Laboratorio di informatica

Geometria analitica con Geogebra (ripasso)

Come abbiamo già visto l'anno scorso, nello studio della geometria analitica può risultare interessante utilizzare il software Geogebra (geometria +algebra).

Ricordiamo brevemente che se per esempio digito (1,1) nella finestra grafica compare il punto corrispondente : posso anche assegnare un nome al punto, per es. B=(1,1), altrimenti viene assegnato automaticamente seguendo l'ordine alfabetico $(A,B,C\ldots)$.

Se digito nella barra di inserimento in basso y=x compare nella finestra grafica la retta corrispondente: per darle un nome basta digitare, per esempio, r: y=x altrimenti il nome viene assegnato automaticamente seguendo l'ordine alfabetico (a,b,c...).

*Prova a digitare coordinate di punti e equazioni di rette per riprendere confidenza con il software.

Slider

Abbiamo anche già visto che Geogebra offre la possibilità di utilizzare quelli che vengono chiamati "slider" che altro non sono che **parametri** che possono essere inseriti in un'equazione: variando il valore dello slider cambia il valore del parametro collegato e si può capire a quale caratteristica geometrica corrisponde.

Ricordiamo che prima di poter inserire uno slider in un'equazione dobbiamo crearlo:

- attiviamo il pulsante in alto in cui compare la scritta "slider";
- posizioniamoci in un punto qualsiasi del piano cartesiano e facciamo clic con il mouse: comparirà un trattino e ci verrà chiesto di inserire il nome e il campo di variazione dello slider (per esempio chiamiamolo *m* e scegliamo di farlo variare tra -10 e 10).

Se inseriamo per esempio y = mx (in alcune versioni di Geogebra occorre mettere * per indicare la moltiplicazione) osserviamo che compare subito la rappresentazione della retta per l'origine corrispondente al valore che viene dato inizialmente allo slider (uguale a 1).

Per variare il valore dello slider *m* basta posizionarsi sullo slider (comparirà una manina) e trascinare lo slider (il suo valore cambierà): la retta per l'origine cambia e quindi ci rendiamo conto che variando *m* varia l'inclinazione della retta.

Possiamo anche visualizzare insieme tutte le rette corrispondenti ai vari valori dello slider scegliendo, dopo essersi posizionati sulla retta e premuto il tasto destro del mouse, la funzione "traccia attiva" (in alcune versioni si trova "traccia on"): a questo punto trascinando m compariranno tutte le rette corrispondenti.

Nota: posso anche inserire un valore dello slider digitandolo nella riga di inserimento in basso.

Possiamo anche far variare uno slider in modo continuo ed automatico: basta posizionarsi sullo slider, premere il tasto destro e scegliere **animazione attiva**.

L'ALGEBRA DI SECONDO GRADO E LA PARABOLA Equazione della parabola $y = ax^2 + bx + c$

1)Prova ad inserire, l'equazione di alcune parabole, per ese	empio $y = x^2$, $y = x^2 + 1$ ecc. e fai le tue
osservazioni.	
Stampa degli esempi.	
	•

2)Dopo aver creato tre slider a, b, c inserisci l'equazione $y = ax^2 + bx + c$

Prova a variare i valori di a, b,c, fai le tue osservazioni e stampa degli esempi.

- 3) Prova a capire la relazione tra l'ampiezza della parabola e il parametro *a*. Stampa degli esempi e scrivi le tue osservazioni.
- 4) Prova a capire la relazione tra il punto in cui la parabola interseca l'asse y e il parametro c. Stampa degli esempi e scrivi le tue osservazioni.
- 5) Secondo te a cosa è collegato il parametro *b*? Stampa degli esempi e scrivi le tue osservazioni.

LE CONICHE Circonferenza nel piano cartesiano

1)Prova a disegnare una circonferenza digitando nella barra di inserimento la sua equazione, per esempio,

$$x^2 + y^2 = 1$$

(per elevare al quadrato occorre usare ^).

2)Puoi costruire una circonferenza anche attivando i comandi :

circonferenza dati il centro e un punto; circonferenza dati centro e raggio; circonferenza per tre punti (non allineati).

Prova e controlla l'equazione che compare a sinistra nella "vista algebra". Stampa le tue prove.

3) Crea tre slider a,b,c e inserisci l'equazione generale della circonferenza:

$$x^{2} + y^{2} + a * x + b * y + c = 0$$

Prova a variare a,b,c e fai le tue osservazioni stampando degli esempi (per esempio se a=0....., se b=0....., se c=0.....)

Osserva che non per tutti i valori di a,b,c, ottieni una circonferenza perché.....

LE CONICHE Circonferenza e retta

Disegna la circonferenza $x^2 + y^2 = 1$ (puoi inserire l'equazione nella barra di inserimento in fondo oppure utilizzare il comando circonferenza di dato centro e passante per un punto).

a) Disegna la retta y = x e individua le intersezioni con la circonferenza: scegliendo il comando "intersezione" e selezionando circonferenza e retta verranno evidenziati i due punti di intersezione (che puoi eventualmente rinominare con A e B come in figura)

Esercizio: quali sono le coordinate dei punti di intersezione?

- b) Disegna la retta y = x + 2: come risulta rispetto alla circonferenza?
- c) Costruisci un punto P sulla circonferenza con il comando "**punto su oggetto**" e poi usa il comando "**tangenti**" per tracciare la tangente alla circonferenza in P.

Esercizi

Muovi P sulla circonferenza e osserva come cambia l'inclinazione della tangente.

In quali posizioni di P l'inclinazione della tangente è uguale a zero?

In quali posizioni di P si ha tangente parallela all'asse x?

LE CONICHE Circonferenza e fascio di rette parallele

Consideriamo ancora la circonferenza $x^2 + y^2 = 1$.

Crea uno slider q e inserisci l'equazione y = x + q: variando q otteniamo sempre rette con inclinazione 1 ma che tagliano l'asse y in punti diversi (l'ordinata del punto di intersezione con l'asse y è proprio q) e si parla di "fascio di rette parallele" con inclinazione 1.

Esercizio: sapresti indicare un procedimento per calcolare la distanza tra il centro (0;0) della circonferenza e la retta del "fascio"?

Verifica che

- se la distanza dal centro è maggiore del raggio si ha una retta...
- se la distanza dal centro è uguale al raggio si ha una retta ...
- se la distanza dal centro è minore del raggio si ha una retta....

LE CONICHE Costruzione della parabola dato fuoco e direttrice

Vediamo un metodo per disegnare la parabola di dato fuoco e data direttrice.

Crea un punto F (rinominalo) e una retta d (rinominala).

Prendi un punto A sulla direttrice (comando punto su oggetto) e traccia la retta r per A perpendicolare alla direttrice : traccia l'asse del segmento FA e intersecalo con la retta r individuando il punto P.

P appartiene alla parabola di fuoco F e direttrice d poiché è equidistante da F e dalla retta d.

Se attivi la "traccia" di P e muovi A otteni la parabola di fuoco F e direttrice d.

Nota 1

Prova ad usare il comando "luogo".

Cancella con "modifica" Annulla , scegli il comando "luogo", seleziona P e poi A (poiché le varie posizioni di P dipendono dalle varie posizioni di A) e verrà immediatamente disegnata la parabola.

Nota 2

Possiamo anche definire una "macro" cioè un comando che ci permetterà di avere la parabola di dato fuoco e direttrice semplicemente cliccando su un punto-fuoco e su una retta-direttrice.

Scegliamo Strumenti – crea nuovo strumento:

come **oggetti finali** selezioniamo il luogo che abbiamo definito, come **oggetti iniziali** il fuoco F e la direttrice d (eliminiamo con la crocetta altri elementi che vengono indicati).

Premiamo "successivo" (oppure nome e icona): diamo il nome "parabola" al nostro strumento e selezioniamo "fine" (possiamo se vogliamo anche associare un'immagine al nostro strumento, basta prima disegnare una parabola, esportarla come immagine, salvarla e poi sceglierla come "icona").

Importante: se vuoi che questo strumento venga memorizzato ricorda di premere Opzioni – Salva impostazioni prima di chiudere il programma.

Prova se funziona: clic sullo strumento "parabola", clic su un punto e su una retta...

Nota: in realtà questa macro è stata già inserita tra i comandi Geogebra che puoi usare (c'è un tasto in alto...cercalo...)

LE CONICHE Il fuoco della parabola

Se facciamo incidere su uno specchio "parabolico" un raggio di luce parallelo all'asse dello specchio il raggio riflesso passerà sempre per il fuoco: in questo punto si concentrerà molta energia luminosa e termica e per questo è stato chiamato "fuoco".

Esercizio: fissa un punto (fuoco F) e una retta (direttrice): disegna una parabola di data direttrice e fuoco (usando il comando nei pulsanti della barra).

Traccia l'asse di simmetria della parabola; prendi un punto P sulla parabola (punto su oggetto); traccia la semiretta uscente da P parallela all'asse (raggio incidente); traccia la semiretta uscente da P passante per F (raggio riflesso); traccia la tangente alla parabola nel punto P; traccia la perpendicolare per P alla tangente; costruisci gli angoli α , β (vedi figura);

Verifica che $\alpha \cong \beta$.

LE CONICHE

Costruzione dell'ellisse di dati fuochi e asse maggiore

Vediamo un metodo per costruire un' ellisse di dati fuochi F1 e F2 e di dato asse maggiore, per esempio 10 ($\overline{F_1F_2}$ < 10): creiamo un punto F_1 e un punto F_2 (rinominiamoli) e tracciamo una circonferenza di centro F_1 e raggio 10.

Creiamo un punto A sulla circonferenza (con il comando "punto su oggetto"); tracciamo l'asse del segmento F_2 A e intersechiamolo con la retta per F_1 e A: il punto P appartiene all'ellisse di fuochi F_1 e F_2 e asse maggiore 10 poiché $\overline{PF_1} + \overline{PF_2} = \overline{F_1} \ A = 10$

Attivando la traccia di P e muovendo A otterremo l'ellisse:

Esercizio: crea una "macro" per ottenere la costruzione che abbiamo visto in cui gli oggetti iniziali saranno i due punti-fuochi e un punto sulla retta per i fuochi ad una distanza dal loro punto medio uguale al semiasse maggiore.

Nota: nella barra dei comandi c'è il comando "ellisse" che disegna l'ellisse dati i fuochi e un punto dell'ellisse.

LE CONICHE Costruzione dell'ellisse di semiassi assegnati

Possiamo costruire un'ellisse di semiassi assegnati a e b (riferita ai propri assi di simmetria) seguendo questo procedimento, supponendo che a > b:

Riporta i semiassi sugli assi del sistema di riferimento (a sull'asse x e b sull'asse y) costruendo i vertici dell'ellisse: traccia la circonferenza di centro B_1 e raggio a ed individua i fuochi dell'ellisse (vedi figura) poiché vale la relazione $c^2 = a^2 - b^2$

A questo punto possiamo utilizzare la macro costruita nella scheda precedente oppure anche il comando inserito nella barra dei comandi "ellisse" in cui si devono selezionare i fuochi e un punto dell'ellisse)

LE CONICHE Ellisse nel piano cartesiano

1) Prova a inserire l'equazione di un'ellisse, per esempio

$$x^2+y^2/4=1$$

Otterrai l'ellisse in figura:

2) Prova a definire uno slider a (semiasse sull'asse x) e uno slider b (semiasse sull'asse y) ricordando di mettere tra le proprietà degli slider che siano positivi e ad inserire

$$x^2/a^2+y^2/b^2=1$$

Fai variare gli slider e stampa alcuni esempi.

LE CONICHE Piazza S. Pietro è un'ellisse?

Proviamo a copiare la foto della piazza di S. Pietro nel piano (0,x,y) di Geogebra cercando di far coincidere il centro della piazza con l'origine: creiamo due slider a,b e inseriamo l'equazione

dell'ellisse
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
.

Variamo il valore degli slider fino a che l'ellisse (che magari coloriamo di rosso) non si sovrappone al contorno della piazza: la piazza viene approssimata abbastanza bene da un'ellisse di semiassi a = 4 b = 3 (vedi figura).

Si può comunque ottenere una migliore approssimazione con un "ovale" cioè raccordando 4 archi di circonferenze di centri diversi.

Esercizio

Trova un'altra opera architettonica che abbia la forma di ellisse e cerca di determinare l'equazione dell'ellisse che l'approssima meglio.

LE CONICHE

Costruzione dell'iperbole dati i fuochi e l'asse trasverso

Possiamo costruire un'iperbole di dati fuochi e dato asse trasverso, per esempio 8 ,con un procedimento analogo a quello utilizzato per l'ellisse nella scheda 7: l'unica differenza è che questa volta $\overline{F_1F_2}$ > asse trasverso (8).

Abbiamo una costruzione come in figura: è chiaro che P appartiene all'iperbole di fuochi F_1 e F_2 poiché $\overline{PF_1} - \overline{PF_2} = \overline{F_1A} = 8$, essendo $\overline{PF_2} = \overline{AP}$.

Attivando la traccia di P e muovendo A avremo l'iperbole:

LE CONICHE Iperbole nel piano cartesiano

1) Inserisci l'equazione di un'iperbole riferita ai propri assi di simmetria, per esempio

$$x^2-y^2/4=1$$

Inserisci l'equazione dei suoi asintoti

$$y = 2x$$
 $y = -2x$

Stampa il grafico e fai le tue osservazioni.

Inserisci un'altra equazione, magari di un'iperbole con asse trasverso l'asse y, e stampa il grafico.

2) Crea due slider a, b (semiassi dell'iperbole) positivi e inserisci l'equazione

$$x^2/a^2-y^2/b^2=1$$

e l'equazione degli asintoti

$$y = b/a*x$$
 $e y = -b/a*x$

Fai variare gli slider e stampa qualche esempio facendo le tue osservazioni.

3) Crea due slider *a,c* positivi e inserisci l'equazione

$$x^2/a^2-y^2/(c^2-a^2)=1$$

Disegna i vertici A1=(a,0) A2=(-a,0) e i fuochi F1=(c,0) F2=(-c,0).

Muovi solo lo slider c (cioè cambia la posizione dei fuochi e mantenendo costante la posizione dei vertici), stampa qualche grafico e fai le tue osservazioni.

LE CONICHE Iperbole equilatera

1)	Inserisci l'equazione	di un'iperbole	equilatera r	riferita ai p	ropri asintoti,	per esemp	oic
----	-----------------------	----------------	--------------	---------------	-----------------	-----------	-----

$$x*y=1$$

Prova anche ad inserire l'equazione nella forma

$$y=1/x$$

Stampa il grafico.

2) Crea uno slider k e inserisci l'equazione

$$x*y=k$$

$$y=k/x$$

Muovi k e fai le tue osservazioni.

3) Crea tre slider a,b,c,d e inserisci l'equazione

$$y = \frac{ax + b}{cx + d}$$

Muovi gli slider e fai le tue osservazioni.

Stampa qualche grafico.