Rotationsinerti = Inertimoment

Table 11.3 Rotational inertia of uniform objects of inertia M about axes through their center of mass

Rotation axes oriented so that object could roll on surface: For these axes, rotational inertia has the form cMR^2 , where $c = I/MR^2$ is called the *shape factor*. The farther the object's material from the rotation axis, the larger the shape factor and hence the rotational inertia.

hollow-core cylinder solid sphere thin-walled cylinder or hoop solid cylinder thin-walled hollow sphere Shape Router MR^2 $\frac{1}{2}MR^2$ $\frac{1}{2}M(R_{\text{outer}}^2 + R_{\text{inner}}^2)$ $\frac{2}{3}MR^2$ $\frac{2}{5}MR^2$ Rotational inertia $\frac{1}{2}$ Shape factor $c = I/MR^2$

Other axis orientations

thin-walled hoop

R

Rotational inertia $\frac{1}{2}MR^2$

solid cylinder

 $\frac{1}{4}MR^2 + \frac{1}{12}M\ell^2$

thin rod

 $\frac{1}{12}M\ell^2$

rectangular plate

 $\frac{1}{12}M(a^2+b^2)$

Shape