8/6/24, 10:18 PM Online Degree

Х

About (/about) | Notifications \bigcirc (/mynotifications) | 23113110286@sastra.ac.in \checkmark (/profile)

SASTRA » Numerical & Statistical Analysis

=

Unit 3 - UNIT - III: Numerical Solutions of ODE

Course outline		Assessment 9	
	UNIT - I : Transcendental	The due date for submitting this assignment has passed.	Due on 2023-05-21, 23:59 IST.
	Polynomial &	As per our records you have not submitted this assignment.	200 011 2020 00 21, 2000 10 11
	Simultaneous	1) The number of initial values required for Milne's method	1 point
_	equations and	ofour	, point
\oplus	Interpolations ()	three	
		one	
	UNIT - II:	O two	
	Numerical	No, the answer is incorrect.	
	differentiation and	Score: 0	
±	Integration ()	Accepted Answers: four	
	UNIT - III : Numerical	2) The error in Runge-Kutta second order method is of order	1 point
	Solutions of ODE	o square of h	
	0	Cube of h	
0.	acture 1: Calution by	○ h	
Lecture 1: Solution by Taylor series- First order ODE (week 7) (unit? unit=34&lesson=35)		○ 1.63	
		No, the answer is incorrect. Score: 0	
		Accepted Answers:	
		cube of h	
Lecture 2 Solution by Taylor's series - Second and simultaneous ODEs		3) Advantages of Runge-Kutta method	1 point
		Operivatives are required	
		easy for computation	
,	week 7) (unit? ınit=34&lesson=36)	derivatives are not required	
	,	onone of the above	
	ecture 3-Solution of Second order and	No, the answer is incorrect. Score: 0	
Simultaı Taylor's	Simultaneours ODE by	Accepted Answers: derivatives are not required	
	aylor's series nethod(contd.,)(Week	4) If $f(x,y)=f(x)$ in a differential equation, in the Runge Kutta method of fourth order Δy	1 point
	') (unit?	reduces to area by Simpson's three eight rule	
u	ınit=34&lesson=37)	reduces to area by trapezoidal rule	
୍ଦ	Quiz: Assessment 7	reduces to area by Picard's rule	
(assessment?	oreduces to area by Simpson's one-third rule	
	name=45)	No, the answer is incorrect. Score: 0	
F	ecture 4 Solution of First order ODE by	Accepted Answers: reduces to area by Simpson's one-third rule	
8	Picard's Method (Week	5) Which of the following methods does not require starting values	1 point
	3) (unit?	© Euler's method	
u	ınit=34&lesson=38)	Milne's method	
	ecture 5 :Solution by	Adam's method	
	Picard's method	Multi step methods	
	contd) (week 8) (unit?	No, the answer is incorrect.	
u	ınit=34&lesson=39)	Score: 0	
	ecture 6 -Solution by	Accepted Answers: Multi step methods	
	Euler's method –	6) Runge-Kutta method of second order is the method	d
"	mproved and modified	Of Thange Halla mother of occord order to the mother	1 point

Euler method (week 8) Euler's method (unit? Taylor's method unit=34&lesson=40) midpoint method onone of these Lecture 7 - Solution by No, the answer is incorrect. Euler's method -Improved and modified Accepted Answers: Euler method(cont.,) (Week 8) (unit? 7) For y' = y + x with y(0) = 1 and h = 0.1 the value of K_1 in Runge-Kutta fourth order method is --1 point unit=34&lesson=41) 0.1 Quiz: Assessment - 8 0 1,0 (assessment? 0.01 name=47) 0.11 Lecture 8 : Runge kutta No, the answer is incorrect. Score: 0 method for solving First Accepted Answers: order ODE and Second order ODE (week 9) (unit? 8) In Runge-Kutta fourth order method $K_4 = - - -$ 1 point unit=34&lesson=42) \bigcirc hf(x₁ + h , y₁ + K₃) \bigcirc hf(x₁ + h , y₁ + K₂) Lecture 9-Runge- Kutta hf(x₁ + h , y₁ + K₁) Method (contd.,)(Week 0 f(x₁ + h , y₁ + K₃) 9) (unit? unit=34&lesson=43) No, the answer is incorrect. Lecture 10: Predictor -Accepted Answers: Corrector Methods $hf(x_1 + h, y_1 + K_3)$ (Milne's Method) (Week 9) Find y(1) by Milne's method, given that $y' = x - y^2$, y(0) = 0, y(0.2) = 0.02, y(0.4) = 0.0795, y(0.6) = 0.1762. 1 point 9) (unit? unit=34&lesson=44) 0.4556 Ouiz: Assessment - 9 0 4654 (assessment? 0.6654 name=49) No, the answer is incorrect. UNIT - IV: Accepted Answers: Statistical 0.4556 distributions and 10) By Runge-Kutta method solve $y' = y^2 + xy$, y(1) = 1. find y(1.1). 1 point Test of hypothesis \oplus 0 0 1.4 0 1.2145 Unit V: Non-0 1.2415 0 1.425 parametric statistical No, the answer is incorrect. methods & Time Score: 0 Accepted Answers: series analysis () \oplus 1 2415 11) By Milne's method solve $y' = 1 + y^2$, y(0.6) = 0.6841, y(0.4) = 0.4228, y(0.2) = 0.2027, y(0) = 0. find y(-0.2). 1 point 0.02 0.3 0.2028 0 No, the answer is incorrect. Score: 0 Accepted Answers: -0 2028 12) Milne's method is a 1 point single step method Multistep method series method onone of the above No, the answer is incorrect. Accepted Answers:

13) Obtain the values of y at x = 0.1 and 0.2 using R-K fourth order for the differential equation y' = -y, given y(0) = 1.

Multistep method

 \bigcirc y(0.1) = 0.905, y(0.2) = 0.8187 \bigcirc y(0.1) = 0.95, y(0.2) = 0.887 \bigcirc y(0.1) = 0.91, y(0.2) = 0.81 1 point

8/6/24, 10:18 PM Online Degree

```
y(0.1) = 0.9, y(0.2) = 0.8
No, the answer is incorrect. Score: 0
Accepted Answers:
y(0.1) = 0.905, y(0.2) = 0.8187
14) Using R - K fourth order find y(0.8) correct to 4 decimal places, if y' = y - x^2, y(0.6) = 1.7379
                                                                                                                               1 point
 2.0145
 2.451
  2.5401
No, the answer is incorrect.
Score: 0
Accepted Answers: 2.0145
15) Using R-K fourth order find y(0.2), given that y' = y - x, y(0) = 2 taking h = 0.1.
                                                                                                                               1 point
 2.4
 2
 2.421
  0 1.242
No, the answer is incorrect. Score: 0
Accepted Answers:
2.421
```


FOLLOW US

(https://www.facebook.com/swayammoocs/)

 $\label{privacy_policy} \textit{Privacy_policy}) \mid \textit{Terms of Use (/terms_of_use)} \mid \textit{Honor Code (/honor_code)}$

© 2024 SWAYAM. All rights reserved. Initiative by : MHRD (Govt of India)