${\bf Contents}$

1	Step 4 Machine learning						
	1.1	Step 0: Look at and Modify the dataset	2				
	1.2	Step 1: Explore the dataset	Ę				
	1.3	Step 2: Split sets, train a Machine Learning Model and Evaluate performance	10				
1	\mathbf{S}	tep 4 Machine learning					

1.1 Step 0: Look at and Modify the dataset

So, I am curious. Can I predict vaccination data?

I will work with the South West's vaccination data.

	First	Second	Third
2022-01-26	986	2520	4034
2022-01-25	899	1845	4283
2022-01-24	723	1445	3441
2022-01-23	1035	3007	3439
2022-01-22	1822	4709	5896
2022-01-21	1085	2362	4944
2022-01-20	1152	2330	5058
2022-01-19	1083	2524	5017
2022-01-18	1298	2126	5359
2022-01-17	946	1699	4374

As we discuss earlier ??, there are waves. So, the count of jabs depends on dates. Let's get features: 1) Year 2) Month 3) Day etc.

	First	Second	Third	Year	Month	Day	DayOfYear	Weekday	Quarter	IsMonthStart	IsMonthEnd
2022-01-26	986	2520	4034	2022	1	26	26	2	1	FALSE	FALSE
2022-01-25	899	1845	4283	2022	1	25	25	1	1	FALSE	FALSE
2022-01-24	723	1445	3441	2022	1	24	24	0	1	FALSE	FALSE
2022-01-23	1035	3007	3439	2022	1	23	23	6	1	FALSE	FALSE
2022-01-22	1822	4709	5896	2022	1	22	22	5	1	FALSE	FALSE
2022-01-21	1085	2362	4944	2022	1	21	21	4	1	FALSE	FALSE
2022-01-20	1152	2330	5058	2022	1	20	20	3	1	FALSE	FALSE
2022-01-19	1083	2524	5017	2022	1	19	19	2	1	FALSE	FALSE
2022-01-18	1298	2126	5359	2022	1	18	18	1	1	FALSE	FALSE
2022-01-17	946	1699	4374	2022	1	17	17	0	1	FALSE	FALSE

First of all, I am going to use Regression Machine Learning models:

- Decision Tree
- Random Forest.

Let's look at the dataset carefully.

1.2 Step 1: Explore the dataset

1.2.1 Data types

	X
First	double
Second	double
Third	double
Year	double
Month	double
Day	double
DayOfYear	double
Weekday	double
Quarter	double
IsMonthStart	logical
IsMonthEnd	logical

The good news is I don't need to convert my variables because they fit into Regression Machine Learning models.

1.2.2 Correlations

Var1	Var2	value
First	Month	-0.5432969
Second	Month	-0.1888013
First	DayOfYear	-0.5343244
Second	DayOfYear	-0.1901012
First	Quarter	-0.6070344
Second	Quarter	-0.1799906

As we can see, the column "First" has strong relationships with

 \bullet "Quarter",

- "DayOfYear",
- \bullet "Month".

At the same time, the column "Second" doesn't have strong relationships; but we can use the same columns.

1.2.3 Weekdays

As you remember, I have a question.

Let's answer.

So, most of South West's people prefer to get a jab on Saturdays.

1.2.4 Missing values

Calculate a count of dates in the dataset.

415

Calculate a count of dates between maximum and minimum dates.

415

There are no missing dates.

1.3 Step 2: Split sets, train a Machine Learning Model and Evaluate performance

Define necessary variables

Prepare sets and train models using parameters.

y_column = "First"

DecisionTree: 0.719657929335243

RandomForest: 0.774580856609961

Look at the tree

Repeat for the Second

y_column = "Second"

DecisionTree: 0.7445280765098062

Repeat for Third

y_column = "Third"

DecisionTree: 0.8323340834065006

RandomForest: 0.028430358547872348

Compare the score with the mean value of the column that we predicted.

A combination of the following features give us the best result: Weekday, Year, DayOfYear.