

GoogLeNet在2014年由Google团队提出,斩获当年ImageNet竞赛中Classification Task (分类任务) 第一名。

网络中的亮点:

- ➢ 引入了Inception结构(融合不同尺度的特征信息)
- ▶ 使用1x1的卷积核进行降维以及映射处理
- > 添加两个辅助分类器帮助训练
- 丢弃全连接层,使用平均池化层(大大减少模型 参数)

type	patch size/ stride	output size	depth	#1×1	#3×3 reduce	#3×3	#5×5 reduce	#5×5	pool proj	params	ops
convolution	7×7/2	112×112×64	1							2.7K	34M
max pool	3×3/2	56×56×64	0			•					
convolution	3×3/1	$56 \times 56 \times 192$	2		64	192				112K	360M
max pool	3×3/2	28×28×192	0					z			
inception (3a)		28×28×256	2	64	96	128	16	32	32	159K	128M
inception (3b)		28×28×480	2	128	128	192	32	96	64	380K	304M
max pool	3×3/2	14×14×480	0		.10	9					
inception (4a)		14×14×512	2	192	96	208	16	48	64	364K	73M
inception (4b)		14×14×512	2	160	112	224	24	64	64	437K	88M
inception (4c)		14×14×512	2	128	128	256	24	64	64	463K	100M
inception (4d)		14×14×528	2	112	144	288	32	64	64	580K	119M
inception (4e)		14×14×832	2	256	160	320	32	128	128	840K	170M
max pool	3×3/2	$7 \times 7 \times 832$	0	Y							
inception (5a)		$7 \times 7 \times 832$	2	256	160	320	32	128	128	1072K	54M
inception (5b)		$7 \times 7 \times 1024$	2	384	192	384	48	128	128	1388K	71M
avg pool	7×7/1	$1 \times 1 \times 1024$	0				,				
dropout (40%)		$1 \times 1 \times 1024$	0								
linear		1×1×1000	1							1000K	1M
softmax		$1\times1\times1000$	0								

Inception结构

(a) Inception module, naïve version

(b) Inception module with dimension reductions

注意: 每个分支所得的特征矩阵高和宽必须相同

Inception结构

(b) Inception module with dimension reductions

注意:每个分支所得的特征矩阵高和宽必须相同

channels: 512

不使用1x1卷积核降维

使用64个5x5的卷 积核进行卷积

$$5 \times 5 \times 512 \times 64 = 819200$$

channels: 512

使用24个1x1的 卷积核进行卷积

channels: 24

积核进行卷积

使用64个5x5的卷
$$1 \times 1 \times 512 \times 24 = 12288$$

$$5 \times 5 \times 24 \times 64 = 38400$$

$$12288 + 38400 = 50688$$

使用1x1卷积核降维

辅助分类器(Auxiliary Classifier)

The exact structure of the extra network on the side, including the auxiliary classifier, is as follows:

- An average pooling layer with 5×5 filter size and stride 3, resulting in an $4\times4\times512$ output for the (4a), and $4\times4\times528$ for the (4d) stage.
- A 1×1 convolution with 128 filters for dimension reduction and rectified linear activation.
- A fully connected layer with 1024 units and rectified linear activation.
- A dropout layer with 70% ratio of dropped outputs.
- A linear layer with softmax loss as the classifier (predicting the same 1000 classes as the main classifier, but removed at inference time).

$$out_{size} = (in_{size} - F_{size} + 2P)/S + 1$$

GoogLeNet模型参数(不包含辅助分类器)

Total params: 6,994,392

Trainable params: 6,994,392

Non-trainable params: 0

VGGNet模型参数

Total params: 138,357,544

Trainable params: 138,357,544

Non-trainable params: 0

$$\frac{6994392}{138357544} \approx \frac{1}{20}$$