Lecture 08 라플라스 변환과 아날로그 시<u>스템</u>

- 특정 x(t)에 대하여 X(f)가 존재하지 않은 경우가 있음
 - Θ , $x(t) = e^{2t}u(t)$

$$X(\Omega) = \int_0^\infty e^{2t} e^{-j\Omega t} dt$$
$$= \int_0^\infty e^{(2-j\Omega)t} dt$$
$$= \frac{1}{2-j\Omega} e^{2t} e^{-j\Omega t} \Big|_0^\infty$$
$$= \infty$$

■ 연속 시간 푸리에 변환을 확장한 개념인 라플라스 변환 (Laplace transform)을 도입함

$$X(s) = \int_{-\infty}^{\infty} x(t)e^{-st}dt$$

- 라플라스 변환 : $X(s) = \int_{-\infty}^{\infty} x(t)e^{-st}dt$
 - $s = \sigma + j\Omega$, $\Omega = 2\pi f$
 - S는 복수 변수
 - $\sigma = 0$ 인 경우 $s = j\Omega$ 에서의 X(s) 값이 x(t)의 연속 시간 푸리에 변환과 동일함
- 라플라스 변환은 보통 다음과 같이 표시함

$$X(s) = L\{x(t)\}$$

$$\chi(t) \leftrightarrow \chi(\chi)$$

■ 예,
$$x(t) = e^{2t}u(t)$$

•
$$X(\Omega) = \infty$$

ROC(region of convergence, 수렴영역)

$$X(s) = \int_0^\infty e^{2t} e^{-st} dt$$

$$= \int_0^\infty e^{(2-s)t} dt$$

$$= \frac{1}{2-s} e^{(2-\sigma)t} e^{-j\Omega t} \Big|_0^\infty$$

$$= \frac{1}{s-2} \text{ if } 2 - \sigma < 0$$

(b) 라플라스 변환의 ROC

■ 예,
$$x(t) = -e^{2t}u(-t)$$

$$X(s) = -\int_{-\infty}^{0} e^{2t} e^{-st} dt$$

$$= -\int_{-\infty}^{0} e^{(2-s)t} dt$$

$$= \frac{-1}{2-s} e^{(2-\sigma)t} e^{-j\Omega t} \begin{vmatrix} 0 \\ -\infty \end{vmatrix}$$

$$= \frac{1}{s-2} \text{ if } 2 - \sigma > 0$$

$$X(s) = \frac{1}{s-2}, ROC: Re\{s\} < 2$$

(a)
$$x(t)$$

$$e^{-at}u(t) \leftrightarrow \frac{1}{s+a}, ROC: Re\{s\} > Re\{-a\}$$
$$-e^{-at}u(-t) \leftrightarrow \frac{1}{s+a}, ROC: Re\{s\} < Re\{-a\}$$

■ 예,
$$x(t) = e^{-2t}u(t) + e^{2t}u(-t)$$

$$X(s) = \int_{-\infty}^{0} e^{2t} e^{-st} dt + \int_{0}^{\infty} e^{-2t} e^{-st} dt$$

$$= \frac{1}{2-s} e^{(2-\sigma)t} e^{-j\Omega t} \begin{vmatrix} 0 \\ -\infty \end{vmatrix} - \frac{1}{2-s} e^{-(2+\sigma)t} e^{-j\Omega t} \begin{vmatrix} \infty \\ 0 \end{vmatrix}$$

$$= -\frac{1}{s-2} + \frac{1}{s+2} \quad \text{if} \quad 2 - \sigma > 0 \text{ and } 2 + \sigma > 0$$

$$X(s) = -\frac{1}{s-2} + \frac{1}{s+2}, \quad ROC: -2 < Re\{s\} < 2$$

(b) 라플라스 변환의 ROC

수렴 영역 성질

<i>x</i> (<i>t</i>)의 존재 영역	ROC의 형태
u < t < v 영역에서만 $x(t)$ 존재 (유한 영역 신호)	모든 <i>s-</i> 영역
t > a 영역에서만 $x(t)$ 전재 (우측 신호)	Re{s} > b (s-평면의 오른쪽 영역)
t < c 영역에서만 $x(t)$ 존재 (좌측 신호)	Re{s} < d (s-평면의 왼쪽 영역)
x(t) -∞부터 ∞까지 존재 (양측 신호)	e < Re{s} < h (s-평면의 수직띠 영역)

라플라스 변환 성질

■ 선형성

- $X_1(s) = L\{x_1(t)\}, X_2(s) = L\{x_2(t)\}$
- *a*₁, *a*₂는 임의의 상수

$$\rightarrow x(t) = a_1 x_1(t) + a_2 x_2(t) \leftrightarrow X(s) = a_1 X_1(s) + a_2 X_2(s)$$

라플라스 변환 성질

- 시간 이동 성질
 - x(t)를 시간 축에서 a만큼 이동시킨 x(t-a)의 라플라스 변환은 $e^{-as}X(s)$ 가 되고 ROC는 변하지 않음

$$x(t-a) \leftrightarrow e^{-as}X(s), ROC:X(s) \supseteq ROC$$

• 예, $x(t) = e^{-(t-1)}u(t-1)$ $y(t) = e^{-t}u(t)$ 라 할 때 x(t) = y(t-1)이므로 시간 이동 성질을 이용함

$$X(s) = e^{-s}Y(s) = \frac{e^{-s}}{s+1'}$$

$$ROC: Re\{s\} > 1$$

(a) x(t)

(b) 라플라스 변환의 *ROC*

라플라스 변화 성질

- *s*-영역 이동 성질
 - X(s)를 s-영역에서 a만큼 이동시킨 X(s-a)에 대응하는 시간 영역 신호는 다음과 같음

$$e^{at}x(t) \leftrightarrow X(s-a)$$
, $ROC: X(s)$ 의 ROC 를 a 이동

• Θ , $x(t) = e^{-2t} \cos(\Omega_0 t) u(t)$ s-영역에서 코사인 신호의 라플라스 변환을 -2이동

$$\cos(\Omega_0 t)u(t) \leftrightarrow \frac{s}{s^2 + \Omega_0^2} ROC: Re\{s\} > 0$$

$$e^{-2t}\cos(\Omega_0 t)u(t) \leftrightarrow \frac{s+2}{(s+2)^2 + \Omega_0^{2'}} ROC: Re\{s\} > 2$$

(a) $x(t)=e^{-2t}\cos(Q_0t)u(t)$ 신호

라플라스 변환 성질

- 척도 조절
 - x(t)에 대한 라플라스 변환을 X(s)라 하고 ROC를 R이라 할 때, 시간 영역 및 s-영역에서의 척도 조절 성질은 다음과 같음

$$x(at) \leftrightarrow \frac{1}{|a|}X\left(\frac{s}{a}\right)$$
, ROC: R를 a 만큼 척도 조절

- 미분 성질
 - x(t)에 대한 라플라스 변환을 X(s)라 할 때, 다음 성질을 가짐

$$\frac{dx(t)}{dt} \leftrightarrow sX(s)$$
, ROC: $X(s)$ 의 ROC를 포함

$$-tx(t) \leftrightarrow \frac{dX(s)}{ds}, ROC: X(s) \supseteq ROC$$

라플라스 변환 성질

- 컨벌루션 성질
 - $x_1(t), x_2(t)$ 의 라플라스 변환이 각각 $X_1(s), X_2(s)$ 이고 ROC를 R_1, R_2 라 할 때,

$$x_1(t) * x_2(t) \leftrightarrow X_1(s)X_2(s)$$
, $ROC: R_1 \cap R_2$ 를 포함

라플라스 변환 표

x(t)	X(s)	ROC
$\delta(t)$	1	All s
u(t)	$\frac{1}{s}$	$Re\{s\} > 0$
-u(-t)	$\frac{1}{s}$	$Re\{s\} < 0$
$e^{-at}u(t)$	$\frac{1}{s+a}$	$Re\{s\} > -a$
$-e^{-at}u(-t)$	$\frac{1}{s+a}$	$Re\{s\} < -a$

x(t)	X(s)	ROC
$\frac{t^{n-1}}{(n-1)!}e^{-at}u(t)$	$\frac{1}{(s+a)^n}$	$Re\{s\} > -a$
$\frac{-t^{n-1}}{(n-1)!}e^{-at}u(-t)$	$\frac{1}{(s+a)^n}$	$Re\{s\} < -a$
$\cos(\Omega_0 t) u(t)$	$\frac{s}{s^2 + \Omega_0^2}$	$Re\{s\} > 0$
$\sin(\Omega_0 t) u(t)$	$\frac{\Omega_0}{s^2 + \Omega_0^2}$	$Re\{s\} > 0$
$e^{-at}\cos(\Omega_0 t)u(t)$	$\frac{s+a}{(s+a)^2 + \Omega_0^2}$	$Re\{s\} > -a$
$e^{-at}\sin(\Omega_0 t)u(t)$	$\frac{\Omega_0}{(s+a)^2 + \Omega_0^2}$	$Re\{s\} > -a$

■ 라플라스 역변환(inverse Laplace transform)

$$x(t) = \frac{1}{j2\pi} \int_{\sigma - j\infty}^{\sigma + j\infty} X(s)e^{st}ds$$

 복수 적분은 이해하기 매우 어려운 내용이므로 구했던 라플 라스 변환 결과를 이용하여 라플라스 역변환을 구함

■
$$\Re X(s) = \frac{1}{(s+1)(s+2)} = \frac{1}{s+1} - \frac{1}{s+2}$$

$$\frac{\frac{1}{s+1} \leftrightarrow e^{-t}u(t)}{\frac{-1}{s+2} \leftrightarrow -e^{-2t}u(t)}$$

$$x(t) = e^{-t}u(t) - e^{-2t}u(t)$$

- 배웠던 LTI 시스템 분석 방법
 - <mark>시간 영역</mark> : 임펄스 응답 h(t)로 시스템을 정의하고 입력 신호와 h(t)의 컨벌루션 연산으로 출력 신호를 구함
 - <mark>주파수 영역</mark>: 주파수 응답 H(f)로 시스템을 정의하고 입력 신호의 스펙트럼 X(f)와 H(f)의 곱을 통하여 출력 신호의 스펙트럼을 구함
- 시스템이 구체적으로 어떤 물리적인 동작을 실행하는지를 알기에는 부족함
- →라플라스 변환을 이용하면 LTI 시스템을 구체적으로 분석할 수 있음

- 예, 주어진 시스템의 임펄스 응답 $h(t) = e^{-t}u(t)$
 - 라플라스 변환 : $H(s) = \frac{1}{s+1}$, $Re\{s\} > -1$
 - 라플라스 변환의 컨벌루션 성질에 따르면

$$Y(s) = X(s)H(s) = \frac{X(s)}{s+1} \Rightarrow (s+1)Y(s) = X(s) \Rightarrow sY(s) + Y(s) = X(s)$$

■ 라플라스 역변환을 적용하고 미분 성질을 이용하면

$$L^{-1}\{sY(s) + Y(s)\} = L^{-1}\{X(s)\}\$$

$$L^{-1}\{sY(s)\} + L^{-1}\{Y(s)\} = x(t)$$

$$\frac{dy(t)}{dt} + y(t) = x(t)$$

$$y(t) = x(t) - \frac{dy(t)}{dt}$$

■ 예, 주어진 시스템의 임펄스 응답 $h(t) = e^{-t}u(t)$

(a) 라플라스 변환을 이용하여 연속 LTI 시스템의 동작을 미분 방정식으로 표현

(b) 연속 LTI 시스템의 동작을 입력 신호와 시스템 임펄스 응답과의 컨벌루션으로 표현

■ 주파수 영역에서 $|H(\Omega)|$ 의 그래프를 통해서 시스템을 분석할 수 있음

(b) Q_0 중심 대역을 강조하는 시스템

 $=H(\Omega)=H(s=\sigma+j\Omega)$ $\sigma=0$ 이므로 라플라스 변환을 이용 하여 대략적인 $|H(\Omega)|$ 모양을 구할 수 있음

$$H(s) = \frac{N(s)}{D(s)} = G \frac{\prod_{i=1}^{R} (s - \beta_i)}{\prod_{k=1}^{P} (s - \alpha_k)}$$

$$|H(s)| = \left| G \frac{\prod_{i=1}^{R} (s - \beta_i)}{\prod_{k=1}^{P} (s - \alpha_k)} \right| \qquad \begin{array}{c} \beta_i \\ \rightleftharpoons \\ \alpha_k \\ \rightleftharpoons \\ \rightleftharpoons \\ \end{array} \Rightarrow \frac{\text{점}(\mathsf{zero})}{\text{Ad}(\mathsf{pole})}$$

$$= |G| \frac{\prod_{i=1}^{R} |s - \beta_i|}{\prod_{k=1}^{P} |s - \alpha_k|}$$

$$|H(s_0)| = |G| \frac{\prod_{i=1}^{R} (s_0 \text{와 영점 } \beta_i \text{까지의 거리})}{\prod_{k=1}^{P} (s_0 \text{와 극점 } \alpha_k \text{까지의 거리})}$$
 특정 s_0 에서의 값

- \blacksquare Θ , $H(s) = \frac{1}{(s+0.9)^2+4}$
 - 극점 : $s = -0.9 \pm j2$
 - $|H(\Omega)| = \frac{1}{ab}$, $\Omega = \pm 2$ 일 때 a 또는 b가 0.9로 최솟값이 되어 $\Omega = \pm 2$ 부근에서 ab값이 매우 작아지고 $|H(\Omega)|$ 가 큰 값을 가짐. $\Omega = 0$ 에서 $|H(0)| \approx 0.208임$.

(a) 예제 7.16 시스템의 극점 위치

(b) 예제 7.16 시스템의 주파수 응답 크기

■ 시스템의 성질과 전달 함수의 수렴 영역

