# Метод построения конечных автоматов на основе муравьиного алгоритма

Магистерская диссертация

Чивилихин Даниил Сергеевич, гр. 6539

Научный руководитель: канд. техн. наук

Царев Федор Николаевич

22.06.2013

НИУ ИТМО, кафедра Компьютерных технологий

#### Актуальность

- Автоматное программирование
  - Поведение программ задается конечными автоматами
  - возможность верификации
- Строить автоматы вручную трудно
- Автоматы строятся методами поисковой оптимизации

#### Новизна

- Муравьиные алгоритмы относятся к методам роевого интеллекта (swarm intelligence)
- Ни один из методов роевого интеллекта до сих пор не применялся для построения автоматов

#### Цель работы

 Разработать метод автоматизированного построения конечных автоматов, основанный на муравьином алгоритме

#### Конечный автомат

- S множество состояний;
- $s_0 \in S$  начальное состояние;
- $\Sigma$  множество входных событий;
- $\Delta$  множество выходных воздействий;
- $\delta$ :  $S \times \Sigma \rightarrow S$  функция переходов;
- $\lambda$ :  $S \times \Sigma \rightarrow \Delta$  функция действий.



### Автоматизированное построение конечных автоматов

- N число состояний;
- Σ множество входных событий;
- Д множество выходных воздействий;
- $X = (N, \Sigma, \Delta)$



### Классический муравьиный алгоритм

- Комбинаторные задачи сводятся к поиску оптимального пути в некотором графе
- Вершины графа переходы автомата:
  < i ∈ S, j ∈ S, e ∈ Σ, a ∈ Δ>
- Граф полный
- Муравьи добавляют переходы в автомат, перемещаясь по вершинам графа

## Предлагаемый метод построения автоматов

- Альтернативное сведение к оптимизации на графе
- Муравьиный алгоритм нового типа

• Классические муравьиные алгоритмы неэффективны для решения задачи

## Отличие от классических муравьиных алгоритмов: граф

- Классика:
  - Вершины компоненты решений.
  - Полные решения строятся муравьями.
- Предложенный муравьиный алгоритм:
  - Вершины полные решения.
  - Муравьи перебирают полные решения.

# Решение (1): представление пространства поиска в виде графа

- Граф:
  - вершины конечные автоматы;
  - ребра мутации конечных автоматов.
- Мутация небольшое изменение структуры автомата:
  - изменение состояния, в которое ведет переход;
  - изменение действия на переходе.

## Решение (2): муравьиный алгоритм

- 1. Граф = {случайный автомат}
- 2. while (true)

Построение решений муравьями

Обновление значений феромона

Проверка условий останова

#### Построение решений муравьями

- Муравей помещается в вершину графа
- У каждого муравья ограниченное число шагов
- Шаг муравья переход в следующую вершину

#### Выбор следующей вершины





#### Обновление значений феромона

- Качество решения (пути муравья) максимальное значение ФП вершины пути
- Обновление  $\tau_{uv}^{best}$  наибольшего значения феромона, отложенного на ребре (u, v)
- Новое значение вычисляется по формуле:

$$\tau_{uv} = (1 - \rho)\tau_{uv} + \tau_{uv}^{best}$$

•  $\rho \in [0,1]$  – скорость испарения феромона

## Отличие от классических муравьиных алгоритмов

- Граф
- Алгоритм работы муравья
- Критерий остановки муравья

## Пример применения: задача «Умный муравей»

- Поле тор NxN
- М клеток с едой
- К ходов
- Положение еды и начальная позиция муравья фиксированы
- Цель создать муравья, который съест всю еду



Пример поля

### Пример применения: задача «Умный муравей»

- Два поля:
  - Santa Fe Trail
  - John Muir Trail
- Сравнение:
  - Классический муравьиный алгоритм
  - Christensen, Oppacher (2007)
  - Царев, Шалыто (2007)

### Классический муравьиный алгоритм

|                    | Классический<br>муравьиный<br>алгоритм |               | Предложенный<br>алгоритм |               |
|--------------------|----------------------------------------|---------------|--------------------------|---------------|
| Число<br>состояний | Доля<br>удач, %                        | Время,<br>сек | Доля<br>удач, %          | Время,<br>сек |
| 5                  | 18                                     | 18.09         | 87                       | 0.65          |
| 10                 | 10                                     | 218.49        | 91                       | 0.5           |

## John Muir Trail (Царев и Шалыто, 2007): 200 ходов



 Для автоматов с семью состояниями — в 30 раз быстрее

## Построение управляющих автоматов по тестовым примерам: часы с будильником

- 38 тестов
- Len<sub>in</sub>= 242
- Len<sub>out</sub>=195



# Построение управляющих автоматов по тестовым примерам: часы с будильником

| Метод<br>поисковой<br>оптимизации          | Min    | Max      | Mean    |
|--------------------------------------------|--------|----------|---------|
| ГА-1                                       | 855390 | 38882588 | 5805943 |
| RMHC                                       | 1150   | 9592213  | 1423983 |
| ЭС                                         | 1506   | 9161811  | 3447390 |
| ГА-2                                       | 32830  | 599022   | 117977  |
| ГА-2+ЭС                                    | 26740  | 188509   | 53706   |
| Предложенный метод на основе графа мутаций | 2987   | 211378   | 34201   |

# Построение управляющих автоматов по тестовым примерам: случайные автоматы (4-10 состояний)



#### Результаты

- Разработан метод построения автоматов, основанный на муравьином алгоритме нового типа
- Для рассмотренных задач метод в несколько раз эффективнее известных подходов
- Метод применялся для построения автопилота в бакалаврской работе И.Бужинского

#### Основные публикации

- 1. Chivilikhin D., Ulyantsev V., Tsarev F. Test-Based Extended Finite-State Machines Induction with Evolutionary Algorithms and Ant Colony Optimization // Proceedings of the 2012 GECCO Conference Companion on Genetic and Evolutionary Computation. NY.: ACM. 2012, pp. 603–606.
- **Chivilikhin D., Ulyantsev V.** Learning Finite-State Machines with Ant Colony Optimization // Lecture Notes in Computer Science, 2012, Volume 7461/2012, pp. 268-275.
- 3. Chivilikhin D., Ulyantsev V. MuACOsm A New Mutation-Based Ant Colony Optimization Algorithm for Learning Finite-State Machines // To appear in Proceedings of the 2013 Genetic and Evolutionary Computation Conference
- 4. Chivilikhin D., Ulyantsev V., Shalyto A. Solving Five Instances of the Artificial Ant Problem with Ant Colony Optimization // To appear in Proceedings of the 2013 IFAC Conference on Manufacturing Modelling, Management and Control
- **5. Чивилихин** Д.С., Ульянцев В.И. Метод построения управляющих автоматов на основе муравьиных алгоритмов // Научно-технический вестник информационных технологий, механики и оптики. 2012. №6(82), с. 72-76.

#### Спасибо за внимание!