

Logic

- Knowledge bases consist of **Sentences**.
- These sentences are expressed according to the **syntax** of the representation language.
- A logic must also define the **semantics**, or meaning, of sentences.
- The semantics defines the truth of each sentence with respect to each possible world (Model).

Logic

- If a sentence α is true in model m, we say that m satisfies α or sometimes m is a model of α .
- Logical reasoning involves the relation of logical **entailment** between sentences—the idea that a sentence follows logically from another sentence.

$$\alpha \models \beta$$

• The formal definition of entailment is this: $\alpha \models \beta$ if and only if, in every model in which α is true, β is also true.

$$\alpha \models \beta$$
 if and only if $M(\alpha) \subseteq M(\beta)$.

Logical Inference

- $\alpha 1 = \text{``There is no pit in [1,2].''}$
- $\alpha 2 = \text{``There is no pit in [2,2].''}$

- By inspection:
- In every model in which KB is true, lpha1 is also true. Hence $KB \models lpha_1$
- Conclusion: There is no pit in [1,2].
- In some models in which KB is true, $\alpha 2$ is false. Hence, KB does not entail $\alpha 2$
- Agent cannot conclude that there is no pit in [2,2].

Propositional Logic

```
Sentence → AtomicSentence | ComplexSentence
           AtomicSentence \rightarrow True \mid False \mid P \mid Q \mid R \mid \dots
          ComplexSentence \rightarrow (Sentence)
                                     ¬ Sentence
                                     Sentence ∧ Sentence
                                     Sentence ∨ Sentence
                                     Sentence \Rightarrow Sentence
                                     Sentence ⇔ Sentence
OPERATOR PRECEDENCE : \neg, \land, \lor, \Rightarrow, \Leftrightarrow
```

Semantics

 The semantics defines the rules for determining the truth of a sentence with respect to a particular model.

P	Q	$\neg P$	$P \wedge Q$	$P \lor Q$	$P \Rightarrow Q$	$P \Leftrightarrow Q$
false	false	true	false	false	true	true
false	true	true	false	true	true	false
true	false	false	false	true	false	false
true	true	false	true	true	true	true

- $\neg P$ is true iff P is false in m.
- $P \wedge Q$ is true iff both P and Q are true in m.
- $P \lor Q$ is true iff either P or Q is true in m.
- $P \Rightarrow Q$ is true unless P is true and Q is false in m.
- $P \Leftrightarrow Q$ is true iff P and Q are both true or both false in m.

Simple Knowledge Base

• There is no pit in [1,1]:

$$R_1: \neg P_{1,1}$$
.

 A square is breezy if and only if there is a pit in a neighboring square:

 $R_2: \quad B_{1,1} \Leftrightarrow (P_{1,2} \vee P_{2,1})$.

 $R_3: \quad B_{2,1} \Leftrightarrow (P_{1,1} \vee P_{2,2} \vee P_{3,1})$.

Breeze percepts for the first two squares:

 $R_4: \neg B_{1,1}$

 $R_5: B_{2,1}$.

 $P_{x,y}$ is true if there is a pit in [x,y].

 $W_{x,y}$ is true if there is a wumpus in [x,y], dead or alive.

 $B_{x,y}$ is true if there is a breeze in [x,y].

 $S_{x,y}$ is true if there is a stench in [x,y].

 $L_{x,y}$ is true if the agent is in location [x,y].

Simple Inference Procedure

• Is $\neg P_{1,2}$ entailed by our KB?

$B_{1,1}$	$B_{2,1}$	$P_{1,1}$	$P_{1,2}$	$P_{2,1}$	$P_{2,2}$	$P_{3,1}$	R_1	R_2	R_3	R_4	R_5	KB
false	true	true	true	true	false	false						
false	false	false	false	false	false	true	true	true	false	true	false	false
:	:	:	:	:	:	:	:	:	:	:	:	:
false	true	false	false	false	false	false	true	true	false	true	true	false
false	true	false	false	false	false	true	true	true	true	true	true	<u>true</u>
false	true	false	false	false	true	false	true	true	true	true	true	<u>true</u>
false	true	false	false	false	true	true	true	true	true	true	true	<u>true</u>
false	true	false	false	true	false	false	true	false	false	true	true	false
:	:	:	:	:	:	:	:	:	:	:	:	:
true	false	true	true	false	true	false						

