Category theory in context

Siddharth Bhat

Monsoon, second year of the plague

Contents

1	Cate	egories, Functors, Natural transformations	5
	1.1	Abstract and concrete categories	5
	1.2	Duality	5
		1.2.1 Musing	5
		1.2.2 Solutions	5
	1.3	Functors	8

4 CONTENTS

Chapter 1

Categories, Functors, Natural transformations

1.1 Abstract and concrete categories

1.2 Duality

1.2.1 Musing

How does one remember mono is is $qk = ql \implies k = l$ and vice versa?

1.2.2 Solutions

Lemma 1.2.3 $f: x \to y$ is an isomorphism iff it defines a bijection $f_*: C(c, x) \to C(c, y)$. *Proof* (f is iso \Longrightarrow post composition with f induces bijection): Let $f: x \to y$ be an isomorphism. Thus we have an inverse arrow $g: y \to x$ such that $fg = id_x$. The map:

$$C(c,x) \xrightarrow{f*} C(c,y) : (\alpha : c \to x) \mapsto (f\alpha : c \to y)$$

has a two sided inverse:

$$C(c,y) \xrightarrow{g*} C(c,x) : (\beta:c \to y) \mapsto (g\beta:c \to x)$$

which can be checked as $g_*(f_*(\alpha)) = g_*(f\alpha) = gf\alpha = id_x\alpha = \alpha$, and similarly for $f_*(g_*(\beta))$. Hence we are done, as the iso induces a bijection of hom-sets. \square

Proof (post-composition with f is bijection implies f is iso): We are given that the post composition by f, $f_*: C(c,x) \to C(c,y)$ is a bijection. We need to show that f is an isomorphism, which means that there exists a function g such that $fg = id_y$ and $gf = id_x$. Since post-composition is a bijection for all c, pick c = y. This tells us that the post-composition $f_*: C(y,x) \to C(y,y)$ is a bijection. Since $id_y \in C(y,y)$, id_y an inverse image $g \equiv f_*^{-1}(id_y)$. [We choose to call this map g]. By definition of f_*^{-1} , we have that $f_*(f_*^{-1}(id_y)) = id_y$, which means that $f_* = id_y$. We also need to show that $g = id_x$. To show this, consider $f_*(gf) = fgf = (fg)f = (1_y)f = f$. We also have that $f_*(id_x) = fid_x = f$. Since f_* is a bijection, we have that $id_x = gf$ and we are done. \Box

Iso is bijection of hom-sets

Q 1.2.ii: Show that $f: x \to y$ is split epi iff for all $c \in C$, post composition $f \circ - : C(c, x) \to C(c, y)$ is a surjection.

Proof (split epi implies post composition is surjective): Let $f: e \to b$ be split epi, and thus possess a section $s: b \to e$ such that $fs = id_b$. We wish to show that post composition $C(c, e) \xrightarrow{f_*} C(c, b)$ is surjective. So pick any $g \in C(c, b)$. Define $sg \in C(c, e)$. See:

$$f_*(sg) = fsg = (fs)g = id_bg = g$$

. Hence, for all $g \in C(c,b)$ there exists a pre-image under f_* , $sg \in C(c,e)$. Thus, f_* is surjective since every element of codomain has a pre-image. \square

Proof (post composition is surjective implies split epi): Let $f: e \to b$ be a morphism such that for all $c \in C$, we have $C(c,e) \xrightarrow{f_*} C(c,b)$ is surjective. We need to show that there exists a morphism $s: b \to e$ such that $fs = id_b$. Set c = b. This gives us a surjection $C(b,e) \xrightarrow{f_*} C(b,b)$. Pick an inverse image of $id_b \in C(b,b)$. That is, pick any function $s \in f_*^{-1}(id_b)$. By definition, of s being in the fiber of id_b , we have that $f_*(s) = fs = id_b$. Thus means that we have found a function s such that $fs = id_b$. Thus we are done. \Box

Q 1.2.iii: Mono is closed under composition, and if gf is monic then so is f.

Proof (Mono is closed under composition): Let $f: x \to y$, $g: y \to z$ be monomorphisms (Recall that f is a monomorphism iff for any α , β , if $f\alpha = f\beta$ then $\alpha = \beta$). We are to show that $gf: x \to z$ is monic. Consider this diagram which shows that gfk = gfl for arbitrary $k, l: \alpha \to x$. We wish to show that k = l.

Since g is mono, we can cancel it from gfk = gfl, giving us fk = fl. Since f is mono, we can once again cancel it, giving us k = l as desired. Hence, we are done. \Box .

Proof (*If* gf *is monic then so is* f): Let us assume that fk = fl for arbitrary l. We wish to show that k = l. We show this by applying g, giving us $fk = fl \implies gfk = gfl$. As gf is monic, we can cancel, giving us $gfk = gfl \implies k = l$. \square .

Q 1.2.iv What are monomorphisms in category of fields?

1.2. DUALITY 7

Proof: Claim: All morphisms are monomorphisms in the category of fields. Let $f: K \to L$ be an arbitrary field morphism. Consider the kernel of f. It can either be $\{0\}$ or K, since those are the only two ideals of K. However, the kernel can't be K, since that would send 1 to 0 which is an illegal ring map. Thus, the map f has trivial kernel, therefore is an injection, is left-cancellable, is a monomorphism. \Box

Q 1.2.**v** Show that the ring map $i : \mathbb{Z} \to \mathbb{Q}$ is both monic and epic but not iso.

Proof i *is not iso*: No ring map $i : \mathbb{Z} \to \mathbb{Q}$ can be iso since the rings are different (eg. \mathbb{Q} is a field). \square

Proof i *is epic*: To show that it's epic, we must show that given for arbitrary $f, g : \mathbb{Q} \to R$ that fi = gi:

implies that f = g. Let $fi : \mathbb{Z} \to R = gi$. Then, the functions f,g are uniquely determined since \mathbb{Q} is the field of fractions of \mathbb{Z} , thus a ring map $\mathbb{Z} \to R$ extends uniquely to a ring map $\mathbb{Q} \to R$. Let's assume that f(i(z)) = g(i(z)) for all z, and show that f = g. Consider arbitrary $p/q \in \mathbb{Q}$ for $p,q \in \mathbb{Z}$. Let's evaluate:

$$f(p/q) = f(p)f(q)^{-1} = f(i(p)) \cdot f(i(q))^{-1} = g(i(p)) \cdot g(i(q))^{-1} = g(p/q)$$

which shows that f(p/q) = g(p/q) for all p, q. Thus, we can extend a ring function defined on the integers to rationals uniquely, hence $fi = gi \implies f = g$ showing that i is epic. \Box

Proof i *is monic*: given two arbitrary maps $k, l : R \to \mathbb{Z}$, if ik = il then we must have k = l. Given ik = il, since i is an injection of \mathbb{Z} into \mathbb{Q} , we must have k = l.

Q 1.2.vi Mono + split epi iff iso.

Proof Iso is mono + *split epi*: Iso is both left and right cancellable. Hence it's mono and epi. It splits because the inverse of the iso splits it. \Box .

Proof mono + split epi is iso: Let $f: e \to b$ be mono (for all $k, l: p \to e$, $fk = fl \implies k = l$) and split epi (there exists $s: b \to e$ such that $fs: b \to b = id_b$. We need to show it's iso. That is, there exists a $g: b \to e$ such that $fg = id_b$ and $gf = id_e$. I claim that $g \equiv s$. We already know that $fg = fs = id_b$ from f being split epi. We need to check that $gf = fs = id_a$. Consider:

$$fsf = (fs)f = id_bf = f = fid_e$$

Hence, we have that $f(sf) = f(id_e)$. Since f is mono, we conclude that $sf = id_e$. We are done since we have found a map s such that $fs = id_b$, $sf = id_e$.

1.2.vii Regarding a poset a category, define the supremum of a subcollection, such that the dual gives the infimum. *Proof*: We regard an arrow $a \to b$ as witnessing that $a \le b$. First define an upper bound of a set O to be an object u such that for all $o \in O$, we have $o \le u$. Now, the supremum of O is the least upper bound of O. That is, s is a supremum iff s is an upper bound, and for all other upper bounds t of O, we have that $s \le t$. So we draw a diagram showing upper bounds and suprema:

Upper bound and supremum

1.3 Functors

Exercise 1.3.i What is a functor between groups, when regarded as one-object categories?

Proof: It's going to be a group homomorphism. Since, a functor preserves composition, we have that a functor $F: C \to D$ preserves the group structure; for elements of the group / isos $f,g \in Hom(G,G)$, we have that the functor obeys $F(f \circ_G g) = (Ff) \circ_H (Fg)$, which is exactly the equation we need to preserve group structure. For example, since a functor preserves isomorphisms, an element of the group $f \in Hom(G,G)$ is mapped to an inverbile element $F(f) \in Hom(H,H)$. □

Exercise 1.3.ii What is a functor between preorders, regarded as a category?

Proof: Going to be a preorder morphism. I don't know what these are called; If we had a partial order, these would be called monotone maps. Recall that $a \to b$ is the encoding of $a \le b$ within the category. Suppose we have a functors between preorders (encoded as categories) $F: C \to D$. Since F preserves identity arrows, and $a \le a$ is encoded as id_a , we have that $F(a) \le F(a)$ as:

$$F(\alpha\leqslant\alpha)=F(id_\alpha)=id_{F(\alpha)}=F(\alpha)\leqslant F(\alpha)$$

Similarly, since functors take arrows to arrows, the fact that $a \leqslant b$ which is witnessed by an arrow $a \xrightarrow{f} b$ translates to an arrow $F(a) \xrightarrow{Ff} F(b)$, which stands for the relation $F(a) \leqslant F(b)$. Thus, the map indeed preserves the preorder structure. Preservation of composition of arrows preserves transitivity of the order relation. \Box

1.3. FUNCTORS 9

Exercise 1.3.iii Objects and morphisms in the image of a functor $F: C \to D$ do not necessarily define a subcategory of D.

Proof: Recall that a morphism can *smoosh* objects, thereby creating coalescing the domains and codomains of arrows that used to be disjoint. Concretely, consider the diagram:

$$a \stackrel{f}{\longrightarrow} b$$

$$c \xrightarrow{g} d$$

Where we have a category of four objects a,b,c,d with two disconnected arrow $f:a\to b$, and $g:c\to d$. This is the domain of the functor we will build. The codomain is a three object category:

$$\begin{array}{c}
x \xrightarrow{k} y \\
\downarrow \downarrow \downarrow \downarrow \\
\uparrow \downarrow \downarrow \downarrow
\end{matrix}$$

The functor will smoosh the four objects into three with a functor, which sends a to x, both b, c to y, and d to z. Now the image of the functor only has the arrows k, l, but not the composite $l \circ k$, which makes the image NOT a subcategory.

$$x: a \xrightarrow{k:f} y: b, c$$

$$lok: \downarrow \qquad \qquad l:g$$

$$z: d$$

Exercise 1.3.iv Very that the Hom-set construction is functorial.

Exercise 1.3.v What is the difference between a functor $F: C^{op} \to D$ and a functor $F: C \to D^{op}$?

Proof: There is no difference. The functor $C^{op} \rightarrow D$ looks like:

$$\begin{array}{ccc} a & & b & \longrightarrow & Fa \\ \downarrow & & & & \downarrow_{f_{op}} & & \downarrow_{Ff_{op}} \\ b & & a & \longrightarrow & Fb \end{array}$$

while the functor $G: D \to C^{op}$ looks like:

$$\begin{array}{ccc}
p & \longrightarrow & Gp & Gp \\
\downarrow^f & Gf \\
\downarrow^q & \longrightarrow & Gq & Gq
\end{array}$$

Given a functor $F: C^{op} \to D$, we can build an associated functor $G_F: C \to D^{op}$. Consider an arrow $x \to fy \in C$. Dualize it, giving us an arrow $y_{op} \xrightarrow{f_{op}} x_{op} \in C^{op}$. Find it image under F, which gives us an arrow $F(y_{op}) \xrightarrow{F(f_{op})} F(x_{op}) \in D$. Dualize this in D, giving us

 $F(x_{op})_{op} \xrightarrow{F(f_{op})}_{op} F(y_{op}) \in D^{op}$. See that the arrow direction coincides with the domain arrow direction $x \to fy \in C$. So we can build a functor H which sends the arrow $x \to fy \in C$ to the arrow $F(x_{op})_{op} \xrightarrow{F(f_{op})}_{op} F(y_{op}) \in D^{op}$. Hence, $H: C \to D^{op}$, defined by $H(x) \equiv F(x_{op})_{op}$ and $H(f) \equiv F(f_{op})_{op}$. By duality, we get the other direction where we start from $F': C \to D^{op}$ and end at $H': C^{op} \to D$. Thus, the two are equivalent.

In a nutshell, the diagram is:

Exercise 1.3.vi Given the comma category $F \downarrow G$, define the domain and codomain projection functors dom: $F \downarrow G \rightarrow F$ and codom: $F \downarrow G \rightarrow G$.

Recall that an object in the comma category is a a triple $(d \in D, e \in E, F(d) \xrightarrow{f} F(e))$, or diagramatically:

$$\begin{array}{ccc} d \in D & e \in E \\ F:D \downarrow & & \downarrow G \\ Fd \in C & \longrightarrow & Ge \in C \end{array}$$

and a morphism in such a category is a diagram:

$$\begin{array}{cccc} (d,e,f) & & Fd & \longrightarrow & Ge \\ & \downarrow & & \downarrow & & \downarrow \\ (\alpha \downarrow \beta) & & \alpha & \beta & \downarrow \\ & \downarrow & & \downarrow & \downarrow \\ (d',e',f') & & Fd' & \longrightarrow & Ge' \end{array}$$

We constrct the domain functor dom as a functor that sends an object $(d \in D, e \in E, F(d) \xrightarrow{f} F(e))$ to an object $d \in D$. It sends the morphism between (d, e, f) and (d', e', f'), given by $(\alpha : Fd \to Fd', \beta : Ge \to Ge')$ to the arrow $Fd \xrightarrow{\alpha} Fd' \in D$.

In a diagram, this looks like:

codom will do the same thing, by stripping out the codomain of the comma instead of the domain. $\hfill\Box$

Exercise 1.3.vii Define slice category as special case of the comma category.

1.3. FUNCTORS

Proof: To define the slice C/c whose objects are of the form $d \to c$ for varying $d \in C$, we pick the category D = C, E = C, and functors $F: C \to C = id$, $G: C \to C = \delta_c$, that is, the constant functor which smooshes the entire C category into the object $c \in C$ by mapping all objects to c and all arrows to id_C .

This causes the diagram to collapse down to objects of the form $d \to c$, and the arrows to be what we'd expect \Box .

Exercise 1.3.viii Show that functors need not reflect isomorphisms. for a functor $F: C \to D$, and a morphisms $f \in C$ such that Ff is an isomorphism in D but f is not an isomorphism in C.

Pick a category C and an object $o \in C$. Build the constant functor $\delta_o : C \to C$. The image of every arrow $c \stackrel{\alpha}{\to} c'$ is the identity arrow id_o which is an iso. The arrow a need not be iso. The functor δ_o does not reflect isos. \square

Exercise 1.3.ix For any group G,