Supplementary Material for "Cov-trans: An Efficient Algorithm for Discontinuous Transcript Assembly in Coronaviruses"

Xiaoyu Guo¹, Zhenming Wu¹, Shu Zhang¹, and Jin Zhao¹,*

¹Dept. School of Computer Science and Technology, Qingdao University, Ningxia Road, 266071, Qingdao, Shandong Province, China

*Correspondence: <u>zhaojin@qdu.edu.cn</u>

Contents:

1. Detailed evaluation results	2
1.1. Comparison of Assembly Performance on Simulated Datasets	2
1.2. The performance of Cov-trans under different thresholds	4
1.3. Parameter setting for Mixed-Integer Linear Programming	5
2. Command Lines used for benchmarking	6

1. Detailed evaluation results

1.1. Comparison of Assembly Performance on Simulated Datasets

The detailed performance of the assemblers on all simulated datasets is shown in Tables S1 – S3.

Table S1 Benchmarking results for the datasets of SARS-CoV-2.

Dataset	Parameters	StringTie	Scallop	Jumper	Cov-trans
	F ₁ -score	0.100	0.091	0.100	0.667
Sars2-Sim1	recall	0.053	0.053	0.053	0.526
	precision	1.000	0.333	1.000	0.909
	F ₁ -score	0.100	0.174	0.095	0.750
Sars2-Sim2	recall	0.053	0.105	0.053	0.632
	precision	1.000	0.500	0.500	0.923
	F ₁ -score	0.100	0.296	0.174	0.750
Sars2-Sim3	recall	0.053	0.211	0.105	0.632
	precision	1.000	0.500	0.500	0.923
	F ₁ -score	0.100	0.174	0.400	0.750
Sars2-Sim4	recall	0.053	0.105	0.316	0.623
	precision	1.000	0.500	0.545	0.923
	F ₁ -score	0.100	0.250	0.294	0.727
Sars2-Sim5	recall	0.053	0.158	0.263	0.632
	precision	1.000	0.600	0.333	0.857
	F ₁ -score	0.100	0.182	0.323	0.788
Sars2-Sim6	recall	0.053	0.105	0.263	0.684
	precision	1.000	0.667	0.417	0.929

Table S2 Benchmarking results for the datasets of SARS-CoV-1.

Dataset	Parameters	StringTie	Scallop	Jumper	Cov-trans
	F ₁ -score	0.105	0.087	0.111	0.813
Sars1-Sim1	recall	0.059	0.059	0.059	0.765
	precision	0.500	0.167	1.000	0.867
	F ₁ -score	0.111	0.273	0.276	0.686
Sars1-Sim2	recall	0.059	0.176	0.176	0.706
	precision	1.000	0.600	0.600	0.667
	F ₁ -score	0.105	0.364	0.593	0.848
Sars1-Sim3	recall	0.059	0.235	0.471	0.824
	precision	0.500	0.800	0.800	0.875
	F ₁ -score	0.105	0.480	0.387	0.788
Sars1-Sim4	recall	0.059	0.353	0.353	0.765
	precision	0.500	0.750	0.429	0.813
	F ₁ -score	0.111	0.250	0.387	0.765
Sars1-Sim5	recall	0.059	0.176	0.353	0.765
	precision	1.000	0.429	0.429	0.765
	F ₁ -score	0.111	0.480	0.345	0.875
Sars1-Sim6	recall	0.059	0.353	0.294	0.824
	precision	1.000	0.750	0.417	0.933

Table S3 Benchmarking results for the datasets of MERS-CoV.

Dataset	Parameters	StringTie	Scallop	Jumper	Cov-trans
	F ₁ -score	0.074	0.378	0.077	0.681
Mers-Sim1	recall	0.040	0.280	0.040	0.640
	precision	0.500	0.583	1.000	0.727
	F ₁ -score	0.077	0.595	0.071	0.708
Mers-Sim2	recall	0.040	0.440	0.040	0.680
	precision	1.000	0.917	0.333	0.739
	F ₁ -score	0.077	0.571	0.200	0.708
Mers-Sim3	recall	0.040	0.480	0.120	0.680
	precision	1.000	0.706	0.600	0.739
	F ₁ -score	0.077	0.696	0.500	0.723
Mers-Sim4	recall	0.040	0.640	0.440	0.680
	precision	1.000	0.762	0.579	0.773
	F ₁ -score	0.077	0.773	0.511	0.708
Mers-Sim5	recall	0.040	0.680	0.480	0.680
	precision	1.000	0.895	0.545	0.739
	F ₁ -score	0.077	0.727	0.571	0.708
Mers-Sim6	recall	0.040	0.640	0.480	0.680
	precision	1.000	0.842	0.706	0.739

1.2. The performance of Cov-trans under different thresholds

The Depth of a canonical transcripts refers to the average number of times this transcript is sequenced across the dataset. In this study, the depth threshold is defined as the maximum value between 0.001 times the average depth of all vertices in the discontinuous graph. The performance of Cov-trans under different depth thresholds is shown in Table S4.

Table S4 The performance of Cov-trans under different thresholds of depth

Dataset	Depth Thresholds	Depth Thresholds F1-score recall		precision
	0.0015	0.737	0.583	1.000
Sars2-sim1	0.0010	0.800	0.667	1.000
	0.0005	0.762	0.667	0.889
	0.0015	0.545	0.400	0.857
Sars1-sim1	0.0010	0.857	0.800	0.923
	0.0005	0.774	0.800	0.750
	0.0015	0.800	0.727	0.889
Mers-sim1	0.0010	0.800	0.727	0.889
	0.0005	0.800	0.727	0.889

1.3. Parameter setting for Mixed-Integer Linear Programming

The specific values of the parameters (w_1 , w_2 , and w_3) used in the mixed-integer linear programming model are provided in Table S5 for simulated datasets and Table S6 for real datasets.

Table S5 The parameters $(w_1,\ w_2,\ and\ w_3)$ of simulated datasets

Dataset	w_1	w_2	w_3	Types of viruses	
Sars2-sim1	0.056	0.750	0.514		
Sars2-sim2	0.056	0.692	0.474		
Sars2-sim3	0.500	0.074	0.042	CADC CaV 2	
Sars2-sim4	0.083	0.444	0.250	SARS-CoV-2	
Sars2-sim5	0.063	0.533	0.364		
Sars2-sim6	0.091	0.407	0.229		
Sars1-sim1	0.500	0.069	0.048		
Sars1-sim2	0.200	0.156	0.104		
Sars1-sim3	0.500	0.065	0.034	CADC CoV 1	
Sars1-sim4	0.250	0.133	0.071	SARS-CoV-1	
Sars1-sim5	0.333	0.094	0.064		
Sars1-sim6	0.500	0.031	0.167		
Mers-sim1	0.067	0.405	0.263		
Mers-sim2	0.063	0.400	0.258		
Mers-sim3	0.056	0.486	0.277	MEDS CaV	
Mers-sim4	0.047	0.538	0.350	MERS-CoV	
Mers-sim5	0.077	0.342	0.224		
Mers-sim6	0.045	0.564	0.319		

Table S6 The parameters $(w_1, w_2, and w_3)$ of real datasets

Dataset	w_1	\mathbf{w}_2	w_3	Types of viruses
SRR12789544	0.059	0.436	0.227	
SRR12789545	0.083	0.444	0.250	SARS-CoV-2
SRR12789546	0.667	0.385	0.208	
SRR1942954	0.016	0.685	0.349	
SRR1942956	0.016	0.687	0.354	SARS-CoV-1
SRR1942957	0.016	0.685	0.349	
SRR10357372	0.130	1.000	0.517	
SRR10357373	0.150	1.046	0.540	MERS-CoV
SRR10357374	0.025	0.580	0.300	

2. Command Lines used for benchmarking

For benchmarking, we used three existing tools, which are listed below. All tools were tested with their default settings unless stated otherwise.

Jumper arguments

We run Jumper with the following arguments:

```
python jumper_main.py  -b ${input_bam} -f ${input_fasta}
--outputDecomposition ${output_decomposition} --outputGTF
${output_assembled} --sj_threshold ${SJ threshold}
```

Scallop arguments

We run Scallop v0.10.5 with the following arguments:

```
scallop -i ${input_bam} -o ${output_assembled}
```

StringTie arguments

We run StringTie v2.2.1 with the following arguments:

```
stringtie -o ${output_assembled} ${input_bam}
```