QUADCOPTER

Huginn

Group 1

- Floris Driessen
- Martin van Leussen
- Art Senders
- Tijl van Vliet
- Steven van der Vlugt

Presentation outlines

- Assignments and goals
 - A) Build the quadcopter and get it flying
 - B) PID tuning
 - C) Rotate 360 degrees around the z-axis
 - D) Marker detection
 - E) Environment map
- Results
- Recommendations

A) Hardware setup

A) Multiwii

Accelerometer

Atmega2560 Micro USB Serieller Anschluss für. - FTDI - LCD Display USB Status LED Configuration Mode Status - Software Update Power LED Anzeige Reset Anzeige Anschlüsse für Sensoren 1x mit 3.3V und 1x mit 5V Gyroscoop

Magnetometer

Active community

Open source

Good quality

Powerful controller

B) Stable Quadcopter

- Flash ESC with custom firmware
- PID tuning
 - Ziegler Nichols
 - Impulse response
 - Step response

B) Stable Quadcopter

B) Stable Quadcopter

C) Rotate 360 degrees around the z-axis

- Panorama
- Location hold
 - Fixed height
 - Fixed location

C) Hardware setup

C) Height control

- Fix altitude
- Ultrasonic sensor
- Pitch correction

C) Height measurement

C) Control

Start quad copter with RF transmitter

 Enable altitude hold Switch roll, pitch and yaw control to BeagleBoard **Pitch Throttle** Roll Yaw

C) Global control (SW)

- Ubuntu
 - Cross platform
 - Experience and know how
- OpenCV
 - Powerful open source computer vision library by Intel
 - General purpose vision functions
 - Functions to work with video streams
- Open Kinect
 - Light weight open source library

C) Fixed location

- Optical flow
 - Stabilization based on detected features
- Marker
 - Stabilization based on marker orientation

C) Optical Flow

C) Optical Flow

50 strongest features

350 strongest features

outlier

C) Fixed location

- Optical flow
 - Requires trajectory planning to navigate the quadcopter
- Marker
 - Marker can be followed throughout a building

D) Marker detection

- Follow line instead need for trajectory planning
- Take a corner in a line
- Line detection
 - Houghline: vector extraction from edges
 - Classification: combine vectors to lines
- Marker identification

D) Image processing

- Color image
- Blur (to remove noise from processing)
- Black and white image (not conventional)
- 4. Canny edge detection
- Houghlines transform (vector output)
- 6. Vectors to lines (classification)
- Detect crossing + type

D) Marker classification algorithm

- Map 8 fields next to the crossing of the lines
- 8 locations to identify different markers
- Corner detection
- Cross detection for 360° rotation
- Line following

D) Marker classification algorithm

```
line element = le cross
value lineOdetected mean = f
                              Bitfields of squared where a line is detected
value line1detected mean = 3
line0
angle=0.255714
n=6
                Angles of
line1
                lines detected
angle=-1.356325
n=2
               Low fps due to
fps : 1.04
               manual debugging
line element = le cross
value lineOdetected mean = f
value line1detected mean = 3
line0
angle=0.257526
n=5
linel
angle=-1.369479
```


D) Global control (SW)

E) Environment mapping

- Virtual 3d map of the environment
- Navigation purposes (Autonomous navigation)
- Search and rescue
- Digitalization of buildings

E) Point cloud

- Kinect Depth image
- UDP Stream with depth image from Beagle Board
- Use PCL (Piont Cloud Library) for stitching
- Mixture Java and C++
- JNI for java to C++ communication

E) Point cloud program

E) Stitching phases

New New frame Alignment Difference Existing Update existing

E) Iterative Closest Point steps

- 1. Find for each point the closest point in the second cloud.
 - 1. Linear search
 - 2. K-nearest neighbors search
- 2. Find the transformations per previews found points.
 - Mean square cost function
- 3. Transform the points.
- 4. Iterate this process.

Results

- A) Quadcopter is built
- B) Is flying stable
- C+D) Algorithm are working correctly
 - But cannot track the line over time
 - Too small webcam angle
 - Too slow processing
- E) Showing mapping
 - Mapping does not grow
 - ICP not working correctly

Quadcopter result

- 1. Top and bottom sonar
- 2. Sonar processing
- Battery low voltage alarm
- 4. USB hub
- 5. Kinect
- 6. Power regulator
- 7. Beagle board, Multiwii and RF receiver
- 8. LiPo battery pack
- 9. One of the 4 ESCs

Recommendations

- Wide angle lens
- Acceleration of algorithms
 - DSP
 - Resolution down scaling
- Mapping
 - Do not use JNI within mapping program
 - Build program complete in PCL

Demo

Questions?

Obstacle Detection

Global control (HW)

	Raspberry PI,				BeagleBone		
	Model B	BeagleBoard-xM	BeagleBoard	BeagleBone	Black	PandaBoard	PandaBoard/ES
Price [\$]	35	149	149	89	45	174	182
	Broadcom						
SOC Type	BCM2835	TI AM3715	TI OMAP3530	TI AM3359	TI AM3359	TI OMAP4430	TI OMAP4460
Core	ARM1176JZF-S	Cortex-A8	Cortex-A8	Cortex-A8	Cortex-A8	Cortex-A9	Cortex-A9
no. of Cores	1	1	1	1	1	2	2
CPU Clock [GHz]	0,7	1	0,6	0,72	1	1	1,2
GPU	VideoCore IV	PowerVR	PowerVR	SGX530	SGX530	no	no
DSP	yes	C64x	C64x	no	no	C64x lite	C64x lite
Open GPU/DSP	no	yes	yes	yes	yes	yes	yes
RAM [MB]	512	512	128	256	512	1024	1024
		4 on Host, 1 on		1 on Host, 1	1 on Host, 1	2 on Host, 1	2 on Host, 1 on
USB ports	2 on Host	OTG	1 on Host	on OTG	on OTG	on OTG	OTG

Became available after start of the project

E) Iterative Closest Point Phases

