



#### Introduction

- Customer churn is a problem faced by every business, particularly those who are subscription-based services.
- CAC or the cost to acquire a new customer is sometimes considerably more to keep a current customer.
- Businesses need to know who is likely to cancel and take steps to try and keep those customers.
- Customer churn prediction is useful in helping businesses direct the appropriate efforts towards those customers most likely to churn.



- Utilize features of customers both current and churned to determine which aspects of customer behavior are determinative of likelihood of cancellation of service.
- Customer churn analysis using
  - Logistic Regression
  - Random Forest model



#### Data

- Retrieved from IBM
- Has 7043 customers 5174 current and 1869 churned
- Has 21 features and over 7043 rows

| df.head() |                |        |               |         |            |        |              |                  |                 |                |     |                  |             |             |
|-----------|----------------|--------|---------------|---------|------------|--------|--------------|------------------|-----------------|----------------|-----|------------------|-------------|-------------|
|           | customerID     | gender | SeniorCitizen | Partner | Dependents | tenure | PhoneService | MultipleLines    | InternetService | OnlineSecurity |     | DeviceProtection | TechSupport | StreamingTV |
| 0         | 7590-<br>VHVEG | Female | 0             | Yes     | No         | 1      | No           | No phone service | DSL             | No             | *** | No               | No          | No          |
| 1         | 5575-<br>GNVDE | Male   | 0             | No      | No         | 34     | Yes          | No               | DSL             | Yes            |     | Yes              | No          | No          |
| 2         | 3668-<br>QPYBK | Male   | 0             | No      | No         | 2      | Yes          | No               | DSL             | Yes            |     | No               | No          | No          |
| 3         | 7795-<br>CFOCW | Male   | 0             | No      | No         | 45     | No           | No phone service | DSL             | Yes            |     | Yes              | Yes         | No          |
| 4         | 9237-<br>HQITU | Female | 0             | No      | No         | 2      | Yes          | No               | Fiber optic     | No             | *** | No               | No          | No          |

#### **Exploratory Data Analysis**



- •Customers with no online security or backup, no device protection, and no tech support are from two to three times more likely to churn.
- •Customers with no internet service are unlikely to churn.
- •Customers with month-to-month contracts are almost four times more likely to churn than customers with yearly contracts. Two-year contractors are very unlikely to churn.

### **Exploratory Data Analysis**



- •Customers without dependents are two times more likely to churn.
- •Customers that use paperless billing and optical fiber are more likely to churn.
- •Customers that use electronic checks to pay their bills are more likely to churn.

# Correlations

• There is a direct correlation between Tenure and Churn



#### Machine Learning Models

#Check precision, recall, f1-score
print( classification\_report(y\_test, predictions) )

|              | precision | recall | f1-score | support |  |
|--------------|-----------|--------|----------|---------|--|
| 0            | 0.86      | 0.90   | 0.88     | 1036    |  |
| 1            | 0.68      | 0.58   | 0.62     | 373     |  |
| accuracy     |           |        | 0.82     | 1409    |  |
| macro avg    | 0.77      | 0.74   | 0.75     | 1409    |  |
| weighted avg | 0.81      | 0.82   | 0.81     | 1409    |  |



I first tried a Logistic Regression model using Scikit-Learn



The recall of this model is  $\approx 90\%$  which means it correctly identified 90% of the customers which were retained. The precision was  $\approx 86\%$  and the f1 score was 88%. The accuracy of this model is about 82%.

## Random Forest model

- I then created a random forest model
- This model had slightly better recall than Logistic regression at 91% but had less precision and less accuracy than Logistic regression model.





test accuracy: 0.8019872249822569 train accuracy: 0.8168264110756124

# Hyperparameter tuning the model

- I used Scikit-Learns Grid Search CV to find the optimum number of trees for the random forest model
- It did have a slight increase on the model's accuracy



#### Results

 Even though hypertuning increased the Random Forest Model slighlty, the logistic regression model still perfomed better and is the model that I would use

# Future Improvements

- Add XGBoost Model
- Utilize techniques to combat the fact that this is an unbalanced data set.

