

Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления»

КАФЕДРА «Программное обеспечение ЭВМ и информационные технологии»

Лабораторная работа № 2 по дисциплине «Математическая статистика»

Тема Интервальные оценки

Студент Шахнович Дмитрий Сергеевич

Группа ИУ7-62Б

Вариант №20

Преподаватель Власов П. А.

1 Задание

Цель работы: построение доверительных интервалов для математического ожидания и дисперсии нормальной случайной величины.

Задачи:

- 1) Для выборки объёма n из нормальной генеральной совокупности X реализовать в виде программы на ЭВМ
 - вычисление точечных оценок $\widehat{\mu}(\vec{x_n})$ и $S^2(\vec{x_n})$ математического ожидания MX и дисперсии DX соответственно;
 - вычисление нижней и верхней границ $\underline{\mu}(\vec{x_n})$, $\overline{\mu}(\vec{x_n})$ для γ -доверительного интервала для математического ожидания MX;
 - вычисление нижней и верхней границ $\underline{\sigma}^2(\vec{x_n})$, $\overline{\sigma}^2(\vec{x_n})$ для γ -доверительного интервала для математического ожидания DX;
- 2) Вычислить $\widehat{\mu}$ и S^2 для выборки из индивидуального варианта;
- 3) Для заданного пользователем уровня доверия γ и N объёма выборки из индивидуального варианта:
 - на координатной плоскости Оуп построить прямую $y=\widehat{\mu}(\vec{x_N})$, также графики функций $y=\widehat{\mu}(\vec{x_N})$, $y=\underline{\mu}(\vec{x_N})$ и $y=\overline{\mu}(\vec{x_N})$ как функции объёма n выборки, где n изменяется от 1 до N;
 - на координатной плоскости Оzn построить прямую $z=\widehat{S^2}(\vec{x_N})$, также графики функций $z=\widehat{S^2}(\vec{x_n}), z=\underline{\sigma^2}(\vec{x_N})$ и $z=\overline{\sigma^2}(\vec{x_N})$ как функции объёма n выборки, где n изменяется от 1 до N;

2 Математические сведения

2.1 Определение γ -доверительного интервала для значения параметра распределения случайной величины

Пусть X — случайная величина, закон распределения которой известен с точностью до неизвестного параметра θ . Пусть $\vec{X} = X_1, \dots, X_N$ — случайная выборка из генеральной совокупности X.

Интервальной оценкой параметра θ уровня доверия γ называют пару статистик $\underline{\theta}(\vec{X})$ и $\overline{\theta}(\vec{X})$ таких, что $\mathrm{P}\{\theta\in(\underline{\theta}(\vec{X});\overline{\theta}(\vec{X}))\}=\gamma$

 $\underline{\theta}(\vec{X})$ и $\overline{\theta}(\vec{X})$ называют верхней и нижней границами интервальной оценки соответственно.

 γ -доверительным интервалом параметра θ называется реализация интервальной оценки параметра θ уровня γ , т. е. интервал вида $(\underline{\theta}(\vec{x_n}); \overline{\theta}(\vec{x_n}))$, где $\vec{x_n}$ - выборка из генеральной совокупности X.

2.2 Формулы для вычисления границ γ -доверительного интервала для математического ожидания и дисперсии нормальной случайной величины

Границы γ -доверительного интервала для математического ожидания нормальной случайной величины:

$$\underline{\mu}(\vec{x_n}) = \overline{x} - \frac{S(\vec{x_n})t_{\frac{1+\gamma}{2}}}{\sqrt{n}}$$

$$\overline{\mu}(\vec{x_n}) = \overline{x} + \frac{S(\vec{x_n})t_{\frac{1+\gamma}{2}}}{\sqrt{n}}$$

где:

- $\overline{(x)}$ выборочное среднее;
- $S^2(\vec{x_n})$ исправленная выборочная дисперсия;
- n объём выборки;
- γ уровень доверия;
- t_{α} квантиль уровня α распределения Стьюдента с n 1 степенями свободы.

Границы γ -доверительного интервала для дисперсии нормальной случайной величины:

$$\underline{\sigma^2}(\vec{x_n}) = \frac{S^2(\vec{x_n})}{h_{\frac{1+\gamma}{2}}}$$

$$\overline{\sigma^2}(\vec{x_n}) = \frac{S^2(\vec{x_n})}{h_{\frac{1-\gamma}{2}}}$$

где h_{α} – квантиль уровня α распределения Хи-квадрат с n - 1 степенями свободы.

3 Текст разработанной программы

Листинг 3.1 — Программа лабораторной работы

```
Х
   = [14.90, 14.40, 13.56, 15.55, 13.97, 16.33, 14.37, 13.46, 15.51, 14.69, 13.41], 14.69
sortX = sort(X);
function [n, mx, dx] = FindEstimate(x)
  n = length(x);
  mx = sum(x) / length(x); % выборочное среднее
  dx = sum((x - mx).^2) / (length(x) - 1); % несмещённая оценка диспе
     рсии
end
[n, mx, dx] = FindEstimate(X);
fprintf("Математическое ожидание X: %f.\n", mx);
fprintf("Исправленная выборочная дисперсия X: {\it \%f.} \setminus n", {\it dx});
function mxLow = FindMxLow(x, gamma)
[n, mx, dx] = FindEstimate(x);
  mxLow = mx - (sqrt(dx) * tinv((1 + gamma)/2, n-1) / sqrt(n));
end
function mxHigh = FindMxHigh(x, gamma)
[n, mx, dx] = FindEstimate(x);
  mxHigh = mx + (sqrt(dx) * tinv((1 + gamma)/2, n-1) / sqrt(n));
end
function dxLow = FindDxLow(x, gamma)
[n, ^{\sim}, dx] = FindEstimate(x);
  dxLow = (n - 1) * dx / (chi2inv((1 + gamma) / 2, n-1));
end
function dxHigh = FindDxHigh(x, gamma)
[n, ~, dx] = FindEstimate(x);
  dxHigh = (n - 1) * dx / (chi2inv((1 - gamma) / 2, n-1));
end
mxLow = FindMxLow(X, 0.9)
mxHigh = FindMxHigh(X, 0.9)
```

```
dxLow = FindDxLow(X, 0.9)
dxHigh = FindDxHigh(X, 0.9)
gamma = 0.9;
MxArr = zeros(1,n);
MxLowArr = zeros(1,n);
MxHighArr = zeros(1,n);
DxArr = zeros(1,n);
DxLowArr = zeros(1,n);
DxHighArr = zeros(1,n);
for i = 1:n
  xArr = X(1:i);
 [~, MxArr(i), DxArr(i)] = FindEstimate(xArr);
  MxLowArr(i) = FindMxLow(xArr, gamma);
  MxHighArr(i) = FindMxHigh(xArr, gamma);
 DxLowArr(i) = FindDxLow(xArr, gamma);
 DxHighArr(i) = FindDxHigh(xArr, gamma);
end
plot(1:n, [MxArr', MxLowArr', MxHighArr']);
xlabel('N');
ylabel('Mx');
xlim([5,n]);
legend('Mx', 'MxLow', 'MxHigh');
figure;
plot(1:n, [DxArr', DxLowArr', DxHighArr']);
xlabel('N');
ylabel('Dx');
xlim([5,n]);
legend('Dx', 'DxLow', 'DxHigh');
```

4 Результаты расчётов

Оценка математического ожидания: $\widehat{\mu}(\vec{x_n}) = 14.349167.$

Оценка дисперсии: $S^2(\vec{x_n}) = 1.277621$.

Границы γ -доверительного интервала для математического ожидания(γ = 0.9): $\mu(\vec{x_n})=14.1781, \overline{\mu}(\vec{x_n})=14.5202.$

Границы γ -доверительного интервала для дисперсии (γ = 0.9): $\underline{\sigma^2}(\vec{x_n})=1.0452,$ $\overline{\sigma^2}(\vec{x_n})=1.6036.$

Рисунок 4.1 — Графики зависимости оценки математического ожидания и границ γ -доверительного интервала от размера выборки п

Рисунок 4.2 — Графики зависимости оценки дисперсии и границ γ -доверительного интервала от размера выборки п