Komplexbildung – Beispiel wässrige Lösungen von Aluminium(III)

$$Al^{3+} + 3 OH^{-} \implies Al(OH)_{3}$$

$$AI(OH)_3 + OH^- = [AI(OH)_4]^-$$

Tetrahydroxoaluminat (III)

Hydrate

<u>Amphoteres</u> Verhalten von Hydroxiden (z.B. Al³⁺, Sn²⁺, Pb²⁺, Zn²⁺):

→ löslich sowohl in Säure als auch in Base

Reaktionen:

sauer:

basisch: $AI(OH)_3 + OH^- \rightarrow [AI(OH)_4]^- AI(OH)_3 + 3 HCI \rightarrow AICI_3 + 3H_2O$

 $AICI_3 + 6 H_2O \rightarrow [AI(H_2O)_6]^{3+} + 3 CI^{-}$

Konzept der Komplexverbindungen (Alfred Werner ~1900)

Beispiel: "Blutlaugensalz"

Summenformel Verbindung: K₄Fe(CN)₆

Typische Reaktionen der Komponenten:

Fe²⁺
$$\xrightarrow{+ OH^-}$$
 Fe(OH)₂ \downarrow
CN⁻ $\xrightarrow{+ Ag^+}$ AgCN \downarrow

aber:

K₄Fe(CN)₆ + OH⁻ führt zu keiner Fällung

K₄Fe(CN)₆ + Ag⁺ führt zur Bildung eines farbigen Niederschlags

Konzept der Komplexverbindungen (Alfred Werner ~1900)

Beispiel: "Blutlaugensalz"

Summenformel Verbindung: K₃Fe(CN)₆

- → typische Reaktionen der Bestandteile bleiben aus.
- → elektrolytische Eigenschaften von K₃[Fe(CN)₆] entsprechen einer Lösung von 3 K⁺ und [Fe(CN)₆]³⁻ lonen und nicht einer von 3 K⁺, 1 Fe³⁺ und 6 CN⁻

1

Konzept der Komplexverbindungen (Alfred Werner ~1900)

Beispiel: Silberhalogenide

Fällung von Silberhalogeniden:

aber:

Zugabe von Ammoniak führt zur Auflösung des Niederschlags, es bildet sich:

$$Ag^{+}(aq) + 2 | N - H(aq) \longrightarrow \begin{bmatrix} H & H \\ | H - N | - Ag - | N - H \end{bmatrix}^{+} (aq)$$

$$H - H H H$$

Was ist ein Komplex?

Komplexe oder Koordinationsverbindungen sind Moleküle oder Ionen ZL_n , in denen an ein ungeladenes oder geladenes Zentralatom Z entsprechend seiner Koordinationszahl mehrere ungeladene oder geladene, ein- oder mehratomige Gruppen L angelagert sind.

$$[ZL_n]^m$$

Z = Zentralatom Komplexzentrum, Koordinationszentrum

L = Liganden Ligandenhülle, Koordinationssphäre

alle Liganden gleichartig homoleptisch verschiedene Liganden heteroleptisch

Komplexverbindungen

$$[Co(NH_3)_6]^{3+}$$

 $[ZL_n]^m$

Z: Zentralatom

L: Ligand

n: Koordinationszahl

Bindung in Komplexen

$$|\underline{C}| \cdot + \cdot \underline{C}|| \longrightarrow |\underline{C}| - \underline{C}||$$
 kovalent

$$\begin{array}{c}
Na \longrightarrow Na^{+} + e^{-} \\
Cl + e^{-} \longrightarrow Cl^{-}
\end{array}$$

$$Na^{+} + Cl^{-} \longrightarrow NaCl ionisch$$

klassische Komplexbindung = koordinative Bindung: formal ein *Lewis-Säure-Base Addukt*

Bindung in Komplexen

klassische Komplexbindung = koordinative Bindung: formal ein *Lewis-Säure-Base Addukt*

Liganden

Liganden können neutral oder anionisch sein; sie sind Lewis Basen und müssen somit ein freies Elektronenpaar aufweisen (Elektronenpaar-Donor)

$$|\overline{C}||^ |NH_3|$$
 Chlorid Ammoniak

Die Anzahl der Donoratome, mit denen ein Ligand an das Metallzentrum bindet, wird als die Zähnigkeit des Liganden bezeichnet.

Ligandentypen

einzähnig

zweizähnig

dreizähnig

Diethylentriamin dien

Ligandentypen

vierzähnig

Phthalocyanin pc

sechszähnig

EDTA⁴⁻

Oft eingesetzte Liganden

einzähnig

H₂OI Wasser

IFI Fluorid

 $[IC \equiv NI]^-$

Cyanid

 $[\overline{10} - H]^{-}$

Hydroxid

INH₃ Ammoniak

|C|| Chlorid

 $[\overline{S} = C = \overline{N}]^-$ Thiocyanat

 $[I\overline{O} - \underline{N} = \overline{O}I]^-$ Nitrit

zweizähnig

$$H_2C - CH_2$$
 $H_2\underline{N}$

Ethylendiamin (en)

Bipyridin (bipy)

ortho-Phenanthrolin (o-phen)

$$\begin{bmatrix} 0 & -c & 0 \\ 0 & c & 0 \end{bmatrix}^{2}$$

Oxalat

Carbonat

mehrzähnig

$$H_2C - CH_2 CH_2 - CH_2$$
 $H_2N NH_2$

Diethylentriamin

$$\begin{bmatrix} & |O| & |O| & |O| \\ & || & || & || \\ |\overline{O} - P - \overline{O} - P - \overline{O} - P - \overline{O} \\ & | & | & | \\ |O| & |O| & |O| \end{bmatrix}^{5-}$$

Triphosphat

$$\begin{bmatrix} |O| & |O| & |O| \\ || & || & || \\ |\overline{O} - C - CH_2 & |CH_2 - CH_2 - N \\ |\overline{O} - C - CH_2 & |CH_2 - C - \overline{O}| \\ || & || & || \\ ||O| & |O| \end{bmatrix}^{4-}$$

Ethylendiamintetraacetat (EDTA 4-)

Nomenklatur

Name der Liganden:

→ "o" an Name des Anions Moleküle

F- fluorido H₂O aquo

Cl⁻ chlorido NH₃ ammin

OH- hydroxido

CN⁻ cyanido

Zahl der Liganden: mono-, di-, tri-, tetra-, penta-, hexa-, ...

Oxidationszahl des Metalls am Ende des Namens in runden Klammern

Nomenklatur: Kationische und neutrale Komplexe

Nomenklatur: Anionische Komplexe

Koordinationszahl und Koordinationspolyeder

Koordinationszahl 2 → häufig bei einfach positiv geladenen Ionen von Ag, Au und Hg

Koordinationszahl und Koordinationspolyeder

Koordinationszahl 4

Koordinationszahl und Koordinationspolyeder

Koordinationszahl 6

oktaedrisch

 $[Co(NH_3)_6]^{2+}$

Gleichgewichte, Komplexstabilität

$$[M(H_2O)_p]^{m+} + nL$$
 \longrightarrow $[ML_n]^{m+} + pH_2O$

Komplexbildung ist eine Stufenreaktion, auf die sich das MWG anwenden lässt

$$[M(H_2O)_p]^{m+} = [M_{aq}]^{m+}$$

Komplexbildungskonstante:

$$K_{B} = \beta_{n} = \frac{[ML_{n}^{m+}]}{[M_{aq}^{m+}] \cdot [L]^{n}}$$

Komplexbildungskonstante hängt von M und L ab – so kann auch ein Ligand einen anderen aus der Koordinationssphäre verdrängen:

$$[Fe(H_2O)_6]^{3+} \rightarrow [Fe(H_2O)_5(SCN)]^{2+} \rightarrow [Fe(H_2O)_5F]^{2+}_{20}$$

Chelateffekt

$$[Cd(H_2O)_6]^{2+} + 4 NH_2Me \longrightarrow [Cd(NH_2Me)_4(H_2O)_2]^{2+} + 4 H_2O$$
 (a)

$$[Cd(H_2O)_6]^{2+} + 2 en$$
 $[Cd(en)_2(H_2O)_2]^{2+} + 4 H_2O$ (b)

NH₂Me: Methylamin: CH₃-NH₂

en: Ethylendiamin: H₂N-CH₂-CH₂-NH₂:

$$H_2N$$
 NH_2

$$K_B(b) \gg K_B(a)$$

Komplexe mit mehrzähnigen Liganden sind stabiler als Komplexe mit vergleichbaren einzähnigen Liganden!

Beispiel: Reaktion von Cu²⁺-Lösung mit Ammoniak

Beispiel oktaedrischer Komplex:

Wechselwirkung der sechs Liganden (hier als negative Punktladungen dargestellt) hat unterscheidliche Auswirkungen auf die d-Orbitale je nach Orientierung derselben

Folge:

Aufspaltung der d-Orbitale in zwei Sets mit unterschiedlichen Energieniveaus:

Durch Lichtabsorption kann ein Elektron von einem tiefen in ein höheres Niveau angehoben werden. Dieses Licht wird durch das Auge (oder ein Spektrometer) als Differenz von "weißem Licht" wahrgenommen → Lösung erscheint farbig

Farbe und UV-Vis – Absorption von $[Ti(H_2O)_6]^{3+}$ (d¹-System)

UVVis- Spektroskopie und Farbe

Goethes Farbrad aus der Farbenlehre von 1810

Ethylendiamintetraessigsäure (EDTA)

$$|O| \qquad |O| \qquad |O|$$

Blutentnahmeröhrchen

Beispiele wichtiger Komplexe

Cisplatin: Platin in der Krebstherapie

cis- Diammindichloridoplatin(II): [Pt(NH₃)₂(CI)₂]

trans-Isomer ist nicht wirksam

Isomerie

Auftreten von zwei oder mehreren chemische Verbindungen mit gleicher Summenformel und Molekülmasse wobei sich die Verknüpfung oder räumliche Anordnung der Atome unterscheidet.

Die entsprechenden Verbindungen werden Isomere genannt

Beispiele wichtiger Komplexverbindungen

Chlorophylle: Magnesium in der Photosynthese

Chlorophyll in den Chloroplasten einer Grünpflanze

Beispiele wichtiger Komplexverbindungen

Hämoglobin / Myoglobin: Eisen für Transport und Lagerung von Sauerstoff in vivo

Wichtige Begriffe:

Definition von Komplexen

Ligand, Koordinationzahlen

Koordinative Bindung

Zähnigkeit

Chelatkomplex, Chelateffekt

Nomenklatur von Komplexen

Koordinationszahlen und -geometrien