ASTR8150/PHYS8150 Predictors for Linear & Nonlinear Regression Gaussian Processes

Fabien Baron

Georgia State University fbaron@gsu.edu

Fall 2025

Variance and covariance: a reminder

- Variance of a scalar-valued random variable X: $\sigma_X^2 = \text{var}(X) = E[(X E[X])^2] = E[(X E[X]) \cdot (X E[X])]$
- Covariance between two scalar-valued random variables *X* and *Y*:

$$cov(X, Y) = E[(X - E[X])(Y - E[Y])] = E[XY] - E[X]E[Y]$$

Covariance matrix of random vector X:

$$\begin{split} \boldsymbol{\Sigma}_{\boldsymbol{X}\boldsymbol{X}} &= \begin{bmatrix} E[(X_1 - E[X_1])(X_1 - E[X_1])] & E[(X_1 - E[X_1])(X_2 - E[X_2])] & \cdots & E[(X_1 - E[X_1])(X_n - E[X_n])] \\ E[(X_2 - E[X_2])(X_1 - E[X_1])] & E[(X_2 - E[X_2])(X_2 - E[X_2])] & \cdots & E[(X_2 - E[X_2])(X_n - E[X_n])] \\ & \vdots & & \ddots & \vdots \\ E[(X_n - E[X_n])(X_1 - E[X_1])] & E[(X_n - E[X_n])(X_2 - E[X_2])] & \cdots & E[(X_n - E[X_n])(X_n - E[X_n])] \end{bmatrix} \\ &= E[(\boldsymbol{X} - E[\boldsymbol{X}])^{\top}(\boldsymbol{X} - E[\boldsymbol{X}])] \end{split}$$

• Cross-covariance matrix of random vectors \mathbf{X} and \mathbf{Y} : $\Sigma_{\mathbf{XY}} = E[(\mathbf{X} - E[\mathbf{X}])^{\top} (\mathbf{Y} - E[\mathbf{Y}])]$

Linear regression

- $y_i = f(x_i) + \epsilon_i = \theta_1 + \theta_2 x_i + \epsilon_i$ where $\epsilon \sim \mathcal{N}(0, \sigma^2)$
- In matrix notation

$$\mathbf{Y} = \begin{bmatrix} 1 & 1 & \dots & 1 \\ x_1 & x_2 & \dots & x_N \end{bmatrix}^{\top} \begin{bmatrix} \theta_1 \\ \theta_2 \end{bmatrix} + \epsilon$$

$$= \begin{bmatrix} 1 & x_1 \\ 1 & x_2 \\ \vdots & \vdots \\ 1 & x_N \end{bmatrix} \begin{bmatrix} \theta_1 \\ \theta_2 \end{bmatrix} + \epsilon = \mathbf{X}^{\top} \boldsymbol{\theta} + \epsilon \quad \text{where } \epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{\Sigma})$$

- ullet Non-diagonal $oldsymbol{\Sigma}$ will be used in the case the data points are covariant
- Likelihood of θ :

$$\mathcal{L}(\boldsymbol{\theta}|\boldsymbol{Y}) = \Pr(\boldsymbol{Y}|\boldsymbol{\theta}) = \frac{1}{\sqrt{(2\pi)^N \det(\boldsymbol{\Sigma})}} e^{-\frac{1}{2}(\boldsymbol{Y} - \boldsymbol{X}^{\top}\boldsymbol{\theta})^{\top} \boldsymbol{\Sigma}^{-1}(\boldsymbol{Y} - \boldsymbol{X}^{\top}\boldsymbol{\theta})}$$

Maximum likelihood solution and predictor

• Likelihood of θ :

$$\mathcal{L}(\boldsymbol{\theta}|\boldsymbol{Y}) = \Pr(\boldsymbol{Y}|\boldsymbol{\theta}) = \frac{1}{\sqrt{(2\pi)^N \det(\boldsymbol{\Sigma})}} e^{-\frac{1}{2}(\boldsymbol{Y} - \boldsymbol{X}^{\top}\boldsymbol{\theta})^{\top} \boldsymbol{\Sigma}^{-1}(\boldsymbol{Y} - \boldsymbol{X}^{\top}\boldsymbol{\theta})}$$

• Maximum likelihood (take the log, derive with respect to θ) results in the **normal equation** giving the most likely θ :

$$\hat{oldsymbol{ heta}} = (oldsymbol{X}oldsymbol{\Sigma}^{-1}oldsymbol{X}^ op)^{-1}oldsymbol{X}oldsymbol{\Sigma}^{-1}oldsymbol{Y}$$

• Given $\hat{\theta}$ and any new X_* , we can now predict Y_* , using the predictor **projection** "hat" matrix H defined as:

$$\hat{\mathbf{Y}} = (\mathbf{X}_*)^{\top} \hat{\boldsymbol{\theta}} = \underbrace{(\mathbf{X}_*)^{\top} (\mathbf{X} \mathbf{\Sigma}^{-1} \mathbf{X}^{\top})^{-1} \mathbf{X} \mathbf{\Sigma}^{-1}}_{\mathbf{H}} \mathbf{Y} = \mathbf{H} \mathbf{Y}$$

- The hat matrix "puts the hat into" Y
- Great but not fully Bayesian. What about $\Pr(\hat{\theta})$, or $\Pr(\hat{Y})$?

Fabien Baron (GSU) Gaussian Processes Fall 2025

Marginal and Conditional Gaussians

• Important theorem, used when both the prior and likelihood are normally distributed. If we have:

$$\mathsf{Pr}(oldsymbol{x}) \sim \mathcal{N}(oldsymbol{\mu}, oldsymbol{\Lambda})$$
 $\mathsf{Pr}(oldsymbol{y} | oldsymbol{x}) \sim \mathcal{N}(oldsymbol{A}oldsymbol{x} + oldsymbol{b}, oldsymbol{\Sigma})$

then we will have

$$\Pr(\mathbf{y}) \sim \mathcal{N}(\mathbf{A}\boldsymbol{\mu} + \mathbf{b}, \mathbf{\Sigma} + \mathbf{A}\boldsymbol{\Lambda}\mathbf{A}^{\top})$$

$$\Pr(\mathbf{x}|\mathbf{y}) \sim \mathcal{N}((\boldsymbol{\Lambda}^{-1} + \mathbf{A}^{\top}\mathbf{\Sigma}^{-1}\mathbf{A})^{-1} \left(\mathbf{A}^{\top}\mathbf{\Sigma}^{-1}(\mathbf{y} - \mathbf{b}) + \boldsymbol{\Lambda}^{-1}\boldsymbol{\mu}\right), (\boldsymbol{\Lambda}^{-1} + \mathbf{A}^{\top}\mathbf{\Sigma}^{-1}\mathbf{A})^{-1})$$

• Reference: Bishop "Pattern Recognition and Machine Learning", eqs 2.113 to 2.117

Application to the Linear Regression case

- Somewhat confusing, but we have: $\mathbf{y} \to \mathbf{Y}$, $\mathbf{x} \to \mathbf{\theta}$, $\mathbf{A} \to \mathbf{X}^{\top}$, $\mathbf{b} \to \mathbf{0}$, and $\Sigma \to \Sigma$
- We need to set $\Pr(\theta) \sim \mathcal{N}(\mu, \Lambda)$ with possibly the edge case of $\mu = \mathbf{0}$ and $\Lambda^{-1} \to \mathbf{0}$ to simulate a nearly uniform prior.
- We already have:

$$\mathsf{Pr}(\boldsymbol{Y}|\boldsymbol{\theta},\boldsymbol{X}) \sim \mathcal{N}(\boldsymbol{X}^{\top}\boldsymbol{\theta},\boldsymbol{\Sigma})$$

• The posterior distribution for θ , whose mean is the MAP:

$$\begin{split} \mathsf{Pr}(\boldsymbol{\theta}|\boldsymbol{Y},\boldsymbol{X}) &\sim \mathcal{N}((\boldsymbol{\Lambda}^{-1} + \boldsymbol{X}\boldsymbol{\Sigma}^{-1}\boldsymbol{X}^\top)^{-1} \left(\boldsymbol{X}\boldsymbol{\Sigma}^{-1}\boldsymbol{Y} + \boldsymbol{\Lambda}^{-1}\boldsymbol{\mu}\right), (\boldsymbol{\Lambda}^{-1} + \boldsymbol{X}\boldsymbol{\Sigma}^{-1}\boldsymbol{X}^\top)^{-1}) \\ &= \mathcal{N}(\boldsymbol{\Gamma}^{-1}\boldsymbol{X}\boldsymbol{\Sigma}^{-1}\boldsymbol{Y}, \boldsymbol{\Gamma}^{-1}) \text{ for common case } \boldsymbol{\mu} = \boldsymbol{0} \end{split}$$

• And the predictive distribution is (applying the previous slide again):

$$Pr(\boldsymbol{Y}_*|\boldsymbol{X}_*,\boldsymbol{X},\boldsymbol{Y}) = \int Pr(\boldsymbol{Y}_*|\boldsymbol{\theta},\boldsymbol{X}_*,\boldsymbol{X},\boldsymbol{Y}) Pr(\boldsymbol{\theta}|\boldsymbol{X},\boldsymbol{Y}) d\boldsymbol{\theta}$$
$$\sim \mathcal{N}(\boldsymbol{X}_*^{\top} \boldsymbol{\Gamma}^{-1} \boldsymbol{X} \boldsymbol{\Sigma}^{-1} \boldsymbol{Y}, \boldsymbol{X}_*^{\top} \boldsymbol{\Gamma}^{-1} \boldsymbol{X}_*)$$

Beyond Linear Regression: basis functions

- Before we had $\boldsymbol{Y} = \boldsymbol{X}^{\top}\boldsymbol{\theta}$, but now we'd prefer a more flexible scheme $\boldsymbol{Y} = \boldsymbol{\phi}(\boldsymbol{X})^{\top}\boldsymbol{\theta}$ where $\boldsymbol{\phi}$ represent a function basis such as polynomials $\boldsymbol{\phi}(\boldsymbol{X}) = (1, x, x^2, x^3)^{\top}$. The matrix $\boldsymbol{\Phi}(\boldsymbol{X})$ is the aggregation of columns $\boldsymbol{\phi}(\boldsymbol{X})$ into a matrix.
- Amazingly, the same analysis works, so that the predictive distribution becomes:

$$\begin{split} & \text{Pr}(\boldsymbol{Y}_*|\boldsymbol{X}_*,\boldsymbol{X},\boldsymbol{Y}) \sim \mathcal{N}(\boldsymbol{\Phi}(\boldsymbol{X}_*)^\top \boldsymbol{\Gamma}^{-1}\boldsymbol{\Phi}(\boldsymbol{X})\boldsymbol{\Sigma}^{-1}\boldsymbol{Y},\boldsymbol{\Phi}(\boldsymbol{X}_*)^\top \boldsymbol{\Gamma}^{-1}\boldsymbol{\Phi}(\boldsymbol{X}_*)) \\ & \text{where } \boldsymbol{\Gamma} = \boldsymbol{\Lambda}^{-1} + \boldsymbol{\Phi}(\boldsymbol{X})^\top \boldsymbol{\Sigma}^{-1}\boldsymbol{\Phi}(\boldsymbol{X}) \end{split}$$

• This means we can find predictive distribution for basis functions. But what if we don't want to specify any functional form for these functions?

Gaussian process

- A Gaussian process is a collection of random variables, any finite number of which have a joint Gaussian distribution.
- A Gaussian process is a distribution over functions, rather than over variables
- We define the mean function m(x) and the covariance function k(x, x') of a real process f(x) and we note $f \sim \mathcal{GP}(m(x), k(x, x'))$ so that:

$$m(\mathbf{x}) = E[f(\mathbf{x})]$$

$$k(\mathbf{x}, \mathbf{x}') = E[(f(\mathbf{x}) - m(\mathbf{x}))(f(\mathbf{x}') - m(\mathbf{x}'))]$$

The squared exponential kernel

 The squared exponential is a classic choice for a first exposition to Gaussian processes

$$\Sigma = cov(f(x), f(x')) = k(x, x') = \sigma_k^2 e^{-\frac{1}{2} \frac{(x - x')^2}{l^2}}$$

- It is parametrized by hyperparameter I, the characteristic length-scale of the process over which correlation is strong, and σ_k , the strength of correlation.
- \bullet Samples $\textbf{\textit{Y}} \sim \mathcal{N}(\textbf{\textit{M}},\textbf{\textit{K}})$ can be generated by :
 - 1 computing Σ using the kernel expression over a given range for X.
 - 2 computing the Cholesky decomposition \boldsymbol{L} of $\boldsymbol{\Sigma} = \boldsymbol{L}\boldsymbol{L}^{\top}$
 - 3 computing $\mathbf{Y} = \mathbf{m} + \mathbf{L}\mathbf{u}$ where $\mathbf{u} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$
- Demo:

https://distill.pub/2019/visual-exploration-gaussian-processes/

Fabien Baron (GSU)

Gaussian Processes

Fall 2025 9/12

Predictions: posterior

- Typical example is data $\mathbf{Y} = f(\mathbf{X}) + \epsilon$, with $\epsilon \sim \mathcal{N}(\mathbf{0}, \sigma_n^2 \mathbf{I})$.
- $cov(y_i, y_i) = k(x_i, y_i) + \sigma_n^2 \delta_{ii} \rightarrow cov(\mathbf{Y}) = \mathbf{K}(\mathbf{X}, \mathbf{X}) + \sigma_n^2 \mathbf{I}$
- The joint distribution of the measurements and the predictions is:

$$\begin{bmatrix} \mathbf{Y} \\ \mathbf{f}_* \end{bmatrix} \sim \mathcal{N} \left(\mathbf{0}, \begin{bmatrix} \mathbf{K}(\mathbf{X}, \mathbf{X}) + \sigma_n^2 \mathbf{I} & \mathbf{K}(\mathbf{X}, \mathbf{X}_*) \\ \mathbf{K}(\mathbf{X}_*, \mathbf{X}) & \mathbf{K}(\mathbf{X}_*, \mathbf{X}_*) \end{bmatrix} \right)$$

• The predictive distribution is: $\Pr(\mathbf{f}_*|\mathbf{X},\mathbf{Y},\mathbf{X}_*) \sim \mathcal{N}\left(\bar{\mathbf{f}}_*,\operatorname{cov}(\mathbf{f}_*)\right)$, with

$$\begin{split} & \bar{\boldsymbol{f}}_* = \boldsymbol{K}(\boldsymbol{X}_*, \boldsymbol{X}) \left[\boldsymbol{K}(\boldsymbol{X}, \boldsymbol{X}) + \sigma_n^2 \boldsymbol{I} \right]^{-1} \boldsymbol{Y} \\ & \text{cov}(\boldsymbol{f}_*) = \boldsymbol{K}(\boldsymbol{X}_*, \boldsymbol{X}_*) - \boldsymbol{K}(\boldsymbol{X}_*, \boldsymbol{X}) \left[\boldsymbol{K}(\boldsymbol{X}, \boldsymbol{X}) + \sigma_n^2 \boldsymbol{I} \right]^{-1} \boldsymbol{K}(\boldsymbol{X}, \boldsymbol{X}_*) \end{split}$$

◆□▶ ◆□▶ ◆臺▶ ◆臺▶ ■ 900

Fabien Baron (GSU)

Marginalization of kernel parameters

- The prior $\Pr(\mathbf{f}|\mathbf{X}) \sim \mathcal{N}(\mathbf{0}, \mathbf{K}(\mathbf{X}, \mathbf{X}))$ and likelihood $\Pr(\mathbf{Y}|\mathbf{f}) \sim \mathcal{N}(\mathbf{f}(\mathbf{X}), \sigma_n^2 \mathbf{I})$ give the marginal likelihood over the function values $\Pr(\mathbf{Y}|\mathbf{X}) \sim \mathcal{N}(\mathbf{0}, \mathbf{K}(\mathbf{X}, \mathbf{X}) + \sigma_n^2 \mathbf{I})$
- This implies the analytic expression:

$$\log Pr(\boldsymbol{Y}|\boldsymbol{X}) = -\frac{1}{2}\boldsymbol{Y}^{\top} \left[\boldsymbol{K}(\boldsymbol{X},\boldsymbol{X}) + \sigma_n^2 \boldsymbol{I}\right]^{-1} \boldsymbol{Y} - \frac{1}{2} \log |\boldsymbol{K}(\boldsymbol{X},\boldsymbol{X})| - \frac{n}{2} \log 2\pi$$

- ullet For kernels with hyperparameters (e.g. σ_k and l for the squared exponential), one minimize this log-marginal likelihood with respect to hyperparameters
- This allows us to find the best parameters supported by the data, and in turn to refine our future predictions.

◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q ②

Going beyond this introduction

- "Gaussian Processes for Machine Learning", Rasmussen & Williams, PDF downloadable here: http://www.gaussianprocess.org/gpml/
- "Pattern Recognition and Machine Learning", Bishop, with examples by contributors in Matlab http://prml.github.io/ or Python https://github.com/ctgk/PRML