Разработка методики оценки степени синхронизированности нотных записей и живой МУЗЫКИ

Магистерская диссертация

Студент: Кочуркин Иван Алексеевич Руководитель: Филиппов Михаил Владимирович

Цель:

Разработка и реализация методики оценки синхронизации нотных записей и музыки в реальном времени.

Задачи:

- Анализ алгоритмов определения частоты основного тона.
- Анализ алгоритмов синхронизации временных рядов.
- Разработка алгоритма синхронизации нотных записей в реальном времени.
- Разработка алгоритма оценивания темпа исполнения.
- Разработка методики оценки степени синхронизации.
- Реализация программного комплекса.
- Исследование разработанных алгоритмов.

Синхронизация нотных записей и музыки

Алгоритмы определения частоты основного тона

Частота основного тона – наименьшая частота колебаний квазипериодического сигнала.

Алгоритм	Достоинства	Недостатки					
Временная область							
Пересечение с нулем (ZCR)	Простота реализацииВысокая скорость работы	• Неправильная работа в случае наличия высокочастотных спектральных компонент					
Автокорреляция	• Простота реализации	Ограниченный набор частотСкорость работы					
YIN	• Большой диапазон частот	• Вычислительная сложность					
Частотная область							
Гармоническое перемножение спектров (HPS)	 Плохое качество работы на низких частотах 	• Требуется спектр сигнала					

Модифицированный алгоритм определения частоты основного тона

- Основан на автокорреляции.
- Два этапа:
 - Тест фрагмента низкого разрешения (используется каждый 8 отсчет).
 - Тест фрагмента высокого разрешения (используется фрагмент в окрестности частоты, определенной на 1 этапе).
- Интерполяция Хермита 3-го порядка для минимизации ошибок высоких частот (так как индексы отсчетов не ограничены целыми числами).
- Вычисление номера ноты: $MidiNote = \log_{12\sqrt{2}}(\frac{F}{F_0})$
 - *F* частота основного тона.
 - F_0 частота ноты с номером 0.

Алгоритмы сопоставления временных последовательностей

Алгоритм	Достоинства	Недостатки			
Сопоставление строк (String Matching)	• Простота реализации.	 Невозможность возврата в предыдущее состояние. Сложность применения в системах реального времени. Сложность гибкой настройки. 			
Динамическая трансформация времени (DTW)	• Не требуется определение частоты основного тона.	• Сложность применения в системах реального времени.			
Алгоритм Витерби на Скрытой Марковской Модели (HMM)	 Большое количество исследований и применений в различных областях. Возможность применения алгоритмов обучения и гибкой настройки. 	• Потрбление большого количества памяти без оптимизаций.			

Использование СММ для нотных записей

CMM:

- Алгоритм прямого-обратного хода (оценка).
- Алгоритм Витерби (поиск скрытых состояний).
- Алгоритм Баума-Велша (обучение).

Музыкальные записи как события СММ:

- Ноты.
- Часть ноты.
- ADSR-кривые.

Решенная задача: подбор и генерация коэфициентов в матрицах А, В, рі.

Ошибки исполнения и различные длительности нот.

- Виртуальные состояния.
- Ноты с различной длительностью:
 - Использование состояния с самопереходам.
 - Использование скрытых полумарковских моделей.
 - Разбиение всех нотных событий на фрагменты с одинаковой длительностью, кванты.

Сыграна правильная последовательность Пропущена правильная нота Сыграна неправильная нота Добавлена неправильная нота

Количество квантов:

 $Count = (\sum_{events} event. \, quaterDur \cdot kvantsInQuater) \cdot (VirtualCount + 1)$

Модифицированный алгоритм Витерби в СММ для работы в реальном времени

Матрица A:

	159	160	161	162	163	164	165	166	167	168	169	170	171
156	0.45	0	0	0	0	0	0	0	0	0	0	0	0
157	0.95	0	0.01	0	0.01	0	0.01	0	0	0	0	0	0
158	0.45	0.1	0.45	0	0	0	0	0	0	0	0	0	0
159	0	0.02	0.95	0	0.01	0	0.01	0	0.01	0	0	0	0
160	0	0	0.45	0.1	0.45	0	0	0	0	0	0	0	0
161	0	0	0	0.02	0.95	0	0.01	0	0.01	0	0.01	0	0
162	0	0	0	0	0.45	0.1	0.45	0	0	0	0	0	0
163	0	0	0	0	0	0.02	0.95	0	0.01	0	0.01	0	0.01
164	0	0	0	0	0	0	0.45	0.1	0.45	0	0	0	0
165	0	0	0	0	0	0	0	0.02	0.95	0	0.01	0	0.01
166	0	0	0	0	0	0	0	0	0.45	0.1	0.45	0	0
167	0	0	0	0	0	0	0	0	0	0.02	0.95	0	0.01
168	0	0	0	0	0	0	0	0	0	0	0.45	0.1	0.45
169	0	0	0	0	0	0	0	0	0	0	0	0.02	0.95
170	0	0	0	0	0	0	0	0	0	0	0	0	0.45

$$N = 10; M = 3; P = 4$$

- Идентификатор ноты в матрице В: $HmmId = \begin{cases} 12, & MidiId \leq 0 \\ MidiId \% & 12, MidiId > 0 \end{cases}$
- Использование скользящей матрицы начальных вероятностей (pi).
- Распараллеливание.
- Сложность алгоритма: $O(\frac{M \cdot N^2}{P})$
 - *N* размер окна
 - M рассматриваемые наблюдения ($P \ge N \cdot 4$)
 - P количество потоков.
- Не зависит от глобального пути.

Алгоритм отслеживания ритма в реальном времени

Существующие методы неприменимы для задач реального времени на среднестастистичеком компьютере пользователя.

Шаги:

- Замер времени последних N не гостевых событий в возрастающей последовательности (t_n)
- Измерение разницы между каждыми соседними двумя полученными событиями (d_n)
- Удаление 2 наименьших или наибольших значений (d_k)
- Измерение времени между полученными 6 величинами последующей формуле:

$$d_{mean} = \frac{\sum d_k}{K}$$

$$Tempo = \frac{60 \cdot Kvant\ Note\ Value}{d_{mean}}$$

Разработанный алгоритм показал незначительно худшие результаты по сравнению с последними достижениями (Диксон, 2006).

 $t_1 t_3 t_2 t_7 t_5 t_9 t_{11} t_{12} t_{13} t_{15} t_{17}$ $\rightarrow t_1 t_3 t_7 t_9 t_{11} t_{13} t_{15} t_{17}$

 $t_1 t_3 t_7 t_9 t_{11} t_{13} t_{15} t_{17} \rightarrow d_0 d_1 d_2 d_3 d_4 d_5 d_6 d_7 \in D_0$

 $D_1: d \in D_0,$ $d \neq \max(D_0), d \neq \min(D_0)$

Tempo =
$$\frac{60 \cdot 0.5 \cdot 6}{d_0 + d_1 + d_2 + d_3 + d_{40} + d_5}$$

Методика оценки степени синхронизации

- Требования к методике:
 - Учет позиционных ошибок исполнения.
 - Учет темпа исполнения.
 - Учет ADSR кривых звуковых сигналов (без расширения матрицы **B**):
 - Залигованные ноты.
 - Октавные ошибки.
 - Другие музыкальные орнаменты.
 - Функционирование в реальном времени.
- Недостатки алгоритма прямого-обратного хода в качестве позиционного критерия:
 - Не учитываются виртуальные состояния.
 - Возможность оценки только локальной рассматриваемой цепочки наблюдений.
 - Невозможность учета музыкальных событий (а не квантов).

Методика оценки степени синхронизации

Позиция в нотах (для нотных событий)

ce - Текущее музыкальное событие **pe** - Предыдущее музыкальное

Громкость сv - Текущая громкость

Итоговая формула оценки:

$$K = k_1 * K_{kvant} + k_2 * K_{event} + k_3 * K_{tempo} + k_4 * K_{volume}$$

Структура программной системы

Тестирование алгоритмов определения частоты основного тона

Тестирование алгоритма Витерби в реальном времени

Тестирование метода синхронизации нот

- Тестовые мелодии:
 - Twinkle Twinkle Little Star
 - All I Ask of You
 - On a High Mountain
- Простые мелодии:
 - Высокая точность (параметр соответствует субъективной оценке).
 - Отсутствуют задержки.
- Сложные (с большим количеством орнаментов) или продолжительные мелодии:
 - Довольно плохая точность (штрафной балл не всегда соответствует субъективной оценке).
 - Появляются задержки синхронизации.
 - Большое количество повторяющихся или похожих частей может являться проблемой.

Заключение и выводы

- Проанализированы алгоритмы определения частоты основного тона и реализован модифицированный метод автокорреляции.
- Проанализированы алгоритмы сопоставления временных рядов и реализован алгоритм, основанный на алгоритме Витерби для синхронизации нотных записей в реальном времени.
- Разработан алгоритм определения ритма.
- Разработана методика оценки степени синхронизации нотных записей и музыки в реальном времени.
- Реализовано кроссплатформенное ПО.
- Исследованы реализованные алгоритмы.
- По технологической части работы опубликованы 2 статьи.