© EPODOC / EPO

PN - JP6123569 A 19940506

TI - LNG COMPULSIVE EVAPORATION DEVICE OF LNG SHIP

PA - KAWASAKI HEAVY IND LTD

IN - KAKO TADANORI

© WPI / DERWENT

PN - JP2554980B2 B2 19961120 DW199651 C10L3/06 006pp

- JP6123569 A 19940506 DW199651 C10L3/06 000pp

TI - Liquefied natural gas compressive evapn. device - has an external heat exchanger replacing need for pump and reducing costs of powering LNG-powered ship

PA - (KAWJ) KAWASAKIJUKO KK

IC - B63B25/16 ;B63H21/38 ;C10L3/06 ;F02M31/18

AB - J02554980 Liquefied natural gas compressive evapn. device used to power a ship comprises tank (2), pipe (3), compressor (4), boiler (5), evapn. device (8), heat exchangers (for heating) (9,12), coolant circulator (10), pump (11), by-pass circuit (14), control valve (15) and gas pressure detector (20). The heater outside the tank forcedly evaporates the LNG, itself comprising a heat exchanger connected to coolant circulator.

- USE Used in LNG-powered ship.
- ADVANTAGE No pump is required for forced evapn. and the pump for cooling is simpler and is mfd. more cheaply. A small compressor is used to deal with the low temp. evapn. gas allowing more cost redn. Heat energy of steam generated from sea water or boiler can be used effectively in the exchanger.
- (Dwg.1/2)

© PAJ / JPO

PN - JP6123569 A 19940506

TI - LNG COMPULSIVE EVAPORATION DEVICE OF LNG SHIP

I - F28D15/02 ;B63B25/16 ;B63H21/38 ;F02M31/18

AB - PURPOSE:To execute simply even a system control with easy LNG supplying control by arranging, at an outside of a LNG tank, a heating means which compulsorily causes LNG in its inside to evaporate. - CONSTITUTION:In a case wherein a boiled off gas is supplied to a boiler 5 which is a main machinery, the boiled off gas is discharged from a compressor 4, and is supplied to the boiler 5. If a gas quantity necessary for the boiler 5, becomes large, a gas pressure in a tank becomes low, and therefore, this is detected by a gas pressure detecting means 20, and a control device 21, based on its signal executes a control to make a divergence of a control valve 15 small. Then, in a coolant circulation device 10, most of a coolant discharged from a pump 11 passes through a first heat exchanger 12 of a coolant circulation circuit 13, here is heated and flows into a second heat exchanger 9 (a heating device), heats LNG in a LNG tank 2 and forcedly generates the boiled off gas. Accordingly, a supply control of a gas becomes easy.

EUROPEAN PATENT OFFICE

Patent Abstracts of Japan

PUBLICATION NUMBER 06123569 PUBLICATION DATE 06-05-94

APPLICATION DATE 09-10-92 APPLICATION NUMBER 04298049

APPLICANT: KAWASAKI HEAVY IND LTD;

INVENTOR: KAKO TADANORI;

INT.CL. F28D 15/02 B63B 25/16 B63H 21/38

F02M 31/18

TITLE LNG COMPULSIVE EVAPORATION

DEVICE OF LNG SHIP

ABSTRACT: PURPOSE: To execute simply even a system control with easy LNG supplying control by arranging, at an outside of a LNG tank, a heating means which compulsorily causes LNG in its inside to evaporate.

> CONSTITUTION: In a case wherein a boiled off gas is supplied to a boiler 5 which is a main machinery, the boiled off gas is discharged from a compressor 4, and is supplied to the boiler 5. If a gas quantity necessary for the boiler 5, becomes large, a gas pressure in a tank becomes low, and therefore, this is detected by a gas pressure detecting means 20, and a control device 21, based on its signal executes a control to make a divergence of a control valve 15 small. Then, in a coolant circulation device 10, most of a coolant discharged from a pump 11 passes through a first heat exchanger 12 of a coolant circulation circuit 13, here is heated and flows into a second heat exchanger 9 (a heating device), heats LNG in a LNG tank 2 and forcedly generates the boiled off gas. Accordingly, a supply control of a gas becomes easy.

COPYRIGHT: (C)1994,JPO&Japio

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平6-123569

(43)公開日 平成6年(1994)5月6日

(51) Int.Cl. ⁵	識別記号	庁内整理番号	FΙ			技術表示箇所
F 2 8 D 15/02	101 K					
B 6 3 B 25/16	D	9035-3D				
B 6 3 H 21/38	С					
F 0 2 M 31/18						
			ş	審査請求	未請求	請求項の数3(全 5 頁)
(21)出願番号	特顧平4-298049		(71)出願人	00000097	74	
				川崎重工	業株式会	会社
(22) 出願日	平成4年(1992)10月	19日		兵庫県神 号	炉市中约	央区東川崎町3丁目1番1
			(72)発明者	加来 惟	帥	
						川崎町3丁目1番1号 川 出神戸工場内
			(74)代理人	弁理士	岡村 名	发雄
			1			

(54) 【発明の名称】 LNG船のLNG強制蒸発装置

(57) 【要約】

【目的】 LNGの送給制御を容易にする。

【構成】 LNGタンク2からのポイルオフガスを主機 燃料として用い、タンク2の外壁面に、その内部のLNGを強制的に蒸発させる熱交換器9を設け、タンク2の上部にタンク内のガス圧を検出する手段20を設け、その信号により制御弁15の開度を調整し、熱交換器9に送る熱エネルギーを可変し、ポイルオフガスの発生量を調整する。

【効果】 タンク内のガス圧のみをパラメータとしているので、その制御が簡単かつ容易である。ポイラー5へのガス供給は、単一燃料となり、ガスの供給制御がさらに容易であり、従来の如き強制蒸発器及び強制蒸発用のポンプが不要となる。

-487--

1

【特許請求の範囲】

【請求項1】 LNGタンクからのポイルオフガスを主 機燃料として利用するLNG船において、LNGタンク の外側に、その内部のLNGを強制的に蒸発させる加熱 手段を設けたことを特徴とするLNG強制蒸発装置。

【請求項2】 前記加熱手段は、冷媒循環装置に接続さ れた熱交換器であることを特徴とする請求項Ⅰに記載の LNG強制蒸発装置。

【請求項3】 前配冷媒循環装置に、熱交換器に送る冷 にタンク内のガス圧を検出するガス圧検出手段を設け、 とのガス圧検出手段からの信号に基いて前配制御弁の開 度を調整制御する制御装置を設けたことを特徴とする請 求項2に配載のLNG強制蒸発装置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、LNG(液化天然ガ ス)を運搬するLNG船において、LNGタンクからの ボイルオフガスを主機燃料として利用する場合、これを 補助するため強制的にLNGを蒸発させるLNG強制素 20 発装置に関する。

[0002]

【従来の技術】一般に、LNG(液化天然ガス)を運搬 するLNG船は、満載航海中、LNGタンク内からボイ ルオフガスが自然発生する。そのため、これを主機の夕 -ビンを回すボイラーの燃料として使用し、ポイルオフ ガスの有効利用を図っている。このボイルオフガスは、 概ね主機燃料の6~7割を占め、通常は残り4~3割を 燃料油を使用しているが、燃料油がLNGに比べて高騰 してくると航海コストが大となる可能性があった。そこ 30 で、主機燃料の全てを、より安価なLNGとすることも できる様にするため、強制的にLNGを蒸発させるLN G強制蒸発装置が提供されるに至った。

【0003】図2に従来のLNG強制蒸発装置を備えた LNG船を示す。このLNG船は、図の如く、船体10 1内に配されたLNGタンク102の上部に、ボイルオ フガス等管103が接続され、この導管103にコンプ レッサ104が設けられ、導管103の末端はポイラー の燃料噴射ノズルに接続される。そして、LNG強制蒸 発装置105は、LNGタンク102内に設置されたポ 40 ンプ106と、このポンプ106の出口側に接続され前 起しNGタンク102の外部で導管103に合流接続さ れたLNG強制汲上路107と、このLNG強制汲上路 107に汲上げたLNGの一部をタンク102へ戻すバ イパス路110と、前配強制波上路107に介在された 強制蒸発器108とから構成される。前配蒸発器108 では、ポンプ106から強制的に優上げたLNGをスチ 一ム109と熱交換し、一40℃程度まで温度上昇さ せ、導管103に合流させている。なお、LNGタンク

2 イルオフガスの温度はコンプレッサ104の入口で-1 20℃程度である。

[0 0 0 4]

【発明が解決しようとする課題】しかしながら、上記徒 来技術においては次のような課題があった。

①主機の要求量に応じて蒸発器108への送給量(ポン ブ吐出量)を調整しなければならないが、これはポンプ 吐出量の一部をLNGタンクに返却することで調整す る。この制御と同時に蒸発器108では送給されたLN 媒最を制御する制御弁を設け、前記LNGタンクの上部 10 Gを確実に全量ガス化する目的から出口側の温度を一定 にするため、蒸発器108では送給されたLNGの一部 をバイバスさせる等の制御を行う。したがって、その制 御システムが複雑になる。

> ②コンプレッサ104の入口側で、ボイルオフガスと蒸 発器108からのガスとが混合されるが、ボイルオフガ スはほぼ100%メタンであるのに対し、蒸発器108 からのガスはLNGの組成と同一で、LNGの組成は、 メタン、エタン、プロパン等を含んでおり、したがっ て、ポイルオフガスと、蒸発器108から供給される蒸 発ガスとでは、その組成が異なる。そのため、両者の混 合比により、ガスの発熱量が変化することになり、ボイ ラーへのガスの送給量制御上あまり好ましくない。

> ③蒸発器108からの蒸発ガスの温度が高い(-40) ℃)ので、コンプレッサ104の入口側で、LNGタン ク102からのボイルオフガスと、蒸発器108からの 蒸発ガスが混合した後のガスの温度が、LNGタンク1 0.2 からのポイルオフガスの温度に比べ上昇し、その 分、ガスが膨張してコンプレッサ104の負荷が大きく なり、大型のコンプレッサ104が必要になってくる。

●LNGタンク102からのLNGの汲み出しのため に、ポンプ106を使用するが、強制蒸発のためには、 このポンプ106を常時稼働しなければならない。従 来、LNG船では、3タンクないし5タンクのLNGタ ンクを備えているが、パラスト航海中、これらのタンク をLNGを用いて冷却するため、1個ないし2個のポン ブを有している。通常、LNG強制蒸発装置105の構 成部品であるボンブ106を、この冷却用のボンブと兼 用させているが、上記の如く、強制蒸発用のボンプ10 6は、常時稼働するため、ベアリングの寿命の点からボ ンプ106を交替で使用するよう各LNGタンク102 に1台づつポンプを配置しなければならない。そうする と、ポンプ台数が多くなり、コスト高となる。

【0005】本発明の目的は、LNGの送給制御が容易 で、かつシステム制御も簡単に行えるLNG強制蒸発装 置を提供することである。

[00006]

【課題を解決するための手段】請求項1に係るLNG船 のLNG強制蒸発装置は、LNGタンクからのポイルオ フガスを主機燃料として利用するLNG船において、L 102内のLNGの温度は-163℃、自然蒸発したボ 50 NGタンクの外側に、その内部のLNGを強制的に蒸発

-488-

20

させる加熱手段を設けたものである。請求項2のLNG 強制蒸発装置では、前記加熱手段が冷媒循環装置に接続 された熱交換器で構成されている。請求項3のLNG強 制蒸発装置では、前記冷媒循環装置に、熱交換器に送る 冷媒量を制御する制御弁を設け、LNGタンクの上部に タンク内のガス圧を検出するガス圧検出手段を設け、こ のガス圧検出手段からの信号に基いて前記制御弁の開度 を調整制御する制御装置を設けている。

[0007]

【作用】請求項1のLNG強制蒸発装置においては、加 熱手段によりLNGタンクの内部のLNGを強制的に蒸 発させて、ボイルオフガス量の増加を図ることができ る。ここで、請求項1~3のLNG強制蒸発装置につい て、包括的に説明すると、ボイラーにボイルオフガスを 供給する場合、ボイラーのガス必要量が増すと、ボイル オフガス量が不足し、タンク内のガス圧が低下する。こ のガス圧の低下をガス圧検出手段で検出し、その信号に 基いて制御弁の開度を調整し、熱交換器への熱エネルギ 一の供給量を大にする。そうすると、LNGタンクの加 熱量が大になり、LNGの蒸発量が多くなってボイルオ フガス量が多くなる。逆に、タンク内のガス圧が大のと きは、熱交換器への熱エネルギーの供給量を小にして、 LNGの蒸発量を低減させる。このとき、ボイラーへの ガス供給量制御は、タンク内のガス圧のみをパラメータ としているので、その制御が簡単かつ容易に行える。ま た、ポイラーへのガス供給は、単一燃料(メタン)であ るため、発熱量は一定しており、ガスの供給制御がさら に容易に行える。さらに、従来の如き強制蒸発用のポン プが不要であるため、5個程度のLNGタンクを冷却す るための1個または2個の冷却用ポンプがあればよく、 また強制蒸発器も不要となるので、その製造コストも従 来に比べて低減できる。

[0008]

【実施例】以下、本発明の実施例について図面に基いて 説明する。図1は本発明の実施例に係るLNG船のLN GタンクとそのLNG強制蒸発装置の構成を示す図であ る。前記LNG船においては、船体1内に配されたLN Gタンク2の上部に、ボイルオフガスを排出する為の導 管3が接続され、この導管3にコンプレッサ4が設けら れ、導管3の末端はポイラー5の燃料噴射ノズル6に接 40 続されている。LNG強制蒸発装置8は、LNGタンク 2の内部のLNGを強制的に蒸発させるためのもので、 基本的には、加熱手段としての第2熱交換器9と、この 第2熱交換器9に冷媒を循環させる冷媒循環装置10と で構成されている。前記第2熱交換器9は、LNGタン ク2の外側の底部、厳密にはLNGタンク2の外面に形 成された防熱層(図示略)の底部内側に設けられてい る。

【0009】前記冷媒循環装置10は、前記第2熱交換

冷媒循環回路13に介設された冷媒循環用のポンプ11 と、このポンプ11の吐出口側において冷媒循環回路1 3に介設された第1熱交換器12とを有し、ポンプ11 で加圧された冷媒は、第1熱交換器12で加温されて、 第2熱交換器9へ供給され、その後ポンプ11へ戻るよ うに構成されている。更に、冷媒循環回路13にポンプ 11の吐出口側と第1熱交換器12の出口側とを短絡す るパイパス回路14が形成され、このパイパス回路14 に、第2熱交換器9に送る冷媒量を制御する制御弁15 10 が設けられている。

【0010】前記第2熱交換器9は、球形のLNGタン ク2の径が40mとすると、その底部に防熱層を介して リング状に5m幅で設置されている。この第2熱交換器 9に流れる冷媒は、LNGタンク2内のLNGが-16 3℃であるため、これにより固化しない非可燃性液体、 例えばフロン系の冷媒が用いられ、第2熱交換器9に は、-100℃前後の冷媒が流れる。第1熱交換器12 は、循環冷媒とスチーム17との間で熱交換を行うもの で、スチームの代わりに海水を用いてもよい。これらの ポンプ11および第1熱交換器12は、甲板上に配され

【0011】前記制御弁15は、比例電磁弁やステッピ ングモータ等により弁開度を調整可能なものが用いられ ている。そして、LNGタンク2の上部にタンク内のガ ス圧を検出するガス圧検出手段20が設けられ、このガ ス圧検出手段20からの信号に基いて前記制御弁15の 開度を調整制御する制御装置21が設けられている。ガ ス圧検出手段20は、圧力センサであって、コンプレッ サ4の吸入口よりもLNGタンク2側に配される。制御 30 装置21は、マイクロコンピュータ等から構成され、圧 カセンサ20からの信号に基いて前記制御弁15を制御 する。なお、図において、23はLNGタンク2の上部 保護ガパーである。

【0012】上記構成において、主機のボイラー5にボ イルオフガスを供給する場合、ボイルオフガス導管3を 通ってLNGタンク2の上部から蒸発したボイルオフガ スがコンプレッサ4から吐出され、このボイルオフガス が30℃程度に加温されてポイラー5に供給される。コ ンプレッサ4はボイラー5に必要なだけのガスを送給す るので、ボイラー5の必要ガス量が大きくなり、ボイル オフガス量が不足すると、タンク内のガス圧が低下する ので、このガス圧の低下をガス圧検出手段20で検出 し、制御装置21は、その信号に基いて制御弁15の開 度を小さくするよう制御する。そうすると、冷媒循環装 置10では、ポンプ11から吐出された冷媒の大部分が 冷媒循環回路13の第1熱交換器12を通り、ここで加 熱されて第2熱交換器9に流れ、第2熱交換器9でLN Gタンク2内のLNGを加熱し、-160℃程度のボイ ルオフガスを強制的に発生させる。そうすると、コンプ 器9に冷媒を循環させる為の冷媒循環回路13と、この 50 レッサ4の送給ガス量とタンク内で発生するボイルオフ

5

ガス量がパランスする。

【0013】逆に、ボイラー5の必要ガス量が小さくな ると、コンプレッサ4から供給されるポイルオフガス量 が少なくなり、タンク内のガス圧が増大するので、この ガス圧をガス圧検出手段20で検出し、制御装置21 は、その信号に基いて制御弁15の開度を大きくする。 そうすると、冷媒循環装置10では、ポンプ11から吐 出された冷媒の一部は、第1熱交換器12を通ることな く、パイパス回路14を通って第2熱交換器9に戻るの 熱エネルギーが少なくなる。したがって、LNGタンク 2内から蒸発するポイルオフガスの量が減少し、コンプ レッサ4の送給ガス量とタンク内で発生するポイルオフ ガス量が再びパランスする。

【0014】このように、タンク内のガス圧をガス圧検 出手段20で検出し、緩御弁15をフィードパック制御 して第2熱交換器9に送る熱エネルギーを調整し、所定 のガス圧を保つようにすると、コンプレッサ4から送ら れるポイルオフガスの量がポイラー5の必要ガス量に迫 料を賄える。また、コンプレッサ4に送られるポイルオ フガスは、約-120℃のメタンガスであり、その組成 が図2に示す従来の強制蒸発装置と異なり、単一燃料に 近く、そのため、ガスの供給制御が容易に行える。ま た、強制蒸発装置8を含むボイラー5への燃料供給制御 は、ガス圧のみをパラメータとして制御弁15をフィー ドバック制御しているので、その制御が容易かつ確実に 行える。更に、図2に示す従来の強制蒸発装置では、-120℃の自然蒸発ガスに-40℃の強制蒸発ガスが混 合し、温度が上昇したガスが供給されていたため、コン 30 とそのLNG強制蒸発装置の構成図 プレッサ4の負荷が増大していたが、本実施例では、常 に低温(-120℃)のガスが供給されるので、コンプ レッサ4の負荷も低減でき、小型のコンプレッサを用い ることができる。

【0015】また、加熱手段としての第2熱交換器9 に、ポイラー5の燃焼により発生するスチームを直接供 給することも考えられるが、停泊時などのエンジン停止 時には、スチームは発生せず、またLNGタンク2の温 度が−163℃程度の低温であるため、熱交換器内の水 が氷結するおそれがあり、循環用のパイプが破損するお 40 11:ボンブ それがある。その点、本実施例のように、低温でも固化 しないフロン系の冷媒を使用すれば循環パイプの氷結の おそれがない。

【0016】尚、本発明は、上記実施例に限定されるも のではなく、本発明の適用範囲内で多くの修正・変更を 加えることができるのは勿論である。例えば、上記実施 例では、制御弁をパイパス回路14に配したが、パイパ ス回路を設けず、直接、冷媒循環回路に制御弁を設けて もよく、また、ポンプ11の回転数を制御するように構 成してもよい。また、冷媒循環装置の熱交換器の熱源と して、上記実施例ではスチームを用いたが、これに限ら ず太陽熱を利用することも可能である。

[0017]

【発明の効果】以上説明したように、請求項1に係るL NG強制蒸発装置によれば、LNGタンクの外側にその で、冷媒循環回路13では第2熱交換器9へ供給される 10 内部のLNGを強制的に蒸発させる加熱手段を設けたの で、従来の如く強制蒸発用のポンプが不要となり、冷却 用のポンプも5個タンクの場合でも2個程度でよく、そ の製造コストを低減できる。しかも、ガス排出路のコン プレッサに供給されるガスも単一燃料に近く、ガスの供 給制御も容易に行える。さらに、コンプレッサに送られ るポイルオフガスは、従来と異なり低温の蒸発ガスであ るため、コンプレッサにかかる負荷も低減でき、小型の コンプレッサが使用でき、さらにコストの低減を実現で きる。耐求項2のLNG強制蒸発装置では、加熱手段と 随し、100%ポイルオフガスにより、ポイラー5の燃 20 して熱交換器を使用するため、海水やポイラーから発生 したスチームの熱エネルギーを有効に使用でき、新たな エネルギーを用いることなく、その省エネルギー効果も 大である。請求項3に係るLNG強制蒸発装置によれ ば、主機への燃料供給制御は、ガス圧のみをパラメータ として制御弁をフィードバック制御しているので、その 制御が容易かつ確実に行えるといった優れた効果があ る..

【図面の簡単な説明】

【図1】本発明の実施例に係るLNG船のLNGタンク

【図2】従来のLNG船のLNG強制蒸発装置の構成図 「符号の説明】

2:LNGタンク

3:導管

4:コンプレッサ

5:ボイラー

8:LNG強制蒸発装置

9:第2熱交換器(加熱手段)

10:冷媒循環装置

12:第1熱交換器

13:冷煤循環回路

14:パイパス回路

15:制御弁

20:ガス圧検出手段

21:紙御装置

(5)

特開平6-123569

[図1]

【図2】

