New York City Taxi Trip Duration

Siyi Yu¹

¹ Jilin University, China

Introduction

In this competition, Kaggle is challenging us to build a model that predicts the total ride duration of taxi trips in New York City. This is a prediction problem. The raw datasets mainly two files, whose attributes are shown below.

- train.csv:
 vendor_id,pickup_datetime,dropoff_datetime,passenger_count
 pickup_longitude,pickup_latitude,dropoff_longitude,dropoff_latitude
 store_and_fwd_flag,trip_duration
- test.csv:
 vendor_id,pickup_datetime,passenger_count
 pickup_longitude,pickup_latitude,dropoff_longitude,dropoff_latitude
 store_and_fwd_flag

Data Processing

- Remove missing value and NaN value
- Filter outliers and duplicate data
- Process pickup/dropoff_datetime
- Process pick/dropoff_latitude/_longitude
- Process string by one-hot encoding

Data Visualization

• Spearman Correlation of attributes

• Duration of taxi trips regard to month, weekday

Pick/Drop locations of taxi trips

Feature Selection and Feature Importance

• After data Processing, I remove, add and change some attributes.

• Feature Importance

Model and Result

- Model:Lightgbm and Xgboost
- Private score:0.40978
- Public score:0.41166

results.csv
4 hours ago by Daylight Dream
change XGB

• Rank:532/1254

Conclusion

Compare to midterm presentation, My score have greatly imporved from 0.59486 to 0.40978. The reason mainly is more features and more models. In the figure of feature importance, we can the attribute direction that I added plays a great role. And xgboost model can fit the train data better, but processing speed of lightgbm model is faster.

