Post Lab of.

Frequency	Vout (V _{rms})	Phase.
3,4 48	30.7mV	85°
34 HZ	294.4 mu	82.3°
340 HZ	2.09 v	42°
3,4 K HZ	2.950	o°
34 KH?	2.05 V	-49°
340 KHZ	267.4 mV	-113.90

$$V_{in} = 3 V_{rms} \qquad d\beta = 20 \log \frac{V_{out}}{V_{in}}$$

$$d\beta = 20 \log_{10} \frac{30.7}{3} \times 10^{3} = -39.79$$

$$d\beta = 20 \log_{10} \frac{294.4}{3} \times 10^{3} = -20.16$$

$$d\beta = 20 \log_{10} \frac{2.09}{3} = -3.13$$

$$d\beta = 20 \log_{10} \frac{2.95}{3} = -0.146$$

$$d\beta = 20 \log_{10} \frac{2.05}{3} = -3.3$$

$$d\beta = 20 \log_{10} \frac{2.05}{3} = -3.3$$

$$d\beta = 20 \log_{10} \frac{2.05}{3} = -3.3$$

Explain: No matter the resistor, capacitor, or op-amp, they are all non-ideal Circuit Component, therefore, the result will always having some error.

Extra Credit: Even through the function generator was initially set to output 3 Urms, once the filter is connected, its impedance interacts with finite output impedance of the function generator. This interaction forms a voltage divider, which reduce the voltage that actually appears at Ch1. Importantly, This interaction forms a voltage divider, which reduce the voltage that actually appears at Ch1. Importantly, this drop is not due to the scope's bandwidth or any parastic effect. — it's solely be cause the filter's input impedance this drop is not due to the scope's bandwidth or any parastic effect. — it's solely be cause the filter's input impedance combined with the generator's origin impedance, divides the voltage, causing the measured value on Ch1 to be less than 31/1111