CUDA N-body优化

By 刘畅

优化过程

$\begin{array}{c} \mathbf{1} \\ 12 \rightarrow 25 \quad (n = 2^{12}) \\ 46 \rightarrow 69 \quad (n = 2^{17}) \end{array}$

利用Shared Memory分块计算

》分块大小等于block大小

```
__global__ void
bodyUpdateVelocity(float3 *pos, float3 *vel, float dt, int n) {
         int bodyId = blockIdx.x * blockDim.x + threadIdx.x;
        if (bodyId >= n) return;
         extern __shared__ float3 posShared[];
        float3 acc = { 0.0f, 0.0f, 0.0f };
         float3 p = pos[bodyId];
         for (int i = 0; i < gridDim.x; i++) {</pre>
                  int id = i * blockDim.x + threadIdx.x;
                  __syncthreads();
                  posShared[threadIdx.x] = pos[id];
                  __syncthreads();
                  bodyGatherAccelTiled(p, acc);
         vel[bodyId] += acc * dt;
```

$\begin{array}{c} 2 \\ 25 \rightarrow 31 \\ 69 \rightarrow 85 \end{array}$

循环展开

- 》大概还是由于降低了循环中分支的频率
- 》#pragma unroll自动预处理

```
__forceinline__ __device__
void bodyGatherAccelTiled(float3 pos, float3 &acc) {
        extern __shared__ float3 posShared[];

#pragma unroll 32
        for (int i = 0; i < blockDim.x; i += 2) {
            bodyGetAccelPairwise(pos, posShared[i + 1], acc);
            bodyGetAccelPairwise(pos, posShared[i], acc);
        }
}</pre>
```

《再尝试手动展开一层,便于调整shared mem访问顺序(微微作用)

334.1→34.4 96.5→96.4

CUDA PTX内联汇编优化

》乘加指令: $D = A \times B + C$

比较明显的模式编译器能够自动识别,不过有例外:

distSqr = dx * dx + dy * dy + dz * dz + SOFTENING

》效果极其有限

435→46 96→180

双GPU,双倍快乐

》两张Tesla K80可用,然而

GPU Fan	Name Temp	Persistence-M Pwr:Usage/Cap	Bus-Id Disp.A Memory-Usage	Volatile Uncorr. ECC GPU-Util Compute M.
0 N/A	Tesla 38C	Off 27W / 149W	00000000:09:00.0 Off 11MiB / 12206MiB	Off 0% Default
1 N/A	Tesla 32C	Off 28W / 149W	00000000:0A:00.0 Off 11MiB / 12206MiB	
2 N/A	Tesla 59C	Off 57W / 149W	00000000:86:00.0 Off 582MiB / 12206MiB	•
, 3 N/A +	Tesla 43C	Off 70W / 149W	00000000:87:00.0 Off 321MiB / 12206MiB	Off 0% Default

》原来一张卡上有两个

》先试试二路

双GPU,双倍快乐

- 》如何划分n²对加速度的计算?
- 》GPU数据怎样共享/传输/同步?

546→53 180→181

优化数据传输

》直接走内部总线

》需要peer access支持

继续利用peer access

653→57
181→180

- » cudaDeviceEnablePeerAccess
 - ·这样两个GPU可以直接访问对方的内存地址空间
 - ·直接累加对方的速度增量到自己算出来的部分
 - ・不稳定

双双GPU,四倍快乐

优化对比

■串行 ■并行 ■分块 ■分块+优化 ■双GPU ■4GPU

其他方法

- 2.基于空间划分和远距离近似的快速算法(硬核)
- 》基于以下近似假设 当多个body聚集在很小一团时,其对很远 之外的一个body的作用可近似为单个整体
- 》因此,可以将body按空间划分 对于离得远的那些body,就不必逐一计算

- 1.多thread对一body
- 》小规模数据较快
- 》 大规模数据吞吐率提升有限 可能是由于大量原子操作导致的串行化
- 》代表性算法

· Barnes-Hut

» 每次计算前都要<u>并行</u>构建<u>八叉树</u>

 $O(n\log n)$

- Fast Multipole Method O(n)
 - ←KD树和BVH 应该也可以
- 》结点需要保存质量、质心、包围盒(球)信息

或者动态调整结构

》当结点内的多个body的包围盒相对被计算body 的立体角小于某个阈值,可近似为单个质点