Cálculo Diferencial e Integral III Suzana M. F. de Oliveira

Índice

- Revisão
- Multiplicadores de Lagrange
 - Duas variáveis
 - Três variáveis
- Resumo
- Bibliografia

Conjuntos limitados e ilimitados

- Conjuntos limitados e ilimitados
- Máximos e mínimos relativos e absolutos
 - Relativos
 - Pontos críticos

-
$$f_x(x_0, y_0) = 0$$
 e $f_y(x_0, y_0) = 0$; ou

- uma ou ambas as derivadas parciais não existirem em (x_0, y_0)
- Derivada segunda (relativo)

$$D = f_{xx}(x_0, y_0) f_{yy}(x_0, y_0) - f_{xy}^2(x_0, y_0)$$

- Conjuntos limitados e ilimitados
- Máximos e mínimos relativos e absolutos
 - Relativos
 - Pontos críticos
 - $f_x(x_0, y_0) = 0$ e $f_y(x_0, y_0) = 0$; ou
 - uma ou ambas as derivadas parciais não existirem em (x_0, y_0)
 - Derivada segunda (relativo)

$$D = f_{xx}(x_0, y_0) f_{yy}(x_0, y_0) - f_{xy}^2(x_0, y_0)$$

- Absolutos
 - Pontos de extremos

- Problemas de extremos com restrições
 - Exemplo da aula passada:
 - Minimizar

$$S = xy + 2xz + 2yz$$

Sujeito a restrição

$$xyz - 32 = 0$$

- Problemas de extremos com restrições
 - Casos especiais:
 - Problema do extremo a duas variáveis com uma restrição
 - Maximize ou minimize a função f(x, y) sujeita à restrição g(x, y) = 0
 - Problema do extremo a três variáveis com uma restrição
 - Maximize ou minimize a função f(x, y, z) sujeita à restrição g(x, y, z) = 0

- Como era feito antes
 - Resolver a restrição para uma das variáveis
 - Substituir na função
 - Utilizar métodos tradicionais
- Porém nem sempre é possível resolver a equação restrita para uma das variáveis em termos das outras

- Motivação: Duas variáveis
 - Suponha que estejamos tentando maximizar uma função f(x, y) sujeita a uma restrição g(x, y) = 0

Cada ponto é um candidato a solução

O valor de máximo ocorrerá onde a curva de restrição somente tocar uma curva de nível

- Motivação: Duas variáveis
 - Suponha que estejamos tentando maximizar uma função f(x, y) sujeita a uma restrição g(x, y) = 0

Cada ponto é um candidato a solução

Quem são os gradientes de f e g no ponto (x₀,y₀)?

O valor de máximo ocorrerá onde a curva de restrição somente tocar uma curva de nível

O mínimo é análogo

- Motivação: Duas variáveis
 - Suponha que estejamos tentando maximizar uma função f(x, y) sujeita a uma restrição g(x, y) = 0

Cada ponto é um candidato a solução

Quem são os gradientes de f e g no ponto (x₀,y₀)?

- Motivação: Duas variáveis
 - Suponha que estejamos tentando maximizar uma função f(x, y) sujeita a uma restrição g(x, y) = 0
 - Os vetores $\nabla f(x_0, y_0)$ e $\nabla g(x_0, y_0)$ devem ser paralelos

$$\nabla f(x_0, y_0) = \lambda \nabla g(x_0, y_0)$$

Definições:

- Máximo (mínimo) absoluto restrito em (x_0, y_0)
 - se $f(x_0, y_0)$ é o maior (menor) valor de f na curva de restrição
- Máximo (mínimo) relativo restrito em (x_0, y_0)
 - se $f(x_0, y_0)$ for o maior (menor) valor de f em algum segmento da curva de restrição que se estenda para ambos os lados do ponto (x_0, y_0) g(x, y) = 0

Um máximo relativo restrito ocorre em (x_0, y_0) se $f(x_0, y_0) \ge f(x, y)$ em algum segmento de C que se estenda para ambos os lados de (x_0, y_0) .

- Teorema: Princípio do Extremo Restrito para Duas Variáveis e Uma Restrição
 - Sejam f e g funções de duas variáveis com derivadas parciais de primeira ordem contínuas em algum conjunto aberto contendo a curva de restrição g(x, y) = 0.
 - Suponha que $\nabla g \neq \mathbf{0}$ em qualquer ponto da curva.
 - Se f tiver um **extremo relativo restrito**, então esse extremo ocorrerá em um ponto (x_0, y_0) da curva de restrição no qual os vetores gradientes $\nabla f(x_0, y_0)$ e $\nabla g(x_0, y_0)$ forem paralelos;
 - isto é, existirá algum número λ tal que

$$\nabla f(x_0, y_0) = \lambda \nabla g(x_0, y_0)$$

 Exemplo: Em que ponto ou pontos do círculo de raio 1 a função f tem um máximo absoluto, e qual é esse máximo?

$$x^2 + y^2 = 1$$

$$f(x, y) = xy$$

Transformar numa restrição g(x,y)=0

Pelo Teorema do Valor Extremo (aula passada) existe um máximo absoluto e um mínimo absoluto no círculo

 Exemplo: Em que ponto ou pontos do círculo de raio 1 a função f tem um máximo absoluto, e qual é esse máximo?

$$x^2 + y^2 = 1$$

$$f(x, y) = xy$$

- Restrição

$$g(x, y) = x^2 + y^2 - 1 = 0$$

Extremos relativos restritos

$$\nabla f = y\mathbf{i} + x\mathbf{j}$$

$$\nabla g = 2x\mathbf{i} + 2y\mathbf{j}$$

$$\nabla f = \lambda \nabla g$$

$$y\mathbf{i} + x\mathbf{j} = \lambda(2x\mathbf{i} + 2y\mathbf{j})$$

Reescrevendo

$$y = 2x\lambda$$
 e $x = 2y\lambda$

$$\lambda = \frac{y}{2x}$$
 e $\lambda = \frac{x}{2y}$ $\Rightarrow \frac{y}{2x} = \frac{x}{2y}$ $\Rightarrow y^2 = x^2$

 $\nabla q = 0$

se e somente se, x = 0 e y = 0, $\log \nabla g \neq 0$ para

todo ponto no circulo

 Exemplo: Em que ponto ou pontos do círculo de raio 1 a função f tem um máximo absoluto, e qual é esse máximo?

$$x^2 + y^2 = 1 \qquad f(x, y) = xy$$

Restrição

$$g(x, y) = x^2 + y^2 - 1 = 0$$

- Extremos relativos restritos
 - Substituindo $y^2 = x^2$ na restrição

$$2x^2 - 1 = 0$$

Achando x e y

$$x = \pm 1/\sqrt{2}. \qquad y = \pm 1/\sqrt{2}$$

 Exemplo: Em que ponto ou pontos do círculo de raio 1 a função f tem um máximo absoluto, e qual é esse máximo?

$$x^2 + y^2 = 1$$

- Pontos

(<i>x</i> , <i>y</i>)	$(1/\sqrt{2}, 1/\sqrt{2})$	$(1/\sqrt{2}, -1/\sqrt{2})$	$(-1/\sqrt{2}, 1/\sqrt{2})$	$(-1/\sqrt{2}, -1/\sqrt{2})$
xy	1/2	-1/2	-1/2	1/2

 Exercício: Encontre as dimensões de um retângulo com perímetro p de área máxima

Qual a restrição?

 Exercício: Encontre as dimensões de um retângulo com perímetro p de área máxima

$$f(x, y) = A = xy$$

$$2x + 2y = p$$
, $0 \le x$, y

- x = comprimento do retângulo
- y = largura do retângulo
- A = área do retângulo

 Exercício: Encontre as dimensões de um retângulo com perímetro p de área máxima

f(x, y) = A = xy $2x + 2y = p, \quad 0 \le x, y$ Seguimento de reta limitado Função contínua e fechado 0.8 f é zero nos extremos e positivo 0.6 no resto 0.4 0.2 Teorema do Valor Extremo é válido!

0.2

0.4

Х

0.6

0.8

1

0

Esse máximo absoluto também deve

ser um máximo relativo restrito.

 Exercício: Encontre as dimensões de um retângulo com perímetro p de área máxima

$$f(x, y) = A = xy \qquad 2x + 2y = p, \quad 0 \le x, y$$

Gradientes

$$\nabla f = y\mathbf{i} + x\mathbf{j}$$
 $\nabla g = 2\mathbf{i} + 2\mathbf{j}$

Máximo relativo restrito

$$y\mathbf{i} + x\mathbf{j} = \lambda(2\mathbf{i} + 2\mathbf{j})$$

$$y = 2\lambda \qquad x = 2\lambda$$

$$x = y$$

• Substituindo na restrição x = p/4 y = p/4

∇g ≠ **0**

- Motivação: Três variáveis
 - Suponha que estejamos tentando maximizar uma função f(x, y, z) sujeita a uma restrição g(x, y, z) = 0

Superfície

Um máximo restrito relativo ocorre em (x_0, y_0, z_0) se $f(x_0, y_0, z_0) \ge f(x, y, z)$ em todos os pontos de S próximos de (x_0, y_0, z_0) .

- Teorema: Princípio do Extremo Restrito para Duas Variáveis e Uma Restrição
 - Sejam f e g funções de três variáveis com derivadas parciais de primeira ordem contínuas em algum conjunto aberto contendo a superfície de restrição g(x, y, z) = 0.
 - Suponha que $\nabla g \neq \mathbf{0}$ em qualquer ponto da superfície.
 - Se f tiver um **extremo relativo restrito**, então esse extremo ocorrerá em um ponto (x_0, y_0, z_0) da superfície de restrição no qual os vetores gradientes $\nabla f(x_0, y_0, z_0)$ e $\nabla g(x_0, y_0, z_0)$ forem paralelos;
 - isto é, existirá algum número λ tal que

$$\nabla f(x_0, y_0, z_0) = \lambda \nabla g(x_0, y_0, z_0)$$

 Exemplo: Determine os pontos da esfera de raio 6 que estão o mais próximo e o mais afastado do ponto (1, 2, 2)

> A função a ser maximizada/minimizada é a da distância entre dois pontos

Para evitar radicais, será a distância ao quadrado

• Exemplo: Determine os pontos da esfera de raio 6 que estão o mais próximo e o mais afastado do ponto (1, 2, 2) Não precisa

$$f(x, y, z) = (x - 1)^2 + (y - 2)^2 + (z - 2)^2$$

$$x^2 + y^2 + z^2 = 36$$

$$x^2 + y^2 + z^2 = 36$$
 $g(x, y, z) = x^2 + y^2 + z^2$

da constante

 Exemplo: Determine os pontos da esfera de raio 6 que estão o mais próximo e o mais afastado do ponto (1, 2, 2)

$$f(x, y, z) = (x - 1)^{2} + (y - 2)^{2} + (z - 2)^{2}$$
$$x^{2} + y^{2} + z^{2} = 36 \qquad g(x, y, z) = x^{2} + y^{2} + z^{2}$$

Gradientes

$$2(x-1)\mathbf{i} + 2(y-2)\mathbf{j} + 2(z-2)\mathbf{k} = \lambda(2x\mathbf{i} + 2y\mathbf{j} + 2z\mathbf{k})$$

 $\nabla g = \mathbf{0}$ se e somente se, x = 0, y = 0 e z = 0, logo $\nabla g \neq \mathbf{0}$ para todo ponto na esfera

 Exemplo: Determine os pontos da esfera de raio 6 que estão o mais próximo e o mais afastado do ponto (1, 2, 2)

$$f(x, y, z) = (x - 1)^{2} + (y - 2)^{2} + (z - 2)^{2}$$
$$x^{2} + y^{2} + z^{2} = 36 \qquad g(x, y, z) = x^{2} + y^{2} + z^{2}$$

Gradientes

$$2(x-1)\mathbf{i} + 2(y-2)\mathbf{j} + 2(z-2)\mathbf{k} = \lambda(2x\mathbf{i} + 2y\mathbf{j} + 2z\mathbf{k})$$

 $2(x-1) = 2x\lambda, \quad 2(y-2) = 2y\lambda, \quad 2(z-2) = 2z\lambda$

Não podem ser zero

 Exemplo: Determine os pontos da esfera de raio 6 que estão o mais próximo e o mais afastado do ponto (1, 2, 2)

$$f(x, y, z) = (x - 1)^{2} + (y - 2)^{2} + (z - 2)^{2}$$
$$x^{2} + y^{2} + z^{2} = 36 \qquad g(x, y, z) = x^{2} + y^{2} + z^{2}$$

Gradientes

$$2(x-1)\mathbf{i} + 2(y-2)\mathbf{j} + 2(z-2)\mathbf{k} = \lambda(2x\mathbf{i} + 2y\mathbf{j} + 2z\mathbf{k})$$

$$2(x-1) = 2x\lambda, \quad 2(y-2) = 2y\lambda, \quad 2(z-2) = 2z\lambda$$

$$\frac{x-1}{x} = \lambda, \quad \frac{y-2}{y} = \lambda, \quad \frac{z-2}{z} = \lambda$$

 Exemplo: Determine os pontos da esfera de raio 6 que estão o mais próximo e o mais afastado do ponto (1, 2, 2)

$$f(x, y, z) = (x - 1)^{2} + (y - 2)^{2} + (z - 2)^{2}$$
$$x^{2} + y^{2} + z^{2} = 36 \qquad g(x, y, z) = x^{2} + y^{2} + z^{2}$$

Gradientes

$$\frac{x-1}{x} = \lambda, \quad \frac{y-2}{y} = \lambda, \quad \frac{z-2}{z} = \lambda$$

• Igualando 1 e 2 e depois 1 e 3

$$y = 2x$$
 $z = 2x$

Substituindo

$$9x^2 = 36$$

 $x = \pm 2$ (2, 4, 4) e (-2, -4, -4)

 Exemplo: Determine os pontos da esfera de raio 6 que estão o mais próximo e o mais afastado do ponto (1, 2, 2)

$$f(x, y, z) = (x - 1)^{2} + (y - 2)^{2} + (z - 2)^{2}$$
$$x^{2} + y^{2} + z^{2} = 36 \qquad g(x, y, z) = x^{2} + y^{2} + z^{2}$$

Analise

$$(-2, -4, -4)$$

$$f(2, 4, 4) = 9$$

Mais afastado

- Exercício: Determine as dimensões de uma caixa retangular aberta no topo, com um volume de 32 cm³ e cuja construção requeira uma quantidade mínima de material
 - -x = comprimento da caixa (em cm)
 - y = largura da caixa (em cm)
 - z = altura da caixa (em cm)
 - S = área da superfície da caixa (em cm²)

$$S = xy + 2xz + 2yz$$

Restrição de volume

$$xyz = 32$$

- Exercício: Determine as dimensões de uma caixa retangular aberta no topo, com um volume de 32 cm³ e cuja construção requeira uma quantidade mínima de material
 - Funções e Gradientes

$$f(x, y, z) = xy + 2xz + 2yz$$

$$g(x, y, z) = xyz$$

$$\nabla f = (y + 2z)\mathbf{i} + (x + 2z)\mathbf{j} + (2x + 2y)\mathbf{k}$$

$$\nabla g = yz\mathbf{i} + xz\mathbf{j} + xy\mathbf{k}$$

- Exercício: Determine as dimensões de uma caixa retangular aberta no topo, com um volume de 32 cm³ e cuja construção requeira uma quantidade mínima de material
 - Funções e Gradientes

$$f(x, y, z) = xy + 2xz + 2yz$$

$$g(x, y, z) = xyz$$

$$\nabla f = (y + 2z)\mathbf{i} + (x + 2z)\mathbf{j} + (2x + 2y)\mathbf{k}$$

$$\nabla g = yz\mathbf{i} + xz\mathbf{j} + xy\mathbf{k}$$

Multiplicadores de Lagrange

$$(y+2z)\mathbf{i} + (x+2z)\mathbf{j} + (2x+2y)\mathbf{k} = \lambda(yz\mathbf{i} + xz\mathbf{j} + xy\mathbf{k})$$
$$y+2z = \lambda yz, \quad x+2z = \lambda xz, \quad 2x+2y = \lambda xy$$

- Exercício: Determine as dimensões de uma caixa retangular aberta no topo, com um volume de 32 cm³ e cuja construção requeira uma quantidade mínima de material
 - Reescrevendo

$$\frac{1}{z} + \frac{2}{y} = \lambda, \quad \frac{1}{z} + \frac{2}{x} = \lambda, \quad \frac{2}{y} + \frac{2}{x} = \lambda$$

• A partir de 1 e 2

$$y = x$$

• A partir de 1 e 3

$$z = \frac{1}{2}x$$

Substituindo na restrição

$$\frac{1}{2}x^3 = 32$$

$$x = 4, \quad y = 4, \quad z = 2$$

$$x = 4$$
, $y = 4$, $z = 2$

Resumo

- Multiplicadores de Lagrange
 - Achar a função que se quer maximizar/minimizar
 - Achar a restrição
 - Achar os gradientes
 - O gradiente da restrição tem que ser diferente de zero
 - Aplicar na formula dos multiplicadores de Lagrange
 - Isolar λ
 - Colocar variável em função de uma
 - Substituir na restrição
 - Achar os valores das variáveis

Resumo

- Exercícios de fixação:
 - Seção 13.9
 - Exercícios de compreensão 13.9
 - 5-12
 - 34

Resumo

- Próxima aula:
 - Nova unidade: Integrais múltiplas
 - Integrais duplas

Bibliografia

Bibliografia

- Bibliografia básica:
 - ANTON, Howard; BIVENS, Irl; DAVIS, Stephen.
 Cálculo, v. 2. 10a ed. Porto Alegre: Bookman, 2012.
 - Seção 13.9