4 és 5 változós Karnaugh táblák esetén a cellák indexelése:

		I	3	•		
	A	A	Ī	-		
0h	1h	3h	2h			
4h	5h	7h	6h		C	_
Ch	Dh	Fh	Eh			D
8h	9h	Bh	Ah			
				-		
	A	1		3	-	

		A			A		
			I	3		ı	
0h	1h	3h	2h	6h	7h	5h	4h
8h	9h	Bh	Ah	Eh	Fh	Dh	Ch
18h	19h	1Bh	1Ah	1Eh	1Fh	1Dh	1Ch
10h	11h	13h	12h	16h	17h	15h	14h
	С						

Egy terem világítását négy kapcsoló (D,C,B,A) vezérli. A teremben a lámpa világít, ha

- C és D kapcsoló egyszerre van felkapcsolva vagy
- B kapcsoló fel van kapcsolva és C le van kapcsolva.

Minden más esetben a lámpa nem világít. Adjuk meg a hálózat igazságtábláját, írjuk fel a függvény algebrai alakját, és rajzoljuk fel kapuáramkörökkel is! Végül vizsgáljuk meg a hálózat hazárdmenetességét!

Megoldás:

Első lépésben megadjuk, hogy a bemeneten, illetve a kimeneten a 0 és 1 értékeknek mit feleltetünk meg. A bemeneten a 0 azt jelenti, hogy a kapcsoló le van kapcsolva, 1 ha fel van kapcsolva. A kimeneten a 0 azt jelenti, hogy a lámpa nem világít, az 1, hogy világít. Ezek alapján felírjuk az igazságtáblát. Mivel 4 bemeneti változónk van, a 4 kapcsoló, ezért az igazságtáblánknak 16 sora lesz plusz a fejléc. Egyetlen kimenetünk van, ezt Y-nal jelöljük.

	D	C	В	A	Y
0	0	0	0	0	0
1	0	0	0	1	0
2	0	0	1	0	1
3	0	0	1	1	1
4	0	1	0	0	0
5	0	1	0	1	0
6	0	1	1	0	0
7	0	1	1	1	0
8	1	0	0	0	0
9	1	0	0	1	0
10	1	0	1	0	1
11	1	0	1	1	1
12	1	1	0	0	1
13	1	1	0	1	1
14	1	1	1	0	1
15	1	1	1	1	1

Az igazságtábla alapján a függvényt beírjuk egy 4 változós Karnaugh táblába, és megadjuk a lehető legegyszerűbb alakját az Y függvénynek.

A Karnaugh táblában megadott lefedéseknél már látszik, hogy van statikus hazárd lehetősége a hálózatban (kékkel jelölt cellák), ezért ezt meg kell szüntetnünk. A kékkel jelölt cellákban található egyeseket egy közös lefedésben szerepeltetjük. Ez a D*B lefedés lesz, ezzel egészítjük ki az Y függvény korábbi alakját.

$$Y = (D * C) + (\overline{C} * B) + (D * B)$$
. A kapott függvényt felrajzoljuk kapuáramkörökkel is.

Adjuk meg az alábbi Karnaugh táblában ábrázolt Y függvény hazárdmentes megvalósítását!

Y		1			
	1	X	1		
	X	1	1	С	
	X				D
	1				

Megoldás:

Első lépésben adjuk meg az Y függvényt megadó lefedéseket, úgy, hogy a hazárd lehetőségével nem foglalkozunk.

1. lefedés: 0h, 4h, Ch, 8h indexű cellák egyesítése, $\bar{B}*\bar{A}$

2. lefedés: 3h, 2h, 7h, 6h indexű cellák egyesítése, $\overline{D}*B$

Most keressünk olyan szomszédos cellákat, ahol 1-es van, és különböző lefedésekben szerepelnek. Ilyen a 0h, illetve a 2h indexű cellákban található 1-es. A hazárd megszüntetésének módja, hogy ezt a 2 cellát szerepeltetjük egy közös lefedésben. Itt is a lehető legnagyobb lefedést kell megvalósítani. Így a hazárdmentesítő hurok: $\overline{D}*\overline{A}$ (vastag fekete vonallal jelölve).

Y		A	ı			
-	1		X	1)	_	
_	X		1	1)		
	X				C	
	1				<u>-</u>	D

$$Y = (\overline{B} * \overline{A}) + (\overline{D} * B) + (\overline{D} * \overline{A})$$

Most már csak fel kell rajzolni az Y függvényt megvalósító kombinációs hálózatot.

ÉS-NEM kapus megvalósítás: $Y = \overline{\overline{B} * \overline{A}} * \overline{\overline{D} * B} * \overline{\overline{D} * \overline{A}}$

VAGY-NEM kapus megvalósítás: $Y = \overline{\overline{B} + A} + \overline{D} + \overline{\overline{B}} + \overline{D} + \overline{A}$

Adjuk meg az alábbi Karnaugh táblában ábrázolt V függvény hazárdmentes megvalósítását!

V	A	A	A						
•				В					
0			0	0	0				
0			0	0	X			D	_
X			0	0	X			D	L
$\lfloor X \rfloor$			X	X	0				Е
					(С		_	

Megoldás:

Először adjuk meg a lefedéseket, figyelmen kívül hagyva a hazárd lehetőségét.

- 1. lefedés: 6h, 7h, Eh, Fh, 1Eh, 1Fh, 16h, 17h indexű cellák összevonása: C * B
- 2. lefedés: 0h, 8h, 18h, 10h, 2h, Ah, 1Ah, 12h indexű cellák összevonása: $\bar{C}*\bar{A}$

Most keressünk olyan szomszédos cellákat, ahol 0-k vannak, és külön lefedésekben szerepelnek. Három ilyen cellapárt is találunk, a 2h, 6h; illetve Ah, Eh; valamint a 1Ah, 1Eh. Ezeket egy közös lefedésben szerepeltethetjük. A hazárdmenetesítő hurok: $B*\bar{A}$ (kék színnel kitöltve).

V	A	1			A	4			
-	ı]	В		ı	•		
0			0	0	0				
0			0	0	X				
X			0	0	X			D	
X			X	X	0				Ε
					(C		ı	

A V függvény hazárdmenetes megvalósítása: $V = \overline{(C*B) + (\bar{C}*\bar{A}) + (B*\bar{A})}$. Most már csak fel kell rajzolnunk a V függvényt megvalósító kombinációs hálózatot.

ÉS-NEM kapus megvalósítás: $V = \overline{\overline{C*B*\overline{C*\overline{A}*\overline{A}*\overline{B*\overline{A}}}}$

VAGY-NEM kapus megvalósítás: $V = \overline{\overline{C} + \overline{B}} + \overline{C + A} + \overline{\overline{B} + A}$

Adjuk meg az alábbi Karnaugh táblában ábrázolt Z függvény hazárdmentes megvalósítását!

Megoldás: Hazárdmentesítés nélkül az alábbi lefedéseket kapjuk:

 $(\bar{E}*\bar{D})+(E*\bar{C})+(C*A)$. Keressük meg a hazárdhelyeket. A 0h, 2h, 10h, 12h indexű cellákban olyan 1-esek szerepelnek, amelyek szomszédosak és különböző lefedésekben vannak. Hasonló a helyzet a 11h, 15h, 1Bh, 1Fh indexű cellákban. A hazárdmenetesítő hurkok: $\bar{D}*\bar{C}$ (kék színnel kitöltve), és E*A (zöld színnel jelölve), így nézzük a Z függvény hazárdmentes megvalósítását:

$$Z = (\overline{E} * \overline{D}) + (E * \overline{C}) + (C * A) + (\overline{D} * \overline{C}) + (E * A)$$

ÉS-NEM kapus megvalósítás: $Z = \overline{\overline{E} * \overline{D}} * \overline{E * \overline{C}} * \overline{C * A} * \overline{\overline{D} * \overline{C}} * \overline{E * A}$

VAGY-NEM kapus megvalósítás: $Z = \overline{\overline{E} + \overline{D} + \overline{E} + \overline{C} + \overline{C} + \overline{A} + \overline{D} + \overline{C} + \overline{E} + \overline{A}}$

Lehetséges e hazárd, és ha igen, akkor milyen(ek) a megadott áramkörnél? Adjuk meg a lehető legegyszerűbb megvalósítást ÉS-NEM kapukkal!

Megoldás

Először a kapcsolási rajzból felírjuk az egyenletet, majd ezt olyan alakúra hozzuk, hogy beírható legyen Karnaugh táblába. A Karnaugh táblából megállapítható, hogy lehet-e benne statikus hazárd, és ha lehet, akkor mivel 3 fokozatú a hálózat, dinamikus hazárd lehetősége is fenn áll. Nézzük az egyenletet: $Y = \overline{\overline{B*\overline{C}*\overline{D}}*\overline{D}*\overline{C}*\overline{A}} + \overline{B+A+D}$

A De Morgan azonosságokat felhasználva átírjuk az egyenletet ÉS-VAGY szerkezetűre.

$$Y = (B * \bar{C} * \bar{D}) + (D * \bar{C} * \bar{A}) + (\bar{B} * \bar{A} * \bar{D})$$

Így már be tudjuk írni Karnaugh táblába az Y függvényt. Az egyenlet alakjából az látszik, hogy a függvényt 1-esekre valósítjuk meg. 4 különböző változó szerepel az Y függvényben, így egy 4 változós Karnaugh táblát rajzolunk fel.

 $D * \bar{C} * \bar{A}$, nem a legegyszerűbb lefedés, hiszen a tábla 4 sarkában lévő 1-est is lefedhetjük, és ezzel a lefedéssel a 0h - 8h; 0h - 2h; 2h - Ah indexű cellák közötti hazárd lehetőségét is kiküszöböljük. Mivel statikus hazárd lehetősége benne volt az eredeti megvalósításban, és a háló-

zat 2-nél több fokozatú volt, így dinamikus hazárd lehetősége is fenn áll. Az új lefedéssel, ami $\bar{C}*\bar{A}$, (kék körökkel jelölve) az egyenletünk a következő lesz:

$$Y = (B * \overline{C} * \overline{D}) + (\overline{C} * \overline{A}) + (\overline{B} * \overline{A} * \overline{D})$$

Átírva ÉS-NEM kapus megvalósításra: $Y = \overline{\overline{B*\bar{C}*\bar{D}}*\overline{\bar{C}*\bar{A}}*\overline{\bar{B}*\bar{A}*\bar{D}}}$. Már csak fel kell rajzolni ez alapján a hálózatot.

