RUHR UNIVERSITY BOCHUM CHAIR FOR CRYPTOLOGY AND IT-SECURITY Prof. Dr. Alexander May Andre Esser

Kaliningrad Summerschool 2019

Day I Exercises on the Discrete Logarithm Problem

For the following exercises we are given a generator g of a group $G = \langle g \rangle$, together with $\beta := g^x$ for $x \in \mathbb{Z}_{|G|}$, where $2^{n-1} \leq |G| < 2^n$, for some $n \in \mathbb{N}$. The goal is to compute the discrete logarithm $x = \operatorname{dlog}_{g}\beta$.

Exercise 1:

Give a Meet-in-the-Middle attack on x with runtime $\tilde{\mathcal{O}}(\sqrt{x})$.

Exercise 2:

Consider the decomposition of x as $x = x_1 + x_2 \cdot 2^{\frac{n}{2}}$, where $0 \le x_1, x_2 < 2^{\frac{n}{2}}$.

- 1) Given that $\operatorname{wt}(x_1) = \operatorname{wt}(x_2) = \alpha \cdot \frac{n}{2}$ for $\alpha \in [0, 1]$, devise an algorithm that computes x in time $\tilde{\mathcal{O}}(2^{\frac{H(\alpha)}{2}n})$. Here $\operatorname{wt}(x) := |\{i \in \{1, \dots n\} \mid \operatorname{bin}(x)_i = 1\}|$ denotes the Hamming weight of the binary representation of x.
- 2) Given that the weight does not equally split on x_1 and x_2 , but still $\operatorname{wt}(x) = \alpha n$, devise again an algorithm for computing x in $\tilde{\mathcal{O}}(2^{\frac{H(\alpha)}{2}n})$.

Exercise 3:

Given a faulty version \tilde{x} of x, where x can be derived from \tilde{x} by flipping αn zero bits in \tilde{x} to one, $\alpha \in [0,1]$. Additionally, we are given access to an algorithm \mathcal{A} solving the low weight discrete log problem with weight parameter γ in time $T(\gamma)$. Show how to use \mathcal{A} to reconstruct x from \tilde{x} in time $T(\alpha)$.

Exercise 4:

Given k discrete logarithm instances in the same group: $\beta_i := g^{x_i}$, i = 1, ..., k, show how to compute all x_i in time $\tilde{\mathcal{O}}(\sqrt{k \cdot |G|})$