MODELOS AVANZADOS DE COMPUTACIÓN

Lista de Problemas NP-completos Básicos Para Reducciones

Para demostrar que un problema Π es NP-completo hay que reducir un problema NP-completo conocido a Π . La siguiente lista contiene problemas NP-completos conocidos y que son los más usuales que se eligen para realizar la reducción a un nuevo problema.

- 1. 3-SAT exacto: Dado un conjunto de variables U y un conjunto de cláusulas C de longitud exactamente igual a 3, determinar si se le puede asignar un valor de verdad a cada variable, de tal forma que en cada cláusula haya un literal que es cierto.
- 2. NAESAT: Dado un conjunto de variables U y un conjunto de cláusulas C de longitud exactamente igual a 3, determinar si se le puede asignar un valor de verdad a cada variable, de tal forma que en cada cláusula haya un literal que es cierto y otro que es falso.
- 3. Acoplamiento por tripletas (ACTRI): Dados
 - \blacksquare Tres conjuntos disjuntos W, X, Y del mismo tamaño q,
 - Un subconjunto $M \subseteq W \times X \times Y$ de compatibilidades,

determinar si existe un subconjunto $M' \subseteq M$ con q elementos, tal que cada elemento de W, X, Y esté en una y sólo en una de las tripletas de M'.

- 4. **3-SET**: Dado un conjunto finito X con |X| = 3q y un subconjunto C de subconjuntos de X de tres elementos, determinar si existe $C' \subseteq C$ tal que $X = \bigcup_{A \in C'} A$ y los elementos de C' son disjuntos dos a dos ($A, B \in C'$ y $A \neq B$, entonces $A \cap B = \emptyset$), o lo que es lo mismo que cada elemento de X pertenezca a uno y solo uno de los conjuntos de C'.
- 5. Clique máximo (CM): Dado un grafo G = (V, E) y un número natural $J \leq |V|$, determinar si existe un clique B de tamaño mayor o igual que J, es decir, un subconjunto $B \subseteq V$ tal que $\forall v_1, v_2 \in B$, $(v_1, v_2) \in E$ (todas las parejas de vértices de B están conectadas entre si).
- 6. Cubrimiento por vértices (CV): Dado un grafo G = (V, E) y un número natural $J \leq |V|$, determinar si existe un cubrimento por vértices C de tamaño menor o igual que J, donde $C \subseteq V$ es un cubrimiento por vértices, si todo enlace del grafo tiene, al menos, uno de sus extremos en C.
- 7. Conjunto Independiente (CI): Dado un grafo G = (V, E) y un número natural J ≤ |V|, determinar si existe un conjunto independiente A de tamaño mayor o igual que J, donde A ⊆ V es un conjunto independiente si no existe un enlace del grafo que uno dos vértices de A.

- 8. Circuito Hamiltoniano (CH): Dado un grafo G = (V, E), determinar si existe una sucesión de nodos (v_1, \ldots, v_n) de tal manera que cada nodo de V aparece una y sólo una vez en la sucesión y existe un enlace que une cada nodo con el siguiente nodo de la lista y el último con el primero.
- 9. SUMA: Dado un conjunto A y un tamaño para cada uno de sus elementos:

$$s:A\to\mathbb{N}$$

y un número entero B, determinar si existe un $\ A'\subseteq A$ tal que se verifique:

$$\sum_{a \in A'} s(a) = B$$

10. **PARTICIÓN**: Dado un conjunto C y un tamaño para cada uno de sus elementos:

$$s:C\to\mathbb{N}$$

determinar si existe un $C' \subseteq C$ tal que se verifique:

$$\sum_{a \in C'} s(a) = \sum_{a \in C \setminus C'} s(a)$$