Preliminares

Conjuntos

Propiedades de las operaciones sobre conjuntos

```
(A \cup B) \cup C = A \cup (B \cup C) \qquad \text{Conmutividad de} \cup \\ (A \cap B) \cap C = A \cap (B \cap C) \qquad \text{Conmutividad de} \cap \\ A \cup (B \cap C) = (A \cup B) \cap (A \cup C) \qquad \text{Distributividad de} \cup \text{respecto a} \cap \\ A \cap (B \cup C) = (A \cap B) \cup (A \cap C) \qquad \text{Distributividad de} \cap \text{respecto a} \cup \\ C - (A \cup B) = (C - A) \cap (C - B)) \\ C - (A \cap B) = (C - A) \cup (C - B))
```

Partes de un conjunto

```
P(A) = \{B | B \subseteq A\}
```

Ejemplo: $A=\{a,b\}$ entonces $P(A)=\{\emptyset,\{a\},\{b\},\{a,b\}\}$

Si A es un conjunto finito entonces $|P(A)|=2^{|A|}$

Cadenas sobre un conjunto

 A^* denota el **conjunto de cadenas** sobre A, también llamado *palabras* sobre el *alfabeto* A y está definido por:

- 1. λ es una cadena sobre A llamada **cadena vacia**
- 2. si ω es una cadena sobre A y $a\in A$ entonces ωa es una cadena sobre A
- 3. nada más es una cadena sobre A

Ejemplo: $A = \{a, b\}$ entonces $A^* = \{\lambda, a, b, aa, ab, ba, bb, aaa, aab, \dots\}$

Operaciones sobre cadenas:

- **Concatenación**: la concatenación de dos cadenas ω_1 y ω_2 es $\omega_1\omega_2$
- **Inversión**: la inversión de $\omega = a_1 a_2 \dots a_k$ es $\omega^{inv} = a_k a_{k-1} \dots a_1$

Dadas dos cadenas ω_1 y ω_2 , ω_1 es el **prefijo** y ω_2 el **sufijo** de $\omega_1\omega_2$.

Relaciones y funciones

Una **relación binaria** R entre dos conjuntos A y B es un subconjunto del producto cartesiano $A \times B$.

- Si $(a,b) \in R$ se dice que a y b están relacionados por R (se puede escribir aRb en vez de $(a,b) \in R$)
- Si A=B, R es una relación binaria en A

Una relación ~ en A es

- **reflexiva** si $a \sim a$, para todo $a \in A$
- **simétrica** si para todos los $a \in A, b \in A$ con $a \sim b$ se cumple $b \sim a$
- antisimétrica si para todos los $a \in A, b \in A$ con $a \sim b$ y $b \sim a$ se cumple a = b

- **transitiva** si para todos los $a \in A, b \in A, c \in A$ con $a \sim b$ y $b \sim c$ se cumple $a \sim c$
- de equivalencia si es reflexiva, simétrica y transitiva

Ejemplo: la relación de igualdad (=) en un conjunto A es una relación de equivalencia.

Usamos la notación $f:A\to B$ para indicar que f es una relación binaria entre A y B en la que cada elemento de A está relacionado con un único elemento de B.

A f se le llama **función** de A en B y se escribe f(a) = b.

Una función f:A o B es:

- **inyectiva** si para todos los $a_1, a_2 \in A$ se tales que $f(a_1) = f(a_2)$ se cumple que $a_1 = a_2$
- **exhaustiva** si para todo $b \in B$ existe $a \in A$ tal que f(a) = b
- **biyectiva** si es inyectiva y exhaustiva

Relación de equivalencia y conjunto cociente

Si R es una **relación de equivalencia** en A, se llama **clase de equivalencia** de $a \mod a$ denotaad por $[a]_R$, al subconjunto de A de todos los elementos x relacionados con a:

$$[a]_R = \{x \in A \mid a \mathrel{R} x\}$$

El conjunto de todas las clases de equivalencia $[a]_R$ es una partición de A llamada conjunto cociente de A módulo R y denotada $A/_R$:

$$A/_{R} = \{[a]_{R} \mid a \in A\}$$

Relaciones de orden

Una relación en un conjunto A es un **orden** si es reflexiva, antisimétrica y transitiva.

Una relación de orden \leq en A es **total** si para todos los elementos $a,b\in A$ se cumple $a\leq b$ o bien $b\leq a$

Combinatoria

Número de *combinaciones* (subconjuntos) de m elementos de un conjunto A de n elementos:

$$\binom{n}{m} = \frac{n!}{(n-m)!m!}$$

Número de *permutaciones* de *A*: n!

Demostraciones

Inducción

La demostración por *inducción* tiene dos pasos:

- 1. Caso base: Demostrar que la propiedad es cierta para 0
- 2. **Caso de inducción**: Para toda i > 0, si la propiedad es cierta para i 1 entonces lo es para i

Contrarecíproco

Sirve para demostrar las propiedades del tipo "A implica B", ya que queremos demostrar que si A es cierta B también lo es.

Para ello demostramos que $\neg A \implies \neg B$ i.e. si B es falsa, entonces A también.

Ejemplo: Queremos demostrar que si el cuadrado de un número natural n es par, entonces n es par. El contrarecíproco dice que si n es impar, su cuadrado es impar. Como n es impar podemos decir que n=2k+1 para un natural k. Entonces $n^2=(2k+1)^2=4k^2+4k+1$, por lo tanto n^2 es impar.

Reducción al absurdo

Suponemos que la propiedad a demostrar es falsa y deducimos un absurdo o contradicción.

Por lo tanto la propiedad no puede ser falsa y debe ser verdadera.

Ejemplo: Queremos demostrar que $\sqrt{2}$ no es racional, no hay hay naturales n y m que cumplsn que $\sqrt{2}=\frac{n}{m}$. Negamos la propiedad y por tanto intentamos demostrar que $\sqrt{2}$ sí que es racional, existen n y m tal que $\sqrt{2}=\frac{n}{m}$.

Vamos dividiendo n y m por 2 hasta que al menos uno sea impar. Por lo tanto podemos asumir que $\sqrt{2}=\frac{n}{m}$ donde o n o m es impar.

Si $\sqrt{2}=\frac{n}{m}$, elevandolo al cuadrado obtenemos $2=\frac{n^2}{m^2}$ y por lo tanto $n^2=2m^2$. Esto implica que n es par (n=2k) y tenemos que $(2k)^2=2m^2$, es decir $m^2=2k^2$. Consecuentemente, m tiene que ser par ya que su cuadrado lo es.

CONTRADICCIÓN: al principio hemos visto que n o m es impar pero hemos llegado a la conclusión de que tanto n como m es par. Por lo tanto demostramos que la suposición de que $\sqrt{2}$ es racional es falsa y por lo tanto es irracional.