Theorem: Bounded Monotonic Sequences

If a sequence (a_n) is bounded and monotonic, then it converges.

Proof:

Assume that the sequence (a_n) is non-decreasing, and each term is positive. Because the sequence is bounded, there must exists an upper bound M such that

$$a_1 \le a_2 \le a_3 \le \ldots \le a_n \le \ldots \le M$$

. From the completeness axiom, there is a least upper bound L such that

$$a_1 \le a_2 \le a_3 \le \ldots \le a_n \le \ldots \le L$$

For $\varepsilon > 0$, it follows that $L - \varepsilon < L$, and therefore $L - \varepsilon$ cannot be an upper bound for the sequence. Consequently, at least one term of (a_n) is greater than $L - \varepsilon$. That is, $L - \varepsilon < a_N$ for some positive N. Hence, $a_N \le a_n$ for n > N. Finally, for n > N $L - \varepsilon < a_N \le a_n \le L < L + \varepsilon \Rightarrow |a_n - L| < \varepsilon$ for n > N.