UNIVERSITY OF NEW SOUTH WALES. SCHOOL OF MATHEMATICS AND STATISTICS MATH5645 TOPICS IN NUMBER THEORY

2. **DISTRIBUTION OF PRIMES:**

- Show that there are arbitrarily large sets of consecutive integers containing no primes.
- Let $n \ge 1$ be a fixed, but arbitrary, positive integer and let $S = \{30n + k : 0 \le k \le 29\}$. Show that S contains at most 7 primes.
- Suppose that M > 1 and $p_1, p_2, ..., p_s$ are all the primes less than or equal to M.

a. Explain why
$$\sum_{n=1}^{M} \frac{1}{n} < \frac{1}{\left(1 - \frac{1}{p_1}\right) \left(1 - \frac{1}{p_2}\right) \dots \left(1 - \frac{1}{p_s}\right)}.$$

- **b.** Deduce that $\prod_{i=1}^{\infty} \left(1 \frac{1}{p_j}\right) = 0.$
- *4 Another proof that $\sum \frac{1}{p_i}$ diverges.

Suppose the contrary, then there is an integer k such that $\sum_{m=k+1}^{\infty} \frac{1}{p_m} < \frac{1}{2}$. Let $Q = n_1 - n_2$ and consider the numbers $\frac{1}{k} + \frac{1}{k} = 0$.

Let $Q = p_1 \dots p_k$ and consider the numbers 1 + nQ for $n = 1, 2, \dots$

a. Prove that
$$\sum_{n=1}^{\infty} \frac{1}{1+nQ}$$
 diverges.

- **b.** Explain why every prime factor of 1 + nQ must be $\geq p_{k+1}$.
- c. Explain why

$$S(r) = \sum_{n=1}^{r} \frac{1}{1+nQ} < \sum_{t=1}^{\infty} \left(\sum_{m=k+1}^{\infty} \frac{1}{p_m}\right)^t.$$

- **d.** Deduce that S(r) < 1.
- **e.** Conclude that $\sum_{n=1}^{\infty} \frac{1}{1+nQ}$ has bounded partial sums and arrive at a contradiction.
- Let A denote the set of all integers of the form, $2^r 3^s 5^t$.

Evaluate
$$\sum_{n \in A} \frac{1}{n}$$
 and $\sum_{n \in A} \frac{1}{n^2}$.

- A slightly generalised version of Bertrand's postulate states that, for $n \geq 6$, there are at least 2 primes between n and 2n. Use this to prove that $p_{k+2} \leq p_k + p_{k+1}$.
- **a.** Use Bertrand's Postulate to prove that for $m \geq 2$, if $m! = p_1^{\alpha_1} \dots p_r^{\alpha_r}$ then $\alpha_i = 1$ for at least one value

(Hint: Write m = 2k or 2k + 1 and look at the interval [k, 2k].)

- **b.** Deduce that m! is never a kth power for any $k \geq 2$.
- Use Bertrand's postulate to prove that for every integer k > 2, there is a prime p such that p < k < 2p. (Hint: It may be convenient to consider the cases k even and k odd separately.)

*9 Let P(n) denote, for each positive integer $n \geq 2$, the proposition

$$\prod_{p \le n} p < 4^{n-1}$$

where the product is over primes. For a fixed integer m suppose that P(n) is true for all $n \leq m+1$.

- **a.** Prove that \prod_{m+1
- **b.** Prove that, for $m \ge 1$, $\binom{2m+1}{m} < 2^{2m}$.
- **c.** Conclude that $\prod_{p \le 2m+1} p < 4^{2m}.$
- **d.** Deduce that P(n) is true for all n.
- 10 Prove that there are infinitely many primes congruent to $-1 \mod 3$.
- *11 a. Suppose p is prime. Deduce that $x^4 \equiv -1 \mod p$ is soluble iff $p \equiv 1 \mod 8$.
 - **b.** Prove that there are infinitely many primes of the form 8k + 1.

(Hint: Use
$$N = (2p_1....p_n)^4 + 1$$
).

- 12 Prove that
 - **a.** $3.09 \frac{n}{\log n} \le 1.7 \frac{2n}{\log 2n}$ for $n \ge 1001$.
 - **b.** $\frac{n \log 2}{\log n} \frac{\log(n+1)}{\log n} > \frac{2}{3} \frac{n}{\log n}$ for n > 220. (Hint: Look at $f(x) = 3x \log 2 3 \log(x+1) 2x$.)

 $\mathbf{2}$

BRIEF SOLUTIONS

- Let $S = \{n! + 2, n! + 3, \dots, 2n!\}$. Each element of S is composite and S consists of n! 1 consecutive integers.
- Show there are only 8 possible values of k which could produce a prime and that (at least) one of these 2 must be divisible by 7.
- **a.** Expand out the RHS, so RHS = $(1 + \frac{1}{p_1} + ...)(1 + \frac{1}{p_2} + ...)... = \sum_{n \in \Lambda} \frac{1}{n} > \sum_{n \le M} \frac{1}{n}$, where Λ is the set of all integers each of whose prime factors is at most M. **b.** This follows from the divergence of the harmonic

series.

a. The series diverges by the integral test. **b.** Since 1 + nQ is prime to Q, all the prime factors of all these denominators are from a finite set of primes, whose smallest element is p_{k+1} . c. Every term on the LHS also appears on the RHS. d. By our initial assumption, the inner sum is less than $\frac{1}{2}$. Thus for each r

we have $S(r) < \sum_{t=1}^{\infty} \frac{1}{2^t} < 1$. e. Hence the partial sums of $\sum_{n=1}^{\infty} \frac{1}{1+nQ}$ are bounded which is impossible

- Use Euler product. The answers are respectively $\frac{15}{4}$ and $\frac{25}{16}$.
- For $p_k = 2,3$ or 5 the statement is true, so suppose $p_k > 5$ then there are at least two primes between p_k and $2p_k$, so $p_{k+2} < 2p_k$. Also $2p_k = p_k + p_k < p_k + p_{k+1}$. The result follows.
- **a.** The result it true for m=2, so suppose m>2. Write m=2k or m=2k+1 according as m is even or odd. By Bertrand's Postulate, there is a prime p between k and 2k and so 2p > m. Hence p||m!. **b.** This follows directly from (a).
- If k is even then given k there is a prime p with $\frac{k}{2} . hence <math>k < 2p$ and k > p. Similarly, if k is odd, then there are a prime p, such that $\frac{k-1}{2} . If <math>2p \le k-1$ we have a contradiction, and so 2p > k-1. Now k cannot equal 2p since k is odd so 2p > k and the result follows.

 a. $\binom{2m+1}{m} = \frac{(2m+1)!}{m!(m+1)!}$ so if m+1 , <math>p is a prime factor of the numerator but not the denominator.
- denominator. b. By the binomial theorem $\binom{2m+1}{m} < \frac{1}{2} \left[\binom{2m+1}{0} + \binom{2m+1}{1} + \cdots + \binom{2m+1}{m} + \binom{2m+1}{m+1} + \cdots + \binom{2m+1}{2m+1} \right] = \frac{1}{2} 2^{2m+1} = 2^{2m}$. c. $\prod_{p \leq 2m+1} p = \prod_{m \leq m+1} p \prod_{m+1 The result now follows by strong induction, since we have shown that <math>P(m+1) \Rightarrow P(2m+1)$, clearly P(2) is true, and we note that $\prod_{m \in M} p = \prod_{m \in M} p \cdot P(2m-1) \Rightarrow P(2m)$

true, and we note that $\prod_{p \le 2m-1} p = \prod_{p \le 2m} p$ so $P(2m-1) \Rightarrow P(2m)$.

- Suppose the contrary and let $S = \{q_1, q_2, \dots, q_r\}$ be the set of all primes congruent to $-1 \mod 3$ and let $P = 3q_1 \dots q_r - 1$. Then $P \equiv -1 \mod 3$. If P is prime we have a contradiction and if not then consider the prime factorisaton of P. If all the prime factors are 1 mod 3, then $P \equiv 1 \mod 3$ which is false. Thus P has at least one prime factor which is $-1 \mod 3$ but this cannot be in S. This contradiction completes the
- a. By Theorem 1.1 $x^4 \equiv -1 \mod p$ has solution iff $(-1)^{\frac{p-1}{(4,p-1)}} \equiv 1 \mod p$. That is, iff $\frac{p-1}{(4,p-1)}$ is even. So if p = 8k + r, r = 1, 3, 5, 7 the condition holds iff r = 1. b. Suppose the contrary and let $S = \{p_1, p_2, ..., p_n\}$ be all the primes of the form 8k + 1. Set $N = (2p_1....p_n)^4 + 1$ and let p be a prime factor of N. Since N is odd so is p. By (b), N is a solution of $x^4 + 1 \equiv 0 \mod p$ and so p is of the form 8k + 1. But $p \notin S$ which gives the desired contradiction.
- **12** a. ('Discover' the proof by working backwards). For n > 1200 (in fact for n > 1002), we have $\log n > 1000$ a. (Discover the proof by working backwards). For n > 1200 (in fact is: 1202), we have $\frac{3.09 \log 2}{0.31}$ and so $3.09 \log 2 < 0.31 \log n$. This implies that $3.09(\log 2 + \log n) - 3.4 \log n < 0$. Multiplying by n and dividing by $\log n \log 2n$ we can write $\frac{3.09n \log 2n - 3.4n \log n}{\log n \log 2n} < 0$ which splits to give $\frac{3.09n}{\log n} - \frac{1.7 \times 2n}{\log 2n}$ and the result follows.

 b. Consider the function $f(x) = 3x \log 2 - 3 \log(x+1) - 2x$. $f'(x) = 3 \log 2 - \frac{3}{1+x} - 2$ which is positive for $x \ge 37$. Hence for x > 37 the function is increasing. Also f(220) > 0 so for x > 220, f(x) > 0. Dividing by $3 \log x$ the result follows.