encastrée en une partie Γ_0 de son bord. On note $\rho > 0$ sa rigidité et u le champ de déplacement vertical. On suppose qu'il existe deux constantes $\rho_* > 0$ et $\rho^* > 0$ telles que

$$\rho_* \le \rho(x) \le \rho^* \quad \text{sur } \Omega.$$

On appelle valeur propre et mode propre de vibration de la membrane tout réel λ et fonction $u \in H^1(\Omega)$, $u \neq 0$, vérifiant

(3)
$$\begin{cases} -\operatorname{div}\rho\nabla u = \lambda u & \operatorname{dans}\Omega, \\ u = 0 & \operatorname{sur}\Gamma_0, \\ \frac{\partial u}{\partial n} = 0 & \operatorname{sur}\partial\Omega\setminus\Gamma_0. \end{cases}$$

4.1 - Montrer que la forme bilinéaire

$$a(u,v) = \int_{\Omega} \rho \nabla u \cdot \nabla v \, dx$$

défini un produit scalaire sur

$$V = \{ v \in H^1(\Omega) / v = 0 \text{ sur } \Gamma_0 \}.$$

4.2 - Montrer que la norme associée à ce produit scalaire est équivalente à la norme $H^1(\Omega)$.

Dans toute la suite on muni l'espace V du produit scalaire $a(\cdot,\cdot)$.

4.3 - Montrer qu'il existe un opérateur T compact autoadjoint sur V tel que

$$a(Tu, v) = (u, v)_{L^2} \ \forall \ u, v \in V.$$

- **4.4** Déduire qu'il existe une suite croissante de valeurs propres $(\lambda_n)_{n\geq 1}$ strictement positives tendant vers $+\infty$ et de modes propres $(u_n)_{n\geq 1}$ formant une base hilbertienne de V (muni du produit scalaire $a(\cdot,\cdot)$).
- **4.5** Montrer que la famille des vecteurs propres $v_n = \sqrt{\lambda_n} u_n$ forme une base hilbertienne de $L^2(\Omega)$.

4.6 - Pour tout $u \in V$, $u \neq 0$, on définit le quotient de Rayleigh par

$$\mathcal{R}(u) = a(u, v)/(u, u)_{L^2(\Omega)}.$$

Montrer que

$$\lambda_1 = \min_{u \in V, u \neq 0} \mathcal{R}(u)$$

$$\lambda_n = \min_{u \in V_{n-1}^{\perp}, u \neq 0} \mathcal{R}(u)$$

où V_n désigne l'espace vectoriel engendré par v_1, \cdots, v_n .

4.7 - On dénote par E_n un sous espace de V de dimension n. Déduire que pour tout $n \ge 1$,

$$\lambda_n = \min_{E_n \subset V} \left(\max_{u \in E_n, u \neq 0} \mathcal{R}(u) \right).$$

- 4.8 Déduire que les valeurs propres croissent lorsque la taille de Γ_0 augmente!
- **4.9** Se convaincre que les résultats des questions 4.1-4.8 restent valides pour toute forme bilinéaire symétrique a, coercive sur V.