# MA 544: Homework 9

Carlos Salinas

 $March\ 7,\ 2016$ 

### PROBLEM 9.1 (WHEEDEN & ZYGMUND §6, Ex. 1)

- (a) Let E be a measurable subset of  $\mathbf{R}^2$  such that for almost every  $x \in \mathbf{R}^1$ ,  $\{y \mid (x,y) \in E\}$  has  $\mathbf{R}^1$ -measure zero. Show that E has measure zero and that for almost every  $y \in \mathbf{R}^1$ ,  $\{x \mid (x,y) \in E\}$  has measure zero.
- (b) Let f(x,y) be nonnegative and measurable in  $\mathbf{R}^2$ . Suppose that for almost every  $y \in \mathbf{R}^1$ , f(x,y) is finite for almost every y. Show that for almost  $y \in \mathbf{R}^1$ , f(x,y) is finite for almost every x.

## Problem 9.2 (Wheeden & Zygmund §6, Ex. 3)

Let f be measurable and finite a.e. on [0,1]. If f(x)-f(y) is integrable over the square  $0 \le x \le 1$ ,  $0 \le y \le 1$ , show that  $f \in L[0,1]$ .

#### PROBLEM 9.3 (WHEEDEN & ZYGMUND §6, Ex. 4)

Let f be measurable and periodic with period 1: f(t+1) = f(t). Suppose there is a finite c such that

$$\int_0^1 |f(a+t) - f(b+t)| dt \le c$$

for all a and b. Show that  $f \in L[0,1]$ . (Set  $a=x,\,b=-x$ , integrate with respect to x, and make the change of variables  $\chi=x+t,\,\eta=-x+t$ .)

#### PROBLEM 9.4 (WHEEDEN & ZYGMUND §6, Ex. 6)

For  $f \in L(\mathbf{R}^1)$ , define the Fourier transform  $\hat{f}$  of f by

$$\hat{f}(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} f(t)e^{-ixt} dt$$

for  $x \in \mathbf{R}^1$ . (For complex-valued function  $F = F_0 + iF_1$  whose real and imaginary parts  $F_0$  and  $F_1$  are integrable, we define  $\int F = \int F_0 + i \int F_1$ .) Show that if f and g belong to  $L(\mathbf{R}^1)$ , then

$$\widehat{(f * g)}(x) = 2\pi \hat{f}(x)\hat{g}(x).$$

#### PROBLEM 9.5 (WHEEDEN & ZYGMUND §6, Ex. 7)

Let F be a closd subset of  $\mathbf{R}^1$  and let  $\delta(x) = \delta(x, F)$  be the corresponding distance function. If  $\lambda > 0$  and f is nonnegative and integrable over the complement of F, prove that the function

$$\int_{\mathbf{R}^1} \frac{\delta^{\lambda}(y) f(y)}{|x-y|^{1+\lambda}} dt$$

is integrable over F and so is finite a.e. in F. (In case  $f = \chi_{(a,b)}$ , this reduces to Theorem 6.17.)

#### PROBLEM 9.6 (WHEEDEN & ZYGMUND §6, Ex. 9)

- (a) Show that  $M_{\lambda}(x; F) = +\infty$  if  $x \notin F$ ,  $\lambda > 0$ .
- (b) Let F = [c, d] be a closed subinterval of a bounded open interval  $(a, b) \subset \mathbf{R}^1$ , and let  $M_{\alpha}$  be the corresponding Marcinkiewicz integral,  $\lambda > 0$ . Show that  $M_{\lambda}$  is finite for every  $x \in (c, d)$  and that  $M_{\lambda}(c) = M_{\lambda}(d) = \infty$ . Show also that  $\int M_{\lambda} \leq \lambda^{-1} |G|$ , where G = (a, b) [c, d].