Multi-Agent Collaboration in Games:

A Survey of Solutions to Achieve Coordinated Behaviour

Authored: Reed Spratt Supervisor: Mike Katchabaw

Introduction

- Topic:

- Implementation strategies for collaborative game AI:

- Non-Player Characters (NPCs)
- Bots acting as Players

- Approach:

- Breadth-first topic search
- Explore challenges of different behaviours
- Present realized solutions
 - How did they help?

Topic Introduction

- Motivations (for writing):

Exploration in creating richer interactions between agents

- Difficulty finding cited examples

- Goal:

- Provide a reference for future developers, researchers
 - Starting point

Output:

- Survey Paper
- Knowledge!

Multi-Agent Settings in Games

- Settings in games considered in this research have three common components:
- Agents
- Environment
- Collaboration
- Testbeds for Research:
 - Starcraft (RTS)
 - Rocket League (Sports)

Team bot framework for Starcraft.

Behaviour Tasks

- This research explores implementation strategies for:

- 1. Movement
- 2. Communication
- 3. Decision-Making
- 4. Learning
- 5. Player Interaction

1 - Movement

Coordinating movement between independent agents portrays a sense of togetherness

- Challenges:

- Agents can get in each other's way
- Sudden changes in movement possible
- Tight environments are difficult to navigate

Steering Behaviours

- Simple movement behaviours for agents
 - Use agent velocity and orientation
- Steering can be made relevant to a target
- Examples:

- Pursuit (Chase a target)

- Evasion (Avoid a target)

- Alignment (Match orientation)

Velocity-matching (Match velocity)

Crowd Simulation

- Large-scale strategy
 - Simulate crowd-like formations
 - Avoidance steering behaviour

- Issues can arise:
 - Densely packed crowds
 - High storage cost for paths
- Solutions?
 - Flow vectors
 - Congestion Maps

A map of flow vectors for traversal

Congestion points emerge with individual pathfinding

Tight Coordination

 Techniques for coordinating tighter dependent movement

 Agents need full knowledge of other agents' position and movement

- Applications for strategic movement
 - Squad-based formations
 - Flanking strategy

Flocking

- Large-scale strategy
 - Simulate movement patterns of animals
 - Flocks of birds, swarms of insects
 - Fictional creatures (Pikmin)

- Steer towards average position of neighbours
- Match the directed movement of the flock
- Avoid getting too close to other agents

Top image: A flocking group of Pikmin creatures. Bottom image: Flocking steering behaviours.

Multi-Agent Pathfinding

Pathfinding strategies for multiple moving agents

- Goal positions may be shared or separate
- Cooperative pathfinding
 - Agents are aware of each other's movement
 - **Centralized**: One entity plans movement
 - **Decentralized**: Each agent plans movement

- Non-cooperative pathfinding

2 - Communication

- Agents need to share information to collaborate

- Store knowledge internally
- Acquire knowledge from the environment
- Share knowledge with agents

- Challenges:

- How is information stored?
- What types of data need to be stored?
- When is data communicated?
- Which agents can communicate?

Blackboard Systems

- Method for knowledge storage
- Provides a unified access point for information
- Three components:
 - Dedicated section of memory (blackboard)
 - Set of read/write processes (experts)
 - Program to control write access (arbiter)

Easily extended for use by multiple agents

Single Agent Blackboard Architecture

Environment Perception

- Agents need to perceive the environment
- Agent sensors simulate human senses
- Visual information
 - Line-of-sight checks (raycasting)
 - Distance checks

- Auditory information
 - Defined with a radius of influence

Sight cones for visual perception.

Embedding Information

- Not all information needs to be accessible at all times
- Information can be embedded in the environment

- Waypoint Tactics
 - Extension of waypoint-based pathfinding
 - Define suitable locations for actions

- The Sims
 - Objects expose possible actions to fulfill goals

Direct Communication

- Communication can be facilitated by a higher entity
- Agent hierarchies
 - Communication is unidirectional
 - Horizon: Zero Dawn

- Agent teams
 - Sports games

Al Machine Hierarchy for Horizon: Zero Dawn

3 - Decision-Making

 Behaviour task encompassing the full set of actions that can be conducted by agents

- Challenges:

 Traditional structures aren't designed for collaborative decision-making

Agents actions can interrupt other agents

Unified Decision-Making

 Control independent agent actions with a higher-level entity

- Streamline decision-making
 - Focus on collaborative actions

- Good fit for strategic behaviour
 - Total War. WarHammer siege battles

Unified Decision-Making

- Task assignment to agents
- Unified Planning: Hierarchical Task Networks
 - Decompose an input problem
 - Create a series of actionable steps (plans)

- HTNs used for coordinating agents in Horizon: Zero Dawn

 HTNs used in research for team-based strategies in *Unreal Tournament*

An Overview of an HTN Architecture. (GameAIPro)

Distributed Decision-Making

- Multi-Agent Systems (MAS) coordinate loosely-coupled problem-solving agents
- Varied levels of intelligence depending on how decision-making is achieved
 - Reflex agents, Model-based reflex agents

- Swarm Intelligence directs groups of autonomous agents that respond to local stimuli
- Honey-bee swarms for RTS battle simulations?

Distributed Decision-Making

 Collaboration can be conditional according to agent motivation

- Utility AI based on utility theory:
 - "Every possible action an agent can make can be mapped to a uniform measure (utility)"
- Tactical Troops: Anthracite Shift
 - Squad-based tactics game

Self-Motivated Decision-Making

- Agents can have personal influences to decision-making modelled after human traits
- Emotions & Mood
 - Modelling emotional responses

- Personality Traits
 - Weighted influence to action-selection

Top image: Emotion Pipeline used in simulating emotional responses.

Bottom Image: Personality model used for tactical decision-making.

Social Decision-Making

- Decision-making influences can stem from agent-agent and agent-player relationships
- **Affinity:** Measures how an agent perceive others
- **Reputation:** Measures how an agent is perceived
- **Trust:** Measure of truthfulness of agent behaviour.

Fallout 3's Karma system for player reputation.

4 - Learning

Learning for agents supports self-adapting behaviour

It may be too difficult for designers to plan every possible scenario

- Challenges:

- Learning results can be unpredictable
- Learning can create "unfun" behaviour for agents
- Learning requires a lot of fine-tuning and testing
 - Time not always afforded to developers

Reinforcement Learning

Have an agent learn what to do when faced with a particular problem

- Agents exist within *states* representing the environment
- Agents select actions to reach new states
- Actions learn a policy for state → action mappings
- Rewards are generated by states and direct agent behaviour
- Multi-Agent Reinforcement Learning
 - Agents learn joint optimal policies

Key Components of Reinforcement Learning

Imitation Learning

- Type of supervised learning
- Learn by example expert demonstrations

 Agents perceive demonstrative behaviour and process it through classification or regression techniques

Agent rewards are awarded when replicating demonstrated behaviour

Good fit for player modelling

Imitation Learning

Replicate Player Behaviour

- Movement
- Action Selection
- Strategic behaviour

- Anticipate Player Behaviour

- Cooperative Al
- Opponent Al
- Tutor Al

Forza's Drivatar Al Configuration

Building Killer Instinct's "Shadow Fighters"

5 - Player Communication

- Communication methods for agent-player collaboration

- Agent-agent methods aren't usable
- Human methods of communication can be used instead

- Challenges:

- Player input is difficult to interpret
- Some input requires additional hardware

Capture Player Input

- Text-based input
 - Natural-Language Processing (NLP) techniques

- Natural-Language Understanding (NLU)
 - Derive the meaning of text as input
- Natural-Language Generation (NLG)
 - Have agents generate text

Processing Speech

- Speech input
 - Voice recognition processing techniques

- Old technologies:
 - Nintendo GameCube Microphone Accessory
 - Sega Dreamcast Seaman

Odama Gameplay

- New technologies:
 - WordNet
 - IBM Watson

Communicate Agent Intent

- Replicated speech
 - Speaking in the context of actions
 - Stealth Gameplay
- Non-verbal gesturing
 - Moss uses ASL gesturing

Emotion modelling

Quill from Moss

Summary

- Topics explored in this research

Conclusion

- Implementation of collaborative behaviour for agents is inherently challenging
- Traditional AI techniques for single-agent behaviour doesn't always work
- Interesting and intelligent AI behaviour can arise by experimenting with new technologies
- Hopefully this survey provides a starting point

Thank You!

Images Used:

GDC Vault - Designing AI for Competitive Games

GDC Vault - AI Summit: Driving Emotionally Expressive NPC Animations and Behaviors with a Designer Friendly Pipeline

Karma (Fallout 3) | Fallout Wiki | Fandom

http://www.gameaipro.com/GameAIPro2/GameAIPro2_Chapter17_Advanced_Techniques_for_Robust_Efficient_Crowds.pdf

https://www.nme.com/reviews/game-reviews/pikmin-3-deluxe-review-navigating-ecological-disaster-has-never-been-this-cute-2801816

https://store.steampowered.com/app/1266890/Tactical_Troops_Anthracite_Shift/

https://sc2ai.net/