E - 16 - 2012

빌딩건설현장에서의 배전설비에 관한 기술지침

2012. 6

한국산업안전보건공단

안전보건기술지침의 개요

o 작성자 : 인천대 안전공학과 교수 황 명환

o 개정자: 한국산업안전보건공단 산업안전보건연구원 안전연구실

o 제·개정 경과

- 2009년 10월 KOSHA CODE 전기분야제정위원회 심의
- 2012년 4월 전기안전분야 제정위원회 심의(개정)

o 관련규격 및 자료

- KOSHA GUIDE E-106-2011(건설현장의 전기설비 설치 및 관리에 관한 기술 지침)
- KOSHA GUIDE E-85-2011(전기설비 설치상의 안전에 관한 기술지침)
- Code of practice for distribution of electricity on construction and building sites, BS 7375: 1996, BSI
- Electrical safety on construction sites, GS24: 1995, HSE
- o 관련법령·고시 등
 - -산업안전보건기준에 관한 규칙 제2편 제3장(전기로 인한 위험방지)

o 기술지침 적용 및 문의

이 기술지침에 대한 의견 또는 문의는 한국산업안전보건공단 홈 페이지 안전보건 기술지침 소관 분야별 문의처 안내를 참고하시기 바랍니다.

공표일자 : 2012년 6월 20일

제 정 자 : 한국산업안전보건공단 이사장

E - 16 - 2012

빌딩 건설현장에서의 배전설비에 관한 기술지침

1. 목적

이 가이드는 빌딩 건설현장에서의 배전설비를 안전하게 설치하여 사용하기 위한 기술적 사항을 정함을 목적으로 한다.

2. 적용범위

- (1) 이 가이드는 빌딩 건설현장에서 배전설비를 사용하기 위하여 설치작업을 하는 경우에 적용한다.
- (2) 이 가이드는 다음의 경우에는 적용하지 아니한다.
- (가) 현재 사용되고 있는 전기설비
- (나) 고주파를 사용하는 전력공구의 변환장치
- (다) 지하 광산용 전기설비

3. 정의

- (1) 이 가이드에서 사용하는 용어의 뜻은 다음과 같다.
 - (가) "건설현장(Site)"이란 빌딩의 신규 건설, 보수, 확장, 철거작업 및 이와 관련된 토목공사를 행하는 작업장을 말한다.
- (나) "계통(System)"이란 단일 전원과 단일 전기설비로 이루어진 전력계통을 말한다.
- (다) "TN계통"이란 전력계통 접지방식의 하나로 전원측의 한 점을 직접 접지시키고, 전기기기의 접지는 전원측 접지극에 보호도체로 접속한 방식을 말한다.
- (라) "TN-C 계통"이란 계통의 모든 부분에서 중성선과 보호도체 기능이 하나의 전

E - 16 - 2012

선에 의해 통합 운전되는 계통을 말한다.

- (마) "TN-S 계통"이란 계통의 모든 부분에서 중성선과 보호도체 기능이 분리되어 운전되는 계통을 말한다.
- (바) "TN-C-S 계통"이란 계통의 일부에서 중성선과 보호도체의 기능이 하나의 도체에 의하여 이용되고, 나머지 부분에서는 분리 이용되는 계통을 말한다.
- (사) "TT계통"이란 전력계통 접지방식의 하나로 계통의 한쪽은 직접 접지시키고, 기기의 보호접지는 이와는 별도의 접지극에 접속하는 방식을 말한다.
- (아) "IT계통"이란 전력계통 접지방식의 하나로 모든 충전부를 대지에서 격리시키 거나 한 점에서 임피던스접지 시키고, 설비의 노출도전부는 독립접지 또는 공 통접지한 방식을 말한다.
- (자) "저감저압(Reduced low voltage) 계통"이란 상전압이 63.5 V 이하이고, 선간전 압이 110 V 이하인 계통을 말한다.
- (차) "분리초저전압(Separated extra-low voltage) 계통"이란 단일 고장전류에 의해 감전위험이 없도록 전기적으로 대지와 다른 전력계통과 분리시켜 놓은 초저전 압 계통을 말한다.
- (카) "초저전압(Extra low voltage)"이란 교류전압 50 V 이하, 직류전압 120 V이하 의 전압을 말한다.
- (타) "2종 절연(Class II insulation)"이란 이중절연을 의미하며, 기초절연과 부가절연으로 구성된 절연을 말한다.
- (2) 그 밖에 이 지침에서 사용하는 용어의 정의는 이 지침에서 특별히 규정하는 경우를 제외하고는 산업안전보건법, 같은 법 시행령, 같은 법 시행규칙 및 안전보건규칙에서 정하는 바에 따른다.

4. 일반사항

(1) 전문가의 조언

빌딩 건설현장의 다양한 조건으로 인해 본 안전가이드는 일반적 사항만 다루고 있으므로, 현장에 가장 적합한 전기설비의 상세사항은 전기기술자의 조언을 듣 는 것이 필요하다.

E - 16 - 2012

(2) 교류전원

본 안전가이드에서 언급하는 교류전원은 주파수가 60 Hz이고, 전압 및 전류의 크기는 실효치를 의미한다.

5. 전기공급자에게 사전통지

- (1) 빌딩건설을 고려할 때 전원을 전기공급자로부터 받아야 하는 경우에는 가능한 한 빨리 계획단계 이전에 이러한 계획을 전기공급자에게 알려야 한다.
 - (가) 계약전력 5,000 kW 이상 10,000 kW 이하는 사용예정일 1년 전
 - (나) 계약전력 10,000 kW 초과 100,000 kW 이하는 사용예정일 2년 전
 - (다) 계약전력 100,000 kW 초과 300,000 kW 이하는 사용예정일 3년 전
 - (라) 계약전력 300,000 kW 초과는 사용예정일 4년 전
- (2) 건설 주계약자와 전기설비 설치자 간에도 가능한 빨리 충분한 의견교환이 이루어져야 한다.
- (3) 전기공급자에게 다음의 사항에 대해 사전 통지를 하여야 한다.
- (가) 전원공급이 필요한 시기와 장소
- (나) 빌딩건설에 필요한 최대 전력
- (다) 빌딩이 건설된 후의 최대 전력부하
- (4) 전기공급자의 전원이 다중접지방식인 경우 빌딩 전기설비의 접지방식은 「접지설비 계획 및 유지관리에 관한 기술지침」(KOSHA CODE E-9-2007)에 따라 전기설비 각각에 대해 접지하여야 한다.
- (5) 기존의 가공선로, 지중케이블 등과의 접촉으로 인한 사고방지를 예방할 수 있는 사전 안전조치가 필요하다.

E - 16 - 2012

- (6) 다음의 사항에 대하여는 전기공급자와 사전 협의가 필요하다.
 - (가) 빌딩건설에 필요한 전력공급이 충분한 지, 아니면 예비전원이 무엇인지를 확인
 - (나) 최대사용 예정전력 공급가능 여부
 - (다) 전력계량과 요금체계의 확인
 - (라) 전력수전 예정시기
 - (마) 전원공급 계통의 상세내용(변전소, 주·예비전원 등)
 - (바) 전기공급자에 의해 제공되는 접지계통
- (사) 책임분계점 위치
- (아) 인입선의 가공, 지중 시공여부 및 적정규격 사용
- (자) 현장에 설치된 발전기의 상세내용

6. 전기재료

건설현장에 공급되는 배전설비는 전기설비기술기준에 적합하여야 하며, 건설현장에서 사용되는 전기재료는 한국표준규격에 적합하여야 한다.

7. 설계단계에서의 고려사항

7.1 계획단계

- (1) 건설현장에 전기를 공급하기 위하여 선행계획을 수립하여야 한다.
- (2) 건설현장의 요구사항과 전기공급자의 주의사항을 논리적으로 안전측면에서 검토하는 것이 필수적이다.
- (3) 전기공급자는 안전하게 책임분계점을 확실히 구분하여, 설비관리 및 안전관리의 책임을 고객에게 명확히 안내하여야 한다.

E - 16 - 2012

- (4) 전원 인입점에서의 단락전류와 지락전류에 대한 접지 요구사항을 특히 고려하여 야 한다.
- (5) 공급전원이 다중접지방식인 경우 모든 금속도체는 본딩이 되도록 설치하여야 한다.
- (6) 건설현장의 철 구조물이 너무 많아 모든 설비의 본딩이 어려운 경우, 이에 대한 적절한 접지가 되어 있지 않으면 전기공급자는 건설현장에 전원을 공급하면 안된다.
- (7) 대부분의 건설현장에서는 고장전류가 흐를 경우 퓨즈, 차단기 등에서 이를 즉시 차단할 수 있도록 접지봉을 설치하는 것이 필요하다.
- (8) 전력계통에서 고장전류가 흐를 경우 이를 즉시 차단하기 위한 접지방법에 대하여는 전문가의 조언이 필요하다.
- (9) 건설현장에서는 누설전류에 대한 보호를 위하여 고감도 누전차단기의 설치가 필요하다.

7.2 전기설비의 선정

- (1) 건설현장에 설치되는 케이블 및 전기설비는 열악한 주변 환경에 노출되므로, 이 러한 특수 환경에 적합한 전기설비를 선정하여야 한다.
- (2) 전선로의 보호, 접지의 적정배치, 주기적 점검 및 시험 등은 매우 중요한 요소이다.
- (3) 건설현장의 고정설비는 주 차단기반과 이의 보호장치에 한정된다.
- (4) 인입점에서의 계량기와 차단기반은 외부 충격과 열악한 환경에 대해 보호가 되어야 한다.
- (5) 모든 차단기반은 비상시 쉽게 접근할 수 있는 위치에 설치되어야 하고, 건설자재

E - 16 - 2012

등에 의해 방해가 되지 않아야 한다.

- (6) 건설현장의 모든 선로는 반드시 전원이 "OFF" 위치에서 잠금기능이 있는 차단 장치를 통해서 연결되어야 한다.
- (7) 전기설비는 비상시 전원을 차단할 수 있는 장치를 구비하여야 하며, 정격전류가 16 A 이하인 경우에는 플러그 및 소켓으로 된 전기접속장치도 가능하다.
- (8) 건설현장의 전기설비는 다음의 특성을 가져야 한다.
 - (가) 전기부품의 단순 교체를 통하여 현장마다 다른 요구사항을 만족할 수 있는 현 장적용의 유연성
 - (나) 운송 및 보관의 적합성
 - (다) 외부 충격에 견딜 수 있는 견고함
 - (라) 사용상의 안전성
 - (마) 외부 환경에 대한 적합성
- (바) 보수의 편의성
- (9) 건설현장의 전기설비는 전기기술자가 접근하기 쉬운 곳에 설치하여야 하고, 전기기술자 이외에는 접근하지 못하도록 조치하여야 한다.
- (10) 인화성물질에 의한 폭발분위기가 생성될 수 있는 장소에서는 「폭발위험장소에서의 전기설비 설치에 관한 기술지침」(KOSHA CODE E-20-2004)를 참조하여 설치기준을 선정한다.

7.3 전원공급계통

7.3.1 고압계통

(1) 현재 우리나라의 일반 배전전압이 22.9kV-y이므로 이 전기를 수전하여 고압이나 저압으로 변환하는 설비는 특고압 수전설비가 된다.

E - 16 - 2012

(2) 고압계통의 수변전 기기는 변압기, 콘덴서, 차단기, 고압배전반, 고압 및 특고압 개폐기 등으로 구성된다.

7.3.2 저압계통

- (1) 선간전압이 380 V 이하, 상전압이 220 V 이하인 전원공급계통에 대하여 적용한다.
- (2) 건설현장의 전원공급방식은 현장여건에 따라 다르지만, 일반적인 전원공급방식은 다음과 같다.
 - (가) 전기공급자로부터 가공선로 또는 지중케이블을 통한 전원공급방식
 - (나) 주변의 다른 건물로부터 전원을 공급받는 방식
 - (다) 건설현장 전체의 전기설비 또는 일부 전기설비에 대하여 자가발전설비를 이용 한 전원공급방식
 - (라) 전동공구 또는 조명설비의 전원공급을 위한 이동형 또는 차량형 발전기를 이 용한 전원공급방식
- (3) 건설현장에서 고정형 또는 차량형 발전기를 포함하여 다수의 전원공급원에 의해 전력을 공급받는 경우, 동일 전원에 의해 공급받는 전력부하를 각각 파악하여야 한다.
- (4) 전기공급자의 전력계통과 현장 발전설비를 연계하여 사용하는 경우에는 계통 연 결 이전에 전기공급자와 협의를 거쳐야 한다.

7.4 배전계통의 전압

(1) 주 전압

(가) 3상

빌딩 건설현장에서 일반적으로 사용되는 주 전압은 3상 4선식 계통에서의 3상 380 V를 사용한다.

(나) 단상

빌딩 건설현장에서 일반적으로 사용되는 주 전압은 단상 220 V를 사용한다.

E - 16 - 2012

(2) 저감저압

(가) 저감저압 삼상

성형결선된 변압기의 2차측 중성선을 접지시킨 후, 2차측 상전압을 선간전압의 $1/\sqrt{3}$ 이 되도록 인출하여 사용하는 경우로서, 선간전압이 110 V이면 저감 저압인 상전압 63.5 V를 사용한다.

(나) 저감저압 단상

변압기의 2차측 중간탭을 접지시킨 후, 2차측 상전압을 선간전압의 1/2이 되도록 인출하여 사용하는 경우로서, 선간전압이 110 V이면 저감저압인 상전압 55 V를 사용하다.

(3) 분리 초저전압 단상 25 V 또는 50 V

- (가) 안전 절연변압기(Safety isolating transformer)로부터 분리 초저전압을 인출하여 사용하거나, 동일 수준의 전기적 분리를 통한 전력공급원을 통해 초저전압을 인출하여 사용한다.
- (나) 분리 초저전압을 사용하는 경우 전선로와 노출된 모든 금속도체는 대지와 다른 전력계통의 전선로 등과 전기적으로 격리시켜야 한다.

7.5 배전선로의 전기적 보호

7.5.1 일반사항

- (1) 건설 후의 최종 선로를 포함한 모든 선로에 대하여 적절한 전기보호장치가 과부하, 단락전류 및 지락전류 등에 대해 설치되어야 한다.
- (2) 보호장치는 고장전류에 대해 전력설비의 손상없이 차단할 수 있어야 한다.

7.5.2 구별

선로보호용 퓨즈 또는 차단기의 용량은 다른 선로가 차단되지 않도록 운전상 구별이 되도록 하는 전기적 상호협조, 즉 보호협조가 이루어져야 한다.

E - 16 - 2012

7.5.3 낙뢰보호

빌딩 건설현장에서는 낙뢰에 대한 보호대책이 필요하다.

7.5.4 접지

(1) 일반사항

- (가) 접지를 통한 보호는 다음의 두 가지 방법에 의해 이루어진다.
 - ① 짧은 시간동안 전기장치에 흐르는 과전류로부터 보호하기 위하여 궤환회로 의 임피던스가 충분히 작도록 하며, 이는 일반적으로전기공급자가 제공하는 TN계통이 사용된다.
 - ② 다른 보호방식은 사용자가 접지계통을 별도로 구성하고 전원 인입측에 누전차단기를 설치하는 TT계통이 사용된다.
- (나) 인입케이블의 지락사고로 건설현장 내 금속외함의 전압상승으로 인한 위험을 예방하기 위하여 절연외함을 사용하는 것이 좋다.
- (다) 지락사고로 인한 위험감소를 위하여, 금속외함과 인입 전선간에는 2등급 절연 자재 이상의 절연 패킹, 패킹판 등을 사용하여야 한다.
- (라) 다중접지계통에 중성선과 보호도체가 공용으로 사용되는 TN-C-S 계통이 연결될 경우 전력계통 주변의 모든 금속도체는 함께 본딩시켜야 한다.
- (마) 고장전류가 흐를 경우 보호장치가 동작하여 이를 즉시 차단하기 위하여 건설 현장의 접지저항이 충분히 작아지도록 접지봉을 설치하여야 한다.
- (바) 다중접지계통에 전원을 연결하는 경우 건설현장 내의 모든 금속도체를 본딩시켜 야 하는 TN-C-S 계통은 사용하지 않는 것이 실용적이다.

(2) 이동형 저압 단상발전기

- (가) 일반적으로 정격용량은 0.3 kVA 내지 10 kVA 정도이다.
- (나) 발전기 권선은 일반적으로 본체와는 격리되어 있고, 3구 소켓을 통해 인출된다.
- (다) 보호접지도체는 발전기 내부에서 본체와 연결되어 있다.
- (라) 전압선택스위치가 220 V 또는 110 V를 얻을 수 있도록 설치된 발전기는 저감

E - 16 - 2012

전압을 이용할 수 없으며, 접지용 중간 탭을 갖는 110 V 발전기에서는 저감전 압을 얻을 수 있다.

- (마) 소형 단상 발전기는 권선을 접지시키지 않고 부동(Floating) 상태에서 운전할 수 있으나, 이는 수 일 정도의 짧은 기간에만 사용되어야 한다.
- (바) 발전기의 케이블, 플러그 및 소켓은 수시 검사하여야 하고, 만약 손상된 경우에는 보수할 것이 아니라 신품으로 교체하여야 한다.
- (사) 소형 단상 발전기의 공급전원에 의해 작동되는 산업용 110 V 또는 가정용 220 V 의 휴대용 전기기구는 이중 절연구조의 것을 사용하여야 한다.
- (아) 발전기에서 전원을 공급받는 전기설비가 접지되어 있지 않은 경우에는 IT계통으로 간주되어야 하고, 이 계통에 대하여는 절연감시체계가 필요하다.
- (자) 대형발전기 또는 건설기간동안 계속 전원을 공급하는 발전기는 저감저압을 얻을 수 있도록 권선 중앙에 접지 탭을 갖는 110 V용이거나, 절연변압기를 사용하여야 한다.
- (차) 건설현장의 발전기와 전기공급자의 전력계통 사이에 전기적으로 연계되는 경 우 접지에 관한 상호 의견교환이 이루어져야 한다.

(3) 주 전압 380/220 V 삼상전원

- (가) 전원공급계통과 연결되는 주 접지선은 일반적으로 전기공급자에 의해 제공된다.
- (나) 고장전류의 시작 및 종점이 되는 다음의 부분이 보호장치가 0.2초 이내에 동작 하도록 충분히 작은 대지궤환경로 임피던스를 갖도록 하여야 한다.
 - ① 보호도체
 - ② 접지단자 및 접지도체
 - ③ 케이블의 금속시스 및 가공지선 등의 금속궤환경로 또는 금속 궤환경로가 없을 경우의 대지궤환경로
 - ④ 변압기 권선과 중성선을 통한 경로
 - ⑤ 상도체

(4) 저감저압

(가) 저감저압 회로에서 보호장치의 동작은 저감저압용 변압기의 궤환회로로 사용되는 금속도체의 설치 여부에 의존한다.

E - 16 - 2012

- (나) 궤환회로로 사용되는 금속도체는 별도의 회로로 구성된 독립 보호도체이거나, 케이블을 보호하는 금속도체를 이용한다.
- (다) 과전류 보호장치는 전력계통이 고장전류에 대한 열적, 기계적 응력을 견딜 수 있는 시간 이내에 고장전류를 자동적으로 차단할 수 있어야 한다.
- (라) 과전류 보호장치는 모든 상도체에 대하여 설치하고, 차단시 모든 상을 동시에 차단하도록 설치되어야 한다.

7.5.5 접지 보호도체와 접지시스템의 감시계통

(1) 일반사항

- (가) 이동설비에 전원을 공급하는 유연케이블의 경우 안전을 위한 접지궤환회로의 연속성 유지를 위하여 특별한 주의가 필요하다.
- (나) 케이블에 내장된 보호도체가 손상되거나 끊어진 경우 고장전류가 흐를 경우 더 이상 궤환회로를 형성하지 못하여 안전하지 못하다.
- (다) 궤환회로의 건전성을 확보하기 위하여 접지 또는 보호도체의 감시체계를 도입할 필요가 있다.

(2) 접지 보호도체의 확인

- (가) 접지보호도체의 검증시스템(Protective conductor proving system)은 검증설비와 먼 거리에 있는 보호설비의 보호도체 연속성을 확신하기 위하여 사용된다.
- (나) 검증방식은 임피던스를 직접 측정하는 것이 아니라, 특수계전기를 사용하여 보호도체의 연속성을 개략적으로 찾아내는 방식을 사용한다.
- (다) 검증설비는 보호도체의 시작점과 보호할 설비간의 어느 지점에서도 연결하여 사용할 수 있다.
- (라) 검증설비에는 유도도체(Pilot conductor)와 보호도체간의 단락을 감지하기 위한 직류계전기가 사용될 수 있다.
- (마) 검증설비는 보호도체의 연속성을 확인하기 위하여 분로에 대한 전압감지장치 또는 직렬로 연결된 전류감지장치를 이용하며, 어떤 경우이던 접지 궤환회로의 임피던스는 매우 작아야 한다.
- (바) 전원측 및 감지부분의 임피던스의 합 Z₁은 <그림 1>과 같이 유도도체 회로와

E - 16 - 2012

직렬상태로 나타난다.

- (사) 감시회로의 전체 임피던스는 Z_1 과 나머지 루프의 임피던스 Z_2 의 합으로 나타난 다. Z_2 의 값이 약 10Ω 을 초과하면 부하측 설비를 운전하지 말아야 한다.
- (아) 전기설비의 운전 후 감시루프가 개방되었거나, 임피던스가 20Ω 이상으로 증가 한 경우 전기설비는 감시설비와 전기적으로 격리시켜야 한다. 제시된 수치는 예시이므로 실제 값은 현장 여건에 따라 변할 수 있다.
- (자) 검증회로에 흐르는 전류는 보호도체와 설비외함, 대지궤환회로를 포함한 루프 회로에 흐르는 전류이다.
- (차) 플러그 및 소켓, 케이블 등의 설치가 보호도체뿐만 아니라 유도도체라고 알려 진 궤환회로에 대하여도 제공되어야 한다.
- (카) 검증설비 자체에도 접지를 하여야 한다.
- (타) 접지회로에 설비외함이 포함된 것은 설비외함에 두개의 독립적인 접지단자가 필요한 것을 의미하며, 접지단자가 없을 경우 감시기간 중 설비외함이 활선도 체로 변할 수 있다.
- (파) 보호도체와 유도도체가 직렬상태로 연결되어서 감시하고 있더라도, 지락전류가 흐를 경우 가능한 한 병렬회로로 분산 작용하도록 설치하여야 한다.

(3) 접지시스템의 감시계통

- (가) 접지 감시계통은 감시장치와 원격 설비간의 보호도체 임피던스 값을 안전하게 유지하기 위한 수단으로 제공된다.
- (나) 감시장치는 발전기, 변압기 등의 에너지원과 보호설비간에 연결하여 사용할 수 있다.
- (다) 접지감시는 12 V를 초과하지 않는 안전 초저전압 전원에서 인출된 순환전류에 의해 수행된다. 순환전류가 흐르지 않으면 전원이 공급된 보호 전기설비의 접지선로가 단선이 되었음을 의미한다.
- (라) 감시전류는 궤환회로의 일부분인 보호장비의 보호도체 및 장비외함을 따라 흐른다.
- (마) 보호도체 경로와 시험도체로 알려진 궤환경로에 대해 플러그 및 소켓, 유연케이블 등이 제공되어야 한다.
- (바) 보호도체 경로와 시험도체 경로는 직렬상태에서 감시가 되지만, 지락사고가 발생한 경우에는 기능상 병렬로 작용하게 되며, 감시장치는 접지를 시켜야 한다.

E - 16 - 2012

7.6 전기 접속기구

(1) 플러그 및 소켓, 접속기구 등의 색상을 전압별로 구분하여 사용하는 것이 필요하다. <표 1>에서는 영국에서 사용되는 전압별 색상에 대한 예시를 보여주고 있다.

사용전 압(V)	색상
25	보라
50	백색
110~130	황색
220~240	청색
380~415	적색
500~650	흑색

<표 1> 플러그 및 소켓의 전압별 색상

(2) 정격전류가 32A를 초과하는 플러그 및 소켓, 케이블 접속기구 등은 부하상태에서 분리되지 않도록 연동시켜야 한다.

7.7 케이블

(1) 일반사항

- (가) 정상상태에서 자주 이동하는 케이블은 유연 케이블을 사용한다.
- (나) 이동용 배선의 말단은 단자 연결시 뒤틀리지 않도록 설치한다.
- (다) 보호도체의 단면적은 상도체의 면적보다 작지 않아야 한다.

(2) 고정 케이블 및 전선

- (가) 사용전압이 대지전압 63.5 V를 초과하는 케이블은 효과적으로 접지를 시키기 위하여 금속 외장형을 사용하여야 한다.
- (나) 유연케이블 또는 이동형 케이블의 경우에는 금속외장을 보호도체로 사용하여 서는 안 되며, 케이블 내에 접지용 단심을 추가하여야 한다.

E - 16 - 2012

(다) 사용전압이 12 V를 초과하고 63.5 V 이하인 경우에는 일반형 또는 열 저항 탄 성중합체로 절연된 외장 케이블을 사용한다.

(3) 유연성 코드 및 케이블

- (가) 유연성 코드의 도체 단면적은 최소 1.5 mm² 이상이어야 하며, 부속품 또는 다른 장비와 연결하는 경우 말단처리에 적합하여야 한다.
- (나) 유연성 코드 및 케이블의 전류정격은 연결 장비의 정격보다 작아서는 안 되며, 저감저압계통에 사용되는 경우에는, 물, 기름, 충격 등에 견딜 수 있는 거친 고 무 또는 PVC로 된 외장을 갖추어야 한다.
- (다) 케이블 절연재는 저온에서 유연성을 잃을 수 있으므로 현장의 최저온도에 적 합한 재질을 선정하여야 한다.
- (라) 일반용 PVC 절연케이블을 유연케이블 또는 코드로 사용하여서는 안 된다.

(4) 건설현장의 매설케이블

- (가) 공사현장의 임시케이블 또는 영구 설치되는 전기설비에 사용되는 지하매설 케이블은 외부로부터의 충격에 견딜 수 있도록 충분한 기계적 보호를 하여야 한다.
- (나) 케이블의 위치와 설치경로는 지상에 명확히 표시를 하여야 하고, 지도 또는 공 사계획에 기록하여야 한다.

8. 현장작업

현장작업과 관련된 법적 요구사항에 대하여는 『산업안전기준에 관한 규칙』 제5편(전기로 인한 위험방지)을 참고한다.

8.1 일반사항

(1) 건설현장에서 사용할 차단장치는 TT계통에서 차단장치를 사용하거나 사용했던 장치를 재사용하는 경우가 있으므로 중성선을 포함한 모든 상도체를 동시에 분

E - 16 - 2012

리시킬 수 있는 다극형을 사용하여야 한다.

- (2) 플러그와 소켓 등의 접속기구, 케이블 결합장치와 같은 차단장치는 전력공급선이 활선일 경우 "OFF" 위치에서 안전하게 설비를 조작할 수 있도록 하는 스위치 잠금장치가 제공되어야 한다.
- (3) 스위치 잠금장치는 특수공구 또는 열쇠에 의해서만 해제될 수 있도록 한다.
- (4) 소켓은 정격전압 이외에서 사용되지 않도록 전압별로 구분이 되는 것을 선정하여야 한다.
- (5) 내열 탄성체를 눌러 핀의 접촉을 통해 연결되는 전구소켓은 소켓 접속부가 절연 재질로 덮였거나, 몰딩처리 되었거나, 케이블 외장과 본딩되지 않으면 사용할 수 없다. 사용되지 않는 전구소켓은 캡으로 뒤집어 씌워야 한다.
- (6) 32 A를 초과하는 중전기설비에 사용되는 소켓은 플러그를 제거하기 전 전원이 차단될 수 있도록 기계·전기적으로 연동이 되도록 설치하여야 한다.
- (7) 건설현장 배전계통에 사용되는 소켓 접속장치는 어느 현장에서든 쉽게 설치하여 연결되도록 설계·제작하여야 하며, 현장의 공정진행 상태에 따라 전기설비를 쉽게 연결하도록 배치되어야 한다.
- (8) 케이블은 건설작업에 지장을 주지 않도록 통로, 보도, 사다리, 계단 등과 충분히 이격시켜야 하며, 증기, 가스, 물 배관 등과 최소한 150 mm 이상을 이격시켜야 한다.
- (9) 도로의 지하에 매설된 케이블은 최소 0.6 m 이하에 설치된 덕트를 통해 설치되어야 하며, 도로가 교차하는 끝 부분에 케이블의 위치르 표시하여야 한다.
- (10) 전기공사작업을 시작하기 전 전원을 차단하는 플러그, 소켓 및 케이블 접속기구 이외의 차단장치에는 열쇠나 특별한 기구에 의해서만 잠금(OFF) 상태가 해제될 수 있도록 조치하여야 한다.

E - 16 - 2012

- (11) 전원차단장치의 부하측에서 전기작업을 하는 경우 전로에 전압이 존재하지 않는 정전상태임을 입증하여야 한다.
- (12) 일반적인 건설현장 조건을 고려할 때, 개폐기는 방수형이어야 하며, 소켓 및 케이블 접속기구는 방우형으로 선정하여야 한다.
- (13) 건설현장에서 케이블 접속기구를 사용하는 경우 지지대를 사용하여 대지와 이격 시켜 설치하여야 한다.
- (14) 신축 현장에 전기제어설비를 설치하는 장소는 전기작업자의 접근이 용이하도록 하고, 주변 건설자재로부터 보호되도록 설치되어야 한다.
- (15) 전기제어설비를 설치하는 장소에는 전기사고와 설비보호를 위하여 일반인이 접근할 수 없도록 조치하여야 한다.
- (16) 통로와 계단에 설치된 비상등 및 피난등의 전원은 출입구 주변에 설치된 독립된 변압기로부터 인출하여야 한다.

8.2 가공전선

- (1) 전기공급자의 가공전선이 건설현장 위 또는 주변을 지나가는 경우 건설업자는 전력공급업체와 사전 주의사항 등에 대한 협의를 하여야 한다.
- (2) 전기공급자와의 협의는 현장작업이 시작되기 전인 건설계획 초기단계에서 이루 어져야 한다.
- (3) 건설현장에서 가공 케이블의 사용은 가급적 피하여야 하며, 불가피하게 설치하는 경우 크레인 및 건설기기의 이동을 위해 도로 위를 횡단하는 경우에는 최소한 6.0 m 이상의 높이를 유지하여야 한다.
- (4) 자동차, 건설기기 등의 통행이 제한되는 지역에 설치되는 가공 케이블에는 최소

E - 16 - 2012

한 6.0 m 이상의 높이를 유지하여야 하고, 위험표지판을 설치하여 확연히 구분 되도록 하여야 한다.

(5) 주변 환경에 따라 출입제한을 위한 방벽을 설치하여도 된다.

8.3 지중케이블

- (1) 굴착작업을 시작하기 전 현장 또는 현장 주변에 지중 케이블이 있는 지 조사하여야 하며, 이 조사에는 현장 소유자, 현장 개발자, 지자체, 전력회사 등에 대한 조사가 포함되어야 한다.
- (2) 지중케이블의 위치는 확인하여 경로를 표시하여야 한다.
- (3) 지중케이블은 건설현장에 설치된 전기설비 및 배전계통의 일부분으로 취급하여이에 의한 전기적 위험을 없애기 위한 주의사항을 문서화하여야 한다.

8.4 안전작업

- (1) 빌딩 건설현장에는 전기설비에 관한 일반적인 위험 이외에도 수시로 변하는 작업현장으로 인한 특별한 위험이 존재한다.
- (2) 건설현장에서의 위험은 "OFF" 위치에서 스위치를 잠글 수 있는 격리스위치를 사용하는 등 설계 및 구매단계에서 최소화시켜야 한다.
- (3) 임시 전기설비의 경우 안전성을 확보하는 방법은 전원으로부터 플러그를 직접 뽑을 수 없는 형태로 하고, 전기설비에 연결되는 플러그는 작업자가 즉시 통제할 수 있는 작업위치에 두도록 한다.
- (4) 영구 배전선로와 이에 연결되는 임시 배전선로에는 선로명을 표기하여야 하며, 배전선로에 변경이 발생한 경우에는 변경된 선로명으로 즉시 고쳐야 한다.
- (5) 선로명을 기입하는 경우 동일한 명칭의 설비가 많으면 설비 각각에 대하여 고유

E - 16 - 2012

번호를 부여하는 것이 편리하다.

- (6) 감전으로 인한 사망사고는 즉각적인 조치로 예방할 수 있으므로, 작업자가 감전 된 것을 확인한 경우 즉시 관련 전원플러그를 뽑도록 교육시키는 것이 필요하다.
- (7) 감전시의 응급조치 사항을 게시하여야 하며, 전기작업자는 이에 관한 사전 훈련을 받아야 한다.
- (8) 응급서비스를 호출할 수 있는 장비가 구비되어야 하며, 전기작업을 위한 전기기술 자와 작업동료에 대하여 사고를 예방하기 위한 사전 주의조치를 취하여야 한다.
- (9) 모든 작업자는 동료작업자가 안전사고로 인하여 부상을 입었을때는 신속하게 응급처치를 하고 필요시에는 의사의 치료를 받아야 한다. 또한 작업자는 응급처치 요령을 숙지하고 있어야 한다.
- (10) 대규모 또는 복잡한 전기설비의 경우에는 이의 제어, 운영, 보수 등에 대하여 안 전을 확보하기 위하여, 공식 안전절차인 안전작업허가제도 등을 활용하여야 한다.

8.5 철거작업

- (1) 철거작업의 계획단계에서 전원공급 위치를 확인하고, 철거작업 전에 모든 전원을 차단한 후 유자격자에 의한 정전상태를 확인하여야 한다.
- (2) 철거작업의 계획단계에서 가공전선과 지중케이블을 재사용할 것인지에 대한 사전 검토가 소유주와 함께 이루어져야 한다.
- (3) 철거작업에 필요한 전원의 공급은 철거지역 내의 전원과는 독립적인 전기설비에 의해 공급되는 것이 바람직하다.

E - 16 - 2012

9. 현장 밖에서의 작업

- (1) 건설현장에는 전기설비를 보관할 공간이 제공되어야 하며, 전기설비를 설치, 보수, 교체 등을 위한 작업장이 있어야 한다.
- (2) 건설현장에서 전기작업을 시작하기 전, 현장내외에서 사용할 대형 전기설비의 이동상황을 나타내는 일정표에 대해 건설업자와 충분한 협의를 하여야 한다.
- (3) 건설현장 사무실, 건설장비, 일반적 조명설비 등과 관련된 도면에는 다음의 내용이 포함되어야 한다.
- (가) 보호용 제어반의 정격 및 형식
- (나) 설치가능한 배전설비의 위치
- (다) 배전선로의 배치
- (라) 전력요금 체계와 최대 전력수요

10. 점검 및 검사

건설현장의 모든 전기설비는 사용하기 전 검사 및 시험을 수행하여야 하며, 이에 대한 기록을 건설현장에 보관하여야 한다.

11. 보수

11.1 일반사항

- (1) 건설현장의 작업은 관련 전기설비의 손상 또는 오용될 가능성이 높으므로 가능한 한 변경하지 않는 것이 좋다.
- (2) 전기작업자로 하여금 운전설비 및 배전선로를 엄격하게 검사하고 보수하도록 하

E - 16 - 2012

는 것은 안전과 운전 효율 향상을 위하여 필수적이다.

- (3) 고정 설치된 전기설비는 기기 성능을 유지하기 위하여 3개월마다 시험 및 검사를 하여야 하고, 현장 여건에 따라 검사주기를 단축하여야 한다.
- (4) 시험은 보호도체의 성능유지와 절연에 대하여 수행하고, 이는 노후화 된 부분을 찾아내기 위한 방법으로 수행되어야 한다.
- (5) 이동설비에 대한 검사주기는 고정설비보다 좀 더 자주 시행되어야 하며, 검사주 기는 설비의 원래 설계조건과 실제 적용되는 현장여건을 상호 비교하여 결정하여야 한다.
- (6) 전기설비의 설치 초기에는 유자격자에 의한 검사를 매주 실행할 것이 권장된다. 전기시험은 접지 및 절연상태에 대한 내용을 포함시켜야 하며, 시험주기는 검사 결과에 따라 가감하여야 한다.
- (7) 정비주기는 건설공정과 현장여건의 변화 등에 따라 조정되어야 한다.
- (8) 검사내용은 플러그, 접속기, 부속품 및 이동형 장비에 유연 케이블을 고정하기 위한 장치검사도 포함하여야 하고, 철판덮개, 연동문, 기타 보호장치와 간섭이 발생하는 유연케이블의 상태도 검사하여야 한다.
- (9) 누전차단기는 시험버튼을 사용하여 최소한 월1회 이상 정상 여부를 시험하여야 한다.
- (10) H 변대주 위의 나무로 된 바닥재는 풍화작용에 의해 부식되어 점검시 사고위험 이 없는지 확인한다.
- (11) 작업장 또는 점검장소의 출입을 제한시킬 필요가 있을 때는 구획로프 설치 또는 "출입금지"표지를 부착한다.
- (12) 책임분계점 개폐기의 조작은 긴급한 경우를 제외하고 전기공급자가 조작하도록

E - 16 - 2012

하여야 한다.

- (13) 고압 또는 특고압 충전부에 근접할 때는 고압 60 cm, 특고압 90 cm 이상의 안 전거리를 유지하여야 한다.
- (14) 고압이상 설비에 대한 작업시는 전로의 개방을 확인한 후에 단락접지용구로 전로를 단락접지시켜야 한다.

11.2 검사기록

- (1) 빌딩 건설현장의 모든 전기설비에는 기기번호를 정하고, 기기의 설치일, 마지막 검사일 및 다음 검사예정일 등을 기록하여야 한다.
- (2) 검사기록은 전기기술자의 검토를 받은 후 건설현장에 보존하여야 한다.