<u>Help</u> smitha_kannur -

Homework due Oct 28, 2020 05:29 IST Completed

In this problem we will analyze a simple neural network to understand its classification properties. Consider the neural network given in the figure below, with **ReLU activation functions (denoted by f) on all neurons**, and a **softmax activation function in the output layer**:

Given an input $x = [x_1, x_2]^T$, the hidden units in the network are activated in stages as described by the following equations:

$$egin{array}{lll} z_1 &= x_1 W_{11} + x_2 W_{21} + W_{01} & f\left(z_1
ight) &= \max\{z_1,0\} \ \\ z_2 &= x_1 W_{12} + x_2 W_{22} + W_{02} & f\left(z_2
ight) &= \max\{z_2,0\} \ \\ z_3 &= x_1 W_{13} + x_2 W_{23} + W_{03} & f\left(z_3
ight) &= \max\{z_3,0\} \ \\ z_4 &= x_1 W_{14} + x_2 W_{24} + W_{04} & f\left(z_4
ight) &= \max\{z_4,0\} \ \end{array}$$

The final output of the network is obtained by applying the **softmax** function to the last hidden layer,

$$o_1 = rac{e^{f(u_1)}}{e^{f(u_1)} + e^{f(u_2)}}$$
 $o_2 = rac{e^{f(u_2)}}{e^{f(u_1)} + e^{f(u_2)}}.$

In this problem, we will consider the following setting of parameters:

$$\begin{bmatrix} W_{11} & W_{21} & W_{01} \\ W_{12} & W_{22} & W_{02} \\ W_{13} & W_{23} & W_{03} \\ W_{14} & W_{24} & W_{04} \end{bmatrix} = \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \\ -1 & 0 & -1 \\ 0 & -1 & -1 \end{bmatrix},$$

$$\begin{bmatrix} V_{11} & V_{21} & V_{31} & V_{41} & V_{01} \\ V_{12} & V_{22} & V_{32} & V_{42} & V_{02} \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 & 0 \\ -1 & -1 & -1 & -1 & 2 \end{bmatrix}.$$

Feed Forward Step

2/2 points (graded)

Consider the input $x_1=3$, $x_2=14$. What is the final output (o_1,o_2) of the network?

Important: Numerical outputs from the softmax function are sometimes extremely close to 0 or 1. We recommend you enter you answer as a mathematical expression, such as $e \land 2+1$. If you choose to enter your answers as a decimal, you must enter the decimal accurate to at least **9 decimal places**.

Answer: 1 / (e^15 + 1)

STANDARD NOTATION

Solution:

Plugging the formula, we see that

$$egin{array}{ll} f(z_1) &=& \max\{z_1,0\} = 2 \ f(z_2) &=& \max\{z_2,0\} = 13 \ f(z_3) &=& \max\{z_3,0\} = 0 \ f(z_4) &=& \max\{z_4,0\} = 0 \end{array}$$

Going to the next layer, we see that

$$egin{array}{lll} u_1 &=& f\left(z_1
ight)V_{11} + f\left(z_2
ight)V_{21} + f\left(z_3
ight)V_{31} + f\left(z_4
ight)V_{41} + V_{01} \ u_1 &=& 2\left(1
ight) + 13\left(1
ight) + 0\left(1
ight) + 0\left(1
ight) \ u_1 &=& 15 \ u_2 &=& f\left(z_1
ight)V_{12} + f\left(z_2
ight)V_{22} + f\left(z_3
ight)V_{32} + f\left(z_4
ight)V_{42} + V_{02} \ u_2 &=& 2\left(-1
ight) + 13\left(-1
ight) + 0\left(-1
ight) + 0\left(-1
ight) + 2 \ u_2 &=& -13 \end{array}$$

Passing the values of u_1,u_2 through the function f gives:

$$f(u_1) = \max\{u_1, 0\}$$

 $f(u_1) = \max\{15, 0\}$
 $f(u_1) = 15$
 $f(u_2) = \max\{u_2, 0\}$
 $f(u_2) = \max\{-13, 0\}$
 $f(u_2) = 0$

Plugging these values into the following equations for o_1,o_2 gives:

$$egin{array}{ll} o_1 &=& rac{e^{f(u_1)}}{e^{f(u_1)}+e^{f(u_2)}} \ o_2 &=& rac{e^{f(u_2)}}{e^{f(u_1)}+e^{f(u_2)}} \ o_1 &=& rac{e^{15}}{e^{15}+1}, & o_2 &=& rac{1}{e^{15}+1} \end{array}$$

Submit

You have used 1 of 4 attempts

Decision Boundaries

1/1 point (graded)

In this problem we visualize the "decision boundaries" in x-space, corresponding to the four hidden units. These are the lines in x-space where the values of z_1, z_2, z_3, z_4 are exactly zero. Plot the decision boundaries of the four hidden units using the parameters of W provided above.

Enter below the **area of the region** of your plot that corresponds to a negative (< 0) value for all of the four hidden units.

Solution:

The four decision boundaries are given by the following four functions respectively.

$$egin{array}{lll} z_1 &=& x_1W_{11} + x_2W_{21} + W_{01} = 0 \ z_2 &=& x_1W_{12} + x_2W_{22} + W_{02} = 0 \ z_3 &=& x_1W_{13} + x_2W_{23} + W_{03} = 0 \ z_4 &=& x_1W_{14} + x_2W_{24} + W_{04} = 0 \end{array}$$

When the weight parameters are plugged in, the above equations simplify to the following expressions:

$$egin{aligned} x_1-1&=0\ x_2-1&=0\ -x_1-1&=0\ -x_2-1&=0 \end{aligned}$$

Note that the four equations above correspond to four straight lines in the two-dimensional x-space. The four equations are visualized in the figure below.

Submit

You have used 3 of 3 attempts

1 Answers are displayed within the problem

Output of Neural Network

3/3 points (graded)

Using the same matrix V as above, what is the value of o_1 (accurate to at least three decimal places if responding numerically) in the following three cases?

• Assuming that $f(z_1) + f(z_2) + f(z_3) + f(z_4) = 1$:

• Assuming that $f(z_1) + f(z_2) + f(z_3) + f(z_4) = 0$:

ullet Assuming that $f\left(z_{1}
ight)+f\left(z_{2}
ight)+f\left(z_{3}
ight)+f\left(z_{4}
ight)=3$:

STANDARD NOTATION

Solution:

Note that,

$$egin{array}{ll} u_1 &=& f\left(z_1
ight)V_{11} + f\left(z_2
ight)V_{21} + f\left(z_3
ight)V_{31} + f\left(z_4
ight)V_{41} + V_{01} \ & u_2 &=& f\left(z_1
ight)V_{12} + f\left(z_2
ight)V_{22} + f\left(z_3
ight)V_{32} + f\left(z_4
ight)V_{42} + V_{02} \ & \end{array}$$

Plugging in values of ${\it V}$ and the assumption of the first case, we get:

$$egin{array}{lll} u_1 &=& f(z_1) + f(z_2) + f(z_3) + f(z_4) + 0 \ u_1 &=& 1 \ u_2 &=& -1 \left(f(z_1) + f(z_2) + f(z_3) + f(z_4)
ight) + 2 \ u_2 &=& 1 \end{array}$$

From the above we substitute the values of $u_1=u_2=1$ into the equations for o_1,o_2 to get:

$$egin{array}{ll} o_1 &=& rac{e^{f(1)}}{e^{f(1)}+e^{f(1)}} \ o_1 &=& rac{e^1}{e^1+e^1} \ o_1 &=& rac{1}{2} \ o_2 &=& rac{e^{f(1)}}{e^{f(1)}+e^{f(1)}} \ o_2 &=& rac{e^1}{e^1+e^1} \ o_2 &=& rac{1}{2} \ \end{array}$$

The other two cases are solved similarly. Note that $\frac{e^3}{e^3+1}=\frac{1}{1+e^{-3}}$

Submit

You have used 2 of 4 attempts

1 Answers are displayed within the problem

Inverse Temperature

3/3 points (graded)

Now, suppose we modify the network's softmax function as follows:

$$egin{aligned} o_1 &= rac{e^{eta f(u_1)}}{e^{eta f(u_1)} + e^{eta f(u_2)}} \ &e^{eta f(u_2)} \end{aligned}$$

$$\sigma_2 = \frac{1}{e^{\beta f(u_1)} + e^{\beta f(u_2)}},$$

where $\beta>0$ is a parameter. Note that our previous setting corresponded to the special case $\beta=1$. In the following, please write a numerical solution with an accuracy of at least 3 places. For $\beta=1$, in order to satisfy $o_2\geq \frac{1}{1000}$, the value of $f(u_1)-f(u_2)$ should be smaller or equal than:

6.906 **✓ Answer**: 6.906754778648554

If we increase the value to $\beta=3$, in order to satisfy $o_2\geq \frac{1}{1000}$, the value of $f(u_1)-f(u_2)$ should be smaller or equal than:

In general, in order to satisfy $o_2 \geq \frac{1}{1000}$, increasing the value of eta can result in $f(u_1) - f(u_2)$ being:

arger

smaller

Solution:

For $o_2 \geq \frac{1}{1000}$ we must have

$$\frac{1}{1+e^{\beta(f(u_1)-f(u_2))}} \geq \frac{1}{1000}$$

which is equivalent to $e^{eta(f(u_1)-f(u_2))} \leq 999$. In other words,

$$f\left(u_{1}\right)-f\left(u_{2}\right)\leq\frac{\ln\left(999\right)}{\beta}$$

As eta increases from 1 to 3 the above condition becomes more strict, and hence the corresponding region in the x-space **shrinks** . (To see this more clearly, consider the boundaries $f(u_1) - f(u_2) = \ln{(999)}$ and $f(u_1) - f(u_2) = \ln{(999)}/3$.)

Submit

You have used 1 of 4 attempts

1 Answers are displayed within the problem

Discussion

Hide Discussion

Topic: Unit 3 Neural networks (2.5 weeks): Homework 3 / 1. Neural Networks

Add a Post

Show all posts 🗸	
? [Staff] Minor error in the official solution to Feed Forward Step?	2
Inverse temperature Im really stuck on this question anyone has some hint? thanks	3
Inverse temperature	4

?	STAFF - validate my answer on the "Inverse Temperature" question Hi STAFF, could you please check my answer on the **Inverse Temperature** question? I got the answer correct for Beta = 3 and I don't	
\(\rightarrow \)	STAFF - output of the 3rd neural network	3
2	output of Neural Network can someone give hint how to solve this question. although it's seem easy but i am stuck. need help	5
2	How to get a region or decision boundaries? Find area of region (its a square):) 2 new_	6
?	Output of Neural Network Can anyone help me? I am a little bit confused about the exercise. We have to use the same matrix V: [[1 1 1 1 0] [-1 -1 -1 -1 2]] since we	12
2	<u>Inverse Temperature exercise</u>	8
∀	How to enter a region? Enter below the area of the region of your plot. If I try to enter, say, the positive quadrant: x 1>0, x 2>0 it fails. How would I enter the po	5
2	Decision Boundaries Could someone please give hint for decision boundaries question? i tried to plot in 3D, but get more confused. thanks!	11
Q	Spreadsheet for Neural Net Problems For the first part of this problem I decided to make a quick spreadsheet, which seemed easier and less error-prone. (Admittedly I have a	2
2	Insights from Inverse Temperature exercise	3
Q	Non-applicable extension note? This homework has the following which refers to a date outside of the current offering: Extension Note: Because EdX site was down for	1

Previous	Next >
----------	--------

edX

<u>About</u>

Affiliates

edX for Business

Open edX

Careers

<u>News</u>

Legal

Terms of Service & Honor Code

Privacy Policy

Accessibility Policy

Trademark Policy

<u>Sitemap</u>

Connect

<u>Blog</u>

Contact Us

Help Center

Media Kit

Donate

© 2020 edX Inc. All rights reserved.

深圳市恒宇博科技有限公司 <u>粤ICP备17044299号-2</u>