HIERARCHICAL STRUCTURE AND TOPOLOGICAL CONTENT OF ENTANGLEMENT OF FREE FERMIONS

ABHIRUP MUKHERJEE, SIDDHARTHA PATRA, SIDDHARTHA LAL

DEPARTMENT OF PHYSICAL SCIENCES, IISER KOLKATA, MOHANPUR

JUNE 24, 2022

THE SYSTEM

Massless Dirac fermions on a 2-torus

$$L = i \overline{\psi} \gamma_{\mu} \partial_{\mu} \psi$$

In presence of an Aharonov-Bohm flux

$$L = \overline{\psi} \left(i \gamma_{\mu} + e A_{\mu} \right) \partial_{\mu} \psi$$

$$\rho = |\Psi\rangle\langle\Psi| \longrightarrow$$
density matrix

$$\rho = |\Psi\rangle\langle\Psi| \longrightarrow$$
density matrix

 $\rho_{\rm A}$ = partial trace over system A \longrightarrow reduced DM

$$\rho = |\Psi\rangle\langle\Psi| \longrightarrow$$
density matrix

 $\rho_{\rm A}$ = partial trace over system A \longrightarrow reduced DM

$$S(A) = -\text{Tr}\left[\rho_A \ln \rho_A\right] \longrightarrow \text{entanglement entropy of A}$$

 \longrightarrow quantifies information shared between A and rest

$$\rho = |\Psi\rangle\langle\Psi| \longrightarrow$$
density matrix

 $\rho_{\rm A}$ = partial trace over system A \longrightarrow reduced DM

$$I(A:B) = S(A) + S(B) - S(A \cup B) \longrightarrow$$
mutual information between A and B

 \rightarrow quantifies information shared between A and B

ENTANGLEMENT OF FREE FERMIONS

Diagonal in k-space \longrightarrow **Vanishing** entanglement in momentum space

ENTANGLEMENT OF FREE FERMIONS

Diagonal in k-space \longrightarrow **Vanishing** entanglement in momentum space

Off-diagonal in r-space \longrightarrow **Fluctuations** exist in real space \longrightarrow leads to entanglement in real space

ENTANGLEMENT OF FREE FERMIONS

1D-ring of massless fermions: $\frac{2}{3} \ln \left(\frac{L}{\pi a} \sin \frac{\pi l}{L} \right)$

1D-line of relativistic fermions: $-\frac{1}{2} \ln (ma)$

$$-\frac{1}{3}\ln{(ma)}$$

2D-torus of massless fermions: $\alpha \frac{L_y}{\epsilon}$

$$\alpha \frac{L_y}{\epsilon}$$

Calabrese et al. 2004.

WHAT ARE WE GOING AFTER?

- Effect of a magnetic flux on the entanglement
- Distribution of the entanglement among subsystems of various sizes
- Emergent space generated by the transformations between these subsystems
- Curvature and related quantities of this space

In presence of flux:
$$L = \int dx dy \ \overline{\Psi}(x) (i\gamma_{\mu} + eA_{\mu}) \partial_{\mu} \Psi(x)$$

Periodic boundary conditions along
$$\vec{x}$$
: $k_x^n = \frac{2\pi n}{L_x}$, $n \in \mathbb{Z}$

Introduce Fourier modes:
$$\Psi(x) = \sum_{n=-\infty}^{\infty} e^{ixk_x^n} \Psi(k_x^n)$$

Decouples into massive 1D modes: $L = \sum_{n} \int dy \, \overline{\Psi}(k_{x}, y) \left(i \gamma_{\mu} \partial_{\mu} - M \right) \Psi(k_{x}, y)$

Mass of each mode: $M(n, \phi) = \frac{2\pi}{L_v} |n + \phi|$

2D system is described by sum over 1D modes.

Modes do not couple - no inter-mode entanglement.

Total entanglement is sum of each part: $S = \sum_{n} S_{n}$

$$S_n(\phi) = \underbrace{c \log(\alpha L_x)}_{\text{modified area law}} - \underbrace{c \log|n + \phi|}_{\text{mass correction}}$$

ENTANGLEMENT HIERARCHY IN MIXED MOMENTUM AND REAL SPACE

CREATING SUBSYSTEMS

$$k_x^n = \frac{2\pi}{L_x} n$$
, $n \in \mathbb{Z}$; define **distance** = $\Delta n = 1$

Simplest choice: the entire set

distance = 1
$$\longrightarrow$$
 $n \in \{-N, -(N-1), -(N-2), ..., -1, 0, 1, ..., N-2, N-1, N\}$

Coarser choices: increase distance

distance = 2
$$\longrightarrow$$
 $n \in \{-N, -(N-2), -(N-4), ..., -2, 0, 2, ..., N-4, N-2, N\}$

distance = 4
$$\longrightarrow$$
 $n \in \{-N, -(N-4), -(N-8), ..., -4, 0, 4, ..., N-8, N-4, N\}$

SEQUENCE OF SUBSYSTEMS

Define **sequence** of subsystems

$$A_z(j): t_z(j) = 2^{j^z}$$

sequence index: j = 0, 1, 2, ...

strength of coarse/fine-graining: $z = \pm 1, \pm 2, \pm 3, ...$

THE SEQUENCE AS A RENORMALISATION GROUP FLOW

Sequence of Hamiltonians **←→ renormalisation** group flow

RG - transformation of Hamiltonian via change of scale

Superset of all members:
$$A_z^{(0)} = \bigcup_j A_z(j)$$

"Super-Hamiltonian":
$$H^{(0)} = \sum_{k_x \in A_z^{(0)}} H(k_x)$$

RG equation:
$$H_z(j) = \underbrace{P_z(j)}_{\text{projector}} H^{(0)} P_z(j)$$

WHAT, EXACTLY, IS GETTING RENORMALISED?

Several ways to look at this

- renormalisation in **entanglement**: $\Delta \log S_z(j) \sim \Delta f_z(j)$
- renormalisation in 1-particle **spectral gap**: $M(n, \phi) \sim |n + \phi|$
- renormalisation in real space quantum fluctuation

FRACTION OF MAXIMUM STATES

 $f_z(j)$ = fraction of maximum states = $1/t_z(j)$

SEQUENCE OF SUBSYSTEMS

$$j = 0$$
: $A_z(0)$: annulus

$$\Delta n \sim \Delta k_x \sim 1/L_x$$

z > 0: decreasing system size

z < 0: increasing system size

SUBSYSTEM ENTANGLEMENT ENTROPY

Modes are decoupled → entanglement is additive

$$S_{A_z(j)} = \sum_{n \in A_z(j)} S_n = f_z(j) c \alpha L_x - c \log \left| 2 \sin \left(\pi f_z(j) \phi \right) \right|$$

$$i < j, \quad S_{i \cup j} = \begin{cases} S_i, & z > 0 \\ S_j, & z < 0 \end{cases}$$

ENTANGLEMENT HIERARCHY

$$i < j, \quad S_{i \cup j} = \begin{cases} S_i, & z > 0 \\ S_j, & z < 0 \end{cases}$$

presents a **hierarchy** of entanglement → EE distributed across levels

RG transformation → reveals entanglement

distribution of entanglement also present in multipartite entanglement

Mutual information: $I^2(A:B) \equiv S(A) + S(B) - S(A \cup B)$

information gained about B upon measuring A

define distance along the RG:
$$d_z(j) = \log I_{\max}^2 - \log I_z^2(0:j) = \log t_z(j)$$

For z > 0:

- mut. info. is maximum for small i
- decreases for large i
- corresponds to increasing distance

RG EVOLUTION = EMERGENT DISTANCE

Define 2-dimensional x - y structure

Define coupling that measures spectral gap: $g_z(j) = \log \frac{M_{n+1}(\phi) - M_n(\phi)}{2\pi/L_v} = \log t_z(j)$

RG beta function for its evolution:

0.6
$$z = -2$$
 $z = 1$

0.4 0.2

0.0 0.2

0.0 0.0

10 0.0

10 scaling step(j)

$$\beta_z(j) = \Delta \log g_z(j) = z \log (1 + j^{-1})$$

RG beta function can be related to the x, y-distances

$$x_{z} = \left(e^{\frac{\beta_{z}}{z}} - 1\right)^{-z} \ln 2$$

$$y_{z} = \begin{cases} x_{z}e^{\beta}, & z > 0\\ x_{z}\left(2 - e^{\frac{\beta}{z}}\right)^{z}, & z < 0 \end{cases}$$

explicit relation between the RG flow and the emergent geometry

CURVATURE OF THE EMERGENT SPACE

Define first and second derivatives in emergent space

$$v_{z}(j) = \frac{\Delta y_{z}(j)}{\Delta x_{z}(j)} = \begin{cases} \frac{(j+2)^{z} - (j+1)^{z}}{(j+1)^{2} - j^{z}}, & z > 0\\ \frac{(j)^{z} - (j-1)^{z}}{(j+1)^{z} - j^{z}}, & z < 0 \end{cases}$$

$$v'_{z}(j) = \frac{v_{z}(j+1) - v_{z}(j)}{x_{z}(j+1) - x_{z}(j)}$$
Define curvature using them: $K_{z}(j) = \frac{v'_{z}(j)}{\left[1 + v_{z}(j)^{2}\right]^{\frac{3}{2}}}$

 \longrightarrow can be expressed in terms of $\beta_z(j)$

CURVATURE OF THE EMERGENT SPACE

- **p** positive curvature for z < 0
- \blacksquare zero curvature for z = 1
- negative curvature for z > 1
- **asymptotically flat** for large j, at all z

THE SIGN OF THE CURVATURE IS TOPOLOGICAL

Curvature can be written as the product of **winding numbers**:

$$sign[\kappa_z] = W_z(\gamma^*) \times [2W_z'(\alpha^*) - 1]$$

winding numbers count singularities, robust against deformations

THE SIGN OF THE CURVATURE IS TOPOLOGICAL

Where exactly is the topology changing?

- \blacksquare z acts as the **anomalous dimension** of the effective field theory
- change in z can be interpreted as a change in the underlying **interacting theory**
- change in sign of z is therefore a **topological phase transition** in the microscopic theory

REFERENCES I		

► Calabrese, Pasquale and John Cardy (2004). "Entanglement entropy and quantum field theory". In: Journal of Statistical Mechanics: Theory and Experiment 2004.06, P06002.