Universidad Nacional Autónoma de México

FACULTAD DE CIENCIAS

Examen 2: **Sólidos de revolución**

Sebastián Alamina Ramírez - 318685496

Matemáticas para las Ciencias Aplicadas II

Fecha de entrega: 25 de Marzo de 2019.

1. Encuentra el volumen del sólido formado por la región encerrada por las curvas $y = e^{-x^2}$, y = 0, x = 0 y x = 1 al rotar al rededor del eje y.

Planteamiento:

Por discos...

$$V = \int_0^1 x \ dy$$

Pero x se dividiría en dos intervalos... Sea λ la intersección entre x=1 y $y=-e^{x^2}$, entonces el método por discos sería;

$$V = \int_0^\lambda \pi \ dy + \int_\lambda^1 \pi (\sqrt{-\ln y})^2 \ dy$$

 $Por\ cilindros...$

$$r = x$$

$$h = e^{-x^2}$$

$$V = \int_0^1 2\pi x e^{-x^2} dx$$

2. Encuentra el volumen del sólido formado por la región encerrada por las curvas $y = x^2 + 1$, y = x + 3 al rotar alrededor del eje y = -1.

3. Encuentra el volumen del sólido generado al hacer rotar alrededor de la recta y=2 la región acotada por las curvas $y=\sec x,\,y=0,\,0\leq x\leq \pi/3.$

4. Halla el volumen del sólido de revolución generado al hacer rotar la región acotada por las curvas $y=x^2,\,y=4x-x^2$, en torno a la recta x=2.

5. Determina el volumen de la región encerrada entre las curvas $y=1+x^2$ y y=0 al rotar alrededor del eje x cuando $0 \le x \le 2$.

6. Determina el volumen de la región encerrada por la función $x=\sqrt{\sin y}$ con $0\leq y\leq \pi$ y x=0 si rota en y=4.

7. Determinar la superficie del sólido de revolución generado al rotar en el eje y la región definida por $y=x^3$ con $0\leq x\leq 1$.

