Automatic Response Generation to Conversational Stimuli

Vishal Raj Dutta 2015115 Sanidhya Singal 2015085 Group 36

Problem Statement

How to make a computer engage in natural conversation with a person?

Challenges:-

- Previously depended on complex rule-based systems
- Seq2Seq learning a new approach based on RNNs
 - -No rules, learns everything seamlessly from data

Related Work

State-of-the-art for our data:

The Cornell Movie-Dialogue Corpus

Perplexity achieved = 2.74 *

*https://medium.com/botsupply/generative-model-chatbots-e422abo8461e

Dataset & Evaluation

Dataset:

- 20k conversational exchanges from Cornell corpus for training data
- 2k for validation data
- vocabulary of ~1000 most common words
- unknown words replaced by special token

Evaluation:

- qualitative metric : 'human-ness' score
- quantitative metric : perplexity

Feature Extraction

Trimmed sentences to fixed length, and padded them.

Tokenized into words and used them as features, using:

- Word2Vec Model (CBOW)
- 1-Hot vectorization

Strategy: Models Tried

- 1. Statistical HMM model
 - produced less coherent responses
- 2. 4-layered LSTM with Word2Vec- responses were not good, at all (reasons)
- 3. 2-layer encoder-decoder based LSTM with 1-hot-vectorization
 - best of the lot!

For comparisons:
Used HMM for statistical model and encoder-decoder for neural model

LSTM

Image borrowed from https://research.googleblog.com/2015/11/computer-respond-to-this-email.html

Analysis & Progress

HMM model:

- -used a bigram model
- -performed worse than neural model

Encoder-Decoder model:

Analyses carried out -

LSTM v/s GRU

No. of hidden layer dimensions

Batch sizes during training

Encoder-input reversal and non-reversal

Results

Quantitative analysis: Perplexity

SOTA : 2.74

Neural : 8.04

HMM :26.24

Qualitative analysis: Human-ness score*

SOTA : 5.135

Neural : 4.671

HMM : 2.1982

*survey done on IIITD students

Conclusion

Came very close to SOTA!

Neural framework performed way better than the HMM base-line.

Further improvements:

more layers?

more training?

Demo

```
hi
are you the king in the north?
you are funny
are you okay
what is your name? (then)Wouldn't tell me?
you should go home
love me do
would you like AI?
do you know of her?
```


Figure 1. Comparative Study of LSTM and GRU based on Perplexity values (Batch Size = 64, Latent Dimensions = 512)

Figure 2. Comparative Study of Batch Sizes in LSTM with Latent Dimensions = 2

Figure 3. Comparative Study of Latent Dimensions in LSTM with Batch Size = 64

Figure 4. Study of Reversal of Input at the Encoder

Figure 5. Comparative Study of Different Models

Input Sentence	seq2seq Model	State-of-the-art Model	SMT Model
are you a computer?	what me that	Certainly, Doctor	you re you re
get lost!	no	You got it!	you re
are you a human?	what me that	No, not real	you re you re
who is the president?	no one is it?	Nice,me	you . i m
you are not making sense	i don't know	yeah, I know	. you . i m not
are you drunk?	what me that now please would	I'm him .	you re not
Hi!	really	Hil	S
am i a doctor?	was in vsunk work i'm at work u	sure but a can always be a.	you . i m
when will the world end?	wouldn't me	You mean last night would you?	you . i m not
can you teach me something?	this back	what do I do to install?	you re not . i m not

Figure 6. Table showing the comparison of results obtained on the three different models

