Ejercicios Teoría Cuántica de Campos. Capítulo 66

Autor del curso: Javier García

Problemas resueltos por: Roger Balsach

24 de octubre de 2021

1. Demostrar los corchetes de Poisson.

Tenemos que demostrar que

$$\{\pi(x), \pi(y)\} = 0, \qquad \{\phi(x), \phi(y)\} = 0$$

Recordemos del capítulo 38 del curso de Mecánica Teórica la definición

$$\{A, B\} = \int \frac{\delta A}{\delta \phi(z)} \frac{\delta B}{\delta \pi(z)} - \frac{\delta B}{\delta \phi(z)} \frac{\delta A}{\delta \pi(z)} dz$$

Del mismo capítulo 38 recordemos que teníamos que

$$\frac{\delta\phi(x)}{\delta\pi(y)} = 0, \qquad \frac{\delta\phi(x)}{\delta\phi(y)} = \delta(x - y)$$
 (1)

Entonces, usamos directamente la definición:

$$\{\phi(x), \phi(y)\} = \int \frac{\delta\phi(x)}{\delta\phi(z)} \frac{\delta\phi(y)}{\delta\pi(z)} - \frac{\delta\phi(y)}{\delta\phi(z)} \frac{\delta\phi(x)}{\delta\pi(z)} dz = 0$$
(2)

Vemos que todos los términos contienen por lo menos una derivada del estilo $\frac{\delta\phi}{\delta\pi}$, por lo que se anula todo debido a ecuación (1). Haciendo lo mismo para π

$$\left\{\pi(x), \pi(y)\right\} = \int \frac{\delta \pi(x)}{\delta \phi(z)} \frac{\delta \pi(y)}{\delta \pi(z)} - \frac{\delta \pi(y)}{\delta \phi(z)} \frac{\delta \pi(x)}{\delta \pi(z)} dz = 0$$
(3)

En este caso, de nuevo todos los términos tienen derivadas del estilo $\frac{\delta\pi}{\delta\phi}$ por lo que también se anula.

2. Demostrar la relación $\int \frac{1}{2\omega_k} d^3k = \int \delta(\omega^2 - |\vec{k}|^2 - m^2)\theta(\omega) d^4k$.

Vamos a demostrar que $\frac{\mathrm{d}^3k}{2\omega_k}$ es invariante Lorentz. Es decir,

$$\frac{\mathrm{d}^3 k}{2\omega_k} = \frac{\mathrm{d}^3 k'}{2\omega_{k'}}$$

Desafortunadamente no sabemos como transforma la cantidad d^3k , pero sabemos que

$$d^{4}k' = \left| \frac{\partial k'}{\partial k} \right| d^{4}k = \left| \frac{\partial (\Lambda k)}{\partial k} \right| d^{4}k = |\Lambda| d^{4}k = d^{4}k$$

Pues sabemos que para cualquier transformación de Lorentz (propia y homogénea) cumple $|\Lambda| = 1$. Con esto en mente podemos introducir una integral extra, integrando sobre d k^0 simplemente recordando que¹

$$\mathrm{d}k^0 \, \delta(k^0 - \omega_k) = 1$$

¹Durante todo este ejercicio voy a ignorar el símbolo \int , que debe suponerse siempre junto a cualquier diferencial.

Al hacer esto, k^0 es una variable de integración que puede tener cualquier valor, mientras que entendemos que ω_k está fijado por la ecuación

$$\omega_k = \sqrt{\vec{\mathbf{k}}^2 + m^2}$$

Entonces tenemos que

$$\frac{\mathrm{d}^3k}{2\omega_k} = \frac{\mathrm{d}^3k}{2\omega_k} \, \mathrm{d}k^0 \, \delta(k^0 - \omega_k) = \frac{\delta(k^0 - \omega_k)}{2\omega_k} \, \mathrm{d}^4k$$

Ya sabemos que el diferencial es invariante bajo transformaciones de Lorentz, por lo que nos queda demostrar que $\frac{\delta(k^0-\omega_k)}{2\omega_k}$ también lo es. Para ver que es invariante fijémonos en que podemos simplificarlo un poco, pues recordemos la propiedad

$$\delta(f(k^0)) = \frac{\delta(k^0 - \omega_k)}{|f'(\omega_k)|} \tag{4}$$

Que se cumple para cualquier función $f(k^0)$ cuyo único cero sea ω_k . Es decir, ω_k debe ser el único valor para el cual $f(k^0) = 0$.

Para identificar esta ecuación con la expresión que nosotros queremos demostrar solo tenemos que encontrar una función $f(k^0)$ que cumpla:

$$f(k^0 = \omega_k) = 0$$
 y $f'(k^0) = 2k^0$

En general, podríamos usar la condición más general $|f'(k^0)| = 2k^0$, pero en este caso no nos interesa encontrar la función f más general, sino que nos basta con un único ejemplo. Esto es un problema de ecuaciones diferenciales bastante fácil, pues la función $f(k^0)$ tiene que ser

$$f(k^0) = \int f'(k^0) dk^0 = \int 2k^0 dk^0 = (k^0)^2 + C$$

Imponiendo la condición inicial:

$$f(\omega_k) = (\omega_k)^2 + C = 0 \Longrightarrow C = -\omega_k^2$$
$$f(k^0) = (k^0)^2 - \omega_k^2 = (k^0)^2 - \vec{\mathbf{k}}^2 - m^2 = k^2 - m^2$$

Donde he usado que $\omega_k^2 = \vec{\mathbf{k}}^2 + m^2$ y que $k^2 = (k^0)^2 - \vec{\mathbf{k}}^2$ Por lo tanto uno podría escribir

$$\frac{\delta(k^0 - \omega_k)}{2\omega_k} = \delta(k^2 - m^2)$$

Esto desgraciadamente aún no es la solución final, pues como hemos dicho la ecuación (4) solo es válida si ω_k es el único cero de $f(k^0)$. Pero $(k^0)^2 - \omega_k^2 = 0$ tiene dos soluciones:

$$k^0 = \omega_k, \qquad k^0 = -\omega_k$$

Nosotros solo estamos interesados en la primera, entonces simplemente tenemos que imponer que $k^0 > 0$, de forma que descartamos la segunda solución. Para hacer esto matemáticamente usaremos la función

$$\theta(k^0) = \begin{cases} 1 & \text{si } k^0 > 0 \\ 0 & \text{si } k^0 < 0 \end{cases}$$

Ahora sí, podemos escribir

$$\frac{\delta(k^0 - \omega_k)}{2\omega_k} = \delta(k^2 - m^2)\theta(k^0)$$
(5)

Que, ahora sí es correcto. Y resulta que el lado derecho de esta ecuación es manifiestamente invariante Lorentz!

Vamos a verlo por si alguien aún no está $100\,\%$ convencido: Para empezar el término $\delta(k^2-m^2)$ es invariante Lorentz, pues k^2 es invariante Lorentz y m^2 también (dado que es constante). Por lo que, si para un observador se cumple que $k^2=m^2$ para cualquier otro observador también se cumplirá esto. El término $\theta(k^0)$ también es invariante, puesto que si para un observador $k^0>0$, entonces para cualquier otro $k'^0>0$.

Esto se cumple para cualquier cuadrivector bajo dos condiciones:

- 1) El cuadrivector es de tipo espacio, i.e. $k^2 > 0$
- 2) La transformación de Lorentz es ortocrona, i.e. $\Lambda^0_{\ 0} > 0$

Asumamos que $k^0 > 0$. Entonces sabemos que

$$k'^{0} = \Lambda^{0}_{0}k^{0} + \Lambda^{0}_{1}k^{1} + \Lambda^{0}_{2}k^{2} + \Lambda^{0}_{3}k^{3} \ge \Lambda^{0}_{0}k^{0} - |\Lambda^{0}_{1}k^{1} + \Lambda^{0}_{2}k^{2} + \Lambda^{0}_{3}k^{3}|$$

$$(6)$$

Donde la desigualdad se sigue fácilmente del hecho que $-|x| \leq x.$

La desigualdad de Cauchy, nos dice que

$$|\Lambda^0{}_1k^1 + \Lambda^0{}_2k^2 + \Lambda^0{}_3k^3| \leq \sqrt{(\Lambda^0{}_1)^2 + (\Lambda^0{}_2)^2 + (\Lambda^0{}_3)^2} \sqrt{(k^1)^2 + (k^2)^2 + (k^3)^2}$$

Debido a que $k^2=(k^0)^2-\vec{k}^2>0$, obtenemos que $\vec{k}^2=(k^1)^2+(k^2)^2+(k^3)^2<(k^0)^2$. De forma similar usando la definición de transformación de Lorentz

$$\Lambda^{\mu}{}_{\alpha}g^{\alpha\beta}\Lambda^{\nu}_{\beta}=g^{\mu\nu} \Longrightarrow \Lambda^{0}{}_{0}g^{00}\Lambda^{0}_{0}+\Lambda^{0}{}_{i}g^{ij}\Lambda^{0}_{j}=g^{00} \Longrightarrow (\Lambda^{0}{}_{0})^{2}-(\Lambda^{0}{}_{i})^{2}=1>0$$

O, equivalentemente

$$(\Lambda^0{}_1)^2 + (\Lambda^0{}_2)^2 + (\Lambda^0{}_3)^2 < (\Lambda^0{}_0)^2$$

Por lo que podemos substituir en la desigualdad de Cauchy para obtener

$$|\Lambda^0{}_1k^1 + \Lambda^0{}_2k^2 + \Lambda^0{}_3k^3| < \sqrt{(\Lambda^0{}_0)^2} \sqrt{(k^0)^2} = |\Lambda^0{}_0||k^0|$$

Hasta ahora hemos usado solo que $k^2 > 0$, pero recordemos que tenemos dos otras condiciones, $\Lambda^0{}_0 > 0$ y $k^0 > 0$, que nos permiten escribir esta ecuación como

$$|\Lambda^0{}_1k^1 + \Lambda^0{}_2k^2 + \Lambda^0{}_3k^3| < |\Lambda^0{}_0||k^0| = \Lambda^0{}_0k^0 \Longrightarrow \Lambda^0{}_0k^0 - |\Lambda^0{}_1k^1 + \Lambda^0{}_2k^2 + \Lambda^0{}_3k^3| > 0$$

Que, junto con la ecuación (6) demuestra que efectivamente $k'^0 > 0$. Demostrando finalmente la invariancia Lorentz.

3. Demostrar la invariancia Lorentz del conmutador directamente para el caso 1+1.

$$\int \frac{1}{2\omega_k} \left(e^{i(\omega_k t - kx)} - e^{-i(\omega_k t - kx)} \right) \frac{\mathrm{d}k}{2\pi} \tag{7}$$

Si aplicamos una transformación de Lorentz a las variables de la integral obtenemos

$$t' = \Lambda^{0}_{0}t + \Lambda^{0}_{1}x, \qquad x' = \Lambda^{1}_{0}t + \Lambda^{1}_{1}x \tag{8}$$

Equivalentemente

$$\omega_{k'} = \Lambda^0{}_0\omega_k + \Lambda^0{}_1k, \qquad k' = \Lambda^1{}_0\omega_k + \Lambda^1{}_1k \tag{9}$$

Comprobemos primero que se cumple que $\omega_{k'} = \sqrt{k'^2 + m^2}$:

$$\begin{split} \omega_{k'} - \sqrt{k'^2 + m^2} &= \Lambda^0{}_0 \omega_k + \Lambda^0{}_1 k - \sqrt{(\Lambda^1{}_0 \omega_k + \Lambda^1{}_1 k)^2 + m^2} \\ &= \Lambda^0{}_0 \omega_k + \Lambda^0{}_1 k - \sqrt{(\Lambda^1{}_0)^2 (k^2 + m^2) + (\Lambda^1{}_1)^2 k^2 + 2\Lambda^1{}_0 \Lambda^1{}_1 \omega_k k + m^2} \end{split}$$

Usando las relaciones $(\Lambda^0_0)^2 - (\Lambda^1_0)^2 = 1$, $(\Lambda^0_1)^2 - (\Lambda^1_1)^2 = -1$ y $\Lambda^1_0 \Lambda^1_1 = \Lambda^1_0 \Lambda^1_1$

$$\begin{split} \omega_{k'} - \sqrt{k'^2 + m^2} &= \Lambda^0{}_0 \omega_k + \Lambda^0{}_1 k - \sqrt{((\Lambda^0{}_0)^2 - 1)(k^2 + m^2) + ((\Lambda^0{}_1)^2 + 1)k^2 + 2\Lambda^0{}_0 \Lambda^0{}_1 \omega_k k + m^2} \\ &= \Lambda^0{}_0 \omega_k + \Lambda^0{}_1 k - \sqrt{(\Lambda^0{}_0)^2 \omega_k^2 + (\Lambda^0{}_1)^2 k^2 + 2\Lambda^0{}_0 \Lambda^0{}_1 \omega_k k} \\ &= \Lambda^0{}_0 \omega_k + \Lambda^0{}_1 k - \sqrt{(\Lambda^0{}_0 \omega_k + \Lambda^0{}_1 k)^2} = \Lambda^0{}_0 \omega_k + \Lambda^0{}_1 k - |\Lambda^0{}_0 \omega_k + \Lambda^0{}_1 k| \end{split}$$

Sabemos que $\omega_k > k$, y también que $|\Lambda^0_0| = \sqrt{1 + (\Lambda^0_1)^2} > |\Lambda^0_1|$. Podemos escribir

$$|\Lambda^{0}{}_{0}\omega_{k} + \Lambda^{0}{}_{1}k| = \omega_{k}|\Lambda^{0}{}_{0}| \left| 1 + \frac{\Lambda^{0}{}_{1}k}{\Lambda^{0}{}_{0}\omega_{k}} \right|$$
(10)

Pero $1 > \left| \frac{\Lambda^0_{1}}{\Lambda^0_{0}} \right| \frac{k}{\omega_k} \ge \frac{\Lambda^0_{1}}{\Lambda^0_{0}} \frac{k}{\omega_k}$, por lo que la cantidad $1 + \frac{\Lambda^0_{1}k}{\Lambda^0_{0}\omega_k}$ es siempre positiva y la ecuación (10) se convierte en

$$|\Lambda^{0}{}_{0}\omega_{k} + \Lambda^{0}{}_{1}k| = \frac{|\Lambda^{0}{}_{0}|}{\Lambda^{0}{}_{0}} \left(\Lambda^{0}{}_{0}\omega_{k} + \Lambda^{0}{}_{1}k\right)$$
(11)

por lo que $\omega_{k'} = \sqrt{k'^2 + m^2}$ solo si $\Lambda^0_0 > 0$.

Ahora debemos comprobar que el producto $\omega_k t - kx$ es invariante bajo transformaciones de Lorentz:

$$\begin{aligned} \omega_{k'}t' - k'x' &= (\Lambda^{0}{}_{0}\omega_{k} + \Lambda^{0}{}_{1}k)(\Lambda^{0}{}_{0}t + \Lambda^{0}{}_{1}x) - (\Lambda^{1}{}_{0}\omega_{k} + \Lambda^{1}{}_{1}k)(\Lambda^{1}{}_{0}t + \Lambda^{1}{}_{1}x) \\ &= \left((\Lambda^{0}{}_{0})^{2} - (\Lambda^{1}{}_{0})^{2} \right) \omega_{k}t + (\Lambda^{0}{}_{0}\Lambda^{0}{}_{1} - \Lambda^{1}{}_{0}\Lambda^{1}{}_{1})\omega_{k}x \\ &+ (\Lambda^{0}{}_{1}\Lambda^{0}{}_{0} - \Lambda^{1}{}_{1}\Lambda^{1}{}_{0})kt + \left((\Lambda^{0}{}_{1})^{2} - (\Lambda^{1}{}_{1})^{2} \right)kx \\ &= \omega_{k}t - kx \end{aligned}$$

Perfecto, nos queda demostrar que efectivamente $\frac{\mathrm{d}k}{\omega_k}$ es invariante. Según la transformación (9) tenemos

$$\frac{\mathrm{d}k'}{\mathrm{d}k} = \Lambda^{0}{}_{0} + \Lambda^{0}{}_{1}\frac{k}{\omega_{k}} \Longrightarrow \frac{\mathrm{d}k'}{\omega_{k'}} = \left|\Lambda^{0}{}_{0} + \Lambda^{0}{}_{1}\frac{k}{\omega_{k}}\right| \frac{\mathrm{d}k}{\Lambda^{0}{}_{0}\omega_{k} + \Lambda^{0}{}_{1}k} = \frac{\left|\Lambda^{0}{}_{0}\omega_{k} + \Lambda^{0}{}_{1}k\right|}{\Lambda^{0}{}_{0}\omega_{k} + \Lambda^{0}{}_{1}k} \frac{\mathrm{d}k}{\omega_{k}} = \frac{\mathrm{d}k}{\omega_{k}}$$
(12)

Donde podemos cancelar la fracción usando la ecuación (11).

Esto demuestra explicitamente que la expresión (7) es invariante bajo transformaciones de Lorentz bajo la condición $\Lambda_0^0 > 0$.