Теория кодирования

<u>МФТИ</u>, осень 2013

Александр Дайняк

www.dainiak.com

Геометрическая интерпретация способности кода исправлять ошибки

Шар радиуса
$$r$$
 с центром в a — это множество $S_r(a) \coloneqq \{b \mid d(a,b) \le r\}$

Если $d(C) \ge d$, то шары радиуса $\lfloor (d-1)/2 \rfloor$ с центрами в кодовых словах не пересекаются:

Задача о ближайшем кодовом слове (NCP — Nearest Codeword Problem)

Дано:

- Линейный код $C \subset \mathbb{F}_2^n$ (заданный своей порождающей матрицей)
- Слово $oldsymbol{b} \in \mathbb{F}_2^n$

Требуется найти
$$a^* \in \mathcal{C}$$
, такое, что
$$d(a^*, b) = \min_{a \in \mathcal{C}} d(a, b)$$

Задача о ближайшем кодовом слове

Теорема. Задача NCP является NP-трудной.

Для доказательства построим сведения:

 $3-SAT \rightarrow 1-in-3-SAT \rightarrow NCP$

3-SAT = 3-SATISFIABILITY = 3-ВЫПОЛНИМОСТЬ

1-in-3-SAT = exactly-1-in-3 SATISFIABILITY

Задача 3-SAT

Дан набор скобок, в каждой из которых ровно три литерала (вида x или \bar{x} , где x — переменная)

Требуется определить, можно ли присвоить переменным значения 0 и 1, так, чтобы в каждой скобке оказался хотя бы один истинный литерал.

Задача 1-in-3-SAT

Дан набор скобок, в каждой из которых ровно три литерала (вида x или \bar{x} , где x — переменная)

Требуется определить, можно ли присвоить переменным значения 0 и 1, так, чтобы в каждой скобке оказался *ровно* один истинный литерал.

$3-SAT \rightarrow 1-in-3-SAT$

Пусть дан набор скобок для задачи 3-SAT.

Заменим каждую скобку вида $(x \lor y \lor z)$ на тройку скобок $[\bar{x}, p, q][q, y, r][r, s, \bar{z}]$, так, чтобы переменные p, q, r, s нигде больше не встречались.

Например:

$$(x_1 \lor x_2 \lor \bar{x}_3)(\bar{x}_1 \lor x_3 \lor x_4)$$

заменится на

$$[\bar{x}_1, p_1, q_1][q_1, x_2, r_1][r_1, s_1, x_3]$$

 $[x_1, p_2, q_2][q_2, x_3, r_2][r_2, s_2, \bar{x}_4]$

$3-SAT \rightarrow 1-in-3-SAT$

Утверждение. В скобке вида $(x \lor y \lor z)$ есть хотя бы один истинный литерал \iff найдутся такие значения p,q,r,s, чтобы в каждой из скобок $[\bar{x},p,q][q,y,r][r,s,\bar{z}]$ был ровно один истинный литерал. Доказательство — разбором случаев:

(x, y, z)	$[\overline{x}, p, q][q, y, r][r, s, \overline{z}]$	(p,q,r,s)
(0,0,0)	[1, p, q][q, 0, r][r, s, 1]	?!
(0,0,1)	[1, p, q][q, 0, r][r, s, 0]	(0, 0, 1, 0)
(0,1,0)	[1, p, q][q, 1, r][r, s, 1]	(0,0,0,0)
(0,1,1)	[1, p, q][q, 1, r][r, s, 0]	(0,0,0,1)
(1,0,1)	[0, p, q][q, 0, r][r, s, 0]	(0, 1, 0, 1)
(1,1,1)	$[{f 0},{m p},{m q}][{m q},{f 1},{m r}][{m r},{m s},{f 0}]$	(1, 0, 0, 1)

Пусть в задаче 1-in-3-SAT всего N переменных и M скобок.

Положим $n\coloneqq (M+1)(M+N)+3M,\ k\coloneqq 2N$ и укажем порождающую матрицу G линейного $[n,k]_2$ -кода и слово $\boldsymbol{b}\in\mathbb{F}_2^n$.

Матрица G состоит из подматриц:

$$G := (\underbrace{G_1 | \dots | G_1}_{(M+1) \text{ pas}} | \underbrace{G_2 | \dots | G_2}_{(M+1) \text{ pas}} | G_3)$$

Слово \boldsymbol{b} имеет вид: (1 ... 10 ... 0), количество единиц и нулей равно (M+1)(M+N) и 3M соответственно.

$$n \coloneqq (M+1)(M+N) + 3M, \qquad k \coloneqq 2N$$

$$G \coloneqq (G_1|\dots|G_1|G_2|\dots|G_2|G_3) \in \mathbb{F}_2^{k \times n}$$

$$(M+1) \text{ pas} \qquad (M+1) \text{ pas}$$

$$G_1 \in \mathbb{F}_2^{k \times N}, \qquad G_2 \in \mathbb{F}_2^{k \times M}, \qquad G_3 \in \mathbb{F}_2^{k \times 3M}$$

- Строки матрицы G отвечают переменным и их отрицаниям.
- G_1 отвечает за выбор значений переменных.
- G_2 отвечает за то, чтобы в каждой скобке был либо один, либо три истинных литерала.
- G_3 отвечает за то, чтобы в каждой скобке было не более одного истинного литерала.

Матрица $G_1 \in \mathbb{F}_2^{2N \times N}$ выглядит так:

Строки G_1 соответствуют переменным задачи 1-in-3-SAT и их отрицаниям.

```
x_1 \rightarrow 1 \quad 0 \quad \cdots \quad 0
\bar{x}_1 \rightarrow 1 \quad 0 \quad \cdots \quad 0
x_2 \rightarrow 0 \quad 1 \quad \cdots \quad 0
\bar{x}_2 \rightarrow 0 \quad 1 \quad \cdots \quad 0
\vdots \quad \vdots \quad \ddots \quad \vdots
x_N \rightarrow 0 \quad 0 \quad \cdots \quad 1
\bar{x}_N \rightarrow 0 \quad 0 \quad \cdots \quad 1
```

Л.к. строк G_1 равна $\mathbf{1}$ т. и т.т., когда из каждой пары строк, соответствующих одной переменной, в л.к. входит ровно одна.

Матрица $G_2 \in \mathbb{F}_2^{2N \times M}$ выглядит так:

Строки G_2 соответствуют переменным задачи 1-in-3-SAT и их отрицаниям, столбцы — скобкам.

Л.к. строк G_2 равна $\mathbf{1}$ т. и т.т., когда для каждой скобки в л.к. входит ровно одна или ровно три строки, соответствующих литералам из этой скобки.

Матрица $G_3 \in \mathbb{F}_2^{2N \times 3M}$ выглядит так:

Строки G_3 соответствуют переменным и их отрицаниям. Каждой скобке отвечают три последовательных столбца.

Если для каждой скобки в л.к. строк G_3 входит ровно одна строка, соответствующая литералам из этой скобки, то вес этой л.к. равен M.

Пример G и b для задачи $[x_1, \bar{x}_2, x_3][\bar{x}_1, x_3, \bar{x}_4]$:

Пример: $[x_1, \bar{x}_2, x_3][\bar{x}_1, x_3, \bar{x}_4]$, набор значений переменных $x_1 =$ $x_2 = 1, x_3 = x_4 = 0.$ G_1 $x_1 \rightarrow 1 \quad 0 \quad 0 \quad 0 \quad \cdots \quad 1 \quad 0 \quad \cdots \quad 1 \quad 0 \quad 0 \quad 0$ $\bar{x}_1 \rightarrow 1 \quad 0 \quad 0 \quad 0 \quad \cdots \quad 0 \quad 1 \quad \cdots \quad 0 \quad 0$ $x_2 \to 0 \quad 1 \quad 0 \quad 0 \quad \cdots \quad 0 \quad 0 \quad 0 \quad 0 \quad 0$ $\bar{x}_2 \rightarrow 0 \quad \mathbf{1} \quad 0 \quad 0 \quad \cdots \quad \mathbf{1} \quad 0 \quad \cdots \quad 0 \quad \mathbf{1} \quad 0 \quad 0 \quad 0$ $x_3 \rightarrow 0 \quad 0 \quad 1 \quad 0 \quad \cdots \quad 1 \quad 1 \quad \cdots \quad 0 \quad 0 \quad 1 \quad 0 \quad 1$ $\bar{x}_3 \rightarrow 0 \quad 0 \quad 1 \quad 0 \quad \cdots \quad 0 \quad 0 \quad \cdots \quad 0 \quad 0 \quad 0 \quad 0$ $\bar{x}_4 \rightarrow 0 \quad 0 \quad 0 \quad 1 \quad \cdots \quad 0 \quad 1 \quad \cdots \quad 0 \quad 0 \quad 0 \quad 0 \quad 1$

0

Утверждение. Пусть вектор \boldsymbol{a} является линейной комбинацией строк построенной ранее матрицы G. Тогда $d(\boldsymbol{a},\boldsymbol{b}) \geq M$, причём $d(\boldsymbol{a},\boldsymbol{b}) = M$ т. и т.т., когда вектор \boldsymbol{a} соответствует решению задачи 1-in-3-SAT.

(Утверждение вытекает из предыдущих рассмотрений)

Следовательно, задача 1-in-3-SAT полиномиально сводится к задаче NCP.

Задача о ближайшем кодовом слове (NCP — Nearest Codeword Problem)

Замечание. Фактически, нами доказано, что NP-трудной является задача более слабая, чем NCP: «найти минимум расстояния от заданного слова до кодовых слова заданного линейного кода».

Замечание. Можно доказать NP-трудность такой задачи: «найти максимальный вес кодовых слов заданного линейного кода»

Задача о ближайшем кодовом слове (NCP — Nearest Codeword Problem)

Теорема (без доказательства).

NP-трудной является следующая задача при любом фиксированном β : «для заданного линейного кода C и слова b найти такое t, что $\min_{\pmb{a} \in C} d(\pmb{a}, \pmb{b}) \leq t \leq \beta \cdot \min_{\pmb{a} \in C} d(\pmb{a}, \pmb{b})$ »

(То есть решение задачи NCP трудно не только найти точно, но и приблизить с константной точностью.)

Графы-расширители (expanders)

Двудольный граф с долями L и R называется $(n, m, \Delta, \alpha, c)$ -расширителем, если

- |L| = n, |R| = m
- $\deg u = \Delta$ для любого $u \in L$
- Для любого $S \subseteq L$ при $|S| \le \alpha n$ выполнено $|N(S)| \ge c \cdot |S|$, где N(S) множество вершин в R, смежных с вершинами из S

Утверждение.

Пусть $\Delta \geq 3$, $c \leq \Delta - 2$, $\alpha < 1$ и $m \geq 4n\Delta^2\sqrt{\alpha}$. Тогда при всех натуральных n существуют $(n, m, \Delta, \alpha, c)$ -расширители (и их много!)

Доказательство.

Построим случайный двудольный граф G и докажем, что он с большой вероятностью будет искомым.

Зафиксируем множества L и R (|L|=n, |R|=m) и проведём по Δ рёбер из каждой вершины в L в выбираемые равновероятно и независимо вершины в R (в итоге некоторые из этих Δ рёбер могут попасть в одни и те же вершины R).

Рёбра G имеют естественную нумерацию, в том порядке, в котором мы определяли их концы в R (сначала Δ рёбер из 1-й вершины L, затем Δ рёбер из 2-й вершины L и т.д.).

Если G не является расширителем, то нашлось такое $S \subset L$, для которого

$$|N(S)| < (\Delta - 2) \cdot |S|$$

Оценим вероятность того, что фиксированное множество S оказалось таким «плохим» при случайном выборе концов рёбер из S в R.

А затем оценим вероятность того, что G не расширитель, по формуле

$$\Pr[G \text{ плохой}] = \Pr[\exists \text{плохое } S] \le \sum_{S} \Pr[S \text{ плохое}]$$

Каждое ребро вида (u, v), где $u \in S, v \in N(S)$, отнесём к одному из двух типов:

- Если никакое ребро из S в N(S) с меньшим номером не ведёт в v, то ребро (u,v) назовём «первопроходцем»
- В противном случае, назовём (u,v) «дублем»

Очевидно, всего будет N(S) «первопроходцев» и $(\Delta \cdot |S| - |N(S)|)$ «дублей».

Всего N(S) «первопроходцев» и $(\Delta \cdot |S| - |N(S)|)$ «дублей».

Мы предполагаем, что $|N(S)| < (\Delta - 2) \cdot |S|$, а значит «дублей» будет не менее $2 \cdot |S|$.

Обозначим $s \coloneqq |S|$. Вероятность того, что среди рёбер из S в N(S) есть 2s дублей

$$\leq {\Delta \cdot s \choose 2s} \left(\frac{\Delta \cdot s}{m}\right)^{2s}$$

$$\uparrow \qquad \uparrow$$

Число способов выбрать рёбра-«дубли» Верхняя оценка вероятности попадания конца «дубля» в одну из вершин в |N(S)|

Вероятность того, что заданное множество $S \subset L$ «плохо расширяется», не превосходит

$$\binom{\Delta \cdot |S|}{2|S|} \left(\frac{\Delta \cdot |S|}{m}\right)^{2|S|}$$

Значит,

$$\Pr[G \text{ не расширитель}] \leq \sum_{S \subset L} \Pr[S \text{ «плохое»}] \leq \sum_{1 \leq S \leq \alpha n} \binom{n}{S} \binom{\Delta \cdot s}{2s} \binom{\Delta \cdot s}{m}^{2s}$$

С учётом оценки $\binom{a}{b} < \left(\frac{ea}{b}\right)^b$ получаем

$$\Pr[G \text{ не расширитель}] \leq \sum_{1 \leq s \leq \alpha n} \binom{n}{s} \binom{\Delta s}{2s} \left(\frac{\Delta s}{m}\right)^{2s} \leq n$$

$$\leq \sum_{1\leq s\leq \alpha n} \left(\frac{en}{s}\right)^s \left(\frac{e\Delta s}{2s}\right)^{2s} \left(\frac{\Delta s}{m}\right)^{2s} = \sum_{1\leq s\leq \alpha n} \left(\frac{e^3\Delta^4 sn}{4m^2}\right)^s \leq \sum_{1\leq s\leq \alpha n} \left(\frac{e^3\Delta^4 \alpha n^2}{4m^2}\right)^s$$

$$\Pr[G \text{ не расширитель}] \leq \sum_{1 \leq s \leq \alpha n} \left(\frac{e^3 \Delta^4 \alpha n^2}{4m^2}\right)^s$$

При $m \geq 4n\Delta^2\sqrt{\alpha}$ выполняется неравенство

$$\frac{e^3 \Delta^4 \alpha n^2}{4m^2} < \frac{1}{3}$$

Отсюда

$$\Pr[G \text{ не расширитель}] \leq \sum_{1 \leq s \leq \alpha n} \left(\frac{1}{3}\right)^s < \frac{1}{2}$$

Итак, случайный двудольный мультиграф будет расширителем с вероятностью не менее $\frac{1}{2}$.

Чтобы от мультиграфа перейти к обычному графу, достаточно перенаправить концы рёбер-дублей в произвольные вершины R. Свойства расширительности от этого могут только улучшиться.

Коды на основе двудольных графов

Код на основе двудольного графа — это линейный двоичный код, строящийся так:

- ullet Вершинам из L соответствуют переменные x_1,\dots,x_n
- Вершинам из R соответствуют уравнения: если в вершину $v \in R$ входят рёбра из вершин u_{i_1}, \dots, u_{i_l} , то уравнение будет $x_{i_1} + \dots + x_{i_l} = 0$

Искомый код состоит из всех слов $(x_1 \dots x_n)$, удовлетворяющих системе этих уравнений.

Коды на основе двудольных графов

Например, для графа

соответствующий код будет выглядеть так: $\{(x_1x_2x_3x_4)\mid x_1+x_2+x_4=0, \ x_1+x_3=0\}$

Коды на основе двудольных графов

Утверждение.

Код, построенный по двудольному графу, в котором |L|=n и |R|=m, является двоичным линейным [n,k,d]-кодом, где $k\geq n-m$.

Доказательство:

Код является множеством решений системы из m уравнений с n неизвестными.

Значит, он образует линейное пространство размерности не менее чем n-m.

Коды на основе расширителей: кодовое расстояние

Теорема. (M. Sipser, D.A. Spielman)

Если $c > \frac{\Delta}{2}$, и C — код, построенный на основе $(n, m, \Delta, \alpha, c)$ -расширителя, то $d(C) > \alpha n$.

Доказательство: от противного.

Допустим, что $d(C) \leq \alpha n$. Тогда найдётся слово $\pmb{a} \in C$, такое, что $\pmb{a} \neq \pmb{0}$ и $\|\pmb{a}\| \leq \alpha n$.

Пусть $I \coloneqq \{u_1, \dots, u_{\|a\|}\}$ — вершины из L, соответствующие единичным координатам \boldsymbol{a} .

Коды на основе расширителей: кодовое расстояние

Т.к. наш граф — расширитель, и
$$\| {\pmb a} \| \le \alpha n$$
, то $|N(I)| \ge c \cdot |I| > \frac{\Delta}{2} \cdot |I|$

Всего из I в N(I) ведёт ровно $\Delta \cdot |I|$ рёбер.

Поэтому *среднее* число рёбер, входящее в вершины N(I) из I, равно

$$\frac{\Delta \cdot |I|}{|N(I)|} < \frac{\Delta \cdot |I|}{\frac{\Delta}{2} \cdot |I|} = 2$$

Значит, в N(I) найдётся вершина, в которую входит ровно одно ребро из I.

Коды на основе расширителей: кодовое расстояние

В N(I) найдётся вершина, в которую входит ровно одно ребро из I.

Значит, среди задающих код уравнений есть такое уравнение $x_{i_1}+\dots+x_{i_l}=0$, в котором ровно одна из переменных на слове \pmb{a} обращена в единицу.

Но этого не может быть в предположении, что $\boldsymbol{\alpha}$ является решением этого уравнения. Противоречие.

Teopeма. (M. Sipser, D.A. Spielman)

Пусть $c > \frac{3\Delta}{4}$, и C — код, построенный на основе $(n, m, \Delta, \alpha, c)$ -расширителя.

Пусть слово ${\pmb a}'$ получено из некоторого кодового слова ${\pmb a}$ искажением не более чем $\frac{\alpha n}{4}$ битов.

Тогда восстановить a, зная a', можно с помощью следующего алгоритма...

Алгоритм Сипсера—Шпильмана:

- 1. Если $a' \in C$, то выводим a' и завершаем работу.
- Если a' ∉ C, то для a' некоторые из уравнений (отвечающих вершинам в R) нарушены. Считаем поочерёдно для каждого бита a' число нарушенных уравнений, в которых он участвует. Если их > ∆/2, инвертируем этот бит и идём на шаг 1.

Лемма «о результативном бите».

Пусть $c > \frac{3\Delta}{4}$, и C — код, построенный на основе $(n, m, \Delta, \alpha, c)$ -расширителя.

Пусть $a' \notin C$, но при этом $d(a,a') \leq \alpha n$ для некоторого $a \in C$.

Тогда в a' найдётся бит, обращение которого на противоположный строго уменьшает число невыполненных для a' уравнений. (Имеются в виду уравнения, построенные по графу-расширителю)

Пусть a' — не кодовое слово, находящееся от ближайшего кодового на расстоянии $\leq \alpha n$.

Пусть $I \subset L$ — множество вершин, соответствующих координатам, в которых a' отличается от ближайшего кодового слова.

Обозначим через $N_{\mathrm{pass}}(I)$ вершины из N(I), соответствующие уравнениям, выполненным на слове \boldsymbol{a}' .

Аналогично $N_{\mathrm{fail}}(I)$ — вершины из N(I), отвечающие нарушенным уравнениям.

•
$$N(I) = N_{\text{pass}}(I) \sqcup N_{\text{fail}}(I)$$

Так как наш граф расширитель, и $|I| \leq \alpha n$, то

$$|N_{\text{pass}}(I)| + |N_{\text{fail}}(I)| = |N(I)| \ge c|I| > \frac{3\Delta}{4} \cdot |I|$$

Из каждой вершины N(I) в I ведёт хотя бы одно ребро.

При этом из каждой вершины $N_{\mathrm{pass}}(I)$ в I ведёт хотя бы два ребра (чтобы «обмануть» уравнение, нужно инвертировать в нём чётное количество переменных)!

- $|N_{\text{pass}}(I)| + |N_{\text{fail}}(I)| > \frac{3\Delta}{4} \cdot |I|$
- # $\{$ рёбер из $N_{\mathrm{pass}}(I)$ в $I\} \geq 2 \cdot \left|N_{\mathrm{pass}}(I)\right|$
- #{рёбер из $N_{\mathrm{fail}}(I)$ в I} $\geq |N_{\mathrm{fail}}(I)|$
- Число рёбер между I и N(I) равно $\Delta \cdot |I|$.

Из всего этого выводим

$$\Delta \cdot |I| \ge |N_{\text{fail}}(I)| + 2 \cdot |N_{\text{pass}}(I)| > |N_{\text{fail}}(I)| + 2 \cdot \left(\frac{3\Delta}{4} \cdot |I| - |N_{\text{fail}}(I)|\right)$$

Отсюда
$$|N_{\mathrm{fail}}(I)| > \frac{\Delta}{2} \cdot |I|$$

Итак, общее число нарушенных уравнений, в которых участвуют вершины-переменные из I, строго больше чем $\frac{\Delta}{2} \cdot |I|$.

Значит, в I найдётся вершина, для которой нарушены *больше* половины тех уравнений, в которых она участвует.

То есть, даже не зная I, можно утверждать следующее: среди координат a' есть хотя бы одна такая, обратив значение которой мы уменьшим число нарушенных уравнений.

Лемма о результативном бите говорит, что если к очередному шагу алгоритма мы пришли с некодовым словом a', находящимся от ближайшего кодового на расстоянии $\leq \alpha n$, то очередной бит для изменения мы найдём.

Осталось доказать, что, начав со слова a' на расстоянии $\leq \frac{\alpha n}{4}$ от ближайшего кодового слова a, мы не «притянемся» случайно к какому-то другому кодовому слову $b \neq a$.

До начала работы алгоритма $|I| \leq \frac{\alpha n}{4}$, и значит

#нарушенных уравнений
$$\leq \Delta \cdot |I| \leq \frac{\alpha n \Delta}{4}$$

В ходе работы алгоритма число нарушенных уравнений уменьшается.

Пусть на очередном шаге получено слово a'', и пусть I'' - биты, в которых a'' отличается от ближайшего кодового слова. Имеем

$$\frac{\alpha n\Delta}{4} \ge$$
 #наруш. ур. = $N_{\text{fail}}(I'') > \frac{\Delta}{2} \cdot |I''|$

отсюда $|I''| < \frac{\alpha n}{2}$.

Итак, на каждом шаге алгоритма получаем слово, отличающееся от ближайшего кодового менее чем в $\frac{\alpha n}{2}$ битах.

Т.к. на каждом шаге в слове меняется только один бит, и $d(C) > \alpha n$, то кодовое слово, к которому мы стремимся, всё время одно и то же.

(Т.к., если $d({\pmb a}, {\pmb b}) > t$, то, находясь в шаре $S_{t/2}({\pmb a})$ и смещаясь на один бит, мы не вывалимся в шар $S_{t/2}({\pmb b})$)