

ROBOSCAN®

3D Flash LiDAR SDK 매뉴얼

(Model: NSL-3140AA & NSL-3130CV)

nanosystems Co.,Ltd www.nanosys.kr

목차

•	사용자 안내문	3
•	안전상 주의사항	3
•	제품 개요	5
•	외부 인터페이스	5
•	컴파일	5
•	NSL C-API command	6
•	nanolib.h structures	5
•	nanolib.h enum type	7

3D 라이다 센서 V 1.0

ROBOSCAN SDK 매뉴얼

(주)나노시스템즈의 제품을 구입하여 주셔서 대단히 감사합니다. 본 제품을 사용하시기 전에 사용자 매뉴얼을 잘 읽은 후에 올바르게 사용해 주십시오. 또한, 사용자 매뉴얼을 언제라도 볼 수 있는 곳에 반드시 보관해 주십시오.

■ 사용자 안내문

이 기기는 업무용 환경에서 사용할 목적으로 적합성 평가를 받은 기기로서 가정용 환경에서 사용하는 경우 전파 간섭의 우려가 있습니다.

■ 안전상 주의사항

사용 전에 안전에 관한 주의사항을 잘 읽어 주시고 올바르게 사용하여 주십시오. 설명서에 표시된 주의사항은 중요도에 따라 위험, 경고, 주의 심벌로 구분하고 있습니다.

△ 위 혐	지키지 않을 경우, 사망 또는 중상에 이르는 결과를 낳는 절박한 위험 상황을 표시하고 있습니다.		
△ 경고	지키지 않을 경우, 사망 또는 중상이 발생할 가능성이 예상되는 내용을 표시하고 있습니다.		
△ 주 의	지키지 않을 경우, 경미한 상해나 재산상의 손해가 발생할 가능성이 예상되는 내용을 표시하고 있습니다.		

⚠ 위 험

● 입●출력 단자는 감전의 위험이 있으니 신체 및 통전물이 절대로 접촉되지 않도록 하십시오.

△沒ュ

- 사용설명서의 내용은 사전 통보 또는 예고 없이 변경될 수 있습니다.
- 제조자가 지정한 방법 이외로 사용 시에는 상해를 입거나 재산상의 손실이 발생할 수 있습니다.
- 본 기기의 파손방지 및 고장방지를 위하여 정격에 맞는 전원전압을 공급하여 주십시오.
- 방폭 구조가 아니므로 가연성, 폭발성 가스가 있는 장소에서는 사용하지 마십시오.
- 본 기기의 탈•부착은 전원을 OFF한 후 조치하여 주십시오. 오동작 및 고장의 원인이 됩니다.
- 감전될 위험이 있으므로 통전 중 본 기기를 판넬에 설치된 상태로 사용하여 주십시오.
- 이 제품은 프레스 안전용 센서는 아닙니다.
- 이 제품은 제품 자체의 기능으로서 재해방지나 사고방지 등의 제어기능을 가지고 있지 않습니다.
- 이 제품을 사용한 기계에 대해서 재해나 사고에 따른 손해배상 등에 대한 책임은 지지 않으므로 유의하시기 바랍니다.

△ 주 의

- 본 기기를 사용자 임의로 분해, 가공, 개선, 수리하면, 오 동작의 원인이 되므로 반드시 주의하여 주십시오.
- 본 기기의 고장이나 이상이 중대한 사고에 대한 우려가 있는 경우에는 외부에 적절한 보호회로를 설치하고 사고 방지를 도모하여 주십시오.
- 운송 중 파손 및 제품에 이상이 없는지 확인하십시오.
- 유도 장애가 크고 정전기, 자기 노이즈가 발생하는 장소는 피하여 주십시오.
- 직사광선 및 복사열 등에 의한 열 축척이 발생하는 장소는 피하여 주십시오.
- 물이 들어갔을 때에는 누전, 화재의 위험성이 있으므로 필히 점검을 받아주십시오.
- 사용하지 않는 배선은 절연 처리하여 주십시오.
- 단자의 극성을 확인 후 배선을 정확하게 연결하십시오.
- 본 기기의 지속적이고 안전한 사용을 위해 정기적인 보수를 권장합니다.
- 본 기기의 배선은 가능한 짧게하여 주시고, 연장시 금속선의 단면적이 0.5 mi 이상인 배선을 사용하여 주십시오.
- 전원의 ON, OFF 동작을 연속적으로 하지 마십시오.
- 윈도우의 청소는 마른 헝겊으로 가볍게 닦아 주시고, 신나, 휘발유 등 유기용제는 사용하지 마십시오.
- 먼지나 진동, 충격이 심한 곳의 영향을 수시로 받는 장소에서의 사용을 피하십시오.
- 전원을 ON 시키기 전에 반드시 결선이 올바르게 되어있는지 확인하신 후 사용하십시오.
- 출력에 DC Relay 등의 유도성 부하와 결선하는 경우에는 다이오드, 바리스터 등을 사용하여 써지를 막아주십시오.
- 센서의 지향각 이내에 강한 외란광(태양광)이 직접 들어오지 못하도록 차광판 등을 설치하여 주십시오.
- Switching Power Supply를 센서의 전원 공급장치로 사용할 경우 Frame Ground(F.G) 단자를 접지시키고, 0V와 F.G 단자 사이에 노이즈 제거용 콘덴서를 필히 설치하여 주십시오.

(그림1) SMPS를 이용한 제품 설치 방법

※ 상기 안전에 관한 주의사항은 제품 고장을 유발할 수 있으므로 반드시 지켜주십시오.

■ 제품 개요

(그림2) 제품 동작 개념도

라이다는 광원(Light Emitter)으로부터 방사된 빛이 물체에 반사되어 이미지센서에 도달(ToF: Time of Flight)하는 위상차를 비교하여 거리를 측정하는 원리입니다. 즉, 수신기에 도달하는 광원의 정보를 처리하여 해당 Pixel별 거리 정보와 밝기 정보를 3차원 Point Cloud Depth Map형태로 표시할 수 있습니다.

ROBOSCAN은 차세대 3D 라이다로 제품에서 방사하는 근적외선 빛을 이용하여 거리를 측정하는 센서로 광시야각과 해당광에 최적화된 거리정보를 제공하는 근거리용 제품입니다. ROBOSCAN의 하드웨어 동작성능과 소프트웨어 알고리즘 개발을 통하여 옥내와 옥외에서 안정적인 성능을 제공하고, 약 14fps (인터페이스/보정조건에 따라 다를 수 있음)의 프레임 레이트로 원하는 정보를 제공합니다. 그리고 공장 출하시 성능을 최적화하기 위하여 거리 보정 절차를 수행합니다.

■ 외부 인터페이스 (TCP/IP & USB)

• 본 SDK를 사용하여 USB 및 TCP/IP를 통해 라이다와 연결 가능 합니다.

• default IP-Address: 192.168.0.220

• USB VID: 1FC9, PID: 0094

■ 컴파일

• windows에서 shared library(.dll) 사용 시 NSLTOF_API=__declspec(dllimport)를 전처리 하여 사용하세요.

• 그 외의 static library 및 linux library는 별도의 전처리가 필요하지 않습니다.

■ NSL C-API command

- 1) nsl_open() function
- ip address, nsl configuration structure, debug option을 전달하여 라이다와 연결합니다.
- 주어진 ip address는 라이다의 아이피 주소 또는 com port 이름을 지정합니다.
- nsl configuration 정보에는 lidarAngle(라이다의 설치 수직각) 및 lensType(NF,SF,WF)을 설정 하여 전달합니다.
- lensType의 경우 구매 시 지정된 렌즈화각에 맞추어 지정합니다. (NF:50도, SF:90도, WF:110도)
- debug option의 경우 sdk내부에서 수행되는 상태정보를 출력할 수 있습니다.
- 함수가 성공적으로 리턴되면 configuration structure에 장비의 현재 설정 값들이 저장됩니다.

```
gtViewerInfo.nslConfig.lidarAngle = 0;
gtViewerInfo.nslConfig.lensType = NslOption::LENS_TYPE::LENS_SF;
gtViewerInfo.handle = nsl_open(gtViewerInfo.ipAddress, &gtViewerInfo.nslConfig, FUNCTION_OPTIONS:FUNC_ON);
if( gtViewerInfo.handle < 0 ){
    printf("nsl_open::handle open error::%d\n", gtViewerInfo.handle);
    exit(0);
}</pre>
```

- (handle < 0) 인 경우 장비의 전원 상태 및 ip address정보를 확인 후 재시도 하십시오.
- handle은 최대 10개까지 사용 가능합니다.
- 2) nsl_closeHandle() function
- 지정된 handle과 관련된 리소스를 해제 합니다.
- 3) nsl_close() function
- 모든 handle의 리소스를 해제 합니다.
- 이 함수 호출 시 nsl_closeHandle()을 호출하지 않아도 됩니다.
- 4) nsl_streamingOn() function
- 라이다로 데이터 생성 명령을 전달합니다.
- 이 명령 이후부터 데이터를 수신할 수 있습니다.
- 데이터 생성 옵션은 아래와 같습니다.

OPERATION_MODE_OPTIONS	설명	비고
NONE MODE	미 동작 상태	NSL-3140AA &
NONE_MODE	이 중 취 경계	NSL-3130CV
DICTANCE MODE	 distance 전용 모드	NSL-3140AA &
DISTANCE_MODE	distance 전용 모드	NSL-3130CV
GRAYSCALE_MODE	grayscale 전용 모드	NSL-3140AA &

		NSL-3130CV
DISTANCE_AMPLITUDE_MODE	distance & amplitdue 혼합 모드	NSL-3140AA &
DISTANCE_AMPLITUDE_MODE	distance & amplitude 온입 모드	NSL-3130CV
DISTANCE_GRAYSCALE_MODE	distance & grayscale 혼합 모드	NSL-3140AA &
	distance & grayscale Et EE	NSL-3130CV
RGB_MODE	RGB 전용 모드	NSL-3130CV
RGB_DISTANCE_MODE	RGB & distance 혼합 모드	NSL-3130CV
RGB_DISTANCE_AMPLITUDE_MODE	RGB & distance & amplitdue 혼합 모드	NSL-3130CV
RGB_DISTANCE_GRAYSCALE_MODE	RGB & distance & grayscale 혼합 모드	NSL-3130CV

5) nsl_streamingOff() function

- 라이다로 중지 명령을 전달합니다.
- 이 명령 이후부터는 데이터 생성을 멈추어 더 이상 데이터를 수신할 수 없습니다.
- 프로그램 종료 시 필히 전달되어야 하며, 미 전달 시 라이다는 데이터 생성을 유지합니다.

6) nsl_getPointCloudData() function

• nsl_getFrame()을 사용하여 RGB/2D/3D 버퍼로 변환된 정보를 돌려 줍니다.

typedef struct NslPCD_{

NslOption::OPERATION_MODE_OPTIONS operationMode;
NslOption::LIDAR_TYPE_OPTIONS lidarType;

double temperature; bool includeRgb; bool includeLidar; int width;

int width,
int height;
int roiXMin;
int roiXMax;
int roiYMax;
int binning_h;

int binning_v;
int amplitude[NSL_LIDAR_TYPE_B_HEIGHT][NSL_LIDAR_TYPE_B_WIDTH];
int distance2D[NSL_LIDAR_TYPE_B_HEIGHT][NSL_LIDAR_TYPE_B_WIDTH];
double distance3D[MAX_OUT][NSL_LIDAR_TYPE_B_HEIGHT][NSL_LIDAR_TYPE_B_WIDTH];
NslOption::NslVec3b rgb[NSL_RGB_IMAGE_HEIGHT][NSL_RGB_IMAGE_WIDTH];

}NslPCD;

- NslOption::OPERATION_MODE_OPTIONS : 수신된 frame의 mode를 지정합니다.
- NslOption::LIDAR_TYPE_OPTIONS lidarType : 320x240 타입의 lidar인 경우 TYPE_A, 800x600 타입의 라이다인 경우 TYPE_B로 open 시 자동 설정 됨.

LIDAR_TYPE_OPTIONS	설명	비고
TYPE A	220v240 type =lolpl	NSL-3140AA &
IIFE_A	320x240 type 라이다	NSL-3130CV
TYPE_B	800x600 type 라이다	TBD

- temperature : 현재 라이다의 온도 정보를 나타냅니다.
- bool includeRgb: frame에 rgb데이터가 포함되어 있을 경우 true
- bool includeLidar : frame에 lidar 데이터가 포함되어 있을 경우 true
- int width : 수신된 frame의 width 값을 나타냅니다. default ROI 사용 시 TYPE A 의 경우 320입니다.
- int height : 수신된 frame의 height 값을 나타냅니다. default ROI 사용 시 TYPE A 의 경우 240입니다.
- int roiXMin : ROI 조정 시 x 시작 위치를 나타냅니다. 기본 값은 0입니다.
- int roiYMin: ROI 조정 시 y 시작 위치를 나타냅니다. 기본 값은 0입니다.
- int roiXMax : ROI 조정 시 x 종료 위치를 나타냅니다. 기본 값은 319입니다.
- int roiYMax : ROI 조정 시 y 종료 위치를 나타냅니다. 기본 값은 239입니다.
- int binning_h : horizontal binning기능 활성 화에 따라 1 또는 2값으로 지정됩니다.
- int binning_v : vertical binning기능 활성 화에 따라 1 또는 2값으로 지정됩니다.

 int binning_v : vertical binning기능 활성 화에 따라 1 또는 2값으로 지정됩니다.
- int amplitude : frame의 amplitude 값을 저장하는 버퍼
- int distance2D : frame의 distance 값을 저장하는 버퍼
- double distance3D: frame의 distance 값을 cartesian 좌표(X,Y,Z) 형태로 변환된 정보를 저장하는 버퍼
- NslOption::NslVec3b rgb : NSL3130CV 라이다에서 사용하며 rgb 데이터를 저장하는 버퍼

7) nsl_setFrameRate() function

• 라이다의 frame rate을 설정합니다.

FRAME_RATE_OPTIONS	설명	비고
FRAME_5FPS	 초당 5 frame 으로 설정	NSL-3140AA &
TRAME_SITS	土 6 5 Hame 二土 2 6	NSL-3130CV
FRAME_10FPS	초당 10 frame 으로 설정	NSL-3140AA &
FRAME_10FPS	조명 10 Hame 프로 결정	NSL-3130CV
FRAME_15FPS	초당 15 frame 으로 설정	NSL-3140AA &
		NSL-3130CV
EDAME GOEDC	초당 20 frame 으로 설정	NSL-3140AA &
FRAME_20FPS	조형 ZU Haine 프로 결정	NSL-3130CV
FRAME_25FPS	초당 25 frame 으로 설정	NSL-3130CV
FRAME_30FPS	초당 30 frame 으로 설정	NSL-3130CV

8) nsl_getFrameRate() function

• 라이다에 설정된 frame rate을 읽어 옵니다.

9) nsl_setUdpSpeed() function

- 라이다의 이더넷 속도를 설정합니다.
- NSL-3130CV 타입의 라이다에서만 의미 있게 적용됩니다.

UDP_SPEED_OPTIONS	설명	비고
NET 100Mbps	100Mbna 티이이크 소드 성저	NSL-3140AA &
NET_100Mbps	100Mbps 타입으로 속도 설정	NSL-3130CV
NET_1000Mbps	1000Mbps 타입으로 속도 설정설정	NSL-3130CV

10) nsl_getUdpSpeed() function

- 라이다에 설정된 이더넷 속도를 읽어 옵니다.
- NSL-3130CV 타입의 라이다에서만 의미 있게 적용됩니다.

11) nsl_setMinAmplitude() function

- 라이다의 minimum amplitude 값을 설정합니다.
- 이 함수를 통해 지정한 값 이하의 amplitude를 가지는 distance는 LOW_AMPLITUDE로 대체됩니다.
- 실내 환경에서는 50 lsb 이하의 amplitude는 잡음일 가능성이 커집니다.(왜곡)
- 야외 환경에서는 100 lsb 이하의 amplitude는 잡음일 가능성이 커집니다.(주변광)

12) nsl_getMinAmplitude() function

• 라이다에 설정된 minimum amplitude값을 읽어 옵니다.

13) nsl_setIntegrationTime() function

- 라이다의 integration time 값을 설정합니다.
- intTime은 기본 integration time을 지정합니다.
- intTimeHdr1은 spatail HDR / temporal HDR 사용 시 integration time을 지정합니다. 이 값은 intTime 값보다 작게 사용 합니다.
- intTimeHdr2은 temporal HDR 사용 시 integration time을 지정합니다. 이 값은 intTimeHdr1 값보다 작게 사용 합니다. 또는 미사용 해도 됩니다.
- intGray은 grayscale 사용시 사용하는 값으로 미사용 시 100으로 설정합니다. (기본값)
- integration값은 temporal HDR 사용 시 최대 3개까지 지정가능하며 사용하지 않더라도 값은 지정할 수 있습니다.

14) nsl_getIntegrationTime() function

• 라이다에 설정된 integration 값을 읽어 옵니다.

15) nsl_setHdrMode() function

- 라이다의 HDR 모드를 설정합니다.
- 지정가능한 HDR 모드는 아래와 같습니다.

HDR_OPTIONS	설명	비고
HDR_NONE_MODE	HDR 미지정 모드	
HDR_SPATIAL_MODE	Spatial HDR 모드	한 frame내에서 2개의 integration time 을 사용하여 frame 획득
HDR_TEMPORAL_MODE	Temporal HDR 모드	여러개의 frame동안 여러개의 integration time을 사용하여 1개의 frame 획득

16) nsl_getHdrMode() function

• 라이다에 설정된 HDR mode 값을 읽어 옵니다.

17) nsl_setGrayscaleillumination() function

- 라이다의 grayscale 상태에서의 LED 동작상태를 제어합니다.
- grayscale 사용 시 LED 동작 여부를 나타냅니다.

18) nsl_getGrayscaleillumination() function

• 라이다에 설정된 grayscale 상태에서의 LED 동작상태 값을 읽어 옵니다.

19) nsl_setAdcOverflowSaturation() function

- 라이다의 overflow 및 saturation 표시 여부를 설정합니다.
- 미 사용 시 불확실한 값이라도 거리값을 읽어 옵니다.

20) nsl_getAdcOverflowSaturation() function

• 라이다에 설정된 overflow 및 saturation 상태 값을 읽어 옵니다.

21) nsl_setDualBeam() function

- 라이다의 dual beam 모드를 설정합니다.
- 지원되는 dual beam 기준주파수는 아래와 같습니다.

DUALBEAM_MOD_OPTIONS	설명	비고
DB_OFF	dual beam 미지정 모드	
DB_6MHZ	6Mhz dual beam 모드	기준주파수로 6Mhz를 사용함
DB_3MHZ	3Mhz dual beam 모드	기준주파수로 3Mhz를 사용함

• 지원되는 dual beam 옵션은 아래와 같습니다.

DUALBEAM_OPERATION_OPTIONS	설명	비고
DB_AVOIDANCE	phase wrapping된 거리를 제거하는 옵션	
DB_CORRECTION	phase wrapping된 거리를 계산하여 표시하는 옵션	
DB_FULL_CORRECTION	phase wrapping된 거리 및 low ampliutde의 거리	
DB_FULL_CORRECTION	를 포함하여 표시하는 옵션	

22) nsl_getDualBeam() function

• 라이다에 설정된 dual beam 모드 값을 읽어 옵니다.

23) nsl_setModulation() function

- 라이다의 변조주파수 및 channel 을 설정합니다.
- 지원되는 변조주파수 옵션은 아래와 같습니다.

MODULATION_OPTIONS	설명	비고
MOD_12Mhz	12Mhz의 변조주파수를 사용합니다.	기본값
MOD_24Mhz	24Mhz의 변조주파수를 사용합니다.	
MOD_6Mhz	6Mhz의 변조주파수를 사용합니다.	
MOD_3Mhz	3Mhz의 변조주파수를 사용합니다.	

• 지원되는 channel 옵션은 아래와 같습니다.

MODULATION_CH_OPTIONS	설명	비고
MOD_CH0	0번 채널을 사용합니다.	기본값
MOD_CH1 ~ MOD_CH15	1 ~ 15번 채널을 사용합니다.	

- 변조주파수가 높을수록 거리정확도는 높아지나 최대 거리는 줄어 듭니다.
- 채널을 여러개로 분리하는 이유는 여러대의 라이다를 동시에 운용할 경우 간섭을 방지하기 위해 사용합니다.
- 근거리의 대상을 확인하려면 24Mhz가 더 좋은 정확도로 거리값을 읽어 올 수 있습니다.

주파수	최대 측정 가능 거리	정확도
24MHz	6.25meter	최상급
12MHz	12.5meter	상급
6MHz	25meter	중급
3Mhz	50mter	하급

24) nsl_getModulation() function

• 라이다에 설정된 변조주파수 및 채널정보를 읽어 옵니다.

25) nsl_setFilter() function

- 라이다 Filter 들의 사용 여부 및 값을 설정합니다.
- 주변광등 외부환경에 의한 잡음을 필터 기능을 사용하여 제거할 수 있습니다.
- enableMedian : median filter 사용 여부
- enableGauss :gaussian filter 사용 여부
- temporalFactor : percentage * 10 <0, 1000 : off, 1 ~ 999 value> <30% 사용 시 설정값으로는 300을 설정하며 현재 pixel의 거리비율은 30%만 적용되며 이전 프레임의 거리비율을 70%로 사용하여 거리정보로 계산 : 0.1% ~ 99.9% 까지 사용 가능>
- temporalThreshold: threshold 값 <0: off, 1 ~ 1000 value>
- < 200 설정 시 이전 프레임의 픽셀과 현재 프레임의 픽셀간의 오차가 200mm 미만인 경우에만 적용되며 이상일 경우 temporal filter는 적용되지 않음 >
- edgeThreshold : 0 ~ 5000 <0 : off, 1 ~ 5000 : edge threshold value> < 인접 픽셀과의 오차가 threshold를 초과하는 경우 edge로 인식하여 해당 pixel을 NSL_EDGE_DETECTED로 대체 >
- interferenceDetectionLimit : 0 ~ 10000 <0 : off, 1 ~ 10000 : limit value> < 여러대의 라이다에 의해 주파수 간섭이 발생하는 경우 간섭을 판단하기 위한 범위값으로 해당값을 벗어나는 경우 간섭이 발생한 것으로 판단함 : 400 lsb 정도면 간섭 확인 가능>
- $\bullet \ enable Interference Detection Last Value \ : \ true, \ false \\$
- < 간섭 발생 시 이전 frame의 픽셀 값으로 대체 >

26) nsl_getFilter() function

• 라이다에 설정된 filter 값을 읽어 옵니다.

27) nsl_set3DFilter() function

- 2D기반에서는 인접 픽셀의 거리값만을 사용하지만 3D기반에서는 인접된 X,Y,Z를 모두 사용합니다.
- edgeThreshold : $0 \sim 5000 < 0$: off, $1 \sim 5000$: edge threshold value>

28) nsl_get3DFilter() function

- 3D edge 값을 읽어 옵니다.
- 이 필터는 SDK 내부에서 동작되는 필터로 장비에 저장되지 않습니다.

29) nsl_setBinning() function

- 라이다의 vertical binning 및 horizontal binning을 설정합니다.
- binning 사용 시 인접 픽셀을 묶어서 사용하므로 integration time 재설정이 필요합니다.

30) nsl_getBinning() function

• 라이다에 설정된 binning 상태 값을 읽어 옵니다.

31) nsl_setRoi() function

- 라이다의 ROI를 설정합니다.
- minX : 0 ~ 124(120)까지 설정가능하며 4의 배수로 설정합니다. (NSL-3130CV의 경우 8의 배수)
- minY : 0 ~ 116까지 설정가능하며 2의 배수로 설정합니다.
- maxX : 319 ~ 131(127)까지 설정가능하며 4의 배수로 설정합니다. (NSL-3130CV의 경우 8의 배수)
- maxY : 239 ~ 123까지 설정가능하며 2의 배수로 설정합니다.
- < width = maxX-minX+1, height = maxY-minY+1 >

32) nsl_getRoi() function

• 라이다에 설정된 ROI값을 읽어 옵니다.

33) nsl_setCorrection() function

- 라이다의 보정 기능을 설정합니다.
- drnu : drnu 보정기능을 활상화 및 비활성화 합니다. 기본은 활성화 상태입니다.
- temperature : 온도보정 기능을 활성화 및 비활성화 합니다. 기본은 활성화 상태입니다.
- grayscale : 그레이스케일 보정 기능을 활성화 및 비활성화 합니다. 기본은 비활성화 상태입니다.
- ambientlight: 주변광 보정 기능을 활성화 및 비활성화 합니다. 기본은 비활성화 상태입니다.

34) nsl_getCorrection() function

• 라이다에 설정된 보정 상태 값을 읽어 옵니다.

35) nsl_setIpAddress() function

• 라이다의 ip address, netmask, gateway 정보를 설정합니다. < 자동 재부팅 >

36) nsl_getIpAddress() function

• 라이다에 설정된 ip 정보 값을 읽어 옵니다.

37) nsl_setLedSegment() function

- 라이다의 LED를 라인별로 제어 합니다. <하위 4비트>
- 0 : all off, 1 : 1st Line, 2 : 2nd Line, 4 : 3rd Line, 8 : 4th Line, 15 : All Line

38) nsl_getLedSegment() function

- LED 제어 값을 읽어 옵니다. <라이다에 저장되지 않음>
- library open 시마다 15 값으로 자동 리셋됩니다.

- 39) nsl_saveConfiguration() function
- 현재까지 설정된 라이다 정보를 장치에 저장합니다.
- 이 function을 호출한 후 장비를 재부팅해도 현재까지 설정 값이 유지 됩니다.
- 40) nsl_getCurrentConfig() function
- 인자로 전달되는 configuration structure를 라이다에 설정된 정보로 채웁니다.
- 41) nsl_transformPixel() function
- nsl_getFrame()를 통해 직접 구현하는 경우 사용하며 2D distance를 3D distance로 변환합니다.
- srcX : 2D distance상의 x position
- srcY : 2D distance상의 Y position
- srcZ : 2D distance상의 x, y pixel의 distance <라이다 중심에서 대상까지의 직선거리>
- destX : 3D 좌표로 변환된 X distance. <중심에서 좌측은 -값을, 우측은 +값을 가집니다>
- destY : 3D 좌표로 변환된 Y distance, <중심에서 상단은 -값을, 하단은 +값을 가집니다>
- destZ : 3D 좌표로 변환된 Z distance, <X, Y 지점부터 대상까지의 직선거리>
- 42) nsl_setColorRange() function
- 뷰어상에서 표현되는 거리별 색상을 지정하기 위한 기능입니다.
- maxDistance : 최대 몇 mm까지 화면에 표시할지에 대한 설정값입니다. 이 값 이상의 거리는 검정색으로 표시됩니다. <기본값:12500>
- maxGrayScale : isGrayscale가 ON인 경우 amplitude의 최대값을 지정합니다. 이 값 이상은 흰색으로 표시됩니다. < 낮은 amplitude의 대상을 확인하기 위해 변경합니다. 기본&최대 2897>
- isGrayscale: amplitude 이미지를 grayscale 이미지로 표시합니다. <기본값 OFF>
- 43) nsl_getDistanceColor() function
- 뷰어상에서 표현되는 거리 색상 정보를 가져옵니다.
- NslVec3b를 기반으로 r,g,b 값을 사용 가능합니다.
- value: distance(mm) 값
 - < distance값을 파라메터로 전달하면 대응되는 색상값을 return합니다 >
- 44) nsl_getAmplitudeColor() function
- NslVec3b를 기반으로 r,g,b 값을 사용 가능합니다.
- value : amplitude(lsb)
 - < amplitude값을 파라메터로 전달하면 대응되는 색상값을 return합니다 >

nanolib.h structures

1) NslConfig

이름	설명	비고
integrationTime3D	기본 integration time 값	
	spatial HDR / temporal HDR사용 시 두번째	
integrationTime3DHdr1	integration 값	
	temporal HDR사용 시 세번째 integration 값,	
integrationTime3DHdr2	(temporal HDR 설정 후 미사용 시 0)	
integrationTimeGrayScale	grayscale mode에서의 integration time 값	
roiXMin	지정된 ROI의 x position 시작값	
roiXMax	지정된 ROI의 x position 종료값	
roiYMin	지정된 ROI의 y position 시작값	
roiYMax	지정된 ROI의 y position 종료값	
currentOffset	현재 modulation frequency의 offset값	
minAmplitude	라이다에 설정된 minimum amplitude 값	
iiiii iiipiitude	펌웨어 정보	
firmware_release		
ahinID	(상위 2바이트 : major, 하위 2바이트 minor)	
chipID	라이다 센서의 chip ID	
waferID	라이다 센서의 wafer ID	
udpDataPort	nsl_open이후 설정된 UDP 수신 포트	
ledMask	LED를 라이별로 제어 합니다. 라이다의 수직 회전각	
lidarAngle	(정면일 경우 0도, 위또는 아래를 보는경우에 따	
	라 +X 도, -X도로 초기화 하여야 함)	
lidarType	320x240 : TYPE_A, 800x600 : TYPE_B	
	라이다에 사용된 lens 화각	
lensType	(110도 : WF, 90도 : SF, 50도 : NF)	
	(라이다 제품에 따라 초기화 하여야 함)	
operationModeOpt	설정된 동작 모드 옵션	
hdrOpt	설정된 HDR 모드 옵션	
mod_frequencyOpt	설정된 modulation frequency 옵션	
mod_nequencyopt mod_channelOpt	설정된 channel 옵션	
mod_endimeropt	전원 인가시 자동으로 주변채널을 검색하여 사용	
mod_enabledAutoChannelOpt		
dbModOpt	하지 않는 채널로 설정하기 위한 옵션 설정된 dual beam modulation 옵션	
dbModOpt dbOpsOpt	설정된 dual beam operation 옵션	
ver_binningOpt	vertical binning 옵션 사용 여부	
horiz_binningOpt	horizontal binning 옵션 사용 여부	
overflowOpt	overflow 옵션 사용 여부	
saturationOpt	saturation 옵션 사용 여부	
drnuOpt	drnu보정 옵션 사용 여부	
temperatureOpt	온도보정 옵션 사용 여부	
grayscaleOpt	그레이스케일보정 옵션 사용 여부	
ambientlightOpt	주변광보정 옵션 사용 여부	
medianOpt	median filter 사용 여부	
gaussOpt	gauss filter 사용 여부	
temporalFactorValue	설정된 temporal filter factor 값	
temperan actor varac	505 temberar meet ractor M	

temporalThresholdValue	설정된 temporal filter threshold 값	
edgeThresholdValue	설정된 edge filter threshold 값	
interferenceDetectionLimitValue	설정된 간섭감지 한계값	
interferenceDetectionLastValueOpt	설정된 간섭감지 지난 프레임 값 사용여부	
udpSpeedOpt	설정된 udp 속도 옵션	
frameRateOpt	설정된 frame rate 옵션	
grayscaleIlluminationOpt	설정된 gray scale LED 사용 여부	

2) NslPCD

이름	설명	비고
operationMode	수신된 프레임의 동작 모드	OPERATION_MODE_OPTIONS 참조
lidarType	라이다의 resolution type	LIDAR_TYPE_OPTIONS 참조
temperature	현재 라이다의 온도	
includeRgb	수신된 프레임에 RGB 데이터가 포함됨	NSL-3130CV에서 사용됨
includeLidar	수신된 프레임에 라이다 데이터가 포함됨	
width	수신된 frame의 width	
height	수신된 frame의 height	
roiXMin	ROI 조정 시 x 시작 위치(기본값 0)	
roiYMin	ROI 조정 시 y 시작 위치(기본값 0)	
roiXMax	ROI 조정 시 x 종료 위치(기본값 319)	
roiYMax	ROI 조정 시 y 종료 위치(기본값 239)	
binning_h	horizontal binning기능 활성 화에 따라 1 또는 2	
binning_v	vertical binning기능 활성 화에 따라 1 또는 2	
amplitude	2D amplitude 버퍼	
distance2D	2D distance 버퍼	
distance3D	3D 좌표로 변환된 버퍼	
rgb	RGB 데이터 버퍼	NSL-3130CV에서 사용됨

nanolib.h enum type

1) FUNCTION_OPTIONS

이름	설명	비고
FUNC_OFF	기능 비활성화	
FUNC_ON	기능 활성화	

2) HDR_OPTIONS

이름	설명	비고
HDR_NONE_MODE	HDR 기능 비활성화	
HDR_SPATIAL_MODE	spatial HDR 활성화	
HDR_TEMPORAL_MODE	temporal HDR 활성화	

3) UDP_SPEED_OPTIONS

이름	설명	비고
NET_100Mbps	100Mbps로 이더넷 속도 제어	NSL-3130CV에서 사용
NET_1000Mbps	1000Mbps로 이더넷 속도 제어	NSL-3130CV에서 사용

4) DUALBEAM_MOD_OPTIONS

이름	설명	비고
DB_OFF	dual beam 기능 비활성화	
DB_6MHZ	dual beam의 기준 주파수를 6Mhz로 설정	
DB_3MHZ	dual beam의 기준 주파수를 3Mhz로 설정	

5) DUALBEAM_OPERATION_OPTIONS

이름	설명	비고
DB_AVOIDANCE	phase wrapping 발생시 해당값 제거	
DB_CORRECTION	phase wrapping 발생시 해당값 보정	
DB_FULL_CORRECTION	DB_CORRECTION + low ampliutde 구간 보정	

6) MODULATION_OPTIONS

이름	설명	비고
MOD_12Mhz	LED 변조주파수를 12Mhz로 설정	
MOD_24Mhz	LED 변조주파수를 24Mhz로 설정	
MOD_6Mhz	LED 변조주파수를 6Mhz로 설정	
MOD_3Mhz	LED 변조주파수를 3Mhz로 설정	

7) MODULATION_CH_OPTIONS

이름	설명	비고
MOD_CH0	해당 변조주파수의 채널을 0번으로 설정	
MOD_CH1 ~ MOD_CH15	해당 변조주파수의 채널을 1~15번으로 설정	

8) FRAME_RATE_OPTIONS

이름	설명	비고
FRAME_5FPS	라이다의 frame rate을 5fps로 설정	
FRAME_10FPS	라이다의 frame rate을 10fps로 설정	
FRAME_15FPS	라이다의 frame rate을 15fps로 설정	
FRAME_20FPS	라이다의 frame rate을 20fps로 설정	
FRAME_25FPS	라이다의 frame rate을 25fps로 설정	NSL-3130CV에서 사용
FRAME_30FPS	라이다의 frame rate을 30fps로 설정	NSL-3130CV에서 사용

9) LENS_TYPE

이름	설명	비고
LENS_NF	라이다의 렌즈 화각을 50도로 설정합니다.	nsl_open시 설정 필요.
LENS_SF	라이다의 렌즈 화각을 90도로 설정합니다.	화각에 따라 Point doud 값이
LENS_WF	라이다의 렌즈 화각을 110도로 설정합니다.	변경되니 정확한 값을 <i>초</i> 기화 해/함.

10) LIDAR_TYPE_OPTIONS

이름 설명		비고
TYPE_A	320x240 라이다 타입	
TYPE_B	800x600 라이다 타입	

11) OPERATION_MODE_OPTIONS

이름	설명	비고	
NONE_MODE	라이다 미동작		
DISTANCE_MODE	distance 전용 동작	2바이트 단위 little endian x width x height	
GRAYSCALE_MODE	grayscale 전용 동작	2바이트 단위 little endian x width x height	
DISTANCE_AMPLITUDE _MODE	distance & amplitdue 혼용 동작	4바이트 단위 little endian 하위 2바이트 : distance 상위 2바이트 : amplitude x width x height	
DISTANCE_GRAYSCALE _MODE	distance & grayscale 혼용 동작	4바이트 단위 little endian 하위 2바이트 : distance 상위 2바이트 : grayscale x width x height	
RGB_MODE	RGB 전용 동작	2바이트 rgb565 x 1920 x 1080	
RGB_DISTANCE_MODE	RGB & distance 혼용 동작	2바이트 rgb565 x 1920 x 1080 2바이트 distance x width x height	
RGB_DISTANCE_AMPLIT UDE_MODE	RGB & distance & amplitude 혼용 동작	2바이트 rgb565 x 1920 x 1080 4바이트 distance & amplitude x width x height	
RGB_DISTANCE_GRAYS CALE_MODE	RGB & distance & grayscale 혼용 동작	2바이트 rgb565 x 1920 x 1080 4바이트 distance & grayscale x width x height	

12) NSL_DATA_TYPE

이름	설명	비고
NONE_DATA_TYPE	데이터가 없음을 표시함	
DISTANCE_DATA_TYPE	DISTANCE DATA로만 구성됨(2바이트 단위)	
GRAYSCALE_DATA_TYPE	GRAYSCALE DATA로만 구성됨(2바이트 단위)	nsl_getFrame()을 사용하여
DISTANCE_AMPLITUDE_	DISTANCE와 AMPLITUDE DATA로 구성됨 (4바	
DATA_TYPE	이트 단위)	NsIPOD 구조체에 NsIFrame
DISTANCE_GRAYSCALE_	DISTANCE와 GRAYSCALE DATA로 구성됨 (4	을 직접 개발하는 경우 참고
DATA_TYPE	바이트 단위)	
RGB_DATA_TYPE	RGB 데이터로 구성됨 (2바이트 단위:RGB565)	

13) NSL_ERROR_TYPE

이름	설명	비고
NSL_SUCCESS	성공적으로 명령이 수행됨	
NSL_INVALID_HANDLE	nsl_open에서 return된 handle이 아님	
NSL_NOT_OPENED	nsl_open시 정상적으로 연결되지 않음	
NSL_IP_DUPLICATED	nsl_open시 중복된 아이피를 사용함	
NSL_HANDLE_OVERFLOW	10개를 초과한 handle을 생성함	
NSL_DISCONNECTED_SOCKET	TCP 소켓이 종료됨	
NSL_ANSWER_ERROR	라이다로부터 비정상 응답이 수신됨	
NSL_INVALID_PARAMETER	잘못된 파라메터를 전달함	

품질보증서

저희 제품을 구매해 주셔서 감사합니다.

본 제품의 품질 보증기간은 제품구입일로부터 산정되므로 반드시 구입 일자를 기재 받으시고 충분한 서비스를 받으시기 바랍니다.

제품명	NSL-3140	AA			
제조번호					
구입일자	20 년	월	일		
	성명			전화번호	
고객명	주소				
판매점	성명			전화번호	
	주소				

○ 보증내용

- 1. 본 제품은 엄격한 품질관리과정을 거쳐 만들어진 제품입니다.
- 2. 본 제품에 이상이 발생한 경우 당사의 보증서에 따라 1년 동안 무상으로 A/S를 받으실 수 있습니다(단, 보증기간 이내라 하더라도, 소비자의 고의 또는 과실에 의한 성능, 기능상의 고장, 그리고 보증라벨의 훼손은 제외됩니다).
- 3. 유상서비스에 해당 되는 사항은,
 - (1) 사용상의 취급 부주의
 - (2) 전기 용량을 틀리게 사용하여 고장이 난 경우
 - (3) 천재지변(화재, 염해, 수해, 기타)
 - (4) 사용자 임의의 내부 개조로 발생하는 고장

○ 서비스를 신청하기 전에

- 1. 우선 연락하시기 전에 사용설명서 상의 사용법 및 고장 시 확인사항을 다시 한번 확인해 주시기 바랍니다.
- 2. 그래도 이상이 있을 때에는 사용을 중지하고 당사 서비스센터에 문의 하시기 바랍니다.
- 3. 직접 수리를 하는 것은 매우 위험합니다.

본 제품의 사용과 관련하여 A/S 사항은 구입하신 곳이나 고객센터를 이용하여 주십시오.

A/S 상담 [판매원/고객센터] ㈜나노시스템즈

경북 경산시 삼풍로 27, 글로벌벤처동 2504호 Tel. 053)801-2645 http://www.nanosys.kr