In [2]:

```
import pandas as pd
```

그룹화하여 그룹별 데이터 집계하기

df.groupby(그룹화 기준 컬럼).통계적용컬럼.통계함수()

In [3]:

```
df = pd.read_csv('./data/titanic.csv')
df.head()
```

Out[3]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	s
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	s
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	s
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	s

In [4]:

```
df = df[['Survived', 'Pclass', 'Sex', 'Age', 'Embarked']]
df = df.dropna()
df.head()
```

Out[4]:

	Survived	Pclass	Sex	Age	Embarked
0	0	3	male	22.0	s
1	1	1	female	38.0	С
2	1	3	female	26.0	s
3	1	1	female	35.0	s
4	0	3	male	35.0	s

In [5]:

len(df)

Out[5]:

1044

1. 그룹의 통계값 계산하기

- df.groupby(그룹기준 컬럼).통계적용컬럼.통계함수()
- count(): 누락값을 제외한 데이터 수
 size(): 누락값을 포함한 데이터 수
- mean(): 평균sum(): 합계

```
std(): 표준편차
min(): 최소값
max(): 최대값
sum(): 전체 합
```

1.1. 객실 등급별 생존 통계

```
In [6]:
df.columns
Out[6]:
Index(['Survived', 'Pclass', 'Sex', 'Age', 'Embarked'], dtype='object')
In [11]:
# 객실 등급( Pclass ) 별 탑승자 수를 구한 결과
df.groupby('Pclass').Survived.count()
Out[11]:
Pclass
   282
    261
    501
Name: Survived, dtype: int64
In [12]:
# 객실 등급( Pclass ) 별 탑승자 수를 구한 결과를 데이터프레임 df1으로 만들기
df1 = df.groupby('Pclass').Survived.count().to frame()
df1
Out[12]:
      Survived
Pclass
    1
         282
    2
         261
    3
         501
In [13]:
# 객실 등급( Pclass ) 별 생존자 수를 구한 결과를 데이터프레임 df2으로 만들기
df2 = df.groupby('Pclass').Survived.sum().to frame()
df2
Out[13]:
      Survived
Pclass
    1
         168
         112
    2
    3
         135
```

객실 등급(Pclass)별 생존율 수를 구한 결과를 데이터프레임 df3으로 만들기

df3 = df.groupby('Pclass').Survived.mean().to frame()

Out[14]:

df3

In [14]:

Survived

Pclass

- 1 0.595745
- 2 0.429119
- 3 0.269461

In [17]:

```
# 객실 등급( Pclass )별 탑승자수, 생존자 수, 생존율 결과를 데이터프레임 df4으로 만들기 - concat df4 = pd.concat([df1, df2, df3], axis = 1) # 인덱스 기준으로 concat df4.columns = ['승선자 수', '생존자 수', '생존율'] df4
```

Out[17]:

승선자 수 생존자 수 생존율

Pclass			
1	282	168	0.595745
2	261	112	0.429119
3	501	135	0.269461

1.2. 성별 생존 통계

In [18]:

```
# 성별 승선자 수 데이터프레임을 df5로 만들기
df5 = df.groupby('Sex').Survived.count().to_frame()
df5
```

Out[18]:

Survived

Sex

female 386 male 658

In [19]:

```
# 성별 생존자 수 데이터프레임을 df6로 만들기
df6 = df.groupby('Sex').Survived.sum().to_frame()
df6
```

Out[19]:

Survived

Sex

female	322
male	93

In [20]:

```
# 성별 생존율 데이터프레임을 df5로 만들기
df7 = df.groupby('Sex').Survived.mean().to_frame()
df7
```

Out[20]:

```
Sex Sex Temale 0.834197
```

In [21]:

```
# 성별 탑승자 수, 생존자 수, 생존율 데이터프레임을 df8로 만들기
df8 = pd.concat([df5, df6, df7], axis = 1)
df8.columns = ['성별 탑승자 수', '성별 생존자 수', '성별 생존율']
df8
```

Out[21]:

성별 탑승자 수 성별 생존자 수 성별 생존율

Sex

female	386	322	0.834197
male	658	93	0.141337

1.3. 성별, 객실 등급별 생존 통계

In [22]:

```
# 성별, 객실등급별 생존율
df.groupby(['Sex', 'Pclass']).Survived.mean().to_frame()
```

Out[22]:

Survived

Sex	Pclass	
female	1	0.977099
	2	0.941748
	3	0.638158
male	1	0.264901
	2	0.094937
	3	0.108883

2. 그룹에 사용자 정의 함수 적용하기

• df.gropyby(그룹 기준 컬럼).통계적용컬럼.agg(사용자정의함수, 매개변수들)

In [23]:

```
def my_mean(values):
    return sum(values) / len(values)
```

In [24]:

```
df.groupby(['Sex', 'Pclass']).Survived.agg(my_mean)
# 매개변수 없으면 0번째 매개변수로 본인이 들어간다.
```

Out[24]:

```
    Sex
    Pclass

    female
    1
    0.977099

    2
    0.941748

    3
    0.638158

    male
    1
    0.264901

    2
    0.094937
```

3 0.108883
Name: Survived, dtype: float64

3. 그룹 오브젝트 출력하기

``` df.groupby(그룹기준컬럼).groups --> 그룹별 인덱스:[데이터리스트] 출력 df.groupby(그룹기준컬럼).get\_group(그룹 인덱스) --> 그룹별 인덱스에 해당하는 데이터프레임 출력

# In [25]:

```
df20 = df[:20] # 20개만 가져와서 사용해 보자.
df20.head()
```

# Out[25]:

|   | Survived | Pclass | Sex    | Age  | Embarked |
|---|----------|--------|--------|------|----------|
| 0 | 0        | 3      | male   | 22.0 | s        |
| 1 | 1        | 1      | female | 38.0 | С        |
| 2 | 1        | 3      | female | 26.0 | s        |
| 3 | 1        | 1      | female | 35.0 | s        |
| 4 | 0        | 3      | male   | 35.0 | s        |

### In [26]:

```
len(df20)
```

### Out[26]:

20

# In [28]:

```
Pclass 그룹별 인덱스
df20.groupby('Pclass').groups
```

### Out[28]:

```
{1: [1, 3, 6, 11], 2: [9, 15, 20, 21], 3: [0, 2, 4, 7, 8, 10, 12, 13, 14, 16, 18, 22]}
```

## In [29]:

```
Pclass 그룹별 인덱스(1등급)
df20.groupby('Pclass').get_group(1)
```

# Out[29]:

|    | Survived | Pclass | Sex    | Age  | Embarked |
|----|----------|--------|--------|------|----------|
| 1  | 1        | 1      | female | 38.0 | С        |
| 3  | 1        | 1      | female | 35.0 | s        |
| 6  | 0        | 1      | male   | 54.0 | s        |
| 11 | 1        | 1      | female | 58.0 | S        |

### In [30]:

```
Pclass 그룹별 인덱스(2등급)
df20.groupby('Pclass').get_group(2)
```

# Out[30]:

|    | Survived | PCIASS | Sex    | Age  | Embarked |
|----|----------|--------|--------|------|----------|
| 9  | 1        | 2      | female | 14.0 | С        |
| 15 | 1        | 2      | female | 55.0 | s        |

```
 20
 Survived
 Pclass
 male
 Age
 Embarked

 21
 1
 2
 male
 34.0
 S
```

# In [31]:

```
Pclass 그룹별 인덱스(3등급)
df20.groupby('Pclass').get_group(3)
```

# Out[31]:

|    | Survived | Pclass | Sex    | Age  | Embarked |
|----|----------|--------|--------|------|----------|
| 0  | 0        | 3      | male   | 22.0 | s        |
| 2  | 1        | 3      | female | 26.0 | s        |
| 4  | 0        | 3      | male   | 35.0 | s        |
| 7  | 0        | 3      | male   | 2.0  | s        |
| 8  | 1        | 3      | female | 27.0 | s        |
| 10 | 1        | 3      | female | 4.0  | s        |
| 12 | 0        | 3      | male   | 20.0 | s        |
| 13 | 0        | 3      | male   | 39.0 | s        |
| 14 | 0        | 3      | female | 14.0 | s        |
| 16 | 0        | 3      | male   | 2.0  | Q        |
| 18 | 0        | 3      | female | 31.0 | s        |
| 22 | 1        | 3      | female | 15.0 | Q        |