XM531 Problem Set 4

Problem 1

The gamma function is denoted by $\Gamma(p)$ and is defined by the integral

$$\Gamma(p+1) = \int_0^\infty e^{-x} x^p dx.$$

- a. Show that, for p > 0, $\Gamma(p+1) = p\Gamma(p)$.
- b. Show that $\Gamma(1) = 1$.
- c. If p is a positive integer n, show that $\Gamma(n+1) = n!$. Since $\Gamma(p)$ is also defined when p is not an integer, this function provides an extrasion of the factorial function to nonintegral vales of the independent variable. Note that it is also consistent to define 0! = 1.
- d. Show that, for p > 0,

$$p(p+1)(p+2)\dots(p+n+1) = \frac{\Gamma(p+n)}{\Gamma(p)}.$$

e. Thus $\Gamma(p)$ can be determined for all positive values of p if $\gamma(p)$ is known in a single interval of unit length, say $0 . It is possible to show that <math>\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$. Find $\Gamma\left(\frac{3}{2}\right)$ and $\Gamma\left(\frac{11}{2}\right)$.

Problem 2

Use the Laplace transform to solve the given intial value problem.

$$y'' + 3y' + 2y = 0;$$
 $y(0) = 1, y'(0) = 0.$

Problem 3

Let α be a real number. Express the solution of the given initial value problm in terms of a convolution integral.

$$y'' + 2y' + 2y = \sin(\alpha t);$$
 $y(0) = 0, y'(0) = 0.$

Problem 4

Let α be a real number. Find the Laplace transform of the following:

a.
$$f(t) = t^2 \sinh(\alpha t)$$

b.
$$g(t) = \begin{cases} t, & 0 \le t < 1, \\ 2 - t, & 1 \le t < 2, \text{ and} \\ 0, & 2 \le t < \infty \end{cases}$$

Additional sheet for Problem