Développement 20. L'irréductibilité des polynômes cyclotomiques sur l'anneau des entiers

Théorème 1. Le *n*-ième polynôme cyclotomique $\Phi_n \in \mathbf{Z}[X]$ sur \mathbf{Q} est irréductible sur les anneaux \mathbf{Q} et \mathbf{Z} .

On rappel le lemme de Gauss sur les contenus, ici précisés dans l'anneau des polynômes à coefficients entiers. Pour un polynôme $P := a_n X^n + \cdots + a_0 \in \mathbf{Z}[X]$, on définit son contenu, noté cont(P), comme le PGCD des entiers a_i .

Lemme 2. Pour deux polynômes $P, Q \in \mathbf{Z}[X]$, on a cont(PQ) = cont(P) cont(Q).

Preuve Soit K un corps de décomposition du polynôme Φ_n sur \mathbf{Q} . Soit $\zeta \in K$ une racine n-ième primitive de l'unité. Soit p un nombre premier ne divisant pas n. Comme les entiers p et n sont alors premiers entre eux, l'élément ζ^p est aussi une racine n-ième primitive de l'unité.

On va montrer que le polynôme Φ_n est le polynôme minimal de l'élément ζ sur \mathbf{Q} ce qui montrera qu'il est irréductible sur \mathbf{Q} . L'irréductibilité sur \mathbf{Z} en découlera alors puisque le corps \mathbf{Q} est le corps de fractions de l'anneau \mathbf{Z} .

Soient $f, g \in \mathbf{Q}[X]$ les polynômes minimaux des racines ζ et ζ^p sur \mathbf{Q} . Montrons que $f \in \mathbf{Z}[X]$. Comme l'anneau $\mathbf{Z}[X]$ est factoriel, on écrit

$$\Phi_n = f_1^{\alpha_1} \cdots f_r^{\alpha_r}$$

pour des polynômes irréductibles $f_i \in \mathbf{Z}[X]$ et des entiers $\alpha_i \geqslant 1$. Comme le polynôme Φ_n est unitaire, on peut supposer que les polynômes f_i le sont aussi. Ainsi ces derniers sont irréductibles sur \mathbf{Q} . Mais l'élément ζ est une racine du polynôme Φ_n et donc d'un des polynômes f_i , donc la minimalité implique qu'on peut écrire $f = f_{i_0}$ pour un certain indice $i \in [\![1,r]\!]$ ce qui donne $f \in \mathbf{Z}[X]$. Avec le premier paragraphe, on obtient également $g \in \mathbf{Z}[X]$. Par ailleurs, cela montre que les polynômes f et g divisent le polynôme Φ_n dans $\mathbf{Z}[X]$.

Montrons que f=g. Raisonnons par l'absurde et supposons $f\neq g$. Comme l'anneau $\mathbf{Z}[X]$ est factoriel, il vérifie le lemme de Gauss et, comme $f\neq g$, ce lemme montre $fg\mid \Phi_n$ dans $\mathbf{Z}[X]$. Comme l'élément ζ est une racine du polynôme $g(X^p)$, on peut écrire $f\mid g(X^p)$ dans $\mathbf{Q}[X]$. Soit $h\in \mathbf{Q}[X]$ un polynôme tel que $g(X^p)=fh$. Montrons que $h\in \mathbf{Z}[X]$. On sait qu'il existe deux entiers $\alpha\in \mathbf{Z}$ et $\beta\in \mathbf{N}^*$ et un polynôme $\tilde{h}\in \mathbf{Z}[X]$ tels que $h=\frac{a}{b}\tilde{h}$. Comme les polynômes f,g et h sont unitaires avec $\beta g(X^p)=\alpha fh$, le lemme de Gauss pour les contenus donne $\alpha=\beta$. Finalement, on a $h\in \mathbf{Z}[X]$.

Projetons alors l'égalité $g(X^p) = fh$ dans $\mathbf{F}_p[X]$. Pour un polynôme $P \in \mathbf{Z}[X]$, on note $\overline{P} \in \mathbf{F}_p[X]$ sa projection. Notons $g = a_r X^r + \cdots + a_0$ avec $a_i \in \mathbf{Z}$. Alors

$$g(X^p) = a_r X^{rp} + \dots + a_0$$

et, comme $\overline{a_i} = \overline{a_i}^p$ pour $i \in [1, r]$, le morphisme de Frobenius assure que

$$\overline{g}(X^p) = \overline{a_r}X^{rp} + \dots + \overline{a_0} = (\overline{a_r}X^r + \dots + \overline{a_0})^p = \overline{g}(X)^p.$$

Soit $\overline{\varphi} \in \mathbf{F}_p[X]$ un facteur irréductible du polynôme \overline{f} . Comme $\overline{g}(X)^p = \overline{f} \times \overline{h}$, on obtient alors $\overline{\varphi} \mid \overline{g}(X)^p$ dans $\mathbf{F}_p[X]$ et, comme le polynôme $\overline{\varphi}$ est irréductible, le lemme

d'Euclide fournit donc $\overline{\varphi} \mid \overline{g}$. Comme $fg \mid \Phi_n$ dans $\mathbf{Z}[X]$, on a $\overline{fg} \mid \overline{\Phi_n}$ dans $\mathbf{F}_p[X]$, donc $\overline{\varphi}^2 \mid \overline{\Phi_n}$. Mais on sait que, comme $p \nmid n$, le polynôme $\overline{\Phi_n} = \Phi_{n, \mathbf{F}_p}$ n'a que des racines simples ce qui est impossible. D'où f = g.

Soit $\zeta' \in K$ une racine primitive n-ième de l'unité. Comme l'élément ζ génère le groupe $\mu_n(K)$ des racines primitives n-ième de l'unité, il existe un entier $m \in \mathbb{N}$ tel que $\zeta' = \zeta^m$. On écrit l'entier m en une produit $p_1^{\alpha_1} \cdots p_r^{\alpha_r}$ de nombres premiers p_i . Comme la racine n-ième ζ' de l'unité est primitive, on a $m \wedge n = 1$, donc aucun nombre premier p_i ne divise n. On peut alors appliquer récursivement le paragraphe précédent pour montrer que les racines ζ et ζ' ont le même polynôme minimal sur \mathbb{Q} . L'élément ζ' est donc une racine du polynôme f. Ceci étant vrai pour toute racine primitive n-ième de l'unité, on obtient $\deg f \geqslant \deg \Phi_n$. Comme $f \mid \Phi_n$, on en conclut l'égalité $\Phi_n = f$.

Finalement, le polynôme Φ_n est irréductible sur ${\bf Q}$ et, comme il est primitif, il l'est aussi sur ${\bf Z}$.

Corollaire 3. Soient K un corps de caractéristique nulle et $\zeta \in K$ une racine n-ième de l'unité. Alors

$$[\mathbf{Q}(\zeta):\mathbf{Q}]=\varphi(n).$$

Preuve Le polynôme minimal de l'élément ζ sur \mathbf{Q} est le polynôme cyclotomique Φ_n puisqu'il l'annule et qu'il est irréductible sur \mathbf{Q} . Par conséquent, l'extension $\mathbf{Q}(\zeta)/\mathbf{Q}$ est de degré deg Φ_n . Comme $\varphi(n) = \deg \Phi_n$, cela donne le corollaire.

Daniel Perrin. Cours d'algèbre. Ellipses, 1996.