DS n°5: Fiche de calculs

Durée : 60 minutes, calculatrices et documents interdits

Nom et prénom :	Note:	

Porter directement les réponses sur la feuille, sans justification.

Limites de fonctions.

Calculer les limites de fonctions suivantes (écrire PAS DE LIMITE le cas échéant) :

$$\frac{e^{2x} - e^{-2x}}{x} \xrightarrow[x \to 0]{} \tag{1}$$

$$\mathbf{1}_{\mathbb{R}^*} \left(x^2 \cos \left(\frac{1}{x} \right) \right) \xrightarrow[x \to 0]{} \tag{2}$$

$$(1+x)^{1/x} \xrightarrow[x \to +\infty]{} \tag{3}$$

Continuité.

$$\operatorname{Soit} \, \psi : \left\{ \begin{array}{cccc} \mathbb{R} & \longrightarrow & \mathbb{R} \\ x & \longmapsto & \left\{ \begin{array}{cccc} x+1 & \operatorname{si} & x>0 \\ 0 & \operatorname{si} & x=0 \\ x-1 & \operatorname{si} & x<0 \end{array} \right. & \operatorname{et} \, f : \left\{ \begin{array}{cccc} \mathbb{R}^* & \longrightarrow & \mathbb{R} \\ x & \longmapsto & x \operatorname{sin} \left(\frac{1}{x}\right) \end{array} \right. \right.$$

On peut prolonger f par continuité en 0 en posant

Si f est ainsi prolongée, $\psi \circ f$ est continue sur

			(5)
--	--	--	-----

Donner un exemple d'application $f:[0,1] \to [0,1]$ bijective, discontinue en tout point de [0,1].

Α	lo	rà	h	r	Δ	
Н	ıχ	ζΕ	IJ		E	•

On munit \mathbb{R}^2 d'une structure de groupe avec la loi * par : $(x,y)*(a,b)=(x+a,ye^a+be^{-x})$.

Le neutre de ce groupe est

Si $(x,y)\in\mathbb{R}^2,$ l'inverse de (x,y) est

Le groupe $(\mathbb{R}^2,*)$ est-il abélien (répondre Oui ou Non)?

(9)

Suites.

Déterminer la suite réelle u vérifiant : $u_1 = 7$ et $\forall n \in \mathbb{N}, u_{n+1} = 3u_n + 4$.

Déterminer la suite réelle u vérifiant : $u_0 = 1$, $u_1 = 4$ et $\forall n \in \mathbb{N}$, $u_{n+2} = 4u_{n+1} - 4u_n$.

Déterminer l'ensemble des suites u vérifiant : $\forall n \in \mathbb{N}, \ u_{n+2} = \frac{\sqrt{2}}{2}u_{n+1} - \frac{u_n}{4}$.

On considère une suite réelle v vérifiant : $\forall n \in \mathbb{N}, v_{n+1} = v_n^2 + \frac{3}{16}$.

Alors v converge si et seulement si $v_0 \in$ (13)

En cas de convergence, $v_n \xrightarrow[n \to +\infty]{}$ (14)

— **FIN** —