章节 7.3 次梯度和次梯度算法

致谢:感谢北京大学文再文老师提供的《最优化方法》参考讲义

SXC (USTC)

许多优化问题,目标函数都是不可微的,例如前面我们见到的基追踪问题和矩阵补全问题,目标函数分别是最小化 ℓ_1 范数和矩阵变量的核范数。为了研究不可微时问题的最优条件,我们可以定义一般非光滑凸函数的次梯度。

⟨□⟩⟨□⟩⟨≡⟩⟨≡⟩⟨≡⟩ ≡ √)⟨○⟩

496 / 525

次梯度

回顾可微凸函数 f 的一阶等价条件:

$$f(y) \ge f(x) + \nabla f(x)^{\mathrm{T}} (y - x).$$

这表明,f 在点 x 处的一阶近似是 f 的一个全局下界。我们这里的想法是,将上述不等式 拓展到一般不可微的情形。我们先考虑简单的函数 $f(x) = |x|, x \in \mathbb{R}$. f(x) 在 x = 0 处不 可导, 因为其左右导数分别为

$$\lim_{t \to 0^{-}} \frac{|t|}{t} = -1, \quad \lim_{t \to 0^{+}} \frac{|t|}{t} = 1.$$

可以验证, 对于任意 $g \in [-1,1]$, 下面的不等式成立

$$|\mathbf{y}| \ge 0 + \mathbf{g} \cdot \mathbf{y},$$

此即

$$f(y) \ge f(0) + g \cdot (y - 0).$$

SXC (USTC) 2023-09 497 / 525

Figure: 函数 f(x) = |x| 次梯度示意图。任意斜率为 $g \in [-1,1]$ 过原点的直线,均为函数 f 的一个下界。

次梯度定义

定义 2.8 (次梯度和次微分)

设 f 为适当凸函数, x 为定义域 $\operatorname{dom} f$ 中的一点. 若向量 $g \in \mathbb{R}^n$ 满足

$$f(y) \ge f(x) + g^{\mathrm{T}}(y - x), \quad \forall y \in \mathrm{dom} \ f,$$

则称 g 为函数 f 在点 x 处的一个次梯度 (subgradient). 进一步地, 称集合

$$\partial f(x) = \{ g \mid g \in \mathbb{R}^n, f(y) \ge f(x) + g^{\mathrm{T}}(y - x), \forall y \in \mathbf{dom} \ f \}$$

为 f 在点 x 处的次微分 (subdifferential).

Remark 2.1

- 定义中的凸函数,值域可以为广义实数 $\mathbb{R} \cup \{+\infty\}$ 空间。适当函数是指,存在 x 使得 $f(x) < +\infty$.
- 由定义可知,次微分是一个集合,次梯度是某个次微分的元素。

◆□▶ ◆□▶ ◆≧▶ ◆≧▶ ○ 毫 の へ ②

499 / 525

例 2.9

 $f(x) = ||x||_2$ 为凸函数。若 $x \neq 0$, f(x) 可微, 故

$$\partial f(x) = \frac{1}{\|x\|_2} x.$$

若 x = 0, 我们下面证明 $\partial f(x) = \{g|||g||_2 \le 1\}$. 由定义可知,

$$||y||_2 \geq g^T y, \quad \forall y.$$

首先,若 $\|g\|_2 \le 1$,由 Cauchy 不等式得 $g^T y \le \|g\|_2 \|y\|_2 \le \|y\|_2$,故

$$\{g|\|g\|_2 \leq 1\} \subset \partial f(0).$$

反之, 若 $g \in \partial f(0)$, 故

$$\max_{\|y\|_2=1} \mathbf{g}^T \mathbf{y} = \|\mathbf{g}\|_2 \le \|\mathbf{y}\|_2 = 1.$$

故

$$\partial f(0) \subset \{g|\|g\|_2 \leq 1\}.$$

500 / 525

次梯度存在性

为了说明定义2.8中的次梯度存在,我们引入如下定义。

定义 2.10

设 f(x) 为 \mathbb{R}^n 上的实值函数, 函数的上方图 epi f 定义为

epi
$$f := \{ \begin{bmatrix} x \\ z \end{bmatrix} \in \mathbb{R}^{n+1} \mid z \ge f(x) \}.$$

引理 2.11

函数 f(x) 是凸函数, 当且仅当其上方图是凸集。

501 / 525

次梯度存在性

当 f 可微时, 我们有

$$f(x) + \nabla f(x)^{T}(y - x) \le f(y) \le z.$$

即

$$\begin{bmatrix} \nabla f(x) \\ -1 \end{bmatrix}^T \left(\begin{bmatrix} y \\ z \end{bmatrix} - \begin{bmatrix} x \\ f(x) \end{bmatrix} \right) \le 0 \quad \forall \ (y, z) \in \text{epi } f$$

这表明, $\nabla f(x)$ 可以诱导出上方图 epi f 在点 (x, f(x)) 处的支撑超平面, 如下图所示。

Figure: 对于凸函数 f(x), 其上方图 epi f 是一个凸集。 $\left[egin{array}{c} \nabla f(x) \\ -1 \end{array} \right]$ 是 epi f 的支撑向量。

SXC (USTC) 2023-09

次梯度的存在性

由次梯度的定义2.8可知,

- $f(x) + g^{T}(y x)$ 是 f(y) 的一个全局下界
- g 可以诱导出上方图 epi f 在点 (x, f(x)) 处的一个支撑超平面

$$\left[\begin{array}{c} \mathbf{g} \\ -1 \end{array}\right]^T \left(\left[\begin{array}{c} \mathbf{y} \\ \mathbf{z} \end{array}\right] - \left[\begin{array}{c} \mathbf{x} \\ \mathbf{f}(\mathbf{x}) \end{array}\right] \right) \leq 0 \quad \forall \ (\mathbf{y},\mathbf{z}) \in \mathbf{epi} \ \mathbf{f}$$

- 如果 f 是可微凸函数, 那么 $\nabla f(x)$ 是 f 在点 x 处的一个次梯度
- 例: g₂, g₃ 是点 x₂ 处的次梯度; g₁ 是点 x₁ 处的次梯度

图片来源:《最优化计算方法》文再文等讲义。

503 / 525

次梯度的存在性主要依赖于凸集的下述性质:

引理 2.12

任意凸集的边界点处都存在支撑超平面。

定理 2.13

设 f 为凸函数, $\operatorname{dom} f = \{x : f(x) < \infty\}$ 为其定义域. 如果 $x \in \operatorname{int} \operatorname{dom} f$, 则 $\partial f(x)$ 是非空的, 其中 $\operatorname{int} \operatorname{dom} f$ 的含义是集合 $\operatorname{dom} f$ 的所有内点.

Proof.

(x, f(x)) 是 epi f 边界上的点. 因此凸集 epi f 在点 (x, f(x)) 处存在支撑超平面:

$$\exists (a,b) \neq 0, \quad \begin{bmatrix} a \\ b \end{bmatrix}^{\mathrm{T}} \left(\begin{bmatrix} y \\ z \end{bmatrix} - \begin{bmatrix} x \\ f(x) \end{bmatrix} \right) \leq 0 \quad \forall (y,z) \in \mathbf{epi} \ f(x)$$

令 $z \to +\infty$, 可知 $b \le 0$. 由于 $x \in \text{int dom } f$, 取 $y = x + \epsilon a \in \text{dom } f$, $\epsilon > 0$, 可知 $b \ne 0$. 因此 b < 0 并且 g = a/|b| 是 f 在点 x 处的次梯度。

SXC (USTC) 0P38A11018 P1838A841 2023-09 504/525

例: 非次可微函数

如下函数在点 x = 0 处不是次可微的:

•
$$f: \mathbf{R} \to \mathbf{R}$$
, dom $f = \mathbf{R}_+ = \{x \in \mathbf{R} \mid x \ge 0\}$
 $x = 0$ 时, $f(x) = 1, x > 0$ 时, $f(x) = 0$

• $f: \mathbf{R} \to \mathbf{R}, \mathbf{dom} \ f = \mathbf{R}_+$

$$f(x) = -\sqrt{x}$$

epi f 在点 (0, f(0)) 处的唯一支撑超平面是垂直的

SXC (USTC) SPEKANONS/RESEARCH 2023-09 505/525

次梯度的计算规则

弱次梯度计算: 得到一个次梯度

- 足以满足大多数不可微凸函数优化算法
- 如果可以获得任意一点处 f(x) 的值, 那么总可以计算一个次梯度

强次梯度计算: 得到 $\partial f(x)$, 即所有次梯度

- 一些算法、最优性条件等,需要完整的次微分
- 计算可能相当复杂

下面我们假设 $x \in \text{int dom } f$

506 / 525

- 可微凸函数: 若凸函数 f 在点 x 处可微,则 $\partial f(x) = \{\nabla f(x)\}$.
- **凸函数的非负线性组合**: 设凸函数 f_1, f_2 满足 int dom $f_1 \cap \text{dom } f_2 \neq \emptyset$, 而 $x \in \text{dom } f_1 \cap \text{dom } f_2$. 若

$$f(x) = \alpha_1 f_1(x) + \alpha_2 f_2(x), \quad \alpha_1, \alpha_2 \ge 0,$$

则 f(x) 的次微分

$$\partial f(x) = \alpha_1 \partial f_1(x) + \alpha_2 \partial f_2(x).$$

• **线性变量替换:** 设 h 为适当凸函数, f 满足 f(x) = h(Ax + b). 若存在 $x^{\sharp} \in \mathbb{R}^m$, 使 得 $Ax^{\sharp} + b \in \text{int dom } h$,则

$$\partial f(x) = A^{\mathrm{T}} \partial h(Ax + b), \quad \forall \ x \in \mathbf{int} \ \mathbf{dom} \ f.$$

SXC (USTC)

函数族的上确界

设
$$f_1, f_2, \cdots, f_m : \mathbb{R}^n \to (-\infty, +\infty]$$
 均为凸函数, 令

$$f(x) = \max\{f_1(x), f_2(x), \cdots, f_m(x)\}, \quad \forall x \in \mathbb{R}^n.$$

对
$$x_0 \in \bigcap_{i=1}^m \text{ int dom } f_i$$
,定义 $I(x_0) = \{i \mid f_i(x_0) = f(x_0)\}$,则

$$\partial f(x_0) = \mathbf{conv} \bigcup_{i \in I(x_0)} \partial f_i(x_0).$$

- I(x₀) 表示点 x₀ 处 "有效" 函数的指标
- ∂f(x₀) 是点 x₀ 处 "有效" 函数的次微分并集的凸包
- 如果 f_i 可微, $\partial f(x_0) = \mathbf{conv}\{\nabla f_i(x_0) \mid i \in I(x_0)\}$

<ロ > → □ > → □ > → □ > → □ = → の Q (~)

508 / 525

例:分段线性函数

$$f(x) = \max_{i=1,2,\cdots,m} \{a_i^{\mathrm{T}} x + b_i\}$$

• 点 x 处的次微分是一个多面体

$$\partial f(x) = \mathbf{conv}\{a_i \mid i \in I(x)\}$$

其中
$$I(x) = \{i \mid a_i^{\mathrm{T}} x + b_i = f(x)\}$$

509 / 525

SXC (USTC) 2023-09

例: ℓ₁-范数

$$f(x) = \|x\|_1 = \max_{s \in \{-1,1\}^n} s^{\mathrm{T}} x$$

• 次微分是区间的乘积

$$\partial f(x) = J_1 \times \dots \times J_n, \quad J_k = \begin{cases} [-1, 1], & x_k = 0 \\ \{1\}, & x_k > 0 \\ \{-1\}, & x_k < 0 \end{cases}$$

例 2.14

鲁棒线性回归: 求函数 $f(x) = ||Ax - b||_1$ 的次微分,这里 $x \in \mathbb{R}^n$, $A \in \mathbb{R}^{m \times n}$ 。**解:** 首先考虑函数 $h(y) = ||y||_1 = \max_{s \in \{-1,1\}^m} s^T y, y \in \mathbb{R}^m$. 故,

$$\partial h(y) = J_1 \times \dots \times J_m, \quad J_k = \begin{cases} [-1,1], & y_k = 0 \\ \{1\}, & y_k > 0 \\ \{-1\}, & y_k < 0 \end{cases}$$

对于 f(x),

$$\partial f(x) = A^T (\partial h(y)|_{y=Ax-b}).$$

SXC (USTC) OPERATIONS (RESEARCH) 2023-09

510 / 525

固定分量的函数极小值

$$f(x) = \inf_{y} h(x, y)$$
, h 关于 (x, y) 联合凸

计算点 \hat{x} 处的一个次梯度:

- 设 $\hat{y} \in \mathbb{R}^m$ 满足 $h(\hat{x}, \hat{y}) = f(\hat{x})$
- 存在 $g \in \mathbb{R}^n$ 使得 $(g,0) \in \partial h(\hat{x},\hat{y})$, 则 $g \in \partial f(\hat{x})$

证明: 对任意 $x \in \mathbb{R}^n, y \in \mathbb{R}^m$

$$h(x, y) \ge h(\hat{x}, \hat{y}) + g^{\mathrm{T}}(x - \hat{x}) + 0^{\mathrm{T}}(y - \hat{y})$$

= $f(\hat{x}) + g^{\mathrm{T}}(x - \hat{x})$

于是

$$f(x) = \inf_{y} h(x, y) \ge f(\hat{x}) + g^{\mathrm{T}}(x - \hat{x})$$

SXC (USTC)

例: 距离函数

设 $C \in \mathbb{R}^n$ 中一闭凸集,令

$$f(x) = \inf_{y \in C} \|x - y\|_2$$

计算点 x 处的一个次梯度:

- 若 $f(\hat{x}) = 0$,则容易验证 $g = 0 \in \partial f(\hat{x})$;
- 若 $f(\hat{x}) > 0$, 取 \hat{y} 为 \hat{x} 在 C 上的投影, 即 $\hat{y} = \mathcal{P}_c(\hat{x})$, 计算

$$g = \frac{1}{\|\hat{x} - \hat{y}\|_{2}} (\hat{x} - \hat{y}) = \frac{1}{\|\hat{x} - \mathcal{P}_{c}(\hat{x})\|_{2}} (\hat{x} - \mathcal{P}_{c}(\hat{x}))$$

最优性条件:无约束问题

x^* 是 f(x) 的极小点当且仅当

$$0 \in \partial f(x^*)$$

证明:根据次梯度的定义以及最优性,我们有

$$f(y) \ge f(x^*), \ \forall y \iff f(y) \ge f(x^*) + 0^{\mathrm{T}}(y - x^*), \ \forall y \iff 0 \in \partial f(x^*).$$

SXC (USTC) 2023-09

例: 分片线性极小

$$f(x) = \max_{i=1,\dots,m} (a_i^{\mathrm{T}} x + b_i)$$

最优性条件

$$0 \in \mathbf{conv}\{a_i \mid i \in I(x^*)\}, \quad \not\exists r \mid I(x) = \{i \mid a_i^T x + b_i = f(x)\}$$

● 也就是说. x* 是最优解当日仅当存在 λ 使得

$$\lambda \geq 0$$
, $\mathbf{1}^{\mathrm{T}}\lambda = 1$, $\sum_{i=1}^{m} \lambda_{i}a_{i} = 0$, $\lambda_{i} = 0$ for $i \notin I(x^{*})$

• 这是等价线性规划问题的最优性条件: $A = [a_1^\top; \dots; a_m^\top]$

$$\begin{aligned} & \min \quad t & \max \quad b^{\mathrm{T}} \lambda \\ & \text{s.t.} \quad Ax + b \leq t \mathbf{1} & \text{s.t.} \quad A^{\mathrm{T}} \lambda = 0 \\ & \quad \lambda \geq 0, \quad \mathbf{1}^{\mathrm{T}} \lambda = 1 \end{aligned}$$

SXC (USTC)

最优性条件:约束问题

给定约束 C 为 \mathbb{R}^n 中的闭凸集,考虑问题

$$\min_{f(x)} f(x)
s.t. x \in C.$$
(166)

可定义指示函数

$$\mathcal{I}_{C}(x) = \begin{cases} 0 & \text{if } x \in C, \\ \infty & \text{if } x \notin C. \end{cases}$$

则问题(166)等价于

$$\min h(x) := f(x) + \mathcal{I}_C(x). \tag{167}$$

对于问题(167), 最优条件为

$$0 \in \partial f(x) + \partial \mathcal{I}_{\mathcal{C}}(x), x \in \mathcal{C}.$$

这里, 若 $g \in \partial \mathcal{I}_C(x)$,则 $\mathcal{I}_C(y) \geq \mathcal{I}_C(x) + g^T(y-x), \forall y \in C$,即

$$0 \ge \mathbf{g}^T(\mathbf{y} - \mathbf{x}), \quad \forall \mathbf{y} \in C.$$

这里说明次梯度在 x 处的法锥中,法锥的定义为 $N_C(x) = \{g \mid 0 \ge g^T(y-x), \forall y \in C\}$. 事实上,法锥与切锥不相交,故这表明次梯度不在切锥中,与前面的课程一致。

一般来说,非光滑约束问题也有 KKT 条件。由于课程的设置,我们不再学习它们。

次梯度算法结构

为了极小化一个不可微的凸函数 f, 可类似梯度法构造如下次梯度算法的迭代格式:

$$x^{k+1} = x^k - \alpha_k g^k, \quad g^k \in \partial f(x^k),$$

其中 g^k 为 x_k 处函数 f 任意的一个次梯度, $\alpha_k > 0$ 为步长. 它通常有如下四种选择:

- ① 固定步长 $\alpha_k = \alpha$;
- ② 消失步长 $\alpha_k \to 0$ 且 $\sum_{k=0}^{\infty} \alpha_k = +\infty$;

下面我们讨论在不同步长取法下次梯度算法的收敛性质.

516 / 525

假设条件

- (1) f 为凸函数;
- (2) f 至少存在一个有限的极小值点 x^* , 且 $f(x^*) > -\infty$;
- (3) f 为利普希茨连续的,即

$$|f(x) - f(y)| \le G||x - y||, \quad \forall x, y \in \mathbb{R}^n,$$

其中 G > 0 为利普希茨常数.

这等价于 f(x) 的次梯度是有界的,即

$$\|g\| \le G$$
, $\forall g \in \partial f(x), x \in \mathbb{R}^n$.

 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 5 □
 9 ○ ○

 2023-09
 517/525

收敛性分析

- 次梯度方法不是一个下降方法,即无法保证 $f(x^{k+1}) < f(x^k)$;
- 收敛性分析的关键是分析 f(x) 历史迭代的最优点所满足的性质.
- 设 x^* 是 f(x) 的一个全局极小值点, $f^* = f(x^*)$, 根据迭代格式,

$$\|x^{i+1} - x^*\|^2 = \|x^i - \alpha_i g^i - x^*\|^2$$

$$= \|x^i - x^*\|^2 - 2\alpha_i \langle g^i, x^i - x^* \rangle + \alpha_i^2 \|g^i\|^2$$

$$\leq \|x^i - x^*\|^2 - 2\alpha_i (f(x^i) - f^*) + \alpha_i^2 G^2$$

• 结合 $i=0,\cdots,k$ 时相应的不等式,并定义 $\hat{f}'=\min_{0\leqslant i\leqslant k}f(x^i)$:

$$2\left(\sum_{i=0}^{k} \alpha_{i}\right) \left(\hat{f}^{k} - f^{*}\right) \leq \|x^{0} - x^{*}\|^{2} - \|x^{k+1} - x^{*}\|^{2} + G^{2} \sum_{i=0}^{k} \alpha_{i}^{2}$$
$$\leq \|x^{0} - x^{*}\|^{2} + G^{2} \sum_{i=0}^{k} \alpha_{i}^{2}$$

不同步长下的收敛性

(1) 取 $\alpha_i = t$ 为固定步长,则

$$\hat{f}^{k} - f^{*} \le \frac{\|x^{0} - x^{*}\|^{2}}{2kt} + \frac{G^{2}t}{2};$$

- ^{*} 无法保证收敛性
- 当 k 足够大时, f* 近似为 G²t/2-次优的
- (2) 取 α_i 为消失步长,即 $\alpha_i \to 0$ 且 $\sum_{i=0}^{\infty} \alpha_i = +\infty$,则

$$\hat{f}^{k} - f^{*} \le \frac{\|x^{0} - x^{*}\|^{2} + G^{2} \sum_{i=0}^{k} \alpha_{i}^{2}}{2 \sum_{i=0}^{k} \alpha_{i}};$$

进一步可得 \hat{f} 收敛到f.

- 和梯度法不同, 只有当 α_k 取消失步长时 f* 才具有收敛性.
- 一个常用的步长取法是 $\alpha_k = \frac{1}{k}$.

519 / 525

固定迭代步数下的最优步长

• 假设 $||x^0 - x^*|| \le R$, 并且总迭代步数 k 是给定的, 在固定步长下,

$$\hat{f}^k - f^* \leq \frac{\|x^0 - x^*\|^2}{2kt} + \frac{G^2t}{2} \leq \frac{R^2}{2kt} + \frac{G^2t}{2}.$$

- 由平均值不等式知当 t 满足 $\frac{R^2}{2kt} = \frac{G^2t}{2}$, 即 $t = \frac{R}{G\sqrt{k}}$ 时,右端达到最小.
- k 步后得到的上界是

$$\hat{f}^k - f^* \leqslant \frac{GR}{\sqrt{k}}$$

- 这表明在 $k = O(1/\epsilon^2)$ 步迭代后可以得到 $\hat{f} f^* < \epsilon$ 的精度
- 类似地可证明第二类步长选取策略下,取 $s = \frac{R}{\sqrt{L}}$,可得到估计

$$\hat{f}^k - f^* \le \frac{GR}{\sqrt{k}}.$$

SXC (USTC) 2023-09

例: LASSO 问题求解

考虑 LASSO 问题

$$\min f(x) = \frac{1}{2} ||Ax - b||^2 + \mu ||x||_1,$$

f(x) 的一个次梯度为 $g=A^{\mathrm{T}}(Ax-b)+\mu\mathrm{sign}(x)$, 其中 $\mathrm{sign}(x)$ 是关于 x 逐分量的符号函数. 因此的次梯度算法为

$$x^{k+1} = x^k - \alpha_k(A^{\mathrm{T}}(Ax^k - b) + \mu \mathrm{sign}(x^k)),$$

步长 α_k 可选为固定步长或消失步长.

521 / 525

作业 4 提交截至:2023 年 12 月 10 日 23:59

1. 证明线性共轭梯度法的性质:设线性共轭梯度法的第 k 步迭代的结果 xk 不是问题 (119)的解,那么有以下结论成立

- **1** span (r_0, r_1, \dots, r_k) = span $(r_0, Ar_0, \dots, A^k r_0)$
- ② span (p_0, p_1, \dots, p_k) = span $(r_0, Ar_0, \dots, A^k r_0)$
- \mathbf{o} $\mathbf{r}_{k}^{T} \mathbf{p}_{i} = 0, \forall i < k$
- \mathbf{o} $\mathbf{r}_{i}^{\mathsf{T}} \mathbf{r}_{i} = 0, \forall i < k$
- 2. 求解信赖域子问题迭代法中,当 $q_1^T g \neq 0$ 时,写出求解 $\phi(\lambda) = 1/\Delta 1/||d(\lambda)|| = 0$ 月 $B + \lambda I > 0$. 的牛顿迭法代公式。

SXC (USTC) 2023-09 522 / 525

3. 证明如下 3 个结论:

记 x_k 是二次罚函数 $P_E(x^k, \sigma^k)$ 最小值点。

结论 1: 设
$$\sigma_{k+1} > \sigma_k > 0$$
, 则有 $P_E(x^k, \sigma^k) \leq P_E(x^{k+1}, \sigma^{k+1})$,

$$\sum_{i \in \mathcal{E}} \|c_i(x^k)\|^2 \ge \sum_{i \in \mathcal{E}} \|c_i(x^{k+1})\|^2, \quad \textit{f}(x^k) \le \textit{f}(x^{k+1}).$$

结论 2: 设令 \bar{x} 是原问题(141)的最优解,则对任意的 $\sigma^k > 0$ 成立

$$f(\bar{\mathbf{x}}) \ge P_E(\mathbf{x}^k, \sigma^k) \ge f(\mathbf{x}^k).$$

结论 3: 令 $\delta = \sum_{i \in \mathcal{E}} \|c_i(x^k)\|^2$,则 x^k 也是约束问题

min
$$f(\mathbf{x})$$

s.t. $\sum_{i \in \mathcal{E}} ||c_i(\mathbf{x})||^2 \le \delta$

的最优解。

- 4. 参考基追踪问题,使用增广拉格朗日法求解标准线性规划的对偶问题。写出从 x_k 到 x_{k+1} 需要求解的子问题,以及对偶变量 λ_k 的迭代公式。
- 5. 计算下面两个问题的一个次梯度
 - $f(x) = ||Ax b||_2$.
 - f(x) = min_y ||Ay x||_∞, 这里 ||x||_∞ = max_i |x_i| 表示无穷范数。假设存在 ŷ 使得 f(x̂) = min_y ||Ay x||_∞. 计算一个 f(x̂) 的次梯度。

Projection 3

针对 logistic regression 问题,

$$\min_{x \in \mathbb{R}^n} \quad \frac{1}{m} \sum_{i=1}^m \ln(1 + \exp(-b_i \mathbf{a}_i^{\mathrm{T}} x)) + \lambda ||x||_2^2, \tag{168}$$

这里选取 $\lambda = \frac{1}{100m}$.

编写 BFGS 或者 newton 算法求解。需要使用 backtracking-linesearch 或者 Wolfe-Powell 线搜索确定步长。在 LIBSVM 的 a9a 训练数据集完成算法测试,数据集提供了数据 $\{a_i, b_i\}_{i=1,...,m}$, 其中 $b_i \in \{-1, 1\}$, m = 32, 561, n = 123。数据集见 https://www.csie.ntu.edu.tw/cjlin/libsvmtools/datasets/

需要报告函数损失和迭代点的关系图像。

程序规范在后面的课程会细讲。

SXC (USTC) 2023-09