

1
SEQUENCE LISTING

GEN-100D1

<110> Bougueret, Lydie

Chumakov, Ilya

<120> Nucleic Acids and Vectors Encoding Human Defensin Polypeptide and Applications Thereof

<130> GEN-100D1

<140> US 10/045,180

<141> 2001-10-18

<150> US 09/486,580

<151> 2000-02-25

<150> PCT/FR98/01864

<151> 1998-08-28

<150> FR 97/10823

<151> 1997-08-29

<160> 14

<170> PatentIn version 3.1

<210> 1

<211> 4415

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1) .. (4415)

<223> Def-X genomic sequence

<220>

<221> misc_feature

<222> (85) .. (85)

<223> n = a, c, g, or t.

<220>

<221> misc_feature

<222> (143) .. (143)

<223> n = a, c, g, or t.

<220>

<221> misc_feature

<222> (670) .. (670)

<223> n = a, c, g, or t.

<220>

<221> misc_feature

<222> (970) .. (970)

<223> n = a, c, g, or t.

<220>

<221> misc_feature

<222> (1111)..(1111)
<223> n = a, c, g, or t.

<220>
<221> misc_feature
<222> (1150)..(1150)
<223> n = a, c, g, or t.

<220>
<221> CAAT_signal
<222> (1711)..(1714)
<223>

<220>
<221> TATA_signal
<222> (1758)..(1767)
<223>

<220>
<221> misc_feature
<222> (1780)..(1780)
<223> n = a, c, g, or t.

<220>
<221> misc_feature
<222> (1836)..(1874)
<223> Exon 1

<220>

<221> misc_feature
<222> (1875) .. (1880)
<223> splice donor site

<220>
<221> misc_feature
<222> (1974) .. (1974)
<223> n = a, c, g, or t.

<220>
<221> misc_feature
<222> (2117) .. (2117)
<223> n = a, c, g, or t.

<220>
<221> misc_feature
<222> (2133) .. (2133)
<223> n = a, c, g, or t.

<220>
<221> misc_feature
<222> (2155) .. (2335)
<223> Alu insertion

<220>
<221> misc_feature
<222> (2186) .. (2186)
<223> n = a, c, g, or t.

<220>
<221> misc_feature
<222> (2191)..(2191)
<223> n = a, c, g, or t.

<220>
<221> misc_feature
<222> (2367)..(2367)
<223> n = a, c, g, or t.

<220>
<221> misc_feature
<222> (2710)..(2780)
<223> L1 fragment insertion

<220>
<221> misc_feature
<222> (3391)..(3393)
<223> splice acceptor site

<220>
<221> misc_feature
<222> (3394)..(3577)
<223> Exon 2

<220>
<221> misc_feature
<222> (3406)..(3408)
<223> Translation initiation codon (ATG)

<220>
<221> misc_feature
<222> (3578) .. (3583)
<223> splice donor site

<220>
<221> misc_feature
<222> (4123) .. (4123)
<223> n = a, c, g, or t.

<220>
<221> misc_feature
<222> (4161) .. (4163)
<223> splice acceptor site

<220>
<221> misc_feature
<222> (4164) .. (4379)
<223> Exon 3

<220>
<221> misc_feature
<222> (4274) .. (4276)
<223> Translation termination codon (TAA)

<220>
<221> polyA_signal
<222> (4374) .. (4379)

<223>

<400> 1
acaccatttgc tcttcatgtt accccatttt cttatccctc tagtgcaagg aaaccatagg 60
gccttaggtca caccatgagg ctgcncttac aagttatgca aaaactatgg acttgggaga 120
cctgtgcgtt acaacatcac acnccaaatt taaccagctc tccccataac agcacgctca 180
tgtgttactg aggaaatgcc tgtggattgg agtgtgttct gtgtgcagga ggctggtcca 240
ggtttcaattt ctgcaggaca ctggacgttt cccaaaacca gcagactttc cccacgtgca 300
cacacacccc ttctcatttt gcctctacat ccataccac tggcccttc aggcacctac 360
taatgcctta gaacctaaaa ccatcatctg gggcccagtt ccctgaatgg ccctaatttc 420
ttcctctgct ggaatgagtc cagtgcac ttcctccaaac ggtgaaattt ctgggctgct 480
acagatcagg aactcaactgc ttcctcatag gggcagccga cttcaactgct ctgcaacagc 540
gaccacccct agcgaggctt gagatgcctc ttgcctcctt aagactgagg gagacgcttc 600
agctctcaact ccactgcctt aagtctcca cagcgcggtg cctgctgcct tcacacagag 660
ctgcaggggn aggtcctgtt tatccggctt gctggaccag cgctgtgcac aaccctccca 720
tggcaacagt ggctgcctgg cctgcacact gggcttggca acctcgctgt aggtatttat 780
tccctcagga gtgactgcat tctttccca tttccagaaa actgatgcca tttacctcac 840
tatgaggagg aggaggagga ggaggggttggaa gagtggtaca tttaaaatg tgcaactattc 900
tcccttaggac tccccctcaa ataaccagg agggaccata ccagtcatt cctgtgtatc 960
ccaaggcatan gagtaatcat cccactcatg ctgagtgtat ggtggccatt aagcctgccc 1020
tgaactggct tttagacaag gtgttgagc acacagcacc gtctgctgc caccttggcc 1080
ccctcccttg tgagacctct gagacacatt naggtctcac ctaaaaatct caggattct 1140
aggcccaan cggtcctaaa aaattgttca gtctgaactc tctaaggta agagaagagg 1200
tggttgctcc ctctaagaaa ccacatgttgc catgtacatc cttaattccg gaaagtccaa 1260
caaaccgtcc ctgcttagca acacaagccg aggtggtaact cctctcaccc gggcattctc 1320
caacacaccc ttttgtccaa acagcttga tttgtttta tagttggacc ccaggttccc 1380
aggaggctgg ttcaaggccat attccaaatc ctcatctgtt tttgagtggc attcttagcc 1440
tagcctcctt acagggttggaa tactatgata cacagccagg ctgtcccagt ggcttcaat 1500
attctttgg tccagatagt tcagcctcag caccagtgtt ggcacatcacag ggtcaattgt 1560
cttaggagtc atggagaatt catagttggt agctacctgg gcctggccag ggctgaccat 1620

agacaaggca	tccctctgtg	aactcctatt	ttaatgccag	cttccaaca	aatttctcaa	1680
ctgctttac	cagcaggtat	ttaaactact	caatagaaag	taaccctgaa	aattaggaca	1740
cctgttcca	aaagaccctt	aaatagggga	agtcccttcn	ctgcttgac	acagctgctg	1800
atgtggcaac	atgaggcctg	ggacagggga	ctgtccctcg	cccactctgg	tagcctcacg	1860
tagcttaaca	atctgtcagt	aatacaatac	aaaacttaaa	ctttcatact	gcggttccac	1920
ccaggaagct	gtgttccaa	tctgaccctgt	gattatgggg	ccacctcaga	gggnacccag	1980
tgagggata	tttgccatc	tggactgtt	ggttgctggg	ggcagtggct	atgagctcag	2040
ttaataaaact	caagcagttt	ccttccaaac	acacatgtcc	tacttaacgt	gtccaacaga	2100
gatgatcata	ctcatangct	gctaaaacat	tantttatt	ttgagaaaag	tctattcatg	2160
ttcttggccc	atggagttt	catttnatta	ntttatttat	ttgcagaga	tggagtctca	2220
ctatgttgct	caagctggc	tccaaactcct	gggctcaagc	gatttccct	ctttggcctt	2280
tgaaagcgct	gagattgcct	gtgtgagcca	tcatggggc	tcactggccc	actgattaat	2340
cagattaatt	gtttttgct	attgaanttg	tttgacttcc	ttgtatattc	ggatatttac	2400
ccattctaac	acgttagggtt	tgcaaataatt	ttctctcatg	ttctgtgtg	cctttcact	2460
cagttgatgg	tttccttgc	tgtgcaggtg	cttttagtgtt	caacgcagcc	ccgcttgtct	2520
atttccatt	ttattgcctg	tccctttgat	gtcatagcca	agaaataatt	gcccagatta	2580
atgtcaaaaa	gctttatccc	tatataattct	tctagtagtt	tatggttca	gatcttatgt	2640
ttaggtcttc	aatccattga	gttgattttt	gtatgtggta	taagaaaaaa	gaccacatgt	2700
atacatatct	caaattctaa	ggtagtatat	attagacaca	tacaatgtgt	ctatttacac	2760
acattgagct	gaaaataata	aacatatttt	tatcttcaa	tcaactctat	ctctatctca	2820
ctgaacttgt	ttcacctata	gcctgatgag	gttgctgtcc	tctctacccc	agctcctata	2880
ggagactgct	catccccctaa	cctcaaaaac	cccttcatga	gggtgataat	gcccttgaat	2940
cctgcaatga	attagttctc	tactacagtg	gaattcaggt	ctgttatgag	ggtctggatc	3000
tctgaagaga	agagctctca	tttcagaaa	ataagcagga	tttattccct	gaaattactg	3060
aattaaatca	ctgtttcgat	tacttttgc	aatattaaaa	gtaaatattt	aaacaggtaa	3120
aaacagaaat	aatggtaggg	tccttatcat	caccgtgaat	tccaagctag	catagacact	3180
aaacacctagag	attcacacta	gaatgaaagc	tgggagagca	gaggagtctc	agaaggatgt	3240
ggaggccaat	ggacacctgc	aacctctcca	acgaaatgcc	tacccctct	cactgcagca	3300
tccatctctg	agccttctcg	cagcagagct	ataaattcag	cctggctcct	ccgttcccac	3360

acatccactc	ctgctctccc	tcctctcctc	caggtgacta	cagttatgag	gaccctcacc	3420
ctcctctctg	cctttctcct	ggtggccctt	caggcctggg	cagagccgct	ccaggcaaga	3480
gctcatgaga	tgccagccca	gaagcagcct	ccagcagatg	accaggatgt	ggtcattac	3540
tttcaggag	atgacagctg	ctctcttcag	gttccaggtg	agagatgcc	gcatgcagag	3600
ctacagacta	gacagaagga	caggagacag	gctctggaat	tggatctcag	tggcagatgt	3660
cacttaggtg	gctatactta	acatctctgg	tcctggattt	tctcatatct	aaatggaata	3720
gagaaccaaaa	gaaatctaag	agattttct	ttctccaaaa	acttgattcc	aagatatgac	3780
tgtgaaattc	actagattta	agatataagg	agatgctacc	tagttccttc	tggagccaga	3840
caaacaagct	taagtatata	ggaaaatatt	tcaccctgtc	tatataaggag	gttttagaac	3900
ctggagagga	gcctaagaat	gtgttcaggt	gtgtgtgtga	tggcagggaa	tgcagaaaag	3960
tgaagcaaag	gagaatgagt	ctcgaatcct	gtgtgaccag	cactgctctg	tgtatttatt	4020
cctattgact	gagattgttt	gtgctaccgg	ctgtaataca	gccaacatca	ctcatcagcc	4080
aacatgtgac	ttctccaaga	ttccctttac	cacccactgc	tgnaccccg	actcagttc	4140
tgatgctctc	tctgggtccc	caggctcaac	aaaggcattg	atctgccatt	gcagagta	4200
atactgcatt	tttggagaac	atcttggtgg	gacctgcttc	atccttggtg	aacgctaccc	4260
aatctgctgc	tactaagctt	gcagactaga	aaaaaagagt	tcataatttt	cttgagcat	4320
taaagggaat	tgttattctt	ataccttgtc	ctcgatttcc	tgcctcatac	ccaaataaaat	4380
acttggtaac	atgatttccg	ggtttttttt	ttttt			4415

<210> 2

<211> 453

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (52)..(336)

<223> Def-X coding sequence

	10	GEN-100D1
<400> 2		
ctctgcccac tctggtagcc tcacgtagct taacaatctg tgactacagt t atg agg	57	
	Met Arg	
	1	
acc ctc acc ctc ctc tct gcc ttt ctc ctg gtg gcc ctt cag gcc tgg	105	
Thr Leu Thr Leu Leu Ser Ala Phe Leu Leu Val Ala Leu Gln Ala Trp		
5	10	15
gca gag ccg ctc cag gca aga gct cat gag atg cca gcc cag aag cag	153	
Ala Glu Pro Leu Gln Ala Arg Ala His Glu Met Pro Ala Gln Lys Gln		
20	25	30
cct cca gca gat gac cag gat gtg gtc att tac ttt tca gga gat gac	201	
Pro Pro Ala Asp Asp Gln Asp Val Val Ile Tyr Phe Ser Gly Asp Asp		
35	40	45
35	50	
agc tgc tct ctt cag gtt cca ggc tca aca aag ggc ttg atc tgc cat	249	
Ser Cys Ser Leu Gln Val Pro Gly Ser Thr Lys Gly Leu Ile Cys His		
55	60	65
tgc aga gta cta tac tgc att ttt gga gaa cat ctt ggt ggg acc tgc	297	
Cys Arg Val Leu Tyr Cys Ile Phe Gly Glu His Leu Gly Gly Thr Cys		
70	75	80
ttc atc ctt ggt gaa cgc tac cca atc tgc tgc tac taa gcttgcagac	346	
Phe Ile Leu Gly Glu Arg Tyr Pro Ile Cys Cys Tyr		
85	90	
tagagaaaaa gagttcataa ttttcttg a cattaaagg gaattgttat tcttataacct	406	
tgtcctcgat ttccctgcct catcccaa at aaatacttgg taacatg	453	

<210> 3

<211> 94

<212> PRT

<213> Homo sapiens

<220>

<221> MISC_FEATURE

<222> (1)..(94)

<223> Def-X preproprotein sequence

<220>

<221> SIGNAL

<222> (1)..(19)

<223> Def-X signal peptide

<220>

<221> PROPEP

<222> (20) .. (63)

<223> Def-X propeptide

<220>

<221> PEPTIDE

<222> (64) .. (94)

<223> Def-X mature peptide

<400> 3

Met Arg Thr Leu Thr Leu Leu Ser Ala Phe Leu Leu Val Ala Leu Gln
1 5 10 15

Ala Trp Ala Glu Pro Leu Gln Ala Arg Ala His Glu Met Pro Ala Gln
20 25 30

Lys Gln Pro Pro Ala Asp Asp Gln Asp Val Val Ile Tyr Phe Ser Gly
35 40 45

Asp Asp Ser Cys Ser Leu Gln Val Pro Gly Ser Thr Lys Gly Leu Ile
50 55 60

Cys His Cys Arg Val Leu Tyr Cys Ile Phe Gly Glu His Leu Gly Gly
65 70 75 80

Thr Cys Phe Ile Leu Gly Glu Arg Tyr Pro Ile Cys Cys Tyr
85 90

<210> 4

<211> 19

<212> PRT

<213> Homo sapiens

<220>

<221> SIGNAL

<222> (1)..(19)

<223> Def-X signal peptide

<400> 4

Met Arg Thr Leu Thr Leu Leu Ser Ala Phe Leu Leu Val Ala Leu Gln
1 5 10 15

Ala Trp Ala

<210> 5

<211> 44

<212> PRT

<213> Homo sapiens

<220>

<221> PROPEP

<222> (1)..(44)

<223> Def-X propeptide

<400> 5

Glu Pro Leu Gln Ala Arg Ala His Glu Met Pro Ala Gln Lys Gln Pro
1 5 10 15

Pro Ala Asp Asp Gln Asp Val Val Ile Tyr Phe Ser Gly Asp Asp Ser
20 25 30

Cys Ser Leu Gln Val Pro Gly Ser Thr Lys Gly Leu
35 40

<210> 6

<211> 31

<212> PRT

<213> Homo sapiens

<220>

<221> PEPTIDE

<222> (1)..(31)

<223> Def-X mature peptide

<400> 6

Ile Cys His Cys Arg Val Leu Tyr Cys Ile Phe Gly Glu His Leu Gly
1 5 10 15

Gly Thr Cys Phe Ile Leu Gly Glu Arg Tyr Pro Ile Cys Cys Tyr
20 25 30

<210> 7

<211> 4295

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)..(4295)

<223> Def-4 (HNP-4) genomic sequence

<220>

<221> CAAT_signal

<222> (1703)..(1706)

<223>

<220>

<221> TATA_signal

<222> (1752) .. (1761)

<223>

<220>

<221> misc_feature

<222> (1824) .. (1862)

<223> Exon 1

<220>

<221> misc_feature

<222> (1863) .. (1868)

<223> splice donor site

<220>

<221> misc_feature

<222> (3172) .. (3174)

<223> splice acceptor site

<220>

<221> misc_feature

<222> (3175) .. (3358)

<223> Exon 2

<220>

<221> misc_feature

<222> (3187) .. (3189)

<223> Translation initiation codon

<220>
<221> misc_feature
<222> (3359)..(3364)
<223> Splice donor site

<220>
<221> misc_feature
<222> (3942)..(3944)
<223> Splice acceptor site

<220>
<221> misc_feature
<222> (3945)..(4251)
<223> Exon 3

<220>
<221> misc_feature
<222> (4064)..(4066)
<223> Translation termination codon (TAA)

<400> 7
ggatccccat ttgtcttcag tgtaacccat tagttaaacc gcctactgca aggaaaccac 60
aaggcttgga tcagatcatg aggctgccct acaagttatg ccaaaaaata tggacttgga 120
agacctgtct gttataatat cacacccaaa tctaaccagc tctgccaata acagctctct 180
cctatgttac taggaaaatg cctatggatt ggagtgtgtt ctgtgtgcag gaggctggtc 240
caggtttcac ttctgcagga cactggacat ccccacaacc accagacctt ccccacgtgc 300
acacacaccc cttctcattt tgcccttaca tccatatcca ctggccctt caggcaccta 360
ctaattgcctt agaacctaaa accatcatct ggggcccagt tccccaaata gccctaattt 420
cttcctctgc tggaatgagt ccagtgccca cttcctccaa aggtgaaatt gctggccctg 480

caacagatca ggaactcact gcttctata ggggcagccg acttcactgc tctggAACAG	540
cgaccacccc tagcgaggct tgagatgcct cttccctcct taagactgag agcgccgctg	600
cccccagtcc tccatagccc agtgcctggc tgccttcAGC cagagctgca ggggaggccc	660
ttagcaccca agtcctgctg gaccagcgct gtgcacggcc ctccccatggc ggcaggggct	720
gcctggactg catactgggt tcagcaacct cactataGGT attcattccc tcaggaacaa	780
ctgcattctt ttctcatttc cagaaacctc atcccgtta cctcactaca aggaggagga	840
tggTggagag tggTacattt taaaatgtgc actagtctcc ctgggactcc cttcaaata	900
accCaggagg gaccacacaa gggaaagctt atgcatcccc cccacccagt gaccatctc	960
cttaactctgg gtgttagggag actcgtaAGC ctacggatt ggTTTggaa caggTattt	1020
gagctcacaa cacaaggTga tgcaagctaa caccaatctc gctgcagctt tggccaccat	1080
cctaaggac ttctgacaga cattaggTgt cacgcaatca tttgatgagt cttggcctg	1140
gatgacctag acagtcatTTT aggcttgaac tatctaaggc caagaaaaaa ggtgactgtc	1200
ccctctagga accacatgct atatgcacat ctttactcg ggagcctgca acctgcccta	1260
tccagcaaca caagcccagg cgtattcagt ctcattccagg tattctcaa cttacttgt	1320
ctgaatggct tggatttgtt ttatggta gacccaggg cctgggaggt cagttcagac	1380
cacattccaa atcctcatct gtgtgtgggt ggcattttga tcctagtctc ctcgcaaggT	1440
gtatacaaca atatgcaggc caggctctcc tggTggcttt aaatattccc tcggTccagg	1500
tagttcagcc tcagccacca gcataggTat catgggtca attgtcttag gagtcatgag	1560
gaatccacag ttgattgctg cctgggcctg gccaggcgtg accaaagttag acgaggggTC	1620
ggTacctccg tggactcctg ctgaactcc agctttctgc caaatttctc aactgccctt	1680
gttaacagtt atttaaagta cccaatagaa agtaacgctg aaaaatttagg acacctgata	1740
ccaaaagacc cttaaataag gaagtccctc cctctgtgtg catggctgct cttgctacat	1800
aagacctgga acacaggact gctgtctgCC ctctctgctc gcccTgccta gcttgaggat	1860
ctgtaagtaa cacaaaactt aaactttcac attgaggttt caatattgaa gctgtgtccc	1920
cagtctgacc tctcaCTgtg gggccacccc agaggaccca gcgtgaAGCC cctgctgtga	1980
acttctatct gggtgtctgg cggtgtctgg gggtaatggc tactagctaa gtcaatagag	2040
aaactcaaaa agtttccTTc caaacacacg tgcctactt gacatgtCCA ataaagacga	2100
tcacagcttc taaaaacatt attttattgt gagagaAGCC tctgcaggTC ctaggtctgt	2160
ttttcaatca ggttggTTgt ttttgctat tgagttgtt gacttcctta tgtattcaga	2220

tatttacccc ttctaccacg taggctttgc aaacatttc tctcatttc tgggttgcgg	2280
tttccctcag ttgattgttt ccttgctat gaagatgctt tagcgttcaa tgcagccccg	2340
cttgtctatt ttcccatttg ttattgcct gtgccttgg tgtcatagcc aagaaatcat	2400
tactcacgta aatgtccaaa gcttatctt tgtatgtgct tctcgtagtt gtatggttc	2460
aggcttttc aagtctatgt tgagtcttca atccatgttg agctgattt ttacatgttg	2520
tgagagaaag gaccacgtgt atgcacctag caactcatga accttacaca actctttatc	2580
tctctcaactg agctcatttc acctgtaccc tgataaggc attgtcctct tcactctggc	2640
ccctacagga gactactcac cccattacct cagtcgcccc ttcatgaggg tataatgacc	2700
tagaagcctg caatgaggtt ctctctactc caccggatt caggtctggc accagtgttt	2760
agacctgaag agaatagtag ggcccattat cagggaaataa gaggcatttgcctttaaa	2820
ttattgaatg aaagcactgt ttccattctt tttagaatat taaagattt accaggaaat	2880
attaggtatt tcctgaaaac aggaaaaat gccagggtcc tcatacatcac catcaacttc	2940
aacctaggca cagacactaa acatagagct tcctgtgaag aaagctgggagc gagcagagga	3000
ggcattccag ggatgtcaag gccaatagga gtcggcatcc totctaacaatgcacacc	3060
tcctctcaact cagaaggcca aagggttctt atctctgtgc cttctccag aaagctataa	3120
atccaagctg gcttctccct ccccacacag ctgctcctgc totccctccct ccaggtcacc	3180
ccagccatga ggattatcgc ctcctcgct gctattctt tggtagccct ccaggtccgg	3240
gcaggcccac tccaggcaag aggtgatgag gctccaggcc aggagcagcg tggccagaa	3300
gaccaggaca tatctatttc ctttgcatttgc gataaaagct ctgctttca gtttcaggt	3360
gagagaggcc agcataaaaa agtaccgag tctagagaga cggatgggag atgggctctg	3420
gaatcacatc tcaatggtgg atgtcaacttgc ggtggcttta cttaccatct ctggcctcg	3480
attttcttat ctcgaaactg aatagagaga caaacaatg taagtagtct tctttctcca	3540
aagacttgat tccaaggat gtctataaaa ttgcgttaggg ttaagatatg gagagacaga	3600
ttgaccagtt ctttctggat ctaaacaagt agatattata gggaaaatat ttcattctgc	3660
caacaaagga aattttaaaa actggagatg ggcttaagag tatgttcagg tgtgtgtctg	3720
atggggcaaa agcacacaaa tcagagcaaa agagaatgag tctcaaattcc tgtatgagca	3780
gcattgctct gtgtatttat tcctattgac taaggtgtt tgtgttaccg gcactaatgc	3840
agccagcatc accggtcagc cagcatgtgc attctccaag attcccttta ccaccacccg	3900
ctgaccttgg tgcttaattt ctcagtcttc ctctgtgttc ccaggctcaa caagggccat	3960

18

GEN-100D1

ggtctgctct tgca gat tag tattctgccg gcga acaga a cttcgtttg gga actgcct	4020
cattgggtgt gtg agttca cata ctgctg cacgcgtgtc gatta acatt ctgctgtcca	4080
agagaatgtc atgctggaa cgccatcatc ggtggtgtta gcttcacatg cttctgcagc	4140
tgagcttgca gaata gaga aaatgagctc ataatttgc ttgagagcta caggaaatgg	4200
ttgtttctcc tata ctttgt cctta acatc tttcttgatc ctaaa atata atctcgtaac	4260
aagatgtctt tgtttacacc tc ttgaaat ttqat	4295

<210> 8

<211> 542

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (52) .. (345)

<223> Def-4 (HNP-4) coding sequence

<400> 8
gtctgcctc tctgctcgcc ctgcctagct tgaggatctg tcaccccaagc c atg agg 57
Met Arg
1

att atc gcc ctc ctc gct gct att ctc ttg gta gcc ctc cag gtc cg
Ile Ile Ala Leu Leu Ala Ala Ile Leu Leu Val Ala Leu Gln Val Arg
5 10 15

```

gca ggc cca ctc cag gca aga ggt gat gag gag gct cca ggc cag gag cag      153
Ala Gly Pro Leu Gln Ala Arg Gly Asp Glu Ala Pro Gly Gln Glu Gln
          20           25           30

```

cgt ggg cca gaa gac cag gac ata tct att tcc ttt gca tgg gat aaa 201
Arg Gly Pro Glu Asp Gln Asp Ile Ser Ile Ser Phe Ala Trp Asp Lys
35 40 45 50

agc tct gct ctt cag gtt tca ggc tca aca agg ggc atg gtc tgc tct 249
Ser Ser Ala Leu Gln Val Ser Gly Ser Thr Arg Gly Met Val Cys Ser
55 60 65

tgc aga tta gta ttc tgc cg⁷⁰ cga aca gaa ctt cgt gtt ggg aac tgc 297
 Cys Arg Leu Val Phe Cys Arg, Arg Thr Glu Leu Arg Val Gly Asn Cys
⁷⁵ ⁸⁰

ctc att ggt ggt gtg agt ttc aca tac tgc tgc acg cgt gtc gat taa	345
Leu Ile Gly Gly Val Ser Phe Thr Tyr Cys Cys Thr Arg Val Asp	
85 90 95	
cgttctgctg tccaaagagaa tgtcatgctg ggaacgccat catcggtggt gtttagcttca	405
catgcttctg cagctgagct tgccagaatag agaaaaatga gctcataatt tgcttgaga	465
gctacaggaa atggttgttt ctccataact ttgtccttaa catcttctt gatcctaaat	525
atatatctcg taacaag	542

<210> 9

<211> 97

<212> PRT

<213> Homo sapiens

<220>

<221> MISC_FEATURE

<222> (1)..(97)

<223> Def-4 preproprotein sequence

<220>

<221> SIGNAL

<222> (1)..(19)

<223> Def-4 signal peptide

<220>

<221> PROPEP

<222> (20)..(63)

<223> Def-4 propeptide

<220>

<221> PEPTIDE

<222> (64)..(97)

<223> Def-4 mature peptide

<400> 9

Met Arg Ile Ile Ala Leu Leu Ala Ala Ile Leu Leu Val Ala Leu Gln
1 5 10 15

Val Arg Ala Gly Pro Leu Gln Ala Arg Gly Asp Glu Ala Pro Gly Gln
20 25 30

Glu Gln Arg Gly Pro Glu Asp Gln Asp Ile Ser Ile Ser Phe Ala Trp
35 40 45

Asp Lys Ser Ser Ala Leu Gln Val Ser Gly Ser Thr Arg Gly Met Val
50 55 60

Cys Ser Cys Arg Leu Val Phe Cys Arg Arg Thr Glu Leu Arg Val Gly
65 70 75 80

Asn Cys Leu Ile Gly Gly Val Ser Phe Thr Tyr Cys Cys Thr Arg Val
85 90 95

Asp

<210> 10

<211> 94

<212> PRT

<213> Homo sapiens

<220>

<221> MISC_FEATURE

<222> (1) .. (94)

<223> Def-5 preproprotein sequence

<220>

<221> SIGNAL

<222> (1)..(19)

<223> Def-5 signal peptide

<220>

<221> PROPEP

<222> (20)..(63)

<223> Def-5 propeptide

<220>

<221> PEPTIDE

<222> (64)..(94)

<223> Def-5 mature peptide

<400> 10

Met Arg Thr Ile Ala Ile Leu Ala Ala Ile Leu Leu Val Ala Leu Gln
1 5 10 15

Ala Gln Ala Glu Ser Leu Gln Glu Arg Ala Asp Glu Ala Thr Thr Gln
20 25 30

Lys Gln Ser Gly Glu Asp Asn Gln Asp Leu Ala Ile Ser Phe Ala Gly
35 40 45

Asn Gly Leu Ser Ala Leu Arg Thr Ser Gly Ser Gln Ala Arg Ala Thr
50 55 60

Cys Tyr Cys Arg Thr Gly Arg Cys Ala Thr Arg Glu Ser Leu Ser Gly
65 70 75 80

Val Cys Glu Ile Ser Gly Arg Leu Tyr Arg Leu Cys Cys Arg
85 90

<210> 11

<211> 100

<212> PRT

<213> Homo sapiens

<220>

<221> MISC_FEATURE

<222> (1)..(100)

<223> Def-6 preproprotein sequence

<220>

<221> SIGNAL

<222> (1)..(19)

<223> Def-6 signal peptide

<220>

<221> PROPEP

<222> (20)..(70)

<223> Def-6 propeptide

<220>

<221> PEPTIDE

<222> (71)..(100)

<223> Def-6 mature peptide

<400> 11

Met Arg Thr Leu Thr Ile Leu Thr Ala Val Leu Leu Val Ala Leu Gln
1 5 10 15

Ala Lys Ala Glu Pro Leu Gln Ala Glu Asp Asp Pro Leu Gln Ala Lys
20 25 30

Ala Tyr Glu Ala Asp Ala Gln Glu Gln Arg Gly Ala Asn Asp Gln Asp
35 40 45

Phe Ala Val Ser Phe Ala Glu Asp Ala Ser Ser Ser Leu Arg Ala Leu
50 55 60

Gly Ser Thr Arg Ala Phe Thr Cys His Cys Arg Arg Ser Cys Tyr Ser
65 70 75 80

Thr Glu Tyr Ser Tyr Gly Thr Cys Thr Val Met Gly Ile Asn His Arg
85 90 95

Phe Cys Cys Leu
100

<210> 12

<211> 94

<212> PRT

<213> Homo sapiens

<220>

<221> MISC_FEATURE

<222> (1)..(94)

<223> Def-1 preproprotein sequence

<220>

<221> SIGNAL

<222> (1)..(19)

<223> Def-1 signal peptide

<220>

<221> PROPEP

<222> (20)..(64)

<223> Def-1 propeptide

<220>

<221> PEPTIDE

<222> (65) .. (94)

<223> Def-1 mature peptide

<400> 12

Met Arg Thr Leu Ala Ile Leu Ala Ala Ile Leu Leu Val Ala Leu Gln
1 5 10 15

Ala Gln Ala Glu Pro Leu Gln Ala Arg Ala Asp Glu Val Ala Ala Ala
20 25 30

Pro Glu Gln Ile Ala Ala Asp Ile Pro Glu Val Val Val Ser Leu Ala
35 40 45

Trp Asp Glu Ser Leu Ala Pro Lys His Pro Gly Ser Arg Lys Asn Met
50 55 60

Ala Cys Tyr Cys Arg Ile Pro Ala Cys Ile Ala Gly Glu Arg Arg Tyr
65 70 75 80

Gly Thr Cys Ile Tyr Gln Gly Arg Leu Trp Ala Phe Cys Cys
85 90

<210> 13

<211> 18

<212> DNA

<213> Artificial

<220>

<223> Oligonucleotide PU

<400> 13

tgtaaaaacgca cggccagt

18

<210> 14

<211> 18

<212> DNA

<213> Artificial

<220>

<223> Oligonucleotide RP

<400> 14

cagggaaacagc ctatgacc

18