Course code	Course Name	L-T-P -Credits	Year of Introduction
MA484	OPERATIONS RESEARCH	3-0-0-3	2016

Prerequisite: NIL

Course Objectives:

- 1. To understand the fundamentals of Operation Research
- 2. To acquire the knowledge in different Operation Research techniques

Syllabus: Linear programming problem-Basic feasible solutions- Degeneracy dual Linear programming problems. Optimality conditions-The Simplex Method. Artificial Variablesmethod-Two phase Method. Dual of Linear programming problems- Duality Charnes'M principle, The Primal-Duality solutions using Simplex Method. Revised Simplex method. Assignment Problem-Formation-Optimal Solution-Hungarian Assignment Method-Traveling salesman problem-sequencing problem-Basic terms used in sequencing-Processing n Jobs through Two Machines-Processing n Jobs through k machines-Processing 2 Jobs through k Machines. Project management: Guidelines for network construction. Critical path method. (CPM). Project evaluation and review technique.(PERT). Network Techniques: Shortest path problem. (Dijkstras Algorithm). Maximum flow problem. Minimum spanning tree problem. algorithm. The Recursive Equation approach- Characteristics of Dynamic Algorithm-Solution D.P.P-Some programming-Dynamic programming of Discrete applications-Solution of L.P.P by Dynamic Programming

Expected Outcome

Students will be able to

- 1. Solve different type LPP
- 2. Apply the concept of O.R in real life problems
- 3. Understand how to translate a real-world problem, given in words, into a mathematical formulation
- 4. Understand design and analysis of algorithms in network techniques and project management.

Text Books:

- 1. G Hadley, Linear programming, Narosa Publishing House, New Delhi, 2002
- 2. Kanti Swarup, P.K.Guptha, Man Mohan, Operations Research, Sultan Chand & Sons, New Delhi, 2010.
- 3. Taha.H.A, OperationResearch, Pecarson, 2004

References:

- 1. Francis & White, Facility Layout & Location, Prentice Hall Inc., 1974
- 2. Hillier & Lieberman, Introduction to Operations Research, Holden Day Inc., 1996
- 3. R Panneerselvam, Operation Research. PHI, 2006
- 4. Samuel Eilon, Elements of Production Planning & Control, Universal Book, 1991. Corporation

Module	Syllabus	Hours	End Sem.
	2014		Exam Marks
I	Linear programming problem-Basic feasible solutions- Degeneracy dual Linear programming problems. Optimality conditions-The Simplex Method. Artificial	7	15%
II	Variables- Charnes' M method-Two phase Method. Dual of Linear programming problems- Duality principle, The Primal-Duality solutions using Simplex Method. Revised Simplex method	7	15%

	FIRST INTERNAL EXAMINATION		
III	Transportation problem - Formulation - Existence of solutions of Transportation problems - Solutions of Transportation problem - finding an initial basic solution - North west corner method - Least cost Method - Vogel's Approximation Method - Test for optimality - Modi. Method - Unbalanced transportation problem in Transportation Problems - Transhipment model - Problem with sources and destination acting as transient nodes.	7	15%
IV	Assignment Problem-Formation-Optimal Solution-Hungarian Assignment Method-Travelling salesman problem-sequencing problem-Basic terms used in sequencing-Processing n Jobs through Two Machines-Processing n Jobs through k machines-Processing 2 Jobs through k Machines.	7	15%
	SECOND INTERNAL EXAMINATION		
V	Project management: Guidelines for network construction, Critical path method (CPM), Project evaluation and review technique (PERT), Network Techniques: Shortest path problem, Dijkstras Algorithm, Maximum flow problem, Minimum spanning tree problem, Prim algorithm.	7	20%
VI	The Recursive Equation approach- Characteristics of Dynamic programming-Dynamic programming Algorithm-Solution of Discrete D.P.P-Some applications-Solution of L.P.P by Dynamic Programming	7	20%
	END SEMESTER EXAMINATION		

QUESTION PAPER PATTERN (End Semester Examination)

Time: 3 hours Maximum marks: 100

The question paper shall consist of Part A, Part B and Part C.

Part A shall consist of three questions of 15 marks each uniformly covering Modules I and II. The student has to answer any two questions (15×2=30 marks).

Part B shall consist of three questions of 15 marks each uniformly covering Modules III and IV. The student has to answer any two questions $(15\times2=30 \text{ marks})$.

Part C shall consist of three questions of 20 marks each uniformly covering Modules V and VI. The student has to answer any two questions $(20 \times 2 = 40 \text{ marks})$