Числени методи, СИ и ИС, втори курс, 2019/2020

Допълнителни задачи за подготовка за контролна работа No 1

Задача 1. Относителната плътност на въздуха ρ е измерена на различна височина с висока точност. Резултатите от измерванията са систематизирани в следната таблица:

h, km	0	1.525	3.05	4.575	6.1
ρ	1	0.8617	0.7385	0.6292	0.5328

Като използвате интерполационната формула на Лагранж и системата Mathematica, определете приблизително каква е относителната плътност на височина 3 км. (Възлите на интерполация да се вземат от автоматично генериран по подходящ начин списък, а базисните полиноми да са написани явно, т.е. без да се използват вече дефинираните за това функции).

Илюстрирайте графично как ρ се изменя, в зависимост от височината, като построите графиката на полинома и точките в една координатна система.

Задача 2. Като използвате метода на неопределените коефициенти (т.е. като решите съответната линейна система за коефициентите), намерете полином, удовлетворяващ интерполационните условия

$$P(0) = 1, P'(0) = 0, P(1) = 2, P'(1) = 6, P(2) = 21.$$

Задача 3. Да се приближи функцията $f(x) = \cos x$:

- като се намери интерполационният полином на Лагранж с възли $0, \frac{\pi}{4}, \frac{\pi}{2};$
- като се намери интерполационният полином на Ермит с възли $0, \frac{\pi}{2}$ и съответстващи и кратности 2 и 1.
- Да се построят графиките на относителните грешки (по абсолютна стойност) в интервала на интерполация за двата случая. Да се сравни къде апроксимацията е по-добра.

Забележка. Да не се използва вградената функция InterpolatingPolynomial.

Задача 4. Дадена е функцията $f(x) = \ln x$. Построен е интерполационният полином на Лагранж $L_3(f;x)$. Намерете оценката на грешката $R(x) = |f(x) - L_3(f;x)|$ в интервала $[x_0, x_3]$, като използвате Теоремата за оценка на грешката, и постройте графиката и́. Възлите на интерполация са:

- $x_0 = -1$, $x_1 = -0.3$, $x_2 = 0.3$, $x_3 = 1$;
- Чебишовите възли в интервала [-1, 1].

В кой случай оценката на грешката е по-добра? Защо?

Задача 5. Да се дефинира функция $NewtonForward[n_{-},x0_{-},h_{-},f_{-},x_{-}]$, която построява интерполационния полином на Лагранж от степен n за функцията f(x) с възли $\{x_i=x_0+ih,\ i=\overline{0,n}\}$, като използва формулата на Нютон за интерполиране напред. Решението да е итеративно (да не се използват вградените в Mathematica функции за намиране на сума).

Задача 6. Да се дефинира функция $Newton[n_{,x}0_{,h_{,x}], \kappa_{,x}]$, която построява интерполационния полином на Лагранж от степен n за функцията f(x) с възли $\{x_i = x_0 + ih, i = \overline{0,n}\}$, като използва формулата на Нютон с разделени разлики. Решението да е итеративно (да не се използват вградените в Mathematica функции за намиране на сума).

Задача 7. Да се дефинира функция $Lagrange[n_, x0_, h_, f_, x_]$, която построява интерполационния полином на Лагранж от степен n за функцията f(x) с възли $\{x_i = x_0 + ih, i = \overline{0,n}\}$, като използва формулата на Лагранж. Решението да е итеративно (да не се използват вградените в Mathematica функции за намиране на сума).

Забележка. Горните три задачи да се тестват с данните от Задача 1. Уверете се, че получавате еднакви резултати.

Задача 8. Дадени са стойности в 5 точки от сигнал от даден акселерометър (сензор, измерващ линейно ускорение). Да се намери обобщен полином по подходящ базис, интерполиращ тези точки, ако е известно, че сигналът се описва от периодична функция с период а) $T=2\pi$; б) T=8. Да се илюстрира графично, като се визуализират точките и графиката на полинома в една координатна система. Да се сравнят резултатите

t, ms	0	1.5	3	4	6
ускорение, m/s^2	0	1	1.5	4	2

Задача 9. Дадени са данни за усвояването на лекарство от организма. В таблицата е дадена концентрацията на лекарството в кръвта, като функция на времето. Да се намери обобщен полином по подходящ базис, който описва процеса.

t, h	0	2	4	6	8
концентрация, %	0.1	0.009	0.0011	0.00003	0.0000012

Примерни базиси за последните две задачи:

- 1. $\{1, x, x^2, \dots, x^n\}$,
- 2. $\{1, \sin x, \cos x, \sin 2x, \cos 2x, \dots, \sin nx, \cos nx\},\$
- 3. $\{1, e^x, e^{2x}, \dots, e^{nx}\},\$
- 4. $\{1/(1+x), 1/(2+x), \dots, 1/(n+x)\},\$
- 5. $\{1, e^{-x}, e^{-2x}, \dots, e^{-nx}\},\$
- 6. $\{1/(1-x), 1/(2-x), \dots, 1/(n-x)\}.$