

Base matemática de casi todos los algoritmos de ML

Representación de datos como matrices y vectores

El álgebra lineal es el lenguaje matemático del "Machine Learning"

Manipulación eficiente de enormes volúmenes de información

Transformaciones matemáticas necesarias para el aprendizaje

157	153	174	168	150	152	129	151	172	161	156	156
156	182	163	74	75	62	33	17	130	210	180	154
180	180	50	14	34	6	10	33	48	106	159	181
206	109	5	124	131	111	120	204	166	15	56	180
194	68	137	251	237	239	239	228	227	87	n	201
172	106	207	233	233	214	220	239	228	98	74	206
188	88	179	209	185	215	211	158	139	75	20	169
189	97	166	84	10	168	134	11	31	62	22	148
199	168	191	193	158	227	178	143	182	106	36	190
206	174	155	252	236	231	149	178	228	43	95	234
190	216	116	149	236	187	86	150	79	38	218	241
190	224	147	108	227	210	127	102	36	101	255	224
190	214	173	66	103	143	96	50	2	109	249	216
187	196	235	75	1	81	47	0	6	217	255	211
183	202	237	146	0	0	12	108	200	138	243	236
196	206	123	207	177	121	123	200	175	13	96	218

Una imagen es una matriz de píxeles

Una imagen a color de 1000×1000 píxeles = 3 matrices de 1 millón de valores

Operaciones con matrices permiten detectar bordes, formas, patrones...

157	153	174	168	150	162	129	151	172	161	155	156
155	182	163	74	75	62	33	.17	110	210	180	154
180	180	50	14	34	6	10	33	48	106	159	191
206	100	5	124	191	111	120	204	166	15	56	180
194	68	197	251	297	299	259	228	227	87	71	201
172	106	207	233	233	214	220	239	228	98	74	206
188	88	179	209	185	215	211	158	139	75	20	169
189	97	166	84	10	168	134	11	31	62	22	148
199	168	191	193	168	227	178	143	182	106	36	190
205	174	165	252	236	231	149	178	228	43	95	234
190	216	116	149	236	187	86	150	79	38	218	241
190	224	147	100	227	210	127	102	36	101	255	224
190	214	173	66	103	143	94	50	2	109	249	215
187	196	235	75	1	81	47	٥	6	217	255	211
183	202	237	145	0	0	12	108	200	128	243	234
195	206	123	207	177	121	123	200	175	13	96	218

157	153	174	168	150	152	129	151	172	161	156	156
156	182	163	74	75	62	33	17	130	210	180	154
180	180	50	14	34	6	10	33	48	106	159	181
206	109	5	124	131	111	120	204	166	15	56	180
194	68	137	251	237	239	239	228	227	87	n	201
172	106	207	233	233	214	220	239	228	98	74	206
188	88	179	209	185	215	211	158	139	75	20	169
189	97	166	84	10	168	134	11	31	62	22	148
199	168	191	193	158	227	178	143	182	106	36	190
206	174	155	252	236	231	149	178	228	43	95	234
190	216	116	149	236	187	86	150	79	38	218	241
190	224	147	108	227	210	127	102	36	101	255	224
190	214	173	66	103	143	96	50	2	109	249	216
187	196	235	75	1	81	47	0	6	217	255	211
183	202	237	145	0	0	12	108	200	138	243	236
196	206	123	207	177	121	123	200	175	13	96	218

SISTEMAS DE ECUACIONES LINEALES

"Los sistemas de ecuaciones lineales son el corazón de muchos problemas de optimización en ML"

¿Qué es un Sistema de Ecuaciones Lineales?

Un conjunto de ecuaciones donde las variables aparecen:

- Sin potencias (solo x, no x²)
- Sin multiplicarse entre sí (x·y)
- Sin funciones más complejas (sen x, e^x, etc.)

SISTEMAS DE ECUACIONES LINEALES

Ejemplo Real: Precio de Casas

Modelo: precio = $a \times tamaño + b \times habitaciones + c \times antigüedad + d$

Para tres casas diferentes, obtenemos un sistema:

$$a \times 100 + b \times 3 + c \times 5 + d = 250.000$$

 $a \times 80 + b \times 2 + c \times 10 + d = 200.000$
 $a \times 120 + b \times 4 + c \times 7 + d = 290.000$

Resolverlo nos da los parámetros del modelo de predicción.

TIPOS DE SOLUCIONES

Solución única: Existe exactamente un valor para cada incógnita

Infinitas soluciones: Múltiples combinaciones válidas (subespacio) Sin solución: Sistema inconsistente (datos contradictorios)

MATRICES Y SUS OPERACIONES

"Las matrices son las estructuras de datos fundamentales en machine learning"

Definición y Tipos de Matrices

Una matriz es un arreglo rectangular de números ordenados en filas y columnas: A de tamaño m×n

A =
$$\begin{bmatrix} a_{11} & a_{12} & ... & a_{1n} \end{bmatrix}$$

 $\begin{bmatrix} a_{21} & a_{22} & ... & a_{2n} \end{bmatrix}$
 $\begin{bmatrix} ... & ... \end{bmatrix}$
 $\begin{bmatrix} a_{m1} & a_{m2} & ... & a_{mn} \end{bmatrix}$

$$A = \begin{bmatrix} 2 & 5 & 0 \\ -1 & 4 & 1 \end{bmatrix}, \quad B = \begin{bmatrix} 3 & 1 \\ 4 & 5 \end{bmatrix}, \quad C = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 6 & 0 \\ 0 & 0 & 2 \end{bmatrix} \quad \text{y} \quad D = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Matriz no cuadrada

Matriz cuadrada

Matriz diagonal

Matriz identidad

MATRICES Y SUS OPERACIONES

"Las matrices son las estructuras de datos fundamentales en machine learning"

Matriz Inversa

- Similar al recíproco de un número
- Para una matriz A, su inversa A^{-1} cumple: $A \times A^{-1} = I$
- No todas las matrices tienen inversa (matrices singulares)
- Fundamental para resolver sistemas de ecuaciones

$$D = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Aplicación: Red Neuronal Simple

Aplicación: Red Neuronal Simple

$$\begin{bmatrix} w_1 & w_2 & w_3 & w_4 \\ w_1 & w_2 & w_3 & w_4 \\ w_1 & w_2 & w_3 & w_4 \end{bmatrix} \begin{bmatrix} x_1 & x_1 & x_1 & x_1 \\ x_2 & x_2 & x_2 & x_2 \\ x_3 & x_3 & x_3 & x_3 \\ x_4 & x_4 & x_4 & x_4 \end{bmatrix} + \begin{bmatrix} b \\ b \\ b \end{bmatrix} \xrightarrow{\text{activation}} \begin{bmatrix} a_1 & a_1 & a_1 & a_1 \\ a_2 & a_2 & a_2 & a_2 \\ a_3 & a_3 & a_3 & a_3 \end{bmatrix}$$

"La regresión es la puerta de entrada al machine learning"

¿Qué es la Regresión?

- Técnica para modelar la relación entre variables
- Permite predecir valores basados en datos históricos
- Forma más simple: Regresión Lineal (y = a + bx)

"La regresión es la puerta de entrada al machine learning"

DIAGRAMAS DE DISPERSIÓN

Visualización de la relación entre dos variables Cada punto representa un par de valores (x,y) Nos permite identificar patrones visualmente

DIAGRAMAS DE DISPERSIÓN: La relación entre las variables X y Y también puede tomar la forma de una curva. Los especialistas en estadística la llaman relación curvilínea.

"La regresión es la puerta de entrada al machine learning"

Recta de Regresión

$$y = a + bx$$

y: variable dependiente (a predecir)

x: variable independiente (predictor)

a: ordenada al origen (intercepto)

b: pendiente (cambio en y por unidad de x)

"La regresión es la puerta de entrada al machine learning"

Método de Mínimos Cuadrados

Encuentra la línea que minimiza el error cuadrático

Error = $\Sigma(y_real - y_predicho)^2$

Los cuadrados penalizan errores grandes

"La regresión es la puerta de entrada al machine learning"

Método de Mínimos Cuadrados

"La regresión es la puerta de entrada al machine learning"

Coeficiente de Determinación (R²)

Mide la proporción de variación explicada por el modelo

Rango: 0 a 1 (o 0% a 100%)

R² = 0.7 significa que el modelo explica el 70% de la variación

"La regresión es la puerta de entrada al machine learning"

Coeficiente de Correlación (r)

Mide la fuerza y dirección de la relación lineal

Rango: -1 a +1

r = 1: correlación positiva perfecta

r = -1: correlación negativa perfecta

r = 0: no hay correlación lineal

Correlación ≠ **Causalidad**

Que dos variables estén correlacionadas no significa que una cause la otra

Ambas pueden estar influenciadas por una tercera variable

Se requiere análisis adicional para establecer causalidad

APLICACIONES PRÁCTICAS

"Veamos cómo estos conceptos se aplican en el mundo real"

Predicción de Precios Inmobiliarios

```
Modelo de regresión para precio de casas precio = b_0 + b_1 \times tamaño + b_2 \times habitaciones + b_3 \times antigüedad + b_4 \times ubicación
```

Parámetros calculados

```
b_0 = 50,000
```

 $b_1 = 1.200 \text{ # Por m}^2$

 $b_2 = 15.000 # Por habitación$

b₃ = -2.000 # Por año de antigüedad

 $b_4 = 25.000 # Por zona (0-1)$

APLICACIONES PRÁCTICAS

"Veamos cómo estos conceptos se aplican en el mundo real"

Predicción de Precios Inmobiliarios Sistema de Recomendación Reconocimiento de Imágenes

APLICACIONES PRÁCTICAS

"Veamos cómo estos conceptos se aplican en el mundo real"

El álgebra lineal y la regresión son fundamentos matemáticos del ML

Las matrices y sistemas de ecuaciones nos permiten modelar problemas complejos

La regresión nos permite encontrar relaciones y hacer predicciones

Estos conceptos básicos son la base de algoritmos más avanzados

RESUMEN

- Sistemas de Ecuaciones Lineales
- Matrices

