- 1. Compute the values of the following sums.
 - 1. $\sum_{k=0}^{\infty} x^k$, for |x| < 1,
 - $2. \sum_{k=0}^{\infty} \frac{x^k}{k!},$
 - $3. \sum_{k=0}^{n} \binom{n}{k} a^k b^{n-k}$

Solution:

1. The sum submits to the ratio test and converges to some number. Denote this number with S. We have

$$S = \tag{1}$$

2. For $\lambda > 0$ let $X \sim \text{Exp}(\lambda)$ and let

$$Y := \lceil X \rceil := \min \{ n \in \mathbb{N} \mid n \ge X \}$$
 (2)

Show that for the parameter $p = 1 - e^{-\lambda}$ holds $Y \sim \text{Geo}(p)$.

Solution:

For the random variable X we have the distribution $f^X(x) = \lambda e^{-\lambda x} \mathbb{1}_{[0,\infty)}(x)$ that generates the probability measure via

$$\mathbb{P}(X \in (a, b]) = \int_{a}^{b} \lambda e^{-\lambda x} \mathbb{1}_{[0, \infty)}(x) \, \mathrm{d}x, \quad \text{for all } a, b \in \mathbb{R}.$$
 (3)

If Y = [X], then we have

$$\mathbb{P}(Y \in (a,b]) = \mathbb{P}(\lceil X \rceil \in (a,b]) \tag{4}$$