FCC RF Test Report

APPLICANT : CT Asia

EQUIPMENT : Smart Phone

BRAND NAME : BLU

MODEL NAME : Studio 5.0 C e FCC ID : YHLBLUST50CE

STANDARD : FCC Part 15 Subpart C §15.247

CLASSIFICATION : (DTS) Digital Transmission System

The product was received on Jul. 10, 2014 and testing was completed on Aug. 26, 2014. We, SPORTON INTERNATIONAL (SHENZHEN) INC., would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL (SHENZHEN) INC., the test report shall not be reproduced except in full.

Reviewed by: Joseph Lin / Supervisor

Approved by: Jones Tsai / Manager

SPORTON INTERNATIONAL (SHENZHEN) INC.

No. 3 Building, the third floor of south, Shahe River west, Fengzeyuan warehouse, Nanshan District, Shenzhen, Guangdong, P.R.C.

TEL: 86-755- 3320-2398 FCC ID: YHLBLUST50CE Page Number : 1 of 61
Report Issued Date : Sep. 05, 2014

Testing Laboratory

Report No.: FR471004C

TABLE OF CONTENTS

RE'	VISIOI	N HISTORY	3
SU	MMAR	RY OF TEST RESULT	4
1	GENE	ERAL DESCRIPTION	5
	1.1	Applicant	5
	1.2	Manufacturer	
	1.3	Product Feature of Equipment Under Test	5
	1.4	Product Specification subjective to this standard	5
	1.5	Modification of EUT	6
	1.6	Testing Location	6
	1.7	Applicable Standards	6
2	TEST	CONFIGURATION OF EQUIPMENT UNDER TEST	7
	2.1	Carrier Frequency Channel	7
	2.2	Pre-Scanned RF Power	8
	2.3	Test Mode	9
	2.4	Connection Diagram of Test System	10
	2.5	Support Unit used in test configuration and system	11
	2.6	EUT Operation Test Setup	11
	2.7	Measurement Results Explanation Example	12
3	TEST	RESULT	13
	3.1	6dB Bandwidth Measurement	13
	3.2	Output Power Measurement	15
	3.3	Power Spectral Density Measurement	18
	3.4	Conducted Band Edges and Spurious Emission Measurement	20
	3.5	Radiated Band Edges and Spurious Emission Measurement	33
	3.6	AC Conducted Emission Measurement	
	3.7	Antenna Requirements	59
4	LIST	OF MEASURING EQUIPMENT	60
5	UNCE	ERTAINTY OF EVALUATION	61
AP	PEND	IX A. SETUP PHOTOGRAPHS	

TEL: 86-755- 3320-2398 FCC ID: YHLBLUST50CE Report Issued Date : Sep. 05, 2014

Report No. : FR471004C

REVISION HISTORY

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
FR471004C	Rev. 01	Initial issue of report	Sep. 05, 2014

TEL: 86-755-3320-2398 FCC ID: YHLBLUST50CE Page Number : 3 of 61
Report Issued Date : Sep. 05, 2014

Report No. : FR471004C

SUMMARY OF TEST RESULT

Report Section	FCC Rule	Description	Limit	Result	Remark
3.1	15.247(a)(2)	6dB Bandwidth	≥ 0.5MHz	Pass	-
3.2	15.247(b)	Power Output Measurement	≤ 30dBm	Pass	-
3.3	15.247(e)	Power Spectral Density	≤ 8dBm/3kHz	Pass	-
3.4	4E 247/d)	Conducted Band Edges	2040-	Pass	-
3.4	15.247(d)	Conducted Spurious Emission	≤ 20dBc	Pass	-
3.5	15.247(d)	Radiated Band Edges and Radiated Spurious Emission	15.209(a) & 15.247(d)	Pass	Under limit 1.5 dB at 2387.310 MHz
3.6	15.207	AC Conducted Emission	15.207(a)	Pass	Under limit 10.40 dB at 29.370 MHz
3.7	15.203 & 15.247(b)	Antenna Requirement	N/A	Pass	-

TEL: 86-755-3320-2398 FCC ID: YHLBLUST50CE Page Number : 4 of 61

Report Issued Date : Sep. 05, 2014

Report No. : FR471004C

General Description

1.1 Applicant

CT Asia

Unit 01, 15/F, Seaview Centre, 139-141 Hoi bun road, Kwun Tong, Kowloon, Hongkong

1.2 Manufacturer

Tinno Mobile Technology Corp.

4/F, H-3 Building, OCT Eastern industrial Park, No.1 XiangShan East Road, Nan Shan District, Shenzhen, P.R. China

Report No.: FR471004C

1.3 Product Feature of Equipment Under Test

Pi	Product Feature						
Equipment	Smart Phone						
Brand Name	BLU						
Model Name	Studio 5.0 C e						
FCC ID	YHLBLUST50CE						
	GSM/GPRS/EDGE(Downlink Only)/						
EUT supports Radios application	WLAN 2.4GHz 802.11b/g/n HT20/HT40						
	Bluetooth v3.0+EDR/Bluetooth v4.0 LE						
HW Version	V1.0						
SW Version	S5202AP_KK_PP_00_06						
EUT Stage	Identical Prototype						

Remark: The above EUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.

1.4 Product Specification subjective to this standard

Product Specification subjective to this standard							
Tx/Rx Channel Frequency Range	2412 MHz ~ 2462 MHz						
	802.11b : 16.21 dBm (0.0418 W)						
Maximum (Peak) Output Power to	802.11g : 18.93 dBm (0.0782 W)						
Antenna	802.11n HT20 : 18.91 dBm (0.0778 W)						
	802.11n HT40 : 17.14 dBm (0.0518 W)						
Antenna Type / Gain	IFA Antenna with gain 0.75 dBi						
Type of Modulation	802.11b: DSSS (DBPSK / DQPSK / CCK)						
Type of Modulation	802.11g/n: OFDM (BPSK / QPSK / 16QAM / 64QAM)						

SPORTON INTERNATIONAL (SHENZHEN) INC. Page Number : 5 of 61 TEL: 86-755-3320-2398 Report Issued Date: Sep. 05, 2014 Report Version : Rev. 01

FCC ID: YHLBLUST50CE

1.5 Modification of EUT

No modifications are made to the EUT during all test items.

1.6 Testing Location

Test Site		SPORTON INT	SPORTON INTERNATIONAL (SHENZHEN) INC.							
Tool	0:4-	No. 3 Building,	the third floor of s	south, Shahe River	west, Fengzeyuan warehouse,					
Test Location	Site	Nanshan Distri	ct, Shenzhen, Gu	angdong, P.R.C.						
Location		TEL: +86-755-	3320-2398							
Test Site N	la.		Sporton Site No	o.	FCC Registration No.					
rest Site N	10.	TH01-SZ	03CH01-SZ	CO01-SZ	831040					

Note: The test site complies with ANSI C63.4 2003 requirement.

1.7 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC Part 15 Subpart C §15.247
- FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v03r02
- ANSI C63.4-2003

Remark:

- All test items were verified and recorded according to the standards and without any deviation during the test.
- 2. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

TEL: 86-755- 3320-2398 FCC ID: YHLBLUST50CE Page Number : 6 of 61

Report No.: FR471004C

Report Issued Date : Sep. 05, 2014
Report Version : Rev. 01

2 Test Configuration of Equipment Under Test

The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: conducted emission (150 kHz to 30 MHz) and radiated emission (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). For radiated measurement, pre-scanned in three orthogonal panels, X, Y, Z. The worst cases (X plane) were recorded in this report.

The final configuration from all the combinations and the worst-case data rates were investigated by measuring the maximum power across all the data rates and modulation modes under section 2.2.

Based on the worst configuration found above, the RF power setting is set individually to meet FCC compliance limit for the final conducted and radiated tests shown in section 2.3.

2.1 Carrier Frequency Channel

Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	1	2412	7	2442
	2	2417	8	2447
0400 0400 F MU-	3	2422	9	2452
2400-2483.5 MHz	4	2427	10	2457
	5	2432	11	2462
	6	2437	-	-

TEL: 86-755- 3320-2398 FCC ID: YHLBLUST50CE Page Number : 7 of 61

Report No.: FR471004C

Report Issued Date : Sep. 05, 2014
Report Version : Rev. 01

2.2 Pre-Scanned RF Power

Preliminary tests were performed in different data rate and data rate associated with the highest power were chosen for full test shown in the following tables.

	2.4GHz 802.11b RF Output Power (dBm)										
Pov	ver vs. Char	nnel		Power	vs. Data Rate						
Channel Frequency (MHz)		Channel	2Mbps	5.5Mbps	11Mbps						
	(IVITZ)	1Mbps									
CH 01	2412 MHz	15.49									
CH 06	2437 MHz	15.58	CH 11	16.10	16.05	16.03					
CH 11	2462 MHz	<mark>16.21</mark>									

	2.4GHz 802.11g RF Output Power (dBm)											
Pov	ver vs. Char	nnel				Power vs.	Data Rate					
Channel	Frequency (MHz)	Data Rate	Channel	9Mbps	12Mbps	18Mbps	24Mbps	36Mbps	48Mbps	54Mbps		
	(IVITZ)	6Mbps		,								
CH 01	2412 MHz	18.42										
CH 06	2437 MHz	18.54	CH 11	18.87	18.86	18.84	18.79	18.71	18.72	18.73		
CH 11	2462 MHz	<mark>18.93</mark>										

	2.4GHz 802.11n HT20 RF Output Power (dBm)										
Pov	wer vs. Chan	nnel			F	Power vs.	MCS Index	(
Channel	Frequency	MCS Index	Channel	MCS1	MCS2	MCS3	MCS4	MCS5	MCS6	MCS7	
	(MHz)	MCS0									
CH 01	2412 MHz	18.67									
CH 06	2437 MHz	18.79	CH 11	18.81	18.76	18.71	18.70	18.69	18.66	18.64	
CH 11	2462 MHz	<mark>18.91</mark>									

	2.4GHz 802.11n HT40 RF Output Power (dBm)											
Pov	ver vs. Char	nnel			F	Power vs.	MCS Index	(
Channel	Frequency (MHz)	MCS Index	Channel	MCS1	MCS2	MCS3	MCS4	MCS5	MCS6	MCS7		
	(IVITZ)	MCS0										
CH 03	2422 MHz	16.91										
CH 06	2437 MHz	16.95	CH 09	16.67	16.23	16.13	16.11	16.13	16.11	16.06		
CH 09	2452 MHz	<mark>17.14</mark>										

TEL: 86-755- 3320-2398 FCC ID: YHLBLUST50CE Page Number : 8 of 61 Report Issued Date : Sep. 05, 2014

Report No.: FR471004C

2.3 Test Mode

Final results of test modes, data rates and test channels are shown as following table.

		Test Cases		
	Test Items	Mode	Data Rate	Test Channel
		802.11b	1 Mbps	1/6/11
	6dB BW	802.11g	6 Mbps	1/6/11
	Power Spectral	802.11n HT20	MCS0	1/6/11
	Density —	802.11n HT40	MCS0	3/6/9
		802.11b	1 Mbps	1/6/11
		802.11g	6 Mbps	1/6/11
	Output Power	802.11n HT20	MCS0	1/6/11
Conducted		802.11n HT40	MCS0	3/6/9
TCs		802.11b	1 Mbps	1/11
	Conducted Band	802.11g	6 Mbps	1/11
	Edge	802.11n HT20	MCS0	1/11
		802.11n HT40	MCS0	3/9
		802.11b	1 Mbps	1/6/11
	Conducted Spurious	802.11g	6 Mbps	1/6/11
	Emission	802.11n HT20	MCS0	1/6/11
		802.11n HT40	MCS0	3/6/9
		802.11b	1 Mbps	1/11
		802.11g	6 Mbps	1/11
	Radiated Band Edge	802.11n HT20	MCS0	1/11
Radiated		802.11n HT40	MCS0	3/9
TCs		802.11b	1 Mbps	1/6/11
	Radiated Spurious	802.11g	6 Mbps	1/6/11
	Emission	802.11n HT20	MCS0	1/6/11
		802.11n HT40	MCS0	3/6/9
AC				•
Conducted	Mode 1 : GSM850 Idle +	Bluetooth Link + WLAN Link	c + USB Cable (Charging fron	n Adapter) + Earphone
Emission				

Remark: For Radiated TCs, the tests were performed with adapter, earphone and USB cable.

SPORTON INTERNATIONAL (SHENZHEN) INC.

TEL: 86-755- 3320-2398 Report Issued E FCC ID: YHLBLUST50CE Report Version

Page Number : 9 of 61

Report No.: FR471004C

Report Issued Date : Sep. 05, 2014 Report Version : Rev. 01

2.4 Connection Diagram of Test System

<WLAN Tx Mode>

<AC Conducted Emission Mode>

TEL: 86-755-3320-2398 FCC ID: YHLBLUST50CE Page Number : 10 of 61 Report Issued Date : Sep. 05, 2014

Report No.: FR471004C

2.5 Support Unit used in test configuration and system

Item	Equipment	Trade Name	Model Name	FCC ID	Data Cable	Power Cord
1.	System Simulator	R&S	CMW 500	N/A	N/A	Unshielded, 1.8 m
2.	WLAN AP	D-Link	DIR-628	KA2DIR628A2	N/A	Unshielded, 1.8 m
		tabask Langua C480 FCC DaC N/A		AC I/P:		
3.	Notebook		G480	FCC DoC	N/A	Unshielded, 1.2 m
3.	Notebook	Lenovo	G400			DC O/P:
						Shielded, 1.8 m
4.	Bluetooth	Nokia	BH-108	PYAHS-107W	N/A	N/A
4.	Earphone	INUNIA	DI 1-100	FTAIIS-107W	11/74	111/74

2.6 EUT Operation Test Setup

For WLAN function, the engineering test program was provided and enabled to make EUT continuous transmit/receive.

For AC power line conducted emissions, the EUT was set to connect with the WLAN AP under large package sizes transmission.

TEL: 86-755- 3320-2398 FCC ID: YHLBLUST50CE Page Number : 11 of 61 Report Issued Date : Sep. 05, 2014

Report No.: FR471004C

2.7 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Example:

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

Offset = RF cable loss + attenuator factor.

Following shows an offset computation example with cable loss 7.5 dB and 10dB attenuator.

Offset
$$(dB) = RF$$
 cable loss (dB) + attenuator factor (dB) .
= 7.5 + 10 = 17.5 (dB)

TEL: 86-755- 3320-2398 FCC ID: YHLBLUST50CE Page Number : 12 of 61
Report Issued Date : Sep. 05, 2014

Report No.: FR471004C

Test Result 3

3.1 6dB Bandwidth Measurement

3.1.1 Limit of 6dB Bandwidth

The minimum 6 dB bandwidth shall be at least 500 kHz.

3.1.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.1.3 Test Procedures

- The testing follows FCC KDB Publication No. 558074 DTS D01 Meas. Guidance v03r02. 1.
- The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.

Report No.: FR471004C

- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6 dB bandwidth must be greater than 500 kHz.
- 5. Measure and record the results in the test report.

3.1.4 Test Setup

Page Number : 13 of 61 TEL: 86-755-3320-2398 Report Issued Date: Sep. 05, 2014 FCC ID: YHLBLUST50CE Report Version : Rev. 01

3.1.5 Test Result of 6dB Bandwidth

Test Band :	2.4GHz	Temperature :	24~26℃
Test Engineer :	Ting You	Relative Humidity :	50~53%

Mod.	Data Rate	N _{TX}	Channel	Freq. (MHz)	6dB Bandwidth (MHz)	6dB Bandwidth Min. Limit (MHz)	Pass/Fail
11b	1Mbps	1	1	2412	10.00	0.5	Pass
11b	1Mbps	1	6	2437	10.00	0.5	Pass
11b	1Mbps	1	11	2462	9.52	0.5	Pass
11g	6Mbps	1	1	2412	15.52	0.5	Pass
11g	6Mbps	1	6	2437	15.64	0.5	Pass
11g	6Mbps	1	11	2462	15.44	0.5	Pass
HT20	MCS0	1	1	2412	15.64	0.5	Pass
HT20	MCS0	1	6	2437	15.96	0.5	Pass
HT20	MCS0	1	11	2462	15.76	0.5	Pass
HT40	MCS0	1	3	2422	35.12	0.5	Pass
HT40	MCS0	1	6	2437	35.12	0.5	Pass
HT40	MCS0	1	9	2452	35.12	0.5	Pass

Note: The occupied channel bandwidth is maintained within the band of operation for all of the modulations.

TEL: 86-755-3320-2398 FCC ID: YHLBLUST50CE Page Number : 14 of 61
Report Issued Date : Sep. 05, 2014

Report No.: FR471004C

3.2 Output Power Measurement

3.2.1 Limit of Output Power

For systems using digital modulation in the 2400-2483.5MHz, the limit for peak output power is 30dBm. If transmitting Antenna of directional gain greater than 6dBi are used the peak output power from the intentional radiator shall be reduced below the above stated value by the amount in dB that the directional gain of the Antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3dB that the directional gain of the Antenna exceeds 6dBi.

3.2.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.2.3 Test Procedures

- The testing follows the Measurement Procedure of FCC KDB No. 558074 DTS D01 Meas. Guidance v03r02.
- 2. The RF output of EUT was connected to the power meter by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Measure the conducted output power and record the results in the test report.

3.2.4 Test Setup

TEL: 86-755- 3320-2398 FCC ID: YHLBLUST50CE Page Number : 15 of 61
Report Issued Date : Sep. 05, 2014

Report No.: FR471004C

3.2.5 Test Result of Peak Output Power

Test Mode :	2.4GHz	Temperature :	24~26 ℃
Test Engineer :	Ting You	Relative Humidity :	50~53%

Mod.	Data Rate	N _{TX}	Channel	Freq. (MHz)	RF Output Power (dBm)	Power Limit (dBm)	DG (dBi)	Pass/Fail
11b	1Mbps	1	1	2412	15.49	30	0.75	Pass
11b	1Mbps	1	6	2437	15.58	30	0.75	Pass
11b	1Mbps	1	11	2462	16.21	30	0.75	Pass
11g	6Mbps	1	1	2412	18.42	30	0.75	Pass
11g	6Mbps	1	6	2437	18.54	30	0.75	Pass
11g	6Mbps	1	11	2462	18.93	30	0.75	Pass
HT20	MCS0	1	1	2412	18.67	30	0.75	Pass
HT20	MCS0	1	6	2437	18.79	30	0.75	Pass
HT20	MCS0	1	11	2462	18.91	30	0.75	Pass
HT40	MCS0	1	3	2422	16.91	30	0.75	Pass
HT40	MCS0	1	6	2437	16.95	30	0.75	Pass
HT40	MCS0	1	9	2452	17.14	30	0.75	Pass

Note: Measured power (dBm) has offset with cable loss.

TEL: 86-755- 3320-2398 FCC ID: YHLBLUST50CE Page Number : 16 of 61
Report Issued Date : Sep. 05, 2014
Report Version : Rev. 01

Report No.: FR471004C

3.2.6 Test Result of Average output Power (Reporting Only)

Test Mode :	2.4GHz	Temperature :	24~26 ℃
Test Engineer :	Ting You	Relative Humidity :	50~53%

Mod.	Data Rate	N _{TX}	Channel	Freq. (MHz)	Duty Factor (dB)	Average Output Power (dBm)	Power Limit (dBm)	DG (dBi)	Pass/Fail
11b	1Mbps	1	1	2412	0.08	12.53	30	0.75	Pass
11b	1Mbps	1	6	2437	0.08	12.65	30	0.75	Pass
11b	1Mbps	1	11	2462	0.08	13.36	30	0.75	Pass
11g	6Mbps	1	1	2412	0.53	7.99	30	0.75	Pass
11g	6Mbps	1	6	2437	0.53	8.04	30	0.75	Pass
11g	6Mbps	1	11	2462	0.53	8.10	30	0.75	Pass
HT20	MCS0	1	1	2412	0.53	8.30	30	0.75	Pass
HT20	MCS0	1	6	2437	0.53	8.03	30	0.75	Pass
HT20	MCS0	1	11	2462	0.53	8.31	30	0.75	Pass
HT40	MCS0	1	3	2422	1.02	5.30	30	0.75	Pass
HT40	MCS0	1	6	2437	1.02	5.13	30	0.75	Pass
HT40	MCS0	1	9	2452	1.02	5.33	30	0.75	Pass

Note: Measured power (dBm) has offset with cable loss and duty factor.

TEL: 86-755- 3320-2398 FCC ID: YHLBLUST50CE Page Number : 17 of 61 Report Issued Date : Sep. 05, 2014

Report No.: FR471004C

3.3 Power Spectral Density Measurement

3.3.1 Limit of Power Spectral Density

The peak power spectral density shall not be greater than 8dBm in any 3kHz band at any time interval of continuous transmission.

3.3.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.3.3 Test Procedures

- The testing follows Measurement Procedure 10.2 Method PKPSD of FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v03r02
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 3 kHz. Video bandwidth VBW = 10 kHz In order to make an accurate measurement, set the span to 1.5 times DTS Channel Bandwidth. (6dB BW)
- 5. Detector = peak, Sweep time = auto couple, Trace mode = max hold, Allow trace to fully stabilize. Use the peak marker function to determine the maximum power level.
- 6. Measure and record the results in the test report.

3.3.4 Test Setup

FCC ID: YHLBLUST50CE

Report Issued Date: Sep. 05, 2014
Report Version: Rev. 01

Page Number

: 18 of 61

Report No.: FR471004C

3.3.5 Test Result of Power Spectral Density

Test Mode :	2.4GHz	Temperature :	24~26 ℃
Test Engineer :	Ting You	Relative Humidity :	50~53%

Mod.	Data Rate	N _{TX}	Channel	Freq. (MHz)	Peak Power Density (dBm/3kHz)	Max. Limits (dBm/3kHz)	DG (dBi)	Pass/Fail
11b	1Mbps	1	1	2412	-10.57	8	0.75	Pass
11b	1Mbps	1	6	2437	-9.88	8	0.75	Pass
11b	1Mbps	1	11	2462	-8.40	8	0.75	Pass
11g	6Mbps	1	1	2412	-13.58	8	0.75	Pass
11g	6Mbps	1	6	2437	-12.60	8	0.75	Pass
11g	6Mbps	1	11	2462	-14.00	8	0.75	Pass
HT20	MCS0	1	1	2412	-13.34	8	0.75	Pass
HT20	MCS0	1	6	2437	-11.44	8	0.75	Pass
HT20	MCS0	1	11	2462	-13.99	8	0.75	Pass
HT40	MCS0	1	3	2422	-19.93	8	0.75	Pass
HT40	MCS0	1	6	2437	-17.75	8	0.75	Pass
HT40	MCS0	1	9	2452	-19.24	8	0.75	Pass

Note: Measured power density (dBm) has offset with cable loss.

TEL: 86-755-3320-2398 FCC ID: YHLBLUST50CE Page Number : 19 of 61
Report Issued Date : Sep. 05, 2014

Report No.: FR471004C

3.4 Conducted Band Edges and Spurious Emission Measurement

3.4.1 Limit of Conducted Band Edges and Spurious Emission Measurement

In any 100 kHz bandwidth outside of the authorized frequency band, the emissions which fall in the non-restricted bands shall be attenuated at least 20 dB / 30dB relative to the maximum PSD level in 100 kHz by RF conducted measurement and radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).

Report No.: FR471004C

3.4.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.4.3 Test Procedures

- 1. The testing follows FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v03r02.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Set RBW = 100 kHz, VBW=300 kHz, Peak Detector. Unwanted Emissions measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when maximum peak conducted output power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB per 15.247(d).
- 5. Measure and record the results in the test report.
- 6. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

3.4.4 Test Setup

SPORTON INTERNATIONAL (SHENZHEN) INC.Page Number: 20 of 61TEL: 86-755- 3320-2398Report Issued Date: Sep. 05, 2014FCC ID: YHLBLUST50CEReport Version: Rev. 01

3.4.5 Test Result of Conducted Band Edges and Spurious Emission

Test Mode :	802.11b	Temperature :	24~26℃
Test Band :	2.4GHz Low	Relative Humidity :	50~53%
Test Channel :	01	Test Engineer :	Ting You

TEL: 86-755- 3320-2398 FCC ID: YHLBLUST50CE Page Number : 21 of 61
Report Issued Date : Sep. 05, 2014

Report No.: FR471004C

Test Mode :	802.11b	Temperature :	24~26℃
Test Band :	2.4GHz Mid	Relative Humidity :	50~53%
Test Channel :	06	Test Engineer :	Ting You

Page Number : 22 of 61
Report Issued Date : Sep. 05, 2014

Report No.: FR471004C

Test Mode :	802.11b	Temperature :	24~26℃
Test Band :	2.4GHz High	Relative Humidity :	50~53%
Test Channel :	11	Test Engineer :	Ting You

Page Number : 23 of 61
Report Issued Date : Sep. 05, 2014

: Rev. 01

Report Version

Report No.: FR471004C

Test Mode :	802.11g	Temperature :	24~26 ℃
Test Band :	2.4GHz Low	Relative Humidity :	50~53%
Test Channel :	01	Test Engineer :	Ting You

Page Number : 24 of 61
Report Issued Date : Sep. 05, 2014
Report Version : Rev. 01

Report No.: FR471004C

Test Mode :	802.11g	Temperature :	24~26 ℃
Test Band :	2.4GHz Mid	Relative Humidity :	50~53%
Test Channel :	06	Test Engineer :	Ting You

Page Number : 25 of 61
Report Issued Date : Sep. 05, 2014

Report No.: FR471004C

Test Mode :	802.11g	Temperature :	24~26℃
Test Band :	2.4GHz High	Relative Humidity :	50~53%
Test Channel :	11	Test Engineer :	Ting You

Page Number : 26 of 61
Report Issued Date : Sep. 05, 2014
Report Version : Rev. 01

Report No.: FR471004C

 Test Mode :
 802.11n HT20
 Temperature :
 24~26°C

 Test Band :
 2.4GHz Low
 Relative Humidity :
 50~53%

 Test Channel :
 01
 Test Engineer :
 Ting You

TEL: 86-755- 3320-2398 FCC ID: YHLBLUST50CE Page Number : 27 of 61
Report Issued Date : Sep. 05, 2014

Report No.: FR471004C

Test Mode :	802.11n HT20	Temperature :	24~26℃
Test Band :	2.4GHz Mid	Relative Humidity :	50~53%
Test Channel :	06	Test Engineer :	Ting You

Page Number : 28 of 61
Report Issued Date : Sep. 05, 2014

Report No.: FR471004C

Test Mode :	802.11n HT20	Temperature :	24~26℃
Test Band :	2.4GHz High	Relative Humidity :	50~53%
Test Channel:	11	Test Engineer :	Ting You

Page Number : 29 of 61
Report Issued Date : Sep. 05, 2014

Report No.: FR471004C

 Test Mode :
 802.11n HT40
 Temperature :
 24~26°C

 Test Band :
 2.4GHz Low
 Relative Humidity :
 50~53%

 Test Channel :
 03
 Test Engineer :
 Ting You

TEL: 86-755- 3320-2398 FCC ID: YHLBLUST50CE Page Number : 30 of 61
Report Issued Date : Sep. 05, 2014

Report No.: FR471004C

Test Mode :	802.11n HT40	Temperature :	24~26℃
Test Band :	2.4GHz Mid	Relative Humidity :	50~53%
Test Channel :	06	Test Engineer :	Ting You

Page Number : 31 of 61
Report Issued Date : Sep. 05, 2014

Report No.: FR471004C

Test Mode :	802.11n HT40	Temperature :	24~26 ℃
Test Band :	2.4GHz High	Relative Humidity :	50~53%
Test Channel :	09	Test Engineer :	Ting You

Page Number : 32 of 61
Report Issued Date : Sep. 05, 2014

Report No.: FR471004C

3.5 Radiated Band Edges and Spurious Emission Measurement

3.5.1 Limit of Radiated band edge and Spurious Emission Measurement

In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics/spurious must be at least 20 dB below the highest emission level within the authorized band. If the output power of this device was measured by spectrum analyzer, the attenuation under this paragraph shall be 30 dB instead of 20 dB. In addition, radiated emissions which fall in the restricted bands must also comply with the FCC section 15.209 limits as below.

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30.0	30	30
30 – 88	100	3
88 – 216	150	3
216 - 960	200	3
Above 960	500	3

3.5.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

TEL: 86-755- 3320-2398 FCC ID: YHLBLUST50CE Page Number : 33 of 61
Report Issued Date : Sep. 05, 2014

Report No.: FR471004C

3.5.3 Test Procedures

- 1. The testing follows FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v03r02.
- 2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level.

Report No.: FR471004C

- 3. The EUT was placed on a turntable with 0.8 meter above ground.
- 4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 5. Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level
- 6. For measurement below 1GHz, If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.
- 7. Use the following spectrum analyzer settings:
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Set RBW=100 kHz for f < 1 GHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold;
 - (3) Set RBW = 1 MHz, VBW= 3MHz for $f \ge 1$ GHz for peak measurement. For average measurement:
 - VBW = 10 Hz, when duty cycle is no less than 98 percent.
 - VBW ≥ 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.

Band	Duty Cycle(%)	T(ms)	1/T(kHz)	VBW Setting
802.11b	98.26	-	-	10Hz
802.11g	88.54	1.39	0.72	1kHz
2.4GHz 802.11n HT20	88.50	1.31	0.76	1kHz
2.4GHz 802.11n HT40	79.13	0.65	1.53	3kHz

FCC ID: YHLBLUST50CE

3.5.4 Test Setup

For radiated emissions below 30MHz

For radiated emissions from 30MHz to 1GHz

TEL: 86-755-3320-2398 FCC ID: YHLBLUST50CE Page Number : 35 of 61 Report Issued Date : Sep. 05, 2014

Report No.: FR471004C

For radiated emissions above 1GHz

3.5.5 Test Results of Radiated Spurious Emissions (9kHz ~ 30MHz)

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported.

TEL: 86-755- 3320-2398 FCC ID: YHLBLUST50CE Page Number : 36 of 61
Report Issued Date : Sep. 05, 2014

Report No.: FR471004C

3.5.6 Test Result of Radiated Spurious at Band Edges

Test Mode :	802.11b	Temperature :	23~25°C
Test Band :	Low	Relative Humidity :	48~52%
Test Channel :	01	Test Engineer :	Kear Huang

Report No.: FR471004C

	ANTENNA POLARITY : HORIZONTAL											
Frequency	uency Level Over Limit Read Antenna Cable Preamp Ant Table Remark											
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos			
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)			
2385.78	54.71	-19.29	74	46.92	31.98	5.59	29.78	134	255	Peak		
2387.31	43.2	-10.8	54	35.41	31.98	5.59	29.78	134	255	Average		

	ANTENNA POLARITY : VERTICAL											
Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark		
(B411-)	(-ID\// \	Limit	Line	Level	Factor	Loss	Factor	Pos	Pos			
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)			
2385.6	49.39	-24.61	74	41.6	31.98	5.59	29.78	200	300	Peak		
2387.22	38.66	-15.34	54	30.87	31.98	5.59	29.78	200	300	Average		

Test Mode :	802.11b	Temperature :	23~25°C
Test Band :	High	Relative Humidity :	48~52%
Test Channel :	11	Test Engineer :	Kear Huang

	ANTENNA POLARITY : HORIZONTAL											
Frequency												
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos			
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)			
2492.23	53.91	-20.09	74	45.27	32.5	5.74	29.6	133	256	Peak		
2488.9	41.25	-12.75	54	32.64	32.5	5.71	29.6	133	256	Average		

	ANTENNA POLARITY: VERTICAL											
Frequency												
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos			
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)			
2496.43	48.94	-25.06	74	40.3	32.5	5.74	29.6	100	289	Peak		
2488.96	37.07	-16.93	54	28.46	32.5	5.71	29.6	100	289	Average		

SPORTON INTERNATIONAL (SHENZHEN) INC.Page Number: 37 of 61TEL: 86-755- 3320-2398Report Issued Date: Sep. 05, 2014FCC ID: YHLBLUST50CEReport Version: Rev. 01

Test Mode :	802.11g	Temperature :	23~25°C
Test Band :	Low	Relative Humidity :	48~52%
Test Channel :	01	Test Engineer :	Kear Huang

	ANTENNA POLARITY : HORIZONTAL											
Frequency												
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos			
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)			
2389.65	66.14	-7.86	74	58.35	31.98	5.59	29.78	133	255	Peak		
2389.92	48.73	-5.27	54	40.91	31.98	5.62	29.78	133	255	Average		

	ANTENNA POLARITY : VERTICAL											
Frequency	equency Level Over Limit Read Antenna Cable Preamp Ant Table Remark											
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos			
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)			
2389.2	62.45	-11.55	74	54.66	31.98	5.59	29.78	200	299	Peak		
2389.74	44.06	-9.94	54	36.27	31.98	5.59	29.78	200	299	Average		

Test Mode :	802.11g	Temperature :	23~25°C
Test Band :	High	Relative Humidity :	48~52%
Test Channel :	11	Test Engineer :	Kear Huang

	ANTENNA POLARITY : HORIZONTAL											
Frequency	quency Level Over Limit Read Antenna Cable Preamp Ant Table Remark											
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos			
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)			
2487.01	69.97	-4.03	74	61.48	32.41	5.71	29.63	161	255	Peak		
2483.92	49.68	-4.32	54	41.19	32.41	5.71	29.63	161	255	Average		

	ANTENNA POLARITY: VERTICAL											
Frequency	Frequency Level Over Limit Read Antenna Cable Preamp Ant Table Remark											
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos			
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)			
2483.62	63.41	-10.59	74	54.92	32.41	5.71	29.63	100	288	Peak		
2483.62	45.53	-8.47	54	37.04	32.41	5.71	29.63	100	288	Average		

Test Mode :	802.11n HT20	Temperature :	23~25°C
Test Band :	Low	Relative Humidity :	48~52%
Test Channel :	01	Test Engineer :	Kear Huang

Report No. : FR471004C

: 39 of 61

: Rev. 01

	ANTENNA POLARITY : HORIZONTAL											
Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark		
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos			
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)			
2389.65	64.96	-9.04	74	57.17	31.98	5.59	29.78	167	255	Peak		
2389.74	48.64	-5.36	54	40.85	31.98	5.59	29.78	167	255	Average		

	ANTENNA POLARITY: VERTICAL											
Frequency	equency Level Over Limit Read Antenna Cable Preamp Ant Table Remark											
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos			
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)			
2389.83	60.44	-13.56	74	52.62	31.98	5.62	29.78	200	299	Peak		
2389.92	44.2	-9.8	54	36.38	31.98	5.62	29.78	200	299	Average		

Test Mode :	802.11n HT20	Temperature :	23~25°C
Test Band :	High	Relative Humidity :	48~52%
Test Channel :	11	Test Engineer :	Kear Huang

	ANTENNA POLARITY : HORIZONTAL											
Frequency	uency Level Over Limit Read Antenna Cable Preamp Ant Table Remark											
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos			
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)			
2483.56	69.92	-4.08	74	61.43	32.41	5.71	29.63	162	255	Peak		
2483.59	48.85	-5.15	54	40.36	32.41	5.71	29.63	162	255	Average		

	ANTENNA POLARITY: VERTICAL											
Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark		
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos			
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)			
2483.77	65.27	-8.73	74	56.78	32.41	5.71	29.63	100	288	Peak		
2483.5	45.82	-8.18	54	37.33	32.41	5.71	29.63	100	288	Average		

Test Mode :	802.11n HT40	Temperature :	23~25°C
Test Band :	Low	Relative Humidity :	48~52%
Test Channel :	03	Test Engineer :	Kear Huang

	ANTENNA POLARITY : HORIZONTAL											
Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark		
(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)			
,	,		, ,	`	,	,	,	,				
2388.93	63.59	-10.41	74	55.8	31.98	5.59	29.78	133	256	Peak		
2387.31	52.5	-1.5	54	44.71	31.98	5.59	29.78	133	256	Average		
2485.78	55.46	-18.54	74	46.97	32.41	5.71	29.63	133	256	Peak		
2488.36	42.72	-11.28	54	34.11	32.5	5.71	29.6	133	256	Average		

	ANTENNA POLARITY : VERTICAL											
Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark		
(MHz)	(dBµV/m)	Limit (dB)	Line (dBuV/m)	Level (dBµV)	Factor (dB)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)			
(191112)	(αΒμν/ιιι)	(ub)	(abpv/iii)	(αΒμν)	(ab)	(ab)	(ub)	(Cili)	(deg)			
2388.21	61.68	-12.32	74	53.89	31.98	5.59	29.78	200	299	Peak		
2388.84	47.45	-6.55	54	39.66	31.98	5.59	29.78	200	299	Average		
2485.24	48.12	-25.88	74	39.63	32.41	5.71	29.63	200	299	Peak		
2490.88	37.77	-16.23	54	29.16	32.5	5.71	29.6	200	299	Average		

Page Number : 40 of 61
Report Issued Date : Sep. 05, 2014

Report No. : FR471004C

Test Mode :	802.11n HT40	Temperature :	23~25°C
Test Band :	High	Relative Humidity :	48~52%
Test Channel :	09	Test Engineer :	Kear Huang

	ANTENNA POLARITY : HORIZONTAL												
Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark			
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos				
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)				
2389.74	61.47	-12.53	74	53.68	31.98	5.59	29.78	133	256	Peak			
2388.12	46.49	-7.51	54	38.7	31.98	5.59	29.78	133	256	Average			
2488.39	68.37	-5.63	74	59.76	32.5	5.71	29.6	133	256	Peak			
2486.53	51.49	-2.51	54	43	32.41	5.71	29.63	133	256	Average			

	ANTENNA POLARITY : VERTICAL											
Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark		
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos			
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)			
2388.84	52.21	-21.79	74	44.42	31.98	5.59	29.78	133	288	Peak		
2388.93	38.96	-15.04	54	31.17	31.98	5.59	29.78	133	288	Average		
2488.51	58.09	-15.91	74	49.48	32.5	5.71	29.6	133	288	Peak		
2483.65	42.03	-11.97	54	33.54	32.41	5.71	29.63	133	288	Average		

SPORTON INTERNATIONAL (SHENZHEN) INC. TEL: 86-755-3320-2398

FCC ID : YHLBLUST50CE

Page Number : 41 of 61 Report Issued Date : Sep. 05, 2014

Report No. : FR471004C

3.5.7 Test Result of Radiated Spurious Emission (30MHz ~ 10th Harmonic)

Note: Pre-scanned all test modes and only choose the worst case mode recorded in the test report for radiated spurious emission below 1GHz.

Test Mode :	802.	.11b	Temperature :	23~25°C				
Test Channel :	01		Relative Humidity :	48~52%				
Test Engineer :	Kea	r Huang	Polarization :	Horizontal				
	1.	2412 MHz is fundamer	ntal signal which can be ignored.					
Remark :	2.	Average measurement was not performed if peak level went lower than the						
		average limit.						

Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)	
2412	106.31	-	-	98.37	32.07	5.62	29.75	134	255	Peak
2412	104.07	-	-	96.13	32.07	5.62	29.75	134	255	Average
4824	44.74	-29.26	74	31.63	33.82	8.36	29.07	105	198	Peak

Test Mode :	802.11b	Temperature :	23~25°C				
Test Channel :	01	Relative Humidity :	48~52%				
Test Engineer :	Kear Huang	Polarization :	Vertical				
	2412 MHz is fundamental signal which can be ignored.						
Remark :	2. Average measurement was not performed if peak level went lower than the						
	average limit.						

Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)	
2412	100.99	-	-	93.05	32.07	5.62	29.75	200	300	Peak
2412	98.81	-	-	90.87	32.07	5.62	29.75	200	300	Average
4824	43.66	-30.34	74	30.55	33.82	8.36	29.07	105	198	Peak

TEL: 86-755- 3320-2398 FCC ID: YHLBLUST50CE Page Number : 42 of 61
Report Issued Date : Sep. 05, 2014

Report No.: FR471004C

Test Mode :	802.11b	Temperature :	23~25°C				
Test Channel :	06	Relative Humidity :	48~52%				
Test Engineer :	Kear Huang	Polarization :	Horizontal				
	1. 2437 MHz is fundament	2437 MHz is fundamental signal which can be ignored.					
Remark :	2. Average measurement	was not performed if	peak level went lower than the				
	average limit.	average limit.					

Frequency	Level	Over Limit	Limit Line	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Ant Pos	Table Pos	Remark
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)	
2437	109.85	-	-	98.51	32.24	8.79	29.69	101	250	Peak
2437	107.68	-	-	96.34	32.24	8.79	29.69	101	250	Average
4874	42.05	-31.95	74	28.75	33.93	8.41	29.04	145	265	Peak
7311	43.06	-30.94	74	28.28	33.89	9.99	29.1	174	321	Peak

Test Mode :	802.11b	Temperature :	23~25°C				
Test Channel :	06	Relative Humidity :	48~52%				
Test Engineer :	Kear Huang	Polarization :	Vertical				
	1. 2437 MHz is fundament	al signal which can be	ignored.				
Remark :	2. Average measurement was not performed if peak level went lower than the						
	average limit.						

Frequency	Level	Over Limit	Limit Line	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Ant Pos	Table Pos	Remark
(MHz)	(dBµV/m)	(dB)	(dBµV/m)		(dB)	(dB)	(dB)	(cm)	(deg)	
2437	103.87	-	-	92.53	32.24	8.79	29.69	191	278	Peak
2437	101.6	-	-	90.26	32.24	8.79	29.69	191	278	Average
4874	41.38	-32.62	74	28.08	33.93	8.41	29.04	145	265	Peak
7311	42.65	-31.35	74	27.87	33.89	9.99	29.1	174	321	Peak

Page Number : 43 of 61 Report Issued Date : Sep. 05, 2014

Report No. : FR471004C

average limit.

Test Mode :	802.11b	Temperature :	23~25°C		
Test Channel :	11	Relative Humidity :	48~52%		
Test Engineer :	Kear Huang	Polarization :	Horizontal		
	1. 2462 MHz is fundament	al signal which can be	ignored.		
Remark :	2. Average measurement	was not performed if	peak level went lower than the		

Frequency	Level	Over Limit	Limit Line	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Ant Pos	Table Pos	Remark
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)	
2462	107.15	-	-	98.8	32.33	5.68	29.66	133	256	Peak
2462	105.09	-	-	96.74	32.33	5.68	29.66	133	256	Average
4924	43.69	-30.31	74	30.19	34.05	8.46	29.01	146	347	Peak
7386	33.17	-40.83	74	46.3	33.94	10.02	57.09	145	274	Peak

Test Mode :	802.11b	Temperature :	23~25°C				
Test Channel :	11	Relative Humidity :	48~52%				
Test Engineer :	Kear Huang	Polarization :	Vertical				
	1. 2462 MHz is fundament	al signal which can be	ignored.				
Remark :	2. Average measurement was not performed if peak level went lower than the						
	average limit.						

Frequency	Level	Over Limit	Limit Line	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Ant Pos	Table Pos	Remark
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)	
2462	99.38	-	-	91.03	32.33	5.68	29.66	100	289	Peak
2462	96.96	-	-	88.61	32.33	5.68	29.66	100	289	Average
4924	44.78	-29.22	74	31.28	34.05	8.46	29.01	146	347	Peak
7386	33.11	-40.89	74	46.24	33.94	10.02	57.09	145	274	Peak

TEL: 86-755- 3320-2398 FCC ID: YHLBLUST50CE Page Number : 44 of 61
Report Issued Date : Sep. 05, 2014

Report No. : FR471004C

Test Mode :	802.11g	Temperature :	23~25°C				
Test Channel :	01	Relative Humidity :	48~52%				
Test Engineer :	Kear Huang	Polarization :	Horizontal				
	1. 2412 MHz is fundament	al signal which can be	ignored.				
Remark :	2. Average measurement was not performed if peak level went lower than the						
	average limit.						

Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	
(MHz)	(dBµV/m)	(dB)	($dB\mu V/m$)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)	
2412	106.86	-	-	98.92	32.07	5.62	29.75	133	255	Peak
2412	98.49	-	-	90.55	32.07	5.62	29.75	133	255	Average
4824	41.24	-32.76	74	28.13	33.82	8.36	29.07	105	198	Peak

Test Mode :	802.11g	Temperature :	23~25°C					
Test Channel :	01	Relative Humidity :	48~52%					
Test Engineer :	Kear Huang	Polarization :	Vertical					
	1. 2412 MHz is fundament	2412 MHz is fundamental signal which can be ignored.						
Remark :	2. Average measurement was not performed if peak level went lower than the							
	average limit.							

Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	
(MHz)	(dBµV/m)	(dB)	$(dB\mu V/m)$	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)	
2412	101.35	-	-	93.41	32.07	5.62	29.75	200	299	Peak
2412	92.82	-	-	84.88	32.07	5.62	29.75	200	299	Average
4824	42.33	-31.67	74	29.22	33.82	8.36	29.07	105	198	Peak

Page Number : 45 of 61 Report Issued Date : Sep. 05, 2014

Report No. : FR471004C

Test Mode :	802.11g	Temperature :	23~25°C				
Test Channel :	06	Relative Humidity :	48~52%				
Test Engineer :	Kear Huang	Polarization :	Horizontal				
	1. 2437 MHz is fundament	al signal which can be	ignored.				
Remark :	2. Average measurement was not performed if peak level went lower than the						
	average limit.						

Frequency	Level	Over Limit	Limit Line	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Ant Pos	Table Pos	Remark
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)	
2437	108.5	-	-	100.3	32.24	5.65	29.69	159	256	Peak
2437	100.23	-	-	92.03	32.24	5.65	29.69	159	256	Average
4874	41.46	-32.54	74	28.16	33.93	8.41	29.04	145	265	Peak
7311	43.3	-30.7	74	28.52	33.89	9.99	29.1	174	321	Peak

Test Mode :	802	2.11g	Temperature :	23~25°C				
Test Channel :	06		Relative Humidity :	48~52%				
Test Engineer :	Ke	ar Huang	Polarization :	Vertical				
	1.	2437 MHz is fundament	al signal which can be	ignored.				
Remark :	2.	2. Average measurement was not performed if peak level went lower than the						
		average limit.						

Frequency	Level	Over Limit	Limit Line	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Ant Pos	Table Pos	Remark
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)	
2437	101.23	-	-	93.03	32.24	5.65	29.69	100	260	Peak
2437	93.08	-	-	84.88	32.24	5.65	29.69	100	260	Average
4874	41.77	-32.23	74	28.47	33.93	8.41	29.04	145	265	Peak
7311	43.6	-30.4	74	28.82	33.89	9.99	29.1	174	321	Peak

Page Number : 46 of 61
Report Issued Date : Sep. 05, 2014
Report Version : Rev. 01

Test Mode :	802.11g	Temperature :	23~25°C				
Test Channel :	11	Relative Humidity :	48~52%				
Test Engineer :	Kear Huang	Polarization :	Horizontal				
	1. 2462 MHz is fundament	. 2462 MHz is fundamental signal which can be ignored.					
Remark :	2. Average measurement	was not performed if	peak level went lower than the				
	average limit.						

Frequency	Level	Over Limit	Limit Line	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Ant Pos	Table Pos	Remark
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)	
2462	107.77	-	-	99.42	32.33	5.68	29.66	161	255	Peak
2462	99.65	-	-	91.3	32.33	5.68	29.66	161	255	Average
4924	42	-32	74	28.5	34.05	8.46	29.01	146	347	Peak
7386	43.18	-30.82	74	28.2	33.94	10.02	28.98	145	274	Peak

Test Mode :	802.11g	Temperature :	23~25°C				
Test Channel :	11	Relative Humidity :	48~52%				
Test Engineer :	Kear Huang	Polarization :	Vertical				
	1. 2462 MHz is fundament	al signal which can be	ignored.				
Remark :	2. Average measurement was not performed if peak level went lower than the						
	average limit.						

Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark
(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	
2462	100.66	-	-	92.31	32.33	5.68	29.66	100	288	Peak
2462	91.77	-	-	83.42	32.33	5.68	29.66	100	288	Average
4924	41.84	-32.16	74	28.34	34.05	8.46	29.01	146	347	Peak
7386	43.34	-30.66	74	28.36	33.94	10.02	28.98	145	274	Peak

Page Number : 47 of 61
Report Issued Date : Sep. 05, 2014
Report Version : Rev. 01

Test Mode :	2.4GHz 802.11n HT20	Temperature :	23~25°C				
Test Channel :	01	Relative Humidity :	48~52%				
Test Engineer :	Kear Huang	Polarization :	Horizontal				
	1. 2412 MHz is fundament	al signal which can be	ignored.				
Remark :	2. Average measurement was not performed if peak level went lower than the						
	average limit.						

Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	
(MHz)	(dBµV/m)	(dB)	($dB\mu V/m$)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)	
2412	105.03	-	-	97.09	32.07	5.62	29.75	167	255	Peak
2412	96.26	-	-	88.32	32.07	5.62	29.75	167	255	Average
4824	46.95	-27.05	74	29.38	33.82	12.82	29.07	105	198	Peak

Test Mode :	2.4GHz 802.11n HT20	Temperature :	23~25°C					
Test Channel :	01	Relative Humidity:	48~52%					
Test Engineer :	Kear Huang	Polarization :	Vertical					
	1. 2412 MHz is fundame	ental signal which can be	ignored.					
Remark :	2. Average measureme	2. Average measurement was not performed if peak level went lower than the						
	average limit.							

Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark
		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	
(MHz)	($dB\mu V/m$)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)	
2412	100.06	-	-	92.12	32.07	5.62	29.75	200	299	Peak
2412	92.05	-	-	84.11	32.07	5.62	29.75	200	299	Average
4824	41.32	-32.68	74	28.21	33.82	8.36	29.07	105	198	Peak

Page Number : 48 of 61
Report Issued Date : Sep. 05, 2014

Report No. : FR471004C

Test Mode :	2.4GHz 802.11n HT20	Temperature :	23~25°C					
Test Channel :	06	Relative Humidity :	48~52%					
Test Engineer :	Kear Huang	Polarization :	Horizontal					
	1. 2437 MHz is fundament	2437 MHz is fundamental signal which can be ignored.						
Remark :	2. Average measurement was not performed if peak level went lower than the							
	average limit.	average limit.						

Frequency	Level	Over Limit	Limit Line	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Ant Pos	Table Pos	Remark
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)	
2437	106.57	-	-	98.37	32.24	5.65	29.69	197	243	Peak
2437	98.02	-	-	89.82	32.24	5.65	29.69	197	243	Average
4874	38.54	-35.46	74	20.77	33.93	12.88	29.04	145	265	Peak
7311	39.6	-34.4	74	19.73	33.89	15.08	29.1	174	321	Peak

Test Mode :	2.4	GHz 802.11n HT20	Temperature :	23~25°C				
Test Channel :	06		Relative Humidity :	48~52%				
Test Engineer :	Kea	ar Huang	Polarization :	Vertical				
	1.	2437 MHz is fundamental signal which can be ignored.						
Remark :	2.	2. Average measurement was not performed if peak level went lower than the						
	average limit.							

Frequency	Level	Over Limit	Limit Line	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Ant Pos	Table Pos	Remark
(MHz)	(dBµV/m)	(dB)	(dBµV/m)		(dB)	(dB)	(dB)	(cm)	(deg)	
2437	101.5	-	-	93.3	32.24	5.65	29.69	195	300	Peak
2437	93	-	-	84.8	32.24	5.65	29.69	195	300	Average
4874	42.19	-31.81	74	28.89	33.93	8.41	29.04	145	265	Peak
7311	43.45	-30.55	74	28.67	33.89	9.99	29.1	174	321	Peak

Page Number : 49 of 61
Report Issued Date : Sep. 05, 2014
Report Version : Rev. 01

average limit.

Test Mode :	2.4GHz 802.11n HT20	Temperature :	23~25°C		
Test Channel :	11	Relative Humidity :	48~52%		
Test Engineer :	Kear Huang	Polarization :	Horizontal		
	1. 2462 MHz is fundament	al signal which can be	ignored.		
Remark :	2. Average measurement	was not performed if	peak level went lower than the		

Frequency	Level	Over Limit	Limit Line	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Ant Pos	Table Pos	Remark
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)	
2462	106.59	-	-	98.24	32.33	5.68	29.66	162	255	Peak
2462	98.31	-	-	89.96	32.33	5.68	29.66	162	255	Average
4924	46.57	-27.43	74	28.6	34.05	12.93	29.01	146	347	Peak
7386	39.53	-34.47	74	19.46	33.94	15.11	28.98	145	274	Peak

Test Mode :	2.4GHz 802.11n HT20	Temperature :	23~25°C				
Test Channel :	11	Relative Humidity :	48~52%				
Test Engineer :	Kear Huang	Polarization :	Vertical				
	1. 2462 MHz is fundament	2462 MHz is fundamental signal which can be ignored.					
Remark :	2. Average measurement was not performed if peak level went lower than the						
	average limit.						

Frequer	ncy Level	Over Limit	Limit Line	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Ant Pos	Table Pos	Remark
(MHz) (dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)	
2462	100.76	-	-	92.41	32.33	5.68	29.66	100	288	Peak
2462	91.85	-	-	83.5	32.33	5.68	29.66	100	288	Average
4924	41.5	-32.5	74	28	34.05	8.46	29.01	146	347	Peak
7386	42.7	-31.3	74	27.72	33.94	10.02	28.98	145	274	Peak

TEL: 86-755- 3320-2398 FCC ID: YHLBLUST50CE Page Number : 50 of 61
Report Issued Date : Sep. 05, 2014

Report No. : FR471004C

average limit.

Test Mode :	2.4GHz 802.11n HT40	Temperature :	23~25°C				
Test Channel :	03	Relative Humidity :	48~52%				
Test Engineer :	Kear Huang	Polarization :	Horizontal				
	2422 MHz is fundamental signal which can be ignored.						
Remark :	. Average measurement was not performed if peak level went lower than the						

Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark
(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	
34.85	25.36	-14.64	40	38.38	16.1	0.81	29.93	-	<u>-</u>	Peak
150.28	28.39	-15.11	43.5	47.15	9.7	1.48	29.94	-	-	Peak
191.02	30.17	-13.33	43.5	49.72	8.74	1.65	29.94	120	200	Peak
288.02	19.68	-26.32	46	35.28	12.36	1.97	29.93	-	-	Peak
552.83	22.81	-23.19	46	32.03	18.04	2.66	29.92	-	-	Peak
968.96	25.82	-28.18	54	31	21.3	3.46	29.94	-	-	Peak
2422	103.53	-	-	95.44	32.16	5.65	29.72	133	256	Peak
2422	95.33	-	-	87.24	32.16	5.65	29.72	133	256	Average
4844	43.28	-30.72	74	25.63	33.86	12.85	29.06	126	248	Peak
7266	38.24	-35.76	74	18.46	33.87	15.06	29.15	185	252	Peak

TEL: 86-755- 3320-2398 FCC ID: YHLBLUST50CE Page Number : 51 of 61
Report Issued Date : Sep. 05, 2014
Report Version : Rev. 01

Test Mode :	2.4GHz 802.11n HT40	Temperature :	23~25°C				
Test Channel :	03	Relative Humidity :	48~52%				
Test Engineer :	Kear Huang	Polarization :	Vertical				
	1. 2422 MHz is fundament	al signal which can be	ignored.				
Remark :	2. Average measurement	. Average measurement was not performed if peak level went lower than the					
	average limit.						

Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Remark
(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	
44.55	31.32	-8.68	40	50.36	10	0.89	29.93	120	20	Peak
108.57	26.44	-17.06	43.5	43.15	11.92	1.31	29.94	-	-	Peak
131.85	27.96	-15.54	43.5	44.62	11.88	1.4	29.94	-	-	Peak
189.08	27.4	-16.1	43.5	47.08	8.61	1.65	29.94	-	-	Peak
357.86	19.82	-26.18	46	32.9	14.68	2.17	29.93	-	-	Peak
753.62	24.81	-21.19	46	31.36	20.31	3.07	29.93	-	-	Peak
2422	96.59	-	-	88.5	32.16	5.65	29.72	200	299	Peak
2422	88.66	-	-	80.57	32.16	5.65	29.72	200	299	Average
4844	42.27	-31.73	74	29.09	33.86	8.38	29.06	126	248	Peak
7266	42.79	-31.21	74	28.09	33.87	9.98	29.15	185	252	Peak

Page Number : 52 of 61
Report Issued Date : Sep. 05, 2014
Report Version : Rev. 01

SPORTON LAB.	FCC RF Test Report

Test Mode :	2.4GHz 802.11n HT40	Temperature :	23~25°C			
Test Channel :	06	Relative Humidity :	48~52%			
Test Engineer :	Kear Huang	Polarization :	Horizontal			
	1. 2437 MHz is fundament	al signal which can be	ignored.			
Remark :	Average measurement was not performed if peak level went lower than the					
	average limit.					

Frequency	Level	Over Limit	Limit Line	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Ant Pos	Table Pos	Remark
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)	
2437	101.54	-	-	93.34	32.24	5.65	29.69	160	246	Peak
2437	92.73	-	-	84.53	32.24	5.65	29.69	160	246	Average
4874	41.59	-32.41	74	28.29	33.93	8.41	29.04	132	224	Peak
7311	43.06	-30.94	74	28.28	33.89	9.99	29.1	119	347	Peak

Test Mode :	2.4GHz 802.11n HT40	Temperature :	23~25°C			
Test Channel :	06	Relative Humidity :	48~52%			
Test Engineer :	Kear Huang	Polarization :	Vertical			
	1. 2437 MHz is fundament	al signal which can be	ignored.			
Remark :	2. Average measurement was not performed if peak level went lower that					
	average limit.					

Frequency	Level	Over Limit	Limit Line	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Ant Pos	Table Pos	Remark
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)	
2437	97.46	-	-	89.26	32.24	5.65	29.69	133	273	Peak
2437	89.04	-	-	80.84	32.24	5.65	29.69	133	273	Average
4874	41.99	-32.01	74	28.69	33.93	8.41	29.04	132	224	Peak
7311	43.13	-30.87	74	28.35	33.89	9.99	29.1	119	347	Peak

: 53 of 61 Page Number Report Issued Date : Sep. 05, 2014 Report Version : Rev. 01

Test Mode :	2.4GHz 802.11n HT40	Temperature :	23~25°C				
Test Channel :	09	Relative Humidity :	48~52%				
Test Engineer :	Kear Huang	Polarization :	Horizontal				
	1. 2452 MHz is fundament	al signal which can be	ignored.				
Remark :	2. Average measurement	2. Average measurement was not performed if peak level went lower than the					
	average limit.						

Frequency	Level	Over Limit	Limit Line	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Ant Pos	Table Pos	Remark
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)	
2452	104.96	-	-	96.73	32.24	5.68	29.69	133	256	Peak
2452	96.59	-	-	88.36	32.24	5.68	29.69	133	256	Average
4904	41.22	-32.78	74	23.33	34.01	12.9	29.02	125	214	Peak
7356	41.47	-32.53	74	21.48	33.92	15.1	29.03	127	315	Peak

Test Mode :	2.4GHz 802.11n HT40	Temperature :	23~25°C			
Test Channel :	09	Relative Humidity :	48~52%			
Test Engineer :	Kear Huang	Polarization :	Vertical			
	1. 2452 MHz is fundament	al signal which can be	ignored.			
Remark :	2. Average measurement was not performed if peak level went lower that					
	average limit.					

Frequency	Level	Over Limit	Limit Line	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Ant Pos	Table Pos	Remark
(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)	
2452	95.75	-	-	87.52	32.24	5.68	29.69	133	288	Peak
2452	87.09	-	-	78.86	32.24	5.68	29.69	133	288	Average
4904	42.84	-31.16	74	29.41	34.01	8.44	29.02	125	214	Peak
7356	42.75	-31.25	74	27.85	33.92	10.01	29.03	127	315	Peak

Page Number : 54 of 61
Report Issued Date : Sep. 05, 2014
Report Version : Rev. 01

3.6 AC Conducted Emission Measurement

3.6.1 Limit of AC Conducted Emission

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Frequency of Emission	Conducted Limit (dBµV)				
(MHz)	Quasi-Peak	Average			
0.15-0.5	66 to 56*	56 to 46*			
0.5-5	56	46			
5-30	60	50			

^{*}Decreases with the logarithm of the frequency.

3.6.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.6.3 Test Procedures

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room, and it was kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN should be used.
- 6. Both sides of AC line were checked for maximum conducted interference.
- 7. The frequency range from 150 kHz to 30 MHz was searched.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth (IF bandwidth = 9kHz) with Maximum Hold Mode.

TEL: 86-755- 3320-2398 FCC ID: YHLBLUST50CE Page Number : 55 of 61 Report Issued Date : Sep. 05, 2014

Report No.: FR471004C

Report No.: FR471004C

3.6.4 Test Setup

TEL: 86-755-3320-2398 FCC ID: YHLBLUST50CE Page Number : 56 of 61
Report Issued Date : Sep. 05, 2014

Test Result of AC Conducted Emission

Test Mode :	Mode 1			Tempe	emperature :			21~22°ℂ		
Test Engineer :	Jack Tian			Relativ	Relative Humidity :			41~42%		
Test Voltage :	120Vac / 60	Phase :			Line					
	GSM850 ldl	e + Blue	etooth Li	nk + WL	AN Link	+ USB	Cable (Charging fi	rom Adaptei	
Function Type :	+ Earphone				,					
	100 Level (dBuV)					Da	ite: 2014-0	7-15 Time: 14:	36:27	
	100									
	90									
	80									
	70									
	60							FCC 15C	_QP	
	50	-						FCC 15C_	AVG:	
	40	MAN AND	Bay May Markey	Shudan Maurita	Marine Marine	e dia Mata	To all the party of the party o	HONOR WILLIAM WAR	w ⁴	
	30	/* W Y Y		10"	T (IV IN / TOWN - TO)	Mari Las Millara A.				
				9						
	20									
	10									
		.5	1		2	5	10	20	30	
	10 0.15 .2		1		2 ency (MHz)	_	10	20	30	
Site Cond:	10 0.15 .2 : COO1-S	z		Frequ	ency (MHz)	_	10	20	30	
	10 0.15 .2	z		Frequ	ency (MHz)	_	10	20	30	
	10 0.15 .2 : COO1-S	z	SN_L_2014	Frequ	ency (MHz) NE			20	30	
	10 0.15 .2 : COO1-S ition: FCC 15	Z C_QP LIS	SN_L_2014	Frequ 10304 LII Limit	ency (MHz) NE Read	LISN	Cable		30	
	10 0.15 .2 : CO01-S ition: FCC 15	Z C_QP LIS Level	Over Limit	Freque 10304 LII Limit Line	Read Level	LISN Factor	Cable Loss	20	30	
	10 0.15 .2 : COO1-S ition: FCC 15	Z C_QP LIS	SN_L_2014	Frequ 10304 LII Limit	ency (MHz) NE Read	LISN	Cable		30	
Cond:	10 0.15 .2 : CO01-Sition: FCC 15 Freq MHz	Level	Over Limit dB -19.40	Freque 40304 LIMIT Limit Line dBuV 46.45	Read Level dBuV	LISN Factor dB	Cable Loss dB	Remark	30	
Cond:	10 0.15 .2 : CO01-Sition: FCC 15 Freq MHz 0.47 0.47	Level dBuV 27.05 35.95	Over Limit dB -19.40 -20.50	Frequence Freque	Read Level dBuV	LISN Factor dB 0.30 0.30	Cable Loss dB 10.16 10.16	Remark Average QP	30	
Cond: 1 2 3	10 0.15 .2 : CO01-Sition: FCC 15 Freq MHz 0.47 0.47 0.59	Level dBuV 27.05 35.95 26.99	Over Limit dB -19.40 -20.50 -19.01	Frequent	Read Level dBuV 16.59 25.49 16.60	LISN Factor dB 0.30 0.30 0.24	Cable Loss dB 10.16 10.16 10.15	Remark Average QP Average	30	
1 2 3 4	10 0.15 .2 : CO01-Sition: FCC 15 Freq MHz 0.47 0.47 0.47 0.59 0.59	Level dBuV 27.05 35.95 26.99 36.49	Over Limit dB -19.40 -20.50 -19.01 -19.51	Limit Line dBuV 46.45 56.45 46.00 56.00	Read Level dBuV 16.59 25.49 16.60 26.10	LISN Factor dB 0.30 0.30 0.24 0.24	Cable Loss dB 10.16 10.16 10.15 10.15	Remark Average QP Average QP	30	
1 2 3 4 5	10 0.15 .2 : CO01-Sition: FCC 15 Freq MHz 0.47 0.47 0.47 0.59 0.59 0.91	Level dBuV 27.05 35.95 26.99 36.49 27.59	Over Limit dB -19.40 -20.50 -19.01 -19.51 -18.41	Limit Line dBuV 46.45 56.45 46.00 56.00 46.00	Read Level dBuV 16.59 25.49 16.60 26.10 17.20	LISN Factor dB 0.30 0.30 0.24 0.24 0.24	Cable Loss dB 10.16 10.15 10.15 10.15	Remark Average QP Average QP Average	30	
1 2 3 4	10 0.15 .2 : CO01-Sition: FCC 15 Freq MHz 0.47 0.47 0.47 0.59 0.59	Level dBuV 27.05 35.95 26.99 36.49 27.59 38.29	Over Limit dB -19.40 -20.50 -19.01 -19.51 -18.41 -17.71	Limit Line dBuV 46.45 56.45 46.00 56.00 46.00 56.00	Read Level dBuV 16.59 16.60 26.10 17.20 27.90	LISN Factor dB 0.30 0.30 0.24 0.24 0.24 0.24	Cable Loss dB 10.16 10.15 10.15 10.15	Remark Average QP Average QP Average QP	30	
1 2 3 4 5	10 0.15 .2 : CO01-Sition: FCC 15 Freq MHz 0.47 0.47 0.59 0.59 0.91 0.91	Level dBuV 27.05 35.95 26.99 36.49 27.59 38.29 25.91	Over Limit dB -19.40 -20.50 -19.01 -19.51 -18.41	Limit Line dBuV 46.45 56.45 46.00 56.00 46.00 56.00 46.00	Read Level dBuV 16.59 16.60 26.10 17.20 27.90	LISN Factor dB 0.30 0.30 0.24 0.24 0.24 0.24 0.24	Cable Loss dB 10.16 10.15 10.15 10.15	Remark Average QP Average QP Average QP Average	30	
1 2 3 4 5 6	10 0.15.2 : CO01-Sition: FCC 15 Freq MHz 0.47 0.47 0.59 0.59 0.91 0.91 1.05	Level dBuV 27.05 35.95 26.99 36.49 27.59 38.29 25.91 36.01	Over Limit dB -19.40 -20.50 -19.01 -19.51 -18.41 -17.71 -20.09	Limit Line dBuV 46.45 56.45 46.00 56.00 46.00 56.00 56.00	Read Level dBuV 16.59 25.49 16.60 26.10 17.20 27.90 15.50 25.60	LISN Factor dB 0.30 0.30 0.24 0.24 0.24 0.24 0.24	Cable Loss dB 10.16 10.15 10.15 10.15 10.15 10.15	Remark Average QP Average QP Average QP Average	30	
1 2 3 4 5 6 7 8	10 0.15.2 : COO1-Sition: FCC 15 Freq MHz 0.47 0.47 0.59 0.59 0.91 0.91 1.05 1.05	Level dBuV 27.05 35.95 26.99 36.49 27.59 38.29 25.91 36.01 23.31	Over Limit dB -19.40 -20.50 -19.01 -19.51 -18.41 -17.71 -20.09 -19.99	Limit Line dBuV 46.45 56.45 46.00 56.00 46.00 56.00 46.00 56.00	Read Level dBuV 16.59 25.49 16.60 26.10 17.20 27.90 15.50 25.60	LISN Factor dB 0.30 0.30 0.24 0.24 0.24 0.24 0.26 0.26 0.26	Cable Loss dB 10.16 10.15 10.15 10.15 10.15 10.15 10.15	Remark Average QP Average QP Average QP Average QP Average QP	30	
1 2 3 4 5 6 7 8 9	10 0.15.2 : COO1-Sition: FCC 15 Freq MHz 0.47 0.47 0.59 0.59 0.91 0.91 1.05 1.05 1.42	Level dBuV 27.05 35.95 26.99 36.49 27.59 38.29 25.91 36.01 23.31 33.01	Over Limit dB -19.40 -20.50 -19.01 -19.51 -18.41 -17.71 -20.09 -19.99 -22.69	Hoson Limit Line dBuV 46.45 56.45 46.00 56.00 46.00 56.00 46.00 56.00 56.00	Read Level dBuV 16.59 25.49 16.60 27.90 15.50 25.60 12.90	LISN Factor dB 0.30 0.30 0.24 0.24 0.24 0.24 0.26 0.26 0.26	Cable Loss dB 10.16 10.15 10.15 10.15 10.15 10.17 10.17	Remark Average QP Average QP Average QP Average QP Average QP	30	

TEL: 86-755-3320-2398 FCC ID: YHLBLUST50CE Page Number : 57 of 61 Report Issued Date : Sep. 05, 2014

Report No.: FR471004C

Test Mode :	Mode 1	Temperature :	21~22 ℃				
Test Engineer :	Jack Tian	Relative Humidity :	41~42%				
Test Voltage :	120Vac / 60Hz	Phase :	Neutral				
Eurotion Type	GSM850 Idle + Bluetooth Link + WLAN Link + USB Cable (Charging from Adapter)						
Function Type :	+ Farnhone						

Site : CO01-SZ

Condition: FCC 15C_QP LISN_N_20140304 NEUTRAL

			Over	Limit	Read	LISN	Cable	
	Freq	Level	Limit	Line	Level	Factor	Loss	Remark
	MHz	dBu∀	dB	dBu∀	dBu∀	dB	dB	
1	0.52	31.34	-14.66	46.00	20.80	0.39	10.15	Average
2	0.52	40.14	-15.86	56.00	29.60	0.39	10.15	QP
3	0.65	26.83	-19.17	46.00	16.40	0.28	10.15	Average
4	0.65	37.63	-18.37	56.00	27.20	0.28	10.15	QP
5	0.83	26.04	-19.96	46.00	15.60	0.29	10.15	Average
6	0.83	37.54	-18.46	56.00	27.10	0.29	10.15	QP
7	0.97	30.17	-15.83	46.00	19.70	0.32	10.15	Average
8 *	0.97	41.47	-14.53	56.00	31.00	0.32	10.15	QP
9	1.11	26.69	-19.31	46.00	16.19	0.34	10.16	Average
10	1.11	36.59	-19.41	56.00	26.09	0.34	10.16	QP
11	1.71	26.24	-19.76	46.00	15.70	0.36	10.18	Average
12	1.71	38.54	-17.46	56.00	28.00	0.36	10.18	QP

TEL: 86-755- 3320-2398 FCC ID: YHLBLUST50CE Page Number : 58 of 61
Report Issued Date : Sep. 05, 2014

Report No.: FR471004C

3.7 Antenna Requirements

3.7.1 Standard Applicable

If directional gain of transmitting antennas is greater than 6dBi, the power shall be reduced by the same level in dB comparing to gain minus 6dBi. For the fixed point-to-point operation, the power shall be reduced by one dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the FCC rule.

3.7.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

3.7.3 Antenna Gain

The antenna peak gain of EUT is less than 6 dBi. Therefore, it is not necessary to reduce maximum peak output power limit.

TEL: 86-755- 3320-2398 FCC ID: YHLBLUST50CE Page Number : 59 of 61
Report Issued Date : Sep. 05, 2014

Report No.: FR471004C

4 List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Spectrum Analyzer	R&S	FSP30	101400	9kHz~30GHz	Mar. 03, 2014	Aug. 23, 2014	Mar. 02, 2015	Conducted (TH01-SZ)
Power Meter	Anritsu	ML2495A	1218010	13dBm~-20dBm	Mar. 03, 2014	Aug. 23, 2014	Mar. 02, 2015	Conducted (TH01-SZ)
Power Sensor	Dare	RPR3006W	TH01SZ00019	0.3GHz~6GHz	Mar. 14, 2014	Aug. 23, 2014	Mar. 13, 2015	Conducted (TH01-SZ)
ESCIO TEST Receiver	R&S	ESCI	100724	9kHz~3GHz	Feb. 21, 2014	Aug. 26, 2014	Feb. 20, 2015	Radiation (03CH01-SZ)
Spectrum Analyzer	Agilent Technologies	N9038A	MY52260185	20Hz~26.5GHz	May 26, 2014	Aug. 26, 2014	May 25, 2015	Radiation (03CH01-SZ)
Loop Antenna	R&S	HFH2-Z2	100354	9kHz~30MHz	May 09, 2014	Aug. 26, 2014	May 08, 2015	Radiation (03CH01-SZ)
Bilog Antenna	TESEQ	CBL 6112D	23188	30MHz~2GHz	Oct. 26, 2013	Aug. 26, 2014	Oct. 25, 2014	Radiation (03CH01-SZ)
Double Ridge Horn Antenna	ETS Lindgren	3117	00119436	1GHz~18GHz	Oct. 26, 2013	Aug. 26, 2014	Oct. 25, 2014	Radiation (03CH01-SZ)
Double Ridged Horn Antenna	COM-POWER	AH-840	101073	18GHz~40GHz	Jan. 27, 2014	Aug. 26, 2014	Jan. 26, 2015	Radiation (03CH01-SZ)
Amplifier	ADVANTEST	BB525C	E9007003	9kHz~3000MHz	Feb. 21, 2014	Aug. 26, 2014	Feb. 20, 2015	Radiation (03CH01-SZ)
Amplifier	Yiai	AV3860B	04030	2GHz~26.5GHz	May 08, 2014	Aug. 26, 2014	May 07, 2015	Radiation (03CH01-SZ)
AC Source(AVR)	Chroma	61601	616010001985	100Vac~250Vac	Mar. 25, 2014	Aug. 26, 2014	Mar. 24, 2015	Radiation (03CH01-SZ)
Turn Table	EM Electronics	EM 1000	N/A	0~360 degree	NCR	Aug. 26, 2014	NCR	Radiation (03CH01-SZ)
Antenna Mast	EM Electronics	EM 1000	N/A	1 m~4 m	NCR	Aug. 26, 2014	NCR	Radiation (03CH01-SZ)
ESCIO TEST Receiver	R&S	ESCI	100724	9kHz~3GHz	Feb. 21, 2014	Jul. 15, 2014	Feb. 20, 2015	Conduction (CO01-SZ)
AC LISN	EMCO	3816/2SH	00103912	9kHz~30MHz	Mar. 04, 2014	Jul. 15, 2014	Mar. 03, 2015	Conduction (CO01-SZ)
AC LISN (for auxiliary equipment)	EMCO	3816/2SH	00103892	9kHz~30MHz	Mar. 04, 2014	Jul. 15, 2014	Mar. 03, 2015	Conduction (CO01-SZ)
AC Power Source	Chroma	61602	616020000891	100Vac~250Vac	Dec. 17, 2013	Jul. 15, 2014	Dec. 16, 2014	Conduction (CO01-SZ)

TEL: 86-755- 3320-2398 FCC ID: YHLBLUST50CE Page Number : 60 of 61 Report Issued Date : Sep. 05, 2014

Report No.: FR471004C

5 Uncertainty of Evaluation

Uncertainty of Conducted Emission Measurement (150kHz ~ 30MHz)

Measuring Uncertainty for a Level of	2.2
Confidence of 95% (U = 2Uc(y))	2.3

Report No.: FR471004C

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

- 1		
	Measuring Uncertainty for a Level of	2.0
	Confidence of 95% (U = 2Uc(y))	3.9

SPORTON INTERNATIONAL (SHENZHEN) INC.

Page Number : 61 of 61

TEL: 86-755- 3320-2398

Report Issued Date : Sep. 05, 2014

FCC ID: YHLBLUST50CE Report Version: Rev. 01