

(12)特許協力条約に基づいて公開された国際出願

(19) 世界知的所有権機関
国際事務局

(43) 国際公開日
2005年8月4日 (04.08.2005)

PCT

(10) 国際公開番号
WO 2005/070705 A1

(51) 国際特許分類⁷: **B60C 9/18, 5/00, 9/20, 9/22**

(21) 国際出願番号: PCT/JP2005/000865

(22) 国際出願日: 2005年1月24日 (24.01.2005)

(25) 国際出願の言語: 日本語

(26) 国際公開の言語: 日本語

(30) 優先権データ:
特願2004-016895 2004年1月26日 (26.01.2004) JP

(71) 出願人(米国を除く全ての指定国について): 株式会社ブリヂストン(BRIDGESTONE CORPORATION) [JP/JP]; 〒1040031 東京都中央区京橋1丁目10番1号 Tokyo (JP).

(72) 発明者; および
(75) 発明者/出願人(米国についてのみ): 中村 勉 (NAKAMURA, Tsutomu) [JP/JP]; 〒1870031 東京都小平市小川東町3-1-1 株式会社ブリヂストン技術センター内 Tokyo (JP).

(74) 代理人: 本多一郎 (HONDA, Ichiro); 〒1010065 東京都千代田区西神田二丁目5番地7号神田中央ビル2階201号室 Tokyo (JP).

(81) 指定国(表示のない限り、全ての種類の国内保護が可能): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE,

/ 続葉有 /

(54) Title: PNEUMATIC RADIAL TIRE FOR MOTORCYCLE

(54) 発明の名称: 自動二輪車用空気入りラジアルタイヤ

(57) Abstract: A pneumatic radial tire for a motorcycle capable of increasing steering stability in cornering at high speeds while holding various performances such as high-speed durability and straight running stability. The radial tire (1) comprises a tread part (2), side wall parts (3), bead parts (4), a carcass layer (5), and at least one layer of steel spiral belt (6) formed by spirally winding substantially parallel with the equatorial plane of the tire. The flatness ratio (SH/TW) of the height of the tire in cross section (SH) to the maximum tread surface width (TW) is 0.50 to 0.85. The lateral out-plane bending rigidity (Sb) of the bending rigidity of the tread part (2) is 4.9 to 7.7 N/mm, the peripheral in-plane bending rigidity (Sa) is 5.1 to 7.8 N/mm, and the equilibrium value (K) of a belt surface rigidity expressed by a bending rigidity ratio (Sa/Sb) is within the range of 0.90 to 1.10.

(57) 要約: 高速耐久性、直進安定性等の諸性能を保持しつつ、高速コーナリング時の操縦安定性能を向上させた自動二輪車用空気入りラジアルタイヤを提供する。トレッド部2と、サイドウォール部3と、ビード部4とからなり、カーカス層5と、タイヤ赤道面に対して実質上平行

/ 続葉有 /

WO 2005/070705 A1

SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

(84) 指定国(表示のない限り、全ての種類の広域保護が可能): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), ユーラシア (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR),

添付公開書類:
— 國際調査報告書

2文字コード及び他の略語については、定期発行される各PCTガゼットの巻頭に掲載されている「コードと略語のガイダンスノート」を参照。

に螺旋巻き形成されてなる少なくとも1層のスチールスパイラルベルト6とを具備する自動二輪車用空気入りラジアルタイヤ1である。タイヤ断面高さSHと、トレッド面最大幅TWとの偏平比(SH/TW)が0.50～0.85である。トレッド部2の曲げ剛性のうち、幅方向面外曲げ剛性(Sb)が4.9～7.7N/mm、周方向面内曲げ剛性(Sa)が5.1～7.8N/mmであり、かつ、曲げ剛性比(Sa/Sb)で表されるベルト面剛性平衡値(K)が0.90～1.10の範囲内である。

明細書

自動二輪車用空気入りラジアルタイヤ 技術分野

[0001] 本発明は、トレッド端近傍まで接地させて高速コーナリング走行される、一般にスーパースポーツタイプと称される高性能自動二輪車に供される自動二輪車用空気入りラジアルタイヤに関し、詳しくは、高速耐久性、直進安定性等の諸性能を保持しつつ、高速コーナリング時の操縦安定性能の向上を可能とする高性能自動二輪車用低偏平空気入りラジアルタイヤに関する。

背景技術

[0002] 一般的自動二輪車は殆ど、一般路走行でのコーナリングではトレッド面全面幅の50%からせいぜい75%に満たない程度の範囲を接地させて走る程度のキャンバー走行(車体を横倒しさせての走行)が普通である。

[0003] 従って、これまでの一般的自動二輪車用空気入りタイヤにおいては、車体を大きく傾斜させてタイヤのトレッド端近傍まで接地させて走行する、いわゆる高速コーナリング走行時の操縦安定性に影響のあるベルト層の各種曲げ剛性、及びその相互バランスについて深く最適化を追求するということはなされていなかった。

[0004] 例えば、特許文献1には、ベルトの耐久性と高速耐久性とを低コストで改善し、かつ、タイヤの路面衝撃力吸収性及びユニフォミティー特性を向上させ、それにより優れた走行安定性を発揮する自動二輪車用タイヤが提案されているが、高速コーナリング走行時の操縦安定性を向上させるべく、ベルト層の各種曲げ剛性について最適化を追求したものではなかった。

特許文献1:特開2002-234032号公報(特許請求の範囲、段落[0001]等)

発明の開示

発明が解決しようとする課題

[0005] しかしながら、近年、スーパースポーツタイプと称される高性能自動二輪車の登場とともに、高速自動車道でのツーリングにおいてスポーツ走行が楽しめるようになってきた。また、近年、ライダーが操縦技能の限界に挑戦して思い切ったスポーツ走行が楽

しめる練習場やスポーツ走行用サーキット等の一般公道ではない、所謂スポーツ走行用特定管理区域が増加し、一般的なライダーでも手軽にスポーツ走行が楽しめるようになってきた。このような状況に伴い、車体を深く横倒しさせて高速でコーナリング走行する、所謂大キャンバー走行に対して、従来レベルのベルト剛性バランス設計では高速コーナリング時の操縦安定性能が充分ではないという不満が増えてきていた。

[0006] そこで本発明の目的は、高速耐久性、直進安定性等の諸性能を保持しつつ、高速コーナリング時の操縦安定性能を向上させた自動二輪車用空気入りラジアルタイヤを提供することにある。

課題を解決するための手段

[0007] 本発明者は、上記課題を解決すべく鋭意検討した結果、以下の構成とすることにより上記目的を達成し得ることを見出し、本発明を完成するに至った。

即ち、本発明の自動二輪車用空気入りラジアルタイヤは、トレッド部と、該トレッド部の両縁部からタイヤ半径方向内側に配設された一対のサイドウォール部と、該サイドウォール部のタイヤ半径方向内側に連なるビード部とからなり、これら各部をビード部内に埋設されたビードコア相互間にわたり補強し、かつ、タイヤ赤道面に対して60ー90度をなすコードをゴムで被覆した少なくとも1層のカーカスプライからなるカーカス層と、該カーカス層のタイヤ半径方向外側に、タイヤ赤道面に対して実質上平行に螺旋巻き形成されてなる少なくとも1層のスチールスパイラルベルトとを具備する自動二輪車用空気入りラジアルタイヤにおいて、

ETRTOで規定する測定リムに装着し、タイヤの加硫工程におけるポストキュアインフレーション時の無負荷状態でのタイヤ断面高さSHと、トレッド面最大幅TWとの偏平比(SH/TW)が0.50ー0.85であり、かつ

前記トレッド部の曲げ剛性のうち、幅方向面外曲げ剛性(Sb)が4.9ー7.7N/mm(500ー790g/mm)、周方向面内曲げ剛性(Sa)が5.1ー7.8N/mm(520ー800g/mm)であり、かつ、前記周方向面内曲げ剛性(Sa)と前記幅方向面外曲げ剛性(Sb)との曲げ剛性比(Sa/Sb)で表されるベルト面剛性平衡値(K)が0.90ー1.10の範囲内であることを特徴とするものである。

[0008] 本発明において、好ましくは前記スチールスパイラルベルトを形成するスチールコ

ードがフィラメント径0.12～0.40mmよりなる1×2構造のオープン撚りコードであり、この場合、前記ベルト面剛性平衡値(K)は、好ましくは0.96～1.06の範囲内である。

[0009] また、前記スチールスパイラルベルトを形成するスチールコードが、フィラメント径0.12～0.40mmよりなる1×3構造のオープン撚りコードであることも好ましく、この場合、前記ベルト面剛性平衡値(K)は、好ましくは0.98～1.08の範囲内である。

[0010] また、本発明の他の自動二輪車用空気入りタイヤにおいては、トレッド部と、該トレッド部の両縁部からタイヤ半径方向内側に配設された一対のサイドウォール部と、該サイドウォール部のタイヤ半径方向内側に連なるビード部とからなり、これら各部をビード部内に埋設されたビードコア相互間にわたり補強し、かつ、タイヤ赤道面に対して60～90度をなすコードをゴムで被覆した少なくとも1層のカーカスプライからなるカーカス層と、該カーカス層のタイヤ半径方向外側に、タイヤ赤道面に対して実質上平行に螺旋巻き形成されてなる少なくとも1層のスチールスパイラルベルトとを具備する自動二輪車用空気入りラジアルタイヤにおいて、

ETRTOで規定する測定リムに装着し、タイヤの加硫工程におけるポストキュアインフレーション時の無負荷状態でのタイヤ断面高さSHと、トレッド面最大幅TWとの偏平比(SH/TW)が0.50～0.85であり、かつ

前記スチールスパイラルベルトを形成するスチールコードが、フィラメント径0.12～0.40mmよりなる1×2構造のオープン撚りコードであることを特徴とするものである。

[0011] さらに、本発明の更に他の自動二輪車用空気入りタイヤにおいては、トレッド部と、該トレッド部の両縁部からタイヤ半径方向内側に配設された一対のサイドウォール部と、該サイドウォール部のタイヤ半径方向内側に連なるビード部とからなり、これら各部をビード部内に埋設されたビードコア相互間にわたり補強し、かつ、タイヤ赤道面に対して60～90度をなすコードをゴムで被覆した少なくとも1層のカーカスプライからなるカーカス層と、該カーカス層のタイヤ半径方向外側に、タイヤ赤道面に対して実質上平行に螺旋巻き形成されてなる少なくとも1層のスチールスパイラルベルトとを具備する自動二輪車用空気入りラジアルタイヤにおいて、

ETRTOで規定する測定リムに装着し、タイヤの加硫工程におけるポストキュアイン

フレーション時の無負荷状態でのタイヤ断面高さSHと、トレッド面最大幅TWとの偏平比(SH/TW)が0.50～0.85であり、かつ

前記スチールスパイラルベルトの、タイヤ赤道上でのスチールコード打込み数が20～60本/25mmであり、かつそのスチールコード径が0.30～1.20mmであることを特徴とするものである。

[0012] 本発明の更に他の自動二輪車用空気入りラジアルタイヤにおいては、好ましくは前記スチールスパイラルベルトを形成するスチールコードが、フィラメント径0.12～0.40mmよりなる1×2構造のオープン撚りコードであり、この場合、前記スチールコード打込み数は、好ましくは30～60本/25mmである。

[0013] また、前記スチールスパイラルベルトを形成するスチールコードが、フィラメント径0.12～0.40mmよりなる1×3構造のオープン撚りコードであることも好ましく、この場合、前記スチールコード打込み数は、好ましくは20～42本/25mmである。

[0014] また、本発明は、上記本発明の自動二輪車用空気入りラジアルタイヤを、前後輪で前記スチールスパイラルベルトの種類の異なるものを選択し、組合わせて自動二輪車に装着することを特徴とする自動二輪車へのタイヤ装着方法である。

[0015] 本発明の高性能自動二輪車用低偏平空気入りラジアルタイヤにおいて、トレッド部の曲げ剛性のうち、幅方向面外曲げ剛性(Sb)、周方向面内曲げ剛性(Sa)およびベルト面剛性平衡値(K)を夫々上記範囲内とするのは以下の理由による。

高性能自動二輪車のコーナリングに際し、特に前輪タイヤは、コーナー進入時のブレーキング、コーナリング中のキャンバー走行とハンドリング、そして車体を起こしてコーナーを脱出し再び高速直進走行へと、その姿勢変化、および入出力が激しく繰り返される。これらのうち、先ずブレーキングにおいては、特に、コーナー入り口近辺での若干のバンキングとハンドリングのミックスしたブレーキング走行においては、トレッド部の周方向面内曲げ剛性(Sa)が5.1N/mm(520g/mm)以上であることが必要である。

[0016] 次に、激しいバンキングとハンドリングのミックスしたコーナー中での走行においては、トレッド湾曲率の大きい自動二輪車用タイヤの場合は特に、タイヤクラウン部がトレッド部の幅方向面外曲げ方向に適確柔軟に変形してロードホールディング性を高

める必要がある。そのためには、トレッド部の幅方向面外曲げ剛性(Sb)を7. 7N/m (790g/mm)以下に抑えておく必要があるが、4. 9N/mm (500g/mm)未満では幅方向面外曲げ剛性の絶対値が不足する。また、ベルトの周方向面内曲げ剛性(Sa)が7. 8N/mm (800g/mm)より大きいと幅方向面外曲げ剛性(Sb)の上記範囲に基づくタイヤクラウン部の適確柔軟な変形を妨げてしまうことから、周方向面内曲げ剛性(Sa)は7. 8N/mm (800g/mm)以下とする必要がある。

[0017] 更に、前記激しいコーナリング走行時、即ち高速走行状態での直立に近い姿勢から高速コーナリングに入り、そのまま更に深いバンク走行に入り、再び起き上がって直立姿勢に戻るという高速コーナリングを、しかも左右コーナリングを相互に切替え繰り返す際には、トレッド部の周方向面内曲げ剛性と幅方向外曲げ剛性とが激しくその主体的な寄与の相互切替えを繰り返すため、周方向面内曲げ剛性(Sa)と幅方向面外曲げ剛性(Sb)との曲げ剛性比(Sa/Sb)で表されるベルト面剛性平衡値(K)を0. 90～1. 10の範囲にしておく必要がある。即ち、このK値の範囲外の領域では、トレッド部の面剛性平衡バランスのブレ(変動幅)が大きくなり過ぎてライダーに操縦不安定感を与えてしまい、高速コーナリング性能を低下させてしまうことになる。

[0018] また、同様の理由から、本発明においては、スチールスパイラルベルトの、タイヤ赤道上でのスチールコード打込み数を20～60本/25mmとし、かつ、そのスチールコード径を0. 30～1. 20mmとする必要がある。

発明の効果

[0019] 本発明によれば、高速耐久性、直進安定性等の諸性能を保持しつつ、高速コーナリング時の操縦安定性能を向上させた高性能自動二輪車用低偏平空気入りラジアルタイヤを提供することができる。

図面の簡単な説明

[0020] [図1]本発明の一実施の形態に係る自動二輪車用気入りラジアルタイヤの断面図である。

[図2]供試タイヤのトレッド部からの測定用試料の切り出し個所を示す説明図である。

[図3]切り出した試料の曲げ剛性の測定方法を示す説明図である。

符号の説明

[0021] 1 自動二輪車用空気入りラジアルタイヤ
2 トレッド部
3 サイドウォール部
4 ビード部
5 カーカス層
6 スチールスパイラルベルト
7 ビードコア

発明を実施するための最良の形態

[0022] 以下、本発明の実施の形態を図面を参照して具体的に説明する。

図1は、本発明の一実施の形態に係る自動二輪車用空気入りラジアルタイヤの断面図である。

[0023] 図1において、自動二輪車用空気入りラジアルタイヤ1は、トレッド部2と、トレッド部2の両縁部からタイヤ半径方向内側に配設された一対のサイドウォール部3と、サイドウォール部3のタイヤ半径方向内側に連なるビード部4とからなる。これら各部は、カーカス層5によりビード部4内に埋設されたビードコア7相互間にわたり補強されている。また、カーカス層5のタイヤ半径方向外側には、タイヤ赤道面に対して実質上平行に螺旋巻き形成されてなる少なくとも1層のスチールスパイラルベルト6が配設されている。

[0024] 本発明のタイヤは、近年のスーパースポーツタイプと称される高性能自動二輪車に好適に適用し得る低偏平タイヤであり、具体的には、ETRTOで規定する測定リムに装着し、タイヤの加硫工程におけるポストキュアインフレーション時の無負荷状態でのタイヤ断面高さSHと、トレッド面最大幅TWとの偏平比(SH/TW)が0.50～0.85である。

[0025] カーカス層5は、タイヤ赤道面に対して60～90度をなすコードをゴムで被覆した少なくとも1層のカーカスプライからなる(図示例では1層)。カーカスプライのコードは、レーヨンコード、ナイロンコード、ポリエステルコードなどの有機繊維コードを好適に用いることができる。

[0026] スチールスパイラルベルト6は、スチールコードと、その被覆ゴムとからなり、タイヤ1

の赤道面と実質上平行に配設される。実質上とは、赤道面Eに対するスチールコードの傾斜角度が1°未満であることを意味する。スチールコードは、カーカス層5の外周に1ー5本、好ましくは2ー4本を纏めて螺旋状に巻回するのが好ましい。

[0027] 本発明では、好ましくはスチールスパイラルベルト6を形成するスチールコードがフィラメント径0.12ー0.40mmよりなる1×2構造のオープン撚りコードである。これにより、所望の幅方向面外曲げ剛性(Sb)、周方向面内曲げ剛性(Sa)およびベルト面剛性平衡値(K)を良好に得ることができる。なお、ここで、オープン撚りコードとは、過大な癖付けをされたフィラメントを撚り合わせてなるコードとして既知であり、コード内部へのゴムの浸透性に優れている。

[0028] また、本発明では、スチールスパイラルベルト6を形成するスチールコードが、フィラメント径0.12ー0.40mmよりなる1×3構造のオープン撚りコードであることも好ましい。これにより、所望の幅方向面外曲げ剛性(Sb)、周方向面内曲げ剛性(Sa)およびベルト面剛性平衡値(K)を良好に得ることができる。

[0029] また、本発明では、スチールスパイラルベルト6の、タイヤ赤道上でのスチールコード打込み数が20ー60本/25mmであり、かつそのスチールコード径が0.30ー1.20mmであり、好ましくはスチールスパイラルベルト6を形成するスチールコードが、フィラメント径0.12ー0.40mmよりなる1×2構造のオープン撚りコードである。この場合、好ましくは同じスチールコード径で、タイヤ赤道上でのスチールコード打込み数が30ー60本/25mmである。また、スチールスパイラルベルト6を形成するスチールコードが、フィラメント径0.12ー0.40mmよりなる1×3構造のオープン撚りコードであることも好ましく、この場合、好ましくは同じスチールコード径で、タイヤ赤道上でのスチールコード打込み数が20ー42本/25mmである。これらにより、所望の幅方向面外曲げ剛性(Sb)、周方向面内曲げ剛性(Sa)およびベルト面剛性平衡値(K)を良好に得ることができる。

実施例

[0030] 以下、本発明を実施例に基づき説明する。

夫々下記の表1および表2に示す条件を満たす前輪タイヤ(サイズ:120/70ZR17、リム幅:3.50インチ、内圧:206kPa)および後輪タイヤ(サイズ:190/55ZR17

、リム幅:6.00インチ、内圧:186kPa)を下記の表3に示す組み合せにて500ccのレーサータイプの自動二輪車に装着して高速コーナリング時の操縦安定性のフーリング評価を行った。評価は、従来例3を100として指数に表示し、数値が大なるほど結果が良好である。

[0031] なお、表1および2中、周方向面内曲げ剛性(Sa)および幅方向面外曲げ剛性(Sb)は以下のようにして測定した。

先ず、供試タイヤの路面部で、パターン溝が無くかつ同一トレッドゴムが同一厚みで配置されている部分を測定用試料として、図2のごとくタイヤ赤道方向およびタイヤ赤道に対し90度方向に各々幅15mmにてベルトとともに切り出した(図2中のAおよびB)。次いで、図3に示すように、周方向面内曲げ剛性(Sa)は赤道方向に切り出したもの(A)を90度回転させて測定装置に載せてセットし、(タイヤ軸方向相当方向に)押し下げ、また、幅方向面外曲げ剛性(Sb)はタイヤ赤道に対し90度方向に切り出したもの(B)をそのまま載せてセットし、(タイヤ半径方向相当方向に)押し下げ、夫々剛性値(力／変性)を測定した。得られた結果を下記の表1および表2に示す。

[0032] [表1]

		前輪タイヤ		
		実施例1	実施例2	従来例1
偏平比 (SH/TW)		0.70	0.70	0.70
カーカス層	カーカスプライ	1層	1層	1層
	コード種	ナイロンコード	ナイロンコード	ナイロンコード
	角度(対タイヤ周方向)	90度	90度	90度
ベルト	ベルト層数	1層	1層	1層
	コード構造	1×2×0.2(mm)	1×3×0.2(mm)	1×5×0.2(mm)
	角度(対タイヤ周方向)	実質周方向	実質周方向	実質周方向
	コード径 (mm) *	0.75	0.75	0.75
	打込み数	38本/25mm	25本/25mm	15本/25mm
周方向面内曲げ剛性 (Sa)		6.54N/mm (667g/mm)	6.30N/mm (642g/mm)	6.75N/mm (688g/mm)
幅方向面外曲げ剛性 (Sb)		6.49N/mm (662g/mm)	6.10N/mm (622g/mm)	6.10N/mm (622g/mm)
ベルト面剛性平均値 (K)		1.01	1.03	1.11

*ベルトコード径については、オープンコードのため、見かけ上(投影)の径は、理論上同じものを用いた。

[0033] [表2]

		前輪タイヤ		
		実施例3	実施例4	従来例2
偏平比 (SH/TW)		0.70	0.70	0.70
カーカス層	カーカスプライ	1層	1層	1層
	コード種	ナイロンコード	ナイロンコード	ナイロンコード
	角度(対タイヤ周方向)	90度	90度	90度
ベルト	ベルト層数	1層	1層	1層
	コード構造	1×2×0.2(mm)	1×3×0.2(mm)	1×5×0.2(mm)
	角度(対タイヤ周方向)	実質周方向	実質周方向	実質周方向
	コード径 (mm) *	0.75	0.75	0.75
	打込み数	50本/25mm	35本/25mm	20本/25mm
周方向面内曲げ剛性 (Sa)		6.54N/mm (667g/mm)	6.30N/mm (642g/mm)	6.75N/mm (688g/mm)
幅方向面外曲げ剛性 (Sb)		6.49N/mm (662g/mm)	6.10N/mm (622g/mm)	6.10N/mm (622g/mm)
ベルト面剛性平均値 (K)		1.01	1.03	1.11

*ベルトコード径については、オープンコードのため、見かけ上(投影)の径は、理論上同じものを用いた。

[0034] [表3]

		前後輪タイヤの装着組み合わせ		
		実施例5	実施例6	従来例3
前輪タイヤ	実施例1	実施例2	従来例1	
後輪タイヤ	実施例3	実施例4	従来例2	
高速コーナリング時の操縦安定性(指數)	120	110	100	

請求の範囲

[1] トレッド部と、該トレッド部の両縁部からタイヤ半径方向内側に配設された一対のサイドウォール部と、該サイドウォール部のタイヤ半径方向内側に連なるビード部とからなり、これら各部をビード部内に埋設されたビードコア相互間にわたり補強し、かつ、タイヤ赤道面に対して60—90度をなすコードをゴムで被覆した少なくとも1層のカーカスプライからなるカーカス層と、該カーカス層のタイヤ半径方向外側に、タイヤ赤道面に対して実質上平行に螺旋巻き形成されてなる少なくとも1層のスチールスパイラルベルトとを具備する自動二輪車用空気入りラジアルタイヤにおいて、
ETRTOで規定する測定リムに装着し、タイヤの加硫工程におけるポストキュアインフレーション時の無負荷状態でのタイヤ断面高さSHと、トレッド面最大幅TWとの偏平比(SH/TW)が0.50—0.85であり、かつ
前記トレッド部の曲げ剛性のうち、幅方向面外曲げ剛性(Sb)が4.9—7.7N/mm(500—790g/mm)、周方向面内曲げ剛性(Sa)が5.1—7.8N/mm(520—800g/mm)であり、かつ、前記周方向面内曲げ剛性(Sa)と前記幅方向面外曲げ剛性(Sb)との曲げ剛性比(Sa/Sb)で表されるベルト面剛性平衡値(K)が0.90—1.10の範囲内であることを特徴とする自動二輪車用空気入りラジアルタイヤ。

[2] 前記スチールスパイラルベルトを形成するスチールコードが、フィラメント径0.12—0.40mmよりなる1×2構造のオープン撚りコードである請求項1記載の自動二輪車用空気入りラジアルタイヤ。

[3] 前記ベルト面剛性平衡値(K)が0.96—1.06の範囲内である請求項2記載の自動二輪車用空気入りラジアルタイヤ。

[4] 前記スチールスパイラルベルトを形成するスチールコードが、フィラメント径0.12—0.40mmよりなる1×3構造のオープン撚りコードである請求項1記載の自動二輪車用空気入りラジアルタイヤ。

[5] 前記ベルト面剛性平衡値(K)が0.98—1.08の範囲内である請求項4記載の自動二輪車用空気入りラジアルタイヤ。

[6] トレッド部と、該トレッド部の両縁部からタイヤ半径方向内側に配設された一対のサイドウォール部と、該サイドウォール部のタイヤ半径方向内側に連なるビード部とから

なり、これら各部をビード部内に埋設されたビードコア相互間にわたり補強し、かつ、タイヤ赤道面に対して60～90度をなすコードをゴムで被覆した少なくとも1層のカーカスプライからなるカーカス層と、該カーカス層のタイヤ半径方向外側に、タイヤ赤道面に対して実質上平行に螺旋巻き形成されてなる少なくとも1層のスチールスパイラルベルトとを具備する自動二輪車用空気入りラジアルタイヤにおいて、

ETRTOで規定する測定リムに装着し、タイヤの加硫工程におけるポストキュアインフレーション時の無負荷状態でのタイヤ断面高さSHと、トレッド面最大幅TWとの偏平比(SH/TW)が0.50～0.85であり、かつ

前記スチールスパイラルベルトを形成するスチールコードが、フィラメント径0.12～0.40mmよりなる1×2構造のオープン撚りコードであることを特徴とする自動二輪車用空気入りラジアルタイヤ。

[7] 前記スチールコード打込み数が30～60本/25mmである請求項6記載の自動二輪車用空気入りラジアルタイヤ。

[8] 前記トレッド部の曲げ剛性のうち、幅方向面外曲げ剛性(Sb)が4.9～7.7N/mm(500～790g/mm)、周方向面内曲げ剛性(Sa)が5.1～7.8N/mm(520～800g/mm)であり、かつ、前記周方向面内曲げ剛性(Sa)と前記幅方向面外曲げ剛性(Sb)との曲げ剛性比(Sa/Sb)で表されるベルト面剛性平衡値(K)が0.96～1.06の範囲内である請求項7記載の自動二輪車用空気入りラジアルタイヤ。

[9] トレッド部と、該トレッド部の両縁部からタイヤ半径方向内側に配設された一対のサイドウォール部と、該サイドウォール部のタイヤ半径方向内側に連なるビード部とからなり、これら各部をビード部内に埋設されたビードコア相互間にわたり補強し、かつ、タイヤ赤道面に対して60～90度をなすコードをゴムで被覆した少なくとも1層のカーカスプライからなるカーカス層と、該カーカス層のタイヤ半径方向外側に、タイヤ赤道面に対して実質上平行に螺旋巻き形成されてなる少なくとも1層のスチールスパイラルベルトとを具備する自動二輪車用空気入りラジアルタイヤにおいて、

ETRTOで規定する測定リムに装着し、タイヤの加硫工程におけるポストキュアインフレーション時の無負荷状態でのタイヤ断面高さSHと、トレッド面最大幅TWとの偏平比(SH/TW)が0.50～0.85であり、かつ

前記スチールスパイラルベルトの、タイヤ赤道上のスチールコード打込み数が20～60本／25mmであり、かつそのスチールコード径が0.30～1.20mmであることを特徴とする自動二輪車用空気入りラジアルタイヤ。

- [10] 前記スチールスパイラルベルトを形成するスチールコードが、フィラメント径0.12～0.40mmよりなる1×2構造のオープン撚りコードである請求項9記載の自動二輪車用空気入りラジアルタイヤ。
- [11] 前記スチールコード打込み数が30～60本／25mmである請求項10記載の自動二輪車用空気入りラジアルタイヤ。
- [12] 前記スチールスパイラルベルトを形成するスチールコードが、フィラメント径0.12～0.40mmよりなる1×3構造のオープン撚りコードである請求項9記載の自動二輪車用空気入りラジアルタイヤ。
- [13] 前記スチールコード打込み数が20～42本／25mmである請求項12記載の自動二輪車用空気入りラジアルタイヤ。
- [14] 請求項1～13のうちいずれか一項記載の自動二輪車用空気入りラジアルタイヤを、前後輪で前記スチールスパイラルベルトの種類の異なるものを選択し、組合わせて自動二輪車に装着することを特徴とする自動二輪車へのタイヤ装着方法。

[図1]

[図2]

[図3]

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP2005/000865

A. CLASSIFICATION OF SUBJECT MATTER
Int.Cl⁷ B60C9/18, 5/00, 9/20, 9/22

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
Int.Cl⁷ B60C5/00, 9/18-9/22

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Jitsuyo Shinan Koho	1922-1996	Jitsuyo Shinan Toroku Koho	1996-2005
Kokai Jitsuyo Shinan Koho	1971-2005	Toroku Jitsuyo Shinan Koho	1994-2005

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X Y	JP 2002-19413 A (Bridgestone Corp.), 23 January, 2002 (23.01.02), Claims; Par. Nos. [0031], [0034] to [0039], [0046] to [0050]; Fig. 1 & WO 01/90478 A1 & EP 1284318 A1	1-13 14
Y	JP 2002-234032 A (Bridgestone Corp.), 20 August, 2002 (20.08.02), Claims; Par. Nos. [0032] to [0036], [0063]; Figs. 1 to 2 & EP 1213159 A1 & US 2002/104605 A1	1-14
Y	JP 2003-11614 A (Bridgestone Corp.), 15 January, 2003 (15.01.03), Par. No. [0018]; table 1 (Family: none)	1-14

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents:	
"A"	document defining the general state of the art which is not considered to be of particular relevance
"E"	earlier application or patent but published on or after the international filing date
"L"	document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
"O"	document referring to an oral disclosure, use, exhibition or other means
"P"	document published prior to the international filing date but later than the priority date claimed
"T"	later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
"X"	document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
"Y"	document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
"&"	document member of the same patent family

Date of the actual completion of the international search
21 April, 2005 (21.04.05)

Date of mailing of the international search report
17 May, 2005 (17.05.05)

Name and mailing address of the ISA/
Japanese Patent Office

Authorized officer

Facsimile No.

Telephone No.

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP2005/000865

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	JP 2003-276404 A (Bridgestone Corp.), 30 September, 2003 (30.09.03), Claims; Par. Nos. [0036] to [0038], [0073]; example 2 (Family: none)	9,11,13
Y	JP 62-113605 A (Bridgestone Corp.), 25 May, 1987 (25.05.87), Claims; page 2, upper right column, lines 5 to 10; examples (Family: none)	14
P,X	JP 2005-1552 A (Sumitomo Rubber Industries, Ltd.), 06 January, 2005 (06.01.05), Claims; Par. Nos. [0034], [0035]; comparative examples 2 to 3; examples 1 to 2 & EP 1486354 A1 & US 2004/250937 A1	9,11,13
A	WO 03/99590 A1 (Bridgestone Corp.), 04 December, 2003 (04.12.03), Full text (Family: none)	1-14

A. 発明の属する分野の分類(国際特許分類(IPC))

Int.Cl.⁷ B60C9/18, 5/00, 9/20, 9/22

B. 調査を行った分野

調査を行った最小限資料(国際特許分類(IPC))

Int.Cl.⁷ B60C 5/00, 9/18-9/22

最小限資料以外の資料で調査を行った分野に含まれるもの

日本国実用新案公報	1922-1996年
日本国公開実用新案公報	1971-2005年
日本国実用新案登録公報	1996-2005年
日本国登録実用新案公報	1994-2005年

国際調査で使用した電子データベース(データベースの名称、調査に使用した用語)

C. 関連すると認められる文献

引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
X	JP 2002-19413 A (株式会社ブリヂストン) 2002.01.23, 特許請求の範囲、【0031】、【0034】-【0039】、 【0046】-【0050】、図1	1-13
Y	& WO 01/90478 A1 & EP 1284318 A1	14
Y	JP 2002-234032 A (株式会社ブリヂストン) 2002.08.20, 特許請求の範囲、【0032】-【0036】、【0063】、 図1-2 & EP 1213159 A1 & US 2002/104605 A1	1-14

 C欄の続きにも文献が列挙されている。 パテントファミリーに関する別紙を参照。

* 引用文献のカテゴリー

「A」特に関連のある文献ではなく、一般的技術水準を示すもの
 「E」国際出願日前の出願または特許であるが、国際出願日以後に公表されたもの
 「L」優先権主張に疑義を提起する文献又は他の文献の発行日若しくは他の特別な理由を確立するために引用する文献(理由を付す)
 「O」口頭による開示、使用、展示等に言及する文献
 「P」国際出願日前で、かつ優先権の主張の基礎となる出願

の日の後に公表された文献
 「T」国際出願日又は優先日後に公表された文献であって出願と矛盾するものではなく、発明の原理又は理論の理解のために引用するもの
 「X」特に関連のある文献であって、当該文献のみで発明の新規性又は進歩性がないと考えられるもの
 「Y」特に関連のある文献であって、当該文献と他の1以上の文献との、当業者にとって自明である組合せによって進歩性がないと考えられるもの
 「&」同一パテントファミリー文献

国際調査を完了した日

21.04.2005

国際調査報告の発送日

17.5.2005

国際調査機関の名称及びあて先

日本国特許庁 (ISA/JP)

郵便番号100-8915

東京都千代田区霞が関三丁目4番3号

特許庁審査官(権限のある職員)

上坊寺 宏枝

4F

9834

電話番号 03-3581-1101 内線 3430

C (続き) . 関連すると認められる文献		
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
Y	JP 2003-11614 A (株式会社ブリヂストン) 2003.01.15, 【0018】、表1 (ファミリーなし)	1-14
X	JP 2003-276404 A (株式会社ブリヂストン) 2003.09.30, 特許請求の範囲、【0036】－【0038】、【0073】、 実施例2 (ファミリーなし)	9, 11, 13
Y	JP 62-113605 A (株式会社ブリヂストン) 1987.05.25, 特許請求の範囲、第2頁右上欄第5行－第10行、実施例 (ファミリーなし)	14
P, X	JP 2005-1552 A (住友ゴム工業株式会社) 2005.01.06, 特許請求の範囲、【0034】、【0035】、比較例2－3、 実施例1－2 & EP 1486354 A1 & US 2004/250937 A1	9, 11, 13
A	WO 03/99590 A1 (株式会社ブリヂストン) 2003.12.04, 文献全体 (ファミリーなし)	1-14