

Теория автоматического управления

Слежение и компенсация:

Матричные уравнения Франкиса-Дэвисона

Стабилизация

Стабилизация

Без предварительного решения задачи стабилизации невозможно решить производные задачи слежения и компенсации

Один из подходов к решению этих задач приведен в Лекции 12

Слежение

Эталонный сигнал Объект Регулятор Цель управления $\lim_{t\to\infty} (y(t) - g(t)) = 0$

Компенсация

Задачи слежения и компенсации дуальные

Слежение

Объект управления:

$$\begin{cases} \dot{x} = Ax + Bu \\ y = Cx + Du \end{cases}$$

Цель управления:

$$\lim_{t\to\infty} |g(t) - y(t)| = 0$$

Задающее

воздействие:

$$\begin{cases} \dot{w}_g = \Gamma_g w_g \\ g = Y_g w_g \end{cases}$$

$$w_g(0)$$

Компенсация

Объект управления:

$$\begin{cases} \dot{x} = Ax + Bu + B_f f \\ y = Cx + Du \end{cases}$$

Цель управления:

$$\lim_{t\to\infty}|y(t)|=0$$

Возмущение:

$$\begin{cases} \dot{w}_f = \Gamma_f w_f \\ f = Y_f w_f \end{cases}$$

$$w_f(0)$$

Эталонная модель (желаемая замкнутая система):

$$\begin{cases} \dot{w} = \Gamma w \\ v = Y w \end{cases}$$

Допущение: Сигналы x, w_{g} , w_{f} доступны к прямому измерению.

Матрицы Γ_g , Γ_f , Y_g , Y_f известны

Слежение

Объект управления:

$$\begin{cases} \dot{x} = Ax + Bu \\ y = Cx + Du \end{cases}$$

Цель управления:

$$\lim_{t \to \infty} |g(t) - y(t)| = 0$$

Задающее

воздействие:

$$\begin{cases} \dot{w}_g = \Gamma_g w_g \\ g = Y_g w_g \end{cases}$$

$$w_g(0)$$

Компенсация

Объект управления:

$$\begin{cases} \dot{x} = Ax + Bu + B_f f \\ y = Cx + Du \end{cases}$$

Цель управления:

$$\lim_{t\to\infty}|y(t)|=0$$

Возмущение:

$$\begin{cases} \dot{w}_f = \Gamma_f w_f \\ f = Y_f w_f \end{cases}$$

$$w_f(0)$$

Эталонная модель (желаемая замкнутая система):

$$\begin{cases} \dot{w} = \Gamma w \\ v = Y w \end{cases}$$

Допущение: Сигналы x, w_g , w_f доступны к прямому измерению.

Матрицы Γ_g , Γ_f , Y_g , Y_f известны

Что имеется ввиду?

Эталонная модель – это математическая модель, описывающая желаемое поведения САУ в соответствии с требуемыми динамическими показателями качества.

Эталонная модель — это математическая модель, описывающая желаемое поведения САУ в соответствии с требуемыми динамическими показателями качества.

С лекции 8:

Для регулятора:

Пусть матрица Γ такова, что $\sigma(\Gamma) = \{\lambda_1, \lambda_2, ..., \lambda_n\}$

При каком условии $\sigma(A + BK) = \sigma(\Gamma)$?

желаемый спектр

Для наблюдателя:

Пусть матрица
$$\Gamma$$
 такова, что $\sigma(\Gamma) = \{\lambda_1, \lambda_2, ..., \lambda_n\}$

При каком условии $\sigma(A + LC) = \sigma(\Gamma)$?

желаемый спектр

Эталонная модель – это математическая модель, описывающая желаемое поведения САУ в соответствии с требуемыми динамическими показателями качества.

Слек
$$\begin{cases} \dot{w} = \Gamma w \\ v = Yw \end{cases}$$

Пусть матрица Γ такова, что $\sigma(\Gamma) = \{\lambda_1, \lambda_2, ..., \lambda_n\}$

желаемый спектр

Пара (Γ, Y) по сути задает желаемый эталон

Эталонная модель – это математическая модель, описывающая желаемое поведения САУ в соответствии с требуемыми динамическими показателями качества.

Слек
$$\begin{cases} \dot{w} = \Gamma w \\ v = Y w \end{cases}$$

Вспомните «автономные генераторы» с ЛСАУ, по сути мы сводим системы к такому виду

Пусть матрица Γ такова, что $\sigma(\Gamma) = \{\lambda_1, \lambda_2, ..., \lambda_n\}$ желаемый спектр

> Пара (Γ, Y) по сути задает желаемый эталон

Задающее воздействие:

$$\left\{ egin{aligned} \dot{w}_g &= \Gamma_g w_g \ g &= Y_g w_g \end{aligned}
ight. \ \ \left\{ egin{aligned} g &= Y_g w_g \ w_g \end{array}
ight.
ight.$$
 Почему именно в такой форме?

Возмущение:

$$\begin{cases} \dot{w}_f = \Gamma_f w_f \\ f = Y_f w_f \end{cases}$$
$$w_f(0)$$

Задающее воздействие:

Возмущение:

$$\begin{cases} \dot{w}_f = \Gamma_f w_f \\ f = Y_f w_f \end{cases}$$
$$w_f(0)$$

- Задача слежения или компенсации может быть решена только для детерминированных (не случайных) сигналов;
- Мы работаем в парадигме линейных систем, любые рассматриваемые сигналы должны быть способны порождаться линейными системами.

Задающее воздействие:

Возмущение:

$$\begin{cases} \dot{w}_f = \Gamma_f w_f \\ f = Y_f w_f \end{cases}$$

$$w_f(0)$$

Математическое условие осмысленности задачи слежения/компенсации:

$$\sigma(\Gamma_{g/f}) \in \overline{\mathbb{C}}_+,$$

т.е. система не асимптотически устойчива.

Звучит на Лекции 12

Иначе нет смысла: внешний сигнал сам затухнет и достаточно просто стабилизировать систему и подождать, асимптотика справится.

Задающее воздействие:

$$\begin{cases} \dot{w}_g = \Gamma_g w_g \\ g = Y_g w_g \end{cases}$$

$$w_g(0)$$

Почему именно в такой форме? форме?

Возмущение:

$$\begin{cases} \dot{w}_f = \Gamma_f w_f \\ f = Y_f w_f \end{cases}$$
$$w_f(0)$$

С практической точки зрения же все сигналы внутри замкнутой системе должны оставаться ограниченными. Если у вас где-то при решении задачи управление или какое-то состояние будет уходить на бесконечность, то объект управления «порвет»

стаоилизировать систему и подождать, асимптотика справител.

Задающее воздействие:

$$\begin{cases} \dot{w}_g = \Gamma_g w_g \\ g = Y_g w_g \end{cases}$$
$$w_g(0)$$

Почему именно в такой форме?

$$\begin{cases} \dot{w}_f = \Gamma_f w_f \\ f = Y_f w_f \end{cases}$$
$$w_f(0)$$

Если генератор задает ограниченное воздействие (система устойчива по Ляпунову), то с высокой вероятностью задача решаема с точки зрения практики (но и то не всегда, есть некоторые нюансы)

стаоилизировать систему и подомдать, асимптотика справител.

Компенсация по выходу

Объект управления:

$$\begin{cases} \dot{x} = Ax + Bu \\ y = Cx + Du + D_f f \end{cases}$$

Цель управления:

$$\lim_{t\to\infty}|y(t)|=0$$

Возмущение:

$$\begin{cases} \dot{w}_f = \Gamma_f w_f \\ f = Y_f w_f \end{cases}$$

$$w_f(0)$$

Компенсация по входу

Объект управления:

$$\begin{cases} \dot{x} = Ax + Bu + B_f f \\ y = Cx + Du \end{cases}$$

Цель управления:

$$\lim_{t\to\infty}|y(t)|=0$$

Возмущение:

$$\begin{cases} \dot{w}_f = \Gamma_f w_f \\ f = Y_f w_f \end{cases}$$

$$w_f(0)$$

Эталонная модель (желаемая замкнутая система):

$$\begin{cases} \dot{w} = \Gamma w \\ v = Y w \end{cases}$$

Допущение: Сигналы x, w_f доступны к прямому измерению.

Компенсация по выходу

Возмущение вмешалось в выход

$$\begin{cases} \dot{x} = Ax + Bu \\ y = Cx + Du + D_f f \end{cases}$$
 Возмущение: $\begin{cases} \dot{w}_f = \Gamma_f w_f \\ \psi_f = \Gamma_f w_f \end{cases}$ Цель управления: $\begin{cases} f = Y_f w_f \\ \psi_f = 0 \end{cases}$

Компенсация по входу

Возмущение идет на вход

$$\begin{cases} \dot{x} = Ax + Bu + B_f f \ y = Cx + Du \end{cases}$$
 Возмущение: $\begin{cases} \dot{w}_f = \Gamma_f w_f \ f = Y_f w_f \end{cases}$ Цель управления: $\begin{cases} f = Y_f w_f \ t \to \infty \end{cases}$

Эталонная модель (желаемая замкнутая система):

$$\begin{cases} \dot{w} = \Gamma u \\ v = Y u \end{cases}$$

Допущение: Сигналы x, w_f доступны к прямому измерению.

Компенсация по выходу

Возмущение вмешалось в выход

$$\begin{aligned}
\dot{x} &= Ax + Bu \\
y &= Cx + Du + D_f f
\end{aligned}$$

Цель управления:

$$\lim_{t \to \infty} |y(t)| = 0$$

Возмущение:

$$\begin{cases} \dot{w}_f = \Gamma_f w_f \\ f = Y_f w_f \end{cases}$$

$$w_f(0)$$

Компенсация по входу

Возмущение идет на вход

$$\begin{cases} \dot{x} = Ax + Bu + B_f f \end{cases}$$
 Воз $y = Cx + Du$

Цель управления:

$$\lim_{t \to \infty} |y(t)| = 0$$

Возмущение:

$$\begin{cases} \dot{w}_f = \Gamma_f w_f \\ f = Y_f w_f \end{cases}$$

$$w_f(0)$$

Может быть сведена к задаче слежения!

ная модель (желаемая замкнутая система):

$$\begin{cases} \dot{w} = \Gamma w \\ v = Y w \end{cases}$$

Допущение: Сигналы x, w_f доступны к прямому измерению.

Эквивалентно

Компенсация по выходу

Объект управления:

$$\begin{cases} \dot{x} = Ax + Bu \\ y = Cx + Du + D_f f \end{cases}$$

Цель управления:

$$\lim_{t\to\infty}|y(t)|=0$$

Возмущение:

$$\begin{cases} \dot{w}_f = \Gamma_f w_f \\ f = Y_f w_f \end{cases}$$

$$w_f(0)$$

«Слежение»

Объект управления: «Задающее

$$\int \dot{x} = Ax + Bu + By$$

$$\begin{cases} y = Cx + Du Du \end{cases}$$

Цель управления:

$$\lim_{t\to\infty}|f'(t)-y(t)|=0$$

воздействие»:

$$\begin{cases}
\dot{w}_f = \Gamma_f w_f \\
f' = -D_f Y_f w_f \\
w_f(0)
\end{cases}$$

Эталонная модель (желаемая замкнутая система):

$$\begin{cases} \dot{w} = \Gamma w \\ v = Y w \end{cases}$$

Допущение: Сигналы x, w_f доступны к прямому измерению.

Слежение и кол

Поэтому спокойно возвращаемся к исходной постановке и решаем задачи

Слежение

Объект управления:

$$\begin{cases} \dot{x} = Ax + Bu \\ y = Cx + Du \end{cases}$$

Цель управления:

$$\lim_{t\to\infty} |g(t) - y(t)| = 0$$

Задающее

воздействие:

$$\begin{cases} \dot{w}_g = \Gamma_g w_g \\ g = Y_g w_g \end{cases}$$

$$w_g(0)$$

Компенсация (по входу)

Объект управления:

$$\begin{cases} \dot{x} = Ax + Bu + B_f f \\ y = Cx + Du \end{cases}$$

Цель управления:

$$\lim_{t\to\infty}|y(t)|=0$$

Возмущение:

$$\begin{cases} \dot{w}_f = \Gamma_f w_f \\ f = Y_f w_f \end{cases}$$

$$w_f(0)$$

Эталонная модель (желаемая замкнутая система):

$$\begin{cases} \dot{w} = \Gamma w \\ v = Y w \end{cases}$$

Допущение: Сигналы x, w_{g} , w_{f} доступны к прямому измерению.

Матрицы Γ_g , Γ_f , Y_g , Y_f известны

Слежение

Объект управления: Зада

$$\begin{cases} \dot{x} = Ax + Bu \\ y = Cx + Du \end{cases}$$

Цель управления:

$$\lim_{t\to\infty} |g(t) - y(t)| = 0$$

Задающее

воздействие:

$$\begin{cases} \dot{w}_g = \Gamma_g w_g \\ g = Y_g w_g \end{cases}$$

$$w_g(0)$$

Компенсация (по входу)

Объект управления:

$$\begin{cases} \dot{x} = Ax + Bu + B_f f \\ y = Cx + Du \end{cases}$$

Цель управления:

$$\lim_{t\to\infty}|y(t)|=0$$

Возмущение:

$$\begin{cases} \dot{w}_f = \Gamma_f w_f \\ f = Y_f w_f \end{cases}$$

$$w_f(0)$$

Эталонная модель (желаемая замкнутая система):

$$\begin{cases} \dot{w} = \Gamma w \\ v = Y w \end{cases}$$

Допущение: Сигналы x, w_{g} , w_{f} доступны к прямому измерению.

Матрицы Γ_g , Γ_f , Y_g , Y_f известны

Слежение

Объект управления:

$$\begin{cases} \dot{x} = Ax + Bu \\ y = Cx + Du \end{cases}$$

Цель управления:

$$\lim_{t \to \infty} |g(t) - y(t)| = 0$$

Задающее

воздействие:

$$\begin{cases} \dot{w}_g = \Gamma_g w_g \\ g = Y_g w_g \end{cases}$$

$$w_g(0)$$

Компенсация (по входу)

Объект управления:

$$\begin{cases} \dot{x} = Ax + Bu + B_f f \\ y = Cx + Du \end{cases}$$

Цель управления:

$$\lim_{t\to\infty}|y(t)|=0$$

Возмущение:

$$\begin{cases} \dot{w}_f = \Gamma_f w_f \\ f = Y_f w_f \end{cases}$$

$$w_f(0)$$

Эталонная модель (желаемая замкнутая система):

Модель ошибок:

$$\begin{cases} e = P_g w_g - x \\ \varepsilon = g - y \end{cases}$$

$$\begin{cases} \dot{w} = \Gamma w \\ v = Y w \end{cases}$$

$$\begin{cases} e = P_f w_f - x \\ y = Cx + Du \end{cases}$$

Слежение

Объект управления:

$$\begin{cases} \dot{x} = Ax + Bu \\ y = Cx + Du \end{cases}$$

Цель управления:

$$\lim_{t \to \infty} |g(t) - y(t)| = 0$$

Задающее

воздействие:

$$\begin{cases} \dot{w}_g = \Gamma_g w_g \\ g = Y_g w_g \end{cases}$$

$$w_g(0)$$

Компенсация (по входу)

Объект управления:

$$\begin{cases} \dot{x} = Ax + Bu + B_f f \\ y = Cx + Du \end{cases}$$

Цель управления:

$$\lim_{t \to \infty} |y(t)| = 0$$

Возмущение:

$$\begin{cases} \dot{w}_f = \Gamma_f w_f \\ f = Y_f w_f \end{cases}$$

$$w_f(0)$$

Эталонная модель (желаемая замкнутая система,

Модель ошибок:

$$\begin{cases} e = P_g w_g - x \\ \varepsilon = g - y \end{cases}$$

Вспомогательная цель

Основная цель

$$\begin{cases} e = P_f w_f - x \\ y = Cx + Du \end{cases}$$

Слежение

Объект управления: Задающее

$$\begin{cases} \dot{x} = Ax + Bu \\ y = Cx + Du \end{cases}$$

воздействие:

$$\int \dot{w}_g = \Gamma_g w_g$$

Компенсация (по входу)

Объект управления:

$$\begin{cases} \dot{x} = Ax + Bu + B_f f \\ f = Ax + Bu + B_f f \end{cases}$$

y = Cx + Du

 $\int \dot{w}_f = \Gamma_f w_f$

Возмущение:

Пече Апровиониа.

lim |

 $t\rightarrow\infty$

Первый смысл «вспомогательной цели»:

 w_g/w_f линейно зависимы с x, но находятся в другом базисе; P_g/P_f — матрицы перехода в базис системы, их нужно найти

Модель ошибок:

$$\begin{cases} e = P_g w_g - x \\ \varepsilon = g - y \end{cases}$$

Вспомогательная цель

Основная цель

$$\begin{cases} e = P_f w_f - x \\ y = Cx + Du \end{cases}$$

Слежение

Объект управления:

$$\begin{cases} \dot{x} = Ax + Bu \\ y = Cx + Du \end{cases}$$

Цель управления:

$$\lim_{t \to \infty} |g(t) - y(t)| = 0$$

Задающее

воздействие:

$$\begin{cases} \dot{w}_g = \Gamma_g w_g \\ g = Y_g w_g \end{cases}$$

$$w_g(0)$$

Компенсация (по входу)

Объект управления:

$$\begin{cases} \dot{x} = Ax + Bu + B_f f \\ y = Cx + Du \end{cases}$$

Цель управления:

$$\lim_{t \to \infty} |y(t)| = 0$$

Возмущение:

$$\begin{cases} \dot{w}_f = \Gamma_f w_f \\ f = Y_f w_f \end{cases}$$

$$w_f(0)$$

Второй смысл «вспомогательной цели»

Модель ошибок:

$$\begin{cases} e = P_g w_g - x \\ \varepsilon = g - y \end{cases}$$

Стабилизация

Слежение/ Компенсация

$$\begin{cases} e = P_f w_f - x \\ y = Cx + Du \end{cases}$$

Слежение

$$\begin{cases} e = P_g w_g - x \\ \varepsilon = g - y \end{cases}$$

Компенсация (по входу)

$$\begin{cases} e = P_f w_f - x \\ y = Cx + Du \end{cases}$$

Слежение

$$\begin{cases} e = P_g w_g - x \\ \varepsilon = g - y \end{cases}$$

$$\dot{e} = P_g \dot{w}_g - \dot{x}$$

$$\varepsilon = Y_g w_g - Cx - Du$$

Компенсация (по входу)

$$\begin{cases} e = P_f w_f - x \\ y = Cx + Du \\ \dot{e} = P_f \dot{w}_f - \dot{x} \\ y = Cx + Du \end{cases}$$

Рассмотрим **динамику**

$$\begin{cases} \dot{w}_g = \Gamma_g w_g \\ g = Y_g w_g \end{cases} \quad \begin{cases} \dot{x} = Ax + Bu \\ y = Cx + Du \end{cases} \quad \begin{cases} \dot{w}_f = \Gamma_f w_f \\ f = Y_f w_f \end{cases} \quad w_g(0) \quad w_f(0) \end{cases}$$

Слежение

$$\begin{cases} e = P_g w_g - x \\ \varepsilon = g - y \end{cases}$$

$$\begin{cases} \dot{e} = P_g \Gamma_g w_g - Ax - Bu \\ \varepsilon = Y_g w_g - Cx - Du \end{cases}$$

Компенсация (по входу)

$$\begin{cases} e = P_f w_f - x \\ y = Cx + Du \end{cases}$$

 $\dot{e} = P_f \Gamma_f w_f - Ax - Bu - B_f Y_f w_f$
 $y = Cx + Du$

Рассмотрим динамику

$$\begin{cases} \dot{w}_g = \Gamma_g w_g \\ g = Y_g w_g \end{cases} \qquad \begin{cases} \dot{x} = Ax + Bu \\ y = Cx + Du \end{cases} \qquad \begin{cases} \dot{w}_f = \Gamma_f w_f \\ f = Y_f w_f \end{cases} \end{cases}$$

$$w_g(0) \qquad \qquad w_f(0)$$

Слежение

$$\begin{cases} e = P_g w_g - x \\ \varepsilon = g - y \end{cases}$$

$$\dot{e} = P_g \Gamma_g w_g - Ax - Bu$$

$$\varepsilon = Y_g w_g - Cx - Du$$

$$\dot{e} = P_g \Gamma_g w_g - A(P_g w_g - e) - Bu$$

$$\varepsilon = Y_g w_g - C(P_g w_g - e) - Du$$

Компенсация (по входу) $\begin{cases} e = P_f w_f - x \\ y = Cx + Du \end{cases}$ $\dot{e} = P_f \Gamma_f w_f - Ax - Bu - B_f Y_f w_f$ y = Cx + Du $\dot{e} = P_f \Gamma_f w_f - A(P_f w_f - e) - Bu - B_f Y_f w_f$

 $y = C(P_f w_f - e) + Du$

$$\begin{cases} e = P_g w_g - x \\ \varepsilon = g - y \end{cases}$$

$$\dot{e} = P_g \Gamma_g w_g - Ax - Bu$$

$$\varepsilon = Y_g w_g - Cx - Du$$

$$\dot{e} = P_g \Gamma_g w_g - A(P_g w_g - e) - Bu$$

$$\varepsilon = Y_g w_g - C(P_g w_g - e) - Du$$

$$\dot{e} = Ae + (P_g \Gamma_g - AP_g) w_g - Bu$$

$$\varepsilon = Ce + (Y_g - CP_g) w_g - Du$$

Компенсация (по входу)

$$\{e = P_f w_f - x\}$$

 $y = Cx + Du$
 $\dot{e} = P_f \Gamma_f w_f - Ax - Bu - B_f Y_f w_f$
 $y = Cx + Du$
 $\dot{e} = P_f \Gamma_f w_f - A(P_f w_f - e) - Bu - B_f Y_f w_f$
 $y = C(P_f w_f - e) + Du$
 $\dot{e} = Ae + (P_f \Gamma_f - AP_f - B_f Y_f) w_f - Bu$
 $y = CP_f w_f - Ce + Du$

$$\begin{cases} \dot{e} = Ae + (P_g \Gamma_g - AP_g) w_g - Bu \\ \varepsilon = Ce + (Y_g - CP_g) w_g - Du \end{cases}$$

Компенсация (по входу)
$$P_f + (P_f \Gamma_f - AP_f - B_f Y_f) W_f$$

$$\left\{ \dot{e} = Ae + \left(P_f \Gamma_f - AP_f - B_f Y_f \right) w_f - Bu \right\}$$
 $y = CP_f w_f - Ce + Du$

$$\dot{e} = Ae + (P_g \Gamma_g - AP_g) w_g - Bu$$
 $\varepsilon = Ce + (Y_g - CP_g) w_g - Du$

Компенсация (по входу)
$$\begin{cases} \dot{e} = Ae + (P_f \Gamma_f - AP_f - B_f Y_f) w_f - Bu \\ y = CP_f w_f - Ce + Du \end{cases}$$

Матричные уравнения Франкиса-Дэвисона:

$$\begin{cases} P_g \Gamma_g - A P_g = B K_g \\ Y_g - C P_g = D K_g \end{cases}$$

$$\begin{cases} P_f \Gamma_f - A P_f - B_f Y_f = B K_f \\ -C P_f = D K_f \end{cases}$$

Решение **системы** уравнений даст P_g/P_f и K_g/K_f

Слежение

$$\begin{cases} \dot{e} = Ae + BK_g w_g - Bu \\ \varepsilon = Ce + DK_g w_g - Du \end{cases}$$

Компенсация (по входу)

$$\begin{cases} \dot{e} = Ae + BK_f w_f - Bu \\ y = -DK_f w_f - Ce + Du \end{cases}$$

Матричные уравнения Франкиса-Дэвисона:

$$\begin{cases} P_g \Gamma_g - A P_g = B K_g \\ Y_g - C P_g = D K_g \end{cases}$$

$$\begin{cases} P_f \Gamma_f - A P_f - B_f Y_f = B K_f \\ -C P_f = D K_f \end{cases}$$

Francis B. A. *The linear multivariable regulator problem* //SIAM Journal on Control and Optimization. – 1977. – T. 15. – №. 3. – C. 486-505.

Davison E. The robust control of a servomechanism problem for linear time-invariant multivariable systems //IEEE transactions on Automatic Control. – 1976. – T. 21. – №. 1. – C. 25-34.

Francis B. A., Wonham W. M. *The internal model principle of control theory* //Automatica. – 1976. – T. 12. – №. 5. – C. 457-465.

Isidori A. Lectures in feedback design for multivariable systems. – Basel, Switzerland: Springer International Publishing, 2017.

Слежение

$$\begin{aligned}
\dot{e} &= Ae + BK_g w_g - Bu \\
\varepsilon &= Ce + DK_g w_g - Du
\end{aligned}$$

Компенсация (по входу)

$$\begin{cases} \dot{e} = Ae + BK_f w_f - Bu \\ y = -DK_f w_f - Ce + Du \end{cases}$$

Про «принцип внутренней модели» уже звучало на курсе ЛСАУ от Алексея Алексеевича

Однако по настоящему себя принцип проявляет при управлении по выходу, сейчас рассматриваем случай по состоянию

Francis B. A. The linear multivariable regulator problem //SIAM Journal on Control and Optimization. – 1977. – T. 15. – №. 3. – C. 486-505.

Davison E. The robust control of a servomechanism problem for linear time-invariant multivariable systems //IEEE transactions on Automatic Control. − 1976. − T. 21. − №. 1. − C. 25-34.

Francis B. A., Wonham W. M. *The internal model principle* of control theory //Automatica. – 1976. – T. 12. – №. 5. – C. 457-465.

Isidori A. Lectures in feedback design for multivariable systems. – Basel, Switzerland: Springer International Publishing, 2017.

Слежение

$$\begin{cases} \dot{e} = Ae + BK_g w_g - Bu \\ \varepsilon = Ce + DK_g w_g - Du \end{cases}$$

Компенсация (по входу)

$$\begin{cases} \dot{e} = Ae + BK_f w_f - Bu \\ y = -DK_f w_f - Ce + Du \end{cases}$$

Матричные уравнения Франкиса-Дэвисона (общий вид):

$$\begin{cases} AP + BK + Y_1 = P\Gamma \\ CP + DK + Y_2 = 0 \end{cases}$$

Решение относительно P и K для произвольных Y_1 и Y_2 есть, если:

$$\operatorname{rank}egin{bmatrix} A-I\lambda_{i\Gamma} & B \ C & D \end{bmatrix}=$$
 число строк , $\lambda_{i\Gamma}$ — собственные числа Γ

Слежение

$$\begin{cases} \dot{e} = Ae + BK_g w_g - Bu \\ \varepsilon = Ce + DK_g w_g - Du \end{cases}$$

Компенсация (по входу)

$$\begin{cases} \dot{e} = Ae + BK_f w_f - Bu \\ y = -DK_f w_f - Ce + Du \end{cases}$$

Матричные уравнения Франкиса-Дэвисона (общий вид):

$$\begin{cases} AP + BK + Y_1 = P\Gamma \\ CP + DK + Y_2 = 0 \end{cases}$$

Как это понимать?

Решение относительно P и K для произвольных Y_1 и Y_2 есть, если:

$$\operatorname{rank}egin{bmatrix} A-I\lambda_{i\Gamma} & B \ C & D \end{bmatrix}=$$
 число строк , $\lambda_{i\Gamma}$ — собственные числа Γ

Слежение

$$\begin{cases} \dot{e} = Ae + BK_g w_g - Bu \\ \varepsilon = Ce + DK_g w_g - Du \end{cases}$$

Компенсация (по входу)

$$\begin{cases} \dot{e} = Ae + BK_f w_f - Bu \\ y = -DK_f w_f - Ce + Du \end{cases}$$

Матричные уравнения Франкиса-Дэвисона (общий вид):

$$\begin{cases} AP + BK + Y_1 = P\Gamma \\ CP + DK + Y_2 = 0 \end{cases}$$

Как это понимать?

Следствие:

- 1. Множество нулей системы W(s) не пересекается со спектром Γ ;
- 2. Система W(s) полностью управляема по выходу;
- 3. Количество входов равно или больше количества выходов системы;
- 4. Если количество входов равно количеству выходов, то система W(s) должна быть невырожденной

Слежение

$$\begin{cases} \dot{e} = Ae + BK_g w_g - Bu \\ \varepsilon = Ce + DK_g w_g - Du \end{cases}$$

В общем случае метод выводился для многоканальных систем (Multi-Input-Multi-Output) Для одноканальных упрощается

Компенсация (по входу)

$$\begin{cases} \dot{e} = Ae + BK_f w_f - Bu \\ y = -DK_f w_f - Ce + Du \end{cases}$$

анкиса-Дэвисона (общий вид):

$$K + Y_1 = P\Gamma$$
$$0K + Y_2 = 0$$

Следствие:

- 1. Множество нулей системы W(s) не пересекается со спектром Γ ;
- 2. Система W(s) полностью управляема по выходу;
- 3. Количество входов равно или больше количества выходов системы;
- 4. Если количество входов равно количеству выходов, то система W(s) должна быть невырожденной

Слежение

$$\begin{cases} \dot{e} = Ae + BK_g w_g - Bu \\ \varepsilon = Ce + DK_g w_g - Du \end{cases}$$

Компенсация (по входу)

$$\begin{cases} \dot{e} = Ae + BK_f w_f - Bu \\ y = -DK_f w_f - Ce + Du \end{cases}$$

Матричные уравнения Франкиса-Дэвисона (общий вид):

$$\begin{cases} AP + BK + Y_1 = P\Gamma \\ CP + DK + Y_2 = 0 \end{cases}$$

Чем-то похоже на Сильвестра

Следствие:

- 1. Множество нулей системы W(s) не пересекается со спектром Γ ;
- 2. Система W(s) полностью управляема по выходу;

Слежение

$$\begin{cases} \dot{e} = Ae + BK_g w_g - Bu \\ \varepsilon = Ce + DK_g w_g - Du \end{cases}$$

Компенсация (по входу)

$$\begin{cases} \dot{e} = Ae + BK_f w_f - Bu \\ y = -DK_f w_f - Ce + Du \end{cases}$$

$$\begin{cases} P_g \Gamma_g - A P_g = B K_g \\ Y_g - C P_g = D K_g \end{cases}$$

$$\begin{cases} P_f \Gamma_f - A P_f - B_f Y_f = B K_f \\ -C P_f = D K_f \end{cases}$$

Эталонная модель:

$$\begin{cases} \dot{w} = \Gamma w \\ v = Y w \end{cases}$$

Уравнение Сильвестра:

$$\begin{cases} AP - P\Gamma = BY \\ K = -YP^{-1} \end{cases}$$

Когда уравнение Сильвестра имеет невырожденное решение вы *уже должны знать...*

Слежение

$$\begin{cases} \dot{e} = Ae + BK_g w_g - Bu \\ \varepsilon = Ce + DK_g w_g - Du \end{cases}$$

$$\begin{cases} P_g \Gamma_g - A P_g = B K_g \\ Y_g - C P_g = D K_g \end{cases}$$

Закон управления: $u = -Ke + K_g w_g$

Компенсация (по входу)

$$\begin{cases} \dot{e} = Ae + BK_f w_f - Bu \\ y = -DK_f w_f - Ce + Du \end{cases}$$

$$\begin{cases} P_f \Gamma_f - A P_f - B_f Y_f = B K_f \\ -C P_f = D K_f \end{cases}$$

Уравнение Сильвестра:

$$\begin{cases} AP - P\Gamma = BY \\ K = -YP^{-1} \end{cases}$$

$$u = -Ke + K_f w_f$$

Слежение

$$\begin{cases} \dot{e} = Ae + BK_g w_g + BKe - BK_g w_g \\ \varepsilon = Ce + DK_g w_g + DKe - DK_g w_g \end{cases}$$

Компенсация (по входу)

$$\begin{cases} \dot{e} = Ae + BK_f w_f + BKe - BK_f w_f \\ y = -DK_f w_f - Ce - DKe + DK_f w_f \end{cases}$$

$$\begin{cases} P_g \Gamma_g - A P_g = B K_g \\ Y_g - C P_g = D K_g \end{cases}$$

$$\begin{cases} P_f \Gamma_f - A P_f - B_f Y_f = B K_f \\ -C P_f = D K_f \end{cases}$$

Уравнение Сильвестра:

$$\begin{cases} AP - P\Gamma = BY \\ K = -YP^{-1} \end{cases}$$

$$u = -Ke + K_g w_g$$

$$u = -Ke + K_f w_f$$

Слежение

$$\begin{cases} \dot{e} = (A + BK)e \\ \varepsilon = (C + DK)e \end{cases}$$

$$\begin{cases} P_g \Gamma_g - A P_g = B K_g \\ Y_g - C P_g = D K_g \end{cases}$$

Закон управления:

$$u = -Ke + K_g w_g$$

Компенсация (по входу)

$$\begin{cases} \dot{e} = (A + BK)e \\ y = -(C + DK)e \end{cases}$$

$$\begin{cases} P_f \Gamma_f - A P_f - B_f Y_f = B K_f \\ -C P_f = D K_f \end{cases}$$

Уравнение Сильвестра:

$$\begin{cases} AP - P\Gamma = BY \\ K = -YP^{-1} \end{cases}$$

$$u = -Ke + K_f w_f$$

Слежение

$$\begin{cases} \dot{e} = (A + BK)e \\ \varepsilon = (C + DK)e \end{cases}$$

Компенсация (по входу)

$$\begin{cases} \dot{e} = (A + BK)e \\ y = -(C + DK)e \end{cases}$$

Матричные уравнения Франкиса-Дэвисона:

$$\begin{cases} P_g \Gamma_g - A P_g = B K_g \\ Y_g - C P_g = D K_g \end{cases}$$

$$\begin{cases} P_f \Gamma_f - A P_f - B_f Y_f = B K_f \\ -C P_f = D K_f \end{cases}$$

Уравнение Сильвестра:

$$\begin{cases} AP - P\Gamma = BY \\ K = -YP^{-1} \end{cases}$$

$$u = -Ke + K_g w_g$$

$$u = -Ke + K_f w_f$$

Слежение

$$\begin{cases} \dot{e} = P^{-1} \Gamma P e \\ \varepsilon = (C + DK)e \end{cases}$$

Компенсация (по входу)

$$\begin{cases} \dot{e} = P^{-1}\Gamma P e \\ y = -(C + DK)e \end{cases}$$

Матричные уравнения Франкиса-Дэвисона:

$$\begin{cases} P_g \Gamma_g - A P_g = B K_g \\ Y_g - C P_g = D K_g \end{cases}$$

$$\begin{cases} P_f \Gamma_f - A P_f - B_f Y_f = B K_f \\ -C P_f = D K_f \end{cases}$$

Уравнение Сильвестра:

$$\begin{cases} AP - P\Gamma = BY \\ K = -YP^{-1} \end{cases}$$

Закон управления:

$$u = -Ke + K_g w_g$$

$$u = -Ke + K_f w_f$$

Слежение

$$\begin{cases} \dot{e} = P^{-1} \Gamma P e \\ \varepsilon = (C + DK)e \end{cases}$$

Компенсация (по входу)

$$\begin{cases} \dot{e} = P^{-1} \Gamma P e \\ y = -(C + DK)e \end{cases}$$

Матричные уравнения Франкиса-Дэвисона:

$$\begin{cases} P_g \Gamma_g - A P_g = B K_g \\ Y_g - C P_g = D K_g \end{cases}$$

$$\begin{cases} P_f \Gamma_f - A P_f - B_f Y_f = B K_f \\ -C P_f = D K_f \end{cases}$$

Стабилизирующий регулятор K можно искать любым желаемым образом: Задание спектра; Желаемая степень устойчивости; LQR; ...

Закон управления:

$$u = -Ke + K_g w_g$$

$$u = -Ke + K_f w_f$$

Слежение

$$\begin{cases}
\dot{e} = P^{-1}\Gamma P e \\
\varepsilon = (C + DK)e
\end{cases}$$

Компенсация (по входу)

$$\begin{cases} \dot{e} = P^{-1} \Gamma P e \\ y = -(C + DK)e \end{cases}$$

Стабилизирующий регулятор K можно искать любым желаемым образом: Задание спектра; Желаемая степень устойчивости; LQR; ...

Закон управления:

$$u = -Ke + K_g w_g$$

$$u = -Ke + K_f w_f$$

Альтернативная точка зрения

Слежение

Закон управления:

$$u = Kx + K_g w_g$$

Компенсация (по входу)

$$u = Kx + K_f w_f$$

Слежение

Закон управления:

$$u = Kx + K_g w_g$$

К – «Feedback»,Обратная связь, чтобыпривести замкнутую систему к желаемым характеристикам.

Компенсация (по входу)

Закон управления:

$$u = Kx + K_f w_f$$

 K_g/K_f — «Feedforward», Прямая связь, чтобы замкнутая система успешно следила / компенсировала.

Слежение

Компенсация (по входу)

Закон управл $u = Kx + K_a$

K - Обрат привести з желаемы

В схемах структурно уже нет P_g/P_f , управление формируется напрямую из вектора состояния генератора внешнего сигнала и вектора состояния системы

Более наглядно видны стабилизирующий контур и часть, отвечающая за слежения/компенсацию

ward», тобы успешно ировала.

Слежение

Закон управления:

$$u = Kx + K_g w_g$$

Компенсация (по входу)

Закон управления:

$$u = Kx + K_f w_f$$

Стабилизирующий регулятор K можно искать любым желаемым образом: Задание спектра; Желаемая степень устойчивости; LQR; ...

Матричные уравнения Франкиса-Дэвисона:

$$\begin{cases} P_{g}\Gamma_{g} - (A + BK)P_{g} = BK_{g} \\ (C + DK)P_{g} + DK_{g} = Y_{g} \end{cases}$$

$$\begin{cases} P_f \Gamma_f - (A + BK)P_f - B_f Y_f = BK_f \\ (C + DK)P_f + DK_f = 0 \end{cases}$$

Слежение

Закон управления:

$$u = Kx + K_g w_g$$

Компенсация (по выходу)

Закон управления:

$$u = Kx + K_f w_f$$

Стабилизирующий регулятор K можно искать любым желаемым образом: Задание спектра; Желаемая степень устойчивости; LQR; ...

Матричные уравнения Франкиса-Дэвисона:

$$\begin{cases} P_{g}\Gamma_{g} - (A + BK)P_{g} = BK_{g} \\ (C + DK)P_{g} + DK_{g} = Y_{g} \end{cases}$$

$$\begin{cases} P_f \Gamma_f - (A + BK)P_f = BK_f \\ (C + DK)P_f + DK_f = -D_f Y_f \end{cases}$$

Слежение и компенсация: общая компенсация

Слежение

Вакон управления:

$$u = Kx + K_g w_g$$

Компенсация (по выходу)

Закон управления:

$$u = Kx + K_f w_f$$

Стабилизирующий регулятор K можно искать любым желаемым образом: Задание спектра; Желаемая степень устойчивости; LQR; ...

Матричные уравнения Франкиса-Дэвисона:

Можно и объединить, если возмущение и на входе, и на выходе!

$$\begin{cases} \dot{x} = Ax + Bu + B_f f \\ y = Cx + Du + D_f f \end{cases}$$

$$\begin{cases} P_f \Gamma_f - (A + BK)P_f = BK_f \\ (C + DK)P_f + DK_f = -D_f Y_f \end{cases}$$

Слежение и компенсация: общая компенсация

Слежение

Вакон управления:

$$u = Kx + K_g w_g$$

Компенсация (общая)

Закон управления:

$$u = Kx + K_f w_f$$

Стабилизирующий регулятор K можно искать любым желаемым образом: Задание спектра; Желаемая степень устойчивости; LQR; ...

Матричные уравнения Франкиса-Дэвисона:

Можно и объединить, если возмущение и на входе, и на выходе!

$$\begin{cases} \dot{x} = Ax + Bu + B_f f \\ y = Cx + Du + D_f f \end{cases}$$

$$\begin{cases} P_f \Gamma_f - (A + BK)P_f - B_f Y_f = BK_f \\ (C + DK)P_f + DK_f = -D_f Y_f \end{cases}$$

Слежение и компенсация: общая задача

Слежение + Компенсация (общая)

Закон управления:

$$u = Kx + K_g w_g + K_f w_f$$

Стабилизирующий регулятор K можно искать любым желаемым образом: Задание спектра; Желаемая степень устойчивости; LQR; ...

Матричные уравнения Франкиса-Дэвисона:

$$\begin{cases} P_g \Gamma_g - (A + BK)P_g = BK_g \\ (C + DK)P_g + DK_g = Y_g \end{cases} \begin{cases} P_f \Gamma_f - (A + BK)P_f - B_f Y_f = BK_f \\ (C + DK)P_f + DK_f = -D_f Y_f \end{cases}$$

И со слежением тоже можно объединить! Просто независимо считаем компоненты регулятора!

Слежение и компенсация: ограничения

м желаемым образом:

ивости; LQR; ...

Слежение + Компенсация (общая)

Закон управления:

$$u = Kx + K_g w_g + K_f w_f$$

Стабилизирующиі Задание с

Но полагать w_g / w_f измеримыми самонадеянно

Матричные уравнения Франкиса-Дэвисона

$$\begin{cases} P_g \Gamma_g - (A + BK)P_g = BK_g \\ (C + DK)P_g + DK_g = Y_g \end{cases}$$

$$(C + DK)P_f - B_f Y_f = BK_f$$
$$(C + DK)P_f + DK_f = -D_f Y_f$$

Слежение и компенсация: ограничения

 $(C + DK)P_a + DK_a$

ивости; LQR; ...

 $BK)P_f - B_f Y_f = BK_f$

Слежение + Компенсация (общая)

Закон управления:

$$u = Kx + K_g w_g + K_f w_f$$

Но полагать w_q/w_f измеримыми самонадеянно

Хорошо, что существуют специальные наблюдатели $(C + DK)P_f + DK_f = -D_f Y_f$