Overlapping Spaces for Compact Graph Representations: Supplementary

Anonymous Author(s)

Affiliation Address email

1 A Experimental Setup

2 A.1 Training Details

- 3 All models discussed in Section 5.2 were trained with 2000 iterations. If more than one learning
- 4 rate was used for a certain dataset (due to problems with the convergence of individual models), all
- 5 the spaces were evaluated for all learning rates, and the best result was reported for each space. For
- 6 distortion, the learning rate was 0.1 for all datasets except UCSA312 (Cities), where we had 0.1 and
- 7 0.01. For mAP, the learning rate 0.1 was used for all datasets except UCSA312 and CSPhDs, where
- 8 we had 0.01 and 0.05 for both datasets.
- 9 For the experiments in Section 5.3, we used 5000 iterations for short embeddings and 1000 for long
- ones (long embeddings converged faster). Hard-negative mining was not used for DSSM training.
- Instead, large batches of 4096 random training examples (almost 1% of the entire dataset) were used.
- During the learning process, only the training queries and documents were used. For evaluation, the
- nearest website was searched among all the documents. The training part was 90% of the dataset,
- 14 and the quality discrepancy between validation and test sets was quite small. Data samples are given
- in the table 6.
- For the synthetic experiment in Section 5.4, for all spaces, the learning rates 0.1, 0.05, 0.01, 0.001
- were used, and the best result was selected. We had 2000 and 1000 iterations for distortion and mAP,
- 18 respectively.

19 A.2 WLA6 Dataset Details

- 20 As described in the main text, this dataset is obtained by running the breadth-
- 21 first search algorithm on the category graph of the English-language Wikipedia
- 22 (https://en.wikipedia.org/wiki/Special:CategoryTree), starting from the vertex (category) "Linear
- 23 algebra" and limited to the depth 6 (Wikipedia Linear Algebra 6). We provide this graph along
- 24 with the texts (names) of the vertices (categories). The resulting graph is very close to being a tree,
- 25 although there are some cycles. Predictably, hyperbolic space gives a significant profit for this graph,
- 26 while using product spaces gives almost no additional advantage. The purpose of using this dataset is
- to check our conclusions on data other than those used in [1] and to evaluate overlapping spaces on a
- 28 dataset where product spaces do not provide quality gains. Figure 1 visualizes the obtained graph.
- Table 1 shows full version of the results.

Figure 1: Graph visualization. Red (big) nodes belong to the smaller part.

Table 1: Bipartite graph reconstruction (full version)

	mAP	distortion
E_{10}	0.777	0.094
H_{10}	0.794	0.095
S_{10}	0.796	0.096
$H_5^2 \ S_5^2$	0.799	0.090
S_5^2	0.796	0.094
$H_5 imes S_5$	0.798	0.090
H_2^5	0.761	0.086
$S_2^{5\over 2}$	0.773	0.092
$H_2^2 \times E_2 \times S_2^2$	0.796	0.089
$O_{l1}, t = 0$	0.824	0.094
$O_{l1}, t = 1$	0.803	0.082
$O_{l2}, t = 1$	0.814	0.092
best metric space	0.824	0.082
c - dot	0.863	0.079
c – wips	1	0.091
$O_{mix-l1}, t = 1$	0.986	0.083
$O_{mix-l2}, t = 1$	1	0.070

Additional Experimental Results

37

B.1 Our Implementation of Product Spaces vs Original One 31

- Table 2 compares our implementation with the results reported in [1]. It should be noted that we have 32 significantly different algorithms with differing numbers of iterations. 33
- The optimal values of distortion obtained with our algorithm (except for the UCSA312 dataset) are
- 34 comparable and usually better than those reported in [1]. On UCSA312, the obtained distortion is 35
- orders of magnitude better, which can be caused by the proper choice of the learning rate (in our 36
- experiments on this dataset, this choice significantly affected the results). These results indicate that
- our solution is a good starting point to compare different spaces and similarities. 38
- For mAP, we optimize the proxy-loss, in contrast to the canonical implementation, where both metrics 39
- were specified for models trained with distortion. Clearly, the results are more stable for our approach:

Table 2: Graph reconstruction: original product spaces vs our implementation

	UCSA312		CS PhDs		Power		Facebook	
	Canon.	Our	Canon.	Our	Canon.	Our	Canon.	Our
			Dist	ortion				
E_{10}	0.0735	0.0032	0.0543	0.0475	0.0917	0.0408	0.0653	0.0487
H_{10}	0.0932	0.0111	0.0502	0.0443	0.0388	0.0348	0.0596	0.0483
S_{10}	0.0598	0.0095	0.0569	0.0503	0.0500	0.0450	0.0661	0.0540
$H_5 imes H_5$	0.0756	0.0057	0.0382	0.0345	0.0365	0.0255	0.0430	0.0372
$S_5 imes S_5$	0.0593	0.0079	0.0579	0.0492	0.0471	0.0433	0.0658	0.0511
$H_5 \times S_5$	0.0622	0.0068	0.0509	0.0337	0.0323	0.0249	0.0402	0.0318
H_2^5	0.0687	0.0059	0.0357	0.0344	0.0396	0.0273	0.0525	0.0439
$H_{2}^{5} \ S_{2}^{5}$	0.0638	0.0072	0.0570	0.0460	0.0483	0.0418	0.0631	0.0489
$H_2^2 \times E_2 \times S_2^2$	0.0765	0.0044	0.0391	0.0345	0.0380	0.0299	0.0474	0.0406
			m	AP				
E_{10}		0.9290	0.8691	0.9487	0.8860	0.9380	0.5801	0.7876
H_{10}		0.9173	0.9310	0.9399	0.8442	0.9385	0.7824	0.7997
$S_{10},$		0.9254	0.8329	0.9578	0.7952	0.9436	0.5562	0.7868
$H_5 \times H_5$		0.9247	0.9628	0.9481	0.8605	0.9415	0.7742	0.8084
$S_5 imes S_5$		0.9231	0.7940	0.9662	0.8059	0.9466	0.5728	0.7891
$H_5 \times S_5$		0.9316	0.9141	0.9654	0.8850	0.9467	0.7414	0.8087
H_2^5		0.9364	0.9694	0.9671	0.8739	0.9508	0.7519	0.7979
S_2^{5}		0.9281	0.8334	0.9714	0.8818	0.9521	0.5808	0.7915
$H_2^2 \times E_2 \times S_2^2$		0.9391	0.8672	0.9611	0.8152	0.9486	0.5951	0.7970

we do not have such a large spread of values for different spaces. We noticed that directly optimizing ranking losses leads to significant improvements.

43 B.2 Parametrization of Spherical Space

45

46

47

In Tables 2 and 3 of the main text, we used hyperspherical parameterization of spherical subspaces in product spaces since we fixed the number of stored values for each space. Here, in Tables 3 and 4, we present the extended results, where we fix the mathematical dimension of product spaces and use d+1 parameters and simple mappings from Section 3.1, equation 4, as done in [1]. We can see that our implementation gives results comparable to the original ones in distortion setup and significantly better for mAP, which is associated with using the proxy-loss instead of distortion.

Table 3: Graph reconstruction with distortion loss, top results are highlighted, metrics only.

Signature	UCSA312	CS PhDs	Power	Facebook	WLA6
E_{10}	0.00318	0.0475	0.0408	0.0487	0.0530
H_{10}	0.01114	0.0443	0.0348	0.0483	0.0279
S_{10}	0.00951	0.0503	0.0450	0.0540	0.0589
$H_5^2 \equiv H_5 \times H_5$	0.00573	0.0345	0.0255	0.0372	0.0279
$S_5 \times S_5 \equiv S_5^2$	0.00792	0.0492	0.0433	0.0511	0.0585
$H_5 \times S_5$	0.00681	0.0337	0.0249	0.0318	0.0296
H_2^5	0.00592	0.0344	0.0273	0.0439	0.0356
$S_2^{\overline{5}}$	0.00720	0.0460	0.0418	0.0489	0.0549
$\bar{H_2^2} \times E_2 \times S_2^2$	0.00436	0.0345	0.0299	0.0406	0.0405
$O_{l1}^{2}, t = 0$	0.00356	0.0368	0.0281	0.0458	0.0286
$O_{l1}, t=1$	0.00330	0.0300	0.0231	0.0371	0.0272
$O_{l2}, t = 1$	0.00530	0.0328	0.0246	0.0324	0.0278

Table 5: Comparison of proxy-losses, mAP

	UCSA312			CS PhD		
$P \sim$	e^{-d}	$e^{1/d}$	1/d	e^{-d}	$e^{1/d}$	1/d
E_{10}	0.929	0.911	0.899	0.949	0.956	0.831
H_{10}	0.917	0.807	0.885	0.940	0.749	0.764
S_{10}	0.925	0.797	0.838	0.958	0.572	0.689
$H_5^2 \ S_5^2$	0.925	0.890	0.883	0.948	0.976	0.723
S_5^{2}	0.923	0.802	0.858	0.966	0.748	0.775
$H_5 \times S_5$	0.932	0.838	0.865	0.965	0.804	0.721
H_2^5	0.936	0.896	0.903	0.967	0.998	0.823
$S_2^{ar{5}}$	0.928	0.856	0.871	0.971	0.876	0.881
$H_2^2 \times E_2 \times S_2^2$	0.939	0.872	0.865	0.961	0.884	0.689
$O_{l1}, t = 0$	0.952	0.933	0.872	0.988	0.961	0.762
$O_{l1}, t = 1$	0.952	0.947	0.877	0.990	0.963	0.815
$O_{l2}, t = 1$	0.952	0.939	0.880	0.994	0.979	0.810
c - dot	1	1	0.777	1	0.999	0.917

Table 4: Graph reconstruction with mAP ranking loss, top results are highlighted, metrics only.

Signature	UCSA312	CS PhDs	Power	Facebook	WLA6
E_{10}	0.9290	0.9487	0.9380	0.7876	0.7199
H_{10}	0.9173	0.9399	0.9385	0.7997	0.9617
S_{10}	0.9254	0.9578	0.9436	0.7868	0.7287
$H_5^2 \ S_5^2$	0.9247	0.9481	0.9415	0.8084	0.9682
S_5^{2}	0.9231	0.9662	0.9466	0.7891	0.7353
$H_5 \times S_5$	0.9316	0.9654	0.9467	0.8087	0.9779
H_2^5	0.9364	0.9671	0.9508	0.7979	0.8597
$egin{array}{c} H_2^5 \ S_2^5 \end{array}$	0.9281	0.9714	0.9521	0.7915	0.7346
$\overline{H_2^2} \times E_2 \times S_2^2$	0.9391	0.9611	0.9486	0.7970	0.6796
$O_{l1}, t = 0$	0.9522	0.9879	0.9728	0.8093	0.6759
$O_{l1}, t = 1$	0.9522	0.9904	0.9762	0.8185	0.9598
$O_{l2}, t = 1$	0.9522	0.9938	0.9907	0.8326	0.9694

B.3 Other Ways of Converting Distances to Probabilities

For the proxy-loss, we additionally experimented with other ways of converting distances to probabilities. Let us write L_{proxy} in the general form:

$$L_{proxy} = -\sum_{(v,u)\in E} \log P((v,u) \in E) = -\sum_{(v,u)\in E} \log \frac{t(d_U(f(v),f(u)))}{\sum_{w\in V} t(d_U(f(v),f(w)))},$$
 (1)

where t(d) is a function that decreases with distance d. We compare the following alternatives for t(d):

$$t_1(d) = \exp(-d), t_2(d) = \exp\left(\frac{1}{\min(d, d_0)}\right), t_3(d) = \frac{1}{\min(d, d_0)},$$

where d_0 is a small constant.

Recall that t_1 was used in the main text and it seems to be the most natural choice. Table 5 compares

the options and shows that the best results are indeed achieved with t_1 .

¹Note that this is the softmax over the inverted distances.

Table 6: Search query examples

Query	Web site
Kris Wallace	en.wikipedia.org/wiki/Chris_Wallace
1980: Mitsubishi produces one million cars	en.wikipedia.org/wiki/Mitsubishi_Motors
code napoleon	en.wikipedia.org/wiki/Napoleonic_Code

References

59 [1] Albert Gu, Frederic Sala, Beliz Gunel, and Christopher Ré. 2019. Learning mixed-curvature 60 representations in product spaces. *International Conference on Learning Representations (ICLR)* 61 (2019).