Chapitre 15 et 16 - TD - 23 mars 2020

TD 16 - Exercice 9 :

Déterminer un équivalent simple pour les suites suivantes :

a)
$$u_n = \lfloor \sqrt{n} \rfloor$$

b)
$$v_n = \sqrt{2n^2 + n} - n$$

c)
$$w_n = \frac{1}{n^2} - \frac{1}{n^3}$$

a)
$$u_n = \lfloor \sqrt{n} \rfloor$$
 b) $v_n = \sqrt{2n^2 + n} - n$ c) $w_n = \frac{1}{n^2} - \frac{1}{n^3}$ d) $x_n = \sum_{k=0}^{n} (2k+1)$

TD 16 - Exercice 15 : On définit pour tout entier naturel $n: u_n = \int_0^1 t^n \sqrt{1+t} dt$.

- 1. Montrer que la suite (u_n) converge vers 0.
- 2. En utilisant une intégration par parties, montrer que $u_n \sim \frac{\sqrt{2}}{n}$.

	4	1 .		(V	(W	Co	d	L	-	IJ,	v .							,		_											
		2 -		I	- P	2	,	نسرا	is	(M	ét	TU.	di	ح				m.	lls	^) ₍	n E	e N	rov	^	m q	G	m	Sa	CU	Nege	L VEN
	(Soi d	t ou	E ([0] L &	17	el n	n t t	£.	N ≤	T	2	į 'c		-	t	M	<	-E	M	J	۸-	t t	7	< '	√2	- t	LM			
ø	les	fo	ΝÓ	tic	7 V /S	\sim	ù -	de	su	۵	DO	M	r 0	Cen	\overline{l}	N	ue	Δ	е	A	0	m	he	g	a	le	es	ŀυ	la.	Na	nte	2
C	11	0 <	< <u>1</u>	-	a	Ycr	٨			J	ر د	Ł٢	n c	l b	. <	<		1	E	М	J.	1 €	t		sli	<u> </u>	_	2		1	md	
			J	v.	E	meh	1			2	E M	M 7	+ 1 _]	λ)	5			U	M		<		52	1	t u+	1	+ 1.]]	1		
	l	he	C.	e'n	M	m ch	/w	C	ıd	M	1 + 1 M	en	E L,	- 1 	Li Vi	\ li	V M	1.00	U 2 M- W	1 1 1		O	_	+60]	is	1	ar	Ce				

TD 15 - Exercice 14:

Dans l'espace $E = \mathbb{R}^3$, on pose $F = \text{Vect}(\overrightarrow{e}_1, \overrightarrow{e}_2)$, $G = \text{Vect}(\overrightarrow{e}_3)$ où $\overrightarrow{e}_1 = (1, 0, -1)$, $\overrightarrow{e}_2 = (1, 1, 0)$ et $\overrightarrow{e}_3 = (1, 2, 3)$.

Montrer que F et G sont des sev supplémentaires de E. Donner l'expression de la projection p sur F parallèlement à G, puis celle de la projection q sur G parallèlement à F.

TD 15 - Exercice 24:

Déterminer si les applications suivantes sont des symétries ou des projections.

 $\varphi_1: \mathbb{R}[X] \to \mathbb{R}[X], \ \varphi_1(P) = \text{le reste de la division de } P \text{ par } (X+1)^3$

 $f_4: \mathbb{R}^3 \to \mathbb{R}^3, f_4(x, y, z) = (-3x + 4y + 6z, 4x - 3y - 6z, -4x + 4y + 7z)$

Sort PERIX)
an calcule $Q_1 \circ Q_2(P) = Q_1(Q_1(P))$
ancularle $P_1 \circ P_1(P) = P_1(P_1(P))$ annote $P_2(X+1)^3$. $G + R$ are $Q_1 e \times R \times R \times R$
alors and $Q_1(P) = R$ et $Q_1(R) = ?$
arécul le divisean de le jan (X+1)3:
$R = (x+1)^3 \times O + R \text{ alors } (P_1(R) = R)$
Proli(P) = Qr(Qa(P)) = Qr(R) = R = Qr(P) fourtout P
donc Prolize Pr de Prest lineaire donc
Pren une projection
Dur Im Pr = Ker (Pr-id) = 1R2 [X] (à prouver)
et juillète ment à l'en fi = fans des multiplises de (X+1) ³ } = { ens des joly nomes qui ont -1 comme raine truple } c'est un ser auni (c'est le même)
de(X+1)3 ? = Semp des volument aux contractions
raine maple } c'est un ser ausi (c'est le même)
1 Voir ((x+13) et me droite: { x(x+1)3 x ER}

TD 15 - Exercice 21:

Soit $A=\begin{pmatrix} -1 & 2 \\ 2 & -4 \end{pmatrix}$ et f l'application de $\mathcal{M}_2(\mathbb{R})$ définie par f(M)=AM. Montrer que f est un endomorphisme de $\mathcal{M}_2(\mathbb{R})$. Déterminer le noyau et l'image de f.

