Grounding Language in Exploratory Behaviors and Multi-Modal Perception

Zach Osman, Jivko Sinapov

Motivation

- Grounded Language Learning
- Multimodal vs Vision only

Objects

Tatiya, G., and Sinapov, J. (2019) **Deep Multi-Sensory Object Category Recognition Using Interactive Behavioral Exploration** In proceedings of the IEEE International Conference on Robotics and Automation (ICRA)

Data - Object-Word Labels

object	words				
ball_base	hard, ball, green, small, round, toy				
ball_basket	squishy, soft, brown, ball, rubber, round, toy				
ball_blue	ball, blue, plastic, hard, round, toy				
ball_transparent	ball, blue, transparent, hard, small, round, toy				
ball_yellow_purple	ball, yellow, purple, multi-colored, soft, small, round, toy				
basket_cylinder	basket, container, wicker, cylindrical, yellow, light, empty				
basket_funnel	basket, container, wicker, cylindrical, red, yellow, multi-colored, empty				
basket_green	basket, green, container, wicker, empty				
basket_handle	basket, brown, container, wicker, handle, empty				

Data - Sensorimotor Features

- 48 different behavior modality combinations
- Modalities used: audio, vibration, flow, haptics, SURF, finger position (only for grasp), color (only for look)

lift

hold

shake

drop

tap

poke

push

press

Object Exploration by Robot

Train Classifiers for each Word-Sensorimotor Combination

Test and Update Make Classifier Train Record Statistics **Confusion Matrix** For the word 'hard', the Train classifier using data Test classifier on test set Record Kappa, Accuracy, from 'tap_audio' behavior 'tap', and the of objects using Recall, Precision, and F1 sensorimotor data file from confusion matrix modality 'audio', make 'tap_audio' data and classifier update confusion matrix 'hard_tap_audio_0' for the accordingly first train-test split

Results

empty_stats

hard_stats

Context	Карра	Accuracy	F1	Context	Карра	Accuracy	F1
shake_vibro	0.6625268982477710	0.845691382765531	0.78186	tap_audio	0.5816455305216530	0.8096192384769540	0.7262
low_drop_audio	0.5891191226029900	0.8056112224448900	0.74540	poke_audio	0.47733054017656700	0.7474949899799600	0.6735
crush_vibro	0.5360673496020950	0.781563126252505	0.71087	low_drop_audio	0.4579734133347130	0.7474949899799600	0.6519
grasp_audio	0.5118498283436080	0.7875751503006010	0.66242	lift_slow_haptics	0.3772312179922770	0.6844262295081970	0.6225
push_audio	0.48774240761068400	0.776	0.64779	shake_vibro	0.35961650970992900	0.7274549098196390	0.5555
low_drop_vibro	0.46411311974225900	0.7595190380761520	0.64497	push_vibro	0.3514354894500170	0.7	0.5810
crush_audio	0.4548757251132660	0.7414829659318640	0.66318	grasp_audio	0.34337214787595900	0.6813627254509020	0.5912
lift_slow_audio	0.42734667701758500	0.7274549098196390	0.64766	hold_haptics	0.33527454242928500	0.6544117647058820	0.6115
crush_haptics	0.4250203713276850	0.7139874739039670	0.66503	push_audio	0.3261569757586030	0.682	0.5714
hold_haptics	0.4168177381118390	0.6985294117647060	0.71058	tap_vibro	0.3146876507924730	0.7034068136272550	0.5316

Combining all Sensorimotor Features

Load Individual Classifiers

Predict Probability

Weighted Sum of Individual Results

Normalize Overall Results and Predict

Load all classifiers for a particular word, such as 'hard'

For each individual classifier, predict probability of word applying to an instance of an object with that context's data

Calculate weighted sum based on Kappa values for all individual classifiers to get overall class distribution probabilities Normalize results and make a prediction if the word applies to the object or not and compare to the ground truth

Results -Heat Map

- 0.8

- 0.6

- 0.4

- 0.2

Results - PCA

Results - Multi-Context Kappas

Challenges

- Problem: Unbalanced Data Set
- Solution: upsampling

Conclusion

- Multimodal approach allows us to better identify properties of an object that can not be picked up through visual data alone
- Using a combination of behavior-modalities produces more accurate results

Future Work

- Deep Neural Network
- Knowledge Transfer between robots (different joints, different sensors)

Acknowledgements

Professor Sinapov

Thank You!

Any questions?