PROJECT REPORT

Solving Equations Using Genetic Algorithms

Course : Project 1

Course ID: IT3910E

Instructor: Assoc. Prof. Tran Dinh Khang

Group : HelaX

Table of Contents

- 1. Introduction
- 2. Method
- 3. Results
- 4. Discussion
- 5. Conclusion

1. Introduction

$$f(x) = 0 \qquad \rightarrow x = ?$$

f(x) is an elementary function (polynomial, trigonometric,...)

 $oldsymbol{x}$ is a real root of the equation

2. Method

2.1. Input Handling

2.2. Genetic Algorithm

2.1. Input Handling

Order of precedence:

2.1. Input Handling

User input: $2 + x * 4 \longrightarrow F(x)$

Abstract Syntax Tree:

2.1. Input Handling

User input: $2 + x * 4 \longrightarrow F(x)$

Abstract Syntax Tree:

General of Genetic Algorithm

- Initialization
- Fitness Assignment
- Selection
- Reproduction
- Termination

Search Space

s E (exponent) F (fraction)

1 sign bit 8 bits 23 bits

$$value = (-1)^{-s} \times 1.F \times 2^{E-bias}$$

Operators

Fitness Score

$$Difference = abs(LHS - RHS)$$

$$Fitness\ Score = 1/(Difference + 1)$$

When Difference --> 0 => Fitness Score --> 1

Menu User Input

Result Visualize

Custom Interval to solve

DEMO

4. Discussion

- No Solution Condition
- Slow Convergence

5. Conclusion

- Easy to find solution but sometime fail
- Try more advance algorithm
- More user-friendly GUI

Thank you!