ADVANCED BAYESIAN LEARNING APPROXIMATE METHODS Spring 2014

Mattias Villani

Division of Statistics

Department of Computer and Information Science
Linköping University

TOPIC OVERVIEW

- ► Variational Bayes (VB)
- ► Approximate Bayesian Computations (ABC)

VARIATIONAL BAYES

- Let $\theta = (\theta_1, ..., \theta_M)$. Approximate the posterior $p(\theta|y)$ with a (simpler) distribution $q(\theta)$.
 - ► Nonparametric/Factorization/Mean field approximation

$$q(\theta) = \prod_{i=1}^{M} q_i(\theta_i)$$

- **Parametric**, where $q_{\lambda}(\theta)$ is a parametric family with parameters λ .
- ▶ Find the $q(\theta)$ that minimizes the Kullback-Leibler distance:

$$\mathit{KL}(p,q) = \int p(\theta|y) \ln \frac{p(\theta|y)}{q(\theta)} d\theta = E_p \left[\ln \frac{p(\theta|y)}{q(\theta)} \right].$$

- ▶ Computing the expectation wrt $p(\theta|y)$ is often hard.
- ► Reverse KL problem is often simpler (but somewhat unnatural):

$$\mathit{KL}(q,p) = \int q(\theta) \ln rac{q(\theta)}{p(\theta|y)} d\theta = \mathit{E}_q \left[\ln rac{q(\theta)}{p(\theta|y)}
ight].$$

VB GIVES A LOWER BOUND ON p(y)

▶ Using that $p(\theta|\mathbf{y}) = p(\mathbf{y}, \theta)/p(\mathbf{y})$ we have

$$\begin{aligned} \mathsf{KL}(q,p) &= \int q(\theta) \ln \frac{q(\theta)}{p(\theta|\mathbf{y})} d\theta \\ &= \int q(\theta) \ln \left(\frac{q(\theta)}{p(\mathbf{y},\theta)} \right) d\theta + \int q(\theta) \ln p(\mathbf{y}) d\theta \\ &= \int q(\theta) \ln \frac{q(\theta)}{p(\mathbf{y},\theta)} d\theta + \ln p(\mathbf{y}) \end{aligned}$$

▶ Since $KL(q, p) \ge 0$, we have the following **lower bound** for $\ln p(y)$

$$\ln p(\mathbf{y}) \geq -\int q(\theta) \ln \frac{q(\theta)}{p(\mathbf{y},\theta)} d\theta = \int q(\theta) \ln \frac{p(\mathbf{y},\theta)}{q(\theta)} d\theta \stackrel{\text{def}}{=} \ln \underline{p}(\mathbf{y};q),$$

where $p(y, \theta) = p(y|\theta)p(\theta)$ is the unnormalized posterior.

▶ Minimizing KL(q, p) is the same as maximizing $\ln p(y; q)$.

MEAN FIELD APPROXIMATION

► Factorization

$$q(\theta) = \prod_{i=1}^{M} q_i(\theta_i)$$

- **No functional forms are assumed** for the $q_i(\theta)$. Nonparametric.
- ▶ Optimal densities can be shown to satisfy:

$$q_i(\theta) \propto \exp\left(E_{-\theta_i} \ln p(\mathbf{y}, \theta)\right)$$

where $E_{-\theta_i}(\cdot)$ is the expectation with respect to $\prod_{i\neq j}q_i(\theta_i)$.

► Alternative formulation that connects to Gibbs sampling

$$q_i(\theta) \propto \exp\left(E_{-\theta_i} \ln p(\theta_i | \text{rest})\right)$$

where $p(\theta_i|\text{rest})$ is the full conditional posterior of θ_i .

▶ Structured mean field approximation. Group subset of parameters in tractable blocks.

MEAN FIELD APPROXIMATION - ALGORITHM

- ▶ Initialize: $q_2^*(\theta_2)$, ..., $q_M^*(\theta_M)$
- ▶ Repeat until increase in $\ln p(y; q)$ is negligible:

- •
- Note: we make no assumptions about parametric form of the $q_i(\theta)$, but the optimal $q_i(\theta)$ often turn out to be parametric (normal, gamma etc).
- ► The updates above then boil down to just updating of hyperparameters in the optimal densities.

MEAN FIELD APPROXIMATION - NORMAL MODEL

- ▶ Model: $X_i | \mu, \sigma^2 \stackrel{iid}{\sim} N(\mu, \sigma^2)$.
- ▶ Prior: $\mu \sim N(\mu_u, \sigma_u^2)$ independent of $\sigma^2 \sim IG(A, B)$.
- ▶ Note: this is NOT the conjugate prior.
- ▶ Variational approximation: $q(\mu, \sigma^2) = q_{\mu}(\mu) \cdot q_{\sigma^2}(\sigma^2)$.
- ► Optimal densities

$$\begin{split} q_{\mu}^*(\mu) &\propto \exp\left[E_{q(\sigma^2)} \ln p(\mu|\sigma^2, \mathbf{x})\right] \\ q_{\sigma^2}^*(\sigma^2) &\propto \exp\left[E_{q(\mu)} \ln p(\sigma^2|\mu, \mathbf{x})\right] \end{split}$$

► Full conditional posteriors

$$\mu|\sigma^2, \mathbf{x} \sim N\left(\frac{n\bar{x}/\sigma^2 + \mu_{\mu}/\sigma_{\mu}^2}{n/\sigma^2 + 1/\sigma_{\mu}^2}, \frac{1}{n/\sigma^2 + 1/\sigma_{\mu}^2}\right)$$
$$\sigma^2|\mu, \mathbf{x} \sim IG\left(A + \frac{n}{2}, B + \frac{1}{2}(\mathbf{x} - \mu)'(\mathbf{x} - \mu)\right)$$

Normal model example - Updating $q_{\sigma^2}^*(\sigma^2)$

ightharpoonup Full conditional posterior of σ^2

$$\sigma^2 | \mu, \mathbf{x} \sim IG\left(A + \frac{n}{2}, B + \frac{1}{2}(\mathbf{x} - \mu)'(\mathbf{x} - \mu)\right)$$

▶ So, $E_{q(\mu)} \ln p(\sigma^2 | \mu, \mathbf{x})$ is proportional to

$$E_{q(\mu)}\left[-\left(A+\frac{n}{2}+1\right)\ln\sigma^2-\left(B+\frac{1}{2}(\mathbf{x}-\mu)'(\mathbf{x}-\mu)\right)/\sigma^2\right]$$

and therefore

$$q_{\sigma^2}^*(\sigma^2) \propto (\sigma^2)^{-(A+n/2+1)} \exp\left(-\left(B + \frac{1}{2}E_{q(\mu)}(\mathbf{x} - \mu)'(\mathbf{x} - \mu)/\sigma^2\right)\right)$$

which shows that $q_{\sigma^2}^*(\sigma^2)$ is

IG
$$\left(A + \frac{n}{2}, B + \frac{1}{2}E_{q(\mu)}(\mathbf{x} - \mu)'(\mathbf{x} - \mu)\right)$$

NORMAL MODEL EXAMPLE - UPDATING $q_{\sigma^2}^*(\sigma^2)$

► So $q_{\sigma^2}^*(\sigma^2)$ is

$$IG\left(A+\frac{n}{2},B+\frac{1}{2}E_{q(\mu)}(\mathbf{x}-\mu)'(\mathbf{x}-\mu)\right)$$

and

$$\begin{split} &E_{q(\mu)}(\mathbf{x} - \mu)'(\mathbf{x} - \mu) = \\ &E_{q(\mu)}\left[\left(\mathbf{x} - E_{q(\mu)}(\mu)\right) + \left(E_{q(\mu)}(\mu) - \mu\right)\mathbf{1}_{n}\right]'\left[\left(\mathbf{x} - E_{q(\mu)}(\mu)\right) + \left(E_{q(\mu)}(\mu)\right)'\left(\mathbf{x} - E_{q(\mu)}(\mu)\right) + \left(E_{q(\mu)}(\mu) - \mu\right)^{2}n\right] \\ &= \left(\mathbf{x} - E_{q(\mu)}(\mu)\right)'\left(\mathbf{x} - E_{q(\mu)}(\mu)\right) + n \cdot Var_{q(\mu)}(\mu) \end{split}$$

because $E_{q(\mu)}\left(E_{q(\mu)}(\mu)-\mu\right)=0.$

Important: $E_{q(\mu)}(\mu)$ and $Var_{q(\mu)}(\mu)$ is the mean and variance of the q_μ distribution.

NORMAL MODEL EXAMPLE - UPDATING $q_u^*(\mu)$

► Easier to go back to the form $q_{\mu}(\mu) \propto \exp\left(E_{q(\sigma^2)} \ln p(\mathbf{y}, \mu, \sigma^2)\right)$

$$\begin{split} \ln p(\mathbf{y}, \mu, \sigma^2) &= \ln p(\mathbf{y} | \mu, \sigma^2) + \ln p(\mu) + \ln p(\sigma^2) \\ &= -\frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \mu)^2 - \frac{1}{2\sigma_\mu^2} (\mu - \mu_\mu)^2 + const \end{split}$$

$$q_{\mu}(\mu) \propto \exp\left(-E_{q(\sigma^2)}\left(\frac{1}{\sigma^2}\right) \frac{1}{2} \sum_{i=1}^{n} (x_i - \mu)^2 - \frac{1}{2\sigma_{\mu}^2} (\mu - \mu_{\mu})^2\right)$$

► Completing the square shows

$$q_{\mu}(\mu) = N\left(\mathsf{E}_{q(\mu)}(\mu), \mathsf{Var}_{q(\mu)}(\mu)\right)$$

where

$$\begin{split} E_{\mu}(\mu) &= \frac{n\bar{x}\,E_{q(\sigma^2)}\left(\frac{1}{\sigma^2}\right) + \mu_{\mu}/\sigma_{\mu}^2}{nE_{q(\sigma^2)}\left(\frac{1}{\sigma^2}\right) + 1/\sigma_{\mu}^2} \\ Var_{\mu}(\mu) &= \frac{1}{nE_{q(\sigma^2)}\left(\frac{1}{\sigma^2}\right) + 1/\sigma_{\mu}^2} \end{split}$$

NORMAL MODEL EXAMPLE - SUMMARY

ightharpoonup Variational density for σ^2

$$q_{\sigma^2}(\sigma^2) = IG(A_q, B_q)$$

where
$$A_q = A + n/2$$
 and $B_q = B + \frac{1}{2} \left(\|\mathbf{x} - \mu_q \cdot \mathbf{1}_n\|^2 + n \cdot \sigma_q^2 \right)$

 \blacktriangleright Variational density for μ

$$q_{\mu}(\mu) = N\left(\mu_q, \sigma_q^2\right)$$

where

$$\sigma_q^2 = \frac{1}{n\frac{A_q}{B_q} + 1/\sigma_\mu^2}$$

$$\mu_q = \left(n\bar{x}\frac{A_q}{B_q} + \mu_\mu/\sigma_\mu^2\right)\sigma_q^2$$

NORMAL MODEL EXAMPLE - ALGORITHM

- ► Set $A_a = A + n/2$.
- ▶ Initialize $E_{\mu}(\mu) = \bar{x}$ and $Var_{\mu}(\mu) = s^2/n$.
- ▶ Repeat

$$B_{q} \leftarrow B + \frac{1}{2} \left(\|\mathbf{x} - \mu_{q} \cdot \mathbf{1}_{n}\|^{2} + n \cdot \sigma_{q}^{2} \right)$$
$$\sigma_{q}^{2} \leftarrow \frac{1}{n \frac{A_{q}}{B_{q}} + 1/\sigma_{\mu}^{2}}$$

$$\mu_q \leftarrow \left(n\bar{x}\frac{A_q}{B_q} + \mu_\mu/\sigma_\mu^2\right)\sigma_q^2$$

► Until the change in

$$\ln \underline{p}(\mathbf{x};q) = \frac{1}{2} - \frac{n}{2}\log(2\pi) + \frac{1}{2}\ln\left(\sigma_q^2/\sigma_\mu^2\right) - \frac{(\mu_q - \mu_\mu)^2 + \sigma_q^2}{2\sigma_u^2}$$

is negligible.

PROBIT REGRESSION

Model:

$$Y_i|x_i \stackrel{ind.}{\sim} Bern \left[\Phi(x_i'\beta)\right]$$

- ▶ Prior: $\beta \sim N(\mu_{\beta}, \Sigma_{\beta})$
- ▶ Latent variable formulation with $\mathbf{a} = (a_1, ..., a_n)'$

$$\mathbf{a}|\beta \sim N(X\beta, 1)$$

and

$$p(y_i|a_i) = I(a_i \ge 0)^{y_i} I(a_i < 0)^{1-y_i}$$

► Factorized variational approximation

$$q(\mathbf{a}, \beta) = q_{\mathbf{a}}(\mathbf{a})q_{\beta}(\beta)$$

PROBIT REGRESSION - UPDATING A

► Log joint distribution

$$\begin{split} \ln p(y,\beta,\mathbf{a}) &= \ln p(y|\beta,\mathbf{a}) + \ln p(\mathbf{a}|\beta) + \ln p(\beta) \\ &\propto \sum_{i=1}^n \left(y_i \ln I(a_i \geq 0) + (1-y_i) \ln I(a_i < 0) \right) \\ &- \frac{1}{2} (\mathbf{a} - \mathbf{X}\beta)'(\mathbf{a} - \mathbf{X}\beta) - \frac{1}{2} (\beta - \mu_\beta)' \Sigma_\beta(\beta - \mu_\beta) \end{split}$$

► Updating a

$$\ln q_{\mathbf{a}}(\mathbf{a}) \propto E_{q(\beta)} \ln p(y, \beta, \mathbf{a}) \propto \sum_{i=1}^{n} (y_i \ln I(a_i \ge 0) + (1 - y_i) \ln I(a_i < 0))$$
$$-\frac{1}{2} E_{q(\beta)} (\mathbf{a} - \mathbf{X}\beta)'(\mathbf{a} - \mathbf{X}\beta) + const$$

Note that

$$E_{q(\beta)}(\mathbf{a} - \mathbf{X}\beta)'(\mathbf{a} - \mathbf{X}\beta) = \mathbf{a}'\mathbf{a} - 2\mathbf{a}'\mathbf{X}E_{q(\beta)}(\beta) + const$$

= $(\mathbf{a} - \mathbf{X}E_{q(\beta)}(\beta))'(\mathbf{a} - \mathbf{X}E_{q(\beta)}(\beta)) + const$

PROBIT REGRESSION - UPDATING A

► So

$$\begin{split} q_{\mathbf{a}}(\mathbf{a}) &\propto \prod_{i=1}^n I(a_i \geq 0)^{y_i} I(a_i < 0)^{1-y_i} \\ &\times \exp\left(-\frac{1}{2}(\mathbf{a} - \mathbf{X}\mu_{q(\beta)})'(\mathbf{a} - \mathbf{X}\mu_{q(\beta)})\right) \end{split}$$

► Normalizing gives

$$q_{\mathbf{a}}(\mathbf{a}) = \prod_{i=1}^{n} \left[\frac{I(a_i \ge 0)}{\Phi\left((\mathbf{X}\mu_{q(\beta)})_i \right)} \right]^{y_i} \left[\frac{I(a_i < 0)}{1 - \Phi\left((\mathbf{X}\mu_{q(\beta)})_i \right)} \right]^{1 - y_i}$$
$$\times (2\pi)^{-n/2} \exp\left(-\frac{1}{2} \left\| \mathbf{a} - \mathbf{X}\mu_{q(\beta)} \right\|^2 \right)$$

which is a product of n truncated normals.

Probit regression - updating β

 \triangleright Updating β

$$\begin{split} \ln q_{\beta}(\beta) &\propto E_{q(\mathbf{a})} \ln p(y,\beta,\mathbf{a}) \\ &\propto -\frac{1}{2} E_{q(\mathbf{a})} (\mathbf{a} - \mathbf{X}\beta)' (\mathbf{a} - \mathbf{X}\beta) - \frac{1}{2} (\beta - \mu_{\beta})' \Sigma_{\beta} (\beta - \mu_{\beta}) \end{split}$$

lacktriangle For any random vector $oldsymbol{y}$ with mean μ and covariance matrix Ω

$$E(\mathbf{y} - \mathbf{m})'(\mathbf{y} - \mathbf{m}) = trace(\Omega) + (\mu - \mathbf{m})'(\mu - \mathbf{m})$$

► So

$$\begin{split} \ln q_{\beta}(\beta) & \propto -\frac{1}{2} trace(\Sigma_{\mathbf{a}}) - \frac{1}{2} (\mu_{q(\mathbf{a})} - \mathbf{X}\beta)' (\mu_{q(\mathbf{a})} - \mathbf{X}\beta) \\ & - \frac{1}{2} (\beta - \mu_{\beta})' \Sigma_{\beta} (\beta - \mu_{\beta}) \end{split}$$

► The variational approximation of β is like the posterior from regressing $\mu_{a(\mathbf{a})}$ on \mathbf{X} with prior $\beta \sim \mathcal{N}(\mu_{\beta}, \Sigma_{\beta})$.

Probit regression - updating β

► We therefore have

$$q_{eta}(eta) = N\left(\mu_{q(eta)}, \left(\mathbf{X}'\mathbf{X} + \Sigma_{eta}^{-1}\right)^{-1}
ight)$$

and

$$\boldsymbol{\mu}_{q(\boldsymbol{\beta})} = \left(\mathbf{X}'\mathbf{X} + \boldsymbol{\Sigma}_{\boldsymbol{\beta}}^{-1}\right)^{-1} \left(\mathbf{X}'\boldsymbol{\mu}_{q(\mathbf{a})} + \boldsymbol{\Sigma}_{\boldsymbol{\beta}}^{-1}\boldsymbol{\mu}_{\boldsymbol{\beta}}\right)$$

where

$$\mu_{q(\mathbf{a})} = X \mu_{q(\beta)} + \frac{\phi\left(X \mu_{q(\beta)}\right)}{\Phi\left(X \mu_{q(\beta)}\right)^{\mathbf{y}} \left[\Phi\left(X \mu_{q(\beta)}\right) - \mathbf{1}_{n}\right]^{\mathbf{1}_{\mathbf{n}} - \mathbf{y}}}$$

which follows from the expected value formula for a truncated distribution.

► The lower bound $\ln \underline{p}(\mathbf{y}; q)$ is given in Ormerod and Wand (2010) where also the complete algorithm in given as Algorithm 4.

Poission regression

► Model:

$$Y_i|x_i, \beta \stackrel{ind.}{\sim} Poisson(x_i'\beta)$$

- ▶ Prior: $\beta \sim N(\mu_{\beta}, \Sigma_{\beta})$
- ▶ Posterior is intractable.
- Assume variational approximation to be Gaussian

$$q_{\beta}(\beta) = N(\mu_q, \Sigma_q)$$

▶ Use Newton-Raphson to find μ_q , Σ_q that maximizes the (tractable) lower bound In $p(\mathbf{y}; \mu_q, \Sigma_q)$. See Ormerod and Wand (2010).

VARIATIONAL BAYES EM (VBEM)

- ► Latent variable models:
 - ▶ Model parameters, $\theta = (\theta_1, ..., \theta_p)$
 - ▶ Latent variables, $\mathbf{z} = (z_1, ..., z_n)$
- ► Examples:
 - ▶ Mixture models: $z_i \in \{1, ..., K\}$ is the mixture allocation for the *i*th observation.
 - Missing data: z contains the missing values.
- ► EM:
 - ▶ Get rid of z by computing the expected log-likelihood $E_{\mathbf{z}|\theta} \ln L(\theta, \mathbf{z})$ (E-step)
 - ▶ Maximize $E_{\mathbf{z}|\theta} \ln L(\theta, \mathbf{z})$ wrt to θ (M-step)
- ► VBEM approximation of posterior

$$p(\theta, \mathbf{z}|\mathbf{y}) \approx q(\theta)q(\mathbf{z}) = q(\theta) \prod_{i=1}^{n} q(z_i)$$

▶ Improves on EM by modelling the uncertainty in θ .

INDIRECT USE OF VB

- ▶ VB can play a role as initial values for MCMC.
- ➤ Variational MCMC. Use VB to construct Metropolis-Hastings proposal. Need to combine it with Metropolis random walk moves since VB typically underestimates the posterior variance.
- ▶ VB is fast and accurate for computing log predictive scores (LPS)

$$\sum_{t=T+1}^{T^*} \ln p(y_t|y_{t-1}^H) = \sum_{t=T+1}^{T^*} \int \ln p(y_t|y_{t-1}^H, \theta) p(\theta|y_{t-1}^H) d\theta$$

- ▶ VB is **fast** in this setting since it can approximate each sequential posterior $p(\theta|y_{t-1}^H)$ using the mode of $\hat{p}(\theta|y_{t-2}^H)$ as excellent initial values.
- ▶ VB seems accurate for approximating LPS, at least when the prediction uncertainty is mainly dominated by the future error uncertainty and not by parameter uncertainty.

APPROXIMATE BAYESIAN COMPUTATIONS (ABC)

- ► Suitable when the likelihood is very costly or even infeasible to compute, but simulation from the model is cheap.
- ► Examples:
 - Likelihood is given by an intractable high-dimensional integral

$$\ell(\theta|\mathbf{y}) = \int \ell^*(\theta|\mathbf{y}, \mathbf{u}) d\mathbf{u}.$$

Normalizing constant Z_{θ} **is costly** or intractable

$$\ell(\theta|\mathbf{y}) = \ell_1(\theta|\mathbf{y})/Z_{\theta}$$

- Likelihood is unavailable because the PDF does not exist in closed form. α-stable distributions.
- ABC is often very crude.
- Arbitrary (creative) choices needed when implementing it.
- ► Early days, likely to improve.

LIKELIHOOD-FREE REJECTION SAMPLER 1

- ▶ Idea: θ 's with large posterior should generate data z that look like the actual data y.
- ightharpoonup Assume the data $m {f y}$ takes values in a finite or countable set ${\cal D}$.
- for i = 1 to N do
 - repeat
 - Generate θ' from the prior distribution $\pi(\cdot)$
 - Generate **z** from the data distribution $f(\cdot|\theta')$
 - ▶ until z = y
 - ▶ set $\theta_i = \theta'$
- end for
- ▶ Algorithm 1 produces a sample $\theta_1, ..., \theta_N$ from the posterior $\pi(\theta|\mathbf{y})$:

$$f(\theta_i) \propto \sum_{\mathbf{z} \in \mathcal{D}} \pi(\theta_i) f(\mathbf{z}|\theta_i) \mathbb{I}_{\mathbf{y}}(\mathbf{z}) = \pi(\theta_i) f(\mathbf{y}|\theta_i) \propto \pi(\theta_i|\mathbf{y}).$$

LIKELIHOOD-FREE REJECTION SAMPLER 2

- ightharpoonup Extension to continuous sample spaces where $Pr(\mathbf{z}=\mathbf{y}|\theta)=0$.
- ightharpoonup Define summary statistics $\eta(\mathbf{z})$ and a distance function $\rho\left[\eta(\mathbf{z}),\eta(\mathbf{y})\right]$.
- for i = 1 to N do
 - repeat
 - Generate θ' from the prior distribution $\pi(\cdot)$
 - Generate **z** from the data distribution $f(\cdot|\theta')$
 - ▶ until $\rho[\eta(\mathbf{z}), \eta(\mathbf{y})] \leq \varepsilon$
 - \triangleright set $\theta_i = \theta'$
- end for
- Algorithmic choices:
 - \triangleright η a function on \mathcal{D} defining a summary statistic (close to sufficient)
 - ightharpoonup
 ho > 0, a distance on $\eta(\mathcal{D})$
 - \triangleright $\varepsilon > 0$, a tolerance level.

LIKELIHOOD-FREE REJECTION SAMPLER 2, CONT.

▶ The algorithm samples from the joint distribution

$$\pi_{\varepsilon}(\theta, \mathbf{z}|\mathbf{y}) = \frac{\pi(\theta) f(\mathbf{z}|\theta) \mathbb{I}_{A_{\varepsilon, \mathbf{y}}}(\mathbf{z})}{\int_{A_{\varepsilon, \mathbf{y}} \times \theta} \pi(\theta) f(\mathbf{z}|\theta) d\mathbf{z} d\theta}$$

where

$$A_{\varepsilon,\mathbf{y}} = \{\mathbf{z} \in \mathcal{D} | \rho\left[\eta(\mathbf{z}), \eta(\mathbf{y})\right] \leq \varepsilon\}$$

► The hope is that

$$\pi(\theta|\mathbf{y}) pprox \pi_{\varepsilon}(\theta|\mathbf{y}) = \int \pi_{\varepsilon}(\theta, \mathbf{z}|\mathbf{y}) d\mathbf{z}$$

is a good approximation.

▶ "The basic idea behind ABC is that using a representative (enough) summary statistic η coupled with a small (enough) tolerance ε should produce a good (enough) approximation to the posterior distribution" (Marin et al, 2012).

ABC - AN EXAMPLE

- ▶ MA(q) model. Fairly complicated likelihood. Easy to simulate time series from MA(q).
- Summary statistics:
 - Raw distance between time series:

$$\rho[(z_1,...,z_n),(y_1,...,y_n)] = \sqrt{\sum_{i=1}^n (y_i-z_i)^2}$$

► Distance between estimated autocorrelation functions:

$$\sum_{j=1}^{K} (\tau_{y,j} - \tau_{z,j})^2$$

MCMC - ABC

- Likelihood-free rejection sampler 2 is inefficient since it proposes θ 's from the prior $\pi(\theta)$, which is often far from the posterior (with informative data).
- ▶ Initialize $(\theta^{(0)}, \mathbf{z}^{(0)})$
- for i = 1 to N do
 - lacktriangleright Propose heta' from the Markov kernel $q\left(\cdot| heta^{(t-1)}
 ight)$
 - Generate \mathbf{z}' from the data distribution $f(\cdot|\theta')$
 - Generate u from $\mathcal{U}_{[0,1]}$
 - - ightharpoonup set $(\theta^{(t)}, \mathbf{z}^{(t)}) = (\theta', \mathbf{z}')$
 - ▶ else

• set
$$(\theta^{(t)}, \mathbf{z}^{(t)}) = (\theta^{(t-1)}, \mathbf{z}^{(t-1)})$$

- ▶ end if
- end for

Noisy ABC

▶ Replacing the crude $\rho[\eta(\mathbf{z}), \eta(\mathbf{y})] \leq \varepsilon$ rejection rule with a smoother version

$$\pi_{\varepsilon}(\theta, \mathbf{z}|\mathbf{y}) = \frac{\pi(\theta) f(\mathbf{z}|\theta) K_{\varepsilon}(\mathbf{y} - \mathbf{z})}{\int \pi(\theta) f(\mathbf{z}|\theta) K_{\varepsilon}(\mathbf{y} - \mathbf{z}) d\mathbf{z} d\theta}$$

- $\kappa_{\varepsilon}(\cdot)$ is a kernel (think normal density) parametrized by the bandwidth $\varepsilon > 0$ (think variance).
- ► The Bayes estimator from $\pi_{\varepsilon}(\theta|\mathbf{y})$ is converging to the true value when $n \to \infty$ and $\varepsilon \to 0$.
- ► See Wilkinson (2008) for details about the algorithm.

SOME COMMON KERNELS

CHOOSING THE ALGORITMIC SETTINGS IN ABC

- ightharpoonup Summary statistics $\eta(\cdot)$ should be nearly sufficient. Which ones? Creativity ...
- ▶ Choice of $\eta(\cdot)$ is crucial.
- ▶ Choice of ε is less important. Smaller ε gives better approximation at higher computational cost.
- ▶ Common choice of ε : small (0.1% or so) percentile of simulated distances $\rho[\eta(\mathbf{z}'), \eta(\mathbf{y})]$.

POST-PROCESSING OF ABC OUTPUT

- ightharpoonup Same algorithms, but allowing for larger arepsilon by post-processing the ABC output.
- ▶ Keep all θ draws regardless of how far z is from the actual data y, but shrink the θ draws using

$$\theta * = \theta - (\eta(\mathbf{z}) - \eta(\mathbf{y}))' \hat{\beta}$$

 $ightharpoonup \hat{eta}$ is obtained from a local kernel regression of heta on $ho\left[\eta(\mathbf{z}),\eta(\mathbf{y})
ight]$ with weights given by the kernel

$$K_{\delta} \left\{ \rho \left[\eta(\mathbf{z}), \eta(\mathbf{y}) \right] \right\}$$
.

- ightharpoonup Kernel bandwidth δ can for example be set equal to ABC tolerance ε .
- ► Alternative: heteroscedastic nonlinear regression.

ABC FOR MODEL CHOICE

- ➤ You are entertaining a **set of** *M* **different** (competing, possibly non-nested) **models**.
- Let $\mathcal M$ denote the unknown true model, and let $\pi(\mathcal M=m)$ denote the **prior distribution** over the **model space**.
- ► The Bayesian solution for model inference is the posterior distribution: $\pi(\mathcal{M} = m|\mathbf{y})$.
- **ABC solution**: include $\mathcal M$ in the set of parameters.
- Let $\eta(z) = (\eta_1(z), ..., \eta_M(z))$ be the concatenation of the summary statistics used for all models.

ABC ALGORITHM FOR MODEL CHOICE

- for i = 1 to N do
 - repeat
 - Generate m from the prior $\pi(\mathcal{M}=m)$
 - Generate θ_m from the prior $\pi_m(\theta_m)$
 - ▶ Generate **z** from the data distribution $f_m(\cdot|\theta_m)$
 - ▶ until $\rho[\eta(\mathbf{z}), \eta(\mathbf{y})] \le \varepsilon$
 - Set $m^{(i)} = m$ and $\theta^{(i)} = \theta_m$
- end for
- ► ABC estimate

$$\pi(\mathcal{M} = m|\mathbf{y}) \approx \frac{1}{N} \sum_{i=1}^{N} \mathbb{I}_{m^{(i)} = m}$$

- ► Example comparing:
 - ► AR-processes (homoscedastic variance)
 - ► GARCH models (volatility clustering)