1 Clark87

The Clark (1987) Unobserved Component (UC) model is a generalisation of the HP–Filter (a local linear trend model) that can be expressed in State Space Form (SSF) as:

clark0

SSM

$$y_t = y_t^* + \tilde{y}_t \tag{1a}$$

$$\Delta y_t^* = g_{t-1} + \sigma_1 \varepsilon_{1t} \tag{1b}$$

$$\Delta g_t = \sigma_2 \varepsilon_{2t} \tag{1c}$$

$$a(L)\tilde{y}_t = \sigma_3 \varepsilon_{3t},\tag{1d}$$

where y_t is (100 times) the log of GDP, and the shocks $\{\varepsilon_{it}\}_{i=1}^3$ are mutually uncorrelated *i.i.d.* N(0,1), with standard deviations $\{\sigma_i\}_{i=1}^3$, and a(L) is a lag polynomial commonly assumed to be a stable AR(2), ie., $a(L) = (1 - a_1 L - a_2 L^2)$, with the roots of a(L) being outside the unit circle. The cycle \tilde{y}_t is allowed to be serially correlated. There are 3 shocks in the model.

The 'numbered shock' to 'named shock' mapping is:

$$\begin{bmatrix} \varepsilon_{1t} \\ \varepsilon_{2t} \\ \varepsilon_{3t} \end{bmatrix} = \begin{bmatrix} \varepsilon_t^{y^*} \\ \varepsilon_t^g \\ \varepsilon_t^{\tilde{y}} \end{bmatrix}, \tag{2}$$

where $\varepsilon_t^{y^*}$, ε_t^g , and $\varepsilon_t^{\tilde{y}}$ are the trend (permanent), trend growth and cycle shocks, respectively.

2 Shock recovery

2.1 State Space Models with lagged states

Kurz's (2018) SSM has the following general from:

Measurement: $Z_t = D_1 X_t + D_2 X_{t-1} + R \varepsilon_t$ (3a) ssm1

State:
$$X_t = AX_{t-1} + C\varepsilon_t$$
, (3b) ssm2

where $\varepsilon_t \sim MN(0_m, I_m)$, D_1, D_2, A, R are C are conformable system matrices, Z_t the observed variable and X_t the latent state variable, and m is the number of shocks $\{\varepsilon_{it}\}_{i=1}^2$.

2.2 Clark87 in 'shock recovery' SSF

To assess shock recovery, write the model in (1) in 'shock recovery' SSF by collecting all observable variables in Z_t and all shocks (and other latent state variables) in X_t . Differencing y_t and y_t^c twice, and re-arranging the relations in (1) then yields:

$$\Delta^{2} y_{t} = \Delta^{2} y_{t}^{*} + \Delta^{2} \tilde{y}_{t}$$
$$= \sigma_{1} \Delta \varepsilon_{1t} + \Delta g_{t-1} + \Delta^{2} \tilde{y}_{t}$$

$$= \sigma_1 \Delta \varepsilon_{1t} + \sigma_2 \varepsilon_{2t-1} + a(L)^{-1} \sigma_3 \Delta^2 \varepsilon_{3t}$$

$$\Leftrightarrow a(L) \Delta^2 y_t = \sigma_1 a(L) \Delta \varepsilon_{1t} + \sigma_2 a(L) \varepsilon_{2t-1} + \sigma_3 \Delta^2 \varepsilon_{3t}$$
(4) clark1

where $a(L)\Delta^2 y_t$ is the only observed variable. Re-writing (4) in more convenient form for the SSF yields:

$$\underbrace{a(L)\Delta^{2}y_{t}}_{Z_{t}} = a(L)\sigma_{1}\Delta\varepsilon_{1t} + a(L)\sigma_{2}\varepsilon_{2t-1} + \sigma_{3}\Delta^{2}\varepsilon_{3t}$$

$$= \sigma_{1}\Delta\varepsilon_{1t} - a_{1}\sigma_{1}\Delta\varepsilon_{1t-1} - a_{2}\sigma_{1}\Delta\varepsilon_{1t-2} + \sigma_{2}\varepsilon_{2t-1} - a_{1}\sigma_{2}\varepsilon_{2t-2}$$

$$- a_{2}\sigma_{2}\varepsilon_{2t-3} + \sigma_{3}\Delta\varepsilon_{3t} - \sigma_{3}\Delta\varepsilon_{3t-1}.$$
(5) z

Measurement :
$$Z_{t} = D_{1}X_{t} + D_{2}X_{t-1} + R\varepsilon_{t}$$
 (6a)
$$Z_{t} = \underbrace{\begin{bmatrix} 0 & 0 & 0 & \sigma_{1} & -a_{1}\sigma_{1} & 0 & 0 & \sigma_{3} \end{bmatrix}}_{D_{1}} \underbrace{\begin{bmatrix} \varepsilon_{1t} \\ \varepsilon_{2t} \\ \varepsilon_{3t} \\ \Delta \varepsilon_{1t-1} \\ \varepsilon_{2t-1} \\ \varepsilon_{2t-2} \\ \Delta \varepsilon_{3t} \end{bmatrix}}_{X_{t}} \underbrace{\begin{bmatrix} \varepsilon_{1t-1} \\ \varepsilon_{2t-1} \\ \varepsilon_{2$$

2.3 Shock recovery

The diagonal of the steady-state variance/covariance matrix of the smoothed and filtered states X_t denoted by $P_{t|T}^*$ and $P_{t|t}^*$, respectively, are:

Shocks	$P_{t T}^*$	$P_{t t}^*$
ε_{1t}	0.5469	0.5989
ε_{2t}	0.9870	1.0000
ε_{3t}	0.4661	0.5153

indicating that the trend (or permanent) shock $\varepsilon_{1t} = \varepsilon_t^*$ cannot be recovered ($P^* \approx 1$), while the cycle shock $\varepsilon_{2t} = \varepsilon_t^c$ appears to be recoverable ($P^* \approx 0$). In Figure 1, simulated states and estimated Kalman smoothed states are plotted for the two shocks of interest.

Figure 1: Comparison of true shocks and Kalman Smoothed estimates $\varepsilon_{t|T}$.

fig:1

The correlation between the true (simulated) and estimated Kalman smoothed shocks can be analyzed by simply computing $Corr(X_t, \hat{X}_{t|T})$, where $X_t = \begin{bmatrix} \varepsilon_{1t} & \varepsilon_{2t} & \varepsilon_{2t-1} \end{bmatrix}'$ and

 $\hat{X}_{t|T} = E_T X_t = E_T \begin{bmatrix} \varepsilon_{1t} & \varepsilon_{2t} & \varepsilon_{2t-1} \end{bmatrix}'$, yielding (for the first two elements of X_t):

As can be seen from (8), the estimated permanent shock ε_{1t} is only weakly correlated (0.2368) with the true value, while the estimated cyclical shock ε_{2t} is highly correlated (0.9713). These facts can also be seen from Figure 1 below.

2.4 Shock Identities

Kalman Filter estimates of the permanent and transitory shocks ε_{1t} and ε_{2t} are linked by the identity:

$$E_t \varepsilon_{2t} = \phi E_t \varepsilon_{1t},$$
 (9) KF

and the corresponding Kalman Smoother estimates are linked by the *dynamic* identity:

$$\Delta^2 E_T \varepsilon_{1t} = \frac{1}{\phi} E_T \varepsilon_{2t-2}. \tag{10}$$

The filtered and smoothed estimates of the contemporaneous correlations are, respectively:

C	$\operatorname{orr}(\hat{X}_{t t},\hat{X}_{t t})$	$_{t})$		C	$\operatorname{orr}(\hat{X}_{t T},\hat{X}_t)$	$_{t T})$
Shocks	ε_{1t}	ε_{2t}	and -	Shocks	ε_{1t}	ε_{2t}
ε_{1t}	1.0000	1.0000	and	ε_{1t}	1.0000	-0.1907
ε_{2t}	1.0000	1.0000		ε_{2t}	-0.1907	1.0000

Note that ε_{1t} and ε_{2t} were generated as *i.i.d.* N(0,1) and mutually uncorrelated.

Running the shock recovery code Clark87.m we get the following steady-state diagonal entries:

Shocks	$P_{t T}^*$	$P_{t t}^*$
ϵ_{1t}	0.5469	0.5989
ε_{2t}	0.9870	1.0000
ε_{3t}	0.4661	0.5153

The second shock ε_{2t} (corresponding to ε_t^g , ie., trend growth) is not recoverable.

Looking at (??), we see that ε_{2t} enters with a lag into the measurement equation. Following the same logic that Adrian used, we should then get only $\hat{\varepsilon}_{2t-1|t}$ from the Kalman Filter.

Below I plot estimates of the Filtered and Smoothed shocks from the model fitted to US data, where shocks from the SSM in (1) are constructed in line with the equations listed

there, ie., as $\eta_{2t|t} = \sigma_2 \varepsilon_{2t} = \Delta g_t$ for the filtered and smoothed alternatives.

2.5 Maximum Likelihood estimation

of the model in (1)

The (standard) SSM for ML estimation is:

$$y_{t} = \begin{bmatrix} 1 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} y_{t}^{*} \\ g_{t} \\ \tilde{y}_{t} \\ \tilde{y}_{t-1} \end{bmatrix} + 0\varepsilon_{t}$$

$$(11)$$

$$\begin{bmatrix} y_t^* \\ g_t \\ \tilde{y}_t \\ \tilde{y}_{t-1} \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & a_1 & a_2 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} y_{t-1}^* \\ g_{t-1} \\ \tilde{y}_{t-2} \end{bmatrix} + \begin{bmatrix} \sigma_1 & 0 & 0 \\ 0 & \sigma_2 & 0 \\ 0 & 0 & \sigma_3 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \varepsilon_{1t} \\ \varepsilon_{2t} \\ \varepsilon_{3t} \end{bmatrix}.$$
(12)

The code estimates Clark's 87 model on US GDP data from 1947:Q1 to 2019:Q4. A plot of the smoothed and filtered estimates is shown below.

fig:KF

fig:KS

fig: KFS