Logik

Nikita Emanuel John Fehér 3793479, Lennox Heimann 3776050 Übungsleiter: Maurice Funk

10. Juni 2024

4. Wir definieren; $F_{i,j} = \begin{cases} 1 & \text{falls Dame auf Feld (i,j)} \\ 0 & \text{sonst} \end{cases}$ $H = \{ \neg (F_{i,j} \land F_{k,l}) | i, j, k, l \in \{1...n\}, i = k, j \neq l \}$ $V = \{ \neg (F_{i,j} \land F_{k,l}) | i, j, k, l \in \{1...n\}, i \neg = k, j = l \}$ $D_1 = \{ \neg (F_{i,j} \land F_{k,l}) | i, j, k, l \in \{1...n\}, i + j = k + l, i \neq k \}$ $D_2 = \{ \neg (F_{i,j} \land F_{k,l}) | i, j, k, l \in \{1...n\}, i - j = k - l, i \neq k \}$ $M_n = H \cup V \cup D_1 \cup D_2$

Es darf jeweils nur maximal eine Dame auf jeder Horizontale, Vertikale und Diagonale sein, so können sich paar weise keine zwei Damen gegenseitig schlagen.

- 5. (a) $\{E_{0,0}, A_{1,0}, B_{0,1}, D_{1,1}, F_{0,2}, C_{1,2}\}$
 - (b) Aus B1 folgt $\forall m,n\in\mathbb{N}$: ein $m\times n$ Mosaik existiert g.d.w. $M_{\{0,\dots,m-1\}\times\{0,\dots,n-1\}}$ Für $M_{\mathbb{N}\times\mathbb{N}}$ gilt, dass jede endliche Teilmenge erfüllbar ist, aus dem Kompaktheitssatz folgt dass $M_{\mathbb{N}\times\mathbb{N}}$ erfüllbar ist. B1 \Longrightarrow B2
 - (c) Dass für beliebig große n ein $n \times n$ Mosaik existiert, bedeutet, dass für alle endlichen Teilmengen von $\mathbb{N} \times \mathbb{N}$ ein Mosaik existiert, nach dem Kompaktheitssatz gilt dies also auch für die unendliche Formelmenge.
- 6. (a) $\operatorname{ans}(\mathfrak{A},\varphi_1)=\{1,2,3\}$ Es gibt keine $R(4,y),\,R(5,y)$ und keine $S(y,4),\,S(y,5).$ $\operatorname{ans}(\mathfrak{A},\varphi_2)=\emptyset$ $\forall y\forall x(S(x,y)\to P(x))$ ist eine Kontradiktion.
 - (b) $\varphi_1(x) = \exists y \Big(\big(R(x,y) \land S(x,y) \big) \lor \big(R(y,x) \land S(y,x) \big) \Big)$ Nur 1 und 2 stehen sowohl in S- als auch in R-Beziehung zueinander. $\varphi_2(x) = (\neg \varphi_1)(x)$ φ_1 ist die Negation von φ_2 , da M_2 das Komplement von M_1 ist.
 - (c) Falsch, 4 und 5 sind ununterscheidbar, es gibt also kein $\varphi(x)$, so dass ans $(\mathfrak{A}, \varphi) = \{4\}$.
- 7. (a) $\mathfrak{A} = \{A = \{1,2\}, R^{\mathfrak{A}} = \{(1,2),(2,2)\}\}$ Für sowohl x = 1, als auch x = 2 gilt: R(x,2).

- (b) $\mathfrak{B} = \{A = \{1,2\}, R^{\mathfrak{B}} = \{(1,2), (2,1), (1,1), (2,2)\}\}\$ R(a,b) gilt immer, egal wie a und b gewählt sind.
- (c) $\mathfrak{C} = \{A = \mathbb{N}, R^{\mathfrak{C}} = \{(a, a) | a \in \mathbb{N}\}\}$ Für jedes x gibt es ein y = x, so dass R(y, x) gilt und $R(z, y) \to z = y$ gilt immer.
- (d) $\mathfrak{D} = \left\{ A = \mathbb{N}, +\mathfrak{D}(x,y) = x \right\}$ Damit vereinfachen wir zu: $\forall x \forall y \big((x \neq y) \to (x \neq y) \big)$, das ist trivial wahr.