

Global United Technology Services Co., Ltd.

Report No.: GTS201803000025F03

FCC Report (WIFI)

Applicant: Lightcomm Technology Co., Ltd.

Address of Applicant: RM 1808 18/F FO TAN INDUSTRIAL CENTRE NOS. 26-28

AU PUI WAN STREET FO TAN SHATIN NEW

TERRITORIES, HONG KONG

Manufacturer/Factory: Huizhou Hengdu Electronics Co., Ltd.

Address of DIP South Area, Huiao Highway, Huizhou, Guangdong, China

Manufacturer/Factory:

Equipment Under Test (EUT)

Product Name: MID

Model No.: MID7009-MA, KTAB17

FCC ID: XMF-MID7009

FCC CFR Title 47 Part 15 Subpart C Section 15.247 **Applicable standards:**

Date of sample receipt: March 01, 2018

Date of Test: March 02-12, 2018

Date of report issued: March 13, 2018

PASS * Test Result:

Authorized Signature:

Robinson Lo Laboratory Manager

This results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.

^{*} In the configuration tested, the EUT complied with the standards specified above.

2 Version

Version No.	Date	Description
00	March 13, 2018	Original

Prepared By:	Bill. yuan	Date:	March 13, 2018
	Project Engineer		
Check By:	Andy W	Date:	March 13, 2018

3 Contents

			Page
1	COV	/ER PAGE	1
2	VED	SION	2
_	VLI	01011	
3	CON	ITENTS	3
4	TES	T SUMMARY	4
5		IERAL INFORMATION	
	5.1	GENERAL DESCRIPTION OF EUT	
	5.2	TEST MODE	
	5.3 5.4	DESCRIPTION OF SUPPORT UNITS	
	5.4 5.5	TEST FACILITY TEST LOCATION	
	5.6	Additional Instructions	
6		T INSTRUMENTS LIST	
0	IES	I INSTRUMENTS LIST	
7	TES	T RESULTS AND MEASUREMENT DATA	10
	7.1	ANTENNA REQUIREMENT	10
	7.2	CONDUCTED EMISSIONS	11
	7.3	CONDUCTED PEAK OUTPUT POWER	
	7.4	CHANNEL BANDWIDTH	
	7.5	Power Spectral Density	
	7.6	BAND EDGES	_
	7.6.1		
	7.6.2		
	7.7	SPURIOUS EMISSION	
	7.7.1 7.7.2		
8	TES	T SETUP PHOTO	54
9	FUT	CONSTRUCTIONAL DETAILS	55

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(3)	Pass
Channel Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247(d)	Pass
Spurious Emission	15.205/15.209	Pass

Pass: The EUT complies with the essential requirements in the standard.

Remark: Test according to ANSI C63.4:2014 and ANSI C63.10:2013.

Measurement Uncertainty

•						
Test Item	Frequency Range	Measurement Uncertainty	Notes			
Radiated Emission	9kHz ~ 30MHz	± 4.34dB	(1)			
Radiated Emission	30MHz ~ 1000MHz	± 4.24dB	(1)			
Radiated Emission	1GHz ~ 26.5GHz	± 4.68dB	(1)			
AC Power Line Conducted Emission	0.15MHz ~ 30MHz	± 3.45dB	(1)			
Note (1): The measurement unce	Note (1): The measurement uncertainty is for coverage factor of k=2 and a level of confidence of 95%.					

5 General Information

5.1 General Description of EUT

Product Name:	MID
Model No.:	MID7009-MA, KTAB17
Test Model No:	MID7009-MA
Remark: All above models are The only differences model na	identical in the same PCB layout, interior structure and electrical circuits. me for commercial purpose.
Serial No.:	0010218150001
Test sample(s) ID:	GTS201803000025-1
Sample(s) Status	Engineer sample
Hardware:	MID7009MA_MB_V1.1
Software:	3.18.35 ubuntu@ip-10-1-1-43 #1 Tue Apr 3 11:56:24 UTC 2018
Channel numbers:	802.11b/802.11g /802.11n(HT20): 11 802.11n(HT40):7
Channel separation:	5MHz
Modulation technology:	802.11b: Direct Sequence Spread Spectrum (DSSS) 802.11g/802.11n(H20)/802.11n(HT40): Orthogonal Frequency Division Multiplexing (OFDM)
Antenna Type:	Integral antenna
Antenna gain:	2.0 dBi(Declared by Applicant)
Power supply:	Adapter: Model:TEKA036-1203000UK Input: AC 100-240V, 50/60Hz, 1.2A Output: DC 12V, 3A Lithium ion Polymer Battery: DC 3.80V, 4500mAh, 17Wh

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz
2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz
3	2422MHz	6	2437MHz	9	2452MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Test channel	Frequency (MHz)			
rest channel	802.11b/802.11g/802.11n(HT20)	802.11n(HT40)		
Lowest channel	2412MHz	2422MHz		
Middle channel	2437MHz	2437MHz		
Highest channel	2462MHz	2452MHz		

5.2 Test mode

Transmitting mode Keep the EUT in continuously transmitting mode

Remark: During the test, the dutycycle >98%, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Pre-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

Mode	802.11b	802.11g	802.11n(HT20)	802.11n(HT40)
Data rate	1Mbps	6Mbps	6.5Mbps	13Mbps

5.3 Description of Support Units

None

5.4 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC —Registration No.: 381383

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fuly described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files. Registration 381383, January 08, 2018.

• Industry Canada (IC) —Registration No.: 9079A-2

The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 9079A-2, August 15, 2016.

5.5 Test Location

All tests were performed at:

Global United Technology Services Co., Ltd.

Address: No. 301-309, 3/F., Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102

Tel: 0755-27798480 Fax: 0755-27798960

5.6 Additional Instructions

EUT Software Settings:

	Special software is used.
Mode	The software provided by client to enable the EUT under transmission
	condition continuously at specific channel frequencies individually.

Power level setup in softwa	re		
Test Software Name	MTK Engineer		
Mode	Channel	Frequency (MHz)	Soft Set
802.11b/g/n(HT20)	CH1	2412	
	CH6	2437	
	CH11	2462	TX level : default
802.11n(HT40)	CH3	2422	ix level : default
	CH6	2437	
	CH9	2452	

Run Software

Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102

6 Test Instruments list

Radia	Radiated Emission:						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)	
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.0(L)*6.0(W)* 6.0(H)	GTS250	July. 03 2015	July 02 2020	
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A	
3	ESU EMI Test Receiver	R&S	ESU26	GTS203	June 28 2017	June 27 2018	
4	Loop Antenna	Zhinan	ZN30900A	GTS534	June 28 2017	June 27 2018	
5	BiConiLog Antenna	SCHWARZBECK	VULB9163	GTS214	June 28 2017	June 27 2018	
6	Double-ridged horn antenna	SCHWARZBECK	9120D	GTS208	June 28 2017	June 27 2018	
7	Horn Antenna	ETS-LINDGREN	3160-09	GTS218	June 28 2017	June 27 2018	
8	RF Amplifier	HP	8347A	GTS204	June 28 2017	June 27 2018	
9	RF Amplifier	HP	8349B	GTS206	June 28 2017	June 27 2018	
10	Broadband Preamplifier	SCHWARZBECK	BBV9718	GTS535	June 28 2017	June 27 2018	
11	PSA Series Spectrum Analyzer	Agilent	E4440A	GTS536	June 28 2017	June 27 2018	
12	EMI Test Software	AUDIX	E3	N/A	N/A	N/A	
13	Coaxial Cable	GTS	N/A	GTS210	June 28 2017	June 27 2018	
14	Coaxial Cable	GTS	N/A	GTS211	June 28 2017	June 27 2018	
15	Coaxial Cable	GTS	N/A	GTS210	June 28 2017	June 27 2018	
16	Coaxial Cable	GTS	N/A	GTS212	June 28 2017	June 27 2018	
17	Thermo meter	N/A	N/A	GTS256	June 28 2017	June 27 2018	
18	D.C. Power Supply	Instek	PS-3030	GTS232	June 28 2017	June 27 2018	

Con	Conducted Emission												
Item	em Test Equipment Manufacturer		Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)							
1	Shielding Room	ZhongYu Electron	7.3(L)x3.1(W)x2.9(H)	GTS252	May.16 2014	May 15 2019							
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June 28 2017	June 27 2018							
3	Coaxial Switch	ANRITSU CORP	MP59B	GTS225	June 28 2017	June 27 2018							
4	Artificial Mains Network SCHWARZBECK MESS		NSLK8127	GTS226	June 28 2017	June 27 2018							
5	High voltage probe	SCHWARZBECK	TK9420	GTS537	June 28 2017	June 27 2018							
6	ISN	SCHWARZBECK	NTFM 8158	GTS565	June 28 2017	June 27 2018							
7	Coaxial Cable	GTS	N/A	GTS227	June 28 2017	June 27 2018							
8	EMI Test Software	AUDIX	E3	N/A	N/A	N/A							
9	Thermo meter	KTJ	TA328	GTS233	June 28 2017	June 27 2018							
10	10dB Pulse Limiter	Rohde & Schwarz	N/A	GTS224	June 28 2017	June 27 2018							

Gen	General used equipment:										
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)					
1	Barometer	ChangChun	DYM3	GTS257	June 28 2017	June 27 2018					

7 Test results and Measurement Data

7.1 Antenna requirement

Standard requirement: FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

EUT Antenna:

The antenna is integral antenna, the best case gain of the antenna is 2.0 dBi

7.2 Conducted Emissions

Test Requirement:	FCC Part15 C Section 15.207							
Test Method:	ANSI C63.10:2013							
Test Frequency Range:	150KHz to 30MHz							
Receiver setup:	RBW=9KHz, VBW=30KHz, Sweep time=auto							
Limit:	Frequency range (MHz) Limit (dBuV) Quasi-peak Average							
	0.15-0.5	Average 56 to 46*						
	0.15-0.5	46						
	5-30	<u>56</u> 60	50					
	* Decreases with the logarithm		00					
Test setup:	Reference Plane	1 ,						
Tastana	AUX Equipment E.U.T Test table/Insulation plane Remark E.U.T Equipment Under Test LISN Line Impedence Stabilization Network Test table height=0.8m	Filter — AC pow						
Test procedure:	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10:2013 on conducted measurement. 							
Test Instruments:	Refer to section 6.0 for details							
Test mode:	Refer to section 5.2 for details							
Test results:	Pass							

Measurement data

Line:

Freq MHz	Reading level dBuV	lISN/ISN factor dB	Cable loss dB	level dBuV	Limit level dBuV	Over limit dB	Remark
 0.168	27.85	0.40	0.09	28, 34	65.08	-36.74	QP
0.168	20.10	0.40	0.09	20.59	55.08	-34.49	Average
0.183	24.82	0.40	0.10	25.32	64.33	-39.01	QP
0.183	8.39	0.40	0.10	8.89	54.33	-45.44	Average
0.363	23.23	0.37	0.10	23.70	58.65	-34.95	QP
0.363	15.67	0.37	0.10	16.14	48.65	-32.51	Average
0.634	30.50	0.28	0.12	30.90	56.00	-25.10	QP
0.634	20.46	0.28	0.12	20.86	46.00	-25.14	Average
0.708	24.59	0.26	0.13	24.98	56.00	-31.02	QP
0.708	15.42	0.26	0.13	15.81	46.00	-30.19	Average
0.839	20.14	0.23	0.14	20.51	56.00	-35.49	QP
0.839	10.31	0.23	0.14	10.68	46.00	-35.32	Average

Neutral:

Notes:

1. An initial pre-scan was performed on the line and neutral lines with peak detector.

0.12

0.12

0.13

0.13

2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.

32.26

21.95

25.17

17.72

56.00

46.00

56.00

46.00

-23.74

-30.83

-28.28

24.05

QP

QP

Average

Average

3. Final Level =Receiver Read level + LISN Factor + Cable Loss

0.28

0.28

0.26

0.26

31.86

21.55

24.78

17.33

0.634

0.634

0.708

0.708

4. If the average limit is met when using a quasi-peak detector receiver, the EUT shall be deemed to meet both limits and measurement with the average detector receiver is unnecessary.

7.3 Conducted Peak Output Power

Measurement Data

	Test CH		Peak Outp	Limit(dBm)	Result			
	1031 011	802.11b	802.11g	802.11n(HT20)	802.11n(HT40)	Liiiii(GDIII)	Nesull	
	Lowest	17.25	15.15	15.26	12.42			
	Middle	17.31	15.27	15.44	12.60	30.00	Pass	
	Highest	17.05	15.00	15.21	12.11			

7.4 Channel Bandwidth

Test Requirement:	FCC Part15 C Section 15.247 (a)(2)
Test Method:	KDB558074 D01 DTS Meas Guidance V03
Limit:	>500KHz
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.2 for details
Test results:	Pass

Measurement Data

Test CH		Channel E	Limit(KHz)	Result			
Test Off	802.11b	802.11g	802.11n(HT20)	802.11n(HT40)	Limit(Ki iz)	Nesuit	
Lowest	9.576	15.152	15.987	35.196			
Middle	9.136	15.710	16.100	35.904	>500	Pass	
Highest	9.565	15.744	16.352	35.615			

Test plot as follows:

Test mode: 802.11b

Lowest channel

Middle channel

Highest channel

Test mode: 802.11g

Lowest channel

Middle channel

Highest channel

Test mode: 802.11n(HT20)

Lowest channel

Middle channel

Highest channel

Test mode: 802.11n(HT40)

Lowest channel

Middle channel

Highest channel

7.5 Power Spectral Density

Test Requirement:	FCC Part15 C Section 15.247 (e)		
Test Method:	KDB558074 D01 DTS Meas Guidance V03		
Limit:	8dBm/3kHz		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 6.0 for details		
Test mode:	Refer to section 5.2 for details		
Test results:	Pass		

Measurement Data

Test CH		Power Spe	Limit	Result			
1631 011	802.11b	802.11g	802.11n(HT20)	802.11n(HT40)	(dBm/3kHz)	Nesuit	
Lowest	-7.96	-13.11	-13.23	-17.76			
Middle	-8.08	-13.63	-13.82	-17.81	8.00	Pass	
Highest	-8.25	-13.63	-13.84	4 -17.45			

Test plot as follows:

Test mode: 802.11b

Lowest channel

Middle channel

Highest channel

Test mode: 802.11g

Lowest channel

Middle channel

Highest channel

Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102

Test mode: 802.11n(HT20)

Lowest channel

Middle channel

Highest channel

Test mode: 802.11n(HT40)

Lowest channel

Middle channel

Highest channel

7.6 Band edges

7.6.1 Conducted Emission Method

Tost Poquiroment:	FCC Part15 C Section 15.247 (d)				
Test Requirement:					
Test Method:	KDB558074 D01 DTS Meas Guidance V03				
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 6.0 for details				
Test mode:	Refer to section 5.2 for details				
Test results:	Pass				

Test plot as follows:

Lowest channel

Highest channel

Test mode: 802.11g ** Agilent R T Peak Search ** Agilent

Lowest channel

Highest channel

Lowest channel

Highest channel

Lowest channel

Highest channel

7.6.2 Radiated Emission Method

Test Requirement:	FCC Part15 C Section 15.209 and 15.205								
Test Method:	ANSI C63.10:2013								
Test Frequency Range:	All of the restrict 2500MHz) data		tested, only	the worst ba	ind's (2310MHz to				
Test site:	Measurement D	Measurement Distance: 3m							
Receiver setup:	Frequency	Detector	RBW	VBW	Value				
·		Peak	1MHz	3MHz	Peak				
	Above 1GHz	Average	1MHz	3MHz	Average				
Limit:	Freque		Limit (dBuV/		Value				
	Above 1	CH-	54.0	0	Average				
	Above	GHZ	74.0	0	Peak				
	Test Antennad Tum Tabled State S								
Test Procedure:	determine the 2. The EUT was antenna, whi tower. 3. The antenna ground to de horizontal an measuremer 4. For each sus and then the and the rota the maximum 5. The test-rece Specified Ba 6. If the emissic limit specified the EUT wou 10dB margin average met 7. The radiation And found th	t a 3 meter can e position of the s set 3 meters ch was mounte termine the ma d vertical polar at. spected emissic antenna was turne a reading. siver system wa ndwidth with M on level of the E d, then testing of lid be reported. would be re-te hod as specifie	nber. The take highest race away from the don the top of the top o	ole was rotated liation. The interference of a variable meter to four reports from 1 meters from 1 m	ed 360 degrees to be-receiving e-height antenna emeters above the strength. Both re set to make the ed to its worst case eter to 4 meters degrees to find enction and enction and encountered by the ed to its worst case eter to 4 meters degrees to find enction and enction and enction and encountered by the encountered				
Test Instruments:		6.0 for details							
Test mode:	Refer to section 5.2 for details								
Test results: Pass									

Global United Technology Services Co., Ltd.

No. 301-309, 3/F., Jinyuan Business Building, No.2, Laodong Industrial Zone,

Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102

Measurement data:

Remark: The pre-test were performed on lowest, middle and highest frequencies, only the worst case's (lowest and highest frequencies) data was showed.

Test mode: 802.11b Test channel:					ı	Lowest			
Test mode: Peak value:						LOWE21			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Prear Fact (dB	or	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2390.00	50.99	27.59	5.38	34.0)1	49.95	74.00	-24.05	Horizontal
2400.00	59.78	27.58	5.39	34.0)1	58.74	74.00	-15.26	Horizontal
2390.00	52.62	27.59	5.38	34.0)1	51.58	74.00	-22.42	Vertical
2400.00	61.40	27.58	5.39	34.0)1	60.36	74.00	-13.64	Vertical
Average va	lue:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Prear Fact (dB	or	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2390.00	37.94	27.59	5.38	34.0)1	36.90	54.00	-17.10	Horizontal
2400.00	46.16	27.58	5.39	34.0)1	45.12	54.00	-8.88	Horizontal
2390.00	39.71	27.59	5.38	34.0)1	38.67	54.00	-15.33	Vertical
2400.00	47.24	27.58	5.39	34.0)1	46.20	54.00	-7.80	Vertical
Test mode:		802.1	1b		Tes	st channel:		Highest	
Peak value		T		1		T			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Prear Fact (dB	or	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2483.50	51.36	27.53	5.47	33.9	2	50.44	74.00	-23.56	Horizontal
2500.00	47.40	27.55	5.49	29.9	3	50.51	74.00	-23.49	Horizontal
2483.50	53.48	27.53	5.47	33.9	2	52.56	74.00	-21.44	Vertical
2500.00	49.78	27.55	5.49	29.9	3	52.89	74.00	-21.11	Vertical
Average va	lue:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Prear Fact (dB	or	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2483.50	38.20	27.53	5.47	33.9	2	37.28	54.00	-16.72	Horizontal
2500.00	34.43	27.55	5.49	29.9	3	37.54	54.00	-16.46	Horizontal
2483.50	40.09	27.53	5.47	33.9	2	39.17	54.00	-14.83	Vertical
		I				I			I

2500.00 Remark:

1. Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

5.49

2. The emission levels of other frequencies are very lower than the limit and not show in test report.

29.93

39.40

54.00

36.29

27.55

-14.60

Vertical

Test mode:	mode: 802.11g		Test channel:		L	Lowest		
Peak value:		•		•		•		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2390.00	50.20	27.59	5.38	34.01	49.16	74.00	-24.84	Horizontal
2400.00	58.73	27.58	5.39	34.01	57.69	74.00	-16.31	Horizontal
2390.00	51.78	27.59	5.38	34.01	50.74	74.00	-23.26	Vertical
2400.00	60.14	27.58	5.39	34.01	59.10	74.00	-14.90	Vertical
Average val	lue:							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2390.00	37.38	27.59	5.38	34.01	36.34	54.00	-17.66	Horizontal
2400.00	45.52	27.58	5.39	34.01	44.48	54.00	-9.52	Horizontal
2390.00	39.09	27.59	5.38	34.01	38.05	54.00	-15.95	Vertical
2400.00	46.53	27.58	5.39	34.01	45.49	54.00	-8.51	Vertical
Test mode:		802.1	1g	Tes	st channel:	ŀ	Highest	
Peak value:					_			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2483.50	50.24	27.53	5.47	33.92	49.32	74.00	-24.68	Horizontal
2500.00	46.53	27.55	5.49	29.93	49.64	74.00	-24.36	Horizontal
2483.50	52.20	27.53	5.47	33.92	51.28	74.00	-22.72	Vertical
2500.00	48.77	27.55	5.49	29.93	51.88	74.00	-22.12	Vertical
Average val	lue:				,			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
	(== = -)				1	E4.00	47.00	l lovi-ontol
2483.50	37.53	27.53	5.47	33.92	36.61	54.00	-17.39	Horizontal
2483.50 2500.00		27.53 27.55	5.47 5.49	33.92 29.93	36.61 37.01	54.00	-17.39 -16.99	Horizontal
	37.53							

Remark:

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode:

Report No.: GTS201803000025F03

Lowest

		002	(0)	. •	ot on an in ion	_	-0	
Peak value								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2390.00	50.20	27.59	5.38	34.01	49.16	74.00	-24.84	Horizontal
2400.00	58.73	27.58	5.39	34.01	57.69	74.00	-16.31	Horizontal
2390.00	51.78	27.59	5.38	34.01	50.74	74.00	-23.26	Vertical
2400.00	60.14	27.58	5.39	34.01	59.10	74.00	-14.90	Vertical
Average va	lue:			•	•	•	•	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2390.00	37.38	27.59	5.38	34.01	36.34	54.00	-17.66	Horizontal
2400.00	45.52	27.58	5.39	34.01	44.48	54.00	-9.52	Horizontal
2390.00	39.08	27.59	5.38	34.01	38.04	54.00	-15.96	Vertical
2400.00	46.53	27.58	5.39	34.01	45.49	54.00	-8.51	Vertical
				•	•	•	•	
Test mode:		802.1	1n(HT20)	Te	st channel:	ŀ	Highest	
Peak value								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2483.50	50.24	27.53	5.47	33.92	49.32	74.00	-24.68	Horizontal
2500.00	46.53	27.55	5.49	29.93	49.64	74.00	-24.36	Horizontal
2483.50	52.20	27.53	5.47	33.92	51.28	74.00	-22.72	Vertical
2500.00	48.77	27.55	5.49	29.93	51.88	74.00	-22.12	Vertical
Average va	lue:							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2483.50	37.53	27.53	5.47	33.92	36.61	54.00	-17.39	Horizontal
2500.00	33.90	27.55	5.49	29.93	37.01	54.00	-16.99	Horizontal
2483.50	39.34	27.53	5.47	33.92	38.42	54.00	-15.58	Vertical
2500.00	35.73	27.55	5.49	29.93	38.84	54.00	-15.16	Vertical
Remark:								

Test channel:

802.11n(HT20)

Global United Technology Services Co., Ltd.

No. 301-309, 3/F., Jinyuan Business Building, No.2, Laodong Industrial Zone,

1. Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

The emission levels of other frequencies are very lower than the limit and not show in test report.

Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102

Test mode:

Report No.: GTS201803000025F03

Lowest

rest mode.		002.1	` ,	16				
Peak value:	1							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2390.00	49.34	27.59	5.38	34.01	48.30	74.00	-25.70	Horizontal
2400.00	57.57	27.58	5.39	34.01	56.53	74.00	-17.47	Horizontal
2390.00	50.86	27.59	5.38	34.01	49.82	74.00	-24.18	Vertical
2400.00	58.75	27.58	5.39	34.01	57.71	74.00	-16.29	Vertical
Average va	lue:							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2390.00	36.76	27.59	5.38	34.01	35.72	54.00	-18.28	Horizontal
2400.00	44.81	27.58	5.39	34.01	43.77	54.00	-10.23	Horizontal
2390.00	38.40	27.59	5.38	34.01	37.36	54.00	-16.64	Vertical
2400.00	45.75	27.58	5.39	34.01	44.71	54.00	-9.29	Vertical
Test mode:		802.1	1n(HT40)	Te	st channel:	ŀ	Highest	
Peak value:	•				_			
Frequency (MHz)	Read Level	Antenna Factor	Cable Loss	Preamp	Level	Limit Line	Over	
	(dBuV)	(dB/m)	(dB)	Factor (dB)	(dBuV/m)	(dBuV/m)	Limit (dB)	Polarization
2483.50								Polarization Horizontal
2483.50 2500.00	(dBuV)	(dB/m)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
	(dBuV) 49.00	(dB/m) 27.53	(dB) 5.47	(dB) 33.92	(dBuV/m) 48.08	(dBuV/m) 74.00	(dB) -25.92	Horizontal
2500.00	(dBuV) 49.00 45.57	(dB/m) 27.53 27.55	(dB) 5.47 5.49	(dB) 33.92 29.93	(dBuV/m) 48.08 48.68	74.00 74.00	(dB) -25.92 -25.32	Horizontal Horizontal
2500.00 2483.50	(dBuV) 49.00 45.57 50.79 47.64	(dB/m) 27.53 27.55 27.53	(dB) 5.47 5.49 5.47	(dB) 33.92 29.93 33.92	(dBuV/m) 48.08 48.68 49.87	74.00 74.00 74.00	(dB) -25.92 -25.32 -24.13	Horizontal Horizontal Vertical
2500.00 2483.50 2500.00	(dBuV) 49.00 45.57 50.79 47.64	(dB/m) 27.53 27.55 27.53	(dB) 5.47 5.49 5.47	(dB) 33.92 29.93 33.92	(dBuV/m) 48.08 48.68 49.87	74.00 74.00 74.00	(dB) -25.92 -25.32 -24.13	Horizontal Horizontal Vertical
2500.00 2483.50 2500.00 Average va Frequency	(dBuV) 49.00 45.57 50.79 47.64 lue: Read Level	(dB/m) 27.53 27.55 27.53 27.55 Antenna Factor	(dB) 5.47 5.49 5.47 5.49 Cable Loss	(dB) 33.92 29.93 33.92 29.93 Preamp Factor	(dBuV/m) 48.08 48.68 49.87 50.75	74.00 74.00 74.00 74.00 74.00	(dB) -25.92 -25.32 -24.13 -23.25 Over Limit	Horizontal Horizontal Vertical Vertical
2500.00 2483.50 2500.00 Average va Frequency (MHz)	(dBuV) 49.00 45.57 50.79 47.64 lue: Read Level (dBuV)	(dB/m) 27.53 27.55 27.53 27.55 Antenna Factor (dB/m)	(dB) 5.47 5.49 5.47 5.49 Cable Loss (dB)	(dB) 33.92 29.93 33.92 29.93 Preamp Factor (dB)	(dBuV/m) 48.08 48.68 49.87 50.75 Level (dBuV/m)	74.00 74.00 74.00 74.00 Limit Line (dBuV/m)	(dB) -25.92 -25.32 -24.13 -23.25 Over Limit (dB)	Horizontal Horizontal Vertical Vertical Polarization
2500.00 2483.50 2500.00 Average va Frequency (MHz) 2483.50	(dBuV) 49.00 45.57 50.79 47.64 lue: Read Level (dBuV) 36.78	(dB/m) 27.53 27.55 27.55 27.55 Antenna Factor (dB/m) 27.53	(dB) 5.47 5.49 5.49 Cable Loss (dB) 5.47	(dB) 33.92 29.93 33.92 29.93 Preamp Factor (dB) 33.92	(dBuV/m) 48.08 48.68 49.87 50.75 Level (dBuV/m) 35.86	74.00 74.00 74.00 74.00 Tumit Line (dBuV/m)	(dB) -25.92 -25.32 -24.13 -23.25 Over Limit (dB) -18.14	Horizontal Horizontal Vertical Vertical Polarization Horizontal

Test channel:

802.11n(HT40)

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

7.7 Spurious Emission

7.7.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)			
Test Method:	KDB558074 D01 DTS Meas Guidance V03			
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.			
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane			
Test Instruments:	Refer to section 6.0 for details			
Test mode:	Refer to section 5.2 for details			
Test results:	Pass			

Test plot as follows:

Test mode: 802.11b

Lowest channel

30MHz~25GHz

Middle channel

Highest channel

30MHz~25GHz

Test mode: 802.11g

Lowest channel

30MHz~25GHz

Middle channel

Highest channel

30MHz~25GHz

30MHz~25GHz

Test mode: 802.11n(HT20)

Lowest channel

30MHz~25GHz

Middle channel

30MHz~25GHz

Highest channel

Test mode: 802.11n(HT40)

Lowest channel

30MHz~25GHz

Middle channel

30MHz~25GHz

Highest channel

30MHz~25GHz

7.7.2 Radiated Emission Method

Test Requirement:	FCC Part15 C Se	ection 15.209								
Test Method:	ANSI C63.10:2013									
Test Frequency Range:	30MHz to 25GHz	30MHz to 25GHz								
Test site:	Measurement Dis	stance: 3m								
Receiver setup:	Frequency	Frequency Detector RBW VBW								
	30MHz-1GHz	Quasi-peak	120KHz	300KHz	Quasi-peak					
	Above 1GHz	Peak	1MHz	3MHz	Peak					
	Above IGHZ	Average	1MHz	3MHz	Average					
Limit:	Frequer	ісу	Limit (dBuV/	/m @3m)	Value					
	30MHz-88	MHz	40.0	0	Quasi-peak					
	88MHz-216	6MHz	43.5	0	Quasi-peak					
	216MHz-96	0MHz	46.0	0	Quasi-peak					
	960MHz-1	GHz	54.0	0	Quasi-peak					
	Above 10	SHz —	54.0	0	Average					
	7,5500)	74.0	0	Peak					
Test setup:	Below 1GHz	EUT-		Antenna 4m >	ñer-					
	Above 1GHz									

	Tum Table
Test Procedure:	1. The EUT was placed on the top of a rotating table(0.8 meters below 1G and 1.5 meters above 1G) above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.
	2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
	3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
	4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.
	The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
	7. The radiation measurements are performed in X, Y, Z axis positioning. And found the Y axis positioning which it is worse case, only the test worst case mode is recorded in the report.
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.2 for details
Test results:	Pass

Remark:

Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.

Measurement Data

■ Below 1GHz

Horizontal:

Vertical:

■ Above 1GHz

Test mode:		802.11b			Test	channel:		Lowe	st	
Peak value:										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Fa	amp ctor dB)	Level (dBuV/m)	Limit (dBu		Over Limit (dB)	polarization
4824.00	40.60	31.79	8.62	32	32.10 48.91		74.	00	-25.09	Vertical
7236.00	34.41	36.19	11.68	31	.97	50.31	74.	00	-23.69	Vertical
9648.00	32.85	38.07	14.16	31	.56	53.52	74.	00	-20.48	Vertical
12060.00	*						74.	00		Vertical
14472.00	*						74.	00		Vertical
16884.00	*						74.	00		Vertical
4824.00	39.22	31.79	8.62	32	2.10	47.53	74.	00	-26.47	Horizontal
7236.00	34.14	36.19	11.68	31	.97	50.04	74.	00	-23.96	Horizontal
9648.00	32.42	38.07	14.16	31	.56	53.09	74.	00	-20.91	Horizontal
12060.00	*						74.	00		Horizontal
14472.00	*						74.	00		Horizontal
16884.00	*						74.	00		Horizontal
Average val	ue:									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Fa	amp ctor IB)	Level (dBuV/m)	Limit (dBu\		Over Limit (dB)	polarization
4824.00	29.66	31.79	8.62	32	.10	37.97	54.	00	-16.03	Vertical
7236.00	23.27	36.19	11.68	31	.97	39.17	54.	00	-14.83	Vertical
9648.00	23.19	38.07	14.16	31	.56	43.86	54.	00	-10.14	Vertical
12060.00	*						54.	00		Vertical
14472.00	*						54.	00		Vertical
16884.00	*						54.	00		Vertical
4824.00	28.75	31.79	8.62	32	.10	37.06	54.	00	-16.94	Horizontal
7236.00	22.72	36.19	11.68	31	.97	38.62	54.	00	-15.38	Horizontal
9648.00	22.16	38.07	14.16	31	.56	42.83	54.	00	-11.17	Horizontal
12060.00	*						54.	00		Horizontal
4.4470.00										

Remark:

14472.00

16884.00

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Horizontal

Horizontal

54.00

54.00

^{1.} Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

^{2. &}quot;*", means this data is the too weak instrument of signal is unable to test.

Test mode:		802.11b		Test	channel:	Midd	le	
Peak value:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4874.00	39.61	31.85	8.66	32.12	48.00	74.00	-26.00	Vertical
7311.00	34.45	36.37	11.71	31.91	50.62	74.00	-23.38	Vertical
9748.00	33.85	38.27	14.25	31.56	54.81	74.00	-19.19	Vertical
12185.00	*					74.00		Vertical
14622.00	*					74.00		Vertical
17059.00	*					74.00		Vertical
4874.00	40.04	31.85	8.66	32.12	48.43	74.00	-25.57	Horizontal
7311.00	33.07	36.37	11.71	31.91	49.24	74.00	-24.76	Horizontal
9748.00	33.73	38.27	14.25	31.56	54.69	74.00	-19.31	Horizontal
12185.00	*					74.00		Horizontal
14622.00	*					74.00		Horizontal
17059.00	*					74.00		Horizontal
Average val	ue:							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4874.00	30.44	31.85	8.66	32.12	38.83	54.00	-15.17	Vertical
7311.00	22.76	36.37	11.71	31.91	38.93	54.00	-15.07	Vertical
9748.00	23.10	38.27	14.25	31.56	44.06	54.00	-9.94	Vertical
12185.00	*					54.00		Vertical
14622.00	*					54.00		Vertical
17059.00	*					54.00		Vertical
4874.00	30.14	31.85	8.66	32.12	38.53	54.00	-15.47	Horizontal
7311.00	22.16	36.37	11.71	31.91	38.33	54.00	-15.67	Horizontal
9748.00	23.44	38.27	14.25	31.56	44.40	54.00	-9.60	Horizontal
12185.00	*					54.00		Horizontal
14622.00	*					54.00		Horizontal
17059.00	*					54.00		Horizontal

Remark:

Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor
 "*", means this data is the too weak instrument of signal is unable to test.

Test mode:		802.11b		Test channel:		Highe	est	
Peak value:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4924.00	45.32	31.90	8.70	32.15	53.77	74.00	-20.23	Vertical
7386.00	35.24	36.49	11.76	31.83	51.66	74.00	-22.34	Vertical
9848.00	37.23	38.62	14.31	31.77	58.39	74.00	-15.61	Vertical
12310.00	*					74.00		Vertical
14772.00	*					74.00		Vertical
17234.00	*					74.00		Vertical
4924.00	44.56	31.90	8.70	32.15	53.01	74.00	-20.99	Horizontal
7386.00	34.11	36.49	11.76	31.83	50.53	74.00	-23.47	Horizontal
9848.00	33.38	38.62	14.31	31.77	54.54	74.00	-19.46	Horizontal
12310.00	*					74.00		Horizontal
14772.00	*					74.00		Horizontal
17234.00	*					74.00		Horizontal
Average val	ue:							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4924.00	36.20	31.90	8.70	32.15	44.65	54.00	-9.35	Vertical
7386.00	25.15	36.49	11.76	31.83	41.57	54.00	-12.43	Vertical
9848.00	25.72	38.62	14.31	31.77	46.88	54.00	-7.12	Vertical
12310.00	*					54.00		Vertical
14772.00	*					54.00		Vertical
17234.00	*					54.00		Vertical
4924.00	34.90	31.90	8.70	32.15	43.35	54.00	-10.65	Horizontal
7386.00	23.49	36.49	11.76	31.83	39.91	54.00	-14.09	Horizontal
9848.00	22.64	38.62	14.31	31.77	43.80	54.00	-10.20	Horizontal
12310.00	*					54.00		Horizontal
14772.00	*					54.00		Horizontal
17234.00	*					54.00		Horizontal

Remark:

Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor
 "*", means this data is the too weak instrument of signal is unable to test.

Test mode:		802.11g		Test	channel:	lowes	st	
Peak value:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB) Level (dBuV/m)		Limit Line (dBuV/m)	Over Limit (dB)	polarization
4824.00	40.26	31.79	8.62	32.10	48.57	74.00	-25.43	Vertical
7236.00	34.20	36.19	11.68	31.97	50.10	74.00	-23.90	Vertical
9648.00	32.70	38.07	14.16	31.56	53.37	74.00	-20.63	Vertical
12060.00	*					74.00		Vertical
14472.00	*					74.00		Vertical
16884.00	*					74.00		Vertical
4824.00	38.93	31.79	8.62	32.10	47.24	74.00	-26.76	Horizontal
7236.00	33.95	36.19	11.68	31.97	49.85	74.00	-24.15	Horizontal
9648.00	32.28	38.07	14.16	31.56	52.95	74.00	-21.05	Horizontal
12060.00	*					74.00		Horizontal
14472.00	*					74.00		Horizontal
16884.00	*					74.00		Horizontal
Average val	ue:							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4824.00	29.34	31.79	8.62	32.10	37.65	54.00	-16.35	Vertical
7236.00	23.06	36.19	11.68	31.97	38.96	54.00	-15.04	Vertical
9648.00	23.05	38.07	14.16	31.56	43.72	54.00	-10.28	Vertical
12060.00	*					54.00		Vertical
14472.00	*					54.00		Vertical
16884.00	*					54.00		Vertica
4824.00	28.47	31.79	8.62	32.10	36.78	54.00	-17.22	Horizontal
7236.00	22.53	36.19	11.68	31.97	38.43	54.00	-15.57	Horizontal
9648.00	22.03	38.07	14.16	31.56	42.70	54.00	-11.30	Horizontal
12060.00	*					54.00		Horizontal
14472.00	*					54.00		Horizontal
16884.00	*					54.00		Horizontal

Remark:

Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor
 "*", means this data is the too weak instrument of signal is unable to test.

Test mode:		802.11g		Test	channel:	Middle		
Peak value:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4874.00	39.32	31.85	8.66	32.12	47.71	74.00	-26.29	Vertical
7311.00	34.27	36.37	11.71	31.91	50.44	74.00	-23.56	Vertical
9748.00	33.72	38.27	14.25	31.56	54.68	74.00	-19.32	Vertical
12185.00	*					74.00		Vertical
14622.00	*					74.00		Vertical
17059.00	*					74.00		Vertical
4874.00	39.80	31.85	8.66	32.12	48.19	74.00	-25.81	Horizontal
7311.00	32.91	36.37	11.71	31.91	49.08	74.00	-24.92	Horizontal
9748.00	33.61	38.27	14.25	31.56	54.57	74.00	-19.43	Horizontal
12185.00	*					74.00		Horizontal
14622.00	*					74.00		Horizontal
17059.00	*					74.00		Horizontal
Average value	ue:							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4874.00	30.18	31.85	8.66	32.12	38.57	54.00	-15.43	Vertical
7311.00	22.59	36.37	11.71	31.91	38.76	54.00	-15.24	Vertical
9748.00	22.97	38.27	14.25	31.56	43.93	54.00	-10.07	Vertical
12185.00	*					54.00		Vertical
14622.00	*					54.00		Vertical
17059.00	*					54.00		Vertical
4874.00	29.92	31.85	8.66	32.12	38.31	54.00	-15.69	Horizontal
7311.00	22.00	36.37	11.71	31.91	38.17	54.00	-15.83	Horizontal
9748.00	23.32	38.27	14.25	31.56	44.28	54.00	-9.72	Horizontal
12185.00	*					54.00		Horizontal
14622.00	*					54.00		Horizontal
17059.00	*					54.00		Horizontal

Remark:

Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor
 "*", means this data is the too weak instrument of signal is unable to test.

Test mode:		802.11g		Test	channel:	Highe	est	
Peak value:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4924.00	44.83	31.90	8.70	32.15	53.28	74.00	-20.72	Vertical
7386.00	34.93	36.49	11.76	31.83	51.35	74.00	-22.65	Vertical
9848.00	37.01	38.62	14.31	31.77	58.17	74.00	-15.83	Vertical
12310.00	*					74.00		Vertical
14772.00	*					74.00		Vertical
17234.00	*					74.00		Vertical
4924.00	44.14	31.90	8.70	32.15	52.59	74.00	-21.41	Horizontal
7386.00	33.84	36.49	11.76	31.83	50.26	74.00	-23.74	Horizontal
9848.00	33.18	38.62	14.31	31.77	54.34	74.00	-19.66	Horizontal
12310.00	*					74.00		Horizontal
14772.00	*					74.00		Horizontal
17234.00	*					74.00		Horizontal
Average value			,					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4924.00	35.75	31.90	8.70	32.15	44.20	54.00	-9.80	Vertical
7386.00	24.85	36.49	11.76	31.83	41.27	54.00	-12.73	Vertical
9848.00	25.51	38.62	14.31	31.77	46.67	54.00	-7.33	Vertical
12310.00	*					54.00		Vertical
14772.00	*					54.00		Vertical
17234.00	*					54.00		Vertical
4924.00	34.51	31.90	8.70	32.15	42.96	54.00	-11.04	Horizontal
7386.00	23.23	36.49	11.76	31.83	39.65	54.00	-14.35	Horizontal
9848.00	22.44	38.62	14.31	31.77	43.60	54.00	-10.40	Horizontal
12310.00	*					54.00		Horizontal
14772.00	*					54.00		Horizontal
17234.00	*					54.00		Horizontal

Remark:

^{1.} Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

^{2. &}quot;*", means this data is the too weak instrument of signal is unable to test.

Test mode:		802.11n(H	IT20)	Test	channel:	Lowe	est	
Peak value:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4824.00	39.26	31.79	8.62	32.10	47.57	74.00	-26.43	Vertical
7236.00	33.57	36.19	11.68	31.97	31.97 49.47		-24.53	Vertical
9648.00	32.25	38.07	14.16	31.56	52.92	74.00	-21.08	Vertical
12060.00	*					74.00		Vertical
14472.00	*					74.00		Vertical
16884.00	*					74.00		Vertical
4824.00	38.09	31.79	8.62	32.10	46.40	74.00	-27.60	Horizontal
7236.00	33.40	36.19	11.68	31.97	49.30	74.00	-24.70	Horizontal
9648.00	31.86	38.07	14.16	31.56	52.53	74.00	-21.47	Horizontal
12060.00	*					74.00		Horizontal
14472.00	*					74.00		Horizontal
16884.00	*					74.00		Horizontal
Average val	ue:		•	•			•	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4824.00	28.43	31.79	8.62	32.10	36.74	54.00	-17.26	Vertical
7236.00	22.46	36.19	11.68	31.97	38.36	54.00	-15.64	Vertical
9648.00	22.61	38.07	14.16	31.56	43.28	54.00	-10.72	Vertical
12060.00	*					54.00		Vertical
14472.00	*					54.00		Vertical
16884.00	*					54.00		Vertical
4824.00	27.68	31.79	8.62	32.10	35.99	54.00	-18.01	Horizontal
7236.00	22.00	36.19	11.68	31.97	37.90	54.00	-16.10	Horizontal
9648.00	21.63	38.07	14.16	31.56	42.30	54.00	-11.70	Horizontal
12060.00	*					54.00		Horizontal
14472.00	*					54.00		Horizontal
16884.00	*					54.00		Horizontal

Remark:

^{1.} Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

^{2. &}quot;*", means this data is the too weak instrument of signal is unable to test.

Test mode:		802.11n(H	IT20)	Test	channel:	Midd	le	
Peak value:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4874.00	38.50	31.85	8.66	32.12	46.89	74.00	-27.11	Vertical
7311.00	33.75	36.37	11.71	31.91	49.92	74.00	-24.08	Vertical
9748.00	33.35	38.27	14.25	31.56	54.31	74.00	-19.69	Vertical
12185.00	*					74.00		Vertical
14622.00	*					74.00		Vertical
17059.00	*					74.00		Vertical
4874.00	39.11	31.85	8.66	32.12	47.50	74.00	-26.50	Horizontal
7311.00	32.46	36.37	11.71	31.91	48.63	74.00	-25.37	Horizontal
9748.00	33.27	38.27	14.25	31.56	54.23	74.00	-19.77	Horizontal
12185.00	*					74.00		Horizontal
14622.00	*					74.00		Horizontal
17059.00	*					74.00		Horizontal
Average val	ue:							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4874.00	29.42	31.85	8.66	32.12	37.81	54.00	-16.19	Vertical
7311.00	22.09	36.37	11.71	31.91	38.26	54.00	-15.74	Vertical
9748.00	22.62	38.27	14.25	31.56	43.58	54.00	-10.42	Vertical
12185.00	*					54.00		Vertical
14622.00	*					54.00		Vertical
17059.00	*					54.00		Vertical
4874.00	29.27	31.85	8.66	32.12	37.66	54.00	-16.34	Horizontal
7311.00	21.56	36.37	11.71	31.91	37.73	54.00	-16.27	Horizontal
9748.00	22.99	38.27	14.25	31.56	43.95	54.00	-10.05	Horizontal
12185.00	*					54.00		Horizontal
14622.00	*					54.00		Horizontal
17059.00	*					54.00		Horizontal

Remark:

^{1.} Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

^{2. &}quot;*", means this data is the too weak instrument of signal is unable to test.

Test mode:		802.11n(H	T20)	Test	channel:	Highe	est	
Peak value:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4924.00	43.41	31.90	8.70	32.15	51.86	74.00	-22.14	4924.00
7386.00	34.04	36.49	11.76	31.83	50.46	74.00	-23.54	7386.00
9848.00	36.36	38.62	14.31	31.77	57.52	74.00	-16.48	9848.00
12310.00	*					74.00		Vertical
14772.00	*					74.00		Vertical
17234.00	*					74.00		Vertical
4924.00	42.95	31.90	8.70	32.15	51.40	74.00	-22.60	Horizontal
7386.00	33.05	36.49	11.76	31.83	49.47	74.00	-24.53	Horizontal
9848.00	32.59	38.62	14.31	31.77	53.75	74.00	-20.25	Horizontal
12310.00	*					74.00		Horizontal
14772.00	*					74.00		Horizontal
17234.00	*					74.00		Horizontal
Average val	ue:							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4924.00	34.44	31.90	8.70	32.15	42.89	54.00	-11.11	Vertical
7386.00	23.98	36.49	11.76	31.83	40.40	54.00	-13.60	Vertical
9848.00	24.89	38.62	14.31	31.77	46.05	54.00	-7.95	Vertical
12310.00	*					54.00		Vertical
14772.00	*					54.00		Vertical
17234.00	*					54.00		Vertical
4924.00	33.39	31.90	8.70	32.15	41.84	54.00	-12.16	Horizontal
7386.00	22.47	36.49	11.76	31.83	38.89	54.00	-15.11	Horizontal
9848.00	21.87	38.62	14.31	31.77	43.03	54.00	-10.97	Horizontal
12310.00	*					54.00		Horizontal
14772.00	*					54.00		Horizontal
17234.00	*					54.00		Horizontal

Remark:

¹ Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

^{2 &}quot;*", means this data is the too weak instrument of signal is unable to test.

Test mode:		802.11n(H	T40)		Test	channel: Lowest			st	
Peak value:										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Prea Fact (dE	tor	Level (dBuV/m)	Limit (dBu	_	Over Limit (dB)	polarization
4844.00	38.49	31.81	8.63	32.1	11	46.82	74.00		-27.18	Vertical
7266.00	33.08	36.28	11.69	31.9	94	49.11	74.	00	-24.89	Vertical
9688.00	31.90	38.13	14.21	31.5	52	52.72	74.	00	-21.28	Vertical
12060.00	*						74.	00		Vertical
14472.00	*						74.	00		Vertical
16884.00	*						74.	00		Vertical
4844.00	37.44	31.81	8.63	32.	11	45.77	74.	00	-28.23	Horizontal
7266.00	32.97	36.28	11.69	31.9	94	49.00	74.	00	-25.00	Horizontal
9688.00	31.54	38.13	14.21	31.5	52	52.36	74.	00	-21.64	Horizontal
12060.00	*						74.	00		Horizontal
14472.00	*						74.	00		Horizontal
16884.00	*						74.	00		Horizontal
Average val	ue:									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Prea Fact (dE	tor	Level (dBuV/m)	Limit (dBu	-	Over Limit (dB)	polarization
4844.00	27.71	31.81	8.63	32.1	11	36.04	54.	00	-17.96	Vertical
7266.00	21.98	36.28	11.69	31.9	94	38.01	54.	00	-15.99	Vertical
9688.00	22.28	38.13	14.21	31.5	52	43.10	54.	00	-10.90	Vertical
12060.00	*						54.	00		Vertical
14472.00	*						54.	00		Vertical

32.11

31.94

31.52

35.40

37.61

42.13

Remark:

16884.00

4844.00

7266.00

9688.00

12060.00

14472.00

16884.00

8.63

11.69

14.21

27.07

21.58

21.31

*

31.81

36.28

38.13

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

-18.60

-16.39

-11.87

Vertical

Horizontal

Horizontal

Horizontal

Horizontal

Horizontal

Horizontal

54.00

54.00

54.00

54.00

54.00

54.00

54.00

^{1.} Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

^{2. &}quot;*", means this data is the too weak instrument of signal is unable to test.

Test mode:		802.11n(HT40)		Test channel:		Middle		
Peak value:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4874.00	37.86	31.85	8.66	32.12	46.25	74.00	-27.75	Vertical
7311.00	33.35	36.37	11.71	31.91	49.52	74.00	-24.48	Vertical
9748.00	33.06	38.27	14.25	31.56	54.02	74.00	-19.98	Vertical
12185.00	*					74.00		Vertical
14622.00	*					74.00		Vertical
17059.00	*					74.00		Vertical
4874.00	38.57	31.85	8.66	32.12	46.96	74.00	-27.04	Horizontal
7311.00	32.10	36.37	11.71	31.91	48.27	74.00	-25.73	Horizontal
9748.00	33.00	38.27	14.25	31.56	53.96	74.00	-20.04	Horizontal
12185.00	*					74.00		Horizontal
14622.00	*					74.00		Horizontal
17059.00	*					74.00		Horizontal
Average val	ue:							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4874.00	28.83	31.85	8.66	32.12	37.22	54.00	-16.78	Vertical
7311.00	21.69	36.37	11.71	31.91	37.86	54.00	-16.14	Vertical
9748.00	22.34	38.27	14.25	31.56	43.30	54.00	-10.70	Vertical
12185.00	*					54.00		Vertical
14622.00	*					54.00		Vertical
17059.00	*					54.00		Vertical
4874.00	28.76	31.85	8.66	32.12	37.15	54.00	-16.85	Horizontal
7311.00	21.22	36.37	11.71	31.91	37.39	54.00	-16.61	Horizontal
9748.00	22.74	38.27	14.25	31.56	43.70	54.00	-10.30	Horizontal
12185.00	*					54.00		Horizontal
14622.00	*					54.00		Horizontal
17059.00	*					54.00		Horizontal

Remark:

^{1.} Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

^{2. &}quot;*", means this data is the too weak instrument of signal is unable to test.

Test mode:		802.11n(HT40)		Test channel:		Highest		
Peak value:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4904.00	42.31	31.88	8.68	32.13	50.74	74.00	-23.26	Vertical
7356.00	33.34	36.45	11.75	31.86	49.68	74.00	-24.32	Vertical
9808.00	35.86	38.43	14.29	31.68	56.90	74.00	-17.10	Vertical
12310.00	*					74.00		Vertical
14772.00	*					74.00		Vertical
17234.00	*					74.00		Vertical
4904.00	42.01	31.88	8.68	32.13	50.44	74.00	-23.56	Horizontal
7356.00	32.44	36.45	11.75	31.86	48.78	74.00	-25.22	Horizontal
9808.00	32.13	38.43	14.29	31.68	53.17	74.00	-20.83	Horizontal
12310.00	*					74.00		Horizontal
14772.00	*					74.00		Horizontal
17234.00	*					74.00		Horizontal
Average val	ue:		•	•				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4904.00	33.42	31.88	8.68	32.13	41.85	54.00	-12.15	Vertical
7356.00	23.31	36.45	11.75	31.86	39.65	54.00	-14.35	Vertical
9808.00	24.41	38.43	14.29	31.68	45.45	54.00	-8.55	Vertical
12310.00	*					54.00		Vertical
14772.00	*					54.00		Vertical
17234.00	*					54.00		Vertical
4904.00	32.51	31.88	8.68	32.13	40.94	54.00	-13.06	Horizontal
7356.00	21.87	36.45	11.75	31.86	38.21	54.00	-15.79	Horizontal
9808.00	21.42	38.43	14.29	31.68	42.46	54.00	-11.54	Horizontal
12310.00	*					54.00		Horizontal
14772.00	*					54.00		Horizontal
17234.00	*					54.00		Horizontal

Remark:

¹ Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

^{2 &}quot;*", means this data is the too weak instrument of signal is unable to test.

8 Test Setup Photo

Radiated Emission

Conducted Emission

9 EUT Constructional Details

Reference to the test report No. GTS201803000025F01

-----End-----