

Malaria Molecular Surveillance Study Design Workshop

Module 2: Sample size calculation based on margin of error

Defining terms

Uncertainty

How unsure we are of the true **population** value based

on the information in the **sample**

Precision

The opposite of uncertainty. How tightly we can narrow

down our estimate

Confidence interval

A range of values within which we claim the true

population value to lie

Margin of error

The distance that our confidence interval extends either

side of our point estimate

Defining terms

Low precision

Low precision

Low precision

Low precision

Precision and accuracy are not the same thing!

Precision and sample size

$$\hat{p} \pm z_{1-\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$

Sample size

$$m = z_{1-\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$

Step 1: replace \hat{p} with p

$$m = z_{1-\alpha/2} \sqrt{\frac{p(1-p)}{n}}$$

p is an **assumed** value of the prevalence

Step 2: square both sides

$$m^2 = z_{1-\alpha/2}^2 \frac{p(1-p)}{n}$$

Step 3: multiply by n and divide by m^2

$$n = z_{1-\alpha/2}^2 \frac{p(1-p)}{m^2}$$

How to choose values of p and m

Ways to choose p

- Pilot studies
- Historical studies
- Studies in neighbouring regions
- Expert knowledge (e.g. clinical)

Why do I need to assume a value of p? Isn't p the thing I want to estimate!?

How to choose values of p and m

Ways to choose m

- What level of "resolution" does your question require?
- What actions will be triggered based on the results?
- Feedback from sample size calculation: what can you afford?
 What is logistically feasible?

Background

You are working for the Rwandan NMCP. As part of continuous monitoring, they want to estimate the prevalence of the *dhps* A581G mutation, known to be associated with high level SP resistance. Three years ago, the prevalence was estimated at 15%.

Prevalence: Assume p = 0.2 based on previous estimate, plus some

wiggle-room

Margin of error: Continuous monitoring, not linked to direct policy change.

Values of m = 0.05 or m = 0.10 may be reasonable

$$n = z_{1-\alpha/2}^2 \frac{p(1-p)}{m^2}$$

$$n = z_{1-\alpha/2}^2 \frac{p(1-p)}{m^2}$$

Large margin of error

$$p = 0.2, m = 0.10$$

$$n = 61.47$$

round up to

$$n = 62$$

$$n = z_{1-\alpha/2}^2 \frac{p(1-p)}{m^2}$$

Large margin of error

$$p = 0.2, m = 0.10$$

$$n = 61.47$$

round up to

$$n = 62$$

Small margin of error

$$p = 0.2, m = 0.05$$

$$n = 245.86$$

round up to

$$n = 246$$

$$n = z_{1-\alpha/2}^2 \frac{p(1-p)}{m^2}$$

Large margin of error

$$p = 0.2, m = 0.10$$

$$n = 61.47$$

round up to

$$n = 62$$

÷ 2 margin of error

 \times 4 sample size

Small margin of error

$$p = 0.2$$
, $m = 0.05$

$$n = 245.86$$

round up to

$$n = 246$$

Sample size tables

Assuming a prevalence of p = 0.2

Margin of error (%)	Sample size
1	6147
2	1537
3	683
4	385
5	246
10	62
15	28
20	16

Where is the "sweet spot" on this table?

Sample size tables

Assuming a margin of error of m = 0.05

Assumed prevalence (%)	Sample size
5	73
10	139
20	246
30	323
50	385
70	323
80	246
90	139
95	73

The highest sample size is always at 50% prevalence

Summary

- 1. Larger sample sizes lead to more precise estimates
- 2. We can tailor sample sizes to achieve a target margin of error
- 3. We have to make some assumptions about the prevalence in the population before we measure it

Module 2 activity

Format: Interactive R code, accessed through the web

- Assist the NMCP of DRC with study design
- Analyse data from a pilot study
- Choose sample size for a follow-up study
- Apply buffering

Workshop materials

https://mrc-ide.github.io/MMS-SD_workshop/