Volume

Prof. Dr. Vinícius Wasques

Universidade Paulista - Unip, Campus Swift Campinas

11 de maio de 2020

Volume de figuras espaciais

Volume =
$$A_b.h$$

 A_b : área da base;

h: tamanho da altura.

Determine o volume de uma prisma retangular de lado b=5 e altura h=4.

Determine o volume de uma prisma retangular de lado b = 5 e altura h = 4.

Volume =
$$A_b.h = (5.5).4 = 25.4 = 100$$

Paralelepípedos

Área total do paralelepípedo = 2ab + 2bc + 2ac

Volume do paralelepípedo = a.b.c

Determine a área total e o volume de um cubo de lado a = 2.

Determine a área total e o volume de um cubo de lado a = 2.

Área =
$$2a.a + 2a.a + 2a.a = 6a^2 = 6(2)^2 = 6.4 = 24$$

Determine a área total e o volume de um cubo de lado a = 2.

Área =
$$2a.a + 2a.a + 2a.a = 6a^2 = 6(2)^2 = 6.4 = 24$$

Volume =
$$a.a.a = a^3 = (2)^3 = 8$$

Pirâmede

Área total =
$$A_b + A_l$$

 A_b : área da base;

 A_l : área lateral;

Pirâmede

$$Volume = \frac{A_b.h}{3}$$

 A_b : área da base;

h: tamanho da altura.

Determine o volume de uma pirâmede de altura 9 e base quadrada de lado 2.

Determine o volume de uma pirâmede de altura 9 e base quadrada de lado 2.

Volume =
$$\frac{A_b \cdot h}{3} = \frac{(2.2).9}{3} = (4).3 = 12$$

Cilindro

Área total =
$$2A_b + A_l$$

 A_b : área da base;

 A_I : área lateral;

Cilindro

Volume =
$$\pi r^2 h$$

r : raio;

h : altura;

Determine o volume do cilindro de raio r = 3 e altura h = 4.

Determine o volume do cilindro de raio r = 3 e altura h = 4.

Volume =
$$\pi r^2 h = \pi (3)^2 4 = \pi 9.4 = 36\pi$$

Cone

$$Volume = \frac{A_b.h}{3}$$

 A_b : área da base;

h: altura;

Determine o volume do cone de raio r = 3 e altura h = 4.

Determine o volume do cone de raio r = 3 e altura h = 4.

Volume =
$$\frac{(\pi r^2).h}{3} = \frac{(\pi 3^2).4}{3} = \frac{(9\pi).4}{3} = 12\pi$$

Esfera

Área da superfície = $4\pi r^2$

$$\mathsf{Volume} = \frac{4}{3}\pi r^3$$

Determine o volume da esfera de raio r = 3.

Determine o volume da esfera de raio r = 3.

Volume =
$$\frac{4}{3}\pi r^3 = \frac{4}{3}\pi 3^3 = \frac{4}{3}\pi 27 = 36\pi$$

Exercícios propostos

Exercícios 9 até 12, página 151 apostila da Unip

Exercício 5, página 157 apostila da Unip

- Os exercícios em preto são para praticar.
- Os exercícios em vermelho são para entregar.

Obrigado pela atenção!

Prof. Dr. Vinícius Wasques

email: vinicius.wasques@docente.unip.br

Departamento de Engenharia, Ciência da Computação e Sistemas de Informação

site: https://viniciuswasques.github.io/home/