Московский государственный технический университет им. Н.Э. Баумана Кафедра «Системы обработки информации и управления»

Домашнее задание по дисциплине «Методы машинного обучения»

Выполнил: студент группы ИУ5-22М Ромичева Е.

0.1. Условие

Домашнее задание по дисциплине направлено на решение комплексной задачи машинного обучения. Домашнее задание включает выполнение следующих шагов:

- 1. Поиск и выбор набора данных для построения моделей машинного обучения. На основе выбранного набора данных студент должен построить модели машинного обучения для решения или задачи классификации, или задачи регрессии.
- 2. Проведение разведочного анализа данных. Построение графиков, необходимых для понимания структуры данных. Анализ и заполнение пропусков в данных.
- 3. Выбор признаков, подходящих для построения моделей. Кодирование категориальных признаков Масштабирование данных. Формирование вспомогательных признаков, улучшающих качество моделей.
- 4. Проведение корреляционного анализа данных. Формирование промежуточных выводов о возможности построения моделей машинного обучения. В зависимости от набора данных, порядок выполнения пунктов 2, 3, 4 может быть изменен.
- 5. Выбор метрик для последующей оценки качества моделей. Необходимо выбрать не менее двух метрик и обосновать выбор.
- 6. Выбор наиболее подходящих моделей для решения задачи классификации или регрессии. Необходимо использовать не менее трех моделей, хотя бы одна из которых должна быть ансамблевой.
- 7. Формирование обучающей и тестовой выборок на основе исходного набора данных.
- 8. Построение базового решения (baseline) для выбранных моделей без подбора гиперпараметров. Производится обучение моделей на основе обучающей выборки и оценка качества моделей на основе тестовой выборки.
- 9. Подбор гиперпараметров для выбранных моделей. Рекомендуется подбирать не более 1-2 гиперпараметров. Рекомендуется использовать методы кросс-валидации. В зависимости от используемой библиотеки можно применять функцию GridSearchCV, использовать перебор параметров в цикле, или использовать другие методы.
- 10. Повторение пункта 8 для найденных оптимальных значений гиперпараметров. Сравнение качества полученных моделей с качеством baseline-моделей.
- 11. Формирование выводов о качестве построенных моделей на основе выбранных метрик.

0.1.1. Загрузка данных

2

3

3

4

```
In [1]: import numpy as np
        import pandas as pd
        import seaborn as sns
        from sklearn.preprocessing import LabelEncoder, OneHotEncoder
        import matplotlib.pyplot as plt
        %matplotlib inline
        sns.set(style="ticks")
In [2]: data = pd.read csv(r'Admission Predict Ver1.1.csv', sep=",")
        data.head()
Out[2]:
           Serial No.
                       GRE Score
                                                University Rating
                                   TOEFL Score
                                                                    SOP
                                                                    4.5
        0
                    1
                              337
                                           118
        1
                    2
                              324
                                           107
                                                                 4
                                                                    4.0
```

LOR

3

3

3.0

3.5

4.5

4.5

3.5

2.5

104

110

316

322

	Research Chance 0 1 1 1 2 1 3 1 4 0	e of Admit 0.92 0.76 0.72 0.80 0.65									
0.1.2. Разведочный анализ и предварительная обработка данных											
In [3]:	n [3]: for col in data.columns: # Количество пустых значений - все значения заполнены temp_null_count = data[data[col].isnull()].shape[0] print('{} - {}'.format(col, temp_null_count))										
Univers: SOP - 0 LOR - 0 CGPA - 0 Research	re - 0 core - 0 ity Rating - 0 0										
In [4]:	data.shape										
Out[4]:	(500, 9)										
In [5]:	data.dtypes										
Out[5]:	Serial No. GRE Score TOEFL Score University Rating SOP LOR CGPA Research Chance of Admit dtype: object	int64 int64 int64 int64 float64 float64 int64 float64									
In [6]:	<pre>corrmat = data.cor fig,ax = plt.subpl sns.heatmap(corrmat corrmat</pre>	ots(figsize		, annot= True)							
Out[6]:	Serial No. GRE Score	Serial No. 1.000000 -0.103839	-0.103839	-0.141696	University Rati -0.0676 0.6353						

5 314 103

2 2.0 3.0 8

4

TOEFL Score	-0.141696	0.827200	1.000000	0.6497
University Rating	-0.067641	0.635376 0.649799		1.0000
SOP	-0.137352	0.613498	0.644410	0.7286
LOR	-0.003694	0.524679	0.541563	0.6086
CGPA	-0.074289	0.825878	0.810574	0.7052
Research	-0.005332	0.563398	0.467012	0.4276
Chance of Admit	0.008505	0.810351	0.792228	0.6901
	SOP	LOR	CGPA Research	Chance of A
Serial No.	-0.137352 -0.	.003694 -0.0	074289 -0.005332	0.6
CDE Caana	0 (12400 0	F24670 0 0	025070 0 562200	0.0

	301	LON	CUFA	Neseai Cii	Chance of
Serial No.	-0.137352	-0.003694	-0.074289	-0.005332	0.
GRE Score	0.613498	0.524679	0.825878	0.563398	0.
TOEFL Score	0.644410	0.541563	0.810574	0.467012	0.
University Rating	0.728024	0.608651	0.705254	0.427047	0.
SOP	1.000000	0.663707	0.712154	0.408116	0.
LOR	0.663707	1.000000	0.637469	0.372526	0.
CGPA	0.712154	0.637469	1.000000	0.501311	0.
Research	0.408116	0.372526	0.501311	1.000000	0.
Chance of Admit	0.684137	0.645365	0.882413	0.545871	1.


```
In [7]: # Распреденение оценок за GRE
       fig = sns.distplot(data['GRE Score'], kde=False)
       plt.title("Distribution of GRE Scores")
       plt.show()
       # Распреденение оценок за TOEFL
       fig = sns.distplot(data['TOEFL Score'], kde=False)
       plt.title("Distribution of TOEFL Scores")
       plt.show()
       # Распреденение рейтингов университетов
       fig = sns.distplot(data['University Rating'], kde=False)
       plt.title("Distribution of University Rating")
       plt.show()
       # Распреденение рейтингов заявлений о намерениях
       fig = sns.distplot(data['SOP'], kde=False)
       plt.title("Distribution of SOP Ratings")
       plt.show()
       # Распреденение общих средних баллов
       fig = sns.distplot(data['CGPA'], kde=False)
       plt.title("Distribution of CGPA")
       plt.show()
       plt.show()
```


In [10]: # У скольких людей была исследовательская работа
 print("Not Having Research:",len(data[data.Research == 0]))
 print("Having Research:",len(data[data.Research == 1]))
 y = np.array([len(data[data.Research == 0]),len(data[data.Research == x = ["Not Having Research","Having Research"]
 plt.bar(x,y)
 plt.title("Research Experience")
 plt.xlabel("Canditates")
 plt.ylabel("Frequency")
 plt.show()

Not Having Research: 220 Having Research: 280


```
In [11]: # Распреденение оценок за ТОЕГЬ

y = np.array([data["TOEFL Score"].min(),data["TOEFL Score"].mean(),data
x = ["Worst","Average","Best"]
plt.bar(x,y)
plt.title("TOEFL Scores")
plt.xlabel("Level")
plt.ylabel("TOEFL Score")
plt.show()
```



```
In [12]: # Кандидатам, окончившим хорошие университеты, повезло больше
s = data[data["Chance of Admit "] >= 0.75]["University Rating"].value
plt.title("University Ratings of Candidates with an 75% acceptance ch
s.plot(kind='bar',figsize=(20, 10))
plt.xlabel("University Rating")
plt.ylabel("Candidates")
plt.show()
```


0.1.3. Метрики

Дерево решений;

Будем использовать следующие метрики:

```
Средняя абсолютная ошибка;
Медиана абсолютной ошибки;
Объяснимая вариация.
```

In [13]: from sklearn.metrics import explained_variance_score, mean_absolute_e

Будем использовать следующие модели:

In [16]: X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.2,rand)

```
In [17]: template_header = "Модель {}"
    template = "Значение по метрике {}: {:.2f}"
```

y=data['Chance of Admit ']

```
In [18]: class Regressor():
           def __init__(self, method, metrics, x_train, y_train, x_test, y_test
             self. method = method
             self.x_train = x_train
             self.y_train = y_train
             self.x\_test = x\_test
             self.y_test = y_test
             self._metrics = metrics
             self.target_1 = []
           def training(self):
             self._method.fit(self.x_train, self.y_train)
             self.target_1 = self._method.predict(self.x_test)
           def result(self):
             print(template_header.format(self._method))
             for metric in self._metrics:
               print(template.format(metric.__name__,
                                     metric(self.y_test, self.target_1)))
In [19]: metrics = [explained_variance_score,
                            mean_absolute_error,
                            median_absolute_error]
         models = [KNeighborsRegressor(),
                           DecisionTreeRegressor(max_depth=3),
                           RandomForestRegressor(n_estimators=10, max_depth=3)
In [20]: for model in models:
           regressor = Regressor(model, metrics, X train,
                                 y_train, X_test, y_test)
           regressor.training()
           regressor.result()
Модель KNeighborsRegressor(algorithm='auto', leaf_size=30, metric='minkowski',
          metric_params=None, n_jobs=None, n_neighbors=5, p=2,
          weights='uniform')
Значение по метрике explained_variance_score: 0.59
Значение по метрике mean_absolute_error: 0.07
Значение по метрике median_absolute_error: 0.05
Модель DecisionTreeRegressor(criterion='mse', max_depth=3, max_features=None,
           max_leaf_nodes=None, min_impurity_decrease=0.0,
           min_impurity_split=None, min_samples_leaf=1,
           min_samples_split=2, min_weight_fraction_leaf=0.0,
           presort=False, random_state=None, splitter='best')
Значение по метрике explained_variance_score: 0.76
Значение по метрике mean_absolute_error: 0.05
Значение по метрике median_absolute_error: 0.04
Модель RandomForestRegressor(bootstrap=True, criterion='mse', max_depth=3,
           max_features='auto', max_leaf_nodes=None,
           min_impurity_decrease=0.0, min_impurity_split=None,
           min_samples_leaf=1, min_samples_split=2,
```

```
min_weight_fraction_leaf=0.0, n_estimators=10, n_jobs=None,
                        oob_score=False, random_state=None, verbose=0, warm_start=False)
Значение по метрике explained variance score: 0.81
Значение по метрике mean_absolute_error: 0.04
Значение по метрике median_absolute_error: 0.03
0.1.4. Подбор гиперпараметра К с использованием GridSearchCV и кросс-валидации
In [21]: # Настройка параметров
                   from sklearn.model_selection import ShuffleSplit
                   _cv = ShuffleSplit(n_splits=5, test_size=0.25)
                   tuned_parameters_1 = {'n_neighbors':[2,3,4,5,6,7,8,9]}
                   n_range = np.array(range(2,11,1))
                   tuned_parameters_2 = [{'max_depth': n_range}]
                   n_range2 = np.array(range(5, 45, 5))
                   tuned_parameters_3 = [{'n_estimators': n_range2, 'max_depth': n_range
In [22]: # KNeighborsRegressor
                   from sklearn.model_selection import GridSearchCV
                   rg_sgd_gs = GridSearchCV(KNeighborsRegressor(), tuned_parameters_1, or a significant content of the significant content of t
                   rg_sgd_gs.fit(X_train, y_train)
                   rg_sgd_gs.best_params_
Out[22]: {'n_neighbors': 3}
In [23]: # DecisionTreeRegressor
                   rg_dtr_gs = GridSearchCV(DecisionTreeRegressor(), tuned_parameters_2,
                                                                          cv=_cv, scoring='explained_variance')
                   rg_dtr_gs.fit(X_train, y_train)
                   rg_dtr_gs.best_params_
Out[23]: {'max_depth': 4}
In [24]: # RandomForestRegressor
                   rg_rfr_gs = GridSearchCV(RandomForestRegressor(), tuned_parameters_3,
                                                                          cv=_cv, scoring='explained_variance')
                   rg rfr gs.fit(X train, y train)
                   rg_rfr_gs.best_params_
Out[24]: {'max_depth': 8, 'n_estimators': 35}
0.1.5. Сравнение модели с произвольным и лучшим параметром К
In [25]: optimized models = [KNeighborsRegressor(),
                                                                                          KNeighborsRegressor(n_neighbors=4),
                                                                                         DecisionTreeRegressor(max depth=3),
                                                                                          DecisionTreeRegressor(max_depth=5),
                                                                                          RandomForestRegressor(n_estimators=16
                                                                                                                                          max_depth=3),
                                                                                          RandomForestRegressor(n_estimators=10
```

]

max_depth=40)

```
In [26]: for model in optimized_models:
          regressor = Regressor(model, metrics, X_train,
                                y train, X test, y test)
          regressor.training()
          regressor.result()
          print('-'*50)
Модель KNeighborsRegressor(algorithm='auto', leaf_size=30, metric='minkowski',
         metric_params=None, n_jobs=None, n_neighbors=5, p=2,
         weights='uniform')
Значение по метрике explained_variance_score: 0.59
Значение по метрике mean_absolute_error: 0.07
Значение по метрике median absolute error: 0.05
Модель KNeighborsRegressor(algorithm='auto', leaf_size=30, metric='minkowski',
         metric_params=None, n_jobs=None, n_neighbors=4, p=2,
         weights='uniform')
Значение по метрике explained_variance_score: 0.60
Значение по метрике mean_absolute_error: 0.07
Значение по метрике median absolute error: 0.05
Модель DecisionTreeRegressor(criterion='mse', max_depth=3, max_features=None,
          max leaf nodes=None, min impurity decrease=0.0,
          min_impurity_split=None, min_samples_leaf=1,
          min_samples_split=2, min_weight_fraction_leaf=0.0,
          presort=False, random_state=None, splitter='best')
Значение по метрике explained_variance_score: 0.76
Значение по метрике mean_absolute_error: 0.05
Значение по метрике median_absolute_error: 0.04
     -----
Модель DecisionTreeRegressor(criterion='mse', max_depth=5, max_features=None,
          max_leaf_nodes=None, min_impurity_decrease=0.0,
          min_impurity_split=None, min_samples_leaf=1,
          min_samples_split=2, min_weight_fraction_leaf=0.0,
          presort=False, random_state=None, splitter='best')
Значение по метрике explained_variance_score: 0.77
Значение по метрике mean_absolute_error: 0.05
Значение по метрике median absolute error: 0.03
Модель RandomForestRegressor(bootstrap=True, criterion='mse', max_depth=3,
          max_features='auto', max_leaf_nodes=None,
          min impurity decrease=0.0, min impurity split=None,
          min_samples_leaf=1, min_samples_split=2,
          min_weight_fraction_leaf=0.0, n_estimators=10, n_jobs=None,
          oob_score=False, random_state=None, verbose=0, warm_start=False)
Значение по метрике explained variance score: 0.83
Значение по метрике mean_absolute_error: 0.04
Значение по метрике median absolute error: 0.03
Модель RandomForestRegressor(bootstrap=True, criterion='mse', max_depth=40,
          max_features='auto', max_leaf_nodes=None,
```

0.2. Выводы

По полученным моделям и значениям можно сделать следующие выводы:

Для DecisionTreeRegressor и RandomForestRegressor критично задавать оптимальны После подбора гиперпараметров улучшилось качество обучения

In []: