UC Berkeley · CSW182 | [Deep Learning]

Designing, Visualizing and Understanding Deep Neural Networks (2021)

CSW182 (2021)· 课程资料包 @ShowMeAl

视频 中英双语字幕

课件 一键打包下载

半记 官方筆记翻译

代码 作业项目解析

视频·B站[扫码或点击链接]

https://www.bilibili.com/video/BV1Ff4v1n7ar

课件 & 代码·博客[扫码或点击链接]

http://blog.showmeai.tech/berkelev-csw182

Berkeley

Q-Learning 计算机视觉 循环神经网络

风格迁移 梢

机器学习基础

可视化

模仿学习 生成模型 元学习 卷积网络

梯度策略

Awesome Al Courses Notes Cheatsheets 是 <u>ShowMeAl</u> 资料库的分支系列,覆盖最具知名度的 <u>TOP50+</u> 门 Al 课程,旨在为读者和学习者提供一整套高品质中文学习笔记和速查表。

点击课程名称, 跳转至课程**资料包**页面, 一键下载课程全部资料!

机器学习	深度学习	自然语言处理	计算机视觉
Stanford · CS229	Stanford · CS230	Stanford · CS224n	Stanford · CS231n

Awesome Al Courses Notes Cheatsheets· 持续更新中

知识图谱	图机器学习	深度强化学习	自动驾驶
Stanford · CS520	Stanford · CS224W	UCBerkeley · CS285	MIT · 6.S094

微信公众号

资料下载方式 2: 扫码点击底部菜单栏 称为 AI 内容创作者? 回复「添砖加瓦]

Optimization

Designing, Visualizing and Understanding Deep Neural Networks

CS W182/282A

Instructor: Sergey Levine UC Berkeley

How does gradient descent work?

The loss "landscape"

$$\theta^* \leftarrow \arg\min_{\theta} - \sum_{i} \log p_{\theta}(y_i|x_i)$$

$$\mathcal{L}(\theta)$$

let's say θ is 2D

An algorithm:

1. Find a direction v where $\mathcal{L}(\theta)$ decreases

2. $\theta \leftarrow \theta + \alpha \underline{v}$

some small constant called "learning rate" or "step size"

Gradient descent

An algorithm:

1. Find a direction v where $\mathcal{L}(\theta)$ decreases

2.
$$\theta \leftarrow \theta + \alpha v$$

Which way does $\mathcal{L}(\theta)$ decrease?

negative slope = go to the right positive slope = go to the left

for each dimension, go in the direction opposite the slope **along that dimension**

$$v_1 = -rac{d\mathcal{L}(heta)}{d heta_1} \quad v_2 = -rac{d\mathcal{L}(heta)}{d heta_2} \quad ext{ etc.}$$

$$abla_{ heta}\mathcal{L}(heta) = \left[egin{array}{c} rac{d\mathcal{L}(heta)}{d heta_2} \ rac{d}{d} rac{d\mathcal{L}(heta)}{d heta_n} \end{array}
ight]$$

Visualizing gradient descent

visualizations based on Gabriel Goh's distill.pub article: https://distill.pub/2017/momentum/

Demo time!

What's going on?

we don't always move toward the optimum!

the steepest direction is not always best! more on this later...

The loss surface

 $heta_1$ all roads lead to Rome $heta_2$

This is a *very* nice loss surface Why? Is our loss actually this nice?

Logistic regression:

$$p_{\theta}(y = i|x) = \frac{\exp(x^T \theta_i)}{\sum_{j=1}^{m} \exp(x^T \theta_j)}$$

Negative likelihood loss for **logistic regression** is guaranteed to be **convex**

(this is **not** an obvious or trivial statement!)

a function is convex if a line segment between any two points lies entirely "above" the graph

convex functions are "nice" in the sense that simple algorithms like gradient descent have strong guarantees

the **doesn't** mean that gradient descent works well for all convex functions!

The loss surface...

...of a neural network

pretty hard to visualize, because neural networks have very large numbers of parameters

but let's give it a try!

Visualizing the Loss Landscape of Neural Nets

Hao Li¹, Zheng Xu¹, Gavin Taylor², Christoph Studer³, Tom Goldstein¹

¹University of Maryland, College Park ²United States Naval Academy ³Cornell University {haoli,xuzh,tomg}@cs.umd.edu,taylor@usna.edu,studer@cornell.edu

...though some networks are better!

(b) with skip connections

the dragon of local optima

the monster of the plateau

Oh no...

The geography of a loss landscape

Local optima

a bit surprisingly, this becomes less of an issue as the number of parameters increases!

for big networks, local optima exist, but tend to be not much worse than global optima the most obvious issue with non-convex loss landscapes one of the big reasons people used to worry about neural networks!

very scary in principle, since gradient descent could converge to a solution that is arbitrarily worse than the global optimum!

Choromanska, Henaff, Mathieu, Ben Arous, LeCun. The Loss Surface of Multilayer Networks.

Plateaus

Can't just choose tiny learning rates to prevent oscillation!

Need learning rates to be large enough not to get stuck in a plateau

We'll learn about momentum, which really helps with this

Saddle points

the gradient here is very small it takes a long time to get out of saddle points

this seems like a **very** special structure, does it really happen **that** often?

Yes! in fact, most critical points in neural net loss landscapes are saddle points

Saddle points

Critical points:

any point where $\nabla_{\theta} \mathcal{L}(\theta) = 0$

is it a maximum, minimum, or saddle?

Hessian matrix:

$$\begin{array}{ccccc} \frac{d^2 \mathcal{L}}{d\theta_1 d\theta_1} & \frac{d^2 \mathcal{L}}{d\theta_1 d\theta_2} & \frac{d^2 \mathcal{L}}{d\theta_1 d\theta_3} \\ \frac{d^2 \mathcal{L}}{d\theta_2 d\theta_1} & \frac{d^2 \mathcal{L}}{d\theta_2 d\theta_2} & \frac{d^2 \mathcal{L}}{d\theta_2 d\theta_3} \\ \frac{d^2 \mathcal{L}}{d\theta_3 d\theta_1} & \frac{d^2 \mathcal{L}}{d\theta_3 d\theta_2} & \frac{d^2 \mathcal{L}}{d\theta_3 d\theta_3} \end{array}$$

$$\left[\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right]$$

In higher dimensions:

only maximum or minimum if all diagonal entries are positive or negative!

how often is that the case?

Which way do we go?

the steepest direction is not always best! more on this later...

Improvement directions

A better direction...

can we find this direction?

yes, with Newton's method!

we won't use Newton's method (can't afford it)

but it's an "ideal" to aspire to

Newton's method

Taylor expansion:

$$f(x) \approx f(x_0) + f'(x_0)(x - x_0) + \frac{1}{2}f''(x_0)(x - x_0)^2$$

multivariate case:

$$\mathcal{L}(\theta) \approx \mathcal{L}(\theta_0) + \nabla_{\theta} \mathcal{L}(\theta_0)(\theta - \theta_0) + \frac{1}{2}(\theta - \theta_0)^T \nabla_{\theta}^2 \mathcal{L}(\theta_0)(\theta - \theta_0)$$
Hessian gradient
$$\begin{bmatrix} \frac{d^2 \mathcal{L}}{d\theta d\theta} & \frac{d^2 \mathcal{L}}{d\theta d\theta} & \frac{d^2 \mathcal{L}}{d\theta d\theta} \end{bmatrix}$$

 $\begin{bmatrix} \frac{d^2 \mathcal{L}}{d\theta_1 d\theta_1} & \frac{d^2 \mathcal{L}}{d\theta_1 d\theta_2} & \frac{d^2 \mathcal{L}}{d\theta_1 d\theta_3} \\ \frac{d^2 \mathcal{L}}{d\theta_2 d\theta_1} & \frac{d^2 \mathcal{L}}{d\theta_2 d\theta_2} & \frac{d^2 \mathcal{L}}{d\theta_2 d\theta_3} \\ \frac{d^2 \mathcal{L}}{d\theta_3 d\theta_1} & \frac{d^2 \mathcal{L}}{d\theta_3 d\theta_2} & \frac{d^2 \mathcal{L}}{d\theta_3 d\theta_3} \end{bmatrix}$

can optimize this analytically! set derivative to zero and solve:

$$\theta^{\star} \leftarrow \theta_0 - (\nabla_{\theta}^2 \mathcal{L}(\theta_0))^{-1} \nabla_{\theta} \mathcal{L}(\theta_0)$$

Tractable acceleration

Why is Newton's method not a viable way to improve neural network optimization?

gradient descent:
$$\theta_{k+1} \leftarrow \theta_k - \alpha \nabla_{\theta} \mathcal{L}(\theta_k)$$
 runtime? $\mathcal{O}(n)$

Hessian

$$\begin{bmatrix} \frac{d^{2}\mathcal{L}}{d\theta_{1}d\theta_{1}} & \frac{d^{2}\mathcal{L}}{d\theta_{1}d\theta_{2}} & \frac{d^{2}\mathcal{L}}{d\theta_{1}d\theta_{3}} \\ \frac{d^{2}\mathcal{L}}{d\theta_{2}d\theta_{1}} & \frac{d^{2}\mathcal{L}}{d\theta_{2}d\theta_{2}} & \frac{d^{2}\mathcal{L}}{d\theta_{3}d\theta_{3}} \end{bmatrix} \uparrow n \qquad \begin{array}{c} \theta^{\star} \leftarrow \theta_{0} - (\nabla_{\theta}^{2}\mathcal{L}(\theta_{0}))^{-1}\nabla_{\theta}\mathcal{L}(\theta_{0}) \\ \text{runtime?} \\ \frac{d^{2}\mathcal{L}}{d\theta_{3}d\theta_{1}} & \frac{d^{2}\mathcal{L}}{d\theta_{3}d\theta_{2}} & \frac{d^{2}\mathcal{L}}{d\theta_{3}d\theta_{3}} \end{bmatrix} \downarrow n \qquad \begin{array}{c} \text{runtime?} \\ \mathcal{O}(n^{3}) & \text{much faster if they avoid} \end{array}$$

$$\theta^{\star} \leftarrow \theta_0 - (\nabla_{\theta}^2 \mathcal{L}(\theta_0))^{-1} \nabla_{\theta} \mathcal{L}(\theta_0)$$

$$\mathcal{O}(n^3)$$

if using naïve approach, though fancy methods can be much faster if they avoid forming the Hessian explicitly

because of this, we would really prefer methods that don't require second derivatives, but somehow "accelerate" gradient descent instead

Momentum

averaging together successive gradients seems to yield a much better direction!

Intuition: if successive gradient steps point in **different** directions, we should **cancel off** the directions that disagree

if successive gradient steps point in **similar** directions, we should **go faster** in that direction

Momentum

update rule:

$$\theta_{k+1} = \theta_k - \alpha g_k$$

before: $g_k = \nabla_{\theta} \mathcal{L}(\theta_k)$

now:
$$g_k = \nabla_{\theta} \mathcal{L}(\theta_k) + \mu g_{k-1}$$

"blend in" previous direction

this is a very simple update rule

in practice, it brings some of the benefits of Newton's method, at virtually no cost

this kind of momentum method has few guarantees

a closely related idea is "Nesterov accelerated gradient," which **does** carry very appealing guarantees (in practice we usually just momentum)

Momentum Demo

Gradient scale

Intuition: the **sign** of the gradient tells us which way to go along each dimension, but the magnitude is not so great

Even worse: overall magnitude of the gradient can change drastically over the course of optimization, making learning rates hard to tune

Idea: "normalize" out the magnitude of the gradient along each dimension

$$\nabla_{\theta} \mathcal{L}(\theta) = \begin{pmatrix} \frac{d\mathcal{L}(\theta)}{d\theta_{1}} \\ \frac{d\mathcal{L}(\theta)}{d\theta_{2}} \\ \vdots \\ \frac{d\mathcal{L}(\theta)}{d\theta_{n}} \end{pmatrix}$$

$$\mathcal{L}(\theta) = ||f_{\theta}(x) - y||^{2}$$

$$\nabla_{\theta} \mathcal{L}(\theta) = (f_{\theta}(x) - y)^{T} \frac{df}{d\theta}$$

huge when far from optimum

Algorithm: RMSProp

Estimate per-dimension magnitude (running average):

$$s_k \leftarrow \beta s_{k-1} + (1-\beta)(\nabla_{\theta} \mathcal{L}(\theta_k))^2$$

this is *roughly* the squared length of each dimension

$$\theta_{k+1} = \theta_k - \alpha \frac{\nabla_{\theta} \mathcal{L}(\theta_k)}{\sqrt{s_k}}$$

each dimension is divided by its magnitude

Algorithm: AdaGrad

Estimate per-dimension cumulative magnitude:

$$s_k \leftarrow s_{k-1} + (\nabla_{\theta} \mathcal{L}(\theta_k))^2$$

$$s_k \leftarrow \beta s_{k-1} + (1-\beta)(\nabla_{\theta} \mathcal{L}(\theta_k))^2$$

$$\theta_{k+1} = \theta_k - \alpha \frac{\nabla_{\theta} \mathcal{L}(\theta_k)}{\sqrt{s_k}}$$

How does AdaGrad and RMSProp compare?

AdaGrad has some appealing guarantees for **convex** problems

Learning rate effectively "decreases" over time, which is good for convex problems

But this only works if we find the optimum quickly before the rate decays too much

RMSProp tends to be much better for deep learning (and most non-convex problems)

Algorithm: Adam

Basic idea: combine momentum and RMSProp

$$m_k = (1 - \beta_1) \nabla_{\theta} \mathcal{L}(\theta_k) + \beta_1 m_{k-1}$$

$$v_k = (1 - \beta_2)(\nabla_{\theta} \mathcal{L}(\theta_k))^2 + \beta_2 v_{k-1}$$

$$\hat{m}_k = rac{m_k}{1-eta_1^k}$$
 why? $rac{m_0=0}{v_0=0}$

$$\hat{v}_k = \frac{v_k}{1 - \beta_2^k}$$

$$\theta_{k+1} = \theta_k - \alpha \frac{\hat{m}_k}{\sqrt{\hat{v}_k} + \epsilon}$$

second moment estimate

so early on these values will be small, and this correction "blows them up" a bit for small *k*

good default settings:

$$\alpha = 0.001$$

$$\beta_1 = 0.9$$

$$\beta_2 = 0.999$$

small number to prevent division by zero

$$\epsilon = 10^{-8}$$

Stochastic optimization

Why is gradient descent expensive?

$$\mathcal{L}(\theta) = -\frac{1}{N} \sum_{i=1}^{N} \log p_{\theta}(y_i|x_i) \approx -E_{p_{\text{data}}(x,y)}[\log p_{\theta}(y_i|x_i)] \approx -\frac{1}{B} \sum_{j=1}^{B} \log p_{\theta}(y_{i_j}|x_{i_j})$$

requires summing over **all** datapoints in the dataset

could simply use **fewer** samples, and still have a correct (unbiased) estimator

ILSVRC (ImageNet), 2009: 1.5 million images

Stochastic gradient descent

with minibatches

- 1. Sample $\mathcal{B} \subset \mathcal{D}$
- 2. Estimate $g_k \leftarrow -\nabla_{\theta} \frac{1}{B} \sum_{i=1}^{B} \log p(y_i|x_i,\theta) \approx \nabla_{\theta} \mathcal{L}(\theta)$
- 3. $\theta_{k+1} \leftarrow \theta_k \alpha g_k$

each iteration samples a different minibatch

Stochastic gradient descent in practice:

sampling randomly is slow due to random memory access instead, shuffle the dataset (like a deck of cards...) once, in advance then just construct batches out of consecutive groups of **B** datapoints

draw **B** datapoints at random from dataset of size **N**

(where sum is over elements in \mathcal{B})

can also use momentum, ADAM, etc.

Learning rates

Low learning rates **can** result in convergence to worse values!
This is a bit counter-intuitive

Decaying learning rates

AlexNet trained on ImageNet

Learning rate decay schedules usually needed for best performance with SGD (+momentum)

Often not needed with ADAM

Opinions differ, some people think SGD + momentum is better than ADAM if you want the very best performance (but ADAM is easier to tune)

Tuning (stochastic) gradient descent

Hyperparameters:

batch size: B larger batches = less noisy gradients, usually "safer" but more expensive

learning rate: α best to use the biggest rate that still works, decay over time

momentum: μ Adam parameters: β_1 , β_2

0.99 is good keep the defaults (usually)

What to tune hyperparameters on?

Technically we want to tune this on the **training** loss, since it is a parameter of the optimization

Often tuned on validation loss

Relationship between stochastic gradient and regularization is complex – some people consider it to be a good regularizer! (this suggests we should use validation loss)

UC Berkeley · CSW182 | [Deep Learning]

Designing, Visualizing and Understanding Deep Neural Networks (2021)

CSW182 (2021)· 课程资料包 @ShowMeAl

视频 中英双语字幕

课件 一键打包下载

笔记 官方筆记翻译

代码 作业项目解析

视频·B站[扫码或点击链接]

https://www.bilibili.com/video/BV1Ff4y1n7ar

课件 & 代码·博客[扫码或点击链接]

http://blog.showmeai.tech/berkelev-csw182

Berkeley

Q-Learning 计算机视觉 循环神经网络

风格迁移

机器学习基础

可视化

模仿学习

生成模型

梯度策略

元学习 ^{卷积网络} Awesome Al Courses Notes Cheatsheets 是 <u>ShowMeAl</u> 资料库的分支系列,覆盖最具知名度的 <u>TOP50+</u> 门 Al 课程,旨在为读者和学习者提供一整套高品质中文学习笔记和速查表。

点击课程名称, 跳转至课程**资料**何页面, 一键下载课程全部资料!

机	.器学习	深度学习	自然语言处理	计算机视觉
Stanf	ord · CS229	Stanford · CS230	Stanford · CS224n	Stanford · CS231n

Awesome Al Courses Notes Cheatsheets· 持续更新中

知识图谱	图机器学习	深度强化学习	自动驾驶
Stanford · CS520	Stanford · CS224W	UCBerkeley · CS285	MIT · 6.S094

微信公众号

资料下载方式 2: 扫码点击底部菜单栏 称为 **AI 内容创作者?** 回复「添砖加瓦]