Sliding-window techniques

Anne Denton's Research Group

Traditional Technology: Landsat

- Since 1972
- 30 m resolution
 - Few hundred pixels per field
- Large satellites
- ~ 700 km altitude
- Weighs 5.8k pounds
- Landsat 8 newest

What to use it for?

Agriculture perspective

- Getting information from agricultural fields without going there
 - Recognizing crop disease / storm damage
 - Knowing what is planted where (crop cover)
- Predicting crop quantity / quality
 - Yield prediction (typical machine learning challenge)
 - Knowing where to apply fertilizer
 - Recognizing other chemical deficiencies
 - Understanding water stress
- Understanding soil problems
 - Salinity
 - Erosion

Machine learning perspective

- Mostly classification or regression problems
- Typically lack of training data
- Typically risk of losing access to training data
- Solutions:
 - Predicting land use
 - Use of independent information as proxy

New Technology

- Cube sats
 - 3m resolution
 - 450 km altitude
 - Weigh 9 lbs
 - 88 satellites
- Drones
 - 1-10 cmresolution

What do you do with that resolution?

- Question: Why do I care about cm resolution if farm implements are 100 feet wide?
- Instead of 1 pixel you get up to 100
- You don't even have to lose resolution

Is it too computationally expensive?

- Efficient
 algorithm for
 linear aggregates
 - SUM / COUNT
 - MAX / MIN
 - Sums of squares
 - Sums of higher order terms
- Problems for
 - MEDIAN

Algorithm

- For window size
 w, image size is
 size-w+1
- Windows that are aggregated are delta = w/2 apart
- Most aggregates get reused 4 times

Sliding-window-based aggregation in log ₂ (w) steps												Window size w = 4 Example: MAX								
Step 1: Aggregation over 2x2 windows												Step 2: Aggregation with offset								
1	2	3	1	1		4						4	3	3	1		6			
4	2	1	1	1								5	2	1	1					
5	1	1	0	1								5	1	6	6		Fir			
1	0	0	6	3								1	2	7	9		ras	ster		
1	0	2	7	9		Intermediate							Intermediate							
Or	igin	al ra	ster	•		raster (empty)					raster (full)									
1	2	3	1	1		4	3					4	3	3	1		6	6		
4	2	1	1	1								5	2	1	1					
5	1	1	0	1								5	1	6	6					
1	0	0	6	3								1	2	7	9			lues that ntribute to		
1	0	2	7	9													element in final raster			
1	2	3	1	1		4	3	3	1			4	3	3	1		6	6		
4	2	1	1	1		5	2	1	1			5	2	1	1		7	9		
5	1	1	0	1		5	1	6	6			5	1	6	6					
1	0	0	6	3		1	2	7	9			1	2	7	9					
1	0	2	7	9	Each aggregation involves 4 raster elements (8 for both steps) Direct computation would require aggregation of 16 elements															

Limitation to "linear" aggregates

- Linear models, but not necessarily linear regression
 - Much of statistics uses linearity
 - Linear models dominate regression
- What does "linear" mean?
 - A fit with a quadratic polynomial is still a linear model
 - It is linear in the parameters
- If you wanted to use polynomial regression across multiple databases, you could locally compute
 - Count, sums, sums of squares, sums of higher order terms
 - Aggregate the aggregates in a central place
- Same holds for iterative aggregation of windows

Some Approaches so far

1) Regression

2) Fractal Dimension

3) Topography

Regression

- Linear regression
- Aggregation done for all 5 aggregates
- (Pearson correlation also uses y²)
- We could use higher order polynomials but haven't (Polynomial regression is still a linear model)

$$slope = \frac{N\sum x_{ij}y_{ij} - \sum x_{ij}\sum y_{ij}}{N\sum x_{ij}^2 - (\sum x_{ij})^2}$$

$$z_{ij}^{(base)} = \text{any of} \begin{cases} x_{ij} \\ y_{ij} \\ x_{ij}^2 \\ y_{ij}^2 \\ x_{ij}y_{ij} \end{cases}$$

Results of NIR vs. Red Band

32

Performance

- Scaling logarithmic in window size
- Dramatic
 difference for
 large window
 sizes

Fractal Dimension

- Motivation
 - Length of shoreline of England
- Fractals proposed by Benoit Mandelbrot
- Captures self-similarity
- Used extensively for past 50 years
 - Used in image processing
 - Including urban growth
- Only uses sum and max
- https:// en.wikipedia.org/wiki/ Koch_snowflake

$$N = 43$$

 $\epsilon = 1/16$

$$N = 6$$
$$\epsilon = 1/4$$

Intermediate Steps

- Right-hand side shows max aggregation
- Sum aggregation for counting them
 - Bridges remaining resolutions
- Only non-overlapping windows used in any one regression
- Different overlapping windows used in multiple shifted windows
- Each level of max aggregation corresponds to one point in regression for each window

Example Lake Sakakawea

- Only nonintegral fractal dimensions shown
- Regression values with large margin suppressed

0 1 2

- Dimensions between 1 and 2 green
- Some prairie potholes show up as red

Correlation with Land Use

- Left NDVI with cutoff 0.5
- Middle fractal dimension
- Right non-agricultural land uses

Grouped by Land Use

- Main crop species have low fractality
- Less intense agriculture has higher fractality
- Areas around water high NDVI and fractality between 1 and 2
- Highest fractality in highly developed areas

Topography

- Slope and Curvature rely on polynomials of elevation
- 1 m resolution elevation data available from LIDAR measurements
- Existing techniques assume much larger pixels
 - Mostly use 3 x 3 windows
 - Conventionally data rescaled

Additional mathematical challenges

- Now we need aggregates of spatial variables
- Treated as shifting of reference frames
- Curvature also requires higher order aggregates

Coordinate shifts

- Averages over spatial dimension x vanish because of symmetry
- Averages over elevation z can be done as previously
- Averages over xz explicitly involve coordinate shifts

$$\langle xz \rangle$$

$$= \frac{1}{4} \left(\langle \left(x_0 - \frac{w}{4} \right) z_{00} \rangle + \langle \left(x_1 + \frac{w}{4} \right) z_{10} \rangle + \langle \left(x_0 - \frac{w}{4} \right) z_{01} \rangle + \langle \left(x_1 + \frac{w}{4} \right) z_{11} \rangle \right)$$

Involves differences between aggregates from previous iteration

$$\langle xz \rangle$$

$$= \frac{1}{4} (\langle xz \rangle_{00} + \langle xz \rangle_{10} + \langle xz \rangle_{01} + \langle xz \rangle_{11}$$

$$+ \frac{w}{4} (\langle z \rangle_{10} + \langle z \rangle_{11} - \langle z \rangle_{00} - \langle z \rangle_{01}))$$

Comparison of elevation, slope, and aspect with ArcGIS results

Plenty to do in this ...

- Topography (Rahul)
- Histograms (Shuhang)
- Wavelets (Mostofa)
- Fractal Dimension (Nick)
- Bit-level processing (Adam)
- Regression (Dawit)
- Deep learning (David, Riley, Jordan)
- ... and other fields (Guy)

Summary

- New remote sensing technology suggest new processing needs / techniques
 - We are only scratching the surface so far
- Linear approaches often go further than expected
- Something that started very practical can created interesting theoretical challenges
 - ... but it takes a while to get there