# Chapitre

# Applications linéaires

# 5. Dimension quelconque

## 5.1. Définition

On prend E, F 2 R-ev



#### Définition 1.1

 $f:E \to F$  est une application linéaire si

- $\cdot f(u +_E v) = f(u) +_F f(v)$
- $f\lambda \cdot_E u = \lambda \cdot_F f(u)$

Exemple :  $f: p \in R[X] \to (P(0), P(1), P(2)) \in \mathbb{R}^3$  est une application linéaire. En effet, f(p+q) = (p+q)(0) + (p+q)(1) + (p+q)(2) = (p(0) + p(1) + p(2)) + (q(0) + q(1) + q(2)) = f(p) + f(q)

Soit  $P \in \mathbb{R}[X]$  et  $\lambda \in \mathbb{R}$  :  $f(\lambda p) = (\lambda(P(0), P(1), P(2)))$ 

Exemple :  $g : p \in \mathbb{R}[X] \to (p(0), p(1), p(0)p(1))$ 

Prenons  $P(X) = 1, \lambda = 2 : \lambda g(P) = (2.2.2), g(\lambda P) = (2.2.4).$ 



#### Remarque

On peut au  $\iff$  vérifier les 2 propriétés en même temps. On montre alors que  $f(\lambda u+v)=\lambda f(u)+f(v)$ 

### π P

#### Proposition 1.1

Soit  $f: E \to F$  linéaire. Alors  $f(0_E) = 0_F$ 



#### **Notation**

On note L(E,F) l'ensemble des applications linéaires de E dans F et L(E)=L(E,E).

#### $\hat{\pi}$

#### Définition 1.2 : Formes linéaires

On dit que f est une forme linéaire si  $f \in L(E, \mathbb{R})$ .

Si une application linéaire est bijective, on dit que f est isomorphisme d'espace vectoriel.

Si  $f \in L(E)$ , c'est un endomorphisme.

Si la fonction vérifie les 2, c'est un automorphisme.

### π

#### Définition 1.3

Soit  $f \in L(E, F)$ .

On appelle image de f, noté Im(f) ou R(f) l'ensemble  $\{f(x), x \in E\} \subset F$ .

On appelle noyau f, noté Ker(f) l'ensemble des antécédants du vecteur nul  $\{x\in E, f(x)=0_F\}\subset E.$ 



#### Proposition 1.2

 $f \in L(E,F)$ . Alors Ker(f) est sev de E et Im(f) est un sev de F.



#### Proposition 1.3

Soit  $f \in L(E, F)$ . Alors f est surjective  $\iff Im(f) = F$ . Elle est

injective  $\iff Ker(f) = \{0_E\}.$ 

### Proposition 1.4

la composée de 2 applications linéaires est une application linéaire

### Proposition 1.5

Soit f un isomorphisme de E dans F. Alors  $f^{-1} \in L(F,E)$ 

### Proposition 1.6

Soit E et F des ev. L(E,F) est un ev dont le vecteur nul est l'application dont l'image est le vecteur nul de F.

# 5.1. Exemples

- $Id_E: x \in E \to x \in E$
- les homotéthies :  $f_{\mu}: x \in E \to \mu X \in E$  (automorphisme si  $\mu \neq 0$ )
- · Les projecteur / projections

#### Projecteurs

### **Définition 1.4**: Projecteurs

On dit que  $p \in L(E)$  est un projecteur  $\iff p^2 (=p \circ p) = p$ 

Exemple :  $p(a,b,c) \in \mathbb{R}^3 \to (a,b,0)$ 

Exemple : 
$$Q = \sum_{m=0}^N a_m X^m \to \sum_{m=0}^{\min(K,N)} a_m X^m$$

### Proposition 1.7

Soit p un projecteur de E. Alors

1. 
$$\forall v \in Im(p), p(v) = v$$

2. 
$$E = Im(p) \oplus Ker(p)$$

### **Définition 1.5 :** Projection

E un ev, F et G supplémentaires dans E :  $\forall u \in E, \exists ! u_F, u_G t q u = u_F + u_G$ . On appelle projection sur F parallèlement à G l'application  $p: u_F + u_G \to u_F$ . Alors

- 1.  $p \in L(E)$
- 2.  $p^2 = p$
- 3. Im(p) = F, Ker(p) = G

#### **Proposition 1.8 :** Corollaire

Soit  $p \in L(E)$ 

p est un projecteur  $\iff$  p est une projecion sur Im(p) parallèlement à Ker(p).

#### Proposition 1.9

 $p \in L(E)$  est un projecteur  $\iff Id_E - p$  est un projecteur.

#### Proposition 1.10 : Corollaire

Si p est une projection,  $Im(p) = Ker(Id_E - p), Ker(p) = Im(Id_E - p)$ 

#### Symétrie

### Définition 1.6

Soit  $s \in L(E)$ . C'est une symétrie  $s^2 = Id_E$ .

Proposition 1.11: Lien entre symétrie et projecteur

- 1. si s est une symétrie,  $p=0.5(s+Id_E)$  est un projecteur
- 2. si p est un projecteur, alors  $s=2p-Id_E$  est une symétrie

### Proposition 1.12 : Corollaire

Soit s une symétrie. ALors  $E = Ker(s + Id_E) \oplus Ker(s - Id_E)$ .

### π Proposition 1.13

Soit E un ev, F et G 2 sev supplémentaires de E. On définit

$$s: u = u_F + u_G \in E \to u_F - u_G \in E.$$

On appelle s symétrie par rapport à F parallèlement à G.

Alors

- 1.  $s \in L(E)$
- 2.  $s^2 = Id_E \Leftarrow sestune symtrie$
- 3.  $Ker(s Id_E) = F, Ker(s + Id_E) = G$

#### Proposition 1.14 : Corollaire

Soit  $s \in L(E)tqs^2 = Id_E$ . Alors s est une symétrie par rapport à  $Ker(s-Id_E)$  parallèlement à  $Ker(s+Id_E)$ 

Exemple:  $(a, b, c) \rightarrow (a, b, -c)$ 

Exemple:  $\sum a_k X^k \to \sum (-1)^k a_k X_k$ 

# **5.** Dimension finie

E est un R-EV de dimension finie et F de dimension quelconque

On note N la dimension de E

proposition 2.1

Soit  $F \in L(E,F)$ . Alors Im(f) est de dimension finie  $\leq N$ . On appelle cette dimension rang de f, noté rg(f).

#### π Définition 2.1

Soit B une base de E. Soit  $p \in \{1, \dots, \mathbb{N}\}$ . On note  $C_{pi}u = \lambda_1 e_1 + \dots + \lambda_N e_N \in E \to \lambda_p \in \mathbb{R}$ . Alors  $C_p$  est une forme liénaire, et pour tout  $u \in E, u = c_1(u)e_1 + \dots + c_N(u)e_N$ .  $C_p$  est appellée application p-ème coordonnée dans la base B.

#### π Théorème 2.1 :

Soient B une base de dimension N quelconque de E et F une famille de N vecteur de G.

Alors II existe une unique application linéaire telle que  $\forall i \in \{1,\dots,\mathbb{N}\}, f(e_i) = v_i$ 

#### **Proposition 2.2**: Corollaire

Soit B une base de E et f une application linéaire. Alors f est complètement déterminée par la connaissance de  $(f(e_1),\ldots,f(e_N))$ . En effet,  $f:u\in E\to \sum_{p=1}^N c_p(u)f(e_p)$ .

#### Proposition 2.3

Soit fune application linéaire. Si fest un isomorphisme (bijective), alors F a la dimension de E.

#### Théorème 2.2 : Théorème du rang

Soit  $f \in L(E, F)$ . Alors  $\dim(Ker(f)) + rg(f) = \dim(E)$ 

#### Proposition 2.4

Si f est injective, alors  $\dim(E) \leq \dim(F)$ .

Si f est surjective, alors  $\dim(F) \ge \dim(F)$ 



E et F de dimension finie et égale. Soit  $f \in L(E, F)$ . Alors f est bijective  $\iff$  f surjective,  $\iff$  f injective.

π Proposition 2.6 : Cororllaire

Soit  $f \in L(E)$ , alors f est injective  $\iff$  f est surjective ou surjective

Exercice : Soit E un EV de dimension finie. Mq toute symétrie de E est bijective et mq le seul projecteur bijectif de E est  $p=Id_E$ 

proposition 2.7

Soit fune fonction linéaire de E dans F f est bijective ⇔ L'image d'une base de E par f est une base de F

π Proposition 2.8

Supposons  $\dim(F)<+\infty$ . Alors L(E,F) est de dimension finie et  $\dim(L(E,F))=\dim(E)\times\dim(F)$