实验六 电平判决实验

一、AWGN电平信道与二元符号判决

a) 搭建模型

b) 观察AWGN信道对二元电平信号的影响

较短时间内AWGN信道对二元电平信号的影响

c) 记录二元符号AWGN信道误符号率

仿真结果

信号功率 E_s	1	1	1	1	1
噪声功率 σ^2	1.025	0.4938	0.2517	0.09067	0.009915
信噪比 $E_s/\sigma^2(dB)$	-0.107	3.064	5.870	10.425	20.037
误符号率 P_e	0.1617	0.07949	0.026	0.0004	0
理论信号功率	1	1	1	1	1
理论噪声功率	1	0.49	0.25	0.09	0.01
理论误符号率 P_e	0.1616	0.0774	0.0247	$4.485{ imes}10^{-4}$	4.943×10^{-24}

其中误符号率关于信噪比的理论关系: $P_e = Q(\sqrt{rac{E_s}{\sigma^2}})$

测量到的信号功率和理论信号功率完全一致;噪声测量功率和理论功率偏差不超过3.52%;误符号率的实验测量值和理论值基本一致。

二、AWGN波形信道预习

a) 采样判决

较短时间内AWGN波形信道对矩形脉冲信号的影响

b) 硬判决 软判决

模型构建

```
function y = hard(x)
if sum(x)>0
    y=1;
else
    y=-1;
end
```

c) 仿真研究采样次数 N_s 与抗噪声性能的关系

仿真结果

信号功率 E_s		1	
噪声功率 σ^2	4.0	1.0	0.25
信噪比 $E_s/\sigma^2(dB)$	-6.021	0	6.021

信号功率 E_s		1	
采样速率		$N_s=5$	
采样判决 P_b	0.3076	0.1569	0.02259
硬判决 P_b	0.1749	0.03084	0.00018
软判决 P_b	0.1331	0.01257	0.00001
采样速率		$N_s=10$	
采样判决 P_b	0.3098	0.1586	0.02254
硬判决 P_b	0.1087	0.00738	0
软判决 P_b	0.057	0.00089	0

d) 误比特率曲线绘制

sigma2 = 1/SNR^2;% TODO

添加上述语句后运行脚本得到误比特率曲线图

判决方法	Ns=10时 $BER<=0.01$ 的最低信噪比 (dB)		
采样判决	-1.738		
硬判决	-6.150		
软判决	-7.914		

比较像素个数得到上述信噪比数值,此种情况下软判决相对于硬判决的信噪比增益是1.764dB,相比于采样判决信噪比增益是6.176dB

三、多元符号判决

a) 搭建Bit to Symbol模块

b) 自定义Matlab函数实现最小距离判决

```
function y = decision(x,A,k)
num=round(x/A);%离x/A最近的整数
if mod(num,2)==0
    num=num+2*(x/A>num)-1;
end

if num>2^k-1
    y=(2^k-1)*A;
elseif num<-(2^k-1)
    y=-(2^k-1)*A;
else
    y=num*A;
end
```

首先找到离x/A最近的整数,接着找到离x/A最近的奇数。如果离得最近的奇数大于M-1或者小于-(M-1),相应的取这个整数为M-1或-(M-1)。这个整数乘上幅度A即为判决结果。

c) 搭建Symbol to Bit模块

d) 绘制M元符号AWGN信道曲线

模型整体

```
sigma2 = ((2^2*k-1)/3*A^2)/SNR^2;% \ TODO \\ ser_th(i,j) = (2^(k+1)-2)/(2^k)*qfunc(A/sigma2^0.5);% \ TODO \\ ber_th(i,j) = (2^(k+1)-2)/(k*2^k)*qfunc(A/sigma2^0.5);% \ TODO \\
```

用到的理论公式: $\sigma^2=rac{(M^2-1)A^2}{3(\sqrt{rac{E_s}{\sigma^2}})^2}$

$$P_e = \frac{2(M-1)}{M} Q(\frac{A}{\sigma})$$

$$P_b = \frac{2(M-1)}{M \log_2 M} Q(\frac{A}{\sigma})$$

添加上述语句后运行脚本得到SER、BER曲线图

图中M=8,信噪比= 20dB的情况下误比特率和误符号率和理论值有明显偏差,其余位置理论实验符合得很好。偏差处对应的 $BER\approx 2\times 10^{-5}$ 、 $SER\approx 3\times 10^{-5}$ 。实验时间= 10^5 ,换算下来平均错了2bit,3个符号,是非常少的错误量。由于实验时间离散,得到的SER、BER最小的非零值也是 10^{-5} 量级,因此实验值会和理论值有所偏差。

四、思考题

1. 为什么 5.2a 中脉冲发生器的相位延迟大于 0 时会导致采样保持、速率转换后输出信号 延时 1 个采样? (提示:用示波器观察脉冲信号和采样保持信号)

答:

四个位置的信号

相位延迟为0的脉冲和相位延迟非0的脉冲

若脉冲发生器的相位延迟不为0,则速率转换时的第i个采样脉冲会抽取到第i-1个脉冲发生器产生的脉冲抽样保持的值,因此造成1个采样的延时。如果相位延迟是Ns的整数倍,等同于抽样保持的前几个点都抽到了0,会使得 P_e 略微升高但不会造成后续点的延时。

2. 请推导证明最大似然判决等同于 N_s 个采样平均值的最小距离判决。 (提示: 利用每个采样的独立性计算似然函数)

答:
$$P_r(y=r|x=1)=\prod_{i=1}^{N_s}(rac{1}{\sqrt{2\pi}\sigma}e^{-rac{(y_i-1)^2}{2}}dy_i)$$
同理可得 $P_r(y=r|x=-1)=\prod_{i=1}^{N_s}(rac{1}{\sqrt{2\pi}\sigma}e^{-rac{(y_i+1)^2}{2}}dy_i)$

将连乘展开后得到

$$egin{aligned} P_r(y=r|x=1) &= rac{1}{(\sqrt{2\pi}\sigma)^{N_s}}e^{-rac{\sum_{i=1}^{N_s}y_i^2+N_s-2\sum_{i=1}^{N_s}y_i}{2}}dy_1dy_2.\ldots dy_{N_s} \ P_r(y=r|x=-1) &= rac{1}{(\sqrt{2\pi}\sigma)^{N_s}}e^{-rac{\sum_{i=1}^{N_s}y_i^2+N_s+2\sum_{i=1}^{N_s}y_i}{2}}dy_1dy_2\ldots dy_{N_s} \end{aligned}$$

区别只在e指数项,当 $2\sum_{i=1}^{N_s}y_i>-2\sum_{i=1}^{N_s}y_i$,

即
$$\sum_{i=1}^{N_s} y_i > 0$$
时, $P_r(y=r|x=1) > P_r(y=r|x=-1)$;

当
$$\sum_{i=1}^{N_s}y_i=0$$
时, $P_r(y=r|x=1)=P_r(y=r|x=-1)$;

当 $\sum_{i=1}^{N_s}y_i<0$ 时, $P_r(y=r|x=1)< P_r(y=r|x=-1)$ 。 因此最大似然判决等同于 N_s 个采样平均值的最小距离判决。

3. 如果在多元符号映射时不采用格雷映射会有什么后果

答:格雷映射的优点是相邻的符号只差1bit,由于符号出错成相邻的符号概率是最大的,采用格雷映射即使符号出错也很大概率只错一个比特。如果不采用格雷映射,会增大符号出错到相邻符号时的错误比特数,进而增大BER。