Fundamentals of bayesian statistics

Course of Machine Learning Master Degree in Computer Science University of Rome "Tor Vergata"

Giorgio Gambosi

a.a. 2018-2019

Bayesian statistics

Classical (frequentist) statistics

- Interpretation of probability as frequence of an event over a sufficiently long sequence of reproducible experiments.
- · Parameters seen as constants to determine

Bayesian statistics

- Interpretation of probability as degree of belief that an event may occur.
- · Parameters seen as random variables

Cornerstone of bayesian statistics is Bayes' rule

$$p(X = x | \Theta = \theta) = \frac{p(\Theta = \theta | X = x)p(X = x)}{p(\Theta = \theta)}$$

Given two random variables X, Θ , it relates the conditional probabilities $p(X=x|\Theta=\theta)$ and $p(\Theta=\theta|X=x)$.

Bayesian inference

Given an observed dataset \mathbf{X} and a family of probability distributions $p(x|\Theta)$ with parameter Θ (a probabilistic model), we wish to find the parameter value which best allows to describe \mathbf{X} through the model.

In the bayesian framework, we deal with the distribution probability $p(\Theta)$ of the parameter Θ considered here as a random variable. Bayes' rule states that

$$p(\Theta|\mathbf{X}) = \frac{p(\mathbf{X}|\Theta)p(\Theta)}{p(\mathbf{X})}$$

Bayesian inference

Interpretation

- $p(\Theta)$ stands as the knowledge available about Θ before **X** is observed (a.k.a. prior distribution)
- $p(\Theta|\mathbf{X})$ stands as the knowledge available about Θ after \mathbf{X} is observed (a.k.a. posterior distribution)
- $p(\mathbf{X}|\Theta)$ measures how much the observed data are coherent to the model, assuming a certain value Θ of the parameter (a.k.a. likelihood)
- $p(\mathbf{X}) = \sum_{\Theta'} p(\mathbf{X}|\Theta')p(\Theta')$ is the probability that \mathbf{X} is observed, considered as a mean w.r.t. all possible values of Θ (a.k.a. evidence)

Conjugate distributions

Definition

Given a likelihood function p(y|x), a (prior) distribution p(x) is conjugate to p(y|x) if the posterior distribution p(x|y) is of the same type as p(x).

Consequence

If we look at p(x) as our knowledge of the random variable x before knowing y and with p(x|y) our knowledge once y is known, the new knowledge can be expressed as the old one.

The Beta distribution is conjugate to the Bernoulli distribution. In fact, given $x \in [0,1]$ and $y \in \{0,1\}$, if

$$p(\phi|\alpha,\beta) = \text{Beta}(\phi|\alpha,\beta) = \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)}\phi^{\alpha-1}(1-\phi)^{\beta-1}$$
$$p(x|\phi) = \phi^x(1-\phi)^{1-x}$$

then

$$p(\phi|x) = \frac{1}{Z}\phi^{\alpha-1}(1-\phi)^{\beta-1}\phi^x(1-\phi)^{1-x} = \text{Beta}(x|\alpha+x-1,\beta-x)$$

where Z is the normalization coefficient

$$Z = \int_0^1 \phi^{\alpha+x-1} (1-\phi)^{\beta-x} d\phi = \frac{\Gamma(\alpha+\beta+1)}{\Gamma(\alpha+x)\Gamma(\beta-x+1)}$$

The Beta distribution is also conjugate to the Binomial distribution. In fact, given $x\in[0,1]$ and $y\in\{0,1\}$, if

$$p(\phi|\alpha,\beta) = \operatorname{Beta}(\phi|\alpha,\beta) = \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)}\phi^{\alpha-1}(1-\phi)^{\beta-1}$$

$$p(k|\phi,N) = \binom{N}{k}\phi^k(1-\phi)^{N-k} = \frac{N!}{(N-k)!k!}\phi^N(1-\phi)^{N-k}$$

then

$$p(\phi|k, N, \alpha, \beta) = \frac{1}{Z} \phi^{\alpha - 1} (1 - \phi)^{\beta - 1} \phi^{k} (1 - \phi)^{N - k} = \text{Beta}(\phi|\alpha + k - 1, \beta + N - k - 1)$$

with the normalization coefficient

$$Z = \int_0^1 \phi^{\alpha+k-1} (1-\phi)^{\beta+N-k-1} d\phi = \frac{\Gamma(\alpha+\beta+N)}{\Gamma(\alpha+k)\Gamma(\beta+N-k)}$$

Assume $\phi \sim \mathrm{Dir}(\phi|\alpha)$ and $z \sim \mathrm{Mult}(z|\phi)$. Then,

$$\begin{split} p(\phi|z, \alpha) &= \frac{p(z|\phi)p(\phi|\alpha)}{p(z|\alpha)} = \frac{\phi_z p(\phi|\alpha)}{\int_{\phi} p(z|\phi)p(\phi|\alpha)d\phi} \\ &= \frac{\phi_z p(\phi|\alpha)}{\int_{\phi} \phi_z p(\phi|\alpha)d\phi} = \frac{\phi_z p(\phi|\alpha)}{E[\phi_z|\alpha]} \\ &= \frac{\alpha_0}{\alpha_z} \frac{\Gamma(\alpha_0)}{\prod_{j=1}^K \Gamma(\alpha_j)} \phi_z \prod_{j=1}^K \phi_j^{\alpha_j - 1} \\ &= \frac{\Gamma(\alpha_0 + 1)}{\prod_{j=1}^K \Gamma(\alpha_j + \delta(j = z))} \prod_{j=1}^K \phi_j^{\alpha_j + \delta(j = z) - 1} = \text{Dir}(\phi|\alpha') \end{split}$$

where $\boldsymbol{\alpha}' = (\alpha_1, \dots, \alpha_z + 1, \dots, \alpha_K)$