WEEK 1

INTERNSHIP UNDER DR GS JAVED SIR

<u>INTERN NAME</u> - AFZAL MALIK

<u>COLLEGE/UNIVERSITY</u> — ZAKIR HUSAIN COLLEGE OF ENGG. & TECH. ALIGARH MUSLIM UNIVERSITY

COURSE- BACHELOR OF TECHNOLOGY (ELECTRONICS ENGG.)

YEAR - SECOND

WEEK 1 INTERNSHIP PLAN

- To be able to perform .dc /.op / .tran Simulations
- To design Common Source and Common Drain Amplifier (Used Gm over Id Method)

SOFTWARE USED: LT Spice, MS Excel

BASIC CIRCUIT SIMULATIONS

.DC, .OP AND .TRAN SIMULATION OF BASIC CIRCUITS USING LT SPICE

DESIGN OF COMMON SOURCE AMPLIFIER (USING GM OVER ID METHOD)

PARAMETER CHARTS

IN ORDER TO DESIGN AN AMPLIFIER USING GM OVER ID METHODOLOGY WE REQUIRE PARAMETER CHARTS:

a) Primary Charts

- 1) Gm/Gds vs Gm/Id
- 2) Id/W vs Gm/Id
- 3) Ft vs Gm/Id

b) Secondary Charts

- 1)Cgd/Cgg vs Gm/Id
- 2)Cdd/Cgg vs Gm/Id

Plotting Parameter Charts

USING LT SPICE AND MS EXCEL MODEL FILE: 180n

LT SPICE SETUP TO PLOT CHARTS FOR NMOS

AFTER MAKING THE SETUP IN LT SPICE

Id vs Vgs is plotted by sweeping vgs from 0 to 1.8 V Gm [d(Id(M1)] vs Vgs is plotted by sweeping vgs from 0 to 1.8 V Id vs Vds is plotted by sweeping vds from 0 to 1.8 V Gds [d(Id(M1)] vs Vds is plotted by sweeping vgs from 0 to 1.8 V

All this data is transferred in MS Excel and then Gm/Gds vs Gm/Id is plotted Id/W vs Gm/Id is plotted

Hence, we got two of the parameter charts that are required to design Common Source Amplifier

LT SPICE SETUP TO PLOT CHARTS FOR PMOS

____180n

----360n ----540n ----720n ----900n

PLOT OF Id/W vs Gm/Id

COMMON SOURCE AMPLIFIER

USING NMOS AND PASSIVE LOAD

MODEL FILE: 180n

SPECIFICATIONS

GBW=800MHz, VDD=1.8V, L=0.36u

CALCULATIONS

GBW=800MHz , L=0.36u , Vdd=1.8V, Model file = 180n Let GAIN (A) =
$$10$$

$$f(-3db) = \frac{GBW}{Gain} = 80MHz \qquad let C_L = 5pF$$

USING f(-3db) =
$$\frac{1}{2\pi Rout C_1}$$
 Rout = 397.88 ohm

Now , Gain (A) = Gm Rout Gm = 25.1 mS

Now , Let Gm/Id = 10.2 Id = 2.46 mA

(From NMOS Parameter Charts)

Gm/Gds = 69.9 Gds=359 uS

AS Ro=1/Gds, Ro=2785 ohm

(From NMOS Parameter Charts)

Id/W= 13.6 W=180u

CALCULATIONS

Now Rout = Ro
$$| R_L$$

$$R_{L} = \frac{Ro*Rout}{(Ro - Rout)}$$

$$R_{L} = 464.197 \text{ ohms}$$

Now, Vgs is calculated from Gm/Id vs Vgs Curve in LT Spice

For , Gm/Id = 10.2

Vgs = 702mV = 0.702V

SCHEMATIC IN LT SPICE

COMMON SOURCE AMPLIFIER DESIGNED USING GM OVER ID METHOD USING NMOS AND RESISTOR for GBW = 800MHz

(SPECIFICATIONS)

GAIN = 10

FREQUENCY (-3DB)=80MHz
load capacitance=5pF
vdd=1.8V

;.ac dec 100 1M 100G

;.tf V(vout) vgs ;.tran 5m ;.dc vgs 0 1 1m

OP ANALYSIS IN LT SPICE

* C:\Users\afzal\Documents\@AFZAL\professional works\banglore internship\gmidm

```
--- Operating Point ---
♥(vout):
                             voltage
               0.421546
               0.702
V(vgs):
                             voltage
∇ (vdd) :
               1.8
                             voltage
                             device current
Id(M1):
               0.00296954
Ig(M1):
                             device current
              -4.31546e-013 device current
Ib (M1):
              -0.00296954 device current
Is(M1):
I(C1):
               2.10773e-024
                             device current
I(R1):
                             device current
               0.00296954
I (Vgs) :
                             device current
I (Vdd):
              -0.00296954
                             device current
```

* C:\Users\afzal\Documents\@AFZAL\professional works\banglore internship\gmidmethod\error_free_Ris1.5k_Ris1... X

--- Transfer Function ---

Transfer_function: -10.2737 transfer vgs#Input_impedance: 1e+020 impedance output_impedance_at_V(vout): 382.623 impedance

TRANSIENT ANALYSIS IN LT SPICE

FREQUENCY RESPONSE IN LT SPICE

SIMULATIONS RESULT

```
Name:
             m1
Model:
             nmos
Id:
           2.97e-03
           7.02e-01
Vgs:
Vds:
           4.22e-01
Vbs:
           0.00e+00
Vth:
           4.64e-01
Vdsat:
           1.81e-01
           2.69e-02
Gm:
           4.59e-04
Gds:
Gmb
           7.02e-03
Cbd:
           0.00e+00
           0.00e+00
Cbs:
           1.39e-13
Cgsov:
```

GBW=837MHz Gain= 10.2737

COMMON SOURCE AMPLIFIER

USING PMOS AND PASSIVE LOAD

MODEL FILE: 180n

SPECIFICATIONS

GBW=800MHz, VDD=1.8V, L=0.36u

CALCULATIONS

$$f(-3db) = \frac{GBW}{Gain} = 80MHz \qquad let C_L = 5pF$$

USING f(-3db) =
$$\frac{1}{2\pi Rout C_1}$$
 Rout = 397.88 ohm

Now , GAIN (A) = Gm Rout Gm=25.1 mSNow , Let Gm/Id = 10.2 Id = 2.46 mA

(From NMOS Parameter Charts)

Gm/Gds = 72.2 Gds=347.64 uS

AS Ro=1/Gds , Ro=2876.5 ohm

(From NMOS Parameter Charts)

Id/W = 3.3 W=745u

CALCULATIONS

Now Rout = Ro
$$| | R_L$$

$$R_{L} = \frac{Ro*Rout}{(Ro - Rout)}$$

$$R_{L} = 461.75 \text{ ohms}$$

Now, Vgs is calculated from Gm/Id vs Vgs Curve in LT Spice For , Gm/Id = 10.2 Vg = 1.1V

SCHEMATIC IN LT SPICE

* C:\Users\afzal\Documents\@AFZAL\professional works\banglore internship\gmidmeth

--- Operating Point ---

∇(vg):	1.147	voltage
V(vs):	1.8	voltage
V(vout):	1.16995	voltage
Id(M1):	-0.00253372	device_current
Ig(M1):	-0	device_current
Ib (M1):	6.40054e-013	device_current
Is (M1) :	0.00253372	device_current
I(C2):	5.84973e-024	device_current
I(R):	0.00253372	device_current
I(Vs):	-0.00253372	device_current
I (Vg) :	0	device_current

* C:\Users\afzal\Documents\@AFZAL\professional works\banglore internship\gmidmethod\error_free_Ris1.

Transfer Function ---

Transfer function: -10.7566 transfer vg#Input impedance: impedance 1e+020 output_impedance_at_V(vout): 416.704 impedance

TRANSIENT ANALYSIS IN LT SPICE

FREQUENCY RESPONSE IN LT SPICE

SIMULATIONS RESULT

```
BSIM3 MOSFETS ---
              m1
Name:
Model:
             pmos
Id:
           -2.53e-03
          -6.53e-01
Vgs:
           -6.30e-01
Vds:
Vbs:
           0.00e+00
          -4.73e-01
Vth:
Vdsat:
           -1.67e-01
            2.58e-02
Gm:
Gds:
            2.34e-04
            8.22e-03
Gmb
Cbd:
            0.00e+00
            0.00e+00
Cbs:
            5 300-13
```

GBW=763MHz Gain= 10.756

COMMON DRAIN AMPLIFIER (SOURCE FOLLOWER)

USING NMOS AND RESITANCE

MODEL FILE: 180n

SPECIFICATIONS

VDD=1.8V, L=0.36u, GAIN(A)=0.95 Rout=50 ohm, C₁ = 5pf

CALCULATIONS

VDD=1.8V , L=0.36u , GAIN(A)=0.95 Rout=50 ohm, C₁ = 5pf

Using
$$B.W = \frac{1}{2\pi Rout C_1}$$
 BW= 636.61MHz

Now,
$$Gain(A) = \frac{(Rs||Ro)}{(Rs||Ro)+1/Gm}$$
 and $Rout = 1/Gm||Ro||Rs$

On solving both the equation , we get (Rs||Ro)=1000 ohm

SCHEMATIC IN LT SPICE

COMMON DRAIN AMPLIFIER DESIGNED USING GM OVER ID METHOD USING NMOS AND RESISTOR

(SPECIFICATIONS) GAIN = 0.95**Output Impedance = 50 ohm** load capacitance=5pF **vdd=1.8V**

.include tsmc180.txt .op .tf V(vout) vgs

;tran 5m

;.dc vgs 0 1 1m

;ac dec 100 1meg 100G


```
--- Operating Point ---
V(vdd):
                1.8
                              voltage
               1.443
V(vgs):
                              voltage
               0.841677
                              voltage
V(vout):
Id(M1):
                0.001169
                              device current
                              device current
Ig(M1):
                -9.68323e-013 device current
Ib(M1):
Is(M1):
                -0.001169
                              device current
I(C1):
                4.20838e-024
                              device current
I(R1):
                0.001169
                              device current
I (Vgs):
                              device current
I (Vdd):
                -0.001169
                              device current
```

```
Semiconductor Device Operating Points:
                         --- BSIM3 MOSFETS ---
Name:
             m1
Model:
            nmos
Id:
           1.17e-03
Vqs:
           6.01e-01
Vds:
           9.58e-01
Vbs:
           0.00e+00
Vth:
           4.63e-01
Vdsat:
           1.08e-01
Gm:
           1.82e-02
Gds:
           1.52e-04
Gmb
           4.78e-03
Cbd:
           0.00e+00
Cbs:
           0.00e+00
           1.72e-13
Cgsov:
```

--- Transfer Function ---

Transfer_function: 0.921846 transfer vgs#Input_impedance: 1e+020 impedance output impedance at V(vout): 50.716 impedance

TRANSIENT ANALYSIS IN LT SPICE

FREQUENCY RESPONSE IN LT SPICE

Feedback I got

Specifications are not exactly matching with simulations, W/L ratio is very high, so now I have to redesign them by making slight modification in design approach

THANK YOU