Rappels sur les suites.

Dans toute la suite, K désigne R ou C.

1. Généralités sur les suites.

Définition. Une suite à valeurs dans \mathbf{K} est une application u de \mathbf{N} , privé éventuellement d'un nombre fini d'éléments, dans \mathbf{K} . Pour tout entier n, le nombre u(n) est noté u_n ; la suite u se note (u_n) .

On parle de suite réelle lorsque $\mathbf{K} = \mathbf{R}$, de suite complexe lorsque $\mathbf{K} = \mathbf{C}$. Lorsqu'une suite est définie seulement pour $n \geq p$ – par exemple $(1/n^2)$ est définie pour $n \geq 1$ – on peut écrire pour être précis $(u_n)_{n>p}$.

Une suite peut être définie de différentes manières :

- 1. explicitement en fonction de n: la suite de terme général $u_n = \ln(n+1) + e^{-n}$;
- 2. à l'aide d'une relation de récurrence : par exemple

$$u_0 = 0, \qquad \forall n \ge 0, \quad u_{n+1} = \sqrt{2 + u_n}.$$
 (1)

Il faut dans ce cas s'assurer que la suite est bien définie (ici $u_n \ge 0$ pour tout n). Les relations de récurrence peuvent faire intervenir plus de termes de la suite que dans l'exemple précédent : $u_0 = 0$, $u_1 = 1$ et, pour tout entier n, $u_{n+2} = 2u_{n+1} + 3u_n$.

Remarque. L'ensemble des suites à valeurs dans K est un K-espace vectoriel.

Définition. Une suite (u_n) à valeurs dans K est bornée s'il existe un réel positif K tel que

$$\forall n \in \mathbf{N}, \qquad |u_n| \le K.$$

Définition. Une suite **réelle** (u_n) est majorée (respectivement minorée) s'il existe un réel M (respectivement m) tel que

$$\forall n \in \mathbf{N}, \quad u_n \leq M \qquad \text{(respectivement } m \leq u_n\text{)}.$$

Remarque. Une suite réelle (u_n) est bornée si et seulement si elle est majorée et minorée.

Exemple. La suite définie par la relation (1) est minorée par 0 et donc minorée par $\sqrt{2}$ à partir de n=1. Montrons par récurrence qu'elle est majorée par 2. $u_0=0\leq 2$; si $u_n\leq 2$, $u_{n+1}=\sqrt{2+u_n}\leq \sqrt{2+2}=2$. Par conséquent cette suite est bornée.

La suite de terme général $v_n = (-1)^n n$ n'est pas bornée puisque $|v_n| = n$.

Définition. Une suite **réelle** (u_n) est *croissante* (respectivement *décroissante*) si, pour tout entier $n, u_{n+1} \ge u_n$ (respectivement $u_{n+1} \le u_n$).

Elle est strictement croissante (respectivement strictement décroissante) si, pour tout entier n, $u_{n+1} > u_n$ (respectivement $u_{n+1} < u_n$).

Revenons à l'exemple (1) et montrons que cette suite est croissante. On a, pour tout entier $n \ge 1$,

$$u_{n+1} - u_n = \sqrt{2 + u_n} - \sqrt{u_{n-1} + 2} = \frac{u_n - u_{n-1}}{\sqrt{2 + u_n} + \sqrt{2 + u_{n-1}}}.$$

Par conséquent, le signe de $u_{n+1} - u_n$ est le même que celui de $u_n - u_{n-1}$; ceci étant valable pour tout $n \ge 1$, le signe de $u_{n+1} - u_n$ est celui de $u_1 - u_0 = \sqrt{2} > 0$: la suite est croissante. On montre facilement que cette suite est strictement croissante.

2. Suites et limites.

Définition. Soient (u_n) une suite à valeurs dans \mathbf{K} et $l \in \mathbf{K}$.

La suite (u_n) converge vers l si pour tout $\varepsilon > 0$ il existe un entier p tel que

$$\forall n \in \mathbf{N}, \quad n > p \implies |u_n - l| < \varepsilon.$$

On note dans ce cas $\lim_{n\to+\infty} u_n = l$ ou $\lim u_n = l$.

 (u_n) est convergente lorsqu'il existe $l \in \mathbf{K}$ tel que $\lim u_n = l$. Dans le cas contraire, la suite (u_n) est divergente.

Exemple. La suite de terme général $1/n^2$ converge vers 0. En effet, fixons $\varepsilon > 0$; choisissons un entier p tel que $p > \sqrt{1/\varepsilon}$ de sorte que $p^2 > 1/\varepsilon$. Si $n \ge p$, $n^2 \ge p^2 > 1/\varepsilon$ et $|u_n| = u_n < \varepsilon$. Remarque. 1. Si une suite est convergente alors la limite est unique.

- 2. Toute suite convergente est bornée.
- 3. $\lim u_n = l \iff \lim (u_n l) = 0 \iff \lim |u_n l| = 0$.

Proposition. Soient (u_n) et (v_n) deux suites convergentes de limites respectives l et l'.

Pour tout $\lambda \in \mathbf{K}$, $(u_n + \lambda v_n)$ converge vers $l + \lambda l'$, $(u_n v_n)$ converge vers ll' et, si $l' \neq 0$, (u_n/v_n) converge vers l/l'.

Remarque. 1. L'ensemble des suites à valeurs dans \mathbf{K} qui sont convergentes est un sous-espace vectoriel des suites à valeurs dans \mathbf{K} .

- 2. Si (u_n) converge vers 0 et si (v_n) est bornée alors $(u_n v_n)$ converge vers 0.
- 3. Une suite complexe (u_n) converge vers l si et seulement si $(\text{Re}(u_n))$ converge vers Re(l) et $(\text{Im}(u_n))$ converge vers Im(l)

Définition. La suite **réelle** (u_n) tend vers $+\infty$ (respectivement $-\infty$) – on note alors $\lim u_n = +\infty$ (respectivement $\lim u_n = -\infty$) – si, pour tout A > 0, il existe $p \in \mathbb{N}$ tel que, pour tout $n \ge p$, $u_n > A$ (respectivement $u_n < -A$).

Exemple. Les suites n^2 , $\ln n$, e^n tendent vers $+\infty$.

La suite de terme général $u_n = (-1)^n$ est bornée; elle ne tend ni vers $+\infty$ ni vers $-\infty$. Pourtant cette suite est divergente.

3. Existence de limite pour les suites réelles.

Dans ce paragraphe, toutes les suites qui interviennent sont des suites réelles.

Théorème. On suppose que, pour tout $n \ge p$, $u_n \le v_n \le w_n$.

- 1. Si les suites (u_n) et (w_n) sont convergentes de même limite l, alors la suite (v_n) est convergente de limite l.
- 2. $Si \lim u_n = +\infty$, $alors \lim v_n = +\infty$.
- 3. Si $\lim w_n = -\infty$, alors $\lim v_n = -\infty$.
- 4. Si $\lim u_n = l$ et $\lim v_n = l'$ alors $l \leq l'$.

Exemple. La suite de terme général $u_n = \cos n/n$ converge vers 0. En effet, pour tout $n \ge 1$, $-1 \le \cos n \le 1$ donc $-1/n \le u_n \le 1/n$. Plus élégant, $0 \le |u_n| \le 1/n$.

$$u_n = n + \sqrt{n} \cos n \text{ tend vers } +\infty \text{ puisque } u_n \ge n - \sqrt{n} = n(1 - 1/\sqrt{n}).$$

Proposition. Soit (u_n) une suite croissante. Si (u_n) est majorée alors elle est convergente; si (u_n) n'est pas majorée, $\lim u_n = +\infty$.

Soit (u_n) une suite décroissante. Si (u_n) est minorée alors elle est convergente; si (u_n) n'est pas minorée, $\lim u_n = -\infty$.

Exemple. La suite définie par la relation (1) est convergente puisque croissante et majorée par 2.

Théorème (Suites adjacentes). Soient (u_n) une suite croissante et (v_n) une suite décroissante. Si $\lim(v_n - u_n) = 0$ alors les suites (u_n) et (v_n) sont convergentes vers la même limite.

Exercice. Montrer que la suite de terme général

$$u_n = 1 + \frac{1}{2} + \ldots + \frac{1}{n!}$$

est convergente. On pourra considérer la suite $v_n = u_n + 1/(n n!)$.

Définition (Suite de Cauchy). Une suite $(u_n)_{n\geq 0}$ est une suite de Cauchy si pour tout réel ε strictement positif, il existe un entier p tel que

$$n > p$$
, $m > p$ \Longrightarrow $|u_n - u_m| < \varepsilon$.

Théorème (K est complet). Soit $(u_n)_{n\geq 0}$ une suite de K.

 $(u_n)_{n\geq 0}$ est convergente si et seulement si $(u_n)_{n\geq 0}$ est une suite de Cauchy.

4. Suites récurrentes.

4.1. Suites arithmétiques. (u_n) est arithmétique de raison r si elle vérifie la relation de récurrence : pour tout $n \in \mathbb{N}$, $u_{n+1} = u_n + r$. On a alors, $u_n = u_0 + nr$ et $u_n = u_k + (n-k)r$.

On peut calculer facilement la somme des termes d'une suite arithmétique puisque

$$\forall (k,n) \in \mathbf{N}^2, \quad u_k + \ldots + u_{k+n} = (n+1)(u_k + u_{k+n})/2 = (n+1)(2u_k + nr)/2.$$

En particulier, $1 + \ldots + n = n(n+1)/2$.

4.2. Suites géométriques. (u_n) est géométrique de raison q si elle vérifie la relation de récurrence : pour tout entier n, $u_{n+1} = q u_n$. On a alors $u_n = q^n u_0$ et $u_n = q^{n-k} u_k$.

L'étude de la convergence se ramène à celle de la suite (q^n) :

- 1. |q| < 1: $\lim q^n = 0$;
- 2. |q| > 1: (q^n) n'est pas bornée car $\lim |q^n| = +\infty$;
- 3. |q| = 1: (q^n) est bornée mais (q^n) est divergente sauf si q = 1.

On peut également calculer la somme des termes d'une suite géométrique : si $q \neq 1$, on a

$$\forall (k,n) \in \mathbf{N}^2, \qquad u_k + \ldots + u_{k+n} = u_k \frac{1 - q^{n+1}}{1 - q} ;$$

en particulier, pour tout $z \in \mathbf{C}$ tel que |z| < 1,

$$1+z+\ldots+z^n=rac{1-z^{n+1}}{1-z}\longrightarrowrac{1}{1-z},\quad \text{ si } n\to+\infty.$$

Exercice. Soit (u_n) une suite à termes strictement positifs telle que $\lim (u_{n+1}/u_n) = a < 1$. Montrer que $\lim u_n = 0$ puis que la suite de terme général $S_n = u_0 + \ldots + u_n$ est convergente.

4.3. Suites arithmo-géométriques. On étudie la suite définie par u_0 et $u_{n+1} = au_n + b$. Si a = 1, c'est une suite arithmétique, si b = 0 c'est une suite géométrique.

Si $a \neq 1$. Soit x la solution de l'équation x = ax + b : x = b/(1-a). Posons $v_n = u_n - x$. On a alors, pour tout $n \geq 1$, $v_{n+1} = av_n : (v_n)$ est une suite géométrique. On en déduit que $u_n = x + a^n(u_0 - x)$.

Calcul de la mensualité d'un emprunt. On emprunte un capital de C euros au taux mensuel t sur N mensualités constantes. Notons m cette mensualité et d_n la dette de l'emprunteur après n mensualités. Bien évidemment, $d_0 = C$ et si on veut rembourser le prêt en N mensualités, on doit avoir $d_N = 0$. D'autre part, pour tout n,

$$d_{n+1} = (1+t) d_n - m.$$

Le point fixe est solution de x = (1+t)x - m soit x = m/t. La suite $x_n = d_n - m/t$ est une suite géométrique de raison (1+t). Par conséquent,

$$\forall n \ge 0, \qquad d_n - \frac{m}{t} = (1+t)^n \left(d_0 - \frac{m}{t} \right) = (1+t)^n \left(C - \frac{m}{t} \right).$$

Puisque $d_N = 0$, on obtient

$$\frac{m}{t} + (1+t)^N \left(C - \frac{m}{t}\right) = 0, \quad \text{soit} \quad m = \frac{Ct(1+t)^N}{(1+t)^N - 1}.$$

4

4.4. D'autres exemples. On cherche à étudier une suite réelle définie par u_0 et la relation de récurrence $u_{n+1} = f(u_n)$ pour $n \ge 0$ où f est une fonction réelle.

Proposition. Si (u_n) converge vers l et si f est continue au point l, alors l = f(l).

Si f est croissante, (u_n) est monotone : (u_n) est croissante si $u_1 - u_0 \ge 0$, décroissante si $u_1 - u_0 \le 0$.

Si f est décroissante, les suites (u_{2n}) et (u_{2n+1}) sont monotones de sens contraire.

Exemple. $u_{n+1} = \sqrt{2 + u_n}$, $u_0 = 0$. Nous avons vu que cette suite était croissante, positive et majorée par 2 : elle converge donc vers $0 \le l \le 2$. Comme $x \longmapsto \sqrt{2 + x}$ est continue sur [0, 2], on a

$$l = \lim u_{n+1} = \lim \sqrt{2 + u_n} = \sqrt{2 + l}, \quad \text{soit } l^2 = 2 + l.$$

On a donc l=2 ou l=-1. Comme $l\geq 0,$ l=2.

Proposition. Soit f dérivable sur [a,b] avec $f([a,b]) \subset [a,b]$. On suppose qu'il existe un réel k tel que $0 \le k < 1$ et

$$\forall x \in [a, b], \qquad |f'(x)| \le k.$$

Alors f possède un unique point fixe l dans [a,b] et la suite (u_n) définie par $u_0 = \alpha \in [a,b]$, $u_{n+1} = f(u_n)$, pour tout $n \in \mathbb{N}$, converge vers l.

Exemple. $u_0 = 0$, $u_{n+1} = \sqrt{2 + u_n}$. L'intervalle [0, 2] est stable pour la fonction f définie par $f(x) = \sqrt{2 + x}$; f est dérivable sur cet intervalle et, pour tout $x \in [0, 2]$, $f'(x) = \frac{1}{2\sqrt{2 + x}}$. Pour tout $x \in [0, 2]$, $0 \le f'(x) \le \frac{1}{2\sqrt{2}} < 1$. La suite (u_n) converge vers l'unique point fixe de f sur [0, 2] qui est 2.