Honors Algebra 2

Extra Practice Problems

Contents

1	Equations and Inequalities 1.1 Answer Key	3
2	Compound Inequalities 2.1 Answer Key	5
3	Absolute Value Equations and Inequalities 3.1 Absolute Value Equations	6
	3.2 Absolute Value Inequaltiies3.3 Answer Key	7
4	Factoring Techniques 4.1 Answer Key	9
5	The Quadratic Formula 5.1 Answer Key	10 11
6	Complex Numbers 6.1 Answer Key	12 13
7	Graphs of Quadratic Expressions 7.1 Answer Key	14 15
8	Intro to Functions 8.1 Answer Key	16 17
9	Operations with Functions 9.1 Answer Key	18 19
10	Compositions of Functions	20
11	Function Transformations 11.1 Answer Key	22 23
12	Domain and Range 12.1 Answer Key	24 25
13	Inverse Functions 13.1 Answer Key	26 27
14	Intro to Vectors and Matrices 14.1 Answer Key	28

Equations and Inequalities

Equations

Solve each equation. For decimal equations, round your answers to 2 decimal places.

1.
$$-7x + 5 = -10x + 11$$

2.
$$\frac{2}{3}x - 10 = \frac{5}{8}$$

3.
$$-0.2x - 3(x + 1.4) = -5.2x + 1$$

4.
$$1.3 + 2.1(6.3x + 12) = -19.7$$

5.
$$\frac{1}{4}x + \frac{3}{7} = -2\left(x + \frac{3}{8}\right)$$

6.
$$\frac{1}{3} \left(\frac{2}{5}x - \frac{4}{7} \right) = 3x - 8$$

Solve each for the variable indicated.

7.
$$F = ma$$
; for a

8.
$$PV = nRT$$
; for n

9.
$$m = \frac{y_2 - y_1}{x_2 - x_1}$$
; for y_2

10.
$$m = \frac{y_2 - y_1}{x_2 - x_1}$$
; for y_1

11.
$$v = v_0 + gt$$
; for t

12.
$$S = 180(n-2)$$
; for n

Inequalities

Solve each inequality. Graph your answers on a number line.

1.
$$2(x+2) \le 4x - 2(x-1)$$

2.
$$-3.2x - 5(x - 1.5) > 7.7 + 1.8x$$

Equations

1.
$$x = 2$$

4.
$$x \approx -3.49$$

7.
$$a = \frac{F}{m}$$

10.
$$y_1 = y_2 - m(x_2 - x_1)$$

2.
$$x = \frac{255}{16}$$

5.
$$x = -\frac{11}{21}$$

8.
$$n = \frac{PV}{RT}$$

11.
$$t = \frac{v - v_0}{g}$$

3.
$$x = 2.6$$

6.
$$x = \frac{820}{301}$$

9.
$$y_2 = m(x_2 - x_1) + y_1$$

12.
$$n = \frac{s}{180} + 2$$

Compound Inequalities

Solve each. Graph your answers on a number line.

1.
$$-3 < x - 8 \le 12$$

4.
$$x - 1.5 > 8$$
 or $-x + 2 > 9$ 5. $4 \le x + 7 < 9$

7.
$$3x > 9$$
 or $-5x > 25$

10.
$$-5x + 9 \ge 12$$
 or $2x + 6 > 5$

2.
$$7 \le 2x - 5 < 18$$

5.
$$4 < x + 7 < 9$$

8.
$$8x + 12 \le 20$$
 or $x + 12 > 9$ 9. $-8 \le 3x + 7 < 40$

10.
$$-5x + 9 \ge 12$$
 or $2x + 6 > 5$ 11. $3x - 1 < x + 5$ or $-x \ge 5 + 7x$

3.
$$x + 8 < 10$$
 or $5x - 9 \ge 26$

6.
$$-2 < 6x + 10 \le 5$$

9.
$$-8 \le 3x + 7 < 40$$

- 1. $5 < x \le 20$
- 4. x < -7 or $x > \frac{19}{2}$
- 7. x < -5 or x > 3
- 8. ℝ
- 10. $x \le -\frac{3}{5}$ or $x > -\frac{1}{2}$

- 2. $6 \le x < \frac{23}{2}$
- 5. $-3 \le x < 2$
- 9. $-5 \le x < 11$

11.

- 3. $x < 2 \text{ or } x \ge 7$
- 6. $-2 < x \le -\frac{5}{6}$

12. *x* < 3

Absolute Value Equations and Inequalities

3.1 Absolute Value Equations

Solve each of the following.

1.
$$|2x| = 10$$

4.
$$|x + 7| = 9$$

7.
$$\left| \frac{1}{2}x + 2 \right| = x - 3$$

2.
$$|3x - 7| = 8$$

5.
$$|8x + 16| = -24$$

8.
$$\left| \frac{3}{4}x + 2 \right| = 19$$

3.
$$|5x+1|=-4$$

6.
$$|-x-4|=-3$$

9.
$$-5|-3x+5|=-30$$

3.2 Absolute Value Inequaltiies

Solve each. Graph your answers on a number line.

1.
$$|x-9| < 10$$

4.
$$|6x - 18| < 42$$

7.
$$|3x + 2| > 1$$

10.
$$3\left|\frac{1}{3}x+9\right| > 27$$

13.
$$|3x+1| > -2x+2$$

2.
$$|-x+1| \ge 7$$

5.
$$|-2x+1| \ge 9$$

8.
$$|2x - 1| \le 7$$

11.
$$|0.1x + 5.4| < 4.7$$

14.
$$-5|x+7| < -15$$

3.
$$|x+8| < -1$$

6.
$$|5x + 2| < 3x$$

9.
$$|2x - 8| \le 3x$$

12.
$$|2x - 5| \le 12$$

15.
$$|-2x-5| \ge x+1$$

Absolute Value Equations

1.
$$x = \pm 5$$

4.
$$x = 2$$
 or $x = -16$

7.
$$x = 10$$

2.
$$x = -\frac{1}{3}$$
 or $x = 5$

8.
$$x = -28$$
 or $x = \frac{68}{3}$

9.
$$x = -\frac{1}{3}$$
 or $x = \frac{11}{3}$

Absolute Value Inequalities

1.
$$-1 < x < 19$$

2.
$$x \le -6 \text{ or } x \ge 8$$

3. ∅

4.
$$-4 < x < 10$$

5.
$$x \le -4 \text{ or } x \ge 5$$

7.
$$x < -1$$
 or $x > \frac{1}{3}$

8.
$$-3 \le x \le 4$$

9.
$$x \ge 1.6$$

10.
$$x < -54$$
 or $x > 0$

11.
$$-101 < x < -7$$

12.
$$-3.5 \le x \le 8.5$$

13.
$$x < -3$$
 or $x > \frac{1}{5}$

14.
$$x < -10$$
 or $x > -4$

15.
$$x = \mathbb{R}$$

Factoring Techniques

Factor each completely.

1.
$$x^2 + 2x - 15$$

2.
$$a^2 - 15a + 56$$

3.
$$8x^2 + 10x + 3$$

4.
$$w^2 + w - 12$$

5.
$$5b^2 - 9b - 2$$

6.
$$12x^2 + 40x - 7$$

7.
$$4x^2 - 4x - 24$$

8.
$$18t^2 - 9t - 5$$

9.
$$6a^2 + 23a + 21$$

10.
$$x^2 - 12x + 36$$

11.
$$9x^2 - 1$$

12.
$$4x^2 + 4x + 1$$

13.
$$x^3 - x^2 - 2x$$

14.
$$6x^2 - 32x + 10$$

15.
$$2x^3 - 9x^2 - 51x - 40$$
 16. $2x^3 + 3x^2 - 3x - 2$

16.
$$2x^3 + 3x^2 - 3x - 2$$

17.
$$4x^3 + 3x^2 - 42x + 40$$

18.
$$6x^3 - 27x^2 - 168x$$

The graph of a factorable expression is shown below. If the expression is in lowest terms (i.e. there is no number in front of all of the parentheses when it is factored) and contains integer coefficients, write the factored form of the expression.

19.

20.

21.

22.

- 1. (x+5)(x-3)
- 2. (a-8)(a-7)
- 3. (4x+3)(2x+1)
- 4. (w+4)(w-3)
- 5. (b-2)(5b+1)
- 6. (2x+7)(6x-1)
- 7. 4(x-3)(x+2)
- 8. (3t+1)(6t-5)
- 9. (3a+7)(2a+3)
- 10. $(x-6)^2$
- 11. (3x-1)(3x+1)
- 12. $(2x+1)^2$
- 13. x(x-2)(x+1)
- 14. 2(3x-1)(x-5)
- 15. (2x+5)(x+1)(x-8)
- 16. (x+2)(2x+1)(x-1)
- 17. (x+4)(4x-5)(x-2)
- 18. 3x(2x+7)(x-8)
- 19. (x+3)(2x-1)(x-4)
- 20. (x+2)(4x+1)(x-1)
- 21. (x+3)(x+1)(x-1)(x-5)

The Quadratic Formula

Solve each. Exact answers only.

1.
$$x^2 - 6x = -2$$

4.
$$5x^2 + 6x - 2 = 3x^2 + 10$$

7.
$$8x^2 - 2x - 7 = 3x + 1$$

10.
$$3x^2 - 5x + 4 = 3$$

2.
$$4x^2 + 7x - 1 = 0$$

5.
$$7x^2 - 5 = 6x + 11$$

8.
$$x^4 + 7x^2 - 5 = x^4 + 3x$$

3.
$$8x^2 + 4x = 3$$

6.
$$8x^2 + 2x + 1 = 7x^2 - 8x - 9$$

9.
$$-8x^2 = 3x - 14$$

- 1. $x = 3 \pm \sqrt{7}$
- 2. $x = \frac{-7 \pm \sqrt{65}}{8}$
- 3. $x = \frac{-1 \pm \sqrt{7}}{4}$
- 4. $x = \frac{-3 \pm \sqrt{33}}{2}$
- 5. $x = -\frac{8}{7}$, x = 2
- 6. $x = -5 \pm \sqrt{15}$
- 7. $x = \frac{5 \pm \sqrt{281}}{16}$
- 8. $x = \frac{3 \pm \sqrt{149}}{14}$
- 9. $x = \frac{-3 \pm \sqrt{457}}{16}$
- 10. $x = \frac{5 \pm \sqrt{13}}{6}$

Complex Numbers

Simplify each.

1.
$$(4-7i)+(-2+6i)$$

4.
$$3(-2+7i)$$

7.
$$\frac{3+i}{2-i}$$

10.
$$\frac{2+3i}{4-5i}$$

13.
$$\frac{3+2i}{8+9i}$$

2. (2-4i)-(2-3i)

5.
$$(2+3i)(-2-5i)$$

8.
$$3(7-4i)+2i(1+6i)$$
 9. $(-2-6i)^2$

11.
$$(2+3i)(-5+i)$$

14.
$$\frac{-1+5i}{-9-2i}$$

3.
$$6 - (8 + 4i)$$

6.
$$(4+6i)(4-6i)$$

9.
$$(-2-6i)^2$$

12.
$$(-7-5i)^2$$

15.
$$\left(\frac{2}{5} + \frac{1}{3}i\right)^2$$

Solve each. Exact answers only.

16.
$$3x^2 - 7x + 6 = 0$$

17.
$$5x^2 - 3x + 2 = 0$$

18.
$$3x^2 + 7x - 4 = 5x^2 + 2x + 5$$

- 1. 2 i
- 2. -i
- 3. -2-4i
- 4. -6 + 21i
- 5. 11 16*i*
- 6. 52
- 7. 1 + i
- 8. 9 10i
- 9. -32 + 24i
- 10. $-\frac{7}{41} + \frac{22}{41}i$
- 11. -13 13i
- 12. 24 + 70i
- 13. $\frac{42}{145} \frac{11}{145}i$
- 14. $\frac{-1}{85} \frac{47}{85}i$
- 15. $\frac{11}{225} + \frac{4}{15}i$
- 16. $x = \frac{7 \pm i\sqrt{23}}{6}$
- 17. $x = \frac{3 \pm i\sqrt{31}}{10}$
- 18. $x = \frac{5 \pm i\sqrt{47}}{4}$

Graphs of Quadratic Expressions

Identify the vertex and axis of symmetry for each.

1.
$$y = 5x^2 - 15x + 7$$

2.
$$y = x^2 + 8x - 1$$

3.
$$y = \frac{1}{4}(x+3)^2 + 1$$

Write each of the following in general, $y = ax^2 + bx + c$, form.

4.
$$y = (x-7)^2 + 4$$

5.
$$y = -3(x+2)^2 - 5$$

6.
$$y = \frac{1}{4}(x-7)^2 + 1$$

Write each of the following in $y = a(x - h)^2 + k$ and $y = ax^2 + bx + c$ form.

7.

8.

9.

10.

- 1. Vertex: $(\frac{3}{2}, -\frac{17}{4})$; Axis of Symmetry: $x = \frac{3}{2}$
- 2. Vertex: (-4, -17); Axis of Symmetry: x = -4
- 3. Vertex: (-3, 1); Axis of Symmetry: x = -3
- 4. $y = x^2 14x + 53$
- 5. $y = -3x^2 12x 17$
- 6. $y = \frac{1}{4}x^2 \frac{7}{2}x + \frac{53}{4}$
- 7. $y = -\frac{1}{2}(x-2)^2 + 1 = -\frac{1}{2}x^2 + 2x 1$
- 8. $y = 4(x+3)^2 4 = 4x^2 + 24x + 32$
- 9. $y = (x+1)^2 2 = x^2 + 2x 1$
- 10. $y = -2(x-3)^2 + 4 = -2x^2 + 12x 14$

Intro to Functions

Evaluate each of the following given $f(x) = \frac{x}{5} + 8$.

1. f(9)

2. f(-1)

3. f(8)

Evaluate $f(x, y) = 3x^2 - \frac{32}{y}$ for each.

4. f(5,1)

5. f(-2,2)

6. f(0,8)

7. f(1, -1)

Given the graph of f(x) below, find each of the following.

8. f(-5)

9. f(-4)

10. f(-1)

11. f(-2)

12. f(3)

13. f(4)

14. f(2)

15. f(0)

- 1. $\frac{49}{5}$
- 2. $\frac{39}{5}$
- 3. $\frac{48}{5}$
- 4. 43
- 5. -4
- 6. -4
- 7. 35
- 8. -3
- 9. -1
- 10. 0
- 11. 3
- 12. 0
- 13. 2
- 14. 1
- 15. -3

Operations with Functions

Given $f(x) = x^2 + 2x - 3$ and g(x) = 5x + 2, simplify or evaluate each.

1.
$$(f+g)(x)$$

1.
$$(f+g)(x)$$
 2. $(f-g)(x)$ 3. $(g-f)(x)$

3.
$$(g - f)(x)$$

4.
$$(fg)(x)$$

5.
$$\left(\frac{f}{g}\right)(x)$$

6.
$$\left(\frac{g}{f}\right)(x)$$

7.
$$(g+f)(7)$$

8.
$$(fg)(0)$$

Given $f(x) = x^2 + 5$ and g(x) = -3x - 2, find or evaluate each.

9.
$$(f + g)(x)$$

10.
$$(fg)(x)$$

11.
$$(f-g)(4)$$

12.
$$\left(\frac{f}{g}\right)$$
 (7)

Given the graph of f(x) and g(x), find each.

13.
$$(f+g)(-2)$$

14.
$$(f - \sigma)(1)$$

13.
$$(f+g)(-2)$$
 14. $(f-g)(1)$ 15. $(fg)(3)$ 16. $(g-f)(-5)$ 17. $(\frac{f}{g})(4)$ 18. $(\frac{g}{f})(-5)$

17.
$$\left(\frac{f}{g}\right)$$
 (4)

18.
$$\left(\frac{g}{f}\right)(-5)$$

Find the value of each of the following given the table below.

19.
$$(f + g)(1$$

19.
$$(f+g)(1)$$
 20. $(f-g)(-2)$ 21. $(fg)(0)$

21.
$$(fg)(0)$$

22.
$$\binom{8}{f}$$
 (2)

22.
$$(\frac{g}{f})(2)$$
 23. $(g+g)(-3)$

- 1. $x^2 + 7x 1$
- 2. $x^2 3x 5$
- 3. $-x^2 + 3x + 5$
- 4. $5x^3 + 12x^2 11x 6$
- 5. $\frac{x^2+2x+3}{5x+2}$
- 6. $\frac{5x+2}{x^2+2x+3}$
- 7. 97
- 8. -6
- 9. $x^2 3x + 3$
- 10. $-3x^3 2x^2 15x 10$
- 11. 35
- 12. $-\frac{54}{23}$
- 13. 6
- 14. -2
- 15. 3
- 16. -2
- 17. 0
- 18. $\frac{1}{3}$
- 19. 0
- 20. 0
- 21. 4
- 22. $-\frac{2}{3}$
- 23. -8

Compositions of Functions

Given $f(x) = x^2 + 5$ and g(x) = -3x - 2, find or evaluate each.

1.
$$(f \circ g)(x)$$

2.
$$(g \circ f)(x)$$

3.
$$(f \circ f)(x)$$

4.
$$g(g(x))$$

5.
$$(f \circ g)(1)$$

6.
$$(g \circ f)(-2)$$

7.
$$(f \circ f)(0)$$

8.
$$g(g(-8))$$

Given the graph of f(x) and g(x), find each.

9.
$$(f \circ g)(0)$$

10.
$$(g \circ f)(-5)$$

11.
$$(f \circ f)(1)$$

12.
$$(g(g(5)))$$

Find the value of each of the following given the table below.

13.
$$(f \circ g)(1)$$

14.
$$(g \circ f)(3)$$
 15. $(f \circ f)(0)$

15.
$$(f \circ f)(0)$$

16.
$$g(g(4))$$

17.
$$f(g(-1))$$

Answer Key

- 1. $9x^2 + 12x + 9$
- 2. $-3x^2 17$
- 3. $x^4 + 10x^2 + 30$
- 4. 9x + 4
- 5. 30
- 6. -29
- 7. 30
- 8. -68
- 9. -2
- 10. -1
- 11. 1
- 12. 1
- 13. 0
- 14. 2
- 15. 1
- 16. -1
- 17. 3

Function Transformations

For the function $f(x) = \sqrt{x}$, write the resulting function g(x) after the final ordered sequence of transformations.

- 1. (1) Shift up 3 units
 - (2) Shift right 2 units
- 3. (1) Vertical compression by factor of 3
 - (2) Reflect across y-axis

- 2. (1) Shift left 3 units
 - (2) Reflect across x-axis
- 4. (1) Vertical stretch by factor of 4
 - (2) Shift down 7 units

- 1. $g(x) = \sqrt{x-2} + 3$
- 2. $g(x) = -\sqrt{x+3}$
- $3. g(x) = \frac{1}{3}\sqrt{-x}$
- 4. $g(x) = 4\sqrt{x} 7$

Domain and Range

State the domain and range of each.

1.
$$f(x) = -\frac{1}{4}x - \frac{3}{7}$$

$$2. g(x) = \frac{1}{4+x}$$

3.
$$h(x) = \sqrt{2x+5}-1$$

1. Domain: \mathbb{R} Range: \mathbb{R}

2. Domain: $x \neq -4$ Range: $y \neq 0$

3. Domain: $x \ge -\frac{5}{2}$ Range: $y \ge -1$

Inverse Functions

Find the inverse of each function. Then find the domain and range of both the given function and its inverse.

1.
$$f(x) = \frac{-3}{x-4}$$

2.
$$g(x) = \sqrt{2x+7} - 1$$

3.
$$h(x) = \sqrt[3]{x+10} + 6$$

1.
$$f^{-1}(x) = \frac{-3}{x} + 4$$

	Domain	Range
f(x)	$x \neq 4$	$y \neq 0$
$f^{-1}(x)$	$x \neq 0$	<i>y</i> ≠ 4

2.
$$g^{-1}(x) = \frac{1}{2}(x+1)^2 - \frac{7}{2}$$

	Domain	Range
g(x)	$x \ge -3.5$	$y \ge -1$
$g^{-1}(x)$	$x \ge -1$	$y \ge -3.5$

3.
$$h^{-1}(x) = (x-6)^3 - 10$$

	Domain	Range
f(x)	\mathbb{R}	\mathbb{R}
$f^{-1}(x)$	\mathbb{R}	\mathbb{R}

Intro to Vectors and Matrices

Given
$$\vec{a} = \begin{bmatrix} -2\\1 \end{bmatrix}$$
 and $\vec{b} = \begin{bmatrix} 3\\0 \end{bmatrix}$, find and sketch the result of each.

1. $\vec{a} + \vec{b}$

2. $\vec{a} - \vec{b}$

3. $2\vec{a}$

4. $3\vec{b}$

5. $2\vec{a} + 3\vec{b}$

 $1. \ \begin{bmatrix} 1 \\ 1 \end{bmatrix}$

2. $\begin{bmatrix} -5 \\ 1 \end{bmatrix}$

3. $\begin{bmatrix} -4 \\ 2 \end{bmatrix}$

4. $\begin{bmatrix} 9 \\ 0 \end{bmatrix}$

5. $\begin{bmatrix} 5 \\ 2 \end{bmatrix}$

