# Universidad Autónoma de Madrid

# COMPUTER SCIENCE DEPARTMENT

# **EDAT**

# **Exercises**

Roberto Marabini Ruiz

- a. Write the SQL operations needed to create a database that stores information of an asymmetric social network ("follow" type) in which users have a *nick*, name and *email*.
- b. Define the primary keys and constraints for each table.
- c. Insert the data that stores the following social network. Since the graph only shows nicknames you may choose any string as *names* and *emails*.



## Exercise 2

Using the tables defined in the previous exercise, write the SQL operation needed to obtain the following information:

- a. People that follow both luis AND maria.
- b. People that follow people that follow nicola.
- c. Rewrite queries (a) and (b) assuming that the follower relationship is symmetric. That is, if A follows B then B follows A

## Exercise 3

Write the SQL operations needed to store information on flights including the following information:

- Airports: store them as a three letter code (unique) and city (a city can have several airports)
- Flights: flight numbers (single), origin and destination (airport codes), time of departure, number of places (assuming it was always the same model airplane), and airline operating them.
- Airlines: name and abbreviation (unique).
- Passengers: with ID and name.
- Plane bookings: for passengers at a given date, with its price, for a given flight.

Populate the tables with some data.

### Exercise 4

Write the SQL operations needed to:

- Cancel all flight with origin=Madrid
- Reassign all BritishAirways flights with origin=Madrid to Iberia
- Increase by a factor of 2 all EasyJet bookings

#### Exercise 5

Using the database defined in exercise 3, write the SQL queries needed to obtain the following information:

- Flights that depart from Paris.
- Flights from Madrid to Paris departing at 12:00.
- Name of passengers traveling from London to Paris. Include departing date.
- Name of passengers traveling from London to Paris and *vice versa*.
- Name of passengers making a round trip on the same day. That is they fly from A to B and from B to A.

Using the database defined in exercise 3, write the SQL queries needed to obtain the following information:

- Airlines with no departures from London.
- Fully booked flights including date.
- Empty flights (no ticket sold) in 2011.
- Airlines that only have flights that either depart from or land in Madrid.

# Exercise 7

Using the database defined in exercise 3, write the SQL queries needed to obtain the following information:

- Busier airport (count both departures and landings).
- Airlines sorted by the number of reservation.
- For each day, city from which the first flight departs.
- Average expenditure per passenger.
- Turn over per airline and departure airport.

# Exercise 8

Given the following Database

| NombreProyecto | NumProyecto | UbicacionProyecto | NumDptoProyecto |
|----------------|-------------|-------------------|-----------------|
| ProductoX      | 1           | Valencia          | 5               |
| ProductoY      | 2           | Sevilla           | 5               |
| ProductoZ      | 3           | Madrid            | 5               |
| Computación    | 10          | Gijón             | 4               |
| Reorganización | 20          | Madrid            | 1               |
| Comunicaciones | 30          | Gijón             | 4               |

# SUBORDINADO DniEmpleado NombSubor

| DniEmpleado | NombSubordinado | Sexo | FechaNac   | Relación |
|-------------|-----------------|------|------------|----------|
| 333445555   | Alicia          | M    | 05-04-1986 | Hija     |
| 333445555   | Teodoro         | Н    | 25-10-1983 | Hijo     |
| 333445555   | Luisa           | M    | 03-05-1958 | Esposa   |
| 987654321   | Alfonso         | Н    | 28-02-1942 | Esposo   |
| 123456789   | Miguel          | Н    | 04-01-1988 | Hijo     |
| 123456789   | Alicia          | M    | 30-12-1988 | Hija     |
| 123456789   | Elisa           | M    | 05-05-1967 | Esposa   |

#### TRABAJA EN

| DniEmpleado | NumProy | Horas |
|-------------|---------|-------|
| 123456789   | 1       | 32,5  |
| 123456789   | 2       | 7,5   |
| 666884444   | 3       | 40,0  |
| 453453453   | 1       | 20,0  |
| 453453453   | 2       | 20,0  |
| 333445555   | 2       | 10,0  |
| 333445555   | 3       | 10,0  |
| 333445555   | 10      | 10,0  |
| 333445555   | 20      | 10,0  |
| 999887777   | 30      | 30,0  |
| 999887777   | 10      | 10,0  |
| 987987987   | 10      | 35,0  |
| 987987987   | 30      | 5,0   |
| 987654321   | 30      | 20,0  |
| 987654321   | 20      | 15,0  |
| 888665555   | 20      | NULL  |

#### **EMPLEADO**

| Nombre   | Apellido1 | Apellido2 | Dni       | FechaNac   | Dirección      | Sexo | Sueldo | SuperDni  | Dno |
|----------|-----------|-----------|-----------|------------|----------------|------|--------|-----------|-----|
| José     | Pérez     | Pérez     | 123456789 | 01-09-1965 | Eloy I, 98     | Н    | 30000  | 333445555 | 5   |
| Alberto  | Campos    | Sastre    | 333445555 | 08-12-1955 | Avda. Ríos, 9  | Н    | 40000  | 888665555 | 5   |
| Alicia   | Jiménez   | Celaya    | 999887777 | 12-05-1968 | Gran Via, 38   | M    | 25000  | 987654321 | 4   |
| Juana    | Sainz     | Oreja     | 987654321 | 20-06-1941 | Cerquillas, 67 | M    | 43000  | 888665555 | 4   |
| Fernando | Ojeda     | Ordóñez   | 666884444 | 15-09-1962 | Portillo, s/n  | Н    | 38000  | 333445555 | 5   |
| Aurora   | Oliva     | Avezuela  | 453453453 | 31-07-1972 | Antón, 6       | М    | 25000  | 333445555 | 5   |
| Luis     | Pajares   | Morera    | 987987987 | 29-03-1969 | Enebros, 90    | Н    | 25000  | 987654321 | 4   |
| Eduardo  | Ochoa     | Paredes   | 888665555 | 10-11-1937 | Las Peñas, 1   | Н    | 55000  | NULL      | 1   |

#### DEPARTAMENTO

| NombreDpto     | NumeroDpto | DniDirector | FechalngresoDirector |
|----------------|------------|-------------|----------------------|
| Investigación  | 5          | 333445555   | 22-05-1988           |
| Administración | 4          | 987654321   | 01-01-1995           |
| Sede Central   | 1          | 888665555   | 19-06-1981           |

#### LOCALIZACIONES\_DPTO

| NumeroDpto | <u>UbicacionDpto</u> |
|------------|----------------------|
| 1          | Madrid               |
| 4          | Gijón                |
| 5          | Valencia             |
| 5          | Sevilla              |
| 5          | Madrid               |

Show the result of the following SQL operation and (if modified) the state of the different tables. All SQL operations are applied to the original database.

- a. DELETE FROM EMPLEADO WHERE dni='123456789';
- b. DELETE FROM EMPLEADO WHERE Apellido1='Cabrera';
- c. ALTER TABLE EMPLEADO ADD COLUMN Trabajo VARCHAR (12);
- d. ALTER TABLE EMPLEADO DROP COLUMN dirección CASCADE;
- e. INSERT INTO EMPLEADO VALUES ('Ricardo', 'Roca', 'Flores', '653298653', '1962-12-30', 'Los Jarales, 47', 'H', 37000, '653298653', 4);

- f. INSERT INTO EMPLEADO (Nombre, Apellido1, Dno, Dni) VALUES ('Ricardo', 'Roca', 4, '653298653');
- g. UPDATE PROYECTO SET UbicaciónProyecto='Valencia', NumDptoProyecto = 5 WHERE NumProyecto=10;
- h. SELECT FechaNac, Dirección FROM EMPLEADO WHERE Nombre='José' AND Apellido1='Pérez' AND Apellido2='Pérez';
- i. SELECT Nombre, Apellido1, Dirección FROM EMPLEADO, DEPARTAMENTO WHERE NombreDpto='Investigación' AND NumeroDpto=Dno;
- j. SELECT NumProyecto, NumDptoProyecto, Apellido1, Dirección, FechaNac FROM PROYECTO, DEPARTAMENTO, EMPLEADO WHERE NumDpto-Proyecto='NumeroDpto' AND DniDirector=Dni AND UbicacionProyecto='Gijon';
- k. SELECT Nombre, Apellido1, Dirección FROM (EMPLEADO JOIN DEPARTAMENTO ON Dno=NumeroDpto) WHERE NombreDpto='Investigación';

A bookstore chain requires a management application that handles: catalog, stocks, sales and human resources. Model the problem creating a ER diagram. The system must be able to store the following information.

- a. Books: title, author(s), editorial, ISBN and price.
- b. Editorials: name, VAT number, phone.
- c. Authors: name
- d. Employees: name, SSN (social security number), salary, bookshop (in which they work).
- e. Bookshop: address, manager (one of the employees), stock (number of copies of each book)
- f. Sales: book, date, bookstore and employee (that sold the book).

Convert the ER Diagram created in the exercise-13 into a Relational Schema.

#### Exercise 21

In the database of an investment company the following attributes has been defined:

- b: broker a: share
- o: broker company o: broker company
- c: client d: dividend per share

We know that the following functional relationships are held:

$$a \to d \quad \{c, a\} \to q$$
  
 $c \to b \quad b \to o$ 

Given de relational schema R(b, o, a, q, c, d):

- a. Which is the best key for for R.
- b. Does R satisfy the second normal form.
- c. Decompose R so that satisfies the third normal form

If we decompose R in

d. Do R1 and R2 satisfy the third normal form?

#### Exercise 22

Given the following relations:

RESERVATION(pasangerName, SSN, flightID,

departure Airport, arrival Airport, time, date, cost)

FLIGHT(flightID, time, departureAirport, arrivalAirport, departureCity, arrivalCity) and assuming the requirements:

- a. two people cannot have the same SSN (social security number).
- b. some cities have more than one airport.
- c. fares may not be constant for a given flight. That is, different reservations may have different prices
- d. for a given day the flight number is unique. That is, it is not possible to have two flight with the same flight number the same sday.
- e. two planes cannot take off simultaneously. That is, for a given day, departure hours are different for all flights
- f. A passenger may take two different flights the same day form the same airport.

perform the following tasks:

- a. find all candidate keys and suggest a primary key.
- b. indicate all NON REDUNDANT functional dependences
- c. what normal forms are satisfied by each relation? Why?
- d. convert each relation so that they satisfy BCNF. Indicate the primary keys. Do we lost any functional dependence after normalization?

#### Exercise 23

Probe that the relation schema R(a, b) always satisfies BCNF form.

## Exercise 24

Repeat exercises 2, 5 y 6 (except 6b) using relational calculus instead of SQL.

#### Exercise 25

Repeat exercises 2, 5 y 6 using relational algebra instead of SQL.

Given the following relations  $FLIGTH(\underline{Number}, Depart, Arrive, dateF)$   $AIRPORT(\underline{Code}, City)$   $PASSENGER(\underline{SSN}, Name)$  RESERVATION(SSN, Number, dateR, Price)

write the following queries using relational calculus:

- a. Flights from Charles de Gaulle (CDG) to Heathrow (LHR).
- b. departure time for all flights from Charles de Gaulle (CDG) to Heathrow (LHR).
- c. Flights BETWEEN Charles de Gaulle (CDG) and Heathrow (LHR).
- d. Flights from Paris to London.
- e. Name, date and destination for all passengers traveling from Madrid Barajas (MAD).
- f. empty flights (no reservations).

### Exercise 27

Apply the queries created in the previous exercise to the following data:

| Depart | Arrive          | dateF                           |
|--------|-----------------|---------------------------------|
| MAD    | CDG             | 12:30                           |
| MAD    | ORY             | 19:05                           |
| LHR    | CDG             | 09:55                           |
| CDG    | LHR             | 14:40                           |
| CDG    | LHR             | 17:00                           |
|        | MAD MAD LHR CDG | MAD CDG MAD ORY LHR CDG CDG LHR |

table: FLIGHT.

| Code | City    |
|------|---------|
| MAD  | Madrid  |
| LGW  | Londres |
| LHR  | Londres |
| ORY  | Paris   |
| CDG  | Paris   |

table: AIRPORT.

| SSN | Name   |
|-----|--------|
| 123 | Maria  |
| 789 | Pedro  |
| LHR | Isabel |

| table: | PASSENGER.  |
|--------|-------------|
| uabic. | TIDDELIGHT. |

| SSN | Number | dateR    | Price |
|-----|--------|----------|-------|
| 789 | 165    | 07-01-11 | 210   |
| 123 | 345    | 20-12-10 | 170   |
| 789 | 321    | 15-12-10 | 250   |
| 456 | 345    | 03-11-10 | 190   |

table: RESERVATION.

#### Exercise 28

Given a database in the state described in the previous exercise give the output of the following queries.

- a.  $\{p, r \mid PASSENGER(p) \text{ and } RESERVATION(r) \text{ and } r.PRICE < 200\}$
- b.  $\{p,r \mid PASSENGER(p) \text{ and } RESERVATION(r) \text{ and } (r.SSN = p.SSN \text{ } OR \text{ } r.Price < 200)\}$
- c.  $\{p, r.number \mid PASSENGER(p) \text{ and } RESERVATION(r) \text{ and } (r.SSN = p.SSN \ OR \ r.Price < 200)\}$
- d.  $\{p.name \mid PASSENGER(p) \text{ and } \exists r(RESERVATION(r) \text{ and } (r.SSN = p.SSN \text{ } AND \text{ } r.Price 200)\}$
- e.  $\{p.name \mid PASSENGER(p) \text{ and } NOT \exists r(RESERVATION(r) \text{ and } (r.SSN = p.SSN \text{ } AND \text{ } r.Price < 200)\}$

#### Exercise 29

Repeat exercises 26 and 28 using relational algebra.

#### Exercise 30

Repeat exercises 26 and 28 using SQL.

Show the result of the following queries when executed using the databse described in exercise 27

- a.  $\Pi_{SSN}(\sigma_{price>200}(RESERVATION))$
- b.  $\sigma_{name=Maria}(PASSENGER \times RESERVATION)$
- c.  $\sigma_{name=Maria}(PASSENGER \bowtie RESERVATION)$
- d.  $\sigma_{SSN=123}(PASSENGER \bowtie RESERVATION)$
- e.  $R1 \leftarrow \Pi_{name,price,ssn}(\sigma_{name=pedro}(PASSENGER \bowtie RESERVATION))$   $R1 \leftarrow \Pi_{name,price,ssn}(\sigma_{price>100}(PASSENGER \bowtie RESERVATION))$  $R1 \cap R2$
- f.  $R1 \leftarrow \Pi_{city,depart}(\sigma_{city=madrid}(FLIGTH \bowtie_{depart,code} AIRPORT))$   $R1 \leftarrow \Pi_{city,arrive}(\sigma_{city=london}(FLIGTH \bowtie_{arrive,code} AIRPORT))$  $\Pi_{Number}R1 \bowtie R2$

#### Exercise 42

Given the relation RESERVATION (see exercise 27)

- a. Does it make sense to store the relation data using fixed-length records?
- b. Assuming that *RESERVATION* data is stored using fixed-length records,
  - Cancel Maria's reservation
  - Cancel Pedros reservation
  - Book a ticket for Maria in the flight 321 on 23th-Oct-2010, price=200.

After each operation, show the state of the register table including a list with all the deleted registers.

In a given file, that contains a collection of registers, the list of deleted registers looks like (the number inside each register indicate its length):



Assuming that the allocation of free space is done using the worst-fit strategy, show the state of the list after the following operations on the table:

- i. insert a 300 byte register;
- ii. delete a 250 byte register;
- iii. insert a 400 byte register.

Note: apply each operation to the result of the previous one.

#### Exercise 45

We want to read a file containing 5,000,000 records of 400 Bytes each on a disk with the following characteristics:

average seek time: 8ms;

rotation speed: 15,000 r.p.m.;

sector size: 1,000 Bytes; sector per track: 500;

cluster size (minimum amount of Bytes that the operation system is able to read-/write in a single access to the hard disk): 4 sectors.

Estimate the reading time in the following three scenarios:

- a. the registers are read using a function in the program that reads one record (after each record is read, it is necessary to place the head again);
- b. the registers are read in blocks, reading them in a 400,000 Byte buffer;

c. the file is read in memory all at the same time using a single program instruction.

For each scenario, calculate the read time under the following hypotheses:

- a. the file is stored in contiguous clusters;
- b. the file is completely fragmented in clusters stored randomly on the disk.

## Exercise 52

Given the following B tree with space for 4 keys per node



- a. insert the key P;
- b. in the resulting tree, erase the key L;
- c. in the resulting tree, erase the key J.

Draw the tree after each operation.

#### Exercise 53

28

2 | 5 | 9

Given the following B tree with space for 6 keys per node 15 40 | 53 | 82 | 93 7443 44 47 23 32 | 3456 | 62 68 71 72 75 | 79 | 80 94 | 98 | 99

63

- a. insert the key 60
- b. in the resulting tree, erase the key 2 and 63;

Draw the resulting tree after each operation.

85

88 | 92

Given the following B tree with space for 4 keys per node



- a. insert the key R
- b. in the resulting tree, erase the key B
- c. show how the initial tree can be stored in a file

Show the resulting tree after each operation.

# Exercise 58

Show how to store the following btree (with space for 5 keys per node)

