Mathematics for Machine Learning

— Probability & Distributions

Sum Rule, Product Rule, Bayes' Theorem & Summary Statistics

Joseph Chuang-Chieh Lin

Department of Computer Science & Engineering, National Taiwan Ocean University

Fall 2025

Credits for the resource

- The slides are based on the textbooks:
 - Marc Peter Deisenroth, A. Aldo Faisal, and Cheng Soon Ong: Mathematics for Machine Learning. Cambridge University Press. 2020.
 - Arnold J. Insel, Lawrence E. Spence, Stephen H. Friedberg: Linear Algebra, 4th Edition. Prentice Hall. 2013.
 - Howard Anton, Chris Rorres, Anton Kaul: Elementary Linear Algebra, 12th Edition. Wiley. 2019.
- We could partially refer to the monograph: Francesco Orabona: A Modern Introduction to Online Learning. https://arxiv.org/abs/1912.13213

Outline

- Sum & Product Rule
- Bayes' Theorem
- Means & Covariances
- 4 Sums & Transformations of Random Variables
- 5 Statistical Independence

Outline

- Sum & Product Rule
- 2 Bayes' Theorem
- Means & Covariances
- 4 Sums & Transformations of Random Variables
- 5 Statistical Independence

Sum Rule (1/2)

- x, y: random variables (vectors).
- p(x, y): joint distribution of x, y.
- $p(y \mid x)$: conditional probability of y given x.

Sum Rule

$$p(\mathbf{x}) = \begin{cases} \sum_{\mathbf{y} \in \mathcal{Y}} p(\mathbf{x}, \mathbf{y}) & \text{if } \mathbf{y} \text{ is discrete} \\ \\ \int_{\mathcal{Y}} p(\mathbf{x}, \mathbf{y}) \mathrm{d} \mathbf{y} & \text{if } \mathbf{y} \text{ is continuous} \end{cases}$$

where \mathcal{Y} stands for the states of the target space of random variable Y.

Marginalization property.

Sum Rule (2/2)

For
$$\mathbf{x} = [x_1, \dots, x_D]^{\top}$$
, the marginal

$$p(x_i) = \int p(x_1,\ldots,x_D) d\mathbf{x}_{-i},$$

where "-i" means all except i.

4 D > 4 D > 4 E > 4 E > E 990

Product Rule

Product Rule

$$p(\mathbf{x}, \mathbf{y}) = p(\mathbf{y} \mid \mathbf{x})p(\mathbf{x})$$

Outline

- Sum & Product Rule
- 2 Bayes' Theorem
- Means & Covariances
- 4 Sums & Transformations of Random Variables
- 5 Statistical Independence

Bayes' Theorem

Bayes' Theorem

$$\underbrace{p(\mathbf{x} \mid \mathbf{y})}_{\text{posterior}} = \underbrace{\frac{p(\mathbf{y} \mid \mathbf{x}) p(\mathbf{x})}{p(\mathbf{y})}}_{\text{evidence}}$$

- Prior: subjective prior knowledge (before observing data).
- Likelihood $p(y \mid x)$: the probability of **y** if we were to know the latent variable **x**.
 - We call it "the likelihood of x".
- Posterior $p(\mathbf{x} \mid \mathbf{y})$: the quantity that we know about \mathbf{x} after having observed \mathbf{y} .

Marginal Likelihood/Evidence

$$\begin{split} & \rho(\mathbf{y}) := \sum_{\mathbf{x} \in \mathcal{X}} \rho(\mathbf{y} \mid \mathbf{x}) \rho(\mathbf{x}) = \mathbb{E}_X [\rho(\mathbf{y} \mid \mathbf{x})] \\ & \rho(\mathbf{y}) := \int_{\mathbf{x} \in \mathcal{X}} \rho(\mathbf{y} \mid \mathbf{x}) \rho(\mathbf{x}) \mathrm{d}\mathbf{x} = \mathbb{E}_X [\rho(\mathbf{y} \mid \mathbf{x})]. \end{split}$$

Outline

- Sum & Product Rule
- 2 Bayes' Theorem
- Means & Covariances
- 4 Sums & Transformations of Random Variables
- 5 Statistical Independence

Expected Value

Expected value

The expected value of a function $g:\mathbb{R} o \mathbb{R}$ of a random variable

$$X \sim p(x)$$
 is

$$\mathbb{E}_X[g(x)] = \int_{\mathcal{X}} g(x)p(x)dx,$$

or

$$\mathbb{E}_X[g(x)] = \sum_{x \in \mathcal{X}} g(x)p(x).$$

Expected Value

Expected value

The expected value of a function $g:\mathbb{R} o \mathbb{R}$ of a random variable

 $X \sim p(x)$ is

$$\mathbb{E}_X[g(x)] = \int_{\mathcal{X}} g(x) p(x) dx,$$

or

$$\mathbb{E}_X[g(x)] = \sum_{x \in \mathcal{X}} g(x) p(x).$$

Multivariate $X = [X_1, \dots, X_D]^{\top}$

$$\mathbb{E}_{X}[g(\mathbf{x})] = \left[egin{array}{c} \mathbb{E}_{X_{1}}[g(x_{1})] \ dots \ \mathbb{E}_{X_{D}}[g(x_{D})] \end{array}
ight] \in \mathbb{R}^{D},$$

where \mathbb{E}_{X_d} : taking the expectation w.r.t. the x_d .

Expected Value (contd.)

Mean

For $\mathbf{x} \in \mathbb{R}^D$,

$$\mathbb{E}_{X}[\mathbf{x}] = \left| \begin{array}{c} \mathbb{E}_{X_{1}}[x_{1}] \\ \vdots \\ \mathbb{E}_{X_{D}}[x_{D}] \end{array} \right| \in \mathbb{R}^{D},$$

where

- $\mathbb{E}_{X_d}[x_d] = \int_{\mathcal{X}} x_d p(x_d) dx_d$ if X is continuous;
- $\mathbb{E}_{X_d}[x_d] = \sum_{x_i \in \mathcal{X}} x_i p(x_d = x_i) dx_d$ if X is discrete.

Linearity of Expectation

Let
$$f(\mathbf{x}) = ag(\mathbf{x}) + bh(\mathbf{x})$$
 for $a, b \in \mathbb{R}$ and $\mathbf{x} \in \mathbb{R}^D$.

$$\mathbb{E}_X[f(\mathbf{x})] = \int f(\mathbf{x})p(\mathbf{x})d\mathbf{x}$$

$$= \int [ag(\mathbf{x}) + bh(\mathbf{x})]p(\mathbf{x})d\mathbf{x}$$

$$= a\int g(\mathbf{x})p(\mathbf{x})d\mathbf{x} + b\int h(\mathbf{x})p(\mathbf{x})d\mathbf{x}$$

$$= a\mathbb{E}_X[g(\mathbf{x})] + b\mathbb{E}_X[h(\mathbf{x})].$$

Linearity of Expectation (Discrete Case)

Let
$$f(\mathbf{x}) = ag(\mathbf{x}) + bh(\mathbf{x})$$
 for $a, b \in \mathbb{R}$ and $\mathbf{x} \in \mathcal{X}$.
$$\mathbb{E}_X[f(\mathbf{x})] = \sum_{\mathbf{x} \in \mathcal{X}} f(\mathbf{x})p(\mathbf{x})$$

$$= \sum_{\mathbf{x} \in \mathcal{X}} [ag(\mathbf{x}) + bh(\mathbf{x})]p(\mathbf{x})$$

$$= a\sum_{\mathbf{x} \in \mathcal{X}} g(\mathbf{x})p(\mathbf{x}) + b\sum_{\mathbf{x} \in \mathcal{X}} h(\mathbf{x})p(\mathbf{x})$$

$$= a\mathbb{E}_X[g(\mathbf{x})] + b\mathbb{E}_X[h(\mathbf{x})].$$

Covariance

The (univariate) covariance between two univariate random variables $X, Y \in \mathbb{R}$ is

$$Cov_{X,Y}[x,y] := \mathbb{E}_{X,Y}[(x - \mathbb{E}_X[x])(y - \mathbb{E}_Y[y])].$$

Omit the subscript.

$$Cov[x, y] := \mathbb{E}[xy] - \mathbb{E}[x]\mathbb{E}[y].$$

Covariance

The (univariate) covariance between two univariate random variables $X,Y\in\mathbb{R}$ is

$$Cov_{X,Y}[x,y] := \mathbb{E}_{X,Y}[(x - \mathbb{E}_X[x])(y - \mathbb{E}_Y[y])].$$

Omit the subscript.

$$Cov[x, y] := \mathbb{E}[xy] - \mathbb{E}[x]\mathbb{E}[y].$$

Note that

$$Cov[x,x] := \mathbb{E}[x^2] - (\mathbb{E}[x])^2$$

is the variance and denoted by $\mathbb{V}_X[x]$ and $\sqrt{\mathsf{Cov}[x,x]}$ denoted by $\sigma(x)$ is called the standard deviation.

Covariance of Multivariate R.V.'s

Covariance (Multivariate)

Consider random variables X and Y with states $\mathbf{x} \in \mathbb{R}^D$ and $\mathbf{y} \in \mathbb{R}^E$. The covariance between X and Y:

$$\mathsf{Cov}[\mathbf{x},\mathbf{y}] =$$

Covariance of Multivariate R.V.'s

Covariance (Multivariate)

Consider random variables X and Y with states $\mathbf{x} \in \mathbb{R}^D$ and $\mathbf{y} \in \mathbb{R}^E$. The covariance between X and Y:

$$\mathsf{Cov}[\mathbf{x}, \mathbf{y}] = \mathbb{E}[\mathbf{x}\mathbf{y}^{\top}] - \mathbb{E}[\mathbf{x}]\mathbb{E}[\mathbf{y}]^{\top}$$

Covariance of Multivariate R.V.'s

Covariance (Multivariate)

Consider random variables X and Y with states $\mathbf{x} \in \mathbb{R}^D$ and $\mathbf{y} \in \mathbb{R}^E$. The covariance between X and Y:

$$\mathsf{Cov}[\mathbf{x}, \mathbf{y}] = \mathbb{E}[\mathbf{x}\mathbf{y}^{\top}] - \mathbb{E}[\mathbf{x}]\mathbb{E}[\mathbf{y}]^{\top} = \mathsf{Cov}[\mathbf{y}, \mathbf{x}]^{\top} \in \mathbb{R}^{D \times E}.$$

Variance (Multivariate)

The variance of a random variables X with states $\mathbf{x} \in \mathbb{R}^D$ and mean $\boldsymbol{\mu} \in \mathbb{R}^D$ is

$$\mathbb{V}_X[\mathbf{x}] = \mathsf{Cov}_X[\mathbf{x}, \mathbf{x}] = \mathbb{E}_X[(\mathbf{x} - \boldsymbol{\mu})(\mathbf{x} - \boldsymbol{\mu})^{\top}]$$

Variance (Multivariate)

The variance of a random variables X with states $\mathbf{x} \in \mathbb{R}^D$ and mean $\boldsymbol{\mu} \in \mathbb{R}^D$ is

$$\mathbb{V}_X[\mathbf{x}] \ = \ \mathsf{Cov}_X[\mathbf{x},\mathbf{x}] = \mathbb{E}_X[(\mathbf{x}-\boldsymbol{\mu})(\mathbf{x}-\boldsymbol{\mu})^\top] = \mathbb{E}_X[\mathbf{x}\mathbf{x}^\top] - \mathbb{E}_X[\mathbf{x}]\mathbb{E}_X[\mathbf{x}]^\top$$

Variance (Multivariate)

The variance of a random variables X with states $\mathbf{x} \in \mathbb{R}^D$ and mean $\boldsymbol{\mu} \in \mathbb{R}^D$ is

$$\begin{split} \mathbb{V}_X[\mathbf{x}] &= \operatorname{Cov}_X[\mathbf{x}, \mathbf{x}] = \mathbb{E}_X[(\mathbf{x} - \boldsymbol{\mu})(\mathbf{x} - \boldsymbol{\mu})^\top] = \mathbb{E}_X[\mathbf{x}\mathbf{x}^\top] - \mathbb{E}_X[\mathbf{x}]\mathbb{E}_X[\mathbf{x}]^\top \\ &= \begin{bmatrix} \operatorname{Cov}[x_1, x_1] & \operatorname{Cov}[x_1, x_2] & \cdots & \operatorname{Cov}[x_1, x_D] \\ \operatorname{Cov}[x_2, x_1] & \operatorname{Cov}[x_2, x_2] & \cdots & \operatorname{Cov}[x_2, x_D] \\ \vdots & \vdots & \ddots & \vdots \\ \operatorname{Cov}[x_D, x_1] & \operatorname{Cov}[x_D, x_2] & \cdots & \operatorname{Cov}[x_D, x_D] \end{bmatrix}. \end{split}$$

Variance (Multivariate)

The variance of a random variables X with states $\mathbf{x} \in \mathbb{R}^D$ and mean $\boldsymbol{\mu} \in \mathbb{R}^D$ is

$$\begin{split} \mathbb{V}_X[\mathbf{x}] &= & \mathsf{Cov}_X[\mathbf{x}, \mathbf{x}] = \mathbb{E}_X[(\mathbf{x} - \boldsymbol{\mu})(\mathbf{x} - \boldsymbol{\mu})^\top] = \mathbb{E}_X[\mathbf{x}\mathbf{x}^\top] - \mathbb{E}_X[\mathbf{x}]\mathbb{E}_X[\mathbf{x}]^\top \\ &= & \begin{bmatrix} \mathsf{Cov}[x_1, x_1] & \mathsf{Cov}[x_1, x_2] & \cdots & \mathsf{Cov}[x_1, x_D] \\ \mathsf{Cov}[x_2, x_1] & \mathsf{Cov}[x_2, x_2] & \cdots & \mathsf{Cov}[x_2, x_D] \\ \vdots & \vdots & \ddots & \vdots \\ \mathsf{Cov}[x_D, x_1] & \mathsf{Cov}[x_D, x_2] & \cdots & \mathsf{Cov}[x_D, x_D] \end{bmatrix}. \end{split}$$

• The covariance matrix of the multivariate X.

4D> 4B> 4B> B 990

Correlation Coefficient

Correlation

The correlation between two random variables X, Y is

$$\operatorname{corr}[x,y] = \frac{\operatorname{Cov}[x,y]}{\sqrt{\mathbb{V}[x]\mathbb{V}[y]}} \in [-1,1].$$

Correlation Coefficient

Correlation

The correlation between two random variables X, Y is

$$\operatorname{corr}[x,y] = \frac{\operatorname{Cov}[x,y]}{\sqrt{\mathbb{V}[x]\mathbb{V}[y]}} \in [-1,1].$$

By the Cauchy–Schwarz inequality.

Assumption: U, V are two real random variables, $\mathbb{E}[U^2], \mathbb{E}[V^2] < \infty$.

Definition. $\langle U, V \rangle := E[UV]$.

• Well-defined: $2|UV| \le U^2 + V^2 \Rightarrow \mathbb{E}[UV] \le |UV| < \infty$.

Assumption: U, V are two real random variables, $\mathbb{E}[U^2], \mathbb{E}[V^2] < \infty$.

Definition. $\langle U, V \rangle := E[UV]$.

- Well-defined: $2|UV| \le U^2 + V^2 \Rightarrow \mathbb{E}[UV] \le |UV| < \infty$.
- Linearity: $\langle aU + bW, V \rangle = \mathbb{E}[(aU + bW)V] = \mathbb{E}[aUV + bWV] = a\mathbb{E}[UV] + b\mathbb{E}[WV] = a\langle U, V \rangle + b\langle W, V \rangle$ (and similarly in the 2nd slot).

Assumption: U, V are two real random variables, $\mathbb{E}[U^2], \mathbb{E}[V^2] < \infty$.

Definition. $\langle U, V \rangle := E[UV]$.

- Well-defined: $2|UV| \le U^2 + V^2 \Rightarrow \mathbb{E}[UV] \le |UV| < \infty$.
- Linearity: $\langle aU + bW, V \rangle = \mathbb{E}[(aU + bW)V] = \mathbb{E}[aUV + bWV] = a\mathbb{E}[UV] + b\mathbb{E}[WV] = a\langle U, V \rangle + b\langle W, V \rangle$ (and similarly in the 2nd slot).
- Symmetry: $\langle U, V \rangle = \mathbb{E}[UV] = \mathbb{E}[VU] = \langle V, U \rangle$.

Assumption: U, V are two real random variables, $\mathbb{E}[U^2], \mathbb{E}[V^2] < \infty$.

Definition. $\langle U, V \rangle := E[UV]$.

- Well-defined: $2|UV| \le U^2 + V^2 \Rightarrow \mathbb{E}[UV] \le |UV| < \infty$.
- Linearity: $\langle aU + bW, V \rangle = \mathbb{E}[(aU + bW)V] = \mathbb{E}[aUV + bWV] = a\mathbb{E}[UV] + b\mathbb{E}[WV] = a\langle U, V \rangle + b\langle W, V \rangle$ (and similarly in the 2nd slot).
- Symmetry: $\langle U, V \rangle = \mathbb{E}[UV] = \mathbb{E}[VU] = \langle V, U \rangle$.
- Positive-definite: $\langle U, U \rangle = \mathbb{E}[U^2] \ge 0$; if $\mathbb{E}[U^2] = 0$, then U = 0 a.s. (else $\exists \varepsilon > 0$: $\Pr[|U| \ge \varepsilon] > 0 \Rightarrow \mathbb{E}[U^2] \ge \varepsilon^2 \Pr[|U| \ge \varepsilon] > 0$).

Assumption: U, V are two real random variables, $\mathbb{E}[U^2], \mathbb{E}[V^2] < \infty$.

Definition. $\langle U, V \rangle := E[UV]$.

- Well-defined: $2|UV| \le U^2 + V^2 \Rightarrow \mathbb{E}[UV] \le |UV| < \infty$.
- Linearity: $\langle aU + bW, V \rangle = \mathbb{E}[(aU + bW)V] = \mathbb{E}[aUV + bWV] = a\mathbb{E}[UV] + b\mathbb{E}[WV] = a\langle U, V \rangle + b\langle W, V \rangle$ (and similarly in the 2nd slot).
- Symmetry: $\langle U, V \rangle = \mathbb{E}[UV] = \mathbb{E}[VU] = \langle V, U \rangle$.
- Positive-definite: $\langle U, U \rangle = \mathbb{E}[U^2] \ge 0$; if $\mathbb{E}[U^2] = 0$, then U = 0 a.s. (else $\exists \varepsilon > 0$: $\Pr[|U| \ge \varepsilon] > 0 \Rightarrow \mathbb{E}[U^2] \ge \varepsilon^2 \Pr[|U| \ge \varepsilon] > 0$).

Hence $\mathbb{E}[\mathit{UV}]$ as an inner product is valid; thus, by Cauchy–Schwarz

$$|\mathbb{E}[UV]| = |\langle U, V \rangle| \le \sqrt{\mathbb{E}[U^2]} \sqrt{\mathbb{E}[V^2]}.$$

Correlation is in [-1,1] by Cauchy–Schwarz

- Let X, Y satisfy $0 < \sigma_X^2 = \mathbb{V}(X) < \infty$ and $0 < \sigma_Y^2 = \mathbb{V}(Y) < \infty$.
- Set $\mu_X = \mathbb{E}[X]$, $\mu_Y = \mathbb{E}[Y]$, $U = X \mu_X$ and $V = Y \mu_Y$.

$$\rho_{XY} = \frac{\mathrm{Cov}(X,Y)}{\sigma_X \sigma_Y} = \frac{\mathbb{E}[(X-\mu_X)(Y-\mu_Y)]}{\sqrt{\mathbb{E}[(X-\mu_X)^2]}\sqrt{\mathbb{E}[(Y-\mu_Y)^2]}} = \frac{\langle U,\ V\rangle}{\|U\|_2\,\|V\|_2}.$$

By the Cauchy–Schwarz inequality,

$$-1 \leq \rho_{XY} \leq 1$$
.

Note: If $\sigma_X = 0$ or $\sigma_Y = 0$, correlation is undefined.

Empirical Means & Covariances

In machine learning, we need to learn from empirical observations of data.

Empirical Mean & Covariance

The empirical mean vector: arithmetic average of the observations for each variable:

$$\bar{\mathbf{x}} := \frac{1}{N} \sum_{i=1}^{N} \mathbf{x}_i,$$

for $\mathbf{x}_i \in \mathbb{R}^D$. The empirical covariance matrix is a $D \times D$ matrix

$$oldsymbol{\Sigma} := rac{1}{N} \sum_{i=1}^N (\mathbf{x}_i - ar{\mathbf{x}}) (\mathbf{x}_i - ar{\mathbf{x}})^{ op}.$$

Empirical Means & Covariances

In machine learning, we need to learn from empirical observations of data.

Empirical Mean & Covariance

The empirical mean vector: arithmetic average of the observations for each variable:

$$\bar{\mathbf{x}} := \frac{1}{N} \sum_{i=1}^{N} \mathbf{x}_i,$$

for $\mathbf{x}_i \in \mathbb{R}^D$. The empirical covariance matrix is a $D \times D$ matrix

$$oldsymbol{\Sigma} := rac{1}{N} \sum_{i=1}^N (\mathbf{x}_i - ar{\mathbf{x}}) (\mathbf{x}_i - ar{\mathbf{x}})^{ op}.$$

 \bullet Σ is symmetric, positive semidefinite.

4 D > 4 D > 4 E > 4 E > E 99 C

Computing the Empirical Variance (1D Example)

Approaches:

- **1** By definition $\Rightarrow \mathbb{V}_X[x] := \mathbb{E}_X[(x-\mu)^2]$.
 - Two-pass; numerically stable.
- $\mathbb{V}_X[x] = \mathbb{E}_X[x^2] (\mathbb{E}_X[x])^2.$
 - One-pass; more efficient but numerically unstable.
- Averaging pairwise differences between all pairs of observations.

$$\frac{1}{N^2} \sum_{i,j=1}^N (x_i - x_j)^2 = 2 \left[\frac{1}{N} \sum_{i=1}^N x_i^2 - \left(\frac{1}{N} \sum_{i=1}^N x_i \right)^2 \right].$$

Computing the Empirical Variance (1D Example)

Approaches:

- **1** By definition $\Rightarrow \mathbb{V}_X[x] := \mathbb{E}_X[(x-\mu)^2]$.
 - Two-pass; numerically stable.
- $\mathbb{V}_X[x] = \mathbb{E}_X[x^2] (\mathbb{E}_X[x])^2.$
 - One-pass; more efficient but numerically unstable.
- Averaging pairwise differences between all pairs of observations.

$$\frac{1}{N^2} \sum_{i,j=1}^N (x_i - x_j)^2 = 2 \left[\frac{1}{N} \sum_{i=1}^N x_i^2 - \left(\frac{1}{N} \sum_{i=1}^N x_i \right)^2 \right].$$

- Twice of the 2nd approach (left-hand side: $O(N^2)$).
- Interesting perspective to compute the left-hand side target.

Welford's Online Algorithm [1962]

- **Input:** Stream of observations $x_1, x_2, ...$
- **Output:** (population) variances σ^2 , and unbiased variance s^2 .
- **1 Initialization:** $n \leftarrow 0$, $\mu \leftarrow 0$, $M_2 \leftarrow 0$;
- 2 for each x_i in stream, i = 1, 2, ...
 - 0 $n \leftarrow n + 1$;
 - **2** $\delta \leftarrow x \mu$, $\mu \leftarrow \mu + \delta/n$; /* empirical mean update */
 - § $\delta_2 \leftarrow x \mu$, $M_2 \leftarrow M_2 + \delta \cdot \delta_2$ /* $M_2 = \sum_{i=1}^n (x_i \mu_n)^2$ */
- **3** population variance: $\sigma^2 \leftarrow M_2/n$ (valid for $n \ge 1$);
- **1 unbiased variance:** $s^2 \leftarrow M_2/(n-1)$ (valid for $n \ge 2$)
 - Each increment δ and δ_2 are on on the scale of the deviation or variance, not on the scale of x and x^2 .

◆□ > ◆□ > ◆豆 > ◆豆 > □ ◆ ○ ○ ○

Accuracy of Welford's Online Algorithm (Mean)

Setup. For a stream $x_1, x_2, ...$, maintain $\mu_n :=$ mean after n, $M_2^{(n)} = \sum_{i=1}^n (x_i - \mu_n)^2$. Given $(\mu_{n-1}, M_2^{(n-1)})$ and new x_n ,

$$\delta = x_n - \mu_{n-1}, \quad \mu_n = \mu_{n-1} + \frac{\delta}{n}, \quad \delta_2 = x_n - \mu_n, \quad M_2^{(n)} = M_2^{(n-1)} + \delta \delta_2.$$

Claim (Mean exactness). $\mu_n = \frac{1}{n} \sum_{i=1}^n x_i$.

Proof

Base n = 1: $\mu_1 = x_1$. For the step,

$$\mu_n = \mu_{n-1} + \frac{x_n - \mu_{n-1}}{n} = \frac{(n-1)\mu_{n-1} + x_n}{n} = \frac{\sum_{i=1}^{n-1} x_i + x_n}{n} = \frac{1}{n} \sum_{i=1}^{n} x_i.$$

Accuracy of Welford's Online Algorithm (2nd Moment)

Claim.
$$M_2^{(n)} = \sum_{i=1}^n (x_i - \mu_n)^2$$
 is preserved by $M_2^{(n)} = M_2^{(n-1)} + \delta \, \delta_2$ with $\delta = x_n - \mu_{n-1}$ and $\delta_2 = x_n - \mu_n$.

Proof

Assume
$$M_2^{(n-1)} = \sum_{i=1}^{n-1} (x_i - \mu_{n-1})^2$$
. Then

$$\sum_{i=1}^{n} (x_i - \mu_n)^2 = \sum_{i=1}^{n-1} \left[(x_i - \mu_{n-1}) + (\mu_{n-1} - \mu_n) \right]^2 + (x_n - \mu_n)^2$$

$$= \underbrace{\sum_{i=1}^{n-1} (x_i - \mu_{n-1})^2}_{M_2^{(n-1)}} + (n-1)(\mu_{n-1} - \mu_n)^2 + (x_n - \mu_n)^2,$$

Accuracy of Welford's Online Algorithm (2nd Moment) Contd.

Since
$$\sum_{i=1}^{n-1} (x_i - \mu_{n-1}) = 0$$
. With $\mu_n - \mu_{n-1} = \delta/n$ and $\delta_2 = x_n - \mu_n = \delta(1 - 1/n)$,

$$(n-1)(\mu_{n-1} - \mu_n)^2 + (x_n - \mu_n)^2 = \frac{(n-1)\delta^2}{n^2} + \frac{(n-1)^2 \delta^2}{n^2}$$
$$= \frac{(n-1)\delta^2}{n}$$
$$= \delta \delta_2.$$

Therefore
$$\sum_{i=1}^{n} (x_i - \mu_n)^2 = M_2^{(n-1)} + \delta \delta_2 = M_2^{(n)}$$
.

Consequences. Population variance: $\sigma^2 = M_2^{(n)}/n$ (for $n \ge 1$); unbiased sample variance: $s^2 = M_2^{(n)}/(n-1)$ (for $n \ge 2$).

◆ロ → ◆団 → ◆ 圭 → ◆ 圭 ・ 夕 Q ○

Outline

- Sum & Product Rule
- 2 Bayes' Theorem
- Means & Covariances
- Sums & Transformations of Random Variables
- 5 Statistical Independence

Basic Rules

Simple Rules & Exercise

Consider two random variables X, Y with states $\mathbf{x}, \mathbf{y} \in \mathbb{R}^D$. Then,

$$\begin{split} \mathbb{E}[\mathbf{x} \pm \mathbf{y}] &= \mathbb{E}[\mathbf{x}] \pm \mathbb{E}[\mathbf{y}] \\ \mathbb{V}[\mathbf{x} \pm \mathbf{y}] &= \mathbb{V}[\mathbf{x}] + \mathbb{V}[\mathbf{y}] \pm \mathsf{Cov}[\mathbf{x}, \mathbf{y}] \pm \mathsf{Cov}[\mathbf{y}, \mathbf{x}] \end{aligned} \text{ (Exercise)}.$$

• Note: For a constant vector $\mathbf{b} \in \mathbb{R}^D$, $\mathbb{V}(\mathbf{x} \pm \mathbf{b}) = \mathbb{V}[\mathbf{x}]$ because $\mathbb{V}[\mathbf{b}] = \mathbb{E}[\mathbf{b}\mathbf{b}^\top] - \mathbb{E}[\mathbf{b}]\mathbb{E}[\mathbf{b}]^\top = \mathbf{b}\mathbf{b}^\top - \mathbf{b}\mathbf{b}^\top = \mathbf{0}$ and $\mathsf{Cov}(\mathbf{x}, \mathbf{b})$

Basic Rules

Simple Rules & Exercise

Consider two random variables X, Y with states $\mathbf{x}, \mathbf{y} \in \mathbb{R}^D$. Then,

$$\begin{split} \mathbb{E}[\mathbf{x} \pm \mathbf{y}] &= \mathbb{E}[\mathbf{x}] \pm \mathbb{E}[\mathbf{y}] \\ \mathbb{V}[\mathbf{x} \pm \mathbf{y}] &= \mathbb{V}[\mathbf{x}] + \mathbb{V}[\mathbf{y}] \pm \mathsf{Cov}[\mathbf{x}, \mathbf{y}] \pm \mathsf{Cov}[\mathbf{y}, \mathbf{x}] \quad \text{(Exercise)}. \end{split}$$

• Note: For a constant vector $\mathbf{b} \in \mathbb{R}^D$, $\mathbb{V}(\mathbf{x} \pm \mathbf{b}) = \mathbb{V}[\mathbf{x}]$ because $\mathbb{V}[\mathbf{b}] = \mathbb{E}[\mathbf{b}\mathbf{b}^\top] - \mathbb{E}[\mathbf{b}]\mathbb{E}[\mathbf{b}]^\top = \mathbf{b}\mathbf{b}^\top - \mathbf{b}\mathbf{b}^\top = \mathbf{0}$ and $\operatorname{Cov}(\mathbf{x}, \mathbf{b}) = \mathbb{E}[\mathbf{x}\mathbf{b}^\top] - \mathbb{E}[\mathbf{x}]\mathbb{E}[\mathbf{b}]^\top$

Basic Rules

Simple Rules & Exercise

Consider two random variables X, Y with states $\mathbf{x}, \mathbf{y} \in \mathbb{R}^D$. Then,

$$\begin{split} \mathbb{E}[\mathbf{x} \pm \mathbf{y}] &= \mathbb{E}[\mathbf{x}] \pm \mathbb{E}[\mathbf{y}] \\ \mathbb{V}[\mathbf{x} \pm \mathbf{y}] &= \mathbb{V}[\mathbf{x}] + \mathbb{V}[\mathbf{y}] \pm \mathsf{Cov}[\mathbf{x}, \mathbf{y}] \pm \mathsf{Cov}[\mathbf{y}, \mathbf{x}] \quad \text{(Exercise)}. \end{split}$$

• Note: For a constant vector $\mathbf{b} \in \mathbb{R}^D$, $\mathbb{V}(\mathbf{x} \pm \mathbf{b}) = \mathbb{V}[\mathbf{x}]$ because $\mathbb{V}[\mathbf{b}] = \mathbb{E}[\mathbf{b}\mathbf{b}^\top] - \mathbb{E}[\mathbf{b}]\mathbb{E}[\mathbf{b}]^\top = \mathbf{b}\mathbf{b}^\top - \mathbf{b}\mathbf{b}^\top = \mathbf{0}$ and

$$\mathsf{Cov}(\mathbf{x},\mathbf{b}) = \mathbb{E}[\mathbf{x}\mathbf{b}^\top] - \mathbb{E}[\mathbf{x}]\mathbb{E}[\mathbf{b}]^\top = \mathbb{E}[\mathbf{x}]\mathbf{b}^\top - \mathbb{E}[\mathbf{x}]\mathbf{b}^\top = \mathbf{0}.$$

Affine Transformation of r.v.'s (1/2)

Consider
$$\mathbf{y} = \mathbf{A}\mathbf{x} + \mathbf{b}$$
 and let $\mathbf{\Sigma} := \mathbb{V}_{X}[\mathbf{x}]$.

$$\mathbb{E}_{Y}[y] = \mathbb{E}_{X}[Ax + b] = A\mathbb{E}_{X}[x] + b$$

$$\mathbb{V}_{Y}[y] = \mathbb{V}_{X}[Ax + b] = \mathbb{V}_{X}[Ax] = A\mathbb{V}_{X}[x]A^{\top} = A\Sigma A^{\top}.$$

$$\mathbb{V}_X[\mathbf{A}\mathbf{x}] = \mathbb{E}_X[(\mathbf{A}\mathbf{x})(\mathbf{A}\mathbf{x})^{\top}] - \mathbb{E}_X[\mathbf{A}\mathbf{x}](\mathbb{E}_X[\mathbf{A}\mathbf{x}])^{\top}$$

$$\mathbb{V}_{X}[\mathbf{A}\mathbf{x}] = \mathbb{E}_{X}[(\mathbf{A}\mathbf{x})(\mathbf{A}\mathbf{x})^{\top}] - \mathbb{E}_{X}[\mathbf{A}\mathbf{x}](\mathbb{E}_{X}[\mathbf{A}\mathbf{x}])^{\top}
= \mathbb{E}_{X}[\mathbf{A}\mathbf{x}\mathbf{x}^{\top}\mathbf{A}^{\top}] - \mathbf{A}\mathbb{E}_{X}[\mathbf{x}]\mathbb{E}_{X}[\mathbf{x}]^{\top}\mathbf{A}^{\top}$$

$$\mathbb{V}_{X}[\mathbf{A}\mathbf{x}] = \mathbb{E}_{X}[(\mathbf{A}\mathbf{x})(\mathbf{A}\mathbf{x})^{\top}] - \mathbb{E}_{X}[\mathbf{A}\mathbf{x}](\mathbb{E}_{X}[\mathbf{A}\mathbf{x}])^{\top}
= \mathbb{E}_{X}[\mathbf{A}\mathbf{x}\mathbf{x}^{\top}\mathbf{A}^{\top}] - \mathbf{A}\mathbb{E}_{X}[\mathbf{x}]\mathbb{E}_{X}[\mathbf{x}]^{\top}\mathbf{A}^{\top}
= \mathbf{A}\mathbb{E}_{X}[\mathbf{x}\mathbf{x}^{\top}\mathbf{A}^{\top}] - \mathbf{A}\mathbb{E}_{X}[\mathbf{x}]\mathbb{E}_{X}[\mathbf{x}]^{\top}\mathbf{A}^{\top}$$

$$\mathbb{V}_{X}[\mathbf{A}\mathbf{x}] = \mathbb{E}_{X}[(\mathbf{A}\mathbf{x})(\mathbf{A}\mathbf{x})^{\top}] - \mathbb{E}_{X}[\mathbf{A}\mathbf{x}](\mathbb{E}_{X}[\mathbf{A}\mathbf{x}])^{\top} \\
= \mathbb{E}_{X}[\mathbf{A}\mathbf{x}\mathbf{x}^{\top}\mathbf{A}^{\top}] - \mathbf{A}\mathbb{E}_{X}[\mathbf{x}]\mathbb{E}_{X}[\mathbf{x}]^{\top}\mathbf{A}^{\top} \\
= \mathbf{A}\mathbb{E}_{X}[\mathbf{x}\mathbf{x}^{\top}\mathbf{A}^{\top}] - \mathbf{A}\mathbb{E}_{X}[\mathbf{x}]\mathbb{E}_{X}[\mathbf{x}]^{\top}\mathbf{A}^{\top} \\
= \mathbf{A}(\mathbb{E}_{X}[\mathbf{A}\mathbf{x}\mathbf{x}^{\top}])^{\top} - \mathbf{A}\mathbb{E}_{X}[\mathbf{x}]\mathbb{E}_{X}[\mathbf{x}]^{\top}\mathbf{A}^{\top}$$

$$\begin{aligned}
\mathbb{V}_{X}[\mathbf{A}\mathbf{x}] &= \mathbb{E}_{X}[(\mathbf{A}\mathbf{x})(\mathbf{A}\mathbf{x})^{\top}] - \mathbb{E}_{X}[\mathbf{A}\mathbf{x}](\mathbb{E}_{X}[\mathbf{A}\mathbf{x}])^{\top} \\
&= \mathbb{E}_{X}[\mathbf{A}\mathbf{x}\mathbf{x}^{\top}\mathbf{A}^{\top}] - \mathbf{A}\mathbb{E}_{X}[\mathbf{x}]\mathbb{E}_{X}[\mathbf{x}]^{\top}\mathbf{A}^{\top} \\
&= \mathbf{A}\mathbb{E}_{X}[\mathbf{x}\mathbf{x}^{\top}\mathbf{A}^{\top}] - \mathbf{A}\mathbb{E}_{X}[\mathbf{x}]\mathbb{E}_{X}[\mathbf{x}]^{\top}\mathbf{A}^{\top} \\
&= \mathbf{A}(\mathbb{E}_{X}[\mathbf{A}\mathbf{x}\mathbf{x}^{\top}])^{\top} - \mathbf{A}\mathbb{E}_{X}[\mathbf{x}]\mathbb{E}_{X}[\mathbf{x}]^{\top}\mathbf{A}^{\top} \\
&= \mathbf{A}(\mathbf{A}\mathbb{E}_{X}[\mathbf{x}\mathbf{x}^{\top}])^{\top} - \mathbf{A}\mathbb{E}_{X}[\mathbf{x}]\mathbb{E}_{X}[\mathbf{x}]^{\top}\mathbf{A}^{\top}
\end{aligned}$$

$$\mathbb{V}_{X}[\mathbf{A}\mathbf{x}] = \mathbb{E}_{X}[(\mathbf{A}\mathbf{x})(\mathbf{A}\mathbf{x})^{\top}] - \mathbb{E}_{X}[\mathbf{A}\mathbf{x}](\mathbb{E}_{X}[\mathbf{A}\mathbf{x}])^{\top} \\
= \mathbb{E}_{X}[\mathbf{A}\mathbf{x}\mathbf{x}^{\top}\mathbf{A}^{\top}] - \mathbf{A}\mathbb{E}_{X}[\mathbf{x}]\mathbb{E}_{X}[\mathbf{x}]^{\top}\mathbf{A}^{\top} \\
= \mathbf{A}\mathbb{E}_{X}[\mathbf{x}\mathbf{x}^{\top}\mathbf{A}^{\top}] - \mathbf{A}\mathbb{E}_{X}[\mathbf{x}]\mathbb{E}_{X}[\mathbf{x}]^{\top}\mathbf{A}^{\top} \\
= \mathbf{A}(\mathbb{E}_{X}[\mathbf{A}\mathbf{x}\mathbf{x}^{\top}])^{\top} - \mathbf{A}\mathbb{E}_{X}[\mathbf{x}]\mathbb{E}_{X}[\mathbf{x}]^{\top}\mathbf{A}^{\top} \\
= \mathbf{A}(\mathbf{A}\mathbb{E}_{X}[\mathbf{x}\mathbf{x}^{\top}])^{\top} - \mathbf{A}\mathbb{E}_{X}[\mathbf{x}]\mathbb{E}_{X}[\mathbf{x}]^{\top}\mathbf{A}^{\top} \\
= \mathbf{A}\mathbb{E}_{X}[\mathbf{x}\mathbf{x}^{\top}]\mathbf{A}^{\top} - \mathbf{A}\mathbb{E}_{X}[\mathbf{x}]\mathbb{E}_{X}[\mathbf{x}]^{\top}\mathbf{A}^{\top}$$

$$\mathbb{V}_{X}[\mathbf{A}\mathbf{x}] = \mathbb{E}_{X}[(\mathbf{A}\mathbf{x})(\mathbf{A}\mathbf{x})^{\top}] - \mathbb{E}_{X}[\mathbf{A}\mathbf{x}](\mathbb{E}_{X}[\mathbf{A}\mathbf{x}])^{\top} \\
= \mathbb{E}_{X}[\mathbf{A}\mathbf{x}\mathbf{x}^{\top}\mathbf{A}^{\top}] - \mathbf{A}\mathbb{E}_{X}[\mathbf{x}]\mathbb{E}_{X}[\mathbf{x}]^{\top}\mathbf{A}^{\top} \\
= \mathbf{A}\mathbb{E}_{X}[\mathbf{x}\mathbf{x}^{\top}\mathbf{A}^{\top}] - \mathbf{A}\mathbb{E}_{X}[\mathbf{x}]\mathbb{E}_{X}[\mathbf{x}]^{\top}\mathbf{A}^{\top} \\
= \mathbf{A}(\mathbb{E}_{X}[\mathbf{A}\mathbf{x}\mathbf{x}^{\top}])^{\top} - \mathbf{A}\mathbb{E}_{X}[\mathbf{x}]\mathbb{E}_{X}[\mathbf{x}]^{\top}\mathbf{A}^{\top} \\
= \mathbf{A}(\mathbf{A}\mathbb{E}_{X}[\mathbf{x}\mathbf{x}^{\top}])^{\top} - \mathbf{A}\mathbb{E}_{X}[\mathbf{x}]\mathbb{E}_{X}[\mathbf{x}]^{\top}\mathbf{A}^{\top} \\
= \mathbf{A}\mathbb{E}_{X}[\mathbf{x}\mathbf{x}^{\top}]\mathbf{A}^{\top} - \mathbf{A}\mathbb{E}_{X}[\mathbf{x}]\mathbb{E}_{X}[\mathbf{x}]^{\top}\mathbf{A}^{\top} \\
= \mathbf{A}\mathbb{V}_{X}[\mathbf{x}]\mathbf{A}^{\top}.$$

Affine Transformation of r.v.'s (2/2)

Furthermore, let
$$\mu:=\mathbb{E}_X[\mathtt{x}]$$
 and $\Sigma:=\mathbb{V}_X[\mathtt{x}].$

$$Cov[\mathbf{x}, \mathbf{y}] = \mathbb{E}[\mathbf{x}(\mathbf{A}\mathbf{x} + \mathbf{b})^{\top}] - \mathbb{E}[\mathbf{x}]\mathbb{E}[\mathbf{A}\mathbf{x} + \mathbf{b}]^{\top}$$

$$= \mu \mathbf{b}^{\top} + \mathbb{E}[\mathbf{x}\mathbf{x}^{\top}]\mathbf{A}^{\top} - \mu \mathbf{b}^{\top} - \mu \mu^{\top}\mathbf{A}^{\top}$$

$$= (\mathbb{E}[\mathbf{x}\mathbf{x}^{\top}] - \mu \mu^{\top})\mathbf{A}^{\top}$$

$$= \Sigma \mathbf{A}^{\top}.$$

Outline

- Sum & Product Rule
- 2 Bayes' Theorem
- 3 Means & Covariances
- 4 Sums & Transformations of Random Variables
- 5 Statistical Independence

(Statistically) Independent

Two random variables X, Y are statistically independent if and only if

$$p(\mathbf{x}, \mathbf{y}) = p(\mathbf{x})p(\mathbf{y}).$$

If X, Y are independent, then

- $\bullet \ \mathbb{V}_{X,Y}[\mathbf{x} + \mathbf{y}] = \mathbb{V}_X[\mathbf{x}] + \mathbb{V}_Y[\mathbf{y}].$
- $Cov_{X,Y}(\mathbf{x},\mathbf{y}) = \mathbf{0}$.

Note that $Cov_{X,Y}(\mathbf{x},\mathbf{y})=\mathbf{0}$ does NOT necessarily imply that X and Y are independent.

Note that $Cov_{X,Y}(\mathbf{x},\mathbf{y}) = \mathbf{0}$ does NOT necessarily imply that X and Y are independent.

• Consider a random variable X with $\mathbb{E}_X[x] = 0$ and also $\mathbb{E}_X[x^3] = 0$.

Note that $Cov_{X,Y}(\mathbf{x},\mathbf{y}) = \mathbf{0}$ does NOT necessarily imply that X and Y are independent.

- Consider a random variable X with $\mathbb{E}_X[x] = 0$ and also $\mathbb{E}_X[x^3] = 0$.
- Let $y = x^2$. Hence, Y is dependent on X.

Note that $Cov_{X,Y}(\mathbf{x},\mathbf{y}) = \mathbf{0}$ does NOT necessarily imply that X and Y are independent.

- Consider a random variable X with $\mathbb{E}_X[x] = 0$ and also $\mathbb{E}_X[x^3] = 0$.
- Let $y = x^2$. Hence, Y is dependent on X.
- $Cov[x, y] = \mathbb{E}[xy] \mathbb{E}[x]\mathbb{E}[y] = \mathbb{E}[x^3] = 0.$

Conditional Independence

Two random variables X, Y are conditionally independent given Z if and only if

$$p(\mathbf{x}, \mathbf{y} \mid \mathbf{z}) = p(\mathbf{x} \mid \mathbf{z})p(\mathbf{y} \mid \mathbf{z}).$$

for all $\mathbf{z} \in \mathcal{Z}$.

By the product rule, we can have

$$p(\mathbf{x}, \mathbf{y} \mid \mathbf{z}) = p(\mathbf{x} \mid \mathbf{y}, \mathbf{z})p(\mathbf{y} \mid \mathbf{z}).$$

Thus,

$$p(\mathbf{x} \mid \mathbf{y}, \mathbf{z}) = p(\mathbf{x} \mid \mathbf{z}).$$

ML Math - Probability & Distributions
Statistical Independence

Heads Up

If X, Y are independent, then $\mathbb{V}_{X,Y}[\mathbf{x} + \mathbf{y}] = \mathbb{V}_X[\mathbf{x}] + \mathbb{V}_Y[\mathbf{y}]$.

$$Cov_{X,Y}(\mathbf{x},\mathbf{y}) = \mathbf{0}$$

Discussions