随机事件与概率

Didnelpsun

目录

1	基本概念		
	1.1	随机试验	1
	1.2	随机事件	1
	1.3	样本空间	1
2	事件	:	1
	2.1	关系	1
	2.2	运算	2
3	概率		3
	3.1	定义	3
	3.2	概率类型	3
		3.2.1 古典概型	3
		3.2.2 几何概型	5
	3.3	性质	5
	3.4	公式	5
4	独立性		
	4.1	事件独立性	8
	4.2	n 重伯努利试验	9

1 基本概念

1.1 随机试验

定义:满足三个条件的就是随机试验:

- 1. 试验可以在相同的条件下重复进行。
- 2. 试验所以可能结果都是明确可知,且不止一个。
- 3. 每次试验的结果事先不确定。

随机试验也称为试验,并用 E_1, E_2, \cdots 来表示。

1.2 随机事件

定义:一次试验中可能出现也可能补出现的结果称为**随机事件**,简称**事件**, 并用大写字母 A, B, \cdots 来表示。

必然事件定义:每次试验中一定发生的事件,记为 Ω 。

不可能事件定义:每次试验中一定不发生的事件,记为 Ø。

1.3 样本空间

随机试验的每一个不可再分的可能结果称为**样本点**,记为 ω ,样本点的全体组成的集合称为**样本空间或基本事件空间**,记为 Ω ,即 $\Omega = \{\omega\}$ 。

由一个样本点构成的事件称为基本事件。

随机事件 A 总是由若干个基本事件构成, 即 A 是 Ω 的子集。

样本点的个数就是基本事件的个数。

2 事件

2.1 关系

若事件 A 发生必然导致事件 B 发生,则称事件 B 包含事件 A (或 A 被 B 包含),记为 $A \subset B$ 。

如果 $A \subset B$ 且 $B \subset A$,则称事件 AB 相等,记为 A = B,AB 是由完全相同的一些试验结果构成,是同一事件表面上看来两个不同说法。

若事件在事件 A 与 B 同时发生,则称为事件 A 与 B 的**积**或**交**,记为 $A \cap B$ 或 AB。

有限个事件 A_1, A_2, \dots, A_n 同时发生的事件为事件 A_1, A_2, \dots, A_n 的积或 交,记为 $\bigcap_{i=1}^{n} A_i$ 或 $\bigcap_{i=1}^{\infty} A_i$ 。

若 $AB \neq \emptyset$,则称事件 AB 相容,否则**互不相**容或**互斥**。如果一些事件中任 意两个事件都互斥,则这些事件**两两互斥**,简称互斥。

事件 AB 至少有一个发生的事件称为事件 AB 的和或并,记为 $A \cup B$ 。

有限个事件 A_1, A_2, \dots, A_n 至少有一个发生的事件为事件 A_1, A_2, \dots, A_n 的和或并,记为 $\bigcup_{i=1}^{n} A_i$ 或 $\bigcup_{i=1}^{n} A_i$ 。

事件 A 发生而事件 B 不发生的事件为事件 AB 的差,记为 A-B。

事件 A 不发生的事件为事件 A 的**逆事件**或对**立事件**,记为 \overline{A} 。

若 $\bigcup_{i=1}^n A_i$ 或 $\bigcup_{i=1}^\infty A_i = \Omega$, $A_i A_j = \varnothing$ (对一切的 $i \neq j$, $i, j = 1, 2, 3, \cdots, n, \cdots$),则称有限个事件 A_1, A_2, \cdots, A_n 构成一个完备事件组。

2.2 运算

定义可知: $A - B = A - AB = A\overline{B}$, $B = \overline{A}$ 等价于 $AB = \emptyset$ 目 $A \cup B = \Omega$ 。

- 1. 吸收律: 若 $A \subset B$, 则 $A \cup B = B$, $A \cap B = A$ 。
- 2. 交換律: $A \cup B = B \cup A$, $A \cap B = B \cap A$ 。
- 3. 结合律: $(A \cup B) \cup C = A \cup (B \cup C)$, $(A \cap B) \cap C = A \cap (B \cap C)$.
- 4. 分配律: $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$, $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$, $A \cap (B C) = (A \cap B) (A \cap C)$ 。
- 5. 对偶律 (德•摩根律): $\overline{A \cup B} = \overline{A} \cap \overline{B}$, $\overline{A \cap B} = \overline{A} \cup \overline{B}$ 。(长杠变短杠, 开口换方向)

例题: 判断 $A - (B - C) = (A - B) \cup C$ 是否成立。

3 概率

3.1 定义

- 描述性定义: 将随机事件 A 发生的可能性大小的度量(非负)称为事件 A 发生的概率,记为 P(A)。
- 统计性定义: 在相同条件下做重复试验,事件 A 出现的次数 k 和总的试验次数 n 之比 $\frac{k}{n}$,称为事件 A 在这 n 次试验中出现的**频率**,当 n 充分大时,频率将稳定与某常数 p 附近,n 越大频率偏离这个常数 p 的可能性越小,这个常数 p 就是事件 A 的概率。
- 公理化定义:设随机试验的样本空间为 Ω ,如果对每一个事件 A 都有一个确定的实数 P(A),且事件函数 $P(\cdot)$ 满足:①非负性: $P(A) \ge 0$;②规范性: $P(\Omega) = 1$;③可列可加性:对于任意个互不相容事件 A_1, A_2, \cdots, A_n 有 $P(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{n} P(A_i)$,则称 $P(\cdot)$ 为概率,P(A) 为事件 A 的概率。

3.2 概率类型

3.2.1 古典概型

定义: 样本空间满足: ①只有有限个样本点(基本事件); ②每个样本点(基本事件)发生的可能性一样(等可能)。

若古典概型的基本事件总数为 n,事件 A 包含 k 个基本事件,也称为有利于 A 的基本事件为 k 个,则 A 的概率为 $P(A) = \frac{k}{n} = \frac{\$ + A}{1}$ 基本事件总数 这个概率就是 A 的**古典概率**。

古典概型的关键是计数,常用的方法有三种:

- 1. 列举法(直接查数法): 基本事件为数不多使用。
- 2. 集合对应法:
 - (a) 加法原理: 完成一件事有 n 类方法,第一类方法中有 m_1 类方法,第二类办法有 m_2 中方法,…,第 n 类方法中有 m_n 类方法,所以完成此事共有 $\sum_{i=1}^{n} m_i$ 种方法。

- (b) 乘法原理: 完成一件事情有 n 个步骤,第一步有 m_1 种方法,第二步有 m_2 种方法,…,第 n 步有 m_n 种方法,则完成此事共有 $\prod_{i=1}^n m_i$ 种方法。
- (c) 排列: 从 n 种不同的元素种取出 $m \le n$ 个元素,并按照一定顺序排成一列,称为排列,所有排列的个数称为排列数,记为 $A_n^m = n(n-1)(n-2)\cdots(n-m+1) = \frac{n!}{(n-m)!}$,当 m=n 时, $A_m^n = n!$ 称为全排列。
- (d) 组合: 从 n 种不同的元素种取出 $m \le n$ 个元素,并组成一组,称为组合,所有组合的个数称为组合数,记为 $C_n^m = \frac{A_n^m}{m!} = \frac{n!}{(n-m)!m!}$ 。
- 3. 逆数法: 先求 \overline{A} 中的基本事件数 $n_{\overline{A}}$, 将基本事件总数 n 减去 $n_{\overline{A}}$ 得 A 中的基本事件数。常用于计算含有"至少"字样的事件的概率。

问题常见类型:

- 直接用定义求概率。
- 随机分配或随机占位。将 n 个可辨质点是随机分配到 N 个盒子中。若每盒最多可容纳一个质点,则一共有 P_N^n 种分法;若每盒可以容纳任意多个质点,则一共有 N^n 种分法。
- 简单随机抽样。设 $\Omega = \{\omega_1, \omega_2, \cdots, \omega_N\}$ 含有 N 个元素,称 Ω 为总体。各元素被抽到的可能性相同。若先后有放回取 n 次,则有 N^n 种抽法;若先后无放回取 n 次,则有 P_N^n 种抽法;若任取 n 个,则有 C_N^n 种抽法。

例题: 5人共钓到3条鱼,每条鱼每个人钓到的可能性相同,求:

- (1)3 条鱼由不同人钓到的概率。
- (2) 有 1 人钓到两条鱼的概率。
- (3)3条鱼由同一个人钓到的概率。

由题目可知这是一个随机分配的问题,总基本事件数为53。

对于鱼而言没有明确的区分说明,所以这个就是个组合问题。

(1) 解: 令第一个事件为 A,因为每条鱼由不同的人钓到,即 5 人中恰有 3 人各钓到鱼,所以组合一共有 C_5^3 种,即从 5 个人取 3 个人有这么多种的取法。这 3 个人需要钓到 3 条鱼,因为鱼是可辩的,所以每组有 P_3^3 种分配方法。则 $P(A) = \frac{C_5^3 P_3^3}{5^3}$ 。

- (2) 解: 令第二个事件为 B,若一个人钓到两条,即从 3 条中任意选 2,即 C_3^2 ,又是 5 个人中的一个人完成的,所以 C_5^1 ,所以有一个人钓到 2 条鱼共有 $C_3^2C_5^1$ 种可能,此时还有一条鱼可以被其他 4 个人钓到,所以还要乘 4。则 $P(B) = \frac{C_3^2C_5^14}{53}$ 。
- (3) 解: 令第三个事件为 C,若一个人钓到三条,所以只有一种选法,然后有 5 个人可能钓到 3 条,所以是 C_5^1 ,则 $P(C) = \frac{C_5^1}{53}$ 。

3.2.2 几何概型

定义: ①样本空间 Ω 是一个可度量的有界区域; ②每个样本点发生的可能性都是一样,即样本点落入 Ω 的某一可度量的子区域 S 的可能性大小与 S 的几何度量成正比,而与 S 的位置与形状无关。

在几何概型随机试验中,若 S_A 是样本空间 Ω 的一个可度量的子区域,则事件 A= 样本落入区域 S_A 的概率为 $P(A)=\frac{S_A$ 的几何度量 Ω 的几何度量,这个概率就是 A 的几何概率。

古典概型的基本事件有限,而几何概型的基本事件无限且可几何度量。

3.3 性质

- 有界性: 对于任一事件 A, 有 $0 \le P(A) \le 1$, 且 $P(\emptyset) = 0$, $P(\Omega) = 1$. (P(A) = 0 不能推出 $A = \emptyset$, 同样 P(A) = 1 不能推出 $A = \Omega$)
- 单调性: 设 AB 为两个事件,若 $A \subset B$,则 P(B A) = P(B) P(A), $P(B) \geqslant P(A)$ 。

3.4 公式

- 逆事件概率公式: 对于任一事件 A,有 $P(\overline{A}) = 1 P(A)$ 。
- 加法公式: 对于任意两个事件 AB,有 $P(A \cup B) = P(A) + P(B) P(AB)$;对于三个事件 ABC, $P(A \cup B \cup C) = P(A) + P(B) + P(C) P(AB) P(AC) P(BC) + P(ABC)$;对于四个事件 ABCD, $P(A \cup B \cup C \cup D) = P(A) + P(B) + P(C) + P(D) P(AB) P(AC) P(AD) P(BC) P(BD) P(CD) + P(ABC) + P(ABD) + P(ACD) + P(BCD) P(ABCD)$;若 A_1, A_2, \dots, A_n 两两互不相容,则 $P(A_1 \cup A_2 \cup \dots \cup A_n) = P(A_1) + P(A_2) + \dots + P(A_n)$ 。
- 减法公式: $P(A-B) = P(A) P(AB) = P(A\omega) P(AB) = P(A\overline{B})$ 。

- 条件概率公式: 对于任意两个事件 AB,若 P(A) > 0,我们称在已知事件 A 发生的条件下,事件 B 发生的概率为**条件概率**,记为 $P(B|A) = \frac{P(AB)}{P(A)}$ 。 $P(\overline{B}|A) = 1 P(B|A)$,P(B C|A) = P(B|A) P(BC|A)。
- 乘法公式: 若 P(A) > 0,则 P(AB) = P(A)P(B|A)。一般而言,对于 n > 2, $P(A_1A_2 \cdots A_{n-1}) > 0$,则 $P(A_1A_2 \cdots A_{n-1}) = P(A_1)P(A_2|A_1)P(A_3|A_1A_2)$ $\cdots P(A_n|A_1A_2 \cdots A_{n-1})$ 。(A_i 的顺序不定)
- 全概率公式: 若 $\bigcup_{i=1}^{n} A_i = \Omega$, $A_i A_j = \emptyset$ $(i \neq j, i, j = 1, 2, \cdots, n)$, $P(A_i) > 0$, 则对任一事件 B, 有 $B = \bigcup_{i=1}^{n} A_i B$, $P(B) = \sum_{i=1}^{n} P(A_i) P(B|A_i)$ 。 $P(B) = P(B\Omega) = P(B(\bigcup_{i=1}^{n} A_i)) = P(\bigcup_{i=1}^{n} BA_i) = \sum_{i=1}^{n} P(BA_i) = \sum_{i=1}^{n} P(A_i) P(B|A_i)$ 。
- 贝叶斯公式: 若 $\bigcup_{i=1}^{n} A_i = \Omega$, $A_i A_j = \emptyset$ $(i \neq j, i, j = 1, 2, \dots, n)$, $P(A_i) > 0$, 则对任一事件 B, 有 $P(A_i|B) = \frac{P(A_iB)}{P(B)} = \frac{P(A_i)P(B|A_i)}{\sum\limits_{i=1}^{n} P(A_i)P(B|A_i)}$.

全概率公式是由因知果, 而贝叶斯公式是执果索因。

例题:若随机事件 AB 同时发生,C 也必然发生,且下列选项一定成立的是 ()。

$$A.P(C) < P(A) + P(B) - 1$$
 $B.P(C) \ge P(A) + P(B) - 1$
 $C.P(C) = P(AB)$ $D.P(C) = P(A \cup B)$

解: AB 同时发生,C 也必然发生则说明 AB 这个事件是包含于 C 的,所以 AB 同时发生才能发生 C,但是反之不一定成立, $AB \subset C$, $P(AB) \leqslant P(C)$ 。

又
$$P(A \cup B) \leq 1$$
, 则 $P(A) + P(B) - 1 \leq P(C)$ 。 B 成立。

例题: 已知 $P(\overline{A}) = 0.3$, P(B) = 0.4, $P(A\overline{B}) = 0.5$, 求 $P(B|A \cup \overline{B})$ 。
解: $P(B|A \cup \overline{B}) = \frac{P(B(A \cup \overline{B}))}{P(A \cup \overline{B})} = \frac{P(BA \cup B\overline{B})}{P(A) + P(\overline{B}) - P(A\overline{B})}$ 。 $P(A) = 1 - P(\overline{A}) = 0.7, \ P(\overline{B}) = 1 - P(B) = 0.6, \ P(A\overline{B}) = P(A) - P(AB),$ $\therefore P(AB) = P(A) - P(A\overline{B}) = 0.2$ 。 $\therefore = \frac{0.2}{0.7 + 0.6 - 0.5} = 0.25$ 。

例题: 每箱产品有 10 件,次品数从 0 到 2 都是等可能的,开箱检查时,任取 1 件。

- (1) 求抽到是正品的概率。
- (2) 若检测出次品就拒收,假如检验有误差,将 1 件正品误认为次品的概率 为 2%, 1 件次品被漏查认为是正品的概率是 5%, 求该箱产品通过验收的概率。
- (1) 解:已知次品数从 0 到 2 都是等可能的,从而令有 0 件次品为 A_0 ,有 1 件次品为 A_1 ,有 2 件次品为 A_2 ,事件出现的概率都是 $\frac{1}{3}$ 。

设取到正品的事件为 B_1 ,发生概率为对应次品情况下取到正品的可能性,根据全概率公式: $P(B_1) = \sum_{i=0}^{2} P(A_i) P(B_1|A_i) = \frac{1}{3} \cdot 1 + \frac{1}{3} \cdot \frac{9}{10} + \frac{1}{3} \cdot \frac{8}{10} = 0.9$ 。

(2) 解:取出一件商品只有两个事件,是正品 B_1 或是次品 $\overline{B_1}$ 。

令通过验收的概率为 B,则分为两种情况,一种是抽出正品被认为是正品的情况,一种是抽出次品被认为是正品的情况,即根据全概率公式: $P(B) = P(B_1)P(B|B_1) + P(\overline{B_1})P(B|\overline{B_1}) = 0.9 \cdot (1-2\%) + 0.1 \cdot 5\% = 0.887$ 。

例题:假设有两批数量相同的零件,已知有一批产品全部合格,另一批产品有 25% 不合格。从两批产品中任取 1 件,经检验是正品,放回原处,并在原所在批次再取 1 件,求这次产品是次品的概率。

解: 首先因为是两堆零件。第一次抽到的零件合格,可能是 100% 的一堆, 也可能是 75% 的一堆。这个概率是等可能的。

令 H_i 为第一次从第 i 批中取零件,则 $P(H_1) = \frac{1}{2} = P(H_2)$ 。

令取到正品为 A,第 1 批取到正品概率 $P(A|H_1)=1$,第 2 批 $P(A|H_2)=\frac{3}{4}$ 。 根据全概率公式取到正品: $P(A)=P(H_1)P(A|H_1)+P(H_2)P(A|H_2)=\frac{7}{8}$ 。

又已经检测到了是正品,即 A 已经发生了,后面说的将产品放回原位再从原位抽一件零件检测判断是否为次品,即表示已知 A 发生求是 H_1 或 H_2 的可能性,再求是次品的可能性。利用贝叶斯公式计算。

抽到正品原批次是
$$H_1$$
 概率: $P(H_1|A) = \frac{P(H_1A)}{P(A)} = \frac{P(H_1)P(A|H_1)}{P(A)} = \frac{4}{7}$ 。
抽到正品原批次是 H_2 概率: $P(H_1|A) = 1 - \frac{4}{7} = \frac{3}{7}$ 。

令 C_i 为第二次从第 i 批取零件,则 $P(C_1) = P(H_1|A) = \frac{4}{7}$, $P(C_2) = \frac{3}{7}$ 。 此时产品是次品的概率为 $P(\overline{A}) = P(C_1)P(\overline{A}|C_1) + P(C_2)P(\overline{A}|C_2) = \frac{4}{7} \cdot 0 + \frac{3}{7} \cdot \frac{1}{4} = \frac{3}{28}$ 。

4 独立性

4.1 事件独立性

- 描述性定义(直观性定义): 设 AB 为两个事件,如果其中任何一个事件 发生的概率不受另外一个事件发生与否的影响,则称事件 A 与 B 相互 独立。设 A_1, A_2, \cdots, A_n 是 $n \ge 2$ 个事件,如果其中任何一个或几个事 件发生的概率都不受其余的某一个或几个事件发生与否的影响,则称事件 A_1, A_2, \cdots, A_n 相互独立。
- 数学定义: 设 AB 为两个事件, 如果 P(AB) = P(A)P(B), 则称事件 A 与事件 B 相互独立, 简称 A 与 B 独立。如 $P(A|B) = \frac{P(AB)}{P(B)} = \frac{P(A)P(B)}{P(B)} = P(A)$ 。

设 A_1, A_2, \dots, A_n 为 $n \leq 2$ 个事件,若堆其中任意有限个事件 $A_{k1}, A_{k2}, \dots, A_{kk}$ $(2 \leq k \leq n)$,有 $P(A_{k1}A_{k2} \dots A(kk)) = P(A_{k1}A_{k2} \dots A_{kk})$,则称这 n 个事件 A_1, A_2, \dots, A_n 为 $n \leq 2$ 相互独立。

如 n=3,若 $P(A_1A_2)=P(A_1)P(A_2)$, $P(A_1A_3)=P(A_1)P(A_3)$, $P(A_2A_3)=P(A_2)P(A_3)$, $P(A_1A_2A_3)=P(A_1)P(A_2)P(A_3)$,则称事件 A_1,A_2,A_3 相互独立。若没有最后一个式子则只能称其两两独立。

例题: 设 AB 是任意两个事件,其中 $P(A) \in (0,1)$,证明 $P(B|A) = P(B|\overline{A})$ 是事件 AB 相互独立的充要条件。

证明: 先证必要性,即 AB 独立,则 P(AB) = P(A)P(B), P(B|A) = P(B), 同理 $P(B|\overline{A}) = P(B)$,所以必要性成立。

然后证明充分性,若
$$P(B|A) = \frac{P(AB)}{P(A)} = \frac{P(\overline{A}B)}{P(\overline{A})} = P(B|\overline{A})$$
。

根据减法公式, $\frac{P(AB)}{P(A)} = \frac{P(B) - P(AB)}{1 - P(A)}$,使用交叉相乘得到 P(A)(P(B) - P(AB)) = P(AB)(1 - P(A)),解得 P(AB) = P(A)P(B)。从而充分性成立。

定理: 若 AB 独立,则 $\overline{A}B$ 、 $A\overline{B}$ 、 \overline{AB} 也独立。

例题:将一枚硬币独立地掷两次,设 $A_1 = \{$ 掷第一次出现正面 $\}$, $A_2 = \{$ 掷第二次出现正面 $\}$, $A_3 = \{$ 正反面各出现一次 $\}$, $A_4 = \{$ 出现正面两次 $\}$,则事件()。

 $A.A_1, A_2, A_3$ 相互独立 $B.A_2, A_3, A_4$ 相互独立

 $C.A_1, A_2, A_3$ 两两独立 $D.A_2, A_3, A_4$ 两两独立

解: 已知一共只有四种情况: {正, 正}、{正, 反}、{反, 正}、{反, 反}。 则 $P(A_1) = \frac{1}{2}$, $P(A_2) = \frac{1}{2}$, $P(A_3) = \frac{1}{2}$, $P(A_4) = \frac{1}{4}$ 。

对于 $P(A_1A_2) = \frac{1}{4} = P(A_1)P(A_2)$, $P(A_1A_3) = \frac{1}{4} = P(A_1A_3)$, $P(A_2A_3) = \frac{1}{4} = P(A_2A_3)$, $P(A_1A_2A_3) = 0 \neq P(A_1A_2A_3)$ 。所以 C。

4.2 n 重伯努利试验

独立试验**定义**: 称试验 E_1, E_2, \cdots, E_n 为相互独立的,如果分别于各个试验 相联系的任意 n 个事件之间相互独立。

独立重复试验定义:独立表示与各试验相联系的事件之间相互独立,其中重复表示每个事件在各次试验中出现的概率不便。

伯努利试验定义: 只针对失败、成功两种对立结果的试验,将伯努利试验重复进行 n 次,就是 n **重伯努利试验**。

在计算伯努利试验概率的时候不仅要考虑每一类情况(出现几次)的次数,还有考虑其组合情况,即将多个情况的 $C_n^m p^j$ 相加。