UC Berkeley Department of Statistics

STAT 210A: Introduction to Mathematical Statistics

Problem Set 3

Fall 2014

Issued: Friday, September 19 Due: Thursday, September 25 (beginning of class)

Problem 3.1

Let X_1, \ldots, X_n be i.i.d. absolutely continuous variables with common density $f_{\theta}, \theta \in \mathbb{R}$, given by

$$f_{\theta}(x) = \begin{cases} \frac{\phi(x)}{\Phi(\theta)}, & x < \theta; \\ 0, & x \ge \theta. \end{cases}$$

(This is the density for the standard normal distribution truncated above at θ .)

- (a) Derive a formula for the UMVU for $g(\theta)$. (Assume that g is differentiable and behaves reasonably as $\theta \to \pm \infty$.)
- (b) If n = 3 and the observed data are -2.3, -1.2, and 0, what is the estimate for θ^2 ?

Problem 3.2

Consider a scale family $\frac{1}{\theta}f(x/\theta)$, $\theta > 0$ where f is some fixed density function.

(a) Show that the amount of information that a single observation X contains about θ is given by

$$\frac{1}{\theta^2} \int \left[\frac{yf'(y)}{f(y)} + 1 \right]^2 f(y) dy.$$

- (b) Show that the information X contains about $\xi = \log \theta$ is independent of θ .
- (c) For the Cauchy distribution $C(0,\theta)$, show that $I(\theta) = 1/(2\theta^2)$.

Problem 3.3

(Poisson birth process) This example illustrates some differences that can arise with dependent data, as opposed to i.i.d. sampling models. Consider a random sequence Y_0, Y_1, \ldots, Y_n such that $Y_0 \sim \operatorname{Poi}(\theta)$, and Y_j given the past (Y_0, \ldots, Y_{j-1}) is also Poisson with mean θY_{j-1} . The maximum likelihood estimate (MLE) of θ maximizes the log likelihood $\ell(\theta) = \log p(Y_0, \ldots, Y_n; \theta)$ of the data.

- (a) Show that the MLE of θ based on (Y_0, \ldots, Y_n) is given by $\widehat{\theta} = (\sum_{j=0}^n Y_j)/(1 + \sum_{j=0}^n Y_j)$.
- (b) Show that the information in (Y_0, \ldots, Y_n) about θ is given by $I(\theta) = \theta^{-2}(\theta + \theta^2 + \ldots + \theta^{n+1})$. What happens to this information for $\theta < 1$? Intuitively, what is happening in this model?

1

Problem 3.4

Suppose that the vector $X = (X_1, \ldots, X_n)$ has i.i.d. elements with the density

$$p(x;\theta) = \exp(\theta - x), \quad \text{for } x \ge \theta.$$

Let $\delta(\cdot)$ be any unbiased estimator of θ based on X.

(a) Using Cauchy-Schwartz, first show that

$$\operatorname{var}_{\theta}(\delta(X)) \geq \sup_{\theta' \geq \theta} \frac{(\theta - \theta')^2}{\mathbb{E}_{\theta} \left[\left(\frac{p(x;\theta')}{p(x;\theta)} - 1 \right)^2 \right]}.$$

(b) Hence conclude that

$$\operatorname{var}_{\theta}(\delta(X)) \geq a^*/n^2,$$

where a^* solves the equation $2/(na) - \frac{e^{na}}{e^{na}-1} = 0$.

- (c) The information inequality under i.i.d. sampling predicts scaling of the form $\operatorname{var}_{\theta}(\delta(X)) = \mathcal{O}(1/n)$. Explain why the result of (b) differs from this scaling.
- (d) Prove that the estimator $\delta_a(X) = \min_i X_i \frac{1}{n}$ is unbiased, and has variance $1/n^2$.

Problem 3.5

Let X_1, \ldots, X_n be i.i.d samples from the $Poi(\lambda)$ distribution truncated on the left at 0 (i.e., a Poisson variate $Y \sim Poi(\lambda)$ conditioned on $Y \geq 1$). Show that the information inequality for any unbiased estimator of λ is

$$\frac{\lambda (1 - \exp^{-\lambda})^2}{n (1 - \exp(-\lambda) - \lambda \exp(-\lambda))}.$$