ANÁLISIS VECTORIAL II

S DESCOMPOSICIÓN VECTORIAL

Recordemos la <u>suma</u> de vectores por el método del polígono.

Ahora haremos el paso contrario.

Dado un vector cualquiera, vamos a: reemplazar al vector \overline{R} , por otros llamados componentes y que tengan como resultante al vector inicial.

Dado un vector se puede <u>descomponer</u> en otros vectores llamados <u>componentes</u> de dicho vector, de tal manera que estos en su conjunto sean capaces de <u>reemplazar</u> al vector dado.

 \overline{M} , \overline{N} , \overline{P} y \overline{Q} son components del vector \overline{R} .

Como vemos un vector puede descomponerse en dos o más vectores, todos en conjunto tendrán una misma resultante el vector \overline{R} .

Ejm.: Descomponer al vector \overline{x} siguiendo los caminos descritos:

× =

_ ×=

Recuerda:

Todos los vectores que reemplazan al vector x se llaman componentes.

Ejercicio:

Hallar el vector resultante en función de \bar{x} .

Solución:

Sabemos que: R = A + B + x......(1)

1. Vamos a reemplazar al vector \overline{A} por otros 2, de tal forma que uno de ellos pase por \overline{x} así:

Vemos que: $\overline{A} = \overline{x} + \overline{C}$

2. Hacemos lo mismo para B.

3. Observa que \overline{C} y \overline{D} son colineales y del mismo módulo (tamaño). Luego \overline{C} y \overline{D} son vectores opuestos es decir:

 $\overline{C} = -\overline{D}$

Reemplazando en (1)

$$\overline{R} = (\overline{x} + \overline{C}) + (\overline{x} + \overline{D}) + \overline{x}$$

$$\overline{R} = \overline{x} + \overline{C} + \overline{x} + \overline{D} + \overline{x}$$

$$\overline{R} = 3\overline{x} + \overline{C} + \overline{D}$$

Pero: $\overline{C} = -\overline{D}$

$$\Rightarrow \overline{R} = 3\overline{x} + (-\overline{D}) + \overline{D}$$

$$\overline{R} = 3\overline{x} - \overline{D} + \overline{D}$$

 $\overline{R} = 3x$

b DESCOMPOSICIÓN RECTANGULAR

Ahora vamos a reemplazar a un vector por otros 2 que sean perpendiculares llamados

Donde:

 \overline{A}_X : Componente de \overline{A} en el eje x.

 \overline{A}_y : Componente de \overline{A} en el eje y.

En forma práctica: Usa triángulos rectángulos

Obs.:

Recordemos algunos triángulos notables:

Además en todo triángulo rectángulo se cumple:

c: Hipotenusa

Ejemplo: Hallar las componentes de \overline{A} sobre los ejes perpendiculares.

EJERCICIOS DE APLICACIÓN

 En la figura hallar el módulo del vector resultante, si la figura mostrada es un trapecio

 Los lados del rectángulo miden 3 y 7. Hallar el módulo del vector resultante.

3. Las bases del trapecio son 2 y 6. Hallar el módulo del vector resultante.

4. Hallar las componentes del vector \overline{A} , sobre el eje \times , cuyo módulo es 100N.

- 5. Del ejercicio anterior hallar la componente sobre el eje vertical.
 - a) 50N
- b) 60
- c) 70

- d) 80
- e) 90
- 6. El módulo del vector \overline{V} es 100N. Hallar el módulo de su componente en el eje de las ordenadas.

- 7. Del problema anterior. Hallar el módulo de la componente en el eje de las abcisas.
 - a) 50N
- b) 60N
- c) 50√3

- d) 80
- e) 90

8. Hallar la magnitud de la resultante.

9. Halla el módulo de la resultante de los vectores mostrados:

10. Calcular la magnitud de la resultante.

TAREA DOMICILIARIA Nº 2

1. Hallar el módulo de la resultante en el espacio.

2. Hallar los componentes del vector \overline{A} sobre el eje de las abcisas.

3. Del ejercicio anterior hallar la componente del vector \overline{A} sobre las ordenadas.

a) 30N

b) 30√2

c) 30√3

d) 20

e) 20√3

En los siguientes casos hallar el módulo de la resultante.

