Problem 1

Is the intersection of two convex sets convex? Is the union of two convex sets convex?

Solution

1. Intersection of two convex sets

Let A and B be two convex sets.

Let $x, y \in A \cap B$

- $\implies x, y \in A \text{ and } x, y \in B$
- $\implies x\lambda + (1-\lambda)y \in A, \forall \lambda \in [0,1] \text{ and } x\lambda + (1-\lambda)y \in B, \forall \lambda \in [0,1] \quad \dots \text{(Since A, B are convex sets)}$
- $\implies x\lambda + (1-\lambda)y \in A \cap B, \forall \lambda \in [0,1]$

Hence, $A \cap B$ is a convex set. Therefore, intersection of any two convex sets is also a convex set.

2. Union of two convex sets

We can prove that union of two convex sets is not convex using counter example.

We already know that [4, 5] and [6, 7] are convex set.

But, 5 * t + (1 - t) * 6 does not belong to $[4, 5] \cup [6, 7]$ for any $t \in [0, 1]$.

Hence, union of two convex sets may not be convex.

Problem 2

Prove that the following sets are convex.

- (a) **Polyhedra**: Sets of the form $K = \{ x \in \mathbb{R}_n : \langle a_i, x \rangle \leq b_i \text{ for } i = 1, 2, ..., m \}$ where $a_i \in \mathbb{R}_n$ and $b_i \in \mathbb{R}$ for i = 1, 2, ..., m
 - (b) Ellipsoids: Sets of the form $K = \{ x \in \mathbb{R}^n : x^T A x \leq 1 \}$ where $A \in \mathbb{R}^{n \times n}$ is a PD matrix.
- (c) Unit balls in l_p norms for $p \ge 1$: $B_p(a,1) := \{ x \in \mathbb{R}^n : || x a ||_p \le 1 \}$ where $a \in \mathbb{R}^n$ is a vector.

Solution

(a) Let $x, y \in K$.

Hence,
$$\langle a_i, x \rangle \leq b_i \implies \lambda \langle a_i, x \rangle \leq \lambda b_i \ \forall \ i = 1, 2, ..., m \text{ and } \lambda \in [0, 1]$$

Similarly, $\langle a_i, y \rangle \leq b_i \implies (1 - \lambda) \langle a_i, y \rangle \leq (1 - \lambda) b_i \ \forall \ i = 1, 2, ..., m \text{ and } \lambda \in [0, 1]$

Adding above two inequalities, we get,

$$\lambda \langle a_i, x \rangle + (1 - \lambda) \langle a_i, y \rangle \leq \lambda b_i + (1 - \lambda) b_i \, \forall \, i = 1, 2, ..., m \text{ and } \lambda \in [0, 1]$$

$$\implies \lambda * a_i.x + (1 - \lambda) a_i.x \leq b_i \, \forall \, i = 1, 2, ..., m \text{ and } \lambda \in [0, 1]$$

$$\implies a_i (\lambda x + (1 - \lambda) y) \leq b_i \, \forall \, i = 1, 2, ..., m \text{ and } \lambda \in [0, 1]$$

$$\implies \langle a_i, \lambda x + (1 - \lambda y) \rangle \leq b_i \, \forall \, i = 1, 2, ..., m \text{ and } \lambda \in [0, 1]$$

Hence, $x, y \in K \implies \lambda x + (1 - \lambda y) \in K$. Hence, the polyhedra set is a convex set.

(b) Since, $A \in \mathbb{R}^{nxn}$ hence, A will be a positive definite matrix. Hence, $A = (A^{1/2})^2$ for a uniquely defined symmetrix positive definite matrix $A^{1/2}$.

Setting, $||x||_A = ||A_x^{1/2}||_2$. Hence, we have a norm on \mathbb{R}^n . Then, we get,

$$\boldsymbol{x}^T A \boldsymbol{x} = [(\boldsymbol{x}^T) A^{1/2}] [A^{1/2} \boldsymbol{x}] = \parallel A^{1/2} \boldsymbol{x} \parallel_2^2 = \parallel \boldsymbol{x} \parallel_Q^2.$$

We can redfine K as $K = \{x \in \mathbb{R}^n : ||x||_A^2 \le 1\}$ where $A \in \mathbb{R}^{n \times n}$ is a postive definite matrix.

Let $m, n \in K$.

$$\parallel \lambda m + (1-\lambda)n \parallel_A^2 \leq \parallel \lambda m \parallel_A^2 + \parallel (1-\lambda)n \parallel_A^2$$

$$\leq \lambda \parallel m \parallel_A^2 + (1 - \lambda) \parallel n \parallel_A^2$$

$$\leq \lambda.1 + (1 - \lambda).1$$

 ≤ 1

Hence, $\lambda m + (1 - \lambda)n \in K$, so K is a convex set.

(c) For the l_p norm we know that,

$$|| f + g ||_p \le || f ||_p + || g ||_p$$
$$\lambda || f ||_p = || \lambda f ||_p$$

Let
$$x, y \in B_p(a, 1)$$
, So $||x - a||_p \le 1$
 $||y - a||_p \le 1$

We can combine above 2 equations with $\lambda \in [0, 1]$

$$\lambda \parallel x - a \parallel_p + (1 - \lambda) \parallel y - a \parallel_p \le \lambda + (1 - \lambda)$$

$$\Longrightarrow \parallel \lambda(x - a) \parallel_p + \parallel (1 - \lambda)(y - a) \parallel \le 1$$

$$\Longrightarrow \parallel \lambda(x - a) + (1 - \lambda)(y - a) \parallel \le 1$$

$$\implies \|\lambda x + (1 - \lambda)y - a\| \le 1$$

Hence, $\lambda x + (1 - \lambda)y \in B_p(a, 1)$ Hence, $B_p(a, 1)$ is a convex set. (Property of l_p norm) (Property of l_p norm)