II.4 Teknologi Pendukung

II.4.1 Sistem Radar Cuaca

Radar (Radio Detection and Ranging) cuaca merupakan suatu sistem gelombang elektromagnetik yang digunakan untuk mendeteksi curah hujan seperti hujan salju, hujan es, dll. Prinsip kerja radar cuaca yaitu mengirimkan gelombang radio dan mengukur kembali energi gelombang radio yang dikembalikan, sebagian besar menggunakan radar pulsa doppler yang mengukur kecepatan radial dari sebuah objek yang masuk ke dalam daerah tangkapan radar dengan menggunakan Efek Doppler. Hal ini dilakukan dengan memancarkan sinyal microwave (gelombang mikro) ke objek lalu menangkap refleksinya, dan kemudian dianalisis perubahannya.

Gambar II.22 Display Hasil Pengamatan Radar Cuaca

Radar cuaca memiliki 3 komponen utama yaitu:

1. Antena

Antena radar suatu antena reflektor berbentuk parabola yang menyebarkan energi elektromagnetik dari titik fokusnya dan dicerminkan melalui permukaan yang berbentuk parabola sebagai berkas sempit. Antena radar merupakan dwikutub. Input sinyal yang masuk dijabarkan dalam bentuk phased-array yang merupakan sebaran unsur-unsur objek yang tertangkap antena dan kemudian diteruskan ke pusat sistem radar

2. Transmitter

Transmitter pada sistem radar berfungsi untuk memancarkan gelombang elektromagnetik melalui reflektor antena agar sinyal objek yang berada pada daerah tangkapan radar dapat dikenali, umumnya transmitter mempunyai bandwidth yang besar, ukuran transmitter tidak terlalu besar dan juga tidak terlalu berat serta mudah perawatannya.

3. Receiver

Receiver pada sistem radar berfungsi untuk menerima pantulan kembali gelombang elektromagnetik dari sinyal obyek yang tertangkap radar melalui reflektor antena. Umumnya penerima mempunyai kemampuan untuk menyaring sinyal agar sesuai dengan pendeteksian serta dapat menguatkan sinyal obyek yang lemah dan meneruskannya tersebut ke pemroses data dan sinyal serta menampilkan gambarnya di layar monitor.

II.4.2 Spesifikasi Radar Cuaca

Tabel II.2 Spesifikasi Teknis Transmitter

Transmitter Type	Coaxial Magnetron
Modulator Type	Solid State
Operating Frequency	Tunable pada range min 5500 – 5700 MHz
Ground Clutter Suppresion	35 dB minimum
Pulse repetition frequency PRF	Minimal 500 – 1200 Hz (Software controlled)
Pulse width / Pulse Duration	Selectable within a range min $0.5 - 2.0$ us
Peak Power	350 KW minimum

Tabel II.3 Spesifikasi Teknis Receiver

Operating Frequency PRF	Min 5500 – 5700 MHz
Noise Figure	30 dB Maximum
Sensitivity (MDS)	-111 dBm atau kurang
Component and Technology	Reciever harus built in dengan
	menggunakan technology terbaru

Tabel II.3 Spesifikasi Teknis Receiver

REFLECTOR		
Reflector Type	Solid surface parabolic	
Feedhorn Type	Rectangular / circular corrugated Horn	
Beam width	1° max	
Gain	44 dB min	

Operating Frequency	5500 – 5700 MHz minimum	
Polarization	Linear Horizontal	
Side Lobes supression	27 dB minimum	
PEDESTAL		
Azimuth Rotating Rate	0 – 5 RPM minimum	
Azimuth PointingAccuracy	± 0.1°	
Azimuth Display Resolution	± 0.1°	
Elevation Movement Range	$-1^{\circ} \text{ to } + 90^{\circ}$	
Manual Mode	0° to $+90^{\circ}$	
Automatic Mode		
Motor	Long Life	
Safety Devices	Safe switch on pedestal and servo	
	control panel Acces door interlock	
SERVO AMPLIFIER		
Type	Solid-state two axis	

II.4.3 Kelebihan Radar Cuaca

Sensor radar tersedia pada semua kapabilitas cuaca sebagaimana energi gelombang mikro menembus awan dan hujan, biarpun, hujan menjadi sebuah faktor pada radar wavelength < 3 cm. Sensor radar merupakan system penginderaan jauh yang aktif (active remote sensing system), independen terhadap cahaya matahari, menyediakan sumber energi sendiri, dan juga mampu meneyediakan kemampuan pada siang/malam.

II.4.3 Kekurangan Radar Cuaca

Kekurangan radar yaitu dengan dengan data radar. Radar imagery menampilkan "distorsi" yang melekat (inherent) pada geometry citra radar. Juga satu yang harus dikoreksi untuk speckle (bintik, bercak, kurik) atau coherent fading (warna yang pudar, kehilangan saling berlengketan). Radar sensitive terhadap topografi, permukaan yang kasar seperti tanah lapang (terrain) dan penutup tanah (ground cover), sifat-sifat dielektrik (dielectric properties) (moisture content), dan gerakan. Semuanya ini bisa dihubungkan dengan cirri-ciri permukaan seperti landform dan morfologinya, landcover (penutup tanah), dan ciri-ciri hidrologis (hydrological feature).