QF620 Stochastic Modelling in Finance

Assignment 1/4

by Julian Chang

1(a)

Since $X \sim N(\mu, \sigma^2)$, use MGF to find $\mathbb{E}[e^X]$,

$$\mathbb{E}[e^{ heta X}] = M_X(heta) = exp\left(\mu heta + rac{1}{2}\sigma^2 heta^2
ight)$$

Using $\theta = 1$,

$$\mathbb{E}[e^X] = M_X(1) = exp\left(\mu + rac{1}{2}\sigma^2
ight)$$

1(b)

Taking MGF and using $\theta=2$,

$$\mathbb{E}[e^{2X}] = M_X(2) = exp\left(2\mu + 2\sigma^2
ight)$$

2(a)

Since $W_t \sim N(0,t)$, use MGF to find $\mathbb{E}[e^{W_t}]$,

$$\mathbb{E}[e^{ heta W_t}] = M_{W_t}(heta) \ \mathbb{E}[e^{W_t}] = M_{W_t}(1) = exp\left(\mu heta + rac{1}{2}\sigma^2 heta^2
ight) = exp\left(rac{1}{2}t
ight)$$

2(b)

$$\mathbb{E}[e^{\sigma W_t}] = M_{W_t}(\sigma) = exp\left(\mu heta + rac{1}{2}\sigma^2 heta^2
ight) = exp\left(rac{1}{2}\sigma^2 t
ight)$$

3

Calculate risk neutral probabilities p^* and q^* using Cox-Ross-Rubinstein formulation and choose $d=rac{1}{u}$

$$p^* = rac{(1+r)-d}{u-d}; \quad q^* = 1-p^*$$

$$p^* = 36\%$$
 and $q^* = 64\%$

Calculate the exercise prices at maturity (t=2)

Calculate the expected price with exercise prices at t=2 for the option using risk neutral probabilities for t=1 then t=0

$$V_E^n = rac{1}{1+r} \mathbb{E}_n^*[V_{n+1}] = rac{1}{1+r} ig(p^* imes V_{n+1}^u + q^* imes V_{n+1}^d ig)$$

For Put

$$V_A^n = max \left\{ rac{1}{1+r} \mathbb{E}_n^*[V_{n+1}] = rac{1}{1+r} ig(p^* imes V_{n+1}^u + q^* imes V_{n+1}^d ig) \,, (K-S_n)^+
ight\}$$

For Call

$$V_A^n = max \left\{ rac{1}{1+r} \mathbb{E}_n^*[V_{n+1}] = rac{1}{1+r} ig(p^* imes V_{n+1}^u + q^* imes V_{n+1}^d ig) \,, (S_n - K)^+
ight\}$$

	a)	European Put			c)	European Call		
S0	5	t=0	t=1	t=2		t=0	t=1	t=2
u	2							
d	0.5			\$ 20.00				\$ 20.00
r	4%			\$ -				\$ 10.00
K	10		\$ 10.00				\$ 10.00	
p*	36%		\$ 3.08				\$ 3.46	
q*	64%	\$ 5.00		\$ 5.00		\$ 5.00		\$ 5.00
		\$ 5.44		\$ 5.00		\$ 1.20		\$ -
			\$ 2.50				\$ 2.50	
			\$ 7.12				\$ -	
				\$ 1.25				\$ 1.25
				\$ 8.75				\$ -
	b)	American Put			d)	American Call		
		t=0	t=1	t=2		t=0	t=1	t=2
				A 00.00				* 00.00
				\$ 20.00				\$ 20.00
			A 40.00	\$ -			h 10.00	\$ 10.00
			\$ 10.00				\$ 10.00	
			\$ 3.08				\$ 3.46	
		\$ 5.00		\$ 5.00		\$ 5.00		\$ 5.00
		\$ 5.68		\$ 5.00		\$ 1.20		\$ -
			\$ 2.50				\$ 2.50	
			\$ 7.50				\$ -	
				\$ 1.25				\$ 1.25
				\$ 8.75				\$ -

(a) 5.44(b)5.68 (c) 1.20(d)1.20

4(a)

Given that $W_1>0$ and $W_2<0$

$$egin{aligned} W_1 \sim N(0,1); & W_2 \sim N(0,2); & W_2 - W_1 \sim N(0,1) \ P(W_2 < 0 | W_1 > 0) &= P(W_2 < W_1 \cap [|W_2 - W_1| > |W_1 - W_0|] \ |W_1 > 0) \ &= P(W_2 < W_1 | W_1 > 0) imes P(|W_2 - W_1| > |W_1 - W_0| \ |W_1 > 0) \ &= rac{1}{2} imes rac{1}{2} \ &= rac{1}{4} \end{aligned}$$

Since $W_1 - W_0$ and $W_2 - W_1$ are independent

 $P(W_1 \times W_2 < 0)$ is when W_1 and W_2 have opposite signs and there is 50% probability that either is more or less than 0.

$$\begin{split} P(W_1 \times W_2 < 0) &= P(W_2 < 0 | W_1 > 0) \times P(W_1 > 0) + P(W_2 > 0 | W_1 < 0) \times P(W_1 < 0) \\ &= \frac{1}{4} \times \frac{1}{2} + \frac{1}{4} \times \frac{1}{2} \\ &= \frac{1}{4} \end{split}$$

4(c)

$$\begin{split} P(W_1 < 0 \cap W_2 < 0) &= P(W_2 < 0 | W_1 < 0) \times P(W_1 < 0) \\ &= P(W_2 < W_1 | W_1 < 0) \times P(W_1 < 0) \\ &+ P(W_2 > W_1 \cap |W_2 - W_1| < |W_1 - W_0| \ |W_1 < 0) \times P(W_1 < 0) \\ &= \frac{1}{2} \times \frac{1}{2} + \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \\ &= \frac{3}{8} \end{split}$$

5(a)

Definitions for Brownian Motion:\\ $W_0 = 0 \setminus 0 < s < t; \quad (W_t - W_s) \sim N(0, t - s) \setminus \mathbb{E}[W_t] = 0, W_t \sim N(0, t) \setminus \mathbb{E}[(W_t - \mu)^2] = \mathbb{E}[W_t^2] = Var[W_t] = t$ and

$$V[(W_t - W_s)] = V[W_t] - V[W_s] = t - s$$

5(b)

By variance definition,

$$Var((W_t - W_s)^2) = \mathbb{E}[((W_t - W_s)^2)^2] - (\mathbb{E}[(W_t - W_s)^2])^2$$

\ First finding $\mathbb{E}[(W_t-W_s)^2]$

$$Var[(W_t - W_s)] = E[(W_t - W_s)^2] - E[(W_t - W_s)]^2 = E[(W_t - W_s)^2]$$

where $\mathbb{E}[W_t - W_s] = 0$. So,

$$E[(W_t - W_s)^2] = t - s (1)$$

\ Next finding $\mathbb{E}[((W_t-W_s)^2)^2]=\mathbb{E}[(W_t-W_s)^4]$, Use MGF,

$$M_{W_t-W_s}(heta) = exp\left(\mu heta + rac{1}{2}\sigma^2 heta^2
ight) = \exp\left(rac{1}{2}\sigma^2 heta^2
ight)$$

Compute derivatives up to 4th moment,

$$rac{dM_{W_t-W_s}(heta)}{d heta} = \mathbb{E}[W_t-W_s] = \sigma heta\expigg(rac{1}{2}\sigma^2 heta^2igg)$$

$$rac{d^2 M_{W_t-W_s}(heta)}{d heta^2} = \mathbb{E}[(W_t-W_s)^2] = \sigma^4 heta^4 \expigg(rac{1}{2}\sigma^2 heta^2igg) + \sigma^2 \expigg(rac{1}{2}\sigma^2 heta^2igg)$$

$$\frac{d^3M_{W_t-W_s}(\theta)}{d\theta^3} = \mathbb{E}[(W_t-W_s)^3] = \sigma^6\theta^3 \exp\left(\frac{1}{2}\sigma^2\theta^2\right) + 2\sigma^4\theta \exp\left(\frac{1}{2}\sigma^2\theta^2\right) + \sigma^4\theta \exp\left(\frac{1}{2}\sigma^2\theta^2\right)$$

$$\begin{split} \frac{d^4 M_{W_t - W_s}(\theta)}{d\theta^4} &= \mathbb{E}[(W_t - W_s)^4] = \sigma^8 \theta^4 \exp\left(\frac{1}{2}\sigma^2 \theta^2\right) + 3\sigma^6 \theta^2 \exp\left(\frac{1}{2}\sigma^2 \theta^2\right) + 2\sigma^6 \theta^2 \exp\left(\frac{1}{2}\sigma^2 \theta^2\right) \\ &+ 2\sigma^4 \exp\left(\frac{1}{2}\sigma^2 \theta^2\right) + \sigma^6 \theta^2 \exp\left(\frac{1}{2}\sigma^2 \theta^2\right) + \sigma^4 \exp\left(\frac{1}{2}\sigma^2 \theta^2\right) \end{split}$$

and taking $rac{d^4 M_{W_t-W_s}(heta)}{d heta^4}$ when $heta=0, \sigma^2=t-s$,

$$\mathbb{E}[(W_t - W_s)^4] = 3(t - s)^2 \tag{2}$$

From (1) and (2),

$$Var((W_t - W_s)^2) = \mathbb{E}[(W_t - W_s)^4] - (\mathbb{E}[(W_t - W_s)^2])^2 = 3(t-s)^2 - (t-s)^2 = 2(t-s)^2$$

6

Finding $\mathbb{E}[|W_{t+\Delta t}-W_t|]$, given $W_t\sim N(0,t)$ and $(W_{t+\Delta t}-W_t)\sim N(0,\Delta t)$. \ Let $(W_{t+\Delta t}-W_t)$ be X, such that $X\sim N(0,\Delta t)$.

Function for p.d.f. is $f(x)=rac{1}{\sqrt{2\pi}\sigma}e^{-rac{(x-\mu)^2}{2\sigma^2}}$ and $\mathbb{E}[X]=\int_{-\infty}^{\infty}xf(x)dx=\int_{-\infty}^{\infty}xrac{1}{\sqrt{2\pi}\sigma}e^{-rac{(x-\mu)^2}{2\sigma^2}}dx$

$$\mathbb{E}[|W_{t+\Delta t} - W_t|] = \mathbb{E}[|X|]$$

$$= 2 \int_0^\infty X \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(X-\mu)^2}{2\sigma^2}} dx$$

$$= 2 \int_0^\infty X \frac{1}{\sqrt{2\pi}\Delta t} e^{-\frac{X^2}{2\Delta t}} dx$$

$$= -\sqrt{\frac{2\Delta t}{\pi}} \int_0^{-\infty} e^u du$$

$$= -\sqrt{\frac{2\Delta t}{\pi}} [0-1]$$

$$= \sqrt{\frac{2\Delta t}{\pi}}$$

(3)
$$\mu=0$$
 and $\sigma^2=\Delta t$ \ (4) substitute $u=-rac{X^2}{2\Delta t}; \quad rac{du}{dx}=-rac{X}{\Delta t}; \quad xdx=-\Delta tdu$