## EXAMEN DE ELECTRÓNICA (8 de septiembre de 2008)

(2º Curso de Ingeniería Informática / 3º Curso de Ingeniería Informática + Matemáticas)

- 1. Para el circuito de la figura,
  - a) Calcule sus equivalentes de Thévenin y de Norton entre los terminales a y b.
  - b) Se conecta una resistencia variable, R<sub>o</sub>, entre los terminales a y b y se ajusta hasta conseguir la máxima transferencia de potencia. Calcule el valor numérico de R<sub>o</sub> y el valor de la potencia entregada en esas condiciones.



- 2. En el circuito siguiente,
  - a) Con  $V_b = 0$ , determinar el rango de valores que puede tomar  $V_a$  sin que el A.O. ideal entre en saturación.
  - b) Si V<sub>a</sub>=10 V, determine el rango de valores de V<sub>b</sub> que permiten que el A.O. permanezca en su régimen lineal.



- 3. La fuente  $I_i$  del circuito con diodos zener puede tomar valores  $-\infty < Ii < \infty$ . Considerando para los diodos zener los valores que se indican a continuación:
  - a) Determine los valores de  $I_i$  para los cuales los diodos  $Z_1$  y  $Z_2$  cambian de región de funcionamiento.
  - b) Halle y represente esquemáticamente la curva característica de transferencia, I<sub>o</sub> frente a I<sub>i</sub>.

Datos: Para 
$$Z_1$$
:  $V\gamma = V\gamma_1$ ,  $r_d = 0$ ,  $V_Z = V_{Z1}$ ,  $r_Z = 0$ ;  
Para  $Z_2$ :  $V\gamma = V\gamma_2$ ,  $r_d = 0$ ,  $V_Z = V_{Z2}$ ,  $r_Z = 0$ 



- 4. Considerando para el transistor del circuito el modelo lineal, halle el punto de trabajo e indique su región de funcionamiento en los siguientes casos:
  - a)  $R_E = 0$
  - **b**)  $R_E = 2K\Omega$

$$\begin{split} \underline{Datos} \colon R_B &= 50 K \Omega, \, R_C = 3 K \Omega, \, V_{BB} = 5 V \, y \, V_{CC} = 10 V; \\ \beta &= 100, \, V_{BE\gamma} (conducción) = 0.7 V \, y \, V_{CEsat} = 0.2 V. \end{split}$$

