CASE STUDY OF TAXI MANAGEMENT SYSTEM USING RELATIONAL DATABASE DESIGN

Case Study in Relational Database Design

• Title: Taxi Management System

• Student Names: Pranav Jindal (2010990538)

Naman Verma (2010990472) Preetinder Singh (2010990548) Paras Mahajan (2010990516) Nikhil Chauhan (2010990493)

• **Guide:** Chaitanya Singla (E1116663)

Contents

•	Abstract					
	Acknowledgments					
	Chapter 1: Introduction					
• Chapter 2: Name of the Case Study						
	 2.1. Case Study Informal Description. 2.2. Terminologies and Symbols of ER diagram. 2.3. Case Study Logical Model (ER Diagram) 2.4. Case Study Physical Schema. 2.5. Case Study Interactive Queries. 					
•	Conclusion					
•	Bibliography					

Abstract

The objective of this thesis is to get some good hands-on for creating the relational schemas and implementing the data extraction queries related to them. One case study "Taxi Management System" is presented. Input for this case study is taken from its informal specification to a relational schema using entity-relationship modeling and its translation to the relational model, to database schema, to implementation of the database, to interactive SQL querying of the installed database (Oracle).

Acknowledgement

We would like to express our gratitude to all those who made it possible to complete this thesis in particular to our supervisor Chaitanya Singla sir. We would also like to thank our family for their understanding and continuous support.

Chapter 1: Introduction

• Database Management System:

Database Management Systems (DBMS) are software systems used to store, retrieve, and run queries on data. A DBMS serves as an interface between an end-user and a database, allowing users to create, read, update, and delete data in the database. DBMS manages the data, the database engine, and the database schema, allowing for data to be manipulated or extracted by users and other programs. This helps provide data security, data integrity, concurrency, and uniform data administration procedures.

• Relational Database Management System:

A Relational Database Management System (RDBMS) is a program that allows you to create, update, and administer a relational database. Most relational database management systems use the SQL language to access the database.

• ER Diagram:

• The objective of Case Study:

The objective of this case study is to get a little taste of how the designing process of the database system goes and how all the data insertions, updates, and fetching are performed. In this, we also had a hands-on practice of how to design the ER diagram of our database.

Chapter 2: Taxi Management System

2.1. Case Study Informal Description:

We have planned a taxi management system in which we are storing the information of our taxies and all the drivers. In our system, we, are also storing the details of our customers and all about their ride information. We are also having a feedback section in which we are storing the feedback from our customers regarding their experience with the driver and his/her skills in their journey.

2.2. Case Study Logical Model:

2.3. Case Study Physical Model:

• Customer Table:

```
create table customer (
cid int,
name varchar (25) not null,
gender varchar (6) not null,
email varchar (40) not null check (email like '% @ %'),
phone number (10) check (length(phone)=10),
password varchar (15),
constraint cust_id primary key(cid)
);
```

```
SQL> CREATE TABLE customer(cid INT,name VARCHAR(25) NOT NULL,gender VARCHAR(6) NOT NULL,email VARCHAR(40) NOT N
ULL CHECK (email like '%@%'),phone NUMBER(10) CHECK (LENGTH(phone)=10),password VARCHAR(15),CONSTRAINT cust_id
PRIMARY KEY(cid));
Table created.
```

insert into customer values (

```
101, 'Rupesh Dev Mand', 'Male', 'rupesh01@gmail.com', 6518734985, 'abc1238jb');
```

```
SQL> INSERT INTO customer VALUES(101, 'Rupesh Dev Mand', 'Male', 'rupesh01@gmail.com',6518734985, 'abc1238jb');
1 row created.
```

CID NAME	GENDER EMAIL	PHONE PASSWORD
101 Rupesh Dev Mand 102 Jobin Radhe Rajagopal 103 Kajal Malhotra 104 Samir Kumar 105 Upasana Pandit 106 Kirti Choudhry 107 Prabhat Sangha 108 Sheetal Nayar	Male rupesh01@gmail.com Male jobin02@gmail.com Female kajal03@yahoo.com Male samir04@gmail.com Female upasana05@yahoo.com Female kirti06@gmail.com Male prabhat07@yahoo.com Female sheetal08@gmail.com	6518734985 abc1238jb 6128219987 #4@hgyr0 6411017992 *+451kui; 6218461723 Iunm890? 7979084959 @#tyh678 6809670819 \$%@uijm8 8917659281 ()874jukm 6127982334 =%^hgbt54

• Driver Table:

```
create table driver (
d_id varchar (10),
license varchar (15),
name varchar (25) not null,
phone number (10) check (length(phone)=10),
mail varchar (40) not null check (mail like '% @ %'),
overall_rating number (2,1),
constraint driver_id primary key(d_id)
);
```

```
SQL> CREATE TABLE driver(d_id VARCHAR(10),license VARCHAR(15),name VARCHAR(25) NOT NULL,phone NUMBER(10) CHECK (LENGTH(pho ne)=10),mail VARCHAR(40) NOT NULL CHECK (mail like '‱'),overall_rating NUMBER(2,1),CONSTRAINT driver_id PRIMARY KEY(d_id));

Table created.
```

```
insert into driver values (
'D101', 'PB7028718', 'Manpreet Singh', 7136768490, 
'manpreet01@gmail.com', 4.7
);
```

```
SQL> INSERT INTO driver VALUES('D101','PB7028718','Manpreet Singh',7136768490,'manpreet01@gmail.com',4.7);

1 row created.
```

D_ID	LICENSE	NAME	PHONE	MAIL	OVERALL_RATING
D101	PB7028718	Manpreet Singh	7136768490	manpreet01@gmail.com	4.7
D102	MH4478223	Yogesh Sharma	9799900889	yogesh02@yahoo.com	5
D103	HR9312538	Sanjana Garg	6127993561	sanjana03@gmail.com	4.4
D104	HR3077002	Yash	8917258098	yash04@gmail.com	4
D105	DL8542285	Vishal Gupta	7887916490	vishal05@gmail.com	3.9
D106	CH2967725	Bhavna Garg	7284278815	bhavna06@yahoo.com	4.9

• Ride Table:

```
create table ride (
rid varchar (10),
cid int,
pickup_loc varchar (50) not null,
dropoff_loc varchar (50) not null,
ride_date date,
time varchar (10),
distance int,
d_id varchar (10),
constraint ride_id primary key(rid),
constraint cust_id1 foreign key(cid) references customer(cid),
constraint driver_id1 foreign key(d_id) references driver(d_id)
);
```

SQL> CREATE TABLE ride(rid VARCHAR(10),cid INT,pickup_loc VARCHAR(50) NOT NULL,dropoff_loc VARCHAR(50) NOT NULL,ride_date
DATE,time VARCHAR(10),distance INT,d_id VARCHAR(10),CONSTRAINT ride_id PRIMARY KEY(rid),CONSTRAINT cust_id1 FOREIGN KEY(ci
d) REFERENCES customer(cid),CONSTRAINT driver_id1 FOREIGN KEY(d_id) REFERENCES driver(d_id));

Table created.

```
insert into ride values (
'R101', 101, 'Nabha', 'Patiala', to_date ('12-04-2021', 'dd-mm-yyyy'),
to_char (to_date ('1325', 'hh24mi'), 'hh24:mi'), 30, 'D101'
);
```

```
SQL> INSERT INTO ride VALUES('R101',101,'Nabha','Patiala',to_date('12-04-2021','dd-mm-yyyy'),to_char(to_date('1325','hh24mi'),'hh24:mi'),30,'D101');

1 row created.
```

RID	CID PICKUP_LOC	DROPOFF_LOC	RIDE_DATE TIME	DISTANCE D_ID
R101	101 Nabha	Patiala	12-APR-21 13:25	30 D101
R102	105 Pune	Navi Mumbai	12-APR-21 19:00	126 D102
R103	103 Panchkula	New Delhi	09-MAY-21 18:30	260 D105
R104	102 Gurgaon	New Delhi	10-MAY-21 09:55	30 D104
R105	105 Patiala	Rajpura	11-MAY-21 19:00	34 D101
R106	104 Panchkula	Chandigarh	12-MAY-21 14:15	12 D103

• Payment Table:

```
create table payment (
pid varchar (10),
rid varchar (10),
cid int,
amount number (10,2),
constraint pay_id primary key(pid),
constraint ride_id1 foreign key(rid) references ride(rid),
constraint cust_id2 foreign key(cid) references customer(cid)
);
```

SQL> CREATE TABLE payment(pid VARCHAR(10),rid VARCHAR(10),cid INT,amount NUMBER(10,2),CONSTRAINT pay_id PRIMARY KEY(pid),C
ONSTRAINT ride_id1 FOREIGN KEY(rid) REFERENCES ride(rid),CONSTRAINT cust_id2 FOREIGN KEY(cid) REFERENCES customer(cid));
Table created.

```
insert into payment values ('P101', 'R101', 101, 1000.0');
```

```
SQL> INSERT INTO payment VALUES('P101','R101',101,1000.0);

1 row created.
```

PID	RID	CID	AMOUNT
P101	R101	101	1000
P102 P103	R102 R103	105 103	1549.23 1863.8
P104 P105	R104 R105	102 105	2000.5 1250
P105	R106	104	830.65

• Taxi Table:

```
create table taxi (
regis_number varchar (12),
model varchar (20),
vehicle_type varchar (10),
d_id varchar (10),
constraint regis_no primary key(regis_number),
constraint driver_id2 foreign key(d_id) references driver(d_id)
);
```

SQL> CREATE TABLE taxi(regis_number VARCHAR(12),model VARCHAR(20),vehicle_type VARCHAR(10),d_id VARCHAR(10),CONSTRAINT reg is_no PRIMARY KEY(regis_number),CONSTRAINT driver_id2 FOREIGN KEY(d_id) REFERENCES driver(d_id)); Table created.

```
insert into taxi values (
'PB11CY4512', 'Altroz', 'Hatchback', 'D101'
);
```

```
SQL> INSERT INTO taxi VALUES('PB11CY4512','Altroz','Hatchback','D101');
1 row created.
```

REGIS_NUMBER	MODEL	VEHICLE_TY	D_ID
PB11CY4512 MH12TS2154 HR03Z7842 HR72C3298 DL7CQ1939 CH01CF8561 MH01DX6427	Altroz Harrier Swift Dzire Grand i10 Aura Vitara Brezza Fortuner	Hatchback SUV Sedan Hatchback Sedan Crossover SUV	D102 D103 D104 D105

• Feedback Table:

```
create table feedback (d_id varchar (10), cid int, rid varchar (10),
```

```
ride_rating number (1),
constraint driver_id3 foreign key(d_id) references driver(d_id),
constraint cust_id3 foreign key(cid) references customer(cid),
constraint ride_id2 foreign key(rid) references ride(rid)
);
```

SQL> CREATE TABLE feedback(d_id VARCHAR(10),cid INT,rid VARCHAR(10),ride_rating NUMBER(1),CONSTRAINT driver_id3 FOREIGN KEY(d_id) REFERENCES driver(d_id),CONSTRAINT ride_id2 FOREIGN KEY(rid) REFERENCES ride(rid));

Table created.

```
insert into feedback values ('D101',101,'R101',4');
```

```
SQL> INSERT INTO feedback VALUES('D101',101,'R101',4);
1 row created.
```

D_ID	CID RID	RIDE_RATING
D101	101 R101	4
D102	105 R102	4
D105	103 R103	4
D104	102 R104	3
D101	105 R105	4
D103	104 R106	5

2.4. Case Study Interactive Queries:

- **Query 1:** Find the female customers who had a ride on 09/05/2021.
- = select cid, name from customer natural join ride where gender='Female' and ride_date=to_date('09-05-2021', 'dd-mm-yyyy');

- Query 2: Find the taxi registration number and name of the driver whose overall rating is 5.
- = select regis_number, name from taxi inner join driver on taxi.d_id = driver.d_id where overall_rating=5;

- Query 3: Find the count of all the vehicle types.
- = select vehicle_type, count(regis_number) from taxi group by vehicle_type;

```
SQL> SELECT vehicle_type, count(regis_number) FROM taxi GROUP BY vehicle_type;

VEHICLE_TY COUNT(REGIS_NUMBER)

Sedan 2
Crossover 1
Hatchback 2
SUV 2
```

- **Query 4:** Find all the pickup points with their respective number of customers.
- = select pickup_loc, count(cid) from customer natural join ride group by pickup_loc;

- **Query 5:** Find the count of SUV's.
- = select count(regis_number) as "No. of SUV's" from taxi group by vehicle_type having vehicle_type='SUV';

- **Query 6:** Find the phone, email of the customer who had rated their ride with 3 or more stars.
- = select phone, email from customer where cid= (select cid from feedback where ride_rating<=3);

• **Query 7:** Find email ids of customers who paid ride amount >=1300. = select email from customer inner join payment on customer.cid=payment.cid where amount>=1300;

```
SQL> SELECT email FROM customer INNER JOIN payment ON customer.cid=payment.cid WHERE amount>=1300;

EMAIL

------
jobin02@gmail.com
kajal03@yahoo.com
upasana05@yahoo.com
```

- **Query 8:** Find details of the driver and his car who drives the car with registration number = "MH12TS2154".
- = select * from driver inner join taxi on driver.d_id=taxi.d_id where regis_number = 'MH12TS2154';

SQL> SEI	SQL> SELECT * FROM driver INNER JOIN taxi ON driver.d_id=taxi.d_id where regis_number='MH12TS2154';								
D_ID	LICENSE	NAME	PHONE MAIL	OVERALL_RATING REGIS_NUMBER MODEL	VEHICLE_TY D_ID				
D102	MH4478223	Yogesh Sharma	9799900889 yogesh02@yahoo.com	5 MH12TS2154 Harrier	SUV D102				

• **Query 9:** Find name, gender of customer who requested ride after 18:00hrs. = select name, gender from customer inner join ride on customer.cid=ride.cid where time>'1800';

SQL> SELECT name,gender F	ROM customer	INNER	JOIN	ride ON	customer	.cid=ride.	cid WHERE	time>	'1800';
NAME	GENDER								
Upasana Pandit	Female								
Kajal Malhotra Upasana Pandit	Female Female								

Conclusion

While working on this project, we learned a lot about creating a database and implementing all the queries related to the creation of the database, modifying it, and fetching the data from it. We have a good hold on the concepts related to ER diagram now.

Bibliography

- Database System Concepts, Abraham Silberschatz, Henry F. Korth, Sudharsan, McGraw-Hill, Seventh Edition.
- 'An Introduction to Database Systems', C.J. Date, O'Reilly Media, Eighth Edition.
- www.google.com